Machine Learning

6-10-25 (1.te Einhat)

1) Lineare Modelle - <u>Lineare</u> Diskriminane Analyse (LDA)

Wir betrachten Modelle der Form

klassen D
$$p(y=c|x,\theta) = \frac{p(x|y=c,\theta) \cdot p(y=c)}{p(x|y=k,\theta) \cdot p(y=k)}$$
Label/Target Daten
$$Modellparameter$$

A-posteri Wahrscheinlichkeit der Klessec, pepelen Datenpunkt x und fixen kodellparametern

p(x/y=c,0).... Klassen bedingte Wahrscheinlichkeitsdichte,
pepelen Klasse c und fixen Model/parametern A-priori Wohrscheinlichkat der Klosse C p (y=c)

Zu pepebenem x (Detenpunkt) und fixem O, erhalten wir als Entscheidungsregel:

$$k^* = \underset{C}{\text{ore mox}} P(y=C|x,\theta)$$

Wir befrachten den Fall $x \in \mathbb{R}^d$, und $y \in \{0,1\}$.

Datenpunkt Label

Annahme 1: p(x/y=c,0) lesst sich mittels einer multivariaten Normalverteilung Beschreiben.

P(x|y=c,
$$\theta_c$$
) = $(2\pi)^{\frac{d}{2}}$. Idet (Z_c) . exp $(\frac{1}{2}.(x-M_c)Z_c^{-1}(x-M_c))$

Multivariate Normal verticiting and Kovarione Matrix

I and Lokations parameter $M_c \in \mathbb{R}^d$

dx of Matrix

Mit $\theta_c = \{Z_c, M_c\}$.

Ahnahme $\mathcal{L}: Z_a = Z_{-0} = Z$

Kovarione Hatrizen der Klasse 1 und \mathcal{D} sond pleich!

Wir sehen ous (x) , dass proportional ea

 $\rho(y=c|X,\theta) \propto \rho(x|y=c,\theta) \cdot \rho(y=c)$

(so Nenner in (x) immer plaich)

Wir seten $\rho(y=0|X,0) = \rho(y=1|X,0)$ um ea sehen wie die Entscheidungs grente aussiehb. Definition $T_0 = \rho(y=0)$ und

 $T_1 = \rho(y=1)$.

In $\rho(y=1)$.

Log (Th) - 2 xTZ x + 2xTZ 1/2 + 2 xTZ 1/2 - 2 M, Z 1/2 - 2 M, Z 1/2 - 1/2 Mo = Log (Th) - 2 xTZ 1/2 + 2 . xTZ 1/2 + 2 M, Z 1/2 1/2 - 2 . M, Z 1/2 1/2 M

$$A = D - \frac{1}{2} \sqrt{2} \frac{1}{x} + M_0 \sum_{i=1}^{n} x_i - \frac{1}{2} M_0 \sum_{i=1}^{n} M_0 + \log(\pi_0) = \frac{1}{2} \sqrt{2} \frac{1}{x} + M_0 \sum_{i=1}^{n} x_i - \frac{1}{2} M_0 \sum_{i=1}^{n} M_0 + \log(\pi_0) = 0$$

$$A = D \left(\frac{M_0 \sum_{i=1}^{n} x_i - M_0 \sum_{i=1}^{n} x_i - \frac{1}{2} M_0 \sum_{i=1}^{n} M_0 + \frac{1}{2} M_0 \sum_{i=1}^{n} M_0 + \log(\frac{\pi_0}{\mu_0}) = 0 \right)$$

$$A = D \left(\sum_{i=1}^{n} (M_0 - M_0) \sum_{i=1}^{n} x_i + \frac{1}{2} M_0 \sum_{i=1}^{n} M_0 + M_0 + \log(\frac{\pi_0}{\mu_0}) = 0 \right)$$

$$A = D \left(\sum_{i=1}^{n} (M_0 - M_0) \sum_{i=1}^{n} x_i + \frac{1}{2} M_0 \sum_{i=1}^{n} M_0 + M_0 + \log(\frac{\pi_0}{\mu_0}) + 2 \log(\frac{\pi_0}{\mu_0}) = 0 \right)$$

$$A = D \left(\sum_{i=1}^{n} (M_0 - M_0) \sum_{i=1}^{n} x_i + \frac{1}{2} M_0 \sum_{i=1}^{n} M_0 + M_0 + 2 \log(\frac{\pi_0}{\mu_0}) + 2 \log(\frac{\pi_0}{\mu_0}) = 0 \right)$$

$$A = D \left(\sum_{i=1}^{n} (M_0 - M_0) \sum_{i=1}^{n} x_i + \frac{1}{2} M_0 \sum_{i=1}^{n} M_0 + M_0 + 2 \log(\frac{\pi_0}{\mu_0}) + 2 \log(\frac{\pi_0}{$$