Methodology

This project follows a structured methodology for developing a deep learning model to classify waste using the BDWaste Dataset. The process is divided into key stages, including data preprocessing, model selection, training, evaluation, optimization, and final testing.

1. Data Collection and Preprocessing

- The BDWaste Dataset is used, containing 2,625 images categorized into biodegradable and non-biodegradable waste.
- Data Cleaning: Removing duplicate, corrupted, or poor-quality images to ensure a high-quality dataset.
- Data Augmentation: Enhancing dataset diversity by applying transformations such as rotation, flipping, brightness adjustment, and zooming.
- Oversampling for Balance:
 - Since some waste categories contain fewer images, oversampling techniques are applied to balance the dataset.
 - Augmentation-based oversampling ensures equal representation across all categories.
- Dataset Splitting: The dataset is divided into:
 - o Training Set (70%)
 - o Validation Set (15%)
 - o Testing Set (15%)
- Image Resizing and Normalization:
 - All images are resized to 224x224 pixels to maintain consistency across models
 - o Pixel values are normalized between 0 and 1 for better training efficiency.

2. Model Development

The project explores different Convolutional Neural Network (CNN) architectures to identify the most effective model:

- 1. Custom CNN Model: A model designed from scratch with convolutional layers, batch normalization, activation functions, and dropout layers.
- 2. Pretrained CNN Models for Transfer Learning:
 - o VGG16
 - o ResNet50
 - EfficientNet
 - o MobileNetV2
 - Each of these models is fine-tuned to improve classification accuracy.

3. Model Training and Evaluation

- Loss Function: The model is trained using categorical cross-entropy loss, which is suitable for multi-class classification tasks.
- Optimization Techniques: Different optimizers are tested, including:
 - o Adam
 - Stochastic Gradient Descent (SGD)
 - o RMSprop
- Performance Evaluation Metrics:
 - Accuracy Measures overall classification performance.
 - Precision, Recall, and F1-score Assesses model effectiveness in identifying each waste category.
 - o Confusion Matrix Analyzes correct and incorrect predictions.
- Early Stopping and Model Checkpointing:
 - Early stopping is implemented to prevent overfitting by monitoring validation loss.
 - o Checkpointing saves the best-performing model for further improvements.

4. Hyperparameter Tuning

The best-performing CNN model is further optimized by fine-tuning key hyperparameters:

- Adjusting Learning Rate: Testing values such as 0.1, 0.01, 0.001, and 0.0001.
- Experimenting with Batch Size: Evaluating different batch sizes (16, 32, 64) for optimal training stability.
- Comparing Optimizers: Selecting the best optimizer from Adam, SGD, and RMSprop.
- Tuning Dropout Rates: Experimenting with dropout values (0.2, 0.3, and 0.5) to reduce overfitting.
- Modifying CNN Filters and Dense Layers:
 - o Testing different filter sizes (32, 64, 128).
 - o Experimenting with fully connected layer sizes (128, 256, 512).
- Automated Hyperparameter Search:
 - Techniques like Grid Search, Random Search, and Bayesian Optimization are used to identify the best configurations.

5. Model Optimization

Once the final model is selected, additional optimization techniques are applied:

- Parameter Pruning: Removing unnecessary parameters to make the model more efficient.
- Quantization: Reducing model size while maintaining accuracy.
- Regularization Strategies:
 - o Dropout and Batch Normalization help stabilize training.
 - Weight Decay prevents overfitting.

6. Final Testing and Validation

- The optimized model is evaluated using the test dataset to confirm its generalization ability.
- Final performance is assessed using:
 - Accuracy
 - Precision
 - o Recall
 - o F1-score
- The best model is finalized for deployment and further research.

7. Ethical Data Handling and Project Management

- Data Privacy: Ensuring responsible dataset usage and compliance with ethical guidelines.
- Version Control:
 - All project files, including datasets and training scripts, are maintained using GitHub.
 - o Regular commits document key project updates.
- Bias Reduction: Implementing strategies to ensure fair classification across all waste categories.

8. Final Report and Submission

- A detailed research report is prepared, summarizing:
 - Methodology
 - o Experiments
 - o Results and key findings
- The project deliverables include:
 - o A structured research document
 - o A well-documented code repository
 - o Final presentation and viva examination