Chapter 8

Marcos Costa Santos Carreira

Technical Incerto Reading Club - 08-Jun-2021

Contents

- Fat Tails
- 2 Distributions
- Mean Absolute Deviation
- 4 Kappa
- To do
- **6** Conclusions

One-liners

- Fat Tails make extrapolation dangerous
- Under Fat Tails diversification is harder
- Term structure of likelihood of κ is what we need

Log Glasses

Figure: LogLog plot of $\mathbb{P}\left[X>k\right]$

Surprise

Figure: Surprise

Formulas

- Gaussian: $MAD[n, \sigma] = \sqrt{\frac{2}{\pi}n\sigma}$
- StudentT:

•
$$MAD[n = 1, \alpha, \sigma] = \frac{2\sqrt{\alpha}}{\alpha - 1} \frac{Gamma\left[\frac{1}{2} + \frac{\alpha}{2}\right]}{\sqrt{\pi}Gamma\left[\frac{\alpha}{2}\right]} \sigma$$

•
$$MAD\left[n=2,\alpha,\sigma\right]=rac{4\sqrt{\alpha}}{2^{\alpha}}rac{Gamma\left[-rac{1}{2}+rac{\alpha}{2}
ight]Gamma\left[-rac{1}{2}+lpha
ight]}{\left(Gamma\left[rac{\alpha}{2}
ight]
ight)^{3}}\sigma$$

• LogNormal:
$$MAD\left[n=1,\mu,\sigma\right]=2\exp\left[\mu+\frac{\sigma^2}{2}\right]$$
 $Erf\left[\frac{\sigma}{2\sqrt{2}}\right]$

• Pareto: *MAD*
$$[n = 1, \alpha, L = 1] = 2 \cdot L \cdot (\alpha - 1)^{-2 + \alpha} \cdot \alpha^{1 - \alpha}$$

LogNormal

Figure: Mean Deviation for LogNormals

Approximation for the StudentT

- For $\alpha \to \infty$ StudentT is Gaussian
- So fit n^{γ} to the MAD[n] curve
- $0.5 \le \gamma \le 1$

Figure: Fit for $\alpha = 3$

Rough fit

 $\quad \bullet \quad \gamma \approx 0.5 + 2^{-1.336 \cdot \alpha - 0.14}$

Figure: Fit for γ

Cubic Student T

Figure: StudentT $\kappa_{1,n}$

Low σ LogNormal

• $\sigma = 0.5$ (bias at low n)

Figure: LogNormal $\sigma = 0.5 \kappa_{1,n}$

High σ LogNormal

• $\sigma = 2$ (bias everywhere) - "Did I err?"

Figure: LogNormal $\sigma = 0.5 \kappa_{1,n}$

Kappa dispersion

Figure: StudentT $\kappa_{1,2}$

Paired at the start

Figure: StudentT(2) × Pareto(3) $\kappa_{1,2}$

StudentT(3) Term Structure

Figure: StudentT $\alpha = 3 \kappa_{1,n}$

StudentT(2) Term Structure

Figure: StudentT $\alpha = 2 \kappa_{1,n}$

Pareto Term Structure

Figure: Pareto $\alpha = 3 \kappa_{1,n}$

Decays

• In this case Pareto decays (relatively) faster, the StudentT is at the maximum "time value"

Figure: Decays

Methods and code

- Improve code for performance (large n crashes Mathematica)
- Work on calculations/integrals before asking Mathematica
- Formalize likelihoods

Data and models

- "Truncated" distributions (circuit breakers, etc.)
- Multivariate distributions
- Correlations and autocorrelations

What this talk was about anyway?

Model inference

- Most data doesn't allow for precise estimation of distributions and therefore not even fake precision for estimating parameters
- Understand model properties and develop qualitative measures like kappa