

北京航空航天大学

线性代数复习必备

线性代数课程组

北京航空航天大学数学系

目 录

第一章 行列式计算

第二章 矩阵计算

第三章 线性相关性

第四章 矩阵与方程组

第五章 相似矩阵与特征值

第六章 二次型

第七章 自测题 1 及答案

第八章 自测题 2 及答案

第九章 自测题 3 及答案

第十章 自测题 4 及答案

第一章 行列式计算

单元自测题一

一. 选择题:

- A. $(-1)^n$ B. $(-1)^{\frac{1}{2}n(n-1)}$ C. $(-1)^{\frac{1}{2}n(n+1)}$
- 2. 若一个 $n(n \ge 2)$ 级行列式 D 中元素或为1或为-1,则 D 的值 (
 - A. 1

- B.-1
- C.奇数
- D.偶数

3. 若行列式
$$\begin{vmatrix} 2 & -1 & 0 \\ 1 & x & -2 \\ 3 & -1 & 2 \end{vmatrix} = 0$$
, 则 x= ()

- A. -2
- B. 2
- C. -1

4. 已知多项式
$$f(x) = \begin{vmatrix} a_{11} + x & a_{12} + x & a_{13} + x & a_{14} + x \\ a_{21} + x & a_{22} + x & a_{23} + x & a_{24} + x \\ a_{31} + x & a_{32} + x & a_{33} + x & a_{34} + x \\ a_{41} + x & a_{42} + x & a_{43} + x & a_{44} + x \end{vmatrix}$$
则 $f(x)$ 的最高次数是()

- A.

- D. 1

5. 齐次线性方程组
$$\begin{cases} \lambda x_1 + x_2 + \lambda^2 x_3 = 0 \\ x_1 + \lambda x_2 + x_3 = 0 \end{cases}$$
的系数矩阵为 A,若存在三阶矩阵 B≠0,使
$$\begin{cases} x_1 + x_2 + \lambda x_3 = 0 \end{cases}$$

得 AB=0,则 λ = (

- A. -1
- B. 0
- D. 2.

二. 填空题:

- 2. 四阶行列式 $D = |a_{ij}|$ 展开公式中,含 a_{24} 且带负号的项数为_____;

3. 设
$$x_1, x_2, x_3$$
 是方程 $x^3 + px + q = 0$ 的三个根,则行列式 $\begin{vmatrix} x_1 & x_2 & x_3 \\ x_2 & x_3 & x_1 \\ x_3 & x_1 & x_2 \end{vmatrix}$ 的值是_____;

- 4. 行列式 $D = |a_{ij}|_{n \times n} = c$, 现在将每个 a_{ij} 替换为 $(-1)^{i-j}a_{ij}$,则替换后行列式 $D = ____$;
- 5. 设行列式 $D = \begin{vmatrix} 3 & 0 & 4 & 0 \\ 2 & 2 & 2 & 2 \\ 0 & -7 & 0 & 0 \\ 5 & 3 & -2 & 2 \end{vmatrix}$, 则第四行各元素的余子式之和_____.

三. 判断题:

- 1. n 阶行列式 D 中有多于 $n^2 n$ 个元素为零,则 D=0 ();
- 2. D=0,则互换 D 的任意两行或两列, D 的值仍为零. ();
- 3. $D = |a_{ij}|_{3\times 3}$, A_{ij} 为 a_{ij} 的代数余子式,则 $a_{11}A_{21} + a_{12}A_{22} + a_{13}A_{23} = 0$. ();

4.
$$\begin{vmatrix} ca_{11} & ca_{12} & ca_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix} = c \begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{3} \\ a_{31} & a_{32} & a_{33} \end{vmatrix}$$
 () .

四. 计算题:

1.
$$\begin{vmatrix} 10 & 8 & 2 \\ 15 & 12 & 3 \\ 20 & 32 & 12 \end{vmatrix}$$
;

3.
$$\begin{vmatrix} x & a & \dots & a \\ a & x & \dots & a \\ \dots & \dots & \dots & \dots \\ a & a & \dots & x \end{vmatrix}$$
;

五. 证明题:

4.
$$\begin{vmatrix} 1 & 1 & 1 & 1 \\ a & b & c & d \\ a^2 & b^2 & c^2 & d^2 \\ a^4 & b^4 & c^4 & d^4 \end{vmatrix}$$

1.
$$\begin{vmatrix} a^2 & ab & b^2 \\ 2a & a+b & 2b \\ 1 & 1 & 1 \end{vmatrix} = (a-b)^3;$$

2. 设 x>y>z>0, 证明
$$\frac{1}{xy + yz + zx} \begin{vmatrix} x & x^2 & yz \\ y & y^2 & zx \\ z & z^2 & xy \end{vmatrix} < 0;$$

3. 证明

4. 证明:
$$\begin{vmatrix} 1+a_1 & 1 & 1 & \cdots & 1 & 1 \\ 1 & 1+a_2 & 1 & \cdots & 1 & 1 \\ 1 & 1 & 1+a_3 & \cdots & 1 & 1 \\ \cdots & \cdots & \cdots & \cdots & \cdots \\ 1 & 1 & 1 & \cdots & 1 & 1+a_n \end{vmatrix} = a_1 a_2 \cdots a_n \left(1 + \sum_{i=1}^n \frac{1}{a_i}\right);$$

5. 证明 n 阶行列式

$$D_n = \begin{vmatrix} \cos\theta & 1 \\ 1 & 2\cos\theta & \ddots \\ & \ddots & \ddots & 1 \\ & & 2\cos\theta \end{vmatrix} = \cos n\theta.$$

单元自测题一参考答案

- 一. 选择题答案: 1.B; 2.D; 3.C; 4.D; 5 C.
- 1. 由行列式展开知

$$\begin{vmatrix} 0 & 0 & \cdots & 0 & 1 \\ 0 & 0 & \cdots & 1 & \cdots \\ \cdots & \cdots & \cdots & \cdots & \cdots \\ 0 & 1 & \cdots & 0 & 0 \\ 1 & 0 & \cdots & 0 & 0 \end{vmatrix} = (-1)^{r(n(n-1)\cdots 21)}$$

$$\tau(n(n-1)\cdots 21) = (n-1)+(n-2)+\cdots 2+1=\frac{1}{2}n(n-1)$$
, 故选 B.

- 2. 根据行列式展开,总共有n!项相加,而由题可知每一项为1或者-1,而 n!在 $(n \ge 2)$ 时为偶数,偶数个奇数相加为偶数,故选 D.
- 3. 展开可得2(2(x-1)+4)=0得x=-1.选C.
- 4. 把第 2, 3, 4 行分别减去第一行后,则只有第一行含 x,再按第一行展开可知 f(x) 最高次数为 1.选 D.
- 5. 由于存在三阶矩阵 $B \neq 0$,使得 AB=0,故方程组 AX=0,有非 0 解,故 A 的行列 式为 0,计算可得 $|A|=(\lambda-1)^2$ 故 $\lambda=-1$ 。故选才 C.
- 二. 填空题答案:
- 1. 答案为 7; 2. 答案为 3; 3. 答案为 0; 4. 答案为 c; 5. 答案为 -28. 详细解答:
- 1. $a_1a_2a_3a_4a_5$ 中的两两关系有 $c_5^2 = 10$ 个,3个是逆序数,7个是顺序数那么原来 $a_1a_2a_3a_4a_5$ 中的逆序组到 $a_5a_4a_3a_2a_1$ 中变成了顺序组,

原来 $a_1a_2a_3a_4a_5$ 中的顺序组到 $a_5a_4a_3a_2a_1$ 中变成了逆序组. 故答案为 7.

- 2. 我们按 a_{24} 展开,得到 $(-1)^{2+4}a_{24}|A_{24}|_{3\times 3}$,而 3 阶行列式展开式中有 3 个负数项,故含 a_{24} 的负数项数目为 3. 答案为 3.
- 3. 把 2, 3 列加到第1列可得

$$\begin{vmatrix} x_1 & x_2 & x_3 \\ x_2 & x_3 & x_1 \\ x_3 & x_1 & x_2 \end{vmatrix} = \begin{vmatrix} x_1 + x_2 + x_3 & x_2 & x_3 \\ x_1 + x_2 + x_3 & x_3 & x_1 \\ x_1 + x_2 + x_3 & x_1 & x_2 \end{vmatrix} = (x_1 + x_2 + x_3) \begin{vmatrix} 1 & x_2 & x_3 \\ 1 & x_3 & x_1 \\ 1 & x_1 & x_2 \end{vmatrix}$$

由于 x_1, x_2, x_3 是方程 $x^3 + px + q = 0$ 的三个根,由根公式知 $x_1 + x_2 + x_3 = \frac{0}{1} = 0$

故
$$\begin{vmatrix} x_1 & x_2 & x_3 \\ x_2 & x_3 & x_1 \\ x_3 & x_1 & x_2 \end{vmatrix} = 0$$
, 答案为 0.

- 4 . $D = |a_{ij}|_{n \times n}$ 展 开 的 每 一 项 为 $(-1)^{r(i_1 i_2 \cdots i_n)}$ $a_{li_1} \cdots a_{ni_n}$, 而 替 换 后 为 $(-1)^{r(i_1 i_2 \cdots i_n)} a_{li_1} \cdots a_{ni_n}$ (一 $(-1)^{r(i_1 i_2 \cdots i_n)} a_{li_1} \cdots a_{ni_n}$ (一 $(-1)^{r(i_1 i_2 \cdots i_n)} a_{li_1} \cdots a_{ni_n}$)。显然 $(1+2+\cdots n)-(i_1+i_2+\cdots i_n)=0$ 故每一项 没有改变,所有 D 的值也没有变。答案为 c.
- 5. 由行列式定义可以知道第四行各元素的代数余子式之和相当于把原行列式中第四行的元素换成它对应的符号 1 或者-1,故结果是:

$$\begin{vmatrix} 3 & 0 & 4 & 0 \\ 2 & 2 & 2 & 2 \\ 0 & -7 & 0 & 0 \\ -1 & 1 & -1 & 1 \end{vmatrix} = -28.$$

三. 判断题答案:

- 1. √; 2. √; 3. √; 4. √. 简析:
- 1. 由抽屉原理知至少有一行多于 $n^2-n/n=n-1$ 个 0,也就是说至少有一行有 n 个
- 0,故行列式的值为0.
- 2. 由行列式性质可知,交换只是改变符号.
- 3. 列排 1234 与 1432.
- 4. 由行列式性质可知.
- 5. 由行列式性质可知,提出公因式.
- 四. 计算题答案:

1.
$$\begin{vmatrix} 10 & 8 & 2 \\ 15 & 12 & 3 \\ 20 & 32 & 12 \end{vmatrix} = 2 \begin{vmatrix} 5 & 4 & 1 \\ 15 & 12 & 3 \\ 20 & 32 & 12 \end{vmatrix} = 10 \begin{vmatrix} 1 & 4 & 1 \\ 3 & 12 & 3 \\ 4 & 32 & 12 \end{vmatrix} = 0.$$

$$2. \begin{vmatrix} a & 1 & 0 & 0 \\ -1 & b & 1 & 0 \\ 0 & -1 & c & 1 \\ 0 & 0 & -1 & d \end{vmatrix} = \begin{vmatrix} 0 & 1+ab & a & 0 \\ -1 & b & 1 & 0 \\ 0 & -1 & c & 1 \\ 0 & 0 & -1 & d \end{vmatrix} = \begin{vmatrix} -1 & b & 1 & 0 \\ 0 & -1 & c & 1 \\ 0 & 1+ab & a & 0 \\ 0 & 0 & 1 & d \end{vmatrix} = \begin{vmatrix} -1 & b & 1 & 0 \\ 0 & -1 & c & 1 \\ 0 & ab & a+c & 1 \\ 0 & 0 & 1 & d \end{vmatrix}$$
$$\begin{vmatrix} -1 & b & 1 & 0 \\ 0 & -1 & c & 1 \end{vmatrix}$$
$$\begin{vmatrix} -1 & b & 1 & 0 \\ 0 & -1 & c & 1 \end{vmatrix}$$

$$= \begin{vmatrix} -1 & b & 1 & 0 \\ 0 & -1 & c & 1 \\ 0 & 0 & a+c+abc & 1+ab \\ 0 & 0 & -1 & d \end{vmatrix} = - \begin{vmatrix} -1 & b & 1 & 0 \\ 0 & -1 & c & 1 \\ 0 & 0 & -1 & d \\ 0 & 0 & a+c+abc & 1+ab \end{vmatrix}$$

$$= - \begin{vmatrix} -1 & b & 1 & 0 \\ 0 & -1 & c & 1 \\ 0 & 0 & -1 & d \\ 0 & 0 & 0 & 1 + ab + d(a + c + abc) \end{vmatrix} = 1 + ab + ad + dc + abcd.$$

3.
$$\begin{vmatrix} x & a & \cdots & a \\ a & x & \cdots & a \\ \vdots & \vdots & \ddots & \vdots \\ a & a & \cdots & x \end{vmatrix} = \begin{vmatrix} x + (n-1)a & x + (n-1)a & \cdots & x + (n-1)a \\ a & x & \cdots & a \\ \vdots & \vdots & \ddots & \vdots \\ a & a & \cdots & x \end{vmatrix}$$

$$= [x + (n-1)a] \begin{vmatrix} 1 & 1 & \cdots & 1 \\ a & x & \cdots & a \\ \vdots & \vdots & \ddots & \vdots \\ a & a & \cdots & x \end{vmatrix} = [x + (n-1)a] \begin{vmatrix} 1 & 1 & \cdots & 1 \\ 0 & x - a & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & x - a \end{vmatrix}$$

$$=(x-a)^{n-1}[x+(n-1)a].$$

4. 解:

设
$$f(x) = \begin{vmatrix} 1 & 1 & 1 & 1 & 1 \\ a & b & c & d & x \\ a^2 & b^2 & c^2 & d^2 & x^2 \\ a^3 & b^3 & c^3 & d^3 & x^3 \\ a^4 & b^4 & c^4 & d^4 & x^4 \end{vmatrix}$$

$$f(x) = (x-a)(x-b)(x-c)(x-d)(d-a)(d-b)(d-c)(c-a)(c-b)(b-a)$$

$$= (x^4 - (a+b+c+d)x^3 + \dots + abcd)(d-a)(d-b)(d-c)(c-a)(c-b)(b-a);$$

另一方面,
$$f(x)$$
展开式中含 x^3 的项是 $-x^3$ $\begin{vmatrix} 1 & 1 & 1 & 1 \\ a & b & c & d \\ a^2 & b^2 & c^2 & d^2 \\ a^4 & b^4 & c^4 & d^4 \end{vmatrix}$.

两式相比较, 可得

$$\begin{vmatrix} 1 & 1 & 1 & 1 \\ a & b & c & d \\ a^2 & b^2 & c^2 & d^2 \\ a^4 & b^4 & c^4 & d^4 \end{vmatrix} = -(-(a+b+c+d))(d-a)(d-b)(d-c)(c-a)(c-b)(b-a),$$

$$\left| \begin{array}{cccc} 1 & 1 & 1 & 1 \\ a & b & c & d \\ a^2 & b^2 & c^2 & d^2 \\ a^4 & b^4 & c^4 & d^4 \end{array} \right| = = (a+b+c+d)(d-a)(d-b)(d-c)(c-a)(c-b)(b-a).$$

5.
$$\begin{vmatrix} x & y & 0 & \dots & 0 & 0 \\ 0 & x & y & \dots & 0 & 0 \\ \dots & \dots & \dots & \dots & \dots & \dots \\ 0 & 0 & 0 & \dots & x & y \\ y & 0 & 0 & \dots & 0 & x \end{vmatrix} = x \begin{vmatrix} x & y & 0 & \dots & 0 & 0 \\ 0 & x & y & \dots & 0 & 0 \\ \dots & \dots & \dots & \dots & \dots & \dots \\ 0 & 0 & 0 & \dots & x & y \\ 0 & 0 & 0 & \dots & 0 & x \end{vmatrix}_{(n-1)} + (-1)^{n+1} y \begin{vmatrix} y & x & 0 & \dots & 0 & 0 \\ 0 & y & x & \dots & 0 & 0 \\ \dots & \dots & \dots & \dots & \dots & \dots \\ 0 & 0 & 0 & \dots & y & x \\ 0 & 0 & 0 & \dots & 0 & y \end{vmatrix}_{(n-1)}$$
$$= x^{n} + (-1)^{n+1} y^{n}.$$

fi.

1. 证明:
$$\begin{vmatrix} a^2 & ab & b^2 \\ 2a & a+b & 2b \\ 1 & 1 & 1 \end{vmatrix} = \begin{vmatrix} a^2-b^2 & b(a-b) & 0 \\ 2a-2b & a-b & 0 \\ 1 & 1 & 1 \end{vmatrix} = \begin{vmatrix} a^2-2ab+b^2 & 0 & 0 \\ 2a-2b & a-b & 0 \\ 1 & 1 & 1 \end{vmatrix} = (a-b)^3.$$

2. 证明:将第一列乘以 (x+y+z),第二列乘以(-1),然后加到第三列,得

$$\begin{vmatrix} x & x^2 & yz \\ y & y^2 & zx \\ z & z^2 & xy \end{vmatrix} = \begin{vmatrix} x & x^2 & yz + (x+y+z)x - x^2 \\ y & y^2 & zx + (x+y+z)y - y^2 \\ z & z^2 & xy + (x+y+z)z - z^2 \end{vmatrix} = \begin{vmatrix} x & x^2 & xy + yz + zx \\ y & y^2 & xy + yz + zx \\ z & z^2 & xy + yz + zx \end{vmatrix}$$

$$= (xy + yz + zx) \begin{vmatrix} x & x^{2} & 1 \\ y & y^{2} & 1 \\ z & z^{2} & 1 \end{vmatrix},$$

于是,不等式的左边=
$$\begin{vmatrix} x & x^2 & 1 \\ y & y^2 & 1 \\ z & z^2 & 1 \end{vmatrix} = \begin{vmatrix} x & y & z \\ x^2 & y^2 & z^2 \\ 1 & 1 & 1 \end{vmatrix} = \begin{vmatrix} 1 & 1 & 1 \\ x & y & z \\ x^2 & y^2 & z^2 \end{vmatrix} = (x-y)(y-z)(z-x).$$

由于 x>y>z>0, 有 x-y>0, y-z>0, z-x<0, 所以
$$\frac{1}{xy+yz+zx}\begin{vmatrix} x & x^2 & yz \\ y & y^2 & zx \\ z & z^2 & xy \end{vmatrix}$$
<0.

3. 证: 把
$$\begin{vmatrix} 0 & & a_1 \\ a_n & & * \end{vmatrix}$$
按第一行展开可得:
$$\begin{vmatrix} 0 & & a_1 \\ & \ddots & \\ a_n & & * \end{vmatrix} = (-1)^{1+n} a_1 \begin{vmatrix} 0 & & a_2 \\ & \ddots & \\ a_n & & * \end{vmatrix}_{(n-1) \times (n-1)},$$

由此类推可得

$$\begin{vmatrix} 0 & a_1 \\ a_n & * \end{vmatrix} = (-1)^{(n+1)+n+\cdots+2} a_1 a_2 \cdots a_n = (-1)^{(n-1)+(n-2)+\cdots+(2-2)} a_1 a_2 \cdots a_n = (-1)^{n(n-1)/2} a_1 a_2 \cdots a_n.$$
同理可证
$$\begin{vmatrix} * & a_1 \\ a_n & 0 \end{vmatrix} = (-1)^{n(n-1)/2} a_1 a_2 \cdots a_n.$$

4. 证明:

$$\begin{vmatrix} 1+a_1 & 1 & 1 & \cdots & 1 & 1 \\ 1 & 1+a_2 & 1 & \cdots & 1 & 1 \\ 1 & 1 & 1+a_3 & \cdots & 1 & 1 \\ \cdots & \cdots & \cdots & \cdots & \cdots & \cdots \\ 1 & 1 & 1 & \cdots & 1 & 1+a_n \end{vmatrix} = \begin{vmatrix} 1+a_1 & 1 & 1 & \cdots & 1 & 1 \\ -a_1 & a_2 & 0 & \cdots & 0 & 0 \\ -a_1 & 0 & a_3 & \cdots & 0 & 0 \\ \cdots & \cdots & \cdots & \cdots & \cdots \\ -a_1 & 0 & 0 & \cdots & 0 & a_n \end{vmatrix} = \begin{bmatrix} 1+a_1 & 1 & 1 & \cdots & 1 & 1 \\ -a_1 & a_2 & 0 & \cdots & 0 & 0 \\ \cdots & \cdots & \cdots & \cdots & \cdots & \cdots \\ -a_1 & 0 & 0 & \cdots & 0 & a_n \end{vmatrix}$$

$$= (1 + a_1 + \frac{a_1}{a_2} + \frac{a_1}{a_3} + \dots + \frac{a_1}{a_n})a_2 \dots a_n = a_1 a_2 \dots a_n (1 + \sum_{i=1}^n \frac{1}{a_i})$$

$$\left(1 + a_1 + \frac{a_1}{a_2} + \frac{a_1}{a_3} + \dots + \frac{a_1}{a_n}\right) a_2 \cdots a_n = a_1 a_2 \cdots a_n \left(1 + \sum_{i=1}^n \frac{1}{a_i}\right).$$

5. 证:对阶数 n 用数学归纳法, $D_1 = \cos \theta$

$$D_2 = \begin{vmatrix} \cos \theta & 1 \\ 1 & 2\cos \theta \end{vmatrix} = 2\cos^2 \theta - 1 = \cos 2\theta$$

假设 $D_{n-1} = \cos(n-1)\theta$, $D_{n-2} = \cos(n-2)\theta$ 对 D_n 按第 n 行做 Laplace 展开得到

$$D_{n} = 2\cos\theta \cdot D_{n-1} + 1 \cdot (-1)^{n+(n+1)} \begin{vmatrix} \cos\theta & 1 \\ 1 & 2\cos\theta & \ddots \\ & 1 & \ddots & 1 \\ & & \ddots & 2\cos\theta & 0 \\ & & & 1 & 1 \end{vmatrix}$$

$$=2\cos\theta\cdot\cos(n-1)\theta-\cos(n-2)\theta=\cos(\theta+(n-1)\theta)+\cos(\theta-(n-1)\theta)-\cos(n-2)\theta$$

$$=\cos n\theta$$
 归纳法成立.

第二章 矩阵计算

单元自测题二

-. 填空题:

2.
$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$
, $ad - bc = 1$, $A^{-1} = \underline{}$;

3. 设
$$X = \begin{pmatrix} 0 & A \\ C & 0 \end{pmatrix}$$
,已知 $\underline{A^{-1}}$, C^{-1} 存在,求 $X^{-1} = \underbrace{ \begin{pmatrix} 1 & 1 \\ C & 0 \end{pmatrix} }$;

5.
$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 2 & 1 \end{pmatrix}^{2000} \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 4 \\ 3 & 4 & 5 \end{pmatrix} \begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix}^{2001} = \underline{ };$$

6. 设矩阵
$$A = \begin{pmatrix} k & 1 & 1 & 1 \\ 1 & k & 1 & 1 \\ 1 & 1 & k & 1 \\ 1 & 1 & 1 & k \end{pmatrix}$$
, 且 $r(A) = 1$,则 $k =$ _____;

7. 已知
$$A = \frac{1}{2} \begin{pmatrix} 1 & 3 & 0 \\ 2 & 5 & 0 \\ 1 & -1 & 2 \end{pmatrix}$$
,则 $(A^{-1})^{\circ} = \underline{\hspace{1cm}}$

二. 选择题:

1. 设
$$A$$
, B 都是 n 阶可逆矩阵,则 $-2\begin{pmatrix} A^T & 0 \\ 0 & B^{-1} \end{pmatrix}$ 等于 ()

$$(A)(-2)^{2n}|A||B|^{-1}$$

(B)
$$(-2)^n |A||B|^{-1}$$
 (C) $-2|A^T||B|$ (D) $-2|A||B|^{-1}$

$$(C) - 2|A^T|B|$$

(D)
$$-2|A|B|^{-1}$$

2. 设A,B都是n阶方阵,下面结论正确的是(

- (A) 若 A , B 均可逆,则 A+B 可逆 (B) 若 A , B 均可逆,则 AB 可逆
- (C) 若A+B可逆,则A-B可逆
- (D) 若 A+B 可逆, 则 A, B 均可逆
- 3. A 是 n 阶矩阵, k 是非零常数,则行列式 $|(kA)^*|$ 等于(

$$(A) k|A|^{n-1}$$

(B)
$$|k||_A|^{n-}$$

$$(C) k^{n(n-1)} |A|^{n-1}$$

(A)
$$k|A|^{n-1}$$
 (B) $|k||A|^{n-1}$ (C) $k^{n(n-1)}|A|^{n-1}$ (D) $k^{n-1}|A|^{n-1}$

4.
$$A = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix}$$
, $B = \begin{pmatrix} a_{21} & a_{22} & a_{23} \\ a_{11} & a_{12} & a_{13} \\ a_{31} - a_{21} & a_{32} - a_{22} & a_{33} - a_{23} \end{pmatrix}$, $P_1 = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}$, 设有

 $P_2P_1A = B$, $\emptyset P_2 = ($

- 5. A, B都是n阶非零矩阵,且AB=0,则A和B的秩()
- (A) 必有一个等于零
- (B) 都小于 n
- (C) 一个小于 n,一个等于 n (D)都等于 n

6. 设
$$A = \begin{pmatrix} 1 & a & a & a \\ a & 1 & a & a \\ a & a & 1 & a \\ a & a & a & 1 \end{pmatrix}$$
, 若 A 的伴随矩阵 A *的秩为 1, 则 $a = ($)

(A) 1 (B) -1 (C)
$$-\frac{1}{3}$$
 (D) 3

7. A, B 都是 3 阶矩阵, 矩阵 X 满足 AXA - BXB = BXA - AXB + E 其中 E 是 3 阶单 位矩阵,则X=(

$$(A) (A^2 - B^2)^{-1}$$

(A)
$$(A^2 - B^2)^{-1}$$
 (B) $(A - B)^{-1}(A + B)^{-1}$

$$(C) (A+B)^{-1}(A-B)^{-1}$$

(C) $(A+B)^{-1}(A-B)^{-1}$ (D) 条件不足,不能确定.

三. 计算题:

2. 求下列矩阵的逆矩阵:

$$\begin{bmatrix}
 5 & 2 & 0 & 0 \\
 2 & 1 & 0 & 0 \\
 0 & 0 & 1 & -2 \\
 0 & 0 & 1 & 1
 \end{bmatrix}$$

3. k 取什么值时,矩阵
$$A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & k & 0 \\ 1 & -1 & 1 \end{pmatrix}$$
 可逆,并求其逆;

4. 设
$$A$$
, B 满足 $A^*BA=2BA-4E$, 其中 $A=\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -2 \end{pmatrix}$, A^* 是 A 的伴随矩阵, 求 $|B|$;

5. 求下列矩阵的秩:

四. 证明题: (令 / 为单位矩阵.)

- 1. 设 $A = \frac{1}{2}(B+I)$, 证明 $A^2 = A$ 当且仅当 $B^2 = I$.
- 2. 证明下列命题:
 - (1) 若A, B是同阶可逆矩阵,则 $(AB)^* = B^*A^*$;
 - (2) 若 A 可逆,则 A^* 可逆且 $(A^*)^{-1} = (A^{-1})^*$;
 - (3) 若 $AA^T = I$,则 $(A^*)^T = (A^*)^{-1}$.
- 3. 设A是n阶方阵,若 $(A+I)^m=0$,证明A可逆.
- 4. 设 $A = (a_{ij})_{m \times s}$, $B = (b_{ij})_{s \times n}$, 则 $r(AB) \le \min\{r(A), r(B)\}$.

单元自测题二参考答案

一. 填空题:

1.
$$\begin{pmatrix} \cos n\varphi & -\sin n\varphi \\ \sin n\varphi & \cos n\varphi \end{pmatrix}$$
; 2. $\begin{pmatrix} d & -b \\ -c & a \end{pmatrix}$; 3. $\begin{pmatrix} 0 & C^{-1} \\ A^{-1} & 0 \end{pmatrix}$ 4. 125;

5.
$$\begin{pmatrix} 3 & 2 & 1 \\ 4 & 3 & 2 \\ 16005 & 12004 & 8003 \end{pmatrix}$$
; 6. 1; 7. $-2\begin{pmatrix} 1 & 3 & 0 \\ 2 & 5 & 0 \\ 1 & -1 & 2 \end{pmatrix}$.

- 二. 选择题:
- 1. A; 2. B; 3. C; 4. B; 5.B; 6.C; 7.B.
- 三. 计算题:
- 1. 先计算 n=2, 然后对 n 进行分析.

3. 当
$$k \neq 0$$
 时可逆, $A^{-1} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1/k & 0 \\ -1 & 1/k & 1 \end{pmatrix}$, (令 E 为单位矩阵).

4. 由
$$A(A^{\bullet}BA)A^{-1} = A(2BA)A^{-1} - A(4E)A^{-1}$$
,根据 $AA^{\bullet} = |A|E$,前式简化为
$$(A+E)B = 2E \ , \ \ \overline{n} \ |A+E||B| = |2E|, \ \ \overline{n} \ |A$$

5.
$$(1)r = 5$$

$$2r = 2$$

6.
$$\begin{pmatrix} 1 & -2 & -9 & 8 & -3 \\ -1 & 2 & 7 & -5 & 2 \\ 2 & 0 & 1 & 3 & -1 \\ -1 & 8 & -11 & -3 & 3 \\ 2 & -11 & 15 & 5 & -4 \end{pmatrix}.$$

四. 证明题: 1. 必要性:

$$A^2 = A$$
, $A^2 = \left[\frac{1}{2}(B+I)\right]^2 = A = \frac{1}{2}(B+I)$, $B^2 + 2B + I = 2(B+I) = 2B + 2I$,

所以
$$B^2 = I$$
. 充分性: $B^2 = I$, 有 $A^2 = \left[\frac{1}{2}(B+I)\right]^2 = \frac{1}{2}(B+I) = A$.

4. 设
$$r(A) = r, r(B) = t$$
, 则有 m 阶可逆阵 P_1 和 s 阶可逆阵 Q_1 使 $P_1AQ_1 = \begin{pmatrix} E_r & 0 \\ 0 & 0 \end{pmatrix}$, 同

理有 s 阶可逆阵
$$P_2$$
 和 n 阶可逆阵 Q_2 使 $P_2BQ_2 = \begin{pmatrix} E_t & 0 \\ 0 & 0 \end{pmatrix}$,

于是
$$P_1ABQ_2 = P_1AQ_1(Q_1^{-1}P_2^{-1})P_2BQ_2$$
,令 $C = Q_1^{-1}P_2^{-1} = (C_{ij})_{s \times s}$,

故 $r(AB) = r(P_1ABQ_2) \le \min(r,t) = \min(r(A),r(B))$.

第三章 线性相关性

单元自测题三

一. 判断题:
$1.$ 如果向量组 a_1, a_2, \cdots, a_n 线性相关,那么这个向量组一定有
两个成正比例. ()
2. 若 n 维向量组 a_1, a_2, \cdots, a_n 线性相关,则 n 维向量组
$a_1, a_2, \dots, a_n, a_{n+1}, \dots, a_m$ 也线性相关. ()
3. 如果两个向量组的秩相等,那么这两个向量组等价. ()
4. V 是实数域上的 n 维向量空间, a_1, a_2, \cdots, a_n 是 V 中 n 个线性
无关的向量,则 V 中任一向量可由 a_1, a_2, \cdots, a_n 线性表示. ()
5. 若非空集合 V 为实数域 R 上的一个线性空间,由于 $orall \alpha \in V$
及 $\forall k \in R$ 都有 $k\alpha \in V$,所以 V 中一定有无穷多个元素. ()
二. 填空题:
1. 已知向量组 a_1 = (1, 2, 3, 4), a_2 = (2, 3, 4, 5), a_3 =(3, 4, 5, 6)
a_4 = (4, 5, 6, 7),则该向量组的秩为;
2. 一个向量 <i>a</i> 线性相关的充要条件是; 一个向量 <i>a</i>
线性无关的充要条件是; 两个向量 a_1, a_2 线性相关的充
要条件是;
3.
则将向量 b 表示成 a_1 , a_2 , a_3 的线性组合为————————————————————————————————————
4. 已知 n 维列向量组 a_1,a_2,\cdots,a_n 线性无关, $A=(a_{ij})_{n\times n}$,
如果 Aa_1, Aa_2, \cdots, Aa_n 线性相关,则 $ A = $;

5. 若 V 表示一切 2×2 的
构成的向量空间,则 V 的一组基为 $_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{$
三. 选择题:
1. 向量组 a_1 =(1,0,0), a_2 =(0,1,0), a_3 =(1,1,1), a_2 =(1,1,0)
的一个极大线性无关组是 ()
A. $a_1, a_2,$ B. a_1, a_2, a_3
C. a_1, a_2, a_4 D. a_1, a_2, a_3, a_4
2. 设向量组 a_1, a_2, a_3 与向量组 b_1, b_2 等价,则 ()
A .向量组 a_1,a_2,a_3 线性相关 B .向量组 b_1,b_2 线性无关
$C.$ 向量组 a_1,a_2,a_3 线性无关 $D.$ 向量组 b_1,b_2 线性相关
3. 已知 4,43,43 线性无关,则下列向量组中一定线性无关的是()
A. $a_1 + 2a_2 + a_3$, $a_1 - 2a_2 + a_3$, $2a_1 - a_2 + 3a_3$
B. $5a_1 - 3a_2 + a_3$, $2a_1 + a_2 - a_3$, $3a_1 - 4a_2 + 2a_3$
C. $3a_1 + 2a_2 + 4a_3$, $a_1 - a_2 + a_3$, $5a_1 + 5a_2 + 7a_3$
D. $2a_1 + 5a_2 - 3a_3$, $7a_1 - a_2 - a_3$, $a_1 + a_2 + a_3$
4. 设某向量组的秩为 r, 则下列对该向量组所下的结论中错误是() A. 任一线性无关的部分组含有个 r 向量
B. 所有含 r+1 个向量的部分组都线性相关
C. 所有含 r 个向量的部分组都线性无关
D. 所有线性无关的部分组含有的向量个数不超过 r
5. 向量空间 $V = \{(x_1, x_2) \mid x_1 + x_2 = 0\}$ 的维数是 ()
A. 1; B. 2; C. 3; D. 4.
四. 计算题:
1. 判定下列向量组是线性相关还是线性无关:
$(1) (-1, 3, 1)^{T}, (2, 1, 0)^{T}, (1, 4, 1)^{T};$

- (2) $(2, 3, 0)^{\mathsf{T}}$, $(-1, 4, 0)^{\mathsf{T}}$, $(0, 0, 2)^{\mathsf{T}}$.
- 2. 设 a_1 , a_2 线性无关, a_1 +b, a_2 +b线性相关,用 a_1 , a_2 表示向量b.
- 3. 用初等行变换求下列矩阵的列向量组的一个最大无关组:

- 4. 已知向量 $a_1 = (1, 1, 2, -4)^{\mathsf{T}}$, $a_2 = (2, -3, 3, 1)^{\mathsf{T}}$, $a_3 = (1, 1, 2, 0)^{\mathsf{T}}$ $a_4 = (4, -6, 6, 2)^{\mathsf{T}}$.
- (1) 求该向量组的秩;
- (2)讨论它的线性相关性;
- (3) 求出它的所有极大线性无关组.
- 5. 已知 R3的两个基为:

$$a_{1=(1, 1, 1)^{\mathsf{T}}}, a_{2=(1, 0, -1)^{\mathsf{T}}}, a_{3=(1, 0, 1)^{\mathsf{T}}},$$

$$b_{1=(1, 2, 1)^{\mathsf{T}}}, b_{2=(2, 3, 4)^{\mathsf{T}}}, b_{3=(3, 4, 3)^{\mathsf{T}}}.$$

求由基 a_1, a_2, a_3 到基 b_1, b_2, b_3 的过渡矩阵 P.

五. 证明题:

- 1. 设 $b_1 = a_1, b_2 = a_1 + a_2, \dots, b_r = a_1 + a_2 + \dots + a_r$,且向量组 a_1, a_2, \dots, a_r 线性无关. 证明向量组 b_1, b_2, \dots, b_r 线性无关.
- 2. 已知 $R(a_1, a_2, a_3) = 2$, $R(a_2, a_3, a_4) = 3$, 证明
 - (1) a₁能由^{a2},a3线性表示;
 - (2) a_4 不能由 a_1, a_2, a_3 线性表示.
- 3. 设 a_1 , …, a_n 是一组 n 维向量,证明它们线性无关的充分必要条件是:任一 n 维向量都可由它们线性表示.

4. 设
$$V_1 = \{x = (x_1, x_2, \dots, x_n)^T | x_1, \dots, x_n \in R$$
 满足 $x_1 + x_2 + \dots + x_n = 0\}$

 $V_2 = \{x = (x_1, x_2, \cdots, x_n)^T \middle| x_1, \cdots, x_n \in R$ 满足 $x_1 + x_2 + \cdots + x_n = 1\}$ 问: V_1, V_2 是不是向量空间? 给出证明.

5. 试给出线性方程组 $A_{m\times n}x = 0$ 有形如 $x = (1, x_2, \dots, x_n)^T$ 解 (即要求 $x_1 = 1$, 而 x_2, \dots, x_n 不作要求)的一个充分必要条件,并证明你的结论.

单元自测题三参考答案

习题答案:

-. 1. \times ; 2. \checkmark ; 3. \times ; 4. \checkmark ; 5. \times .

二. 1. 2; 2. a=0 存在常数 k 满足 $a_1=ka_2$ 或 $a_2=ka_1$;

3.
$$b = 7a_1 - 4a_2 + 9a_3$$
; 4. 0; 5. $\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$.

 Ξ . 1. B; 2. A; 3. A, D; 4. A, C; 5. A.

四. 1. (1) 线性相关; (2) 线性无关.

2. 存在不全为零的数 λ_1 , λ_2 使 $\lambda_1(a_1+b)+\lambda_2(a_2+b)=0$,

由此得
$$b = -\frac{\lambda_1}{\lambda_1 + \lambda_2} a_1 - (1 - \frac{\lambda_1}{\lambda_1 + \lambda_2} a_2)$$

3. (1) 第 1, 2, 3 列构成一个最大无关组; (2) 第 1, 2, 3 列构成一个最大无关组.

$$4. \Leftrightarrow A = (a_1, a_2, a_3, a_4) = \begin{pmatrix} 1 & 2 & 1 & 4 \\ 1 & -3 & 1 & -6 \\ 2 & 3 & 2 & 6 \\ -4 & 1 & 0 & 2 \end{pmatrix}$$

所以该向量组秩为 3, 它是线性相关的, 极大无关组分别为 $\alpha_1,\alpha_2,\alpha_3$ 和 $\alpha_1,\alpha_3,\alpha_4$.

5.
$$P = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 0 & 0 \\ 1 & -1 & 1 \end{pmatrix}^{-1} \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 4 \\ 1 & 4 & 3 \end{pmatrix} = \begin{pmatrix} 2 & 3 & 4 \\ 0 & -1 & 0 \\ -1 & 0 & -1 \end{pmatrix}$$

五. 1. 提示: 设
$$k_1b_1 + k_2b_2 + \cdots + k_rb_r = 0$$
,则

$$(k_1 + \dots + k_r)a_1 + (k_2 + \dots + k_r)a_2 + \dots + (k_p + \dots + k_r)a_p + \dots + k_ra_r = 0$$

2. (1) 由
$$R(a_2, a_3, a_4) = 3$$
 , 知 a_2, a_3 线性无关. 又 $R(a_1, a_2, a_3) = 2$ 知

 a_1, a_2, a_3 线性相关, 故 a_1 能由 a_2, a_3 线性表示;

- (2) a_1 能由 a_2 , a_3 线性表示,若 a_4 能由 a_1 , a_2 , a_3 线性表示,则 a_4 能由 a_2 , a_3 线性表示,从而 a_2 , a_3 , a_4 线性相关,矛盾.
- 3. 必要性: 设a为任一 n 维向量. a_1, a_2, \dots, a_n 线性无关, 而 a_1, a_2, \dots, a_n, a 线性相关,则a能由 a_1, a_2, \dots, a_n 线性表示.

充分性:任一 n 维向量都可由 a_1,a_2,\cdots,a_n 线性表示,故单位坐标向量组 e_1,e_2,\ldots,e_n 能由 a_1,a_2,\cdots,a_n 线性表示,于是有 $R(e_1,e_2,\ldots,e_n)$ \leqslant $R(a_1,a_2,\cdots,a_n)$,即 $R(a_1,a_2,\cdots,a_n)$,即 $R(a_1,a_2,\cdots,a_n)$,所 以 a_1,a_2,\cdots,a_n 线性无关.

- 4. V_1 是向量空间, V_2 不是向量空间.
- 5. 记 $A_{m \times n} = (a_1, a_2, \dots, a_n)$. 则 方程组 $A_{m \times n} x = 0$ 有形如 $x = (1, x_2, \dots, x_n)^T$ 解的一个充分必要条件是 a_1 可由 a_2, \dots, a_n 线性表示. 证明: $x = (1, x_2, \dots, x_n)^T$ 是 $A_{m \times n} x = 0$ 的解 当且仅当

 $a_1 + x_2 a_2 + \dots + x_n a_n = 0$ 当且仅当 $a_1 = -x_2 a_2 - \dots - x_n a_n$ 当且仅当 a_1 可由 a_2, \dots, a_n 线性表示.

第四章 矩阵与方程组

单元自测题四

一. 选择题:

- 1. 设 A 是 $m \times n$, 则 m < n 是齐次线性方程组 $A^T A X = 0$ 有非零解的()
- A. 必要条件 B. 充分条件
- C. 充要条件 D. 以上都不对
- 2. 设 A 是 n 阶实矩阵, A^T 为 A 的转置矩阵, 对于线性方程组(I) AX = 0(II) A^TAX=0 必有()
 - A. (II)的解是(I)的解,但(I)的解不是(II)的解
 - B. (II)的解是(I)的解, (I)的解也是(II)的解
 - C.(I) 的解不是(II) 的解,(II) 的解也不是(I) 的解
 - D. (I)的解是(II)的解,但(II)的解不是(I)的解
- 3. 设 α_1 , α_2 , α_3 , 是四元齐次线性方程组 AX = b 的三个解向量,且 R(A) = 3, $\alpha_1 = (1,2,3,4)^T$, $\alpha_2 + \alpha_3 = (0,1,2,3)^T$, C 为任意常数,则线性方程组 AX = b的通解 X=()
 - A. $(1,2,3,4)^T + C(1,1,1,1)^T$; B. $(1,2,3,4)^T + C(0,1,2,3)^T$
 - C. $(1,2,3,4)^T + C(2,3,4,5)^T$; D. $(1,2,3,4)^T + C(3,4,5,6)^T$
- 4. 要使 $\xi_1 = (1,0,1)^T$, $\xi_2 = (-2,0,1)^T$ 都是线性方程组Ax = 0的解,只要系数矩阵 A 为()

A.
$$\begin{bmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \\ 2 & 1 & 1 \end{bmatrix}$$
 B.
$$\begin{bmatrix} -1 & 2 & 1 \\ 1 & 1 & 2 \end{bmatrix}$$
 C.
$$\begin{bmatrix} 0 & 1 & 0 \\ 0 & 2 & 0 \\ 3 & 2 & 1 \end{bmatrix}$$
 D.
$$\begin{bmatrix} 0 & -1 & 0 \\ 0 & 2 & 0 \end{bmatrix}$$

- 5. 设 ξ_1, ξ_2, ξ_3 是 Ax = 0的基础解系,则该方程组的基础解系还可以表成()
- A. ξ_1, ξ_2, ξ_3 的一个等阶向量组 B. ξ_1, ξ_2, ξ_3 的一个等秩向量组
- C. $\xi_1, \xi_1 + \xi_2, \xi_1 + \xi_2 + \xi_3$ D. $\xi_1 \xi_2, \xi_2 \xi_3, \xi_3 \xi_1$

6. 齐次线性方程组
$$\begin{cases} x_1 + kx_3 + x_3 = 0 \\ 2x_1 + x_2 + x_3 = 0 \\ kx_2 + 3x_3 = 0 \end{cases}$$
 k 应满足()

A. $k \neq \frac{3}{5}$ B. $k = \frac{3}{5}$ C. 无解 D. 全体实数
7. 设 $\alpha_1, \alpha_2, \dots, \alpha_s$ 是非齐次线性方程组 $Ax = b$ 的解,若 $C_1\alpha_1 + C_2\alpha_2 + \dots + C_s\alpha_s$
也是 $Ax = b$ 的一个解, $C_1 + C_2 + \cdots + C_s$ 等于()
A. 0 B. 1 C1 D. 2.
二. 填空题:
1. 设方程组 $\begin{cases} a_1x + b_1y + c_1z = d_1 \\ a_2x + b_2y + c_2z = d_2 \text{ 的每一个方程都表示一个平面,如系数矩阵的} \\ a_3x + b_3y + c_3z = d_3 \end{cases}$
秩为 3,则三个平面的关系是;
2. 设 A 为 4 阶方阵,且 R(A)=2, A*是 A 的伴随矩阵,则 A*X=0 的基础解系
所含解向量的个数为;
3. 已知方程组 $\begin{pmatrix} 1 & 2 & 1 \ 2 & 3 & a+2 \ 1 & a & -2 \end{pmatrix}\begin{pmatrix} x_1 \ x_2 \ x_3 \end{pmatrix} = \begin{pmatrix} 1 \ 3 \ 0 \end{pmatrix}$ 无解,则 $a = $;
4. A、B 都是 n 阶矩阵,且 A ≠ O, AB = O,则 B =;
5. 已知 α_1,α_2 是齐次线性方程组 $Ax=0$ 的基础解系,则向量组:
$\beta_1 = \alpha_1 + t_1 \alpha_2, \beta_2 = \alpha_2 + t_2 \alpha_1$ 也可作为 $Ax = 0$ 的基础解系的充要条件是,常数
t_1,t_2 满足条件:
6. 方程组 $x_1 + x_2 - x_3 = 0$ 的基础解系是
7. 设 n 阶矩阵 A 的各行元素之和为 0,且秩为 n-1,则线性方程组 $Ax = 0$
的通解为
三. 计算题 1. 设齐次线性方程组

 $\begin{cases} ax_1 + bx_2 + bx_3 + bx_4 = 0, \\ bx_1 + ax_2 + bx_3 + bx_4 = 0, \\ bx_1 + bx_2 + ax_3 + bx_4 = 0, \\ bx_1 + bx_2 + bx_3 + ax_4 = 0, \end{cases}$ 中 $a \neq 0, b \neq 0$,试讨论 a, b 为何值时,方程组有非

其中 $a \neq 0, b \neq 0$. 试讨论a, b为何值时,方程组有非零解? 在有非零解时求它的一个基础解系.

2. 求线性方程组
$$\begin{cases} x_1 + x_2 - x_3 - x_4 = 1 \\ 2x_1 + x_2 + x_3 + x_4 = 4 \\ 4x_1 + 3x_2 - x_3 - x_4 = 6 \\ x_1 + 2x_2 - 4x_3 - 4x_4 = -1 \end{cases}$$
的通解.

3. 当
$$\lambda$$
 取何值时,线性方程组
$$\begin{cases} \lambda.x_1 + x_2 + x_3 = 2 \\ x_1 + \lambda.x_2 + x_3 = 2 \end{cases}$$
 有唯一解、无解、有无穷多
$$\begin{cases} x_1 + x_2 + \lambda.x_3 = 2 \\ x_1 + x_2 + \lambda.x_3 = 2 \end{cases}$$

解?在有无穷多解时,求出通解.

4. 设有方程组
$$\begin{cases} a.x_1 + x_2 + x_3 = 4 \\ x_1 + bx_2 + x_3 = 3 \\ x_1 + 2bx_2 + x_3 = 4 \end{cases}$$

- (1) a、b取何值时,方程组有唯一解; (2) a、b取何值时,方程组无解;
- (3) $a \times b$ 取何值时,方程组有无穷多解,并求出通解.

5. 当
$$a$$
取何值时,线性方程组
$$\begin{cases} x_1 + x_2 + 2x_3 + 3x_4 = 1 \\ x_1 + 3x_2 + 6x_3 + x_4 = 3 \\ x_1 + 5x_2 + 10x_3 - x_4 = 5 \end{cases}$$
 有解? 在方程组有解时,
$$3x_1 + 5x_2 + 10x_3 + 7x_4 = a$$

用其导出组的基础解系表示方程组的通解.

6. 已知线性方程组(I)

的基础解系为 $(b_{11},b_{12},\cdots,b_{1,2n})^T,\cdots,(b_{n1},b_{n2},\cdots,b_{n,2n})^T$.试写出方程组(II)

的通解,并说明理由.

四. 证明题

- 1. A 是 $m \times n$ 矩阵, 秩为 m; B 是 $n \times (n-m)$, 秩为 n-m; 又知 AB=0,且 α 是 满足条件 $A\alpha=0$ 的列向量.证明:存在唯一的 n-m 维向量 γ 使得 $\alpha=B\gamma$.
 - 2. 矩阵 A_{mxn} , 证明: Ax = b 有解的充要条件是: 若 $A^TZ = 0$, 则 $b^TZ = 0$.
- 3. 设 A 是 $m \times n$ 矩阵, D 是 $m \times n$ 矩阵, $\mathbf{x} = (x_1, x_2, \dots, x_n)^T$, B 是 $m \times m$, 求证: 若 B 可逆且 BA 的行向量都是方程组 $D\mathbf{x} = 0$ 的解,则 A 的每个行向量也都是该方程组的解.
 - 4. 设A是 m×n 阶实矩阵,证明: $R(A^TA) = R(A)$.
- 5. A 是 n 阶矩阵,且 A \neq 0. 证明:存在一个 n 阶非零矩阵 B,使 AB=0 的充分 必要条件是 |A|=0.
 - 6. 假设 $A \neq m \times n$ 阶矩阵, 若对任意 n 维向量 x, 都有 Ax=0, 则 A=0.

单元自测题四参考答案

一. 选择题:

- 1. B 因 $R(A^TA) \le R(A) \le m < n$,其中 $n \in A^TA$ 的阶数即方程组 $A^TAX = 0$ 的未知数 的 个 数 , 故 方 程 组 $A^TAX = 0$ 有 非 零 解 , 但 不 必 要 , 因 为 当 $m \ge n$ 时 , $R(A^TA) \le n \le m$,此时方程组有可能只有零解,也可能有非零解.
- 2. B 若 x_i 是 AX=0 的解,即 $Ax_i = 0$,显然 $A^T Ax_i = 0$ 若 x_i 是 $A^T Ax_i = 0$ 的解,即 $A^T Ax_i = 0$,则 $x_i^T A^T x_i = 0$,即 $(Ax_i)^T (Ax_i) = 0$ 。

若 $Ax_i \neq 0$,不妨设 $Ax_i = (b_1, b_2, \dots, b_n)^T$, $b_1 \neq 0$, 则 $(Ax_i)^T (Ax_i) = b_1^2 + \sum_{i=2}^n b_i^2 > 0$ 与 $(Ax_i)^T (Ax_i) = 0$ 矛盾,因而 $Ax_i = 0$,即(I)、(II)同解.

3. C. 因 α_1 , α_2 , α_3 是方程组 AX=b 的三个解,故 $\alpha_1 - \alpha_2$, $\alpha_1 - \alpha_3$ 是其导出组的解,由解的线性性可知 $(\alpha_1 - \alpha_2) + (\alpha_1 - \alpha_3) = 2\alpha_1 + (\alpha_2 + \alpha_3) = (2,3,4,5)^T$ 是 AX=0 的解,又 R(A)=3,故 AX=0 的基础解系含一个解向量,方程 AX=b 的通解. $X = (1,2,3,4)^T + C(2,3,4,5)^T$.

4. D

- A. $|A| \neq 0$, r(A)=3, 因为 A 是三阶矩阵,所以 Ax=0 只有零解,排除 A;
- B. r(A)=2, 所以方程组 Ax=0 的基础解系所含解向量个数: 3-r(A)=1.排除 B;
- C. r(A)=2,所以方程组 Ax=0 的基础解系所含解向量个数: 3- r(A)=1.排除 C;
- D. r(A)=1, 所以方程组 Ax=0 的基础解系所含解向量个数: 3-r(A)=2.故选 D.
- 5. C. 由于 $k_1\xi_1 + k_2(\xi_1 + \xi_2) + k_3(\xi_1 + \xi_2 + \xi_3) = 0$ 得

 $k_3\xi_3 + \xi_2(k_1 + k_2) + \xi_1(k_1 + k_2 + k_3) = 0$.因为 ξ_1,ξ_2,ξ_3 是 Ax=0 的基础解系,所以

$$\xi_1,\xi_2,\xi_3$$
 线性无关.于是
$$\begin{cases} k_1+k_2+k_3=0\\ k_2+k_3=0 \end{cases}$$
 ,所以 $k_1=k_2=k_3=0$,则
$$k_3=0$$

 $\xi_1,\xi_1+\xi_2,\xi_1+\xi_2+\xi_3$ 线性无关。它也可以是方程组的基础解系,C是答案.

6. A.
$$\begin{vmatrix} 1 & k & 1 \\ 2 & 1 & 1 \\ 0 & k & 3 \end{vmatrix} \neq 0, 3 + 2k - k - 6k \neq 0, k \neq \frac{3}{5} \text{ th},$$
 \hat{f} \hat{f}

7. B. 因为
$$A\alpha_1 = b$$
 且 $A(C_1\alpha_1 + C_2\alpha_2 + \cdots + C_s\alpha_s) = b$,所以 $(C_1 + C_2 + \cdots + C_s)b = b$,所以 $C_1 + C_2 + \cdots + C_s = 1$

二. 填空题:

- 1. 相交于一点. 因 R(A)=3,故此方程组有唯一解,三平面交于一点
- 2. 4. 因 R(A) = 2 < 4-1,故 $R(A^*) = 0$,即 $A^* = 0$,则方程组 $A^*X = 0$ 的基础解系含 4-0=4 个解向量.
- 3. -1

$$\overline{A} = \begin{pmatrix} 1 & 2 & 1 & 1 \\ 2 & 3 & a = 2 & 3 \\ 1 & a & -2 & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 2 & 1 & 1 \\ 0 & -1 & a & 1 \\ 0 & 0 & (a-3)(a+1) & a-3 \end{pmatrix}$$
 若 a=-1, 则

 $R(A) = 3 \neq R(A) = 2$, 故方程组无解.

- 4. 0. 因 AB = O,则 B 的列向量组是方程组 AX = 0 的解,故 $R(A) + R(B) \le n$,又 $A \ne O$,则 R(B) < n, |B| = 0.
- 5. $1-t_1t_2 \neq 0$. β_1,β_2 为 Ax = 0 的基础解系,即 β_1,β_2 线性无关,只有当 $k_1 = k_2 = 0$ 使 得 $k_1\beta_1 + k_2\beta_2 = 0$, 即 : $k_1(\alpha_1 + t_1\alpha_2) + k_2(\alpha_2 + t_2\alpha_1) = 0$ 有 : $\alpha_1(k_1 + t_2k_2) + \alpha_2(k_2 + t_1k_1) = 0$ 又因为 α_1,α_2 线性无关,所以 $\begin{bmatrix} 1 & t_2 \\ t_1 & 1 \end{bmatrix} \begin{bmatrix} k_1 \\ k_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$,因此得 $1-t_1t_2 \neq 0$.

6.
$$\xi_1 = (-1,1,0)^T, \xi_2 = (1,0,1)^T$$

7. $k(1 \ 1 \ \cdots \ 1)^T$. R(A) = n - 1,则 Ax = 0 的基础解系只有一个向量。设 Ax = 0 的第 i 个方程为 $a_{i1}x_1 + a_{i2}x_2 + \cdots + a_{in}x_n = 0$,又矩阵 A 的各行元素之和为 0,即 $a_{i1} + a_{i2} + \cdots + a_{in} = 0$,所以 $a_{i1} = x_2 = \cdots = x_n = 1$ 为它的一个解向量,所以 $a_{i1} = x_1 = 0$ 的通解为 $a_{i1} = x_2 = \cdots = x_n = 1$ 为它的一个解向量,所以 $a_{i2} = 0$ 的通

三. 计算题:

1.
$$\begin{vmatrix} a & b & b & b \\ b & a & b & b \\ b & b & a & b \\ b & b & b & a \end{vmatrix} = (a-b)^{3}(a+2b),$$

当a=b或a=-3b时,方程组有非零解.

当a=b时:方程组变为 $x_1+x_2+x_3+x_4=0$.

于是基础解系为

$$\begin{pmatrix} -1 \\ 1 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} -1 \\ 0 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} -1 \\ 0 \\ 0 \\ 1 \end{pmatrix}$$

当
$$a = -3b$$
 时: 方程组变为
$$\begin{cases} x_1 = x_4 \\ x_2 = x_4 \end{cases}$$
 于是基础解系为
$$\begin{cases} 1 \\ 1 \\ 1 \\ 1 \end{cases}$$
.

$$\begin{cases} x_1 = -2x_3 - 2x_4 \\ x_2 = 3x_3 + 3x_4 \end{cases}$$
 的基础解系为 $\xi_1 = \begin{pmatrix} -2 \\ 3 \\ 1 \\ 0 \end{pmatrix}, \xi_2 = \begin{pmatrix} -2 \\ 3 \\ 0 \\ 1 \end{pmatrix}$

$$\begin{cases} x_1 = -2x_3 - 2x_4 + 3 \\ x_2 = 3x_3 + 3x_4 - 2 \end{cases} \text{ in - } \uparrow \text{ the } \mathcal{H} \qquad \eta_0 = \begin{pmatrix} 3 \\ -2 \\ 0 \\ 0 \end{pmatrix}$$

原方程的通解为 $\eta = \eta_0 + k_1 \xi_1 + k_2 \xi_2$ k_1, k_2 是任意常数.

3.
$$|A| = \begin{vmatrix} \lambda & 1 & 1 \\ 1 & \lambda & 1 \\ 1 & 1 & \lambda \end{vmatrix} = (\lambda - 1)^2 (\lambda + 2)$$

(1) 当 $\lambda \neq 1$ 且 $\lambda \neq -2$ 时, $|A| \neq 0$,由 Cramer 法则知,方程组有唯一解.

(2)
$$\stackrel{\text{def}}{=} \lambda = -2 \text{ pt}, \quad \overline{A} = \begin{bmatrix} -2 & 1 & 1 & 2 \\ 1 & -2 & 1 & 2 \\ 1 & 1 & -2 & 2 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 1 & -2 & -2 \\ 0 & 1 & -1 & 0 \\ 0 & 0 & 0 & 6 \end{bmatrix}$$

秩 A= 2, 秩(\overline{A})=3, 故无解.

(3)
$$\stackrel{\text{def}}{=} \lambda = 1$$
 $\stackrel{\text{def}}{=} \begin{bmatrix} 1 & 1 & 1 & 2 \\ 1 & 1 & 1 & 2 \\ 1 & 1 & 1 & 2 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 1 & 1 & 2 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$

R (A) =R(
$$\overline{A}$$
)=1<3, 有无穷多解,通解为
$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 2 \\ 0 \\ 0 \end{bmatrix} + k_1 \begin{bmatrix} -1 \\ 1 \\ 0 \end{bmatrix} + k_2 \begin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix}.$$

4. 系数矩阵
$$|A| = \begin{vmatrix} a & 1 & 1 \\ 1 & b & 1 \\ 1 & 2b & 1 \end{vmatrix} = b(1-a)$$

(1) ∴ $\exists a \neq 1 \perp b \neq 0$ 时,方程组有唯一解;

(2) 当
$$b=0$$
时,方程组为
$$\begin{cases} ax_1 + x_2 + x_3 = 4 \\ x_1 + x_3 = 3 \end{cases}$$
 方程组无解;
$$\begin{cases} x_1 + x_2 + x_3 = 4 \\ x_1 + x_3 = 4 \end{cases}$$

当
$$a=1$$
时,增广阵 $\widetilde{A}=\begin{pmatrix}1&1&1&4\\1&b&1&3\\1&2b&1&4\end{pmatrix}\sim\begin{pmatrix}1&1&1&4\\0&b&0&1\\0&2b-1&0&0\end{pmatrix}$

∴ 当
$$a=1$$
且 $b\neq \frac{1}{2}$ 时,方程组无解;

(3) 当a=1, $b=\frac{1}{2}$ 时, 方程组有无穷多解。

$$\tilde{A} = \begin{pmatrix} 1 & 1 & 1 & 4 \\ 0 & 1 & 0 & 2 \\ 0 & 0 & 0 & 0 \end{pmatrix} \sim \begin{pmatrix} 1 & 0 & 1 & 2 \\ 0 & 1 & 0 & 2 \\ 0 & 0 & 0 & 0 \end{pmatrix}, \quad -\Re R \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = k \begin{pmatrix} -1 \\ 0 \\ 0 \end{pmatrix} + \begin{pmatrix} 2 \\ 2 \\ 0 \end{pmatrix}$$

5. 先对方程组的增广矩阵进行初等行变换

$$\overline{A} = \begin{bmatrix}
1 & 1 & 2 & 3 & \cdots & 1 \\
1 & 3 & 6 & 1 & \cdots & 3 \\
1 & 5 & 10 & -1 & \cdots & 5 \\
3 & 5 & 10 & 7 & \cdots & a
\end{bmatrix} \rightarrow \begin{bmatrix}
1 & 1 & 2 & 3 & \cdots & 1 \\
0 & 2 & 4 & -2 & \cdots & 2 \\
0 & 4 & 8 & -4 & \cdots & 4 \\
0 & 2 & 4 & -2 & \cdots & a-3
\end{bmatrix}$$

$$\rightarrow \begin{bmatrix}
1 & 1 & 2 & 3 & \cdots & 1 \\
0 & 2 & 4 & -2 & \cdots & a-3 \\
0 & 0 & 0 & 0 & \cdots & a-5 \\
0 & 0 & 0 & 0 & \cdots & a-5 \\
0 & 0 & 0 & 0 & \cdots & a-5 \\
0 & 0 & 0 & 0 & \cdots & a-5
\end{bmatrix}
\rightarrow \begin{bmatrix}
1 & 0 & 0 & 4 & \cdots & 0 \\
0 & 1 & 2 & -1 & \cdots & 1 \\
0 & 0 & 0 & 0 & \cdots & a-5 \\
0 & 0 & 0 & 0 & \cdots & a-5 \\
0 & 0 & 0 & 0 & \cdots & a-5
\end{bmatrix}$$

所以, 当a=5时, 方程组有解, 特解 $\gamma_0=(0,1,0,0)$, 其导出的基础解系为

 $\eta_1 = (0,-2,1,0)^T = (-4,1,0,1)^T$,原方程组的全部解为 $X = \gamma_0 + k_1 \eta_1 + k_2 \eta_2, k_1, k_2$ 为任意常数.

6. 方程组(I)与(II)均有 2n 个未知数;由已知条件(I)的一个基础解系含有 n 个解向量,从而其系数矩阵 r(A)=的秩为 2n-n=n.将方程组(I)与(II)分别改写为矩阵形式可得:Ax=0 与(II)Bx=0.由于 B 的行向量组是一个基础解系,故线性无关,所以 R(B)=n.因此方程组(II)的一个基础解系含 n 个解向量.

由已知条件,B 的每一行的转置向量都是(I)的解,即 $AB^T=0$.从而知(AB^T) $^T=0$,即 $BA^T=0$.因此 A 的每一行的转置向量都是(II)的解.但 R(A)=n,所以 A 的行向量线性无关,因此 A^T 的全体列向量组恰好构成(II)的一个基础解系,所以通解迎刃而解. 四. 证明题:

1. 证明: 因为 r(A)=m,所以方程组 AX=0 的基础解系所含解向量的个数为 n-r(A)=n-m.

假设 $B = (\beta_1, \beta_2, \dots, \beta_{n-m})_{n \times (n-m)}$ 为 $n \times (n-m)$ 矩阵,r(B) = n-m. 其中 β_i 为 B 的列向量(i=1,2,...,n-m).

因为 AB=0,所以 $(A\beta_1, A\beta_2, \cdots, A\beta_{n-m})=0$,即 B 的列向量都是 Ax=0 的解,又因为 r(B)=n-m,所以 $\beta_1, \beta_2, \cdots, \beta_{n-m}$ 为 Ax=0 的基础解系。 所以满足 $A\alpha=0$ 的任意向量都是 $\beta_1, \beta_2, \cdots, \beta_{n-m}$ 的唯一线性组合,即存在唯一

的一数组
$$k_1,k_2,\cdots,k_{n-m}$$
, 使 $\alpha=k_1\beta_1+k_2\beta_2+\cdots+k_{n-m}\beta_{n-m}$,

2. 证明: 充分性

假设 Ax=b 的系数矩阵为 A,增广矩阵为 \overline{A} .考察: I. $A^Tx=0$, II. $\begin{cases} A^Tx=0 \\ b^Tx=0 \end{cases}$

因为 $A^TZ=0$,则 $b^TZ=0$ 所以(I)和(II)是同解方程组,所以 $r(A^T)=r\begin{pmatrix} A^T \\ b^T \end{pmatrix}$. 即

 $r(A) = r(\overline{A})$.所以 Ax=b 有解。

必要性: 考察 Ay = b (1)

$$A^T x = 0 (2)$$
$$b^T x = 0 (3)$$

即要证明: 若(1)有解,则(2)的解必为(3)的解。

假设 y 为(1)的解,则 Ay=b. 取转置,得 $y^T A^T = b^T$. 有设 x 为(2)的解,即 $A^T x = 0$. 则 $b^T x = y^T A^T x = y^T 0 = 0$ 所以 x 为(3)的解.

3. 证明: 假设
$$B = \begin{bmatrix} b_{11} & b_{12} & \cdots & b_{1m} \\ b_{21} & b_{22} & \cdots & b_{2m} \\ \cdots & \cdots & \cdots & \cdots \\ b_{m1} & b_{m2} & \cdots & b_{mm} \end{bmatrix}, A = \begin{bmatrix} \alpha_1 \\ \alpha_2 \\ \vdots \\ \alpha_m \end{bmatrix}, 其中 \alpha_i (i = 1, 2, \dots, m) 为 A$$

的行向量
$$BA = \begin{bmatrix} b_{11} & b_{12} & \cdots & b_{1m} \\ b_{21} & b_{22} & \cdots & b_{2m} \\ \vdots \\ b_{m1} & b_{m2} & \cdots & b_{mm} \end{bmatrix} \begin{bmatrix} \alpha_1 \\ \alpha_2 \\ \vdots \\ \alpha_m \end{bmatrix} = \begin{bmatrix} b_{11}\alpha_1 + b_{12}\alpha_2 + \cdots b_{1m}\alpha_m \\ b_{21}\alpha_1 + b_{22}\alpha_2 + \cdots b_{2m}\alpha_m \\ \vdots \\ b_{m1}\alpha_1 + b_{m2}\alpha_2 + \cdots b_{mm}\alpha_m \end{bmatrix}$$

因为 BA 的行向量都是方程组 $D \mathbf{x} = 0$ 的解,所以 $D \left(\sum_{k=1}^m b_{ik} \alpha_k \right)^T = 0, (i = 1, 2, \dots, m).$

所以
$$\sum_{k=1}^{m} b_{ik} D\alpha_{k}^{T} = 0, (i = 1, 2, \dots, m).$$

因为 B 可逆, 所以 $D\alpha_x^T = 0$, $(i = 1, 2, \dots, m)$.即 A 的每个行向量为 Dx = 0 的解.

4. 证.: 作齐次线性方程组 AX=0 或 $A^{T}AX=0$ 其中 $X(x_1,x_2,...,x_n)^{T}$. 显然,AX=0 的解必 定是 $A^{T}AX=0$ 的解.

反之,若 X_0 是 $A^T A X = 0$ 的解,则 $A^T A X_0 = 0$ 从而 $X_0^T A^T A X_0 = 0$,

$$\mathbb{P}(AX_0)^T(AX_0) = 0$$

设 $AX_0=(a_1,a_2,\ldots,a_m)^T$,由上式 $a_1^2+a_2^2+\cdots+a_m^2=0$

由于 $a_1, a_2, ..., a_m$ 都是实数,所以 $a_1 = a_2 = ... = a_m = 0$ 即 $AX_0 = 0$

因此 X_0 也是 AX=0 的解.

于是 AX=0 与 $A^TAX=0$ 同解,由于同解线性方程组的基础解系中含有相同个数的解向量,所以结论成立.

5. 证明: 必要性(反证法)

反设 $|A| \neq 0$,则 A^{-1} 存在. 所以当 AB=0 时,两边右乘 A^{-1} 得 B=0,和存在一个 n

阶非零矩阵 B, 使 AB=0 矛盾. 所以 |A|=0.

充分性: 设|A|=0, 则方程组 Ax=0 有非零解 $x=(b_1,b_2,\cdots,b_n)$ 构造矩阵

$$B = \begin{bmatrix} b_1 & 0 & \cdots & 0 \\ b_2 & 0 & \cdots & 0 \\ \cdots & \cdots & \cdots & \cdots \\ b_n & 0 & \cdots & 0 \end{bmatrix} \quad \exists B \neq 0, \quad \exists AB = 0.$$

6. 证明:假设A = $(\alpha_1, \alpha_2, \dots, \alpha_n)$, α_i 为 A 的列向量 $(i=1,2,\dots,n)$. 取 $\beta_i = (0, \dots, 1, \dots, 0)^T$ $(i=1,2,\dots,n)$, 只有第 i 个分量为 1,其余都为 0. 则 $A\beta_i = A(0 \dots 1 \dots 0)^T = \alpha_i = 0$, $(i=1,2,\dots,n)$ 所以 A=0.

第五章 相似矩阵与特征值

单元自测题五

	구구 약수 보원
- .	填空题:

1	况,10分51位	/的元麦会为1	则 A 的 n 个特征值是	
Ι.		11 11 11 11 11 11 11 11 11 11 11 11 11	则从时间有证证定	•

- 2. 设A是n阶方阵,A*为A的伴随矩阵,|A|=5,则方阵 B=AA*的特征值是,特征向量是
- 3. 设 $A = \begin{pmatrix} -1 & 1 & 0 \\ -4 & 3 & 0 \\ 1 & 0 & 2 \end{pmatrix}, B = \begin{pmatrix} -1 & -4 & 1 \\ 1 & 3 & 0 \\ 0 & 0 & 2 \end{pmatrix}$, 且A的特征值为2和1(二重),那么B的

特征值为____;

- 4. 三阶方阵 A 的特征值为1,-1,2,则 $B = 2A^3 3A^2$ 的特征值为____;
- 5. 设n阶方阵A的特征值为1,2,...,n,则|2A+E|=_____;
- 6. 设可逆方阵 A 与 B 相似,则有 $A^{-1} 与 B^{-1}$ _____ (相似,不相似);

二. 选择题:

- 1. 零为矩阵 A 的特征值是 A 为不可逆的(
 - (A) 充分条件

(B) 必要条件

(C)充要条件

- (D) 非充分、非必要条件
- 2. 设 $\lambda = 2$ 是可逆矩阵A一个特征值,则矩阵 $\left(\frac{1}{3}A^2\right)^{-1}$ 有一个特征值等于()

(A) $\frac{4}{3}$ (B) $\frac{3}{4}$ (C) $\frac{1}{2}$ (D) $\frac{1}{4}$
3. 与 n 阶单位矩阵 E 相似的矩阵是()
(A) 数量矩阵 $kE(k \neq 0)$ (B) 对角矩阵 D (主对角元素不为 1)
(C) 单位矩阵 E (D) 任意 n 阶矩阵 A
4. 设方阵 A, B 相似,则()
(A) A,B的特征矩阵相同 (B) A,B的特征多项式相同
(C) A, B 相似于同一个对角阵 (D) 存在正交矩阵 T 使 $T^{-1}AT = B$
5. 3 方阵 A 有特征值1,-2, 4,则下列矩阵中满秩矩阵是(), E 是单位阵
(A) $E - A$ (B) $A + 2E$ (C) $2E - A$ (D) $A - 4E$
6. 设 λ_0 是 n 阶矩阵 A 的特征值,且齐次线性方程组 $(\lambda_0 E - A)x = 0$ 的基础解系为
η_1,η_2 ,则 A 的属于 λ_0 的全部特征向量是 ()
(A) η_1 和 η_2 (B) η_1 或 η_2
(C) $C_1\eta_1 + C_2\eta_2$ (C_1, C_2 为任意常数)
(D) $C_1\eta_1 + C_2\eta_2$ (C_1,C_2 为不全为零的任意常数)
7. 设 λ_1, λ_2 是矩阵 A 的两个不同的特征值, ξ, η 是 A 的分别属于 λ_1, λ_2 的特征向
量,则()
(A) 对任意 $k_1 \neq 0, k_2 \neq 0, k_1 \xi + k_2 \eta$, 都是 A 的特征向量;

- (B) 存在常数 $k_1 \neq 0, k_2 \neq 0, k_1 \xi + k_2 \eta$, 是 A 的特征向量;
- (C) 当 $k_1 \neq 0, k_2 \neq 0$, 时, $k_1 \xi + k_2 \eta$ 不可能是 A 的特征向量;
- (D) 存在惟一的一组常数 $k_1 \neq 0, k_2 \neq 0$, 使 $k_1 \xi + k_2 \eta$ 是 A 的特征向量.

三. 计算题:

1. 求矩阵
$$A = \begin{pmatrix} 2 & 2 & -2 \\ 2 & 5 & -4 \\ -2 & -4 & 5 \end{pmatrix}$$
 的特征值和特征向量.

3. 已知矩阵
$$A = \begin{bmatrix} -2 & 0 & 0 \\ 2 & a & 2 \\ 3 & 1 & 1 \end{bmatrix}$$
 与矩阵 $B = \begin{bmatrix} -1 & & \\ & 2 & \\ & & b \end{bmatrix}$ 相似,求 a , $b = ?$

4. 求矩阵
$$A = \begin{pmatrix} 2 & 2 & -2 \\ 2 & 5 & -4 \\ -2 & -4 & 5 \end{pmatrix}$$
的乘幂 A^n .

5. 3 阶实对称阵的特征值为 6, 3, 3, 特征值 6 对应的特征向量为 $p_1 = (1,1,1)^T$, 求 A.

四. 证明题:

- 1. 设A与B都是n阶正交阵,证明AB也是正交阵.
- 2. 设 A, B 都 En 阶方阵,且 $|A| \neq 0$,证明 AB 与 BA 相似.

3. 设
$$A \sim B$$
相似,及 $C \sim D$ 相似,则分块阵 $\begin{bmatrix} A & \\ & C \end{bmatrix}$ 与 $\begin{bmatrix} B & \\ & D \end{bmatrix}$ 相似.

- 4. 如果 A 满足 $A^2 = A$, 则称 A 是幂等矩阵. 试证幂等阵的特征值只能是 0 或 1.
- 5. 设 α_1,α_2 分别是矩阵 A 的属于特征值 λ_1,λ_2 的特征向量,且 $\lambda_1 \neq \lambda_2$,试证: $\alpha_1+\alpha_2$ 不再是 A 的特征向量.

单元自测题五参考答案

一. 填空题: 1. 答案: 特征值为 $\lambda_1 = n, \lambda_2 = \cdots = \lambda_n = 0$

$$|\lambda E - A| = \begin{vmatrix} \lambda - 1 & -1 & \cdots & -1 \\ -1 & \lambda - 1 & \cdots & -1 \\ \vdots & \vdots & \vdots & \vdots \\ -1 & -1 & \cdots & \lambda - 1 \end{vmatrix} = \begin{vmatrix} \lambda - n & -1 & \cdots & -1 \\ \lambda - n & \lambda - 1 & \cdots & -1 \\ \vdots & \vdots & \vdots & \vdots \\ \lambda - n & -1 & \cdots & \lambda - 1 \end{vmatrix}$$

$$= (\lambda - n) \begin{vmatrix} 1 & -1 & \cdots & -1 \\ 1 & \lambda - 1 & \cdots & -1 \\ \vdots & \vdots & \vdots & \vdots \\ 1 & -1 & \cdots & \lambda - 1 \end{vmatrix} = (\lambda - n) \begin{vmatrix} 1 & -1 & \cdots & -1 \\ 0 & \lambda & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & \cdots & \lambda \end{vmatrix} = (\lambda - n)^n \lambda^n$$

因此, A的n个特征值为 $\lambda_1 = n, \lambda_2 = \cdots = \lambda_n = 0$.

- 2. 答案: 因为 $AA^* = A^*A = |A|E$,所以对于任意 n维向量 α ,有 $AA^*\alpha = |A|E\alpha = |A|\alpha$ 。 所以 |A| = 5 是 $B = AA^*$ 的特征值,任意 n维向量 α 为对应的特征向量.
- 3. 答案: A, A^T 具有相同的特征值。 $B = A^T$,所以B 和 A 具有相同的特征值。 B 的特征值为: 2 和 1 (二重).
- 4. 答案: $B = 2A^3 3A^2$ 的特征值为:

$$2 \cdot 1^3 - 3 \cdot 1^2 = -1$$
, $2 \cdot (-1)^3 - 3 \cdot (-1)^2 = -5$, $2 \cdot 2^3 - 3 \cdot 2^2 = 4$

5. 答案: $|2A + E| = \prod_{i=1}^{n} (2i + 1)$

分析: 因为 A 的特征值为 $1,2,\cdots,n$,所以 2A+E 的特征值为 2i+1 $(i=1,2,\cdots,n)$, 所以 $|2A+E|=\prod_{i=1}^{n}(2i+1)$.

6. 答案: 相似.

分析: 由 $A \sim B$ 相似定义,且A可逆,就得 $A^{-1} \sim B^{-1}$,结论得证.

7. 答案: x=0, y=-1。因为 A,B 相似,所以 |A|=-2=|B|=-2y.所以 y=-1。由于相似矩阵的迹相等: tr(A)=2+x=tr(B)=2+y-1=2.于是 x=0.

二. 选择题:

- (C) 分析: 假设 λ₁,..., λ₂ 为 A 的所有特征值,则 |A| = λ₁λ₂ ...λ₂. 所以:
 0 为 A 的特征值 ⇔ A 可逆 故(C) 为答案.
- 2. (B) 分析:由于 $\lambda = 2$ 是A的一个特征值,则 $\frac{1}{3}A^2$ 的特征值为 $\frac{1}{3} \times 2 \times 2 = \frac{4}{3}$,得出 $\left(\frac{1}{3}A^2\right)^{-1}$ 的对应的特征值为 $\frac{3}{4}$.
- 3. (C) 分析: P = E, 则 $P^{-1} = E$, 所以 $P^{-1}EP = EEE = E$. 所以 (C) 是答案.
- 4. (B) 分析: A~B, 则存在可逆方阵P, 使得 P⁻¹AP=B. 所以 | **ル**E-B | | **ル**E-P⁻¹AP | | P⁻¹ | | **ル**E-A | P | **ル**E-A |

所以 A, B的有相同的特征多项式, (B)是答案.

- 5. (C) 分析: 满秩矩阵即非奇异矩阵,因 $|2E-A| \neq 0$ (2不是特征值),故2E-A 为满秩矩阵。答案应选(C).
- 6. (D) 分析: 因为齐次线性方程组 $(\lambda_0 E A)x = 0$ 的基础解系为 η_1, η_2 , 所以方程组的全部解为 $C_1\eta_1 + C_2\eta_2$ (C_1, C_2 为任意常数). 但特征向量不能为零,则A的属于 λ_0 的全部特征向量是 $C_1\eta_1 + C_2\eta_2$ (C_1, C_2 为不全为零任意常数) (D) 为答案.

7. (C) 分析: $\lambda_1 \neq \lambda_2$ 为 A 的二个相异的特征值,所以存在非零向量 ξ, η ,满足 $A\xi = \lambda_1 \xi, A\eta = \lambda_2 \eta$. 而且 ξ, η 线性无关.

假设存在 满足: $A(k_1\xi + k_2\eta) = \lambda(k_1\xi + k_2\eta)$

所以
$$\lambda_1 k_1 \xi + \lambda_2 k_2 \eta = \lambda k_1 \xi + \lambda k_2 \eta$$
, 即 $(\lambda_1 k_1 - \lambda k_1) \xi + (\lambda_2 k_2 - \lambda k_2) \eta = 0$

因为 ξ , η 线性无关,所以 $\lambda_1 k_1 - \lambda k_1 = 0$, $\lambda = \lambda_1$; $\lambda_2 k_2 - \lambda k_2 = 0$, $\lambda = \lambda_2$.

和 み ≠ み 矛盾. 所以(C) 为答案.

三. 计算题:

1. 解: 先解特征方程

$$|\lambda E - A| = \begin{vmatrix} \lambda - 2 & -2 & 2 \\ -2 & \lambda - 5 & 4 \\ 2 & 4 & \lambda - 5 \end{vmatrix} = 0$$

得
$$(\lambda-1)^2(\lambda-10)=0$$
即特征值是 $\lambda_1=\lambda_2=1$, $\lambda_3=10$

当 λ = 1 时,对特征矩阵作初等行变换

$$(\lambda E - A) = \begin{pmatrix} -1 & -2 & 2 \\ -2 & -4 & 4 \\ 2 & 4 & -4 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 2 & -2 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

读出基础解系 $\alpha_1 = (-2, 1, 0)^T$, $\alpha_1 = (2, 0, 1)^T$

当 $\lambda = 10$ 时,基础解系 $\alpha_3 = (1, 2, -2)^T$ 。

对应于 $\lambda=1$ 的全部特征向量是 $c_1\alpha_1+c_2\alpha_2$,其中 c_1,c_2 是任意不全为零的常数;对应于 $\lambda=10$ 的全部特征向量是 $c_3\alpha_3$,其中 c_3 是任意非零常数

2. 解: 先求 4 的特征值与特征向量。因

$$|A - \lambda E| = \begin{vmatrix} 2 - \lambda & 1 & 2 \\ 1 & 2 - \lambda & 2 \\ 2 & 2 & 1 - \lambda \end{vmatrix} = -(\lambda - 1)(\lambda + 1)(\lambda - 5)$$

所以 A 的特征值为 $\lambda_1 = 1, \lambda_2 = -1, \lambda_4 = 5$,可求得对应的特征向量分别为

$$p_1 = (-1, 1, 0)^T$$
, $p_2 = (-1, -1, 2)^T$, $p_3 = (1, 1, 1)^T$.

于是 $A = P\Lambda P^{-1}$, $A^k = P\Lambda^k P^{-1}$ (k = 8, 9, 10),

$$\varphi(A) = A^{10} - 6A^9 + 5A^8 = P(A^{10} - 6A^9 + 5A^8)P^{-1}$$

$$= P \begin{pmatrix} 0 \\ 12 \\ 0 \end{pmatrix} P^{-1} = \begin{pmatrix} 2 & 2 & -4 \\ 2 & 2 & -4 \\ -4 & -4 & 8 \end{pmatrix}$$

3. $\mathbf{M}: :: A \sim B$, A的特征值为 $\lambda_1 = -1$, $\lambda_2 = 2$, $\lambda_3 = b$

由特征值的性质得
$$\begin{cases} \lambda_1 + \lambda_2 + \lambda_3 = -2 + a + 1 \\ |A - \lambda_1 E| = 0 \end{cases}$$

得
$$\begin{cases} a-b=2 \\ a=0 \end{cases}, : \begin{cases} a=0 \\ b=-2 \end{cases}$$

4. 解: 易求得矩阵 A 的特征值及 3 个基础特征向量,故令

$$\mathbf{P} = \begin{pmatrix} -2 & 2 & 1 \\ 1 & 0 & 2 \\ 0 & 1 & -2 \end{pmatrix} , \quad T = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 10 \end{pmatrix}$$

由定理知A可对角化且 $P^{-1}AP = T$,容易求得逆矩阵

$$P^{-1} = \frac{1}{9} \begin{pmatrix} -2 & 5 & 4 \\ 2 & 4 & 5 \\ 1 & 2 & -2 \end{pmatrix}$$

应用公式得

$$A^{n} = PT^{n}P^{-1} = \frac{1}{9} \begin{pmatrix} -2 & 2 & 1 \\ 1 & 0 & 2 \\ 0 & 1 & -2 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 10^{n} \end{pmatrix} \begin{pmatrix} -2 & 5 & 4 \\ 2 & 4 & 5 \\ 1 & 2 & -2 \end{pmatrix}$$
$$= \begin{pmatrix} 1 + a_{n} & 2a_{n} & -2a_{n} \\ 2a_{n} & 1 + 4a_{n} & -4a_{n} \\ -2a_{n} & -4a_{n} & 1 + 4a_{n} \end{pmatrix}, \quad \sharp \oplus a_{n} = \frac{10^{n} - 1}{9}.$$

5. 解: 首先求出与特征值 3 对应的两个单位正交特征向量。因为不同特征值对应的特征向量是相互正交的,因此对应于特征值 3 的特征向量满足 $p_1^T x = 0$,即 $x_1 + x_2 + x_3 = 0$,其两个线性无关的特征向量可取为

$$p_{2} = \begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix}, \quad p_{3} = \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix}$$

$$\Leftrightarrow P = (p_{1}, p_{2}, p_{3}), T = \begin{pmatrix} 6 \\ 3 \\ 3 \end{pmatrix} \text{ Met } AP = PT, \text{ idea}$$

$$A = PTP^{-1} = \begin{pmatrix} 4 & 1 & 1 \\ 1 & 4 & 1 \\ 1 & 1 & 4 \end{pmatrix}$$

四. 证明题:

- 1. 证明: 因 A, B 为正交矩阵即有 $AA^{T} = A^{T}A = E, BB^{T} = B^{T}B = E$ 因此, $(AB)(AB)^{T} = ABB^{T}A^{T} = AEA^{T} = AA^{T} = E$.
- 2. 证明: 因为 $|A| \neq 0$, 故 A^{-1} 存在。又 $BA = A^{-1}ABA$, 这说明AB相似于BA.
- 3. 证明: 已知 $A \sim B$,存在可逆矩阵 P_1 ,有 $P_1^{-1}AP_1 = B$ $C \sim D$,存在可逆矩阵 P_2 ,有 $P_2^{-1}CP_2 = D$ $\partial P = \begin{bmatrix} P_1 & & \\ & P_2 \end{bmatrix}, \quad \text{则} P^{-1} = \begin{bmatrix} P_1^{-1} & & \\ & P_2^{-1} \end{bmatrix}$

$$P^{-1}\begin{bmatrix} A \\ C \end{bmatrix}P = \begin{bmatrix} P_1^{-1} \\ P_2^{-1} \end{bmatrix} \begin{bmatrix} A \\ C \end{bmatrix} \begin{bmatrix} P_1 \\ P_2 \end{bmatrix} = \begin{bmatrix} P_1^{-1}AP_1 \\ P_2^{-1}CP_2 \end{bmatrix} = \begin{bmatrix} B \\ D \end{bmatrix}$$
$$\therefore \begin{bmatrix} A \\ C \end{bmatrix} \sim \begin{bmatrix} B \\ D \end{bmatrix}.$$

4. 证明:设 $A\vec{\alpha} = \lambda \vec{\alpha}, (\vec{\alpha} \neq \vec{0})$,两边同时左乘A,得

$$A\vec{\alpha} = \lambda A\vec{\alpha} \Rightarrow A\vec{\alpha} = \lambda \lambda \vec{\alpha} \Rightarrow \lambda \vec{\alpha} = \lambda^2 \vec{\alpha}$$
. 可得 $(\lambda - \lambda^2)\vec{\alpha} = \vec{0}$.

因为 $\vec{\alpha} \neq \vec{0}$,所以有 $\lambda - \lambda^2 = 0$,得 $\lambda = 0$ 或 $\lambda = 1$.

结合 (1) , (2) 可得 λ ($\alpha_1 + \alpha_2$) = $\lambda_1 \alpha_1 + \lambda_2 \alpha_2$, 即 $(\lambda - \lambda_1)\alpha_1 + (\lambda - \lambda_2)\alpha_2 = 0$

由于 $\lambda_1 \neq \lambda_2$,所以 α_1, α_2 线性无关,则对于上式有 $\lambda - \lambda_1 = 0, \lambda - \lambda_2 = 0$ 这与 $\lambda_1 \neq \lambda_2$ 矛盾。所以假设不成立,即得: $\alpha_1 + \alpha_2$ 不是A的特征向量.

第六章 二次型

单元自测题六

一. 填空题:

1. 二次型
$$f(x_1, x_2, x_3, x_4) = x_1^2 + 2x_2^2 + 3x_3^2 + 4x_1x_2 + 2x_2x_3$$
 的矩阵是_____

- 2. 矩阵 $A = \begin{pmatrix} 0 & 8 & 1 \\ 8 & 0 & -1 \\ 1 & -1 & 0 \end{pmatrix}$ 对应的二 次 型为: $f(x_1, x_2, x_3) =$;
- 3. 将 $f(x_1, x_2, x_3, x_4) = 2x_1x_2 2x_3x_4$ 化为标准形___
- 4. 已知实二次型 $f(x_1,x_2,x_3) = a(x_1^2 + x_2^2 + x_3^2) + 4x_1x_2 + 4x_2x_3 + 4x_3x_4$, 经正交变换 x = Py 可化成标准形 $f = 6y_1^2$, 则 a =______;
 - 5. 若二次型 $f(x_1,x_2,x_3) = 2x_1^2 + x_2^2 + x_3^2 + 2x_1x_2 + tx_2x_3$ 是正定的,则t的取值范围
 - 6. 如果 A 是正定矩阵,那么 A^{-1} (是, 不是) 正定矩阵;
 - 7. 二次型 $\sum_{i=1}^{n} x_i^2 + \sum_{1 < i < i < n} x_i x_j$ (是,否) 正定.

二. 选择题:

1. 二次型
$$f(x_1, x_2, x_3) = x_1^2 + 2x_2^2 + 3x_3^2 - 2x_1x_2 + 2x_2x_3$$
的标准形是()

$$(A)y_1^2 + y_2^2 + 2y_3^2$$

$$(B)-y_1^2-y_2^2+2y_3^2$$

$$(C)y_1^2 + y_2^2$$

$$(D)y_1^2 - y_2^2$$

2. 二次型
$$f(x_1,x_2,x_3) = 2x_1^2 + x_2^2 - 4x_1x_2 - 4x_2x_3$$
 的 秩 等 于 ()

$$(A)$$
0

3. n阶实对称矩阵 A 为正定矩阵的充分必要条件是()

(A) 所有
$$k$$
 阶子式为正 $(k = 1, 2, ..., n)$; (B) A 的所有特征值非负;

(C) *A*⁻¹ 为正定矩阵:

(D) 秩(A)=n

4. 设A,B是n阶正定矩阵,则()是正定矩阵

(A) $A^* + B^*$; (B) $A^* - B^*$; (C) A^*B^* ; (D) $k_1A^* + k_2B^*$

5. 设A,B均为n阶方阵, $x = (x_1,x_2,...,x_n)^T$, 且 $x^TAx = x^TBx$, 当()时A = B

(A) 秩(A) = 秩(B) (B) $A^T = A$ (C) $B^T = B$ (D) $A^T = A \perp B = B$

6. 已知二次型 $f = 5x_1^2 + 5x_2^2 + cx_3^2 - 2x_1x_2 + 6x_1x_3 - 6x_2x_3$ 的秩为 2,则参数 c 的值 为()

(B) 2

(C) 3

(D)

7. 实二次型 $f(x_1,x_2,x_3) = x_1^2 + 2x_2^2 + x_3^2 - 2x_1x_2$ 是()

(A) 正定二次型;

(B) 半正定二次型;

(C) 半负定二次型:

(D)不定二次型.

三. 计算题:

- 2. 用非退化线性替换化下面二次型为标准形,并利用矩阵验算所得结果:

$$f(x_1, x_2, x_3) = x_1^2 + 2x_1x_2 + 2x_2^2 + 4x_2x_3 + 4x_3^2$$

- 3. 求把二次型 $f(x_1,x_2,x_3) = 2x_1^2 + 9x_2^2 + 3x_3^2 + 8x_1x_2 4x_1x_3 10x_2x_3$ 化为二次型 $g(y_1, y_2, y_3) = 2y_1^2 + 3y_2^2 + 6y_3^2 - 4y_1y_2 - 4y_1y_3 + 8y_2y_3$ 的非退化线性替换.
- 4. 判断下列二次型是否正定:

$$99x_1^2 - 12x_1x_2 + 48x_1x_3 + 130x_2^2 - 60x_2x_3 + 71x_3^2.$$

5. t取什么值时,下列二次型是正定的:

1)
$$x_1^2 + x_2^2 + 5x_3^2 + 2tx_1x_2 - 2x_1x_3 + 4x_2x_3$$
;

2)
$$x_1^2 + 4x_2^2 + x_3^2 + 2tx_1x_2 + 10x_1x_3 + 6x_2x_3$$
.

四. 证明题:

- 1. 证明: 秩等于r的对称矩阵可以表成r个秩等于1的对称矩阵之和.
- 2. 证明:下列矩阵合同,其中 $i_1i_2\cdots i_n$ 是 $1,2,\cdots,n$ 的一个排列.

$$\begin{pmatrix} \lambda_1 & & & & \\ & \lambda_2 & & & \\ & & \ddots & \\ & & & \lambda_n \end{pmatrix} \stackrel{L_{\overline{j}}}{=} \begin{pmatrix} \lambda_{i_1} & & & & \\ & \lambda_{i_2} & & & \\ & & \ddots & & \\ & & & \lambda_{i_n} \end{pmatrix}$$

- 3. 如果 A,B 都是 n 阶正定矩阵,证明: A+B 也是正定矩阵.
- 4. 设A是实对称矩阵,证明: 当实数t充分大之后,tE+A是正定矩阵.
- 5. 设A是一个n阶矩阵,证明:
 - (1) A 是反对称矩阵当且仅当对任一个n 维向量X, 有 $X^TAX = 0$;
 - (2) 如果 A 是对称矩阵,且对任一个 n 维向量 X 有 $X^T AX = 0$,那么 A = 0.

自测题六参考答单元案

$$-. 填空题: 1. A = \begin{pmatrix} 1 & 2 & 0 & 0 \\ 2 & 2 & 1 & 0 \\ 0 & 1 & 3 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix};$$

- 2. 应填为 $16x_1x_2 + 2x_1x_3 2x_2x_3$;
- 3. 分析: 作可逆线性替换

$$\begin{cases} x_1 = y_1 - y_2, \\ x_2 = y_1 + y_2, \\ x_3 = y_3 - y_4, \\ x_4 = y_3 + y_4. \end{cases}$$

得 $f(x_1,x_2,x_3,x_4) = 2y_1^2 - 2y_2^2 - 2y_3^2 + 2y_4^2$;

4. 分析: 变换前后二次型所对应的矩阵为

$$A = \begin{pmatrix} a & 2 & 2 \\ 2 & a & 2 \\ 2 & 2 & a \end{pmatrix}, \quad B = \begin{pmatrix} 6 \\ 0 \\ 0 \end{pmatrix},$$

由题设知 A = B 相似,从而 $A \times B$ 有相同的特征值。于是 a + a + a = 6 + 0 + 0,得 a = 2. 答案: 应填 2;

5. 分析: ƒ是正定的充要条件是对应的矩阵的各阶顺序主子式大于零,因此由

$$\begin{vmatrix} 2 & 1 & 0 \\ 1 & 1 & t/2 \\ 0 & t/2 & 1 \end{vmatrix} > 0$$
,解得 $-\sqrt{2} < t < \sqrt{2}$ 。 答案: 应填 $\frac{-\sqrt{2} < t < \sqrt{2}}{2}$;

- 6. 分析: 因 A 是正定矩阵, 故 $X^{T}AX$ 为正定二次型, 作非退化线性替换 $X = A^{-1}Y$, 又 A^{-1} 也是对称矩阵, 故 $Y^{T}A^{-1}Y = Y^{T}(A^{-1})^{T}AA^{-1}Y = X^{T}AX > 0$,从而 $Y^{T}A^{-1}Y$ 为正定二次型,即证 A^{-1} 为正定矩阵;
- 7. 分析: 记二次型矩阵为 $A = (a_{ij})_{n \times n}$, 其中 $a_{ij} = \begin{cases} 1, & i = j \\ \frac{1}{2}, & i \neq j \end{cases}$

由于A的任意k阶顺序主子式所对应的矩阵 A_k 与A为同类型的对称矩阵,且

$$|A_k| = \left(\frac{1}{2}\right)^k (k+1) > 0 \qquad (k=1,2,\dots,n)$$

故原二次型为正定二次型.

二. 选择题:

- 1. (A) 分析: 二次型可化为: $f = (x_1 x_2)^2 + (x_2 + x_3)^2 + x_3^2$, 做以下代换令 $y_1 = x_1 x_2, y_2 = x_2 + x_3, y_3 = x_3$, 则 $f = y_1^2 + y_2^2 + y_3^2$, 答案选(A).
- 2. (D) 分析:由于二次型对应矩阵的行列式不为零,则是满秩的,因此秩为3.
- 3. (C)
- 4. (A) 因为 A,B 均为 n 阶正定矩阵,则 A^{\bullet},B^{\bullet} 均为 n 阶正定矩阵,所以 $A^{\bullet}+B^{\bullet}$ 为 n 阶正定矩阵. 答案是(A).
- 5. (D) 可以证明 A 为实对称矩阵时,若对任何向量 x , $x^T A x = 0$, 则 A = 0. 所以 (D) 为正确答案.

6. (C) 分析
$$f = X^T A X$$
,其中 $A = \begin{pmatrix} 5 & -1 & 1 \\ -1 & 5 & -3 \\ 3 & -3 & c \end{pmatrix}$, 若要求秩为2,则必须 $|A| = 0$,而

 $|A| = 4 \times (-18 + 6c)$,所以 c = 3。答案选(C).

7. (B) 分析: 二次型可化为 $f = (x_1 + x_2)^2 + (x_2 - x_3)^2$ 做代换可得 $f = y_1^2 + y_2^2$, 正惯性指数为2,负惯性指数为零,因此为半正定二次型.

三. 计算题:

1. 解: 设
$$\alpha_1 = (1 \ 1 \ 1)^T$$
, $\alpha_2 = (1 \ 0 \ 1)^T$, $\alpha_3 = (1 \ 1 \ 0)^T$.

(1) 设
$$\beta_1 = \alpha_1$$
,

(2)
$$\beta_2 = \alpha_2 - \frac{\langle \beta_1, \alpha_1 \rangle}{\langle \beta_1, \beta_1 \rangle} \beta_1 = \begin{bmatrix} \frac{1}{3}, -\frac{2}{3}, \frac{1}{3} \end{bmatrix}^T$$

(3)
$$\beta_3 = \alpha_3 - \frac{\langle \beta_1, \alpha_3 \rangle}{\langle \beta_1, \beta_1 \rangle} \beta_1 - \frac{\langle \beta_2, \alpha_3 \rangle}{\langle \beta_2, \beta_2 \rangle} \beta_2 = \left[\frac{1}{2}, 0, -\frac{1}{2} \right]^T$$

将
$$\beta_1$$
, β_2 , β_3 单位化得 $e_1 = \begin{bmatrix} \frac{1}{\sqrt{3}} \\ \frac{1}{\sqrt{3}} \\ \frac{1}{\sqrt{3}} \end{bmatrix}$, $e_2 = \begin{bmatrix} \frac{1}{\sqrt{6}} \\ -\frac{2}{\sqrt{6}} \\ \frac{1}{\sqrt{6}} \end{bmatrix}$, $e_3 = \begin{bmatrix} \frac{1}{\sqrt{2}} \\ 0 \\ -\frac{1}{\sqrt{2}} \end{bmatrix}$

得正交矩阵
$$Q = \begin{bmatrix} \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{6}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{3}} & -\frac{2}{\sqrt{6}} & 0 \\ \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{6}} & -\frac{1}{\sqrt{2}} \end{bmatrix}$$
.

2. 解:由配方法可得:

$$f(x_1, x_2, x_3) = (x_1^2 + 2x_1x_2 + x_2^2) + (x_2^2 + 4x_2x_3 + 4x_3^2)$$
$$= (x_1 + x_2)^2 + (x_2 + 2x_3)^2$$

于是可令

$$\begin{cases} y_1 = x_1 + x_2 \\ y_2 = x_2 + 2x_3 \\ y_3 = x_3 \end{cases}$$

则原二次型的标准形为

$$f(x_1, x_2, x_3) = y_1^2 + y_2^2$$

且非退化线性替换为

$$\begin{cases} x_1 = y_1 - y_2 + 2y_3 \\ x_2 = y_2 - 2y_3 \\ x_3 = y_2 \end{cases}$$

相应的替换矩阵为

$$P = \begin{pmatrix} 1 & -1 & 2 \\ 0 & 1 & -2 \\ 0 & 0 & 1 \end{pmatrix}$$

且有
$$P^TAP = \begin{pmatrix} 1 & 0 & 0 \\ -1 & 1 & 0 \\ 2 & -2 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 & 0 \\ 1 & 2 & 2 \\ 0 & 2 & 4 \end{pmatrix} \begin{pmatrix} 1 & -1 & 2 \\ 0 & 1 & -2 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}.$$

3. 解:二次型 $f(x_1, x_2, x_3)$ 的矩阵为

$$A = \begin{pmatrix} 2 & 4 & -2 \\ 4 & 9 & -5 \\ -2 & -5 & 3 \end{pmatrix}$$
. 由合同变换法,可求得

$$C = \begin{pmatrix} 1 & -2 & -1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}, \quad \text{$\notearsymbol{$\note$$

同理可求得
$$C_0 = \begin{pmatrix} 1 & 1 & -1 \\ 0 & 1 & -2 \\ 0 & 0 & 1 \end{pmatrix}$$
,

使
$$C'_0BC_0 = \begin{pmatrix} 2 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$
,其中 $B = \begin{pmatrix} 2 & -2 & -2 \\ -2 & 3 & 4 \\ -2 & 4 & 6 \end{pmatrix}$.

这样,取
$$P = CC_0^{-1} = \begin{pmatrix} 1 & -3 & -6 \\ 0 & 1 & 3 \\ 0 & 0 & 1 \end{pmatrix}$$

作非退化线性替换
$$\begin{cases} x_1 = y_1 & -3y_2 & -6y_3, \\ x_2 = y_2 & +3y_3, \\ x_3 = y_3. \end{cases}$$

则有 $f(x_1, x_2, x_3) = g(y_1, y_2, y_3)$..

4. 解: 二次型的矩阵为
$$A = \begin{pmatrix} 99 & -6 & 24 \\ -6 & 130 & -30 \\ 24 & -30 & 71 \end{pmatrix}$$

因为
$$\Delta_1 = 99 > 0$$
, $\Delta_2 = \begin{vmatrix} 99 & -6 \\ -6 & 130 \end{vmatrix} > 0$, $\Delta_3 = |A| > 0$

故原二次型为正定二次型.

5. 解: 1) 二次型的矩阵为

$$A = \begin{pmatrix} 1 & t & -1 \\ t & 1 & 2 \\ -1 & 2 & 5 \end{pmatrix}$$

因为 A 的各阶顺序主子式为

$$\Delta_1 = 1 > 0$$
, $\Delta_2 = \begin{vmatrix} 1 & t \\ t & 1 \end{vmatrix} > 0$, $\Delta_3 = |A| = \begin{vmatrix} 1 & t & -1 \\ t & 1 & 2 \\ -1 & 2 & 5 \end{vmatrix} > 0$

时原二次型为正定, 由此得

$$\begin{cases} 1 - t^2 > 0 \\ -5t^2 - 4t > 0 \end{cases}$$

解上面不等式组,可得 $-\frac{4}{5} < t < 0$.

2) 二次型的矩阵为
$$A = \begin{pmatrix} 1 & t & 5 \\ t & 4 & 3 \\ 5 & 3 & 1 \end{pmatrix}$$

当 A 的所有顺序主子式都大于零时,即

$$\Delta_1 = 1 > 0$$
, $\Delta_2 = \begin{vmatrix} 1 & t \\ t & 4 \end{vmatrix} = 4 - t^2 > 0$, $\Delta_3 = |A| = \begin{vmatrix} 1 & t & 5 \\ t & 4 & 3 \\ 5 & 3 & 1 \end{vmatrix} = -t^2 + 30t - 105 > 0$

时原二次型为正定,由此得 $\begin{cases} 4-t^2 > 0 \\ -t^2 + 30t - 105 > 0 \end{cases}$

但此不等式组无解,即不存在t值使原二次型为正定.

四. 证明题:

1. 证明: 由题设知 $A = A^T \coprod rank(A) = r$,于是存在可逆矩阵 C 使

$$C^T A C = D$$

且 D 为对角阵,又因为 C^T , C^{-1} , $(C^{-1})^T = (C^T)^{-1}$ 均为可逆矩阵,所以有

$$C^TAC = D_1 + D_2 + \cdots + D_r$$
, 其中

$$D_{1} = \begin{pmatrix} d_{1} & & & \\ & 0 & & \\ & & & 0 \end{pmatrix}, D_{2} = \begin{pmatrix} 0 & & & & \\ & d_{2} & & & \\ & & 0 & & \\ & & & \ddots & \\ & & & 0 \end{pmatrix}, \dots, D_{r} = \begin{pmatrix} 0 & & & & \\ & \ddots & & & \\ & & 0 & & \\ & & & d_{r} & & \\ & & & & 0 & \\ & & & & \ddots & \\ & & & & 0 \end{pmatrix}$$

于是

即 $(C^{-1})^T D_i C^{-1}$ 都是对称矩阵,故A可表成r个秩为 1 的对称矩阵之和.

2. 证明: 题中两个矩阵分别设为 A,B, 与它们相应的二次型分别为

$$f_{A} = \lambda_{1}x_{1}^{2} + \lambda_{2}x_{2}^{2} + \dots + \lambda_{n}x_{n}^{2}$$

$$f_{B} = \lambda_{i_{1}}y_{1}^{2} + \lambda_{i_{2}}y_{2}^{2} + \dots + \lambda_{i_{n}}y_{n}^{2}$$

作非退化的线性替换 $y_i = x_{i,j} (t = 1, 2, \dots, n)$ 则 f_B 可化成 f_A ,故 A 与 B 合同.

3. 证明: 因为A, B为正定矩阵,所以 $X^T A X, X^T B X$ 为正定二次型,且

$$X^T A X > 0$$
, $X^T B X > 0$

因此
$$X^T(A+B)X = X^TAX + X^TBX > 0$$

于是 $X^T(A+B)X$ 必为正定二次型,从而A+B为正定矩阵.

4. 证明:
$$tE + A = \begin{pmatrix} t + a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & t + a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & t + a_{nn} \end{pmatrix}$$

它的k级顺序主子式为

$$\Delta_{k}(t) = \begin{vmatrix} t + a_{11} & a_{12} & \cdots & a_{1k} \\ a_{21} & t + a_{22} & \cdots & a_{2k} \\ \vdots & \vdots & \ddots & \vdots \\ a_{k1} & a_{k2} & \cdots & t + a_{kk} \end{vmatrix}$$

当t充分大时, $\Delta_k(t)$ 为严格主对角占优矩阵的行列式,且

$$t+a_{ii}>\sum_{j\neq i}\left|a_{ij}\right|\left(i=1,2,\cdots,n\right),\,$$

故 $\Delta_k(t) > 0$ $(k = 1, 2, \dots, n)$, 从而tE + A是正定的.

5. 证明: 1) 必要性: 因为 $A = -A^T$, 即 $a_{ii} = 0, a_{ij} = -a_{ji} \ (i \neq j)$, 所以

$$X^{T}AX = \sum_{i,j} a_{ij}x_{i}x_{j} = \sum_{i\neq j} (a_{ij} + a_{ji})x_{i}x_{j}$$

由于
$$a_{ij} + a_{ji} = 0$$
,故 $X^T A X = \sum_{i \neq j} (a_{ij} + a_{ji}) x_i x_j = 0$

充分性: 为 $\forall X \in R^n$,有 $X^T A X = 0$,即

$$a_{11}x_1^2 + (a_{12} + a_{21})x_1x_2 + \dots + (x_{1n} + a_{n1})x_1x_n + a_{22}x_2^2$$

+ \dots + (a_{2n} + a_{n2})x_2x_n + \dots + a_{nn}x_n^2 = 0

这说明原式是一个多元零多项式,故有

$$a_{11} = a_{22} = \cdots = a_{nn} = 0, \quad a_{ij} = -a_{ji}(i \neq j), \quad A^T = -A.$$

2) 由于A是对称的,且 $X^TAX = 0$,即

$$a_{11}x_1^2 + 2a_{12}x_1x_2 + \dots + 2a_{1n}x_1x_n + a_{22}x_2^2$$

+ \dots + 2a_{2n}x_2x_n + \dots + a_{nn}x_n^2 = 0

这说明 X^TAX 为一个多元零多项式,故有

$$a_{11} = a_{22} = \cdots = a_{nn} = 0$$
, $2a_{ij} = 0 \Rightarrow a_{ij} = a_{ji} = 0$ $\square A = 0$.

第七章 自测题1及答案

一、判断题(正确的在括号内打"√",错误的在括号内打"X"):		
1.行列式 $D=0$ 的充要条件是 D 中至少有一行的元素可用行列式性质化为 (). ()
$2.$ 设 $m \times n$ 矩阵 A, B 等价,则 A, B 的列向量组等价.	()
3. 设 A , B 均为非零的 n 阶矩阵,且 $AB=0$,则 $R(A)$, $R(B)$ 都小于 n .	()
4. 当 $m < n$ 时,方程组 $\sum_{j=1}^{n} a_{ij} x_{j} = b$ $(i = 1, \dots, m)$ 有无穷多解.	()
5.若方阵 A, B 相似,则 A, B 有相同的特征值和特征向量.	()
6.若 A,B 均为 n 阶正定矩阵,则 AB 也是正定矩阵.	() .
二、选择题(每小题只有一个正确答案):		
1. 设 $D = \begin{vmatrix} 1 & 2 & 3 & 4 \\ 2 & 3 & 4 & 1 \\ 3 & 4 & 1 & 2 \\ 4 & 1 & 2 & 3 \end{vmatrix}$, $A_{i4} \to D$ 中元素 a_{i4} 的代数余子式 ($i=1, 2, 3, 4$),		
则 $A_{14}+2A_{24}+3A_{34}+4A_{44}=$ ()	*** ******	
(A) 1 (B) -1 (C) 0 (D) 非零		
2. 设 A 为 n 阶对称阵, B 为 n 阶反对称阵,则下列矩阵中为反对称矩阵的是	₫()
(A) $AB+BA$ (B) $AB-BA$ (C) $(AB)^2$ (D) BAB		
3. 设向量组 $\alpha_1,\alpha_2,\alpha_3$ 线性无关,向量 β_1 可由 $\alpha_1,\alpha_2,\alpha_3$ 线性表示,而 β_2 不能由	α_1, α	$_{2},\alpha_{_{3}}$
线性表示,则对于任意常数 k ,必有()		
(A) $\alpha_1, \alpha_2, \alpha_3$, $k\beta_1+\beta_2$ 线性相关. (B) $\alpha_1, \alpha_2, \alpha_3$, $k\beta_1+\beta_2$ 线性无关.		
(C) $\alpha_1, \alpha_2, \alpha_3$, $\beta_1 + k\beta_2$ 线性相关. (D) $\alpha_1, \alpha_2, \alpha_3$, $\beta_1 + k\beta_2$ 线性无关.		
4. $\{\alpha_1 = (0,0,-1,1)^T, \alpha_2 = (1,1,-1,0)^T, \alpha_3 = (-5,-5,5,0)^T\}$ 的一个最大无关组为()
(A) α_1 , α_2 或 α_1 , α_3 (B) α_2 , α_3 , α_4 (C) α_1 , α_2 (D) α_2 ,	α_3	
5. 设 A 为 4×5 矩阵,且 A 的行向量组线性无关,则 (,)
(A)A 的列向量组线性无关.		
(B) 方积组 44 的操广矩阵的行向景组建州王关		

- (C)方程组 Ax=b 的增广矩阵的任意 4 个列向量构成的向量组线性无关.
- (D)方程组 Ax=b 有唯一解.
- 6. 设A为3阶方阵,E为单位阵,|A+2E|=|A+3E|=|A-4E|=0,A*为A的伴随阵,则 A*的特征值为

- (A) 2, 3, -4 (B) -2, -3, 4 (C) 12, 8, -6 (D) -12, -8, 6
- 7. 设A为n阶正定矩阵, 若矩阵B与A相似,则B必为 (
 - (A) 实对称矩阵 (B) 正定矩阵 (C) 可逆矩阵
- (D) 正交矩阵

- 8. 下列说法正确的是
 - (A) 方程组 Ax=b ($b\neq 0$) 的所有解向量关于向量的加法以及实数与向量的乘法构 成线性空间.
 - (B) 所有 n 阶实可逆矩阵关于矩阵的加法以及实数与矩阵的乘法构成线性空间.
 - (C) 欧氏空间中从标准正交基到标准正交基的过渡矩阵是正交矩阵.
 - (D) 欧氏空间中两组不同基底下的度量矩阵是相似的.
- 三、填空题:

1. 设
$$A = \begin{pmatrix} 1 & a_1 & \cdots & a_1^{n-1} \\ 1 & a_2 & \cdots & a_2^{n-1} \\ \vdots & \vdots & \ddots & \vdots \\ 1 & a_n & \cdots & a_n^{n-1} \end{pmatrix}, x = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix}, b = \begin{pmatrix} a_1 \\ a_2 \\ \vdots \\ a_n \end{pmatrix}, a_i \neq a_j (i \neq j, i, j=1, 2, ..., n), 则非齐次线$$

性方程组 Ax = b 的解是 x =

- 2. 设 *A* 为 5 阶方阵, *R*(*A*)=3,则 *R*(*A**)=
- 3. 设 A 为 n 阶方阵, $|A|\neq 0$,将 A 的第 i 行与第 i 行互换得到矩阵 B, 则 $AB^{-1} =$
- 4. 设 α 、β、 γ 是 3 维列向量,已知 3 阶行列式| 4γ - α 、β- 2γ 、 α |=40,则行列式 $|\alpha, \beta, \gamma| =$
- 5. 设 4 元非齐次线性方程组系数矩阵的秩为 3, 且 $\alpha_1, \alpha_2, \alpha_3$ 是它的 3 个解向量,

其中
$$\alpha_1 = \begin{pmatrix} 2 \\ 0 \\ 0 \\ 3 \end{pmatrix}$$
, $\alpha_2 + \alpha_3 = \begin{pmatrix} 2 \\ 0 \\ 0 \\ 4 \end{pmatrix}$, 则方程组的通解为 ______

6. 设矩阵
$$A = \begin{pmatrix} 2 & 2 & 0 \\ 8 & 2 & a \\ 0 & 0 & 6 \end{pmatrix}$$
 可以相似对角化,则 $a =$ _______.

7. 设二次型
$$f(x_1,x_2,x_3) = 2x_1^2 + x_2^2 + x_3^2 - 2tx_1x_2 + 2x_1x_3$$
正定,则 t 满足_____

8. 从
$$R^2$$
 的基底 α_1 =(1, 0)′, α_2 =(1, -1)′到基底 β_1 =(1, 1)′, β_2 =(1, 2)′的过渡矩阵为

四. 设
$$A = \begin{pmatrix} 1 & 1 & -1 \\ -1 & 1 & 1 \\ 1 & -1 & 1 \end{pmatrix}$$
, 矩阵 X 满足 $A*X=A^{-1}+2X$, 其中 $A*$ 是 A 的伴随阵,求 X .

五. 对线性方程组
$$\begin{cases} \lambda x_1 + x_2 + x_3 = \lambda - 3 \\ x_1 + \lambda x_2 + x_3 = -2 \\ x_1 + x_2 + \lambda x_3 = -2 \end{cases}$$

- (1) λ取何值时, 方程组无解?
- (2) λ取何值时, 方程组有唯一解?
- (3) λ取何值时,方程组有无穷多解?用向量形式写出其通解.

六. 已知二次型
$$f(x_1,x_2,x_3) = x_1^2 - 2x_2^2 - 2x_3^2 - 4x_1x_2 + 4x_1x_3 + 8x_2x_3$$

- (1) 写出二次型f的矩阵表达式f = x'Ax;
- (2) 用正交变换把二次型f化为标准形,并写出相应的正交矩阵.
- 七. 设向量组 α_1 , α_2 , ..., $\alpha_m(m>1)$ 线性无关,且 $\beta=\alpha_1+\alpha_2+...+\alpha_m$,证明向量组 $\beta-\alpha_1$, $\beta-\alpha_2$, ..., $\beta-\alpha_m$ 线性无关.

自测题 1 参考答案

一、判断题:

1.
$$(\checkmark)$$
 2. (\times) 3. (\checkmark) 4. (\times) 5. (\times) 6. (\times) .

二、选择题

三、填空题: . $(0, 1, 0, \dots, 0)^T$; 2. 0; 3. P(i,j);

4. -10; 5.
$$k \begin{pmatrix} 1 \\ 0 \\ 0 \\ 1 \end{pmatrix} + \begin{pmatrix} 2 \\ 0 \\ 0 \\ 3 \end{pmatrix}$$
; 6. 0; 7. $t \in (-1, 1)$; 8. $\begin{pmatrix} 2 & 3 \\ -1 & -2 \end{pmatrix}$.

四. 解: 令 E 为单位阵,由 $A*X=A^{-1}+2X$,两端左乘 A,得 |A|EX=E+2AX,于是得 (|A|E-2A)X=E

$$X \mid A \mid = \begin{vmatrix} 1 & 1 & -1 \\ -1 & 1 & 1 \\ 1 & -1 & 1 \end{vmatrix} = \begin{vmatrix} 1 & 1 & 1 \\ -1 & 1 & 1 \\ 1 & -1 & 1 \end{vmatrix} = \begin{vmatrix} 1 & 1 & 1 \\ 0 & 2 & 2 \\ 0 & -2 & 0 \end{vmatrix} = 4$$

所以
$$X = (4E - 2A)^{-1} = \begin{pmatrix} 2 & -2 & 2 \\ 2 & 2 & -2 \\ -2 & 2 & 2 \end{pmatrix}^{-1} = \frac{1}{2} \begin{pmatrix} 1 & -1 & 1 \\ 1 & 1 & -1 \\ -1 & 1 & 1 \end{pmatrix}^{-1}$$

$$\begin{pmatrix} 1 & -1 & 1 & 1 & 0 & 0 \\ 1 & 1 & -1 & 0 & 1 & 0 \\ -1 & 1 & 1 & 0 & 0 & 1 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 1 & 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & -1 & 0 & 1 & 0 \\ -1 & 1 & 1 & 0 & 0 & 1 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 1 & 1 & 1 & 1 & 1 \\ 0 & 0 & -2 & -1 & 0 & -1 \\ 0 & 2 & 2 & 1 & 1 & 2 \end{pmatrix}$$

$$\rightarrow \begin{pmatrix} 1 & 1 & 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1/2 & 1/2 & 1 \\ 0 & 0 & 1 & 1/2 & 0 & 1/2 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & 0 & 1/2 & 1/2 & 0 \\ 0 & 1 & 0 & 0 & 1/2 & 1/2 \\ 0 & 0 & 1 & 1/2 & 0 & 1/2 \end{pmatrix}$$

所以
$$X = \frac{1}{4} \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \end{pmatrix}$$

五. 解:方法一

设系数矩阵
$$A = \begin{pmatrix} \lambda & 1 & 1 \\ 1 & \lambda & 1 \\ 1 & 1 & \lambda \end{pmatrix}$$
, 则 $|A| = \begin{vmatrix} \lambda & 1 & 1 \\ 1 & \lambda & 1 \\ 1 & 1 & \lambda \end{vmatrix} = (\lambda + 2)(\lambda - 1)^2$

(1) 当 $|A| \neq 0$, 即 $\lambda \neq 1$, -2 时, 方程组有唯一解.

(2)
$$\stackrel{\text{def}}{=} \lambda = -2 \text{ pt}, \quad \overline{A} = \begin{pmatrix} -2 & 1 & 1 & -5 \\ 1 & -2 & 1 & -2 \\ 1 & 1 & -2 & -2 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & -2 & 1 & -2 \\ 0 & -3 & 3 & -9 \\ 0 & 0 & 0 & -9 \end{pmatrix}$$

得 R(A) = 2, $R(\overline{A}) = 3$, 即 $\lambda = -2$ 时方程组无解.

(3)
$$\stackrel{\text{def}}{=} \lambda = 1 \text{ fb}, \ \overline{A} = \begin{pmatrix} 1 & 1 & 1 & -2 \\ 1 & 1 & 1 & -2 \\ 1 & 1 & 1 & -2 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 1 & 1 & -2 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

得 $R(A) = R(\overline{A}) = 1 < 3$, 故方程组有无穷多解.

等价方程组为 $x_1 + x_2 + x_3 = -2$

通解为
$$\begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix} x_2 + \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix} x_3 + \begin{pmatrix} -2 \\ 0 \\ 0 \end{pmatrix}$$

讨论与方法一类似,其他初等变换可类似给分.

六.

解: (1)
$$f = (x_1 \ x_2 \ x_3) \begin{pmatrix} 1 \ -2 \ 2 \end{pmatrix} \begin{pmatrix} x_1 \ x_2 \ 2 \ 4 \ -2 \end{pmatrix} \begin{pmatrix} x_1 \ x_2 \ x_3 \end{pmatrix}$$

(2)
$$|\lambda E - A| = \begin{vmatrix} \lambda - 1 & 2 & -2 \\ 2 & \lambda + 2 & -4 \\ -2 & -4 & \lambda + 2 \end{vmatrix} = (\lambda - 2)^2 (\lambda + 7) = 0, \ \ \beta \ \lambda_1 = \lambda_2 = 2, \ \lambda_3 = -7$$

当
$$\lambda = 2$$
 时, $(2E - A) = \begin{pmatrix} 1 & 2 & -2 \\ 2 & 4 & -4 \\ -2 & -4 & 4 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 2 & -2 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$

对应的方程组为 $x_1 + 2x_2 - 2x_3 = 0$, 得属于 $\lambda = 2$ 的特征向量为

$$\xi_1 = \begin{pmatrix} 2 \\ 0 \\ 1 \end{pmatrix}, \xi_2 = \begin{pmatrix} -2 \\ 1 \\ 0 \end{pmatrix}$$

单位化得

$$\eta_{1} = \begin{pmatrix} \frac{2}{\sqrt{5}} \\ 0 \\ \frac{1}{\sqrt{5}} \end{pmatrix}, \eta_{2} = \begin{pmatrix} -\frac{2}{3\sqrt{5}} \\ \frac{\sqrt{5}}{3} \\ \frac{4\sqrt{5}}{3} \end{pmatrix}$$

当
$$\lambda = -7$$
 时, $(-7E - A) = \begin{pmatrix} -8 & 2 & -2 \\ 2 & -5 & -4 \\ -2 & -4 & -5 \end{pmatrix} \rightarrow \begin{pmatrix} -4 & 1 & -1 \\ 2 & -5 & -4 \\ 0 & -9 & -9 \end{pmatrix} \rightarrow \begin{pmatrix} 0 & 1 & 1 \\ 2 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}$

对应方程组
$$\begin{cases} x_1 + x_3 = 0 \\ 2x_1 + x_3 = 0 \end{cases}$$
,得属于 $\lambda = -7$ 的特征向量为 $\alpha_3 = \begin{pmatrix} -\frac{1}{2} \\ -1 \\ 1 \end{pmatrix}$,

单位化得向量
$$\eta_3 = \begin{pmatrix} -\frac{1}{3} \\ -\frac{2}{3} \\ \frac{2}{3} \end{pmatrix}$$
. $\Rightarrow Q = \begin{pmatrix} \frac{2}{\sqrt{5}} & -\frac{2}{3\sqrt{5}} & -\frac{1}{3} \\ 0 & \frac{\sqrt{5}}{3} & -\frac{2}{3} \\ \frac{1}{\sqrt{5}} & \frac{4}{3\sqrt{5}} & \frac{2}{3} \end{pmatrix}$

作正交变换 x = Qy, f 化为标准型 $f = 2y_1^2 + 2y_2^2 - 7y_3^2$.

七、

证明:设
$$k_1(\beta - \alpha_1) + k_2(\beta - \alpha_2) + \dots + k_m(\beta - \alpha_m) = 0$$
, 将 $\beta = \alpha_1 + \alpha_2 + \dots + \alpha_m$ 代入得
$$(k_2 + k_3 + \dots + k_m) \alpha_1 + (k_1 + k_3 + \dots + k_m) \alpha_2 + \dots + (k_1 + k_2 + \dots + k_{m-1}) \alpha_m = 0$$

由 $\alpha_1, \alpha_2, \ldots, \alpha_m(m>1)$ 线性无关,得

$$\begin{cases} k_2 + k_3 + \dots + k_m = 0 \\ k_1 + k_3 + \dots + k_m = 0 \\ \dots \\ k_1 + k_2 + \dots + k_{m-1} = 0 \end{cases}$$

此方程组的系数行列式

$$\begin{vmatrix} 0 & 1 & 1 & \cdots & 1 \\ 1 & 0 & 1 & \cdots & 1 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & 1 & 1 & \cdots & 0 \end{vmatrix} = (m-1) \begin{vmatrix} 1 & 1 & 1 & \cdots & 1 \\ 1 & 0 & 1 & \cdots & 1 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & 1 & 1 & \cdots & 0 \end{vmatrix} = (m-1) \begin{vmatrix} 1 & 1 & 1 & \cdots & 1 \\ 0 & -1 & 0 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & -1 \end{vmatrix}$$
$$= (m-1)(-1)^{-2} \neq 0 \qquad (m>1)$$

所以方程组有唯一零解,即 $k_1 = k_2 = ... = k_m = 0$ 于是 $\beta - \alpha_1, \beta - \alpha_2, ..., \beta - \alpha_m$ 线性无关.

第八章 自测题 2 及答案

,	选择题:
1. 设	
	$\begin{vmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{vmatrix} = d \neq 0, \boxed{\square} \begin{vmatrix} a_3 & 2b_3 - a_3 & 3c_3 - 2b_3 \\ a_2 & 2b_2 - a_2 & 3c_2 - 2b_2 \\ a_1 & 2b_1 - a_1 & 3c_1 - 2b_1 \end{vmatrix} = \underline{\qquad}.$
(A)	6d; (B) -6d; (C) 0; (D) 12d.
2. 设分	於 次线性方程组 $x+y+z=0$ $ax+by+cz=0$ 存在非零解,则系数 a , b , c 之间的关 $bcx+cay+abz=0$
系是_	·
	(A) $a = b = c$; (B) $a = b \ \mbox{if } b = c \ \mbox{if } c = a$;
	(C) a,b,c 互不相等; (D) $a \neq b$ 或 $b \neq c$ 或 $c \neq a$ 。
3. 设	A 为三阶方阵, A^* 为 A 的伴随矩阵, k 为大于 1 的常数,则
(k	$^{-1}A)^* = $
	(A) $k^{-1}A^*$; (B) $k^{-3}A^*$; (C) k^3A^* ; (D) $k^{-2}A^*$.
4. 若向	可量组 $(a+1,2,-6)$, $(1,a,-3)$, $(1,1,a-4)$ 线性无关,则 a 的取值为
(,	A) 0; (B) 不为 0; (C) 1; (D) 不等于 1.
5. 若	n 维基本单位向量组 $\epsilon_1,\epsilon_2,\cdots,\epsilon_n$ 可由 n 维向量组 $\alpha_1,\alpha_2,\cdots,\alpha_n$ 线性表出,则
向量组	$\alpha_1, \alpha_2, \cdots, \alpha_n$ 的秩
(A)	小于 n; (B) 大于 n; (C)等于 n; (D) 很难说.
6. 设 A	为 $m \times n$ ($m > n$) 矩阵,则当 $R(A) =$ 时,方程组 $AX = 0$ 只有零解.
(A)	0; (B) 1; (C) m; (D) n.
7. 设 A	为三阶方阵,且 A 和 B 相似, A 的特征值分别为 2 , 3 , 4 , 则矩阵 $(3B)^{-1}$ 的特
征值为_	
(A	(B) 6. 9. 12:

(C)	1/6.	1/9.	1/12
(0)	1/0,	1/3,	1/14

- (D) 2/3, 1, 4/3.
- 8. 设两个n阶矩阵A与B有相同的特征多项式,则_____.
 - (A) A与B相似:

(B) A与B合同;

(C) A与B等价;

- (D) 以上三条都不成立.
- 9. 设A 是 3 阶方阵,将A 的第一列与第二列交换得B,再把B 的第 2 列加到第 3 列得C,则满足AQ = C 的可逆矩阵Q为______.

$$\text{(A)} \ \begin{bmatrix} 0 & 1 & 1 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}; \quad \text{(B)} \ \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 0 & 1 \end{bmatrix} \ ; \quad \text{(C)} \ \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 1 & 1 \end{bmatrix} \ ; \quad \text{(D)} \ \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 1 \end{bmatrix}.$$

- 10. 实二次型 $f(x_1,x_2,x_3) = x_1^2 + 2x_2^2 + (1-k)x_3^2 + 2kx_1x_2 + 2x_1x_3$ 为正定二次型,则 k 的取值范围是
 - (A) 0 < k < 1; (B) $-\sqrt{2} < k < \sqrt{2}$; (C) k > 2; (D) -1 < k < 0.
- 二、填空题:
- 1. 已知方程组

$$\begin{cases} x_1 + x_2 = -a_1 \\ x_2 + x_3 = a_2 \\ x_3 + x_4 = -a_3 \\ x_1 + x_4 = a_4 \end{cases}$$

有解,则常数 a_1, a_2, a_3, a_4 应满足条件 ___

2. 已知
$$A = \begin{pmatrix} 1 & 2 & -2 \\ 4 & t & 3 \\ 3 & -1 & 1 \end{pmatrix}$$
, $B 为 3 阶 非零矩阵,且 $AB = O$,$

则 t=______

3. 已知方程组

$$\begin{pmatrix} 1 & 2 & 1 \\ 2 & 3 & a+2 \\ 1 & a & -2 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 1 \\ 3 \\ 0 \end{pmatrix}$$

无解,则 *a* = _____

4. 设 A 为三阶实对称矩阵, 其特征值分别为 1, 2, 3。已知与特征值 1, 2 对应

的特征向量分别为(1,1,1)和(0,1,-1),则与特征值3对应的一个特征向量为_____

5. 已知三阶阵 A 的特征值分别为-1, 1, 2, 设矩阵 $B = A^2 - 2A + E$,

则 | B |=______.

- 6. 二次型 $f(x_1, x_2, x_3) = x_1^2 + 2x_1x_2 + 2x_2^2 + 6x_2x_3 + 9x_3^2$ 的正惯性指数、负惯性指数与符号差分别为
- 7. 设A为 4×3 阶矩阵,且R(A) = 2, $B = \begin{pmatrix} 1 & 0 & 2 \\ 0 & 2 & 0 \\ -1 & 0 & 3 \end{pmatrix}$, 则矩阵AB的秩为

$$R(AB) = \underline{\hspace{1cm}}.$$

8. 设A为 2 阶方阵,B为 3 阶阵,且 $|A| = \frac{1}{|B|} = \frac{1}{2}$,

则
$$\begin{vmatrix} O & -B \\ 2A^{-1} & O \end{vmatrix} =$$
_____.

三、已知二次型

$$f(x_1, x_2, x_3) = ax_1^2 + ax_2^2 + 6x_3^2 + 8x_1x_2 - 4x_1x_3 + 4x_2x_3 \qquad (a > 0)$$

通过正交变换化为标准形 $7y_1^2 + 7y_2^2 - 2y_3^2$, 求参数a及所用的正交变换。

四、设非齐次线性方程组

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1 \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2 \\ \vdots \\ a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = b_m \end{cases}$$

的系数矩阵 A的秩为 r(r < n).

证明:若方程组有解,则它有n-r+1个线性无关的解向量,使方程组的每个解向量都能由这n-r+1个解向量线性表出.

五、在实向量空间 R^4 中,设非空子集

$$V = \{(x_1, x_2, x_3, x_4) \mid x_1 + x_2 + x_3 + x_4 = 0\}$$

- (1)证明: V构成 R^4 的线性子空间;
- (2) 求出 V 的维数和一组基底.

自测题 2 参考答案

-. 1. (B); 2. (B); 3. (D); 4. (D); 5. (C); 6. (D); 7. (C); 8. (D); 9. (A); 10. (D).

$$= 1. \sum_{i=1}^{4} a_{i} = 0; \quad 2. t = -3; \quad 3. \quad a = -1; \quad 4. \begin{pmatrix} -2 \\ 1 \\ 1 \end{pmatrix}; \quad 5. \quad 0; \quad 2, 0, 2; \quad 7. \quad 2; \quad 8. -16.$$

三. f 对应的实对称矩阵为

$$A = \begin{pmatrix} a & 4 & -2 \\ 4 & a & 2 \\ -2 & 2 & 6 \end{pmatrix},$$

A 的特征值 $\lambda_1 = 7$, $\lambda_2 = -2$, 其中 λ_1 是重根.

由于
$$trA = 7 + 7 + (-2) = a + a + 6$$
, 从而 $a = 3$.

当 $\lambda = 7$ 时,解线性方程(7E - A)X = 0,求得基础解系

$$\alpha_1 = (1, 1, 0)^T, \alpha_2 = (1, 0, -2)^T.$$

先把 α_1,α_2 正交化:

$$\beta_1 = \alpha_1 = (1, 1, 0)^T,$$

$$\beta_2 = \alpha_2 - \frac{\langle \alpha_2, \beta_1 \rangle}{\langle \beta_1, \beta_1 \rangle} \beta_1 = \left(\frac{1}{2}, -\frac{1}{2}, -2\right)^T.$$

再单位化,即得 A 所对应于特征值 $\lambda_1 = 7$ 的二个单位正交特征向量:

$$\gamma_{1} = \frac{\beta_{1}}{|\beta_{1}|} = \left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}, 0\right)^{T},$$

$$\gamma_{2} = \frac{\beta_{2}}{|\beta_{2}|} = \left(\frac{1}{\sqrt{18}}, -\frac{1}{\sqrt{18}}, -\frac{4}{\sqrt{18}}\right)^{T}.$$

当 $\lambda_2 = -2$ 时,解方程组(-2E - A)X = 0,求得基础解系

$$\alpha_3 = (2, -2, 1)^T$$

将其单位化得

$$\gamma_3 = \frac{\alpha_3}{|\alpha_3|} = \left(\frac{2}{3}, -\frac{2}{3}, \frac{1}{3}\right)^T$$

令

$$Q = (\gamma_1, \quad \gamma_2, \quad \gamma_3) = \begin{pmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{18}} & \frac{2}{3} \\ \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{18}} & -\frac{2}{3} \\ 0 & -\frac{4}{\sqrt{18}} & \frac{1}{3} \end{pmatrix},$$

则 Q 为正交阵,所用的正交变换为

$$\begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = Q \begin{pmatrix} y_1 \\ y_2 \\ y_3 \end{pmatrix}.$$

四. 由于方程组有解,且 R(A)=r,则方程组的导出组的基本解系中含有 n-r 个解向量,不妨设为 $\alpha_1,\alpha_2,\cdots,\alpha_{n-r}$. 设 X_0 是方程组的一个特解,

则 $X_0 + \alpha_1, X_0 + \alpha_2, \dots, X_0 + \alpha_{n-r}$ 都是方程组的解向量.

下面证明 X_0 , $X_0 + \alpha_1$, $X_0 + \alpha_2$, \cdots , $X_0 + \alpha_{n-r}$ 线性无关. 设

$$k_0 X_0 + k_1 (X_0 + \alpha_1) + k_2 (X_0 + \alpha_2) + \cdots + k_{n-r} (X_0 + \alpha_{n-r}) = 0$$

则
$$(k_0 + k_1 + \cdots k_{n-r}) X_0 + k_1 \alpha_1 + k_2 \alpha_2 + \cdots k_{n-r} \alpha_{n-r} = 0.$$
 (1)

用矩阵 A 左乘上式,并注意到 X_0 是方程组的一个特解,则

$$k_1\alpha_1+k_2\alpha_2+\cdots k_{n-r}\alpha_{n-r}=0.$$

又 $\alpha_1, \alpha_2, \cdots, \alpha_{n-r}$ 线性无关,得 $k_1 = k_2 = \cdots = k_{n-r} = 0$. 代入(1) 式,得 $k_0 = 0$. 因此向量组 X_0 , $X_0 + \alpha_1, X_0 + \alpha_2, \cdots, X_0 + \alpha_{n-r}$ 线性无关.

下面证明方程组的任一解向量 γ 可由 X_0 , X_0 + α_1 , X_0 + α_2 , ..., X_0 + α_{n-r} 线性表出. 由于 γ - X_0 为方程组的导出组的解向量,从而它可由 α_1 , α_2 , ..., α_{n-r} 线性表出. 从而

$$\gamma = X_0 + l_1 \alpha_1 + l_2 \alpha_2 + \dots + l_{n-r} \alpha_{n-r}
= (1 - l_1 - \dots - l_{n-r}) X_0 + l_1 (X_0 + \alpha_1) + l_2 (X_0 + \alpha_2) + \dots + l_{n-r} (X_0 + \alpha_{n-r})$$

即方程组的任一解向量 γ 可由 X_0 , $X_0 + \alpha_1, X_0 + \alpha_2, \dots, X_0 + \alpha_{n-r}$ 线性表出.

第九章 自测题 3 及答案

一、填空题:

1. 设 A 为 4 阶方阵, 其特征值为 1, 2, 3, 4,

则 $|A| = ______; A$ 的主对角线上元素之和为______; A 可否相似对角化 (填"是"或"否");

- 2. $A^2 + A 4E = 0$, $\mathbb{M}(A + 2E)^{-1} = \underline{\hspace{1cm}}$
- 3. 方阵 $\begin{pmatrix} a & 1 & 1 \\ 1 & a & 1 \\ 1 & 1 & a \end{pmatrix}$ 的秩的可能值是______;
- 5. 设矩阵 $A_{4\times 3}$ 的秩为 2, $B = \begin{pmatrix} 1 & 0 & 2 \\ 0 & 2 & 0 \\ -1 & 0 & 3 \end{pmatrix}$, 则 AB 的秩为______;
- 6. 齐次线性方程组 $\begin{cases} x_1 + x_2 + x_3 + x_4 = 0 \\ x_1 x_2 + x_3 + x_4 = 0 \end{cases}$ 的解空间的维数是______;

7. 设
$$A = \begin{pmatrix} 1 & 0 & 0 \\ 2 & 2 & 0 \\ 3 & 4 & 5 \end{pmatrix}$$
, 则 $(A^*)^{-1} = \underline{\qquad}$

二、单项选择题:

- 1. 设矩阵 $A = (a_{ij})_{m \times n}$,则齐次线性方程组 AX = 0 仅有 0 解的充要条件是()
 - (A) A 的列向量线性无关
- (B) A 的列向量线性相关
- (C) A 的行向量线性无关
- (D) A 的行向量线性相关
- 2 . 设 $\alpha_1 = (1,1,0,0)$, $\alpha_2 = (0,0,1,1)$, $\alpha_3 = (1,0,1,0)$, $\alpha_4 = (1,1,1,1)$,则它的极大无关组为

	(A) α_1, α_2 (B) $\alpha_1, \alpha_2, \alpha_3$
	(C) $\alpha_1, \alpha_2, \alpha_4$ (D) $\alpha_1, \alpha_2, \alpha_3, \alpha_4$
<i>:</i>	3. 四个平面 $a_i x + b_i y + c_i z = d_i$ ($i = 1, 2, 3, 4$) 交于一条直线的充要条件是有这四个平
	面联立的线性方程组的系数矩阵 A 与增广矩阵 \overline{A} 满足 $R(\overline{A}) = R(A) = ($)
	(A) 1; (B) 2; (C) 3; (D) 4
	4. 设n阶方阵A与B相似。则下列陈述不正确的是()
	(A) $\lambda E - A = \lambda E - B$; (B) $ \lambda E - A = \lambda E - B $;
	(C) $R(A) = R(B)$; (D) $ A = B $
	5. 设向量 $m{\beta}$ 可由向量组 $m{lpha_1,lpha_2,\cdots,lpha_m}$ 线性表示,但不能由向量组 $m{(I)}:m{lpha_1,lpha_2,\cdots,lpha_{m-1}}$ 线
٠.	性表示。记向量组(II): $lpha_1,lpha_2,\cdots,lpha_{{}_{m-1}},eta$,则()
	(A) α_m 不能由(I)线性表示,也不能由(II)线性表示;
	(B) α_m 不能由(I)线性表示,但可由(II)线性表示;
	(C) α_m 可由(I)线性表示,也可由(II)线性表示;
	(D) α_m 可由(I)线性表示,但不能由(II)线性表示
	6.
	则 $B = ($)
	(A) AP ; (B) QA ; (C) PAQ ; (D) QAP
	7. A、B是同阶可逆阵,则()
	(A) $AB = BA$; (B) 存在可逆阵 P , 使 $P^{-1}AP = B$;
	(C) 存在可逆阵 C ,使 $C^TAC = B$;
	(D) 存在可逆阵 P,Q ,使 $PAQ=B$

8. 方阵
$$\begin{pmatrix} 1 & -2 & 2 \\ -2 & 5 & -a \\ 2 & -a & 9 \end{pmatrix}$$
正定的充要条件是 ()

(A)
$$a > 4 - \sqrt{5}$$
;

(B)
$$a < 4 + \sqrt{5}$$

(A)
$$a > 4 - \sqrt{5}$$
; (B) $a < 4 + \sqrt{5}$; (C) $4 - \sqrt{5} < a < 4 + \sqrt{5}$;

(D) a 为任意实数

三、设矩阵
$$A = \begin{pmatrix} 0 & 1 & 0 \\ -1 & 1 & 1 \\ -1 & 0 & -1 \end{pmatrix}$$
, $B = \begin{pmatrix} 1 & -1 \\ 2 & 0 \\ 5 & -3 \end{pmatrix}$

矩阵X满足X = AX + B, 求X。

 \mathbf{U} 、 \mathbf{p} 取何值时,线性方程组

$$\begin{cases} x_1 + x_2 + x_3 + x_4 = 1 \\ 2x_1 + x_2 + 3x_3 - x_4 = p \\ x_1 - x_2 + 3x_3 - 5x_4 = -1 \end{cases}$$

有解,并在有解时求出它的全部解.(用解向量形式表示)。

五、设
$$f = x_1^2 + x_2^2 + x_3^2 + 6x_1x_2 + 6x_2x_3 + 6x_3x_1$$

- 1. 写出此二次型对应的矩阵 A。
- 2. 求矩阵的特征值及特征向量。
- 3. 用正交变换化二次型为标准型,并写出所用的正交变换矩阵。

六、

- 1. 设 $\alpha_1 \neq 0$ 。证明向量组 $\alpha_1, \alpha_2, \dots, \alpha_m \ (m \geq 2)$ 线性无关的充要条件是每一个向量 α_i 都不能由 $\alpha_1, \alpha_2, \dots, \alpha_{i-1}$ 线性表示 $(i = 2, 3, \dots, m)$ 。
- 2. 设n阶方阵A满足 $A^2 = E$, 证明:
 - (1) *A*的特征值只能是 1 或 1:
 - (2) A 必可以相似对角化。

自测题 3 参考答案

一、1. 24 ,10, 是; 2.
$$\frac{1}{2}(A-E)$$
; 3. 1, 2, 3;

4.
$$\begin{vmatrix} 0 & 0 & 0 & 4 \\ 0 & 3 & 0 & 0 \\ 0 & 0 & 2 & 0 \\ 1 & 0 & 0 & 0 \end{vmatrix} = (-1)^{r(4231)} 1 \times 2 \times 3 \times 4 = -24;$$

5. 2; 6. 2; 7.
$$\frac{1}{10}A$$
.

三、解

$$X = AX + B \Rightarrow (E - A)X = B \Rightarrow X = (E - A)^{-1}B$$

$$\therefore (E-A)^{-1} = \begin{pmatrix} 1 & -1 & 0 \\ 1 & 0 & -1 \\ 1 & 0 & 2 \end{pmatrix}^{-1} = \frac{1}{3} \begin{pmatrix} 0 & 2 & 1 \\ -3 & 2 & 1 \\ 0 & -1 & 1 \end{pmatrix},$$

$$\therefore X = \frac{1}{3} \begin{pmatrix} 0 & 2 & 1 \\ -3 & 2 & 1 \\ 0 & -1 & 1 \end{pmatrix} \begin{pmatrix} 1 & -1 \\ 2 & 0 \\ 5 & -3 \end{pmatrix} = \begin{pmatrix} 3 & -1 \\ 2 & 0 \\ 1 & -1 \end{pmatrix}$$

四、解:

$$\overline{A} = \begin{pmatrix} 1 & 1 & 1 & 1 & 1 \\ 2 & 1 & 3 & -1 & p \\ 1 & -1 & 3 & -5 & -1 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 1 & 1 & 1 & 1 \\ 0 & -1 & 1 & -3 & p-2 \\ 0 & 0 & 0 & 0 & 2-2p \end{pmatrix}$$

当
$$p = 1$$
时 $R(\overline{A}) = R(A) = 2$,方程有解。 这时,

$$A \rightarrow \begin{pmatrix} 1 & 1 & 1 & 1 & 1 \\ 0 & -1 & 1 & -3 & -1 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & 2 & -2 & 0 \\ 0 & 1 & -1 & 3 & 1 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix}$$
,于是

$$\begin{cases} x_1 = -2x_3 + 2x_4 \\ x_2 = x_3 - 3x_4 + 1 \\ x_3 = x_3 \\ x_4 = x_4 \end{cases} \Rightarrow \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 1 \\ 0 \end{pmatrix} + k_1 \begin{pmatrix} -2 \\ 1 \\ 1 \\ 0 \end{pmatrix} + k_2 \begin{pmatrix} 2 \\ -3 \\ 0 \\ 1 \end{pmatrix}$$

五、

$$1 \cdot A = \begin{pmatrix} 1 & 3 & 3 \\ 3 & 1 & 3 \\ 3 & 3 & 1 \end{pmatrix}.$$

$$2. |\lambda E - A| = \begin{vmatrix} \lambda - 1 & -3 & -3 \\ -3 & \lambda - 1 & -3 \\ -3 & -3 & \lambda - 1 \end{vmatrix} = (\lambda - 7)(\lambda + 2)^{2}$$

$$\therefore \lambda_1 = 7, \lambda_{2,3} = -2$$

$$\lambda = 7$$
时, $\begin{pmatrix} 6 & -3 & -3 \\ -3 & 6 & -3 \\ -3 & -3 & 6 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$,得特征向量 $\begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = k \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$, $k \neq 0$

得特征向量
$$\begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = k_1 \begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix} + k_2 \begin{pmatrix} 1 \\ 1 \\ -2 \end{pmatrix}, k_1, k_2$$
不全为 0。

$$3. \Rightarrow Q = \begin{pmatrix} \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{6}} \\ \frac{1}{\sqrt{3}} & -\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{6}} \\ \frac{1}{\sqrt{3}} & 0 & -\frac{2}{\sqrt{6}} \end{pmatrix}, \quad \text{Iff } Q^T A Q = Q^{-1} A Q = \begin{pmatrix} 7 & & & \\ & -2 & & \\ & & -2 \end{pmatrix}$$

:二次型通过正交变换
$$\begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{6}} \\ \frac{1}{\sqrt{3}} & -\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{6}} \\ \frac{1}{\sqrt{3}} & 0 & -\frac{2}{\sqrt{6}} \end{pmatrix} \begin{pmatrix} y_1 \\ y_2 \\ y_3 \end{pmatrix} 化为标准型$$

$$f = 7y_1^2 - 2y_2^2 - 2y_3^2$$

六、

证明: 必要性

由于 $\alpha_1,\alpha_2,\cdots,\alpha_m$ 线性无关,故 $\alpha_1,\alpha_2,\cdots,\alpha_i$ 也线性无关,所以 α_i 不能由 $\alpha_1,\alpha_2,\cdots,\alpha_{i-1}$ 线性表示。

充分性

设 $\alpha_1,\alpha_2,\cdots,\alpha_m$ 线性相关,则存在不全为零的 k_1,k_2,\cdots,k_m 使

$$k_1 \alpha_1 + k_2 \alpha_2 + \dots + k_m \alpha_m = 0 \tag{1}$$

设j是使 $k_j \neq 0$ 的最大足标,即 $k_j \neq 0, k_{j+1} = \cdots = k_m = 0$,此时(1)式化为

$$k_1\alpha_1 + k_2\alpha_2 + \dots + k_i\alpha_i = 0 你们$$
 (2)

因为,若 j=1 得 $k_i\alpha_i=0$,与题设矛盾,故 $2 \le j \le m$ 。

由(2)得 α_i 可由 $\alpha_1,\alpha_2,\cdots,\alpha_{i-1}$ 线性表示。矛盾。

因此向量组 $\alpha_1, \alpha_2, \dots, \alpha_m (m \ge 2)$ 线性无关

证毕

- 3. 设n阶方阵A满足 $A^2 = E$,证明:
 - (1) A的特征值只能是1或-1;
 - (2) A必可以相似对角化。

证明: (1) 设 λ 是A的特征值,则存在非零向量 α 使

$$A\alpha = \lambda \alpha \Rightarrow A^2 \alpha = \lambda^2 \alpha$$

另一方面 $A^2 = E$ 故 $(1-\lambda^2)\alpha = 0$,由于 $\alpha \neq 0$ 得 $\lambda = \pm 1$

(2) 由于 $A^2 = E \Rightarrow (E - A)(E + A) = 0$ 故 $R(E - A) + R(E + A) \le n$

另一方面
$$R(E-A)+R(E+A) \ge R\{(E-A)+(E+A)\} = R(2E) = n$$

所以
$$R(E-A)+R(E+A)=n$$

设
$$R(E-A) = r$$
 则 $R(E+A) = n-r$

因此 A 的特征值 $\lambda = 1$ 的几何重数为 n-r , $\lambda = -1$ 的几何重数为 r 故 A 相似于对角阵

$$\begin{pmatrix} 1 & & & & & \\ & \ddots & & & & \\ & & 1 & & & \\ & & & -1 & & \\ & & & & \ddots & \\ & & & & -1 \end{pmatrix}_{n \times n}$$
 其中 $n-r \uparrow 1$, $r \uparrow -1$.

自测题 4 答案

一、选择题:

1.设 A 是 3 阶矩阵,|A|=1,则 $\left(-2A\right)^{2}=($

- A. -64
- B. 64
- C. -4
- D. 4

2.设 A, B 是两个 n 阶矩阵, 满足 $(AB)^2=E$, 则(

)成立。

- B. |A| |B| = -1 C. AB = BA
- D. $(BA)^2 = E$

3.已知 $\alpha_1,\alpha_2,\alpha_3$ 线性无关,则向量组(

A.
$$\alpha_1 + 2\alpha_2, 2\alpha_2 + 3\alpha_3, 3\alpha_3 + \alpha_1$$
线性无关

B.
$$\alpha_1 + \alpha_2, \alpha_2 + \alpha_3, \alpha_1 + 2\alpha_2 + \alpha_3$$
线性无关.

C.
$$\alpha_1 + \alpha_2, \alpha_2 + \alpha_3, \alpha_4 - \alpha_4$$
线性无关

D.
$$\alpha_1 + \alpha_2 + \alpha_3, \alpha_1 + \alpha_2, \alpha_3$$
线性无关.

4 设矩阵 $A = (a_{ij})_{m \times n}$ 的秩 R(A) = m < n, E_m 为 m 阶单位矩阵,下述结论中正确的是 (

- Α. A的任意m个列向量必线性无关
- В. A的任意一个m阶子式不等于零.
- C. 非齐次线性方程组 A X = b 无解
- 非齐次线性方程组 A X = b 一定有无穷多组解 D.

5.设
$$A = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$$
, $B = \begin{pmatrix} 2 & 0 \\ 0 & 0 \end{pmatrix}$, 则 A 与 B (

A. 合同且相似, B. 合同但不相似, C. 不合同但相似, D. 不合同且不相似.

6.设 A 是 $m \times n$ 实矩阵,且 R(A)=n,则二次型 $X^{T}(A^{T}A)X$ 是(

A. 不定二次型 B. 半负定二次型 C. 正定二次型 D. 负定二次型

7.设 $\alpha_1,\alpha_2,\alpha_3$ 为三维向量空间的一个基,且向量组 β_1,β_2,β_3 满足

 $(\beta_1,\beta_2,\beta_3) = (\alpha_1,\alpha_2,\alpha_3)$ P, 其中 P 为 3 阶方阵,则 β_1,β_2,β_3

也为三维向量空间的一个基的充分必要条件是()
A. P 为非零矩阵 B. $ P = 0$ C. $ P \neq 0$ D. P 为不满秩矩阵
二、填空题:
1.行列式若有两行(两列)相同,则行列式的值为;
2.设 n 阶矩阵 A 满足 A ² +3A-E=O,则 A ⁻¹ =;
3. 已知 $\alpha = \left(1, 2, 3\right)^T, \beta = \left(1, \frac{1}{2}, \frac{1}{3}\right)^T, $ 设 $A = \alpha^T \beta$,其中 α^T 是 α 的转置,则
$A'' = \underline{\hspace{1cm}};$
4.设 $\alpha_1 = (0, 0, -1, 1)^T, \alpha_2 = (1, 1, -1, 0)^T, \alpha_3 = (-5, -5, 5, 0)^T$,则 $\alpha_1, \alpha_2, \alpha_3$ 的
一个最大线性无关组为;
5.设 n 阶矩阵 A 的各行元素之和均为零,且 A 的秩为 n-1,则线性方程组
AX=0 的通解为;
6.设 A 为 n 阶方阵, $ A $ ≠ 0 , A 为 A 的伴随阵,若 A 有特征值 λ ,则 A 必有特征值
·;
7.已知实二次型 $f(x_1,x_2,x_3)=2x_1^2+3x_2^2+3x_3^2+2ax_2x_3$ ($a>0$)经过正交变换 X=PY
可化为标准型 $f = y_1^2 + 2y_2^2 + 5y_3^2$,则 $a =$
A B
•

9.在 R^3 中,向量 $\alpha = (2, \ 0, \ 0)^T$ 在基 $\alpha_1 = (1, \ 1 \ 0)^T$, $\alpha_2 = (1, \ 0, \ 1)^T$, $\alpha_3 = (0, \ 1, \ 1)^T$ 下

的坐标为_____

10.若 A, B 均为 n 阶正定矩阵,则 A+B 是_

三、设三阶方阵 A, B 满足关系式 A
$$^{-1}$$
BA=6A+BA, 且 A= $\begin{pmatrix} \frac{1}{3} & 0 & 0 \\ 0 & \frac{1}{4} & 0 \\ 0 & 0 & \frac{1}{7} \end{pmatrix}$, 求 B.

四、设方程组
$$\begin{cases} x_1 + x_2 + x_3 + x_4 = 0 \\ x_2 + 2x_3 + 2x_4 = 1 \\ -x_2 + (a-3)x_3 - 2x_4 = b \\ 3x_1 + 2x_2 + x_3 + ax_4 = -1 \end{cases}$$

- 1.问 a,b 取何值时,方程组有唯一解、无解、有无穷多解?
- 2. 当方程组有无穷多解时, 求其通解(用解向量形式表示).

五、设二次型,
$$f(x_1,x_2,x_3)=x_1^2+x_2^2+x_3^2+2x_1x_2+2x_1x_3+2x_2x_3$$

- 1. 写出此二次型对应的矩阵 A.;
- 2. 求矩阵 A 的特征值与特征向量:
- 3. 用正交变换将二次型化为标准型,并写出所用正交变换矩阵.

六、 1. 设 γ_0 是非齐次方程组 Ax=b 的一个解向量, $\alpha_1,\alpha_2,\cdots,\alpha_{n-r}$ 是对应的齐次方程组

Ax=0 的一个基础解系,证明: γ_0 , $\gamma_0 + \alpha_1$, $\gamma_0 + \alpha_2$, ..., $\gamma_0 + \alpha_{n-r}$ 线性无关.

自测题 4 考答案

二. 1. 0;
$$2.A^{-1} = A + 3E$$
; 3. 3"; 4. α_1, α_2 或 α_1, α_3 ;

5.
$$x = k \left(1, 1, \dots, 1 \right)^{T}$$
 , k 为任意常数; 6. $\frac{|A|}{\lambda}$; 7. 2; 8. 对角形矩阵;

- 9. (1, 1, -1); 10. 正定矩阵.
- 三. 解:由已知得:

$$B = 6(A^{-1} - E)^{-1} \cdot \cdots \cdot (1)$$

$$A^{-1} = \begin{pmatrix} 3 & & \\ & 4 & \\ & & 7 \end{pmatrix}$$

代入 (1):
$$B = 6 \begin{bmatrix} 3 & & \\ & 4 & \\ & & 7 \end{bmatrix} - \begin{pmatrix} 1 & & \\ & 1 & \\ & & 1 \end{pmatrix} \end{bmatrix}^{-1} = 6 \begin{pmatrix} 2 & & \\ & 3 & \\ & & 6 \end{pmatrix}^{-1} = \begin{pmatrix} 3 & & \\ & 2 & \\ & & 1 \end{pmatrix}$$

四. 解:用初等行变换将增广矩阵 A 化成阶梯形:

$$\overline{A} = (A \mid b) = \begin{pmatrix} 1 & 1 & 1 & 1 & 0 \\ 0 & 1 & 2 & 2 & 1 \\ 0 & -1 & a - 3 & -2 & b \\ 3 & 2 & 1 & a & -1 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 1 & 1 & 1 & 0 \\ 0 & 1 & 2 & 2 & 1 \\ 0 & 0 & a - 1 & 0 & b + 1 \\ 0 & 1 & 2 & 2 & 1 \\ 0 & 0 & a - 1 & 0 & b + 1 \\ 0 & 0 & 0 & a - 1 & 0 \end{pmatrix}$$

由阶梯形矩阵可见:

- (1)当 $a \neq 1$ 时,r(A) = r(A) = 4, 故此时方程组有唯一解.
- (2)当a=1且 $b\neq -1$ 时, r(A)=2而r(A)=3, 故此时方程组无解.
- (3)当a=1且b=-1时, r(A)=r(A)=2<4, 故方程组有无穷多解.

此时,将增广矩阵 A进一步化成行最简形:

$$\overline{A} \rightarrow \begin{pmatrix}
1 & 0 & -1 & -1 & -1 \\
0 & 1 & 2 & 2 & 1 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{pmatrix}$$

故此时方程组的通解为:

$$x = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix} = \begin{pmatrix} -1 \\ 1 \\ 0 \\ 0 \end{pmatrix} + c_1 \begin{pmatrix} 1 \\ -2 \\ 1 \\ 0 \end{pmatrix} + c_2 \begin{pmatrix} 1 \\ -2 \\ 0 \\ 1 \end{pmatrix}$$
 (c_1, c_2) 为任意常数)

五. 解:1. 二次型 f 所对应的矩阵为: $A = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}$

2. A 的特征多项式
$$|\lambda E - A| = \begin{vmatrix} \lambda - 1 & -1 & -1 \\ -1 & \lambda - 1 & -1 \\ -1 & -1 & \lambda - 1 \end{vmatrix} = \lambda^2 (\lambda - 3),$$

A 的特征值为

$$\lambda_1 = \lambda_2 = 0, \lambda_3 = 3.$$

当 $\lambda_1 = \lambda_2 = 0$ 时,对特征矩阵施行初等行变换:

得基础解系为: $\alpha_1 = \begin{pmatrix} 1,-1,0 \end{pmatrix}^T$, $\alpha_2 = \begin{pmatrix} 1,0,-1 \end{pmatrix}^T$ 将 α_1,α_2 标准化正交化,

正交化得
$$\beta_1 = (1,-1,0)^T$$
, $\beta_2 = \left(\frac{1}{2},\frac{1}{2},-1\right)^T$,

单位化得
$$\gamma_1 = \left(\frac{1}{\sqrt{2}}, -\frac{1}{\sqrt{2}}, 0\right)^T, \gamma_2 = \left(\frac{1}{\sqrt{6}}, \frac{1}{\sqrt{6}}, -\frac{2}{\sqrt{6}}\right)^T$$

当 $\lambda_3 = 3$ 时,对特征矩阵施行初等行变换:

$$\lambda_3 E - A = \begin{pmatrix} 2 & -1 & -1 \\ -1 & 2 & -1 \\ -1 & -1 & 2 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 1 & -2 \\ -1 & 2 & -1 \\ 0 & 0 & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 1 & -2 \\ 0 & -3 & 3 \\ 0 & 0 & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & -1 \\ 0 & 1 & -1 \\ 0 & 0 & 0 \end{pmatrix}$$

得基础解系为: $\alpha_3 = \begin{pmatrix} 1, & 1, & 1 \end{pmatrix}^T$, 单位化 $\gamma_3 = \begin{pmatrix} \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}} \end{pmatrix}^T$

$$3. \diamondsuit P = (\gamma_1, \gamma_2, \gamma_3) = \begin{pmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{6}} & \frac{1}{\sqrt{3}} \\ -\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{6}} & \frac{1}{\sqrt{3}} \\ 0 & -\frac{2}{\sqrt{6}} & \frac{1}{\sqrt{3}} \end{pmatrix}, \quad P \in \mathbb{R}$$

$$\Leftrightarrow \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = P \begin{pmatrix} y_1 \\ y_2 \\ y_3 \end{pmatrix},$$

则 $f = 3y_3^2.$

六

1. 证明.:

证法 1 设有一组数 k_0, k_1, \dots, k_{n-r} , 使得

$$k_0 \gamma_0 + k_1 (\gamma_0 + \alpha_1) + \dots + k_{n-r} (\gamma_0 + \alpha_{n-r}) = 0$$
成立〈1〉

要证明 γ_0 , $\gamma_0 + \alpha_1$, $\gamma_0 + \alpha_2$, ..., $\gamma_0 + \alpha_{n-r}$ 线性无关

只需证明
$$k_0 = k_1 = \dots = k_{n-r} = 0$$

由〈1〉得:

$$(k_0 + k_1 + \dots + k_{n-r})\gamma_0 + k_1\alpha_1 + \dots + k_{n-r}\alpha_{n-r} = 0$$

由 γ_0 , α_1 , α_2 ,..., α_{n-r} 线 性 无 关 及 $A\alpha_i=0$ 和 $A\gamma_0=b$ 得 :

$$k_0 + k_1 + \cdots + k_{n-r} = k_1 = \cdots = k_{n-r} = 0,$$

从而 $k_0 = k_1 = \cdots = k_{n-r} = 0$,故 γ_0 , $\gamma_0 + \alpha_1$, $\gamma_0 + \alpha_2$, \cdots , $\gamma_0 + \alpha_{n-r}$ 线性无关.

证法 2

设
$$\begin{cases} \beta_0 &= \gamma_0 \\ \beta_1 &= \gamma_0 + \alpha_0 \\ \dots \\ \beta_{n-r} &= \gamma_0 + \alpha_0 + \dots + \gamma_{n-r} \end{cases}$$
 (1)

则
$$\left(\beta_0, \beta_1, \dots, \beta_{n-r}\right) = \left(\gamma_0, \alpha_1, \dots, \alpha_{n-r}\right) \begin{pmatrix} 1 & 1 & \dots & 1 \\ 0 & 1 & \dots & 1 \\ \vdots & \vdots & \dots & \vdots \\ 0 & 0 & \dots & 1 \end{pmatrix}$$
 (2)

令
$$P = \begin{pmatrix} 1 & 1 & \cdots & 1 \\ 0 & 1 & \cdots & 1 \\ \vdots & \vdots & \cdots & \vdots \\ 0 & 0 & \cdots & 1 \end{pmatrix}$$
 显然 $|P| \neq 0$ 所以 P 可逆

故
$$\left(\beta_0, \beta_1, \dots, \beta_{n-r}\right) \cong \left(\gamma_0, \alpha_1, \dots, \alpha_{n-r}\right)$$

$$R\left(\beta_0, \beta_1, \dots, \beta_{n-r}\right) = R\left(\gamma_0, \alpha_1, \dots, \alpha_{n-r}\right) = n - r + 1$$

所以 β_0 , β_1 , ..., β_{n-r} 线性无关, 得证.

2. 证法 1

用反证法,设|A|=0,则由公式 $AA^{\bullet}=|A|$ I 得

$$AA^{T} = |A|I = 0,$$

设A的行向量组为 α_i ($i=1,2,\cdots,n$),则 $\alpha_i\alpha_i^{\mathsf{T}}=0$ ($i=1,2,\cdots,n$),

故
$$\alpha_i = 0 (i = 1, 2, \dots, n)$$

于是A=0,这与A为非零阵矛盾,

故

 $|\mathbf{A}| \neq 0$.

证法2

设A的行向量组为 α_i ($i=1,2,\cdots,n$),

$$\therefore$$
 A \neq 0, \therefore 不妨设 $\alpha_1 \neq 0$

则由公式 $AA^* = |A| I$ 得: $\alpha_i \alpha_i^T = |\alpha_i|^2 = |A| > 0$

从而

 $|A| \neq 0$

证法3

$$\therefore A^{\bullet} = A^{\mathsf{T}} \quad R(A^{\bullet}) = R(A^{\mathsf{T}}) = R(A) \quad \dots \qquad (1)$$

$$R(A^*) = \begin{cases} n, \text{ if } R(A) = n \text{ if } \\ 1, \text{ if } R(A) = n - 1 \text{ if } \\ 0, \text{ if } R(A) < n - 1 \text{ if } \end{cases}$$

因 $A \neq 0$ 所以 $R(A)=R(A^*) \geq 1$ 由 (1)可知 只有当 $R(A^*)=n$ 时, $R(A)=R(A^*)=n$,故 $|A|\neq 0$.

七、解: 由已知:

$$f = x_1^2 + 2(x_2 + x_3)x_1 + (x_2 + x_3)^2 - (x_2 + x_3)^2 + 2x_2^2 + 5x_3^2 + 6x_2x_3$$

$$= (x_1 + x_2 + x_3)^2 + x_2^2 + 4x_3^2 + 4x_2x_3$$

$$= (x_1 + x_2 + x_3)^2 + (x_2 + 2x_3)^2 ,$$

$$\begin{cases} y_1 = x_1 + x_2 + x_3 \\ y_2 = x_2 + 2x_3 \\ y_3 & x_3 \end{cases}$$

$$\begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 1 & -1 & 1 \\ 0 & 1 & -2 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} y_1 \\ y_2 \\ y_3 \end{pmatrix} ,$$

从而

则

$$f = y_1^2 + y_2^2 .$$