WAILABLE COPY

USSN 09/848,697 QA211NP

Amendments to the Claims:

This listing of claims will replace all prior versions and listings of claims in the application:

Listing of Claims:

Claim 1. (Currently Amended) A compound of the formula

I

wherein X_1 is O, $S(O)_n$, -N, CO-N, or -CH2-, with the proviso that when X_1 is -CH2-, R^1 and R^2 are only halogen;

n is 0, 1 or 2;

R^a and R^b when taken together form an oxo (=0) group, or R^a and R^b are each independently hydrogen, OH, OCOR⁹, NH₂, N₃, NHCOOR⁹, NHCOCOR⁹, NHSO₂R⁹ or F;

X is H, CF₃, OCF₃, halogen, C₁-C₇ alkyl, C₂-C₇ alkenyl, C₂-C₇ alkynyl or C₃-C₇ cycloalkyl, said alkyl, alkenyl, alkynyl or cycloalkyl group being optionally substituted by COOR⁸, CN, C(O)NR⁶R⁷, PO₃R⁸, SO₃R⁸, heterocyclic, OR⁸, SH, S(O)_nR⁹, NR⁶R⁷, NH(CO)NR⁶R⁷, NH(CO)OR⁹, or aryl or heteroaryl, said aryl or heteroaryl being optionally substituted by one or two groups independently selected from NR⁶R⁷, OR⁸, COOR⁸, SO₃R⁸, OCOR⁹, PO₃R⁸, and C(O)NR⁶R⁷ and heterocyclic;

R¹ and R² are each independently H, halogen, OR⁹, C₁-C₇ alkyl, C₂-C₇ alkynyl,

USSN 09/848,697 QA211NP

C2-C7 alkeryl or C3-C7 cycloalkyl, said alkyl, alkenyl, alkynyl and cycloalkyl group being optionally substituted by COOR8, CN, C(O)NR6R7, PO3R8, SO3R8, heterocyclic, OR8, SH, S(O)_nR9, NR6R7, NH(CO)NR6R7, NH(CO)OR9, OC(O)OR9, or aryl or heterocyclic, said aryl and heterocyclic optionally substituted with one or two groups independently selected from NR6R7, OR8, COOR8, SO3R8, OCOR9, PO3R8, and C(O)NR6R7 and heterocyclic;

R³, R⁴ and Y are each independently H, halogen, OR¹⁰, S(O)_RR¹⁰, C₁-C₇ alkyl, C₂-C₇ alkenyl, C₂-C₇ alkynyl or C₃-C₇ cycloalkyl, said alkyl, alkenyl, alkynyl and cycloalkyl group being optionally substituted by COOR⁸, CN, C(O)NR⁶R⁷, PO₃R⁸, SO₃R⁸, heterocyclic, OR⁸, SH, S(O)_RR⁹, NR⁶R⁷, NH(CO)NR⁶R⁷, NH(CO)OR⁹, OC(O)OR⁹, or aryl or heterocyclic, said aryl and heterocyclic poptionally substituted by one or two groups independently selected from NR⁶R⁷, OR⁸, COOR⁸, SO₃R⁸, OCOR⁸, PO₃R⁸, and C(O)NR⁶R⁷ and heterocyclic, with the proviso that not all of R³, R⁴ and Y may be the same halogen;

R⁵, R⁶ and R⁷ are each independently H, C₁-C₇ alkyl, C₂-C₇ alkenyl, C₂-C₇ alkenyl, C₂-C₇ alkynyl or C₃-C₇ cycloalkyl, said alkyl, alkenyl, alkynyl and cycloalkyl group being optionally substituted by COOR⁸, CN, OR⁸, NR⁸R⁹, SO₃R⁸, PO₃R⁸, halogen, or aryl or hotoroaryl being optionally substituted by one or two groups independently selected from COOR⁸, SO₃R⁸, and PO₃R⁸ and hotorocyclic;

R8 is H, C1-C7 saturated straight chain alkyl or cycloalkyl;

 \mathbb{R}^9 is C_1 - C_7 saturated straight chain alkyl or cycloalkyl;

 R^{10} is C_1 – C_7 alkyl, C_2 – C_7 alkynyl, C_2 – C_7 alkynyl, aryl or C_3 – C_7 cycloalkyl, said alkyl, alkenyl, alkynyl, aryl or cycloalkyl group being optionally substituted by

USSN 09/848,697 QA211NP

COOR⁸, CN, C(O)NR⁶R⁷, PO₃R⁸, SO₃R⁸, heterocyclic, OR⁸, SH, S(O)_nR⁹, NR⁶R⁷, NH(CO)NR⁶R⁷, NH(CO)OR⁹, or aryl or heterocryl, said aryl or heterocryl being optionally substituted by one or two groups independently selected from NR⁶R⁷, OR⁸, COOR⁸, SO₃R⁸, OCOR⁸, PO₃R⁸, and C(O)NR⁶R⁷ and heterocyclic;

Z is OR¹¹, S(O)_nR¹¹, NR¹¹R¹² or CHR¹¹R¹².

 R^{11} is C_1 - C_7 alkyl, C_2 - C_7 alkenyl, C_2 - C_7 alkynyl or C_3 - C_7 cycloalkyl, said alkyl, alkenyl, alkynyl or cycloalkyl group being substituted by $NR^{13}R^{14}$, $S(O)_nR^{13}$, or OR^{13} ;

 R^{12} is hydrogen, C_1 – C_7 alkyl, C_2 – C_7 alkenyl, C_2 – C_7 alkynyl or C_3 – C_7 cycloalkyl, said alkyl, alkenyl, alkynyl or cycloalkyl group being optionally substituted by $NR^{13}R^{14}$, $S(O)_nR^{13}$, or OR^{13} ;

R¹³ is SiR¹⁵R¹⁶R¹⁷, C₁-C₇ alkyl, C₂-C₇ alkenyl, C₂-C₇ alkynyl, aryl or C₃-C₇ cycloalkyl, said alkyl, alkenyl, alkynyl, aryl or cycloalkyl group being substituted by one to three groups independently selected from COOR⁸, OR⁸, Si R¹⁵R¹⁶R¹⁷, OR¹⁵, aryl, and biaryl and heteroaryl, said aryl[[,]] and biaryl and heteroaryl being optionally substituted with one to three groups independently selected from halogen, CF₃, OR⁸, COOR⁸, NO₂, and CN;

R¹⁴ is H, SiR¹⁵R¹⁶R¹⁷, C₁-C₇ alkyl, C₂-C₇ alkenyl, C₂-C₇ alkynyl, aryl or C₃-C₇ cycloalkyl, said alkyl, alkenyl, alkynyl, aryl or cycloalkyl group being optionally substituted by one to three groups independently selected from COOR⁸, OR⁸, Si R¹⁵R¹⁶R¹⁷, OR¹⁵, aryl, and biaryl and heteroaryl, said aryl[[,]] and biaryl and heteroaryl being optionally substituted with one to three groups independently selected from halogen, CF₃, OR⁸, COOR⁸, NO₂, and CN; and or

USSN 09/848,697 QA211NP

R¹³ and R¹⁴ when taken together with the nitrogen atom to which they are attached may form a 5 7 membered heterocyclic ring with one or more heteroatoms selected from O, N and S; said ring being optionally substituted by OR³, COOR³, or C(O)NR⁵R⁶; and

 R^{15} , R^{16} , R^{17} are each independently is C_1 - C_7 alkyl, aryl, benzyl, benzyl, biaryl, heteroaryl, or (C_1-C_6) alkyl-aryl or (C_1-C_6) alkyl-heteroaryl, said aryl, benzyl, benzyl, and biaryl being optionally substituted by halogen, CF_3 , OR^8 , $COOR^8$, NO_2 , CN, or C_1 - C_7 alkyl.

Claim 2, (Currently Amended) A compound of the formula

$$\begin{array}{c|c}
Z & R^{b} & R^{b} \\
X & R^{1} & R^{2} & R^{3} & R^{4}
\end{array}$$

or a pharmaceutically acceptable sait thereof wherein

 R^5 R^6 X_1 is O, $S(O)_n$, -N-, CO-N- or $-CH_2-$, with the proviso that when X_1 is $-CH_2-$, R^1 and R^2 are only halogen;

n is 0, 1 or 2;

R^a and R^b when taken together form an oxo (=0) group, or R^a and R^b are each independently hydrogen, OH, OCOR⁹, NH₂, N₃, NHCOOR⁹, NHCOCOR⁹, NHSO₂R⁹ or F;

X is H, CF₃, OCF₃, halogen, C₁-C₇ alkyl, C₂-C₇ alkenyl, C₂-C₇ alkynyl or C₃-C₇ cycloalkyl, said alkyl, alkenyl, alkynyl or cycloalkyl group being optionally substituted by COOR⁸, CN, C(O)NR⁶R⁷, PO₃R⁸, SO₃R⁸, heterocyclic, OR⁸, SH,

USSN 09/848,697 QA211NP

S(O)_nR⁹, NR⁶R⁷, NH(CO)NR⁶R⁷, NH(CO)OR⁹, or anyl or heteroaryl, said anyl or heteroaryl being optionally substituted by one or two groups independently selected from NR⁶R⁷, OR⁸, COOR⁸, SO₃R⁸, OCOR⁹, PO₃R⁸, and C(O)NR⁶R⁷ and heterosyelie;

R¹ and R² are each independently H, halogen, OR⁹, C₁-C₇ alkyl, C₂-C₇ alkynyl, C₂-C₇ alkenyl or C₃-C₇ cycloalkyl, said alkyl, alkenyl, alkynyl and cycloalkyl group being optionally substituted by COOR⁸, CN, C(O)NR⁶R⁷, PO₃R⁸, SO₃R⁸, heterocyclic, OR⁸, SH, S(O)_BR⁹, NR⁶R⁷, NH(CO)NR⁶R⁷, NH(CO)OR⁹, OC(O)OR⁹, aryl or heterocryl, said aryl and heterocryl being optionally substituted with one or two groups independently selected from NR⁶R⁷, OR⁸, COOR⁸, SO₃R⁸, OCOR⁹, PO₃R⁸, and C(O)NR⁶R⁷ and heterocyclic;

R³, R⁴ and Y are each independently H, OR¹⁰, S(O)_nR¹⁰, C₁-C₇ alkyl, C₂-C₇ alkenyl, C₂-C₇ alkynyl or C₃-C₇ cycloalkyl, asid alkyl, alkenyl, alkynyl and cycloalkyl group being optionally substituted by COOR⁸, CN, C(O)NR⁶R⁷, PO₃R⁸, SO₃R⁸, heterocyclic, OR⁸, SH, S(O)_nR⁹, NR⁶R⁷, NH(CO)NR⁶R⁷, NH(CO)OR⁹, OC(O)OR⁹, or aryl or heterocyclic and heterocyclic from NR⁶R⁷, OR⁸, COOR⁸, SO₃R⁸, OCOR⁸, PO₃R⁸, and C(O)NR⁶R⁷ and heterocyclic;

R⁵, R⁶ and R⁷ are each independently H, C₁-C₇ alkyl, C₂-C₇ alkenyl, C₂-C₇ alkynyl or C₃-C₇ cycloalkyl, said alkyl, alkenyl, alkynyl and cycloalkyl group being optionally substituted by COOR⁸, CN, OR⁸, NR⁸R⁹, SO₃R⁸, PO₃R⁸, halogen, or aryl or heteroaryl, said aryl and heteroaryl being optionally substituted by one or two groups independently selected from COOR⁸, SO₃R⁸, and PO₃R⁸ and heteroeyelie;

USSN 09/848,697 QA211NP

R8 is H, C1-C7 saturated straight chain alkyl or cycloalkyl, CF3 or CH2CF3;

R⁹ is C₁-C₇ saturated straight chain alkyl or cycloalkyl;

 R^{10} is C_1 – C_7 alkyl, C_2 – C_7 alkenyl, C_2 – C_7 alkynyl, aryl or C_3 – C_7 cycloalkyl, said alkyl, alkenyl, alkynyl, aryl or cycloalkyl group being optionally substituted by $COOR^8$, CN, $C(O)NR^6R^7$, PO_3R^8 , SO_3R^8 , heterocyclic, OR^8 , SH, $S(O)_nR^9$, NR^6R^7 , $NH(CO)NR^6R^7$, $NH(CO)OR^9$, or aryl or heterocryl, said aryl or heterocryl being optionally substituted by one or two groups independently selected from NR^6R^7 , OR^8 , $COOR^8$, SO_3R^8 , $OCOR^8$, PO_3R^8 , and $C(O)NR^6R^7$ and heterocyclic;

Z is OR¹¹, S(O)_nR¹¹, NR¹¹R¹² or CHR¹¹R¹²;

 R^{11} is C_1 - C_7 alkyl, C_2 - C_7 alkenyl, C_2 - C_7 alkynyl or C_3 - C_7 cycloalkyl, said alkyl, alkenyl, alkynyl or cycloalkyl group being substituted by $NR^{13}R^{14}$, $S(O)_nR^{13}$, or OR^{13} ;

 R^{12} is hydrogen, C_1 – C_7 alkyl, C_2 – C_7 alkenyl, C_2 – C_7 alkynyl or C_3 – C_7 cycloalkyl, said alkyl, alkenyl, alkynyl or cycloalkyl group being optionally substituted by $NR^{13}R^{14}$, $S(O)_nR^{13}$ or OR^{13} ;

R¹³ is SiR¹⁵R¹⁶R¹⁷, C₁-C₇ alkyl, C₂-C₇ alkenyl, C₂-C₇ alkynyl, aryl or C₃-C₇ cycloalkyl, said alkyl, alkenyl, alkynyl, aryl or cycloalkyl group being substituted by one to three groups independently selected from COOR⁸, OR⁸, Si R¹⁵R¹⁶R¹⁷, OR¹⁵, aryl, and biaryl and heteroaryl, said aryl[[,]] and biaryl and heteroaryl being optionally substituted with one to three groups independently selected from halogen, CF₃, OR⁸, COOR⁸, NO₂, and CN;

 \mathbb{R}^{14} is H, $\frac{15}{\mathbb{R}^{15}\mathbb{R}^{16}\mathbb{R}^{17}}$, \mathbb{C}_1 - \mathbb{C}_7 alkyl, \mathbb{C}_2 - \mathbb{C}_7 alkynyl, aryl or \mathbb{C}_3 -

USSN 09/848,697 QA211NP

C7 cycloalkyl, said alkyl, alkenyl, alkynyl, aryl or cycloalkyl group being optionally substituted by one to three groups independently selected from COOR⁸, OR⁸, Si R¹⁵R¹⁶R¹⁷, OR¹⁵, aryl, and biaryl and heteroaryl, said aryl[[,]] and biaryl and heteroaryl being optionally substituted with one to three groups independently selected from halogen, CF₃, OR⁸, COOR⁸, NO₂, and CN; and es

R¹³ and R¹⁴ when taken together with the nitrogen atom to which they are attached may form a 5 7 membered beterocyclic ring with one or more heteroatoms selected from O, N and S; said ring being optionally substituted by OR⁸, COOR⁸, or C(O)NR⁵R⁶; and

 R^{15} , R^{16} , R^{17} -are each independently is C_1 - C_7 alkyl, aryl, benzyl, benzhydryl, biaryl, hotoroaryl, or $(C_1$ - $C_6)$ alkyl-aryl or $(C_1$ - $C_6)$ alkyl-hotoroaryl, said aryl, benzyl, benzhydryl, and biaryl being optionally substituted by halogen, CF_3 , OR^8 , $COOR^8$, NO_2 , CN, or C_1 - C_7 alkyl.

Claim 3. (Currently Amended) A compound of claim 2 wherein X₁ is O or S(O)_n and Y is OR¹⁰ in which R¹⁰ is C₁-C₇ alkyl, C₂-C₇ alkenyl, C₂-C₇ alkynyl, aryl or C₃-C₇ cycloalkyl, said alkyl, alkenyl, alkynyl, aryl or cycloalkyl group being optionally substituted by COOR⁸, CN, C(O)NR⁶R⁷, PO₃R⁸, SO₃R⁸, heterocyclic, OR⁸, SH, S(O)_nR⁹, NR⁶R⁷, NH(CO)NR⁶R⁷, NH(CO)OR⁹, or aryl or heterocyclic independently selected from NR⁶R⁷, OR⁸, COOR⁸, SO₃R⁸, OCOR⁹, PO₃R⁸, and C(O)NR⁶R⁷ or heterocyclic, said R⁶, R⁷, R⁸ and R⁹ substituents being defined as in claim 2.

Claim 4. (Original) A compound of claim 3 in which R^a and R^b taken together represent an oxo (=O) group, or R^a and R^b are each independently hydrogen or OH.

USSN 09/848,697 QA211NP

Claims 5-6. (Canceled).

Claim 7.

(Currently Amended) A compound of claim 3 in which

Z is

in which m and p each independently represent an integer of one to six, R^{15} , R^{16} , R^{17} are each independently G_1 . G_2 alkyl or phonyl, R^{18} is G_1 - G_7 alkyl and aryl

Claim 8. (Canceled).

Claim 9. (Original) A pharmaceutical composition for the inhibition of cytosolic phospholipase A₂ comprising a therapeutically effective amount of a compound of claim 1 and a pharmaceutically acceptable carrier.

Claim 10. (Withdrawn) A method of inhibiting cytosolic phospholipase A_2 in a mammal in need thereof, comprising administering to said mammal a therapeutically effective amount of a compound of claim 1.

Claim M. (Currently Amended) A compound selected from

OBCHA CONH

- 10 -

PAGE 11/21 * RCVD AT 10/7/2004 2:55:06 PM [Eastern Daylight Time] * SVR:USPTO-EFXRF-1/6 * DNIS:8729306 * CSID:2036776900 * DURATION (mm-ss):04-48

USSN 09/848,697 QA211NP

USSN 09/848,697 QA211NP

USSN 09/848,697 QA211NP

or a pharmaceutically acceptable salt thereof.

Claim 12. (Currently Amended) A compound of the formula

or a pharmaceutically acceptable salt thereof wherein

 R^5 X_1 is O, S(O)_n, co-N-, or -CH₂-, with the proviso that when X_1 is -CH₂-, R^1 and R^2 are only halogen;

n is 0, 1 or 2;

R^a and R^b when taken together form an oxo (=0) group, or R^a and R^b are each independently hydrogen, OH, OCOR⁹, NH₂, N₃, NHCOCOR⁹, or F;

X is H;

USSN 09/848,697 QA211NP

R1 and R2 are each independently H, halogen, OR9, or C1-C7 alkyl;

 R^3 , R^4 and Y are each independently H, halogen, OR^{10} , or C_1 - C_7 alkyl, said alkyl being optionally substituted by aryl, said aryl being optionally substituted by one or two $COOR^8$ groups, with the proviso that not all of R^3 , R^4 and Y may be the same halogen;

 R^5 , R^6 , and R^7 are each independently hydrogen or C_1 - C_7 alkyl, said alkyl being optionally substituted by OR^8 ;

R⁸ is H or C₁-C₇ saturated straight chain alkyl;

R9 is C1-C7 saturated straight chain alkyl;

 R^{10} is C_1 - C_7 alkyl or aryl, said alkyl or aryl group being optionally substituted by $COOR^3$, $C(O)NR^6R^7$, hoterocyclic, or OR^3 ;

Z is OR11 or CHR11R12:

 R^{11} is C_1 - C_7 alkyl substituted by $NR^{13}R^{14}$, $S(O)_nR^{13}$, or OR^{13} ;

R¹² is hydrogen;

R¹³ is SiR¹⁵R¹⁵R¹⁵C₁-C₇ alkyl, said alkyl substituted by one to three groups independently selected from OR¹⁵ and aryl, said aryl substituted with one halogen;

R¹⁴ is C₁-C₇ alkyl; and

 R^{17} , R^{46} , and R^{17} are each independently is C_1 - C_7 alkyl, aryl, or benzhydryl, said aryl and benzhydryl being optionally substituted by halogen.

Claim 13. (Currently Amended) A compound of the formula

USSN 09/848,697 QA211NP

$$Z \xrightarrow{I} X_1 \xrightarrow{R^a \xrightarrow{R^b}} X_1 \xrightarrow{R^a \xrightarrow{R^b}} X_1 \xrightarrow{R^a \xrightarrow{R^b}} X_2 \xrightarrow{R^a \xrightarrow{R^b}} X_1 \xrightarrow{R^a \xrightarrow{R^b}} X_2 \xrightarrow{R^a \xrightarrow{R^b}} X_3 \xrightarrow{R^a} X_4 \xrightarrow{R^b} X_4 \xrightarrow{R^a} X_5 X_5 \xrightarrow{R^a} X_5 \xrightarrow{R^a}$$

or a pharmaceutically acceptable salt thereof wherein

 X_1 is O, S(O)_n, or -CH₂-, with the proviso that when X_1 is -CH₂-, R^1 and R^2 are only halogen;

n is 0, I or 2;

 R^n and R^b are each independently hydrogen, OH, OCOR⁹, NH₂, N₃, NHCOOR⁹, NHCOCOR⁹, or F;

X is H, CF₃, OCF₃, halogen, C₁-C₇ alkyl, C₂-C₇ alkenyl, C₂-C₇ alkynyl or C₃-C₇ cycloalkyl, said alkyl, alkenyl, alkynyl or cycloalkyl group being optionally substituted by COOR⁸, CN, C(O)NR⁶R⁷, PO₃R⁸, SO₃R⁸, heterocyclic, OR⁸, SH, S(O)_nR⁹, NR⁶R⁷, NH(CO)NR⁶R⁷, NH(CO)OR⁹, or aryl or heteroaryl, said aryl or heteroaryl being optionally substituted by one or two groups independently selected from NR⁶R⁷, OR⁸, COOR⁸, SO₃R⁸, OCOR⁹, PO₃R⁸, and C(O)NR⁶R⁷ and heterocyclic;

R¹ and R² are each independently H, halogen, OR⁹, C₁-C₇ alkyl, C₂-C₇ alkynyl, C₂-C₇ alkenyl or C₃-C₇ cycloalkyl, said alkyl, alkenyl, alkynyl and cycloalkyl group being optionally substituted by COOR⁸, CN, C(O)NR⁶R⁷, PO₃R⁸, SO₃R⁸, heterocyclic, OR⁸, SH, S(O)_RR⁹, NR⁶R⁷, NH(CO)NR⁶R⁷, NH(CO)OR⁹, OC(O)OR⁹, or aryl or heterocryl, said aryl and heterocryl being optionally substituted with one or two groups independently selected from NR⁶R⁷, OR⁸, COOR⁸, SO₃R⁸, OCOR⁹, PO₃R⁸, and C(O)NR⁶R⁷ and heterocyclic;

USSN 09/848,697 QA211NP

R³ and R⁴ are each independently H, halogen, OR¹⁰, S(O)_nR¹⁰, C₁-C₇ alkyl, C₂-C₇ alkenyl, C₂-C₇ alkynyl or C₃-C₇ cycloalkyl, said alkyl, alkenyl, alkynyl and cycloalkyl group being optionally substituted by COOR⁸, CN, C(O)NR⁶R⁷, PO₃R⁸, SO₃R⁸, heterocyclic, OR⁸, SH, S(O)_nR⁹, NR⁶R⁷, NH(CO)NR⁶R⁷, NH(CO)OR⁹, OC(O)OR⁹, or aryl or heterocryl, said aryl and heterocryl being optionally substituted by one or two groups independently selected from NR⁶R⁷, OR⁸, COOR⁸, SO₃R⁸, OCOR⁸, PO₃R⁸, and C(O)NR⁶R⁷ and heterocyclic, with the provise that not all of R³, R⁴ and Y may be the same halogen;

Y is OR^{10} or $S(O)_{0}R^{10}$;

R⁵, R⁶ and R⁷ are each independently H, C₁-C₇ alkyl, C₂-C₇ alkenyl, C₂-C₇ alkynyl or C₃-C₇ cycloalkyl, said alkyl, alkenyl, alkynyl and cycloalkyl group being optionally substituted by COOR⁸, CN, OR⁸, NR⁸R⁹, SO₃R⁸, PO₃R⁸, halogen, or aryl or heteroaryl, said aryl or heteroaryl being optionally substituted by one or two groups independently selected from COOR⁸, SO₃R⁸, and PO₃R⁸ and heterocyclic;

R8 is H, C1-C7 saturated straight chain alkyl or cycloalkyl;

R⁹ is C₁-C₇ saturated straight chain alkyl or cycloalkyl;

R¹⁰ is C₁-C₇ alkyl, C₂-C₇ alkenyl, C₂-C₇ alkynyl, aryl or C₃-C₇ cycloalkyl, said alkyl, alkenyl, alkynyl, aryl or cycloalkyl group being optionally substituted by COOR⁸, CN, C(O)NR⁶R⁷, PO₃R⁸, SO₃R⁸, heterocyclic, OR⁸, SH, S(O)_nR⁹, NR⁶R⁷, NH(CO)NR⁶R⁷, NH(CO)OR⁹, or aryl or heteroaryl, said aryl or heteroaryl being optionally substituted by one or two groups independently selected from NR⁶R⁷, OR⁸, COOR⁸, SO₃R⁸, OCOR⁸, PO₃R⁸, and C(O)NR⁶R⁷ or heterocyclic; and

USSN 09/848,697 QA211NP

Z is

in which m and p each independently represent an integer of one to six, R_1^{15} , R_2^{16} , R_3^{17} are each independently C_1 — C_7 alkyl or phonyl, R_1^{18} is C_1 — C_7 alkyl and aryl

represents X^1 in which X^1 is halogen.

Amondment

BEST AVAILABLE CO

USSN 09/848,697 QA211NP

REMARKS/ARGUMENTS

Claims 1-4, 7, and 9-13 are pending in this application.

In the Office Action dated July 8, 2004, the Examiner rejected Claims 1-4, 9, 12, and 13 under 35 U.S.C. §102(b) as being unpatentable over JP 5-222006. Claim 7 was objected to as being dependent upon a rejected base claim.

Reconsideration and allowance of this application are respectfully requested in view of the above amendments and the remarks that follow.

Pursuant to the Examiner's request for an election of a single disclosed species on July 29, 2003, Applicants elected 3-[4-[3-[N-[2-Bis-(4-chlorophenyl)ethyl]-N-methylamino]propyl]phenoxy]-1-(4-carboxyphenoxy)-2-propanone which is Example 2 on page 51 of the specification.

3-[4-[3-[N-[2-Bis-(4-chlorophenyl)ethyl]-N-methylamino]propyl]phenoxy]-1-(4-carboxyphenoxy)-2-propanone

In the July 8, 2004 Office Action, the Examiner states that "Claim 11 will be allowed to the extent it reads on the elected subject matter. Compounds containing Silicon and heterocyclic subject matter should be deleted." Accordingly, Applicants have amended Claims 1, 2, 3, 7,11, 12, and 13 to remove silicon and heterocyclic subject matter which reflects the scope of the generic concept of the elected subject matter. Applicants maintain the right to file divisonal application(s) on non-elected subject matter.

Rejection of Claims 1-4, 9, 12, and 13 Under 35 U.S.C. §102(b)

The Examiner has rejected Claims 1-4, 9, 12, and 13 under 35 U.S.C. §102(b) as being unpatentable over JP 5-222006. JP'006 teaches compounds containing a

USSN 09/848,697 QA211NP

heterocycle. It is Applicants' position that the amendments to Claims 1, 2, 3, 9, 12, and 13, which remove all heterocyclic subject matter, render the rejections moot. Therefore, it is respectfully requested that the rejections to Claims 1-4, 9, 12, and 13 be withdrawn.

Objection of Claim 7 and Allowance of Claim 11

Claim 7 has been objected to as being dependent upon a rejected base claim, but would be allowable to the extent that it reads on the elected subject matter, if rewritten in independent form including all of limitations of the base claim. The Examiner further states "Note applicants should delete Silicon containing subject matter." Applicants have amended Claim 7 to remove all silicon containing subject matter and respectfully request that the objection be withdrawn,

Claim 11 is allowed to the extent it reads on the elected subject matter. The Examiner further states "Compounds containing Silicon and heterocyclic subject matter should be deleted." Applicants have amended Claim 11 to remove all silicon and heterocyclic subject matter and respectfully request that the claim be allowed.

While Applicants submit that the claims are in condition for allowance and respectfully request the Examiner's reconsideration, a NOTICE OF APPEAL has nevertheless been filed. The Commissioner is hereby authorized to charge any additional fees under 37 CFR §1.17 which may be required, or credit any overpayment, to Account No. 19-3880 in the name of Bristol-Myers Squibb Company.

Respectfully submitted,

Bristol-Myers Squibb Company Patent Department P.O. Box 4000 Princeton, NJ 08543-4000

Date: October 7, 2004

Pamela A. Mingo Agent for Applicants Reg. No. 48, 256