ITM(SLS) Baroda University School of Computer Science, Engineering and Technology B.Tech – Semester II

Course Name: Computer Graphics

Course Code: C2210C3
Course Type: Core

Teaching Scheme:

Teaching Scheme			Credits		Total Marks			
L	T	P	С	Theory	y Marks	Practical Marks		Total Marks
				External	Internal	External	Internal	
4	0	2	5	40 60		20	30	150

About Computer Graphics:

Computer graphics is a sub-field of computer science which studies methods for digitally synthesizing and manipulating visual content. Although the term often refers to the study of three-dimensional computer graphics, it also encompasses two-dimensional graphics and image processing.

Basically there exists two kinds of computer graphics - raster (composed of pixels) and vector (composed of paths). Raster images are more commonly called bitmap images. A bitmap image uses a grid of individual pixels where each pixel can be a different color or shade.

The importance of computer graphics lies in its applications. Interactive computer graphics allows the physician to interpret this large volume of data in new and useful ways. Computer graphics has also expanded the boundaries of art and entertainment.

Course Overview:

In this course the students will learn about the concepts of computer graphics. It starts with an overview of interactive computer graphics, two dimensional system and mapping, then it presents the most important drawing algorithm, two-dimensional transformation; Clipping, filling and an introduction to 3-dimensional graphics.

Prerequisite:

This course does not require any programming background. This course helps the students to learn programming in python.

Course Outcome:

At the end of the course the student will be able to:

CO's	Course Outcome	Bloom Taxonomy Level
CO1	Understand Random and Raster scan systems, Graphics software	Remember
	and standards	
CO2	Demonstrate Points, lines, circles and ellipses as graphics primitives	Understanding
CO3	Illustrate Fill area primitives including scan-line polygon filling	Understanding
CO4	Ability to draw basic 2-D geometric shapes	Applying
CO5	Ability to apply various 2-D transformations on geometric shapes	Applying
CO6	Ability to draw simple 3-D geometric shapes	Applying
CO7	Understand 3-D transformations and projections	Understanding
CO8	Demonstrate Points, lines, and polygon clippings	Applying

CO-PO Mapping:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PO13	PO14	PO15	PO16
CO1	1	3		3	3	3	2	2		1	1	1	2	3	1	3
CO2	2	3	3	3	1	1	2	2	1				2	3	1	3
CO3	3	3	3	3	3	3	2	3	2	2	2	1	2	3	2	2
CO4	1	3	3	3	3	3	3	2	2		1			3	1	2
CO5	1	3	3	3	3	2	1	2	1			1	2	2		2
CO6	2	1	1	3	3	1	1	2			2			2		1
CO7	1	1	2	1	2	1	2	1	1			1		2	1	
CO8	2		1	3	1	3	1	1	2		1		2		2	

Course Outline:

Unit	Topics	Hours
#		L+P
1	Basic of Computer Graphics:	8 + 2
	Basic of Computer Graphics: Coordinate Systems, Graphics APIs; Display devices,	
	Random and Raster scan systems, Graphics software and standards; Color models:	
	properties of light, XYZ, RGB, YIQ and CMY color models	
2	Graphics Primitives:	10+10
	Points, lines, circles and ellipses as primitives, scan conversion algorithms for primitives,	
	Fill area primitives including scan-line polygon filling, inside-outside test, boundary and	
	flood-fill	
3	2D transformation and viewing:	10+10
	Transformations (translation, rotation, scaling), matrix representation,	
	homogeneous coordinates, composite transformations, reflection and shearing,	
	viewing pipeline and coordinates system, window-to-viewport transformation,	
	clipping including point clipping, line clipping (cohen-sutherland, liang- bersky,	
	NLN), polygon clipping	
4	3D concepts and object representation:	10 + 8
	3D display methods, polygon surfaces, meshes, curved lies and surfaces, quadric	
	surfaces, spline representation, cubic spline interpolation methods	
5	3D transformation and viewing:	7 + 0
	3D scaling, rotation and translation, composite transformation, parallel and perspective	
	transformation, projection transformations	
	Total	45+30

Reference:

Text Book:

- 1. Donald D. Hearn, M. Paulin Baker, & Warren Carithers, "Computer Graphics, with OpenGL", Pearson Education
- 2. Sinha, Udai, "Computer Graphics", Tata McGraw-Hill

Reference Books:

- 1. Foley, van Dam, "Computer Graphics", Pearson Education
- 2. Francis S Hill, Jr. and Stephen M Kelley, "Computer Graphics Using OpenGL", Prentice Hall
- 3. Peter Shirley, "Fundamentals of Computer Graphics", A K Peters, 2009

Learning Resources:

SR.No	TEDx Video
	https://www.ted.com/talks/danielle feinberg the magic ingredient that brings pixar movies to life
T1	Danielle Feinberg, Pixar's director of photography: He creates stories with soul and wonder using
	math, science and code. Go behind the scenes of Finding Nemo, Toy Story, Brave, WALL-E and
	more, and discover how Pixar interweaves art and science to create fantastic worlds where the things
	you imagine can become real. This talk comes from the PBS special "TED Talks: Science &
	Wonder."
	https://www.youtube.com/watch?v=6hfOvs8pY1k
T2	Animation basics: The art of timing and spacing - TED-Ed - David J. Malan
	Expert timing and spacing is what separates a slide show from a truly amazing animation. TED-Ed
	demonstrates, by manipulating various bouncing balls, how the smallest adjustments from frame to
	frame can make all the difference. Lesson and animation by TED-Ed.

Other Videos:

Sr.	About Video	Link	Topic
No 01.	Ken Joy is a Professor in the <u>computer science</u> department at the University of California at Davis.He has worked a number of years in the computer industry, and consults regularly on visualization, massive data analysis and geometric modeling.	https://www.youtube.com/w atch?v=01YSK5gIEYQ&list =PL_w_qWAQZtAZhtzPI5p kAtcUVgmzdAP8g&index= 1	Preliminary background into some of the math associated with computer graphics.
02.	This complimentary course, originally presented at the SIGGRAPH 2013 conference	https://www.youtube.com/watch?v=6-9XFm7XAT8	Introduction to programming OpenGL, emphasizing the most modern methods for using the library
03.	David E. Breen is currently an Associate Professor of Computer Science in the College of Computing and Informatics of Drexel University.	https://www.youtube.com/watch?v=RDUH2412ZU0	In this talk I will introduce level set models and describe four computer graphics applications that utilize them. The applications are 3D morphing, contour-based surface reconstruction, volume segmentation and geometric modeling.
04.	Texas State Technical University	https://www.youtube.com/watch?v=zG6j0be2E-0	The Graphics, Gaming & Simulation specialization of Computer Science Technology is designed to prepare students for entry into the world of graphics programming.
05.	James Abell, an artist and designer based in Scotland. He mix art, and traditional sculptures with digital technique.	https://www.youtube.com/watch?v=seQuqguSiko	This video talks about the building blocks of 3d graphics. I talk about how they are worked out using the X/Y/Z axis. I then talk about primitives and then sub object modelling using the vertices/edges and polygons.

Related MOOCs courses

SR.No	MOOC Courses			
M1	https://nptel.ac.in/courses/106/102/106102063/			
M2	https://nptel.ac.in/courses/106/102/106102065/			
M3	https://nptel.ac.in/courses/106/103/106103224/			
M4	https://www.edx.org/course/foundations-computer-graphics-uc- berkeleyx-cs-184-1x			
M5	https://www.edx.org/course/computer-graphics-2			
M6	https://www.coursera.org/learn/interactive-computer-graphics			
M7	https://www.coursera.org/learn/geometric-algorithms			
M8	https://www.udemy.com/course/graphics-with-modern-opengl/			
M9	https://www.udemy.com/course/graphics-in-c/			
M10	https://onlinecourses.nptel.ac.in/noc20_cs90/preview			

Lab Experiments:

SR.NO	Program Statement	
P1	Draw a line using Digital Differential Analyzer Line Algorithm [DDA]	
P2	P2 Draw a line using Bresenham's line drawing algorithm	
Р3	Draw a Circle using Bresenham's circle drawing algorithm	
P4	Draw a Circle using Mid Point circle drawing algorithm	
P5	Demonstrate Boundary Fill Algorithm	
P6	Demonstrate Flood Fill Algorithm	
P7	Demonstrate Two Dimensional Transformations	
P8	Demonstrate Two Dimensional Composite Transformations	
P9	Illustrate Cohen Sutherland Algorithm for a line clipping	
P10	Illustrate Sutherland Hodgman Algorithm for a polygon clipping	

Case Studies:

SR.No	Titles	Evaluation Parameters for All			
C1	Google Sketch up				
C2	FRASCA flight simulator	Identification of software Analysis and working methodology			
С3	INTERSECTSimulator	Output and result accuracy evaluation Report preparation			
C4	Open Sees	Presentations			
C5	HEC-RAS				