EE 523 Electromagnetic Wave Theory

HW2

Question 1

Consider the parallel plate waveguide shown below:

The PEC plates located at y = 0 and y = d are infinite in extent and the region 0 < y < d is free space. We assume that guided waves propagate in +x-direction.

- i. Find the expressions of \overline{E} and \overline{H} for TM_x modes. Hint: Start with the assumption $\overline{A}(x,y) = \psi(x,y)\hat{a}_x$.
- ii. Find the expressions of \bar{E} and \bar{H} for TE_x modes. Hint: Start with the assumption $\bar{F}(x,y) = \psi(x,y)\hat{a}_x$.

Now consider the following figure related to radiation from a waveguide opening:

- iii. By using Love's equivalence principle, show that the electromagnetic fields in the region x > 0 can be evaluated as the fields generated by the magnetic surface current over the waveguide opening (i.e. x = 0, 0 < y < d) with density $\overline{J}_m = 2\overline{E} \times \hat{a}_x$.
- iv. Assuming that the \overline{E} field over the waveguide opening is approximately equal to the \overline{E} field within the waveguide, evaluate the far field expressions of the \overline{E} and \overline{H} fields when the waveguide is supporting the fundamental TM_x mode.
- v. Repeat part iv. when the waveguide is supporting the fundamental TE, mode.

Hint for iv. and v.: You may use the radiation integral formulas given at the end of Lecture 8. Note that this problem is two-dimensional (i.e. no z-dependence), and the calculations are carried out on the xy-plane; i.e. $\theta = \frac{\pi}{2}$, and $\hat{a}_{\theta} = -\hat{a}_{z}$. The other alternative is deriving (and using) the radiation integral formulas in cylindrical coordinates.

Question 2

Consider $\bar{E}(x) = E_x(z,t)\hat{a}_x$, where $E_x(z,t) = a(z,t)e^{j(\omega t - k(\omega)z)}$. $k(\omega)$ is the (real-valued) wave number in a dispersive medium. Let us define an LTI system action as:

$$x(t) = E_x(z,t)|_{z=0}$$
 (input signal), $y(t) = E_x(z,t)|_{z=1}$ (Output signal)

Let a(0,t) be a low-pass signal, and assume that narrow-band assumption is valid for $E_x(0,t) = a(0,t)e^{j\omega_0 t}$, where ω_0 is the representation frequency of the band-pass signal.

Let the envelope be given as $a(0,t) = \exp\left(-\frac{t^2}{2\tau_0^2}\right)$. We can derive an expression for the scaling (i.e. distortion) in the Gaussian envelope, after the wave travels in the dispersive medium. That is, assuming that τ_0 is an approximation for the duration of a(0,t), we can find how the duration of the envelope changes at x = L. The derivation of this result is as follows:

$$E_{x}(0,t) = a(0,t)e^{j\omega_{0}t}$$

Evaluate the Fourier transform of both sides:

$$\hat{E}_{x}(0,\omega) = \hat{a}(0,\omega) * 2\pi\delta(\omega - \omega_0) = 2\pi\hat{a}(0,\omega - \omega_0)$$

Now, the wave can be propagated in frequency domain:

$$\hat{E}_{x}(z,\omega) = 2\pi \hat{a}(0,\omega - \omega_0)e^{-jk(\omega)z}$$

By using the inverse Fourier transform:

$$E_{x}(z,t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} 2\pi \hat{a}(0,\omega - \omega_{0}) e^{-jk(\omega)z} e^{j\omega t} d\omega$$

Let $\omega' = \omega - \omega_0$. Then:

$$E_{x}(z,t) = \int_{-\infty}^{\infty} \hat{a}(0,\omega')e^{-jk(\omega'+\omega_{0})z}e^{j(\omega'+\omega_{0})t}d\omega'$$

The Taylor series expansion (with three terms) of $k(\omega' + \omega_0)$ around ω_0 is:

$$k(\omega' + \omega_0) = k(\omega_0) + k'(\omega_0)\omega' + \frac{1}{2}k''(\omega_0)\omega'^2$$

$$E_{x}(z,t) = e^{j(\omega_{0}t - k(\omega_{0})z)} \int_{-\infty}^{\infty} \hat{a}(0,\omega') e^{j\omega'(t - k'(\omega_{0})z)} e^{-j\frac{k'(\omega_{0})\omega'^{2}z}{2}} d\omega'$$

$$FT\left\{a(0,t) = \exp\left(-\frac{t^2}{2\tau_0^2}\right)\right\} = \hat{a}(0,\omega) = \sqrt{2\pi}\tau_0 \exp\left(-\frac{\tau_0^2\omega^2}{2}\right)$$

So:

$$\begin{split} E_{x}(z,t) &= e^{j(\omega_{0}t - k(\omega_{0})z)} \int_{-\infty}^{\infty} \sqrt{2\pi} \tau_{0} \exp\left(-\frac{\tau_{0}^{2}\omega'^{2}}{2}\right) e^{j\omega'(t - k'(\omega_{0})z)} e^{-j\frac{k''(\omega_{0})\omega'^{2}z}{2}} d\omega' \\ E_{x}(z,t) &= e^{j(\omega_{0}t - k(\omega_{0})z)} \int_{-\infty}^{\infty} \sqrt{2\pi} \tau_{0} e^{-\frac{\omega'^{2}(\tau_{0}^{2} + jk''(\omega_{0})z)}{2}} e^{j\omega'(t - k'(\omega_{0})z)} d\omega' \end{split}$$

$$E_{x}(z,t) = e^{j(\omega_{0}t - k(\omega_{0})z)} \frac{1}{2\pi} \int_{-\infty}^{\infty} 2\pi \sqrt{2\pi} \tau_{0} e^{-\frac{\omega'^{2}(\tau_{0}^{2} + jk''(\omega_{0})z)}{2}} e^{j\omega'(t - k'(\omega_{0})z)} d\omega'$$

$$E_{x}(z,t) = e^{j(\omega_{0}t - k(\omega_{0})z)} \frac{\tau_{0}}{\sqrt{\tau_{0}^{2} + jk''(\omega_{0})z}} e^{-\frac{(t - k'(\omega_{0})z)^{2}}{2(\tau_{0}^{2} + jk''(\omega_{0})z)}}$$

In the exponent, we have the term $\frac{1}{\tau_0^2 + jk''(\omega_0)z} = \frac{\tau_0^2}{\tau_0^4 + \left(k''(\omega_0)z\right)^2} - j\frac{k''(\omega_0)z}{\tau_0^4 + \left(k''(\omega_0)z\right)^2}, \text{ real}$

part of which can be interpreted as the inverse of the square of pulse duration as the pulse propagates. Why?

So:
$$\tau^2(x) = \tau_0^2 + \frac{\left(k''(\omega_0)z\right)^2}{\tau_0^2}$$
.

Table 1. Rectangular Waveguide Specifications

Waveguide Size	JAN WG Desig	MIL-W-85 Dash #	Material	Freq Range (GHz)	Freq Cutoff (GHz)	Power		Insertion Loss (dB/100ft)	Dimensions (Inches)	
						(at 1 Atm)			Outside	Wall
						CW	Peak			Thickness
WR284	RG48/U RG75/U	1-039 1-042	Copper Aluminum	2.60 - 3.95	2.08	45 36	7650	.742508 1.116764	3.000x1.500	0.08
WR229	RG340/U RG341/U	1-045 1-048	Copper Aluminum	3.30 - 4.90	2.577	30 24	5480	.946671 1.422-1.009	2.418x1.273	0.064
WR187	RG49/U RG95/U	1-051 1-054	Copper Aluminum	3.95 - 5.85	3.156	18 14.5	3300	1.395967 2.097-1.454	1.000x1.000	0.064
WR159	RG343/U RG344/U	1-057 1-060	Copper Aluminum	4.90 - 7.05	3.705	15 12	2790	1.533-1.160 2.334-1.744	1.718x0.923	0.064
WR137	RG50/U RG106/U	1-063 1-066	Copper Aluminum	5.85 - 8.20	4.285	10 8	1980	1.987-1.562 2.955-2.348	1.500x0.750	0.064
WR112	RG51/U RG68/U	1-069 1-072	Copper Aluminum	7.05 - 10.0	5.26	6 4.8	1280	2.776-2.154 4.173-3.238	1.250x0.625	0.064
WR90	RG52/U RG67/U	1-075 1-078	Copper Aluminum	8.2 - 12.4	6.56	3 2.4	760	4.238-2.995 6.506-4.502	1.000x0.500	0.05
WR75	RG346/U RG347/U	1-081 1-084	Copper Aluminum	10.0 - 15.0	7.847	2.8 2.2	620	5.121-3.577 7.698-5.377	0.850x0.475	0.05
WR62	RG91/U RG349/U	1-087 1-091	Copper Aluminum	12.4 - 18.0	9.49	1.8 1.4	460	6.451-4.743 9.700-7.131	0.702x0.391	0.04
WR51	RG352/U RG351/U	1-094 1-098	Copper Aluminum	15.0 - 22.0	11.54	1.2 1	310	8.812-6.384 13.250-9.598	0.590x0.335	0.04
WR42	RG53/U	1-100	Copper	18.0 - 26.5	14.08	0.8	170	13.80-10.13	0.500x0.250	0.04
WR34	RG354/U	1-107	Copper	2.0 - 33.0	17.28	0.6	140	16.86-11.73	0.420x0.250	0.04
WR28	RG271/U	3-007	Copper	26.5 - 40.0	21.1	0.5	100	23.02-15.77	0.360x0.220	0.04

- i. Suppose that a wave in the form $E_x(y,z,t)=A\sin\left(\frac{\pi y}{b}\right)a(z,t)e^{j(\omega t-k_z(\omega)z)}$ propagates in the WR90 waveguide, whose specifications are given in Table 1. Let $\omega_0=2\pi\times 10^{10}$ rad/s and assume that the envelope is a Gaussian pulse with "approximate" duration $\tau_0=1~\mu s$ at z=0. A is a constant, b=2a, and the waveguide is empty (no material).
 - a. Identify the waveguide mode given above. Is it the fundamental mode?
 - b. Find the phase and group velocities of the wave and determine the phase and group delays when the wave propagates a distance $L=1\,\mathrm{m}$. Since there is no material medium in the waveguide, how can you explain the dispersion in this case?
 - c. Find the change in pulse duration at L=1 m.
- ii. Repeat i. for $\omega_0 = 2\pi \times 6.6 \times 10^9$ rad/s. Comment on your results.

Remarks:

- i. In Table 1, commercially available waveguide configurations are given. Note that the WR90 waveguide, whose dimensions are given in inches, is used in the X-band (8-12 GHz).
- ii. Note that the term $\sin\left(\frac{\pi y}{b}\right)$ has no effect in the calculations.