Engineering Mechanics: Statics

Chapter 5: Equilibrium of a Rigid Body

Revision

System of Forces: Several forces acting simultaneously upon a body

Coplanar System of Forces 2D

Non-Coplanar System of Forces 3D

Force System	Free-Body Diagram	
Concurrent at a point	$\mathbf{F_1}$ $\mathbf{F_2}$ $\mathbf{F_3}$ $\mathbf{F_3}$	
Parallel	\mathbf{F}_{1} \mathbf{F}_{2} \mathbf{F}_{3} \mathbf{F}_{3} \mathbf{F}_{4}	
General	\mathbf{F}_1 \mathbf{F}_2 \mathbf{M} \mathbf{y} \mathbf{F}_3	

Method of approach to solve CONCURRENT and NON CONCURRENT FORCE Systems

Method of approach to solve Coplanar (2D) problems

Determine the resultant of the following figure

Problem

Problem - 2D- Concurrent - Resultant

Problem solution

Force	1.7		
rorce	Mag	x – $comp$	y-comp
F_1	150	150cos 30	+150Sin30
F_2	80	$-80\sin 20$	+80Cos20
F_3	110	0	-110
F_4	100	+100cos15	-100sin15
		$\sum F_x =$	$\sum F_{y} = +14.3$
		+199.1	

Resultant is
$$R = \sqrt{\sum F_{X_2} + \sum F_{2}}$$

 $R = \sqrt{199.1^2 + 14.3^2}$
 $R = 199.6$ N

Direction is
$$\tan \alpha = \frac{14.3 \text{ N}}{199.1 \text{ N}}$$

$$\alpha = 4.1^{\circ}$$

Problem

The resultant of the four concurrent forces as shown in Fig acts along Y-axis and is equal to 300N. Determine the forces P and Q.

Problem - 2D- Concurrent - Resultant

Solution

Force	Mag	x – $comp$	y – $comp$
$oxed{F_1}$	800	800	0
F_2	380	-380	0
F_3	Q	+QSin45	+QCos45
$oxed{F_4}$	P	-PSin50	+PCos50

$$\sum F_{x} = 0$$

$$\sum F_{\nu} = R = 300N$$

$$\sum_{x} F_{x} = 0 \qquad \sum_{x} F_{x} = 800 - 380 + QSin45 - P\sin 50 = 0$$

$$\sum F_y = R = 300N$$
 $\sum F_y = QCos45 + PCos50 = R = 300$

$$Q = -40.3N$$

Problem

Determine the resultant of the following figure

Problem - 2D- Non Concurrent - Resultant

Resultant of General forces in a plane –

Coplanar non-concurrent

Step 1: Choose a reference point

Step 3: Find the resultant force and moment of forces about O

Step 2: Shift all the forces to a point

Step 4: Reduce resultant force and moment to a single force

Resultant – Non-concurrent general forces in a plane

Solution

Step:1: Choose A as reference Point

150 N 600 N 100 N 250 N

A 1.6 m 1.2 m 2 m

Step:2: Shift all forces to point A

Step 3: Find resultant force and couple

Step:4: Reduce it to a single force

EQUATIONS OF EQUILIBRIUM

Force System	Free-Body Diagram	Independent Equations	
Concurrent	\mathbf{F}_1 \mathbf{F}_2 \mathbf{F}_2 \mathbf{F}_3	$\Sigma F_x = 0$ $\Sigma F_y = 0$	
Non Concurrent	\mathbf{F}_1 \mathbf{F}_2 \mathbf{F}_3 \mathbf{y}	$\Sigma F_x = 0 \qquad \Sigma M_z = 0$ $\Sigma F_y = 0$	

Types of supports and reaction forces (2D)

Types of Connection Reaction	Number of Unknowns
(1) E cable	One unknown. The reaction is a force which acts away from the member in
smooth surface support	One unknown. The reaction is a force which acts perpendicular to the surface

Types of supports and reaction forces (2D)

Constraints	Type and direction of forces produced
roller The connection point on the bar can not move downward.	A
pin The joint can not move in vertical and horizontal directions.	or \mathbf{F}_x \mathbf{F}_y
fixed support The support prevents translation in vertical and horizontal directions and also rotation, Hence a couple moment is developed on the body in that direction as well.	\mathbf{F}_x

Problem

Find tension in the string and reaction at B

Problem – 2D - Concurrent - Equilibrium

Solution

Since the body is in equilibrium and the forces are concurrent

$$R_b = 17.32N$$

Problem

Determine the reactions at A and B

Problem – 2D - Non Concurrent - Equilibrium

Solution

Since the body is in equilibrium and the forces are general forces then.....

$$\sum M_A = 0$$
; $(R_{by}^*L) - 40^*(3L/4) = 0....3$

Home Assignment

• Revise Chapter 2, 3 &4.