Université Paris 9 - Dauphine MD4 S1

Processus Aléatoires Discret

Examen du 1-9-2005

Aucun document permis. Durée 2 heures.

- 1. : Soit $\{Y_j\}_{j \geq 1}$ une suite de v.a. i.i.d. avec $\mathbb{P}(Y_i = 1) = p = 1 P(Y_i = -1) = 1 q$. Soit $S_n = \sum_{n=1}^n Y_i$.
 - (a) Montrer que

$$W_n = S_n - (2p - 1)n,$$
 $W_0 = 0$
 $M_n = \left(\frac{1-p}{p}\right)^{S_n}$ $M_0 = 1$

sont des martingales par rapport à la filtration $\{\mathcal{F}_n = \mathcal{F}(Y_1, \dots, Y_n)\}_n$.

(b) Montrer que pour tout temps d'arrêt borné

$$\mathbb{E}\left[\left(\frac{p}{q}\right)^{S_{\nu}}\right] = 1, \qquad \mathbb{E}\left[S_{\nu}\right] = (2p - 1)(\nu). \tag{1}$$

2. Soit $\Omega = [0,1]$, \mathcal{F} la tribu borelienne de Ω , \mathbb{P} la mesure de Lebesgue sur \mathcal{F} . Soit K un entier positif. Pour tout $n \in \mathbb{N}$, soit \mathcal{F}_n la tribu engendrée par la partition $\{(jK^{-n}, (j+1)K^{-n}], \ j=0,\ldots,K^n-1\}$

$$\mathcal{F}_n = \sigma \left\{ (jK^{-n}, (j+1)K^{-n}], \ j = 0, \dots, K^n - 1 \right\}$$

Soit α un nombre réel positif. On pose, pour tout $n \geq 0$

$$X_n(\omega) = \begin{cases} \alpha^n & \text{si } 0 \le \omega \le K^{-n}, \\ 0 & \text{autrement.} \end{cases}$$

- (a) Montrer que $\{\mathcal{F}_n\}_n$ est une filtration croissante.
- (b) Calculer $\mathbb{E}(X_{n+1}|\mathcal{F}_n)$.
- (c) Pour quelle valeur de α on a que X_n est une martingale par rapport a cette filtration?
- (d) Pour quelles valeurs de α on a que X_n est une sous-martingale?
- (e) Calculer la limite presque sure de X_n pour $n \to \infty$.
- 3. (a) Soit M_n une martingale par rapport à une filtration $\{\mathcal{F}_n\}_n$, telle que $\mathbb{E}(M_n^2) < +\infty$. Soit

$$A_n = \sum_{i=1}^n \mathbb{E}([M_i - M_{i-1}]^2 | \mathcal{F}_{i-1})$$

Montrer que $M_n^2 - A_n$ est une \mathcal{F}_n -martingale.

(b) Soit X_n une chaîne de Markov sur un espace M fini, avec matrice de transition P. Soit $f: M \to \mathbb{R}$.

i. Montrer que

$$M_n = f(X_n) - f(X_0) + \sum_{k=0}^{n-1} [f(X_k) - (Pf)(X_k)]$$

est une martingale par rapport à la filtration $\{\mathcal{F}_n = \sigma(X_0, X_1, \dots, X_n)\}_{n \geq 0}$.

ii. Montrer que

$$M_n^2 - \sum_{k=0}^{n-1} \left[(P(f^2))(X_k) - ((Pf)(X_k))^2 \right]$$

est une \mathcal{F}_n -martingale.