INTELIGENCIA ARTIFICIAL (3398/1967)

Guía Práctica Nro. 3 - Machine Learning - Supervisado - Clasificación paramétrica

- 1) Un hospital usa un sistema para detectar una enfermedad rara. Se hicieron pruebas a 200 pacientes. En realidad, 40 pacientes tenían la enfermedad y 160 no la tenían. El clasificador detectó 50 pacientes como enfermos, de los cuales 30 efectivamente lo estaban.
 - a) Identificar TP,TN,FP,FN
 - b) Computar las métricas vistas
 - c) Hacer un cuadro comparativo variando los valores de detección del clasificador para analizar cómo influyen en cada una de las métricas
- 2) Realice manualmente el proceso de aprendizaje de una clasificador lineal que modele el OR. Detalle el proceso de cada etapa utilizando como casos de entrenamiento los cuatro casos y como tasa de aprendizaje 1. ¿Cuántas etapas fueron necesarias?
- 3) Dada la siguiente tabla de datos, implemente un algoritmo (perceptrón) para aprender a clasificar el modelo. Grafique los valores y pruebe con valores no utilizados durante el entrenamiento.

x1	x2	y (clase)
0	0	0
0	1	0
1	0	0
2	2	1
2	3	1
3	2	1

- 4) Agregue el registro (3,3,0) a la tabla del ejercicio anterior y luego intente el entrenamiento. ¿ qué sucede y por qué ?
- 5) Implemente Logistic Regression (manualmente) para discriminar entre cervezas Stout y las que no lo son.
 - a) Genere un dataset mayor y separe entre entrenamiento y validación
 - b) Compare los resultados de validación vs predicción, evalúe el modelo según las métricas vistas
- 6) Agregue más estilos de cerveza, IPA (amarga pero no tan oscura), Scottish (ligeramente oscura pero no tan amarga).
 - a) Genere un dataset sintético con valores acordes para ellos.
 - b) Utilice la biblioteca ScikitLear para generar clasificadores, para cada una de ellas. Luego realice clasificación para cada estilo.
 - c) Utilice las técnicas OVR y OVO para clasificación multiclase
 - d) Utilice la técnica softmax para "multi_class = 'multinomial'" para entrenar el modelo multiclase.
 - e) Evalúe los modelos aprendidos y reentrene con diferentes hiperámetros. En todos los casos grafique la matriz de confusión para interpretar gráficamente los resultados.
- 7) Investigue, plantee un problema y entrene un modelo que permita clasificar elementos con más de una etiqueta .