Iterative Improvement

Dr. Prapong Prechaprapranwong

Iterative Improvement

Iterative Improvement or **Iterative Refinement** — constructs a solution to an optimization problem by

- 1) start with some feasible solution
- repeat to improve a value of objective function by a small step until no change improves the value objective function
- 3) stop and return the last feasible solution as an optimal solution

Examples:

- Maximum matching in Bipartite graphs
- Stable marriage problem

Maximum matching in Bipartite graphs problem

Bipartite Graph

- A graph whose vertices can be partitioned into two disjoint sets V and U, not necessarily
 of the same size, so that every edge connects a vertex in V to a vertex in U
- A graph is bipartite if and only if it does not have a cycle of an odd length.

so still being a bipartite

A bipartite graph is 2-colorable: the vertices can be colored in two colors so that every edge has its vertices colored differently

no two adjacent vertices have the same color

Matching in a Bipartite Graph

■ matching - a subset of edges where no two edges share a vertex

{(1,6),(1,7)} not a matching

{(4,8),(5,9)} matching

- maximum matching is a matching with the largest number of edges
 - always exists in Bipartite graph but not always unique
- For a given matching M, a vertex is called free (or unmatched) if it is not an endpoint of any edge in M; otherwise, a vertex is said to be matched
- If every vertex is matched, then M is a maximum matching
- If there are unmatched or free vertices, then M may be able to be improved by increasing a matching adding an edge connecting two free vertices e.g., (1,6)

Augmenting Path

A u g m e n t i n g p a t h for a matching M is a path from a free vertex in V to a free vertex in U whose edges alternate between edges in M^c and edges in M, and the last edge is in M^c

$$M = \{(1,6), (4,8), (5,9)\}$$

$$M^c = \{(1,7),(2,6),(3,6),(3,8),(4,9),(4,10),(5,10)\}$$

The length of an augmenting path is always odd.

Augmentation along path $\{(2,6),(6,1),(1,7)\}$

One-edge path between two free vertices is special case of augmenting path

Example:

$$M = \{(1,6), (4,8), (5,9)\}$$

$$M^{c} = \{(1,7), (2,6), (3,6), (3,8), (4,9), (4,10), (5,10)\}$$

$$\{(2,6),(6,1),(1,7)\}$$

$$M = \{\frac{(1,6)}{(4,8)},(5,9)\}$$

$$M^c = \{\frac{(1,7)}{(2,6)},(3,6),(3,8),(4,9),(4,10),(5,10)\}$$

Augmentation along path

Add odd-numbered edges
(2,6), (1,7) to M $M = \{(4,8), (5,9), (2,6), (1,7)\}$ $M^{c} = \{(3,6), (3,8), (4,9), (4,10), (5,10), (1,6)\}$

$$M = \{(4,8), (5,9), (2,6), (1,7)\}$$

$$M^{c} = \{(3,6), (3,8), (4,9), (4,10), (5,10), (1,6)\}$$

Augmentation along path
$$\{(3,8),(8,4),(4,10)\}$$

$$M = \{(4,8),(5,9),(2,6),(1,7)\}$$

$$M^c = \{(3,6), (3,8), (4,9), (4,10), (5,10),(1,6)\}$$

Add odd-numbered edges (3,8),(4,10) $M = \{(5,9),(2,6),(1,7),(3,8),(4,10)\}$ $M^{c} = \{(3,6),(4,9),(5,10),(1,6),(4,8)\}$

A matching M is maximum if and only if there exists <u>no augmenting path</u> with respect to M

$$M = \{(4,8), (5,9), (2,6), (1,7)\}$$

$$M^{c} = \{(3,6), (3,8), (4,9), (4,10), (5,10), (1,6)\}$$

$$M = \{ \frac{(4,8)}{(5,9)}, (2,6), (1,7) \}$$

$$M^{c} = \{ (3,6), \frac{(3,8)}{(4,9)}, (4,10), \frac{(5,10)}{(1,6)} \}$$

Add odd-numbered edges (3,8),(4,9),(5,10)

$$M = \{(2,6),(1,7),(3,8),(4,9),(5,10)\}$$

$$M^{c} = \{(3,6), (4,10),(1,6),(4,8),$$

$$(5,9)\}$$

Marriage Matching Problem

- Set $Y = \{m_1, ..., m_n\}$ of n men and set $X = \{w_1, ..., w_n\}$ of n women.
- Each man has a ranking list of the women, and each woman has a ranking list of the men (with no ties in these lists).

men's preferences

	1st	2nd	3rd
Bob	Lea	Ann	Sue
Jim	Lea	Sue	Ann
Tom	Sue	Lea	Ann

women's preferences

	1st	2nd	3rd
Ann	Jim	Tom	Bob
Lea	Tom	Bob	Jim
Sue	Jim	Tom	Bob

- A marriage matching M is a set of n pairs {(mi, wj)}.
- Can be represented by a bipartite graph.

Total # possible matchings is n!

men's preferences

	1st	2nd	3rd
Bob	Lea	Ann	Sue
Jim	Lea	Sue	Ann
Tom	Sue	Lea	Ann

women's preferences

	1st	2nd	3rd
Ann	Jim	Tom	Bob
Lea	Tom	Bob	Jim
Sue	Jim	Tom	Bob

	Ann	Lea	Sue
Bob	2,3	1,2	3,3
Jim	3,1	1,3	2,1
Tom	3,2	2,1	1,2

Ranking matrix

- A pair (m, w) is said to be a blocking pair for matching M if man m and woman w are not matched in M but prefer each other to their mates in M.
- Consider M = {(Bob, Ann), (Jim, Lea), (Tom, Sue)}
 - Bob prefers Lea to Ann, Lea prefers Bob to Jim
 - (Bob, Lea) is a blocking pair for M.

	Ann	Lea	Sue
Bob	2,3	1,2	3,3
Jim	3,1	1,3	2,1
Tom	3,2	2,1	1,2

For each pair (m,w) in M,

- if w is not the 1st in his list, get the preferred mate w'
- check if w' is mated in another pair in M. If w' prefers m to her mate m', we have blocking pair (m,w')

Jim and Tom already have their most preferred mate. but Bob?

Stable Marriage Problem

find a stable marriage matching for men's and women's given preferences.

A marriage matching M is called stable if there is no blocking pair for it; otherwise, it's called unstable.

Which one below is stable marriage?

$$M1 = \{(Bob, Ann), (Jim, Lea), (Tom, Sue)\}$$

$$M2 = \{(Bob, Ann), (Jim, Sue), (Tom, Lea)\}$$

	Ann	Lea	Sue
Bob	2,3	1,2	3,3
Jim	3,1	1,3	2,1
Tom	3,2	2,1	1,2

	Ann	Lea	Sue
Bob	2,3	1,2	3,3
Jim	3,1	1,3	2,1
Tom	3,2	2,1	1,2

Stable Marriage Algorithm

Algorithm guarantees that

- •Everyone gets married
- •The marriages are stable

Step 0: Start with all the men and women being free

Step 1: While there are free men, arbitrarily select one of them (m) and do the following:

- Proposal m proposes to w, the next woman on his preference list (highest-rank not reject him before)
- Response If w is free, she accepts the proposal to be matched with m. If she is not free, she compares m with her current mate. If she prefers m to him, she accepts m's proposal, making her former mate free; otherwise, she simply rejects m's proposal, leaving m free

Step 2: Return the set of n matched pairs

Example:

Free men: Bob, Jim, Tom Ann Lea Sue

Bob 2, 3 1,2 3, 3 Jim 3, 1 1, 3 2, 1

Jim 3, 1 1, 3 2, 1 Tom 3, 2 2, 1 1, 2 Bob proposed to Lea Lea accepted

Free men: Jim, Tom Ann
Bob 2, 3
Jim 3, 1
Tom 3, 2

 $\begin{bmatrix} 2, 3 & \boxed{1,2} & 3, 3 \\ 3, 1 & \boxed{1,3} & 2, 1 \\ 3, 2 & \overline{2,1} & 1, 2 \end{bmatrix}$

Lea Sue

Sue

3, 3

2,1

Jim proposed to Lea Lea rejected

Free men: Jim, Tom Ann Lea
Bob 2, 3 1,2
Jim 3, 1 1, 3
Tom 3, 2 2, 1

Jim proposed to Sue Sue accepted

Free men: Tom	Ann Lea Sue Bob 2, 3 1,2 3, 3 Jim 3, 1 1, 3 2,1 Tom 3, 2 2, 1 1, 2	Tom proposed to Sue Sue rejected
Free men: Tom	Ann Lea Sue Bob 2, 3 1, 2 3, 3 Jim 3, 1 1, 3 2,1 Tom 3, 2 2,1 1, 2	Tom proposed to Lea Lea replaced Bob with Tom
Free men: Bob	Ann Lea Sue Bob 2,3 1, 2 3, 3 Jim 3, 1 1, 3 2,1 Tom 3, 2 2,1 1, 2	Bob proposed to Ann Ann accepted

M = {(Bob,Ann), (Jim,Sue), (Tom,Lea)}

Stable Marriage Algorithm

- The algorithm terminates after no more than n^2 iterations with a stable marriage output
- Matching produced always man-optimal:
- Each man gets the highest-ranked woman possible on his list under any stable marriage.
- One can obtain the woman-optimal matching by making women propose to men
- A man (woman) optimal matching is unique for a given set of participant preferences

Assignment: From the following instance of the stable marriage problem, find a stable marriage matching by applying the stable marriage algorithm in its <u>women proposing version</u>.