Statistics-III – Assignment 5

- 1. If columns of X are linearly dependent in the Gauss-Markov model, prove that there is no matrix C such that $C\mathbf{Y}$ is an unbiased estimator of β .
- **2.** Prove that all linear functions $\mathbf{a}'\beta$ are estimable in the Gauss-Markov model iff the columns of X are linearly independent.
- **3.** If $\mathbf{a}_1'\beta$, $\mathbf{a}_2'\beta$, ..., $\mathbf{a}_1'\beta$ are estimable, prove that any linear combination of these is also estimable (in the Gauss-Markov model).
- **4.** Prove that in the Gauss-Markov model $\mathbf{a}'\beta$ is estimable if and only if $\mathbf{a}'(X'X)^-X'X = \mathbf{a}'$.