Notes de cours MA201, séance 7

H. Haddar

1 Alternative de Fredholm

Dans cette section, V désigne un espace de Hilbert muni du produit scalaire $(\cdot,\cdot)_V$.

Théorème 1 (Voir référence [1], Thm. VI.6) $Soit T : V \to V$ un application linéaire compacte. Si l'application I - T est injective alors elle est sujective.

Ce théorème implique en particulier que pour tout $f \in V$ l'équation

$$(I - T)u = f \quad \text{dans } V \tag{1}$$

admet une unique solution si et seulement si $\{(I-T)u=0 \Rightarrow u=0\}$, soit (I-T) est injectif.

Dans la pratique, il suffit donc de vérifier l'unicité de la solution pour garantir qu'un problème de type (1) soit bien posé.

1.1 Application aux formulations variationnelles

Nous allons voir comment une telle alternative s'applique à une classe particulière de problèmes variationnels non coercifs. Ces problèmes s'écrivent sous la forme

$$\begin{cases}
\text{Trouver } u \in V \text{ tq.} \\
a(u, v) + b(u, v) = \ell(v) \quad \forall v \in V.
\end{cases}$$
(2)

où a et b sont deux fomes bilináires continues sur $V \times V$ et ℓ une forme linéaire continue sur V.

Théorème 2 Soit H un espace de Hilbert $tq. V \subset H$ et tq. l'injection de <math>V dans H est compacte. On suppose que

- \bullet a est coercive sur V.
- b est continue sur $H \times H$

alors le problème (2) est bien posé si et seulement si il y a unicité de la solution.

Preuve. Voir notes manuscrites.

Remarque 1 Typiquement, on aura $V = H^1(\Omega)$ et $H = L^2(\Omega)$ où Ω est un domaine borné.

1.2 Convergence de l'approximation de Galerkin

Soit $V_h \subset V$ une famille de sous espaces indexée par un paramètre h vérifiant la propriété d'approximation suivante :

$$\forall w \in V; \exists \text{ une suite d'élément } w_h \in V_h \text{ tq. } \lim_{h \to 0} \|w - w_h\|_V = 0. \tag{3}$$

Théorème 3 (Lemme de Céa (cas non coercif)) On se place dans le cadre des hypothèses du Théorème 2 et on suppose que le problème (2) est bien posé. Soit $u_h \in V_h$ solution de

$$a(u_h, v_h) + b(u_h, v_h) = \ell(v_h) \quad \forall \ v_h \in V_h. \tag{4}$$

Alors, il existe $\beta > 0$ et il existe $h_0 > 0$ tq. $\forall h < h_0$

$$||u - u_h||_V \le \beta \inf_{v_h \in V_h} ||u - v_h||_V.$$
 (5)

Preuve. Notons $\tilde{a} = a + b$. En prenant $v = v_h \in V_h$ dans (2) en soustrayant (4) nous obtenons, en utilisant la linéarité de \tilde{a} par rapport au premier argument,

$$\tilde{a}(u - u_h, v_h) = 0 \quad \forall v_h \in V_h. \tag{6}$$

Puisque $u_h - v_h \in V_h$ nous en déduisons

$$\tilde{a}(u - u_h, v_h - u_h) = 0$$

soit, en écrivant que $v_h - u_h = (v_h - u) + (u - u_h)$

$$\tilde{a}(u - u_h, u - u_h) = \tilde{a}(u - u_h, u - v_h)$$

La coercité de a et la continuité de \tilde{a} impliquent l'exitence de deux constante $\alpha>0$ et c>0 tq.

$$\alpha \|u - u_h\|_V^2 + b(u - u_h, u - u_h) \le c \|u - u_h\|_v \|u - v_h\|_V$$

Par ailleurs nous montrerons un peu plus loin que

$$\lim_{h \to 0} b\left(\frac{u - u_h}{\|u - u_h\|_V}, \frac{u - u_h}{\|u - u_h\|_V}\right) = 0.$$
 (7)

Ainsi, il existe $h_0 > 0$ tq. pour tout $h \le h_0$

$$|b(u - u_h, u - u_h)| \le \frac{\alpha}{2} ||u - u_h||_V^2.$$

On en déduit

$$\alpha \|u - u_h\|_V^2 - \frac{\alpha}{2} \|u - u_h\|_V^2 \le c \|u - u_h\|_v \|u - v_h\|_V$$

soit

$$||u - u_h||_V \le \frac{2c}{\alpha} ||u - v_h|| \quad \forall v_h \in V_h$$

ce qui prouve le théorème avec $\beta = \frac{2c}{\alpha}$.

Il reste à prouver l'identité 7. La preuve repose la propriété de compacité faible des espaces de Hilbert. Cette proriété fait intervenir la notion de convergence faible.

Définition. Nous dirons qu'une suite (u_n) de V converge faiblement vers u dans V lorsque $(u_n, v)_V$ converge vers $(u, v)_V$ pour tout $v \in V$.

Remarquer que par l'inégalité de Cauchy-Schwartz, la convergence forte impliqe la convergence faible. La réciproque n'est pas vraie.

- (a) En utilisant le théorème d'identification de Riesz, il est facile de vérifier que si ℓ est un forme linéaire continue sur V alors elle est aussi continue pour la convergence faible. Plus précisément, si (u_n) converge faiblement vers u dans V alors $\ell(u_n)$ converge vers $\ell(u)$.
- (b) Par ailleurs, en utilisant la propriété que toute suite faiblement convergente est bornée, nous montrons que si $T:V\to V$ est un opérateur compact et si (u_n) converge faiblement vers u dans V alors Tu_n converge fortement vers Tu (c.à.d. $\lim_{n\to\infty} ||Tu_n-Tu||_V=0$)

La propriété de compacité faible des espaces de Hilbert est énoncée dans le théorème suivant.

Théorème 4 (Compacité faible (voir référence [1], Thm. III.27)) De toute suite bornée de V on peut extraire une sous suite faiblement convergente dans V.

Nous sommes maintenant en possession de tous les outils nécessaires à la preuve de (7). Notons

$$w_h = \frac{u - u_h}{\|u - u_h\|_V}.$$

La suite (w_h) est bornée dans V et donc admet une sous suite $(w_{h'})$ faiblement convergente vers w dans V. Soit $v \in V$. Par hypothèse, il existe une suite d'éléments $v_h \in V_h$ qui converge vers v dans V. D'après (6), $\tilde{a}(w_{h'}, v_{h'}) = 0$, donc

$$\tilde{a}(w,v) = \tilde{a}(w,v) - \tilde{a}(w_{h'},v_{h'}) = \tilde{a}(w-w_{h'},v) + \tilde{a}(w_{h'},v-v_{h'})$$

D'après le point (a), $\tilde{a}(w-w_{h'},v)$ converge vers 0 et d'autre part

$$|\tilde{a}(w_{h'}, v - v_{h'})| \le c ||w_{h'}||_V ||v - v_{h'}||_V \to 0$$

Il en résulte que

$$\tilde{a}(w,v) = 0 \quad \forall v \in V,$$

et par unicité de la solution de ce problème (par hypothèse du théorème) w = 0. L'unicité de la limite montre en fait que toute la suite (w_h) converge faiblement vers 0 dans V (1).

D'après le théorème de Riesz il existe un unique opérateur linéaire continue $B: V \to V$ tq $b(u,v) = (Bu,v)_V$ pour tout $v \in V$. Nous avons montré que cet opérateur est compact (cf. preuve du Théorème 2). Le point (b) implique que la suite (Bw_h) converge vers 0 dans V. D'où

$$|b(w_h,w_h)|=|(Bw_h,w_h)_V|\leq \|Bw_h\|_V\|w_h\|_V\longrightarrow 0,$$
 lorsque $h\to 0$.

Références

[1] H. Brezis. Analyse Fonctionnelle. MASSON, 1987.

¹En effet, le même raisonnement montre que toute sous suite de (w_h) admet une sous suite faiblement convergente vers 0. C'est ceci qui implique que (w_h) converge faiblement vers 0. Dans le cas contraire, il existe $\epsilon > 0$ et $v \in V$ tq. $|(w_{h'}, v)| > \epsilon$ pour une sous suite $(w_{h'})$. La minoration montre que la sous suite $(w_{h'})$ ne peut pas admettre de sous suite faiblement convergente vers 0. Ceci contredit l'hypothèse de départ.