

Default Credit Card Default Detection

- Introduction
- **Data Analysis**
- **Proposed Solution**
- **Result and Discussion**

Introduction

1

Credit Card Default

- Default is to fail to make a payment on a debt by the due date.
- If someone miss the minimum card payment six months in a row, their credit card will be an default.
- If this happens with a credit card, creditors might raise interest rates to the default (or penalty rate) or decrease the line of credit.

Our Goal

Is to develop a system that detect client is most likely not able to pay in the next billing cycle.

Data Analysis

Original tables

Data Set Overview

	id	X1	X2	Х3	X4	X5	X6	X7	X8	X9	 X15	X16	X17	X18	X19	X20	X21	X22	X23	Y
0	1	200000	2	3	1	53	0	0	0	0	 133207	136159	138741	6500	5000	5000	5100	5000	5400	0
1	2	130000	2	3	2	39	0	0	0	2	 130814	130758	123468	7500	10000	0	4500	4500	4179	0
2	3	350000	2	1	2	41	0	0	0	0	 119947	117328	118400	6000	5900	5800	4100	4500	5000	0
3	4	240000	2	2	1	43	1	-2	-2	-1	 12700	12500	26225	0	0	12700	0	13725	0	0
4	5	180000	1	2	2	28	-1	-1	-1	-1	 332	416	416	0	416	332	500	3500	832	0

- Id = A unique Id field which represents a customer
- X1 = Credit line
- X2 = Gender (1 = male; 2 = female).

Data Set Overview

- X3 = Education (1 = graduate school; 2 = university; 3 = high school; 4 = others).
- X4 = Marital status (1 = married; 2 = single; 3 = others).
- X5 = Age
- X6-X11 = Past Payments History (4/2005 to 9/2005)
- X12-X17 = Bill Statements (4/2005 to 9/2005)
- X18-X23: Amount of previous payment (4/2005 to 9/2005)
- Y: Response (If Default = 1 else 0)

Jupyter notebook


```
train_data = pd.read_csv("train.csv")
test_data = pd.read_csv("test.csv")
print (train_data.shape)
print (test_data.shape)
```

```
(25000, 25)
(5000, 24)
```


train_data.columns

Data Processing

```
cat_v = []
con_v = []
for c in train_data.columns:
    if len(train_data[c].value_counts().index)<=15:</pre>
        cat_v.append(c)
    else:
        con_v.append(c)
cat_v.remove('Y')
target = ['Y']
print("The continuous variables: ", con_v, "\n")
print("The categorical variables: ", cat_v)
('The continuous variables: ', ['id', 'X1', 'X5', 'X12', 'X13', 'X14', 'X15', 'X16', 'X17', 'X18', 'X19', 'X20', 'X21', 'X2
2', 'X23'], '\n')
('The categorical variables: ', ['X2', 'X3', 'X4', 'X6', 'X7', 'X8', 'X9', 'X10', 'X11'])
```


Data Visualization

```
count=1
for i in range(len(cat_v)):
    fig = plt.figure(figsize=(30,80))
    plt.subplot(len(cat_v),2,count)
    plt.bar(train_data[cat_v[i]].value_counts().index, train_data[cat_v[i]].value_counts().values)
    plt.title("train "+cat_v[i])

    plt.subplot(len(cat_v),2,count+1)
    plt.bar(test_data[cat_v[i]].value_counts().index, test_data[cat_v[i]].value_counts().values)
    plt.title("test "+cat_v[i])
    count+=2
```


Copyright @ Data Application Lab

Continue

Copyright @ Data Application Lab

Violin Plot

```
count=1
for i in range(len(con_v)):
    fig = plt.figure(figsize=(20,100))
    plt.subplot(len(con_v),2,count)
    plt.violinplot(train_data[con_v[i]],showmeans=True)
    plt.title("train "+con_v[i])

plt.subplot(len(con_v),2,count+1)
    plt.violinplot(test_data[con_v[i]],showmeans=True)
    plt.title("test "+con_v[i])
    count+=2
```


Continuous

Proposed Solution

3

1. Data Processing

- Formatting: The data you have selected may not be in a format that is suitable for you to work with.
- Cleaning: Cleaning data is the removal or fixing of missing data. For example, replacing zero with the mean value.
- Sampling: There may be far more selected data available than you need to work with.

2. Machine Learning Algorithms

Random Forest Classifier

- Constructs multiple decision trees and provides decision based on majority of the trees.
- For example, fruit classification.

K Nearest Neighbor Classifier

Depending on value of K, KNN
decides wine type as 4 out of 5
nearer wine are red. The algorithm
will predict wine in that circle as red
wine.

Regression model shows behavior based on previous data.

Determine threshold value.

$$Y = \begin{cases} 1, P(X) \ge 0.5 \\ 0, P(X) < 0.5 \end{cases}$$

Logistic Regression

Voting Classifier

 Hard Voting: Is simply majority of voting.

$$Y=Mean{X1,X2,X3} ={1,0,0}= 0$$

 Soft Voting: Predict probability based on average of other classifier's results.

Result and Discussion

4

Evaluation Metrics

	NOTDEFAULT PREDICTED	DEFAULT PREDICTED
NOTDEFAULT	TN	FP
DEFAULT	FN	TP

True Positive: Actually Default and Predicted as a Default

True Negative: Actually Not-Default and predicted as a Not-Default

False Positive: Actually Not-Default and predicted as a Default

False Negative: Actually Default and predicted as a Not-Default

3. Evaluation

 Accuracy: Accuracy determines number of Not-Default and Default.

Accuracy=
$$\frac{TP + TN}{TP + TN + FP + FN}$$

 Precision: Amount of actual answers from positive prediction

Precision =
$$\frac{TP}{TP + FP}$$

• Recall: From all accounts that actually are default accounts.

Recall =
$$\frac{TP}{TP + FN}$$

• **F1-Score**: Harmonic mean of precision and recall.

F1-Score = 2 *
$$\frac{P * R}{P+R}$$

Cross Validation:

K Fold cross validation where K=5.

Accuracy Table

Classifier	Accuracy (%)
Random Forest	79
K Nearest Neighbor	71
Logistic Regression	71
Voting	71

4. Analyses of The Best Model

Random Forest Classifier.

	Precision	Recall	F1- Score	Support
0	0.83	0.95	0.88	3923
1	0.60	0.30	0.40	1077
Avg/Total	0.78	0.81	0.78	5000

Thank You