Kaveh Moradkhani

Ph.D. student in Software and IT Engineering at ÉTS University

In the world of medical image processing, our goal is to provide life-saving solutions and help those in need. It's a noble cause that we're proud to be a part of

Saper Sresentation

October 18rd 2023

Under the supervision of Pro. Sylvain Bouix

Neuro-iX

Vox2Cortex: Fast Explicit Reconstruction of Cortical Surfaces from 3D MRI Scans with Geometric Deep Neural Networks

(MAIN AIM UNDERSTANDING TOPIC MAIN CHALLENGE	
02	RELATED WORK METHODOLOGY	
03	DATASETS PRE-PROCESSING COMPARISON	
04	LIMITATION FEATURE CONCLUSION	

MAIN AIM

Main Aim

The main objective of this work is to develop a fast and highly accurate reconstruction of the cortex, which has high clinical value

UNDERSTANDING TOPIC

Unlocking the Power of Cortical Surface Reconstruction

6

- Precise analysis of cortical thickness
- Sulcal morphology

MAIN CHALLENGE

Maren Ce and enices

Lengthy runtimes of multiple hours

RELATED WORK

Racielacii Maroii k

10

- Voxel-based surface reconstruction:
 - FastSurfer
 - ❖ Deep implicit representations
 - ❖ SegRecon
- Mesh-based surface reconstruction:
 - ❖ Voxel2Mesh
 - ★ MeshDeformNet
 - **❖** PialNN

METHODOLOGY

METHODOLOGY

Detail of the individual building blocks:

- **❖** Image encoding and decoding (CNN)
- **❖** Mesh deformation (GNN)

Loss Functions

The loss function of Vox2Cortex:

$$\mathcal{L}(y^{\mathrm{p}}, y^{\mathrm{gt}}) = \mathcal{L}_{\mathrm{vox}}(y^{\mathrm{p}}, y^{\mathrm{gt}}) + \mathcal{L}_{\mathrm{mesh}}(y^{\mathrm{p}}, y^{\mathrm{gt}})$$

***** Voxel loss:

$$\mathcal{L}_{ ext{vox}}(y^{ ext{p}}, y^{ ext{gt}}) = \sum_{l=1} \mathcal{L}_{ ext{BCE}}(B_l^{ ext{p}}, B^{ ext{gt}})$$

Loss Functions

Mesh loss:

$$\mathcal{L}_{\mathrm{mesh}}(y^{\mathrm{p}}, y^{\mathrm{gt}}) = \mathcal{L}_{\mathrm{mesh},\, cons}(y^{\mathrm{p}}, y^{\mathrm{gt}}) + \mathcal{L}_{\mathrm{mesh},\, reg}(y^{\mathrm{p}})$$

$$\begin{split} \mathcal{L}_{\text{mesh,}\,cons}(y^{\text{p}}, y^{\text{gt}}) &= \sum_{s=1}^{S} \sum_{c=1}^{C} \left[\lambda_{1,c} \, \mathcal{L}_{\text{C}}(\mathcal{M}_{s,c}^{\text{p}}, \mathcal{M}_{c}^{\text{gt}}) \right. \\ &+ \left. \lambda_{2,c} \, \mathcal{L}_{\text{n,}\,inter}(\mathcal{M}_{s,c}^{\text{p}}, \mathcal{M}_{c}^{\text{gt}}) \right]. \end{split}$$

$$\begin{split} \mathcal{L}_{\text{mesh, }reg}(y^{\text{p}}) &= \sum_{s=1}^{S} \sum_{c=1}^{C} \left[\lambda_{3,c} \, \mathcal{L}_{\text{Lap, }rel}(\mathcal{M}_{s,c}^{\text{p}}, \boldsymbol{\Delta}_{s,c}^{\text{p}}) \right. \\ &+ \lambda_{4,c} \, \mathcal{L}_{\text{n, }intra}(\mathcal{M}_{s,c}^{\text{p}}) \\ &+ \left. \lambda_{5,c} \, \mathcal{L}_{\text{edge}}(\mathcal{M}_{s,c}^{\text{p}}) \right]. \end{split}$$

DATASETS AND PRE-PROCESSING

Datasets and Pre-processing

Pre-processing

- Registering MRI scans to the MNI152 space
- Resize to 128×144×128 voxels

Dataset

ADNI

- Provides MRI T1 scans for subjects with Alzheimer's Disease, Mild Cognitive Impairment, and healthy subjects
- Balanced according to diagnosis, age, and sex
- ADNIlarge contains 1,155 subjects
- ADNIsmall contains 299 subjects

OASIS

- Contains MRI T1 scans of 416 subjects
- 100 subjects have been diagnosed with very mild to moderate Alzheimer's disease
- Balanced on diagnosis, age, and sex

ALZHEIMER'S DISEASE NEUROIMAGING INITIATIVE

COMPARISON

COMPARISON

19

- ❖ Average Symmetric Surface Distance (ASSD)
- ❖ 90-Percentile Hausdorff Distance (HD)

		Left WM Surface		Left WM Surface Right WM Surface		Left Pial Surface		Right Pial Surface	
Data	Method	ASSD	HD	ASSD	HD	ASSD	HD	ASSD	HD
ADNI large	Vox2Cortex	0.345 ±0.056	0.720 ±0.125	0.347 ±0.046	0.720 ±0.087	0.327 ±0.031	0.755 ±0.102	0.318 ±0.029	0.781 ±0.102
	DeepCSR [4]	0.422 ±0.058	0.852 ±0.134	0.420 ±0.058	0.880 ±0.156	0.454 ±0.059	0.927 ±0.243	0.422 ±0.053	0.890 ±0.197
	nnUNet [23]	1.176 ±0.345	1.801 ±2.835	1.159 ±0.242	1.739 ±1.880	1.310 ±0.292	3.152 ±2.374	1.317 ±0.312	3.295 ±2.387
OASIS	Vox2Cortex	0.315 ±0.039	0.680 ±0.137	0.318 ±0.048	0.682 ±0.151	0.362 ±0.036	0.894 ±0.141	0.373 ±0.041	0.916 ±0.137
	DeepCSR [4]	0.360 ± 0.042	0.731 ±0.104	0.335 ± 0.050	0.670 ±0.195	0.458 ± 0.056	1.044 ±0.290	0.442 ± 0.058	1.037 ±0.294

LIMITATION

Limitations

21

- No Ground Truth: they used FreeSurfer surfaces as pseudo ground-truth due to the absence of manually generated ground-truth surfaces for their data
- ❖ Limited Data Scope: their analysis only includes healthy subjects and those with dementia, so the model may not perform accurately in the presence of other brain morphological changes like tumors
- ❖ Data Specificity: their model's performance is based on the discussed data and may not generalize well to unseen data from different domains
- ❖ Fairness: they balanced data splits with respect to age and sex, their model might still have biases and potentially discriminate against underrepresented groups

FEATURE

Feature

- ❖ Vox2Cortex simultaneously predicts white matter (WM) and pial surfaces of both hemispheres, resulting in an output of four meshes
- ❖ Vox2Cortex models the interdependency between WM and pial surfaces by exchanging information between them
- ❖ In contrast to time-consuming traditional methods for brain analysis, such a network performs the segmentation in seconds
- ❖ The current standard for cortical surface reconstruction is FreeSufer, which produces smooth, accurate, and topologically correct surface meshes but runs for several hours per scan
- ❖ Current deep-learning approaches for cortical surface reconstruction focus on voxel-based or implicit surface reconstruction methods

Example

CONCLUSION

Conclusion

In summary, Vox2Cortex is a groundbreaking approach for explicit cortical surface reconstruction, offering speed, accuracy, and many promising applications

Thank you!

