MS 221 — Homework Set (7)

(Lagrange Multipliers / Grad, Div and Curl)

QUESTION 1

Determine the **shortest distance** from the point (0, b) on the y-axis to the parabola $x^2 - 4y = 0$ in each of the following ways:

- (i) Use the method of Lagrange multipliers.
- (ii) Use the constraint $x^2 4y = 0$ to eliminate one of the variables, thus reducing the problem to the calculus of one variable.

Hint: Distance is minimized \iff (Distance)² is minimized

QUESTION 2

Let \wp be the plane in \mathbb{R}^3 which passes through the point p and is normal to the vector n. If q is any point in \mathbb{R}^3 , use the method of Lagrange multipliers to find the shortest distance from the point q to the plane \wp .

QUESTION 3

The cone $z^2 = x^2 + y^2$ is cut by the plane 2x + 2y + 2z = 4 in a curve \mathcal{C} . Find the points on \mathcal{C} which are nearest and furthest away from the xy-plane.

QUESTION 4

Use the method of Lagrange multipliers to find the points on the curve

$$3x^2 - 8xy - 3y^2 = 5$$

which are nearest and furthest away from the origin.

QUESTION 5

Calculate $\nabla \varphi_{p}$ (that is, the **gradient** of φ at p) where the function $\varphi : \mathbb{R}^{3} \to \mathbb{R}$ and the point $p \in \mathbb{R}^{3}$ are given by

$$\varphi(x, y, z) = x^2 z + e^{yz}$$
 and $\boldsymbol{p} = \begin{bmatrix} -1 \\ 3 \\ 0 \end{bmatrix}$, respectively.

QUESTION 6

Calculate $\nabla . F_p$, (that is, the **divergence** of F at p) where the vector field $F : \mathbb{R}^3 \to \mathbb{R}^3$ and the point $p \in \mathbb{R}^3$ are given by

$$\mathbf{F}(x, y, z) = \begin{bmatrix} x^2y \\ x - yz \\ \sin(yz) \end{bmatrix}$$
 and $\mathbf{p} = \begin{bmatrix} -1 \\ 3 \\ 0 \end{bmatrix}$, respectively.

QUESTION 7

Calculate $\nabla \times \boldsymbol{F}_{\boldsymbol{p}}$, (that is, the **curl** of \boldsymbol{F} at \boldsymbol{p}) where the vector field $\boldsymbol{F}: \boldsymbol{R}^3 \to \boldsymbol{R}^3$ and the point $\boldsymbol{p} \in \boldsymbol{R}^3$ are as given in Question 4

QUESTION 8

In the case of any (smooth) scalar field $\varphi: \mathbf{R}^3 \to \mathbf{R}$ and vector field $\mathbf{F}: \mathbf{R}^3 \to \mathbf{R}^3$ establish the following

- (i) $\nabla \cdot (\varphi \mathbf{F}) = (\nabla \varphi) \cdot \mathbf{F} + \varphi (\nabla \cdot \mathbf{F}).$
- (ii) $\nabla \times (\varphi \mathbf{F}) = (\nabla \varphi) \times \mathbf{F} + \varphi (\nabla \times \mathbf{F}).$
- (iii) $\nabla \times (\nabla \varphi) \equiv \mathbf{0}$.
- (iv) $\nabla \cdot (\nabla \times \mathbf{F}) \equiv 0.$
- (v) $\nabla \cdot (\nabla \varphi) = \frac{\partial^2 \varphi}{\partial x^2} + \frac{\partial^2 \varphi}{\partial y^2} + \frac{\partial^2 \varphi}{\partial z^2}.$

QUESTION 9

Use the Chain Rule to express the two dimensional Laplacian

$$\nabla \cdot (\nabla \varphi) = \frac{\partial^2 \varphi}{\partial x^2} + \frac{\partial^2 \varphi}{\partial y^2}$$

in terms of polar coordinates.