Chapitre 4: Théorèmes limites.

Considérons une suite $(X_n)_{n\geq 1}$ de variables aléatoires indépendantes de même loi. Supposons que ces v.a ont une espérance, notée m et une variance notée σ^2 .

Lois des grands nombres

On a vu dans les chapitres précédents que

$$E\left(\sum_{k=1}^{n} X_{k}\right) = \sum_{k=1}^{n} E\left(X_{k}\right) = nm \text{ et } V\left(\sum_{k=1}^{n} X_{k}\right) = \sum_{k=1}^{n} V\left(X_{k}\right) = n\sigma^{2} \left(X_{k} \ iid\right)$$

et l'inégalité de Tchebychev:

Soit X une v.a et $\varepsilon > 0$, alors

$$P(|X - E[X]| > \varepsilon) \le \frac{V(X)}{\varepsilon^2}.$$

Définition : La moyenne arithmétique (ou empirique) d'une suite de variables aléatoires $(X_n)_{n>1}$ est la variable aléatoire

$$\overline{X}_n = \frac{\sum_{k=1}^n X_k}{n}.$$

Lorsque n devient de plus en plus grands, les résultats concernant ce problème sont appelés. Lois des grands nombres qui sont décomposé en deux parties:

- Lois faibles des grands nombres.
- Lois fortes des grands nombres.

Définition:

- 1. La suite $(X_n)_{n\geq 1}$ satisfait la loi faible des grands nombres si la suite de terme général $\frac{1}{n}\sum_{k=1}^{n}X_k \text{ converge vers } E\left(X_1\right)=m \text{ en probabilité}.$
- 2. La suite $(X_n)_{n\geq 1}$ satisfait la loi forte des grands nombres si la suite de terme général $\frac{1}{n}\sum_{k=1}^{n}X_k$ converge vers $E(X_1)=m$ presque sûrement.

Théorème (lois faibles des grands nombres):

Soit $(X_n)_{n\geq 1}$ une suite de v.a indépendants de même lois et de carré intégrable, alors: \overline{X}_n converge en probabilité vers $E(X_1) = m$ lorsque $n \to \infty$. Autrement dit,

$$\forall \varepsilon > 0, \qquad \lim_{n \to \infty} P\left(\left|\overline{X}_n - m\right| > \varepsilon\right) = 0.$$

Preuve : Soit $\varepsilon > 0$, d'après l'inégalité de Tchebychev:

$$P(|\overline{X}_n - m| > \varepsilon) \le \frac{V(\overline{X}_n)}{\varepsilon^2} = \frac{\sigma^2}{n\varepsilon^2} \underset{n \to \infty}{\longrightarrow} 0$$

on dit que \overline{X}_n converge en probabilité vers m.

Pour la seconde famille des lois de grands nombres, on a la loi forte des grands nombres.

Théorème (lois forte des grands nombres):

Soit $(X_n)_{n\geq 1}$ une suite de v.a indépendants de même lois. Si $E(|X_k|) < \infty$ (X_k est intégrable $\forall k=1,...,n$), alors: \overline{X}_n converge presque sûrement vers $E(X_1)=m$ lorsque $n\to\infty$. Autrement dit,

$$\overline{X}_n \stackrel{p.s}{\to} E(X_1) = m.$$

Théorème central limite

Le théorème "central limite" donne des conditions suffisantes dans lesquelles une somme finie de v.a (iid) et de variance finie, (lorsqu'elle est bien normalisée et lorsque n est très grand) suit approximativement une loi normale.

Théorème : Soit $(X_n)_{n\geq 1}$ une suite de v.a indépendants de même lois et de carré intégrable. Posons $m=E(X_1)$ et $\sigma^2=V(X_1)$, alors

$$\frac{1}{\sigma\sqrt{n}}\sum_{k=1}^{n}\left(X_{k}-m\right)\stackrel{\mathcal{L}}{\to}\mathcal{N}\left(0,1\right)$$

lorsque $n \to \infty$. Par conséquent,

$$\forall t \in \mathbb{R}, \qquad \lim_{n \to \infty} P\left(\frac{1}{\sigma\sqrt{n}} \sum_{k=1}^{n} (X_k - m) \le t\right) = \int_{-\infty}^{t} \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}} dx.$$

Preuve : Pour $k \ge 1$, posons : $Y_k = \frac{X_k - m}{\sigma}$.

Les v.a Y_k sont indépendants de même lois, avec:

$$E(Y_k) = \frac{1}{\sigma} (E(X_k) - m) = 0 \text{ et } V(Y_k) = \frac{1}{\sigma^2} V(X_k) = 1.$$

Posons pour tout $k \geq 1$,

$$t \in \mathbb{R}$$
: $Z_n = \frac{1}{\sigma \sqrt{n}} \sum_{k=1}^n (X_k - m) = \frac{1}{\sqrt{n}} \sum_{k=1}^n Y_k$.

On note par φ_{Z_n} la fonction caractéristique de $Z_n,\, \varphi$ la fonction caractéristique de Y_1

$$\varphi_{Z_n}\left(t\right) = E\left(e^{itZ_n}\right) \text{ et } \varphi\left(t\right) = E\left(e^{itY_1}\right).$$

Pour $n \geq 1$, on a

$$\varphi_{Z_n}(t) = E\left(e^{itZ_n}\right) = E\left(\exp\left(\frac{it}{\sqrt{n}}\sum_{k=1}^n Y_k\right)\right) \underset{indéps}{=} \prod_{k=1}^n E\left(\exp\left(\frac{it}{\sqrt{n}}Y_k\right)\right)$$
$$\underset{i.d}{=} \prod_{k=1}^n \varphi\left(\frac{t}{\sqrt{n}}\right) = \left(\varphi\left(\frac{t}{\sqrt{n}}\right)\right)^n.$$

D'autre part, les Y_k ont moyenne nulle et variance qui vaut 1, alors la fonction φ admet au voisinage de 0, le développement limité suivant: (Voir TD 3)

$$\varphi\left(u\right) = 1 - \frac{u^2}{2} + \circ\left(u^2\right),\,$$

donc

$$\varphi\left(\frac{t}{\sqrt{n}}\right) = 1 - \frac{t^2}{2n} + \circ\left(\frac{t^2}{2n}\right).$$

Pour n assez grand, on a

$$\lim_{n \to \infty} \varphi_{Z_n}(t) = \lim_{n \to \infty} \left(\varphi\left(\frac{t}{\sqrt{n}}\right) \right)^n = \lim_{n \to \infty} \left(1 - \frac{t^2}{2n} + o\left(\frac{1}{2n}\right) \right)^n = e^{-\frac{t^2}{2}}.$$

Donc $(Z_n, n \ge 1)$ converge en loi vers une v.a de loi $\mathcal{N}(0, 1)$.

Proposition : Soit $(X_n)_{n\geq 1}$ une suite de v.a réelles indépendants de même lois et de carré intégrable. Posons $m=E\left(X_1\right)$ et $\sigma^2=V\left(X_1\right)$, alors

$$\frac{1}{\sqrt{n}} \sum_{k=1}^{n} X_k \xrightarrow{\mathcal{L}} \mathcal{N}\left(m, \sigma^2\right)$$

lorsque $n \to \infty$. Par conséquent,

$$\forall t \in \mathbb{R}, \qquad \lim_{n \to \infty} P\left(\frac{1}{\sqrt{n}} \sum_{k=1}^{n} X_k \le t\right) = \int_{-\infty}^{t} \frac{1}{\sigma \sqrt{2\pi}} \exp\left(-\frac{(x-m)^2}{2\sigma^2}\right) dx.$$