La figura muestra el esquema de una antena diseñada para trabajar en dos bandas de frecuencia; está formada por dos tramos de longitudes ℓ_1 y ℓ_3 , unidos por un tramo de longitud ℓ_2 , que constituye una línea de transmisión acabada en cortocircuito, equivalente a una carga concentrada. A su derecha se muestra su modelo equivalente en líneas de transmisión. Se desea que la antena sea un monopolo resonante en $\lambda/4$ a las frecuencias de f_1 = 150 MHz y f_2 = 450 MHz.

Calcular:

- a) La longitud del tramo ℓ_1 .
- b) La longitud del tramo de línea de transmisión en cortocircuito (stub) ℓ_2 .
- c) La longitud del tramo ℓ_3 .
- d) La longitud efectiva y la resistencia de radiación a 450 MHz.
- e) Aproximando la distribución de corriente por dos tramos lineales, hallar la longitud efectiva y la resistencia de radiación a 150 MHz.

Datos:
$$Z_0$$
 monopolo vertical = 250 Ω
 $X_{IN}(\text{c.c.}) = Z_0 \tan k\ell$

$$Z_0 \, stub = 300 \, \Omega,$$

$$X_{IN}(\text{c.a.}) = -Z_0 \cot \, k\ell$$