Formale Methoden- Übungsserie 5

Tobias Reincke Matrikelnummer: 218203884

November 26, 2019

1 Aufgabe 1

1.1 a

Ja.

1.2 b

Nein. Dieses Zeichen ist kein Zustand, sondern eine Aktion. $Prozess: Zustandsmenge \times Aktionsmenge \rightarrow Zustandsmenge$

1.3 c

Ja.

1.4 d

Nein. (Es gibt eine Q.0, welches P nicht hat.)

1.5ϵ

Nein. Die Simulation von dem einen auf das andere, muss $\underline{\text{invers}}$ zu das andere auf dem einen sein.

1.6 f

Ja, es ist eine Bedingung für Bisimularität.

2 Aufgabe 2

2.1 a

$$Tr(P) = \{P_m, P_{m.o}, P_{m.o.n}, P_m, P_{m.n}, P_{m.n.p}\}$$

$$Tr(Q) = \{Q_m, Q_{m.o}, Q_{m.o.n}, Q_{m.n}, Q_{m.n.p}, Q_{m.n}\}$$

2.2 b

$$CT(P) = \{P_{m.o.n}, P_{m.n.p}\}\$$

$$CT(Q) = \{Q_{m.o.n}, Q_{m.n}, Q_{m.n.p}\}\$$

2.3

Die Bedingung für Traceäquivalenz ist, dass die Menge der Traces übereinstimmen. Das ist hier der Fall.

2.4 d

Nein. $Q_{m.n}$ ist in Q vollständig, aber in P nicht.

2.5

Ja, alle vollstandigen Traces in P gibt es auch in Q. $\{P_{m.o.n}, P_{m.n.p}\} = \{Q_{m.o.n}, Q_{m.n.p}\} \subseteq CT(Q)$

3 Aufgabe 3

$$\begin{split} P &:= q.(0|r.0) \\ Q &:= q.r.0 \end{split}$$

3.1 a

Ja.
$$P-q \rightarrow P^{'}, Q-q \rightarrow Q^{'} \wedge P^{'}-r \rightarrow P^{''}, Q^{'}-r \rightarrow Q^{''} \longrightarrow PsQ \wedge P^{'}sQ^{'}$$

3.2 b

Nein. Es gibt den Entscheidungsfall nicht, dass im rechte Teilbaum, dass rausgeführt werden kann.

3.3 c

Nein: P simuliert Q, Q simuliert aber P nicht.

4 Aufgabe 4

