MATH 321 WEEK 2 CLAIMED PROBLEM SOLUTIONS

- **1.2.12.** Let $y_1 = 6$, and for each $n \in \mathbb{N}$ define $y_{n+1} = (2y_n 6)/3$.
- (1) Use induction to prove that the sequence satisfies $y_n > -6$ for all $n \in \mathbb{N}$.
 - (a) **Base case:** $y_1 = 6 > -6$.
 - (b) Inductive step. Suppose that $y_n > -6$. Then

$$y_{n+1} = \frac{2y_n - 6}{3} > \frac{2(-6) - 6}{3} = \frac{-18}{3} = -6$$

as desired.

- (2) Use another induction argument to show the sequence $(y_1, y_2, y_3, ...)$ is decreasing.
 - (a) **Base case:** we note that $y_2 = (2 \times 6 6)/3 = 2$, and hence that $y_1 = 6 > y_2$.
 - (b) Inductive step: Suppose that $y_n > y_{n+1}$. Then

$$y_{n+2} = \frac{2y_{n+1} - 6}{3} > \frac{2y_n - 6}{3} = y_{n+1}$$

where the inequality is by the induction assumption.

- 1.3.8. Compute, without proofs, the suprema and infima of the following sets.
 - (1) $\sup = 1$, $\inf = 0$
 - (2) $\sup = 1$, $\inf = -1$
 - (3) $\sup = \frac{1}{3}$, $\inf = 0$ (or $\frac{1}{4}$ if you don't believe that $0 \in \mathbb{N}$) (4) $\sup = 1$, $\inf = 0$