Лабораторная работа №8

Собственные значения матриц

Смирнов-Мальцев Егор Дмитриевич

Содержание

Цель работы	4
Задание	5
Теоретическое введение	6
Выполнение лабораторной работы Нахождение собственных значений и векторов	7 7 7
Выводы	9
Список литературы	10

Список иллюстраций

1	Собственные значения и векторы матрицы A	7
2	Матрица с вещественными собственными значениями	7
3	Случайное блуждание	8
4	Вектор равновесного состояния	8

Цель работы

Решить задачи, связанные с собственными значениями матриц.

Задание

- Найти собственные значения и собственные векторы матрицы
- Решить задачу о случайном блуждании
- Найти равновесное состояние цепи Маркова

Теоретическое введение

Случайное блуждание — математический объект, известный как стохастический или случайный процесс, который описывает путь, состоящий из последовательности случайных шагов в каком-нибудь математическом пространстве (например, на множестве целых чисел).

Простейшим примером случайного блуждания является случайное блуждание по числовой прямой целых чисел, \mathbb{Z} , которое начинается в точке 0 и на каждом шаге сдвигается на +1 или на -1 с равной вероятностью. Другими примерами могут послужить траектория движения молекулы в жидкости или газе (броуновское движение), поиск пути у животных во время фуражировки, колебания цен акций на фондовом рынке, финансовое состояние игрока: все описанные случаи могут быть аппроксимированы моделями случайного блуждания, даже несмотря на то, что они могут не быть полностью случайными в реальной жизни.

Выполнение лабораторной работы

Нахождение собственных значений и векторов

Зададим матрицу A и найдём ее собственные значения и векторы командой еід (рис. [-@fig:001]).

Рис. 1: Собственные значения и векторы матрицы A

Умноженим A на свою транспонированную матрицу, чтобы получить матрицу с вещественными собственными значениями (рис. [-@fig:002]).

Рис. 2: Матрица с вещественными собственными значениями

Марковские цепи

Решим задачу случайного блуждания. Зададим начальные векторы вероятности, сформируем матрицу переходов и найдём вектор вероятности после 5 шагов. (рис.

[-@fig:003]).

Рис. 3: Случайное блуждание

Найдём равновесное состояние. Для этого найдем собственные векторы матрицы перехода. Вектор равновесного состояния можно найти, разделив собственный вектор на сумму элементов этого вектора (рис. [-@fig:004]).

Рис. 4: Вектор равновесного состояния

Выводы

- 1. Найти собственные значения и вектора матрицы можно с помощью функции eig.
- 2. Найти равновесное состояние Марковских цепей можно с помощью собственных векторов матрицы перехода.

Список литературы