17. Supply the missing statements and reasons.

Given: $\overline{RS} \perp \overline{ST}$; $\overline{TU} \perp \overline{ST}$;

V is the midpoint of \overline{ST} .

Prove: $\triangle RSV \cong \triangle UTV$

Proof:

Statements		

1.
$$\overline{RS} \perp \overline{ST}$$
; $\overline{TU} \perp \overline{ST}$

2.
$$m \angle S = 90$$
; $m \angle \frac{?}{} = 90$

3.
$$\angle S \cong \angle T$$

4. V is the midpoint of
$$\overline{ST}$$
.

5.
$$\overline{SV} \cong \frac{?}{}$$

6.
$$\angle RVS \cong \angle \frac{?}{}$$

Write proofs in two-column form.

B 18. Given: $\overline{TM} \cong \overline{PR}$; $\overline{TM} \parallel \overline{RP}$ Prove: $\triangle TEM \cong \triangle PER$

19. Given: E is the midpoint of \overline{TP} ;
E is the midpoint of \overline{MR} .

Prove: $\triangle TEM \cong \triangle PER$

20. Given: Plane M bisects \overline{AB} ; $\overline{PA} \cong \overline{PB}$

Prove: $\triangle POA \cong \triangle POB$

21. Given: Plane M bisects \overline{AB} ; $\overline{PO} \perp \overline{AB}$

Prove: $\triangle POA \cong \triangle POB$

Draw and label a diagram. List, in terms of the diagram, what is given and what is to be proved. Then write a two-column proof.

- 22. In an isosceles triangle, if the angle between the congruent sides is bisected, then two congruent triangles are formed.
- 23. In an isosceles triangle, if a segment is drawn from the vertex of the angle between the congruent sides to the midpoint of the opposite side, then congruent triangles are formed.
- 24. If a line perpendicular to \overline{AB} passes through the midpoint of \overline{AB} , and segments are drawn from any other point on that line to A and B, then two congruent triangles are formed.
- 25. If pentagon \overline{ABCDE} is equilateral and has right angles at B and E, then diagonals \overline{AC} and \overline{AD} form congruent triangles.