Modern Algebra: Rings

Final Exam

 $Fall\ 2015$

Name:			
Date:			

READ THESE INSTRUCTIONS CAREFULLY!

- $\bullet\,$ Circle or underline your final written answer.
- Justify your reasoning and show your work.
- \bullet If you run out of space, make a note and continue your work on the back of a page.

1. Solve the following system of congruences for x.

$$\left\{ \begin{array}{lll} x & \equiv & 2 \pmod{45} \\ x & \equiv & 5 \pmod{49} \\ x & \equiv & 3 \pmod{121} \end{array} \right.$$

2. Let R be a ring. An element $x \in R$ is called *nilpotent* if $x^n = 0$ for some power n. For example, $\overline{2}$ is nilpotent in $\mathbb{Z}/(8)$ since $\overline{2}^3 = 0$.

Show that if R is commutative then the set $N \subseteq R$ consisting of all the nilpotent elements is an ideal. (Hint: the binomial theorem holds in any ring.)

- 3. A ring element x is called idempotent if $x^2 = x$. For example, 0 is idempotent in any ring since $0^2 = 0$.
 - (a) Determine which elements of $\mathbb{Z}/(30)$ are idempotent.
 - (b) Determine which elements of $\mathbb{F}_3[x]/(x^2-x)$ are idempotent.