In calculus

- 1. Extreme Value Theorem: Every continuous function $f:[a,b]\to \mathbb{R}$ admit both max and min value \Rightarrow Compact set
- 2. Intermediate value Theorem: Given continous function $f:[a,b] \to \mathbb{R}$ for all $f(a) \le \lambda \le f(b) \exists c \in [a,b] \ni f(c) = \lambda \Rightarrow$ connected set

How to prove a statement: HP, then $Q, P \Rightarrow Q$ $\begin{cases}
\text{Direct Proof} \\
\text{Indirect Proof} \\
\text{by contradiction}
\end{cases}$ Mathematical Induction

1. Some preliminary

1.1. Set Theory. We will assume that you are familiar with some basic set theory e.g. union, intersection, difference

1.2. The Number System.

 $\mathbb{N} = \{1, 2, 3, \dots\}$ the set of all positive integers n natural numbers

 $\mathbb{Z} = \{\cdots, -2, -1, 0, -1, -2, \cdots\}$ the set of all integers called the ring of integers

 $\mathbb{Q} = \left\{ \frac{m}{n} : n, m \in \mathbb{Z}, n \neq 0 \right\}$ the set of all rational numbers of the national number field on real line

 \mathbb{R} the set all of real numbers on the real number field on real line

 $\mathbb{C} = \{ z = a + ib \mid a, b \in \mathbb{R} \}$ the set of all complex numbers or the complex number filed on complex plane, where $i = \sqrt{-1}$

Remark.

- 1. x + 2 = 0 no root in \mathbb{N} 3x - 5 = 0 no root in \mathbb{Z} $x^2 + 1 = 0$ no root in \mathbb{R}
- 2. One can construct \mathbb{Q} from \mathbb{Z} in algebraic way, called the fraction field of \mathbb{Z}
- 3. One can construct \mathbb{R} from \mathbb{Q} in two ways:
 - · Using Dedekind cut which is given in the appendix of Rudin p17-21
 - · Using completion of matrix space
- 4. One can construct \mathbb{C} from in complex analysis

Example.

1. Between any two rational numbers, there is another one

Proof. Let
$$r, s \in \mathbb{Q}$$
 with $r < s$, then $\frac{r+s}{2} \in \mathbb{Q}$ and $r < \frac{r+s}{2} < s$

$$r = \frac{m_1}{n_1}, s = \frac{m_2}{n_2}, \frac{r+s}{2} = \frac{\frac{m_1}{n_1} + \frac{m_2}{n_2}}{2} = \frac{m_1 n_2 + n_1 m_2}{2n_1 m_1} \in Q$$

$$s = \frac{s+s}{2} > \frac{r+s}{2} > \frac{r+r}{2} = r$$

- 2. $x^2 = \frac{4}{9}$ has exactly two rational solutions, namely, $\pm \frac{2}{3}$
- 3. $x^2 = 2$ has exactly two real root, namely, $\pm \sqrt{2}$
- 4. Is there any rational roots of $x^2 = 2$? i.e., is $\sqrt{2}$ rational?

Suppose
$$r = \frac{m}{n} \in \mathbb{Q}$$
, is a root of $x^2 = 2$, where $(m, n) = 1$
Then $\frac{m^2}{n^2} = 2 \implies m^2 = 2n^2 \implies 2 \mid m^2 \implies 2 \mid m \implies 4 \mid m^2 \implies 4 \mid 2n^2$
 $\implies 2 \mid n^2 \implies 2 \mid n \implies (n, m) \neq 1$

5. Let
$$A = \{ r \in Q \mid r > 0 \& r^2 < 2 \}, B = \{ r \in Q \mid r > 0 \& r^2 > 2 \}$$

Then A contains no largest numbers, i.e. max element & B contains no smallest numbers, i.e. min element

Proof. A contains no largest numbers
$$\Leftrightarrow$$
 given $r \in A$, $\exists s \in A \ni s > r$
Now, given $r \in A$, Let $s = r - \frac{r^2 - 2}{r + 2} = \frac{2r + 2}{r + 2}$ (\star_1)
$$\Rightarrow s^2 - 2 = \frac{2(r^2 - 2)}{(r + 2)^2}$$
 (\star_2)
Now, $r \in A, r^2 < 2 \implies r^2 - 2 < 0$...
$$(\star_1) \& (\star_2) \implies s > r \& s^2 < 2 \implies s \in A$$

6. As you know, in calculus, the sequence $\{1,1.4,1.41,1.414,1.4142,\cdots\}$ does not converge in Q, but it converges to $\sqrt{2}$ in R

1.3. Order Sets.

Definition.

Let X be a nonempty set A, relation on X is a subset R of $X \times X = \{(x,y) \mid x,y \in X\}$ Let R be a relation on X, if $(x,y) \in R$, then we say that x is retaliated to y, and is written as $xRy(x \sim y)$

Definition. An ordered set on S, is a relation denoted by " <" on S, satisfy:

- (i) The low of trichonomy Given $x, y \in S$, one and only one of the following holds: x < y, x = y, y < x
- (ii) Transitivity: if x < y & y < z, than x < z

Notation

- (1) x < y means "x is less than y" or "x is smaller than y"
- (2) y > x means x < y
- (3) $x \le y$ means x < y or x = y, i.e. the negative of x > y

<u>Definition</u>. Let "<" lie an order on a set S, then pass (S,<) on simply S is called an ordered set

<u>Definition.</u> Let S is an ordered set & $E \subseteq S(E \neq \emptyset)$

- E is bounded above if $\exists \alpha \in S \implies x \leq \alpha \ \forall \ x \in E$ such α is called an upper bound of E
- E is bounded below if $\exists \beta \in S \ni \beta \leq x, \forall x \in E, such \beta \text{ is called a lower bdd of } E$
- E is bdd is E is both bdd above and below.

Definition. Let S be an ordered set and $E \subseteq S(E \neq \emptyset)$ bdd above. An element $\alpha \in S$ is called the last upper bound or supremum of E if

- (i) α is an upper bound of E
- (ii) α is the smallest such one.

Equivalently,

- (i') $x < \alpha, \forall x \in E$
- (ii') if $\beta < \alpha$, then β is not an upper bdd of E, i.e. $\exists x \in E \ni x > \beta$

Such α (if exists) is denoted by

$$\alpha = sup(E)$$

similarly, one can defined the greatest lower bdd of infimum of E

Remark. if $\sup(E)$ exists then it is unique suppose $\alpha \neq \alpha'$ both lub of E

 \therefore by trichotomy, $\alpha > \alpha'$ or $\alpha = \alpha'$ or $\alpha < \alpha'(\rightarrow \leftarrow)$

<u>Definition.</u> A ordered set S is said to have the least upper bdd property if $E \subseteq S$, $E \neq \emptyset$ and E is bdd above, then $\sup(E)$ exists in S

Example.

1. In Q with the normal ordining

$$A = \left\{ r \in \mathbf{Q} \mid r > 0, \ r^2 < 2 \right\} \& B = \left\{ r \in \mathbf{Q} \mid r > 0, \ r^2 > 2 \right\}$$

Then A is bdd above, in fact, bdd by every element in B, but $\sup(A)$ does not exist in $Q(::by\ Ex1.5)$

- 2. B is bdd below by every element of A and inf B does not exists
- 3. Note that $\sup(E) \& \inf(E)$ may not in E even if exist

Remark.

- 1. By the Example above, Q with the usual ordering has no l.u.b property
- 2. In 1.5 we will explain that R with usual ordering has the l.u.b. property. However, we usually adopt the follwing

The Axiom of Completence or Least upper bdd property:

Every nonempty subset E of R which is bdd above has l.u.b

Theorem. Let S is an ordered set if S has the l.u.b. property, then S has the g.l.b. property, i.e. if $\emptyset \neq B \subseteq S$ is bdd below, then $\inf(B)$ exists in S

Proof. Given $B(\neq \emptyset) \subseteq S$ which is bdd below Let $L = \{ a \in S \mid a \text{ is a lower bdd of } B \}$

- $L \neq \emptyset(:: B \text{ is bdd below})$
- L is bdd above (in fact, every element in B is on upper bound of L) $\Longrightarrow \forall a \in L \Longrightarrow a \leq x, \ \forall x \in B \Longrightarrow x$ is an upper bound of L
- $\sup(L) = \alpha$ exists by assumption

Claim $\alpha = \inf B$

(i) α is a lower bdd of B, i.e. $\alpha \leq x, \ \forall x \in B$

By $\alpha = \sup L$, if $r < \alpha$, them r is not an upper bdd of $L(\because \alpha)$ is the smallest one). Hence, $r \notin B(\because \text{ every element of } B \text{ is an upper bdd of } L)$, so $\alpha \le x, \forall x \in B$

We have proved $(r < \alpha \implies r \notin B) \implies (r \in B \implies r \ge \alpha)$

(ii) α is the greated one

if $\alpha < \beta$ and β is a lower bdd of B, then $\beta \notin L$, i.e. β is not a lower bdd of B, so α is the greatest one. Therefore, $\alpha = \inf(B)$

Remark. Let $E(\neq \emptyset) \subseteq \mathbb{R}$ be bdd below, then $\inf(E)$ exists and $\inf(E) = -\sup(-E)$, where $-E = \{-x \mid x \in E\}$

1.4. Field.

Recall the addition & multiplication in R

$$+: R \times R \to R((a, b) \mapsto a + b)$$

 $\times: R \times R \to R((a, b) \mapsto a \cdot b = ab)$

<u>Definition</u>. Let X are a nonempty set A, binary operation on X is a function, $o: X \times X \to X$

<u>Definition</u>. Let F be a nonempty set, we say that F is a field $((F, +, \cdot))$ is a field) if there are two binary operator called addition "+" and multiplication " \cdot " on F property

Axioms for "+"

- (A1) Commutative: $\forall x, y \in F, x + y = y + x$
- (A2) Associative: $\forall x, y, z \in F, (x + y) + z = x + (y + z)$
- (A3) Additive identity or zero element: $\exists \ 0 \in F \implies x + 0 = 0 + x = x, \ \forall x \in F$
- (A4) Additive inverse on negative: For each $x \in X$, $\exists -x \in F \implies x + (-x) = (-x) + x = 0$
- i.e. (F, +) is an abelian group **Axioms for multiplication**
- (M1) Commutative: $\forall x, y \in F, xy = yx$
- (M2) Associative: $\forall x, y, z \in F$, (xy)z = x(yz)
- (M3) Muti identity: $\exists 1 \neq 0 \text{ in } F \ni x1 = 1x = x$
- (M4) Multiplicative inverse: For each $x \neq 0, \exists x^{-1} \in F \implies xx^{-1} = x^{-1}x = 1$
- i.e. $(F = F \cdot \{0\}, \cdot)$ is an abelian group

Distributive Law

(D1)
$$\forall x, y, z \in F$$
, $(x, y)z = xz + yz \& x(y + z) = xy + xz$

let $(F, +, \cdot)$ be a field, we list a series of basic identity as you learn in high school in the real number system

- (a) Cancellation law for "+": $x + y = x + z \implies y = z$ $\therefore x + y = x + z \implies (-x) + (x + y) = (-x) + (x + z) \implies ((-x) + x) + y = ((-x) + x) + z$ $\implies 0 + y = 0 + z \implies y = z$
- (b) 0 is "1" suppose $0' \in F$ is another element satisfy A_3 , then 0 = 0 + 0' = 0'
- (c) $x + y = x \implies y = 0$ by (a) $\therefore x + y = x + 0 \implies y = 0$
- (d) negative -x of x is "1" if $x' \in F$, is another negative of x, them x + x' = x' + x = 0 From $x + x' = 0 \implies (-x) + (x + x') = -x + 0 = -x$
- (e) $x + y = 0 \implies y = -x$ $x + y = 0 \implies (-x) + (x + y) = (-x) + 0 \implies ((-x) + x) + y = -x$ $\implies 0 + y = -x \implies y = -x$
- (f) -(-x) = x-(-x) + (-x) = 0, By (d) x = -(x)
- (a') cancellation law if $x \neq 0$, then $xy = xz \implies y = z$, $\therefore (x^{-1})(xy) = (x^{-1})(xz)$ $\implies (x^{-1})(xy) = (x^{-1}x)z \implies 1y = 1z \implies y = z$
- (b') 1 is "1" if 1' is another identity, then 1 = 11' = 1'
- (c') $x \neq 0 \& xy = x \implies y = 1$ $xy = x1 \implies y = 1$
- (d') For $x \neq 0$ in F, x^{-1} is "1" if x is another one, i.e. $x'x = xx' = 1 \implies (x^{-1})(xx') = (x^{-1})1 = x^{-1}$
- (f') $x \neq 0 \implies (x^{-1})^{-1} = x$ $(x^{-1})^{-1}(x^{-1}) = 1 \implies x = (x^{-1})^{-1}$
- (g') 0x = x0 = 0 $(0+0)x = 0x + 0x \implies 0x = 0$
- (h') $x \neq 0 \& y \neq 0 \implies xy \neq 0$, equivalently $xy = 0 \implies x = 0$ or y = 0 $\therefore xy = 0$ then $(x^{-1})(xy) = ((x^{-1})x)y = 1y = y(\rightarrow \leftarrow)$

(i')
$$(-x)y = -(xy) = x(-y)$$

 $\therefore [(-x) + x]y = 0y = 0 = (-x)y = -(xy) \implies (-x)y = -(xy)$

(j')
$$(-x)(-y) = xy$$

 $(-x)(-y) = -(x(-y))$ by (i)
 $= -(-(xy)) = xy$

(k)
$$-x = (-1)x$$

 $\therefore (1-1)x = 0x = 0 = 1x + (-1)x = x + (-1)x \implies (-1)x = -x$

<u>Definition</u> (Order Field). Let F is a field, we say that F is an order field if there is an ordering " < " satisfying

- (1) if x < y, then x + z < y + z, $\forall z \in F$
- (2) if x > y and y > 0, then xy > 0

Example. Q and R are order field under the usual ordering

Some basic properties of ordered field, let F be an ordered field with ordering " < "

(a)
$$x > 0 \implies -x < 0$$

$$\therefore x > 0 \implies x + (-x) > 0 + (-x) \implies 0 > -x$$

(b)
$$x > y \Leftrightarrow x - y > 0$$

$$\therefore x > y \implies x + (-y) > y = (-y) \implies x - y > 0$$

$$x - y > 0 \implies x - y + y > y \implies x + 0 > y \implies x > y$$

(c)
$$x > 0$$
 and $y < z \implies xy < xz$
 $\therefore x > 0$ and $y < z \implies x > 0$ and $z - y < 0 \implies x(z - y) > 0 \implies xz + x(-y) > 0$
 $\implies xz - xy > 0 \implies xz > xy$

(d)
$$x < 0$$
 and $y < z \implies xy > xz$

$$\therefore x < 0 \text{ and } y < z \implies -x > 0 \text{ and } z - y > 0 \implies (-x)(z - y) > 0 \implies -xz + xy > 0$$

$$\implies xy > xz$$

(e)
$$\forall x \neq 0 \text{ in } F, x^2 > 0$$

 $\therefore x > 0 \implies x \cdot x > x0 \text{ by } (c) \text{ or}$
 $x < 0 \implies -x > 0 \text{ by } (a) \implies -x > 0 \text{ by } (a) \implies (-x)^2 > 0 \implies x^2 > 0$

(f)
$$1 > 0$$
, $-1 < 0$
 $\therefore 1 \neq 0 \implies 1^2 > 0 \text{ by } (e) \implies 1 > 0$

$$(g) \ 0 < x < y \implies 0 < \frac{1}{y} < \frac{1}{x}$$

$$\therefore \text{Note that } \forall u \in \mathcal{F}, \ u > 0 \implies \frac{1}{u} = u^{-1} > 0$$

$$\therefore \text{ if } \frac{1}{u} < 0, \text{ then } u \cdot \frac{1}{u} < 0 \text{ by } (e) \implies 1 < 0 (\rightarrow \leftarrow) \therefore \frac{1}{u} > 0$$

$$\text{Now, } \frac{1}{x}, \frac{1}{y} > 0 \text{ from } x < y \text{ we get } (\frac{1}{x} \cdot \frac{1}{y})x < (\frac{1}{x} \cdot \frac{1}{y})y \implies 0 < \frac{1}{y} < \frac{1}{x}$$

Remark. By (e)(f), we conclude that C is not an ordered field

- \therefore C were an ordered field, then by (e), $i^2 > 0 \implies -1 > 0 (\rightarrow \leftarrow)$
- ∴ C is not an order field

1.5. The Real Number Field R.

Theorem. There exists an ordered field R containing Q which has the l.u.b. property. Moreover, such R is unique up to order-isomorphism

i.e. if " <" and " <'" are two orders on R, them
$$\exists f_i(R,<) \to (R,<') \Longrightarrow$$

- (i) f is a field isomorphism, i.e. $\forall a, b \in \mathbb{R}$, f(a+b) = f(a) + f(b), f(ab) = f(a)f(b), f(1) = 1
- (ii) f preserves ordering, $a < b \implies f(a) < f(b)$

Such R is called the real number field or real number system or real line

Theorem.

- (a) The Archimedean property of R: Given $x, y \in R$ with x > 0, $\exists n \in N \implies nx > y$
- (b) Q is dense in $R : \forall x, y \in R$ with $x \leq y$, $\exists r \in Q \implies x < r < y$ Proof.
 - (a) Let $A = \{ nx \mid n \in \mathbb{N} \} \subseteq \mathbb{R}$ if (a) were false, them A is bdd above by y, since \mathbb{R} has the l.u.b property $\alpha = \sup A$ exists in \mathbb{R} , since x > 0, $\alpha - x < \alpha \implies \alpha - x$ is not an upper bdd of A $\implies \exists m \in \mathbb{N} \ni mx > \alpha - x \implies (m+1)x > \alpha(\rightarrow \leftarrow)$
 - (b) Since x < y, y x > 0, by (a), $\exists n \in \mathbb{N} \implies n(y x) > 1$ By (a) again, $\exists m_1, m_2 \in \mathbb{N} \implies m_1 = m_1 1 > n_x \& m_2 = m_2 \cdot 1 > -nx$ we have $-m_2 < nx < m_1$, choose $m \in \mathbb{Z} \implies -m_2 \le m \le m_1 \& m - 1 \le nx < m$ (in fact, m = [nx] + 1, where [z] in the greatest integer of z) we have $nx < m < 1 + nx < ny(\because n(y - x) > 1) \implies x < \frac{m}{n} < y$ Let $r = \frac{m}{n} \in \mathbb{Q}$, then x < r < y

An application of the density property of Q in R:

Given $x \in \mathbf{R} - \mathbf{Q}$ i.e. x is an irrational numbers, i.e. $\forall \epsilon > 0, \exists r \in \mathbf{Q} \implies |x - r| < \epsilon$ equivalently, \exists a sequence $\{r_n\}$ in $\mathbf{Q} \implies r_n \to x$

In fact, one may choose $\{r_n\}$ to \uparrow or \downarrow

 $\because \forall n \geq 1, \ \exists \ r_n \in \mathbb{Q} \implies x < r_n < \frac{1}{n} + x \text{ by Thm.1.3(b) By squeezing lemma, } r_n \to x \text{ on } n \to \infty$

Theorem (existence of *n*th root). Given $x \in T, x > 0 \& n \in N, \exists$ "1" $y > 0 \implies y^n = x$ Such y is called the nth root of x & denoted by $y = \sqrt[n]{x} = x^{\frac{1}{n}}$

Proof. "1". Suppose $y_1, y_2 > 0 \implies y_1^n = x \& y_2^n = x$ Bt trichotomy, we have

(i)
$$0 < y_1 < y_2 \implies y_1^n < y_2^n (\rightarrow \leftarrow)$$

(ii)
$$0 < y_2 < y_1 \implies y_2^n < y_1^n (\rightarrow \leftarrow)$$

(iii)
$$y_1 = y_2$$

"∃". Let
$$E = \{ t \in \mathbf{R} \mid t^n < x \}$$
 Claim:

- $E \neq \emptyset$, Let $t = \frac{x}{1+x}$, then 0 < t < 1, hence $t^n < t < x$, $\therefore t \in E \& E \neq \emptyset$
- E is bdd above, in fact E is bdd above by 1 + x if t > 1 + x > 1, then $t^n > t > x$, so E is bdd above by 1 + 1

Therefore $y = \sup E$ exists & is finite

• Claim y > 0 & $y^n = x$, clearly, y > 0 (: $\frac{x}{1+x} \in E$ & $\frac{x}{1+x} > 0$) by trichotomy, we have $y^n < x$, $y^n > x$, $y^n = x$