Lecture E2. MDP with Model 2

Sim, Min Kyu, Ph.D., mksim@seoultech.ac.kr

- 1. Recap
- 2 II. Policy improvement
- III. Policy iteration

I. Recap

policy_eval()

```
gamma <- 1
states <- as.character(seq(0, 70, 10))
0.0.1.0.0.0.0.0.
                   0.0.0.1.0.0.0.0.
                   0,0,0,0,1,0,0,0,
                   0,0,0,0,0,1,0,0,
                   0,0,0,0,0,0,1,0,
                   0,0,0,0,0,0,0,1,
                   0.0.0,0,0,0,0,1),
  nrow = 8, ncol = 8, byrow = TRUE,
  dimnames = list(states, states))
P speed <- matrix(c(.1, 0,.9, 0, 0, 0, 0, 0,
                   .1, 0, 0, 9, 0, 0, 0, 0,
                   0,.1, 0, 0,.9, 0, 0, 0,
                   0, 0, .1, 0, 0, .9, 0, 0,
                   0. 0. 0. 1. 0. 0. 9. 0.
                   0, 0, 0, 0, 1, 0, 0, 9,
                   0, 0, 0, 0, 0, 1, 0, 9,
                   0, 0, 0, 0, 0, 0, 0, 1).
  nrow = 8, ncol = 8, byrow = TRUE,
  dimnames = list(states, states))
```

```
transition <- function(given pi,
  states, P normal, P speed) {
 P out <- array(0.
    dim = c(length(states), length(states)),
    dimnames = list(states, states))
 for (s in states) {
    action dist <- given pi[s.]
    P <- action dist["normal"]*P normal +
      action dist["speed"]*P speed
    P out[s,] <- P[s,]
 return(P out)
R s a <- matrix(
 c( -1, -1, -1, -1, 0.0, -1, -1, 0,
    -1.5, -1.5, -1.5, -1.5, -0.5, -1.5, -1.5, 0
 nrow = length(states), ncol = 2, byrow = FALSE,
 dimnames = list(states, c("normal", "speed")))
reward fn <- function(given pi, R s a) {
  R pi <- rowSums(given pi*R s a)
 return(R pi)
```

```
III. Policy iteration
```

```
policy eval <- function(given pi) {</pre>
  R <- reward_fn(given pi, R s a = R s a)</pre>
  P <- transition(given pi, states = states, P normal = P normal, P speed = P speed)
  gamma <- 1.0
  epsilon \leftarrow 10^{(-8)}
  v old <- array(rep(0,8), dim=c(8,1))</pre>
  v new <- R + gamma*P%*%v old
  while (max(abs(v new-v old)) > epsilon) {
    v old <- v new
    v new <- R + gamma*P%*%v old
  return(v new)
pi speed <- cbind(rep(0,length(states)), rep(1,length(states)))</pre>
rownames(pi speed) <- states; colnames(pi speed) <- c("normal", "speed")</pre>
t(policy eval(pi speed))
##
                          10
                                     20
                                                30
                                                          40
                                                                    50
                                                                               69 79
## [1,] -5.805929 -5.208781 -4.139262 -3.475765 -2.35376 -1.735376 -1.673538 0
pi 50 <- cbind(rep(0.5,length(states)), rep(0.5,length(states)))</pre>
rownames(pi 50) <- states; colnames(pi 50) <- c("normal", "speed")</pre>
t(policy eval(pi 50))
##
                          10
                                     20
                                                30
                                                          40
                                                                    50
                                                                               69 79
## [1,] -5.969238 -5.133592 -4.119955 -3.389228 -2.04147 -2.027768 -1.351388 0
```

Major components of approaching MDP

- (policy evaluation) We need to be able to evaluate $V^{\pi}(s)$ for a fixed π . This is called *policy evaluation*. This is also called as *prediction* in reinforcement learning.
- ② (optimal value function) We want to be able to evaluate $V^{\pi^*}(s)$, where π^* is the optimal policy. The quantity, $V^{\pi^*}(s)$, is optimal policy's value function, or called shortly as optimal value function.
- (optimal policy) We want to find the optimal policy π^* . This is also called as control in reinforcement learning
 - Check your reasoning why the followings are possible.
 - Optimal policy first: (optimal policy) + (policy evaluation) → (optimal value function)
 - Optimal value function first: (optimal value function) \rightarrow (optimal policy)
 - This note will discuss

I. Recap 0000

• (policy evaluation) + series of (policy improvement) \rightarrow (optimal policy)

II. Policy improvement

Development

Remind that we have a Bellman's equation for MDP as follows.

$$V^{\pi}(s) = R^{\pi}(s) + \gamma \sum_{\forall s'} \mathbf{P}^{\pi}_{ss'} V^{\pi}(s') \quad \text{(E1, p18)}$$

- It means that, given a π, its value is determined by immediate reward plus discounted sum of future reward.
- ullet In this light, let's try to criticize the π_{speed} .

```
t(policy_eval(pi_speed))
## 0 10 20 30 40 50 60 70
## [1,] -5.805929 -5.208781 -4.139262 -3.475765 -2.35376 -1.735376 -1.673538 0
```

- From the state 60, current policy gives the estimate for the state-value function of -1.6735376.
- We know that switching to *normal mode* at state 60 is better alternative than current action of *speed mode*. Because it guarantess the arrival to the state 70 with additional energy spending of 1.0.
- How would you express this fact in a mathematical form?

- ullet Under the current policy's (π_{speed}) value function, on the state 60,
 - Choosing normal mode gives

$$R + \gamma \mathbf{P}V = -1.0 + 1.0 \cdot 0 = -1.0$$

• Choosing speed mode gives

$$R + \gamma \mathbf{P}V = -1.5 + (0.9 \cdot 0 + 0.1 \cdot -2.6) = -1.76$$

- ullet This, π_{speed} should modify its action on the state 60.
- ullet You just improved the current policy π_{speed} for the state 60!
- This should be checked for all states as well as the state 60.
- This completes policy improvement.
- Formally, policy improvement implies the following task of replacement:

$$\pi^{new}(s) \leftarrow argmax_{a \in \mathcal{A}} \left\lceil R(s, a) + \gamma \sum_{\forall s'} P^a_{ss'} V^{\pi^{old}}(s') \right\rceil, \text{ for all } s$$

$$\pi^{new}(s) \leftarrow argmax_{a \in \mathcal{A}} \left[R(s, a) + \gamma \sum_{\forall s'} P^a_{ss'} V^{\pi^{old}}(s') \right], \text{ for all } s$$

- The term in the RHS, $R(s,a) + \gamma \sum_{\forall s'} P^a_{ss'} V^{\pi^{old}}(s')$, implies [an expected return of starting from state s, choosing an action a for this time step only, then following the policy π afterwards.].
- How is this quantity different from $V^{\pi}(s)$?

- The RHS makes an improvement using current policy π , by varying only the action in this time step.
- ullet Formally, q(s,a) is called **action-value function**, also famously known as Q-function.

$$\begin{array}{lcl} q(s,a) &:= & \mathbb{E}_{\pi}[G_t|S_t=s,A_t=a] \\ &= & R(s,a) + \gamma \sum_{\forall s'} P^a_{ss'} V^{\pi^{old}}(s') \end{array}$$

$$\pi^{new}(s) \leftarrow argmax_{a \in \mathcal{A}} \left[R(s, a) + \gamma \sum_{\forall s'} P^a_{ss'} V^{\pi^{old}}(s') \right], \text{ for all } s$$

• Using this new notation of q(s, a), the policy improvement can be written as

$$\pi^{new}(s) \leftarrow argmax_{a \in \mathcal{A}} \; q(s,a), \; \text{for all } s$$

- The improvement is called *greedy improvement* since it involves a myopic digression from the current policy, in a way that an action only on this time step is revised.
- It can be proved that *greedy improvement* is guaranteed to improve.

Implementation

$$\pi^{\textit{new}}(s) \leftarrow argmax_{\textit{a} \in \mathcal{A}} \left[R(s, \textit{a}) + \gamma \sum_{\forall s'} \mathbf{P}^{\textit{a}}_{ss'} V^{\pi^{\textit{old}}}(s') \right], \text{ for all } s$$

```
V old <- policy eval(pi speed)
pi old <- pi speed
asa<-Rsa+
  cbind(gamma*P normal%*%V old,
        gamma*P speed%*%V old)
q_s_a
##
         normal
                    speed
      -6.208781 -5.805929
## 10 -5.139262 -5.208781
## 20 -4.475765 -4.139262
## 30 -3.353760 -3.475765
## 40 -1.735376 -2.353760
## 50 -2.673538 -1.735376
## 60 -1.000000 -1.673538
## 70 0.000000 0.000000
```

```
pi new vec <- apply(q_s_a, 1, which.max)
pi new <- array(0, dim = dim(pi old),
                dimnames = dimnames(pi old))
for (i in 1:length(pi new vec)) {
  pi new[i, pi new vec[i]] <- 1
pi new
##
      normal speed
## 0
## 10
                 a
## 20
                 1
## 30
## 40
           1
                 0
## 50
                 1
```

a

0

60

70

1

policy_improve()

```
policy improve <- function(
  V old,
  pi old = pi old, R s a = R s a, gamma = gamma,
  P normal = P normal, P speed = P speed) {
  q_s_a <- R_s_a + cbind(gamma*P_normal%*%V_old,</pre>
                       gamma*P speed%*%V old)
  pi new vec <- apply(q s a, 1, which.max)
  pi new <- array(0, dim = dim(pi old),
                dimnames = dimnames(pi old))
  for (i in 1:length(pi new vec)) {
    pi new[i, pi new vec[i]] <- 1
  return(pi_new)
```

ullet One step improvement from π^{speed}

```
pi_old <- pi_speed
V_old <- policy_eval(pi_old)
pi_new <- policy_improve(V_old,
    pi_old = pi_old, R_s_a = R_s_a, gamma = gamma,
    P_normal = P_normal, P_speed = P_speed)</pre>
```

```
pi old
      normal speed
##
## A
## 10
                   1
## 20
                   1
## 30
## 40
                   1
## 50
                   1
## 60
                   1
## 70
                   1
pi_new
##
      normal speed
## 0
            0
                   1
```

```
## 10
             1
                    0
## 20
                   1
## 30
            1
                   a
## 40
            1
                   0
## 50
                    1
            1
## 60
## 70
                   a
             1
```

III. Policy iteration

Discussion

- Given a policy π , policy_eval() evaluates its state-value function.
- Using the estimate of state-value function, policy_improe() improves the policy to the better one.
- If this process is iterated, then it is guaranteed to reach optimal policy.
- In other words, policy iteration is the process to reach the optimal policy described as follows.

$$\begin{split} \pi_0 & \xrightarrow{\text{policy_eval()}} V_0 \xrightarrow{\text{policy_improve()}} \pi_1 \xrightarrow{\text{policy_eval()}} V_1 \xrightarrow{\text{policy_improve()}} \\ \pi_2 & \to \cdots \to \cdots \to \pi^* \xrightarrow{\text{policy_eval()}} V^* (= V^{\pi^*}, \text{ for short.}) \end{split}$$

- The iteration process terminates when π_i does not change any more, i.e. $\pi_i = \pi_{i+1}$.
- Note that policy evaluation is an approximate algorithm. For policy iteration purpose, policy evaluation cannot be, (and doesn't have to be as well), perfect.

Try do it over and over until no change - from π^{speed}

• Step 0

```
pi old <- pi speed
pi old
##
      normal speed
            0
## A
                  1
                  1
## 10
## 20
                  1
## 30
            0
                  1
                  1
## 40
## 50
                  1
## 60
            0
                  1
## 70
            0
                  1
```

• Step 1

```
V_old <- policy_eval(pi_old)
pi_new <- policy_improve(V_old,
    pi_old = pi_old, R_s_a = R_s_a, gamma = gamma,
    P_normal = P_normal, P_speed = P_speed)
pi_old <- pi_new
pi_old
## normal speed</pre>
```

```
## 0
## 10
                  0
## 20
                  1
## 30
                  0
## 40
                  0
## 50
                  1
            1
## 60
                  a
## 70
            1
                  0
```

##

Step 2

```
V_old <- policy_eval(pi_old)
pi_new <- policy_improve(V_old,
    pi_old = pi_old, R_s_a = R_s_a, gamma = gamma,
    P_normal = P_normal, P_speed = P_speed)
pi_old <- pi_new
pi_old</pre>
```

## 0	0	1	
## 10	0	1	
## 20	0	1	
## 30	1	0	
## 40	1	0	
## 50	0	1	
## 60	1	0	
## 70	1	0	

normal speed

• Step 3

```
V_old <- policy_eval(pi_old)
pi_new <- policy_improve(V_old,
    pi_old = pi_old, R_s_a = R_s_a, gamma = gamma,
    P_normal = P_normal, P_speed = P_speed)
pi_old <- pi_new
pi_old</pre>
```

##		normal	speed
##	0	0	1
##	10	0	1
##	20	0	1
##	30	1	0
##	40	1	0
##	50	0	1
##	60	1	0
##	70	1	0

Policy iteration process (from π^{speed})

 Now we are ready to implement whole process as a single code block.

```
pi old <- pi speed
cnt <- 0
repeat{ # do-while in R
  print(paste0(cnt, "-th iteration"))
 print(t(pi old))
 V old <- policy eval(pi old)
  pi new <- policy improve(V old,
    pi_old = pi_old, R_s_a = R_s_a, gamma = gamma, ## speed 1 1 1 0 0
    P normal = P normal, P speed = P speed)
 if (all.equal(pi_new, pi_old)==TRUE) break
  pi old <- pi new
  cnt <- cnt + 1
print(policy eval(pi new))
```

```
## [1] "0-th iteration"
         0 10 20 30 40 50 60 70
## normal 0 0 0
## speed 1 1 1 1 1
## [1] "1-th iteration"
         0 10 20 30 40 50 60 70
##
## normal 0 1 0 1 1
## speed 1 0 1
## [1] "2-th iteration"
##
         0 10 20 30 40 50 60 70
## normal 0 0 0
##
          [,1]
## 0 -5.107744
## 10 -4.410774
## 20 -3.441077
## 30 -2.666667
## 40 -1.666667
## 50 -1.666667
## 60 -1.000000
```

70 0.000000

Policy iteration process (from π^{50})

 The process should work for other initial choice of π, albeit possibly different convergence rate.

```
pi old <- pi 50
cnt <- 0
repeat{ # do-while in R
  print(paste0(cnt, "-th iteration"))
  print(t(pi old))
 V old <- policy_eval(pi old)
  pi new <- policy improve(V old,
    pi old = pi old, R s a = R s a, gamma = gamma,
    P normal = P normal, P speed = P speed)
  if (all.equal(pi new, pi old)==TRUE) break
  pi old <- pi new
  cnt <- cnt + 1
print(policy_eval(pi new))
```

```
## [1] "0-th iteration"
           0 10 20 30 40 50 60 70
## normal 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5
## speed 0.5 0.5 0.5 0.5 0.5 0.5 0.5
## [1] "1-th iteration"
         0 10 20 30 40 50 60 70
##
## normal 0 1 0 1 1
## speed 1 0 1 0 0
## [1] "2-th iteration"
##
         0 10 20 30 40 50 60 70
## normal 0 0 0
                1 1
## speed 1 1 1 0 0
##
          [,1]
## 0 -5.107744
## 10 -4.410774
## 20 -3.441077
## 30 -2.666667
## 40 -1.666667
## 50 -1.666667
## 60 -1.000000
## 70 0.000000
```

"Success isn't permarnent, and failure isn't fatal. - Mike Ditka"