Лекции по ИСиТ

Преподаватели: Башлыкова Анна Александровна Книга: Хохлов Г. И. «Основы теории информации»

Лекция 1 «Информационные процессы и понятие информации» 09.09.20

Информация

Информация — это сведения о событиях, явлениях и фактах окружающего нас мира.

Данные — это информация, прошедшая обработка в автоматизированной и/или информационной системе.

Информационный процесс — совокупность последовательных действий со сведениями, направленных на получение определенного результата.

К основным информационным процессам относят:

- Восприятие (ввод)
- Преобразование
- Передача
- Обработку
- Хранение
- Отображение (вывод)

Под **информацией** понимают некоторую совокупность сведений, которую получают от какого-либо источника о тех или иных событий, явлений и фактах.

Восприятие в информации — это отражение сведений на каком-либо носители или каких-либо качественных сторонах объекта.

Объектом информационной системы может быть живое существо, устройство и неживые объекты.

Субъекты ИС — это те, кто может осуществлять воздействие на объект. Пользователь, администратор и процесс (особо, когда автоматизированный процесс).

Преобразование информации — относится к изменению формы и вида сведений.

Передача информации — перенос сведений из одной точки пространства в другую, при этом всегда стараются минимизировать.

Обработка информации — это любые действия со сведениями, выполняемые по детерминированному алгоритму, которые приводят к изменению их вида, а также содержательности, ценности или полезности.

Хранение информации — это перенос сведений от одного момента времени до другого, при этом всегда стремятся минимизировать объем носителя или пространства, в котором сведения хранятся.

Отображение. Вывод информации — это представление сведений на каком-либо носители или в какой-либо качественной стороне объекта в целях восприятия их живых существом или устройством.

Распределение информации — это комбинация процессов выше описанных.

Формы и виды информации

Информация всегда существует в какой-либо формы

Различают 3 основные ее формы:

- Аналоговую
- Знаковую
- Командную (в теории информации)

Восемь видов преобразования информации

А их нет! :)

Передача информации

Виды передачи информации

- Симплексный устанавливается на основе односторонней связи (получатель не может связаться с отправителем)
- Полудуплексный сторона отправителя передает информацию получателю. Двое не могут одновременно передавать информацию.
- Дуплексный двусторонний канал. Интернет и тд и тп

Основное понятие теории информации — энтропия.

Энтропия — мера неопределенности информации. Наша цель при передачи информации — это **минимизация энтропии**.

Количественная метрика информации — энтропия, а объем — байты и биты.

Если после передачи информации энтропия большая или больше 1, то скорее всего в канале что-то пошло не так.

Появление информации всегда связана с наличием или действием некоторого объекта, который, отвлекаясь от его физической природы, является источником.

Передача информации обусловлено свойствами другого объекта, физической среды, которую называют **каналом**.

Обработка информации предполагает наличие третьего объекта, способный выполнять детерминированный процесс.

Три основных информационных объектов:

- Источник
- Канал
- Процессор

Лекция 2 «Эталонная модель OSI» 23.09.20

Компьютерная сеть — объединение нескольких компьютеров в одну сеть.

Физическая сеть обычно соединяют через UDP 5.0.

Компьютерная сеть объединяет абонентов.

Абонент компьютерной сети — аппаратное или техническое средство, поддерживающее коммуникацию между собой.

Сетевая модель передачи данных.

Модель описывает способ передачи информации от источника к получателю. Для передачи данных необходимы протоколы передачи данных.

Протокол передачи данных

Самый элементарный протокол передачи данных — ір протокол Второй протокол — TCP протокол.

Сначала их использовали отдельно, но потом данные 2 протокола объединили, и получилось ТСР/IP.

Набор интернет протоколов — это концептуальная модель и набор коммутационных протоколов, используемых в интернете и подобных компьютерных сетях. Он широко известен как TCP/IP. Все остальные протоколы наследуется от него.

Развитием архитектуры интернета и протоколов TCP/IP занимается открытое международное сообщество (ДОПИСАТЬ)

Эталонная модель OSI

Уровень OSI	Homep OSI
Прикладной	7
Представительски	6
Сеансовый	5
Транспортный	4
Сетевой уровень	3
Канальный	2
Физический	1

ЭТАЛОННАЯ МОДЕЛЬ OSI

Если при передачи данных разная энтропия, то это означает, что информация повреждена.

При передачи информации стараются минимизировать время нахождения в канале. Чем меньше в канале, тем меньше вероятность воздействия на информацию.

Физический уровень (1)

Пропускная способность ограничивает скорость. **Физический уровень** отвечает за битовый поток. **Физический уровень** получает кадры данных от уровня 2 (канального уровня) и передает их структуру и содержание. Передача осуществляется по 1 биту последовательно.

Передающая среда остается за пределами классификации (0 уровень).

Канальный уровень (2)

Его задачи делятся на 2 пункта

- Прием
- Передача

Он отвечает за достоверность переданных данных, обычно на физическом уровне.

Канальный уровень отвечает за упаковку в кадры (frames). **Кадры** — структура данных, специфическую для канального уровня. Кадры должны содержать служебную информацию для проверки целостности данных с помощью хэш-сумм.

Гарантированная доставка происходит при выполнения 2 условий:

- Узел-отправитель каждый кадр был принят без изменений
- Перед тем как подтверждать прием кадра, узел должен проверять целостность его содержания.

Также канальный уровень отвечает за повторную сборку двоичного потока, полученного от физического уровня.

Сетевой уровень (3)

Отвечает за отправление маршрута между отправителем и получателем. Этот уровень **не располагает** собственными средствами **обнаружения/исправления ошибок** передачи, поэтому для этого он

использует второй канальный уровень. Если ошибка проскочит через канальный, то он попадет на сетевой уровень.

Сетевой уровень используется для установки связи с компьютерными системами, не входящие в местный сегмент локальной сети.