Première 6

1 Lecture graphique

On donne la représentation graphique d'une fonction ci-dessous.

- 1. Sans justifier, donner les valeurs de :
 - (a) f'(-4).
 - (b) f'(-5).
 - (c) f'(-2).
 - (d) f'(2).
 - (e) f'(4).
- 2. Donner l'équation de la tangente à la courbe aux points d'abscisse -2 et 2.
- 3. On donne $f'(7) = -\frac{1}{3}$. Après avoir donné l'équation de la tangente au point d'abscisse 7, tracez cette tangente sur la courbe.

2 Calcul de nombres dérivés

- 1. Soit f définie pour tout x réel par $f(x) = 2x^2 3x + 1$, calculer f'(3).
- 2. Soit f définie sur]3; $+\infty$ [par $f(x) = \frac{1}{x-3}$. Calculer f'(5).

3 Tracer une courbe connaissant ses tangentes

On donne les renseignements suivants sur la fonction f.

x	-2	-1	2	3
f	1	2	_3	-1

х	-2	0	1
f(x)	1	$\frac{1}{2}$	$\frac{-3}{2}$
f'(x)	3	-1	-2

On sait de plus que les tangentes à la courbe de f au point d'abscisse -1 et au point d'abscisse 2 sont horizontales.

- 1. Que pouvez vous dire de f'(-1) ? f'(2) ?
- 2. Tracer une représentation graphique de la fonction f compatible avec les informations cidessus.

4 Un problème

Soit C une fonction représentant le coût de produire un certain nombre d'objets. En économie, on appelle coût marginal au rang q, le taux d'accroissement suivant :

$$C_m(q) = \frac{C(q+1) - C(q)}{1} = C(q+1) - C(q).$$

Dans la suite on considérera la fonction de coût suivante :

$$C(q) = 0,003q^2 + 60q + 1800.$$

- 1. Calculer $C_m(500)$.
- 2. Montrer que $C_m(q) = 0,006q + 60,003$.