Момент инерци

Программа рассчитывает минимальный (I_x) и максимальный (I_z) моменты инерции молекулы используя координаты атомов из XYZ-файла.

Системные требования

Для нормальной работы программы необходимо, по меньшей мере, 2Gb оперативной памяти. Однако при расчёте сложных молекул (более 30 атомов) рекомендуемый объем оперативной памяти составляет 8 Gb.

Требования к программному обеспечению

Для выполнения программы необходим интерпретатор языка Perl версии не ниже 5.10 и командная оболочка для запуска программы. Программа может выполняться в командной оболочке Unix на операционной системе Linux, в которой интерпретатор Perl, как правило, уже присутствует с системе, и на операционной системе Microsoft Windows с использованием Windows Power Shell и установленного интерпретатора Perl, например, Strawberry Perl.

Использование программы

Для использования программы запустите ее в командном интерпретаторе с указанием расположения XYZ-файла, например:

```
$ ./moments_of_inertia.pl filename.xyz
```

Программа создаст текстовый файл *filename.xyz.txt* с результатами расчета в директории, в которой расположен файл *filename.xyz*. Примеры исходных XYZ-файлов можно найти в директории *Examples*. Например, запуск программы с файлом *Pyridine.xyz* создаст файл *Pyridine.xyz.txt* с результатами расчета:

```
Calculation for data from file ./Pyridine.xyz
The calculation with step of the directing vector is 0.01
Coordinates of the center of gravity: (-0.18023; 0.36095; 0.29286)
Moment of inertia Ix is: 83.776 Da*(Å^2)
Moment of inertia Iz is: 170.861 Da*(Å^2)
```

Можно задавать параметры работы программы, используя следующие ключи запуска:

- v	Показать версию программы и завершить работу
-a[1-5]	Точность подсчета. Задается интервал перемещения направляющего вектора оси вращения в пространстве. Чем меньше интервал – тем точнее и дольше происходит расчет (см. принцип работы): $-\mathbf{a1} - 0.1;$ $-\mathbf{a2} - 0.05;$ $-\mathbf{a3} - 0.01;$ $-\mathbf{a4} - 0.005;$ $-\mathbf{a5} - 0.001.$ По умолчанию используется ключ - a3
-o[1-5]	Число цифр после запятой, до которого будет округлено значение моментов инерции (в единицах Da*Ų). По умолчанию используется
	ключ -03

Отображать координаты направляющих векторов осей с минимальным и максимальным моментами инерции

-d

Например, результат расчета для молекулы пентана с использованием XYZ-файла из папки *Examples* с ключами по молчанию будет выглядеть так:

```
Calculation for data from file ./Pentane.xyz
The calculation with step of the directing vector is 0.01
Coordinates of the center of gravity: (3.13712; 0.78884; -0.90687)
Moment of inertia Ix is: 29.987 Da*(Å^2)
Moment of inertia Iz is: 269.277 Da*(Å^2)
```

А при вызове программы с ключами

```
$ ./moments_of_inertia.pl -a2 -o4 -d ./Pentane.xyz
```

Будет выглядеть так:

```
Calculation for data from file ../Pentane.xyz
The calculation with step of the directing vector is 0.05
Coordinates of the center of gravity: (3.13712; 0.78884; -0.90687)
Moment of inertia Ix is: 29.9888 Da*(\mathring{A}^2)
Moment of inertia Iz is: 269.2769 Da*(\mathring{A}^2)
Coordinates of the directing vector a_x = {i, j, k} is: 0.55 0.25 -0.3
Coordinates of the directing vector a_z = {i, j, k} is: 0 -0.85 -0.7
```

Обратите внимание!

Обычно программы 3D-визуализации молекул сохраняют XYZ-файлы с координатной сеткой, в которой в качестве единицы длины взят 1 Å. При несоблюдении этого условия программа рассчитает моменты инерции некорректно по абсолютной величине, но в правильных соотношениях.

Контакты

С исправлениями, вопросами, замечаниями и предложениями обращаться по электронной почте:

Михаил Коверда <u>m.kov@pm.me</u>

Евгений Офицеров ofitser@mail.ru

Лицензия

Данная программа распространяется под лицензией GNU GPL v3.0.

Принцип работы

XYZ-файл представляет собой текстовый файл, в котором для каждого атома молекулы указаны его координаты в декартовой системе, например, XYZ-файл для пентана содержит следующую информацию:

```
17
С
       0.88843
                   0.03444
                                0.00635
С
       2.40855
                   0.05283
                               -0.01558
С
                   0.96482
                               -1.12020
       2.94163
      4.46987
С
                   0.98077
                               -1.13892
С
       5.00405
                   1.88707
                               -2.23658
Н
       0.52876
                  -0.62374
                                0.80344
```

11	0 40/77	0 22405	0.04204
Н	0.48677	-0.33185	-0.94384
Н	0.48652	1.03669	0.18608
Н	2.77834	-0.96831	-0.16472
11	2.77034	0.90031	0.10472
Н	2.77808	0.39277	0.95890
Н	2.56526	1.98395	-0.96898
Н	2.56572	0.62305	-2.09233
Н	4.85117	-0.03520	-1.29421
	4.03117		1.27421
Н	4.85071	1.32591	-0.17064
Н	4.66744	1.54992	-3.22215
Н	6.09853	1.88355	-2.23189
Н	4.66701	2.91854	-2.09234
	00/UI	2.71034	2.07234

Программа работает по следующему алгоритму:

- 1) Считываются данные из файла и производится замена символа элемента значением его атомной массы в дальтонах.
- 2) Рассчитываются координаты центра тяжести молекулы по формуле

$$X_C = \frac{\sum_i m_i x_i}{\sum_i m_i}$$

$$Y_C = \frac{\sum_i m_i y_i}{\sum_i m_i}$$

$$Z_C = \frac{\sum_i m_i z_i}{\sum_i m_i}$$

Где x_i, y_i, z_i – координаты i-го атома в молекуле, а m_i – его масса.

- 3) Задается прямая, проходящая через центр тяжести молекулы и имеющая произвольный направляющий вектор, например $\vec{a} = (0, -1, -1)$.
- 4) Координаты направляющего вектора итеративно изменяются с некоторым интервалом перемещения (задающимся ключом -a), так чтобы направление вектора соответствовало всем возможным направлением оси вращения в пространстве, например, $\mathbf{a}_x = [0,1]$, $\mathbf{a}_y = [-1,1]$, $\mathbf{a}_z = [-1,1]$.
- 5) Для каждого положения оси в пространстве рассчитывается момент инерции относительно этой оси с учетом расстояния каждого атома до этой оси r_i и сохраняется в памяти:

$$I = \sum_{i} m_i r_i^2$$

- 6) После проведения расчета моментов инерции для всех положений оси программа выбирает наибольший и наименьший моменты инерции и возвращает их значения в единицах $Da*Å^2$, а также координаты направляющих векторов \vec{a} и \vec{b} для этих осей.
- 7) Полученные оси всегда перпендикулярны друг другу, в чем можно легко убедиться, подсчитав скалярное произведение направляющих векторов для этих осей.

$$(\vec{a}, \vec{b}) = a_x b_x + a_y b_y + a_z b_z = 0$$