第13周习题课:第二型曲线曲面积分

一、知识回顾与讨论

两类积分的回顾与对比

132	17 173		
	积		
	分	 承载积分的几何对象	
	对	分表が入力 自分 自己 内 3 多く	
	象		
第一型	函	曲线(无向) $\mathbf{r} = \mathbf{r}(t)$	曲面(无向) $\mathbf{r} = \mathbf{r}(u, v)$
	数	$\int f \mathrm{d}l$	$\iint f \mathrm{d}\sigma$
	f	y and the	Σ
		微弧长	
		$\mathrm{d}l = \left\ \mathbf{r}'(t) \right\ \mathrm{d}t$	面积微元
		$=\sqrt{\left\langle \mathbf{r}'(t),\mathbf{r}'(t)\right\rangle}\mathrm{d}t$	$d\sigma = \sqrt{EG - F^2} du dv$
		$=\sqrt{\mathbf{r}'(t)^T\mathbf{r}'(t)}\mathrm{d}t$ (直角坐标系)	$\frac{\left \left\langle \frac{\partial \mathbf{r}}{\partial \mathbf{r}} \right \frac{\partial \mathbf{r}}{\partial \mathbf{r}} \right\rangle \left \left\langle \frac{\partial \mathbf{r}}{\partial \mathbf{r}} \right\rangle \left \left\langle \frac{\partial \mathbf{r}}{\partial \mathbf{r}} \right\rangle \right }{\left \left\langle \frac{\partial \mathbf{r}}{\partial \mathbf{r}} \right\rangle \left \left\langle \frac{\partial \mathbf{r}}{\partial \mathbf{r}} \right\rangle \right }$
			$= \left\ E F \right _{dudv} = \left\ \left \partial u \partial u \right \left \partial u \partial v \right _{dudv} \right $
			$= \sqrt{\begin{vmatrix} E & F \\ F & G \end{vmatrix}} du dv = \sqrt{\begin{vmatrix} \left\langle \frac{\partial \mathbf{r}}{\partial u}, \frac{\partial \mathbf{r}}{\partial u} \right\rangle & \left\langle \frac{\partial \mathbf{r}}{\partial u}, \frac{\partial \mathbf{r}}{\partial v} \right\rangle \\ \left\langle \frac{\partial \mathbf{r}}{\partial u}, \frac{\partial \mathbf{r}}{\partial u} \right\rangle & \left\langle \frac{\partial \mathbf{r}}{\partial u}, \frac{\partial \mathbf{r}}{\partial v} \right\rangle} du dv}$
			$= \sqrt{\det \left[\left(\frac{\partial \mathbf{r}}{\partial (u,v)} \right)^T \frac{\partial \mathbf{r}}{\partial (u,v)} \right]} dudv (直角坐标系)$
			$V = \begin{bmatrix} O(u,v) & O(u,v) \end{bmatrix}$
		背景: 由线密度求质量	背景:由面密度求质量
第二型	向	路径(有向曲线) $\mathbf{r} = \mathbf{r}(t)$	定向曲面: 带有指定单位法向量场的曲面 (Σ, \mathbf{n})
	量	物理背景: 力场做功、流速场	物理背景:流速场通量、电场通量、磁场通量
	场	环量 $\int \mathbf{F} \cdot d\mathbf{r} = \int \mathbf{F} \cdot \boldsymbol{\tau} dl$,($\boldsymbol{\tau}$ 是路	$\iint \mathbf{F} \cdot \mathbf{n} \mathrm{d}\sigma$
	F	γ γ	Σ
		径的正向单位切向量场)	
		平面流速场通量 $\int_{\mathcal{I}} \mathbf{F} \cdot \mathbf{n} dl$	
	微		二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十
	分	$\omega = X dx + Y dy + Z dz$	$\omega = X dy \wedge dz + Y dz \wedge dx + Z dx \wedge dy$
	形	•	
	式	$\int\limits_{\gamma}\omega$	$\prod_{\Sigma} \omega$
	ω	,	
	エロハ	 +++ / ,	

两类积分的转化

第二型积分转为第一型积分:
$$\int_{\gamma} \mathbf{F} \cdot \mathbf{\tau} dl$$
 , $\int_{\gamma} \mathbf{F} \cdot \mathbf{n} dl$, $\iint_{\Sigma} \mathbf{F} \cdot \mathbf{n} d\sigma$

第一型积分转为第二型积分: 给定函数 f 构造向量场 $\mathbf{F} = f\mathbf{r}$ 或 $\mathbf{F} = f\mathbf{n}$ 。

第二型曲线积分的计算

1、代入适当的参数方程转为一元定积分

- 2、构造原函数, $\omega = \mathrm{d}f$,则 $\int_{\gamma} \omega = f(B) f(A)$ 。存在原函数的充分条件是:向量场 \mathbf{F} 无旋($\mathrm{rot}\,\mathbf{F} = 0$)/微分形式 ω 是恰当形式($\mathrm{d}\omega = 0$),区域/曲面单连通。
- 3、选择适当的平面区域或曲面用 Green 公式或 Stokes 公式转为平面重积分或第二型曲面积分

Green 公式/Stokes 公式(环量与旋度)
$$\int_{\gamma} \mathbf{F} \cdot d\mathbf{r} = \iint_{D} \operatorname{rot} \mathbf{F} d\sigma$$
 , $\int_{\gamma} \mathbf{F} \cdot d\mathbf{r} = \iint_{\Sigma} \operatorname{rot} \mathbf{F} d\sigma$

Green 公式(通量与散度)
$$\int_{\gamma} \mathbf{F} \cdot \mathbf{n} dl = \iint_{D} \operatorname{div} \mathbf{F} d\sigma$$

$$\int_{\gamma} \omega = \iint_{\Sigma} d\omega ,$$

对 $\omega = X dx + Y dy + Z dz$,

$$d\omega = \left(\frac{\partial X}{\partial x} dx + \frac{\partial X}{\partial y} dy + \frac{\partial X}{\partial z} dz\right) \wedge dx + \left(\frac{\partial Y}{\partial x} dx + \frac{\partial Y}{\partial y} dy + \frac{\partial Y}{\partial z} dz\right) dy$$

$$+ \left(\frac{\partial Z}{\partial x} dx + \frac{\partial Z}{\partial y} dy + \frac{\partial Z}{\partial z} dz\right) \wedge dz$$

$$= \left(\frac{\partial Z}{\partial y} - \frac{\partial Y}{\partial z}\right) dy \wedge dz + \left(\frac{\partial X}{\partial z} - \frac{\partial Z}{\partial x}\right) dz \wedge dx + \left(\frac{\partial Y}{\partial x} - \frac{\partial X}{\partial y}\right) dx \wedge dy$$

$$\begin{vmatrix} dy \wedge dz & \frac{\partial}{\partial x} & X \\ dz \wedge dx & \frac{\partial}{\partial y} & Y \\ dx \wedge dy & \frac{\partial}{\partial z} & Z \end{vmatrix}$$

直角坐标系下,

$$\mathbf{rot}\,\mathbf{F} = \begin{pmatrix} \frac{\partial Z}{\partial y} - \frac{\partial Y}{\partial z} \\ \frac{\partial X}{\partial z} - \frac{\partial Z}{\partial x} \\ \frac{\partial Y}{\partial x} - \frac{\partial X}{\partial y} \end{pmatrix}$$
是向量场 $\mathbf{F} = \begin{pmatrix} X \\ Y \\ Z \end{pmatrix}$ 的旋度。(对应 Stokes 公式)

对平面向量场 $\mathbf{F} = \begin{pmatrix} X \\ Y \end{pmatrix}$,旋度 $\mathrm{rot} \, \mathbf{F} = \frac{\partial Y}{\partial x} - \frac{\partial X}{\partial y}$ 。(对应环量-旋度 Green 公式)

$$\int_{\gamma} X dx + Y dy = \iint_{D} \left(\frac{\partial Y}{\partial x} - \frac{\partial X}{\partial y} \right) dx dy$$

对平面向量场
$$\mathbf{F} = \begin{pmatrix} X \\ Y \end{pmatrix}$$
,散度 $\operatorname{div} \mathbf{F} = \frac{\partial X}{\partial x} + \frac{\partial Y}{\partial y} = \operatorname{tr} \frac{\partial (X,Y)}{\partial (x,y)}$ 。(对应通量-散度 Green 公式)

$$\int_{\gamma} -Y dx + X dy = \iint_{D} \left(\frac{\partial X}{\partial x} + \frac{\partial Y}{\partial y} \right) dx dy$$

注: 微分形式表达的 Green 公式只有一个,但物理意义的 Green 公式有两个。

使用 Green 公式/Stokes 公式时,要把曲线作为一个平面区域/曲面的边界,并且注意曲线定向与曲面定向相协调(站在曲线上沿曲线正向前进时,平面区域/曲面位于左手一侧,想一想在运动场跑道上跑步的人就知道了)

第二型曲面积分的计算

- 1、选择适当的参数方程,代入并转为二维重积分
- 2、利用向量场的特殊性和第二型曲面积分的物理含义(通量)
- 3、利用 Gauss 公式(散度定理),把曲面积分转成关于散度的三重积分,要注意曲面定向与空间定向相协调。

一些建议

- 1、利用对称性,但如何利用(坐标变换会带来曲线曲面的变化、定向的变化以及向量场的变化)
- 2、利用积分对曲线曲面的可加性,以及对向量场/微分形式的线性,对积分进行分解。比如 曲线积分时分离出其中具有原函数的部分,对积分进行化简。

二、习题

第二型曲线积分

1.
$$\int_{L: \mathcal{H}(1,\pi) \widehat{\cong} |(2,\pi)} \left(1 - \frac{y^2}{x^2} \cos \frac{y}{x} \right) dx + \left(\sin \frac{y}{x} + \frac{y}{x} \cos \frac{y}{x} \right) dy$$

解法 1: 取参数方程
$$L$$
: $\begin{cases} x = x, \\ y = \pi \end{cases}$ $1 \le x \le 2$,直接计算

$$\int_{L: \mathcal{H}(1,\pi) \oplus (2,\pi)} \left(1 - \frac{y^2}{x^2} \cos \frac{y}{x}\right) dx + \left(\sin \frac{y}{x} + \frac{y}{x} \cos \frac{y}{x}\right) dy = \int_1^2 \left(1 - \frac{\pi^2}{x^2} \cos \frac{\pi}{x}\right) dx$$

$$= 1 - \int_{\pi}^{\frac{\pi}{2}} t^2 \cos t dt \frac{\pi}{t} \quad (一元定积分换元x = \frac{\pi}{t})$$

$$= 1 - \pi \int_{\frac{\pi}{2}}^{\pi} \cos t dt = 1 + \pi$$

解法 2: 凑全微分和原函数

所以

$$\int_{L: \mathcal{U}_{(1,\pi)} \not \supseteq |(2,\pi)} \left(1 - \frac{y^2}{x^2} \cos \frac{y}{x}\right) dx + \left(\sin \frac{y}{x} + \frac{y}{x} \cos \frac{y}{x}\right) dy = \left[x + y \sin \frac{y}{x}\right]_{(1,\pi)}^{(2,\pi)} = 1 + \pi \circ$$

解法 3: 验证无旋

$$\begin{aligned}
d\left[\left(1 - \frac{y^2}{x^2}\cos\frac{y}{x}\right)dx + \left(\sin\frac{y}{x} + \frac{y}{x}\cos\frac{y}{x}\right)dy\right] \\
&= \frac{\partial}{\partial y}\left(1 - \frac{y^2}{x^2}\cos\frac{y}{x}\right)dy \wedge dx + \frac{\partial}{\partial x}\left(\sin\frac{y}{x} + \frac{y}{x}\cos\frac{y}{x}\right)dx \wedge dy \\
&= \left[-\left(-\frac{2y}{x^2}\cos\frac{y}{x} - \frac{y^2}{x^3}\sin\frac{y}{x}\right) + \left(-\frac{y}{x^2}\cos\frac{y}{x} - \frac{y}{x^2}\cos\frac{y}{x} - \frac{y^2}{x^3}\sin\frac{y}{x}\right)\right]dx \wedge dy \\
&= 0
\end{aligned}$$

所以在单连通区域 $\{(x,y)|x>0\}$ 内,积分与路径无关,因此

$$\int_{ff (0,1,\pi) \to (1,0) \to (2,0) \to (2,\pi)} \left(1 - \frac{y^2}{x^2} \cos \frac{y}{x} \right) dx + \left(\sin \frac{y}{x} + \frac{y}{x} \cos \frac{y}{x} \right) dy$$

$$= \int_{\pi}^{0} \left(\sin y + y \cos y \right) dy + \int_{1}^{2} dx + \int_{0}^{\pi} \left(\sin \frac{y}{2} + \frac{y}{2} \cos \frac{y}{2} \right) dy$$

$$= -\int_{0}^{\pi} \left(\sin y + y \cos y \right) dy + 1 + 2 \int_{0}^{\frac{\pi}{2}} \left(\sin t + t \cos t \right) dt$$

$$= 1 + \int_{0}^{\frac{\pi}{2}} \left(\sin t + t \cos t \right) dt - \int_{\frac{\pi}{2}}^{\pi} \left(\sin y + y \cos y \right) dy$$

$$= 1 + \int_{0}^{\frac{\pi}{2}} \left(\sin t + t \cos t \right) dt - \int_{0}^{\frac{\pi}{2}} \left(\sin t - (\pi - t) \cos t \right) dt$$

$$= 1 + \pi \int_{0}^{\frac{\pi}{2}} \cos t dt = 1 + \pi$$
想 想: 为什么选了这样一条道路?

2. 计算积分
$$I = \int_{\Gamma} (y^2 - z^2) dx + (z^2 - x^2) dy + (x^2 - y^2) dz$$
, 其中

Γ为第一卦限中球面片 $x^2 + y^2 + z^2 = 1$ ($x, y, z \ge 0$) 的边界曲线绕球面外法向量逆时针旋转。(课本习题 4.4 题 3(4),page 192)

解法 1: 如图 $\Gamma = L_1 + L_2 + L_3$, 其中 L_1, L_2, L_3 分别是 xy 平面、 yz 平面、 zx 平面上单位圆周在各自第一象限中的弧段。

$$= \left[\cos\theta - \frac{1}{3}\cos^{3}\theta - \sin\theta + \frac{1}{3}\sin^{3}\theta\right]_{0}^{\frac{\pi}{2}} = -\frac{2}{3} - \frac{2}{3} = -\frac{4}{3}$$
 (用原函数代入初值和终值计算)

因为对称性(在空间的保向变换 $\begin{pmatrix} x\\y\\z \end{pmatrix} \to \begin{pmatrix} y\\z\\x \end{pmatrix}$ 下, $L_1 \to L_2 \to L_3 \to L_1$,且

$$\omega = (y^2 - z^2) dx + (z^2 - x^2) dy + (x^2 - y^2) dz$$
 保持不变),所以 $\int_{L_1} \omega = \int_{L_2} \omega = \int_{L_3} \omega$,因此

$$I = \int_{\Gamma} \omega = \int_{L_1} \omega + \int_{L_2} \omega + \int_{L_3} \omega = -4 \ .$$

解法 2: 用 Gauss 公式:

$$I = \int_{\Gamma} (y^2 - z^2) dx + (z^2 - x^2) dy + (x^2 - y^2) dz$$

$$= \iint_{\Sigma} (2y dy - 2z dz) \wedge dx + (2z dz - 2x dx) \wedge dy + (2x dx - 2y dy) \wedge dz$$

$$= \iint_{\Sigma} (-2x - 2y) dx \wedge dy + (-2y - 2z) dy \wedge dz + (-2x - 2z) dz \wedge dx$$

其中 Σ 是任何以 Γ 为边界的有向曲面。

为方便计算, 我们取 Σ 由三个坐标平面上三个自然正向的平面区域

$$\Sigma_1 = \{(x, y, 0) \mid x^2 + y^2 \le 1, x, y \ge 0\} ,$$

$$\Sigma_2 = \{(0, y, z) \mid y^2 + z^2 \le 1, y, z \ge 0\}$$

$$\Sigma_3 = \{(x,0,z) \mid z^2 + x^2 \le 1, z, x \ge 0\}$$
,

组成。

在
$$\Sigma_1 = \{(x, y, 0) \mid x^2 + y^2 \le 1, x, y \ge 0\}$$
 上,

$$\iint_{\Sigma_{1}} (-2x - 2y) dx \wedge dy + (-2y - 2z) dy \wedge dz + (-2x - 2z) dz \wedge dx = \iint_{\Sigma_{1}} (-2x - 2y) dx \wedge dy$$

$$= \iint_{\substack{x^{2} + y^{2} \le 1 \\ x, y \ge 0}} (-2x - 2y) dx dy = -2 \iint_{0 \le r \le 1, 0 \le \theta \le \frac{\pi}{2}} (r \cos \theta + r \sin \theta) r dr d\theta$$

$$=-2\int_0^1 r^2 \mathrm{d}r \int_0^{\frac{\pi}{2}} \left(\cos\theta + \sin\theta\right) \mathrm{d}\theta = -2 \times \frac{1}{3} \times \left(\sin\theta - \cos\theta\right)\Big|_0^{\frac{\pi}{2}} = -\frac{4}{3}$$

由对称性(与解法 1 类似)知
$$\iint_{\Sigma_1} \alpha = \iint_{\Sigma_2} \alpha = \iint_{\Sigma_3} \alpha$$
 ,从而 $I = \iint_{\Sigma} \alpha = \iint_{\Sigma_1} \alpha + \iint_{\Sigma_2} \alpha = -4$ 。

注:解法2等价于在三个坐标平面上使用Green公式。

注: 在解法 2 中使用 Gauss 公式时也可以选取第一卦限中的球面部分,读者可以自己试试并与选择坐标平面进行比较。

3. 设C为闭曲线: |x|+|y|=2, 逆时针为正向。

计算(i)
$$\oint_{C^+} \frac{axdy - bydx}{|x| + |y|}$$
, (ii) $\oint_{C^+} \frac{xdy - ydx}{4x^2 + y^2}$ 。

解(i)

解法 1: 利用|x|+|y|=2,

$$\oint_{C^+} \frac{ax dy - by dx}{|x| + |y|} = \frac{1}{2} \oint_{C^+} ax dy - by dx$$

C在四个象限里的部分依次记为 C_1,C_2,C_3,C_4 。

在第一象限中,

$$\frac{1}{2} \int_{C_1} ax dy - by dx = \frac{1}{2} \int_{\substack{x+y=2\\y:0\to 2}} ax dy - by dx = \frac{1}{2} \int_0^2 a(2-y) dy - by d(2-y)$$

$$= \left(ay + \frac{-a+b}{4}y^2\right)\Big|_0^2 = 2a + (b-a) = a+b$$

其他象限中结果相同(可以用对称性得到,请讨论这个对称性)。

所以
$$\oint_{C^+} \frac{axdy - bydx}{|x| + |y|} = \frac{1}{2} \oint_{C^+} axdy - bydx = 4(a+b)$$
。

解法 2: 用 Green 公式:

$$\frac{1}{2} \oint_{C^+} ax dy - by dx = \frac{1}{2} \iint_D a dx \wedge dy - b dy \wedge dx = \frac{1}{2} \iint_D (a+b) dx \wedge dy = \frac{a+b}{2} \iint_D dx dy = 4(a+b) \circ$$

(ii)取充分小的正数 ε 使得 $C_\varepsilon=\{(x,y)\,|\,4x^2+y^2=\varepsilon^2\}$ 位于区域 $D=\{(x,y)\,|\,x\,|\,+\,|\,y\,|\leq 2\}$ 内。

记
$$D_{\varepsilon}=\{(x,y)\,||\,x\,|+|\,y\,|\leq 2,4x^2+y^2\geq \varepsilon^2\}$$
。由Green公式,

$$\oint_{C^{+}} \frac{x dy - y dx}{4x^{2} + y^{2}} - \oint_{C_{\varepsilon}^{+}} \frac{x dy - y dx}{4x^{2} + y^{2}}$$

$$= \iint_{D_{\varepsilon}} \frac{\partial}{\partial x} \left(\frac{x}{4x^{2} + y^{2}} \right) dx \wedge dy - \frac{\partial}{\partial y} \left(\frac{y}{4x^{2} + y^{2}} \right) dy \wedge dx$$

$$= \iint_{D_{\varepsilon}} \left(\frac{1}{4x^{2} + y^{2}} - \frac{8x^{2}}{(4x^{2} + y^{2})^{2}} \right) dx \wedge dy + \left(\frac{1}{4x^{2} + y^{2}} - \frac{2y^{2}}{(4x^{2} + y^{2})^{2}} \right) dx \wedge dy$$

$$= 0$$

从而

$$\oint_{C^*} \frac{x dy - y dx}{4x^2 + y^2} = \oint_{C^*} \frac{x dy - y dx}{4x^2 + y^2} = \oint_{C^*} \frac{x dy - y dx}{\varepsilon^2} = \frac{1}{\varepsilon^2} \iint_{4x^2 + y^2 \le \varepsilon^2} 2 dx \wedge dy = \frac{1}{\varepsilon^2} \iint_{u^2 + y^2 \le \varepsilon^2} du \wedge dy = \pi \circ dy = 0$$

上式中我们再次使用了 Green 公式,并且做了适当换元。

4. 已知函数 f(x) 在整个实轴 **R** 上二次连续可微,满足 f'(0) = 0 ,且使得一阶微分形式 [f(x) + y(x - f(x))]dx + f'(x)dy 是全微分,求 f(x) ,并使上述一阶微分形式由 A(0,0) 到 $B(\frac{\pi}{2},\pi)$ 逐段光滑曲线 L 上积分的值为 $\frac{\pi^2}{8}$ 。

解:
$$[f(x) + y(x - f(x))]dx + f'(x)dy = dg(x, y)$$
 当且仅当 $f''(x) = x - f(x)$ 。

解微分方程得到 $f(x) = C_1 \cos x + C_2 \sin x + x$,由 f'(0) = 0 得到 $C_2 = -1$ 。

此时一阶微分形式

$$[f(x) + y(x - f(x))]dx + f'(x)dy$$

$$= [C_1 \cos x - \sin x + x + y(-C_1 \cos x + \sin x)]dx + [-C_1 \sin x - \cos x + 1]dy$$

$$= d \left[C_1 \sin x + \cos x + \frac{x^2}{2} + (-C_1 \sin x - \cos x + 1)y \right]$$

再由

$$\frac{\pi^2}{8} = \left[C_1 \sin x + \cos x + \frac{x^2}{2} + \left(-C_1 \sin x - \cos x + 1 \right) y \right]_{(0,0)}^{(\frac{\pi}{2},\pi)} = C_1 + \frac{\pi^2}{8} + \left(-C_1 + 1 \right) \pi - 1$$

解得 $C_1 = 1$ 。从而 $f(x) = \cos x - \sin x + x$ 。

- 5. 设 Q(x, y) 在全平面上连续可微, 已知曲线积分 $\int_{L} 2xy dx + Q(x, y) dy$ 与路径无关, 并且对于任意的 t , 有 $\int_{(0,0)}^{(1,t)} 2xy dx + Q(x, y) dy = \int_{(0,0)}^{(t,1)} 2xy dx + Q(x, y) dy$. 求函数 Q(x, y) .
- 解: $2xydx + Q(x, y)dy = d(x^2y) + [Q(x, y) x^2]dy$ 是全微分当且仅当 $Q(x, y) = x^2 + H'(y)$ 。

$$\int_{(0,0)}^{(1,t)} 2xy dx + Q(x,y) dy = \left[x^2 y + H(y) \right]_{(0,0)}^{(1,t)} = t + H(t) - H(0)$$

$$= \int_{(0,0)}^{(t,1)} 2xy dx + Q(x,y) dy = \left[x^2 y + H(y) \right]_{(0,0)}^{(t,1)} = t^2 + H(1) - H(0)$$

所以 $H(t) = t^2 - t + H(1)$ 。 因此 $O(x, y) = x^2 + 2y - 1$ 。

- 6. 已知积分 $\int_L (x + xy \sin x) dx + \frac{f(x)}{x} dy$ 与路径无关, f(x) 为可微函数,且 $f\left(\frac{\pi}{2}\right) = 0$,
 - (1) 求 f(x);
 - (2) 对 (1) 中求得的 f(x), 求函数 u = u(x, y) 使得 $du = (x + xy \sin x) dx + \frac{f(x)}{x} dy$;
- (3) 对 (1) 中求得的 f(x), 求上述积分, 其中积分路径为从 $A(\pi,1)$ 到 $B(2\pi,0)$ 的任意路径. 解: 留作练习。

提示:
$$du = (x + xy\sin x)dx + \frac{f(x)}{x}dy = d(\frac{x^2}{2} + y\int x\sin xdx) + \left(\frac{f(x)}{x} - \int x\sin xdx\right)dy$$
。

第二型曲面积分

7. 计算第一型曲面积分 $I = \iint_S |z| d\sigma$,以及第二型曲面积分 $J = \iint_{S^+} |z| dx \wedge dy$, 其中曲面 S 为球面 $S: x^2 + y^2 + z^2 = a^2$; 定向曲面 S^+ 的外侧。

解: 取球坐标参数方程
$$\begin{cases} x = a\sin\theta\cos\varphi, \\ y = a\sin\theta\sin\varphi, \\ z = a\cos\theta \end{cases} \qquad \text{則} \frac{\partial \mathbf{x}}{\partial \theta} = \begin{pmatrix} a\cos\theta\cos\varphi \\ a\cos\theta\sin\varphi \\ -a\sin\theta \end{pmatrix}, \frac{\partial \mathbf{x}}{\partial \varphi} = \begin{pmatrix} -a\sin\theta\sin\varphi \\ a\sin\theta\cos\varphi \\ 0 \end{pmatrix}$$
于是 $E = \left\langle \frac{\partial \mathbf{x}}{\partial \theta}, \frac{\partial \mathbf{x}}{\partial \theta} \right\rangle = a^2, \quad F = \left\langle \frac{\partial \mathbf{x}}{\partial \theta}, \frac{\partial \mathbf{x}}{\partial \varphi} \right\rangle = 0, \quad G = \left\langle \frac{\partial \mathbf{x}}{\partial \varphi}, \frac{\partial \mathbf{x}}{\partial \varphi} \right\rangle = a^2\sin^2\theta,$

$$I = \iint_{S} |z| \, \mathrm{d}\sigma = \iint_{0 \le \theta \le \pi, 0 \le \varphi \le 2\pi} |a\cos\theta| \, \sqrt{EG - F^2} \, \mathrm{d}\theta \, \mathrm{d}\varphi$$

$$= \iint_{0 \le \theta \le \pi, 0 \le \varphi \le 2\pi} |a\cos\theta| \, a^2\sin\theta \, \mathrm{d}\theta \, \mathrm{d}\varphi$$

$$= 2\pi a^3 \int_0^\pi |\cos\theta| \sin\theta \, \mathrm{d}\theta = 4\pi a^3 \int_0^\frac{\pi}{2} \cos\theta \sin\theta \, \mathrm{d}\theta = 2\pi a^3$$

考虑第二型曲面积分 3。

方法 1:

$$\begin{split} J &= \iint\limits_{[0,\pi]\times[0,2\pi]} \det \left(\mathbf{F} \quad \frac{\partial \mathbf{x}}{\partial \theta} \quad \frac{\partial \mathbf{x}}{\partial \varphi} \right) \!\! d\theta \wedge d\varphi \\ &= \iint\limits_{[0,\pi]\times[0,2\pi]} \left| \begin{array}{ccc} 0 & a\cos\theta\cos\varphi & -a\sin\theta\sin\varphi \\ 0 & a\cos\theta\sin\varphi & a\sin\theta\cos\varphi \end{array} \right| \!\! d\theta \wedge d\varphi \\ &= 2\pi a^3 \int_0^\pi \!\! \left| \sin\theta \right| \sin\theta\cos\theta d\theta = 0 \end{split}$$

方法 2: 利用对称性

$$J = \iint_{S^+} |z| dx \wedge dy = \iint_{S^{\underline{n}^+}_{\perp \pm}} |z| dx \wedge dy + \iint_{S^{\underline{n}^-}_{\perp \pm}} |z| dx \wedge dy = \iint_{S^{\underline{n}^-}_{\perp \pm}} z dx \wedge dy - \iint_{S^{\underline{n}^-}_{\perp \pm}} z dx \wedge dy$$
在变换 $\begin{pmatrix} x \\ y \\ z \end{pmatrix} \rightarrow \begin{pmatrix} x \\ -y \\ -z \end{pmatrix}$ (绕 x 轴旋转 180°) 作用下,
$$\iint_{S^{\underline{n}^-}_{\perp \pm}} z dx \wedge dy = \iint_{S^{\underline{n}^-}_{\perp \pm}} (-z) dx \wedge d(-y) = \iint_{S^{\underline{n}^-}_{\perp \pm}} z dx \wedge dy$$
,

所以
$$J = \iint_{S_{\pm \pm}^{0,\pm}} z dx \wedge dy - \iint_{S_{\pm \pm}^{0,\mp}} z dx \wedge dy = 0$$
。

方法 3: 利用外微分计算。

代入球坐标参数方程

 $dx \wedge dy = d(a \sin \theta \cos \varphi) \wedge d(a \sin \theta \sin \varphi)$

$$= a^{2}(\cos\theta\cos\varphi d\theta - \sin\theta\sin\varphi d\varphi) \wedge (\cos\theta\sin\varphi d\theta + \sin\theta\cos\varphi d\varphi)$$

$$= a^{2} \left[\cos \theta \cos \varphi \sin \theta \cos \varphi d\theta \wedge d\varphi - \sin \theta \sin \varphi \cos \theta \sin \varphi d\varphi \wedge d\theta \right]$$

 $= a^2 \sin \theta \cos \theta d\theta \wedge d\varphi$

$$J = \iint_{S^+} |z| dx \wedge dy = \iint_{S^+} |a \sin \theta| a^2 \sin \theta \cos \theta d\theta \wedge d\varphi = 2\pi a^3 \int_0^{\pi} |\sin \theta| \sin \theta \cos \theta d\theta = 0$$

方法 4: 结合物理意义。

$$J = \iint_{S^+} |z| dx \wedge dy$$
 是向量场 $\mathbf{F}(x, y, z) = \begin{pmatrix} 0 \\ 0 \\ |z| \end{pmatrix}$ 按球面正向产生的通量,所以

$$J = \iint_{S} \begin{pmatrix} 0 \\ 0 \\ |z| \end{pmatrix} \cdot \frac{\begin{pmatrix} x \\ y \\ z \end{pmatrix}}{a} d\sigma = \frac{1}{a} \iint_{S} |z| z d\sigma = 0 . \quad (考虑 z \to -z 时的对称性)$$

8. 记 S 为锥面 $z = \sqrt{x^2 + y^2}$ 被柱面 $x^2 + y^2 = 2x$ 所截的有限部分。规定曲面 S 的正向向下,所得的定向曲面记为 S^+ 。求下面两个积分的值。

$$(i) \iint_S z \mathrm{d}\sigma \ . \qquad (ii) \quad \iint_{S^+} \sqrt{x^2 + y^2 + z^2} \left(x \mathrm{d}y \wedge \mathrm{d}z + y \mathrm{d}z \wedge \mathrm{d}x + z \mathrm{d}x \wedge \mathrm{d}y \right).$$

解: (i) 锥面
$$z = \sqrt{x^2 + y^2}$$
 $(x^2 + y^2 \le 2x)$

柱坐标下,
$$\begin{cases} x = r\cos\varphi, \\ y = r\sin\varphi, \ (0 \le r \le 2\cos\varphi) \\ z = r \end{cases}$$

因此

$$\iint_{S} z d\sigma = \iint_{D} r \sqrt{EG - F^{2}} dr d\varphi = \iint_{D} \sqrt{2} r^{2} dr d\varphi = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} d\varphi \int_{0}^{2\cos\varphi} \sqrt{2} r^{2} dr$$

$$= \frac{8\sqrt{2}}{3} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \cos^{3}\varphi d\varphi = \frac{16\sqrt{2}}{3} \int_{0}^{\frac{\pi}{2}} \cos^{3}\varphi d\varphi = \frac{16\sqrt{2}}{3} \left[\sin\varphi - \frac{\sin^{3}\varphi}{3} \right]_{0}^{\frac{\pi}{2}} = \frac{32\sqrt{2}}{9}$$

(ii) 方法 1: 由于曲面取下侧,所以参数顺序为 (φ,r) 。

$$\iint_{S^*} \sqrt{x^2 + y^2 + z^2} \left(x \, dy \wedge dz + y \, dz \wedge dx + z \, dx \wedge dy \right) = \iint_{(\varphi, r): 0 \le r \le 2\cos\varphi} \det \left(\|\mathbf{x}\| \mathbf{x}, \frac{\partial \mathbf{x}}{\partial \varphi}, \frac{\partial \mathbf{x}}{\partial r} \right) d\varphi \wedge dr \\
= \iint_{(\varphi, r): 0 \le r \le 2\cos\varphi} \det \left(\|\mathbf{x}\| \mathbf{x}, \frac{\partial \mathbf{x}}{\partial \varphi}, \frac{\mathbf{x}}{r} \right) d\varphi \wedge dr = 0 \\
(行列式中第 1, 3 列线性相关)$$

方法 2: 计算沿锥面时的外微分

$$xdy \wedge dz + ydz \wedge dx + zdx \wedge dy$$

$$= x dy \wedge d\sqrt{x^{2} + y^{2}} + y d\sqrt{x^{2} + y^{2}} \wedge dx + \sqrt{x^{2} + y^{2}} dx \wedge dy$$

$$= x dy \wedge \frac{x dx + y dy}{\sqrt{x^{2} + y^{2}}} + y \frac{x dx + y dy}{\sqrt{x^{2} + y^{2}}} \wedge dx + \sqrt{x^{2} + y^{2}} dx \wedge dy$$

$$= \frac{-x^{2} dx \wedge dy}{\sqrt{x^{2} + y^{2}}} + \frac{-y^{2} dx \wedge dy}{\sqrt{x^{2} + y^{2}}} + \sqrt{x^{2} + y^{2}} dx \wedge dy = 0$$

方法 3:
$$z = \sqrt{x^2 + y^2}$$
 (即 $x^2 + y^2 - z^2 = 0$) 的法向量为 $\begin{pmatrix} 2x \\ 2y \\ -2z \end{pmatrix}$, 向量场 $\mathbf{F}(x, y, z) = \begin{pmatrix} rx \\ ry \\ rz \end{pmatrix}$ 与法

向量正交,通量为零。

9. 求 积 分 $I = \iint_{\Sigma} f(x) dy \wedge dz + g(y) dz \wedge dx + h(z) dx \wedge dy$, 其 中 Σ 为 长 方 体 $[0,a] \times [0,b] \times [0,c]$ 的边界外侧,函数 f(x) , g(y) 和 h(z) 均为连续函数。

解: 三个向量场 $\mathbf{F}_1 = f(x)\mathbf{i}$, $\mathbf{F}_2 = g(y)\mathbf{j}$, $\mathbf{F}_3 = h(z)\mathbf{k}$ 在长方体边界产生的朝外的通量的和,

因此
$$I = bc[f(a) - f(0)] + ca[g(b) - g(0)] + ab[h(c) - h(0)]$$
。

10. 记 S^+ 为圆柱面 $x^2 + y^2 = 1$ 位于 $0 \le z \le 2$ 的部分,外法向为正,计算曲面积分

$$I = \iint_{S^+} x(y-z) dy \wedge dz + (x-y) dx \wedge dy \circ$$

解法1: 取柱坐标 $\begin{cases} x = \cos \varphi, \\ y = \sin \varphi, \text{ 请说明如何确定参数顺序}, \\ z = z \end{cases}$

$$I = \iint_{S^+} x(y-z) dy \wedge dz + (x-y) dx \wedge dy$$

$$= \iint_{(\varphi,z):0 \le \varphi \le 2\pi, 0 \le z \le 2} \cos \varphi (\sin \varphi - z) d \sin \varphi \wedge dz + (\cos \varphi - \sin \varphi) d \cos \varphi \wedge d \sin \varphi$$

$$= \iint\limits_{(\varphi,z):0\leq\varphi\leq 2\pi,0\leq z\leq 2} \cos^2\varphi(\sin\varphi-z)\mathrm{d}\varphi\wedge\mathrm{d}z$$

$$= \int_0^{2\pi} d\varphi \int_0^2 \cos^2 \varphi (\sin \varphi - z) dz = \int_0^{2\pi} \cos^2 \varphi (2\sin \varphi - 2) d\varphi = \int_0^{2\pi} \frac{1 + \cos 2\varphi}{2} (2\sin \varphi - 2) d\varphi$$
$$= -\int_0^{2\pi} d\varphi = -2\pi$$

解法 2: 单位外法向量
$$\mathbf{n} = \begin{pmatrix} x \\ y \\ 0 \end{pmatrix}$$
, 向量场 $\mathbf{F} = \begin{pmatrix} x(y-z) \\ 0 \\ x-y \end{pmatrix}$, $\mathbf{F} \cdot \mathbf{n} = x^2(y-z) = (1-y^2)(y-z)$ 。

$$I = \iint_{S^+} x(y-z) dy \wedge dz + (x-y) dx \wedge dy = \iint_{S} (1-y^2)(y-z) d\sigma$$

绕z轴旋转180°, $y \rightarrow -y$,

$$\iint_{S} (1 - y^{2})(y - z) d\sigma = \iint_{S} (1 - y^{2})(-z) d\sigma = -\int_{0}^{2\pi} 1 - \sin^{2} \varphi d\varphi \int_{0}^{2} z dz = -\int_{0}^{2\pi} \frac{1 + \cos 2\varphi}{2} d\varphi \int_{0}^{2} z dz = -2\pi$$

解法 3: 利用 Gauss 公式,取 Ω 为实心圆柱体 $x^2 + y^2 \le 1$, $0 \le z \le 2$ 。

$$I = \iint_{S^+} x(y-z) dy \wedge dz + (x-y) dx \wedge dy$$

$$= \iiint_{\Omega} (y-z) dx \wedge dy \wedge dz - \iint_{S_{\pm}} (x-y) dx \wedge dy - \iint_{S_{\mp}} (x-y) dx \wedge dy$$

$$= -\iiint_{\Omega} z dx dy dz = -2\pi$$

对上述过程中涉及的几个积分结果,请分别做出解释。

11. 计算高斯积分 $I = \iint_S \frac{\cos(\mathbf{r}, \mathbf{n})}{\|\mathbf{r}\|^2} d\sigma$, 其中 S 为一个不经过原点的光滑封闭曲面,其中 \mathbf{n}

为S上点 $\mathbf{r} = (x, y, z)$ 处的单位外法线向量.

解:

$$I = \iint_{S} \frac{\cos(\mathbf{r}, \mathbf{n})}{\|\mathbf{r}\|^{2}} d\sigma = \iint_{S} \frac{\langle \mathbf{r}, \mathbf{n} \rangle}{\|\mathbf{r}\|^{3}} d\sigma = \iint_{\partial B(0, r)} \frac{\langle \mathbf{r}, \mathbf{n} \rangle}{\|\mathbf{r}\|^{3}} d\sigma + \iiint_{\Omega} \operatorname{div} \frac{\mathbf{r}}{\|\mathbf{r}\|^{3}} dx dy dz$$

在球面
$$\partial B(0,r)$$
 上, $\mathbf{r}=r\mathbf{n}$,从而 $\iint_{\partial B(0,r)} \frac{\left\langle \mathbf{r},\mathbf{n} \right\rangle}{\left\| \mathbf{r} \right\|^3} \mathrm{d}\sigma = \frac{1}{r^2} \iint_{\partial B(0,r)} \left\langle \mathbf{n},\mathbf{n} \right\rangle \mathrm{d}\sigma = \frac{1}{r^2} \iint_{\partial B(0,r)} \mathrm{d}\sigma = 4\pi$;

 $在\Omega内,$

$$\operatorname{div}\frac{\mathbf{r}}{\|\mathbf{r}\|^{3}} = \nabla \cdot \frac{\mathbf{r}}{\|\mathbf{r}\|^{3}} = \nabla \frac{1}{\|\mathbf{r}\|^{3}} \cdot \mathbf{r} + \frac{1}{\|\mathbf{r}\|^{3}} \nabla \cdot \mathbf{r} = -\frac{3\frac{\mathbf{r}}{\|\mathbf{r}\|} \cdot \mathbf{r}}{\|\mathbf{r}\|^{4}} + \frac{3}{\|\mathbf{r}\|^{3}} = 0,$$

所以
$$\iiint_{\Omega} \operatorname{div} \frac{\mathbf{r}}{\|\mathbf{r}\|^3} dx dy dz = 0$$
。

因此 $I = \iint_{S} \frac{\cos(\mathbf{r}, \mathbf{n})}{\|\mathbf{r}\|^2} d\sigma = 4\pi$ 。其物理意义在于:由点电荷形成的静电场在包围该电荷的任何

曲面上产生的电通量总是相等的。

12. 设 $f:[0,+\infty)\to \mathbb{R}$ 是 $C^{(1)}$ 函数,满足 f(0)=1,且对区域 $R^+=\{(x,y,z)\,|\,x>0\}$ 内任何一个 光滑有向封闭曲面 S ,都有 $\bigoplus_{S} xf(x)\mathrm{d}y\wedge\mathrm{d}z-xyf(x)\mathrm{d}z\wedge\mathrm{d}x-\mathrm{e}^{2x}z\mathrm{d}x\wedge\mathrm{d}y=0$ 。求 f(x)。

解:用 Gauss 公式。

$$\iint_{S} xf(x)dy \wedge dz - xyf(x)dz \wedge dx - e^{2x}zdx \wedge dy = \iiint_{\Omega} \left[f(x) + xf'(x) - xf(x) - e^{2x} \right] dxdydz$$

于是 $f(x) + xf'(x) - xf(x) - e^{2x} = 0$ 。这是一阶线性常微分方程,用分离变量法解齐次方程,

再用常数变易法解非齐次方程,并结合初始条件 f(0)=1,最终解得 $f(x)=\begin{cases} \frac{e^{2x}-e^x}{x}, x>0; \\ 1, & x=0. \end{cases}$

13. 设
$$D \subset \mathbf{R}^2$$
为开集, $u(x,y)$ 为调和函数 $\left(\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0, (x,y) \in D\right)$,证明

(i)
$$u(x_0, y_0) = \frac{1}{2\pi} \int_{\partial D} \left(u \frac{\partial \ln r}{\partial \mathbf{n}} - \ln r \frac{\partial u}{\partial \mathbf{n}} \right) dl$$
, $\not\equiv (x_0, y_0) \in D$, $r = \sqrt{(x - x_0)^2 + (y - y_0)^2}$,

n 为D 的外法向量:

(ii)
$$u(x_0, y_0) = \frac{1}{2\pi R} \int_{\partial B((x_0, y_0), R)} u(x, y) dl$$
, 其中 $B((x_0, y_0), R) \subset D$ 。

证明: 通过平移坐标系,不妨设
$$(x_0, y_0)$$
是原点。 $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = \Delta u = \nabla \cdot (\nabla u)$ 。

(i)根据散度定理(Green/Gauss)

$$\begin{split} \int_{\partial D} & \left(u \frac{\partial \ln r}{\partial \mathbf{n}} - \ln r \frac{\partial u}{\partial \mathbf{n}} \right) \mathrm{d}l = \int_{\partial D} \left(u \nabla \ln r - \ln r \nabla u \right) \cdot \mathbf{n} \mathrm{d}l \\ & = \int_{\partial B(0,\varepsilon)} \left(u \nabla \ln r - \ln r \nabla u \right) \cdot \mathbf{n} \mathrm{d}l + \iint_{D_{\varepsilon}} \mathrm{div} \left(u \nabla \ln r - \ln r \nabla u \right) \mathrm{d}\sigma \end{split}$$

因为

$$\operatorname{div}(u\nabla \ln r - \ln r \nabla u) = \nabla \cdot (u\nabla \ln r - \ln r \nabla u)$$
$$= \nabla u \cdot \nabla \ln r + u\Delta \ln r - \nabla \ln r \cdot \nabla u - \ln r\Delta u$$
$$= u\Delta \ln r - \ln r\Delta u = 0 \quad (\Delta \ln r = \Delta u = 0)$$

所以
$$\int_{\partial D} \left(u \frac{\partial \ln r}{\partial \mathbf{n}} - \ln r \frac{\partial u}{\partial \mathbf{n}} \right) dl = \int_{\partial B(0,\varepsilon)} \left(u \nabla \ln r - \ln r \nabla u \right) \cdot \mathbf{n} dl$$
。

再次使用散度定理,得到

$$\int_{\partial B(0,\varepsilon)} \ln r \nabla u \cdot \mathbf{n} dl = \ln \varepsilon \iint_{B(0,\varepsilon)} \Delta u \, d\sigma = 0 ,$$

所以

$$\begin{split} \int_{\partial D} & \left(u \frac{\partial \ln r}{\partial \mathbf{n}} - \ln r \frac{\partial u}{\partial \mathbf{n}} \right) \mathrm{d}l = \int_{\partial B(0,\varepsilon)} u \nabla \ln r \cdot \mathbf{n} \mathrm{d}l = \int_{\partial B(0,\varepsilon)} u \frac{\nabla r}{r} \cdot \mathbf{n} \mathrm{d}l = \int_{\partial B(0,\varepsilon)} u \frac{\mathbf{r}}{r^2} \cdot \mathbf{n} \mathrm{d}l \\ &= \frac{1}{\varepsilon} \int_{\partial B(0,\varepsilon)} u \mathrm{d}l = \frac{2\pi \varepsilon}{\varepsilon} \left(u(0) + o(1) \right). \end{split}$$

让
$$\varepsilon \to 0$$
得到 $\frac{1}{2\pi} \int_{\partial D} \left(u \frac{\partial \ln r}{\partial \mathbf{n}} - \ln r \frac{\partial u}{\partial \mathbf{n}} \right) dl = u(0)$ 。

(ii) 在(i) 中我们已经证明 $\frac{1}{2\pi R} \int_{\partial B(0,R)} u dl = R$ 无关,所以

$$\frac{1}{2\pi R} \int_{\partial B(0,R)} u dl = \frac{1}{2\pi \varepsilon} \int_{\partial B(0,\varepsilon)} u dl \to u(0), \quad \varepsilon \to 0.$$

因此
$$\frac{1}{2\pi R} \int_{\partial B(0,R)} u dl = u(0)$$
。

另一证明:

$$\frac{1}{2\pi R} \int_{\partial B(0,R)} u dl = \frac{1}{2\pi R} \int_0^{2\pi} u(R\cos\theta, R\sin\theta) Rd\theta = \frac{1}{2\pi} \int_{\partial B(0,1)} u(R\mathbf{r}) dl,$$

为证明这个积分值与R无关,我们对R求导:

$$\frac{\mathrm{d}}{\mathrm{d}R} \left(\frac{1}{2\pi R} \int_{\partial B(0,R)} u \mathrm{d}l \right) = \frac{\mathrm{d}}{\mathrm{d}R} \left(\frac{1}{2\pi} \int_{\partial B(0,1)} u(R\mathbf{r}) \mathrm{d}l \right)$$

$$= \frac{1}{2\pi} \int_{\partial B(0,1)} \frac{\partial u(R\mathbf{r})}{\partial R} \mathrm{d}l = \frac{1}{2\pi} \int_{\partial B(0,1)} \nabla u(R\mathbf{r}) \cdot \mathbf{r} \mathrm{d}l \quad (积分对参数求导)$$

$$= \frac{1}{2\pi} \iint_{B(0,1)} \nabla \cdot (\nabla u(R\mathbf{r})) \mathrm{d}\sigma \quad (散度定理 - Green公式)$$

因为
$$\nabla \cdot (\nabla u(R\mathbf{r})) = \Delta u(R\mathbf{r})R = 0$$
,所以 $\frac{\mathrm{d}}{\mathrm{d}R} \left(\frac{1}{2\pi R} \int_{\partial B(0,R)} u \mathrm{d}l \right) = 0$,

从而
$$\frac{1}{2\pi R}\int_{\partial B(0,R)}u\mathrm{d}l=\frac{1}{2\pi\varepsilon}\int_{\partial B(0,\varepsilon)}u\mathrm{d}l \to u(0,0)$$
, $\varepsilon\to 0$ 。 因此 $\frac{1}{2\pi R}\int_{\partial B(0,R)}u\mathrm{d}l=u(0,0)$ 。