SUMIT SHAMLAL CHAURE

IMDB MOVIE ANALYTICS

Trainity Project 5 (Final Project -1) – Advanced Statistics [Descriptive Analysis]

Figure 1 - https://trainity.link/data/project05

INDEX

Contents

Introduction :	İ
DESCRIPTION	.3
Requirements –	.5
Data Cleaning Task :	.7
Data Analytics Tasks :	.8
A) Movie Genre Analysis: Analyze the distribution of movie genres and their impact on the IMDB score. Q1 - Excel_Answer_File	.8
B) Movie Duration Analysis: Analyze the distribution of movie durations and its impact on the IMDB score. Q2 - Excel_Answer_File	
C) Language Analysis: Analyze Examine the distribution of movies based on their language 1	12
D) Director Analysis: Influence of directors on movie ratings. Q4_Answer_Excel_File	14
E) Budget Analysis: Explore the relationship between movie budgets and their financial success. Q5_Answer_Excel_File	15
Important Links :	15

DESCRIPTION

Problem Statement:

The dataset provided is related to IMDB Movies. A potential problem to investigate could be: "What factors influence the success of a movie on IMDB?" Here, success can be defined by high IMDB ratings. The impact of this problem is significant for movie producers, directors, and investors who want to understand what makes a movie successful to make informed decisions in their future projects.

Data Cleaning:

This step involves pre-processing the data to make it suitable for analysis. It includes handling missing values, removing duplicates, converting data types if necessary, and possibly feature engineering.

Data Analysis:

Here, you'll explore the data to understand the relationships between different variables. You might look at the correlation between movie ratings and other factors like genre, director, budget, etc. You might also want to consider the year of release, the actors involved, and other relevant factors.

Five 'Whys' Approach:

This technique will help you dig deeper into the problem. For instance, if you find that movies with higher budgets tend to have higher ratings, you can ask "Why?" repeatedly to uncover the root cause. Here's an example:

- Q: "Why do movies with higher budgets tend to have higher ratings?"
 - A: They can afford better production quality.
- Q: "Why does better production quality lead to higher ratings?"
 - A: It enhances the viewer's experience.
- Q: "Why does an enhanced viewer experience lead to higher ratings?"
 - A: Viewers are more likely to rate a movie highly if they enjoyed watching it.
- Q: "Why are viewers more likely to rate a movie highly if they enjoyed watching it?"
 - A: Positive experiences lead to positive reviews.
- Q: "Why do positive reviews matter?"
 - A: They influence other viewers' decisions to watch the movie, increasing its popularity and success.

Report and Data Story:

After your analysis, you'll create a report that tells a story with your data. This should include your initial problem, your findings, and the insights you've gained. Use visualizations to help tell your story and make your findings more understandable.

Remember, as a data analyst, your goal is not just to answer questions but to provide insights that can drive decision-making. Your analysis should aim to provide actionable insights that can help stakeholders make informed decisions.

Requirements -

1) Project Description:

The aim of the project is to find the use the knowledge of Descriptive statistics to find out necessary insights from an excel sheet to grab the details and trends of the IMDB movie dataset which is a place to collect reviews and ratings of various movies and helps people to get the information about the relevance of the same.

After looking at the data we plan a format to operate on the data, tools needed and charts that can be useful for trends etc. while keeping in the questions in mind. The descriptive analysis at various stages of the questions helps us to get the major trends and their effects on ratings given to movies be it based on length, language or directors etc.

2) Approach:

I first analyzed the data and looked for null values, blanks, duplicates and treated them using basic functions like delete cells, find & replace, remove blank rows etc. For certain cell values I changed them to suit better with other values like – (for genre separation part) etc. After confirming that the data has little to less outliers (single rating or single genre in movie) and saved the raw data to work on with the operations. Also I removed the most irrelvant columns from the dataset

The analysis based on excel functions, Descriptive analysis, pivot tables has insights at the bottom of the screengrabs to let the others understand the aim of each analysis.

3) Tech-Stack Used:

Excel – The basic data manipulation, handling and overall pivot charts and the statistics has been handled using MS Excel.

Google Sheets – Used to do the basic data manipulation and to get column stats (gif added)

Word – The report is written in word/docx format using MS Word and then exported to pdf.

Drive – To upload all the essential files attached in the report for reference & pdf upload.

4) Insights:

The summary for each query is given with the screenshot but to summarize the overall thing I came to the conclusion that among the total data set we had **5043 data rows, 28 columns & a total of 139145** cells in the given dataset.

After removing the blanks, duplicates and adjusting the non-relevant columns we made the dataset to *3784 rows*, *10 columns & 37850 cells* for our final calculation. For question 1 as the genre column had multiple genre in it we further sorted the data for that particular question to *5043 rows*, *18 rows* (*8 genre columns separated*) & *49580 cells after splitting* the genre cells value.

For more data insight on the questions look at the respective questions for screenshot and pivot charts.

5) Result:

The Project has given me a good idea about the importance and vast variety of excel usage which helps us to look deep into plain numbers and generate a visually insightful data which can help business to gain knowledge and prepare for future as well as give out trends to focus on from the numerical data. The statistics section has helped me learn about the various concept which are useful for majority of the operation for handling and displaying basic charts and generate a meaningful dashboard as well as the use of Descriptive stats to get more deeper insights in the data.

Data Cleaning Task:

Will not explain much just have added the links of gif/process.(These were the basic steps to clean and adjust the data)

Data Count & Column Stats

Data Cleaning (Blanks & Duplicate Removal)

Data Cleaning (Unwanted Column Removal)

<u>Data Manipulation (Column Interchange - to make more readable)</u>

Genre Column Separation (For Q1 - Analysis)

Video PPT (Drive Folder)

Zip (As google drive converts excel sheets to docs and then the connections & plots are lost)

Data Analytics Tasks:

- **A) Movie Genre Analysis:** Analyze the distribution of movie genres and their impact on the IMDB score. Q1 Excel_Answer_File
 - Task: Determine the most common genres of movies in the dataset. Then, for each
 genre, calculate descriptive statistics (mean, median, mode, range, variance, standard
 deviation) of the IMDB scores.

Figure 1) Genre Descriptive stats using pivot table HD Image

Figure 2) Descriptive Stats for Primary Genre (Using Data Analysis Tool in Excel) HD Image

Figure 3) Genre Distribution using Pie – Chart

Figure 4) Descriptive Stats BarPlot(Opened Image +) HD Image

- 1. The Genre distribution shows us that *Comedy* is the most popular genre in the dataset with approximately **27%** (1026 movies) and *Action* genre comes at second place with around **25%** (935 movies). While *Romance & Musical* are both the lowest rated genre in the dataset (2 movies each). Note that the insights are based on the primary genre and so the results would change accordingly as we remove the other genres in calculations.
- 2. The Analysis shows us that most people love to watch comedy or action movies and they have the most ratings among the genres in the IMDB dataset.

- **B) Movie Duration Analysis:** Analyze the distribution of movie durations and its impact on the IMDB score. Q2 Excel Answer File
 - *Task*: Analyze the distribution of movie durations and identify the relationship between movie duration and IMDB score.

4	A	В	С	D	E	F	G	Н	1	J
1	Creating a Frequency of 25 minutes								Descriptive Stats of Above	
2	to group the movie duration									
3	Row Labels	▼ Count of imdb_score	Mean of imdb_score	Min of imdb_score	Max of imdb_score	Var of imdb_score	StdDev of imdb_score		Column1 ▼	Column2
4	34-58	6	7.216666667	6.5	7.8	0.241666667	0.49159604		Mean	343.4545455
5	59-83	151	6.070198675	2.8	8.5	1.477839294	1.215664137		Standard Error	197.1361949
6	84-108	1991	6.152285284	1.9	8.6	1.114556333	1.055725501		Median	26
7	109-133	1221	6.734807535	1.6	8.8	0.742254656	0.861542022		Mode	2
8	134-158	299	7.184280936	3.6	9.3	0.669450068	0.818199284		Standard Deviation	653.8267911
9	159-183	67	7.47761194	4.8	9.2	0.862976029	0.928965031		Sample Variance	427489.4727
10	184-208	26	7.553846154	5.5	8.9	0.696184615	0.834376783		Kurtosis	3.903507237
11	209-233	12	7.533333333	5.8	9	0.791515152	0.889671373		Skewness	2.139598205
12	234-258	4	7.9	7	8.4	0.386666667	0.62182527		Range	1989
13	259-283	2	7	6.3	7.7	0.98	0.989949494		Minimum	2
14	284-308	3	7.833333333	6.6	8.5	1.143333333	1.069267662		Maximum	1991
15	309-333	2	7.4	6.8	8	0.72	0.848528137		Sum	3778
16	Grand Total	3784	6.461971459	1.6	9.3	1.117810651	1.057265648		Count	11
17									Largest(1)	1991
18									Smallest(1)	2,
-										Sumit S. C

Figure 5) Impact of Movie Length(Duration) on scores HD Image

Figure 6) Scatterplot For Length of movie and its impact on scores with a trendline to see the impact <u>HD Image</u>

- 1. I have made a frequency table of the duration into 25minutes slots to make the data more readable and get the distribution on plot.
- 2. From the Pivot table it is evident that most movies are in the range of 84-108minutes long and also in range of 109-133 minutes on average count where people like to rate them on imdb.
- 3. The analysis shows that the movies in range of 84-133 minutes are among the most rated movies or we could assume are favoured by people more to watch & rate.
- 4. The analysis can simply be broken down more by just changing the frequency value in group which I have kept to 25 min to get more deep insights on the score v/s length distribution.

C) Language Analysis: Analyze Examine the distribution of movies based on their language.

Q3_Excel_Answer_File

• *Task*: Determine the most common languages used in movies and analyze their impact on the IMDB score using descriptive statistics.

4	Α	В	C	D	Е	F	G	Н	I	J
1 R	Row Labels 🔻	Count of imdb_score	Mean of imdb_score N	/lin of imdb_score I	Max of imdb_score \	/ar of imdb_score \$	StdDev of imdb_score		Note : To Get star	s of individual
2 0	∄ Aboriginal	2	6.95	6.4	7.5	0.605	0.777817459		language use data	*
3 8	∄ Arabic	1	7.2	7.2	7.2	#DIV/0!	#DIV/0!		langu	
4 9	⊕ Aramaic	1	7.1	7.1	7.1	#DIV/0!	#DIV/0!		Descriptive Sta	ts of Overall
5 8	∄ Bosnian	1	4.3	4.3	4.3	#DIV/0!	#DIV/0!		Stats	Overall Value
6 8	⊕ Cantonese	8	7.2375	6.5	7.8	0.194107143	0.440575922		Mean	105.055555
7 8	⊕ Czech	1	7.4	7.4	7.4	#DIV/0!	#DIV/0!		Standard Error	100.006380
8 8	∄ Danish	3	7.9	7.3	8.3	0.28	0.529150262		Median	
9 8	∄ Dari	2	7.5	7.4	7.6	0.02	0.141421356		Mode	
10 🛭	∄ Dutch	3	7.566666667	7.1	7.8	0.163333333	0.404145188		Standard Deviation	600.038281
11 8	⊕ Dzongkha	1	7.5	7.5	7.5	#DIV/0!	#DIV/0!		Sample Variance	360045.939
12 8	⊕ English	3605	6.42147018	1.6	9.3	1.108057216	1.052642967		Kurtosis	35.9875124
13 8	∃ Filipino	1	6.7	6.7	6.7	#DIV/0!	#DIV/0!		Skewness	5.99848760
14 8	⊕ French	37	7.286486486	5.8	8.4	0.31509009	0.561328861		Range	360
15 8	∃ German	13	7.692307692	6.1	8.5	0.410769231	0.64091-3811		Minimum	
16 9	∃Hebrew	3	7.5	7.2	8	0.19	0.43588-894		Maximum	360
17 8	∃Hindi	10	6.76	4.8	8	1.236	1.111755369		Sum	378
18 9	⊞ Hungarian	1	7.1	7.1	7.1	#DIV/0!	#DIV/0!		Count	3
19 8	∃ Icelandic	1	6.9	6.9	6.9	#DIV/0!	#DIV/0!		Largest(1)	360
20 🛭	∃Indonesian	2	7.9	7.6	8.2	0.18	0.424264069		Smallest(1)	
21 8	∃ Italian	7	7.185714286	5.3	8.9	1.334761905	1.155318962		, ,	
22 8	∃ Japanese	12	7.625	6	8.7	0.809318182	0.899621132			
23	∃ Kazakh	1	6	6	6	#DIV/0!	#DIV/0!			
24 8	⊞ Korean	5	7.7	7	8.4	0.325	0.570087713			
25 8	■ Mandarin	14	7.021428571	5.6	7.9	0.586428571	0.765786244			
26 9	∄ Maya	1	7.8	7.8	7.8	#DIV/0!	#DIV/0!			
27 8		1	7.3	7.3	7.3	#DIV/0!	#DIV/0!			
	∃ Norwegian	4	7.15	6.4	7.6	0.33	0.574456265			
29 8	∄ Persian	3	8.133333333	7.5	8.5	0.303333333	0.550757055			
30 B	∄ Portuguese	5	7.76	6.1	8.7	0.958	0.978774744			
31 8	∄ Romanian	1	7.9	7.9	7.9	#DIV/0!	#DIV/0!			
32 🖯	⊕ Russian	1	6.5	6.5	6.5	#DIV/0!	#DIV/0!			
_	∃ Spanish	26	7.05	5.2	8.2	0.6826	0.826196103			
_	∃ Swedish	1	7.6	7.6	7.6	#DIV/0!	#DIV/0!			
_	∄Telugu	1	8.4	8.4	8.4	#DIV/0!	#DIV/0!			
_	∄Thai	3	6.633333333	6.2	7.1	0.203333333	0.450924975			
	∃ Vietnamese		7.4	7.4	7.4	#DIV/0!	#DIV/0!			
	∃ Zulu	1	7.3	7.3	7.3	#DIV/0!	#DIV/0!			
	Grand Total	3784	6.461971459	1.6	9.3	1.117810651	1.057265648			

Figure 7) Language wise Imdb Score & Stats <u>HD Image</u>

Note – For Stats of individual movie one can simply use the data analysis fucntion in excel to select the data from language row and then perform the analysis – the one in screenshot is the overall of all languages. Some are missing or shows random things because they can't be determined with the overall data as some places might have 0 score too.

Figure 8) Distribution On plot HD Image

- 1. From the analysis of the data it is evident that most of the rated movies on IMDB are from the *English origin* (3605 Movie titles).
- Other Prominent languages include French (37), Spanish (26), Mandarin (14),
 German (13), Japanese (12) among other languages.
- The analysis shows that majority of the user watch Hollywood movies AKA English
 (US) and they are among the most watched languages.

D) Director Analysis: Influence of directors on movie ratings. <u>Q4_Answer_Excel_File</u>

• *Task*: Identify the top directors based on their average IMDB score and analyze their contribution to the success of movies using percentile calculations.

	A	В	С	D	E	F
1		Mo	vie Director & its Impa	ct On IMDB Score		
2	Row Labels	Count of imdb_score	Average of imdb_score	Sum of imdb_score	Percentile (WholeData)	Ranking Acc to IMDB_Score
3	Steven Spielberg	25	7.544	188.6	0.77%	1
4	Woody Allen	19	7	133	0.54%	3
5	Clint Eastwood	19	7.205263158	136.9	0.56%	2
6	Ridley Scott	16	7.13125	114.1	0.47%	5
7	Martin Scorsese	16	7.675	122.8	ረን 0.50%	4
8	Spike Lee	15	6.733333333	101		ta) 6
9	Steven Soderbergh	15	6.68	100.2	Value: 0.50%	7
10	Renny Harlin	15	5.746666667	86.2	Row: Martin Scorsese	12
11	Tim Burton	14	7.05	98.7	Column: Percentile (W	holeData) 8
12	Robert Zemeckis	13	7.307692308	95	0.39%	9
13	Oliver Stone	13	6.907692308	89.8	0.37%	11
14	Ron Howard	13	6.930769231	90.1	0.37%	10
15	Robert Rodriguez	13	5.692307692	74	0.30%	20
16	Barry Levinson	13	6.576923077	85.5	0.35%	13
17	Tony Scott	12	6.791666667	81.5	0.33%	14
18	Michael Bay	12	6.616666667	79.4	0.32%	16
19	Joel Schumacher	12	6.341666667	76.1	0.31%	19
20	Shawn Levy	11	6.090909091	67	0.27%	28
21	Rob Reiner	11	7.018181818	77.2	0.32%	18
22	Richard Linklater	11	7.327272727	80.6	0.33%	15
23	Chris Columbus	11	6.654545455	73.2	0.30%	21
24	Wes Craven	10	5.97	59.7	0.24%	34
25	Sam Raimi	10	6.96	69.6	0.28%	23
26	Paul W.S. Anderson	10	5.99	59.9	0.24%	
						Sumit S. C

Figure 9) Impact of directors on IMDB Score (Long list) <u>HD Image</u> See the Excel file for more details.

- From the analysis we get to know the impact of director on the movies IMDB score.
 Certain Directors holds up as favorites in people mind when they watch the movies maybe due to their excellent cinematography, etc.
- Certain Directors like Steven Spielberg, Client Eastwood, Woody Allen, Martin
 Scorsese are among the highest rated director Movies and also have the most number of movies.
- 3. The count column shows the number of movies of each director while the average shows the average rating for them and the percentile takes the grand total division of the directors rating.
- 4. Also, the extra rank is made according to the average rating of directors and table is sorted by the number of movies of each director Total directors are = **1751**

- **E) Budget Analysis:** Explore the relationship between movie budgets and their financial success. Q5 Answer Excel File
 - *Task*: Analyze the correlation between movie budgets and gross earnings, and identify the movies with the highest profit margin.

Figure 10) Movie Budget Analysis (Top 25 Movies for eq) HD Image

- 1. By subtracting the Gross with Budget we get the actual Profit/Loss of the movies, we sorted it by largest value and then took the top 15 movies to analyse our data.
- 2. The top movie from our data is **Avatar** at a staggering \$535Million in profits it had a **budget of \$237M** so its almost 2X of investment (Note the data is not upto mark as Avatar is supposed to be around \$2.2B according to sources but our data might be just of US & of old origins).
- 3. The other top 25 movies are shown in the screenshots.

Important Links:

Drive Folder Link

Individual Excel Sheets (Individual Questions File)

Final Excel sheet (cleaned dataset)

Word File Link & Pdf File (Will Be in the drive folder – can't add before I upload the file)

Video Presentation

Thank You