Zadanie 6 - Raport

Jan Stusio

Czerwiec 2024

1 Wstęp

Celem zadania jest implementacja algorytmu Q-Learning oraz analizy wpływu parametrów α (współczynnik uczenia), γ (współczynnik dyskontowania) i ϵ (eksploracja w polityce ϵ -zachłannej) oraz parametr T na rozkładzie Bolzmana na zbieżność algorytmu w środowisku FrozenLake-v1 z biblioteki gym.

2 Implementacja

2.1 Algorytm Q-Learning

Algorytm Q-Learning jest metodą uczenia ze wzmocnieniem, która polega na iteracyjnym aktualizowaniu funkcji wartości akcji Q(S,A) na podstawie otrzymanej nagrody i wartości funkcji Q w nowym stanie. Wzór aktualizacji funkcji wartości akcji przedstawia się następująco:

$$Q^{new}(S_t, A_t) \leftarrow (1 - \alpha) \cdot Q(S_t, A_t) + \alpha (R_{t+1} + \gamma \cdot \max_{a} Q(S_{t+1}, a))$$

Ja w implementacji zmodyfikowałem ten wzór.

3 Wyniki

Pomiary na wynikach są dla siatki 4x4, ponieważ nie udało mi się dobrać parametrów, które by dobrze obrazowały zbieżność algorytmu dla siatki 8x8.

3.1 Wpływ parametru α

Figure 1

3.2 Wpływ parametru γ

Figure 2

3.3 Wpływ parametru ϵ

Figure 3

3.4 Wpływ parametru T

Figure 4

3.5 Tabela wyników

Table 1

Figure 1: Wpływ parametru α na zbieżność algorytmu Q-Learning

Figure 2: Wpływ parametru γ na zbieżność algorytmu Q-Learning

.

Figure 3: Wpływ parametru ϵ na zbieżność algorytmu Q-Learning

Figure 4: Wpływ parametru T na zbieżność algorytmu Q-Learning

.

Table 1: Średnie nagrody w ostatnich 10 epizodach dla różnych wartości badanych parametrów

Parameter	Value	Mean Reward	Std Reward	Success Count
alpha	0.100000	0.080000	0.132665	3
alpha	0.300000	0.080000	0.132665	3
alpha	0.500000	0.020000	0.060000	1
alpha	0.700000	0.040000	0.080000	2
alpha	0.900000	0.040000	0.080000	2
gamma	0.500000	0.040000	0.080000	2
gamma	0.700000	0.000000	0.000000	0
gamma	0.900000	0.160000	0.174356	6
gamma	0.950000	0.080000	0.097980	4
gamma	0.990000	0.020000	0.060000	1
epsilon	0.010000	0.000000	0.000000	0
epsilon	0.050000	0.000000	0.000000	0
epsilon	0.100000	0.000000	0.000000	0
epsilon	0.200000	0.060000	0.091652	3
epsilon	0.300000	0.060000	0.091652	3
${ m T}$	0.500000	0.000000	0.000000	0
${ m T}$	1.000000	0.000000	0.000000	0
${ m T}$	2.000000	0.000000	0.000000	0
${ m T}$	5.000000	0.040000	0.120000	1
T	10.000000	0.040000	0.080000	2

4 Wnioski

Na podstawie przeprowadzonych eksperymentów można zauważyć, że wszystkie trzy parametry $(\alpha, \gamma i \epsilon)$ mają istotny wpływ na zbieżność algorytmu Q-Learning.

Wyniki potwierdzają, że odpowiedni dobór parametrów jest kluczowy dla efektywnego działania algorytmu Q-Learning.