Cálculo Diferencial

Victoria Torroja Rubio 8/9/2025

Índice general

1.	\mathbf{Esp}	Espacios métricos		
	1.1.	Espacios normados	4	
	1.2.	Bolas en un espacio métrico	7	
	1.3.	Conceptos topológicos	9	
	1.4.	Conjuntos abiertos y cerrados relativos	15	
	1.5.	Sucesiones en espacios métricos	16	
	1.6.	Completitud	19	
	1.7.	Compacidad y recubrimientos	22	
2.	Continuidad			
	2.1.	Continuidad global	29	
	2.2.	Continuidad y restricciones	30	
	2.3.	Conexión	33	
	2.4.	Continuidad uniforme	38	
	2.5.	Teorema del punto fijo de Banach	42	
3.	Límites en \mathbb{R}^n			
	3.1.	Coordenadas polares	46	
4.	Cálo	culo diferencial 4	17	
	4.1.	Caso $f: \mathbb{R} \to \mathbb{R}^m$	47	
		Derivadas parciales y direccionales		
		Conjuntos de nivel		

Profesor: Jesús Jaramillo

Despacho: 305-E

Correo: jaramil@mat.ucm.es

Contenido:

- Topología de los espacios métricos (Cap 1-5) Aprox: 6'5 semanas
- Cálculo diferencial en varias variables (Cap 6-11) Resto

Bibliografía:

- Marsdem-Hoffman (sirve para las dos partes): 'Análisis clásico elemental'
- K. Smith (la parte de integración es más avanzada): 'Primer of modern analysis'

Materiales Campus:

- Apuntes de Victor Sánchez (apuntes muy condensados)
- Manual de Ansemil-Ponte (versión extendida de Marsden-Hoffman)
- Curso de Daniel Azagra

Capítulo 1

Espacios métricos

Definición 1.1 (Espacio métrico). Un **espacio métrico** es un par (X, d) donde X es un conjunto no vacío y $d: X \times X \to \mathbb{R}$ es una función que se llama **distancia** o **métrica**, tal que:

- 1. $d(x,y) \ge 0, \forall x,y \in X$.
- $2. \ d(x,y) = 0 \iff x = y.$
- 3. $d(x,y) = d(y,x), \forall x, y \in X$.
- 4. (Propiedad triangular) $d(x,y) \leq d(x,z) + d(z,y), \forall x,y,z \in X$.

Ejemplo. Algunos ejemplos de espacios métricos son:

- 1. Consideremos (\mathbb{R}, d) donde d(x, y) = |x y|.
- 2. La distancia euclídea en $\mathbb{R}^2 = \{(x,y) : x,y \in \mathbb{R}\}:$

$$d((x_1, x_2), (y_1, y_2)) = \sqrt{(x_1 - y_1)^2 + (x_2 - y_2)^2}.$$

3. La 'métrica del taxi' en \mathbb{R}^2 con distancia:

$$d_1((x_1, x_2), (y_1, y_2)) = |x_1 - y_1| + |x_2 - y_2|.$$

- 4. Distancias geodésicas: el camino más corto (por ejemplo, en una superficie esférica el camino más corto entre dos puntos es un arco de circunferencia).
- 5. Distancias en \mathbb{R}^n . Si $x=(x_1,\ldots,x_n)$ e $y=(y_1,\ldots,y_n)$, consideramos la distancia euclídea

$$d_2(x,y) = \sqrt{(x_1 - y_1)^2 + \dots + (x_n - y_n)^2}.$$

También podemos generalizar la 'métrica del taxi':

$$d_1(x, y) = |x_1 - y_1| + \dots + |x_n - y_n|$$
.

También se puede considerar la métrica

$$d_{\infty}(x, y) = \max\{|x_i - y_i| : 1 \le i \le n\}.$$

Definición 1.2 (Espacio discreto). Sea $X \neq \emptyset$ un conjunto cualquiera, y definimos $\forall x,y \in X$

$$d(x,y) = \begin{cases} 0, & \text{si } x = y \\ 1, & \text{si } x \neq y \end{cases}$$

Se dice que d es la métrica discrecta y (X,d) el espacio métrico discreto.

Definición 1.3 (Subespacio métrico). Sea (X,d) un espacio métrico y sea $Y \subset X$. Se define la **métrica relativa** (o **restringida**) a Y como $d_Y(y,y') = d(y,y'), \forall y,y' \in Y$. Entonces, (Y,d_Y) es un espacio métrico que llamaremos **subespacio** de X.

1.1. Espacios normados

Definición 1.4 (Espacio normado). Un **espacio normado** es un par $(E, \|\cdot\|)$ donde E es un espacio vectorial y $\|\cdot\|: E \to \mathbb{R}$ es una función que se llama **norma** tal que:

- 1. $||x|| \ge 0, \forall x \in E$.
- 2. $||x|| = 0 \iff x = 0$.
- 3. $\|\lambda x\| = |\lambda| \|x\|, \forall \lambda \in \mathbb{K}, \forall x \in E^{a}$.
- 4. $||x + y|| \le ||x|| + ||y||, \forall x, y \in E$.

Proposición 1.1. Sea $(E, \|\cdot\|)$ un espacio normado. Si definimos

$$d(x,y) = ||x - y||, \forall x, y \in E,$$

se obtene que d es una distancia en E, que se llama **asociada** a la norma.

Demostración. Demostremos todas las propiedades de las métricas:

- 1. Tenemos que $d(x,y) = ||x-y|| \ge 0, \forall x,y \in E$.
- 2. $d(x,y) = 0 \iff ||x-y|| = 0 \iff x-y = 0 \iff x = y$.
- 3. d(x,y) = ||y-x|| = |-1| ||x-y|| = ||x-y|| = d(x,y).

 $[^]a\mathrm{En}$ este curso $\mathbb K$ va a ser principalmente $\mathbb R.$

4. $d(x,y) = ||x - y|| = ||x - z + z - y|| \le ||x - z|| + ||z - y|| = d(x,z) + d(z,y)$.

Observación. En \mathbb{R}^n , dado $x = (x_1, \dots, x_n) \in \mathbb{R}^n$ se definen:

(Norma euclídea)
$$||x||_2 = \sqrt{x_1^2 + \dots + x_n^2}$$
.

$$||x||_1 = |x_1| + \dots + |x_n|$$
.

$$||x||_{\infty} = \max\{|x_i| : 1 \le i \le n\}.$$

Proposición 1.2 (Relación entre las normas en \mathbb{R}^n). $\forall x = (x_1, \dots, x_n) \in \mathbb{R}^n$,

$$||x||_{\infty} \le ||x||_2 \le ||x||_1 \le n||x||_{\infty}.$$

Demostración. Supongamos que $|x_{i_0}| = ||x||_{\infty}$. Entonces, tenemos que

$$|x_{i_0}|^2 \le |x_1|^2 + \dots + |x_n|^2$$
.

Dado que la función de la raíz es creciente, tenemos que

$$||x||_{\infty} = |x_{i_0}| \le \sqrt{|x_1|^2 + \dots + |x_n|^2} = ||x||_2.$$

Por otro lado, tenemos que

$$||x||_1^2 = (|x_1| + \dots + |x_n|)^2 = |x_1|^2 + \dots + |x_n|^2 + C^1 \ge |x_1|^2 + \dots + |x_n|^2 = ||x||_2^2.$$

Finalmente, tenemos que

$$||x||_1 = |x_1| + \dots + |x_n| \le |x_{i_0}| + \dots + |x_{i_0}| = n |x_{i_0}| = n ||x||_{\infty}.$$

Definición 1.5. Dos normas $\|\cdot\|$ y $\|\cdot\|'$ en un mismo espacio vectorial E son **equivalentes** cuando existen m, M > 0 tales que

$$m||x||' \le ||x|| \le M||x||', \ \forall x \in E.$$

Observación. Hemos visto en la proposición anterior que $\|\cdot\|_1, \|\cdot\|_2$ y $\|\cdot\|_\infty$ son equivalentes en \mathbb{R}^n .

 $^{^{1}}C \geq 0.$

Definición 1.6 (Producto escalar). Sea E un espacio vectorial real. Un **producto escalar** en E es una forma bilineal, simétrica y definida positiva. Es decir, una aplicación $\langle , \rangle : E \times E \to \mathbb{R}$ tal que

- 1. $\langle \lambda x + \mu y, z \rangle = \lambda \langle x, z \rangle + \mu \langle y, z \rangle, \forall x, y, z \in E, \forall \lambda, \mu \in \mathbb{R}.$
- 2. $\langle x, y \rangle = \langle y, x \rangle, \forall x, y \in E$.
- 3. $\forall x \in E, \langle x, x \rangle \ge 0 \text{ y } \langle x, x \rangle = 0 \iff x = 0.$

Observación. En este caso, denotaremos $||x|| = \sqrt{\langle x, x \rangle}$.

Teorema 1.1 (Desigualdad de Cauchy-Schwarz). Sea E un espacio vectorial dotado de un producto escalar \langle , \rangle . Entonces

$$|\langle x, y \rangle| \le ||x|| \cdot ||y||, \ \forall x, y \in E.$$

Demostración. Caso 1. Si x = 0 o y = 0, obtenemos la igualdad.

Caso 2. Si $y \neq 0$, tenemos que $\forall \alpha \in \mathbb{R}$,

$$0 \leq \langle x + \alpha y, x + \alpha y \rangle = \langle x, x \rangle + \alpha \langle x, y \rangle + \alpha \langle y, x \rangle + \alpha^2 \langle y, y \rangle = \|x\|^2 + 2\alpha \langle x, y \rangle + \alpha^2 \|y\|^2.$$

Tomamos $\alpha = -\frac{\langle x, y \rangle}{\|y\|^2}$. Así, tenemos que

$$0 \le \|x\|^2 - \frac{2\langle x, y \rangle^2}{\|y\|^2} + \frac{\langle x, y \rangle^2}{\|y\|^4} \|y\|^2 = \|x\|^2 - \frac{\langle x, y \rangle^2}{\|y\|^2}.$$

Así, tenemos que $\frac{\langle x,y\rangle^2}{\|y\|^2} \leq \|x\|^2$, por lo que $\langle x,y\rangle^2 \leq \|x\|^2\|y\|^2$ y tenemos que $|\langle x,y\rangle| \leq \|x\|\|y\|$.

Proposición 1.3. Sea E un espacio vectorial dotado de un producto escalar \langle, \rangle . Entonces, $||x|| = \sqrt{\langle x, x \rangle}$, es una norma en E, que se dice asociada a \langle, \rangle .

Demostración. Comprobamos que se cumplen las propiedades de las normas:

- 1. Tenemos que claramente $||x|| = \sqrt{\langle x, x \rangle} \ge 0, \forall x \in E$.
- 2. $||x|| = 0 \iff \langle x, x \rangle = 0 \iff x = 0$.
- 3. $\|\lambda x\|^2 = \langle \lambda x, \lambda x \rangle = \lambda^2 \, \langle x, x \rangle = \lambda^2 \|x\|^2$. Tomando la raíz cuadrada, $\|\lambda x\| = |\lambda| \, \|x\|$.

CAPÍTULO 1. ESPACIOS MÉTRICOS

4. Si $x, y \in E$,

$$||x + y||^2 = \langle x + y, x + y \rangle = ||x||^2 + 2 \langle x, y \rangle + ||y||^2$$

$$\leq ||x||^2 + 2||x|| ||y|| + ||y||^2 = (||x|| + ||y||)^2.$$

Tomando raíces, tenemos que se verifica la propiedad triangular: $||x+y|| \le ||x|| + ||y||$.

1.2. Bolas en un espacio métrico

Definición 1.7. Sea (X, d) un espacio métrico y consideramos $a \in X$, r > 0. Se definen como **bola abierta** de centro a y radio r al conjunto

$$B(a,r) = \{x \in X : d(x,a) < r\}.$$

Similarmente, se llama **bola cerrada** de centro a y radio r al conjunto

$$\overline{B}(a,r) = \{x \in X : d(x,a) \le r\}.$$

Ejemplo. Considermos bolas en \mathbb{R}^2 de distintas normas.

1. Consideremos bolas abiertas y cerradas con la métrica euclídea:

$$B_2\left(\left(0,0\right),r\right) = \left\{\left(x,y\right) : \sqrt{x^2 + y^2} < r\right\}, \ \overline{B}_2\left(\left(0,0\right),r\right) = \left\{\left(x,y\right) : \sqrt{x^2 + y^2} \le r\right\}.$$

$$\overline{B}_2((0,0),r)$$

2. Consideremos bolas abiertas y cerradas con la métrica 'del taxi':

$$B_1((0,0),r) = \{(x,y) : |x| + |y| < r\}, \overline{B}_1((0,0),r) = \{(x,y) : |x| + |y| \le r\}.$$

3. Consideremos bolas abiertas y cerradas con la métrica infinita:

$$B_{\infty}((0,0),r) = \{(x,y) : \max\{|x|,|y|\} < r\} = \{(x,y) : |x|,|y| < r\}.$$

$$\overline{B}_{\infty}\left(\left(0,0\right),r\right)=\left\{ \left(x,y\right)\ :\ \max\left\{ \left|x\right|,\left|y\right|\right\} \leq r\right\} =\left\{ \left(x,y\right)\ :\ \left|x\right|,\left|y\right| \leq r\right\} .$$

 $B_{\infty}((0,0),r)$

 $\overline{B}_{\infty}((0,0),r)$

Observación. En $(\mathbb{R}, |\cdot|)$ se tiene que B(0, r) = (-r, r) y $\overline{B}(0, r) = [-r, r]$. Similarmente, tenemos que B(a, r) = (a - r, a + r) y $\overline{B}(a, r) = [a - r, a + r]$.

Observación (Relación de las bolas en \mathbb{R}^n). Sabemos que

$$||x||_{\infty} \le ||x||_2 \le ||x||_1 \le n||x||_{\infty}.$$

Por tanto, tenemos que

$$B_1(a,r) \subset B_2(a,r) \subset B_{\infty}(a,r) \subset B_1(a,nr)^a$$
.

En efecto, si $x \in B_1(a,r)$, tenemos que $||x-a||_1 < r$. Por tanto, es fácil ver que $||x-a||_2 \le ||x-a||_1 < r$, por lo que $x \in B_2(a,r)$. El resto de inclusiones se deducen de forma análoga.

^aTambién se puede escribir $B_{\infty}\left(a,nr\right)\subset B_{1}\left(a,r\right)\subset B_{2}\left(a,r\right)\subset B_{\infty}\left(a,nr\right)$.

Definición 1.8. Sean (X,d) un espacio métrico y $A \subset X$. Se define el **diámetro** de A como

$$diam(A) = \sup \{d(x, y) : x, y \in A\} \in [0, \infty).$$

Se dice que A es **acotado** si $diam(A) < \infty$.

Proposición 1.4. Dado un espacio métrico (X,d) con $A\subset X$, tenemos que A está acotado si y solo si A está contenido en alguna bola.

- Demostración. (i) Supongamos que A está acotado, entonces $diam(A) = r < \infty$. Así, tenemos que si $x \in A$, etonces $\forall a \in A$ se tiene que $d(a,x) \le r$, por lo que $A \subset \overline{B}(a,r)$. También podemos ver que lo contiene una bola abierta: $A \subset \overline{B}(a,r) \subset B(a,r+1)$.
- (ii) Si A está contenido en una bola, tenemos que existe $x \in X$ y $\frac{r}{2} > 0$ tal que $A \subset B\left(x, \frac{r}{2}\right)$. De esta manera, si $a, b \in A$ se tiene que

$$d(a,b) \le d(a,x) + d(x,b) < \frac{r}{2} + \frac{r}{2} = r.$$

Así, se tiene que $\forall a, b \in A$, d(a, b) < r, por lo que $diam(A) \le r < \infty$, por lo que A está acotado.

1.3. Conceptos topológicos

Definición 1.9 (Conjunto abierto). Sean (X,d) un espacio métrico y $A \subset X$. Se dice que A es un **conjunto abierto** si $\forall a \in A, \exists r > 0$ tal que $B(a,r) \subset A$.

Proposición 1.5. Toda bola abierta es un conjunto abierto.

Demostración. Tomemos A = B(a, R) y $x \in B(a, R)$. Sea $\delta = d(x, a) < R$ y $r = R - \delta > 0$ ². Sea $y \in B(x, r)$, tenemos que d(x, y) < r. Así,

$$d(y, a) \le d(y, x) + d(x, a) < r + \delta = R.$$

Así, $y \in B(a, R)$, por lo que $B(x, r) \subset B(a, R)$.

Ejemplo. En $(\mathbb{R}^2, \|\cdot\|_2)$.

1. Consideremos $A = \{(x,y) : 0 < x < 1\}$. Vamos a ver que es abierto. Si $a \in A$, sea a = (x,y) y consideramos $r = \min\{x,1-x\}$. Entonces, tenemos que $B_2(a,r) \subset A$

²No hace falta de escribir $r = \min\{R - \delta, \delta\}$ al tratarse de una bola.

A, en efecto, si $(x', y') \in B_2(a, r)$:

$$\sqrt{(x - x')^2 + (y - y')^2} < r \Rightarrow |x - x'| < r \Rightarrow 0 < x' < 1.$$

Así, tenemos que $(x', y') \in A$.

2. Consideremos $A = \{(x,y) : 0 < x \le 1\}$. Vamos a ver que no es abierto. En efecto, si tomamos a = (1,0) y r > 0, tenemos que $\left(1 + \frac{r}{2}, 0\right) \in B_2(a,r)$ pero $\left(1 + \frac{r}{2}, 0\right) \notin A$.

Proposición 1.6. En \mathbb{R}^n los conjuntos abiertos coinciden para $\|\cdot\|_1$, $\|\cdot\|_2$ y $\|\cdot\|_{\infty}$.

Demostración. Como se vio en una observación anterior, sabemos que

$$B_1(a,r) \subset B_2(a,r) \subset B_{\infty}(a,r) \subset B_1(a,nr)$$
.

- Sea $A \subset \mathbb{R}^n$. Si A es abierto con la norma $\|\cdot\|_2$, tenemos que $\forall a \in A, \exists r > 0$ tal que $B_2(a,r) \subset A$. Por la observación, como $B_1(a,r) \subset B_2(a,r) \subset A$, tenemos que también es abierto para la norma $\|\cdot\|_1$.
- Sea $A \subset \mathbb{R}^n$. Si A es abierto con la norma $\|\cdot\|_{\infty}$, entonces $\forall a \in A, \exists r > 0$ tal que $B_{\infty}(a,r) \subset A$. Por la observación anterior, tenemos que $B_2(a,r) \subset B_{\infty}(a,r) \subset A$, por lo que A es abierto respecto a la norma $\|\cdot\|_2$.
- Sea $A \subset \mathbb{R}^n$. Si A es abierto respecto de $\|\cdot\|_1$, tenemos que $\forall a \in A, \exists r > 0$ tal que $B_1(a,r) \subset A$. Sea $r' = \frac{r}{n} > 0$,

$$B_{\infty}\left(a,r'\right)\subset B_{1}\left(a,nr'\right)=B_{1}\left(a,r\right)\subset A.$$

Por tanto, A es abierto respecto de la norma $\|\cdot\|_{\infty}$.

Teorema 1.2 (Propiedades de los abiertos). Sea (X, d) un espacio métrico.

- 1. $X y \emptyset$ son abiertos.
- 2. La unión arbitraria de abiertos es abierto.
- 3. La intersección finita de abiertos es abierto.

Demostración. 1. Es trivial que \emptyset es abierto. Por otro lado, si $a \in X$, tenemos que $\forall r > 0$, $B(x,r) \subset X$. Así, X está abierto.

2. Supongamos que $\{A_i\}_{i\in I}$ es una familia de conjuntos abiertos y sea $A=\bigcup_{i\in I}A_i$. Si $a\in A$, tenemos que $a\in A_i$ para algún $i\in I$. Así, existe r>0 tal que $B(a,r)\subset A_i\subset\bigcup_{i\in I}A_i$. Por tanto, $B(a,r)\subset A$ y A es abierto.

3. Sean A_1, \ldots, A_m conjuntos abiertos y sea $A = A_1 \cap \cdots \cap A_m$. Si $a \in A$, tenemos que $a \in A_i$ para $1 \le i \le m$. Así, existe $r_i > 0$ tal que $B(a, r_i) \subset A_i$. Si tomamos $r = \min\{r_i : 1 \le i \le m\}$, tenemos que $B(a, r) \subset B(a, r_i), \forall i = 1, \ldots, m$. Por tanto, $B(a, r) \subset A$ y A es abierto.

Observación. La intersección infinita de conjuntos abiertos puede no ser abierto. Por ejemplo, consideremos en $(\mathbb{R}^2, \|\cdot\|_2)$ consideramos $A_m = B_2\left((0,0), \frac{1}{m}\right)$, que es abierto $\forall m \in M$. Sin embargo, $A = \bigcap_{i=1}^{\infty} A_m = \{(0,0)\}$, que no es abierto.

Definición 1.10 (Conjunto cerrado). Sea (X,d) un espacio métrico. Se dice que un conjunto $C \subset X$ es **cerrado** si X/C es abierto.

Proposición 1.7. Toda bola cerrada es un conjunto cerrado.

Demostración. En efecto, sea $C=\overline{B}\left(p,R\right)=\left\{x\in X:d\left(x,p\right)\leq R\right\}$ y sea $A=X/C=\left\{x\in X:d\left(x,p\right)>R\right\}$. Si $a\in A$, tenemos que $d\left(a,p\right)=\delta>R$. Así, tomando $r=\delta-R>0$, si $x\in B\left(a,r\right)$, tenemos que

$$d(x,p) \ge d(p,a) - d(x,a) > \delta - r = R.$$

Así, tenemos que $x \in A$, por lo que $B(a,r) \subset A$ y X/C es abierto, por lo que C es cerrado.

Observación. Es fácil ver que en $(\mathbb{R}, |\cdot|)$:

- \blacksquare (a,b) es abierto.
- \blacksquare [a, b] es cerrado.
- (a,b] y [a,b) no son ni abiertos ni cerrados.

Teorema 1.3 (Propiedades de los cerrados). Sea (X,\emptyset) un espacio métrico.

- 1. Los conjuntos X y \emptyset son cerrados.
- 2. La intersección arbitraria de cerrados es cerrado.
- 3. La unión finita de cerrados es cerrado.

Demostración. 1. Dado que $\emptyset = X/X$ y $X = X/\emptyset$, del teorema anterior se sigue que son cerrados.

2. Sean $\{C_i\}_{i\in I}$ cerrados. Entonces, $\forall i\in I$ tenemos que X/C_i es abierto, así,

$$X/\bigcap_{i\in I}C_i=\bigcup_{i\in I}\left(X/C_i\right),$$

que es abierto, por lo que $\bigcap_{i \in I} C_i$ es cerrado.

3. Sean C_1, \ldots, C_m cerrados. Entonces, $\forall i=1,\ldots,m,$ tenemos que X/C_i es abierto. Así,

$$X/\bigcup_{i=1}^{m} C_i = \bigcap_{i=1}^{m} (X/C_i),$$

es abierto, por lo que $\bigcup_{i=1}^{m} C_i$ es cerrado.

Definición 1.11 (Punto interior). Sea (X,d) un espacio métrico y $A \subset X$. Se dice que $a \in A$ es un **punto interior** de A si existe r > 0 tal que $B(a,r) \subset A$. Denotamos Int (A) al conjunto de puntos interiores de A.

Observación. Es trivial ver que $\operatorname{Int}(A) \subset A$.

Proposición 1.8. Sea (X, d) un espacio métrico y $A \subset X$.

- 1. El conjunto Int(A) es el mayor abierto contenido en A.
- 2. A es abierto si y solo si A = Int(A).

Demostración. 1. Sea $U = \operatorname{Int}(A)$. Vamos a ver que es abierto. Dado $x \in U$, tenemos que existe r > 0 tal que $B(x,r) \subset A$. Si $y \in B(x,r)$, por tratarse de una bola abierta existe r' > 0 tal que $B(y,r') \subset B(x,r) \subset A$, por lo que $y \in \operatorname{Int}(A) = U$. Por tanto, $B(x,r) \subset U$ y U es abierto.

Ahora tenemos que ver que es el mayor abierto. Supongamos que V es abierto y $V \subset A$. Sea $x \in V$, tenemos que existe r > 0 tal que $B(x,r) \subset V \subset A$. Por tanto, $x \in \text{Int}(A) = U$ y $V \subset U$.

2. Si A = Int(A) está claro que A es abierto. Recíprocamente, si A es abierto, tenemos que como A es el mayor abierto contenido en A, A = Int(A).

Ejemplo. En $(\mathbb{R}, |\cdot|)$, sea A = (0, 2]. Tenemos que Int (A) = (0, 2). En efecto,

- (i) Si $x \in (0,2)$, entonces existe r > 0 tal que $(x-r,x+r) \subset (0,2) \subset (0,2]$, por lo que $x \in \text{Int}(A)$.
- (ii) Recíprocamente, tenemos que $2 \notin \text{Int}(A)$, puesto que $\forall r > 0$ tenemos que (2-r, 2+r)

no es subconjunto de (0,2].

Definición 1.12 (Punto adherente). Sean (X, d) un espacio métrico y $A \subset X$. Se dice que $x \in X$ es **punto adherente** a A (o también **punto clausura**) si $\forall r > 0$, $A \cap B(x, r) \neq \emptyset$. Denotamos \overline{A} o Adh(A) al conjunto de puntos adherentes de A.

Observación. Se ve trivialmente que $A \subset \overline{A}$.

Ejemplo. En $(\mathbb{R}, |\cdot|)$ sea A = (0, 2]. Tenemos que $\overline{A} = [0, 2]$. En efecto:

- (i) Tenemos que $0 \in \overline{A}$, puesto que $\forall r > 0$ tenemos que $(-r, r) \cap A \neq \emptyset$. Así, tenemos que $[0, 2] \subset \overline{A}$.
- (ii) Recíprocamente, si x > 2, tenemos que existe r > 0 suficientemente pequeño tal que x r > 2, por tanto $x \notin \overline{A}$. Similarmente, podemos demostrar que $0 \notin \overline{A}$.

Lema 1.1. Sean (X, d) un espacio métrico y $A \subset X$. Entcones, $\overline{A} = X/\operatorname{Int}(X/A)$.

- Demostración. (i) Sea $x \in \overline{A}$. Tenemos que $\forall r > 0$, $B(x,r) \cap A \neq \emptyset$, por lo que $B(x,r) \not\subset X/A$, por lo que $x \notin \operatorname{Int}(X/A)$, por lo que $x \in X/\operatorname{Int}(X/A)$.
- (ii) Sea $x \in X/\operatorname{Int}(X/A)$, entonces $x \notin \operatorname{Int}(X/A)$, es decir, $\forall r > 0$ tenemos que $B(x,r) \not\subset X/A$. Así, debe ser que $B(x,r) \cap A \neq \emptyset$, por lo que $x \in \overline{A}$.

Proposición 1.9. 1. \overline{A} es el menor cerrado que contiene a A.

- 2. Un conjunto $A \subset X$ es cerrado si y solo si $A = \overline{A}$.
- Demostración. 1. Tenemos que $\overline{A} = X/\operatorname{Int}(X/A)$, por lo que su complementario es abierto y él es cerrado. Ahora vamos a ver que es el menor cerrado que contiene a A. Sea $C \subset X$ cerrado con $A \subset C$. Tenemos que $X/C \subset X/A$, por lo que $X/C \subset \operatorname{Int}(X/A)$ y tenemos que $C \supset X/\operatorname{Int}(X/A) = \overline{A}$.
 - 2. Si $A = \overline{A}$, A es cerrado. Por otro lado, si A es cerrado, entonces su complementario, X/A es abierto, por lo que $X/A = \operatorname{Int}(X/A)$, por lo que $\overline{A} = X/\operatorname{Int}(X/A) = X/(X/A) = A$.

Definición 1.13 (Punto frontera). Sean (X,d) un espacio métrico y $A \subset X$. Se dice que $x \in X$ es un **punto frontera** de A si $\forall r > 0$, $B(x,r) \cap A \neq \emptyset$ y $B(x,r) \cap (X/A) \neq \emptyset$. Denotamos Fr(A) o ∂A el conjunto de puntos frontera de A.

Observación. Tenemos que $Fr(A) = \overline{A} \cap \overline{X/A}$ y en particular Fr(A) es cerrado.

Ejemplo. En $(\mathbb{R}^2, \|\cdot\|_2)$ sea $A = \{(x,y) : 0 < x \le 1\}$. Tenemos que

$$Fr(A) = \{(0, y) : y \in \mathbb{R}\} \cup \{(1, y) : y \in \mathbb{R}\}.$$

En efecto:

- (i) Sea P = (0, y). Tenemos que $\forall r > 0$, $B(P, r) \cap A \neq \emptyset$ y $B(P, r) \cap (X/A) \neq \emptyset$. Así, $P \in Fr(A)$. De forma análoga, se puede demostrar que $P = (1, y) \in Fr(A)$.
- (ii) El recíproco lo demostramos típicamente por contrapositiva. Sea $P=(x,y)\in\mathbb{R}^2$ con $x\neq 0$ y $x\neq 1$. Hay tres posibilidades a considerar: $x\in (-\infty,0), x\in (0,1)$ o $x\in (1,\infty)$. Si $x\in (-\infty,0), \exists r>0$ tal que $B(P,r)\cap A=\emptyset$. El resto de los casos se demuestran de forma análoga.

Definición 1.14 (Punto de acumulación). Sean (X,d) un espacio métrico y $A \subset X$. Se dice que $x \in X$ es un **punto de acumulación** de A si $\forall r > 0$ se tiene que $A \cap (B(x,r)/\{x\}) \neq \emptyset$. Denotamos A' el conjunto de los puntos de acumulación de A.

Observación. Tenemos que $A' \subset \overline{A}$. En efecto, si $x \in A'$, tenemos que $\forall r > 0$ se cumple que $A \cap (B(x,r) / \{x\}) \neq \emptyset$, es decir, $A \cap B(x,r) \neq \emptyset$, por lo que $x \in \overline{A}$.

Ejemplo. Consideremos $A = \mathbb{N} \times \mathbb{N} \subset (\mathbb{R}^2, d_2)$. Tenemos que

- Int $(A) = \emptyset$. En efecto, tenemos que $\forall r > 0$, si $n_0 = (n, n) \in \mathbb{N}^2$, existe $x \in \mathbb{R}/\mathbb{Q}$ tal que n < x < n + r, por lo que $(x, x) \in B(n, r)$ pero $(x, x) \notin \mathbb{N}^2$.
- $\overline{A} = A$. En efecto, si $x \notin A$, tenemos que podemos encontrar r > 0 suficientemente pequeño tal que $B(x,r) \cap A = \emptyset$.
- $\partial A = A$. Dado que $A = \overline{A}$ y $\partial A = \overline{A} \cap \overline{X/A}$, tenemos que $A \subset \partial A$. Por otro lado, si $x \notin A$, tenemos que existe un r > 0 suficientemente pequeño tal que $B(x,r) \cap A = \emptyset$, como hemos visto anteriormente, por lo que $x \notin \partial A$.
- $A' = \emptyset$. Si cogemos r < 1 y $n \in \mathbb{N}^2$, está claro que $(B(n,r)/\{n\}) \cap A = \emptyset$, por lo que n no puede ser un punto de acumulación. Si $x \notin A$, hacemos un argumento similar al del apartado anterior.

Definición 1.15 (Punto aislado). Sean (X, d) un espacio métrico y $A \subset X$. Se dice que $x \in A$ es un **punto aislado** de A si existe r > 0 tal que $B(x, r) \cap A = \{x\}$. Denotaremos A is (A) al conjunto de los puntos aislados de A.

Proposición 1.10. Sean (X, d) un espacio métrico y $A \subset X$. Entonces, se cumple que $\overline{A} = A' \cup Ais(A)$.

- Demostración. (i) Sea $x \in \overline{A}$. Supongamos que $x \notin A'$, entonces existe r > 0 tal que $A \cap (B(x,r)/\{x\}) = \emptyset$. Sin embargo, sabemos que $A \cap B(x,r) \neq \emptyset$ al ser $x \in \overline{A}$, por tanto debe ser que $A \cap B(x,r) = \{x\}$, es decir, $x \in Ais(A)$.
- (ii) Está claro que $Ais(A) \subset A \subset \overline{A}$ y $A' \subset \overline{A}$, por lo que $A' \cup Ais(A) \subset \overline{A}$.

Corolario 1.1. Sean (X,d) un espacio métrico y $A \subset X$. Entonces, A es cerrado si y solo si A contiene todos sus puntos de acumulación.

Demostración. (i) Tenemos que $A = \overline{A} = A' \cup Ais(A)$, por lo que $A' \subset A$.

(ii) Tenemos que $Ais(A) \subset A$ y $A' \subset A$, por lo que $\overline{A} = Ais(A) \cup A' \subset A$, así, $\overline{A} = A$.

Definición 1.16. Sean (x, d) un espacio métrico, $A \subset X$ y $x \in X$. Se define la **distancia** de x a A como:

$$d(x, A) = \inf \left\{ d(x, a) : a \in A \right\}.$$

Proposición 1.11. Sean (X, d) un espacio métrico y $A \subset X$. Entonces,

$$\overline{A} = \{ x \in X : d(x, A) = 0 \}.$$

Demostración. (i) Sea $x \in \overline{A}$, entonces existe r > 0 tal que $A \cap B(x,r) \neq \emptyset$. Por tanto, existe $a_r \in A \cap B(x,r)$, por tanto $d(x,a_r) < r$. Así, tenemos que

$$d(x, A) \le d(x, a_r) < r, \forall r > 0.$$

Por tanto, d(x, A) = 0.

(ii) Tenemos que $\forall r > 0$, d(x, A) < r, por lo que existe $a_r \in A$ tal que $d(x, a_r) < r$. Por tanto, $a_r \in A \cap B(x, r) \neq \emptyset$ y podemos concluir que $x \in \overline{A}$.

1.4. Conjuntos abiertos y cerrados relativos

Observación. Sean (X,d) un espacio métrico e $Y\subset X$. Sabemos que (Y,d_Y) es un subespacio métrico de (X,d) donde $d_Y(y_1,y_2)=d(y_1,y_2)$. Dado $y_0\in Y$ y r>0, la bola $B_Y(y_0,r)=\{y\in Y:d(y,y_0)< r\}=B(y_0,r)\cap Y$. Es decir, la forma de las bolas cambia.

Observación. En un espacio métrico (X,d), todo conjunto abierto es unión de bolas abiertas. En efecto, si A es abierto, entonces $\forall a \in A$, existe $r_a > 0$ tal que $B(a,r_a) \subset A$, por lo que $A = \bigcup_{a \in A} B(a,r_a)^a$.

Proposición 1.12. Sean (X, d) un espacio métrico e $Y \subset X$.

- (a) $A \subset Y$ es d_Y -abierto si y solo si existe $U \subset X$ abierto tal que $A = U \cap Y$.
- (b) $C \subset Y$ es d_Y -cerrado si y solo si existe $H \subset X$ cerrado tal que $C = H \cap Y$.

Estos conjuntos se llaman abiertos y cerrados relativos de Y, respectivamente.

Demostración. (a) Sea $Y \subset X$.

- (i) Tenemos que $\forall y \in A$, existe $r_y > 0$ tal que $B_Y(y, r_y) \subset A$. Definimos $U = \bigcup_{y \in A} B(y, r_y)$, que es abierto en (X, d) por ser unión de bolas abiertas. Veamos que $A = U \cap Y$. Tenemos que si $y \in A$, entonces $y \in B(y, r_y) \subset A \subset U$ (puesto que $B_Y(y, r_y) \subset B(y, r_y)$). Recíprocamente, sea $z \in Y \cap U$, entonces existe $y \in Y$ tal que $z \in B(y, r_y) \cap Y = B_Y(y, r_y) \subset A$. Por tanto, $Y \cap U \subset A$.
- (ii) Dado $y_0 \in A = U \cap Y$, como U es abierto 3 , existe r > 0 tal que $B(y_0, r) \subset U$. Por tanto, tenemos que $B_Y(y_0, r) = B(y_0, r) \cap Y \subset U \cap Y = A$. Así, hemos visto que A es d_Y -abierto.
- (b) Sea $Y \subset X$.
 - (i) Sea $C \subset Y$ d_Y -cerrado, entonces tenemos que Y/C es d_Y -abierto. Así, existe $U \subset X$ abierto tal que $Y/C = U \cap Y$. Sea H = X/U, que es cerrado. Veamos que $C = H \cap Y$:

$$C = Y/(Y/C) = Y/(U \cap Y) = Y/U = Y \cap (X/U) = Y \cap H.$$

(ii) Si $C = H \cap Y$ con H cerrado en X, entonces X/H es abierto. Tenemos que

$$Y/C = Y/(H \cap Y) = Y \cap (X/H)$$
.

Dado que X/H es abierto, por (a) tenemos que Y/C es d_Y -abierto, por lo que C es d_Y -cerrado.

1.5. Sucesiones en espacios métricos

 $[^]a$ Esta observación se puede reformular diciendo que un subconjunto $A\subset X$ es abierto si y solo si es unión de bolas abiertas.

 $^{^{3}}$ Cuando escribimos abierto y B(x,r) queremos decir que es d-abierto y es la bola en X, respectivamente.

Definición 1.17 (Sucesión y convergencia). Sea (X,d) un espacio métrico. Una **sucesión** es una aplicación $S: \mathbb{N} \to X$. Si $S(n) = x_n \in X$, denotamos la sucesión por $\{x_n\}_{n \in \mathbb{N}}$. Se dice que $\{x_n\}_{n \in \mathbb{N}}$ **converge** a $x_0 \in X$ cuando $d(x_n, x_0)_{n \in \mathbb{N}} \to 0$

Observación. Recordamos que $x_n \to x_0$ si y solo si (ambas definiciones son equivalentes):

- $\forall \varepsilon > 0$ existe $n_0 \in \mathbb{N}$ tal que $\forall n \geq n_0$ se tiene que $d(x_n, x_0) < \varepsilon$.
- $\forall \varepsilon > 0$ existe $n_0 \in \mathbb{N}$ tal que $\forall n \geq n_0$ se tiene que $x_n \in B(x_0, \varepsilon)$.

Proposición 1.13. Sea (X, d) un espacio métrico. Si la sucesión $\{x_n\}_{n\in\mathbb{N}}$ converge, el límite es único.

Demostración. Supongamos que $l_1, l_2 \in X$ son límites de la sucesión, entonces tenemos que si $\varepsilon > 0$, existe $n_0 \in \mathbb{N}$ tal que $\forall n \geq n_0$ se cumple que

$$d(l_1, l_2) \le d(l_1, x_n) + d(x_n, l_2) < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon.$$

Como esto es cierto para todo $\varepsilon > 0$, debe ser que $d(l_1, l_2) = 0$, por lo que $l_1 = l_2$.

Proposición 1.14. Sea (X,d) un espacio métrico y $A \subset X$. Entonces, $x \in \overline{A}$ si y solo si existe una sucesión $\{x_n\}_{n \in \mathbb{N}} \subset A$ tal que $x_n \to x$.

Demostración. (i) Tenemos que si $x \in \overline{A}$, entonces para todo $\varepsilon > 0$ se tiene que $B(x,\varepsilon) \cap A \neq \emptyset$, es decir. Así, podemos coger una sucesión tal que para $\varepsilon = \frac{1}{n}$ se tiene que $x_n \in B\left(x, \frac{1}{n}\right) \cap A$. Vamos a ver que la sucesión $\{x_n\}_{n \in \mathbb{N}}$ converge a x.

$$0 \le d(x_n, x) < \frac{1}{n} \Rightarrow d(x_n, x) \to 0 \iff x_n \to x.$$

(ii) Si existe $\{x_n\}_{n\in\mathbb{N}}\subset A$ tal que $x_n\to x$, tenemos que si r>0, existe $n_0\in\mathbb{N}$ tal que $\forall n\geq n_0,\ x_n\in B\ (x,r),$ es decir, $B\ (x,r)\cap A\neq\emptyset$, por lo que $x\in\overline{A}$.

Proposición 1.15. Sea (X, d) un espacio métrico y $A \subset X$. Entonces $x \in A'$ si y solo si existe una sucesión $\{x_n\}_{n\in\mathbb{N}}$ de términos distintos con $x_n \to x$.

Demostración. (i) Si $x \in A'$, tenemos que $\forall r > 0, A \cap (B(x,r)/\{x\}) \neq \emptyset$.

■ Para n = 1, tomamos x_1 tal que $x_1 \in A \cap (B(x, 1) / \{x\})$.

- Para n = 2, tomamos $\varepsilon = \min \left\{ \frac{1}{2}, d(x_1, x) \right\}$, y tomamos x_2 tal que $x_2 \in A \cap (B(x, \varepsilon) / \{x\})$.
- Asumimos que tenemos $\{x_1, \ldots, x_n\}$ distintos como los hemos descrito anteriormente. Ahora, en el caso n+1, cogemos $\varepsilon = \min\left\{\frac{1}{n+1}, d\left(x_i, x\right)\right\}$ para $i=1,\ldots,n$. Así, cogemos $x_{n+1} \in A \cap (B\left(x,\varepsilon\right)/\{x\})$. Obtenemos que

$$0 < d(x_{n+1}, x) < \frac{1}{n+1} < d(x_i, x), \ 1 \le i \le n.$$

Así, está claro que $x_{n+1} \neq x_i$ para $1 \leq i \leq n$.

Así, hemos construido la sucesión $\{x_n\}_{n\in\mathbb{N}}$ que buscábamos. Tenemos que ver que la sucesión converge a x. En efecto, si $\varepsilon>0$ existe $n_0\in\mathbb{N}$ tal que $\forall n\geq n_0,\,\frac{1}{n}<\varepsilon$, por lo que $d(x_n,x)<\frac{1}{n}<\varepsilon$.

(ii) Puesto que los elementos de la sucesión no se repiten, existe $m \in \mathbb{N}$ tal que $\forall n \geq m$, $x_n \neq x$. Como la sucesión converge, si $\varepsilon > 0$, existe $n_0 \geq m$ tal que $\forall n \geq n_0$, $A \cap (B(x_n, x) / \{x\}) \neq \emptyset$, por lo que $x \in A'$.

Observación. Sea $(E, \|\cdot\|)$ un espacio normado. Tenemos que una sucesión $\{x_n\}_{n\in\mathbb{N}}$ converge a un punto $x\in E$ si y solo si $\|x_n-x\|\to 0$.

Proposición 1.16. En \mathbb{R}^n consideremos las normas $\|\cdot\|_1$, $\|\cdot\|_2$ y $\|\cdot\|_\infty$. Sea $\{x_n\}_{n\in\mathbb{N}}$ una sucesión de \mathbb{R}^n tal que

$$x_k = \left(x_k^1 \,,\, \dots \,,\, x_k^n\right),\,$$

y $x_n \to x = (x^1, \dots, x^n) \in \mathbb{R}^n$. Entonces, la sucesión converge coordenada a coordenada, es decir, $x_k^i \to x^i$ para $1 \le i \le n$.

Demostración. Recordamos que

$$||x||_{\infty} \le ||x||_2 \le ||x||_1 < n||x||_{\infty}.$$

Así, tenemos que si $x_k \to x$,

$$||x_k - x||_{\infty} \le ||x_k - x||_2 \le ||x_k - x||_1 \le n||x_k - x||_{\infty}.$$

Por tanto, la convergencia no depende de la norma que escojamos. Así, para $1 \leq i \leq n$ tenemos que

$$|x_k^i - x^i| \le ||x_k - x||_2 \le |x_k^1 - x^1| + \dots + |x_k^n - x^n| \to 0,$$

por lo que $x_k^i \to x^i$.

Definición 1.18 (Subsucesión). Sea sucesión $\{x_n\}_{n\in\mathbb{N}}\subset X$, donde (X,d) es un espacio métrico. Una **subsucesión** es otra sucesión de la forma $\{x_{n_k}\}_{k\in\mathbb{N}}$ tal que n_k es estrictamente creciente.

Proposición 1.17. Sea (X,d) un espacio métrico y $\{x_n\}_{n\in\mathbb{N}}\subset X$ tal que $x_n\to x$. Entonces, toda subsucesión converge a x.

Demostración. Sea $\{x_{n_k}\}_{k\in\mathbb{N}}\subset\{x_n\}_{n\in\mathbb{N}}$. Tenemos que si $\varepsilon>0$, existe $n_0\in\mathbb{N}$ tal que $\forall n\geq n_0$ se tiene que $d(x_n,x)<\varepsilon$. Como $n_k\to\infty$, podemos encontrar $n_{k_0}\in\mathbb{N}$ tal que $\forall n_k\geq n_{k_0}$ se tenga que $n_k\geq n_0$, por lo que $\forall k\geq k_0$, tenemos que $d(x_k,x)<\varepsilon$. Así, hemos visto que la subsucesión converge al mismo límite.

1.6. Completitud

Definición 1.19 (Sucesión de Cauchy). Sea (X,d) un espacio métrico. Se dice que una sucesión $\{x_n\}_{n\in\mathbb{N}}$ en X es una **sucesión de Cauchy** si $\forall \varepsilon > 0$, existe $n_0 \in \mathbb{N}$ tal que $\forall m, n \geq n_0, d(x_n, x_m) < \varepsilon$.

Proposición 1.18. Toda sucesión convergente es de Cauchy.

Demostración. Sea $\{x_n\}_{n\in\mathbb{N}}\subset X$ una sucesión convergente a $x_0\in X$. Así, si $\varepsilon>0$, tenemos que existe $n_0\in\mathbb{N}$ tal que $\forall n\geq n_0,\ d\left(x_n,x\right)<\frac{\varepsilon}{2}$. Si $n,m\geq n_0$,

$$d(x_n, x_m) \le d(x_n, x) + d(x, x_m) < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon.$$

Definición 1.20 (Espacio completo). Se dice que un espacio métrico (X, d) es **completo** si toda sucesión de Cauchy es convergente en (X, d).

Teorema 1.4. El espacio $(\mathbb{R}, |\cdot|)$ es completo.

Ejemplo. Consideramos $X = \mathbb{Q}$ con la distancia usual. Entonces, $(\mathbb{Q}, |\cdot|)$ no es completo. Hay sucesiones $\{q_n\}_{n\in\mathbb{N}}\subset\mathbb{Q}$ de Cauchy tales que $q_n\to x\in\mathbb{R}/\mathbb{Q}$. Entonces la sucesión $\{q_n\}_{n\in\mathbb{N}}$ no converge en $(\mathbb{Q}, |\cdot|)$. Como ejemplo se puede tomar la sucesión de los decimales de $\sqrt{2}$.

Corolario 1.2. El espacio \mathbb{R}^n con la norma $\|\cdot\|_1, \|\cdot\|_2$ y con $\|\cdot\|_{\infty}$ también es completo.

Demostración. Recordamos que

$$||x||_{\infty} \le ||x||_2 \le ||x||_1 \le n||x||_{\infty}.$$

Por tanto una sucesión $\{x_n\}_{n\in\mathbb{N}}\subset\mathbb{R}^n$ es de Cauchy para $\|\cdot\|_{\infty}$ si y solo si lo es para $\|\cdot\|_2$, si y solo si lo es para $\|\cdot\|_1$. Por ejemplo, para $\|\cdot\|_2$, si $\{x_k\}_{k\in\mathbb{N}}\subset\mathbb{R}^n$ es de Cauchy, entonces $\forall \varepsilon>0$ existe $k_0\in\mathbb{N}$ tal que $\forall k,j\geq k_0$,

$$|x_k^i - x_i^i| \le ||x_k - x_i||_2 < \varepsilon, \quad \forall i = 1, \dots, n.$$

Donde $x_m = (x_m^1, \dots, x_m^n)$. Por tanto, cada componente $\{x_k^i\}_{k \in \mathbb{N}}$ es de Cauchy en \mathbb{R} , por lo que cada componente es convergente en \mathbb{R} y la sucesión es convergente en \mathbb{R}^n .

Ejemplo. Sea $[a,b] \subset \mathbb{R}$. Consideramos el siguiente espacio normado:

$$X = \mathcal{C}[a, b] = \{f : [a, b] \to \mathbb{R} : f \text{ continua en } [a, b]\}.$$

$$||f||_{\infty} = \sup\{|f(t)| : t \in [a, b]\} = \max\{|f(t)| : t \in [a, b]\}.$$

Por ser f continua, la norma está bien definida. Se trata de una norma, puesto que:

- $\|f\|_{\infty} \geq 0.$
- $\|f\|_{\infty} = 0$ si y solo si $|f(t)| = 0, \forall t \in [a, b]$, es decir, f = 0.
- Comprobamos la propiedad triangular:

$$||f + g||_{\infty} = \sup \{|f(t) + g(t)| : t \in [a, b]\}$$

$$\leq \sup \{|f(t)| : t \in [a, b]\} + \sup \{|g(t)| : t \in [a, b]\} = ||f||_{\infty} + ||g||_{\infty}.$$

Podemos observar que $\{f_n\}_{n\in\mathbb{N}}\to f$ en $\|\cdot\|_{\infty}$ si y solo si $\|f_n-f\|_{\infty}\to 0$. Es decir, si $\forall \varepsilon>0$ existe $n_0\in\mathbb{N}$ tal que $\forall n\geq n_0$: $\|f_n-f\|_{\infty}\leq \varepsilon$. Esto es cierto si y solo si $\forall \varepsilon>0$ existe $n_0\in\mathbb{N}$ tal que $\forall n\geq n_0$ se tiene que $|f_n(t)-f(t)|\leq \varepsilon$, $\forall t\in[a,b]$. Es decir, si $\{f_n\}_{n\in\mathbb{N}}$ converge uniformemente en [a,b] a f.

Otra observación que podemos hacer es que $\{f_n\}_{n\in\mathbb{N}}$ es de Cauchy con $\|\cdot\|_{\infty}$ si y solo si $\forall \varepsilon > 0$ existe $n_0 \in \mathbb{N}$ tal que $\forall n, m \geq n_0$ se tiene que $\|f_m - f_m\|_{\infty} \leq \varepsilon$, si y solo si $\forall \varepsilon > 0$, existe $n_0 \in \mathbb{N}$ tal que $\forall n, m \geq n_0$, $|f_n(t) - f_m(t)| \leq \varepsilon$, $\forall t \in [a, b]$. Así, podemos decir que $\{f_n\}_{n\in\mathbb{N}}$ es **uniformemente de Cauchy**.

Teorema 1.5. El espacio $(\mathcal{C}[a,b], \|\cdot\|_{\infty})$ es completo.

Demostración. Sea $\{f_n\}_{n\in\mathbb{N}}$ de Cauchy para $\|\cdot\|_{\infty}$. Tenemos que

$$\forall t \in [a, b], |f_n(t) - f_m(t)| \le ||f_n - f_m||_{\infty}.$$

Luego, $\forall t \in [a, b], \{f_n\}_{n \in \mathbb{N}}$ es de Cauchy en \mathbb{R} , por lo que existe $a_t \in \mathbb{R}$ tal que $\{f_n(t)\} \to a_t$. Definimos la función

$$f: [a,b] \to \mathbb{R}$$

 $t \to a_t$

Vamos a ver que $f_n \to f$ en $\|\cdot\|_{\infty}$. Dado $\varepsilon > 0$, existe $n_0 \in \mathbb{N}$ tal que $\forall n, m \geq n_0$, tenemos que

$$|f_n(t) - f_m(t)| \le \varepsilon, \ \forall t \in [a, b].$$

Si cogemos $m \to \infty$, tenemos que

$$|f_n(t) - f(t)| \le \varepsilon, \ \forall t \in [a, b], \forall n \ge n_0.$$

Así, tenemos que $||f_n - f||_{\infty} \le \varepsilon$, $\forall n \ge n_0$. Por tanto, $\{f_n\}_{n \in \mathbb{N}}$ converge a f uniformemente en [a, b]. Como el límite de una sucesión de funciones continuas es una función continua, tenemos que $f \in \mathcal{C}[a, b]$.

Proposición 1.19. Sea (X, d) un espacio métrico completo y sea $Y \subset X$. Entonces, (Y, d_Y) es completo si y solo si Y es cerrado en X.

- Demostración. (i) Sea (Y, d_Y) completo. Vamos a ver que Y es cerrado. Sea $x \in \overline{Y}$, por lo que $\exists \{y_n\}_{n \in \mathbb{N}} \subset Y$ tal que $y_n \to x$. Por tanto, $\{y_n\}_{n \in \mathbb{N}}$ es de Cauchy en X e Y. Luego, existe $y_0 = x = \lim_{n \to \infty} y_n \in Y$, por lo que $x \in Y$. Así, tenemos que $\overline{Y} \subset Y$ y por tanto Y es cerrado.
- (ii) Supongamos que Y es cerrado en X. Sea $\{y_n\}_{n\in\mathbb{N}}\subset (Y,d_Y)$ sucesión de Cauchy. Entonces, $\forall \varepsilon>0$, existe $n_0\in\mathbb{N}$ tal que $\forall n,m\geq n_0$ $d_Y(y_n,y_m)<\varepsilon$. Por ser de Cauchy en (X,d), existe $x\in X$ tal que $y_n\to x$. Por tanto, tenemos que $x\in\overline{Y}=Y$, por lo que $\{y_n\}_{n\in\mathbb{N}}$ es convergente en Y.

Lema 1.2. En un espacio métrico (X,d), toda sucesión de Cauchy está acotada.

Demostración. Sea $\{x_n\}_{n\in\mathbb{N}}$ una sucesión de Cauchy. Entonces, si cogemos $\varepsilon=1$, existe $n_0\in\mathbb{N}$ tal que $\forall n\geq n_0$ se tiene que $d(x_n,x_{n_0})<1$. Podemos tomar

$$R = \max \{1, d(x_n, x_m) : n, m \le n_0\}^4.$$

Entonces, tenemos que $\{x_n\}_{n\in\mathbb{N}}\subset B(x_{n_0},R)$.

Lema 1.3. Sea $\{x_n\}_{n\in\mathbb{N}}$ sucesión de Cauchy en un espacio métrico (X,d). Si existe una subsucesión $\{x_{n_k}\}_{k\in\mathbb{N}}$ convergente a $x\in X$, entonces toda la sucesión $\{x_n\}_{n\in\mathbb{N}}$ converge a x.

 $^{^{4}}$ En clase tomó $R=\max{\{d\left(x_{1},x_{n_{0}}\right),d\left(x_{2},x_{n_{0}}\right),\ldots,d\left(x_{n_{0}-1},x_{n_{0}}\right),1\}}.$

 $Demostración. \text{ Sea } \varepsilon > 0, \text{ existe } n_1 \in \mathbb{N} \text{ tal que } \forall n,m \geq n_0, \ d\left(x_n,x_m\right) < \frac{\varepsilon}{2}. \text{ También existe } k_0 \in \mathbb{N} \text{ tal que } \forall k \geq k_0, \ d\left(x_{n_k},x\right) < \frac{\varepsilon}{2}. \text{ Sea } n_0 = \max\left\{n_0,n_{k_0}\right\} \text{ y sea } n \geq n_0,$

$$d(x_n, x) \le d(x_n, x_{n_0}) + d(x_{n_0}, x) < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon.$$

1.7. Compacidad y recubrimientos

Teorema 1.6 (Teorema de Bolzano-Weierstrass). Toda sucesión acotada en \mathbb{R} admite una subsucesión convergente.

Corolario 1.3. En \mathbb{R}^{n-a} , toda sucesión acotada admite una subsucesión convergente.

^aCon las normas $\|\cdot\|_1, \|\cdot\|_2$ o $\|\cdot\|_{\infty}$.

Demostración. El caso general es un poco tedioso, por lo que solo haremos la demostración cuando n=2.

Sea $(x_n,y_n)_{n\in\mathbb{N}}\subset\mathbb{R}^2$ acotada, por lo que existe R>0 tal que $|x_n|$, $|y_n|\leq R$, $\forall n\in\mathbb{N}$. Como $\{x_n\}_{n\in\mathbb{N}}\subset\mathbb{R}$ está acotada, existe $\{x_{n_k}\}_{k\in\mathbb{N}}$ convergente a $x_0\in\mathbb{R}$. Consideramos $\{y_{n_k}\}_{k\in\mathbb{N}}$ está acotada, existe $\{y_{n_{k_j}}\}_{j\in\mathbb{N}}$ convergente a $y_0\in\mathbb{R}$. Así, tenemos que $(x_{n_{k_j}},y_{n_{k_j}})_{j\in\mathbb{N}}$ es una subsucesión de (x_n,y_n) y $(x_{n_{k_j}},y_{n_{k_j}})\to (x_0,y_0)$.

Definición 1.21 (Conjunto compacto). Sea (X, d) un espacio métrico y sea $K \subset X$. Se dice que K es **compacto** si toda sucesión en K admite una subsucesión convergente en K.

Lema 1.4. Sean (X, d) un espacio métrico y $K \subset X$ compacto. Entonces K es cerrado y acotado en (X, d).

- Demostración. (i) Supongamos que K no es acotado. Si fijamos $x_0 \in X$ y sabemos que $\forall n \in \mathbb{N}, K \not\subset B(x_0, n)$. Por tanto, existe $x_n \in K$ tal que $d(x_n, x_0) \geq n$. Por tanto, la sucesión $\{x_n\}_{n \in \mathbb{N}} \subset K$ y $d(x_n, x_0) = \infty$, por lo que la sucesión $\{x_n\}_{n \in \mathbb{N}}$ no es acotada. Además, para toda subsucesión $\{x_{n_j}\}_{j \in \mathbb{N}}$, se tiene que $d(x_{n_j}, x_0) = \infty$, por lo que $\{x_{n_j}\}_{j \in \mathbb{N}}$ no es acotada, por lo que no es convergente. Por tanto, K no es compacto.
- (ii) Supongamos que K no es cerrado. Es decir, existe $x \in \overline{K}/K$. Así, existe una sucesión $\{x_n\}_{n\in\mathbb{N}} \subset K$ con $x_n \to x \notin K$. Además, para toda subsucesión $\{x_{n_j}\}_{j\in\mathbb{N}}$ se tiene que $x_{n_j} \to x \notin K$. Es decir, todas las subsucesiones de $\{x_n\}_{n\in\mathbb{N}}$ convergen fuera de K, por lo que K no es compacto.

Teorema 1.7. En \mathbb{R}^n (con $\|\cdot\|_1, \|\cdot\|_2$ o $\|\cdot\|_\infty$) un subconjunto $K \subset \mathbb{R}^n$ es compacto si y solo si K es cerrado y acotado.

Demostración. (i) Es trivial a partir del lema anterior.

(ii) Sea $K \subset \mathbb{R}^n$ cerrado y acotado. Sea $\{x_j\}_{j\in\mathbb{N}}$ una sucesión en K. Entonces, $\{x_j\}_{j\in\mathbb{N}}$ está acotada y por tanto existe una subsucesión $\{x_{n_l}\}_{l\in\mathbb{N}}$ convergente a $x_0 \in \mathbb{R}^n$. Entonces, $x_0 \in \overline{K} = K$ puesto que K es cerrado. Entonces, K es compacto.

Ejemplo. El recíproco del lema anterior no es cierto. Consideremos por ejemplo (X, d) donde $X = \mathbb{N}$ y d es la métrica discreta. El conjunto de todos los números naturales es cerrado y acotado (tal y como lo hemos definido). Sin embargo, no es compacto.

Sea $\{x_n\}_{n\in\mathbb{N}}$ convergente a $x\in\mathbb{N}$. Entonces, tenemos que $\forall \varepsilon>0, \exists n_0\in\mathbb{N}, \forall n\geq n_0, d\left(x_n,x\right)<\varepsilon$. Esto solo sucede si existe un $n_0\in\mathbb{N}$ tal que $\forall n\geq n_0, x_n=x$.

Por tanto, la sucesión $\{n\}_{n\in\mathbb{N}}\subset X$ está acotada pero no es convergente (puesto que no cumple la condición de convergencia que hemos visto anteriormente) y no tiene subsucesiones convergentes.

Definición 1.22 (Recubrimiento). Sean (X, d) un espacio métrico y $M \subset X$.

- (a) Un recubrimiento de M es una familia $\{U_i\}_{i\in I}$ de subconjuntos de X que recubre M en el sentido de que $M\subset\bigcup_{i\in I}U_i$. Se dice que el recubrimiento es abierto si cada U_i es un conjunto abierto en X.
- (b) Un sub-recubrimiento de $\{U_i\}_{i\in I}$ es un recubrimiento de la forma $\{U_j\}_{j\in J}$ donde $J\subset I$ y tal que $M\subset \bigcup_{j\in I}U_j$.

Teorema 1.8. Sea (X,d) un espacio métrico y $K \subset X$. Entonces K es compacto si y solo si todo recubrimiento abierto de K admite un subrecubrimiento finito.

Demostración. Por simplicidad, vamos a ver la demostración en el caso particular $X = \mathbb{R}^n$ con la norma euclídea.

(i) Sea $K \subset \mathbb{R}^n$ compacto y sea $U = \{U_i : i \in I\}$ un recubrimiento abierto de K. Consideremos la familia auxiliar \mathcal{B} de todas las bolas abiertas de la forma B(q,r), donde $q \in \mathbb{Q}^n$ y $r \in \mathbb{Q}^+$, tales que B(q,r) esté contenida en alún U_i . Como \mathbb{Q} es numerable, \mathbb{Q}^n también lo es, por lo que \mathcal{B} es numerable y se puede escribir $\mathcal{B} = \{B_j\}_{j \in \mathbb{N}}$.

En primer lugar, veamos que $K \subset \bigcup_{j \in \mathbb{N}} B_j$. En efecto, dado $x \in K$, existe $i \in I$

CAPÍTULO 1. ESPACIOS MÉTRICOS

tal que $x \in U_i$, que es abierto, por lo que existe r' > 0 tal que $B(x, r') \subset U_i$. Tomamos $r \in \mathbb{Q}$ tal que $0 < r < \frac{r'}{2}$ y, como \mathbb{Q}^n es denso en \mathbb{R}^n se tiene que $\overline{\mathbb{Q}^n} = \mathbb{R}^n$, por lo que podemos elegir $q \in \mathbb{Q}^n \cap B(x, r)$. Entonces,

$$x \in B(q,r) \subset B(x,r') \subset U_i$$
.

Por tanto $B(q,r) \in \mathcal{B}$ y $K \subset \bigcup_{j \in \mathbb{N}} B_j$.

Ahora, veamos que \mathcal{B} admite un subrecubrimiento finito de K. Procedamos por reducción al absurdo. Si no fuera así, tendríamos que

- $K \not\subset B_1$, luego existe $x_1 \in K$ tal que $x_1 \not\in B_1$.
- $K \not\subset B_1 \cup B_2$, luego existe $x_2 \in K$ con $x_2 \not\in B_1 \cup B_2$.
- $\forall m \in \mathbb{N}, K \not\subset B_1 \cup \cdots \cup B_m$, por lo que existe $x_m \in K$ con $x_m \notin B_1 \cup \cdots \cup B_m$.

Así, obtenemos la sucesión $\{x_m\}_{m\in\mathbb{N}}\subset K$. Por ser K compacto, existe $\{x_{m_k}\}_{k\in\mathbb{N}}$ tal que $x_{m_k}\to x\in K\subset\bigcup_{j\in\mathbb{N}}B_j$. Por tanto, existe $j_0\in\mathbb{N}$ tal que $x\in B_{j_0}$ bola abierta,

por lo que existe $k_0 \in \mathbb{N}$ con $x_{m_k} \in B_{j_0}$, $\forall k \geq k_0$. Tomamos ahora $k \in \mathbb{N}$ con $k \geq k_0$ y $m_k > j_0$. Entonces, tenemos que $x_{m_k} \in B_{j_0}$ y $x_{m_k} \notin B_1 \cup \cdots \cup B_{m_k}$, en particular $x_{m_k} \notin B_{j_0}$, que es una contradicción. Por tanto, existe $l \in \mathbb{N}$ tal que

$$K \subset B_1 \cup \cdots \cup B_l$$
.

Anteriormente vimos que $B(q,r) \subset U_i$, por lo que tenemos que para cada $j=1,\ldots,l$, existe $i_j \in I$ tal que $B_j \subset U_{i_j}$. Entonces,

$$K \subset B_1 \cup \cdots \cup B_l \subset U_{i_1} \cup \cdots \cup U_{i_l}$$

Así, hemos encontrado un recubrimiento finito de K.

- (ii) Veamos que si $K \subset \mathbb{R}^n$ no es compacto, entonces existe algún recubrimiento abierto de K que no admite un subrecubrimiento finito. Existen dos posibles casos:
 - Caso 1. Supongamos que K no es acotado. Tenemos que $\mathbb{R}^n = \bigcup_{j \in \mathbb{N}} B\left(0, j\right)$, luego

 $K\subset\bigcup_{j\in\mathbb{N}}B\left(0,j\right)$. Tenemos que $U=\left\{ B\left(0,j\right)\right\} _{j\in\mathbb{N}}$ es un recubrimiento abierto de

K, que no admite ninún subrecubrimiento finito, puesto que $B\left(0,1\right)\cup\cdots\cup B\left(0,k\right)$ es acotado.

Caso 2. Supongamos que K no es cerrado. Tenemos que existe $x_0 \in \overline{K}/K$. Consideremos $U_j = \mathbb{R}^n/\overline{B}\left(x_0, \frac{1}{j}\right), \forall j \in \mathbb{N}$. Tenemos que

$$\bigcup_{j\in\mathbb{N}} U_j = \mathbb{R}^n / \left\{ x_0 \right\}.$$

Luego, $K \subset \bigcup_{j \in \mathbb{N}} U_j$ que es un recubrimiento abierto de K, pero no admite ningún subrecubrimiento finito,

$$K \not\subset U_1 \cup \cdots \cup U_k = \mathbb{R}^n / \overline{B} \left(x_0, \frac{1}{k} \right),$$

porque $x_0 \in \overline{K}$ y entonces $K \cap B\left(x_0, \frac{1}{k}\right) \neq \emptyset$.

Observación (Propiedad de Lindelöf). Esta demostración prueba que todo conjunto $M \subset \mathbb{R}^n$ (compacto o no) verifica que todo recubrimiento abierto de M admite un subrecubrimiento numerable.

Capítulo 2

Continuidad

Definición 2.1 (Continuidad). Sea $f:(X,d_X)\to (Y,d_Y)$ una función entre dos espacios métricos y $x_0\in X$. Se dice que f es **continua** en x_0 si

$$\forall \varepsilon > 0, \exists \delta > 0, \ d_X(x, x_0) < \delta \Rightarrow d_Y(f(x), f(x_0)) < \varepsilon.$$

. Decimos que f es continua en un subconjunto $M \subset X$ si es continua en $x_0, \forall x_0 \in M$.

Observación. Una definición equivalente es

$$\forall \varepsilon > 0, \exists \delta > 0, \ x \in (B_X(x_0, \delta)) \Rightarrow f(x) \in B_Y(f(x_0), \varepsilon).$$

Es decir,

$$\forall \varepsilon > 0, \exists \delta > 0, \ f(B_X(x_0, \delta)) \subset B_Y(f(x_0), \varepsilon).$$

Proposición 2.1. Sea $f:(X,d_X)\to (Y,d_Y)$ y $x_0\in X$. Son equivalentes:

- 1. f es continua en x_0 .
- 2. $\forall \{x_n\}_{n\in\mathbb{N}} \subset X$ con $x_n \to x_0$ en X, entonces la sucesión $\{f(x_n)\}_{n\in\mathbb{N}}$ converge a $f(x_0)$ en Y.
- Demostración. (i) Sea $\{x_n\}_{n\in\mathbb{N}}\subset X$ una sucesión cualquiera con $x_n\to x_0$. Dado $\varepsilon>0$, sabemos que existe $\delta>0$ tal que si $d_X(x,x_0)<\delta$, entonces $d_Y(f(x),f(x_0))<\varepsilon$. Tenemos que existe $n_0\in\mathbb{N}$ tal que si $n\geq n_0$ se tiene que $d_X(x_n,x_0)<\delta$. Por tanto, $\forall n\geq n_0$ se tiene que $d_Y(f(x_n),f(x_0))<\varepsilon$.
- (ii) Supongamos que f no es continua en x_0 . Así, existe un $\varepsilon > 0$ tal que $\forall \delta > 0$ existe $x_\delta \in X$ tal que $d_X(x,x_0) < \delta$ y $d_Y(f(x),f(x_0)) \ge \varepsilon$. Si $n \in \mathbb{N}$ podemos tomar $x_n \in X$ tal que $d_X(x_n,x_0) < \delta = \frac{1}{n}$ y $d_Y(f(x),f(x_0)) \ge \varepsilon$. Por tanto, tenemos que $x_n \to x_0$ en X, pero $f(x_n) \not\to f(x_0)$ en Y.

Observación. Si f no es continua en x_0 , tenemos que existe una sucesión $\{x_n\}_{n\in\mathbb{N}}\subset X$ tal que

$$d_Y(f(x_n), f(x_0)) \ge \varepsilon, \ \forall n \in \mathbb{N}.$$

Por tanto, $f(x_n) \not\to f(x_0)$ y ninguna subsucesión suya converge a $f(x_0)$.

Proposición 2.2. Las funciones $s: \mathbb{R}^2 \to \mathbb{R}: (x,y) \to x+y \text{ y } p: \mathbb{R}^2 \to \mathbb{R}: (x,y) \to x \cdot y$, son continuas en \mathbb{R}^2 (con las normas $\|\cdot\|_1, \|\cdot\|_2, \|\cdot\|_\infty$).

Demostración. Sea $\{z_n = (x_n, y_n)\}_{n \in \mathbb{N}} \subset \mathbb{R}^2$ tal que $z_n \to (x_0, y_0) \in \mathbb{R}^2$. Tenemos que $x_n \to x_0$ e $y_n \to y_0$ en \mathbb{R} . Ahora,

$$s(x_n, y_n) = x_n + y_n \to x_0 + y_0 = s(x_0, y_0).$$

De forma similar,

$$p(x_n, y_n) = x_n \cdot y_n \to x_0 \cdot y_0 = p(x_0, y_0).$$

Así, tenemos que s y p son continuas.

Proposición 2.3. Sean $f:(X,d_X)\to (Y,d_Y)$ y $g:(Y,d_Y)\to (Z,d_Z)$. Supongamos que f es continua en x_0 y g es continua en $f(x_0)$. Entonces $g\circ f:(X,d_X)\to (Z,d_Z)$ es continua en x_0 .

Demostración. Dado $\varepsilon > 0$, tenemos que existe $\delta_1 > 0$ tal que si $d_Y(y, f(x_0)) < \delta_1$, entonces $d_Z(g(y), g(f(x_0))) < \varepsilon$. Así, existe $\delta > 0$ tal que si $d_X(x, x_0) < \delta$ entonces $d_Y(f(x), f(x_0)) < \delta_1$. Por tanto, si $d_X(x, x_0) < \delta$, tenemos que $d_Z(g(f(x)), g(f(x_0))) < \varepsilon$.

Ejemplo. Las funciones siguientes son continuas: $f, g : \mathbb{R}^2 \to \mathbb{R}$.

- $f(x,y) = \cos(xy).$
- $g(x,y) = \sin(x+y)^3$.

Proposición 2.4. Sea $f:(X,d_X)\to\mathbb{R}^n$ (con $\|\cdot\|_1,\|\cdot\|_2$ o $\|\cdot\|_\infty$). Entonces, $f(x)=(f_1(x),f_2(x),\ldots,f_n(x))$. Por tanto, f es continua en $x_0\in X$ si y solo si f_1,\ldots,f_n son continuas en x_0 .

Demostración. (i) Supongamos que f es continua en x_0 . Sea $\{x_j\}_{j\in\mathbb{N}}\subset X$ tal que $x_j\to x_0$ en (X,d_X) . Entonces, tenemos que

$$f(x_i) = (f_1(x_i), \dots, f_n(x_i)) \to f(x_0) = (f_1(x_0), \dots, f_n(x_0)).$$

Así, tenemos que $\forall i = 1, ..., n$, $f_i(x_j) \to f_i(x_0)$, por lo que $\forall i = 1, ..., n$ se tiene que f_i es continua.

(ii) Sea $\{x_j\}_{j\in\mathbb{N}}\subset X$ tal que $x_j\to x_0$ en (X,d_X) . Tenemos que $\forall i=1,\ldots,n,\ f_i\left(x_j\right)\to f_i\left(x_0\right)$, por lo que $f\left(x_j\right)\to f\left(x_0\right)$ en \mathbb{R}^n y f es continua en x_0 .

Corolario 2.1. Sean $f, g: (X, d_X) \to \mathbb{R}$. Si $f \neq g$ son continuas en x_0 , entonces $f + g \neq g$ también son continuas en x_0 .

Demostración. Consideremos $h=(f,g):(X,d_X)\to\mathbb{R}^2$ tal que h(x)=(f(x),g(x)). Tenemos que h es continua en x_0 por la proposición anterior. Además,

$$f + g: (X, d_X) \to^h \mathbb{R}^2 \to^s \mathbb{R}$$

 $x \to (f(x), g(x)) \to f(x) + g(x),$

que es continua en x_0 . Similarmente,

$$f \cdot g : (X, d_X) \to^h \mathbb{R}^2 \to^p \mathbb{R}$$

 $x \to (f(x), g(x)) \to f(x) \cdot g(x),$

que también es continua en x_0 .

Ejemplo. • La función $u(x,y) = \sin(x+y)^3 + \cos(xy)$ es continua en \mathbb{R}^2 .

- La función $w(x, y, z) = \sin(x + y + z)^3 + \cos(xyz + 2xy)$ es continua en \mathbb{R}^3 .
- La función $v(x, y, z) = \log(1 + x^2 + y^2)$ es continua en \mathbb{R}^3 .

Observación. Las proyecciones $\pi_i : \mathbb{R}^n \to \mathbb{R}$, $\pi_i(x_1, \dots, x_n) = x_i$, son continuas en \mathbb{R}^n para $\forall i = 1, \dots, n$. En efecto, tenemos que la identidad es continua y sus componentes son (π_1, \dots, π_n) ,

$$id(x) = id(x_1, \dots, x_n) = (\pi_1(x), \dots, \pi_n(x)) = (x_1, \dots, x_n).$$

Observación. Toda aplicación lineal $T: \mathbb{R}^n \to \mathbb{R}^m$ es continua (con $\|\cdot\|_1, \|\cdot\|_2$ y $\|\cdot\|_\infty$). En efecto, tenemos que $T(x) = (T_1(x), \dots, T_m(x)) \in \mathbb{R}^m$ y existe $A \in \mathcal{M}_{n \times m}(\mathbb{R})$ tal que

$$A\begin{pmatrix} x_1 \\ \vdots \\ x_m \end{pmatrix} = \begin{pmatrix} T_1(x) \\ \vdots \\ T_m(x) \end{pmatrix}.$$

Así, tenemos que $T_i(x) = \sum_{k=1}^n a_{ik} x_k$, que es continua $\forall i = 1, ..., m$. Como las coordenadas son continuas tenemos que T es continua.

Observación. Veremos que $\mathcal{M}_{n\times m}\cong\mathbb{R}^{n\cdot m}$.

2.1. Continuidad global

Notación. Sea $f: X \to Y$.

- Para $y \in Y$ definition $f^{-1}(\{y\}) = \{x \in X : f(x) = y\}.$
- Para $M \subset Y$ definition $f^{-1}(M) = \{x \in X : f(x) \in M\}.$

Teorema 2.1. Sea $f:(X,d_X)\to (Y,d_Y)$. Son equivalentes:

- 1. f es continua en X.
- 2. $\forall V \subset Y$ abierto, $f^{-1}(V)$ es abierto en X.
- 3. $\forall H \subset Y$ cerrado, $f^{-1}(H)$ es cerrado en X.
- Demostración. (1) \Rightarrow (2) Sea $V \subset Y$ abierto y $x_0 \in f^{-1}(V)$. Tenemos que $f(x_0) \in V$, que es abierto en Y, por lo que existe $\varepsilon > 0$ tal que $B_Y(f(x_0), \varepsilon) \subset V$. Por ser f continua en X existe $\delta > 0$ tal que $f(B_X(x_0, \delta)) \subset B_Y(f(x_0), \varepsilon) \subset V$, por lo que $B_X(x_0, \delta) \subset f^{-1}(V)$.
- (2) \Rightarrow (1) Sea $x_0 \in X$. Dado $\varepsilon > 0$ podemos considerar $V = B_Y(f(x_0), \varepsilon)$, que es abierto en Y. Por hipótesis tenemos que $f^{-1}(V)$ es abierto en X, por lo que existe $\delta > 0$ tal que $B_X(x_0, \delta) \subset f^{-1}(V)$. Así, nos queda que

$$f(B_X(x_0,\delta)) \subset V = B_Y(f(x_0),\varepsilon)$$
.

Es decir, f es continua en x_0 .

(2) \Rightarrow (3) Sea $H \subset Y$ cerrado, por lo que V = Y/H es abierto. Así, tenemos que $f^{-1}(V)$ es abierto en X, por lo que

$$f^{-1}(V) = \{x \in X : f(x) \notin H\} = X/f^{-1}(H).$$

Por tanto, $f^{-1}(H)$ es cerrado en Y.

(3) \Rightarrow (2) Sea $V \subset Y$ abierto. Consideramos H = Y/V cerrado. Tenemos que $f^{-1}(H)$ es cerrado en X. Como

$$f^{-1}(H) = \{x \in X : f(x) \notin V\} = X/f^{-1}(V),$$

se sigue que $f^{-1}(V)$ es abierto en X.

Ejemplo. 1. Sea $A=\left\{(x,y)\in\mathbb{R}^2: x^2<1+y^2\right\}=\left\{(x,y)\in\mathbb{R}^2: x^2-y^2-1<0\right\}.$ Sea $f\left(x,y\right)=x^2-y^2-1,$ que es continua en $\mathbb{R}^2.$ Podemos decir que $A=\left\{(x,y)\in\mathbb{R}^2: f\left(x,y\right)\in(-\infty,0)\right\}=f^{-1}\left((-\infty,0)\right).$ Como $(-\infty,0)$ es abierto en $\mathbb{R},$ tenemos que A es abierto en $\mathbb{R}^2.$

- 2. Sea $B=\left\{(x,y,z)\in\mathbb{R}^3: x^2+y^2\leq 1+z^2\right\}$. Podemos considerar $g:\mathbb{R}^3\to\mathbb{R}: (x,y,z)\to x^2+y^2-z^2-1$, que es continua. Tenemos, pues que $B=g^{-1}\left((-\infty,0]\right)$ que es cerrado, por lo que B es cerrado en \mathbb{R}^3 .
- 3. Sea $C = \{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 = 1 + z^2\}$. Podemos tomar $h(x, y, z) = x^2 + y^2 z^2 1$, que es continua. Así, tenemos que $C = h^{-1}(\{0\})$ y como $\{0\}$ es cerrado en \mathbb{R} , tenemos que C es cerrado.

2.2. Continuidad y restricciones

Proposición 2.5. Sea $f:(X,d_X)\to (Y,d_Y)$ es continua en X y sea $M\subset X$. Entonces la restricción de f a M ^a es continua en M.

^aSe define la función de f restringida a M como $f|_M:(M,d_X|_M)\to (Y,d_Y)$

Demostración. Sea $z_0 \in M \subset X$ y sea $\{x_k\}_{k \in \mathbb{N}} \subset M$ con $x_k \to z_0$ en $d_X|_M$, por lo que $x_k \to z_0$ en d_X . Como f es cotinua tenemos que $f(x_k) \to f(z_0)$, por lo que $f|_M$ es continua en z_0 .

Proposición 2.6. Supongamos que $f:(X,d_X)\to (Y,d_Y)$ y sea $A\subset X$ abierto. Si $f|_A:(A,d_X|_A)\to (Y,d_Y)$ es continua en A, entonces f es continua en A.

Demostración. Sea $x_0 \in A$ y $\{x_k\}_{k \in \mathbb{N}} \subset X$ con $x_k \to x_0$. Como A es abierto, existe r > 0 tal que $B_X(x_0, r) \subset A$. Por otro lado, existe $k_0 \in \mathbb{N}$ tal que $\forall k \geq k_0, x_k \in B_X(x_0, r)$. Así, como $\{x_k\}_{k \geq k_0} \subset A$, tenemos que $x_k \to x_0$ por lo que $f(x_k) \to f(x_0)^{-1}$. Por tanto, f es continua en x_0 .

Ejemplo. Sea $f: \mathbb{R}^2 \to \mathbb{R}$ con

$$f(x,y) = \begin{cases} \frac{xy}{x^2 + y^2}, & x^2 + y^2 \neq 0 \\ 0, & (x,y) = (0,0) \end{cases}$$

Consideremos $A = \mathbb{R}^2 / \{(0,0)\} = \{(x,y) \in \mathbb{R}^2 : (x,y) \neq (0,0)\}$, que es abierto en \mathbb{R}^2 . Tenemos que $f|_A(x,y) = \frac{xy}{x^2 + y^2}$ es continua en A. Por la proposición anterior tenemos que f es continua en todos los puntos de A.

Veamos si es continua en (0,0). Dado $\lambda \in \mathbb{R}$ consideramos $M_{\lambda} = \{(x,y) : y = \lambda x\}$.

¹Hemos usado que el límite de dos sucesiones que difieren en un número finito de términos es el mismo.

Tenemos que

$$f|_{M_{\lambda}}(x,y) = \frac{xy}{x^2 + y^2} = \frac{\lambda x^2}{x^2 + \lambda^2 x^2} = \frac{\lambda}{1 + \lambda^2}.$$

Como $f|_{M_{\lambda}}$ es constante en M_{λ} , tenemos que $f|_{M_{\lambda}}$ es continua. Sin embargo, tenemos que f no es continua en (0,0), puesto que adopta valores distintios para cada M_{λ} .

Lema 2.1 (Lema de pegado). Sea $f:(X,d_X)\to (Y,d_Y)$. Supongamos que $X=F_1\cup\cdots\cup F_m$ es una unión finita de cerrados tales que $f|_{F_i}:(F_i,d_X|_{F_i})\to (Y,d_Y)$ es continua $\forall i=1,\ldots,m$. Entonces, f es continua en X.

Demostración. Sea $H \subset Y$ cerrado. Tenemos que

$$f^{-1}(H) = \{x \in X : f(x) \in H\} = \bigcup_{1 \le i \le m} \underbrace{\{x \in F_i : f(x) \in H\}}_{f^{-1}(H) \cap F_i} = \bigcup_{1 \le i \le m} (f|_{F_i})^{-1}(H).$$

Tenemos que $(f|_{F_i})^{-1}(H)$ es cerrado relativo en $(F_i, d_X|_{F_i})$ y que F_i es cerrado en X. Por tanto, $(f|_{F_i})^{-1}(H)$ es cerrado en X 2 y f es continua en X.

Ejemplo. 1. Sea $f: \mathbb{R}^3 \to \mathbb{R}$ con

$$f\left(x,y,z\right) = \begin{cases} \sqrt{x^2 + y^2 + z^2}, \ \sqrt{x^2 + y^2 + z^2} \le 1\\ \frac{1}{\sqrt{x^2 + y^2 + z^2}} \ge 1 \end{cases}.$$

Podemos considerar

$$F_1 = \left\{ (x,y,z) \ : \ \sqrt{x^2 + y^2 + z^2} \le 1 \right\} \ \text{y} \ F_2 = \left\{ (x,y,z) \ : \ \sqrt{x^2 + y^2 + z^2} \ge 1 \right\},$$

que son cerrados. Tenemos que $\mathbb{R}^3 = F_1 \cup F_2$ pero $F_1 \cap F_2 \neq \emptyset$. Tenemos que $f|_{F_1}$ y $f|_{F_2}$ son continuas, por lo que f es continua en \mathbb{R}^3 .

2. Veamos que $f:\mathbb{R}^2\to\mathbb{R}:(x,y)\to\max\{x,y\}$ es continua. Podemos considerar los conjuntos cerrados

$$F_1 = \{(x, y) : y \ge x\} \text{ y } F_2 = \{(x, y) : y \le x\}.$$

Tenemos que $f|_{F_1}(x,y) = y$ y $f|_{F_2}(x,y) = x$, que son continuas por lo que f es continua en \mathbb{R}^2 .

Teorema 2.2. Sea $f:(X,d_X)\to (Y,d_Y)$ continua en X^a . Si $\mathbb{K}\subset X$ es compacto, entonces f(K) es compacto en Y.

 ${}^a\mathrm{Bastaría}$ con que fuese continua en K.

²Hemos usado que C es cerrado relativo en (Z, d_Z) si y solo si existe F cerrado en X tal que $C = Z \cap F$.

Demostración. Sea $\{y_n\}_{n\in\mathbb{N}}\subset f(K)$ una sucesión cualquiera. Para cada $n\in\mathbb{N}$, como $y_n\in f(K)$, existe $x_n\in K$ tal que $f(x_n)=y_n$. Así, tenemos la sucesión $\{x_n\}_{n\in\mathbb{N}}\subset K$. Como K es compacto, existe $\{x_{n_j}\}_{j\in\mathbb{N}}\subset \{x_n\}_{n\in\mathbb{N}}$ tal que $x_{n_j}\to x_0\in\mathbb{K}$. Por ser f continua, tenemos que $f(x_{n_j})=y_{n_j}\to f(x_0)\in f(K)$. Así, hemos visto que la sucesión $\{y_n\}_{n\in\mathbb{N}}$ tiene una subsucesión convergente en f(K).

Corolario 2.2. Sean (X, d_X) un espacio métrico y $f: (X, d_X) \to \mathbb{R}$ continua en X. Si $K \subset X$ es compacto, f alcanza un valor máximo y un valor mínimo en K, es decir, $\exists x_m, x_M \in K$ tales que $f(x_m) \leq f(x_M)$, $\forall x \in K$.

Demostración. Como $K \subset X$ es compacto, tenemos que f(K) es compacto en \mathbb{R} , por lo que f(K) es cerrado y acotado. Por ser f(K) acotado en \mathbb{R} existen $\alpha = \inf(f(K))$ y $\beta = \sup(f(K))$ con $\alpha, \beta \in \mathbb{R}$. Tenemos que $\alpha, \beta \in \overline{f(K)} = f(K)$ puesto que f(K) es cerrado. Así, existen $x_m, x_M \in K$ tales que $\alpha = f(x_m)$ y $\beta = f(x_M)$.

Observación. Si $M \subset \mathbb{R}$ es acotado, entonces $\alpha = \inf(M)$ y $\beta = \sup(M)$ son puntos adherentes a M, puesto que $\forall \varepsilon > 0$, $\exists x \in M$ tal que

$$x \in M \cap (\beta - \varepsilon, \beta + \varepsilon) = M \cap B(\beta, \varepsilon) \neq \emptyset.$$

Teorema 2.3 (Normas equivalentes). En \mathbb{R}^n todas las normas son equivalentes.

Demostración. Sea $\|\cdot\|$ una norma en \mathbb{R}^n . Vamos a demostrar que $\|\cdot\|$ es equivalente a $\|\cdot\|_{\infty}$.

1. Consideramos $\{e_i\}_{i=1}^n$ la base canónica de \mathbb{R}^n y sea $M=\sum_{i=1}^n\|e_i\|$. Tenemos que si $x\in\mathbb{R}^n$.

$$||x|| = \left|\left|\sum_{i=1}^{n} x_i e_i\right|\right| \le \sum_{i=1}^{n} ||x_i e_i|| = \sum_{i=1}^{n} |x_i| \, ||e_i|| \le \sum_{i=1}^{n} ||x||_{\infty} ||e_i|| = M ||x||_{\infty}.$$

2. Consideramos $f:(\mathbb{R}^n,\|\cdot\|_{\infty})\to\mathbb{R}:x\to\|x\|$. Veamos que f es continua en \mathbb{R}^n . Sea $\{x_k\}_{k\in\mathbb{N}}\subset\mathbb{R}^n$ con $x_k\to x_0$ en $(\mathbb{R}^n,\|\cdot\|_{\infty})$. Vamos a ver que $f(x_k)\to f(x_0)$:

$$|f(x_k) - f(x_0)| = |||x_k|| - ||x_0||| \le ||x_k - x_0|| \le M||x_k - x_0||_{\infty} \to 0.$$

3. El conjunto $S_{\|\cdot\|_{\infty}}=\{x\in\mathbb{R}^n: \|x\|_{\infty}=1\}$ es compacto en $(\mathbb{R}^n,\|\cdot\|_{\infty})$ puesto que es cerrado y acotado. Por tanto, f alcanza un valor mínimo en $S_{\|\cdot\|_{\infty}}$:

$$\exists u_m \in S_{\|\cdot\|_{\infty}}, \ 0 < \alpha = f(u_m) = \|u_m\| \le \|u\|, \ \forall u \in S_{\|\cdot\|_{\infty}}.$$

Tenemos que $||u|| \ge \alpha > 0$, $\forall u \in \mathbb{R}^n$ con $||u||_{\infty} = 1$. Por tanto, $\forall x \ne 0$,

$$||x|| = \left| \left| \frac{x}{||x||_{\infty}} \cdot ||x||_{\infty} \right| = ||x||_{\infty} \cdot \left| \left| \frac{x}{||x||_{\infty}} \right| \right| \ge ||x||_{\infty} \cdot \alpha.$$

Así, nos queda que $\alpha \cdot ||x||_{\infty} \le ||x||, \forall x \in \mathbb{R}^n$.

Corolario 2.3. En un espacio vectorial real de dimensión finita todas las normas son equivalentes.

Demostración. Sea E con dim (E) = n, entonces E es linealmente isomorfo a \mathbb{R}^n .

Ejemplo. En el espacio $\mathcal{M}_{n\times m}$ de matrices $n\times m$, todas las normas son equivalentes.

2.3. Conexión

Definición 2.2 (Intervalo). Un conjunto $I \subset \mathbb{R}$ es un **intervalo** si $\forall x, y \in I$ con x < y y $\forall z \in \mathbb{R}$ con x < z < y, entonces $z \in I$.

Teorema 2.4 (Teorema de Bolzano). Sean $I \subset \mathbb{R}$ un intervalo y sea $f: I \to \mathbb{R}$ continua. Si f toma dos valores, entonces toma los valores intermedios. Es decir, si $\exists x, y \in I$ con f(x) = u, f(y) = v y u < w < v, entonces existe $z \in I$ tal que f(z) = w.

Corolario 2.4. Sea $M \subset \mathbb{R}$. Son equivalentes:

- 1. M es un intervalo.
- 2. No existe ninguna función continua $f: M \to \mathbb{R}$ tal que $f(M) = \{0, 1\}$.
- 3. Para toda función continua $f:M\to\mathbb{R}$ con $f(M)\subset\{0,1\}$, se tiene que f es constante.

Demostración. (1) \Rightarrow (2) Es trivial a partir del teorema de Bolzano.

(2) \Rightarrow (1) Supongamos que M no es un intervalo. Por tanto, existen $x, y \in M$ con x < y y existe $z \in \mathbb{R}$ con x < z < y con $z \notin M$. Definimos $f : M \to \mathbb{R}$ por

$$f(t) = \begin{cases} 0, \ t < z \\ 1, \ t > z \end{cases} .$$

Está claro que $f(M) = \{0, 1\}$ y que f es continua en M.

 $(2) \iff (3)$ Trivial.

Definición 2.3 (Conjunto conexo). Sean (X, d) un espacio métrico y $M \subset X$.

- (a) Diremos que M es **conexo** cuando $\forall f: M \to \mathbb{R}$ continua con $f(M) \subset \{0,1\}$, entonces f es constante.
- (b) Diremos que M es **desconexo** cuando no es conexo, es decir, existe alguna f: $M \to \mathbb{R}$ continua tal que $f(M) = \{0, 1\}$.

Teorema 2.5. Sea $f:(X,d_X)\to (Y,d_Y)$ una función continua entre espacios métricos. Si $M\subset X$ es conexo, entonces f(M) es conexo.

Demostración. Sea $h: f(M) \to \mathbb{R}$ continua con $h(f(M)) \subset \{0,1\}$. Tenemos que $h \circ f|_M$ es continua y $h \circ f|_M(M) \subset \{0,1\}$. Por ser M conexo, tenemos que $h \circ f|_M$ es constante, por lo que h es constante.

Lema 2.2. Sean (X,d) un espacio métrico y $A\subset X$. Consideramos $\chi_A:X\to\mathbb{R}$ definida por

$$\chi_A(x) = \begin{cases} 0, & x \in X/A \\ 1, & x \in A \end{cases}$$

Entonces χ_A es continua en X si y solo si A es abierto y cerrado a la vez.

Demostración. (i) Como χ_A es continua, hemos visto anteriormente que el siguiente conjunto es cerrado:

$$A = \{x \in X : \chi_A(x) = 1\} = \chi_A^{-1}(\{1\}).$$

Tenemos que

$$X/A = \{x \in X : \chi_A(x) = 0\} = \chi_A^{-1}(\{0\}).$$

De esta última igualdad obtenemos que A es abierto, por lo que podemos concluir que A es abierto y cerrado a la vez.

- (ii) Sea $U \subset \mathbb{R}$ abierto.
 - Si $0, 1 \in U$, entonces $\chi_A^{-1}(U) = X$, que es abierto.
 - \bullet Si $0,1\not\in U,$ entonces $\chi_{A}^{-1}\left(U\right) =\emptyset,$ que es abierto.
 - \blacksquare Si $1\in U$ y $0\not\in U,$ tenemos que $\chi_{A}^{-1}\left(U\right) =A,$ que es abierto.
 - \blacksquare Si $1\not\in U$ y $0\in U,$ tenemos que $\chi_{A}^{-1}\left(U\right) =X/A$ que es abierto.

Ejemplo. Consideremos $X = \mathbb{R}$ y $M = \mathbb{R}/\{z\}$. Tenemos que

$$A = (-\infty, z) = (-\infty, z] \cap M,$$

por lo que A es abierto y cerrado relativo en M.

Teorema 2.6. Sean (X, d) un espacio métrico y $M \subset X$. Son equivalentes:

- 1. M es desconexo.
- 2. $M = A \sqcup B$ donde $A \vee B$ son abiertos relativos y no vacíos de $(M, d|_M)$.
- 3. Existe $A \subset M$ con $\emptyset \neq A \neq M$ tal que A es abierto y cerrado relativo en $(M, d|_M)$.
- Demostración. (1) \Rightarrow (2) Si M es desconexo, existe $f: M \to \mathbb{R}$ continua tal que $f(M) = \{0,1\}$. Consideramos $A = f^{-1}(\{0\})$ y $B = f^{-1}(\{1\})$. Es fácil ver que A y B son cerrados relativos en $(M,d|_M)$ y que $A \cap B = \emptyset$. Además, A = M/B y B = M/A, por lo que A y B son a la vez abiertos y cerrados relativos en $(M,d|_M)$.
- (2) \Rightarrow (3) Si $\emptyset \neq A \neq M$, entonces A es abierto y B = M/A es abierto por lo que A también es cerrado.
- (3) \Rightarrow (1) Basta considerar $f = \chi_A : M \to \mathbb{R}$ tal que

$$f(x) = \begin{cases} 0, & x \in M/A \\ 1, & x \in M/B \end{cases}.$$

Por el lema tenemos que f es continua en M y $f(M) = \{0, 1\}$.

Definición 2.4 (Separación). Sean (X,d) un espacio métrico y $M \subset X$. Una **separación** de M en X es un par (U,V) donde:

- 1. U y V son conjuntos abiertos en X.
- 2. $M \subset U \cup V$.
- 3. $M \cap U, M \cap V \neq \emptyset$.
- 4. $M \cap U \cap V = \emptyset$.

Teorema 2.7. Sean (X, d) un espacio métrico y $M \subset X$. Entonces M es desconexo si y solo si M admite una separación en X.

- Demostración. (i) Si M es desconexo, existen $A, B \subset X$ abiertos relativos en M tales que $M = A \sqcup B$. Por ser abiertos relativos, existen $U, V \subset X$ abiertos tales que $A = U \cap M$ y $B = V \cap M$. Es fácil comprobar que (U, V) es una separación.
- (ii) Si M admite una separación tenemos que $M \subset (U \cap M) \sqcup (V \cap M)$, que son abiertos relativos en M, por lo que se cumple (2) del teorema anterior y M es desconexo.

Ejemplo. Sea $M = \mathbb{Q}$ subespacio de $X = (\mathbb{R}, |\cdot|)$.

(a) Un ejemplo de abierto y cerrado relativo en M es

$$A = \{ x \in \mathbb{Q} \ : \ \pi < x < \pi + 1 \} = \mathbb{Q} \cap (\pi, \pi + 1) .$$

Está claro que A es abierto relativo en $\mathbb Q$ por ser la intersección de un abierto en $\mathbb R$ y $\mathbb Q$. Además, tenemos que

$$A=\mathbb{Q}\cap[\pi,\pi+1].$$

Por la misma razón, A es también cerrado relativo en \mathbb{Q} , por lo que $\mathbb{Q} \subset \mathbb{R}$ es desconexo.

(b) Sea $C \subset \mathbb{Q}$ conexo. Nos preguntamos, cuántos elementos puede contener C?

Lema 2.3 (Lema del pivote). Sea (X,d) un espacio métrico y sea $\{M_i\}_{i\in I}$ una familia de subconjuntos conexos de X. Supongamos que $\bigcap_{i\in I} M_i \neq \emptyset$. Entonces, $\bigcup_{i\in I} M_i$ es conexo.

 $\begin{array}{ll} \textit{Demostraci\'on.} \text{ Sea } x_0 \in \bigcap_{i \in I} M_i \neq \emptyset \text{ y sea } M = \bigcup_{i \in I} M_i. \text{ Sea } f: M \to \mathbb{R} \text{ continua con } f(M) \subset \{0,1\}. \text{ Supongamos que } f(x_0) = 0. \text{ Como } M_i \text{ es conexo } \forall i \in I, \text{ tenemos que } f|_{M_i} \text{ es constante y por tener } x_0 \in \bigcap_{i \in I} M_i, f|_{M_i} \equiv 0. \text{ Luego, } f \equiv 0 \text{ en } M = \bigcup_{i \in I} M_i. \end{array}$

Lema 2.4 (Lema de la percha). Sea (X,d) un espacio métrico y sea $\{M_i\}_{i\in I}$ una familia de subconjuntos conexos de X. Supongamos que existe $M_0\subset X$ conexo tal que $M_i\cap M_0\neq\emptyset,\,\forall i\in I.$ Entonces, $M_0\cup\bigcup_{i\in I}M_i$ es conexo.

 $Demostraci\'on. \text{ Sean } M = M_0 \cup \left(\bigcup_{i \in I} M_i\right) \neq f: M \to \mathbb{R} \text{ continua con } f\left(M\right) \subset \{0,1\}.$

- \bullet Como M_0 es conexo, tenemos que $f|_{M_0}$ es constante. Por ejemplo, supongamos que $f|_{M_0}\equiv 0$.
- Tenemos que $\forall i \in I$, $f|_{M_i}$ es constante y $M_i \cap M_0 \neq \emptyset$, por lo que $f|_{M_i} \equiv 0$.

Observación. La unión de dos conjuntos no tiene por qué se conexa. En efecto, podemos considerar en \mathbb{R} el conjunto $M = (0,1) \cup (3,4)$, que claramente no es conexo.

Teorema 2.8. Sean (X, d) un espacio métrico y $M \subset X$. Si M es conexo y $M \subset A \subset \overline{M}$, entonces A es conexo. En particular, si M es conexo, \overline{M} también lo es.

Demostración. Sea $f: A \to \mathbb{R}$ continua con $f(A) \subset \{0, 1\}$. Tenemos que $f|_M$ es constante y ponemos que $f|_M \equiv 0$. Sea $x \in A \subset \overline{M}$. Tenemos que existe $\{x_n\}_{n \in \mathbb{N}} \subset M$ tal que $x_n \to x_0$. Por ser f continua, tenemos que $f(x_n) \to f(x) = 0$, puesto que $f(x_n) = 0$, $\forall n \in \mathbb{N}$. Así, hemos demostrado que $f|_A$ es constante.

Definición 2.5 (Camino). Un **camino** en un espacio métrico (X, d) es una función continua $\sigma : [a, b] \to X$.

Ejemplo. En \mathbb{R}^n , dados $x, y \in \mathbb{R}^n$, tenemos que el segmento que los une $\sigma : [0,1] \to \mathbb{R}^n : t \to (1-t) x + ty$ es un camino.

Definición 2.6 (Conexión por caminos). Sean (X,d) un espacio métrico y $M \subset X$. Se dice que M es **conexo por caminos** si $\forall x,y \in M$ existe $\sigma:[a,b] \to X$ camino tal que $\mathrm{Im}\,(\sigma) \subset M,\,\sigma(a)=x$ y $\sigma(b)=y$ a.

 a Es decir, cada par de puntos en M se puede unir mediante un camino en M.

Definición 2.7 (Convexidad). Un conjunto $C \subset \mathbb{R}^n$ es **convexo** si $\forall x, y \in C$ el segmento $\sigma(t) = (1-t)x + ty, t \in [0,1]$, está contenido en C.

Observación. Está claro que si un conjunto es convexo, es conexo por caminos. Puede darse que sea conexo por caminos pero que no sea convexo.

Teorema 2.9. Sea (X, d) un espacio métrico. Si $M \subset X$ es conexo por caminos, entonces M es conexo.

Demostración. Sea M conexo por caminos y sea $f: M \to \mathbb{R}$ continua con $f(M) \subset \{0,1\}$. Dados $x,y \in M$, existe $\sigma: [a,b] \to M$ camino. Tenemos que $f \circ \sigma$ es continua y $f \circ \sigma$ ([a,b]) $\subset \{0,1\}$. Por ser [a,b] conexo, tenemos que $f \circ \sigma$ es constante en [a,b], es decir, $f(\sigma(a)) = f(\sigma(b))$ y f(x) = f(y), por lo que $f|_M$ es constante.

Teorema 2.10. Sea $U \subset \mathbb{R}^n$ abierto y conexo. Entonces, U es conexo por caminos.

Demostraci'on. Fijamos $x_0 \in U$. Dado $x \in U$ veamos que existe un camino de x a x_0 . Consideremos

 $A = \{x \in U : \exists \text{ camino en } U \text{ de } x_0 \text{ a } x \}.$

- Está claro que $A \neq \emptyset$, puesto que $x_0 \in A$.
- Veamos que A es abierto relativo en U. Si $x \in A \subset U$, tenemos que existe r > 0 tal que $B(x,r) \subset U$. Tenemos que $\forall y \in B(x,r)$ podemos conectar x con y mediante un segmento, por lo que existe un camino en U de x_0 a x y de x a y, luego existe uno de x_0 a y. Así, $B(x,r) \subset A$.

- Veamos que A es cerrado relativo en U. Para ello, veamos que U/A es abierto. Dado $x \in U/A$ existe r > 0 tal que $B(x,r) \subset U$. Tenemos que $\forall y \in B(x,r)$, no existe camino en U de x_0 a y. Si existiera, existiría un camino en U de x_0 a x, que es una contradicción. Por tanto, $B(x,r) \subset U/A$, por lo que A es cerrado relativo en U.
- Por ser U conexo y $A \neq \emptyset$, debe ser que A = U.

Ejemplo. En general, conexo no implica conexo por caminos. En efecto, podemos considerar $M = \{(0,0)\} \cup \left\{ \left(x,\sin\frac{1}{x}\right) : 0 < x \le 1 \right\} \subset \mathbb{R}^2$. Si $f:(0,1] \to \mathbb{R}$ con $f(x) = \left(x,\sin\frac{1}{x}\right)$, tenemos que

- f es continua en (0,1].
- (0,1] es convexo.
- Si $G_f(x)$ es la segunda parte de la unión, entonces $G_f = f((0,1])$ es convexo.
- \bullet $(0,0) \in \overline{G}_f$.
- $(0,0) \cup G_f = M$ es conexo.

Sin embargo, gráficamente se puede ver que no podemos conectar los puntos $(1, \sin 1)$ y (0,0) por un camino contenido en M.

2.4. Continuidad uniforme

Definición 2.8 (Continuidad uniforme). Sean $f:(X,d_X)\to (Y,d_Y)$ y $M\subset X$. Se dice que f es **uniformemente continua** en M si $\forall \varepsilon>0$, $\exists \delta>0$ tal que si $x,x'\in M$ con $d_X(x,x')<\delta$, entonces $d_Y(f(x),f(x'))<\varepsilon$.

- **Observación.** $f: X \to Y$ es continua en X si y solo si $\forall x \in X, \forall \varepsilon > 0, \exists \delta > 0$ tal que $d_X(x, x') < \delta$ implica que $d_Y(f(x), f(x')) < \varepsilon$.
 - $f: X \to Y$ es uniformemente continua en X si y solo si $\forall \varepsilon > 0$, $\exists \delta > 0$ tal que si $x, x' \in X$ con $d_X(x, x') < \delta$ entonces $d_Y(f(x), f(x')) < \varepsilon$.

Observación. Si f es uniformemente continua en M, entonces $f|_M$ es continua en M.

Teorema 2.11. Sean $f:(X,d_X)\to (Y,d_Y)$ y $M\subset X$. Son equivalentes:

- 1. f es uniformemente continua en M.
- $2. \ \forall \left\{ x_{n} \right\}_{n \in \mathbb{N}}, \left\{ y_{n} \right\}_{n \in \mathbb{N}} \subset M \text{ con } d_{Y}\left(x_{n}, y_{n}\right) \rightarrow 0, \text{ entonces } d_{Y}\left(f\left(x_{n}\right), f\left(y_{n}\right)\right) \rightarrow 0.$

CAPÍTULO 2. CONTINUIDAD

- Demostración. (1) \Rightarrow (2) Sean $\{x_n\}_{n\in\mathbb{N}}$, $\{y_n\}_{n\in\mathbb{N}}\subset M$ con $d_X(x_n,y_n)\to 0$. Dado $\varepsilon>0$, por la continuidad uniforme existe $\delta>0$ tal que si $d_X(x,x')<\delta$ entonces $d_Y(f(x),f(x'))<\varepsilon$. Existe $n_0\in\mathbb{N}$ tal que $\forall n\geq n_0$ se tiene que $d_X(x_n,y_n)<\delta$, por lo que $d_Y(f(x_n),f(y_n))<\varepsilon$.
- (2) \Rightarrow (1) Supongamos que f no es uniformemente continua en M. Así, existe $\varepsilon > 0$ tal que $\forall \delta > 0$ existen $x_{\delta}, x'_{\delta} \in M$ con $d_X(x_{\delta}, x'_{\delta}) < \delta$ pero $d_Y(f(x_{\delta}), f(x'_{\delta})) \geq \varepsilon$. En concreto, si tomamos $\delta = \frac{1}{n}$ tenemos que existen $x_n, y_n \in M$ tal que

$$d_X(x_n, y_n) < \frac{1}{n}, \quad d_Y(f(x_n), f(y_n)) \ge \varepsilon.$$

Así, tenemos dos sucesiones $\{x_n\}_{n\in\mathbb{N}}$, $\{y_n\}_{n\in\mathbb{N}}\subset M$ tal que $d_X(x_n,y_n)\to 0$ pero $d_Y(f(x_n),f(y_n))\not\to 0$.

Teorema 2.12. Sea $f:(X,d_X)\to (Y,d_Y)$ y $K\subset X$ compacto. Si f es continua en K, entonces f es uniformemente continua en K.

 $\begin{array}{l} \textit{Demostraci\'on.} \text{ Sean } \{x_n\}_{n\in\mathbb{N}}, \{y_n\}_{n\in\mathbb{N}} \subset K \text{ tales que } d_X\left(x_n,y_n\right) \to 0. \text{ Como } K \text{ es compacto, existe } \{x_{n_k}\}_{k\in\mathbb{N}} \text{ subsucesi\'on con } x_{n_k} \to x_0 \in K. \text{ Consideramos ahora } \{y_{n_k}\}_{k\in\mathbb{N}}, \text{ que tiene una subsucesi\'on } \left\{y_{n_{k_j}}\right\}_{j\in\mathbb{N}} \text{ tal que } x_{n_{k_j}} \to x_0' \in K. \text{ Tenemos que } \end{array}$

$$d_{X}\left(x_{0}, x_{0}'\right) \leq d_{X}\left(x_{0}, x_{n_{k_{j}}}\right) + d_{X}\left(x_{n_{k_{j}}}, y_{n_{k_{j}}}\right) + d_{X}\left(y_{n_{k_{j}}}, x_{0}'\right) \to 0.$$

Así, tenemos que $x_0 = x'_0$. Como f es continua en $x_0 \in X$, tenemos que

$$d_Y\left(f\left(x_{n_{k_j}}\right), f\left(y_{n_{k_j}}\right)\right) \le d_Y\left(f\left(x_{n_{k_j}}\right), f\left(x_0\right)\right) + d_Y\left(f\left(x_0\right), f\left(y_{n_{k_j}}\right)\right) \to 0.$$

Si suponemos que f no es uniformemente continua en K, existe $\varepsilon > 0$ y existen $\{x_n\}_{n \in \mathbb{N}}$, $\{y_n\}_{n \in \mathbb{N}} \subset K$ tales que $d_X(x_n, y_n) \to 0$ pero $d_Y(f(x_n), f(y_n)) \not\to 0$. Esto supone una contradicción con lo que hemos visto anteriormente.

Ejemplo. La función $f: \mathbb{R} \to \mathbb{R}$ con $f(x) = x^2$ es continua pero no es uniformemente continua en \mathbb{R} . En efecto, si $\delta > 0$ tenemos que si $x \to \infty$,

$$|f(x) - f(x + \delta)| = |x^2 - (x + \delta)^2| = 2x\delta + \delta^2 \to \infty.$$

Otra forma de verlo es tomar $x_n = n$ e $y_n = n + \frac{1}{n}$. Tenemos que

$$d(x_n, y_n) = \left| n + \frac{1}{n} - n \right| = \frac{1}{n} \to 0.$$

Sin embargo, nos queda que

$$d(f(x_n), f(y_n)) = \left| n^2 - \left(n + \frac{1}{n} \right)^2 \right| = 2 + \frac{1}{n^2} \ge 2 \not\to 0.$$

Definición 2.9 (Función Lipschitz). Se dice que $f:(X,d_X)\to (Y,d_Y)$ es **Lipschitz** si existe $K\geq 0$ tal que

$$d_Y(f(x), f(x')) \le K \cdot d_X(x, x'), \ \forall x, x' \in X.$$

Observación. Es fácil ver que si f es de Lipschitz entonces f es uniformemente continua.

Proposición 2.7. Sea $I \subset \mathbb{R}$ un intervalo y supongamos que $f: I \to \mathbb{R}$ es derivable con derivada acotada en I. Entonces, f es Lipschitz en I y por tanto uniformemente continua.

Demostración. Existe $K \ge 0$ tal que $|f'(t)| \le K$, $\forall t \in I$. Sean $x, y \in I$, por el Teorema del Valor Medio tenemos que existe $\xi \in (x, y)$ tal que

$$f(x) - f(y) = f'(\xi)(x - y).$$

Por tanto, tenemos que

$$|f(x) - f(y)| = |f'(\xi)| |x - y| \le K |x - y|, \ \forall x, y \in I.$$

Ejemplo. Sea $f:[0,\infty)\to\mathbb{R}$ con $\lim_{x\to\infty}f(x)=0$. Tenemos que f es uniformemente continua en $[0,\infty)$. En efecto, sabemos que para $\varepsilon>0$, existe R>0 tal que si x>R entonces $|f(x)|<\frac{\varepsilon}{3}$.

- Como [0,R] es compacto, existe $\delta > 0$ tal que si $x,y \in [0,R]$ con $|x-y| < \delta$, entonces $|f(x) f(y)| < \frac{\varepsilon}{3}$.
- Si $x, y \ge R$ tenemos que $|f(x) f(y)| < \frac{2\varepsilon}{3}$.
- Si $x \le R < y$ con $|x y| < \delta$, tenemos que $|x R| < \delta$, por lo que

$$\left|f\left(x\right)-f\left(y\right)\right|\leq\left|f\left(x\right)-f\left(R\right)\right|+\left|f\left(R\right)\right|+\left|f\left(y\right)\right|<\frac{\varepsilon}{3}+\frac{\varepsilon}{3}+\frac{\varepsilon}{3}=\varepsilon.$$

Lema 2.5. Sea $f:(X,d_X)\to (Y,d_Y)$ uniformemente continua en X. Si $\{x_n\}_{n\in\mathbb{N}}\subset X$ es de Cauchy, entonces $\{f(x_n)\}_{n\in\mathbb{N}}$ es de Cauchy.

Demostración. Sea $\{x_n\}_{n\in\mathbb{N}}\subset X$ una sucesión de Cauchy. Por ser f uniformemente continua, si $\varepsilon>0$ existe $\delta>0$ tal que si $d_X(x,y)<\delta$, entonces $d_Y(f(x),f(y))<\varepsilon$. Como $\{x_n\}_{n\in\mathbb{N}}$ es de Cauchy, existe $n_0\in\mathbb{N}$ tal que $\forall n,m\geq n_0$,

$$d_X(x_n, x_m) < \delta \Rightarrow d_Y(f(x_n), f(x_m)) < \varepsilon.$$

Teorema 2.13 (Teorema de extensión). Sean (X, d_X) e (Y, d_Y) espacios métricos, siendo (Y, d_Y) completo. Sean $M \subset X$ y $f: M \to Y$ uniformemente continua en M. Entonces f admite una extensión $\overline{f}: \overline{M} \to Y$ uniformemente continua en \overline{M} (es decir, \overline{f} es uniformemente continua en \overline{M} y $\overline{f}|_{M} = f$).

Demostración. Sea $x_0 \in \overline{M}$, tenemos que existe $\{x_n\}_{n \in \mathbb{N}} \subset M$ con $x_n \to x_0$. Por tanto, $\{x_n\}_{n \in \mathbb{N}}$ es de Cauchy. Por ser f uniformemente continua, es tenemos que f transforma sucesiones de Cauchy en sucesiones de Cauchy. Así, $\{f(x_n)\}_{n \in \mathbb{N}}$ es de Cauchy. Por ser Y completo, tenemos que existe $y_0 = \lim_{n \to \infty} f(x_n) \in Y$. Definimos $\overline{f}(x_0) = y_0$. Veamos que hemos definido bien $\overline{f}(x_0)$, es decir, que si $\{x_n'\}_{n \in \mathbb{N}} \subset M$ con $x_n' \to x_0$, entonces $f(x_n') \to y_0$. En efecto

$$d_Y(f(x'_n), y_0) \le d_Y(f(x'_n), f(x_n)) + d_Y(f(x_n), y_0) \to 0.$$

Hemos utilizado que $d_Y(f(x_n'), f(x_n)) \to 0$ puesto que $d_X(x_n', x_n) \to 0$ por tender ambas sucesiones al mismo límite y ser f uniformemente continua en M. Está claro que $\overline{f}|_M = f$ por definición. Veamos que \overline{f} es uniformemente continua en \overline{M} . Hay dos posibles casos:

- Si $x, y \in M$, como $\overline{f}|_{M} = f$ es trivial que se cumple la condición de continuidad uniforme.
- Si $x, y \in \overline{M}$ tomamos sucesiones $\{x_n\}_{n \in \mathbb{N}}, \{y_n\}_{n \in \mathbb{N}} \subset M$ con $x_n \to x$ e $y_n \to y$. Así, $\forall n \in \mathbb{N}$ se tiene que

$$d_{Y}\left(\overline{f}\left(x\right),\overline{f}\left(y\right)\right) \leq d_{Y}\left(\overline{f}\left(x\right),f\left(x_{n}\right)\right) + d_{Y}\left(f\left(x_{n}\right),f\left(y_{n}\right)\right) + d_{Y}\left(f\left(y_{n}\right),\overline{f}\left(y\right)\right).$$

Esta expresión tiende a 0 si $d_X(x,y) \to 0$ por la convergencia de las sucesiones $\{f(x_n)\}_{n\in\mathbb{N}}, \{f(y_n)\}_{n\in\mathbb{N}} \text{ a } \overline{f}(x) \text{ y } \overline{f}(y), \text{ respectivamente, y a la continuidad uniforme de } \overline{f} \text{ en } M \text{ por ser } \overline{f}|_M = f.$

Ejemplo. Consideremos $f:(0,1]\to\mathbb{R}$ con $f(x)=\sin\frac{1}{x}$. Está claro que f es continua en (0,1] pero no es uniformemente continua en este intervalo puesto que no admite ninguna extensión continua a [0,1] porque no existe $\lim_{x\to 0^+} \sin\frac{1}{x}$.

2.5. Teorema del punto fijo de Banach

Definición 2.10 (Función contractiva). Se dice que $f:(X,d) \to (X,d)$ es **contractiva** si existe $0 \le \alpha < 1$ tal que $d(f(x), f(y)) \le \alpha \cdot d(x,y), \forall x,y \in X$.

Teorema 2.14 (Teorema del punto fijo de Banach). Sea (X,d) un espacio métrico completo. Toda aplicación contractiva $f:(X,d)\to (X,d)$ tiene un único punto fijo, es decir, un único $x\in X$ tal que f(x)=x. Además, $\forall x_0\in X$ la sucesión $\{x_n\}_{n\in\mathbb{N}}\subset X$ definida por $x_{n+1}=f(x_n)$ verifica que $x_n\to x_0$.

Demostración. Sea $x_0 \in X$ y $\forall n \geq 1$ definimos $x_{n+1} = f(x_n)$. Consideramos pues la sucesión $\{f(x_0), f^2(x_0), \dots, f^n(x_0), \dots\}$.

Veamos que la sucesión $\{x_n\}_{n\in\mathbb{N}}$ es de Cauchy en (X,d). Tenemos que

$$d(x_n, x_{n+1}) = d(f(x_{n-1}), f(x_n)) \le \alpha \cdot d(x_{n-1}, x_n) \le \dots \le \alpha^n \cdot d(x_0, x_1)$$
.

Sea m > n, haciendo un cálculo similar tenemos que

$$d(x_{m}, x_{n}) \leq d(x_{m}, x_{m-1}) + \dots + d(x_{n+1}, x_{n})$$

$$\leq \alpha^{m-1} d(x_{1}, x_{0}) + \alpha^{m-2} d(x_{1}, x_{0}) + \dots + \alpha^{n} d(x_{1}, x_{0})$$

$$= \alpha^{n} \left(1 + \alpha + \dots + \alpha^{m-1-n} \right) d(x_{1}, x_{0}) \leq \alpha^{n} \left(\sum_{j=0}^{\infty} \alpha^{j} \right) d(x_{1}, x_{0})$$

$$= \frac{\alpha^{n}}{1 - \alpha} d(x_{1}, x_{0}) \to 0.$$

Así, está claro que la sucesión $\{x_n\}_{n\in\mathbb{N}}$ es de Cauchy. Como (X,d) es completo, existe $x=\lim_{n\to\infty}x_n\in X.$ Como f es continua, tenemos que

$$f(x) = \lim_{n \to \infty} f(x_n) = \lim_{n \to \infty} x_{n+1} = \lim_{n \to \infty} x_n = x.$$

Veamos que el punto fijo que hemos calculado es único. Sea $y\in X$ con $y\neq x$, por lo que d(y,x)>0, y f(y)=y. Tenemos que

$$d\left(x,y\right) = d\left(f\left(x\right),f\left(y\right)\right) \leq \alpha d\left(x,y\right) < d\left(x,y\right).$$

Esto es una contradicción, por lo que debe ser que x = y.

Capítulo 3

Límites en \mathbb{R}^n

Definición 3.1 (Límite). Sea $S \subset \mathbb{R}^n$, $f: S \to \mathbb{R}^m$ y sea $x_0 \in S'$. Se dice que $l \in \mathbb{R}^m$ es **límite** de f en x_0 si:

$$\forall \varepsilon > 0, \exists \delta > 0, \ 0 < \|x - x_0\| < \delta \Rightarrow \|f(x) - l\| < \varepsilon.$$

Denotaremos $l=\lim_{x\to x_0}f\left(x\right)$ (o también $l=\lim_{x\to x_0,x\in S}f\left(x\right)$).

Proposición 3.1. En límite, si existe, es único.

Demostración. Si $l, l' \in \mathbb{R}^m$ son posibles límites, tenemos que $\forall \varepsilon > 0$, existe $\delta > 0$ tal que si $0 < \|x - x_0\| < \delta$ entonces $\|f(x) - l\|$, $\|f(x) - l'\| < \frac{\varepsilon}{2}$. Así,

$$||l - l'|| \le ||l - f(x)|| + ||f(x) - l'|| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon.$$

Como esto es cierto $\forall \varepsilon > 0$, debe ser que ||l - l'|| = 0, por lo que l = l'.

Proposición 3.2. Para una función $f: S \subset \mathbb{R}^n \to \mathbb{R}^m$ y $x_0 \in S'$, son equivalentes

- (i) $l = \lim_{x \to x_0, x \in S} f(x)$.
- (ii) $\forall \{x_j\}_{j\in\mathbb{N}} \subset S/\{x_0\}$ con $x_j \to x_0$, se tiene que $f(x_j) \to l$.
- Demostración. (i) Sea $\{x_j\}_j \in S/\{x_0\}$ con $x_j \to x_0$. Tenemos que $\forall \varepsilon > 0$ existe $\delta > 0$ tal que si $0 < \|x x_0\| < \delta$, entonces $\|f(x) l\| < \varepsilon$. Como $x_j \to x_0$, tenemos que existe $j_0 \in \mathbb{N}$ tal que $\forall j \geq j_0$, $0 < \|x_j x_0\| < \delta$, por lo que $\|f(x_j) l\| < \varepsilon$.
- (ii) Supongamos que $\lim_{x\to x_0} f(x) \neq l$, es decir, existe $\varepsilon > 0$ tal que $\forall \delta > 0$ existe $x \in S$ con $0 < \|x x_0\| < \delta$ y $\|f(x) l\| \ge \varepsilon$. Así, podemos tomar $\delta = \frac{1}{j}$ y $x_j \in S$ tal

que $0 < \|x_j - x_0\| < \frac{1}{j}$ y $\|f(x_j) - l\| \ge \varepsilon$, para $j \in \mathbb{N}$. Tenemos que la sucesión $\{x_j\}_{j\in\mathbb{N}} \subset S/\{x_0\}$ converge a x_0 pero su imagen no converge a l.

Proposición 3.3. Sea $S \subset \mathbb{R}^n$, $x_0 \in S'$ y $f,g: S \to \mathbb{R}$. Supongamos que existen $p = \lim_{x \to x_0} f(x)$ y $q = \lim_{x \to x_0} g(x)$. Entonces,

- 1. $\lim_{x \to x_0} (f(x) + g(x)) = p + q$.
- $2. \lim_{x \to x_0} \left(f\left(x\right) g\left(x\right) \right) = pq.$
- 3. Si $q \neq 0$, $\lim_{x \to x_0} \frac{f(x)}{g(x)} = \frac{p}{q}$.

Demostración. Basta con tomar una sucesión $\{x_j\}_{j\in\mathbb{N}}\subset S/\{x_0\}$ con $x_j\to x_0$ y aplicar las propiedades de las sucesiones en \mathbb{R} . Demostraremos únicamente la tercera afirmación. Sea $\{x_j\}_{j\in\mathbb{N}}\subset S'$ tal que $x_j\to x_0$. Sabemos que $f(x_j)\to p$ y $g(x_j)\to q$ en \mathbb{R} . Si $q\neq 0$, existe $j_0\in\mathbb{N}$ tal que $\forall j\geq j_0,\ g(x_j)\neq 0$. Dado que $\left\{\frac{f(x_j)}{g(x_j)}\right\}_{j\in\mathbb{N}}\subset\mathbb{R}$ es una sucesión, podemos aplicar las propiedades de las sucesiones en \mathbb{R} y obtener el resultado deseado:

$$\frac{f\left(x_{j}\right)}{g\left(x_{j}\right)} \to \frac{p}{q}.$$

Proposición 3.4. Sea $U \subset \mathbb{R}^n$ abierto, $x_0 \in U$ y $f: U \to \mathbb{R}^m$. Son equivalentes:

- (i) f es continua en x_0 .
- (ii) $\lim_{x \to x_0} f(x) = f(x_0).$
- (iii) $\forall S \subset U$ con $x_0 \in S'$ se tiene que $\lim_{x \to x_0, x \in S} f(x) = f(x_0)$.

Demostración. Como $x_0 \in U$, que es abierto, tenemos que existe r > 0 tal que $B(x_0, r) \subset U$, por lo que $x_0 \in U'$.

- (i) \Rightarrow (ii) Si $\varepsilon > 0$, existe $\delta > 0$ tal que si $0 < \|x x_0\| < \delta^{-1}$ entonces $\|f(x) f(x_0)\| < \varepsilon$, por lo que $\lim_{x \to x_0} f(x) = f(x_0)$.
- (ii) \Rightarrow (iii) Sea $S \subset U$ con $x_0 \in S'$ y $x_0 \in U$. Si $x \in S$ y $0 < \|x x_0\| < \delta$, entonces $\|f(x) f(x_0)\| < \varepsilon$. Por tanto, $\lim_{x \to x_0, x \in S} f(x) = f(x_0)$.

Podemos poner que esto es mayor estrictamente que 0 porque siempre van a haber puntos en cualquier entorno de x_0 que no sean iguales a él.

- (iii) \Rightarrow (ii) En particular, tomando S = U es trivial.
- $\textbf{(ii)} \Rightarrow \textbf{(i)} \ \forall \varepsilon > 0, \ \exists \delta > 0 \ \text{tal que si} \ x \in U \ \text{y} \ \|x x_0\| < \delta^{\ 2} \ , \ \text{entonces} \ \|f\left(x\right) f\left(x_0\right)\| < \varepsilon.$

Ejemplo. 1. Consideremos la función $f: \mathbb{R}^2 \to \mathbb{R}$ con

$$f(x,y) = \begin{cases} \frac{xy}{x^2 + y^2} \sin(x+y), & (x,y) \neq (0,0) \\ 0, & (x,y) = (0,0) \end{cases}$$

Podemos ver que $h(x,y) = \sin(x+y)$ es continua en \mathbb{R}^2 y $g(x,y) = \frac{xy}{x^2+y^2}$ es continua en $\mathbb{R}^2/\{(0,0)\} = U$. Luego f es continua en $\mathbb{R}^2/\{0,0\}$. Estudiemos la continuidad en (0,0):

$$|f(x,y)| = \left|\frac{xy}{x^2 + y^2}\right| |\sin(x+y)| \le \frac{1}{2} |\sin(x+y)| \to 0.$$

Así, tenemos que $\lim_{(x,y)\to(0,0)} f(x,y) = (0,0)$ por lo que f es continua en (0,0).

2. Nos preguntamos si existe $\lim_{(x,y)\to(0,0)}\frac{xy}{x^2+y^2}$. Dado $\lambda\in\mathbb{R}$ podemos considerar $S_\lambda=\{(x,y)\ :\ y=\lambda x\}$. Tenemos que

$$\lim_{(x,y)\to(0,0),y=\lambda x} \frac{xy}{x^2+y^2} = \lim_{(x,y)\to(0,0),y=\lambda x} \frac{\lambda x^2}{(1+\lambda^2)\,x^2} = \frac{\lambda}{1+\lambda^2}.$$

Como depende de λ , debe ser que el límite no existe.

3. Calculemos $\lim_{(x,y)\to(0,0)}\frac{x^4}{x^4+y^2}$. Si tomamos el mismo conjunto que antes obtenemos que si $\lambda\neq 0$,

$$\lim_{x\rightarrow 0, y=\lambda x}\frac{x^4}{x^4+\lambda^2 x^2}=\lim_{x\rightarrow 0}\frac{x^2}{x^2+\lambda^2}=0.$$

Sin embargo, esto no nos asegura que exista el límite. En efecto, si tomamos $y=\lambda x^2$ tenemos que

$$\lim_{(x,y)\to(0,0),y=\lambda x^2}\frac{x^4}{x^4+\lambda^2x^4}=\lim_{x\to0}\frac{x^4}{\left(1+\lambda^2\right)x^4}=\frac{1}{1+\lambda^2}.$$

Lo que nos dice que el límite no existe.

Figura 3.1: Coordenadas polares

3.1. Coordenadas polares

Como se puede deducir de la imagen, tenemos que $x=r\cos\theta$ e $y=r\sin\theta$, donde $r\geq 0$ y $\theta\in[0,2\pi]$. Así, por ejemplo, tenemos que

$$B\left(\left(0,0\right) ,R\right) =\left\{ \left(x,y\right) \; :\; x^{2}+y^{2}< R^{2}\right\} =\left\{ \left(r,\theta\right) \; :\; 0\leq r< R,\; 0\leq \theta\leq 2\pi\right\} .$$

El último igual no es un igual, estrictamente. Sin embargo dada $f: \mathbb{R}^2 \to \mathbb{R}$, si podemos decir que $\lim_{(x,y)\to(0,0)} f(x) = l$ si y solo si

$$\forall \varepsilon > 0, \ \exists \delta > 0, \ 0 < r < \delta \Rightarrow |f\left(r\cos\theta, r\sin\theta\right) - l| < \varepsilon, \ \forall \theta \in [0, 2\pi].$$

Diremos que $\lim_{r\to 0} f\left(r\cos\theta, r\sin\theta\right) = l$ uniformemente en θ .

Ejemplo. Tenemos que

$$\lim_{(x,y)\to(0,0)}\frac{|x|\,y}{\sqrt{x^2+y^2}}=\lim_{r\to 0}\frac{r\,|\!\cos\theta|\cdot r\sin\theta}{r}=r\,|\!\cos\theta\sin\theta|\leq r\to 0.$$

Observación. El objetivo del ejemplo anterior es hacer desaparecer el ángulo para que se cumpla $\forall \theta \in [0, 2\pi]$.

²El que sea mayor estrictamente que 0 da igual porque $f(x_0)$ está bien definido.

Capítulo 4

Cálculo diferencial

Consideremos, en primer lugar, funciones de la forma $f: \mathbb{R} \to \mathbb{R}^m$, que podemos considerar curvas paramétricas.

4.1. Caso $f: \mathbb{R} \to \mathbb{R}^m$

Definición 4.1 (Curva paramétrica). Una **curva** en \mathbb{R}^m es una función continua $\sigma: I \to \mathbb{R}^m$, donde I es un intervalo de \mathbb{R} .

Definición 4.2 (Derivabilidad). Se dice que σ es **derivable** en $t_0 \in I$ cuando existe

$$\sigma'(t_0) = \lim_{t \to t_0} \frac{\sigma(t) - \sigma(t_0)}{t - t_0} = \lim_{h \to 0} \frac{\sigma(t_0 + h) - \sigma(t_0)}{h}.$$

Si $\sigma'(t_0) \neq 0$, se define la **recta tangente** a σ en t_0 como la recta que pasa por $\sigma(t_0)$ con vector director $\sigma'(t_0)$.

Observación. Si denotamos $\sigma(t) = (\sigma_1(t), \dots, \sigma_m(t))$, entonces σ es derivable en t_0 si y solo si $\forall j = 1, \dots, m, \ \sigma_j$ es derivable en t_0 . Entonces tendremos que $\sigma'(t_0) = (\sigma'_1(t_0), \dots, \sigma'_m(t_0))$. Esto es consecuencia de que en \mathbb{R}^m los límites se hacen coordenada a coordenada.

Ejemplo. 1. Consideremos $\sigma : \mathbb{R} \to \mathbb{R}^2$ con $\sigma(t) = (\cos t, \sin t)$. Tenemos que $\operatorname{Im}(\sigma) = \{(x,y) : x^2 + y^2 = 1\}$. Por la observación anterior tenemos que

$$\sigma'(t) = (-\sin t, \cos t).$$

2. Si consideramos $\gamma(t) = (\cos t, -\sin t)$, tenemos que $\operatorname{Im}(\gamma) = \operatorname{Im}(\sigma)$, pero como

$$\gamma'(t) = (-\sin t, -\cos t).$$

Por lo que los vectores tangentes recorren la curva en sentido contrario.

3. Consideremos $\beta(t) = (\cos(2t), \sin(2t))$. Nuevamente, $\operatorname{Im}(\beta) = \operatorname{Im}(\sigma)$ pero

$$\beta'(t) = (-2\sin 2t, 2\cos 2t) = 2(-\sin 2t, \cos 2t).$$

Por tanto, podemos interpretar que los vectores tangentes de β van el doble de rápido que los de σ .

Teorema 4.1. Sean $I \subset \mathbb{R}$ un intervalo abierto y $\sigma: I \to \mathbb{R}^m$ una curva. Son equivalentes para $t_0 \in I$

- 1. σ es derivable en t_0 .
- 2. Existe $L: \mathbb{R} \to \mathbb{R}^m$ lineal tal que

$$\lim_{h\to 0}\frac{\sigma\left(t_{0}+h\right)-\sigma\left(t_{0}\right)-L\left(h\right)}{\left|h\right|}=0.$$

Demostración. (i) Supongamos que existe $\sigma'(t_0) \in \mathbb{R}^m$. Definimos $L : \mathbb{R} \to \mathbb{R}^m$ tal que $L(h) = h\sigma'(t_0), h \in \mathbb{R}$. Sabemos que

$$0 = \lim_{h \to 0} \left(\frac{\sigma\left(t_0 + h\right) - \sigma\left(t_0\right)}{h} - \sigma'\left(t_0\right) \right) = \lim_{h \to 0} \frac{\sigma\left(t_0 + h\right) - \sigma\left(t_0\right) - L\left(h\right)}{h}$$

$$\iff \lim_{h \to 0} \left\| \frac{\sigma\left(t_0 + h\right) - \sigma\left(t_0\right) - L\left(h\right)}{h} \right\| = 0 \iff \lim_{h \to 0} \frac{\sigma\left(t_0 + h\right) - \sigma\left(t_0\right) - L\left(h\right)}{|h|} = 0 \in \mathbb{R}^m.$$

(ii) Si tenemos $L: \mathbb{R} \to \mathbb{R}^m$ lineal, definimos $w = L(1) \in \mathbb{R}^m$. Entonces, tenemos que $L(h) = L(h \cdot 1) = hL(1)$. Veamos que $w = \sigma'(t_0)$. Sabemos que

$$0 = \lim_{h \to 0} \frac{\sigma(t_0 + h) - \sigma(t_0) - hw}{|h|}$$

$$\iff 0 = \lim_{h \to 0} \frac{\sigma(t_0 + h) - \sigma(t_0) - hw}{h} = \lim_{h \to 0} \left(\frac{\sigma(t_0 + h) - \sigma(t_0)}{h} - w\right)$$

$$\Rightarrow w = \lim_{h \to 0} \frac{\sigma(t_0 + h) - \sigma(t_0)}{h}.$$

4.2. Derivadas parciales y direccionales

Ejemplo. Consideremos $f(x,y) = \sin(x^2 - y^2 + 3xy)$. Tenemos que

$$\frac{\partial f}{\partial x}(x,y) = (2x+3y)\cos\left(x^2 - y^2 + 3xy\right).$$

$$\frac{\partial f}{\partial y}(x,y) = (-2y + 3x)\cos(x^2 - y^2 + 3xy).$$

Dado $f: \mathbb{R}^2 \to \mathbb{R}^2$, podemos definir las derivadas parciales de la siguiente forma

$$\frac{\partial f}{\partial x}\left(x,y\right) = \lim_{t \to 0} \frac{f\left(x_0 + t, y_0\right) - f\left(x_0, y_0\right)}{t} = \lim_{h \to 0} \frac{f\left(\left(x_0, y_0\right) + t\left(1, 0\right)\right) - f\left(x_0, y_0\right)}{t}.$$

Definición 4.3 (Derivadas parciales). Sea $U \subset \mathbb{R}^n$ abierto, $f: U \to \mathbb{R}^m$ y $a \in U$. Se define $\forall i = 1, ..., n$, la **derivada parcial** *i*-ésima de f en a como el límite, cuando existe,

$$\frac{\partial f}{\partial x_{i}}\left(a\right) = \lim_{t \to 0} \frac{f\left(a + te_{i}\right) - f\left(a\right)}{t} \in \mathbb{R}^{m},$$

donde $\{e_1, \ldots, e_n\}$ es la base canónica de \mathbb{R}^n .

Observación. Otra forma de escribir la definición anterior es:

$$\frac{\partial f}{\partial x_i}\left(a\right) = \lim_{t \to 0} \frac{f\left(a_1, \dots, a_i + t, \dots, a_n\right) - f\left(a_1, \dots, a_n\right)}{t}.$$

Definición 4.4 (Derivada direccional). Sea $U \subset \mathbb{R}^n$ abierto, $f: U \to \mathbb{R}^m$ y $a \in U$. Dado $w \in \mathbb{R}^n$, se define la **derivada direccional** de f en a según el vector w al límite, si existe

$$D_{w}f\left(a\right)=\lim_{t\to0}\frac{f\left(a+tw\right)-f\left(a\right)}{t}\in\mathbb{R}^{m}.$$

Observación. Es fácil ver que $D_{e_i}f(a) = \frac{\partial f}{\partial x_i}(a)$.

Observación. Podemos deducir que $D_w f(a) = \frac{d}{dt}|_{t=0} f(a+tw)$. En efecto, si tomamos $\varphi: \mathbb{R} \to \mathbb{R}^m: t \to f(a+tw)$, tenemos que

$$\varphi'\left(0\right) = \lim_{h \to 0} \frac{\varphi\left(t\right) - \varphi\left(0\right)}{t} = \lim_{t \to 0} \frac{f\left(a + tw\right) - f\left(a\right)}{t} = D_w f\left(a\right).$$

Ejemplo. Consideremos $f: \mathbb{R}^2 \to \mathbb{R}$ tal que

$$f(x,y) = \begin{cases} x + \frac{xy}{\sqrt{x^2 + y^2}}, & (x,y) \neq (0,0) \\ 0, & (x,y) = (0,0) \end{cases}$$

Calculemos las derivadas parciales en (0,0):

$$\frac{\partial f}{\partial x}(0,0) = \lim_{t \to 0} \frac{f(t,0) - f(0,0)}{t} = \lim_{t \to 0} \frac{1}{t} \left(t + \frac{t \cdot 0}{\sqrt{t^2}} - 0 \right) = \lim_{t \to 0} \frac{t}{t} = 1.$$

$$\frac{\partial f}{\partial y}(0,0) = \lim_{t \to 0} \frac{f(0,t) - f(0,0)}{t} = \lim_{t \to 0} \frac{1}{t} \cdot 0 = 0.$$

Por otro lado, si $w = (u, v) \in \mathbb{R}^2$, tenemos que

$$D_{w}f(0,0) = \lim_{t \to 0} \frac{f(tu,tv) - f(0,0)}{t} = \lim_{t \to 0} \frac{1}{t} \left(tu + \frac{t^{2}uv}{|t|\sqrt{u^{2} + v^{2}}} \right)$$
$$= \lim_{t \to 0} \left(u + \frac{t}{|t|} \frac{uv}{\sqrt{u^{2} + v^{2}}} \right).$$

Si $vu \neq 0$, tenemos que $\frac{uv}{\sqrt{u^2+v^2}} \neq 0$, por lo que el límite no existe ^a.

Observación. Denotamos $f = (f_1, \ldots, f_m)$. Entonces, puesto que los límites en \mathbb{R}^m se obtienen coordenada a coordenada, tenemos que

$$D_w f\left(a\right) = \left(D_w f_1\left(a\right), \dots, D_w f_m\left(a\right)\right) \in \mathbb{R}^m.$$

Definición 4.5 (Diferenciabilidad). Sea $U \subset \mathbb{R}^n$ abierto, $a \in U$ y $f : U \to \mathbb{R}^m$. Se dice que f es **diferenciable** en a si existe $L : \mathbb{R}^n \to \mathbb{R}^m$ lineal tal que

$$\lim_{h\to 0}\frac{f\left(a+h\right)-f\left(a\right)-L\left(h\right)}{\left\Vert h\right\Vert }=0.$$

Observación. Podemos observar que f(a+h) = f(a) + L(h) + r(h), donde r(h) = f(a+h) - f(a) - L(h). Entonces, f es diferenciable en a si y solo si $\lim_{h\to 0} \frac{r(h)}{\|h\|} = 0$. En este caso, se denota r(h) = o(h) y así tenemos que f es diferenciable en a si y solo si f(a+h) = f(a) + L(h) + o(h), donde $L: \mathbb{R}^n \to \mathbb{R}^m$ es lineal.

Proposición 4.1. Sea $U \subset \mathbb{R}^n$ abierto, $f: U \to \mathbb{R}^m$ y $a \in U$. Si f es diferenciable en a con aplicación lineal L, entonces $\forall v \in \mathbb{R}^n$ existe $D_v f(a) = L(v)$. Por tanto, la aplicación L es única y la denotaremos L = Df(a) y la llamaremos **diferencial** de f en g

Demostración. Tomamos $v \in \mathbb{R}^n$ con $v \neq 0$, y consieramos h = tv con $t \in \mathbb{R}$. Entonces,

$$0=\lim_{t\rightarrow0}\frac{f\left(a+tv\right)-f\left(a\right)-L\left(tv\right)}{\left\Vert tv\right\Vert }=\lim_{t\rightarrow0}\frac{f\left(a+tv\right)-f\left(a\right)-tL\left(v\right)}{\left\vert t\right\vert }.$$

^aEl problema es que al tener |t| en el denominador, al hacer el límite por la izquierda y por la derecha obtenemos -1 y 1, respectivamente.

Por tanto, tenemos que

$$0 = \lim_{t \to 0} \left| \frac{f\left(a + tv\right) - f\left(a\right) - tL\left(v\right)}{t} \right| = \lim_{t \to 0} \left| \frac{f\left(a + tv\right) - f\left(a\right)}{t} - L\left(v\right) \right|.$$

Por tanto, existe $\lim_{t\to 0} \frac{1}{t} (f(a+tv) - f(a)) = L(v)$. Por otro lado, si v=0, tenemos que $D_v f(a) = \lim_{t\to 0} (f(a) - f(a)) = 0 = L(0)$.

Ejemplo. Consideremos $f: \mathbb{R}^2 \to \mathbb{R}$ con

$$f(x,y) = \begin{cases} x + \frac{x|y|}{\sqrt{x^2 + y^2}}, & (x,y) \neq (0,0) \\ 0, & (x,y) = (0,0) \end{cases}.$$

Estudiemos si f es diferenciable en a=(0,0). Tenemos que

$$\frac{\partial f}{\partial x}\left(0,0\right)=\lim_{t\rightarrow0}\frac{1}{t}\left(f\left(t,0\right)-f\left(0,0\right)\right)=\lim_{t\rightarrow0}\frac{1}{t}\left(t+0\right)=1.$$

$$\frac{\partial f}{\partial y}\left(0,0\right) = \lim_{t\to 0}\frac{1}{t}\left(f\left(0,t\right) - f\left(0,0\right)\right) = \lim_{t\to 0}\frac{1}{t}\left(0-0\right) = 0.$$

Veamos si L que buscamos es lineal. Si $(u,v) \in \mathbb{R}^2$, por ser L lineal tendríamos que

$$L(u, v) = uL(e_1) + vL(e_2) = uD_{e_1}f(a) + vD_{e_2}f(a)$$
.

Así, podemos ver que si f es diferenciable en a, entonces $L(u, v) = u \cdot 1 + v \cdot 0 = u$. Vamos a ver si f es diferenciable en a = (0, 0):

$$\begin{split} \lim_{(x,y)\to(0,0)} \frac{f\left(x,y\right) - f\left(0,0\right) - L\left(x,y\right)}{\sqrt{x^2 + y^2}} &= \lim_{(x,y)\to(0,0)} \frac{1}{\sqrt{x^2 + y^2}} \left(x + \frac{x\left|y\right|}{\sqrt{x^2 + y^2}} - 0 - x\right) \\ &= \lim_{(x,y)\to(0,0)} \frac{x\left|y\right|}{x^2 + y^2} \sim \frac{r^2 \cos\theta \left|\sin\theta\right|}{r^2}. \end{split}$$

Como el valor del límite depende de θ , tenemos que el límite no existe, por lo que f no es diferenciable en (0,0). Dado $w=(u,v)\in\mathbb{R}^2$, tenemos que

$$D_w f(0,0) = \lim_{t \to 0} \frac{1}{t} \left(f(tu, tv) - f(0,0) \right) = \lim_{t \to 0} \frac{1}{t} \left(tu + \frac{t |t| |u| |v|}{|t| \sqrt{u^2 + v^2}} \right)$$
$$= \lim_{t \to 0} \left(u + \frac{u |v|}{\sqrt{u^2 + v^2}} \right) = u + \frac{u |v|}{\sqrt{u^2 + v^2}}.$$

Esta última expresión no es lineal, por lo que f no es diferenciable en $w = (u, v) \in \mathbb{R}^2$.

Proposición 4.2. Sean $U \subset \mathbb{R}^n$ abierto, $f: U \to \mathbb{R}^m$ y $a \in U$. Entonces f es diferenciable en a si y solo si f_1, \ldots, f_m son diferenciables en a y en este caso

$$Df(a)(v) = (Df_1(a)(v), ..., Df_m(a)(v)).$$

Demostración. Sea $L: \mathbb{R}^n \to \mathbb{R}^m$ y denotamos $L = (L_1, \dots, L_m)$. Entonces, el límite de la definición es cero si y solo si cada componente tiene límite cero, es decir, si y solo si cada f_j es diferenciable en a con L_j , $\forall j = 1, \dots, m$.

$$D(f(a))(v) = D_v f(a) = (D_v f_1(a), \dots, D_v f_m(a)) = (D f_1(a)(v), \dots, D f_m(a)(v)).$$

Definición 4.6 (Matriz jacobiana). Sean $U \subset \mathbb{R}^n$ abierto, $a \in U$ y $f : U \to \mathbb{R}^m$. Si f admite todas las derivadas parciales en a, se define la **matriz jacobiana** de f en a como

$$Jf\left(a\right) = \begin{pmatrix} \frac{\partial f_{1}}{\partial x_{1}}\left(a\right) & \cdots & \frac{\partial f_{1}}{\partial x_{n}}\left(a\right) \\ \vdots & & \vdots \\ \frac{\partial f_{m}}{\partial x_{1}}\left(a\right) & \cdots & \frac{\partial f_{m}}{\partial x_{n}}\left(a\right) \end{pmatrix} \in \mathcal{M}_{m \times n}.$$

Proposición 4.3. Sean $U \subset \mathbb{R}^n$ abierto, $f: U \to \mathbb{R}^m$ y $a \in U$. Si f es diferenciable en a, la matriz jacobiana, Jf(a), es la matriz de Df(a) con respecto a las bases canónicas.

Demostración. Sea $v = \sum_{i=1}^{m} v_i e_i \in \mathbb{R}^m$. Tenemos que

$$Df(a)(v) = (Df_1(a)(v), \dots, Df_m(a)(v)) = \left(Df_1(a)\left(\sum_{i=1}^m v_i e_i\right), \dots, Df_m(a)\left(\sum_{i=1}^n v_i e_i\right)\right)$$

$$= \left(\sum_{i=1}^n v_i Df_1(a)(e_i), \dots, \sum_{i=1}^n v_i Df_m(a)(e_i)\right) = \left(\sum_{i=1}^n v_i \frac{\partial f_1}{\partial x_i}(a), \dots, \sum_{i=1}^n v_i \frac{\partial f_m}{\partial x_i}(a)\right)$$

$$= Jf(a)\begin{pmatrix} v_1 \\ \vdots \\ v_n \end{pmatrix}.$$

Observación. Podemos establecer dos límites equivalentes que definen la diferenciabilidad:

$$\lim_{h\to 0}\frac{f\left(a+h\right)-f\left(a\right)-L\left(h\right)}{\left\Vert h\right\Vert }=\lim_{x\to a}\frac{f\left(x\right)-f\left(a\right)-L\left(x-a\right)}{\left\Vert x-a\right\Vert }.$$

Proposición 4.4. Si f es constante, entonces f es diferenciable en todos los puntos y $Df(a) = 0, \forall a \in U.$

Demostración. En efecto, tenemos que si $x \to a$

$$\frac{f\left(x\right)-f\left(a\right)-0}{\left\Vert x-a\right\Vert }=\frac{0}{\left\Vert x-a\right\Vert }\rightarrow0.$$

Proposición 4.5. Si f es lineal, tenemos que f es diferenciable en todos los puntos y $Df(a) = f, \forall a \in U.$

Demostración. En efecto, tenemos que

$$\frac{f(x) - f(a) - f(x - a)}{\|x - a\|} = \frac{f(x) - f(a) - f(x) + f(a)}{\|x - a\|} = 0.$$

Proposición 4.6. Si $f, g: U \to \mathbb{R}^m$ son diferenciables en $a \in U$ y $\lambda, \mu \in \mathbb{R}$, entonces $\lambda f + \mu g$ es diferenciable en a y

$$D(\lambda f + \mu g)(a) = \lambda Df(a) + \mu Df(a).$$

Demostración. En efecto, tenemos que

$$\begin{split} &\frac{\left(\lambda f + \mu g\right)\left(x\right) - \left(\lambda f + \mu g\right)\left(a\right) - \left(\lambda D f\left(a\right) + \mu D g\left(a\right)\right)\left(x - a\right)}{\|x - a\|} \\ &= \frac{\lambda \left[f\left(x\right) - f\left(a\right) - D f\left(a\right)\left(x - a\right)\right] + \mu \left[g\left(x\right) - g\left(a\right) - D g\left(a\right)\left(x - a\right)\right]}{\|x - a\|} \\ &= \lambda \left(\frac{f\left(x\right) - f\left(a\right) - D f\left(a\right)\left(x - a\right)}{\|x - a\|}\right) + \mu \left(\frac{g\left(x\right) - g\left(a\right) - D g\left(a\right)\left(x - a\right)}{\|x - a\|}\right) \to 0. \end{split}$$

Notación. Denotamos $\mathcal{L}(\mathbb{R}^n, \mathbb{R}^m) = \{L : \mathbb{R}^n \to \mathbb{R}^m : L \text{ lineal}\}$, que es un espacio vectorial de dimensión $n \times m$. Para $L \in \mathcal{L}(\mathbb{R}^n, \mathbb{R}^m)$ definimos la norma matricial ^a

$$\left\|L\right\|=\sup\left\{ \left\|L\left(u\right)\right\|:\left\|u\right\|\leq1\right\} =\sup\left\{ \left\|L\left(u\right)\right\|\ :\ u\in\overline{B}\left(0,1\right)\right\} <\infty.$$

^aPor ser L una aplicación lineal (y por ello continua) y por ser $\overline{B}(0,1)$ un conjunto compacto, existe el supremo del conjunto.

Proposición 4.7. La aplicación definida anteriormente es efectivamente una norma.

Demostración. • Veamos que si ||L|| = 0, entonces L = 0. Para ello, supongamos que $L \neq 0$. Entonces, existe $x \in \mathbb{R}^n$ tal que $L(x) \neq 0$. Así, tenemos que $x \neq 0$ y podemos considerar $u = \frac{x}{||x||} \in \overline{B}(0,1)$. Así, tenemos que

$$||L|| \ge ||L(u)|| = \left| \left| L\left(\frac{x}{||x||}\right) \right| = \left| \frac{1}{||x||} L(x) \right| = \frac{||L(x)||_{\mathbb{R}^m}}{||x||_{\mathbb{R}^n}} \ne 0.$$

Así, tenemos que si ||L|| = 0 entonces L = 0.

- Por otro lado, tenemos que si $\lambda \in \mathbb{R}$, $\|\lambda L\| = \sup \{\|\lambda L(u)\| : u \in \overline{B}(0,1)\} = |\lambda| \sup \{\|L(u)\| : u \in \overline{B}(0,1)\} = |\lambda| \|L\|$.
- Similarmente, tenemos que $\forall u \in \overline{B}(0,1)$, $\|(L_1 + L_2)(u)\| \le \|L_1(u) + L_2(u)\| \le \|L_1(u)\| + \|L_2(u)\| \le \|L_1\| + \|L_2\|.$ Así, tenemos que $\|L_1 + L_2\| \le \|L_1\| + \|L_2\|.$

Observación. Por tanto, $\|\cdot\|$ define una norma en $\mathcal{L}(\mathbb{R}^n, \mathbb{R}^m)$ que se llamará **matricial** porque

$$||L(x)||_{\mathbb{R}^m} \le ||L|| ||x||_{\mathbb{R}^n}, \ \forall x \in \mathbb{R}^n.$$

En efecto, para x=0 es trivial. Si $x\neq 0$, tomamos $u=\frac{x}{\|x\|}\in \overline{B}(0,1)$ por lo que $\|L(u)\|\leq \|L\|$. Así, obtenemos que

$$||L(x)||_{\mathbb{R}^m} \le ||L|| \cdot ||x||_{\mathbb{R}^n}.$$

Proposición 4.8. Sean $U \subset \mathbb{R}^n$ abierto, $a \in U$ y $f: U \to \mathbb{R}^m$. Si f es diferenciable en a, entonces existen r > 0 y M > 0 tales que

$$||f(x) - f(a)|| \le M||x - a||, ||x - a|| \le r.$$

Demostración. Dado $\varepsilon > 0$, existe $\delta > 0$ tal que si $||x - a|| \le \delta$, entonces

$$||f(x) - f(a) - Df(a)(x - a)|| \le \varepsilon ||x - a||.$$

Dado $\varepsilon = 1$, existe r > 0 tal que si $||x - a|| \le r$, entonces

$$||f(x) - f(a) - Df(a)(x - a)|| \le ||x - a||.$$

Así, nos queda que

$$||f(x) - f(a)|| \le ||x - a|| + ||Df(a)(x - a)||$$

 $\le ||x - a|| + ||Df(a)|| ||x - a|| = (||Df(a)|| + 1) ||x - a||.$

Así, basta con tomar M = ||Df(a)|| + 1.

Corolario 4.1. Sean $U \subset \mathbb{R}^n$ abierto, $a \in U$ y $f: U \to \mathbb{R}^m$. Si f es diferenciable en aentonces f es continua en a.

Teorema 4.2 (Regla de la cadena). Sean $U \subset \mathbb{R}^n, V \subset \mathbb{R}^m$ abiertos, $f: U \to \mathbb{R}^m$ y $g:V\to\mathbb{R}^p$ con $f(U)\subset V$, y sea $a\in U$. Entonces, si f es diferenciable en a y g es diferenciable en f(a), entonces $g \circ f$ es diferenciable en a y

$$D(q \circ f)(a) = Dq(f(a)) \circ Df(a).$$

Por tanto, $J(g \circ f)(a) = Jg(f(a)) \cdot J(f(a))$.

Demostración. Por la proposición anterior sabemos que existen r>0 y M>0 tales que

$$||f(x) - f(a)|| \le M||x - a||, ||x - a|| \le r.$$

Sea ahora $M' = \|Dg(f(a))\|$ y denotamos b = f(a). Dado $\varepsilon > 0$ consideramos $\varepsilon' = 0$ $\frac{\varepsilon}{M+M'} > 0$. Existe $\delta_1 > 0$ tal que si $||y-b|| \le \delta_1$, entonces

$$||g(y) - g(b) - Dg(b)(y - b)|| \le \varepsilon' ||y - b||.$$

También tenemos que existe $\delta_2 > 0$ tal que si $||x - a|| \le \delta_2$, entonces

$$||f(x) - f(a) - Df(a)(x - a)|| \le \varepsilon' ||x - a||.$$

Sea $\delta = \min\left\{r, \frac{\delta_1}{M}, \delta_2\right\} > 0$. Si $||x - a|| \le \delta$, en particular tenemos que

$$||f(x) - f(a)|| \le M||x - a|| \le M \cdot \frac{\delta_1}{M} = \delta_1.$$

Así, tomando y = f(x) tenemos que

$$||g(f(x)) - g(f(a)) - Dg(f(a))(f(x) - f(a))|| \le \varepsilon' ||f(x) - f(a)|| \le \varepsilon' M ||x - a||.$$

Así, nos queda

$$\begin{split} & \|g\left(f\left(x\right)\right) - g\left(f\left(a\right)\right) - Dg\left(f\left(a\right)\right) \left(Df\left(a\right)\left(x - a\right)\right) \| \\ \leq & \|g\left(f\left(x\right)\right) - g\left(f\left(a\right)\right) - Dg\left(f\left(a\right)\right) \left(f\left(x\right) - f\left(a\right)\right) \| + \|Dg\left(f\left(a\right)\right) \left(f\left(x\right) - f\left(a\right) - Df\left(a\right)\left(x - a\right)\right) \| \\ \leq & \varepsilon' M \|x - a\| + \|Dg\left(f\left(a\right)\right) \|\|f\left(x\right) - f\left(a\right) - Df\left(a\right) \left(x - a\right) \| \leq & \varepsilon' M' \|x - a\| + M\varepsilon' \|x - a\| \\ = & \varepsilon' \left(M + M'\right) \|x - a\| = & \varepsilon \|x - a\|. \end{split}$$

Teorema 4.3 (Condición suficiente de diferenciabilidad). Sean $U \subset \mathbb{R}^n$ abierto, $a \in U$ y $f: U \to \mathbb{R}^m$. Supongamos que $\forall j = 1, \dots, m, \ \forall i = 1, \dots, n, \ \forall x \in U,$ existe $\frac{\partial f}{\partial x_i}(x)$ y además las funciones $\frac{\partial f_j}{\partial x_i}: U \to \mathbb{R}^m$ son continuas en a. Entonces, f es diferenciable

Demostración. Es suficiente considerar el caso m=1, puesto que $f=(f_1,\ldots,f_m)$ es diferenciable en a si y solo si f_j es diferenciable en a, $\forall j=1,\ldots,m$. Como U es abierto y $a \in U$, existe r>0 tal que $B_{\infty}(a,r) \subset U$. Sea $x \in B_{\infty}(a,r)$, tenemos que

$$f(x) - f(a) = f(x_1, ..., x_n) - f(a_1, ..., a_n)$$

$$= f(x_1, ..., x_n) - f(a_1, x_2, ..., x_n) + f(a_1, x_2, ..., x_n)$$

$$- f(a_1, a_2, x_3, ..., x_n) + ... + f(a_1, a_2, ..., a_{n-1}, x_n) - f(a_1, ..., a_n).$$

Denotamos $\varphi(t) = f(t, x_2, \dots, x_n)$ con $t \in (a_1 - r, a_1 + r)$, tenemos que si aplicamos el teorema del valor medio encontramos c_1 un punto intermedio entre a_1 y x_1 tal que

$$f(x_1,...,x_n) - f(a_1,x_2,...,x_n) = \varphi(x_1) - \varphi(a_1) = \varphi(c_1)(x_1 - a_1).$$

En efecto, podemos aplicar el teorema del valor medio puesto que φ es derivable en $(a_1 - r_1, a_1 + r)$ y

$$\varphi'(t) = \lim_{h \to 0} \frac{f(t+h, x_2, \dots, x_n) - f(t, x_2, \dots, x_n)}{t} = \frac{\partial f}{\partial x_1}(t, x_2, \dots, x_n).$$

Así, aplicando el mismo razonamiento nos queda que

$$f(x) - f(a) = (x_1 - a_1) \frac{\partial f}{\partial x_1} (c_1, x_2, \dots, x_n) + (x_2 - a_2) \frac{\partial f}{\partial x_2} (a_1, c_2, \dots, x_n) + \dots + (x_n - a_n) \frac{\partial f}{\partial x_n} (a_1, \dots, a_{n-1}, c_n).$$

donde cada c_i es un punto intermedio entre a_i y x_i , $\forall i = 1, ..., n$. Ahora, definimos $L(h) = \sum_{i=1}^{n} h_i \frac{\partial f}{\partial x_i}(a)$, por tanto tendremos que

$$L(x-a) = \sum_{i=1}^{n} (x_i - a_i) \cdot \frac{\partial f}{\partial x_i}(a).$$

Así, nos queda que

$$f(x) - f(a) - L(x - a) = (x_1 - a_1) \left(\frac{\partial f}{\partial x_1} (a_1, x_2, \dots, x_n) - \frac{\partial f}{\partial x_1} (a_1, \dots, a_n) \right)$$
$$+ \dots + (x_n - a_n) \left(\frac{\partial f}{\partial x_n} (a_1, \dots, a_{n-1}, c_n) - \frac{\partial f}{\partial x_n} (a_1, \dots, a_n) \right).$$

De esta forma la fracción nos queda

$$\frac{|f(x) - f(a) - L(x - a)|}{\|x - a\|} \le \frac{|x_1 - a_1|}{\|x - a\|} \left| \frac{\partial f}{\partial x_1} (a_1, x_2, \dots, x_n) - \frac{\partial f}{\partial x_1} (a_1, \dots, a_n) \right| \\
+ \dots + \frac{|x_n - a_n|}{\|x - a\|} \left| \frac{\partial f}{\partial x_n} (a_1, \dots, a_{n-1}, c_n) - \frac{\partial f}{\partial x_n} (a_1, \dots, a_n) \right|.$$

Por tanto, cuando $x \to a$ tenemos que $\forall i = 1, \ldots, n, c_i \to a_i$ por lo que

$$\frac{\partial f}{\partial x_1}(c_1, x_2, \dots, x_n) \to \frac{\partial f}{\partial x_1}(a)$$

$$\vdots$$

$$\frac{\partial f}{\partial x_n}(a_1, \dots, a_{n-1}, c_n) \to \frac{\partial f}{\partial x_n}(a).$$

57

Ejemplo. Consideremos $f(x,y,z) = x^2z + \sin(x+y+z)$. Tenemos que $f: \mathbb{R}^3 \to \mathbb{R}$.

$$\frac{\partial f}{\partial x} = 2xz + \cos\left(x + y + z\right), \quad \frac{\partial f}{\partial y} = \cos\left(x + y + z\right), \quad \frac{\partial f}{\partial z} = x^2 + \cos\left(x + y + z\right).$$

Todas las derivadas son continuas en \mathbb{R}^3 , por lo que f es diferenciable en todo punto

Observación. El mismo resultado se obtiene $\forall j = 1, \dots, m, \ \forall i = 1, \dots, n-1, \ \frac{\partial f}{\partial x_i}$ es continua en a y además existe $\frac{\partial f}{\partial x_n}(a)$.

Corolario 4.2. Sea $U \subset \mathbb{R}^n$ abierto y $f: U \to \mathbb{R}^m$. Si f admite todas sus derivadas parciales en U y son continuas en U, entonces f es diferenciable en U.

Lema 4.1. La función $p: \mathbb{R}^2 \to \mathbb{R}$ con p(x,y) = xy es diferenciable en \mathbb{R}^2 y $\forall (x_0,y_0) \in$ \mathbb{R}^2

$$Dp(x_0, y_0)(u, v) = x_0v + y_0u.$$

Demostración. Es trivial ver que

$$\frac{\partial p}{\partial x}(x,y) = y, \quad \frac{\partial f}{\partial y}(x,y) = x.$$

Como ambas funciones son continuas en \mathbb{R}^2 , por el teorema anterior tenemos que p es diferenciable en \mathbb{R}^2 . Por otro lado,

$$Dp(x_0, y_0)(u, v) = \left(\frac{\partial p}{\partial x}(x_0, y_0), \frac{\partial p}{\partial y}(x_0, y_0)\right) \begin{pmatrix} u \\ v \end{pmatrix} = x_0 v + y_0 u.$$

Lema 4.2. Sean $A = \{(x,y) : y \neq 0\}$ y $q: A \to \mathbb{R}$ con $q(x,y) = \frac{x}{y}$. Entonces q es diferenciable en $A y \forall (x_0, y_0) \in A$

$$Dq(x_0, y_0)(u, v) = \frac{y_0u - x_0v}{y_0^2}.$$

Demostración. Es trivial ver que

$$\frac{\partial q}{\partial x}(x,y) = \frac{1}{y}, \quad \frac{\partial q}{\partial x}(x,y) = -\frac{x}{y^2}.$$

CAPÍTULO 4. CÁLCULO DIFERENCIAL

Como son continuas en A tenemos que q es diferenciable en A. Por otro lado,

$$Dq(x_0, y_0)(u, v) = \left(\frac{1}{y_0}, -\frac{x_0}{y_0^2}\right) \begin{pmatrix} u \\ v \end{pmatrix} = \frac{y_0 u - x_0 v}{y_0^2}.$$

Corolario 4.3 (de la Regla de la Cadena). Sean $U \subset \mathbb{R}^n$ abierto y $f \cdot g : U \to \mathbb{R}$ diferenciable en a.

1. Entonces, $f \cdot g$ es diferenciable en a y

$$D(f \cdot g)(a) = g(a) Df(a) + f(a) Dg(a).$$

2. Si además, $g\left(a\right)\neq0,$ entonces $\frac{f}{g}$ es diferenciable en a y

$$D\left(\frac{f}{g}\right)\left(a\right) = \frac{g\left(a\right)Df\left(a\right) - f\left(a\right)Dg\left(a\right)}{g\left(a\right)^{2}}.$$

Demostración. 1. Podemos considerar la composición de funciones

$$U \to \mathbb{R}^{2} \to \mathbb{R}$$
$$x \to (f(x), g(x)) \to f(x) g(x).$$

Así, nos queda que $f \cdot g = p \circ (f, g)$. De esta forma, tenemos que $\forall v \in \mathbb{R}^n$

$$D\left(f\cdot g\right)\left(a\right)\left(v\right) = \left[D\left(p\left(f\left(a\right),g\left(a\right)\right)\right)\circ D\left(f,g\right)\left(a\right)\right]\left(v\right)$$

$$= Dp\left(f\left(a\right),g\left(a\right)\right)\left(Df\left(a\right)\left(v\right),Dg\left(a\right)\left(v\right)\right) = g\left(a\right)\cdot Df\left(a\right)\left(v\right) + f\left(a\right)\cdot Dg\left(a\right)\left(v\right).$$

2. Según el lema previo, la función $q:A=\{(x,y):y\neq 0\}\to\mathbb{R}:(x,y)\to\frac{x}{y}$ es diferenciable en A. Como $g(a)\neq 0$ y g es continua, el conjunto $V=\{x\in U:g(x)\neq 0\}$ es abierto de \mathbb{R}^n . Así, la función $\frac{f}{g}$ está bien definida en V y tenemos que

$$\frac{f}{g}: V \to^{(f,g)} A \to^{q} \mathbb{R}$$
$$x \to (f(x), g(x)) \to \frac{f(x)}{g(x)}.$$

Puesto que h = (f, g) es diferenciable en A y Dh(a)(v) = (Df(a)(v), Dg(a)(v)), tenemos que

$$D\left(\frac{f}{g}\right)\left(a\right) = D\left(q\circ h\right)\left(a\right) = Dq\left(h\left(a\right)\right)\circ Dh\left(a\right).$$

Así, $\forall w \in \mathbb{R}^n$ se cumple que

$$\begin{split} D\left(\frac{f}{g}\right)\left(a\right)\left(w\right) = &Dq\left(f\left(a\right),g\left(a\right)\right)\left[Dh\left(a\right)\left(w\right)\right] = Dq\left(f\left(a\right),g\left(a\right)\right)\left(Df\left(a\right)\left(w\right),Dg\left(a\right)\left(w\right)\right) \\ = &\frac{g\left(a\right)Df\left(a\right)\left(w\right) - f\left(a\right)Dg\left(a\right)\left(w\right)}{g\left(a\right)^{2}}. \end{split}$$

Observación. Sean f, g diferenciables y $h = g \circ f$. Por la regla de la cadena tenemos que $Dh(a) = Dg(f(a)) \circ Df(a)$ y que $Jh(a) = Jg(f(a)) \cdot Jf(a)$. Así, nos queda que

$$\begin{pmatrix} \frac{\partial h_1}{\partial x_1} & \cdots & \frac{\partial h_1}{\partial x_n} \\ \vdots & & \vdots \\ \frac{\partial h_p}{\partial x_1} & \cdots & \frac{\partial h_p}{\partial x_n} \end{pmatrix}_a = \begin{pmatrix} \frac{\partial g_1}{\partial y_1} & \cdots & \frac{\partial g_1}{\partial y_m} \\ \vdots & & \vdots \\ \frac{\partial g_p}{\partial y_1} & \cdots & \frac{\partial g_p}{\partial y_m} \end{pmatrix}_{f(a)} \cdot \begin{pmatrix} \frac{\partial f_1}{\partial x_1} & \cdots & \frac{\partial f_1}{\partial x_n} \\ \vdots & & \vdots \\ \frac{\partial f_m}{\partial x_1} & \cdots & \frac{\partial f_m}{\partial x_n} \end{pmatrix}_a.$$

Así, si cogemos la columna i obtenemos que

$$\frac{\partial h_k}{\partial x_i}(a) = \sum_{j=1}^m \frac{\partial g_k}{\partial y_j} f(a) \cdot \frac{\partial f_j}{\partial x_i}(a).$$

Convencionalmente, la regla de la cadena se escribe de la forma

$$\frac{\partial z_k}{\partial x_i} = \sum_{j=1}^m \frac{\partial z_k}{\partial y_j} \cdot \frac{\partial y_j}{\partial x_i}.$$

Ejemplo. Consideremos $u=x^2+3y,\ v=\sin{(x-y)}$ y w=y. Consideremos la aplicación $z=2u-v^2+w$. Tenemos que

$$\frac{\partial z}{\partial x} = \frac{\partial z}{\partial u} \cdot \frac{\partial u}{\partial x} + \frac{\partial z}{\partial v} \cdot \frac{\partial v}{\partial x} + \frac{\partial z}{\partial w} \cdot \frac{\partial w}{\partial x}$$
$$= 4x - 2v\cos(x - y) = 4x - 2\sin(x - y)\cos(x - y)$$

Análogamente,

$$\begin{split} \frac{\partial z}{\partial y} &= \frac{\partial z}{\partial u} \cdot \frac{\partial u}{\partial y} + \frac{\partial z}{\partial v} \cdot \frac{\partial v}{\partial y} + \frac{\partial z}{\partial w} \cdot \frac{\partial w}{\partial y} \\ &= 6 + 2v\cos\left(x - y\right) + 1 = 7 + 2\sin\left(x - y\right)\cos\left(x - y\right). \end{split}$$

También las podríamos haber calculado con el producto de las matrices jacobianas.

Definición 4.7 (Vector gradiente). Sean $U \subset \mathbb{R}^n$ abierto, $f: U \to \mathbb{R}$ diferenciable en $a \in U$. Se define el **vector gradiente** de f en a como

$$\nabla f\left(a\right) = \left(\frac{\partial f}{\partial x_{1}}\left(a\right), \dots, \frac{\partial f}{\partial x_{n}}\left(a\right)\right) \in \mathbb{R}^{n}.$$

Observación. Tenemos que $\forall w \in \mathbb{R}^n$,

$$Df(a) w = \sum_{i=1}^{n} \frac{\partial f(a)}{\partial x_{i}} w_{i} = \langle \nabla f(a), w \rangle.$$

Observación. Sea $I \subset \mathbb{R}$ un intervalo abierto y $f: I \to \mathbb{R}^n$. Sabemos que f es diferenciable en $t_0 \in I$ si y solo si f es derivable en t_0 y además $f'(t_0) = Df(t_0)(1)$.

Corolario 4.4. Sean $I \subset \mathbb{R}$ un intervalo abierto, $t_0 \in I$; $f: I \to \mathbb{R}^n$ derivable en t_0 con $f(I) \subset U$ abierto; $g: U \to \mathbb{R}$ diferenciable en $a = f(t_0)$. Entonces, $g \circ f: I \to U \to \mathbb{R}$ es derivable en t_0 y además

$$(g \circ f)'(t_0) = \langle \nabla g(f(t_0)), f'(t_0) \rangle.$$

Demostración. Es fácil ver que

$$(g \circ f)'(t_0) = D(g \circ f)(t_0)(1) = Dg(f(t_0))(f'(t_0)) = \langle \nabla g(f(t_0)), f'(t_0) \rangle.$$

4.3. Conjuntos de nivel

Definición 4.8 (Conjuntos de nivel). Sean $U \subset \mathbb{R}^n$ abierto y $F: U \to \mathbb{R}$ diferenciable en U. Se define el **conjunto de nivel** de F correspondiente al valor $F \in \mathbb{R}$ como

$$S_r = \{x \in U : F(x) = r\}.$$

Ejemplo. 1. Si consideramos $F: \mathbb{R}^2 \to \mathbb{R}$ con $F(x,y) = x^2 + y^2$. Para un $r \in \mathbb{R}$ tenemos que

$$S_r = \begin{cases} \emptyset, \ r < 0 \\ \{(0,0)\}, \ r = 0 \\ \{(x,y) : x^2 + y^2 = r\}, \ r > 0 \end{cases}.$$

- 2. Consideremos F(x,y)=xy. Tenemos que sus curvas de nivel son hipérbolas si $r\neq 0$ y los ejes de coordenadas en el caso de que r=0.
- 3. Si tomamos $F(x, y, z) = x^2 + y^2 + z^2$, obtenemos superficies esféricas para r > 0;

el origen si r = 0; y el conjunto vacío si r < 0.

4. Consideremos $F: \mathbb{R}^3 \to \mathbb{R}$ con $F(x,y,z) = x^2 + y^2 - z^2$. En el caso r=0 tenemos el conjunto de nivel dado por la ecuación $z^2 = x^2 + y^2$, que es un cono. Si r=1, tenemos el conjunto de nivel dado por la ecuación $x^2 + y^2 = r + z^2$ por lo que obtenemos un hiperboloide. Si r=-1, obtenemos el conjunto de nivel dado por la ecuación $x^2 + y^2 - r = +z^2$, es decir, $z=\pm\sqrt{x^2+y^2-r}$, que es un paraboloide.

Proposición 4.9. Sea $U \subset \mathbb{R}^n$ abierto, $F: U \to \mathbb{R}$ diferenciable, $r \in \mathbb{R}$ y sea $p \in S_r$. Sea $\sigma: I \to \mathbb{R}^n$ una curva diferenciable con $\sigma(t_0) = p$ y tal que $\operatorname{Im}(\sigma) \subset S_r$. Entonces, $\nabla F(p) \perp \sigma'(t_0)$.

Demostración. Consideremos la composición

$$I \to^{\sigma} S_r \subset U \to^F \mathbb{R}$$
.

Tenemos que $F \circ \sigma(t) = r, \forall t \in I$. Consecuentemente,

$$0 = (F \circ \sigma)'(t) = \langle \nabla F(\sigma(t)), \sigma'(t) \rangle.$$

Por lo que $\nabla F(p) \perp \sigma'(t_0)$.

Definición 4.9 (Hiperplano tangente). Sean $U \subset \mathbb{R}^n$ abierto, $F: U \to \mathbb{R}$ y $r \in \mathbb{R}$. Sea $p \in S_r$. Si $\nabla F(p) = 0$, se dice que $\nabla F(p)$ es un **vector normal** a S_r en p y se define el **hiperplano tangente** a S_r en p como el hiperplano que pasa por p y es perpendicular a $\nabla F(p)$.

Ejemplo. Consideremos $M = \{(x, y, z) : 2x^2 + y^2 + 3z^2 = 6\}$, que es un elipsoide. Tomamos $p = (1, 2, 0) \in M$. Calculamos el hiperplano tangente a M en p. Tenemos que

$$\nabla F(p) = (4x, 2y, 6z)|_{p} = (4, 4, 0).$$

Así, el hiperplano que buscamos es

$$4(x-1) + 4(y-2) = 0.$$

Superficies explícitas

Una superficie es explícita si tiene la forma z = f(x, y) con f diferenciable. Una forma de calcular el hiperplano tangente es definir F(x, y, z) = f(x, y) - z. Así, tenemos que

$$z = f(x, y) \iff F(x, y, z) = 0.$$

Por tanto, toda superficie explícita puede considerarse una superficie implícita. Tendremos que

$$\nabla F\left(x_{0},y_{0},z_{0}\right)=\left(\frac{\partial f}{\partial x}\left(x_{0},y_{0}\right),\frac{\partial f}{\partial y}\left(x_{0},y_{0}\right),-1\right).$$

Tomando $z_0 = f\left(x_0, y_0\right)$ tendremos que el plano tangente en $p = (x_0, y_0, z_0)$ será

$$(x - x_0) \frac{\partial f}{\partial x} (x_0, y_0) + (y - y_0) \frac{\partial f}{\partial y} (x_0, y_0) - (z - z_0) = 0.$$

Es decir,

$$z = f(x_0, y_0) + (x - x_0) \frac{\partial f}{\partial x}(x_0, y_0) + (y - y_0) \frac{\partial f}{\partial y}(x_0, y_0).$$

Otra forma de calcular el hiperplano tangente es, dada $f:U\subset\mathbb{R}^2\to\mathbb{R}$ diferenciable, considerar su gráfica z=f(x,y). Dado $p=(x_0,y_0)\in\mathrm{Im}(z)$, podemos considerar la curva

$$\sigma(t) = (x_0 + t, y_0, f(x_0 + t, y_0)), \ \sigma(0) = p$$

Así, tenemos que

$$\sigma'(0) = \left(1, 0, \frac{\partial f}{\partial x}(x_0, y_0)\right).$$

De manera análoga, podemos fijar x_0 y obtener la curva

$$\gamma(t) = (x_0, y_0 + t, f(x_0, y_0 + t)), \ \gamma(0) = t.$$

Así, tendremos que el vector tangente a la superficie será

$$\gamma'(0) = \left(0, 1, \frac{\partial f}{\partial y}(x_0, y_0)\right).$$

Así, el plano tangente será el que viene dado por las ecuaciones

$$\begin{cases} x = x_0 + \lambda \\ y = y_0 + \mu \\ z = f(x_0, y_0) + \lambda \frac{\partial f}{\partial x}(x_0, y_0) + \mu \frac{\partial f}{\partial y}(x_0, y_0) \end{cases}$$

Claramente, obtenemos el mismo plano por ambos métodos.