PRO1 Panel Comments and Revisions

Zoom Recording:

https://zoom.us/rec/share/mrn9zBtPz3bJ5laVcy2E8-iBno8A6fBRgOCacMrhmzLPCNO0 lDxXBHiK_xzdicEb.MzbHGzrD7rL3tVgJ?startTime=1731326444000 Passcode: +?qL6DZE

Panelist's Comments and Revisions	Action Taken	Page Number
Capture both two sides of the mango and not just one to remove error	The image capturing system would only capture the two sides of the mango which are the two largest surface areas of the skin.	18
How will you get large dataset with sweetness and how will you classify it?	Remove Sweetness in the SO	13
Size and weight are not the same.	Remove Weight in objectives but retained size in the SO4 and SO6	
Specify in the specific objectives that it will be automatic sorting	SO1: To make an image acquisition system with a conveyor belt for automatic sorting and grading mangoes.	13
Add what process will be used to get the size classification	SO6: To classify mango size by gettings its length and width using OpenCV, geometry, and image processing techniques	13
Add what process the ripeness classification will be	SO5: To classify mango ripeness using kNN or nearest neighbors algorithm	13
Get rid of texture in the general objectives	Texture is removed in the SOs	13
Get rid of CNN in general objectives and replace with machine learning	CNN is removed and replaced with machine learning GO: To develop a user-priority-based grading and sorting system for Carabao mangoes, using machine learning to assess ripeness, size, and bruises.	13
Remove Raspberry Pi on the SO's and generalize to "to create a microcontroller based application"	SO3: To create a microcontroller application to operate and control the prototype.	13
Remove SO4. No need for user testing	Removed user test and the new SO4 is SO4: To grade mangoes based on user priorities for size, ripeness, and bruises.	13
Fig. IDO 4. day a great in a day a day a	Input: Two side image of the Carabao Mango and the User Priority Attributes Process: Machine Learning Algorithm, Grading Formula, and CNN model using a microcontroller	20
Fix IPO to the correct input and output	Output: Size, Ripeness, and Bruises	20

PRO1 Panel Comments and Revisions – Appendix Z

	Classification with its Overall Grade	
Define bruises	The black or brown area of the mango that is visible on the skin of the mango.	6
Dataset should use at least 10,000 images	Added to expected deliverables SO2: To use a publicly available dataset of at least 10,000 mango images for classification of ripeness, and bruises.	14
Add to specific objectives the percentage accuracy	SO2: To get the precision, recall, F1 score, confusion matrix, and train and test accuracy metrics for classifying the ripeness and bruises with an accuracy score of at least 90%.	14
Weight sensor just adds complexity	removed all mention of load sensor, load cell. removed load cell methodology	39,40,41, 42,43,44 previousl y

PRO1 Panel Comments and Revisions

Zoom Recording:

https://zoom.us/rec/share/mrn9zBtPz3bJ5laVcy2E8-

iBno8A6fBRgOCacMrhmzLPCNO0lDxXBHiK_xzdicEb.MzbHGzrD7rL3tVgJ?startTime=1731326444000

Passcode: +?qL6DZE

Summary:

- Specific Objectives
- o Add:
- what process will be used to get the sweetness classification
- what process the ripeness classification will be
- what process will be used to get the size classification
- Specify in the specific objectives that it will be automatic sorting
- O Remove:
- get rid of texture in the general objectives
- **get rid of cnn in general objectives and replace with machine learning**
- remove Raspberry Pi on the SO's and generalize to "to create a microcontroller based application"
- remove SO4. No need for user testing

Comments:

*[00-00] time stamps from recording

- o [15:00] Why only the top side of the mango? Isn't the point of automation to reduce human error? Then what about the bottom side wouldn't that just introduce another error if the mango happens to have defects on the bottom?
- o [16:09] What is the load cell for? Size is not the same as weight, if size is taken from the weight wouldn't size be also taken from the image, if size then adding a load cell would just introduce more complexity, if weight then load cell is fine, reminder that size is not the same as weight.
- o [17:36] When computer vision, state input and output parameters. Output parameters in this case would be sweetness, ripeness, size and bruising. Input parameters would be images.
- o [18:12] No mention of how the dataset would be gathered. Would you be gather your own dataset or using a publicly available dataset
- [21:38] Fix IPO based on mention input and output parameters.
- o [21:50] Dataset is lacking. Usually in machine learning at least 10,000 images. can take more than one image per mango. after taking an image of mango can make more out of the image using data augmentations.
- o [22:48] Add to specific Objectives the mentioned 80%
- [23:09] Consultant that would grade the mangoes as a third party to remove biases. For both the testing and the training
- o [24:55] How do you detect the sweetness of mangoes? Add these to the specific objectives. What are the categories of sweetness? Add these to specific objectives. How do

PRO1 Panel Comments and Revisions – Appendix Z

you detect the correct categorization of sweetness? How to automate the classification of the sweetness.

- o [33:10] Why is the dataset destructive but the testing non destructive? Clarify this further to avoid confusion.
- o [35:09] What is the basis of sweetness using images? Clarify this further.
- o [35:35] How would you know if the classifier is correct or not? What is your ground truth (for the sweetness)?
- o [38:55] When can you say you are getting the top side of the mango? How would you know if the mango images showing the top side or the bottom side of both cheeks of the mango can be captured? If it doesn't matter then any side can be captured so why is it in the limitations that only the top side can be captured. Clarify the limitations.
- [48:10] What classifier would you use here? What features would you extract from the images?
- o [52:07] Does it explain what process will be used to get the sweetness classification? Add it to the specific objectives
- o [54:00] How will ripeness be classified? Will it use the same dataset as the sweetness classification did? How was ground truth obtained?
- o [55:44] Why not the nearest neighbor? it is more fit in this scenario. Do not specify CNN in the objectives. The embedded systems as well, do not specify the Raspberry pi unless truly sure
- o [57:30] Table is just image processing. Is there a specific objective that would describe how ripeness classification will be done? Add this to the specific objectives.
- o [59:10] How is the weight obtained? Add it to the specific objectives. Remember that size is not proportional to weight. Size could be obtained from the image as the camera is from a fixed distance. Add to specific objectives how to get the size
- o [1:00:00] get rid of texture in the general objectives. get rid of cnn in general objectives and replace with machine learning. as each parameter will use a different method.
- o [1:04:00] remove Raspberry Pi on the SO's and generalize to "to create a microcontroller based application"
- [1:04:37] remove SO4. no more user testing
- o [1:05:00] The formula used for grading the mangoes, is this used as industry standard? How do they measure the export quality of mango
- o [1:07:00] Specify in the specific objectives that it will be automatic sorting

Here are my comments on my end:)

- 1. Ensure seamless integration between hardware (sensors, motors, etc.) and software (CNNs, Raspberry Pi). You can consider using a modular approach for easier troubleshooting.
- 2. How do you gather a comprehensive and diverse dataset for training your CNN. This will enhance the model's robustness and accuracy.
- 3. Make sure that the weight sensors are calibrated correctly to avoid measurement errors.

PRO1 Panel Comments and Revisions - Appendix Z

- 4. Implement data augmentation techniques to enhance your image dataset, which can improve model generalization and accuracy.
- 5. Design an intuitive user interface for the Raspberry Pi application.
- 6. Besides precision, recall, and F1 score, consider incorporating confusion matrices to better understand model performance and error types.
- 7. Conduct user testing of the application to gather feedback on usability and functionality. This can lead to improvements in design and user experience. Consider how the system can be scaled or adapted for different fruits or larger processing volumes in the future.

Noted by:

Dr. Donabel de Veas Abuan

Chair of Panel

Date: November 11 2024

Note: Keep a copy of this Appendix. It is a requirement that has to be submitted in order to qualify for PRO3 Defense.