

Net-Zero America - colorado state report

2021-03-05

These data underlie graphs and tables presented in the Princeton Net-Zero America study:

E. Larson, C. Greig, J. Jenkins, E. Mayfield, A. Pascale, C. Zhang, J. Drossman, R. Williams, S. Pacala, R. Socolow, EJ Baik, R. Birdsey, R. Duke, R. Jones, B. Haley, E. Leslie, K. Paustian, and A. Swan, Net-Zero America: Potential Pathways, Infrastructure, and Impacts, interim report, Princeton University, Princeton, NJ, December 15, 2020. Report available at https://netzeroamerica.princeton.edu.

Notes

- These data are all data from the study available at https://netzeroamerica.prince-ton.edu.
- The Net-Zero America study describes five pathways to reach net-zero emissions and one "no new policies" reference scenario. In this document, state-level results are grouped by scenario. For some scenarios, the study generated national, but not statelevel results.
- Within results for a given scenario, data tables are organized into corresponding sections of the full net-zero study (e.g., Pillar 1, Pillar 2, etc.)
- For Pillar 6 (Land sinks), values shown are maximum carbon storage potentials.

Data by category and subcategory

1	E+ scenario - PILLAR 1: Efficiency/Electrification - Commercial	1
2	E+ scenario - PILLAR 1: Efficiency/Electrification - Electricity demand	1
3	E+ scenario - PILLAR 1: Efficiency/Electrification - Overview	1
4	E+ scenario - PILLAR 1: Efficiency/Electrification - Residential	1
5	E+ scenario - PILLAR 1: Efficiency/Electrification - Transportation	2
6	E+ scenario - PILLAR 2: Clean Electricity - Generating capacity	2
7	E+ scenario - PILLAR 2: Clean Electricity - Generation	2
8	E+ scenario - PILLAR 3: Clean fuels - Bioenergy	3
9	E+ scenario - PILLAR 4: CCUS - CO2 capture	3
10	E+ scenario - PILLAR 4: CCUS - CO2 pipelines	3
11	E+ scenario - PILLAR 4: CCUS - CO2 storage	3
12	E+ scenario - PILLAR 6: Land sinks - Agriculture	4
13	E+ scenario - PILLAR 6: Land sinks - Forests	4
14	E+ scenario - IMPACTS - Fossil fuel industries	7
15	E+ scenario - IMPACTS - Health	7
16	E+ scenario - IMPACTS - Jobs	7
17	E- scenario - PILLAR 1: Efficiency/Electrification - Commercial	8
18	E- scenario - PILLAR 1: Efficiency/Electrification - Electricity demand	9
19	E- scenario - PILLAR 1: Efficiency/Electrification - Overview	9
20	E- scenario - PILLAR 1: Efficiency/Electrification - Residential	9
21	E- scenario - PILLAR 1: Efficiency/Electrification - Transportation	9
22	E- scenario - PILLAR 6: Land sinks - Agriculture	10
23	E- scenario - PILLAR 6: Land sinks - Forests	11
24	E- scenario - IMPACTS - Health	13
25	E+RE+ scenario - PILLAR 1: Efficiency/Electrification - Commercial	13
26	E+RE+ scenario - PILLAR 1: Efficiency/Electrification - Electricity demand .	14
27	E+RE+ scenario - PILLAR 1: Efficiency/Electrification - Overview	14
28	E+RE+ scenario - PILLAR 1: Efficiency/Electrification - Residential	14
29	E+RE+ scenario - PILLAR 1: Efficiency/Electrification - Transportation	14
30	E+RE+ scenario - PILLAR 2: Clean Electricity - Generating capacity	15
31	E+RE+ scenario - PILLAR 2: Clean Electricity - Generation	15
32	E+RE+ scenario - PILLAR 6: Land sinks - Agriculture	15
33	E+RE+ scenario - PILLAR 6: Land sinks - Forests	16
34	E+RE+ scenario - IMPACTS - Health	18
35	E+RE- scenario - PILLAR 1: Efficiency/Electrification - Commercial	19
36	E+RE- scenario - PILLAR 1: Efficiency/Electrification - Electricity demand	19
37	E+RE- scenario - PILLAR 1: Efficiency/Electrification - Overview	19
38	E+RE- scenario - PILLAR 1: Efficiency/Electrification - Residential	19
39	E+RE- scenario - PILLAR 1: Efficiency/Electrification - Transportation	20
40	E+RE- scenario - PILLAR 2: Clean Electricity - Generating capacity	20
41	E+RE- scenario - PILLAR 2: Clean Electricity - Generation	20
42	E+RE- scenario - PILLAR 6: Land sinks - Agriculture	21
43	E+RE- scenario - PILLAR 6: Land sinks - Forests	21

44	E+RE- scenario - IMPACTS - Health	24
45	E-B+ scenario - PILLAR 1: Efficiency/Electrification - Commercial	24
46	E-B+ scenario - PILLAR 1: Efficiency/Electrification - Electricity demand	24
47	E-B+ scenario - PILLAR 1: Efficiency/Electrification - Overview	24
48	E-B+ scenario - PILLAR 1: Efficiency/Electrification - Residential	25
49	E-B+ scenario - PILLAR 1: Efficiency/Electrification - Transportation	25
50	E-B+ scenario - PILLAR 2: Clean Electricity - Generating capacity	26
51	E-B+ scenario - PILLAR 2: Clean Electricity - Generation	26
52	E-B+ scenario - PILLAR 3: Clean fuels - Bioenergy	26
53	E-B+ scenario - PILLAR 4: CCUS - CO2 capture	26
54	E-B+ scenario - PILLAR 4: CCUS - CO2 pipelines	26
55	E-B+ scenario - PILLAR 4: CCUS - CO2 storage	27
56	E-B+ scenario - PILLAR 6: Land sinks - Agriculture	27
57	E-B+ scenario - PILLAR 6: Land sinks - Forests	28
58	E-B+ scenario - IMPACTS - Health	30
59	REF scenario - PILLAR 1: Efficiency/Electrification - Commercial	31
60	REF scenario - PILLAR 1: Efficiency/Electrification - Electricity demand	31
61	REF scenario - PILLAR 1: Efficiency/Electrification - Overview	31
62	REF scenario - PILLAR 1: Efficiency/Electrification - Residential	31
63	REF scenario - PILLAR 1: Efficiency/Electrification - Transportation	32
64	REF scenario - PILLAR 6: Land sinks - Forests	32
65	REF scenario - PILLAR 6: Land sinks - Forests - REF only	34
66	REF scenario - IMPACTS - Health	35

Table 1: E+ scenario - PILLAR 1: Efficiency/Electrification - Commercial

Item	2020	2025	2030	2035	2040	2045	2050
Commercial HVAC investment in 2020s - Cumulative 5-yr (million \$2018)	0	14,374	15,990	0	0	0	0
Sales of cooking units - Electric Resistance (%)	41.9	54.6	83	88.6	88.9	88.9	88.9
Sales of cooking units - Gas (%)	58.1	45.4	17	11.4	11.1	11.1	11.1
Sales of space heating units - Electric Heat Pump (%)	2.64	8.18	30.6	79.8	90	90.8	90.8
Sales of space heating units - Electric Resistance (%)	2.48	3.49	4.92	8.08	8.66	8.7	8.7
Sales of space heating units - Fossil (%)	0	0.208	0.04	0.002	0	0	0
Sales of space heating units - Gas Furnace (%)	94.9	88.1	64.4	12.2	1.37	0.522	0.498
Sales of water heating units - Electric Heat Pump (%)	0.022	1.12	14.3	42.9	48.9	49.4	49.4
Sales of water heating units - Electric Resistance (%)	1.1	2.5	15.4	43.8	49.7	50.2	50.2
Sales of water heating units - Gas Furnace (%)	98.6	96	69.9	12.9	0.972	0.027	0
Sales of water heating units - Other (%)	0.269	0.383	0.382	0.383	0.382	0.383	0.383

Table 2: E+ scenario - PILLAR 1: Efficiency/Electrification - Electricity demand

Item	2020	2025	2030	2035	2040	2045	2050
Electricity distribution capital invested -		2.81	2.93	5.73	6.16	6.1	6.47
Cumulative 5-yr (billion \$2018)							

Table 3: E+ scenario - PILLAR 1: Efficiency/Electrification - Overview

Item	2020	2025	2030	2035	2040	2045	2050
Final energy use - Commercial (PJ)	162	162	159	152	144	138	135
Final energy use - Industry (PJ)	171	180	187	200	221	233	246
Final energy use - Residential (PJ)	237	229	221	199	170	148	133
Final energy use - Transportation (PJ)	472	443	394	334	279	243	226

Table 4: E+ scenario - PILLAR 1: Efficiency/Electrification - Residential

Item	2020	2025	2030	2035	2040	2045	2050
Residential HVAC investment in 2020s vs.	0	4.42	4.7	0	0	0	0
REF - Cumulative 5-yr (billion \$2018)							
Sales of cooking units - Electric	50.5	61	93.3	99.7	100	100	100
Resistance (%)							
Sales of cooking units - Gas (%)	49.5	39	6.67	0.336	0	0	0
Sales of space heating units - Electric	5.62	14.5	37.2	82.6	92	92.7	92.7
Heat Pump (%)							
Sales of space heating units - Electric	7.65	13.8	11	4.91	3.67	3.58	3.63
Resistance (%)							
Sales of space heating units - Fossil (%)	3.24	5.67	4.53	2.12	1.56	1.5	1.52
Sales of space heating units - Gas (%)	83.5	66	47.3	10.4	2.8	2.21	2.19
Sales of water heating units - Electric	0	0.93	12.1	36.4	41.4	41.7	41.8
Heat Pump (%)							
Sales of water heating units - Electric	13.2	25.9	34.2	52.7	56.7	57	57
Resistance (%)							
Sales of water heating units - Gas Furnace	85.7	72	52.4	9.64	0.728	0.02	0
(%)							
Sales of water heating units - Other (%)	1.07	1.23	1.23	1.23	1.21	1.21	1.21

Table 5: E+ scenario - PILLAR 1: Efficiency/Electrification - Transportation

Item	2020	2025	2030	2035	2040	2045	2050
Light-duty vehicle capital costs -	0	1,014	2,644	4,211	6,408	6,943	6,637
Cumulative 5-yr (million \$2018)							
Public EV charging plugs - DC Fast (1000	0.303	0	1.77	0	7.25	0	11.6
units)							
Public EV charging plugs - L2 (1000 units)	2.12	0	42.5	0	174	0	280
Vehicle sales - Heavy-duty - diesel (%)	97.2	92.1	67	23.3	4.22	0.628	0
Vehicle sales - Heavy-duty - EV (%)	0.588	3.81	19	45.6	57.4	59.6	60
Vehicle sales - Heavy-duty - gasoline (%)	0.227	0.227	0.176	0.066	0.013	0.002	0
Vehicle sales - Heavy-duty - hybrid (%)	0.082	0.09	0.077	0.031	0.007	0.001	0
Vehicle sales - Heavy-duty - hydrogen FC	0.392	2.54	12.7	30.4	38.2	39.7	40
(%)							
Vehicle sales - Heavy-duty - other (%)	1.5	1.23	1.07	0.568	0.163	0.038	0
Vehicle sales - Light-duty - diesel (%)	1.78	2.01	1.35	0.434	0.078	0.013	0
Vehicle sales - Light-duty - EV (%)	3.16	12.9	42.9	80.4	96.2	99.3	100
Vehicle sales - Light-duty - gasoline (%)	91.2	80.6	52.5	18	3.48	0.596	0
Vehicle sales - Light-duty - hybrid (%)	3.68	4.01	2.95	1.12	0.269	0.057	0
Vehicle sales - Light-duty - hydrogen FC	0.112	0.353	0.221	0.07	0.014	0.002	0
(%)							
Vehicle sales - Light-duty - other (%)	0.112	0.108	0.073	0.026	0.005	0.001	0
Vehicle sales - Medium-duty - diesel (%)	64.7	59.7	42.3	14.4	2.59	0.384	0
Vehicle sales - Medium-duty - EV (%)	0.784	5.07	25.3	60.8	76.5	79.5	80
Vehicle sales - Medium-duty - gasoline (%)	33.7	33.3	25.5	9.32	1.77	0.277	0
Vehicle sales - Medium-duty - hybrid (%)	0.363	0.402	0.341	0.14	0.03	0.005	0
Vehicle sales - Medium-duty - hydrogen	0.196	1.27	6.33	15.2	19.1	19.9	20
FC (%)							
Vehicle sales - Medium-duty - other (%)	0.253	0.255	0.205	0.083	0.019	0.004	0

Table 6: E+ scenario - PILLAR 2: Clean Electricity - Generating capacity

Item	2020	2025	2030	2035	2040	2045	2050
Capital invested - Biomass power plant (billion \$2018)	0	0	0	0	0	0	0
Capital invested - Biomass w/ccu allam power plant (billion \$2018)	0	0	0	0	0	0.01	0
Capital invested - Biomass w/ccu power plant (billion \$2018)	0	0	0	0	0	0.041	0.399
Capital invested - Solar PV - Base (billion \$2018)	0	0.669	0.644	2.54	2.97	3.43	2.48
Capital invested - Solar PV - Constrained (billion \$2018)	0	1.95	1.04	2.19	2.61	2.02	0.721
Capital invested - Wind - Base (billion \$2018)	0	0.226	1.91	0.621	2.45	2.98	1.38
Capital invested - Wind - Constrained (billion \$2018)	0	1.32	2.22	2.91	6.72	6.61	3.73
Installed (cumulative) - OffshoreWind - Base land use assumptions (MW)	0	0	0	0	0	0	0
Installed (cumulative) - Rooftop PV (MW)	895	1,362	1,825	2,410	3,134	4,018	5,120
Installed (cumulative) - Solar - Base land use assumptions (MW)	454	954	1,492	3,798	6,651	10,148	12,829
Installed (cumulative) - Wind - Base land use assumptions (MW)	4,732	4,886	6,317	6,818	8,895	11,556	12,854

Table 7: E+ scenario - PILLAR 2: Clean Electricity - Generation

Item	2020	2025	2030	2035	2040	2045	2050
Biomass power plant (GWh)	0	0	0	0	0	0	0
Biomass w/ccu allam power plant (GWh)	0	0	0	0	0	9.89	9.89
Biomass w/ccu power plant (GWh)	0	0	0	0	0	46.2	494
Solar - Base land use assumptions (GWh)	1,142	1,091	1,209	5,124	6,381	7,849	6,054
Solar - Constrained land use assumptions (GWh)	856	0	2,293	6,152	8,882	3,132	5,821

Table 7: Eucopean	rio - PILLAR 2: Clean	Electricity	Cononation	loontinuedl
TADIC L. ET SCEITUL	IU - PILLAK Z. GIBUII	EIECLI ICILV -	Generation.	ICUIILIIIUEUI

	•	•	•				
Item	2020	2025	2030	2035	2040	2045	2050
Wind - Base land use assumptions (GWh)	16,760	572	5,100	1,679	7,152	8,907	4,322
Wind - Constrained land use assumptions	16,760	587	2,499	4,372	15,416	15,442	9,986
(GWh)							

Table 8: E+ scenario - PILLAR 3: Clean fuels - Bioenergy

Item	2020	2025	2030	2035	2040	2045	2050
Biomass purchases (million \$2018/year)	0	0	0	0	23.6	190	345
Conversion capital investment -	0	0	0	0	330	2,342	2,221
Cumulative 5-yr (million \$2018)							
Number of facilities - Allam power w ccu	0	0	0	0	0	1	1
(quantity)							
Number of facilities - Beccs hydrogen	0	0	0	0	1	3	5
(quantity)							
Number of facilities - Diesel (quantity)	0	0	0	0	0	0	0
Number of facilities - Diesel ccu (quantity)	0	0	0	0	0	1	1
Number of facilities - Power (quantity)	0	0	0	0	0	0	0
Number of facilities - Power ccu	0	0	0	0	0	2	3
(quantity)							
Number of facilities - Pyrolysis (quantity)	0	0	0	0	0	0	0
Number of facilities - Pyrolysis ccu	0	0	0	0	0	1	1
(quantity)							
Number of facilities - Sng (quantity)	0	0	0	0	0	0	0
Number of facilities - Sng ccu (quantity)	0	0	0	0	0	1	1

Table 9: E+ scenario - PILLAR 4: CCUS - CO2 capture

Item	2020	2025	2030	2035	2040	2045	2050
Annual - All (MMT)		0	0.02	3.38	3.77	6.87	9.81
Annual - BECCS (MMT)		0	0	0	0.42	3.41	6.22
Annual - Cement and lime (MMT)		0	0	3.35	3.32	3.42	3.53
Annual - NGCC (MMT)		0	0.02	0.02	0.03	0.03	0.05
Cumulative - All (MMT)		0	0.02	3.4	7.17	14	23.9
Cumulative - BECCS (MMT)		0	0	0	0.42	3.83	10.1
Cumulative - Cement and lime (MMT)		0	0	3.35	6.67	10.1	13.6
Cumulative - NGCC (MMT)		0	0.02	0.04	0.07	0.1	0.15

Table 10: E+ scenario - PILLAR 4: CCUS - CO2 pipelines

Item	2020	2025	2030	2035	2040	2045	2050
All (km)		0	256	556	861	1,099	2,219
Cumulative investment - All (million \$2018)		0	1,225	1,484	1,687	1,902	2,649
Cumulative investment - Spur (million \$2018)		0	0.3	259	463	677	1,424
Cumulative investment - Trunk (million \$2018)		0	1,225	1,225	1,225	1,225	1,225
Spur (km)		0	0.5	301	605	843	1,963
Trunk (km)		0	255	255	255	255	255

Table 11: E+ scenario - PILLAR 4: CCUS - CO2 storage

Item	2020	2025	2030	2035	2040	2045	2050
CO2 storage (MMT)		0	0	0.88	0.9	1.72	2.8
Injection wells (wells)		0	0	2	3	5	6
Resource characterization, appraisal, permitting costs (million \$2020)		36	86.3	101	101	101	101
Wells and facilities construction costs (million \$2020)		0	12	46.7	83.2	139	173

Table 12: E+ scenario - PILLAR 6: Land sinks - Agriculture

Item	2020	2025	2030	2035	2040	2045	2050
Carbon sink potential - Aggressive							-173
deployment - Corn-ethanol to energy							
grasses (1000 tC02e/y)							
Carbon sink potential - Aggressive							-2,661
deployment - Cropland measures (1000							•
tCO2e/y)							
Carbon sink potential - Aggressive							-214
deployment - Permanent conservation							
cover (1000 tCO2e/y)							
Carbon sink potential - Aggressive							-3,048
deployment - Total (1000 tCO2e/y)							-,-
Carbon sink potential - Moderate							-173
deployment - Corn-ethanol to energy							
grasses (1000 tC02e/y)							
Carbon sink potential - Moderate							-1,384
deployment - Cropland measures (1000							1,004
tCO2e/y)							
Carbon sink potential - Moderate							-107
deployment - Permanent conservation							-101
cover (1000 tC02e/y)							
Carbon sink potential - Moderate							-1,664
deployment - Total (1000 tCO2e/y)							-1,004
Land impacted for carbon sink -							172
Aggressive deployment - Corn-ethanol to							172
energy grasses (1000 hectares)							
							3,977
Land impacted for carbon sink -							3,911
Aggressive deployment - Cropland							
measures (1000 hectares)							000
Land impacted for carbon sink -							329
Aggressive deployment - Permanent							
conservation cover (1000 hectares)							
Land impacted for carbon sink -							4,478
Aggressive deployment - Total (1000							
hectares)							
Land impacted for carbon sink - Moderate							172
deployment - Corn-ethanol to energy							
grasses (1000 hectares)							
Land impacted for carbon sink - Moderate							2,071
deployment - Cropland measures (1000							
hectares)							
Land impacted for carbon sink - Moderate							164
deployment - Permanent conservation							
cover (1000 hectares)							
Land impacted for carbon sink - Moderate							2,407
deployment - Total (1000 hectares)							

Table 13: E+ scenario - PILLAR 6: Land sinks - Forests

Item	2020	2025	2030	2035	2040	2045	2050
Carbon sink potential - High - Accelerate							-1,620
regeneration (1000 tCO2e/y)							
Carbon sink potential - High - All (not							-48,148
counting overlap) (1000 tCO2e/y)							
Carbon sink potential - High - Avoid							-1,559
deforestation (1000 tCO2e/y)							
Carbon sink potential - High - Extend							-9,233
rotation length (1000 tCO2e/y)							
Carbon sink potential - High - Improve							-26.8
plantations (1000 tCO2e/y)							
Carbon sink potential - High - Increase							-174
retention of HWP (1000 tCO2e/y)							

Table 13: E+ scenario - PILLAR 6: Land sinks - Forests (continued)

Item Item	2020	2025	2030	2035	2040	2045	2050
Carbon sink potential - High - Increase							-1,273
trees outside forests (1000 tC02e/y)							
Carbon sink potential - High - Reforest							-24,902
cropland (1000 tC02e/y)							0.000
Carbon sink potential - High - Reforest							-3,239
pasture (1000 tC02e/y)							/ 101
Carbon sink potential - High - Restore productivity (1000 tCO2e/y)							-6,121
Carbon sink potential - Low - Accelerate							-812
regeneration (1000 tC02e/y)							-012
Carbon sink potential - Low - All (not							-19,895
counting overlap) (1000 tC02e/y)							-17,073
Carbon sink potential - Low - Avoid							-260
deforestation (1000 tC02e/y)							200
Carbon sink potential - Low - Extend							-3,547
rotation length (1000 tCO2e/y)							0,041
Carbon sink potential - Low - Improve							-13.7
plantations (1000 tCO2e/y)							
Carbon sink potential - Low - Increase							-58.1
retention of HWP (1000 tCO2e/y)							
Carbon sink potential - Low - Increase							-446
trees outside forests (1000 tCO2e/y)							
Carbon sink potential - Low - Reforest							-12,451
cropland (1000 tCO2e/y)							,
Carbon sink potential - Low - Reforest							-245
pasture (1000 tCO2e/y)							
Carbon sink potential - Low - Restore							-2,063
productivity (1000 tCO2e/y)							,
Carbon sink potential - Mid - Accelerate							-1,216
regeneration (1000 tCO2e/y)							
Carbon sink potential - Mid - All (not							-34,021
counting overlap) (1000 tCO2e/y)							•
Carbon sink potential - Mid - Avoid							-909
deforestation (1000 tCO2e/y)							
Carbon sink potential - Mid - Extend							-6,390
rotation length (1000 tCO2e/y)							
Carbon sink potential - Mid - Improve							-20
plantations (1000 tCO2e/y)							
Carbon sink potential - Mid - Increase							-116
retention of HWP (1000 tCO2e/y)							
Carbon sink potential - Mid - Increase							-859
trees outside forests (1000 tCO2e/y)							
Carbon sink potential - Mid - Reforest							-18,676
cropland (1000 tCO2e/y)							
Carbon sink potential - Mid - Reforest							-1,742
pasture (1000 tCO2e/y)							
Carbon sink potential - Mid - Restore							-4,092
productivity (1000 tCO2e/y)							
Land impacted for carbon sink potential -							265
High - Accelerate regeneration (1000							
hectares)							
Land impacted for carbon sink potential -							211
High - Avoid deforestation (over 30 years)							
(1000 hectares)							
Land impacted for carbon sink potential -							4,708
High - Extend rotation length (1000							
hectares)							
Land impacted for carbon sink potential -							9.89
High - Improve plantations (1000							
hectares)							

Table 13: E+ scenario - PILLAR 6: Land sinks - Forests (continued)

Item	2020	2025	2030	2035	2040	2045	2050
Land impacted for carbon sink potential - High - Increase retention of HWP (1000							·
hectares)							
Land impacted for carbon sink potential -							12
High - Increase trees outside forests							12
(1000 hectares)							
Land impacted for carbon sink potential -							1,646
High - Reforest cropland (1000 hectares)							-
Land impacted for carbon sink potential -							92
High - Reforest pasture (1000 hectares)							
Land impacted for carbon sink potential -							2,029
High - Restore productivity (1000							
hectares)							
Land impacted for carbon sink potential -							9,083
High - Total impacted (over 30 years)							
(1000 hectares)							107
Land impacted for carbon sink potential - Low - Accelerate regeneration (1000							133
hectares)							
Land impacted for carbon sink potential -	-						198
Low - Avoid deforestation (over 30 years)							170
(1000 hectares)							
Land impacted for carbon sink potential -							1,804
Low - Extend rotation length (1000							.,00
hectares)							
Land impacted for carbon sink potential -							4.95
Low - Improve plantations (1000							
hectares)							
Land impacted for carbon sink potential -							(
Low - Increase retention of HWP (1000							
hectares)							
Land impacted for carbon sink potential -							63.
Low - Increase trees outside forests							
(1000 hectares)							
Land impacted for carbon sink potential -							823
Low - Reforest cropland (1000 hectares) Land impacted for carbon sink potential -							15.9
Low - Reforest pasture (1000 hectares)							15.3
Land impacted for carbon sink potential -							1,228
Low - Restore productivity (1000							1,220
hectares)							
Land impacted for carbon sink potential -							4,270
Low - Total impacted (over 30 years)							,
(1000 hectares)							
Land impacted for carbon sink potential -							199
Mid - Accelerate regeneration (1000							
hectares)							
Land impacted for carbon sink potential -							205
Mid - Avoid deforestation (over 30 years)							
(1000 hectares)							
Land impacted for carbon sink potential -							3,25
Mid - Extend rotation length (1000							
hectares)							
Land impacted for carbon sink potential -							7.44
Mid - Improve plantations (1000 hectares)							
Land impacted for carbon sink potential -							(
Mid - Increase retention of HWP (1000							
hectares)							00.
Land impacted for carbon sink potential - Mid - Increase trees outside forests (1000							92.3
ויווח - דווףו במסב נו בבס חתופוחב וחו בפופ (וחחח	[

Table 13: E+	ccanario -	DTII AD 6.	Land cinke	Enrocte	(continued)
Table 15. E+	scenurio -	PILLAR D.	LUIIU SIIIKS ·	- Furests i	COHUHUEUT

Item	2020	2025	2030	2035	2040	2045	2050
Land impacted for carbon sink potential -							1,235
Mid - Reforest cropland (1000 hectares)							
Land impacted for carbon sink potential -							115
Mid - Reforest pasture (1000 hectares)							
Land impacted for carbon sink potential -							2,472
Mid - Restore productivity (1000							
hectares)							
Land impacted for carbon sink potential -							7,582
Mid - Total impacted (over 30 years) (1000							
hectares)							

Table 14: E+ scenario - IMPACTS - Fossil fuel industries

Item	2020	2025	2030	2035	2040	2045	2050
Natural gas consumption - Annual (tcf)		377	318	255	192	121	83.7
Natural gas consumption - Cumulative		0	0	0	0	0	7,678
(tcf)							
Natural gas production - Annual (tcf)		2,061	1,948	1,697	1,435	1,138	884
Oil consumption - Annual (million bbls)		87.6	75.4	57.8	41.6	28.7	18.8
Oil consumption - Cumulative (million		0	0	0	0	0	1,793
bbls)							
Oil production - Annual (million bbls)		230	231	231	183	149	98.9

Table 15: E+ scenario - IMPACTS - Health

Item	2020	2025	2030	2035	2040	2045	2050
Monetary damages from air pollution -		220	0.263	0.262	0.198	0.123	0.001
Coal (million 2019\$)							
Monetary damages from air pollution -		278	225	189	184	111	26.5
Natural Gas (million 2019\$)							
Monetary damages from air pollution -		914	899	717	433	203	77.7
Transportation (million 2019\$)							
Premature deaths from air pollution -		24.8	0.03	0.03	0.022	0.014	0
Coal (deaths)							
Premature deaths from air pollution -		31.4	25.4	21.3	20.8	12.6	2.99
Natural Gas (deaths)							
Premature deaths from air pollution -		103	101	80.7	48.7	22.8	8.74
Transportation (deaths)							

Table 16: E+ scenario - IMPACTS - Jobs

Item	2020	2025	2030	2035	2040	2045	2050
By economic sector - Agriculture (jobs)		227	238	217	150	226	312
By economic sector - Construction (jobs)		11,496	11,816	13,596	15,058	16,387	17,444
By economic sector - Manufacturing		12,947	16,996	19,901	17,693	15,315	15,730
(jobs)							
By economic sector - Mining (jobs)		14,440	11,148	8,609	5,627	3,632	2,001
By economic sector - Other (jobs)		908	996	1,497	1,953	2,417	3,325
By economic sector - Pipeline (jobs)		1,289	1,273	1,048	827	631	478
By economic sector - Professional (jobs)		6,910	6,768	7,408	8,021	8,895	9,641
By economic sector - Trade (jobs)		7,383	6,697	6,720	6,405	6,459	6,735
By economic sector - Utilities (jobs)		7,757	8,117	9,529	11,820	13,543	13,159
By education level - All sectors -		18,679	19,184	20,847	21,005	21,249	21,888
Associates degree or some college (jobs)							
By education level - All sectors -		14,729	14,484	14,975	14,290	13,975	13,963
Bachelors degree (jobs)							
By education level - All sectors - Doctoral		491	464	471	461	469	482
degree (jobs)							
By education level - All sectors - High		25,997	26,575	28,796	28,463	28,478	29,132
school diploma or less (jobs)							

Table 16: E+ scenario - IMPACTS - Jobs (continued)

14510 101 2 1 0001141 10 11 11 11010 0050 (001	iciriadaj						
Item	2020	2025	2030	2035	2040	2045	2050
By education level - All sectors - Masters		3,461	3,342	3,437	3,335	3,333	3,359
or professional degree (jobs)							
By resource sector - Biomass (jobs)		553	552	488	376	833	1,367
By resource sector - CO2 (jobs)		18.7	861	190	326	524	982
By resource sector - Coal (jobs)		1,735	395	82.3	68.3	59.3	51.9
By resource sector - Grid (jobs)		8,248	9,262	14,112	18,554	22,996	22,700
By resource sector - Natural Gas (jobs)		14,315	12,133	9,627	8,311	5,968	4,045
By resource sector - Nuclear (jobs)		0	0.003	0.007	0.008	0.018	0.03
By resource sector - Oil (jobs)		25,199	22,582	20,059	14,539	10,815	6,718
By resource sector - Solar (jobs)		7,221	8,199	13,796	15,639	17,400	23,905
By resource sector - Wind (jobs)		6,068	10,065	10,172	9,741	8,906	9,055
Median wages - Annual - All (\$2019 per		67,769	67,624	67,470	67,966	68,698	68,703
job)						,	•
On-Site or In-Plant Training - Total jobs - 1		9,981	10,136	10,912	10,911	10,988	11,200
to 4 years (jobs)		,				,	,
On-Site or In-Plant Training - Total jobs - 4		3,880	3,854	4,119	4,254	4,400	4,481
to 10 years (jobs)			,		,		
On-Site or In-Plant Training - Total jobs -		10,232	10,367	11,085	10,907	10,893	11,212
None (jobs)		-, -	-,	,	-, -	,	•
On-Site or In-Plant Training - Total jobs -		473	492	542	560	576	592
Over 10 years (jobs)							
On-Site or In-Plant Training - Total jobs -		38,792	39,199	41,868	40,922	40,646	41,339
Up to 1 year (jobs)				,		,	•
On-the-Job Training - All sectors - 1 to 4		12,708	12,898	13,881	13,945	14,086	14,368
years (jobs)			-				
On-the-Job Training - All sectors - 4 to 10		3,575	3,568	3,862	4,069	4,269	4,394
years (jobs)					,		•
On-the-Job Training - All sectors - None		3,559	3,531	3,730	3,632	3,615	3,720
(jobs)							
On-the-Job Training - All sectors - Over 10		630	657	709	686	668	688
years (jobs)							
On-the-Job Training - All sectors - Up to 1		42,884	43,394	46,344	45,221	44,865	45,654
year (jobs)							
Related work experience - All sectors - 1		23,367	23,442	24,915	24,462	24,385	24,708
to 4 years (jobs)							
Related work experience - All sectors - 4		14,810	14,920	15,877	15,693	15,688	15,915
to 10 years (jobs)							
Related work experience - All sectors -		8,844	8,982	9,663	9,621	9,689	9,925
None (jobs)							
Related work experience - All sectors -		4,142	4,210	4,477	4,344	4,267	4,305
Over 10 years (jobs)							
Related work experience - All sectors - Up		12,194	12,494	13,595	13,434	13,474	13,971
to 1 year (jobs)				·			
Wage income - All (million \$2019)		4,294	4,331	4,624	4,592	4,638	4,729

Table 17: E- scenario - PILLAR 1: Efficiency/Electrification - Commercial

Item	2020	2025	2030	2035	2040	2045	2050
Commercial HVAC investment in 2020s -	0	14,373	15,986	0	0	0	0
Cumulative 5-yr (million \$2018)							
Sales of cooking units - Electric	41.9	46.2	50.2	60.8	75.4	84.6	87.8
Resistance (%)							
Sales of cooking units - Gas (%)	58.1	53.8	49.8	39.2	24.6	15.4	12.2
Sales of space heating units - Electric	2.64	7.26	9.83	18.3	38.7	64.6	80
Heat Pump (%)							
Sales of space heating units - Electric	2.48	3.43	3.58	4.11	5.42	7.07	8.03
Resistance (%)							
Sales of space heating units - Fossil (%)	0	0.241	0.225	0.171	0.089	0.035	0.016
Sales of space heating units - Gas Furnace	94.9	89.1	86.4	77.4	55.8	28.3	12
(%)							

Table 17: E- scenario -	DILLAR 1. Efficience	//Electrification -	Commercial	continued
Table II. E- Scellul IO -	PILLAK I. EIIILIEIIL	// EIECH 111CUHUH -	CUITITIETCIULT	Continueur

Item	2020	2025	2030	2035	2040	2045	2050
Sales of water heating units - Electric	0.022	0.571	2.07	7.05	19	34.1	43.1
Heat Pump (%)							
Sales of water heating units - Electric	1.1	2	3.47	8.35	20.1	35.1	44
Resistance (%)							
Sales of water heating units - Gas Furnace	98.6	97	94.1	84.2	60.5	30.4	12.5
(%)							
Sales of water heating units - Other (%)	0.269	0.383	0.382	0.383	0.382	0.383	0.383

Table 18: E- scenario - PILLAR 1: Efficiency/Electrification - Electricity demand

Item	2020	2025	2030	2035	2040	2045	2050
Electricity distribution capital invested -		2.32	2.38	3.28	3.43	5.13	5.47
Cumulative 5-yr (billion \$2018)							

Table 19: E- scenario - PILLAR 1: Efficiency/Electrification - Overview

Item	2020	2025	2030	2035	2040	2045	2050
Final energy use - Commercial (PJ)	162	162	161	160	158	155	151
Final energy use - Industry (PJ)	171	181	188	203	226	238	250
Final energy use - Residential (PJ)	237	229	225	220	212	196	175
Final energy use - Transportation (PJ)	472	446	410	379	355	326	292

Table 20: E- scenario - PILLAR 1: Efficiency/Electrification - Residential

Item	2020	2025	2030	2035	2040	2045	2050
Residential HVAC investment in 2020s vs. REF - Cumulative 5-yr (billion \$2018)	0	4.41	4.7	0	0	0	0
Sales of cooking units - Electric Resistance (%)	50.3	51.6	56.1	68.1	84.8	95.1	98.7
Sales of cooking units - Gas (%)	49.7	48.4	43.9	31.9	15.2	4.9	1.32
Sales of space heating units - Electric Heat Pump (%)	5.62	13.3	15.8	24.3	44	68.4	82.7
Sales of space heating units - Electric Resistance (%)	7.65	13.9	13.5	12.5	10.1	6.84	4.95
Sales of space heating units - Fossil (%)	3.24	5.74	5.68	5.1	3.9	2.66	2.01
Sales of space heating units - Gas (%)	83.5	67.1	65	58.1	42	22.1	10.3
Sales of water heating units - Electric Heat Pump (%)	0	0.46	1.74	5.96	16.1	28.9	36.5
Sales of water heating units - Electric Resistance (%)	13.2	25.6	26.5	29.7	37.4	47.1	52.9
Sales of water heating units - Gas Furnace (%)	85.7	72.7	70.5	63.1	45.3	22.7	9.32
Sales of water heating units - Other (%)	1.07	1.23	1.23	1.23	1.22	1.22	1.21

Table 21: E- scenario - PILLAR 1: Efficiency/Electrification - Transportation

Item	2020	2025	2030	2035	2040	2045	2050
Light-duty vehicle capital costs -	0	0	172	344	1,178	3,652	5,339
Cumulative 5-yr (million \$2018)							
Public EV charging plugs - DC Fast (1000	0.303	0	0.614	0	2.74	0	7.45
units)							
Public EV charging plugs - L2 (1000 units)	2.12	0	14.8	0	65.9	0	179
Vehicle sales - Heavy-duty - diesel (%)	97.4	96	91.3	79.8	58.2	32.1	13.7
Vehicle sales - Heavy-duty - EV (%)	0.498	1.45	4.11	10.8	23.6	39.5	51
Vehicle sales - Heavy-duty - gasoline (%)	0.228	0.236	0.239	0.225	0.179	0.109	0.051
Vehicle sales - Heavy-duty - hybrid (%)	0.083	0.094	0.104	0.107	0.092	0.06	0.03
Vehicle sales - Heavy-duty - hydrogen FC	0.332	0.969	2.74	7.17	15.7	26.3	34
(%)							
Vehicle sales - Heavy-duty - other (%)	1.5	1.28	1.46	1.95	2.25	1.96	1.14
Vehicle sales - Light-duty - diesel (%)	1.79	2.16	2.1	1.68	1.1	0.567	0.242

Table 21: E- scenario - PILLAR 1: Efficiency/Electrification - Transportation (continued)

Item	2020	2025	2030	2035	2040	2045	2050
Vehicle sales - Light-duty - EV (%)	1.62	4.1	10.6	23.9	46.2	70.6	87
Vehicle sales - Light-duty - gasoline (%)	92.6	88.6	81.5	69.1	48.7	26.4	11.6
Vehicle sales - Light-duty - hybrid (%)	3.8	4.66	5.29	4.92	3.8	2.31	1.14
Vehicle sales - Light-duty - hydrogen FC	0.113	0.387	0.339	0.264	0.191	0.107	0.05
(%)							
Vehicle sales - Light-duty - other (%)	0.113	0.116	0.107	0.094	0.069	0.038	0.017
Vehicle sales - Medium-duty - diesel (%)	64.8	62.2	57.7	49.4	35.6	19.6	8.37
Vehicle sales - Medium-duty - EV (%)	0.664	1.94	5.49	14.3	31.4	52.6	68
Vehicle sales - Medium-duty - gasoline (%)	33.8	34.7	34.7	31.9	24.4	14.2	6.33
Vehicle sales - Medium-duty - hybrid (%)	0.363	0.418	0.464	0.478	0.414	0.275	0.141
Vehicle sales - Medium-duty - hydrogen	0.166	0.485	1.37	3.58	7.86	13.2	17
FC (%)							
Vehicle sales - Medium-duty - other (%)	0.253	0.266	0.279	0.286	0.258	0.184	0.102

Table 22: E- scenario - PILLAR 6: Land sinks - Agriculture

2020	2025	2030	2035	2040	2045	
1				20.0	2040	2050 -173
						-173
						-2,661
						-214
						-3,048
						-173
						-1,384
						-107
						-1,664
						172
						3,977
						329
						4,478
						172
						2,071
						164

Table 22: E- scenario - PILLAR 6: Land sinks - Agriculture (continued)

Item	2020	2025	2030	2035	2040	2045	2050
Land impacted for carbon sink - Moderate							2,407
deployment - Total (1000 hectares)							

Table 23: E- scenario - PILLAR 6: Land sinks - Forests

Item Conhon sink notential High Appelanate	2020	2025	2030	2035	2040	2045	2050
Carbon sink potential - High - Accelerate							-1,620
regeneration (1000 tC02e/y) Carbon sink potential - High - All (not							-48,148
							-40,140
counting overlap) (1000 tC02e/y) Carbon sink potential - High - Avoid							-1,559
deforestation (1000 tCO2e/y)							-1,559
Carbon sink potential - High - Extend							-9,233
rotation length (1000 tCO2e/y)							-9,233
Carbon sink potential - High - Improve							-26.8
plantations (1000 tCO2e/y)							-20.0
Carbon sink potential - High - Increase							-174
retention of HWP (1000 tCO2e/y)							-114
Carbon sink potential - High - Increase							-1,273
trees outside forests (1000 tCO2e/y)							-1,213
Carbon sink potential - High - Reforest							-24,902
cropland (1000 tCO2e/y)							-24,902
Carbon sink potential - High - Reforest							-3,239
							-3,239
pasture (1000 tCO2e/y) Carbon sink potential - High - Restore							/ 101
•							-6,121
productivity (1000 tC02e/y)							010
Carbon sink potential - Low - Accelerate							-812
regeneration (1000 tCO2e/y)							10.005
Carbon sink potential - Low - All (not							-19,895
counting overlap) (1000 tCO2e/y)							0/0
Carbon sink potential - Low - Avoid							-260
deforestation (1000 tC02e/y)							0.5/7
Carbon sink potential - Low - Extend							-3,547
rotation length (1000 tC02e/y)							10.7
Carbon sink potential - Low - Improve							-13.7
plantations (1000 tCO2e/y)							F0.4
Carbon sink potential - Low - Increase							-58.1
retention of HWP (1000 tCO2e/y)							
Carbon sink potential - Low - Increase							-446
trees outside forests (1000 tC02e/y)							40 / 54
Carbon sink potential - Low - Reforest							-12,451
cropland (1000 tCO2e/y)							0/5
Carbon sink potential - Low - Reforest							-245
pasture (1000 tC02e/y)							
Carbon sink potential - Low - Restore							-2,063
productivity (1000 tC02e/y)							4.047
Carbon sink potential - Mid - Accelerate							-1,216
regeneration (1000 tCO2e/y)							
Carbon sink potential - Mid - All (not							-34,021
counting overlap) (1000 tCO2e/y)							
Carbon sink potential - Mid - Avoid							-909
deforestation (1000 tCO2e/y)							
Carbon sink potential - Mid - Extend							-6,390
rotation length (1000 tCO2e/y)							
Carbon sink potential - Mid - Improve							-20
plantations (1000 tCO2e/y)							
Carbon sink potential - Mid - Increase							-116
retention of HWP (1000 tCO2e/y)							
Carbon sink potential - Mid - Increase							-859
trees outside forests (1000 tCO2e/y)		1	1				

Table 23: E- scenario - PILLAR 6: Land sinks - Forests (continued)

Item	2020	2025	2030	2035	2040	2045	2050
Carbon sink potential - Mid - Reforest							-18,676
cropland (1000 tC02e/y)							17/0
Carbon sink potential - Mid - Reforest							-1,742
pasture (1000 tC02e/y)							/ 000
Carbon sink potential - Mid - Restore							-4,092
productivity (1000 tC02e/y)							
Land impacted for carbon sink potential -							265
High - Accelerate regeneration (1000							
hectares)							
Land impacted for carbon sink potential -							211
High - Avoid deforestation (over 30 years)							
(1000 hectares)							
Land impacted for carbon sink potential -							4,708
High - Extend rotation length (1000							
hectares)							
Land impacted for carbon sink potential -							9.89
High - Improve plantations (1000							
hectares)							
Land impacted for carbon sink potential -							0
High - Increase retention of HWP (1000							
hectares)							
Land impacted for carbon sink potential -							121
High - Increase trees outside forests							
(1000 hectares)							
Land impacted for carbon sink potential -							1,646
High - Reforest cropland (1000 hectares)							.,
Land impacted for carbon sink potential -							92
High - Reforest pasture (1000 hectares)							,_
Land impacted for carbon sink potential -						+	2,029
High - Restore productivity (1000							2,027
hectares)							
Land impacted for carbon sink potential -							9,083
High - Total impacted (over 30 years)							7,000
(1000 hectares)							
Land impacted for carbon sink potential -						+	133
Low - Accelerate regeneration (1000							133
hectares)							
Land impacted for carbon sink potential -							198
							196
Low - Avoid deforestation (over 30 years)							
(1000 hectares)							1.00/
Land impacted for carbon sink potential -							1,804
Low - Extend rotation length (1000							
hectares)							
Land impacted for carbon sink potential -							4.95
Low - Improve plantations (1000							
hectares)							
Land impacted for carbon sink potential -							0
Low - Increase retention of HWP (1000							
hectares)							
Land impacted for carbon sink potential -							63.7
Low - Increase trees outside forests							
(1000 hectares)							
Land impacted for carbon sink potential -							823
Low - Reforest cropland (1000 hectares)							
Land impacted for carbon sink potential -							15.9
Low - Reforest pasture (1000 hectares)							10.7
Land impacted for carbon sink potential -							1,228
Low - Restore productivity (1000							1,220

Table 23: E- scenario - PILLAR 6: Land sinks - Forests (continued)

Item	2020	2025	2030	2035	2040	2045	2050
Land impacted for carbon sink potential -							4,270
Low - Total impacted (over 30 years) (1000 hectares)							
Land impacted for carbon sink potential -							199
Mid - Accelerate regeneration (1000							199
hectares)							
Land impacted for carbon sink potential -							205
Mid - Avoid deforestation (over 30 years)							
(1000 hectares)							
Land impacted for carbon sink potential -							3,256
Mid - Extend rotation length (1000							
hectares)							
Land impacted for carbon sink potential -							7.44
Mid - Improve plantations (1000 hectares)							
Land impacted for carbon sink potential -							0
Mid - Increase retention of HWP (1000							
hectares)							
Land impacted for carbon sink potential -							92.3
Mid - Increase trees outside forests (1000							
hectares)							
Land impacted for carbon sink potential -							1,235
Mid - Reforest cropland (1000 hectares)							
Land impacted for carbon sink potential -							115
Mid - Reforest pasture (1000 hectares)							0.770
Land impacted for carbon sink potential -							2,472
Mid - Restore productivity (1000 hectares)							
Land impacted for carbon sink potential -							7,582
Mid - Total impacted (over 30 years) (1000							1,002
hectares)							
nootal coj							

Table 24: E- scenario - IMPACTS - Health

Item	2020	2025	2030	2035	2040	2045	2050
Monetary damages from air pollution - Coal (million 2019\$)		220	0.263	0.262	0.198	0.123	0.001
Monetary damages from air pollution - Natural Gas (million 2019\$)		275	198	169	121	58.3	16.9
Monetary damages from air pollution - Transportation (million 2019\$)		929	987	1,006	945	783	556
Premature deaths from air pollution - Coal (deaths)		24.8	0.03	0.03	0.022	0.014	0
Premature deaths from air pollution - Natural Gas (deaths)		31.1	22.4	19.1	13.7	6.58	1.91
Premature deaths from air pollution - Transportation (deaths)		104	111	113	106	88	62.5

Table 25: E+RE+ scenario - PILLAR 1: Efficiency/Electrification - Commercial

Item	2020	2025	2030	2035	2040	2045	2050
Commercial HVAC investment in 2020s -	0	14,374	15,990	0	0	0	0
Cumulative 5-yr (million \$2018)							
Sales of cooking units - Electric	41.9	54.6	83	88.6	88.9	88.9	88.9
Resistance (%)							
Sales of cooking units - Gas (%)	58.1	45.4	17	11.4	11.1	11.1	11.1
Sales of space heating units - Electric	2.64	8.18	30.6	79.8	90	90.8	90.8
Heat Pump (%)							
Sales of space heating units - Electric	2.48	3.49	4.92	8.08	8.66	8.7	8.7
Resistance (%)							
Sales of space heating units - Fossil (%)	0	0.208	0.04	0.002	0	0	0

Table 25: <i>E+RE+</i>	scenario -	PTIIAR 1.	Efficiency/	Flectrification -	Commercial	(continued)

Item	2020	2025	2030	2035	2040	2045	2050
Sales of space heating units - Gas Furnace	94.9	88.1	64.4	12.2	1.37	0.522	0.498
(%)							
Sales of water heating units - Electric	0.022	1.12	14.3	42.9	48.9	49.4	49.4
Heat Pump (%)							
Sales of water heating units - Electric	1.1	2.5	15.4	43.8	49.7	50.2	50.2
Resistance (%)							
Sales of water heating units - Gas Furnace	98.6	96	69.9	12.9	0.972	0.027	0
(%)							
Sales of water heating units - Other (%)	0.269	0.383	0.382	0.383	0.382	0.383	0.383

Table 26: E+RE+ scenario - PILLAR 1: Efficiency/Electrification - Electricity demand

Item	2020	2025	2030	2035	2040	2045	2050
Electricity distribution capital invested -		2.81	2.93	5.73	6.16	6.1	6.47
Cumulative 5-yr (billion \$2018)							

Table 27: E+RE+ scenario - PILLAR 1: Efficiency/Electrification - Overview

Item	2020	2025	2030	2035	2040	2045	2050
Final energy use - Commercial (PJ)	162	162	159	152	144	138	135
Final energy use - Industry (PJ)	171	180	187	200	221	233	246
Final energy use - Residential (PJ)	237	229	221	199	170	148	133
Final energy use - Transportation (PJ)	472	443	394	334	279	243	226

Table 28: E+RE+ scenario - PILLAR 1: Efficiency/Electrification - Residential

Item	2020	2025	2030	2035	2040	2045	2050
Residential HVAC investment in 2020s vs.	0	4.42	4.7	0	0	0	0
REF - Cumulative 5-yr (billion \$2018)							
Sales of cooking units - Electric	50.5	61	93.3	99.7	100	100	100
Resistance (%)							
Sales of cooking units - Gas (%)	49.5	39	6.67	0.336	0	0	0
Sales of space heating units - Electric	5.62	14.5	37.2	82.6	92	92.7	92.7
Heat Pump (%)							
Sales of space heating units - Electric	7.65	13.8	11	4.91	3.67	3.58	3.63
Resistance (%)							
Sales of space heating units - Fossil (%)	3.24	5.67	4.53	2.12	1.56	1.5	1.52
Sales of space heating units - Gas (%)	83.5	66	47.3	10.4	2.8	2.21	2.19
Sales of water heating units - Electric	0	0.93	12.1	36.4	41.4	41.7	41.8
Heat Pump (%)							
Sales of water heating units - Electric	13.2	25.9	34.2	52.7	56.7	57	57
Resistance (%)							
Sales of water heating units - Gas Furnace	85.7	72	52.4	9.64	0.728	0.02	0
(%)							
Sales of water heating units - Other (%)	1.07	1.23	1.23	1.23	1.21	1.21	1.21

Table 29: E+RE+ scenario - PILLAR 1: Efficiency/Electrification - Transportation

Item	2020	2025	2030	2035	2040	2045	2050
Light-duty vehicle capital costs -	0	1,014	2,644	4,211	6,408	6,943	6,637
Cumulative 5-yr (million \$2018)							
Public EV charging plugs - DC Fast (1000 units)	0.303	0	1.77	0	7.25	0	11.6
Public EV charging plugs - L2 (1000 units)	2.12	0	42.5	0	174	0	280
Vehicle sales - Heavy-duty - diesel (%)	97.2	92.1	67	23.3	4.22	0.628	0
Vehicle sales - Heavy-duty - EV (%)	0.588	3.81	19	45.6	57.4	59.6	60
Vehicle sales - Heavy-duty - gasoline (%)	0.227	0.227	0.176	0.066	0.013	0.002	0
Vehicle sales - Heavy-duty - hybrid (%)	0.082	0.09	0.077	0.031	0.007	0.001	0
Vehicle sales - Heavy-duty - hydrogen FC (%)	0.392	2.54	12.7	30.4	38.2	39.7	40

Table 29: E+RE+ scena	nio DILLAD 1. Efficience	v/Electrification	Transportation	(nontinued)
Table 29. E+RE+ Scellu	II IU - PILLAR I. EIIIUIEIIU	: 7/ = 120 (111110 (11011 -	Trunsbortution	COMUNICEUM

Item	2020	2025	2030	2035	2040	2045	2050
Vehicle sales - Heavy-duty - other (%)	1.5	1.23	1.07	0.568	0.163	0.038	0
Vehicle sales - Light-duty - diesel (%)	1.78	2.01	1.35	0.434	0.078	0.013	0
Vehicle sales - Light-duty - EV (%)	3.16	12.9	42.9	80.4	96.2	99.3	100
Vehicle sales - Light-duty - gasoline (%)	91.2	80.6	52.5	18	3.48	0.596	0
Vehicle sales - Light-duty - hybrid (%)	3.68	4.01	2.95	1.12	0.269	0.057	0
Vehicle sales - Light-duty - hydrogen FC	0.112	0.353	0.221	0.07	0.014	0.002	0
(%)							
Vehicle sales - Light-duty - other (%)	0.112	0.108	0.073	0.026	0.005	0.001	0
Vehicle sales - Medium-duty - diesel (%)	64.7	59.7	42.3	14.4	2.59	0.384	0
Vehicle sales - Medium-duty - EV (%)	0.784	5.07	25.3	60.8	76.5	79.5	80
Vehicle sales - Medium-duty - gasoline (%)	33.7	33.3	25.5	9.32	1.77	0.277	0
Vehicle sales - Medium-duty - hybrid (%)	0.363	0.402	0.341	0.14	0.03	0.005	0
Vehicle sales - Medium-duty - hydrogen	0.196	1.27	6.33	15.2	19.1	19.9	20
FC (%)							
Vehicle sales - Medium-duty - other (%)	0.253	0.255	0.205	0.083	0.019	0.004	0

Table 30: E+RE+ scenario - PILLAR 2: Clean Electricity - Generating capacity

Item	2020	2025	2030	2035	2040	2045	2050
Capital invested - Solar PV - Base (billion \$2018)	0	0	2.45	2.57	4.26	7.7	35.7
Capital invested - Wind - Base (billion \$2018)	0	0.715	1.61	2.18	6.64	8.39	38.4
Installed (cumulative) - OffshoreWind - Base land use assumptions (MW)	0	0	0	0	0	0	0
Installed (cumulative) - Solar - Base land use assumptions (MW)	454	454	2,501	4,835	8,938	16,787	55,294
Installed (cumulative) - Wind - Base land use assumptions (MW)	4,732	5,218	6,428	8,188	13,808	21,290	57,595

Table 31: E+RE+ scenario - PILLAR 2: Clean Electricity - Generation

Item	2020	2025	2030	2035	2040	2045	2050
Solar - Base land use assumptions (GWh)	1,142	0	4,510	5,224	9,077	17,551	85,919
Solar - Constrained land use assumptions (GWh)	1,142	1,743	6,552	2,471	7,600	13,494	90,049
Wind - Base land use assumptions (GWh)	16,760	1,766	4,273	6,042	18,802	24,359	111,347
Wind - Constrained land use assumptions (GWh)	16,760	706	2,976	14,054	35,526	48,314	152,249

Table 32: E+RE+ scenario - PILLAR 6: Land sinks - Agriculture

Item	2020	2025	2030	2035	2040	2045	2050
Carbon sink potential - Aggressive							-173
deployment - Corn-ethanol to energy							
grasses (1000 tCO2e/y)							
Carbon sink potential - Aggressive							-2,661
deployment - Cropland measures (1000							
tCO2e/y)							
Carbon sink potential - Aggressive							-214
deployment - Permanent conservation							
cover (1000 tCO2e/y)							
Carbon sink potential - Aggressive							-3,048
deployment - Total (1000 tCO2e/y)							
Carbon sink potential - Moderate							-173
deployment - Corn-ethanol to energy							
grasses (1000 tCO2e/y)							
Carbon sink potential - Moderate							-1,384
deployment - Cropland measures (1000							
tCO2e/y)							

Table 32: E+RE+ scenario - PILLAR 6: Land sinks - Agriculture (continued)

Item	2020	2025	2030	2035	2040	2045	2050
Carbon sink potential - Moderate							-107
deployment - Permanent conservation							
cover (1000 tCO2e/y)							
Carbon sink potential - Moderate							-1,664
deployment - Total (1000 tCO2e/y)							
Land impacted for carbon sink -							172
Aggressive deployment - Corn-ethanol to							
energy grasses (1000 hectares)							
Land impacted for carbon sink -							3,977
Aggressive deployment - Cropland							
measures (1000 hectares)							
Land impacted for carbon sink -							329
Aggressive deployment - Permanent							
conservation cover (1000 hectares)							
Land impacted for carbon sink -							4,478
Aggressive deployment - Total (1000							
hectares)							
Land impacted for carbon sink - Moderate							172
deployment - Corn-ethanol to energy							
grasses (1000 hectares)							
Land impacted for carbon sink - Moderate							2,071
deployment - Cropland measures (1000							
hectares)							
Land impacted for carbon sink - Moderate							164
deployment - Permanent conservation							
cover (1000 hectares)							
Land impacted for carbon sink - Moderate							2,407
deployment - Total (1000 hectares)							

Table 33: E+RE+ scenario - PILLAR 6: Land sinks - Forests

Item	2020	2025	2030	2035	2040	2045	2050
Carbon sink potential - High - Accelerate regeneration (1000 tC02e/y)							-1,620
Carbon sink potential - High - All (not counting overlap) (1000 tC02e/y)							-48,148
Carbon sink potential - High - Avoid							-1,559
deforestation (1000 tCO2e/y) Carbon sink potential - High - Extend rotation length (1000 tCO2e/y)							-9,233
Carbon sink potential - High - Improve plantations (1000 tCO2e/y)							-26.8
Carbon sink potential - High - Increase retention of HWP (1000 tC02e/y)							-174
Carbon sink potential - High - Increase trees outside forests (1000 tC02e/y)							-1,273
Carbon sink potential - High - Reforest cropland (1000 tCO2e/y)							-24,902
Carbon sink potential - High - Reforest pasture (1000 tCO2e/y)							-3,239
Carbon sink potential - High - Restore productivity (1000 tC02e/y)							-6,121
Carbon sink potential - Low - Accelerate regeneration (1000 tC02e/y)							-812
Carbon sink potential - Low - All (not counting overlap) (1000 tC02e/y)							-19,895
Carbon sink potential - Low - Avoid deforestation (1000 tCO2e/y)							-260
Carbon sink potential - Low - Extend rotation length (1000 tCO2e/y)							-3,547

Table 33: E+RE+ scenario - PILLAR 6: Land sinks - Forests (continued)

Item	2020	2025	2030	2035	2040	2045	2050
Carbon sink potential - Low - Improve							-13.7
plantations (1000 tCO2e/y)		+					-58.1
Carbon sink potential - Low - Increase							-58.1
retention of HWP (1000 tC02e/y)							111
Carbon sink potential - Low - Increase							-446
trees outside forests (1000 tC02e/y)							10 / 51
Carbon sink potential - Low - Reforest							-12,451
cropland (1000 tC02e/y)							0/5
Carbon sink potential - Low - Reforest							-245
pasture (1000 tC02e/y)							
Carbon sink potential - Low - Restore							-2,063
productivity (1000 tCO2e/y)							
Carbon sink potential - Mid - Accelerate							-1,216
regeneration (1000 tCO2e/y)							
Carbon sink potential - Mid - All (not							-34,021
counting overlap) (1000 tCO2e/y)							
Carbon sink potential - Mid - Avoid							-909
deforestation (1000 tCO2e/y)							
Carbon sink potential - Mid - Extend							-6,390
rotation length (1000 tCO2e/y)							
Carbon sink potential - Mid - Improve							-20
plantations (1000 tCO2e/y)							
Carbon sink potential - Mid - Increase							-116
retention of HWP (1000 tCO2e/y)							
Carbon sink potential - Mid - Increase							-859
trees outside forests (1000 tCO2e/y)							
Carbon sink potential - Mid - Reforest							-18,676
cropland (1000 tCO2e/y)							,
Carbon sink potential - Mid - Reforest							-1,742
pasture (1000 tC02e/y)							.,=
Carbon sink potential - Mid - Restore		+					-4,092
productivity (1000 tC02e/y)							1,072
Land impacted for carbon sink potential -		+	+				265
High - Accelerate regeneration (1000							200
hectares)							
Land impacted for carbon sink potential -		+					211
High - Avoid deforestation (over 30 years)							211
(1000 hectares)							
Land impacted for carbon sink potential -							4,708
High - Extend rotation length (1000							4,100
hectares)							
							9.89
Land impacted for carbon sink potential -							9.09
High - Improve plantations (1000							
hectares)							0
Land impacted for carbon sink potential -							U
High - Increase retention of HWP (1000							
hectares)							101
Land impacted for carbon sink potential -							121
High - Increase trees outside forests							
(1000 hectares)							
Land impacted for carbon sink potential -							1,646
High - Reforest cropland (1000 hectares)							
Land impacted for carbon sink potential -							92
High - Reforest pasture (1000 hectares)							
Land impacted for carbon sink potential -							2,029
High - Restore productivity (1000							
hectares)							
Land impacted for carbon sink potential -							9,083
High - Total impacted (over 30 years)							
(1000 hectares)					1		

Table 33: E+RE+ scenario - PILLAR 6: Land sinks - Forests (continued)

Item	2020	2025	2030	2035	2040	2045	2050
Land impacted for carbon sink potential -	2020	2025	2030	2035	2040	2045	133
Low - Accelerate regeneration (1000							133
= -							
hectares)							100
Land impacted for carbon sink potential -							198
Low - Avoid deforestation (over 30 years)							
(1000 hectares)							
Land impacted for carbon sink potential -							1,804
Low - Extend rotation length (1000							
hectares)							
Land impacted for carbon sink potential -							4.95
Low - Improve plantations (1000							
hectares)							
Land impacted for carbon sink potential -							0
Low - Increase retention of HWP (1000							
hectares)							
Land impacted for carbon sink potential -							63.7
Low - Increase trees outside forests							
(1000 hectares)							
Land impacted for carbon sink potential -							823
Low - Reforest cropland (1000 hectares)							
Land impacted for carbon sink potential -							15.9
Low - Reforest pasture (1000 hectares)							
Land impacted for carbon sink potential -							1,228
Low - Restore productivity (1000							
hectares)							
Land impacted for carbon sink potential -							4,270
Low - Total impacted (over 30 years)							
(1000 hectares)							
Land impacted for carbon sink potential -							199
Mid - Accelerate regeneration (1000							
hectares)							
Land impacted for carbon sink potential -							205
Mid - Avoid deforestation (over 30 years)							
(1000 hectares)							
Land impacted for carbon sink potential -							3,256
Mid - Extend rotation length (1000							-,
hectares)							
Land impacted for carbon sink potential -							7.44
Mid - Improve plantations (1000 hectares)							
Land impacted for carbon sink potential -							0
Mid - Increase retention of HWP (1000							Ū
hectares)							
Land impacted for carbon sink potential -							92.3
Mid - Increase trees outside forests (1000							72.0
hectares)							
Land impacted for carbon sink potential -							1,235
Mid - Reforest cropland (1000 hectares)							1,233
Land impacted for carbon sink potential -						+	115
Mid - Reforest pasture (1000 hectares)							110
							2,472
Land impacted for carbon sink potential -							2,472
Mid - Restore productivity (1000							
hectares)							7.500
Land impacted for carbon sink potential -							7,582
Mid - Total impacted (over 30 years) (1000							
hectares)							

Table 34: E+RE+ scenario - IMPACTS - Health

Item	2020	2025	2030	2035	2040	2045	2050
Monetary damages from air pollution - Coal (million 2019\$)		220	0.263	0.262	0.198	0.123	0.001

T-1-1-0/ F	DC	TATOACTO	1 141-	(
Table 34: <i>E</i> -	+RE+ scenario -	IMPACIS - F	teaith i	continueai

Item	2020	2025	2030	2035	2040	2045	2050
Monetary damages from air pollution -		251	170	108	96.9	46.8	13.5
Natural Gas (million 2019\$)							
Monetary damages from air pollution -		914	899	717	433	203	77.7
Transportation (million 2019\$)							
Premature deaths from air pollution -		24.8	0.03	0.03	0.022	0.014	0
Coal (deaths)							
Premature deaths from air pollution -		28.4	19.2	12.2	10.9	5.28	1.53
Natural Gas (deaths)							
Premature deaths from air pollution -		103	101	80.7	48.7	22.8	8.74
Transportation (deaths)							

Table 35: E+RE- scenario - PILLAR 1: Efficiency/Electrification - Commercial

Item	2020	2025	2030	2035	2040	2045	2050
Commercial HVAC investment in 2020s - Cumulative 5-yr (million \$2018)	0	14,374	15,990	0	0	0	0
Sales of cooking units - Electric Resistance (%)	41.9	54.6	83	88.6	88.9	88.9	88.9
Sales of cooking units - Gas (%)	58.1	45.4	17	11.4	11.1	11.1	11.1
Sales of space heating units - Electric Heat Pump (%)	2.64	8.18	30.6	79.8	90	90.8	90.8
Sales of space heating units - Electric Resistance (%)	2.48	3.49	4.92	8.08	8.66	8.7	8.7
Sales of space heating units - Fossil (%)	0	0.208	0.04	0.002	0	0	0
Sales of space heating units - Gas Furnace (%)	94.9	88.1	64.4	12.2	1.37	0.522	0.498
Sales of water heating units - Electric Heat Pump (%)	0.022	1.12	14.3	42.9	48.9	49.4	49.4
Sales of water heating units - Electric Resistance (%)	1.1	2.5	15.4	43.8	49.7	50.2	50.2
Sales of water heating units - Gas Furnace (%)	98.6	96	69.9	12.9	0.972	0.027	0
Sales of water heating units - Other (%)	0.269	0.383	0.382	0.383	0.382	0.383	0.383

Table 36: E+RE- scenario - PILLAR 1: Efficiency/Electrification - Electricity demand

Item	2020	2025	2030	2035	2040	2045	2050
Electricity distribution capital invested -		2.81	2.93	5.73	6.16	6.1	6.47
Cumulative 5-yr (billion \$2018)							

Table 37: E+RE- scenario - PILLAR 1: Efficiency/Electrification - Overview

Item	2020	2025	2030	2035	2040	2045	2050
Final energy use - Commercial (PJ)	162	162	159	152	144	138	135
Final energy use - Industry (PJ)	171	180	187	200	221	233	246
Final energy use - Residential (PJ)	237	229	221	199	170	148	133
Final energy use - Transportation (PJ)	472	443	394	334	279	243	226

Table 38: E+RE- scenario - PILLAR 1: Efficiency/Electrification - Residential

Item	2020	2025	2030	2035	2040	2045	2050
Residential HVAC investment in 2020s vs.	0	4.42	4.7	0	0	0	0
REF - Cumulative 5-yr (billion \$2018)							
Sales of cooking units - Electric	50.5	61	93.3	99.7	100	100	100
Resistance (%)							
Sales of cooking units - Gas (%)	49.5	39	6.67	0.336	0	0	0
Sales of space heating units - Electric	5.62	14.5	37.2	82.6	92	92.7	92.7
Heat Pump (%)							
Sales of space heating units - Electric	7.65	13.8	11	4.91	3.67	3.58	3.63
Resistance (%)							

Table 38: E+RE-	acanania DII	IAD 1. Eff	icionou/Floota	ification	Dooidontial	(continued)
14016 20: E+KE-	SCEHULTO - PIL	LAK I. EIII	ICIEHCV/EIECH	IIICULIUII	Residentian	COMUNICEUM

Item	2020	2025	2030	2035	2040	2045	2050
Sales of space heating units - Fossil (%)	3.24	5.67	4.53	2.12	1.56	1.5	1.52
Sales of space heating units - Gas (%)	83.5	66	47.3	10.4	2.8	2.21	2.19
Sales of water heating units - Electric Heat Pump (%)	0	0.93	12.1	36.4	41.4	41.7	41.8
Sales of water heating units - Electric Resistance (%)	13.2	25.9	34.2	52.7	56.7	57	57
Sales of water heating units - Gas Furnace (%)	85.7	72	52.4	9.64	0.728	0.02	0
Sales of water heating units - Other (%)	1.07	1.23	1.23	1.23	1.21	1.21	1.21

Table 39: E+RE- scenario - PILLAR 1: Efficiency/Electrification - Transportation

Item	2020	2025	2030	2035	2040	2045	2050
Light-duty vehicle capital costs -	0	1,014	2,644	4,211	6,408	6,943	6,637
Cumulative 5-yr (million \$2018)			·				•
Public EV charging plugs - DC Fast (1000	0.303	0	1.77	0	7.25	0	11.6
units)							
Public EV charging plugs - L2 (1000 units)	2.12	0	42.5	0	174	0	280
Vehicle sales - Heavy-duty - diesel (%)	97.2	92.1	67	23.3	4.22	0.628	0
Vehicle sales - Heavy-duty - EV (%)	0.588	3.81	19	45.6	57.4	59.6	60
Vehicle sales - Heavy-duty - gasoline (%)	0.227	0.227	0.176	0.066	0.013	0.002	0
Vehicle sales - Heavy-duty - hybrid (%)	0.082	0.09	0.077	0.031	0.007	0.001	0
Vehicle sales - Heavy-duty - hydrogen FC	0.392	2.54	12.7	30.4	38.2	39.7	40
(%)							
Vehicle sales - Heavy-duty - other (%)	1.5	1.23	1.07	0.568	0.163	0.038	0
Vehicle sales - Light-duty - diesel (%)	1.78	2.01	1.35	0.434	0.078	0.013	0
Vehicle sales - Light-duty - EV (%)	3.16	12.9	42.9	80.4	96.2	99.3	100
Vehicle sales - Light-duty - gasoline (%)	91.2	80.6	52.5	18	3.48	0.596	0
Vehicle sales - Light-duty - hybrid (%)	3.68	4.01	2.95	1.12	0.269	0.057	0
Vehicle sales - Light-duty - hydrogen FC	0.112	0.353	0.221	0.07	0.014	0.002	0
(%)							
Vehicle sales - Light-duty - other (%)	0.112	0.108	0.073	0.026	0.005	0.001	0
Vehicle sales - Medium-duty - diesel (%)	64.7	59.7	42.3	14.4	2.59	0.384	0
Vehicle sales - Medium-duty - EV (%)	0.784	5.07	25.3	60.8	76.5	79.5	80
Vehicle sales - Medium-duty - gasoline (%)	33.7	33.3	25.5	9.32	1.77	0.277	0
Vehicle sales - Medium-duty - hybrid (%)	0.363	0.402	0.341	0.14	0.03	0.005	0
Vehicle sales - Medium-duty - hydrogen	0.196	1.27	6.33	15.2	19.1	19.9	20
FC (%)							
Vehicle sales - Medium-duty - other (%)	0.253	0.255	0.205	0.083	0.019	0.004	0

Table 40: E+RE- scenario - PILLAR 2: Clean Electricity - Generating capacity

Item	2020	2025	2030	2035	2040	2045	2050
Capital invested - Solar PV - Base (billion \$2018)		1.75	1.27	0.371	2.34	0.528	2.49
Capital invested - Solar PV - Constrained (billion \$2018)		1.93	1.68	1.09	2.24	1.88	2.36
Capital invested - Wind - Base (billion \$2018)		0.169	1.35	0.606	1.04	1.29	0.427
Capital invested - Wind - Constrained (billion \$2018)		0.254	0.437	0.539	2.97	2.95	1.03

Table 41: E+RE- scenario - PILLAR 2: Clean Electricity - Generation

Item	2020	2025	2030	2035	2040	2045	2050
Solar - Base land use assumptions (GWh)	3,250	2,884	2,354	751	5,088	1,229	5,951
Solar - Constrained land use assumptions	1,939	3,134	3,132	2,194	4,791	4,294	5,636
(GWh)							
Wind - Base land use assumptions (GWh)	16,760	431	3,659	1,686	3,029	3,949	1,378
Wind - Constrained land use assumptions	16,760	587	1,092	1,407	7,802	8,170	2,956
(GWh)							

Table 42: E+RE- scenario - PILLAR 6: Land sinks - Agriculture

lable 42: E+RE- scenario - PILLAR 6: Land							
Item	2020	2025	2030	2035	2040	2045	2050
Carbon sink potential - Aggressive							-173
deployment - Corn-ethanol to energy							
grasses (1000 tCO2e/y)							
Carbon sink potential - Aggressive							-2,661
deployment - Cropland measures (1000							
tCO2e/y)							
Carbon sink potential - Aggressive							-214
deployment - Permanent conservation							
cover (1000 tCO2e/y)							
Carbon sink potential - Aggressive							-3,048
deployment - Total (1000 tCO2e/y)							
Carbon sink potential - Moderate							-173
deployment - Corn-ethanol to energy							
grasses (1000 tCO2e/y)							
Carbon sink potential - Moderate							-1,384
deployment - Cropland measures (1000							•
tCO2e/y)							
Carbon sink potential - Moderate							-107
deployment - Permanent conservation							
cover (1000 tC02e/y)							
Carbon sink potential - Moderate							-1,664
deployment - Total (1000 tC02e/y)							,
Land impacted for carbon sink -							172
Aggressive deployment - Corn-ethanol to							
energy grasses (1000 hectares)							
Land impacted for carbon sink -							3,977
Aggressive deployment - Cropland							0,,
measures (1000 hectares)							
Land impacted for carbon sink -							329
Aggressive deployment - Permanent							027
conservation cover (1000 hectares)							
Land impacted for carbon sink -							4,478
Aggressive deployment - Total (1000							7,710
hectares)							
Land impacted for carbon sink - Moderate							172
deployment - Corn-ethanol to energy							112
grasses (1000 hectares)							
Land impacted for carbon sink - Moderate							2,071
deployment - Cropland measures (1000							2,011
hectares)							164
Land impacted for carbon sink - Moderate							164
deployment - Permanent conservation							
cover (1000 hectares)							0 / 07
Land impacted for carbon sink - Moderate							2,407
deployment - Total (1000 hectares)							

Table 43: E+RE- scenario - PILLAR 6: Land sinks - Forests

Item	2020	2025	2030	2035	2040	2045	2050
Carbon sink potential - High - Accelerate							-1,620
regeneration (1000 tCO2e/y)							
Carbon sink potential - High - All (not							-48,148
counting overlap) (1000 tCO2e/y)							
Carbon sink potential - High - Avoid							-1,559
deforestation (1000 tCO2e/y)							
Carbon sink potential - High - Extend							-9,233
rotation length (1000 tCO2e/y)							
Carbon sink potential - High - Improve							-26.8
plantations (1000 tCO2e/y)							
Carbon sink potential - High - Increase							-174
retention of HWP (1000 tCO2e/y)							

Table 43: E+RE- scenario - PILLAR 6: Land sinks - Forests (continued)

Item Conhon sink notantial High Inches	2020	2025	2030	2035	2040	2045	2050
Carbon sink potential - High - Increase							-1,273
trees outside forests (1000 tC02e/y)							0/ 000
Carbon sink potential - High - Reforest cropland (1000 tC02e/y)							-24,902
							2 020
Carbon sink potential - High - Reforest							-3,239
pasture (1000 tC02e/y)							/ 10:
Carbon sink potential - High - Restore							-6,12
productivity (1000 tC02e/y)							010
Carbon sink potential - Low - Accelerate							-812
regeneration (1000 tC02e/y)							10.005
Carbon sink potential - Low - All (not							-19,895
counting overlap) (1000 tC02e/y)							0//
Carbon sink potential - Low - Avoid							-260
deforestation (1000 tC02e/y)							
Carbon sink potential - Low - Extend							-3,547
rotation length (1000 tCO2e/y)							
Carbon sink potential - Low - Improve							-13.7
plantations (1000 tCO2e/y)							
Carbon sink potential - Low - Increase							-58.
retention of HWP (1000 tCO2e/y)							
Carbon sink potential - Low - Increase							-446
trees outside forests (1000 tCO2e/y)							
Carbon sink potential - Low - Reforest							-12,45
cropland (1000 tCO2e/y)							
Carbon sink potential - Low - Reforest							-245
pasture (1000 tCO2e/y)							
Carbon sink potential - Low - Restore							-2,06
productivity (1000 tCO2e/y)							
Carbon sink potential - Mid - Accelerate							-1,216
regeneration (1000 tCO2e/y)							
Carbon sink potential - Mid - All (not							-34,02
counting overlap) (1000 tCO2e/y)							
Carbon sink potential - Mid - Avoid							-909
deforestation (1000 tC02e/y)							
Carbon sink potential - Mid - Extend							-6,390
rotation length (1000 tCO2e/y)							-,
Carbon sink potential - Mid - Improve							-20
plantations (1000 tCO2e/y)							
Carbon sink potential - Mid - Increase							-110
retention of HWP (1000 tCO2e/y)							
Carbon sink potential - Mid - Increase							-85
trees outside forests (1000 tCO2e/y)							00
Carbon sink potential - Mid - Reforest							-18,67
cropland (1000 tCO2e/y)							-10,011
Carbon sink potential - Mid - Reforest	+						-1,74
pasture (1000 tC02e/y)							-1,14
Carbon sink potential - Mid - Restore							-4,09
•							-4,09
productivity (1000 tCO2e/y) Land impacted for carbon sink potential -							26
High - Accelerate regeneration (1000							20
hectares)							01
Land impacted for carbon sink potential -							21
High - Avoid deforestation (over 30 years)							
(1000 hectares)							
Land impacted for carbon sink potential -							4,70
High - Extend rotation length (1000							
hectares)							
Land impacted for carbon sink potential -							9.8
High - Improve plantations (1000							
hectares)							

Table 43: E+RE- scenario - PILLAR 6: Land sinks - Forests (continued)

Item Land impacted for carbon sink potential -	2020	2025	2030	2035	2040	2045	2050
High - Increase retention of HWP (1000							Ĺ
hectares)							
Land impacted for carbon sink potential -							12
High - Increase trees outside forests							
(1000 hectares)							
Land impacted for carbon sink potential -							1,646
High - Reforest cropland (1000 hectares)							
Land impacted for carbon sink potential -							92
High - Reforest pasture (1000 hectares)							
Land impacted for carbon sink potential -							2,029
High - Restore productivity (1000							
hectares)							
Land impacted for carbon sink potential -							9,083
High - Total impacted (over 30 years)							
(1000 hectares)							100
Land impacted for carbon sink potential -							133
Low - Accelerate regeneration (1000 hectares)							
Land impacted for carbon sink potential -	-						198
Low - Avoid deforestation (over 30 years)							170
(1000 hectares)							
Land impacted for carbon sink potential -							1,804
Low - Extend rotation length (1000							.,
hectares)							
Land impacted for carbon sink potential -							4.95
Low - Improve plantations (1000							
hectares)							
Land impacted for carbon sink potential -							C
Low - Increase retention of HWP (1000							
hectares)							
Land impacted for carbon sink potential -							63.7
Low - Increase trees outside forests							
(1000 hectares)							000
Land impacted for carbon sink potential -							823
Low - Reforest cropland (1000 hectares) Land impacted for carbon sink potential -							15.9
Low - Reforest pasture (1000 hectares)							10.9
Land impacted for carbon sink potential -							1,228
Low - Restore productivity (1000							1,220
hectares)							
Land impacted for carbon sink potential -							4,270
Low - Total impacted (over 30 years)							.,
(1000 hectares)							
Land impacted for carbon sink potential -							199
Mid - Accelerate regeneration (1000							
hectares)							
Land impacted for carbon sink potential -							205
Mid - Avoid deforestation (over 30 years)							
(1000 hectares)							
Land impacted for carbon sink potential -							3,256
Mid - Extend rotation length (1000							
hectares)							
Land impacted for carbon sink potential -							7.44
Mid - Improve plantations (1000 hectares)							
Land impacted for carbon sink potential -							C
Mid - Increase retention of HWP (1000							
hectares)							00.0
Land impacted for carbon sink potential - Mid - Increase trees outside forests (1000							92.3
hectares)							

Table 43: E+RE-	econario -	DTIIADA	· I and einke .	Forests	(continued)
1auit 45. E+KE-	SCEIIUI 10 -	PILLAR	o. Luiiu Siiiks ·	- ศบาษธเธา	CUILLIIUEUI

Item	2020	2025	2030	2035	2040	2045	2050
Land impacted for carbon sink potential -							1,235
Mid - Reforest cropland (1000 hectares)							
Land impacted for carbon sink potential -							115
Mid - Reforest pasture (1000 hectares)							
Land impacted for carbon sink potential -							2,472
Mid - Restore productivity (1000							
hectares)							
Land impacted for carbon sink potential -							7,582
Mid - Total impacted (over 30 years) (1000							
hectares)							

Table 44: E+RE- scenario - IMPACTS - Health

Item	2020	2025	2030	2035	2040	2045	2050
Monetary damages from air pollution -		220	0.263	0.262	0.198	0.123	0.001
Coal (million 2019\$)							
Monetary damages from air pollution -		267	186	193	368	169	19.3
Natural Gas (million 2019\$)							
Monetary damages from air pollution -		914	899	717	433	203	77.7
Transportation (million 2019\$)							
Premature deaths from air pollution -		24.8	0.03	0.03	0.022	0.014	0
Coal (deaths)							
Premature deaths from air pollution -		30.1	21	21.8	41.5	19	2.18
Natural Gas (deaths)							
Premature deaths from air pollution -		103	101	80.7	48.7	22.8	8.74
Transportation (deaths)							

Table 45: E-B+ scenario - PILLAR 1: Efficiency/Electrification - Commercial

Item	2020	2025	2030	2035	2040	2045	2050
Commercial HVAC investment in 2020s - Cumulative 5-yr (million \$2018)	0	14,373	15,986	0	0	0	0
Sales of cooking units - Electric Resistance (%)	41.9	46.2	50.2	60.8	75.4	84.6	87.8
Sales of cooking units - Gas (%)	58.1	53.8	49.8	39.2	24.6	15.4	12.2
Sales of space heating units - Electric Heat Pump (%)	2.64	7.26	9.83	18.3	38.7	64.6	80
Sales of space heating units - Electric Resistance (%)	2.48	3.43	3.58	4.11	5.42	7.07	8.03
Sales of space heating units - Fossil (%)	0	0.241	0.225	0.171	0.089	0.035	0.016
Sales of space heating units - Gas Furnace (%)	94.9	89.1	86.4	77.4	55.8	28.3	12
Sales of water heating units - Electric Heat Pump (%)	0.022	0.571	2.07	7.05	19	34.1	43.1
Sales of water heating units - Electric Resistance (%)	1.1	2	3.47	8.35	20.1	35.1	44
Sales of water heating units - Gas Furnace (%)	98.6	97	94.1	84.2	60.5	30.4	12.5
Sales of water heating units - Other (%)	0.269	0.383	0.382	0.383	0.382	0.383	0.383

Table 46: E-B+ scenario - PILLAR 1: Efficiency/Electrification - Electricity demand

Item	2020	2025	2030	2035	2040	2045	2050
Electricity distribution capital invested -		2.32	2.38	3.28	3.43	5.13	5.47
Cumulative 5-yr (billion \$2018)							

Table 47: E-B+ scenario - PILLAR 1: Efficiency/Electrification - Overview

Item	2020	2025	2030	2035	2040	2045	2050
Final energy use - Commercial (PJ)	162	162	161	160	158	155	151

Table 47: E-B+ scenario - PILLAR 1: Efficiency/Electrification - Overview (continued)

Item	2020	2025	2030	2035	2040	2045	2050
Final energy use - Industry (PJ)	171	181	188	203	226	238	250
Final energy use - Residential (PJ)	237	229	225	220	212	196	175
Final energy use - Transportation (PJ)	472	446	410	379	355	326	292

Table 48: E-B+ scenario - PILLAR 1: Efficiency/Electrification - Residential

Item	2020	2025	2030	2035	2040	2045	2050
Residential HVAC investment in 2020s vs.	0	4.41	4.7	0	0	0	0
REF - Cumulative 5-yr (billion \$2018)							
Sales of cooking units - Electric	50.3	51.6	56.1	68.1	84.8	95.1	98.7
Resistance (%)							
Sales of cooking units - Gas (%)	49.7	48.4	43.9	31.9	15.2	4.9	1.32
Sales of space heating units - Electric	5.62	13.3	15.8	24.3	44	68.4	82.7
Heat Pump (%)							
Sales of space heating units - Electric	7.65	13.9	13.5	12.5	10.1	6.84	4.95
Resistance (%)							
Sales of space heating units - Fossil (%)	3.24	5.74	5.68	5.1	3.9	2.66	2.01
Sales of space heating units - Gas (%)	83.5	67.1	65	58.1	42	22.1	10.3
Sales of water heating units - Electric	0	0.46	1.74	5.96	16.1	28.9	36.5
Heat Pump (%)							
Sales of water heating units - Electric	13.2	25.6	26.5	29.7	37.4	47.1	52.9
Resistance (%)							
Sales of water heating units - Gas Furnace	85.7	72.7	70.5	63.1	45.3	22.7	9.32
(%)							
Sales of water heating units - Other (%)	1.07	1.23	1.23	1.23	1.22	1.22	1.21

Table 49: E-B+ scenario - PILLAR 1: Efficiency/Electrification - Transportation

Item	2020	2025	2030	2035	2040	2045	2050
Light-duty vehicle capital costs -	0	0	172	344	1,178	3,652	5,339
Cumulative 5-yr (million \$2018)							
Public EV charging plugs - DC Fast (1000	0.303	0	0.614	0	2.74	0	7.45
units)							
Public EV charging plugs - L2 (1000 units)	2.12	0	14.8	0	65.9	0	179
Vehicle sales - Heavy-duty - diesel (%)	97.4	96	91.3	79.8	58.2	32.1	13.7
Vehicle sales - Heavy-duty - EV (%)	0.498	1.45	4.11	10.8	23.6	39.5	51
Vehicle sales - Heavy-duty - gasoline (%)	0.228	0.236	0.239	0.225	0.179	0.109	0.051
Vehicle sales - Heavy-duty - hybrid (%)	0.083	0.094	0.104	0.107	0.092	0.06	0.03
Vehicle sales - Heavy-duty - hydrogen FC	0.332	0.969	2.74	7.17	15.7	26.3	34
(%)							
Vehicle sales - Heavy-duty - other (%)	1.5	1.28	1.46	1.95	2.25	1.96	1.14
Vehicle sales - Light-duty - diesel (%)	1.79	2.16	2.1	1.68	1.1	0.567	0.242
Vehicle sales - Light-duty - EV (%)	1.62	4.1	10.6	23.9	46.2	70.6	87
Vehicle sales - Light-duty - gasoline (%)	92.6	88.6	81.5	69.1	48.7	26.4	11.6
Vehicle sales - Light-duty - hybrid (%)	3.8	4.66	5.29	4.92	3.8	2.31	1.14
Vehicle sales - Light-duty - hydrogen FC	0.113	0.387	0.339	0.264	0.191	0.107	0.05
(%)							
Vehicle sales - Light-duty - other (%)	0.113	0.116	0.107	0.094	0.069	0.038	0.017
Vehicle sales - Medium-duty - diesel (%)	64.8	62.2	57.7	49.4	35.6	19.6	8.37
Vehicle sales - Medium-duty - EV (%)	0.664	1.94	5.49	14.3	31.4	52.6	68
Vehicle sales - Medium-duty - gasoline (%)	33.8	34.7	34.7	31.9	24.4	14.2	6.33
Vehicle sales - Medium-duty - hybrid (%)	0.363	0.418	0.464	0.478	0.414	0.275	0.141
Vehicle sales - Medium-duty - hydrogen	0.166	0.485	1.37	3.58	7.86	13.2	17
FC (%)							
Vehicle sales - Medium-duty - other (%)	0.253	0.266	0.279	0.286	0.258	0.184	0.102

Table 50: E-B+ scenario - PILLAR 2: Clean Electricity - Generating capacity

Item	2020	2025	2030	2035	2040	2045	2050
Capital invested - Biomass power plant (billion \$2018)	0	0	0	0	0	0	0
Capital invested - Biomass w/ccu allam power plant (billion \$2018)	0	0	0	0	0.009	0	0.042
Capital invested - Biomass w/ccu power plant (billion \$2018)	0	0	0	0	0.139	0	0.584

Table 51: E-B+ scenario - PILLAR 2: Clean Electricity - Generation

Item	2020	2025	2030	2035	2040	2045	2050
Biomass power plant (GWh)	0	0	0	0	0	0	0
Biomass w/ccu allam power plant (GWh)	0	0	0	0	9	9	51
Biomass w/ccu power plant (GWh)	0	0	0	0	156	156	812

Table 52: E-B+ scenario - PILLAR 3: Clean fuels - Bioenergy

Item	2020	2025	2030	2035	2040	2045	2050
Biomass purchases (million \$2018/year)	0	0	0	0	117	458	500
Conversion capital investment -	0	0	0	0	1,360	3,889	588
Cumulative 5-yr (million \$2018)							
Number of facilities - Allam power w ccu	0	0	0	0	1	1	2
(quantity)							
Number of facilities - Beccs hydrogen	0	0	0	0	1	5	5
(quantity)							
Number of facilities - Diesel (quantity)	0	0	0	0	0	0	0
Number of facilities - Diesel ccu (quantity)	0	0	0	0	1	1	1
Number of facilities - Power (quantity)	0	0	0	0	0	0	0
Number of facilities - Power ccu	0	0	0	0	1	1	2
(quantity)							
Number of facilities - Pyrolysis (quantity)	0	0	0	0	0	0	0
Number of facilities - Pyrolysis ccu	0	0	0	0	1	1	1
(quantity)							
Number of facilities - Sng (quantity)	0	0	0	0	0	0	0
Number of facilities - Sng ccu (quantity)	0	0	0	0	0	0	0

Table 53: E-B+ scenario - PILLAR 4: CCUS - CO2 capture

Item	2020	2025	2030	2035	2040	2045	2050
Annual - All (MMT)		0	0	3.38	5.08	10.2	11
Annual - BECCS (MMT)		0	0	0	1.72	6.72	7.4
Annual - Cement and lime (MMT)		0	0	3.35	3.32	3.42	3.53
Annual - NGCC (MMT)		0	0	0.03	0.04	0.04	0.04
Cumulative - All (MMT)		0	0	3.38	8.46	18.6	29.6
Cumulative - BECCS (MMT)		0	0	0	1.72	8.44	15.8
Cumulative - Cement and lime (MMT)		0	0	3.35	6.67	10.1	13.6
Cumulative - NGCC (MMT)		0	0	0.03	0.07	0.11	0.15

Table 54: E-B+ scenario - PILLAR 4: CCUS - CO2 pipelines

Item	2020	2025	2030	2035	2040	2045	2050
All (km)		0	256	696	1,003	1,698	2,129
Cumulative investment - All (million \$2018)		0	1,225	1,699	2,013	2,575	2,836
Cumulative investment - Spur (million \$2018)		0	0.299	360	674	1,236	1,497
Cumulative investment - Trunk (million \$2018)		0	1,225	1,339	1,339	1,339	1,339
Spur (km)		0	0.5	441	747	1,442	1,874
Trunk (km)		0	255	255	255	255	255

Table 55: E-B+ scenario - PILLAR 4: CCUS - CO2 storage

Item	2020	2025	2030	2035	2040	2045	2050
CO2 storage (MMT)		0	0	2.14	3.56	4.92	5.02
Injection wells (wells)		0	1	3	6	9	12
Resource characterization, appraisal, permitting costs (million \$2020)		36	101	129	129	129	129
Wells and facilities construction costs (million \$2020)		0	24	93.3	166	278	345

Table 56: E-B+ scenario - PILLAR 6: Land sinks - Agriculture

Table 56: E-B+ Scenario - Pillar 6: Lana	-						
Item	2020	2025	2030	2035	2040	2045	2050
Carbon sink potential - Aggressive							-376
deployment - Corn-ethanol to energy							
grasses (1000 tC02e/y)							
Carbon sink potential - Aggressive							-2,573
deployment - Cropland measures (1000							
tCO2e/y)							
Carbon sink potential - Aggressive							0
deployment - Cropland to woody energy							
crops (1000 tC02e/y)							
Carbon sink potential - Aggressive							0
deployment - Pasture to energy crops							
(1000 tC02e/y)							
Carbon sink potential - Aggressive							-205
deployment - Permanent conservation							
cover (1000 tC02e/y)							
Carbon sink potential - Aggressive							-3,153
deployment - Total (1000 tC02e/y)							07/
Carbon sink potential - Moderate							-376
deployment - Corn-ethanol to energy							
grasses (1000 tC02e/y)							4.000
Carbon sink potential - Moderate							-1,338
deployment - Cropland measures (1000							
tCO2e/y)							
Carbon sink potential - Moderate							0
deployment - Cropland to woody energy							
crops (1000 tC02e/y)							
Carbon sink potential - Moderate							0
deployment - Pasture to energy crops							
(1000 tCO2e/y) Carbon sink potential - Moderate							-102
deployment - Permanent conservation							-102
cover (1000 tC02e/y)							
Carbon sink potential - Moderate							-1,815
deployment - Total (1000 tC02e/y)							-1,013
Land impacted for carbon sink -							313
Aggressive deployment - Corn-ethanol to							313
energy grasses (1000 hectares)							
Land impacted for carbon sink -							9,486
Aggressive deployment - Cropland							7,400
measures (1000 hectares)							
Land impacted for carbon sink -							8.67
Aggressive deployment - Cropland to							0.01
woody energy crops (1000 hectares)							
Land impacted for carbon sink -							0.404
Aggressive deployment - Pasture to							0.404
energy crops (1000 hectares)							
Land impacted for carbon sink -							314
Aggressive deployment - Permanent							514
conservation cover (1000 hectares)							
Land impacted for carbon sink -							10,123
Aggressive deployment - Total (1000							10,123
hectares)							
nootal ooj							

Table 56: E-B+ scenario - PILLAR 6: Land sinks - Agriculture (continued)

Item	2020	2025	2030	2035	2040	2045	2050
Land impacted for carbon sink - Moderate							313
deployment - Corn-ethanol to energy							
grasses (1000 hectares)							
Land impacted for carbon sink - Moderate							2,000
deployment - Cropland measures (1000							
hectares)							
Land impacted for carbon sink - Moderate							8.67
deployment - Cropland to woody energy							
crops (1000 hectares)							
Land impacted for carbon sink - Moderate							0.404
deployment - Pasture to energy crops							
(1000 hectares)							
Land impacted for carbon sink - Moderate							157
deployment - Permanent conservation							
cover (1000 hectares)							
Land impacted for carbon sink - Moderate							2,479
deployment - Total (1000 hectares)							

Table 57: E-B+ scenario - PILLAR 6: Land sinks - Forests

Item	2020	2025	2030	2035	2040	2045	2050
Carbon sink potential - High - Accelerate							-1,620
regeneration (1000 tCO2e/y)							
Carbon sink potential - High - All (not							-48,148
counting overlap) (1000 tCO2e/y)							
Carbon sink potential - High - Avoid							-1,559
deforestation (1000 tCO2e/y)							
Carbon sink potential - High - Extend							-9,233
rotation length (1000 tCO2e/y)							
Carbon sink potential - High - Improve							-26.8
plantations (1000 tCO2e/y)							
Carbon sink potential - High - Increase							-174
retention of HWP (1000 tCO2e/y)							
Carbon sink potential - High - Increase							-1,273
trees outside forests (1000 tCO2e/y)							
Carbon sink potential - High - Reforest							-24,902
cropland (1000 tCO2e/y)							
Carbon sink potential - High - Reforest							-3,239
pasture (1000 tCO2e/y)							
Carbon sink potential - High - Restore							-6,12 ⁻
productivity (1000 tCO2e/y)							
Carbon sink potential - Low - Accelerate							-812
regeneration (1000 tCO2e/y)							
Carbon sink potential - Low - All (not							-19,895
counting overlap) (1000 tCO2e/y)							
Carbon sink potential - Low - Avoid							-260
deforestation (1000 tCO2e/y)							
Carbon sink potential - Low - Extend							-3,547
rotation length (1000 tCO2e/y)							
Carbon sink potential - Low - Improve							-13.7
plantations (1000 tCO2e/y)							
Carbon sink potential - Low - Increase							-58.
retention of HWP (1000 tCO2e/y)							
Carbon sink potential - Low - Increase							-446
trees outside forests (1000 tCO2e/y)							
Carbon sink potential - Low - Reforest							-12,45
cropland (1000 tCO2e/y)							
Carbon sink potential - Low - Reforest							-245
pasture (1000 tC02e/y)							
Carbon sink potential - Low - Restore							-2,063
productivity (1000 tCO2e/y)							

Table 57: E-B+ scenario - PILLAR 6: Land sinks - Forests (continued)

Item	2020	2025	2030	2035	2040	2045	2050
Carbon sink potential - Mid - Accelerate							-1,216
regeneration (1000 tC02e/y)							07.001
Carbon sink potential - Mid - All (not							-34,021
counting overlap) (1000 tC02e/y)							
Carbon sink potential - Mid - Avoid							-909
deforestation (1000 tC02e/y)							
Carbon sink potential - Mid - Extend							-6,390
rotation length (1000 tCO2e/y)							
Carbon sink potential - Mid - Improve							-20
plantations (1000 tCO2e/y)							
Carbon sink potential - Mid - Increase							-116
retention of HWP (1000 tCO2e/y)							
Carbon sink potential - Mid - Increase							-859
trees outside forests (1000 tCO2e/y)							
Carbon sink potential - Mid - Reforest							-18,676
cropland (1000 tCO2e/y)							·
Carbon sink potential - Mid - Reforest							-1,742
pasture (1000 tCO2e/y)							-,
Carbon sink potential - Mid - Restore							-4,092
productivity (1000 tC02e/y)							4,072
Land impacted for carbon sink potential -							265
							200
High - Accelerate regeneration (1000							
hectares)							011
Land impacted for carbon sink potential -							211
High - Avoid deforestation (over 30 years)							
(1000 hectares)							
Land impacted for carbon sink potential -							4,708
High - Extend rotation length (1000							
hectares)							
Land impacted for carbon sink potential -							9.89
High - Improve plantations (1000							
hectares)							
Land impacted for carbon sink potential -							0
High - Increase retention of HWP (1000							
hectares)							
Land impacted for carbon sink potential -							121
High - Increase trees outside forests							
(1000 hectares)							
Land impacted for carbon sink potential -							1,646
High - Reforest cropland (1000 hectares)							1,0 10
Land impacted for carbon sink potential -							92
High - Reforest pasture (1000 hectares)							72
Land impacted for carbon sink potential -							2,029
							2,029
High - Restore productivity (1000							
hectares)							0.000
Land impacted for carbon sink potential -							9,083
High - Total impacted (over 30 years)							
(1000 hectares)							
Land impacted for carbon sink potential -							133
Low - Accelerate regeneration (1000							
hectares)							
Land impacted for carbon sink potential -							198
Low - Avoid deforestation (over 30 years)							
(1000 hectares)							
Land impacted for carbon sink potential -							1,804
Low - Extend rotation length (1000							
hectares)							
Land impacted for carbon sink potential -							4.95
Low - Improve plantations (1000							-
hectares)							

Table 57: E-B+ scenario - PILLAR 6: Land sinks - Forests (continued)

Item	2020	2025	2030	2035	2040	2045	2050
Land impacted for carbon sink potential -							0
Low - Increase retention of HWP (1000							
hectares)							
Land impacted for carbon sink potential -							63.7
Low - Increase trees outside forests							
(1000 hectares)							
Land impacted for carbon sink potential -							823
Low - Reforest cropland (1000 hectares)							
Land impacted for carbon sink potential -							15.9
Low - Reforest pasture (1000 hectares)							
Land impacted for carbon sink potential -							1,228
Low - Restore productivity (1000							
hectares)							
Land impacted for carbon sink potential -							4,270
Low - Total impacted (over 30 years)							
(1000 hectares)							
Land impacted for carbon sink potential -							199
Mid - Accelerate regeneration (1000							
hectares)							
Land impacted for carbon sink potential -							205
Mid - Avoid deforestation (over 30 years)							
(1000 hectares)							
Land impacted for carbon sink potential -							3,256
Mid - Extend rotation length (1000							
hectares)							
Land impacted for carbon sink potential -							7.44
Mid - Improve plantations (1000 hectares)							
Land impacted for carbon sink potential -							0
Mid - Increase retention of HWP (1000							
hectares)							
Land impacted for carbon sink potential -							92.3
Mid - Increase trees outside forests (1000							
hectares)							
Land impacted for carbon sink potential -							1,235
Mid - Reforest cropland (1000 hectares)							
Land impacted for carbon sink potential -							115
Mid - Reforest pasture (1000 hectares)							
Land impacted for carbon sink potential -							2,472
Mid - Restore productivity (1000							•
hectares)							
Land impacted for carbon sink potential -							7,582
Mid - Total impacted (over 30 years) (1000							•
hectares)							

Table 58: E-B+ scenario - IMPACTS - Health

Item	2020	2025	2030	2035	2040	2045	2050
Monetary damages from air pollution -		220	0.263	0.262	0.198	0.123	0.001
Coal (million 2019\$)							
Monetary damages from air pollution -		270	196	170	148	82.5	20.2
Natural Gas (million 2019\$)							
Monetary damages from air pollution -		929	987	1,006	945	783	556
Transportation (million 2019\$)							
Premature deaths from air pollution -		24.8	0.03	0.03	0.022	0.014	0
Coal (deaths)							
Premature deaths from air pollution -		30.5	22.1	19.2	16.7	9.32	2.28
Natural Gas (deaths)							
Premature deaths from air pollution -		104	111	113	106	88	62.5
Transportation (deaths)							

Table 59: REF scenario - PILLAR 1: Efficiency/Electrification - Commercial

Item	2020	2025	2030	2035	2040	2045	2050
Commercial HVAC investment in 2020s -	0	14,192	14,841	0	0	0	0
Cumulative 5-yr (million \$2018)							
Sales of cooking units - Electric	41.9	44.7	44.7	44.6	44.4	44.5	44.6
Resistance (%)							
Sales of cooking units - Gas (%)	58.1	55.3	55.3	55.4	55.6	55.5	55.4
Sales of space heating units - Electric	2.64	13.8	46.2	73.2	77.9	78.5	78.5
Heat Pump (%)							
Sales of space heating units - Electric	2.48	4.35	8.94	16	20.3	21	21
Resistance (%)							
Sales of space heating units - Fossil (%)	0	0.226	0.135	0.038	0.005	0	0
Sales of space heating units - Gas Furnace	94.9	81.6	44.8	10.8	1.79	0.573	0.499
(%)							
Sales of water heating units - Electric	0.022	0.03	0.03	0.03	0.03	0.03	0.03
Heat Pump (%)							
Sales of water heating units - Electric	1.1	1.47	1.47	1.48	1.46	1.48	1.47
Resistance (%)							
Sales of water heating units - Gas Furnace	98.6	98.1	98.1	98.1	98.1	98.1	98.1
(%)							
Sales of water heating units - Other (%)	0.269	0.383	0.382	0.383	0.382	0.383	0.383

Table 60: REF scenario - PILLAR 1: Efficiency/Electrification - Electricity demand

Item	2020	2025	2030	2035	2040	2045	2050
Electricity distribution capital invested -		2.52	2.6	3.5	3.68	4	4.2
Cumulative 5-yr (billion \$2018)							

Table 61: REF scenario - PILLAR 1: Efficiency/Electrification - Overview

Item	2020	2025	2030	2035	2040	2045	2050		
Final energy use - Commercial (PJ)	162	165	169	170	172	177	185		
Final energy use - Industry (PJ)	171	186	198	211	225	243	262		
Final energy use - Residential (PJ)	237	231	230	232	235	240	244		
Final energy use - Transportation (PJ)	472	451	423	407	409	422	438		

Table 62: REF scenario - PILLAR 1: Efficiency/Electrification - Residential

Item	2020	2025	2030	2035	2040	2045	2050
Residential HVAC investment in 2020s vs.	0	4.33	4.39	0	0	0	0
REF - Cumulative 5-yr (billion \$2018)							
Sales of cooking units - Electric	49.8	49.8	49.8	49.8	49.8	49.8	49.8
Resistance (%)							
Sales of cooking units - Gas (%)	50.2	50.2	50.2	50.2	50.2	50.2	50.2
Sales of space heating units - Electric	5.05	16.1	16.5	17	17.5	17.9	18.5
Heat Pump (%)							
Sales of space heating units - Electric	7.73	13.4	13.3	13.2	13.1	12.7	12.1
Resistance (%)							
Sales of space heating units - Fossil (%)	3.28	5.42	5.49	5.36	5.12	5.04	5.13
Sales of space heating units - Gas (%)	83.9	65	64.8	64.4	64.3	64.4	64.2
Sales of water heating units - Electric	0	0	0	0	0	0	0
Heat Pump (%)							
Sales of water heating units - Electric	13.2	25.2	25.3	25.3	25.4	25.4	25.4
Resistance (%)							
Sales of water heating units - Gas Furnace	85.7	73.5	73.5	73.5	73.4	73.4	73.4
(%)							
Sales of water heating units - Other (%)	1.07	1.23	1.23	1.23	1.22	1.22	1.22

Table 63: REF scenario - PILLAR 1: Efficiency/Electrification - Transportation

Item	2020	2025	2030	2035	2040	2045	2050
Vehicle sales - Heavy-duty - diesel (%)	98.1	98.2	97.9	97	95.6	93.5	91.6
Vehicle sales - Heavy-duty - EV (%)	0	0	0	0	0	0	0
Vehicle sales - Heavy-duty - gasoline (%)	0.229	0.242	0.257	0.274	0.294	0.317	0.343
Vehicle sales - Heavy-duty - hybrid (%)	0.083	0.096	0.112	0.13	0.15	0.174	0.202
Vehicle sales - Heavy-duty - hydrogen FC	0.119	0.138	0.16	0.186	0.216	0.25	0.29
(%)							
Vehicle sales - Heavy-duty - other (%)	1.51	1.31	1.57	2.37	3.69	5.71	7.57
Vehicle sales - Light-duty - diesel (%)	1.78	2.16	2.22	2.07	1.87	1.75	1.66
Vehicle sales - Light-duty - EV (%)	2.81	4.63	5.31	6.47	7.94	9.34	10.5
Vehicle sales - Light-duty - gasoline (%)	91.5	88.1	86.4	84.8	82.9	81	79.3
Vehicle sales - Light-duty - hybrid (%)	3.7	4.58	5.63	6.22	6.84	7.52	8.12
Vehicle sales - Light-duty - hydrogen FC	0.112	0.385	0.359	0.323	0.322	0.324	0.336
(%)							
Vehicle sales - Light-duty - other (%)	0.112	0.116	0.113	0.114	0.114	0.113	0.116
Vehicle sales - Medium-duty - diesel (%)	65.2	63.5	61.6	59.6	58	56.5	55.2
Vehicle sales - Medium-duty - EV (%)	0.027	0.105	0.329	0.671	0.895	0.973	0.993
Vehicle sales - Medium-duty - gasoline (%)	34	35.5	37	38.5	39.7	40.8	41.7
Vehicle sales - Medium-duty - hybrid (%)	0.365	0.427	0.496	0.577	0.674	0.793	0.929
Vehicle sales - Medium-duty - hydrogen	0.175	0.208	0.242	0.285	0.339	0.409	0.487
FC (%)							
Vehicle sales - Medium-duty - other (%)	0.255	0.271	0.298	0.345	0.42	0.528	0.671

Table 64: REF scenario - PILLAR 6: Land sinks - Forests

Item	2020	2025	2030	2035	2040	2045	2050
Carbon sink potential - High - Accelerate							-1,620
regeneration (1000 tCO2e/y)							
Carbon sink potential - High - All (not							-48,148
counting overlap) (1000 tCO2e/y)							
Carbon sink potential - High - Avoid							-1,559
deforestation (1000 tCO2e/y)							
Carbon sink potential - High - Extend							-9,233
rotation length (1000 tCO2e/y)							
Carbon sink potential - High - Improve							-26.8
plantations (1000 tCO2e/y)							
Carbon sink potential - High - Increase							-174
retention of HWP (1000 tCO2e/y)							
Carbon sink potential - High - Increase							-1,273
trees outside forests (1000 tCO2e/y)							
Carbon sink potential - High - Reforest							-24,902
cropland (1000 tCO2e/y)							
Carbon sink potential - High - Reforest							-3,239
pasture (1000 tCO2e/y)							
Carbon sink potential - High - Restore							-6,121
productivity (1000 tCO2e/y)							
Carbon sink potential - Low - Accelerate							-812
regeneration (1000 tCO2e/y)							
Carbon sink potential - Low - All (not							-19,895
counting overlap) (1000 tCO2e/y)							
Carbon sink potential - Low - Avoid							-260
deforestation (1000 tCO2e/y)							
Carbon sink potential - Low - Extend							-3,547
rotation length (1000 tCO2e/y)							
Carbon sink potential - Low - Improve							-13.7
plantations (1000 tCO2e/y)							
Carbon sink potential - Low - Increase							-58.1
retention of HWP (1000 tCO2e/y)							
Carbon sink potential - Low - Increase							-446
trees outside forests (1000 tC02e/y)							
Carbon sink potential - Low - Reforest							-12,451
cropland (1000 tCO2e/y)							, -

Table 64: REF scenario - PILLAR 6: Land sinks - Forests (continued)

Corbon sink potential Low Potentet	2020	2025	2030	2035	2040	2045	205
Carbon sink potential - Low - Reforest							-24
pasture (1000 tC02e/y)							0.07
Carbon sink potential - Low - Restore							-2,06
productivity (1000 tCO2e/y)							
Carbon sink potential - Mid - Accelerate							-1,21
regeneration (1000 tCO2e/y)							
Carbon sink potential - Mid - All (not							-34,02
counting overlap) (1000 tCO2e/y)							
Carbon sink potential - Mid - Avoid							-90
deforestation (1000 tCO2e/y)							
Carbon sink potential - Mid - Extend							-6,39
rotation length (1000 tCO2e/y)							
Carbon sink potential - Mid - Improve							-2
plantations (1000 tCO2e/y)							
Carbon sink potential - Mid - Increase							-11
retention of HWP (1000 tCO2e/y)							
Carbon sink potential - Mid - Increase							-85
trees outside forests (1000 tCO2e/y)							
Carbon sink potential - Mid - Reforest							-18,67
cropland (1000 tCO2e/y)							-10,01
Carbon sink potential - Mid - Reforest							-1,74
							-1,74
pasture (1000 tC02e/y)							/ 00
Carbon sink potential - Mid - Restore							-4,09
productivity (1000 tCO2e/y)							
Land impacted for carbon sink potential -							26
High - Accelerate regeneration (1000							
hectares)							
Land impacted for carbon sink potential -							2
High - Avoid deforestation (over 30 years)							
(1000 hectares)							
Land impacted for carbon sink potential -							4,70
High - Extend rotation length (1000							
hectares)							
Land impacted for carbon sink potential -							9.8
High - Improve plantations (1000							
hectares)							
Land impacted for carbon sink potential -							
High - Increase retention of HWP (1000							
•							
hectares)							10
Land impacted for carbon sink potential -							12
High - Increase trees outside forests							
(1000 hectares)							
Land impacted for carbon sink potential -							1,64
High - Reforest cropland (1000 hectares)							
Land impacted for carbon sink potential -							9
High - Reforest pasture (1000 hectares)							
Land impacted for carbon sink potential -							2,02
High - Restore productivity (1000							
hectares)							
Land impacted for carbon sink potential -							9,08
High - Total impacted (over 30 years)							
(1000 hectares)							
Land impacted for carbon sink potential -							13
Low - Accelerate regeneration (1000							
hectares)							
Land impacted for carbon sink potential -							19
							לו
Low - Avoid deforestation (over 30 years)							
(1000 hectares)							400
Land impacted for carbon sink potential -							1,80
Low - Extend rotation length (1000							

Table 64: REF scenario - PILLAR 6: Land sinks - Forests (continued)

Item	2020	2025	2030	2035	2040	2045	2050
Land impacted for carbon sink potential -							4.95
Low - Improve plantations (1000							
hectares)							
Land impacted for carbon sink potential -							0
Low - Increase retention of HWP (1000							
hectares)							
Land impacted for carbon sink potential -							63.7
Low - Increase trees outside forests							
(1000 hectares)							000
Land impacted for carbon sink potential -							823
Low - Reforest cropland (1000 hectares)							15.0
Land impacted for carbon sink potential -							15.9
Low - Reforest pasture (1000 hectares) Land impacted for carbon sink potential -							1,228
Low - Restore productivity (1000							1,220
hectares)							
Land impacted for carbon sink potential -							4,270
Low - Total impacted (over 30 years)							4,270
(1000 hectares)							
Land impacted for carbon sink potential -							199
Mid - Accelerate regeneration (1000							177
hectares)							
Land impacted for carbon sink potential -							205
Mid - Avoid deforestation (over 30 years)							200
(1000 hectares)							
Land impacted for carbon sink potential -							3,256
Mid - Extend rotation length (1000							-,
hectares)							
Land impacted for carbon sink potential -							7.44
Mid - Improve plantations (1000 hectares)							
Land impacted for carbon sink potential -							0
Mid - Increase retention of HWP (1000							
hectares)							
Land impacted for carbon sink potential -							92.3
Mid - Increase trees outside forests (1000							
hectares)							
Land impacted for carbon sink potential -							1,235
Mid - Reforest cropland (1000 hectares)							
Land impacted for carbon sink potential -							115
Mid - Reforest pasture (1000 hectares)							
Land impacted for carbon sink potential -							2,472
Mid - Restore productivity (1000							
hectares)							
Land impacted for carbon sink potential -							7,582
Mid - Total impacted (over 30 years) (1000							
hectares)							

Table 65: REF scenario - PILLAR 6: Land sinks - Forests - REF only

Item	2020	2025	2030	2035	2040	2045	2050
Business-as-usual carbon sink - Natural uptake (Mt CO2e/y)	6.25		4.02				1.15
Business-as-usual carbon sink - Retained in Hardwood Products (Mt CO2e/y)	-0.047		-0.099				-0.104
Business-as-usual carbon sink - Total (Mt CO2e/y)	6.2		3.93				1.05

Table 66: REF scenario - IMPACTS - Health

Item	2020	2025	2030	2035	2040	2045	2050
Monetary damages from air pollution -		504	245	139	109	95.5	91.7
Coal (million 2019\$)							
Monetary damages from air pollution -		298	312	304	226	187	74
Natural Gas (million 2019\$)							
Monetary damages from air pollution -		927	999	1,069	1,143	1,217	1,293
Transportation (million 2019\$)							
Premature deaths from air pollution -		56.9	27.7	15.7	12.3	10.8	10.4
Coal (deaths)							
Premature deaths from air pollution -		33.6	35.3	34.3	25.5	21.1	8.35
Natural Gas (deaths)							
Premature deaths from air pollution -		104	112	120	129	137	145
Transportation (deaths)							