EN313 Power Electronics Basic OpAmp Configurations & Loading Effects

S. Ravi Prakash Reddy

Assistant Professor
Department of Energy Science & Engineering
Indian Institute of Technology Bombay

Potential divider

Figure 1: Potential divider

Figure 2: V_{in} and V_o

Output voltage

$$V_o = \frac{10k}{10k + 10k} * V_{in} = 2V \text{ (pk-pk)}$$
 (1)

Potential divider: Loading effects

Figure 3: Potential divider: loading

Figure 4: V_{in} and V_o

- Due to loading, output voltage (V_o) dips !!
- How to take care of this?
- One must ensure that negligible current is drawn from output of potential divider to address loading effects.

Buffer/Unity-gain Amplifier

Figure 5: Opamp buffer

Figure 6: V_{in} and V_o

Buffer/Unity-gain Amplifier/Voltage Follower

- Opamp buffer can be used at the output stage of potential divider to get rid of loading effects.
- Input resistance of opamp buffer is very high.

$$R_{in} \approx R_i (1 + A_v)$$

Output resistance of opamp buffer is very low.

$$\mathsf{R}_\mathsf{out} pprox rac{R_o}{(1+\mathsf{A}_v)}$$

• A_v : Open-loop gain of opamp (2 * 10⁵ V/V for LM741) R_i : Input resistance of opamp (2 M Ω for LM741) R_o : Output resistance of opamp (75 Ω for LM741)

Non-inverting Amplifier

Figure 7: Non-inverting configuration

Figure 8: V_{in} and V_o

Non-inverting Amplifier

- In this configuration, opamp gets its input directly at the inverting terminal.
- Thus, it is not prone to loading effects because of very high input impedance.
- The input resistance for this configuration is given by

$$R_{in} \approx R_i A_v \frac{R_1}{R_1 + R_2}$$

Inverting Amplifier

Figure 9: Inverting configuration: loading

Figure 10: V_{in} and V_o

Inverting Amplifier: Loading effects

- Inverting amplifier configuration is prone to loading effects (on the input side).
- This is because the input resistance of this configuration is low as compared to that of non-inverting configuration.

$$R_{in} \approx R_i$$

Buffer + Inverting Amplifier

Figure 11: Buffer with inverting config.

Figure 12: V_{in} and V_o

 A buffer can be placed at the front-end of inverting amplifier to get rid of loading effects.

Saturation effects in Opamp

Figure 13: Buffer with inverting config.

Figure 14: V_{in} and V_o

- Input is 6V (pk-pk), expected o/p voltage is 6*0.5*10 = 30V (pk-pk).
- ullet Opamp supply is +/- 12V, output voltage saturates at 21.6 V pp.
- The remaining drop (24-21.6 V) is due to saturation voltages of transistors present in opamp.

Slew rate in Opamp

Figure 15: Buffer: slew rate effect on output with 20 kHz square input

Figure 16: V_{in} and V_o

Slew rate in Opamp: 100kHz input source

Figure 17: Buffer: slew rate effect on output with 100 kHz input

Figure 18: V_{in} and V_o

Slew rate in Opamp: 500kHz input source

Figure 19: Buffer: slew rate effect on output with 500 kHz input

Figure 20: V_{in} and V_o

THANK YOU