Triangular grids

Shantanu Nene

Polymath Jr 2023

August 2023

Half-rectangular grids

An $m \times n$ half-rectangular-grid is the set of non-negative integer points (x,y) such that $0 \le x \le n-1$ and $0 \le y \le m-1$ and $(m-1)x \le (n-1)y$.

Half-rectangular grids

An $m \times n$ half-rectangular-grid is the set of non-negative integer points (x,y) such that $0 \le x \le n-1$ and $0 \le y \le m-1$ and $(m-1)x \le (n-1)y$.

Covering while omitting a point

Theorem

Let G be an $m \times n$ half-rectangular grid, and let $P = (x_0, y_0) \in G$ be any point. The minimum number of lines required to cover $G \setminus P$ without covering P is $n - \lceil \frac{n-m}{m-1} y_0 \rceil - 1$.

Covering while omitting a point

Theorem

Let G be an $m \times n$ half-rectangular grid, and let $P = (x_0, y_0) \in G$ be any point. The minimum number of lines required to cover $G \setminus P$ without covering P is $n - \lceil \frac{n-m}{m-1} y_0 \rceil - 1$.

As a special case, in case of m = n, the minimum number of lines to cover $G \setminus P$ without covering P is n - 1, regardless of position of P.

Covering with multiplicity

Covering with multiplicity

Theorem (Basit, Clifton, Horn (2023))

Number of lines required to cover an $n \times n$ half-rectangular grid with multiplicity k is greater than $\frac{2}{3}nk$

We define a general triangular grid T to be a subset of an $n \times n$ grid such that the i^{th} row from the top has exactly i points.

We define a general triangular grid T to be a subset of an $n \times n$ grid such that the i^{th} row from the top has exactly i points.

We define a general triangular grid T to be a subset of an $n \times n$ grid such that the i^{th} row from the top has exactly i points.

Note that an $n \times n$ half-rectangular grid is an example of a general triangular grid.

We define a general triangular grid T to be a subset of an $n \times n$ grid such that the i^{th} row from the top has exactly i points.

Note that an $n \times n$ half-rectangular grid is an example of a general triangular grid.

Theorem

Number of lines required to cover any general triangular grid with multiplicity k is at least nk $\left(1-e^{\frac{1}{2n}-1}-\frac{2}{n}\right)\geq nk\left(1-\frac{1}{e}-O\left(\frac{1}{n}\right)\right)$.

Some Open Problems

• Is the constant $1 - \frac{1}{e}$ in the previous theorem optimal?

Some Open Problems

- **1** Is the constant $1 \frac{1}{e}$ in the previous theorem optimal?
- ② What is a good lower bound on covering $m \times n$ half-rectangular grids with multiplicity?