Örnek

Ohm Yasası'nı anlamak için yapılan bir deneyde iç direnci ihmal edilen 30 V'luk bir üreteç ile R_1 ve R_2 dirençleri kullanılarak bir devre tasarlanmaktadır. Devrede dirençler seri olarak bağlandığında anakol akımı 3 A olarak ölçülmektedir.

R₁ direncinin büyüklüğü 4 Ω olduğuna göre

- a) V_1 voltmetresi kaç V değerini gösterir?
- b) R_2 direncinin uçları arasındaki potansiyel fark kaç V olur?
- c) R_2 direncinin büyüklüğü kaç Ω olur?

Çözüm

a) V_1 voltmetresi R_1 direncinin uçları arasındaki potansiyel farkı göstermektedir. Ohm Yasası'na göre V_1 voltmetresinin gösterdiği değer

 $V_1 = I \cdot R_1$ matematiksel modelinden

 $V_1 = 3 \cdot 4 = 12 \text{ V}$ olarak hesaplanır.

b) R₂ direncinin uçları arasındaki potansiyel fark

 $V = V_1 + V_2$ eşitliğinden

 $V_2 = 30 - 12 = 18 \text{ V olarak hesaplanır}.$

c) R₂ direncinin büyüklüğü iki yöntemle bulunabilir:

1. Yöntem

Ohm Yasası'na göre

 $V_2 = I \cdot R_2$ matematiksel modelinden

 $18 = 3 \cdot R_2$

 R_2 = 6 Ω bulunur.

2. Yöntem

İki direnç birbirine seri bağlandığına göre dirençlerin üzerinden geçen elektrik akımları birbirine eşittir. Bu durumda Ohm Yasası'na göre

$$V = I \cdot R_{es}$$

$$30 = 3 \cdot R_{\rho s}$$

 R_{es} = 10 Ω bulunur.

Seri bağlı devrede $R_{e\varsigma}=R_1+R_2$ olduğuna göre

 $10 = 4 + R_2$ eşitliğinden

 $R_2 = 10 - 4 = 6 \Omega$ bulunur.