My Notes on Paolo Aluffi's Algebra Chapter 0

Isabelle Mills

 $March\ 23,\ 2024$

1/7/2024

A <u>multiset</u> is a collection of elements which like a set is unordered but unlike a set can contain duplicate elements.

One way to define a multiset is as a function $f:A\to\mathbb{N}$ such that each $\alpha\in A$ is mapped to the number of times that α appears in the multiset. Then, given the multisets $f_1:A\to\mathbb{N}$ and $f_2:B\to\mathbb{N}$, we can define the following operations:

- $\alpha \in f_1 \iff \alpha \in A$
- $f_1 \subseteq f_2 \iff \forall \alpha \in f_1, \ \alpha \in f_2 \text{ and } f_1(\alpha) \leq f_2(\alpha)$
- $f_1 \cup f_2 : (A \cup B) \longrightarrow \mathbb{N}$ such that for $\alpha \in A \cup B$, if $\alpha \in A \cap B$, then $(f_1 \cup f_2)(\alpha) = f_1(\alpha) + f_2(\alpha)$. As for if $\alpha \notin A \cap B$, then $(f_1 \cup f_2)(\alpha)$ equals whatever α was mapped to in the multiset it originally came from.
- $f_1 \cap f_2 : (A \cap B) \longrightarrow \mathbb{N}$ such that for $\alpha \in A \cap B$, we have that $(f_1 \cap f_2)(\alpha) = \min(f_1(\alpha), f_2(\alpha))$
- $f_1 \setminus f_2 : ((A \setminus B) \cup \{\alpha \in A \cap B \mid f_1(\alpha) > f_2(\alpha)\}) \longrightarrow \mathbb{N}$ such that for each $\alpha \in f_1 \setminus f_2$, if $\alpha \in f_2$, then $(f_1 \setminus f_2)(\alpha) = f_1(\alpha) f_2(\alpha)$. As for if $\alpha \notin f_2$, then $(f_1 \setminus f_2)(\alpha) = f_1(\alpha)$

A practical example of a multiset is the prime factorization of any positive integer.

We say that two sets A and B are <u>isomorphic</u> if and only if there exists a bijection between A and B. We denote this by writing $A \cong B$. Additionally, we can refer to any bijection f between A and B as an isomorphism between the two sets.

A function $f:A\to B$ is a <u>monomorphism</u> (a.k.a a <u>monic</u>) if for all sets Z and all functions a' and $a'':Z\to A$, we have that $f\circ a'=f\circ a''\Longrightarrow a'=a''$.

Proposition 1: A function is injective if and only if it is a monomorphism.

Proof: Let's say we have a function $f:A\to B$.

First, let us assume f is injective.

Then let us assume we have two functions a' and a'' from some set Z to A such that $f \circ a' = f \circ a''$. Because f is injective, we know it has a left-hand inverse $g: B \to A$ such that $g \circ f = \operatorname{Id}_A$. Composing g with the previous equation, we get that:

$$a' = \operatorname{Id}_A \circ a' = g \circ (f \circ a') = g \circ (f \circ a'') = \operatorname{Id}_A \circ a'' = a''$$

Thus, we've shown that f is a monomorphism.

Next, we shall assume f is a monomorphism.

Based on this, we can say that for any two functions a' and a'' mapping a set Z to A, we have that $f \circ a' = f \circ a'' \Longrightarrow a' = a''$. However, now note that if we make Z a <u>singleton</u>, meaning it only contains one element, then a' and a'' can each only take on one value. So, we can effectively rewrite $f \circ a' = f \circ a'' \Rightarrow a' = a''$ as:

$$f(a') = f(a'') \Rightarrow a' = a''$$

This is the definition of an injective function.

3/23/2024

A function $f:A\to B$ is an <u>epimorphism</u> (a.k.a an <u>epi</u>) if for all sets Z and all functions a' and $a'':B\to Z$, we have that $a'\circ f=a''\circ f\Rightarrow a'=a''$.

Proposition 2: A function is a surjection if and only if it is an epimorphism.

Proof: Let's say we have a function $f: A \rightarrow B$.

First, let us assume f is surjective.

Then let's assume we have two functions a' and a'' from B to some set Z such that $a' \circ f = a'' \circ f$. Because f is surjective, we know it has a right-hand inverse $h: B \to A$ such that $f \circ h = \mathrm{Id}_B$. Composing h with the previous equation, we get that:

$$a' = a' \circ \operatorname{Id}_B = (a' \circ f) \circ h = (a'' \circ f) \circ h = a'' \circ \operatorname{Id}_B = a''$$

So f is an epimorphism.

Next, assume f is not surjective.

Then there exists $\beta \in B$ such that for all $\alpha \in A$, we have that $f(\alpha) \neq \beta$. Importantly, as $f(\alpha) \in B$, we know $|B| \neq 1$. So set a' equal to Id_B and define a'' as a function mapping each element of $B \setminus \{\beta\}$ to itself and β to any of the other elements in B. Now, $a' \circ f = f = a'' \circ f$ but $a' \neq a''$. So f is not epimorphic. \blacksquare

aaaaaaaaaaaaaaaaaaaaaa

aaaaaaaaaaaaaaaaaaaaa

aaaaaaaaaaaaaaaaaaaaa

aaaaaaaaa aaaaaaaaa A <u>relation</u> on a set S is a subset R of the cartesian product $S \times S$. Specifically, we use the notation x R y to mean that $(x, y) \in R$. Certain types of relations are especially important and thus are represented with their own symbol.

- An <u>equivalence relation</u>, typically denoted \sim on a set S has the properties: $\circ \forall x \in S, \ x \sim x \qquad \circ x \sim y \Longrightarrow y \sim x \qquad \circ x \sim y \text{ and } y \sim z \Longrightarrow x \sim z$
- An <u>order relation</u>, typically denoted < on a set S has the properties: $\circ \forall x,y \in S$, exactly one of the following is true: x < y, y < x, or x = y. $\circ x < y$ and y < z implies that x < z.