MATH 350-2 Advanced Calculus

W.R. Casper

Department of Mathematics California State University Fullerton

September 15, 2024

Outline

- Real Analysis Lecture 5
 - Sets, Relations, Functions

Outline

- Real Analysis Lecture 5
 - Sets, Relations, Functions

Intuitively, a **set** *A* is a "collection of things" which we call the **elements** of *A*.

Intuitively, a **set** *A* is a "collection of things" which we call the **elements** of *A*.

in practice, this is a bad definition (Russell's Paradox)

Intuitively, a **set** *A* is a "collection of things" which we call the **elements** of *A*.

- in practice, this is a bad definition (Russell's Paradox)
- true set formulation: Zermelo-Frankel Axioms

Intuitively, a **set** *A* is a "collection of things" which we call the **elements** of *A*.

- in practice, this is a bad definition (Russell's Paradox)
- true set formulation: Zermelo-Frankel Axioms

Intuitively, a **set** *A* is a "collection of things" which we call the **elements** of *A*.

- in practice, this is a bad definition (Russell's Paradox)
- true set formulation: Zermelo-Frankel Axioms

Examples:

 \bullet \mathbb{R} , \mathbb{Z}_+ , \mathbb{Z} , \mathbb{Q}

Intuitively, a **set** *A* is a "collection of things" which we call the **elements** of *A*.

- in practice, this is a bad definition (Russell's Paradox)
- true set formulation: Zermelo-Frankel Axioms

- \bullet \mathbb{R} , \mathbb{Z}_+ , \mathbb{Z} , \mathbb{Q}
- $(1,5], (0,\infty)$

Intuitively, a **set** *A* is a "collection of things" which we call the **elements** of *A*.

- in practice, this is a bad definition (Russell's Paradox)
- true set formulation: Zermelo-Frankel Axioms

- \bullet \mathbb{R} , \mathbb{Z}_+ , \mathbb{Z} , \mathbb{Q}
- $(1,5], (0,\infty)$
- empty set Ø

Intuitively, a **set** *A* is a "collection of things" which we call the **elements** of *A*.

- in practice, this is a bad definition (Russell's Paradox)
- true set formulation: Zermelo-Frankel Axioms

- \bullet \mathbb{R} , \mathbb{Z}_+ , \mathbb{Z} , \mathbb{Q}
- $(1,5], (0,\infty)$
- empty set Ø
- {♡, Fall, {∅}}

Intuitively, a **set** *A* is a "collection of things" which we call the **elements** of *A*.

- in practice, this is a bad definition (Russell's Paradox)
- true set formulation: Zermelo-Frankel Axioms

- \bullet \mathbb{R} , \mathbb{Z}_+ , \mathbb{Z} , \mathbb{Q}
- $(1,5], (0,\infty)$
- empty set Ø
- {♡, Fall, {∅}}
- $\{n \in \mathbb{Z} : n \text{ is prime}\}$

In the true minimalistic philosophy of mathematics, we want everything to be a set.

In the true minimalistic philosophy of mathematics, we want everything to be a set.

integers

In the true minimalistic philosophy of mathematics, we want everything to be a set.

integers

$$0=\varnothing, 1=\{\varnothing\}, 2=\{\varnothing, \{\varnothing\}\}, \dots$$

In the true minimalistic philosophy of mathematics, we want everything to be a set.

integers

$$0=\varnothing, 1=\{\varnothing\}, 2=\{\varnothing, \{\varnothing\}\}, \dots$$

ordered pairs

In the true minimalistic philosophy of mathematics, we want everything to be a set.

integers

$$0=\varnothing, 1=\{\varnothing\}, 2=\{\varnothing, \{\varnothing\}\}, \dots$$

ordered pairs

$$(a,b) = \{a, \{a,b\}\}$$

In the true minimalistic philosophy of mathematics, we want everything to be a set.

integers

$$0=\varnothing, 1=\{\varnothing\}, 2=\{\varnothing, \{\varnothing\}\}, \dots$$

ordered pairs

$$(a,b) = \{a, \{a,b\}\}$$

even relations and functions are sets!

Problem

Prove that for ordered pairs (a, b) and (c, d) that

$$(a,b)=(c,d)$$
 if and only if $a=c$ and $b=d$

Problem

Prove that for ordered pairs (a, b) and (c, d) that

$$(a,b)=(c,d)$$
 if and only if $a=c$ and $b=d$

$$(a,b) = (c,d)$$
 if and only if $\{a, \{a,b\}\} = \{c, \{c,d\}\}$

Problem

Prove that for ordered pairs (a, b) and (c, d) that

$$(a,b)=(c,d)$$
 if and only if $a=c$ and $b=d$

$$(a, b) = (c, d)$$
 if and only if $\{a, \{a, b\}\} = \{c, \{c, d\}\}$
Clearly, if $a = c$ and $b = d$, then $\{a, \{a, b\}\} = \{c, \{c, d\}\}$

Problem

Prove that for ordered pairs (a, b) and (c, d) that

$$(a,b)=(c,d)$$
 if and only if $a=c$ and $b=d$

$$(a,b) = (c,d)$$
 if and only if $\{a,\{a,b\}\} = \{c,\{c,d\}\}$
Clearly, if $a = c$ and $b = d$, then $\{a,\{a,b\}\} = \{c,\{c,d\}\}$
The tough part is the opposite direction!

Problem

Prove that for ordered pairs (a, b) and (c, d) that

$$(a,b)=(c,d)$$
 if and only if $a=c$ and $b=d$

Solution

(a,b)=(c,d) if and only if $\{a,\{a,b\}\}=\{c,\{c,d\}\}$ Clearly, if a=c and b=d, then $\{a,\{a,b\}\}=\{c,\{c,d\}\}$ The tough part is the opposite direction! Suppose $\{a,\{a,b\}\}=\{c,\{c,d\}\}$.

Problem

Prove that for ordered pairs (a, b) and (c, d) that

$$(a,b)=(c,d)$$
 if and only if $a=c$ and $b=d$

Solution

(a,b)=(c,d) if and only if $\{a,\{a,b\}\}=\{c,\{c,d\}\}$ Clearly, if a=c and b=d, then $\{a,\{a,b\}\}=\{c,\{c,d\}\}$ The tough part is the opposite direction! Suppose $\{a,\{a,b\}\}=\{c,\{c,d\}\}$. Two possible cases:

Problem

Prove that for ordered pairs (a, b) and (c, d) that

$$(a,b)=(c,d)$$
 if and only if $a=c$ and $b=d$

$$(a,b)=(c,d)$$
 if and only if $\{a,\{a,b\}\}=\{c,\{c,d\}\}$
Clearly, if $a=c$ and $b=d$, then $\{a,\{a,b\}\}=\{c,\{c,d\}\}$
The tough part is the opposite direction!
Suppose $\{a,\{a,b\}\}=\{c,\{c,d\}\}$.
Two possible cases:

Case I:
$$a = c$$
 and $\{a, b\} = \{c, d\}$
Case II: $a = \{c, d\}$ and $\{a, b\} = c$

Problem

Prove that for ordered pairs (a, b) and (c, d) that

$$(a,b)=(c,d)$$
 if and only if $a=c$ and $b=d$

Solution

$$(a,b) = (c,d)$$
 if and only if $\{a,\{a,b\}\} = \{c,\{c,d\}\}$

Clearly, if a = c and b = d, then $\{a, \{a, b\}\} = \{c, \{c, d\}\}$

The tough part is the opposite direction!

Suppose $\{a, \{a, b\}\} = \{c, \{c, d\}\}.$

Two possible cases:

Case I:
$$a = c$$
 and $\{a, b\} = \{c, d\}$

Case II:
$$a = \{c, d\}$$
 and $\{a, b\} = c$

Problem

Prove that for ordered pairs (a, b) and (c, d) that

$$(a,b)=(c,d)$$
 if and only if $a=c$ and $b=d$

Case I:
$$a = c$$
 and $\{a, b\} = \{c, d\}$

Problem

Prove that for ordered pairs (a, b) and (c, d) that

$$(a,b)=(c,d)$$
 if and only if $a=c$ and $b=d$

Solution

Case I:
$$a = c$$
 and $\{a, b\} = \{c, d\}$

Since $\{a, b\} = \{c, d\}$, we know $b \in \{c, d\}$.

Problem

Prove that for ordered pairs (a, b) and (c, d) that

$$(a,b)=(c,d)$$
 if and only if $a=c$ and $b=d$

Solution

Case I:
$$a = c$$
 and $\{a, b\} = \{c, d\}$

Since $\{a, b\} = \{c, d\}$, we know $b \in \{c, d\}$.

Therefore b = c or b = d.

If b = d, we're done!

Problem

Prove that for ordered pairs (a, b) and (c, d) that

$$(a,b)=(c,d)$$
 if and only if $a=c$ and $b=d$

Solution

Case I:
$$a = c$$
 and $\{a, b\} = \{c, d\}$

Since $\{a, b\} = \{c, d\}$, we know $b \in \{c, d\}$.

Therefore b = c or b = d.

If b = d, we're done! ... so assume instead that b = c

Problem

Prove that for ordered pairs (a, b) and (c, d) that

$$(a,b)=(c,d)$$
 if and only if $a=c$ and $b=d$

Solution

Case I:
$$a = c$$
 and $\{a, b\} = \{c, d\}$

Since $\{a, b\} = \{c, d\}$, we know $b \in \{c, d\}$.

Therefore b = c or b = d.

If b = d, we're done! ... so assume instead that b = c

Then a = c implies a = b.

Problem

Prove that for ordered pairs (a, b) and (c, d) that

$$(a,b)=(c,d)$$
 if and only if $a=c$ and $b=d$

Solution

Case I:
$$a = c$$
 and $\{a, b\} = \{c, d\}$

Since $\{a, b\} = \{c, d\}$, we know $b \in \{c, d\}$.

Therefore b = c or b = d.

If b = d, we're done! ... so assume instead that b = c

Then a = c implies a = b.

Therefore $\{c, d\} = \{a, b\} = \{a, a\} = \{a\}.$

Problem

Prove that for ordered pairs (a, b) and (c, d) that

$$(a,b)=(c,d)$$
 if and only if $a=c$ and $b=d$

Solution

Case I:
$$a = c$$
 and $\{a, b\} = \{c, d\}$

Since $\{a, b\} = \{c, d\}$, we know $b \in \{c, d\}$.

Therefore b = c or b = d.

If b = d, we're done! ... so assume instead that b = c

Then a = c implies a = b.

Therefore $\{c, d\} = \{a, b\} = \{a, a\} = \{a\}.$

It follows that d = c = b = a.

Problem

Prove that for ordered pairs (a, b) and (c, d) that

$$(a,b)=(c,d)$$
 if and only if $a=c$ and $b=d$

Case II:
$$a = \{c, d\}$$
 and $\{a, b\} = c$

Problem

Prove that for ordered pairs (a, b) and (c, d) that

$$(a,b)=(c,d)$$
 if and only if $a=c$ and $b=d$

Solution

Case II:
$$a = \{c, d\}$$
 and $\{a, b\} = c$

This would imply that $c \in a$ and $a \in c$.

Problem

Prove that for ordered pairs (a, b) and (c, d) that

$$(a,b)=(c,d)$$
 if and only if $a=c$ and $b=d$

Solution

Case II:
$$a = \{c, d\}$$
 and $\{a, b\} = c$

This would imply that $c \in a$ and $a \in c$.

This can be shown to contradict the ZF Axioms of Set Theory.

Challenge!

Problem

Prove that for ordered pairs (a, b) and (c, d) that

$$(a,b)=(c,d)$$
 if and only if $a=c$ and $b=d$

Solution

Case II:
$$a = \{c, d\}$$
 and $\{a, b\} = c$

This would imply that $c \in a$ and $a \in c$.

This can be shown to contradict the ZF Axioms of Set Theory. Specifically the regularity axiom for the set $\{a, c\}...$

The **Cartesian product** of *A* and *B* is

$$A \times B = \{(a, b) : a \in A, b \in B\}.$$

The **Cartesian product** of *A* and *B* is

$$A \times B = \{(a,b) : a \in A, b \in B\}.$$

A **relation** \mathcal{R} from A to B is a subset of $A \times B$.

The **Cartesian product** of *A* and *B* is

$$A \times B = \{(a, b) : a \in A, b \in B\}.$$

A **relation** \mathcal{R} from A to B is a subset of $A \times B$.

NOTATION: aRb means $(a, b) \in R$.

The **Cartesian product** of *A* and *B* is

$$A \times B = \{(a, b) : a \in A, b \in B\}.$$

A **relation** \mathcal{R} from A to B is a subset of $A \times B$.

NOTATION: aRb means $(a,b) \in R$.

Domain and codomain:

The Cartesian product of A and B is

$$A \times B = \{(a, b) : a \in A, b \in B\}.$$

A **relation** \mathcal{R} from A to B is a subset of $A \times B$.

NOTATION: aRb means $(a, b) \in R$.

Domain and codomain:

$$dom(\mathcal{R}) = \{ a \in A : \exists b \in B, \ a\mathcal{R}b \}$$
$$codom(\mathcal{R}) = \{ b \in B : \exists a \in A, \ a\mathcal{R}b \}$$

The **Cartesian product** of *A* and *B* is

$$A \times B = \{(a, b) : a \in A, b \in B\}.$$

A **relation** \mathcal{R} from A to B is a subset of $A \times B$.

NOTATION: aRb means $(a, b) \in R$.

Domain and codomain:

$$dom(\mathcal{R}) = \{ a \in A : \exists b \in B, \ a\mathcal{R}b \}$$
$$codom(\mathcal{R}) = \{ b \in B : \exists a \in A, \ a\mathcal{R}b \}$$

A relation $\mathcal R$ from A to A is called a **relation on** A. A relation on A is

A relation $\mathcal R$ from A to A is called a **relation on** A. A relation on A is

• **reflexive** if aRa for all $a \in A$

A relation \mathcal{R} from A to A is called a **relation on** A. A relation on A is

- **reflexive** if aRa for all $a \in A$
- **symmetric** if aRb implies bRa for all $a, b \in A$

A relation \mathcal{R} from A to A is called a **relation on** A. A relation on A is

- **reflexive** if aRa for all $a \in A$
- **symmetric** if aRb implies bRa for all $a, b \in A$
- transitive if aRb and bRc implies aRc for all $a, b, c \in A$

A relation \mathcal{R} from A to A is called a **relation on** A. A relation on A is

- **reflexive** if aRa for all $a \in A$
- **symmetric** if aRb implies bRa for all $a, b \in A$
- **transitive** if aRb and bRc implies aRc for all $a, b, c \in A$

An equivalence relation satisfies all three properties.

A relation \mathcal{R} from A to A is called a **relation on** A. A relation on A is

- **reflexive** if aRa for all $a \in A$
- **symmetric** if aRb implies bRa for all $a, b \in A$
- transitive if aRb and bRc implies aRc for all $a, b, c \in A$

An **equivalence relation** satisfies all three properties. Examples:

A relation \mathcal{R} from A to A is called a **relation on** A. A relation on A is

- **reflexive** if aRa for all $a \in A$
- **symmetric** if aRb implies bRa for all $a, b \in A$
- transitive if aRb and bRc implies aRc for all $a, b, c \in A$

An **equivalence relation** satisfies all three properties. Examples:

A relation \mathcal{R} from A to A is called a **relation on** A. A relation on A is

- **reflexive** if aRa for all $a \in A$
- **symmetric** if aRb implies bRa for all $a, b \in A$
- transitive if aRb and bRc implies aRc for all $a, b, c \in A$

An **equivalence relation** satisfies all three properties.

Examples:

• < = $\{(x, y) : y - x \in (0, \infty)\}$ is transitive but not reflexive or symmetric on \mathbb{R}

A relation \mathcal{R} from A to A is called a **relation on** A. A relation on A is

- **reflexive** if aRa for all $a \in A$
- **symmetric** if aRb implies bRa for all $a, b \in A$
- transitive if aRb and bRc implies aRc for all $a, b, c \in A$

An **equivalence relation** satisfies all three properties.

Examples:

- < = $\{(x, y) : y x \in (0, \infty)\}$ is transitive but not reflexive or symmetric on \mathbb{R}
- \leq = { $(x, y) : y x \in [0, \infty)$ } is reflexive and transitive but not symmetric on $\mathbb R$

Challenge!

Problem

Give an example of a relation on \mathbb{R} which is symmetric and transitive but not reflexive.

Challenge!

Problem

Give an example of a relation on \mathbb{R} which is reflexive and symmetric but not transitive.