Proof of Some Properties of Cross Product

Theorem 1 The vector which is the cross product of two vectors is perpendicular to both of those vectors.

Proof

Consider two vectors \vec{a} and \vec{b} where:

 $\vec{a}: \begin{pmatrix} x_1; & y_1; & z_1 \end{pmatrix} \\ \vec{b}: \begin{pmatrix} x_2; & y_2; & z_2 \end{pmatrix}$

Then:

$$\begin{split} \vec{m} &= \vec{a} \times \vec{b} \\ &= \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ x_1 & y_1 & z_1 \\ x_2 & y_2 & z_2 \end{vmatrix} \\ &= \vec{i} \cdot \begin{vmatrix} y_1 & z_1 \\ y_2 & z_2 \end{vmatrix} - \vec{j} \cdot \begin{vmatrix} x_1 & z_1 \\ x_2 & z_2 \end{vmatrix} + \vec{k} \cdot \begin{vmatrix} x_1 & y_1 \\ x_2 & y_2 \end{vmatrix} \\ &= \vec{i} \cdot (y_1 z_2 - y_2 z_1) - \vec{j} \cdot (x_1 z_2 - x_2 z_1) + \vec{k} \cdot (x_1 y_2 - x_2 y_1) \end{split}$$

Hence:

$$\vec{m}: (y_1z_2 - y_2z_1; x_1z_2 - x_2z_1; x_1y_2 - x_2y_1)$$

To check if $\vec{m} \perp \vec{a}$ we can calculate the dot product of both vectors. If it is equal to 0, then the vectors are perpendicular to each other. Hence:

$$\vec{a} \cdot \vec{m} = x_1 \cdot (y_1 z_2 - y_2 z_1) - y_1 \cdot (x_1 z_2 - x_2 z_1) + z_1 \cdot (x_1 y_2 - x_2 y_1)$$

$$= x_1 y_1 z_2 - x_1 y_1 z_2 - x_1 y_2 z_1 + x_1 y_2 z_1 - x_2 y_1 z_1 + x_2 y_1 z_1$$

$$= 0$$

We can conduct a similar proof to show that $\vec{m} \perp \vec{b}$. This is left as an exercise for the reader. \therefore QED

Theorem 2 The magnitude of the cross product is equal to the area of the parallelogram created by the two vectors the cross product is being taken of.

Proof

Consider two vectors \vec{a} , \vec{b} and their cross product: \vec{m}

$$\vec{a}: (x_1; y_1; z_1)$$

 $\vec{b}: (x_2; y_2; z_2)$
 $\vec{m}: (y_1z_2 - y_2z_1; x_1z_2 - x_2z_1; x_1y_2 - x_2y_1)$

First recall that the area of a parallelogram is: $S = |\vec{a}| \cdot |\vec{b}| \cdot \sin \alpha$

Where α is the angle between \vec{a} and \vec{b} .

$$\begin{split} \sin^2\alpha &= 1 - \cos^2\alpha \\ &= 1 - \left(\frac{x_1x_2 + y_1y_2 + z_1z_2}{\sqrt{x_1^2 + y_1^2 + z_1^2} \cdot \sqrt{x_2^2 + y_2^2 + z_2^2}}\right)^2 \\ &= \frac{(x_1^2 + y_1^2 + z_1^2) \cdot (x_2^2 + y_2^2 + z_2^2) - (x_1x_2 + y_1y_2 + z_1z_2)^2}{(\sqrt{x_1^2 + y_1^2 + z_1^2} \cdot \sqrt{x_2^2 + y_2^2 + z_2^2})^2} \\ &= \frac{x_1^2x_2^2 + x_1^2y_2^2 + x_1^2z_2^2 + y_1^2x_2^2 + y_1^2y_2^2 + y_1^2z_2^2 + z_1^2x_2^2 + z_1^2y_2^2 + z_1^2z_2^2 - x_1^2x_2^2 + y_1^2y_2^2 - z_1^2z_2^2}{(\sqrt{x_1^2 + y_1^2 + z_1^2} \cdot \sqrt{x_2^2 + y_2^2 + z_2^2})^2} \\ &+ \frac{-2x_1x_2y_1y_2 - 2x_1x_2z_1z_2 - 2y_1y_2z_1z_2}{(\sqrt{x_1^2 + y_1^2 + z_1^2} \cdot \sqrt{x_2^2 + y_2^2 + z_2^2})^2} \\ &= \frac{x_1^2y_2^2 - 2x_1x_2y_1y_2 + x_2^2y_1^2 + y_1^2z_2^2 - 2y_1y_2z_1z_2 + y_2^2z_1^2 + x_1^2z_2^2 - 2x_1x_2z_1z_2 + x_2^2z_1^2}{(\sqrt{x_1^2 + y_1^2 + z_1^2} \cdot \sqrt{x_2^2 + y_2^2 + z_2^2})^2} \\ &= \frac{(x_1y_2 - x_2y_1)^2 + (y_1z_2 - y_2z_1)^2 + (x_1z_2 - x_2z_1)^2}{(\sqrt{x_1^2 + y_1^2 + z_1^2} \cdot \sqrt{x_2^2 + y_2^2 + z_2^2})^2} \end{split}$$

Hence:

$$S = \sqrt{x_1^2 + y_1^2 + z_1^2} \cdot \sqrt{x_2^2 + y_2^2 + z_2^2} \cdot \frac{\sqrt{(x_1 y_2 - x_2 y_1)^2 + (y_1 z_2 - y_2 z_1)^2 + (x_1 z_2 - x_2 z_1)^2}}{\sqrt{x_1^2 + y_1^2 + z_1^2} \cdot \sqrt{x_2^2 + y_2^2 + z_2^2}}$$

$$= \sqrt{(x_1 y_2 - x_2 y_1)^2 + (y_1 z_2 - y_2 z_1)^2 + (x_1 z_2 - x_2 z_1)^2}$$

$$= |\vec{m}|$$

∴ QED