Simulations of Ballot Polling Risk-Limiting Audits

Oliver Broadrick¹ Sarah Morin¹ Grant McClearn² Neal McBurnett Poorvi L. Vora¹ Filip Zagórski³⁴

 $^{1} \mbox{Department of Computer Science, The George Washington University} \\ \mbox{(odbroadrick@gmail.com)}$

²Department of Computer Science, Stanford University (grantmcc@stanford.edu)

³Wroclaw University of Science and Technology (filip.zagorski@gmail.com)

⁴Votifica

April 21, 2022

Outline

- Risk-Limiting Audits
 - ▶ Bravo and Minerva
- Experiments
- Results
 - Stopping Probability
 - Risk
 - Number of Ballots
- Discussion and Future Work

Post-tabulation audits

- Scanning machines are used to tabulate ballots
 - ► Cannot trust the machines: bugs, configuration errors, hacking
- Post-tabulation audits
- Risk-Limiting Audits

Risk-Limiting Audits

- ► Risk-Limiting Audit (RLA) is a post-tabulation audit that manualy checks a random sample of voters' ballots
- Relies on a voter-verified paper trail
- Sketch:
 - 1. election results announced
 - 2. sample ballots randomly
 - check if the sample is 'statistically similar' to the announced tally
 - "Yes" correct stop the audit
 - ▶ "No" incorrect proceed to a full hand count
 - "Don't know yet" undetermined draw more samples (goto:2)

Bravo

- Most commonly used ballot polling RLA
- ► In the two candidate case is an instance of Wald's Sequential Probability Ratio Test (SPRT)
- Is thus the most efficient RLA when ballots are drawn sequentially (i.e. ballot-by-ballot)
- ► Real audits are performed in rounds for which BRAVO can be implemented as:
 - ► Selection-Ordered (SO) Bravo
 - End-of-Round (EoR) BRAVO

MINERVA

- Recent RLA designed for round-by-round use
- Uses a ratio of the tails of the probability distributions used in Bravo
- ► Known to require half the number of ballots as EoR Bravo in a first round to achieve a large (0.90) probability of stopping
- Unknown how the audits compare for smaller stopping probability or for rounds after the first

Experiments

- Use simulations to provide evidence for theoretical claims
- ► R2B2 software library for round-by-round and ballot-by-ballot RLAs
- ► Simulate RLAs for election results from the 2020 Presidential election (all margins above 0.05)
 - ► 10000 = 10⁴ trials assuming the underlying election is as announced
 - $ightharpoonup 10000 = 10^4$ trials assuming the underlying election is a tie
- Risk limit: 10%
- Round schedules:
 - BRAVO round sizes to achieve a chosen probability of stopping in each round given that the audit has already reached that round
 - ► MINERVA first round sizes to achieve a chosen probability of stopping, and subsequent round sizes found by multiplying the previous round size by a constant (1.5 and 1)
- Stopping probabilities: 0.90 and 0.25

Experiments

Definition

An audit \mathcal{A} takes a sample of ballots X as input and gives as output either (1) *Correct*: the audit is complete, or (2) *Uncertain*: continue the audit.

▶ Binary hypothesis test: H_0 (a tie) and H_a (announced results)

Definition (Risk)

The maximum risk R of audit \mathcal{A} with sample $X \in \{0,1\}^*$ drawn from the true underlying distribution of ballots is $R(\mathcal{A}) = \Pr[\mathcal{A}(X) = Correct \mid H_0].$

Definition (Risk Limiting Audit (α -RLA))

An audit A is a Risk Limiting Audit with risk limit α iff $R(A) \leq \alpha$.

Experiments

Definition (Stopping Probability)

The stopping probability S_j of an audit A in round j is $S_j(A) =$

$$\Pr[\mathcal{A}(X) = \textit{Correct in round } j \land \mathcal{A}(X) \neq \textit{Correct previously} \mid H_a]$$

Definition (Cumulative Stopping Probability)

The cumulative stopping probability C_j of an audit \mathcal{A} in round j is $C_j(\mathcal{A}) = \sum_{i=1}^j S_j$

Definition (Conditional Stopping Probability)

The conditional stopping probability of an audit \mathcal{A} in round j is $\chi_j(\mathcal{A}) =$

$$\Pr[A(X) = Correct \ in \ round \ j \mid H_a \land A(X) \neq Correct \ previously]$$

Results: Stopping Probability ($\chi_1 = 0.9$)

Results: Stopping Probability ($\chi_1 = 0.25$)

Results: Risk

Results: Number of Ballots

Results: Round Size Proportions

For $\chi_1=0.25$, the number of ballots required for MINERVA is smaller than that required by SO BRAVO and EoR BRAVO

- ► Improvement considerably smaller than that when the stopping probability is 0.9
- Number of ballots for SO Bravo for $\chi_1=0.9$ is about a third more than that required by MINERVA, but for $\chi_1=0.25$, it requires only about a tenth more ballots than does MINERVA
- Number of ballots for EoR Bravo for $\chi_1=0.9$ is about twice those required by MINERVA, but for $\chi_1=0.25$, it requires only about a fourth to a half more ballots (depending on margin) than does MINERVA

For $\chi_1=0.9$ with multiplying factor 1, MINERVA consequent conditional stopping probabilities are about 0.75 and 0.74 respectively for rounds two and three.

▶ When the multiplying factor is 1.5, we see $\chi_2 \approx 0.91$ and $\chi_3 = 0.83$

Conclusion

- ▶ We describe use of the R2B2 library and simulator to characterize:
 - risk,
 - stopping probability, and
 - number of ballots
 - for various round schedules.
- ► MINERVA requires fewer ballots than either implementation of BRAVO in all cases we study, but the advantage decreases for a smaller stopping probability

Future Work

- ▶ More detailed study of the impact of different round schedules
- Simulations with other underlying distributions

Thank you