

Sardar Patel Institute of Technology

(Empowered Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India B. Tech. EXTC

B. Tech. (Electronics and Telecommunication Engineering)

Syllabus (Semester III-IV)

2025 Iteration (w.e.f. 2025-26)

Sardar Patel Institute of Technology

(Empowered Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India

B. Tech. EXTC

2023 ITERATION: ELECTRONICS AND TELECOMMUNICATION ENGG.

Nomenclature of the Courses

Abbreviation	Course Category
BSESC	Basic Science & Engineering Science Courses
BSESEC	Basic Science & Engineering Science Elective Courses
SEC	Skill Enhancement Course
AEC	Ability Enhancement Course
HSSMC	Humanities and Social Science in Management Courses
CC	Cocurricular Courses
IKS	Indian Knowledge System
UHV	Universal Human Values
PCC	Program Core Courses
PEC	Program Elective Courses
OEC	Open Elective Courses
ELC	Experiential Learning Courses
MDM	Multidisciplinary Minor
СР	Community Project
HC	Honor Courses
DMC	Double Minor Course

Abbreviations

L	Lecture Hour	О	Other Work (Self Study)
T	Tutorial Hour	Е	Total Engagement in Hours
P	Laboratory Hour	С	Credit Assigned

Sardar Patel Institute of Technology

(Empowered Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India

B. Tech. EXTC

				SEM III							
Sr. No	Course Category	Abbreviati on	Course Code	Course Name	L	T	P	O	E	C	
1	Basic & Engg. Sciences	BSES	MA201 Linear Algebra		2	0	2	5	9	3	
2	Basic & Engg. Sciences *	MT	MA202	Fundamentals of Mathematics-I*	2	1	0	0	3	3	
3	Skill Enhancement Course #	SEC	AS201	Professional Communication Skills	1	0	2	2	5	2	
				Course III							
			AS101	Engineering Physics/	2	0	2	4	8		
			AS102	Engineering Chemistry/	2	0	2	3	7		
	Basic & Engg. Sciences Elective		AS103	Biology for Engineers/	3	0	0	3	6		
			AS104	Engineering Mechanics/	2	0	2	4	8		
4			AS105	Engineering Graphics/	0	1	2+2	2	7	3	
	Belefices Elective		AS108	Material Science/	3	0	0	4	7		
			AS109	Environmental Science/	3	0	0	3	6		
			AS110	Energy Science/	3	0	0	3	6		
			AS111	Thermal & Fluid Engineering/	3	0	0	3	6		
5	Humanities	HSSM-I	HS2X X	Course I	2	0	0	3	5	2	
6		PCC	EC201	Electromagnetic Wave Engineering	3	0	2	5	7	4	
7	Program Core Courses (12)	PCC	EC202	Electronic Devices and Circuits	3	0	2	4	9	4	
8		PCC	EC203	Signal, Network and System	3	0	2	4	9	4	
9	Co-curricular Courses	CC (LLC)	LLC03	LLCXX	0	1/0	0/2	2	3	1	
	Total 14 2 12 30 57+ 23										

^{*}Only for Lateral Entry Students

No MSE and ESE exam

Sardar Patel Institute of Technology

(Empowered Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India

B. Tech. EXTC

			SE	M IV						
Sr. No	Course Category	Abbreviatio n	Course Code	Course Name	L	Т	P	o	E	C
1	Basic & Engg. Sciences	BSES	MA203	Probability and Stochastic Process	3	0	0	6	9	3
2	Basic & Engg. Sciences *	MM	MA204	Fundamentals of Mathematics-II*	2	1	0	0	3	3
3	Skill Enhancement Course #	SEC	AS202	Hardware Description Language programming	1	0	2	2	5	2
4	Humanities	HSSM-II	HS2XX	Course II	2	0	0	3	5	2
5		PCC	EC205	Analog and Digital Communication	3	0	2	4	9	4
6	Program Core Courses (11)	PCC	EC206	Computer Organization & Architecture	3	0	0	4	7	3
7		PCC	EC207	Mixed Signal Integrated Circuit	3	0	2	4	9	4
8	Cocurricular Courses	CC (LLC)	LLC04	LLCXX	0	1/ 0	0/ 2	2	3	1
9	Multidisciplinary Minor	MDM	MDEC1X	MDM-I	То	To be defined by others			3	
			Total						49+	22

No MSE and ESE exam

		Summer	term (For La	ateral Entry Students)						
Sr. No	Course Category	Abbreviation	Course Code	Course Name	L	Т	P	0	E	C
1	Basic & Engg. Sciences	BSES	MA201	Program Specific Maths-I – Linear Algebra	2	0	2	5	9	3
2	Basic & Engg. Sciences	BSES	MA203	Program Specific Maths-II Probability and Stochastic Process	3	0	0	6	9	3

- Students are expected to start working for the Mini Project I during the summer.
- Research internship of minimum 2 months for the "Honors by Research" for 6 credits- HR21 (Not for DSY)
- For Enrollment to Honors by research, Minimum CGPA must be 8.25

Sardar Patel Institute of Technology

(Empowered Autonomous Institute Affiliated to University of Mumbai)
Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India
B. Tech. EXTC

Semester-III

Sardar Patel Institute of Technology

(Empowered Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India

B. Tech. EXTC

Course	Course Name	Teac	hing Sc	(Hours	C	Credits Assigned				
(Category) Code		L	T	P	O	E	L	T	P	Total
		2	0	2	5	9	2	0	1	3
(BSC)		Examination Scheme								
	Linear Algebra	Component			ISE (%)		ASE (%)	ES	E (%)	Total
MA201		Theory			20		20		60	100
MAZUI		Laboratory			80				20	100

Pre-requis	Engineering Calculus/Foundation of Mathematics-I and Differential Equations and Complex Analysis/Foundation of Mathematics-II
Course Ob	jective: To develop mathematical skills for solving engineering problems.
Course Ou	tcomes (CO):At the End of the course students will be able to:
MA201.1	Solve a homogeneous and non-homogeneous system of linear equations using rank of a matrix.
MA201.2	Solve system of linear equations by Numerical Methods.
MA201.3	Solve equations in real life problems and to encode and decode messages using the concept of matrices.
MA201.4	Identify whether given structures are vector spaces and subspaces and construct a basis for them.
MA201.5	Show if a given matrix is diagonalizable or not.
MA201.6	Apply concepts of eigenvalues and eigenvectors to calculate functions of a square matrix and solve systems of differential equations using diagonalizable of matrices.

CO-PO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
MA201.1	3											
MA201.2	3											
MA201.3	3											
MA201.4	3											
MA201.5	3											
MA201.6	1	2										

Sardar Patel Institute of Technology

(Empowered Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India

B. Tech. EXTC

CO-PEO/ PSO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

	PEO1	PEO2	PEO3	PEO4	PSO1	PSO2
MA201.1	1					
MA201.2						
MA201.3	1					
MA201.4						
MA201.5						
MA201.6					1	

BLOOM'S Levels Targeted (Pl. Tick appropriate)

Remember / Understand / Apply /	Analyze	Evaluate	Create
---------------------------------	---------	----------	--------

Theory Component

Module No.	Unit No.	Topics	Ref	Hrs.
1	Title	Basics of matrices	3,5	03
	1.1	Revision of basic matrices and types of matrices.		01
	1.2	Row echelon form, Reduced Row Echelon form, Rank of a		02
		Matrix, Normal form.		
2	Title	Linear equations & its solutions	1,2,3,5	06
	2.1	Consistency and solution of simultaneous linear homogeneous		02
		and non-homogeneous equations.		
	2.2	Application of solving systems of equations in traffic control.		01
	2.3	Solution of system of linear algebraic equations, by		03
		(1) Gauss Elimination Method		
		(2) Gauss Jordan method		
		(3) Gauss Jacobi Iteration method		
		(4) Gauss Seidel Method.		
		(5) LU Decomposition -Crout's method		
3	Title	Vector spaces (over field of real numbers)	1,2,5	10
	3.1	Vector space, subspace, span, linear dependence and		10
		independence of vectors, basis, dimension, Introduction to		

Sardar Patel Institute of Technology

(Empowered Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India

B. Tech. EXTC

		Orthogonalisation, Orthonormal basis, orthogonal projection &		
		Gram-Schmidt process. Null space, row space, column space,		
		Rank-Nullity theorem (only statement).		
4	Title	Encoding & decoding using Matrices.	4	02
	4.1	Application of matrices to Coding and Decoding		02
5	Title	Eigenvalues and Eigenvectors	1,2,3,5	07
	5.1	Eigenvalues, Eigenvectors and its properties. Cayley Hamilton theorem and its applications. Diagonalisation of matrices. Derogatory and Non-derogatory matrices.		04
	5.2	Functions of a square matrix. Solving system of differential equations using diagonalisation, Singular Value Decomposition		03
6	Self- Study	 2.2 Forming equations using KVL for circuits and solving them using matrices. 3.1 Least square method 3.1 Linear Transformation of matrix. 5.1 Additional properties with proofs of eigenvalues and eigenvectors. 	1,2,3,5	05*
	'		Total	28

^{*}Total of 28 hours does not include the self-study hours.

Laboratory Component (Minimum 10 Laboratory experiments are expected)

Sr. No	Title of the Experiment
1	Introduction to Scilab (getting started) and its benefits to use as a mathematics tool.
2	Basic commands of Scilab and vectors & matrix operations.
3	Conditional branching and iterations using Scilab.
4	Solution of linear equations using row-echelon and inverse of a matrix.
5	Solutions of linear equations using Gauss Elimination method.
6	Solutions of linear equations using Gauss Jordan method.
7	Solutions of linear equations using Gauss-Jacobi method.
8	Solutions of linear equations using Gauss-Seidel method.
9	Solutions of linear equations using Crout's method.
10	To find Eigenvalues and Eigenvectors using Scilab

Sardar Patel Institute of Technology (Empowered Autonomous Institute Affiliated to University of Mumbai)

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India

B. Tech. EXTC

Text Books

Sr. No	Title	Edition	Authors	Publisher	Year
1	Linear Algebra and its applications	Fourth	Gilbert Strange	Cengage	2014
2	Higher Engineering Mathematics	Forty Fourth	Dr. B. S. Grewal	Khanna Publications	2020

Reference Book

Sr. No	Title	Edition	Authors	Publisher	Year
1	Linear Algebra and its applications	Third	David. C. Lay	Pearson Education	2006
2	Elementary Linear Algebra Application Version	Sixth	H Anton and Crorres	John Wiley and Sons	2010
3	Advanced Engineering Mathematics	Twenty Eighth	H.K Das	S.Chand	2014
4	Hill Ciphers	First	Jonaki B Ghosh	At Right Angles	2015
5	Advanced Engineering Mathematics	Tenth	Erwin Kreysizg	John Wiley & Sons	2011
6	Linear Algebra with Applications	Sixth	Keith Nicholson	Lyrvx	2009

Sardar Patel Institute of Technology

(Empowered Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India

B. Tech. EXTC

Course (Category)	Course Name	,	Teachi (Hr	ng Sc s/wee			(Credits Assigned			
Code		L	T	P	0	E	L	T	P	Total	
	Foundations of Mathematics-I	2	1	0	0	3	2	1	0	3	
(BSC)		Examination Scheme									
		Comp	onent	ISE	Z (%)	MS	E (%)	(%) ESE (%) Total			
MA202	Manicillaucs-1	Theory		1	20		20		50	100	
		Laboratory						-	-		

Pre-requisit	e Course Codes, if any. Basic Engineering Mathematics at first year of Diploma.					
Course Obje	ective: To develop basic foundation of mathematical skills.					
Learning O	utcomes (LO): At the End of the course students will be able to:-					
MA202.1	Differentiate a function of one variable and partially differentiate a function of more that					
	one variable.					
MA202.2	Apply the concept of partial differentiation to find extreme values of a given function.					
MA202.3	Find nth order derivative of a given function.					
MA202.4	Expand a given function as a power series.					
MA202.5	Perform operations on matrices and find inverses and determinants of them.					
MA202.6	Perform vector operations and compute dot products and cross products between them.					

CO-PO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

	PO1	PO 2	PO 3	PO4	PO5	PO6	PO7	PO8	PO9	PO1 0	PO11	PO12
MA202.1	2											
MA202.2	2											
MA202.3	1											
MA202.4	2											
MA202.5	2											
MA202.6	1											

CO-PEO/PSO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

	PEO1	PEO2	PEO3	PEO4	PSO1	PSO2
MA202.1						
MA202.2	1					
MA202.3						
MA202.4						
MA202.5	1					
MA202.6	1					

Sardar Patel Institute of Technology

(Empowered Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India

B. Tech. EXTC

BLOOM'S Levels Targeted (Pl. Tick appropriate)

	0 \	11 1	,		
Remember √	Understand✓	Apply √	Analyze	Evaluate	Create

Theory Component

Modul e No.	Unit No.	Topics	Ref	Hrs.
1	Title	Differential Calculus	1,2	18
	1.1	Derivatives of standard functions, product and quotient rule for differentiation.		04
	1.2	Partial derivatives of first and higher order, composite differentiation.		03
	1.3	Application of partial derivatives: Local Maxima and Minima of functions of two variables.		02
	1.4	Successive Differentiation: Proofs of nth derivatives of standard functions. Use of partial fractions to calculate nth derivatives of given functions. Leibnitz theorem for nth derivative of product of two functions.		05
	1.5	Infinite series: expansion of functions in powers of x using Maclaurin series. Taylor's series.		04
2	Title	Matrices	1,2	07
	2.1	Addition and scalar multiplication of matrices. Matrix multiplication, types of matrices.		03
	2.2	Elementary row transformations, finding inverses using matrices, determinants and its properties.		04
3	Title	Vectors	1,2	03
	3.1	Vector definition, addition, scalar multiplication, dot product of two vectors, angle between two vectors, cross product.		03
		-	Total	28

Textbooks

Sr. No	Title	Edition	Authors	Publisher	Year
1	Higher Engineering	Forty Forth	Dr. B. S.	Khanna Publications	2020
	Mathematics		Grewal		

Sardar Patel Institute of Technology (Empowered Autonomous Institute Affiliated to University of Mumbai)

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India

B. Tech. EXTC

Reference Books

Sr. No	Title	Edition	Authors	Publisher	Year
1	Advanced Engineering	Tenth	Erwin	John Wiley & Sons	2011
	Mathematics		Kreysizg		
2	Advanced Engineering	Twenty	H.K.Dass	S. Chand	2014
	Mathematics	Eighth		Publications	
2	Advanced Engineering	E assetla	Jain and	Narosa Publications	2014
3	Mathematics	Fourth	Iyengar	Narosa Publications	2014

STITUTE OF TECH

Bharatiya Vidya Bhavan's

Sardar Patel Institute of Technology

(Empowered Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India

B. Tech. EXTC

Course (Category)	Course Name	,		aching Scheme (Hrs/week)				Credits Assigned			
Code		L	T	P	0	E	L	T	P	Total	
	Professional	1	0	2	2	5	1	0	1	2	
SEC		Examination Scheme									
		Comp	onent	ISE	(%)	MSF	E (%) ESE (%) Total				
	Communication Skills	The	eory			-	-	-	-		
AS201		Laboratory		1	00					100	

Pre-requisit	e Course Codes, if any. AS107 – Soft Skills 1							
Course Obje	Course Objective: To demonstrate the desired spoken and written communication skills required in							
early profess	ional life, with focus on job placements.							
Learning O	utcomes (LO): At the End of the course students will be able to:-							
AS201.1	Demonstrate the spoken and written skills for job placements.							
AS201.2	Draft professional documents.							
AS201.1	Demonstrate the spoken and written skills for job placements.							

CO-PO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
AS201.1									2	3		
AS201.2										3		
AS201.3								3	2			

CO-PEO/PSO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

	PEO1	PEO2	PEO3	PEO4	PSO1	PSO2
AS201.1		3				2
AS201.2		3				2
AS201.3				3		2

Sardar Patel Institute of Technology

(Empowered Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India

B. Tech. EXTC

BLOOM'S Levels Targeted (Pl. Tick appropriate)

Remember	Understand	Apply✓	Analyze√	Evaluate	Create

Theory Component

Module	Unit No.	Topics	f. Hrs.				
No.							
1.	Title	Placement Skills	4				
	1.1	Resume Writing & Cover Letter					
	1.2	Group Discussion					
	1.3	Case Studies/Pitching a startup					
	1.4 Team Building Skills/Work						
	1.5	Interview Skills					
2	Title	Corporate Communication	6				
	2.1	Presentation Skills					
	2.2	Meeting: Notice, Agenda, Minutes					
	2.3	Proposal Writing					
	2.4	Report Writing: Informative, Analytical and Technical report. Use of LaTeX for writing reports (Overleaf)					
	2.5	Originality and Plagiarism: Ethics of writing					
3	Title	Leadership Skills and Professional Ethics	4				
	3.1	Principles and Styles of Leadership					
	3.2	Motivating and inspiring team members					
	3.3	Decision-making and problem-solving skills					
	3.4	Time and Stress management					
	3.5	Workplace etiquettes					
4	Self -	Research Writing	6*				
	Study	Research Paper, News Analysis, Blog Writing					
		Total (*Not included	14L + 28P = 42 hrs				

Sardar Patel Institute of Technology (Empowered Autonomous Institute Affiliated to University of Mumbai)

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India

B. Tech. EXTC

Tutorial Component:

Sr. No.	Title of the Experiment	Marks	Duration (Hrs)
1	Resume	20	2
2	Cover Letter	20	2
3	GD	20	2
4	Mock Interview	20	3
5	Presentation	20	2
6	Decision-making and problem-solving activity	20	2
7	Minutes of the Meeting/Notice & Agenda	20	2
8	Proposal Writing	20	2
9	Report Writing	20	2
10	Case studies on ethical issues in engineering	20	2
11	Team Building Activity		2
12	Research Article Writing		2
13	Use of Plagiarism checker (e.g. Turnitin)		1
14	Self and Team Motivation Activities		2
	Total	200 Marks	28 Hrs

Textbooks:

Sr. No.	Title	Edition	Authors	Publisher	Year
1	Interpersonal Skills at Work	2002	John Hayes	McGraw Hill Education	2002
2	Campus Placement: A Comprehensive Guide	2016	Ankur Malhotra	McGraw Hill Education	2016

Reference Books:

Sr. No.	Title	Edition	Authors	Publisher	Year
1	If I Understood You, Would I Have This	2017	Alan Alda	Random	2017
	Look on My Face? My Adventures in			House	
	the Art and Science of Relating and				
	Communicating				

Sardar Patel Institute of Technology

(Empowered Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India

B. Tech. EXTC

2	Handbook for Writing Proposals	2010	Robert J.	McGraw Hill	2010
			Hamper, Sue	Education	
			Baugh		
3	Effective Communication Skills	2000	Harry	Paperback	2000
	for Scientific and Technical		Chambers	Basic Books	
	Professionals				
4	The Art of Writing Together	2008	William Issac	Crown	2008
				Business	
5	Communication Skills	2011	Meenakshi	Oxford, India	2011
			Raman,		
			Sangeeta		
			Sharma		

For Additional Reading:

• Teamwork and Collaboration:

- 1. "The Five Dysfunctions of a Team: A Leadership Fable" by Patrick Lencioni
- 2. "Crucial Accountability: Tools for Resolving Violated Expectations, Broken Commitments, and Bad Behavior" by Kerry Patterson, Joseph Grenny, Ron McMillan, and Al Switzler
- 3. "Team of Teams: New Rules of Engagement for a Complex World" by General Stanley McChrystal
- 4. "Collaborative Intelligence: Thinking with People Who Think Differently" by Dawna Markova and Angie McArthur
- 5. "The Culture Code: The Secrets of Highly Successful Groups" by Daniel Coyle

• Leadership Skills:

- 1. "Leaders Eat Last: Why Some Teams Pull Together and Others Don't" by Simon Sinek
- 2. "Emotional Intelligence 2.0" by Travis Bradberry and Jean Greaves
- 3. "Start with Why: How Great Leaders Inspire Everyone to Take Action" by Simon Sinek
- 4. "The 7 Habits of Highly Effective People: Powerful Lessons in Personal Change" by Stephen R. Covey
- 5. "Leadership and Self-Deception: Getting out of the Box" by The Arbinger Institute

• Problem-Solving and Critical Thinking:

- 1. "Critical Thinking: Tools for Taking Charge of Your Learning and Your Life" by Richard Paul and Linda Elder
- 2. "Think Like a Freak: The Authors of Freakonomics Offer to Retrain Your Brain" by Steven D. Levitt and Stephen J. Dubner
- 3. "Design Thinking for Strategic Innovation: What They Can't Teach You at Business or Design School" by Idris Mootee
- 4. "Problem Solving 101: A Simple Book for Smart People" by Ken Watanabe
- 5. "Mindset: The New Psychology of Success" by Carol S. Dweck

Sardar Patel Institute of Technology

(Empowered Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India

B. Tech. EXTC

• Time Management and Organization:

- 1. "Getting Things Done: The Art of Stress-Free Productivity" by David Allen
- 2. "Eat That Frog!: 21 Great Ways to Stop Procrastinating and Get More Done in Less Time" by Brian Tracy
- 3. "Atomic Habits: An Easy & Proven Way to Build Good Habits & Break Bad Ones" by James Clear
- 4. "The Power of Habit: Why We Do What We Do in Life and Business" by Charles Duhigg
- 5. "Deep Work: Rules for Focused Success in a Distracted World" by Cal Newport

• Professionalism and Ethics:

- 1. "Ethics 101: What Every Leader Needs to Know" by John C. Maxwell
- 2. "The Power of Ethical Management" by Kenneth Blanchard and Norman Vincent Peale
- 3. "The Ethical Engineer: An "Ethics Construction Kit" Places Engineering in a New Light" by Robert McGinn
- 4. "Professionalism: Skills for Workplace Success" by Lydia E. Anderson and Sandra B. Bolt
- 5. "Business Ethics: Decision-Making for Personal Integrity & Social Responsibility" by Laura P. Hartman and Joseph R. DesJardins.

Spoken Tutorials:

https://spoken-tutorial.org/

https://spoken-tutorial.org/tutorial-search/?search foss=Communication+Series&search language=English

Sardar Patel Institute of Technology

(Empowered Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India

B. Tech. EXTC

Course (Category)	Course Name	Teaching Scheme (Hrs/week)					Credits Assigned			
Code		L	T	P	О	E	L	T	P	Total
		3	0	2	5	7	3	0	1	4
PC		Examination Scheme								
r C	Electromagnetic	Comp	IS	ISE (%)		MSE	I	ESE	Total	
	Wave Engineering						(%)	(%)	
EC201		The	eory		20		20		60	100
		Laboratory			80		_		20	100

Pre-requis	site Course Codes, if any.	MA101: Engineering Calculus				
		MA102: Differential Equations and Complex Analysis				
		MA201: Linear Algebra				
Course Ol	ojective: To teach fundamenta	ls of Electromagnetic Waves				
Course O	utcomes (CO): At the end of t	he course students will be able to to be finalized				
EC201.1	Understand and apply fund	amental concepts of vector calculus and coordinate system				
EC201.1	transformations to analyze el	ectromagnetic phenomena.				
EC201.2	Comprehend and utilize Ma	axwell's equations, boundary conditions, and basic laws of				
EC201.2	electromagnetism to solve pr	roblems related to electric and magnetic fields.				
EC201.3	Analyze and interpret elect	tromagnetic wave propagation phenomena, including wave				
EC201.3	equations, polarization, power	er flow, and behaviors in different media.				
EC201.4	Apply principles of electron	nagnetic wave propagation to analyze transmission lines and				
EC201.4	understand impedance match	ing techniques.				
EC201 5	Utilize numerical methods a	and computational techniques to analyze and solve practical				
EC201.5	engineering problems.					

CO-PO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

	DO1	DO3	DO2	DO 4	DOS	DOC	DO7	DOO	DOO	DO10	DO11	DO13
	PO1	PO2	POS	PO4	PO5	PO6	PO/	PO8	PO9	POIU	PO11	POIZ
EC201.1	1	1	2		2					3		
EC201.2	1	1	2		2							
EC201.3	1	1	2		2					3		
EC201.4	1	1	3		2					1		
EC201.5	1	1	3		2					2		3

CO-PEO/PSO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

	PEO1	PEO2	PEO3	PEO4	PSO1	PSO2
EC201.1						
EC201.2		1				
EC201.3		1				
EC201.4		1				
EC201.5		2				2

Sardar Patel Institute of Technology

(Empowered Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India

B. Tech. EXTC

BLOOM'S Levels Targeted (Pl. Tick appropriate)

Remember	Understan	Apply $$	Analyze√	Evaluate	Create
	d√				

Theory Component

Modul	ompone Unit		D.£	Hrs
e No.	No.	Topics	Ref.	•
1	Title	Coordinate system transformation and vector calculus		
	1.1	Cartesian, cylindrical and spherical coordinate, Differential length,	2, 3	4
		area and volume, line surface and volume integrals.		
	1.2	Del Operator, Gradient of scalar, Divergence of a vector and		
		Divergence Theorem, Curl of a Vector and Stoke's Theorem,		
		Laplacian Theorem, Classification of a Vector Field.		
2	Title	Basic Laws of Electromagnetic and Maxwells Equations	1	8
	2.1	Coulombs law, Electric fields due to continuous charge distributions,		
		Gauss law and its applications, Electric potential (Magnetic vector		
		potential and Electrical Scalar Potential), relationship between E and		
		V, Poisson and Laplace equations, Bio-Savarts law, Amperes law.		
	2.2	Boundary conditions for static electric and magnetic fields		
	2.3	Faradays Law, Displacement current, Maxwells Equations: Integral		
		and differential form for static and time varying fields and its		
		interpretation		
3	Title	Electromagnetic Fields and Waves	1,2	10
	3.1	Wave equation: Derivation and its solution in Cartesian co-		
		ordinates.		
	3.2	Solution of wave equations: Partially conducting media, perfect		
		dielectrics and good conductors, Concept of Skin Depth.		
	3.3	Electromagnetic Power: Poynting Vector and power flow in free		
		space and in dielectric, conducting media.		
	3.4	Polarization of wave: Linear, Circular and Elliptical.		
	3.5	Propagation in different media: Behavior of waves for normal and		
		oblique incidence in dielectrics and conducting media.		
4	Title	Transmission Lines	1,2,	10
	4.1	Transmission Line parameters and equations governing transmission		
		lines, encompassing resistance, inductance, capacitance, and		
		conductance per unit length, impacting signal propagation.		
	4.2	Input impedance, standing wave ratio (SWR), and power distribution		
		along transmission lines, Smith chart for impedance matching.		
5	Title	Numerical Methods & Computational Electromagnetics	2, 4	10

Sardar Patel Institute of Technology (Empowered Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India

B. Tech. EXTC

	5.1	Crank-Nicolson method, Gaussian approximating function method,		
		Boundary Element Method (BEM), Runge Kutta method, Modified		
		Euler's method, Finite-Difference Time-Domain (FDTD) method.		
	5.2	Advantages of numerical techniques, Finite difference method		
		(FDM), The Moment Method, Introduction to Finite Element		
		method (FEM), Overview of Applications of Computational		
		Electromagnetics.		
6	Title	Applications of Electromagnetics		6
	Self-	Xerography. Laser printer, Faraday's cage, lightning, RF MEMS,	1,2,	
	Stud	Magnetic levitation, Metamaterials, RFID, Stealth aircraft, remote	6	
	y	sensing, radio astronomy, EMI and Electromagnetic Compatibility,		
		Different types of antennas.		
Total				42

Sr. No	Title of the Experiment	CO
1	Gradient, Curl, Divergence & Laplacian: Implementation of Gradient, Divergence, Curl and Laplacian operation using any simulation tool	CO1
2	Simulation of Transmission line and implement various configurations to	
	understand the concepts related to transmission line.	CO4
	Using online simulation tool	
3	VSWR Measurement using Microwave workbench	CO4
4	Antenna: Measurement of Radiation Pattern of Antenna	
5	Measurement of EMI/EMC using the equipment.	CO3
6	Virtual Lab:	
	Introduction to Smith Chart and its application to perform Transmission-line	
	calculations - such as determination of load impedance, reflection coefficient,	CO4
	admittance.	
	Using Virtual Lab IIT Kanpur	
7	Single stub matching using transmission lines	CO4
8	Microstrip line-based Quarter wave transformer using open source software	CO4
9	Solution of one-dimensional boundary value problem using finite difference method	CO5
10	Solution of two-dimensional boundary value problem using finite difference method	CO5
11	Charge distribution on a thin wire/Capacitance of parallel plate capacitor using	CO2,
	Method of Moments	CO5
12	Study the flow of eddy currents in a conductive material subjected to a changing	COS
	magnetic field using Crank-Nicolson method.	CO5
13	Find solution of Electromagnetic Wave Diffraction Problems on Perfectly	CO5
	Conducting Screens using Gaussian approximating function method.	

Sardar Patel Institute of Technology

(Empowered Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India

B. Tech. EXTC

14	Analyze the electromagnetic interference (EMI) produced by electronic devices, such as cables, circuit boards, and electromagnetic shielding using Boundary Element Method (BEM).	CO5
15	Solving Maxwell's equations using 4th order Runge Kutta method.	CO2,
		CO5
16	Find approximate voltage across a capacitor in a simple RC circuit at different	CO5
	time points using the Modified Euler's method.	
17	Simulating signal propagation and radiation in PCBs and integrated circuit	CO5
	packages using Finite-Difference Time-Domain (FDTD) method.	COS

Text Books:

Sr. No.	Title	Edition	Authors	Publisher	Year
1	Electromagnetic Waves	Third	R.K. Shevgaonkar	Tata McGraw Hill	2009
2	Principles of	Sixth	Matthew N.O.	Oxford International	2015
	Electromagnetics		Sadiku	Student	
3	Field and Wave	Second	David Cheng	Addison Wesley	1983
	Electromagnetics				
4	Introductory Methods	fifth	S. S. Sastry	PHI Learning Pvt.	2024
	of Numerical Analysis		-	Ltd.	

Reference Books:

Sr. No.	Title	Edition	Authors	Publisher	Year
1	Engineering	Third	W.H. Hayt, and J.A.	McGraw Hill	2006
	Electromagnetics		Buck		
2	Electromagnetic Waves and	Second	Edward C. Jordan	Pearson	2006
	Radiating Systems		and Keth G. Balmin	Publications	
3	Engineering	Third	Nathan Ida	Springer	2015
	Electromagnetics			Publications	
4	Introduction to Numerical	First	William Bober	CRC Press	2014
	and Analytical Methods				
	with MATLAB® for				
	Engineers and Scientists				
5	Computational Partial	Second	Jichun Li	CRC Press	2020
	Differential Equations	Edition	Yi-Tung Chen		
	Using MATLAB				

NPTEL Reference: Any of the following lecture series' may be referred by students

Sardar Patel Institute of Technology

(Empowered Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India

B. Tech. EXTC

- 1. Lecture series on Transmission Lines and E.M Waves by Prof. R.K.Shevgaonkar, Dept of Electrical Engineering, IIT Bombay https://nptel.ac.in/courses/117101056
- 2. Lecture series on Electromagnetic Theory by Dr. Pradeep Kumar, IIT Kanpur https://archive.nptel.ac.in/courses/108/104/108104087/
- 3. Lecture series on Computational Electromagnetics, Prof. Uday Khankhoje, IIT Madras. https://nptel.ac.in/courses/108106152
- 4. Lecture series on Computational Electromagnetics & Applications, IIT Bombay Prof. Dr. Krish Sankaran https://nptel.ac.in/courses/108101090

Sardar Patel Institute of Technology

(Empowered Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India

B. Tech. EXTC

Course (Category) Code	Course Name Teaching Scheme (Hrs/week) Credits					O .				gned
Coue		L	T	P	0	E	L	T	P	Total
		3	0	2	4	9	3	0	1	4
PCC	Electronic Devices	Examinatio				on Scheme				
	& Circuits	Comp	ponen	t IS	E (%)) M 3	SE (%)	ES	E (%)	Total
EC202	& Circuits	The	eory&		20		20		60	100
		Labo	ratory	7	80		-		20	100

Pre-requis	site Course Codes, if any.	EC102 Basic Electrical Engineering				
		AS101 Engineering Physics				
	AS106 Tech Shop					
Course Ol	ojective: To teach fundamenta	ls of electronic devices				
Course Outcomes (CO): At the end of the course students will be able to to be finalized						
Discuss device physics, construction, VI characteristics and applications of						
EC202.1	semiconductor devices.					
EC202.2	Analyze single stage BJT a	nd MOSFET amplifier circuits.				
EC202.3	Design single-stage BJT and MOSFET amplifier circuits.					
EC202.4	Outline the steps involved in	n semiconductor device fabrication.				
EC202.5	Demonstrate the PCB design a	and fabrication for the circuit using discrete components.				

CO-PO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
EC202.1	3	1			3				3	1		2
EC202.2	3	1			2				3	1		2
EC202.3	3	1			2				3	1		2
EC202.4	3	3			2				3	1		2
EC202.5	3	1			3				3	3	2	3

CO-PEO/PSO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

CO	PEO1	PEO2	PEO3	PEO4	PSO1	PSO2
EC202.1	2					
EC202.2	3					

Sardar Patel Institute of Technology

(Empowered Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India

B. Tech. EXTC

EC202.3	3			3	
EC202.4	2				
EC202.5	3	3		3	1

BLOOM'S Levels Targeted (Pl. Tick appropriate)

Remember ✓	Understand✓	Apply ✓	Analyze√	Evaluate	Create
------------	-------------	---------	----------	----------	--------

Theory Component

Module No.	Unit No.	Topics	Ref.	Hrs.
1	Title	Diode		
	1.1	Review of PN Junction Analysis, Piecewise linear model of PN Junction Diode		
	1.2	Applications of Diode: Limiter circuits, Rectifiers, Clamper Circuits, Peak Detector and Voltage Doubler	1,2	10
	1.3	Zener diode and Schottky diode, Varactor diode, PIN diode, Gunn diode and its applications in communication system		
2	Title	Bipolar and Unipolar Devices		
	2.1	Bipolar Junction Transistor (BJT): Construction and working of BJT, various BJT configurations such as CE, CB, CC and their VI Characteristics		
	2.2	Field Effect Device (MOSFET): Two terminal MOS structure,	1,2	10
		MOSFET construction, Band diagrams under equilibrium and external		
		bias, Threshold Voltage, V-I and CV characteristics, Channel length		
		modulation, Short Channel effects and various MOSFET		
		configurations such as CG, CD, CS and their VI Characteristics.		
3	Title	DC Biasing of Bipolar and Unipolar Devices	1,2	6
	3.1	Applications of bipolar and unipolar devices as voltage amplifier, current amplifier, trans-conductance amplifier and trans-resistance amplifier and Switch, Need and requirement of DC Biasing of Bipolar and Unipolar Devices in these applications.		
	3.2	Biasing schemes for BJT and MOSFET as an amplifier, and bias stability.		
	Title	AC Analysis of Bipolar and Unipolar Devices		

Sardar Patel Institute of Technology

(Empowered Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India

B. Tech. EXTC

4	4.1	Small signal low frequency and high frequency two port BJT and MOSFET models		
	4.2	Estimation of voltage gain, input resistance, output resistance, low frequency and high frequency analysis of single stage BJT and MOSFET based amplifiers		10
	4.3	Design of single stage BJT and MOSFET based amplifiers for given specifications.		
5	Title	Integrated circuit fabrication process		
	5.1	Oxidation, photolithography, chemical vapor deposition, physical vapor deposition, sputtering, diffusion, ion implantation, and Etching.		6
	5.2	Fabrication process steps for BJT, and MOSFET and/or any given discrete circuit		
6	Self-	Device structure, principle of operation and V-I characteristics of		4*
	Study	MODFET (i.e. HEMT), MESFET and HBT		
		Total (*Not incl	uded)	42

Laboratory Component, if any (Minimum 10 Laboratory experiments are expected)

Sr. No.	Title of the Experiment
1	To demonstrate any one of the applications of PN junction diode using simulation hardware implementation.
2	To plot characteristics of any one of the special purpose diodes and demonstrate its application using simulation hardware implementation.
3	To plot characteristics of BJT configurations (CE/CB/CC) using simulation and hardware implementation.
4	Verify the stability of the operating point for different biasing circuits.
5	Design and implement single stage BJT based amplifier for the required specifications.
6	Obtain frequency response of single stage BJT based amplifier.
7	To plot characteristics of MOSFET (CG/CS/CD) using Simulation and Hardware Implementation
8	Design and implement single stage MOSFET based amplifier for the required specifications.
9	Obtain frequency response of single stage MOSFET based amplifier.
10	Construct a PCB for any one of the applications based on discrete components.

Textbooks:

Sr. No.	Title	Edition	Authors	Publisher	Year
1	Electronic Devices and Circuits	Eleventh	RL Boylestad and Lous	Prentice Hall	2013
			Nashelsky		
2	Electronic Circuit Analysis and	Third	Donald A. Neamen	Tata McGraw	2006
	Design			Hill	

THUTE OF THE CHANGE OF THE CHA

Bharatiya Vidya Bhavan's

Sardar Patel Institute of Technology

(Empowered Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India

B. Tech. EXTC

Reference Books:

Sr. No.	Title	Edition	Authors	Publisher	Year	
1	Semiconductor Physics and	Fourth	Donald A. Neamen and	Tata McGraw	2017	
	Devices		Dhrubes Biswas	Hill		
2	CMOS Digital Integrated Circuits	Fourth	Sung-Mo Kang, Yusuf Leblebici and Chulwoo Kim	Tata McGraw Hill	2019	
R-3	Semiconductor Devices: Physics and Technology	Third	S. M. Sze and Ming- Kwei Lee	Wiley	2015	

Online Resources: 1. https://archive.nptel.ac.in/courses/108/108/108108122/

2. https://archive.nptel.ac.in/courses/108/102/108102097/

Sardar Patel Institute of Technology

(Empowered Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India

B. Tech. EXTC

Course (Category)	Course Name	,	Teaching Scheme (Hrs/week)				Credits Assigned			
Code		L	T	P	0	E	L	T	P	Total
		3	0	2	5	10	3	0	1	4
PCC	PCC		Examination			n Scheme				
	Signal, Network and	Comp	onent	ISE	(%)	MSE	2 (%)	ESE	2 (%)	Total
EC203	Systems	The	eory	2	20	2	0	6	50	100
		Laboratory		8	30	-	-	2	20	100

Pre-requisite Course Codes, if any.

Course Objective: Main objectives of the course are :

- 1.Describe various signals and systems mathematically and understand how to perform mathematical operations on them,
- 2. Analysis using Fourier series and Fourier transform for a given signal.
- 3. Understand network synthesis

Course Outcomes (CO): At the end of the course students will be able to

EC203.1	Classify and illustrate various operations on signals and systems
EC203.2	Analyze the properties of a continuous time signal in frequency domain
EC203.3	Evaluate Linear Time Invariant system response using Laplace Transform
EC203.4	Evaluate Linear Time Invariant system response using Laplace Transform
EC203.5	Analyse RLC circuits in time domain and frequency domain

EC203.6 Design and analyze Butterworth filter CO-PO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

	PO 1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1 0	PO1 1	PO1 2
EC203.1	3	2	2	1	2					2		
EC203.2	3	3	2	1	2					2		
EC203.3	3	2	2	1	2					2		
EC203.4	3	3	2	2	2					2		
EC203.5	3	2	2	2	2					2		
EC203.6	3	2	2	1	2					2		

Sardar Patel Institute of Technology

(Empowered Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India

B. Tech. EXTC

CO-PEO/PSO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

	PEO1	PEO2	PEO3	PEO4	PSO1	PSO2
EC203.1		2				2
EC203.2		2			2	2
EC203.3		2				2
EC203.4		2				2
EC203.5		2			2	2
EC203.6		2			3	2

BLOOM'S Levels Targeted (Pl. Tick appropriate)

Remember ✓	Understand✓	Apply ✓	Analyze√	Evaluate	Create

Theory Component

Module No.	Unit No.	Topics	Ref	Hrs.
1	Title	Continuous Time Signals	1,2	08
	1.1	Introduction: Signals, systems, elementary signals, exponential, sine, step, impulse, ramp, rectangular, triangular and operations on		
		signals		
	1.2	Classification of signals: Continuous Signals, deterministic and nondeterministic, periodic, and aperiodic, symmetric (even) and		
		asymmetric (odd), energy and power, causal and anti-causal signals.		
	1.3	Operations of Signals: Shifting, Scaling, Time Reversal, Addition and Multiplication, Convolution, Correlation		
2	Title	Fourier Series and Fourier Transform	1,2	08
	2.1	Fourier series: Orthogonal representation of signals, Continuous Time Fourier Series (CTFS), magnitude and phase spectra, Gibbs phenomenon, Parsevel's relation,		
	2.2	Fourier Transform: Fourier Transform and Inverse Fourier Transform on periodic and non-periodic signals, Limitations of Fourier Transform, and need for Laplace Transform, Properties of Fourier Transform, Parsevel's relation, Energy and Power Spectral Density and Bandwidth.		
	Title	Analysis of CT System		

Sardar Patel Institute of Technology

(Empowered Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India

B. Tech. EXTC

		B. Ich. Exic		
3	3.1	Laplace Transform, Properties of Laplace Transform, Relation	1,2	10
		between Laplace Transform and Fourier Transform,		
	3.2	Classification of systems: Static and dynamic, time variant and time		
		invariant, linear, and nonlinear, causal and non-causal, stable and		
		unstable systems.		
	3.3	Impulse Response, Transfer Function, Differential Equation,		
		Stability of Systems, Frequency Response, Solution of Differential		
		Equation using Laplace Transform		
4	Title	Transient Analysis	3,4	06
	4.1	Time domain analysis of R-L-C: Forced and Natural response, time		
		constant, initial, and final values. Effect of damping, Solution using		
		second order equation for standard input signals		
	4.2	Transform domain analysis of R-L-C circuits: Forced and Natural		
		response, Transient and steady state time response.		
5	Title	Network Synthesis	3,4	06
	5.1	Positive real functions: Concept of positive real function, testing		
		for Hurwitz polynomials, testing for necessary and sufficient		
		conditions for positive real functions		
	5.2	Synthesis of RC, RL, LC circuits: Concepts of synthesis of RC,		
		RL, LC driving point functions.		
6	Title	Filter Design and Realization	2	04
	6.1	Butterworth LPF and HPF design		
	6.2	Realization using Active and passive components		
7	Self	State Space Model: Procedure to determine state equations, State		06*
	Study	equations from transfer function, Analysis of circuits with and		
		without controlled sources using network theorems, Graph Theory,		
		Two Port Network		
		Total (*Not Inclu	ded)	42

Laboratory Component, if any. (Minimum 10 Laboratory experiments are expected)

Sr. No	Title of the Experiment
1	Operations on Signals
2	Convolution on Continuous Time Signals
3	Synthesis of signals using Fourier Series
4	Synthesis of signals using Fourier Transform
5	Analysis of LTI system using Laplace Transform

Sardar Patel Institute of Technology

(Empowered Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India

B. Tech. EXTC

6	Response of LTI System for any given input
7	Measure and analyze (settling time, overshoot, undershoot, etc.) step response of for a given series RLC circuit
8	To obtain impulse response and step response of the RC/RL circuit
9	Analyze the given series RLC circuit for standard input signals
10	Frequency response of RLC series circuit
11	Filter Design
12	Active Filter Realization

Text Books

Sr. No	Title	Edition	Authors	Publisher	Year
1	Signals and Systems	3 rd Edition	Nagoor Kani	Tata McGraw Hill	2011
2	Digital Signal Processing	4 th Edition	Ramesh Babu	Scitech	2014
3	Circuit Theory	7 th Edition	A. Chakrabarti	Dhanpat Rai and Co., New Delhi	2018
4	Network Analysis	3 rd Edition	M E Van Valkenburg	Prentice-Hall of India Pvt. Ltd.	2018

Reference Books

Sr. No	Title	Edition	Authors	Publisher	Year
1	Signal and Systems	2 nd Edition	Alan Oppenheim,	Pearson	2002
			Alan Willsky		
2	Signal and Systems	3 rd Edition	Simon Haykin and	John Wiley and	2002
			Barry Van Veen	sons	
3	Linear Systems and	4 th Edition	B. P. Lathi	Oxford	2005
	Signals			University Press	
4					
	Network Analysis and	2 nd Edition	Franklin F Kuo	Wiley	2006
	Synthesis				

NPTEL Courses:

- 1) Signals and Systems Web Course by Prof. V M Gadre, IIT Bombay
- 2) Signals and Systems Video Lectures by Prof. K S Venkatesh, IIT Kanpur

Sardar Patel Institute of Technology

(Empowered Autonomous Institute Affiliated to University of Mumbai)
Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India
B. Tech. EXTC

Semester-IV

Sardar Patel Institute of Technology

(Empowered Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India

B. Tech. EXTC

Course (Category)	Course Name	Teaching Scheme (Hrs/week)					Credits Assigned			
Code		L	T	P	О	E	L	T	P	Total
		3	0	0	6	9	3	0	0	3
(BSES)	Probability and Stochastic Processes	Examination Scheme								•
		Comp	onent]	SE		MSE	E	SE	Total
			(%)			(%)	(%)		
MA203	MA203		Theory		20		20	6	50	100
		Laboratory			-				-	-

Pre-requis	site Course Codes, if any.	Linear Algebra, Math's
random pro The requir	ocess to support core courses in ed mathematical foundations w	mentals and advanced concepts of probability theory and a electronic and Electronic and communication engineering. Vill be studied at a fairly rigorous level and the applications of ses to engineering problems will be emphasized.
Course O	utcomes (CO): At the end of the	he course students will be able to
MA203.1	Apply concepts of mathemati	cs to set operations and probability theory
MA203.2	Apply concepts of probability	theory to single random variables
MA203.3	Apply concepts of probability	theory to multiple random variables
MA203.4	Investigate significance of Co Limit Theorem to engineering	onvergence in Random Sequences and application of Central g problems.
MA203.5	Determine solutions to variou applications to engineering pr	s characteristics of random processes and investigate the oblems.

CO-PO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
MA203.1	3	3										
MA203.2	3	3	2									
MA203.3	3	3	2									
MA203.4	3	3	2									
MA203.5	3	3	3			2						

Sardar Patel Institute of Technology

(Empowered Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India

B. Tech. EXTC

CO-PEO/PSO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

	PEO1	PEO2	PEO3	PEO4	PSO1	PSO2
MA203.1				-		
MA203.2	2				2	
MA203.3	2				2	
MA203.4	2				2	
MA203.5	2			1	2	

BLOOM'S Levels Targeted (Pl. Tick appropriate)

emember✓ Understand✓ Apply✓	Analyze√	Evaluate	Create	
-----------------------------	----------	----------	--------	--

Theory Component

Mod ule No.	Unit No.	Topics	Ref.	Hrs	
1	Title	Title Probability			
	1.1	Sets and set operations; Probability space; Conditional probability		04	
		and Bayes theorem, Total Probability Theorem			
2	Title	Single Random Variable	1,2		
	2.1	Discrete random variables, probability mass function, probability		08	
		distribution function, Standard distributions (discrete).			
	2.2	Continuous random variables, probability density function,			
		probability distribution function, Standard distributions (continuous).			
3	Title	Multiple Random Variables	1,2		
	3.1	Marginal Probability, Joint PDF, Joint CDF, Conditional probability, Functions of one and two random variables, moments of random variables.		12	
	3.2	Densities and moments; Characteristic functions of a random variable			
	3.3	Tail Probabilities: Markov, Chebyshev and Chernoff bounds			
4	Title	Sequence of Random Variables	1,2		
	4.1	Random sequences and modes of convergence (everywhere, almost everywhere, probability, distribution and mean square)		06	
	4.2	Limit theorems; Strong and weak laws of large numbers, Central limit theorem.			
5	Title	Random Process	1,2		
	5.1	Random processes: Concept, Classification.		12	

Sardar Patel Institute of Technology (Empowered Autonomous Institute Affiliated to University of Mumbai)

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India

B. Tech. EXTC

	5.2	Random Processes – Temporal Characteristics		
		Stationarity and Independence; Time Averages; Mean and covariance		
		functions; Ergodicity; Auto-Correlation and Cross-Correlation		
		Functions; Gaussian and Poisson Random Processes; Markov		
		Processes; Complex Random Processes.		
	5.3	Random Processes – Spectral Characteristics		
		Power Spectral Density (PSD); Bandwidth; Relation between PSD		
		and Auto/Cross Correlation Functions; Response of LTI System to		
		Random Process		
	5.4	Practical Applications: Noise in Amplitude Modulation / Noise in		
		Frequency Modulation / Noise in Phase-Locked Loop.		
6	Self	Application of different probability distributions (to any one field	1,2	
	Study	of interest but not limited to)		06*
		Wireless Communication, Queuing theory, Networking, Digital		
		Signal Processing, VLSI, Finance		
		Т	otal	42

^{*}Not included in the total

Text Books

Sr. No	Title	Edition	Authors	Publisher	Year
1	Probability, Random Variables and Stochastic Processes	4th	A. Papoulis and S. Unnikrishnan Pillai	McGraw Hill	2002
2	Probability and Random Processes with Applications to Signal Processing	3rd	H. Stark and J. Woods	Pearson education	2002

Reference Books

Sr. No	Title	Edition	Authors	Publisher	Year
1	Probability, Statistics and Random Processes	3rd	T. Veerarajan	McGraw Hill	2008
2	Probability, Random Variables and Random Signal Principles	4th	Peyton Peebles	Tata McGraw Hill	2009
3	Probability And Random Processes For Electrical Engineering	3rd	Alberto Leon Garcia	Pearson education	2008

Sardar Patel Institute of Technology

(Empowered Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India

B. Tech. EXTC

Course (Category)	Course Name	-	Teaching Scheme (Hrs/week)			Credits Assigned				
Code		L	T	P	0	E	L	T	P	Total
	Foundations of Mathematics-II	2	1	0	0	3	2	1	0	3
(DCC)			Examina					tion Scheme		
(BSC)		Component		ISI	E (%)	MS	SE (%)		SE %)	Total
MA204		The	ory		20		20		60	100
		Laboratory								

Pre-requisit	e Course Codes, if any.	Basic Engineering Mathematics at first year of Diploma				
	and Foundation of Mathematics-I					
Course Obje	Course Objective: To develop basic foundation of mathematical skills.					
Learning O	utcomes (LO): At the End	of the course students will be able to: -				
MA204.1	Integrate a function of one	e variable using various techniques.				
MA204.2	Sketch basic curves and so	olve double and triple integrals.				
MA204.3	Solve basic problems usin	g properties of complex numbers.				
MA204.4	Solve differential equation	ns of first order.				
MA204.5	Apply the techniques of solving first order differential equations to electrical					
	engineering problems.					
MA204.6	Solve differential equation	ns of higher order.				

CO-PO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

	PO1	PO	PO	PO4	PO5	PO6	PO7	PO8	PO9	PO1	PO1	PO1
		2	3							0	1	2
MA204.1	1											
MA204.2	2											
MA204.3	1											
MA204.4	1											
MA204.5	2											
MA204.6	1											

CO-PEO/PSO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

	PEO1	PEO2	PEO3	PEO4	PSO1	PSO2
MA204.1						
MA204.2	1					
MA204.3						
MA204.4	1					
MA204.5	2					
MA204.6	1					

Sardar Patel Institute of Technology

(Empowered Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India

B. Tech. EXTC

BLOOM'S Levels Targeted (Pl. Tick appropriate)

Remember √ Ur	nderstand✔	Apply ✓	Analyze	Evaluate	Create
----------------------	------------	----------------	---------	----------	--------

Theory Component

Modul e No.	Unit No.	Topics	Ref	Hrs.				
1	Title	Integral Calculus		13				
	1.1	Formulae for integral of standard functions, integration by parts, integration by method of substitution.		04				
	1.2							
	1.3	Standard curves (lines, circles, parabolas, ellipses). Concept of double integration. Evaluation of double and triple integrals.		05				
2	Title	Complex Numbers		03				
	2.1	Operations on complex numbers, polar form of a complex number, De Moivre's theorem and its application to determine powers of complex numbers.	1,2	03				
3	Title	Differential Equations		12				
	3.1							
	3.2	Solving differential equations of first order in electrical networks.						
	3.3	Solving differential equations of first order in electrical networks. Linear differential equations with constant coefficients: complementary function and particular integral.						
		Total		28				

Textbooks

Sr. No	Title	Edition	Authors	Publisher	Year
1	Higher Engineering Mathematics	Forty Fourth	Dr. B. S. Grewal	Khanna Publications	2020

Reference Books

Sr. No	Title	Edition	Authors	Publisher	Year	
1	Advanced Engineering Mathematics	Tenth	Erwin	John Wiley &	2011	
1	Advanced Engineering Wathernaties	1 CHUI	Kreysizg	Sons	2011	
2	Advanced Engineering Mathematics	Twenty	H.K.Dass	S.Chand	2014	
	Advanced Engineering Mathematics	Eighth	11.K.Dass	S.Chand	2014	
2	Advanced Engineering Mathematics	Fourth	Jain and	Narosa	2014	
3	Advanced Engineering Mathematics	rourin	Iyengar	Publications	2014	

Sardar Patel Institute of Technology

(Empowered Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India

B. Tech. EXTC

Course (Category)	Course Name	Teaching Scheme (Hrs/week)				Credits Assigned				
Code		L	T	P	0	E	L	T	P	Total
	Hardware Description Language (HDL) Programming	1	-	2	5	8	1	-	1	2
PCC		Examination Scheme								
		Component		ISE	(%)	MSE (%)		ESE (%)		Total
ECOM		Theory							-	100
EC204		Laboratory		8	80	-	-	20		100

Pre-requisite Course Codes, if any.	CE101: Programming Lab I
	CE102: Programming Lab II
	EC101: Digital Systems

Course Objective: The course aims to familiarize students with the syntax, semantics, and constructs of Hardware Description Language (HDL) Programming such as VHDL/Verilog to design, simulate, and verification of digital logic design, including combinational and sequential logic, and finite state machines. Students also learn about synthesis tools, timing constraints, and optimizing designs for area, power, and performance. The course also aims to provide students with insights into industry practices, standards, interfacing of hardware for real life applications and emerging trends in digital hardware and emerging technologies (e.g., hardware accelerators for AI/ML).

Course Ou	Course Outcomes (CO): At the end of the course students will be able to						
EC204.1	Demonstrate understanding of basic FPGA architecture, FPGA design flow and concepts						
	of CAD tool to write HDL programs.						
EC204.2	Understand the basics of HDL, modeling, program structure and basic language elements.						
EC204.3	Develop HDL programs for digital systems based on given functional requirements.						
EC204.4	Simulate, implement, and validate digital systems using a CAD tool and FPGA.						
EC204.5	Interface the external hardware (sensor, actuator, ADC, DAC, LCD, Seven Segment						
EC204.3	LEDs, etc.) to FPGA through I/O ports.						

CO-PO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
EC204.1	3				3				3			1
EC204.2	3								3			1
EC204.3	3		2						3			1
EC204.4	3	2	3	3	3				3			1
EC204.5	3	2	3	3	3				3			1

CO-PEO/PSO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

Sardar Patel Institute of Technology

(Empowered Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India

B. Tech. EXTC

EC204.1		1		
EC204.2		1		
EC204.3		1		
EC204.4	1	1	1	
EC204.5	1	1	1	

BLOOM'S Levels Targeted (Pl. Tick appropriate)

Remember	Understand	Apply√	Analyze	Evaluate	Create

Tutorial Component

Module No.	Unit No.	Topics		Hrs.		
	Title	FPGA Design Flow				
1	1.1	1.1 India Semiconductor Industry and GoI policies.1.2 Introduction to HDL, FPGA Design Flow and EDA tools				
1	1.2			3		
	1.3	FPGA Architecture Fundamentals, and different FPGAs architectures				
	Title	Fundamentals of VHDL/Verilog				
2	2.1 HDL program structure and concept of testbench		1,2	3		
	2.2	Language constructs, datatypes, operators etc.				
	Title	Design abstractions and Modeling Styles				
3	3.1 Design abstractions, ehavioural, data flow, gate level switch level modeling	Design abstractions, ehavioural, data flow, gate level and switch level modeling	1,2	4		
4	Title	Finite State Machines	1 2	2		
4	4.1	HDL programming for both Mealy & Moore FSM	1,2			
	Total (*Not included)					

Sr. No.	Suggested List of experiments	Ref.
1	Design, simulate and synthesize any combinational digital design using structural modelling and carry out physical verification on a given FPGA. a.4-bit Ripple Carry Full Adder by instantiating one-bit full adder b.2:1 Mux: Using case Statement	1,2
2	Design, simulate and synthesis any sequential digital design with behavioral modelling and carry out physical verification on a given FPGA. a. D Flip Flop using gates b. S-R Flip Flop	1,2

Sardar Patel Institute of Technology (Empowered Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India

B. Tech. EXTC

	b. 8-Bit Up Counter with Load	
3	Design and simulate Round Robin arbiter using behavioral modelling.	1,2
4	Design, simulate and synthesis Pulse-width modulation and carry out physical verification on given FPGA	1,2
5	Design, simulate 4-bit ALU with three logical & three arithmetic operations.	1,2
6	Design, simulate and synthesis Verilog code using FSM for any one of the following: i. Traffic Light controller with 4x4 hex key pad input and display the output in LCD. ii. Elevator operation with 4x4 hex key pad input and display the output in LCD.	1,2
7	Write HDL code to interface ADC/DAC, LCD or 7-segment LED display for any one of the following: i. Accept Analog input signal using ADC from temperature sensor and display the digital output data on LCD or 7-segment LED display. ii. Generate – Sine, Square, Triangle and Ramp waveforms using DAC with different frequency and display the frequency on LCD or 7-segment LED display.	1,2
8	Write HDL code for any one of the communication protocols and display the message on LCD/Seven Segment LEDs. i. Serial ii. I2C Protocol iii. Modbus	1,2
9	Develop a HDL code for implementing algorithms in the areas like machine learning or cryptography using specialized hardware such as SoC for faster processing.	1,2
10	Open-ended problem: Write HDL code for any real-life application and its execution/implementation. i. To control speed, direction of DC motor/Stepper motor and display messages on 16x2 LCD display. ii. To control the temperature of water using Digital PID control algorithm and display the key code on 7-segment LED display.	1,2

Text Books

Sr. No.	Title	Edition	Authors	Publisher	Yea r	
1	Digital Design and Computer	1 st	David Money Harris,	Elsevier	2013	
1	Architecture	1	Sarah L. Harris	Science	2013	
2	VHDL Primer	3 rd	Bhasker J	Prentice-Hall	2001	
				of India		
2	Verilog HDL: A Guide to	2 nd	and	Samir Palnitkar	Pearson	2000
3	Digital Design and Synthesis		Samir Painitkar	Education	2009	
4	Advanced Digital Design with Verilog HDL	2 nd	Michel D. Ciletti	PHI	2009	

THUTE OF THE CHANGE OF THE CHA

Bharatiya Vidya Bhavan's

Sardar Patel Institute of Technology

(Empowered Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India

B. Tech. EXTC

Reference Books

Sr. No.	Title	Edition	Authors	Publisher	Yea r
1	Digital System Design with FPGA: Implementation Using Verilog and VHDL	1 st	By Cem Unsalan, Bora Tar	Mc Graw Hill Publication	2017
2	Verilog Hdl Primer	3 rd	Bhasker J	BSP	2001
3	Digital Design: With an Introduction to the Verilog HDL, VHDL, and System Verilog	6 th	Michel D. Ciletti	Pearson Education	2018

Online Resources:

1. Digital System design with PLDs and FPGAs

Prof. Kuruvilla Varghese, IISc Bangalore Link: https://nptel.ac.in/courses/117108040

2. Hardware modeling using Verilog,

Prof. Indranil Sengupta, IIT Kharagpur

Link: https://nptel.ac.in/courses/106/105/106105165/

Sardar Patel Institute of Technology

(Empowered Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India

B. Tech. EXTC

Course (Category)	Course Name	Teaching Scheme (Hrs/week)				Credits Assigned				
Code		L	T	P	0	E	L	T	P	Total
		3	0	2	5	10	3	0	1	4
PCC		Examination School					1 Schei	me		
	Analog and Digital Communication	Comp	onent	ISE	(%)	MSF	2 (%)	ESE	2 (%)	Total
	Communication	The	ory	2	20	2	0	6	50	100
EC205		Laboratory		8	80	-	-	2	20	100

Dro roqui	isite Course Codes, if any.	EC202: Electronic Devices
1 re-requi	, ,	
	I	MA203: Probability and Stochastic Processes
	1	EC207: Signals and Systems
		quip the students with basic knowledge for analyzing analog
and digital	al communication systems rai	nging from data networks and internet to mobile data
communic	cation systems such as cellular a	nd WiFi systems. Specifically, the students will learn how to
		es including bandwidth and power by selecting a proper
signaling	and/or analog/pulse/digital modu	ulation scheme
Course O	outcomes (CO): At the end of the	he course students will be able to
EC205.1	Describe ,Compare , different	tiate between various entities of analog, pulse, and digital
	communication system.	
EC205.2	Apply concepts of signals and	d systems to analyze behavior of modulated signals in time
	domain, frequency domain and	d signal space.
EC205.3	Construct various source codir	ng and error correction codes.
EC205.4	Analyze the behavior of a varie	ous digital modulation schemes in presence of noise.
EC205.5	Analyze and compute system	performance measures such as bit rate and bandwidth of
	various digital modulation met	thods, source and error correction codes.

CO-PO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
EC205.1	3				-				-	-		1
EC205.2	2	2			3				3	3		
EC205.3	2	2			3				3	3		1
EC205.4	3	3			3				3	3		1
EC205.5	2	2			3				3	3		

Sardar Patel Institute of Technology

(Empowered Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India

B. Tech. EXTC

EC205.1	2	2		3		3	3	1

CO-PEO/PSO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

	PEO1	PEO2	PEO3	PSO1	PSO2
EC205.1	2	2			
EC205.2	2	2		2	1
EC205.3	2	2		2	1
EC205.4	2	2		2	1
EC205.5	2	2			
EC205.1	1	1			

BLOOM'S Levels Targeted (Pl. Tick appropriate)

Remember	Understan	Apply $$	Analyze √	Evaluate	Create
	đ√				

Theory Component

Module No.	Unit No.	Topics	Ref.	Hrs.
1	Title	Analog and Pulse modulation	10	
	1.1	Classification of Frequency spectrum, Need for modulation, Block diagram of an analog and digital communication system.		
	1.2	DSB-FC, DSB-SC: Principle of working, Waveforms and power relations and power spectrum, Single and multitone SSB and FDM		
		FM: Mathematical analysis, Armstrong method of FM generation, Block diagram of Super hetrodyne receiver		
	1.3	Sampling theorem-Proof, Types of Sampling, Pulse Amplitude modulation, PWM, Pulse code modulation (PCM)		
	1.4	Delta modulation, Time Division multiplexing		
2	Title	Source coding and Channel Coding	08	
	2.1	Uncertainty, Information, Entropy, Source coding theorem, Huffmann encoding, Shannon Fano coding		

Sardar Patel Institute of Technology

(Empowered Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India

B. Tech. EXTC

	2.2	Channel capacity Theorem, Linear block codes, Cyclic codes-Shift		
		register method and Polynomial division method, Convolutional		
		codes- Shift Register approach, State diagram, Trellis, Viterbi		
		decoding	10	
3		Digital Modulation Techniques	12	
	3.1	Gram-Schmidt Orthogonalization Procedure, Line coding and		
		Power spectral density (PSD) of line codes		
	3.2	BPSK,QPSK,M-PSK,8-QAM,16-QAM,BFSK,M-FSK,MSK-		
		Principle of working, PSD and Signal space analysis.		
4	Title	Baseband Transmission and Optimal Reception of Digital	06	
		Signal		
	4.1	Inter symbol Interference and Nyquist criterion, Raised cosine filter,		
		Eye diagram, Duobinary encoding and decoding		
	4.2	Probability of error of integrate and dump receiver		
	4.3	Digital Modulation tradeoffs:Probability of Error evaluations of		
		various modulations		
5	Title	Spread Spectrum and OFDM	06	
	5.1	Direct sequence spread spectrum		
	5.2	Frequency hopping spread spectrum		
	5.3	OFDM		
6	Self	Applications and health, safety, and environment aspects of		06
	Study	Analog and Digital communication techniques		
		,	Total	42

Laboratory Component, if any. (Minimum 10 Laboratory experiments are expected)

Sr. No	Title of the Experiment
1	Implementation of double sideband full carrier for various modulation index and demodulation
2	Implement the frequency modulation circuit to obtain FM waveforms and calculate modulation index
3	Implementation of natural sampling and reconstruction of waveforms
4	Implementation of pulse amplitude modulation.
5	LBC encoder and decoder
6	Implementation of Binary Phase Shift Keying

Sardar Patel Institute of Technology (Empowered Autonomous Institute Affiliated to University of Mumbai)

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India

B. Tech. EXTC

7	Implementation of Binary Frequency shift keying
8	Signal space analysis of QAM
9	PSD and ISI analysis of BPSK
10	BER analysis of BPSK without and with Convolutional codes

Text Books

Sr. No	Title	Edition	Authors	Publisher	Year
1	Principles of	2nd	Taub H. and	Tata McGraw	2001
	Communication Systems		Schilling D.L	Hill	
2	Communications Systems	4th	Haykin S	John Wiley and Sons	2001

Reference Books

Sr. No	Title	Edition	Authors	Publisher	Year
1	Digital and Analog	4th	B.P.Lathi	Oxford	2017
	Communication				
2.	Communication	4th	Proakis J. G.	Pearson	2002.
	Systems Engineering		and Salehi M.	Education	
3.	Digital	3rd	Haykin S	John Wiley	2001
	Communication			and Sons	

Sardar Patel Institute of Technology

(Empowered Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India

B. Tech. EXTC

Course (Category)	Course Name		Teaching Scheme (Hrs/week)					Credits Assigned			
Code		L	T	P	О	E	L	T	P	Total	
		3	0	0	4	7	3	0	0	3	
PCC	Computer	Examination Scheme									
icc	Architecture &	Component		ISE (%)) .	MSE		E (%)	Tota	
	Processor						(%)			l	
	Organization	The		20		20		60	100		
EC206		Labor	ratory								

Pre-requisite	e Course Codes, if any. Digital Systems							
Course Obje	ective: Imparting concepts of each component of computer architecture thoroughly with							
practical aspects including memory systems and I/O communications with interfacing								
Course Outo	Course Outcomes (CO): At the End of the course students will be able to							
EC206.1	Describe basic computer structure with its models and compute performance metrics.							
EC206.2	Comprehend processor organization with various design methods of CPU with							
	comparative analysis							
EC206.3	Design memory systems with analysis of mapping techniques for cache and virtual							
	memory							
EC206.4	Comprehend different types of I/O buses, compare and contrast different types of data transfer							
	methods and arbitration techniques							
EC205.5	Analyze different parallel organizations that includes pipelined and parallel processors							
EC206.3 EC206.4	comparative analysis Design memory systems with analysis of mapping techniques for cache and virtua memory Comprehend different types of I/O buses, compare and contrast different types of data transfe methods and arbitration techniques							

CO-PO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
EC206.1	3											
EC206.2	3	2										
EC206.3		2	1									
EC206.4	3											
EC206.5		2	1									

CO-PEO/PSO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

	PEO1	PEO2	PEO3	PEO4	PSO1	PSO2	PSO3
EC206.1	2						
EC206.2	3	1		2			
EC206.3	3	2	1	3			
EC206.4	2						
EC206.5	2	1		3			

BLOOM'S Levels Targeted (Pl. Tick appropriate)

Sardar Patel Institute of Technology

(Empowered Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India

B. Tech. EXTC

Remember	Understand	Apply	Analyze	Evaluate	Create
			✓		

Theory Component

Module	Unit	Topics	Ref.	Hrs.
No.	No.	•	IXCI.	1113.
1	Title	Overview of Computer Architecture and Organization		
	1.1	Introduction of Computer Organization and Architecture, Basic	1,2	5
		organization of computer and block level description of the functional		
		units, Evolution of x86 Computers, Von Neumann model, Harvard		
		Model, Embedded system		
	1.2	Performance Issues: Designing for performance, Amdahl's Law,	1,2	
		Multi-core, GPGPU		
2	Title	Processor Organization and Control Unit Design		10
	2.1	CPU Architecture, Register Organization	2,3	
		Instruction formats, basic instruction cycle. Instruction interpretation		
		and sequencing,		
		Case Study of 80386 architecture and Register Organization		
	2.2	Control Unit: Soft wired (Micro-programmed) and hardwired control	2,3	
		unit design methods. Microinstruction sequencing and execution.		
		Micro operations		
	2.3	RISC and CISC: Introduction to RISC and CISC architectures and	2,3	
		design issues.		
3	Title	Memory Systems Organization		12
	3.1	Introduction to Memory and Memory parameters. Classifications of	2	
		primary and secondary memories. Types of RAM and ROM,		
		Allocation policies, Memory hierarchy and characteristics.		
	3.2	Cache memory: Concept, architecture (L1, L2, L3), mapping	2,4	
		techniques. Cache Coherency, Interleaved and Associative memory.		
		Case study of Pentium Processor Cache Memory Model (MESI		
		Protocol)		
	3.3	Virtual Memory: Concept, Segmentation and Paging, Page	2,3	
		replacement policies. Case study of 80386 Virtual Memory Concepts		
4	Title	I/O Organization		5
	4.1	Buses: Types of Buses, Bus Arbitration, BUS standards	1,2	
	4.2	I/O Interface, I/O channels, I/O modules and IO processor, Types of	1,2	
		data transfer techniques: Programmed I/O, Interrupt driven I/O and		
		DMA.		
5	Title	Parallel Organization		11
	5.1	Advanced Processor Models: Real Model, Protected Model, Virtual	3	
		Model (x86 Processors)		
	5.2	Superscalar Architecture: Case study of Pentium processor	4	
	5.3	Pipelined Architecture: Pipleine Stages, Pipeline Hazards, Mitigation	1,2,4	
		of Hazards with branch prediction and data forwarding techniques		

Sardar Patel Institute of Technology (Empowered Autonomous Institute Affiliated to University of Mumbai)

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India

B. Tech. EXTC

	5.4	Introduction to parallel processing concepts, Flynn's classifications,	2	
6	Self	Comparative Study of microprocessors and micro architectures with		
	Study	respect to their important features.		
		Detailed analysis of Multicore and GPGPU Architectures.		
		Vector and Array Processors with VLIW architecture.		
		8086 instruction set with assembler directives		
	•		Total	42

Text Books

Sr.	Title	Edition	Authors	Publisher	Year
No					
1	Computer Organization	Fifth	Carl Hamacher, Zvonko	Tata	2002
			Vranesic and Safwat Zaky	McGraw-Hill	
2	Computer Organization and	Eighth	William Stallings	Pearson	2010
	Architecture: Designing for				
	Performance				
3	The 80386, 80486, and	Third	Walter Triebel	Pearson	1997
	Pentium Microprocessor:				
	Hardware, Software, and				
	Interfacing				
4	Pentium Pro Processor System	Third	Tom Shanely	Addison	1996
	Architecture			Wesley	

Reference Books

Sr.	Title	Edition	Authors	Publisher	Year
No					
1	Structured Computer	Sixth	Andrew S.	Pearson	2013
	Organization		Tanenbaum		
2	Microprocessor and	Third	Douglas V	Tata-	2012
	Interfacing: Programming &		Hall	McGraw	
	Hardware			Hill	
3	Computer Architecture and	Second	B.	McGraw	Paperback-
	Organization: Design		Govindarajulu	Hill	2017
	Principles and Applications				
4	Advance Computer	Third	Kai Hwang	Tata-	2017
	Architecture: Parallelism,			McGraw	
	Scalability, Programmability			Hill	

Sardar Patel Institute of Technology

(Empowered Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India

B. Tech. EXTC

Course (Category)	Course Name	Teaching Scheme (Hrs/week)					(Credits Assigned			
Code		L	T	P	О	E	L	T	P	Total	
		3	0	2	5	10	3	0	1	4	
PC		Examination Scheme									
	Mixed Signal Integrated Circuits	Component		ISE	ISE (%) MSE		E (%) ESE (%)		2 (%)	Total	
	integrated Circuits	Theory		2	20	2	20		50	100	
EC207		Laboratory		8	30			20		100	

Pre-requi	site Course Codes, if any.							
Course O	Course Objective:							
Course Outcomes (CO): At the end of the course students will be able to								
EC207.1	Understand the issues in integration of mixed signal circuits.							
EC207.2	Understand feedback topologies, differential amplifier and its analysis.							
EC207.3	Identify an op-amp IC to demonstrate its linear/non-linear applications.							
EC207.4	Employ ADC / DAC using Integrated Circuits.							
EC207.5	Employ a mixed signal IC for a known application.							

CO-PO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO 10	PO 11	PO 12
EC207.1	2	1										
EC207.2	3	3	3		2							
EC207.3	3	3	3									
EC207.4	3	3	3									
EC207.5	3	3	3	3	3	1		3	3	3	3	3

CO-PEO/PSO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

	PEO1	PEO2	PEO3	PEO4	PSO1	PSO2
EC207.1					1	
EC207.2					1	
EC207.3					1	
EC207.4					1	
EC207.5	1	1		3	2	2

Sardar Patel Institute of Technology

(Empowered Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India

B. Tech. EXTC

BLOOM'S Levels Targeted (Pl. Tick appropriate)

Remember	Understan	Apply √	Analyze √	Evaluate √	Create
	đ√				

Theory Component

Module No.	Unit No.	Topics	Ref.	Hrs.		
	Title	Introduction to Mixed Signal and Circuits				
	1.1	Analog and digital components within a mixed signal system.				
1	1.2	Design principles involved in integrating analog and digital components. Signal processing techniques within mixed signal systems. Noise sources in mixed signal circuits.	2R	04		
	1.3 Nonlinearity and Mismatch issues in mixed signal integration					
	Title	Fundamentals of Operational Amplifier				
	2.1	Feedback Topologies, MOSFET Differential Amplifiers. Current Mirrors.	2			
2	2.2	Op-Amp functional block diagram, frequency compensation, equivalent circuit.	1,2,3	10		
	2.3	Specifications of Operational amplifier, Comparison of specifications: uA741/ TLO82/MC3403	1,2,3			
		Applications Operational Amplifier				
	3.1	Linear Applications: Inverting and non-inverting amplifier, adder, subtractor, integrator, differentiator, difference amplifier, instrumentation amplifier.				
3	3.2	Nonlinear Applications: Comparators: Inverting comparator, non-inverting comparator, zero crossing detector, Schmitt trigger comparator. Sample and Hold Circuit. Precision Rectifiers, Waveform Generators, Peak Detector, Log-Antilog Amplifier.	1,3	12		
	3.3	Active Filters: First order filters, second order active finite and infinite gain low pass, high pass, Notch Filter. Switched Capacitor Filter IC.				
		Data Converters				
4	4.1	Fundamentals of Data Converters. Nyquist Rate Converters and Oversampling Converters.	1,3	08		
4	4.2	Digital-to-analog converters (DAC): Weighted resistor, R-2R ladder. IC DAC 0808	1,3			
	4.3	Analog to-digital converters (ADC): Single slope, dual slope,				

Sardar Patel Institute of Technology

(Empowered Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India

B. Tech. EXTC

		successive approximation, flash. IC ADC 0808.		
		Special Purpose Mixed Signal ICs		
5	5.1	PLL 565, VCO 566 and their applications in telecommunication.	1,3	08
	5.2	Modem Mixed-Signal IC AD9876 and its applications.		
6	Self Study	Emerging trends in mixed signal circuit design. Advanced components and techniques. Case Study: Exploring Mixed Signal Integrated Design.		06*
* not inc	cluded in t	he total.	Total	42

Laboratory Component, if any. (Minimum 8 Laboratory experiments and a case study is expected)

Sr. No.	Title of the Experiment
1	Verify performance of MOSFET Differential amplifier with and without current mirror.
	(simulation)
2	Verify performance of a circuit based on any one of the feedback topologies. (simulation)
3	To measure and compare (a) Input bias current, (b) Input offset current, (c) Input offset voltage
	& (d) Slew rate of Op-Amp ICs 741/TLO82/MC3403.
4	Design and implement any one linear application using a suitable Op-Amp IC.
5	Design and implement any one non-linear application using a suitable Op-Amp IC.
6	Design and implement an active filter circuit using a suitable IC.
7	Design and implement any one ADC/DAC circuit using ADC 0808.
8	Design an application using any one special purpose IC.
9	Construct a PCB for any one of the applications based on Mixed signal IC.

Textbooks

Sr. No.	Title	Edition	Authors	Publisher	Year
1	Op-Amps and Linear Integrated Circuits	Fourth	Ramakant A. Gayakwad	Pearson Prentice Hall	2015
2	Electronic Circuit Analysis and Design	Third	Donald A. Neamen	Tata McGraw Hill	2006
3	Linear Integrated Circuits	Fourth	D. Roy Choudhury and S. B. Jain	New Age International Publishers	2018

Sardar Patel Institute of Technology (Empowered Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India

B. Tech. EXTC

Reference Books

Sr. No.	Title	Edition	Authors	Publisher	Year
	Analog/RF and		Mourad Fakhfakh, Esteban		
1R	Mixed Signal Circuit	First	Tlelo Cuautle, Rafael	Springer	2013.
	Systematic Design.		Castro Lopez.		
2R	Mixed-Signal	Б	Thomas Noulis	CD C D	2021
	Circuits (Devices)	First		CRC Press	2021