Abstract Algebra Definitions Checklist

Heming Han a.k.a. RealMonia

February 17, 2017

1 Basic

1.1 Properties for operations

- 1. Closure.
- 2. Associative.
- 3. Commutative.
- 4. Unital (existence of identity)
- 5. Distributive.
- 6. Invertible.

2 Group-related

- 2.1 Group
- 2.2 Semi-group
- 2.3 Monoid

3 Ring-related

3.1 Ring

1. Definition 1

A nonempty set R with two operations *(usually written as addition and multiplication) that satisfy the following axioms. For $\forall a, b, c \in R$:

- (a) If $a \in R$ and $b \in R$, then $a + b \in R$ (closure for addition).
- (b) a + (b + c) = (a + b) + c (Associative addition).
- (c) a + b = b + a (Commutative addition).
- (d) There is an element 0_R in R such that $a + 0_R = a = 0_R + a$ for every $a \in R$. (Additive identity or zero element).
- (e) For each $a \in R$, the equation $a + x = 0_R$ has a solution in R.
- (f) If $a \in R$ and $b \in R$, then $ab \in R$ (closure for multiplication).
- (g) a(bc) = (ab)c (associative multiplication).
- (h) a(b+c) = ab + ac and (a+b)c = ac + bc (distributivity).

2. Definition 2

A nonempty set R with addition and multiplication such that:

- (a) (R, +) is an abelian group.
- (b) (R, \cdot) is a semigroup.
- (c) $(R, +, \cdot)$ is distributive for addition and multiplication.

3. Relative Extension

- (a) Commutative Ring: ring R satisfies ab = ba for $\forall a, b \in R$ (Commutative multiplication).
- (b) Ring with identity: ring R that contains an element 1_R satisfying $a1_R = a = 1_R a$ for $\forall a \in R$ (multiplicative identity).

3.2 Subring

- 1. When a subset S of a ring R is itself a ring under the addition and multiplication in R, then we say that S is a subring of R.
- 2. R is a ring and S is a subset of R such that
 - (a) S is closure under addition and multiplication.
 - (b) $0_R \in S$.
 - (c) If $a \in S$ then the solution of the equation $a + x = 0_R$ in S (addition inverse exists).

Then S is a subring of R.

3.3 Integral Domain

An integral domain is a commutative ring R with identity $1_R \neq 0_R$ such that: whenever $a, b \in R$ and $ab = 0_R$ then $a = 0_R$ or $b = 0_R$.

4 Field-related

4.1 Field

A field is a commutative ring R with identity $1_R \neq 0_R$ such that: For each $a \neq 0_R$ in R, the equation $ax = 1_R$ has a solution in R.

5 Others

1.