NAME: SHREYAS CHOLKE

USN: 1BM20CS154

MACHINE LEARNING LAB OBSERVATION

Date: 1-04-2023

Lab 1: Exploring Datasets

IRIS DATASET:

- Features in the Iris dataset:
 - 1. sepal length in cm
 - 2. sepal width in cm
 - 3. petal length in cm
 - 4. petal width in cm
- Target classes to predict:
 - 1. Iris Setosa
 - 2. Iris Versicolour
 - 3. Iris Virginica

```
In [8]: from sklearn.datasets import load_iris
           iris=load_iris()
 In [9]: print(iris)
           {'data': array([[5.1, 3.5, 1.4, 0.2],
                  [4.9, 3., 1.4, 0.2],
[4.7, 3.2, 1.3, 0.2],
                  [4.6, 3.1, 1.5, 0.2],
[5., 3.6, 1.4, 0.2],
                  [5.4, 3.9, 1.7, 0.4],
                  [4.6, 3.4, 1.4, 0.3],
                  [5., 3.4, 1.5, 0.2],
                  [4.4, 2.9, 1.4, 0.2],
                  [4.9, 3.1, 1.5, 0.1],
                  [5.4, 3.7, 1.5, 0.2],
                  [4.8, 3.4, 1.6, 0.2],
                  [4.8, 3., 1.4, 0.1],
                  [4.3, 3., 1.1, 0.1],
                  [5.8, 4., 1.2, 0.2],
                  [5.7, 4.4, 1.5, 0.4],
                  [5.4, 3.9, 1.3, 0.4],
                  [5.1, 3.5, 1.4, 0.3],
                  [5.7, 3.8, 1.7, 0.3],
 In [5]: type(iris)
Out[5]: function
In [12]: iris.keys()
Out[12]: dict_keys(['data', 'target', 'frame', 'target_names', 'DESCR', 'feature_names', 'filename', 'data_module'])
In [13]: iris
                  [4.7, 3.2, 1.6, 0.2],
                  [4.8, 3.1, 1.6, 0.2],
                  [5.4, 3.4, 1.5, 0.4],
                  [5.2, 4.1, 1.5, 0.1],
                  [5.5, 4.2, 1.4, 0.2],
                  [4.9, 3.1, 1.5, 0.2],
                  [5., 3.2, 1.2, 0.2],
                  [5.5, 3.5, 1.3, 0.2],
                  [4.9, 3.6, 1.4, 0.1],
                  [4.4, 3., 1.3, 0.2],
                  [5.1, 3.4, 1.5, 0.2],
                  [5. , 3.5, 1.3, 0.3],
                  [4.5, 2.3, 1.3, 0.3],
                  [4.4, 3.2, 1.3, 0.2],
                  [5., 3.5, 1.6, 0.6],
                  [5.1, 3.8, 1.9, 0.4],
                  [4.8, 3., 1.4, 0.3],
[5.1, 3.8, 1.6, 0.2],
```

```
In [17]: print(iris['target_names'])
          ['setosa' 'versicolor' 'virginica']
In [20]: n_samples,n_features=iris.data.shape
         print("no.of samples:",n_samples)
print("no.of features:",n_features)
          no.of samples: 150
         no.of features: 4
In [28]: iris.data[[12,26,89,114]]
Out[28]: array([[4.8, 3. , 1.4, 0.1],
                 [5., 3.4, 1.6, 0.4],
                 [5.5, 2.5, 4., 1.3],
                 [5.8, 2.8, 5.1, 2.4]])
In [29]: print(iris.data.shape)
          (150, 4)
In [31]: print(iris.target.shape)
          (150,)
In [32]: import numpy as np
         np.bincount(iris.target)
```

Scattered graph for samples vs features.

```
In [32]: import numpy as np
         np.bincount(iris.target)
Out[32]: array([50, 50, 50], dtype=int64)
In [42]: import matplotlib.pyplot as plt
         plt.scatter(n_samples,n_features)
Out[42]: <matplotlib.collections.PathCollection at 0x1d1c8c45550>
           4.20
           4.15
           4.10
           4.05
           4.00
           3.95
           3.90
           3.85
           3.80
                                       148
               142
                       144
                               146
                                               150
                                                       152
                                                              154
                                                                      156
                                                                              158
```

Scattered graph: with first two features (septal width vs septal length) The three colors represents three different classes respectively.

```
4.0 -

(E) 3.5 -

1.5 -

2.5 -

2.0 -

4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0 sepal length (cm)
```

WINE DATASET:

```
In [51]: from sklearn.datasets import load_wine
          wine=load_wine()
 In [52]: print(wine)
          {'data': array([[1.423e+01, 1.710e+00, 2.430e+00, ..., 1.040e+00, 3.920e+00,
                  1.065e+03],
                 [1.320e+01, 1.780e+00, 2.140e+00, ..., 1.050e+00, 3.400e+00,
                  1.050e+03],
                 [1.316e+01, 2.360e+00, 2.670e+00, ..., 1.030e+00, 3.170e+00,
In [57]: wine.data
Out[57]: array([[1.423e+01, 1.710e+00, 2.430e+00, ..., 1.040e+00, 3.920e+00,
                 1.065e+03],
                 [1.320e+01, 1.780e+00, 2.140e+00, ..., 1.050e+00, 3.400e+00,
                  1.050e+03],
                [1.316e+01, 2.360e+00, 2.670e+00, ..., 1.030e+00, 3.170e+00,
                 1.185e+03],
                [1.327e+01, 4.280e+00, 2.260e+00, ..., 5.900e-01, 1.560e+00,
                 8.350e+02],
                 [1.317e+01, 2.590e+00, 2.370e+00, ..., 6.000e-01, 1.620e+00,
                  8.400e+02],
                 [1.413e+01, 4.100e+00, 2.740e+00, ..., 6.100e-01, 1.600e+00,
                 5.600e+02]])
In [58]: wine.keys()
Out[58]: dict_keys(['data', 'target', 'frame', 'target_names', 'DESCR', 'feature_names'])
In [60]: print(wine['target_names'])
         ['class_0' 'class_1' 'class_2']
```

Date: 15/04/2023

Lab 2: FIND-S ALGORITHM FOR ENJOY SPORT:

Program 2 – Implement and demonstrate the FIND-S algorithm for finding the most specific hypothesis based on a given set of training data samples. Read the training data from a .CSV file Data set:Enjoysport

a. Enjoysport

Example	Sky	AirTemp	Humidity	Wind	Water	Forecast	EnjoySport
1	Sunny	Warm	Normal	Strong	Warm	Same	Yes
2	Sunny	Warm	High	Strong	Warm	Same	Yes
3	Rainy	Cold	High	Strong	Warm	Change	No
4	Sunny	Warm	High	Strong	Cool	Change	Yes

Algorithm:

initialize h to the most specific hypothesis in H h- $(\emptyset, \emptyset, \emptyset, \emptyset, \emptyset, \emptyset)$

- 1. First training example X1=< Sunny, Warm. Normal, Strong Warm Same>. EnjoySport=+ve Observing. The first trainin example, it is clear that hypothesis h is too specific. None of the "Ø" constraints in h are satisfied by this example, so each is replaced by the next more general constraint that fits the example h1 = < Sunny, Warm, Normal, Strong Warm, Same>.
- 2.Consider the second training example x2 < Sunny, Warm, High, Strong, Warm, Same>. EnjoySport+ve. The second training example forces the algorithm to further generalize h, this time substituting a "?" in place of any attribute value in h that is not satisfied by the new example. Now h2 =< Sunny, Warm, ?, Strong, Warm, Same>
- 3. Consider the third training example x3< Rainy, Cold, High, Strong, Warm. Change EnjoySport ve. The FIND-S algorithm simply ignores every negative example. So the hypothesis remain as before, so 13=< Sunny, Warm, ?, Strong, Warm, Same>
- 4. Consider the fourth training example x4 <Sunny, Warm, High. Strong. Cool, Change, EnjoySport +ve. The fourth example leads to a further generalization of h as h4=< Sunny, Warm, ?, Strong, ?, ?>
- 5. So the final hypothesis is < Sunny, Warm, ?, Strong, ?, ?>

	classaute
6/4/23	Classmate Date 3
61	
	Lab Program
	Dataset: enjoysports. CEV file
5.00	The state of the s
Sample	Sky firms Humidity Wind Water Forcast sports
1)	OTYONG NAVIM DAME 755 T
	Sur Narm high strong warm Same Yest +
	SUNNY WAR WAYN SAME TO
	The same to a
*	Find S algorithm: Es a basic-concept-learning algo in MI.
*	It finds what is most-specific hypothesis that fits all the "Positive" examples.
*	This algo starts with the most specific hypothesis
	and moves to the most general hypothesis.
1	3 -> accepts any value general.
	0 - accepts No falle specific value
	MGD -> (2? ??) accepts everything.
	MSD -> (Q 9 60) accepts None
	initial nyto: (d, d, d, d) T
Stevation	1 hi = < 'Sunny', warn', 'normal, 'Strong' warn
	Same > +ve
iteration 2	hz = 'Suvny', 'warm', 'high', 'strong', 'warm', 'sam hz = < 'Raing', 'cold', 'high', 'strong', warm', 'Change'> hy= < Eurny, 'warm', 'high', 'Strong, 'cool', 'Change'>
iteration 3	h3 = c Rainy cold high strong warm changes
iteration 4	mu= < wany narm high strong cool, mange?
	(not considered) (x) stranger who seems
	(ad " singuistic N') Hoise - 1
()	Enitialize 'h' to the most specific hype in H.
	The state of many of the state
2)	For each positione training instance 'x' each attribute
	Constraint as in In it the constraint ai is
- WAY	and the second s
	let latisfied by x then do nothing.
	set satisfied by 'x' then do nothing.
JA	else replace as in h by the next more general
- 13Y	elle replace as in h by the next more general Constraint that is required by 'x' hypothese h.
- 13Y	else replace as in h by the next more general Constraint that is required by 'x' hypothese h.
Jak 3	else replace as in h by the next more general
Sin	clie replace as in h by the next more general Constraint that is required by 'x' hypothese h.
Jak 3 Cola e	else replace as in h by the next more general Constraint that is required by 'x' hypothese h. Output hypothesis h. Program
37 3 3 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1	else replace as in h by the next more general Constraint that is required by 'x' hypothese h. Output hypothesis h. Program import csv
3 cols 2 12 4	clie replace as in h by the next more general Constraint that is required by 'x' hypothese h. Output hypothesis h. Program import civ def updatethypothusis(x).
3 200 2	clie replace as in h by the next more general Constraint that is required by 'x' hypothese h. Output hypothesis h. Program import csv def updatethypothesis(x). if h == []
212 t	clie replace as in h by the next more general Constraint that is required by 'x' hypothese h. Output hypothesis h. Program import csv def updatethypothesis(x): if h == []
31 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3	clie replace as in h by the next more general Constraint that is required by 'x' hypothese h. Output hypothesis h. Program import csv def updatetysothus(xs): if h == [] return x for; in range [0, len(h)).
31 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	clie replace as in h by the next more general Constraint that is required by 'x' hypothese h. Output hypothesis h. Program import car def updateHypothusis(xa); if n == [] return x for; in range [0, len(n)); if x [i] upper()! = h[i] upper().
3 3 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2	clie replace as in h by the next more general Constraint that is required by 'x' hypothese h. Output hypothesis h. Program import cuy def updateHypothusis(xa); if n == [] return x for i in range [0, len(n)); if x [i] upper()! = h [i], upper(): h [i] = '2' Yeturn h
3 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	clie replace as in h by the next more general Constraint that is required by 'x' hypothese h. Output hypothesis h. Program import cuy def updateHypothusis(xa); if n == [] return x for i in range [0, len(n)); if x [i] upper()! = h [i], upper(): h [i] = '2' Yeturn h
242 ±	clie replace as in h by the next more general constraint that is required by 'x' hypothese h. Output hypothesis h. Program import car det updatetypothusis(xa): if h == [] return x for; in range [0, len(h)): if x [i] upper()! = h [i], upper(): h [i] = '?'
212 ±	clie replace as in h by the next more general Constraint that is required by 'x' hypothese h. Constraint that is required by 'x' hypothese h. Constraint that is required by 'x' hypothese h. Program import car det updatetypothesis(x): if h == [] return x for; in range [0, len(h)): h [i] = 'y' Yeturn h if name == 'main' data = [] h = (]
31/2 + 2004/6 + 2004/	clue replace as in h by the next more general Constraint that is required by 'x' hypothese h. Output hypothesis h. Program import cur def updatetylothusis(x): if h == [] return x for; in range [0, len(n)): if x [i] upper()! = h [i], upper(): h [i] = '7' Yeturn h if name == 'main' data = [] with open ("Desutop Finds. csv' "x') as file!
31/2 + 200 Hz	clue replace as in h by the next more general Constraint that is required by 'x' hypothese h. Output hypothesis h. Program import cuv def updatetypothusis(xa): if h == [] seturn x for; in range [0, len(n)): if x [i] upper()! = h [i], upper(): h [i] = '?' Yeturn h if name == 'main' data = [] with open ("Deutop Finds.csv', 'x') aufile! reader = Csv. reader (file)
31 31 3	clue replace as in h by the next more general Constraint that is required by 'x' hypothese h. Output hypothesis h. Program import CIV def updateHypothesis(xa): if h == [] return x for; in range [0, len(h)); if x [i], upper()! = h [i], upper(): h [i] = '?' Yeturn h if name == 'main' data = [] h = [] with open (Desktop Finds. csv''x') as file! reader = csv, reader (file)
3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	clue replace as in h by the next more general Constraint that is required by 'x' hypothese h. Output hypothesis h. Program import CIV def updateHypothesis(xa): if h == [] return x for; in range [0, len(n)); if x [i] upper()! = h [i], upper(). h [i] = '2' Yeturn h if name == 'main' data = [] h = [] with open (Desktop Finds. csv' 'x') as file! reader = csv. reader (file) print Data:" olara. append (vow)
3 3 3 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4	cle replace as in h by the next more general Constraint that is required by 'x' hypothese h. Output hypothesis h. Program import car det updateHypothusis(xa); if n == [] return x for; in range [0, len(n)); if x[i] upper()! = h[i], upper(): h[i] = '2' Yeturn h if name == 'main' data = [] h = [] with open ("Desutop Finds.csv", x") as file! reader = csv, reader (file) print ("Data:") clata.append (vow)
3 3 212 1	cle replace as in h by the next more general Constraint that is required by 'x' hypothese h. Constraint that is required by 'x' hypothese h. Constraint that is required by 'x' hypothese h. Constraint hypothesis h. Program import cav det updateHypothesis(xs): if n == [] return x for; in range [0, len(n)): if x[i] upper()! = h[i], upper(): h[i] = '?' Yeturn h if name == 'main' data = [] h = C] with pen ("Deutop Finds. csv' 'x') apfile! reader = csv, reader (file) print ("Deuto") data: print ("Deuto") reader = csv. reader (file)
3 3 (CA) 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	clue replace as in h by the next more general Constraint that is required by 'x' hypothese h. Output hypothesis h. Program import CIV def updatetylothusis(xa): if h == [] return x for; in range [0, len(n)); if x [i] upper()! = h [i], upper(). h [i] = '2' Yeturn h if name == 'main' data = [] h = [] with open (Deuktop Finds. csv' v') aufile! reader = csv. reader (file) print (Data:") olara. append (vow) if data! for x in data
33 (R) 1 (1) (R) 1	clue replace as in h by the next more general Constraint that is required by 'x' hypothese h. Output hypothesis h. Program import CIV def updateHypothesis(xa): if h == [] return x for; in range [0, len(h)); if x[i], upper()! = h [i], upper(): h [i] = '?' Yeturn h if name == 'main' data = [] h = [] with pen ("Deuktop Finds. csv" v") aufile! reader = csv. reader (file) print "Data:") olata. append (vow) if data: for x in data if x[-1], upper() == "Yei": x pol)
3 3 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	clue replace as in h by the next more general Constraint that is required by 'x' hypothese h. Output hypothesis h. Program import CIV def updatetylothusis(xa): if h == [] return x for; in range [0, len(n)); if x [i] upper()! = h [i], upper(). h [i] = '2' Yeturn h if name == 'main' data = [] h = [] with open (Deuktop Finds. csv' v') aufile! reader = csv. reader (file) print (Data:") olara. append (vow) if data! for x in data

CREATING CSV FILE:

The final hypothesis is: ['Sunny' 'Warm' '?' 'Strong' '?' '?']

SECOND DATASET: FIND-S ALGORITHM

example	citations	size	inLibrary	price	editions	buy
1	some	small	no	affordable	many	no
2	many	big	no	expensive	one	yes
3	some	big	always	expensive	few	no
4	many	medium	no	expensive	many	yes
5	many	small	no	affordable	many	yes

CREATING CSV FILE


```
import numpy as np
     import pandas aspd
[ ] from google.colab import drive
     drive.mount("/content/drive")
     Mounted at /content/drive
[ ] path ="/content/finds 1BP120CS066 - Sheetl.csv"
[ ] data = pd.read csv(path)
[ ] p oi nt ( dat a , "\n" )
       citation size inLibrary price editions buy
     0
        some small no affordable many no
     1
         many big no expensive
                                                   one yes
     2 some big always expensive few no 3 many medium no expensive many yes 4 many small noo affordable many yes
[ ] d = np . a or a y (dat a) [:,:-1]
     print("\n The attributes are: ",d)
     The attributes are: [['some' 'small' 'no' 'affordable' 'many']
     ['many' 'big' 'no' 'expensive' 'ore 'j
     ['some' 'big' 'always' 'expensive' '*e >v']
     ['many' 'medium' 'no' 'expensive' 'many']
     ['many' 'small' ' noo' 'affordable' 'mary']]
     target = np.array(data)[:,-lj
     print("\n The target is: ",target)
     The target is: ['no' 'yes' 'no' 'yes' 'yes ']
                                                               + Code
                                                                         + Text
[ ] def find s(d, target):
        for i,val in enumerate(target):
          if val=='yes' :
             hypothesis=d[i].copy()
             break
        for i, var in enumerate(d):
          if target[i] == "yes":
             for x in range(leo(hypothesis)):
               i-F ma r' [ x ] ! =h ypo4 hes1s [ x ] :
                  hypolz hes 1s x ] = '*'
               else:
                  pass
        return hypothesis
      print("The Hypothesis is", find s(d, target))
     The Hypothesis is ['many' '?' '7' '7' '?']
```

DATE: 15/04/2023

LAB 3: CANDIDATE- ELIMINATION- ENJOY SPORT

Program 3:For a given set of training data examples stored in a .CSV file, implement and demonstrate the Candidate-Elimination algorithm to output a description of the set of all hypotheses consistent with the training examples. Data set:Enjoysport

Example	Sky	AirTemp	Humidity	Wind	Water	Forecast	EnjoySport
1	Sunny	Warm	Normal	Strong	Warm	Same	Yes
2	Sunny	Warm	High	Strong	Warm	Same	Yes
3	Rainy	Cold	High	Strong	Warm	Change	No
4	Sunny	Warm	High	Strong	Cool	Change	Yes

ALGORITHM:

Step1: Load Data set

Step2: Initialize General Hypothesis and Specific Hypothesis.

Step3: For each training example

Step4: If example is positive example

if attribute_value == hypothesis_value:

Do nothing

else:

replace attribute value with '?' (Basically generalizing it)

Step5: If example is Negative example

Make generalize hypothesis more specific.

12/4/23	Classmate Date Page 5
S. P.	Lab Program 2 Candidate Elimination Algorithm
and the same of th	Example Sky Arr Humidity wind water 1 Sunny warm Normal Strong warm 2 Sunny warm high strong warm 3 Raing Cold high strong warm 4 Sunny warm high strong warm 4 Sunny warm high strong cool.
	forcalt Enjoy sport Target Same Yes + ve variable. Same Yes + ve 6 attributes candidate Change No - ve concept learning Change Yes + ve and positive values.
<.	To find consistent hypothesis for a given solution of training example and General Go = ???? Most specific So = 25, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6,
101	first take generic attribute values. hypothesis Whenever matches retain generic values if matches experted is the and outcome the
a de u	No match > negative classification
*	All question marks match with example, hence +ve classification Target variable = +ve => GB

*	All null values doesn't match, hence -ve
	Classifier. But expected = +1/2 classición theretore
	it is inconsistent hypothesis. When inconsis exist write next general hypothesis that is:
	exist write next general humbles that is:
	January rigrotius
>	Replace Null values by 1st examples.
	January Control of the Control of th
T)	G1 = 2 ? ? ? ? ? ? > 60
	S1 = 2????? ?> Sanny, warm, Normal, Strong, warm, un
TI)	61 = < 2) > 2) 2) 2)
/	Consider prev generic by Pothesis.
	52 = 510 LSV 37,400 F
	if match retain
	if match retain
	if Target value -ve - Start from i.
	If Target value +ve > Start I from G
0 1	Sz = 2 Sunny, warm, ? Strong, warm, same>
*	6B all ? matches with Si, hence +ve
	Classification and experd
_ *	SB, when inconsistency make it General (?)
TIN	S3 = Sumue mayor 7 Change Mayor Mone > - Ve
2	S3 = < Sunny, warm, ? Strong, warm, Jame > - 12.
×	Since all values are generic in Previous
	hytothesis, only Polible when example is the.
	and if there exist inconsistency then all hypotheti
	which are consistent with all the training examples seen now.
U.	The total complete the

- \	
	2 moter with all the attribute but expected -ve
1	hence inconsistency. The attribute but expected -ve
¥	All hugate at
>	All hypothesis which are consistent till now.
	Manage of the state of the stat
	import nume
	import numpy as up import Randas as pa.
	data = Pd. Datatran al pd.
	data = Pol. Datatrame (data = pd. read cov (enjoyepot sv)) Print (concepts)
	Print (Concepts)
	target = np. array (data: 1) ()
	Print (general. 1)
	Print (specific n).
	·
	X4 (+)
	Sy = large light, ? thick . Gy = ? light, ?? , ??? thick
	94 = < 22 light 775 < 2772 thicks
	Dataset Fuel Not - Torget
	Could Assily economy Passengers Type Valle.
	Sig Available low 2 sports N
	Small Available high -4 economy V small Not Available low 2 sports N
	Go = < ?????
0.11	So 3 6 th of the
	So 2 < P, g, g, g, g,
	C = c exall available link 1 2/2000
	S. = < &mall available high, L, economys G. = ????</td
	41 - 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
	Sand Comple 1 1. 10h 12 Promone
	Sz = < Small ? high 4, economy, Gz = { Small, ?'? ? ?? > - < ?? high ?? ?>;
	ar is singly
	& < ? ?? L1, ? > ; 2??? 2 economys.}

CREATING CSV FILE:


```
[ ] import numpy as np
                                    import pandas as pd
                                     from google.colab import drive
                                     drive.mount(' /content/drive')
                                                                             pd.DataFrame(data=pd.read_csv('/content/enjoysport.csv.csv'))
                                     data
    [ ] print(data, "\n")
                                  Sky AirTemp Humidity Wind Water Forecast EnjoySport

Sunny Varm Norma1 Strong Narm Same Yes

Sunny harm High Strong Warm Same Yes

Rainy Cold High Strang Nairn Change No

Sunny harm High Strong Cool Change Yes
§ ] concepts
                                                                                                  -1]),0::[ilocarray(data.np.
§ ] print(conceots)
                             $['Sunny' 'lar m'
['Sunny' 'lar m'
['Ra1ny' 'Ca1d'
['Sunny' 'lar m'
b) I: a oget = np.aooay(ciaI:a.iloc[,: -aggregation of the second of th
                              pminI: (I:a a get)
[ ] imoo t csv
```

```
with open("'/content/enjoyspont.csv.csv'") as f:
                 csv file = csv.reader(f)
                data = list(csv file)
                specific = data[1][:-1]
                general = [['2' fon i in range(len(specific))] for j in range(len(specific))]
                I-or i 1n data:
                          if i[-1j == "Yes™:
                                    for j in range(len(specific)):
                                             lf i[j] != specific[j]:
                                                       specific[j] = "2"
                                                       general[j][j] = "2"
                          elif i[-1] == "No":
                                    for j in range(len(specific)):
                                              if i[j] != specific[
                                                       genera1[j] [j] = spec1flc [j]
                                              e lse:
                                                       general[j][j] = "\circ"
                          print("\nStep " a str(data.index(i)) + " of Candidate Elimination Algorithm"}
                          print(specific)
                          print(general)
                gh = [] # gh = general Hypothesis
                hon i in general:
                                              gh.append(i)
                                              break
                 print("\nFinal Specific hypothesis:\n", specific)
                 print("\nFinal General hypothesis:\n", gh)
Step 0 of Candidate Elimination Algorithm
['Sunny', 'Warm', 'Normal', 'Strong', 'Warm', 'Same']
[['2', '2', '2', '2', '2', '2', '2'], ['2', '2', '2'], ['2', '2', '2'], ['2', '2', '2'], ['2', '2', '2'], ['2', '2', '2'], ['2', '2', '2'], ['2', '2', '2'], ['2', '2', '2'], ['2', '2', '2'], ['2', '2', '2'], ['2', '2', '2'], ['2', '2', '2'], ['2', '2', '2'], ['2', '2', '2'], ['2', '2', '2'], ['2', '2', '2'], ['2', '2', '2'], ['2', '2', '2'], ['2', '2', '2'], ['2', '2', '2'], ['2', '2', '2'], ['2', '2', '2'], ['2', '2', '2'], ['2', '2', '2'], ['2', '2', '2'], ['2', '2', '2'], ['2', '2'], ['2', '2'], ['2', '2'], ['2', '2'], ['2', '2'], ['2', '2'], ['2', '2'], ['2', '2'], ['2', '2'], ['2', '2'], ['2', '2'], ['2', '2'], ['2', '2'], ['2', '2'], ['2', '2'], ['2', '2'], ['2', '2'], ['2', '2'], ['2', '2'], ['2', '2'], ['2', '2'], ['2', '2'], ['2', '2'], ['2', '2'], ['2', '2'], ['2', '2'], ['2', '2'], ['2', '2'], ['2', '2'], ['2', '2'], ['2', '2'], ['2', '2'], ['2', '2'], ['2', '2'], ['2', '2'], ['2', '2'], ['2', '2'], ['2', '2'], ['2', '2'], ['2', '2'], ['2', '2'], ['2', '2'], ['2', '2'], ['2', '2'], ['2', '2'], ['2', '2'], ['2', '2'], ['2', '2'], ['2', '2'], ['2', '2'], ['2', '2'], ['2', '2'], ['2', '2'], ['2', '2'], ['2', '2'], ['2', '2'], ['2', '2'], ['2', '2'], ['2', '2'], ['2', '2'], ['2', '2'], ['2', '2'], ['2', '2'], ['2', '2'], ['2', '2'], ['2', '2'], ['2', '2'], ['2', '2'], ['2', '2'], ['2', '2'], ['2', '2'], ['2', '2'], ['2', '2'], ['2', '2'], ['2', '2'], ['2', '2'], ['2', '2'], ['2', '2'], ['2', '2'], ['2', '2'], ['2', '2'], ['2', '2'], ['2', '2'], ['2', '2'], ['2', '2'], ['2', '2'], ['2', '2'], ['2', '2'], ['2', '2'], ['2', '2'], ['2', '2'], ['2', '2'], ['2', '2'], ['2', '2'], ['2', '2'], ['2', '2'], ['2', '2'], ['2', '2'], ['2', '2'], ['2', '2'], ['2', '2'], ['2', '2'], ['2', '2'], ['2', '2'], ['2', '2'], ['2', '2'], ['2', '2'], ['2', '2'], ['2', '2'], ['2', '2'], ['2', '2'], ['2', '2'], ['2', '2'], ['2', '2'], ['2', '2'], ['2', '2'], ['2', '2'], ['2', '2'], ['2', '2'], ['2', '2'], ['2', '2'], ['2', '2'], ['2', '2'], ['2', '2'], ['2', '2'], ['2', '2'], 
pr1nt("lenerai Hypotlaes*s: ", generaI_In)
                                                        general h[xj[xj: *'
                                                         general h[xj[xj : specific \ h \ xJ
                                               else:
                                                                                                                                                                                                                                       '?'JJ
                indices = [i for i va1 in
                                                                                                                                        if val ['?',
                          general_h.remove(['?', '?', '?', '?', '?'])
                return specific_h, general_h
     s fzraal. final Iearn(concepts. ta:rget)
```

SECOND DATASET:

example	citations	size	inLibrary	price	editions	buy
1	some	small	no	affordable	many	no
2	many	big	no	expensive	one	yes
3	some	big	always	expensive	few	no
4	many	medium	no	expensive	many	yes
5	many	small	no	affordable	many	yes

CREATING CSV FILE:

[] target = np.array(data.iloc[:,-1])
 print("\n The target is: ",target)

```
[ ] def learn(concepts, target):
       specific_h = concepts[B].copy()
       pn1nt("\n Initialization of specific h and ganenal h")
       print(specific h)
      general_h = [["?" for i in range(len(specific_h))] for i in
      range(len(specific h))]
       pnint(general h)
       for i, h in enumerate(concepts):
            if target[i] == "yes":
                 for x in nange(lan(specific_h)):
                      if h[x]!= specific_h[xj:
                          specific_h x] = ' ?'
                          general h[xj[x] = '2'
                      print(specific h)
           print(specific h)
            if target[i] == "no":
                for x in nange(lan(specific h)):
                     lf h[x]!= specific_h[xj:
                          general_h[xj[xj = specific_h[x]
                      else:
                          general_h[xj[x] = '2'
            print("\n Steps of candidate Elimination Algorithm",i+1)
            print(specific_h)
            print(general_h)
       indices = i fon i, val in enumerate(genenal h) if val ==
       for i in indices:
            genenal_h.remove(['2', '?', '?', '7', '?', '7'])
       ne £unn spec 1-F1c_h, genena1_h
      s_final, g_final = learn(concepts, target)
Initi alization of spec ific_h and genera1_h
['some' 'small' 'no' 'df{Ordable' 'many']
 ['some' 'small' 'no' 'affordable' 'many']
Steps of Candidate Elimination Algorithm 1 ['some' 'small' 'no' 'affordable' 'many']
 ['?' 'small' 'no' 'affordable' 'many']
''' '?' 'no' 'affordable' 'nanny'§
['*' '?' 'no' 'affordable' 'nag"]
                                        steps of candidate Elimination Vgorithm 2
  Steps of candidate Elimination Ggorithm \ensuremath{\text{3}}
  steps of candidate Elimination Vgorithm 4
  3teps of candidate Ellninat ion Mgoritfzr S
pr1nt ("'.riFln<| specIf1c_h: ", s_finaJ, sep="'-,n")
pr1nt ("..riFlncl General h: ", final, sep="'..ri")
Fina] specific h:
```

Final General h:

Program 4:Write a program to demonstrate the working of the decision tree based ID3 algorithm. Use an appropriate data set for building the decision tree and apply this knowledge to classify a new sample.

Day	Outlook	Temperature	Humidity	Wind	PlayTennis
D1	Sunny	Hot	High	Weak	No
D2	Sunny	Hot	High	Strong	No
D3	Overcast	Hot	High	Weak	Yes
D4	Rain	Mild	High	Weak	Yes
D5	Rain	Cool	Normal	Weak	Yes
D6	Rain	Cool	Normal	Strong	No
D7	Overcast	Cool	Normal	Strong	Yes
D8	Sunny	Mild	High	Weak	No
D9	Sunny	Cool	Normal	Weak	Yes
D10	Rain	Mild	Normal	Weak	Yes
D11	Sunny	Mild	Normal	Strong	Yes
D12	Overcast	Mild	High	Strong	Yes
D13	Overcast	Hot	Normal	Weak	Yes
D14	Rain	Mild	High	Strong	No

ALGORITHM:

- · Create a Root node for the tree
- · If all Examples are positive, Return the single-node tree Root, with label = +
- · If all Examples are negative, Return the single-node tree Root, with label = -
- · If Attributes is empty, Return the single-node tree Root, with label = most common value of Target_attribute in Examples
 - Otherwise Begin
- · A \leftarrow the attribute from Attributes that best* classifies Examples
- · The decision attribute for Root \leftarrow A
- · For each possible value, v_i , of A,
- · Add a new tree branch below *Root*, corresponding to the test $A = v_i$
- · Let Examples v_i , be the subset of Examples that have value v_i for A
- · If $Examples_{vi}$, is empty
- Then below this new branch add a leaf node with label = most common value of Target_attribute in Examples
- · Else below this new branch add the subtree ID3($Examples_{vi}$, Targe_tattribute, Attributes {A}))
- · End
- · Return Root

19/4/23					Page 9	
	Decisi	ion Free - Pla	y Glot	30	Talk	
1)	Day	Noothag	Tem	P Humio	lity Wind	Play
	2	Sunny	Hot	high	weak	No
		Sunny	Hot	- high	Strong	No
	3	Overcast	Hot	high	weak ?	Yes
	Ц	Rain	Mild	high	Weak	Yes
1.	5	Rain	loal	Morinal -	Weak	YU
3	6	Rain	(00)	Mormal.	Strong	No
	7	Overcast	Cool	Normal	Strong	Yes
	8	5° - Sunny	- Mild -	high	weak	No
	9	Sunny	Cool	Normal	Weak	Yes
NI _	10	Rain	Mild	Normal	weak	YU
	И	Sanny	Mild.	Morrial	Strong	Yes
	12	Overcast	Mild	high	Strong	Yes
	13	Overcust	hot	Normal	Weak	Yes
765	14	Rain	wild:	High.	Strong.	No
			1001/67	-12		
	2 -0	1146 D. 6370	1 + (-	· 5/14 (-1.	4854))	
	130	=1-(10)		(super Long		
1177			Gille - E			
		0113,-06	IIE)-		The second	
	Putor	mation Gain:	G(S, A,5	7)		
		= E(s)			(,)	
			VE Atil	A) S	1	
			(1)	Ad a Ch	W186 2 1 8	9/4
	En	tropy (s) =	- Par Ins	92 PO- PE	1092 Pm	
			0 10		J. C.	
	11/1	11 21 - 12-06	118	I S		

	Algorithm
	103 (Example, Target-attribute, attribute)
*	Create a root node for the tree.
*	If all examples are the,
	return the singlenode tree
	Root with label = +ve.
07 1 19	A ST ST STATE OF THE STATE OF T
*	If all examples are -ve,
	return the single mode tree
	Root with label = -ve.
*	Otherwise Begin
\rightarrow	A the attribute from attributes that best * classifies examples.
\rightarrow	The decision attribute for root & A
→	Add a new tree-branch below root, corresponding to
-	4 000
\rightarrow	Let example Vi be the subject of example that have
	Values Vi from A-
\rightarrow	By example Vi that is empty.
6	Then a below this new branch at a reat
	Target attribute in example.


```
1 ID3.ipynb
       File Edit View Insert Runtime Tools Help All changes saved.
                                          + Code + Text
                                 m x
                                         ✓ [53] import math
     1 □ □ 2
Q
                                                 import csv
                                          [55] def load_csv(filerare):
         s amp le_data
       @ BM 20 CS06 6_I D 3.csv
                                                     lines=csv.reader(ooen(filename,"r"))
                                                      dataset = lis-(lines)
                                                     headers = dataset.pop(Q)
                                                     return dataset, headers
                                           [56] class Node:
                                                     def init (self,a:tribute):
                                                         self.attribute=attribute
                                                         self.children=[]
                                                         self.anster=""
                                                  def suotaoles(data,col,celete):
                                                     dic={}
                                                     coldata=[row[col] for row in data]
                                                     attr=list(s:t(coldata))
                                                     counts=[C]*ler(attr)
                                                     r=len(data)
                                                      c=len(data[Cj)
                                                      fcr x in range(leM(attr)):
                                                         fo= y in range(r)
                                                             if data[y][colj==attr[x]:
                                                                 counts[x]+=1
                                                      fcr x in range(len(attr)):
                                                         dic[attr[x]j=[[0 ior i in range(c)j fcr j in range(counts[x])j
                                                         fo= y in range(r)
                                                             if data[y][colj==attr[x]:
                                                                 if delete:
< >
                                                                     rel data[y][col]
                                                                 dic[attr[x]][posj=data[y)
==
                                                                 pos+=1
                                                     return attr,dic
```

```
{5B] defentropv(S):
         attr=list(set(5))
         i-f len(attr)==1:
              return 0
         counts=[8,0]
         fcr i in range(2):
              counts[i]sum[1 for x in S lf attr[l]=x)7(ens)*v0)
         sums=0
         fcr cnt in counts:
              sumse=-1*cnt°math.log(cnt,2)
          return sums
59] del conpute aln( data, ccl):
          attn, d1c = subtabl es{data, co1, delete=FaJse)
         total_si e=1en{data)
         ent nop1es=[e] "ten(attr)
         ratio=[ej "1en{ attr)
         tot a1_ent ropy=en tropy ( [root [ -1 ] -L-c i root 1 n dat a ] }
         Tc i- x 1n r ange (Jen( att r) )
              ratio[x§=Len (d1c [ attr[x§ ] )/(tota1_si e•z . e)
              endrop1es [x§=entropy([row[-1] for row 1n dbe[attr[x§§])
              tot al_entrapy -= ratto [x § " entro p Yes[x§
         r.°t urn tot a1 ent ropy
[die] de-L- bu11d_tr e e (dat a, -L-eat ures) :
         1a st co1= [rohi[ -1§ 'or rohi 1n d ata]
         If (1en{set (1asts o1))) ==1:
              node= Node { "" )
              node.ans\cer=lastcot[0]
              retui- n node
         n= be n(dat a [e] ) -1
         gains=[e]'n
         fc+- col in range(n):
              gains[col]=compute_gain(data,col)
         spllt=gains.index(max(gains))
         node=Node(features[split])
         fea = features[:spl*t] features[split+1:]
         att r, die= s ubt a b I es (d at a, sp lit, de lete=T rue)
         dci- x In range (ten( attr) ):
              ch11d=bu11d_tree{d1c [attn[x]],-Eea)
              node.ch11dren.append((attr[x],ch11d))
          return node
                                     "*level, node.attc*bute)
```

value, n in node.children:

```
[62] def c lassify (node, x test, features):
         if node.answer!-"":
             pr1rt(node. answer)
         pos•featrres. index(rode. attribute)
         for value, n ir node.ch11drer:
             if X tg5t t §0S]-- Vd) Ug I
                 classify(n,x test,features)
     dataset, features=load_csv("1Bh2@S866 ID3. csv")
     node1=bu11d tree(dataset,features)
     gr1nt("The dec1s1or tree for the dataset using IDA algorithm is")
     pr1nt tree(rode1,e)
     testdata,features=load_csv("1Bh28CS066_ID3.csv")
     for x/est i testdata:
         print("The test Instance: ",xtest)
         print("The label for test instance: ")
         classify(node1,xtest,features)
```

Itt itciiion trtt f0F ttt iatastt vsint iDi élj0ritlz is Ootloot

```
ii?00$
80

Sunny
humidity

no
normal
```

```
The te5t instance: ['sunny', 'hot', 'high' 'weak', 'no']
The label for testinstance:
The test instance: ['sunny', 'hot', 'high', 'strong', 'no']
The label for test instance:
The test instance: ['overcast', 'hot', 'high', 'neak', 'yes']
The label for test instance:
yes
The te5t instance: ['rain', 'mild', 'high' ' eak', 'yes'j
The label for test instance:
The te5t instance: ['rain', 'cool', 'normal', 'weak', 'yes']
rhe label for test instance:
yes
The te5t instance: ['rain', 'cool', 'normal', 'strong' 'no']
The label Cor test instance:
The te5t instance: ['overcast , 'cool', 'normal' 'strong', 'yes'}
The label for test instance:
yes
The test instance: t sunny,' '•i Ld' high',
                                          iiea k', 'no' J
The label for test instance:
The test instance: ['sunny', cool', 'normal', 'weak', 'yes']
The label for test instance:
yes
The te5t instance: ['rain', 'mild', 'normal', 'weak', 'yes'}
rhe label for test instance:
yes
ThR tRst instance: ['sunny', 'mlld', 'normal', 'strong', 'yes']
ThR ldbel for tRst instance:
yes
ThR tRst instance: ['overcast', 'mild', 'high', 'strong', 'yes']
ThR ldbel for tRst instance:
yes
ThR tRst instance: ['overcast', 'hot', 'normal', 'weak', 'yes']
ThR ldbel for tRst instance:
yes
ThR tRst instance: ['rain', 'mild', 'high', 'strong', 'no']
The label for test instance:
no
```

PROGRAM 5: Simple linear regression program

Dataset used:

	А		В
1	x		у
2		1	1
3		2	2
4		3	1.3
5		4	3.75
6		5	2.25
7			

ALGORITHM:

- The main function to calculate values of coefficients
- Initialize the parameters.
- Predict the value of a dependent variable by giving an independent variable.
- Calculate the error in prediction for all data points.
- Calculate partial derivatives w.r.t a0 and a1.
- Calculate the cost for each number and add them.
- Update the values of a0 and a1.


```
[ j import as np
      import matplotllb.pyplot as pLt
[ ] def plot regression line(x, y, b):
        plt.scatter(x, y,
                                       "m"
                   b[0] + b[1]*x
                                       "g")
        p La. p 1 a 1 (,x y_ p r' e d
        pLt.xlabel('x CA-EFF')
        pLt.ylabel( 'y * CA-EFF' )
        p La .s ha» ()
        n = np.size(x)
        m_x = n p \cdot me a n (x)
        my' = n p \cdot me a n (y)
        S X = II \cdot 5 II T y x - n my my
        S \times XX = II \cdot '5 LI IT \times "x \cdot -n "m_x" m_x
        b_1 = S S_xy / SS_xx
        b_B = my' - b_1^* m_x
       return (b_0, b_1)
    beef plot_cegcession_lzne(^ y, b)
        plt.scatter(x, y, color = "b",
            marker = "*", s = 30)
                  b§C] + b[ij*x
        pLt.xlabel('x')
        pLt.ylabel('y')
```

```
def main():
  x = np.array([1,2,3,4,5])
 y = np.array([1,2,1.3,3.75,2.25])
  b = estimate_coef(x, y)
  print("Estimated coefficients:\nb_0 = \{\} \
    \nb_1 = {}".format(b[0], b[1]))
  plot_regression_line(x, y, b)
if __name__ == "__main__":
  main()
Estimated coefficients:
b_0 = 0.7850000000000001
b_1 = 0.4249999999999966
    3.5
    3.0
    2.5
    2.0
    1.5
    1.0
                 1.5
                         2.0
                                2.5
                                                3.5
                                                       4.0
                                                               4.5
         1.0
                                        3.0
                                                                      5.0
                                         X
```

Conclusion:

This model is not appropriate for this model. All the points of this dataset are away from the prediction line.

Program 6:Write a program to implement the naïve Bayesian classifier for a sample training data set stored as a .CSV file. Compute the accuracy of the classifier considering few tes data sets.

Data set used:

4	Α	В
1	outlook	play
2	rainy	Yes
3	sunny	Yes
4	overcast	Yes
5	overcast	Yes
6	sunny	No
7	rainy	Yes
8	sunny	Yes
9	overcast	Yes
10	rainy	No
11	sunny	No
12	sunny	Yes
13	rainy	No
14	overcast	Yes
15	overcast	Yes

Algorithm:

 $P(A \mid B) = \frac{P(B \mid A)P(A)}{P(B)}$

Formula for naive bayes classifier is as follows →

- 1. Convert the given dataset into frequency tables.
- 2. Generate Likelihood table by finding the probabilities of given features.
- 3. Now, use Bayes theorem to calculate the posterior probability.
- 4. Test accuracy of the result and visualizing the test set result.

```
△ 1BM20CS066_NBC.ipynb ☆
      File Edit View Insert Runtime Tools Help All changes saved
                                       + Code + Text
                              √ [7] import numpy as np
                                              import math
     DB ...
                                              import csv
\{x\}
   sample_data
                                              import pdb
      ■ 1BM20CS066_NBC.csv
                                       def read_data(filename):
                                                  with open(filename, 'r') as csvfile:
                                                     datareader = csv.reader(csvfile)
                                                     metadata = next(datareader)
                                                     traindata=[]
                                                     for row in datareader:
                                                         traindata.append(row)
                                                  return (metadata, traindata)
                                       [9] def splitDataset(dataset, splitRatio):
                                                 trainSize = int(len(dataset) * splitRatio)
                                                  trainSet = []
                                                  testset = list(dataset)
                                                 i=0
                                                 while len(trainSet) < trainSize:
                                                    trainSet.append(testset.pop(i))
                                                  return [trainSet, testset]
```

```
def classify(data, test):
```

```
total size = data.shape 0]
print("\n")
pnint("tnaining data size=",total size)
pnint("test data size=", test.shape[0])
countYes = 0
countNo = B
probYes = B
probNo 0
pnint("\n")
pnint("target
                count probability")
{or x in range(data.shape[B]):
    if data[x,data.shape[1]-1] == 'Yes':
        COuntYeS +=1
    if data[x,data.shape[1]-1] == 'No':
        countNo +=1
probYes=countYes/total size
probEo= countNo / tOtal size
print('Yes',"\t",countYes,"\t",probYes)
print('No',"\t",countEo,"\t",probNo)
poob8 -np . ze nos (\text{test.shape} [1] - 1)
poobl -np . ze ros ( (test .shape [1] - l) )
accuracy=0
print("\n")
print("instance prediction target")
{on t in range(test.shape[0]):
    for k in range (test.shape lj-1):
        count1=count0=0
        for j in range (data.shape[0]):
            Show many times appeared with no
            if test[t,k] == data[j,k] and data[j,data.shape[1]-1]=='No':
                count0+=1
            Show many times appeared with yes
            if test[t,k] == data j,k] and data[j,data.shape[1]-lj == 'Yes':
                count1+=1
    pr O bn O = p ra bN O
    pr O by es = p mobves
    for i in range(test.shape§ij-&):
           bno
           bye
    if probno>probyes:
       predict='Yes'
                                 ",test$t,test.sñapej1j-lj)
    if predict == test[t,test.shape[1]-lj:
       accuracy+=i
final accuracy=(accuracy/test.shape[Bj)*1GB
print("accuracy".final accuracy,"n")
```

```
metadata,traindata= read_data("/content/1BM20CS066_NBC.csv")
splitRatio=0.6
trainingset, testset=splitDataset(traindata, splitRatio)
training=np.array(trainingset)
print("\n The Training data set are:")
for x in trainingset:
    print(x)

testing=np.array(testset)
print("\n The Test data set are:")
for x in testing:
    print(x)
classify(training,testing)
```

output:

```
The Training data set are:
['rainy', 'Yes']
['sunny', 'Yes']
['overcast', 'Yes']
['overcast', 'Yes']
['sunny', 'No']
['rainy', 'Yes']
['sunny', 'Yes']
['overcast', 'Yes']
The Test data set are:
['rainy' 'No']
['sunny' 'No']
['sunny' 'Yes']
['rainy' 'No']
['overcast' 'Yes']
['overcast' 'Yes']
training data size= 8
test data size= 6
target count probability
Yes
       7
              0.875
No
       1
              0.125
instance prediction target
1 Yes
                 No
2
       Yes
                  No
3
      Yes
                  Yes
      Yes
                 No
4
5
       Yes
                  Yes
      Yes
                 Yes
accuracy 50.0 %
```

	Naive B	ayes	do. I		
Training	Datalek	-	-		
Golox	Type Origin	chie			
					-
Red -	sports domestic	Yes	0:-		
Red"	Porte Douglis	No	Size	26	
Yellow	Ports, Domestic, Ports, Domestic Sports, Domestic	YU			
Yellon	Sporte P	Nol			
Yellow	SVV, Emported,	Alal			
		NOJ			
lest.	Data Set.				
Colox	Type EN	igin	Stolen.		
Yellow	SUV in	ported	38011		
Yellow	SUV Dor	nestic		-	=t
Ked		yoxteol			
Red		ported	2 /		
Target	Count	Probal	oility.		
Yes	3	1/82	-		
No	2	1/2			
Pustan	ce Rediction	Target	21		
- Jasan	No	Yes			
2	No	No			
3	No	No			
4	Vei	Yes.			
102	1 300				
Accurac	y: 75.0%	0			
	P(10) - 5	o(D/h)	P(h)		
	(11) =]	P(N)	11.0		
		10/			

b(1) = Posterior Robotility n) = Prior Probability
P(1) = Probability over data set
P(D	(4) = corrent Probability
	9
9.5	alatur
	011.12
	Last 2

Program 7:K- means clustering

Algorithm:

Initialize k means with random values

For a given number of iterations:

Iterate through items:

Find the mean closest to the item by calculating the euclidean distance of the item with each of the means Assign item to mean

Update mean by shifting it to the average of the items in that cluster

Dataset:

1 to 22 of 22 entries F			
1	Name	Age	Income(\$)
2	Rob	27	70000
3	Michael	29	90000
4	Mohan	29	61000
5	Ismail	28	60000
6	Kory	42	150000
7	Gautam	39	155000
8	David	41	160000
9	Andrea	38	162000
10	Brad	36	156000
11	Angelina	35	130000
12	Donald	37	137000
13	Tom	26	45000
14	Arnold	27	48000
15	Jared	28	51000
16	Stark	29	49500
17	Ranbir	32	53000
18	Dipika	40	65000
19	Priyanka	41	63000
20	Nick	43	64000
21	Alia	39	80000
22	Sid	41	82000
21	Abdul	39	58000

	W-means Algorithms
0	Solect the number K to decide the number chypers.
	- Confirma
(3)	select vandons & points or centroids.
_	Assign each data point to their closest con which will form the Redefined & cluster
Q	Calculate the variance and new place centrois
	each auster.
6	Repeat the third steps, which means re-quigo
@	R) any re-assignment occurs go to step 4
205	FINISH (XXXXX) = (XXXX)
277	model is ready.
	GMM - Gausian Mixture model.

```
[1] impo-t pandas s pcI
      frcm sklearn.cluster
                                      KMeans
            sklearn.preprocessing i+rpcrt {linhlaxscaler
           matplotlib iirpcr-: pyplot as pit
      %matplotlib inline
      df = pd.read csv('./content,'Kweans 1B>23CSB60. cs ' ')
[Z]
      df. head(1G)
           1
                  Name Age Income $)
       0
           2
                   Rob
                          27
                                   Y0000
       1
           3
               l'dichael
                          2g
       2
                f'7ohan
           4
                          29
                                   61000
       3
           5
                Ism ail
                          28
                                   60000
       4
           G
                                  1 SOOOO
                  Kory
                          42
       5
           7
               Gautam
                                  1SS000
                          39
       6
           8
                 Darid
                          41
                                  160000
       7
                Andre a
                          3B
                                  162000
           g
       В
          1 Q
                  B ra d
                          3G
                                  1SG000
          11
              Ang e li na
                                  130000
       9
                          35
[4]
     scaler = hlinMaxScaler()
     scaler.fit(df[['Age']j)
     dv[['age'] j = scaler.transform(df[['Age' j])
     scaler.fit(df[[ ' Incame(â)"]])
     d-F['Income(g)'] scafes.1z an sla mm(dl[['Zncame($)"]])
     d-F.head(1U)
          1
                 Name
                             Ag e Z n c cm e (\$)
      0
          2
                  Rob D. 05 B824
                                     O.2 13B75
      1
               I'dichael D. 17 64T 1
                                    O.3B4B 15
      2
           4
               f'70 h an D. 17 64T 1
                                    O . 136T52
      3
           5
                Ismail O. 117647
                                    O . 1 282 05
      4
          6
                  Kory O. 94 11 VG
                                    0.897436
                                    0.94017 1
      5
          7
               Gautam D.76 47DG
      6
           8
                 David 0.882353
                                   0 .982906
                                   1.0D0D00
      7
          9
               Andre a D.70 58B2
                                   0.948 T 18
                  Bra d D. 58 B235
      В
         10
         11 Angelina D. 52 94 1 2
                                   O .726496
```

[• « matplotlib.collectiDns.PathCollection at 0x7fA3820d1a50>


```
k_range = range(1, 11)
sse = []
for k in k range:
   kmc = KMeans(n clusters=k)
   kmc.fit(df[['Age, 'Income(6)']])
   s s e . a ppend (kmc . 1 ne nt1a_)
sse
   [5.434011511988178,
  2.091136388699078,
  B4750783498553B96,
  B.3491047094419566,
  B.2798062931046179,
  B.2203764169077B67,
  B16858512236B2976,
  B.13265419827245162,
  B.1038375258660356,
   .&g5 &915216361345]
```

```
H plt.xlabel 'Mumber of Clusters'
plt.yLabeL 'Sum of Squared Errors '
plt.pLot(k range, sse)
```

[<matplotlib.lines.Line2D at Ox7f438G0TaSeO>]

[8] km KNeans(n_clusters=3)
km

KMeans
KMeans(n_clusters=3)

```
y_predict - km.fit_predict(df[['Age', 'Income($)']])
y_predict
```

| /usr/local/lib/python3.10/dist-packages/sklearn/cluster/_kmeans.py:870 | Futunck/ara ang:Thede-FauTiva*lue of `n init` will change warnings.warn(arrav([1. 1. 1. 1. 0. 0. 0. 0. 0. 0. 0. 1. 1. 1. 1. 1. 2. 2. 2. 2. 2. *j

Brad 0 5882 35 0 94 8718

'o O 0. 058 B2 4 0. 2 36 7 0

```
[12] df1
           df[df.cluster == 1]
      df1
                           Age Income(#) cluster
            [
                 Name
        0
            2
                  Rob 0.058824
                                  0.213G75
                                                 1
        1
              I.1ichael 0.17G471
                                 0.394G15
                                                 1
        2
               hlohan 0.17G471
                                 0.136752
                                                 1
        3
            5
                Ismail
                       0.117647
                                  0.128205
                                                 1
       11 13
                      0.0D0000
                                  0.DOOOOD
                 Tom
                                                 1
       12 14
               Anne Id 0.059824
                                 0. C'25G41
                                                 1
       13 15
                Jared 0.117647
                                0.D51282
                                                 1
       14 16
                 Stark 0 17G471
                                 0 C'38462
                                                 1
       15 17
                Ranbir 0.352941
                                                 1
                                 0.DG8376
           df[df.cluster 2]
 [13] df2
      df2
            Ι
                  Name
                            Age Income($) cluster
       16 18
                 D ipika 0.823529
                                D. 17D940
                                                  2
       17 19
               Priyanka 0.882353
                                  C. 15394G
       18 20
                  Nick 1.0DOD00 D. 162393
                                                  2
       19 21
                   Alia 0 764706
                                C 290145
                                                  2
       20 22
                   Sid 0.882353
                                  D. 316239
                                                  2
       21 21
                 Abdul 0.764706
                                  O. 1111a 1
                                                  2
[14] km. cluster centers
      array([[0.722689B8, 0.8974359],
            [0.1372549, 0.11633428],
            [0.g52 4118, 0.2022752 ]])
```

< matp1at 11b . legend . Legend at Bx7-F437d4c73aB>

Program 8: KNN ALGORITHM

Dataset used: Iris dataset

Algorithm:

- Select the number K of the neighbor
- Calculate the Euclidean distance of K number of neighbors
- Take the K nearest neighbors as per the calculated Euclidean distance.
- Among these k neighbors, count the number of the data points in each category.
- Assign the new data points to that category for which the number of the neighbor is maximum.

```
import numpy as np
import matplotlib.pyplot as plt
from sklearn import datasets
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
def most_common(lst):
    return max(set(lst), key=lst.count)
def euclidean(point, data):
    # Euclidean distance between points a & data
    return np.sqrt(np.sum((point - data)**2, axis=1))
class KNeighborsClassifier:
    def init (self, k=5, dist metric=euclidean):
        self.k = k
        self.dist metric = dist metric
    def fit(self, X_train, y_train):
        self.X_train = X_train
        self.y train = y train
    def predict(self, X_test):
        neighbors = []
        for x in X test:
            distances = self.dist_metric(x, self.X_train)
            y_sorted = [y for _, y in sorted(zip(distances, self.y_train))]
            neighbors.append(y_sorted[:self.k])
        return list(map(most common, neighbors))
```



```
def evaluate(self, X test, y test):
        y pred = self.oredict(X test)
        accuracy = sum(y pred == y test) / len(y test)
        return accuracy
iris = datasets.load iris()
X = iris['data']
y = iris['target']
# Split data into train & test sets
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=B.2)
# Preprocess data
ss = StandardScaler().fit(X train)
X train, X test ss.transform(X train), ss.transform(X test)
# Test knn mode1 ac ros s va ny:ing ks
ac cur•ac 1ea = []
ks = range(1, 8B)
for k in ks:
    knn = KNeighoorsClassifier(k=k)
    knn.fit(X train, y train)
    accuracy = knn.evaluate(X_test, y_test)
    accuracies.aopend(accuracy)
# Visualize accuracy vs. k
fig, ax = plt.suoplots()
ax.plot(<s, accuracies)</pre>
ax.set(xlabel="k",
      ylabel="Accuracy",
       title="Performance of knn")
plt.show()
```

[(5-1 3.5 1.4 0.2] [4.9.3 1.40.2] (4.7 3.2 1.8 0.2] [4.6 3.1 1-5 0.2] [5.0 3-6 1.4 0.2] (6.2 3.4 5.4 2.3) [5.9.3 5.1.1.8]] ((ast : 0-Bris-sentosa 1-Bris Versicolor, 2-8x		K-nearest Neighbor Algorithm
Given 2 query instance X to be chaitied, Let XXX denote the K instance from train examples that are nevert to Xq. Return F (Xq) X	4	For each given training example (x, f(x)), and to example to the list training examples to the list training examples to the list training examples to the list
Cxamples that are nevert to xq. Return \$\frac{1}{4} \text{ (xq)} \text{ \frac{1}{2} \text{ (x;)}} \text{ (x;)} \\ \$\frac{2}{2} \text{ (xq)} \text{ \frac{1}{2} \text{ (x;)}} \\ \$\frac{2}{2} \text{ (xq)} \text{ (xq)} \\ \$\frac{2}{2} \text{ (xq)} \text{ (xq)} \\ \$\frac{2}{2} \text{ (xq)} \\ \$	4	
Return \$\frac{1}{4} \text{ (xg)} \times \frac{1}{4} \text{ (xi)} \\ \$\frac{1}{4} \text{ (xg)} \text{ \frac{1}{4}} \text{ (xi)} \\ \$\frac{1}{4} \text{ (xg)} \\ \$\frac{1} \text{ (xg)} \\ \$\frac{1}{4} \text{ (xg)} \\ \$\frac{1}{4} \text{ (xg)} \\ \$\frac{1}{4		Net XI XX denote the K instance from Nan
\$\frac{1}{4} \text{Spale} \\ \text{OntPale}. \$\text{Spal} - length sepal \cdot width petal - \text{length \cdot \cd		examples that are nearest to xq.
\$\frac{1}{4} \text{Spale} \\ \text{OntPale}. \$\text{Spal} - length sepal \cdot width petal - \text{length \cdot \cd	7-	Return
Sepal- OntPate. Sepal-length sepal-width petal-length Betal-v [S-1 3.5 1.4 0.2] [4.2.3 1.40.2] (4.7 3.2 1.3 0.2] [4.6 3.1 1.5 0.2] [5.0 3.6 1.4 0.2] [5.0 3.6 1.4 0.2] [5.9.3 5.1.1.8] ((ay : 0-Bris-sentow 1-Bris Versicolor, 2-8x	1	The same of the
Sepal-length lepal-width petal-length retal-v [[5-1 3.5 1.4 0.2] [4.9.3 1.40.2] [4.6 3.1 1.5 0.2] [5.0 3.6 1.4 0.2] [5.0 3.6 1.4 0.2] [5.9.3 5.1.1.8] [6.2 3.4 5.4 2-3] [5.9.3 5.1.1.8] [6.2 3.4 5.4 2-3]		T (xg/E Sii=1+(N)
Sepal-length lepal-width petal-length retal-v [[5-1 3.5 1.4 0.2] [4.9.3 1.40.2] [4.7 3.2 1.3 0.2] [4.6 3.1 1.5 0.2] [5.0 3.6 1.4 0.2] [5.0 3.6 1.4 0.2] [5.9.3 5.4.1.8] [6.2 3.4 5.4 2.3] [5.9.3 5.4.1.8]		Spelo
Sepal-length sepal-width petal-length retal-v [[5-1 3.5 1.4 0.2] [4.2.3 1.40.2] [4.4 3.2 1.8 0.2] [4.6 3.1 1.5 0.2] [5.0 3.6 1.4 0.2] [5.0 3.6 1.4 0.2] [5.9.3 5.1.1.8] [6.2 3.4 5.4 2.3] [5.9.3 5.1.1.8] [6.2 3.4 5.4 2.3]		
[(S-1 3.5 1.4 0.2] [4.9.3 1.40.2] (4.7 3.2 1.8 0.2] [4.6 3.1 1.5 0.2] [5.0 3.6 1.4 0.2] (6.2 3.4 5.4 9.3) [5.9.3 5.1.1.8] ((ass : 0-Bris-sentas 1-Bris Versicolor, 2-8x		CVISTALE.
(4.2.3 1.40.2) (4.7 3.2 1.3 0.2) [4.6 3.1 1.5 0.2] [5.0 3.6 1.4 0.2) (6.2 3.4 5.4 2.3) [5.9.3 5.1.1.8]] ((ast : 0-Bris-Sentosa 1-Bris Versicolor, 2-8x		Sepal-length sepal-width petal-length retal-n
(4.7 3.2 1.3 0.2) [4.6 3.1 1.5 0.2] [5.0 3.6 1.4 0.2) [6.2 3.4 5.4 2.3) [5.9.3 5.1.1.8)] ((ast : 0-Bris-Sentosa 1-Bris Versicolor, 2-8x		
[5.0 3.6 1.4 0-2] [5.0 3.6 1.4 0-2] (6.2 3.4 5.4 2.3) [5.9.3 5.1.1.8]] ((ast : 0-Bris-sentosa 1-Bris Versicolor, 2-8x		[[5-1 3.5 1.4 0.2]
[5.0 3.6 1.4 0-2] (6.2 3.4 5.4 2.3) [5.9.3 5.1.1.8] ((ast : 0-Bris-sentosa 1-Bris Versicolor, 2-8x		[4.9.3 1.40.2]
(6.2 3.4 5.4 2.3) [5.9.3 5.1.1.8]] ((ast : 0-Bris-sentosa 1-Bris Versicolor, 2-8x		[4.9.3 1.40.2]
((ass : 0-Bris-sentosa 1-Bris Versicolor, 2-8x		[4.a.3 1.40.2] (4.7 3.2 1.3 0.2] [4.6 3.1 1.5 0.2]
((ass : 0-Bris-sentosa 1-Bris Versicolor, 2-8x		[4.a.3 1.40.2] (4.7 3.2 1.3 0.2] [4.6 3.1 1.5 0.2]
((ass : 0-Bris-sentosa 1-Bris Versicolor, 2-8x		[4.a.3 1.40.2] (4.7 3.2 1.3 0.2] [4.6 3.1 1.5 0.2]
Class: 0-Bris-sentosa, 1-Bris Versicolor, 2-8x		[4.9.3 1.40.2] [4.7 3.2 1.3 0.2] [4.6 3.1 1.5 0.2] [5.0 3.6 1.4 0.2]
Vivaini ca		[4.9.3 1.40.2] [4.7 3.2 1.3 0.2] [4.6 3.1 1.5 0.2] [5.0 3.6 1.4 0.2]
Vivaini ca		[4.9.3 1.40.2] [4.7 3.2 1.3 0.2] [4.6 3.1 1.5 0.2] [5.0 3.6 1.4 0.2]
Virginica [000 00111 11222 22]		
[000 00111 11222 22]		
		(4.7 3.2 1.3 0.2) [4.6 3.1 1.5 0.2] [5.0 3.6 1.4 0.2) [6.2 3.4 5.4 2.3) [5.9.3 5.1.1.8] ((ay : 0-Bris-Sentosa 1-Bris Versicolor, 2-80) Vivainica
		(4.7 3.2 1.2 0.2) [4.6 3.1 1.5 0.2] [5.0 3.6 1.4 0.2) [6.2 3.4 5.4 2.3) [5.9.3 5.1.1.8] ((ast : 0-Bris-sentosa 1-Bris Versicolor, 2-8ri

Conhaion (0		28. 3 80	4 500
50 10	DJ	Wal III	y 1s	diam'r.
	4),	111111111	7	recommenda.
ن الدين	out with	11.11.13	Nouth.	2
Activaty Met	vice		<i>n</i>	hipport
Track-of	Precision	Recall	H- score	Sugart
- Ven - 12-12	of a section	1 July 3 8	1-01/02	20
0	1.00	1:00	1:00	
1	0.91	1.00	0.95	20
2	1:00	0.93	०.९न	15
-	N/2 11		-	
a. Intal	0.98	0.98	0.95	45
avgltotal				31.113
			/-	
			when >	. 6
		0	Pro	

Program 9: Apply EM algorithm to cluster a set of data stored in a .CSV file. Compare the results of k-Means algorithm and EM algorithm.

Algorithm for k means clustering:

- Initialize k means with random values
- For a given number of iterations:
- Iterate through items:
- Find the mean closest to the item by calculating the euclidean distance of the item with each of the means
- Assign item to mean
- Update mean by shifting it to the average of the items in that clusters

Algorithm for EM algorithm:

- The very first step is to initialize the parameter values. Further, the system is provided with incomplete observed data with the assumption that data is obtained from a specific model.
- This step is known as Expectation or E-Step, which is used to estimate or guess the values of the missing or incomplete data using the observed data. Further, E-step primarily updates the variables.
- This step is known as Maximization or M-step, where we use complete data obtained from the 2nd step to update the parameter values. Further, M-step primarily updates the hypothesis.
- The last step is to check if the values of latent variables are converging or not.

Dataset: Iris dataset

```
import matplotlib.pyplot as plt
from sklearn import datasets
from sklearn.cluster import KMeans
import sklearn.metrics as sm
import pandas as pd
import numpy as np

iris = datasets.load_iris()

X = pd.DataFrame(iris.data)
X.columns = ['Sepal_Length', 'Sepal_Width', 'Petal_Length', 'Petal_Width']

y = pd.DataFrame(iris.target)
y.columns = ['Targets']

model = KMeans(n_clusters=3)
model.fit(X)

plt.figure(figsize=(14,7))
colormap = np.array(['red', 'lime', 'black'])
```

```
S Plot the Original Classifications
      pit.subplot(1, 2, 1)
      pit.scatter(X.Petal Length, X.Petal Width, c=colonmap[y.Targets], s=40)
      pit.title('Real Classification')
      pit.xlabel('Metal Length')
      pit.ylabel('Metal Eidth')
      S Plot the Models Classifications
      pit.subplot(1, 2, 2)
      pit.scatter(X.Petal Length, X.Petal Width, c=colormap[model.labels], s=40)
      pit.title('K !lean Classification')
      pit.xlabel('Metal Length')
      pit.ylabel('Metal Lidth')
      print('The accuracy score of K-Mean: ',sm.accuracy score(y, model.labels })
      print('The Confusion matrixof K-Mean: ', sm.confusion matrix(y, model.labels ))
      from sklearn import preprocessing
      sca1er = preproces sing. SJzanda rds c a1er ( )
      sca1er.III (X)
      xsa = sca1er . transform(X)
      xs = pd.DataFrame(xsa, columns = X.columns)
      Sxs.sample(5)
      from sklearn.mixture impont GaussianMixture
      gmm = GaussianMixture(n components=3)
      qmm.fit(xs)
              gmm.predict(xs)
      y<sub>√</sub>gmm
#<del>∨</del>Cluster mm
      pit.subplot(2, 2, 3)
      pit.scatter(X.Petal Length, X.Petal Width, c=colormap[y gmm], s=40)
      pit.title('EM Classification')
      pit.xlabel('Petal Length')
      pit.ylabel('Petal L%dth')
      print('The accuracy score of E': ', sm.accuracy score(y, y mm))
      print('The Confusion matrix of EM: ', sm.confusion matrix(y, y gmm))
The accuracy score of K-jean: 0.24
The Confusion matrix of K-Mean: [[ 0 50 0]
[48 0 2]
[14 0 36]]
The Confusion matrix of EM: [[ 0 50 0]
[4S 0 5]
 [ 0 0 50]]
```


	EM- Algeritam
¥	Expectation step (E step): St involves the estimation of all nussing values in dataset so that after campeleting this step, there should not be any russing value.
*	Maximize step (M-Step): This step involves the Use of estimated data in E-stop and updating the parameter
*	Repeal E step and M step until the convergence of
0	Builfialize Parameter Values. Further, the system is provided with incomplete observered data with assumption that data is obtained from specific mode
	E-step, which is used to estimate or guess the value of the missing data Ving the observere data.
3	maxination step, where we use the complete data obtained from and step to update Parameter values.
	The last step is to check if value of variables are covering or not.
×	By yes, stop Process else repeat Until Convergence

4	$\int (x_2-x_1)^2+(y_2-y_1)^2$
	X = x co-ordinate of point 1
	y = y co-ordinate of point!
	X2 = 2 co-ordinate of pt 2
+	Y2 = y co-ordinate of pt 2
	01/20

Program 10:Implement the non-parametric Locally Weighted Regression algorithm in order to fit data points. Select the appropriate data set for your experiment and draw graphs.

Algorithm:

1. F is approximated near Xq using a linear function:

$$\hat{f}(x) = w_0 + \sum_{u=1}^k w_u K_u(d(x_u, x))$$

2. Minimize the squared error:

$$E_3(x_q) \equiv \frac{1}{2} \sum_{x \in k \text{ nearest nbrs of } x_q} (f(x) - \hat{f}(x))^2 K(d(x_q, x))$$

$$\Delta w_j = \eta \sum_{x \in k \text{ nearest nbrs of } x_q} K(d(x_q, x)) (f(x) - \hat{f}(x)) a_j(x)$$

It is weighted because the contribution of each training example is weighted by its distance from the query point.

Dataset: tip.csv

```
import matplotlib.pyplot as plt
import pandas as pd
import numpy as np

[] def kernel(point,xmat, k):
    m,n = np.shape(xmat)
    weights = np.mat(np.eye((m)))
    for j in range(m):
        diff = point - X[j]
        weights[j,j] = np.exp(diff*diff.T/(-2.0*k**2))
    return weights

[] def localWeight(point,xmat,ymat,k):
    wei = kernel(point,xmat,k)
    w = (X.T*(wei*X)).I*(X.T*(wei*ymat.T))
    return W
```

```
[ ] def localWeightRegression(xmat, ymat, k):
        m, n = np.shape(xmat)
        ypred = np.zeros(m)
         for i in range(m):
             ypred[i] xmat[i]*localHeight(xmat[i],xmat,ymat,k)
         return ypred
[ ] def graphPlot(X, ypred):
         sortindex = X[:,1].argsort(0)
        xsort = X[sontindex] :,0]
         fig = pit.figure()
         ax = fig.add subplot(1,1,t)
         ax.scatter(bill, tip, colon='green')
         ax.plot(xsort[:,1],ypred[sortindex], color = 'red', linexidth=5)
         plt.xlabel('7otal bill')
         plt.ylabel('7ip')
         plt.show();
    data = pd . read_csv ( ' /' c onte nt/tips .c sv ' )
    bill = np.array(data.total bill)
     tip = np.array(data.tip)
     nb111 = np . mat (bill)
     nJz1p = np . nat (t1p)
     n = np.shape(nb111)[1]
     one = np \cdot mat(np \cdot ones(n))
     X = np. hs tack ( (one . T, nb111. T) )
     # increase k to get smooth curves
    ypred = localWeightRegression(X, mtip, 3)
     graphPlot(X,ypred)
```

