Design Structure Matrix

Can be used to structure the problem

Example: min
$$f(x) = x_1^2 + x_2^2$$

s.t.
$$g_1(\bar{x}) = x_1 + x_2 + g_2(\bar{x}) \le 3$$

 $g_2(\bar{x}) = x_1 - 2x_2 + g_1(\bar{x}) \le 3$
 $-5 \le x_1, x_2 \le 5$

f does not need the value of g, or Jz

X
91 needs the value of gz coupled

x
92 needs the value of g,

Reorder the analyses:

Example: min
$$f(x) = g_1(x) + 2$$

$$g_i(x) = x_i + 1 \leq 2$$

calculated

Penalty Functions

Consider the original problem $min f(\bar{x})$

s.t
$$g_j(\bar{x}) \leq 0$$
, $j = 1, ..., m$

$$h_{\ell}(\bar{x}) = 0$$
 , $\ell = 1, ..., n$

we want to punish solutions that violate the constraints

Reformulate the problem with penalty functions:

min
$$F(x) = f(x) + \left[\sum_{j=1}^{m} w_j \cdot G_j + \sum_{k=1}^{n} v_k \cdot L_k\right]$$

where
$$G_j = \left(\max\left(0, g_j(x)\right)\right)^B$$
, $\beta = 1, 2, \dots$

20 when the constraint is ok!

$$L_{\chi} = |h_{\chi}(x) - 0|^{\chi} = |h_{\chi}(x)|^{\chi}, \gamma = 1, 2, 3...$$

abs(h₀)

The factors w_j and v_k might be needed if the f(x) and g(x) are of different magnitudes

Graphical Explanation:

- * The constraints should guide the algorithm to the feasible region
- * Just adding high constant values create plateus

 => difficult for the optimization to know where OK
 designs are

Difficult for the algorithm to find the feasible region

the optimization to the feasible region

Objective Function

- * Should express the preferences of the decision maker
- * Multiple objectives are often conflicting

Ex:
$$F = \left(\frac{f_1}{f_{10}}\right)^{g_1} + \left(\frac{f_2}{f_{20}}\right)^{g_2} + \left(\frac{f_k}{f_{k0}}\right)^{g_k}$$
reference values used for normalization

F is an aggregation of the objectives

Each objective is normalized with a value from a reference design

The exponent yk should express the relative importance of each objective