# Regression

Sibylle Hess



1

# Informal Problem Description

## Example for Regression: Prediction of House Prices



#### The Boston House Prices Dataset

The Boston house prices dataset has 12 features and a target variable y describing the average price in a neighborhood in 1000\$.

| ID | RM  | LSTAT |   | У    |
|----|-----|-------|---|------|
| 1  | 6.5 | 4.98  |   | 24.0 |
| 2  | 6.4 | 9.14  |   | 21.6 |
| 3  | 7.2 | 4.03  |   | 34.7 |
| :  | :   | :     | : | :    |
|    |     |       |   |      |

Particularly relevant for prediction are the features RM, denoting the average number of rooms in houses in a neighborhood and LSTAT, describing the percentage of homeowners considered as lower class.

#### How can we Predict the Price of a House?



# The Data Representation for Regression Problems

| ID | F <sub>1</sub> | F <sub>2</sub> |   | $F_d$    | у                     |
|----|----------------|----------------|---|----------|-----------------------|
| 1  | $D_{11}$       | $D_{12}$       |   | $D_{1d}$ | <i>y</i> <sub>1</sub> |
| 2  | $D_{21}$       | $D_{22}$       |   | $D_{2d}$ | <i>y</i> <sub>2</sub> |
| :  | :              | :              | : |          | :                     |
| n  | $D_{n1}$       | $D_{n2}$       |   | $D_{nd}$ | Уn                    |

The goal is to predict target y given a feature vector  $\mathbf{x}$  by means of a function

$$f(\mathbf{x}) \approx y$$

2

# Derive the Formal Problem Definition

# Formalizing the Regression Task

Given a dataset consisting of n observations

$$\mathcal{D} = \left\{ (D_{i\cdot}, y_i) | D_{i\cdot} \in \mathbb{R}^{1 \times d}, y_i \in \mathbb{R}, 1 \leq i \leq n \right\}$$

Find  $f: \mathbb{R}^d \to \mathbb{R}$ ,  $f \in \mathcal{F}$  such that  $f(D_i^\top) \approx y_i$  for all  $1 \leq i \leq n$ 

The underlying assumption is that every observation  $(D_i, y_i)$  is generated by the true model function  $f^*$  and noise:

$$y_i = f^*(D_{i\cdot}^\top) + \epsilon_i$$

Okay, so regression is to find a function which fits the (noisy) function values we know from the data.

# Two questions arise:

What kind of functions are we looking for?

What does fit actually mean?

#### **Function Families**



## Affine Functions in Two Dimensions (d=1)



$$f: \mathbb{R} \to \mathbb{R}$$

$$f(x) = \beta_1 x + \beta_0$$

$$= (1 \quad x) \begin{pmatrix} \beta_0 \\ \beta_1 \end{pmatrix}$$

$$= \phi(x)^{\top} \beta \qquad \text{(inner product)}$$

where 
$$\phi(x) = \begin{pmatrix} 1 \\ x \end{pmatrix}, oldsymbol{eta} \in \mathbb{R}^2$$

# Affine Functions in Three Dimensions (d=2)



$$f: \mathbb{R}^2 \to \mathbb{R}$$

$$f(\mathbf{x}) = \beta_2 x_2 + \beta_1 x_1 + \beta_0$$

$$= \begin{pmatrix} 1 & x_1 & x_2 \end{pmatrix} \begin{pmatrix} \beta_0 \\ \beta_1 \\ \beta_2 \end{pmatrix}$$

$$= \phi(\mathbf{x})^{\top} \boldsymbol{\beta}, \text{ where}$$

$$\phi(\mathbf{x}) = \begin{pmatrix} 1 \\ x_1 \\ x_2 \end{pmatrix}, \boldsymbol{\beta} \in \mathbb{R}^3$$

Generalization for affine functions:

$$\phi_{\mathit{aff}}(\mathbf{x}) = egin{pmatrix} 1 \ \mathbf{x} \end{pmatrix} \in \mathbb{R}^{d+1}$$

#### **Function Classes**

Affine functions:

$$\mathcal{F}_{\mathit{aff}} = \left\{ \mathit{f} : \mathbb{R}^d 
ightarrow \mathbb{R}, \mathit{f}(\mathbf{x}) = \phi_{\mathit{aff}}(\mathbf{x})^ op eta ig| oldsymbol{eta} \in \mathbb{R}^{d+1} 
ight\}$$

# Polynomials of Degree k=2 (d=1)



 $f: \mathbb{R} \to \mathbb{R}$ 

$$f(x) = a(x - b)^{2} + c$$

$$= ax^{2} - 2abx + ab^{2} + c$$

$$= \beta_{2}x^{2} + \beta_{1}x + \beta_{0}$$

$$= (1 \quad x \quad x^{2}) \begin{pmatrix} \beta_{0} \\ \beta_{1} \\ \beta_{2} \end{pmatrix}$$

$$= \phi(x)^{T} \beta, \text{ where}$$

$$\phi(x) = \begin{pmatrix} 1 \\ x \\ x^{2} \end{pmatrix}, \beta \in \mathbb{R}^{3}$$

# Polynomials of Degree k (d=1)



$$f \colon \mathbb{R} \to \mathbb{R}$$

$$f(x) = \beta_k x^k + \ldots + \beta_1 x + \beta_0$$

$$= \begin{pmatrix} 1 & \ldots & x^k \end{pmatrix} \begin{pmatrix} \beta_0 \\ \vdots \\ \beta_k \end{pmatrix}$$

$$= \phi(x)^\top \beta, \text{ where}$$

$$\phi(x) = \begin{pmatrix} 1 \\ x \\ \vdots \\ k \end{pmatrix}, \beta \in \mathbb{R}^{k+1}$$

## Multivariate Polynomials of Degree k (d=2)

$$f\colon \mathbb{R}^2 o \mathbb{R}$$



$$f(\mathbf{x}) = \sum_{i_1=0}^{k} \sum_{i_2=0}^{k} \beta_{i_1 i_2} x_1^{i_1} x_2^{i_2}$$

$$= \underbrace{\left(1 \quad \dots \quad x_1^k x_2^{k-1} \quad x_1^k x_2^k\right)}_{=:\phi(\mathbf{x})^\top} \begin{pmatrix} \beta_{00} \\ \vdots \\ \beta_{k(k-1)} \\ \beta_{kk} \end{pmatrix}$$

$$=\phi(\mathbf{x})^{ op}oldsymbol{eta}$$
, where  $\phi(\mathbf{x}),oldsymbol{eta}\in\mathbb{R}^{(k+1)^2}$ .

Generalization for polynomials of degree *k*:

$$\phi_{pk}(\mathbf{x}) \in \mathbb{R}^{(k+1)^d}, \text{ for } \mathbf{x} \in \mathbb{R}^d$$



#### **Function Classes**

Affine functions:

$$\mathcal{F}_{\mathit{aff}} = \left\{ \mathit{f} : \mathbb{R}^d o \mathbb{R}, \mathit{f}(\mathbf{x}) = \phi_{\mathit{aff}}(\mathbf{x})^ op eta \middle| oldsymbol{eta} \in \mathbb{R}^{d+1} 
ight\}$$

2 Polynomials of degree *k*:

$$\mathcal{F}_{pk} = \left\{ f \colon \mathbb{R}^d o \mathbb{R}, f(\mathsf{x}) = \phi_{pk}(\mathsf{x})^ op eta \middle| eta \in \mathbb{R}^{(k+1)^d} 
ight\}$$

#### The Gaussian Function



$$\frac{---\exp(-(x-1)^2)}{---\exp(-4(x-1)^2)}$$

$$\kappa(\mathbf{x}) = \exp\left(-\gamma \|\mathbf{x} - \boldsymbol{\mu}\|^2\right)$$



#### Local Gaussian Radial Basis Functions



$$f: \mathbb{R} \to \mathbb{R}$$

$$f(x) = \sum_{i=1}^{k} \beta_i \exp\left(-\frac{\|x - \mu_i\|^2}{2\sigma^2}\right)$$
$$= (\kappa_1(x) \dots \kappa_k(x)) \begin{pmatrix} \beta_1 \\ \vdots \\ \beta_k \end{pmatrix}$$
$$= \phi(x)^{\top} \beta, \text{ where } \phi(x), \beta \in \mathbb{R}^k$$

Generalization for the sum of *k* Gaussians:

$$\phi_{Gk}(\mathbf{x}) = \left(\exp(-\gamma \|\mathbf{x} - \boldsymbol{\mu}_1\|^2) \dots \exp(-\gamma \|\mathbf{x} - \boldsymbol{\mu}_k\|^2)\right)$$

#### **Function Classes**

1 Affine functions:

$$\mathcal{F}_{\mathit{aff}} = \left\{ \mathit{f} : \mathbb{R}^d o \mathbb{R}, \mathit{f}(\mathbf{x}) = \phi_{\mathit{aff}}(\mathbf{x})^ op eta \middle| oldsymbol{eta} \in \mathbb{R}^{d+1} 
ight\}$$

2 Polynomials of degree *k*:

$$\mathcal{F}_{pk} = \left\{ f \colon \mathbb{R}^d o \mathbb{R}, f(\mathbf{x}) = \phi_{pk}(\mathbf{x})^{ op} eta \middle| oldsymbol{eta} \in \mathbb{R}^{(k+1)^d} 
ight\}$$

3 Sum of k Gaussians:

$$\mathcal{F}_{Gk} = \left\{ f \colon \mathbb{R}^d o \mathbb{R}, f(\mathbf{x}) = \phi_{Gk}(\mathbf{x})^{\top} \boldsymbol{\beta} \middle| \boldsymbol{\beta} \in \mathbb{R}^k \right\}$$

Ok, so we know now of three function families which we can use to fit our model...

# But how do we fit our model?

# Minimize the Residual Sum of Squares

# Measuring the Fit of a Function



# The Residual Sum of Squares

We want to minimize the approximation error of our function f to the target values y:

$$RSS(\beta) = \sum_{i=1}^{n} (y_i - f(D_i))^2$$
$$= \sum_{i=1}^{n} (y_i - \phi(D_i^{\top})^{\top}\beta)^2$$
$$= \sum_{i=1}^{n} (y_i - X_i\beta)^2$$
$$= \|\mathbf{y} - X\beta\|^2.$$

The function  $RSS(\beta)$  is known as the Residual Sum of Squares.

## The Design Matrix

Our function class is given for a specified basis function  $\phi$  as:

$$\mathcal{F} = \{f \colon \mathbb{R}^d o \mathbb{R}, f(\mathbf{x}) = \phi(\mathbf{x})^{\top} \boldsymbol{\beta} | \boldsymbol{\beta} \in \mathbb{R}^p \}.$$

We gather the (transformed) feature vectors  $\phi(D_i^{\top})$  in the design matrix X and the target values in the vector  $\mathbf{y}$ :

$$X = \begin{pmatrix} -- & \phi(D_{1\cdot}^{\top})^{\top} & -- \\ & \vdots & \\ -- & \phi(D_{n\cdot}^{\top})^{\top} & -- \end{pmatrix} \in \mathbb{R}^{n \times p}, \quad \mathbf{y} = \begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix} \in \mathbb{R}^n$$

# The Regression Task

Given a dataset consisting of n observations

$$\mathcal{D} = \left\{ (D_i, y_i) | D_i \in \mathbb{R}^{1 \times d}, y_i \in \mathbb{R}, 1 \leq i \leq n \right\}$$

Choose a basis function  $\phi: \mathbb{R}^d \to \mathbb{R}^p$ , and create the design matrix  $X \in \mathbb{R}^{n \times p}$ , where  $X_{i\cdot} = \phi(D_{i\cdot}^\top)^\top$ 

Find the regression vector  $\beta$ , solving following objective

$$\min_{oldsymbol{eta}} \mathit{RSS}(oldsymbol{eta}) = \|\mathbf{y} - Xoldsymbol{eta}\|^2 \qquad \qquad \text{s.t. } oldsymbol{eta} \in \mathbb{R}^p.$$

Return the predictor function  $f: \mathbb{R}^d \to \mathbb{R}$ ,  $f(\mathbf{x}) = \phi(\mathbf{x})^\top \beta$ .

3

# Optimization

#### The RSS is a Convex Function

#### Theorem

The function  $RSS(\beta) = \|\mathbf{y} - X\beta\|^2$  is convex.

*Proof (Sketch):* We show that the squared  $L_2$ -norm  $\|\cdot\|^2$  is a convex function.

The composition of the affine function  $g(\beta) = \mathbf{y} - X\beta$  with the convex function  $\|\cdot\|^2$ , given by the  $RSS(\beta) = \|g(\beta)\|^2$  is then also convex.

### Regression is a Convex Optimization Problem

The optimization problem

$$\min_{\beta} \, \mathit{RSS}(\beta)$$

s.t. 
$$\boldsymbol{\beta} \in \mathbb{R}^p$$

is convex:

- $1 RSS(\alpha\beta_1 + (1-\alpha)\beta_2) \le \alpha RSS(\beta_1) + (1-\alpha)RSS(\beta_2)$  for every  $\alpha \in [0,1], \ \beta_1, \beta_2 \in \mathbb{R}^p$
- $\mathbb{R}^p$  is convex.

So, we have an unconstrained optimization problem with a smooth objective function. How do we solve this problem?

With FONC!

### Solving the Regression Problem

We compute the stationary points, setting the gradient to zero.

$$RSS(\beta) = \|\mathbf{y} - X\beta\|^2$$
  $\nabla_{\beta}RSS(\beta) = -2X^{\top}(\mathbf{y} - X\beta)$ 

$$-2(X^{\top}(\mathbf{y} - X\beta)) = 0 \Leftrightarrow X^{\top}X\beta = X^{\top}\mathbf{y}$$

According to FONC the set of possible minimizers of the regression problem are given by the set of regression vectors

$$\{\boldsymbol{\beta} \in \mathbb{R}^p \mid \boldsymbol{X}^\top \boldsymbol{X} \boldsymbol{\beta} = \boldsymbol{X}^\top \mathbf{y}\}.$$

Since RSS is convex, all stationary points are global minima.

### Regression Minimizers

The global minimizers of the regression problem are given by

$$\{\boldsymbol{\beta} \in \mathbb{R}^p \mid \boldsymbol{X}^\top \boldsymbol{X} \boldsymbol{\beta} = \boldsymbol{X}^\top \mathbf{y}\}.$$

If the matrix  $X^TX$  is invertible, then there is only one minimizer:

$$\boldsymbol{\beta} = (X^{\top}X)^{-1}X^{\top}\mathbf{y}$$



However, there also might be infinitely many global minimizers of  $RSS(\beta)$ .

So, if I have a regression problem, then I choose a basis function and determine the solution by solving that system of linear equations.

# But how do I know if I chose a good basis function?

Bias-Variance Tradeoff

3

## **Evaluation**

## Finding the Right Basis Function

Assume we want to approximate the true function  $f^*$  with polynomials of degree k:



What is the best k?



#### Evaluate on a Test Set

If the model assumption is correct then the regression model should be able to predict y for unobserved  $\mathbf{x}$ .

Idea: Hold out a test set, indicated by  $\mathcal{I} \subseteq \{1, \dots n\}$  from the n training data points and compute the error on the test data.

The Mean Squared Error (MSE) returns the average squared prediction error:

$$MSE(\beta, \mathcal{I}) = \frac{1}{|\mathcal{I}|} \sum_{i \in \mathcal{I}} (y_i - \phi(D_{i \cdot}^\top)^\top \beta)^2$$

## Computing the MSE on a Test Set



So, the best k is k = 15??



Ok, what did just happen? Can that happen often? How can I make my evaluation reliable?

## Selecting the Best Model in Theory: Minimizing EPE

In theory, the MSE results from the following process:

- sample the (finite) training data  $\mathcal{D}_j \subset \mathbb{R}^{1 \times d} \times \mathbb{R}$
- lacksquare learn a model  $f_j(\mathbf{x}) = \phi(\mathbf{x})^{ op} eta_j$  based on the training data,
- lacksquare sample a (finite) test set  $\mathcal{T}_j \subset \mathbb{R}^{1 \times d} imes \mathbb{R}$
- compute MSE<sub>j</sub>

If we repeat this sampling process k times, obtaining scores  $MSE_1, \ldots, MSE_k$ , we could approximate the Expected squared Prediction Error (EPE)

$$\frac{1}{k}\sum_{j=1}^{k} MSE_{j} = \frac{1}{k}\sum_{j=1}^{k} \frac{1}{|\mathcal{T}_{j}|} \sum_{(\mathbf{x}, \mathbf{y}) \in \mathcal{T}_{j}} (\mathbf{y} - f_{j}(\mathbf{x}))^{2} \approx \mathbb{E}_{\mathbf{x}, \mathbf{y}, \mathcal{D}}[(\mathbf{y} - f_{\mathcal{D}}(\mathbf{x}))^{2}].$$

#### The Random Variables of EPE

EPE has three random variables:

$$\mathbb{E}_{\mathbf{x},y,\mathcal{D}}[(y-f_{\mathcal{D}}(\mathbf{x}))^2],$$

#### where

- **x** is the random variable of a feature vector in the test set.
- $\mathbf{y}$  is the random variable of the target of  $\mathbf{x}$ .
- lacksquare D is the random variable of the training data.

## Interpreting Targets are Samples of a Random Variable

Assumption: the process generating the *i*-th (noisy) target is

$$y_i = f^*(D_{i\cdot}) + \epsilon_i,$$

where  $f^*$  is the true regression function and  $\epsilon_i$  is a sample of a random variable  $\epsilon$  with mean  $\mu=0$  and variance  $\sigma^2$ .

As a result, the targets are samples of the random variable  $y = f^*(\mathbf{x}) + \epsilon$  such that

$$\mathbb{E}_{\mathbf{v}}[\mathbf{y}|\mathbf{x}] = f^*(\mathbf{x}) \qquad Var_{\mathbf{v}}(\mathbf{y}|\mathbf{x}) = \mathbb{E}_{\mathbf{v}}[(\mathbf{y} - f^*(\mathbf{x}))^2|\mathbf{x}] = \sigma^2$$

## Sampling Training Data With Gaussian Noise: Effect of $\sigma$

For example, one-dimensional training and test data points could be sampled by the process

- **1** Sample  $x_i \in [0,1]$  for  $1 \le i \le n$
- **2** Sample  $\epsilon_i$  from  $\mathcal{N}(0, \sigma^2)$
- $\mathbf{3} \; \mathsf{Set} \; y_i = f^*(x_i) + \epsilon_i$



#### The Bias-Variance Tradeoff

$$\mathbb{E}_{\mathbf{x},y,\mathcal{D}}[(y-f_{\mathcal{D}}(\mathbf{x}))^2] = \mathbb{E}_{\mathbf{x}}[\mathbb{E}_{y,\mathcal{D}}[(y-f_{\mathcal{D}}(\mathbf{x}))^2|\mathbf{x}]]$$

We fix the random variable  $\mathbf{x}$  to a value  $\mathbf{x}_0$  and get

$$\mathbb{E}_{y,\mathcal{D}}[(y - f_{\mathcal{D}}(\mathbf{x}_0))^2] = \sigma^2 + \underbrace{(f^*(\mathbf{x}_0) - \mathbb{E}_{\mathcal{D}}[f_{\mathcal{D}}(\mathbf{x}_0)])^2}_{bias^2} + \underbrace{\mathbb{E}_{\mathcal{D}}[(\mathbb{E}_{\mathcal{D}}[f_{\mathcal{D}}(\mathbf{x}_0)] - f_{\mathcal{D}}(\mathbf{x}_0))^2]}_{variance}$$

Hence, the expected squared prediction error is minimized for functions having a low variance and low bias.

#### Bias and Variance of Models



The red lines are the regression functions trained on three training data sets.



## Selecting the Best Model in Practice: Cross-Validation

k-fold CV: divide the data set into k disjunctive chunks indicated by

$$\{1,\ldots,n\}=\mathcal{I}=\mathcal{I}_1\cup\ldots\cup\mathcal{I}_k,\;\mathcal{I}_j\cap\mathcal{I}_l=\emptyset\;\text{for}\;j\neq I$$

Train k models where model  $f_j(\mathbf{x}) = \phi(\mathbf{x})^{\top} \beta_j$  is trained on the datapoints  $\mathcal{I} \setminus \mathcal{I}_j$  and evaluated on the datapoints  $\mathcal{I}_j$ .

The cross-validation MSE is then given as

$$\frac{1}{k} \sum_{j=1}^{k} MSE(\beta_{j}, \mathcal{I}_{j}) = \frac{1}{k} \sum_{j=1}^{k} \frac{1}{|\mathcal{I}_{j}|} \sum_{i \in \mathcal{I}_{j}} (y_{i} - f_{j}(D_{i}))^{2}$$

Question: Is the cross-validation MSE in general a good approximation of EPE?

## Selecting the Best Model in Practice: Cross-Validation

k-fold CV: divide the data set into k disjunctive chunks indicated by

$$\{1,\ldots,n\}=\mathcal{I}=\mathcal{I}_1\cup\ldots\cup\mathcal{I}_k,\;\mathcal{I}_j\cap\mathcal{I}_l=\emptyset\;\text{for}\;j\neq I$$

Train k models where model  $f_j(\mathbf{x}) = \phi(\mathbf{x})^{\top} \beta_j$  is trained on the datapoints  $\mathcal{I} \setminus \mathcal{I}_j$  and evaluated on the datapoints  $\mathcal{I}_j$ .

The cross-validation MSE is then given as

$$\frac{1}{k} \sum_{j=1}^{k} MSE(\beta_{j}, \mathcal{I}_{j}) = \frac{1}{k} \sum_{j=1}^{k} \frac{1}{|\mathcal{I}_{j}|} \sum_{i \in \mathcal{I}_{j}} (y_{i} - f_{j}(D_{i \cdot}))^{2}$$

Question: Is the cross-validation MSE in general a good approximation of EPE?

## Selecting the Best Model in Practice: Cross-Validation

k-fold CV: divide the data set into k disjunctive chunks indicated by

$$\{1,\ldots,n\}=\mathcal{I}=\mathcal{I}_1\cup\ldots\cup\mathcal{I}_k,\;\mathcal{I}_j\cap\mathcal{I}_l=\emptyset\; \text{for}\; j
eq I$$

Train k models where model  $f_j(\mathbf{x}) = \phi(\mathbf{x})^{\top} \beta_j$  is trained on the datapoints  $\mathcal{I} \setminus \mathcal{I}_j$  and evaluated on the datapoints  $\mathcal{I}_j$ .

The cross-validation MSE is then given as

$$\frac{1}{k}\sum_{j=1}^{k} MSE(\beta_j, \mathcal{I}_j) = \frac{1}{k}\sum_{j=1}^{k} \frac{1}{|\mathcal{I}_j|}\sum_{i \in \mathcal{I}_j} (y_i - f_j(D_i))^2$$

Question: Is the cross-validation MSE in general a good approximation of EPE?

### A 3-fold CV for training a Polynomial with k = 15



The 3-fold CV-MSE is the given as  $\frac{1}{3}(0.02 + 195 + 533) = 242.7$ 

## The

# Bias-Variance Tradeoff

is a Theoretic Measure of

# Over- and Underfit

in a Regression Model

