Θεώρημα Rolle

Αν μια συνάρτηση $f: [\alpha, \beta] \to \mathbb{R}$ είναι:

- συνεχής στο $[\alpha, \beta]$,
- παραγωγίσιμη στο (α, β) ,
- $\operatorname{xal} f(\alpha) = f(\beta),$

τότε υπάρχει τουλάχιστον ένα $\xi \in (\alpha, \beta)$ τέτοιο ώστε

$$f'(\xi) = 0.$$

Κατηγορία - Μέθοδος 1

Σε ασχήσεις που ζητείται η ύπαρξη μιας τουλάχιστον ρίζας εξίσωσης σε διάστημα (α, β) :

- Μεταφέρουμε όλους τους όρους στο α' μέλος.
- Θεωρούμε το α' μέλος ίσο με μια συνάρτηση f.
- Έλεγχος των προϋποθέσεων του θεωρήματος Bolzano.

Εάν ο έλεγχος των προϋποθέσεων του θεωρήματος Bolzano στην f δεν αποδώσει,

- Μεταφέρουμε όλους τους όρους στο α' μέλος.
- Θεωρούμε μια συνάρτηση F η οποία έχει παράγωγο την f και σε αυτήν εξετάζουμε τις προϋποθέσεις του Θ. Rolle. (Την F τη λέμε αρχική ή παράγουσα της f).
- 1. Δείξτε ότι η εξίσωση $5x^4+4ax^3-1=a,\ a\in\mathbb{R}$ έχει μία τουλάχιστον ρίζα στο (0,1).

Λύση:

Η δοσμένη εξίσωση γράφεται

$$\[x^5 + ax^4 - (a+1)x\]' = 0,\]$$

οπότε θεωρούμε συνάρτηση

$$f(x) = x^5 + ax^4 - (a+1)x, \quad x, a \in \mathbb{R}.$$

Η f είναι συνεχής στο [0,1] και παραγωγίσιμη στο (0,1) με

$$f'(x) = 5x^4 + 4ax^3 - (a+1)$$

Αφού ισχύουν οι προϋποθέσεις του θεωρήματος Rolle, υπάρχει τουλάχιστον ένα $\xi \in (0,1)$ ώστε

$$f'(\xi) = 0,$$

δηλαδή

$$5\xi^4 + 4a\xi^3 - 1 = a.$$

Κατηγορία - Μέθοδος 2

Ασκήσεις στις οποίες ζητείται το πολύ μια ρίζα σε διάστημα Δ Δ ύο βασικές επιλογές:

1^η: Απαγωγή σε άτοπο από το Θ. Rolle

Έστω ότι η f έχει δύο ρίζες και είναι παραγωγίσιμη από το Θ . Rolle. Θ α έχει η f'(x) τουλάχιστον μία ρίζα που αποδεικνύεται άτοπο από τα δεδομένα:

- είτε επειδή η f'(x) = 0 είναι αδύνατη στο \mathbb{R} ,
- είτε επειδή η ρίζα της f'(x) = 0 δεν ανήκει στο (α, β) .

 $\mathbf{2}^{\eta}$: Δείχνουμε ότι η f είναι γνησίως μονότονη ή 1-1 οπότε ϑ α έχει το πολύ μία ρίζα.

1. Δείξτε ότι η $2x^3 - 3x^2 - 36x + \sin \theta = 0$, $\theta \in \mathbb{R}$ έχει το πολύ μια ρίζα στο (0,1).

Λύση:

Έστω ότι έχει δύο ρίζες $0<\rho_1<\rho_2<1$. Στο $[\rho_1,\rho_2]$ εφαρμόζουμε το Θ. Rolle για τη συνάρτηση

$$f(x) = 2x^3 - 3x^2 - 36x + \sin \theta$$

η οποία είναι συνεχής στο $[\rho_1,\rho_2]$ και παραγωγίσιμη στο (ρ_1,ρ_2) με $f(\rho_1)=f(\rho_2)=0$. Άρα έχουμε ότι η f'(x)=0 έχει τουλάχιστον μία ρίζα

$$\rho \in (\rho_1, \rho_2) \subset (0, 1).$$

Όμως

$$f'(x) = 0 \Leftrightarrow 6x^2 - 6x - 36 = 0 \Leftrightarrow x^2 - x - 6 = 0 \Leftrightarrow \begin{cases} x = -2 \\ x = 3 \end{cases}$$
 ή άτοπο διότι δεν ανήκουν στο $(0,1)$.

Άρα η εξίσωση έχει το πολύ μία ρίζα στο (0,1).

2. Δείξτε ότι η εξίσωση $a^x + b^x = \gamma^x$ με $0 < a < b < \gamma$, έχει το πολύ μία πραγματική λύση.

Λύση:

Είναι
$$a^x + b^x = \gamma^x \iff \left(\frac{a}{\gamma}\right)^x + \left(\frac{b}{\gamma}\right)^x - 1 = 0.$$

Θεωρούμε την

$$f(x) = \left(\frac{a}{\gamma}\right)^x + \left(\frac{b}{\gamma}\right)^x - 1,$$

ορισμένη στο \mathbb{R} , της οποίας η παράγωγος είναι

$$f'(x) = \left(\frac{a}{\gamma}\right)^x \ln\left(\frac{a}{\gamma}\right) + \left(\frac{b}{\gamma}\right)^x \ln\left(\frac{b}{\gamma}\right) < 0, \quad \text{fix } x \in \mathbb{R},$$

αφού
$$\left(\frac{a}{\gamma}\right)^x > 0$$
, $\left(\frac{b}{\gamma}\right)^x > 0$, $\ln\left(\frac{a}{\gamma}\right) < 0$, $\ln\left(\frac{b}{\gamma}\right) < 0$.

Έτσι η f είναι γνησίως φθίνουσα στο \mathbb{R} , οπότε η εξίσωση f(x)=0 έχει το πολύ μία πραγματική λύση.

Κατηγορία - Μέθοδος 3

Ασχήσεις στις οποίες ζητείται να δείξουμε ότι μια εξίσωση έχει ν το πολύ ρίζες. Δείχνουμε ότι αποχλείεται να έχει $\nu+1$ ρίζες. Αυτό γίνεται με τους εξής τρόπους:

- i. Με το θεώρημα του Rolle στα ν διαστήματα
 - α. Υποθέτουμε ότι η εξίσωση έχει μία παραπάνω ρίζα.
 - b. Θεωρούμε συνάρτηση αφού μεταφέρουμε τους όρους της εξίσωσης σε ένα μέλος.
 - c. Εφαρμόζουμε θεώρημα Rolle στα διαστήματα που δημιουργούν οι ρίζες που υποθέσαμε και οδηγούμαστε σε άτοπο.
- ii. Η f είναι γνησίως μονότονη σε κάθε ένα από τα διαστήματα.
- iii. Με τον βαθμό της συνάρτησης, αν βέβαια πρόχειται για πολυωνυμιχή.

Αν το άτοπο δεν "φαίνεται" εύκολα, εφαρμόζουμε ξανά το Θ. Rolle στα $\nu-1$ διαστήματα ή ακόμη και στα $\nu-2,\nu-3$, έως ότου καταλήξουμε σε άτοπο.

1. Να αποδείξετε ότι η $3x^5 - 5x^3 + 5x + 1 = 0$ έχει ακριβώς μία πραγματική ρίζα στο \mathbb{R} .

Λύση:

Η $f(x) = 3x^5 - 5x^3 + 5x + 1$ είναι συνεχής στο $\mathbb R$ ως πολυωνυμική. Επιπλέον, ισχύει ότι:

Άρα, f(-1)f(1) < 0. Έτσι, σύμφωνα με το θεώρημα Bolzano, η f(x) = 0 έχει τουλάχιστον μία ρίζα στο διάστημα (-1,1).

Στη συνέχεια, θα δείξουμε ότι η εξίσωση f(x)=0 δεν έχει άλλη ρίζα.

Έστω ότι η f(x)=0 έχει τουλάχιστον δύο πραγματικές ρίζες και ρ_1,ρ_2 δύο τυχαίες ρίζες με $\rho_1<\rho_2.$ Για το διάστημα $[\rho_1,\rho_2]$ ισχύουν τα εξής:

- η f είναι συνεχής στο $[\rho_1, \rho_2]$,
- η f είναι παραγωγίσιμη στο (ρ_1, ρ_2) και
- $f(\rho_1) = f(\rho_2) = 0$.

Έτσι, το θεώρημα Rolle ισχύει για την f στο διάστημα $[\rho_1, \rho_2]$. Επομένως, υπάρχει τουλάχιστον ένα $\xi \in (\rho_1, \rho_2)$ τέτοιο, ώστε $f'(\xi) = 0$. Όμως:

$$f'(x) = 15x^4 - 15x^2 + 5$$

Επομένως,

$$f'(\xi) = 0 \Leftrightarrow 15\xi^4 - 15\xi^2 + 5 = 0 \Leftrightarrow 3\xi^4 - 3\xi^2 + 1 = 0.$$

Θέτουμε $\omega=\xi^2$. Η εξίσωση $3\omega^2-3\omega+1=0$ δεν έχει πραγματικές λύσεις, αφού η διακρίνουσα της είναι

$$\Delta = (-3)^2 - 4 \cdot 3 \cdot 1 = 9 - 12 = -3 < 0.$$

Επομένως, ούτε και η εξίσωση $3\xi^4 - 3\xi^2 + 1 = 0$ έχει πραγματικές λύσεις.

Έτσι, η εξίσωση f(x)=0 δεν μπορεί να έχει δύο πραγματικές ρίζες. Επειδή όμως αποδείξαμε προηγουμένως ότι έχει τουλάχιστον μία πραγματική ρίζα, αυτή θ α είναι και η μοναδική.

2. Δίνεται η εξίσωση:

$$x^3 - 2x - 5 = 0 \ x \in (2,3)$$

- i. Χρησιμοποιώντας το Θεώρημα Ενδιάμεσης Τιμής (Bolzano), σύμφωνα με το οποίο αν μία συνάρτηση f είναι συνεχής στο διάστημα [a,b] και f(a)f(b)<0, τότε η f έχει ρίζα στο διάστημα (a,b), αποδείξτε ότι η ως άνω εξίσωση έχει ρίζες στο διάστημα (2,3).
- ii. Δείξτε ότι στο ίδιο διάστημα, η ρίζα της συνάρτησης είναι μοναδική.
 - a. Εφαρμόζοντας το θεώρημα Rolle
 - b. Εφαρμόζοντας το θεώρημα μονοτονίας

Λύση:

i. Ορίσουμε τη συνάρτηση

$$f(x) = x^3 - 2x - 5.$$

Η f είναι πολυωνυμική, άρα συνεχής σε όλο το \mathbb{R} , και ειδικότερα στο διάστημα [2,3].

Υπολογίζουμε τα άχρα του διαστήματος:

$$f(2) = 2^3 - 2 \cdot 2 - 5 = 8 - 4 - 5 = -1,$$

$$f(3) = 3^3 - 2 \cdot 3 - 5 = 27 - 6 - 5 = 16.$$

Παρατηρούμε ότι

$$f(2) \cdot f(3) = (-1) \cdot 16 = -16 < 0.$$

Άρα, σύμφωνα με το Θεώρημα Ενδιάμεσης Τιμής (Bolzano), υπάρχει τουλάχιστον μία ρίζα της f(x)=0 στο διάστημα (2,3).

ii.

α. Αν υποθέσουμε ότι υπάρχουν δύο ρίζες $x_1,x_2\in(2,3)$ με $x_1< x_2$, τότε σύμφωνα με το Θεώρημα Rolle θα υπήρχε ένα $c\in(x_1,x_2)$ με f'(c)=0. Όμως, f'(x)>0 σε όλο το διάστημα, άτοπο. Άρα η ρίζα είναι μοναδιχή.

b.

$$f'(x) = 3x^2 - 2.$$

Στο διάστημα (2,3):

$$f'(x) = 3x^2 - 2 \ge 3 \cdot 2^2 - 2 = 12 - 2 = 10 > 0.$$

Άρα η συνάρτηση f είναι γνησίως αύξουσα στο διάστημα (2,3). Μια γνησίως αύξουσα συνάρτηση δεν μπορεί να έχει περισσότερες από μία ρίζα σε ένα διάστημα, άρα η ρίζα είναι μοναδιχή.

3. Να αποδείξετε ότι η εξίσωση $2 - \ln x = x^2$ έχει μοναδική λύση στο διάστημα (1,e).

Λύση:

Έλεγχος τιμών στα άχρα του διαστήματος

$$f(1) = 2 - \ln 1 - 1^2 = 2 - 0 - 1 = 1 > 0,$$

$$f(e) = 2 - \ln e - e^2 = 2 - 1 - e^2 = 1 - e^2 < 0.$$

Εφαρμογή Θεωρήματος Ενδιάμεσης Τιμής (Bolzano)

Η f(x) είναι συνεχής στο [1, e]. Επειδή

$$f(1) \cdot f(e) < 0,$$

σύμφωνα με το Θεώρημα Ενδιάμεσης Τιμής, υπάρχει τουλάχιστον μία ρίζα $x_0 \in (1,e)$.

Έλεγχος μονοτονίας για μοναδικότητα. Η παράγωγος της f(x) είναι

$$f'(x) = -\frac{1}{x} - 2x.$$

 Γ ια κάθε x>0 ισχύει

$$f'(x) < 0$$
 \Rightarrow $f(x)$ είναι γνησίως φθίνουσα στο $(1, e)$.

Άρα η ρίζα είναι μοναδική.

Θεώρημα Μέσης Τιμής

Αν μια συνάρτηση $f:[\alpha,\beta] \to \mathbb{R}$ είναι:

- συνεχής στο $[\alpha, \beta]$,
- παραγωγίσιμη στο (α, β) ,

τότε υπάρχει ένα τουλάχιστον $\xi \in (\alpha, \beta)$ τέτοιο ώστε:

$$f'(\xi) = \frac{f(\beta) - f(\alpha)}{\beta - \alpha}.$$

Κατηγορία - Μέθοδος 1

Απόδειξη ανισοτικών σχέσεων με τη βοήθεια του Θ.Μ.Τ.

- i. Διπλή ανισοτική σχέση
 - α. Μετατρέπουμε την ανισότητα σε

$$K < \frac{f(\beta) - f(\alpha)}{\beta - \alpha} < \Lambda$$

- b. Αναγνωρίζουμε τη συνάρτηση f και το διάστημα $[\alpha,\beta].$
- c. Εφαρμόζοντας το Θ.Μ.Τ. στο $[\alpha,\beta]$ οδηγούμαστε στην ύπαρξη κάποιου

$$\xi \in (\alpha, \beta): \quad f'(\xi) = \frac{f(\beta) - f(\alpha)}{\beta - \alpha}.$$

Οπότε αρχεί να δείξουμε ότι $K < f'(\xi) < \Lambda.$

Η ισχύς της τελευταίας ανίσωσης προχύπτει είτε από απλές πράξεις είτε με χρήση της μονοτονίας της f'.

1. Δείξτε ότι
$$1 + \frac{1}{e+1} < \ln(1+e) < 1 + \frac{1}{e}$$
.

Λύση:

Είναι

$$1 + \frac{1}{e+1} < \ln(1+e) < 1 + \frac{1}{e} \iff \frac{1}{e+1} < \ln(1+e) - 1 < \frac{1}{e} \iff \frac{1}{e+1} < \frac{\ln(1+e) - \ln e}{(1+e) - e} < \frac{1}{e}.$$

Θεωρούμε τη συνάρτηση $f(x) = \ln x, \ x \in [e, 1+e]$. Για την f ισχύουν οι προϋποθέσεις του Θ.Μ.Τ.

Οπότε υπάρχει $\xi \in (e, 1+e)$ με

$$f'(\xi) = \frac{f(1+e) - f(e)}{1 + e - e} \iff f'(\xi) = \frac{\ln(1+e) - 1}{1} \iff \frac{1}{\xi} = \ln(1+e) - 1.$$

Επειδή $\xi \in (e,1+e)$ είναι $0 < e < \xi < 1+e \iff \frac{1}{e} > \frac{1}{\xi} > \frac{1}{1+e}$

$$\iff \frac{1}{1+e} < \ln(1+e) - 1 < \frac{1}{e} \iff 1 + \frac{1}{1+e} < \ln(1+e) < 1 + \frac{1}{e}.$$

2. Για κάθε $\kappa > 0$ δείξτε ότι ισχύει η ανισότητα:

$$\frac{3\kappa}{5\sqrt[5]{\kappa^4}} + \sqrt[5]{\kappa} > \sqrt[5]{4\kappa}$$

Λύση:

Αρχεί να δείξουμε ότι:

$$\frac{3\kappa}{5\sqrt[5]{\kappa^4}} + \sqrt[5]{\kappa} > \sqrt[5]{4\kappa} \iff \frac{3\kappa}{5\sqrt[5]{\kappa^4}} > \sqrt[5]{4\kappa} - \sqrt[5]{\kappa} \iff \frac{1}{5\sqrt[5]{\kappa^4}} > \frac{\sqrt[5]{4\kappa} - \sqrt[5]{\kappa}}{3\kappa} \iff \frac{1}{5\sqrt[5]{\kappa^4}} > \frac{\sqrt[5]{4\kappa} - \sqrt[5]{\kappa}}{4\kappa - \kappa}.$$

Η συνάρτηση $f(x)=\sqrt[5]{x}$ είναι παραγωγίσιμη στο διάστημα $[\kappa,4\kappa]$ με $f'(x)=\frac{1}{5\sqrt[5]{x^4}}$.

Επομένως, από το Θ.Μ.Τ. υπάρχει $\xi \in (\kappa, 4\kappa)$ τέτοιο ώστε:

$$f'(\xi) = \frac{f(4\kappa) - f(\kappa)}{4\kappa - \kappa} \quad \Rightarrow \quad \frac{1}{5\sqrt[5]{\xi^4}} = \frac{\sqrt[5]{4\kappa} - \sqrt[5]{\kappa}}{4\kappa - \kappa}.$$
 (1)

Όμως, αφού $0 < \kappa < \xi < 4\kappa$, θα έχουμε:

$$\kappa^4 < \xi^4 \iff \sqrt[5]{\kappa^4} < \sqrt[5]{\xi^4} \iff \frac{1}{5\sqrt[5]{\kappa^4}} > \frac{1}{5\sqrt[5]{\xi^4}}.$$

Και από την (1) είναι:

$$\frac{1}{5\sqrt[5]{\kappa^4}} > \frac{\sqrt[5]{4\kappa} - \sqrt[5]{\kappa}}{4\kappa - \kappa}.$$

Άρα αποδείξαμε ότι

$$\frac{3\kappa}{5\sqrt[5]{\kappa^4}} + \sqrt[5]{\kappa} > \sqrt[5]{4\kappa}.$$

3. Με τη βοήθεια του θεωρήματος της μέσης τιμής, να δείξετε ότι:

$$1 + x < e^x < 1 + ex$$

για κάθε $x \in (0,1)$.

Λύση:

Θεωρούμε τη συνάρτηση $f(x)=e^x$ και εξετάζουμε τις προϋποθέσεις του θεωρήματος μέσης τιμής στο [0,x].

- 1. Η f είναι συνεχής στο [0,x]
- 2. Η f είναι παραγωγίσιμη στο (0,x) με $f'(x)=e^x$

Επομένως υπάρχει $\xi \in (0,x)$ ώστε:

$$f'(\xi) = \frac{f(x) - f(0)}{x - 0} \implies e^{\xi} = \frac{e^x - 1}{x}$$
 (1)

Ισχύει:

$$\xi \in (0, x): \quad 0 < \xi < x < 1 \quad \xrightarrow{e^x \text{ and } \xi \text{ ond } \alpha} \quad e^0 < e^\xi < e^x < e^1$$

$$1 < e^\xi < e$$

Χρησιμοποιώντας την εξίσωση (1):

$$1 < \frac{e^x - 1}{x} < e \implies x < e^x - 1 < xe \implies x + 1 < e^x < xe + 1$$

Κατηγορία - Μέθοδος 2

Ασχήσεις που ζητείται να δείξουμε ότι μια συνάρτηση είναι σταθερή, σ' ένα διάστημα Δ . Δ είχνουμε ότι είναι συνεχής σε διάστημα και για κάθε εσωτερικό σημείο του διαστήματος η παράγωγος υπάρχει και είναι μηδέν.

1. Δίνεται η συνάρτηση f παραγωγίσιμη στο $[0,+\infty)$ για την οποία ισχύει

$$f'(x)(x+10) = f(x), \quad x > 0.$$

- a. Δείξτε ότι η συνάρτηση $g(x)=\dfrac{f(x)}{x+10}$ είναι σταθερή στο $[0,+\infty).$
- b. Βρείτε τη συνάρτηση f εάν f(1) = 1.

Λύση:

a. Η g(x) είναι παραγωγίσιμη με

$$g'(x) = \frac{(x+10)f'(x) - f(x)}{(x+10)^2}.$$

Από την υπόθεση f'(x)(x+10)=f(x) προκύπτει g'(x)=0. Άρα $g(x)=c,\ c\in\mathbb{R}$.

b. Είναι
$$g(x)=c\iff \frac{f(x)}{x+10}=c\iff f(x)=c(x+10).$$
 Με $f(1)=1$ προχύπτει

$$1 = c(1+10) \implies c = \frac{1}{11}.$$

Άρα

$$f(x) = \frac{1}{11}(x+10), \quad x > 0.$$

Κατηγορία - Μέθοδος 3

Ασκήσεις στις οποίες ζητείται η ύπαρξη εφαπτομένων της γραφικής παράστασης της f.

- a. Οριζόντιας εφαπτομένης της f σε διάστημα $[\alpha, \beta]$.
- b. Εφαπτομένης που πληροί ορισμένες (γεωμετρικές) προϋποθέσεις.
- 1. Έστω η συνάρτηση $f(x) = \sin(\pi x) + ax^2 + \beta x$, όπου $a, \beta \in \mathbb{R}$, $x \in \mathbb{R}$ με $a + \beta = 1$ (1). Δείξτε ότι υπάρχει $x_0 \in (0,1)$ ώστε η εφαπτόμενη ευθεία της γραφικής παράστασης της f στο σημείο $M(x_0, f(x_0))$ να είναι κάθετη στην ευθεία $\varepsilon_1 : y + x = 3$.

Λύση:

Η f είναι συνεχής στο [0,1], παραγωγίσιμη στο (0,1). Αφού ισχύουν οι προϋποθέσεις του Θ.Μ.Τ. υπάρχει $x_0 \in (0,1)$ ώστε:

$$f'(x_0) = \frac{f(1) - f(0)}{1 - 0} \iff f'(x_0) = a + \beta \iff f'(x_0) = 1$$

Ο συντελεστής διεύθυνσης της ευθείας ε_1 είναι $\lambda_{\varepsilon_1}=-1$. Ισχύει $f'(x_0)\cdot\lambda_{\varepsilon_1}=1\cdot(-1)=-1$.

 Δ ηλαδή υπάρχει εφαπτόμενη ευθεία ε σε σημείο $M(x_0,f(x_0))$ της γραφικής παράστασης της f που είναι κάθετη στην ε_1 .

Κατηγορία - Μέθοδος 4

Εύρεση του τύπου συνάρτησης f(x) με την επίλυση εξίσωσης στην οποία υπάρχουν και η f(x)

1. Να βρεθεί συνάρτηση f για την οποία ισχύει $f'(x)(\kappa - x) = f(x), \ x \neq \kappa.$

Λύση:

Είναι:

$$f'(x)(\kappa - x) - f(x) = 0$$
 $f'(x)(\kappa - x) + (\kappa - x)'f(x) = 0$ $f'(x)(\kappa - x) = 0$.

Άρα η
$$g(x) = f(x)(\kappa - x) = c \iff f(x) = \frac{c}{\kappa - x}$$
, για κάθε $x \neq \kappa, \ c \in \mathbb{R}$.

Μονοτονία - Ακρότατα συνάρτησης

Θεώρημα

Αν μια συνάρτηση f είναι συνεχής σ' ένα διάστημα Δ , τότε:

 \mathbf{A} ν f'(x)>0 για κάθε x εσωτερικό του $\mathbf{\Delta}$, η f είναι **γνησίως αύξουσα** στο $\mathbf{\Delta}$.

Αν f'(x) < 0 για κάθε x εσωτερικό του Δ , η f είναι γνησίως φθίνουσα στο Δ .

Ορισμοί.

• Η συνάρτηση f λέγεται γνησίως αύξουσα σε ένα διάστημα Δ , αν για κάθε $x_1,x_2\in\Delta$ με $x_1< x_2$ ισχύει

$$f(x_1) < f(x_2).$$

• Η συνάρτηση f λέγεται γνησίως φθίνουσα σε ένα διάστημα Δ , αν για κάθε $x_1,x_2\in\Delta$ με $x_1< x_2$ ισχύει

$$f(x_1) > f(x_2).$$

Θεώρημα (Fermat)

Αν η συνάρτηση f είναι ορισμένη σε διάστημα Δ και παραγωγίσιμη σε εσωτερικό σημείο x_0 του Δ , στο οποίο παρουσιάζει τοπικό ακρότατο, τότε:

$$f'(x_0) = 0.$$

Ορισμός.

• Το x_0 λέγεται σημείο τοπικού μέγιστου της f αν υπάρχει διάστημα γύρω από το x_0 τέτοιο ώστε

$$f(x) \le f(x_0).$$

• Το x_0 λέγεται σημείο τοπικού ελαχίστου της f αν υπάρχει διάστημα γύρω από το x_0 τέτοιο ώστε

$$f(x) \ge f(x_0).$$

Κατηγορία - Μέθοδος 1

Για να προσδιορίσουμε τη μονοτονία και τα ακρότατα μιας συνάρτησης f.

- Βρίσκουμε την πρώτη παράγωγο f'(x).
- Θέτουμε την πρώτη παράγωγο f'(x)=0 (Θεώρημα Fermat).
- Κατασκευάζουμε το Πινακάκι Μονοτονίας.
- 1. Να μελετήσετε τις πιο κάτω συναρτήσεις ως προς τη μονοτονία και τα τοπικά ακρότατα:

i.
$$f(x) = -x^3 + 12x + 1, x \in \mathbb{R}$$

ii.
$$f(x) = x \ln x$$
, $x \in (0, \infty)$

Λύση:

i. Παράγωγος:

$$f'(x) = -3x^2 + 12 = -3(x-2)(x+2).$$

Συνθήκη ακρότατου (f'(x) = 0):

$$x = -2, 2.$$

Τιμές της συνάρτησης στα ακρότατα:

$$f(-2) = -(-2)^3 + 12(-2) + 1 = -15,$$

$$f(2) = -(2)^3 + 12(2) + 1 = 17.$$

Πίναχας μονοτονίας:

Συμπέρασμα:

Τοπικό ελάχιστο: x = -2, f(-2) = -15

Τοπικό μέγιστο: x=2, f(2)=17

ii. Παράγωγος:

$$f'(x) = \ln x + 1.$$

Συνθήκη ακρότατου (f'(x) = 0):

$$\ln x + 1 = 0 \quad \Longrightarrow \quad \ln x = -1 \quad \Longrightarrow \quad x = e^{-1} = \frac{1}{e}.$$

Τιμή της συνάρτησης στο αχρότατο:

$$f\left(\frac{1}{e}\right) = \frac{1}{e}\ln\left(\frac{1}{e}\right) = \frac{1}{e}\cdot(-1) = -\frac{1}{e}.$$

Πίνακας μονοτονίας:

$$\begin{array}{c|cccc} x & 0^+ & \frac{1}{e} & +\infty \\ \hline f'(x) & - & 0 & + \\ f(x) & \searrow & \min & \nearrow \end{array}$$

Η συνάρτηση έχει στο $x=\frac{1}{e}$ τοπικό και ολικό ελάχιστο με τιμή $f\left(\frac{1}{e}\right)=-\frac{1}{e}$. Να εξεταστεί η μονοτονία των συναρτήσεων:

2. Να βρείτε τα κρίσιμα σημεία της $f(x) = |x-1|, x \in \mathbb{R}$

Λύση:

Ο τύπος της συνάρτησης f γράφεται:

$$f(x) = \begin{cases} x - 1, & x \in [1, +\infty) \\ 1 - x, & x \in (-\infty, 1) \end{cases}$$

Η συνάρτηση f είναι συνεχής στο x=1, και συνεπώς σε όλο το \mathbb{R} , αφού:

$$\lim_{x \to 1^{-}} f(x) = \lim_{x \to 1^{+}} f(x) = f(1) = 0$$

Η συνάρτηση f δεν είναι παραγωγίσιμη στο x = 1, αφού:

$$\lim_{x \to 1^{-}} \frac{f(x) - f(0)}{x - 0} = -1 \neq 1 = \lim_{x \to 1^{+}} \frac{f(x) - f(0)}{x - 0}$$

Επομένως, η συνάρτηση f είναι παραγωγίσιμη στο $\mathbb{R} \setminus \{1\}$, με:

$$f'(x) = \begin{cases} 1, & x \in (1, +\infty) \\ -1, & x \in (-\infty, 1) \end{cases}$$

Άρα, είναι $f'(x) \neq 0$ για κάθε $x \in \mathbb{R} \setminus \{1\}$. Συνεπώς, έχουμε κρίσιμο σημείο, το x = 1.

Κατηγορία - Μέθοδος 2

Για να αποδείξουμε μια ανισότητα της μορφής:

$$f(x) \ge g(x)$$
 $\dot{\eta}$ $f(x) \le g(x)$

θέτουμε

$$h(x) = f(x) - q(x)$$

και από τη μονοτονία και τα ακρότατα της h προκύπτει η ισχύς της προς απόδειξη ανισότητας.

1. Να δείξετε ότι ισχύει η ανισότητα $e^x \geq 1+x, \ \ \forall x \in \mathbb{R}$ και να αναφέρετε πότε ισχύει η ισότητα.

Λύση:

Θεωρούμε τη συνάρτηση $f: \mathbb{R} \to \mathbb{R}$ με τύπο $f(x) = e^x - 1 - x$.

Η παράγωγος της f δίνεται από τον τύπο:

$$f'(x) = e^x - 1, \quad x \in \mathbb{R}$$

Είναι:

$$f'(x) = 0 \iff e^x - 1 = 0 \iff x = 0$$

Κατασκευάζουμε πίνακα προσήμου για την f'.

$$\begin{array}{c|cccc} x & -\infty & 0 & +\infty \\ \hline f'(x) & - & 0 & + \\ f(x) & \searrow & \min & \nearrow \end{array}$$

Από τον πιο πάνω πίναχα, παίρνουμε τις εξής πληροφορίες:

- H f είναι γνησίως φθίνουσα στο $(-\infty,0]$.
- Η f είναι γνησίως αύξουσα στο $[0, +\infty)$.
- Για x=0, έχουμε ολικό ελάχιστο, το f(0)=0.

Έτσι, καταλήγουμε στο συμπέρασμα ότι:

- $\forall x \in \mathbb{R} \{0\} : f(x) > 0 \iff e^x 1 x > 0 \iff e^x > 1 + x$
- Για x = 0 ισχύει: $f(x) = 0 \iff e^x = 1 + x$

Άρα, τελικά ισχύει ότι

$$e^x \ge 1 + x, \quad \forall x \in \mathbb{R}$$

με την ισότητα να ισχύει όταν x=0.

2. Να αποδείξετε ότι: $e^x \geq 1 - \ln(x+1)$, για κάθε $x \geq 0$

Λύση:

Θέτουμε

$$h(x) = e^x - 1 + \ln(x+1), \quad x \ge 0.$$

Έχουμε

$$h'(x) = (e^x - 1 + \ln(x+1))' = e^x + \frac{1}{x+1} > 0, \quad x \ge 0.$$

Άρα η συνάρτηση h είναι γνησίως αύξουσα στο $[0, +\infty)$.

Επομένως, για κάθε $x \ge 0$ ισχύει

$$h(x) \ge h(0) = 0 \iff e^x - 1 + \ln(x+1) \ge 0 \iff e^x \ge 1 - \ln(x+1).$$

Κατηγορία - Μέθοδος 3

Αν έχουμε ως προϋπόθεση ότι ισχύει μια ανισοτική σχέση όπως για παράδειγμα

$$f(x) \ge a \quad
multiple f(x) \le a$$

και θέλουμε να προσδιορίσουμε κάποια παράμετρο, βρίσκουμε x_0 τέτοιο ώστε

$$f(x_0) = a,$$

οπότε από τη σχέση $f(x) \ge a = f(x_0)$ ή $f(x) \le a = f(x_0)$ και σύμφωνα με το θεώρημα του Fermat, προκύπτει

$$f'(x_0) = 0.$$

Από την τελευταία εξίσωση προσδιορίζουμε την ζητούμενη παράμετρο.

1. Αν $a^x+5^x\geq 2$ για κάθε $x\in\mathbb{R}$ όπου a>0, να αποδείξετε ότι $a=\frac{1}{5}.$

Λύση:

Θεωρούμε τη συνάρτηση

$$f(x) = a^x + 5^x, \qquad x \in \mathbb{R}.$$

Οι όροι a^x και 5^x είναι συνεχείς και διαφορίσιμες σε $\mathbb R$, επομένως και f είναι συνεχής και διαφορίσιμη σε $\mathbb R$.

Από την υπόθεση έχουμε

$$f(x) \ge 2 = f(0)$$
 για κάθε $x \in \mathbb{R}$,

οπότε η f έχει ελάχιστο στη θέση x=0. Άρα, από την απαίτηση για ακρότατο (θεώρημα Fermat), ισχύει

$$f'(0) = 0.$$

Υπολογίζουμε την παράγωγο:

$$f'(x) = a^x \ln a + 5^x \ln 5,$$

και επομένως

$$f'(0) = a^0 \ln a + 5^0 \ln 5 = \ln a + \ln 5 = 0.$$

Απ' αυτό προκύπτει

$$\ln(a5) = 0 \iff a5 = 1 \iff a = \frac{1}{5}.$$

Αυτό έπρεπε να αποδειχθεί.

Κατηγορία - Μέθοδος 4

Όταν ζητείται τιμή μιας παραμέτρου ώστε μία συνάρτηση να παρουσιάζει f ακρότατο σε μια θέση, έστω x_0 , τότε σύμφωνα με το θεώρημα του Fermat πρέπει

$$f'(x_0) = 0.$$

Aπό τη συνθήκη αυτή και από τα υπόλοιπα δεδομένα προσδιορίζουμε την τιμή της παραμέτρου, λύνοντας το σύστημα εξισώσεων.

Προσοχή: Θα πρέπει με πινακάκι να επαληθευτεί!

1. Δίνεται η συνάρτηση $f(x) = \kappa x^2 + \lambda x + 3$, $x \in \mathbb{R}$, $\kappa, \lambda \in \mathbb{R}$. Αν η συνάρτηση f παρουσιάζει στο x = 1 τοπικό ακρότατο με τιμή -2, να υπολογίσετε τις τιμές των κ, λ και να προσδιορίσετε το είδος του ακροτάτου.

Λύση: Η παράγωγος της συνάρτησης είναι:

$$f'(x) = 2\kappa x + \lambda.$$

Για να υπάρχει ακρότατο στο x=1, πρέπει:

$$f'(1) = 2\kappa + \lambda = 0 \implies \lambda = -2\kappa.$$

Επιπλέον δίνεται ότι f(1) = -2:

$$f(1) = \kappa + \lambda + 3 = \kappa - 2\kappa + 3 = -\kappa + 3 = -2 \implies \kappa = 5.$$

Συνεπώς:

$$\lambda = -2 \cdot 5 = -10.$$

Η παράγωγος γίνεται:

$$f'(x) = 10x - 10 = 10(x - 1).$$

Πίνακας μονοτονίας:

$$\begin{array}{c|cccc} x & -\infty & 1 & +\infty \\ \hline f'(x) & - & 0 & + \\ f(x) & \searrow & \min & \nearrow \end{array}$$

Άρα, η συνάρτηση παρουσιάζει στο x=1 τοπικό (και ολικό) ελάχιστο με τιμή f(1)=-2.

2. Η συνάρτηση $f(x)=\kappa x^3+3x^2+2\lambda$, $x\in\mathbb{R}$, παρουσιάζει τοπικό ακρότατο στο x=-2, με f(-2)=0. Να υπολογίσετε τις τιμές των κ και λ και να χαρακτηρίσετε το είδος του ακρότατου στο x=-2.

Λύση:

Υπολογίζουμε την πρώτη παράγωγο:

$$f'(x) = 3\kappa x^2 + 6x$$

Για τοπικό ακρότατο στο x = -2:

$$f'(-2) = 0 \implies 3\kappa(-2)^2 + 6(-2) = 0$$
$$12\kappa - 12 = 0 \implies \kappa = 1$$

Χρησιμοποιούμε την τιμή της συνάρτησης στο ακρότατο:

$$f(-2) = \kappa(-2)^3 + 3(-2)^2 + 2\lambda = 0$$
$$-8 + 12 + 2\lambda = 0 \implies 2\lambda = -4 \implies \lambda = -2$$

Ελέγχουμε το είδος του αχρότατου χρησιμοποιώντας τη δεύτερη παράγωγο:

$$f''(x) = 6\kappa x + 6 = 6x + 6$$

$$f''(-2) = 6(-2) + 6 = -6 < 0$$

Πίνακας μονοτονίας:

$$\begin{array}{c|ccccc} x & -\infty & -2 & 0 & +\infty \\ \hline f'(x) & + & 0 & - & 0 & + \\ f(x) & \nearrow & TM & \searrow & TE & \nearrow \end{array}$$

Στο x=-2, παρουσιάζει τοπικό μέγιστο.

Κυρτότητα - Σημεία καμπής συνάρτησης

Θεώρημα

Αν μια συνάρτηση f είναι δύο φορές παραγωγίσιμη σ' ένα διάστημα Δ , τότε:

Αν f''(x) > 0 για κάθε x εσωτερικό του Δ , η f είναι κοίλη προς τα άνω) στο Δ . Αν f''(x) < 0 για κάθε x εσωτερικό του Δ , η f είναι κοίλη προς τα κάτω) στο Δ .

Θεώρημα (Σημεία Καμπής)

Έστω συνάρτηση f δύο φορές παραγωγίσιμη σε διάστημα Δ . Αν η f''(x) μεταβάλλει πρόσημο σε ένα σημείο $x_0 \in \Delta$, τότε το x_0 είναι σημείο καμπής της γραφικής παράστασης της f.

Ορισμός.

• Το σημείο $A(x_0, f(x_0))$ λέγεται σημείο καμπής της γραφικής παράστασης της f, όταν η f μεταβαίνει από κυρτή σε κοίλη ή αντίστροφα στο σημείο αυτό.

Κατηγορία - Μέθοδος 1

 Γ ια να προσδιορίσουμε τη κυρτότητα και τα σημεία καμπής μιας συνάρτησης f.

- Βρίσκουμε την δεύτερη παράγωγο f''(x).
- Θέτουμε την δεύτερη παράγωγο f''(x)=0 (Θεώρημα Fermat).
- Κατασκευάζουμε το Πινακάκι Κυρτότητας.

1. Να εξετάσετε ως προς την χυρτότητα και τα σημεία καμπής τη συνάρτηση f με τύπο:

$$f(x) = \ln\left(x^2 + 1\right)$$

Λύση:

Πρέπει $x^2+1>0$, που ισχύει για κάθε $x\in\mathbb{R}$. Άρα το πεδίο ορισμού της f είναι το \mathbb{R} .

Είναι:

$$f'(x) = \left(\ln(x^2 + 1)\right)' = \frac{1}{x^2 + 1}(x^2 + 1)' = \frac{2x}{x^2 + 1}$$

και

$$f''(x) = (f'(x))' = \left(\frac{2x}{x^2 + 1}\right)' = \frac{(2x)'(x^2 + 1) - 2x(x^2 + 1)'}{(x^2 + 1)^2} = \frac{2(x^2 + 1) - 2x \cdot 2x}{(x^2 + 1)^2}$$
$$= \frac{2x^2 + 2 - 4x^2}{(x^2 + 1)^2} = \frac{2 - 2x^2}{(x^2 + 1)^2} = \frac{2(1 - x^2)}{(x^2 + 1)^2}$$

Θα προσδιορίσουμε τις ρίζες της εξίσωσης f''(x) = 0.

Έχουμε
$$\frac{2(1-x^2)}{(x^2+1)^2} = 0 \iff 2(1-x^2) = 0 \iff 1-x^2 = 0 \iff 1=x^2 \iff x=\pm 1.$$

Άρα η f είναι κοίλη στο $(-\infty, -1]$, κυρτή στο [-1, 1] και κοίλη στο $[1, +\infty)$.

Σημεία καμπής είναι τα: (-1, f(-1)) και (1, f(1)), δηλαδή τα $(-1, \ln 2)$ και $(1, \ln 2)$.

2. Δίνεται η συνάρτηση f με τύπο:

$$f(x) = \begin{cases} x^3 + 6x^2 - 2, & x \le 1\\ x^3 - 9x^2 + 13, & x > 1 \end{cases}$$

Να μελετήσετε την f ως προς την κυρτότητα και τα σημεία καμπής.

Λύση:

Για
$$x < 1$$
 είναι $f'(x) = 3x^2 + 12x$

Για
$$x > 1$$
 είναι $f'(x) = 3x^2 - 18x$

Έλεγχος ύπαρξης παραγώγου στη θέση $x_0 = 1$:

$$\lim_{x \to 1^{-}} \frac{f(x) - f(1)}{x - 1} = \lim_{x \to 1^{-}} \frac{x^3 + 6x^2 - 2 - 5}{x - 1} = \lim_{x \to 1^{-}} \frac{x^3 + 6x^2 - 7}{x - 1}$$

$$\lim_{x \to 1^{-}} \frac{(x - 1)(x^2 + 7x + 7)}{x - 1} = \lim_{x \to 1^{-}} (x^2 + 7x + 7) = 15$$

χαι

$$\lim_{x \to 1^+} \frac{f(x) - f(1)}{x - 1} = \lim_{x \to 1^+} \frac{x^3 - 9x^2 + 13 - 5}{x - 1} = \lim_{x \to 1^+} \frac{x^3 - 9x^2 + 8}{x - 1} \left(\frac{0}{0}\right)$$
$$= \lim_{x \to 1^+} \frac{(x - 1)(x^2 - 8x - 8)}{x - 1} = \lim_{x \to 1^+} (x^2 - 8x - 8) = -15$$

Άρα η f δεν είναι παραγωγίσιμη στη θέση $x_0=1$ και η παράγωγος έχει τύπο:

$$f'(x) = \begin{cases} 3x^2 + 12x, & x < 1\\ 3x^2 - 18x, & x > 1 \end{cases}$$

Για την f''(x) έχουμε:

Για
$$x < 1$$
 είναι $f''(x) = (3x^2 + 12x)' = 6x + 12$
Για $x > 1$ είναι $f''(x) = (3x^2 - 18x)' = 6x - 18$

Άρα

$$f''(x) = \begin{cases} 6x + 12, & x < 1 \\ 6x - 18, & x > 1 \end{cases}$$

$$\frac{x -\infty -2}{f''(x) - 0 + \| - 0 + \|}$$

$$f(x) \cap \Sigma K \cup \Sigma K \cup$$

Άρα η f είναι κοίλη στο $(-\infty, -2]$, είναι κυρτή στο [-2, 1], είναι κοίλη στο [1, 3] και κυρτή στο $[3, +\infty)$. Σημεία καμπής έχει τα: (-2, f(-2)) ή (-2, 14) και στο (3, f(3)) ή (3, -41).

Προσοχή!

Στο $x_0 = 1$ δεν έχει σημείο καμπής γιατί δεν υπάρχει η f'(1) οπότε δεν ορίζεται εφαπτομένη.

Κατηγορία - Μέθοδος 2

Για να βρούμε τις τιμές μιας παραμέτρου a ώστε η f να είναι κυρτή ή κοίλη σε ένα διάστημα, τότε ΑΠΑΙΤΟΥΜΕ:

$$f''(x) \ge 0$$
 ή $f''(x) \le 0$ αντίστοιχα.

1. Έστω $f(x) = 2x^4 + 4ax^3 + 3(4a-3)x^2 + 1$. Να βρεθεί ο πραγματικός a ώστε η f να στρέφει τα κοίλα άνω στο $\mathbb R$.

Λύση

Η f(x), ως πολυωνυμική, είναι δύο φορές παραγωγίσιμη στο \mathbb{R} με:

$$f'(x) = 8x^3 + 12ax^2 + 6(4a - 3)x \quad \text{ an } \quad f''(x) = 24x^2 + 24ax + 6(4a - 3) \quad \Rightarrow \quad f''(x) = 6\left(4x^2 + 4ax + 4a - 3\right).$$

 Γ ια να είναι η f κυρτή στο \mathbb{R} , πρέπει:

$$f''(x) \ge 0$$
, για κάθε $x \in \mathbb{R}$.

 Δ ηλαδή:

$$4x^2 + 4ax + 4a - 3 > 0$$
, για κάθε $x \in \mathbb{R}$.

Επειδή είναι τριώνυμο, αρχεί να έχει διαχρίνουσα $\Delta_x \leq 0$, δηλαδή:

$$16a^2 - 16(4a - 3) \le 0 \iff a^2 - 4a + 3 \le 0 \iff 1 \le a \le 3.$$

Άρα πρέπει $a \in [1, 3]$.

Κατηγορία - Μέθοδος 3

Για να αποδείξουμε ότι μία συνάρτηση δεν έχει σημεία καμπής, αρκεί να αποδείξουμε ότι η f''(x) δεν αλλάζει πρόσημο.

1. Έστω $a \in \mathbb{R}$ και η συνάρτηση

$$f(x) = \frac{x^4}{3} + \frac{2ax^3}{3} + \left(a^2 - 2a + \frac{5}{2}\right)x^2 + (a^3 + 7)x - 5a^2.$$

Να αποδείξετε ότι η C_f δεν έχει σημεία καμπής.

Λύση

Η f(x) είναι πολυωνυμική, άρα δύο φορές παραγωγίσιμη στο $\mathbb R$ με:

$$f'(x) = \frac{4}{3}x^3 + 2ax^2 + 2\left(a^2 - 2a + \frac{5}{2}\right)x + a^3 + 7$$

και

$$f''(x) = 4x^2 + 4ax + 2\left(a^2 - 2a + \frac{5}{2}\right) \Leftrightarrow f''(x) = 4x^2 + 4ax + 2a^2 - 4a + 5.$$

Επειδή η f''(x) είναι πολυώνυμο δευτέρου βαθμού, το πρόσημό της εξαρτάται από τη διακρίνουσα:

$$\Delta_x = (4a)^2 - 16(2a^2 - 4a + 5) \Leftrightarrow \Delta_x = 16a^2 - 16(2a^2 - 4a + 5) \Leftrightarrow \Delta_x = -16(a^2 - 4a + 5).$$

Το τριώνυμο $a^2 - 4a + 5$ έχει διακρίνουσα

$$\Delta_a = (-4)^2 - 4 \cdot 1 \cdot 5 = 16 - 20 = -4 < 0,$$

οπότε είναι πάντοτε θετικό, δηλαδή $a^2-4a+5>0$. Άρα $\Delta_x<0$ για κάθε $a\in\mathbb{R}$, που σημαίνει ότι

$$f''(x) > 0$$
, για κάθε $x \in \mathbb{R}$.

Επομένως η f δεν έχει σημεία καμπής.

Κατηγορία - Μέθοδος 4

Προσδιορισμός παραμέτρων ώστε μία συνάρτηση να έχει σημείο καμπής στο x_0 .

1. Έστω $f(x)=2x^2+a\ln x+\beta$ με x>0. Να υπολογίσετε τα a,β ώστε η C_f να έχει σημείο καμπής το A(1,5).

Λύση

Είναι

$$f'(x) = 4x + \frac{a}{x}$$
 xa $f''(x) = 4 - \frac{a}{x^2}$.

Επειδή η f έχει σημείο καμπής στο $x_0=1$ και είναι δύο φορές παραγωγίσιμη στο $(0,+\infty)$, θα ισχύει:

$$f''(1) = 0 \iff 4 - \frac{a}{1} = 0 \iff a = 4$$

Επίσης είναι

$$f(1) = 5 \Leftrightarrow 2 + \beta = 5 \Leftrightarrow \beta = 3$$

Ασύμπτωτες

Κατηγορία - Κατακόρυφης Ασύμπτωτης

Κατακόρυφες ασύμπτωτες αναζητούμε στα σημεία x_0 που η f δεν είναι συνεχής και στα σημεία x_0 που είναι άκρα των διαστημάτων του πεδίου ορισμού της στα οποία η f δεν ορίζεται.

1. Έστω $f(x) = \frac{x+1}{x^2-1}$. Να προσδιορίσετε τις κατακόρυφες ασύμπτωτες της συνάρτησης f.

Λύση

Το πεδίο ορισμού της f είναι $A=\mathbb{R}-\{-1,1\}$. Άρα τις κατακόρυφες ασύμπτωτες θα τις αναζητήσουμε στις θέσεις $x_0=-1$ και $x_0=1$.

Για $x_0 = -1$ έχουμε:

$$\lim_{x \to -1} f(x) = \lim_{x \to -1} \frac{x+1}{x^2 - 1} = \lim_{x \to -1} \frac{x+1}{(x+1)(x-1)} = \lim_{x \to -1} \frac{1}{x-1} = \frac{1}{-2} = -\frac{1}{2}.$$

Οπότε η C_f δεν έχει κατακόρυφη ασύμπτωτη στο $x_0=-1$.

Για $x_0 = 1$ έχουμε:

$$\lim_{x \to 1} f(x) = \lim_{x \to 1} \frac{x+1}{x^2 - 1} = \lim_{x \to 1} \frac{x+1}{(x+1)(x-1)} = \lim_{x \to 1} \frac{1}{x-1},$$

με

$$\lim_{x \to 1^-} \frac{1}{x - 1} = -\infty \quad \text{ for } \quad \lim_{x \to 1^+} \frac{1}{x - 1} = +\infty.$$

Οπότε η C_f έχει κατακόρυφη ασύμπτωτη στο $x_0=1$, την ευθεία με εξίσωση:

$$x = 1$$
.

Κατηγορία - Οριζόντιας Ασύμπτωτης

 Γ ια να προσδιορίσουμε τις οριζόντιες ασύμπτωτες μιας συνάρτησης f, αρχεί να βρούμε τα όρια:

$$\lim_{x \to +\infty} f(x), \qquad \lim_{x \to -\infty} f(x)$$

(Αρχεί το πεδίο ορισμού της να έχει άχρο το $+\infty$ ή το $-\infty$).

Αν κάποιο από τα παραπάνω όρια είναι πραγματικός αριθμός, έστω k, τότε η ευθεία y=k είναι οριζόντια ασύμπτωτη της γραφικής παράστασης της συνάρτησης f στο $+\infty$ ή στο $-\infty$.

1. Να προσδιορίσετε τις οριζόντιες ασύμπτωτες των συναρτήσεων με τύπους:

i.
$$f(x) = \frac{2x^2 + 3x - 1}{x^2 - 1}$$

ii.
$$f(x) = \frac{e^x + 2}{e^x + 1}$$

Λύση

ί. Επειδή το

$$\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} \frac{2x^2}{x^2} = 2,$$

η C_f έχει οριζόντια ασύμπτωτη την ευθεία y=2 στο $+\infty$ και στο $-\infty$.

ii. Είναι

$$\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} \frac{e^x + 2}{e^x + 1} = \lim_{x \to +\infty} \frac{(e^x + 2)'}{(e^x + 1)'} = \lim_{x \to +\infty} \frac{e^x}{e^x} = \lim_{x \to +\infty} 1 = 1,$$

οπότε η C_f έχει οριζόντια ασύμπτωτη στο $+\infty$ την ευθεία y=1.

Επίσης είναι

$$\lim_{x \to -\infty} f(x) = \lim_{x \to -\infty} \frac{e^x + 2}{e^x + 1} = \frac{0 + 2}{0 + 1} = 2,$$

αφού $\lim_{x\to -\infty}e^x=0$, οπότε η C_f έχει οριζόντια ασύμπτωτη στο $-\infty$ την ευθεία y=2.

Κατηγορία - Πλάγιας Ασύμπτωτης

Για να βρούμε τις πλάγιες ασύμπτωτες της C_f στο $+\infty$, εφ' όσον το $+\infty$ είναι άκρο του πεδίου ορισμού της, κάνουμε τα εξής:

1. Υπολογίζουμε το όριο

$$\lim_{x \to +\infty} \frac{f(x)}{x} = \lambda.$$

Αν το λ δεν είναι πραγματικός αριθμός, τότε η C_f δεν έχει πλάγια ασύμπτωτη στο $+\infty$. Αν το λ είναι πραγματικός αριθμός, τότε:

2. Υπολογίζουμε το όριο

$$\lim_{x \to +\infty} \left[f(x) - \lambda x \right] = \beta.$$

Αν το β δεν είναι πραγματικός αριθμός, τότε η C_f δεν έχει πλάγια ασύμπτωτη στο $+\infty$. Αν το β είναι πραγματικός αριθμός, τότε η C_f έχει πλάγια ασύμπτωτη στο $+\infty$ την ευθεία με εξίσωση:

$$y = \lambda x + \beta$$
.

Με τον ίδιο τρόπο εξετάζουμε αν η C_f έχει πλάγια ασύμπτωτη στο $-\infty$, αν βεβαίως το $-\infty$ είναι άχρο του πεδίου ορισμού της.

1. Έστω $f(x) = \sqrt{x^2 - 25}$ με $x \in (-\infty, -5] \cup [5, +\infty)$. Να εξετάσετε αν η C_f έχει πλάγια ασύμπτωτη.

Λύση

 $\Sigma \tau o + \infty$.

$$\lim_{x \to +\infty} \frac{f(x)}{x} = \lim_{x \to +\infty} \frac{\sqrt{x^2 - 25}}{x} = \lim_{x \to +\infty} \sqrt{\frac{x^2}{x^2} \left(1 - \frac{25}{x^2}\right)} = \lim_{x \to +\infty} \sqrt{1 - \frac{25}{x^2}} = 1 = \lambda.$$

$$\lim_{x \to +\infty} [f(x) - \lambda x] = \lim_{x \to +\infty} \left(\sqrt{x^2 - 25} - x\right) = \lim_{x \to +\infty} \frac{(x^2 - 25) - x^2}{\sqrt{x^2 - 25} + x} = \lim_{x \to +\infty} \frac{-25}{\sqrt{x^2 - 25} + x} = 0 = \beta.$$

Άρα στο $+\infty$ η πλάγια ασύμπτωτη είναι $y=\lambda x+\beta=x$.

 $\Sigma \tau o - \infty$.

$$\lim_{x \to -\infty} \frac{f(x)}{x} = \lim_{x \to -\infty} \frac{\sqrt{x^2 - 25}}{x} = \lim_{x \to -\infty} \frac{|x|\sqrt{1 - \frac{25}{x^2}}}{x} = \lim_{x \to -\infty} \left(\frac{-x}{x}\right)\sqrt{1 - \frac{25}{x^2}} = -1 = \lambda.$$

$$\lim_{x \to -\infty} [f(x) - \lambda x] = \lim_{x \to -\infty} \left(\sqrt{x^2 - 25} + x \right) = \lim_{x \to -\infty} \frac{(x^2 - 25) - x^2}{\sqrt{x^2 - 25} - x} = \lim_{x \to -\infty} \frac{-25}{\sqrt{x^2 - 25} - x} = 0 = \beta.$$

Άρα στο $-\infty$ η πλάγια ασύμπτωτη είναι $y = \lambda x + \beta = -x$.

Συμπέρασμα: Η C_f έχει πλάγιες ασύμπτωτες y=x στο $+\infty$ και y=-x στο $-\infty$.

2. Έστω $f(x) = \frac{2x^2 - 5x + 7}{x - 1}$. Να δείξετε ότι η y = 2x - 3 είναι πλάγια ασύμπτωτη της C_f στο $+\infty$.

Λύση

Αρχεί να δείξουμε ότι:

$$\lim_{x \to +\infty} \left[f(x) - (2x - 3) \right] = 0.$$

Πράγματι:

$$\lim_{x \to +\infty} \left[\frac{2x^2 - 5x + 7}{x - 1} - (2x - 3) \right] = \lim_{x \to +\infty} \left(\frac{2x^2 - 5x + 7 - 2x(x - 1) + 3(x - 1)}{x - 1} \right)$$

$$= \lim_{x \to +\infty} \frac{2x^2 - 5x + 7 - 2x^2 + 2x + 3x - 3}{x - 1} = \lim_{x \to +\infty} \frac{4}{x - 1} = \lim_{x \to +\infty} \frac{4}{x} = 0.$$

Άρα η C_f έχει την y=2x-3 πλάγια ασύμπτωτη στο $+\infty$.

3. Έστω $f(x) = \frac{ax^2 - 13x + 6}{3x - 1}$ με $a \neq 0$. Να βρεθούν τα $a, \beta \in \mathbb{R}$ ώστε η C_f να έχει την $y = \beta x - 4$ με $\beta \neq 13$ πλάγια ασύμπτωτη στο $+\infty$.

Λύση

Ξέρουμε ότι

$$\lim_{x \to +\infty} \frac{f(x)}{x} = \beta \quad \text{for } \lim_{x \to +\infty} \left(f(x) - \beta x \right) = -4.$$

Άρα:

$$\lim_{x \to +\infty} \frac{f(x)}{x} = \lim_{x \to +\infty} \frac{ax^2 - 13x + 6}{3x^2 - x} = \lim_{x \to +\infty} \frac{ax^2}{3x^2} = \frac{a}{3}.$$

Έχουμε
$$\frac{a}{3} = \beta \iff a = 3\beta$$
 (1)

Επίσης

$$\lim_{x \to +\infty} (f(x) - \beta x) = \lim_{x \to +\infty} \left(\frac{ax^2 - 13x + 6}{3x - 1} - \beta x \right)$$
$$= \lim_{x \to +\infty} \left(\frac{3\beta x^2 - 13x + 6 - 3\beta x^2 + \beta x}{3x - 1} \right) = \lim_{x \to +\infty} \frac{x(\beta - 13) + 6}{3x - 1} = \frac{\beta - 13}{3}.$$

Από την υπόθεση:

$$\frac{\beta-13}{3}=-4 \ \Leftrightarrow \ \beta-13=-12 \ \Leftrightarrow \ \beta=1.$$

Άρα από τη σχέση (1) προκύπτει a=3.

Επομένως, a = 3 και $\beta = 1$.

Μελέτη και γραφική παράσταση συνάρτησης

Μεθοδολογία

Η διαδικασία με την οποία προσδιορίζουμε τα ιδιαίτερα χαρακτηριστικά μιας συνάρτησης ονομάζεται μελέτη συνάρτησης.

Αυτή συνίσταται στα εξής βασικά βήματα:

- 1. Προσδιορίζουμε το πεδίο ορισμού της y = f(x).
- **2.** Ελέγχουμε την περιοδικότητα της f και τις "συμμετρίες" της γραφικής παράστασης C_f .
- 3. Εξετάζουμε τη συνάρτηση ως προς τη συνέχεια.
- **4.** Προσδιορίζουμε τις f' και f'' και βρίσκουμε τα διαστήματα μονοτονίας της f, τα διαστήματα κυρτότητας, τα ακρότατα και τα σημεία καμπής.
- **5.** Υπολογίζουμε τα όρια στα άχρα όλων των ανοιχτών διαστημάτων του πεδίου ορισμού της f και προσδιορίζουμε τις ασύμπτωτες της γραφιχής παράστασης.
- **6.** Προσδιορίζουμε τα σημεία τομής της C_f με τους άξονες.
- 7. Κατασκευάζουμε τον πίνακα μεταβολών όπου σημειώνουμε το πρόσημο των f'(x) και f''(x) και τα όρια που υπολογίσαμε.
- 8. Με βάση τα παραπάνω κατασκευάζουμε προσεγγιστικά τη γραφική παράσταση της f.
- 1. Έστω η πραγματική συνάρτηση f με τύπο

$$f(x) = x - \frac{4}{x^2}.$$

Να βρεθούν: το πεδίο ορισμού, τα σημεία τομής με τους άξονες, τα διαστήματα μονοτονίας, τα τοπικά ακρότατα, οι ασύμπτωτες (αν υπάρχουν) και να παρασταθεί γραφικά.

Λύση:

Πεδίο ορισμού. Ο παρονομαστής δεν μηδενίζεται:

$$x \neq 0 \implies D_f = \mathbb{R} \setminus \{0\}.$$

 Σ ημεία τομής με άξονες.

- Με x': $f(x) = 0 \iff x \frac{4}{x^2} = 0 \iff x^3 4 = 0 \iff x = \sqrt[3]{4}$. Άρα σημείο $(\sqrt[3]{4}, 0)$.
- Με y': δεν υπάρχει, διότι x = 0 ∉ D_f.

Μονοτονία.

$$f'(x) = 1 + \frac{8}{x^3} = \frac{x^3 + 8}{x^3}.$$

Κρίσιμο σημείο: $f'(x) = 0 \iff x^3 + 8 = 0 \iff x = -2$.

Πίνακας Μεταβολών:

$$\begin{array}{c|ccccc} x & -\infty & -2 & 0 & +\infty \\ \hline f'(x) & + & 0 & - & || & + \\ f(x) & \nearrow & & \searrow & \nearrow \end{array}$$

Συμπέρασμα: η f είναι γνησίως αύξουσα στα $(-\infty, -2]$ και $(0, +\infty)$ και γνησίως φθίνουσα στο [-2, 0).

Ακρότατα. Στο x = -2:

$$f(-2) = -2 - \frac{4}{(-2)^2} = -2 - 1 = -3$$
 (τοπικό μέγιστο).

Ασύμπτωτες.

• Κατακόρυφη:

$$\lim_{x\to 0^-} \left(x-\frac{4}{x^2}\right) = -\infty, \qquad \lim_{x\to 0^+} \left(x-\frac{4}{x^2}\right) = -\infty.$$

Άρα x=0 είναι κατακόρυφη ασύμπτωτη.

• Οριζόντιες:

$$\lim_{x\to -\infty} f(x) = \lim_{x\to -\infty} \left(x - \frac{4}{x^2}\right) = -\infty, \qquad \lim_{x\to +\infty} f(x) = \lim_{x\to +\infty} \left(x - \frac{4}{x^2}\right) = +\infty,$$

άρα δεν υπάρχουν οριζόντιες ασύμπτωτες.

• Πλάγιες (1ος τρόπος):

$$\lim_{x\to\pm\infty}\frac{f(x)}{x}=\lim_{x\to\pm\infty}\biggl(1-\frac{4}{x^3}\biggr)=1,\qquad \lim_{x\to\pm\infty}\left(f(x)-x\right)=\lim_{x\to\pm\infty}\biggl(-\frac{4}{x^2}\biggr)=0.$$

Επομένως η ευθεία y=x είναι πλάγια ασύμπτωτη και για $x\to -\infty$ και για $x\to +\infty$.

• Πλάγιες (2ος τρόπος):

$$\lim_{x\to -\infty} \left(f(x)-x\right) = \lim_{x\to -\infty} \left(-\frac{4}{x^2}\right) = 0 \quad \Rightarrow \quad y = x \text{ transful } x\to -\infty,$$

$$\lim_{x\to +\infty} \left(f(x)-x\right) = \lim_{x\to +\infty} \left(-\frac{4}{x^2}\right) = 0 \quad \Rightarrow \quad y = x \text{ transful } x\to +\infty.$$

Συνοψίζοντας:

- $D_f = \mathbb{R} \setminus \{0\}.$
- Τομή με x': $(\sqrt[3]{4}, 0)$. Τομή με y': καμία.
- Μονοτονία: $(-\infty, -2]$ και $(0, +\infty)$ αύξουσα, [-2, 0) φθίνουσα.
- Τοπικό μέγιστο: (-2, -3).
- Κατακόρυφη ασύμπτωτη: x=0. Πλάγια ασύμπτωτη: y=x (και στα δύο άκρα). Οριζόντια: καμία.

