Sustainable Software

The case for transparency in software energy consumption

Standard-Slide to start with:)

Short-Info - Arne Tarara / Green Coding Berlin

- Software-dev 16+ years
- Founder & CEO Green Coding Berlin GmbH
 - We help companies and devs to measure and optimize CO2/energy of their digital infrastructure

KDE Eco - Contributor

Green Software Design - Community Leader

SDIA - Member

Software uses energy

To make software more sustainable we need to make its consumption visible.

Software uses energy

To make software more sustainable we need to make its consumption visible.

... so what tools do already exist?

Easy starter: Scaphandre - Hubblo open-source RAPL based command line tool

Neat feature: Can split by process

```
13.1463 W
Host:
        package
                                           dram
                          core
                                                             uncore
Socket0 13.1463 W |
                         10.879847 W
                                           0.748591 W
                                                             0.071402 W
Top 5 consumers:
Power
                 PID
                          Exe
                                                          20,5 MB
                          "stress"
                 16621
10.400553 W
                                                                  a true use ca
                                                          28,5 MB
                         scaphandre "pt engine"
           ode. Js e 16610
2.08011 W
                         "gnome-shell"
                 2786
0.166408 W
                          "Xwayland"
                 3915
0.083204 W
                                                          27,6 MB
                          "guake"
0.041602 W
                 4621
```

Distributed Environments / Clusters

Introducing Kepler

http://sustainable-computing.io

Ready to use tools

codecarbon.io

- Python
- RAPL-based
- NVIDIA GPU support

```
import tensorflow as tf
       from codecarbon import Emission
                          EmissionsTracker
                                                                   codecarbon
       codecarbon
                          Press <
□ to insert, → to replace Next Tip
       (x_train, y_train), (x_test, y_test) = mnist.load_data()
       x_{train}, x_{test} = x_{train} / 255.0, x_{test} / 255.0
 9
10
       model = tf.keras.models.Sequential(
              tf.keras.layers.Flatten(input_shape=(28, 28)),
```


Weitere Tools ...

for questions regarding a specific tool, please ask in the Q&A!

- powertop
- powermetrics
- Cloud Carbon Footprint
- turbostat
- powerJoularX
- PAPI
- •

These are nice tools

So why do we need another one?

USPs of Eco-Cl and Green Metrics Tool (GMT)

Increasing transparency & reproducibility

- GMT is designed to compare applications (standard usage scenarios)
- GMT is designed to publicise data
- GMT is designed to compare architectures
- GMT is an all-in-one solution: Frontend, Measurement, API & Statistics
- GMT enforces best practices to make measurements reproducible

Eco-Cl works in Cl/CD pipelines where a lot of energy is consumed

Demo Time

Introducing Eco-Cl and Green Metrics Tool

https://www.green-coding.berlin/#projects

Thank you & time for Q&A

Want to support the project or more details?

- Website / Blog / Newsletter: https://www.green-coding.berlin
- Demo Open Data Repository: https://metrics.green-coding.berlin

- Our projects: https://www.green-coding.berlin/#projects
- Our Case-Studies: https://www.green-coding.berlin/case-studies

Meetup Group (Berlin): https://www.meetup.com/green-coding

https://www.linkedin.com/in/arne-tarara / arne@green-coding.berlin

Backup

Green Metrics Tool

Ingesting standard infrastructure files. Output as POSIX stream

Potentiale von Infrastrukturen

Identifizierung der Auslagerungsfähigen Komponenten

Isolierte Messungen der Energie und Auslastung von Microservices

Potentiale in Web-Applikationen

Idle-Time Optimierungen / Energy-Bugs

Stellen wir uns eine Welt vor ...

In der der Anwender Software einfach vergleichen kann

No actual data! Concept picture!

Energy consumption of Whatsapp vs. Telegram - per usage scenario

Details on RAPL

The most used technology atm

- Energy measurement capabilities on most modern Intel/AMD processors
- Measure:
 - CPU Energy per Core / Package
 - RAM
 - Integrated GPU
- Software model of capacitor readings on mainboard
 - Resolution 1ms / 15.3 microJoules
- Exposed in Linux kernel through device

Source: https://pyjoules.readthedocs.io/en/stable/devices/
intel_cpu.html

Greenframe.io

centralized but non-open measurement service

Why not upstream to greenframe.io

We wanted to!

- At the time of starting the Green Metrics Tool greenframe.io was not open source
- We contacted the company if they open-source it, but got no response
- Now the Green Metrics Tool is more advanced and STILL more open than greenframe.io
 - greenframe.io only estimates. no measurement
 - Server code is not on Github

Static Site Potentiale

Caching and pre-rendering

- Wordpress vs. Cloudflare [HUGO]
 - 5-fache Ersparnis pro Anfrage
 - Netto-Gewinn schon ab der <u>ersten</u>
 Anfrage
 - Das komplette Rendern der statischen Seite kostet so viel wie eine dynamische Anfrage bei Wordpress

https://www.green-coding.berlin/case-studies/wordpress-vs-hugocloudflare/

 Durch Möglichkeit des Serverless Hosting kann sich der Server zwischen den Anfragen <u>ausschalten</u>

Zusammenspiel von Hardware und Software

Datenbanken für Energiekennlinien durch Hardware und Konfiguration

High Idle, but almost linear

ASUSTeK Computer Inc. RS720Q-E9-RS8 (2019)

50% Power increase at 70% uttilization

Hewlett Packard Enterprise ProLiant DL110 Gen10 Plus

Idle optimized

QuantaGrid D43K-1U (2022)

