Unit 4: Regression and Prediction

4. Multiple Regression (Chapter 6.1)

11/28/2018

Recap from last time

- 1. A regression's slope codes the relationship between two measures
- 2. Correlation (R) is equivalent to slope (β_1) for standardized values
- 3. Inference for regression parameters uses t-tests

Predicting the weights of books

	weight (g)	volume (cm³)	cover
1	800	885	hc
2	950	1016	hc
3	1050	1125	hc
4	350	239	hc
5	250	412	pb
6	700	953	pb
7	650	929	pb
8	975	1492	pb

Modeling weight using volume

Coefficients:

(Intercept) 107.67931 volume 0.70864

$$\hat{y} = \beta_0 + \beta_1 x$$

Practice Question 1: Interpreting Regression models

The scatterplot shows the relationship between weights and volumes of books as well as the regression output.

Which of the following is wrong?

- (a) We can explain 80% of the variance of book weights if we know the book's volume
- (b) According to our model, a book with 0 cm³ volume has a weight of 0 grams
- (c) The correlation (R) between book volume and book weight is close to 0.9
- (d) We would estimate a 1000 cm³ book to weigh 808 grams

Practice Question 1: Interpreting Regression models

The scatterplot shows the relationship between weights and volumes of books as well as the regression output.

Which of the following is wrong?

- (a) We can explain 80% of the variance of book weights if we know the book's volume
- (b) According to our model, a book with 0 cm³ volume has a weight of 0 grams
- (c) The correlation (R) between book volume and book weight is close to 0.9
- (d) We would estimate a 1000 cm³ book to weigh 808 grams

Inference for linear regression

Inference for the slope for a single-predictor linear regression model:

Hypothesis test:
$$T = \frac{b_1 - null\ value}{SE_b}$$
 $df = n - 2$

Confidence interval: $b_1 \pm t_{df=n-2}^{\star} SE_{b_1}$

The null value is often 0 since we are usually checking for **any** relationship between the explanatory and the response variable.

The regression output gives b_1 , SE_{b1} , and **two-tailed** p-value for the t-test for the slope where the null value is 0.

We rarely do inference on the intercept, so we'll focusing on the slope.

Hypothesis Test Output

Coefficients:

```
Estimate Std. Error t value Pr(>|t|)
(Intercept) 107.67931 88.37758 1.218 0.245
volume 0.70864 0.09746 7.271 6.26e-06
```

$$\hat{y} = \beta_0 + \beta_1 x$$
 $T = \frac{b_1 - null \ value}{SE_{b_1}}$ $df = n - 2$

Key ideas

- 1. In multiple regression, every variable is conditional on every other variable
- 2. For inference, we care about both the whole model and the individual variables
- 3. We use adjusted R^2 to account to penalize additional variables

Intro to multiple regression

So far:

• Simple linear regression: Ask if **y** is predicted by **x**

$$\hat{\mathbf{y}} = \mathbf{\beta}_0 + \mathbf{\beta}_1 \mathbf{x}_1$$

Now:

• Multiple linear regression: Ask if y is predicted by a combination of many variables x_1 , x_2 , x_3 ...

$$\hat{y} = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_3$$

What about cover type?

Paperbacks tend to weigh less than hardcovers controlling for volume.

Two different effects

Modeling weight using volume and cover type

Coefficients:

```
Estimate Std. Error t value Pr(>|t|)
(Intercept) 197.96284 59.19274 3.344 0.005841 **

volume 0.71795 0.06153 11.669 6.6e-08 ***

cover:pb -184.04727 40.49420 -4.545 0.000672 ***
```

$$\hat{\mathbf{y}} = \mathbf{\beta}_0 + \mathbf{\beta}_1 \mathbf{x}_1 + \mathbf{\beta}_2 \mathbf{x}_2$$

Practice Question 2: Understanding the regression equation

Coefficients: Estimate Std. Error t value Pr(>|t|) (Intercept) 197.96284 59.19274 3.344 0.005841 ** volume 0.71795 0.06153 11.669 6.6e-08 ***

cover:pb -184.04727 40.49420 -4.545 0.000672 ***

Which of these correctly describes the role of the variables in this model?

- (a) response: weight, explanatory: volume, paperback cover
- (b) response: weight, explanatory: volume, hardcover cover
- (c) response: volume, explanatory: weight, cover type
- (d) response: weight, explanatory: volume, cover type

Practice Question 2: Understanding the regression equation

```
Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 197.96284 59.19274 3.344 0.005841 **

volume 0.71795 0.06153 11.669 6.6e-08 ***
```

cover:pb -184.04727 40.49420 -4.545 0.000672 ***

Which of these correctly describes the role of the variables in this model?

- (a) response: weight, explanatory: volume, paperback cover
- (b) response: weight, explanatory: volume, hardcover cover
- (c) response: volume, explanatory: weight, cover type
- (d) response: weight, explanatory: volume, cover type

The Linear Model

```
Estimate Std. Error t value Pr(>|t|) (Intercept) 197.96284 59.19274 3.344 0.005841 ** volume 0.71795 0.06153 11.669 6.6e-08 *** cover:pb -184.04727 40.49420 -4.545 0.000672 *** \widehat{weight} = 197.96 + .72volume - 184.05cover:pb
```

For **hardcover** books: plug in **0** for cover (reference level)

$$\widehat{weight} = 197.96 + .72 volume - 184.05 \times 0$$

For paperback books: plug in 1 for cover

$$\widehat{weight} = 197.96 + .72 volume - 184.05 \times 1$$

Two different effects

Interpreting the coefficients

```
Estimate Std. Error t value Pr(>|t|)
(Intercept) 197.96284 59.19274 3.344 0.005841 **

volume 0.71795 0.06153 11.669 6.6e-08 ***

cover:pb -184.04727 40.49420 -4.545 0.000672 ***
```

- **Slope of volume**: All else held constant, books that are 1 more cubic centimeter in volume tend to weigh about **0.72** grams more.
- Slope of cover: <u>All else held constant</u>, paperback books weigh 184 grams lower than hardcover books.
- Intercept: Hardcover books with no volume are expected on average to weigh 198 grams. Does this make sense?

Including additional parameters

So should we just add parameters for everything we could possibly measure?

- No, the more complex a model is the harder it is to reason about
- There are dangers in interpreting parameters that are highly correlated (collinearity)
- We prefer the simplest (parsimonious) model

A collinearity example

	height (in)	Left leg (in)	Right leg (in)
1	63.2	32.26	32.44
2	62.3	28.00	28.19
3	70.4	36.45	37.07
4	66.2	33.35	32.95
5	65.0	32.37	33.13
6	71.7	39.22	38.77
7	71.7	35.51	35.25
8	62.4	28.72	29.32

Inference for parameters

Heights predicted with **just** left leg:

Coefficients:

	Estimate	Std. Error	t value	Pr(> t)
(Intercept)	33.9961	4.6578	7.299	9.73e-09 ***
left.leg	0.9771	0.1413	6.914	3.22e-08 ***

Heights predicted with **both** left and right leg:

Coefficients:

	Estimate	Std. Error	t value	Pr(> t)
(Intercept)	32.8617	4.6401	7.082	2.2e-08 ***
left.leg	-0.4241	0.9325	-0.455	0.652
right.leg	1.4329	0.9429	1.520	0.137

Inference for an entire model

Heights predicted with **just** left leg:

Residual standard error: 2.341 on 38 degrees of freedom Multiple R-squared: **0.5571**, Adjusted R-squared: 0.5455

F-statistic: 47.8 on 1 and 38 DF, p-value: 3.218e-08

Heights predicted with **both** left and right leg:

Residual standard error: 2.301 on 37 degrees of freedom Multiple R-squared: **0.5831**, Adjusted R-squared: 0.5606 F-statistic: 25.88 on 2 and 37 DF, p-value: **9.334e-08**

Parameter vs model inference

- Model test: Is my model reliably useful?
 - Can I predict your height if I know the length of your legs?
- Parameter test: How much more do I learn by including a variable?
 - How much more do I gain by knowing the length of your right leg if I already know the length of your left leg?

Practice Question 3: Understanding Regression Output

Here is some R output of a model I ran on the nycflights data in an attempt to predict arrival delay:

```
Residual standard error: 17.82 on 32732 degrees of freedom Multiple R-squared: 0.841, Adjusted R-squared: 0.841 F-statistic: 8.657e+04 on 2 and 32732 DF, p-value: < 2.2e-16
```

Is this model useful?

If I know dep_delay, is it still useful to know distance?

Another look at R²

 R^2 can be calculated in two ways:

- 1. Squaring the correlation coefficient of standardized x and y (R)
- 2. Based on the definition:

$$R^2 = \frac{\text{explained variability in } y}{\text{total variability in } y}$$

Why bother with a second calculation?

For a simple linear regression, you don't need to worry about it.

But for multiple regression, you can't compute the correlation between y and x because you have multiple xs.

And also, we want to use this second method to compute adjusted R^2

R^2 vs. adjusted R^2

- When any variable is added to a model, R^2 increases.
- But if the added variable doesn't really provide any new information, or is completely unrelated, adjusted R^2 does not increase.

Adjusted R² example

Heights predicted with **just** left leg:

Residual standard error: 2.341 on 38 degrees of freedom Multiple R-squared: **0.5571**, Adjusted R-squared: **0.5455**

F-statistic: 47.8 on 1 and 38 DF, p-value: 3.218e-08

Adjusted R^2 example

Heights predicted with **everything** I could have measured:

Coefficients:

	Estimate	Std. Error	t value	Pr(> t)
(Intercept)	34.46065	5.76696	5.976	1.04e-06 ***
left.leg	-0.58290	1.02812	-0.567	0.575
right.leg	1.61296	1.05255	1.532	0.135
gender	-0.63707	0.83762	-0.761	0.452
IQ	-0.01879	0.02585	-0.727	0.472
native.english	0.07218	1.03086	0.070	0.945
fun.at.parties	-0.29258	1.04315	-0.280	0.781

Residual standard error: 2.386 on 33 degrees of freedom Multiple R-squared: **0.6004**, Adjusted R-squared: **0.5278**

F-statistic: 8.265 on 6 and 33 DF, p-value: 1.68e-05

Key ideas

- 1. In multiple regression, every variable is conditional on every other variable
- 2. For inference, we care about both the whole model and the individual variables
- 3. We use adjusted R^2 to account to penalize additional variables