Евгений Борисов

разделяем набор данных

- учебный
- тестовый

недообучение (underfitting) большая ошибка на учебном наборе

переобучение (overfitting) малая ошибка на учебном наборе большая ошибка на тестовом наборе

классификация - задача разделения объектов на классы

$$X{\subset}{\rm I\!R}^n$$
 - объекты

$$Y \in \{0,1\}$$
 - метки классов

$$p \in [0,1]$$
 - оценка

$$a:X o p$$
 - считаем оценку

$$y = \begin{cases} 0 \text{, } p < b \text{ - если оценка выше порога} \\ 1 \text{, } p \geq b \end{cases}$$
 то объект принадлежит «первому» классу

метрики качества на тестовом наборе

- погрешность (accuracy)матрица ошибок (confusion matrix)точность (precision)
- полнота (recall)
- F-мера
- ROC/AUC

погрешность (accuracy)

правильные ответы / всего примеров

оценка для сбалансированного набора, т.е. количество примеров в классах почти одинаковое

Пример:

тест на болезнь «зеленуху» имеет вероятность ошибки 0.1 (как позитивной, так и негативной)

зеленухой болеет 10% населения.

Какая вероятность того, что человек болен зеленухой, если у него позитивный результат теста?

Подсказка: формула Байеса

$$P(\text{болен} | +) = \frac{P(+|\text{болен})P(\text{болен})}{P(+|\text{болен})P(\text{болен}) + P(+|\text{здоров})P(\text{здоров})}$$

Подсказка: формула Байеса

$$P(\text{болен} | +) = \frac{P(+|\text{болен})P(\text{болен})}{P(+|\text{болен})P(\text{болен}) + P(+|\text{здоров})P(\text{здоров})}$$

OTBET: (0.9*0.1) / (0.9*0.1 + 0.1*0.9) = 0.5

Подсказка: формула Байеса

$$P(\text{болен} | +) = \frac{P(+|\text{болен})P(\text{болен})}{P(+|\text{болен})P(\text{болен}) + P(+|\text{здоров})P(\text{здоров})}$$

OTBET: (0.9*0.1) / (0.9*0.1 + 0.1*0.9) = 0.5

Замечание о корректности этого результата:

анализы проводят, когда есть подозрение на какую-то болезнь,

поэтому вероятность болезни надо вычислять по этой «подозрительной» группе.

это понижает требования к точности прибора...

матрица ошибок (confusion matrix)

два класса — четыре группы

- ТР истинно положительные
- TN истинно отрицательные
- FP ложно положительные
- FN ложно отрицательные

точность (precision)

TP/(TP+FP)

(метрики для отдельного класса)

доля объектов действительно принадлежащих данному классу относительно всех объектов, которые классификатор отнес к этому классу

полнота (recall)

TP/(TP + FN)

доля объектов, найденных классификатором, относительно всех объектов этого класса

F-мера

(precision*recall) / (precision+recall) усреднение точности и полноты

Пример classification_report

p	recision	recall	f1-score	support
0 1	0.90 0.91	0.90 0.90	0.90 0.91	2835 2927
avg / total	0.90	0.90	0.90	5762

ROC - receiver operating characteristic, рабочая характеристика приёмника

AUC - area under ROC curve, площадь под ROC-кривой характеристика качества классификации

TPR=TP/(TP+FN)

полнота(recall), доля объектов, найденных классификатором, относительно всех объектов этого класса

FPR=FP/(FP+TN)

доля объектов negative класса алгоритм предсказал неверно

ROC - зависимость полноты **TPR** от доли ложно-негативных **FPR** при изменении порога скора

git clone https://github.com/mechanoid5/ml_lectorium.git
Александр Дьяконов AUC ROC (площадь под кривой ошибок)
Кривая ошибок http://www.machinelearning.ru

Вопросы?

источники данных для экспериментов

sklearn.datasets

UCI Repository

Kaggle

- выбрать датасеты из UCI Repository
- обработать их с помощью Pandas
- применить kNN и DTree на этих наборах данных
- оценить результаты классификации
- https://github.com/rougier/numpy-100
- https://github.com/ajcr/100-pandas-puzzles