Semantic Classification of Math Problems Using NLP

Group Final Project Report

Course: NLP Final Project (Amir Jafari) **Authors:** Phanindra Kalaga; Prudhvi Chekuri; Deepika Reddygari

1. Motivation & Project Overview

Manually tagging math problems into domains delays content curation for adaptive learning. We aimed to automate this by building a pipeline that "understands" both natural language and embedded LaTeX notation, assigning each problem to one of eight categories: Algebra, Arithmetic, Calculus, Geometry, Number Theory, Probability, Statistics, and Trigonometry. Our approach had two phases:

- 1. **Classical baselines**: TF-IDF features (word & char n-grams) with Multinomial Naive Bayes, Random Forest, and XGBoost.
- 2. **Advanced methods**: Transformer fine-tuning (MathBERT, DeBERTa, T5, Llama) and a hard-voting ensemble.

2. Dataset Description

- Source: KAUST Math Problem Classification (25 000 train / 5 000 test)
- Classes: 8 balanced topics (~3 125 examples each)
- Characteristics & Challenges:
 - LaTeX spans (\$...\$) in ~40% of examples
 - Varied question lengths (short prompts to multi-sentence problems)
 - Occasional noise (scraping artifacts)

3. Group Methodology Overview

1. Preprocessing & Feature Engineering

- Normalized all \$...\$ spans to the token MATH, lowercased, removed non-alphanumeric characters, and collapsed whitespace.
- Extracted word n-grams (1–2) and char n-grams (3–5) with TF-IDF weighting.

2. Classical Baselines

- Naive Bayes (α =1.0)
- Random Forest (100 trees, class_weight='balanced')
- XGBoost (max_depth=6, learning_rate=0.1, subsample=0.8, colsample_bytree=0.8)

3. Transformer Models

- MathBERT: domain-pretrained BERT variant.
- o **DeBERTa-V3 base**: disentangled attention for richer contextualization.
- **T5-base**: seq2seq framing for classification.
- **Llama-3.2 1B**: instruction-tuned via LoRA with 4-bit quantization.

4. Ensembling

Hard voting among DeBERTa, T5, and Llama, with DeBERTa as tie-breaker.

5. **Deployment & Demo**

 Streamlit app and Docker container orchestrated by Phanindra for live classification demos.

4. Individual Contributions

4.1 Phanindra Kalaga

- Orchestrated project setup: scripts for data/model retrieval (get_assets.sh), demo launch (run_demo.sh), and Streamlit app (app.py).
- Packaged dependencies (requirements.txt), containerized the demo for AWS deployment.

4.2 Prudhvi Chekuri

- Fine-tuned transformer architectures: DeBERTa-V3 for sequence classification, T5 for text-to-text classification, and on-device Llama-3.2 1B via LoRA.
- Developed ensemble notebook to combine transformer outputs via hard voting .

4.3 Deepika Reddygari

- Built classical baseline pipelines: preprocessing.py, features.py, train_baselines.py, evaluate.py.
- Executed grid searches for TF-IDF and XGBoost hyperparameters; conducted error analysis with confusion matrices; ensured reproducibility with fixed seeds and experiment logs.

5. Consolidated Results:

Model	Train Time	F1-Micro (Train)	F1-Micro (Private Test)
Multinomial Naive Bayes	1.04 m	0.72	0.704
Random Forest Classifier	6.51 m	0.74	0.7388

XGBoost	10.02 m	0.79	0.7678
LightGBM	6.24 m	0.789	0.7862
MathBERT	50 m	0.83	0.8152
Llama-1b	1 h 30 m	0.85	0.8346
T5	2 h	0.83	0.8239
DeBERTa	4 h	0.9	0.851
Ensemble (Llama + T5 + DeBERTa)– Hard Voting –	_	0.8588	0.8588

Table1: Performance across all models.

6. Discussion & Key Insights

- Classical vs. Advanced: Classical baselines (up to 0.7678) train in seconds; transformer models (up to 0.8510) require hours but yield >8 pt F1 gains.
- **Feature Impact:** Character-level TF-IDF (XGBoost) outperforms word-only TF-IDF by ~3 F1 points.
- Ensembling Benefit: Hard voting adds ~0.008 F1 over the best single transformer.
- **Compute Trade-off:** Efficient mixed-precision and PEFT (LoRA) make large-model training feasible on limited hardware.

7. Future Work

- Model Distillation: Compress the ensemble into a lightweight student model for real-time inference.
- Advanced Hyperparameter Search: Employ Bayesian optimization or random search for both classical and transformer pipelines .

- **Data Augmentation:** Incorporate back-translation and equation paraphrasing to improve robustness to notation variations.
- **Robust Evaluation:** Implement k-fold cross-validation across all models to reduce selection bias.

8. References

- 1. Final Project Guidelines, NLP Final Project
- 2. Project Proposal: Semantic Classification of Math Problems Using NLP
- 3. Phanindra Kalaga, Individual Final Project Report
- 4. Prudhvi Chekuri, Individual Final Project Report
- 5. Deepika Reddygari, Individual Final Project Report
- 6. Presentation: Classification of Mathematical Problems NLP Approaches
- 7. Sanh et al. (2019). DistilBERT: Smaller, Faster, Cheaper and Lighter. arXiv:1910.01108.
- 8. He *et al.* (2020). DeBERTa: Decoding-enhanced BERT with Disentangled Attention. arXiv:2006.03654.
- 9. Raffel *et al.* (2020). Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer. JMLR, 21(140).

End of Group Final Report