Distributions of Functions of Random Variables

1 Functions of One Random Variable

In some situations, you are given the pdf f_X of some rrv X. But you may actually be interested in some function of the initial rrv : Y = u(X). In this chapter, we are going to study different techniques for finding the distribution of functions of random variables.

1.1 Distribution Function Technique

Assume that we are given a continuous rrv X with pdf f_X . We want to find the pdf of Y = u(X). As seen previously when we studied the exponential distribution, we can apply the following strategy:

- 1. First, find the cdf (cumulative distribution function) $F_Y(y)$
- 2. Then, differentiate the cumulative distribution function $F_Y(y)$ to get the probability density function $f_Y(y)$. That is: $f_Y(y) = F_Y'(y)$

Example 1. Let X be a rrv with pdf :

$$f_X(x) = 3x^2 \mathbb{1}_{(0,1)}(x)$$

What is the pdf of $Y = X^2$?

Answer. The cdf of Y is : for $y \in (0,1)$

$$F_Y(y) = \mathbb{P}(Y \le y)$$
$$= \mathbb{P}(X^2 \le y)$$

Note that the transformation $u: x \mapsto x^2$ is strictly increasing on (0,1). Thus, u is invertible and its inverse $v: y \mapsto \sqrt{y}$ is also strictly increasing. Therefore, for $y \in (0,1)$, we have

$$F_Y(y) = \mathbb{P}(v(X^2) \le v(y))$$

$$= \mathbb{P}(X \le \sqrt{y})$$

$$= F_X(\sqrt{y})$$

$$= \int_0^{\sqrt{y}} 3x^2 dx$$

$$= [x^3]_0^{\sqrt{y}}$$

$$= y^{3/2}$$

Hence, the pdf of Y is obtained as follows: for $y \in (0, 1)$,

$$f_Y(y) = \frac{d}{dy} F_Y(y)$$
$$= \frac{3}{2} y^{3/2 - 1}$$

In a nutshell,

$$f_Y(y) = \frac{3}{2}y^{1/2}\mathbb{1}_{(0,1)}(y)$$

Example 2. Let X be a rrv with pdf :

$$f_X(x) = 3(1-x)^2 \mathbb{1}_{(0,1)}(x)$$

What is the pdf of $Y = (1 - X)^3$?

Answer. The cdf of Y is : for $y \in (0,1)$

$$F_Y(y) = \mathbb{P}(Y \le y)$$

= $\mathbb{P}((1 - X)^3 \le y)$

Note that the transformation $u: x \mapsto (1-x)^3$ is strictly decreasing on (0,1). Thus, u is invertible and its inverse $v: y \mapsto 1-y^{1/3}$ is also strictly decreasing. Therefore, for $y \in (0,1)$, we have

$$F_Y(y) = \mathbb{P}(v((1-X)^3) \ge v(y))$$

$$= \mathbb{P}(X \ge 1 - y^{1/3})$$

$$= 1 - F_X(1 - y^{1/3})$$

$$= 1 - \int_0^{1-y^{1/3}} 3(1-x)^2 dx$$

$$= 1 - \left[-(1-x)^3 \right]_0^{1-y^{1/3}}$$

$$= 1 + \left(\left(1 - (1-y^{1/3}) \right)^3 - (1-0)^3 \right)$$

$$= y$$

Hence, the pdf of Y is obtained as follows: for $y \in (0, 1)$,

$$f_Y(y) = \frac{d}{dy}F_Y(y)$$
$$= 1$$

In a nutshell,

$$f_Y(y) = \mathbb{1}_{(0,1)}(y)$$

That is Y follows a uniform distribution on (0,1).

1.2 Change-of-Variable Technique

Theorem 1.1. Let X be a continuous random variable on probability space $(\Omega, \mathcal{A}, \mathbb{P})$ with pdf $f_X = f \cdot \mathbb{1}_S$ where S is the support of f_X . If u is strictly monotonic with inverse function v, then the pdf of random variable Y = u(X) is given by:

$$f_Y(y) = f(v(y)) |v'(y)| \mathbb{1}_{u(S)}(y)$$
(1)

Proof. Assume u is strictly increasing. Then, u is invertible and its inverse v is also strictly increasing.

$$F_Y(y) = \mathbb{P}(Y \le y)$$

$$= \mathbb{P}(u(X) \le y)$$

$$= \mathbb{P}(X \le v(y))$$

$$= F_X(v(y))$$

Therefore,

$$f_Y(y) = \frac{d}{dy} F_Y(y)$$

$$= \frac{d}{dy} F_X(v(y))$$

$$= F'_X(v(y))v'(y)$$

$$= f_X(v(y))v'(y)$$

On the other hand, assume u is strictly decreasing. Then, u is invertible and its inverse v is also strictly decreasing.

$$F_Y(y) = \mathbb{P}(Y \le y)$$

$$= \mathbb{P}(u(X) \le y)$$

$$= \mathbb{P}(X \ge v(y))$$

$$= 1 - F_X(v(y))$$

Therefore,

$$f_Y(y) = \frac{d}{dy} F_Y(y)$$

$$= \frac{d}{dy} \{1 - F_X(v(y))\}$$

$$= -F'_X(v(y))v'(y)$$

$$= -f_X(v(y))v'(y)$$

We can merge the two cases since $v'(y) \ge 0$ if v is increasing and $v'(y) \le 0$ if v is decreasing. \Box

For illustration, apply the Change-of-Variable Technique to Examples 1 and 2 and make sure you find the same results.

Case of two-to-one transformations.

Example 3. Let X be a rrv with pdf :

$$f_X(x) = \frac{x^2}{3} \mathbb{1}_{(-1,2)}(x)$$

What is the pdf of $Y = X^2$?

Answer. Note that the transformation $u: x \mapsto x^2$ is not strictly monotonic on (-1,2). Therefore we cannot apply Theorem 1.1 straight away. More precisely, u is two-to-one on (-1,1) and one-to-one on (1,2).

Let us focus on the interval (-1,1) and use the distribution technique. In that case, we have for $y \in (0,1)$:

$$F_Y(y) = \mathbb{P}(Y \le y)$$

$$= \mathbb{P}(X^2 \le y)$$

$$= \mathbb{P}(-\sqrt{y} \le X \le \sqrt{y})$$

$$= F_X(\sqrt{y}) - F_X(-\sqrt{y})$$

Noting that

- u is strictly decreasing on (-1,0) with strictly decreasing inverse $v_1: y \mapsto -\sqrt{y}$
- u is strictly increasing on (0,1) with strictly increasing inverse $v_2: y \mapsto \sqrt{y}$ and by differentiating the cdf, we obtain: for $y \in (0,1)$,

$$f_Y(y) = \frac{d}{dy} F_Y(y)$$

$$= v_2'(y) f_X(v_2(y)) + (-v_1'(y)) f_X(v_1(y))$$

$$= \frac{1}{2} y^{-1/2} f_X(\sqrt{y}) + \frac{1}{2} y^{-1/2} f_X(-\sqrt{y})$$

$$= \frac{1}{2} y^{-1/2} \frac{\sqrt{y}^2}{3} + \frac{1}{2} y^{-1/2} \frac{(-\sqrt{y})^2}{3}$$

$$= \frac{\sqrt{y}}{3}$$

On the interval (1,2), u is strictly increasing, thus we can apply Theorem 1.1. After some calculations, you should find that for $y \in (1,4)$,

$$f_Y(y) = \frac{\sqrt{y}}{6}$$

In a nutshell,

$$f_Y(y) = \begin{cases} \sqrt{y}/3 & \text{if } 0 < y < 1\\ \sqrt{y}/6 & \text{if } 1 < y < 4\\ 0 & \text{otherwise} \end{cases}$$

Let us generalize our finding. If the transformation u is two-to-one on some interval and can be *split* into two strictly monotonic functions with inverses v_1 and v_2 . The the pdf of Y = u(X) on that interval is:

$$f_Y(y) = |v_1'(y)|f_X(v_1(y)) + |v_2'(y)|f_X(v_2(y))$$

2 Transformations of Two Random Variables

Theorem 2.1. Let X and Y be two continuous random variables on probability space $(\Omega, \mathcal{A}, \mathbb{P})$ with joint pdf $f_{XY} = f \cdot \mathbb{1}_S$ where $S \subset \mathbb{R}^2$ is the support of f_{XY} . If $u = (u_1, u_2)$ is an invertible function on S with inverse function $v = (v_1, v_2)$, then the joint pdf of random variables $W = u_1(X, Y)$ and $Z = u_2(X, Y)$ is given by:

$$f_{WZ}(w,z) = f(v_1(w,z), v_2(w,z)) |J| \mathbb{1}_{u(S)}(w,z)$$
(2)

where J is the Jacobian of v at point (s,t) defined by the following determinant .

$$J = \begin{vmatrix} \frac{\partial v_1(w,z)}{\partial w} & \frac{\partial v_1(w,z)}{\partial z} \\ \frac{\partial v_2(w,z)}{\partial w} & \frac{\partial v_2(w,z)}{\partial z} \end{vmatrix} = \frac{\partial v_1(w,z)}{\partial w} \frac{\partial v_2(w,z)}{\partial z} - \frac{\partial v_2(w,z)}{\partial w} \frac{\partial v_1(w,z)}{\partial z}$$

Example 4. Let X and Y be 2 rrv with joint pdf :

$$f_{XY}(x,y) = e^{-(x+y)} \mathbb{1}_{(0,\infty)^2}(x,y)$$

What is the joint pdf of W=X+Y and $Z=\frac{X}{X+Y}$? **Answer.** Let us solve the following system for X and Y:

$$\begin{cases} W = u_1(X,Y) = X + Y \\ Z = u_2(X,Y) = \frac{X}{X+Y} \end{cases} \Leftrightarrow \begin{cases} Y = W - X \\ Z = \frac{X}{W} \end{cases}$$

$$\Leftrightarrow \begin{cases} Y = W - X \\ X = WZ \end{cases}$$

$$\Leftrightarrow \begin{cases} Y = W - X \\ X = WZ \end{cases}$$

$$\Leftrightarrow \begin{cases} Y = W - WZ = v_2(W,Z) \\ X = WZ = v_1(W,Z) \end{cases}$$

The determinant of the Jacobian of $v = (v_1, v_2)$ is thus given by :

$$J = \begin{vmatrix} \frac{\partial v_1(w,z)}{\partial w} & \frac{\partial v_1(w,z)}{\partial z} \\ \frac{\partial v_2(w,z)}{\partial w} & \frac{\partial v_1(w,z)}{\partial z} \end{vmatrix}$$
$$= \begin{vmatrix} z & w \\ 1-z & -w \end{vmatrix}$$
$$= -wz - w(1-z)$$
$$= -w$$

The support of the joint pdf of X and Y is $S=(0,\infty)^2$. The transformation $u:(x,y)\mapsto (x+y,x/(x+y))$ maps S in the xy-plane into the domain u(S) in the (w,z)-plane given by w=x+y>0 and $z=x/(x+y)\in (0,1)$. Thus, the joint pdf of W and Z is given by:

$$f_{WZ}(w,z) = e^{-(v_1(w,z)+v_2(w,z))} |-w| \, \mathbb{1}_{(0,\infty)\times(0,1)}(w,z)$$
$$= e^{-(wz+w-wz)} w \, \mathbb{1}_{(0,\infty)\times(0,1)}(w,z)$$
$$= w e^{-w} \, \mathbb{1}_{(0,\infty)\times(0,1)}(w,z)$$