

UNIVERSITY OF GHANA (All rights reserved)

BACHELOR OF SCIENCE IN ENGINEERING SECOND SEMESTER EXAMINATIONS, 2011/2012 CPEN 202 DIGITAL SYSTEMS DESIGN (2 Credits)

TIME ALLOWED: TWO (2) HOURS

INSTRUCTION:

L

Answer ANY five (5) questions in your answer booklet.

Q1. Study the Truth Table below:

X_I	<i>X</i> ₂	f
0	0	0
0	1	1
1	0	1
1	1	0

	(i) (ii) (iii)	Draw the circuit from this Truth Table. State one good use of this circuit. Write a VHDL code to implement your circuit.	[7 Marks] [3 Marks] [10 Marks]
Q2.	(i) (ii)	Explain how a Digital Combination Lock works. Using AND-Gates and Inverters, design a Digital Combinat input is 0110.	[5 Marks] ion Lock whose [10 Marks]
	(iii)	Draw a state diagram for 0110.	[5 Marks]
Q3.	(i)	Draw and label the general block diagram of a synchronous sequential machine. [5 Marks]	
	(ii)	Design the circuit for a sequential machine to detect 1010.	[15 Marks]
Q4.	(i) (ii) (iii)	From first principles, design a full Adder. Illustrate how a 4-bit Adder may be constructed. Write a VHDL code to implement the 4-bit Adder.	[5 Marks] [5 Marks] [10 Marks]
Q5.	(i) (ii)	Given the function $f(x_1, x_2, x_3) = \sum m(1, 4, 5, 6)$. Design a circuit to implement this function. Write a VHDL code to implement your design.	a combinatorial [10 Marks] [10 Marks]

Page 1 of 2 XAMÎNER TROSPER AFRIYLE

Q6. Write short notes on the following:

(i)	Testing.	[4 Marks]
(ii)	Stuck-at Fault.	[4 Marks]
(iii)	Fault Reductions.	[4 Marks]
(iv)	Fault Modeling and Testing.	[4 Marks]
(v)	Test Effectiveness.	[4 Marks]

Page 2 of 2