

Q1) In a simple paging system with 2 by tes of physical memory, 256 pages of logical address space, and a page size of 20 bytes, how many bits are in logical address is 18 ? page size = frame size=20

Q2) A computer	r system us	ses memory	paging. T	le paging	table has
64 entries	of 10 bits	s, and pag	e size is	512 byte	
bits are in	logical a	ddress and	. physical	address?	
A2)	IA [6 9		1A has 1	5 bibs-
512 byte	PA	lo 9		PA has	19 bits
512 byte	= 2 byte	pag	le size=	rame si	re
number of e	entries in	PT= 2	x f#	(Ž)	
		= 64	x lo bit	-2) x lo	bit
			P	#	>f#

Q3)	A page size is made to be 1024 byte
	long. A process needs 3100 bytes. The
	amount of memory lost to internal
A3)	fragmentation 1s ? 996 B
	1024 x 3 = 3072 B] with three pages
	3100-3072 = 28 B] for the last page
	1024 _ 28 = 996 B] is wasted in the
	1024 _ 28 = 996 B is wasted in the size of 5 the memory used last page. In tota last page in the last page this process has
	four pages.

Q4) The page table of a process is in memory. The memory-access time is 60 ns and TLB-access time is 5 ns. The hit ratio of finding pages in TLB is 75%. Compare the address mapping performance when we use TLB and when TLB is not used? Without TLB = 2 x (memory-access time) with TLB = h (TLB + (memory-access time)) + 1-h (TLB + 2 (memory-access time))

= Effective Access Time without 72B = 2 x 60 ns = 120 ns with TLB = 0,75 (5+60) + 0,25 (5+ (2x60)) = 80 = EAT = $\frac{120}{80} = 1.5$ improvement

