Toward Millimagnitude Photometric Calibration

Eric Dose SAS, Ontario, California June 13, 2014

Motivation for this work

Pursuits:

Demanding targets (millimagnitude):

- asteroid rotation
- variable stars
- exoplanet transits

More **collaboration**:

- more continuous coverage
- differing equipment

Tools:

Spectral simulation

Multivariate regression

- more robust to missing data, etc
- bigger model formulas possible
- mixed-model regression (systematic errors)

Motivation

Simulations

Statistics

Conclusions so far

Simulations

Statistics

Conclusions so far

What's Next?

The end goal of **photometric calibration** is:

To characterize your apparatus and sky

So that you can estimate

TRUE MAGNITUDES in a PASSBAND

Image calibration (flats, darks, etc) is a separate subject.

Our plan:

Motivation

Simulations

Statistics

Conclusions so far

What's Next?

- 1. Compute instrumental magnitudes
- 2. Compute "catalog" magnitudes in bandpass

Statistics:

- 1. Regress instrumental magnitudes vs:
 - catalog magnitudes, color index, airmass.
- 2. Extract coefficients
 - transforms, extinction, zero-point, etc.
- 3. Find smallest effective model formula
 - drop terms where possible

Simulations

- Scheme
- Star spectra
- Atm. spectra
- Sanity checks
- First results

Statistics

Conclusions so far

What's Next?

Simulation: the scheme

Motivation Simulations • Scheme Star spectra • Atm. spectra Sanity checks First results **Statistics Conclusions** so far What's Next? Bois d'Arc Observatory Kansas

Simulation Scheme

Simulation Scheme

Motivation

Simulations

- Scheme
- Star spectra
- Atm. spectra
- Sanity checks
- First results

Statistics

Conclusions so far

Simulations

- Scheme
- Star spectra
- Atm. spectra
- Sanity checks
- First results

Statistics

Conclusions so far

Black-body stars

Motivation

Simulations

- Scheme
- Star spectra
- Atm. spectra
- Sanity checks
- First results

Statistics

Conclusions so far

Black-body stars

Motivation

Simulations

- Scheme
- Star spectra
- Atm. spectra
- Sanity checks
- First results

Statistics

Conclusions so far

- spectra from Planck's law, then normalized to magnitude 10.0 in V passband.
- flux in photons/s/nm/m²

Spectral Flux Library stars

(Pickles, 1998)

Motivation

Simulations

- Scheme
- Star spectra
- Atm. spectra
- Sanity checks
- First results

Statistics

Conclusions so far

Spectral Flux Library stars

(Pickles, 1998)

Motivation

Simulations

- Scheme
- Star spectra
- Atm. spectra
- Sanity checks
- First results

Statistics

Conclusions so far

Simulations

- Scheme
- Star spectra
- Atm. spectra
- Sanity checks
- First results

Statistics

Conclusions so far

Simulations

- Scheme
- Star spectra
- Atm. spectra
- Sanity checks
- First results

Statistics

Conclusions so far

What's Next?

Atmospheric Spectral Transmission (simulated)

Who <u>needs</u> to compute accurate transmission spectra of the atmosphere?

Solar energy!

- Approximation to MODTRAN standard.
- Accounts for:
 - altitude, temperature, humidity, aerosol
 - zenith angle
 - dozens of gases, incl ozone & CO₂
 - seasons, transient atmospherics
- Supplies wide range of reference inputs
- May disable diffuse radiation including ground reflectance (relevant to solar energy but not to photometry)
- Fast: ~ 1 second.
- Text inputs: can automate generation, then call SMARTS & return.

FLORIDA SOLAR ENERGY CENTER®

SMARTS2, A Simple Model of the Atmospheric Radiative Transfer of Sunshine: Algorithms and performance assessment

Authors

Christian Gueymard

Original Publication

Gueymard, C., "SMARTS2, A Simple Model of the Atmospheric Radiative Transfer of Sunshine: Algorithms and performance assessment", December 1995.

Publication Number

FSEC-PF-270-95

Copyright

Copyright © Florida Solar Energy Center/University of Central Florida 1679 Clearlake Road, Cocoa, Florida 32922, USA (321) 638-1000 All rights reserved.

Disclaimer

The Florida Solar Energy Center/University of Central Florida nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infiringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the Florida Solar Energy Center/University of Central Florida or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the Florida Solar Energy Center/University of Central Florida or any agency thereof.

A Research Institute of the University of Central Florida 1679 Clearlake Road, Cocoa, FL 32922-5703 • Phone: 321-638-1000 • Fax: 321-638-1010 www.fsec.ucf.edu

Simulations

- Scheme
- Star spectra
- Atm. spectra
- Sanity checks
- First results

Statistics

Conclusions so far

What's Next?

Atmospheric Spectral Transmission (simulated)

 computed with SMARTS software, Kansas skies, winter average

<u>Motivation</u>

<u>Simulations</u>

- Scheme
- Star spectra
- Atm. spectra
- Sanity checks
- First results

Statistics

Conclusions so far

What's Next?

Atmospheric Spectral Transmission

(simulated)

• computed with SMARTS software, Kansas skies, winter average

Simulations

- Scheme
- Star spectra
- Atm. spectra
- Sanity checks
- First results

Statistics

Conclusions so far

What's Next?

Simulation: Sanity Checks

black-body stars no atmosphere, perfect scope & detector

Motivation

Simulations

- Scheme
- Star spectra
- Atm. spectra
- Sanity checks
- First results

Statistics

Conclusions so far

- stars at V mag 10.
- mags & color index: Bessel 1990 passband.

131 simulated stars no atmosphere, perfect scope & detector

Motivation

Simulations

- Scheme
- Star spectra
- Atm. spectra
- Sanity checks
- First results

Statistics

Conclusions so far

131 simulated stars no atmosphere, perfect scope & detector

Simulations

- Scheme
- Star spectra
- Atm. spectra
- Sanity checks
- First results

Statistics

Conclusions so far

107 simulated stars <u>with V-I < 1.6</u> no atmosphere, perfect scope & detector

Motivation

Simulations

- Scheme
- Star spectra
- Atm. spectra
- Sanity checks
- First results

Statistics

Conclusions so far

Simulations

- Scheme
- Star spectra
- Atm. spectra
- Sanity checks
- First results

Statistics

Conclusions so far

What's Next?

Simulation: First results

Simulations

- Scheme
- Star spectra
- Atm. spectra
- Sanity checks
- First results

Statistics

Conclusions so far

What's Next?

Need for Color Correction

107 simulated stars, V-I < 1.6

No atmosphere, perfect optics & detector

Filter	Res. error (mmag)	Transform	Transform std error
None	141.7	-0.410	0.027
V Bessell	2.1	-0.022	0.0004
Green Baader	5.6	+0.071	0.001
Sloan G	40.3	+0.601	0.008
Rect. 540 x 100	22.2	-0.037	0.004
Rect. 540 x 60	32.2	-0.082	0.006

Simulations

- Scheme
- Star spectra
- Atm. spectra
- Sanity checks
- First results

Statistics

Conclusions so far

What's Next?

Need for Color Correction

107 simulated stars, V-I < 1.6

Atmosphere (zenith), realistic optics & detector

Millimagnitude calibration possible in principle.

Filter	Res. error (mmag)	Transform	Transform std error
None	54.0	-0.270	0.010
V Bessell	3.6	-0.046	0.0007
Green Baader	4.5	+0.057	0.001
Sloan G	32.9	+0.506	0.006
Rect. 540 x 100	2.6	+0.031	0.0005
Rect. 540 x 60	5.2	0.040	0.001

this minimum error of ~ 3 mmagnitudes is very persistent.

Simulations

Statistics

- Scheme
- Fixed-effects reg.
- Mixed-model reg.

Conclusions so far

What's Next?

Statistics: the scheme

Statistical Scheme

Motivation

Simulations

Statistics

- Scheme
- Fixed-effects reg.
- Mixed-model reg.

Conclusions so far

Simulations

Statistics

- Scheme
- Fixed-effects reg.
- Mixed-model reg.

Conclusions so far

What's Next?

Statistics: fixed-effects regression

Simulations

Statistics

- Scheme
- Fixed-effects reg.
- Mixed-model reg.

Conclusions so far

What's Next?

Fixed-effects regression

= standard multivariate regression

All coefficients have fixed values per fit.

- Fit to all relevant data at once
- Extract all coefficients at once
 - transform, extinction, zero-point
 - + any higher terms

• Lost:

- linear plots, some simplicity
- step-wise fitting, some complexity

• Gained:

- statistical power
- robustness to missing data points
- flexibility to change model

Fixed-effects regression all 131 stars, no added noise (best case)

Simulations Statistics

Motivation

- Scheme
- Fixed-effects reg.
- Mixed-model reg.

Conclusions so far

- Standard V filter is clearly best.
- Rectangular 540 nm center x 100 nm wide is next
- Sloan G surprisingly poor.

Simulations

Statistics

- Scheme
- Fixed-effects reg.
- Mixed-model reg.

Conclusions so far

What's Next?

Statistics: mixed-model regression

Simulations

Statistics

- Scheme
- Fixed-effects reg.
- Mixed-model reg.

Conclusions so far

What's Next?

Mixed-model regression

= fixed-effects + "random effects"

Random effects decrease chosen systematic errors.

- Fixed-effect coefficients unchanged
 - minimize random error per data point (e.g., "shot" error)
 - same transform, extinction, any higher terms
- "Random effects" are new
 - minimize error per group of data points
 - (e.g., per-image, per-star, per-night, etc)

Simulations

Statistics

- Scheme
- Fixed-effects reg.
- Mixed-model reg.

Conclusions so far

What's Next?

Mixed-model regression

Random errors are low.

Most per-image error can be extracted.

No noise added

Noise added:
3 mmag per-point
10 mmag per-image

Coefficient	Mean	Std dev
Transform	-0.047	0.002
Extinction	+0.199	0.0002
Zero-point	-11.661	0.002
Per-star error	3 mmag	
Per-image error	<1 mmag	
Residual	1 mmag	

Coefficient	Mean	Std dev
Transform	-0.047	0.003
Extinction	+0.198	0.014
Zero-point	-11.661	0.023
Per-star error	3 mmag	
Per-image error	8 mmag	
Residual	3 mmag	

From bootstrap run of 1000 fits, each with 7 randomly chosen stars (subject to: 3 blue, 1 mid, 3 yellow) & 5 randomly chosen airmasses (subject to: 2 low, 1 mid, 2 high). V Bessell filter, Meade 14", ST-1001E detector.

Simulations

Statistics

Conclusions so far

What's Next?

Conclusions & Wrap-up

Motivation

Simulations

Statistics

Conclusions so far

What's Next?

Simulating an optical stack is possible

- Star spectra can be had
- Atmospheric modeling is promising
- Star classifications in catalogs might help
- **Needs validation** via observations (2014-5)

Choose color index carefully

- B-V is especially suspect with modern CCDs
- V-I much better, not necessarily best

Motivation

Simulations

Statistics

Conclusions so far

What's Next?

Simple models seem OK for intended use

- Airmasses below 2
- Colors close enough: calibration vs targets
- May not get us to millimagnitude calibration

Below 30° (airmass 2) → more model terms

- Airmasses below 2
- Multivariate regression very probably needed
- Choosing minimum set of terms may require considerable experimentation, but models help.

Motivation

Simulations

Statistics

Conclusions so far

- 0.01 magnitude format → 2.9 millimagnitude min error
- this error cannot be removed

Motivation

Simulations

Statistics

Conclusions so far

- star spectra have narrow spectral details
- atmospheric spectra have narrow spectral details
- this (real) **interaction** causes millimagnitude variations
- Project: should we calibrate only with stars similar in detail to photometric targets (e.g., same stellar class)?
- Should we add spectral class to photometric catalogs?

Motivation

Simulations

Statistics

Conclusions so far

What's Next?

Mixed-model regression may help—a lot

- per-image error: seems possible to extract 60-80 %
 - shutter inconsistency
 - passing cirrus
 - ~ easy to test this
- **per-star error**: may be feasible to extract some
 - catalog error, especially if rare outlier
 - unusual star type
 - probably requires considerable data
 - problematic to test this

Simulations

Statistics

Conclusions so far

What's Next?

What's Next?

> Validate with experiments

- multiple telescopes, detectors, nights
- full regression more robust to missing data?

> Push down to 20° altitude (airmass 3)

- which model terms do we need?
- how does random error increase (scintillation?)
- which systematic errors can we remove?

Project Cirrus (2014-5)

- data reduction: use mixed-model regression
 - similar to ensemble of comp stars
 - can we really remove per-image noise?
- at least: plot per-image noise as a data-quality metric

Thanks!

code repository + this presentation:

http://github.com/edose/spectral

