

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)						
(51) International Patent Classification 7:		(11) International Publication Number: WO 00/09537				
C07K ,	A2	(43) International Publication Date: 24 February 2000 (24.02.00)				
(21) International Application Number PCT/US	[US/US]; 4607 Cypress Wood Drive, Spring, TX 77379 (US).					
(22) International Filing Date: 6 August 1999 ((74) Agents: EISENSTEIN, Ronald, I. et al.; Nixon Peabody LLP, 101 Federal Street, Boston, MA 02110 (US).					
(30) Priority Data: 60/096,795 60/129,806 16 April 1999 (16.04.99) (63) Related by Continuation (CON) or Continuation-in (CIP) to Earlier Application US Filed on (71) Applicant (for all designated States except US): AI TRATORS OF THE TULANE EDUCATIONAI [US/US]: Tulane University Medical Center, of Medicine, 1430 Tulane Avenue, New Orle 70112–2699 (US). (72) Inventors; and (75) Inventors/Applicants (for US only): BOWERS, CUS/US]; 484 Audubon Street, New Orleans, L. (US). MOMANY, Frank [US/US]; Versailles Ham 935 Loire Court, Peoria, IL 61614 (US). LIANG,	DMINI: L FUN Scho ans, L Cyril, A 7011	ZW, ARIPO patent (GH, GM, KE, LS, MW, SD, SL, SZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG). Published Without international search report and to be republished upon receipt of that report.				

(54) Title: COMPOUNDS HAVING GROWTH HORMONE RELEASING ACTIVITY

(57) Abstract

Compounds that promote growth hormone releasing activity are disclosed. These compounds have the formula: A_1-A_2-X ; A_1-X' , or A_1-Y . These compounds can be present in a pharmaceutical composition. The compounds can be used with a second compound that acts as an agonist at the growth hormone releasing hormone receptor or which inhibits the effects of somatostatin. These compounds can be used for a variety of uses such as treating hypothalamic pituitary dwarfism, osteoporosis, burns, or promoting wound healing.

200010- NACO 000023749 1 -

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

ΛL	Albania	ES	Spain	LS	Lesotho	SI	Slovenia
AM	Armenia	FI	Finland	LT	Lithuania	SK	Slovakia
AΤ	Austria	FR	France	LU	Luxembourg	SN	Senegal
ΑU	Australia	GA	Gabon	LV	Latvia	SZ	Swaziland
AZ	Azerbaijan	GB	United Kingdom	MC	Monaco	TD	Chad
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagascar	ТJ	Tajikistan
BE	Belgium	GN	Guinea	MK	The former Yugoslav	TM	Turkmenistan
BF	Burkina Faso	GR	Greece		Republic of Macedonia	TR	Turkey
BG	Bulgaria	HU	Hungary	ML	Mali	TT	Trinidad and Tobago
ВJ	Benin	IE	Ireland	MN	Mongolia	UA	Ukraine
BR	Brazil	IL	Israel	MR	Mauritania	UG	Uganda
BY	Belarus	IS	lceland	MW	Malawi	US	United States of America
CA	Canada	IT	Italy	MX	Mexico	UZ	Uzbekistan
CF	Central African Republic	JР	Japan	NE	Niger	VN	Viet Nam
CG	Congo	KE	Kenya	NL	Netherlands	YU	Yugoslavia
CH	Switzerland	KG	Kyrgyzstan	NO	Norway	ZW	Zimbabwe
CI	Côte d'Ivoire	KP	Democratic People's	NZ	New Zealand		
CM	Cameroon		Republic of Korea	PL	Poland		
CN	China	KR	Republic of Korea	PΤ	Portugal		
CU	Cuba	KZ.	Kazakstan	RO	Romania		
CZ	Czech Republic	LC	Saint Lucia	RU	Russian Federation		
DE	Germany	ᄕ	Liechtenstein	SD	Sudan		
υĸ	Denmark	LK	Sri Lanka	SE	Sweden		
EE	Estonia	LR	Liberia	SG	Singapore		

COMPOUNDS HAVING GROWTH HORMONE RELEASING ACTIVITY

FIELD OF THE INVENTION

This invention relates to novel compounds that promote the release of growth hormones when introduced to animals, preferably humans, and methods of use thereof.

5

10

15

20

25

BACKGROUND OF THE INVENTION

The elevation of growth hormone (GH) levels in animals, e.g., mammals including humans, upon administration of GH-releasing compounds can lead to enhanced body weight and to enhanced milk production if sufficiently elevated GH levels occur upon administration. Further, it is known that the elevation of growth hormone levels in mammals and humans can be accomplished by application of known growth hormone releasing agents, such as the naturally occurring growth hormone releasing hormones.

The elevation of growth hormone levels in mammals can also be accomplished by application of growth hormone releasing peptides (GHRPs), some of which have been previously described, for example, in U.S. 4,223,019; U.S. 4,223,020; U.S. 4,223,021; U.S. 4,224,316; U.S. 4,226,857; U.S. 4,228,155; U.S. 4,228,156; U.S. 4,228,157; U.S. 4,228,158; U.S. 4,410,512; U.S. 4,410,513.

Antibodies to the endogenous growth hormone release inhibitor, somatostatin (SRIF) have also been used to cause elevated GH levels. In this latter example, growth hormone levels are elevated by removing the endogenous GH-release inhibitor (SRIF) before it reaches the pituitary, where it inhibits the release of GH.

These methods for promoting the elevation of growth hormone levels frequently involve materials which are expensive to synthesize and/or difficult to isolate in sufficient purity for administration to a target animal. Low molecular weight, relatively simple and inexpensive compounds that

10

15

20

25

30

have the ability to promote the release of growth hormone would be desirable in that they could be readily and inexpensively prepared, easily modified chemically and/or physically, as well as easily purified and formulated, and designed to have improved transport properties.

GH and/or GHRPs have been administered to stimulate growth hormone production and/or release, for example, to stimulate growth, enhance milk production, enhance body weight, increase rate of protein synthesis, reduce rate of carbohydrate utilization, increase mobilization of pre-fatty acids. Although the use of many of these compounds such as a series of short peptides (e.g., U.S. Patent Nos. 5,663,146 and 5,486,505) have been important steps in the design and delivery of compounds having GH and/or GHRP properties, improvements can still be made. For example, improvements can be made in the areas of oral bioavailability, serum retention time, etc.

Non-peptidal or hybrid-peptidal secretagogues have also been described. See U.S. Patent Nos. 5,494,919; 5,492,920; 5,492,916; 5,622,973; WO95/13069, WO96/15148; WO96/35713; WO97/22367; WO97/00894; WO97/07117; and WO97/11697. Despite the general descriptions of such compounds, it is not possible to make broad generalizations about which particular compounds are favorable. Although some secretagogues, which can promote the release and elevation of growth hormone levels in the blood, have been described, corresponding data on the biological activity has often been lacking. Moreover, even in terms of tripeptides with or without C-terminal modifications, the data suggests that it has heretofore been impossible to make the broad sweeping generalization made in those publications about what would or would not be a favorable amino acid combination at the three positions of a tripeptide holding the Cterminal constant or holding the peptidal portion constant while making changes, or changing the chemical moieties added. Changes in any of the constituents can have great effects on activity. It is submitted that these references do not lead to general teachings of biological efficacy.

In order to maximize the ability to select and tailor a compound, it would be desirable to have a class of compounds that generally provide good growth hormone releasing effects and have at least one other desirable

WO 00/09537 PCT/US99/17867

- 3 -

biological activity such as better bioavailability, absorption, metabolism, pharmacokinetics, excretions, etc. It would also be desirable to have compounds which can promote the release and elevation of growth hormone levels in the blood of animals, particularly in humans, to be able to use such compounds to promote the release and/or elevation of growth hormone levels in the blood of animals and humans, and to provide methods for promoting the release and/or elevation of growth hormone levels in the blood of animals using such compounds.

5

10

15

20

25

30

The aforementioned discussion illustrates that a broad chemical diversity of synthetic GHRPs ranging from peptides to partial peptides to non-peptides. Overall, the peptides and partial peptides have been the most effective in promoting elevated growth hormone levels. For example, partial peptides consisting of natural and unnatural amino acids of different chain lengths and C-terminal amide groups or a substituted amide with various organic chemical groups. Results published as early as 1982 stated that certain GHRPs with only 3-7 amino acids released GH and that having a D-amino acid at certain positions was useful. From 1982 to the present, GHRPs with more potent GH releasing activity have been developed. This research taught that certain amino acid positions could have certain substitutions but not others, and that one amino acid residue could affect what other substitutions could be made.

Until compounds having the optimum physical-chemical properties and physiological-biological actions and effects are discovered for various diagnostic and therapeutic uses in humans, it is important to discover a general chemical approach that will result in new types of GHRPs. Such a broader GHRP chemical base will make it possible to better implement and refine the GHRP approach.

Properties of GHRPs that are important include that they are effective when administered orally. In addition, the compound should augment the normal pulsatile physiological secretion of GH. In some subjects with decreased GH secretion, GH can be replaced in a physiological way. Physiological replacement of a hormonal deficiency improves health while minimizing the potential adverse action of the hormone. This is especially important in treating older men and women, as they may be particularly

10

15

20

susceptible to the adverse effects of over-treatment with GH. Already, chronic administration of GHRPs to animals and humans has produced anabolic effects. Body weight gain has been increased in rats, milk production has been increased in cows. Additionally, when a compound such as DAla-D β Nal-Ala-Trp-DPhe-Lys-NH $_2$ (GHRP-2) was administered to short-statured children with various degrees of GH deficiency 2-3 times per day over a 2 year period, the rate of height velocity has been accelerated in those children.

In principle, the anabolic biological effects of GHRPs emphasize the potential clinical value of the GHRP approach. The finding that GHRP-2 is less effective on height velocity than usually obtained with chronic recombinant human growth hormone (rhGH) administration, underscores the desirability for improving the GHRP approach. This includes further optimization and extension of the range of the GHRP chemistry in order to produce more effective biological actions.

In looking at these compounds, one looks at a varied series of biological effects such as the duration of action of GHRP. Other parameters that may substantially be affected by the chemistry of the GHRP include desensitization of the GHRP GH response, actions on the hypothalamus, effects on SRIF release and action, effects on ACTH and PRL release as well as possible effects on putative subclasses of GHRP receptors. All of these actions are directly and/or indirectly dependent on the GHRP chemistry, pattern and efficiency of oral absorption as well as the metabolism and secretion of the particular GHRP.

25

30

SUMMARY OF THE INVENTION

We have now discovered a new group of compounds (sometimes referred to as secretagogues) that provide desirable *in vitro* and *in vivo* growth hormone releasing activity and have at least one other desirable biological activity such as increased retention time. These compounds have the following formulas:

Formula I:

 $A_1 - A_2 - X$

wherein A₁ is Aib (aminoisobutyric acid), inip (isonipecotyl) or ABU (aminobutyric acid). The Aib residue can be substituted or unsubstituted.

20

25

30

Preferred substituents include C_1 - C_6 alkyl and halogens. Aib is preferably unsubstituted. Aib is preferably αAib . ABU is preferably γABU or $\alpha \gamma ABU$, more preferably $\alpha, \gamma ABU$;

 A_2 is any natural L-amino acid or Pal, or their respective D-isomers, D α Nal (α -naphthyl-D-alanine) or D β Nal (β -naphthyl-D-alanine), preferably A_2 is DTrp, D α Nal (α -naphthyl-D-alanine) or D β Nal (β -naphthyl-D-alanine), more preferably A_2 is DTrp or D α Nal;

- X is (1) R₁-R₂-Z, wherein R₁ and R₂ are any natural L-amino acid, Pal, αNal, βNal, DpCl, CHx, where CH_x is cyclohexyl, CHxAla, or any of their respective D-isomers, preferably R₁ is DPro, DTrp, DβNal or DPhe, more preferably R₁ is DPro or DTrp; and R₂ is preferably Gly, Phe, Pro, DPro, DPhe, DPal, DLeu, DHis, DVal, DGln, DArg, DAla, DSer, DThr, DIle, Arg, Orn Lys, Ala, Pal, Thr, Val, PheCHx, CHxAla or CHx, where x is preferably 1-8, more preferably 1 to 5; and Z is CONH₂ or COOH;
 - (2) DpR₃Phe-R₄-Z, wherein R₃ is a halogen, preferably Cl, and R₄ is any natural L-amino acid or Pal, or their respective D-isomers, preferably R₄ is Phe or Arg, and Z is CONH₂ or COOH;
 - (3) NH(CH₂)_nNH, where n is 1 to 8, such as -2-aminoethylamide, -3-aminopropylamide, -4-aminobutylamide, -5-aminopentylamide, or -6-aminohexylamide;
 - (4) R_5 - R_6 , wherein R_5 is any natural L-amino acid, Pal, α Nal, β Nal, DpCl, CHx where x is 1 to 10, or any of their respective D-isomers, preferably R_5 is DPro or DTrp, and R_6 is
 - (a) diisobutylamide
 - (b) dipropylamide
 - (c) butylamide
 - (d) pentylamide
 - (e) dipentylamide
 - (f) C(=0) (substituted heteroalicyclic or heteroaromatic) such as -piperidine-3-methyl-

benzylether

-N-diethylnipectamide

- -N-piperazine methylsulfonamide -diethylamide -m-methylpiperidine -3,3-diphenylpropylamide 5 -4-piperidino piperidinamide -4-phenyl-piperidinamide -N-methylpiperazine -2-morpholinoethylamine -spiroindole methylsulfonamide 10 -pyrrolidine amide -indoleamide -3-piperidine methanolamide -tropin amide -2-aminoethylamide 15 -3-aminopropylamide -4-aminobutylamide -5-aminopentylamide -6-aminohexylamide;
 - (5) DTrp Phe ArgR₇, wherein R₇ is NH(CH₂)_nNH, where n is 1 to 8, such as -2-aminoethylamide, -3-aminopropylamide, -4-aminobutylamide, -5-aminopentylamide, or -6-aminohexylamide; or
 - (6) R₈-R₉-R₁₀-Z, wherein R₈ is DTrp, DPro, DαNal or DβNal, preferably R₈ is DTrp or DPro, R₉ is any natural L-amino acid or Pal, or their respective D-isomers, preferably R₉ is Phe, DVal, DPro, DIle, Ile, more preferably R₉ is Phe, DVal or DPro; R₁₀ is any natural L-amino acid or Pal, or their respective D-isomers, preferably R₁₀ is Lys or Arg, and Z is CONH₂ or COOH, preferably Z is CONH₂.

A1-X'

Formula II:

wherein A₁ is Aib, inip, ABU, IMC (imidazole carboxylic acid), Ava, 4-IMA (Nα-imidazole acetic acid), βAla, Ileu, Trp, His, DpCl, CHx, or any of their respective D-isomers. The Aib residue can be substituted or unsubstituted. Preferred substituents include N- and N-,N- C₁-C₆ alkyl, halogens, N- and N-,N-2 hydroxyethyl, 3-hydroxypropyl, 4-hydroxybutyl and 3-hydroxyisobutyl.

20

25

Aib is preferably unsubstituted. Aib is preferably α Aib. ABU is preferably γ ABU or $\alpha\gamma$ ABU, more preferably α,γ ABU; and

- X' is (1) R₁-R₂-Z, wherein R₁ is any natural L-amino acid or Pal, or their respective D-isomers, DαNal or DβNal, preferably R₁ is DTrp, DαNal or DβNal, more preferably R₁ is DTrp or DαNal, and R₂ is any natural L-amino acid, Pal, αNal, βNal, DpCl, Aib, preferably αAib, CHx where x is 1 to 10, or CHxAla, or any of their respective D-isomers, and Z is CONH₂ or COOH, preferably Z is CONH₂; or
- (2) R_{3'}-R_{4'}, wherein R_{3'} is any natural L-amino acid or Pal, or their respective D-isomers, DαNal or DβNal, preferably R₃ is DPro, DTrp, DαNal or DβNal, more preferably R_{3'} is DPro, DTrp or DαNal, and R_{4'} is NH(CH₂)_nNH, where n is 1 to 8, such as -2-aminoethylamide, -3-aminopropylamide, -4-aminobutylamide, -5-aminopentylamide, or -6-aminohexylamide.
- 15 The organic and inorganic addition salts thereof are also included.

In an alternative embodiment the compound has the formula

Formula III: A_1 -Y,

20

25

30

1 64552000

SUCCIO: MICH

5

wherein A_{1} is Aib, inip, ABU, β Ala, His, Sar or any of their respective Disomers. The Aib residue can be substituted or unsubstituted. Preferred substituents include N- and N-, N-C₁-C₆ alkyl, halogens, N- and N-, N-2 hydroxyethyl, 3-hydroxypropyl, 4-hydroxybutyl and 3-hydroxyisobutyl. Aib is preferably unsubstituted. A_{1} is preferably Aib, inip or ABU. More preferably Aib is α Aib. Abu is preferably γ Abu or α , γ Abu, more preferably α , γ Abu.

Y is A_{2} - A_{3} - A_{4} - A_{5} - A_{6} -Z', A_{2} - A_{3} - A_{4} - A_{5} -Z' or A_{2} - A_{3} - A_{4} -Z'wherein A_{2} is A_{5} - A_{2} or A_{2} ",
wherein A_{5} is a spacer amino acid such as His, A_{2} is as defined above for A_{2} . A_{2} is preferably DTrp, D α Nal or D β Nal. A_{2} - is more preferably DTrp.

A₃, A₄ and A₅ are any natural L-amino acid, Pal, αNal, βNal, Nle, Arg-DPro, DPCl, D or L (CHX), cyclohexylalanine (CHXAla), or any of their respective D-isomers, preferably A₃ is DPro, DTrp, DβNal or DPhe, more preferably A₃ is DPro or DTrp; and A₄ is preferably Gly, Phe, Pro, Ile, DPro, DPhe, DPal, DLeu, DHis, DVal, DGln, DIle, DNle, DArg, DAla, DSer, DThr, DIle, Arg, Orn Lys, Ala, Pal, Thr, Val, PheCHX, CHXAla or CHX. A₄ is preferably DSer, DAug, DPro, DTrp, DVal, DIle, DThr, DNVal, DNle, Ile, Pro, Phe and still more preferably, A₄ is DPro. A₅ is preferably Ile, Arg, Pal, DArg, DSer, Lys and Arg-DPro. More preferably A₅ is Arg, DArg, and Lys.

10

5

Z' is NH₂, OH or alkylamino or aminoalkylamino, preferably the alkylamino is NH (C₁-C₁₀ alkyl) e.g. NH(CH₂)_nCH₃, where n is 1 to 10 such as

N di- $(C_1-C_{10} \text{ alkyl}) \text{ e.g.}$, N di- $(CH_2)_n CH_3 \text{ such as}$

$$CH_2$$
 CH_3 CH_2 CH_3

preferably the aminoalkylamino is a NH (C_1 - C_{10} alkylamino, e.g. NH(CH_2)_nNH₂ such as

20

N (di C_1 - C_{10} alkylamino), e.g., N [di-(CH_2)_n NH_2] such as

$$CH_2$$
 CH_2 NH_2 CH_2 NH_2 CH_2 NH_2 .

10

15

20

25

30

These compounds can be administered to an animal to promote release of serum growth hormone levels. Thus, these secretagogues can be used in a range of methods for example, to increase milk production, enhance body growth, treat hypothalmic pituitary dwarfism, osteoporosis, burns and renal failure, and to promote wound healing. They can also be used diagnostically. For example, to discover a loss of growth hormone receptor functioning.

DETAILED DESCRIPTION OF THE INVENTION

The compounds described herein are typically easy to synthesize, have efficacy at promoting an increase in serum growth hormone levels, and are desirable for large scale production and utilization. In addition, these compounds may be advantageous in having physiochemical properties which are desirable for the efficient delivery of such polypeptide compounds to a wide variety of animal species because of an improvement in at least one of bioavailability, absorption, metabolism, pharmacokinetics and excretion. The preferred methods of delivery are oral, nasal and continuous delivery utilizing special chemical/mechanical methods of delivery. Pulsed therapy is one preferred method of administration. These compounds have either of the following two formulas:

Formula I: A_1 -A_2-X wherein A_1 is Aib (aminoisobutyric acid), inip (isonipecotyl) or ABU (aminobutyric acid). The Aib residue can be substituted or unsubstituted. Preferred substituents include C_1 - C_6 alkyl and halogens. Aib is preferably unsubstituted. Aib is preferably α Aib. ABU is preferably γ ABU or $\alpha\gamma$ ABU, more preferably α . γ ABU;

 A_2 is any natural L-amino acid or Pal, or their respective D-isomers, DaNal (α -naphthyl-D-alanine) or D β Nal (β -naphthyl-D-alanine), preferably A_2 is DTrp, DaNal (α -naphthyl-D-alanine) or D β Nal (β -naphthyl-D-alanine), more preferably A_2 is DTrp or D α Nal;

X is (1) R₁-R₂-Z, wherein R₁ and R₂ are any natural L-amino acid, Pal, αNal, βNal, DpCl, CHx, CHxAla, or any of their respective D-isomers, preferably R₁ is DPro, DTrp, DβNal or DPhe, more preferably R₁ is

DPro or DTrp; and R₂ is preferably Gly, Phe, Pro, DPro, DPhe, DPal, DLeu, DHis, DVal, DGln, DArg, DAla, DSer, DThr, DIle, Arg, Orn Lys, Ala, Pal, Thr, Val, PheCHx, CHxAla or CHx, where x is preferably 1-8, more preferably 1 to 5; and Z is CONH₂ or COOH;

5

(2) DpR₃Phe-R₄-Z, wherein R₃ is a halogen, preferably Cl₁ and R₄ is any natural L-amino acid or Pal, or their respective D-isomers, preferably R₄ is Phe or Arg, and Z is CONH₂ or COOH;

NH(CH₂)_nNH, where n is 1 to 8, such as -2-aminoethylamide, -

10

15

3-aminopropylamide, -4-aminobutylamide, -5-aminopentylamide, or -6-aminohexylamide;

(3)

- (4) R_5 - R_6 , wherein R_5 is any natural L-amino acid, Pal, α Nal, β Nal, DpCl, CHx where x is 1 to 10, or any of their respective D-isomers, preferably R_5 is DPro or DTrp, and R_6 is
 - (a) diisobutylamide

(b) dipropylamide

- (c) butylamide
- (d) pentylamide
- (e) dipentylamide
- (f) C(=0)(substituted heteroalicyclic or heteroaromatic)

20 such as -piperidine-3-methyl-

benzylether

- -N-diethylnipectamide
- -N-piperazine methylsulfonamide
- -diethylamide

25

- -m-methylpiperidine
- -3,3-diphenylpropylamide
- -4-piperidino piperidinamide
- -4-phenyl-piperidinamide
- -N-methylpiperazine

30

- -2-morpholinoethylamine
- -spiroindole methylsulfonamide
- -pyrrolidine amide
- -indoleamide
- -3-piperidine methanolamide

PCT/US99/17867

5

- -tropin amide
- -2-aminoethylamide
- -3-aminopropylamide
- -4-aminobutylamide
- -5-aminopentylamide
- -6-aminohexylamide;
- (5) DTrp Phe Arg R₇, wherein R₇ is NH(CH₂)_nNH, where n is 1 to 8, such as -2-aminoethylamide, -3-aminopropylamide, -4-aminobutylamide, -5-aminopentylamide, or -6-aminohexylamide; or
- 10 (6) R₈-R₉-R₁₀-Z, wherein R₈ is DTrp, DPro, DαNal or DβNal, preferably R₈ is DTrp or DPro, R₉ is any natural L-amino acid or Pal, or their respective D-isomers, preferably R₉ is Phe, DVal, PPro, DIle, Ile, more preferably R₉ is Phe, DVal or DPro; R₁₀ is any natural L-amino acid or Pal, or their respective D-isomers, preferably R₁₀ is Lys or Arg, and Z is CONH₂ or COOH, preferably Z is CONH₂.

Formula II: A₁-X'

wherein A₁ is Aib, inip, ABU, IMC (imidazole carboxylic acid), Ava, 4-IMA (Nα-imidazole acetic acid), βAla, Ileu, Trp, His, DpCl, CHx, or any of their respective D-isomers. The Aib residue can be substituted or unsubstituted. Preferred substituents include N- and N-,N- C₁-C₆ alkyl, halogens, N- and N-,N-2 hydroxyethyl, 3-hydroxypropyl, 4-hydroxybutyl and 3-hydroxyisobutyl. Aib is preferably unsubstituted. Aib is preferably αAib. ABU is preferably γABU or αγABU, more preferably α,γABU; and

- X' is (1) R₁-R₂-Z, wherein R₁ is any natural L-amino acid or Pal, or their respective D-isomers, DαNal or DβNal, preferably R₁ is DTrp, DαNal or DβNal, more preferably R₁ is DTrp or DαNal, and R₂ is any natural L-amino acid, Pal, αNal, βNal, DpCl, Aib, preferably αAib, CHx where x is 1 to 10, or CHxAla, or any of their respective D-isomers, and Z is CONH₂ or COOH, preferably Z is CONH₂; or
 - (2) $R_{3'}$ - $R_{4'}$, wherein $R_{3'}$ is any natural L-amino acid or Pal, or their respective D-isomers, D α Nal or D β Nal, preferably $R_{3'}$ is DPro, DTrp, D α Nal or D β Nal, more preferably $R_{3'}$ is DPro, DTrp or D α Nal, and $R_{4'}$ is

 $NH(CH_2)_nNH$, where n is 1 to 8, such as -2-aminoethylamide, -3-aminopropylamide, -4-aminobutylamide, -5-aminopentylamide, or -6-aminohexylamide.

The organic and inorganic addition salts thereof are also included.

The abbreviations for the residues of amino acids used herein are in agreement with the standard nomenclature, and are set forth below:

Gly Glycine Tyr L-Tyrosine Ile L-Isoleucine Glu L-Glutamic Acid Thr L-Threonine Phe L-Phenylalanine Ala L-Alanine Lys L-Lysine Asp L-Aspartic Acid Cys L-Cysteine Arg L-Arginine Gln L-Glutamine Pro L-Proline Leu L-Leucine L-Methionine Met Ser L-Serine Asn L-Asparagine His L-Histidine Trp L-Tryptophan Val L-Valine Orn L-Ornithine

Moreover, all of the three letter-abbreviations of the amino acids preceded by a "D" indicate the dextro-isomer of the aminoacidic residue, and glycine is considered to be included in the term naturally occurring L-amino acids. Other abbreviations used herein include the following:

Aib aminoisobutyric acid

inip isonipecotyl

10

PCT/US99/17867

ABU aminobutyric acid α Nal α -naphthyl alanine β Nal β -naphthyl alanine

DαNal α -naphthyl-D-alanine DβNal β -naphthyl-D-alanine

Pal 3-pyridyl alanine

CHx cyclohexyl

Ava

CHxAla L-cyclohexylalanine

IMA Nα-imidazole acetic acid

Aminovaleric acid

IMC imidazole carboxylic acid

 β Ala β -Alanine

In one embodiment of the present invention, a group of preferred compounds includes:

γABUDTrpDTrpArgCOOH

 α, γ ABUDTrpDTrpArgNH₂

 α, γ ABUDTrpDTrpOrnNH₂

 α, γ ABUD α NalDTrpLysNH $_2$

α,γ ABUDαNalDTrpArgNH₂

 $\alpha,\!\gamma\;AbuD\alpha NalDTrpArgNH_2$

 $\alpha A ib D Trp D Trp Arg N H_2 \\ \dot{}$

 $\alpha Aib D\alpha Nal DTrp Arg NH_2$

 $\alpha A ib D Trp D Trp Arg COOH$

αAibDαNalDTrpArgCOOH

 $\alpha Aib D\alpha Trp DTrp Arg NH_2$

 $.\alpha Aib D Trp D Phe Arg N H_2$

 $inip D\alpha NalDTrpPheNH_2\\$

 $inipD\alpha NalDTrpCHxAlaNH_2$

 $inipD\alpha NalDTrpPheCOOH$

 $inipD\alpha NalDTrpPalNH_2$

inipDαNalDTrpThrNH₂

 $inipD\alpha NalDTrpValNH_2\\$

 $inipD\alpha NalD\beta NalPheNH_2$ inipDaNalDTrpPheCOOH inipDβNalDTrpPheNH₂ αAibDTrpDProGlyNH₂ αAibDTrpDProPheNH₂ αAibDTrpDProProNH₂ $\alpha Aib D Trp D Pro D Pro N H_2$ αAibDTrpDProDPheNH₂ αAibDTrpDProDPalNH₂ aAibDTrpDProDTrpNH2 aAibDTrpDProDLeuNH2 αAibDTrpDProDHisNH₂ αAibDTrpDProDValNH₂ αAibDTrpDProGlnNH₂ αAibDTrpDProArgNH₂ αAibDTrpDProLysNH₂ αAibDTrpDProDAlaNH₂ inipDaNalDpClPhePheNH₂ inipDaNalDpClPheArgNH2 inipDαNalDTrpDProNH₂ αAibDTrpDProDSerNH₂ αAibDTrpDProDThrNH2 and αAibDTrpDProDIleNH₂.

In another embodiment of the present invention, a group of preferred compounds includes:
inipDTrpDTrpPheLysNH2
inipDβNalDTrpPheLysNH2

5 γABUDβNalDTrpPheLysNH2
α,γABUDTrpDTrpPheLysNH2
α,γABUDTrpDTrpPheLysNH2
α,γABUDβNalDTrpPheLysNH2

PCT/US99/17867

α,γABUDαNalDTrpPheArgNH₂ inipDβBNalDTrpPheLysNH₂ inipDTrpDTrpPheArgNH₂ βAlaDαNalDTrpPheArgNH₂ 5 αAibDTrpDTrpPheArgNH₂ αAibDTrpDTrpPheArgCOOH inipDTrpDTrpPheArgCOOH inipDαNalDTrpPheArg NH₂ inipDαNalDTrpPheArgCOOH inipDαNalDβNalPheArgNH₂ 10 inipDαNalDTrpPheDSerNH₂ inipDαNalDTrpPheDThrNH₂ $inipD\alpha NalDTrpPheGlyNH_2$ inipDαNalDTrpPheGlnNH₂ 15 inipDαNalDTrpPheDGlnNH₂ αAibDαNalDTrpPheGlnNH₂ inipDαNalDTrpPheDHisNH₂ αAibDTrpDProPheArgNH₂ αAibDTrpDProPheDArgNH₂ αAibDTrpDProDValArgNH₂ 20 αAibDTrpDProDValDLysNH₂ αAibDTrpDProDValDArgNH₂ αAibDTrpDProDProArgNH₂ αAibDTrpDProDProDPalNH₂ αAibDTrpDProDProDArgNH₂ 25 $\alpha Aib D Trp D Pro D I le D Arg N H_2$ $\alpha Aib D Trp D Pro D I le Arg N H_2$ αAibDTrpDProDProDLysNH2 and αAibDTrpDProIleArgNH₂.

30

In the above Formula I, where X is R_5 - R_6 and R_6 is a C(=0) (substituted heteroalicyclic or heteroaromatic), the heteroatom is selected from the group consisting of O, N, S and P.

10

15

20

25

30

The heteroalicyclic moiety preferably contains 2 to 12 carbon atoms, more preferably 3 to 8 carbon atoms. The heteroaromatic moiety preferably contains 5 to 12 carbon atoms, more preferably 5 to 11 carbon atoms. Substituents include NH₂, C₁-C₁₂ lower alkyl, and as listed below.

Examples include piperidine-3-methyl-benzylether, N-diethylnipectamide, N-piperazine methylsulfonamide, diethylamide, m-methylpiperidine, 3,3-diphenylpropylamide, 4-piperidino piperidinamide, 4-phenyl-piperidinamide, N-methyl 1-piperiazine, 2-morpholinoethylamine, spiroindole methylsulfonamide, pyrrolidine amide, indoleamide, 3-piperidine methanol amide, tropin amide, 2-aminoethylamide, 3-aminopropylamide, 4-aminobutylamide, 5-aminopentylamide, 6-aminohexylamide. Preferred substituted heteralicyclic or heteroaromatic include N-diethylnipectamide, piperidine-3-methyl-benzylether, N-piperazine methyl sulfonamide, diethylamide and m-methylpiperidine. Even more preferred are N-diethylnipectamide and piperidine-3-methyl-benzylether.

Preferably, the compound has the structure AibDTrpX, where X is DProNH₂, DPro-diisobutylamide, DProbutylamide, DPro-C(=0)(substituted heteroalicyclic or heteroaromatic), and DTrp-Phe-Arg-5-aminopentamide and organic and inorganic addition salts thereof. More preferably, X is DPro-diisobutylamide, DPro-C(=0)(substituted heteroalicyclic or heteroaromatic) and DTrp PheArg-5-aminopentamide, and organic and inorganic addition salts thereof. Still more preferably, X is DPro-diisobutylamide or DTrp-Phe-Arg-5-aminopentamide, and organic and inorganic addition salts thereof. Even more preferably, X is DPro-diisobutylamide and organic and inorganic addition salts thereof.

In an alternative embodiment the compound has the formula A_{1} -Y,

wherein A_{1^n} is Aib, inip, ABU, β Ala, His, Sar or any of their respective Disomers. The Aib residue can be substituted or unsubstituted. Preferred substituents include N- and N-, N-C₁-C₆ alkyl, halogens, N- and N-, N-2 hydroxyethyl, 3-hydroxypropyl, 4-hydroxybutyl and 3-hydroxyisobutyl. Aib is preferably unsubstituted. A_{1^n} is preferably Aib, inip or ABU. More preferably Aib is α Aib. Abu is preferably γ Abu or α , γ Abu, more preferably α , γ Abu.

10

15

Y is A_2 - A_3 - A_4 - A_5 - A_6 -Z', A_2 - A_3 - A_4 - A_5 -Z' or A_2 - A_3 - A_4 -Z' wherein A_2 - is A_5 - A_2 - or A_2 -, wherein A_5 is a spacer amino acid such as His,

 A_{2^n} is as defined above for A_2 . A_{2^n} is preferably DTrp, D α Nal or D β Nal. A_{2^n} is more preferably DTrp.

A3, A4 and A5 are any natural L-amino acid, Pal, αNal, βNal, Nle, Arg-DPro, DPCl, D or L (CHX), cyclohexylalanine (CHXAla), or any of their respective D-isomers, preferably A3 is DPro, DTrp, DβNal or DPhe, more preferably A3 is DPro or DTrp; and A4 is preferably Gly, Phe, Pro, Ile, DPro, DPhe, DPal, DLeu, DHis, DVal, DGln, DIle, DNle, DArg, DAla, DSer, DThr, DIle, Arg, Orn Lys, Ala, Pal, Thr, Val, PheCHX, CHXAla or CHX. A4 is preferably DSer, DAug, DPro, DTrp, DVal, DIle, DThr, DNVal, DNle, Ile, Pro, Phe and still more preferably, A4 is DPro. A5 is preferably Ile, Arg, Pal, DArg, DSer, Lys and Arg-DPro. More preferably A5 is Arg, DArg, and Lys.

Z' is NH₂, OH or (aminoalkyl) or (aminoalkylamino), preferably the aminoalkyl is NH (C₁-C₁₀ alkyl) e.g. NH(CH₂)_nCH₃, where n is 1 to 10 such as

20

N di-(C1-C10 alkyl) e.g., N di-(CH2)n CH3 such as

$$CH_2$$
 CH_3 CH_2 CH_3 ;

preferably the alkylamino is a NH $(C_1-C_{10} \text{ alkylamino}, e.g. \text{ NH}(CH_2)_n\text{NH}_2 \text{ such}$ 25 as

$$---N$$
 CH_2
 $---CH_2$
 $---NH_2$;

N (di C₁-C₁₀ alkylamino), e.g., N [di-(CH₂)_nNH₂] such as

$$CH_2$$
 CH_2 NH_2 CH_2 NH_2 CH_2 NH_2 .

5 Preferred examples include moieties such as -2-aminoethylamide, -3-aminopropylamide, -4-aminobutylamide, -5-aminopentylamide, or

-6-aminohexylamide; N-dimethylamide; N-diethylamide; N-dipropylamide; N-dibutylamide; N-diisobutylamide; N-dipentylamide; N-dihexylamide;

A particularly preferred embodiment is Aib-Y, more preferably α Aib-Y.

Y is preferably A₂*-DPro-A₄-A₅-A₆-Z'; A₂*-A₃-A₄-Z'; or A₂*-A₃-A₄-A₅-Z'. Y is more preferably A₂*-DPro-A₄-Z' or A₂*-DPro-A₄-Z' or A₂*-DPro-A₄-A₅-Z'. Still more preferably Y is A₂*-DPro-A₄-A₅-Z'. Z' is preferably -NH₂.

Preferred embodiments include

15 α Aib-DTrp-DPro-A₄-A₅-A₆-Z';

αAib-DTrp-DPro-A₄-A₅-Z';

 α Aib-DTrp-DPro-A₄-Z';

αAib-DTrp-DPro-A₄-Arg-NH₂;

αAib-DTrp-DPro-A₄-Arg-A₆-NH₂;

20 αAib-DTrp-DPro-A₄-Arg-Gly-NH₂;

 α Aib-D α Nal-DPro-A₄-A₅-A₆-Z';

 αAib -D αNal -DPro-A₄-A₅-Z';

 αAib -D αNal -DPro-A₄-Z';'

 α Aib-D α Nal-DPro-A₄-NH₂;

25 αAib-DαNal-DPro-A₄-Arg-NH₂;

and αAib-DαNal-DPro-A₄-Arg-Gly-NH₂.

A₄ is preferably DIle, DThr, DNle, DVal, DGln, DAla, DPhe, DTrp, DNVal and Arg.

Exemplery representatives of αAib-A₂--DPro-A₄-Arg-Z' include

30 αAibDTrpDProDIleArgNH₂;

10

```
αAibDTrpDProDThrArgNH<sub>2</sub>;
       αAibDTrpDProDValArgNH<sub>2</sub>;
       αAibDTrpDProDNleArgNH2; and
       \alphaAibD\alphaNalDProDlleDArgNH<sub>2</sub>.
               Exemplary representatives of:
 5
       αAib-A<sub>2"</sub>-DPro-A<sub>4</sub>-Z include
       αAib-DTrp-DPro-DThr-NH<sub>2</sub>;
       αAib-DTrp-DPro-DGln-NH<sub>2</sub>;
       αAib-DTrp-DPro-Arg-NH<sub>2</sub>; ·
       αAib-DTrp-DPro-DAla-NH<sub>2</sub>;
10
       αAib-DTrp-DPro-DPhe-NH<sub>2</sub>;
       αAib-DTrp-DPro-DTrp-NH<sub>2</sub>;
       αAib-DTrp-DPro-DVal-NH<sub>2</sub>;
       αAib-DTrp-DPro-DNVal-NH2; and
       αAib-DTrp-DPro-DIle-NH<sub>2</sub>;
15
               Exemplary representatives of αAib-A<sub>2"</sub>-DPro-A<sub>4</sub>-Arg-A<sub>6</sub>-Z include
       compounds of the formula αAib-A<sub>2</sub>-DPro-A<sub>4</sub>-Arg-Gly-NH<sub>2</sub> such as
       αAib-DTrp-DPro-DIle-Arg-Gly-NH<sub>2</sub>;
       αAib-DTrp-DPro-DThr-Arg-Gly-NH<sub>2</sub>; and
       \alpha Aib-DTrp-DPro-DNle-Arg-Gly-NH<sub>2</sub>.
20
               Representative compounds are set forth below:
       inipDαNalDTrpNH<sub>2</sub>;
       inipDαNalDValNH<sub>2</sub>;
       αAibDTrpDValNH<sub>2</sub>;
25
       αAibDTrpDProDSerNH<sub>2</sub>;
       αAibDTrpDProDArgNH<sub>2</sub>;
       αAibDTrpDProDPheNH<sub>2</sub>;
       αAibDTrpDProDTrpNH<sub>2</sub>;
       αAibDTrpDValDValNH<sub>2</sub>;
       αAibDValDProDValNH2;
30
       αAibDValDValDValNH2;
       αAibDTrpDProDLysNH<sub>2</sub>;
```

WO 00/09537

```
αAibDProDProDValNH<sub>2</sub>;
        inipDαNalDTrpDValNH<sub>2</sub>;
        αAibDTrpDProIleNH<sub>2</sub>;
        αγAbuDαNalDTrpDIleNH<sub>2</sub>;
  5
        inipDαNalDTrpDProlleNH<sub>2</sub>;
        inipDαNalDTrpPheIleNH<sub>2</sub>;
        inipDαNalDTrpDValArgNH<sub>2</sub>;
        αAibDTrpDProDValDValNH<sub>2</sub>;
        αAibDTrpDProDProDPalNH<sub>2</sub>;
 10
        αAibDTrpDProDValArgDProNH<sub>2</sub>;
        αAibDTrpDProDIleDArgNH<sub>2</sub>;
        αγAbuDTrpDTrpDIleNH<sub>2</sub>;
        inipDαNalDTrpPheDValNH<sub>2</sub>;
       αAibDTrpDProValNH<sub>2</sub>;
       αAibDTrpDIleDIleNH<sub>2</sub>;
15
       αAibDTrpDProLeuNH<sub>2</sub>;
       αAibDTrpDProThrNH<sub>2</sub>;
       DHisDTrpDProDValArgNH2;
       DHisDTrpDProDThrNH2;
20
       αAibDTrpDProDIleNH<sub>2</sub>;
       αAibDTrpDPheDValNH<sub>2</sub>;
       αAibDTrpDProDValDArgNH<sub>2</sub>;
       αAibDTrpDProDAlaNH<sub>2</sub>;
       αAibDTrpDProDProNH<sub>2</sub>;
25
       αAibDTrpDProArgNH<sub>2</sub>;
       αAibDTrpDProDValNH<sub>2</sub>
       inipDαNalDTrpDProNH<sub>2</sub>;
       αAibDαNalDProDValDArgNH<sub>2</sub>;
       \alphaAibD\alphaNalDProDIleDArgNH<sub>2</sub>;
30
       αAibDTrpDProDProDLysNH<sub>2</sub>;
       αAibHisDαNalDPheLysNH<sub>2</sub>;
       αAibHisDTrpDProDValNH<sub>2</sub>;
```

PCT/US99/17867

αAibHisDTrpDProDlleNH₂; αAibHisDTrpDProValArgNH2; αAibHisDTrpDProDValArgNH₂; αAibDαNalDProDValNH2; αAibDTrpDProDThrArgNH₂; 5 αAibDTrpDProDNleArgNH₂; αAibDTrpDProDNValArgNH₂; αAibDTrpDProIleArgNH₂; αAibDTrpDProDProArgNH₂; αAibDTrpDProProArgNH₂; 10 αAibDTrpDProDProDArgNH₂; αAibDTrpDProDlleArgNH₂; αAibDTrpDProPheDSerNH₂; αAibDTrpDProPheArgNH₂; αAibDTrpDProDValArgNH₂; 15 SarDTrpDTrpPheArgNH₂; αAibDαNalDProDProArgNH₂; αAibDαNalDProDNValArgNH2; αAibDαNalDProDlleArgNH2; αAibDαNalDProDValLysNH₂; 20 αAibDαNalDProDThrArgNH2; αAibDαNalDProDThrArgNH2; αAibDαNalDProDValArgNH2; $\alpha Aib D\alpha Nal DPro DVal Arg NH_2;$ αAibDTrpDProDNleNH₂; 25 αAibDTrpDProDNValNH₂. αAibDTrpDProDIle-Xa, where Xa is 2-aminoethylamide, 5-aminopentylamide, or 30 3-aminopropylamide. $\alpha Aib D Trp D Pro D Val - X_b$, where X_b is 2-aminoethylamide, dimethylamide, or

~ ~ de ~ ~

```
diethylamide.
       \alpha Aib D Trp D Pro D Pro - X_c, where X_c is
       2-aminoethylamide.
               The following compounds are preferred
  5
       \alphaAibDTrpDProDIleXd, where X_d is
       5-aminopentylamide,
       3-aminopropylamide,
       2-aminoethylamide, or
       4-aminobutylamide
10
       αAibDTrpDProDValXe, where Xe is
       N-dimethylamide,
       N-diethylamide, or
       2-aminoethylamide;
       \alpha Aib D Trp D Pro D Val X_f, where X_f is
15
       5-aminopentylamide;
       αAibDTrpDProDNleXg, where Xg is
       5-aminopentylamide;
       αAibDTrpDProDProArgNH<sub>2</sub>;
      αAibDTrpDProDValDArgNH<sub>2</sub>;
20
      αAibDTrpDProDValArgNH<sub>2</sub>;
      αAibDTrpDProDIleArgNH<sub>2</sub>;
      αAibDαNalDProDValArgNH<sub>2</sub>;
      αAibDαNalDProDValArgNH<sub>2</sub>;
      αAibDαNalDProDIleArgNH<sub>2</sub>;
25
      αAibDαNalDProDValLysNH<sub>2</sub>;
      inipDαNalDαNalPheArgNH<sub>2</sub>;
      αAibDTrpDProDThrArgNH<sub>2</sub>;
      αAibDTrDProDNleArgNH<sub>2</sub>;
      αAibDTrpDProDNValArgNH<sub>2</sub>;
30
      αAibDTrpDProDIleArgGlyNH<sub>2</sub>;
      αAibDTrpDProDProDIleArgGlyNH<sub>2</sub>;
      αAibDTprDProDNleArgGlyNH2; and
      αAibDTrpDProDThrArgGlyNH<sub>2</sub>;
```

PCT/US99/17867

5

10

15

20

25

30

In one embodiment one uses compound from compounds having the formula

 α AibDTrpDProDProA₄ArgNH₂ or α AibDTrpDProDProA₄ArgGlyNH₂.

Preferred examples are selected from the group consisting of $\alpha AibDTrpDProDIleArgNH_2 \\ \alpha AibDTrpDProDIleArgGlyNH_2 \\ \alpha AibDTrpDProDProDIleArgNH_2, and \\ \alpha AibDTrpDProDProDIleArgGlyNH_2.$

In an alternate embodiment, the following peptides are of interest: $D\beta NalAlaTrpDPheLysGlnGlyNH_2$ $DAlaDTrpAlaTrpDPheLysValGlyNH_2$ $DAlaD\beta NalAlaTrpDPheLysGlnGlyGlyGlyNH_2$ $DAlaDTrpAlaTrpDPheLysHisGlyNH_2$

These secretagogues can be used therapeutically for any use for which growth hormone can be used, such as treating hypothalamic pituitary dwarfism, osteoporosis, burns, and renal failure for acute use, for non-union bone fracture, and to promote wound healing. Additionally, it can be used to promote recovery from surgery, and acute/chronic debilitating medical illnesses. Beneficial anabolic effects result on skin, muscle and bone in relation to the aging process with a concomitant decrease in body fat. Treatment of cancer patients by these peptides is also included, for example, prevention and/or reduction of cachexia in cancer patients. These therapeutic uses are accomplished by using a therapeutically effective amount of the compound. Such an amount is that needed to promote the release of serum growth hormone levels as discussed, infra.

The compounds of this invention may also be used to enhance blood GH levels in animals; enhance milk production in cows; enhance body growth in animals such as, e.g., humans, sheep, bovines, and swine, as well as fish, fowl, other vertebrates and crustaceans; and increase wool and/or fur production in mammals. The amount of body growth is dependent upon the sex and age of the animal species, quantity and identity of the growth

10

15

20

25

30

hormone releasing compound being administered, route of administration, and the like.

Also, the compounds of this invention increase serum GH in humans; enhance body growth in short stature children; decrease body fat and improve protein metabolism in select children; improve protein metabolism of the skin, muscle, bone while decreasing body fat of the elderly, particularly when GH deficiency is present.

These compounds are also useful for improving serum lipid pattern in humans by decreasing in the serum the amount of serum cholesterol and low density lipoprotein, and increasing in the serum the amount of the high density lipoprotein.

The novel secretagogues of this invention can be synthesized according to the usual methods of solution and solid phase peptide chemistry, or by classical methods known in the art.

In accordance with another embodiment of the present invention, a method is provided for promoting release and/or elevation of growth hormone levels in the blood of an animal. This method of promoting the release and/or elevation of growth hormone levels can also be used to therapeutically treat the aforesaid diseases. Said methods comprise administering to an animal an effective dose of at least one of the above-described compounds. In one embodiment, this method is used in animals other than humans.

The compounds of this invention can be administered by oral, parenteral (intramuscular (i.m.), intraperitoneal (i.p.), intravenous (i.v.) or subcutaneous (s.c.) injection), nasal, vaginal, rectal or sublingual routes of administration as well as intrapulmonary inhalation can be formulated in dose forms appropriate for each route of administration. Parenteral administration is preferred.

Solid dose forms for oral administration include capsules, tablets, pills, powders and granules. In such solid dose forms, the active compound is mixed with at least one inert carrier such as sucrose, lactose, or starch. Such dose forms can also comprise, as is normal practice, additional substances other than inert diluents, e.g., lubricating agents such as magnesium stearate. In the case of capsules, tablets and pills, the Cose

WO 00/09537 PCT/US99/17867

- 25 -

forms may also comprise buffering agents. Tablets and pills can additionally be prepared with enteric coatings.

Liquid dose forms for oral administration include emulsions, solutions, suspensions, syrups, the elixirs containing inert diluents commonly used in the art, such as water. Besides, such inert diluents, compositions can also include adjuvants, such as wetting agents, emulsifying and suspending agents, and sweetening, flavoring, and perfuming agents.

5

10

15

20

25

30

Preparations according to this invention for parenteral administration include sterile aqueous or non-aqueous solutions, suspensions, or emulsions. Examples of non-aqueous solvents or vehicles are propylene glycol, polyethylene glycol, vegetable oils, such as olive oil and corn oil, gelatin, and injectable organic esters such as ethyl oleate. Such dose forms may also contain adjuvants such as preserving, wetting, emulsifying, and dispersing agents. They may be sterilized by, for example, filtration through a bacteria-retaining filter, by incorporating sterilizing agents into the compositions, by irradiating the compositions, or by heating the compositions. They can also be manufactured in a medicum of sterile water, or some other sterile injectable medium immediately before use.

The amount of secretagogues or combination of compounds of the present invention administered will vary depending on numerous factors, e.g., the particular animal treated, its age and sex, the desired therapeutic affect, the route of administration and which polypeptide or combination of polypeptides are employed. In all instances, however, a dose effective (therapeutically effective amount) to promote release and elevation of growth hormone level in the blood of the recipient animal is used. Ordinarily, this dose level falls in the range of between about 0.1µg to 10mg of total compound per kg of body weight. The preferred amount can readily be determined empirically by the skilled artisan based upon the present disclosure.

For example, in humans when the mode of administration is i.v. the preferred dose level falls in the range of about 0.1µg to 10µg of total secretagogue per kg of body weight, more preferably, about 0.5µg to 5µg of total secretagogue per kg of body weight, still more preferably about 0.7 µg

WO 00/09537

- 26 -

PCT/US99/17867

about 3.0μg per kg of body weight. When combinations of growth hormone releasing compounds are used, lower amounts of the presently described peptide can be used. For example, combining the presently described secretagogues with, for example, a synergistic compound in Group I of U.S. Patent No. 4,880,778 such as GHRH, or U.S. Patent No. 5,663,146 or 5,486,505, a preferred range is about 0.1μg to about 5μg of the presently described compound per kg of body weight and about 0.5μg to about 15.0μg of synergistic compound (e.g. GHRH) and more preferably about 0.1μg to about 3μg of the present compound with about 1.0μg to about 3.0μg of the synergistic compound per kg of body weight.

When the mode of administration is oral, greater amounts are typically needed. For example, in humans for oral administration, the dose level is typically about 30µg to about 1200µg of compound per kg of body weight, more preferably about 70µg to about 600µg of compound per kg of body weight, still more preferably, about 200µg to about 600µg of total compound per kg of body weight. Cows and pigs require about the same dose level as humans, while rats typically require higher dose levels. The exact level can readily be determined empirically based upon the present disclosure.

In general, as aforesaid, the administration of combinations of growth hormone releasing peptides will allow for lower doses of the individual growth hormone releasing compounds to be employed relative to the dose levels required for individual growth hormone releasing compounds in order to obtain a similar response, due to the synergistic effect of the combination.

Also included within the scope of the present invention are compositions that comprise, as an active ingredient, the organic and inorganic addition salts of the above-described polypeptides and combinations thereof; optionally, in association with a carrier, diluent, slow release matrix, or coating.

The organic or inorganic addition salts of the growth hormone releasing compounds and combinations thereof contemplated to be within the scope of the present invention include salts of such organic moieties as acetate, trifluoroacetate, oxalate, valerate, oleate, laurate, benzoate, lactate,

5

10

15

20

25

30

10

15

25

30

tosylate, citrate, maleate, fumarate, succinate, tartrate, naphthalate, and the like; and such inorganic moieties as Group I (i.e., alkali metal salts), Group II (i.e. alkaline earth metal salts) ammonium and protamine salts, zinc, iron, and the like with counterions such as chloride, bromide, sulfate, phosphate and the like, as well as the organic moieties referred to above.

Pharmaceutically acceptable salts are preferred when administration to human subjects is contemplated. Such salts include the non-toxic alkali metal, alkaline earth metal and ammonium salts commonly used in the pharmaceutical industry including sodium, potassium, lithium, calcium, magnesium, barium, ammonium and protamine salts which are prepared by methods well known in the art. The term also includes non-toxic acid addition salts which are generally prepared by reacting the compounds of this invention with a suitable organic or inorganic acid. Representative salts include hydrochloride, hydrobromide, sulfate, bisulfate, acetate, oxalate, valerate, oleate, laurate, borate, benzoate, lactate, phosphate, tosylate, citrate, maleate, fumarate, succinate, tartrate, napthylate and the like.

The invention will be further illustrated by the following non-limiting examples.

20 **EXAMPLES OF THE INVENTION**

The following examples are designed to illustrate certain aspects of the present invention. The examples are not intended to be comprehensive of all features and all embodiments of the present invention, and should not be construed as limiting the claims presented herein.

General Methods for Synthesis

1H NMR spectra were measured (SiMe₄ internal standard) on a GE-500 (500 MHz) Spectrometer. Mass spectra data were obtained by using a "Lasermat" Laser Desorption Mass Spectrometry. Reagents were obtained from commercial sources and used without further purification. Solvents were dried according to standard procedures. Scheme 1 can be utilized for additions with any amine group recorded in Table 1.

Example 1

Synthesis of the Growth Hormone Releasing Peptides

WO 00/09537 PCT/US99/17867

- 28 -

Paramethyl benzhydrylamine hydrochloride (pMe-BHA HCl) resin is placed in a reaction vessel on a commercially available automated peptide synthesizer. The resin is substituted with free amine up to a loading of about 5 mmoles per gram. The compounds are prepared by coupling individual amino acids starting at the carboxy terminus of the peptide sequence using an appropriate activating agent, such as N,N' dicyclohexylcarbodiimide (DCC). The alpha amine of individual amino acids are protected, for example, as the t-butyloxycarbonyl derivative (t-Boc) and the reactive side chain functionalities are protected as outlined in Table 1.

10

15

20

5

<u>Table 1</u> <u>Side Chain Protecting Groups Suitable for Solid Phase Peptide Synthesis</u>

Arginine N₅—Tosyl
Aspartic Acid O-Benzyl

Cysteine S-para-Methylbenzyl

Glutamic Acid O-Benzyl Histidine Nim-Tosyl

Lysine N^{ϵ} –2,4-Dichlorobenzyloxycarbonyl

Methionine S-Sulfoxide
Serine O-Benzyl
Threonine O-Benzyl
Tryptophan Nin-Formyl

Tyrosine O-2,6-Dichlorobenzyl

Prior to incorporation of the initial amino acid, the resin is agitated three times (about one minute each) with dichloromethane (CH₂C₁₂: about 10 ml/gm of resin), neutralized with three agitations (about two minutes each) of N,N-diisopropylethylamine (DIEA) in dichloromethane (10:90; about 10 ml/gm of resin) and agitated three times (about one minute each) with dichloromethane (about 10 mL/gm of resin). The initial and each of the subsequent amino acids are coupled to the resin using a preformed symmetrical anhydride using about 6.0 times the total amount of the reaction capacity of the resin of a suitably protected amino acid and about 2.0 times the total amount of the binding capacity of the resin of DIC in an

appropriate amount of dichloromethane. For amino acids with a low dichloromethane solubility, N,N-dimethylformamide (DMF) is added to achieve a homogenous solution. Generally, the symmetrical anhydride is prepared up to 30 minutes prior to introduction into the reaction vessel at room temperature or below. The dicyclohexylurea that forms upon preparation of the symmetrical anhydride is removed via gravity filtration of the solution into the reaction vessel. Progress of the coupling of the amino acid to the resin is commonly monitored via a color test using a reagent such as ninhydrin (which reacts with primary and secondary amines). Upon complete coupling of the protected amino acid to the resin (>99%), the alpha amine protecting group is removed by treatment with acidic reagent(s). A commonly used reagent consists of a solution of trifluororacetic acid (TFA) in dichloromethane (33:66).

After the desired amino acid sequence has been completed, the desired peptide can be cleaved from the resin support by treatment with a reagent such as hydrogen fluoride (HF) which not only cleaves the peptide from the resin, but also cleaves most commonly used side-chain protecting groups. When the BHA or p-Me-BHA resin is used, HF treatment results directly in free peptide amides. When an amino acid-Merrifield resin is used, free peptide alkylamides are cleaved by treatment with an appropriate amine (in this case, use of Boc-Ne-FMOC-Lys would allow simultaneous removal of the FMOC group).

The complete procedure for incorporation of each individual amino acid residue onto the resin is outlined in Table 2.

25

5

10

15

20

<u>Table 2</u>
Procedure for Incorporation of Individual Amino Acids onto a Resin

	Procedure for incorporation of individual Amino Acids onto a Resin						
	Reagent	Agitations	Time/Agitation				
1.	Dichloromethane	3	1 min.				
2.	TFA-Dichloromethane	1	2 min.				
	(33:66)						
3.	TFA-Dichloromethane	1	20 min.				
	(33:66)						
4.	Dichloromethane	3	1 min.				
5.	DIEA, DMF	2	2 min.				
	(10:90)						
6.	Dichloromethane	3	1 min.				
7.	Boc amino acid/DIC	1	15-120 min *				
8.	Dichloromethane	3	1 min.				
10.	Monitor progress of the						
	coupling reaction **						
11.	Repeat steps 1-12 for each						
	individual amino acid						

- * Coupling time depends upon the individual amino acid.
- 5 ** The extent of coupling can be generally monitored by a color test. If the coupling is incomplete, the same amino acid can be recoupled by a different protocol, e.g. HOBt active ester. If the coupling is complete the next amino acid can then be coupled.

Using this procedure the compounds described in Tables 3, 4 and 5 were made.

Example 2 In Vivo GH Release in Rats

Immature female Sprague-Dawley rats were obtained from the Charles River Laboratories (Wilmington, MA). After arrival they were housed at 25°C with a 14:10 hour light:dark cycle. Water and Purina rat chow were available ad libitum. Pups were kept with their mothers until 21 days of age.

Twenty-six day old rats, six rats per treatment group, were anesthetized interperitoneally with 50 mg/kg of pentobarbital 20 minutes prior to i.v. treatment with peptide. Normal saline with 0.1% gelatin was the vehicle for intravenous (i.v.) injections of the peptides. The anesthetized rats, weighing 55-65 grams, were injected i.v. with the quantity of grown hormone releasing compounds indicated in Table 3. Injection was made as a 0.1 mL solution into the jugular vein.

All animals were sacrificed by guillotine 10 minutes after final test injection (see Table 3). Trunk blood for the determination of blood GH levels was collected following decapitation. After allowing the blood to clot, it was centrifuged and the serum was separated from the clot. Serum was kept frozen until the day of sampling for radioimmunoassay (RIA) determination of growth hormone levels according to the following procedure, as developed by the National Institute of Arthritis, Diabetes and Digestive and Kidney Diseases (NIADDK).

Reagents are generally added to the RIA analysis tubes at a single sitting, at refrigerator temperature (about 4°C) in the following sequence:

(a) buffer,

5

10

15

20

25

30

1 6 4 7 6 2 9 1

かりりょう・ ~くそう

- (b) "cold" (i.e., non-radioactive) standard or unknown serum sample to be analyzed,
- (c) radio-iodinated growth hormone antigen, and
- (d) growth hormone antiserum.

Reagent addition is generally carried out so that there is achieved a final RIA tube dilution of about 1:30,000 (antiserum to total liquid volume; vol:vol).

The mixed reagents are then typically incubated at room temperature (about 25°C) for about 24 hours prior to addition of a second antibody (e.g., goat or rabbit anti-monkey gamma globulin serum) which binds to and causes precipitation of the complexed growth hormone antiserum.

Precipitated contents of the RIA tubes are then analyzed for the number of counts in a specified period of time in a gamma scintillation counter. A standard curve is prepared by plotting number of radioactive counts versus growth hormone (GH) level. GH levels of unknown are then determined by reference to the standard curve.

10

15

20

25

30

Serum GH was measured by RIA with reagents provided by the National Hormone and Pituitary Program.

Serum levels in Tables 3 and 4 are recorded in ng/mL in terms of the rat GH standard of 0.61 International Units/mg (IU/mg). Data is recorded as the mean ± standard error of the mean (SEM). Statistical analysis was performed with Student's t-test. In Table 3, the results shown are the average of studies with six rats.

Example 3

Synthesis of Aib-DTrp-DPro-diisobutylamide (YL-156)

(1) Synthesis of DPro-Diisobutylamide (1):

1 mmol of Boc-DPro (Boc=tert-Butoxycarbonyl group) was dissolved in 30 ml dry CH₂Cl₂ in a 100 ml round bottom flask, with 1 mmol of 1-hydroxybenzotriazole added while stirring under N₂ atmosphere in an icebath, then 1.05 mmol of 1-ethyl-3-(3'-dimethylaminopropyl) carbodiimide HCl was added in 10 ml dry CH₂Cl₂ at a fast drop rate and the reaction mixture was stirred for 1 hour at 0° C. 1.1 mmol of diisobutylamine in 10 ml of CH₂Cl₂ was added dropwise and stirring was continued for a further 18 h at ambient temperature. The reaction mixture was washed with 20 ml of 20% aqueous citric acid, 20 ml of saturated aqueous NaHCO₃, and 20 ml of saturated aqueous sodium chloride. The organic layer was separated and dried over anhydrous magnesium sulfate, filtered and concentrated in vacuum. Further purification was done by flash column chromatography (SiO₂, CHCl₃/MeOH, 95:5) to afford white solid of Boc-DPro-diisobutylamide.

Under N₂ atmosphere, the Boc-DPro-diisobutylamide was dissolved in 25 ml of CH₂Cl₂ and 1- ml of trifluoracetic acid was added while being stirred. The reaction mixture was stirred for 30 min. Volatiles were removed under vacuum and the residue was dissolved in 30 ml of CH₂Cl₂ and washed with 10 ml saturated NaHCO₃ aqueous solution. The organic layer was removed and the aqueous layer was extracted with CH₂Cl₂ (3x10 ml). The organic layer was dried over anhydrous sodium sulfate and filtered and the solvent was removed in vacuum. The residue was further purified by column chromatography (SiO₂, CHCl₃/MeOH, 85:15) to afford 0.73 mmol

10

15

20

25

30

000052742 1

さりくうし シマン

(73%) of compound (1) which was characterized by TLC on mass spectra, M=225.1.

(2) Synthesis of DTrp-DPro-diisobutylamide (2):

In a 100 ml round bottom flask, 0.70 mmol of Boc-DTrp was dissolved in 25 ml dry CH₂Cl₂ and 0.70 mmol of 1-hydroxybenzotriazole was added while stirring under N₂ atmosphere in an ice-bath then 0.75 mmol of 1-ethyl-3-(3'-dimethylaminopropyl) carbodiimide HCl was added in 15 ml dry CH₂Cl₂ at a fast drop rate and the reaction mixture stirred for 1 hour at 0°C. 0.71 mmol of (1) in 20 ml of CH₂Cl₂ was added dropwise and stirring was continued for a further 18 h at ambient temperature. The reaction mixture was washed with 20 ml of 20% citric acid aqueous solution, 20 ml of saturated NaHCO₃ aqueous solution, and 20 ml of saturated sodium chloride aqueous solution. The organic layer was separated and dried over anhydrous magnesium sulfate, filters and concentrated by vacuum. Further purification was done by flash column chromatography (CHCl₃/MeOH, 95:5) to afford white solid of Boc-DTrp-D-diisobutylamide.

Under N₂ atmosphere, the Boc-DTrp-DPro-diisobutylamide was dissolved in 25 ml of CH₂Cl₂, 1 ml of methylsulfide and 0.5 ml of 1,2-ethanedithiol was added as scavenger in suppressing the indole alkylation of tryptophane. 10 ml of trifluoracetic acid was added dropwise while being stirred. The reaction mixture was stirred for 30 min. Volatiles were removed under vacuum and the residue was dissolved in 30 ml of CH₂Cl₂ and washed with 10 ml saturated NaHCO₃ aqueous solution. The organic layer was dried over anhydrous sodium sulfate and filtered and the solvents were removed in vacuum. The residue was further purified by column chromatography (SiO₂, CHCl₂/MeOH, 85:15) to afford 0.55 mmol (78.5%) of compound (2) which was characterized by TLC and mass spectra, M⁺=411.5.

(3) Synthesis of Aib-DTrp-DPro-diisobutylamide (YL-156):

In a 100 ml round bottom flask, 0.50 mmol of Boc-Aib (Aib= α -aminoisobutyric acid) was dissolved in 30 ml dry CH₂Cl₂ and then 0.51 mmol of 1-hydroxybenzotrizole was added while stirring under N₂ atmosphere in an ice-bath, 0.55 mmol of 1-ethyl-3-(3'-dimethylaminopropyl) carbodiimide HCl was added in 20ml dry CH₂Cl₂ at a fast drop rate and the reaction was stirred for 1 hour at 0° C. 0.51 mmol of (2) in 15 ml of CH₂Cl₂

10

15

20

25

30

was added dropwise and stirring was continued for a further 18 h at ambient temperature. The reaction mixture was washed with 20 ml of 20% citric acid aqueous solution, 20 ml of saturated NaCHO₃ aqueous solution, and 20 ml of saturated sodium chloride aqueous solution. The organic layer was separated and dried over anhydrous magnesium sulfate, filtered and concentrated in vacuum. Further purification was done by flash column chromatography (CHCl₃/MeOH, 95:5) to afford white solid of Boc-Aib-DTrp-DPro-diisobutylamide.

Under N₂ atmosphere, the Boc-Aib-DTrp-DPro-diisobutylamide was dissolved in 30 ml of CH₂Cl₂, 1 ml of methylsulfide and 0.5 ml of 1,2-ethanedithiol were added as scavengers to suppress the indole alkylation of tryptophan. 10 ml of trifluoracetic acid was added dropwise while being stirred. The reaction mixture was stirred for 30 min. Volatiles were removed under vacuum and the residue was dissolved in 30 ml of CH₂Cl₂ and washed with 10 ml saturated NaHCO₃ aqueous solution. The organic layer was removed and the aqueous layer was extracted with CH₂Cl₂ (3x10 ml). The organic layer was dried over anhydrous sodium sulfate, and filtered and the solvents were removed in vacuum. The residue was further purified by column chromatography (SiO₂, CHCl₃/MeOH, 85:15) to afford 0.43 mmol (86.2%) of compound (YL-156) which was characterized by TLC and mass spectra M+=497.6.

Example 4

Synthesis of inip-DαNal-DTrp-Phe-2-aminoethylamide (YL-105)

3.5 g of Wang resin with the peptide attached was supplied by Research Genetics Laboratory. It was added to a 100 ml round-bottom flask and then sequentially 40 ml of dry CH₂Cl₂, 4 ml of methanol and 2 ml of 1,2-diaminoethane were added while stirring under N₂ atmosphere. The reaction mixture was stirred for 72 hours at RT. The reaction mixture was filtered and the resin was washed with 20 ml of dry CH₂Cl₂, 20 ml of methanol. The solid resin was discarded. The organic solvent was removed by vacuum. The solid residue was further purified by flash column chromatography (SiO₂, CHCl₃/MeOH, 95:5) to afford white solid of YL-105.

Further purification was performed by preparative HPLC. Molecular weight was determined by MS.

Example 5

Synthesis of (N-2-hydroxylethyl-Aib-DTrp-DPro-diisobutylamide (YL-185) (Reductive Alkylation)

l mmol of YL-156 (αAibDTrpDPro-diisobutylamide)was dissolved in 40 ml dry methanol in a 100 ml round-bottom flask and 1.5 mmol of NaBH₄ in THF was added while stirring under N₂ atmosphere. The solution was acidified by adding trifluoracetic acid in methanol to adjust the pH to 6.5. Then 1.15 mmol of ethylaldehyde was added in 10 ml dry methanol and the reaction mixture was stirred for 16 hours at RT. The solvent was removed by vacuum. The remaining residue was dissolved in 30 ml CH₂Cl₂ and washed with 20 ml of saturated aqueous NaHCO₃. The organic layer was separated and dried over anhydrous magnesium sulfate, filtered, and concentrated in vacuum. Further purification was done by flash column chromatography (SiO₂, CHCl₃/MeOH, 95:5) to afford white solid of YL-185.

Further purification was performed by preparative HPLC. The molecular weight was determined by MS.

20

25

30

5

10

15

Example 6

Synthesis of (N-isobutyl)Aib-DTrp-DPro-diisobutylamide (YL-194) (Hoffman Alkylation)

1 mmol of YL-156 (αAibDTrpDPro-diisobutylamide) was dissolved in 40 ml dry CH₂Cl₂ in a 100 ml round-bottom flask. 2 mmol of K₂CO₃ was then added while stirring under N₂ atmosphere. 1.15 mmol of 1-bromo-2-methylpropane was added in 10 ml dry CH₂Cl₂ and the reaction mixture stirred for 72 hours at RT. The reaction mixture was washed with 20 ml of saturated aqueous NaHCO₃ and 20 ml of saturated aqueous sodium chloride. The organic layer was separated and dried over anhydrous magnesium sulfate, filtered and concentrated under vacuum. Further purification was done by flash column chromatography (SiO₂, CHCl₃/MeOH, 95:5) to afford white solid of YL-194.

5

10

15

20

25

30

Further purification was performed by preparative HPLC. Molecular weight was determined by MS.

Example 7

Synthesis of Aib-DTrp-DTrp-Phe-Arg-5-aminopentylamide (YL-174)

0.7 mmol of Fmoc-Aib-DTrp-DTrp-Phe-ArgCOOH was synthesized by Research Genetics Laboratory by the solid phase method and added to a 100 ml round-bottom flask with 40 ml of dry CH₂Cl₂. 0.70 mmol of 1hydroxybenzotriazole was added while stirring under N2 atmosphere in an ice-bath and subsequently 0.75 mmol of 1-ethyl-3-(3'dimethylaminopropyl)carbodiimide HCl was added in 15 ml dry CH₂Cl₂ at a fast drop rate. The reaction mixture was stirred for 1 hour at 0°C. 10 mmol of 1,5-diaminopentane in 20 ml of CH₂Cl₂ was added quickly and stirring was continued for an additional 18 h at ambient temperature. The reaction mixture was washed with 20 ml of saturated NaHCO3 aqueous solution and 10 ml of saturated sodium chloride aqueous solution. The organic layer was separated and dried over anhydrous magnesium sulfate, filtered and concentrated under vacuum. Further purification was done by flash column chromatography (CHCl₃/MeOH, 95:5) to afford white solid of Fmoc-Aib-DTrp-DTrp-Phen-ArgCONH(CH₂)₅NH₂. This compound was dissolved in 20 ml of CH₂Cl₂ and under N₂ atmosphere 10 ml of piperidine was added. The solution was stirred for another 4 hours. The solvent was removed by vacuum and the residue was further purified by flash column chromatography (CHCl₃/MeOH, 95:5) to afford white solid of YL-174.

Further purification was performed by preparative HPLC. Molecular weight was determined by MS.

Example 8

Synthesis of Aib-DTrp-DPro-3-methylpiperidinamide (YL-111)

(Aib-DTrp-DPro-R, R=various of amine end groups, for example piperidine, 3-methyl piperidine, etc. All other Aib-DTrp-DPro-R compounds can be synthesized by using the same procedure):

(1) Synthesis of DPro-3-methylpiperidinamide (methylpiperidine) (1):

10

15

20

25

30

1 mmol of Boc-DPro (Boc=tert-Butoxycarbonyl group) was dissolved in 30 ml dry CH₂Cl₂ in a 100 ml round-bottom flask, 1 mmol of 1-hydroxybenzotriozole added while stirring under N₂ atmosphere in an icebath, 1.05 mmol of 1-ethyl-3-(3'-dimethylaminopropyl) carbodiimide HCL was added in 10 ml dry CH₂Cl₂ at a fast drop rate and the reaction mixture stirred for 1 hour at 0° C. 1.1 mmol of 3-methylpiperazine in 10 ml of CH₂Cl₂ was added dropwise and stirring was continued for an additional 18 h at ambient temperature. The reaction mixture was washed with 30 ml of 20% aqueous citric acid, 30 ml of saturated aqueous NaHCO₃, and 30 ml of saturated aqueous sodium chloride. The organic layer was separated and dried over anhydrous magnesium sulfate, filtered, and concentrated in vacuum. Further purification was done by flash column chromatography (SiO₂, CHCl₃/MeOH, 95:5) to afford white solid of Boc-DPro-D-piperidinamide.

Under N₂ atmosphere, the Boc-DPro-3-piperidinamide was dissolved in 25 ml of CH₂Cl₂ and 10 ml of trifluoracetic acid added while stirring. The reaction mixture was stirred for 30 min. All volatiles were removed under vacuum and the residue dissolved in 30 ml of CH₂Cl₂ and washed with 10 ml saturated NaHCO₃ aqueous solution. The organic layer was removed and the aqueous layer extracted with CH₂Cl₂ (3x10 ml). The organic layer was dried over anhydrous sodium sulfate and filtered and the solvent was removed by vacuum. The residue was further purified by column chromatography (SiO₂, CHCl₃/MeOH, 85:15) to afford 0.65 mmol (65%) of compound (1) which was characterized by TLC and mass spectra, M+=196.3.

(2) Synthesis of DTrp-DPro-3-methylpiperidinamide (methylpiperidine) (2):

In a 100 ml round-bottom flask, 0.63 mmol of Boc-DTrp was dissolved in 25 ml dry CH₂Cl₂ 0.66 mmol of 1-hydroxybenzotrizole was added while stirring under N2 atmosphere in an ice-bath. 0.63 mmol of 1-ethyl-3-(3'-dimethylaminopropyl) carbodiimide HCL was added in 10 ml dry CH₂Cl₂ at a fast drop rate and the reaction mixture was washed with 20 ml of 20% citric acid aqueous solution, 20 ml of saturated NaHCO₃ aqueous solution and 20 ml of saturated sodium chloride aqueous solution. The organic layer was separated and dried over anhydrous magnesium sulfate,

WO 00/09537 PCT/US99/17867

- 38 -

filtered and concentrated in vacuum. Further purification was done by flash column chromatography (CHCl₃/MeOH, 95:5) to afford white solid of Boc-DTrp-DPro-3-piperidinamide.

Under N₂ atmosphere, the Boc-DTrp-DPro-3-piperidinamide was dissolved in 25 ml of CH₂Cl₂ and 10 ml of trifluoracetic was added while being stirred. The reaction mixture was stirred for 30 min. All volatiles were removed under vacuum and the residue was dissolved in 30 ml of CH₂Cl₂ and washed with 10 ml saturated NaHCO₃ aqueous solution. The organic layer was removed and the aqueous layer was extracted with CH₂Cl₂ (3x10 ml). The organic layer was dried over anhydrous sodium sulfate, filtered and the solvent removed in vacuum. The residue was further purified by column chromatography (SiO₂, CHCl₃/MeOH, 85:15) to afford 0.43 mmol (68.3%) of compound (2) which was characterized by TLC and mass spectra, M*=382.46.

(3) Synthesis of Aib-DTrp-DPro-3-methylpiperidinamide (methylpiperidine) (YL-111):

In a 50 ml round bottom flask, 0.33 mmol of Boc-Aib was dissolved in 20 ml dry CH₂Cl₂ and then 0.31 mmol of 1-hydroxybenzotriazole was added while stirring under N₂ atmosphere in an ice-bath. 0.35 mmol of 1-ethyl-3-(3'-dimethylaminopropyl)carbodiimide HCL was added in 10 ml dry CH₂Cl₂ at a fast drop rate and the reaction mixture was stirred for 1 hour at 0° C. 0.30 mmol of (2) in 15 ml of CH₂Cl₂ was added dropwise and stirring was continued for an additional 18 h at ambient temperature. The reaction mixture was washed with 20 ml of 20% citric acid aqueous solution, 20 ml of saturated NaHCO₃ aqueous solution and 20 ml of saturated sodium chloride aqueous solution. The organic layer was separated and dried over anhydrous magnesium sulfate, filtered and concentrated in vacuum. Further purification was done by flash column chromatography (CHCl₃/MeOH, 95:5) to afford white solid of Boc-Aib-DTrp-DPro-3-piperidinamide.

Under N₂ atmosphere, the Boc-Aib-DTrp-DPro-3-piperidinamide was dissolved in 25 ml of CH₂Cl₂ and 10 ml of trifluoracetic acid was added while being stirred. The reaction mixture was stirred for 30 min. All volatiles were removed under vacuum and the residue was dissolved in 30 ml of CH₂Cl₂

5

10

15

20

25

30

and washed with 10 ml saturated NaCHO₃ aqueous solution. The organic layer was removed and the aqueous layer was extracted with CH₂Cl₂ (3x10 ml). The organic layer was dried over anhydrous sodium sulfate, filtered and the solvent removed in vacuum. The residue was further purified by column chromatography (SiO₂, CHCl₃/MeOH, 85:15) to afford 0.28 mmol (84.8%) of compound (YL-111) which was characterized by TLC and mass spectra M*=468.6.

Biological Activity

In vitro and in vivo activity of certain compounds were determined in rats and adult beagle dogs (in vivo activity only). The results are described in Tables 3, 4, 5, 6 and 7 below.

The GHRP-2 (reference standard) has the structure DAla-D β Nal-Ala-Trp-DPhe-Lys-NH $_2$ (Chen and Clarke, *J. Neuroend.* $\underline{7}$: 179 (1995)).

Table 3: In Vitro Release of Growth Hormone in Rat

Compound R¹-N₂-Aib DTrpX* Where X is:	control	GHRP-2 .001	.0001	.0003	.001	.003	.01	.03	.1	.3	GH ng/ ml 1
DPro NH2	752	1525	922	1102	997	1250	1535	1550	1716		
DPro-diiso- butylamide	523	1307					1322	1529	1427	1155	1124
R ¹ =N-2- Ohethyl DPro-diiso- butvlamide	341	1427			452	326	526	820	1163	1217	-14
R ¹ =N ₂ N-di- 2-OHethyl/ DPro diiso- butylamide	341	1427			433	395	446	592	905	1206	
R¹=N- ethyl/DPro diisobutyl- amide	510	1413			523	461	779	742	1079	1292	
R¹=Nentyl/ DPro diisobutyl- amide	341	1427			570	698	982	1307	1467	1387	
DPro- dipropyl- amide	543	1065	554	578	554	630	823	908	925		
DPro- butylamide	523	1307	512	647	833	995	1253	1612			
DPro- pentylamide	622	1290	312	J	335	569	830	1172	1184	1335	1451
DPro- dipentyl- amide	523	1307			1348	1561	1287	1021	1451		

15

10

5

control	GHRP-2 .001	.0001	.0003	.001	.003	01	03		3	GH ng/ ml
			.0000	.001	.000	.01	.03	1.1	.3	1
389	821	529	553	721	728	886	978			
397	593	418	395	489	536	642				
553	1167		672	675	856	1049				
389	821	375	368	481	587	802	912			
308	1052	434	458	633	837	968				
466	1126			926	1118	1169	1177	1283		
376	1125		419	451	540	808				
455	1520	624	777	1034	1186	1533	1772			
389	821	467	532	573	605	816	909			
397	593	394	413	433	485	548				
385	915	440	512	691	819	956	922	1057		
614	1288	714	873	1149	1241					
486	1344			836	1127	1283	1235	1258	1220	1327
486	1344			1008	1199	1209	1348	1626	1567	
510	1220			542	797	1001	1124	1234		
752	1525	1228	1416	1712	1648	1621		*201		
	389 397 553 389 308 466 376 455 389 397 385 614 486 486	.001 389 821 397 593 553 1167 389 821 308 1052 466 1126 376 1125 455 1520 389 821 397 593 385 915 614 1288 486 1344 486 1344 510 1220	.001 .0001 389 821 529 397 593 418 553 1167 389 821 375 308 1052 434 466 1126 376 1125 455 1520 624 389 821 467 397 593 394 385 915 440 614 1288 714 486 1344 486 1344 510 1220	.001 .0001 .0003 389 821 529 553 397 593 418 395 553 1167 672 389 821 375 368 308 1052 434 458 466 1126 - - 376 1125 419 - 455 1520 624 777 389 821 467 532 397 593 394 413 385 915 440 512 614 1288 714 873 486 1344 - - 486 1344 - - 510 1220 - - -	.001 .0001 .0003 .001 389 821 529 553 721 397 593 418 395 489 553 1167 672 675 389 821 375 368 481 308 1052 434 458 633 466 1126 - 926 376 1125 419 451 455 1520 624 777 1034 389 821 467 532 573 397 593 394 413 433 385 915 440 512 691 614 1288 714 873 1149 486 1344 - 836 486 1344 - 836 510 1220 - 542	.001 .0001 .0003 .001 .003 389 821 529 553 721 728 397 593 418 395 489 536 553 1167	.001 .0001 .0003 .001 .003 .01 389 821 529 553 721 728 886 397 593 418 395 489 536 642 553 1167 672 675 856 1049 389 821 375 368 481 587 802 308 1052 434 458 633 837 968 466 1126	.001 .0001 .0003 .001 .003 .01 .03 389 821 529 553 721 728 886 978 397 593 418 395 489 536 642	.001 .0001 .0003 .001 .003 .01 .03 .1 .389 821 529 553 721 728 886 978 .397 593 418 395 489 536 642 .553 1167 672 675 856 1049 .389 821 375 368 481 587 802 912 .308 1052 434 458 633 837 968 .466 1126 926 1118 1169 1177 1283 .376 1125 419 451 540 808 .455 1520 624 777 1034 1186 1533 1772 .389 821 467 532 573 605 816 909 .397 593 394 413 433 485 548 .614 1288 714 873 1149 1241 </td <td>.001 .0001 .0003 .001 .003 .01 .03 .1 .3 389 821 529 553 721 728 886 978 397 593 418 395 489 536 642 553 1167 672 675 856 1049 389 821 375 368 481 587 802 912 308 1052 434 458 633 837 968 466 1126 926 1118 1169 1177 1283 376 1125 419 451 540 808 455 1520 624 777 1034 1186 1533 1772 389 821 467 532 573 605 816 909 397 593 394 413 433 485 548 .</td>	.001 .0001 .0003 .001 .003 .01 .03 .1 .3 389 821 529 553 721 728 886 978 397 593 418 395 489 536 642 553 1167 672 675 856 1049 389 821 375 368 481 587 802 912 308 1052 434 458 633 837 968 466 1126 926 1118 1169 1177 1283 376 1125 419 451 540 808 455 1520 624 777 1034 1186 1533 1772 389 821 467 532 573 605 816 909 397 593 394 413 433 485 548 .

^{*} Unless otherwise stated, R1 is H

Table 4: In Vivo Release of Growth Hormone in Rat

Compound R¹-N₂-AibDTrpX*	control	GHRP-2							GH ng/ml 100
Where X is:		.1	.1	І.з	1	3	10	30	
DPro NH ₂	223	1580	326	433	1159	2217	3155		
DPro- diisobutylamide	111	1066			642	1524	1837	2307	2913
R ¹ =N-2-OHethyl/ DPro-diiso- butvlamide	92	2051				156	259	451	
R¹=N,N-di-2- OHethyl/ DPro-diiso- butylamide	96	799					124	208	543
R¹=N -ethyl/ DPro-diiso- butvlamide	92	2051			189	177	268	. 374	
R ¹ =N -pentyl/ DPro-diiso- butylamide	92	2051			124	398	371	789	
DPro-dipropylamide	91	1082	92	220	305	579	1646	2089	
DPro-butylamide	111	1066			196	329	647	2005	1596
DPro-pentylamide	170	1289			310	581	820	1660	2280
DPro-dipentylamide	128	1071	87	182	322	355	632	482	1206
DPro-piperidine-3-					669	1725	2319		
methyl-benzyl ether N,N-diethylnipecot- amide	150	1235 579		221	928	2070	2896	2186	
-N-piperazine						1.00	1007		
methyl-sulfonamide DPro-diethylamide	113	942		241	933	1965 766	1997 1719	2465	3088
DPro-m- methylpiperidine	93	445				832	1557	1570	1762
DPro-3,3-diphenyl- propylamide	114	1106	141	147	138	249	383	624	
DPro-4-piperidino- piperidin-amide	150	1235				378	1318	2403	
DPro-4- phenylpiperidin- amide	111	568		112		238		499	
DPro-N-methyl- piperazine	128	919	218	425	1974	2314			
DPro-2-morpholino- ethylamine	111	568				900	1585	2195	
DPro-spiroindole methyl-sulfonamide	120	586				192	485	861	1177
DPro-pyrrolidine amide	98	1227				1024	2116	2381	
DPro-indoline amide	69	1279			142	317	269	885	
DPro-3-piperidine methanol amide	91	1082	155	668	1483	2616	2711		
DPro-tropin amide	73	1814		114	87	183	362	383	769
DTrpPhe-Arg-5- amino pentamide	109	1718	262 8	274 0	2272	2929			

^{*} Unless otherwise stated, R1 is H

Table 5: In Vivo Release of Growth Hormone in Adult Beagle Dogs

Compound R¹-N₂-AibDTrpX* Where X is:	oral dose (mg/kg)	o	0.5	1	2	3	4	5	6	7	Time (hr)
DPro NH ₂	4	0.7	38	14	9.5	13	7.1	3.3	4	2.5	1.3
DPro- diisobutylamide	4 4 2	0.8 0.8 1.4 0.6	54 27 141 54	9.4 50 30	15 14 74 22	12 22 15 15	4.8 22 7.5 7	4.2 21 4 4.6	3.4 11 4.4 4.8	6.9 5.7 2.7	0.8 5.4 2.3 1.8
District Office of the state of	1 1 1 1	2.6 <0.5 1.5	85 128 89	30 50 59	16 24 30	7.7 24 11	6 5.6 7	0.9 6.1 6.2	2.5 2.9 5.2	2.5 2.2 3.7	1.6
R ¹ =N-2-OHethyl/ DPro-diisobutyl- amide R ¹ =N ₂ N-di-2-	1 1 1	3.8	102 62	26 30	25 19	5.6	6.1	5.6	4.0 2.5	5.2	5.0 1.6
OHethyl/ DProdisobutylamide R¹=N -ethyl/	1										
DPro-diisobutyl- amide R1=N -pentyl/	4	1.3	100 17	29 4.4	20 1.2	9.4 1.5	3.9	2.2	2.4	1.5 1.4	5.6 1.2
DPro-diisobutyl- amide DPro-dipropylamide	1 4	3.2	112	52	29	25	13	6.1	3.6	2.9	2.5
DPro-butylamide	4	0.6	27 92	19 43	5.6 26	1.6	1.6	0.6 5.4	1.4 3.5	0.8	1.3
DPro-pentylamide	4	1.8	72	12	13	3.8	3.7	3.5	2.6	1.9	1.7
DPro-dipentylamide	4 4 4	2.3 3.7 2.9	53 32 11	20 11 11	1.3 8.4 15	15 7.2 3	15 3.6 3.3	8.9 3.5 2.5	9.2 2.3 2.7	6.6 2.7 2.3	4.3 <0.1 2
DPro-piperidine-3- methyl-benzyl ether	4 4 2 2 F0.5iv	2 0.8 3.2 3.6 2.9	>12 8 127 169 112 81	59 28 42 39 78	63 27 63 23 27	28 11 45 6.3 9.3	11 14 13 4.5 4.5	6.7 14 5.5 1.7 4.1	4.2 11 4.5 2.7 2.9	4.1 4.7 3.4 2.3 4.1	1.8 6.8 3.2 1.9 4.1
N,N-diethylnipe- cotamide	4 4 4F	1.7 0.9 2.7	57 43 6.3	13. 8 7.3 3.5	5.3 2 3.7	5.5 2.1 2.2	3.4 0.8 0.9	3.1 0.9 10.	1.9 2.1 3.6	2 6.9 3.5	1.7 0.9 3.5
-N-piperazine methyl-sulfonamide	4	2.1	57	12. 5	8.7	3.8	1.7	2.2	1.6	6.3	3.2
DPro-diethylamide	4 4 F0.5iv	2.4 1.7 1.6	56 134 60	38 89 18	29 105 6	28 86 3.7	16 16 2.5	9.1 7.1 2	6.2 5.1 1.9	3.9 4.5 1.7	2.8 3.2 2.5
DPro-m- methylpiperidine	4 4F 4 2	1 1.4 2.1 1.2 1.6	54 72 118 128 53	84 55 59	50 18 54 29 15	52 4.7 53 12 9.6	20 3.5 34 8.9 3.1	27 1.4 13 3.6 2.2	8.1 1.1 11 3 1.5	9.6 1.6 11 3 2.2	1.7 1.5 6.4 1.7
DPro-3,3-diphenyl- propylamide	4	1.6	63 119	32 54	17	13 16	12 10	1.5 5.6	4.2	3.3	2.2
DPro-N-methyl-l-	4	2.2	54 100	12 22	8.6	7.4 7.9	13 4.8	5.9 2.6	3.4 2.9	2.3	ns 1.8
piperazine DPro-spiroindole methyl-sulfonamide	0.5iv 4	1.5	<0. 5	5.5	1.6	1.5	2.6	4.7	1.7	1.6	0.9
DPro-pyrrolidinc amide	4	2.3 2.1	104 63	28 32	18 45	7.1 30	5.1 11	3.2	2.7 4.9	2.2 4.1	2.3 3.6

Compound R¹-N₂-AibDTrpX* Where X is:	oral dose (mg/kg)	О	0.5	1	2	3	4	5_	6	7	Time (hr) 8
DPro-indole amide	4	1.2	7	7.5	5.8	4.7	3.1	2.8	2.5	2_	1.6
DPTo-3-piperidine methanol amide	4	2.3	55	14	7.5	2.9	3.8_	3.4	2.4	2.3	1.8
DPro-tropinamide	4	1.9	72	47	5.5	3.8	3.8	2.8	2.5	2.2	2.2
DTrpPhe-Arg-5- amino pentamide	2	3.1 2.5	83 38	20 8.5	6.8 2.8	3.9 2.3	2.9	3.3	3.1	3.3	3 0.8

^{*} Unless otherwise stated, R1 is H

בתחמות אות חחתבפדאם

Table 6: In Vivo * Release of GH Rat

		control	GHRP-2				GH ng/ml	g/ml			
#	Compound iv		1.	.01	.03	1.	ω.	1	ဗ	10	30
861	inipDaNaIDTrpNH2	145	1251					485	2197	2380	
1473	inipDαNalDValNH2	145	1251					225		225	
1466	$\alpha AibDTrpDValNH_2$	145	1251					124		418	
1415	αAibDTrpDProDSerNH2	120	1465				820	1658	2306	2896	
1417	aAibDTrpDProDArgNH2	120	1465				1362		2161	2057	
1246	αAibDTrpDProDPheNH2	92	566			203	594	1901	2339		
1248	$\alpha AibDTrpDProDTrpNH_2$	145	1343				229		1814		
1460	$\alpha AibDTrpDValDValNH_2$	145	1343					104		240	
1461	$\alpha AibDVaIDProDVaINH_2$	145	1343					160		261	
1464	$\alpha AibDVaIDVaINH_2$	145	1343					96		197	
1468	aAibDTrpDProDLysNH2	145	1343				157		791		
1462	$\alpha AibDProDProDVaINH_2$	145	1251					218		185	
1472	inipDaNalDTrpDValNH2	145	1251			174	142	154	1019		
1489	$\alpha AibDTrpDProlleNH_2$	135	1734			445	355	1884			
1476	αγΑbuDαNalDTrpDlleNH2	166	1175			26	111	152	152		
1495	inipDaNalDTrpDProlleNH2	166	1175					824		1971	
1496	inipDaNalDTrpPhelleNH2	166	1175					1638		2055	
1471	inip $D\alphaNaIDTrpDValArgNH_2$	145	1251			98	184	843			

		control	GHRP-2				GH ng/ml	/ml			
#.	Compound iv		Τ.	.01	.03	1.	e.	1	က	10	30
1469	«AibDTrpDProDValDValNH2	164	411				783	2450	1975		
1480	αAibDTrpDProDPaINH2	78	066			245	622	2775			
1481	αAibDTrpDProDValArgDProNH2	164	411			1703	2145	2278	2511		
1484	αAibDTrpDProDlleDArgNH2	105	750	317	562	1863	2224	2446			
1475	ayAbuDTrpDTrpDIleNH2	101	369			. 123	125	113			
1486	inipDαNalDTrpPheDValNH2	101	369			203	352	1009			
1488	aAibDTrpDProValNH2	105	750			323	644	1725			
1465	αAibDTrpDIIcDIIcNH2	105	750					160			
1500	αAibDTrpDProLeuNH2	225	1429				1831	2623			
1492	aAibDTrpDProThrNH2	164	411			125	176	1031			
1497	DHisDTrpDProDValArgNH2	164	411				154	181	235	601	
1451	DHisDTrpDProDThrNH ₂	128	811(.03)				1380	2450	3133	2731	
		135	1734			868					
1452	αAibDTrpDProDIIeNH2	105	750			1028	1837	2138			
1474	αΛibDTrpDPhcDVaINH2	101	369			146	117	184			
1478	αAibDTrpDProDValDArgNH2	124	1251			1420	2304	2245			
		135	1734			1177					
1293	αAibDTrpDProDAlaNH2	157	1171			416	341	1682	3295		
1226	αAibDTrpDProDProNH2	124	1072					2129			
1136	αAibDTrpDProArgNH2	120	1465			297	670	1769	2644		

		control	GHRP-2				GH ng/ml	g/ml			
#	Compound iv		1.	.01	.03	1.	E.	H	3	10	30
1251	αAibDTrpDProDVaINH2	188	439		228	832	1581	2405			
		120	1465			1584	2360	2181	3250		
1325	inipDaNalDTrpDProNH2	120	1465					409	1203	2475	
1518	$\alpha Aib D\alpha NaID ProDVaID ArgNH_2$	66	1179		298	722	1695	2279			
1520	αAibDαNalDProDlleDArgNH2	66	1179		325	640	1481	2497			
1487	aAibDTrpDProDProDLysNH2	135	1734			171	929	1562			
1506	αAibHisDβNalDPheLysNH2	136	1169			137	244	1416			
1507	aAibHisDTrpDProDValNH2	136	1169			129	94	118			
1508	αAibHisDTrpDProDlleNH2	136	1169			132	137	123			
1509	aAibHisDTrpDProValArgNH2	136	1169			157	138	123			
1510	αAibHisDTrpDProDValArgNH2	136	1169			145	133	246			
1511	αAibDβNalDProDValNH2	136	1169			171	246	486			
1512	αAibDαNalDProDValNH2	136	1169			143	141	611			
1523	$\alpha AibDTrpDProDThrArgNH_2$	66	1179		1336	2219	2167	2781			
1524	αAibDTrpDProDNleArgNH2	66	1179		1425	1952	2334	2164			
		17	1395	298	1151	2593	2275	2672			
1525	αAibDTrpDProDNValArgNH2	66	1179		1397	2061	2285	2250			
		117	1395	146	580	1380	2047	1853			
1490	$\alpha AibDTrpDProlleArgNH_2$	135	1734			173	202	179			
		105	750			137		397			

		control	GHRP-2				GH ng/ml	:/ml			
#	Compound iv		Τ.	.01	.03	۲.	ь.	1	3	10	30
1479	αAibDTrpDProDFroArgNH2	101	369			2081	2566	2269			
1493	αAibDTrpDProProArgNH2	225	1429				96	152	431		
1483	«AibDTrpDProDProDArgNH2	135	1734			333		1838			
1485	aAibDTrpDProDHeArgNH2.	78	066	696	1472	1981	2073	3289			
1407	αAibDTrpDProPhcDSerNH2	138	1004						389	1365	
1137	αAibDTrpDProPheArgNH2	120	1465			225	175	149			
1470	αAibDTrpDProDValArgNH2	145	1251	009	1576	2647	2002	3414			
803	SarDTrpDTrpPheArgNH2	120	1465				778	1894	2498		
1532	αAibDαNaIDProDProΛτgNH2	124	1012					1989			
1533	αAibDαNaIDProDNValArgNH2	124	1012					1910			
1519	αAibDαNaIDProDIIcArgNH2	66	179		1641	1491	2354	2370			
1521	αAibDαNaIDProDVaILysNH2	66	179		573	1372	2008	2355			
1530	αAibDαNaIDProDThrArgNH2	124	1012	388	317	1035	2873	2611			
1531	αAibDβNaIDProDThrArgNH2	124	1012					2303			
1513	αAibDβNaIDProDValArgNH2	136	1169			611	3230	3322			
1514	αAibDαNalDProDValArgNH2	136	1169			1508	2710	2562			
		117	1395	404	687	1624	2516	2507			
1534	aAibDTrpDProDNIeNH2	120	1132			436	718	1968			
1535	aAibDTrpDProDNVaINH2	120	1132			228	614	1710			

		control	GHRP-2				GH ng/ml	s/ml			
*	Compound iv		1.	.01	.03	1.	e.	1	ဗ	10	30
	aAibDTrpDProDIIe-X										
TJ 39	2-aminoethylamide	124	1012			1416	1739	2742	2931		
TJ 49	5-aminopentylamide	120	1132			1262	2822	2501	2426		
TJ 53	3-aminopropylamide	120	1132			575	1697	2603	1901		
	aAibDTrpDProDVal-X										
TJ 45	2-aminoethylamide	117	1395			813	1958	1736			
TJS	dimethylamide	135	1734			247	836	1362	1805		
TJ 8	diethylamide	135	1734			232	255	366	1157		
	aAibDTrpDProDPro-X										
TJ 28	2-aminoethylamide	73	992			151	339	558	920	1999	
353	DßNalAlaTrpDPheLysGlnGlyNH2	06	1542			879	1307	1268	2729		
359	DAlaDTrpAlaTrpDPheLysValGlyNH2	151				2553	3653	2530			
		06	1542		452	1763	3364	3003			
371	DAlaDBNalAlaTrpDPhcLysGlnGlyGlyGlyNH2	157	983	535	1834	2176	2116	3995			
356	DAlaDTrpAlaTrpDPhcLysHisGlyNH2	06	1542			1252	2811	1886			

Table 7: In Vivo* Release of GH in Adult Beagle Dogs

#	Compound	oral				-	Time (hr)) (11				
		dose	0	0.5	1	2	3	4	5	9	7	8
		mg/kg				Canine	GH	ng/ml	_			
	aAibDfrpDProDlleX											
TJ49	5-aminopentylamide		5.4	123	27	21	20	5.6	2.3	1.2	0.8	1.4
			3.8	116	20	5.7	13	19	3.3	1		1.
TJ53	3-aminopropylamide		9	44	19	22	7.8	6.4	6.7	5.4	6.4	6.9
			5.9	91	32	19	7.3	6.2	13.	9.9	4.7	5.6
									2			
TJ39	2-aminoethylamide	1	5.7	31	11	10	10	4	4.4	3.8	5.1	3.4
		1	3.4	66	21	19	14	9.1	4.6	4	4.2	3.8
TJ66	4-aminobutylamide	-	1.8	100	20	1.9	4	2.8	2.7	2.1	3.4	2.8
	aAibDTrpDProDValX											
1.16	N-dimethylamide	1	5.1	9.5	5.4	5.6	5.5	9	6.2	S	6.4	3.8
TJ8	N-diethylamide	-	20	8.7	5	1.5	9	4.4	4.8	5.1	4.3	4.4
TJ45	2-aminoethylamide	-	6.4	26	26	24	8	3	9	12	6	8
			7.6	52	24	21	13	6	8	6	&	8
	αAibDTrpDProDValX											
Tjöl	5-aminopentylamide	1	3.7	41	12	5.3	4.4	4.1	3.7	3.5	4.8	4.1
		1	2.3	91	17	26	7.6	4.2	3.5	3	3.8	2.7

#	Compound	oral					Time (hr)	IT)				
		dose	0	0.5		2	3	4	5	9	1,	8
		mg/kg				Canine	E	ng/ml		1		
	αAibDTrpDProDNleX											
TJ59	5-aminopentylamide	_	6.4	54	16	13	ıs	5	5.1	6.9	6.4	5.9
		_	6.7	112	19	14	13	7.4	9.9	7.1	6.4	5.4
1476	aAibDTrpDProDValDArgNH2	2	3.2	42	31	13	25	2	3.1	4.1	2.6	1.7
1513	αAibDβNaIDProDValArgNH2	1	9.9	128	38	47	35	25	8.7	6.5	6.9	7.2
		-	5.3	125	22	8.7	6.3	5	3.6	3.6	6.7	3.6
15.4	αAibDαNaIDProDValArgNH2	_	3.5	31	10	5.8	5.4	4.2	3.2	3.8	3.4	3.6
			3.5	126	24	31	14	7.3	3.5	4.8	3.1	4.9
1519	αAibDαNaIDProDileArgNH2		8.9	72	28	21	13	6.5	5.5	4.4	6.9	5.2
1521	$\alpha Aib D \alpha NaID ProD ValLys NH_2$		3.7	1111	39	61	29	14	8.2	4	4.4	4.7
973	inip $D\alpha$ Nal $D\beta$ Nal $PheArgNH_2$	2	3.1	13	4.2	3.3	2.5	2.1	2.9	2.3	2.9	2.4
1536	aAibDTrpDProDlleArgGlyNH2	0.5	1.5	93	23	29	8.2	6.5	5.5	4.3	4.3	2.9
1537	αAibDTprDProDNlcArgGlyNH2	0.5	3.7	92	12	10	2.6	3.1	2.3	2.3	2.8	2.8
1539	aAibDTrpDProDThrArgGlyNH2	0.5	1.8	98	28	85	13	7.6	4.8	2.7	2.7	2.3
1252	αAibDTrpDProDGlnNH2	2	1.5	2.6	6.4	3.5	2.8	2.5	2.3	1.9	1.9	2
869	InipDαNalDTrpPheCOOH	2	2.6	3.5	2	2.6	2.7	2.6	2.5	3.6	3.6	3.2
			1.4	1.8	1.3	1.5	1.3	2.1	1.9	2.6	1.4	2.1
956	$Inip D\alpha NaID Trp VaIN H_2$		4.2	3.3	3.9	4	3.6	5.5	3.4	3.8	2.3	3.1

#	Compound	oral				L.	Time (hr)	1				
		dose	0	0.5	1	2	3	4	5	9	7	_∞
		mg/kg				Canine	GH	ng/ml	_			
1136	αAibDTrpDProArgNH2	1.1	4.9	15	8.3	6.3	4.8	5.2	4.8	4.3	5.1	8.4
		1	1.7	27	8.7	1.5	1.9	1.9	2.4	2.7	1.6	2.7
1118	αAibDTrpDProCHαAlaNH2	1	9.9	3.8	2.6	2.6	2.8	2.8	1.9	2.1	2.9	2.6
1251	αAibDTrpDProDValNH2	2	2.9	47	16	14	7.8	5.6	4.7	5.6	8.9	4.9
-		2	1.6	28	5.6	4.1	4.1	4	4.1	4.2	33	2.6
		1.1	2.4	128	31	42	5.5	4.8	4.4	3.4	4.4	3.4
1293	aAibDTrpDProDAlaNH2	2	4.6	11	4.9	4.9	4.6	5.5	5.9	4	4.7	4.7
		2	2.9	15	8.9	11	4	3.8	8	2.7	3.6	2.7
		2	3.9	14	6.2	3.8	2.7	1.9	2.9	2.4	3.4	3.1
1452	aAibDTrpDProDlleNH2	2	2.5	117	23	13	4.1	3.6	5	4.3	5.2	4.7
1451	αAibDTrpDProDThrNH2	2	1.4	20	4	3.9	2.7	2	1.7	2.5	2.6	1.6
		1.6	3.3	51	22	58	7.1	5.6	4.9	4.6	4.6	4.1
1246	α.AibDTrpDProDPheNH2	2	1.7	29	20	9.2	3.7	2.7	1.6	1.9	2.4	1.8
1474	aAibDTrpDPheDVaINH2	2	3.2	2.9	2.8	2.7	2.9	2.9	2.8	2.8	4.7	2.7
1248	aAibDTrpDProDTrpNH2	2	1.8	5.9	2.7	1.4	2.2	1.8	1.7	1.3	3.2	3.3
1479	aAibDTrpDProDProArgNH2	1.8	2	38	9.3	6.2	6.1	9	5.7	4.7	2.7	2.1
1478	aAibDTrpDProDValDArgNH2	2	3.2	42	31	13	25	5	3.1	4.1	2.6	1.7
1470	αAibDTrpDProDValArgNH2	2	3.6	62	26	30	30	6.8	13	14	6.5	5.4
		2	3.4	37	32	41	13	23	9.2	8	4.9	4.1

יחסיום אום חסטובפיאס ו

#	Compound	oral				L	Time (hr)	T.				
		dose	0	0.5	1	2	3	4	5	9	7	_∞
		mg/kg				Canine	GH	ng/ml	1			
			5.1	32	14	18	16	14	11	6.3	6.3	5.2
1485	αAibDTrpDProDIleArgNH2	2	4.9	102	19	48	23	11	8	6	16	21
		2	5.7	49	38	26	10	21	7.6	6.7	10	11
		2	3.5	20	17	15	16	18	13	19	13	14
		2	1.2	09	34	15	9.2		5.3		4.5	4.7
		1	4.6	136	23	95	14	22	8.3	6.9	4.9	5.2
		1	6.7	104	47	84	41	29	15	19	15	5.4
		1	5.2	50	17	11	6.9	6.8	6.2	7.1	6.7	4.5
		0.5	9	110	63	32	13	12	4.9	5	5.6	5.4
		0.5	7.8	109	78	54	49	26	52	51	22	16
		0.5	6.1	126	78	32	12	7.8	4.3	15	9.5	3.6
		0.5	9.9	125	57	35	20	11	40	15	8	8
		0.5	5.9	227	28	26	40	13	50	6	7	7
		0.25	3.5	102	35	32	28	5.8	3.7	4.1	5	6.9
		0.25	2.1	53	13	10		3.1	2.1	4	3.3	4.4
		0.125	3.6	48	23	7.9	3.8	က	3.9	3	5.7	3.4
		0.125	2.6	53	16	7.6	3.3	3.9	3.9	3.6	5.3	3.2
1523	$lpha$ AibDTrpDProDThrArgNH $_2$	-	5.4	105	63	40	30	15	8	9.3	7.9	4
1524	αAibDTrpDProDNleArgNH2	1	5.3	110	105	128	38	25	18	7.8	4.5	3.8
	-	_	-	_	-		_	_	-	_	_	

##	Compound	oral					Time (hr)) (JI				
		dose	0	0.5	0 0.5 1	2 3 4 5 6 7	3	4	r.	9		8
		mg/kg				Cani	Canine GH ng/ml	n/gu	_			
		0.5	5.6 72	72	23	10	10 7.1 7.1 6.7 6.4 5.9	7.1	6.7	6.4	5.9	5.6
1525	1525 αAibDTrpDProDNValArgNH2	0.5	9	66	58	26	26 13 7.8 6.2 6	7.8	6.2	9	5.7 4.6	4.6
TJ64	1964 5-aminopentylamide	1	1.5 32	1	13	5.6 3.5 2.3 2.7 1.4 2.9	3.5	2.3	2.7	1.4	2.9	3.2

בחתיוריי אווח חתהבפתאם

IN THE CLAIMS:

1. A compound having the formula

A1"-Y,

wherein A_{1^n} is Aib, inip, ABU, β Ala, His, Sar or any of their respective Disomers:

Y is $A_2-A_3-A_4-A_5-A_6-Z'$;

A2'-A3-A4-A5-Z' or A2'-A3-A4-Z';

wherein A_2 is A_5 - A_2 or A_2 ;

wherein A₅ is a spacer amino acid;

 A_{2^n} is any natural L-amino acid, Pal, or their respective D-isomers, D α Nal or D β Nal;

 A_3 , A_4 and A_5 are any natural L-amino acid, Pal, α Nal, β Nal, Nle, Arg-DPro, DPCl, D or L cyclohexyl-amino acid, or any of their respective D-isomers; and

Z' is NH₂, OH, C₁-C₁₀ alkylamino, di(C₁-C₁₀ alkyl) amino, amino-C₁-C₁₀ alkylamino or di(amino C₁-C₁₀ alkyl) amino;

and pharmaceutically acceptable salts thereof.

- 2. The compound of claim 1, having the formula Aib-Y.
- 3. The compound of claim 2, wherein Aib is α Aib.
- 4. The compound of claim 2, wherein the Aib residue is substituted or unsubstituted.
- 5. The compound of claim 4, wherein Aib is substituted and the substituents are selected from the group consisting of N- and N-, N-C₁-C₆ alkyl, halogens, N- and N-, N-2 hydroxyethyl, 3-hydroxypropyl, 4-hydroxybutyl and 3-hydroxyisobutyl.
 - 6. The compound of claim 2, wherein Aib is unsubstituted.
 - 7. The compound of claim 1, wherein A_{1} is Aib, inip or ABU.
- 8. The compound of claim 7, wherein A_{1} is ABU and ABU is γABU or $\alpha, \gamma ABU$.
- 9. The compound of claim 1, 2, 3, 4, 5 or 6, wherein $A_{2^{*}}$ is DTrp, D α Nal or D β Nal.
 - 10. The compound of claim 9, wherein A_{2} is DTrp.

- 11. The compound of claims 1, 2, 3, 4, 5, 6, 7, 8, 9 or 10 wherein A₃ is DPro or DTrp;
- 12. The compound of claims 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 or 11, wherein A₄ is Gly, Phe, Pro, Ile, DPro, DPhe, DPal, DLeu, DHis, DVal, DGln, DIle, DNle, DArg, DAla, DSer, DThr, DIle, Arg, Orn Lys, Ala, Pal, Thr, Val, Phe, DTrp, DNVal, DNle or D or L cyclohexylalanine.
- 13. The compound of claim 12, wherein A₄ is DSer, DArg, DPro, DTrp, DVal, DIle, DThr, DNVal, DNle, Ile, Pro, Phe.
- 14. The compound of claim 13, wherein A_4 is DPro, DTrp, DIle or DNle.
 - 15. The compound of claim 14, wherein A₄ is DPro.
- 16. The compound of claims 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14 or 15 wherein A_5 is Ile, Arg, Pal, DArg, DSer, Lys or Arg-DPro or DLys.
- 17. The compound of claim 16, wherein A_5 is Arg, DArg, Lys or DLys.
- 18. The compound of claims 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16 or 17, wherein Z' is C₁-C₁₀ alkylamino, di(C₁-C₁₀ alkylamino, amino-C₁-C₁₀ alkylamino or di(amino C₁-C₁₀ alkyl) amino.
- 19. The compound of claim 18, wherein Z' is 2-aminoethylamide, -3-aminopropylamide, -4-aminobutylamide, -5-aminopentylamide, -6-aminohexylamide, mono or dimethylamide, mono or diethylamide, mono or dipropylamide.
- 20. The compound of claims 1, 2 or 3 wherein Y is A_{2^n} -DPro- A_4 - A_5 - A_6 -Z', A_{2^n} - A_3 - A_4 - A_5 -Z'.
- 21. The compound of claim 20, wherein Y is A_{2^n} -DPro- A_4 -Z', or A_{2^n} -DPro- A_4 - A_5 -Z'.
 - 22. The compound of claim 21, wherein Y is A₂-DPro-A₄-A₅-Z'.
 - 23. The compound of claims 1, 2 or 3, wherein Z' is $-NH_2$.
- 24. The compound of claim 3, selected from the group consisting of αAib-DTrp-DPro-A₄-A₅-A₆-Z', αAib-DTrp-DPro-A₄-A₅-Z', αAib-DTrp-DPro-A₄-Arg-NH₂, αAib-DTrp-DPro-A₄-Arg-A₆-NH₂, αAib-DTrp-DPro-A₄-Arg-Gly-NH₂, αAib-DαNal-DPro-A₄-A₅-A₆-Z', αAib-DαNal-DPro-A₄-A₅-Z', αAib-DαNal-DPro-A₄-A₅-Z', αAib-DαNal-DPro-A₄-Arg-NH₂, αAib-DαNal-DPro-A₄-Arg-NH₂, and αAib-DαNal-DPro-A₄-Arg-Gly-NH₂.

- 25. The compound of claim 24, wherein A₄ is DIle, DThr, DNle, DVal, DGln, DAla, DPhe, DTrp, DNVal and Arg.
- 26. The compound of claim 1 which is selected from the group consisting of $\alpha AibDTrpDProDIleArgNH_2$, $\alpha AibDTrpDProDThrArgNH_2$, $\alpha AibDTrpDProDValArgNH_2$, $\alpha AibDTrpDProDNleArgNH_2$, and $\alpha AibD\alpha NalDProDIleDArgNH_2$.
- 27. The compound of claim 1, which is selected from the group consisting of αAib-A₂-DPro-A₄-Z, αAib-DTrp-DPro-DThr-NH₂, αAib-DTrp-DPro-DGln-NH₂, αAib-DTrp-DPro-Arg-NH₂, αAib-DTrp-DPro-DAla-NH₂, αAib-DTrp-DPro-DPro-DPro-DPro-DVal-NH₂, αAib-DTrp-DPro-DNVal-NH₂, αAib-DTrp-DPro-DNVal-NH₂, αAib-DTrp-DPro-DIle-NH₂.
- 28. The compound of claim 1, which is selected from the group consisting of αAib-DTrp-DPro-DIle-Arg-Gly-NH₂, αAib-DTrp-DPro-DThr-Arg-Gly-NH₂, and αAib-DTrp-DPro-DNle-Arg-Gly-NH₂.
- 29. A compound selected from the group consisting of inipDαNalDTrpNH₂, inipDαNalDValNH₂, αAibDTrpDValNH₂, αAibDTrpDProDSerNH₂, αAibDTrpDProDArgNH₂, αAibDTrpDProDPheNH₂, αAibDTrpDProDTrpNH₂, αAibDTrpDValDValNH₂, αAibDValDProDValNH₂, αAibDValDValDValNH₂, αAibDTrpDProDLysNH₂, αAibDProDProDValNH₂, inipDαNalDTrpDValNH₂, αAibDTrpDProlleNH₂, αγAbuDαNalDTrpDIleNH₂, inipDαNalDTrpDProIleNH₂, inipDαNalDTrpPheIleNH₂, inipDαNalDTrpDValArgNH₂, αAibDTrpDProDValDValNH₂, αAibDTrpDProDProDPalNH₂, αAibDTrpDProDValArgDProNH₂, αAibDTrpDProDIleDArgNH₂, αγAbuDTrpDTrpDIleNH₂, inipDαNalDTrpPheDValNH₂, αAibDTrpDProValNH₂; αAibDTrpDIleDIleNH₂, aAibDTrpDProLeuNH₂, aAibDTrpDProThrNH₂, DHisDTrpDProDValArgNH₂, DHisDTrpDProDThrNH₂, α AibDTrpDProDIleNH₂, α AibDTrpDPheDValNH₂, αAibDTrpDProDValDArgNH₂, αAibDTrpDProDAlaNH₂, αAibDTrpDProDProNH₂, αAibDTrpDProArgNH₂, αAibDTrpDProDValNH₂, inipDαNalDTrpDProNH₂, αAibDαNalDProDValDArgNH₂, αAibDαNalDProDIleDArgNH₂, αAibDTrpDProDProDLysNH₂, αAibHisDαNalDPheLysNH₂, αAibHisDTrpDProDValNH₂, αAibHisDTrpDProDlleNH₂, αAibHisDTrpDProValArgNH₂,

 $\alpha Aib His D Trp D Pro D Val Arg N H_2, \ \alpha Aib D \alpha Nal D Pro D Val N H_2,$ α AibDTrpDProDThrArgNH₂, α AibDTrpDProDNleArgNH₂, αAibDTrpDProDNValArgNH2, αAibDTrpDProIleArgNH2, αAibDTrpDProDProArgNH2, αAibDTrpDProProArgNH2, $\alpha A ib D Trp D Pro D Pro D Arg N H_2, \ \alpha A ib D Trp D Pro D I le Arg N H_2,$ $\alpha Aib D Trp D Pro Phe D Ser N H_2$, $\alpha Aib D Trp D Pro Phe Arg N H_2$, $\alpha A i b D T r p D P r o D V a l A r g N H_2$, Sar D T r p D T r p P he A r g N H_2, α AibD α NalDProDProArgNH₂, α AibD α NalDProDNValArgNH₂, α AibD α NalDProDIleArgNH₂, α AibD α NalDProDValLysNH₂, $\alpha Aib D\alpha Nal DProDThr Arg NH_2, \ \alpha Aib D\alpha Nal DProDThr Arg NH_2,$ $\alpha Aib D\alpha Nal DP ro DV al Arg NH_2$, $\alpha Aib D\alpha Nal DP ro DV al Arg NH_2$, αAibDTrpDProDNleNH2, αAibDTrpDProDNValNH2, αAibDTrpDProDProArgNH2, αAibDTrpDProDValDArgNH2, αAibDTrpDProDValArgNH2, αAibDTrpDProDIleArgNH2, $\alpha Aib D\alpha Nal DP ro DVal Arg NH_2$, $\alpha Aib D\alpha Nal DP ro DVal Arg NH_2$, $\alpha Aib D\alpha Nal DP ro DI le Arg NH_2$, $\alpha Aib D\alpha Nal DP ro DV al Lys NH_2$, $inipD\alpha NalD\alpha NalPheArgNH_2$, $\alpha AibDTrpDProDThrArgNH_2$, $\alpha Aib D Tr D Pro D N le Arg N H_2$, $\alpha Aib D Tr p D Pro D N Val Arg N H_2$, $\alpha A ibDTrpDProDIleArgGlyNH_2,\ \alpha A ibDTrpDProDProDIleArgGlyNH_2,$ $\alpha A ib DT pr DP ro DN le Arg Gly NH_2, \ \alpha A ib DT rp DP ro DT hr Arg Gly NH_2,$ $\alpha A i b D Trp D Pro D Pro A_4 Arg N H_2, \ \alpha A i b D Trp D Pro D Pro A_4 Arg G ly N H_2,$ $\alpha A ibDTrpDProDIleArgNH_2,\ \alpha A ibDTrpDProDIleArgGlyNH_2,$ $\alpha A i b D Trp D Pro D Pro D I le Arg N H_2, \ \alpha A i b D Trp D Pro D Pro D I le Arg G ly N H_2,$ $D\beta NalAla TrpDPheLysGlnGlyNH_2,\ DAla DTrpAla TrpDPheLysValGlyNH_2,$ $DAlaD\beta NalAlaTrpDPheLysGlnGlyGlyGlyNH_2,\ and$ DAlaDTrpAlaTrpDPheLysHisGlyNH₂.

- 30. A compound of the formula A_1 - A_2 -X, wherein A_1 is Aib, inip or ABU; A_2 is any natural L-amino acid or Pal, or their respective D-isomers, D α Nal or D β Nal; and
- X is (1) R_1 - R_2 -Z, wherein R_1 and R_2 are any natural L-amino acid, Pal, α Nal, β Nal, DpCl, CHx, where CH_x is cyclohexyl, CHxAla, or any of their respective D-isomers; and Z is CONH₂ or COOH;

- (2) DpR₃Phe-R₄-Z, wherein R₃ is a halogen; R₄ is L-amino acid or Pal, or their respective D-isomers; and Z is CONH₂ or COOH;
- (3) NH(CH₂)_nNH, where n is 1 to 8;
- (4) R₅-R₆, wherein R₅ is any natural L-amino acid, Pal, αNal, βNal, DpCl, CHx, or any of their respective D-isomers; and R₆ is diisobutylamide, dipropylamide, butylamide, pentylamide, dipentylamide, or C(=0)(substituted heteroalicyclic or heteroaromatic);
- (5) DTrp Phe ArgR₇, wherein R₇ is NH(CH₂)_nNH, where n is 1 to 8; or
- (6) $R_8-R_9-R_{10}-Z$, wherein R_8 is DTrp, DPro, D α Nal or D β Nal; R_9 is any natural L-amino acid or Pal, or their respective D-isomers; R_{10} is any natural L-amino acid or Pal, or their respective D-isomers; and Z is CONH₂ or COOH.
- 31. A compound of the formula A_1 -X, wherein A_1 is Aib, inip, ABU, IMC, Ava, 4-IMA, β Ala, Ileu, Trp, His, DpCl, CHx where CH_x is cyclohexyl, or any of their respective D-isomers; and
- X' is (1) R_1 - R_2 -Z', wherein R_1 is any natural L-amino acid or Pal, or their respective D-isomers, D α Nal or D β Nal; and R2 is any natural L-amino acid, Pal, α Nal, β Nal, DpCl, Aib, CHx, or CHxAla, or any of their respective D-isomers; and Z is CONH₂ or COOH; or
- (2) R_3 - R_4 , wherein R_3 is any natural L-amino acid or Pal, or their respective D-isomers, D α Nal or D β Nal; and R_4 is NH(CH₂)_nNH, where n is 1 to 8.
- 32. The compound of claim 30, wherein A_1 is αAib , and A_2 is selected from the group consisting of DTrp and $D\alpha Nal$.
- 33. The compound of claim 30, wherein A_1 is αAib ; A_2 is DTrp; X is R_1 - R_2 -Z, where R_1 is DPro, R_2 is selected from the group consisting of Gly, Phe, Pro, DPro, DPhe, DPal, DLeu, DHis, DVal, DGln, DArg, DAla, DSer, DThr and DIleu, and Z is CONH₂.
- 34. The compound of claim 30, wherein A_1 is $\alpha,\gamma ABU$ and A_2 is selected from the group consisting of DTrp and D α Nal.

- 35. The compound of claim 34, wherein X is R_1 - R_2 -Z, where R_1 is DTrp, R_2 is selected from the group consisting of Arg, Lys and Orn, and Z is CONH₂.
- 36. The compound of claim 30, wherein A_1 is inip, A_2 is D α Nal and X is R_1 - R_2 -Z, where R_1 is DTrp, R_2 is selected from the group consisting of Phe, Pal, CHx Val, Thr, Arg, Lys and Pro, and Z is CONH₂.
- 37. The compound of claim 30, wherein A_2 is DTrp, D α Nal or D β Nal; and
- X is (1) R_5 - R_6 , where R_5 is selected from the group consisting of DTrp and DPro; and R_6 is diisobutylamide, dipropylamide, butylamide, pentylamide, dipentylamide, or C(=0) (substituted heteroalicyclic or heteroaromatic); or
 - (2) DTrp Phe ArgR₇, wherein R_7 is NH(CH₂)_nNH, where n is 1 to 8.
- 38. The compound of claim 37, wherein R₆ is DPro-C(=0) (substituted heteroalicyclic or heteroaromatic), wherein the heteroatom is selected from the group consisting of O, N, S and P.
- 39. The compound of claim 38, wherein the heteroalicyclic moiety contains 2 to 12 carbon atoms and the heteroaromatic moiety contains 5 to 12 carbon atoms.
- 40. The compound of claim 39, wherein the C(=0) (substituted heteroalicyclic or heteroaromatic) moiety is selected from the group consisting of piperidine-3-methyl-benzylether, N-diethylnipectamide, N-piperazine methylsulfonamide, diethylamide, m-methylpiperidine, 3,3-diphenylpropylamide, 4-piperidino piperidinamide, 4-phenyl-piperidinamide, N-methyl 1-piperiazine, 2-morpholinoethylamine, spiroindole methylsulfonamide, pyrrolidine amide, indoleamide, 3-piperidine methanol amide, and tropin amide.
- 41. The compound of claim 37 wherein X is DProNH₂, DProdiisobutylamide, DPro-butylamide, DPro-C(=0) (substituted heteroalicyclic or heteroaromatic), or DTrp-Phe-Arg-5-aminopentamide.
- 42. The compound of claim 30, wherein X is R_8 - R_9 - R_{10} -Z, wherein R_8 is selected from the group consisting of DTrp or DPro; R_9 is selected from the group consisting of Phe or DVal; R_{10} is selected from the group consisting of Lys or Arg; and Z is CONH₂

WO 00/09537 PCT/US99/17867

- 43. A method of promoting the release and elevation of blood growth hormone levels by administering the compound of claim 1, 2, 3, 30, 31 or 37 in a synergistic amount with a second compound, wherein the second compound is a compound which acts as an agonist at the growth hormone releasing hormone receptor or inhibits the release of somatostatin.
- 44. A pharmaceutical composition comprising the compound of claim 1, 30 or 37 and the pharmaceutically acceptable carrier or diluent.
- 45. The pharmaceutical composition of claim 44, which further comprises a second compound which acts as an agonist at the growth hormone releasing hormone receptor or inhibits the effects of somatostatin.
- 46. A method of promoting the release and elevation of blood hormone levels by administering the peptide of claim 1, 2, 3, 30 or 37 with at least a naturally occurring growth hormone releasing hormone and functional equivalents thereof, or a compound which promotes the release of growth hormone.
- 47. A method for treating hypothalamic pituitary dwarfism, osteoporosis or burns, which comprises administering a therapeutically effective amount of the peptide of claim 1, 30 or 31.
- 48. A method for promoting wound healing, promoting recovery from surgery or recovery from acute/chronic debilitating illnesses which comprises administering a therapeutically effective amount of the pharmaceutical composition of claim 44.
- 49. A method for prevention or reduction of cachexia in cancer patients which comprises providing a therapeutically effective amount of the compound of claim 1, 30 or 31.
- 50. A method for promoting anabolism and/or to prevent catabolism in humans which comprises administering a therapeutically effective amount of the compound of claim 1, 30 or 31.
- 51. The method of claim 50, wherein the therapeutically effective amount is about 30 μg to 1200 μg of the peptide per kg of body weight.
- 52. A method for increasing muscle in an animal and/or decreasing body fat which comprises administering an effective amount of the compound of claim 1, 30 or 31.

PCT/US99/17867

- 53. A method for improving serum lipid pattern in humans by decreasing in the serum the amount of serum cholesterol and low density lipoprotein and increasing in the serum the amount of the high density lipoprotein which comprises administering an effective amount of the compound of claim 1, 30 or 31.
- 54. The method of claim 52 wherein the effective amount ranges between about 0.1 μg to 10 μg of total peptide per kg of body weight.
- 55. The method of claim 53, wherein the effective amount ranges between about 0.1 μg to 10 μg to total peptide per kg of body weight.
- 56. A method for descreasing atherosclorosis which comprises administering an effective amount of the compound of claim 1, 30 or 31.
- 57. A method to improve cardiac performance in congestive heart failure and in patients with cardiac myopathy which comprises administering an effective amount of the compound of claim 1, 30 or 31.
- 58. A method to improve sleep which comprises administering an effective amount of the compound of claim 1, 30 or 31.

.

(19) World Intellectual Property Organization International Bureau

(43) International Publication Date 24 February 2000 (24.02.2000)

PCT

(10) International Publication Number WO 00/09537 A3

(51) International Patent Classification7: C07K 5/10, 7/06. 7/02, 5/02, A61K 38/07, 38/08, A61P 5/02, C07K 14/60

(21) International Application Number: PCT/US99/17867

(22) International Filing Date: 6 August 1999 (06.08.1999)

(25) Filing Language:

English

(26) Publication Language:

English

(30) Priority Data:

60/096,795 60/129.806

US 14 August 1998 (14.08.1998) 16 April 1999 (16.04.1999) US

(63) Related by continuation (CON) or continuation-in-part (CIP) to earlier application:

US Filed on Not furnished (CIP) Not furnished

(71) Applicant (for all designated States except US): ADMIN-ISTRATORS OF THE TULANE EDUCATIONAL FUND [US/US]: Tulane University Medical Center. School of Medicine, 1430 Tulane Avenue, New Orleans, LA 70112-2699 (US).

(72) Inventors; and

(75) Inventors/Applicants (for US only): BOWERS, Cyril, Y. [US/US]: 484 Audubon Street, New Orleans, LA 70118 (US). MOMANY, Frank [US/US]: Versailles Hamlet #816, 935 Loire Court. Peoria. IL 61614 (US). LIANG, Yongwu [US/US]: 4607 Cypress Wood Drive, Spring, TX 77379 (US).

- (74) Agents: EISENSTEIN, Ronald, I. et al.; Nixon Peabody LLP, 101 Federal Street, Boston, MA 02110 (US).
- (81) Designated States (national): AE. AL. AM. AT. AU. AZ. BA, BB, BG, BR, BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG. MK. MN. MW. MX. NO. NZ. PL. PT, RO. RU. SD. SE, SG, SI, SK, SL, TJ, TM, TR, TT, UA, UG, US, UZ, VN, YU, ZA, ZW.
- (84) Designated States (regional): ARIPO patent (GH, GM, KE. LS, MW, SD, SL, SZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM). European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC. NL, PT. SE), OAPI patent (BF, BJ, CF, CG, Cl, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Published:

with international search report

(88) Date of publication of the international search report: 20 September 2001

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

(54) Title: COMPOUNDS HAVING GROWTH HORMONE RELEASING ACTIVITY

(57) Abstract: Compounds that promote growth hormone releasing activity are disclosed. These compounds have the formula: A₁-A₂-X: A₁-X', or A₁-Y. These compounds can be present in a pharmaceutical composition. The compounds can be used with a second compound that acts as an agonist at the growth hormone releasing hormone receptor or which inhibits the effects of somatostatin. These compounds can be used for a variety of uses such as treating hypothalamic pituitary dwarfism, osteoporosis, burns, or promoting wound healing.

Int tional Application No PCT/US 99/17867

A. CLASS IPC 7		07K7/02 07K14/60	C07K5/02	A61K38/07
According (to International Patent Classification (IPC) or to both natio	onal classification ai	nd IPC	
	SEARCHED			
Minimum d IPC 7	ocumentation searched rotassification system followed b	y classification sym	bols)	
	ition searched other than minimum documentation to the			
Electronic o	data base consulted during the international search (name	e of data base and.	where practical, search	terms used)
EPO-In	ternal, WPI Data, PAJ, CHEM AN	BS Data, BI	IOSIS, MEDLIN	E, EMBASE
C. DOCUM	ENTS CONSIDERED TO BE RELEVANT			
Category *	Citation of document, with indication, where appropriat	e, of the relevant pa	assages	Relevant to claim No.
A	R DEGHENGHI: "Structural r growth hormone secretagogue GROWTH HORMONE SECRETAGOGUE PRACTICE. INTERNATIONAL SYM 1997, pages 27-35, XP00211	es" ES IN CLINI MPOSIUM,XX,	CAL	
A	DEGHENGHI R ET AL: "SMALL POTENT RELEASERS OF GROWTH JOURNAL OF PEDIATRIC ENDOCR METABOLISM, IL, FREUND PUBLIS AVIV, vol. 8, no. 4, 1 October 1995 (1995-10-01) 311-313, XP000651785 ISSN: 0334-018X	HORMONE" INOLOGY AN HING HOUSE	D	
1		,		İ
		-/		
χ Furthe	er documents are listed in the continuation of box C.	X	Patent family members	are listed in annex.
Special cale	egories of cited documents ;	*T* later	document published after	er the international filing date
conside E' earlier do	at defining the general state of the art which is not ared to be of particular relevance ocument but published on or after the international	or p cite inve	mority date and not in co d to understand the princ ention	nflict with the application but aple or theory underlying the
filing da L* documen	te which may throw doubts on priority claim(s) or	can	not be considered novel	nce; the claimed invention or cannot be considered to en the document is taken alone
citation	cried to establish the publication date of another or other special reason (as specified) it referring to an oral disclosure, use, exhibition or	"Y" docu cani doci	ment of particular releva- not be considered to involument is combined with o	nce; the claimed invention blue an inventive step when the one or more other such docu—
P' documen	earrs If published prior to the international filing date but In the priority date claimed	in th	ets, such combination being art. ment member of the sam	ing obvious to a person skilled
Date of the ac	ctual completion of the international search		of mailing of the interna	
26	February 2001		07/03/2001	
lame and ma	tiling accress of the ISA European Patent Office, P.B. 5818 Patentlaan 2	Autho	orized officer	
	NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl, Fax: (+31-70) 340-3016		Cervigni, S	

Int tional Application No
PCT/US 99/17867

		PCI/US 9	
	ation) DOCUMENTS CONSIDERED TO BE RELEVANT		15
Calegory "	Citation of document, with indication,where appropriate, of the relevant passages		Relevant to claim No.
Α	DEGHENGHI R ET AL: "GH-RELEASING ACTIVITY OF HEXARELIN, A NEW GROWTH HORMONE RELEASING PEPTIDE, IN INFANT AND ADULT RATS" LIFE SCIENCES, GB, PERGAMON PRESS, OXFORD, vol. 54. no. 18, 1994, pages 1321-1328, XP000651534 ISSN: 0024-3205		*
Ą	WO 93 04081 A (UNIV TULANE) 4 March 1993 (1993-03-04)		
4	WO 94 07519 A (HUFFMAN WILLIAM FRANCIS ;MOORE MICHAEL LEE (US); SMITHKLINE BEECHA) 14 April 1994 (1994-04-14)		
Ą	US 5 776 901 A (COY DAVID ET AL) 7 July 1998 (1998-07-07)		
ł	EP 0 083 864 A (BECKMAN INSTRUMENTS INC) 20 July 1983 (1983-07-20)	*	
		1	

International Application No. PCT/US 99 /17867

FURTHER INFORMATION CONTINUED FROM PCT/ISA/ 210

Continuation of Box I.2

Claims Nos.: 1-23,30-32,34,42-58 (all partially)

Present claims 1-23,30-32,34,42-58 relate to an extremely large number of possible compounds. Support within the meaning of Article 6 PCT and/or disclosure within the meaning of Article 5 PCT is to be found, however, for only a very small proportion of the compounds claimed. In the present case, a peptide sequence consisting virtually only of variables cannot be considered to be a clear and concise definition of patentable subject-matter (art. 6 PCT). The claims so lack support, and the application so lacks disclosure, that a meaningful search over the whole of the claimed scope is impossible. Consequently, the search has been carried out for all peptides listed in claims 24-29 and extended to those parts of the claims which appear to be adequately supported and disclosed, namely for claims 33 and 35-41, defining the peptide N-terminal portion.

The applicant's attention is drawn to the fact that claims, or parts of claims, relating to inventions in respect of which no international search report has been established need not be the subject of an international preliminary examination (Rule 66.1(e) PCT). The applicant is advised that the EPO policy when acting as an International Preliminary Examining Authority is normally not to carry out a preliminary examination on matter which has not been searched. This is the case irrespective of whether or not the claims are amended following receipt of the search report or during any Chapter II procedure.

Information on patent family members

Intr ional Application No PCT/US 99/17867

			,	101/03	99/17867
Patent document cited in search report		Publication date		Patent tamily member(s)	Publication date
WO 9304081	A	04-03-1993	US WOT AUU BG BRACCZ DEKPSIULPRXXOZLOUKS NN PROUKSSA	5663146 A 9220767 A 172742 T 666673 B 2541692 A 62655 B 98489 A 9206398 A 2116120 A 1073684 A B 9400400 A 69227462 D 69227462 T 605484 T 0605484 A 2124263 T 940807 A 69178 A 102848 A 7507039 T 247212 B 9204861 A 940592 A 244034 A 169562 B 112507 B 2126014 C 20494 A 5776901 A 9206337 A	02-09-1997 26-11-1992 15-11-1998 22-02-1996 16-03-1993 28-04-2000 28-02-1995 27-12-1994 23-02-1993 30-06-1993 16-11-1994 03-12-1998 08-04-1999 05-07-1999 13-07-1994 01-02-1999 21-02-1994 28-08-1995 05-04-1998 03-08-1995 15-03-2000 30-06-1994 14-04-1994 28-08-1995 30-08-1996 30-10-1997 10-02-1999 05-10-1994 07-07-1998 22-04-1993
WO 9407519	Α	14-04-1994	EP JP	0663834 A 8502250 T	26-07-1995 12-03-1996
US 5776901	A	07-07-1998	US CN MX AT AU BBG BRACZE DEKP. SIU IP NO PL	5663146 A 1073684 A,B 9204861 A 244034 A 172742 T 666673 B 2541692 A 62655 B 98489 A 9206398 A 2116120 A 9400400 A 69227462 D 69227462 T 605484 T 0605484 A 2124263 T 940807 A 69178 A 102848 A 7507039 T 247212 B 940592 A 169562 B	02-09-1997 30-06-1993 30-06-1994 28-08-1995 15-11-1998 22-02-1996 16-03-1993 28-04-2000 28-02-1995 27-12-1994 23-02-1993 16-11-1994 03-12-1998 08-04-1999 05-07-1999 13-07-1999 13-07-1994 01-02-1999 21-02-1994 28-08-1995 05-04-1998 03-08-1995 15-03-2000 14-04-1994 30-08-1996

Information on patent family members

PCT/US 99/17867

Patent document cited in search report		Publication date		Patent family member(s)	Publication date
US 5776901	А		RO RU SK WO ZA	112507 B 2126014 C 20494 A 9304081 A 9206337 A	30-10-1997 10-02-1999 05-10-1994 04-03-1993 22-04-1993
EP 0083864	A	20-07-1983	USSUBA CAE DKKIELLKRZHTOAHX	4410512 A 4410513 A 4411890 A 549053 B 8208035 A 1242435 A 1317069 A 3276319 D 114192 A 390883 A 833057 A,B, 54515 B 67577 A 82215 A 8902760 B 9002681 B 218384 A 27490 A 76041 A,B 8302272 A 8209519 A 21326 A 9203562 A	18-10-1983 18-10-1983 25-10-1983 09-01-1986 22-11-1983 27-09-1988 27-04-1993 19-06-1987 16-09-1992 26-08-1983 26-08-1983 08-11-1989 31-07-1988 31-07-1988 27-07-1989 23-04-1990 06-01-1989 23-07-1993 01-01-1983 07-07-1983 26-10-1983 13-10-1987 01-09-1992