EEA051 - Digital Logic 數位邏輯

Chapter 4 Combinational Logic

吳俊興 國立高雄大學 資訊工程學系

November 2005

Chapter 4 Combinational Logic

- 4-1 Combinational Circuits
- 4-2 Analysis Procedure
- 4-3 Design Procedure
- 4-4 Binary Adder-Subtractor
- 4-5 Decimal Adder
- 4-6 Binary Multiplier
- 4-7 Magnitude Comparator
- 4-8 Decoders
- 4-9 Encoders
- 4-10 Multiplexers
- 4-11 HDL For Combinational Circuits

Logic Circuits

Combinational Circuits

- Consist of *logic gates* whose outputs at any time are determined from the present combination of inputs
 - input variables, logic gates, and output variables
- The logic gates accept signals from the inputs and generate signals to the output

Sequential Circuits

- Consist of memory storage elements and logic gates
 - Their outputs are a function of the inputs and the state of the storage elements
 - The state of storage elements is a function of previous inputs
- The outputs of a a sequential circuit also depend on the past inputs

Fig. 4-1 Block Diagram of Combinational Circuit

Fig. 5-1 Block Diagram of Sequential Circuit

Combinational Circuits

Fig. 4-1 Block Diagram of Combinational Circuit

Transform binary information from the given input data to a required output data

- n input variables
 - 2ⁿ possible binary input combinations
 - (2ⁿ)²=2²ⁿ possible Boolean functions
- m output variables
 - each output function is expressed in terms of the n input variables
 - described by m Boolean functions

Standard combinational circuits

- available in MSI, standard cells in complex VLSI circuits
- i.e. adders, subtractors, comparators, decoders, encoders, multiplexers

4-2 Analysis Procedure

- Start with a given logic diagram and culminate with a set of Boolean functions, a truth table, or a possible explanation of the circuit operation
- Make sure the given circuit is combinational and not sequential
 - no feedback paths or memory elements
 - A feedback path is a connection from the output of one gate to the input of a second gate that forms part of the input to the first gate
- Obtain the output Boolean functions or the truth table

Obtaining Boolean Functions

First, obtain functions of input variables

$$F_2 = AB + AC + BC$$

$$T_1 = A + B + C$$

$$T_2 = ABC$$

Next, consider outputs of gates that are a function of already defined symbols:

$$T_3 = F_2' T_1$$
$$F_1 = T_3 + T_2$$

To obin F_1 as a function of A, B, and C, form a series of substitutions as follows:

$$F_1 = T_3 + T_2 = F_2'T_1 + ABC = (AB + AC + BC)'(A + B + C) + ABC$$

$$= (A' + B')(A' + C')(B' + C')(A + B + C) + ABC$$

$$= (A' + B'C')(AB' + AC' + BC' + B'C) + ABC$$

$$= A'BC' + A'B'C + AB'C' + ABC$$

Obtaining Truth Table

Truth Table for the Logic Diagram of Fig. 4-2

Α	В	С	F ₂	F'_2	T ₁	T ₂	T ₃	F ₁
0	0	0	0	1	0	0	0	0
0	0	1	0			0	1	1
0	1	0	0	1	1	0	1	1
		1					0	0
1	0	0	0	1	1	0	1	1
1	0	1	1	0	1	0	0	0
1	1	0	1	1,700.17	1	0	0	0
1	1	1	1	0	1	1	0	1

A 3-bit full-adder

Logic Diagram for Analysis Example

FIGURE 4-2

F1: the sum

F2: the carry

Obtaining Boolean Functions and Truth Table from a Logic Diagram

Obtain output Boolean functions from a logic diagram:

- Label all gate outputs that are a function of input variables with arbitrary symbols.
 Determine the Boolean functions for each gate output.
- Label the gates that are a function of input variables and previously labeled gates with other arbitrary symbols. Find the Boolean functions for these gates.
- 3. Repeat the process outlined in step 2 until the outputs of the circuit are obtained.
- By repeated substitution of previously defined functions, obtain the output Boolean functions in terms of input variables.

Obtain the truth table directly from a logic diagram:

- 1. Determine the number of input variables in the circuit. For n inputs, form the 2^n possible input combinations and list the binary numbers from 0 to $2^n 1$ in a table.
- 2. Label the outputs of selected gates with arbitrary symbols.
- Obtain the truth table for the outputs of those gates that are a function of the input variables only.
- 4. Proceed to obtain the truth table for the outputs of those gates that are a function of previously defined values until the columns for all outputs are determined.

Problem 4-2

Fig. P4-2

4-3 Design Procedure

The design of combinational circuits:

- start from the specification of the problem and
- culminates in a logic circuit diagram or a set of Boolean functions
- 1. From the specifications of the circuit, determine the required number of inputs and outputs and assign a symbol to each.
- 3. Derive the truth table that defines the required relationship between inputs and outputs.
- 3. Obtain the simplified Boolean functions for each output as a function of the input variables.
- 4. Draw the logic diagram and verify the correctness of the design.

Constraints in a practical design:

- number of gates
- number of inputs to a gate
- propagation time of the signal through the gates
- number of interconnections
- limitations of the driving capability of each gate
- etc.

Code Conversion Example – BCD to Excess-3 Code

Table 4-2 *Truth Table for Code-Conversion Example*

	Input	BCD		Output Excess-3 Code						
Α	В	С	D	W	x	у	Z			
0	0	0	0	0	0	1	1			
0	0	0	1	0	1	0	0			
0	0	1	0	0	1	0	1			
0	0	1	1	0	1	1	0			
0	1	0	0	0	1	1	1			
0	1	0	1	1	0	0	0			
0	1	1	0	1	0	0	1			
0	1	1	1	1	0	1	0			
1	0	0	0	1	0	1	1			
1	0	0	1	1	1	0	0			

FIGURE 4-3
Maps for BCD to Excess-3 Code Converter

z = D'

Code Conversion Example – BCD to Excess-3 Code (cont.)

$$z = D'$$

 $y = CD + C'D' = CD + (C + D)'$
 $x = B'C + B'D + BC'D' = B'(C + D) + BC'D'$
 $x = B'C + B'D + BC'D' = B'(C + D) + BC'D'$
 $x = B'C + B'D + BC'D' = B'(C + D) + BC'D'$
 $x = B'C + B'D + BC'D' = B'(C + D) + BC'D'$
 $x = B'C + B'D + BC'D' = B'(C + D) + BC'D'$

Two-level implementation (Figure 4-3)

- 7 AND gates
- 3 OR gates

Multiple-level two-input implementation (Figure 4-4)

- 4 AND gates
- 4 OR gates

Problem 4-6 Majority Circuit

A majority circuit is a combinational circuit whose output is equal to 1 if the input variables have more 1's than 0's. The output is 0 otherwise. Design a 3-input majority circuit.

4-4 Binary Adder-Subtractor

Addition of two binary digits

- The most basic arithmetic operation
- 4 possible elementary operations
 - one-digit sum: 0 + 0 = 0, 0 + 1 = 1, 1 + 0 = 1, and
 - two-digit sum: 1 + 1 = 10 (augend, addend, carry)

Half adder

A combinational circuit that performs the addition of two bits

Full adder

- A combinational circuit that performs the addition of three bits (two significant bits and a previous carry)
- can be implemented by two half adders
- Connecting n full addres in cascade produces a binary adder for two n-bit numbers

Binary adder-subtractor

A combinational circuit that performs the arithmetic
 operations of addition and subtraction with binary numbers 14

Half Adder - Addition of Two Bits

Two inputs: x and y

Two outputs:

- Sum S = x'y + xy'
- Carry C = xy

It can also be implemented with an exclusive-OR and an AND gate

(b)
$$S = x \oplus y$$

 $C = xy$

Fig. 4-5 Implementation of Half-Adder

Full-Adder – Sum of Three Bits

X	y	Z	С	S
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

Implementations of Full-Adder

Two-level AND-OR Implementation

$$S = x'y'z + x'yz' + xy'z' + xyz$$

$$C = xy + xz + yz$$

Fig. 4-7 Implementation of Full Adder in Sum of Products

Implemented with two half adders and one OR gate

$$S = z \oplus (x \oplus y)$$

$$= z'(xy' + x'y) + z(xy' + x'y)'$$

$$= z'(xy' + x'y) + z(xy + x'y')$$

$$= xy'z' + x'yz' + xyz + x'y'z$$

$$C = z(xy' + x'y) + xy = xy'z + x'yz + xy$$

Fig. 4-8 Implementation of Full Adder with Two Half Adders and an OR Gate

Binary Adder – Sum of Two Binary Numbers

- An n-bit adder requires n full adders with each output carry connected to the input carry of the next higher-order full adder
- 4-bit adder: Interconnection of four full adder (FA) circuits

Example: A=1011 and B=0011

Fig. 4-9 4-Bit Adder

Subscript i:	3	2	1	0	
Input carry	0	1	1	0	C_i
Augend	1	0	1	1	A_i
Addend	0	0	1	1	B_i
Sum	1	1	1	0	S_{i}
Output carry	0	0	1	1	C_{i+1}

Carry Propagation

- Total propagation time
 - = propagation delay of a typical gate
 - * number of gate levels in the circuit
- The longest propagation delay time in an adder is the time it takes the carry to propagate through the full adders
 - Inputs A_i and B_i are available as soon as input signals are applied to the adder
 - The value of S_i in any given stage will be in its steady state final value only after the input carry to that stage has been propagated
 - C₃ has to wait for C₂, C₂ has to wait for C₁ and so on down to C₀
- A limiting factor on the speed with which two numbers are added

Carry Propagation of a Full Adder

- The signal from the input carry C_i to the output carry C_{i+1} propagates through an AND gate and an OR gate, which constitute two gate levels
 - For an n-bit adder, there are 2n gate levels for the carry to propagate from input to output
- 4-bit adder
 - Carry propagation: 2 * 4 = 8 gate levels from C_0 to C_4
 - Critical path: 9 gate levels (3 for C₀)

Reducing Carry Propagation Delay

- 1. Employ faster gates with reduced delays
 - Physical circuits have a limit to their capability
- 2. Complicated techniques for parallel adders
 - Principle of carry lookahead

Definitions of two new variables

- carry generate G_i: produces a carry of 1 when both A_i and Bi are 1, regardless of the input carry C_i
- carry propagate P_i: the term associated with the propagation of the carry from C_i to C_{i+1}

$$P_{i} = A_{i} \oplus B_{i}$$

$$-c_{i+1} G_{i} = A_{i}B_{i}$$

$$sum S_{i} = P_{i} \oplus C_{i}$$

$$carry C_{i+1} = G_{i} + P_{i}C_{i}$$

Carry Lookahead Generator

carry
$$C_{i+1} = G_i + P_i C_i$$

$$C_0$$
 = input carry
$$C_1 = G_0 + P_0 C_0$$

$$C_2 = G_1 + P_1 C_1 = G_1 + P_1 (G_0 + P_0 C_0) = G_1 + P_1 G_0 + P_1 P_0 C_0$$

$$C_3 = G_2 + P_2 C_2 = G_2 + P_2 G_1 + P_2 P_1 G_0 + P_2 P_1 P_0 C_0$$

P_i, G_i, and C_i do not have to wait for carries from previous stages

$$P_i = A_i \oplus B_i$$
$$G_i = A_i B_i$$

Implemented by two-level AND-OR

Fig. 4-11 Logic Diagram of Carry Lookahead Generator

4-Bit Adder with Carry Lookahead

$$P_{i} = A_{i} \oplus B_{i}$$

$$G_{i} = A_{i}B_{i}$$

$$S_{i} = P_{i} \oplus C_{i}$$

All output carries are generated concurrently by the carry lookahead generator after a delay through two levels of gates

Binary Subtractor

Subtracting A – B = A + (1's complement of B) + 1 = A + $((r^n-1) - B)$) – $r^n + 1$ = A + (2's complement of B) = A + $(r^n - B)$ – r^n

Fig. 4-13 4-Bit Adder Subtractor

4-Bit Adder Subtractor

M=0, the circuit is an adder (B \oplus 0 = B) M=1, the circuit is a subtractor (B \oplus 1 = B', C₀=1)

Fig. 4-13 4-Bit Adder Subtractor

Binary numbers in the signed-complement system are added and subtracted by the same basic addition and subtraction rules as unsigned numbers

Overflow

When two numbers of n digits each are added and the sum occupies n+1 digits, an overflow occurs

- Addition of two unsigned numbers: detected from the end carry of the most significant position
- Addition of two signed numbers: May occur if the two numbers are both positive or both negative

Signed numbers

- the leftmost bit always represents the sign and negative numbers are in 2's complement form
- Addition: the sign bit is treated as part of the number and the end carry does not indicate an overflow

Overflow for Signed Numbers

Examples: two signed binary numbers, +70 and +80, stored in two 8-bit register (+127 to -128)

carries:	0	1		carries:	1	0	
+70		0	1000110	-70		1	0111010
+80		0	1010000	-80		1	0110000
+150		1	0010110	-150		0	1101010

Detecting overflow condition by observing

- the carry into the sign bit position
- the carry out of the sign bit position

An overflow has occurred if two carries are not equal (V bit)

Overflow for unsigned numbers

C bit detects a carry after addition or a borrow after subtraction

Overflow for signed numbers

V=0 after an addition or subtraction: indicate no overflow

V=1: the result of the operation contains n+1 bits

- An overflow has occurred
- The (n+1)th bit is the actual sign and has been shifted out of position

4-5 Decimal Adder

- Binary adder: $(1000)_2 + (1001)_2 = (10001)_2$
- BCD adder: $(1000)_{BCD} + (1001)_{BCD} = (1 \ 0111)_{BCD}$
- Decimal adder: 8 + 9 = 17

BCD / Decimal Adder

0	0000	5	0101
1	0001	6	0110
2	0010	7	0111
3	0011	8	1000
4	0100	9	1001

$$\begin{array}{c|c}
a \\
f & g \\
e & d
\end{array}$$

(a) Segment designation

(b) Numerical designation for display

BCD Adder

	Bir	nary Su	ım			BCD Sum					Decimal
K	Z_8	Z_4	Z_2	Z_1		С	S ₈	54	S2	S ₁	
0	0	0	0	0		0	0	0	0	0	0
0	0	0	0	1		0	0	0	0	1	1
0	0	0	1	0		0	0	0	1	0	2
0	0	0	1	1		0	0	0	1	1	3
0	0	1	0	0	h	0	0	1 4	0	0	4
0	0	1	0	1	+ 0	0	0	1	0	1	5
0	0	1	1	0	C=0	0	0	1	1	0	6
0	0	1	1	1	C-U	0	0	1	1	1	7
0	1	0	0	0		0	1	0	0	0	8
0	1	0	0	1		0	1	0	0	1	9
0	1	0	1	0		1	0	0	0	0	10
0	1	0	1	1		1	0	0	0	1	11
0	1	1	0	0	\rightarrow	1	0	0	1	0	12
0	1	1	0	1		1	0	0	1	1	13
0	1	1	1	0	+0110	1	0	1	0	0	14
0	1	1	1	1	C=1	1	0	1	0	1	15
1	0	0	0	0	C=1	1	0	1	1	0	16
1	0	0	0	1		1	0	1	1	1	17
1	0	0	1	0		1	1	0	0	0	18
l	0	0	1	1		1	1	0	0	1	19

Convert
5 bits into
2 BCD
digits

$$C=K+Z_8Z_4+Z_8Z_2$$

$$Sum=KZ_8Z_4Z_2Z_1+00CC0$$

Figure 4-14 Block diagram of a BCD Adder

Fig. 4-14 Block Diagram of a BCD Adder

4-6 Binary Multiplier

Multiplication of binary numbers is performed in the same way as in decimal numbers

 partial product: the multiplicand is multiplied by each bit of the multiplier starting from the least significant bit

	2	8
*	1	3
	6 + 2	4
2	8	
3	6	4

Multiplication of two bits =
$$A * B (AND)$$

0 * 0 = 0 0 * 1 = 0 1 * 0 = 0 1 * 1 = 1

2-bit by 2-bit binary multiplier

Fig. 4-15 2-Bit by 2-Bit Binary Multiplier

4-bit by 3-bit binary multiplier

Fig. 4-16 4-Bit by 3-Bit Binary Multiplier

4-7 Magnitude Comparator

A combinational circuit that compares two numbers, A and B, and determines their relative magnitudes: A>B, A=B, or A<B

4-bit comparator: $A=A_3A_2A_1A_0$, $B=B_3B_2B_1B_0$

(A=B):
$$A_3=B_3$$
, $A_2=B_2$, $A_1=B_1$, $A_0=B_0$
 $x_i = A_iB_i + A_i'B_i'$
XOR-Invert = $(A_iB_i'+A_i'B_i)'$
= $(A_i'+B_i)(A_i+B_i')$
= $A_i'A_i + A_i'B_i' + A_iB_i + B_iB_i'$
= $A_iB_i + A_i'B_i'$
(A>B) = $A_3B_3' + x_3A_2B_2' + x_3x_2A_1B_1'$
+ $x_3x_2x_1A_0B_0'$
(AA_3'B_3 + x_3A_2'B_2 + x_3x_2A_1'B_1
+ $x_3x_2x_1A_0'B_0$

Using a binary subtractor: A-B>0, A-B=0, or A-B<0

4-8 Decoders

A combinational circuit that converts binary information from n input lines to a maximum of 2ⁿ unique output lines

n-to-m-line decoders: generate m (=2ⁿ or fewer) minterms of n input variables

Table 4-6
Truth Table of a 3-to-8-Line Decoder

Inputs						Out				
X	у	Z	Do	D_1	D ₂	D_3	D_4	D_5	D_6	D_7
0	0	0	1	0	0	0	0	0	0	0
0	0	1	0	1	0	0	0	0	0	0
0	1	0	0	0	1	0	0	0	0	0
0	1	1	0	0	0	1	0	0	0	0
1	0	0	0	0	0	0	1	0	0	0
1	0	1	0	0	0	0	0	1	0	0
1	1	0	0	0	0	0	0	0	1	0
1	1	1	0	0	0	0	0	0	0	1

Fig. 4-18 3-to-8-Line Decoder

Decoder with Enable Input using NAND

- More economical to generate the decoder minterms in their complemented form using NAND gates
- Support one or more enable inputs to control the circuit operation
 - -e.g. disabled when E is equal to 1 (no outputs)
 - -same as a **Demultiplexer**: a circuit that receives information from a single line and directs it to one of 2ⁿ possible output lines
 - Selection of a specific output is controlled by bit combination of n selection lines

E	\boldsymbol{A}	В	D_0	D_1	D_2	D_3
1	X	X	1	1	1	1
0	0	0	0	1	1	1
0	0	1	1	0	1	1
0	1	0	1	1	0	1
0	1	1	1	1	1	0

(a) Logic diagram

(b) Truth table

Connecting multiple decoders to form a larger one

• A decoder provides the 2ⁿ minterm of n input variable

w=1: the bottom decoder is enabled (1000 ... 1111:D8 to D_{15})

 Any combinational circuit with n inputs and m outputs can be implemented with an n-to-2ⁿ-line decoder and m OR gates

1111

1111 1111

1111 1110

Combinational Logic Implementation – Full Adder with a Decoder

Fig. 4-21 Implementation of a Full Adder with a Decoder

$$S(x, y, z) = \sum (1, 2, 4, 7)$$

$$C(x, y, z) = \sum (3, 5, 6, 7)$$

Large input with NOR: if the number of minterms is greater than 2ⁿ/2, then F' can be expressed with fewer minterms

Problem 4-25 Construct a 5-to-32-line decoder with four 3-to-8-line decoders with enable and a 2-to-4-line decoder. Use block diagrams for the components

4-9 Encoders

An encoder has 2ⁿ (or fewer) input lines and n output lines, which generate the binary code corresponding to the input value

Octal-to-binary encoder: 8 inputs (one for each of the octal digits) and three outputs generating the corresponding binary number

- $z = D_1 + D_3 + D_5 + D_7$ $y = D_2 + D_3 + D_6 + D_7$ $x = D_4 + D_5 + D_6 + D_7$
- •multiple inputs: undefined => priority encoder
- •Input with all 0's = D_0 is equal to 1

Inputs								Outputs		
D_0	D_1	D_2	D_3	D_4	D_5	D_6	D_7	X	у	Z
1	0	0	0	0	0	0	0	0	0	0
0	1	0	0	0	0	0	0	0	0	1
0	0	1	0	0	0	0	0	0	1	0
0	0	0	1	0	0	0	0	0	1	1
0	0	0	0	1	0	0	0	1	0	0
0	0	0	0	0	1	0	0	1	0	1
0	0	0	0	0	0	1	0	1	1	0
0	0	0	0	0	0	0	1	1	1	1

Priority Encoder

An encoder circuit that includes the priority function: if two or more inputs are equal to 1 at the same time, the input having the highest

priority will take precedence

	Inp	uts	Outputs			
D _o	D_1	D ₂	D_3	x	y	V
0	0	0	0	X	X	0
1	0	0	0	0	0	1
X	1	0	0	0	1	1
X	X	1	0	1	0	1
X	X	X	1	1	1	1

 D_3 D_2 D_1 D_2 D_2 D_2 D_2

X in inputs: condensed form, either 0 or 1

X in outputs: don't-care

$$x = D_2 + D_3$$

$$y = D_3 + D_1 D_2'$$

$$V = D_0 + D_1 + D_2 + D_3$$

v: valid bit indicator that is set to 1 when one or more inputs are equal to 1

 $x = D_2 + D_3$

Fig. 4-22 Maps for a Priority Encoder

	Inp	uts	(Output	S	
D _o	D_1	D ₂	D_3	x	у	V
0	0	0	0	X	X	0
1	0	0	0	0	0	1
X	1	0	0	0	1	1
X	X	1	0	1	0	1
X	X	X	1	1	1	1

Problem 4-29 Design a 4-input priority encoder with inputs as in Table 4-8, but with inputs D_0 having the highest priority and input D_3 the lowest priority

4-10 Multiplexers

A combinational circuit that selects binary information from one of many input lines and directs it to a single output line

- Normally, there are 2ⁿ input lines and n selection lines whose bit combinations determine which input is selected
- also called a data selector

2-to-1-line multiplexer: two data input lines, one output line, and one selection line S

Fig. 4-24 2-to-1-Line Multiplexer

4-to-1-line multiplexer

Four inputs: I_0 through I_3 Selection lines S_1 and S_0

0	0	I_0
1	0	I_2
1	1	I_3

Quadruple 2-to-1-line multiplexer with enable input

- Select one of two 4-bit sets of data lines
- 4 multiplexers, each capable of selecting one of two input lines
- Selection line S
- Enable line E

Fu	nct	ion table
E	S	Output Y
1	X	all 0's
0	0	select A
0	1	select B

Fig. 4-26 Quadruple 2-to-1-Line Multiplexer

Problem 4-31 Construct a 16x1 multiplexer with two 8x1 and one 2x1 multiplexers. Use block diagrams

Boolean Function Implementation

Implementing a Boolean function of n variables with a multiplexer that has n-1 selection lines (2ⁿ⁻¹ inputs)

- the first n-1 variables are connected to the selection inputs
- the remaining single variable is used for the data input: z, z', 1, or 0

Example: $F(x, y, z) = \Sigma(1, 2, 6, 7)$

x, y: selection inputs S₁ and S₀

x	y	Z.	F					
0	0	0	0	_				
0	0	1	1	F=z				
0	1	0	1	E^{-}				
0	1	1	0	F = z'				
1	0	0	0	E = 0				
1	0	1	0	F = 0				
1	1	0	1	<i>L</i> 1				
1	1	1	1	F = 1				
	(a) Truth table							

(b) Multiplexer implementation

Fig. 4-27 Implementing a Boolean Function with a Multiplexer

Implementing with a multiplexer of n selection lines

Implementing a 4-input function with a multiplexer

$$F(A, B, C, D) = \Sigma(1, 3, 4, 11, 12, 13, 14, 15)$$

- 1. List the truth table of F
- 2. Evaluate the output as a function of the last variable: 0, 1, the variable, or the complement of the variable
- 3. Apply the first n-1 variables to the selection inputs
- 4. Connect 0, 1, the variable and the complement of the variable to the data inputs according to the results of step 2

Fig. 4-28 Implementing a 4-Input Function with a Multiplexer

Problem 4-32 Implement the following Boolean function with a multiplexer: $F(A, B, C, D) = \Sigma(0, 1, 3, 4, 8, 9, 15)$

Decoder (Demultiplexer), Encoder and Multiplexer

- Enable input
- Priority encoder
- Construction of a large circuit with small ones
- Boolean function implementation

Decoder (Demultiplexer), Encoder and Multiplexer

Fig. 4-19 2-to-4-Line Decoder with Enable Input

FIGURE 4-25 4-to-1-Line Multiplexer

Fig. 4-23 4-Input Priority Encoder

Three-State Gates

- A digital circuit that exhibits three states
 - Two of the states are signal equivalent to logic 1 and 0
 - The third state is a high-impedance state, which behaves like a disconnected open circuit
 - May perform as AND, NAND, buffer, etc
- A multiplexer can be constructed with three-state gates

Fig. 4-30 Multiplexers with Three-State Gates

Summary

Chapter 4 Combinational Logic

- 4-1 Combinational Circuits
- 4-2 Analysis Procedure
- 4-3 Design Procedure
- 4-4 Binary Adder-Subtractor
 - HA, FA, Binary Adder/subtractor
 - propagation (carry lookahead generator), overflow
- 4-5 Decimal Adder
- 4-6 Binary Multiplier
- 4-7 Magnitude Comparator
- 4-8 Decoders
- 4-9 Encoders
- 4-10 Multiplexers
- 4-11 HDL For Combinational Circuits