CPE301 – SPRING 2019

MIDTERM II

Student Name: Alex Cater Student #: 2000583031

Student Email: cater@unlv.nevada.edu

Primary Github address: https://github.com/katmando/asdfghjkl

Submit the following for all Labs:

- 1. In the document, for each task submit the modified or included code (only) with highlights and justifications of the modifications. Also, include the comments.
- 2. Use the previously create a Github repository with a random name (no CPE/301, Lastname, Firstname). Place all labs under the root folder ESD301/Midterm, sub-folder named LABXX, with one document and one video link file for each lab, place modified asm/c files named as LabXX-TYY.asm/c.
- 3. If multiple asm/c files or other libraries are used, create a folder LabXX-TYY and place these files inside the folder.
- 4. The folder should have a) Word document (see template), b) source code file(s) and other include files, c) text file with youtube video links (see template).

1. COMPONENTS LIST AND CONNECTION BLOCK DIAGRAM w/ PINS

Atmega328PB Xplained Mini Micro USB Cable (Power Supply) Wire Connectors ADPS-9960 ESP-01

Figure 1 – Flow Diagram for displaying RGBC Values to ThingSpeak

2. INITIAL/MODIFIED/DEVELOPED CODE

```
* MIDTERM_II.c
 * Created: 5/08/2019 10:42:31 PM
 * Author: acate
#ifndef F_CPU
#define F_CPU 16000000UL
#endif
#include <avr/io.h>
                                  /* Include AVR input/output file */
                                  /* Include delay functions file */
#include <util/delay.h>
                                  /* Include math functions file */
#include <math.h>
                                 /* Include standard library file */
#include <stdlib.h>
                                 /* Include standard input/output file */
#include <stdio.h>
                              /* Include MPU6050 register define file */
#include "APDS9960_def.h"
#include "i2c_master.h"
                                /* Include I2C Master header file */
#include "uart.h"
                                 /* Include USART header file */
#define APDS9960 WRITE 0x72
#define APDS9960_READ 0x73
```

```
float C_Light;
float R Light;
float G Light;
float B_Light;
void init_uart(uint16_t baudrate) {
       uint16_t UBRR_val = (F_CPU/16)/(baudrate-1);
       UBRROH = UBRR_val >> 8;
       UBRROL = UBRR_val;
       UCSR0B |= (1<<TXEN0) | (1<<RXEN0) | (1<<RXCIE0);
       UCSR0C |= (1<<USBS0) | (3<<UCSZ00);</pre>
}
void uart_putc(unsigned char c) {
       while(!(UCSR0A & (1<<UDRE0)));</pre>
                                          // wait until sending is possible
                                           // output character saved in c
       UDR0 = c;
}
void uart_puts(char *s) {
       while(*s) {
              uart_putc(*s);
              S++;
       }
}
void init_APDS9960(void) {
      _delay_ms(150);
       i2c_start(APDS9960_WRITE);
       i2c_write(APDS9960_ENABLE);
       i2c_write(0x00);
       i2c_stop();
       i2c_start(APDS9960_WRITE);
       i2c_write(APDS9960_ATIME);
       i2c_write(DEFAULT_ATIME);
       i2c_stop();
       i2c_start(APDS9960_WRITE);
       i2c_write(APDS9960_CONTROL);
       i2c write(DEFAULT AGAIN);
       i2c_stop();
       i2c_start(APDS9960_WRITE);
       i2c write(APDS9960 ENABLE);
       i2c_write((1<<POWER)|(1<<AMBIENT_LIGHT));</pre>
       i2c_stop();
}
void getreading(void) {
       i2c_start(APDS9960_WRITE);
       i2c_write(APDS9960_CDATAH); // set pointer
```

```
i2c_stop();
       i2c start(APDS9960 READ);
       C Light = (((int)i2c read ack()<<8) | (int)i2c read ack());</pre>
       i2c_stop();
       i2c start(APDS9960 WRITE);
       i2c write(APDS9960 RDATAH); // set pointer
       i2c stop();
       i2c_start(APDS9960 READ);
       R_Light = (((int)i2c_read_ack()<<8) | (int)i2c_read_ack());</pre>
       i2c_stop();
       i2c start(APDS9960 WRITE);
       i2c_write(APDS9960_GDATAH); // set pointer
       i2c_stop();
       i2c_start(APDS9960_READ);
       G_Light = (((int)i2c_read_ack()<<8) | (int)i2c_read_ack());</pre>
       i2c_stop();
       i2c start(APDS9960 WRITE);
       i2c write(APDS9960 BDATAH); // set pointer
       i2c stop();
       i2c_start(APDS9960_READ);
       B_Light = (((int)i2c_read_ack()<<8) | (int)i2c_read_ack());</pre>
       i2c_stop();
}
int main(void) {
       char buffer[20], float_[10];
       float Cl;
       float R1;
       float Gl;
       float Bl;
       init_uart(9600);
       i2c init();
       init_APDS9960();
       uart_puts("TEST\r\n");
       uart_puts("AT+CWJAP=\"WIFI_NAME_HERE\",\"PASSWORD_HERE\""); // Log in WiFi
      while(1) {
              getreading();
              Cl = C_Light;
                                          /* Divide raw value by sensitivity scale factor
to get real values */
              R1 = R_Light;
              Gl = G Light;
              Bl = B Light;
                                              /* Take values in buffer to send all
              dtostrf( Cl, 3, 2, float_ );
parameters over USART */
              sprintf(buffer, "%s Cl, ", float );
              uart puts(buffer);
              dtostrf( Rl, 3, 2, float_ ); /* Take values in buffer to send all
parameters over USART */
```

```
sprintf(buffer, "%s Rl, ", float_);
             uart puts(buffer);
             dtostrf( Gl, 3, 2, float_ ); /* Take values in buffer to send all
parameters over USART */
             sprintf(buffer, "%s Gl, ", float_);
             uart puts(buffer);
             dtostrf( Bl, 3, 2, float_ ); /* Take values in buffer to send all
parameters over USART */
             sprintf(buffer, "%s Bl, ", float_);
             uart puts(buffer);
             uart_puts("AT+CIPSTART=\"TCP\",\"api.thingspeak.com\",80");
                                                                                  //
Connect API KEy
             uart_puts("AT+CIPSEND=51");
             // Send Serial Data
             uart_puts("GET /update?key=LMPV6R4U5HWZLME7&field1=outs\r\n");// Send Value
             uart_puts("AT+CIPCLOSE");
             // Close Data
             uart_puts("\r\n");
             _delay_ms(1000);
      }
      return 0;
}
```

3. SCHEMATICS

Figure 2 – Schematic of APDS-9960 Connected to ESP-01

4. SCREENSHOTS OF EACH TASK OUTPUT (ATMEL STUDIO OUTPUT)

Figure 3 – Output Terminal RGBC Values

Figure 4 – Output through ThingSpeak Practice Using Esplorer

Figure 5 – Output through ThingSpeak RGBC Reading

5. SCREENSHOT OF EACH DEMO (BOARD SETUP)

Figure 6 – Board Setup

6. GITHUB LINK OF THIS DA

https://github.com/katmando/asdfghjkl/tree/master/Midterms/midterm2

Student Academic Misconduct Policy

http://studentconduct.unlv.edu/misconduct/policy.html

"This assignment submission is my own, original work".

Alex Cater