<u>林元烈《概率论与数理统计》</u>考试 A 卷(回忆)↔

考试时间: 2006年6月20日,120分钟↔

一、(基础题) ₽

- 1、P(A)=0.48, P(B)=0.40, P(A|B)=0.50, \bar{x} P(A∪B), P(B|A). \neq
- 以下三个命题是否等价,说明理由。
 (1)、事件 A 与事件 B 相互独立。
 - (1) \$1| V-0\$1| P-117777. 4
 - (2)、 $I_{\mathtt{A}}$ 生成的 σ 域 σ ($I_{\mathtt{A}}$) ={Ø, A, $\overline{\mathtt{A}}$, Ω }与 σ ($I_{\mathtt{B}}$)独立。+
 - (3)、I_A与I_B相互独立。→
- 3、求E (I_A|I_B, I_C),并证明↓

$$E(I_A|I_B)=E(E(I_A|I_B,I_C)|I_B)$$

二、1、4

$$\{X_i,1\leq i\leq n\}$$
独立同分布 $\mathbb{N}(\mu,\sigma^2)$, Y与其独立且Y ~ $\mathbb{P}\circ(\lambda)=\frac{1}{n}\sum_{i=1}^nX_i,S^2=\frac{1}{n-1}\sum_{i=1}^n(X_i-\overline{X})$

- a、求S的最大似然估计。 b、求证邓以概率收敛到46
- c、X与S²是否独立,请写出证明概要。
- 求X的概率密度函数f,(x)
 - 2、(想不起来了) ₽
 - 3、 $\{Y_k, k \ge 1\}$ 独立同分布, $P(Y_K = 1) = p, P(Y_K = 0) = r, P(Y_K = -1) = q, \forall p \in Y_K = 0$

$$p+r+q=1$$
, $X_1 = \sum_{k=1}^{n} Y_k$, $N_1 = \sum_{k=1}^{n} I_{(Y_k-1)}$, $N_2 = \sum_{k=1}^{n} I_{(Y_k-0)}$, $N_3 = \sum_{k=1}^{n} I_{(Y_k-3)}$

- a、 求 (N₁, N₂, N₃) 的分布, 求 P (N₁+N₂ = m) ₽
- b、 求 $E(X_3|X_1)$ 的分布率, $E(X_2|X_1 \ge 0)$ \leftarrow
- C、求X₁₀₀与X₄₀₀的相关系数↓