Mathematik II für Informatik 3. Übungsblatt

SoSe 2018

Fachbereich Mathematik Prof. Dr. Thomas Streicher

Übung: 26./27. April 2018 Abgabe: 3./4. Mai 2018

Alexander Dietz, Anton Freund Lucas Schöbel-Kröhn

Gruppenübung

Aufgabe G1 (Topologische Eigenschaften und Häufungspunkte)

Welche der folgenden Teilmengen von \mathbb{R} sind offen, abgeschlossen, beschränkt oder kompakt? Was sind die Häufungspunkte dieser Mengen? Geben Sie eine kurze Begründung für Ihre Antwort.

- (a) Ø,
- (b) {0},
- (c) (0,1],
- (d) $(0, \infty)$,
- (e) $\{\frac{1}{n} \mid n \in \mathbb{N} \setminus \{0\}\} \cup \{0\},$
- (f) Q.

Lösung:

- (a) Die leere Menge ist offen: Dazu muss es für jeden Punkt $x \in \emptyset$ einen Radius r > 0 geben, sodass $B_r(x) \subseteq \emptyset$ gilt. Da die leere Menge keine Punkte enthält, ist diese Bedingung leer, also insbesondere erfüllt. Da weiterhin $\mathbb{R} \setminus \emptyset = \mathbb{R}$ offen ist, ist \emptyset auch abgeschlossen. Außerdem ist die leere Menge beschränkt: Die Bedingung $|x| \le 1$ für alle $x \in \emptyset$ ist wieder leererweise erfüllt (natürlich kann man statt 1 auch jede andere Schranke nehmen). Weil die Menge $\emptyset \subseteq \mathbb{R}$ beschränkt und abgeschlossen ist, ist sie auch kompakt. Die leere Menge hat keine Häufungspunkte, weil es keine Folgen in \emptyset gibt.
- (b) Die Menge $\{0\}$ ist abgeschlossen, da nämlich $\mathbb{R}\setminus\{0\}$ offen ist: Für jeden Punkt $x \in \mathbb{R}\setminus\{0\}$ hat man |x| > 0 und $B_{|x|}(x) \subseteq \mathbb{R}\setminus\{0\}$. Außerdem ist die Menge $\{0\}$ beschränkt und somit kompakt. Hingegen ist $\{0\}$ nicht offen: Für jedes r > 0 gilt $B_r(0) \not\subseteq \{0\}$. Die Menge $\{0\}$ hat keine Häufungspunkte: Die einzige Folge $\{a_n\}$ in $\{0\}$ erfüllt $a_n = 0$ für alle n und konvergiert gegen 0. Damit 0 ein Häufungspunkt ist, müsste nach Definition 5.7.1 aber $a_n \neq 0$ gelten.
- (c) Die Menge (0,1] ist nicht offen (da sie keine offene Kugel um 1 enhält) und auch nicht abgeschlossen (da $\mathbb{R}\setminus (0,1]$ keine offene Kugel um 0 enthält, also nicht offen ist). Insbesondere ist die Menge (0,1] auch nicht kompakt. Sie ist jedoch beschränkt, da jeder Punkt $x \in (0,1]$ die Ungleichung $|x| \le 1$ erfüllt. Die Häufungspunkte von (0,1] sind genau die Elemente der Menge [0,1]: Jedes $x \in [0,1)$ ist wegen $x = \lim_{n \to \infty} x + 1/n$ ein Häufungspunkt. Ähnlich ist $1 = \lim_{n \to \infty} 1 1/n$ ein Häufungspunkt (beachte, dass die Folgenglieder jeweils in (0,1] liegen und vom Grenzwert verschieden sind). Der Grenzwert jeder konvergenten Folge in (0,1] liegt in [0,1], da die konstante Folge mit Wert 0 bzw. 1 eine untere bzw. obere Schranke bildet. Daher gibt es keine weiteren Häufungspunkte.
- (d) Die Menge $(0, \infty)$ ist offen (ähnlich wie die Menge $\mathbb{R}\setminus\{0\}$ in (b)). Sie ist nicht abgeschlossen, mit dem gleichen Argument wie in (c). Außerdem ist sie nicht beschränkt: Für $x \in (0, \infty)$ wächst |x| = x über jede Schranke. Insbesondere ist $(0, \infty)$ nicht kompakt. Die Häufungspunkte von $(0, \infty)$ sind gerade die Elemente der Menge $[0, \infty)$, ähnlich wie in (c).
- (e) Die Menge $\{\frac{1}{n} \mid n \in \mathbb{N}\setminus\{0\}\} \cup \{0\}$ ist nicht offen: Für jeden Radius r > 0 enthält $B_r(0)$ ein Element, dass sich nicht als $\frac{1}{n}$ schreiben lässt, etwa eine irrationale Zahl. Als nächstes macht man sich klar, dass jede Folge (a_n) in der Menge $\{\frac{1}{n} \mid n \in \mathbb{N}\setminus\{0\}\} \cup \{0\}$, welche in \mathbb{R} konvergiert, eine der folgenden Eigenschaften hat: Entweder man hat $\lim_{n\to\infty} a_n = 0$, oder es gibt ein N mit $a_n = a_N$ für alle $n \geq N$. Mit Satz 5.6.11 folgt, dass die Menge $\{\frac{1}{n} \mid n \in \mathbb{N}\setminus\{0\}\} \cup \{0\}$ abgeschlossen ist (beachte, dass dies ohne den Punkt $\{0\}$ nicht gelten würde). Sie ist auch beschränkt und damit kompakt. Weiter folgt, dass $0 = \lim_{n\to\infty} \frac{1}{n}$ der einzige Häufungspunkt ist.

1

(f) Jede ε -Kugel um eine rationale (bzw. irrationale) Zahl enthält auch eine irrationale (bzw. rationale) Zahl. Somit sind \mathbb{Q} und $\mathbb{R}\setminus\mathbb{Q}$ weder offen noch abgeschlossen. Außerdem sind die beiden Mengen nicht beschränkt und nicht kompakt. Alle reellen Zahlen sind Häufungspunkte von \mathbb{Q} (und auch von $\mathbb{R}\setminus\mathbb{Q}$): Eine rationale Zahl q lässt sich durch die Folge $(q+\frac{1}{n})$ approximieren. Eine reelle Zahl wird durch die Anfangsstücke ihrer Dezimaldarstellung approximiert.

Aufgabe G2 (Vereinigungen und Schnitte offener und abgeschlossener Mengen) Seien O_1, O_2, \ldots offene Teilmengen von \mathbb{R}^n .

- (a) Zeigen Sie, dass $O_1 \cup O_2$ und $O_1 \cap O_2$ offene Teilmengen von \mathbb{R}^n sind.
- (b) Was können Sie für Vereinigungen und Schnitte von abgeschlossenen Mengen folgern?
- (c) Zeigen Sie, dass

$$\bigcup_{i=1,2,\dots} O_i = \{x \in \mathbb{R}^n \mid \text{es gibt ein } i \ge 1 \text{ mit } x \in O_i\} \subseteq \mathbb{R}^n$$

eine offene Menge ist.

(d) Zeigen Sie durch ein Gegenbeispiel, dass die Menge

$$\bigcap_{i=1,2,\dots} O_i = \{x \in \mathbb{R}^n \mid \text{für alle } i \ge 1 \text{ gilt } x \in O_i\} \subseteq \mathbb{R}^n$$

im Allgemeinen nicht offen ist.

Lösung:

- (a) Um zu zeigen, dass eine Menge offen ist, müssen wir für einen beliebigen Punkt x in der Menge einen Radius r angeben können, sodass der Ball um x mit Radius r vollständig in der Menge liegt. Sei $y \in O_1 \cup O_2$. Angenommen $y \in O_1$. Da O_1 nach Voraussetzung offen ist, gibt es ein $r_1 > 0$ mit $B_{r_1}(y) \subseteq O_1 \subseteq O_1 \cup O_2$. Im anderen Fall, also für $y \in O_2$, gibt es ein $r_2 > 0$ mit $B_{r_2}(y) \subseteq O_2 \subseteq O_1 \cup O_2$. In beiden Fällen existiert also ein r > 0 mit $B_r(y) \subseteq O_1 \cup O_2$, sodass $O_1 \cup O_2$ offen ist.
 - Um zu zeigen, dass $O_1 \cap O_2$ offen ist, betrachtet man einen beliebigen Punkt $y \in O_1 \cap O_2$. Nach Voraussetzung findet man $r_1, r_2 > 0$ mit $B_{r_1}(y) \subseteq O_1$ und $B_{r_2}(y) \subseteq O_2$. Setze nun $r := \min\{r_1, r_2\} > 0$. Wegen $r \le r_1$ ist $B_r(y) \subseteq B_{r_1}(y) \subseteq O_1$. Genauso hat man $B_r(y) \subseteq B_{r_2}(y) \subseteq O_2$ und somit $B_r(y) \subseteq O_1 \cap O_2$. Dies zeigt, dass $O_1 \cap O_2$ offen ist
- (b) In (a) haben wir gesehen, dass die Vereinigung zweier offener Mengen wieder offen ist. Daraus folgt, dass der Schnitt(!) zweier abgeschlossener Mengen abgeschlossen ist: Sind A_1 und A_2 abgeschlossen, so sind $\mathbb{R}^n \backslash A_1$ und $\mathbb{R}^n \backslash A_2$ offen. Dann ist also auch $(\mathbb{R}^n \backslash A_1) \cup \mathbb{R}^n \backslash A_2$ offen. Somit ist die Menge

$$A_1 \cap A_2 = \mathbb{R}^n \setminus ((\mathbb{R}^n \setminus A_1) \cup \mathbb{R}^n \setminus A_2)$$

wieder abgeschlossen. Wir haben auch gesehen, dass der Schnitt zweier offener Mengen offen ist. Wegen

$$A_1 \cup A_2 = \mathbb{R}^n \setminus ((\mathbb{R}^n \setminus A_1) \cap \mathbb{R}^n \setminus A_2)$$

folgt hieraus, dass die Vereinigung zweier abgeschlossener Mengen wieder abgeschlossen ist.

- (c) Man argumentiert wie in (a): Sei ein beliebiger Punkt $y \in \bigcup_{i=1,2,...} O_i$ gegeben. Dann gilt also $y \in O_j$ für (mindestens) ein $j \ge 1$. Da O_j offen ist, gibt es einen Radius r > 0 mit $B_r(y) \subseteq O_j \subseteq \bigcup_{i=1,2,...} O_i$. [Übrigens: Wie in (b) kann man folgern, dass unendliche Schnitte(!) von abgeschlossenen Mengen wieder abgeschlossen sind.]
- (d) Man kann etwa die offenen Mengen $O_i = (-\frac{1}{i}, \frac{1}{i})$ betrachten. Ist $x \in (-\frac{1}{i}, \frac{1}{i})$ für alle $i \ge 1$, so muss x = 0 gelten. Also hat man $\bigcap_{i=1,2,\dots} O_i = \{0\}$. Diese Menge ist aber nicht offen. [Übrigens: Genauso ist die Vereinigung von unendlich vielen abgeschlossenen Mengen im Allgemeinen nicht abgeschlossen.]

Aufgabe G3 (Umkehrung stetiger Funktionen)

Gemäß Satz 5.7.20 ist die Umkehrfunktion einer stetigen Funktion unter bestimmten Bedingungen stetig. Machen sie sich anhand der folgenden Beispiele klar, dass dies nicht allgemein gilt:

(a) Betrachten Sie die Funktion $f:[0,1)\cup\{2\}\to[0,1]$ mit

$$f(x) = \begin{cases} x & \text{für } x \in [0, 1), \\ 1 & \text{für } x = 2. \end{cases}$$

Zeigen Sie, dass diese Funktion stetig und bijektiv ist. Geben Sie die Umkehrfunktion $f^{-1}:[0,1] \to [0,1) \cup \{2\}$ an und zeigen Sie, dass diese nicht stetig ist. Welche Bedingung von Satz 5.7.20 ist verletzt?

(b) Geben Sie eine stetige, bijektive Funktion $h:[0,2\pi)\to\{(x,y)\in\mathbb{R}^2\,|\,x^2+y^2=1\}$ an, deren Umkehrung nicht stetig ist. Warum ist Satz 5.7.20 nicht anwendbar?

Lösung:

(a) Sei (a_n) eine Folge in $[0,1) \cup \{2\}$, die gegen $x \in [0,1) \cup \{2\}$ konvergiert. Man betrachte zunächst den Fall $x \in [0,1)$. Dann gibt es eine Zahl N, sodass $a_n \in [0,1)$ für alle $n \ge N$ gilt. Hieraus folgt $\lim_{n \to \infty} f(a_n) = \lim_{n \to \infty} a_n = x$, wie für die Stetigkeit im Punkt x benötigt. Nun betrachten wir den Fall x = 2. Dann gibt es eine Zahl N, sodass $a_n = 2$ für alle $n \ge N$ gilt. Hieraus folgt $\lim_{n \to \infty} f(a_n) = \lim_{n \to \infty} f(2) = f(2) = f(x)$. Man sieht leicht, dass durch

$$g(x) = \begin{cases} x & \text{für } x \in [0, 1), \\ 2 & \text{für } x = 1, \end{cases}$$

die Umkehrfunktion von f gegeben ist. Insbesondere ist f bijektiv. Die Funktion $f^{-1} = g$ ist aber nicht stetig: Die Folge $(1 - \frac{1}{n})$ konvergiert gegen 1, aber man hat

$$\lim_{n \to \infty} g(1 - \frac{1}{n}) = \lim_{n \to \infty} 1 - \frac{1}{n} = 1 \neq 2 = g(1).$$

Satz 5.7.20 findet keine Anwendung, weil der Definitionsbereich $[0,1) \cup \{2\}$ der Funktion f kein Intervall ist.

(b) Ein Beispiel ist die Funktion, welche den Einheitskreis umrundet: Die Werte $h(1-\frac{1}{n})$ kommen beliebig nahe an den Startpunkt h(0) heran, während die Argumente $1-\frac{1}{n}$ und 0 annähernd Abstand eins haben. Die Funktion h ist dennoch stetig, nicht aber ihre Umkehrung. Die beschriebene Funktion $h:[0,2\pi) \to \{(x,y) \in \mathbb{R}^2 \mid x^2 + y^2 = 1\}$ lässt sich angeben als $h(x) = (\cos(x), \sin(x))$. Man hat dann den linksseitigen Grenzwert

$$\lim_{x \to 2\pi -} (\cos(x), \sin(x)) = (\cos(2\pi), \sin(2\pi)) = (\cos(0), \sin(0)),$$

aber andererseits

$$\lim_{x \to 2\pi^{-}} h^{-1}((\cos(x), \sin(x))) = \lim_{x \to 2\pi^{-}} x = 2\pi \neq 0 = h^{-1}((\cos(0), \sin(0))).$$

Satz 5.7.20 findet keine Anwendung, weil er nur für Funktionen mit Werten in \mathbb{R} formuliert war (er setzt Monotonie voraus, was auf der ungeordneten Menge \mathbb{R}^2 keinen Sinn ergibt).

Hausübung

Aufgabe H1 (Konvergenz in normierten Räumen)

(8 Punkte)

(a) Sei

$$a_n := \begin{pmatrix} \sum_{k=0}^n \frac{5 \cdot 3^k}{4^{k+2}} \\ \sqrt{n+1} - \sqrt{n} \\ 42 + \frac{1}{n+1} \end{pmatrix} \in \mathbb{R}^3.$$

Untersuchen Sie die Folge $(a_n)_{n\in\mathbb{N}}$ auf Konvergenz im Raum $(\mathbb{R}^3,\|\cdot\|_2)$ und bestimmen Sie gegebenenfalls ihren Grenzwert.

(b) Sei $(V, \|\cdot\|_V)$ ein normierter Raum. Zeigen Sie, dass jede konvergente Folge $(a_n)_{n\in\mathbb{N}}\subseteq V$ eine Cauchy-Folge ist. (Bemerkung: Der Raum $(V, \|\cdot\|_V)$ heißt vollständig, wenn die Umkehrung gilt, wenn also jede Cauchy-Folge konvergiert.)

Aufgabe H2 (Grenzwerte und Stetigkeit)

(12 Punkte)

Berechnen Sie für die folgenden Funktionen von \mathbb{R} nach \mathbb{R} den linksseitigen und den rechtsseitigen Grenzwert im Punkt x=0, falls diese existieren. Welche der Funktionen sind in x=0 stetig?

(a)
$$f(x) = \begin{cases} \sqrt{-x}, & \text{für } x < 0, \\ \sqrt{x}, & \text{für } x \ge 0. \end{cases}$$

(b)
$$g(x) = \begin{cases} x^2 + 2, & \text{für } x < 0, \\ (x+2)^2, & \text{für } x \ge 0. \end{cases}$$

(c)
$$h(x) = \begin{cases} 1, & \text{für } x \in \mathbb{Q}, \\ 0, & \text{für } x \in \mathbb{R} \setminus \mathbb{Q}. \end{cases}$$

Aufgabe H3 (Babylonisches Wurzelziehen mit dem Banachschen Fixpunktsatz) (16 Punkte) Das Verfahren des babylonischen Wurzelziehens, auch als Heron-Verfahren bekannt, berechnet die Wurzel aus 3 mit der folgenden Rekursionsformel:

$$x_0 := 2,$$

 $x_{n+1} := \frac{1}{2}(x_n + \frac{3}{x_n}).$

Wir betrachten auch die Funktion $f: [\frac{3}{2}, 2] \to \mathbb{R}$ mit $f(x) := \frac{1}{2}(x + \frac{3}{x})$.

- (a) Zeigen Sie, dass das Bild von f wieder in $[\frac{3}{2}, 2]$ enthalten ist.
- (b) Finden Sie ein $q \in (0,1)$ mit der folgenden Eigenschaft: Für alle $x,y \in [\frac{3}{2},2]$ gilt $|f(x)-f(y)| \le q \cdot |x-y|$.
- (c) Zeigen Sie, dass $\sqrt{3}$ ein Fixpunkt der Funktion f ist. Folgern Sie, dass $\lim_{n\to\infty}x_n=\sqrt{3}$ gilt.
- (d) Zeigen Sie mit der A-priori-Abschätzung aus der Vorlesung, dass $|x_4 \sqrt{3}| < 0,001$ gilt. Geben Sie den Wert x_4 an und vergleichen Sie ihn mit dem tatsächlichen Wert $\sqrt{3}$.