

Manual de Usuario

Versión: 5.0

Fecha: 01/01/2022

Queda prohibido cualquier tipo de explotación y, en particular, la reproducción, distribución, comunicación pública y/o transformación, total o parcial, por cualquier medio, de este documento sin el previo consentimiento expreso y por escrito de la empresa CDC Electrónics.

Manual de Usuario

CDC ELECTRONICS

HOJA DE CONTROL

Organismo	CDC ELECTRONICS		
Proyecto	Equipo de Sondeo Eléctrico Vertical		
Entregable	Manual de Usuario		
Autor	CDC ELECTRONICS		
Versión/Edición	5.0 Stable	Fecha Versión	01/01/2022
Aprobado por	Diego Chocobar	Fecha Aprobación	01/04/2022
		Nº Total de Páginas	15

REGISTRO DE CAMBIOS

Versión	Causa del Cambio	Responsable del Cambio	Fecha del Cambio
4.0	Versión inicial	Diego Chocobar	01/04/2021
5.0	Versión Stable	Diego Chocobar	01/04/2022

Manual de Usuario

CDC ELECTRONICS

ÍNDICE

1	SEV-C1000	∠
	1.1 Presentación	
	1.2 Características Técnicas	
	1.3 Partes.	
2	Descripción Funcionamiento	6
	2.1 Conexiones	7
	2.2 Procedimiento en Campo	
3	Software	10
	3.1 Descripción	10
	3.2 Requerimiento de Sistema	10
	3.3 Instalación y Distribución 3.4 Inicio	
	3.5 Pantalla Principal	12
	3.6 Pantalla Ensayo	13
4	Preguntas Frecuentes	14
_	RIRI IOCDATÍA V DEFEDENCIAS	1 🗆

Manual de Usuario

CDC ELECTRONICS

1 SEV-C1000

1.1 Presentación

Este equipo fue diseñado para determinar el parámetro de **resistividad** a determinadas profundidades, mediante la inyección de corriente eléctrica en el subsuelo y la medición del potencial resultante a través de un arreglo eléctrico tetra-electródico.

El sondeo eléctrico vertical (SEV) con arreglo **Schlumberger**, como método geofísico de corriente directa (DC) es el elegido para trabajar con este equipo ya que nos proporciona una gran precisión en las medidas obtenidas.

1.2 Características Técnicas

- Profundidad de exploración: 5 a 500mts*
- Medición de corriente:
 - o Display independiente para el muestreo.
 - o 3 rangos de medición: | 2000ma | 1000ma | 250ma |
 - o Resolución: | 0.1ma | 0.01ma | 0.01ma|
 - o Precisión: 1% lectura + 1LBS
- Medición de tensión:
 - o Display independiente para el muestreo.
 - o 3 rangos de medición: | 2000mv | 1000mv | 250mv |
 - o Resolución: | 0.1mv | 0.01mv | 0.01mv |
 - o Precisión: 1% lectura + 1LBS
- Fuente Electrónica DC variable de 225v (se puede expandir).
- Autonomía de batería Interna: 24 horas de funcionamiento continuos.
- Reducción nivel de ruido con stacking y media de los valores adquiridos.
- Posibilidad de ampliar tensión de disparo con PowerBank externo.
- Temperatura de trabajo: 2°C a 60°C.
- El software es compatible con los sistemas operativos de Windows, Linux y Mac. Se ejecuta en un navegador web, usando la conexión WiFi de una notebook o cualquier otro dispositivo. Cabe destacar que no es necesario una conexión a Internet. El software es de planificación, obtención y gestión de datos. De esta manera el operador podrá realizar fácilmente tablas SEV y sesiones de medición personalizadas, aprovechando al máximo las herramientas de preparación guiada.

Manual de Usuario

1.3 Partes

- 1, 3: Encendido.
- 2, 4: Reset.
- 5: Indicador de nivel de batería.
- 6, 7: Pantalla de visualización de datos.
- 8, 11: Puesta a cero de medición.
- 9, 12: Cambio de escala de medidas (2000mx, 1000mx, 200mx).
- 10, 14: Led de visualización de eventos.
- 15: Entrada de fuente de tensión Externa (en caso de necesitar más tensión para el disparo).
- 16: Pulsador para congelar (Hold) la señal.
- 17: Llave de disparo de pulso eléctrico (no mantener presionado más de 15 segundos).
- 18: Potenciómetro para variar la tensión de disparo (fuente interna del equipo).
- FUSES: Fusibles de fuente de tensión internas.
- A, B: Entrada de electrodos de corriente A-B.
- M, N: Entrada de electrodos de tensión M-N.

SE\	/_	C1	n	n	n
ンレヽ	, -	C I	v	יט	u

Manual de Usuario

CDC ELECTRONICS

2 Descripción de Funcionamiento

Los métodos de sondeo eléctricos de resistividad en corriente continua consisten en inyectar corriente al terreno mediante dos electrodos que son clavados en el mismo, conocidos como A y B; el campo eléctrico allí generado se monitorea a través de mediciones de diferencias de potencial ΔV entre otros dos electrodos, conocidos como M y N. El cociente de la corriente inyectada I entre la diferencia de potencial ΔV multiplicado por la constante geométrica del arreglo empleado K, determina el valor del parámetro medido conocido como resistividad aparente, en unidades ohm-m (Ω .m) y que físicamente representa la dificultad que encuentra la corriente eléctrica para fluir a través de un material.

Manual de Usuario

CDC ELECTRONICS

2.1 Conexiones

Para comenzar con la tomas de datos con el equipo SEV-C1000 debemos realizar las siguientes conexiones.

Cabe destacar que las fuentes de tensión externas se conectan en serie para sumas su voltaje de trabajo. En este ejemplo usaremos 2 fuentes externas pero podemos usar solo una o varias juntas, según nuestra necesidad.

Manual de Usuario CDC ELECTRONICS

2.2 Procedimiento en Campo

Una vez que tenemos todo el instrumental instalado tal y como se ve en la figura anterior procederemos a tomar una lectura siguiendo estos pasos:

- Encender el medidor de Corriente.
- Encender el medidor de Tensión.
- Verificar que el potencial espontaneo de la tierra (tensión en M-N) sea cero. Presionar el botón "Z" para hacer cero la lectura de **tensión** en caso de ser necesario.
- Verificar que la lectura de corriente sea cero. Chequear bien que la llave de disparo no está presionada.
- Tomar una medida, para ello presionar la llave de disparo, chequear que las medidores de tensión y corriente acusen algún valor, esperar que se estabilicen las medidas (por lo general 3s).
- Congelar la medida presionando el pulsador "H" hold, los display de tensión y corriente tienen que dejar de parpadear (como si estuviesen congelados con el ultimo valor). Esto Deshabilita la toma de medidas.
- "Apagar la llave de disparo". Este paso es muy importante ya que si se olvida de apagar la llave de disparo estaremos inyectando corriente al terreno y mal usando las fuentes elevadoras de tensión externas.
- Anotar los valores obtenidos para luego ser procesados*.
- Habilitar la toma de medidas presionando nuevamente el pulsador "H", se observara que los display vuelva a parpadear y dejan de estar congelados en una medida.
- Aquí terminamos el proceso de medición para un punto en específico. Repetir el mismo proceso para tomar otros puntos.

^{*}Procesar las medidas de forma manual: para determinar el valor de la resistividad hay que tener en cuenta que trabajamos con el método *Schlumberger*, las distancias que se colocaron los electrodos y las medidas tomadas. En la regencia bibliográfica se encuentra un link a teoría sobre el método *Schlumberger* para calcular las resistividades.

^{*}Procesar las medidas por Software: Los cálculos los realiza el soft de manera automática, lo único que tendremos que colocar algunos parámetros. Este punto se explicará más delante de manera detallada.

SEV-C1000 **Manual de Usuario**

CDC ELECTRONICS

A continuación veremos una curva de un sondeo eléctrico vertical realizada con el equipo y el su software.

SEV-C1000	CDC ELECTRONICS
Manual de Usuario	CDC ELECTRONICS

3 SOFTWARE

3.1 Descripción.

El software (SEV-S1) fue diseñado la interpretación automática o semi-automática de datos de sondeo eléctrico vertical obtenidos con el equipo SEV-1000. El software puede ser corrido en cualquier computadora o tablet personal que cuente con un sistema operativo Windows 7/10 y, una placa wifi para realizar la conexión. Podemos trabajar con el SEV-S1 y el equipo en conjunto o solo usando el software.

3.2 Requerimiento de Sistema.

- SEV-S1 opera sobre cualquier computadora con sistema operativo Windows 7/10.
- Placa de red WiFi.
- Para estar seguros que nuestra placa es soportada por el software debemos ejecutar netsh wlan show drivers, en el mensaje de respuesta buscar "Red hospedada admitida: sí".

3.3 Instalación y Distribución.

La instalación y distribución del sistema estarán a cargo de forma exclusiva de la empresa CDC-Electronics mediante licencias limitadas.

3.4 Inicio.

Para acceder al SEV-S1000 tendrá un acceso directo en su escritorio. Una vez ejecutado usted observará la siguiente pantalla de:

Las credenciales por defecto para ingresar son:

Usuario: SEV

Contraseña: sondeo

Manual de Usuario

CDC ELECTRONICS

3.5 Pantalla Principal

En la pantalla principal podemos observar un esquemático general del pricipio de funcionamiento del equipo de sondeo eléctrico vertical

Manual de Usuario

CDC ELECTRONICS

3. 6 Pantalla Ensayo

SEV-C1000	CDC ELECTRONICS
Manual de Usuario	CDC ELECTRONICS

4 Preguntas Frecuentes

SEV-C1000 Manual de Usuario	CDC ELECTRONICS

5 BIBLIOGRAFÍA Y REFERENCIAS

Referencia	Título
http://tierra.rediris.es/hidrored/ebooks/ miguel/ProspeccGeoelec.pdf	Prospección Geofísica Metodologías
https://www.cohife.org/ Exploracion_Geofisica_y_Tecnicas_de_Perforaci on.pdf	Técnicas de Exploración Geofísica
https://hidrologia.usal.es/temas/SEV.pdf	Técnicas Sondeo Eléctrico Vertical