SERVICE SHEE

(Also covering Astrad "VEGA" 302)

A battery-operated portable receiver, the Astrad "Riga" R302 covers long and medium wave broadcast bands on AM, and the VHF/FM broadcast band. AM reception is from a built-in ferrite aerial, and FM from a telescopic aerial. Edgewise controls are fitted for tuning and volume control, with slide switches for waveband selection and tone control. Sockets are provided for AM external aerial and earth connection, and for a personal earphone.

Housed in a three-tone plastics cabinet with silver trim, the Riga R302 is supplied complete with leather carrying case and strap.

3160

Portable AM/FM receiver

Brief Specification

Power supply

6 HP7 (or equivalent) 1.5V batteries (9V d.c.) AM: LW 735.3 to 2000m (150 to 408kHz)

Wavebands MW 186·9 to 571·4m (525 to 1605kHz)

FM: VHF 87.5 to 108MHz

Intermediate frequencies

AM: 465 kHz FM: 10·7MHz

Transistors

T322A (five) M PT108B, PR108G, MN41, (two)

(USSR types)

Diodes

902*, 9B*, 20* (two)

AF output

150mW

Inputs

External aerial and earth

Output Loudspeaker Earphone 2½in (64mm) round, impedance 10 ohms

Height

3¾in

(96mm)

Width

Depth

Dimensions

8åin 18in

(222mm)

(47mm)

Manufacturer

V/O Radiozagranpostavka, Riga, USSR.

U.K. Distribution and

Technical and Optical Equipment Ltd.,

Service

Zenith House, Thane Villas, London N7 01-263 0951

* USSR-type prefixes

- 3. Remove back cover, and free back from cabinet by disconnecting flying lead from telescopic aerial, unscrewing earphone socket, removing aerial/earth socket panel.
- 4. To remove chassis assembly lift cut tone control switch, release two threaded pillars B (one long, one short), and screw C. To free chassis from cabinet, remove volume control (after detaching control knob), and disconnect loudspeaker leads.
- 5. When re-assembling, be sure to engage slider switch knob on cabinet back with waveband switch toggle on chassis, and check that waveband switch operates correctly before securing cabinet back. Replug recessed back screw.

Dismantling

(see internal view diagrams)

- 1. Remove battery compartment cover and batteries.
- 2. Release two screws A from back cover-one plated, one recessed and plugged.

Tuning L5/6 to L27/2 telescopic Main 29/3 Ae/e socket pane l

Alignment

Equipment required:

AM signal generator covering 150 to 1610kHz, 10·7MHz, modulation 10kHz at 30 per cent.

FM signal generator covering 10.7MHz, 86 to 110MHz, deviation 22.5kHz.

Output meter (VTVM) and centre-zero voltmeter.

Suitable input matching components as detailed.

I.F. Stages

AM

- Select "MW". Inject signals from AM generator via 0.05uF capacitor to Tr3 base. Connect VTVM across loudspeaker terminals.
- Tune signal generator to 465kHz. Adjust AM IFT's L26, L27, L29, L31 for maximum.
- When aligned, receiver sensitivity should be such that an input of 10uV should produce an a.f. output of 50mW.

FΜ

- Select "VHF". Inject signals from AM generator via 0.01uF capacitor to Tr5 emitter. Connect VTVM across C60.
- Tune generator to 10·7MHz (unmodulated) and adjust FM IFT's L23 for maximum, L25 for minimum. Adjust preset R21 for zero reading on VTVM.
- Connect centre-zero meter across R25, switch on modulation at 30 per cent, and adjust L24 for minimum.
- Disconnect AM generator and feed signals from FM generator, tuned to 10·7MHz and deviated 22·5kHz, via 0·01uF capacitor to Tr3 emitter. Adjust L19, L17 for maximum.
- Transfer signal generator output to Tr2 emitter, adjust L15, L13 for maximum.
- 6. When aligned, bandwidth should be 140 to 220kHz at 6dB. Selectivity should be 6dB down with input r.f. signal offtuned by $\pm 300 \text{kHz}$.

R.F. Stages

ΑM

Inject signals from AM signal generator via inductive loop to ferrite aerial. Connect VTVM across loudspeaker terminals. LW

- Select "LW". Tune receiver to low frequency end of scale, signal generator to 145kHz. Adjust oscillator coil L10 for maximum.
- Retune receiver to high frequency end of scale, signal generator to 465kz. Adjust oscillator trimmer C23 for maximum.
- Tune receiver and signal generator to 150kHz. Adjust r.f. coil L5 (by sliding coil along ferrite rod) for maximum.
- Retune receiver and signal generator to 390kHz; adjust r.f. trimmer C6 for maximum.
- Repeat steps 2 to 6 for optimum results. Seal L5.

MW

- 1. Select "MW".
- Tune receiver to low frequency end of scale, signal generator to 515kHz.
 Adjust oscillator coil L7 for maximum.
- Retune receiver to high frequency end of scale, signal generator to 1670kHz. Adjust oscillator trimmer C22 for maximum.
- Tune receiver and signal generator to 540kHz; adjust r.f. coil L3 (by sliding coil along ferrite rod) for maximum.
- Retune receiver and generator to 1500kHz. Adjust r.f. trimmer C5 for maximum.
- 6. Repeat steps 2 to 5 for optimum results.

(continued overleaf)

Voltages measured with wave-band

Components

Alignment (continued)

FΜ

Inject signals from FM signal generator via $0.01 \, \text{uF}$ capacitor to telescopic aerial lead.

- 1. Select "FM".
- Tune receiver to low frequency end of scale, signal generator to 86-5MHz. Adjust oscillator coil L2 (by compressing or stretching turns) for maximum.
- Retune receiver to low frequency end of scale, signal generator to 110MHz. Adjust oscillator trimmer C27 for maximum.
- 4. Tune receiver and generator to 88MHz. Adjust r.f. coil **L1** for maximum.
- Retune receiver and generator to 108MHz. Adjust r.f. trimmer C8 for maximum.
- 6. Repeat steps 2 to 5 for optimum results.

Resist	tors				
R1	2kΩ	A1	R26	5·1kΩ	В1
R2	15kΩ	A2	R27	27kΩ	B1
R3	1kΩ	Α1	R28	56Ω	В1
R4	2·4kΩ	Α1	R29	8·2kΩ	B1
R5	3⋅6kΩ	A2	R30	82Ω	В1
R6	18kΩ	Α2	R31	120Ω	В1
R7	5·1kΩ	A2	R32	390Ω	В1
R9	1kΩ	В1	R33	75Ω	В1
R10	18kΩ	В1	R34	Ω 8	B2
R11	8·2kΩ	Α2	R35	470Ω	В1
R13	5·6kΩ	В1	R37	$10k\Omega$	A1
R14	1kΩ	В2	R38	470Ω \	no
R15	5·1kΩ	Α2	R39	24kΩ	[≻] sh
R16	5·1kΩ	В1	*variable	,	
R17	1kΩ	В2			
R18	470Ω	A2			
R19	3⋅6kΩ	A2			
R20	1kΩ	В2			
R21	3.3kΩ•	B2			
R22	6⋅8kΩ	В2			
R23	6⋅8kΩ	В2			
R24	2kΩ	В2			
R25	10kΩ*	†			

Capa	citors		
C1	4·7pF	A1	C30
C2	22pF	A2	C31
C3	5270pF	A2	C32
C4	1000pF	A2	C33
C5	3—20pF	A1	C34
C6	320pF	A1	C35
C7	425pF	Α2	C36
C8	2—10pF	Α2	C37
C11	0·01 µF	A1	C38
C12	0·01 µF	A2	C39
C13	5—270pF	A2	C40
C15	560pF	A1	C41
C16	0·0033µF	A2	C42
C19	1000pF	A1	C43
C20	300pF	A2	C44
C21	130pF	A2	C45
C22	210pF	A2	C46
C23	210pF	A2	C47
C24	4—25pF	A2	C48
C25	15pF	A2	C49
C26	37pF	A2	C50
C27 .	2—10pF	A2	C51
C28	56pF	A1	C52

Printed in Great Britain

45 47 46	48	49 51 52 50 53		54	56 55 5	57	59 58	60 80	78 81		62 64	65	<i>6</i> 4	68		
14 15	16	17	18		21 19	20 2	23 24	25	26	27	28 29	30 31	32 33	35 34		
29 30			24 23 31	25 32							,		TI		T2	33

ith wave-band switch set to VHF

mponents

C30	0·033µF	A1	C53	1.5pF	В2	C78 6800pF †
C31	0·033µF	Α1	C54	56pF	B2	C79 470pF not
C32	56pF	B1	C55	3000pF	A2	shown
C33	510pF	Α1	Ç56	270pF	B2	† in external wiring
C34	15pF	A1	C57	270pF	B2	Transistors
C35	56pF	Α2	C58	0.033µF	A2	Tr1 TT322A A1
C36	3·9pF	A1	C59	0·033μF	В2	Tr2 TT322A A1
C37	15pF	B1	C60	10μF	B2	Tr3 TT322A A2
C38	56pF	B1	C62	1000pF	В1	Tr4 TT322A B1
C39	510pF	Α1	C63	300pF	B1	Tr5 TT322A B2
C40	10μF	A1	C64	50μF	B1	Tr6 PR108G B1
C41	0·033µF	В1	C65	50μF	B1	Tr7 MT108B B1
C42	1000pF	B1	C66	100μF	B2	Tr8 MN41 B2
C43	0·033µF	Α1	C67	5μF	B1	Tr9 MTK8 B2
C44	56pF	В1	C68	4700pF	B2	Diodes
C45	510pF	В1	C69	4700pF	B1	D1 902* A1±
C46	0.033µF	Α2	C70	27pF	A1	D2 2AC (or 2x1AC)
C47	2200pF	B2	C71	15pF	A1	D3 98* A2
C48	0·033µF	Α2	C72	4·7pF	A1	D4 20* B2
C49	56pF	В2	C73	12pF	A2	D5 20* B2
C50	430pF	В2	C75	180pF	A2	* Russian prefix
C51	380pF	B2	C76	300pF	A1	‡ Note fitted in early
C52	0·01 μF	B2	C77	27nF	Δ1	+ Note inted in early

Do you read the TRADER?

Each week the TRADER carries important features for service managers and technicians.

Annual subscription is only £8.00 for 50 copies a year, including the weekly Service Sheet and various other features.

For full details write to the Deputy Editor, Electrical and Electronic Trader, Room 214, Dorset House, Stamford Street, London SE1 9LU (Tel: 01-261 8732).