1 Cheat Sheet Algebra 1

Was	Definition	Beschreibung
Homomorphismus	$\varphi:G o G'$	$\varphi(e) = e' \text{ und } \forall a, b \in G : \varphi(a \cdot b) = \varphi(a) \cdot \varphi(b)$
Monomorphismus	φ injektiver Hom.	$\ker(\varphi) = \{e\}$
Epimorphismus	φ surjektiver Hom.	$im(\varphi) = G'$
Isomorphismus	φ bijektiver Hom.	injektiv und surjektiv
Endomorphismus	$\varphi:G o G$	bleibt in derselben Gruppe
Automorphismus	φ bijektiver End.	
Linksnebenklasse	$gH \subseteq G$	Weiter ist äquivalent: $gH = g'H$, $gH \cap g'H = \emptyset$,
		$g \in g'H, g'^{-1}g \in H$
G/H	$gH g \in G$	analog für Rechtsnebenklassen.
		Bijektion zwischen LNK und RNK.
G:H	$ G/H = H \backslash G $	Index von H in G
Satz von Lagrange	$ G = H \cdot G:H $	nur für endliche G
Normalteiler	$\forall g \in G : gH = Hg$	gH ist die von g bestimmte Nebenklasse von H in G .
$N \triangleleft G$	$mit H \leq G$	G abelsch \Rightarrow Jede Untergruppe ist Normalteiler.
natürliche Reduktion	$\pi:G o G/N$	π ist Epimorphismus
natürlicher Hom.	$g \mapsto gN$	
Homomorphiesatz	$\exists ! \bar{\varphi} : G/N \to G'$	$im(\bar{\varphi}) = im(\varphi), \ker(\bar{\varphi}) = \pi(\ker(\varphi)) \triangleleft G/N$
	$mit \ \varphi = \bar{\varphi} \circ \pi$	
	wenn $N \triangleleft G, N \leq \ker \varphi$	$\ker(\varphi) = \pi^{-1}(\ker(\bar{\varphi})) \triangleleft G$
$\bar{\varphi} = \text{von } \varphi \text{ auf } G/N$		$\bar{\varphi}$ Monomorphismus gdw. $\ker \bar{\varphi} = N$
induzierter Hom.		gdw. $\ker \varphi = N$