

basic education

Department:
Basic Education
REPUBLIC OF SOUTH AFRICA

NATIONAL SENIOR CERTIFICATE

GRADE 12

MATHEMATICS P3

FEBRUARY/MARCH 2012

MEMORANDUM

MARKS: 100

This memorandum consists of 13 pages.

Mathematics/P3

1.1	26; 37	✓ answer
		✓ answer
		(2)
1.2	$T_1 = 2$	$\checkmark T_{k+1} = T_k + 2k + 1$
	$T_2 = 2 + 3 = 2 + 2(1) + 1 = 5$	$\checkmark T_1 = 2$
	$T_3 = 5 + 5 = 5 + 2(2) + 1 = 10$	✓ <i>k</i> ≥ 1
	$T_5 = 10 + 7 = 10 + 2(3) + 1 = 17$	(3)
		$\checkmark T_k = T_{k-1} + 2k - 1$
	$T_{k+1} = T_k + 2k + 1$; $T_1 = 2$ and $k \ge 1$	$\checkmark T_1 = 2$
	OR	$\checkmark k \ge 2$
	$T_k = T_{k-1} + 2k - 1$; $T_1 = 2$ and $k \ge 2$	(3)
		[5]

QUESTION 2

2.1	Total number of employees	
	=1+2+2+5+30+40+65+5	
	=150	✓ answer
		(1)
2.2	Total amount needed	
	$= (1 \times 150\ 000) + (2 \times 100\ 000) + (2 \times 75\ 000) + (5 \times 15\ 000) + (30 \times 10\ 000)$	✓ method
	$+(40\times7500)+(65\times6000)+(5\times5000)$	
	= R1 590 000	✓ answer
	- K1 370 000	(2)
2.3	Mean monthly salary $=\frac{1590000}{100000000000000000000000000000000$	✓ 1 590 000
	150	150
	= R10 600	
		✓ answer
		(2)
2.4	No. Only 10 employees in this company earn more than R10 600. The	✓ No
	majority (140) of the employees earn below this amount. It is therefore not a	✓ 140 earn below
	good indicator of the average monthly amount earned by an employee.	the mean
	OR	
	110 Cd 150 1 P7 500 1	(2)
	110 of the 150 employees earn R7 500 or less.	(2)
		[7]

3.1	140 – 12 = 128 128 is 1 standard deviation to the left of the mean ∴ percentage of teenagers who sent less than 128 messages ≈ 50% – 34% ≈16%	✓ 1 standard deviation ✓ 50%–34% ✓ 16%	(3)
3.2	116 minutes is 2 standard deviations from the mean \therefore 48% 152 minutes is 1 standard deviation from the mean \therefore 34% Percentage of the teenagers who sent between 116 and 152 messages $\approx 48\% + 34\%$ $\approx 82\%$	✓ 48% ✓ 34% ✓ 82%	
	NOTE: Answer only: Full marks		(3) [6]

4.1 $a = 91,27$ (91,26785714) $b = -4,91$ (-4,910714286) $\hat{y} = 91,27 - 4,91x$ \checkmark equation 4.2 SCATTER PLOT SHOWING THE NUMBER OF SATURDAYS ABSENT AND THE FINAL MARK ACHIEVED (91) \checkmark Point (7;57) 4.3 $r = -0,87$ (-0,8748915491) \checkmark answer 4.4 The greater the number of Saturdays absent, the lower the mark. \checkmark number of Saturdays absent \checkmark final mark 4.5 $\hat{y} = 91,27 - 4,91(4)$	
4.2 SCATTER PLOT SHOWING THE NUMBER OF SATURDAYS ABSENT AND THE FINAL MARK ACHIEVED 90 90 90 100 100 100 100 100	
AND THE FINAL MARK ACHIEVED (91) Point (7;57) 4.3 $r = -0.87$ (-0.8748915491) 4.4 The greater the number of Saturdays absent, the lower the mark. 4.5 $r = -0.87$ ($r = -0.8748915491$) 4.6 $r = -0.8748915491$ 4.7 In greater the number of Saturdays absent, the lower the mark. Final mark	
AND THE FINAL MARK ACHIEVED (91) Point (7;57) 4.3 $r = -0.87$ (-0.8748915491) 4.4 The greater the number of Saturdays absent, the lower the mark. 4.5 $r = -0.87$ ($r = -0.8748915491$) 4.6 $r = -0.8748915491$ 4.7 In greater the number of Saturdays absent, the lower the mark. Final mark	(4)
AND THE FINAL MARK ACHIEVED (91) Point (7; 57) 4.3 $r = -0.87$ (-0.8748915491) 4.4 The greater the number of Saturdays absent, the lower the mark. 4.5 $r = -0.87$ ($r = -0.87$) And The Final mark achieved (91) Point (7; 57) Answer Answer I have a subsent in the lower the mark.	ot
4.3 $r = -0.87$ (-0.8748915491) 4.4 The greater the number of Saturdays absent, the lower the mark. 4.5 $r = -0.87$ (-0.8748915491) 4.6 $r = -0.87$ (-0.8748915491) 4.7 $r = -0.87$ (-0.8748915491) 4.8 $r = -0.87$ (-0.8748915491) 4.9 $r = -0.87$ (-0.8748915491) 4.1 The greater the number of Saturdays absent, the lower the mark. 4.9 $r = -0.87$ (-0.8748915491)	
4.3 $r = -0.87$ (-0.8748915491) 4.4 The greater the number of Saturdays absent, the lower the mark. 4.5 $r = -0.87$ (-0.8748915491) 4.6 $r = -0.87$ (-0.8748915491) 4.7 $r = -0.87$ (-0.8748915491) 4.8 $r = -0.87$ (-0.8748915491) 4.9 $r = -0.87$ (-0.8748915491)	
4.3 $r = -0.87$ (-0.8748915491) 4.4 The greater the number of Saturdays absent, the lower the mark. 4.5 $r = -0.87$ (-0.8748915491) 4.6 $r = -0.87$ (-0.8748915491) 4.7 $r = -0.87$ (-0.8748915491) 4.8 $r = -0.87$ (-0.8748915491) 4.9 $r = -0.87$ (-0.8748915491)	
4.3 $r = -0.87$ (-0.8748915491) 4.4 The greater the number of Saturdays absent, the lower the mark. 4.5 $r = -0.87$ (-0.8748915491) 4.6 $r = -0.87$ (-0.8748915491) 4.7 answer 4.8 $r = -0.87$ (-0.8748915491) 4.9 $r = -0.87$ (-0.8748915491) 4.1 The greater the number of Saturdays absent, the lower the mark. 4.9 $r = -0.87$ (-0.8748915491)	
4.3 $r = -0.87$ (-0.8748915491) 4.4 The greater the number of Saturdays absent, the lower the mark. 4.5 $r = -0.87$ (-0.8748915491) 4.6 $r = -0.87$ (-0.8748915491) 4.7 answer 4.8 $r = -0.87$ (-0.8748915491) 4.9 $r = -0.87$ (-0.8748915491) 4.1 The greater the number of Saturdays absent, the lower the mark. 4.9 $r = -0.87$ (-0.8748915491)	
4.3 $r = -0.87$ (-0.8748915491) 4.4 The greater the number of Saturdays absent, the lower the mark. 4.5 $r = -0.87$ (-0.8748915491) 4.6 $r = -0.87$ (-0.8748915491) 4.7 Inal mark	
4.3 $r = -0.87$ (-0.8748915491) 4.4 The greater the number of Saturdays absent, the lower the mark. 4.5 $r = -0.87$ (-0.8748915491) 4.6 $r = -0.87$ (-0.8748915491) 4.7 Inal mark	
4.3 $r = -0.87$ (-0.8748915491) 4.4 The greater the number of Saturdays absent, the lower the mark. 4.5 $r = -0.87$ (-0.8748915491) 4.6 The greater the number of Saturdays absent, the lower the mark. 4.7 number of Saturdays absent r final mark.	
Number of Saturdays absent 4.3 $r = -0.87$ (-0.8748915491) 4.4 The greater the number of Saturdays absent, the lower the mark. ✓ number of Saturdays absent ✓ final mark	
4.3 $r = -0.87$ (-0.8748915491) 4.4 The greater the number of Saturdays absent, the lower the mark. ✓ number of Saturdays absent ✓ final mark	
4.4 The greater the number of Saturdays absent, the lower the mark. ✓ number of Saturdays absent ✓ final mark	
4.4 The greater the number of Saturdays absent, the lower the mark. ✓ number of Saturdays absent ✓ final mark	
4.4 The greater the number of Saturdays absent, the lower the mark. ✓ number of Saturdays absent ✓ final mark	(2)
4.4 The greater the number of Saturdays absent, the lower the mark. ✓ number of Saturdays absent ✓ final mark	(2)
4.4 The greater the number of Saturdays absent, the lower the mark. ✓ number of Saturdays absent ✓ final mark	
Saturdays absent ✓ final mark	
Saturdays absent ✓ final mark	(2)
absent ✓ final mark	1
✓ final mark	
	·lz
4.5 ^ 01.27 4.01(4)	(2)
14311111111111111111111111111111111111	
	.011
~ 11,0370	
≈ 72%	
NOTE: Allow for the range 70%–74% for a student who reads off the graph.	(2)
	[12]

Mathematics/P3

DBE/Feb.-Mar. 2012

QUESTION 5

	DO NOT PLAY SPORT	PLAY SPORT	TOTAL
Male	51	69	120
Female	49	67	116
Total	100	136	236

5.1.1	120	✓ 120
3.1.1	$P(\text{male}) = \frac{120}{236}$	✓ 236
	236	V 230
	30	
	$=\frac{30}{59}$	
	= 0.51(0.508474)	(2)
5.1.2	P(female and plays sport)	(-)
3.1.2		√ 67
	$=\frac{67}{236}$	✓ 236
	236	V 230
	= 0.28 (0.2838983051)	(2)
5.2	51	✓ No
	No. From the table, $P(\text{male and do not play sport}) = \frac{51}{236}$, which is greater	✓ probability of
		intersection greater
	than zero. Since the probability of the intersection of these two events is	than zero
	greater than zero, these events are not mutually exclusive.	(2)
<i>5.</i> 2	100	(2)
5.3	$P(\text{male}) = \frac{120}{236}$	
		100
	$P(NS) = \frac{100}{236}$	$\checkmark \frac{100}{236}$
	$P(NS) = \frac{1}{236}$	236
	$P(\text{male}) \times P(NS) = \frac{120}{236} \times \frac{100}{236}$	
	$=\frac{750}{3481}$	750
	3 481	$\checkmark \frac{750}{3481}$
	=0,22 (0,215455)	0.01
		51
	$P(\text{male and NS}) = \frac{51}{236}$	$\checkmark \frac{51}{236}$
		236
	=0,22 (0,2161016949)	
	So, $P(\text{male}) \times P(NS) = P(\text{male and NS})$	✓ are independent
	, , , , , , , , , , , , , , , , , , , ,	
	Therefore the events 'male' and 'do not play sport' are independent (correct	
	to TWO decimal places).	
	to 1 110 decimal places).	
	OR	
	The events are not independent as there is a discrepancy from the third	
	The events are not independent as there is a discrepancy from the third	(4)
	decimal place.	(4)
		[10]

6.1	def (0,01) (A; D)	✓ first tier ✓ second tier ✓ probabilities ✓ outcomes
	A (0,2) non def (0,99) (A; ND)	outcomes
	$ \frac{\text{def }(0,02)}{\text{B }(0,3)} \qquad (B; D) $	
	non def (0,98) (B; ND)	
	C(0,5) def $(0,06)$ $(C; D)$	
	non def (0,94) (C; ND)	(4)
6.2.1	P(B; ND) = 0,3 × 0,98 = 0,29	✓ 0,3 ✓ 0,98 ✓ 0,29
	Accept: 0,294	(3)
6.2.2	P(defective) = $P(A; D) + P(B; D) + P(C; D)$ = $(0.2 \times 0.01) + (0.3 \times 0.02) + (0.5 \times 0.06)$ = 0.04	✓ multiplying probabilities ✓ adding probabilities ✓ answer
	Accept: 0,038	(3) [10]

QUESTION 7

7.1	$12 \times 11 \times 10 \times 9 \times 8 \times 7 \times 6 \times 5 \times 4 \times 3 \times 2 \times 1$ = 12! = 479 001 600 different ways	✓ 12 ✓ answer (2)
7.2	$9 \times 8 \times 7 \times 6 \times 5 \times 4 \times 3 \times 2 \times 1$ = 9! = 362 880 different ways	$\checkmark 9 \times 8 \times 7 \times 6 \times 5 \times 4 \times 3 \times 2 \times 1$ $\checkmark 9!$ (2)
7.3	The items from each department can be arranged in 3! ways. The departments can be arranged in 4! ways. Advertisements can be arranged in 3!.4! $= 6 \times 24$ $= 144$ different ways.	✓ 3! ✓ 4! ✓ 144
		(3) [7]

8.1	$\hat{P}_1 = 90^{\circ}$	(∠ in semicircle)	✓ P ₁ = 90°
			(1)
8.2	$\hat{P}_4 = 90^{\circ}$	(vert opp \angle s)	$\checkmark \hat{P}_4 = 90^{\circ}$
	BN is a dian	meter (chord subtends 90°)	✓ chord subtends
			90°
0.2.1	^		(2)
8.3.1	= 20°	$(\angle \operatorname{sum} \Delta)$	✓ answer (1)
8.3.2	$\hat{P}_{6} = 70^{\circ}$	(tan ch th)	✓ answer
	6 70	(tun on tri)	(1)
8.3.3	$\hat{P}_3 = 70^{\circ}$	(vert opp \angle s)	
	$\hat{N} = 70^{\circ}$	(tan ch th)	✓ Ñ = 70°
	$\hat{P}_4 = 90^\circ$	(proven)	$\checkmark \hat{B} = 20^{\circ}$
	,		(2)
	$\mathbf{B} = 20^{\circ}$	$(\angle \operatorname{sum} \Delta)$	
	OR		
			$\checkmark \hat{P}_s = 20^\circ$
	$\hat{P}_5 = 20^{\circ}$	(∠s on str line)	$ \checkmark \hat{P}_5 = 20^\circ $ $ \checkmark \hat{B} = 20^\circ $
	$\hat{B} = 20^{\circ}$	(tan ch th)	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$
			[7]

9.1	$ST = PT = 2x$ (line from circ centre \perp ch bis ch)	✓ S/R	(1)
9.2	In $\triangle RST$ and $\triangle PKT$ 1. $\hat{R} = \hat{P}$ (\angle in same seg) 2. $\hat{S} = \hat{K}$ (\angle in same seg) 3. $R\hat{T}K = P\hat{T}K = 90^{\circ}$ (given)	✓ S/R ✓ S/R ✓ R	(1)
9.3	$ \frac{\text{ARST } \Delta PKT (\angle \angle \angle)}{\frac{\text{ST}}{\text{KT}}} = \frac{\text{RT}}{\text{PT}} \qquad (\Delta s) $ $ \frac{2x}{x} = \frac{320}{2x} $ $ 4x = 320 $ $ x = 80 \text{ mm} $ OR	$✓ \frac{ST}{KT} = \frac{RT}{PT}$ ✓ substitution $✓ \text{answer}$	(3)
	$\frac{ST}{RT} = \frac{KT}{PT}$ $\frac{2x}{320} = \frac{x}{2x}$ $2x = 160$ $x = 80 \text{ mm}$		(3) [7]

10.1	$\frac{WS}{SP} = \frac{3}{2}$ $\frac{WS}{SP} = \frac{WT}{RT} = \frac{3}{2}$ $WT = \frac{3 \times 6}{2}$ $WT = 9 \text{ cm}$ (ST PR; Prop th)	$\checkmark \frac{WS}{SP} = \frac{WT}{RT}$ $\checkmark ST \parallel PR; Prop th$ $\checkmark answer$ (3)
10.2	$\frac{WS}{SP} = \frac{WR}{RQ} = \frac{3}{2}$ (SR PQ; Prop th) $\frac{9+6}{RQ} = \frac{3}{2}$ $RQ = 10 \text{ cm}$ $WQ = 10 + 9 + 6$ $= 25 \text{ cm}$	$\sqrt{\frac{WS}{SP}} = \frac{WR}{RQ} = \frac{3}{2}$ $\sqrt{\frac{9+6}{RQ}} = \frac{3}{2}$ $\sqrt{RQ} = 10$ $\sqrt{WQ} = 25$ (4)

11.1

Join RO and OP

Let
$$\hat{O}_1 = 2x$$

$$\hat{O}_2 = 360^\circ - 2x$$
 (\angle s in a rev)

$$\hat{T} = x$$
 (\angle circ centre = 2 \angle circumference)

$$\hat{S} = 180^{\circ} - x$$
 (\angle circ centre = 2 \angle circumference)

$$\hat{\mathbf{S}} + \hat{\mathbf{T}} = x + 180^{\circ} - x$$
$$= 180^{\circ}$$

OR

 $\checkmark \hat{O}_1 = 2x$

✓ construction

$$\checkmark \hat{O}_2 = 360^\circ - 2x$$

(6)

$$\checkmark \hat{\mathbf{T}} = x$$

$$\checkmark \hat{S} = 180^{\circ} - x$$

w 2 S

Draw radii OP, OS, OR and OT

Let
$$\hat{\mathbf{P}}_1 = x$$
, $\hat{\mathbf{S}}_2 = w$, $\hat{\mathbf{S}}_1 = z$ and $\hat{\mathbf{R}}_1 = y$

$$\therefore \hat{\mathbf{T}}_2 = x, \hat{\mathbf{P}}_2 = w, \hat{\mathbf{R}}_2 = z \text{ and } \hat{\mathbf{T}}_1 = y$$
 ($\angle s \text{ opp} = \text{radii}$)

$$\hat{O}_1 = 180^\circ - 2w$$
 ($\angle \text{sum } \Delta$)

Similarly

$$\hat{O}_2 = 180^{\circ} - 2z$$
, $\hat{O}_3 = 180^{\circ} - 2y$, $\hat{O}_4 = 180^{\circ} - 2x$

By angles in a revolution

$$\hat{\mathbf{O}}_1 + \hat{\mathbf{O}}_2 + \hat{\mathbf{O}}_3 + \hat{\mathbf{O}}_4 = 180^\circ - 2w + 180^\circ - 2z + 180^\circ - 2y + 180^\circ - 2x$$

$$360^{\circ} = 720^{\circ} - 2(w + z + y + x)$$

$$2(w+z+y+x) = 360^{\circ}$$

$$w + z + y + x = 180^{\circ}$$

OR

✓ construction

$$\checkmark$$
 Let $\hat{P}_1 = x$,

$$\hat{\mathbf{S}}_2 = w$$
, $\hat{\mathbf{S}}_1 = z$ and

$$\hat{\mathbf{R}}_1 = \mathbf{y}$$

$$\checkmark \hat{O}_1 = 180^{\circ} - 2w$$

 $(\angle \operatorname{sum} \Delta)$

✓ setting up equation

✓ simplification

✓ conclusion

(6)

Copyright reserved

Please turn over

Draw radii OP, OS, OR and OT

Let
$$\hat{P}_1 = x$$
 and $\hat{R}_1 = y$

$$\therefore$$
 $\hat{T}_2 = x$ and $\hat{T}_1 = y$ (\angle s opp = radii)

$$\hat{O}_3 = 180^{\circ} - 2y$$
 ($\angle \operatorname{sum} \Delta$)

Similarly

$$\hat{O}_4 = 180^\circ - 2x$$

$$\hat{\mathbf{S}}_2 = \hat{\mathbf{P}}_2$$
 and $\hat{\mathbf{S}}_1 = \hat{\mathbf{R}}_1$ (\angle s opp = radii)

$$\hat{\mathbf{S}}_2 = \hat{\mathbf{P}}_2$$
 and $\hat{\mathbf{S}}_1 = \hat{\mathbf{K}}_1$ (2s opp = radii)
 $\hat{\mathbf{T}}_1 + \hat{\mathbf{T}}_2 + \hat{\mathbf{S}}_1 + \hat{\mathbf{S}}_2 = x + y + 90^\circ - x + 90^\circ - y$
= 180°

✓ construction

✓ Let
$$\hat{P}_1 = x$$
 and

$$\hat{\mathbf{R}}_1 = \mathbf{y}$$

$$\checkmark \hat{O}_3 = 180^\circ - 2y$$

$$(\angle \operatorname{sum} \Delta)$$

$$\checkmark \hat{S}_2 = \hat{P}_2$$
 and

$$\hat{\mathbf{S}}_1 = \hat{\mathbf{R}}_1$$

$$\checkmark \hat{T}_1 + \hat{T}_2 + \hat{S}_1 + \hat{S}_2$$

(6)

NSC – Memorandum

11.2.1 $\hat{A} = x$ (\angle circ centre = 2 \angle circumference) $\hat{F}_1 = 180^\circ - x$ (opp \angle s of cyclic quad = 180°)

 $\checkmark \hat{A} = x$

 \checkmark \angle circ centre = 2 \angle circumference

 $\checkmark \hat{F}_1 = 180^{\circ} - x$

✓ opp \angle s of cyclic quad = 180°

(4)

OR

reflex BÔC = $360^{\circ} - 2x$ (\angle in revolution) $\hat{F}_1 = 180^{\circ} - x$ (\angle circ centre = $2 \angle$ circumference) ✓ reflex $\hat{BOC} = 360^{\circ} - 2x$

✓ ∠ in revolution

 $\checkmark \hat{F}_1 = 180^{\circ} - x$

✓ \angle circ centre = 2 \angle circumference

(4)

11.2.2 $\hat{F}_2 = x$ (ext $\angle = \text{ int opp } \angle$)

 $\hat{B}_1 = x = \hat{E}$ (corres $\angle s$; EC || BF)

 $\mathbf{\hat{F}}_2 = \mathbf{\hat{B}}_1$

DF = BD (sides opp = $\angle s$)

 $\checkmark \hat{F}_2 = x$

 \checkmark ext \angle = int opp \angle

 $\checkmark \hat{\mathbf{B}}_{1} = x$

✓ sides opp = \angle s

(4)

OR

 $\hat{E} = x$ (\angle circ centre = $2\angle$ circumference)

 $\hat{\mathbf{B}}_1 = \hat{\mathbf{E}} = x$ (corres $\angle \mathbf{s}$; EC || BF)

 $\hat{F}_2 = x$ (ext \angle cyclic quad)

 $\mathbf{\hat{F}}_2 = \mathbf{\hat{B}}_1$

DF = BD (sides opp = $\angle s$)

 $\checkmark \hat{\mathbf{B}}_{1} = x$

 $\checkmark \hat{F}_2 = x$

✓ ext \angle = int opp \angle

✓ sides opp = \angle s

(4)

Copyright reserved

Please turn over

NSC – Memorandum

11 2 3	$\hat{C} + \hat{C} = v$ (/o one couple idea in A)	$\checkmark \hat{C}_1 + \hat{C}_2 = x$
11.2.3	$\hat{C}_1 + \hat{C}_2 = x (\angle s \text{ opp equal sides in } \Delta)$	
	$\hat{C}_3 + \hat{C}_2 = x$ (corresp \angle s CE BF)	✓ \angle s opp equal sides in \triangle
	â. â.	$\checkmark \hat{C}_2 + \hat{C}_3 = x$
	$\hat{\mathbf{C}}_1 = \hat{\mathbf{C}}_3$	✓ corresp ∠s CE BF
		(4)
	OR	
	$\hat{\mathbf{D}} = 180^{\circ} - 2x \qquad (\angle \operatorname{sum} \Delta)$	
	$\hat{O}_1 + \hat{D} = 180^{\circ}$	
	OCDB is a cyclic quad (opp ∠s suppl)	✓ opp ∠s suppl
	$\hat{\mathbf{B}}_3 = \hat{\mathbf{C}}_3$ (ext \angle cyclic quad)	$\checkmark \hat{B}_3 = \hat{C}_3$
	$\hat{B}_3 = \hat{C}_1$ (\angle same seg)	✓ ext ∠ cyclic quad
	$\hat{\mathbf{C}}_1 = \hat{\mathbf{C}}_3$	$\checkmark \hat{B}_3 = \hat{C}_1$
	$C_1 - C_3$	(4)
11.2.4	$\hat{D} = 180^{\circ} - 2x \qquad (\angle \operatorname{sum} \Delta)$	$\checkmark \hat{D} = 180^{\circ} - 2x$
	$\hat{O}_2 = 180^\circ - 2x$ (\angle on straight line)	$\checkmark \hat{O}_2 = 180^{\circ} - 2x$
	$\therefore \hat{\mathbf{D}} = \hat{\mathbf{O}}_2$	
	$\therefore \sin \hat{\mathbf{D}} = \sin \hat{\mathbf{O}}_2$	
	area ΔBFD	
	$\overline{\text{area }\Delta AOC}$	
	$\frac{1}{2}$ DF BD $\sin \hat{D}$	$\frac{1}{-}$ DF.BD.sin \hat{D}
	$=\frac{2}{1}$	$\sqrt{\frac{2}{1}}$
	$= \frac{\frac{1}{2} \text{DF.BD.} \sin \hat{D}}{\frac{1}{2} \text{AO.OC.} \sin \hat{O}_2}$	$\checkmark \frac{\frac{1}{2}DF.BD.\sin \hat{D}}{\frac{1}{2}AO.OC.\sin \hat{O}_2}$
		_
	$\frac{1}{2}5.5.\sin\hat{D}$	
	$=\frac{1}{1}$	
	$\frac{1}{2}6.6.\sin\hat{O}_2$	
	_ 5.5	
	$-{6.6}$	
	$= \frac{5.5}{6.6}$ $= \frac{25}{36}$	$\checkmark \frac{25}{36}$
	36	
		(4) [22]

TOTAL: 100