

Fa	hr	ra	ماہ		\sim	on
Гα		la	Ш	\Box		\Box

Aufgabennummer: B_251

Technologieeinsatz: möglich □ erforderlich ⊠

Es findet ein Fahrradrennen statt.

- a) Die Rennstrecke führt geradlinig von A über B nach C. C hat die Koordinaten (8| y_0). Die Richtung von B nach C ist durch den Vektor $\binom{2}{1.5}$ gegeben.
 - Berechnen Sie die Länge des Weges von A nach B.
 - Zeichnen Sie den Punkt *C* in die nebenstehende Grafik ein.
 - Beschreiben Sie, was mit dem Ausdruck $-(\overrightarrow{AB} + \overrightarrow{BC})$ berechnet wird.

- b) Auf der Rennstrecke befindet sich ein gerades Straßenstück mit 10 % Gefälle.
 - Erklären Sie mithilfe des Steigungsbegriffes, was "10 % Gefälle" bedeutet.
 - Berechnen Sie den Neigungswinkel des Straßenstücks.

Fahrradrennen 2

c) Der zurückgelegte Weg einer Rennfahrerin wird bei einem Bremsmanöver gemessen.

t in s	1	3	5
s in m	10,17	23,73	28,25

t ... Zeit in Sekunden (s)

s(t) ... zurückgelegter Weg zum Zeitpunkt t in Metern (m)

Der zurückgelegte Weg kann durch eine quadratische Funktion s mit $s(t) = a \cdot t^2 + b \cdot t + c$ beschrieben werden.

- Erstellen Sie mithilfe der gegebenen Messwerte ein Gleichungssystem zur Berechnung der Parameter *a*, *b* und *c*.
- Lösen Sie dieses Gleichungssystem.
- Berechnen Sie mithilfe der Funktion s die mittlere Geschwindigkeit im Zeitintervall [2; 4].
- Erklären Sie, welche Größe mit der 1. Ableitung der Funktion s zum Zeitpunkt t=3 berechnet werden kann.

Hinweis zur Aufgabe:

Lösungen müssen der Problemstellung entsprechen und klar erkennbar sein. Ergebnisse sind mit passenden Maßeinheiten anzugeben. Diagramme sind zu beschriften und zu skalieren.

Fahrradrennen 3

Möglicher Lösungsweg

a)
$$|\overrightarrow{AB}| = \sqrt{2^2 + 10^2} = 10,20$$

Die Länge der Strecke vom Punkt A zum Punkt B beträgt 10,2 km.

Man berechnet den Vektor \overrightarrow{CA} (Länge und Richtung der geradlinigen Verbindung von C nach A).

Eine grafische Erklärung im Koordinatensystem ist ebenfalls zulässig.

b) Die Steigung gibt das Verhältnis der vertikalen zur horizontalen Distanz an. Ein Gefälle von 10 % bedeutet, dass pro 100 m in horizontaler Richtung die Straße um 10 Höhenmeter fällt.

$$arctan(0,1) \approx 5,71$$

Der Neigungswinkel der Straße beträgt ca. 5,71°.

c) Das Einsetzen der Messwerte in die Funktion liefert die folgenden 3 Gleichungen:

I:
$$10,17 = a + b + c$$

II: $23,73 = a \cdot 9 + b \cdot 3 + c$

III:
$$28,25 = a \cdot 25 + b \cdot 5 + c$$

Durch Lösen mit Technologieeinsatz erhält man die folgenden Koeffizienten:

$$a = -1.13$$
 $b = 11.3$

$$s(t) = -1.13 \cdot t^2 + 11.3 \cdot t$$

mittlere Geschwindigkeit in m/s: $\frac{\Delta s(t)}{\Delta t} = \frac{s(4) - s(2)}{2} = 4,52$

Die 1. Ableitung an der Stelle t=3 gibt die Momentangeschwindigkeit der Rennfahrerin zu diesem Zeitpunkt an.

Fahrradrennen 4

Klassifikation

□ Teil A ⊠ Teil B

Wesentlicher Bereich der Inhaltsdimension:

- a) 2 Algebra und Geometrie
- b) 3 Funktionale Zusammenhänge
- c) 4 Analysis

Nebeninhaltsdimension:

- a) —
- b) 2 Algebra und Geometrie
- c) 5 Stochastik

Wesentlicher Bereich der Handlungsdimension:

- a) B Operieren und Technologieeinsatz
- b) D Argumentieren und Kommunizieren
- c) A Modellieren und Transferieren

Nebenhandlungsdimension:

- a) C Interpretieren und Dokumentieren
- b) B Operieren und Technologieeinsatz
- c) B Operieren und Technologieeinsatz, D Argumentieren und Kommunizieren

Schwierigkeitsgrad:

Punkteanzahl:

a) leicht

a) 3

b) leicht

b) 2

c) mittel

c) 4

Thema: Sport

Quellen: -