Table B1: Phishing dataset. Performance (%) of different methods under noise. We generate noise by randomly replacing the results of different rows in the base clusterings with other clusters. It can be observed that our method still exhibits satisfactory performance even at high noise levels.

			ARI					NMI					Purity		
Method	10%	30%	50%	70%	90%	10%	30%	50%	70%	90%	10%	30%	50%	70%	90%
CEAM	$5.9_{\pm 2}$	$5.9{\scriptstyle \pm 2}$	$5.8{\scriptstyle \pm 2}$	$1.3{\scriptstyle \pm 2}$	$0.0_{\pm 1}$	$6.0_{\pm 2}$	$4.8{\scriptstyle \pm 2}$	$4.7{\scriptstyle \pm 2}$	$1.1_{\pm 2}$	$0.1_{\pm 1}$	$59.9_{\pm 2}$	$60.1{\scriptstyle \pm 2}$	$60.7{\scriptstyle\pm2}$	$57.1{\scriptstyle \pm 2}$	$55.5{\scriptstyle\pm2}$
$\mathrm{CES^2L}$	$3.7_{\pm 3}$	$6.7{\scriptstyle \pm 3}$	$7.7{\scriptstyle \pm 4}$	$0.5{\scriptstyle \pm 2}$	$0.2{\scriptstyle \pm 1}$	$4.7_{\pm 3}$	$7.1{\scriptstyle \pm 4}$	$6.3{\scriptstyle \pm 3}$	$0.6 {\scriptstyle \pm 2}$	$0.1{\scriptstyle \pm 1}$	$59.0_{\pm 3}$	$61.1{\scriptstyle \pm 3}$	$62.0{\scriptstyle \pm 4}$	$56.1{\scriptstyle \pm 2}$	$55.5{\scriptstyle \pm 2}$
$\mathrm{CES^2Q}$	$5.1_{\pm 4}$	$5.6{\scriptstyle \pm 3}$	$5.7{\scriptstyle\pm3}$	$1.0_{\pm 2}$	0.1 _{±1}	$5.3_{\pm 3}$	$5.6{\scriptstyle \pm 4}$	$5.2{\scriptstyle \pm 3}$	$0.9{\scriptstyle \pm 2}$	0.1 _{±1}	$59.5_{\pm 3}$	$59.9{\scriptstyle \pm 3}$	$60.5{\scriptstyle \pm 3}$	$56.6{\scriptstyle \pm 3}$	$55.5{\scriptstyle \pm 2}$
$_{ m LWEA}$	$-0.4_{\pm 2}$	$\text{-}0.2{\scriptstyle\pm2}$	0.0 _{± 2}	0.0 ± 1	0.0	$0.2_{\pm 2}$	$0.1{\scriptstyle \pm 2}$	$0.2{\scriptstyle \pm 2}$	$0.3{\scriptstyle \pm 2}$	0.1	$55.5_{\pm 2}$	$55.5{\scriptstyle \pm 2}$	$55.6{\scriptstyle \pm 2}$	$55.7{\scriptstyle \pm 2}$	$55.5{\scriptstyle \pm 2}$
MKKM	$7.7_{\pm 3}$	$0.9_{\pm 2}$	$3.9{\scriptstyle \pm 2}$	$1.2{\scriptstyle \pm 2}$	0.0 _{±1}	$7.9_{\pm 3}$	$2.8_{\pm 3}$	$3.9{\scriptstyle \pm 3}$	$1.0{\scriptstyle \pm 2}$	0.1 _{±1}	61.3±3	$56.7{\scriptstyle \pm 3}$	$59.3{\scriptstyle \pm 3}$	$56.9{\scriptstyle \pm 2}$	$55.5{\scriptstyle \pm 2}$
SMKKM	$7.3_{\pm 3}$	$7.6{\scriptstyle \pm 3}$	$3.3{\scriptstyle \pm 3}$	$0.5{\scriptstyle \pm 2}$	$0.2_{\pm 1}$	7.1±3	$7.1{\scriptstyle \pm 3}$	$3.7{\scriptstyle \pm 3}$	$0.6{\scriptstyle \pm 2}$	0.1 _{±1}	$61.2_{\pm 3}$	$61.5{\scriptstyle \pm 3}$	$58.6{\scriptstyle \pm 3}$	$56.1{\scriptstyle \pm 2}$	$55.5{\scriptstyle \pm 2}$
SEC	$4.5_{\pm4}$	$3.4{\scriptstyle \pm 3}$	$8.4{\scriptstyle \pm 5}$	$1.0_{\pm 3}$	$0.1{\scriptstyle \pm 2}$	$5.5_{\pm 4}$	$4.1{\scriptstyle \pm 3}$	$7.0{\scriptstyle \pm 4}$	$1.1_{\pm 3}$	0.1 _{±2}	$59.7_{\pm 4}$	$58.8{\scriptstyle\pm3}$	$62.7{\scriptstyle \pm 5}$	$56.6{\scriptstyle \pm 3}$	$55.5{\scriptstyle \pm 2}$
TRCE	$8.6_{\pm 2}$	$5.1{\scriptstyle \pm 2}$	$6.9{\scriptstyle \pm 3}$	$1.1{\scriptstyle \pm 2}$	$0.0_{\pm 1}$	$8.3_{\pm 2}$	$5.0{\scriptstyle \pm 2}$	$5.7{\scriptstyle \pm 2}$	$1.1{\scriptstyle \pm 2}$	0.1 _{±1}	$62.1_{\pm 2}$	$59.7{\scriptstyle \pm 2}$	$61.4{\scriptstyle \pm 3}$	$56.8{\scriptstyle \pm 3}$	$55.5{\scriptstyle \pm 2}$
CESHL	$-0.4_{\pm 3}$	0.0 _{±2}	$0.3_{\pm 3}$	$0.3{\scriptstyle \pm 2}$	$0.0_{\pm 1}$	$0.2_{\pm 2}$	0.5 ± 3	0.8 ± 3	$0.3{\scriptstyle \pm 2}$	0.0 _{±1}	$55.5_{\pm 2}$	$55.7{\scriptstyle \pm 2}$	$56.0{\scriptstyle \pm 3}$	$55.9{\scriptstyle \pm 3}$	$55.5{\scriptstyle \pm 2}$
SCCABG	$3.7_{\pm 3}$	$7.2{\scriptstyle \pm 4}$	$8.0_{\pm4}$	$0.5{\scriptstyle \pm 2}$	0.1	$4.7_{\pm 3}$	$7.4{\scriptstyle \pm 4}$	$6.9{\scriptstyle \pm 3}$	$0.6{\scriptstyle \pm 2}$	0.1	$58.5_{\pm 4}$	$61.4{\scriptstyle \pm 4}$	$62.3{\scriptstyle \pm 4}$	$56.0{\scriptstyle \pm 3}$	$55.5{\scriptstyle \pm 2}$
AWEC	$5.1_{\pm 3}$	$4.2{\scriptstyle \pm 3}$	$9.1_{\pm 3}$	$0.8_{\pm 3}$	$0.1{\scriptstyle \pm 2}$	$5.4_{\pm 3}$	$4.7{\scriptstyle \pm 3}$	$7.3{\scriptstyle \pm 3}$	0.8 _{±2}	0.1	$59.7_{\pm 3}$	$59.1{\scriptstyle \pm 3}$	$63.1{\scriptstyle \pm 3}$	$56.5{\scriptstyle \pm 3}$	$55.5{\scriptstyle \pm 2}$
ECCMS	$-0.3_{\pm 3}$	$\text{-}0.2{\scriptstyle\pm3}$	$0.3_{\pm 3}$	$0.2_{\pm 3}$	$0.0_{\pm 2}$	$0.2_{\pm 3}$	$0.4_{\pm 3}$	$1.2{\scriptstyle \pm 3}$	$0.3{\scriptstyle \pm 2}$	$0.1{\scriptstyle \pm 2}$	$55.5_{\pm 2}$	$55.7{\scriptstyle \pm 2}$	$56.2{\scriptstyle \pm 3}$	$55.8{\scriptstyle\pm3}$	$55.5{\scriptstyle \pm 2}$
NWCA	$-0.4_{\pm 3}$	$0.0{\scriptstyle \pm 2}$	0.3	$0.3_{\pm 3}$	$0.0_{\pm 2}$	$0.2_{\pm 3}$	0.5 ± 3	0.8 ± 3	$0.3_{\pm 3}$	$0.0_{\pm 2}$	$55.5{\scriptstyle \pm 2}$	$55.7{\scriptstyle \pm 2}$	$56.0{\scriptstyle \pm 3}$	$55.9{\scriptstyle \pm 3}$	$55.5{\scriptstyle \pm 2}$
Proposed (α =0.1)	$27.6_{\pm 6}$	$\underline{23.2}_{\pm 5}$	$\underline{16.7}_{\pm 3}$	$\underline{4.9}_{\pm 2}$	$0.2_{\pm 1}$	21.7 _{±3}	18.0±2	$\underline{12.7}_{\pm 3}$	$3.7_{\pm 2}$	$0.1_{\pm 1}$	$\overline{75.3}_{\pm 3}$	$\underline{68.1}{\scriptstyle\pm3}$	$\underline{65.9}_{\pm 3}$	$\underline{57.2}_{\pm 3}$	$\underline{55.5}_{\pm 2}$
Proposed	$27.6_{\pm 6}$	$23.2{\scriptstyle\pm5}$	$19.4{\scriptstyle\pm6}$	$5.6{\scriptstyle \pm 6}$	$0.2_{\pm 1}$	$21.7_{\pm 6}$	$\boldsymbol{18.0}{\scriptstyle \pm 6}$	$14.6{\scriptstyle \pm 6}$	$\textbf{4.1}{\scriptstyle \pm 6}$	$0.1{\scriptstyle \pm 1}$	$oxed{75.3}_{\pm 3}$	$\textbf{68.1}{\scriptstyle \pm 3}$	$\textbf{68.4}{\scriptstyle\pm3}$	$57.9{\scriptstyle \pm 3}$	$55.5{\scriptstyle\pm2}$

Table B2: Seeds dataset. Performance (%) of different methods under noise. It can be observed that our method also achieves excellent performance on this dataset. However, when the noise level reaches 90%, we consider that all methods are unable to provide valuable information, as the data is severely contaminated at this point.

	ARI								Purity						
Method	10%	30%	50%	70%	90%	10%	30%	50%	70%	90%	10%	30%	50%	70%	90%
CEAM	$61.0_{\pm 4}$	$60.1{\scriptstyle \pm 4}$	$50.3_{\pm 6}$	$18.7{\scriptstyle \pm 5}$	0.1 _{±2}	57.6±9	$58.0_{\pm 8}$	$36.5{\scriptstyle\pm7}$	$4.9{\scriptstyle \pm 5}$	$1.4_{\pm 2}$	$76.1_{\pm 2}$	$76.3{\scriptstyle \pm 3}$	$62.1{\scriptstyle \pm 4}$	$41.1{\scriptstyle \pm 4}$	$37.1{\scriptstyle \pm 2}$
$\mathrm{CES^2L}$	$55.2_{\pm7}$	$45.2{\scriptstyle \pm 5}$	$31.0{\scriptstyle \pm 13}$	$2.9{\scriptstyle \pm 7}$	$0.3{\scriptstyle \pm 3}$	$58.6_{\pm 9}$	$57.0{\scriptstyle \pm 9}$	$40.0{\scriptstyle \pm 17}$	$6.7{\scriptstyle \pm 8}$	$1.7_{\pm 3}$	$74.8_{\pm 7}$	$75.7{\scriptstyle \pm 5}$	$66.5{\scriptstyle \pm 11}$	$43.1{\scriptstyle \pm 5}$	$36.9{\scriptstyle \pm 2}$
$\mathrm{CES^2Q}$	$50.5_{\pm 10}$	$41.8{\scriptstyle \pm 8}$	$28.5{\scriptstyle\pm12}$	$3.6{\scriptstyle \pm 8}$	$0.2{\scriptstyle \pm 2}$	$58.3_{\pm 14}$	$51.8{\scriptstyle \pm 13}$	$35.3{\scriptstyle \pm 16}$	$6.0{\scriptstyle \pm 10}$	$1.6{\scriptstyle \pm 3}$	$74.6_{\pm 9}$	$70.3{\scriptstyle \pm 7}$	$61.8{\scriptstyle \pm 11}$	$42.3{\scriptstyle \pm 6}$	$37.0{\scriptstyle \pm 2}$
LWEA	$60.3_{\pm 2}$	$58.1{\scriptstyle \pm 3}$	$44.1{\scriptstyle \pm 6}$	$6.9{\scriptstyle \pm 4}$	$0.2_{\pm 3}$	$60.4_{\pm 4}$	$56.5{\scriptstyle \pm 6}$	$38.2 \scriptstyle{\pm 9}$	$8.3{\scriptstyle \pm 8}$	$1.8_{\pm 3}$	$77.7_{\pm 1}$	$75.6{\scriptstyle \pm 2}$	$63.2{\scriptstyle \pm 3}$	$45.8{\scriptstyle \pm 5}$	$36.6{\scriptstyle \pm 2}$
MKKM	$44.6{\scriptstyle\pm13}$	$26.7{\scriptstyle \pm 7}$	$14.9{\scriptstyle \pm 5}$	$9.2{\scriptstyle \pm 3}$	$0.4{\scriptstyle \pm 2}$	$44.1_{\pm 14}$	$26.4 {\scriptstyle \pm 7}$	$14.5{\scriptstyle \pm 5}$	$9.5{\scriptstyle \pm 2}$	$\underline{2.3}{\scriptstyle\pm2}$	$75.0_{\pm 11}$	$65.3{\scriptstyle \pm 5}$	$57.8{\scriptstyle \pm 4}$	$52.4{\scriptstyle \pm 2}$	$\underline{41.0}_{\pm 1}$
SMKKM	$59.2_{\pm 3}$	$53.5{\scriptstyle \pm 2}$	$49.7{\scriptstyle \pm 5}$	$20.8{\scriptstyle \pm 4}$	$0.6{\scriptstyle \pm 2}$	$60.4_{\pm 5}$	$55.8{\scriptstyle \pm 6}$	$48.3{\scriptstyle \pm 5}$	$18.3{\scriptstyle \pm 4}$	$1.4{\scriptstyle \pm 2}$	$82.9_{\pm 2}$	$79.6{\scriptstyle \pm 2}$	$79.0_{\pm 3}$	$60.8{\scriptstyle \pm 4}$	$39.5{\scriptstyle \pm 2}$
SEC	$30.3_{\pm 6}$	$40.8{\scriptstyle \pm 4}$	$33.6{\scriptstyle \pm 8}$	$10.0{\scriptstyle \pm 4}$	$0.4_{\pm 3}$	$58.7_{\pm 13}$	$47.8{\scriptstyle \pm 9}$	$40.0{\scriptstyle \pm 12}$	$11.6{\scriptstyle \pm 6}$	$1.8_{\pm4}$	$64.2_{\pm 4}$	$70.3{\scriptstyle \pm 2}$	$65.7{\scriptstyle \pm 6}$	$51.0{\scriptstyle \pm 4}$	$39.2{\scriptstyle \pm 2}$
TRCE	$58.1_{\pm 2}$	$52.2{\scriptstyle \pm 3}$	$44.0{\scriptstyle \pm 5}$	$10.3{\scriptstyle \pm 8}$	$0.1_{\pm 3}$	$59.7_{\pm 2}$	$58.0{\scriptstyle \pm 3}$	$48.6{\scriptstyle \pm 8}$	$18.7{\scriptstyle \pm 9}$	$1.6{\scriptstyle \pm 3}$	$82.6_{\pm 1}$	$82.1{\scriptstyle \pm 2}$	$73.1{\scriptstyle \pm 4}$	$50.5{\scriptstyle \pm 6}$	$36.5{\scriptstyle \pm 2}$
CESHL	$58.1_{\pm 8}$	$55.4{\scriptstyle \pm 5}$	$35.0{\scriptstyle \pm 2}$	$14.8{\scriptstyle \pm 9}$	$0.3{\scriptstyle \pm 2}$	$56.7_{\pm 12}$	$56.2 \scriptstyle{\pm 9}$	$42.3{\scriptstyle \pm 17}$	$19.4{\scriptstyle \pm 3}$	$1.4{\scriptstyle \pm 2}$	$82.5_{\pm 7}$	$79.6{\scriptstyle \pm 7}$	$66.7{\scriptstyle\pm11}$	$53.2{\scriptstyle \pm 7}$	$38.8{\scriptstyle \pm 2}$
SCCABG	$56.9_{\pm 6}$	$48.2{\scriptstyle \pm 6}$	$17.8{\scriptstyle \pm 8}$	0.6 ± 7	$0.0_{\pm 2}$	$58.9_{\pm 10}$	$56.6 \scriptstyle{\pm 21}$	$26.3{\scriptstyle \pm 21}$	$4.2{\scriptstyle \pm 6}$	$\underline{2.3}{\scriptstyle\pm2}$	$81.7_{\pm 7}$	$75.1{\scriptstyle \pm 12}$	$53.4{\scriptstyle\pm12}$	$35.8{\scriptstyle \pm 5}$	$34.7{\scriptstyle \pm 1}$
AWEC	$55.1_{\pm 2}$	$54.7{\scriptstyle \pm 2}$	$50.1{\scriptstyle \pm 4}$	$19.7{\scriptstyle \pm 5}$	$0.0_{\pm 2}$	$61.7_{\pm 4}$	$61.5{\scriptstyle \pm 5}$	$47.6{\scriptstyle \pm 8}$	$20.2{\scriptstyle \pm 6}$	$0.8_{\pm 2}$	$83.2_{\pm 2}$	$80.0{\scriptstyle \pm 2}$	$81.6{\scriptstyle \pm 2}$	$62.3{\scriptstyle \pm 4}$	$37.8{\scriptstyle \pm 3}$
ECCMS	$60.9_{\pm 3}$	$50.1{\scriptstyle \pm 2}$	$44.1{\scriptstyle \pm 6}$	$6.9{\scriptstyle \pm 4}$	$0.2_{\pm 3}$	$60.0_{\pm 7}$	$53.4{\scriptstyle \pm 6}$	$45.8{\scriptstyle \pm 9}$	$9.2{\scriptstyle \pm 8}$	$1.2{\scriptstyle \pm 3}$	$83.8_{\pm 2}$	$79.0{\scriptstyle \pm 2}$	$73.9{\scriptstyle\pm3}$	$47.2{\scriptstyle \pm 5}$	$38.3{\scriptstyle \pm 2}$
NWCA	$ 58.6_{\pm 2} $	$49.1{\scriptstyle \pm 2}$	$23.9{\scriptstyle \pm 3}$	$2.1{\scriptstyle \pm 3}$	$0.2{\scriptstyle \pm 2}$	$58.1_{\pm 4}$	$47.9{\scriptstyle \pm 7}$	$27.4{\scriptstyle \pm 9}$	$4.1{\scriptstyle \pm 8}$	$1.0_{\pm 3}$	$82.4_{\pm 2}$	$77.5{\scriptstyle \pm 2}$	$61.0{\scriptstyle \pm 3}$	$41.6{\scriptstyle \pm 4}$	$37.9{\scriptstyle \pm 2}$
Proposed (α =0.1)	$\underline{68.0}_{\pm 6}$	$\underline{67.3}_{\pm 6}$	$\underline{57.1}_{\pm 6}$	$\underline{22.4}_{\pm 6}$	0.4±3	$67.9{\scriptstyle \pm 12}$	$\underline{66.1}{\scriptstyle \pm 12}$	53.6±9	$\underline{20.6}{\scriptstyle \pm 3}$	$1.2_{\pm 3}$	$87.9_{\pm 2}$	$\underline{87.7}_{\pm 2}$	83.4±3	$\underline{63.5}{\scriptstyle\pm8}$	$39.2{\scriptstyle \pm 2}$
Proposed	68.0	$\textbf{67.3}{\scriptstyle \pm 6}$	$\textbf{58.8}_{\pm 4}$	$25.1{\scriptstyle \pm 5}$	$0.5{\scriptstyle \pm 3}$	$oxed{67.9}_{\pm 12}$	$\textbf{66.4}{\scriptstyle\pm12}$	$55.9_{\pm7}$	$23.2{\scriptstyle \pm 3}$	$2.5{\scriptstyle \pm 2}$	$oxed{87.9}_{\pm 2}$	$\textbf{87.7}{\scriptstyle\pm2}$	$84.1{\scriptstyle \pm 3}$	$65.9{\scriptstyle \pm 5}$	$41.5{\scriptstyle \pm 2}$