

The 9th International Conference on Fuzzy Systems and Data Mining (FSDM 2023) Nov. 10-13, 2023 (Chongqing, China / Online via MS Teams)

FSDM 4150

Eye Tracking Data Mining Based on Fuzzy Sets of Fixations

Presented by: Konstantin Ryabinin^{1,2,3}, Elena Erofeeva^{2,3}, Kira Guseva³

Affiliation: ¹Heidelberg University, Germany;

²Saint Petersburg State University, Saint Petersburg, Russia;

³Perm State University, Perm, Russia

Perception Study via Visual Attention Estimation via Eye Tracking

Perception Study via Visual Attention Estimation via Eye Tracking

Eye Tracking Study Workflow

Traditional approaches are based on classical sets and averaging

Traditional approaches are based on classical sets and averaging

Scanpath Aggregation

Traditional approaches are based on classical sets and averaging

Scanpath Aggregation

Traditional approaches are based on classical sets and averaging

Why not to use fuzzy sets?

```
(Zhu et al. 2009;
Opach et al. 2011;
Naqvi et al. 2017)
```

Areas of Interest

Segmenting the stimulus into the areas of interest according to its structure

Areas of Interest

FSDM 4150

Segmenting the stimulus into the areas of interest according to its structure

$$T = \bigcup_{i=1}^{n} \bigcup_{j=1}^{m} \left(\alpha_j, \omega_j^{(i)}\right)$$

$$T = \bigcup_{\substack{\text{Aggregated} \\ \text{scanpath}}} m \left(\alpha_j, \omega_j^{(i)}\right)$$

SciVi Semantic Data Mining Platform

https://scivi.tools

(Ryabinin et al. 2013–2023)

Dynamic Interactive Heatmap

https://scivi.tools/demo/fuzzyScanpath

Retrieval of Common Perception Structure

"... saccades and fixations can be clustered, considering them related to a single cycle of cognitive processing"

(Belardinelli et al. 2008)

Retrieval of Common Perception Structure

"... saccades and fixations can be clustered, considering them related to a single cycle of cognitive processing"

(Belardinelli et al. 2008)

Methods of network science can be used to study eye movements (Zhu et al. 2015; Ma et al. 2022)

Retrieval of Common Perception Structure

"... saccades and fixations can be clustered, considering them related to a single cycle of cognitive processing"

(Belardinelli et al. 2008)

Methods of network science can be used to study eye movements (Zhu et al. 2015; Ma et al. 2022)

Why not to use modularity of saccades graph?

Calculating and Visualizing the Saccades Graph

Calculating and Visualizing the Saccades Graph

Calculating and Visualizing the Saccades Graph

Key Contributions:

- 1. Novel model of an aggregated scanpath of multiple informants based on fuzzy sets of fixations
- 2. Novel data mining algorithm for revealing the common perception structure of a visual stimulus based on saccades graph modularity within the fuzzy scanpath
- 3. Novel interactive visualization tools to display fuzzy scanpath and corresponding graph of saccades

Experimental Results:

- 1. Preliminary experiments conducted in VR using Vive Pro Eye headset with Tobii eye tracker
- 2. 196 different scanpaths analyzed (41 informant \times 14 stimuli)
- 3. Proved that clustering of saccades based on fuzzy scanpath reveals perception patterns

Acknowledgments:

Supported by the research grant No. ID92566385 from Saint Petersburg State University

The 9th International Conference on Fuzzy Systems and Data Mining (FSDM 2023) Nov. 10-13, 2023 (Chongqing, China / Online via MS Teams)

FSDM 4150

Thank you for your attention!

Presented by: Konstantin Ryabinin^{1,2,3}, Elena Erofeeva^{2,3}, Kira Guseva³

Affiliation: ¹Heidelberg University, Germany;

²Saint Petersburg State University, Saint Petersburg, Russia;

³Perm State University, Perm, Russia