

# O treinamento da Decision Tree

| ≡ Ciclo                   | Ciclo 06: Algoritmos baseado em árvores |
|---------------------------|-----------------------------------------|
| # Aula                    | 42                                      |
| <ul><li>Created</li></ul> | @March 9, 2023 11:54 AM                 |
| ☑ Done                    | <b>✓</b>                                |
| ☑ Ready                   | <b>✓</b>                                |

## **Objetivo da Aula:**

| A visão geral do treinamento                |
|---------------------------------------------|
| A impureza de uma árvore                    |
| A escolha do atributo na separação          |
| Os 6 passos do treinamento da Decision Tree |
| Resumo                                      |
| Próxima aula                                |

### Conteúdo:

# **▼ 1.** A visão geral do treinamento

Os algoritmos de árvore de decisão exigem que o conjunto de dados seja dividido em subconjuntos menores em cada nó da árvore. Para isso, é necessário escolher o melhor atributo para dividir o conjunto de dados. A escolha é feita com base em uma medida de impureza.

O objetivo é minimizar a impureza do conjunto de dados nos subconjuntos resultantes. As medidas de impureza mais comuns são a entropia, o índice Gini e o ganho de informação.

O atributo que resulta na maior redução de impureza é escolhido para a divisão. Esse processo é repetido recursivamente em cada nó da árvore até que os subconjuntos resultantes sejam puros ou até que um critério de parada seja atingido.

## ▼ 2. A impureza de uma árvore

A impureza que determina quão misturados estão os dados em relação à classe de saída. Por exemplo, um conjunto de dados com 100 elementos, 50 da classe A e 50 da classe B, são subdivididos subsequentemente ao ponto dos 100 elementos originais serem distribuídos entre as folhas.

Um dessas folhas possui 10 elementos da Classe A e 0 elementos da classe B. Essa folha possui um grau de impureza de zero, pois todos os seus elementos pertencem a única classe.

Por outro lado, uma dessas folhas possui 3 elementos da Classe A e 5 elementos da classe B. Essa folha tem um certo grau de impureza, pois 37.5% dos seus elementos pertencem a Classe A e 62.5% pertencem a Classe B.

Para determinar o grau de impureza de uma folha, são utilizados algumas medidas, como por exemplo:

- 1. O critério de Gini
- 2. Entropia
- 3. Ganho de informação.

#### **▼ 2.1** O critério (índice) Gini

$$G_i = 1 - \sum_{k=1}^n p_{i,k}^2$$

 $p_{i,k}$  é a probabilidade de cada classe do  $i_{th}$  nó

#### **▼ 2.2** Entropia

A entropia é uma medida de impureza que quantifica a incerteza associada à distribuição de probabilidade de um conjunto de dados. Quanto maior a entropia, maior a incerteza. A fórmula da entropia para o cálculo da impureza de uma folha da Decision Tree é:

$$H_i = -\sum_{k=1}^n p_{i,k} \log_2 p_{i,k}$$

 $onde: p_{i,k} \ \acute{e} \ a \ probabilidade \ de \ cada \ classe \ do \ i-\acute{e}simo \ n\acute{o}$ 

#### **▼ 2.3 Information Gain**

O ganho de informação é uma medida de quanta informação é ganha sobre a classe de saída ao dividir um conjunto de dados de acordo com um atributo específico. A fórmula do ganho de informação para o cálculo da impureza de uma folha da Decision Tree é:

$$IG(D_p,a) = I(D_p) - \sum_{i=1}^v rac{N_j}{N_p} I(D_j)$$

 $onde: I(D_p)$  é a impureza de  $D_p$   $N_p$  é o número total de exemplos em  $D_p$  a é o atributo considerado v é o número de valores distintos de a  $D_j$  é o subconjunto de  $D_p$  com valores distintos de a para j  $N_j$  é o número total de exemplos em  $D_j$   $I(D_j)$  é a impureza de  $D_j$ 

## ▼ 3. A escolha do atributo na separação

O algoritmo Decision Tree realiza o treinamento separando o conjunto de dados em duas partes, segundo um único atributo (k) e um valor (t\_k), por exemplo, k=petal length e t\_k < 2.45 cm, ou seja, "petal length < 2.45 cm".

Ao realizar as subdivisões do conjunto de dados, o algoritmo busca minimizar o valor resultante da seguinte função:

$$J(k,t_k) = rac{m_{left}}{m} G_{left} + rac{m_{right}}{m} G_{right}$$

 $G_{left/right}$  mede a impureza subconjuntos a direita a esquerda  $m_{left/right}$  é o número de exemplos no conjunto dados da direita a esquerda

$$J(idade, 20) = (20/150)*0.5 + (80/150)*0.0 = 0.1$$
  
 $J(salario, 15000) = (54/150)*0.168 + (46/150)*0.043 = 0.01$ 

## ▼ 4. Os 6 passos do treinamento da Decision Tree

- 1. Escolha uma atributo ( coluna ) do conjunto de dados.
- 2. Para cada possível valor do atributo selecionado, use a função de custo para encontrar o valor da impureza da separação.
- 3. Repita os passos 1 e 2 para todas as combinações de atributo e valores, a fim de encontrar a combinação atributo-valor que retorne o menor valor da função custo da Decision Tree.
- 4. Uma vez definido o para atributo-valor, faça a separação do conjunto de dados em dois nós filhos.
- 5. Repita os passos de 1 a 3, para encontrar a segunda combinação atributo-valor para causar uma nova separação dos dados.
- 6. Repita o processo 5 até os valores dos parâmetros serem atendidos.

#### **▼ 5.** Resumo

- 1. O processo de treinamento da Decision Tree se resume a subdividir os dados originais em nós filhos, a fim de minimizar a impureza dos nós filhos ( folhas ).
- 2. A impureza de uma Decision Tree pode ser medida utilizando os critérios de Gini, Entropia ou Ganho de Informação.
- 3. A Decision Tree possui 6 passos para o seu treinamento.

### **▼ 6.** Próxima aula

Decision Tree - prática