Introduction to Artificial Intelligence

COMP307/AIML420 Neural Networks 1: The Perceptron

Dr Andrew Lensen

Andrew.Lensen@vuw.ac.nz

Outline

- Why ANN?
- Origin
- The perceptron
- Perceptron learning
- What can (not) perceptron learn
- Extending perceptron

Why Artificial Neural Networks (ANNs)?

- "Killer" applications in a lot of areas
 - Computer vision/image processing
 - Playing games (AlphaGo, Watson, ...)
 - Big data

Origin

- Human brain shows amazing capability in:
 - Learning
 - Perception
 - Adaptability
 - ...
- Can we simulate the human brain to achieve the above functionalities?
- Artificial neural networks use this as inspiration/motivation

Origin

Origin

- Facts about human brain:
 - 10¹¹ neurons, massively connected
 - Each neuron is connected to 1000–10,000 other neurons
 - -10^{14} to 10^{15} connections in total!
 - Brain message passing is 1 million times slower than modern electronic circuits
 - But very efficient for complex decision making
 - Usually fewer than 100 serial stages
 - 100 step rule (500ms response time)

A Single Artificial Neuron

Activation Functions

Threshold

$$y_j = \begin{cases} 1, & \text{if } z_j > 0, \\ 0, & \text{otherwise} \end{cases}$$

$$y_j = \frac{1}{1 + e^{-\beta z_j}}$$

Sigmoid

Why do we need this?

Perceptron

- A special type of artificial neuron
 - Real-valued inputs
 - Binary output
 - Threshold activation function

$$y_j = \begin{cases} 1, & \text{if } \sum_{i=1}^m w_{ji} x_i + b_j > 0, \\ 0, & \text{otherwise} \end{cases}$$

$$y = \begin{cases} 1, & \text{if } x_1 + x_2 > 0, \\ 0, & \text{otherwise.} \end{cases}$$

Perceptron

- To perform linear classification
 - 2 inputs: a line; 3 inputs: a plane
- Can do online learning
 - Update w_{ji} and b_j based on new examples

Learning A Perceptron

- How to get the optimal weights and bias?
- Let us only consider accuracy:
 - Optimal if 100% accuracy on training set
 - Can have many optimal solutions...
- To simplify notation, we can transform the bias to a weight $w_{j0} = b_j$, where $x_0 = 1$ always holds

$$y_{j} = \begin{cases} 1, & \text{if } \sum_{i=1}^{m} w_{ji} x_{i} + b_{j} > 0, \\ 0, & \text{otherwise} \end{cases}$$

$$b_{j} = w_{j0} \cdot 1 = w_{j0} x_{0}$$

$$y_{j} = \begin{cases} 1, & \text{if } \sum_{i=0}^{m} w_{ji} x_{i} > 0, \\ 0, & \text{otherwise} \end{cases}$$

Learning A Perceptron

- Initialise weights and threshold randomly (or set all to zero)
- Given a new example/instance $(x_1, x_2, ..., x_m, d)$:
 - Input feature vector: $(x_1, x_2, ..., x_m)$
 - Output (desired class label): d
 - Predicted output: y

$$y = \begin{cases} 1, & \text{if } \sum_{i=0}^{m} w_i x_i > 0, \\ 0, & \text{otherwise} \end{cases}$$

- If y = 0 and d = 1,
- increase $b = w_0$, increase w_i for each positive x_i , decrease w_i for each negative x_i
- If y = 1 and d = 0,
 - decrease $b = w_0$, decrease w_i for each positive x_i , increase w_i for each negative x_i
- Repeat for each new example until desired result achieved

Learning A Perceptron

- Initialise weights and threshold randomly (or set all to zero)
- Given a new example/instance $(x_1, x_2, ..., x_m, d)$:
 - Input feature vector: $(x_1, x_2, ..., x_m)$
 - Output (desired class label): d
 - Predicted output: y

$$y = \begin{cases} 1, & \text{if } \sum_{i=0}^{m} w_i x_i > 0, \\ 0, & \text{otherwise} \end{cases}$$

We can use the equation:

$$w_i \leftarrow w_i + \eta(d - y)x_i, i = 0, 1, 2, \dots, m$$

- Where $\eta \in [0,1]$ is called the learning rate
- Repeat for each new example until desired result achieved

Problem with the Perceptron

What can the perceptron learn?

- Perceptron convergence theorem: The perceptron learning algorithm will converge if and only if the training set is linearly separable.
- Cannot learn for XOR (Minsky and Papert, 1969)

Multi-Layer Perceptron (MLP)

Add one *hidden* node between the inputs and output

x1	x2	y (class)
0	0	0
1	0	1
0	1	1
1	1	0

Input

Threshold

Neural Network

- Add more hidden layers
- Add more nodes for hidden layers

Summary

- ANN has many "killer" applications
 - Image analysis, playing games, ...
- Perceptron the simplest neural network
- How to learn a perceptron
- Limitations of perceptron, multi-layer perceptron, general neural network

 Reading: Text book section 20.5 (2nd edition) or section 18.7 (3rd edition) or Web materials