UNIVERSITY OF TORONTO

Faculty of Applied Science and Engineering

FINAL EXAMINATION, APRIL, 2001

First Year - Programs 1,2,3,4,6,7,8 and 9

CIV 101S - STRUCTURES, MATERIALS, AND DESIGN

Examiner: Peter M. Wright

				
(Ple	ase prin	t clearly and underline	family name)	
STUDENT	NUME	BER:		
CIRCLE N	4ODEL	NUMBER OF CALC	CULATOR	
		CASIO 991	SHARP 520	TI 30
				
NOTES:	1.	Be sure you have all	l 7 sheets of this exa	mination paper. Pa
	2.	Answer all 5 (five) e	equal-valued question	ons.
	3.	No other paper will	be accepted for mar	king nor allowed on
	4.	The permissible calc	culators are listed ab	ove.
		·		
		DO NOT W	RITE IN THIS SP.	ACE.
		1.		
		2.		
		3.		
		4.		
		5.		

Name	Page 2 of 7
------	-------------

- 1. The members of the steel truss shown are rectangular hollow structural steel sections with outside cross-sectional dimensions of b and 2b, and inside ones of 0.8b and 1.6b.
 - (a) Determine the internal actions in members GH and GE
 - (b) Determine the minimum value of b for member GH. The modulus of elasticity $E = 200 \times 10^3$ MPa and the yield stress for the material is 380 MPa. The factor of safety (load factor) for yielding is to be 1.8 and for buckling it is to be 2.5.

Name	Page 3 of 7

- 2. The uniformly-thick plate ABC which is the lid for the triangular container shown has a weight of 600 N/m². It is supported by a cable CD, a ring at A which can not support a force in the z-direction, and a ball-and-socket at B.
 - (a) Sketch the free body of the lid
 - (b) Determine the tension in the cable
 - (c) Determine the reaction components at A.

3. A steel beam is fabricated from a W356 x 64, and a plate 10 mm x 300 mm welded together as shown. The loading on the beam is also shown, as are the properties of the W356 x 64. Assuming linearly elastic material, determine the maximum tension and compression stresses due to bending moment.

			FLA	NCE.	Web		AXIS X-X			AXIS Y-Y		_
Desig- nation	Area (MM ¹)	Depth (mm)	Width (mm)	Thick- ness (mm)	Thick- ness (mm)	/ (10 ⁶ mm*)	(10 ³ (mm³)	/ (mm)	/ (106 mm*)	्ड (10 ¹ क्या ¹)	(mm)	Ť
W356 × 179	22775	368	373	23.9	15.0	574	3115	158	206	1105	95.0	x- T - x
× 122	15550	363	257	21.7	13.0	367	2015	154	61.6	480	63.0	
× 64	- 6130	347	203	13.5	7.7	178	1025	148	18.1	185	48.0	Ÿ
× 45	5710	352	171	9.6	6.9	121	688	146	876	95.4	37.8	

Name			Page	5	of	7

- The frame shown is supported by pins at A and B. Determine:
 (a) the reaction components at A and B
 (b) the force components acting on member BCF

Name	Page 6 of 7
	5-

- A beam has the cross-section shown. At a particular location along the beam the stresses due to a bending moment M are as shown in sideview.

 (a) Determine the value of the maximum compression stress σ_{max} 5.

 - (b) Determine the value of the bending moment M

Name Page 7 of 7

•

•

_

•