

# ESTADÍSTICA 2023

# TRABAJO PRÁCTICO FINAL

# Carrera:

Ingeniería Informática

## Alumno:

Bargas, Santiago

# **Profesores:**

- Vanlesberg, Susana
- Taulamet, Juan Pablo
- Llop, Maria José

# <u>INDICE</u>

| 1. I | Introducción                       | 2  |
|------|------------------------------------|----|
| 2. ( | Objetivos                          | 3  |
| 3. [ | Desarrollo                         | 4  |
| 3.1  | Cantidad total de ingresantes      | 5  |
| 3.2  | 2. Cantidad de ingresantes varones | 13 |
| 3.3  | 3. Cantidad de ingresantes mujeres | 20 |
| 4 (  | Conclusión:                        | 20 |

# 1. Introducción.

En el siguiente trabajo se pretende aplicar los conocimientos sobre estadística adquiridos durante el cursado de la asignatura a un tema en específico: la cantidad de ingresantes en la carrera Ingeniería en Informática en la FICH.

Se eligió este tema específicamente ya que, la importancia y relevancia de la informática en nuestra sociedad han aumentado exponencialmente en los últimos años. Esta disciplina ha cambiado prácticamente todos los aspectos de nuestra vida diaria, desde cómo nos comunicamos hasta cómo realizamos las cosas que hacemos todos los días. El aumento constante en el número de estudiantes que optan por la carrera de Ingeniería Informática es uno de los indicadores más claros de esta expansión.

# 2. Objetivos.

En este trabajo se desea obtener y mostrar información sobre la cantidad de ingresantes en Ingeniería en Informática en relación del año correspondiente, con un periodo de 22 años (2002-2023) utilizando las herramientas aprendidas en estadística.

El objetivo es analizar y comprender cómo ha evolucionado la cantidad de ingresantes en Ingeniería Informática a lo largo de los años

Mediante este análisis estadístico, se espera obtener una visión más completa y precisa de cómo ha evolucionado la carrera informática y cómo estos cambios se han traducido en un aumento en el número de ingresantes en Ingeniería Informática.

# 3. Desarrollo.

En la Figura 1 se observa los datos proporcionados por la Universidad Nacional del Litoral, donde se puede ver el año correspondiente, la cantidad de ingresantes varones, la cantidad de ingresantes mujeres y la cantidad de total de ingresantes.

Para comenzar se trabajará con la cantidad de ingresantes total, luego con la cantidad de varones y mujeres por separado.

| Año  | Varones | Mujeres | Total |
|------|---------|---------|-------|
| 2002 | 289     | 58      | 347   |
| 2003 | 228     | 44      | 272   |
| 2004 | 241     | 50      | 291   |
| 2005 | 221     | 45      | 266   |
| 2006 | 226     | 34      | 260   |
| 2007 | 249     | 38      | 287   |
| 2008 | 218     | 45      | 263   |
| 2009 | 235     | 26      | 261   |
| 2010 | 202     | 33      | 235   |
| 2011 | 170     | 24      | 194   |
| 2012 | 183     | 17      | 200   |
| 2013 | 156     | 26      | 182   |
| 2014 | 172     | 16      | 188   |
| 2015 | 170     | 17      | 187   |
| 2016 | 185     | 15      | 200   |
| 2017 | 185     | 25      | 210   |
| 2018 | 231     | 28      | 259   |
| 2019 | 188     | 32      | 220   |
| 2020 | 305     | 59      | 364   |
| 2021 | 316     | 79      | 395   |
| 2022 | 365     | 75      | 440   |
| 2023 | 490     | 98      | 588   |

Figura 1. Cantidad de ingresantes por año.

# 3.1. Cantidad total de ingresantes.

Se comienza analizando la muestra con un análisis exploratorio (Figura 2) a partir de estadística descriptiva.

| Año  | Total |
|------|-------|
|      | Total |
| 2002 | 347   |
| 2003 | 272   |
| 2004 | 291   |
| 2005 | 266   |
| 2006 | 260   |
| 2007 | 287   |
| 2008 | 263   |
| 2009 | 261   |
| 2010 | 235   |
| 2011 | 194   |
| 2012 | 200   |
| 2013 | 182   |
| 2014 | 188   |
| 2015 | 187   |
| 2016 | 200   |
| 2017 | 210   |
| 2018 | 259   |
| 2019 | 220   |
| 2020 | 364   |
| 2021 | 395   |
| 2022 | 440   |
| 2023 | 588   |

|                        | Total de ingresantes |
|------------------------|----------------------|
| Media                  | 277,6818181818182    |
| Error estándar         | 21,037730109359945   |
| Mediana                | 260,5                |
| Moda                   | 200                  |
| Desviación estándar    | 98,67570085585376    |
| Varianza de la muestra | 9736,89393939394     |
| Curtosis               | 3,6139992177757985   |
| Desviación             | 1,7601645235041228   |
| Rango                  | 406                  |
| Minimo                 | 182                  |
| Máximo                 | 588                  |
| Suma                   | 6109                 |
| Cuenta                 | 22                   |

Figura 2. Análisis exploratorio.

## Datos:

- Media muestral (x): 277,7
- Cantidad de muestra: n= 22
- Desvío estándar (S'): 98,67
- Desvío estándar de la población ( $\sigma$ ): desconocido
- 1-α=95%
- α= 5%
- Grados de libertad: 21

En la Figura 3 se observa un gráfico de box plot.



Figura 3. Gráfico de box plot.

En el gráfico se observa un valor atípico entre 400 y 500, que sería el correspondiente a la cantidad de ingresantes en 2022 y un valor atípico extremo en aproximadamente 600, que sería el correspondiente a la cantidad de ingresantes en 2023. Lo que se puede concluir a partir de este gráfico es que en los últimos dos años (2022 y 2023) hubo una cantidad atípica de ingresantes en la carrera Ingeniería en Informática en comparación de años anteriores.

Debido a que el tamaño de la caja es "chica" podemos decir que hay una varianza pequeña, donde la varianza es una medida de dispersión que indica qué tan dispersos están los valores de un conjunto de datos con respecto a su media. Y la línea del medio de la caja representa la mediana.

La mediana es un valor que divide un conjunto de datos en dos partes iguales: la mitad de los valores están por encima de la mediana y la otra mitad está por debajo. Se calcula ordenando los datos y seleccionando el valor central si el número de datos es impar, o el promedio de los dos valores centrales si el número de datos es par. La mediana es una medida de tendencia central que no se ve afectada por valores atípicos, lo que la hace útil para describir la ubicación central de un conjunto de datos.

Luego se puede estimar el intervalo de confianza en el que se encontrará el parámetro de población  $(\mu)$ . Para realizar este cálculo nos fijamos en la tabla de inferencia propuesta por la cátedra. Como tenemos que nuestra muestra es menor a 30 se obtendrá el intervalo de confianza por medio de la distribución normal, donde el desvío es parámetro desconocido, la fórmula que utilizamos es:

$$(xmedia + - |t_{(1-\frac{\alpha}{2};n-1)}|\frac{S'}{\sqrt{n}})$$

El valor "t" lo calculamos como: Valor de t: = tinv(0,95)

$$(xmedia - |t_{(1-\frac{\alpha}{2};n-1)}|\frac{S'}{\sqrt{n}}) \le \mu \le (xmedia + |t_{(1-\frac{\alpha}{2};n-1)}|\frac{S'}{\sqrt{n}})$$

Reemplazando los valores en la ecuación obtenemos un intervalo con un 95% de confianza de:

$$(226,9 \le \mu \le 328,5)$$

Este intervalo representa los rangos dentro de los cuales se espera que se encuentre la verdadera media poblacional de la cantidad de ingresantes en informática por año con un 95% de nivel de confianza. Cuanto mayor sea el nivel de confianza elegido, más amplio será el intervalo de confianza para tener una mayor probabilidad de capturar el verdadero valor poblacional. Sin embargo, esto también implica que el intervalo de confianza será más amplio y menos preciso en términos de la estimación puntual. Por lo tanto, la elección del nivel de confianza depende del equilibrio entre la precisión deseada y la probabilidad de capturar el verdadero valor.

La varianza es una medida de dispersión que indica qué tan dispersos están los datos alrededor de la media, como ya dijimos anteriormente.

Estimar la varianza poblacional proporciona información sobre la variabilidad de los valores en la población, lo que puede ayudar a comprender mejor la distribución de los datos y evaluar la dispersión de las observaciones.

Usando la tabla de inferencia, se ve que se puede estimar a través de la distribución chi-cuadrado.

#### Datos:

- n=22
- Desvío estándar (S')= 98,67
- $1 \alpha = 95\%$

$$\chi^2 = chiinv(0,025;21)$$
  $\chi^2_{inferior} = 35,47$   $\chi^2 = chiinv(0,95/2;21)$   $\chi^2_{superior} = 20,73$ 

Utilizamos la fórmula:

$$\frac{n * S^2}{\chi^2_{(1-\frac{\alpha}{2};n-1)}} \le \sigma^2 \le \frac{n * S^2}{\chi^2_{(\frac{\alpha}{2};n-1)}}$$
$$6037,72 \le \sigma^2 \le 10329,10$$

El hecho de que el intervalo sea relativamente amplio (desde 6037,72 hasta 10329,10) indica que existe una considerable variabilidad en la cantidad de ingresantes en informática por año en la población. Esto significa que los valores de ingresantes pueden diferir ampliamente de un año a otro.

También se realizó un histograma (Figura 4) con los datos y su respectivo polígono de frecuencias, donde un histograma es una representación gráfica que muestra la distribución de frecuencia de un conjunto de datos numéricos continuos. Consiste en un gráfico de barras donde el eje horizontal representa los rangos de valores y el eje vertical muestra la frecuencia o la densidad de los datos en cada rango.

Para determinar el número de cortes realizamos  $cortes = \sqrt{n}$  donde n es la cantidad de muestras.



Figura 4. Histograma.

Siguiendo, el promedio móvil es una técnica de eliminar tanto como sea posible las variaciones indeseables de los datos, tratando de darle a la serie un aspecto más uniforme. El problema de esta técnica está en la elección apropiada del período para el promedio, esto depende de la naturaleza de los datos y el propósito que se persigue.

La suavización exponencial es un tipo especial de promedio móvil, pero su naturaleza es muy diferente del cálculo del Promedio Móvil.

$$S_i = \omega * Yi + (1 - \omega) * S_i - 1$$

S<sub>i</sub>: Valor de la serie exponencialmente suavizada calculada en el período i

 $S_i - 1$  Valor de la serie exponencialmente suavizada ya calculada en el período i-1

Y<sub>i</sub> valor observado de la serie de tiempo en el período i

 $\omega$ : ponderación o coeficiente de suavización asignado en forma subjetiva (0 <  $\omega$  < 1)

Sí solo se quiere suavizar una serie mediante la eliminación de variaciones cíclicas e irregulares que no se desean, debe seleccionarse un valor pequeño de  $\omega$  (cercano a 0). Si se quieren hacer pronósticos se elegirá un valor grande de  $\omega$  (cercano a 1). Para este caso si queremos hacer un pronóstico de la cantidad de ingresantes (Figura 5) para Ingeniería en Informática elegimos un  $\omega$  cercano a uno como vemos a continuación.

| Año  | Total | x  | W=0,25<br>0,25 | ₩=0,5<br>0,5 | W=0,75<br>0,75 |
|------|-------|----|----------------|--------------|----------------|
| 2002 | 347   | 1  | 347,00         | 347,00       | 347,00         |
| 2003 | 272   | 2  | 328,25         | 309,50       | 290,75         |
| 2004 | 291   | 3  | 318,94         | 300,25       | 290,94         |
| 2005 | 266   | 4  | 305,70         | 283,13       | 272,23         |
| 2006 | 260   | 5  | 294,28         | 271,56       | 263,06         |
| 2007 | 287   | 6  | 292,46         | 279,28       | 281,01         |
| 2008 | 263   | 7  | 285,09         | 271,14       | 267,50         |
| 2009 | 261   | 8  | 279,07         | 266,07       | 262,63         |
| 2010 | 235   | 9  | 268,05         | 250,54       | 241,91         |
| 2011 | 194   | 10 | 249,54         | 222,27       | 205,98         |
| 2012 | 200   | 11 | 237,15         | 211,13       | 201,49         |
| 2013 | 182   | 12 | 223,37         | 196,57       | 186,87         |
| 2014 | 188   | 13 | 214,52         | 192,28       | 187,72         |
| 2015 | 187   | 14 | 207,64         | 189,64       | 187,18         |
| 2016 | 200   | 15 | 205,73         | 194,82       | 196,79         |
| 2017 | 210   | 16 | 206,80         | 202,41       | 206,70         |
| 2018 | 259   | 17 | 219,85         | 230,71       | 245,92         |
| 2019 | 220   | 18 | 219,89         | 225,35       | 226,48         |
| 2020 | 364   | 19 | 255,92         | 294,68       | 329,62         |
| 2021 | 395   | 20 | 290,69         | 344,84       | 378,66         |
| 2022 | 440   | 21 | 328,01         | 392,42       | 424,66         |
| 2023 | 588   | 22 | 393,01         | 490,21       | 547,17         |

Figura 5. Datos suavización exponencial.

Como se observa en la Figura 5, el último valor en  $\omega = 0.75$  puede ser tomado como una aproximación para la cantidad de ingresantes en 2024 que es: 547,17.

Elegimos  $\omega=0.75$  pero no más cercano a 1, ya que al elegir un valor tan cercano a 1, se corre el riesgo de perder información importante sobre los cambios recientes en los datos. Esto puede hacer que el modelo sea menos capaz de capturar patrones o tendencias emergentes en tiempo real.

A continuación, en la Figura 6 se ve una gráfica con la serie de datos original y sus respectivas suavizaciones



Figura 6. Suavización exponencial.

Luego, se realizó un dispersiograma (Figura 7) con los datos de la tabla tomando como variable X: "Año correspondiente" Y: "Cantidad de ingresantes en ingeniería informática"



Figura 7. Dispersiograma cantidad total de ingresantes.

Como se observa en la Figura 7, el modelo que mejor se ajusta a los datos representados es un ajuste polinómico.

$$y = 2,1905 * x^2 - 8811,41 * x + 8861279,50$$

En la Figura 7 se ve que el coeficiente de determinación  $r^2=0.78911$  es decir que aproximadamente el 78,9% de la variabilidad observada es explicada por la relación propuesta.

Como el modelo que mejor ajusta los datos es una ecuación polinómica, se procedió elevando al cuadrado los datos de la variable x, para así poder realizar una regresión polinómica. Se muestra a en la Figura 8 como se procedió

| Año  | Año^2   | Total     |
|------|---------|-----------|
| 2002 | 4008004 | 347       |
| 2003 | 4012009 | 272       |
| 2004 | 4016016 | 291       |
| 2005 | 4020025 | 266       |
| 2006 | 4024036 | 260       |
| 2007 | 4028049 | 287       |
| 2008 | 4032064 | 263       |
| 2009 | 4036081 | 261       |
| 2010 | 4040100 | 235       |
| 2011 | 4044121 | 194       |
| 2012 | 4048144 | 200       |
| 2013 | 4052169 | 182       |
| 2014 | 4056196 | 188       |
| 2015 | 4060225 | 187       |
| 2016 | 4064256 | 200       |
| 2017 | 4068289 | 210       |
| 2018 | 4072324 | 259       |
| 2019 | 4076361 | 220       |
| 2020 | 4080400 | 364       |
| 2021 | 4084441 | 395       |
| 2022 | 4088484 | 440       |
| 2023 | 4092529 | 588       |
| 2024 |         | 540,78571 |

Figura 8. Datos regresión.

En la hoja de regresión (Figura 9) podemos ver que r=0.888 lo cual significa que hay una correlación positiva moderadamente fuerte entre las variables, lo que implica que a medida que aumenta una variable, la otra tiende a aumentar también.

Se puede destacar que la varianza de la regresión es: 2269,55. La varianza de la regresión, también conocida como varianza residual, es una medida de dispersión que indica cuánto varían los valores observados (y) con respecto a los valores predichos por la regresión lineal. Cuanto mayor es este valor, mayor es la variación de la curva ajustada respecto a las observaciones.

Para estimar la cantidad de ingresantes en el año 2024 reemplazamos en la ecuación x=2024

$$y = 2,1905 * 2024^2 - 8811,41 * 2024 + 8861279,50$$
  
 $y = 540,78571$ 

Lo cual nos dice que se estima que aproximadamente haya 541 ingresantes en total en 2024.

Es pertinente analizar  $r^2$  ya que estamos en un caso que no es lineal. Para obtener ese  $r^2=0.78$  se hace un cociente entre la suma de los cuadrados explicada por la regresión, y relacion en total.

| SALIDA RESUMEN        |                    | Variable de respuesta | Columna 3          |                      |                      |                    |
|-----------------------|--------------------|-----------------------|--------------------|----------------------|----------------------|--------------------|
| Estadísticas de regre | sián               |                       |                    |                      |                      |                    |
| R múltiple            | 0,8883188418019075 |                       |                    |                      |                      |                    |
| R^2                   | 0,7891103647002823 |                       |                    |                      |                      |                    |
| Error estándar        | 47,639882809771905 |                       |                    |                      |                      |                    |
| R^2 ajustado          | 0,7669114557213645 |                       |                    |                      | 0,7891103647002823   |                    |
| Observaciones         | 22                 |                       |                    |                      |                      |                    |
| Análisis de varianza  |                    |                       |                    |                      |                      |                    |
|                       | df                 | SS                    | MS                 | F                    | Significancia de F   |                    |
| Regresión             | 2                  | 161353,16247882554    | 80676,58123941277  | 35,547258896808934   | 3,78900117395597E-07 |                    |
| Residual              | 19                 | 43121,61024844721     | 2269,5584341288004 |                      |                      |                    |
| Total                 | 21                 | 204474,77272727276    |                    |                      |                      |                    |
|                       | Coeficientes       | Error estándar        | Estadísticas-t     | Valor-P              | 0,95                 | 0,95               |
| Interceptar           | 8861279,5          | 1146226,8840642981    | 7,730825042752114  | 2,77580167162069E-07 | 6462199,059843939    | 11260359,940156061 |
| Columna 1             | -8811,40676171654  | 1139,1154077102042    | -7,73530645101958  | 2,75236471441148E-07 | -11195,60271080113   | -6427,210812631957 |
| Columna 2             | 2,1904997176736307 | 0,2830097596777688    | 7,740014761920949  | 2,72796212063801E-07 | 1,5981534830357456   | 2,782845952311516  |

Figura 9. Hoja de regresión.

Ya explicado todo el procedimiento para la cantidad de ingresantes total por año, procedemos a realizar exactamente lo mismo, pero para la cantidad de ingresantes varones.

# 3.2. Cantidad de ingresantes varones.

Se comienza analizando la muestra con un análisis exploratorio (Figura 10) a partir de estadística descriptiva.

| Año  | Varones |                        |                      |
|------|---------|------------------------|----------------------|
| 2002 | 289     |                        |                      |
| 2003 | 228     |                        |                      |
| 2004 | 241     |                        |                      |
| 2005 | 221     |                        |                      |
| 2006 | 226     |                        | Total de ingresantes |
| 2007 | 249     | Media                  | 237,5                |
| 2008 | 218     | Error estándar         | 16,559580217194423   |
| 2009 | 235     | Mediana                | 223,5                |
| 2010 | 202     | Moda                   | 170                  |
| 2011 | 170     | Desviación estándar    | 77,67131602678901    |
| 2012 | 183     | Varianza de la muestra | 6032,833333333333    |
| 2013 | 156     | Curtosis               | 4,412122641685831    |
| 2014 | 172     | Desviación             | 1,9038703143332907   |
| 2015 | 170     | Rango                  | 334                  |
| 2016 | 185     | Mínimo                 | 156                  |
| 2017 | 185     | Máximo                 | 490                  |
| 2018 | 231     | Suma                   | 5225                 |
| 2019 | 188     | Cuenta                 | 22                   |
| 2020 | 305     |                        |                      |
| 2021 | 316     |                        |                      |
| 2022 | 365     |                        |                      |
| 2023 | 490     |                        |                      |

Figura 10. Análisis exploratorio.

## Datos:

- Media muestral (x): 237,5
- Cantidad de muestra: n= 22
- Desvío estándar (S'): 77,67
- Desvío estándar de la población ( $\sigma$ ): desconocido
- 1-α=95%
- α= 5%
- Grados de libertad: 21

En la Figura 11 se observa un gráfico de box plot.



Figura 11. Gráfico de box plot.

Donde podemos ver que tiene un valor atípico en 400 aproximadamente que sería el correspondiente a la cantidad de ingresantes en 2022 y un valor atípico extremo en aproximadamente 500, que sería el correspondiente a la cantidad de ingresantes en 2023. Lo que se puede concluir a partir de este gráfico es que en los últimos dos años (2022 y 2023) hubo una cantidad atípica de ingresantes en la carrera Ingeniería en Informática en comparación de años anteriores.

Debido a que el tamaño de la caja es "chica" podemos decir que hay una varianza pequeña, donde la varianza es una medida de dispersión que indica qué tan dispersos están los valores de un conjunto de datos con respecto a su media. Y la línea del medio de la caja representa la mediana.

Estimamos el intervalo de confianza en el que se encontrará el parámetro de población  $(\mu)$ :

$$(xmedia + - |t_{(1-\frac{\alpha}{2};n-1)}|\frac{S'}{\sqrt{n}})$$

El valor "t" lo calculamos como: Valor de t: = tinv(0,95)

$$(xmedia - |t_{(1-\frac{\alpha}{2};n-1)}|\frac{S'}{\sqrt{n}}) \le \mu \le (xmedia + |t_{(1-\frac{\alpha}{2};n-1)}|\frac{S'}{\sqrt{n}})$$

Reemplazando los valores en la ecuación obtenemos un intervalo con un 95% de confianza de:

$$(197,52 \le \mu \le 277,57)$$

Este intervalo representa los rangos dentro de los cuales se espera que se encuentre la verdadera media poblacional de la cantidad de ingresantes varones en informática por año con un 95% de nivel de confianza.

Estimamos la varianza poblacional:

### Datos:

- n=22
- Desvío estándar (S')= 98,67
- $1 \alpha = 95\%$

$$\chi^2 = chiinv(0,025;21)$$
  $\chi^2_{inferior} = 35,47$   $\chi^2 = chiinv(0,95/2;21)$   $\chi^2_{superior} = 20,73$ 

Utilizamos la fórmula:

$$\frac{n * S^2}{\chi^2_{(1-\frac{\alpha}{2};n-1)}} \le \sigma^2 \le \frac{n * S^2}{\chi^2_{(\frac{\alpha}{2};n-1)}}$$
$$3740,88 \le \sigma^2 \le 6399,75$$

Se realizó un histograma (Figura 12) con los datos y su respectivo polígono de frecuencias



Figura 12. Histograma.

Siguiendo, con los respectivos datos se suavizó la serie (Figura 13).

|      |       |    | W=0,25 | W=0,5  | W=0,75 |
|------|-------|----|--------|--------|--------|
| Año  | Total | ×  | 0,25   | 0,5    | 0,75   |
| 2002 | 289   | 1  | 289,00 | 289,00 | 289,00 |
| 2003 | 228   | 2  | 273,75 | 258,50 | 243,25 |
| 2004 | 241   | 3  | 265,56 | 249,75 | 241,56 |
| 2005 | 221   | 4  | 254,42 | 235,38 | 226,14 |
| 2006 | 226   | 5  | 247,32 | 230,69 | 226,04 |
| 2007 | 249   | 6  | 247,74 | 239,84 | 243,26 |
| 2008 | 218   | 7  | 240,30 | 228,92 | 224,31 |
| 2009 | 235   | 8  | 238,98 | 231,96 | 232,33 |
| 2010 | 202   | 9  | 229,73 | 216,98 | 209,58 |
| 2011 | 170   | 10 | 214,80 | 193,49 | 179,90 |
| 2012 | 183   | 11 | 206,85 | 188,25 | 182,22 |
| 2013 | 156   | 12 | 194,14 | 172,12 | 162,56 |
| 2014 | 172   | 13 | 188,60 | 172,06 | 169,64 |
| 2015 | 170   | 14 | 183,95 | 171,03 | 169,91 |
| 2016 | 185   | 15 | 184,21 | 178,02 | 181,23 |
| 2017 | 185   | 16 | 184,41 | 181,51 | 184,06 |
| 2018 | 231   | 17 | 196,06 | 206,25 | 219,26 |
| 2019 | 188   | 18 | 194,04 | 197,13 | 195,82 |
| 2020 | 305   | 19 | 221,78 | 251,06 | 277,70 |
| 2021 | 316   | 20 | 245,34 | 283,53 | 306,43 |
| 2022 | 365   | 21 | 275,25 | 324,27 | 350,36 |
| 2023 | 490   | 22 | 328,94 | 407,13 | 455,09 |

Figura 13. Datos suavización exponencial.

Como se observa en la Figura 13, el último valor en  $\omega=0.75$  puede ser tomado como una aproximación para la cantidad de ingresantes varones en 2024 que es: 455,09.

A continuación, en la Figura 14 vemos una gráfica con la serie de datos original y sus respectivas suavizaciones:



Figura 14. Suavización exponencial.

Luego, se realizó un dispersiograma (Figura 15) con los datos de la tabla tomando como variable X: "Año correspondiente" Y: "Cantidad de ingresantes varones en ingeniería informática"



Figura 15. Dispersiograma

Como se observa en la Figura 15, el modelo que mejor se ajusta a los datos representados es un ajuste polinómico.

$$y = 1,67363 * x^2 - 6731,93732 * x + 6769728,09091$$

En la Figura 15 se ve que el coeficiente de determinación  $r^2=0.763435$ . Es decir que aproximadamente el 76,3% de la variabilidad observada es explicada por la relación propuesta.

Se realizó una regresión de los datos (Figura 16), exactamente igual como lo hicimos anteriormente.

| Año  | Año^2   | Total     |
|------|---------|-----------|
| 2002 | 4008004 | 289       |
| 2003 | 4012009 | 228       |
| 2004 | 4016016 | 241       |
| 2005 | 4020025 | 221       |
| 2006 | 4024036 | 226       |
| 2007 | 4028049 | 249       |
| 2008 | 4032064 | 218       |
| 2009 | 4036081 | 235       |
| 2010 | 4040100 | 202       |
| 2011 | 4044121 | 170       |
| 2012 | 4048144 | 183       |
| 2013 | 4052169 | 156       |
| 2014 | 4056196 | 172       |
| 2015 | 4060225 | 170       |
| 2016 | 4064256 | 185       |
| 2017 | 4068289 | 185       |
| 2018 | 4072324 | 231       |
| 2019 | 4076361 | 188       |
| 2020 | 4080400 | 305       |
| 2021 | 4084441 | 316       |
| 2022 | 4088484 | 365       |
| 2023 | 4092529 | 490       |
| 2024 |         | 442,37662 |

Figura 16. Datos regresión.

En la hoja de regresión (Figura 17) podemos ver que  $r=0.873\,$  lo cual significa que hay una correlación positiva moderadamente fuerte entre las variables.

Se puede destacar que la varianza de la regresión es: 1577,38

Para estimar la cantidad de ingresantes en el año 2024 reemplazamos en la ecuación x=2024

$$y = 1,67363 * 2024^2 - 6731,93732 * 2024 + 6769728,09091$$
  
 $y = 442,38$ 

Lo cual nos dice que se estima que aproximadamente haya 442 ingresantes varones en 2024.

| SALIDA RESUMEN        |                    | Variable de respuesta | Columna 3          |                      |                      |                    |
|-----------------------|--------------------|-----------------------|--------------------|----------------------|----------------------|--------------------|
| Estadísticas de regre | sián               |                       |                    |                      |                      |                    |
| R múltiple            | 0,8737476652392238 |                       |                    |                      |                      |                    |
| R^2                   | 0,7634349825109946 |                       |                    |                      |                      |                    |
| Error estándar        | 39,71629904259336  |                       |                    |                      |                      |                    |
| R^2 ajustado          | 0,7385334017226782 |                       |                    |                      | 0,7634349825109946   |                    |
| Observaciones         | 22                 |                       |                    |                      |                      |                    |
| Análisis de varianza  |                    |                       |                    |                      |                      |                    |
|                       | df                 | SS                    | MS                 | F                    | Significancia de F   |                    |
| Regresión             | 2                  | 96719,19621682665     | 48359,598108413324 | 30,658093114682618   | 1,12857380964967E-06 |                    |
| Residual              | 19                 | 29970,30378317335     | 1577,3844096407026 |                      |                      |                    |
| Total                 | 21                 | 126689,5              |                    |                      |                      |                    |
|                       | Coeficientes       | Error estándar        | Estadísticas-t     | Valor-P              | 0,95                 | 0,95               |
| Interceptar           | 6769728,090909091  | 955583,5785729469     | 7,084391405112772  | 9,70203791101299E-07 | 4769668,674958339    | 8769787,506859843  |
| Columna 1             | -6731,93732354602  | 949,654900649004      | -7,08882491834175  | 9,61727674155282E-07 | -8719,587873991119   | -4744,286773100919 |
| Columna 2             | 1,673630717108978  | 0,2359388727343631    | 7,093492893785549  | 9,52886060718438E-07 | 1,179804981105975    | 2,167456453111981  |
|                       |                    |                       |                    |                      |                      |                    |

Figura 17. Hoja de regresión.

Ya realizado el procedimiento para la cantidad de ingresantes varones, procedemos a realizarlo para las mujeres.

# 3.3. Cantidad de ingresantes mujeres.

Se comienza analizando la muestra con un análisis exploratorio (Figura 18) a partir de estadística descriptiva.

| Año  | Mujeres |                        |                      |
|------|---------|------------------------|----------------------|
| 2002 | 58      |                        |                      |
| 2003 | 44      |                        |                      |
| 2004 | 50      |                        |                      |
| 2005 | 45      |                        |                      |
| 2006 | 34      |                        | Total de ingresantes |
| 2007 | 38      | Media                  | 40,181818181818      |
| 2008 | 45      | Error estándar         | 4,7421095839073      |
| 2009 | 26      | Mediana                | 33,5                 |
| 2010 | 33      | Moda                   | 45                   |
| 2011 | 24      | Desviación estándar    | 22,242465527168      |
| 2012 | 17      | Varianza de la muestra | 494,72727272727      |
| 2013 | 26      | Curtosis               | 0,8467484965356      |
| 2014 | 16      | Desviación             | 1,123857858023       |
| 2015 | 17      | Rango                  | 83                   |
| 2016 | 15      | Minime                 | 15                   |
| 2017 | 25      | Máximo                 | 98                   |
| 2018 | 28      | Suma                   | 884                  |
| 2019 | 32      | Cuenta                 | 22                   |
| 2020 | 59      |                        |                      |
| 2021 | 79      |                        |                      |
| 2022 | 75      |                        |                      |
| 2023 | 98      |                        |                      |

Figura 18. Análisis exploratorio.

## Datos:

- Media muestral (x): 40,18
- Cantidad de muestra: n= 22
- Desvío estándar (S'): 22,24
- Desvío estándar de la población ( $\sigma$ ): desconocido
- 1-α=95%
- α= 5%
- Grados de libertad: 21

A continuación, se realizó un gráfico de box plot (Figura 19).



Figura 19. Gráfico de box plot.

Donde podemos ver que tiene un valor atípico aproximadamente en 100, que sería el correspondiente a la cantidad de ingresantes mujeres en 2023.

Estimamos el intervalo de confianza en el que se encontrará el parámetro de población  $(\mu)$ :

$$(xmedia + - |t_{(1-\frac{\alpha}{2};n-1)}|\frac{S'}{\sqrt{n}})$$

El valor "t" lo calculamos como: Valor de t: = tinv(0,95)

$$(xmedia - |t_{(1-\frac{\alpha}{2};n-1)}|\frac{S'}{\sqrt{n}}) \le \mu \le (xmedia + |t_{(1-\frac{\alpha}{2};n-1)}|\frac{S'}{\sqrt{n}})$$

Reemplazando los valores en la ecuación obtenemos un intervalo con un 95% de confianza de:

$$(28,735 \le \mu \le 51,62)$$

Estimamos la varianza poblacional:

### Datos:

- n=22
- Desvío estándar (S')= 22,24
- $1 \alpha = 95\%$

$$\chi^2 = chiinv(0,025;21)$$
  $\chi^2_{inferior} = 35,47$   $\chi^2 = chiinv(0,95/2;21)$   $\chi^2_{superior} = 20,73$ 

Utilizamos la fórmula:

$$\frac{n * S^2}{\chi^2_{(1-\frac{\alpha}{2};n-1)}} \le \sigma^2 \le \frac{n * S^2}{\chi^2_{(\frac{\alpha}{2};n-1)}}$$
$$306,77 \le \sigma^2 \le 524,82$$

Se realizó un histograma (Figura 20) con los datos y su respectivo polígono de frecuencias



Figura 20. Histograma.

Siguiendo, con los respectivos datos se suavizó la serie (Figura 21).

|      |       |    | W=0,25 W=0,5 |       | W=0,75 |
|------|-------|----|--------------|-------|--------|
| Año  | Total | X  | 0,25         | 0,5   | 0,75   |
| 2002 | 58    | 1  | 58,00        | 58,00 | 58,00  |
| 2003 | 44    | 2  | 54,50        | 51,00 | 47,50  |
| 2004 | 50    | 3  | 53,38        | 50,50 | 49,38  |
| 2005 | 45    | 4  | 51,28        | 47,75 | 46,09  |
| 2006 | 34    | 5  | 46,96        | 40,88 | 37,02  |
| 2007 | 38    | 6  | 44,72        | 39,44 | 37,76  |
| 2008 | 45    | 7  | 44,79        | 42,22 | 43,19  |
| 2009 | 26    | 8  | 40,09        | 34,11 | 30,30  |
| 2010 | 33    | 9  | 38,32        | 33,55 | 32,32  |
| 2011 | 24    | 10 | 34,74        | 28,78 | 26,08  |
| 2012 | 17    | 11 | 30,30        | 22,89 | 19,27  |
| 2013 | 26    | 12 | 29,23        | 24,44 | 24,32  |
| 2014 | 16    | 13 | 25,92        | 20,22 | 18,08  |
| 2015 | 17    | 14 | 23,69        | 18,61 | 17,27  |
| 2016 | 15    | 15 | 21,52        | 16,81 | 15,57  |
| 2017 | 25    | 16 | 22,39        | 20,90 | 22,64  |
| 2018 | 28    | 17 | 23,79        | 24,45 | 26,66  |
| 2019 | 32    | 18 | 25,84        | 28,23 | 30,67  |
| 2020 | 59    | 19 | 34,13        | 43,61 | 51,92  |
| 2021 | 79    | 20 | 45,35        | 61,31 | 72,23  |
| 2022 | 75    | 21 | 52,76        | 68,15 | 74,31  |
| 2023 | 98    | 22 | 64,07        | 83,08 | 92,08  |

Figura 21. Datos suavización exponencial.

Como se observa en la Figura 21, el último valor en  $\omega=0.75$  puede ser tomado como una aproximación para la cantidad de ingresantes varones en 2024 que es: 92,08

A continuación, en la Figura 22 vemos una gráfica con la serie de datos original y sus respectivas suavizaciones:



Figura 22. Suavización exponencial.

Luego, se realizó un dispersiograma (Figura 23) con los datos de la tabla tomando como variable X: "Año correspondiente" Y: "Cantidad de ingresantes mujeres en ingeniería informática"



Figura 23. Dispersiograma

Como se observa en la Figura 23, el modelo que mejor se ajusta a los datos representados es un ajuste polinómico.

$$y = 0.51687 * x^2 - 2079.46944 * x + 2091551.40909$$

En la Figura 23 se ve que el coeficiente de determinación  $r^2=0.802$ . Es decir que aproximadamente el 80.2% de la variabilidad observada es explicada por la relación propuesta.

Se realizó una regresión de los datos (Figura 24), exactamente igual como lo hicimos anteriormente.

| Año  | Año^2   | Total    |
|------|---------|----------|
| 2002 | 4008004 | 58       |
| 2003 | 4012009 | 44       |
| 2004 | 4016016 | 50       |
| 2005 | 4020025 | 45       |
| 2006 | 4024036 | 34       |
| 2007 | 4028049 | 38       |
| 2008 | 4032064 | 45       |
| 2009 | 4036081 | 26       |
| 2010 | 4040100 | 33       |
| 2011 | 4044121 | 24       |
| 2012 | 4048144 | 17       |
| 2013 | 4052169 | 26       |
| 2014 | 4056196 | 16       |
| 2015 | 4060225 | 17       |
| 2016 | 4064256 | 15       |
| 2017 | 4068289 | 25       |
| 2018 | 4072324 | 28       |
| 2019 | 4076361 | 32       |
| 2020 | 4080400 | 59       |
| 2021 | 4084441 | 79       |
| 2022 | 4088484 | 75       |
| 2023 | 4092529 | 98       |
| 2024 |         | 98,40909 |

Figura 24. Datos regresión.

En la hoja de regresión (Figura 25) podemos ver que r=0.895 lo cual significa que hay una correlación positiva moderadamente fuerte entre las variables.

Se puede destacar que la varianza de la regresión es: 108,21

Para estimar la cantidad de ingresantes en el año 2024 reemplazamos en la ecuación x=2024

$$y = 0.51687 * 2024^2 - 2079,46944 * 2024 + 2091551,40909$$
  
$$y = 98,409$$

Lo cual nos dice que se estima que aproximadamente haya 98 ingresantes mujeres en 2024.

| SALIDA RESUMEN       |                    | Variable de respuesta | Columna 3          |                      |                      |                    |
|----------------------|--------------------|-----------------------|--------------------|----------------------|----------------------|--------------------|
| Estadísticas de regr | resión             |                       |                    |                      |                      |                    |
| R múltiple           | 0,8955939824864022 |                       |                    |                      |                      |                    |
| R^2                  | 0,8020885814658542 |                       |                    |                      |                      |                    |
| Error estándar       | 10,402822752029373 |                       |                    |                      |                      |                    |
| R^2 ajustado         | 0,781255800567523  |                       |                    |                      | 0,8020885814658543   |                    |
| Observaciones        | 22                 |                       |                    |                      |                      |                    |
| Análisis de varianza | 2                  |                       |                    |                      |                      |                    |
|                      | df                 | SS                    | MS                 | F                    | Significancia de F   |                    |
| Regresión            | 2                  | 8333,117024280069     | 4166,5585121400345 | 38,5012728439969     | 2,07239764665761E-07 |                    |
| Residual             | 19                 | 2056,1557029926594    | 108,21872121013996 |                      |                      |                    |
| Total                | 21                 | 10389,272727272728    |                    |                      |                      |                    |
|                      | Coeficientes       | Error estándar        | Estadísticas-t     | Valor-P              | 0,95                 | 0,95               |
| Interceptar          | 2091551,4090909092 | 250294,38372350406    | 8,356365724136305  | 8,72037413255682E-08 | 1567679,2432743113   | 2615423,574907507  |
| Columna 1            | -2079,46943817053  | 248,74149518445603    | -8,35996196223103  | 8,6638017943016E-08  | -2600,091370921081   | -1558,84750541997  |
| Columna 2            | 0.5168690005646528 | 0,0617990682046423    | 8,363702165428869  | 8,6053693055492E-08  | 0,3875220642723167   | 0,6462159368569889 |

Figura 25. Hoja de regresión.

Ya finalizado el procedimiento por separado para la cantidad total de ingresantes, la cantidad de varones y la cantidad de mujeres, podemos decir que parece repetitivo el proceso e innecesario pero la verdad es que esto nos sirve para estimar por separado cada componente en los siguientes años, ya que obtuvimos sus ecuaciones que se ajustan al modelo independientemente de las otras.

En la Figura 26 se observa la aproximación de las componentes por separado para algunos años posteriores.

| Año  | Varones | Mujeres | Total   |
|------|---------|---------|---------|
| 2002 | 289     | 58      | 347     |
| 2003 | 228     | 44      | 272     |
| 2004 | 241     | 50      | 291     |
| 2005 | 221     | 45      | 266     |
| 2006 | 226     | 34      | 260     |
| 2007 | 249     | 38      | 287     |
| 2008 | 218     | 45      | 263     |
| 2009 | 235     | 26      | 261     |
| 2010 | 202     | 33      | 235     |
| 2011 | 170     | 24      | 194     |
| 2012 | 183     | 17      | 200     |
| 2013 | 156     | 26      | 182     |
| 2014 | 172     | 16      | 188     |
| 2015 | 170     | 17      | 187     |
| 2016 | 185     | 15      | 200     |
| 2017 | 185     | 25      | 210     |
| 2018 | 231     | 28      | 259     |
| 2019 | 188     | 32      | 220     |
| 2020 | 305     | 59      | 364     |
| 2021 | 316     | 79      | 395     |
| 2022 | 365     | 75      | 440     |
| 2023 | 490     | 98      | 588     |
| 2024 | 442,38  | 98,41   | 540,79  |
| 2025 | 486,97  | 111,74  | 598,71  |
| 2026 | 534,91  | 126,11  | 661,02  |
| 2027 | 586,20  | 141,51  | 727,71  |
| 2028 | 640,83  | 157,94  | 798,78  |
| 2029 | 698,82  | 175,41  | 874,23  |
| 2030 | 760,15  | 193,91  | 954,06  |
| 2031 | 824,82  | 213,45  | 1038,27 |
| 2032 | 892,85  | 234,02  | 1126,87 |
| 2033 | 964,22  | 255,62  | 1219,84 |

Figura 26. Estimación de ingresantes años posteriores.

Donde para aproximar desde el año 2024 hasta el año 2033 se utilizaron sus ecuaciones correspondientes:

Cant. total:  $y = 2,1905 * x^2 - 8811,41 * x + 8861279,50$ 

Cant. varones:  $y = 1,67363 * x^2 - 6731,93732 * x + 6769728,09091$ 

Cant. mujeres:  $y = 0.51687 * x^2 - 2079,46944 * x + 2091551,40909$ 

Para obtener el valor de y, se reemplazó x por el valor correspondiente al año.

Para terminar, podemos pensar en la oportunidad en la que un profesor quiere elegir un alumno al azar, en este caso estudiaremos la probabilidad de que ese alumno seleccionado al azar sea varón o mujer.

En el año 2023, según los datos proporcionados, hubo 490 ingresantes varones y 98 ingresantes mujeres y un total de 588.

Para calcular la probabilidad de que el alumno elegido al azar sea mujer, dividimos la cantidad de ingresantes mujeres (98) entre el total de ingresantes (588):

## Probabilidad de que sea mujer = 98 / 588 ≈ 0.1667

Por lo tanto, la probabilidad de que el alumno elegido al azar del año 2023 sea mujer es aproximadamente 0.1667 o 16.67%.

De manera similar, para calcular la probabilidad de que el alumno elegido al azar sea hombre, dividimos la cantidad de ingresantes varones (490) entre el total de ingresantes (588):

## Probabilidad de que sea hombre = 490 / 588 ≈ 0.8333

Por lo tanto, la probabilidad de que el alumno elegido al azar del año 2023 sea hombre es aproximadamente 0.8333 o 83.33%

En este caso, hemos utilizado la probabilidad a priori, donde la probabilidad a priori es:

Si un procedimiento tiene N eventos simples diferentes que son igualmente probables, y si el evento puede ocurrir de n diferentes maneras entonces:

$$P(A) = \frac{casos\ favorables\ n}{casos\ igual mente\ posibles\ N}$$

## 4. Conclusión.

En el campo de la informática, hemos sido testigos de una rápida evolución en los últimos años. La forma en que vivimos, trabajamos y nos relacionamos ha sido significativamente afectada por los avances tecnológicos y la creciente dependencia de la sociedad de la tecnología. La revolución digital ha despertado un gran interés en la informática, lo que ha llevado a un aumento en el número de personas que deciden estudiar esta carrera.

La informática ha dejado de ser vista simplemente como una herramienta y se ha convertido en una parte importante de todas las facetas de nuestras vidas. La necesidad de desarrollar y mantener sistemas y aplicaciones que fomenten la eficiencia, la productividad y la innovación en una variedad de industrias, como la salud, las finanzas y el entretenimiento, aumenta la demanda de profesionales capacitados en informática.

También, el auge de la inteligencia artificial, el análisis de datos, la ciberseguridad y el internet de las cosas ha generado nuevas oportunidades laborales en el campo de la informática. Estos avances tecnológicos han despertado el interés de muchas personas en seguir una carrera en informática, ya que perciben el potencial de contribuir a la resolución de desafíos complejos y a la transformación digital de las organizaciones. Hubiese sido interesante poder realizar este trabajo sobre la nueva carrera Ingeniería Artificial en la FICH. Lamentablemente es una carrera nueva en esta facultad, donde comenzó a dictarse en 2023 y por la poca cantidad de datos no iba a ser posible realizarlo.

Además, al realizar análisis exploratorios de los datos, como el uso de gráficos de dispersión, box plots, histogramas y técnicas como suavización exponencial, estimación de la varianza poblacional, se ha obtenido una comprensión más profunda de las tendencias y variabilidad en los datos de ingresantes a la carrera de Ingeniería Informática.

En resumen, la evolución acelerada de la informática en los últimos años, impulsada por avances tecnológicos y una mayor dependencia de la tecnología, ha llevado a un creciente interés en estudiar informática. La demanda de profesionales en este campo ha aumentado debido a la necesidad de desarrollar soluciones innovadoras y eficientes en diferentes sectores. Además, la accesibilidad a recursos de aprendizaje y programas educativos ha permitido que más personas puedan perseguir una carrera en informática y contribuir al avance tecnológico en nuestra sociedad.