3.1 БУЛЕВІ ФУНКЦІЇ

3.1.1 Булеві змінні та функції

Нехай $B = \{0,1\}.$

Змінні, які можуть приймати значення тільки з множини B, називаються *логічними* або *булевими* змінними.

Значення 0 і 1 булевих змінних називаються булевими константами.

Функція виду $y = f(x_1, x_2, ..., x_n)$, аргументи x_i і значення y якої належать множині B, називається \mathbf{n} -місною булевою функцією. Такі функції також називають логічними або перемикальними функціями.

Кортеж $(x_1, x_2, ..., x_n)$ конкретних значень булевих змінних називається *двійковим словом* (n-словом) або *булевим набором* довжини n.

Для булевої функції $y = f(x_1, x_2, ..., x_n)$ конкретне значення булевого набору $(x_1, x_2, ..., x_n)$ називається *інтерпретацією булевої функції* f.

3.1.2 Способи задання булевих функцій

- 1) за допомогою таблиці істинності (значеннями на кожній з інтерпретацій);
- 2) порядковим номером, який має ця функція;
- 3) аналітично (у вигляді формули).

3.1.2.1 Таблиці істинності

Таблиці, в яких кожній інтерпретації функції поставлено у відповідність її значення, називаються *таблицями істинності булевої функції*.

Приклад

X	У	f(x, y)
0	0	0
0	1	1
1	0	1
1	1	1

Таблиця істинності функції п змінних:

x_1	• • •	x_{n-1}	χ_n	$f(x_1, \ldots, x_{n-1}, x_n)$
0	• • •	0	0	f(0,,0,0)
0	• • •	0	1	f(0,,0,1)
0	• • •	1	0	f(0,,1,0)
0	• • •	1	1	f(0,,1,1)
• • •	• • •	• • •	• • •	• • •
1	• • •	1	1	f(1,,1,1)

Множину наборів у таблиці істинності прийнято записувати у лексикографічному порядку, так що кожний набір являє двійкове число. Відповідне йому десяткове число будемо називати *номером* набору (кортежу).

Наприклад, номер набору 101 дорівнює 5, номер набору 110-6.

<u>Лема 1.</u> Кількість наборів булевої функції $f(x_1,...,x_n)$ від n змінних дорівнює 2^n .

Кількість булевих функцій від n змінних дорівнює 2^{2^n} .

Булева функція від двох змінних повністю визначена, якщо задано її значення в кожному із чотирьох можливих наборів $(2^2 = 4)$;

булева функція трьох аргументів — в кожному з восьми наборів ($2^3 = 8$).

Кількість різних можливих булевих функцій від двох аргументів дорівнює 16, від трьох — 256.

Числова форма запису булевої функції

Для спрощення запису булевої функції замість повного переліку змінних наборів використовують двійкові значення наборів, для яких функція набуває одиничних значень.

Наприклад,

$$f(x_1, x_2, x_3) = \bigvee_{1}^{3} F(1, 4, 7)$$

Відповідна таблиця істинності має вигляд:

$ x_1 $	x_2	x_3	$f(x_1,x_2,x_3)$
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	1

Булеві функції від однієї змінної f(x)

X	$ \varphi_0 $	φ_1	φ_2	φ_3
0	0	0	1	1
1	0	1	0	1

 $\varphi_0 = 0$ — функція константа 0,

 $\varphi_1 = x$ — функція повторення аргументу,

 $\varphi_2 = \overline{x}$ — функція інверсії або заперечення аргументу,

 $\varphi_3 = 1$ — функція константа 1.

Булеві функції від двох змінних f(x, y)

x	y	f_0	f_1	f_2	f_3	f_4	f_5	f_6	f_7	f_8	f_9	f_{10}	f_{11}	f_{12}	f_{13}	f_{14}	f_{15}
0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
0	1	0	0	0	0	1	1	1	1	0	0	0	0	1	1	1	1
1	0	0	0	1	1	0	0	1	1	0	0	1	1	0	0	1	1
1	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1

Позначення та назви булевих функцій від двох змінних:

Функція	Позна- чення	Назва	Булева формула	Інші позначення
$f_0(x, y)$	0	Константа нуль	0	
$f_1(x, y)$	$x \wedge y = \\ = x \& y = \\ = xy$	Кон'юнкція (логічне «і»)	$x \wedge y$	-, &, &&, *, AND, I, ×, min
$f_2(x, y)$	$x \leftarrow y$	Заперечення (інверсія) імплікації	$x \wedge \overline{y}$	\
$f_3(x, y)$	X	Повторення х	X	
$f_4(x, y)$	$y \leftarrow x$	Заперечення (інверсія) оберненої імплікації	$\overline{x} \wedge y$	\
$f_5(x, y)$	у	Повторення у	у	
$f_6(x, y)$	$x \oplus y$	Сума за модулем 2	$(\overline{x} \wedge y) \vee (x \wedge \overline{y})$	*, <>, ><, !=,

Функція	Позна-	Назва	Булева формула	Інші позна-
Фупкція	чення	Пазва	Булсва формула	чення
				XOR
$f_7(x, y)$	$x \vee y$	Диз'юнкція	$x \vee y$	ОК, АБО,
J/(x, y)	= x + y	(логічне «або»)		+, max
$f_{\sigma}(x, y)$		Стрілка Пірса-Вебба		x \(\tau \) \(\tau \
$f_8(x, y)$	$x \downarrow y$	(стрілка Пірса)	$x \vee y = \overline{x} \wedge \overline{y}$	$x \nabla y, x \circ y$
			$\overline{x \oplus y} =$	
$f_0(x,y)$	$x \sim y = $ $= x \equiv y$	Еквівалентність	$=(x \rightarrow y) \land (y \rightarrow x) =$	\Leftrightarrow , \equiv , Eqv,
$f_9(x, y)$		Еквівалентність	$=(\overline{x}\vee y)\wedge(x\vee\overline{y})=$	=
			$= xy \vee \overline{x} \ \overline{y}$	
$f_{i,j}(x,y)$	$\overline{y} = \neg y$	Заперечення	$\overline{\mathbf{v}}$	$\neg y$
$\int f_{10}(x, y)$	$y - \neg y$	(інверсія) у	\mathcal{Y}	1,9
$f_{11}(x, y)$	$y \rightarrow x$	Обернена імплікація	$x \vee \overline{y}$	_

Функція	Позна-	Назва	Булева формула	Інші позна-
Функція	чення	Пазва	Булева формула	чення
$f_{12}(x, y)$	$\overline{x} = \neg x$	Заперечення	\overline{x}	$\neg x$
$f_{-}(x,x)$	24 \ 24	(інверсія) <i>х</i>	$\overline{x} \vee y$	Imp
$f_{13}(x, y)$	$x \to y$	Імплікація	<i>λ</i> ∨ <i>y</i>	\supset , \Rightarrow , Imp
$f_{14}(x, y)$	$x \mid y$	Штрих Шеффера	$x \land y = \overline{x} \lor \overline{y}$	$x \overline{\wedge} y$
$f_{15}(x, y)$	1	Константа одиниця	1	

3.1.2.2 Номери булевих функцій та інтерпретацій

Кожній функції привласнюється порядковий номер у вигляді натурального числа, двійковий код якого зображує стовпчик значень функції у таблиці істинності.

Молодшим розрядом вважається самий нижчий рядок, а старшим — самий верхній.

Вказаний порядковий номер функції, як двійковий, так і десятковий, повністю визначає булеву функцію.

Кожній інтерпретації булевої функції також привласнюється свій номер — значення двійкового коду, який зображує інтерпретація.

Інтерпретації, що записана у верхньому рядку таблиці істинності, привласнюється номер 0, потім йде інтерпретація номер 1 тощо. В самому нижчому рядку розташована інтерпретація за номером $2^n - 1$, де n – кількість змінних, від яких залежить булева функція.

Приклад. Знайдемо порядковий номер функції f(x, y), що приймає такі значення: f(0,0)=1, f(0,1)=1, f(1,0)=0, f(1,1)=1.

Побудуємо таблицю істинності для цієї функції.

X	у	f(x, y)
0	0	1
0	1	1
1	0	0
1	1	1

Переведемо двійкове число 1101₂ у десяткову систему числення:

$$1101_2 = 1 \times 2^3 + 1 \times 2^2 + 0 \times 2^1 + 1 \times 2^0 = 8 + 4 + 0 + 1 = 13_{10}.$$

Десятковий номер даної функції — 13, тобто розглянута функція імплікації $f_{13}(x,y) = x \rightarrow y$.

3.1.2.3 Властивості функцій алгебри логіки

Функція $f(x_1, x_2, ..., x_n)$ суттево залежить від змінної x_i , якщо існує такий набір значень $a_1, ..., a_{i-1}, a_{i+1}, ..., a_n$, що $f(a_1, ..., a_{i-1}, 0, a_{i+1}, ..., a_n) \neq f(a_1, ..., a_{i-1}, 1, a_{i+1}, ..., a_n)$.

В цьому випадку змінна x_i називається суттєвою змінною, інакше x_i називають несуттєвою (фіктивною) змінною. **Приклад.** Нехай булеві функції $f_1(x_1, x_2)$ та $f_2(x_1, x_2)$ задані таблицею істинності:

x_1	x_2	$f_1(x_1,x_2)$	$f_2(x_1,x_2)$
0	0	0	1
0	1	0	1
1	0	1	0
1	1	1	0

Для цих функцій змінна x_1 — суттєва, а x_2 — несуттєва.

Функції f_1 та f_2 називаються **рівними**, якщо функцію f_2 можна одержати з f_1 додаванням і/або вилученням фіктивних аргументів.

Існують два типи функцій, які не мають суттєвих змінних:

- функція, тотожна 0 (константа 0);
- функція, тотожна 1 (константа 1).

3.1.2.4 Булева алгебра

Булева алгебра (загальна) — це алгебраїчна структура

$$\langle A, \{ \land, \lor, \neg, 0, 1 \} \rangle$$

з бінарними операціями \land , \lor : $A^2 \rightarrow A$, унарною операцією $\langle \neg \rangle$: $A \rightarrow A$ і виділеними елементами 0, 1 в носії A, операції якої задовольняють властивості комутативності, асоціативності, дистрибутивності.

Якщо носій алгебраїчної структури $B = \{0, 1\}$ складається з двох елементів, то така структура $\langle B, \{ \land, \lor, \neg \} \rangle$ називається двохелементною булевою алгеброю.

Алгеброю логіки називається двохелементна булева алгебра

$$< B, \{ \land, \lor, \neg, \rightarrow, \sim \} >, B = \{0, 1\},$$

в якій множину операцій доповнено двома бінарними операціями: імплікацією та еквівалентністю.

3.1.2.5 Булеві функції та пріоритет операцій

Булеві функції можуть бути задані *аналітично*, тобто формулами.

Формула — це вираз, що містить булеві функції та їхні суперпозиції.

Суперпозицією називається спосіб одержання нових функцій шляхом підстановки значень одних функцій замість значень аргументів інших функцій, при цьому деякі з функцій можуть тотожно співпадати з однією із змінних.

Пріоритет операцій

Якщо у формулі відсутні дужки, то **операції виконуються у такій послідовності**: заперечення, кон'юнкція, диз'юнкція, імплікація та еквівалентність: \neg , \wedge , \vee , \rightarrow , \sim .

Зображення функції формулою не єдине.

Приклад. Функція штрих Шеффера:

$$f_{14} = \overline{x}_1 \vee \overline{x}_2$$
 afo $f_{14} = \overline{x_1} \overline{x_2}$,

функція стрілка Пірса:

$$f_8 = \overline{x}_1 \ \overline{x}_2$$
 as $f_8 = x_1 \lor x_2$,

Формули, що зображують одну й ту ж функцію, називаються *еквівалентними* або *рівносильними*.

Приклад. Побудуємо таблицю істинності для функції $f(x,y,z) = xy \lor \overline{z}$.

Значення функції на всіх інтерпретаціях:

$$f(0, 0, 0) = 0 \land 0 \lor \overline{0} = 0 \lor 1 = 1,$$

 $f(0, 0, 1) = 0 \land 0 \lor \overline{1} = 0 \lor 0 = 0,$
 $f(0, 1, 0) = 0 \land 1 \lor \overline{0} = 0 \lor 1 = 1,$
 $f(0, 1, 1) = 0 \land 1 \lor \overline{1} = 0 \lor 0 = 0,$
 $f(1, 0, 0) = 1 \land 0 \lor \overline{0} = 0 \lor 1 = 1,$
 $f(1, 0, 1) = 1 \land 0 \lor \overline{1} = 0 \lor 0 = 0,$
 $f(1, 1, 0) = 1 \land 1 \lor \overline{0} = 1 \lor 1 = 1,$
 $f(1, 1, 1) = 1 \land 1 \lor \overline{1} = 1 \lor 0 = 1.$

Таблиця істинності:

\mathcal{X}	y	Z	f(x, y, z)
0	0	0	1
0	0	1	0
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	1
1	1	1	1

3.1.3 Двоїстість

Функція $f^*(x_1, ..., x_n)$ називається **двоїстою** до функції $f(x_1, ..., x_n)$, якщо

$$f^*(x_1, ..., x_n) = \overline{f}(\overline{x}_1, ..., \overline{x}_n). \tag{1}$$

$$(f^*(x_1, ..., x_n))^* = (\overline{f}(\overline{x}_1, ..., \overline{x}_n))^* =$$

$$= (\overline{\overline{f}}(\overline{\overline{x}}_1, ..., \overline{\overline{x}}_n)) = f(x_1, ..., x_n) \implies (f^*)^* = f.$$

Функція, двоїста сама собі, тобто $f = f^*$, називається *самодвоїстою*.

Правило:

щоб побудувати таблицю істинності функції, що двоїста даній, необхідно побудувати таблицю істинності заданої функції, кожне значення булевої функції замінити на протилежне і записати одержаний стовпчик у зворотній послідовності.

Приклад. Знайти функцію, яка двоїста функції f(x, y, z), якщо відомо, що f(x, y, z) = 1 тільки на інтерпретаціях (001), (011), (111).

			<i>(</i> (CYC
\mathcal{X}	\mathcal{Y}	\mathcal{Z}	f(x, y, z)	f*(x, y, z)
0	0	0	0	0
0	0	1	1	1
0	1	0	0	1
0	1	1	1	1
1	0	0	0	0
1	0	1	0	1
1	1	0	0	0
1	1	1	1	1

Приклад. Самодвоїста функція $f = f^*$.

x	y	\overline{z}	f(x, y, z)	f*(x, y, z)
0	0	0	0	0
0	0	1	1	1
0	1	0	1	1
0	1	1	1	1
1	0	0	0	0
1	0	1	0	0
1	1	0	0	0
1	1	1	1	1

Нехай функція F задана як суперпозиція функцій f_0 і функцій $f_1, ..., f_n$: $F = f_0 (f_1, ..., f_n)$.

Функцію F^* , що двоїста F, можна одержати, замінивши в формулі F функції f_0 ; f_1 , ..., f_n на двоїсті до них f_0^* ; f_1^* ,..., f_n^* .

$$F^* = f_0^* (f_1^*, ..., f_n^*).$$

Функції, що двоїсті до «елементарних» функцій логіки ∧, ∨, ¬, константа 0, константа 1:

$$f(x, y) = x \wedge y; \qquad f^*(x, y) = \overline{x} \wedge \overline{y} = x \vee y;$$

$$f(x) = \overline{x}; \qquad f^*(x) = \overline{\overline{x}} = \overline{x} = f(x);$$

$$f(x) = 0; \qquad f^*(x) = \overline{0} = 1 = f(x).$$

Правило одержання двоїстих формул у булевій алгебрі:

«Для того щоб одержати двоїсту формулу булевої алгебри, необхідно замінити в ній всі кон'юнкції на диз'юнкції, диз'юнкції на кон'юнкції, 0 на 1, 1 на 0 і використовувати дужки, де необхідно, щоб порядок використання операцій залишився попереднім».

Приклад. Знайти функцію, двоїсту функції $f = x \vee \overline{y}z \vee 0$.

$$f^* = (x \vee (\overline{y}z) \vee 0)^* = x \wedge (\overline{y} \vee z) \wedge 1.$$

3.1.4 Закони булевої алгебри

1. Комутативність кон'юнкції та диз'юнкції

$$x \lor y = y \lor x$$
; $x \land y = y \land x$.

\mathcal{X}	y	$x \vee y$	$y \vee x$
0	0	0	0
0	1	1	1
1	0	1	1
1	1	1	1

$$(x \lor y)^* = (y \lor x)^* \qquad x \land y = y \land x.$$

2. Асоціативність кон'юнкції та диз'юнкції

$$x \lor (y \lor z) = (x \lor y) \lor z;$$

$$x \wedge (y \wedge z) = (x \wedge y) \wedge z.$$

Таблиці істинності для лівої та правої частин другої рівності:

X	y	Z	$y \wedge z$	$x \wedge (y \wedge z)$	$x \wedge y$	$(x \wedge y) \wedge z$
0	0	0	0	0	0	0
0	0	1	0	0	0	0
0	1	0	0	0	0	0
0	1	1	1	0	0	0
1	0	0	0	0	0	0
1	0	1	0	0	0	0
1	1	0	0	0	1	0
1	1	1	1	1	1	1

3. Дистрибутивність кон'юнкції та диз'юнкції відносно одна одній

$$x \wedge (y \vee z) = (x \wedge y) \vee (x \wedge z);$$

$$x \lor (y \land z) = (x \lor y) \land (x \lor z).$$

\mathcal{X}	y	Z	$y \vee z$	$x \wedge (y \vee z)$	$x \wedge y$	$x \wedge z$	$(x \wedge y) \vee (x \wedge z)$
0	0	0	0	0	0	0	0
0	0	1	1	0	0	0	0
0	1	0	1	0	0	0	0
0	1	1	1	0	0	0	0
1	0	0	0	0	0	0	0
1	0	1	1	1	0	1	1
1	1	0	1	1	1	0	1
1	1	1	1	1	1	1	1

4. Ідемпотентність кон'юнкції та диз'юнкції

$$x \lor x = x$$
; $x \land x = x$.

x	$x \vee x$	$x \wedge x$
0	0	0
1	1	1

5. Закон виключеного третього

$$x \vee \overline{x} = 1$$
.

X	\overline{x}	$x \vee \overline{x}$
0	1	1
1	0	1

6. Закон протиріччя

$$x \wedge \overline{x} = 0$$
.

7. Тотожності з константами

 $x \lor 0 = x$; $x \land 1 = x$; $x \lor 1 = 1$; $x \land 0 = 0$.

X	$x \vee 0$	$x \wedge 1$	$x \vee 1$	$x \wedge 0$
0	0	0	1	0
1	1	1	1	0

8. Закони елімінації

$$x \wedge (x \vee y) = x; \quad x \vee (x \wedge y) = x.$$

Доведення:

$$x \wedge (x \vee y) = (x \vee 0) \wedge (x \vee y) = x \vee (0 \wedge y) = x \vee 0 = x;$$
$$x \vee (x \wedge y) = (x \wedge 1) \vee (x \wedge y) = x \wedge (1 \vee y) = x \wedge 1 = x.$$

9. Закон подвійного заперечення

$$\overline{\overline{x}} = x$$
.

X	\overline{x}	$\overline{\overline{x}}$
0	1	0
1	0	1

Hacnidok. Якщо до деякої частини A формули F булевої алгебри операція заперечення застосована більше одного разу, то можна видалити будь-яке парне число даних операцій і значення формули F не зміниться.

10. Закони де Моргана

$$\overline{x \lor y} = \overline{x} \land \overline{y}; \qquad \overline{x \land y} = \overline{x} \lor \overline{y}.$$

X	y	$x \vee y$	$\overline{x \vee y}$	$\frac{-}{x}$	y	$\overline{x} \wedge \overline{y}$
0	0	0	1	1	1	1
0	1	1	0	1	0	0
1	0	1	0	0	1	0
1	1	1	0	0	0	0