CheatSheet di Ricerca Operativa e Pianificazione delle Risorse

Fabio Ferrario

@fefabo

2022/2023

Indice

1	Gli	esercizi d'esame	3
2	Pro	grammazione Lineare	4
	2.1	Metodo del Simplesso	4
		2.1.1 Due Fasi	6
	2.2	Dualitá	7
		2.2.1 Passare da Primale a Duale	7
	2.3	Gli Scarti Complementari	8
	2.4	Esercizi su Analisi di Sensitività	8
3	Bra	nchAndBound	9
4	Ott	imizzazione Non Lineare	10
	4.1	Metodo di Bisezione	10
	4.2	Algoritmo di Newton 1D	10
	4.3	Risoluzione analitica per PNL Multivariati	10
		4.3.1 Matrice definita positiva/negativa	11
	4.4	Algoritmo del Gradiente	11
	4.5	Algoritmo di Newton (Multivariato)	12
5	Ott	imizzazione Non Lineare Vincolata	13
	5.1	Funzione Lagrangiana	13
	5.2	Condizioni KKT	13
		5.2.1 Differenziare tra Max e Min	14
		5.2.2 Risolvere il Sistema	14
		5.2.3 Trovare i punti di Minimo e Massimo	

Gli esercizi d'esame

Gli esercizi possibile all'esame sono:

- Metodo del Simplesso e Due Fasi
- Scarti Complementari
- Analisi di Sensitività
- Branch and Bound per PLI o PLB
- Risoluzione Analitica di PNL Multivariato
- Metodo del Gradiente
- Algoritmo di Newton
- Condizioni KKT

Oltre a varie possibili domande di teoria.

Programmazione Lineare

2.1 Metodo del Simplesso

Forma Aumentata

Per portare il problema in forma aumentata:

Vincoli				
Minoreuguale	\leq	=	+ Slack	
Maggioreuguale	2	=	- Surplus	
Uguale =		Inva	riato	

Variabili non positive					
$x_i \le 0$	$x_i = -x_i' \text{ con } x_i' \ge 0$				
Ogni apparizione di x_i viene sostituita con $-x_i'$					
Funzione Obiettivo					
$Z = \Sigma x_i \longrightarrow$	$Z - \Sigma x_i = 0$				

Test di Ottimalità

Una volta portato il problema in forma tabellare, eseguo il test di ottimalitá:

Tipo di Problema	Massimo	Minimo	
Soluzione Ottima sse	Coefficienti riga (0) ≥ 0	Coefficienti riga (0) ≤ 0	

Nuova Soluzione di Base Una volta verificato che la soluzione non é ottima, bisogna calcolare una nuova soluzione di base:

Definisco:

Tipo di Problema	Massimo	Minimo		
Variabile Entrante (Colonna Pivot)	Coefficiente riga (0) più Piccolo (Più Negativo)	Coefficiente riga (0) più Grande (Più Positivo)		
Variabile Uscente (Riga Pivot)	Test del Rapporto M	inimo (T.noto/Pivot)		
Numero Pivot	vot Intersezione Riga/Colonna Pivot			
Per la nuova Riga Pivot				
Variabile di Base	\rightarrow Variabile	e Entrante.		
Coefficienti e Termine	Noto \rightarrow Divisi po	er Numero Pivot.		

per ogni altra Riga					
Definisco	P_i i-esimo coefficiente della nuova riga pivot				
Demnsco	X_p coefficiente della colonna pivot nella riga in esame.				
il coefficiente i-esimo x_i della riga in esame X diventa:					
$X_p > 0$	$X_p > 0 x_i := x_i - X_p \cdot P_i$				
$X_p < 0 x_i := x_i + X_p \cdot P_i$					
$X_p = 0$ La riga in esame resta Invariata					

2.1.1 Due Fasi

Funzione Obiettivo: Somma di tutte le variabili artificiali introdotte.

$$(\min Z = \Sigma y_i \implies \max Z = -\Sigma y_i \implies \max Z + \Sigma y_i = 0)$$

Vincoli: Per ogni vincolo che viene violato dalla soluzione Origine, sommo una variabile artificiale (unica) con coefficiente 1.

Tableau iniziale: Le variabili artificiali devono essere in base, quindi devo azzerarle in R(0) sottraendogli il vincolo a cui sono associate.

Una volta fatte entrare in base tutte le variabili artificiali, posso iterare normalmente.

Finito di iterare, avró tutte le variabili artificiali =1 in (0), rimuovo quindi le colonne artificiali e ripristino la funzione obiettivo.

Adesso faccio entrare in base (nello stesso modo di prima) le variabili che devono essere in base. poi itero normalmente.

2.2. DUALITÁ 7

2.2 Dualitá

2.2.1 Passare da Primale a Duale

	Primale	Duale	Ritorno
Funzione Obiettivo	$\max c^T x$	$\min b^T \lambda$	$\max c^T x$
	$x_i^T a \le c$	$\lambda_i \ge 0$	$x_i^T a \le c$
Vincoli ⇒ Non Negativitá	$x_i^T a \ge c$	$\lambda_i \le 0$	$x_i^T a \ge c$
	$x_i^T a = c$	λ_i Free	$x_i^T a = c$
	$x_j \ge 0$	$\lambda_j^T a \ge c$	$x_j \ge 0$
$oxed{Non Negatività} \implies Vincoli$	$x_j \le 0$	$\lambda_j^T a \le c$	$x_j \le 0$
	x_j Free	$\lambda_j^T a = c$	x_j Free

Duale con le matrici Un trucco per generare rapidamente il duale é utlizzare le matrici:

Avendo il seguente problema di PL:

si riconoscono opportunamente gli elementi che compongono il duale e se lo si genera:

$$\begin{array}{c} \text{max} \\ \begin{array}{c} \text{No. Nincolo} \\ \text{$$

2.3 Gli Scarti Complementari

Se abbiamo una soluzione ammissibile per il primale possiamo verificarne l'ottimalità tramite le condizioni degli scarti complementari: Quindi, dato x^* :

$x_i^* \neq 0$	<i>i</i> -esimo (corrispondente) vincolo del duale attivo.
<i>i</i> -esimo vincolo del primale NON attivo	$\lambda_i = 0$

Pongo quindi a sistema le equazioni trovate per trovare la soluzione corrispondente del Duale.

Se i valori delle funzioni obiettivo sono uguali, e la soluzione trovata é ammissibile per il duale, allora le due soluzioni sono entrambe ottime.

2.4 Esercizi su Analisi di Sensitività

Analisi su Termini Noti Analisi di sensitività di un termine noto (b_i) relativo alla *i*-esima equazione di vincolo, dato il tableu dell'ultima iterazione:

- Identifico la variabile di Slack della *i*-esima equazione di vincolo.
- \forall Riga del tableau (tranne R_0) in cui il coefficiente della Slack in esame è $\neq 0$ faccio:

$$T.Noto + (Coefficiente della Slack \cdot \Delta) \ge 0$$

• Metto a sistema le disequazioni trovate e risolvo per Delta.

Analisi su Coefficienti Funzione Obiettivo Analisi di sensitività sui coefficienti c_i :

- Se c_i é un base nell'equazione R_i : metto a sistema $R_0 + \Delta R_i \geq 0$ e trovo Δ .
- Se non é in base sottraggo Δ dal suo coefficiente in R_0 , che deve peró rimanere ≥ 0

BranchAndBound

I problemi di Branch and Bound si risolvono in questo modo:

- Apro il nodo k e risolvo il rilassamento lineare:
 - Aggiorno $Z\ast$ se la soluzione è intera (binaria)
 - Fisso il mio Upper(Lower) Bound come l'arrotondamento (se necessario) della soluzione.
- Prendo la variabile frazionaria (o il primo indice se binario) e ne "vincolo" le soluzioni
- Elaboro tutti i nodi fino a che non si chiudono.

Ottimizzazione Non Lineare

4.1 Metodo di Bisezione

- Calcolo $f'(x_k)$
- Se f è concava:

$$- f'(x_k) < 0 \implies \bar{x} = x_k$$
$$- f'(x_k) > 0 \implies \underline{x} = x_k$$

- Cerco il nuovo punto: $x_{k+1} = \frac{\underline{x} + \overline{x}}{2}$
- Se $f'(x_k) = 0$ sono al punto di ottimo

Criterio di arresto: $\underline{x} - \bar{x} \leq 2\epsilon$

4.2 Algoritmo di Newton 1D

Nuovo punto: $x_{k+1} = x_k - \frac{f'(x_k)}{f''(x_k)}$

4.3 Risoluzione analitica per PNL Multivariati

Per risolvere analiticamente un problema di PNL multivariato:

- Controllo tutti i punti in cui $\nabla f = 0$
- Per ognuno di questi punti, se:

- -Hf nel punto è definita positiva allora è minimo.
- -Hf nel punto è definita negativa allora è massimo.
- Hf non è né l'uno né l'altro allora è punto di sella.

4.3.1 Matrice definita positiva/negativa

Per verificare se una matrice è positva o negativa, trovo gli autovalori sottraendo λ dalla diagonale di H valutata nel punto, e poi ponendo $det(H_{\lambda}) = 0$. per una matrice 2x2 il calcolo è: $(a_{11} - \lambda) \cdot (a_{22} - \lambda) - (a_{12} \cdot a_{21})$ Se tutti gli autovalori sono ≥ 0 allora H nel punto è (semi) definita positiva, mentre è (semi) definita negativa se gli autovalori sono ≤ 0 .

4.4 Algoritmo del Gradiente

Data una funzione a piú variabili f(X) e un punto x^0 , ogni passo del metodo del gradiente si effettua in questo modo:

- 1. Calcolo $d^k = \pm \nabla f(x^k)$ (+ max e min)
- 2. Calcolo $x^{k+1} = x^k \pm \alpha^k \cdot d^k$
- 3. Calcolo α^k come $Max\ f(x^k \pm \alpha^k \cdot d^k)$. ovvero valuto f nel nuovo punto e massimizzo (minimizzo per i problemi di minimo) la funzione risultante $g(\alpha)$, generalmente in modo analitico ($g'(\alpha) = 0$)
- 4. Sostituisco α trovato in x^{k+1} .
- 5. Valuto i criteri di arresto

Per verificare che il punto trovato sia un punto di ottimo, semplicemente controllo che $\nabla f(x^*) = 0$.

Nuovo punto	x^{k+1}	$x^k \pm \alpha^k \cdot d^k$
Direzione di Crescita	d^k	$\pm \nabla f(x^k) \ (+ \max e - \min)$
Step Size	α^k	$\max/\min f(x^k \pm \alpha^k \cdot d^k)$

4.5 Algoritmo di Newton (Multivariato)

Data una funzione a piú variabili f(X) e un punto x^0 , una iterazione del metodo di Newton si effettua in questo modo:

- 1. Calcolo $\nabla f(x^k)$ e $H(x^k)$.
- 2. Calcolo V Vettore Spostamento: $H_f(x^k)V = -\nabla f(x^k)$ è un sistema di equazioni, risolvo per $v_1,...,v_n$
- 3. trovo $x^{k+1} = x^k + V$, in cui V é il vettore spostamento.

Vettore Spostamento	V	$H_f(x^k)V = -\nabla f(x^k)$
Nuovo punto	x^{k+1}	$x^k + V$

Ottimizzazione Non Lineare Vincolata

5.1 Funzione Lagrangiana

In un problema di ottimizzazione vincolata definito come:

opt
$$f(x_1, ..., x_n)$$
,
 $g_m(x_1, ..., x_n) = 0$ Vincoli di Uguaglianza,
 $h_l(x_1, ..., x_n) \leq 0$ Vincoli di Disguaglianza,

Generiamo la Lagrangiana cosí definita:

$$L(V) = f(X) \pm \sum_{i=0}^{m} \lambda_i \cdot g_i(X) \pm \sum_{j=0}^{l} \mu_j \cdot h_j(X)$$

in cui \pm diventa + per i problemi di MIN e – per i problemi di MAX, Abbiamo che λ sono i moltiplicatori lagrangiani associati ai vincoli di Uguaglianza, e μ quelli associati ai vincoli di Disuguaglianza.

con $V=\{x_1,...,x_n,\lambda_1,...,\lambda_m,\mu_1,...,\mu_l\}$, ovvero tutte le variabili e $X=\{x_1,...,x_n\}$, ovvero tutte le variabili originiali.

5.2 Condizioni KKT

Tabella Bisogna quindi generare un sistema che avrá n + m + l incognite utilizzando le KKT, riportate qui in modo semplificato:

Stazionarietá Problemi di MIN (-)			
$\nabla f = -\sum \lambda_i \cdot \nabla g_i - \sum \mu_j \cdot \nabla h_j$			
Stazionarietá Problemi di MAX (+)			
$\nabla f = +\sum \lambda_i \cdot \nabla g_i + \sum \mu_j \cdot \nabla h_j$			
Ammissibilitá Vincoli Uguaglianza	$\forall \qquad g_i = 0$		
Ammissibilitá Vincoli Disuguaglianza	$\forall \qquad h_j \le 0$		
Condizione di Complementarietá	$\forall \qquad \qquad \mu_j \cdot h_j = 0$		
Non Negativitá di μ	$\forall \qquad \qquad \mu_j \geq 0$		

Dove con ∀ si intende chiaramente tutti quelli presenti.

5.2.1Differenziare tra Max e Min

Quando si usano le KKT bisogna differenziare tra problemi di Max e Problemi di Min. Ogni problema ha le seguenti possibili combinazioni:

Problema di Massimo	$\mu_i \ge 0$	$\nabla f = +\sum \lambda_i \cdot \nabla g_i + \sum \mu_j \cdot \nabla h_j$
1 Toblema di Massimo	$\mu_i \le 0$	$\nabla f = -\sum \lambda_i \cdot \nabla g_i - \sum \mu_j \cdot \nabla h_j$
Problema di Minimo	$\mu_i \ge 0$	$\mathbf{v}_J = -\sum_{i} \lambda_i \cdot \mathbf{v}_{g_i} - \sum_{i} \mu_j \cdot \mathbf{v}_{H_j}$
1 Toblema di Minimo	$\mu_i \leq 0$	$\nabla f = +\sum \lambda_i \cdot \nabla g_i + \sum \mu_j \cdot \nabla h_j$

é utile sapere che se scegliessimo di avere la funzione obiettivo Sempre come somma di elementi negativi, sia per i problemi di massimo che di minimo, allora potremmo, in base ai valori di μ , sapere in un solo calcolo se il punto é candidato a massimo o minimo.

5.2.2Risolvere il Sistema

Per risolvere il sistema, o lo si risolve con il metodo classico, oppure tramite questo metodo: Con la condizione di **Complementarietá** sappiamo che:

$$\mu_j \cdot h_j = 0 \implies \mu_j = 0 \lor h_j = 0$$

Quindi, con l variabili μ_i abbiamo 2^l combinazioni di sistemi, in cui $\mu_i = 0 \lor \mu_i \neq 0$. Cosí possiamo risolvere le 2^l combinazioni per trovare tutti i punti candidati.

15

5.2.3 Trovare i punti di Minimo e Massimo

I punti trovati dalle condizioni KKT sono solo candidati a essere punti di max/min, perché le KKT sono condizioni Necessarie ma non Sufficienti.

Le condizioni KKT diventano Sufficienti se:

- Per i Punti di Massimo:
 - -f é concava.
 - I vincoli $h_i(X)$ sono tutti Convessi.
- Per i Punti di Minimo:
 - -f é convessa.
 - I vincoli $h_i(X)$ sono tutti Convessi.