Prácticas de Estadística con Dados

Práctica 1 — Distribución Binomial con un dado

Idea base: en n lanzamientos, el número de "éxitos" (por ejemplo, obtener un 6) sigue una distribución $X \sim Bin(n,p)$ con p=1/6.

Objetivos

- 1. Medir la distribución del número de éxitos en bloques de n lanzamientos.
- 2. Calcular media y varianza y comparar con valores teóricos.
- 3. Verificar ajuste con una prueba Chi-cuadrado de bondad de ajuste.

Materiales

- 1 dado honesto por equipo
- Hojas de registro / planilla común
- Calculadora

Procedimiento

- 1. Definir un experimento como 20 lanzamientos consecutivos.
- 2. Contar el número de 6 obtenidos (k).
- 3. Registrar solo k por experimento.
- 4. Repetir 25 experimentos por equipo.
- 5. Consolidar resultados a nivel de curso y construir tabla de frecuencias.

Cálculos

- Media teórica: np, Varianza teórica: np(1-p).
- Estimadores muestrales: media y varianza.
- Calcular frecuencias esperadas E(k) y aplicar prueba Chi-cuadrado.

Práctica 2 — Distribución Poisson con eventos raros

Idea base: el número de eventos raros por intervalo sigue Y \sim Poisson(λ). Usaremos el evento "doble-seis" con dos dados (p=1/36).

Objetivos

- 1. Medir conteos por intervalos de lanzamientos.
- 2. Estimar λ y verificar ajuste Poisson con prueba Chi-cuadrado.
- 3. Contrastar la relación $E[Y]=Var(Y)=\lambda$.

Materiales

- 2 dados por equipo
- Planilla de intervalos
- Cronómetro

Procedimiento

- 1. En cada intervalo realizar 60 lanzamientos de los dos dados.
- 2. Contar los doble-seis en el intervalo.
- 3. Registrar el conteo por intervalo.
- 4. Repetir 20 intervalos por equipo.
- 5. Consolidar resultados a nivel de curso.

Cálculos

- Estimador de λ : promedio de conteos por intervalo.
- Verificar ajuste Poisson calculando frecuencias esperadas.
- Aplicar prueba Chi-cuadrado de bondad de ajuste.
- Comparar media y varianza muestral para verificar propiedad de Poisson.

Práctica 3 — Aproximación Normal por Sumas (CLT)

Idea base: la suma de muchos lanzamientos se aproxima a Normal por el Teorema Central del Límite.

Objetivos

- 1. Construir variable suma de 12 lanzamientos.
- 2. Verificar forma de campana y porcentajes dentro de $\pm 1\sigma$ y $\pm 2\sigma$.
- 3. Contrastar con prueba Chi-cuadrado por clases estandarizadas.

Materiales

- 1 dado por equipo
- Hojas de registro
- Calculadora

Procedimiento

- 1. Realizar 12 lanzamientos y calcular la suma S.
- 2. Repetir 100 experimentos por equipo.
- 3. Consolidar resultados de todo el curso.
- 4. Analizar histograma de S y estandarizar.
- 5. Comparar con probabilidades de la normal estándar.

Cálculos

- Teóricos: media = 42, varianza = 35.
- Estimar media y desviación estándar muestral.
- Comparar porcentajes dentro de $\pm 1\sigma$ y $\pm 2\sigma$ con valores teóricos.
- Prueba Chi-cuadrado agrupando clases de Z.