DataBases Design & Relational Algebra

DataBase Foundations

Author: Eng. Carlos Andrés Sierra, M.Sc.

cavirguezs@udistrital.edu.co

Lecturer Computer Engineer School of Engineering Universidad Distrital Francisco José de Caldas

2024-III

- Basic Concepts
- 2 Normalization // Olol times
- Relational Algebra

2/21

Basic Concepts

2 Normalization

Relational Algebra

DataBases Design Foundations

- files HDFS
- In the context of **databases**, the design of a database is the process of producing a **detailed** data model of a database.
- This data model contains all the needed logical and physical design choices and physical storage parameters needed to generate a design in a data definition language, which can then be used to create a database.
- A fully attributed data model contains detailed attributes for each entity 5 textures > No56

Relational Data Models avoid redundancy and inconsistency by

ensuring that data is **normalized**.

Set Theory in Databases

Entity (Societ

- The set theory is a branch of mathematical logic that studies sets, which are collections of objects.
- The **set theory** is applied in databases to define the relational model and the relational algebra.
- The relational model is a mathematical model of data for large shared data banks and it has a solid theoretical foundation.

• The **relational algebra** is a procedural query language, which takes relations as input and produces relations as output.

1) Basic Concepts

Normalization

Relational Algebra

Normalization in Databases

• Normalization is the process of organizing the columns (attributes) and tables (relations) of a relational database to minimize data redundancy reemalizats wi ves decomposing a table into smaller tables and between them. solate data so that addition field can be ma x(twitten)

Normalization in Databases

- Normalization is the process of organizing the columns (attributes) and tables (relations) of a relational database to minimize data redundancy.
- Normalization involves decomposing a table into smaller tables and defining relationships between them.
- The objective is to isolate data so that additions, deletions, and modifications of a field can be made in just one table and then propagated through the rest of the database using the defined relationships.

Normalization in Databases

- Normalization is the process of organizing the columns (attributes) and tables (relations) of a relational database to minimize data redundancy.
- **Normalization** involves decomposing a table into **smaller tables** and defining relationships between them.
- The objective is to isolate data so that additions, deletions, and modifications of a field can be made in just one table and then propagated through the rest of the database using the defined relationships.

Ontologies

Caperts systems

- An **ontology** is a **formal** naming and definition of the **types**, properties, and interrelationships of the entities that really or fundamentally exist for a particular domain of discourse.
- Ontologies are used in databases to define the schema of the database.
- The schema of a database is a formal definition of the structure of the database: the types of data that are stored, the relationships between the data, and the constraints on the data.

Ontology Workflow

Normal Levels

- First normal form (1NF): The table is a two-dimensional table with rows and columns. Each column contains atomic values, and there are no repeating groups or arrays.
- Second normal form (2NF): The table is in first normal form and all the non-key attributes are fully functionally dependent on the primary key.
- Third normal form (3NF): The table is in second normal form and all the non-key attributes are non-transitively dependent on the primary key.
- Fourth normal form (4NF): The table is in third normal form and there are no multi-valued dependencies.

Basic Concepts

Normalization

Relational Algebra

2024-I

What is relational algebra?

- Ch transetien
- The relational algebra is a procedural query language, which takes relations as input and produces relations as output.
- The relational algebra is a set of operations that can be performed on a relation. Also, it is used to define the relational model, which is a mathematical model of data for large shared data banks.
- Let's take a look at the basic operations of the relational algebra. First, remember next table called Students:

ID	Name	Lastname	Address	Phone	Age
1	John	Doe	123 Fake St	555-1234	25
2	Jane	Smith	456 Elm St	555-5678	30
3	Mike	Johnson	789 Evergreen St	555-9012	35

Definition

lelation => Toble - Bortiby

Select: $\sigma_{\text{condition}}(R)$ is a unary operation that returns the rows (subset) of R that satisfy the condition.

For example, the following expression selects the students whose age is greater than 25.

(I)	None	Lastrone	Address	Phone	Age
2	Johne	Smith	17 OK 6100 610	555-7678	20
3	Mike	JOHNEN	720 Grogieenst	758-9012	35

Project Operation

colonne to watch

Definition

Project: $(\pi_{\text{column_list}}(R))$, is a unary operation that returns the columns (subset) of R that are specified in the column list.

For example, the following expression projects the name and lastname of table the students: π_{Name} , Lastname (Students) STUDENTS lostrone regime Name 11 rame (200 > 30 (25 DENZE))

Union Operation

Definition

Union: $R \cup S$, is a binary operation that returns the rows that are in R or in S.

For example, the following expression returns the students whose age is greater than 25 or whose lastname is Johnson:

Set Different Operation

Definition

Set Different: R \widehat{S}_{i} is a binary operation that returns the rows that are in R but not in

For example, the following expression returns the students whose age is greater than 25 but not whose lastname is Johnson:

Cartesian Product Operation

Definition

Cartesian Product: $(R) \times (S)$ is a binary operation that returns the Cartesian product of R and S. A formal definition is:

$$R\times S=\{\text{rus}\mid r\in R \land \text{s}\in S\}$$

For example, the following expression returns the Cartesian product of the students and the courses:

Rename Operation

Definition

7 relation

Rename: $\rho_{\text{new_name}}(R)$, is a unary operation that returns the relation R with the name R changed to new_name .

For example, the following expression returns the students relation with the name changed to People:

 $\rho_{\mathsf{People}}(\mathsf{Students})$

DataBase Foundations

Exercises

70% Gartisotkay

• Select the students whose age is greater than 25 and whose lastname is Johnson.

Project the name and lastname of the students whose age is g

Select the students whose age is greater than 25 and whose last name is Johnson, and last name of the students, and

10 Pa-e Listone Address M	re foe
3 Mite 250403007 St. Cronscor SS	5- 35 VJL 35

Exercises

- Select the students whose age is greater than 25 and whose lastname is Johnson.
- Project the name and lastname of the students whose age is greater than 25.

Select the students whose age is greater than 25 and whose lastname is Johnson, and project the newspand last time of the students, and come last the students and come last the students.

	• /	_	
10 Mr lasta Address There	Age	Name	Lostrone
2 June 5_ th 45650. 553-5678	30	Jane	Smith
3 Mile Johnson 2501 58 755-9012	35	M. Lap	John Van
Tenana)	-		100 21

UNWERSIDA

Exercises

AND 1

- Select the students whose age is greater than 25 and whose lastname is Johnson.
- Project the name and lastname of the students whose age is greater than 25.
- Select the students whose age is greater than 25 and whose lastname is Johnson, and project the name and lastname of the students, and rename the relation to People.

Basic Concepts

2 Normalization

Relational Algebra

Thanks!

Questions?

Repo: https://github.com/EngAndres/ud-public/tree/main/courses/databases-foundations

