

Universidade de Aveiro

Departamento de Eletrónica, Telecomunicações e Informática

Compiladores

Exame teórico 1 modelo				
$N^{\underline{o}}$ Mec:	Nome:			

1. Sobre o alfabeto $A = \{a, b, c\}$, considere a linguagem L_1 , definida pelo autómato finito M_1 , a linguagem L_2 , definida pela gramática regular G_2 (cujo símbolo inicial é S_2), e a linguagem L_3 .

Como transformas isto numa ER sendo que o estado inicial é o mesmo que o final?

$$S_2 \to a X$$

$$X \to b \mid b c b X \mid b S_2$$

(a) Das seguintes afirmações, assinale as verdadeiras

 $ab \in L_1$

 $abab \in L_1$

 $abcbb \in L_1$

(b) Considerando que L(e) representa a linguagem descrita pela expressão regular e, das seguintes afirmações, assinale as verdadeiras.

X	$L_3 \subseteq L(abc(c bb)^*)$
---	--------------------------------

(c) Das seguintes gramáticas, assinale aquela(s) que simultaneamente seja(m) regular(es) e represente(m) a linguagem L_3 .

C não liga com B

obriga ter abcc

 $L_3 = \{ab(c)^m (bb)^n : m > 0 \land n \ge 0\}$

abc+(bb)*

como no C tem dois c, não é regularm não pode ter dois letras à esquerda iguais

$$S \to a b c C$$

$$C \to B \mid c C$$

$$B \to \varepsilon \mid b b B$$

permite 0 c

(d)	Determine um autómatos finito determinista equivalente a M_1 .
	Área de resposta
(e)	Obtenha um autómato finito , determinista ou não determinista, mas não generalizado , que reconheça a linguagem $L_5 = L_1 \cdot L_2$. Apresente os passos intermédios e/ou o raciocínio adequados para justificar a sua resposta.
	- 4 - L3 - (A)
(C)	
(1)	Obtenha uma expressão regular que reconheça a linguagem L_1 . Apresente os passos intermédios e/ou o raciocínio adequados para justificar a sua resposta.
ΑFι	Área de respostaeduzido
(g)	Mostre que $L_3 \subset L_1$. (Note que se trata do subconjunto em sentido estrito (\subset) e não em sentido lato (\subseteq).) Apresente os passos intermédios e/ou o raciocínio adequados para justificar
	a sua resposta. Área de resposta

2.	Sobre o alfabeto $A = \{a, b, c\}$, considere a linguagem
	$R = \{ \omega \in A^* : \omega \ge 1 \land \#(\mathtt{a}, \omega) \text{ \'e par } \land \#(\mathtt{b}, \omega) < 2 \}.$
	onde $ \omega $ representa o número de letras da palavra ω e $\#(\mathbf{x},\omega)$ é uma função que devolve o número de ocorrências da letra \mathbf{x} em ω .
	(.) Projete um autómato finito, determinista ou não determinista, mas não generalizado, que reconheça a linguagem R .
	Área de resposta