

SEQUENCE LISTING

<110> McIninch, James

<120> COMPUTATIONAL NUCLEIC ACID CODING AND FEATURE ANALYSIS

<130> 04983.0220.00US00

<160> 4

<170> PatentIn version 3.0

<210> 1

<211> 2165

<212> DNA

<213> Arabidopsis thaliana

<220>

<221> unsure

<222> (1)...(2165)

<223> Unsure at all n locations

<220>

<223> Ecotype Landsberg, genomic DNA

<400> 1

tactcaaaaa	tatattccat	gcttaattag	gccggattcg	cggtgacgat	gcaccaagag	60
cgggttttcc	gagcattgta	ggccgtcctc	gccacacccgg	tgtgatggtt	gggatgggac	120
aaaaggatgc	ttatgttgga	gacgaggctc	aatcaaaacg	tggtatcttgc	actctgaagt	180
acccaattga	gcatggaatt	gttaataatt	gggatgacat	ggagaagatt	tggcatcaca	240
ctttctacaa	tgagcttcgt	gttgcccctg	aagaacatcc	gttctcttg	accgaagctc	300
ctctcaatcc	gaaagcta	cgtgagaaga	tgactcagat	catgtttgag	acattcaata	360
ctcctgctat	gtatgtgcc	attcaagctg	ttctctcact	ctatgccagt	ggccgtacta	420
ctggtcagta	cattactaca	ttcttttat	accgtttgg	tgaaataaaa	ttcggtttgg	480
ttcgattcga	gttgctctc	attatttta	ttttgttgg	tagtattgt	tttggactcc	540
ggagatggtg	tgagccacac	ggtaccaatc	tacgagggtt	atgcacttcc	acacgcaatc	600
ctgcgtcttgc	atcttgcagg	tcgtgaccta	accgaccacc	ttatgaaaat	cctgacagag	660
cgtggttact	cttcaccac	aactgctgag	cgtgagatttgc	ttagagacat	gaaggagaag	720
ctctcttaca	ttgccttgg	cttgaacaa	gagctcgaga	cttccaaaac	aagctcatcc	780
gttggagaaga	gcttcgagct	gccagacgg	caagtatca	ccatggggc	agagcgttc	840
cgatgccctg	aagttctgtt	tcagccatcg	atgatcgaa	tggaaaatcc	ggaaattcat	900

gaaactactt acaactcaat catgaaatgt gatgtggata tcaggaagga tctttatgga 960
aacatttgtc ttagtggtgg caccacaatg ttcgatggga ttggtgatag gatgagtaaa 1020
gagatcacag cggtggctcc aagcagtatg aacatcaaag tgggtggctcc accggaaagg 1080
aagtacagtg tctggatcgg tggctctatc ttggcttccc tcagtaacttt ccagcaggtt 1140
aattacttac tatacttaat acataaagtc tattagtgtat ttgatgtata aagtgttaca 1200
aaaatgtgtt ccaaatttgc agatgtggat tgcgaaagcg gagtatgtatg aatctggacc 1260
gtcaatcgtc cacaggaagt gcttctgatc aaaagtcacc aagtaaaaca agagcggtaa 1320
aaattttgc atcagttttt caccctgaag ccagttgcta taattactca caacttctct 1380
atttgtgttc ttttattctt gtccctcggtt gttcattttt atctctttt tgcaacaaag 1440
caactaaaaaa aaacagagca gtcattaaca gaatgttattt attatataata tgtatacata 1500
ttagtataaca cccatttattt cattaaaaca tttatcatat aaggatagga ttctatacat 1560
cgatataattt atttgttga cactattcag cacatgctta tgtcttatct tgtagtata 1620
tgtaaccaaa gacaaataat agatgctaca aattgttttcc tttgaagcaa aaatttcaat 1680
cttaaaaattt ttttttcca gtttacacaa aaaaaacttg tagttgtaa attttctata 1740
caattttggg gatctcaaca agaacatgaa cttcaacttc tagtcatatg acgacctgag 1800
tctgcgcggc tgtgaatctc tttgctgcag taaatgttta caagtgggtgt gtaaatttgg 1860
actgattcaa aagctttaag aatctacac atttcgtaa attatgttgc agacttgata 1920
ttaaaaaatct aggataaaaat gactatccaa agacaaaatag gactgtttca catgttcccc 1980
tgattcttgc agctcataac tcatcagcag ttaacttttc tacctcatac acgctcgcaa 2040
tncgtttgga attatcagct ntaatttttc taatttttg gaaatttatta gcagctcgat 2100
caaatggggc atggcttctt cttctatctg caactcatct aaactttcca tgaagaaaaca 2160
aagct 2165

<210> 2
<211> 423
<212> PRT
<213> Unknown

<220>
<223> Describes a predicted protein sequence

<220>
<221> site
<222> (1)...(423)
<223> A stop codon is predicted at all XAA locations

<400> 2

Xaa Arg Phe Phe Arg Ala Leu Xaa Ala Val Leu Ala Thr Pro Val Xaa
1 5 10 15

Trp Leu Gly Trp Asp Lys Arg Met Leu Met Leu Glu Thr Arg Leu Asn
20 25 30

Gln Asn Val Val Ser Xaa Leu Xaa Ser Thr Gln Leu Ser Met Glu Leu
35 40 45

Leu Ile Ile Gly Met Thr Trp Arg Arg Phe Gly Ile Thr Leu Ser Thr
50 55 60

Met Ser Phe Val Leu Pro Leu Lys Asn Ile Arg Xaa Leu Thr Glu Ala
65 70 75 80

Pro Leu Asn Pro Lys Ala Asn Arg Glu Lys Met Thr Gln Ile Met Phe
85 90 95

Glu Thr Phe Asn Thr Pro Ala Met Tyr Val Ala Ile Gln Ala Val Leu
100 105 110

Ser Leu Tyr Ala Ser Gly Arg Thr Thr Gly Gln Tyr Ile Thr Thr Phe
115 120 125

Phe Leu Tyr Arg Xaa Ser Gly Asp Gly Val Ser His Thr Val Pro Ile
130 135 140

Tyr Glu Gly Tyr Ala Leu Pro His Ala Ile Leu Arg Leu Asp Leu Ala
145 150 155 160

Gly Arg Asp Leu Thr Asp His Leu Met Lys Ile Leu Thr Glu Arg Gly
165 170 175

Tyr Ser Phe Thr Thr Ala Glu Arg Glu Ile Val Arg Asp Met Lys
180 185 190

Glu Lys Leu Ser Tyr Ile Ala Leu Asp Phe Glu Gln Glu Leu Glu Thr
195 200 205

Ser Lys Thr Ser Ser Ser Val Glu Lys Ser Phe Glu Leu Pro Asp Gly
210 215 220

Gln Val Ile Thr Ile Gly Ala Glu Arg Phe Arg Cys Pro Glu Val Leu
225 230 235 240

Phe Gln Pro Ser Met Ile Gly Met Glu Asn Pro Gly Ile His Glu Thr
245 250 255

Thr Tyr Asn Ser Ile Met Lys Cys Asp Val Asp Ile Arg Lys Asp Leu
260 265 270

Tyr Gly Asn Ile Val Leu Ser Gly Gly Thr Thr Met Phe Asp Gly Ile
275 280 285

Gly Asp Arg Met Ser Lys Glu Ile Thr Ala Leu Ala Pro Ser Ser Met
290 295 300

Lys Ile Lys Val Val Ala Pro Pro Glu Arg Lys Tyr Ser Val Trp Ile
305 310 315 320

Gly Gly Ser Ile Xaa Val Pro Asn Leu Gln Met Trp Ile Ala Lys Ala
325 330 335

Glu Tyr Xaa Asn Leu Asp Arg Gln Ser Ser Thr Gly Ser Ala Ser Asp
340 345 350

Gln Lys Ser Pro Ser Lys Thr Arg Ala Val Lys Ile Leu Xaa Asn Ser
355 360 365

Ser Ala Val Asn Phe Ser Thr Ser Tyr Thr Leu Ala Ile Arg Leu Glu
370 375 380

Leu Ser Ala Leu Ile Phe Leu Ile Ser Leu Glu Ile Ile Ser Ser Ser
385 390 395 400

Ile Lys Trp Gly Met Ala Ser Ser Ser Ile Cys Asn Ser Ser Lys Leu
405 410 415

Ser Met Lys Lys Gln Ser Xaa
420

<210> 3

<211> 422

<212> PRT

<213> Unknown

<220>

<223> Describes a predicted protein sequence

<220>

<221> site

<222> (1) . . . (422)

<223> A stop codon is predicted at all XAA locations

<400> 3

Xaa Arg Phe Phe Arg Ala Leu Xaa Ala Val Leu Ala Thr Pro Val Xaa
1 5 10 15

Trp Leu Gly Trp Asp Lys Arg Met Leu Met Leu Glu Thr Arg Leu Asn

20

25

30

Gln Asn Val Val Ser Xaa Leu Xaa Ser Thr Gln Leu Ser Met Glu Leu
 35 40 45

Leu Ile Ile Gly Met Thr Trp Arg Arg Phe Gly Ile Thr Leu Ser Thr
 50 55 60

Met Ser Phe Val Leu Pro Leu Lys Asn Ile Arg Xaa Leu Thr Glu Ala
 65 70 75 80

Pro Leu Asn Pro Lys Ala Asn Arg Glu Lys Met Thr Gln Ile Met Phe
 85 90 95

Glu Thr Phe Asn Thr Pro Ala Met Tyr Val Ala Ile Gln Ala Val Leu
 100 105 110

Ser Leu Tyr Ala Ser Gly Arg Thr Thr Gly Gln Tyr Ile Thr Thr Phe
 115 120 125

Phe Leu Tyr Arg Xaa Ser Gly Asp Gly Val Ser His Thr Val Pro Ile
 130 135 140

Tyr Glu Gly Tyr Ala Leu Pro His Ala Ile Leu Arg Leu Asp Leu Ala
 145 150 155 160

Gly Arg Asp Leu Thr Asp His Leu Met Lys Ile Leu Thr Glu Arg Gly
 165 170 175

Tyr Ser Phe Thr Thr Ala Glu Arg Glu Ile Val Arg Asp Met Lys
 180 185 190

Glu Lys Leu Ser Tyr Ile Ala Leu Asp Phe Glu Gln Glu Leu Glu Thr
 195 200 205

Ser Lys Thr Ser Ser Val Glu Lys Ser Phe Glu Leu Pro Asp Gly
 210 215 220

Gln Val Ile Thr Ile Gly Ala Glu Arg Phe Arg Cys Pro Glu Val Leu
 225 230 235 240

Phe Gln Pro Ser Met Ile Gly Met Glu Asn Pro Gly Ile His Glu Thr
 245 250 255

Thr Tyr Asn Ser Ile Met Lys Cys Asp Val Asp Ile Arg Lys Asp Leu
 260 265 270

Tyr Gly Asn Ile Val Leu Ser Gly Gly Thr Thr Met Phe Asp Gly Ile
 275 280 285

Gly Asp Arg Met Ser Lys Glu Ile Thr Ala Leu Ala Pro Ser Ser Met
 290 295 300

Lys Ile Lys Val Val Ala Pro Pro Glu Arg Lys Tyr Ser Val Trp Ile

305

310

315

320

Gly Gly Ser Ile Leu Ala Ser Xaa Gln Met Trp Ile Ala Lys Ala Glu
325 330 335

Tyr Xaa Asn Leu Asp Arg Gln Ser Ser Thr Gly Ser Ala Ser Asp Gln
340 345 350

Lys Ser Pro Ser Lys Thr Arg Ala Val Lys Ile Leu Xaa Asn Ser Ser
355 360 365

Ala Val Asn Phe Ser Thr Ser Tyr Thr Leu Ala Ile Arg Leu Glu Leu
370 375 380

Ser Ala Leu Ile Phe Leu Ile Ser Leu Glu Ile Ile Ser Ser Ser Ile
385 390 395 400

Lys Trp Gly Met Ala Ser Ser Ser Ile Cys Asn Ser Ser Lys Leu Ser
405 410 415

Met Lys Lys Gln Ser Xaa
420

<210> 4

<211> 296

<212> PRT

<213> *Arabidopsis thaliana*

<220>

<223> Ecotype columbia, describes actin

<400> 4

Met Glu Lys Ile Trp His His Thr Phe Tyr Asn Glu Leu Arg Val Ala
1 5 10 15

Pro Glu Glu His Pro Val Leu Leu Thr Glu Ala Pro Leu Asn Pro Lys
20 25 30

Ala Asn Arg Glu Lys Met Thr Gln Ile Met Phe Glu Thr Phe Asn Thr
35 40 45

Pro Ala Met Tyr Val Ala Ile Gln Ala Val Leu Ser Leu Ala Ser Gly
50 55 60

Arg Thr Thr Gly Gly Ile Val Leu Asp Ser Gly Asp Gly Val Ser His
65 70 75 80

Thr Val Pro Ile Tyr Glu Gly Tyr Ala Leu Pro His Ala Ile Leu Arg
85 90 95

Leu Asp Leu Ala Gly Arg Asp Leu Thr Asp His Leu Met Lys Ile Leu
100 105 110

Thr Glu Arg Gly Tyr Ser Phe Thr Thr Ala Glu Arg Glu Ile Val
115 120 125

Arg Asp Met Lys Glu Lys Leu Ser Tyr Ile Ala Leu Asp Phe Glu Gln
130 135 140

Glu Leu Glu Thr Ser Lys Thr Ser Ser Ser Val Glu Lys Ser Phe Glu
145 150 155 160

Leu Pro Asp Gly Gln Val Ile Thr Ile Gly Ala Glu Arg Phe Arg Cys
165 170 175

Pro Glu Val Leu Phe Gln Pro Ser Met Ile Gly Met Glu Asn Pro Gly
180 185 190

Ile His Glu Thr Thr Tyr Asn Ser Ile Met Lys Cys Asp Val Asp Ile
195 200 205

Arg Lys Asp Leu Tyr Gly Asn Ile Val Leu Ser Gly Gly Thr Thr Met
210 215 220

Phe Gly Gly Ile Gly Asp Arg Met Ser Lys Glu Ile Thr Ala Leu Ala
225 230 235 240

Pro Ser Ser Met Lys Ile Lys Val Val Ala Pro Pro Glu Arg Lys Tyr
245 250 255

Ser Val Trp Ile Gly Gly Ser Ile Leu Ala Ser Leu Ser Thr Phe Gln
260 265 270

Gln Met Gln Met Trp Ile Ala Lys Ala Glu Tyr Asp Glu Ser Gly Pro
275 280 285

Ser Ile Val His Arg Lys Cys Phe
290 295