Semiconductor Manufacturing Technology

Michael Quirk & Julian Serda
© October 2001 by Prentice Hall

Chapter 5

Chemicals in Semiconductor Fabrication

Objectives

After studying the material in this chapter, you will be able to:

- 1. Identify and discuss the four states of matter.
- 2. Describe the important chemical properties relevant to semiconductor manufacturing.
- 3. State how the different process chemicals are categorized and used in a wafer fab.
- 4. Explain how an acid, base and solvent are used in chip manufacturing.
- 5. State whether a gas is a bulk or specialty gas and how each type of gas is delivered and used in wafer fabrication.

Physical States of Matter

- Inert gases (He, Ar, or N_2) are widely used in semiconductor manufacturing because they do not react with other chemical
- Plasma: high energy collection of ionized molecules or atom, e.g., star, fluorescent light, and neon signs

Figure 5.1 3/45

- Identifying properties for materials used in semiconductor manufacturing is important for understanding how to properly fabricate the silicon wafer to build chips.
- Physical properties: reflect a material by itself without its interacting with another substance: melting point, boiling point, resistance...
- Chemical properties: flammability, reactivity, and corrosiveness (from reactance to product)

- Temperature
- Pressure and Vacuum
- Condensation
- Vapor Pressure
- Sublimation and Deposition
- Density
- Surface Tension
- Thermal Expansion
- Stress

- Temperature
- Pressure and Vacuum
- Condensation
- Vapor Pressure
- Sublimation and Deposition
- Density
- Surface Tension
- Thermal Expansion
- Stress

Temperature Scales

Figure 5.2

- Temperature
- Pressure and Vacuum
- Condensation
- Vapor Pressure
- Sublimation and Deposition
- Density
- Surface Tension
- Thermal Expansion
- Stress

Pressure Against a Container Wall

Figure 5.3 9/45

Gauge Pressure (psig) Versus Absolute Pressure (psia)

Figure 5.4 10/45

Units of Pressure at Sea Level and 23°C

Standard Atmospheric Pressure at Sea Level and 23°C		
Psig (gauge)	0 psi	
Psia (absolute)	14.7 psi	
Atmosphere	14.7 psi	
Inches of mercury	29.92 inches	
Millimeters of mercury	760 mm	
Torr	760 torr	
Mtorr	760,000 mtorr	
Bar	1.013 bar	
Millibar	1013 mbar	
Pascal	101,325 pascal	

Table 5.1 11/45

- Temperature
- Pressure and Vacuum
- Condensation
- Vapor Pressure
- Sublimation and Deposition
- Density
- Surface Tension
- Thermal Expansion
- Stress

Barometer at Atmospheric Pressure

Figure 5.5 13/45

- Temperature
- Pressure and Vacuum
- Condensation (gas → liquid)
- Vapor Pressure
- Sublimation and Deposition
- Density
- Surface Tension
- Thermal Expansion
- Stress

- Temperature
- Pressure and Vacuum
- Condensation
- Vapor Pressure (vaporization vs. condensation)
- Sublimation and Deposition
- Density
- Surface Tension
- Thermal Expansion
- Stress

Vapor Pressure

High vapor pressure materials are *volatile*, e.g., solvents, perfumes, and lotions

Figure 5.6 16/45

- Temperature
- Pressure and Vacuum
- Condensation
- Vapor Pressure
- Sublimation and Deposition
- Density
- Surface Tension
- Thermal Expansion
- Stress

Sublimation

Figure 5.7 18/45

Deposition v.s. sublimation (gas to solid)

Figure 5.8 19/45

- Temperature
- Pressure and Vacuum
- Condensation
- Vapor Pressure
- Sublimation and Deposition
- Density
- Surface Tension
- Thermal Expansion
- Stress

Density of Objects

Figure 5.9 21/45

Densities of Some Common Substances

Substance	Physical State	Density (g/cm³)
Hydrogen	Gas	0.000089
Oxygen	Gas	0.0014
Water	Liquid	1.0
Table Salt	Solid	2.16
Silicon	Solid	2.33
Aluminum	Solid	2.70
Gold	Solid	19.3

Table 5.2 22/45

- Temperature
- Pressure and Vacuum
- Condensation
- Vapor Pressure
- Sublimation and Deposition
- Density
- Surface Tension
- Thermal Expansion
- Stress

Surface Tension of a Liquid on a Wafer

HF-dip to etch SiO₂ on Si

Figure 5.10 24/45

- Temperature
- Pressure and Vacuum
- Condensation
- Vapor Pressure
- Sublimation and Deposition
- Density
- Surface Tension
- Thermal Expansion
- Stress

Thermal Expansion of a Heated Object

The amount a material expands due to heating is known as its coefficient of thermal expansion

Figure 5.11 26/45

- Temperature
- Pressure and Vacuum
- Condensation
- Vapor Pressure
- Sublimation and Deposition
- Density
- Surface Tension
- Thermal Expansion
- Stress

CTE Mismatch of Two Materials

• The reliability of a chip is improved by ensuring materials have minimal stress.

Figure 5.12 28/45

Process Chemicals

Chemicals are used in SMT to:

- <u>Clean</u> or prepare the wafer surface with wet chemical solutions and ultrapure water rinse.
- <u>Dope</u> the wafer with energetic atoms to create p-type and n-type silicon.
- **Deposit** the different metal conductor layers with the necessary dielectric layers between the conductors.
- Grow the thin silicon dioxide film to be used as the critical MOS gate dielectric.
- Etch thin films with plasma or wet chemicals to selectively remove material and form the required pattern in the film.

Process Chemicals

Liquids (ppb)

- Acids (H₃O⁺)
- Bases (OH-)
- pH
- Solvents
- Chemical Distribution

Common Acids Used in Semiconductor Manufacturing

Acid	Symbol	Examples of Use*
Hydrofluoric acid	HF	Etching of silicon dioxide (SiO ₂) and to clean quartzware.
Hydrochloric acid	HCl	Wet cleaning chemical that is part of the standard clean 2 (SC-2) solution to remove heavy metals from wafer.
Sulfuric acid	H_2SO_4	Solution known as "Piranha" (7 parts H ₂ SO ₄ to 3 parts of 30% hydrogen peroxide (H ₂ O ₂)) used to clean wafers.
Buffered oxide etch (BOE): Solution of hydrofluoric acid and ammonium fluoride	HF and NH ₄ F	Etching of silicon dioxide (SiO ₂) film.
Phosphoric acid	H ₃ PO ₄	Etching of silicon nitride (Si ₃ N ₄)
Nitric acid	HNO ₃	Used in mixture of HF and HNO ₃ to etch phosphosilicate glass (PSG).
Boron Tribromide	BBr ₃	Liquid source of boron dopant.
Phosphorus Oxychloride	POCl ₃	Liquid source of phosphorus dopant.

Table 5.3 31/45

Common Bases Used in Semiconductor Manufacturing

Base	Symbol	Example of Use
Hydrogen peroxide	H ₂ O ₂	Catalyst in etch solution
Ammonium hydroxide	NH₄OH	Cleaning solution
Potassium hydroxide	КОН	Positive photoresist developer
Tetramethyl ammonium Hydroxide	TMAH	Positive photoresist developer

Table 5.4 32/45

The pH Scale for Different Chemicals

pН	Household Chemicals	
1	Car battery acid (sulfuric)
	acid, H ₂ SO ₄)	Corrosive
2		
3	Lemon juice, vinegar	
4	Soda, wine	
5	Tomato juice, beer	
6	Urine	
7	Tap water, milk, saliva	
8	Blood, saliva	
9	Milk of magnesia	
10	Detergents	
11	Household ammonia	
12		
13	Household drain cleaners	
14	Nickle-cadmium battery	∫ Caustic
	(NaOH base)	

Figure 5.13 33/45

Common Solvents Used in Semiconductor Manufacturing

A solvent is a substance capable of dissolving another substance to form a solution.

Solvent	Common Name	Example of Use
Deionized Water	DI Water	Widely used to rinse wafers.
Isopropyl alcohol	IPA	General purpose cleaning solvent.
Trichloroethylene	TCE	Solvent used for wafer and general cleaning.
Acetone	Acetone	General purpose cleaning solvent (stronger than IPA).
Xylene	Xylene	Strong cleaning solvent, may also be used for photoresist edge bead removal.

Table 5.5 34/45

Bulk Chemical Distribution

Use for : safe, high-quality, uninterrupted delivery of chemicals from storage vessel to process tools is critical

Bulk Chemical Distribution vs. point-of use (PR)

Figure 5.14 36/45

Process Chemicals

Gases (~ 50 gases)

- Bulk Gases (99.99999%)
- Specialty Gases (99.99%)
 - Gas purge
 - Gas piping
 - Gas line connections
 - Gas stick
 - Cylinder change-out
- Classifying Specialty Gases
 - toxic, corrosive, reactive, and pyrophoric

Bulk Gases

Type of Gas	Gas	Symbol	Example of Use
Inert	Nitrogen	N ₂	Purge gas lines and process chambers of moisture and residual gas.
	Argon	Ar	Gas used in process chambers during processing.
	Helium	He	Gas used in process chambers and also to leak check vacuum chambers.
Reducing	Hydroge n	H ₂	Carrier gas for epitaxial layer process.
Oxidizing	Oxygen	O ₂	Process chamber gas.

Table 5.6 38/45

Bulk Gas Distribution System

- 1. In large storage tanks or 1000-lb bulk tube trailer.
- 2. Benefits: reliable, less particulate contamination, and less human involvement in the daily delivery of the gas.

Typical Specialty Gas System Design

Used with permission from International SEMATECH

Figure 5.15 40/45

Double-Walled Tubing

Electropolishing: wet etch (30 µm) to reduce contaminants, and coating a Cr to reduce emitting particle

Used with permission from International SEMATECH

- Piping is constructed with electropolished 316L stainless steel tube.
- No plastic part is used in piping, except some membrane gas filters.

Figure 5.16 41/45

CGA Gas Line Connector

CGA: compressed gas association

Used with permission from International SEMATECH

Figure 5.17 42/45

Gas Stick at Process Tool

(a) Schematic used with permission from International SEMATECH, (b) Component diagram based on Swagelok components, Swagelok Co. Catalog provided by Arthur Valve & Fitting Co., Austin, TX.

Figure 5.18 43/45

Specialty Gas Cylinder

Cylinder change-out

- incorrectly purging gas lines causes contamination
- fall over
- using tube trailer to reduce times of change-out

Photo courtesy of Praxair Technology, Inc.

Photo 5.3 44/45

Some Common Specialty Gases

Class of Gas	Gas	Symbol	Example of Use
	Silane	SiH ₄	Source of silicon in process chamber
	Arsine	AsH₃	Source for n-type doping of epitaxial films (diluted with hydrogen to better control process)
	Phosphine	PH ₃	Source of phosphorous for n-type wafer doping (diluted with hydrogen)
	Diborane	B ₂ H ₆	Source of boron for p-type wafer doping (diluted with hydrogen)
Hydrides	Tetraethyl Orthosilicate (TEOS)	Si(OC ₂ H ₅)	Source of silicon dioxide
	Silicon tetrachloride (also tetrachlorosilan e)	SiCl ₄	Growth of epitaxial silicon
	dichlorosilane (DCS)	SiH ₂ Cl ₂	Growth of epitaxial silicon
	Nitrogen trifluoride	NF ₃	Process chamber gas as source of flouride ions
	Tungsten hexafluoride	WF ₆	Process gas
Fluorinated	Tetrafluorometh ane)	C ₂ F ₄	Process gas
Compounds	Carbon tetrafluoride	CF ₄	Process gas
	Silicon tetrafluoride	SiF ₄	Process gas
	Chlorine trifluoride	CIF ₃	Process chamber cleaning gas
	Boron triflouride	BF ₃	Wafer doping gas
	Chlorine	Cl ₂	Process gas
Acid Gases	Boron trichloride	BCl ₃	Process and doping gas
	Hydrogen chloride	HCI	Process gas
Other Cases	Ammonia	NH ₃	Process gas
Other Gases	Nitrous oxide	N ₂ O	Process gas (source of nitrogen)