AD-A089 494

DAVID W TAYLOR NAVAL SHIP RESEARCH AND DEVELOPMENT CE--ETC F/6 13/10 PREDICTIONS OF POWERING PERFORMANCE INCLUDING TOWROPE PULL AND --ETC(U)

UNCLASSIFIED DTNSRDC/SPD-0957-01

ML

END

Log I

Research and Development Ce--etc F/6 13/10

NR

END

Log I

Research and Development Ce--etc F/6 13/10

Research and Developm

DAVID W. TAYLOR NAVAL SHIP RESEARCH AND DEVELOPMENT CENTER

Bethesda, Maryland 20084

PREDICTIONS OF POWERING PERFORMANCE INCLUDING TOWROPE PULL AND THE RESULTS OF PROPELLER DISK WAKE SURVEY FOR THE ARS-46 SALVAGE SHIP REPRESENTED BY MODEL 5391

K.J. Anderson and W.G. Day

APPROVED FOR PUBLIC RELEASE: DISTRIBUTION UNLIMITED

SHIP PERFORMANCE DEPARTMENT

September 1980

DTNSRDC/SPD-0957-01

PREDICTIONS OF POWERING PERFORMANCE INCLUDING TOWROPE PULL AND THE RESULTS OF PROPELLER DISK WAKE SURVEY FOR THE ARS-46 SALVAGE SHIP REPRESENTED BY MODEL 5391.

MAJOR DTNSRDC ORGANIZATIONAL COMPONENTS

The state of the s

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

REPORT DOCUMENTATION	N PAGE	BEFORE COMPLETING FORM
1. REPORT NUMBER	2. GOVT ACCESSION NO.	3. RECIPIENT'S CATALOG NUMBER
DTNSRDC/SPD-0957-01 (AD-1089 40	94
4. TITLE (and Subtitle)		5. TYPE OF REPORT & PERIOD COVERED
PREDICTIONS OF POWERING PERFORMA	NCE INCLUDING	
TOWROPE PULL AND THE RESULTS OF	PROPELLER DISK	Final
WAKE SURVEY FOR THE ARS-46 SALVA	GE SHIP	6. PERFORMING ORG. REPORT NUMBER
REPRESENTED BY MODEL 5391.		
7. AUTHOR(s)		8. CONTRACT OR GRANT NUMBER(a)
K.J. Anderson and W.G. Day		
}		
9. PERFORMING ORGANIZATION NAME AND ADDRE	SS	10 PROGRAM ELEMENT PROJECT, TASK AREA & WORK UNIT NUMBERS
David W. Taylor Naval Ship R&D C	enter	NAVSEA Work Request WR91584
Bethesda, MD 20084		DTNSRDC Work Units 1524-698
Ship Performance Department		and 1524-710.
11. CONTROLLING OFFICE NAME AND ADDRESS Naval Sea Systems Command		12. REPORT DATE September 1980
Hull Form Design, Performance and	d Stability Branch	12 NUMBER OF BACES
Washington, D.C. 20362	•	47
14. MONITORING AGENCY NAME & ADDRESS(II differ	rent from Controlling Office)	15. SECURITY CLASS. (of this report)
		UNCLASSIFIED
		154. DECLASSIFICATION DOWNGRADING SCHEDULE
		SCHEDULE
16. DISTRIBUTION STATEMENT (of this Report)		
Tide bood book door Wall door book		
Distribution Unlimited Approved for Public Release	50	
inpproved for rubile nereal	JC	
17. DISTRIBUTION STATEMENT (of the abatract entere	ed in Block 20. If different fro	m Report)
18. SUPPLEMENTARY NOTES		
19. KEY WORDS (Continue on reverse side if necessary	and identify by block number)	
Salvage Ship Resistance and Prop	ulsion	
Towrope Pull		
Wake Survey		
Model Experiments		
20. ABSTRACT (Continue on reverse side if necessary a	and identify by block number)	
N		tank to determine the fully
appended powering predictions for	ucted in a cowing	cank to determine the rully
(ARS-46) fitted with stock prope	i a pieliminary de 11ere: Powerine :	redictions for the ship coin
astern and for the ship in bollar	rd-bull and toward	bearefions for the suit going
presented. The results of a wake		
the propeller disk are presented		
distribution of the longitudinal	and tangential ve	clocities are also presented.

DD 1 JAN 73 1473

EDITION OF 1 NOV 65 IS OBSOLETE 5 'N 0102-LF-014-6601

UNCLASSIFIED

1 SECURITY CLASSIFICATION OF THIS PAGE (When Data Brieres

2×11/4

of the state of th

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)	
}	
}	
	ł
	•
	, and the second se
1	

TABLE OF CONTENTS

	Page
LIST OF FIGURES	iv
LIST OF TABLES	v
NOTATION	vi
ABSTRACT	1
ADMINISTRATIVE INFORMATION	1
INTRODUCTION	1
DESCRIPTION OF MODEL	1
DESCRIPTION OF EXPERIMENTS AND PRESENTATION OF RESULTS	2
CONCLUSIONS	4

Ί, .

LIST OF FIGURES

			Page
1		Ship Lines Drawing of Model 5391 Representing the ARS-46 Design	. 5
2	-	Open Water Curves for Propellers 3228 and 3229	• 6
3	-	Optimum Rudder Angle for ARS-46 Represented by Model 5391	. 7
4	_	Powering Predictions for ARS-46 Represented by Model 5391	. 8
5	-	Powering Predictions for ARS-46 Represented by Model 5391 in the Ahead Bollard Pull Condition	. 9
6	-	Powering Predictions for ARS-46 Represented by Model 5391 in the Ahead Towrope Pull Condition	. 10
7	-	Powering Predictions for ARS-46 Represented by Model 5391 in the Backing Condition	. 11
8	-	Powering Predictions for ARS-46 Represented by Model 5391 in the Astern Bollard Pull Condition	• 12
9	-	Pitot Tube Rake Arrangement Showing Spherical Head Pitot Tubes.	. 13
10	_	Circumferential Distribution of the Longitudinal, Tangential and Radial Velocity Component Ratios - Radius Ratio = 2.332	. 14
11	-	Circumferential Distribution of the Longitudinal, Tangential and Radial Velocity Component Ratios - Radius Ratio =0.516	. 15
12	-	Circumferential Distribution of the Longitudinal, Tangential and Radial Velocity Component Ratios - Radius Ratio =0.715	. 16
13	-	Circumferential Distribution of the Longitudinal, Tangential and Radial Velocity Component Ratios - Radius Ratio =0.883	. 17
14	-	Circumferential Distribution of the Longitudinal, Tangential and Radial Velocity Component Ratios - Radius Ratio = 1.088	. 18
15	-	Radial Distribution of the Mean Velocity Component Ratios	. 19
		Radial Distribution of the Mean Advance Angle and Advance	. 20

LIST OF TABLES

			Page
1	-	Ship and Model Data for the ARS-46 Design Represented by Model 5391	21
2	-	Effective Power Predictions for ARS-46, Represented by Model 5391, Fully Appended	22
3	-	Powering Predictions for ARS-46, Represented by Model 5391	23
4	-	Powering Predictions for ARS-46, Represented by Model 5391, in the Ahead Bollard Pull Condition	24
5	-	Powering Predictions for ARS-46, Represented by Model 5391, in the Ahead Towrope Pull Condition	25
6	-	Effective Power Predictions for ARS-46, Represented by Model 5391, In the Backing Condition	26
7	-	Powering Predictions for ARS-46, Represented by Model 5391, in the Backing Condition	27
8	-	Powering Predictions for ARS-46, Represented by Model 5391, in the Astern Bollard Pull Condition	28
9	-	Listing of Mean Velocity Component Ratios, the Mean Advance Angles and other Derived Quantities at the Experimental and the Interpolated Radii	29
10	-	Harmonic Analyses of Longitudinal Velocity Component Ratios at the Experimental Radii	30
11	-	Harmonic Analyses of Longitudinal Velocity Component Ratios at the Interpolated Radii	32
12	-	Harmonic Analyses of Tangential Velocity Component Ratios at the Experimental Radii	34
		Harmonic Analyses of Tangential Velocity Component	26

v

NOTATION

The notation in this report is consistent with the International Towing Tank Conference Standard Symbols of 1976.* Any other symbols used in this report are defined on the following pages.

^{*}The British Ship Research Association, Technical Memorandum Number 500, May 1976

CONVENTIONAL SYMBOL	SYMBOL APPEARING ON PLOTS	DEFINITION
A _N	COS COEF	The cosine coefficient of the N th harmonic*
B _N	SIN COEF	The sine coefficient of the Nth harmonic*
С	С	Pressure reading at center hole of 5-hole pitot tube
D	***************************************	Propeller diameter
$^{\mathtt{J}}\mathbf{v}$	J _v	Apparent advance coefficient $J_V = \frac{V}{nD}$
N	N	Harmonic number
n	POR 100-100	Propeller revolutions
P	P	Pressure
r/R or x	Radius or RAD.	Distance (r) from the propeller axis expressed as a ratio of the propeller radius (R)
R _n	R _n	Reynolds number V·L/v
R1, R2	R1, R2	Pressure reading at radial holes of 5-hole pitot tube
Т1, Т2	T1, T2	Pressure reading at tangential holes of 5-hole pitot tube
v	v	Actual model or ship velocity
$v_{b}^{(x,\theta)}$		Resultant inflow velocity to blade for a given point
<u>v</u> ^p (x)		Mean resultant inflow velocity to blade for a given radius
V _r (x,θ)	VR	Radial component of the fluid velocity for a given point (positive toward the
(*see footnote on pa	age x)	shaft centerline)

CONVENTIONAL SYMBOL	SYMBOL APPEARING ON PLOTS	DEFINITION
$\overline{V}_{r}(x)$		Mean radial velocity component for a given radius
$V_{r}(x,\theta)/V$	VR/V	Radial velocity component ratio for a given point
$\overline{V}_{r}(x)/V$	VRBAR	Mean radial velocity component ratio for a given radius
V _t (x,θ)	VT	Tangential component of the fluid velocity for a given point (positive in a counterclockwise direction looking forward)
$\overline{v}_{t}(x)$		Mean tangential velocity component for a given radius
V _t (x,θ)/V	VT/V	Tangential velocity component ratio for a given point
$\overline{V}_{t}(x)/V$	VTBAR	Mean tangential velocity component ratio for a given radius
(v _t (x)/V) _N	AMPLITUDE	Amplitude (B_N for single screw symmetric; C_N otherwise) of Nth harmonic of the tangential velocity component ratio for a given radius*
V _x (x,θ)	VX	Longitudinal (normal to the plane of survey) component of the fluid velocity for a given point (positive in the astern direction)
$\widetilde{V}_{x}(x)$		Mean longitudinal velocity component for a given radius
$v_{x}(x,\theta)/v$	VX/V	Longitudinal velocity component ratio for a given point
v _x (x)/v	VXBAR	Mean longitudinal velocity component ratio for a given radius
(v _x (x)/v) _N	AMPLITUDE	Amplitude (A _N for single screw symmetric; C _N otherwise) of Nth harmonic of the longitudinal velocity component ratio for a given radius*

CONVENTIONAL SYMBOL

SYMBOL APPEARING ON PLOTS

DEFINITION

1-w(x)

1-WX

Volumetric mean velocity ratio from the hub to a given radius

$$1-w(r/R) = \begin{bmatrix} 2 \cdot \int_{x_c}^{r/R} (\overline{v}_{x_c}(x)/V) \cdot x \cdot dx \\ \frac{r_{hub}/R}{(r/R)^2 - (r_{hub}/R)^2} \end{bmatrix}$$

where
$$\overline{V}_{\mathbf{x}_{\mathbf{c}}}(\mathbf{x})/V = \int_{0}^{2\pi} \frac{V_{\mathbf{x}_{\mathbf{c}}}(\mathbf{x},\theta)}{2\pi V} d\theta$$

and $V_{\mathbf{x}_{\mathbf{c}}}(\mathbf{x},\theta)/V = (V_{\mathbf{x}}(\mathbf{x},\theta)/V)$
 $-(V_{\mathbf{c}}(\mathbf{x},\theta)/V) \text{ tan } (\beta(\mathbf{x},\theta))$

1-w,(x)

1-WVX

Volumetric mean velocity ratio from the hub to a given radius (without the tangential velocity correction)

$$1-w(r/R) = \begin{bmatrix} r/R \\ 2 \cdot \int (\overline{V}_{\mathbf{x}}(x)/V) \cdot x \cdot dx \\ \hline r_{\text{hub}}/R \\ \hline (r/R)^2 - (r_{\text{hub}}/R)^2 \end{bmatrix}$$

β(x,θ)

Advance angle in degrees for a given point

 $\overline{\beta}(x)$

BBAR

Mean advance angle in degrees for a given radius

+**DB**

BPOS

Variation of the maximum advance angle from the mean for a given radius

CONVENTIONAL SYMBOL

SYMBOL APPEARING ON PLOTS

DEFINITION

 $\boldsymbol{\varphi}_{\boldsymbol{N}}$

PHASE ANGLE

Phase angle of Nth harmonic*

*The harmonic amplitudes of any circumferential velocity distribution

f (θ) are the coefficients of the Fourier Series:

$$f(\theta) = A_o + \sum_{N=1}^{M} A_N \cos(N\theta) + \sum_{N=1}^{N} B_N \sin(N\theta)$$

$$= A_o + \sum_{N=1}^{M} C_N \sin(N\theta + \phi_N)$$

VELOCITY DIAGRAM OF BETA ANGLES

ENGLISH/SI EQUIVALENTS

ENGLISH	SI
1 inch	25.400 millimetres [0.0254 m (metres]
1 foot	0.3048 m (metres)
1 foot per second	0.3048 m/sec (metres per second)
1 knot	0.5144 m/sec (metres per second)
l degree (angle)	0.01745 rad (radians)
1 inch Water (60°F)	248.8 pa (pascals)

ABSTRACT

Model experiments were conducted in a towing tank to determine the fully appended power predictions for a preliminary design of a Salvage Ship (ARS-46) fitted with stock propellers. Powering predictions for the ship going astern and for the ship in bollard-pull and towrope-pull conditions are presented. The results of a wake survey experiment performed in the plane of the propeller disk are presented. The harmonic analysis of the circumferential distribution of the longitudinal and tangential velocities are also presented.

ADMINISTRATIVE INFORMATION

This project was performed at the David W. Taylor Naval Ship R&D Center (DTNSRDC) Bethesda, Maryland 20084. This investigation was authorized by the Naval Sea Systems Command (NAVSEA) in Work Request N65197-79-WR91584. The DTNSRDC Work Unit Numbers are 1524-698 and 1524-710.

INTRODUCTION

The Naval Sea Systems Command (NAVSEA) initiated a model experimental program at the David W. Taylor Naval Ship R&D Center (DTNSRDC) to aid in the evaluation of a preliminary design for a 240-foot (73.15 m) ARS-46 salvage ship. This report presents results from the following experiments:

- 1. Optimum Rudder Angle, Resistance and Free Route Propulsion
- 2. Ahead Bollard Pull and Towrope Pull
- 3. Astern Propulsion and Bollard Pull
- 4. Wake Survey in Free Route Ahead Condition

DESCRIPTION OF MODEL

Fiberglass Model 5391 represents a 240-foot (73.15 m) ARS-46 salvage ship constructed in accordance with NAVSEA molded lines Drawing 3213 SK.NO. 0006 dated 6 June 1979. A linear ratio of 15.357 was selected so that a 4-bladed stock propeller with a diameter of 7.72 inches (19.61 cm) could be used in the powering experiments. All experiments were performed using the model fitted with shafts, struts, bilge keels. skeg. rudders and with the bow thruster tunnel completely open. Turbulence was induced by a

0.025 inch (0.64 mm) trip wire located 9.378 inches (23.82 cm) aft of the leading edge of the bow. Since the trip-wire drag appeared to be insignificant, no correction was made to the total drag of the model. Additional ship and model data along with hull characteristics are given in Table 1. Abbreviated hull lines of the ARS-46 are shown in Figure 1. Open-water characteristic curves for DTNSRDC stock propellers 3228 and 3229 are shown in Figure 2.

DESCRIPTION OF EXPERIMENTS AND PRESENTATION OF RESULTS

All powering predictions reported herein are for the ship operating in smooth, deep, salt water with a temperature of 15 degrees Celsius. A correlation allowance (${\rm C_A}$) of 0.0005 and the 1957 ITTC Ship-Model Correlation Line were used for all frictional calculations as requested by the sponsor. All predictions are made for the ship at the design draft of 15.5 feet (4.72 m), trimmed to a level baseline and a displacement corresponding to 2862 tons (2908 metric tons). Propeller rotation was in the outboard direction.

Data for the optimum rudder experiment are presented graphically in Figure 3. Predictions of P_E , P_D , and allied data from the resistance and the free route propulsion experiments are tabulated or Tables 2 and 3 and are shown graphically in Figure 4.

Data for the ahead bollard pull condition are tabulated in Table 4 and presented graphically in Figure 5. Data for the ahead towrope pull condition at a ship speed of 6 knots are presented in Table 5 and are presented graphically in Figure 6.

The P_E, P_D, RPM and other data from the backing resistance and propulsion experiments are presented in Tables 6 and 7. These data are presented graphically in Figure 7. The speeds for the backing condition were limited to a maximum of 8 knots full-scale as requested by the sponsor. Data for the astern bollard pull condition are presented in Table 8 and graphically presented in Figure 8.

The accuracies normally expected of model experiments for surface ships conducted at DTNSRDC deep-water basin at model speeds above 2 knots (for this ship 8 knots, full scale) are \pm 1.5 percent for effective power predictions and \pm 2.5 percent for delivered power predictions.

A propeller disk wake survey was performed with the model fitted with appendages except for one rudder. The wake survey was conducted with the model ballasted to represent a full load draft of 15.5 feet (4.72 m) with zero initial trim, at a displacement of 2862 tons (2908 metric tons) full scale, and at a velocity representing a ship speed of 16.0 knots (8.23 m/s). The propeller plane in which the measurements of velocity were taken was 5.0 feet (1.52 m) aft of section 18.

A pitot tube rake, DTNSRDC No. 6, and 4 differential pressure gauges were used to measure the velocities in the plane of the propeller disk at five radial locations. Figure 9 shows the five 5-hole spherical pitot tubes mounted in a housing.

The full scale propeller disk was 9.9 feet (3.02 m) in diameter. The measurements were made at non-dimensional radii (r/R) of 0.332, 0.516, 0.715, 0.883, and 1.088.

To ensure the proper running trim throughout the experiments, the model was towed at the proper speed and displacement, allowed to trim to a steady running condition and locked in place at this trimmed condition.

The circumferential distribution of the longitudinal, tangential, and radial velocity component ratios are shown graphically for each pitot tube radius in Figures 10 through 14. The mean longitudinal (VXBAR), tangential (VTBAR), and radial (VRBAR) component ratios of the velocity component ratios and volumetric mean wake velocity ratio $(1-w_{\chi})$ are presented in Talle 9. Except for the radial component (VRBAR), these quantities are shown graphically in Figure 15.

Calculated mean values of the advance angle (BBAR), and the maximum variations of advance angle, (BPOS) and (BNEG), are given in Figure 16 and Table 9. An advance coefficient, J, of 0.807, determined from the propulsion experiments, was used to calculate the advance angles. A diagram showing the relationship between the longitudinal and tangential velocity vectors, the advance coefficients and the advance angles is described in the notation section of this report.

Tables 10 through 13 present the harmonic analysis of the circumferential distributions of the longitudinal and tangential velocity component component ratios at the experimental radii.

The accuracy of the wake survey apparatus is estimated to be \pm 1 percent on the longitudinal velocity component ratio (V_X/V) except in areas where steep velocity gradients occur. In these areas such as behind a shaft strut the accuracy is significantly less.

CONCLUSIONS

The data from the free route propulsion experiments show that when fitted with 9.9-foot prototypes of DTNSRDC stock propellers 3228 and 3229, the ARS-46 will attain a speed of about 16.1 knots using 5200 delivered horsepower (3877 kW) at 205 propeller revolutions per minute.

The ahead bollard pull experimental data show that at 5200 delivered horsepower (3877 kW) a bollard pull of about 108,000 pounds (480.kN) will be attained. For the 6-knot towrope pull experiment at the delivered power of 5200 horsepower a pull of about 88,500 pounds (394.kN) will be attained.

Data from the astern propulsion experiment show that the ARS-46 will attain a backing speed of about 8.0 knots using about 690 delivered horsepower (514.kW) at 103 propeller revolutions per minute. The data for the astern bollard pull condition show that at the delivered power of 5200 horsepower (3877 kW) a bollard pull of about 87,000 pounds (387.kN) will be attained.

The data from the wake survey experiment has been compared with data from the ATS-1 design, which is somewhat similar to ARS-46. This comparison showed that the results from this wake survey are reasonable.

Figure 1 - SHIP LINES DRAWING OF MODEL 5391 REPRESENTING THE ARS 46 DESIGN

MODEL 539

Figure 4 - POWERING PREDICTIONS FOR ARS-46 REPRESENTED BY MODEL 5391

Figure 5 - POWERING PREDICTIONS FOR ARS-46 REPRESENTED BY MODEL 5391 IN THE AHEAD BOLLARD PULL CONDITION

Figure 6 - POWERING PREDICTIONS FOR ARS-46 REPRESENTED BY MODEL 5391 IN THE AHEAD TOWROPE PULL CONDITION

Figure 7 - POWERING PREDICTIONS FOR ARS-46 REPRESENTED BY MODEL 5391 IN THE BACKING CONDITION

Figure 8 - POWERING PREDICTIONS FOR ARS-46 REPRESENTED BY MODEL 5391 IN THE ASTERN BOLLARD PULL CONDITION

Figure 9 - PITOT TUBE ARRANGEMENT SHOWING SPHERICAL HEAD PITOT TUBES

Figure 10 - CIRCUMFERENTIAL DISTRIBUTION OF THE LONGITUDINAL, TANGENTIAL AND RADIAL VELOCITY COMPONENT RATIOS - RADIUS RATIO = .332

Figure 11 - CIRCUMFERENTIAL DISTRIBUTION OF THE LONGITUDINAL, TANGENTIAL AND RADIAL VELOCITY COMPONENT RATIOS - RADIUS RATIO = .516

Figure 12 - CIRCUMFERENTIAL DISTRIBUTION OF THE LONGITUDINAL, TANGENTIAL AND RADIAL VELOCITY COMPONENT RATIOS - RADIUS RATIO = .715

Figure 13 - CIRCUMFERENTIAL DISTRIBUTION OF THE LONGITUDINAL, TANGENTIAL AND RADIAL VELOCITY COMPONENT RATIOS - RADIUS RATIO = .883

Figure 14 - CIRCUMFERENTIAL DISTRIBUTION OF THE LONGITUDINAL, TANGENTIAL AND RADIAL VELOCITY COMPONENT RATIOS - RADIUS RATIO = 1.088

Figure 15 - RADIAL DISTRIBUTION OF THE MEAN VELOCITY COMPONENT RATIOS

Figure 16 - RADIAL DISTRIBUTION OF THE MEAN ADVANCE ANGLE AND ADVANCE ANGLE VARIATIONS

Table 1

SHIP AND MODEL DATA FOR ARS 46 DESIGN, REPRESENTED BY MODEL 5391 Appendages: Bare Hull with Skeg and Tunnel

ICIENTS					/L 0.51			/L 0.49	3. 4.80		/н 3.23	$\Delta/(.01L)^3$ 207.		S/VL 2.61			ICLENTS	08.7	· · ·	0.605 A/(.01L) ³ 207.03
LWL COEFFICIENTS		0.538	0.592		0.908 LE/L	0.792		0.605 LR/L	0.606 L/I		0.605 B _X /H	0.606 ∆/(0.695 8/			LBP COEFFICIENTS	0.550 L/By		0.605 A/(
		္ဗ	ပိ	٠,	ێ	ن:	₃ ,	n Pr	ပ	FA,	ာ မျ	ű	PR	C _{PV}				ပ	FQ	ဌီ
	el	Metric	;	4.76	4.76	0.99	0.31	W. 0.78F.W.	56.55 5.25	2.10m/s										
	Model	English	1	15.63	15.63	3.26	1.01			8.23 m/s 4.08										
	ď	Metric	•	73.15	73.15	15.24	4.72	2862. S.W. 2908. S.W.	1239.	8.23										
	Ship	English		240.0	240.0	50.0	15.5	2862. S.W	13337,	16.0			180	VIME = 1.033	0.66.0	age Ship	006			
DIMENSIONS			\	LENGIH (LWL)	LENGTH (LBP)	BEAM (BX)	DRAFT (H)	DISPL. IN TONS	WEITED SURF. SQ. FT. (SQ.M) 13337.	DESIGN V IN KNOTS (m/s)	LCB/LWL = .510	LCB/LBP = .510	WL. ENTRANCE HALF ANGLE =	$\lambda = 15.357 V/\overline{ML} = 1.03$		Lines: NAVSEA 240 ft Salva	Drawing No. 3213-0006	Date 6/11/79		

Table 2

EFFECTIVE POWER PREDICTIONS FOR ARS 46
REPRESENTED BY MODEL 5391
FULLY APPENDED

(EXPERIMENT 2)

LENGTH WETTED SURFA DISPLACEMENT	SURFACE	SHIP 240.00 FT (14536.50 FT (2862.10NS (73.2 M) 1350. SQ M) 2908. TONNE)	M) NNE)	MODEL 15.63 61.64	FT (4.763 SQ FT (5.73 TONS (.78	S M) SQ M) TONNE)	
		LINEAR	A RATIO	<u>u</u>	15.357			
		CORRELA	CORRELATION ALLOWANCE	ANCE (CA)	.00050	!	,	
S۸		B d		FRICTIONAL	i -	 	V-L	1000CR
KNOTS	M/S	dН	X	đ.	 3	f	, , , , ,	; ; ; ; ;
3.00	1.54	13.7	10.2	6.8	6.6	.058	. 194	1.410
3.50	1.80		16.1	13.8	10.3	.067	.226	1.420
4.00	2.06	32.0	23.8	20.3	15.2	.077	.258	1.435
4.50	2.31		33.9	28.6	21.3	980.	.290	1.460
5.00	2.57		46.5	38.8	28.9	960.	.323	1,490
5.50	2.83		62.1	51.0	38.1	.106	.355	1.535
6.00	3.09		81.3	65.6	48.9	.115	.387	1.591
6.50	3.34		104.7	82.7	61.7	.125	.420	1.660
7.00	3.60		132.7	102.5	76.4	.134	.452	1.740
7.50	3.86		165.7	125.1	93.3	. 144	.484	1.820
8.00	4.12		202.7	150.8	112.5	.154	.516	1.870
8.50	4.37		244.6	179.7	134.0	.163	.549	1.910
9.00	•	330.9	291.5	212.1	158.1	.173	.581	1.940
9.50	4.89		345.0	248.0	184.9	. 182	.613	1.980
10.00	5.14		407.2	287.7	214.5	.192	.645	2.043
10.50	5.40		480.2	331.4	247.1	.202	.678	2.135
11.00	5.66	757.9	565.2	379.1	282.7	.211	.710	2.250
11.50	5.92		661.9	431.3	321.6	. 221	.742	2.373
12.00	6.17		769.4	487.8	363.8	. 230	.775	2.489
12.50	6.43	1188.9	886.5	549.1	409.5	.240	.807	2.590
13.00	69.9		1016.1	615.2	458.8	.250	.839	2.690
13.50	6.94		1162.2	686.3	511.8	. 259	.871	2.803
14.00	7.20		1332.1	762.6	568.7	. 269	.904	2.950
14.50	7.46		1529.5	844.3	629.6	.279	.936	3.130
15.00	7.72		1754.5	931.5	694.6	. 288	.968	3.330
15.50	7.97	2698.7	2012.4	1024.4	763.9	. 298	1.001	3.555
16.00	8.23		2303.5	1123.2	837.6	307	1.033	3,795

γ,

Table 3

POWERING PREDICTIONS FOR ARS 46, REPRESENTED BY MODEL 5391 (EXPERIMENT 3)

DISPLACEMENT 2862 TONS (2908 tonnes)
DRAFT 15.5 FT (4.72 m)
WETTED SURFACE 14536 FT (1350 m²)
C 0.0005

EVEN KEEL FULLY APPENDED PROPELLERS 3228 AND 3229

SHIP SPEED	EFFECTIVE PO			ED POWER	REVOLUTIONS PER
(KNOTS) (M/SEC		KILO- ATTS)	(HORSE- POWER)	(KILO- WATTS)	MINUTE
3.0 1.5		10.	20.	15.	34.9
4.0 2.00		25.	50.	35.	46.6
5.0 2.5		45.	95.	70.	58.2
6.0 3.09		80.	165.	125.	69.9
7.0 3.60		135.	270.	205.	81.5
8.0 4.17		205.	415.	310.	93.2
9.0 4.63		290.	595.	445.	104.8
10.0 5.14		405	835.	620.	117.1
11.0 5.60		565.	1170.	870.	129.6
12.0 6.1		770.	1610.	1200.	143.0
13.0 6.69		1020.	2130.	1590.	155.9
14.0 7.20	1790.	1330.	2770.	2070.	169.2
15.0 7.77		1750.	3730.	2780.	185.2
16.0 8.2	3 3090.	2300.	5060.	3780.	203.7
I SHIP	EFFICIENCIES (E	TA)	THRUS	ST DEDUCT	TION ADVANCE
SPEED				JAKE FACT	
(KNOTS) ETAD	ETAO ETAH	ETAR	1-THDF	1-WFTT 1	-WFTQ ADVC
3.0 0.655	0.720 0.980	0.930	0.925	0.945	3.920 0.830
4.0 0.655	0.720 0.975	0.930	0.925	0.950	0.925 0.835
5.0 0.655	0.720 0.975		0.925	0.950	a.930 0.835
6.0 0.655	0.720 0.980	0.930	0.925		3.925 0.835
7.0 0.655	0.720 0.985		9.925		0.915 0.825
8.0 0.655	0.715 0.990	0.920	0.925		0.905 0.820
9.0 0.655	0.715 0.995		0.925		0.820
10.0 0.655	0.715 0.990	0.925	0.925		0.905 0.820
11.0 0.650	0.710 0.985	0.925	0.915		0.810 0.810
12.0 0.640	0.710 0.970		0.900		0.795
13.0 0.640 14.0 0.645	0.705 0.970 0.700 0.975	0.935	0.895		0.895 0.790 0.900 0.780
14.0 0.645 15.0 0.630	0.700 0.975 0.695 0.950	0.940 0.955	0.900 0.880		0.780 0.770 0.770
16.0 0.610	0.690 0.920	0.960	0.000		0.925 0.760
10.0 0.010	0.020 0.320	9.200	0.010	U.J. 6	0.100

NOTE: ALL VALUES ARE ROUNDED

Table 4

4.00

POWERING PREDICTIONS FOR ARS 46, REPRESENTED BY MODEL 5391, IN THE AHEAD BOLLARD PULL CONDITION

	3	(EXPERIMENT 4)
DISPLACEMENT	2862 TONS	(2908 tonnes)
DRAFT	15.5 FT	(4.72 m)
WETTED SURFACE	14536 FT ²	(1350 m ²)
₽	0.0005	•

EVEN KEEL FULLY APPENDED PROPELLERS 3228 AND 3229

BOI (1b force	BOLLARD PULL force) (newtons)	PROPEL (1b force)	PROPELLER THRUST force)	DELIVERED POWER (h.p.) (kilo	POWER (kilowatts)	RPM
10000.	44480.	10480.	46610.	155.	115.	47.
20000.	88965.	20880.	92880.	440.	330.	65.7
30000.	133445.	31245.	138985.	800.	595.	80.0
,00007	177930.	41560.	184870.	1220.	910.	92.(
.00005	222410.	51880.	230775.	1700.	1270.	103.0
.00009	266895.	62190.	276635.	2240.	1670.	113.0
70000.	311375.	72520.	322585.	2790.	2080.	121.9
80000.	355860.	82870.	368625.	3380.	2520.	130.0
.00006	400340.	93120.	414220.	4020.	2995.	137.5
100000.	444820.	103540.	460570.	4685.	3495.	145.(
110000.	489305.	113970.	506965.	5395.	4020.	151.6

Table 5 FOWERING PREDICTIONS FOR ARS 46, REPRESENTED BY MODEL 5391, IN THE AHEAD TOWROPE PULL CONDITION

		RIME				
DISPLACEMENT DRAFT WETTED SURPA CA	뜅	2862 TONS (15.5 FT 2 (14536 FT (0.0005	(2908 tonnes) (4.72 m) (1350 m ²)	EVE FUL PRO SHI	EVEN KEEL FULLY APPENDED PROPELLERS 3228 AND SHIP SPEED= 6 KNOTS	DED 3228 AND 3229 6 KNOTS
TOWROPE (1b force)	TOWROPE PULL force) (newtons)	(1b	PROPILLER THRUST force) (newtons)	DELIVERED POWER (h.p.) (kilo	POWER (kilowatts)	RPM
10000.	44480.	13440.	59785.	455.	340.	89.7
20000.	88965.	26070.	115965.	910.	.089	100.8
30000.	133445.	37990.	168990.	1380.	1030.	111.8
40000	177930.	49160.	218675.	1930.	1440.	122.5
50000	222410.	59970.	266760.	2500.	1865.	132.9
.00009	266895.	70800.	314935.	3150.	2350.	141.5
70000	311375.	81380.	362000.	3860.	2880.	149.8
80000.	355860.	92000.	409235.	4600.	3430.	158.4
.00006	400340.	102800.	457280.	5330.	3975.	165.0
100000.	444820.	115500.	513770.	6120.	4565.	172.0
110000.	489305.	128500.	571595.	6920.	5160.	178.2
120000.	533785.	142650.	634540.	.0777	5795.	184.9
130000.	578270.	156620.	.089969	8645.	6445.	191.0
140000.	622750.	170590.	758820.	9545.	7120.	197.0

EFFECTIVE POWERING PREDICTIONS FOR ARS 46, REPRESENTED BY MODEL 5391, IN THE BACKING CONDITION

	1	- 1	(EXPERIMENT	NT 7)			; 1	
LENGTH WETTED SU DISPLACE	H D SURFACE ACEMENT	246.00 FT (145 tr.50 FT (2862.10NS (73.7 ") 13.6. Su 2908. Tu	TURINE)	MODEL 15.63 01.54	FT (4.763 SQ +T (5.73 TONS (.78	SO K)	
	•	L TIVE AH	RATIC TOTICALIN	i <u>u</u>	15.347			
	1	. # (<u> </u>	TICH ALLUM	_	•			-
S >	S	a.		F HICTIONAL	•	2	\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-	1000CH
KNOTS	•		X X X X X X X X X X		 X S X	0 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	1 1 1 1 1 1	1
! 0	1.03	 			2.1	.03x	.129	3.96]
2.50		12,1	0.6	5.5	3.9	940.	.161	4.
•	•	18.	Ξ,	•	•	ı.C.	.194	.78
សំ	1.80	65.	•	3.		.067	.226	2.200
•	•		6	ċ	٠.	~	.258	F.F.
ů	•	• 7 5	•	æ	_	Ť	.290	.24
•	•	74.	Ċ.	æ	a •	T	. 323	.26
	•	5	4	1.	œ	• 106	.355	.29
9	•	128.	9	Ç,	œ	~	.387	.31
	•	160.	19.	ċ		.125	074°	.22
•	•	159.1	148.5	•	16.4	.134	.452	.22
ນ	٥	246.	84.	25.	٠,	. 144	. 48¢	20.
	•	308.	30.	50.	112.5	.154	.516	64.
r.	4.37	37	79.	_	4.	.163	.549	۰ ۳
•	•	977	45	\sim	1-8-2	.173	.581	• 56
		. 95 H	0.0		٠ ئ	\mathbf{x}		• 55
10.00	5,14	{* ,	=	\mathfrak{D}	7.4.5	Ġ	4	.71
10.50	5.40	735.P	148.7		247.1	505.	.67A	2.762

Table 7

POWERING PREDICTIONS FOR ARS 46, REPRESENTED BY MODEL 5391, IN THE BACKING CONDITION

DISPLACEMENT DRAFT WETTED SURFACE	2862 TONS 15.5 FT 14536 FT	(EXPERIMENT 8) (2908 tonnes) (4.72 m)	EVEN KEEL FULLY APPENDED
CA	0.0005	(1350 m ²)	PROPELLERS 3228 AND 3229

SHIP !	SPEED	EFFECTIVE	POWER (PE)	DELIVERE	D POWER	REVOLUTIONS
		(HGRSE-	(KILO-	(HORSE-	(KILO-	bE6
(KNOTS)	(M/SEC:	POWER)	WATTS)	POWER)	MATTS)	MINUTE
3.0	1.54	20.	15.	45.	30.	39.7
3.5	1.60	25.	20.	60.	45.	45.1
4.0	2.06	40.	30.	90.	7Ĥ.	51.5
4.5	2.31	55.	40.	125.	95.	57.8
5.0	2.57	75.	55.	175.	130.	64.4
5.5	2.83	100.	75.	230.	175.	71.0
6.0	3.09	130.	95.	300.	225.	77.0
6.5	3.34	160.	120.	375.	280.	83.1
7.0	3.60	200.	150.	460.	340.	89.6
7.5	3.86	245.	185.	560.	420.	96.1
8. ខ	4.12	310.	230.	685.	510.	102.4
9.5	4.37	375.		820.	610.	109.1
១.ភ	4.63	450.	335.	975.	730.	115.3
9.5	4.89	535.	400.	1150.	860.	123.2
SHIP	E	FFICIENCIE	S(ETO)	THRUS	T DEDUCT	FOREVCE NOI
SPEED	C. 1	T TOTE HOTE.	U.E.1717		AKE FACT	
(KNOTS)	ETPD	ETAO E	TAH ETAR		1-NFT 1	
7 .7		0.700 0.1			1 005 0	

SHIP	€.	FF ICIEN	CIESCET	Ά)		ST DEDU WAKE FA		FCKEVCA
SPEED (KNOTS)	ETPD	ETAO	ETAH	ETAR	1-TRDF	WAKE FA 1-UFT		
3.0	0.425	0.700	0.775	0.780	0.780	1.005	0.885	0.780
3.9	ŭ.425	0.710	0.775	0.775	0.780	1.005	0.890	ଡ଼.୭୯୭
4, ફી	0.425	6.795	0.785	0.770	0.780	0.995	0.875	0.795
4.5	0.430	0.710	0.780	0.775	0.780	1.000	0.885	0.800
5.0	0.430	0.710	0.775	0.775	0.780	1.005	ମ.ଅବଶ	0.800
5.5	ი.4ერ	0.710	0.770	0.780	0.780	1.010	0.900	0.800
6.0	0.430	0.710	0.780	0.775	0.780	1,960	0.885	0.800
6.5	3,430	0.710	0.765	0.790	0.765	0.995	0.890	0.795
7.0	0.435	0.710	0.760	0.805	0.760	მ.995	0.900	0.795
7.5	1. 4.10	0.710	0.760	0.815	0.760	0.995	0.90%	0.795
8.0	9.459	6.705	0.775	0.830	0.760	0.985	0.900	0.790
8.5	0.455	0.705	0.780	0.830	0.770	0.990	0.905	0.790
9.0	0.460	9.795	0.795	0.820	0.785	0.990	0.900	0.790
9.5	ค.465	0.710	0.790	0.830	0.800	1.010	0.930	0.800

Table 8

POWERING PREDICTIONS FOR ARS 46, REPRESENTED BY MODEL 5391, IN THE ASTERN BOLLARD PULL CONDITION

		RPM	52.5	72.9	88.0	101.0	113.0	123.4	133.0	142.0	150.0	158.0	165.5	172.2
במפע אמני	FULLY APPENDED PROPELLERS 3228 AND 3229	DELIVERED POWER h.p.) (kilowatts)	185.	460.	815.	1225.	1700.	2210.	2765.	3365.	3990.	4655.	5350.	6065.
-		DELIVERI (h.p.)	245.	620.	1090.	1640.	2280.	2960.	3705.	4510.	5350.	6240.	7170.	8130.
(EXPERIMENT 6)	(4.72 m) (1350 m ²)	PROPFLLER THRUST [orce] (newtons)	50530.	101065.	152440.	203240.	254215.	305190.	357525.	409950.	463905.	521890.	583250.	647795.
(EXPERI	15.5 FT 2 14536 FT 2 0.0005	PROPFLL (1b force)	11360.	22720.	34270.	45690.	57150.	68610.	80375.	92160.	104290.	117325.	131120.	145630.
ENBN#	SURFACE	PULL (newtons)	44480.	88965.	133445.	177930.	222410.	266895.	311375.	355860.	400340.	444820.	489305.	533785.
T S DI A CEMENT	DRAFT WETTED	BOLLARD PULL (1b force) (newt	10000.	20000.	30000.	40000.	.00005	.00009	70000.	80000	.00006	100000.	110000.	120000.

.837 AUG 79 MARMONIC ANALYSIS FOR ARS REPRESENTED BY MODEL 5391 PROPELLER DIAMETER & 9.88 FEET

•	20.	. 934	910.	.021	. 984	.981	12.25	1.49	-3.72
6	000.	.959	.007	.010	. 992	686.	13.82	1.55	10.00
	005.	116.	.002	900.	866.	.994	15.58	1.68 77.50	10.00
9	2020	.983	.003	010.	1.003	866.	17.51	1.77	10.00
6	00/.	.980	600.	.022	1.010	1.004	19.72	2.30	7.50
•	209.	966.	. 60.	.016	1.020	1.012	23.01	2.69	7.50
,	500	1.021	.013	900.	1.027	1.015	27.52	3.19	-5.63
•	004.	1.028	.029	.034	1.027	1.009	32.95	5.34	2.50
	. 247	1.025	120.	.119	0.00.0	0.000	44.79	13.45	-16.81 357.50
•	880.	.934	.016	.021	. 984	. 982	12.38	1.51	12.50
6	, 88 88 98	616.	.001	.006	866.	966.	15.89	1.68	10.00
	.715	626.	.008	.022	1.011	1.005	19.32	50.00	7.50
1	.516	1.019	110.	.003	1.025	1.013	26.76	2.99	-5.46 315.00
	.332	VXBAR = 1.029	.045	.065	1-WVX = 1.027	= 1.003	= 37.57	= 8.38 = 22.50	# -8.64 0.00
,	RADIUS =	BAR =	VTBAR =	VREAR =	₩ X X	1-WX =	BBAR =	BPOS =	BNEG =
	Œ	×	٧٦	>	-	<u>,</u>	88	a r	Z I

VXBAR VRBAR 1-WYX X X X BBBAR BPDS BNEG

IS CIRCUMFERENTIAL MEAN LONGITUDINAL VELOCITY.
IS CIRCUMFERENTIAL MEAN TANGENTIAL VELOCITY.
IS CIRCUMFERENTIAL MEAN RADIAL VELOCITY.
IS VOLUMETRIC MEAN WAKE VELOCITY WITH TANGENTIAL CORRECTION.
IS VOLUMETRIC MEAN WAKE VELOCITY WITH TANGENTIAL CORRECTION.
IS MEAN ANGLE OF ADVANCE.
IS WARIATION BETWEEN THE MAXIMUM AND MEAN ADVANCE ANGLES (CELTA BETA PLUS).
IS VARIATION BETWEEN THE MINIMUM AND MEAN ADVANCE ANGLES (CELTA BETA MINUS).
IS ANGLE IN DEGREES AT WHICH CORRESPONDING BPOS OR BNEG OCCURS.

- Listing of the Mean Velocity Component Ratios, the Mean Advance Angles and other Derived Quantities at the Experimental and the Interpolated Radii Table 9

Table 10 - Harmonic Analyses of Longitudinal Velocity Component Ratios at the Experimental Radii

.837		80	.0278	.0201	.0156	.0183	.0070
AUG 79	(v/xv)	7	.0213	.0170	.0164	.0138	.0099
JEL 5391	RATIOS	9	.0055 188.6	.0115 191.8	.0127	.0118	.0059 106.3
ED BY MOD	COMPONENT	ហ	.0098	.0055	.0064	.0066	.0048
PRESENTED B	ELOCITY (4	.0344	.0054	.0068	.0080	.0067
ANALYSIS FOR ARS REP PROPELLER DIAMETER =	UDINAL VI	ო	.0497	.0209	.0213	.0245	.0357 3 30.0
ALYSIS F PELLER D	F LONGIT	7	.0734	.0302	.0354	.0437	.0734 299.6
HARMONIC ANALYSIS FOR ARS REFRESENTED BY MODEL 5391 PROPELLER DIAMETER = 9.88 FEET	VALYSES O	-	.0567	.0307	.0187	.0849	.1185
H.	HARMONIC ANALYSES OF LONGITUDINAL VELOCITY COMPONENT RATIOS	HARMONIC	RADIUS = .332 AMPLITUDE = PHASE ANGLE =	RADIUS = .516 AMPLITUDE = PHASE !NGLE =	RADIUS = .715 AMPLITUDE = PHASE ANGLE =	RADIUS = .883 AMPLITUDE = = PHASE ANGLE =	RADIUS = 1.088 AMPLITUDE = = PHASE ANGLE =
		H	A A G	A 4 7 A 2 I	AAG	SA G A E I	A A A

, Y

Table 10 (continued)

	HARMONIC ANALYSIS FOR ARS REPRESENTED BY MODEL 5391 PROPELLER DIAMETER = 9.88 FEET	NALYSIS	FOR ARS STAMETER	FE 9188	TED BY MOD FEET	EL 5391	AUG 79	.807
HARMONIC	HARMONIC ANALYSES OF LONGITUDINAL VELOCITY COMPONENT RATIOS	OF LONGI	TUDINAL	VELOCITY	COMPONENT	RATIOS	(v/xv)	
HARMONIC =	6	0	11	12	13	4	15	
RADIUS = .332 AMPLITLDE = FHASE ANGLE =	.0273	.0184	.0081	.0017	.0081	.0092 85.3	.0086 84.0	
RADIUS = .516 AMPLITUDE = PHASE ANGLE =	.0180	.0084	.0036	.0097	.0159 142.9	.0187	.0160	
RADIUS = .715 AMPLITUDE = PHASE ANGLE =	.0166	.0126	.0110	.0135	.0127	.0118 144.9	.0097	
RADIUS = .883 AMPLITUDE = FHASE ANGLE =	.0200	.0208	.0192	.0128	.0099	.0123	.0091	
RADIUS = 1.088 AMPLITUDE = PHASE ANGLE =	.0062	.0076 .0121 .0102	142.0	2010.	.0055	500.	.0039	

Table 11 - Harmonic Analyses of Longitudinal Velocity Component Ratios at the Interpolated Radii

I	HARMONIC ANALYSIS PROPELLER		FOR ARS DIAMETER	RE PRESEN = 9.88	TED BY MODEL FEET	EL 5391	AUG 79 JA ≡	.807
HARMONIC	ANALYSES	DF LONGI	LONGITUDINAL	VELOCITY	COMPONENT	RATIOS	(VX/V)	
HARMONIC =		8	ဗ	4	ស	9	7	ω
RADIUS = .247 AMPLITUDE = = PHASE ANGLE =	.0726 285.8	.1090	.0734	.0573 309.8	.0216	.0015	.0249	.0330
RADIUS = .400 AMPLITUDE = PHASE ANGLE =	.0459	.0520	.0356 3 06.9	.0204	.0026	.0083	.0193	.0245 207.8
RADIUS = .500 AMPLITUDE = PHASE ANGLE =	.0326	.0321	.0222	.0068	.0048	.0112	.0172	.0206
RADIUS = .600 AMPLITUDE = PHASE ANGLE =	.0124	.0318	.0210	.0071	.0066	.0127	.0170	.0166
RADIUS = .700 AMPLITUDE = PHASE ANGLE =	.0163	.0349	.0213 306.8	.0070	.0065	.0129	.0165	.0156
RADIUS = .800 AMPLITUDE = PHASE ANGLE =	.0560	.0378	.0215	.0069	.0062	.0126	.0153	.0184
RADIUS = .900 AMPLITUDE = PHASE ANGLE =	.0897	.0454	.0253	.0078 191.8	.0064	.0113	.0134	.0:79 188.6
RADIUS = 1.000 AMPLITUDE = PHASE ANGLE =	.1107	.0580	.0302 336.9	.0034	.0036	.0058	.0101	.0131 183.9
RADIUS = 1.100 AMPLITUDE = PHASE ANGLE =	.1185	.0734 299.6	.0357 330.0	.0067	.0048	.0059	.0099	.0370

Table 11 (continued)

I	HARMONIC ANALYSIS PROPELLER	NAL		FOR ARS I DIAMETER	REPRESENTED BY		MODEL 5391	AUG 79 JA =	.807
É	HARMONIC AMALYSES	0F L	ONGIT	UDINAL	LONGITUDINAL VELOCITY	COMPONENT	IT RATIOS	(v/xv)	
	6	-	0	:	2	13	14	15	
	.0348 205.8	2.6	.0267 219.7	.0150	.0097	.0147	.0206	.0235	
	.0231	0.0	.0137	.0040	.0044	.0105	.0119	.0092	
	.0186	2,5	.0090	.0031	.0092	.0154	.0182	.0155	
	.0158	2,2	.0083 205.8	.0056 152.6	.0095	.0145	.0148	.0121	
	.0163	ς.Ψ	.0119	.0104	.0103	.0129	.0121	137.3	
	.0200	0.12	.0190	.0168	.0122	.0114	.0129	.0099	
	.0195	0,1	.0206 172.8	.0192	.0127	.0096	.0120	.0088	
	.0142	2.4	.0159	.0165	.0116	.0073	.0090	.0064	
	.0062	0.0	.0076	.0121	.0102	.0055 125.8	.0052	.0039 54.0	

Harmonic Analyses of Tangential Velocity Component Ratios at the Experimental Radii Table 12 -

. 807	6 7 8	.0210 .0261 .0283 96.8 101.9 112.0	.0106 .0121 .0126 109.4 119.4 128.6	.0132 .0101 .0075 121.4 128.3 107.7	.0100 .0119 .0130 92.4 103.9 107.3	.0074 .0052 .0056 100.0 101.0 73.6
PROPELLEM DIAMETER = 9.88 FEET C ANALYSES OF TANGENTIAL VELOCITY COMPONENT RATIOS	ហ	.0134	. 0075	.0143	9.00.	.0092
ELOCITY	4	.0115	.0076	.0136	.0031 75.8	.0048
ENTIAL V	ო	.0196	.0100	.0105	.0046	.0053
OF TANG	8	.0252 137.8	.0101	.0073	.0225	.0205 215.8
ANALYSES OF TANGENTIAL VELOCITY	-	.2163	.1800	.1655	.1754	.1613
HARMONIC	HARMONIC =	RADIUS = .332 AMPLITUDE = PHASE ANGLE =	RADIUS = .516 AMPLITUDE = PHASE f NGLE =	RADIUS = .715 AMPLITUDE = PHASE ANGLE =	RADIUS = .883 AMPLITUDE = PHASE ANGLE =	RADIUS = 1.088 AMPLITUDE = PHASE ANGLE =

γ.

Table 12 (continued)

FOR ARS REPRESENTED BY MODEL 5391 AUG 79 DIAMETER = 9.88 FEET JA = .807	HARMONIC ANALYSES OF TANGENTIAL VELOCITY COMPONENT RATIOS (VT/V)	12 13 14 15	.0026 .0065 .0092 .0093 72.5 15.5 17.5 25.9	.0094 .0132 .0142 .0133 54.6 57.5 72.7 83.7	.0145 .0118 .0092 .0055 74.1 79.1 78.6 57.6	.0104 .0117 .0104 .0091 65.5 65.7 63.8 67.1	.0C32 .0064 .0045 .0046
ANALYSIS FOR ARS RE PROPELLER DIAMETER =	ENTIAL VEL	-	.0090	.0060	.0143	73.6	.0052
NALYSIS F	OF TANGE	5	.0184	.0062	.0116	9.98 9.98	.0084
HARMONIC ANALYSIS PROPELLER	ANALYSES	σ	.0246	.0091	.0080	.0098	.0053
ì	HARMONIC	HARMONIC	RADIUS = .332 AMPLITUDE = PHASE ANGLE =	RADIUS = .516 AMPLITUDE = PHASE ANGLE =	RADIUS = .715 AMPLITUDE = PHASE ANGLE =	RADIUS = .883 AMPLITUDE = PHASE ANGLE =	RADIUS = 1.088 AMPLITUDE ≈

, Ý

Table 13 - Harmonic Analyses of Tangential Velocity Component Ratios at the Interpolated Radii

	Ï	HARMONIC ANALYSIS PROPELLER		FOR ARS R DIAMETER	REPRESENTED = 9.88 FEE	.∓ 8	MODEL 5391	AUG 79	.807
HARN	HARMONIC	ANALYSES	OF TANGE	TANGENTIAL VE	VELOCITY	COMPONENT	RATIOS	(VT/V)	
HARMONIC	n	-	7	м	4	ιΩ	ω	7	æ
RADIUS = . AMPLITUDE PHASE ANGLE	247	.2429	.0342	.0267	.0157	.0202	.0298 95.1	.0369	.0398
RADIUS = . AMPLITUDE PHASE ANGLE	. 400 " "	.1998	.0189	.0150	.0092	.0099 109.9	.0157	.0194	.0210
RADIUS = . AMPLITUDE PHASE AMGLE	200	.1822	.0111	.0104	.0076	.0075	.0110	.0128	.0135
RADIUS = . AMPLITUDE PHASE ANGLE	. 600 E #	.1704	.0027	.0109	.0124	.0124	.0127	.0108	.0087
RADIUS = . AMPLITUDE PHASE ANGLE	. 700 E ==	.1656	.0066	.0108 86.1	.0138	.0144	.0133	.0101	.0074
RADIUS = . AMPLITUDE PHASE ANGLE	.800	.1729	.0162	.0056	.0069	.0099	.0111	.0116	.0117
RADIUS = . AMPLITUDE PHASE ANGLE	. 900 	.1753	.0234	.0046	.0026	.0073	.0098	.0117	.0130
RADIUS = 1.000 AMPLITUDE = PHASE ANGLE =	000	.1709	.0246	.0034 146.8	.0023	.0073	.0086 88.3	0.66	.0104
RADIUS ≈ 1. AMPLITUDE PHASE ANGLE	= 1.100 DE = NOLE =	.1613	. 6205 215.8	.0053	.0048	.0092	4,00.	.0052	.0056

, , ,	<u> </u>		4 E	ð 4	64	5 &	9.7	4 4	0 8	7. ri	ඩි ස
	(VT/V)	15	.0154	.0106	.0132	.0082	.0056	.0084	.0090	.0067	.0046 359.8
	RATIOS	4	.0137	.0109	.0140	.0113	.0094	.0105	.0102	.0080	.0045 35.4
	DF TANGENTIAL VELOCITY COMPONENT	13	.0069 307.3	.0095	.0128 55.9	.0122	.011B	.0122	.0114	.0092	.0064
	ELGCITY (12	.0033	.0054	.0089	.0127	.0145	.0122	.0101	.0087	.0062
	ENTIAL VE	-	.0155	.0059	.0057	.0114	.0142	.0111	.0086 73.0	.0075	.0082
		10	.0278	.0126	.0067	.0088	.0114	.0104 86.3	9600.	.0084 85.8	.0084
	ANALYSES	თ	.0360	.0175	.0100	.0072 93.8	.0079	.0093	.0097	.0078	.0053
	HARMONIC	Ħ	.247 ==	. 400 	, 500	. 600 	. 700 	.800 = !LE =	, 900 **	= 1.000 DE = NGLE =	= 1.100 DE = NGLE =
	Ħ	HARMONIC	RADIUS ≈ . AMPLITUDE PHASE ANGLE	RADIUS = AMPLITUDE PHASE ANGLE	RADIUS = . AMPLITUDE PHASE ANGLE	RADIUS = . AMPLITUDE PHASE ANGLE	RADIUS = . AMPLITUDE PHASE ANGLE	RADIUS = AMPLITUDE PHASE ANGLE	RADIUS » , AMPLITUDE PHASE ANGLE	RADIUS = 1. AMPLITUDE PHASE ANGLE	RADIUS = 1. AMPLITUDE PHASE ANGÜE

γ,

DTNSRDC ISSUES THREE TYPES OF REPORTS

- 1. DTNSRDC REPORTS, A FORMAL SERIES, CONTAIN INFORMATION OF PERMANENT TECHNICAL VALUE. THEY CARRY A CONSECUTIVE NUMERICAL IDENTIFICATION REGARDLESS OF THEIR CLASSIFICATION OR THE ORIGINATING DEPARTMENT.
- 2. DEPARTMENTAL REPORTS, A SEMIFORMAL SERIES, CONTAIN INFORMATION OF A PRELIMINARY, TEMPORARY, OR PROPRIETARY NATURE OR OF LIMITED INTEREST OR SIGNIFICANCE. THEY CARRY A DEPARTMENTAL ALPHANUMERICAL IDENTIFICATION.
- 3. TECHNICAL MEMORANDA, AN INFORMAL SERIES, CONTAIN TECHNICAL DOCUMENTATION OF LIMITED USE AND INTEREST. THEY ARE PRIMARILY WORKING PAPERS INTENDED FOR INTERNAL USE. THEY CARRY AN IDENTIFYING NUMBER WHICH INDICATES THEIR TYPE AND THE NUMERICAL CODE OF THE ORIGINATING DEPARTMENT. ANY DISTRIBUTION OUTSIDE DTNSRDC MUST BE APPROVED BY THE HEAD OF THE ORIGINATING DEPARTMENT ON A CASE-BY-CASE BASIS.