

# INSTITUTO FEDERAL DE EDUCAÇÃO CIÊNCIA E TECNOLOGIA DA PARAÍBA CAMPUS ESPERANÇA CURSO SUPERIOR DE ANÁLISE E DESENVOLVIMENTO DE SISTEMAS

## PATRÍCIA SANTOS CUNHA RICHARD FERREIRA SALVIANO

CONSISTÊNCIA DE DIAGRAMAS

# Avaliação da Modelagem em Diagrama de Classes



## 1. Estrutura Geral

✓ O diagrama possui classes? Se houver elementos desnecessários ou vazios, devem ser removidos.

✓ Todas as classes possuem atributos e/ou métodos? Classes vazias sem justificativa devem ser revisadas.

✓ Cada classe possui um nome distinto? Não devem existir classes duplicadas com o mesmo identificador.

# 2. Validação de Classes Abstratas e Concretas

☑ Se houver classes abstratas no diagrama, elas devem conter pelo menos um método abstrato, seja próprio ou herdado. (Neste diagrama, não há classes abstratas.)

✓ Nenhuma classe concreta deve possuir métodos abstratos, seja próprio ou herdado sem sobrescrita.

#### 3. Atributos e Métodos

✓ Nenhuma classe deve conter atributos repetidos, seja dentro dela mesma ou herdados sem necessidade.

☑ Métodos com o mesmo nome e mesma lista de parâmetros só devem existir se caracterizarem sobrecarga (múltiplas versões do método) ou sobrescrita (redefinição de um método herdado).

✓ Todos os atributos, parâmetros e retornos de métodos devem ter um tipo claramente especificado.

## 4. Relacionamentos e Herança

- ✓ A hierarquia de herança deve ser linear, sem ciclos que tornem a estrutura inconsistente.
- ☑ Se uma classe implementa uma interface, deve fornecer implementação para todos os métodos declarados. (Não se aplica a este diagrama.)

✓ Métodos abstratos herdados devem ser sobrescritos no nível mais baixo da hierarquia, a menos que seja um framework orientado a objetos. (Não se aplica a este diagrama.)

Avaliação da Modelagem em Diagrama de Caso de Uso



## 1. Correspondência com Requisitos Funcionais

✓ Cada caso de uso deve representar uma funcionalidade esperada do sistema, ainda que não haja uma correspondência exata um para um com os requisitos documentados.

## 2. Validação de Casos de Uso e Atores

✓ Todo caso de uso deve estar ligado a pelo menos um ator, direta ou indiretamente.

✓ Os relacionamentos devem estar corretamente aplicados:

- Include deve apontar para um caso de uso necessário.
- Extend deve indicar um comportamento opcional, acionado em circunstâncias específicas.
- Generalização deve representar um caso de uso mais genérico.

✓ Nenhum ator pode estar isolado; todos devem estar conectados a pelo menos um caso de uso ou especializar um ator que esteja.

#### 3. Consistência nos Relacionamentos

☑ Não devem existir ciclos em relacionamentos «include», evitando loops infinitos na execução dos casos de uso.

✓ A generalização deve ser hierárquica e sem ciclos, garantindo uma estrutura lógica e compreensível.

# Avaliação da Modelagem em Diagrama de Atividades



### 1. Estrutura Geral

- ✓ O diagrama deve representar corretamente o fluxo das atividades dentro do processo modelado.
- ☑ Cada fluxo deve possuir um nó de início e um nó de término claramente definidos.
- ✓ Todas as atividades devem ter ao menos uma transição de entrada e uma de saída, exceto os nós inicial e final.

#### 2. Decisões e Conectores

- ✓ Todas as decisões devem ter condições bem definidas e mutuamente excludentes para evitar ambiguidades no fluxo.
- ☑ Não devem existir ciclos infinitos sem uma condição de saída clara.
- As transições entre atividades devem estar corretamente definidas e seguir uma lógica coerente dentro do processo.

## 3. Objetos e Fluxo de Dados

☑ Se o diagrama incluir objetos no fluxo, eles devem estar corretamente representados e conectados às atividades correspondentes.

☑ O fluxo de dados entre atividades deve ser consistente, garantindo que as informações fluam corretamente dentro do processo.

# Avaliação da Modelagem em Diagrama de Sequência



## 1. Estrutura e Elementos

- ✓ Todos os objetos envolvidos na interação estão corretamente representados.
- ✓ As mensagens entre os objetos estão corretamente identificadas e seguem a ordem de

execução.

☑ Os nomes das mensagens são coerentes com as ações realizadas no sistema.

# 2. Validação de Fluxo

- ☑ O fluxo de interação entre os objetos está coerente e representa corretamente o comportamento esperado do sistema.
- ☑ Condições e loops estão corretamente representados, garantindo um fluxo lógico nos processos.
- ✓ A diferenciação entre interações assíncronas e sincrônicas está aplicada de forma adequada.