### Rappels Chapitre 1 - Introduction aux Probabilités











Intersection (et)



Différence (sans)  $A \setminus B = A \cap \overline{B}$ 

Cas général

$$= P(A) + P(B) - P(A \cap B)$$

A et B disjoints 
$$(A \cap B = \emptyset)$$

$$P(A \cup B) = P(A) + P(B) - P(A \cap B) \Rightarrow P(A \cup B) = P(A) + P(B)$$

Conditionnelle (sachant)

$$P(A|B) = \frac{P(A \cap B)}{P(B)}$$

A et B indép.

$$\Rightarrow P(A|B) = P(A)$$

$$\Rightarrow P(A \cap B) = P(A)P(B)$$



### Rappels Chapitre 1 - Introduction aux Probabilités

$$ightharpoonup P(A) = \sum_{i}^{n} P(B_i) P(A|B_i)$$
 où  $B_1, ..., B_n$ : partition de Ω

Série 
$$\Rightarrow P(F) = P(C_1 \cap ... \cap C_n)$$
, Indép.  $\Rightarrow P(F) = P(C_1) \cdot ... \cdot P(C_n)$   
Paral.  $\Rightarrow P(F) = P(C_1 \cup ... \cup C_n)$ , Indép.  $\Rightarrow P(F) = 1 - (1 - P(C_1)) \cdot ... \cdot (1 - P(C_n))$ 

Permutations (d'ordre) de n objets distinguables:  $n! = n \cdot (n-1) \cdot (n-2) \cdot \dots \cdot 3 \cdot 2 \cdot 1$ Arrangements (ordonnés) de r objets parmi n distinguables:  $\frac{n!}{(n-r)!} = n \cdot \dots \cdot (n-r+1)$ 

Combinaisons (non-ordonnées) de r objets parmi n distinguables:  $\frac{n!}{r!(n-r)!} =: \binom{n}{r}$ 

### Discret $Arr R_X = \{x \in \mathbb{R} : p_X(x) > 0\} = \{x_1, ..., x_n\}$

 $\triangleright$   $p_X(x) = P(X = x)$ 

Rappels Chapitre 2 - Variables Aléatoires

$$(\lambda_1,...,\lambda_n)$$

$$F_X(x) = P(X \le x) = \sum p_X(x_i)$$

$$P(a < X \leq b) = F_X(b) - F_X(a)$$

$$g(x) \cdot p_X(x)$$

 $\sigma_Y^2 = E((X - \mu_X)^2) = E(X^2) - (\mu_X)^2$ 

ightharpoonup Y discrète avec Y = H(X) et X continue

$$E(g(X)) = \sum_{x \in R_X} g(x) \cdot p_X(x)$$

$$\sum_{R_X} g(x) \cdot p_X(x)$$

$$\mu_X = E(X) = \sum_{x \in R_X} g(x) \quad p_X(x)$$

$$\sum_{P} x \cdot p_X(x)$$

$$p_X(x)$$

$$(x) = P($$

$$F_X(x) = P(X \le x) = \int_{-\infty}^x f_X(x') dx'$$
$$P(a \le X \le b) = F_X(b) - F_X(a)$$

 $\Rightarrow p_Y(y) = \int_{\{x: H(x) = y\}} f_X(x) dx$ 

$$(c) = \int$$

 $\sigma_{\mathbf{Y}}^2 = E((X - \mu_{\mathbf{X}})^2) = E(X^2) - (\mu_{\mathbf{X}})^2$ 

Continu

 $Arr R_X = \{x \in \mathbb{R} : f_X(x) > 0\} = [a, b]$ 

 $f_X(x) = \frac{d}{dx} P(X \le x) = \frac{d}{dx} F_X(X)$ 

$$\int_{-\infty}^{\infty} f_X(x)$$

$$b) - F_X(a)$$

$$(x) \cdot f_{\mathcal{V}}(x) dx$$

$$E(g(X)) = \int_{-\infty}^{\infty} g(x) \cdot f_X(x) dx$$

$$\cdot f_X(x) dx$$

$$E(g(X)) = \int_{-\infty}^{\infty} g(x) \cdot f_X(x) dx$$

$$\mu_X = E(X) = \int_{-\infty}^{\infty} x \cdot f_X(x) dx$$

8/39

$$(x) \cdot f_X(x) dx$$

### Rappels Chapitre 3 - Probabilités Conjointes

- ▶ Loi conjointe de  $X, Y : p(x, y) = P((X = x) \cap (Y = y))$
- ▶ Loi marginale de  $Y : p_Y(y) = \sum p(x,y)$
- ▶ Loi conditionnelle de Y sachant  $X: p_{Y|X=x}(y) = \frac{p(x,y)}{p_X(x)} \quad P(A|B) = \frac{P(A \cap B)}{P(B)}$
- Covariance :  $Cov(X, Y) = E(XY) E(X)E(Y) = \sum_{x \in R_X} \sum_{y \in R_Y} xy \cdot p(x, y) \mu_X \mu_y$

- ► Coefficient de corrélation :  $\rho = \frac{Cov(X, Y)}{\sigma_X \sigma_Y}$
- Si  $Y = a_0 + \sum_{i=1}^n a_i X_i$ , alors  $E(Y) = a_0 + \sum_{i=1}^n a_i E(X_i)$

$$\text{et } Var(Y) = \sum_{i=1}^{n} a_i^2 Var(X_i) + \sum \sum_{i \neq j} a_i a_j Cov(X_i, X_j)$$

Si X et Y indép.  $\Rightarrow Cov(X, Y) = 0 \Rightarrow E(XY) = E(X)E(Y)$ 

### Rappels Chapitre 4 - Lois Discrètes

▶ Bernouilli : expérience binaire avec probabilité de succès p

$$X \sim \text{Bernouilli}(p)$$
,  $E(X) = p$ ,  $Var(X) = p(1-p)$   
 $R_X = \{1 \text{ (succès)}, 0 \text{ (échec)}\}$ ,  $p_X(1) = p$ ,  $p_X(0) = 1-p$ 

▶ Binomiale : nombre de succès après n répétitions d'une expérience binaire avec probabilité de succès p

$$X \sim B(n, p), \quad E(X) = np, \quad Var(X) = np(1 - p)$$
 $R_X = \{0, 1, 2, ..., n\}, \quad p_X(x) = \binom{n}{x} p^X (1 - p)^{n - x}$ 
 $p_X(x) \approx p_{\mathsf{Poi(np)}}(x) \text{ si } n \ge 100, \ p < 0.1, \ np \le 10$ 

► Géométrique : nombre de répétitions pour avoir un premier succès (de proba. p)

$$X \sim \mathsf{G}(p), \quad E(X) = \frac{1}{p}, \quad Var(X) = \frac{1-p}{p^2}$$
  $R_X = \{1, 2, 3, ...\}, \quad p_X(x) = p(1-p)^{x-1}, \quad F_X(x) = 1 - (1-p)^x$  absence de mémoire :  $P(X > t + s | X > t) = P(X > s)$ 

### Rappels Chapitre 4 - Lois Discrètes

► Hypergéométrique : on tire n objets d'un ensemble de N objets dont D sont particuliers, X est le nombre d'objets particuliers tirés

$$X \sim \mathsf{H}(n,N,D), \quad E(X) = n \frac{D}{N}, \quad Var(X) = n \frac{D}{N} \frac{N-D}{N} \frac{N-n}{N-1}$$
 
$$R_X = \{ \max\{0, n-(N-D)\}, ..., \min\{n,D\} \}, \quad p_X(x) = \frac{\binom{D}{x} \binom{N-D}{n-x}}{\binom{N}{n}}$$
 
$$p_X(x) \approx p_{\mathsf{B}\left(n,\frac{D}{N}\right)}(x) \text{ si } \frac{n}{N} \leq \frac{1}{10}$$

Poisson : nombre d'évènements réalisés sur une mesure m (de temps, de distance, de surface, etc.) avec un taux λ par unité de mesure

$$X \sim \text{Poi}(c)$$
 où  $c = \lambda m$ ,  $E(X) = c$ ,  $Var(X) = c$   
 $R_X = \{0, 1, 2, 3, ...\}$ ,  $p_X(x) = \frac{e^{-c}c^x}{x!}$ 

### Rappels Chapitre 5 - Lois Continues

▶ Uniforme : une valeur dans un intervalle  $[\alpha, \beta]$  où chacune des valeurs possibles a la même probabilité

$$X \sim \mathsf{U}(\alpha, \beta), \quad E(X) = \frac{\alpha + \beta}{2}, \quad Var(X) = \frac{(\beta - \alpha)^2}{12}$$

$$R_X = [\alpha, \beta], \quad f_X(x) = \frac{1}{\beta - \alpha}, \quad F_X(x) = \begin{cases} 0 & \text{si } x < \alpha \\ \frac{x - \alpha}{\beta - \alpha} & \text{si } x \in [\alpha, \beta] \\ 1 & \text{si } x > \beta \end{cases}$$

Exponentielle : temps d'attente avant le premier évènement d'un processus de Poisson de taux  $\lambda$  par unité de temps

$$X \sim \operatorname{Exp}(\lambda)$$
,  $E(X) = \frac{1}{\lambda}$ ,  $Var(X) = \frac{1}{\lambda^2}$   
 $R_X = [0, \infty[$ ,  $f_X(x) = \lambda e^{-\lambda x}$ ,  $F_X(x) = 1 - e^{-\lambda x}$   
absence de mémoire :  $P(X > t + s | X > t) = P(X > s)$ 

### Rappels Chapitre 6 - Loi Normale

Normale : distribution de modélisation naturelle pour les grands nombres

$$X \sim N(\mu, \sigma^2), \quad E(X) = \mu, \quad Var(X) = \sigma^2$$
 $R_X = ]-\infty, \infty [, \quad f_X(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{(x-\mu)^2}{2\sigma^2}}, \quad F_X(x) = \Phi(\frac{x-\mu}{\sigma})$ 
où  $\Phi(-z) = 1 - \Phi(z)$ 
additivité :  $N_i \sim N(\mu_i, \sigma_i^2)$  indép.  $\Rightarrow a_0 + \sum a_i N_i \sim N(a_0 + \sum a_i \mu_i, \sum a_i^2 \sigma_i^2)$ 
 $T.C.L : X_i \text{ i.i.d. et } n \text{ grand } \Rightarrow \sum X_i \sim P(n\mu_X, n\sigma_X^2)$ 

$$\Rightarrow \bar{X} = \frac{\sum X_i}{n} \sim P(\mu_X, \frac{\sigma_X^2}{n})$$

# Rappels Chapitre 7 - Statistiques Descriptives

- ▶ Moyenne de l'échantillon  $X_1,...,X_n: \bar{X} = \frac{1}{n}\sum_{i=1}^n X_i$
- Médiane de l'échantillon  $X_1, ..., X_n$ :  $X_{0.5}$  tel que la moitié des valeurs lui sont inférieures
- Mode de l'échantillon  $X_1, ..., X_n : M_0$ , la valeur la plus fréquente de l'échantillon

▶ Variance de l'échantillon  $X_1, ..., X_n$ :

$$S^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (X_{i} - \bar{X})^{2} = \frac{1}{n-1} \left( \sum_{i=1}^{n} X_{i}^{2} - n \cdot \bar{X}^{2} \right)$$

• Écart interquantile de l'échantillon  $X_1,...,X_n$ :  $IQR = X_{0.75} - X_{0.25}$ 

# Rappels Chapitre 8 - Échantillons Aléatoires et Lois d'Échantillonnage

- Chi-deux : une loi  $\chi_k^2$  à k degrés de liberté a la distribution d'une somme de k normales centrées réduites  $Z_i \sim N(0,1)$  indép. :  $\chi_k^2 = \sum_{i=1}^k Z_i^2$   $X \sim \chi_k^2$ , E(X) = k, Var(X) = 2k, quantile  $P(\chi_k^2 > \chi_{\alpha;k}^2) = \alpha$  additivité :  $\chi_{k_i}^2$  indép.  $\Rightarrow \sum \chi_{k_i}^2 \sim \chi_k^2$  où  $k = \sum k_i$  utilisation : si  $X_i \sim N(\mu, \sigma^2)$ , alors  $(n-1)\frac{S^2}{\sigma^2} \sim \chi_{n-1}^2$
- Student : une loi  $T_k$  à k degrés de liberté a la distribution de  $T_k = \frac{Z}{\sqrt{\chi_k^2/k}}$  où  $Z \sim N(0,1)$  et Z et  $\chi_k^2$  sont indépendantes  $X \sim T_k$ , E(X) = 0,  $Var(X) = \frac{k}{k-2}$ , quantile  $P(T_k > t_{\alpha;k}) = \alpha$  symétrie :  $-t_{\alpha;k} = t_{1-\alpha;k}$  utilisation : si  $X_i \sim N(\mu, \sigma^2)$ , alors  $\frac{\bar{X}-\mu}{\bar{Y}/2} \sim T_{n-1}$

# Rappels Chapitre 8 - Échantillons Aléatoires et Lois d'Échantillonnage

Fisher : une loi  $F_{u,v}$  à u et v degrés de liberté respectivement a la distribution de  $F_{u,v} = \frac{\chi_u^2/u}{\chi_v^2/v}$  où  $\chi_u^2$  et  $\chi_v^2$  sont indépendantes

$$X \sim F_{u,v}, \quad E(X) = \frac{v}{v-2}, \quad Var(X) = \frac{2v^2(u+v-2)}{u(v-2)^2(v-4)}, \quad P(F_{u,v} > f_{\alpha;u,v}) = \alpha$$

anti-symétrie :  $f_{1-lpha;u,v}=rac{1}{f_{lpha;u,v}}$ 

utilisation : si 
$$X_i \sim N(\mu_X, \sigma_X^2)$$
,  $Y_i \sim N(\mu_Y, \sigma_Y^2)$ , alors  $\frac{S_X^2/\sigma_X^2}{S_Y^2/\sigma_Y^2} \sim F_{n_X-1,n_Y-1}$ 

### Rappels Chapitre 9 - Estimation

- ▶ Biais d'un estimateur ponctuel  $\hat{\theta}$  :  $Biais(\hat{\theta}) = E(\hat{\theta}) \theta$
- Frreur quadratique moyenne de  $\hat{\theta}$ :  $EQM(\hat{\theta}) = E((\hat{\theta} \theta)^2) = Var(\hat{\theta}) + (Biais(\hat{\theta}))^2$  $\Rightarrow \hat{\theta}_1$  meilleur que  $\hat{\theta}_2$  si  $EQM(\hat{\theta}_1) < EQM(\hat{\theta}^2)$
- lacktriangle Convergence d'un estimateur  $\hat{ heta}$  : si  $\lim_{n \to \infty} EQM(\hat{ heta}) = 0$ , alors  $\hat{ heta}$  converge vers heta
- ▶ Méthode des moments : 1. calculer les  $E(X^k) = h_k(\theta_1, \theta_2, ...)$ ,
  - 2. poser  $h_k(\hat{\theta}_1, \hat{\theta}_2, ...) = \frac{1}{n} \sum_i X_i^k$ ,
  - 3. isoler les  $\hat{\theta}_1$ ,  $\hat{\theta}_2$ , ...
- Maximum de vraisemblance : trouver les  $\hat{\theta}_1$ ,  $\hat{\theta}_2$ , ... qui maximisent

$$L(\hat{\theta}_1, \hat{\theta}_2, ...) = \prod_{i=1}^n f_X(X_i, \hat{\theta}_1, \hat{\theta}_2, ...) \text{ (continu)}$$
$$= \prod_{i=1}^n p_X(X_i, \hat{\theta}_1, \hat{\theta}_2, ...) \text{ (discret)}$$

# Rappels Chapitre 9 - Estimation

| Situation                              | Loi utilisée                                                | Intervalle de confiance: niveau $1 - \alpha$                                                                                                  |
|----------------------------------------|-------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|
| Une moyenne $\mu$                      |                                                             |                                                                                                                                               |
| $\sigma^2$ est connue                  |                                                             |                                                                                                                                               |
| et                                     | $\frac{\overline{X} - \mu}{\sigma / \sqrt{n}} \sim N(0, 1)$ | $\overline{X} - z_{\alpha/2} \cdot \frac{\sigma}{\sqrt{n}} \le \mu \le \overline{X} + z_{\alpha/2} \cdot \frac{\sigma}{\sqrt{n}}$             |
| $X \sim N(\mu, \sigma^2)$ , ou n grand | - / V                                                       | V.s.                                                                                                                                          |
| $\sigma^2$ est inconnue                |                                                             |                                                                                                                                               |
| et                                     | $\frac{\overline{X} - \mu}{S/\sqrt{n}} \sim T_{n-1}$        | $\overline{X} - t_{\alpha/2;n-1} \cdot \frac{S}{\sqrt{n}} \le \mu \le \overline{X} + t_{\alpha/2;n-1} \cdot \frac{S}{\sqrt{n}}$               |
| $X \sim N(\mu, \sigma^2)$              | / *                                                         | , , ,                                                                                                                                         |
| $\sigma^2$ est inconnue                | _                                                           |                                                                                                                                               |
| et                                     | $\frac{\overline{X} - \mu}{S/\sqrt{n}} \sim N(0, 1)$        | $\overline{X} - z_{\alpha/2} \cdot \frac{S}{\sqrt{n}} \le \mu \le \overline{X} + z_{\alpha/2} \cdot \frac{S}{\sqrt{n}}$                       |
| n est très grand                       | , ,                                                         | , ,                                                                                                                                           |
| Une variance $\sigma^2$                |                                                             |                                                                                                                                               |
| $X \sim N(\mu, \sigma^2)$              | -0                                                          | 4                                                                                                                                             |
| et                                     | $(n-1)\frac{S^2}{\sigma^2} \sim \chi_{n-1}^2$               | $\frac{(n-1)S^2}{\chi_{\alpha/2:n-1}^2} \le \sigma^2 \le \frac{(n-1)S^2}{\chi_{1-\alpha/2:n-1}^2}$                                            |
| $\mu$ et $\sigma^2$ sont inconnues     |                                                             | 3,2,10                                                                                                                                        |
| Un écart-type $\sigma$                 |                                                             |                                                                                                                                               |
| (cas approximatif)                     | _                                                           |                                                                                                                                               |
| $n$ est très grand $(n \geq 40)$       | $\frac{S-\sigma}{\sigma/\sqrt{2n}} \sim N(0,1)$             | $\frac{S}{1 + \frac{z_{\alpha/2}}{\sqrt{2n}}} \le \sigma \le \frac{S}{1 - \frac{z_{\alpha/2}}{\sqrt{2n}}}$                                    |
| Une proportion p                       |                                                             |                                                                                                                                               |
| $X \sim \text{Bernoulli}$              |                                                             |                                                                                                                                               |
| de paramètre $p$                       | $\frac{\hat{p} - p}{\sqrt{p(1-p)}} \sim N(0,1)$             | $\hat{p} - z_{\alpha/2} \cdot \sqrt{\frac{\hat{p}(1-\hat{p})}{n}} \le p \le \hat{p} + z_{\alpha/2} \cdot \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}$ |
| et $n$ est très grand                  | V n                                                         |                                                                                                                                               |

# Attention $z_{\alpha}$ est tel que $\Phi(z_{\alpha}) = 1 - \alpha$

| Rappels Chapitre 9 - Estimation |
|---------------------------------|
|                                 |
|                                 |
|                                 |
|                                 |

|   | Situation                                                                                                                              | Loi utilisée                                                                                                                              | Intervalle de confiance: niveau $1 - \alpha$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|---|----------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|   | Différence $\mu_1 - \mu_2$                                                                                                             |                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| l | $\sigma_1^2$ et $\sigma_2^2$ sont connues<br>et $X_i \sim N(\mu_i, \sigma_i^2)$ , $i = 1, 2$<br>ou alors $n_1$ et $n_2$ grands.        | $\frac{\overline{X}_1 - \overline{X}_2 - (\mu_1 - \mu_2)}{\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}} \sim N(0, 1)$           | $(\overline{X}_1 - \overline{X}_2) \pm z_{\alpha/2} \cdot \sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|   | $\sigma_1^2$ et $\sigma_2^2$ sont inconnues<br>avec $\sigma_1^2 = \sigma_2^2 = \sigma^2$<br>et $X_i \sim N(\mu_i, \sigma^2), i = 1, 2$ | $\frac{\overline{X}_1 - \overline{X}_2 - (\mu_1 - \mu_2)}{S_p \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}} \sim T_{n_1 + n_2 - 2}$               | $(\overline{X}_1 - \overline{X}_2) \pm t_{\alpha/2;n_1+n_2-2} \cdot S_p \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}$<br>où $S_p = \sqrt{\frac{(n_1-1)S_1^2 + (n_2-1)S_2^2}{n_1+n_2-2}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|   | $\sigma_1^2$ et $\sigma_2^2$ sont inconnues avec $\sigma_1^2 \neq \sigma_2^2$ et $X_i \sim N(\mu_i, \sigma_i^2), i = 1, 2$             | $\frac{\overline{X}_{1} - \overline{X}_{2} - (\mu_{1} - \mu_{2})}{\sqrt{\frac{S_{1}^{2}}{n_{1}} + \frac{S_{2}^{2}}{n_{2}}}} \sim T_{\nu}$ | $\begin{array}{ccc} & & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & \\ & & \\ & & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\$ |
|   | $\sigma_1^2$ et $\sigma_2^2$ sont inconnues<br>et $n_1, n_2$ sont grands<br>$(n_1 \ge 30, n_2 \ge 30)$                                 | $\frac{\overline{X}_1 - \overline{X}_2 - (\mu_1 - \mu_2)}{\sqrt{\frac{S_1^2}{n_1} + \frac{S_2^2}{n_2}}} \sim N(0, 1)$                     | $(\overline{X}_1 - \overline{X}_2) \pm z_{\alpha/2} \cdot \sqrt{\frac{S_1^2}{n_1} + \frac{S_2^2}{n_2}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|   | Les observations sont couplées $D = X_1 - X_2 \sim \text{Normale}$ $D_j = X_{1j} - X_{2j}, j = 1, \dots, n$                            | $\frac{\overline{D} - (\mu_1 - \mu_2)}{S_D/\sqrt{n}} \sim T_{n-1}$                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|   | Rapport $\sigma_1^2/\sigma_2^2$                                                                                                        |                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|   | $X_i \sim N(\mu_i, \sigma_i^2), i = 1, 2$                                                                                              | $\frac{S_2^2/\sigma_2^2}{S_1^2/\sigma_1^2} \sim F_{n_2-1;n_1-1}$                                                                          | $\begin{split} L &\leq \frac{\sigma_1^2}{\sigma_2^2} \leq U \\ L &= \frac{S_1^2}{S_2^2} \cdot F_{1-\alpha/2;n_2-1,n_1-1} \\ U &= \frac{S_1^2}{S_2^2} \cdot F_{\alpha/2;n_2-1,n_1-1} \end{split}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|   | Différence $p_1 - p_2$                                                                                                                 |                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |

 $\frac{\hat{p_1} - \hat{p_2} - (p_1 - p_2)}{\sqrt{\frac{p_1(1 - p_1)}{n_1} + \frac{p_2(1 - p_2)}{n_2}}} \sim N(0, 1)$ 

19/39

 $X_1 \sim \text{Bernoulli}$ 

 $X_2 \sim \text{Bernoulli}$ 

 $n_1$  et  $n_2$  sont grands

|                                                                                       |                                                   | J 1                                              |                                                  |                                                     |
|---------------------------------------------------------------------------------------|---------------------------------------------------|--------------------------------------------------|--------------------------------------------------|-----------------------------------------------------|
| Situation                                                                             | Statistique du test                               |                                                  |                                                  |                                                     |
| Une moyenne $\mu$ $H_0: \mu = \mu_0$                                                  |                                                   | $H_1 : \mu < \mu_0$                              | $H_1 : \mu > \mu_0$                              | $H_1 : \mu \neq \mu_0$                              |
| $\sigma^2$ est connue                                                                 | _                                                 | rejeter $H_0$ si                                 | rejeter $H_0$ si                                 | rejeter $H_0$ si                                    |
| et                                                                                    | $Z_0 = \frac{X - \mu_0}{\sigma / \sqrt{n}}$       | $Z_0 < -z_{\alpha}$                              | $Z_0 > z_{\alpha}$                               | $ Z_0  > z_{\alpha/2}$                              |
| $X \sim N(\mu, \sigma^2)$ , ou $n$ grand                                              | , ,                                               | $\beta(d)$ , page 491                            | $\beta(d)$ , page 491                            | $\beta(d)$ , page 490                               |
| $\sigma^2$ est inconnue                                                               |                                                   | rejeter $H_0$ si                                 | rejeter $H_0$ si                                 | rejeter $H_0$ si                                    |
| et                                                                                    | $T_0 = \frac{\overline{X} - \mu_0}{S/\sqrt{n}}$   | $T_0 < -t_{\alpha;n-1}$                          | $T_0 > t_{\alpha;n-1}$                           | $ T_0  > t_{\alpha/2;n-1}$                          |
| $X \sim N(\mu, \sigma^2)$                                                             | -/ <b>V</b> ··                                    | $\beta(d)$ , page 493                            | $\beta(d)$ , page 493                            | $\beta(d)$ , page 492                               |
| $\sigma^2$ est inconnue                                                               |                                                   | rejeter $H_0$ si                                 | rejeter $H_0$ si                                 | rejeter $H_0$ si                                    |
| et                                                                                    | $Z_0 = \frac{\overline{X} - \mu_0}{S/\sqrt{n}}$   | $Z_0 < -z_{\alpha}$                              | $Z_0 > z_{\alpha}$                               | $ Z_0  > z_{\alpha/2}$                              |
| n est très grand                                                                      | 5/ V 10                                           | $\beta(d)$ , page 491                            | $\beta(d)$ , page 491                            | $\beta(d)$ , page 490                               |
| Upo umpianos $\sigma^2$ $H_{-1}$ $\sigma^2$ $\sigma^2$                                |                                                   |                                                  |                                                  |                                                     |
| Une variance $\sigma^2 \mid H_0 : \sigma^2 = \sigma_0^2$<br>$X \sim N(\mu, \sigma^2)$ |                                                   | $H_1: \sigma^2 < \sigma_0^2$<br>rejeter $H_0$ si | $H_1: \sigma^2 > \sigma_0^2$<br>rejeter $H_0$ si | $H_1: \sigma^2 \neq \sigma_0^2$<br>rejeter $H_0$ si |
| et                                                                                    | $\chi_0^2 = (n-1)\frac{S^2}{\sigma^2}$            | $\chi_0^2 < \chi_{1-\alpha;n-1}^2$               | $\chi_0^2 > \chi_{\alpha;n-1}^2$                 | $\chi_0^2 < \chi_{1-\alpha/2;n-1}^2$                |
| $\mu$ et $\sigma^2$ sont inconnues                                                    | $\sigma_{\bar{0}}$                                | ,                                                | ,                                                | ou $\chi_0^2 > \chi_{\alpha/2;n-1}^2$               |
| <i></i>                                                                               |                                                   | $\beta(\lambda)$ , page 496                      | $\beta(\lambda)$ , page 495                      | $\beta(\lambda)$ , page 494                         |
| $n$ est grand $(n \ge 40)$                                                            | $Z_0 = \frac{S - \sigma_0}{\sigma_0 / \sqrt{2n}}$ | rejeter $H_0$ si                                 | rejeter $H_0$ si                                 | rejeter $H_0$ si                                    |
|                                                                                       | $\sigma_0/\sqrt{2n}$                              | $Z_0 < -z_{\alpha}$                              | $Z_0 > z_{\alpha}$                               | $ Z_0  > z_{\alpha/2}$                              |
| Une proportion $p \mid H_0 : p = p_0$                                                 |                                                   | $H_1 : p < p_0$                                  | $H_1: p > p_0$                                   | $H_1 : p \neq p_0$                                  |
| $X \sim \text{Bernoulli}$                                                             |                                                   | rejeter $H_0$ si                                 | rejeter $H_0$ si                                 | rejeter $H_0$ si                                    |
| de paramètre $\boldsymbol{p}$                                                         | $Z_0 = \frac{\hat{p} - p_0}{\sqrt{p_0(1 - p_0)}}$ | $Z_0 < -z_\alpha$ si                             | $Z_0 > z_{\alpha}$                               | $ Z_0  > z_{\alpha/2}$                              |
| et $n$ est très grand                                                                 | $\sqrt{\frac{1}{n}}$                              | β : pp.291-292                                   | β : pp.291-292                                   | β: pp.291-292                                       |

p-value pour  $H_0: \mu = \mu_0$   $\sigma^2$  connue, unilatéral p-value  $= P(Z > |z_0|) = 1 - \Phi(|z_0|)$   $\sigma^2$  connue, bilatéral p-value  $= 2P(Z > |z_0|) =$ 

 $2(1-\Phi(|z_0|))$   $\sigma^2$  inconnue, unilatéral  $p-value=P(T>|z_0|)$  avec

k = n - 1  $\sigma^2$  inconnue, bilatéral

 $p-value = 2P(T > |z_0|)$  avec

k = n - 1

 $\alpha = P(\text{rejeter } H_0 | H_0 \text{ vraie})$  $\beta = P(\text{accepter } H_0 | H_0 \text{ fausse})$ 

/ 39

TABLE 11.2 – Calculs de  $\beta$  et de n (pour une moyenne avec **variance connue**)

| Hypothèses                                      | valeur de $\beta$                                                                                                                                           | valeur de $n$                                                             |
|-------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|
| $H_0: \mu = \mu_0$ contre $H_1: \mu < \mu_0$    | $\beta(\mu) = \Phi\left(z_{\alpha} + \frac{(\mu - \mu_{0})\sqrt{n}}{\sigma}\right)$                                                                         | $n = \frac{(z_{\alpha} + z_{\beta})^2 \sigma^2}{(\mu - \mu_0)^2}$         |
| $H_0: \mu = \mu_0$ contre $H_1: \mu > \mu_0$    | $\beta(\mu) = \Phi\left(z_{\alpha} - \frac{(\mu - \mu_{0})\sqrt{n}}{\sigma}\right)$                                                                         | $n = \frac{(z_{\alpha} + z_{\beta})^2 \sigma^2}{(\mu - \mu_0)^2}$         |
| $H_0: \mu = \mu_0$ contre $H_1: \mu \neq \mu_0$ | $\beta(\mu) = \Phi\left(z_{\alpha/2} - \frac{(\mu - \mu_0)\sqrt{n}}{\sigma}\right) - \Phi\left(-z_{\alpha/2} - \frac{(\mu - \mu_0)\sqrt{n}}{\sigma}\right)$ | $n \approx \frac{(z_{\alpha/2} + z_{\beta})^2 \sigma^2}{(\mu - \mu_0)^2}$ |

$$\beta = P(\text{accepter } H_0|H_0 \text{ fausse})$$

| 01                                                                                                          | 0 1 1                                                                                               |                                                      |                                                    |                                                                    |
|-------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|------------------------------------------------------|----------------------------------------------------|--------------------------------------------------------------------|
| Situation                                                                                                   | Statistique du test                                                                                 |                                                      |                                                    |                                                                    |
| 2 moyennes $\mu_1, \mu_2 \mid H_0 : \mu_1 = \mu_2$                                                          |                                                                                                     | $H_1 : \mu_1 < \mu_2$                                | $H_1: \mu_1 > \mu_2$                               | $H_1 : \mu_1 \neq \mu_2$                                           |
| $\sigma_1^2$ et $\sigma_2^2$ sont connues                                                                   |                                                                                                     | rejeter $H_0$ si                                     | rejeter $H_0$ si                                   | rejeter $H_0$ si                                                   |
| et $X_i \sim N(\mu_i, \sigma_i^2)$ , $i = 1, 2$                                                             | $Z_0 = \frac{X_1 - X_2}{\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}}$                    | $Z_0 < -z_\alpha$                                    | $Z_0 > z_{\alpha}$                                 | $ Z_0  > z_{\alpha/2}$                                             |
| ou alors $n_1$ et $n_2$ grands.                                                                             | V n <sub>1</sub> ' n <sub>2</sub>                                                                   | $\beta(d)$ , page 491                                | $\beta(d)$ , page 491                              | $\beta(d)$ , page 490                                              |
| $\sigma_1^2$ et $\sigma_2^2$ sont inconnues<br>avec $\sigma_1^2 = \sigma_2^2 = \sigma^2$                    | $T_{0} = \frac{\overline{X}_{1} - \overline{X}_{2}}{S_{p}\sqrt{\frac{1}{n_{1}} + \frac{1}{n_{2}}}}$ | rejeter $H_0$ si                                     | rejeter $H_0$ si                                   | rejeter $H_0$ si                                                   |
| et $X_i \sim N(\mu_i, \sigma^2), i = 1, 2$                                                                  | (*)                                                                                                 | $T_0 < -t_{\alpha;n_1+n_2-2}$                        | $T_0 > t_{\alpha;n_1+n_2-2}$                       | $ T_0  > t_{\alpha/2;n_1+n_2-2}$                                   |
| $\sigma_1^2$ et $\sigma_2^2$ sont inconnues<br>avec $\sigma_1^2 \neq \sigma_2^2$                            | $T_0 = \frac{\overline{X}_1 - \overline{X}_2}{\sqrt{\frac{S_1^2}{n_1} + \frac{S_2^2}{n_2}}}$        | rejeter $H_0$ si                                     | rejeter $H_0$ si                                   | rejeter $H_0$ si                                                   |
| et $X_i \sim N(\mu_i, \sigma_i^2), i = 1, 2$                                                                | (**)                                                                                                | $T_0 < -t_{\alpha;\nu}$                              | $T_0 > t_{\alpha;\nu}$                             | $ T_0  > t_{\alpha/2;\nu}$                                         |
| $\sigma_1^2$ et $\sigma_2^2$ sont inconnues<br>et $n_1, n_2$ sont grands                                    | $Z_0 = \frac{\overline{X}_1 - \overline{X}_2}{\sqrt{\frac{S_1^2}{n_1} + \frac{S_2^2}{n_2}}}$        | rejeter $H_0$ si                                     | rejeter $H_0$ si                                   | rejeter $H_0$ si                                                   |
| $(n_1 \ge 30, n_2 \ge 30)$                                                                                  |                                                                                                     | $Z_0 < -z_\alpha$                                    | $Z_0 > z_{\alpha}$                                 | $ Z_0  > z_{\alpha/2}$                                             |
| Les observations sont couplées $D = X_1 - X_2 \sim \text{Normale}$ $D_j = X_{1j} - X_{2j}, j = 1, \dots, n$ | $T_0 = \frac{\overline{D}}{S_D/\sqrt{n}}$ $(* * *)$                                                 | rejeter $H_0$ si $T_0 < -t_{\alpha;n-1}$             | rejeter $H_0$ si $T_0 > t_{\alpha;n-1}$            | rejeter $H_0$ si $ T_0  > t_{\alpha/2;n-1}$                        |
| 2 variances $\sigma_1^2$ , $\sigma_2^2$ $H_0$ : $\sigma_1^2 = \sigma_2^2$                                   |                                                                                                     | $H_1 : \sigma_1^2 < \sigma_2^2$                      | $H_1 : \sigma_1^2 > \sigma_2^2$                    | $H_1 : \sigma_1^2 \neq \sigma_2^2$                                 |
| $X_i \sim N(\mu_i, \sigma_i^2), i = 1, 2$                                                                   | $F_0 = \frac{S_1^2}{S_2^2}$                                                                         | rejeter $H_0$ si<br>$F_0 < F_{1-\alpha;n_1-1,n_2-1}$ | rejeter $H_0$ si<br>$F_0 > F_{\alpha;n_1-1,n_2-1}$ | rejeter $H_0$ si<br>$F_0 < F_{1-\alpha/2;n_1-1,n_2-1}$             |
|                                                                                                             | -2                                                                                                  |                                                      | $\beta(\lambda)$ , page 498                        | ou $F_0 > F_{\alpha/2;n_1-1,n_2-1}$<br>$\beta(\lambda)$ , page 497 |
| $n_1$ et $n_2$ sont grands                                                                                  | $Z_0 = \frac{S_1 - S_2}{S_p \sqrt{\frac{1}{2n_1} + \frac{1}{2n_2}}}$                                | rejeter $H_0$ si                                     | rejeter $H_0$ si                                   | rejeter $H_0$ si                                                   |
| $n_1 > 40, n_2 > 40$                                                                                        | (*)                                                                                                 | $Z_0 < -z_\alpha$                                    | $Z_0 > z_{\alpha}$                                 | $ Z_0  > z_{\alpha/2}$                                             |

$$(*) \ S_p = \sqrt{\frac{(n_1-1)S_1^2 + (n_2-1)S_2^2}{n_1+n_2-2}} \\ (**) \ \nu = \frac{(S_1^2/n_1 + S_2^2/n_2)^2}{(S_2^2/n_1)^2 + \frac{(S_2^2/n_2)^2}{(S_2^2/n_1)^2}} - 2 \\ (***) \ \overline{D} = \frac{1}{n} \sum_{j=1}^n D_j, \ S_D = \sqrt{\frac{1}{n-1} \sum_{j=1}^n (D_j + S_D)^2} \\ (**) \ \nu = \frac{(S_1^2/n_1)^2 + \frac{(S_2^2/n_2)^2}{(S_2^2/n_1)^2}}{(S_2^2/n_1)^2 + \frac{(S_2^2/n_2)^2}{(S_2^2/n_1)^2}} - 2 \\ (***) \ \overline{D} = \frac{1}{n} \sum_{j=1}^n D_j, \ S_D = \sqrt{\frac{1}{n-1} \sum_{j=1}^n (D_j + S_D)^2} \\ (**) \ \nu = \frac{(S_1^2/n_1)^2 + \frac{(S_2^2/n_1)^2}{(S_2^2/n_1)^2}}{(S_2^2/n_1)^2 + \frac{(S_2^2/n_1)^2}{(S_2^2/n_1)^2}} \\ (**) \ \nu = \frac{1}{n} \sum_{j=1}^n D_j, \ S_D = \sqrt{\frac{1}{n-1} \sum_{j=1}^n (D_j + S_D)^2} \\ (**) \ \nu = \frac{(S_1^2/n_1)^2 + \frac{(S_2^2/n_1)^2}{(S_2^2/n_1)^2}}{(S_2^2/n_1)^2 + \frac{(S_2^2/n_1)^2}{(S_2^2/n_1)^2}} \\ (**) \ \nu = \frac{1}{n} \sum_{j=1}^n D_j, \ S_D = \sqrt{\frac{1}{n-1} \sum_{j=1}^n (D_j + S_D)^2} \\ (**) \ \nu = \frac{1}{n} \sum_{j=1}^n (D_j + S_D)^2 + \frac{1}{n} \sum_{j=1$$

TABLE 11.4 – Calculs de  $\beta$  et de n (pour deux moyennes avec **variances connues**)

| Hypothèses                                          | valeur de $\beta$                                                                                                                                                                                                                                        | valeur de $n$                                                                                |
|-----------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|
|                                                     |                                                                                                                                                                                                                                                          | (on suppose $n = n_1 = n_2$ )                                                                |
| $H_0: \mu_1 = \mu_2$ contre $H_1: \mu_1 < \mu_2$    | $\beta(\mu_1, \mu_2) = \Phi \left( z_{\alpha} + \frac{(\mu_1 - \mu_2)}{\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}} \right)$                                                                                                                  | $n = \frac{(z_{\alpha} + z_{\beta})^2 (\sigma_1^2 + \sigma_2^2)}{(\mu_1 - \mu_2)^2}$         |
| $H_0: \mu_1 = \mu_2$ contre $H_1: \mu_1 > \mu_2$    | $\beta(\mu_1, \mu_2) = \Phi \left( z_{\alpha} - \frac{(\mu_1 - \mu_2)}{\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}} \right)$                                                                                                                  | $n = \frac{(z_{\alpha} + z_{\beta})^2 (\sigma_1^2 + \sigma_2^2)}{(\mu_1 - \mu_2)^2}$         |
| $H_0: \mu_1 = \mu_2$ contre $H_1: \mu_1 \neq \mu_2$ | $\beta(\mu_1, \mu_2) = \Phi\left(z_{\alpha/2} - \frac{(\mu_1 - \mu_2)}{\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}}\right) - \Phi\left(-z_{\alpha/2} - \frac{(\mu_1 - \mu_2)}{\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}}\right)$ | $n \approx \frac{(z_{\alpha/2} + z_{\beta})^2 (\sigma_1^2 + \sigma_2^2)}{(\mu_1 - \mu_2)^2}$ |

Pour tester  $H_0: X \sim \text{Loi}(\theta_1, ...)$  contre  $H_1: X \not\sim \text{Loi}(\theta_1, ...)$  dont p paramètres sont estimés (non connus), étant donné

| Valeurs $(x_i)$            | $V_1$ | $V_2$ | <br>$V_k$ | Total |
|----------------------------|-------|-------|-----------|-------|
| Effectifs observés $(O_i)$ | $O_1$ | $O_2$ | <br>$O_k$ | n     |
| Effectifs attendus $(E_i)$ | $E_1$ | $E_2$ | <br>$E_k$ | n     |

où 
$$E_i = n \cdot P(X \in V_i | H_0 \text{ est vraie}),$$
 on considère  $\chi_0^2 = \sum_{i=1}^k \frac{(O_i - E_i)^2}{E_i}$  et on rejette  $H_0$  si  $\chi_0^2 > \chi_{\alpha;k-p-1}^2$ 

▶ Pour tester  $H_0$ : X et Y indép. contre  $H_1$ : X et Y non indép., étant donné

| X Y   | $y_1$                 | $y_2$                 |   | $y_j$                 |   | $y_c$                   | Total                                                                          |
|-------|-----------------------|-----------------------|---|-----------------------|---|-------------------------|--------------------------------------------------------------------------------|
| $x_1$ | $O_{11}$              | $O_{12}$              |   | $O_{1j}$              |   | $O_{1c}$                | $\sum_{j=1}^{c} O_{1j}$                                                        |
| $x_2$ | $O_{21}$              | $O_{22}$              |   | $O_{2j}$              |   | $O_{2c}$                | $\begin{bmatrix} \sum_{j=1}^{c} O_{1j} \\ \sum_{j=1}^{c} O_{2j} \end{bmatrix}$ |
| :     | :                     | :                     | : | :                     | : | :                       | :                                                                              |
| $x_i$ | $O_{i1}$              | $O_{i2}$              |   | $O_{ij}$              |   | $O_{ic}$                | $\sum_{j=1}^{c} O_{ij}$                                                        |
| :     | :                     | :                     | : | :                     | : | :                       | :                                                                              |
| $x_r$ | $O_{r1}$              | $O_{r2}$              |   | $O_{rj}$              |   | $O_{rc}$                | $\sum_{j=1}^{c} O_{rj}$                                                        |
| Total | $\sum_{i=1}^r O_{i1}$ | $\sum_{i=1}^r O_{i2}$ |   | $\sum_{i=1}^r O_{ij}$ |   | $\sum_{i=1}^{r} O_{ic}$ | n                                                                              |

on considère 
$$\chi_0^2 = \sum_{i=1}^r \sum_{j=1}^c \frac{(O_{ij} - E_{ij})^2}{E_{ij}}$$
 où  $E_{ij} = \frac{1}{n} \left(\sum_{k=1}^c O_{ik}\right) \left(\sum_{l=1}^r O_{lj}\right)$  on rejette  $H_0$  si  $\chi_0^2 > \chi_{\alpha;(r-1)(c-1)}^2$ 

### Rappels Chapitre 11 - Régression Linéaire



L'hypothèse  $\mathbf{H}_0: \beta_1 = \mathbf{0}$  est rejetée, au seuil  $\alpha$ , si  $\mathbf{F}_0 > \mathbf{F}_{1,n-2}(\alpha)$ .

Lorsque H<sub>0</sub> est rejetée, le modèle est globalement significatif, donc la variable X est significative.

On peut aussi effectuer un test de signification individuel pour la variable X. C'est un test équivalent au test global pour une régression simple.

#### Tableau d'analyse de variance – Régression simple

| Source de           | Somme des carrés                      | Deg     | Moyenne des | F                                                     | p-value         |  |
|---------------------|---------------------------------------|---------|-------------|-------------------------------------------------------|-----------------|--|
| variation           | (khi-2)                               | liberté | carrés      | (statistique)                                         |                 |  |
| Régression (modèle) | $SS_R = \sum (\hat{y}_i - \bar{y})^2$ | 1       | $MS_R =$    | $\mathbf{F}_0 = \mathbf{M} \mathbf{S}_{\mathbf{R}} /$ | $P(F \geq F_0)$ |  |
|                     | $=\hat{\beta}_1 S_{XY}$               |         | $SS_R/1$    | $MS_E$                                                |                 |  |
|                     |                                       |         |             |                                                       |                 |  |
| Résidus (Erreur)    | $SS_E = \sum (y_i - \hat{y}_i)^2$     | n-2     | $MS_E =$    |                                                       |                 |  |
|                     | $= S_{YY} - SS_R$                     |         | $SS_E/n-2$  |                                                       |                 |  |
| Totale              | $S_{YY} = SC_T$                       | n-l     |             |                                                       |                 |  |
|                     | $=\sum (y_i-\bar{y})^2$               |         |             |                                                       |                 |  |
|                     |                                       |         |             |                                                       |                 |  |

### Rappels Chapitre 11 - Régression Linéaire

$$R^2 = SS_R / S_{YY} = 1 - SS_E / S_{YY}$$
  $R_{ajust\acute{e}}^2 = \frac{(n-1)R^2 - 1}{n-2}$ 

$$\widehat{\sigma}^2 = MS_E$$

$$\beta_1 \in \hat{\beta}_1 \pm t_{\alpha/2;n-2} \sqrt{\frac{\textit{MS}_E}{\textit{S}_{xx}}} \qquad \beta_0 \in \hat{\beta}_0 \pm t_{\alpha/2;n-2} \sqrt{\textit{MS}_E\left(\frac{1}{n} + \frac{\bar{x}^2}{\textit{S}_{xx}}\right)}$$

Confiance: 
$$E(Y|X = x_0) \in \hat{y}_0 \mp t_{n-2}(\alpha/2) \sqrt{MS_E(\frac{1}{n} + \frac{(X - x_0)^2}{S_{XX}})}$$
  
Prévison:  $(Y|X = x_0) \in \hat{y}_0 \mp t_{n-2}(\alpha/2) \sqrt{MS_E(1 + \frac{1}{n} + \frac{(\bar{X} - x_0)^2}{S_{XX}})}$ 

### Rappels Chapitre 12 - Fiabilité

- ► Fiabilité :  $R(t) = P(T > t) = 1 F_T(t)$
- ▶ Durée de vie moyenne :  $\tau = E(T) = \int_0^\infty R(t) dt$
- ▶ Taux de panne :  $r(t) = -\frac{R'(t)}{R(t)}$ , tel que  $R(t) = \exp\left(-\int_0^t r(x) dx\right)$
- lacksquare Si  $T\sim {\sf Exp}(\lambda)$ , alors  $R(t)=e^{-\lambda t}$ ,  $au=rac{1}{\lambda}$
- ► En série :  $T = \min\{T_1, ..., T_n\}$ ,  $R(t) = \prod_{i=1}^n R_i(t)$
- ▶ En paral., redondance active :  $T = \max\{T_1, ..., T_n\}$ ,  $R(t) = 1 \prod_{i=1}^n (1 R_i(t))$
- ▶ En paral., redondance passive :  $T = T_1 + ... + T_n$ ,  $\tau = \tau_1 + ... + \tau_n$

### Rappels Chapitre 13 - Files d'Attente

lacktriangle Arrivées clients suit processus de Poisson de taux  $\lambda$ 

 $\rho = \frac{\lambda}{\mu}$ 

- ▶ Temps de service  $\sim \mathsf{Exp}(\mu)$
- lacktriangle Nombre total (attente + service) de clients en file à l'éq. N avec  $N+1\sim \mathsf{G}(1ho)$
- lacktriangle Temps total dans la file (attente + service) à l'équilibre  $\mathcal{T} \sim \mathsf{Exp}(\mu \lambda)$
- lacktriangle Nombre total (attente + service) moyen de clients en file à l'équilibre :  $ar{\it N}=rac{
  ho}{1ho}$
- Nombre moyen de clients en service à l'équilibre :  $ar{N}_{\mathcal{S}}=
  ho$
- lacksquare Nombre moyen de clients en attente à l'équilibre :  $ar{N}_Q=ar{N}-ar{N}_{\mathcal{S}}=rac{
  ho^2}{1ho}$
- lacktriangle Temps total dans la file (attente + service) moyen à l'équilibre :  $ar{\mathcal{T}}=rac{ar{N}}{\lambda}=rac{1}{\mu-\lambda}$
- ightharpoonup Temps en service moyen à l'équilibre :  $\bar{T}_S=rac{1}{\mu}$
- lacktriangle Temps en attente moyen à l'équilibre :  $ar{\mathcal{T}}_Q=ar{\mathcal{T}}-ar{\mathcal{T}}_{\mathcal{S}}=rac{\lambda}{\mu(\mu-\lambda)}$