Formules de Stirling

L'objectif de ce problème est de déterminer un équivalent simple à n! quand $n \to +\infty$.

Partie I – Une limite

On pose pour tout $n \in \mathbb{N}$: $I_n = \int_0^{\pi/2} \sin^n t \, dt$ et $J_n = \int_0^{\pi/2} \cos^n t \, dt$

- 1.a Calculer I_0 , I_1 et I_2 .
- 1.b Montrer que la suite (I_n) est décroissante et strictement positive.
- 1.c A l'aide d'un changement de variable adéquate, établir : $\forall n \in \mathbb{N}, I_n = J_n$.
- 2.a Etablir que pour tout $n \in \mathbb{N}$: $I_{n+2} = \frac{n+1}{n+2}I_n$.
- 2.b En encadrant $\frac{I_{n+1}}{I_n}$, montrer que $I_{n+1} \mathop{\sim}_{n \to +\infty} I_n$.
- 2.c Observer que la suite de terme général $(n+1)I_nI_{n+1}$ est constante.
- 2.d En déduire un équivalent simple de $\,I_n\,$ quand $\,n \to +\infty$.
- 3.a Pour $p \in \mathbb{N}$, exprimer I_{2p} et I_{2p+1} à l'aide de nombres factoriels.
- 3.b En observant que $\frac{(2p+1)I_{2p+1}}{(2p)I_{2p}} \xrightarrow{p\to +\infty} 1$ obtenir $\pi = \lim_{p\to +\infty} \frac{2^{4p}(p!)^4}{p((2p)!)^2}$.

Partie II - En encadrement

Soit a < b deux réels et $f:[a,b] \to \mathbb{R}$ une fonction de classe \mathcal{C}^2 concave. On note $M = \sup_{t \in [a,b]} \left| f''(t) \right|$.

On introduit $g:[a,b] \to \mathbb{R}$ la fonction affine déterminée par g(a) = f(a) et g(b) = f(b).

- 1.a Exprimer, pour tout $t \in [a,b]$, g(t) en fonction de a, b et f.
- 1.b Calculer $\int_a^b g(t) dt$.
- 2. Justifier par un argument géométrique, que $\int_a^b g(t)dt \le \int_a^b f(t)dt$.
- 3. On désire maintenant établir la propriété : $\forall t \in [a,b], f(t)-g(t) \leq M \frac{(t-a)(b-t)}{2}$ Celle-ci est clairement vérifiée pour t=a ou t=b. Il reste à l'étudier pour $t \in]a,b[$. Pour cela, on introduit $h:[a,b] \to \mathbb{R}$ la fonction définie par : h(x)=f(x)-g(x)-K(x-a)(x-b) où la constante K est choisie de sorte que h(t)=0.
- 3.a Justifier que h est de classe C^2 et exprimer h''(x).
- 3.b En exploitant le théorème de Rolle, établir qu'il existe $c \in [a,b]$ tel que h''(c) = 0.
- 3.c En déduire qu'alors $|K| \le \frac{M}{2}$ puis l'inégalité voulue.
- 4. Etablir alors que $\int_a^b f(t)dt \int_a^b g(t)dt \le \frac{M(b-a)^3}{12}$.
- 5. En appliquant le résultat précédent à la fonction $f: x \mapsto \ln x$ sur [n, n+1] (avec $n \in \mathbb{N}^*$) établir : $0 \le \left(n + \frac{1}{2}\right) \left(\ln(n+1) \ln(n)\right) 1 \le \frac{1}{12n^2}.$

Partie III – Formule de Stirling

Cette partie exploite les résultats des questions I.3.b et II.5 qui pourront, au besoin, être admis.

On pose pour
$$n\in\mathbb{N}\setminus\left\{0,1\right\}$$
 : $u_{\scriptscriptstyle n}=\ln\left(n^{n+\frac{1}{2}}\mathrm{e}^{-n}\right)-\ln n!$ et $v_{\scriptscriptstyle n}=u_{\scriptscriptstyle n}+\frac{1}{12(n-1)}$.

- 1. Montrer que les suites (u_n) et (v_n) sont adjacentes. On note C leur limite commune
- 2. En calculant de deux manières $\lim_{n\to\infty} 2u_n u_{2n}$ montrer que $C = -\frac{1}{2}\ln(2\pi)$.
- 3. Conclure: $n! \sim \sqrt{2\pi} e^{-n} n^{n+\frac{1}{2}}$.