Hidrologia Aplicada

PARÂMETROS MORFOMÉTRICOS EM BACIAS HIDROGRÁFICAS ANÁLISE AREAL E HIPSOMÉTRICA

Professor: Lázaro N. V. de Andrade

ÁREA DA BACIA (A)

 Toda a área drenada pelo conjunto do sistema fluvial, projetada em um plano horizontal.

Determinação:

- a) Planímetros
- b) Papel milimetrado
- c) Pesagem de papel uniforme recortado
- d) Uso de técnicas computacionais.

COMPRIMENTO DA BACIA(L)

- VÁRIAS DEFINIÇÕES => diversidade de informação de acordo com o método utilizado e finalidade.
 - A) Distância medida em linha reta entre a foz e determinado ponto do perímetro que assinala equidistância no comprimento do perímetro entre a foz e ele.
 - B) maior distância em linha reta, entre a foz e determinado ponto situado ao longo do perímetro.
 - C) Distância da foz até o ponto mais alto no perímetro.
 - D) Distância em linha reta da foz acompanhando o rio principal.

COMPRIMENTO DA BACIA(L)

Figura 4.4 Representação dos diversos critérios utilizados para determinar o comprimento da bacia de drenagem

RELAÇÃO ENTRE O COMPRIMENTO DO RIO PRINCIPAL E A ÁREA DA BACIA (Hack, 1957)

• HACK, John T.Studies of longitudinal stream profiles in Virginia and Maryland. *U. S. Geol. Surv. Prof. Paper* (1957), (294-B).

$$L = 1.5 \cdot A^{0.6}$$

L (km)

 $A (km^2)$

A) Índice de circularidade (Ic):

MILLER, V. C. A quantitative geomorphic study of drainege basins chracteristics in the Clinch Mountain area. *Technical Report* (1953) (3), Dept. Geology, Columbia University.

$$Ic = A/Ac$$

A =área da bacia (km²)

Ac = área do círculo de perímetro igual ao da bacia considerada (km²)

• B) Índice de forma (If):

LEE, D. R.; SALLE, G. T. A method of measuring shape.

Geographical Review (1970) 60(4), pp. 555-563.

Procedimento: traçar a figura geométrica em forma mais próxima à da bacia e determinar a sua área.

If = 1- [(área K interseção L)/ (área K união L)]

 $K = \text{área da bacia } (km^2)$

L = área da figura geométrica considerada (km²)

• "Quanto menor for o índice, mais próxima da figura geométrica respectiva estará a forma da bacia".

• C) Índice entre o comprimento e a área da bacia (I_{co}):

$$I_{co} = D_{b} / A^{1/2}$$

D_b = diâmetro da bacia (km)

A =área da bacia (km²)

- I_{co} ~ 1 => bacia quadrada
- I_{co} < 1 => bacia alargada
- $I_{co} > 1 => bacia alongada$

DENSIDADE DE RIOS (D_r)

=> relação entre o nº de rios e a área da bacia hidrográfica.

$$D_r = N/A$$

N = número total de rios ou cursos d'água.

A = área da bacia considerada

Horton: o valor de **N** é dado pela soma de todos os segmentos de cada ordem.

Strahler: N é a quantidade de rios de 1^a ordem

"Representa o comportamento hidrográfico da área em torno da capacidade de gerar novos cursos d'água".

DENSIDADE DA DRENAGEM (D_d)

=> relação entre o comprimento total dos canais e a área da bacia hidrográfica.

$$D_d = L_t/A$$

 L_t = comprimento total de rios ou cursos d'água.

A = área da bacia considerada

- relação inversa com o comprimento dos rios.
- Rochas clasticas de granulação fina \Rightarrow D_d alto
- Rochas de granulometria grossa => D_d baixo

DESNSIDADE DE SEGMENTOS DA BACIA (Fs)

=> aplicar o sistema de ordenação de Strahler e somar a quantidade de segmentos de todas as ordens da bacia.

$$F_S = \sum n_i / A$$

MELTON, M. A. Geometric properties of nature drainage systems

and their representation in na E₄ phase space. *Journal of Geology*(1958) 66(1), pp. 35-56.

$$F_S = 0.694 D_d^2$$

Equação geral:

Fs/
$$D_d^2 = [(\Sigma n_i). A] / L^2 = 1 / D_d. L_{med}$$

L = comprimento total dos segmentos da bacia (km)

L_{med} = comprimento médio dos segmentos da bacia (km)

=> "o valor numérico deve permanecer constante para bacias geometricamente semelhantes".

RELAÇÃO ENTRE AS ÁREAS (Ra)

- 1) Cada segmento de determinada ordem é responsável pela drenagem de determinada área.
- 2) Quanto mais elevada a ordem, a área a ela subordinada deverá abranger todos os segmentos de ordens menores que lhes são subsidiários.
- Como cada segmento de ordem superior drena uma área que é cada vez maior à medida que aumenta a ordem dos canais, o índice procura relacionar as áreas das bacias de ordens subseqüentes.

$$Ra = A_u / A_{u-1}$$

SCHAUMM, S. A. Evolution drainage systems and slopes in blands of Perth Amboy, *Geol. Soc. America Bulletin* (1956), 67, pp. 597-646

LEI DA COMPOSIÇÃO DA DRENAGEM

"Em uma bacia hidrográfica a área média das bacias de drenagem dos canais de cada ordem têm uma ordenação aproximada a uma série geométrica direta, na qual o primeiro termo é a área média das bacias de 1ª ordem".

COEFICIENTE DE MANUTENÇÃO (Cm) (SCHUMM, 1956)

⇒ Fornece a área mínima necessária para a manutenção de um metro de canal de escoamento.

$$Cm = [1/D_d].1000$$

D_d = valor da densidade de drenagem expresso em metros.

Cm = admensional.

$$1 \text{ km}^2 = 1.000.000 \text{ m}^2 \text{ (A)}$$

$$1 \text{ km} = 1.000 \text{ m} (L_t)$$

Hipsometria:

- ✓ Estudo das inter-relações existentes em determinada **unidade horizontal** de espaço em termos de distribuição em relação às faixas **altitudinais**.
- ✓ Indica a proporção ocupada por determinada área da superfície terrestre em relação às **variações altimétricas** a partir de determinada **isoipsa** base.

BACIA DO RIBEIRÃO DO LOBO

MUNICIPIOS: ITIRAPINA - BROTAS - SP

Fig. 2.3 - Bacia do Ribeirão do Lobo

TABELA 2.1 – Distribuição de Declividade

Bacia: Ribeirão do Lobo - S.P.

Quadrículas: 1 km de lado

Mapa: IBGE Escala: 1:50000

Area de Drenagem: 177,25 km²

. 1	2	3	4	5	6	
Declividade em m/m	Número de Ocorrência	Porcentagem do Total	Porcen- tagem Acumulada	Declividade Média do Intervalo	Coluna 2 X Coluna 5	
0,0000 - 0,0049 0,0050 - 0,0099 0,0100 - 0,0149 0,0150 - 0,0199 0,0200 - 0,0249 0,0250 - 0,0299 0,0300 - 0,0349 0,0350 - 0,0399 0,0400 - 0,0449 0,0450 - 0,0499	249 69 13 7 0 15 0 0	69,55 19,27 3,63 1,96 0,00 4,19 0,00 0,00 0,00 1,40	100,00 30,45 11,18 7,55 5,59 5,59 1,40 1,40 1,40	0,00245 0,00745 0,01245 0,01745 0,02245 0,02745 0,03245 0,03745 0,04245 0,04745	0,6100 0,5141 0,1618 0,1222 0,0000 0,4118 0,0000 0,0000 0,0000 0,2373	
Total	358	100,00	_	-	2,0572	

Declividade Média = $\frac{2,0572}{358}$ = 0,00575 m/m

• Curva hipsométrica:

- Exprime a forma do volume rochoso.
- ✓ Facilita a comparação entre áreas de tamanhos e topografias diferentes.
- ✓ Evita o emprego de escalas absolutas e aplica-se parâmetros relativos, em porcentagens.
- ✓ Conhecendo-se a altura e a área de cada faixa **altitudinal** analizada pode-se calcular o volume de uma faixa específica.
- ✓ A soma de todos os volumes representará o volume rochoso ainda existente na região.

TABELA 2.2 - Curva Hipsométrica

Bacia: Ribeirão do Lobo - S.P.

Área de Drenagem: 177,25 km²

Mapa: IBGE Escala: 1:50000

1	2	3	4	5	6	7	
Cotas (mnt)	Ponto Médio Áre (m) (km		Ārea Acumulada (km²)	%	% Acumulada	Coluna 2 X Coluna 3	
940 - 920	930	1,92	1,92	1,08	1.08	1 785.6	
920 - 900	910	2,90	4,82	1,64	2,72	2 639.0	
900 - 880	890	3,68	8,50	2,08	4,80	3 275,2	
880 - 860	870	4,07	12,57	2,29	7,09	3 540.9	
860 - 840	850	4,60	17,17	2,59	9.68	3 910,0	
840 - 820	830	2,92	20,09	1,65	11,33	2 423,6	
820 - 800	810	19,85	39,94	11,20	22,53	16 078.5	
800 - 780	790	23,75	63,69	13,40	35,93	18 762,5	
780 - 760	770	30,27	93,96	17,08	53,01	23 307.9	
760 - 740	750	32,09	126,05	18,10	71,11	24 067,5	
740 - 720	730	27,86	153,91	15,72	86,83	20 337,8	
720 - 700	710	15,45	169,36	8,72	95,55	10 969,5	
700 680	690	7,89	177,25	4,45	100,00	5 444,1	
Total		177,25				136 542,1	

Fig. 2.8 - Curva Hipsométrica

Gráfico de ih

(Mm) = curva hipsométrica (MOm) = superfície rochosa (Oh) = altura média (Om) = área projetada da bacia (MO) diferença altimétrica

•"Se considerarmos o espaço total do quadrado como correspondendo ao volume global inicial (ideal), o espaço situado entre a curva hipsométrica e as linhas inferior e lateral esquerda é o volume existente (calculado a partir da integral hipsométrica).

• Uma simples regra de três permite determinar a altura média:

Amplitude altimétrica ----- 100

Altura média -----integral hipsométrica

COEFICIENTE DE MASSIVIDADE

Coeficiente de massividade: (sempre < 1)

- "quociente da divisão da altura média do relevo da área pela sua superfície."

Figura 4. Gráfico representando a curva hipsométrica (Mm), a integral hipsométrica (superficie Mom) e a altura média (oh). O comprimento Om representa, proporcionalmente, a área projetada da bacia, enquanto Mo representa, de modo proporcional, a diferença altimétrica entre o ponto mais elevado da bacia e a desembocadura

COEFICIENTE OROGRÁFICO

• Coeficiente orográfico: "produto da altura média pela tangente do ângulo formado por ela e a superfície da bacia."

Coeficiente orográfico = H_{med} . tg_{α}

EXEMPLO DE APLICAÇÃO

Figura 4.7 Curvas hipsométricas de bacias hidrográficas localizadas no Planalto de Poços de Caldas: 1) córrego Pouso Alegre; 2) córrego das Vargens; 3) córrego da Cachoeira; 4) rio Verdinho; 5) córrego Tamanduá; 6) córrego do Quartel; 7) córrego Grande (conforme Christofoletti, 1970)

Tabela 4. Dados hipsométricos sobre as bacias hidrográficas localizadas no Planalto de Poços de Caldas (MG)

de Caldas (MG)								
Bacias	Área integral		altitudes máxima mínima		(em m) amplitude	altura média	coeficiente de massividade	coeficiente orográfico
Córrego Pouso Alegre Córrego das Vargens Córrego Cachoeira Rio Verdinho Córrego Tamanduá Córrego Quartel	103,7 35,9 16,9 80,8 38,8 34,1	0,481 0,352 0,350 0,308 0,186 0,483	1 560 1 460 1 460 1 707 1 630 1 550	1 045 1 250 1 280 1 045 1 270 840 960	515 210 180 662 360 710 610	248 74 63 204 67 343 297	0,481 0,352 0,350 0,308 0,186 0,483 0,488	119,2 26,0 22,0 62,8 12,5 165,7 144,9
7. Córrego Grande	68,5	0,488	1370				. — . — . — . — . — . — . — . — . — . —	

AMPLITUDE ALTIMÉTRICA MÁXIMA (H_m)

- Corresponde à diferença altimétrica entre a altitude da desembocadura (exultório) e a altitude do ponto mais alto situado em qualquer lugar da divisória topográfica.
- Possíveis dificuldades na determinação:
- a) A cota máxima seria a média resultante dos pontos mais elevados entre os canais de primeira ordem do trecho superior da bacia considerada.
- b) Considerar como ponto máximo a média entre as cotas máximas da bacia e a cota inferior da faixa que representa (faixa superior) pelo menos 10 % da área total da bacia hidrográfica.

RELAÇÃO DE RELEVO (R_r)

 O relacionamento existente entre a amplitude altimétrica máxima de uma bacia e a maior extensão da referida bacia, medida paralelamente à principal linha de drenagem.

$$R_r = H_m/L_b$$

 H_m = amplitude topográfica ma'xima.

 $L_b = comprimento da bacia$

RELAÇÃO DE RELEVO (R_r)

MELTON, M. A. "Na analysis of the relations among elements of climate, surface properties and geomorphology", *Thecnical Report* (1957), (11), Dept. Geology, Columbia University.

$$R_r = (H_m/P)$$
. 100

P = Perímetro da bacia.

MELTON, M. A. (1965).?

$$R_{\rm r} = H_{\rm m}/A^{0.5}$$

ÍNDICE DE RUGOSIDADE

• O índice de rugosidade combina as qualidades de declividade e comprimento das vertentes com a densidade de drenagem (número admensional).

$$I_r = H. D_d$$