

ETE103 - Fundamentos de Circuitos Analógicos Trabalho – 3. Bimestre 2020 – Exercícios

Prezados alunos. O objetivo deste trabalho é resolver os exercícios apresentados. Para isso, leiam as instruções a seguir:

- Este trabalho será aplicado apenas para os alunos do período diurno.
- Nas questões os enunciados apresentam uma dependência do valor da variável N, onde N = A + C obtido a partir do RA do aluno, conforme explicado a seguir:

- O trabalho é individual. Divulgação no Moodle a partir de 25/09/2020 (sexta-feira). Entrega até o dia 26/09/2020 (sábado). Os trabalhos não serão aceitos após esta data; o MoodleRooms estará programado para isto. Não deixem para entregar em cima da hora, para evitar problemas (por exemplo, problemas de conexão com a internet).
- Os exercícios devem ser resolvidos e, depois de concluídos, digitalizados, gerando um arquivo em PDF o qual deverá ser postado no MoodleRooms, fazendo o Upload na Tarefa "Trabalho do 2. Bimestre Diurno" na pasta "Ensino-Aprendizagem Mediados por Tecnologias Repositórios". Serão aceitos arquivos no formato PDF.

RA: 19.02466-5

Meu dígito é N = A + C = 8 e B = 4

Aluno Igor Eiki Ferreira Kubota

Valores das questões:

Questão	Valor	Nota
1ª Questão	4,0	
2ª Questão	3,0	
3ª Questão	3,0	
Total	10,0	

Orientações adicionais:

- Não se esqueçam de assinar na primeira página e preencher o RA determinando os dígitos "N" e "B".
- É essencial que todos os cálculos teóricos sejam apresentados. A estratégia de utilizar softwares de simulação para comprovar os resultados pode ser adotada, mas apenas para conferir se os resultados calculados estão coerentes. Contudo, todos os resultados apresentados têm que ser comprovados pelos cálculos.
- Não deixem para resolver de última hora, pois apesar de serem apenas três questões, as mesmas são trabalhosas.
- Os cálculos devem obrigatoriamente ser realizados com 4 casas decimais para garantir boa precisão nos resultados.
 - Todas as tensões e correntes pedidas devem ser obtidas considerando a polaridade indicada.
- Se precisar de folhas em branco adicionais para resolver as questões pode adicioná-las livremente.
- Quando for postar a solução na tarefa do Moodle, não precisa incluir todas as folhas; basta incluir as questões referentes aos seus dígitos específicos "N" e "B". Contudo fique atento para que, quando for enviar o trabalho, não se esqueça de nenhuma página; confira após fazer o *upload*.
- Lembre-se que não é permitido o "plágio" portanto jamais copie a solução desenvolvida por um colega; cópias flagrantes identificadas, podem resultar em "0" na questão ou até na prova inteira.
- Verifiquem a qualidade do escaneamento realizado para garantir que a solução possa ser visualizada claramente pelo professor. Escreva de forma clara, pois o que não pode ser lido ou visto, não pode ser corrigido.

1ª Questão (4,0 ponto)

Essa questão deve ser resolvida apenas por alunos que apresentam N = 6, 7 8, 9, 10 e 11. Observe que a fonte de corrente do circuito depende do dígito B, específico de cada aluno.

Considere o seguinte circuito. Analise o circuito para determinar as correntes I₁ e I₂ e a tensão V₃. Resolva utilizando obrigatoriamente a "Método da Análise de Malha" ou "Conversão Estrela-Triângulo". Se resolver utilizando "Conversão Estrela-Triângulo", após a simplificação do circuito o aluno pode adotar qualquer método.

$$I_2 = 3,5000 \text{ (mA)} V_3 = 3,1500 \text{ (V)}$$

$$V_3 = 3,1500$$
 (V)

Questão 1

P malha externa

@ molha dinete

エリニー さらげ

As In the second

1-1

motodo da Analise de Malha

$$0 - 1/2 + 2.5.10^{3}I_{1} + 5.10^{3}I_{4} + 3.10^{3}I_{2} = 0$$

$$\begin{cases} -12 + 2.5.10^{3} (I_{2} - I_{b}) + 5.10^{3} (I_{2} - I_{3}) + 3.10^{3} I_{2} = 0 \\ 5.10^{3} (I_{2} - I_{3}) - 2.10^{3} (I_{3}) - 3.10^{3} (I_{3} - I_{b}) = 0 \end{cases}$$

3)
$$22 = 10.5 \cdot 10^3 I_2 - 5.0 \cdot 10^3 I_3$$

 $5.10^3 I_2) - 5.10^3 I_3 - 2.10^3 I_3 - 3.10^3 I_3 + 3.10^3 I_4 = 0$

(3)
$$22 = 10,5 \pm 2 - 5,0 \pm 3$$
) $22 = 10,5 \pm 2 - 5,0 \pm 3$
(9) $-12 = 5,0 \pm 2 - 10,0 \pm 3 \Rightarrow +6 = -2,5 \pm 2 \pm 5,0 \pm 3$

$$I_2 = \frac{28}{8}$$

I1= I2-Ib I_1 = 3,5 - 4,0 1 0 Figure 1 Figure I_=GO, 5 mA

Nentide

Contrare p.W.J. I3 1 22 = 10,5 II 2 - 5,0 I3 - AWA 22=10,5,(3,5)-5,013 المتال المسوارية علم المسالم 14,73 = 5,013 <u>F3=2,85</u> "A J= = I Julia + , I Julia + , I Julia - , Julia - Is= 2,85-4,0 (4) = (5) = - (a) = (5) = (5) = (5) Is = -1,05mA | Is | = 1,05mA L3 = 1.05 mA 的人人的一工部上 4.07 言 V3= R3/IS The state of the s V3 = 3.1055) 当当当年近少小一= Va = 3,1500 V 正為一為可

2ª Questão (3,0 ponto)

Essa questão deve ser resolvida apenas por alunos que apresentam N = 6, 7, 8, 9, 10 e 11. Observe que há um resistor cujo valor depende do dígito B, específico de cada aluno.

Considere o seguinte circuito. Analise o circuito e resolva-o utilizando obrigatoriamente o "Método das Correntes das Malhas" para determinar a corrente I1 e as tensões V2 e VX.

Questão 2

Metodo das connentes dos Malhas

malha 1:

$$-20 + 8I_1 + 10 + 4(I_1 - I_2) = 0$$

$$-20 + 8I_1 + 10 + 4I_1 - 2 = 0$$

malha 2:

3ª Questão (3,0 ponto)

Essa questão deve ser resolvida por todos alunos independente do dígito do RA. Observe que há uma fonte de tensão cujo valor depende do dígito B, específico de cada aluno.

Se B = 0, considere que a fonte apresenta valor de 10 V (ou seja, assuma B = 10).

Considere o seguinte circuito que utiliza um LED o qual apresenta tensão especifica $V_f = 3 \text{ V}$ em seus terminais quando conduzindo. Analise o circuito e resolva-o utilizando qualquer método que achar conveniente com o objetivo de determinar as correntes I_1 e I_f e a tensão V_2 com a polaridade indicada.

Questão 3

$$N = 8$$
 $8 = 4$
 T_{12}
 T_{12}
 T_{13}
 T_{14}
 T_{14}
 T_{14}
 T_{14}
 T_{15}
 T_{15}

$$T_{3} = T_{3} - V_{10,10^{3}}$$

$$T_{10,10^{3}} = T_{10,10^{3}}$$

$$T_{10,10^{3}} = T_{10,10^{3}}$$