习题讨论课01答案:不等式、确界、幂指对函数

★号(越)多表示题目(越)难

一、不等式

微积分的核心思想是通过近似和逼近来解决问题,所以不等式是重要的工具。不等式的来源:

- 不等式的基本性质: 传递 $(x \le y, y \le z \Rightarrow x \le z)$, 运算性质 $(x \le y \Rightarrow x + z \le y + z; x \le y, z > 0 \Rightarrow xz \le yz)$ 。以及基本性质的推论,比如 $\forall x \in \mathbb{R}, x^2 \ge 0$ 。
- 函数的单调性: $x_1 < x_2 \Rightarrow f(x_1) \le f(x_2)$ 。 比如对正整数 n, x^n 在区间 $(0, +\infty)$ 是严格增函数 x^{-n} 在区间 $(0, +\infty)$ 是严格减函数。
- 函数的最大值与最小值。
- 一些常见不等式。

例 1. (Cauchy-Schwarz不等式). 证明对任意实数 $a_1, \ldots, a_n, b_1, \ldots, b_n$,

$$(a_1b_1 + \dots + a_nb_n)^2 \le (a_1^2 + \dots + a_n^2)(b_1^2 + \dots + b_n^2).$$

等式成立当且仅当存在实数 λ 使得

$$a_k = \lambda b_k$$
, $\forall 1 \le k \le n$, \vec{y} \vec{z} \vec{z}

事实上,成立等式

$$(a_1^2 + \dots + a_n^2) (b_1^2 + \dots + b_n^2) - (a_1b_1 + \dots + a_nb_n)^2 = \sum_{1 \le i < j \le n} (a_ib_j - a_jb_i)^2.$$

其几何意义是 \mathbb{R}^n 中由向量 $\mathbf{a} = (a_1, a_2, \dots, a_n)^T$ 和 $\mathbf{b} = (b_1, b_2, \dots, b_n)^T$ 所形成的平行四边形的面积与它在各 2 维坐标平面中的投影平行四边形面积之间的关系。

证法1. 构造函数

$$L(t) = (a_1 - tb_1)^2 + \dots + (a_n - tb_n)^2$$
.

则

$$L(t) = (a_1^2 + \dots + a_n^2) - 2t(a_1b_1 + \dots + a_nb_n) + t^2(b_1^2 + \dots + b_n^2).$$

若 $b_1^2+\cdots+b_n^2=0$, 则由 $L(t)\geq 0(\forall t)$ 知 $a_1b_1+\cdots+a_nb_n=0$ 。此时 CauchySchwarz 不等式为等式。而且 $b_1=\cdots=b_n=0$, 所以 $b_k=0a_k(\forall k)$ 。

若 $b_1^2 + \cdots + b_n^2 \neq 0$, 则

$$L(t) = (b_1^2 + \dots + b_n^2) \left(t - \frac{a_1 b_1 + \dots + a_n b_n}{b_1^2 + \dots + b_n^2} \right)^2 + (a_1^2 + \dots + a_n^2) - \frac{(a_1 b_1 + \dots + a_n b_n)^2}{b_1^2 + \dots + b_n^2}.$$

于是

$$L\left(\frac{a_1b_1+\cdots+a_nb_n}{b_1^2+\cdots+b_n^2}\right) = \left(a_1^2+\cdots+a_n^2\right) - \frac{\left(a_1b_1+\cdots+a_nb_n\right)^2}{b_1^2+\cdots+b_n^2} \ge 0.$$

因此 Cauchy-Schwarz 不等式成立。等号成立当且仅当

$$a_k = \frac{a_1b_1 + \dots + a_nb_n}{b_1^2 + \dots + b_n^2}b_k, \quad \forall k.$$

证法2.

$$\left(\sum_{i=1}^{n} a_i^2\right) \left(\sum_{j=1}^{n} b_j^2\right) - \left(\sum_{k=1}^{n} a_k b_k\right)^2 = \sum_{i,j=1}^{n} \left(a_i^2 b_j^2 - a_i b_i a_j b_j\right)$$

$$= \sum_{1 \le i < j \le n} \left(a_i^2 b_j^2 + a_j^2 b_i^2 - 2a_i b_i a_j b_j\right)$$

$$= \sum_{1 \le i < j \le n} \begin{vmatrix} a_i & b_i \\ a_j & b_j \end{vmatrix}^2 \ge 0.$$

等号成立当且仅当

$$a_i : b_i = a_j : b_j, \quad \forall 1 \le i < j \le n.$$

注: Cauchy-Schwarz 不等式是一类普遍成立的不等式,它反映了空间的内积构造,具有特殊的几何意义。

例 2. (Bernoulli 不等式). 设 $x_1, \ldots, x_n > -1$, 且 $x_i x_j \ge 0 (\forall i, j \in \{1, 2, \ldots, n\})$ 。证明

$$(1+x_1)\cdots(1+x_n) \ge 1 + (x_1+\cdots+x_n),$$

其中等号成立当且仅当 n=1 或者 x_1, \ldots, x_n 中至多有一个非零。 经典的 Bernoulli 不等式:

$$(1+x)^n > 1+nx$$
, $\forall n \in \mathbb{N}, \forall x > -1$.

证明. 用数学归纳法。

n=1 时等式成立。

假设n时结论成立。则

$$(1+x_1)\cdots(1+x_n)(1+x_{n+1}) \ge [1+(x_1+\cdots+x_n)](1+x_{n+1})$$
$$= 1+(x_1+\cdots+x_{n+1})+(x_1+\cdots+x_n)x_{n+1}$$
$$\ge 1+(x_1+\cdots+x_{n+1})$$

等号成立当且仅当 x_1, \ldots, x_n 中至多有一个非零 且 $(x_1 + \cdots + x_n) x_{n+1} = 0$ 。 若 x_1, \ldots, x_n 不全为零 因 $x_i x_j \ge 0$,所以 $x_1 + \cdots + x_n \ne 0$,从而 $x_{n+1} = 0$ 。 因 此等号成立当且仅当 x_1, \ldots, x_{n+1} 中至多有一个非零。

注: Bernoulli 不等式是本次习题课中最重要的不等式,可以把乘方运算降级为乘法运算。

例 3. 利用 Bernoulli 不等式证明对任何正整数 n 以及任何正数 a, b, 都有

$$ab^n \le \left(\frac{a+nb}{n+1}\right)^{n+1},$$

且等号成立当且仅当 a=b。并利用这个不等式证明对任何正整数 n,都有

$$\left(1 + \frac{1}{n}\right)^n < \left(1 + \frac{1}{n+1}\right)^{n+1} < \left(1 + \frac{1}{n+1}\right)^{n+2} < \left(1 + \frac{1}{n}\right)^{n+1}.$$

证明.

$$\left(\frac{a+nb}{n+1}\right)^{n+1} = b^{n+1} \left(1 + \frac{\frac{a}{b}-1}{n+1}\right)^{n+1} \ge b^{n+1} \left(1 + \frac{a}{b} - 1\right) = ab^n.$$

取 $a = 1, b = 1 + \frac{1}{n}$, 则

$$\left(\frac{1+(n+1)}{n+1}\right)^{n+1} > ab^n = \left(1+\frac{1}{n}\right)^n.$$

取 $a = 1, b = 1 - \frac{1}{n+1}$, 则

$$\left(\frac{n+1}{n+2}\right)^{n+2} = \left(\frac{a+(n+1)b}{n+2}\right)^{n+2} > ab^{n+1} = \left(\frac{n}{n+1}\right)^{n+1}.$$

例 4. (算术几何平均值不等式) 利用例 3 中不等式证明: 对任意正整数 n 和非负数 x_1, x_2, \ldots, x_n , 都成立

$$x_1 x_2 \cdots x_n \le \left(\frac{x_1 + x_2 + \cdots + x_n}{n}\right)^n$$
.

其中等号成立当且仅当 $x_1 = x_2 = \cdots = x_n$ 。

证明. 用数学归纳法。当n=1时结论成立。

假设 n 时结论成立。记 $A_n = \frac{x_1 + x_2 + \dots + x_n}{n}$,则

$$A_{n+1}^{n+1} = \left(\frac{x_{n+1} + nA_n}{n+1}\right)^{n+1} \ge x_{n+1}A_n^n \ge x_1 \cdots x_n x_{n+1}.$$

等号成立当且仅当 $x_{n+1} = A_n, x_1 = \cdots = x_n$,即 $x_1 = \cdots = x_n = x_{n+1}$ 。

注: 平均值不等式有多种证明方法,上述证明可能是最简单的一种。而且它避免了开方运算。

例 5. (广义的算术几何平均值不等式) 证明对任何非负数 $x_1, x_2, ..., x_n$ 和任何 正整数 $p_1, p_2, ..., p_n$ 都成立

$$x_1^{p_1} x_2^{p_2} \cdot \dots \cdot x_n^{p_n} \le \left(\frac{p_1 x_1 + p_2 x_2 + \dots + p_n x_n}{p_1 + p_2 + \dots + p_n}\right)^{p_1 + p_2 + \dots + p_n}.$$

其中等号成立当且仅当 $x_1 = x_2 = \cdots = x_n$ 。

证明. 记

$$y_1 = \dots = y_{p_1} = x_1,$$

 $y_{p_1+1} = \dots = y_{p_1+p_2} = x_2,$
 \vdots

$$y_{p_1+\dots+p_{n-1}+1} = \dots = y_{p_1+\dots+p_n} = x_n.$$

然后使用最简单的算术几何平均不等式。

二、确界

上确界: $\mu = \sup A$

- $\mu \neq A$ 的上界: $x \in A \Rightarrow x \leq \mu$;
- $\mu \neq A$ 的最小上界:

$$\mu_1$$
 是 A 的上界 $\Rightarrow \mu_1 > \mu$,

或等价的,

 $\forall \mu_1 < \mu, \mu_1$ 不是 A 的上界, 即存在 $x \in A$ 使得 $x > \mu_1$.

类似地, 定义下确界。

确界公理:任何非空有上(下)界的实数子集必有上(下)确界。

例 6. (阿基米德性质). 证明对任意正数 ε , 存在正整数 n 使得 $\frac{1}{n} < \varepsilon < n$ 。

证明. 记

$$A = \left\{ n \in \mathbb{N}^* \mid n \le 1 + \varepsilon + \frac{1}{\varepsilon} \right\}.$$

则 $1 \in A$,且 $1 + \varepsilon + \frac{1}{\varepsilon}$ 是 A 的上界。所以由**实数的确界性质**知 A 有上确界 n_0 。

 n_0-1 不是 A 的上界,所以存在 $m\in A$ 使得 $m>n_0-1$ 。于是 $m+1\not\in A$,从而 $m+1>1+\varepsilon+\frac{1}{\varepsilon}$,即 $m>\varepsilon+\frac{1}{\varepsilon}$ 。从而 $\frac{1}{m}<\frac{1}{\varepsilon+\frac{1}{\varepsilon}}<\varepsilon$ 。

注:由上述证明知:对任意正数 a > 1,存在正整数 m 使得 $m \le a$,但 m+1 > a。 易见这样的正整数 m 是唯一的,记 m = |a|,称为 a 的整数部分。

例 7. 设 $a > 1, \varepsilon > 0$ 。证明存在正整数 m 使得 $a^{-m} < \varepsilon < a^m$ 。

证明. (**尽量避免取对数**) 存在正整数 m 使得 $m > \frac{\varepsilon}{a-1} + \frac{1}{(a-1)\varepsilon}$ 。所以由 Bernoulli 不等式,

$$a^{m} = (1 + (a - 1))^{m} \ge 1 + m(a - 1) > m(a - 1) > \varepsilon + \frac{1}{\varepsilon},$$

所以

$$a^{-m} = \frac{1}{a^m} < \frac{1}{\varepsilon + \frac{1}{\varepsilon}} < \frac{1}{\frac{1}{\varepsilon}} = \varepsilon < a^m.$$

例 8. 证明: 实数 α 是实数子集 A 的上确界当且仅当

- 任何比 α 小的有理数都不是A的上界;
- 任何比 α 大的有理数都是 A 的上界。

证明. (必要性)设 $\alpha = \sup A$ 。任给有理数 x, y 满足 $x < \alpha < y$ 。因为 α 是 A 的最小上界 所以 x 不是 A 的上界。

对任意 $a \in A$, 都有 $a \le \alpha < y$, 所以 $y \in A$ 的上界。

(充分性) 设 α 满足: 任何比 α 小的有理数都不是 A 的上界; 且任何比 α 大的有理数都是 A 的上界。

假设 α 不是 A 的上确界。则要么 (1) α 不是 A 的上界,要么 (2) α 是 A 的上界,但不是 A 的最小上界。

对情形 (1), 存在 $a \in A$ 使得 $a > \alpha$ 。由于**有理数在实数集中稠密**,从而存在有理数 r 满足 $\alpha < r < a$,因此 r 是 A 的上界。但 a > r 且 $a \in A$ 。矛盾。

对情形 (2), 存在 A 的上界 b 满足 $b < \alpha$ 。由于**有理数在实数集中稠密**,存在有理数 $r \in (b,\alpha)$ 。由 r > b 知 r 是 A 的上界,但这与"任何比 α 小的有理数都不是 A 的上界"矛盾。

因此 α 是 A 的上确界。

例 9. (★)设 A,B 是非空有上界的实数子集,且存在 $a_0,b_0>0$ 满足 $a_0\in A,b_0\in B$ 。记

 $AB = \{c \in \mathbb{R} \mid \text{ 存在 } a, b > 0 \text{ 使得 } a \in A, b \in B, c \leq ab\}.$

证明 AB 非空有上界,且 $\sup(AB) = \sup A \cdot \sup B$ 。

证明. $\ \ \mathrm{i}\ \ \alpha = \sup A, \ \beta = \sup B$ 。

易见 $a_0b_0 \in AB$,所以 AB 非空。

对任意 $c\in AB$, 取 $a\in A,b\in B$ 使得 a,b>0 且 $c\leq ab$ 。从而 $c\leq ab\leq \alpha\beta$ 。 因此 $\alpha\beta$ 是 AB 的上界。

下证 $\alpha\beta$ 是 AB 的上确界。这只需证明对任意 $\varepsilon>0$, $\alpha\beta-\varepsilon$ 不是 AB 的上界。

由于 $\alpha\left(1-\frac{\varepsilon}{2\alpha\beta+\varepsilon}\right)$ 不是 A 的上界,从而存在 $a_1\in A$ 使得

$$0 < \alpha \left(1 - \frac{\varepsilon}{2\alpha\beta + \varepsilon} \right) < a_1 \le \alpha.$$

同理存在 $b_1 \in B$ 使得

$$0 < \beta \left(1 - \frac{\varepsilon}{2\alpha\beta + \varepsilon} \right) < b_1 \le \beta.$$

于是

因此 $a_1b_1 \in AB$,且

$$\alpha\beta \left(1 - \frac{\varepsilon}{2\alpha\beta + \varepsilon}\right)^2 < a_1b_1 \le \alpha\beta.$$

于是

$$\sup(AB) \ge \alpha\beta \left(1 - \frac{\varepsilon}{2\alpha\beta + \varepsilon}\right)^2 \ge \alpha\beta \left(1 - \frac{2\varepsilon}{2\alpha\beta + \varepsilon}\right) > \alpha\beta - \varepsilon.$$

所以 $\sup(AB) = \alpha\beta$ 。

注:这本质上是用 Dedekind 分割作为实数时,定义两个正实数乘积的办法。

三、关于乘方、开方、幂指对函数

虽然我们在中学学习了开方和幂指对函数,但它们不是用算术运算(有限次加减乘除)得到的,它们的很多性质需要用到实数的本质性质(确界公理)。

例 10. (\bigstar) (从乘方到开方) 设 n 是正整数。证明函数 $f: \mathbb{R}^+ \to \mathbb{R}^+$, $x \mapsto x^n$ 是严格增满射。

证明. 单调性可以对 n 作数学归纳证明。下证 f 是满射,即对任意 y > 0,存在 x > 0 使得 $x^n = y$ 。

$$i \exists A = \{z \in \mathbb{R}^+ | z^n < y\}$$

由阿基米德性质,存在正整数 $N > y + \frac{1}{y}$,于是

$$N^n \ge N > y > \frac{1}{N} \ge \left(\frac{1}{N}\right)^n$$

所以 $\frac{1}{N} \in A$ 。由 x^n 的单调性以及 $N^n > y$ 知,N 是 A 的上界。

从而 A 非空且有上界,因此有上确界,记 $x=\sup A$ 。则 $x\geq \frac{1}{N}>0$ 。下证 $x^n=y$ 。

若 $x^n > y$,则当正整数 $m > \frac{n}{1-\frac{3}{2n}}$ 时,由 Bernoulli 不等式知,

$$\left[x\left(1-\frac{1}{m}\right)\right]^n > x^n\left(1-\frac{n}{m}\right) > y,$$

从而 $x\left(1-\frac{1}{m}\right)$ 是 A 的上界,这与 x 是最小上界矛盾。

若 $x^n < y$,则当正整数 $m > \frac{n}{1-\frac{x^n}{x}}$ 时,由 Bernoulli 不等式知,

$$\left[x \left(1 + \frac{1}{m} \right) \right]^n = \frac{x^n}{\left(1 - \frac{1}{m+1} \right)^n} < \frac{x^n}{1 - \frac{n}{m+1}} < \frac{x^n}{1 - \frac{n}{m}} < y,$$

从而 $x(1+\frac{1}{m}) \in A$, 这与 x 是 A 的上界矛盾。

所以 $x^n = y$.

因此 f 是满射。

定义: 对正数 y 和正整数 n,定义 $y^{\frac{1}{n}}$ 是 $x^n=y$ 的唯一正数解 x. 对整数 m,定义 $y^{\frac{m}{n}}=\left(y^{\frac{1}{n}}\right)^m$.

例 11. (\bigstar *) (从乘方到对数函数) 设 a > 1, x > 0, 记

$$A_x = \left\{ \frac{m}{n} \middle| n$$
 是正整数, m 是整数, $a^m \le x^n \right\}$.

- 1. 证明 A_x 非空有上界。记 $\log_a x = \sup A_x$.
- 2. 证明对任意正数 x,y, $\log_a(xy) = \log_a x + \log_a y$. 并且 $\log_a a = 1$.
- 3. 对任何有理数 $\frac{m}{n}$, $\log_a(a^{\frac{m}{n}}) = \frac{m}{n}$.
- 4. 证明 $\log_a: \mathbb{R}^+ \to \mathbb{R}$ 是严格增满射。

证明.

引理 12. 若 $x^q \leq a^p$, 则 $\frac{p}{a}$ 是 A_x 的上界

引理的证明. 对任意 $\frac{m}{n} \in A_x$,

$$a^{mq} = (a^m)^q \le (x^n)^q = (x^q)^n \le (a^p)^n = a^{pn}$$

所以 $mq \leq pn$,从而 $\frac{m}{n} \leq \frac{p}{q}$.

(1) 存在正整数 M 使得, $a^{-M} \le x \le a^M$ 。 所以 $-M \in A_x$, A_x 非空。并且由引理知,M 是 A_x 的上界。 于是 A_x 有上确界。

(2) 对任意 $\varepsilon > 0$,取正整数 N 使得 $\frac{2}{N} < \varepsilon$ 。 存在整数 m_1 和 m_2 使得

$$a^{m_1} \le x^N < a^{m_1+1}, \quad a^{m_2} \le y^N < a^{m_2+1},$$

所以 $\frac{m_1}{N} \in A_x$, $\frac{m_2}{N} \in A_y$, 并且 $\frac{m_1+1}{N}$ 是 A_x 的上界, $\frac{m_2+1}{N}$ 是 A_y 的上界, 从而

$$\frac{m_1+1}{N} \ge \log_a x, \quad \frac{m_2+1}{N} \ge \log_a y.$$

另一方面,

$$a^{m_1+m_2} \le (xy)^N < a^{m_1+m_2+2},$$

从而 $\frac{m_1+m_2}{N} \in A_{xy}$ 并且 $\frac{m_1+m_2+2}{N}$ 是 A_{xy} 的上界。因此

$$\begin{split} \log_a x + \log_a y - \frac{2}{N} & \leq \frac{m_1 + 1}{N} + \frac{m_2 + 1}{N} - \frac{2}{N} \\ & = \frac{m_1 + m_2}{N} \leq \log_a(xy) \leq \frac{m_1 + m_2 + 2}{N} \\ & \leq \log_a x + \log_a y + \frac{2}{N}. \end{split}$$

于是

$$\left|\log_a x + \log_a y - \log_a(xy)\right| \le \frac{2}{N} < \varepsilon.$$

从而

$$\log_a x + \log_a y = \log_a(xy).$$

 $\log_a a = 1$ 从定义可以马上得到。

(3) 由(2)和数学归纳法可知: 对一切正数 b,对一切正整数 n, $\log_a(b^n) = n\log_a b$. 从而 $\log_a(a^{\frac{1}{n}}) = \frac{1}{n}$.

由 $\log_a 1 = \log_a 1 + \log_a 1$ 知 $\log_a 1 = 0$.

对任意负整数 -m, $\log_a(b^{-m}) = \log_a 1 - \log_a(b^m) = -m \log_a b$.

从而对任意整数 m 和正整数 n, $\log_a(a^{\frac{m}{n}}) = \frac{m}{n}$.

(4) 先证 f 严格增。设 0 < x < y。当正整数 $n > \frac{a^2 x}{y-x}$ 时,

$$\frac{y^n}{x^n} = \left(1 + \frac{y-x}{x}\right)^n \ge 1 + \frac{n(y-x)}{x} > a^2.$$

取整数 m_1 使得

$$a^{m_1} \le x^n < a^{m_1+1}$$
.

则

$$a^{m_1} \le x^n < a^{m_1+1} < a^{m_1+2} < a^2 x^n < y^n$$
.

所以 $\frac{m_1+1}{n}$ 是 A_x 的上界, $\frac{m_1+2}{n} \in A_y$ 。所以

$$\log_a x \le \frac{a_1 + 1}{n} < \frac{m_1 + 2}{n} \le \log_a y.$$

下面证明 \log_a 是满射,即对任意 $y \in \mathbb{R}$,存在 x > 0 使得 $\log_a x = y$. 记

$$B_y = \left\{ a^{\frac{m}{n}} \middle| m \in \mathbb{Z}, n \in \mathbb{N}^*, \frac{m}{n} \le y \right\}.$$

对任意正整数 N, 存在整数 M 使得

$$\frac{M}{N} \le y < \frac{M+1}{N}$$

于是 $a^{\frac{M}{N}} \in B_y$.

对任意 $a^{\frac{m}{n}} \in B_y$, $\frac{m}{n} \le y < \frac{M+1}{N}$,则 $a^{\frac{m}{n}} < a^{\frac{M+1}{N}}$,从而 $a^{\frac{M+1}{N}}$ 是 B_y 的上界。

所以 B_y 有上确界。记 $x = \sup B_y$ 。所以

$$a^{\frac{M}{N}} < x < a^{\frac{M+1}{N}}$$

则

$$\frac{M}{N} = \log_a(a^{\frac{M}{N}}) \leq \log_a x \leq \log_a\left(a^{\frac{M+1}{N}}\right) = \frac{M+1}{N}.$$

所以

$$|\log_a x - y| \le \frac{M+1}{N} - \frac{M}{N} = \frac{1}{N}.$$

因此 $y = \log_a x$. 因此 \log_a 是满射。

定义: 指数函数 a^x 是对数函数 \log_a 的反函数。

所以 a^x 是 \mathbb{R} 到 \mathbb{R}^+ 的严格增满射。

由于

$$\log_a(a^x a^y) = \log_a(a^x) + \log_a(a^y) = x + y,$$

所以

$$a^x a^y = a^{x+y}.$$

思考题: $(\bigstar \bigstar)$ 如何证明对任意正数 a,b 和任意实数 x,y,都有 $(a^x)^y=a^{xy}$ 以及 $a^xb^x=(ab)^x$?

定义: 幂函数 $x^{\mu} = 2^{\mu \log_2 x}$.