Week 1: The Syllabus (CMPT 419 / 980)

Fall 2025.

Course webpage is linked from Canvas (Canvas is very minimal for now.)

Press Space for next slide

Course Structure

Lecture Schedule

Monday (1hr)

Discuss previous week's readings

Introduce new materials

Start lecture content

• Thursdays (2hr)

Finish lecture (if needed)

Discussion

Class activity and/or lab time (1hr)

Occasionally: Quizzes

Communication Policy

- Questions at start/end of each session
- Email response: 2-3 business days
- Prefer in-class questions for:
 - Faster responses
 - Benefit to all students

Reading Components

Reading Structure

- Mandatory Readings: Core course material, weekly responses required
- Optional Readings: Theme-organized, abstracts/intros, based on interests

Note: Al assistance discouraged for reading responses. I prefer bullet points over LLM-generated text!

Reading Schedule

Timeline

- Finalized Monday of Week X-1
- Complete by Monday of Week X
- Responses due before class

Course Modules

Course Organization

Module	Weeks	Focus
1	1-4	Admin & Human-centred / Data-centred Al Frameworks
2	5–7	Technical work in data valuation, data scaling, and algorithmic collective action
3	8–10	Online platforms, content ecosystems, and data
4	11–13	Frontiers in Data Governance

Grading Structure

- "Reading Responses": 10
- "Coding Assignments": 20
- "Quizzes": 20
- "Final Project": 50

Detailed Version

- 10% reading responses (12 total, drop lowest 2 using Canvas, so each of your top 10 responses effectively is worth 1%)
- 20% coding assignments (4 total; 5/5/5/5, drop lowest 1 using Canvas, so each of your top 3 assignments effectively is worth 6.6.67%)
- 20% quizzes (2 total; 10/10; may adjust scoresfor difficulty)
- 50% final project (5% project proposal, 45% actual project; must submit a written document and a presentation for both)

Course FAQs

Attendance

- Not directly graded
- Participation expected
- (Maybe) Cold-calling for reading responses
- Stay home when sick
- No need to email for absences

Coding & Tools

FLEXIBLE.

- Python for ML/Data Science
- JavaScript for web programming
- LLM assistance allowed (with caveats)
- Free tools always available
- 4 assignments + 1 project

Group Work Policy

- Some opportunities available. Generally optional
- Contribution statements required
- Code/writing review mandatory
- Guidelines per assignment

Assessment Structure

- Likely TWO quizzes
- No midterm/final
- In-class format
- Make-up options available
- Based on lectures & readings

Al Tool Usage

Allowed with: Logs, attribution, documentation

Example citations:

- Produced by model XYZ
- Generated with ChatGPT
- Al-assisted, heavily edited

Example

I generated this deck by first manually writing a draft of the syllabus as syllabus.md, then asked Claude to style it.

Agenda (if time)

- More details about modules
- Loose prerequisites & crash course
- Finding research papers
- Managing references & notes

Module 1: Intro

Goals:

- Exposure to human/data-centric Al frameworks
- Learn frameworks aimed at researchers/designers
- Key question:
 - When would a human- or data-centric approach change your Al product?

Frameworks We'll See

- Human-Centered ML (Chancellor)
- DataPerf (data-centric AI)
- HCAI (Schneiderman)
- Value Sensitive Algorithm Design (Zhu)
- FairML
- "Public AI" (some of my work!)
- More to come!

Module 1 Learning Goals

- Identify similarities/differences between approaches
- Apply concepts to scenarios (e.g., product design)

Module 2: Technical work in data valuation, data scaling, and algorithmic collective action

- Data influence: Effect of each observation
- Scaling: Predict performance vs. dataset size
- Core idea: Reason about data counterfactuals. And social implications!

Data Valuation Key Reading

Hammoudeh & Lowd (2024) Training data influence analysis and estimation: A survey

Data Scaling Key Readings

Hestness et al. (2017) Deep learning scaling is predictable Villalobos et al. (2024) Will we run out of data?

Why Focus on Data?

- Some HCAI work doesn't focus on data
- Legislation, licensing, behavior change
- We'll focus more on data levers (everyone is a data creator!)

Module 2 Learning Goals

- Explain influence calculation & applications
- Describe scaling patterns
- Interpret scaling plots
- New forms of collective action

Module 3: Platforms & Content

- Peer production (Wikipedia, Linux)
- "User-generated content"
- Quantitative reasoning about "content ecosystems"

Module 4: Frontiers in Data Governance

- Overlap: Governing, markets, ecosystems
- Protocols for dataset maintenance
- Opt-in/out policies
- Platform governance
- Public interest Al

Voting & Markets

- Vote with/for data
- Market conditions change counterfactuals

If time:

• In-person and/or Google doc "interest formation" network