

CURSO: Engenharias

DISCIPLINA: Tópicos Especiais em Programação SEMESTRE/ANO: 01/2023

CARGA HORÁRIA: 60 horas CRÉDITOS: 04

PROFESSOR: Edson Alves da Costa Júnior

PLANO DE ENSINO

1 Objetivos da Disciplina

A disciplina Tópicos Especiais em Programação tem como objetivo preparar os alunos do curso de Engenharia de Software da FGA para competições de programação, como a Maratona de Programação. Estes eventos ampliam o horizonte dos alunos e os estimulam a se aprofundarem nos tópicos de programação em geral. Além disso, a disciplina também constitui mais uma oportunidade para estudo e aprimoramento dos alunos em programação, tornando-os engenheiros mais preparados e capazes de atuar com competência no mercado de trabalho.

2 Ementa do Programa

- I. Introdução
 - i. Programação Competitiva
 - ii. Maratonas de Programação
 - iii. Juízes Eletrônicos
 - iv. Dicas para estudo e treinamento
 - v. Como começar
- II. Matemática

- i. Introdução
- ii. Problemas Ad Hoc
- iii. Aritmética Estendida
- iv. Análise Combinatória
- v. Teoria dos Números
- vi. Teoria da Probabilidade
- vii. Detecção de Ciclos
- viii. Teoria dos Jogos

3 Horário das aulas e atendimento

AULAS: sábados, das 08:00 às 11:50 hrs.

ATENDIMENTO: segundas, das 14:00 às 15:50 hrs.

4 Metodologia

A metodologia consiste em aulas expositivas, com o auxílio do quadro branco e projetor digital. A fim de fortalecer a aprendizagem da disciplina, as aulas serão complementadas com exercícios e atividades, presenciais e extra-classe. As comunicações do curso serão feitas exclusivamente através da plataforma Moodle.

O curso também será focado na resolução de exercícios, envolvendo a análise e resolução de problemas oriundos de competições e de *online judges*. Ocasionalmente acontecerão contests ou na plataforma vJudge¹, ou na plataforma Codeforces², ou na plataforma AtCoder³.

5 Critérios de Avaliação

A avaliação do curso se dará por meio de uma única prova, em trios, cuja data está prevista no cronograma. Os trios serão determinado pelo *ranking* do curso. O aluno que atender os critérios descritos a seguir poderá melhorar a menção obtida na prova no *contest* Menção++.

5.1 Prova

A prova P será composta por 9 ou 10 problemas, a serem resolvidos em trio. É permitida a consulta a materias impressos e é vedada a consulta aos colegas de outros trios ou a recursos online.

A solução proposta para um problema será corrigida de acordo com os seguintes critérios: após ser compilada de forma bem sucedida, uma série de testes unitários automatizados alimentarão o programa resultante com entradas válidas e comparará os resultados obtidos com as saídas corretas. Uma solução será considerada aceita se obtiver sucesso em todos os testes unitários.

A menção final do curso será dada em função número N de problemas cujas soluções foram aceitas, de acordo com a tabela abaixo.

N	Menção	Descrição
0	SR	Sem rendimento
1	II	Inferior
2 ou 3	MI	Médio inferior
4 ou 5	MM	Médio
6 ou 7	MS	Médio superior
8 ou mais	SS	Superior

https://vjudge.net
http://codeforces.com

³atcoder.jp

5.2 Critérios de aprovação

Obterá aprovação no curso o aluno que cumprir as duas exigências abaixo:

- 1. Ter presença em 75% ou mais das aulas;
- 2. Obter menção igual ou superior a MM.

5.3 Ranking do curso

Ao longo do curso será mantido um ranking dos alunos do curso, em ordem decrescente de score. O score S é composto por 4 variáveis: ranking no AtCoder (A), ranking do Codeforces (C), listas de exercícios (L), contests em sala de aula (T):

$$S = 100L + 200R + 300A + 400T$$

Em caso de empate, serão considerados os valores de T, A, R e L, nesta ordem. Persistindo o empate, será utilizada a ordem lexicográfica do nome completo do estudante.

Os trios serão determinados a partir do *ranking* na semana que antecede a prova: o primeiro trio será formados pelos três primeiros colocados, o segundo trio pelo quarto, quinto e sexto, e assim por diante.

5.3.1 Ranking do AtCoder

A nota A do estudante será dada em função do melhor rating $A_{\rm max}$ obtido pelo aluno na plataforma AtCoder⁴ ao longo do semestre. O valor de A será dado por

$$A = \frac{\min(A_{\max}, 1500)}{1500},$$

se o estudante tiver participado de 3 ou mais *contests* ranqueados na plataforma ao longo do semestre, ou zero, caso contrário.

5.3.2 Ranking do Codeforces

A nota R do estudante será dada em função do melhor $rating R_{max}$ obtido pelo aluno na plataforma Codeforces⁵ ao longo do semestre. O valor de R será dado por

$$R = \frac{\min(A_{\max}, 2000)}{2000},$$

se o estudante tiver participado de 3 ou mais *contests* ranqueados na plataforma ao longo do semestre, ou zero, caso contrário.

⁴atcoder.com

⁵codeforces.com

5.3.3 Listas de exercícios

A cada aula será proposta uma lista de exercícios na plataforma vJudge. Estas listas terão duração de 15 dias e são individuais. Cada lista terá N_i exercícios a serem resolvidos e, após seu encerramento, as novas soluções não serão contabilizadas para o *ranking*.

É vedada a colaboração entre os estudantes da disciplina e a consulta a soluções de outras pessoas. A verificação de algum indício de fraude ou cola em qualquer um dos exercícios da lista resultará na exclusão imediata do aluno do *ranking*.

O valor de L é dado por

$$L = \frac{\min\left(\sum_{i} AC_i, 100\right)}{100},$$

onde AC_i é o número de exercícios com veredito AC na lista i.

5.3.4 *Contests* semanais

Na segunda parte de cada aula acontecerá um *contest* individual, a ser feitos na plataforma AtCoder ou na plataforma vJudge⁶. Cada *contest* terá N_i exercícios a serem resolvidos, com início às 9:00 hrs e término às 10:40 hrs.

É vedada a colaboração entre os estudantes e a consulta à soluções de outras pessoas ou materiais digitais. É permitida a consulta a material impresso. A verificação de algum indício de fraude ou cola em qualquer um dos *contests* resultará na exclusão imediata do aluno do *ranking* da disciplina.

O valor de C é dado por

$$C = \frac{1}{N} \sum_{i=1}^{N} \frac{D_i - P_i + 1}{D_i}$$

onde D_i é o número de estudantes que participaram do *contest* i e P_i é a posição final do estudante no *contest* i.

5.4 Contest Menção++

Após a prova P, os alunos que tiveram 75% ou mais de presença nas aulas e tiverem notas $L \ge 0.3$ e $A \ge 0.3$ terão uma oportunidade de melhorar sua menção por meio do *contest* Menção++.

Este contest será individual e seguirá o mesmo formato e condições da prova P, com a diferença que a menção só poderá ser incrementada uma única vez, conforme mostra a tabela abaixo.

⁶vjudge.net

Menção anterior	N	Nova menção
SR	1 ou mais	II
II	2 ou mais	MI
MI	4 ou mais	MM
MM	6 ou mais	MS
MS	8 ou mais	SS

6 Cronograma

Semana	Aula	Data	Conteúdo
01	1	01/04	Apresentação do curso. Ambientação às ferramentas online
02	-	08/04	Sexta-Feira da Paixão
03	2	15/04	Lógica Booleana. Teoria dos Conjuntos
04	-	22/04	Tiradentes
05	3	29/04	Funções. Simulações.
06	4	06/05	Sequências e Séries. Malhas
07	5	13/05	Polinômios. Representação binária
08	6	20/05	Operações binárias. Exponenciais.
09	7	27/05	Logaritmos. Função logaritmo e função exponencial
10	8	03/06	Divisibilidade. Números primos
11	9	10/06	Funções multiplicativas. Teorema Fundamental da Aritmética
12	10	17/06	Aritmética Modular. Permutações
13	11	24/06	Arranjos. Combinações
14	12	01/07	Números de Fibonnaci e Catalan. Princípio da Inclusão/Exclusão
15	13	08/07	Funções Geradoras. Partições
16	-	15/07	Prova
17	-	22/07	Contest Menção++

7 Bibliografia

LIVRO TEXTO

HALIM, Steven S. and HALIM, Felix. Competitive Programming, 1a ed, Lulu, 2010. (Open Access)

CORMEN, Thomas H. **LEISERSON** and Charles E. and **RIVEST**, Ronald L. and **STEIN**, Clifford. *Algoritmos: Teoria e Prática*, Editora Campus, 2ª ed, 2002.

DROZDEK, Adam. Estruturas de Dados e Algoritmos em C++, Thomsom, 2001.

LITERATURA COMPLEMENTAR

KERNIGHAN, Brian and **RITCHIE**, Dennis M. *The C Programming Language*, Prentice Hall, 1988.

JOSUTTIS, Nicolai M. *The C++ Standard Library*, Addison-Wesley, 1999.

SOLTYS-KULINICZ, Michael. *Introduction to the Analysis of Algorithms*, World Scientific Publishing Co, 2012. (*eBrary*)

STEPHENS, Rod. *Essential Algorithms: A Practical Approach to Computer Algorithms*, John Wiley & Sons, 2013. (*eBrary*)

BALDWIN, Douglas; **SCRAGG,** Gregg. Algorithms and Data Structures: The Science of Computing, Charles River Media, 2004. (*eBrary*)