Ziele

Reduzierung von Variablen/Merkmalen auf wenige, relevante Faktoren Entdeckung von untereinander unabhängigen Beschreibungs- und Erklärungsvariablen

Beispielanwendung

Consumer-Einschätzungen von Streichfetten (Butter, Margarine) 4 verschiedener Anbieter (Rama, Sanella, Becel, Kerrygold)

n = 30 befragte Hausfrauen

Schritt 1

Deskription/Merkmalsverteilung

Mittelwerte		Rama	Sanella	Becel	Kerrygold		
Streichfähigkeit ungesättigte Fettsäuren Kalorien Vitaminzusätze	x1 x2 x3 x4	2 1 1	1 1 2 vs.	6 5 6 4	5 5 6 5	Korrelation der Merkmale	
Haltbarkeit	x5	3	6	6	4		
Preis	x6	3	7	5	4		

Vermutung:

Schritt 2

Korrelationsmatrix (r)

		x 1	x2	x3	x4	x 5	х6
Streichfähigkeit	x1	1.0000	0.9701	0.9317	0.9169	0.1400	-0.286
ung. Fettsäuren	x2	0.9701	1.0000	0.9898	0.9802	0.1924	-0.169
Kalorien	х3	0.9317	0.9898	1.0000	0.9683	0.3168	-0.185
Vitaminzusätze	x4	0.9169	0.9802	0.9683	1.0000	0.0808	-0.213
Haltbarkeit	x 5	0.1400	0.1924	0.3168	0.0808	1.0000	0.8783
Preis	х6	-0.286	-0.169	-0.185	-0.213	0.8783	1.0000

231

Mathematischer Hintergrund

Korrelationskoeffizienten lassen sich auch als Winkel zwischen Vektoren darstellen.

Einfaches Beispiel: 2 Variablen/Vektoren

Die Faktorenanalyse trachtet danach, das sich in den Winkeln bzw. Korrelationskoeffizienten ausdrückende Verhältnis der Variablen zueinander in einem möglichst gering dimensionierten Raum zu reproduzieren. Zahl der dafür benötigten Achsen = Zahl der Faktoren.

Kurs: Consultant Data Sciene 6.11. -22.11.19

Faktoren und Faktorladungen

Annahme

Jeder Messwert einer Ausgangsvariable x_i (eines Objekts k, hier: Marken) lässt sich als lineare Kombination mehrerer *hypothetischer* Faktoren beschreiben.

Wie viel hat ein Faktor mit der Ausgangsvariable zu tun?

- Maßgröße für deren Zusammenhang
- Korrelationskoeffizient zwischen
 Variable und Faktor

Behauptung eines linearen Zusammenhangs

Faktorladung

Bestimmung

Idealtypisches, vereinfachtes Beispiel: 2 Variablen (= Vektoren), Korrelation 0.5 (= Winkel von 60°)

Faktorladung = Korrelationskoeffizient zwischen Variable(n) und Faktor Faktorladung hier = cosinus 30° = 0.8660

Verfahren: HAUPTACHSENANALYSE

Ladungsmatrix

Faktorladungen

Streichfähigkeit	x1					
ungesättigte Fettsäuren	x2		FAKTOR 1		→	GESUNDHEIT
Kalorien	x3					
Vitaminzusätze	x4					
Haltbarkeit	x5		FAKTOR 2		WIRTSCH	HAFTLICHKEIT
Preis	x6	ŕ			,,	

r 2
02
06
7 0
94
41
10
4

Ladungsmatrix oder Faktormuster

Kommunalität

Schritt 3

Wie viel der Gesamtvarianz werden durch die Faktoren erklärt?

- (1) Der jeweils höchste Korrelationskoeffizient einer Variablen mit einer anderen (-> Korrelationsmatrix) -> Schätzung
- (2) Hauptkomponentenanalyse diese unterstellt jedoch den Grenzfall, dass die gesamte Varianz auf die Faktoren zurückzuführen ist.
- (3) Iteratives Verfahren

235

Extraktion

Schritt 4

Bestimmung der Faktoren. Wie viele Faktoren, und aufgrund welchen Kriteriums?

2 gebräuchliche Kriterien

(die zu unterschiedlichen Lösungen führen können)

Kaiser

Zahl der Faktoren = Zahl der Faktoren mit Eigenwert > 1

< 1 bedeutet: Faktor erklärt weniger Varianz als die Variablen selbst.</p>

Eigenwert = Erklärungsanteil <u>eines</u> Faktors in bezug auf die Varianz aller Variablen

Also nicht zu verwechseln mit: Kommunalität = Erklärungsanteil <u>aller</u> Faktoren in bezug auf <u>eine</u> Variable / eines Messwerts.

Berechnung: Summe der quadrierten Ladungsquadrate (-> Ladungsmatrix)

Nfactors Zahl der Faktoren < Hälfte der Anzahl der Variablen

Rotation

Schritt 5

Interpretation der Ladungsmatrix / des Faktormusters

Aussagekraft einer Hauptachsenanalyse ändert sich durch Drehung des Koordinatensystems im Ursprung nicht.

Nicht immer so eindeutig; häufig laden Variablen / Messwerte deutlich auf mehr als einem Faktor.

VARIMAX-ROTATION

schiefwinklige Rotation

bedeutet? Aufgabe der
Unabhängigkeitsprämisse

Faktorenwerte

Schritt 6

Wie nah oder fern sind sich die Objekte (hier: Streichfettmarken) in bezug auf die Faktoren?

Positionierungsanalyse

Faktor 1 Fakto	r 2
----------------	------------

(A) Rama

0.6

1.3

(B) Sanella

-1.2

0.8

(C) Becel

1.6

-0.7

(D) Kerrygold

0.9

1.1

Schätzung i.d.Regel durch multiple Regression

Clusteranalyse

Ziel

Gruppierung von Untersuchungsobjekten zu natürlichen ("empirischen") Gruppen

Cluster

Entdeckung einer Struktur

Exploration

Zentrale Entscheidungen:

Welches Proximitätsmaß?
Welcher Fusionsalgorithmus?

Voraussetzungen

Bereinigung fehlender Werte

Bei stark unterschiedlichen Wertebereichen der Variablen: z-Transformation

Anpassung der Skalenniveaus, ggf. Transformation auf das jeweils niedrigste Niveau (kein Muss)

Proximitätsmaße1

Ziel

Bestimmung der Distanz/Ähnlichkeiten zwischen den Objekten

(Varianz) innerhalb der Gruppen möglichst homogen,(Varianz) zwischen den Gruppen möglichst heterogen

Verfahren

Intervallskalierte Variablen

Quadrierte Euklidische Distanz Einfache Euklidische Distanz City-Block-Distanz

Variablenwerte der Objekte k und i

Proximitätsmaße 2

Verfahren

Binäre Variablen

→ Merkmal vorhanden / nicht vorhanden

Beispiel:

	Konfiguration									
Auto	Airbag	ESP	Metallic	Navi	ABS					
Mercedes	1	1	0	1	0					
BMW	1	1	1	0	0					
Fall	Α	Α	В	С	D					

Die Gewichte werden je nach Proximitätsmaß gewählt. Sie entscheiden darüber, ob und inwiefern die Fälle A, B, C und D berücksichtigt werden.

Proximitätsmaße 3

Beispiel:

	Konfiguration										
Auto	Airbag	ESP	Metallic	Navi	ABS						
Mercedes	1	1	0	1	0						
BMW	1	1	1	0	0						
Fall	Α	Α	В	С	D						

2 einfache Varianten

Simple Matching
$$S_{ij} = \frac{a+d}{a+b+c+d}$$

Dice
$$S_{ij} = \frac{2a}{2a+b+c}$$
 \rightarrow Gewichtung von A, D nicht berücksichtigt

Fusionsalgorithmen 1

243

Fusionsalgorithmen 2

Verfahren

SINGLE LINKAGE

nächstgelegener Nachbar

Minimum aller möglichen Distanzen zwischen den Datenpunkten in Cluster 1 und denen in Cluster 2

COMPLETE LINKAGE

entferntester Nachbar

Maximum aller möglichen Distanzen zwischen den Datenpunkten in Cluster 1 und denen in Cluster 2

AVERAGE LINKAGE

Linkage zwischen Gruppen

Mittelwert aller möglichen Distanzen zwischen den Datenpunkten in Cluster 1 und denen in Cluster 2

OTHER LINKAGE

Verschiedenes

z.B. Distanz zwischen dem *Median* von Cluster 1 und Cluster 2

Ein sehr stabiles, aber rechenintensives Verfahren:

WARD

Pro Cluster Berechnung der Summe der quadrierten Distanzen der Einzelfälle vom jeweiligen Zentroid. Fusion jeweils der 2 Cluster, deren Zusammenfügung die geringste Erhöhung der Gesamtsumme der quadrierten Distanzen zur Folge hat

Beispiel

Gesucht: Berufscluster nach Einkommen / Markenbewusstsein

Beruf	Einkommen	Marke		
A	6861	21765		
Ing	5150	28245		
Che	5474	25179		
M	7389	19048		
Pr	5152	24608		
CEO	12810	27611		
Anw	7203	21536		
K	4162	24823		
Arch	6779	22499		
F	3204	7465		
PH	5335	17471		
L	4311	14735		
В	3949	17921		
F	2132	8822		
Serv	3018	12201		

Analyse mit SPSS							
CLUSTER Einkommen Marke							
/METHOD WARD							
/MEASURE= SEUCLID							
/ID=Beruf							
/PRINT SCHEDULE CLUSTER(2,5)							
/PRINT DISTANCE							
/PLOT DENDROGRAM VICICLE							
/SAVE CLUSTER(2,5).							

metrische Variablen

Distanzmatrix

246

Schritt 1

	Quadriertes euklidisches Distanzmaß														
Fall	1:A	2:Ing	3:Che	4:M	5:Pr	6:F	7:PH	8:L	9:B	10:CEO	11:Anw	12:K	13:F	14:Arch	15:Serv
1:A	,000	1,444	,570	,218	,636	6,897	,793	2,164	1,641	6,196	,019	1,330	7,385	,014	4,422
2:Ing	1,444	,000	,240	2,774	,315	10,844	2,766	4,447	2,754	8,935	1,711	,427	10,357	1,189	6,813
3:Che	,570	,240	,000	1,452	,024	8,246	1,416	2,800	1,606	8,327	,770	,265	8,061	,430	4,923
4:M	,218	2,774	1,452	,000	1,496	5,855	,701	1,883	1,830	6,214	,152	2,377	6,690	,340	4,021
5:Pr	,636	,315	,024	1,496	,000	7,566	1,216	2,426	1,283	9,135	,864	,150	7,313	,508	4,353
6:F	6,897	10,844	8,246	5,855	7,566	,000	3,072	1,443	2,684	23,688	7,141	7,305	,219	7,319	,539
7:PH	,793	2,766	1,416	,701	1,216	3,072	,000	,338	,297	10,944	,924	1,495	3,339	,918	1,477
8:L	2,164	4,447	2,800	1,883	2,426	1,443	,338	,000	,261	14,930	2,372	2,423	1,554	2,360	,407
9:B	1,641	2,754	1,606	1,830	1,283	2,684	,297	,261	,000	14,176	1,921	1,140	2,471	1,717	,910
10:CEO	6,196	8,935	8,327	6,214	9,135	23,688	10,944	14,930	14,176	,000	5,660	11,561	25,739	6,154	20,232
11:Anw	,019	1,711	,770	,152	,864	7,141	,924	2,372	1,921	5,660	,000	1,664	7,756	,049	4,736
12:K	1,330	,427	,265	2,377	,150	7,305	1,495	2,423	1,140	11,561	1,664	,000	6,715	1,170	3,988
13:F	7,385	10,357	8,061	6,690	7,313	,219	3,339	1,554	2,471	25,739	7,756	6,715	,000	7,733	,391
14:Arch	,014	1,189	,430	,340	,508	7,319	,918	2,360	1,717	6,154	,049	1,170	7,733	,000	4,673
15:Serv	4,422	6,813	4,923	4,021	4,353	,539	1,477	,407	,910	20,232	4,736	3,988	,391	4,673	,000

Kurs: Consultant Data Sciene 6.11. -22.11.19

"Schedule"

Schritt 2

	Zusammenget	führte Cluster		Erstes Vorko Clus	Nächster	
Schritt	Cluster 1	Cluster 2	Koeffizienten	Cluster 1	Cluster 2	Schritt
1	1	14	,007	0	0	3
2	3	5	,019	0	0	6
3	1	11	,039	1	0	8
4	6	13	,148	0	0	10
5	8	9	,279	0	0	7
6	3	12	,414	2	0	9
7	7	8	,582	0	5	12
8	1	4	,752	3	0	11
9	2	3	,961	0	6	11
10	6	15	1,234	4	0	12
11	1	2	3,506	8	9	13
12	6	7	6,058	10	7	14
13	1	10	12,654	11	0	14
14	1	6	28,000	13	12	0

Start: jeder Fall = eignes Cluster Ende: alle Fälle = ein Cluster

n = 15

Heterogenitätsmaß steigt bei jedem Schritt

Was ist die optimale Lösung?

Kurs: Consultant Data Sciene 6.11. -22.11.19

Clusterzugehörigkeit

Statistiken^a

		Marke	Einkommen
N	Gültig	9	9
	Fehlend	0	0
Mittelwert		23923,778	6775,56

a. $CLU2_1 = 1$

Ingenieur

Koch Chemiker

OArzt

Architekt

Anwalt

Manager

Physiker ETH

Lehrer

Statistiken^a

CEO

		Marke	Einkommen
N	Gültig	6	6
	Fehlend	0	0
Mittelwert		13102,500	3658,17

a. $CLU2_1 = 2$

Servicemitarbeiter

Bauarbeiter

Fischer

Forstwart

Fragestellungen

Besteht zwischen zwei oder mehreren vorgegebenen Gruppen von Objekten oder Personen ein signifikanter Unterschied hinsichtlich der Gesamtstruktur mehrerer Merkmale?

Welche Kombination von Merkmalen ermöglichst die bestmögliche Trennung der vorgegebenen Gruppen?

Welche relative Bedeutung kommt einzelnen Merkmalen bei der Unterscheidung der Gruppen zu?

Welche der bereits unterschiedenen Gruppen sind neu zu untersuchende Objekte oder Personen aufgrund ihrer Merkmalsausprägungen zuzuordnen?

Charakter

spezielle Form der Regression: unabhängige (Gruppen-)Variable nominalskaliert

spezielle Form der Faktorenanalyse / Verfahren der Datenreduktion

Einfachster Fall

Zwei Gruppen, zwei Variablen, Befragung

- (A) Becel Streichfähigkeit (x1)
- (B) Kerrygold + Haltbarkeit (x2)

Ziel

Berechnung einer Geraden, die bestmöglichst trennt

Diskriminanz- bzw. Trennfunktion

251

Definition

Diskriminanzwert y_{ik}für (das Eigenschaftsurteil der) Person i bzgl. Marke k.

Diskriminanzkoeffizient

der unabhängigen Variable x₁(hier: Eigenschaft) Von Person i bei der Marke k benannte Ausprägung der unabhängigen Variable x₁

Ziel

Festlegung der Diskriminanzkoeffizienten so, dass sich die arithmetischen Mittel der Diskriminanzwerte der Objekte k (hier: Marken) signifikant unterscheiden

bestmögliche Trennung

Ergebnis

253