# CPSC 340: Machine Learning and Data Mining

Fundamentals continued; k-nearest neighbours
Bonus slides

### **Decision Theory Discussion**

- In other applications, the costs could be different.
  - In cancer screening, maybe false positives are ok, but don't want to have false negatives.
- Decision theory and "darts":
  - http://www.datagenetics.com/blog/january12012/index.html
- Decision theory and video poker:
  - http://datagenetics.com/blog/july32019/index.html
- Decision theory can help with "unbalanced" class labels:
  - If 99% of e-mails are spam, you get 99% accuracy by always predicting "spam".
  - Decision theory approach avoids this.
  - See also precision/recall curves and ROC curves in the bonus material.

## **Decision Theory and Basketball**

"How Mapping Shots In The NBA Changed It Forever"





# Consistency of KNN ('n' going to '∞')

- KNN has appealing consistency properties:
  - As 'n' goes to ∞, KNN test error is less than twice best possible error.
    - For fixed 'k' and binary labels (under mild assumptions).
- Stone's Theorem: KNN is "universally consistent".
  - If k/n goes to zero and 'k' goes to  $\infty$ , converges to the best possible error.
    - For example, k = log(n).
    - First algorithm shown to have this property.
- Does Stone's Theorem violate the no free lunch theorem?
  - No: it requires a continuity assumption on the labels.
  - Consistency says nothing about finite 'n' (see "<u>Dont Trust Asymptotics</u>").

#### Parametric vs. Non-Parametric Models

- With parametric models, there is an accuracy limit.
  - Even with infinite 'n', may not be able to achieve optimal error  $(E_{best})$ .



#### Parametric vs. Non-Parametric Models

- With parametric models, there is an accuracy limit.
  - Even with infinite 'n', may not be able to achieve optimal error  $(E_{best})$ .

• Many non-parametric models (like KNN) converge to optimal error.



### More on Weirdness of High Dimensions

- In high dimensions:
  - Distances become less meaningful:
    - All vectors may have similar distances.
  - Emergence of "hubs" (even with random data):
    - Some datapoints are neighbours to many more points than average.
  - Visualizing high dimensions and sphere-packing

#### Vectorized Distance Calculation

- To classify 't' test examples based on KNN, cost is O(ndt).
  - Need to compare 'n' training examples to 't' test examples,
     and computing a distance between two examples costs O(d).
- You can do this slightly faster using fast matrix multiplication:
  - Let D be a matrix such that  $D_{ii}$  contains:

$$||x_i - y_j||^2 = ||x_i||^2 - 2x_i^T x_j + ||x_j||^2$$

where 'i' is a training example and 'j' is a test example.

— We can compute D in Julia using:

And you get an extra boost because Julia uses multiple cores.

### **Condensed Nearest Neighbours**

- Disadvantage of KNN is slow prediction time (depending on 'n').
- Condensed nearest neighbours:
  - Identify a set of 'm' "prototype" training examples.
  - Make predictions by using these "prototypes" as the training data.
- Reduces runtime from O(nd) down to O(md).





#### **Condensed Nearest Neighbours**

- Classic condensed nearest neighbours:
  - Start with no examples among prototypes.
  - Loop through the non-prototype examples 'i' in some order:
    - Classify x<sub>i</sub> based on the current prototypes.
    - If prediction is not the true y<sub>i</sub>, add it to the prototypes.
  - Repeat the above loop until all examples are classified correctly.
- Some variants first remove points from the original data,
   if a full-data KNN classifier classifies them incorrectly ("outliers").

### Condensed Nearest Neighbours

Classic condensed nearest neighbours:



- Recent work shows that finding optimal compression is NP-hard.
  - An approximation algorithm algorithm was published in 2018:
    - "Near optimal sample compression for nearest neighbors"

#### **Back to Decision Trees**

Instead of validation set, you can use CV to select tree depth.

- But you can also use these to decide whether to split:
  - Don't split if validation/CV error doesn't improve.
  - Different parts of the tree will have different depths.
- Or fit deep decision tree and use [cross-]validation to prune:
  - Remove leaf nodes that don't improve CV error.

Popular implementations that have these tricks and others.

### Random Subsamples

- Instead of splitting into k-folds, consider "random subsample" method:
  - At each "round", choose a random set of size 'm'.
    - Train on all examples except these 'm' examples.
    - Compute validation error on these 'm' examples.
- Advantages:
  - Still an unbiased estimator of error.
  - Number of "rounds" does not need to be related to "n".
- Disadvantage:
  - Examples that are sampled more often get more "weight".

### **Cross-Validation Theory**

- Does CV give unbiased estimate of test error?
  - Yes!
    - Since each data point is only used once in validation, expected validation error on each data point is test error.
  - But again, if you use CV to select among models then it is no longer unbiased.
- What about variance of CV?
  - Hard to characterize.
  - CV variance on 'n' data points is worse than with a validation set of size 'n'.
    - But we believe it is close.
- Does cross-validation remove optimization bias?
  - No, but the bias might be smaller since you have more "test" points.

### **Handling Data Sparsity**

- Do we need to store the full bag of words 0/1 variables?
  - No: only need list of non-zero features for each e-mail.

| \$ | Hi | CPSC | 340 | Vicodin | Offer |  |
|----|----|------|-----|---------|-------|--|
| 1  | 1  | 0    | 0   | 1       | 0     |  |
| 0  | 0  | 0    | 0   | 1       | 1     |  |
| 0  | 1  | 1    | 1   | 0       | 0     |  |
| 1  | 1  | 0    | 0   | 0       | 1     |  |

| • | $\setminus$ | / | 5 | <i>-</i> |
|---|-------------|---|---|----------|
|   |             |   |   |          |

| Non-Zeroes |
|------------|
| {1,2,5,}   |
| {5,6,}     |
| {2,3,4,}   |
| {1,2,6,}   |

Math/model doesn't change, but more efficient storage.

#### Proof of No Free Lunch Theorem

- Let's show the "no free lunch" theorem in a simple setting:
  - The  $x^i$  and  $y^i$  are binary, and  $y^i$  being a deterministic function of  $x^i$ .
- With 'd' features, each "learning problem" is a map from each of the  $2^d$  feature combinations to 0 or 1:  $\{0,1\}^d -> \{0,1\}$

| Feature 1 | Feature 2 | Feature 3 |
|-----------|-----------|-----------|
| 0         | 0         | 0         |
| 0         | 0         | 1         |
| 0         | 1         | 0         |
|           |           |           |

| Map 1 | Map 2 | Map 3 |     |
|-------|-------|-------|-----|
| 0     | 1     | 0     | ••• |
| 0     | 0     | 1     |     |
| 0     | 0     | 0     |     |
|       |       |       |     |

- Let's pick one of these maps ("learning problems") and:
  - Generate a set training set of 'n' IID samples.
  - Fit model A (convolutional neural network) and model B (naïve Bayes).

#### Proof of No Free Lunch Theorem

- Define the "unseen" examples as the  $(2^d n)$  not seen in training.
  - Assuming no repetitions of  $x^i$  values, and  $n < 2^d$ .
  - Generalization error is the average error on these "unseen" examples.
- Suppose that model A got 1% error and model B got 60% error.
  - We want to show model B beats model A on another "learning problem".
- Among our set of "learning problems" find the one where:
  - The labels y<sup>i</sup> agree on all training examples.
  - The labels y<sub>i</sub> disagree on all "unseen" examples.
- On this other "learning problem":
  - Model A gets 99% error and model B gets 40% error.

#### Proof of No Free Lunch Theorem

- Further, across all "learning problems" with these 'n' examples:
  - Average generalization error of every model is 50% on unseen examples.
    - It's right on each unseen example in exactly half the learning problems.
  - With 'k' classes, the average error is (k-1)/k (random guessing).
- This is kind of depressing:
  - For general problems, no "machine learning" is better than "predict 0".
- But the proof also reveals the problem with the NFL theorem:
  - Assumes every "learning problem" is equally likely.
  - World encourages patterns like "similar features implies similar labels".