자율주행자동차에서의 제어권전환을 위한 영상기반 운전자 모니터링 기술동향

이동환

2020/10/25

목차

1. 연구 배경

1-1. 교통사고 원인

1-2. 자율주행 시스템 단계

1-3. 자율주행 자동차 동향

2. 연구 필요성

2-1. 자율주행 자동차 사고 통계

2-2. 제어권전환

2-3. 운전자 모니터링

3. 운전자 모니터링

3-1. 생체기반 기술

3-2. 차량 정보기반 기술

3-3. 영상기반 기술

4. 영상기반 기술 관련연구

4-1. 졸음 인식

4-2. NDRA 인식

5. 결론

교통사고 원인

2017, 자율주행차 융·복합 미래포럼 국제 콘퍼런스 카니안드라전 미국 도로교통안전청(NHTSA) 국장

자율주행 시스템 단계

	단계	설명
	Level 0 (수동 단계)	자동차에 자율 주행 기술이 하나도 적용이 안된 상태의 단계
보조	Level 1 (운전자 보조 단계)	자율주행 시스템이 steering(조향) 또는 acceleration/deceleration(가/감속) 제어하는 단계
	Level 2 (부분 자동화 단계)	자율주행 시스템이 steering(조향)과 acceleration/deceleration(가/감속) 같이 제어하는 단계
	Level 3 (조건부 자동화 단계)	비상상황이 생길 때만 자율주행 시스템이 운전자에게 개입을 요청(Take Over Request)을 통해 제어권전환(Takeover)하는 단계
▼ 자동화	Level 4 (고도 자동화 단계)	미리 정해진 조건에서 운전자가 없어도 자율주행이 가능한 단계
	Level 5 (완전 자동화 단계)	미리 정해진 조건이 없고, 운전자가 없어도 완전 자율주행이 가능한 단계

SAE(Society of Automotive Engineers,국제 자동차 기술자 협회) J3016

자율주행자동차 동향

	자율주행차량모델(출시년도,단계)	
기업	상용화	기술 수준	상용화계획
현대	제네시 <u>스</u> G80 3세대	현대 아이오닉	2021년 LV3 자율주행 자동차 상용화 예정
	(2020, <mark>LV2</mark>)	(2017,LV4)	(제네시스 G90)
BMW	BMW 530e	BMW 7시리즈	2023년 LV3 자율주행 자동차 상용화 예정
	(2019, <mark>LV2</mark>)	(2019,LV4)	(BMW i넥스트)
GM 크루즈	쉐보레 볼트EV	GM 크루즈 오리진	2020년 LV5 자율주행 자동차 상용화 연기
	(한국 2017, <mark>LV2</mark>)	(2020,LV5)	(GM 크루즈 오리진)
아우디	아우디 A8	아우디 AI:ME	2020년 자율주행 레벨3 시스템 탑재 <mark>중단</mark>
	(2017,LV3)	(2020,LV4)	(아우디 A8)
테슬라	테슬라 모델3 (한국 2019,LV3)	-	2020년 자율주행 레벨5 시스템 탑재 예정
창안	창안 UNI-T (2020,LV3)	-	2020년 LV3 자율주행 자동차 상용화 시행 (창안 UNI-T)

자율주행자동차 사고 통계

- 사고 발생 전 수동 모드 주행(15%)
- 사고 발생 전 사고를 피하기 위해 운전자가 수동 모드로 전환(19%)
- 사고 발생 후 자율 주행 모드에서 운전자가 수동 모드로 전환(4%)
- 자율 주행 모드 스스로 수동 모드로 전환(0%)
- 사고 발생 전과 후 자율 주행 모드 주행(62%)

- 2017, California 자율주행 중 사고 발생 상황 통계
- Out of all the accidents, the AT was capable of detecting and reacting to the upcoming accident only 3 out of 26 times.
 - 자율주행 모드가 사고를 예측한 경우는 26개의 사고 중 3개 뿐이었음
- 자율주행 모드가 모든 사고를 예측 하지 못하고, 제어권전환이 원활하게 이루어 지지 않고 있음

제어권전환

운전자 모니터링

주	생체정보	심전도
I	O'M'O'모	뇌파
		안구 전도
요	+1 コトオリ レ	차량 속도
_	차량정보	조향각
기		스로틀 포지션
	\mathcal{M} L L L	얼굴
술	영상정보	손
		신체 전체

생체기반 모니터링 기술

뇌전도

심전도

안구 전도

기술	방법	장점	단점
생체기반	운전자의 생체 신호(뇌전도, 심전도, 안구 전도)	운전자의 상태 변화	신체에 부착된 센서가 운전자
	측정을 통해 운전자의 상태 변화를 모니터링	를 빠르게 파악 가능	에게 불편을 유발할 수 있음

차량정보기반 모니터링 기술

기술	방법	장점	단점
차량정보 기반	OBD-II 스캐너 등을 사용하여 조향각, 차량 속도, 스로틀 포지션과 같은 차량 정보를 통해 운전 자 모니터링	자동차에 탑재된 OBD- II 포트를 통해 쉽게 데 이터 수집 가능	운전자의 나이, 성별, 운전 숙련도 등에 의해 차량정보 차이 발생

영상기반 운전자 모니터링 기술

NDRA(Non-Driving Related Activities)

기술	방법	장점	단점
영상기반	카메라를 이용하여 운전자의 얼굴(눈 깜빡임, 하품 여부, 머리 방향), 손, 신체 전체를 촬영한 영상을 통해 운전자 모니터링	영상처리 및 인식 기 술의 발전으로 속도 와 정확도 등 향상	운전자마다 카메라 위치가 변할 수 있음 주간, 야간 상황에서 변하는 빛의 밝기 고려해야 함

졸음 인식 프로세스

졸음 인식 프로세스

머신러닝

특징영역 추출

Table III: Sample values of different parameters for different states

State	EAR	MOR	NLR
Normal	0.35	0.34	1.003
Yawning	0.22	0.77	0.76
Eye Closed	0.15	0.419	0.876
Head Bending	0.15	0.577	0.66

파라미터 계산 결과 분석

딥러닝

특징영역 추출

NDRA 인식 프로세스

결론

1

운전자의 편의를 위한 자율주행 시스템에 대한 연구 및 개발이 활발히 이뤄지고 있지만, 운전자의 안전을 보장하기 위한 제어권전환은 원활하게 이뤄지지 않고 있는 상황

2

원활한 제어권전환을 위한 운전자 모니터링 기술에 대한 연구 및 개발 진행 중이며, 운전자 모니터링 기술은 주로 생체, 차량, 영상 정보를 사용하는 기술로 나눌 수 있음

3

본 논문은 최근 머신 러닝, 딥러닝 기술을 사용하여 영상 처리 및 인식 속도와 정확도 등을 향상시키고 있는 영상기반 운전자 모니터링 기술에 대해 상세히 설명하였으며, NDRA를 졸음과 그 외의 행동으로 분류하고, 동향 분석을 통해 졸음과 NDRA 인식에서 주로 사용하는 특징 영역과 일반적인 프로세스를 제시하였음

참고자료

- 3page
 - https://kr.freepik.com/
- 6page
 - · Examining accident reports involving autonomous vehicles in California
 - Favarò FM, et al. "Examining accident reports involving autonomous vehicles in California", PLoS ONE, 12, 9, p.e0184952, 2017.
- 7page
 - 자율주행 상황에서 제어권 전환 요청 시기가 운전자 작업부하에 미치는 영향
 - · 윤용덕, 명노해, 대한인간공학회지, 38(2), 2019.4, 61-71.
- 8page
 - 자율주행자동차 운전제어권 전환을 위한 운전자 모니터링 기술 동향
 - 오영달, 류동운, 박선홍, 한국통신학회지(정보와통신), 35(12), 2019.11, 29-35.
- 9page
 - Automated Detection of Driver Fatigue Based on AdaBoost Classifier with EEG Signals
 - · Hu J (2017) Automated Detection of Driver Fatigue Based on AdaBoost Classifier with EEG Signals. Front. Comput. Neurosci. 11:72.
 - · 심전도(LF/HF)를 활용한 졸음운전 예방 연구
 - 문광수 등. 한국안전학회지, vol.30(2), 2015, 56-62.
 - Heart Rate Variability-Based Driver Drowsiness Detection and Its Validation With EEG
 - K. Fujiwara et al., "Heart Rate Variability-Based Driver Drowsiness Detection and Its Validation With EEG," in IEEE Transactions on Biomedical Engineering, vol. 66, no. 6, pp. 1769-1778, June 2019.
- 10page
 - https://www.csselectronics.com/screen/page/can-interface-streaming-obd2-data-with-wireshark/language/en
- 11page
 - https://www.kaggle.com/c/state-farm-distracted-driver-detection/data.
- 13page
 - Driver drowsiness monitoring system using visual behaviour and machine learning
 - A. Kumar and R. Patra, 2018 IEEE Symposium on Computer Applications & Industrial Electronics (ISCAIE), Penang, 2018, pp. 339-344.
 - A Deep Learning Approach to Detect Drowsy Drivers in Real Time
 - A. Pinto, M. Bhasi, D. Bhalekar, P. Hegde and S. G. Koolagudi, 2019 IEEE 16th India Council International Conference (INDICON), Rajkot, India, 2019, pp. 1-4.

Q & A

감사합니다.