PROBATOIRE F3 SESSION 2006 CAMEROUN

Première Partie: Technologie

- 1. Définir les expressions suivantes : grafcet, registre, transfert asynchrone
- 2. Donner 3 règles d'évolution d'un grafcet
- 3. Donner le modèle équivalent à diodes et à transistors d'un thyristor.
- 4. Donner la différence entre un transistor unipolaire et un transistor bipolaire.
- 5. Déterminer le nombre de bascules nécessaires pour construire un compteur binaire qui compte de 0 à 1023.
- 6. Calculer la fréquence du signal de sortie de la dernière bascule de ce compteur si la fréquence du signal d'entrée est de 2 MHZ.
- 7. Si le compteur est à 0 au début, quel nombre contient-il après 2060 impulsions?

Deuxième Partie: Circuit analogique

Exercice 1: Circuit à courant variable

On considère le circuit électrique résonnant suivant :

Avec $\mathbf{R} = 8\Omega$; $\mathbf{C} = 530,7856 \text{nF}$; $\mathbf{V}_{AB} = 64 \text{ V}$; $\mathbf{f} = 50 \text{Hz}$

- 1. Donner l'expression complexe de l'impédance \mathbf{Z}_{AB} du circuit, vue des bornes \mathbf{AB} , en fonction de \mathbf{L} .
- 2. Calculer la valeur de L permettant d'obtenir la résonance, puis déduire la valeur correspondante de Z_{AB} .
- 3. Calculer le courant à la résonance et le coefficient de surtension Q.

N.B.: prendre $\pi = 3,14$. Pour tout calcul, arrondir par excès au millième près.

Exercice 2: Circuit à courant continu

Soit le montage de la figure 2 ci-dessous :

Figure2

- 1. Déterminer les éléments du modèle équivalent de **THEVENIN** vu des bornes **AB** du montage.
- 2. Représenter le modèle de **THEVENIN** obtenu.
- 3. Calculer le courant I3 dans R3 et la tension U3 aux bornes de R3.
- 4. Calculer les courants i1 et I2.
- 5. En supposant que **R3** est variable, déterminer la valeur de **R3** qui permet d'obtenir un transfert de puissance maximale dans cette résistance.

Exercice 3: Transistor bipolaire en régime statique et en régime dynamique. On considère le montage Emetteur Commun de la figure 3 ci-de

Disponible sur www.emergencetechnocm.com

Les condensateurs C_1 et C_2 , à la fréquence de fonctionnement font des courts-circuits parfaits. A – **Régime statique (polarisation)**

- 1. Donner le schéma de ce montage en régime depolarisation.
- 2. le point de fonctionnement du transistor correspond à : $V_{CE0} = \frac{V_{CC}}{2}$ et $I_{C0} = 6$ mA
 - a) Calculer la valeur de la résistance R_C.
 - b) Déterminer la valeur du courant de base I_{B0}.
 - c) Calculer la valeur de $\mathbf{R}_{\mathbf{B}}$.

B – **Régime dynamique (amplification)**

- 3. Donner le schéma équivalent du transistor en régime de petits signaux en utilisant les paramètres hydrides.
- 4. Définir les rôles des condensateurs C1 et C2.
 - 5. A l'aide du schéma du transistor en régime de petits signaux, donner le schéma équivalent du circuit de la figure 3.
 - 6. Déterminer les expressions des résistances d'entrées **RE** et de sortie **RS** du circuit, et les calculer.

Exercice 4: Amplificateur opérationnel L'amplificateur

opérationnel de la figure 4 est idéal.

- 1. Calculer U_e en fonction de I₃, et R₀
- 2. Donner la relation qui existe entre I_1 , I_2 et I_3 .
- 3. Donner la relation qui existe entre I_2 , I_0 et I_3 .

4. Montrer que
$$l_0 = \frac{-2U_6}{R_o}$$

Troisième Partie : Circuit numérique

Exercice 5:

La combinaison de trois boutons-poussoirs d'entrées **a**, **b** et **c** permet l'ouverture des coffres dont les sorties sont : **J**, **K** et **L**. la table de vérité du système est la suivante :

а	b	С		J	K	L
0	0	0		1	1	0
0	0	1		1	1	1
0	1	0		1	0	0
0	1	1		1	0	0
1	0	0		0	1	0
1	0	1	4	0	1	1
1	1	0		0	0	0
1	1	1		0	0	0

- 1. En observant les variations des entrées : a, b et c, déterminer la logique utilisée.
- 2. Nommer le code choisi pour remplir les colonnes a, b et c de la table de vérité.
- 3. Donner les équations simplifiées des sorties J, K et L, à l'aide du tableau de Karnaugh.
- 4. Réaliser le logigramme du système en utilisant les portes NAND à deux entrées.
- 5. Faire le câblage en utilisant le circuit **CMOS HEF4011** dont la configuration du brochage est donnée à la figure 5 ci- dessous :

Exercice 6:

Réaliser un compteur synchrone modulo 4 à l'aide des bascules JK.