Exercise 1

(1)
$$5^2 = 25 \mod 1979$$

 $5^4 = 625 \cdots$
 $5^8 = 762$
 $5^{17} = 27$
 $5^{35} = 1666$
 $5^{71} = 1032$
 $5^{143} = |1610| \mod 1979$

$$2^{2} \equiv 4 \mod 1979$$
 $2^{4} \equiv 16 \mod 1979$
 $2^{8} \equiv 256 \cdots$
 $2^{17} \equiv 458$
 $2^{35} \equiv 1959$
 $2^{71} \equiv 800$
 $2^{143} \equiv \boxed{1566} \mod 1979$

(2)
$$G = F_{3}^{\times}$$
: $G = F_{3}^{\times}$:

$$G=F_{47}^{\times}$$
:

 $G=F_{47}^{\times}$:

 $G=F_$

(4)
$$\boxtimes$$
 is a primitive root in $\mathbb{E} \boxtimes /(x^{4}+x+1)$ because 15 is the smallest K where x^{K} mod $x^{4}+x+1=1$ (mod z).

(1)
$$X = g^{\alpha} \mod p \Rightarrow \alpha = \log_{9}(X) = \log_{5}(38) \mod 47$$
.
 $\Rightarrow \alpha = 17 \text{ because } 5^{17} = 38 \mod 47$.
Now, $Z = Y^{\alpha} = 3^{17} = 2 \mod 47 \Rightarrow 2 \text{ is the key}$
 $\Rightarrow \text{ Shift everything back } 2 \text{ spots } \Rightarrow \text{ CONGRATULATIONS}$

(3)
$$\Phi(1517) = \Phi(37) \Phi(41) = 36 \times 40 = 1440$$

Find mult inverse of 11:

T: 1440 11 10 1

8: 130; 1 10 \Rightarrow 11 \times 131 $=$ 1 mod 1440

 $d = 131 \Rightarrow \begin{cases} 1373^{131} = 67 \text{ mod } 1517 \\ 149^{131} = 47 \text{ mod } 1517 \end{cases} \xrightarrow{6} \xrightarrow{7} \xrightarrow{7} \xrightarrow{108} \xrightarrow{131} = \frac{1}{108} \xrightarrow{108} \xrightarrow{1$

(4) (a) AHA
$$\Rightarrow$$
 2425 = $\boxed{39398}$ mod 39597

(b)
$$\varphi(208) = \varphi(11)(19) = 180$$
.

8:
$$25$$
; 1 2 2 \Rightarrow $7 \times 77 = -1$ mod 180
77/3 3/2 3/1 \Rightarrow $7 \times 103 = 1$ mod 180

77/3
$$\frac{3}{2}$$
 $\frac{3}{2}$ $\frac{3}{2}$

digital sig: MO AN A
$$= \begin{cases} 63^{103} = 15 \\ 27^{103} = 131 \end{cases}$$
 $= 131$ $= 128$

$$15^{5} = 70\%$$

 $131^{5} = 13760$ Mod 39597
 $128^{5} = 35573$

Therefore,
$$39597 = 199^2 - 2^2 = (199+2)(199+2)$$

= $[197 \times 201]$