Devoir maison

à rendre pour le 15/05/12

Exercice 1.

- a) Montrer que l'équation $\tan(x) = x$ admet une unique solution u_n dans l'intervalle $I_n =] \frac{\pi}{2} + n\pi; \frac{\pi}{2} + n\pi[$ et donner un équivalent simple de u_n .
- b) Soit $x_n = \frac{\pi}{2} + n\pi u_n$ (distance du bord droit de l'intervalle I_n à la solution u_n). Exprimer $\tan(x_n)$ en fonction de u_n et en déduire que $x_n \underset{n \to \infty}{\sim} \frac{1}{n\pi}$.

Solution de l'exercice 1.

a) On étudie sur l'intervalle I_n la fonction $f(x) = \tan(x) - x$. On montre qu'elle est continue, strictement croissante $(f'(x) = \tan^2(x) > 0 \text{ si } x \neq 0)$. Elle réalise donc une bijection de I_n sur son image \mathbb{R} (après calcul des limites). Comme $0 \in \mathbb{R}$ l'équation f(x) = 0 admet une unique solution, ce qui permet de conclure. On a

$$-\frac{\pi}{2} + n\pi \le u_n \le \frac{\pi}{2} + n\pi$$
$$-\frac{\pi}{2n\pi} + 1 \le \frac{u_n}{n\pi} \le \frac{\pi}{2n\pi} + 1$$

On a donc par le théorème d'encadrement $\lim_{n\to\infty} \frac{u_n}{n\pi} = 1$ soit $u_n \sim n\pi$.

b) On a

$$\tan(x_n) = \tan\left(\frac{\pi}{2} - u_n\right) = \frac{\sin\left(\frac{\pi}{2} - u_n\right)}{\cos\left(\frac{\pi}{2} - u_n\right)} = \frac{\cos(u_n)}{\sin(u_n)} = \frac{1}{\tan(u_n)} = \frac{1}{u_n}$$

Ainsi $\tan(x_n) \sim \frac{1}{n\pi}$. On peut remarquer que $u_n > n\pi$ (car $f(n\pi) < 0$) et donc $0 \le x_n < \frac{\pi}{2}$. On a donc $x_n = \arctan(\tan(x_n))$ et donc par composition $\lim_{n\to\infty} x_n = 0$. Or, lorsque $u \to 0$, $\tan(u) \sim u$, donc

$$x_n \sim \tan(x_n) \sim \frac{1}{n\pi}$$

Exercice 2.

- a) Quel est le reste de la division euclidienne de $X^n + 1$ par $X^2 1$?
- b) Soit a un réel fixé. Donner la décomposition en produit de facteurs irréductibles dans $\mathbb{R}[X]$ de

$$P(X) = X^{2n} - 2X^n \cos(a) + 1$$

Solution de l'exercice 2.

a) Le reste est de degré 2 et s'écrit aX + b. En évaluant l'écriture de la division euclidienne en 1 et -1, racines de $X^2 - 1$ on obtient $b = \frac{3 + (-1)^n}{2}$ et $a = \frac{1 - (-1)^n}{2}$

b) On obtient

$$P(X) = \prod_{k=0}^{n-1} \left(X^2 - 2X \cos \left(\frac{a}{n} + \frac{2k\pi}{n} \right) + 1 \right)$$

après avoir cherché les racines en passant par un polynôme bicarré, et en ayant regroupé les facteurs irréductibles astucieusement 2 par 2.

Exercice 3.

a) Soit $(p,q) \in \mathbb{N}^2$. Calculer

$$I_{p,q} = \int_0^{2\pi} e^{ipx} e^{-iqx} dx \quad , \qquad J_{p,q} = \int_0^{2\pi} \cos px \cos qx dx,$$

$$K_{p,q} = \int_0^{2\pi} \cos px \sin qx dx \quad , \qquad L_{p,q} = \int_0^{2\pi} \sin px \sin qx dx.$$

- b) Soit $I_n = \int_0^1 \frac{dx}{(1+x^3)^n}$ pour $n \ge 1$. Trouver une relation de récurrence sur I_n .
- c) Montrer que pour tout $n \in \mathbb{N}^*$

$$\sum_{k=0}^{n} \frac{C_n^k}{k+1} = \frac{(2^{n+1}-1)}{n+1}$$

Indication : on écrira $\frac{1}{k+1}$ comme une intégrale faisant intervenir x^k

Solution de l'exercice 3.

- a) Le calcul de $I_{p,q}$ est immédiat : $I_{p,q}=2\pi\delta_{pq}$. Les formules d'Euler permettent d'en déduire $J_{p,q}=\pi\delta_{|p|,[q]},~K_{p,q}=0$ et $L_{p,q}=\pi(\delta_{p,-q}-\delta_{p,q})$.
- b) Une intégration par parties donne $3nI_{n+1} = (3n-1)I_n + \frac{1}{2^n}$.
- c) Il suffit d'utiliser $\frac{1}{k+1} = \int_0^1 x^k dx$ puis le binôme de Newton.