

EEGNet Brain functional network mapping

A probabilistic inference approach to brain network construction from data

Hoang Nguyen -M1-

Murata Laboratory

Department of Computer Science
Tokyo Institute of Technology

- Network construction with probabilistic inference.
- Motivation.
- Development framework and preliminary result.

- Network construction with probabilistic inference.
- Motivation.
- Development framework and preliminary result.

Network construction by probabilistic model

Advantages over traditional methods

Learning procedure is straight forward [Ghahramani'15]

Represented as a n x n matrix.

- Target distribution to learn: $P(N, \theta^H, Data)$
- Flexible model that user can defined.

Advantages over traditional methods

Potential: latent representation and temporal pattern

- Represented as a n x n x T tensor.
- Temporal Sigmoid Belief Network model.

• Target distribution to learn: $P(N^T, \theta^H, Data)$

- Network construction with probabilistic inference.
- Motivation.
- Development framework and preliminary result.

Existing methods for constructing brain network

Imaging techniques

fMRI

EEG

Existing methods for constructing brain network

Imaging techniques

- fMRI
- Measure blood flow.
- Good spatial resolution.
- Low temporal resolution.
- Requires expensive equipments.

- EEG
- Measure electrical potential.
- Low spatial resolution.
- High temporal resolution.
- Cheap equipments but prone to noise.

These two techniques are complementary to each other.

We want to take advantage of the EEG time series.

Existing methods for constructing brain network

Frequency-based methods

• Coherence, Non-linear coherence.

$$\kappa_{xy}^{2}(f) = \frac{|\langle S_{xy}(f) \rangle|^{2}}{|\langle S_{xx}(f) \rangle| |\langle S_{yy}(f) \rangle|}$$

Challenges with EEG data

Low spatial resolution

- 10-20 system with up to 345 electrode locations. [Oostenveld'01]
- Nodes in constructed network are electrodes.

High (excellence) temporal resolution

- Frequency domain and causality.
- Harnessing temporal resolution even more?
- E.g. Capturing dynamic pattern of constructed network?

- Network construction with probabilistic inference.
- Motivation.
- Development framework and preliminary result.

Julia programming language

O

High performance computing with Julia:

 Very young programming language developed at MIT.

- julia
- Rapidly growing community. (EEG.jl, brainwave.jl, EEGNet.jl)

Benefit:

- Free, fast, scalable, support BigInt and BigFloat.
- Extensively support matrix operations and GPU computing.

- [1] Modern network science of neurological disorders Cornelis J. Stam. Nature Reviews Neuroscience 2014
- [2] Electroencephalography wikipedia: Electroencephalography. Visited: 2016/05/20
- [3] A tutorial in connectome analysis

 Markus Kaiser. Journal of Neurolmage 2011
- [4] Nonlinear multivariate analysis of neurophysiological signals Pereda, E. et al. Progress in Neurobiology Volume 77, 2005
- [5] Motif-Synchronization: A new method . . . R.S. Rosário et al. Physica A. Volume 439. 2015.
- [6] The five percent electrode system for high-resolution EEG/ERP Oostenveld, R. et al. Clinical Neurophysiology Volume 112, 2001.

References

- [7] Capturing dynamic patterns of task-based functional connectivity Karamzadeh, N. el al. Neurolmage Volume 66, 2013.
- [8] Single-subject grey matter graphs in Alzheimer's disease Tijms, B. M. et el. PLoS ONE 8, 2013.
- [9] Probabilistic machine learning and artificial intelligence Zoubin Ghahramani. Nature Vol 521, 2015.