

Department of Chemical Engineering, Indian Institute of Technology, Delhi

Subject: CHL261 (Instrumentation and Process Control)

Major (40 Marks), Duration: 2 hr (Open Book: Chemical Process Control by George Stephanopolous & Process System Analysis and Control by Donald Coughanowr)

SOLVE ANY FOUR QUESTIONS

1) The open loop transfer function of a negative feedback control system is given by $G_{OL}(s) = \frac{K(s+1)}{s^2(0.316s+1)}$

Determine analytically:

- a) Possible maximum phase margin and the frequency at which it occurs.
- (5+5 marks) b) What should be the gain K for this phase margin?
- A unity feedback control system has an open loop transfer function $G_{OL}(s) = \frac{K(s+1)}{s(s-1)}$.
 - a) Show analytically that the root loci of complex roots are part of circle with (-1, 0) as centre and radius = $\sqrt{2}$ (Hint: Make use of angle criteria).
 - b) Sketch the root locus with K as a variable parameter (5+5 marks)
- 3) A feedback control system has PI controller with transfer function $G_c(s) = 0.4\left(1 + \frac{1}{0.4s}\right)$ to control the process $G_p(s) = \frac{1}{(s+0.6)}$. Assume $G_f(s) = G_m(s) = 1$.

For the given system determine:

- a) Natural frequency
- b) Damping factor
- c) Time constant
- d) Overshoot
- e) Decay ratio

(5×2 marks)

4) Liquid flows into a tank at the rate of F_i m³/s. The tank has three vertical walls and one slopping outward at an angle β to the vertical. The base of the tank is a square with sides of length x m and the average operating level of liquid in the tank is Z₀ m. If the relationship between liquid level and flow out of the tank at any instant is linear, develop an expression for the time constant for the system. (Hint: Use the appropriate expression for volume. Use Taylor series for linearization)

(10 Marks)

- 5) Solve following sub questions:
 - a) If the transfer functions for process, disturbance, disturbance measurement and final control element are: $G_p(s) = \frac{2e^{-0.3s}}{0.5s+1}$, $G_d(s) = \frac{1}{0.7s+1}$, $G_{md}(s) = 0.8$ and $G_f(s) = 0.9$, what will be the transfer function for perfect feed-forward controller? Is it possible to build this feedforward controller?
 - b) What overall transfer function $G(s) = \frac{C(s)}{R(s)}$ is expected for following system:

