

ESETFELVETÉS - MUNKAHELYZET

Ön egy szervizben/üzemben dolgozik, ahol elektronikai berendezéseket javítanak. A szerviz/üzem szakképzésben tanulók gyakorlati foglalkoztatásának helyszíne is.

Feladata:

- a tanulók illetve belépő új pályakezdő munkatársak témához kötődő elméleti felkészültségének rendszerezése, gyakorlathoz igazítása,
- ismereteinek alkalmazása a szervizmunka során.

SZAKMAI INFORMÁCIÓTARTALOM

AZ ANYAGOK SZERKEZETE

Minden anyag atomokból épül fel. Az atom atommagból és a körülötte meghatározott távolságra keringő elektronokból áll. Az elektronok pályáját elektronhéjnak nevezzük.

1. ábra. Az atom felépítése

Az atommagban vannak a pozitív töltésű protonok és a semleges neutronok, a héjban a negatív elektronok. Ezeket elemi részecskéknek nevezzük.

A proton és az elektron töltésének nagyságát elemi töltésnek nevezzük. A proton töltése a pozitív elemi töltés (e+), az elektron töltése a negatív elemi töltés (e-).

Különböző anyagok atomjai különböző proton és elektronszámmal rendelkeznek. (A hidrogénatom egy elektront és egy protont tartalmaz. A rézatomnak 29 elektronja és 29 protonja van.)

2. ábra. Az elektronok keringése

Az elektronok igen nagy sebességgel keringenek az atommag körül, így a centrifugális erő lerepítené őket a körpályáról. Mivel ez nem történik meg, kell lennie egy másik erőnek is, ami ellentétes irányú a centrifugális erővel, és azonos nagyságú. Ez az erő az elektronok és a protonok közötti vonzerő, amit elektromos hatásnak nevezzünk.

Ellenkező előjelű töltések vonzzák, azonosak taszítják egymást.

Egy proton töltésének nagysága megegyezik egy elektron töltésének nagyságával (csak az előjele ellentétes).

A normál atom protonjainak és elektronjainak a száma megegyezik, így az atom kifelé nem mutat töltést, semleges.

Ha külső hatás következtében az elektronok közül egyet vagy többet eltávolítunk, az egyensúly felborul. A pozitív töltések túlsúlyba kerülnek, az atom többé nem semleges, elektromos tulajdonságokkal rendelkezik. Ha az atomok kémiai kötésben összekapcsolódnak, molekulát alkotnak. A fentiek értelmében a molekula is rendelkezhet elektronhiánnyal és többlettel is.

Az elektronhiányos atom vagy molekula: pozitív ion.

Ha az atom elektronhéjára egy vagy több plusz elektron kerül, az atom elektrontöbblettel fog rendelkezni, tehát kifelé negatív töltést mutat.

Az elektrontöbbletes atom vagy molekula: negatív ion.

Egyik legrégebben ismert elektromos jelenség a dörzselektromosság. Ha különböző anyagokat összedörzsölünk, például üveget selyemkendővel, akkor az üveg atomjairól elektronok szakadnak le és kerülnek a selyem anyagának atomjaira. Az üveg pozitív, a selyem negatív töltésű lesz.

Ha ezután az üveg és a selyem közel kerül egymáshoz, vonzani fogják egymást. A két test közötti tér különleges állapotú.

A töltések villamos (elektromos) erőteret hoznak létre maguk körül.

Ha a villamos erőtérbe töltés (töltéssel rendelkező test) kerül, arra erő fog hatni.

A villamos erőtér a térnek az a része, ahol villamos erőhatások tapasztalhatók. (Nevezik elektromos erőtérnek, elektromos, ill. villamos mezőnek is.)¹

3. ábra.² Egymást vonzó töltések erővonalképe.

A villamos erőteret nem látjuk, de hatásán keresztül modellezhetjük. Ha pl. vékonyan beolajozott üveglapra búzadarát szórunk, majd az üveglapot villamos erőtérbe helyezzük, a búzadara szemcsék az erőtér irányába rendeződnek. A rendeződésből vonalak válnak ki, melyeket erővonalaknak nevezünk.

4. ábra.3 Erővonalképek

¹ A villamos erőtérről később részletesebben fogunk tanulni.

² A kép forrása: Koncz Ferenc - Szentirmay László: Elektrotechnika Tankönyvkiadó, Budapest, 1972.

³ A kép forrása: Koncz Ferenc - Szentirmay László: Elektrotechnika Tankönyvkiadó, Budapest, 1972.

a) pozitív töltésű test; b) párhuzamos lemezek között homogén a villamos erőtér; c) negatív töltésű test; d) két pozitív töltésű test erővonal-rendszere

A kísérlet elvégzése után a következő megállapításokat tesszük:

- 1. Az erővonalaknak iránya van, a pozitív töltésű testben erednek és a negatív töltésű testben végződnek.
- 2. Az erővonalak nem keresztezik egymást.
- 3. Az erővonalak nem záródnak önmagukba.
- 4. Az erővonalak rövidülni igyekeznek.
- 5. A villamos erőtér létrehozásához töltés (elektromosan töltött testek) szükséges(ek).
- 6. A testek elektromos feltöltéséhez töltésszétválasztásra van szükség.

A töltés jele: Q, mértékegysége: C (coulomb ejtsd: kúlomb).

 $1 C = 6,24 \cdot 1018$ (6,24 trillió) elektron töltése.

Egy elektron töltése (elemi töltés) e- = -1,602·10-19 C

A FESZÜLTSÉG4

Jele: U, mértékegysége: V (volt)

A töltésszétválasztáshoz munkavégzés (W) szükséges. Ha több töltést (Q) akarunk szétválasztani, nagyobb munkát kell befektetnünk. Tehát W ~ Q. (W arányos Q-val.)

A töltésszétválasztással olyan hatást gyakorolunk a részecskékre, amellyel legyőzzük azok összetartó erejét. Ezt a hatást nevezzük elektromotoros erőnek.

Tehát feszültség van a szétválasztott töltések között, a kiegyenlítődést pedig az elektromotoros erő akadályozza meg.

A töltések kiegyenlítődésre törekvő hatását nevezzük feszültségnek.

A feszültség nagysága megadja, hogy mennyi munkavégzés történne egységnyi töltés (1 C) kiegyenlítődésekor.

A feszültségnek munkavégző képessége van.

 $U = \frac{W}{Q} \left[\frac{J}{C} = V \right] \Rightarrow 1 \text{ V a feszültség, ha a villamos erőtér 1 C töltésen 1 J munkát végzett.}$

4

⁴ Feszültségen a későbbiekben is villamos feszültséget értünk.

Feszültség mindig két pont között van. Egy viszonyítási ponthoz képest mért feszültséget nevezzük potenciálnak is, ezért mondhatjuk, hogy a feszültség potenciálkülönbség⁵.

Milyen módokon keletkezhet feszültség? 6

1. A már említett dörzsölés útján.

A dörzsölés, súrlódás által keletkezett feszültséget dörzselektromosságnak, illetve elektrosztatikus feltöltődésnek nevezzük.

A villámlás is elektrosztatikus feltöltődés következménye, ott több millió V keletkezhet.

Az elektrosztatikus feltöltődéssel nap, mint nap találkozunk, a műszálas ruha, műanyag kárpitos szék, stb. kapcsán. Veszélyes is lehet, mert a kisülés szikrája alkatrészek meghibásodását, de akár robbanást is okozhat. Ez ellen védekezni kell.

- 2. A jól ismert akkumulátorok, szárazelemek kémiai módon állítanak elő feszültséget.
- 3. Egyes kristályok összenyomásával, hajlításával ún. piezoelektromosság keletkezik. Ilyet alkalmazunk pl. gázgyújtókban, régi kristályhangszedős lemezjátszókban.
- 4. Hőelemet készíthetünk, ha két különböző anyagú fémhuzalt (pl. vas és konstantán) egy pontban összekötünk, és ezt a pontot melegítjük. A huzalok végén ún. termoelektromos feszültség jelenik meg, aminek nagysága arányos a hőmérséklettel. A hőelem hőmérők, hővédelmi rendszerek érzékelőeleme.
- 5. Amikor bizonyos anyagokat fény ér, töltésszétválasztás történik. A fényelemek megvilágítással arányos feszültséget szolgáltatnak, így alkalmasak fénymérő műszer érzékelőjének. A **napelemek** nagyobb teljesítményűek, vízmelegítésre, lakásfűtésre is alkalmasak.
- 6. Az élő szervezetek is állítanak elő feszültséget. Gondoljunk az elektromos rájára, vagy arra, hogy a szívünk is az agy által előállított elektromos feszültségimpulzusok hatására dobog.
- 7. Amikor mágnes és vezeték mozog egymáshoz képest, a vezetékben feszültség keletkezik. Ezzel a jelenséggel találkozunk a dinamikus mikrofontól kezdve a villamos erőművek generátoráig, és elektromágneses indukciónak nevezzük.

A feszültség használatos egységei

MV (megavolt) 106 V

kV (kilovolt) 103 V

⁵ Potenciál: teljesítőképesség.

⁶ A felsorolás nem törekszik teljességre, célja a téma sokrétűségének érzékeltetése.

mV (millivolt) 10-3 V

 μV (mikrovolt) $10^{-6} V$

Feszültségnemek

- 1. Egyenfeszültség: iránya (polaritása) nem változik.
- a) Stacionárius⁷: a feszültség nagysága állandó (5. ábra).
- b) Változó: a feszültség nagysága változik (5. ábra). A négyszögjel-sorozat a digitális technikában, a fűrészjel a méréstechnikában, szabályozástechnikában jellemző. A szabálytalan görbe pl. egy hőelem (hőmérséklettel arányos) feszültsége lehet.

Az egyenfeszültség csak pozitív vagy csak negatív lehet.

5. ábra. Egyenfeszültségek időfüggvényei

2. Váltakozó feszültség: a nagysága és az iránya is periódikusan⁸ változik.⁹

8 Periódikus: szabályosan ismétlődő.

⁷ egyenletes

⁹ Később részletesen fogunt tanulni róla.

6. ábra. Váltakozó feszültségek időfüggvényei

A váltakozó feszültség pozitív és negatív görbe alatti területének nagysága megegyezik.

2. Kevert feszültség: egyen és váltakozó feszültségű összetevők keveréke.

7. ábra. Kevert feszültség időfüggvénye

A kevert feszültség pozitív és negatív görbe alatti területének nagysága nem egyezik meg.

A feszültségforrások rajzjelei:

8. ábra. Feszültségforrások rajzjelei a) generátor általában, b) forgó generátor, c) feszültséggenerátor, d) tápegység, e) szárazelem vagy akkumulátor

A feszültségforrás helyett használatos az energiaforrás, egyes esetekben a generátor, megint más esetben az áramforrás kifejezés. Amíg nem tudjuk biztosan, hogy mikor, melyiket használjuk helyesen, maradjunk a feszültségforrásnál, és használjuk a c) rajzjelet.

A polaritás illetve a feszültség irányának jelölése

9. ábra.

A feszültség irányát nyitott nyíllal jelöljük, amely a pozitívabb ponttól a negatívabb felé mutat.

AZ ÁRAM

A villamos áram a töltéssel rendelkező részecskék áramlása.

Feszültség hatására jöhet létre fémekben, folyadékokban és gázokban. A fémek elsőrendű vezetők, jól vezetik az áramot.

Az áram irányát zárt nyíllal jelöljük, és megállapodás szerint a pozitív töltéshordozók áramlásának irányát mutatja.

Más országokban ezt pont ellentétesen alkalmazzák (a nyíl fordított). Az ellentmondás feloldására bevezették a technikai és a fizikai áramirány fogalmakat.

Technikai áramirány: a pozitív, míg a fizikai áramirány a negatív töltéshordozók áramlásának iránya.

Áramvezetés fémekben

10. ábra. Fémrács

A fémek atomjai kristályrács kötésben vannak a rácskockák sarkaiban. A hőmozgás (a részecskék hőmérséklettől függő igen gyors rezgése) következtében a külső elektronhéjról elektronok szakadnak le. Ezek a szabad elektronok, melyek igen nagy számban mozognak az atomok között rendezetlenül ide-oda.

11. ábra.

A feszültség a szabad elektronokat áramlásra kényszeríti. A negatív pólus taszítja, a pozitív vonzza az elektronokat — megindul az áram.

Áramvezetés folyadékokban és gázokban

Folyadékokban és gázokban kétféle töltéshordozó van, pozitív és negatív ionok. Feszültség hatására tehát kétféle, egymással ellentétes áramlás indul meg. A vezetőképes folyadékokat elektrolitoknak nevezzük.

Az áram erőssége

Az áramerősség mérőszáma az egységnyi idő alatt átáramlott töltésmennyiséget mutatja meg.

Az áramerősség jele: I, mértékegysége: A (amper).

$$I = \frac{Q}{t} [A]$$

$$Q = I \cdot t[As]$$

Tehát 1 C = 1 As (amperszekundum)

A gyakorlatban az amperóra használatos, jellemzően akkumulátorok kapacitásának mértékegysége 1 Ah = 3600 As.

Az áramerősség használatos egységei

MA (megaamper) 10⁶ A

kA (kiloamper) 103 A

mA (milliamper) 10⁻³ A

 μA (mikroamper) 10⁻⁶ A

AZ EGYSZERŰ ÁRAMKÖR

12. ábra.10 Egyszerű áramkör képe

_

¹⁰ A kép forrása: Danás Miklós: Elektrotechnika ÉRÁK, Miskolc, 2006.

Az legegyszerűbb áramkör részei: feszültségforrás, vezetékek, fogyasztó.

13. ábra. Egyszerű áramkör kapcsolási rajza

Az elemlámpa 4,5 V-os zsebtelepe 3 db 1,5 V-os elemből áll. Az izzón Uk kapocsfeszültség van, aminek hatására megindul a töltéskiegyenlítődés, vagyis az áram, az izzó világít. A villamos energia fény és hőenergiává alakul. Az eltelt idővel arányosan csökken a telep töltése.

AZ ELLENÁLLÁS

A vezetőben a töltéshordozók nem akadálytalanul áramlanak. Haladásukat több hatástól függ. Anyagi jellemzőktől, hőmérséklettől, folyadékok esetében sűrűségtől, az elektrolit koncentrációjától, gáz esetében nyomástól szennyezettségtől, stb.

Az áramot korlátozó hatást ellenállásnak nevezzük. Jele: R (rezisztencia), mértékegysége: Ω (ohm)

Az ellenállás használatos egységei

TΩ (teraohm)	$10^{12}\Omega$
GΩ (gigaohm)	$10^9 \Omega$
MΩ (megaohm)	$10^6 \Omega$
kΩ (kilóohm)	$10^3 \Omega$
mΩ (milliohm)	10-3 Ω
μ Ω (mikroohm)	10-6 Ω

Az ellenállás szót két értelemben használjuk:

- 1. A megismert ellenálláshatás.
- 2. Elektromos alkatrész. Gyakran van szükségünk olyan alkatrészre, mellyel különféle áramkörökben feszültséget állítunk be, áramerősséget korlátozunk, stb. Erről később részletesen fogunk tanulni.

A VEZETÉS¹¹

A vezetés az ellenállás reciproka. Jele: G (konduktancia), mértékegysége: S (siemens)

$$G = \frac{1}{R}$$

$$R = \frac{1}{G}$$

$$\frac{1}{\Omega} = S$$

Az ellenállás az áramkorlátozó hatás nagyságát, a vezetés az áramvezetés jóságát mutatja meg.

OHM TÖRVÉNYE

Nézzük a 13. ábrát! Uk feszültség hatására Rf ellenálláson megindul az áram. Mekkora áram?

¹¹ Nevezik vezetőképességnek is.

14. ábra. A 13. ábra szerinti kapcsolás általános rajzjelekkel Uk: kapocsfeszültség, Rf: fogyasztó ellenállása

Ha egy villamos áramkör három jellemzőjéből: I, U, R vagy G kettőt ismerünk, a harmadik Ohm törvényéből meghatározható:

$$I = \frac{U}{R}[A]$$

A fogyasztó árama egyenesen arányos a feszültséggel és fordítottan az ellenállással.

Ha a fogyasztónak nem az ellenállása, hanem a vezetése ismert:

$$I = U \cdot G[A]$$

A fogyasztó árama egyenesen arányos a feszültséggel és a vezetéssel.

FAJLAGOS ELLENÁLLÁS

A huzal (vezeték) ellenállása egyenesen arányos a hosszával (l), és fordítottan a keresztmetszetével (A). Arányossági tényező az anyagára jellemző fajlagos ellenállás (ρ).

$$R = \frac{\rho \cdot l}{A}$$

A fajlagos ellenállás jele a görög abc kis rho (ejtsd: ró) betűje: p.

S

15. ábra. Kézzel így írjuk a rho betűt.

A fajlagos ellenállás 1 m hosszú, 1 mm² keresztmetszetű vezető ellenállása 20 °C-on.

$$\rho = R \cdot \frac{A}{1} \left[\frac{\Omega m m^2}{m} \right]$$

$$1\frac{\Omega mm^2}{m} = 10^{-6}\Omega m = \mu\Omega m$$

Az anyagok 20 C°-hoz tartozó fajlagos ellenállás értékeit táblázatok tartalmazzák.

Vezető	p
Ezüst	0,016
Réz	0,0178
Konstantán	0,5

FAJLAGOS VEZETÉS

1 mm² keresztmetszetű, 1 m hosszú vezető vezetése 20 °C-on, a fajlagos ellenállás reciproka.

Jele: γ (gamma), mértékegysége:
$$\frac{1}{\rho} \left[\frac{m}{\Omega mm^2}; \frac{Sm}{mm^2} \right]$$

AZ ELLENÁLLÁS HŐMÉRSÉKLET-FÜGGÉSE, HŐFOKTÉNYEZŐ

Különböző anyagok ellenállása különböző mértékben és irányban változik a hőmérséklet-változás hatására.

A fémek ellenállása hőmérséklet emelkedésekor nő, ezért azt mondjuk, hogy a hőfoktényezőjük pozitív.

A szén, a félvezetők (szilícium, germánium...), elektrolitok ellenállása a hőmérséklet emelkedésekor csökken, ezért azt mondjuk, hogy a hőfoktényezőjük negatív.

A hőfoktényező¹² jele: α (alfa)¹³, mértékegysége 1/K vagy 1/°C.

¹² Nevezik hőmérséklet-tényezőnek, hőmérsékleti együtthatónak is.

A hőfoktényező számértéke megmutatja, hogy 1 K (1°C) hőmérséklet-változás hatására mennyit változik 1 Ω értékű vezető ellenállása 20 °C-on.

Az egyes anyagokhoz tartozó értékeket táblázatokból kereshetjük ki.

Vezető	α
Ezüst	0,0038
Réz	0,00392
Konstantán	0,00004
Szén	-0,00045

Az ellenállásnak sok esetben ismerjük a 20 °C-on mért értékét: R20.

 α ismeretében meghatározhatjuk egy más hőmérséklethez (9) tartozó értékét: R_9 .

A hőmérséklet-változás: $\Delta \mathcal{G}$

Az ellenállás-változás: $\Delta R = R_{20} \cdot \alpha \cdot \Delta \mathcal{G}$

Az ellenállás értéke 9 hőmérsékleten

a) melegedéskor: $R_g = R_{20} + \Delta R$

b) hűléskor: $R_g = R_{20} - \Delta R$

A VILLAMOS MUNKA ÉS A TELJESÍTMÉNY

Már tanultuk, hogy a feszültség az egységnyi töltés munkája: $U = \frac{W}{Q}$.

Tehát a töltés munkája: $\boldsymbol{W} = \boldsymbol{Q} \cdot \boldsymbol{U}$.

 $\label{eq:mivel} \text{Mivel } Q = I \cdot t \text{ , a villamos munka: } W = U \cdot I \cdot t \big[Ws \big].$

A Ws (wattszekundum) nagyobb egységei: Wh (wattóra), kWh (kilowattóra), MWh (megawattóra).

A teljesítmény: egységnyi idő alatt végzett munka: $P = \frac{W}{t} = \frac{U \cdot I \cdot t}{t} = U \cdot I$

Mértékegysége: $\frac{W_S}{S} = W$ (watt).

¹³ TC, TK rövidítéssel is jelölik (Thermal Coefficient)

A FESZÜLTSÉG ÉS AZ ÁRAMERŐSSÉG MÉRÉSE

A feszültség és az áramerősség mérésére voltmérőt ill. ampermérőt használunk. Rajzjelét lásd a 16. ábrán.

16. ábra. Feszültségmérő és árammérő az áramkörben.

A feszültségmérő két kivezetését a mérendő alkatelem (itt Rf) két kivezetésére kapcsoljuk. Az ilyen kapcsolatot párhuzamos kapcsolásnak nevezzük.

Az árammérő két kivezetését beiktatjuk a megszakított áramkörbe, hogy az áram át tudjon rajta folyni. Az ilyen kapcsolatot soros kapcsolásnak nevezzük.

A mérőműszereknek is van ellenállása. A mérés az eredeti áramviszonyokat akkor változtatja meg legkisebb mértékben, ha az árammérő belső ellenállása nagyon kicsi, a feszültségmérőé nagyon nagy.

A mérőműszereknek is van polaritása. A pozitív kivezetését a pozitív, a negatívot a negatív pólusra kell csatlakoztani. A műszer méréshatára mindig nagyobb kell, hogy legyen, mint a mérendő mennyiség.

(Később a mérésekről részletesebben fogunk tanulni.)

TANULÁSIRÁNYÍTÓ

Olvassa el az: "Az anyagok szerkezete" c. fejezetet!

Tanári irányítással:

 Végezzen kísérletet a villamos erőtér modellezésére, melyben erőhatásokat tapasztalnak és erővonalakat jelenítenek meg!

Olvassa el a: "Feszültség, Áram, Az egyszerű áramkör, Az ellenállás, A vezetés, A feszültség és az áramerősség mérése, A villamos munka és a teljesítmény " c. fejezeteket!

Tanári irányítással:

- Végezzen méréseket, mellyel különböző fogyasztóknak méri az áramát és feszültségét!
- Számítással határozza meg a fogyasztó ellenállását!
- Ellenállásméréssel ellenőrizze a számítás eredményét!
- Keressen magyarázatot az eltérések okaira!
- Számítással határozza meg a fogyasztó teljesítményét. és adott időhöz tartozó fogyasztását!

Ellenőrizze felkészültségét az Önellenőrző feladatok elvégzésével!

Olvassa el a: "Fajlagos ellenállás és fajlagos vezetés, Az ellenállás hőmérséklet-függése, hőfoktényező "c. fejezeteket!

Tanári irányítással:

- Mérésekkel és számítással határozza meg egy ellenálláshuzal fajlagos ellenállását és fajlagos vezetőképességét!
- Mérések alapján rajzolja meg az ellenálláshuzal áramerősség/ellenállás jelleggörbéjét!

Ellenőrizze felkészültségét az Önellenőrző feladatok elvégzésével!

Bővítse ismereteit szakkönyvek, szakfolyóiratok, az internet, segítségével!

Javaslatok:

- Jeszenszky Sándor: Az elektromosság titkai: http://www.scitech.hu/elektromossag.sci-tech.hu/00home/04home.htm
- Nagyon tanulságos kísérletek egyszerű eszközökkel könnyen elvégezhetők Öveges Professzor kísérletei nyomán. (Öveges József: Kísérletek könyve - Hogyan tanuljunk fizikát? 500 egyszerű fizikai kísérlet) Még nagyobb élmény Öveges professzor kísérleteit filmen megnézni, majd reprodukálni.

ÖNELLENŐRZŐ FELADATOK 1. feladat Milyen és milyen töltésű elemi részecskék találhatók az atommagban? 2. feladat Milyen és milyen töltésű részecskék keringenek az atommag körül? 3. feladat Húzza alá a megfelelő szót ahhoz, hogy a mondat igaz legyen! Ellenkező előjelű töltések vonzzák taszítják, azonosak vonzzák taszítják egymást. 4. feladat Mi lehet pozitív ion? 5. feladat Mi lehet negatív ion?

6. feladat
Mi a villamos erőtér (villamos mező)?
7. feladat
Mi hozza létre a villamos erőteret?
8. feladat
Írjon I (igaz) vagy H (hamis) betűket az állítások elé!
Az erővonalaknak iránya van, a pozitív töltésű testben erednek és a negatív töltésű testben végződnek.
A villamos erővonalak keresztezik egymást.
A villamos erővonalak önmagukba záródnak.
A villamos erővonalak rövidülni igyekeznek.
9. feladat
Mi a töltés jele és mértékegysége?
10. feladat
Mi a feszültség jele és mértékegysége?

11. feladat

Milyen összefüggés van a feszültség, a töltés és a munka között (képlet + mértékegység)?

12. feladat

Váltsa át a mértékegységeket, a számokat normál alakban adja meg!

$$1~\mu V = ___ ~mV ~___ ~V ~___ ~kV$$

$$1 \text{ mV} = ____ \mu V ____ V ____ kV$$

$$1 V = \underline{\hspace{1cm}} \mu V \underline{\hspace{1cm}} mV \underline{\hspace{1cm}} kV$$

$$1~kV = ____~\mu V ~____~mV ~____~V$$

13. feladat

Írja az időfüggvény számát (17. ábra.) a megfelelő sorba!

17. ábra.

Egyenfeszültség:
Váltakozó feszültség:
14. feladat
Mi az áram?

15. feladat

Mit jelent a technikai és a fizikai áramirány?

ELEKTROTECHNIKAI ALAPISMERETEK -VILLAMOS ALAPFOGALMAK	
16. folder	
16. feladat	
Mi az áramerősség jele és mértékegysége?	
17. feladat	
Milyen összefüggés van az áramerősség, az idő és a töltés között (képlet + mértékegység)?	
18. feladat	
Mi az ellenállás(hatás)?	
19. feladat	
Mi az ellenállás jele, mértékegysége?	
wii az enenanas jeie, mertekegysege:	
20. feladat	
Mi a vezetés? Jele, mértékegysége?	

21. feladat
Hogyan szól Ohm törvénye? Megfogalmazás, képlet, mértékegység.
22. feladat
Mi a fajlagos ellenállás?
23. feladat
Mit ad meg a hőfoktényező számértéke? Jele, mértékegysége?
24. feladat
Mit jelent az, hogy egy vezetőanyag hőfoktényezője negatív?
25. feladat
Hogyan számítjuk a villamos munkát a feszültség, áramerősség és eltelt idő ismeretében?
Képlet, mértékegység.

ELEKTROTECHNIKAI ALAPISMERETEK -VILLAMOS ALAPFOGALMAK 26. feladat Hogyan számítjuk a villamos munkát a feszültség, ellenállás és eltelt idő ismeretében? Képlet. 27. feladat Mit jelent az, hogy egy vezetőanyag hőfoktényezője negatív? 28. feladat Hogyan számítjuk a villamos munkát az áramerősség, az ellenállás és az eltelt idő ismeretében? Képlet. 29. feladat Mi a teljesítmény? Megfogalmazás, jel, mértékegység. 30. feladat Egy 230 V feszültségre kapcsolt fűtőellenállás-huzal adatai: fajlagos ellenállás:

hossz: 10,31 m

átmérő: 0,6 mm

Mekkora teljesítményt vesz fel a hálózatból, ha a hőmérséklet-változás okozta ellenállás-változást nem vesszük figyelembe?

MEGOLDÁSOK

1. feladat

Pozitív töltésű protonok és a semleges neutronok.

2. feladat

Negatív elektronok.

3. feladat

Ellenkező előjelű töltések vonzzák, azonosak taszítják egymást.

4. feladat

Elektronhiányos atom vagy molekula.

5. feladat

Elektrontöbbletes atom vagy molekula

6. feladat

A villamos erőtér a térnek az a része, ahol villamos erőhatások tapasztalhatók.

7. feladat

Feszültség | töltés | elektromosan töltött testek.

8. feladat

I Az erővonalaknak iránya van, a pozitív töltésű testben erednek és a negatív töltésű testben végződnek.

H A villamos erővonalak keresztezik egymást.

H A villamos erővonalak önmagukba záródnak.

I A villamos erővonalak rövidülni igyekeznek.

9. feladat

Jele: Q, mértékegysége: C

10. feladat

Jele: U, mértékegysége: V

11. feladat

$$U = \frac{W}{Q} \left[\frac{J}{C} = V \right]$$

12. feladat

$$1 \mu V = 10-3 \text{ mV} = 10-6 \text{ V} = 10-9 \text{ kV}$$

$$1 \text{ mV} = 103 \ \mu\text{V} = 10\text{--}3 \ \text{V} = 10\text{--}6 \ \text{kV}$$

$$1~V = 106~\mu V = 103~mV = 10\text{--}3~kV$$

$$0.1~kV = 108~\mu V = 105~mV = 102~V$$

13. feladat

Egyenfeszültség: 2, 5

Váltakozó feszültség: 3, 4

14. feladat

A töltéssel rendelkező részecskék áramlása

15. feladat

Technikai áramirány: a pozitív, míg a fizikai áramirány a negatív töltéshordozók áramlásának iránya.

16. feladat

Jele: I, mértékegysége: A.

17. feladat

$$Q = I \cdot t[As]$$

18. feladat

Az áramot korlátozó hatást ellenállásnak nevezzük.

19. feladat

Jele: R (rezisztencia), mértékegysége: Ω (ohm)

20. feladat

A vezetés az ellenállás reciproka. Jele: G, mértékegysége: S (siemens)

21. feladat

A fogyasztó árama egyenesen arányos a feszültséggel és fordítottan az ellenállással.

$$I = \frac{U}{R} [A]$$

22. feladat

A fajlagos ellenállás 1 m hosszú, 1 mm2 keresztmetszetű vezető ellenállása 20 °C-on. Megfogalmazás, képlet, mértékegység.

$$\rho = R \cdot \frac{A}{1} \left\lceil \frac{\Omega m m^2}{m} \right\rceil$$

23. feladat

1 K (1°C) hőmérséklet-változás hatására mennyit változik 1 Ω értékű vezető ellenállása 20 C-on.

A hőfoktényező jele: α (alfa), mértékegysége 1/K vagy 1/°C.

24. feladat

Ellenállásuk hőmérséklet emelkedésekor csökken.

25. feladat

$$W = U \cdot I \cdot t[Ws]$$

26. feladat

$$W = \frac{U^2}{R} \cdot t$$

27. feladat

Ellenállásuk hőmérséklet emelkedésekor csökken.

28. feladat

$$W = I^2 \cdot R \cdot t$$

29. feladat

A teljesítmény: egységnyi idő alatt végzett munka. Jele: P, mértékegysége: W.

30. feladat

$$U = 230V$$

$$\rho = 1{,}45\frac{\Omega mm^2}{m}$$

$$1 = 10,31$$
m

$$d = 0.6$$
mm

$$R = \frac{\rho \cdot l}{A}$$

$$A = \frac{d^2 \cdot \pi}{4}$$

$$R = \frac{4 \cdot \rho \cdot 1}{d^2 \cdot \pi} = \frac{4 \cdot 1,45 \cdot 10,31}{0,6^2 \cdot 3,14} = 52,9\Omega$$

$$P = \frac{U^2}{R} = \frac{230^2}{52,9} = 1000 \text{W}$$

IRODALOMJEGYZÉK

FELHASZNÁLT IRODALOM

Danás Miklós: Elektrotechnika (ÉRÁK, Miskolc, 2006.)

Koncz Ferenc - Szentirmay László: Elektrotechnika (Tankönyvkiadó, Budapest, 1972.)

AJÁNLOTT IRODALOM

Magyari István: Elektrotechnika (Tankönyvkiadó, Budapest, 1977.)

Hübscher, Klaue, Pflüger, Appelt: Elektrotechnika (Westermann Európai Szakképzési és Továbbképzési Kft. Budapest, 1993.)

Klaus Beuth és Eugen Huber szerkesztésében: Elektrotechnikai alapismeretek Alaptankönyv az ipar és a kisipar számára (B+V Világkiállítási Lap- és Könyvkiadó Kft., Műszaki Könyvkiadó Kft. Budapest, 1994.)

Klaus Beuth és Eugen Huber szerkesztésében: Elektrotechnikai szakismeretek 1. (Műszaki Könyvkiadó, Budapest, 1994.)

Demeter Károlyné, Dén Gábor, Dr. Nagy Lóránt, Szekér Károly: Elektrotechnika (MSZH Nyomda és Kiadó Kft. Budapest, 2000.)

Gyetván Károly: A villamos mérések alapjai - 7. kiadás (Nemzeti Tankönyvkiadó - Tankönyvmester Kiadó, Budapest, 2006.)

A(z) 0917-06 modul 005-ös szakmai tankönyvi tartalomeleme felhasználható az alábbi szakképesítésekhez:

A szakképesítés OKJ azonosító száma:	A szakképesítés megnevezése
54 523 01 0000 00 00	Elektronikai technikus

A szakmai tankönyvi tartalomelem feldolgozásához ajánlott óraszám: 15 óra

A kiadvány az Új Magyarország Fejlesztési Terv TÁMOP 2.2.1 08/1–2008–0002 "A képzés minőségének és tartalmának fejlesztése" keretében készült.

A projekt az Európai Unió támogatásával, az Európai Szociális Alap társfinanszírozásával valósul meg.

Kiadja a Nemzeti Szakképzési és Felnőttképzési Intézet 1085 Budapest, Baross u. 52.

Telefon: (1) 210-1065, Fax: (1) 210-1063

Felelős kiadó: Nagy László főigazgató