

Codex Project: RAG Model Development

Camille CHALLIER

Supervised by:

- Eduard Ďurech
- Mary-Anne Hartley
- Martin Jaggi

- **©** CONTEXT
- **@** AIM & OBJECTIVES
- **☆ METHODS & FINDINGS**

- DISCUSSION
- FUTURE WORK
- **QUESTIONS**

Future work

CONTEXT - Automating Humanitarian Efforts with Al

International Committee of the Red Cross (ICRC)

- World's largest humanitarian archives, amassed over 160 years.
- Need: Automate reading and parsing of vast archives.

World Health Organization (WHO)

- Produces 20-30 major guidelines annually that require extensive review of academic papers and resources.
- Need: Al-assisted medical guidelines review

.

CONTEXT - Automating Humanitarian Efforts with AI

Problems:

- Summarize TB-PB of data.
- Documents continuously updated.
- Citation of sources necessary (hallucinations).
- ICRC and WHO does not have super-computers.
- Multilingual data.
- Domain specific (NGO, medical).

User Input Hallucinations LLM Knowledge RAG Natural Fine-Tuned LLM Mismatch **External Data**

Solutions:

- Retrieval-augmented generation (RAG)
- Use a small LLM with RAG to preprocess documents and embed them into an offline database => efficient & manageable.

CONTEXT - What is RAG?

Context

Methods

Objective 1

Objective 2

Objective 3

Future work

AIM: Develop a RAG-based model to efficiently manage and accurately process the extensive, multilingual archives of ICRC and WHO.

OBJECTIVES

- 1. Construct a **vector database** by effectively processing the data.
- 2. Precisely retrieve the most relevant documents.

3. Efficiently **re-rank** the retrieved documents for optimal relevance.

★ METHODS - Data

	Wikitext Dataset	ICRC Dataset
QUANTITY	1293 articles / 100 millions tokens.	193 documents
QUALITY	Extracted from the set of verified Good and Featured articles on Wikipedia.	Extracted using Marker and Surya for OCR. (https://github.com/VikParuchuri/marker)
LANGUAGES	English	French, English, German
ADVANTAGES	High quality data	Subset of the real data

Future work

Test Queries:

A series of questions generated by LLaMA 3 8B based on 500 random data chunks.

Evaluation:

 Assess the RAG model's effectiveness in retrieving the specific document sections used to generate the query.

Metrics:

• Hit Rate : HR = $\frac{|U_{hit}^L|}{|U_{all}|}$,

Where $\mid U_{hit}^{L} \mid$ is the number of questions for which the correct answer is included in the top L retrieved chunks, $\mid U_{all} \mid$ is the total number of questions.

• Mean Reciprocal Rank : MRR = $\frac{1}{|U_{all}|} \sum_{u=1}^{|U_{hit}|} \frac{1}{rank_u}$

Where $rank_u$ is the rank of the correctly retrived chunks in the top L.

Method

- Character splitting
- Sentence splitting
- Recursive Character splitting (["\n\n", "\n", " ", ""])

Result × Chunking method Sentence splitting 0.925 Recursive splitting Max chunk size 0.920 512 1024 0.915 Overlap 0.910 20 0.905 0.900 0.895 20000 40000 60000

Figure 2: Hit Rate obtained using different chunking methods. The embedding model "bge-small-en" was used to retrieved the top 3 documents. It was tested on the WikiText datasets from Hugging Face "Salesforce/wikitext". The test queries consist of 500 precise questions.

nodes number

Method Semantic and topic based chunking:

Method Semantic and topic based chunking:

Method Semantic and topic based chunking:

- Semantic:
- **Semantic pairs:**

12

Future work

Method Semantic and topic based chunking:

- Semantic:
- **Semantic pairs:**

Method Semantic and topic based chunking:

- Semantic:
- **Semantic pairs:**
- **Chaining:**
- LDA

Cosine similarity :
$$\cos(\theta) = \frac{\mathbf{A} \cdot \mathbf{B}}{\|\mathbf{A}\| \|\mathbf{B}\|} = \frac{\sum\limits_{i=1}^n A_i B_i}{\sqrt{\sum\limits_{i=1}^n A_i^2} \sqrt{\sum\limits_{i=1}^n B_i^2}}$$
With A and B two vectors embeddings

Results

Figure 3: Hit Rate obtained using different semantic and topics-based chunking methods. The embedding model "bge-small-en" was used as RAG model and tested on the WikiText datasets.

Results on ICRC dataset [real data : lower quality]

Vector Store Index

- Store each embedding.
- Fetch the top-k most similar chunks.

Best Matching 25 (BM25)

- Ranks documents based on query term occurrence and rarity across the corpus.

Knowledge Graph

- Extract a knowledge graph using triplets.
- Query engine uses keywords from the query to retrieve relevant KG entities + explores relationships

17

Donation of three million s iss francs

Objective 3

OBJECTIVE 1 - Vector database -- Embeddings

19

Objective 3

Limitations:

- Multiple languages (Non-English)
- Performance on broad questions?

Precise questions:

- 'How many Iranian prisoners were handed over to the International Committee of the Red Cross (ICRC) on January 29, 1984 at the Ankara airport in Turkey?'
- 'What was the amount donated by Saudi Arabia to the Red Cross in June 1934, and how does this donation contribute to the ICRC's activities worldwide?'

Broad questions:

- 'How does the ICRC use the Restoring Family Links (RFL) program to reunite families who have been separated by conflicts or disasters?'
- 'How does the ICRC support victims in Colombia?'

Comparative Analysis of Knowledge Graph and VectorStore Performance With and Without English Translation

★ OBJECTIVE 3 – Re-Ranker

- ColBERT v2 (Contextualized Late Interaction over BERT): A BERT-based search method utilizing late interaction for enhanced retrieval.
- BGE Base, Large, and MS MARCO MiniLM:
 Cross-encoders for multilingual/English language understanding.

Secretaria Summarizer Summarizer Summarizer Summarizer Secretaria Secretaria

	HR	MRR	
Precise queries	0.742	0.668	
	Summarizer head	Faithfulness	Relevancy
Precise queries	Llama 3 8b	0.93	0.98
	Mistral 7b	0.84	0.97
	GPT2	0.32	0.24
Broad queries	Llama 3 8b	0.91	0.88
	Mistral 7b	0.89	0.90
	GPT2	0.22	0.17

DISCUSSION - Take home messages

- Character-based chunking methods work well when paragraphs separate subjects but often struggle to identify subjects within the text. Semantic pairing and chaining chunking methods produce better results. The LDA-based chunking also showed strong performance with lower computational demands.
- Fine-tuning the embedding model or using adapters significantly reduces the language performance gap, improving performance by capturing nuanced linguistic and domain-specific features.
- Using an appropriate reranker and embedding model significantly improves performance.

DISCUSSION - Take home messages

Figure 12: Improvements made at each stage of constructing the RAG model. The "base" model employs simple recursive chunking with retrieval using *bge-small-en*. The percentages reflect the level of improvement achieved at each step. The top axis represents MRR performance, while the bottom axis shows HR.

• **CONCLUSION**: The proposed RAG model offers an initial exploration of an efficient solution for handling large, multilingual, domain-specific archives of NGO documents.

Limitation of this study :

- Data quality. (Codex ☺)
- The test set may not always represent the questions ICRC workers need to ask.
- Real-World Relevance; it would be valuable to use real questions and documents used from ICRC staff for RAG + LLM evaluation.
- Resource Intensity: Knowledge graph, LLM inference with a lot of data.

- Document Selection Mechanism: Implementing a document selection process before RAG to improve retrieval relevance for specific queries.
- **Fine-Tuning Triplex:** Enhancing graph-based RAG performance by fine-tuning Triplex (linguistic and domain-specific features), and exploring hybrid retrieval strategies using both embeddings and knowledge graphs.
- Summarization Head Improvements: Fine-tuning different summarization models (e.g., LLaMA 3 8B, GPT) to improve summary accuracy and relevance for ICRC needs.
- RLHF: Exploring Reinforcement Learning from Human Feedback (RLHF) to refine RAG systems and capture the specific requirements of humanitarian queries.
- Comparison with Commercial Models: Evaluating commercially available models like GPT-4 and Ada embeddings to set a baseline for assessing future fine-tuned models.

vork

Thank you

Prompting template used for generate the queries for both evaluation pipeline

Precise queries prompt	Broad queries prompt
Context information is below. context_str Given the context information and not prior knowledge, generate only questions based on the below query. You are a Professor. Your task is to setup num_questions_per_chunk questions for an upcoming quiz/examination. The questions should be developed and diverse in nature across the document. The questions should not contain options, not start with Q1/Q2. Restrict the questions to the context information provided.	Context information about the International Committee of the Red Cross (ICRC) and their interventions is below. context_str You are a Teacher/ Professor. Your task is to setup num_question questions for an upcoming quiz/examination. Given the context information and not prior knowledge, generate only questions based on the previous keyword themes. """

Prompting template used for generate the topics used for training XGboost and finetuning based on topics.

Topic extraction prompting template

.....

You are an AI assistant specialized in classifying PDF documents into broad categories. Your task is to analyze the given text and provide a single tag that best describes the content or purpose of the document. Use the most appropriate tag from the following list, or create a new tag if necessary: education, government, science, health, legal, environment, finance, social-sciences, history, human-rights, community-development, humanitarian-aid, advocacy, sustainability, migration-and-refugees, social-justice, crisis, war.

Respond with only the tag, nothing else. Here are some examples:

1. "February 7, 1984 lebanon: the icrc calls for immediate ceasefire. Since the deterioration of the situation in lebanon over the last few days, the civilian population has sustained hundreds of victims, dead and wounded, particularly in the south of the capital, beirut."

Humanitarian Aid

2. "M. comelio sommaruga, président du comité international de la croix-rouge (cicr) donnera une conférence de presse le lundi 8 février 1988 à 10 heures 30 m. sommaruga présentera le bilan des principales actions conduites en 1987 ainsi que les objectifs et les grandes options de l'institution pour l'année en cours."
Advocacy

Now, please classify the following text:

 $context_str$

Chunking	max chunk size	Pourcent thres	buffer size	overlap	model	Hit Rate	MRR	model	Hit Rate	MRR	model	Hit Rate	MRR	nodes nb
Sentence splitter	512	None	None	20	bge - None	0.918	0.814	BM25-None	0.882	0.778	BM25-bge	0.916	0.857	11717
Sentence splitter	1024	None	None	20	bge - None	0.908	0.782	BM25-None	0.866	0.776	BM25-bge	0.9	0.822	6057
Sentence splitter	1024	None	None	0	bge - None	0.908	0.783	BM25-None	0.838	0.740	BM25-bge	0.900	0.853	11640
Recursive splitter	512	None	None	20	bge - None	0.924	0.88.0	BM25-None	0.772	0.694	BM25-bge	0.832	0.812	69 025
Recursive splitter	1024	None	None	20	bge - None	0.928	0.853	BM25-None	0.784	0.715	BM25-bge	0.886	0.855	33319
Recursive splitter	1024	None	None	0	bge - None	0.896	0.857	BM25-None	0.716	0.662333	BM25-bge	0.784	0.768	68130
Semantic	None	90	2	0	bge - None	0.77	0.707	BM25-None	0.644	0.576333	BM25-bge	0.712	0.693	27611
Semantic + max chunk size	2048	90	2	0	bge - None	0.784	0.724	BM25-None	0.71	0.643	BM25-bge	0.774	0.743	26053
Semantic + min length	None	90	2	0	bge - None	0.839	0.780	BM25-None	0.70	0.618	BM25-bge	0.755	0.746	21008
Semantic pairs + min length	None	80	2	0	bge - None	0.862	0.805	BM25-None	0.698	0.621667	BM25-bge	0.776	0.751	35059
Semantic pairs + min length + para	None	95	2	0	bge - None	0.938	0.846	BM25-None	0.818	0.728	BM25-bge	0.872	0.831	18184
Semantic pairs + min length	None	90	2	0	bge - None	0.9	0.814	BM25-None	0.81	0.723	BM25-bge	0.896	0.87	15937
Semantic pairs + min length	None	95	2	0	bge - None	0.896	0.822	BM25-None	0.8	0.698	BM25-bge	0.858	0.818	11141
Chain	None	None	2	0	bge - None	0.924	0.89	BM25-None	0.776	0.719	BM25-bge	0.854	0.838	16095
Chain	None	None	1	0	bge - None	0.916	0.846	BM25-None	0.82	0.733	BM25-bge	0.869	0.823	39138
Chain + para	2048	0.4	2	0	bge - None	0.958	0.86	BM25-None	0.874	0.785	BM25-bge	0.93	0.878	12225
LDA	None	None	None	0	bge - None	0.92	0.826	BM25-None	0.83	0.751	BM25-bge	0.892	0.86	14525

Figure 13: Test results for HR and MRR using various chunking methods on the WikiText dataset from Hugging Face ("Salesforce/wikitext"). The evaluation involved 500 precise questions generated by the LLaMA 3 8B model based on these documents. The notation model refers to the embedding model name followed by the re-ranker name. bge represents the bge-small-en embedding model. The green rows represent the baseline, where paragraph separation is followed by method-based splitting. The purple row highlight the best-performing method. Nodes nb refers to the number of chunks created by the splitting method.

Chunking	model	Hit Rate	MRR	model	Hit Rate	MRR	model	Hit Rate	MRR	nodes nb
agentic + semantic	bge - None	0.969	0.896	BM25-None	0.908	0.821	BM25-bge	0.962	0.937	130
LLM prompting	bge - None	0.981	0.902	BM25-None	0.955	0.872	BM25-bge	0.970	0.948	130

Figure 14: Test results for HR and MRR using different chunking methods on a subset of 100 WikiText articles from Hugging Face ("Salesforce/wikitext"). This subset was selected due to computational constraints. The evaluation was conducted on 100 precise questions generated by the LLaMA 3 8B model based on these articles. In the results, the term model indicates the embedding model followed by the re-ranker name, with bge representing the bge-small-en embedding model.

Chunking	model	Hit Rate	MRR	model	Hit Rate	MRR	model	Hit Rate	MRR	model	Hit Rate	MRR	nodes nb
Recursive 2048	bge - None	0.484	0.395	bge-bge	0.484	0.439	BM25-None	0.574	0.506	BM25-bge	0.622	0.559	28998
Semantic b=1 2048	bge - None	0.518	0.443	bge-bge	0.61	0.554	BM25-None	0.602	0.526	BM25-bge	0.632	0.564	20835
Semantic pairs 1024	bge - None	0.54	0.452	bge-bge	0.612	0.547	BM25-None	0.648	0.574	BM25-bge	0.66	0.586	23823
Semantic pairs 2048	bge - None	0.522	0.439	bge-bge	0.614	0.555	BM25-None	0.608	0.526	BM25-bge	0.646	0.584	20420
Chain 1024	bge - None	0.49	0.41	bge-bge	0.568	0.508	BM25-None	0.568	0.499	BM25-bge	0.61	0.537	21450
Chain 2048	bge - None	0.532	0.444	bge-bge	0.61	0.545	BM25-None	0.616	0.54	BM25-bge	0.642	0.579	21333
LDA 2048	bge - None	0.5	0.433	bge-bge	0.578	0.531	BM25-None	0.612	0.523	BM25-bge	0.64	0.583	23481

Figure 15: Test results for HR and MRR using various chunking methods on the ICRC dataset. The evaluation involved 500 precise questions generated by the LLaMA 3 8B model based on these documents. The notation model refers to the embedding model name followed by the re-ranker name. bge represents the bge-small-en embedding model. The purple row highlight the best-performing method.

Embedding model for semantic splitting	model	Hit Rate	MRR	model	Hit Rate	MRR	model	Hit Rate	MRR	model	Hit Rate	MRR	nodes nb
w601sxs/b1ade-embed	bge - None	0.54	0.452	bge-bge	0.612	0.547	BM25-None	0.648	0.574	BM25-bge	0.66	0.586	23823
intfloat/multilingual-e5-base	bge - None	0.536	0.459	bge-bge	0.586	0.532	BM25-None	0.620	0.556	BM25-bge	0.648	0.587	23844
Lajavaness/bilingual-embedding-large	bge - None	0.506	0.416	bge-bge	0.582	0.519	BM25-None	0.608	0.525	BM25-bge	0.62	0.557	23795
dunzhang/stella_en_400M_v5	bge - None	0.536	0.44	bge-bge	0.596	0.527	BM25-None	0.61	0.532	BM25-bge	0.64	0.565	23806

Figure 16: Test results for HR and MRR using various embeddings model used for semantic splitting on the ICRC dataset. The evaluation involved 500 precise questions generated by the LLaMA 3 8B model based on these documents. The notation model refers to the embedding model name followed by the re-ranker name. bge represents the bge-small-en embedding model. The purple row highlight the best-performing method.

Retriever Embedding model	Hit Rate	MRR	Reranker	Hit Rate	MRR
BAAI/bge-small-en	0.54	0.452	bge	0.612	0.547
dunzhang/stella_en_400M_v5	0.66	0.555	bge	0.714	0.633
intfloat/multilingual-e5-large	0.586	0.485	bge	0.64	0.575

Figure 17: Test results for HR and MRR using various embeddings model used for retrieval on the ICRC dataset. The evaluation involved 500 precise questions generated by the LLaMA 3 8B model based. bge-small-en was the embedding model used. The purple row highlight the best-performing method.

Model	epochs	batch size	learning rate	HR	MRR
Base	/	1	/	0.638	0.541
Queries Finetuned	4	10	2,00E-05	0.7	0.588
Queries Finetuned	2	10	2,00E-05	0.681	0.589
Queries Finetuned	4	4	2,00E-05	0.671	0.574
Topics Finetuned	4	10	2,00E-05	0.526	0.432
Linear Adapter	4	10	2,00E-05	0.656	0.558
Linear Adapter	4	10	0.01	0.336	0.256
2 layers NN Adapter	25	10	2,00E-05	0.639	0.543
2 layers NN Adapter	4	10	2,00E-05	0.662	0.563
XGBoost	4	10	2,00E-05	0.65	0.54

Figure 18: Test results for HR and MRR with different improvements to the embedding model used for retrieval on the ICRC dataset. The evaluation was conducted using 500 precise questions generated by the LLaMA 3 8B model, based on these documents. A 7:3 train test split was used. Stella en 400M v5 was the embedding model used. The purple row highlights the best-performing method.

https://www.clarifai.com/blog/what-is-rag-retrieval-augmented-generation

BM 25:

$$BM25 = \sum_{t \in q} \log \left[\frac{N}{df(t)} \right] \cdot \frac{(k_1 + 1) \cdot tf(t, d)}{k_1 \cdot \left[(1 - b) + b \cdot \frac{dI(d)}{dI_{avg}} \right] + tf(t, d)}$$

- k_1 , b parameters
- dl(d) length of document d
- dl_{avg} average document length
- tf: Term Frequency
- df : Document Frequency

Faiss:

- **1.** K-means clustering: This algorithm breaks the data into clusters, which helps narrow down the search space by focusing on the most relevant clusters during queries.
- **2. Product quantization (PQ)**: PQ compresses vectors into shorter codes, reducing memory usage significantly and speeding up the search without a big drop in accuracy.
- **3. Optimized product quantization (OPQ)**: An enhanced version of PQ, OPQ rotates the data to better fit the quantization grid, improving the accuracy of the compressed vectors.

Cross encoder and ColBERT

https://jina.ai/news/what-is-colbert-and-late-interaction-and-why-they-matter-in-search/