ITE - Homework ! - Solution

Problem 1 SRAM cell

(a) BJT SRAM cell

One of the two branches is ON => Current flowing. One BJT is in saturation (ON or conductive) and a voltage drops across Ra.

The approximate power consumption is given by $P = \frac{V_{cc}^2}{Rc}$

(b) CMOS FET SRAM cell

(c) BJT SRAM is not suitable for high degrees of integration because the power consumption is too high => Heat problem.

Alternative circuit diagram

TI turns ON for + Vas

Tz turns ON for - Vas VIn is either + Vcc or GND

 $V_{In} = +V_{ce} \implies T_1 = ON$ $T_2 = OFF$ $\implies V_{out} = O$

 $V_{In} = GND \Rightarrow T_i = OFF \quad V_z = ON$ $\Rightarrow V_{out} = + V_{cc}$

(b) Small-signal equivalent circuit is of no interest because we have no small-signal signal source.

- (c) Static power consumption is always zero, because one of the FETs is always OFF.
- (d) Power consumption of CMOS FET inverter is zero => No heat problem.
- (e) Power consumption of BJT inverter is always >0 (greater Zero).

 BJT has finite input impedance (<∞) ⇒ Big heat problem.

Problem 3

CMOS inverter

(a) LHS circuit has resistive load To output characteristic

1ST state
$$\Rightarrow$$
 $I_D = 0$
2ND state \Rightarrow $I_D \neq 0$

(b) RHS circuit has T2 as load

(c) LHS circuit consumes power $P = V_{cc}^2 / R$. Power consumption is not good for VLSI (very large scale integration). \Rightarrow Heat problem.

RHS circuit, a CiMOS circuit, consumes no power - No heat problem - Suitable for VLSI.

Problem 4

True/false statements

(a) True

Heat problem of BJTS prevents them from being used in VLSI (very large scale integrated circuits).

(b) True

The Zin = 00 characteristic of FETs makes them very suitable for the amplification of weak signals.