# Diszkrét matematika

2. gyakorlat:

# Relációk tulajdonságai, osztályfelbontás, ekvivalenciareláció

(A diasort készítette Németh Gábor Árpád, Koch-Gömöri Richárd feladait, Gonda János bizonyítás ötleteit, Nagy Gábor előadás diasorát (aki Mérai László előadás diasorát használta fel) és Kovács Attila Az informatika matematikai alapjai című jegyzetét is felhasználva)

Legyen A={1, 2, 3, 4} és B={5, 6, 7, 8, 9}. Tekintsük a következő  $\rho \subseteq A \times B$  binér (kétváltozós) relációt:  $\rho = \{(1,5), (1,6), (1,7), (3,6), (3,9), (4,5), (4,7), (4,9)\}.$ 

- a) Határozza meg a ρ reláció értelmezési tartományát (dmn) és értékkészletét (rng).
- b) Rajzolja meg a reláció gráfját.
- c) Legyen  $H_1=\{1, 2, 3\}$  és  $H_2=\{4\}$ . Határozza meg a  $\rho$  reláció  $H_1$  illetve  $H_2$  halmazra való leszűkítését.
- d) A következő relációk közül melyek lehetnek a ρ reláció kiterjesztései?
  - $\rho_1 = \{(1,5), (1,6), (1,7), (2,2), (2,4), (3,6), (3,9), (4,3), (4,5), (4,7), (4,9)\} \subseteq \{1, 2, 3, 4\} \times \{2, 3, 4, 5, 6, 7, 8, 9\}$
  - $\rho_2 = \{(1,5), (1,6), (1,7), (3,6), (3,8), (4,5), (4,6), (4,7), (4,9)\} \subseteq \{1, 2, 3, 4\} \times \{5, 6, 7, 8, 9\}$
  - $\rho_3 = A \times B$
  - $\rho_a = B \times A$
- e) Határozza meg a  $\rho$  reláció inverzét,  $\rho(\{1, 2\})$  képet és  $\rho^{-1}(\{5, 6\})$  inverz képet.

Legyen A={1, 2, 3, 4} és B={5, 6, 7, 8, 9}. Tekintsük a következő  $\rho \subseteq A \times B$  binér (kétváltozós) relációt:  $\rho = \{(1,5), (1,6), (1,7), (3,6), (3,9), (4,5), (4,7), (4,9)\}.$ 

- a) Határozza meg a p reláció értelmezési tartományát (dmn) és értékkészletét (rng).
  - ÉT: dmn( $\rho$ )={x $\in$ A | y $\in$ B: (x,y) $\in$   $\rho$ }={1,3,4}
  - ÉK: rng( $\rho$ ) ={y \in B | x \in A: (x,y) \in  $\rho$ }={5,6,7,9}
- b) Rajzolja meg a reláció gráfját.



Legyen A={1, 2, 3, 4} és B={5, 6, 7, 8, 9}. Tekintsük a következő  $\rho \subseteq A \times B$  binér (kétváltozós) relációt:  $\rho = \{(1,5), (1,6), (1,7), (3,6), (3,9), (4,5), (4,7), (4,9)\}.$ 

c) Legyen  $H_1=\{1, 2, 3\}$  és  $H_2=\{4\}$ . Határozza meg a  $\rho$  reláció  $H_1$  illetve  $H_2$  halmazra való leszűkítését.



Legyen A={1, 2, 3, 4} és B={5, 6, 7, 8, 9}. Tekintsük a következő  $\rho \subseteq A \times B$  binér (kétváltozós) relációt:  $\rho = \{(1,5), (1,6), (1,7), (3,6), (3,9), (4,5), (4,7), (4,9)\}.$ 

c) Legyen  $H_1=\{1, 2, 3\}$  és  $H_2=\{4\}$ . Határozza meg a  $\rho$  reláció  $H_1$  illetve  $H_2$  halmazra való leszűkítését.

 $\rho \mid H_1 = \{(1,5), (1,6), (1,7), (3,6), (3,9)\}$ 

Def.:  $\rho$  reláció Q halmazra történő leszűkítése:  $\rho \mid_{Q} = \{(x,y) \in \rho : x \in Q\}$ (ahol most  $x \in A$  és  $y \in B$ ,  $\rho \subseteq A \times B$ )



Legyen A={1, 2, 3, 4} és B={5, 6, 7, 8, 9}. Tekintsük a következő  $\rho \subseteq A \times B$  binér (kétváltozós) relációt:  $\rho = \{(1,5), (1,6), (1,7), (3,6), (3,9), (4,5), (4,7), (4,9)\}.$ 

c) Legyen  $H_1=\{1, 2, 3\}$  és  $H_2=\{4\}$ . Határozza meg a  $\rho$  reláció  $H_1$  illetve  $H_2$  halmazra való leszűkítését.

 $\rho \mid H_1 = \{(1,5), (1,6), (1,7), (3,6), (3,9)\}$  $\rho \mid H_2 = \{(4,5), (4,7), (4,9)\}$ 

Def.:  $\rho$  reláció Q halmazra történő leszűkítése:  $\rho \mid_{Q} = \{(x,y) \in \rho : x \in Q\}$ (ahol most  $x \in A$  és y  $x \in B$ ,  $\rho \subseteq A \times B$ )



Legyen A= $\{1, 2, 3, 4\}$  és B= $\{5, 6, 7, 8, 9\}$ . Tekintsük a következő  $\rho \subseteq A \times B$  binér (kétváltozós) relációt:

 $\rho = \{(1,5), (1,6), (1,7), (3,6), (3,9), (4,5), (4,7), (4,9)\}.$ 

d) A következő relációk közül melyek lehetnek a p reláció kiterjesztései?

Def.: R relációt a ρ reláció kiterjesztésének nevezzük, ha ρ⊆ R

- $\rho_1 = \{(1,5), (1,6), (1,7), (2,2), (2,4), (3,6), (3,9), (4,3), (4,5), (4,7), (4,9)\} \subseteq \{1, 2, 3, 4\} \times \{2, 3, 4, 5, 6, 7, 8, 9\}$ 
  - ρ reláció kiterjesztése, mert:

```
\rho_1 = \{(1,5), (1,6), (1,7), (2,2), (2,4), (3,6), (3,9), (4,3), (4,5), (4,7), (4,9)\} \subseteq \{1, 2, 3, 4\} \times \{2, 3, 4, 5, 6, 7, 8, 9\}
```

- $\rho_2 = \{(1,5), (1,6), (1,7), (3,6), (3,8), (4,5), (4,6), (4,7), (4,9)\} \subseteq \{1, 2, 3, 4\} \times \{5, 6, 7, 8, 9\}$ 
  - NEM ρ reláció kiterjesztése, mert:

$$\rho_2 = \{(1,5), (1,6), (1,7), (3,6), (3,8), \frac{(3,9)}{(3,9)}, (4,5), (4,6), (4,7), (4,9)\} \subseteq \{1, 2, 3, 4\} \times \{5, 6, 7, 8, 9\}$$

- $\rho_3 = A \times B$ 
  - A  $\rho$  reláció kiterjesztése, mert  $\rho \subseteq \rho_3 = A \times B$
- $\rho_4 = B \times A$ 
  - NEM  $\rho$  reláció kiterjesztése, mert  $\rho \subseteq \rho_4$  nem áll fenn ( $\rho^{-1}$  inverz reláció kiterjesztése amúgy)

Legyen A={1, 2, 3, 4} és B={5, 6, 7, 8, 9}. Tekintsük a következő  $\rho \subseteq A \times B$  binér (kétváltozós) relációt:  $\rho = \{(1,5), (1,6), (1,7), (3,6), (3,9), (4,5), (4,7), (4,9)\}.$ 

e) Határozza meg a  $\rho$  reláció inverzét,  $\rho(\{1, 2\})$  képet és  $\rho^{-1}(\{5, 6\})$  inverz képet.

Def.:  $\rho$  reláció inverze:  $\rho^{-1} = \{(y, x) : (x, y) \in \rho\}$ (ahol most  $x \in A$  és  $y \in B$ ,  $\rho \subseteq A \times B$ )

•  $\rho^{-1} = \{(5,1),(5,4),(6,1),(6,3),(7,1),(7,4),(9,3),(9,4)\}$ 

Def.: A C halmaz  $\rho$  reláció szerinti képe:  $\rho(C)=\{y\in B\mid \exists x\in C\colon (x,y)\in \rho\}$ 

•  $\rho(\{1, 2\}) = \{5, 6, 7\}$  ( $\rho\{1, 2\}$  halmazra szűkítésének az értékkészlete)

Def.: Adott C halmaz inverz képe, vagy teljes ősképe az ρ<sup>-1</sup>(C) vagyis a C halmaz ρ<sup>-1</sup> szerinti képe

•  $\rho^{-1}(\{5, 6\})=\{1, 3, 4\}$ 



Legyen  $\rho \subseteq \mathbb{Z} \times \mathbb{Z}$  és  $\rho = \{(a,b) \in \mathbb{Z} \times \mathbb{Z} | a = 2b\}$ . Határozza meg...

- a) a  $\rho$  reláció értelmezési tartományát: a=2b páros egész szám, tehát  $\operatorname{dmn}(\rho)=2\mathbb{Z}=\{2u|u\in\mathbb{Z}\}$
- b) a  $\rho$  reláció érték készletét: rng( $\rho$ )=  $\mathbb{Z}$ .
- c) a  $\rho$  reláció inverzét: (a,b)  $\in \rho^{-1}$  iff, ha  $(b,a) \in \rho$ , azaz b=2a, tehát:  $\rho^{-1} = \{(a,b) \in \mathbb{Z} \times \mathbb{Z} | 2a = b\}.$
- d) a ρ reláció ρ({3,4,...10}) képét: ρ({3,4,...10})={2,3,4,5}
- e) és ρ reláció leszűkítését {1,2,...6}-ra: ρ|<sub>{1,2,...6}</sub> = {(2,1),(4,2)(6,3)}



Az  $R = \{(x, y) \in \mathbb{R} \times \mathbb{R} \mid y^2 = 2 - x - x^2\}$  relációra határozza meg a  $\{0\}$  halmaz képét és teljes inverz képét. Mely  $A \subseteq \mathbb{R}$  halmazokra lesz R(A), illetve  $R^{-1}(A)$  egyelemű?



```
Legyen ρ \subseteq{1,2,3} × {1,2,3} reláció.
```

Döntse el, hogy az alábbiakból mely reláció reflexív, szimmetrikus, antiszimmetrikus vagy tranzitív:

- a)  $\rho = \{(1, 1), (1, 2), (1, 3), (2, 1), (2, 2), (2, 3), (3, 1), (3, 2), (3, 3)\}$
- b)  $\rho = \{(1, 1), (1, 2), (1, 3), (2, 1), (2, 2), (3, 1), (3, 3)\}$
- c)  $\rho = \{(1, 2), (1, 3), (2, 1), (3, 1)\}$
- d)  $\rho = \{(1, 2), (2, 3), (3, 1)\}$
- e)  $\rho = \{(1, 2)\}$
- f)  $\rho = \{(1, 2), (2, 1), (2, 3), (3, 2)\}$
- g)  $\rho = \{(1, 1), (2, 2), (2, 3), (3, 3)\}$
- h)  $\rho = \{(1, 2), (1, 3), (2, 1), (2, 3), (3, 1), (3, 2)\}$

- 1. R tranzitív, ha  $\forall x, y, z \in X : (xRy \land yRz) \Rightarrow xRz$ ;
- 2. R szimmetrikus, ha  $\forall x, y \in X : xRy \Rightarrow yRx$ ;
- 3. R antiszimmetrikus, ha $\forall x, y \in X : (xRy \land yRx) \Rightarrow x = y;$
- 4. R szigorúan antiszimmetrikus, ha xRy és yRx egyszerre nem teljesülhet;
- 5. R reflexív, ha  $\forall x \in X : xRx$ ;
- 6. *R* irreflexív, ha  $\forall x \in X : \neg xRx$ ;
- 7. R trichotóm, ha  $\forall x, y \in X$  esetén x = y, xRy és yRx közülpontosan egy teljesül;
- 8. R dichotóm, ha  $\forall x, y \in X$  esetén xRy vagy yRx (esetleg mindkettő).

"Reláció gráf"

Legyen  $\rho \subseteq \{1,2,3\} \times \{1,2,3\}$  reláció.

Döntse el, hogy az alábbiakból mely reláció reflexív, szimmetrikus, antiszimmetrikus vagy tranzitív:

- a)  $\rho = \{(1, 1), (1, 2), (1, 3), (2, 1), (2, 2), (2, 3), (3, 1), (3, 2), (3, 3)\}$ 
  - Reflexív:  $\rho = \{ (1, 1), (1, 2), (1, 3), (2, 1), (2, 2), (2, 3), (3, 1), (3, 2), (3, 3) \}$
  - Szimmetrikus:  $\rho = \{ (1, 1), (1, 2), (1, 3), (2, 1), (2, 2), (2, 3), (3, 1), (3, 2), (3, 3) \}$
  - NEM antiszimmetrikus:  $\rho = \{(1, 1), (1, 2), (1, 3), (2, 1), (2, 2), (2, 3), (3, 1), (3, 2), (3, 3)\}$  és  $1 \neq 2$
  - Tranzitív:  $\rho = \{(1, 1), (1, 2), (1, 3), (2, 1), (2, 2), (2, 3), (3, 1), (3, 2), (3, 3)\}$



Mivel  $\{1,2,3\} \times \{1,2,3\}$  minden lehetséges kombinációja előáll ebben, ezért amúgy is tranzitív (és reflexív és szimmetrikus persze)...

- 1. R tranzitív, ha  $\forall x, y, z \in X : (xRy \land yRz) \Rightarrow xRz$ ;
- 2. R szimmetrikus, ha  $\forall x, y \in X : xRy \Rightarrow yRx$ ;
- 3. R antiszimmetrikus, ha $\forall x, y \in X : (xRy \land yRx) \Rightarrow x = y;$
- 4. R szigorúan antiszimmetrikus, ha xRy és yRx egyszerre nem teljesülhet;
- 5. R reflexív, ha  $\forall x \in X : xRx$ ;
- 6. *R* irreflexív, ha  $\forall x \in X : \neg xRx$ ;
- 7. R trichotóm, ha  $\forall x, y \in X$  esetén x = y, xRy és yRx közülpontosan egy teljesül;
- 8. R dichotóm, ha  $\forall x, y \in X$  esetén xRy vagy yRx (esetleg mindkettő).

Legyen  $\rho$  ⊆{1,2,3} × {1,2,3} reláció.

Döntse el, hogy az alábbiakból mely reláció reflexív, szimmetrikus, antiszimmetrikus vagy tranzitív:

- b)  $\rho = \{(1, 1), (1, 2), (1, 3), (2, 1), (2, 2), (3, 1), (3, 3)\}$ 
  - Reflexív:  $\rho = \{ (1, 1), (1, 2), (1, 3), (2, 1), (2, 2), (3, 1), (3, 3) \}$
  - Szimmetrikus:  $\rho = \{ (1, 1), (1, 2), (1, 3), (2, 1), (2, 2), (3, 1), (3, 3) \}$
  - NEM antiszimmetrikus:  $\rho = \{ (1, 1), (1, 2), (1, 3), (2, 1), (2, 2), (3, 1), (3, 3) \}$  és  $1 \neq 2$
  - NEM tranzitív: (2, 1) és (1, 3) van, de nincs (2,3)



- 1. R tranzitív, ha  $\forall x, y, z \in X : (xRy \land yRz) \Rightarrow xRz$ ;
- 2. R szimmetrikus, ha  $\forall x, y \in X : xRy \Rightarrow yRx$ ;
- 3. R antiszimmetrikus, ha $\forall x, y \in X : (xRy \land yRx) \Rightarrow x = y;$
- 4. R szigorúan antiszimmetrikus, ha xRy és yRx egyszerre nem teljesülhet;
- 5. R reflexív, ha  $\forall x \in X : xRx$ ;
- 6. *R* irreflexív, ha  $\forall x \in X : \neg xRx$ ;
- 7. R trichotóm, ha  $\forall x, y \in X$  esetén x = y, xRy és yRx közülpontosan egy teljesül;
- 8. R dichotóm, ha  $\forall x, y \in X$  esetén xRy vagy yRx (esetleg mindkettő).

Legyen ρ ⊆{1,2,3} × {1,2,3} reláció.

Döntse el, hogy az alábbiakból mely reláció reflexív, szimmetrikus, antiszimmetrikus vagy tranzitív:

- d)  $\rho = \{(1, 2), (2, 3), (3, 1)\}$ 
  - NEM Reflexív (nincs benne (1, 1), (2, 2) és (3, 3))
  - NEM Szimmetrikus (nincs benne (2, 1), (3, 2) és (1, 3))
  - Antiszimmetrikus
  - NEM Tranzitív: (1, 2) és (2, 3) van, de nincs (1, 3)



- 1. R tranzitív, ha  $\forall x, y, z \in X : (xRy \land yRz) \Rightarrow xRz$ ;
- 2. R szimmetrikus, ha  $\forall x, y \in X : xRy \Rightarrow yRx$ ;
- 3. R antiszimmetrikus, ha $\forall x, y \in X : (xRy \land yRx) \Rightarrow x = y;$
- 4. R szigorúan antiszimmetrikus, ha xRy és yRx egyszerre nem teljesülhet;
- 5. R reflexív, ha  $\forall x \in X : xRx$ ;
- 6. *R* irreflexív, ha  $\forall x \in X : \neg xRx$ ;
- 7. R trichotóm, ha  $\forall x, y \in X$  esetén x = y, xRy és yRx közülpontosan egy teljesül;
- 8. R dichotóm, ha  $\forall x, y \in X$  esetén xRy vagy yRx (esetleg mindkettő).

Legyen ρ ⊆{1,2,3} × {1,2,3} reláció.

Döntse el, hogy az alábbiakból mely reláció reflexív, szimmetrikus, antiszimmetrikus vagy tranzitív:

- e)  $\rho = \{(1, 2)\}$ 
  - NEM Reflexív (nincs benne (1, 1) és (2, 2))
  - NEM Szimmetrikus (nincs benne (2, 1))
  - Antiszimmetrikus (nincs benne (2, 1))
  - Tranzitív

Nem kell, hogy x,y és z különböző legyen

#### Legyen R reláció X-en. Ekker azt mondjuk, hogy

- 1. R tranzitív, ha  $\forall x, y, z \in X : (xRy \land yRz) \Rightarrow xRz$ ;
- 2. R szimmetrikus, ha  $\forall x, y \in X : xRy \Rightarrow yRx$ ;
- 3. R antiszimmetrikus, ha $\forall x, y \in X : (xRy \land yRx) \Rightarrow x = y;$
- 4. R szigorúan antiszimmetrikus, ha xRy és yRx egyszerre nem teljesülhet;
- 5. R reflexív, ha  $\forall x \in X : xRx$ ;
- 6. *R* irreflexív, ha  $\forall x \in X : \neg xRx$ ;
- 7. R trichotóm, ha  $\forall x, y \in X$  esetén x = y, xRy és yRx közülpontosan egy teljesül;
- 8. R dichotóm, ha  $\forall x, y \in X$  esetén xRy vagy yRx (esetleg mindkettő).

2

3

Legyen ρ ⊆{1,2,3} × {1,2,3} reláció.

Döntse el, hogy az alábbiakból mely reláció reflexív, szimmetrikus, antiszimmetrikus vagy tranzitív:

- $\rho = \{(1, 2), (1, 3), (2, 1), (3, 1)\}$
- $\rho = \{(1, 2), (2, 1), (2, 3), (3, 2)\}$
- $\rho = \{(1, 1), (2, 2), (2, 3), (3, 3)\}$
- $\rho = \{(1, 2), (1, 3), (2, 1), (2, 3), (3, 1), (3, 2)\}$



- 1. R tranzitív, ha  $\forall x, y, z \in X : (xRy \land yRz) \Rightarrow xRz$ ;
- 2. R szimmetrikus, ha  $\forall x, y \in X : xRy \Rightarrow yRx$ ;
- 3. R antiszimmetrikus, ha $\forall x, y \in X : (xRy \land yRx) \Rightarrow x = y;$
- 4. R szigorúan antiszimmetrikus, ha xRy és yRx egyszerre nem teljesülhet;
- 5. R reflexív, ha  $\forall x \in X : xRx$ ;
- 6. *R* irreflexív, ha  $\forall x \in X : \neg xRx$ ;
- 7. R trichotóm, ha  $\forall x, y \in X$  esetén x = y, xRy és yRx közülpontosan egy teljesül;
- 8. R dichotóm, ha  $\forall x, y \in X$  esetén xRy vagy yRx (esetleg mindkettő).

- © "iff": if and only if, ⇔ akkor és csak akkor ("csakkor"), pontosan akkor
- a) Lehet-e egy R reláció egyszerre szimmetrikus és antiszimmetrikus? Illetve reflexív és irreflexív? Állítását indokolja.
  - R szimmetrikus iff  $R \subseteq R^{-1}$
  - R antiszimmetrikus iff  $R \cap R^{-1} \subseteq \Delta_A$  (A: alaphalmaz és  $\Delta_A = \{(a, a) | a \in A\}$  ( $\Delta_A \land atloja$ )
  - $R \subseteq R^{-1}$  -ből (szimmetria felt.):
    - $R^{-1} \subseteq (R^{-1})^{-1} = R \rightarrow \text{egy reláció szimmetrikus } iff R = R^{-1}$ .
  - (szimmetria és aszimmetria feltételéből:)
    - R reláció egyszerre szimmetrikus és antiszimmetrikus  $iff\ R = R \cap R = R \cap R^{-1} \subseteq \Delta_A$ , (A alaphalm. minden eleme legfeljebb önmagával áll relációban, reláció gráf csak hurokél(eke)t tartalmaz) Adott A esetén a legbővebb ilyen reláció  $\Delta_A$  (egyenlőség), legszűkebb pedig az üres reláció.
- R reflexív iff  $\Delta_A \subseteq R$  és irreflexív iff  $R \cap \Delta_A = \emptyset$ .
  - Ezek ekkor teljesülnek egyszerre:  $\Delta_A = \Delta_A \cap \Delta_A \subseteq R \cap \Delta_A = \emptyset$ .  $\rightarrow$  tehát ha A üreshalmaz

- 1. R tranzitív, ha  $\forall x, y, z \in X : (xRy \land yRz) \Rightarrow xRz$ ;
- 2. R szimmetrikus, ha  $\forall x, y \in X : xRy \Rightarrow yRx$ ;
- 3. R antiszimmetrikus, ha $\forall x, y \in X : (xRy \land yRx) \Rightarrow x = y;$
- 4. R szigorúan antiszimmetrikus, ha xRy és yRx egyszerre nem teljesülhet;
- 5. R reflexív, ha  $\forall x \in X : xRx$ ;
- 6. R irreflexív, ha  $\forall x \in X : \neg xRx$ ;

- b) Bizonyítsuk be, hogy minden reláció, amely egyszerre szimmetrikus és antiszimmetrikus, egyúttal tranzitív is.
- Ha egy R reláció része  $\Delta_A$  átlónak, és R értelmezési tartománya B, akkor  $(u,v) \in \mathbb{R}$  iff  $v=u \in B$ , azaz  $\mathbb{R} = \Delta_B = \Delta_A \mid B$ .
- Az a) feladat alapján:
  - az egyszerre szimmetrikus és antiszimmetikus reláció része az átlónak
- Az átló tranzitív,
  - mert ha  $(u,v) \in \Delta_A$  és  $(v,w) \in \Delta_A$ , akkor u=v=w, tehát  $(u,w) \in \Delta_A$
- Egy tranzitív reláció minden, valamely részhalmazra való megszorítása tranzitív:
  - ha az A-beli R reláció az A-beli R reláció  $B \subseteq A$ -ra való megszorítása, és  $(u,v) \in R$ ,  $(v,w) \in R$ , akkor u,v és w eleme Bnek, és  $(u,v) \in R$  és  $(v,w) \in R$ -ből  $(u,w) \in R$ , tehát  $(u,w) \in R$ .

- 1. R tranzitív, ha  $\forall x, y, z \in X : (xRy \land yRz) \Rightarrow xRz$ ;
- 2. R szimmetrikus, ha  $\forall x, y \in X : xRy \Rightarrow yRx$ ;
- 3. R antiszimmetrikus, ha $\forall x, y \in X : (xRy \land yRx) \Rightarrow x = y;$
- 4. R szigorúan antiszimmetrikus, ha xRy és yRx egyszerre nem teljesülhet;
- 5. R reflexív, ha  $\forall x \in X : xRx$ ;
- 6. *R* irreflexív, ha  $\forall x \in X : \neg xRx$ ;

- c) Bizonyítsuk be, hogy minden nemüres reláció, amely egyszerre irreflexív és szimmetrikus, az nem lehet tranzitív
- A reláció nem üres, így  $\exists$  egy eleme: jelöljük ezt (a, b) -vel.
- A szimmetria következtében: a relációnak eleme (b, a) is,
- de az irreflexivitás miatt: nem eleme (a, a)
  - emiatt viszont a reláció nem lehet tranzitív!

- 1. R tranzitív, ha  $\forall x, y, z \in X : (xRy \land yRz) \Rightarrow xRz$ ;
- 2. R szimmetrikus, ha  $\forall x, y \in X : xRy \Rightarrow yRx$ ;
- 3. R antiszimmetrikus, ha $\forall x, y \in X : (xRy \land yRx) \Rightarrow x = y;$
- 4. R szigorúan antiszimmetrikus, ha xRy és yRx egyszerre nem teljesülhet;
- 5. R reflexív, ha  $\forall x \in X : xRx$ ;
- 6. R irreflexív, ha  $\forall x \in X : \neg xRx$ ;

### Házi feladat

Döntse el, mely reláció reflexív, irreflexív, szimmetrikus, antiszimmetrikus illetve tranzitív, továbbá határozza meg a relációk értelmezési tartományát és értékkészletét.

- (a)  $R = \{(a, b) \in \mathbb{N} \times \mathbb{N} \mid a \cdot b \text{ páratlan}\}$
- (b)  $S = \{(a, b) \in B \times B \mid a \text{ vezetékneve rövidebb mint } b\text{-}é\}$  ahol  $B = \{\text{budapesti lakosok}\}$
- (c)  $T_X = \{(A, B) \in P(X) \times P(X) \mid A \cap B \neq \emptyset\}$  ahol X adott halmaz
- (d)  $V = \{(x, y) \in K \times K | | x \text{ belülről \'erinti } y\text{-t} \}$  ahol  $K = \{\text{egy adott sık k\"ervonalai} \}$

- 1. R tranzitív, ha  $\forall x, y, z \in X : (xRy \land yRz) \Rightarrow xRz$ ;
- 2. R szimmetrikus, ha  $\forall x, y \in X : xRy \Rightarrow yRx$ ;
- 3. R antiszimmetrikus, ha $\forall x, y \in X : (xRy \land yRx) \Rightarrow x = y;$
- 4. R szigorúan antiszimmetrikus, ha xRy és yRx egyszerre nem teljesülhet;
- 5. R reflexív, ha  $\forall x \in X : xRx$ ;
- 6. *R* irreflexív, ha  $\forall x \in X : \neg xRx$ ;

Tekintsük a következő relációt.

- (b)  $\rho = \{(1, 1), (1, 5), (1, 6), (1, 8), (2, 2), (2, 4), (3, 3), (3, 7), (4, 2), (4, 4), (5, 1), (5, 5), (5, 6), (5, 8), (6, 1), (6, 5), (6, 6), (6, 8), (7, 3), (7, 7), (8, 1), (8, 5), (8, 6), (8, 8)\} \subseteq \{1, 2, 3, 4, 5, 6, 7, 8\} \times \{1, 2, 3, 4, 5, 6, 7, 8\}$
- 1) Mutassa meg, hogy ρ ekvivalenciareláció

2) Határozza meg az A halmaz ρ ekvivalenciareláció szerinti osztályfelbontását (másképp: Határozza meg az A/ρ hányadoshalmazt).

- 1. R tranzitív, ha  $\forall x, y, z \in X : (xRy \land yRz) \Rightarrow xRz$ ;
- 2. R szimmetrikus, ha  $\forall x, y \in X : xRy \Rightarrow yRx$ ;
- 3. R antiszimmetrikus, ha $\forall x, y \in X : (xRy \land yRx) \Rightarrow x = y;$
- 4. R szigorúan antiszimmetrikus, ha xRy és yRx egyszerre nem teljesülhet;
- 5. R reflexív, ha  $\forall x \in X : xRx$ ;
- 6. *R* irreflexív, ha  $\forall x \in X : \neg xRx$ ;

Tekintsük a következő relációt.

```
(b) \rho = \{(1, 1), (1, 5), (1, 6), (1, 8), (2, 2), (2, 4), (3, 3), (3, 7), (4, 2), (4, 4), (5, 1), (5, 5), (5, 6), (5, 8), (6, 1), (6, 5), (6, 6), (6, 8), (7, 3), (7, 7), (8, 1), (8, 5), (8, 6), (8, 8)\} \subseteq \{1, 2, 3, 4, 5, 6, 7, 8\} \times \{1, 2, 3, 4, 5, 6, 7, 8\}
```

- 1) Mutassa meg, hogy ρ ekvivalenciareláció
  - A reláció (1) reflexív,
  - (2) szimmetrikus és

    Reláció gráfban bál
  - (3) tranzitív

Hurokélek a reláció gráfban Reláció gráfban bármely 2 pont között élek mindkét irányban

(ekvivalenciareláció def.) → ekvivalencia reláció

- 2) Határozza meg az A halmaz ρ ekvivalenciareláció szerinti osztályfelbontását (másképp: Határozza meg az A/ρ hányadoshalmazt).
  - $\rho = \{(1,5,6,8),(2,4),(3,7)\}$

#### Legyen R reláció X-en. Ekkor azt mondjuk, hogy

- 1. R tranzitív, ha  $\forall x, y, z \in X : (xRy \land yRz) \Rightarrow xRz$ ;
- 2. R szimmetrikus, ha  $\forall x, y \in X : xRy \Rightarrow yRx$ ;
- 3. R antiszimmetrikus, ha $\forall x, y \in X : (xRy \land yRx) \Rightarrow x = y;$
- 4. R szigorúan antiszimmetrikus, ha xRy és yRx egyszerre nem teljesülhet:
- 5. R reflexív, ha  $\forall x \in X : xRx$ ;
- 6. *R* irreflexív, ha  $\forall x \in X : \neg xRx$ ;

$$[a] := \{ b \in A \mid a\varrho b \} \subseteq A.$$

Tekintsük a következő relációt.

- a)  $\rho = \{(1, 1), (1, 5), (2, 2), (3, 3), (3, 4), (4, 3), (4, 4), (5, 1), (5, 5)\} \subseteq \{1, 2, 3, 4, 5\} \times \{1, 2, 3, 4, 5\}$
- 1) Mutassa meg, hogy ekvivalenciareláció.
- 2) Határozza meg az A halmaz ekvivalenciareláció szerinti osztályfelbontását (másképp: Határozza meg az A/p hányadoshalmazt).



Legyen R reláció X-en. Ekkor azt mondjuk, hogy

- 1. R tranzitív, ha  $\forall x, y, z \in X : (xRy \land yRz) \Rightarrow xRz$ ;
- 2. R szimmetrikus, ha  $\forall x, y \in X : xRy \Rightarrow yRx$ ;
- 3. R antiszimmetrikus, ha $\forall x, y \in X : (xRy \land yRx) \Rightarrow x = y;$
- 4. R szigorúan antiszimmetrikus, ha xRv és vRx egyszerre nem teljesülhet:
- 5. R reflexív, ha  $\forall x \in X : xRx$ ;
- 6. *R* irreflexív, ha  $\forall x \in X : \neg xRx$ ;

$$[a] := \{ b \in A \mid a\varrho b \} \subseteq A.$$

Írja fel azt az ekvivalenciarelációt, amely az {a, b, c, d, e, f} halmaz következő osztályfelbontását határozza meg: a) {{a,b,f},{c},{d,e}};

Az osztályozás által meghatározott ekvivalenciareláció:

tehát amelyre az R reláció (1) reflexív, (2) szimmetrikus és (3) tranzitív:

$$R=\{(a,a),(a,b),(a,f),(b,a),(b,b),(b,f),(f,a),(f,b),(f,f),(c,c),(d,d),(d,e),(e,d),(e,e)\}$$

$$[a] := \{ b \in A \mid a\varrho b \} \subseteq A.$$

Írja fel azt az ekvivalenciarelációt, amely az {a, b, c, d, e, f} halmaz következő osztályfelbontását határozza meg: b) {{a},{b},{c},{d},{e,f}};



$$[a] := \{ b \in A \mid a\varrho b \} \subseteq A.$$

Bizonyítsa be, hogy az alábbi relációk ekvivalenciarelációk. Adja meg az ekvivalenciaosztályokat.

- a)  $R = \{(m, n) \in \mathbb{Z} \times \mathbb{Z} | m + n \text{ páros szám}\};$ Ekvivalencia reláció: (1) reflexív, (2) szimmetrikus és (3) tranzitív:
  - 1. Reflexívitás: m + m = 2m páros, így minden m egész számra  $(m, m) \in R \to R$  reláció reflexív;
  - 2. Szimmetria: m + n = n + m,  $\rightarrow R$  reláció szimmetrikus.
  - 3. Tranzitivitás: Ha  $(u, v) \in R$  és  $(v, w) \in R$ , akkor u + v és v + w páros, de ekkor (u + v) (v + w) = u w is páros, és (előbbiből és szimmetriából:) páros lesz u w + 2w = u + w,  $(u, w) \in R$ .

#### Ekvivalenciaosztályok:

Két egész szám összege akkor és csak akkor páros, ha mindkettő páros, vagy mindkettő páratlan

- Emiatt az adott ekvivalenciarelációhoz tartozó osztályozásnak két osztálya van:
  - (1) páros számok halmaza és (2) páratlan számok halmaza:  $\mathbb{Z}/R = \{2\mathbb{Z}, 2\mathbb{Z} + 1\}$ .

$$[a] := \{ b \in A \mid a\varrho b \} \subseteq A.$$

Bizonyítsa be, hogy az alábbi relációk ekvivalenciarelációk. Adja meg az ekvivalenciaosztályokat.

b)  $R = \{(a, b) \in \mathbb{R} \times \mathbb{R} | a - b \text{ racionális szám}\};$ Ekvivalencia reláció: (1) reflexív, (2) szimmetrikus és (3) tranzitív:

A 0 racionális szám, mint ahogy egy racionális szám ellentettje is, és két racionális szám összege is racionális, így a reláció ekvivalenciareláció.

#### Ekvivalenciaosztályok:

Ha u egy valós szám, akkor egy v valós szám ekvivalens R szerint u-val  $iff \ v - u = r$  ahol r racionális szám, tehát v = u + r. Fordítva, ha s tetszőleges racionális szám, és v = u + s, akkor  $v - u = s \in \mathbb{Q}$ , tehát  $(u, v) \in R$  Emiatt az u-val R szerint ekvivalens valós számok halmaza az  $u + \mathbb{Q} = \{u + r | r \in \mathbb{Q}\}$  halmaz. A két osztály vagy egybeesik vagy diszjunkt, és az u-t illetve a v-t tartalmazó  $u + \mathbb{Q}$  és  $v + \mathbb{Q}$  osztály azonos iff  $(u, v) \in R$ , azaz ha  $u - v \in \mathbb{Q}$ . Ezek alapján  $\mathbb{R}/R = \{u + \mathbb{Q} | u \in \mathbb{R}\}$ .

$$[a] := \{ b \in A \mid a\rho b \} \subseteq A.$$

Bizonyítsa be, hogy az alábbi relációk ekvivalenciarelációk. Adja meg az ekvivalenciaosztályokat.

- $R = \{(x, y) \in \mathbb{Z} \times \mathbb{Z} | x^2 + y^2 \text{ osztható } 2 \text{-vel} \};$
- $R = \{((x_1, y_1), (x_2, y_2)) \in \mathbb{R}^2 \times \mathbb{R}^2 | x_1 + y_1 = x_2 + y_2 \};$
- $R = \{((x_1, y_1), (x_2, y_2)) \in \mathbb{R}^2 \times \mathbb{R}^2 | x_1 \cdot y_1 = x_2 \cdot y_2 \}.$



$$[a] := \{ b \in A \mid a\varrho b \} \subseteq A.$$



Legyen  $f \subseteq A \times A$  reláció. Bizonyítsuk be, hogy  $f = f^{-1}$  akkor és csak akkor teljesül, ha  $f \subseteq f^{-1}$ .

Konstruáljon az {1,2,3,4} halmazon olyan relációt, amely a) reflexív és nem irreflexív,

Nem üres halmazon reflexív reláció biztosan nem irreflexív.

Példa: R={(1,1),(2,2),(3,3),(4,4)}



- 1. R tranzitív, ha  $\forall x, y, z \in X : (xRy \land yRz) \Rightarrow xRz$ ;
- 2. R szimmetrikus, ha  $\forall x, y \in X : xRy \Rightarrow yRx$ ;
- 3. R antiszimmetrikus, ha $\forall x, y \in X : (xRy \land yRx) \Rightarrow x = y;$
- 4. R szigorúan antiszimmetrikus, ha xRy és yRx egyszerre nem teljesülhet;
- 5. R reflexív, ha  $\forall x \in X : xRx$ ;
- 6. *R* irreflexív, ha  $\forall x \in X : \neg xRx$ ;

Konstruáljon az {1,2,3,4} halmazon olyan relációt, amely b) antiszimmetrikus és nem szimmetrikus,

Ha egy antiszimmetrikus reláció tartalmaz legalább egy olyan párt, amelynek a két komponense különböző, akkor biztosan nem szimmetrikus

Példa: R={(3,4)}

2

- 1. R tranzitív, ha  $\forall x, y, z \in X : (xRy \land yRz) \Rightarrow xRz$ ;
- 2. R szimmetrikus, ha  $\forall x, y \in X : xRy \Rightarrow yRx$ ;
- 3. R antiszimmetrikus, ha $\forall x, y \in X : (xRy \land yRx) \Rightarrow x = y$ ;
- 4. R szigorúan antiszimmetrikus, ha xRy és yRx egyszerre nem teljesülhet;
- 5. R reflexív, ha  $\forall x \in X : xRx$ ;
- 6. R irreflexív, ha  $\forall x \in X : \neg xRx$ ;

Konstruáljon az {1,2,3,4} halmazon olyan relációt, amely c) szimmetrikus és nem antiszimmetrikus,

Ha egy szimmetrikus reláció tartalmaz legalább egy olyan párt, amelynek a két komponense különböző, akkor biztosan nem antiszimmetrikus

Példa: R={(2,3),(3,2)}



- 1. R tranzitív, ha  $\forall x, y, z \in X : (xRy \land yRz) \Rightarrow xRz$ ;
- 2. R szimmetrikus, ha  $\forall x, y \in X : xRy \Rightarrow yRx$ ;
- 3. R antiszimmetrikus, ha $\forall x, y \in X : (xRy \land yRx) \Rightarrow x = y$ ;
- 4. R szigorúan antiszimmetrikus, ha xRy és yRx egyszerre nem teljesülhet;
- 5. R reflexív, ha  $\forall x \in X : xRx$ ;
- 6. *R* irreflexív, ha  $\forall x \in X : \neg xRx$ ;

Konstruáljon az {1,2,3,4} halmazon olyan relációt, amely

- d) szimmetrikus és antiszimmetrikus,
- ← irány: Ha egy antiszimmetrikus reláció tartalmaz legalább egy olyan párt, amelynek a két komponense különböző, akkor biztosan nem szimmetrikus
- → irány: ha egy szimmetrikus reláció tartalmaz legalább egy olyan párt, amelynek a két komponense különböző, akkor biztosan nem antiszimmetrikus
- »: egyszerre szimmetrikus és antiszimmetrikus reláció csak olyan párokat tartalmazhat, amelynek a két komponense azonos Példa: R={} Üres reláció
  - 1 2
  - 3

- 1. R tranzitív, ha  $\forall x, y, z \in X : (xRy \land yRz) \Rightarrow xRz$ ;
- 2. R szimmetrikus, ha  $\forall x, y \in X : xRy \Rightarrow yRx$ ;
- 3. R antiszimmetrikus, ha $\forall x, y \in X : (xRy \land yRx) \Rightarrow x = y;$
- 4. R szigorúan antiszimmetrikus, ha xRy és yRx egyszerre nem teljesülhet;
- 5. R reflexív, ha  $\forall x \in X : xRx$ ;
- 6. R irreflexív, ha  $\forall x \in X : \neg xRx$ ;

Konstruáljon az {1,2,3,4} halmazon olyan relációt, amely

e) Nem szimmetrikus és nem antiszimmetrikus,

Példa: R={(1,2), (1,3), (3,1)}



- 1. R tranzitív, ha  $\forall x, y, z \in X : (xRy \land yRz) \Rightarrow xRz$ ;
- 2. R szimmetrikus, ha  $\forall x, y \in X : xRy \Rightarrow yRx$ ;
- 3. R antiszimmetrikus, ha $\forall x, y \in X : (xRy \land yRx) \Rightarrow x = y;$
- 4. R szigorúan antiszimmetrikus, ha xRy és yRx egyszerre nem teljesülhet;
- 5. R reflexív, ha  $\forall x \in X : xRx$ ;
- 6. *R* irreflexív, ha  $\forall x \in X : \neg xRx$ ;

Konstruáljon az {1,2,3,4} halmazon olyan relációt, amely f) reflexív és trichotóm,

trichotóm reláció irreflexív, és egy irreflexív reláció reflexív iff az alaphalmaz az üres halmaz

Példa: R={} ilyen reláció csak az üres halmazon van (ahol egy és csak egy reláció van, az üres reláció)

- 1. R tranzitív, ha  $\forall x, y, z \in X : (xRy \land yRz) \Rightarrow xRz$ ;
- 2. R szimmetrikus, ha  $\forall x, y \in X : xRy \Rightarrow yRx$ ;
- 3. R antiszimmetrikus, ha $\forall x, y \in X : (xRy \land yRx) \Rightarrow x = y;$
- 4. R szigorúan antiszimmetrikus, ha xRy és yRx egyszerre nem teljesülhet;
- 5. R reflexív, ha  $\forall x \in X : xRx$ ;
- 6. *R* irreflexív, ha  $\forall x \in X : \neg xRx$ ;
- 7. R trichotóm, ha  $\forall x, y \in X$  esetén x = y, xRy és yRx közülpontosan egy teljesül;
- 8. R dichotóm, ha  $\forall x, y \in X$  esetén xRy vagy yRx (esetleg mindkettő).



Konstruáljon az {1,2,3,4} halmazon olyan relációt, amely

g) nem reflexív, nem tranzitív, nem szimmetrikus, nem antiszimmetrikus, nem trichotóm;

Példa: R={(1,1),(1,2),(2,3),(3,2)}



- 1. R tranzitív, ha  $\forall x, y, z \in X : (xRy \land yRz) \Rightarrow xRz$ ;
- 2. R szimmetrikus, ha  $\forall x, y \in X : xRy \Rightarrow yRx$ ;
- 3. R antiszimmetrikus, ha $\forall x, y \in X : (xRy \land yRx) \Rightarrow x = y;$
- 4. R szigorúan antiszimmetrikus, ha xRy és yRx egyszerre nem teljesülhet;
- 5. R reflexív, ha  $\forall x \in X : xRx$ ;
- 6. *R* irreflexív, ha  $\forall x \in X : \neg xRx$ ;
- 7. R trichotóm, ha  $\forall x, y \in X$  esetén x = y, xRy és yRx közülpontosan egy teljesül;
- 8. R dichotóm, ha  $\forall x, y \in X$  esetén xRy vagy yRx (esetleg mindkettő).

# Szorgalmi feladatok:

#### 12. feladat

Legyen  $R \subseteq A \times B$  és  $A' \subseteq A$ . Igazolja, hogy

- (a) ha  $A'' \subseteq A'$ , akkor  $R(A'') \subseteq R(A')$ ;
- (b)  $R(A') = \emptyset$  akkor és csak akkor, ha  $A' \cap \operatorname{dmn}(R) = \emptyset$ ;
- (c)  $R(A') = R(A' \cap \operatorname{dmn}(R));$
- (d)  $A' \cap \operatorname{dmn}(R) \subseteq R^{-1}(R(A'));$
- (e)  $R(A') \subseteq (R \circ R^{-1} \circ R)(A')$ .

#### 13. feladat

Legyen  $R \subseteq A \times B$ ,  $\Gamma$  egy indexhalmaz, és minden  $\gamma \in \Gamma$ -ra  $A_{\gamma} \subseteq A$ , továbbá legyen U és V is az A részhalmaza.

Mutassa meg, hogy

- (a)  $R(\bigcup_{\gamma \in \Gamma} A_{\gamma}) = \bigcup_{\gamma \in \Gamma} R(A_{\gamma});$
- (b)  $R(\bigcap_{\gamma \in \Gamma} A_{\gamma}) \subseteq \bigcap_{\gamma \in \Gamma} R(A_{\gamma})$ , és általában  $R(\bigcap_{\gamma \in \Gamma} A_{\gamma}) \neq \bigcap_{\gamma \in \Gamma} R(A_{\gamma})$ .
- (c)  $R(U \setminus V)$  és  $R(U) \setminus R(V)$  között;
- (d)  $R(\overline{U})$  és  $\operatorname{rng}(R)\backslash R(U)$  között?
- (e) Igaz-e, hogy  $R(\overline{U}) \subseteq \overline{R(U)}$  vagy  $\overline{R(U)} \subseteq R(\overline{U})$ ?

# Szorgalmi feladatok:

#### 14. feladat

Mutassa meg, hogy az A halmazban értelmezett R reláció akkor és csak akkor

- i. reflexív, ha  $\Delta_A \subseteq R$ ;
- ii. irreflexív, ha  $R \cap \Delta_A = \emptyset$ ;
- iii. szimmetrikus, ha  $R \subseteq R^{-1}$ ;
- iv. antiszimmetrikus, ha  $R \cap R^{-1} \subseteq \Delta_A$ ;
- v. szigorúan antiszimmetrikus, ha  $R \cap R^{-1} = \emptyset$ ;
- vi. tranzitív, ha  $R^2 \subseteq R$ ;
- vii. dichotóm, ha  $R \cup R^{-1} = A \times A$  és  $R \cap R^{-1} = \Delta_A$ ;
- viii. trichotóm, ha  $R \cup R^{-1} = (A \times A) \setminus \Delta_A$  és  $R \cap R^{-1} = \emptyset$ .

#### 15. feladat

Legyen A egy halmaz és  $R \subseteq A \times A$  egy A-beli reláció. Igaz-e, hogy

- a)  $R \cap R^{-1}$  szimmetrikus;
- b) ha  $S \subseteq R$  és S szimmetrikus, akkor  $S \subseteq R \cap R^{-1}$ ;
- c)  $R \cup R^{-1}$  szimmetrikus;
- d) ha  $R \subseteq T \subseteq A \times A$  és T szimmetrikus, akkor  $R \cup R^{-1} \subseteq T$ .

Állításait igazolja.