Solid-State Electronics

Professor Alex Zaslavsky, Editor

Brown Univ. Engineering, 182 Hope St., Providence, RI 02906, U.S.A. Tel: +1-401-863-1406, fax: +1-401-863-9107, e-mail: sse@brown.edu

Ref. No: SSE_2017_676 Title: A new approach to the extraction of single exponential diode model parameters Author(s): A. Ortiz-Conde and F. J. Garcia-Sanchez						
Re	eferee No: 1 2					
← Do you find the paper a useful contribution in <i>Solid-State Electronics</i> as:						
full-length paper (10 journal pages maximum)? a letter (4 pages, 5 figures, expedited handling)? not appropriate for SSE?						
↑		Excellent	Good	Fair	Poor	
	Originality		\boxtimes			
	Technical Quality	\boxtimes				
	Clarity of Presentation		\boxtimes			
	Importance in Field					
\rightarrow	Yes No → Do you find technical weakness of approach, analysis or interpretation?					
↓	Is the length of the paper	appropriate?		Yes ⊠	No	
 Do you recommend this paper for publication?: No, I do not see how this paper could be improved						
					⊠	

CONFIDENTIAL COMMENTS FOR THE EDITOR:

(please use the next page for comments to the authors)

Nowadays the wide set (about 20) of methods to determine a single diode parameters has been proposed. The presented approach is a new and interesting. At the same time, in my opinion, the advantages of presented method are obscure. I recommend minor revision.

Solid-State Electronics

Professor Alex Zaslavsky, Editor

Brown Univ. Engineering, 182 Hope St., Providence, RI 02906, U.S.A. Tel: +1-401-863-1406, fax: +1-401-863-9107, e-mail: sse@brown.edu

Ref. No: SSE_2017_676

Title: A new approach to the extraction of single exponential diode model parameters

Author(s): A. Ortiz-Conde and F. J. Garcia-Sanchez

Referee No: 1 2

REFEREE'S COMMENTS TO AUTHOR:

The paper is devoted to the new method for the extraction of the parameters of a single exponential diode model. Conclusions and abstract reflect main results of the article. References are appropriate. The work could be interesting for Solid-State Electronics. I have minor comments:

- 1. The wide set of methods to evaluate the parameters of single-exponential diode has been proposed. It is very important to make perfectly clear
- a) advantages
- b) differences
- of presented approach.
- 2. Fig.2 and Fig.4 show that resulting curves of n, Io (especially) and R as plotted versus I do not approach constant values. What is the rigorous criterion for choosing of current range, in which parameters are determined?
- 3. Fig.2 shows that n and especially Io depend on I_R. How to choose I_R value?
- 4. Some discussion about accuracy of presented method would be interesting.
- 5. Fig.4, middle part. Circles correspond to greater values than triangles. At the same time, the Io value estimated from circles is smaller than Io value estimated from triangles.
- 6. In my opinion, the extracted values from measurements with the present method should be compared with other authors method results.
- 7. The acronym "RHS" (page 2, 3-rd paragraph) is not introduced.
- 8. The way from Eq.(2) to Eq.(3) is not evident.