Chapter 3: Convolution Neural Network

Computer vision

Computer Vision Problems

Deep Learning on large images

Edge detection example

Computer Vision Problem

Vertical edge detection

3x1+1x1 +2x1+0x0+8x0+7x0+1x-1+8x-1+2x-1=-5

3	0	1	2	(7)	4
1	5	8	9	3	1
2	7	2	5	(Î)	3
0	1	3	1	7	8
4	2	1	6	2	8
2	4	5	2	3	9

	"CONU	dutis	1	
	1	0	-(
*	1	0	-1	=
_	l	0	-1	
	-	2×3		
a)	ŧ	ilter		

-5	-4	0	8
-10	-2	2	3
0	-2	-4	-7
1			
-3	-2	-3	-16

6×6]

pythan: conv-forward tensorfins: tf.nn.conv2d

Keras: Conv20

	7.00	J	
	1	0	[-1]
*	1	0	-1
	1	0	-1/
		3×3	

1			
0	30	30	0
0	30	30	0
0	30	30	0
0	30	30	0

More edge detection

Vertical edge detection examples

Vertical and Horizontal Edge Detection

Vertical

Horizontal

	10	10	10	0	0	0	
V	10	10	10	0	0	0	
	10	10	10	0	0	0	
	0	0	0	10	10	10	
	0	0	0	10	10	10	
	0	0	0	10	10	10	
	6 x 6						

1 1 1 0 0 0 -1 -1 -1 0 0 0 0 0 30 10 -10 -30 0 0 0 0 0

1	0	-1		
1	0	-1		
1	0	-1		
1				

1	3	0	1	2	7	4
	1	5	8	9	3	1
	2	7	2	5	1	3
	0	1	3	1	7	8
	4	2	1	6	2	8
	2	4	5	2	3	9

	(0	-1
7	2	0	-2
	1	O	-1
	2 PÍ	el	Cilter
		1	

3	0	-3
0	0	0
3	C	-3
~ ·	0	1.

Padding

Valid and Same convolutions

"Valid":
$$n \times n$$
 $+$ $f \times f$ \rightarrow $\frac{n - f + 1}{4 \times 4} \times 4 \times 4$

"Same": Pad so that output size is the <u>same</u> as the input size.

as the input size.

$$1 + 2p - f + 1 \times n + 2p - f + 1$$
 $1 + 2p - f + 1 = pr$
 $1 + 2p - f + 1 = pr$
 $1 + 2p - f + 1 = pr$
 $1 + 2p - f + 1 = pr$
 $1 + 2p - f + 1 = pr$
 $1 + 2p - f + 1 = pr$
 $1 + 2p - f + 1 = pr$
 $1 + 2p - f + 1 = pr$
 $1 + 2p - f + 1 = pr$
 $1 + 2p - f + 1 = pr$
 $1 + 2p - f + 1 = pr$
 $1 + 2p - f + 1 = pr$
 $1 + 2p - f + 1 = pr$
 $1 + 2p - f + 1 = pr$
 $1 + 2p - f + 1 = pr$
 $1 + 2p - f + 1 = pr$
 $1 + 2p - f + 1 = pr$
 $1 + 2p - f + 1 = pr$
 $1 + 2p - f + 1 = pr$
 $1 + 2p - f + 1 = pr$
 $1 + 2p - f + 1 = pr$
 $1 + 2p - f + 1 = pr$
 $1 + 2p - f + 1 = pr$
 $1 + 2p - f + 1 = pr$
 $1 + 2p - f + 1 = pr$
 $1 + 2p - f + 1 = pr$
 $1 + 2p - f + 1 = pr$
 $1 + 2p - f + 1 = pr$
 $1 + 2p - f + 1 = pr$
 $1 + 2p - f + 1 = pr$
 $1 + 2p - f + 1 = pr$
 $1 + 2p - f + 1 = pr$
 $1 + 2p - f + 1 = pr$
 $1 + 2p - f + 1 = pr$
 $1 + 2p - f + 1 = pr$
 $1 + 2p - f + 1 = pr$
 $1 + 2p - f + 1 = pr$
 $1 + 2p - f + 1 = pr$
 $1 + 2p - f + 1 = pr$
 $1 + 2p - f + 1 = pr$
 $1 + 2p - f + 1 = pr$
 $1 + 2p - f + 1 = pr$
 $1 + 2p - f + 1 = pr$
 $1 + 2p - f + 1 = pr$
 $1 + 2p - f + 1 = pr$
 $1 + 2p - f + 1 = pr$
 $1 + 2p - f + 1 = pr$
 $1 + 2p - f + 1 = pr$
 $1 + 2p - f + 1 = pr$
 $1 + 2p - f + 1 = pr$
 $1 + 2p - f + 1 = pr$
 $1 + 2p - f + 1 = pr$
 $1 + 2p - f + 1 = pr$
 $1 + 2p - f + 1 = pr$
 $1 + 2p - f + 1 = pr$
 $1 + 2p - f + 1 = pr$
 $1 + 2p - f + 1 = pr$
 $1 + 2p - f + 1 = pr$
 $1 + 2p - f + 1 = pr$
 $1 + 2p - f + 1 = pr$
 $1 + 2p - f + 1 = pr$
 $1 + 2p - f + 1 = pr$
 $1 + 2p - f + 1 = pr$
 $1 + 2p - f + 1 = pr$
 $1 + 2p - f + 1 = pr$
 $1 + 2p - f + 1 = pr$
 $1 + 2p - f + 1 = pr$
 $1 + 2p - f + 1 = pr$
 $1 + 2p - f + 1 = pr$
 $1 + 2p - f + 1 = pr$
 $1 + 2p - f + 1 = pr$
 $1 + 2p - f + 1 = pr$
 $1 + 2p - f + 1 = pr$
 $1 + 2p - f + 1 = pr$
 $1 + 2p - f + 1 = pr$
 $1 + 2p - f + 1 = pr$
 $1 + 2p - f + 1 = pr$
 $1 + 2p - f + 1 = pr$
 $1 + 2p - f + 1 = pr$
 $1 + 2p - f + 1 = pr$
 $1 + 2p - f + 1 = pr$
 $1 + 2p - f + 1 = pr$
 $1 + 2p - f + 1 = pr$
 $1 + 2p - f + 1 = pr$
 $1 + 2p - f + 1 = pr$
 $1 + 2p - f + 1 = pr$
 $1 + 2p - f$

Strided convolutions

Strided convolution

Summary of convolutions

$$n \times n$$
 image $f \times f$ filter

padding
$$p$$
 stride s

$$\frac{1+2p-f}{s} + 1$$

$$\left\lfloor \frac{n+2p-f}{s} + 1 \right\rfloor$$

Technical note on <u>cross-correlation</u> vs. convolution

Convolution in math textbook:

		(2	1	
27	3	75	4	6	2
69	60	94	8	7	4
3	4	83	3	8	9
7	8	3	6	6	3
4	2	1	8	3	4
3	2	4	1	9	8

Convolutions over volumes

One layer of a convolutional network

Number of parameters in one layer

If you have 10 filters that are 3 x 3 x 3 in one layer of a neural network, how many parameters does that layer have?

Summary of notation

If layer <u>l</u> is a convolution layer:

$$f^{[l]} = \text{filter size} \qquad \qquad \text{Input:} \qquad \frac{\int_{H}^{(l-1)} \int_{H}^{(l-1)} \int_{H}^{(l-1)}$$

A simple convolution network example

Types of layer in a convolutional network:

```
- Convolution (CONV) ←
- Pooling (POOL) ←
- Fully connected (FC) ←
```


Pooling layers

Pooling layer: Average pooling

1	3	2	1
2	9	1	1
1	4	2	3
5	6	1	2

Summary of pooling

Hyperparameters:

f: filter size

f=3, S=2

s:stride

Max or average pooling

No parameters to learn.

$$N_{H} \times N_{\omega} \times N_{c}$$

$$\left[\frac{N_{H} - f}{s} + i \right] \times \left[\frac{N_{\omega} - f}{s} + i \right]$$

$$\times N_{c}$$

Convolutional neural network example

Neural network example

	Activation shape	Activation Size	# parameters
Input:	(32,32,3)	_ 3,072 a ^{rol}	0
CONV1 (f=5, s=1)	(28,28,8)	6,272	208 <
POOL1	(14,14,8)	1,568	0 ←
CONV2 (f=5, s=1)	(10,10,16)	1,600	416 ←
POOL2	(5,5,16)	400	0 ←
FC3	(120,1)	120	48,001
FC4	(84,1)	84	10,081
Softmax	(10,1)	10	841

Why convolutions?

Why convolutions

Parameter sharing: A feature detector (such as a vertical edge detector) that's useful in one part of the image is probably useful in another part of the image.

→ Sparsity of connections: In each layer, each output value depends only on a small number of inputs.

Putting it together

Cost
$$J = \frac{1}{m} \sum_{i=1}^{m} \mathcal{L}(\hat{y}^{(i)}, y^{(i)})$$

Use gradient descent to optimize parameters to reduce J