

① Veröffentlichungsnummer: 0 456 063 A2

(2)

EUROPÄISCHE PATENTANMELDUNG

(1) Anmeldenummer: 91106870.8

Anmeldetag: 27.04.91

(1) Int. Cl.5: C07D 207/408, C07D 207/38, C07D 403/12, C07D 207/404, C07D 405/12, A01N 43/36

Priorität: 10.05.90 DE 4014941 08.03.91 DE 4107394

43 Veröffentlichungstag der Anmeldung: 13.11.91 Patentblatt 91/46

 Benannte Vertragsstaaten: BE CH DE ES FR GB GR IT LI NL

(1) Anmelder: BAYER AG

W-5090 Leverkusen 1 Bayerwerk(DE)

Erfinder: Krauskopf, Birgit, Dr. Kicke 19

> W-5060 Bergisch Gladbach 1(DE) Erfinder: Lürssen, Klaus, Dr. August-Kierspel-Strasse 151

W-5060 Bergisch Gladbach(DE)

Erfinder: Santel, Hans-Joachim, Dr.

Gruenstrasse 9a

W-5090 Leverkusen 1(DE)

Erfinder: Schmidt, Robert R., Dr.

Im Waldwinkel 110

W-5060 Bergisch Gladbach(DE)

Erfinder: Wachendorff-Neumann, Ulrike, Dr.

Kriescherstrasse 81 W-4019 Monheim(DE)

Erfinder: Fischer, Reiner, Dr.

Nelly-Sachs-Strasse 23 W-4019 Monheim 2(DE)

Erfinder: Erdelen, Christoph, Dr.

Unterbuescherhof 22 W-5653 Leichlingen 1(DE)

(54) 1-H-3-Aryl-pyrrolidin-2,4-dion-Derivate.

(5) Es werden neue 3-Aryl-pyrrolidin-2,4-dion-Derivate der allgemeinen Formel (I)

$$\begin{array}{c|c}
A & R-0 & X \\
B & & Z_n \\
H-N & 0
\end{array}$$

bereitgestellt, in welcher

für Alkyl, Halogen, Alkoxy steht, Χ

Υ für Wasserstoff, Alkyl, Halogen, Alkoxy, Halogenalkyl steht,

Z für Alkyl, Halogen, Alkoxy steht,

für eine Zahl von 0-3 steht,

für Wasserstoff oder für die Gruppen

-CO-R1, -CO-O-R2 oder E®

steht, in welchen

für gegebenenfalls durch Halogen substituiertes Alkyl, Alkenyl, Alkoxyalkyl, Alkylthioalkyl, Polyalkoxyalkyl und Cycloalkyl, das durch Heteroatome unterbrochen sein kann, gegebenenfalls subst. Phenyl, gegebenenfalls substituiertes Phenylalkyl, substituiertes Hetaryl, substituiertes Phenoxyalkyl und substituiertes Hetaryloxyalkyl steht und

- R² für gegebenenfalls durch Halogen substituiertes Alkyl, Alkenyl, Alkoxyalkyl, Polyalkoxyalkyl und gegebenenfalls substituiertes Phenyl steht,
- A für Wasserstoff, gegebenenfalls durch Halogen substituiertes Alkyl, Alkoxyalkyl, Alkylthioalkyl, gegebenenfalls durch Heteroatome unterbrochenes Cycloalkyl oder gegebenenfalls durch Halogen-, Alkyl-, Halogenalkyl-, Alkoxy-, Nitro substituiertes Aryl, Arylalkyl oder Hetaryl steht,
- B für Wasserstoff, Alkyl oder Alkoxyalkyl steht,

oder worin

A und B gemeinsam mit dem Kohlenstoffatom, an das sie gebunden sind einen Carbocyclus bilden und E^e für ein Metallionäguivalent oder ein Ammoniumion steht,

sowie die enantiomerenreinen Formen von Verbindungen der Formel (I).

Die neuen Verbindungen der Formel (I) besitzen eine hervorragende herbizide, insektizide und akarizide Wirksamkeit.

Die Erfindung betrifft neue 3-Aryl-pyrrolidin-2,4-dion-Derivate, mehrere Verfahren zu ihrer Herstellung und ihre Verwendung als Insektizide, Akarizide und Herbizide.

Von 3-Acyl-pyrrolidin-2,4-dionen sind pharmazeutische Eigenschaften vorbeschrieben (S. Suzuki et. al. Chem. Pharm. Bull. 15 1120 (1967)). Weiterhin wurden N-Phenyl-pyrrolidin-2,4-dione von R. Schmierer und H. Mildenberger Liebigs Ann. Chem. 1985 1095 synthetisiert. Eine biologische Wirksamkeit dieser Verbindungen wurde nicht beschrieben.

In EP-A 0 262 399 werden ähnlich strukturierte Verbindungen (3-Aryl-pyrrolidin-2,4-dione) offenbart, von denen jedoch keine herbizide, insektizide oder akarizide Wirkung bekannt geworden ist.

In DE-A 3 525 109 werden ähnlich strukturierte 1-H-3-Arylpyrrolidin-2,4-dione offenbart, die als Zwischenprodukte für Farbstoffsynthesen verwendet wurden.

Es wurden nun neue 3-Aryl-pyrrolidin-2,4-dion-Derivate gefunden, die durch die Formel (I) dargestellt sind,

15

$$\begin{array}{c|c}
A & R-0 & X \\
\hline
H-N & 0
\end{array}$$

20

25

30

in welcher

X für Alkyl, Halogen, Alkoxy steht,

Y für Wasserstoff, Alkyl, Halogen, Alkoxy, Halogenalkyl steht,

Z für Alkyl, Halogen, Alkoxy steht,

n für eine Zahl von 0-3 steht,

R für Wasserstoff oder für die Gruppen -CO-R¹, -CO-O-R² oder E^e

steht, in welchen

- R¹ für gegebenenfalls durch Halogen substituiertes Alkyl, Alkenyl, Alkoxyalkyl, Alkylthioalkyl, Polyalkoxyalkyl und Cycloalkyl, das durch Heteroatome unterbrochen sein kann, gegebenenfalls subst. Phenyl, gegebenenfalls substituiertes Phenylalkyl, substituiertes Hetaryl, substituiertes Phenoxyalkyl und substituiertes Hetaryloxyalkyl steht und
- R² für gegebenenfalls durch Halogen substituiertes Alkyl, Alkenyl, Alkoxyalkyl, Polyalkoxyalkyl und gegebenenfalls substituiertes Phenyl steht,
- 35 A für Wasserstoff, gegebenenfalls durch Halogen substituiertes Alkyl, Alkenyl, Alkinyl, Alkoxyalkyl, Alkylthioalkyl, gegebenenfalls durch Heteroatome unterbrochenes Cycloalkyl oder gegebenenfalls durch Halogen-, Alkyl-, Halogenalkyl-, Alkoxy-, Nitro substituiertes Aryl, Arylalkyl oder Hetaryl steht,
 - B für Wasserstoff, Alkyl oder Alkoxyalkyl steht,

40 oder worin

A und B gemeinsam mit dem Kohlenstoffatom, an das sie gebunden sind einen Carbocyclus bilden

E⁹ für ein Metallionäquivalent oder ein Ammoniumion steht,

sowie die enantiomerenreinen Formen von Verbindungen der Formel (I).

Im folgenden seien die folgenden Untergruppen definiert:

(la): Verbindungen der Formel (l) worin R = Wasserstoff,

(lb): Verbindungen der Formel (l) worin R = COR1,

(lc): Verbindungen der Formel (l) worin R = COOR2.

(Id): Verbindungen der Formel (I) worin R = E[®] für ein Metallionäquivalent oder ein Ammoniumion steht.

Weiterhin wurde gefunden, daß man 3-Aryl-pyrrolidin-2,4-dione bzw. deren Enole der Formel (la)

55

45

in welcher A, B, C, X, Y, Z und n die oben angegebene Bedeutung haben, erhält, wenn man

(A)

N-Acylaminosäureester der Formel (II)

5

10

15 in welcher

A, B, X, Y, Z und n die oben angegebene Bedeutung haben und

R3 für Alkyl steht,

in Gegenwart eines Verdünnungsmittels und in Gegenwart einer Base intramolekular kondensiert.

(B

Außerdem wurde gefunden, daß man Verbindungen der Formel (Ib)

25

20

$$\begin{array}{c|c}
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\$$

30

in welcher A, B, X, Y, Z, R¹ und n die oben angegebene Bedeutung haben, erhält, wenn man Verbindungen der Formel (la),

35

40

45

55

in welcher

A, B, X, Y, Z und n die oben angegebene Bedeutung haben,

α) mit Säurehalogeniden der allgemeinen Formel (III)

in welcher

R¹ die oben angegebene Bedeutung hat und

Hal für Halogen, insbesondere Chlor und Brom steht, gegebenenfalls in Gegenwart eines Verdünnungsmittels und gegebenenfalls in Gegenwart eines

Säurebindemittels,

oder

β) mit Carbonsäureanhydriden der allgemeinen Formel (IV)

R1-CO-O-CO-R1 (IV)

in welcher

R¹ die oben angegebene Bedeutung hat, gegebenenfalls in Gegenwart eines Verdünnungsmittels und gegebenenfalls in Gegenwart eines Säurebindemittels,

umsetzt,

(C)

Ferner wurde gefunden, daß man Verbindungen der Formel (Ic)

15

20

5

10

$$\begin{array}{c|c}
R^{2_{O-C-O}} & X \\
R & Z_{n}
\end{array}$$
(Ic)

25 in welcher

A, B, C, X, Y, Z, R² und n die oben angegebene Bedeutung haben, erhält, wenn man Verbindungen der Formel (Ia)

30

35

in welcher

A, B, X, Y, Z und n die oben angegebene Bedeutung haben, mit Chlorameisensäureester der allgemeinen Formel (V)

40 R2-O-CO-CI (V)

in welcher

R² die oben angegebene Bedeutung hat, gegebenenfals in Gegenwart eines Verdünnungsmittels und gegebenenfalls in Gegenwart eines Säurebindemittels umsetzt.

D١

Weiterhin wurde gefunden, daß man Verbindungen der Formel (i)

50

45

55

in welcher X, Y, Z, A, B und n die oben angegebene Bedeutung haben,

erhält, wenn man Verbindungen der Formel (la)

in welcher X, Y, Z, A, B und n die oben angegebene Bedeutung haben, mit Metallhydroxiden oder Aminen der allgemeinen Formeln (VI) und (VII)

$$R^{5}$$

$$\downarrow$$

$$Me_{s}OH_{t} \quad (VI) \qquad R^{4}-N-R^{6} \quad (VII)$$

20 in welchen

5

10

30

35

40

45

50

55

Me für ein- oder zweiwertige Metallionen,

s und t für die Zahlen 1 und 2 und

R⁴, R⁵ und R⁶ unabhängig voneinander für Wasserstoff und Alkyl

stehen.

25 gegebenenfalls in Gegenwart eines Verdünnungsmittels, umsetzt.

Überraschenderweise wurde gefunden, daß die neuen 3-Arylpyrrolidin-2,4-dion-Derivate der Formel (I) sich durch hervorragende insektizide, akarizide und herbizide Wirkungen auszeichnen.

Bevorzugt sind 3-Aryl-pyrrolidin-2,4-dion-Derivate der Formel (I), in welcher

X für C₁-C₆-Alkyl, Halogen, C₁-C₆-Alkoxy steht,

Y für Wasserstoff, C1-C6-Alkyl, Halogen, C1-C6-Alkoxy, C1-C3-Halogenalkyl steht,

Z für C₁-C₆-Alkyl, Halogen, C₁-C₆-Alkoxy steht,

n für eine Zahl von 0-3 steht,

R für Wasserstoff (la) oder für die Gruppen der Formel

-CO-R¹ oder -CO-O-R² oder \mathbb{E}^{Θ} (Ib) (Ic) (Id)

steht, in welchen

R¹ für gegebenenfalls durch Halogen substituiertes: C₁-C₂₀-Alkyl, C₂-C₂₀-Alkenyl, C₁-C₈-Alkoxy-C₂-C₈-alkyl, C₁-C₈-Alkylthio-C₂-C₈-alkyl, C₁-C₈-Polyalkoxy-C₂-C₈-alkyl und Cycloalkyl mit 3-8 Ringatomen, das durch Sauerstoff und/oder Schwefel unterbrochen sein kann, steht,

für gegebenenfalls durch Halogen-, Nitro-, C_1 - C_6 -Alkyl-, C_1 - C_6 -Alkoxy-, C_1 - C_6 -Halogenalkyl-, C_1 - C_6 -Halogenalkoxy-substituiertes Phenyl;

für gegebenenfalls durch Halogen-, C_1 - C_6 -Alkyl, C_1 - C_6 -Alkoxy-, C_1 - C_6 -Halogenalkyl-, C_1 - C_6 -Halogenalkoxy-substituiertes Phenyl- C_1 - C_6 -alkyl steht,

für gegebenenfalls durch Halogen- und C1-C6-Alkyl-substituiertes Hetaryl steht,

für gegebenenfalls durch Halogen- und C_1 - C_6 -Alkyl-substituiertes Phenoxy- C_1 - C_6 -alkyl steht, für gegebenenfalls durch Halogen, Amino und C_1 - C_6 -Alkyl-substituiertes Hetaryloxy- C_1 - C_6 -Alkyl steht,

R² für gegebenenfalls durch Halogen substituiertes: C₁-C₂₀-Alkyl, C₂-C₂₀-Alkenyl, C₁-C₈-Alkoxy-C₂-C₈-alkyl, C₁-C₈-Polyalkoxy-C₂-C₈-alkyl steht,

für gegebenenfalls durch Halogen-, Nitro-, C₁-C₆-Alkyl-, C₁-C₆-Alkoxy-, C₁-C₆-Halogenalkyl-substituiertes Phenyl steht,

A für Wasserstoff oder gegebenenfalls durch Halogen substituiertes geradkettiges oder verzweigtes C₁-C₁₂-Alkyl, C₃-C₈-Alkenyl, C₃-C₈-Alkinyl, C₁-C₁₀-Alkoxy-C₂-C₈-alkyl, C₁-C₈-Polyalkoxy-C₂-C₈-

alkyl, C_1 - C_{10} -Alkylthio- C_2 - C_6 -alkyl, Cycloalkyl mit 3-8 Ringatomen, das durch Sauerstoff und/oder Schwefel unterbrochen sein kann oder gegebenenfalls durch Halogen, C_1 - C_6 -Alkyl- C_1 - C_6 -Haloalkyl-, C_1 - C_6 -Alkoxy-, Nitro substituiertes Aryl, Hetaryl oder Aryl- C_1 - C_6 -alkyl steht,

B für Wasserstoff, geradkettiges oder verzweigtes C₁-C₁₂-Alkyl, C₁-C₈-Alkoxyalkyl steht,

6 oder worin

10

15

20

A und B gemeinsam mit dem Kohlenstoffatom, an das sie gebunden sind, einen 3 bis 8-gliedrigen Ring bilden,

E^e für ein Metallionenäquivalent oder ein Ammoniumion steht, sowie die enantiomerenreinen Formen von Verbindungen der Formel (I).

Besonders bevorzugt sind Verbindungen der Formel (I) in welcher

X für C₁-C₄-Alkyl, Halogen, C₁-C₄-Alkoxy steht,

Y für Wasserstoff, C₁-C₆-Alkyl, Halogen, C₁-C₄-Alkoxy, C₁-C₂-Halogenalkyl steht,

Z für C₁-C₄-Alkyl, Halogen, C₁-C₄-Alkoxy steht,

n für eine Zahl von 0-3 steht,

R für Wasserstoff (la) oder für die Gruppen der Formel

-CO-R¹ oder -CO-O-R² oder
$$E^{\Theta}$$
(Ib) (Ic) (Id)

steht, in welchen

R¹ für gegebenenfalls durch Halogen substituiertes: C₁-C₁₆-Alkyl, C₂-C₁₆-Alkenyl, C₁-C₆-Alkoxy-C₂-C₆-alkyl, C₁-C₆-Alkylthio-C₂-C₆-alkyl, C₁-C₆-Polyalkoxy-C₂-C₆-alkyl und Cycloalkyl mit 3-7 Ringatomen, das durch 1-2 Sauerstoff- und/oder Schwefelatome unterbrochen sein kann steht, für gegebenenfalls durch Halogen-, Nitro-, C₁-C₄-Alkyl-, C₁-C₄-Alkoxy-, C₁-C₃-Halogenalkyl-, C₁-C₃-Halogenalkoxy-substituiertes Phenyl steht, für gegebenenfalls durch Halogen-, C₁-C₄-Alkyl-, C₁-C₄-Alkoxy-, C₁-C₃-Halogenalkyl-, C₁-C₃-Halogenalkyl-, C₁-C₃-Halogenalkyl-, C₁-C₄-Alkyl steht,

für gegebenenfalls duch Halogen- und C₁-C₆-Alkyl-substituiertes Hetaryl steht, gegebenenfalls für durch Halogen- und C₁-C₄-Alkyl-substituiertes Phenoxy-C₁-C₅-alkyl steht,

für gegebenfalls durch Halogen, Amino und C_1 - C_4 -Alkyl-substituiertes Hetaryloxy- C_1 - C_5 -alkyl steht.

gegebenenfalls durch Halogen substituiertes: C₁-C₁₆-Alkyl, C₂-C₁₆-Alkenyl, C₁-C₁₆-Alkoxy-C₂-C₆-alkyl, C₁-C₆-Polyalkoxy-C₂-C₆-alkyl steht, für gegebenenfalls durch Halogen, Nitro-, C₁-C₄-Alkyl, C₁-C₃-Alkoxy-, C₁-C₃-Halogenalkyl-substituiertes Phenyl steht,

A für Wasserstoff, gegebenenfalls durch Halogen substitulertes geradkettiges oder verzweigtes C₁-C₁₀-Alkyl, C₃-C₆-Alkenyl, C₃-C₆-Alkinyl, C₁-C₈-Alkoxy-C₂-C₆-alkyl, C₁-C₈-Alkylthio-C₂-C₆-alkyl, Cycloalkyl mit 3-7 Ringatomen, das durch 1-2 Sauerstoff- und/oder Schwefelatomen unterbrochen sein kann oder gegebenenfalls durch Halogen-, C₁-C₄-Alkyl-, C₁-C₄-Haloalkyl-C₁-C₄-Alkoxy-, Nitro substituiertes Aryl, Hetaryl oder Aryl-C₁-C₄-alkyl steht,

B für Wasserstoff, geradkettiges oder verzweigtes C1-C10-Alkyl, C1-C6-Alkoxyalkyl steht,

45 oder worin

40

50

A und B gemeinsam mit dem Kohlenstoffatom, an das sie gebunden sind, einen 3 bis 7-gliedrigen Ring bilden,

E° für ein Metallionenäquivalent oder ein Ammoniumion steht sowie die enantiomerenreinen Formen von Verbindungen der Formel (I).

Ganz besonders bevorzugt sind Verbindungen der Formel (I) in welcher

X für Methyl, Ethyl, Propyl, i-Propyl, Fluor, Chlor, Brom, Methoxy und Ethoxy steht,

Y für Wasserstoff, Methyl, Ethyl, Propyl, i-Propyl, Butyl, i-Butyl, tert.-Butyl, Fluor, Chlor, Brom, Methoxy, Ethoxy und Trifluormethyl steht,

Z für Methyl, Ethyl, i-Propyl, Butyl, i-Butyl, tert.-Butyl, Fluor, Chlor, Brom, Methoxy und Ethoxy steht,

55 n für eine Zahl von 0-3 steht,

R für Wasserstoff (la) oder für die Gruppen der Formel

$$-CO-R^1$$
 oder $-CO-O-R^2$ oder E^Θ
(Ib) (Ic) (Id)

steht, in welcher

5

10

15

20

25

30

40

45

R¹ für gegebenenfalls durch Fluor oder Chlor substituiertes: C₁-C₁4-Alkyl, C₂-C₁4-Alkenyl, C₁-C₄-Alkoxy-C₂-C₆-alkyl, C₁-C₄-Alkylthio-C₂-C₆-alkyl, C₁-C₄-Polyalkoxyl-C₂-C₄-alkyl und Cycloalkyl mit 3-6 Ringatomen, das durch 1-2 Sauerstoff- und/oder Schwefelatome unterbrochen sein kann steht, für gegebenenfalls durch Fluor-, Chlor, Brom-, Methyl-, Ethyl-, Propyl, i-Propyl, Methoxy, Trifluormethyl-, Trifluormethoxy-, Nitro- substituiertes Phenyl steht,

für gegebenenfalls durch Fluor-, Chlor-, Brom-, Methyl-, Ethyl-, Propyl-, i-Propyl, Methoxy, Ethoxy, Trifluormethyl, Trifluormethoxy- substituiertes Phenyl-C₁-C₃-alkyl steht,

für gegebenenfalls durch Fluor-, Chlor-, Brom-, Methyl-, Ethyl-substituiertes Pyridyl, Pyrimidyl, Thiazolyl und Pyrazolyl steht,

für gegebenenfalls durch Fluor-, Chlor-, Methyl-, Ethyl-substituiertes Phenoxy-C₁-C₄-alkylsteht, für gegebenenfalls durch Fluor-, Chlor-, Amino-, Methyl-, Ethyl-, substituiertes Pyridyloxy-C₁-C₄-alkyl, Pyrimidyloxy-C₁-C₄-alkyl und Thiazolyloxy-C₁-C₄-alkyl steht,

R² für gegebenenfalls durch Fluor oder Chlor substituiertes C₁-C₁₄-Alkyl, C₂-C₁₄-Alkenyl, C₁-C₄-Alkoxy-C₂-C₆-alkyl, C₁-C₄-Polyalkoxy-C₂-C₆-alkyl steht, oder für gegebenenfalls durch Fluor, Chlor, Nitro, Methyl, Ethyl, Propyl, i-Propyl, Methoxy, Ethoxy, Trifluormethyl substituiertes Phenyl steht,

A für Wasserstoff, gegebenenfalls durch Halogen substituiertes geradkettiges oder verzweigtes C₁-C₈-Alkyl, C₃-C₄-Alkenyl, C₃-C₄-Alkinyl, C₁-C₆-Alkoxy-C₂-C₄-alkyl, C₁-C₆-Alkylthio-C₂-C₄-alkyl, Cycloalkyl mit 3-6 Ringatomen, das durch 1-2 Sauerstoff- und/oder Schwefelatomen unterbrochen sein kann oder gegebenenfalls durch Fluor-, Chlor-, Brom-, Methyl-, Ethyl-, Propyl-, iso-Propyl-, Methoxy-, Ethoxy-, Trifluormethyl-, Nitro susbtituiertes Aryl, Pyridin, Imidazol, Pyrazol, Triazol, Indol, Thiazol oder Aryl-C₁-C₃-alkyl steht,

B für Wasserstoff, geradkettiges oder verzweigtes C₁-C₈-Alkyl, C₁-C₄-Alkoxyalkyl steht, oder worin

A und B gemeinsam mit dem Kohlenstoffatom, an das sie gebunden sind, einen 3 bis 6-gliedrigen Ring bilden,

E• für ein Metallionenäquivalent oder ein Ammoniumion steht

s sowie die enantiomerenreinen Formen von Verbindungen der Formel I.

Verwendet man gemäß Verfahren (A) N-2,6-Dichlorphenylacetyl-alaninethylester,so kann der Verlauf des erfindungsgemäßen Verfahrens durch folgendes Reaktionsschema wiedergegeben werden:

Verwendet man gemäß Verfahren (B) (Variante α) 3-(2,4,6-Trimethylphenyl)-5-isopropyl-pyrrolidin-2,4-dion und Pivaloylchlorid als Ausgangsstoffe, so kann der Verlauf des erfindungsgemäßen Verfahrens durch folgendes Reaktionsschema wiedergegeben werden.

Verwendet man gemäß Verfahren B (Variante β) 3-(2,4,6-Trimethylphenyl)-5-cyclopentyl-pyrrolidin-2,4dion und Acetanhydrid, so kann der Verlauf des erfindungsgemäßen Verfahrens durch folgendes Reaktionsschema wiedergegeben werden.

Verwendet man gemäß Verfahren C 3-(2,4-6-Trimethylphenyl)-5-phenyl-pyrrolidin-2,4-dion und Chlorameisensäureethoxyethylester, so kann der Verlauf des erfindungsgemäßen Verfahrens durch folgendes Reaktionsschema wiedergegeben werden.

Verwendet man gemäß Verfahren D 3-(2,4-Dichlorphenyl)-5-(2-indolyl)-pyrrolidin-2,4-dion und Methylamin, so kann der Verlauf des erfindungsgemäßen Verfahrens durch folgendes Reaktionsschema wiedergegeben werden.

Die bei dem obigen Verfahren (A) als Ausgangsstoffe benötigten Verbindungen der Formel (II)

(II)

10

in welcher

A, B, X, Y, Z, n und R³ die oben angegebene Bedeutung haben sind teilweise bekannt oder lassen sich nach im Prinzip bekannten Methoden in einfacher Weise herstellen. So erhält man z.B. Acyl-aminosäuree15 ster der Formel (II), wenn man

a) Aminosäurederivate der Formel (VIII),

20

25 in welcher

R⁷ für Wasserstoff (VIIIa) und Alkyl (VIIIb) steht und

A die oben angegebene Bedeutung haben mit Phenylessigsäurehalogeniden der Formel (IX)

30

35

$$Y \longrightarrow COHal$$
 (IX)

in welcher

40 X, Y, Z und n die oben angegebene Bedeutung haben und Hal für Chlor oder Brom steht, acyliert (Chem. Reviews 52 237-416 (1953); oder wenn man Acylaminosäuren der Formel (Ila),

45

50

55

in welchei

A, B, X, Y, Z und n die oben angegebene Bedeutung haben und

R⁷ für Wasserstoff steht, verestert (Chem. Ind. (London) 1568 (1968).

Beispielhaft seien folgende Verbindungen der Formel (II) genannt: 1. N-2,4-Dichlorphenyl-acetyl-glycinethylester 2. N-2,6-Dichlorphenyl-acetyl-glycinethylester

3. N-(2,6-Dichlorphenyl-acetyl)-alanin-ethylester

4. N-(2,6-Dichlorphenyl-acetyl)-valin-ethylester

5

10

15

20

35

45

50

5. N-(2,6-Dichlorphenyl-acetyl)-leucin-ethylester

6. N-(2,6-Dichlorphenyl-acetyl)-methionin-ethylester

7. N-(2,6-Dichlorphenyl-acetyl)-phenylalanin-ethylester

8. N-(2.6-Dichlorphenyl-acetyl)-tryptophan-ethylester

9. N-(2,6-Dichlorphenyl-acetyl)-isoleucin-ethylester

10. N-(2,4,6-Trimethylphenyl-acetyl)-glycin-methylester

11. N-(2,4,6-Trimethylphenyl-acetyl)-alanin-ethylester

12. N-(2,4,6-Trimethylphenyl-acetyl)-valin-ethylester

13. N-(2,4,6-Trimethylphenyl-acetyl)-leucin-ethylester

14. N-(2,4,6-Trimethylphenyl-acetyl)-isoleucin-ethylester

 ${\it 15. N-(2,4,6-Trimethylphenyl-acetyl)-methion in-ethylester}\\$

16. N-(2,4,6-Trimethylphenyl-acetyl)-phenylalaninethylester

17. N-(2,4,6-Trimethylphenyl-acetyl)-tryptophan-ethylester

18. N-(2,4,6-Trimethylphenyl-acetyl)-(4-chlorphenyl)-alanin-ethylester

19. N-(2,4,6-Trimethylphenyl-acetyl)-S-methyl-cystein-ethylester

20. N-(2,4,6-Trimethylphenyl-acetyl)-S-benzyl-cystein-ethylester

21. N-(2,4,6-Trimethylphenyl-acetyl)-O-methyl-threonin-ethylester

22. N-(2,4,6-Trimethylphenyl-acetyl)-tert.-butyl-alanin-ethylester

23. N-(2,4,6-Trimethylphenyl-acetyl)-histidin-ethylester

24. N-(2,4,6-Trimethylphenyl-acetyl)-O-methyl-tyrosin-ethylester

25. N-(2.4.6-Trimethylphenyl-acetyl)-1-amino-cyclopropan-carbonsäure-methylester

26. N-(2,4,6-Trimethylphenyl-acetyl)-1-amino-cyclopentan-carbonsäure-methylester

27. N-(2,4,6-Trimethylphenyl-acetyl)-1-amino-cyclohexan-carbonsäure-methylester

28. N-(2,4,6-Trimethylphenyl-acetyl)-amino-isobuttersäure-methylester

29. N-(2,4,6-Trimethylphenyl-acetyl)-2-ethyl-2-amino-buttersäure-methylester

30. N-(2,4,6-Trimethylphenyl-acetyl)-2-methyl-2-amino-buttersäure-methylester

31. N-(2,4,6-Trimethylphenyl-acetyl)-2-methyl-2-amino-valeriansäure-methylester

32. N-(2,4,6-Trimethylphenyl-acetyl)-2,3-dimethyl-2-amino-valeriansäure-methylester Beispielhaft seien folgende Verbindungen der Formel (IIa) genannt:

1. N-2,4-Dichlorphenyl-acetyl-glycin

2. N-2,6-Dichlorphenyl-acetyl-glycin

3. N-(2,6-Dichlorphenyl-acetyl)-alanin

4. N-(2,6-Dichlorphenyl-acetyl)-valin

5. N-(2,6-Dichlorphenyl-acetyl)-leucin

40 6. N-(2,6-Dichlorphenyl-acetyl)-methionin

7. N-(2,6-Dichlorphenyl-acetyl)-phenylalanin

8. N-(2,6-Dichlorphenyl-acetyl)-tryptophan

9. N-(2,6-Dichlorphenyl-acetyl)-isoleucin

10. N-(2,4,6-Trimethylphenyl-acetyl-glycin

11. N-(2,4,6-Trimethylphenyl-acetyl)-alanin

12. N-(2,4,6-Trimethylphenyl-acetyl)-valin

13. N-(2,4,6-Trimethylphenyl-acetyl)-leucin

14. N-(2,4,6-Trimethylphenyl-acetyl)-isoleucin

15. N-(2,4,6-Trimethylphenyl-acetyl)-methionin

16. N-(2,4,6-Trimethylphenyl-acetyl)-phenylalanin

17. N-(2,4,6-Trimethylphenyl-acetyl)-tryptophan
18. N-(2,4,6-Trimethylphenyl-acetyl)-(4-chlorphenyl)-alanin

19. N-(2,4,6-Trimethylphenyl-acetyl)-S-methyl-cystein

20. N-(2,4,6-Trimethylphenyl-acetyl)-S-benzyl-cystein

55 21. N-(2,4,6-Trimethylphenyl-acetyl)-O-methyl-threonin

22. N-(2,4,6-Trimethylphenyl-acetyl)-tert.-butyl-alanin

23. N-(2,4,6-Trimethylphenyl-acetyl)-histidin

24. N-(2,4,6-Trimethylphenyl-acetyl)-O-methyl-tyrosin

- 25. N-(2,4,6-Trimethylphenyl-acetyl)-1-amino-cyclopropancarbonsäure
- 26. N-(2,4,6-Trimethylphenyl-acetyl)-1-amino-cyclopentancarbonsäure
- 27. N-(2,4,6-Trimethylphenyl-acetyl)-1-amino-cyclohexancarbonsäure tancarbonsäure
- 28. N-(2,4,6-Trimethylphenyl-acetyl)-1-amino-isobuttersäure
- 29. N-(2,4,6-Trimethylphenyl-acetyl)-2-ethyl-2-amino-buttersäure-methylester
- 30. N-(2,4,6-Trimethylphenyl-acetyl)-2-methyl-2-amino-buttersäure-methylester
- 31. N-(2,4,6-Trimethylphenyl-acetyl)-2-methyl-2-amino-valeriansäure-methylester
- 32. N-(2,4,6-Trimethylphenyl-acetyl)-2,3-dimethyl-2-amino-valeriansäure-methylester

Verbindungen der Formel (IIa) sind beispielsweise aus den Phenylessigsäurehalogeniden der Formel (IX) und Aminosäuren der Formel (VIIIa) nach Schotten-Baumann (Organikum 9. Auflage 446 (1970) VEB Deutscher Verlag der Wissenschaften, Berlin) erhältlich.

Verbindungen der Formel (VIIIa) und (VIIIb) sind bekannt oder aber nach im Prinzip bekannten Literaturverfahren einfach herstellbar.

Das Verfahren (A) ist dadurch gekennzeichnet, daß Verbindungen der Formel (II) in welcher A, B, X, Y, Z, n und R³ die oben angegebene Bedeutung haben in Gegenwart von Basen einer intramolekularen Kondensation unterwirft.

Als Verdünnungsmittel können bei dem erfindungsgemäßen Verfahren (A) alle üblichen inerten organischen Solventien eingesetzt werden. Vorzugsweise verwendbar sind Kohlenwasserstoffe, wie Toluol und Xylol, ferner Ether, wie Dibutylether, Tetrahydrofuran, Dioxan, Glylkoldimethylether und Diglykoldimethylether, außerdem polare Lösungsmittel, wie Dimethylsulfoxid, Sulfolan, Dimethylformamid und N-Methylpyrrolidon.

Als Deprotonierungsmittel können bei der Durchführung des erfindungsgemäßen Verfahrens (A) alle üblichen Protonenakzeptoren eingesetzt werden. Vorzugsweise verwendbar sind Alkalimetall- und Erdalkalimetall-oxide, -hydroxide und -carbonate, wie Natriumhydroxid, Kaliumhydroxid, Magnesiumoxid, Calciumoxid, Natriumcarbonat, Kaliumcarbonat und Calciumcarbonat, die auch in Gegenwart von Phasentransferkatalysatoren wie z.B. Triethylbenzylammoniumchlorid, Tetrabutylammoniumbromid, Adogen 464 oder TDA 1 eingesetzt werden können. Ferner sind Alkalimetall- und Erdalkalimetallamide und -hydride, wie Natriumamid, Natriumhydrid und Calciumhydrid, und außerdem auch Alkalimetall-alkoholate, wie Natriummethylat, Natriummethylat und Kalium-tert.-butylat einsetzbar.

Die Reb±tionstemperaturen können bei der Durchführung des erfindungsgemäßen Verfahrens (A) innerhalb, eines größeren Bereiches variiert werden. Im allgemeinen arbeitet man bei Temperaturen zwischen 0°C und 250°C, vorzugsweise zwischen 50°C und 150°C.

Das erfindungsgemäße Verfahren (A) wird im allgemeinen unter Normaldruck durchgeführt.

Bei der Durchführung des erfindungsgemäßen Verfahrens (A) setzt man die Reaktionskomponenten der Formeln (II) und die deprotonierenden Basen im allgemeinen in etwa äquimolaren Mengen ein. Es ist jedoch auch möglich, die eine oder andere Komponente in einem größeren Überschuß (bis zu 3 Mol) zu verwenden.

Das Verfahren (Ba) ist dadurch gekennzeichnet, daß man Verbindungen der Formel (Ia) mit Carbonsäurehalogeniden der Formel (III) umsetzt.

Als Verdünnungsmittel können bei dem erfindungsgemäßen Verfahren ($B\alpha$) bei Verwendung der Säurehalogenide alle gegenüber diesen Verbindungen inerten Solventien eingesetzt werden. Vorzugsweise verwendbar sind Kohlenwasserstoffe, wie Benzin, Benzol, Toluol, Xylol und Tetralin, ferner Halogenkohlenwasserstoffe, wie Methylenchlorid, Chloroform, Tetrachlorkohlenstoff, Chlorbenzol und o-Dichlorbenzol, außerdem Ketone, wie Aceton und Methylisopropylketon, weiterhin Ether, wie Diethylether, Tetrahydrofuran und Dioxan, darüberhinaus Dimethylsulfoxid und Sulfolan. Wenn die Hydrolysestabilität des Säurehalogenids es zuläßt, kann die Umsetzung auch in Gegenwart von Wasser durchgeführt werden.

Verwendet man die entsprechenden Carbonsäurehalogenide so kommen als Säurebindemittel bei der Umsetzung nach dem erfindungsgemäßen Verfahren (Bα) alle üblichen Säureakzeptoren in Betracht. Vorzugsweise verwendbar sind tertiäre Amine, wie Triethylamin, Pyridin, Diazabicyclooctan (DABCO), Diazabicycloundecen (DBU), Diazabicyclononen (DBN), Hünig-Base und N,N-Dimethyl-anilin, ferner Erdalkalimetalloxide, wie Magnesium- und Calciumoxid, außerdem Alkali- und Erdalkali-metall-carbonate, wie Natriumcarbonat, Kaliumcarbonat und Calciumcarbonat.

Die Reaktionstemperaturen können auch bei dem erfindungsgemäßen Verfahren (Βα) auch bei der

5

Adogen 464 = Methyltrialkyl(C₁-C₁₀)ammoniumchlorid

TDA 1 = Tris-(methoxyethoxylethyl)-amin

Verwendung von Carbonsäurehalogeniden innerhalb eines größeren Bereiches variiert werden. Im allgemeinen arbeitet man bei Temperaturen zwischen -20°C und +150°C, vorzugsweise zwischen 0°C und 100°C.

Bei der Durchführung des erfindungsgemäßen Verfahrens ($B\alpha$) werden die Ausgangsstoffe der Formel (Ia) und das Carbonsäurehalogenid der Formel (III) im allgemeinen in angenähert äquivalenten Mengen verwendet. Es ist jedoch auch möglich, das Carbonsäureanhydrid in einem größeren Überschuß (bis zu 5 Mol) einzusetzen. Die Aufarbeitung erfolgt nach üblichen Methoden.

Das Verfahren (Bß) ist dadurch gekennzeichnet, daß man Verbindungen der Formel (la) mit Carbonsäureanhydriden der Formel (IV) umsetzt.

10

15

45

Verwendet man bei dem erfindungsgemäßen Verfahren (Bß) als Reaktionskomponente der Formel (IV) Carbonsäureanhydride, so können als Verdünnungsmittel vorzugsweise diejenigen Verdünnungsmittel verwendet werden, die auch bei der Verwendung von Säurehalogeniden vorzugsweise in Betracht kommen. Im übrigen kann auch ein im Überschuß eingesetztes Carbonsäureanhydrid gleichzeitig als Verdünnungsmittel fungieren.

Die Reaktionstemperaturen können auch bei dem erfindungsgemäßen Verfahren (Bß) auch bei der Verwendung von Carbonsäureanhydriden innerhalb eines größeren Bereiches variiert werden. Im allgemeinen arbeitet man bei Temperaturen zwischen -20°C und +150°C, vorzugsweise zwischen 0°C und 100°C.

Bei der Durchführung des erfindungsgemäßen Verfahrens werden die Ausgangsstoffe der Formel (Ia) und das Carbonsäureanhydrid der Formel (IV) im allgemeinen in angenähert äquivalenten Mengen verwendet. Es ist jedoch auch möglich, das Carbonsäureanhydrid in einem größeren Überschuß (bis zu 5 Mol) einzusetzen. Die Aufarbeitung erfolgt nach üblichen Methoden.

Im allgemeinen geht man so vor, daß man Verdünnungsmittel und im Überschuß vorhandenes Carbonsäureanhydrid sowie die entstehende Carbonsäure durch Destillation oder durch Waschen mit einem organischen Lösungsmittel oder mit Wasser entfernt.

Das Verfahren (C) ist dadurch gekennzeichnet, daß man Verbindungen der Formel (Ia) mit Chlorameisensäureestern der Formel (V) umsetzt.

Verwendet man die entsprechenden Chlorameisensäureester so kommen als Säurebindemittel bei der Umsetzung nach dem erfindungsgemäßen Verfahren (C) alle üblichen Säureakzeptoren in Betracht. Vorzugsweise verwendbar sind tertiäre Amine, wie Triethylamin, Pyridin, DABCO, DBC, DBA, Hünig-Base und N,N-Dimethyl-anilin, ferner Erdalkalimetalloxide, wie Magnesium- und Calcium-oxid, außerdem Alkali- und Erdalkali-metall-carbonate, wie Natriumcarbonat, Kaliumcarbonat und Calciumcarbonat.

Als Verdünnungsmittel können bei dem erfindungsgemäßen Verfahren (C) bei Verwendung der Chlorameisensäureester alle gegenüber diesen Verbindungen inerten Solventien eingesetzt werden. Vorzugsweise verwendbar sind Kohlenwasserstoffe, wie Benzin, Benzol, Toluol, Xylol und Tetralin, ferner Halogenkohlenwasserstoffe, wie Methylenchlorid, Chloroform, Tetrachlorkohlenstoff, Chlorbenzol und o-Dichlorbenzol, außerdem Ketone, wie Aceton und Methylisopropylketon, weiterhin Ether, wie Diethylether, Tetrahydrofuran und Dioxan, darüberhinaus Carbonsäureester, wie Ethylacetat, und auch stark polare Solventien, wie Dimethylsulfoxid und Sulfolan.

Bei Verwendung der Chlorameisensäureester als Carbonsäure-Derivate der Formel (V) können die Reaktionstemperaturen bei der Durchführung des erfindungsgemäßen Verfahrens (C) innerhalb eines größeren Bereiches variiert werden. Arbeitet man in Gegenwart eines Verdünnungsmittels und eines Säurebindemittels, so liegen die Reaktionstemperaturen im allgemeinen zwischen -20°C und +100°C, vorzugsweise zwischen 0°C und 50°C.

Das erfindungsgemäße Verfahren (C) wird im allgemeinen unter Normaldruck durchgeführt.

Bei der Durchführung des erfindungsgemäßen Verfahrens (C) werden die Ausgangsstoffe der Formel (Ia) und der entsprechende (Chlorameisensäureester der Formel (V) im allgemeinen in angenähert äquivalenten Mengen verwendet. Es ist jedoch auch möglich, die eine oder andere Komponente in einem größeren Überschuß (bis zu 2 Mol) einzusetzen. Die Aufarbeitung erfolgt dann nach üblichen Methoden. Im allgemeinen geht man so vor, daß man ausgefallene Salze entfernt und das verbleibende Reaktionsgemisch durch Abzlehen des Verdünnungsmittels einengt.

Das Verfahren (D) ist dadurch gekennzeichnet, daß man Verbindungen der Formel (la) mit Metallhydroxiden (VI) oder Aminen (VII) umsetzt.

Als Verdünnungsmittel können bei dem erfindungsgemäßen Verfahren vorzugsweise Ether wie Tetrahydrofuran, Dioxan, Diethylether oder aber Alkohole wie Methanol, Isopropanol, aber auch Wasser eingesetzt werden. Das erfindungsgemäße Verfahren (D) wird im allgemeinen unter Normaldruck durchgeführt. Die Reaktionstemperatur liegen im allgemeinen zwischen -20°C und 100°C, vorzugsweise zwischen 0°C und 50°C.

Bei der Durchführung des erfindungsgemäßen Verfahrens (D) werden die Ausgangsstoffe der Formel (la) bzw. (VI = oder (VII) im allgemeinen in angenähert äquimolaren Mengen verwendet. Es ist jedoch auch möglich, die eine oder andere Komponente in einem größeren Überschuß (bis zu 2 MoI) einzusetzen. Im allgemeinen geht man so vor, daß man das Reaktionsgemisch durch Abziehen des Verdünnungsmittels einengt.

Herstellungsbeispiele

Beispiel 1

H3C OCH3 CH3

20

10

15

124,9 g (0,428 Mol) N-(2,4,6-Trimethylphenyl-acetyl)-valinmethylester werden in 430 ml abs. Toluol suspendiert. Nach Zugabe von 51,6 g Kalium-tert.-butylat (95 %ig) wird unter DC-Kontrolle unter Rückfluß erhitzt. Man rührt in 500 ml Eiswasser ein, trennt das Toluol ab und tropft die wäßrige Phase bei 0-20 °C in 600 ml 1N HCl. Der Niederschlag wird abgesaugt, getrocknet und aus Chloroform/Methyl-tert.-butyl-Ether/n-Hexan umkristallisiert.

Ausbeute:

51,5 g (= 46,4 % d.Th.) der illustrierten Verbindung Fp. 126 C

Beispiel 2

30

35

$$H_3C$$
 H_3C
 $C=0$
 CH_3
 CH_3
 CH_3

40

5,46 g (20 mmol) 5-lsobutyl-3-(2,4,6-Trimethylphenyl)-pyrrolidin-2,4-dion werden in 70 ml Methyl-tert.-Butyl-Ether suspendiert und mit 3,4 ml (20 mmol) Hünig-Base versetzt. Bei 0-10°C werden 2,52 ml (20 mmol) Pivaloylchlorid in 5 ml Methyl-tert.-butyl-Ether zugetropft und anschließend unter Dünnschichtchromatographie-Kontrolle weitergerührt. Der Niederschlag wird abgesaugt, nachgewaschen und das Filtrat einrotiert. Nach SC an Kieselgel mit Cyclohexan/Essigester 1:1 und Kristallisation aus Methyl-tert.-butyl-Ether/n-Hexan erhielt man 2,14 g (29,9 % d.Th.) der illustrierten Verbindung vom Schmp. 154°C.

Beispiel 3

$$C_{2}H_{5}$$
 C_{13}
 C_{13}
 C_{13}
 C_{13}
 C_{13}
 C_{13}
 C_{13}
 C_{13}
 C_{13}

4,19 g (20 mmol) 5-lsopropyl-3-(2,4,6-trimethylphenyl)-pyrrolidin-2,4-dion werden in 70 ml Methyl-tert.-butyl-Ether suspendiert und mit 3,4 ml (20 mmol) HÜnig-Base versetzt. Bei -70° C tropft man 1,92 ml (20 mmol) Chlorameisensäure-ethylester in 5 ml Methyl-tert.-butyl-Ether zu und läßt auf Raumtemperatur erwärmen. Nach dem Einrotieren wird der Rückstand in Methylenchlorid aufgenommen, mit Wasser gewaschen, getrocknet und erneut einrotiert. Nach Kristallisation aus Methyl-tert.-butyl-Ether/n-Hexan erhält man 2,6 g (= 39,3 % d.Th.) der illustrierten Verbindung vom Schmp. 190° C.

Die folgenden Verbindungen der Tabellen 1, 2 und 3 können in Analogie zu den Beispielen 1, 2 bzw. 3 hergestellt werden.

5																		
10				Fp° C														
			2	В	I	H	Ħ	снз	cH_3	c_2H_5	cH_3		-2-	-4-	5_	I	ĸ	Ħ.
15			(Ia)				CH(CH ₃) ₂		ro.	ស	2	i -C ₃ H ₇	-(CH ₂) ₂ .	-(CH2)4	-(CH2)2	2	Н3)3	CH ₂ CH(CH ₃) ₂
20			Z _n	A	Ħ	СНЭ	CHC	снэ	C2H5	C2HS	C3H2	i-C				C_2H_5	၁)၁	CH2
25		× Ho		2 ⁿ	I	ĸ	X	H	H	×	Ħ	H	I	H	Ħ	Ħ	Ή	x
30		≪	B N N N	*	CJ	ü	ü	C	CJ	CJ	C	C	C	C	C	CJ	C	ບິ
35				×	CI	C1	ເວ	CJ	C	C1	ប៊	ប	C	ប	ប	CJ	CI	C
40	Tabelle 1			BspNr.	4	ĸ	9	7	80	٥	10	11	12	13	14	15	16	17

EP 0 456 063 A2

		1													
5															
10		Fp⁰ C													
45		a		#		x	Ξ	Ħ			1	I		Ħ	
20		A	CH ₃	CH.	c_2 H5	CH2-CH2-S-CH3	CH2-S-CH3	CH2-S-CH2-C6H5	CH2-C6H5	πz		CH ₂	>	CH ₂	E .
25				ь											
		Zn		ĸ		Ħ	Ħ	Ξ	x			I		Ħ	
30	(gunz	۲		CJ		ប	ដ	ដ	CI			CI		CI	
35	(Fortset	×		ប៊		CJ	C3	ប	CJ			C1		C3	
40	Tabelle 1 (Fortsetzung)	BepNr.		18		19	20	21	22			83		24	
45															

5										0	က					rv.		
		Fp° C								> 230	223					225		
10											က	ო	НS	снз	ဗ			
		æ	I	I	I	Ħ	X	I	I	I	S	CH	C ₂	H	CH	2-2	-4-	5.
15																-(CH ₂) ₂ -	-(CH ₂)4-	-(CH ₂) ₅ -
20		A	Ħ	СНЗ	CH(CH3)5	Œ,	снз	сн(сн ³) ²	¥	снз	снз	C ₂ H ₅	C2H5	C3H2	i-C3H7			
25		2 _n	6-C1	6-01	6-C1	æ	x	ĸ	6-CH3	6-CH ₃	6-CH ₃	6-CH ₃	€-сн3	6-CH3	6-CH ₃	6-CH3	6-CH ₃	6-CH ₃
30	(Bunz	*	×	Ħ	ĸ	CH ₃	CH ₃	снз	CH3	снэ	CH ₃	снэ	CH3	снэ	снз	снз	снэ	СНЭ
	(Fortsetzung)	×	CI	CJ	ប	CH ₃	CH ₃	CH ₃	CH ₃	СНЗ	CH ₃	CH ₃	CH ₃	CH ₃	CH ₃	CH ₃	СНЭ	СНЗ
40	Tabelle 1	BapNr.	25	26	27	28	59	30	31	32	33	34	35	36	37	38	39	40

EP 0 456 063 A2

5												
10		Fp⁰ C			> 220							
		В	H	H	x	¤	X	Ħ	Ħ		x	x
15									HS			
20		A	C2H5	c(cH ₃) ₃	6-CH ₃ CH ₂ CH(CH ₃) ₂	CH CH ₃	CH2-CH2-S-CH3	CH2-S-CH3	сн ₂ -s-сн ₂ -с ₆ н ₅	CH2-C6H5	H N N N N N N N N N N N N N N N N N N N	CH _Z
26		Zn	6-CH ₃	6-CH3	6-CH3	6-сн3 сн	6-CH ₃	6-CH ₃	6-CH3	6-CH3	6-CH ₃	6-CH ₃
30	(Buna	*	снз	CH3	CH3	снз	CH ₃	CH ₃	СНЗ	снз	снэ	CH ₃
35	(Fortset2	×	CH3	CH3	CH ₃	снз	CH3	CH ₃	CH3	снз	CH3	СНЗ
40	Tabelle 1 (Fortsetzung)	BspNr.	41	42	43	44	45	46	47	48	6	20

5		Fp°C								NJ	,	2H3)2	- ⁸ (
10		ra 1	снз	снз	C(CH3)3	снз	-нэ ² (снэ)	(CH³)³c-	сн ₃ -(сн ₂) ₃ -	C2H5-C(CH3)2	- ² нэ-э ^E (Енэ)	(CH ³) ² CH-C(CH ³) ²	CH2=CH-(CH2)8-
15 20	(Ib)	æ	I	×	×		CH ₃			снз	СНЗ	снз	CH ₃
25	×	, Z w	ĸ	CH3	CH3	CH ₃	CH ₃	CH ₃	снз	СНЗ	снз	СНЗ	снз
30	A B B B B B B B B B B B B B B B B B B B	2 n	н н	H	H	H	H	H	н	H	н	H	Ħ
35	,	×	cı cı	cı cı	ຕາ ຕາ	c1 c1	ເາ ເາ	ເາ ເາ	ເນ ເນ	C1 C1	cı cı	C1 C1	ຕາ ຕາ
35	⊘	<u>. r</u>											
40	Tabelle	BspNr.	51	52	23	54	52	26	22	58	59	09	61

5		Fp ^o C						
10			CCH ₃	C4H9-CH-C2H5	c17 CH3	CH3	CH ₃	
15		R1	-C1- H ₃ C-	C4	C C	н ₃ с-о-	н ₃ с-о-	DE H
20		В	CH ₃	сн _э	CH3	СНЗ	снз	CH3
,		A	СНЗ	снз	снз	снз	CH ₃	CH3
25		2 _n	· æ	x	æ	Ħ	æ	Ħ
30	(bunz	>-	C	CI	CI	ប	CI	ü
35	(Fortsetzung)	×	ប	C1	CJ	CI	ច	CJ
40	Tabelle 2 (BspNr.	62	£ 9	4	6 5	99	. 29

EP 0 456 063 A2

5		Fp ^o C				·		
10			н3с-8-сн2-	CH ₃	C2H5	OCH3	осн3	
15		R1	H ³ (, δ			8	OЭЕН
20		Ø	СНЗ	CH ₃	СН3	CH ₃	CH ₃	CH3
25		~	снз	CH ₃	СНЗ	CH ₃	CH ₃	СНЗ
		2 _n	Ħ	Ħ	æ	æ	×	æ
30	(gunz	>-	ច	CI	ü	CI	C1	CI
35	(Fortset	×	21	ច	C1	C1	C1	5
40	Tabelle 2 (Fortsetzung)	BspNr.	89	69	20	7.1	72	73

EP 0 456 063 A2

		Fp° C					
5		F					
10			GH ₃	CH ₃		NO ₂	NO ₂
15		R1	.		H ₃ C ₁	m	m
20		ω	СНЭ	з сн3	3 CH ₃	в снз	3 CH ₃
25		۷ .	СНЗ	CH ₃	CH3	СНЗ	СНЗ
30	(Bun	Y Z _n	CJ H	С1 Н	С1	C) H	С1 Н
35	Tabelle 2 (Fortsetzung)	×	ច	ជ	C 1	5	13
40	belle 2	BspNr.	7.4	75	92	22	78
45	Га	8					

EP 0 456 063 A2

5		Fp ⁰ C					
10			${\wedge}$	5			
15		R1	N ² O		7.2	CI	~
20		Œ	CH3 OZN	CH ₃	снз	CH3	CH3
25		¥	снз	CH ₃	CH ₃	CH3	снз
30		2 _n	æ	x	æ	"	x
	(gunz.	>-	CI	CI	ü	ប៊	ប
35	<u>Tabelle 2</u> (Fortsetzung)	×	C1	CI	C1	ប	C3
40	116 2 (-Nr.					
45	Tabe	BspNr.	62	80	81	82	83

5		Fp° C										
10				2CH-	-ენ	сн ₃ -(сн ₂) ₃ -	C2H5-C(CH3)2	- ² н၁-၁ ^E (Eн၁)	(сн ₃) ₂ сн-с(сн ₃) ₂	CH ₂ =CH-(CH ₂) ₈ -	× cH₃	C4H9-CH-C2H5
15		R1	СНЗ	(CH ₃)	-э ^E (EHЭ)	CH ³ -(C2Hs	(CH ₃)	(CH ³)	CH ₂ =C	C1 H ₃ C	C4H9-
20		æ	снз	СНЗ	CH3	cH ₃	снз	снэ	снз	СНЗ	снз	снэ
25		«	C2H5	c_2H_5	c_2^{H5}	C2H5	C2H5	C ₂ H ₅	C2H5	C2H5	C2H5	C2H5
30		Zn	I	Ħ	Ħ	I	Ħ	x	æ	=	×	I
	(Bunz	>-	cı	CJ	ប	ប៊	C ₁	CI	CJ	C1	ប	CI
35	(Fortsetzung)	×	C1	Cl	CJ	C1	CI	ច	C1	ប	CI	. G
40	Tabelle 2	BspNr.	84	85	98	87	88	89	06	91	8	6 6
45	Tal	Bs		•	-	~	-	-	•	•	-	•

EP 0 456 063 A2

10		R1	CH ₃ C1 CH ₃	сн ₃ н ₃ с-о	\times	CH ₃ H ₃ C	CH ₃ H ₃ C-S-CH ₂	CH ₃	сн ₃	сн ₃
25		A B	C2H5 C	C2H5	C2H5 CI	C ₂ H ₅ Cl	C ₂ H ₅ Cl	C ₂ H ₅ Cl	C2H5 CI	C ₂ H ₅ Ci
30	(6 1	Y Z _n	С1 Н	С1 Н	С1 Н	C1	С1 Н	С1 Н	С1 Н	С1 Н
35	(Fortsetzur	×	0 10	C1 C	C1 C	CI	61	01	C1 C	ບ
40	Tabelle 2 (Fortsetzung)	BspNr.	. 84	95	96	26	98	66	100	101

		Fp° C						
5								
10	-				CH ₃			NOS
15		R1	OCH ₃	H ₃ CO Y		E S	Н3с	
20		В	CH ₃	снэ	СНЗ	СН3	снз нзс-	CH ₃
25		K	C ₂ H ₅	C2H5	C2H5	CZHS	C2H5	C2H5
30		2 _n	æ	æ	Ħ	x	H	Ħ
35	tzung)	>-		C1	CI	C	CI	CI
	(Fortsetzung)	×	C1	ü	C1	C1	Ü	ប៊
40	Tabelle 2	BspNr.	Ø	က္	4	92	9(25
45	Tab	Ввр	102	103	104	105	106	107

50 ·

Ç

_		₽p⁰ C						
5								
10			j	ı	5. 人	I	1	<
15		R1	NOZ	$\bigcirc_{2^{N}}$			C1	
20		æ	CH3	CH3 OSN	CH3	CH3	CH3	СНЭ
25		A	C ₂ H ₅	C2H5	C2H5	C2HS	C2H5	C2H5
30		2 _n	Ħ	Ħ	x	x	×	ĸ
35	etzung	>-	CJ	CJ	CI	CJ	បី	CJ
	(Forts	×	CJ	CJ	CI	CI	CI	CI
40	Tabelle 2 (Fortsetzung)	BspNr.						
45	Tabe	Bsp.	108	109	110	111	112	113

		Fp° C				٠	,									
5				٠							8					
10		R1	Ŧ	E	CH3/2CH-	(CH ₃) ₃ C-	² H ³ -(СН ²) ³ -	с ₂ н ₅ -с(сн ₃) ₂	- HD-D-(-HD)	Z OF .E	(CH ₃) ₂ CH-C(CH ₃) ₂	**(*HU)**NU=*NU	8,2,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \	H ₃ C CH ₃	с4 ^{Н9-СН-С2Н5}
					_		•								•	
20		83	ת כ	22	C2H5	c_2H_5	c_2H_5	C_2H_5	ς Ε	2.5	C2HS	t	2215		c_2H_5	C2H5
25		æ	;; ;;	5112	$c_{2}H_{5}$	C2HS	c_2H_5	C2H5	ָב נ	2115	C2H5	;	242		C2H5	C2H5
30		2 _n	2	G :	×	I	I	Ħ	5	G	×	•	E		I	I
	(Bur	≯-		3	ເວ	CJ	ວ	ដ	5	3	ü	;	5		CI	CJ
35	Tabelle 2 (Fortsetzung)	×	į	7.	C1	CJ	C1	CJ	6	วี	CI	;	ວິ		Cl	CI
40	18 2 (1	.Nr.														
45	Tabel	BspNr.		114	115	116	117	118	,	119	120		121		122	123

EP 0 456 063 A2

45	40	35	30	25	20	15	10	5
Tabelle '	Tabelle 2 (Fortsetzung)	tzung)						
BspNr.	×	٨	$^{2}_{n}$	¥	æ	R1		Fp⁰ C
124	CJ	ប	×	C2H5	C2H5		CH ₃	
125	CJ	CI	Ħ	C2H5	C ₂ H ₅	н ₃ с-о	CH ₃	
126	CI	CI	I	C2H5	C2H5	H ₃ C-0	CH ₃	
127	G	CI	×	C2H5	C ₂ H ₅	H ₃ C H ₃ C		
128	C1	ដ	Ħ	C2H5	C2HS	н ³ с-8-сн ² -	-2-	
129	CI	CI	x	C2HS	C2H5		CH ₃	
130	ü	CI	Ξ	C2H5	C2H5		C2H5	

5		Fp⁰ C						
10			оснз		\downarrow	CH ₃	1	人
15		R1		0СН3	нэсо-	† \(\)	eh 3	H ₃ C
20		В	C2H5	C2H5	C2H5 }	c ₂ H ₅	C ₂ H ₅	C2H5
25		K	C2H5	C2H5	C2H5	C2HS	C ₂ H ₅	C2HS
30		2 _n	æ	I	x	# ·	æ	I
	(Bunz	> -	C1	C1	CI	ü	C1	CJ
35	(Fortsetzung)	×	CI	CI	CI	CI	G	C1
40	~	<u></u>						
45	Tabelle	BspNr.	131	132	133	134	135	136

EP 0 456 063 A2

5		Fp° C							
10			NOS			1			
15		R1		NO2	NZ O		V 5	C1	
20		В	C2HS	C2H5	C2H5	C2H5	C ₂ H ₅	C2H5	C2H5
25		K	C2HS	C2H5	C2H5	C2H5	C2H5	C2H5	C2H5
30		2 _n	æ	Ħ	æ	r T	#	x	π
33	(gunz	>-	C1	CJ	ច	C	Ċı	ដ	ប
35	(Fortset	×	C1	C1	. 10	CI	ü	CJ	
40	Tabelle 2 (Fortsetzung)	BapNr.	137	138	139	140	141	142	143

EP 0 456 063 A2

5	((FPC	m	m	p			e	Н ₅	
10	7	π.	c1 CH3	H ₃ C-0	$\begin{array}{c} H_3^{\text{C}-\text{O}} \\ \end{array}$	H ₃ C	н ₃ с-s-сн ₂ -	S. G. B.	°C2H5	OCH ₃
15		m	снз	снз	снз	CH ₃ I	снз	СНЗ	снз	снз
25		æ	C ₃ H ₇	C3H2	C ₃ H ₂	C3H2	C3H2	C3H2	C3H2	C3H7
30		2 _n	æ	Ħ	Ħ	×	æ	æ	Ħ	щ
	(bunz	>	ប	CI	CI	ប	C1	c)	C1	G
35	(Fortset	×	ü	C1	C 1	CI	១ .	CI	C1	CI
40	Tabelle 2 (Fortsetzung)	BspNr.	154	155	156	157	158	159	160	161

5		Fp° C							
10		R1	OCH ₃	H ₃ co	CH ₃	E C C C C C C C C C C C C C C C C C C C	H ³ C	NOS	
20		Ø	снз	CH ₃	CH ₃	снз	снз	снз	CH3
25		A	C3H2	C3H2	C3H2	C ₃ H ₇	C ₃ H ₂	C3H7	C ₃ H ₇
		2 _n	×	Ħ	Ħ	æ	Ħ	ਜ	×
30	(gunz	*	C	G1	CI	C1	C ₁	C	ü
35	(Fortsetzung)	×	ប៊	ដ	CJ	61	C1	G	. 61
40	Tabelle 2	BspNr.	162	163	164	165	166	167	168

EP 0 456 063 A2

5		Fp ^o C				·						
10		R1	-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\	<u></u>		C1-		CH ₃	(CH3) ² CH-	(CH ₃) _{3C} -	$cH_3-(cH_2)_3-$	C2H5-C(CH3)2
20		В	СНЗ	снз	СН ³	снз	снз	СН _З	СНЗ	CH ₃	СНЗ	снз
		⋖	C ₃ H ₇	C ₃ H ₇	C3H2	c ₃ H ₇	C3H2	i-C3H7	i-C3H2	i-C3H2	i-C3H7	i-c ₃ H ₇
25		2 _n	æ	æ	± .	ĸ	Ħ	×	H	×	I	I
30	(Bunz	> -	C1	C1	CJ	CJ	C1	ប	C1	C1	ວ	C1
35	(Fortsetzung)	×	C]	C1	ເລ	C1	ប	ເງ	CJ	CJ	CJ	CI
40	Tabelle 2 (F	BspNr.	169	170	171	172	173	174	175	176	177	178

EP 0 456 063 A2

		Fp° C									
5				2							
10		R1	(CH ₃) ₃ C-CH ₂ -	(сн ³) ⁵ сн-с(сн ³) ⁵	сн2=сн-(сн2)в-	$\begin{array}{c} c_1 \\ \\ H_3 \\ \end{array} C_{CH_3}$	C4H9-CH-C2H5	C1 CH3	$^{\mathrm{H_3C-O}}$	H ₃ C-0 CH ₃	^{Н3С} Н3С
			ო	m	ტ	e	m	e	m	m	m
20		m	снз	снз	снз	снэ	снз	снз	снз	снэ	снз
		A	i-C ₃ H ₇	i-C ₃ H ₇	i -C ₃ H ₇	i -C ₃ H ₇	i -C ₃ H ₇	i-c ₃ H ₇	i -C ₃ H ₂	i-C ₃ H ₇	i -c3H7
25											
		Zn	Ξ	x	Ħ	#	Ħ	æ	æ	æ	æ
30	tzung)	+	C	CI	C1	CJ	ច	ច	ເງ	CJ	CI
35	Fortse	×	Cl	CJ	CI	CI	C	ច	C	ជ	
40	Tabelle 2 (Fortsetzung)	BspNr.	179	180	181	182	183	184	. 185	186	187

EP 0 456 063 A2

5		Fp° C								
10		R1	-2но-s-оен	CH ₃	$\langle c_{c_2 H_5} \rangle$	OCH ₃	осн3		CH ₃	e Ho
15		H		-	-	-		нзсо	-	
		æ	CH3	снэ	снз	снз	снз	CH3	снз	снз
20		4	i-c ₃ H ₇	i-c ₃ H ₇ CH ₃	i-C ₃ H ₇	i-C3H7				
25		z _n		_	_			_		_
		7	x	I	=	ĸ	=	I	x	I
30	(gunz	>	CJ	ប៊	C1	CI	CI	C1	ប	CI
35	(Fortsetzung)	×	C1	ប	ü	CI	ប	ü	CI	C ₁
40	Tabelle 2	BspNr.	188	189	190	191	192	193	194	195

EP 0 456 063 A2

		Fp° C											
5		<u> </u>								[3]S	l _m		
10	٠			нз	сн ₃) ₂ сн-	сн ^з) ^з с-	$CH_3 - (CH_2)_3 -$	C2H5-C(CH3)2	- ² но-о ⁶ (Ено)	(CH ₃) ₂ CH-C(CH ₃) ₂	CH ₂ =CH-(CH ₂)8-	H ₃ CCH ₃	C4H9-CH-C2H5
15		R1		O	~	•	υ	b	~	•	b		b
20		æ	i-C ₃ H ₇ CH ₃	3H2)4-	3H2) 4 -	-(CH ₂)4-	-(CH ₂) ₄ -	-(СН ₂)4-	-(CH ₂)4~	-(CH ₂) ₄ -	-(CH ₂)4-	-(CH ₂) ₄ -	-(CH ₂)4-
25		4		- ()-)-) -))-)-	- ((- ()-	- (0
		zn	×	×	H	×	I	Ħ	×	Ħ	Ħ	Ħ	×
30	(Bun:	>-	CJ	ដ	ដ	ប	5	C1	C	CJ	CI	ច	CI
35	(Fortsetz	×	C 1	CI	ü	ច	CI	C3	c1	CI	CI	ເວ	C1
40	<u> Tabelle 2</u> (Fortsetzung)	BspNr.	203	204	202	206	202	208	209	210	211	212	213

EP 0 456 063 A2

5		Fp ^o C							
10			У снз	× cH ₃	CH ₃		.H2-	× c _{H3}	× c ₂ H ₅
15		R1	2 2	_{Н3} с-о—	H ₃ C-0	H ₃ C H ₃ C	H3C-S-CH2-		
20		B	-(CH ₂) ₄ -	-(CH ₂) ₄ -	-(CH ₂)4-	-(CH ₂) ₄ -	-(CH ₂) ₄ -	-(CH ₂)4-	-(CH ₂) ₄ -
25		4	0)-	0) -	0) -	D) -	٠ (٥	0) -	0) -
30	(6)	Z _n	C1 H	С1 Н	С1 Н	С1 Н	C1 H	C1 H	С1 Н
35	rtsetzun	×	CI CI	C1	C1 C	C1 C	CI C	C1 C	CJ CJ
40	<u> Tabelle 2</u> (Fortsetzung)	ir.							
45	Tabel	BspNr.	214	215	216	217	218	219	220

EP 0 456 063 A2

5		Fp° C						
15		R1	OCH ₃	OCH ₃	H ₃ co	GH3	CH3	H_3 C
20 25		A B	-(CH ₂) ₄ -	-(CH ₂)4-	-(CH ₂) ₄ -			
30	_	Z _n	×	×	x	æ	æ	×
35	88tzung]	>	1 C1	1 C1	1 C1	1 63	1 01	1 C1
40	Tabelle 2 (Fortsetzung)	-Nr. X	G	ប	1 3	C1	C1	C1
45	Tabe]	BapNr.	221	222	223	224	225	226

45 .	35 40		30	25	20	15	10	5
rabelle 2	Tabelle 2 (Fortsetzung)	(gunz						
BspNr.	×	>	$^{2}_{n}$	АВ		R1		Fp⁰ C
227	C	2	x	-(CH ₂)4-		NOS		
8228	CI	CI	=	-(CH ₂) ₄ -		No2		
229	C1	C	Ħ	-(CH ₂)4-	O2N_			
230	CI	CI	æ	-(CH ₂) ₄ -		5		
231	CI	C1	æ	-(CH ₂) ₄ -				
232	CI	C1	æ	-(CH ₂)4-	CI -			
233		CJ	Ħ	-(CH ₂) ₄ -			,	

45	40	35	30	25	20	15	10	5
Tabelle 2	2 (Fortsetzung)	tzung)						
BspNr.	×	> -	Zn	V	В	R1		Fp° C
•								
234	CI	ដ	I	-(CH ₂)	r L	CH3		
235	C	ວ	H	- (CH ₂)		(CH ₃) ₂ CH-	
236	CJ	ប	Ħ	-(CH ₂)	້ເ	(CH ₃	(CH ₃) ₃ c-	
237	ច	ເມ	I	-(CH ₂)	1	CH3-	(CH ₂) ₃ -	
238	CJ	CI	H	-(CH ₂) ₅ -	J.	C2H5	C2H5-C(CH3)2	
				1	,	•	· ·	
239	C1	ដ	H	-(CH2)-	l v:	(CH ₃	(CH ₃) ₃ C-CH ₂ -	
				ļ	•		i	
240	ប	C	x	-(CH2)2-	5,	(CH ₃	(CH ₃) ₂ CH-C(CH ₃) ₂	
							-	
241	CI	cı	×	-(CH ₂) ₅	נו	CH ₂ =	CH2=CH-(CH2)8-	
						CI	}	
242	ü	ເວ	I	-(CH ²) ² .	រ	H ₃ C-	$\searrow_{_{\mathrm{CH}_3}}$	
243	CI	CI	I	-(CH ₂) ₅ -	2,	C4H9	C4H9-CH-C2H5	
							_	
777	5	5	Ξ	(CHC)-	1	ยี	<u> </u>	
ŗ	5	;	:	7	n	CI	CH ₃	

45	40	35	30	20	10	5
Tabelle 2 (Fortsetzung)	(Fortsel	tzung)				
BspNr.	×	*	2 _n	A B	R1	Fp° C
245	CJ	ប	ж	-(CH ₂) ₅ -	H ₃ C-0	
. 246	ដ	13	ж	-(CH ₂) ₅ -	H ₃ C-0-	
247	CI	C1	Ħ	-(CH ₂) ₅ -	H ₃ C H ₃ C	
248	ប៊	ដ	Ħ	-(CH ₂) ₅ -	н ³ С-S-СН ₂ -	
249	C	CI	×	-(C ₂ H ₂) ₅	CH ₃	
250	5	ច	Ħ	-(CH ₂) ₅ -	°C2H5	
251	C1	ដ	æ	-(CH ₂) ₅ -	OCH ₃	

5		₽p° C							
10		R1	OCH ₃		Hg 3	e de		Nos	No ₂
15		£		-9 H³C0→	ا ا		-2 H ₃ C−	100	
25		4	-(CH ₂) ₅ -	-(CH ₂) ₅ -	- (CH ₂) -	-(CH ₂) ₅ -	-(CH ₂) ₅ -	-(CH ₂)-	-{(CH ²)}-
		$^{2}_{n}$	Ħ	I	x	æ	Ξ	æ	I
30	tzung)	>	13	CI	ប	ដ	C1	CI	CJ
35	(Fortsetzung)	×	ជ	C	ជ	ជ	CI	C1	
40	Tabelle 2	BspNr.	252	253	254	255	256	257	258

EP 0 456 063 A2

BepNr. X Y Zn A B R¹ 259 C1 C1 C1 H -(CH2)5- O2N← 260 C1 C1 H -(CH2)5- C1 261 C1 C1 H -(CH2)5- C1 262 C1 C1 H -(CH2)5- C1 263 C1 C1 H -(CH2)5- C1 264 C1 H -(CH2)5- C1 C1 265 C1 H -(CH2)5- C1 C1 266 C1 H -(CH2)5- C1 C1 267 C1 H -(CH2)5- C1 C1 268 C1 H H C1 C1 266 C1 H H C1 C1 267 C1 H H C1 C1 268 C1 H H C1 C1	40	35	30		25	20	10	5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	lle 2 (F	ortsetz	(bun;					
C1 C1 H $-(CH_2)_5$ O_2^{N-1} C1 C1 H $-(CH_2)_5$ C1 C1 H $-(CH_2)_5$ C1 C1 H $-(CH_2)_5$ C1 C1 H $-(CH_2)_5$ C1 H $-(CH_2$	Nr.	×	>	2 _n	A	æ	R1	Fp° C
C1 C1 H $-(CH_2)_5$ - C1 H H H H H H H H H H H H H H H H H H H	•	CJ	CI	×	-(CH ²)i	i so	O_{2^N}	
C1 C1 H $-(CH_2)_5$ - C1 C1 H $-(CH_2)_5$ - C1 C1 H $-(CH_2)_5$ - C1 H H H H H H H H H H H H H H H H H H H	C	C1	CI	æ	-(CH ₂)	r L	2	
C1 C1 H -(CH ₂) ₅ - C1- C1 C1 H -(CH ₂) ₅ - C1 H 6-C1 H H C1 H 6-C1 H H C1 H 6-C1 CH ₃ H C1 H 6-C1 CH ₃ H C1 H 6-C1 H H C1 H H H H	н	ប៊	CJ	Ħ	-(CH ₂)	S	₽ 2	
C1 C1 H -(CH ₂) ₅ - C1 H 6-C1 H H C1 H 6-C1 H H C1 H 6-C1 CH ₃ H C1 H 6-C1 CH ₃ H C1 H 6-C1 CH ₃ H CH ₃ CH ₃ H H H	o.	C1	CJ	π	-(CH ₂)	ا نە	CI	
C1 H 6-C1 H H C1 H 6-C1 H H C1 H 6-C1 CH ₃ H C1 H 6-C1 CH ₃ H CH ₃ CH ₃ H H H	m	5	C1	¤	-(CH ₂)	l M		
C1 H 6-C1 H H C1 H 6-C1 CH ₃ H CH ₃ CH ₃ H H CH ₃ CH ₃ H H CH ₃ CH ₃ H H	4	ច	Ħ	6-01	Ħ	I	CH3	
C1 H 6-C1 CH ₃ H C1 H 6-C1 CH ₃ H CH ₃ CH ₃ H H H CH ₃ CH ₃ H H	ហ	C	Ħ	6-C1	H	I	C(CH ₃) ₃	
C1 H 6-C1 CH ₃ H CH ₃ CH ₃ H H CH ₃ CH ₃ H H	9	ច	I	6-C1	снз	Ξ	снэ	
. СН ₃ СН ₃ Н Н Н Н СН		C1	I	6-C1	CH3	x	C(CH ₃) ₃	
снз снз н н н	80	· CH3	снэ	#	H	I	CH ₃	
	6	CH ₃	СНЗ	I	Ħ	Ħ	c(cH³)³	

EP 0 456 063 A2

		Fp⁰ C												132		152
5									m							•
10				C(CH ³) ³		сн(сн ₃) ₂	:H ^З)З	H3)2CH2C1	H3)2CH2-0-CH	сн2	CH ₃	- F			сн(сн ₃) ₂	c(cH ₃) ₃
15		R1	снз	2	снз	CHO	Ü	5	ü	CH	P^P	Y	`	снз	CH(S
20		æ	¥	×	Ħ	×	н	Ħ	Ħ	I	æ	æ	×	I	I	x
			_	_												_
		4	E H	СНЭ	I	H	I	I	Ħ	x	Ξ	x	x	СНЗ	снз	снэ
25		z _n	#	H	6-CH3	6-CH3	6-CH3	6-CH3	€но-9	6-CH ₃	Енэ-9	^Е но-9	6-CH ₃	6-CH ₃	6-CH3	6-CH ₃
30	(Bun	>-	снз	CH ₃	снз	снз	снз	снз	снз	снэ	снз	СНЗ	CH ₃	снз	СНЗ	снэ
35	(Fortsetz	×	снз	снз	снз	СНЗ	снз	CH3	СНЭ	снз	СНЗ	СНЗ	снэ	СНЭ	CH3	снз
40	<u> Tabelle 2</u> (Fortsetzung)	BspNr.	270	271	272	273	274	275	276	277	278	27.9	280	281	282	283

5		Fp° C								188		213		_e	
10		R1		$C(CH_3)_2CH_2C1$	$c(cH_3)_2cH_2-0-cH_3$	CH2-S-CH3	CH ₃	C1		СНЗ	CH(CH ₃) ₂	с(сн ₃) ₃	$c(cH_3)_2cH_2c_1$	с(сн ₃) ₂ сн ₂ -0-сн ₃	CH2-S-CH3
20		æ	,	E	Ħ	Ħ	æ	Ħ	ж	13)2 H	13)2 H	13)2 H	13)2 H	13)2 H	13)2 H
25		V		cH3	снз	снз	снэ	снз	снз	CH(CH ₃) ₂	CH(CH ₃) ₂	CH(CH ₃) ₂	сн(сн3)2	CH(CH ₃) ₂	CH(CH ³) ²
30		2 _n		6-CH ₃	6-CH3	6-CH3	6-сн3	6-CH3	6-СН3	6-CH ₃	6-сн3	6-CH3	6-CH3	6-CH3	6-CH ₃
	(Bun	>		CH3	снз	снэ	снз	снз	снз	снз	CH ₃	снз	снз	снз	снз
35	<u>Tabelle 2</u> (Fortsetzung)	×		CH3	снз	СНЗ	снз	снз	CH3	СНЗ	CH3	снз	снэ	снэ	снз
40	116 2 (-Nr.													
45	Tabe	BspNr.	1	284	282	286	287	. 78 88	289	290	291	262	293	294	295

5		Fpº				169							
10		R1	CH ₃			снз	C2H5	CH(CH ₃) ₂	$C(CH_3)_2CH_2C1$	C(CH ₃) ₂ CH ₂ -0-CH ₃	CH2-S-CH3	CH ₃	To
20		В	Ħ	×	Ħ	H	H	H	Ξ	Ħ	×	ж	Ħ
25		4	6-сн ₃ сн(сн ₃) ₂	6-сн ₃ сн(сн ₃) ₂	CH(CH ₃) ₂	CH ₂ CH(CH ₃) ₂	CH ₂ CH(CH ₃) ₂	CH ₂ CH(CH ₃) ₂	CH ₂ CH(CH ₃) ₂				
30		2 _n	€-СН3-9	6-CH ₃	6-СН3	6-CH ₃	6-сн3	6-CH ₃	e-cH3-9	6-CH ₃	€н⊃-9	6-сн3	6-CH ₃
35	(Bun:	۲	снз	CH3	снз	снз	CH3	CH3	CH3	СНЗ	СНЗ	снэ	СНЗ
40	(Fortsetz	×	снз	CH3	CH ₃	CH3	CH3	CH3	CH3	CH3	CH3	СНЭ	CH3
45	Tabelle 2 (Fortsetzung)	BspNr.	962	297	298	299	300	301	302	303	304	305	306

		1							
5		Fp.		184					
10					3,2	° (c(cH ₃) ₂ CH ₂ C1	с(снз)2сн2-о-сн3	-снз
15		R1		CH ₃	сн(сн ³⁾ 2	с(сн ^{з)з}	скснз	с(сн ³	CH ₂ -S-CH ₃
20		В	x	Ħ	x	x	I	I	Ħ
25		A	6-сн _з сн ₂ сн(сн ₃) ₂	CH C2H5	CH C2H5	CH ₂ CH ₃	CH ₃	CH ₃ CH ₃	CH ₃
30		z_n	6-CH3	6-сн3	6-CH ₃	6-CH ₃	6-CH ₃	е-сн ³	€нэ-9
35	(Buna	> -	СН3	СНЗ	снз	снэ	снз	снз	CH3
40	(Fortsetz	×	снз	снэ	снз	снз	снз	снз	снз
45	Tabelle 2 (Fortsetzung)	BspNr.	302	308	309	310	311	312	313

EP 0 456 063 A2

5		Fpº	•								
10			СН3				13)2	3)2	c(cH ₃) ₂ cH ₂ c ₁	C(CH ₃) ₂ CH ₂ -0-CH ₃	CH2-S-CH3
15	•	R¹			\	снз	CH(CH ₃) ₂	C(CH ₃) ₂	C(CH	C(CH	CH2-8
20		В	. # '	I	ĸ	π	H	I	H	Ŧ	ĸ
25		Y	CH ^C CH ₃	CH ₂ CH ₃	CH ₃	6-снз -(сн2) ₂ sсн ₃	6-сн ₃ -(сн ₂) ₂ Sсн ₃	6-CH ₃ -(CH ₂) ₂ SCH ₃	6-сн ₃ -(сн ₂) ₂ Sсн ₃	6-сн ₃ -(сн ₂) ₂ Sсн ₃	6-сн ₃ -(сн ₂) ₂ sсн ₃
30		2 _n	€но-9	€-сн3	6-CH ₃	6-CH3	6-CH3	6-CH ₃	6-CH ₃	€H3-9	€HD-9
35	(Sunz	>	снэ	снэ	снз	снз	CH ₃	СНЗ	СНЭ	снз	снэ
40	(Fortset	×	CH ₃	снз	CH3	СНЗ	CH ₃	СНЭ	CH ₃	CH3	снз
45	<u>Tabelle 2</u> (Fortsetzung)	BspNr.	314	315	316	317	318	319	320	321	322

EP 0 456 063 A2

						94	_S	9		0		ო	•	v	
5		Fp				0,	95	216		> 230		183		175	
10		R1	CH ₃			CH ₃	-с(сн ³) ³	снэ	(CH ₃) ₂ CH-	-2 ⁶ (CH ₃)	CH3-(CH2)3-	C ₂ H ₅ -C(CH ₃) ₂		(сн ³)3с-сн ² -	(сн ₃) ₂ сн-с(сн ₃₎ ₂
20		æ	æ	Ħ	ĸ			CH ₃	CH ₃	CH3	снз	снз		снз	снэ
25		A	6-сн ₃ -(СН ₂) ₂ SCH ₃	6-сн ₃ -(сн ₂) ₂ sсн ₃	6-сн _з -(сн ₂) ₂ sсн ₃	-(CH ₂) ₂ -	$-(CH_2)_2^-$	СНЭ	снз	СНЗ	СН3	снз		СНЗ	СНЗ
30		Zn	е-снэ-9	- Єнэ-9	6 - CH ₃ -	6-CH ₃	6-CH ₃		€H⊃-9	6-CH ₃	6-CH ₃	6-CH ₃		6-CH ₃	6-CH ₃
35	(gunz	٠.	СНЗ	снэ	снз	СНЭ	снэ	снэ	снэ	СНЗ	снз	снз		снэ	снз
40	(Fortset	×	CH3	СНЗ	СНЗ	CH3	снз	CH ₃	СНЗ	CH ₃	СНЭ	снз		снз	снз
45	Tabelle 2 (Fortsetzung)	BspNr.	323	324	328	326	327	328	329	330	331	332		333	334

5		Fp°								
10			CH ₂ =CH-(CH ₂) ₈ -	\nearrow_{cH_3}	C4H9-CH-C2H5	cı CH ₃	1c-o	-CH ₃		H ₃ C-S-CH ₂ -
15		R1	5	C1~ H ₃ C-	C4H		н ₃ с-о-	H ₃ C-O	н ³ с,	нзс
20		æ	снз	снэ	снз	снз	снз	СНЗ	снэ	CH ₃
25										
		4	СНЗ	снэ	снз	снз	снз	СНЭ	снз	снз
30		2 _n	^Е но-9	€-сн3-9	6-сн3	6-сн3	6-CH ₃	6-CH ₃	6-CH ₃	€но-9
35	(Bunz	>	снз	снз	снз	снэ	снз	снз	CH3	CH ₃
40	(Fortsetzung)	×	снз	снз	СНЗ	CH3	CH ₃	снз	снз	снз
45	Tabelle 2	BspNr.	335	336	337	338	& & & &	340	341	342

45	40	35	30		25	20	15	10	5
Tabelle 2 (Fortsetzung)	(Fortset:	(gunz							
BspNr.	×	>-	2 _n	4		æ	R1		Fpº
350	снз	CH ₃	6-CH ₃	снэ		снз	Н3С	\downarrow	
351	CH ₃	снз	6-CH ₃	CH3		снз		NOS	
352	CH ₃	снз	6-CH ₃	снз		CH3	₩ S	\downarrow	
	снз	cH3	6-CH ₃	снэ		снз	N ² 0	\downarrow	
354	CH3	снз	^Е нэ- 9	CH ₃		снз		5 🙏	
355	CH3	CH ₃	6-CH ₃	снз		снз	Ų².	\downarrow	
356	СНЭ	снз	6-сн3	снз		снз	CI	\downarrow	

5		Fp ⁰								N		٠	
10		1		CH ₃	(сн ₃) ₂ сн-	-э ^в (сн ^з)	сн ₃ -(сн ₂) ₃ -	C ₂ H ₅ -c(CH ₃) ₂	-2нэ-э ^в (сн ³ -	(сн ^{3) 2} сн-с(сн ^{3) 2}	CH2=CH-(CH2)8-	H_3 CH3	C4H9-CH-C2H5
15		R1									_		_
20		ß	снз	СНЭ	снз	CH3	снз	снз	снэ	СНЗ	СНЗ	снз	снэ
25													
		A	снэ	C2H5	C2H5	C2H5	$c_{2}H_{5}$	C2H5	c_2H_5	C ₂ H ₅	c_2H_5	c_2H_5	c_2H_5
30		2 _n	6-снз	6-CH ₃	6-CH3	6-CH ₃	6-CH ₃	6-сн3	6-CH ₃	е-сн ³	€н2-9	6-сн3	6-сн3
35	(gun	>	снэ	CH3	снз	снз	снз	CH ₃	снэ	снз	снз	снз	снз
40	(Fortsatz	×	СНЗ	CH3	CH3	СНЭ	СНЭ	СНЗ	СНЭ	СНЗ	СНЗ	СНЗ	снэ
45	Tabelle 2 (Fortsetzung)	BspNr.	357	358	359	360	361	362	696	364	365	366	367

EP 0 456 063 A2

CH ₃ 6-CH ₃ C ₂ H ₅
снз 6-снз С2Н5
сн _з 6-сн _з с ₂ н ₅
сн _э 6-сн _э с ₂ н ₅
сн _з 6-сн _з с ₂ н ₅
сн3 6-сн3 с2н5
снз 6-снз С2Н5

5		Fр ^о						٠	
10 ·			осн3		HE CHAPTER STATE OF THE CHAPTE	~ \		NOS	No ₂
15		R1		н ³ со		B.	⊣ 3сН		
20		В	снз	снз	CH3	CH3	СНЗ	CH3	СНЗ
25			S	اء ع	ž,	S.	¹ 5	្ឌិស	چ
		K	C2HS	C2HS	c ₂ H ₅	C2H5	C2H5	C2H5	C2H5
30		$^{2}_{n}$	ено-9	Ено- 9	6-CH ₃	6-CH ₃	6-CH ₃	6-CH ₃	6-CH3
35	(gunz	*	CH3	СНЗ	СНЭ	СНЗ	снэ	СНЭ	СНЭ
40	(Fortsetzung)	×	снз	снз	CH3	снз	снэ	снз	снз
45	Tabelle 2	BspNr.	376	377	378	379	380	381	3 8 8 8

		Fp°										
5		F										22
10			I	- 1	ŀ	i	<		2CH-	3C-	CH3-(CH2)3-	C2H5-C(CH3)2
15	٠	R¹	N ² 0					CH ³	(CH ₃) ₂ CH-	(CH ³))_EH3_(C2H5
20		æ	снэ	CH ₃	СНЗ	снз	снз	C2HS	C2HS	c_2H_5	C_2H_5	C2H5
25												
		K	c ₂ H ₅	c ₂ H ₅	c ₂ H ₅	C2H5	C2H5		C2HS		C2H5	c_2H_5
30		2 _n	6-CH ₃	6-CH3	€ _Н 2-9	6-CH ₃	6-CH ₃	^Е нэ-9	6-CH3	6-CH ₃	€но-9	6-сн3
35	(Buna	*	СНЭ	CH ₃	снэ	СНЭ	СНЭ	CH ₃	CH3	CH_3	СНЗ	снэ
40	(Fortset:	×	снз	снз	CH ₃	CH ₃	снз	СНЗ	CH3	CH3	снэ	CH ₃
4 5	Tabelle 2 (Fortsetzung)	BspNr.	383	384	385	38 6	387	388	389	390	391	392

5		Fpº		81						•	
10			(сн ₃) ₃ с-сн ₂ -	(CH ₃) ₂ CH-C(CH ₃) ₂	CH ₂ =CH-(CH ₂)g-	617	n3c— сn3 С4H9-СH-С2H5	· ×		\sim	ſ
15		R1		S	Ü	•	້ ບັ	C1 - C1 - C1	н ₃ с-о-	H ₃ C-O-	H ₃ C
20		В	C2H5	C_2H_5	C2H5	C ₂ H ₅	C2H5	C2H5	C2H5	C2H5	C2H5
25		A	C2H5	C2H5	CoHe	C ₂ H ₅	C2H5	C2H5	C2H5	C2H5	c ₂ H ₅
30		z_n	6-CH ₃	6-CH ₃	6-CH ₂	€но-9	€н⊃-9	6-CH3	е-сн ³	6-CH ₃	6-CH ₃
35	(Bunz	*	CH3	снз	CH,	S HO	СНЭ	CH3	СНЗ	СНЭ	CH3
40	(Fortset;	×	СНЭ	CH3	CH	cH ₃	снз	CH ₃	CH3	СНЗ	CH3
45	Tabelle 2 (Fortsetzung)	BspNr.	393	394	395	968	397	398	399	400	401

45	40	35	30	25	20	10		5
Tabelle 2	2 (Fortsetzung)	(gunz						
Bsp.~Nr.	×	¥	z_n	Ą	B	R1		Fр ^о
402	СНЭ	снэ	6-CH ₃	c_2H_5	C2H5	H ₃ C-S-CH ₂ -		
403	СНЗ	снэ	£но-9	c ₂ H ₅	C2H5	CH ₃	ო	
404	CH ₃	снз	^Е НЭ-9	C2H5	C2H5		C2HS	·
405	CH ₃	снз	6-CH3	C ₂ H ₅	C2HS	OCH ₃		
406	CH ₃	снэ	6-CH3	c ₂ H ₅	C2H5	OCH 3		
407	снэ	снз	6-сн _э	C2H5	C2HS	H ₃ co		•
408	CH ₃	CH ₃	6-CH ₃	C2H5	C2H5	CH ₃		

5		Fp.							
10					NOS			5	\downarrow
15	ļ	R1	E.	Н3С		No.	N ₂ O		5
20		В	C2H5	C2H5	C2H5	C2H5	C2H5	C2H5	C2H5
25		A	C2H5	C2HS	C ₂ H ₅	c ₂ H ₅	C2H5	C2H5	C2H5
30		Z _n	6-CH ₃	9-сн3	6-CH ₃	6-снз	6-CH ₃	ено-9	6-СН3
35	(Bun;	>	CH ₃	снз	CH ₃	снз	снз	СНЭ	снэ
40	(Fortset:	×	СНЗ	снэ	снз	снз	СНЭ	снз	снз
45	Tabelle 2 (Fortsetzung)	BspNr.	409	410	411	412	413	414	415

4 5	40	35	30		25	20	15	10	5
Tabelle 2 ((Fortsetzung)	(gunz							
BspNr.	×	>-	Z _n	4		В	\mathbb{R}^1		Fpº
416	снз	CH3	6-снз с2н5	C2H5		C2H5	c ₁		
417	CH ₃	снз	6-сн ₃	C2H5		C2H5			
418	CH ₃	снз	6-CH ₃	C3H2		снз	СНЗ		
419	СНЗ	СНЗ	€-сн3	C3H2		снз	(CH ³) ⁵ Cl	±	
420	CH3	СНЗ	6-CH3	C3H2		СНЗ	-э ^E (Енэ)		
421	CH3	снз	6-CH3	C3H2		снз	сн ₃ -(сн ₂) ₃ -	2)3-	
422	снз	снз	6-CH ₃	C3H2		снз	C2H5-C(CH3)2	(CH3)2	
423	СНЗ	снз	6-CH ₃	C3H2		снз	(CH ³)	- ² но-о ^в (сн ³)	
424	СНЗ	снз	^Е нэ-9	C3H2		снз	(CH ³) ⁵ ((сн ₃₎₂ сн-с(сн ₃₎₂	81
425	CH3	снэ	6-CH ₃	C3H2		снз	CH2=CH	CH2=CH-(CH2)8-	
426	CH3	СНЗ	6-сн3	СЗН7		снз	C17	CH ₃	

5	•	P.Do			,					
10			C4H9-CH-C2H5	× c _{H₃}	\times	$\searrow_{_{\mathrm{CH}_3}}$	6	-сн ₂ -	× CH ₃	$igwedge_{ ext{c}_2 ext{H}_{ extsf{s}}}$
15	•	R1	C4H		н ₃ с-о-	H ₃ C-0-	H _{3C}	н ₃ с-s-сн ₂ -	P^P	P^P
20		æ	снз	СНЗ	CH ₃	снз	CH3	снз	СНЗ	CH3
25		A	C ₃ H ₇	C ₃ H ₇	C ₃ H ₇ .	C ₃ H ₂	C ₃ H ₇	c ₃ H ₂	C ₃ H ₇	C ₃ H ₇
30		2 _n	€н⊃-9	^Е но-9	€ - СН ^З	6-CH ₃	6-CH ₃	6-CH ₃	е-сн ³	е-сн3
35	(Buna	>-	снэ	СНЗ	снз	снз	снз	CH3	СНЭ	снэ
40	(Fortseta	×	CH3	CH ₃	СНЗ	снз	CH ₃	снз	снэ	снз
45	Tabelle 2 (Fortsetzung)	BspNr.	427	428	429	430	431	432	433	434

5		Fp ⁰						·	
10		R1	OCH ₃	осн3	Н3со√	GH ₃	CH ₃	\Diamond	NOS
20		æ	снз	CH ₃	снз нз	CH ₃	снз	снз нзс-	CH ₃
25			C3H7	C ₃ H ₇					
30		Z _n A	6-снз	о ено-9	о Ено-9	о Ено-9	. сно-9	о Ено-9	6-CH ₃
35	tzung)	>	CH3	СНЗ	снз	СНЗ	СНЗ	снз	CH ₃
40	Tabelle 2 (Fortsetzung)	×	CH ₃	CH ₃	CH3	CH3	CH ₃	CH3	CH ₃
45	Tabelle	BspNr.	435	436	437	438	439	440	441

5		Fp ^o							<u>.</u> .
15		R1	Noz	O_{2^N}			c ₁		сн ₃ (сн ₃) ₂ сн- (сн ₃) ₃ с-
20		ea B	СНЗ	СНЗ	CH ₃	СНЗ	CH ₃	СНЗ	CH ₃
25		А	C3H2	C3H2	C ₃ H ₂	c ₃ H ₇	C ₃ H ₇	C3H2	i-C ₃ H ₇ i-C ₃ H ₇ i-C ₃ H ₇
30		$^{2}_{n}$		ено-9	€но-9	е-СН ^Э	6-CH ₃	6 - CH ₃	6-CH ₃
35	(gunz	*	снз	СНЗ	c H3	снз	СНЗ	снз	CH ₃
40	2 (Fortsetzung)	×	CH ₃	СНЗ	CH3	СНЗ	снз	СНЭ	CH ₃
45	Tabelle 2	BspNr.	442	443	444	445	446	447	448 449 450

EP 0 456 063 A2

45	40	35	30	25	20	15	10	5
2	abelle 2 (Fortsetzung)	(Bunz						
BpNr.	×	*	zn	Y	æ	R1		Fp ⁰
	CH3	снз	€-сн3	i-c ₃ H ₇	CH3	с _{2H5} -с(сн ₃) ₂	(CH ₃) ₂	
	снэ	CH ₃	6-сн3	i-C ₃ H ₇	CH3	(сн ₃) ₃ с-сн ₂ -	3-CH2-	
	СНЭ	снз	6-сн3	i -C ₃ H ₇	СНЗ	(сн ³) ⁵ сь	(CH ₃) ₂ CH-C(CH ₃) ₂	
	СНЗ	снз	€Hጋ9	i-C ₃ H ₇	снз	CH2=CH·	CH ₂ =CH-(CH ₂) ₈ -	
	снз	снз	6-сн3	i-C ₃ H ₇	снз	H ₃ C	× _{CH3}	
	снз	снэ	6-CH ₃	i-C ₃ H ₇	СНЗ	C4H9-CH-C2HS	1-C2H5	
	снэ	снз	6-CH3	i-C ₃ H ₇	снз		снз	
	снэ	снз	6 -CH3	i-C ₃ H ₇	снз	H ₃ C-0-	°CH3	•
	CH ₃	СНЭ	6-CH3	i-c ₃ H ₇	снз	H ₃ C-0	× _{CH3}	

EP 0 456 063 A2

5	c I	Fp						·		
10			(-CH2-	CH ₃	C ₂ H ₅	OCH ₃	E.	
16	•	R¹	H _{3C}	H ₃ C	н ₃ с-s-сн ₂ -	P^P	ρ^ <u>,</u> ρ		OH 3	н3со—
20		В		снз	снз	снз	снз	СНЗ	CH3	снз
25		A		i-C ₃ H ₇	i-C ₃ H ₇	i-C ₃ H ₇	i-C ₃ H ₇	i -C ₃ H ₇	i-C ₃ H ₇	6-СН ₃ i-С ₃ Н ₇
30		2 _n		6-CH ₃	6-CH3	6-CH ₃	6-CH ₃	^Є но-9	6-CH ₃	6-CH ₃
35	(gunz	*		снз	снз	снз	CH3	снэ	снз	CH3
40	(Fortset:	×		СНЭ	снз	снз	CH3	CH3	CH3	CH3
45	Tabelle 2 (Fortsetzung)	BspNr.		461	462	463	464	465	466	467

EP 0 456 063 A2

45	40	35	30	25	20	10	5
Tabelle 2	(Fortsetzung)	(Bunz					
BspNr.	×	¥	z_n	У	Ø	R ¹	Fр
468	СНЗ	CH ₃	6-CH ₃	i-C ₃ H ₇	π	CH ₃	
469	CH ₃	снз	6-CH ₃	i-C ₃ H ₇	ж	CH ₃	
470	СНЭ	снз	6-CH3	i-C ₃ H ₇	x	H_3c	
471	снэ	снз	енэ-9	i-C ₃ H ₇	π	NO2	
472	снз	снз	6-CH ₃	i-c ₃ H ₇	I	No ₂	
473	СНЗ	снз	6-снз	i -C ₃ H _{7.}	æ		
474	CH ₃	CH3	6-CH ₃	i-C ₃ H ₇	Ξ	z 🔶	

5		Fp										0	
10			${\wedge}$				-HJ	-	H ₂)3-	C ₂ H ₅ -C(CH ₃) ₂	- ² нэ-э ^в (енэ)	(сн ₃₎₂ сн-с(сн ₃₎ 2	CH ₂ =CH-(CH ₂) ₈ -
15	•	R1		C12		снз	(CH3)2CH-	-э ^є (єнэ)	CH3-(CHZ)3-	C2H5	сн3)	(сн ³)	CH ₂ =C
20 .		В	æ	Ħ	x		•						
25		A	i-C ₃ H ₇	i-C ₃ H ₇	i-C ₃ H ₇	-(CH ₂) ₄ -	-(CH ₂)4-	-(CH ₂) ₄ -	-(CH ₂)4-	-(CH ₂) ₄ -	(CH ₂) ₄ -	-(CH ₂) ₄ -	-(CH ₂) ₄ -
30		2 _n	6-CH ₃	6-CH3	6-CH ₃	6-CH ₃	6-CH3	6-CH3	€-сн3	6-CH ₃	6-CH ₃	6-CH ₃	6-CH ₃
35	(Bun	*	Енэ	снэ	снз	снз	снэ	СНЗ	снз	снз	CH ₃	CH ₃	снэ
40	(Fortsetzung)	×	снз	СНЗ	CH ₃	CH3	CH3	CH ₃	CH ₃	снз	СНЗ	СНЗ	CH ₃
45	Tabelle 2	BspNr.	475	476	477	478	479	480	481	482	483	484	485

45	40	36	30	25	20	15	10	5
Tabelle 2 (Fortsetzung)	(Fortset	(gunz						
BspNr.	×	>	Z _n A		В	R1		Fр ⁰
486	снз	снз	6-СН3	-(CH ₂) ₄ -		C17	CH ₃	
487	СНЗ	СНЭ	€-сн3	-(CH ₂) ₄ -		C4H9-CH-C2H5	-c ₂ H ₅	
488	CH ₃	снз	6-сн3	-(CH ²) ⁴ -			CH ₃	
489	CH3	снз	6-CH ₃	-(CH ₂) ₄ -		H ₃ C-0-	CH ₃	
490	снз	снз	е-сн ³	-(CH ₂) ₄ -		H ₃ C-0	CH ₃	
491	СНЗ	снэ	6-сн ₃	-(CH ₂) ₄ -		H ₃ C H ₃ C		
492	CH ₃	снз	6-сн3	-(CH ₂) ₄ -		н ₃ с-s-сн ₂ -	-2-	
493	снз	снз	6-CH ₃	-(CH ₂) ₄ -			CH ₃	
494	СНЗ	снз	€+2-9	-(CH ₂) ₄ -			C ₂ H ₅	

EP 0 456 063 A2

45	40	35	30	25	20	15	10	5	
<u>[abelle 2</u> (Fortsetzung)	(Fortsetz	(Buna							
3spNr.	×	+	Z _n A		6 2	R1		Fp ⁰	
495	CH ₃	CH ₃	€н2-9	-(CH ₂) ₄ -			оснз		
496	снз	СНЗ	6-CH ₃	-(CH ²) ⁴ -		OCH ₃		•	
497	СНЗ	снэ	6-CH ₃	-(CH ₂)4-		→ ор€н			
498	CH ₃	снэ	6 - CH ₃	-(CH ₂)4-			СН3		
499	снэ	снз	е-сн ³	-(CH ₂) ₄ -		CH ₃			
200	СНЗ	CH3	6-CH ₃	-(CH ₂) ₄ -	_	H ₃ C		·	
501	CH3	снз	6-CH ₃	-(CH ²)4-			NO2		

45	40	35	30	25	20	15	10	5
Tabelle 2 (Fortsetzung)	(Fortset;	(Bunz						
BspNr.	×	¥	Z _n A		В	R1		Fр ⁰
502	СНЗ	СНЭ	6-CH ₃	-(CH ₂) ₄ -		NO2		
503	СНЗ	СНЗ	е-сн ³	-(CH ₂) ₄ -		N ² O		
504	СНЗ	снз	6-CH ₃	-(CH ₂) ₄ -				
505	СН3	снз	6 - CH ₃	-(CH ₂)4-				
206	CH ₃	cH ₃	€-сн3	-(CH ₂) ₄ -		C1 C1		
202	СНЗ	СНЗ	6-CH ₃	-(CH ₂) ₄ -			1	
508 509 510	CH ₃ CH ₃ CH ₃	CH ₃ CH ₃ CH ₃	6-CH ₃	-(CH ₂) ₅ - -(CH ₂) ₅ - -(CH ₂) ₅ - -(CH ₂) ₅ -		сн ₃ (сн ₃) ₂ сн- (сн ₃) ₃ с- сн ₃ -(сн ₂) ₃ -	1	

45	40	35	30	25	20	15	10	6	
Tabelle 2 (2 (Fortsetzung)	(gunz							
BspNr.	×	٨	Z _n	A	a	R1		Fpº	
512	снз	СНЗ	6-сн3	-(CH ₂) ₅ -		C2H5-C(CH3)2	H ₃) ₂		
513	СНЗ	снз	€н2-9	-(CH ₂) ₅ -		- ² но-о ^е (ено)	CH2-		
514	СНЗ	CH ₃	€-сн³	-(CH ₂) ₅ -	-	(сн ³) ⁵ сн	сн ₃) ₂ сн-с(сн ₃₎ ₂		
515	CH3	снэ	€-сн3	-(CH ₂) ₅ -		CH ₂ =CH-(CH ₂) ₈ -	CH ₂)8-		
516	СНЗ	СНЗ	€ - СН ³	-(CH ₂) ₅ -		H ₃ C	CH3		
517	СНЗ	снэ	ено-9	-(CH ₂) ₅ -		C4H9-CH-C2H5	H-C ₂ H ₅		
518	CH ₃	снз	6-CH ₃	-(CH ²) ² -			EH3		
519	CH ₃	снз	6-CH ₃	-(CH ₂) ₅ -		н ³ С-0-	CH ₃		
520	CH ₃	снэ	€н2-9	-(CH ₂) ₅ -		H ₃ C-O-	CH ₃		

		1							
5		Fр°							
10			ĺ	-CH2-	CH ₃	C2Hs	OCH ₃		
15		R1	H ₃ C H ₃ C	н ³ с-s-сн ⁵ -	٩٩٩	₽^P		00H ₃	H ₃ co-
20		В	1_	1		ı,	ı,	1	t_
25			-(CH ₂) ₅ -	-(CH ²)2-	-(CH ₂)5-	-(CH ₂) ₅ -	-(CH ²) ² -	-(CH ₂) ₅ -	-(CH ₂)5-
30		Z _n A	6-CH ₃	£но-9	е-сн ³	^Е нэ-9	6-CH ₃	6-CH ₃	6-сн3
35	(bunz	>	CH ₃	CH3	снз	снэ	СН3	снз	снз
40	(Fortset:	×	CH3	СНЗ	снз	CH ₃	снз	CH ₃	СНЭ
4 5	(abelle 2 (Fortsetzung)	3spNr.	. 521	522	523	524	525	526	527

5		Fp ^o						•
10			CH ₃	\downarrow	Ļ	NO ₂	人	人
15		R1		CH ₃	H ₃ C		Nos	O_2^N
20		В	ı	ı		ı	ı	1
25			-(CH ₂) ₅ -					
30		Z _n A	енэ-9	енэ- 9	6-CH ₃	6-сн3	6-сн3	6-CH ₃
35	(Bunz	> -	снэ	снз	снэ	СНЗ	снэ	снз
40	2 (Fortsetzung)	×	CH3	СНЭ	СНЗ	CH3	СНЗ	снз
45	Tabelle 2	BspNr.	528	529	530	531	283	533

EP 0 456 063 A2

5		Fpº				
10			15. 人	1	1	<
15		R1			C1	
20		æ				
25			-(CH ₂) ₅ -	-(CH ²) ² -	-(CH ₂) ₅ -	-(CH ₂) ₅ -
30		Z _n A	6-сн ₃	6 - CH ₃	6 - CH ₃	6-CH ₃
35	(Bur	¥ 2	9 Ено	9 сн3 е	9 Енэ	снз 6
40	(Fortsetzung)	×	CH3	CH ₃	снз	снз
45	Tabelle 2 (Fo	BspNr.	534	535	536	537

		Fp° C									·		\
5					H-	H-CH2-	1	_ღ	ı.	-CH2-	į	>	\}
10		R ²	снэ	c_2H_5	(CH ₃) ₂ CH-	(сн ³) ⁵ с	C2H5-CH-	CH ₃	-э ^є (^є нэ)	(CH ³) ³ C-CH ⁵ -		C2H50	C2H50
15													
20	(Ic)	а	снз	снз	снз	снз	СНЭ		снз	снз	CH3	CH ₃	СНЗ
25	Ü	A	снз	CH3	CH3	СНЭ	СНЭ		CH ₃	снз	снэ	снз	CH ₃
30	o ×	z_n	I	I	Ŧ	II	H		x	I	π	Ħ	Ħ
35	H H N	¥	c1	ដ	ប	CI	CI		ច	CJ	CJ	C1	c ₁
40		×	C1	[]	CI	ເວ	Ċ		ເາ	CJ	CJ	ច	ច
45	Tabelle 3	BspNr.	538	539	540	541	542		543	544	545	546	547

EP 0 456 063 A2

45	40	35	30	20		15	10	5
abelle 3	Tabelle 3 (Fortsetzung)	(Bun						
BspNr.	×	>-	2 _n	Y	æ	R ²		Fp⁰ C
							{	
548	C1	CI	Œ	CH ₃	снз			
549	C1	ເວ	æ	снэ	снз	c ₂	C2H5-0~CH3	
550	CJ	ü	æ	снз	снэ	9)	(сн ₃) ₂ сн-о	СНЭ
551	CJ	C1	æ	снз	енэ	ະວ	C3H7-0~CH3	_
552	C1	C1	æ	CH ₃	снз	C ₂	C2H5-0~C2H5	ក្
553	G	c1	Ħ	$c_2 H_5$	CH3	CH3	m	
554	C1	C	H	C2HS	CH ₃	CZ	C2H5	
555	C1	CJ	H	C2HS	снз	Ö	(CH ₃) ₂ CH-	
556	C1	ច	Ħ	C2H5	снз	S)	(сн ₃) ₂ сн-сн ₂ -	
557	ប	.	ж	$c_2 H_5$	снэ	ຽ	с ₂ н ₅ -сн- 	
558	5	C	ж	C2H5	снз	9	-ɔ ^ɛ (ch³)	
559	CI	C1	æ	C2H5	снэ	0)	(сн ₃) ₃ с-сн ₂ -	

EP 0 456 063 A2

		Fp° C						снз		10				
5				>	\ \ \	1	CH ₃	\	CH ₃	C2H5			ı	-cH2-
10				C ₂ H ₅ O	C2H50		C2H5-0~	(сн ₃) ₂ сн-0-	C3H7-0~	C2H5-0	ო	c ₂ H ₅	(сн ³) ⁵ сн-	(сн ³) ² Сн-сн ² -
15		R2	~	ບ	Ö		c ₂	S)	ບິ	ບ	СНЗ	ບິ	9	9
		В	снз	снз	снз	снз	снз	снэ	снз	Енэ	C2HS	C2H5	c_2H_5	C2HS
20			J	U	J	Ü	J		J	J	Ū	•	Ĭ	J
25		A	C2HS	c_2H_5	$c_2 H_5$	c_2H_5	C2H5	C2H5	$c_2 H_5$	c_2H_5	c_2H_5	$c_{2}H_{5}$	C_2H_5	C_2H_5
						·								
30		2 ⁿ	Ħ	I	I	x	I	Ħ	×	x	I	I	Ħ	Ħ
35	(B1	٠,	C1	CJ	CJ	C1	cı	CJ	C1	C1	. []	C1	CI	C]
	(Fartsetzung)													
40	(Fart	×	C1	CI	CJ	CI	CI	Cl	C	CI	C1	CI	C	CI
45	Tabelle 3	BspNr.					•							
	Tab	Вар	260	561	295	563	564	565	266	567	568	569	570	571

EP 0 456 063 A2

45	40	35	30	20	15	5	
Tabelle 3	(Fortsetzung)	(Bun		·			
BapNr.	×	٨	2 _n	¥	æ	R ² Fp ⁰ C	ບ
. 225	ប	C1	æ	C ₂ H ₅	C ₂ H ₅	с ₂ н ₅ -сн- сн ₃	
573	ដ ដ	C 1	z :	C ₂ H ₅	c ₂ H ₅	. сн ³) ³ с-	
575	5 5	5 5	т ш	C2H5	c ₂ h ₅ c ₂ H ₅	(CH ₃) ₃ C-Ch ₂ -	
929	ច	C1	Ħ	C2H5	C2HS	C ₂ H ₅ 0	
277	CJ	ເລ	x	c ₂ H ₅	C2H5	C2H50~0~	
578	C 1	C1	æ	C ₂ H ₅	C ₂ H ₅		
679	CJ	C1	æ	C ₂ H ₅	C2H5	C2H5-0~CH3	
580	CJ	ü	æ	C2H5	C2H5	(сн ₃) 2сн-о-сн ₃	
581	CJ	C1	E	C2H5	c ₂ H ₅	C3H7-0~CH3	
582	ü	C1	æ	C ₂ H ₅	C2H5	C2H5-0~C2H5	

5		Fp⁰ C											>		снз
10		R ²	снз	C ₂ H ₅	(CH ₃) ₂ CH-	(CH3)5CH-CH5-	С ₂ Н5 -СН- СН3		(CH3)3C-	(CH3)3C-CH2-	\Diamond	C ₂ H ₅ O	C2H50		C2H5-0~CF
15															
20		Ø	СНЭ	СНЭ	снз	CH ₃	СНЗ	;	снз	снэ	снэ	CH ₃	снз	снэ	СНЭ
25		A	C3H2	C3H2	C3H2	C3H2	C3H2	;	c_{3H_7}	C3H2	C3H2	C3H7	C3H7	C ₃ H ₇	C3H2
30		2	I	×	×	x	H		I	H	Ξ	H	I	Ħ	I
35	(Bunz	+	CI	ដ	C1	CI	ដ		ប	CJ	CI	C1	CJ	ប	CI
40	(Fortsetzung)	×	CI	ដ	CJ	ប	C1		C1	CI	C1	CJ	C1	CI	CJ
45	Tabelle 3	BspNr.	583	584	585	586	587		588	589	290	591	592	593	594

EP 0 456 063 A2

45	40	35	30	20	15	10	5
Tabelle 3 (Fortsetzung)	(Fortsetz	(Bun					
BspNr.	×	*	2 _n	A	В	R ²	Fp⁰ C
595	c c	CI	n	C3H2	снз	(CH ₃)	(CH ₃) ₂ CH-0~CH ₃
596	CJ	C1	Ħ	C3H2	снз	C3H7-0	·OCH3
297	CJ	CJ	Ħ	C3H2	снз	C2H5-0-	.0~C2H5
598	c1	C1	¤	i-C ₃ H ₇	снз	CH ₃	
669	ü	C1	×	i-C ₃ H ₇	CH ₃	C2H5	
009	C1	ដ	I	i-C ₃ H ₇	CH ₃	(CH ₃)	-нэ ^г сн-
601	C1	CI	Ħ	i-C ₃ H ₇	снз	(снз)	(сн ³) ² сн-сн ² -
802	C1	C1	E	i-c ₃ H ₇	снз	С2 ^{Н5 – СН-} СН3	-CH-
							1
603	C1	CJ	I	i-C ₃ H ₇	CH3	(сн ³) ³ с-	- ₂ E(
604	C1	CJ	I	i-C ₃ H ₇	СНЗ	(CH ₃)	(CH ₃) ₃ C-CH ₂ -
909	C1	15	æ	i-C ₃ H ₇	снз	V	人
909	C1	C1	Ħ	i-C ₃ H ₇	снз	C2H5O	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \

		0				e e			,					
5		Fp°C	>		CH ₃	-O-CH3	CH ₃	C2H5	,		•	-CH2-		
10		R ²	C2H5O		C2H5-0~	(сн ³) ² сн-0	C3H2-0~	C2H5-0	снз	C2HS	(сн ³) ² сн-	(сн3)2сн-сн2-	C2H5-CH-	39 1
15														
20		B	снэ	снз	· CH3	снэ	СНЗ	снэ	-(CH ₂)4-	H2)4-	H2)4-	-(CH ₂)4-	-(CH ₂) ₄ -	
25		A	i-C ₃ H ₇	i-C ₃ H ₇	i-C3H7	i-C ₃ H ₇	i-C ₃ H ₇	i-C ₃ H ₇	0) -	D) -	0)-	ک) -	0) -	
30		Zn	Ħ	x	I	×	I	Ħ	I	×	Ŧ	Ξ	×	
35	(Sunz	۲	CI	C1	CI	CJ	C1	CJ .	CI	ប	CI	C	CI	
40	(Fortsetzung)	×	C	C1	CJ	C1	C1	CI	ប	C	ប	CI	15 .	
45	Tabelle 3	BspNr.	209	608	609	610	611	612	613	614	615	616	617	
50														

. 85

EP 0 456 063 A2

5		₽p° C		-2		\	>		CH3	CH ₃	CH ₃	C2H5
10		R ²	-э ^є (Єнэ)	(CH3)3C-CH5-		C2H50	C2H50		C2H5-0	(сн ³) ² сн-0-	C3H2-0	C2H5-0
15					•							
20		62	-(CH ₂)4-	-(CH ₂) ₄ -	-(CH ₂)4-	-(CH ₂) ₄ -	-(CH ₂)4-	-(CH ₂) ₄ -	-(CH ₂)4-	-(CH ₂)4-	-(CH ₂)4-	-(CH ₂)4-
25		4										
30		2 _n	H	H	æ	x	Ħ	æ	Ħ	Ħ	Ħ	Ħ
35	ng)	~	C1	CI	CJ	C ₁	Cl	C1	C]	C1	CI	CI
40	Tabelle 3 (Fortsetzung)	×	C1	C1	c1	5	CJ	C1	C1	C1	C1	C1
45 50	Tabelle	BspNr.	618	619	620	621	622	623	624	625	626	627

5		Fp⁰ C												}		ဌာ
10		R ²	į	CH ₃	C ₂ H ₅	(сн ³) ² сн-	(сн ³) ² сн-сн ² -	C2H5-CH-	CH ₃	(CH ³) ³ C-	(CH ³) ³ C-CH ² -		C2H50	c ₂ H ₅ O	\Diamond	C2H5-0~CH3
15												•				
20	·	æ		-(CH ₂) ₅ -	$-(CH_2)_5^-$	-(CH ₂) ₅ -	-(CH ₂) ₅ -	-(CH ₂) ₅ -		-(CH ₂) ₅ -	-(CH ₂) ₅ -	-(CH ₂) ₅ -	-(CH ₂) ₅ -	-(CH ₂) ₅ -	-(CH ₂) ₅ -	-(CH ₂) ₅ -
25		A														
30		Zn		I	ĸ	н	ĸ	Ħ		Ξ	H	m	æ	æ	æ	Ħ
35	(Buna	¥		CI	ü	ប៊	CI	CJ		ü	ບ	ូប៊	CJ	C1	CJ	CI
40	(Fortsetzung)	×		CJ	CJ	C1	CI	C1		ເນ	CJ	ü	C1	ຜ	0	CI
45	Tabelle 3	BspNr.		628	629	630	631	632		633	634	635	9E9	637	638	639

5		Fp⁰ C	ж-о- _{сн3}	CH ₃	C2H5			2	13)3			-2	43,3			8	
10	-	R ²	(снз) 2сн-0-	C3H2-0~	C2HS-0	CH ₃	СНЗ	сн(сн ³)	CH ₂ C(CF	CH ₃	СНЭ	CH(CH ³)	CH ₂ C(CF	СНЗ	c_2H_5	CH(CH ³)	CH2 CH2 CH2
20		В	-(CH ₂) ₅ -	-(СН ₂) ₅ -	-(СН ₂)5-	I	Ħ	I	Ħ	×	Ħ	π	Ħ	H	Ħ	x	Ŧ
25		V	- (CF	- (CF	- (Ch	ĸ	снз	CH ₃	снз	H	снз	снз	снз	H	H	x	æ
30		2 _n	æ	×	# .	6-C1	6-C1	6-C1	6-C1	H	H	Ħ	Ħ	6-CH ₃	€ CH ³	6-CH ₃	6-CH ₃
35	(gunz	> -	CJ	CJ	C1	C1	CJ	5	CI	СНЗ	CH3	CH3	CH ₃	снз	CH3	снэ	снэ
40	3 (Fortsetzung)	×	ប៊	ប៊	Ü	C1	CI	C1	CI	CH3	CH3	CH ₃	СНЗ	CH ₃	CH3	СНЗ	снэ
45	Tabelle 3	BspNr.	640	641	642	643	644	645	646	647	648	649	920	651	259	653	654

e		Fp° C											
10		R ²	CH2-C(CH3)3	(CH ₂) ₂ 0-C ₂ H ₅	\Diamond		снз	C2H5	сн(сн³) 2	CH C2HS	сн ² с(сн ³) ³	(CH ₂) ₂ 0-C ₂ H ₅	\Diamond
15													
20		B	x	Ħ	æ	Ħ	I	Ħ	x	æ	æ	I	Ħ
25		A	x	H	#	E	CH ₃	СНЗ	снз	СНЗ	CH3	снз	снз
30		Zn	6-CH ₃	€но-9	6-CH3	€-сн³	6-CH ₃	6-CH3	6-CH ₃	6-CH ₃	€но-9	ено-9	6-CH ₃
35	(Bun	>-	снз	СН	CH3	CH ₃	снз	снз	СНЗ	снз	снз	снэ	снэ
40	(Fortsetzung)	×	СНЭ	СНЭ	снэ	снз	снз	СНЭ	снз	снз	снэ	снз	снэ
45	Tabelle 3	BspNr.	655	929	259	658	629	099	661	299	£99	664	999

45	40	35	30	20 25	15	10	5
Tabelle 3	(Fortsetzung)	(Buna					
BapNr.	×	٨	2 _n	٧	æ	R ²	Fp⁰ C
999	СНЗ	CH ₃	6-CH ₃	CH ₃	Н		
299	снз	CH ₃	6-CH ₃	CH(CH ₃) ₂	Ξ	СН _З	
899	CH ₃	снз	6-CH ₃	CH(CH ₃) ₂	I	C ₂ H ₅	
699	снз	CH ₃	€-сн3	CH(CH ³) ²	I	CH(CH ₃) ₂	
029	снз	снз	6-CH ₃	СН(СН3)2	Ħ	CH C2HS	
671	CH3	снэ	6-CH ₃	сн(сн3)5	ĸ	CH ₂ C(CH ₃) ₃	
672	снз	снэ	€-СН3	сн(сн3)5	ĸ	(CH ₂) ₂ 0-C ₂ H ₅	
673	снз	СНЗ	€н2-9	CH(CH ³) ²	н	\bigcirc	
674	сн ³	снз	6-CH ₃	CH(CH)2	н		
675 676	CH ₃	CH ₃	е-сн ³	CH ₂ CH(CH ₃) ₂ CH ₂ CH(CH ₃) ₂	жж	CH ₃ C ₂ H ₅	

5		Fp° C								*	
10		\mathbb{R}^2	сн(сн³)2	CH ₂ CH(CH ₃) ₂	CH C2Hs	CH ^S C(CH ³) ³	(CH ²) ² 0-C ² H ²	\bigcirc	\bigcirc	снз	C ₂ H ₅
15								·			
20		Ф	H 2	В В	#	, # 2	2 H .	Ξ Z	H 2	н ен	¹ 3 н
25		Ą	CH ² CH(CH ³) ²	сн ² сн(сн ³) ²	сн ² сн(сн ³⁾ ²	CH2CH(CH3)2	сн ² сн(сн ³) ²	сн2сн(сн3)2	сн ² сн(сн ³⁾ 5	(CH ₂) ₂ -SCH ₃	(CH ₂) ₂ -SCH ₃
30		2 _n	6-CH ₃	€ +СН ³	⁶ но-9	€Hጋ-9	6-CH ₃	6-CH ₃	^е нэ-9	6-CH ₃	€ CH ³
35	(gunz	*	CH ₃	CH ₃	CH3	снз	снз	снз	CH ₃	снз	снз
40 .	(Fortsetzung)	×	CH3	снэ	CH ₃	снэ	снэ	СНЗ	снэ	CH ₃	СНЭ
45	Tabelle 3	Bsp. "Nr.	677	829	629	089	681	. 289	683	684	685

50	45	40	35	25 30	20	15	10	5
Tabelle 3 (Fort		setzung)						
BspNr.	×	>-	Zn	Ą	8	R ²	Fp° C	ا ن
989	снэ	cH ₃	6-CH ₃	(CH ₂) ₂ -SCH ₃	I	CH(CH ₃) ₂		
289	снз	снз	6-сн3	(сн ₂) ₂ -sсн ₃	ı	CH C2H5		
688	снэ	СНЗ	€но-9	(CH ₂) ₂ -SCH ₃	H	CH ₂ C(CH ₃) ₃		
689	снз	снз	6-CH ₃	(CH ₂) ₂ -SCH ₃	н	(CH ₂) ₂ 0-C ₂ H ₅	HS	
069	снз	CH ₃	6-CH ₃	(сн ₂) ₂ -sсн ₃	д	\bigcirc		
691	СНЗ	c _H 3	^Е НЭ- 9	(CH ₂) ₂ -SCH ₃	æ	\bigcirc		
269	СНЗ	æ	6-CH ₃	CH ₃	снз	CH ₃		
693	СНЭ	CH3	6-CH ₃	CH ₃	снз	C2H5		140
694	СНЗ	CH ₃	6-CH ₃	CH3	снз	-нэ ² (Енэ)		161-163
695	снз	снз	€-СН3	снз	снз	(сн ₃) ₂ сн-сн ₂ -	3H2-	
969	снэ	снз	6-CH ₃	снз	снз	C2H5-CH-		86
						CH ₃		

45 50	40 .	35	30	25	20	10	6
Tabelle 3 (For	(Fortsetzung)	(gun:					
BspNr.	×	>	2 _n	4	a	\mathbb{R}^2	Fp⁰ C
269	CH3	CH ₃	6-сн3	СН ^З	СНЗ	-2 ^E (EH2)	<u>.</u>
869	снэ	снз	6-CH ₃	снз	СНЭ	(сн ³) ³ с-сн ⁵ -	-CH2-
669	CH ₃	СНЗ	6-CH ₃	CH ₃	CH ₃	\bigcirc	1
200	СНЗ	CH3	6-CH3	СНЗ	СНЗ	C2H5O	>
701	снз	снз	6-CH ₃	снз	снэ	C2H50	>
702	c _H ³	снэ	6-CH ₃	CH ₃	CH3		人
703	снэ	снз	6-CH ₃	CH ₃	снэ	C2H5-0	CH ₃
704	СНЭ	CH ₃	€н⊃-9	снз	снэ	0-нэ ² (сн ³)	сн-0∕сн3
705	снз	снз	6-CH ₃	снэ	снз	C3H2-0	CH ₃
902	снз	сн _з	6-CH ₃	c _H 3	снз	C2H5-0	C2H5

		Fp° C											\		
5					CH-	(CH ₃) ₂ CH-CH ₂ -	CH ₃)	- ₂ E	(CH3)3C-CH2-	\downarrow	>	\ \ \ \		CH ₃
10		R ²	сн ^з	C2HS	(сн ³) ² сн-	(CH ³) ²	C2H5-CH- CH3		- ²⁶ (EH2)	(сн ³)		C2H50	C2H5O		C2H5-0
15 20		æ	снэ	CH3	снз	снз	снз		CH ₃	снз	снз	снз	снз	снз	снз
25		A	C2H5	C ₂ H ₅	C ₂ H ₅	c ₂ H ₅	c ₂ H ₅		C2H5	C ₂ H ₅	c ₂ H ₅	C ₂ H ₅	C ₂ H ₅	c ₂ H ₅	c ₂ H ₅
30					6-CH ₃ C ₂		6-сн3 С2		6-CH ₃ C ₂		6-сн3 С2	6-CH ₃ C ₂	6-СН3 С2	6-сн ₃ с ₂	² о [£] но-9
35		Zn	-9												
	ortsetzung)	>-	Ħ		СНЭ		СНЭ			СНЭ	CH ₃	сн3	СНЗ	СНЗ	СНЭ
40	F	×	CH ₃	СНЗ	CH3	СНЗ	СНЭ		CH3	СНЗ	CH3	CH3	СНЗ	СНЗ	СНЭ
45	Tabelle 3	BspNr.	707	708	402	710	711		712	713	714	715	716	717	718

EP 0 456 063 A2

6		Fp⁰ C	-о-	CH ₃	₹c2H5				-CH ₂ -		•	-CH ₂ -	1
10 -		R ²	(сн ³) ² сн-0	C3H7-0~	C2H5-0	СНЗ	C_2H_5	(сн3) 2сн-	(сн ³) ² сн-сн ² -	с ₂ н ₅ -сн-	-э ^є (сн ^з) ^з с-	(сн ³) ³ с-сн ⁵ -	
20		EL	CH ₃	СНЗ	сн ³	C2H5	C2H5	C2HS	c_2H_5	C ₂ H ₅	c_2H_5	C_2H_5	C2HS
25		Y	C2H5	C2H5	C2H5	C2HS			C_2H_5	C ₂ H ₅		C2H5	C2HS
30		2n	е-сн ³	6-СН3	6-снз	6-CH ₃	6-сн ₃	6-CH ₃	6-CH ₃	6-CH ₃	6-CH ₃	6-CH ₃	6-CH ₃
35	(Bunz	*	снз	снз	снз	×	CH3	CH ₃	снэ	CH ₃	СНЭ	СНЭ	снз
40	(Fortsetzung)	×	снэ	СНЗ	снз	CH ₃	CH ₃	снз	снз	СНЗ	CH3	снз	снз
45	Tabelle 3	BspNr.	719	720	721	722	723	724	725	726	727	728	729

EP 0 456 063 A2

45	40	35	30	25	20	10	5
Tabelle 3	(Fortsetzung)	(Sunz					
BspNr.	×	¥	$^{2}_{n}$	Y	В	R ²	Fp° C
730	снз	снэ	€-сн³	C ₂ H ₅	C2H5	C ₂ H ₅ 0	
731	снз	СНЗ	6-CH ₃	C2H5	C2H5	c_2H_5O	>
732	СНЗ	CH ₃	6-CH3	C2H5	C2H5		
733	снз	снз	6-CH ₃	C ₂ H ₅	C2H5	C2H5-0~	снз
734	СНЭ	СНЗ	6-CH ₃	C2H5	C2H5	(CH ₃) ₂ CH-0	СН3
735	снэ	снэ	е-сн ³	C ₂ H ₅	C2H5	C3H2-0~	снэ
736	снэ	СНЭ	^Є НЭ-9	C2HS	C2H5	C2H5-0~	C2 ^H S
737	СНЗ	¤	6-CH ₃	C ₃ H ₇	снз	СНЗ	
738	CH3	СНЗ	6-CH ₃	C3H7	CH3	C2H5	
739	CH ₃	CH3	6-CH ₃	C3H2	снз	(CH ₃) ₂ CH-	
	снэ	снз	6-сн3	C3H2	снз	снэ, 2сн-сн2	l,
741	CH ₃	СНЭ	6-CH ₃	c ₃ H ₇	СНЗ	C2HS-CH-	

EP 0 456 063 A2

		Fp°C							\			~	СНЭ					,
5		12.			CH2-			,	{	1		CH ₃	\-	- £	, }	C2H5	-	
10		R2		-36 (EH3)	(сн ³) ³ с-сн ⁵ -)	C2H50	C2H50			C2H5-0	(сн³) 2сн-0-	2	N-4460	C2H5-0		снз
15								ស										
20		æ	į	cH ₃	СНЗ	СНЗ	1	C2H5	снз	CH3	ז	СНЗ	снз	5	CH3	CH ₃		снз
25		Y	:	C3H2	C3H7	C ₃ H ₇		C3H2	C3H2	C ₃ H ₂		C3H2	C3H7	נ	C3n2	C3H2		i-C ₃ H ₇
30		2 _n	;	e-cH3	€н ⊃ -9	6-CH ₃	1	6-CH ₃	6-сн3	6-CH3	ז	€-сн³	6-CH ₃		E 17-18	€н2-9		6-CH ₃
35	(gunz	+	į	cH ₃	снэ	СНЗ	1	снз	снэ	CH ₃	,	снэ	СНЭ	2	£ 47	Енэ		x
40	(Fortsetzung)	×	į	cH3	CH3	CH ₃	1	снз	снз	CH3	ס	CH3	CH3	5	၉	снз		снз
45	Tabelle 3	BspNr.		742	743	744		745	746	747		748	749	200	067	751		752

EP 0 456 063 A2

5		Fp⁰ C	,			H2_			H2-		\	>		сн3
10		R ²		C2H5	$(CH_3)_2CH^-$	(CH ³) ⁵ CH-CH ⁵ -	C ₂ H ₅ -CH- CH ₃	-э ^є (Єнэ)	(сн ³) ³ с-сн ⁵ -		C2H50	C2H5O		C2H5-0
15				~	~		m		m		m	m	m	m
20		В		CH	СНЗ	CH	CH3	СНЗ	СНЗ	снз	СНЗ	снз	СНЗ	CH ₃
25		٧		i-C3H2	i-C3H7	i-C ₃ H ₇	i-C ₃ H ₇	i-C ₃ H ₇	i-C ₃ H ₇	i-C ₃ H ₇	i-c ₃ H ₇	i-C ₃ H ₇	i-C ₃ H ₇	i-C ₃ H ₇
30		Zn		6-CH3	6-CH ₃	€-сн3	6-СН3	€ +СН3	6-CH ₃	€+Ω-9	6-CH ₃	6-CH3	6-CH ₃	6-CH ₃
35	(gunz	٨		СНЗ	СНЗ	снз	СНЗ	СНЭ	снз	снз	снэ	снэ	снэ	снэ
40	(Fortsetzung)	×		CH3	CH ³	снз	CH3	CH3	снз	CH3	снэ	снз	CH3	CH3
45	Tabelle 3	BspNr.		753	754	755	756	757	758	759	260	761	762	692

EP 0 456 063 A2

5		Fp° C	-о-	CH ₃	C2H5				-CH2-			-CH2-	
10		R ²	(сн ^{3) 2} сн-о	C3H2-0~	C2H5-0~	СНЗ	C2HS	(CH ₃) ₂ CH-	(сн ₃) ₂ сн-сн ₂ -	C2H5-CH- CH3	-э ^{є (єнэ)}	- ² нэ-э ^ε (Eнэ)	
15					m								
20		В	снз	CH3	снз	-(CH ₂)4-	$-(CH_2)_4^-$	-(CH ₂) ₄ -	-(CH ₂)4-	-(CH ₂)4-	-(CH ₂)4-	-(CH ₂)4-	-(CH ₂)4-
25		A	i-C ₃ H ₇	i -C ₃ H ₇	i-c ₃ H ₇	i) -	D) -	(C)	- (Ci	<u>5</u>	(C)) -	י (פ
30		Zn	€но-9	е-снэ	€н ⊃- 9	6-CH ₃	6-CH ₃	6-CH3	6-CH ₃	е-сн3	6-СН3	6-CH ₃	6-CH ₃
36	(gunz	*	снэ	снэ	СНЭ	x	CH3	CH3	снэ	снз	CH ₃	снз	снз
40	(Fortsetzung)	×	снз	снэ	снз	CH3	снэ	CH3	CH ₃	СНЭ	снз	снз	снэ
45	Tabelle 3	BspNr.	764	765	766	191	768	692	270	771	772	773	774

EP 0 456 063 A2

45	40	35	30	25	20	15	10	5
Tabelle 3 (Fortsetzung)	(Fortset	zung)						
BapNr.	×	¥	2 _n	V V	æ		R ²	Fp ^o C
775	CH ₃	CH ₃	6-CH ₃	ı	-(CH ₂) ₄ -		C2H50	`\
776	снэ	снз	6-CH ₃	1	-(CH ₂)4-		C2H50	>
777	снз	снз	€+⊃-9	•	-(CH ₂) ₄ -			
778	снз	CH ₃	6-CH ₃	•	-(CH ₂) ₄ -		C2H5-0	CH ₃
779	снз	снз	6-CH ₃	1	-(CH ₂) ₄ -		(сн³) ² сн-0∕	CH ₃
780	снз	снз	6-CH ₃	i	-(CH ₂) ₄ -		C3H2-0	CH ₃
781	снэ	CH ₃	6-CH ₃	ı	-(CH ₂) ₄ -		C2H5-0~	C2H5
782	CH3	×	6-CH ₃	1	-(CH ₂) _E -		CH ₂	
783	CH ₃	CH ₃	6-CH ₃	(-(CH ₂) ₅ -		C ₂ H ₅	
784	снз	СНЭ	EH2-9	1	-(CH ₂)5-		(CH ₃) ₂ CH-	
785	снз	снз	€н 2 -9	1	-(CH ₂)5-		(сн ₃) ₂ сн-сн ₂ -	H2-
786	снэ	снз	6-CH ₃	t	-(CH ₂) ₅ -		C2H5-CH-	
							CH ₃	

		Fp° C					\		_	СНЭ		15
5		£4,		2H2-		>		1	CH ₃	\	СНЗ	C2H5
10		R2	(CH ³) ³ C-	- ² нэ-э ^ε (^E нэ)		C2H50	C ₂ H ₅ 0		C2H5-0~	(сн ³) ² сн-0-	C3H2-0	C ₂ H ₅ -0
15												
20		B	-(CH ²) ² -	-(CH ₂) ₅ -	-(CH ₂) ₅ -	-(CH ₂) ₅ -	-(CH ²) ² -	-(CH2)5-	-(CH ₂) ₅ -	-(CH ₂) ₅ -	-(CH ₂) ₅ -	-(CH ₂) ₅ -
25		A										
30		2 _n	6-CH ₃	€но-9	6-CH ₃	6-CH ₃	6-CH3	6-CH ₃	€н2-9	6-CH ₃	6-CH ₃	6-CH ₃
35	(gunz	>-	СНЗ	снз	снз	CH3	СНЗ	СНЗ	снэ	снз	снэ	снз
40	(Fortsetzung)	×	снэ	снз	снз	снэ	EH3	CH ₃	CH3	снз	снз	снэ
45	Tabelle 3	BspNr.	787	788	789.	290	791	262	293	794	262	962

Beispiel (III)

55

138 g (0,5 Mol) N-(2,4,6-Trimethylphenyl-acetyl)-valin werden in 500 ml Methanol suspendiert, mit 73 ml (0,55 Mol) Dimethoxypropan versetzt und nach Zugabe von 4,75 g (25 mmol) p-Toluolsulfonsäure-monohydrat und Dünnschicht-Chromatographie (DC)-Kontrolle unter Rückfluß erhitzt.

Nach Abrotieren des Lösungsmittels nimmt man den Rückstand in Methylenchlorid auf, wäscht mit Natriumhydrogencarbonat-Lösung, trocknet und rotiert ein.

Ausbeute: 127,6 g (= 88 % d.Th.)

Beispiel (Ila1)

20

25

30

35

40

50

58.8 g (0,5 Mol) L-Valin in 720 ml Wasser werden mit 10 g (0,25 Mol) NaOH-Plätzchen versetzt. Anschließend werden synchron 30 g (0,75 Mol) NaOh-Plätzchen in 150 ml Wasser und 98,2 g (0,5 Mol) Mesitylenessigsäurechlorid so zugetropft, daß die Temperatur 40°C, nicht überschreitet. Nach 1 h wird bei 0-20°C mit konz. Salzsäure angesäuert, das Produkt abgesaugt und i.Vak. bei 70°C über Diphosphorpentoxid getrocknet.

Ausbeute: 138 g (= 100 % d.Th.) Fp. 140 °C.

Die erfindungsgemäßen Wirkstoffe der Formel (I) eignen sich bei guter Pflanzenverträglichkeit und günstiger Warmblütertoxizität zur Bekämpfung von tierischen Schädlingen, insbesondere der Klasse Arachnida und der Ordnung Milben (Acarina), die in der Landwirtschaft, in Forsten, im Vorrats- und Materialschutz sowie auf dem Hygienesektor vorkommen. Sie sind gegen normal sensible und resistente Artn sowie gegen alle oder einzelne Entwicklungsstadien wirksam. Zu den oben erwähnten Schädlingen gehören:

Aus der Ordnung der Acarina z.B. Acarus siro, Argas spp., Ornithodoros spp., Dermanyssus gallinae, Eriophyes ribis, Phyllocoptruta oleivora, Boophilus spp., Rhipicephalus spp., Amblyomma spp., Hyalomma spp., Ixodes spp., Psoroptes spp., Chorioptes spp., Sarcoptes spp., Tarsonemus spp., Bryobia praetiosa, Panonychus spp., Tetranychus spp..

Die erfindungsgemäßen Wirkstoffe wirken nicht nur gegen Pflanzen-, Hygiene- und Vorratsschädlinge, sondern auch auf dem veterinärmedizinischen Sektor gegen tierische Parasiten (Ektoparasiten) wie Schildzecken, Lederzecken, Räudemilben, Laufmilben.

Sie sind gegen normalsensible und resistente Arten und Stämme, sowie gegen alle parasitierenden und nicht parasitierenden Entwicklungsstadien der Ektoparasiten wirksam.

Die erfindungsgemäßen Wirkstoffe zeichnen sich durch eine hohe akarizide Wirksamkeit aus. Sie lassen sich mit besonders gutem Erfolg gegen pflanzenschädigende Milben, wie wie beispielsweise gegen die gemeine Spinnmilbe (Tetranychus urticae) einsetzen.

Die erfindungsgemäßen Wirkstoffe können weiterhin als Defoliants, Desiccants, Krautabtötungsmittel

und insbesondere als Unkrautvernichtungsmittel verwendet werden. Unter Unkraut im weitesten Sinne sind alle Pflanzen zu verstehen, die an Orten aufwachsen, wo sie unerwünscht sind. Ob die erfindungsgemäßen Stoffe als totale oder selektive Herbizide wirken, hängt im wesentlichen von der angewendeten Menge ab.

Charakteristisch für die erfindungsgemäßen Verbindungen ist, daß sie eine selektive Wirksamkeit gegen monokotyle Unkräuter im Vor- und Nachlaufverfahren (Pre- und Postemergence) bei guter Kulturpflanzenverträglichkeit aufweisen.

Die erfindungsgemäßen Wirkstoffe können z.B. bei den folgenden Pflanzen verwendet werden:

Monokotyle Unkräuter der Gattungen: Echinochloa, Setarla, Panicum, Digitaria, Phleum, Poa, Festuca, Eleusine, Brachiaria, Lolium, Bromus, Avena, Cyperus, Sorghum, Agropyron, Cynodon, Monochoria, Fimbristylis, Sagittaria, Eleocharis, Scirpus, Paspalum, Ischaemum, Sphenoclea, Dactyloctenium, Agrostis, Alopecurus, Apera.

Monokotyle Kulturen der Gattungen: Oryza, Zea, Triticum, Hordeum, Avena, Secale, Sorghum, Panicum, Saccharum, Ananas, Asparagus, Allium.

Dikotyle Kulturen der Gattungen: Gossypium, Glycine, Beta, Daucus, Phaseolus, Pisum, Solanum, Linum, Ipomoea, Vicia, Nicotiana, Lycopersicon, Arachis, Brassica, Lactuca, Cucumis, Cucurbita.

Die Verwendung der erfindungsgemäßen Wirkstoffe ist jedoch keineswegs auf diese Gattungen beschränkt, sondern erstreckt sich in gleicher Welse auch auf andere Pflanzen.

Die Verbindungen eignen sich in Abhängigkeit von der Konzentration zur Totalunkrautbekämpfung z.B. auf Industrie- und Gleisanlagen und auf Wegen und Plätzen mit und ohne Baumbewuchs. Ebenso können die Verbindungen zur Unkrautbekämpfung in Dauerkulturen, z.B. Forst, Ziergehölz-, Obst-, Wein-, Citrus-, Nuß-, Bananen-, Kaffee-, Tee-, Gummi-, Ölpalm-, Kakao-, Beerenfrucht- und Hopfenanlagen und zur selektiven Unkrautbekämpfung in einjährigen Kulturen eingesetzt werden.

Dabei zeigen die erfindungsgemäßen Wirkstoffe neben einer hervorragenden Wirkung gegen Schadpflanzen gute Verträglichkeit gegenüber wichtigen Kulturpflanzen, wie z. B. Weizen, Baumwolle, Sojabohnen, Citrusfrüchten und Zuckerrüben, und können daher als selektive Unkrautbekämpfungsmittel eingesetzt werden.

Die Wirkstoffe können in die üblichen Formulierungen übergeführt werden, wie Lösungen, Emulsionen, Suspensionen, Pulver, Schäume, Pasten, Granulate, Aerosole, Wirkstoff-imprägnierte Natur- und synthetische Stoffe, Feinstverkapselungen in polymeren Stoffen und in Hüllmassen für Saatgut, ferner in Formulierungen mit Brennsätzen, wie Räucherpatronen, -dosen, -spiralen u.ä., sowie ULV-Kalt- und Warmnebel-Formulierungen.

Diese Formulierungen werden in bekannter Weise hergestellt, z.B. durch Vermischen der Wirkstoffe mit Streckmitteln, also flüssigen Lösungsmitteln, unter Druck stehenden verflüssigten Gasen und/oder festen Trägerstoffen, gegebenenfalls unter Verwendung von oberflächenaktiven Mitteln, also Emulgiermitteln und/oder Dispergiermitteln und/oder schaumerzeugenden Mitteln. Im Falle der Benutzung von Wasser als Streckmittel können z.B. auch organische Lösungsmittel als Hilfslösungsmittel verwendet werden. Als flüssige Lösungsmittel kommen im wesentlichen in Frage: Aromaten, wie Xylol, Toluol, oder Alkylnaphthaline, chlorierte Aromaten oder chlorierte aliphatische Kohlenwasserstoffe, wie Chlorbenzole, Chlorethylene oder Methylenchlorid, aliphatische Kohlenwasserstoffe, wie Cyclohexan oder Paraffine, z.B. Erdölfraktionen, Alkohole, wie Butanol oder Glycol sowie deren Ether und Ester, Ketone, wie Aceton, Methylethylketon, Methylisobutylketon oder Cyclohexanon, stark polare Lösungsmittel, wie Dimethylformamid und Dimethylsulfoxid, sowie Wasser; mit verflüssigten gasförmigen Streckmitteln oder Trägerstoffen sind solche Flüssigkeiten gemeint, welche bei normaler Temperatur und unter Normaldruck gasförmig sind, z.B. Aerosol-Treibgas, wie Halogenkohlenwasserstoffe sowie Butan, Propan, Stickstoff und Kohlendioxid; als feste Trägerstoffe kommen in Frage: z.B. natürliche Gesteinsmehle, wie Kaoline, Tonerden, Talkum, Kreide, Quarz, Attapulgit, Montmorillonit oder Diatomeenerde und synthetische Gesteinsmehle, wie hochdisperse Kleselsäure, Aluminiumoxid und Silikate; als feste Trägerstoffe für Granulate kommen in Frage: z.B. gebrochene und fraktionierte natürliche Gesteine wie Calcit, Marmor, Bims, Sepiolith, Dolomit sowie synthetische Granulate aus anorganischen und organischen Mehlen sowie Granulate aus organischem Material wie Sägemehl, Kokosnußschalen, Maiskolben und Tabakstengel; als Emulgier und/oder schaumerzeugende Mittel kommen in Frage: z.B. nichtionogene und anionische Emulgatoren, wie Polyoxyethylen-Fettsäure-Ester, Polyoxyethylen-Fettalkohol-Ether, z.B. Alkylarylpolyglykol-Ether, Alkylsulfonate, Alkylsulfate, Arylsulfonate sowie Eiweißhydrolysate; als Dispergiermittel kommen in Frage: z.B. Lignin-Sulfitablaugen und Methylcellulose.

Es können in den Formulierungen Haftmittel wie Carboxymethylcellulose, natürliche und synthetische pulverige, körnige oder latexförmige Polymere verwendet werden, wie Gummiarabicum, Polyvinylalkohol, Polyvinylacetat, sowie natürliche Phospholipide, wie Kephaline und Lecithine, und synthetische Phospholipide. Weitere Additive können mineralische und vegetabile Öle sein.

Es können Farbstoffe wie anorganische Pigmente, z.B. Eisenoxid, Titanoxid, Ferrocyanblau und organische Farbstoffe, wie Alizarin-, Azo- und Metallphthalocyaninfarbstoffe und Spurennährstoffe wie Salze von Eisen, Mangan, Bor, Kupfer, Kobalt, Molybdän und Zink verwendet werden.

Die Formulierungen enthalten im allgemeinen zwischen 0,1 und 95 Gewichtsprozent Wirkstoff, vorzugsweise zwischen 0,5 und 90 %.

Die erfindungsgemäßen Wirkstoffe können in ihren handelsüblichen Formulierungen sowie in den aus diesen Formulierungen bereiteten Anwendungsformen in Mischung mit anderen Wirkstoffen, wie Insektiziden, Lockstoffen, Sterilantien, Akariziden, Nematiziden Herbiziden oder Fungiziden vorliegen. Zu den Insektiziden zählen beispielsweise Phosphorsäureester, Carbamate, Carbonsäureester, chlorierte Kohlenwasserstoffe, Phenylharnstoffe, durch Mikroorganismen hergestellte Stoffe u.a.

Die erfindungsgemäßen Wirkstoffe können ferner in ihren handelsüblichen Formulierungen sowie in den aus diesen Formulierungen bereiteten Anwendungsformen in Mischung mit Synergisten vorliegen. Synergisten sind Verbindungen, durch die die Wirkung der Wirkstoffe gesteigert wird, ohne daß der zugesetzte Synergist selbst aktiv wirksam sein muß.

Der Wirkstoffgehalt der aus den handelsüblichen Formulierungen bereiteten Anwendungsformen kann in weiten Bereichen variieren. Die Wirkstoffkonzentration der Anwendungsformen kann von 0,0000001 bis zu 95 Gew.-% Wirkstoff, vorzugsweise zwischen 0,0001 und 1 Gew.-% liegen.

Die Anwendung geschieht in einer den Anwendungsformen angepaßten üblichen Weise.

Die erfindungsgemäßen Wirkstoffe eignen sich auch zur Bekämpfung von Milben, Zecken usw. auf dem Gebiet der Tierhaltung und Viehzucht, wobei durch die Bekämpfung der Schädlinge bessere Ergebnisse, z.B. höhere Milchleistungen, höheres Gewicht, schöneres Tierfell, längere Lebensdauer usw. erreicht werden können.

Die Anwendung der erfindungsgemäßen Wirkstoffe geschieht auf diesem Gebiet in bekannter Weise wie durch orale Anwendung in Form von beispielsweise Tabletten, Kapseln, Tränken, Granulaten, durch dermale bzw. äußerliche Anwendung in Form beispielsweise des Tauchens (Dippen), Sprühens (Sprayen), Aufgießens (pour-on and spot-on) und des Einpuderns sowie durch parenterale Anwendung in Form beispielsweise der Injektion sowie ferner durch das "feed-through"-Verfahren. Daneben ist auch eine Anwendung als Formkörper (Halsband, Ohrmarke) möglich.

Bei den im folgenden aufgeführten biologischen Beispielen wurden folgende Verbindungen als Vergleichssubstanzen eingesetzt:

A)

35

40 bekannt aus DE-A 2 361 084 und US-A 4 632 698

50 bekannt aus DE-A 2 361 084 und US-A 4 632 698
 C)

bekannt aus DE-A 2 361 084 und US-A 4 632 698

10 Beispiel A

5

Phaedon-Larven-Test

15 Lösungsmittel:

7 Gewichtsteile Dimethylformamid

Emulgator:

1 Gewichtsteil Alkylarylpolyglykolether

Zur Herstellung einer zweckmäßigen Wirkstoffzubereitung vermischt man 1 Gewichtsteil Wirkstoff mit der angegebenen Menge Lösungsmittel und der angegebenen Menge Emulgator und verdünnt das Konzentrat mit Wasser auf die gewünschte Konzentration.

Kohlblätter (Brassica oleracea) werden durch Tauchen in die Wirkstoffzubereitung der gewünschten Konzentration behandelt und mit Meerrettichblattkäfer-Larven (Phaedon cochleariae) besetzt, solange die Blätter noch feucht sind.

Nach der gewünschten Zeit wird die Abtötung in % bestimmt. Dabei bedeutet 100 %, daß alle Käfer-Larven abgetötet wurden; 0 % bedeutet, daß keine Käfer-Larven abgetötet wurden.

Bei diesem Test zeigen z.B. die folgenden Verbindungen der Herstellungsbeispiele überlegene Wirksamkeit gegenüber dem Stand der Technik:

(1), (2), (32), (40), (278), (280), (290), (299).

Beispiel B

25

30

45

50

Pluteila-Test

Lösungsmittel:

7 Gewichtsteile Dimethylformamid

Emulgator:

1 Gewichtsteil Alkylarylpolyglykolether

Zur Herstellung einer zweckmäßigen Wirkstoffzubereitung vermischt man 1 Gewichtsteil Wirkstoff mit der angegebenen Menge Lösungsmittel und der angegebenen Menge Emulgator und verdünnt das Konzentrat mit Wasser auf die gewünschte Konzentration.

Kohlblätter (Brassica oleracea) werden durch Tauchen in die Wirkstoffzubereitung der gewünschten Konzentration behandelt und mit Raupen der Kohlschabe (Plutella maculipennis) besetzt, solange die Blätter noch feucht sind.

Nach der gewünschten Zeit wird die Abtötung in % bestimmt. Dabei bedeutet 100 %, daß alle Raupen abgetötet wurden; 0 % bedeutet, daß keine Raupen abgetötet wurden.

Bei diesem Test zeigen z.B. die folgenden Verbindungen der Herstellungsbeispiele überlegene Wirksamkeit gegenüber dem Stand der Technik: (1), (32), (283), (299).

Beispiel C

Nephotettix-Test

Lösungsmittel: 7 Gewichtsteile Dimethylformamid

Emulgator: 1 Gewichtsteil Alkylarylpolyglykolether

Zur Herstellung einer zweckmäßigen Wirkstoffzubereitung vermischt man 1 Gewichtsteil Wirkstoff mit der angegebenen Menge Lösungsmittel und der angegebenen Menge Emulgator und verdünnt das Konzentrat mit Wasser auf die gewünschte Konzentration.

Reiskeimlinge (Oryza sativa) werden durch Tauchen in die Wirkstoffzubereitung der gewünschten Konzentration behandelt und mit Larven der Grünen Reiszikade (Neophotettix cincticepa) besetzt, solange die Keimlinge noch feucht sind.

Nach der gewünschten Zeit wird die Abtötung in % bestimmt. Dabei bedeutet 100 %, daß alle Zikaden

abgetötet wurden; 0 % bedeutet, daß keine Zikaden abgetötet wurden.

Bei diesem Test zeigen z.B. die folgenden Verbindungen der Herstellungsbeispiele überlegene Wirksamkeit gegenüber dem Stand der Technik: (1), (32), (43), (290), (292), (299), (301).

5 Beispiel D

Pre-emergence-Test

Lösungsmittel:

7 Gewichtsteile Aceton

Emulgator:

1 Gewichtsteil Alkylarylpolyglykolether

Zur Herstellung einer zweckmäßigen Wirkstoffzubereitung vermischt man 1 Gewichtsteil Wirkstoff mit der angegebenen Menge Lösungsmittel und der angegebenen Menge Emulgator und verdünnt das Konzentrat mit Wasser auf die gewünschte Konzentration.

Samen der Testpflanzen werden in normalen Boden ausgesät und nach 24 Stunden mit der Wirkstoffzubereitung begossen. Dabei hält man die Wassermenge pro Flächeneinheit zweckmäßigerweise konstant.
Die Wirkstoffkonzentration in der Zubereitung spielt keine Rolle, entscheidend ist nur die Aufwandmenge
des Wirkstoffs pro Flächeneinheit. Nach drei Wochen wird der Schädigungsgrad der Pflanzen bonitiert in %
Schädigung im Vergleich zur Entwicklung der unbehandelten Kontrollen. Es bedeuten:

0 % = keine Wirkung (wie unbehandelte Kontrolle

100 % = totale Vernichtung

Bei diesem Test zeigen z.B. die folgenden Verbindungen der Herstellungsbeispiele überlegene Wirksamkeit gegenüber dem Stand der Technik: (32), (281), (283).

Beispiel E

25

20

10

Post-emergence-Test

Lösungsmittel:

7 Gewichtsteile Aceton

Emulgator:

1 Gewichtsteil Alkylarylpolyglykolether

Zur Herstellung einer zweckmäßigen Wirkstoffzubereitung vermischt man 1 Gewichtsteil Wirkstoff mit der angegebenen Menge Lösungsmittel und der angegebenen Menge Emulgator und verdünnt das Konzentrat mit Wasser auf die gewünschte Konzentration.

Mit der Wirkstoffzubereitung spritzt man Testpflanzen, welche eine Höhe von 5 - 15 cm haben so, daß die jeweils gewünschten Wirkstoffmengen pro Flächeneinheit ausgebracht werden. Die Konzentration der Spritzbrühe wird so gewählt, daß in 2000 I Wasser/ha die jeweils gewünschten Wirkstoffmengen ausgebracht werden. Nach drei Wochen wird der Schädigungsgrad der Pflanzen bonitiert in % Schädigung im Vergleich zur Entwicklung der unbehandelten Kontrolle. Es bedeuten:

0 % = keine Wirkung (wie unbehandelte Kontrolle

100 % = totale Vernichtung

Bei diesem Test zeigen z.B. die folgenden Verbindungen der Herstellungsbeispiele überlegene Wirksamkeit gegenüber dem Stand der Technik: (32), (281), (283).

Beispiel F

45 Tetranychus-Test (OP-resistent)

Lösungsmittel:

7 Gewichtsteile Dimethylformamid

Emulgator:

1 Gewichtsteil Alkylarylpolyglykolether

Zur Herstellung einer zweckmäßigen Wirkstoffzubereitung vermischt man 1 Gewichtsteil Wirkstoff mit 50 der angegebenen Menge Lösungsmittel und der angegebenen Menge Emulgator und verdünnt das Konzentrat mit emulgatorhaltigem Wasser auf die gewünschten Konzentrationen.

Bohnenpflanzen (Phaseolus vulgaris), die stark von allen Entwicklungsstadien der gemeinen Spinnmilbe oder Bohnenspinnmilbe (Tetranychus urticae) befallen sind, werden mit einer Wirkstoffzubereitung der gewünschten Konzentration tropfnaß gespritzt.

Nach der gewünschten Zeit wird die Wirkung in % bestimmt. Dabei bedeutet 100 %, daß alle Spinnmilben abgetötet wurden; 0 % bedeutet, daß keine Spinnmilben abgetötet wurden.

Bei diesem Test zeigen z.B. die folgenden Verbindungen der Herstellungsbeispiele überlegene Wirksamkeit gegenüber dem Stand der Technik: (281), (283).

Patentansprüche

1. 3-Aryl-pyrrolidin-2,4-dion-Derivate der Formel (I)

5 (I)

10

15

20

25

30

35

in welcher

für Alkyl, Halogen, Alkoxy steht, Х

Υ für Wasserstoff, Alkyl, Halogen, Alkoxy, Halogenalkyl steht,

Z für Alkyl, Halogen, Alkoxy steht,

für eine Zahl von 0-3 steht, n

für Wasserstoff oder für die Gruppen -CO-R1, -CO-O-R2 oder für E® steht, in welchen

R١ für gegebenenfalls durch Halogen substituiertes Alkyl, Alkenyl, Alkoxyalkyl, Alkylthioalkyl,

Polyaikoxyalkyl und Cycloaikyi, das durch Heteroatome unterbrochen sein kann, gegebenenfalls subst. Phenyl, gegebenenfalls substituiertes Phenylalkyl, substituiertes Hetaryl, substituiertes Phenoxyalkyl und substituiertes Hetaryloxyalkyl steht und

 \mathbb{R}^2 für gegebenenfalls durch Halogen substituiertes Alkyl, Alkenyl, Alkoxyalkyl, Polyalkoxyalkyl und gegebenenfalls substituiertes Phenyl oder Cycloalkyl steht,

Α für Wasserstoff, gegebenenfalls durch Halogen substituiertes Alkyl, Alkenyl, Alkinyl, Alkoxyalkyl, Alkylthioalkyl, gegebenenfalls durch Heteroatome unterbrochenes Cycloalkyl oder gegebenenfalls durch Halogen-, Alkyl-, Halogenalkyl-, Alkoxy-, Nitro substituiertes Aryl, Arylalkyl oder Hetarvi steht.

für Wasserstoff, Alkyl oder Alkoxyalkyl steht, В

oder worin

A und B gemeinsam mit dem Kohlenstoffatom an das sie gebungen sind einen Carbocyclus bilden und

E^e für ein Metallionäquivalent oder einen Ammoniumion steht,

sowie die enantiomerenreinen Formen von Verbindungen der Formel (I).

40

55

3-Aryl-pyrrolidin-2,4-dion-Derivate der Formel (I) gemäß Anspruch 1, in welcher

Х für C₁-C₆-Alkyl, Halogen, C₁-C₆-Alkoxy steht,

Υ für Wasserstoff, C₁-C₅-Alkyl, Halogen, C₁-C₆-Alkoxy, C₁-C₃-Halogenalkyl steht,

Z für C₁-C₆-Alkyl, Halogen, C₁-C₆-Alkoxy steht,

für eine Zahl von 0-3 steht, 45 n

> R für Wasserstoff (la) oder für die Gruppen der Formel

> > -CO-R1 (lb) oder -CO-O-R2 (lc)

oder E® (Id) 50

steht, in welchen

R١ für gegebenenfalls durch Halogen substituiertes C₁-C₂₀-Alkyl, C₂-C₂₀-Alkenyl,

> C₁-C₈-Alkoxy-C₂-C₈-alkyl, C₁-C₈-Alkylthio-C₂-C₈-alkyl, C₁-C₈-Polyalkoxy-C₂-C₈-alkyl und Cycloalkyl mit 3-8 Ringatomen, das durch Sauerstoff und/oder Schwefel unterbrochen sein kann, steht,

		für gegebenenfalls durch Halogen-, Nitro-, C_1 - C_6 -Alkyl-, C_1 - C_6 -Alkoxy-, c_1 - C_6 -Halogenalkyl-, C_1 - C_6 -Halogenalkoxy-substituiertes Phenyl;
5		für gegebenenfalls durch Halogen-, C_1 - C_6 -Alkyl, C_1 - C_6 -Alkoxy-, C_1 - C_6 -Halogenalkyl-, C_1 - C_6 -Halogenalkoxy-substituiertes Phenyl- C_1 - C_6 -alkyl steht,
		für gegebenenfalls durch Halogen- und C ₁ -C ₆ -Alkyl-substituiertes Hetaryl steht,
10		für gegebenenfalls durch Halogen- und C_1 - C_6 -Alkyl-substituiertes Phenoxy- C_1 - C_6 -alkyl steht,
		für gegebenenfalls durch Halogen, Amino und C ₁ -C ₆ -Alkyl-substituiertes Hetaryloxy-C ₁ -C ₆ -Alkyl steht,
15	R ²	für gegebenenfalls durch Halogen substituiertes: C_1 - C_{20} -Alkyl, C_2 - C_{20} -Alkenyl, C_1 - C_8 -Alkoxy- C_2 - C_8 -alkyl, C_1 - C_8 -Polyalkoxy- C_2 - C_8 -alkyl steht,
20	Α	für gegebenenfalls durch Halogen-, Nitro-, C ₁ -C ₆ -Alkyl-, C ₁ -C ₆ -Alkoxy-, C ₁ -C ₆ -Halogenalkyl substituiertes Phenyl oder Cycloalkyl mit 3-8 Ringatomen steht, für Wasserstoff oder gegebenenfalls durch Halogen substituiertes geradkettiges oder verzweigtes C ₁ -C ₁₂ -Alkyl, C ₃ -C ₈ -Alkenyl, C ₃ -C ₈ -Alkinyl, C ₁ -C ₁₀ -Alkoxy-C ₂ -C ₈ -alkyl, C ₁ -C ₁₀ -Alkoxy-C ₁₀ -C ₁₀ -Alkox
		C ₈ -Polyalkoxy-C ₂ -C ₈ -alkyl, C ₁ -C ₁₀ -Alkylthio-C ₂ -C ₈ -alkyl, Cycloalkyl mit 3-8 Ringatomen, das durch Sauerstoff und/oder Schwefel unterbrochen sein kann oder gegebenenfalls durch Halogen, C ₁ -C ₆ -Alkyl-C ₁ -C ₆ -Halogenalkyl-, C ₁ -C ₆ -Alkoxy, Nitro substituiertes Aryl, Hetaryl oder Aryl-C ₁ -C ₆ -alkyl steht,
25	В,	für Wasserstoff, geradkettiges oder verzweigtes oder verzweigtes C ₁ -C ₁₂ -Alkyl, C ₁ -C ₈ -Alkoxyalkyl steht, oder
	A und B	gemeinsam mit dem Kohlenstoffatom an das sie gebunden sind einen 3-8 gliedrigen Ring bilden oder
	E•	für einen Metallionenäquivalent oder ein Ammoniumion steht
30		sowie die enantiomerenreinen Formen von Verbindungen der Formel (I).
		din-2,4-dion-Derivat der Formel (I) gemäß Anspruch 1 oder 2, in welcher
25	X Y	für C₁-C₄-Alkyl, Halogen, C₁-C₄-Alkoxy steht, für Wasserstoff, C₁-C₄-Alkyl, Halogen, C₁-C₄-Alkoxy, C₁-C₂-Halogenalkyl steht,
35	Z	für C ₁ -C ₄ -Alkyl, Halogen, C ₁ -C ₄ -Alkoxy steht,
	n	für eine Zahl von 0-3 steht,
	R	für Wasserstoff (la) oder für die Gruppen der Formel
40		-CO-R¹ (lb), -CO-O-R² (lc) oder E [®] (ld)
45	R¹	steht, in welchen für gegebenenfalls durch Halogen substituiertes C ₁ -C ₁₆ -Alkyl, C ₂ -C ₁₆ -Alkenyl, C ₁ -C ₆ -Alkoxy-C ₂ -C ₆ -alkyl, C ₁ -C ₆ -Alkylthio-C ₂ -C ₆ -alkyl, C ₁ -C ₆ -Polyalkoxy-C ₂ -C ₆ -alkyl und Cycloalkyl mit 3-7 Ringatomen, das durch 1-2 Sauerstoff-und/oder Schwefelatome unterbrochen sein kann steht.
		für gegebenenfalls durch Halogen-, Nitro-, C ₁ -C ₄ -Alkyl-, C ₁ -C ₄ -Alkoxy-, C ₁ -C ₃ -Halogenalkyl-, C ₁ -C ₃ -Halogenalkoxy-substituiertes Phenyl steht,
50		für gegebenenfalls durch Halogen-, C_1 - C_4 -Alkyl-, C_1 - C_4 -Alkoxy-, C_1 - C_3 -Halogenalkyl-, C_1 - C_3 -Halogenalkoxy-substituiertes Phenyl- C_1 - C_4 -alkyl steht,
55		für gegebenenfalls duch Halogen- und C ₁ -C ₆ -Alkyl-substituiertes Hetaryl steht,
33		gegebenenfalls für durch Halogen- und $C_1\text{-}C_4\text{-}Alkyl\text{-}substituiertes}$ Phenoxy- $C_1\text{-}C_5\text{-}alkyl\text{-}$ steht,

	R²	für gegebenfalls durch Halogen, Amino und C ₁ -C ₄ -Alkyl-substituiertes Hetaryloxy-C ₁ -C ₅ -alkyl steht, für gegebenenfalls durch Halogen substituiertes C ₁ -C ₁₆ -Alkyl, C ₂ -C ₁₆ -Alkenyl, C ₁ -C ₁₆ -
		Alkoxy-C2-C6-alkyl, C1-C6-Polyalkoxy-C2-C6-alkyl steht,
5		für gegebenenfalls durch Halogen, Nitro-, C_1 - C_4 -Alkyl, C_1 - C_3 -Alkoxy-, C_1 - C_3 -Halogenalkyl-substituiertes Phenyl steht,
10	Α	für Wasserstoff gegebenenfalls durch Halogen substituiertes geradkettiges oder verzweigtes C ₁ -C ₁₀ -Alkyl, C ₃ -C ₆ -Alkenyl, C ₃ -C ₆ -Alkinyl, C ₁ -C ₈ -Alkoxy-C ₂ -C ₆ -alkyl, C ₁ -C ₆ -Polyalkoxy-C ₂ -C ₆ -alkyl, C ₁ -C ₈ -Alkylthio-C ₂ -C ₆ -alkyl, Cycloalkyl mit 3-7 Ringatomen, das durch 1-2 Sauerstoff-und/oder Schwefelatome unterbrochen sein kann oder geebenen-
15	В	falls durch Halogen-, C ₁ -C ₄ -Alkyl-,C ₁ -C ₄ -Halogenalkyl-C ₁ -C ₄ -Alkoxy-Nitro , substituiertes Aryl, Hetaryl oder Aryl-C ₁ -C ₄ -alkyl steht, für Wasserstoff, geradkettiges oder verzweigtes C ₁ -C ₁₀ -Alkyl, C ₁ -C Alkoxyalkyl steht oder
	A uno	
20	E [⊕] .	für ein Metallionenäquivalent oder ein Ammoniumion steht,
		sowie die enantiomerenreinen Formen von Verbindungen der Formel (I).
	4. 3-Aryl-p	yrrolidin-2,4-dion-Derivate der Formel (I) gemäß Anspruch 1 bis 3, in welcher
25	Х	für Methyl, Ethyl, Propyl, i-Propyl, Fluor, Chlor, Brom, Methoxy und Ethoxy steht, für Wasserstoff, Methyl, Ethyl, Propyl, i-Propyl, Butyl, i-Butyl, tertButyl, Fluor, Chlor,
	Υ	Brom, Methoxy, Ethoxy und Trifluormethyl steht,
	Z	für Methyl, Ethyl, i-Propyl, Butyl, i-Butyl, tertButyl, Fluor, Chlor, Brom, Methoxy und
	-	Ethoxy steht,
30	n	für eine Zahl von 0-3 steht,
	R	für Wasserstoff (la) oder für die Gruppen der Formel
		-CO-R ¹ (lb), -CO-O-R ² (lc) oder E [®] (ld)
35		steht, in welcher
	R¹	für gegebenenfalls durch Fluor oder Chlor substituiertes: C1-C14-Alkyl, C2-C14-Alkenyl,
		C ₁ -C ₄ -Alkoxy-C ₂ -C ₆ -alkyl, C ₁ -C ₄ -Alkylthio-C ₂ -C ₆ -alkyl, C ₁ -C ₄ -Polyalkoxyl-C ₂ -C ₄ -alkyl und Cycloalkyl mit 3-6 Ringatomen, das durch 1-2 Sauerstoff-und/oder Schwefelatome unterbrochen sein kann steht,
40		
		für gegebenenfalls durch Fluor-, Chlor, Brom-, Methyl-, Ethyl-, Propyl, i-Propyl, Methoxy, Ethoxy, Trifluormethyl-, Trifluormethoxy-, Nitro- substituiertes Phenyl steht,
45		für gegebenenfalls durch Fluor-, Chlor-, Brom-, Methyl-, Ethyl-, Propyl-, i-Propyl, Methoxy, Ethoxy, Trifluormethyl, Trifluormethoxy-substituiertes Phenyl-C ₁ -C ₃ -alkyl steht,
		für gegebenenfalls durch Fluor-, Chlor-, Brom-, Methyl-, Ethyl-substituiertes Pyridyl, Pyrimidyl, Thiazolyl und Pyrazolyl steht,
50		für gegebenenfalls durch Fluor-, Chlor-, Methyl-, Ethyl-substituiertes Phenoxy- C_1 - C_4 -alkylsteht,
55	R²	für gegebenenfalls durch Fluor-, Chlor-, Amino-, Methyl-, Ethyl-, substituiertes Pyridyloxy- C_1 - C_4 -alkyl, Pyrimidyloxy- C_1 - C_4 -alkyl und Thiazolyloxy- C_1 - C_4 -alkyl steht, für gegebenenfalls durch Fluor oder Chlor substituiertes C_1 - C_1 -Alkyl, C_2 - C_1 -Alkenyl, C_1 - C_4 -Alkoxy- C_2 - C_6 -alkyl, C_1 - C_4 -Polyalkoxy- C_2 - C_6 -alkyl steht

für gegebenenfalls durch Fluor-, Chlor-, Nitro-, Methyl-, Ethyl-, Propyl-, i-Propyl-, Methoxy-, Ethoxy-, Trifluormethyl-substituiertes Phenyl steht,

- für Wasserstoff gegebenenfalls durch Halogen substituiertes geradkettiges oder verzweigtes C₁-C₈-Alkyl, C₃-C₄-Alkenyl, C₃-C₄-Alkinyl, C₁-C₆-Alkoxy-C₂-C₄-alkyl, C₁-C₄-Polyalkoxy-C₂-C₄-alkyl, C₁-C₆-Alkylthio-C₂-C₄-alkyl, Cycloalkyl mit 3-6 Ringatomen, das durch 1-2 Sauerstoff- und/oder Schwefelatomen unterbrochen sein kann oder gegebenenfalls durch Fluor-, Chlor-, Brom-, Methyl-, Ethyl-, Propyl-, iso-Propyl-, Methoxy-, Ethoxy-, Trifluormethyl-, Nitro substituiertes Aryl, Pyridin, Imidazol, Pyrazol, Triasol, Indol, Thiazol oder
- B für Wasserstoff, geradkettiges oder verzweigtes C₁-C₈-Alkyl, C₁-C₄-Alkoxyalkyl steht, oder
- A und B gemeinsam mit dem Kohlenstoffatom, an das sie gebunden sind ein 3-6 gliedrigen Ring bilden, und
- E für ein Metallionenäquivalent oder ein Ammoniumion steht sowie die enantiomerenreinen Formen von Verbindungen der Formel I.
- 5. Verfahren zur Herstellung von 3-Aryl-pyrrolidin-2,4-dion-Derivaten der (I)

 $\begin{array}{c|c}
A & R-0 & X \\
\hline
H-N & 0
\end{array}$

in welcher

Α

5

10

15

20

25

30

35

40

50

X für Alkyl, Halogen, Alkoxy steht,

Y für Wasserstoff, Alkyl, Halogen, Alkoxy, Halogenalkyl steht,

Z für Alkyl, Halogen, Alkoxy steht,

n für eine Zahl von 0-3 steht,

R für Wasserstoff oder für die Gruppen

-CO-R1, -CO-O-R2

steht, in welchen

- R¹ für gegebenenfalls durch Halogen substituiertes Alkyi, Alkenyl, Alkoxyalkyi, Alkylthioalkyi, Polyalkoxyalkyi und Cycloalkyi, das durch Heteroatome unterbrochen sein kann, gegebenenfalls subst. Phenyl, gegebenenfalls substituiertes Phenylalkyi, substituiertes Hetaryi, substituiertes Phenoxyalkyi und substituiertes Hetaryioxyalkyi steht und
- für gegebenenfalls durch Halogen substituiertes Alkyl, Alkenyl, Alkoxyalkyl, Polyalkoxyalkyl und gegebenenfalls substituiertes Phenyl steht,
- A für Wasserstoff, gegebenenfalls durch Halogen substituiertes Alkyl, , Alkylthioalkyl, gegebenenfalls durch Heteroatome unterbrochenes Cycloalkyl oder gegebenenfalls durch Halogen, Alkyl-, Haloalkyl-, Alkoxy-, Nitro substituiertes Aryl, Arylalkyl oder Hetaryl steht,
- B für Wasserstoff, Alkyl oder Alkoxyalkyl steht,

oder worin

- A und B gemeinsam mit dem Kohlenstoffatom an das sie gebunden sind einen Carbocyclus bilden und
 - E[•] für einen Metallionäquivalent oder ein Ammoniumion steht, dadurch gekennzeichnet,
- daß man zum Erhalt von 3-Aryl-pyrrolidin-2,4-dionen bzw. deren Enolen der Formel (la)

in welcher A, B, C, X, Y, Z und n die oben angegebene Bedeutung haben, (A)

N-Acylaminosäureester der Formel (II)

in welcher

5

10

15

20

25

30

35

40

45

50

55

A, B, X, Y, Z und n die oben angegebene Bedeutung haben

und

R3 für Alkyl steht,

in Gegenwart eines Verdünnungsmittels und in Gegenwart einer Base intramolekular kondensiert, (B)

oder daß man zum Erhalt von Verbindungen der Formel (lb)

$$\begin{array}{c|c}
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\$$

in welcher A, B, X, Y, Z, R1 und n die oben angegebene Bedeutung haben,

Verbindungen der Formel (la),

in welcher

A, B, X, Y, Z und n die oben angegebene Bedeutung haben,
 α) mit Säurehalogeniden der allgemeinen Formel (III)

10

15

20

in welcher

R¹ die oben angegebene Bedeutung hat

und

Hal für Halogen, insbesondere Chlor und Brom steht,

gegebenenfalls in Gegenwart eines Verdünnungsmittels und gegebenenfalls in Gegenwart eines Säurebindemittels,

oder

β) mit Carbonsäureanhydriden der allgemeinen Formel (IV)

R1-CO-O-CO-R1 (IV)

in welcher

R1 die oben angegebene Bedeutung hat,

gegebenenfalls in Gegenwart eines Verdünnungsmittels und gegebenenfalls in Gegenwart eines Säurebindemittels,

umsetzt,

(C)

25

30

oder daß man zum Erhalt von Verbindungen der Formel (Ic)

 $\begin{array}{c|c}
R^{2}O-C-O & X \\
\hline
A & & & \\
H-N & & & \\
\hline
0 & & & \\
\end{array}$

35

in welcher

A, B, C, X, Y, Z, R² und n die oben angegebene Bedeutung haben,

40

Verbindungen der Formel (la)

50

45

in welcher

A, B, X, Y, Z und n die oben angegebene Bedeutung haben,

mit Chlorameisensäureester der allgemeinen Formel (V)

55

R2-O-CO-CI (V)

in welcher

R² die oben angegebene Bedeutung hat, gegebenenfals in Gegenwart eines Verdünnungsmittels und gegebenenfalls in Gegenwart eines Säurebindemittels umsetzt,

υ

oder daß man zum Erhalt von Verbindungen der Formel (ld)

 $A \xrightarrow{B} O^{\Theta} X \xrightarrow{E^{\Theta}} Y \qquad (Id)$

15

10

5

in welcher X, Y, Z, A, B und n die oben angegebene Bedeutung haben,

Verbindungen der Formel (la)

20

25

in welcher X, Y, Z, A, B und n die oben angegebene Bedeutung haben,

mit Metallhydroxiden oder Aminen der allgemeinen Formeln (VI) und (VII)

Me_sOH_t (VI)

35

30

40 in welchen

Мө

für ein- oder zweiwertige Metallionen,

s und t

für die Zahl 1 und 2 und

R⁴, R⁵ und R⁶

unabhängig voneinander für Wasserstoff und Alkyl

stehen,

45

50

gegebenenfalls in Gegenwart eines Verdünnungsmittels, umsetzt.

- 6. Insektizide, akarizide und herbizide Mittel, gekennzeichnet durch einen Gehalt an mindestens einem 3-Aryl-pyrrolidin-2,4-dion-Derivat der Formel (I).
- 7. Verfahren zur Bekämpfung von Insekten und/oder Spinnentieren und/oder Unkräutern, dadurch gekennzeichnet, daß man 3-Aryl-pyrrolidin-2,4-dion-Derivate der Formel (I) auf Insekten und/oder Spinnentieren und/oder Unkräutern und/oder deren Lebensraum einwirken läßt.
- 55 8. Verwendung von 3-Aryl-pyrrolidin-2,4-dion-Derivaten der Formel (I) zur Bekämpfung von Insekten und/oder Spinnentieren und/oder Unkräutern.
 - 9. Verfahren zur Herstellung von insektiziden und/oder akariziden und/oder herbiziden Mitteln, dadurch

gekennzeichnet, daß man 3-Aryl-pyrrolidin-2,4-dion-Derivate der Formel (I) mit Streckmitteln und/oder oberflächenaktiven Mitteln vermischt.

(1) Veröffentlichungsnummer: 0 456 063 A3

(12)

EUROPÄISCHE PATENTANMELDUNG

(21) Anmeldenummer: 91106870.8

2 Anmeldetag: 27.04.91

(5) Int. Cl.5: **C07D** 207/38, C07D 209/54, C07D 207/408, C07D 403/12, C07D 207/404, C07D 405/12, A01N 43/36

Priorität: 10.05.90 DE 4014941 08.03.91 DE 4107394

Veröffentlichungstag der Anmeldung: 13.11.91 Patentblatt 91/46

Benannte Vertragsstaaten: BE CH DE ES FR GB GR IT LI NL

Veröffentlichungstag des später veröffentlichten Recherchenberichts: 08.07.92 Patentblatt 92/28

71 Anmelder: BAYER AG

W-5090 Leverkusen 1 Bayerwerk(DE)

2 Erfinder: Krauskopf, Birgit, Dr. Kicke 19 W-5060 Bergisch Gladbach 1(DE) Erfinder: Lürssen, Klaus, Dr. August-Kierspel-Strasse 151 W-5060 Bergisch Gladbach(DE) Erfinder: Santel, Hans-Joachim, Dr.

Gruenstrasse 9a

W-5090 Leverkusen 1(DE) Erfinder: Schmidt, Robert R., Dr. Im Waldwinkel 110

W-5060 Bergisch Gladbach(DE)

Erfinder: Wachendorff-Neumann, Ulrike, Dr.

Kriescherstrasse 81 W-4019 Monheim(DE) Erfinder: Fischer, Reiner, Dr. Nelly-Sachs-Strasse 23 W-4019 Monheim 2(DE)

Erfinder: Erdelen, Christoph, Dr.

Unterbuescherhof 22 W-5653 Leichlingen 1(DE)

1-H-3-Aryl-pyrrolidin-2,4-dion-Derivate.

5 Es werden neue 3-Aryl-pyrrolidin-2,4-dion-Derivate der allgemeinen Formel (I)

bereitgestellt, in welcher

Х für Alkyl, Halogen, Alkoxy steht,

Υ für Wasserstoff, Alkyl, Halogen, Alkoxy, Halogenalkyl steht.

Z für Alkyl, Halogen, Alkoxy steht,

n für eine Zahl von 0-3 steht,

R für Wasserstoff oder für die Gruppen -CO-R1, -CO-O-R2 oder E® steht, in welchen

 R^1 für gegebenenfalls durch Halogen substituiertes Alkyl, Alkenyl, Alkoxyalkyl, Alkylthioalkyl, Polyalkoxyalkyl und Cycloalkyl, das durch Heteroatome unterbrochen sein kann, gegebenenfalls subst. Phenyl, gegebenenfalls substituiertes Phenylalkyl, substituiertes Hetaryl, substituiertes Phenoxyalkyl und substituiertes Hetaryloxyalkyl steht und

 \mathbb{R}^2 für gegebenenfalls durch Halogen substituiertes Alkyl, Alkenyl, Alkoxyalkyl, Polyalkoxyalkyl und gegebenenfalls substituiertes Phenyl steht,

für Wasserstoff, gegebenenfalls durch Halogen substituiertes Alkyl, Alkoxyalkyl, Alkylthioalkyl, gegebenenfalls durch Hetero-

atome unterbrochenes Cycloalkyl oder gegebenenfalls durch Halogen-, Alkyl-, Halogenalkyl-, Alkoxy-, Nitro substituiertes Aryl, Arylalkyl oder Hetaryl steht,

B für Wasserstoff, Alkyl oder Alkoxyalkyl steht,

oder worin

A und B gemeinsam mit dem Kohlenstoff-

atom, an das sie gebunden sind ei-

nen Carbocyclus bilden und

E® für ein Metallionäquivalent oder ein

Ammoniumion steht,

sowie die enantiomerenreinen Formen von Verbindungen der Formel (I).

Die neuen Verbindungen der Formel (I) besitzen eine hervorragende herbizide, insektizide und akarizide Wirksamkeit.

EP 91 10 6870

	EINSCHLAGIG	E DOKUMENTE		
Kategorie	Kennzeichnung des Dokume der maßgeblic	nts mit Angabe, soweit erforderlich, hen Teile	Betrifft Anspruch	KLASSIPTKATION DER ANMELDUNG (Int. CL5)
D,Y	US-A-4 632 698 (UNION C	ARBIDE CORPORATION) 30.	1-9	C070207/38
-' '	Dezember 1986	• • •		C07D209/54
	Beispiel II, Spalte 7;	Verbindungen 1-18 in	ŀ	C07D207/408
	Tabelle I	10. D(11.00.190.1 1		C07D4D3/12
	* Spalte 4, Zeile 55 -	Smalte 5 7eile 34 *		C070207/404
	* Spalte 5, Zeile 59 -	•		C07D405/12
	whereas' raise as		1	AD1N43/36
v	US-A-3 272 842 (ELI LII	LY AND COMPANY) 13	1-9	702,710,700
·	September 1966		-	
ļ	Beispiel 2 ; Anspruch		1	
ľ	* Spalte 3, Zeile 23 -			
	* Spalte 3, Zeile 43 -			
	* Spalte 4, Zeile 5 - 2			
	Sparte +, Lette 5 = 4	- 1: 4 16 ·		
γ .	WD-A-8 804 652 (NIPPON	SODA CO., LTD.) 30. Juni	1-9	
.	1988			
1	* das ganze Dokument *			
į		-		
P.Y	EP-A-0 377 893 (BAYER A	NG) 18, Juli 1990	1-9	
'	* das ganze Dokument *	-		
		_		RECHERCHIERTE
P,Y	EP-A-0 415 185 (BAYER A	NG) 6. März 1991	1-9	SACHGEBIETE (Int. Cl.5)
•	* das ganze Dokument *	· ·		
1		-		C07D
P.Y	EP-A-0 423 482 (BAYER A	NG) 24. April 1991	1-9	AD1N
- 1	* das ganze Dokument *	•		
]	-	-		
D,A	DE-A-2 361 084 (UNION 0	ARBIDE CORPORATION) 20.	1-9	
	Jun1 1974		1	
	* das ganze Dokument *			
Ì				
ŀ				
			·	
j				
Der vo	rtiegende Recherchenbericht wurd	le für alle Patentansprüche erstellt		
	Recharchement	Abschluftdatum der Recherche		Prefer
	MUENCHEN	07 MAI 1992	HART	RAMPF G.W.
]	KATEGORIE DER GENANNTEN I	OOKUMENTE T : der Erfindun	zugrunde liegende	Theorien oder Grundslitze
	besonderer Bedeutung allein betrach	E : älteres Paten	tdokument, das jedo meldedatum veröffer	ch erst am oder
Y:von	besonderer Bedeutung in Verbindung	mit einer D : in der Anmei	dung angeführtes D	okument
4	eren Veröffentlichung derselben Kate	corie L : aus andera G	ribelen angeführtes	Dokument
A : teri	nnologischer Hintergrund		_	*************

Sco co. Ez (Posto)