Engenharia de Software Experimental – Testes de Inferência

Prof. Márcio Barros PPGI / UNIRIO

Engenharia de Software Experimental - Análise Prof. Márcio Barros – PPGI / UNIRIO

Testes de Hipótese

- Um estudo experimental tem como objetivo colher dados para confirmar ou rejeitar uma hipótese
 - » Os testes estatísticos verificam se é possível rejeitar a hipótese nula, de acordo com um conjunto de dados observados e suas propriedades estatísticas
 - » Os estudos de Engenharia de Software se dividem em qualitativos e quantitativos
 - » Estudos qualitativos se baseiam na contagem de respostas (ex. surveys) ou relacionamentos entre estas respostas
 - » Estudos quantitativos comparam médias entre os grupos de participantes que realizam tratamentos distintos

"Utilizando a técnica Y os desenvolvedores concluem a atividade de análise de requisitos em menos tempo e com requisitos mais completos do que utilizando a técnica X''

Hipótese nula: μ (Tempo_Y) = μ (Tempo_X) Hipótese alternativa: μ (Tempo_Y) \neq μ (Tempo_X)

Testes de Hipótese: Procedimento

- Fixar o nível de significância do teste, $\alpha,$ geralmente como 0.05 ou 0.01
- Obter uma estatística (estimador do parâmetro que está sendo testado) que tenha distribuição conhecida
- Através da estatística de teste e do nível de significância, construir a região crítica para o teste
- Utilizando as informações amostrais (dados coletados), obter o valor da estatística (estimativa do parâmetro)
- Se o valor da estatística pertencer à região crítica, rejeita-se a hipótese nula e aceitase a hipótese alternativa
- Caso contrário, não se rejeita a hipótese nula e nada se pode dizer a respeito da hipótese alternativa
- Calcular uma medida de tamanho de efeito para entender a diferença prática dos resultados observados

PPGI - UNIRIO

Tipos de Erro

- O teste de hipótese sempre lida com algum tipo de risco, ou seja, as chances com que um erro de análise pode acontecer
 - » O erro do tipo I (α) acontece quando o teste estatístico indica um relacionamento entre causa e efeito e o relacionamento real não existe
 - » O erro do tipo II (β) acontece quando o teste estatístico não indica o relacionamento entre causa e efeito, mas existe este relacionamento

```
\begin{split} \alpha &= \text{P (erro-tipo-I)} = \text{P (H}_{\text{NULA}} \, \text{\'e rejeitada | H}_{\text{NULA}} \, \text{\'e verdadeira)} \\ \beta &= \text{P (erro-tipo-II)} = \text{P (H}_{\text{NULA}} \, \text{n\~ao \'e rejeitada | H}_{\text{NULA}} \, \text{\'e falsa)} \end{split}
```

Engenharia de Software Experimental - Análise Prof. Márcio Barros – PPGI / UNIRIO

Potência do Teste

- Indica a probabilidade de rejeitar a hipótese nula se esta for falsa, ou seja, a probabilidade de decisão correta baseada na hipótese alternativa
 - » O tamanho do erro durante a verificação das hipóteses depende da potência do teste estatístico
 - » A potência do teste implica a probabilidade de que o teste vai encontrar o relacionamento quando a hipótese nula for falsa
 - » Um teste estatístico com a maior potência possível deve ser escolhido para avaliar uma hipótese

```
Potência = 1 - \beta
Potência = P (H_{NULA} rejeitada | H_{NULA} é falsa)
```

Engenharia de Software Experimental - Análise Prof. Márcio Barros – PPGI / UNIRIO PPGI - UNIRIO

Nível de Significância

- · Indica a probabilidade de cometer um erro tipo-l
 - » Os níveis de significância (α) mais comumente utilizados são 5%, 1% e 0.1%
 - » Chamamos de *p-value* o menor nível de significância com que se pode rejeitar a hipótese nula
 - » Dizemos que há significância estatística quando o p-value é menor que o nível de significância adotado
 - » Por exemplo, se o p-value for 0.0001 pode-se dizer que o resultado é significativo, pois este valor é muito inferior aos níveis de significância usuais
 - » Porém, se o *p-value* for igual a 0.048 pode haver dúvida pois, embora o valor seja inferior, ele está muito próximo ao nível usual de 5%

Engenharia de Software Experimental - Análise Prof. Márcio Barros – PPGI / UNIRIO

Nível de Significância

- O nome "hipótese nula" vem do uso frequente dos testes de hipótese na comparação de dois tratamentos
 - » Nestes casos, H_0 é a hipótese de igualdade dos tratamentos, ou seja, de falta de superioridade do tratamento alternativo
 - » Assim, o nível de significância de um teste é a probabilidade máxima com que se deseja correr o risco de um erro do tipo I

Engenharia de Software Experimental - Análise Prof. Márcio Barros – PPGI / UNIRIO PPGI - UNIRIO

Nível de Significância

- · Cuidados com o p-value!
 - » O p-value foi definido em torno de 1920 como uma "maneira de julgar se as evidências disponíveis são significativas e merecem atenção do pesquisador"
 - » O p-value não é um resultado definitivo e inquestionável da existência de diferença estatística, pois ele depende do tamanho da população
 - » Com um grande volume de dados, é possível obter resultados com diferença estatisticamente significativa, mesmo que a diferença seja tão pequena que não tenha significado prático
 - » Se fizermos um número suficientemente grande de comparações, em algum momento iremos encontrar alguma diferença!
 - » O p-value também não mostra se a diferença observada é relevante na prática, devendo ser complementado com uma medida de tamanho de efeito

PPGI - UNIRIO

Engenharia de Software Experimental - Análise Prof. Márcio Barros – PPGI / UNIRIO

Tamanho de Efeito (Effect-Size)

- Tamanho de efeito é uma medida estatística descritiva da força do relacionamento entre duas variáveis em uma população ou amostra
 - » O tamanho de efeito expressa a magnitude do relacionamento sem indicar se esta o relacionamento entre os dados é casual ou significativo
 - » Como um exemplo de tamanho de efeito absoluto, podemos dizer que a técnica de teste A identifica 30 erros a mais que a técnica de teste B
 - » Como um exemplo de tamanho de efeito padronizado, podemos dizer que resultados identificados pelo algoritmo A são mais eficientes do que os resultados obtidos pelo algoritmo B em 80% das execuções
 - » Medidas de tamanho de efeito padronizados são preferenciais à medidas absolutas por serem independentes do contexto (no exemplo acima, 30 erros a mais é muito ou pouco? depende do número total de erros ...)
 - » Cada tipo de teste estatístico tem um ou mais tipos de tamanho de efeito

PPGI - UNIRIO

Tamanho de Efeito (Effect-Size)

- · Algumas medidas de tamanho de efeito
 - » Cramer's V
 - » Odds ration
 - » Correlação
 - » Cohen's d
 - » Vargha and Delaney's Â₁₂

Mais detalhes adiante ...

Testes Qualitativos

- · São testes baseados exclusivamente na contagem de valores
 - » Diferentes grupos de participantes respondem a um questionário
 - » Cada pergunta possui um número limitado de respostas
 - » Para cada pergunta, queremos saber se há diferença nas respostas entre os diferentes grupos
- · Exemplo de estudo
 - » Diversas empresas de software dos segmentos de jogos e sistemas de saúde foram convidadas a responder um questionário sobre o uso de métodos ágeis
 - » Entre as perguntas, foi questionado se as empresas usam programação em pares: cada empresa respondeu sim ou não
 - » Em outra pergunta, foi questionado que sistema operacional as empresas usam para o desenvolvimento de software: Windows, Mac ou Linux

Engenharia de Software Experimental - Análise Prof. Márcio Barros – PPGI / UNIRIO

Testes Qualitativos

- A primeira pergunta é um estudo de 1 fator e 2 tratamentos
 - » Os dados podem ser tabulados conforme a tabela abaixo

Número de empresas	Usa programação em pares	Não usa programação em pares
Jogos	10	30
Saúde	20	20

- Um teste de chi-quadrado (χ^2) pode ser utilizado para saber se os dados dos dois grupos são estatisticamente diferentes
 - » Os dados devem ter sido colhidos de forma independente
 - » Os dados não podem ser pareados (ex.: duas coletas com a mesma pessoa)

PPGI - UNIRIO

Testes Qualitativos

- O tamanho de efeito padronizado do teste χ^2 pode ser calculado pela estatística Cramer's V

$$V = \sqrt{\frac{\chi^2/n}{\min(k-1,r-1)}}$$

onde *n* é o número total de opiniões

k é o número total de colunas

r é o número de linhas

	Pequeno	Médio	Grande
Cramer's V	> 0.10	> 0.30	> 0.50

Fonte: Cohen, J. (1992), "A Power Primer", Psychological Bulletin, 112, pp. 155-159

Testes Qualitativos

Engenharia de Software Experimental - Análise Prof. Márcio Barros – PPGI / UNIRIO

• Como apresentar o resultado na Dissertação ou nos artigos?

O teste de chi-quadrado indica que o percentual de uso de programação em pares é significativamente diferente entre os segmentos das empresas com tamanho de efeito pequeno (χ^2 = 4.32, p-value = 0.03767, cramer-V = 0.23).

Engenharia de Software Experimental - Análise Prof. Márcio Barros – PPGI / UNIRIO

PPGI - UNIRIO

Testes Qualitativos

- Uma alternativa ao teste de chi-quadrado é o teste de Fisher
 - » O teste de Fisher é útil para pequenos volumes de dados
 - » É difícil saber o que é um "volume de dados pequeno"!
 - » Se recomenda usar o teste de Fisher quando há menos de 10 observações em qualquer categoria de dados observados

```
> data <- matrix(c(10, 30, 20, 20), ncol=2, byrow=TRUE);
> fisher.test(data)

Fisher's Exact Test for Count Data

data: data
p-value = 0.03683

Conclusão: p-value < 0.05 indica que existem diferenças na distribuição de dados com 95% de confiança

Engenharia de Software Experimental - Análise
Prof. Márcio Barros - PPGI / UNIRIO
```

Testes Qualitativos

- Se tivermos apenas duas variáveis binárias, podemos usar o *odds ratio* como medida de tamanho de efeito não padronizada
 - » Por exemplo, na primeira pergunta temos 10 empresas de jogos que usam programação em pares para cada 30 que não usam, gerando uma relação de 1:3, ou seja, 0.33
 - » Temos ainda 20 empresas de saúde que usam programação em pares para cada 20 que não usam, gerando uma relação de 1:1 (ou seja, 1.0)
 - » O odds ratio é calculado como a divisão da relação entre os grupos: 0.33/1.0 ou 0.33, indicando que é 3 vezes mais raro a programação em pares em empresas de desenvolvimento de jogos

PPGI - UNIRIO

Testes Qualitativos

• A segunda pergunta representa um estudo com 1 fator e 3 tratamentos

# Empresas	Windows	Мас	Linux
Jogos	16	11	3
Saúde	21	8	1

Exercício 06

- Foi realizada uma pesquisa com diversas empresas da região Sul do país visando identificar o perfil de uso de tecnologia Java por estas empresas
- Perguntamos para cada empresa se usa Hibernate e qual framework de desenvolvimento web suas equipes utilizam (Struts, JSF ou Spring)
- Os dados colhidos foram disponibilizados para sua análise, junto com o estado em que se localiza cada empresa
- Existem diferenças entre o Rio Grande do Sul, Santa Catarina e Paraná?

Medidas de Dependência

- Quando duas ou mais variáveis estão relacionadas em um estudo, é útil calcular seu grau de dependência
 - » As medidas de dependência determinam a força e direção do relacionamento entre duas ou mais variáveis
 - » A medida de dependência mais comumente utilizada é o coeficiente de correlação
 - » Se o estudo relaciona duas variáveis, a correlação entre elas é representada como um número entre -1 e +1
 - » Se o estudo relaciona mais de duas variáveis, a correlação é representada como uma matriz simétrica onde cada célula assume um valor entre -1 e +1
 - » A correlação –1 indica que um valor alto em uma variável normalmente ocorre em conjunto com um valor baixo da segunda variável
 - » A correlação +1 indica que um valor alto em uma variável normalmente ocorre em conjunto com um valor alto da segunda variável
 - » A correlação próxima de zero indica que não podemos inferir um relacionamento entre as variáveis

Engenharia de Software Experimental - Análise Prof. Márcio Barros – PPGI / UNIRIO

Medidas de Dependência: Correlação de Pearson

- · Coeficiente de correlação mais conhecido
 - » Quantifica a força de associação linear entre duas variáveis e descreve o quanto uma linha reta se ajustaria na representação cartesiana de seus valores
 - » O coeficiente de Pearson assume que os valores assumidos pelas variáveis sob análise seguem aproximadamente distribuições normais
 - » Devido à distribuição normal, esta condição é indicada pela formação de uma nuvem elíptica em um gráfico de dispersão que apresente estes valores

$$r = \frac{\sum_{i=1}^{N} (x_i - \overline{x})(y_i - \overline{y})}{\sqrt{\sum_{i=1}^{N} (x_i - \overline{x})^2} \cdot \sqrt{\sum_{i=1}^{N} (y_i - \overline{y})^2}}$$

Medidas de Dependência: Correlações em R

• O teste também informa o intervalo de confiança para a correlação com 95% de certeza (note o intervalo grande no exemplo abaixo)

Engenharia de Software Experimental - Análise Prof. Márcio Barros – PPGI / UNIRIO

Medidas de Dependência

• O tamanho de efeito de um teste de correlação é a própria correlação

	Pequeno	Médio	Grande
r	> 0.10	> 0.30	> 0.50

Fonte: Cohen, J. (1992), "A Power Primer", Psychological Bulletin, 112, pp. 155-159

· Como apresentar o resultado?

Observamos que os dados não são fortemente correlacionados e não podemos rejeitar a hipótese de que não existe correlação entre eles (Pearson r = -0.08, p = 0.80).

Medidas de Dependência: Correlação de Spearman

- Outra medida para calcular correlação é o coeficiente de Spearman ou rank-order correlation
 - » O método se baseia no ranking dos valores coletados em seu conjunto, não nos valores propriamente ditos
 - » Com isto, este método pode ser aplicado sobre valores em uma escala ordinal (não apenas intervalar e razão) ou dados sem distribuição normal
 - » Por exemplo, exibir uma relação crescente ou decrescente num formato de curva (ou seja, não linear)
 - » No caso específico de uma curva exponencial, a correlação pode ser aplicada sobre os logaritmos dos valores

Escala	Nominal	Ordinal	Intervalar	Razão
Correlação de Pearson			x	x
Correlação de Spearman		х	Х	Х

Engenharia de Software Experimental - Análise Prof. Márcio Barros - PPGI / UNIRIO

Medidas de Dependência: Correlação de Spearman

- Considere os valores A_i e B_i de duas variáveis A e B
 - » Calcule R(A_i) a posição relativa de cada A_i em relação ao seu conjunto de valores ordenados de forma crescente (ranking)
 - Calcule R(B_i) a posição relativa de cada B_i em relação ao seu conjunto de valores ordenados de forma crescente (ranking)
 - » O coeficiente de correlação de Spearman é calculado segundo a fórmula abaixo

$$\rho = 1 - \frac{6 \cdot \sum_{i} R(A_{i}) - R(B_{i})}{N(N^{2} - 1)}$$

PPGI - UNIRIO

Engenharia de Software Experimental - Análise

Prof. Márcio Barros – PPGI / UNIRIO

Mas como saber se os dados têm distribuição normal?

• Gráficos de distribuição de frequência da curva normal (em azul) e de dados hipotéticos (linhas verticais vermelhas)

PPGI - UNIRIO

Engenharia de Software Experimental - Análise Prof. Márcio Barros – PPGI / UNIRIO

Testes de Normalidade: Teste K-S

- O teste de Kolmogorov-Smirnov avalia se duas amostras têm distribuições semelhantes ou se uma amostra tem distribuição semelhante a uma distribuição contínua clássica (como a normal, por exemplo)
 - » Frequentemente utilizado para identificar normalidade em variáveis com pelo menos 30 valores
 - » Detecta diferenças em relação à tendência central, dispersão e simetria, mas é muito sensível a caudas longas

PPGI - UNIRIO

Medidas de Dependência: Correlações em R

 Se houver muitos empates entre os rankings, devemos usar a correlação de Kendall (uma variante do índice de Spearman)

Medidas de Dependência: Correlações em R

• Identificando o número de dados duplicados em uma sequência e calculando rankings ...

```
> ycorretos <- c(0.83, 0.73, 0.87, 0.78, 0.74, 0.74, 0.87, 0.75, 0.86, 0.82, 0.77);
> xcorretos <- c(0.90, 0.89, 0.88, 0.87, 0.97, 0.81, 0.82, 0.86, 0.92, 0.96, 0.98);
> rank(ycorretos)
[1] 8.0 1.0 10.5 6.0 2.5 2.5 10.5 4.0 9.0 7.0 5.0

> dup <- duplicated(ycorretos)
> length(dup[dup == TRUE])
[1] 2
```

Engenharia de Software Experimental - Análise Prof. Márcio Barros – PPGI / UNIRIO

Prof. Márcio Barros – PPGI / UNIRIO

Exercício 07

- Podemos dizer que os dados da tabela de precipitação de Nova York para o mês de janeiro têm distribuição normal?
- Quantos dados duplicados existem na tabela de precipitação de Nova York no mês de janeiro?
- Calcule a correlação entre as chuvas e a temperatura em Nova York no mês de janeiro.
- Calcule a matriz de correlação de precipitação para todos os meses do ano.
- Estes resultados são diferentes se considerarmos apenas do ano de 1950 até 2012?

Tipos de Testes de Hipótese

- · Os testes de hipótese se dividem em paramétricos e não paramétricos
- Testes paramétricos utilizam fórmulas fechadas, derivadas de propriedades de distribuições de frequência conhecidas (ex.: equação da curva normal)
 - » Estes testes têm maior potência que as alternativas não-paramétricas, mas exigem premissas sobre os dados que serão testados
 - » Normalidade: os valores se concentram simetricamente em torno de uma média e quanto maior a distância desta média, menor a freqüência das observações
 - » <u>Homocedasticidade</u>: implica em variância constante entre os conjuntos de dados testados, ou seja, a variância de um subgrupo não é maior que a de outro
- Testes não-paramétricos devem ser usados quando os dados coletados não atendem aos pressupostos esperados pelos testes paramétricos

Engenharia de Software Experimental - Análise Prof. Márcio Barros – PPGI / UNIRIO

Homocedasticidade

- Duas variáveis são homocedásticas se possuem variâncias similares
 - » Um exemplo clássico da falta de homocedasticidade é a relação entre o tipo de alimento consumido e o salário
 - » A medida que o salário de uma pessoa aumenta, a variedade de tipos de alimento que ela pode consumir também aumenta
 - » Uma pessoa pobre geralmente gasta um valor constante em alimentação e consome produtos similares. Uma pessoa rica pode consumir produtos mais simples, mas também pode consumir produtos sofisticados

Engenharia de Software Experimental - Análise Prof. Márcio Barros – PPGI / UNIRIO V

Testes de Homocedasticidade

 O teste de Levene (pacote lawstat do R) recebe dois grupos de dados com o mesmo número de informações e verifica se eles têm a mesma variância

```
> library (lawstat)
> v1 ← c(23.4, 30.9, 18.8, 23.0, 21.4, 1, 24.6, 23.8, 24.1, 18.7, 16.3, 20.3, 14.9, 35.4, 21.6, 21.2, 21.0, 15.0, 15.6, 24.0, 34.6, 40.9, 30.7, 24.5, 16.6, 1, 21.7, 1, 23.6, 1, 25.7, 19.3, 46.9, 23.3, 21.8, 33.3, 24.9, 24.4, 1, 19.8, 17.2, 21.5, 25.5, 23.3, 18.6, 22.0, 29.8, 33.3, 1, 21.3, 18.6, 26.8, 19.4, 21.1, 21.2, 20.5, 19.8, 26.3, 39.3, 21.4, 22.6, 1, 35.3, 7.0, 19.3, 21.3, 10.1, 20.2, 1, 36.2, 16.7, 21.1, 39.1, 19.9, 32.1, 23.1, 21.8, 30.4, 19.62, 15.5);
> v2 ← c(16.5, 1, 22.6, 25.3, 23.7, 1, 23.3, 23.9, 16.2, 23.0, 21.6, 108, 12.2, 23.6, 10.1, 24.4, 16.4, 11.7, 17.7, 34.3, 24.3, 18.7, 27.5, 25.8, 22.5, 14.2, 21.7, 1, 31.2, 13.8, 29.7, 23.1, 26.1, 25.1, 23.4, 21.7, 24.4, 13.2, 22.1, 26.7, 22.7, 1, 18.2, 28.7, 29.1, 27.4, 22.3, 13.2, 22.5, 25.0, 1, 6.6, 23.7, 23.5, 17.3, 24.6, 27.8, 29.7, 25.3, 19.9, 18.2, 26.2, 20.4, 23.3, 26.7, 26.0, 1, 25.1, 33.1, 35.0, 25.3, 23.6, 23.2, 20.2, 24.7, 22.6, 39.1, 26.5, 22.7, 10.0);
> levene.test (v1, v2)

modified robust Brown-Forsythe Levene-type test based on the absolute deviations from the median

data: v1

Test Statistic = 1.1205, p-value = 0.4032

p-value > α, aceitamos a hipótese de homocedasticidade
```

Engenharia de Software Experimental - Análise Prof. Márcio Barros – PPGI / UNIRIO

Teste T ou Student-T

- · Teste paramétrico para comparar médias de duas amostras independentes
- · Restrições nos dados submetidos ao teste
 - » As séries comparadas devem ter distribuição próxima a normal
 - » As séries comparadas devem ter variância similar (homocedasticidade)
 - » As séries devem ter sido coletadas de forma independente
- Existe uma versão do teste T para dados pareados (não independentes)
 - » Dizemos que duas amostras são pareadas quando existe uma relação única entre um valor em uma amostra e um valor na segunda amostra
 - » Por exemplo, uma amostra antes e outra amostra após um treinamento

PPGI - UNIRIO

Teste T ou Student-T > ytempo <- c(10, 13, 12, 13, 10, 14, 14, 13, 14, 14, 13); > xtempo <- c(13, 9, 11, 14, 9, 12, 9, 12, 11, 14, 13); > t.test(ytempo, xtempo, var.equal=TRUE); data: ytempo and xtempo $t = 1.6149, \; df = 20, \; p\text{-value} = 0.122$ alternative hypothesis: true difference in means is not equal to 0 95 percent confidence interval: -0.3446983 2.7083347 sample estimates: mean of x mean of y 12.72727 11.54545 Conclusão: não é possível afirmar com 95% de certeza que existe diferença no tempo de realização da atividade de acordo com os tratamentos X e Y (p-value > 0.05) **PPGI - UNIRIO** Engenharia de Software Experimental - Análise Prof. Márcio Barros – PPGI / UNIRIO

O teste de Welch é uma variante do teste T que introduz alguma liberdade em relação às variâncias

Teste T ou Student-T

Engenharia de Software Experimental - Análise Prof. Márcio Barros – PPGI / UNIRIO

> ytempo <- c(10, 13, 12, 13, 10, 14, 14, 13, 14, 14, 13);
> xtempo <- c(13, 9, 11, 14, 9, 12, 9, 12, 11, 14, 13);
> t.test(ytempo, xtempo);

Welch Two Sample t-test

data: ytempo and xtempo
t = 1.6149, df = 18.85, p-value = 0.1229
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
-0.3506866 2.7143230
sample estimates:
mean of x mean of y
12.72727 11.54545

Conclusão: não é possível afirmar com 95%
de certeza que existe diferença no tempo de realização da atividade de acordo com os tratamentos X e Y (p-value > 0.05)

PPGI - UNIRIO

24

Teste T ou Student-T > ycorretos <- c(0.83, 0.73, 0.87, 0.78, 0.74, 0.74, 0.87, 0.75, 0.86, 0.82, 0.77); > xcorretos <- c(0.90, 0.89, 0.89, 0.87, 0.97, 0.81, 0.82, 0.86, 0.92, 0.96, 0.98); > t.test(ycorretos, xcorretos); Welch Two Sample t-test data: ycorretos and xcorrotos t = -4.1749, df = 19.976(p-value = 0.0004684) alternative hypothesis: true diretosace in means is not equal to 0 95 percent confidence interval: -0.14996779 -0.05003221 sample estimates: mean of x mean of y 0.7963636 0.8963636 Conclusão: é possível afirmar, com pelo menos 95% de certeza, que existe diferença no número de requisitos corretos encontrados pelos participantes (p-value < 0.05) Engenharia de Software Experimental - Análise Prof. Márcio Barros - PPGI / UNIRIO

Teste T ou Student-T

· Teste T comparando uma série a um valor constante

Engenharia de Software Experimental - Análise Prof. Márcio Barros – PPGI / UNIRIO PPGI - UNIRIO

Teste T ou Student-T

- Medida de tamanho de efeito (Cohen's d)
 - » O cálculo do s não é claramente definido, podendo ser calculado pelas três equações abaixo
 - » Na prática, isto não faz muita diferença porque os desvios padrão devem ser aproximadamente iguais (homocedasticidade)

$$d = \frac{\left| \mu_1 - \mu_2 \right|}{s}$$

$$s = \sqrt{\frac{(n_1 - 1)\sigma_1^2 + (n_2 - 1)\sigma_2^2}{n_1 + n_2 - 2}}$$

$$s = \sigma_1$$

$$s = \sigma_2$$

Engenharia de Software Experimental - Análise Prof. Márcio Barros – PPGI / UNIRIO

PPGI - UNIRIO

Teste T ou Student-T

Engenharia de Software Experimental - Análise Prof. Márcio Barros – PPGI / UNIRIO

• Um problema com o Cohen's d é a falta de interpretação física ...

Teste T ou Student-T

· Interpretação do tamanho de efeito

	Pequeno	Médio	Grande
d	> 0.20	> 0.50	> 0.80

Fonte: Cohen, J. (1992), "A Power Primer", Psychological Bulletin, 112, pp. 155-159

· Como apresentar o resultado?

Aplicando um teste de Welch observamos diferenças significativas no número de requisitos encontrados por participantes aplicando as duas técnicas com tamanho de efeito grande (p-value = 0.0004, Cohen's d = 1.78) favorecendo a técnica X.

Engenharia de Software Experimental - Análise Prof. Márcio Barros – PPGI / UNIRIO

Teste T ou Student-T: Cálculo da Amostra

- · O tamanho de efeito está relacionado com a potência do teste
 - » A potência é a probabilidade do teste rejeitar a hipótese nula se esta for falsa, ou seja, a probabilidade de decisão correta baseada na hipótese alternativa
 - » A potência do teste T depende de três fatores: a diferença entre as médias, a variância dos resíduos e o número de observações
 - » Ela também pode ser calculada dados o nível de significância (5% na tabela abaixo), o número de observações e o tamanho de efeito (Cohen's d)
 - » O número de observações é dado por grupo, ou seja, o número total de observações deve ser o dobro
 - » Se um pesquisador fizer um estudo com 20 pessoas em cada grupo e esperar tamanho de efeito médio, as chances de rejeitar a hipótese nula são de 33%
 - » Ou seja, para cada 3 vezes que o experimento for feito, a hipótese nula será rejeitada 1 vez!!!

	Effec	t Size (Cohe	n's <i>d</i>)
n	.2	.5	.8
10	7	18	39
20	9	33	69
40	14	60	94
80	24	88	99
100	29	94	99
200	51	99	99

Fonte: Cohen, J. (1977)

Teste T ou Student-T: Cálculo da Amostra

- A tabela abaixo pode ser usada para calcular o número de observações desejadas no estudo
 - » A tabela assume α = 0.05 e indica o número de observações por grupo para um determinado tamanho de efeito
 - » O pesquisador estima (a.k.a. chuta) o tamanho de efeito que espera observar, indica a potência do teste e calcula o número de pessoas que deve envolver
 - » Por exemplo, um estudo com tamanho de efeito moderado deveria contar com 64 pessoas. Abaixo disso, a potência do teste será muito baixa ...

	Effec	t Size (Cohen	's <i>d</i>)
Power	.2	.5	.8
.25	84	14	6
.50	193	32	13
.60	246	40	16
.70	310	50	20
.80	393	64	26
.90	526	85	34
.95	651	105	42
.99	920	148	58

Engenharia de Software Experimental - Análise Prof. Márcio Barros – PPGI / UNIRIO

Teste de Mann-Whitney (Wilcoxon)

- · Alternativa não paramétrica para o teste T
 - » Requer que as amostras sejam independentes, com dados nas escalas ordinal, intervalar ou razão
 - » Para a realização do teste as observações das amostras são reunidas em um único grupo, que é ordenado
 - » As amostras são transformadas em rankings dentro do grupo e calcula-se o somatório dos rankings da menor amostra (T)
 - » Finalmente, calcula-se o valor Z que é comparado com uma tabela de valores publicados em livros de Estatística

PPGI - UNIRIO

Teste de Mann-Whitney (Wilcoxon) • Comparando uma série com um valor constante ... > ycorretos <- c(0.83, 0.73, 0.87, 0.78, 0.74, 0.74, 0.87, 0.75, 0.86, 0.82, 0.77); > wilcox.test(ycorretos, um=0.75); Wilcoxon signed rank test with continuity correction data: ycorretos V = 66, p-value = 0.003822 alternative hypothesis: true location is not equal to 0 Warning message: In wilcox.test.default(ycorretos, um = 0.75): cannot compute exact p-value with ties Engenharia de Software Experimental - Analise

Prof. Márcio Barros – PPGI / UNIRIO

Teste de Mann-Whitney (Wilcoxon)

- Medida de tamanho de efeito (Vargha & Delaney's Â₁₂)
 - » O tamanho de efeito é calculado a partir dos rankings dos valores observados
 - » O valor varia de 0% a 100%
 - » Sua interpretação física é muito simples: representa o número de vezes em que a série A foi maior do que a série B
 - » \hat{A}_{12} = 50% indica que os dois tratamentos têm chances iguais de gerar o melhor resultado
 - » \hat{A}_{12} = 80% indica que o primeiro tratamento será melhor que o segundo em 80% das vezes que for aplicado

$$\hat{A}_{12} = \frac{\frac{R_1}{n_1} - \frac{n_1 + 1}{2}}{n_2}$$

 $\hat{A}_{12} = \frac{\frac{R_1}{n_1} - \frac{n_1 + 1}{2}}{n_2} \qquad \text{onde R1 \'e o somat\'orio dos rankings da primeira s\'erie} \\ \text{sob an\'alise quando se considera a ordem dos dados} \\ \text{disponíveis nas duas s\'eries}$ onde R1 é o somatório dos rankings da primeira série

Engenharia de Software Experimental - Análise Prof. Márcio Barros – PPGI / UNIRIO

Teste de Mann-Whitney (Wilcoxon)

· Interpretação do tamanho de efeito

	Pequeno	Médio	Grande	
d	< 0.60	< 0.75	> 0.75	

· Como apresentar o resultado?

Aplicando um teste de Wilcoxon observamos diferenças significativas no número de requisitos encontrados por participantes aplicando as duas técnicas com tamanho de efeito grande (p-value = 0.0019, \hat{A}_{12} = 0.89) favorecendo a técnica X.

Teste de Mann-Whitney (Wilcoxon)

```
> ycorretos <- c(0.83, 0.73, 0.87, 0.78, 0.74, 0.74, 0.87, 0.75, 0.86, 0.82, 0.77);
> xcorretos <- c(0.90, 0.89, 0.88, 0.87, 0.97, 0.81, 0.82, 0.86, 0.92, 0.96, 0.98);
> ax <- vargha.delaney(xcorretos, ycorretos);
> ax; ay;

[1] 0.892562
[1] 0.1074380

Conclusão: o método X gerará melhores resultados em 89% das aplicações, enquanto o método Y gerará melhores resultados em 11% das aplicações
```

Engenharia de Software Experimental - Análise Prof. Márcio Barros – PPGI / UNIRIO

Exercício 08

- Considerando os dados sobre clusterização de projetos de software ...
- Verifique se os dados de *hypervolume* usando os tipos *mq* e *none* possuem distribuição normal para a instância *javacc*
- Verifique se os dados de *hypervolume* usando os tipos *mq* e *none* são homocedásticos para a instância *javacc*
- Compare as médias entre as duas série acima usando um teste T ou teste de Mann-Whitney, conforme as distribuições dos dados
- · Calcule o tamanho de efeito do teste descrito no item anterior

PPGI - UNIRIO

Teste ANOVA

- Teste de hipótese que avalia a existência de diferença significativa entre as médias observadas entre dois ou mais grupos
 - » Permite comparar as médias de diversos tratamentos, sendo usada como uma extensão dos testes T quando existem mais de dois tratamentos
 - » Avalia se a variabilidade dentro dos grupos é maior do que a existente entre os grupos
 - » A técnica supõe independência das observações, normalidade e igualdade entre as variâncias dos grupos
 - » A técnica somente deve ser usada se os grupos possuírem aproximadamente o mesmo número de participantes

PPGI - UNIRIO

Teste ANOVA

- Porque não utilizar um conjunto de Testes T?
 - » Considere que você têm três técnicas de levantamento de requisitos (A, B e C) e quer saber se existe diferença de desempenho (ex.: número de requisitos corretos encontrados) entre elas
 - » A hipótese nula do teste ANOVA é que não existe diferença significativa entre os tratamentos
 - » Para aplicar testes T, teríamos que fazer isto em pares, ou seja, aplicar um teste entre A e B, outro entre B e C e um terceiro entre A e C
 - » Se cada teste tiver α = 0.05, teremos um α final igual a 0.142 (1.0 0.95³), que é baixo demais para representar um teste de qualidade
 - » Neste caso, o teste ANOVA manterá α = 0.05

Engenharia de Software Experimental - Análise Prof. Márcio Barros – PPGI / UNIRIO

Teste ANOVA

- · Mas existe alternativa?
 - » Sempre que uma série de dados for comparada com mais de uma série de dados, devemos usar um teste apropriado (ANOVA) ou aplicar testes de pares com correções
 - » Um exemplo é a correção de Bonferroni, que divide o α do teste pelo número de vezes em que a série é avaliada (número de testes)
 - » No entanto, a correção de Bonferroni é muito severa quando fazemos mais de 3 comparações com a mesma série
 - » Existem correções mais suaves (ex.: Holm), mas na prática o ideal é partir para um teste que considere mais do que dois grupos
 - » De qualquer forma, as correções vão ser aplicadas depois que o resultado do teste (múltiplos grupos) for conhecido (post-hoc analysis)

PPGI - UNIRIO

Teste One-Way ANOVA

 Teste realizado quando temos uma variável independente com diversos tratamentos. O teste determina se os tratamentos são importantes para predizer o valor da variável dependente usada na comparação.

Teste One-Way ANOVA: Tamanho de Efeito

• O tamanho de efeito de um teste one-way ANOVA é o eta-quadrado

$$\eta^2 = \frac{SumSq_{indep}}{SumSq_{indep} + SumSq_{residuals}}$$

	Pequeno	Médio	Grande
η²	> 0.01	> 0.06	> 0.14

Aplicando um teste one-way ANOVA observamos diferenças significativas na atenção dos pacientes de acordo com a dosagem aplicada, com tamanho de efeito grande (p-value = 0.00298, η^2 = 0.54).

Engenharia de Software Experimental - Análise Prof. Márcio Barros – PPGI / UNIRIO PPGI - UNIRIO

Teste Two-Way ANOVA: Introdução

- · O cálculo do tamanho de efeito é similar ao usado no one-way ANOVA
- Porque uma introdução?
 - » Porque existe muito mais complicação por trás dos testes ANOVA ...
 - » E porque eles raramente são aplicados em dados da Engenharia de Software
- · Existe um three-way ANOVA?
 - » Matematicamente sim, mas os experimentos começam a ficar muito complexos e o número de participantes começa a ficar impraticável
 - » É melhor tentar isolar os efeitos que estão sendo analisados e se limitar a oneway ou two-way ANOVA

PPGI - UNIRIO

Teste de Kruskal-Wallis • É o equivalente não-paramétrico do teste ANOVA » Não presume normalidade e homocedasticidade » Permite comparar dados em escala ordinal (além de razão e intervalar) > value <- c(1, 2, 5, 3, 2, 1, 1, 3, 2, 1, 4, 3, 6, 5, 2, 6, 1, 6, 5, 4, 9, 6, 7, 7, 5, 1, 8, 9, 6, 5); > group <- factor(c(rep(1, 10), rep(2, 10), rep(3, 10)); > data <- data frame(group, value); > kruskal-wallis rank sum test data: value hy group Kruskal-Wallis chi-squared = 13.6754, df = 2, p-value = 0.001073

Engenharia de Software Experimental - Análise Prof. Márcio Barros – PPGI / UNIRIO **PPGI - UNIRIO**

Teste de Kruskal-Wallis · Agora que observamos um efeito, temos que identificar onde ele está » Para identificar este efeito, fazemos um teste chamado post-hoc » O teste consiste na avaliação de pares de comparações usando o teste de Mann-Whitney com correção (Bonferroni ou Holm) > pairwise.wilcox.test(value, group, p.adj="bonferroni", exact=FALSE); Pairwise comparisons using Wilcoxon rank sum test value and group 0.0418 0.0058 0.0791 = value adjustment method: bonferron: p-value < 0.05 → observamos um efeito significativo entre os tratamentos 1 e 2 e 1 e 3 **PPGI - UNIRIO** Engenharia de Software Experimental - Análise Prof. Márcio Barros – PPGI / UNIRIO

Teste de Kruskal-Wallis

```
> g1 <- subset(data, data%group == 1)
> g2 <- subset(data, data%group == 2)
> g3 <- subset(data, data%group == 3)
>
> vargha.delaney(g1$value, g2$value)
[1] 0.175

> vargha.delaney(g1$value, g3$value)
[1] 0.09

> vargha.delaney(g2$value, g3$value)
[1] 0.205
```

Um teste de Kruskal-Wallis identificou diferenças significativas do grupo sobre o valor (p-value = 0.001073). Um teste post-hoc usando testes de Mann-Whitney com correção de Bonferroni mostrou que as diferenças significativas ocorriam entre os grupos 1 e 2 (p-value = 0.0418, \hat{A}_{12} =17.5%) favorável ao grupo 2 e entre os grupos 1 e 3 (p-value = 0.0058, \hat{A}_{12} =9%) favorável ao grupo 3.

Engenharia de Software Experimental - Análise Prof. Márcio Barros – PPGI / UNIRIO

Referências Bibliográficas

- Cochran, W. G., Cox, G. M., "Experimental Designs". John Wiley & Sons, 1957.
- Costa, H.R., Barros, M.O., Travassos, G.H., "Evaluating Software Project Portfolio Risks", Journal of Systems and Software, 2006
- Dyba, T.; Kampenes, V.; Sjoberg, D., "A Systematic Review of Statistical Power in Software Engineering Experiments", Information and Software Technology, 2005
- Juristo, N.; Moreno, A. M.; "Basics of Software Engineering Experimentation". Kluwer Academic Publishers, 2001.
- Kitchenham, B.A. et al, Preliminary guidelines for empirical research in software engineering -IEEE Transactions on Software Engineering, Volume: 28 No.: 8, Page(s): 721 –734, Aug. 2002.
- Miller, J., Dali, J., Wood, M., Roper, M., Brooks, A., Statistical power and its Subcomponents

 Missing and Misunderstood Concepts in Empirical Software Engineering Research,
 Information and Software Technology, Vol. 39, No. 4, pp. 285-295, 1997.

е

PPGI - UNIRIO

Referências Bibliográficas

- Montgomery, D. C., "Design and Analysis of Experiments", Ed. IE-Wiley, 2000.
- National Institute of Standards and Technology http://www.nist.gov
- Statistical Methods for HCI Research http://yatani.jp/teaching/doku.php?id=hcistats:start
- Pfleeger, Shari .L., Albert Einstein and Empirical Software Engineering. IEEE Computer: 32-37, 1999
- Tichy, W. F., Should Computer Scientists Experiment More?, IEEE Computer: 32-40, May, 1998.
- Wohlin, C. et al. "Experimentation in Software Engineering An Introduction". Kluwer Academic Publishers, USA, 2000.
- Maxwell, K. D., "Applied Statistics for Software Managers". Prentice Hall PTR, 2002.

