Teórica 7 : Resolución Lógica

Tomás Felipe Melli

June 8, 2025

${\bf \acute{I}ndice}$

L	Introducción a Prolog
2	Resolución para lógica proposicional
	2.1 Pasaje a Forma Clausal
	2.2 Refutación
	2.2.1 Regla de Resolución
	2.3 Algoritmo de Refutación
	2.4 Corrección del método de resolución proposicional
	2.4.1 Teorema : corrección del pasaje a forma clausal
	2.4.2 Teorema : corrección del algoritmo de refutación
;	Resolución para lógica de primer orden
	3.1 Pasaje a forma clausal en LPO
	3.2 Refutación en LPO
	3.2.1 Regla de resolución de LPO
	3.3 Resolución Binaria
	3.4 Corrección del método de resolución en LPO
	3.4.1 Teorema : Corrección del pasaje a forma clausal
	3.4.2 Teorema : Corrección del algortimo de refutación

1 Introducción a Prolog

Prolog es un lenguaje de programación lógico y declarativo, diseñado principalmente para la inteligencia artificial y el procesamiento de lenguaje natural. Su nombre proviene de "PROgramming in LOGic".

La forma de operar de **Prolog** es con **términos de primer orden**, en este lenguaje, sería cualquier constante, variable o estructura que representa datos u objetos, y se pueden combinar para formar afirmaciones lógicas.

Las **fórmulas atómicas** son de la forma $pred(t_1, ..., t_n)$ como por ejemplo

```
padre(zeus, atenea) esto es, zeus es el padre de atenea
```

En prolog, lo anterior se llama hecho (fact) y por tanto, podemos consultar (query)

```
?- padre(zeus, atenea)
>> true
```

Otra manera es definir relaciones lógicas con reglas (rules) como por ejemplo, cuándo alguien es abuelo de otro

$$\underbrace{abuelo(X,Y)}_{cabeza} \ :- \ \underbrace{padre(X,Z), \ padre(Z,Y)}_{cuerpo}$$

Formalmente decimos que un progrma es un conjunto de reglas donde

• Cada **regla** tiene la forma

$$\sigma:= au_1,\ldots, au_n$$
 donde $\sigma, au_1,\ldots, au_n$ son fórmulas atómicas

La interpretación lógica de las reglas es

$$\forall X_1 \dots \forall X_k. ((\tau_1 \wedge \dots \wedge \tau_n) \Rightarrow \sigma)$$

donde $\forall X_1 \dots \forall X_k$ son todas las variables libres de las fórmulas

• Las reglas en las que n = 0 se llaman hechos y se escriben

 σ .

• Las consultas tienen la forma

$$?-\sigma_1,\ldots,\sigma_n$$

Y su interpretación lógica es

$$\exists X_1 \ldots \exists X_k. (\sigma_1 \wedge \ldots \wedge \sigma_n)$$
 donde $\exists X_1 \ldots \exists X_k$ son todas las variables libres de las fórmulas

El entorno de Prolog busca demostrar la fórmula τ de la consulta para ello, busca refutar $\neg \tau$ para demostrar que $\neg \tau \Rightarrow \bot$. Esta búsqueda se basa en el método de resolución

2 Resolución para lógica proposicional

Consideramos

```
entrada : una fórmula \sigma de la lógica proposicional salida : un booleano que indica si \sigma es válida
```

El **método de resolución** consta de dos partes

- 1. Escribir $\neg \sigma$ como un conjunto $\mathcal C$ de cláusula (Pasaje a forma clausal)
- 2. Buscar una **refutación** de C,o sea, una derivación de forma que $C \vdash \bot$

Este método desenlaza en :

ullet Si encuentra una refutación de ${\mathcal C}$

Vale $\neg \sigma \vdash \bot$. Esto quiere decir que $\neg \sigma$ es insatisfactible y como consecuencia podemos afirmar que $\vdash \sigma$ es válida.

ullet Si no encuentra una refutación de $\mathcal C$

No vale $\neg \sigma \vdash \bot$. Esto quiere decir que $\neg \sigma$ es satisfactible y como consecuencia decimos que $\vdash \sigma$ no es válida.

2.1 Pasaje a Forma Clausal

Pasar a forma clausal es el proceso de transformación de una fórmula lógica a un formato que nos va a permitir aplicar el método de resolución. La idea es expresar una fórmula lógica como una conjunción de cláusulas, y cada cláusula es una disyunción de **literales** (mínima unidad de una fórmula lógica).

1. Paso I : Deshacerse del conectivo \implies . Para ello vamos aplicar la eliminación de la implicación

$$\sigma \Rightarrow \tau \quad \equiv \quad \neg \sigma \vee \tau$$

Esto nos permite tener una fórmula resultante sólo con los coectivos $\{\neg, \lor, \land\}$

2. Paso II : "distribuir" el conectivo \neg

$$\begin{array}{lll} \neg(\sigma \lor \tau) & \equiv & \neg \sigma \lor \neg \tau & & \text{DeMorgan} \\ \neg(\sigma \land \tau) & \equiv & \neg \sigma \land \neg \tau & & \text{DeMorgan} \\ \neg \neg \sigma & \equiv & \sigma & & \text{Eliminación de la doble negación} \end{array}$$

Luego de este paso tendríamos que tener la fórmula en su forma normal negada (NNF), formalmente :

$$\sigma_{nnf} ::= \mathbf{P} \mid \neg \mathbf{P} \mid \sigma_{nnf} \wedge \sigma_{nnf} \mid \sigma_{nnf} \vee \sigma_{nnf}$$

3. Paso III : Distribuir \vee sobre \wedge .

$$\begin{array}{lll} \sigma \vee (\tau \wedge \rho) & \equiv & (\sigma \vee \tau) \wedge (\sigma \vee \rho) \\ (\sigma \wedge \tau) \vee \rho & \equiv & (\sigma \vee \rho) \wedge (\tau \vee \rho) \end{array}$$

Luego de este paso tendríamos que tener la fórmula en su forma normal conjuntiva (CNF), formalmente:

Fórmulas en CNF
$$\sigma_{cnf} ::= (\mathbf{k}_1 \wedge \mathbf{k}_2 \wedge \ldots \wedge \mathbf{k}_n)$$
 Cláusulas
$$\mathbf{k} ::= (\mathbf{l}_1 \vee \mathbf{l}_2 \vee \ldots \vee \mathbf{l}_m)$$
 Literales
$$\mathbf{l} ::= \mathbf{P} \mid \neg \mathbf{P}$$

Recordemos que la **disyunción** \vee es :

- Asociativa $\sigma \lor (\tau \lor \rho) \iff (\sigma \lor \tau) \lor \rho$
- Conmutativa $\sigma \lor \tau \iff \tau \lor \sigma$
- Idempotente $\sigma \lor \sigma \iff \sigma$

Con esto en mente, la manera de notar la disyunción de literales (cláusula) como conjunto es:

$$(l_1 \lor l_2 \lor \ldots \lor l_n)$$
 se representa como $\{l_1, l_2, \ldots, l_n\}$

Análogamente, como la conjunción también cumple las tres propiedades anteriores, notamos el conjunción de cláusulas como

$$(k_1 \wedge k_2 \wedge \ldots \wedge k_n)$$
 se representa como $\{k_1, k_2, \ldots, k_n\}$

Ejemplo

 $\sigma \equiv (((P \Rightarrow (Q \land R)) \land P) \Rightarrow Q)$ para demostrar σ la negamos y la pasamos a forma clausal.

$$\neg(((P \Rightarrow (Q \land R)) \land P) \Rightarrow Q)$$

$$\stackrel{\Rightarrow}{\equiv} \neg(\neg((\neg P \lor (Q \land R)) \land P) \lor Q)$$

$$\stackrel{\neg}{\equiv} (\neg \neg((\neg P \lor (Q \land R)) \land P) \land \neg Q)$$

$$\stackrel{\neg}{\equiv} ((((\neg P \lor (Q \land R)) \land P) \land \neg Q)$$

$$\stackrel{\vee}{\equiv} ((((\neg P \lor Q) \land (\neg P \lor R)) \land P) \land \neg Q)$$

$$\stackrel{\triangle}{\triangleq} (\neg P \lor Q) \land (\neg P \lor R) \land P \land \neg Q$$

Que en su forma clausal es :

$$\mathcal{C} = \{ \{ \neg P, Q \}, \{ \neg P, R \}, \{ P \}, \{ \neg Q \} \}$$

2.2 Refutación

Una vez que tenemos el **conjunto de cláusulas** $C = \{k_1, \dots, k_n\}$ buscamos una **refutación**, es decir, queremos demostrar que $C \vdash \bot$ el método de refutación se basa en la siguiente regla de deducción :

2.2.1 Regla de Resolución

$$\frac{\mathbf{P} \vee l_1 \vee \ldots \vee l_n \quad \mathbf{P} \vee l'_1 \vee \ldots \vee l'_m}{l_1 \vee \ldots \vee l_n \vee l'_1 \vee \ldots \vee l'_m}$$

Que si la escribimos con notación de cláusulas :

$$\frac{\{\mathbf{P}, l_1, \dots, l_n\} \quad \{\mathbf{P}, l'_1, \dots, l'_m\}}{\{l_1 \vee \dots \vee l_n, l'_1 \vee \dots \vee l'_m\}}$$

Es decir, esta regla de inferencia permite eliminar un par de literales complementarios (uno positivo y uno negativo) entre dos cláusulas, y construir una nueva cláusula: la resolvente.

Sigamos con el ejemplo(2.1) anterior. Ya tenemos la forma clausal, de la negación de la fórmula, ahora toca ver si podemos obtener una resolvente {} para demostrar que vale.

$$C = \{\underbrace{\{\neg P, Q\}}_{1}, \underbrace{\{\neg P, R\}}_{2}, \underbrace{\{P\}}_{3}, \underbrace{\{\neg Q\}}_{4}\}$$

Con 1 y 3 obtenemos la resolvente $\mathbf{5} = \{\}$ que a continuación con 4 nos permite obtener la resolvente $\{\}$. Lo que nos permite concluir que $\mathcal{C} \vdash \bot$, o sea, $\neg \sigma \vdash \bot$, o sea, $\vdash \sigma$.

2.3 Algoritmo de Refutación

entrada : un conjunto de cláusulas $\mathcal{C}_0 = \{k_1, \dots, k_n\}$ salida : SAT/INSAT que indica si \mathcal{C}_0 es insatisfactible $(\mathcal{C}_0 \vdash \bot)$

Sea $\mathcal{C} := \mathcal{C}_0$. Repetir mientras sea posible :

- 1. Si $\{\} \in \mathcal{C}$, devolver INSAT. (Si derivamos la claúsula vacía gol)
- 2. Elegir dos cláusulas $k, k' \in \mathcal{C}$, tales que :

$$k = \{\mathbf{P}, l_1, \dots, l_n\}$$
$$k' = \{\neg \mathbf{P}, l'_1, \dots, l'_m\}$$

Es decir, tenemos dos cláusulas que contienen literales complementarios, y por ello, podemos usar la regla que vimos. Como consecuencia, la resolvente es $\rho = \{l_1, \ldots, l_n, l'_1, \ldots, l'_m\}$. Si $\rho \notin \mathcal{C}$, la agregamos. Si no pudimos encontrar ninguna resolvente nueva, **devolvemos SAT**

3. Tomamos $\mathcal{C} := \mathcal{C} \cup \{\rho\}$ y volvemos a empezar (paso 1)

2.4 Corrección del método de resolución proposicional

2.4.1 Teorema : corrección del pasaje a forma clausal

Dada una fórmula σ

- 1. El pasaje a forma clausal termina.
- 2. El conjunto de cláusulas $\mathcal C$ obtenido es equivalente a σ . Es decir, $\vdash \sigma \iff \mathcal C$

2.4.2 Teorema : corrección del algoritmo de refutación

Dado un conjunto de cláusulas C_0 :

- 1. El algoritmo de refutación termina.
- 2. El algoritmo de retorna **INSAT** si v sólo si $\mathcal{C} \vdash \bot$

3 Resolución para lógica de primer orden

entrada : una fórmula σ de la lógica de primer orden salida : un booleano que indica si σ es válida

Si σ es válida, el método siempre termina.

Si σ no es válida, el método puede no terminar.

Método de resolución de primer orden (Procedimiento de semi-decisión)

- 1. Escribimos $\neg \sigma$ como un conjunto \mathcal{C} de claúsulas.
- 2. Buscamos una **refutación** de C Si existe, encontramos alguna. Sino, puede "colgarse".

3.1 Pasaje a forma clausal en LPO

Para pasar una fórmula de la LPO a forma clausal tenemos que seguir los siguientes pasos :

1. Paso I : Deshacernos del conectivo \implies como ya vimos, con la regla de eliminación.

$$\sigma \Rightarrow \tau \equiv \neg \sigma \lor \tau$$

Esto nos permite tener una fórmula resultante sólo con los conectivos $\{\neg, \lor, \land, \lor, \exists\}$

2. Paso II : "distribuir" el conectivo ¬

Luego de este paso tendremos al fórmula en su forma normal negada (NNF):

$$\sigma_{nnf} ::= \mathbf{P}(t_1, \dots, t_n) \mid \neg \mathbf{P}(t_1, \dots, t_n) \mid \sigma_{nnf} \wedge \sigma_{nnf} \mid \sigma_{nnf} \vee \sigma_{nnf} \mid \forall X.\sigma_{nnf} \mid \exists X.\sigma_{nnf}$$

3. Paso III : Extracción de los cuantificadores (existenciales y universales) hacia afuera. Se asume siempre $X \notin fv(\tau)$

$$(\forall X.\sigma) \land \tau \equiv \forall X.(\sigma \land \tau) \qquad \tau \land (\forall X.\sigma) \equiv \forall X.(\tau \land \sigma)$$

$$(\forall X.\sigma) \lor \tau \equiv \forall X.(\sigma \lor \tau) \qquad \tau \lor (\forall X.\sigma) \equiv \forall X.(\tau \lor \sigma)$$

$$(\exists X.\sigma) \land \tau \equiv \exists X.(\sigma \land \tau) \qquad \tau \land (\exists X.\sigma) \equiv \exists X.(\tau \land \sigma)$$

$$(\exists X.\sigma) \lor \tau \equiv \exists X.(\sigma \lor \tau) \qquad \tau \lor (\exists X.\sigma) \equiv \exists X.(\tau \lor \sigma)$$

Con esta extracción logramos obtener la fórmula en su forma normal prenexa :

$$\sigma_{pre} ::= \mathcal{Q}_1 X_1. \mathcal{Q}_2 X_2. \dots \mathcal{Q}_n X_n. \ \tau$$

donde cada Q_i es un cuantificador $\{\forall,\exists\}$ y τ representa una fórmula en su forma normal negada libre de cuantificadores.

- 4. Paso IV : Nos deshacemos de los cuantificadores existenciales. Para lograrlo utilizaremos la técnica de **Herbrand** y **Skolem** que llamaremos **Skolemización**. La idea es transformar una fórmula de esta pinta : $\exists x.B$ en una sin el cuantificador existencial de manera que $B(x) \Rightarrow B\{x := f(x_1, \ldots, x_n)\}$ donde :
 - Sustituimos todas las ocurrencias libres de una variable en una expresión / fórmula o término, por otra.
 - f es un símbolo de función nuevo y las x_1, \ldots, x_n son las variables de las que depende x en B.
 - Si $\exists x.B$ forma parte de una fórmula mayor, x solo depende de las variables libres de B (por ejemplo, en $\forall z. \forall y. \exists x. P(y,x)$ la x depende de y)

- Sea A una sentencia rectificada en forma normal negada: una fórmula está rectificada si todos sus cuantificadores ligan variables distintas entre sí y a la vez, distintas de todas las variables libres.
- Reemplazar sucesivamente cada ocurrencia de una subfórmula de la forma $\exists X.B$ en A por $B\{X := f_X(y_1, \dots, y_m)\}$ donde
 - $fv(B) = \{x, y_1, \dots, y_m\}$
 - Como A está rectificada, cada f_x es única
 - Caso especial (m=0). Se utiliza una constante (o símbolo de función de aridad 0) c_x . Es decir $\exists X.B$ se reemplaza por $B\{X:=c_x\}$

Es mejor skolemizar de afuera hacia adentro! Este proceso no es determinístico

Por qué skolemizar preserva la satisfactibilidad?

La skolemización preserva la satisfactibilidad porque sustituye cada cuantificador existencial por un testigo concreto (una constante o función) que representa algún valor válido de x.

Por qué skolemizar no necesariamente preserva la validez ?

Porque al introducir una función específica f, estás limitando los modelos posibles. (Reemplaza un "hay algún" por un "hay un específico (función o constante)", lo cual reduce el conjunto de modelos válidos.) Por ejemplo :

$$\underbrace{\exists X. (P(0) \Rightarrow P(X))}_{v\'alida} \xrightarrow{Skolemizaci\'on} (P(0) \Rightarrow P(c))$$

Acá lo vemos claramente, antes, la fórmula era menos fuerte, pero luego, exige que ese c específico haga cumplir la implicación, no cualquier posible testigo.

Dada una fórmula en forma normal prenexa y cerrada(sin variables libres), aplicamos la regla:

$$\forall X_1.\dots\forall X_n. \exists Y. \sigma \stackrel{Skolemización}{\longrightarrow} \forall X_1.\dots\forall X_n. \sigma \{Y:=f(X_1,\dots,X_n)\} \text{ donde f es un símbolo de aridad nuevo } n \geq 0$$

Logramos entonces tener la fórmula en su forma normal de Skolem

$$\sigma_{Sk} ::= orall X_1 X_2 \dots X_n . au$$
 donde au representa una fórmula en NNF libre de cuantificadores

5. Paso V : Dada una forma norma de Skolem queremos pasarla a la forma normal conjuntiva. O sea, sea ψ libre de cuantificadores :

$$\forall X_1 X_2 \dots X_n . \psi$$

con las reglas de distribución del disyunto sobre el conjunto, tenemos que obtener la fórmula de esta pinta

$$\forall X_1 \dots X_n. \begin{pmatrix} (\ell_1^{(1)} \vee \dots \vee \ell_{m_1}^{(1)}) \\ \wedge (\ell_1^{(2)} \vee \dots \vee \ell_{m_2}^{(2)}) \\ \vdots \\ \wedge (\ell_1^{(k)} \vee \dots \vee \ell_{m_k}^{(k)}) \end{pmatrix}$$

6. Paso VI: Hora de meter dentro los cuantificadores universales

$$\forall X_1 \dots X_n. \begin{pmatrix} (\ell_1^{(1)} \vee \dots \vee \ell_{m_1}^{(1)}) \\ \wedge (\ell_1^{(2)} \vee \dots \vee \ell_{m_2}^{(2)}) \\ \vdots \\ \wedge (\ell_1^{(k)} \vee \dots \vee \ell_{m_k}^{(k)}) \end{pmatrix} \Rightarrow \begin{pmatrix} \forall X_1 \dots X_n. (\ell_1^{(1)} \vee \dots \vee \ell_{m_1}^{(1)}) \\ \wedge \forall X_1 \dots X_n. (\ell_1^{(2)} \vee \dots \vee \ell_{m_2}^{(2)}) \\ \vdots \\ \wedge \forall X_1 \dots X_n. (\ell_1^{(k)} \vee \dots \vee \ell_{m_k}^{(k)}) \end{pmatrix}$$

Con esto, pasamos a la **forma clausal**:

$$\begin{cases}
\{\ell_1^{(1)}, \dots, \ell_{m_1}^{(1)}\}, \\
\{\ell_1^{(2)}, \dots, \ell_{m_2}^{(2)}\}, \\
\vdots \\
\{\ell_1^{(k)}, \dots, \ell_{m_k}^{(k)}\}
\end{cases}$$

Ejemplo LPO

Supongamos que tenemos $\sigma \equiv \exists X.(\forall Y.P(X,Y) \Rightarrow \forall Y.P(Y,X))$, la negamos y entonces ...

$$\neg\exists X.(\forall Y.P(X,Y) \Rightarrow \forall Y.P(Y,X))$$

$$\stackrel{\Rightarrow}{\equiv} \neg\exists X.(\neg\forall Y.P(X,Y) \lor \forall Y.P(Y,X))$$

$$\stackrel{\neg \exists}{\equiv} \forall X.\neg(\neg\forall Y.P(X,Y) \lor \forall Y.P(Y,X))$$

$$\stackrel{\neg \lor}{\equiv} \forall X.(\neg\neg\forall Y.P(X,Y) \land \neg\forall Y.P(Y,X))$$

$$\stackrel{\neg \lor}{\equiv} \forall X.(\forall Y.P(X,Y) \land \neg\forall Y.P(Y,X))$$

$$\stackrel{\neg \lor}{\equiv} \forall X.(\forall Y.P(X,Y) \land \exists Y.\neg P(Y,X))$$

$$\stackrel{\neg \lor}{\equiv} \forall X.(\forall Y.P(X,Y) \land \exists Y.\neg P(Y,X))$$

$$\stackrel{\neg \lor}{\equiv} \forall X.\exists Y.\forall Z.(P(X,Z) \land \neg P(Y,X))$$
Skolemización
$$\forall X.\forall Z.(P(X,Z) \land \neg P(f(X),X))$$
Distributiva
$$\forall X.\forall Z.(P(X,Z) \land \forall X.\forall Z.\neg P(f(X),X))$$

Con esto, la forma clausal es :

$$\{\{P(X,Z)\}, \{\neg P(f(X),X)\}\} \equiv \{\{P(X,Y)\}, \{\neg P(f(Z),Z)\}\}$$

3.2 Refutación en LPO

Una vez que tenemos el conjunto de cláusulas $C = \{k_1, \ldots, k_n\}$, se busca **refutar**, es decir, demostrar que $C \vdash \bot$. Lo que vamos a hacer es adaptar la regla de la lógica proposicional para la LPO. En vez de la variable proposicional **P** vamos a tener una **fórmula atómica P** (t_1, \ldots, t_n) . Tenemos que **relajar la regla** para permitir que los términos no necesariamente sean iguales y **permitir que sean unificables**. Como consecuencia,

3.2.1 Regla de resolución de LPO

$$\frac{S = mgu(\lbrace \sigma_1 \stackrel{?}{=} \sigma_2 \stackrel{?}{=} \dots \sigma_p \stackrel{?}{=} \tau_1 \stackrel{?}{=} \tau_2 \stackrel{?}{=} \dots \stackrel{?}{=} \tau_q \rbrace)}{S(\lbrace l_1, \dots, l_n, l'_1, \dots, l'_m \rbrace)}$$

con p > 0 y q > 0. Se asume implícitamente que las cláusulas están renombradas de tal modo que $\{\sigma_1, \ldots, \sigma_p, \ l_1, \ldots, l_n\}$ y $\{\neg \tau_1, \ldots, \neg \tau_q, l'_1, \ldots, l'_m\}$ no tienen variables en común.

Retomamos el ejemplo en LPO (3.1) donde

$$\mathcal{C} = \{\underbrace{\{P(X,Y)\}}_{1},\underbrace{\{\neg P(f(Z),Z)\}\}}_{2}\}$$

Y de 1 y 2 calculamos el $mgu(P(X,Y) \stackrel{?}{=} P(f(Z),Z)) = \{X := f(Z), Y := Z\}$ y esto nos permite obtener la resolvente $\{\}$

3.3 Resolución Binaria

El ejemplo anterior nos permite introducir una variante de la regla de resolución, la resolución binaria.

$$\frac{\{\sigma, l_1, \dots, l_n\} \qquad \{\neg \tau, l'_1, \dots, l'_m\} \qquad S = mgu(\{\sigma \stackrel{?}{=} \tau\})}{S(\{l_1, \dots, l_n, l'_1, \dots, l'_m\})}$$

Pero no es completa . Por ejemplo si tuviésemos $\{\{P(X), P(Y)\}, \{\neg P(Z), \neg P(W)\}\}\$ es insatisfactible pero no es posible alcanzar la cláusula vacía con resolución binaria.

3.4 Corrección del método de resolución en LPO

3.4.1 Teorema: Corrección del pasaje a forma clausal

Dada una fórmula σ :

- 1. El pasaje a forma clausal termina.
- 2. El conjunto de cláusulas C obtenido es equisatisfactible con σ .

Es decir, σ es satisfacible si y sólo si C es satisfacible.

3.4.2 Teorema : Corrección del algortimo de refutación

Dado un conjunto de cláusulas C_0 :

- 1. Si $C_0 \vdash \bot$, existe una manera de elegir las cláusulas tal que el algoritmo de refutación termina.
- 2. El algoritmo retorna INSAT si y sólo si $C_0 \vdash \bot$.
- Si $C_0 \nvdash \bot$, no hay garantía de terminación.

Ejemplo - no terminación

 $\forall X. (P(succ(X)) \Rightarrow P(X)) \Rightarrow P(0)$ Cada vez que hallamos una resolvente que no está en \mathcal{C} hacemos una sustitución que la hace crecer ad infinitum.