

SubHalo Abundance Matching for eBOSS Galaxies

Jiaxi Yu

Supervisors: Prof. Dr. Jean-Paul Kneib Dr. Cheng Zhao

July 22, 2020

➤ How do galaxies distribute in DM halos? (bias model)

Fig 1. The principle of the Subhalo Abundance Matching

➤ How do galaxies distribute in DM halos? P(M_{(sub)halo})

Fig 2. The ideal galaxy probability distribution function (left) and the realistic eBOSS galaxy distribution function (right)

➤ How do galaxies distribute in DM halos?

- ✓ Select (sub)halos and assign galaxies inside
 - ✓ Scattering & Cut of V_{peak};
 - \checkmark Galaxies in remaining halos with N_{th} largest $V_{peak,selection}$

➤ How do galaxies distribute in DM halos?

- ✓ Select (sub)halos and assign galaxies inside
 - ✓ Scattering & Cut of V_{peak};
 - \checkmark Galaxies in remaining halos with N_{th} largest $V_{\text{peak},\text{selection}}$
- ✓ Observed 2PCFs (Mohammad et al. (2020) to calibrate the real $P(M_{(sub)halo})$

Results: SHAM ELG in SGC

σ	V _{cut} (km/s)	χ^2	Reduced χ ²
$0.790^{+0.200}$	342 +58	51.526	1.356

Fig 3. The correlation functions of eBOSS SHAM ELGs in SGC

Results: SHAM ELG in SGC

σ	V _{cut} (km/s)	χ^2	Reduced χ ²
$0.790^{+0.200}_{-0.285}$	342^{+58}_{-61}	51.526	1.356

Fig 4. The probability distribution function of eBOSS SHAM ELGs in SGC

Results: SHAM LRG in NGC

σ	V _{cut} (km/s)	χ^2	Reduced χ ²
$0.800^{+0.035}$	1167^{+29}	72.785	1.915

Fig 5. The correlation functions of eBOSS SHAM LRGs in NGC

Results: SHAM LRG in NGC

σ	V _{cut} (km/s)	χ^2	Reduced χ ²
$0.800^{+0.035}_{-0.056}$	1167^{+29}_{-63}	72.785	1.915

Fig 6. The probability distribution function of eBOSS SHAM LRGs in NGC

Results: SHAM LRG in NGC

Fig 5. The correlation functions of eBOSS SHAM LRGs in NGC

Improvement: LRG z uncertainty

Fig 7. The redshift uncertinty of eBOSS LRG pairs, Figure 2 of Ross et al. (2020)

$$\Delta v = c\Delta z (1+z)$$

Improvement: LRG z uncertainty

Fig 7. The redshift uncertinty of eBOSS LRG pairs, Figure 2 of Ross et al. (2020)

$$\Delta v = c\Delta z(1+z)$$

Improvement: LRG z uncertainty

σ	V _{cut} (km/s)	χ^2	Reduced χ ²
$0.800^{+0.035}_{-0.056}$	1167^{+29}_{-63}	72.785	1.915
0.806	1170	33.910	0.916

Fig 8. The peculiar-velocity-smeared SHAM LRG in NGC

Results: SHAM

- ✓ Reproduced the 2PCF of eBOSS galaxies with SHAM
- ✓ Improved the LRG SHAM by adding the redshift uncertainty
- Robust SHAM models
 - Reduce the statistical fluctuations
 - □ 3-parameter models
- Multi-tracer SHAM
 - ☐ Cross-Correlation Studies

Thanks!