Protocolo IP

Álvaro González Sotillo

25 de enero de 2018

Índice

1. Introducción	1
2. IPv6	1
3. Configuración de IPv6	3
4. Referencias	4
1. Introducción	
T TD () 1 10 1 10 10 10 10 10 10 10 10 10 10 10	

- En IPv4, las direcciones son de 32 bits
 - 2³² direcciones posibles, unos 4000 millones
 - Inicialmente fueron direcciones suficientes
 - Actualmente, se encuentran agotadas
- Ante la escasez de direcciones, se palia el problema con
 - CIDR
 - Direcciones privadas, con acceso NAT (siguientes temas)
 - Direcciones dinámicas (DHCP), para los accesos ADSL
- Estas soluciones solo son temporales

2. IPv6

- Las direcciones tienen 128 bits de longitud
 - $\bullet~2^{128}$ son más o menos 300 trillones de trillones de direcciones
 - De momento parecen suficientes
- Ejercicio comparativo: La tierra tiene un radio de 6370 Km aproximadamente ¿Cuántas direcciones IPv4 hay por m2? ¿Cuántas direcciones IPv6 hay por m2?

2.1. Direcciones IPv6

- Se especifican en hexadecimal, separando grupos de 32 bits con ":"
- Ejemplo de dirección IPv6 2001:0db8:85a3:0000:0000:8a2e:0370:7334
- Simplificaciones
 - Se pueden omitir los ceros iniciales de cada grupo 2001:db8:85a3:0:0:8a2e:370:7334
 - Se pueden omitir varios grupos que valgan 0 (solo una vez) 2001:db8:85a3::8a2e:370:7334

2.2. Direcciones reservadas

Dirección	Descripción
::/128	Dirección indefinida. Ningún host puede tener esta dirección. Como 0.0.0.0 en IPv4
::1/128	El propio host (127.0.0.0/8 en IPv4)
fe80::interfaz/10	link-local. Equivalentes a APIPA (169.254.0.0/16 en IPv4). El identificador de interfaz es
ffc0::subred:interfaz/10	site-local. Como link-local, pero permitiendo subredes. Ya no se usan.
fc00::/7	Unique-local. Parecidas a las redes privadas IPv6
ff00::/18	Grupos multicast

2.3. link-local con eui-64

- Inicialmente, Windows y Linux calculaban las direcciones link-local con el eui-64
- Actualmente, Windows utiliza una dirección aleatoria

2.4. Tipos de comunicación

Unicast

- El paquete se envía a una dirección concreta de destino
- Esto también existe en IPv4 y en Ethernet

Broadcast

- En IP4, con todos los bits de host a 1
- En Ethernet hay broadcast a toda la red (todos los bits a 1)
- En IPv6, no hay, aunque se puede usar FF01::1 (All Nodes Address)

Multicast

- El paquete se envía a varios hosts de, posiblemente, varias redes (FF01::/16)
- En IPv4, con direcciones de clase D

Anycast

• El paquete se envía a un solo host de un conjunto de hosts

2.5. Subnetting en IPv6

- Conceptualmente es igual que en IPv4
- El IETF recomienda en su RFC 3177 que todas las redes sean al menos /64
- Se recomienda:
 - Usuarios en el ámbito doméstico, con conexiones permanentes o bajo demanda deberían recibir una máscara /48.
 - Pequeñas y grandes empresas deberían recibir /48.
 - Conjuntos muy grandes de abonados deberían recibir un /47.
 - Redes móviles, como vehículos o teléfonos móviles, un /64.

```
This document provides recommendations to the addressing registries (APNIC, ARIN and RIPE-NCC) on policies for assigning IPv6 address blocks to end sites. In particular, it recommends the assignment of /48 in the general case, /64 when it is known that one and only one subnet is needed and /128 when it is absolutely known that one and only one device is connecting.
```

3. Configuración de IPv6

3.1. Linux Debian

```
iface eth0 inet6 static
address 2607:f0d0:2001:000a:0000:0000:0002
netmask 64
gateway 2607:f0d0:2001:000a:0000:0000:00001
```

4. Referencias

- Formatos:
 - Transparencias
 - PDF
- Creado con:
 - Emacs
 - org-reveal
 - Latex