CoBox

Github: https://github.com/hackersoft13/Cobox

Site web: cobox.paulitow.fr

RAPPORT DE PROJET FINAL

TABLE DES MATIERES

I.	Etat des lieux (AS IS)	2
1.1	Rappel des Besoins	2
1.2.	Rappel des Contraintes	3
1.3.	Roadmap	4
II.	Complétion	5
2.1.	Fonctionnalités opérantes	5
2.2.	Démonstration	5
2.3.	Problématiques rencontrées	6
2.3.	Aspect Projet	7
2.4.	Fonctionnement du programme	10
1.4.	Aspect Sécurité & Qualité	11
	Clossaire	12

I. Etat des lieux (AS IS)

I.I Rappel des Besoins

Le but du projet Cobox est de concevoir une solution de domotique pour particuliers, permettant le contrôle et la supervision de différents éléments (tout équipement pouvant être commandé par un relais) au sein d'un foyer.

Cette solution se décomposera en une centrale domotique, et X clients. Les clients étant les actionneurs / capteurs.

A ce jours les besoins concernant la centrale sont :

- Echanger des informations à ses actionneurs en mode serveur via Wifi directe (mode hotspot)
- Afficher de manière claire les mesures des différents éléments supervisés par la centrale

Et concernant la partie client :

- Echanger des informations à la centrale en mode client via Wifi directe
- Piloter les actionneurs via des GPIO*
- Acquisition de données via des capteurs (Température / humidité...)

I.2. Rappel des Contraintes

Les contraintes de ce projet ont été définies en accord avec notre client et sont susceptibles d'être modifiées avec l'évolution du présent document.

Contraintes			
	La centrale doit comporter un système d'exploitation linux		
CENTRALE	La centrale doit utiliser un programme développé en C pouvant dialoguer avec les différents actionneurs		
	On doit pouvoir se connecter sur la Raspberry via SSH sur Wifi direct		
	L'actionneur doit être capable de dialoguer via Wifi		
ACTIONNEUR	L'actionneur doit être capable de piloter jusqu'à 8 relais		
ACTIONNEOR	L'actionneur doit être capable de monitorer un capteur et de transmettre sa valeur à la centrale		

I.3. Roadmap

Ci-dessous, la Roadmap définissant les étapes cruciales de notre projet

Figure 1 : Roadmap Cobox

II. Complétion

2.1. Fonctionnalités opérantes

Work Packages	Détails
Couche matérielle	Raspberry 3B+, optimisable sur une
	Raspberry PI 2 pour diminuer les coûts
Couche logiciel	Gestion client / serveur, interface vers
	BDD, interface vers actionneurs puis
	relais
Base De Données	Archivage des données acquises,
	fonction mémoire d'ordres envoyés au
	chauffage (allumer / éteindre), gestion
	par PHPMyAdmin
Interface Homme Machine	Serveur Web affichant les données
	remontées sous forme de tableau

2.2. Démonstration

Vous pourrez retrouver une vidéo de démonstration de notre projet via l'url

suivante: https://www.youtube.com/watch?v=DhQleP-m-D4

2.3. Problématiques rencontrées

Fonctions	Détails
Gestion de plusieurs chauffages	Fonction trop complexe à mettre en place dès la première construction, planifiée dans la prochaine mise à jour
Base de Données	Suppression accidentelle de la machine virtuelle de test suite à une expansion de l'espace disque

2.3. Aspect Projet

Depuis le départ, nous utilisons pour nous coordonner la plateforme collaborative RedMine pour assurer le suivi du projet. Il est accessible via l'url :

https://cobox.paulitow.fr

Figure 2 : Interface RedMine de gestion

Cette plateforme permet de savoir très rapidement le travail à effectuer, avec un indice de priorité par tâches.

De plus, à chaque mise à jour, une notification par mail est envoyée au responsable du sujet.

Figure 3 : Gantt de l'ensemble du projet

# =	Tracker	Statut	Priorité	Sujet	Assigné à	Mis-à-jour
16	Objectif	En cours	Immediate	Contrôle d'ordre à l'actionneur	Paul Moyse	19/12/2019 20:27
15	Objectif	En cours	High	Présentation pptx	Paul Moyse	20/12/2019 16:43
14	Objectif	Nouvelle	Low	Recette R1 : Cobox Server	Paul Moyse	18/12/2019 22:20
13	Objectif	En cours	Immediate	Rédaction du rapport de projet final	Damien Desmarets	20/12/2019 16:44
12	Objectif	En cours	Immediate	Rédaction du rapport d'activité #4	Damien Desmarets	20/12/2019 16:44
11	Objectif	En cours	High	Implantation V_gamma sur Rasp	Paul Moyse	20/12/2019 16:45
10	Objectif	En cours	Urgent	Création page PHP d'affichage graphique	William Ilhe	20/12/2019 16:48
9	Objectif	Terminée	High	Inscription en base de données des mesures	Paul Moyse	16/12/2019 15:46
8	Objectif	Terminée	High	Modèle serveur - BDD fonctionnel	Paul Moyse	14/12/2019 14:57
7	Objectif	Terminée	Urgent	Rédaction du rapport d'activité #3	Damien Desmarets	15/12/2019 08:39
6	Objectif	Terminée	High	Squelette IHM	William Ilhe	14/12/2019 14:57
5	Objectif	Terminée	Normal	Prototype 2 fonctionnel	Paul Moyse	14/12/2019 15:16
4	Objectif	Terminée	Normal	Prototype 1 fonctionnel	Paul Moyse	06/12/2019 20:48
3	Objectif	En cours	Immediate	Itération n°4	Paul Moyse	20/12/2019 16:45
2	Objectif	Terminée	Normal	Itération n°3	Paul Moyse	15/12/2019 08:40
1	Objectif	En cours	Immediate	Rendu final - V2.0	Paul Moyse	20/12/2019 16:45

Figure 4 : Vue liste des tâches par collaborateur

Figure 5: Planning du projet

Une autre visualisation possible est le planning, avec accès direct aux informations importantes en un simple clic.

2.4. Fonctionnement du programme

Ci-dessous, nous pouvons voir le programme lancé. Toutes les 5 secondes, une nouvelle connexion se lance et transmet les données via l'encapsulation réseau. Elle se ferme par la suite par soucis d'économie de bande passante et de ressources matérielles.

Les données acquises sont ensuite insérées dans la base de données après authentification sécurisée sur celle-ci.

```
[+]Bind to port 4444
[+]Listening....
Connection accepted from 27.127.0.0:37039
Mesure n° 17
Ecriture du process 16334 dans la mémoire
I talk with device n^{\circ} 2, he says temp is 23.800000
Le conseil à décidé de l'ordre 0
Disconnected from 27.127.0.0:37039
ID : 2 || Temp : 23.800000 || Hum : 66.000000
Ouverture de la base de données...
Ouverture OK
Insertion OK
Fermeture BDD.
Connection accepted from 10.42.0.28:54338
Mesure nº 18
Ecriture du process 16346 dans la mémoire
I talk with device n° 2, he says temp is 23.600000
Le conseil à décidé de l'ordre 0
Disconnected from 10.42.0.28:54338
ID : 2 || Temp : 23.600000 || Hum : 68.600000
Ouverture de la base de données...
Ouverture OK
Insertion OK
Fermeture BDD.
```

Figure 6: exécution du programme dans la console

I.4. Aspect Sécurité & Qualité

Méthodes	Détails
Authentification Wi-Fi	La méthode de connexion sur la carte Raspberry est une authentification forte WPA2 PSK
Contrôle d'accès	Un Fail2Ban gère les adresses IP pour l'administration sécurisée (blocage au bout de 3 tentatives)
Firewall Iptables	Gestion sécurisée des ports réseau et du masquage
Chiffrement	Utilisation du protocole de connexion SSH, Chiffrement de la base de données, implémentation de la suite HTTPS sur l'interface Web (certificat racine, TLS 1.3, HTTP 1.1), hachage des mots de passe
Gestion de l'obsolescence	Désactivation des protocoles obsolètes
Pentest	Un Pentest a été réalisé avec les méthodes blackbox et whitebox par un organisme externe
Stabilité du logiciel	Gestion utilisateur, test opératoire et aléatoire
Endurance	Nous avons laissé tourner l'infrastructure pendant 1 mois

III. Glossaire

- GPIO : General Purpose Input / Output
- ❖ BDD : Base De Données
- ❖ IHM : Interface Homme Machine
- Wi-Fi: Wireless Fidelity
- ❖ SSH : Secure Shell
- HTTP (S): Hyper Text Transfer Protocol (Secure)
- TLS: Transport Layer Security
- ❖ WPA : Wi-Fi Protected Access