Econometrics III Assignment Part I

Thao Le (523716) David Gyaraki (582340)

Contents

1	Question 1	2
2	Question 2	5
3	Question 3	6
4	Question 4	7
5	Question 5	8
6	Question 6	8
7	Question 7	8
R	Question 8	R

1 Question 1

plot.ts(dfAssign_p1\$GDP_QGR, main="GDP quarterly growth since 1987 Q2", \rightarrow ylab="Prices")

GDP quarterly growth since 1987 Q2

acf(dfAssign_p1\$GDP_QGR,12,pl=F)

Autocorrelations of series 'dfAssign_p1\$GDP_QGR', by lag

acf(dfAssign_p1\$GDP_QGR,12,pl=T)

Series dfAssign_p1\$GDP_QGR

pacf(dfAssign_p1\$GDP_QGR,12,p1=F)

Partial autocorrelations of series 'dfAssign_p1\$GDP_QGR', by lag

pacf(dfAssign_p1\$GDP_QGR,12,p1=T)

Series dfAssign_p1\$GDP_QGR

2 Question 2

```
ar4 <- arima(dfAssign_p1$GDP_QGR, order=c(4,0,0))
#coeftest(ar4)

ar3 <- arima(dfAssign_p1$GDP_QGR, order=c(3,0,0))
#coeftest(ar3)

ar2 <- arima(dfAssign_p1$GDP_QGR, order=c(2,0,0))
#coeftest(ar2)

ar1 <- arima(dfAssign_p1$GDP_QGR, order=c(1,0,0))
#coeftest(ar1)</pre>
```

```
stargazer::stargazer(ar4,ar3,ar2,ar1, title="Estimating the AR(4) to

AR(1) models on GDP data", align=TRUE, label = "tab_ar4",

table.placement="H", out = "tab_ar4.tex")
```

Table 1: Estimating the AR(4) to AR(1) models on GDP data

_	Dependent variable:			
	(1)	(2)	(3)	(4)
ar1	0.242**	0.256**	0.263**	0.272**
	(0.118)	(0.117)	(0.119)	(0.118)
ar2	0.030	0.030	0.058	
	(0.120)	(0.120)	(0.121)	
ar3	0.189	0.200^{*}		
	(0.119)	(0.119)		
ar4	0.086			
	(0.120)			
intercept	1.214***	1.228***	1.249***	1.253***
,	(0.204)	(0.180)	(0.140)	(0.130)
Observations	88	88	88	88
Log Likelihood	-113.211	-113.468	-114.849	-114.963
σ^2	0.765	0.770	0.796	0.798
Akaike Inf. Crit.	238.421	236.936	237.698	235.925
Note:			*p<0.1; **p<0	0.05; ***p<0.01

3 Question 3

```
ar1_res <- as.numeric(ar1[["residuals"]])
acf(ar1_res,12,pl=F)</pre>
```

Autocorrelations of series 'ar1_res', by lag

acf(ar1_res,12,pl=T)

Series ar1_res

4 Question 4

Table 2: The predicted quarterly GDP growth rates using ARIMA(1,0,0)

	Quarter	Predicted growth %
89	2009Q2	0.177
90	2009Q3	0.960

	Quarter	Predicted growth %
91	2009Q4	1.173
92	2010Q1	1.231
93	2010Q2	1.247
94	2010Q3	1.251
95	2010Q4	1.252
96	2011Q1	1.253

- 5 Question 5
- 6 Question 6
- 7 Question 7
- 8 Question 8