Geometría Diferencial

Ejercicios para Entregar - Práctica 3

Guido Arnone

Sobre los Ejercicios

Elejí resolver los ejercicios (2), (8) y (9).

Ejercicio 2. Sean M una variedad y $f \in C^{\infty}(M)$. Si f tiene un máximo local en $\mathfrak{p} \in M$, entonces $f_{*\mathfrak{p}} = 0$.

Demostración. content...

Ejercicio 8. Sea G un grupo de Lie, \mathfrak{g} su álgebra de Lie y $X \in \mathfrak{g}$ un campo vectorial invariante a izquierda. Pruebe que X es *completo* y describa el flujo asociado.

Demostración. content... □

Ejercicio 9.

Sea G un grupo de Lie, e su elemento neutro y g su álgebra de Lie. Probar que:

• Si $\nu \in T_eG$ es un vector tangente a G en e y $X \in \mathfrak{g}$ es el único campo vectorial invariante a izquierda tal que $X_e = \nu$, sea $\gamma_{\nu} : \mathbb{R} \to G$ la única curva integral de X tal que $\gamma_{\nu}(0) = e$. Entonces γ_{ν} es un homomorfismo de grupos, esto es,

$$\gamma_{\nu}(t+t') = \gamma_{\nu}(t) \cdot \gamma_{\nu}(t'), \qquad \forall t,t' \in \mathbb{R}.$$

• Definimos una función exp : $T_eG \rightarrow G$ poniendo, para cada $v \in T_eG$,

$$\exp(v) = \gamma_v(1)$$
.

Determine la diferencial $\exp_{*0}: T_eG \to T_eG$ y muestre que exp es localmente un difeomorfismo alrededor de 0.

• Muestre que si $v, w \in T_e G$ son tales que [v, w] = 0, entonces

$$\exp(v + w) = \exp(v) \cdot \exp(w).$$

Demostración, content...