

CS240 Algorithm Design and Analysis

Lecture 6

Dynamic Programming (Cont.) Network Flow

Quan Li Fall 2025 2025.10.09

Shortest Paths

Shortest Paths

• Shortest path problem. Given a directed graph G = (V, E), with edge weights c_{vw}, find shortest path from node s to node t

allow negative weights

• Ex. Nodes represent agents in a financial setting and c_{vw} is cost of transaction in which we buy from agent v and sell immediately to w

Shortest Paths: Failed Attempts

• Dijkstra. Can fail if negative edge costs

• Re-weighting. Adding a constant to every edge weight can fail

Shortest Paths: Negative Cost Cycles

Negative cost cycle

• Observation. If some path from s to t contains a negative cost cycle, there does not exist a shortest s-t path; otherwise, there exists one that is simple

Shortest Paths: Dynamic Programming

- **Def.** OPT(i, v) = length of shortest v-t path P using at most i edges
- Case 1: P uses at most i-1 edges
 - OPT(i, v) = OPT(i-1, v)
- Case 2: P may use i edges
 - If (v, w) is first edge, then OPT uses (v, w), and then selects best w-t path using at most i-1 edges

$$OPT(i,v) = \begin{cases} \infty & \text{if } i = 0, v \neq t \\ 0 & \text{if } v = t \\ \min \left\{ OPT(i-1,v), \min_{(v,w) \in E} \left\{ OPT(i-1,w) + c_{vw} \right\} \right\} & \text{otherwise} \end{cases}$$

Remark. By previous observation, it no negative cycles, then Origin, v, – length of shortest v-t path

Shortest Paths: Implementation


```
Shortest-Path(G, s, t) {
   foreach node v \in V
       M[0, v] \leftarrow \infty
   M[0, t] \leftarrow 0
   for i = 1 to n-1
       foreach node v \in V
           M[i, v] \leftarrow M[i-1, v]
       foreach edge (v, w) \in E
           M[i, v] \leftarrow min \{ M[i, v], M[i-1, w] + c_{vw} \}
   return M[n-1, s]
```

Analysis. $\Theta(mn)$ time, $\Theta(n^2)$ space

Finding the shortest paths. Maintain a "successor" for each table entry

Shortest Paths: Improvements


```
Shortest-Path(G, s, t) {
   foreach node v \in V
       M[0, v] \leftarrow \infty
   M[0, t] \leftarrow 0
   for i = 1 to n-1
       foreach node v \in V
           M[i, v] \leftarrow M[i-1, v]
       foreach edge (v, w) \in E
           M[i, v] \leftarrow min \{ M[i, v], M[i-1, w] + c_{vw} \}
   return M[n-1, s]
```

Practical improvements.

Maintain only one array M[v] = shortest v-t path that we have found so far

Shortest Paths: Improvements


```
Shortest-Path(G, s, t) {
   foreach node v \in V
       M[v] \leftarrow \infty
   M[t] \leftarrow 0
   for i = 1 to n-1
      foreach node v ∈ V
      M[v] \leftarrow M[v]
       foreach edge (v, w) \in E
          M[v] \leftarrow \min \{ M[v], M[w] + c_{vw} \}
   return M[s]
```

Practical improvements.

- Maintain only one array M[v] = shortest v-t path that we have found so far
- No need to check edges of the form (v, w) unless M[w] changed in previous iteration

Bellman-Ford: Efficient Implementation


```
Push-Based-Shortest-Path(G, s, t) {
   foreach node v \in V
      M[v] \leftarrow \infty
   M[t] \leftarrow 0
   for i = 1 to n-1 {
       foreach node w \in V
          if (M[w] has been updated in previous iteration)
              foreach node v such that (v, w) \in E
                 if (M[v] > M[w] + c_{vw})
                    M[v] \leftarrow M[w] + c_{vw}
      If no M[w] value changed in iteration i, stop.
   return M[s]
```

Analysis.

- O(n) extra space
- Time: O(mn) worst case, but substantially faster in practice

Application 1: Distance Vector Protocol

Distance Vector Protocol

- Communication network
 - Nodes ≈ routers
 - Edges ≈ direct communication link
 - Cost of edge ≈ delay on link
 maturally nonnegative

- Dijkstra's algorithm. Requires global information of network
- Bellman-Ford. Uses only local knowledge of neighboring nodes
- Synchronization. We don't expect routers to run in lockstep. The order in which each foreach loop executes is not important. Moreover, algorithm still converges even if updates are asynchronous

Distance Vector Protocol

- Distance vector protocol
 - Each router maintains a vector of shortest path lengths to every other node (distances) and the first hop on each path (directions)
 - Algorithm: each router performs n separate computations, one for each potential destination node
 - "Routing by rumor"
- Ex. RIP, Xerox XNS RIP, Novell's IPX RIP, Cisco's IGRP, DEC's DNA Phase IV, AppleTalk's RTMP
- Caveat. Edge costs may change during algorithm (or fail completely)

"counting to infinity"

Path Vector Protocols

Link state routing

not just the distance and first hop

- Each router also stores the entire path
- Avoids "counting-to-infinity" problem and related difficulties
- Requires significantly more storage
- Ex. Border Gateway Protocol (BGP), Open Shortest Path First (OSPF)

Application 2: Negative Cycles in a Graph

• Negative cycle detection problem. Given a digraph G = (V, E), with edge weights c_{vw} , find a negative cycle (if one exists)

Detecting Negative Cycles: Application

• Currency conversion. Given n currencies and exchange rates between pairs of currencies, is there an arbitrage opportunity?

Remark. Fastest algorithm very valuable!

- Lemma. If OPT(n, v) = OPT(n-1, v) for all v, then there is no negative cycle with a path to t
- Pf. (by contradiction)
 - OPT(n, v) = OPT(n-1, v) \rightarrow OPT(i, v) = OPT(n-1, v) for i >= n
 - But negative cycle in a path implies that OPT(i, v) always decreases as i increases

- Lemma. If OPT(n, v) < OPT(n-1, v) for some node v, then (any) shortest path from v to t contains a cycle W. Moreover, W has negative cost
- Pf. (by contradiction)
 - Since OPT(n, v) < OPT(n-1, v), we know the shortest v-t path P has exactly n edges
 - By pigeonhole principle, P must contain a directed cycle W
 - Deleting W yields a v-t path with < n edges → W has negative cost

- Theorem. Can detect negative cost cycle in O(mn) time
 - Add new node t and connect all nodes to t with 0-cost edge
 - Check if OPT(n, v) = OPT(n-1, v) for all nodes v
 - If yes, then no negative cycles
 - If no, then extract cycle from shortest path from v to t

Dynamic Programming: Summary

Dynamic Programming

Basic idea

- Polynomial number of sub-problems with a natural ordering from smallest to largest
- Optimal solution to a sub-problem can be constructed from optimal solutions of smaller subproblems
- Sub-problems are overlapping!

Guideline

- Define the sub-problems
 - OPT(...)
- Write down the recursive formulas
 - Ex: OPT(i) = max(f(OPT(j)), g(OPT(k)), ...), j, k < i
- Compute the formulas either bottom-up or top-down

Dynamic Programming

Algorithms

- Weighted interval scheduling
 - 1D array; binary choice
- Knapsack
 - 2D array; adding a new variable (weight limit)
- RNA secondary structure
 - 2D array: intervals
- Sequence Alignment
 - 2D array: prefix alignment
- Sequence Alignment in Linear Space
 - Combination of divide-and-conquer and dynamic programming
- Shortest path with negative edges
 - (Bellman-Ford) 2D array: shortest path with edge number <= i
- Distance Vector Protocol
- Negative Cycle Detection

Network Flow

Max-flow and Ford-Fulkerson Algorithm

- Flow network
 - Abstraction for material flowing through the edges
 - G = (V, E) = directed graph
 - Two distinguished nodes: s = source, t = sink
 - c(e) = nonnegative capacity of edge e

- **Def.** An **s-t flow** is a function that satisfies:
 - For each $e \in E$: $0 \le f(e) \le c(e)$ (capacity)
 - $\sum_{e \text{ in to } v} f(e) = \sum_{e \text{ out of } v} f(e)$ • For each $v \in V - \{s, t\}$:
- **Def.** The value of a flow f is:

$$v(f) = \sum_{e \text{ out of } s} f(e)$$

- **Def.** An **s-t flow** is a function that satisfies:
 - For each $e \in E$: $0 \le f(e) \le c(e)$ (capacity)
 - For each $v \in V \{s, t\}$: $\sum_{e \text{ in to } v} f(e) = \sum_{e \text{ out of } v} f(e) \text{ tion}$

v(f) =

• **Def.** The value of a flow f is :

11

 $\sum f(e)$

Value = 24

Maximum Flow Problem

• Max flow problem. Find s-t flow of maximum value

Greedy algorithm

- Start with f(e) = 0 for all edge e ∈ E
- Find an s-t path P where each edge has f(e) < c(e)
- Augment flow along path P
- Repeat until you get stuck

Greedy algorithm

- Start with f(e) = 0 for all edge e ∈ E
- Find an s-t path P where each edge has f(e) < c(e)
- Augment flow along path P
- Repeat until you get stuck

Greedy algorithm

- Start with f(e) = 0 for all edge e ∈ E
- Find an s-t path P where each edge has f(e) < c(e)
- Augment flow along path P
- Repeat until you get stuck

Greedy algorithm

- Start with f(e) = 0 for all edge e ∈ E
- Find an s-t path P where each edge has f(e) < c(e)
- Augment flow along path P
- Repeat until you get stuck

Greedy algorithm

- Start with f(e) = 0 for all edge e ∈ E
- Find an s-t path P where each edge has f(e) < c(e)
- Augment flow along path P
- Repeat until you get stuck

Greedy algorithm

- Start with f(e) = 0 for all edge e ∈ E
- Find an s-t path P where each edge has f(e) < c(e)
- Augment flow along path P
- Repeat until you get stuck

Greedy algorithm

- Start with f(e) = 0 for all edge e ∈ E
- Find an s-t path P where each edge has f(e) < c(e)
- Augment flow along path P
- Repeat until you get stuck

locally optimality

₱lobally optimality

Residual Graph

- Original edge: e = (u, v) ∈ E
 - Flow f(e), capacity c(e)

Residual edge

- "Undo" flow sent
- e = (u, v) and $e^{R} = (v, u)$
- Residual capacity:

$$c_f(e) = \begin{cases} c(e) - f(e) & \text{if } e \in E \\ f(e) & \text{if } e^R \in E \end{cases}$$

- Residual graph: G_f = (V, E_f)
 - Residual edges with positive residual capacity
 - $E_f = \{e: f(e) < c(e)\} \cup \{e^R: f(e) > 0\}$

Augmenting Path

- Augmenting path: a simple s-t path P in the residual graph G_f
- Bottleneck capacity of an augmenting path P is the minimum residual capacity of any edge in P

forward edge reverse edge

• Claim: After augmentation, it is sin a now

Ford-Fulkerson Algorithm

- Start with f(e) = 0 for all edge e ∈ E
- Find an augmenting path P in the residual graph G_f
- Augment flow along path P
- Repeat until you get stuck

```
Ford-Fulkerson(G, s, t, c) {
    foreach e ∈ E f(e) ← 0
    G<sub>f</sub> ← residual graph

while (there exists augmenting path P) {
    f ← Augment(f, c, P)
        update G<sub>f</sub>
    }
    return f
}
```


