13: Parameter Control

- Motivation
- Parameter control
- Example on varying mutation step size
- Example on varying penalty in fitness evaluation
- Example on varying population size
- Textbook Chapter 8

Motivation

- An EA has many strategy parameters, e.g., mutation operation and mutation rate
- Good parameter values facilitate good performance
- EA parameters are often constant during a run
- An EA is a dynamic, adaptive process
- Optimal parameter values may vary during a run

Taxonomy

Parameter tuning

- Test and compare different values before the "real" run
- Challenges
 - user mistakes in settings can be sources of errors or suboptimal performance
 - costs time
 - parameters interact: exhaustive search is not feasible; can't test one at a time
 - requirements may change during a run

Parameter control

- Set values on-line, during a run
- Challenges
 - hard to optimize parameters with a time-varying schedule
 - hard to optimize user-defined feedback mechanism
 - hard to select for parameter optimization

Example - Varying mutation step size

- Task to solve
 - $\min f(x_1, x_2, ..., x_n)$
- Algorithm
 - EA with real-valued representation (x_1, x_2, \dots, x_n)
 - Arithmetic averaging crossover
 - Gaussian mutation, $x_i' = x_i + N(0,\sigma)$, SD σ is called mutation step size

Example - Varying mutation step size option I

• Replace the constant σ by a function $\sigma(t)$

$$\sigma(t) = 1 - 0.9 \times \frac{t}{T}$$

- t is the current generation number and T is the generation limit

• Features

- changes in σ are independent from the search progress
- strong user control of σ
- σ is fully predictable
- a given σ acts on all individuals of the population

Example - Varying mutation step size option 2

• Replace the constant σ by a function $\sigma(t)$ updated after every k generations using the $\frac{1}{5}$ success rule

$$\sigma(t) = \begin{cases} \frac{\sigma(t-k)}{c} & \text{if } p_s > 0.2\\ \sigma(t-k) \times c & \text{if } p_s < 0.2\\ \sigma(t-k) & \text{otherwise} \end{cases}$$

$$-0.817 \le c \le 1$$

Features

- changes in σ are based on feedback from the search progress
- some user control of σ
- σ is not predictable
- a given σ acts on all individuals of the population

Example - Varying mutation step size option 3

- ullet Assign a σ to each individual and incorporate it into the chromosome
 - $(x_1, x_2, \ldots, x_n, \sigma)$
 - $\sigma' = \sigma \times e^{N(0,\tau)}$
 - $x_i' = x_i + N_i(0, \sigma')$

Features

- changes in σ are results of natural selection
- (almost) no user control of σ
- σ is not predictable
- a given σ acts on one individual

Example - Varying mutation step size option 4

• Assign a σ to each variable in each individual and incorporate them into the chromosome

-
$$(x_1, x_2, \dots, x_n, \sigma_1, \sigma_2, \dots, \sigma_n)$$

-
$$\sigma_i' = \sigma_i \times e^{N_i(0,\tau)}$$

-
$$x_i' = x_i + N_i(0, \sigma')$$

Features

- changes in σ are results of natural selection
- (almost) no user control of σ
- σ is not predictable
- a given σ acts on one individual

Example - Varying the penalty in fitness evaluation

Constraints

- $g_i(x) \le 0$ for i = 1,...,q inequality constraints
- $h_i(x) = 0$ for i = q+1,...,m equality constraints

are handled by penalties:

$$eval(x) = f(x) + W \times penalty(x)$$

where

$$penalty(x) = \sum_{j=1}^{m} \begin{cases} 1 & for \ violated \ constraint \\ 0 & for \ satisfied \ constraint \end{cases}$$

Example - Varying population size

- Population provides diversity for the search
- Determine population size based on problem difficulty
- Adjust population size during a run
- Feedback
 - Individual's persistence in the population
 - fitness progression
 - rate of evolution

Population size and evolution rate

- Does increase population size accelerate or slow down evolution?
- Is it a monotonic relationship?
- Examples:
 - Island species vs. related mainland species
 - recent rapid human evolution

Hawks et al.: Recent acceleration of human adaptive evolution, 2007

Measure rate of evolution

- Non-synonymous to synonymous substitution rate k_a/k_s
- k_a : rate of accepting non-synonymous genetic changes
 - observable adaptive evolution
- k_s : rate of accepting synonymous genetic changes
 - background "clock ticks"

Nearly Neutral Theory of molecular evolution

- Proposed by Tomoko Ohta in 1973
- Nearly neutral mutations are slightly deleterious and slightly advantageous mutations
- Substantial number of nearly neutral mutations exist in molecular evolution
- Accepting nearly neutral mutations provides variation potential
- Population size ca influence the rate of molecular evolution

Positive vs. negative selection

positive selection negative selection

Population size and rate of evolution

- Under positive selection
 - increase population size can accelerate the rate of accepting adaptive mutations
- Under negative selection
 - decrease population size can allow accepting mutations (mostly deleterious)
 - adjust population size to compensate selection pressure
 - stabilize the rate of accepting adaptive mutations

Adjust population size during a run

- At generation *t*
 - if $k_a/k_s(t) > 1$, increase population size
 - if $k_a/k_s(t) = 1$, keep the same size
 - if $k_a/k_s(t) < 1$, increase size if $k_a/k_s(t)$ increases; decrease size if $k_a/k_s(t)$ decreases

Experiment

- Problem: Mackey-Glass time series prediction
- Algorithm: Tree-based genetic programming

$$x_{t+1} = x_t - b \times x_t + \frac{a \times x_{t-\tau}}{1 + (x_{t-\tau})^{10}},$$

$$x_0 = 1,$$

$$a = 0.2, b = 0.1, \tau = 17.$$

An example run

Performance comparison

Parameter control techniques

- Deterministic some rule modifies strategy parameters without feedback from the search
- Adaptive feedback rule based on some measure monitoring search progress
- Self-adaptive parameter values evolve along with solutions; encoded onto chromosomes

Parameter control categorization

- Various forms of parameter control can be distinguished by
 - primary features
 - what component of the EA is changed
 - how the change is made (deterministic, adaptive, self-adaptive)
 - secondary features
 - evidence upon which the change is carried out (absolute, relative)
 - level/scope of change (one parameter, one individual, entire population)