

WEBENCH® Design Report

VinMin = 9.0V VinMax = 12.6V Vout = 7.2V Iout = 5.0A Device = TPS54620RHLR Topology = Buck Created = 2018-03-26 02:47:54.457 BOM Cost = \$3.35 BOM Count = 16 Total Pd = 2.02W

Design: 5286684/34 TPS54620RHLR TPS54620RHLR 9.0V-12.6V to 7.20V @ 5.0A

My Comments

No comments

Electrical BOM

#	Name	Manufacturer	Part Number	Properties	Qty	Price	Footprint
1.	Cboot	Kemet	C0805C104K3RACTU Series= X7R	Cap= 100.0 nF ESR= 64.0 mOhm VDC= 25.0 V IRMS= 1.64 A	1	\$0.01	0805 7 mm ²
2.	Ccomp	TDK	C2012C0G1H153J085AA Series= C0G/NP0	Cap= 15.0 nF VDC= 50.0 V IRMS= 0.0 A	1	\$0.07	0805 7 mm ²
3.	Ccomp2	Samsung Electro- Mechanics	CL21C300JBANNNC Series= C0G/NP0	Cap= 30.0 pF VDC= 50.0 V IRMS= 0.0 A	1	\$0.01	0805 7 mm ²
4.	Cin	TDK	C2012X5R1V226M125AC Series= X5R	Cap= 22.0 uF ESR= 2.05 mOhm VDC= 35.0 V IRMS= 4.5559 A	2	\$0.35	0805 7 mm ²
5.	Cinx	MuRata	GRM21BC81E475KA12L Series= X6S	Cap= 4.7 uF ESR= 5.166 mOhm VDC= 25.0 V IRMS= 2.03531 A	1	\$0.03	0805 7 mm ²
6.	Cout	MuRata	GRM32ER61A476KE20L Series= X5R	Cap= 47.0 uF ESR= 3.037 mOhm VDC= 10.0 V IRMS= 4.6162 A	1	\$0.28	1210_280 15 mm ²
7.	Css	TDK	C2012C0G1H272K060AA Series= C0G/NP0	Cap= 2.7 nF VDC= 50.0 V IRMS= 0.0 A	1	\$0.03	0805 7 mm ²
8.	L1	NIC Components	NPI31P2R7MTRF	L= 2.7 μH DCR= 12.0 mOhm	1	\$0.17	
							IND_NPI31P 185 mm ²

# Name	Manufacturer	Part Number	Properties	Qty	Price	Footprint
9. Rcomp	Panasonic	ERJ-6ENF4321V Series= ERJ-6E	Res= 4.32 kOhm Power= 125.0 mW Tolerance= 1.0%	1	\$0.01	0805 7 mm ²
10. Renb	Panasonic	ERJ-6ENF3742V Series= ERJ-6E	Res= 37.4 kOhm Power= 125.0 mW Tolerance= 1.0%	1	\$0.01	0805 7 mm ²
11. Rent	Panasonic	ERJ-6ENF1053V Series= ERJ-6E	Res= 105.0 kOhm Power= 125.0 mW Tolerance= 1.0%	1	\$0.01	0805 7 mm ²
12. Rfbb	Susumu Co Ltd	RR1220P-103-D Series= RR12	Res= 10.0 kOhm Power= 100.0 mW Tolerance= 0.5%	1	\$0.01	0805 7 mm ²
13. Rfbt	Vishay-Dale	CRCW080580K6FKEA Series= CRCWe3	Res= 80.6 kOhm Power= 125.0 mW Tolerance= 1.0%	1	\$0.01	0805 7 mm ²
14. Rt	Panasonic	ERJ-6ENF5362V Series= ERJ-6E	Res= 53.6 kOhm Power= 125.0 mW Tolerance= 1.0%	1	\$0.01	0805 7 mm ²
15. U1	Texas Instruments	TPS54620RHLR	Switcher	1	\$1.99	•

S-PVQFN-N14 22 mm²

Operating Values

current le current le current OM components
le current le current
le current
OM components
OM components
OM components
ency
mal resistance
ed on selected voltage divider resistors
e
C Tolerance (no load) and voltage divider
voltage
pation
sipation
·

#	Name	Value	Category	Description
31.	IC Pd	1.641 W	Power	IC power dissipation
32.	L Pd	375.0 mW	Power	Inductor power dissipation
33.	Total Pd	2.023 W	Power	Total Power Dissipation

Design Inputs

#	Name	Value	Description
1.	lout	5.0	Maximum Output Current
2.	VinMax	12.6	Maximum input voltage
3.	VinMin	9.0	Minimum input voltage
4.	VinTyp	11.1	Typical input voltage
5.	Vout	7.2	Output Voltage
6.	base_pn	TPS54620	Base Product Number
7.	source	DC	Input Source Type
8.	Та	25.0	Ambient temperature

Design Assistance

1. TPS54620 Product Folder: http://www.ti.com/product/TPS54620: contains the data sheet and other resources.

Texas Instruments' WEBENCH simulation tools attempt to recreate the performance of a substantially equivalent physical implementation of the design. Simulations are created using Texas Instruments' published specifications as well as the published specifications of other device manufacturers. While Texas Instruments does update this information periodically, this information may not be current at the time the simulation is built. Texas Instruments does not warrant the accuracy or completeness of the specifications or any information contained therein. Texas Instruments does not warrant that any designs or recommended parts will meet the specifications you entered, will be suitable for your application or fit for any particular purpose, or will operate as shown in the simulation in a physical implementation. Texas Instruments does not warrant that the designs are production worthy.

You should completely validate and test your design implementation to confirm the system functionality for your application prior to production.

Use of Texas Instruments' WEBENCH simulation tools is subject to Texas Instruments' Site Terms and Conditions of Use. Prototype boards based on WEBENCH created designs are provided AS IS without warranty of any kind for evaluation and testing purposes and are subject to the terms of the Evaluation License Agreement.