Disciplina: Algebra Linear e Geometria Analítica Professor: Landir Saviniec				
Data: 26/02/2018				3
				0)
(1) Eq	nacoès Li	reares e Ma	trizes	
1) Equações Lineares e Matrizes				
1.1) Sistemay lineares				
Problema 1: Um fabricante de plasticos produt dois tipos				
de plasticos: normal e especial, lada torrelada de plastico				
normal precisa de 2 horas no setor A e 5 horas no setor				
B; cada tovelada de plástico especial precia de 2 horas				
no setor A e 3 horas no extor D. Se o setor A esta				
disponível 8 horos por dia e o setor B está disponível				
15 horas por dia, quantas toneladas de cada tipo de				
plastico podem ser produzidas diariamente de modo				
que os setores não figuem acioso?				
Variaveis				
No quantidade de toneladas de plástico tipo normal				
Es quantidade de torelador de plástico tipo especial.				
	Jana va		son se partico tipo	sepecer
1	1 1	1.1.	7	
	V	noblema	· Perolução	CILL
\	Setor A	Setor B	S 2N+2E=8	(1/2)
_ N	2	5	JN+3E = 15	
E	2	3		the state of the
Disp	8	15	N+E=4	- 8 - 112
			1 6N+3E = 15	L1(-5) + L2
· capacidade do vetor A			[1 5 40	
2N + 2E = 8			N+E=4	(1)
· capacidade do Setor B			(-2E = -5)	(-1/2)
5N + 3E = 15				
1 1		1 2 - 4	N + E = 4	CHERRIACIE
		191	E = 5/2	
	W - H	- 31-11 - A		- 8-151bra
			>N+5/2=4 => N=4	$-\frac{5}{2} = \frac{2}{2}$ $N = \frac{3}{2}$
				N = 12

tilibra

 $A = \frac{55 - 15}{11} \Rightarrow A = \frac{40}{11}$

Pesposta: Devem ser utilizados 40 gramos da ração A e 90 gramos da ração B.

Verificando : $\begin{cases}
6A + B = 30 \Rightarrow 6(\frac{40}{11}) + \frac{90}{11} = \frac{240}{11} + \frac{90}{11} = \frac{330}{11} = 30. \\
2A + 4B = 40 \Rightarrow 2(\frac{40}{11}) + 4(\frac{90}{11}) = \frac{80}{11} + \frac{360}{11} = \frac{440}{11} = 40
\end{cases}$

Equações lineares

Uma equação linear tem o seguinte formato:

oux, + a2x2 + ... + an xn = b

onde:

o as, az, ..., an e b são constantes.

o x1, x2, ..., xn são variáveis.

· laro com uma voriável x:

Exemplo: 2x = 3 => $x = \frac{3}{2} = \frac{1.5}{7}$ Representação geométrica: $\frac{7}{-2} - \frac{1}{4} = \frac{1}{2}$

e laro com duas variaveis X, e xz: a, X, + az X2 = b

Exemplo: $2x_1 + 2x_2 = 4$ Se $x_1=0$, $2x_2=4 \Rightarrow x_2=2$ Se $x_2=0$, $2x_1=4 \Rightarrow x_1=2$

