Introduction

Our group has been hired on to examine 79 explanatory variables describing every aspect of residential homes in Ames, Iowa. Our client would first like us to examine 3 neighborhoods of interest (Northwest Ames, Brookside, and Edwards) and compare ground living area and its impacts on each house's sales price in each of its respected neighborhood. Once providing our client with the information on sales price in the 3 desired neighborhoods, they would like us to build a predictive model for sales price for homes in all of Ames, Iowa. In order to successfully provided the most accurate data/model, our group will extensively examine all 79 explanatory variables and use a cross validation technique to provide our clients with important information.

Data Description

Our data was retrieved from the Ames Housing data set on Kaggle for a competition. The dataset contains 2930 observations divided into a testing and training set. The data set(s) consist of 79 explanatory variables that describe several aspects of a house which could have an influence on its sales price. For this dataset we cannot find more observations, however for general housing market data we can use several resources throughout different real-estate companies. Each variable used in the analysis was examined thoroughly with statistical evidence of collinearity. Our group used VIF scores, plots, excel spread sheets, p-values, and several other factors to decided which explanatory variable to keep or removed. For more information please refer to our appendix.

Analysis Question 1

State the Problem:

Century 21 Ames would like to obtain an estimate of how the sales price of a house was related to its square footage of the living area of the house; depending on its respective neighborhood of the Ames Iowa area.

Plot and Review the Data:

The scatter plot of the original data shows a limited linear relationship between the grade living area and sale price, with much of the data clustered between 1000 and 2000 sq ft. Both the Grade Living Area and Sale Price contain a couple influential datapoints possibly impacting the data (Appendix Figure 1). These datapoints were reviewed and determined that they were appropriate for the analysis. The neighborhood effect was associated with a 2^{B1} multiplicative increase in the median of sale price. A log-log transformation was used to control for the influential datapoints (Appendix Figure 4).

 $\hat{\mu}\{\log(\text{SalePrice}) \mid \text{Neighborhood}, \log(\text{GrLivArea})\} = \beta_0 + \beta_1^* \text{Neighborhood} = \text{Brookside} + \beta_2^* \text{Neighborhood} = \text{Edwards} + \beta_3^* \log(\text{GrLivArea})$

Pred {log(SalePrice) | Neighborhood, GrLivArea} = 7.9021 + 0.5558*(Brookside) - 0.1328*(Edwards) - 0.1532* log(GrLivArea)

Pred {log(SalePrice) | Neighborhood=Brookside, GrLivArea} = 8.4579 - 0.1532* log(GrLivArea)

Pred {log(SalePrice) | Neighborhood=Edwards, GrLivArea} = 7.7693 - 0.1532* log(GrLivArea)

				Paramete	r Estimat	tes							Cross V	alidation D	etails	Root MSE	0.19612
				Standard				Cross Va	lidation I	Estimate	s		Obse	rvations		Dependent Mean	11.79887
	Parameter	DF	Estimate	Error	t Value	Pr > t	1	2	3	4	5	Index	Fitted	Left Out	CV PRESS	R-Square	0.4897
	Intercept	1	7.902150	0.231340	34.16	<.0001	7.836	7.709	7.977	8.113	7.878	1	312	71	2.5897	Adi R-Sq	0.4857
*	log(Grade Living Are	1	0.555788	0.032369	17.17	<.0001	0.565	0.583	0.546	0.526	0.560	2	315	68	2.3306	AIC	-858.86316
*	Neighborhood BrkSide	1	-0.132789	0.029061	-4.57	<.0001	-0.104	-0.125	-0.153	-0.142	-0.139	3	305	78	3.0757		
*	Neighborhood Edwards	1	-0.153226	0.023571	-6.50	<.0001	-0.159	-0.141	-0.174	-0.148	-0.142	4	292	91	3.8508	AICC	-858.70401
*	Neighborhood NAmes	0	0				0.000	0.000	0.000	0.000	0.000	5	308	75	3.1010	SBC	-1228.07102
			* Forced in	to the mode	l by the It	NCLUDE=	option					Total			14.9478	CV PRESS	14.94781

Assumptions (log-log transformed data):

- **Normality:** The q-q plot and the histogram show slight right skewness however not strong enough evidence against normality. There were a couple of influential observations with both high leverage and residual as well as high Cook's D.
- **Linearity:** It was tough to check linearity in multiple dimensions however the scatterplot does show linearity with influential datapoints.
- **Constant Variance**: There was no visual evidence of differing standard deviation throughout the residual plot.
- Independence: Independence cannot be assumed so we will proceed with caution.

Interpretation:

There was overwhelming evidence to suggest the impact of a neighborhood has a 2^{B1} multiplicative increase impact on home sales price. Holding grade living area constant, it was estimated that the Brookside neighborhood sales prices was \$87.57 (e^{-0.13279}) more per 100 sq ft than the Northwest Ames neighborhood. A 95% confidence interval for this estimate was (e^{-0.18975}, e^{-0.07583}) = (\$82.72, \$92.70). Holding grade living area constant, it was estimated that the Edwards neighborhood sales prices was \$85.79 (e^{-0.15323}) more per 100 sq ft than the Northwest Ames neighborhood. A 95% confidence interval for this estimate was (e^{-0.19943}, e^{-0.10703}) = (\$81.92, \$89.85). Holding the neighborhood constant, it was estimated that the grand living area was

\$174.33 ($e^{0.55579}$) per 100 sq ft with a 95% confidence interval for the estimate of ($e^{0.49234}$, $e^{0.61923}$) = (\$163.61, \$185.75).

Conclusion:

The real estate data for the Ames Iowa overwhelming showed that the sales price of a house was related to its square footage of the living area of the house and the neighborhood of the home (p-value < 0.0001). The Brookside neighborhood average sale price was the highest, followed by the Edwards neighborhood and then the Northwest Adams neighborhood.

R-Shiny App

Scatter plot of the sale price of neighborhood sale price vs the home square footage can be seen here:

https://nickmueller2.shinyapps.io/Neighborhood3/? ga=2.68375953.127761547.1680987412-408874730.1680987412

Analysis Question 2

State the Problem:

We would like to build the most predictive model for sale prices of homes in all of Ames Iowa.

Exploratory Data Analysis:

When exploring our data, we first started by examining the excel spreadsheet noticing obvious variables that could have a negative impact on our model. For example, we removed the variables SaleType, BsmtHalfBath, Functional, LowQualFinSF, BsmtFinSF2, ScreenPorch, EnclosedPorch, PoolArea, MiscVal, Utilities, and street since 85% to 99% of each column consisted of 1 main value. After examining the excel spreadsheet we inputted the data into SAS so that we could explore other competing factors against linearity. Factors considered included the p-value, VIF, sets with heavy outliers, unique identifiers (ex: ID), evidence against normality, and more. When addressing NA values, we decided that these were not "unknown" values, but values that were 0 (ex: The alley column NA= House didn't have an alley way). Therefore, all NA/missing values we converted to 0 and other string values were converted to 1, 2, 3, and so on. As a team we also used the SAS Proc Corr to visually show numeric identifying variables which needed to be removed.

Model Selection

Type of Selection: Stepwise

For our stepwise model we were able to get a Kaggle score of 0.1637 which was also our best competing model in the Kaggle competition. Therefore, we used it for our custom model as well. The adjusted R square value was a .88 pr 88% with a cv press of 1.546512E12 and BIC score of 24309(figure 7 screenshots and code provided in appendix).

0.1637

As we can see from the stepwise plot above our testing set seems to show a very close and similar path to the training set. There does not seem to be a large amount of variation, therefore we proceeded to submit out model to the completion for a Kaggle score.

Type of Selection: Forward

For our forward predicting model, we were able to get a Kaggle score of 0.16756. This Kaggle score was very close to our stepwise model, however, was not quick enough to pass it. The adjusted R

square value was a .89 or 89% with a cv press of 1.607329E12 and BIC score of 23842 (figure 5 and 6 screenshots and code provided in appendix).

As we can see from the forward model plot above our testing set seems to show a very close and similar path to the training set. There does not seem to be a large amount of variation, therefore we will proceed with submission to the competition for a Kaggle score.

Type of Selection: Backward

For our backward model, it significantly underperformed compared to the other models. For unknown reasons the best Kaggle score we achieved with the backward model was a 0.38305. The adjusted R square values was .89 or 89% with a cv press of 2.650568E11 and a BIC score of 6197.8082123842 (figure 8, 9, and 10 screenshots and code provided in appendix).

Unlike the forward and stepwise models, the backward model starts with every variable. As we can see from the plot above our model seems to trend together, however never intersects, showing us

that the model is not quite perfect. That being said, with the time allotted this was our best seed attempt. Therefore, we will proceed with submission to the competition for a Kaggle score.

Type of Selection: Custom

For our custom model we used domain knowledge in the housing market to determine which variable would have the highest influence on sales price. Therefore, with the collected effort of cook's D and other identifiers we were able to run a model that we personally thought would receive the best Kaggle score. However, our custom model only received a Kaggle score of 0.17581 which was worse than our original stepwise and forward model. The custom model also received an adjusted R square of 0.84 or 84% and a BIC of 23833(figure 11, 12 and 13 screenshots and code provided in appendix).

As we can see from the custom(stepwise) model plot above our testing set seems to show a very close and similar path to the training set. There does not seem to be a large amount of variation, therefore we will proceed with submission to the competition for a Kaggle score.

Checking Assumptions:

Once removing the values with visual evidence against normality we were able to obtain the residual plot, high leveraging point, and evidence against linearity. We were able to get plots that showed normality and collinearity.

- **Residual Plots:** We were able to see visual evidence of equal standard deviations with no evidence of curvature in the residual plot.
- Influential point analysis (Cook's D and Leverage): We were able to remove high Cook's D and leverage variable. With our final model Cook's D we had the highest Cook's D being around .2 to .3, however our team decided that they did not have enough leverage to be removed. We wanted to have as many variables as possible, so we proceeded with caution and took note of those higher Cook's D 23842 (screenshots and code provided in appendix).
- Address each Assumption: Our group also reviewed a histogram that visually shows a normal bell shape curve. We also used a QQ plot to show linearity and possible outlier, for our final model we

saw no evidence of significant outliers and majority variables seemed to follow a linear trend 23842 (screenshots and code provided in appendix).

Comparing Competing Models:

Predictive Models	Adjusted R2	CV PRESS	Kaggle Score	BIC
Forward	.89	1.607329E12	0.16756	23842
Backward	.89	2.650568E11	0.3836	6197.80821
Stepwise	.88	1.546512E12	0.1637	24309
CUSTOM	.84	1.469603E12	0.17581	23833

Conclusion:

In conclusion, we observed 4 models which included a forward, backward, stepwise, and custom(stepwise) model. Our overall goal was to check the assumptions of the data, identify high leveraged values, and other factors that have a negative impact on our model. We were able to remove these high influential values. After removing the high influential values/variables we were able to run 4 successful models. In the end the best preforming model was the stepwise model with a Kaggle score of 0.1637 ranking our group number 2700.

Stepwise Model for Reporting

Analysis Question 1

Figure 1: Proc SGSCATTER

Figure 2: Proc GLMSELECT Stepwise Model

Figure 1 Figure 2

Figure 3: SGPLOT of Untransformed Data

Figure 4: SGPLOT of Transformed Data

Figure 3 Figure 4

Figure 5: Forward Model Selection Summary

Figure 6: Forward Model Procedure

The GLMSELECT Procedure Data Set WORK.HOUSETRAIN2 Dependent Variable SalePrice Forward Selection Method Select Criterion SBC Stop Criterion BIC Choose Criterion BIC Effect Hierarchy Enforced None Random Number Seed 733974034 Number of Observations Read 1460 1452 Number of Observations Used Number of Observations Used for Training 1161 Number of Observations Used for Testing 291

Figure 5

Figure 6

Figure 7: Stepwise Model Selection Summary

Step	Effect Entered	Effect Removed	Number Effects In	Number Parms In	BIC	SBC	ASE	Test A SE
0	Intercept		1	1	26741.0337	26747.4552	5962366553	7725243940
1	OverallQual		2	2	25569.6518	25581.5495	2221329111	300125116
2	GrLivArea		3	3	25306.8265	25324.5344	1778558972	193735645
3	Neighborhood		4	27	24966.6182	25128.1246	1306621164	156342222
4	BsmtQual		5	31	24852.2460	25034.3108	1178986455	131460200
5	RoofMatl		6	38	24764.6421	24984.2739	1084156517	114778008
6	GarageArea		7	39	24703.6409	24926.2926	1026378772	110353176
7	BsmtExposure		8	43	24636.5386	24878.3751	962581769	96019459
8	BldgType		9	47	24570.7164	24830.7858	902999718	92255253
9	BsmtFinType1		10	52	24520.1367	24803.8128	856812917	88282357
10	ExterQual		11	55	24490.3672	24787.7114	830300219	79336621
11	Condition2		12	62	24431.6642	24760.2611	778184564	76181359
12	House Style		13	69	24380.1392	24738.5813	732891290	73173761
13	SaleCondition		14	74	24350.1533	24729.4601	705933866	76024436
14	PoolQC		15	77	24326.4197	24716.8994	686131803	77452496
15	Fireplaces		16	78	24316.7218	24710.5388	678412850	77136688
16	CentralAir		17	79	24308.9753*	24706.3582*	672012840	77941039

Figure 7

Appendix MSDS 6371 Project

Amy Adyanthaya & Nicholas Mueller

Figure 8: Backward Model Selection Summary

Figure 9: Backward Model Procedure

Figure 10: Backward Model performance statistics

Data Set	WORK.HOUSET	TRAIN2				
Dependent Variable	Sa	lePrice				
Selection Method	Ва	ckward				
Select Criterion		SBC				
Stop Criterion		BIC				
Choose Criterion						
Effect Hierarchy Enforced						
Random Number Seed 7056						
Number of Observations R	ead	1460				
Number of Observations Used						
Number of Observations Used for Training						
Number of Observations U	sed for Testina	1149				

23299
174848
0.9066
0.8753
6144.17401
6196.28668
6121.57012
405263744
1632045137
2.650568E11

Figure 8 Figure 9 Figure 10

Appendix MSDS 6371 Project

Amy Adyanthaya & Nicholas Mueller

Figure 11: Custom Stepwise Model Procedure

Figure 12: Custom Stepwise Model Selection Summary

Figure 13: Custom stepwise Model performance Statistics

Data Set	WORK,HOUSET	PAIN2				Step	owise Select	tion Summary			
Dependent Variable		lePrice	Step	Effect Entered	Effect Removed	Number Effects In	Number Parms In	BIC	SBC	ASE	Tes
Selection Method	St	epwise	C	Intercept		1	1	25855.9776	25862.1779	6408580915	58116
Select Criterion		SBC	1	OverallQual		2	2	24770.0649	24781.3866	2478278295	19269
Stop Criterion		BIC	2	GrLivArea		3	3	24460.1504	24476.7671	1887719753	14731
			3	Neighborhood		4	27	24164.1033	24316.3713	1415745779	10806
Choose Criterion		BIC	4	BsmtQual		5	31	24045.5319	24215.5856	1264945488	9378
Effect Hierarchy Enforced		None	5	GarageCars		6	32	23989.9292	24162.9276	1200680311	9500
Random Number Seed	8354	413291	6	Fireplaces		7	33	23965.9828	24143.2008	1172934110	9287
			7	PoolQC		8	36	23930.1438	24121.4053	1129775986	9993
Number of Observations R	lead	1460	8	ExterQual		9	39	23896.9781	24101.9648	1090446288	9473
Number of Observations U	lead	1452	9	House Style		10	46	23856.5910	24094.6545	1037842308	92818
			10	LandContour		11	49	23833.1577*	24084.3828*	1009766707	9550
Number of Observations U	sed for Training	1145				*0	ptimal Value	e of Criterion			
Number of Observations U	sed for Testing	307									

Figure 11

Figure 12

Root MSE	34302
Dependent Mean	179879
R-Square	0.8074
Adj R-Sq	0.8023
AIC	25705
AICC	25707
SBC	24687
ASE (Train)	1145550298
ASE (Test)	1206106267
CV PRESS	1.469603E12

Figure 13