COMPUTER SCIENCE

Database Management System

FD's & Normalization

Vijay Agarwal sir

TOPICS TO BE COVERED

Dependency preserving

Normal Forms

Lossless Join

(1) BASIC CONCEPT R, MR2 = R

IB RIMR2 DR lossy join.

Lossless Join

$$\begin{array}{ccc}
(R, R_2)^+ & \Rightarrow R_1 \\
(R, R_2)^+ & \Rightarrow R_2
\end{array}$$

It common Attribute Ether a super keyoth

Super key of R2.

Lossless Join

1 BASIC CONCEPT

CHASE TEST

(Q) RIABC) [A-3B]

RIAB) & R2(AC)

RI(AB) UR2(AC) = ARC = R

RI(AB) NR2(AC) = A

(A) = (AB) Super key of R1

Lossless Join

RIABC) (A-1B)
RILAB) 4 R2 (BC)

RILAB) URZ(BC) = ABC

R(AB) NR2(BC)
(B) = (B) Not BR
SuperBR
Key
LOSSY Join

R(ABCDEFG) {AB \rightarrow CD, D \rightarrow E, E \rightarrow FG} Decomposed into R₁(ABCD) and R₂(DEFG)

CHASE TEST :

In the CHASE TEST We Coeate a Motoix in Which Row(Tiple) Represent the Sub-Relation & Celumn Represent the Attributes · File all the Cells (Entires) with (any variable) 'a' in the

Corresponding Attribute up Corresponding Sub Relation.

Now Fill the table (Entries) with the Helf of given FD.

for $X \rightarrow y$: If 2 Attribute of X is Resent & One y value is Resent the Insert the Jame Validhele by in that y winter

Is in X-34: If 2 some value of X is fresent of D value of
y is fresent than write some other variable
(Assume b instead of a)

THE Two Same value of X is Not Present then that FD Not Applied

(Note) IB we get any Tuble (BretTuble) with all 'a' entries then Lossless Join Decomposition.

(Note) CHASE TEST will stop either we get a Tuple with all bienting (OR)
their is a No further Updation in Table then CHASE TEST Stop

If the text than tig = teg .

Must be some.

X > y / IB 2 value of X is Present

1-> RAM

The write the same value 'a'

XIII

It 'o'value of y is Present

then write some other variable

b' instead of a:

Xb

Q.1

R(ABCDEFG) {AB \rightarrow CD, $D \rightarrow$ E, E \rightarrow FG} Decomposed into R₁(ABCD) and R₂(DEFG) By CHASE TEST. $\frac{X \rightarrow y}{x = +a \times +hen + 1; y = +2.5}$

if tix=t2x then tiy=t2.y
must be same

(AB) -> CD E> FG. Q.2.

R(ABCDEFG) {AB \rightarrow C, C \rightarrow D, D \rightarrow EFG} Decomposed into R₁(ABCE) and R₂(DEFG) By CHASE TEST.

	A	B	C	D	E	F	C
(ABCF) R,	a	a	a		a		
(DEFG) Re				a	a	a	a

Not getting a Tuple with all a entires

So Lossy Join.

R(ABCDE G) {AB \rightarrow C, AC \rightarrow B, AD \rightarrow E, B \rightarrow D, BC \rightarrow A, E \rightarrow G} Decomposed into R₁(ABC) R₂(ACDE) and R₃(ADG)

	A	B	\subset	D	E	G	
(ABC) R,	a	(0)	a	a	a	a	レ
(ACDE) R2	a.	a	a	.a	a	a	4
(ADG) R3	a			·a	a	, a	

all 'o' entries Lossfess. AD-3
URC 7

R(ABCDE G) $\{AB \rightarrow C, AC \rightarrow B, AD \rightarrow E, B \rightarrow D, BC \rightarrow A, E \rightarrow CG\}$

- 1. Decomposed into R₁(AB) R₂(BC) R₃(ABDE) and R₄(EG)
- 2. Decomposed into R₁(AB) R₂(BC) R₃(ABDE) and R₄(ECG)

RILAB) R2(BC) P3/ABDE) RylEG) RIS (ABDE) RZ (BC) R4 (EG) B(B() Risy (ABDEG) Can not Join (Lossy Join)

R(ABCDE G) $\{AB \rightarrow C, AC \rightarrow B, AD \rightarrow E, B \rightarrow D, BC \rightarrow A, E \rightarrow CG\}$

- 1. Decomposed into R₁(AB) R₂(BC) R₃(ABDE) and R₄(EG)
- 2. Decomposed into $R_1(AB)$ $R_2(BC)$ $R_3(ABDE)$ and $R_4(ECG)$

RI(AB) 1 R2 (BC) = B = (B) = (BD) Not Superkung RI4R2
So Connot Join.

RILAR) 1 R3(ARDE) = AB (AB) = CABCDEG) Superky of R, 4 R3 RI3 (ABDE) 1 Ry (ECG) = (E) = (E) = (E) = [ECG] Super kygg Ry RISY (ABCDEG) AR (BC) = (BC) = (BC) = (BCADEG) Superky RR34/ARCDEG) WESLEY Join

RI(AB) R2(BC) R3(ABDE) R9(ECG) RenRucc (estalc) R2(BC) Ry(ECG) RIS (ABDE) RISY (ABCDES) R2 (BC) RR74 (ARCDEG) LOSSfess Join

R(ABCDEFG) {AB \rightarrow C, AC \rightarrow B, AD \rightarrow E, B \rightarrow D, BC \rightarrow A, E \rightarrow CG}

- 1. Decomposed into R₁(AB) R₂(BC) R₃(ABDE) and R₄(EG)
- 2. Decomposed into R₁(AB) R₂(BC) R₃(ABDE) and R₄(ECG)

Let R(A, B, C, D) be a relational schema with the following (W) function dependencies:

 $A \rightarrow B$, $B \rightarrow C$, $C \rightarrow D$ and $D \rightarrow B$. The decomposition of R into (A, B), (B, C), (B, D)

[MCQ: 2M]

- Gives a lossless join, and is dependency preserving
- Gives a lossless join, but is not dependency preserving
- Does not give a lossless join, but is dependency preserving
- Does not give a lossless join and is not dependency preserving

RIABCD) (A-)B. B-)C, C-D, D-B) RI(AB) R2(BC) R3(BD) RI(AB) 1 R2(BC) = B (B) = (BCD) Super buy of R2 R12 (ABC) MR3 (BD) = B (B) - (BCD) Sheekay of R3 Ries/ABCD) Lossleps Join

Let R(A, B, C, D) be a relational schema with the following function dependencies:

 $A \rightarrow B$, $B \rightarrow C$, $C \rightarrow D$ and $D \rightarrow B$.

The decomposition of R into (A, B), (B, C), (B, D)

[MCQ: 2M]

- A Gives a lossless join, and is dependency preserving
- B Gives a lossless join, but is not dependency preserving
- C Does not give a lossless join, but is dependency preserving
- Does not give a lossless join and is not dependency preserving

Q.

Consider the relation R (P, Q, S, T, X, Y, Z, W) with the following functional dependencies.

$$PQ \rightarrow X; P \rightarrow YX; Q \rightarrow Y; Y \rightarrow ZW$$

Consider the decomposition of the relation R into the constituent relations according to the following two decomposition schemes.

$$D_1$$
: $R = [(P, Q, S, T); (P, T, X); (Q, Y); (Y, Z, W)]$

$$D_2$$
: $R = [(P, Q, S); (T, X); (Q, Y); (Y, Z, W)]$

Which one of the following options is correct?

[MCQ: 2021: 2M]

- A D_1 is a lossless decomposition, but D_2 is a lossy decomposition.
- B D₁ is a lossy decomposition, but D₂ is a lossless decomposition.
- C Both D₁ and D₂ are lossless decomposition.
- D Both D₁ and D₂ are lossy decomposition.

R(PAST XYZW) [PA -X P-14X, B-14, Y-ZW] R3(84) R4(42w) D. RI(PAST) R2(PTX) y->2W a 0 a

Willmann

@) R(ABCDE) (B>E, CE>A)

RI(ABC) R2(BCD) R3(ACE)

	A	B	C	D	E
(ABC) PI	a	(a)	a:		: 51
(BCD) Re	a	a.	a.	a	:51
(ACE) R3					:.b1

Lossy

BAE

· LEE -A

BAE

R(PAST XYZW) [PA -> X P-> YX, B-> Y, Y-> ZW] D. RI(PAST) R2(PTX) R3(B4) R4(YZW) RIPAST) 1R2 (PTX) => PT (PT) - (PTYX...) Super key of R2 Riz (PASTX) 1 R3(Q4) = B (a) = [ay Suber key of Ra R123 (POSTXY) NRY (YZW) = y (d) - [d Zw] Super key of Ry Resylpastxyzw) Losslegs Join :.

R(PAST XYZW) [PA -> X P-> YX, Q-> Y, Y-> ZW]
Dz: R1(PBS) R2(TX) R3(QY) R4(YZW)

R, IPBS) MR2(TX) = No Common RI(PQS) 1 R3(QY) = 9 (a)]--(ay...] superkey Ris (Pasy) nry (yzw) = y (d)= (yzw) superkeyab Ry Risy (PQSYZW) N R2(TX): No Commany Attendite

Attorbute R3(Q4) nRy(yzw) = y (y)= (yzw) sik & Ry Ray (Byzw) nR, (Pas)=9 (Q) = (Qyzw) skobkzy R134 (PQSYZW) 1 ReLTX) Lossy No Common Q.

Consider the relation R (P, Q, S, T, X, Y, Z, W) with the following functional dependencies.

$$PQ \rightarrow X; P \rightarrow YX; Q \rightarrow Y; Y \rightarrow ZW$$

Consider the decomposition of the relation R into the constituent relations according to the following two decomposition schemes.

$$D_1$$
: $R = [(P, Q, S, T); (P, T, X); (Q, Y); (Y, Z, W)]$

$$D_2$$
: R = [(P, Q, S); (T, X); (Q, Y); (Y, Z, W)]

Which one of the following options is correct?

[MCQ: 2021: 2M]

- A D₁ is a lossless decomposition, but D₂ is a lossy decomposition.
- B D₁ is a lossy decomposition, but D₂ is a lossless decomposition.
- C Both D₁ and D₂ are lossless decomposition.
- D Both D₁ and D₂ are lossy decomposition.

Dependency Preserving Decomposition

Let R be the Relational Schema With FD Set F

IS Decomposed into SubRelation R, Re Ro. - . . Rm

With FD Set Fi, F2, F3. . . Fn Respectively.

IB FIUFZUF3...UFn = F Dependency Preserving.

FB FIUFZUFT. .. UFnCF Dependency Not Preserving.

Dependency Preservation

- Let F_i be the set of dependencies F that include only attributes in R_i.
 - A decomposition is dependency preserving,

if
$$(F_1 \cup F_2 \cup ... \cup F_n) = F$$

IB F. UF2 UF3. .. UFn C F
Dependency Not Preserving.

Process to check D.P

first take the closure of all indidival Attorbute then write Non Trivial in the Respective Sub Relation then

FIUF2UF3.-.UFn = F Dependency Reserving. Let R(A, B, C, D, E) be a relational schema with the following

function dependencies:

 $A \not\subseteq B$, $B \not\subseteq C$, $C \hookrightarrow D$ and $D \to BE$. $(\mathfrak{D})^{t} = (\mathfrak{D}B \in C)$

Decomposed into R₁(AB) R₂(BC) R₃(CD) and R₄(DE)

FI	F2	F3	Fu
RILARD	Re(BC)	R3(CD)	Ru(DE)
A-B	B→C	CD	DAE
	Ć→B	DIO	
,			

R3(CD) Ru(DE)
$$C \rightarrow D \quad D \rightarrow E$$

$$D \rightarrow C$$

Consider a schema R(A, B, C, D) and functional dependencies

 $A \rightarrow B$ and $C \rightarrow D$. Then the decomposition of R into $R_1(AB)$ and $R_2(CD)$ is $(\mathfrak{G})^{\dagger}(\mathfrak{G})$ $(\mathfrak{A})^{\dagger}(\mathfrak{A})$ [MCQ: 2M] Dependency preserving and lossless join($\mathfrak{C})^{\dagger}(\mathfrak{C})$

- Lossless join but not dependency preserving В

RILABO	15 (CD)
ATB	C->D

Dependency preserving but not lossless join

Not dependency preserving and not lossless join $(A \rightarrow B) \cup (C \rightarrow D)$

Let R(A, B, C, D) be a relational schema with the following function dependencies:

 $A \rightarrow B$, $B \rightarrow C$, $C \rightarrow D$ and $D \rightarrow B$.

The decomposition of R into (A, B), (B, C), (B, D)

[MCQ: 2M]

- A Gives a lossless join, and is dependency preserving
- B Gives a lossless join, but is not dependency preserving
- C Does not give a lossless join, but is dependency preserving
- Does not give a lossless join and is not dependency preserving

RI(AB)

R2(BC) R3(BD)

RI(AB)	R2(BC)	R3(BD)
A-B	B→C	B-D
	C>B	D-B

R(ABCD) [ABCD, BBC CD, DB)

Asterior of the state of the st

RI(AB) R2(BC) R3(BD)

	\downarrow	
RI (AB)	R2(BC)	R3(BD)
A->B	B-)C	D→B

 $C \rightarrow D$ $C \rightarrow B$ $B \rightarrow D$ $C \rightarrow B$ $C \rightarrow B$ $B \rightarrow D$ $C \rightarrow B$ $C \rightarrow$

C-D Indirectly Preserved in C-B in R2 & B-3D in R3.

. .

Any Doubt ?

