Número:_____

1.	[1,5 valores] - Considere o seguinte excerto de um programa escrito em <i>assembly</i> e executar numa máquina com cache:						assembly e a		
		movi addi cmpi jnz	1 0(%ebx) 1 \$10, 0(% 1 \$4, %eb; 1 \$0, %ed; ciclo	%ebx) x x					
	Considere que o registo %ebx aponta para o início de um array de inteiros (4 bytes) con seguintes valores: {-10, 30, 1024, -33, 0}. Note que o ciclo termina quando o valido do array for 0. A frequência do relógio é de 2 GHz, o CPI _{CPU} é 2, a <i>miss rate</i> instruções é de 3% e a de dados de 5%. Sabendo que o tempo de execução deste progre é de 150 ns, qual é a <i>miss penalty</i> (expressa em tempo)?								
			$mp_T = 150$	ns			$mp_T = 50 \text{ ns}$		
			$mp_T = 200$	ns			$mp_T = 100 \text{ ns}$		
2.	[1,5 valores] - Complete a afirmação abaixo : "A técnica de <i>pipelining,</i> relativamente a uma arquitectura sequencial de ciclo únic acelera o desempenho de um processador pois								
				nuição do CPI, Ição em cada (-	e mais d	do que uma instruç	ção se	
				nuição do núm s são internam		-	xecutadas, uma ve s em NOPs"	ez que	
		resulta	numa dimir		odo do relóg	gio, uma	a vez que este deve	e ser	
		resulta	num aumer	_	ncia devido a		de <i>stalling</i> causado	os por	
3.		=	•	rmação abaixo		00111			
	"O programa for (i=0 ; i <n *="" 2;="" ;="" a="" a[i]="b[100*i]" de="" espacial<="" exibe="" explorar="" hierarquia="" i++)="" localidade="" memória="" permite="" pois="" th=""><th>al</th></n>					al			
		permit	essos a i." te explorar a essos a a []."	•	memória po	ois exibe	e localidade espaci	al	
		permit		hierarquia de	memória po	ois exibe	e localidade tempo	oral	
		permit		hierarquia de	memória po	ois exibe	e localidade espaci	al	

Nome: _____

Número:_____

LEI/	MIEI			1º teste
4.	[1,5 valores] - Qu m=32)?	antos <i>bits</i> tem a <i>tag</i> de um	na hierarquia de me	mória (S=1024, E=8, B=128,
		<i>t</i> = 15		t= 17
		<i>t</i> = 10		t=12
5.	(m=4) de acesso referem-se a ur LRU. Preencha-a tag associada a	o à memória gerados por um n modo de mapeamento no as indicando em que <i>set</i> /linh	n determinado progra uma cache que usa na (dentro do <i>set</i>) ma cesso e indicando se	ma sequência de endereços ama. As 3 colunas seguintes o algoritmo de substituição apeia cada endereço, qual a e se trata de um <i>cold miss</i> ,
	Addr	(S=2,E=2,B=2,m=4)	tag	cold miss/hit/colisão
	1			
	13			
	0			
	6			
	8			
Ree	de inteiros. A m for for fo	atriz tem ALTURA * LARGURA ; (col=0 ; col <largura (lin="0" +="matriz[lin*LAR</td" ;="" <="" altur="" lin="" or="" soma=""><td>col++) { A ; lin++) { GURA+col];</td><td>os elementos de uma matriz mais eficaz a hierarquia da</td></largura>	col++) { A ; lin++) { GURA+col];	os elementos de uma matriz mais eficaz a hierarquia da

Nome: _____

1. [1,5 valores] - Considere o seguinte excerto de um programa escrito em assembly e a executar numa máquina com cache:

```
ciclo: mov1 0 (%ebx), %edxacede à mombria
                 mov1 0 (*ebx), *edxaceae a momoria \frac{2}{5} acedem mov1 $10, 0 (*ebx*cede à momoria add1 $4, *ebx*no acede à momoria \frac{3}{5} no acedem cmp1 $0, *edxno acede à momoria \frac{3}{5} no acedem
                 inz ciczono acede à momoria
```

Considere que o registo %ebx aponta para o início de um array de inteiros (4 bytes) com os seguintes valores: {-10, 30, 1024, -33, 0}. Note que o ciclo termina quando o valor lido do array for 0. A frequência do relógio é de 2 GHz, o CPI_{CPU} é 2, a miss rate de instruções é de 3% e a de dados de 5%. Sabendo que o tempo de execução deste programa é de 150 ns, qual é a miss penalty (expressa em tempo)?

2. [1,5 valores] - Complete a afirmação abaixo:

"A técnica de pipelining, relativamente a uma arquitectura sequencial de ciclo único, acelera o desempenho de um processador pois ...

resulta numa diminuição do CPI, uma vez que mais do que uma instrução se

por causa das depôndencias de dedos e por causa dos tempos \boxtimes encontra em execução em cada ciclo." dos regustos entre os estegrios —) not a possivel diminuir o no de instrucçãos de um programa resulta numa diminuição do número de instruções executadas, uma vez que -

= O CPI comantém, ou auma

Xalgumas instruções são internamente transformadas em NOPs"

resulta numa diminuição do período do relógio, uma vez que este deve ser \checkmark apenas tão longo quanto o estágio mais demorado do pipeline."

resulta num aumento da frequência devido a ciclos de stalling causados por dependências de dados e/ou controlo."

3. [1,5 valores] - Complete a afirmação abaixo:

"O programa for (i=0; i<N; i++) a[i] = b[100*i] * 2; ...

- permite explorar a hierarquia de memória pois exibe localidade espacial nos acessos a i." —> i « om registo, por isso nem acede a memória.
- permite explorar a hierarquia de memória pois exibe localidade espacial nos acessos a a []."
- permite explorar a hierarquia de memória pois exibe localidade temporal nos acessos a a []."
- \bowtie permite explorar a hierarquia de memória pois exibe localidade espacial nos acessos a b[]."

4. [1,5 valores] - Quantos bits tem a tag de uma hierarquia de memória (S=1024, E=8, B=128,

m=32)?

quantidado de bits
que o endereço

t= 15

□ t= 17

□ t= 10

□ t=12

5. [2.0 valores] A tabela abaixo apresenta na coluna da esquerda uma sequência de endereços (m=4) de acesso à memória gerados por um determinado programa. As 3 colunas seguintes referem-se a um modo de mapeamento numa cache que usa o algoritmo de substituição LRU. Preencha-as indicando em que set/linha (dentro do set) mapeia cada endereço, qual a tag associada a essa linha depois deste acesso e indicando se se trata de um cold miss, colisão ou de um hit. Considere a cache inicialmente fria.

Addr	(S=2,E=2,B=2,m=4)	tag	cold miss/hit/colisão	
1	S=0 //L=0	00	cold miss	
13	s=0/L=1	11	add miss	
0	5=01/L=0	00	h*t	
6	S =0 L=1	01	cold miss	
8	s=0 L=1	10	બાંડર્વ્હ	

```
tag uslid
      00 ±4
00 = 60
                                                                     1 = 0001 -> cold miss (not existe a tag) -> ir buscar à memoria
                      0
              ø
                                                                    13= 1101
                                 13
                                                                     0=0000 -> bit
01
        10
                                  9
                                                                     6 = 0110 -> cold miss (no existe a tag) -> ir buscar à memoria
                                                                                  -> colisão (não está na exche e temos de trear uma linha para por a nova,
                                                                     9 = 1000
                                                                                                neste aso tiramos a que não «acedida a maistempo, iru)
10
41
                          2 colonos
```

6. [2.0 valores] O excerto de código abaixo calcula a soma de todos os elementos de uma matriz de inteiros. A matriz tem ALTURA * LARGURA elementos.

```
for (col=0 ; col<LARGURA ; col++) {
  for (lin=0 ; lin < ALTURA ; lin++) {
    soma += matriz[lin*LARGURA+col];
  }
}</pre>
```

Reescreva o programa para que seja possível explorar de forma mais eficaz a hierarquia da memória, **justificando** a sua resposta.

```
matri<del>2</del>
4
        L
                3
                                                            \begin{cases} \omega | = 0 \\ \sin = 1 \end{cases}
        5
                 6
4
                9
        g
                                                        ⇒for (<del>col</del>=0 ; col<<del>LARGURA</del> ; <del>col</del>++) {
                                                          \Rightarrow for (<del>lin</del>=0 ; lin < <del>ALTURA</del> ; <del>lin</del>++) {
                                                                  soma += matriz[lin*LARGURA+col];
                                                             \begin{cases} \cos - \\ \ln = 0 \end{cases}
                                                                                 - tem localidade espacial
                                                        3° { col = 2
lin = 0
```