Практикум по ЭВМ

Отчёт

Выполнила студентка 422 группы Резанова Анфиса Сергеевна

Содержание

1	Задача 1	2
	1.1 Машинное эпсилон	2
	1.2 $X = X + 1$	2
	1.3 $Y = 10^{20} + Y$	2
2	Задача 2	3
	2.1 Прямое рекуррентное соотношение	3
	2.2 Обратное рекуррентное соотношение	3
	2.3 Интегральная сумма	3
3	Метод Эйлера	3
4		4
	$4.1 y = x^2 \dots \dots \dots \dots \dots \dots \dots \dots \dots $	5
	4.2 функция из 3 задачи	6
5	Метод Эйлера использовать нельзя	8
6	Метод Рунге-Кутта	11
	6.1 со своей функцией	11
	6.2 гармонический осциллятор	11
7	Выбор шага	12
8	Основная задача	14

1 Задача 1

На прямой континуум чисел, а в ЭВМ их конечное число (как минимум из-за конечной памяти). Вероятность попадания конкретного числа из множества мощности континуум в конечное множество чисел нулевая, потому что точка множество нулевой меры. Поэтому чтобы как-либо работать с числами в ЭВМ есть "сетка": если два числа расположены в одной ячейке сетки, то они неразличимы. Равномерная сетка неудобна, потому что в таком случае очень большие при этом числа будут различаться довольно точно, но меньшие по модулю и при этом более популярные числа из окрестности нуля будут различаться с той же погрешностью, поэтому вводится относительная погрешность, а именно вблизи нуля самая мелкая сетка с размером — машинным эпсилон, и чем дальше от нуля, тем крупнее сетка.

1.1 Машинное эпсилон

while
$$(1+eps>1) \{eps/=1.1;\}$$

Для типа double машинное эпсилон $\epsilon = 5.14054 \cdot 10^{-20}$

1.2 X = X + 1

Минимальное X, такое что X = X + 1:

while
$$((1+x) != x) \{x *=k;\}$$

$$\begin{array}{c|cccc} k & X & t,c \\ \hline 1.1 & 1.94532 \cdot 10^{19} & 0.063 \\ 2 & 1.84467 \cdot 10^{19} & 0,047 \\ \end{array}$$

1.3
$$Y = 10^{20} + Y$$

Минимальное Y, такое что $Y = 10^{20} + Y$:

while((pow(10,20)+y)
$$!= y)\{y *=k; \}$$

$$\begin{array}{c|cccc} k & Y & t, c \\ \hline 1.1 & 2.80046 \cdot 10^{39} & 0.063 \\ 2 & 2.72226 \cdot 10^{19} & 0,047 \\ \end{array}$$

В таблицах k - коэффициент при умножении в цикле поиска X, t - время работы программы.

2 Задача 2

Вычисление интеграла на отрезке [0,1] от функции

$$f(x) = \frac{x^n}{x+6}.$$

2.1 Прямое рекуррентное соотношение

$$I_n = \frac{1}{n} - 6I_{n-1}$$

 $n = 31: I_{31} = -7.09911 \cdot 10^7$

2.2 Обратное рекуррентное соотношение

$$I_{n-1} = \frac{1}{6n} - \frac{I_n}{6}$$

Положим $I_{62}=0$, тогда $I_{31}=0.00462905$

2.3 Интегральная сумма

$$n = 1000, \delta = \frac{1}{n}, x = i\delta$$

$$S_n = \delta \sum_{i=1}^n f(x),$$

 $I_{31} = 0.00448359$

3 Метод Эйлера

$$f(x) = 5\cos(8x) + e^{3x^2} + \frac{1}{\cos(\cos(x))}$$

Отрезок $[0,1], x_0 = 1$

$$f'(x) = -40\sin(8x) + 6x \cdot e^{3x^2} - \frac{\sin(x) \cdot tg(\cos(x))}{\cos(\cos(x))},$$

$$R_{1} = |f'(x_{0}) - \frac{f(x_{0} + h) - f(x_{0})}{h}|,$$

$$R_{2} = \frac{h}{2} + 2\frac{\varepsilon}{h}, \varepsilon = 10^{-8}.$$

h	R_1	R_2
1	162650	0.5
0.1	62.1068	0.0500002
0.01	4.60882	0.005002
0.001	0.447106	0.00052
0.0001	0.0445748	0.00025
10^{-5}	0.00445612	0.002005
10^{-6}	0.000445591	0.0200005
10^{-7}	4.46501e-05	0.2
10^{-8}	4.4784e-06	2
10^{-9}	9.19181e-06	20
10^{-10}	2.07988e-05	200
10^{-11}	0.000172396	2000
10^{-12}	0.00666217	20000
10^{-13}	0.0776541	200000
10^{-14}	0.109471	$2 \cdot 10^{6}$
10^{-15}	10.152	$2 \cdot 10^{7}$
10^{-16}	63.5061	$2 \cdot 10^{8}$
10^{-17}	88.0913	$2 \cdot 10^{9}$
10^{-18}	1604.07	$2 \cdot 10^{10}$
10^{-19}	16763.8	$2\cdot 10^{11}$
10^{-20}	168361	$2 \cdot 10^{12}$

4 Задача 4

$$y_K = y_0 + hy'(t_k), [t_0, T]$$

4.1 $y = x^2$

 $y = x^2, [t_0, T] = [0, 10]$

Рис.1 h=0.1, ошибка $|y_k-T^2|=1$

Рис.2 h=0.01, ошибка $|y_k-T^2|=0.1$

Рис.3 h=0.001, ошибка $|y_k-T^2|=0,01$

4.2 функция из 3 задачи

$$f(x) = 5\cos(8x) + e^{3x^2} + \frac{1}{\cos(\cos(x))}, [t_0, T] = [0; 2.5]$$

Рис.4 h=0.1, ошибка $|y_k-f(T)|=3.01484$

Рис.5 $h = 0.01, |y_k - f(T)| = 0.391685$

Рис.6 $h = 0.001, |y_k - f(T)| = 0.0400745$

5 Метод Эйлера использовать нельзя

h	T	$ \widetilde{x}(T) - x(T) $	$ \widetilde{z}(T) - z(T) $
0.1	1π	0.0560329	2.17124
0.1	10π	0.097298	3.79211
0.1	100π	$5.17628 \cdot 10^6$	$3.32102 \cdot 10^6$
0.1	1000π	$6.29136 \cdot 10^{67}$	$4.242622 \cdot 10^{67}$
0.1	10000π	nan	nan
0.1	100000π	nan	nan
0.01	1π	0.00843405	2.01584
0.01	10π	0.00354095	0.170098
0.01	100π	0.0468341	3.80989
0.01	1000π	644590	$6.59925 \cdot 10^6$
0.01	10000π	$1.41924 \cdot 10^{68}$	$8.26089 \cdot 10^{67}$
0.01	100000π	nan	nan
0.01	1000000π	nan	nan
0.001	1π	0.000406938	2.00157
0.001	10π	$6.39894 \cdot 10^{-5}$	0.015832
0.001	100π	0.000737064	0.170089
0.001	1000π	0.00337112	3.81047
0.001	10000π	66406.8	$6.63524 \cdot 10^6$
0.001	100000π	$1.71934 \cdot 10^{67}$	$1.64599 \cdot 10^{68}$
0.001	1000000π	nan	nan

Графики z(x)

Рис. 7 $T=10\pi, h=0.1$ Ошибка $|\widetilde{x}(T)-x(T)|=0.097298, |\widetilde{z}(T)-z(T)|=3.79211$

Рис. 8 $T=10\pi, h=0.01$ Ошибка $|\widetilde{x}(T)-x(T)|=0.00354095, |\widetilde{z}(T)-z(T)|=0.170098$

Рис. 9 $T=100\pi, h=0.1$ Ошибка $|\widetilde{x}(T)-x(T)|=5.17628\cdot 10^6, |\widetilde{z}(T)-z(T)|=3.32102\cdot 10^6$

for
(int n=0;
$$n < w\pi/h; n + +$$
){
 $x_K = x + h \cdot z;$
 $z_K = z - h \cdot x;$
 $x = x_K;$
 $z = z_K;$
}

6 Метод Рунге-Кутта

c_i	a_{i1}	a_{i2}	a_{i3}	a_{i4}	a_{i5}	a_{i6}	b_7
0							
$\frac{1}{5}$	$\frac{1}{5}$						
$\frac{3}{10}$	$\begin{array}{c} \frac{1}{5} \\ \frac{3}{40} \\ 44 \end{array}$	$\frac{9}{40}$					
$\frac{1}{4}^{0}$	<u> 44</u>	$\frac{\overline{40}}{\underline{-56}}$	<u>32</u>				
<u> </u>	$\frac{45}{19372}$	$\frac{15}{25360}$	$\frac{32}{9}$ 64448	<u>-212</u>			
$\frac{1}{53}$ $\frac{1}{10}$ $\frac{1}{58}$ $\frac{1}{9}$ $\frac{1}{1}$	$\frac{6561}{9017}$	$\frac{2187}{-355}$	$\overline{6561} \ 46732$	<u>729</u>	-5103		
	$\frac{3168}{35}$	33	$\frac{5247}{500}$	$\overline{\substack{176 \\ 125}}$	$\frac{\overline{18656}}{-2187}$	<u>11</u>	
_1	$\frac{384}{384}$	0	$\frac{500}{1113}$	$\frac{125}{192}$	$\frac{2101}{6784}$	$\frac{11}{84}$	L
y_1	$\frac{35}{384}$	0	$\frac{500}{1113}$	$\frac{125}{192}$	$\frac{-2187}{6784}$	$\frac{11}{84}$	

6.1 со своей функцией

h	$ \widetilde{y}(T) - y(T) $	$ y_{rk}(T) - y(T) $
0.1	3.01484	$5.42422 \cdot 10^{-7}$
0.01	0.391685	$6.34346 \cdot 10^{-12}$
0.001	0.0400745	$6.56333 \cdot 10^{-14}$
0.0001	0.00401651	$7.53717 \cdot 10^{-12}$
10^{-5}	0.000401741	$1.53966 \cdot 10^{-10}$

6.2 гармонический осциллятор

Сравнение метода погрешности для метода Эйлера и Рунге-Кутта 6 порядка

h	T	$ \widetilde{x}(T) - x(T) $	$ x_{rk}(T) - x(T) $	$ \widetilde{z}(T) - z(T) $	$ z_{rk}(T)-z(T) $
0.1	10π	0.097298	0.0839745	3.79211	0.00353218
0.1	100π	$5.17628 \cdot 10^6$	0.0407235	$3.32102 \cdot 10^6$	0.000830409
0.1	1000π	$6.29136 \cdot 10^{67}$	0.00734777	$4.242622 \cdot 10^{67}$	$3.5624 \cdot 10^{-5}$
0.01	10π	0.00354095	0.00407345	0.170098	$8.29654 \cdot 10^{-6}$
0.01	100π	0.0468341	0.000734641	3.80989	$2.69857 \cdot 10^{-7}$
0.01	1000π	644590	0.00734634	$6.59925 \cdot 10^6$	$2.69848 \cdot 10^{-5}$
0.001	10π	$6.39894 \cdot 10^{-5}$	7.34641e-05	0.015832	$2.69849 \cdot 10^{-9}$
0.001	100π	0.000737064	0.000734641	0.170089	$2.69849 \cdot 10^{-7}$
0.001	1000π	0.00337112	0.00034641	3.81047	$5.99999 \cdot 10^{-8}$

Рис.11 $T = 1000\pi, h = 0.001$

7 Выбор шага

Решаем систему $\begin{cases} \dot{x}=z \\ \dot{z}=-x \end{cases}$ на отрезке $[0,\,\mathrm{T}]$ с начальными условиями

 $x_0 = 0, z_0 = 1$ методом Рунге Кутта 5 порядка. На каждом шаге определяем подходящее h в зависимости от требуемой точности. tol - величина допустимой погрешности.

$$h_{\text{new}} = h \min(facmax, \max(facmin, fac \cdot (\frac{tol}{err})^{\frac{1}{6}})));$$

 $facmax = 1.5, facmin = 0.7, fac = 0.9$

$$h_{\text{new}} = h \cdot \min(1.5, \max(0.7, 0.9 \cdot \left(\frac{tol}{err}\right)^{\frac{1}{6}})));$$

$T = 10\pi$:

tol	$ \widetilde{x}(T) - x(T) $	$ \widetilde{z}(T) - z(T) $	N_{steps}	Step
10^{-7}	0.00190173	2.84124e - 06	192	0.164229
10^{-9}	7.50001e - 05	1.34896e - 08	480	0.0657533
10^{-11}	5.35519e - 06	1.21545e - 10	1203	0.0262086

$T = 100\pi$:

tol	$ \widetilde{x}(T) - x(T) $	$ \widetilde{z}(T) - z(T) $	N_{steps}	Step
10^{-7}	0.00162033	1.1704e - 05	1906	0.16491
10^{-9}	6.30868e - 05	1.08799e - 07	4785	0.0656884
10^{-11}	3.77143e - 06	1.07952e - 09	12017	0.0261533

$T = 1000\pi$:

tol	$ \widetilde{x}(T) - x(T) $	$ \widetilde{z}(T) - z(T) $	N_{steps}	Step
10^{-7}	0.00183347	0.000105663	19043	0.16498
10^{-9}	0.000106664	1.07377e - 06	47832	0.065682
10^{-11}	4.7323e - 06	1.07352e - 08	120152	0.0261478

$T = 10000\pi$:

tol	$ \widetilde{x}(T) - x(T) $	$ \widetilde{z}(T) - z(T) $	N_{steps}	Step
10^{-7}	0.000751888	0.00104017	190398	0.165003
10^{-9}	7.72553e - 05	1.06839e - 05	478310	0.0656814
10^{-1}	$1 \mid 4.16937e - 06$	1.07249e - 07	1.2015e + 06	0.0261472

$T = 100000\pi$:

tol	$ \widetilde{x}(T) - x(T) $	$ \widetilde{z}(T) - z(T) $	N_{steps}	Step
10^{-7}	0.00138301	0.0104002	1.90214e + 06	0.165161
10^{-9}	8.62417e - 05	0.000106813	4.78304e + 06	0.065682
10^{-11}	4.76479e - 06	1.07241e - 06	1.2015e + 07	0.0261472

Числа Рунге:

$$\begin{cases} R_x = \left| \frac{x_{10^{-7}} - x_{10^{-9}}}{x_{10^{-9}} - x_{10^{-11}}} \right| \approx 100^{\frac{s}{s+1}}; \\ R_z = \left| \frac{z_{10^{-7}} - z_{10^{-9}}}{z_{10^{-9}} - z_{10^{-11}}} \right| \approx 100^{\frac{s}{s+1}} \end{cases}$$

T	$R_x(T)$	$R_z(T)$
10π	26.2292	211.53
100π	26.2536	107.642
1000π	16.9408	98.3868
10000π	9.23068	97.3361
100000π	18.0328	97.3462

8 Основная задача

$$\begin{cases} \frac{d^2x}{dt^2} + \alpha \frac{dx}{dt} + x^3 = \beta \cos(t) \\ \alpha \in \{0.2, 1.0\}, \beta \in \{0.3, 1.0\} \end{cases} \Leftrightarrow \begin{cases} \begin{cases} \frac{dx}{dt} = y \\ \frac{dy}{dt} = -\alpha y - x^3 + \beta \cos(t) \\ \alpha \in \{0.2, 1.0\}, \beta \in \{0.3, 1.0\}. \end{cases} \end{cases}$$

Задача решается методом стрельбы. За начальные условия в задаче Коши взяты параметры пристрелки $\overline{\alpha} = \{x, T\}$. Начальный момент времени t = 0. Особая точка системы $(x_0, y)0) = (0, 0)$, из неё выпускае луч y = 0, на котором, двигая x, ищем точку и период T периодического решения.

Невязка:
$$\overline{X}(\overline{\alpha}) = \begin{cases} |x(T) - x| \\ |y(T) - y| \end{cases}$$

Норму невязок оцениваем величиной $\varepsilon = 10^{-7}$. $\Delta = 10^{-8}$. Решаем систему $||\overline{X}(\overline{\alpha})|| = \overline{0}$ методом Ньютона: через итерационный процесс с параметрами пристрелки, по которым составляем невязки, дальше по ним решается СЛАУ для поиска новых параметров пристрелки α_i для перехода на следующую итерацию. В итоге находим такие α_i , для которых $||\overline{X}(\overline{\alpha})|| = \overline{0}$, то есть получено периодическое решение. Чтобы новые невязки не оказывадись дальше от необходимой точки, чем предыущие, присваиваем $\alpha_{new} = \alpha + \gamma \cdot h$, где h - решение СЛАУ, а γ делится пополам до тех пор, пока не приближаемся к периодическому решению лучше, чем за предыдущий шаг.

Список литературы

[1] Hajrer E., Nyorsett S., Vanner G. Решение обыкновенных дифференциальных уравнений. Нежёсткие задачи - 1990 - 512c.