Revisão

Sistemas de Controle / Princípios de Controle

Resposta em regime permanente:

Caso avaliado: realimentação unitária

Tipo do sistema:

$$G(s) = \frac{K(T_a s + 1)(T_b s + 1) \dots (T_m s + 1)}{s^{N}(T_1 s + 1)(T_2 s + 1) \dots (T_p s + 1)}$$

 s^{N} : polo de multiplicidade N na **origem** – sistema tipo N.

- Não confundir tipo com ordem do sistema.
- ↑N implica em ↑precisão e ↓estabilidade.

Resposta em regime permanente:

- Obter erro nulo quando $t \to \infty$
 - Adição de integradores


```
G1 = tf(1, [1 1]);
G2 = tf(1, [1 0]);
G T0 = feedback(G1, 1);
G T1 = feedback(G2, 1);
step(G T0);
hold on
step(G T1);
legend('Tipo 0', 'Tipo 1');
title('Entrada degrau');
```

Resposta em regime permanente:

- Se tipo do sistema fornece erro constante quando $t \to \infty$
 - Aumentar ganho diminui erro


```
G1 = tf(1, [1 1]);
G2 = tf(9, [1 1]);
G K1 = feedback(G1, 1);
G K9 = feedback(G2, 1);
step(G K1);
hold on
step(G K9);
legend('K = 1', 'K = 9');
title('Entrada degrau -
Sistema tipo 0');
```


Resposta em regime permanente:

Entrada rampa:

$$e_{ss} = \frac{1}{K_v} = \begin{cases} \infty, & \text{para tipo 0} \\ \frac{1}{K}, & \text{para tipo 1} \\ 0, & \text{para tipo 2 ou maiores} \end{cases}$$

Entrada Parábola:

$$e_{ss} = \frac{1}{K_a} = \begin{cases} \infty, & \text{para tipo } 0 \text{ e } 1 \\ \frac{1}{K}, & \text{para tipo } 2 \\ 0, & \text{para tipo } 3 \text{ ou maiores} \end{cases}$$

Resposta em regime permanente – Resumo:

	Entrada em degrau r(t) = 1	Entrada em rampa r(t) = t	Entrada em aceleração r(t) = 0.5t ²
Sistema do tipo 0	$\frac{1}{1+K_{\rm p}}$	∞	∞
Sistema do tipo 1	0	$\frac{1}{K_{\mathrm{v}}}$	∞
Sistema do tipo 2	0	0	$\frac{1}{K_{\rm a}}$

K_{p}	$K_{\mathbf{v}}$	$K_{\rm a}$
$\lim_{s\to 0}G(s)$	$\lim_{s\to 0} sG(s)$	$\lim_{s\to 0} s^2 G(s)$

 K_p , K_v e K_a : descrevem a habilidade de um sistema com realimentação unitária em reduzir ou eliminar o erro estacionário.

Resposta transitória:

Resposta transitória:

Sistema de segunda ordem, representado em slide anterior:

$$\frac{C(s)}{R(s)} = \frac{\omega_n^2}{s^2 + 2\zeta\omega_n s + \omega_n^2}$$

"Coordenadas cartesianas" do polo:

- ω_d : frequência natural amortecida. É a frequência de oscilação observada experimentalmente.
- σ : Define a taxa de decaimento da exponencial

"Coordenadas polares" do polo:

- $\omega_n=\sqrt{\sigma^2+\omega_d^2}$: Frequência natural não amortecida. Define velocidade de resposta. Mantendo ζ fixo, ao dobrar ω_n , tempo de resposta cai pela metade
- $\zeta = \cos \beta$: Define amortecimento/oscilação do sistema.

Resposta transitória:

Efeito de ζ e ω_n na resposta ao degrau unitário:

Resposta transitória:

Sobre ζ :

- Se polos estão no eixo real (se polos não possuem parte imaginária) e estão no semiplano esquerdo, tem-se que $\zeta>1$. Resposta sem oscilação senoidal.
- Polo duplo real, semiplano esquerdo : $\zeta = 1$. Sem oscilação senoidal.
- Polo complexo conjugado, semiplano esquerdo: $0<\zeta<1$: resposta oscilatória amortecida
- Polo complexo conjugado, eixo imaginário: $\zeta=0$: resposta oscilatória não amortecida
- Polo no semiplano direito: $\zeta < 0$: resposta instável.

Tabela com equações de desempenho para sistemas de segunda ordem

Critério	Equação
Tempo de subida (rise time)	$t_r = \frac{1}{\omega_d} \operatorname{tg}^{-1} \left(\frac{\omega_d}{-\sigma} \right) = \frac{\pi - \beta}{\omega_d}$
Tempo de pico (peak time)	$t_p = \frac{\pi}{\omega_d}$
Máximo sobressinal (overshoot)	$M_p = e^{-\frac{\sigma}{\omega_d}\pi} = e^{-\frac{\zeta}{\sqrt{1-\zeta^2}}\pi}$
Tempo de acomodação (5%) (setling time)	$t_s = 3T = \frac{3}{\sigma} = \frac{3}{\zeta \omega_n}$
Tempo de acomodação (2%) (setling time)	$t_{\scriptscriptstyle S} = 4T = \frac{4}{\sigma} = \frac{4}{\zeta \omega_n}$

Plano s

O que são os semicírculos? E as linhas retas?

Exemplo de projeto via LGR

$$G(s) = \frac{1}{s(s+1)(s+2)}$$


```
G = zpk([], [-1 -2 -3], 1);
rlocus(G)
grid on;
axis equal;
```


Projeto de Sistemas de controle

O que se deseja em um projeto:

- Aumentar o tipo do sistema (regime permanente)
- Aumentar o ganho K (regime permanente)
- Escolher um valor de ζ adequado (resposta transitória)
- Escolher um valor de ω_n adequado (resposta transitória)

Veja que, apenas ajustando o valor de K (ex: via LGR ou Bode), não é possível atender a todas as questões acima ao mesmo tempo.

Soluções:

- Compensadores de atraso-avanço (projeto no domínio da frequência)
- Alocação de polos (projeto via espaço de estados)
 - Pode exigir estimador de estados