Optimierung für Studierende der Informatik Thomas Andreae

Wintersemester 2017/18 Blatt 7

A: Präsenzaufgaben am 4./5. Dezember 2017

1. Lösen Sie das folgende LP-Problem mit dem revidierten Simplexverfahren:

$$\begin{array}{ll} \text{maximiere} & x_1 & -2x_3 \\ \text{unter den Nebenbedingungen} \\ & -x_1 - 2x_2 + 3x_3 \leq 2 \\ & 2x_1 + x_2 & \leq 5 \\ & x_1 - x_2 - 3x_3 \leq 4 \\ & x_1, x_2, x_3 \geq 0. \end{array}$$

<u>Eingangsdaten</u> ("original data"):

$$A = \begin{pmatrix} x_{1} & x_{2} & x_{3} & x_{4} & x_{5} & x_{6} \\ -1 & -2 & 3 & 1 & 0 & 0 \\ 2 & 1 & 0 & 0 & 1 & 0 \\ 1 & -1 & -3 & 0 & 0 & 1 \end{pmatrix}, b = \begin{pmatrix} 2 \\ 5 \\ 4 \end{pmatrix}$$

$$\vec{C} = \begin{pmatrix} 1 & 0 & -2 & 0 & 0 & 0 \\ 1 & 0 & -2 & 0 & 0 & 0 \end{pmatrix}$$

Snitialisierung:

$$X_{B}^{*} = \begin{pmatrix} X_{4}^{*} \\ X_{5}^{*} \\ X_{6}^{*} \end{pmatrix} = \begin{pmatrix} 2 \\ 5 \\ 4 \end{pmatrix}, B = \begin{pmatrix} X_{4} & X_{5} & X_{6} \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

1) Es ist Zweckmäßig, sowohl bei A als auch bei ET eine Kopfzeile hinzusufügen. Schreibt man A und ET untereinander, so genügt es, mur bei A eine Kopfzeile hinzuschreiben.

1. Steration

1. Schritt (Lösung von YTB = KB):

Es gilt $\vec{c}_B = (0 \ 0 \ 0)$. Das Gleichungssystem $\vec{y}^T \vec{B} = \vec{c}_B^T$ lautet

 $\begin{array}{r}
 Y_{\lambda} & = 0 \\
 Y_{2} & = 0 \\
 Y_{3} = 0 ;
 \end{array}$

also gilt YT=(000).

a. Schritt (Bestimmung von Eingangsspalte und Eingangsvariable):

Es gilt $A_N = \begin{pmatrix} x_1 & x_2 & x_3 \\ -1 & -2 & 3 \\ 2 & 1 & 0 \\ 1 & -1 & -3 \end{pmatrix}$, $Y^T A_N = (000)$ much

 $C_N = (10-2)$. Vergleich der Einträge von YA_N und C_N : Nur der Iste Eintrag von C_N ist größer als der entsprechende Eintrag von YA_N . Also: Es kommt nur die 1. Spalte von A_N als Eingangsspalte a infrage.

Es folgt: $a = \begin{pmatrix} -1 \\ 2 \end{pmatrix}$ und x_n ist die Eingangsvariable.

3. Schritt (Lösung von Bol = a):

Das Gleichungssystem Bol = a lautet $d_1 = -1$ $d_2 = 2$ $d_3 = 1$; es folgt $d = \begin{pmatrix} -1 \\ 2 \end{pmatrix}$.

4. Schritt (Bestimming der Ausgangsvariable): Die Ungleichung ×B −td≥0 lautet

$$\begin{pmatrix} 2 \\ 5 \end{pmatrix} - t \begin{pmatrix} 2 \\ 1 \end{pmatrix} \geqslant \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$
. Das größset, das dies erfüllt, ist $t = \frac{5}{2}$; für $t = \frac{5}{2}$ gilt $\begin{pmatrix} 2 \\ 5 \\ 4 \end{pmatrix} - t \begin{pmatrix} 2 \\ 1 \end{pmatrix} = \begin{pmatrix} 9/2 \\ 0 \\ 3/2 \end{pmatrix}$.

Ausgangsvariable ist X5.

5. Schrift (Update von XB und B):

$$x_{B}^{*} = \begin{pmatrix} x_{4}^{*} \\ x_{6}^{*} \end{pmatrix} = \begin{pmatrix} 9/2 \\ 5/2 \\ 3/2 \end{pmatrix} \text{ and } B = \begin{pmatrix} 1 - 1 & 0 \\ 0 & 2 & 0 \\ 0 & 1 & 1 \end{pmatrix}.$$

2. Steration

1. Schrift: [An chiser Stelle muss man darauf achten, dass die Reihenfolge der Einträge von \overline{c}_B^* auf Reihenfolge der Spalten von B passt!] Es giet $\overline{c}_B^* = (0.10)$ und das Gleichungssystem $y^TB = \overline{c}_B^*$ lautet

Der Deutlichkeit halber wurde auch an dieser Stelle line Kopfzeile linzugefügt. Dies ist aber wicht umbedingt nöbig.

Man erhålt $Y^T = (0 \frac{4}{2} 0)$.

2. Schritt: Es gilt
$$A_N = \begin{pmatrix} x_2 & x_3 & x_5 \\ -2 & 3 & 0 \\ 1 & 0 & 1 \\ -1 & -3 & 0 \end{pmatrix}$$
, $Y^TA_N = (\frac{1}{2} 0 \frac{1}{2})$ and $C_N^T = (0 - 2 0)$.

Vergleich der Einträge von YTAN und C'N: Kein Eintrag von CTN ist episer als der entsprechende Eintrag von YTAN. Also ist die aktuelle Lösung optimal.

Die optimale dösung lautet $x_1^* = \frac{5}{2}, x_2^* = 0, x_3^* = 0$ mit $z_1^* = x_1^* - 2x_3^* = \frac{5}{2}$.

B: Hausaufgaben zum 11./12. Dezember 2017

 ${\bf 1.}\,$ Lösen Sie das folgende LP-Problem mit dem revidierten Simplexverfahren:

maximiere
$$2x_1 + 3x_2 + 2x_3$$

unter den Nebenbedingungen

$$x_1 + x_2 \le 8$$
 $x_2 + 2x_3 \le 12$
 $x_2 + x_3 \le 7$
 $x_1, x_2, x_3 \ge 0$.

Eingangpdaten:

$$A = \begin{pmatrix} x_1 & x_2 & x_3 & x_4 & x_5 & x_6 \\ 1 & 1 & 0 & 1 & 0 & 0 \\ 0 & 1 & 2 & 0 & 1 & 0 \\ 0 & 1 & 1 & 0 & 0 & 1 \end{pmatrix}, \quad \mathcal{E} = \begin{pmatrix} 8 \\ 12 \\ 7 \end{pmatrix}$$

$$C^T = \begin{pmatrix} 2 & 3 & 2 & 0 & 0 & 0 \end{pmatrix}$$

Mnitialisierung:

1. Meration

1. Schritt:

Die Lösung des Gleichungssuptems $y^TB = Z_B^T$ landet $y^T = (0\ 0\ 0)$. $x_1 x_2 x_3$ 2. Schritt: Es gilt $A_N = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 2 \end{pmatrix}$, $y^TA_N = (000)$ and $Z_N = (2\ 3\ 2)$. Wir wählen als Eingangsspalse

Eingangsvariable ist denmach X2.

3. Schritt: Die Lösung des Gleidungssystems Bd = q $Lamtet d = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$.

4. Schrift: Die Ungleidung ×B-td≥0 lanter

$$\begin{pmatrix} 8 \\ 12 \\ 7 \end{pmatrix} - t \begin{pmatrix} 1 \\ 1 \end{pmatrix} \ge \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$
. Das größte t, das dies esfüllt

istt=7. Fürt=7 gilt (32)-t(1)=(5),

Ausgangsvariable ist demnach X6.

5. Schritt (Mpdate):
$$X_4 \times_5 \times_2$$

 $X_B^* = \begin{pmatrix} X_4^* \\ X_5^* \\ X_2^* \end{pmatrix} = \begin{pmatrix} 1 \\ 5 \\ 7 \end{pmatrix} \text{ und } B = \begin{pmatrix} 1 \\ 0 \\ 1 \\ 1 \end{pmatrix}$

2. Meration

1. Schritt:

Das fleidungssystem y B = CB lantet

Lösung: YT=(003).

2. Schritt:
$$\times_{1} \times_{3} \times_{6}$$
Es gilt $A_{N} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 1 & 1 \end{pmatrix}$, $YA_{N} = \begin{pmatrix} 0 & 3 & 3 \end{pmatrix}$ und $Z_{N} = \begin{pmatrix} 1 & 2 & 0 \\ 0 & 1 & 1 \end{pmatrix}$. Man erhält die Eingangsspalte $a = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$; Eingangsvariable ist \times_{1} .

3. Schritt:

Das efleidungssystem Bd=a lantet

$$d_1 + d_3 = 1$$

$$d_2 + d_3 = 0$$

$$d_3 = 0$$

Lösung: d = (°)

4. Schritt:

Die Migleidung XB-td >0 landet

$$\begin{pmatrix} 1 \\ 5 \end{pmatrix} - t \begin{pmatrix} 1 \\ 0 \end{pmatrix} \geqslant \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$
. Das größtet, das dies efüllt ist ± 1 . Fürt=1 gilt $\begin{pmatrix} 1 \\ 5 \end{pmatrix} - t \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \begin{pmatrix} 0 \\ 5 \end{pmatrix}$. Aus gangs variable ist ± 1 .

5. Schrif (Mpdate):

$$\begin{array}{ll}
\times & \times_{S} \times_{S} \times_{S} \\
\times & \times_{S} \times_{S} \times_{S} \\
\times & \times_{S} \times_{S} \times_{S}
\end{array}$$

$$\begin{array}{ll}
\times & \times_{S} \times_{S} \times_{S} \\
(1 & 0 & 1) \\
(5 & 7) & \text{mod } B = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}$$

3. Greration

1. Schritt:

Das gleidungssystem y B= EB lantet

und die Eingangsvariable X3.

3. Solvitt:

Das gleidungssystem Bd = a lantet

$$d_{1} + d_{3} = 0$$
 $d_{2} + d_{3} = 2$
 $d_{3} = 1$

$$d$$
"sung: $d = \begin{pmatrix} -1 \\ 1 \end{pmatrix}$.

4. Schritt:

Die Ungleichung XB-td 30 lantet

efüllt int t=5. First=5 sier $(\frac{5}{4})$ - $t(\frac{7}{1})$ = $(\frac{6}{2})$.

Ausgangsvariable ist X5.

5. Schritt (Mpdate):
$$\times_1 \times_3 \times_2$$

$$\times_B^* = \begin{pmatrix} \times_1^{x_1} \\ \times_3^{x_2} \end{pmatrix} = \begin{pmatrix} 6 \\ 5 \\ 2 \end{pmatrix} \text{ und } B = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 2 & 1 \\ 0 & 1 & 1 \end{pmatrix}$$

4. Meration

1. Schritt:

Das Gleidungszystem y B = EB lantet

L'osung: YT=(210).

und $E_N = (00)$. Es folgt, dass chie aktuelle Lösung optimal ist.

Die optimale Lösung lautet $x_1^* = 6$, $x_2^* = 2$, $x_3^* = 5$ mit $z_1^* = 2 \times x_1^* + 3 \times z_2^* + 2 \times z_3^* = 2 \times x_1^* + 3 \times z_2^* + 2 \times z_3^* = 2 \times x_1^* + 3 \times z_2^* + 2 \times z_3^* = 2 \times x_1^* + 3 \times z_2^* + 2 \times z_3^* = 2 \times x_1^* + 3 \times z_2^* + 2 \times z_3^* = 2 \times x_1^* + 3 \times z_2^* + 2 \times z_3^* = 2 \times x_1^* + 3 \times z_2^* + 2 \times z_3^* = 2 \times x_1^* + 3 \times z_2^* + 2 \times z_3^* = 2 \times x_1^* + 3 \times z_2^* + 2 \times z_3^* = 2 \times x_1^* + 3 \times z_2^* + 2 \times z_3^* = 2 \times x_1^* + 3 \times z_2^* + 2 \times z_3^* = 2 \times x_1^* + 3 \times z_2^* + 2 \times z_3^* = 2 \times x_1^* + 3 \times z_2^* + 2 \times z_3^* = 2 \times x_1^* + 3 \times z_2^* + 2 \times z_3^* = 2 \times x_1^* + 3 \times z_2^* + 2 \times z_3^* = 2 \times x_1^* + 3 \times z_2^* + 2 \times z_3^* = 2 \times x_1^* + 3 \times z_2^* + 2 \times z_3^* = 2 \times x_1^* + 3 \times z_2^* + 2 \times z_3^* = 2 \times x_1^* + 3 \times z_2^* + 2 \times z_3^* = 2 \times z_3^* + 3 \times z_2^* + 2 \times z_3^* = 2 \times z_3^* + 3 \times z_2^* + 2 \times z_3^* = 2 \times z_3^* + 3 \times z_2^* + 2 \times z_3^* = 2 \times z_3^* + 3 \times z_2^* + 2 \times z_3^* = 2 \times z_3^* + 3 \times z_2^* + 2 \times z_3^* = 2 \times z_3^* + 3 \times z_3^* + 2 \times z_3^* = 2 \times z_3^* + 3 \times z_3^* + 2 \times z_3^* = 2 \times z_3^* + 2 \times z_3^* + 2 \times z_3^* + 2 \times z_3^* = 2 \times z_3^* + 2 \times z_3^* + 2 \times z_3^* = 2 \times z_3^* + 2 \times z_3^* + 2 \times z_3^* = 2 \times z_3^* + 2 \times z_3^* +$

2. Lösen Sie das folgende LP-Problem mit dem revidierten Simplexverfahren:

maximiere
$$6x_1 - 9x_2 + x_3 - 11x_4$$

unter den Nebenbedingungen
$$2x_1 - 3x_2 - x_3 - 7x_4 \le 1$$
$$2x_1 + x_2 + x_3 + 3x_4 \le 3$$

$$x_1, x_2, x_3, x_4 > 0.$$

$$x_1, x_2, x_3, x_4 \geq 0.$$

$$\frac{\text{Eingangpolaten:}}{A = \begin{pmatrix} \tilde{\lambda}^{2} & -\tilde{\lambda}^{2} & -\tilde{\lambda}^{3} & -\tilde{\lambda}^{3} & -\tilde{\lambda}^{3} & -\tilde{\lambda}^{3} & \tilde{\lambda}^{6} \\ 2 & 1 & 1 & 3 & 0 & 1 \end{pmatrix}, \quad \mathcal{L} = \begin{pmatrix} 1 \\ 3 \end{pmatrix}$$

$$\mathcal{L} = \begin{pmatrix} 6 & -9 & 1 & -11 & 0 & 0 \end{pmatrix}.$$

Mutialisierung:
$$\times_5 \times_6$$

 $\times_{\mathcal{B}}^* = \begin{pmatrix} \times_5^* \\ \times_6^* \end{pmatrix} = \begin{pmatrix} 1 \\ 3 \end{pmatrix}_1 \quad \mathcal{B} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}_1.$

1. Meration

1. Schritt:

Die Lösung des Gleichungssystems y B= CT lawter $Y^T = (0 0)$.

2. Shritt:
$$\frac{2}{2} - \frac{3}{3} - \frac{7}{4} = \frac{7$$

und $C_N = (6 - 9 1 - 11)$. Wir wällen als

Eingangsopalle
$$\alpha = \begin{pmatrix} 2 \\ 2 \end{pmatrix}$$
.

Eingangsvariable vistalsox. (Man bladte: Es gilt CN-YTAN=(6-9 1-11). Als Eingangsvariable kommen demnach X, und X3 infrage. Aufgrund der Regelvom großten Koelfizienten fieldie Wallauf Xr.)

3. Schritt:

Das gleidungssystem Bd=a lantet

$$d_{\lambda} = 2$$

$$d_{\lambda} = 2.$$

Lösung: d=(2).

4. Schritt:

Die Ungleichung XB-td 30 landet

$$\binom{1}{3} - t\binom{2}{2} \ge \binom{0}{0}$$
. Das größtet, das dies erfüllt, ist $t = \frac{1}{2}$. Für $t = \frac{1}{2}$ giet $\binom{1}{3} - t\binom{2}{2} = \binom{0}{2}$.

Ausgangsvariable ist X5.

$$X_{B}^{*} = \begin{pmatrix} X_{A}^{*} \\ X_{6}^{*} \end{pmatrix} = \begin{pmatrix} 1/2 \\ 2 \end{pmatrix} \text{ and } B = \begin{pmatrix} 2 & 0 \\ 2 & 1 \end{pmatrix}.$$

2. Meration

1. Schritt: Das gleidungssystem yt B = RTB lander

$$2y_1 + 2y_2 = 6$$

 $y_2 = 0$.

Lösung:
$$Y^T = (3 \ 0)$$
. $\times_2 \times_3 \times_4 \times_5$
2. Schritt: En giet $A_N = \begin{pmatrix} -3 & -1 & -7 & 1 \\ 1 & 1 & 3 & 0 \end{pmatrix}_1$
 $Y^T A_N = \begin{pmatrix} -9 & -3 & -21 & 3 \end{pmatrix}$ and $\vec{c_N} = \begin{pmatrix} -9 & 1 & -11 & 0 \end{pmatrix}$.

-69- ×

Als Eingangsspalte wählen wir $\alpha = \begin{pmatrix} -7 \\ 3 \end{pmatrix}$; χ_4 ist also die Eingangsvariable.

(Man beachte: Es gilt $C_N - y^T A_N = (0 4 10 - 3)$.

Aufgrund der Regel vom größten Koeffizienten
fil die Wall auf X_{ψ} .)

3. Schritt: Das gleichungssystem Bd=a lantet

 $2d_1 = -7$ $2d_1 + d_2 = 3$

 β'' onns: $d = \begin{pmatrix} -7/2 \\ 10 \end{pmatrix}$.

4. Schritt:

Die Ungleichung XB-td 20 landet

 $\binom{1/2}{2}$ - t $\binom{-7/2}{10}$ \geqslant $\binom{0}{0}$. Das größet, das dies

efiller, istt= f. First= folls

$$\binom{1/2}{2} - t \binom{-7/2}{10} = \binom{6/5}{0}.$$

Ausgangsvariable ist X6.

5. Schritt (Mpdate): $X_{B}^{*} = \begin{pmatrix} X_{A}^{*} \\ X_{4}^{*} \end{pmatrix} = \begin{pmatrix} 615 \\ 115 \end{pmatrix}$ and $B = \begin{pmatrix} 2 & -7 \\ 2 & 3 \end{pmatrix}$.

3. Greanon

1. Schritt: Das Gleidungssystem y B = co lautet

$$2 y_1 + 2 y_2 = 6$$

L'osung: Y=(21).

2. Schritt:
$$\times_2 \times_3 \times_5 \times_6$$
es giet $A_N = \begin{pmatrix} -3 & -1 & 1 & 0 \\ 1 & 1 & 0 & 1 \end{pmatrix}$

English:

En folgt:

Eingangsspalte ist $\alpha = \binom{-1}{1}$ und \times_3 ist die Eingangsvariable.

3. Schritt:

Das Gleidungssystem Bd = a lantet

$$2d_{1}-7d_{2}=-1$$

$$2d_1 + 3d_2 = 1$$
.

4. Schritt: Die Ungleichung XB-td > 0 landet

$$\binom{615}{115} - t\binom{115}{115} \ge \binom{0}{0}$$
. Does größtet, das dies exhibit ist $t = 1$. Für $t = 1$ gilt $\binom{615}{115} - t\binom{115}{115} = \binom{1}{0}$.

Also: X4 ist die Ausgangsvariable.

5. Schritt (Updare):

5. Schritt (Update):

$$X_{B}^{*} = \begin{pmatrix} X_{\Lambda}^{*} \\ X_{3}^{*} \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \end{pmatrix} \text{ and } B = \begin{pmatrix} 2 & -1 \\ 2 & 1 \end{pmatrix}.$$

4. Greation

1. Schritt:

Das Eleichungssystem YB = CB lantet

$$2y_1 + 2y_2 = 6$$

- $y_1 + y_2 = 1$.

Löung: Y= (1 2).

2. Schritt:
es gilt
$$A_N = \begin{pmatrix} -3^2 & 7^4 & 15 & 06 \\ 1 & 3 & 0 & 1 \end{pmatrix}, YA_N = (-1 - 1 12)$$

und ch = (-9 -11 0 0).

Kein Eintrag von of ist größer als der entsprechende Eintrag von y A. Das bedentet: Die aktuelle Losung ist optimal.

Die optimale Lösung lantet

$$x_{1}^{*} = 1, x_{2}^{*} = 0, x_{3}^{*} = 1, x_{4}^{*} = 0 \text{ min } z^{*} = 7.$$