2a. We would be interested in the absolute value of R over the raw value because a feature could be highly negatively correlated which still influences the outcome of the model.

Feature	R	Feature	R
f4	0.436922	f8	0.087773
f13	0.368269	f0	0.069795
f14	0.368224	f10	0.056876
f16	0.366025	f21	0.056605
f7	0.352141	f11	0.042117
f22	0.351350	f33	0.038810
f26	0.341043	f6	0.035295
f1	0.308811	f15	0.031478
f20	0.299049	f35	0.030855
f31	0.290783	f29	0.020829
f34	0.266093	f18	0.017931
f2	0.195732	f27	0.015606
f28	0.156904	f9	0.013005
f25	0.153096	f3	0.009214
f19	0.137636	f30	0.008955
f17	0.113945	f24	0.007780
f32	0.093174	f23	0.005508
		f12	0.002179
		f5	0.000098

2b.

M ,	Accuracy	M	Accuracy	M A	ccuracy N	Л Ас	curacy M	Acc	uracy
20	0.950355	30	0.943262	32	0.938534	12	0.904255	7	0.861702
18	0.946809	22	0.943262	27	0.937352	11	0.901891	6	0.836879
31	0.945626	33	0.942080	25	0.936170	9	0.894799	5	0.834515
29	0.945626	28	0.942080	17	0.933806	14	0.891253	4	0.833333
23	0.94562 6	19	0.942080	35	0.931442	13	0.888889	3	0.822695
24	0.94444 4	26	0.940898	16	0.916076	10	0.885343	2	0.795508
34	0.94326 2	21	0.940898	15	0.908983	8	0.874704	1	0.722222

3ab.

```
['f14'] 0.7635933806146572
['f14', 'f10'] 0.8711583924349882
['f14', 'f10', 'f19'] 0.9030732860520094
['f14', 'f10', 'f19', 'f8'] 0.9361702127659575
['f14', 'f10', 'f19', 'f8', 'f7'] 0.9562647754137116
['f14', 'f10', 'f19', 'f8', 'f7', 'f25'] 0.958628841607565
['f14', 'f10', 'f19', 'f8', 'f7', 'f25', 'f1'] 0.9621749408983451
```

4a.

 $0.4^3 + 3*(0.6)*(0.4^2) = 0.352$ 1 - 0.352 = 0.648

4b.

 $0.4^5+5^*(0.6)^*(0.4^4)+10(0.6^2)(0.4^3) = 0.31744$ 1- 0.31744 = 0.683

4c.

0.922198936132927 (see python code in HW3-4.ipyb)

4d.

The assumption we made was that every model has equal accuracy and is independent from one another. In reality, there will be overlap in the information gain from each model, especially if trained on the same data set.

4e.

0.4574340777935757 (see python code in HW3-4.ipyb)