

## Get your hyperparameters right!

How to tune your machine learning models with SciPy





# Hi, I'm Maria Camila

Scientist & Engineer

mariacamilarg.me

1 HYPER-PARAMETER TUNING Machine learning problem

HOW DOES SCIPY HELP?

With its optimization tools

PRACTICAL EXAMPLE
Perceptron to identify natural language PoS

TAKE HOME MESSAGE

Summary of this talk

# WHAT IS HYPERPARAMETER TUNING?

Choosing a set of optimal\* hyperparameters for a learning algorithm.

\* minimizing a loss function on validation data



#### **PARAMETER**

- Internal to the model
- Estimated or learned from the data
- Required by the model when making predictions.
- Often **not** set manually
- Examples:
  - \* weights in an artificial neural network
  - \* support vectors in a SVM
  - \* coefficients in a linear regression

#### **HYPER-PARAMETER**

- External to the model
- Can't be estimated or learned from the data
- Helps estimate model parameters
- Often specified, tuned or set using heuristics
- Examples:
  - \* learning rate for training a neural network
  - \* the C and sigma hyperparameters for SVM
  - \* the k in k-nearest neighbors















MANUAL by <u>intuition</u> on the problem



**GRID SEARCH**<a href="mailto:exhaustive searching">exhaustive searching</a>
through the HP space



RANDOM SEARCH random searching through the HP space





BAYESIAN OPTIMIZATION

choosing the next HP based in past evaluation results



**OTHERS** 





MANUAL by <u>intuition</u> on the problem



**GRID SEARCH**<a href="mailto:exhaustive searching">exhaustive searching</a>
through the HP space



RANDOM SEARCH random searching through the HP space

### HOW DO WE DETERMINE K?





#### **BAYESIAN OPTIMIZATION**

choosing the next HP based in past evaluation results



**OTHERS** 

...

### **HOW DOES SCIPY HELP?**

With all the <u>optimization</u> algorithms available within the **SciPy** ecosystem!

> from scipy import optimize



# **OBJECTIVE FUNCTION:** what we want to optimize

```
def objective function(hyperparameters):
 m = ml_model(**hyperparameters)
 m.fit(X train, y train)
  predictions = m.predict(X valid)
  rmse = root mean squared error(prediction, y valid)
  return rmse —— to minimize
```

# OBJECTIVE FUNCTION: what we want to optimize

```
def objective_function(hyperparameters):
 m = ml_model(**hyperparameters)
 m.fit(X train, y_train) ← expensive to compute
  predictions = m.predict(X valid)
  rmse = root mean squared error(prediction, y valid)
  return rmse
```





#### **SURROG**ATE

probability representation of the objective function that selects the next HP to evaluate based on the past

e.g. Tree-s<mark>tructu</mark>red Parzen Estimator (TPE)





0000



SURROGATE



#### SELECTION FUNCTION

probability representation of the objective function that selects the next HP to evaluate based on the past

e.g. Tree-s<mark>tructu</mark>red Parzen Estimator (TPE) criteria by which the next set of hyperparameters are chosen from the surrogate function

e.g. expected improvement(EI)

#### **THE IDEA?**

To build a probability model of the objective function and use it to select the most promising hyperparameters to evaluate in the true objective function.

#### + LIBRARIES

- spearmint
- <u>MOE</u>
- <u>hyperopt</u>
- sdsd

### PRACTICAL EXAMPLE





#### Each PoS is a class (color)

Each word has different features:

- length
- prefix
- surrounding words
- starts with capital

Feature vectors have weights



MULTICLASS AVERAGED PERCEPTRON



Word → feature vector

Class → weight vector

Perceptron iterates to find ideal weights in epochs (E).

E = 1



**ALGORITHM:** 

MULTICLASS AVERAGED PERCEPTRON



Word → feature vector

Class → weight vector

Perceptron iterates to find ideal weights in epochs (E).

**ALGORITHM:** 

MULTICLASS AVERAGED PERCEPTRON

E = 2



Word → feature vector

Class → weight vector

Perceptron iterates to find ideal weights in epochs (E).

E = n



**ALGORITHM:** 

MULTICLASS AVERAGED PERCEPTRON



Finally, it averages all its epochs to compensate for not linearly separable data.

=> Hyperparameter:

Ε



#### **ALGORITHM:**

MULTICLASS AVERAGED PERCEPTRON



#### **OBJECTIVE FUNCTION:**

```
def objective function(epoch):
  model = averaged_perceptron(epochs)
  model.fit(X_train, y_train)
  predictions = m.predict(X_valid)
  rmse = root mean squared error(prediction, y valid)
  return rmse
```



<u>TIL</u>

SciPy optimizations tools can be used to find the hyperparameters of your machine learning model that minimize the validation error leading to a <u>balance between</u> <u>exploration and exploitation</u>.





### THANK YOU!

Any questions?

mariacamilarg.me

**CREDITS**: This presentation template was created by **Slidesgo**, including icons by **Flaticon**, and infographics & images by **Freepik**.

