Chapitre 3: Principe de la descente de gradient pour l'apprentissage supervisé:

Application régression linéaire et régression logistique

Mahdi LOUATI

3 Ingénierie des Donnés et Systèmes Décisionnels Sciences de Données 3 IDSD-SD Ecole Nationale d'Electronique et des télécommunications de Sfax

04 Octobre 2022

Plan

- Introduction
- Algorithme de gradient: Démarche itérative pour minimiser une fonction
 - Optimisation d'une fonction différentiable et convexe
 - Algorithme du gradient (descente de gradient)
- Rapport avec apprentissage automatique: Cas régresion linéaire multiple
- Descente de gradient stochastique (Approche incrémentale pour le traitement des bases très grandes)
 - Correction par observation (online)
 - Stratégies Gradient stochastique
- 5 Choix du taux d'aprentissage (Taux fixe ou taux décroissant au fil du processus d'apprentissage)
- 6 Rapport avec apprentissage automatique: Cas régression logistique
 - Régression logistique binaire
 - Régression logistique multinomiale
- Degiciels: Quelques packages pour Python et R

Motivation

(ADALINE, 1960), mais elle connaît un très grand intérêt aujourd'hui,

La descente de gradient (stochastique) n'est pas un concept nouveau

- Pour l'entraînement des réseaux de neurones profonds (deep learning).
- Elle permet aussi de revisiter des approches statistiques existantes (exp. régression).

Plan

- Introduction
- 2 Algorithme de gradient: Démarche itérative pour minimiser une fonction
 - Optimisation d'une fonction différentiable et convexe
 - Algorithme du gradient (descente de gradient)
- Rapport avec apprentissage automatique: Cas régresion linéaire multiple
- 4 Descente de gradient stochastique (Approche incrémentale pour le traitement des bases très grandes)
 - Correction par observation (online)
 - Stratégies Gradient stochastique
- 5 Choix du taux d'aprentissage (Taux fixe ou taux décroissant au fil du processus d'apprentissage)
- 6 Rapport avec apprentissage automatique: Cas régression logistique
 - Régression logistique binaire
 - Régression logistique multinomiale
 - Logiciels: Quelques packages pour Python et R

Maximiser ou minimiser une fonction est un problème usuel dans de nombreux domaines.

Exemple

On désire minimiser la fonction

$$f(x) = x^2 - x + 1$$

par rapport à x.

- f est la fonction à minimiser et x joue le rôle de paramètre ici, i.e., on cherche la valeur de x qui minimise f.
- •

$$\min_{x \in \mathbb{R}} f(x) = \min_{x \in \mathbb{R}} (x^2 - x + 1).$$

Exemple

La solution analytique passe par :

$$f'(x)=0$$

En s'assurant que f''(x) > 0

$$f'(x) = 2x - 1 = 0 \implies x^* = \frac{1}{2}$$

Remarque

Parfois la résolution analytique n'est pas possible, parce que

- le nombre de paramètres est élevé par exemple
- le calcul serait trop coûteux.
- ⇒ Approximation avec une approche itérative.

Algorithme du gradient

- Initialiser avec x_0 (au hasard).
- 2 Répéter

$$x_{t+1} = x_t - \eta \nabla f(x_t).$$

Jusqu'à convergence.

Remarques (Algorithme du gradient)

- Initialisation: Quasiment impossible de suggérer des valeurs "intelligentes".
- \bigcirc ∇f : Le "gradient" généralisation multidimensionnelle de la dérivée.
- **1** Un paramètre qui permet de moduler la correction (η trop faible \rightarrow lenteur de convergence et η trop élevé \rightarrow oscillation).
- \bullet -: puisqu'on cherche à minimiser f.
- **1** Jusqu'à convergence: Nombre d'itérations fixé, ou différence entre deux valeurs successives x_t , ou $\nabla f(x_t)$ très petit.

Exemple

$$\begin{cases} f(x) = x^2 - x - 1 \\ \nabla f(x) = \frac{\partial f(x)}{\partial x} = 2x - 1. \end{cases}$$

Il n'y a qu'un seul paramètre, la dérivée partielle est égale à la dérivée.

Remarque

On aurait pu partir de l'autre côté

х	f'(x_t)	f(x)
-4.0000		21.0000
-1.3000	-9.0000	3.9900
-0.2200	-3.6000	1.2684
0.2120	-1.4400	0.8329
0.3848	-0.5760	0.7633
0.4539	-0.2304	0.7521
0.4816	-0.0922	0.7503
0.4926	-0.0369	0.7501
0.4971	-0.0147	0.7500
0.4988	-0.0059	0.7500
0.4995	-0.0024	0.7500
0.4998	-0.0009	0.7500
0.4999	-0.0004	0.7500
0.5000	-0.0002	0.7500

 $x_0 < x_1 < x_2 \dots$

Plan

- Introduction
- 2 Algorithme de gradient: Démarche itérative pour minimiser une fonction
 - Optimisation d'une fonction différentiable et convexe
 - Algorithme du gradient (descente de gradient)
- Rapport avec apprentissage automatique: Cas régresion linéaire multiple
- Descente de gradient stochastique (Approche incrémentale pour le traitement des bases très grandes)
 - Correction par observation (online)
 - Stratégies Gradient stochastique
- 5 Choix du taux d'aprentissage (Taux fixe ou taux décroissant au fil du processus d'apprentissage)
- 6 Rapport avec apprentissage automatique: Cas régression logistique
 - Régression logistique binaire
 - Régression logistique multinomiale
- Logiciels: Quelques packages pour Python et R

Objectif: Modéliser y (quantitative) à partir de p variables explicatives $X = (x_1, x_2, \dots, x_n)$ quantitatives

$$y_i = a_0 + a_1 x_{i1} + a_2 x_{i2} + \ldots + a_p x_{ip} + \varepsilon_i$$
, pour tout $i \in \{1, 2, \ldots, n\}$.

$$S = \frac{1}{2n} \sum_{i=1}^{n} \varepsilon_i^2$$

 $S = \frac{1}{2n} \sum_{i=1}^{n} \varepsilon_i^2$ Critère des moindres carrés

On a un problème de minimisation par rapport aux paramètres
$$a=(a_0,a_1,\cdots,a_p)$$

$$\min_{a_0, a_1, \dots, a_p} S = \sum_{i=1}^n (y_i - \langle a, x_i \rangle)^2$$

Où
$$x_i = (x_{oi}, x_{ia}, ..., x_{ip})$$
 et (constante) $x_{oi} = a_i, \forall i$

Il existe une solution « exacte »

$$\hat{a} = (X'X)^{-1}X'Y$$

L'estimateur

$$\hat{a} = (X'X)^{-1}X'Y$$

nécessite la manipulation de la matrice (X'X) de taille (p+1,p+1), ingérable dès que p est élevé (millier de variables, grandes dimensions). D'autres approches existent, mais elle nécessitent toujours la manipulation d'une matrice de taille (p+1,p+1) durant les calculs.

Descente de gradient
$$a^{t+1} = a^t - \eta \times \nabla S^t$$

$$\vdots$$
Taux d'apprentissage (êta, learning rate)
$$\frac{\partial S^t}{\partial a_0} = \frac{1}{n} \sum_{i=1}^n (-1) \times (y_i - \langle a^t, x_i \rangle)$$

$$\vdots$$

$$\frac{\partial S^t}{\partial a_p} = \frac{1}{n} \sum_{i=1}^n (-x_{i1}) \times (y_i - \langle a^t, x_i \rangle)$$

Le vecteur gradient de taille (p+1,1) est composé des dérivées partielles de S par rapport à chaque paramètre du modèle.

Remarques

- Manipulation d'un vecteur de taille (p+1,1) plutôt qu'une matrice (p+1,p+1), voilà tout l'intérêt de la descente de gradient pour les grandes dimensions.
- Nécessite de parcourir plusieurs fois la base (avec *n* observations).

Exemple

Il est préférable d'harmoniser les données (les mettre sous la même échelle), on peut utiliser la standardisation ou la normalisation, afin d'éviter les problèmes d'échelles.

х0	x1	x2	у
1	0.72	0.32	6.93
1	0.75	0.12	5.99
1	0.53	0.65	1.46
1	0.27	0.82	1.44
1	0.49	0.15	4.51
1	0.02	0.19	1.25
1	0.35	0.87	2.53
1	0.99	0.71	6.88
1	0.98	0.92	6.25
1	0.73	0.19	6.36

On pose

$$a^0 = (0.1, 0.1, 0.1)$$
 et $\eta = 1.05$.

multiple

	eta	1.05					
t	a0	a1	a2	S	dS/d_ao	dS/d_a1	dS/d_a2
0	0.100	0.100	0.100	224.72	-4.152	-3.003	-1.889
1	4.460	3.253	2.083	127.71	3.026	1.483	1.892
2	1.283	1.697	0.097	77.53	-2.040	-1.633	-0.825
3	3.425	3.411	0.963	50.95	1.529	0.609	1.045
4	1.819	2.771	-0.135	36.36	-0.992	-0.931	-0.315
5	2.860	3.749	0.196	27.95	0.783	0.193	0.606
6	2.039	3.546	-0.440	22.79	-0.472	-0.564	-0.078
7	2.534	4.138	-0.358	19.39	0.410	0.002	0.373
8	2.104	4.135	-0.750	17.00	-0.216	-0.367	0.026
9	2.330	4.521	-0.778	15.22	0.222	-0.079	0.245
10	2.097	4.604	-1.035	13.83	-0.090	-0.257	0.067
11	2.191	4.874	-1.105	12.72	0.127	-0.108	0.171
12	2.058	4.987	-1.284	11.80	-0.029	-0.191	0.078
13	2.088	5.188	-1.365	11.04	0.078	-0.112	0.125
14	2.006	5.306	-1.497	10.41	0.000	-0.149	0.075
15	2.006	5.463	-1.576	9.87	0.052	-0.106	0.096
16	1.951	5.574	-1.676	9.42	0.013	-0.121	0.068
17	1.938	5.701	-1.747	9.03	0.038	-0.096	0.075
18	1.898	5.802	-1.826	8.71	0.018	-0.100	0.059
19	1.879	5.907	-1.888	8.43	0.030	-0.085	0.060
20	1.847	5.996	-1.951	8.20	0.019	-0.084	0.050
21	1.827	6.084	-2.003	8.00	0.025	-0.074	0.048
22	1.801	6.161	-2.054	7.83	0.019	-0.071	0.042
23	1.782	6.236	-2.098	7.68	0.021	-0.064	0.039
24	1.759	6.303	-2.139	7.56	0.018	-0.061	0.035
25	1.741	6.367	-2.175	7.46	0.018	-0.055	0.032
26	1.722	6.425	-2.209	7.37	0.016	-0.052	0.029
27	1.705	6.479	-2.239	7.29	0.016	-0.047	0.026
28	1.688	6.529	-2.267	7.23	0.015	-0.044	0.024
29	1.673	6.575	-2.292	7.17	0.014	-0.041	0.022
30	1.658	6.618	-2.314	7.12	0.013	-0.038	0.019

Exemple

$$a^{0} = (0.1, 0.1, 0.1)$$
 \downarrow
 $a^{30} = (1.658, 6.618, -2.314)$
 \downarrow
 \downarrow
 $a^{solution} = (1.424, 7.173, -2.523).$

• La convergence est lente puisqu'on a un petit effectif (n = 10).

	1.05					
a0	a1	a2	S	dS/d_ao	dS/d_a1	dS/d_a2
0.100	0.100	0.100	224.72	-4.152	-3.003	-1.889
4.460	3.253	2.083	127.71	3.026	1.483	1.892
1.283	1.697	0.097	77.53	-2.040	-1.633	-0.825
3.425	3.411	0.963	50.95	1.529	0.609	1.045
	0.100 4.460 1.283	0.100 0.100 4.460 3.253 1.283 1.697	0.100 0.100 0.100 4.460 3.253 2.083 1.283 1.697 0.097	0.100 0.100 0.100 224.72 4.460 3.253 2.083 127.71 1.283 1.697 0.097 77.53	0.100 0.100 0.100 224.72 -4.152 4.460 3.253 2.083 127.71 3.026 1.283 1.697 0.097 77.53 -2.040	0.100 0.100 0.100 224.72 -4.152 -3.003 4.460 3.253 2.083 127.71 3.026 1.483 1.283 1.697 0.097 77.53 -2.040 -1.633

$$a^0 = (0.1, 0.1, 0.1)$$
 $\nabla S^0 = \begin{pmatrix} -4.152 \\ -3.003 \\ -1.889 \end{pmatrix}$

$$\begin{pmatrix} 0.1 \\ 0.1 \\ 0.1 \end{pmatrix} - 1.05 \times \begin{pmatrix} -4.152 \\ -3.003 \\ -1.889 \end{pmatrix} \rightarrow \begin{pmatrix} 4.460 \\ 3.253 \\ 2.083 \end{pmatrix} = a^1$$

Exemple

Evolution de S au fil des itérations (t)

Baisse constante de la fonction de coût.

Evolution des coefficients au fil des itérations (t)

La fonction de coût

$$J(t) = \frac{1}{2n} \sum_{i=1}^{n} (Y_i - \hat{Y}_i(t))^2.$$

Plan

- Introduction
- 2 Algorithme de gradient: Démarche itérative pour minimiser une fonction
 - Optimisation d'une fonction différentiable et convexe
 - Algorithme du gradient (descente de gradient)
- Rapport avec apprentissage automatique: Cas régresion linéaire multiple
- Descente de gradient stochastique (Approche incrémentale pour le traitement des bases très grandes)
 - Correction par observation (online)
 - Stratégies Gradient stochastique
- 5 Choix du taux d'aprentissage (Taux fixe ou taux décroissant au fil du processus d'apprentissage)
- 6 Rapport avec apprentissage automatique: Cas régression logistique
 - Régression logistique binaire
 - Régression logistique multinomiale
 - Logiciels: Quelques packages pour Python et R

Principe

Gradient stochastique est une approximation de la descente de gradient, applicable lorsque la fonction objectif s'écrit comme une somme de fonctions dérivables: c'est très souvent le cas en apprentissage supervisé.

Exemple de la régression linéaire multiple via les moindres carrés

$$S = \sum_{i=1}^{n} (y_i - \langle a, x_i \rangle)^2$$

$$(y_i - \langle a, x_i \rangle)^2$$

Est dérivable par rapport au paramètres (a_i)

Il est possible de corriger les paramètres estimés pour le passage de chaque observation

$$a := a - \eta \times \nabla S_i$$

Où
$$\frac{\partial S_i}{\partial a_i} = (-x_{ij}) \times (y_i - \langle a, x_i \rangle)$$

eta

0.5

Exemple

i	a0	a1	a2	S	dS/d_ao	dS/d_a1	dS/d_a2
0	0.100	0.100	0.100	224.72	-6.726	-4.843	-2.152
1	3.463	2.521	1.176	47.83	-0.495	-0.371	-0.059
2	3.710	2.707	1.206	56.63	4.469	2.369	2.905
3	1.476	1.523	-0.247	81.22	0.245	0.066	0.201
4	1.354	1.490	-0.347	89.71	-2.479	-1.215	-0.372
5	2.593	2.097	-0.161	35.50	1.354	0.027	0.257
6	1.916	2.083	-0.290	50.15	-0.137	-0.048	-0.119
7	1.984	2.107	-0.230	47.19	-2.973	-2.943	-2.111
8	3.471	3.579	0.825	51.62	1.487	1.457	1.368
9	2.727	2.850	0.141	27.12	-1.526	-1.114	-0.290
10	3.490	3.407	0.286	39.93	-0.896	-0.645	-0.287
11	3.938	3.729	0.429	61.57	0.796	0.597	0.096
12	3.540	3.431	0.382	43.13	4.146	2.197	2.695
13	1.467	2.332	-0.966	68.10	-0.136	-0.037	-0.111
14	1.534	2.350	-0.910	63.90	-1.960	-0.961	-0.294
15	2.515	2.831	-0.763	27.57	1.176	0.024	0.223
16	1.927	2.819	-0.875	39.08	-0.378	-0.132	-0.329
17	2.116	2.885	-0.710	32.38	-2.413	-2.389	-1.713
18	3.322	4.079	0.146	39.90	1.204	1.180	1.108
19	2.720	3.489	-0.408	21.36	-1.170	-0.854	-0.222
20	3.305	3.917	-0.297	30.72	-0.900	-0.648	-0.288
21	3.755	4.241	-0.153	50.09	0.927	0.695	0.111
22	3.291	3.893	-0.208	31.51	3.759	1.992	2.444
23	1.412	2.897	-1.430	61.38	-0.419	-0.113	-0.343
24	1.621	2.953	-1.258	49.38	-1.631	-0.799	-0.245
25	2.436	3.353	-1.136	22.86	1.038	0.021	0.197
26	1.918	3.342	-1.235	32.14	-0.517	-0.181	-0.450

3.433

4.434

-1.010

-0.292

-0.758

24.43

32.71

18.09

-2.023

1.014

-0.950

2.176

3.187

2.680

28

-1.436

0.933

-0.180

-2.002

0.994

-0.693

Remarques

- La décroissance de *S* au passage de chaque observation n'est pas assurée mais, en moyenne, sur l'ensemble des observations, sa convergence est effective.
- Dans l'exemple précédent (descente de gradient), après 3 passages sur les observations nous avons S=50.95. Ici nous obtenons S=18.09 (η n'est pas le même non plus).

Stratégies

- Descente de Gradient classique (batch gradient descent). On fait passer la totalité des observations, le gradient est calculé, les coefficients sont corrigés.
- Online. Gradient calculé pour chaque observation, correction des coefficients.
- Mini-batch (traitement par lots). On fait passer un groupe (effectif = paramètre de l'algorithme) d'observations. Calcul du gradient. Correction des coefficients.

Remarques

 Le traitement par lots permet d'améliorer la convergence en réduisant le nombre de passage sur la base entière.

Stratégies

- Descente de Gradient classique (batch gradient descent). On fait passer la totalité des observations, le gradient est calculé, les coefficients sont corrigés.
- Online. Gradient calculé pour chaque observation, correction des coefficients.
- Mini-batch (traitement par lots). On fait passer un groupe (effectif = paramètre de l'algorithme) d'observations. Calcul du gradient. Correction des coefficients.

Remarques

- Le traitement par lots permet d'améliorer la convergence en réduisant le nombre de passage sur la base entière.
- Il permet également de se contenter de charger partiellement les données en mémoire au fur et à mesure.

Plan

- Introduction
- 2 Algorithme de gradient: Démarche itérative pour minimiser une fonction
 - Optimisation d'une fonction différentiable et convexe
 - Algorithme du gradient (descente de gradient)
- Rapport avec apprentissage automatique: Cas régresion linéaire multiple
- Descente de gradient stochastique (Approche incrémentale pour le traitement des bases très grandes)
 - Correction par observation (online)
 - Stratégies Gradient stochastique
- 5 Choix du taux d'aprentissage (Taux fixe ou taux décroissant au fil du processus d'apprentissage)
- 6 Rapport avec apprentissage automatique: Cas régression logistique
 - Régression logistique binaire
 - Régression logistique multinomiale
 - Logiciels: Quelques packages pour Python et R

Importance du taux d'apprentissage (learning rate)

- ullet η détermine la vitesse de convergence du processus d'apprentissage.
- ullet Améliorer le dispositif en faisant évoluer η au fil des itérations
 - Fort au début \Longrightarrow accélérer la convergence
 - Faible à la fin \Longrightarrow améliorer la précision.

Exemple: SGDRegressor du package "scikit-learn" (Stochastic Gradient Descent Python)

class sklearn.linear_model. SGDRegressor (loss='squared_loss', penalty='/2', alpha=0.0001, l1_ratio=0.15, fit_intercept=True, max_iter=None, tol=None, shuffle=True, verbose=0, epsilon=0.1, random_state=None, learning_rate='invscaling', eta0=0.01, power_t=0.25, warm_start=False, average=False, n_iter=None)

loss: str, default='squared_error'

The loss function to be used. The possible values are 'squared_error', 'huber', 'epsilon_insensitive', or 'squared_epsilon_insensitive'

The 'squared_error' refers to the ordinary least squares fit. 'huber' modifies 'squared_error' to focus less on getting outliers correct by switching from squared to linear loss past a distance of epsilon. 'epsilon_insensitive' ignores errors less than epsilon and is linear past that; this is the loss function used in SVR. 'squared_epsilon_insensitive' is the same but becomes squared loss past a tolerance of epsilon.

More details about the losses formulas can be found in the <u>User Guide</u>.

Deprecated since version 1.0: The loss 'squared_loss' was deprecated in v1.0 and will be removed in version 1.2. Use loss='squared_error' which is equivalent.

penalty: {'l2', 'l1', 'elasticnet'}, default='l2'

The penalty (aka regularization term) to be used. Defaults to 'l2' which is the standard regularizer for linear SVM models. 'l1' and 'elasticnet' might bring sparsity to the model (feature selection) not achievable with 'l2'.

alpha: float, default=0.0001

Constant that multiplies the regularization term. The higher the value, the stronger the regularization. Also used to compute the learning rate when set to learning rate is set to 'optimal'.

I1_ratio: float, default=0.15

The Elastic Net mixing parameter, with 0 <= I1_ratio <= 1. I1_ratio=0 corresponds to L2 penalty, I1_ratio=1 to L1. Only used if penalty is 'elasticnet'.

Exemple: SGDRegressor du package "scikit-learn" (Stochastic Gradient Descent Python)

class sklearn.linear_model. SGDRegressor (loss='squared_loss', penalty='/2', alpha=0.0001, l1_ratio=0.15, fit_intercept=True, max_iter=None, tol=None, shuffle=True, verbose=0, epsilon=0.1, random_state=None, learning_rate='invscaling', eta0=0.01, power_t=0.25, warm_start=False, average=False, n_iter=None)

fit_intercept: bool, default=True

Whether the intercept should be estimated or not. If False, the data is assumed to be already centered.

max_iter : int, default=1000

The maximum number of passes over the training data (aka epochs). It only impacts the behavior in the fit method, and not the partial fit method.

New in version 0.19.

tol: float, default=1e-3

The stopping criterion. If it is not None, training will stop when (loss > best_loss - tol) for n_iter_no_change consecutive epochs. Convergence is checked against the training loss or the validation loss depending on the early_stopping parameter.

New in version 0.19.

shuffle: bool, default=True

Whether or not the training data should be shuffled after each epoch.

Remarque

En tous les cas, il est acquis que évoluer η au fil des itérations sur la base t améliore l'efficacité du dispositif.

Plan

- Introduction
- 2 Algorithme de gradient: Démarche itérative pour minimiser une fonction
 - Optimisation d'une fonction différentiable et convexe
 - Algorithme du gradient (descente de gradient)
- 3 Rapport avec apprentissage automatique: Cas régresion linéaire multiple
- Descente de gradient stochastique (Approche incrémentale pour le traitement des bases très grandes)
 - Correction par observation (online)
 - Stratégies Gradient stochastique
- 5 Choix du taux d'aprentissage (Taux fixe ou taux décroissant au fil du processus d'apprentissage)
- 6 Rapport avec apprentissage automatique: Cas régression logistique
 - Régression logistique binaire
 - Régression logistique multinomiale
- Deliciels: Quelques packages pour Python et R

Nous sommes dans le cadre de l'apprentissage supervisé où la variable cible y est binaire i.e., $y \in \{0, 1\}$.

Remarque

On transforme la régression linéaire en une courbe de régression logistique.

Remarque

Calculer la proba. d'acheter le produit \Longrightarrow prédire la décision du client.

Fonction de perte: Binary cross-entropy

$$J(a) = -\frac{1}{n}\sum_{i=1}^{n}y_{i}\ln(p_{i}) + (1-y_{i})\ln(1-p_{i}),$$

la log-vraisemblance du modèle binomial

 p_i proba. condi. $\mathbb{P}(Y \mid X)$ modélisée avec la régression logistique

$$p_i = \frac{1}{1 + e^{-(a_0 + a_1 x_{i1} + a_2 x_{i2} + \dots + a_p x_{ip})}}.$$

Gradient

$$\frac{\partial J}{\partial a_j} = \frac{1}{n} \sum_{i=1}^n x_{ij} (y_i - p_i).$$

Gradient stochastique

La fonction de perte s'écrit comme une somme de fonctions dérivables

⇒ l'approche du gradient stochastique peut s'appliquer. Mahdi LOUATI (3 IDSD SD)

import pandas as pd dataset = pd.read_csv('Social_Network_Ads.csv')

Index	User ID	Gender	Age	EstimatedSalary	Purchased
0	15624510	Male	19	19000	0
1	15810944	Male	35	20000	0
2	15668575	Female	26	43000	0
3	15603246	Female	27	57000	0
4	15804002	Male	19	76000	0
5	15728773	Male	27	58000	0
6	15598044	Female	27	84000	0
7	15694829	Female	32	150000	1
8	15600575	Male	25	33000	0
9	15727311	Female	35	65000	0
10	15570769	Female	26	80000	0
11	15606274	Female	26	52000	0
12	15746139	Male	20	86000	0
13	15704987	Male	32	18000	0
14	15628972	Male	18	82000	0
15	15697686	Male	29	80000	0

```
X = dataset.iloc[:, [2, 3]]
y = dataset.iloc[:, 4].values
from sklearn.model_selection import train_test_split
X_{train}, X_{test}, y_{train}, y_{test} = train_{test}
from sklearn.preprocessing import StandardScaler
sc = StandardScaler()
X_{train} = sc.fit_{transform}(X_{train})
X_{\text{test}} = \text{sc.transform}(X_{\text{test}})
from sklearn.linear_model import LogisticRegression
classifier = LogisticRegression()
classifier.fit(X_train, y_train)
Y_pred=classifier.predict(X_test)
```

Matrice de Confusion

Dans l'analyse prédictive, une matrice de confusion est un tableau à deux lignes et deux colonnes qui indique le nombre de faux positifs (FP), de faux négatifs (FN), de vrais positifs (VP) et de vrais négatifs (VN).

		Actual	
		Positive	Negative
Predicted	Positive	True Positive	False Positive
	Negative	False Negative	True Negative

- VP nombre de cas prédits positifs correctement identifiés.
- FP nombre de cas prédits positifs classés de manière incorrecte.
- VN nombre de cas prédits négatifs correctement classés.
- FN nombre de cas prédits négatifs classés de manière incorrecte.

Mesures de performance

 Sensibilité (Rappel, Recall, Sensitivity, True Positive Rate (TPR))
 représente la proportion des vrais positifs si la réponse du client est réellement positive. Elle est donnée par

$$Sensibilit \acute{e} = \frac{\mathsf{VP}}{\mathsf{VP} + \mathsf{FN}} = \frac{\mathsf{VP}}{\mathsf{P}}.$$

 Spécificité (specificity, selectivity, True Negative Rate (TNR))
 représente la proportion des vrais négatifs si la réponse du client est réellement négative. Elle est donnée par

$$\textit{Sp\'{e}cificit\'{e}} = \frac{VN}{VN + FP} = \frac{VN}{N}.$$

Précision (Positive Predictive Value (PPV))

$$Pr\acute{e}cision = \frac{VP}{VP + FP}.$$

Mesures de performance

Accuracy représente la proportion des prédictions correctes.

$$Accuracy = \frac{VP + VN}{VP + FP + VN + FN}.$$

from sklearn.metrics import confusion_matrix cm = confusion_matrix(y_test, y_pred)

$$cm = \begin{pmatrix} 63 & 5 \\ 7 & 25 \end{pmatrix}$$

Remarques

- Après avoir exécuté le code, nous obtenons 63 + 25 = 88 prédictions correctes et 5 + 7 = 12 prédictions incorrectes.
- L'Accuracy du modèle est donc 88%.

Remarque

L'Accuracy n'est pas une mesure fiable des performances réelles d'un classificateur, car elle produira des résultats trompeurs si l'ensemble de données est déséquilibré (i.e., lorsque le nombre d'observations dans différentes classes varie considérablement). Par exemple, s'il y avait 95 chats et seulement 5 chiens dans les données, un classificateur particulier pourrait classer toutes les observations comme des chats.

Visualisation

```
from matplotlib.colors import ListedColormap
X \text{ set, } y \text{ set} = X \text{ test, } y \text{ test}
X1, X2 = \text{np.meshgrid}(\text{np.arange}(\text{start} = X_{\text{set}}[:, 0].\text{min}() - 1, \text{stop} = X_{\text{set}}[:, 0].\text{max}() + 1, \text{step} = 0.01),
           np.arange(start = X \text{ set}[:, 1].min() - 1, stop = X \text{ set}[:, 1].max() + 1, step = 0.01))
plt.contourf(X1, X2, classifier.predict(np.array([X1.ravel(), X2.ravel()]).T).reshape(X1.shape),
              alpha = 0.4, cmap = ListedColormap(('red', 'green')))
plt.xlim(X1.min(), X1.max())
plt.ylim(X2.min(), X2.max())
for i, i in enumerate(np.unique(y set)):
    plt.scatter(X set[y set == i, 0], X set[y set == i, 1],
                 c = ListedColormap(('red', 'green'))(i), label = i)
plt.title('Logistic Regression ( Test set
plt.xlabel('Age')
plt.ylabel('Estimated Salary')
plt.legend()
```


La régression logistique est une régression linéaire, c'est pourquoi le séparateur est une droite.

y est catégorielle et peut prendre K modalités i.e., $y \in \{y_1, y_2, \dots, y_k\}$.

Codage

Codage en K indicatrices o/1

Ex.

Υ	Y_A	Y_B	Y_C
Α	1	0	0
Α	1	0	0
В	0	1	0
Α	1	0	0
С	0	0	1
Α	1	0	0

Fonction de classement: a est une matrice de dimension $K \times p + 1$

Fonction de perte: Categorical cross-entropy

$$J(a) = -\frac{1}{n} \sum_{i=1}^{n} \sum_{k=1}^{K} y_{ik} \ln(p_{ik}).$$

Gradient: Le vecteur gradient est un vecteur de dimension $K \times p + 1$

Plan

- Introduction
- 2 Algorithme de gradient: Démarche itérative pour minimiser une fonction
 - Optimisation d'une fonction différentiable et convexe
 - Algorithme du gradient (descente de gradient)
- Rapport avec apprentissage automatique: Cas régresion linéaire multiple
- Descente de gradient stochastique (Approche incrémentale pour le traitement des bases très grandes)
 - Correction par observation (online)
 - Stratégies Gradient stochastique
- 5 Choix du taux d'aprentissage (Taux fixe ou taux décroissant au fil du processus d'apprentissage)
- 6 Rapport avec apprentissage automatique: Cas régression logistique
 - Régression logistique binaire
 - Régression logistique multinomiale
- 🕡 Logiciels: Quelques packages pour Python et R

Please cite us if you use the software.

1.5. Stochastic Gradient Descent

- 1.5.1. Classification
- 1.5.2. Regression
- 1.5.3. Stochastic Gradient Descent
- for sparse data
- 1.5.4. Complexity
- 1.5.5. Tips on Practical Use
- 1.5.6. Mathematical formulation
- 1.5.6.1. SGD
- 1.5.7. Implementation details

1.5. Stochastic Gradient Descent

Stochastic Gradient Descent (SGD) is a simple yet very efficient approach to discriminative learning of linear classifiers under convex loss functions such as (linear) Support Vector Machines and Logistic Regression. Even though SGD has been around in the machine learning community for a long time, it has received a considerable amount of attention just recently in the context of large-scale learning.

SGD has been successfully applied to large-scale and sparse machine learning problems often encountered in text classification and natural language processing. Given that the data is sparse, the classifiers in this module easily scale to problems with more than 10½ training examples and more than 10½ features.

The advantages of Stochastic Gradient Descent are:

- Efficiency.
- · Ease of implementation (lots of opportunities for code tuning).

The disadvantages of Stochastic Gradient Descent include:

- SGD requires a number of hyperparameters such as the regularization parameter and the number of iterations.
- · SGD is sensitive to feature scaling.

Importance de la Descente de Gradient en apprentissage supervisé?

- Approches et surtout implémentations classiques des méthodes de data mining impuissantes par rapport aux très grandes volumétries.
- L'algorithme du gradient / gradient stochastique permet de les appréhender sans nécessiter de ressources machines prohibitives.
- Possibilité de parallélisation des algorithmes.

Cependant Attention!

- Grand nombre de paramètres pas toujours faciles à appréhender, qui influent sur le comportement de l'algorithme.
- Toujours ramener les variables sur la même échelle (normalisation, standardisation) pour éviter que les disparités faussent le déroulement de l'optimisation.