# Homework 2

## João Pedro Bastos

October 27, 2022

#### Question 1

a) Estimate the linear probability (regression) model explaining DELINQUENT as a function of the remaining variables. Use White robust standard errors. Are the signs of the estimated coefficients reasonable?

#### . reg DELINQUENT LVR REF INSUR RATE AMOUNT CREDIT TERM ARM, vce(robust)

| Linear regression | Number of obs | = | 1,000  |
|-------------------|---------------|---|--------|
|                   | F(8, 991)     | = | 43.39  |
|                   | Prob > F      | = | 0.0000 |
|                   | R-squared     | = | 0.3363 |
|                   | Root MSE      | = | .32673 |

| DELINQUENT | Coefficient | Robust<br>std. err. | t      | P> t  | [95% conf. | interval] |
|------------|-------------|---------------------|--------|-------|------------|-----------|
| LVR        | .0016239    | .0006752            | 2.40   | 0.016 | .0002988   | .0029489  |
| REF        | 0593237     | .0240256            | -2.47  | 0.014 | 1064706    | 0121768   |
| INSUR      | 4815849     | .0303694            | -15.86 | 0.000 | 5411807    | 4219891   |
| RATE       | .0343761    | .0098194            | 3.50   | 0.000 | .0151068   | .0536454  |
| AMOUNT     | .023768     | .0144509            | 1.64   | 0.100 | 0045898    | .0521259  |
| CREDIT     | 0004419     | .0002073            | -2.13  | 0.033 | 0008487    | 0000351   |
| TERM       | 0126195     | .003556             | -3.55  | 0.000 | 0195976    | 0056414   |
| ARM        | .1283239    | .0276932            | 4.63   | 0.000 | .0739798   | .1826681  |
| _cons      | .6884913    | .2285064            | 3.01   | 0.003 | .2400792   | 1.136903  |

The coefficients seem reasonable: having a loan insurance (less risk), a higher credit score (history of good payments), a longer term loan (lower individual payments, all else equal), all reduce the probability of delinquency. A refinance loan also reduces the probability, presumably because refinancing usually happens with more favorable terms.

On the other hand, having a higher a loan amount either in absolute terms (AMOUNT) or relative to the property value (LVR), having an adjustable rate (more uncertainty), and having a higher rate (higher cost) all contribute to a greater delinquency probability.

b) Use probit to estimate the model in (a). Are the signs and significance of the estimated coefficients the same as for the linear probability model?

#### . probit DELINQUENT LVR REF INSUR RATE AMOUNT CREDIT TERM ARM

```
Iteration 0:     log likelihood = -499.013
Iteration 1:     log likelihood = -338.38904
Iteration 2:     log likelihood = -332.81547
Iteration 3:     log likelihood = -332.79661
Iteration 4:     log likelihood = -332.79661
```

Probit regression Number of obs = 1,000

LR chi2(8) = 332.43Prob > chi2 = 0.0000

= 0.3331

Pseudo R2

Log likelihood = -332.79661

| DELINQUENT | Coefficient | Std. err. | z      | P>   z | [95% conf. | interval] |
|------------|-------------|-----------|--------|--------|------------|-----------|
| LVR        | .0076007    | .0045911  | 1.66   | 0.098  | 0013977    | .0165991  |
| REF        | 2884561     | .1259446  | -2.29  | 0.022  | 5353029    | 0416092   |
| INSUR      | -1.772714   | .1158088  | -15.31 | 0.000  | -1.999695  | -1.545733 |
| RATE       | .1711988    | .0438147  | 3.91   | 0.000  | .0853236   | .2570741  |
| AMOUNT     | .121236     | .0615491  | 1.97   | 0.049  | .000602    | .2418701  |
| CREDIT     | 0019131     | .0010638  | -1.80  | 0.072  | 0039981    | .0001718  |
| TERM       | 0775769     | .0198396  | -3.91  | 0.000  | 1164618    | 038692    |
| ARM        | .8091109    | .2077119  | 3.90   | 0.000  | .402003    | 1.216219  |
| _cons      | .964646     | 1.088121  | 0.89   | 0.375  | -1.168033  | 3.097325  |

All the coefficients have the same sign and are significant (with the exception of the constant, which is not significant in the probit model. AMOUNT becomes significant at the 5% level in the probit (10% in OLS) and LVR experiences the opposite: significant at the 10% level in probit, 5% in the OLS. The other coefficients suffer very minor changes in significance.

(c) Compute the predicted value of DELINQUENT for the 500th and 1,000th observations using both the linear probability model and the probit model. Interpret the values.

Table 1: Predicted Results

| Obs.  |        | DELI | NQ  | Pred. OLS |       |        | Pred. Pro         |      |                  |
|-------|--------|------|-----|-----------|-------|--------|-------------------|------|------------------|
| 500   |        | 0    |     | .1827828  |       |        | .140452           | 5    |                  |
| 1000. | 0      |      |     | .5785297  |       |        | .5785297 .6167872 |      |                  |
| Obs.  | DELINQ | LVR  | REF | INSUR     | RATE  | AMOUNT | CREDIT            | TERM | $\overline{ARM}$ |
| 500.  | 0      | 70   | 1   | 1         | 10.95 | .854   | 509               | 30   | 1                |
| 1000. | 0      | 88.2 | 1   | 0         | 7.65  | 2.91   | 624               | 30   | 1                |

Given their respective values presented in the above table, the OLS model predicts a probability of delinquency equal to 18.2% for loan 500 and 57.8% for loan 1000. Whereas the probit model predicts a probability of delinquency equal to 14% to loan 500 and 61.6% to loan 1000, given their respective values presented in the above table.

(d) Construct a histogram of CREDIT. Using both linear probability and probit models, calculate the probability of delinquency for CREDIT = 500,600, and 700 for a loan of \$250,000 (AMOUNT = 2.5). For the other variables, loan to value ratio (LVR) is 80%, initial interest rate is 8%, indicator variables take the value one, and TERM =30. Discuss similarities and differences among the predicted probabilities from the two models.



Table 2: Predicted Results (in %) for different levels of CREDIT

| Model                     | CREDIT = 500 | CREDIT = 600 | CREDIT = 700 |  |
|---------------------------|--------------|--------------|--------------|--|
| $\overline{\mathrm{LPM}}$ | 27.5 %       | 23.1%        | 18.7%        |  |
| Probit                    | 26.2%        | 22.1%        | 18.5%        |  |

Given the values of the other variables described above, the probability of delinquency predicted by the linear probability model is equal to 27.5% when credit score is 500, 23.1% when credit score is 600, and 18.7% when credit score is 700. The probability of delinquency predicted by the probit model is equal to 26.2% when credit score is 500, 22.1% when credit score is 600, and 18.5% when credit score is 700.

Both models predict very similar results, with the probability of delinquency diminishing as credit score increases. However, the effect of credit score is linear for linear probability model: each 100 point increase in credit score will reduce the probability of delinquency by 4.4%. For the probit model, this effect in non-linear. An increase in credit score from 500 to 600 will reduce the probability if delinquency by 4.1%, while an increase in credit score from 600 to 700 is associated with a smaller reduction of 3.6%.

(e) Compute the marginal effect of CREDIT on the probability of delinquency for CREDIT = 500,600, and 700, given that the other explanatory variables take the values in (d). Discuss the interpretation of the marginal effect.

#### . margins, dydx(CREDIT) at (CREDIT =(500(100)700) AMOUNT=2.5 LVR=80 RATE=8 TERM=30 REF=1 ARM=1)

Average marginal effects Number of obs = 1,000Model VCE: 0IM Expression: Pr(DELINQUENT), predict() dy/dx wrt: CREDIT 1.\_at: LVR REF 1 RATE 8 AMOUNT = 2.5CREDIT = 500TERM 30 ARM 1 2.\_at: LVR 80 REF 1 RATE 8 AMOUNT = 2.5CREDIT = 600 **TERM** 30 ARM 1 3.\_at: LVR 80 REF 1 RATE 8 AMOUNT = 2.5CREDIT = 700TERM 30 ARM

|        |     | dy/dx   | Delta-method<br>std. err. | z     | P>   z | [95% conf. | interval] |
|--------|-----|---------|---------------------------|-------|--------|------------|-----------|
| CREDIT |     |         |                           |       |        |            |           |
|        | _at |         |                           |       |        |            |           |
|        | 1   | 0004292 | .0002588                  | -1.66 | 0.097  | 0009365    | .0000781  |
|        | 2   | 0003881 | .0002132                  | -1.82 | 0.069  | 0008061    | .0000298  |
|        | 3   | 0003482 | .0001694                  | -2.05 | 0.040  | 0006803    | 0000161   |

Given the values of the other variables described in the output, a 1 point increase in credit score will reduce the probability of delinquency by 0.0042% when credit score is 500, 0.0038% when credit score is 600, and 0.0034% when credit score is 700. As discussed in part (d), this shows that the marginal effect is non-linear, as is depends on the initial value of the credit score. In this specific cases, the higher credit scores decrease the probability of delinquency at a decreasing rate.

(f) Construct a histogram of LVR. Using both linear probability and probit models, calculate the probability of delinquency for LVR = 20 and LVR = 80, with CREDIT = 600 and other variables set as they are in (d). Compare and contrast the results.



Figure 2: Loan Amount to Value of Property Ratio (LVR) Histogram

Table 3: Predicted Results (in %) for different levels of LVR

| Model                     | LVR = 20 | LVR = 80 |  |
|---------------------------|----------|----------|--|
| $\overline{\mathrm{LPM}}$ | 13.39%   | 23.13%   |  |
| Probit                    | 14.05%   | 22.18%   |  |

Again, the results are very similar for both models, where a higher loan to property value ratio increases the probability of delinquency, but there are some differences as well.

The LPM model indicates a slightly lower probability at LVR = 20 and a slightly higher at LVR = 80. In the LPM model, a 60 percentage point increase in LVR increases the probability of delinquency by 9.74%.

The probit model on the other hand indicates a slightly higher probability at LVR = 20 and slightly lower probability at LVR = 80. That implies that the marginal effect within that range (from 20 to 80) is relatively smaller, increasing the probability of delinquency by 8.13%.

# (g) Compare the percentage of correct predictions from the linear probability model and the probit model, using a predicted probability of 0.5 as the threshold.

We consider the predictions as correct if the predicted probability is < .5 and we observe no delinquency, or if the predicted probability is > .5 and there was a delinquency. The table below reports the results.

As it can be seen, both models have very similar ratios of success in predicting the correct outcome. The Linear Probability Model predicted the correct outcome 858 times and the Probit model 855 times, so only a difference of 3 correct predictions.

Table 4: Percentage of Correct and Incorrect Predictions

| Model  | Incorrect | Correct |  |
|--------|-----------|---------|--|
| LPM    | 14.2%     | 85.8%   |  |
| Probit | 14.5%     | 85.5%   |  |

(h) As a loan officer, you wish to provide loans to customers who repay on schedule and are not delinquent. Suppose you have available to you the first 500 observations in the data on which to base your loan decision on the second 500 applications (501–1,000). Is using the probit model, with a threshold of 0.5 for the predicted probability the best decision rule for deciding on loan applications? If not, what is a better rule.

Using the first 500 observations for our sample, we estimate the two models again, and the results are presented below.

#### . reg DELINQUENT LVR REF INSUR RATE AMOUNT CREDIT TERM ARM if id<501, vce(robust)

| Linear regression | Number of obs | = | 500    |
|-------------------|---------------|---|--------|
|                   | F(8, 491)     | = | 32.39  |
|                   | Prob > F      | = | 0.0000 |
|                   | R-squared     | = | 0.3785 |
|                   | Root MSE      | = | .35068 |

| DELINQUENT | Coefficient | Robust<br>std. err. | t      | P> t  | [95% conf. | interval] |
|------------|-------------|---------------------|--------|-------|------------|-----------|
| LVR        | .0025827    | .001191             | 2.17   | 0.031 | .0002425   | .0049228  |
| REF        | 0783842     | .0379617            | -2.06  | 0.039 | 1529717    | 0037967   |
| INSUR      | 4880244     | .0387692            | -12.59 | 0.000 | 5641985    | 4118504   |
| RATE       | .057459     | .0153479            | 3.74   | 0.000 | .0273034   | .0876146  |
| AMOUNT     | .0232445    | .0193415            | 1.20   | 0.230 | 0147579    | .0612468  |
| CREDIT     | 000138      | .0003353            | -0.41  | 0.681 | 0007968    | .0005209  |
| TERM       | 0180095     | .0064574            | -2.79  | 0.005 | 0306971    | 005322    |
| ARM        | .1829719    | .0385865            | 4.74   | 0.000 | .1071569   | .2587869  |
| _cons      | .4065923    | .3863153            | 1.05   | 0.293 | 3524427    | 1.165627  |

#### . probit DELINQUENT LVR REF INSUR RATE AMOUNT CREDIT TERM ARM

Iteration 0: log likelihood = -499.013
Iteration 1: log likelihood = -338.38904
Iteration 2: log likelihood = -332.81547
Iteration 3: log likelihood = -332.79661
Iteration 4: log likelihood = -332.79661

Probit regression Number of obs = 1,000

LR chi2(8) = 332.43 Prob > chi2 = 0.0000 Pseudo R2 = 0.3331

Log likelihood = -332.79661

| DELINQUENT | Coefficient | Std. err. | Z      | P>   z | [95% conf. | interval] |
|------------|-------------|-----------|--------|--------|------------|-----------|
| LVR        | .0076007    | .0045911  | 1.66   | 0.098  | 0013977    | .0165991  |
| REF        | 2884561     | .1259446  | -2.29  | 0.022  | 5353029    | 0416092   |
| INSUR      | -1.772714   | .1158088  | -15.31 | 0.000  | -1.999695  | -1.545733 |
| RATE       | .1711988    | .0438147  | 3.91   | 0.000  | .0853236   | .2570741  |
| AMOUNT     | .121236     | .0615491  | 1.97   | 0.049  | .000602    | .2418701  |
| CREDIT     | 0019131     | .0010638  | -1.80  | 0.072  | 0039981    | .0001718  |
| TERM       | 0775769     | .0198396  | -3.91  | 0.000  | 1164618    | 038692    |
| ARM        | .8091109    | .2077119  | 3.90   | 0.000  | .402003    | 1.216219  |
| _cons      | .964646     | 1.088121  | 0.89   | 0.375  | -1.168033  | 3.097325  |
|            |             |           |        |        |            |           |

As in (g), we calculate the number of correct prediction if the predicted probability is < .5 and we observe no delinquency, or if the predicted probability is > .5 and there was a delinquency. The table below reports the results. The difference is that we are doing an out-of-sample prediction, using the last 500 observations that were not used to estimate the model.

The table below shows that the percentage of successful predictions diminishes substantially, which was expected, given that we are not only reducing the size of our sample for estimating the model but also requiring it to predict out of sample.

Again, the LPM model does slightly better at predicting successfully, with 3 more correct predictions than the Probit model. If our only task is to predict delinquency or not using the .5% threshold, the LPM model would be a very slightly better rule.

Table 5: Percentage of Correct and Incorrect Out-of-Sample Predictions

| Model  | Incorrect | Correct |  |
|--------|-----------|---------|--|
| LPM    | 42.4%     | 57.6%   |  |
| Probit | 42.7%     | 57.3%   |  |

#### Question 2

(a) Estimate a multinomial logit model explaining PSECHOICE. Use the group who did not attend college as the base group. Use as explanatory variables GRADES, FAMINC, FEMALE, and BLACK. Are the estimated coefficients statistically significant?

#### . mlogit PSECHOICE GRADES FAMINC FEMALE BLACK, baseoutcome(1)

Multinomial logistic regression

Number of obs = 1,000 LR chi2(8) = 343.80 Prob > chi2 = 0.0000 Pseudo R2 = 0.1688

Log likelihood = -846.75601

|   | PSECH0ICE | Coefficient | Std. err. | Z      | P>   z | [95% conf | . interval] |
|---|-----------|-------------|-----------|--------|--------|-----------|-------------|
| 1 |           | (base outco | me)       |        |        |           |             |
| 2 |           |             |           |        |        |           |             |
|   | GRADES    | 3089701     | .0552152  | -5.60  | 0.000  | 4171899   | 2007503     |
|   | FAMINC    | .0118943    | .003928   | 3.03   | 0.002  | .0041956  | .0195931    |
|   | FEMALE    | .1169483    | .1949887  | 0.60   | 0.549  | 2652224   | .4991191    |
|   | BLACK     | .5679813    | .4295461  | 1.32   | 0.186  | 2739136   | 1.409876    |
|   | _cons     | 1.937035    | .491135   | 3.94   | 0.000  | .9744285  | 2.899642    |
| 3 |           |             |           |        |        |           |             |
|   | GRADES    | 7272638     | .0566698  | -12.83 | 0.000  | 8383346   | 6161929     |
|   | FAMINC    | .0204678    | .0038319  | 5.34   | 0.000  | .0129574  | .0279781    |
|   | FEMALE    | 1337162     | .1932327  | -0.69  | 0.489  | 5124453   | .2450129    |
|   | BLACK     | 1.607127    | .4079379  | 3.94   | 0.000  | .807583   | 2.40667     |
|   | _cons     | 4.962637    | .4744651  | 10.46  | 0.000  | 4.032702  | 5.892572    |

Most coefficients are significant with the exception of the female dummy when explaining 4-year college outcome. For the 2-year college outcome, the female and black dummies are not significant.

(b) Compute the estimated probability that a white male student with median values of GRADES and FAMINC will attend a four-year college.

. margins, predict(outcome(3)) at((medians) GRADES FAMINC FEMALE=0 BLACK=0)

Adjusted predictions
Model VCE: 0IM

Expression: Pr(PSECHOICE==3), predict(outcome(3))
At: GRADES = 6.64 (median)
FAMINC = 42.5 (median)
FEMALE = 0
BLACK = 0

|       |          | Delta-method |       |        |            |           |
|-------|----------|--------------|-------|--------|------------|-----------|
|       | Margin   | std. err.    | Z     | P>   z | [95% conf. | interval] |
| _cons | .5239466 | .027215      | 19.25 | 0.000  | .4706062   | .577287   |

(c) Compute the probability ratio that a white male student with median values of GRADES and FAMINC will attend a four-year college rather than not attend any college.

We first need to calculate the probability of no attending any college:

. margins, predict(outcome(1)) at((medians) GRADES FAMINC FEMALE=0 BLACK=0)

Adjusted predictions

Model VCE: OIM

Expression: Pr(PSECHOICE==1), predict(outcome(1))

At: GRADES = 6.64 (median)

FAMINC = 42.5 (median)

Delta-method
Margin std. err. z P>|z| [95% conf. interval]

\_cons .1920783 .0213003 9.02 0.000 .1503304 .2338263

The probability ratio is this given by:

FEMALE = 0 BLACK = 0

$$\frac{Pr(y=4YCollege)}{Pr(y=NoCollege)} = \frac{0.5239466}{0.1920783} = 4.2896 \tag{1}$$

(d) Compute the change in probability of attending a four-year college for a white male student with median FAMINC whose GRADES change from 6.64 (the median value) to 4.905 (top 25th percentile).

#### . margins, at((medians) FAMINC GRADES=6.53039 FEMALE=0 BLACK=0)

Adjusted predictions

Model VCE: OIM

1.\_predict: Pr(PSECHOICE==1), predict(pr outcome(1))
2.\_predict: Pr(PSECHOICE==2), predict(pr outcome(2))
3.\_predict: Pr(PSECHOICE==3), predict(pr outcome(3))

At: GRADES = 6.53039

FAMINC = 42.5 (median)

FEMALE = 0

BLACK = 0

|          | Margin   | Delta-method<br>std. err. | Z     | P>   z | [95% conf. | interval] |
|----------|----------|---------------------------|-------|--------|------------|-----------|
| _predict |          |                           |       |        |            |           |
| 1        | .1823658 | .0208929                  | 8.73  | 0.000  | .1414164   | .2233152  |
| 2        | .278903  | .0233568                  | 11.94 | 0.000  | .2331245   | .3246816  |
| 3        | .5387311 | .0272494                  | 19.77 | 0.000  | .4853233   | .592139   |

#### . margins, at((medians) FAMINC GRADES=4.905 FEMALE=0 BLACK=0)

Adjusted predictions Number of obs = 1,000 Model VCE: 0IM

1.\_predict: Pr(PSECHOICE==1), predict(pr outcome(1))
2.\_predict: Pr(PSECHOICE==2), predict(pr outcome(2))
3.\_predict: Pr(PSECHOICE==3), predict(pr outcome(3))

At: GRADES = 4.905

FAMINC = 42.5 (median)

FEMALE = 0 BLACK = 0

|          | Margin   | Delta-method<br>std. err. | Z     | P>   z | [95% conf. | interval] |
|----------|----------|---------------------------|-------|--------|------------|-----------|
| _predict |          |                           |       |        |            |           |
| 1        | .0759824 | .0139192                  | 5.46  | 0.000  | .0487013   | .1032635  |
| 2        | .1920101 | .0227243                  | 8.45  | 0.000  | .1474714   | .2365489  |
| 3        | .7320075 | .0266109                  | 27.51 | 0.000  | .6798511   | .7841639  |

The difference in probability is given by 0.7320075 - 0.5387311 = 0.1932764

(e) From the full data set create a subsample, omitting the group who attended a two-year college. Estimate a logit model explaining student's choice between attending a four-year college and not attending college, using the same explanatory variables in (a). Compute the probability ratio that a white male student with median values of GRADES and FAMINC will attend a four-year college rather than not attend any college. Compare the result to that in (c).

#### . mlogit PSECHOICE GRADES FAMINC FEMALE BLACK if PSECHOICE!=2, baseoutcome(1)

```
Iteration 0: log likelihood = -455.22643 Iteration 1: log likelihood = -324.38318 Iteration 2: log likelihood = -309.98175 Iteration 3: log likelihood = -309.55773 Iteration 4: log likelihood = -309.5561 Iteration 5: log likelihood = -309.5561
```

Multinomial logistic regression

Number of obs = 749 LR chi2(4) = 291.34 Prob > chi2 = 0.0000 Pseudo R2 = 0.3200

Log likelihood = -309.5561

BLACK =

|   | PSECHOICE | Coefficient | Std. err. | z      | P>   z | [95% conf. | interval] |
|---|-----------|-------------|-----------|--------|--------|------------|-----------|
| 1 |           | (base outco | me)       |        |        |            |           |
| 3 |           |             |           |        |        |            |           |
|   | GRADES    | 7272205     | .0616125  | -11.80 | 0.000  | 8479788    | 6064622   |
|   | FAMINC    | .0182128    | .0038987  | 4.67   | 0.000  | .0105716   | .0258541  |
|   | FEMALE    | 1313463     | .2036464  | -0.64  | 0.519  | 5304858    | .2677932  |
|   | BLACK     | 1.37962     | .422851   | 3.26   | 0.001  | .5508473   | 2.208393  |
|   | _cons     | 5.069643    | .504986   | 10.04  | 0.000  | 4.079889   | 6.059397  |
|   |           |             |           |        |        |            |           |

#### . margins, predict(outcome(3)) at((medians) GRADES FAMINC FEMALE=0 BLACK=0)

```
Adjusted predictions

Model VCE: OIM

Expression: Pr(PSECHOICE==3), predict(outcome(3))

At: GRADES = 6.42 (median)

FAMINC = 42.5 (median)

FEMALE = 0
```

|       | 1        | Delta-method |       |        |            |           |
|-------|----------|--------------|-------|--------|------------|-----------|
|       | Margin   | std. err.    | Z     | P>   z | [95% conf. | interval] |
| _cons | .7640356 | .0278927     | 27.39 | 0.000  | .7093669   | .8187043  |

The probability ratio of attending a 4-year college vs. not attending college at all is given by:

$$\frac{Pr(y=4YCollege)}{Pr(y=NoCollege)} = \frac{Pr(y=4YCollege)}{1-Pr(y=4YCollege)} = \frac{0.7640356}{1-0.7640356} = 3.237927 \tag{2}$$

#### Question 3

(a) In addition to PRICE, the data file contains variables indicating whether the product was "featured" at the time (FEATURE) or whether there was a store display (DISPLAY). Estimate a conditional logit model explaining choice of soda using PRICE, DISPLAY, and FEATURE as explanatory variables. Discuss the signs of the estimated coefficients and their significance.

#### . asclogit CHOICE PRICE FEATURE DISPLAY, case(ID) alternatives(ALT) noconstant

note: variable PRICE has 315 cases that are not alternative-specific; there is no within-case variability. note: variable FEATURE has 449 cases that are not alternative-specific; there is no within-case variability. note: variable DISPLAY has 873 cases that are not alternative-specific; there is no within-case variability.

| Alternative-specific conditional logit<br>Case ID variable: ID |                                  | =<br>= | 5,466<br>1822    |
|----------------------------------------------------------------|----------------------------------|--------|------------------|
| Alternatives variable: ALT                                     | Alts per case: min<br>avg<br>max | =      | 3<br>3.0<br>3    |
| Log likelihood = -1822.2267                                    | Wald chi2(3)<br>Prob > chi2      | =      | 308.35<br>0.0000 |

|     | CHOICE  | Coefficient | Std. err. | z     | P>   z | [95% conf. | interval] |
|-----|---------|-------------|-----------|-------|--------|------------|-----------|
| ALT |         |             |           |       |        |            |           |
|     | PRICE   | -1.744454   | .1799323  | -9.70 | 0.000  | -2.097115  | -1.391793 |
| F   | FEATURE | 0106038     | .0799373  | -0.13 | 0.894  | 1672781    | .1460705  |
| [   | DISPLAY | .4624477    | .0930481  | 4.97  | 0.000  | .2800768   | .6448185  |
|     |         |             |           |       |        |            |           |

The coefficient associated with PRICE is negative and significant, meaning that a higher price diminishes the probability of being chosen. The coefficient on DISPLAY is positive and significant, presumably because it draws greater consumer attention to a specific brand.

Finally, the *FEATURE* variable has a negative coefficient. The fact we observe a smaller probability of being chosen for a featured good is counter-intuitve. However, this effect is not significant, so we cannot reject the null hypothesis that being featured does not affect the at all the probability of being chosen.

(b) Compute the probability ratio of choosing Coke relative to Pepsi and 7Up if the price of each is \$1.25 and no display or feature is present.

. estat mfx, at (PRICE=1.25 DISPLAY=0 FEATURE=0)

Pr(choice = Pepsi|1 selected) = .33333333

| variable      | dp/dx            | Std. err.    | z     | P>   z | [ 95%   | C.I. ]         | Х    |
|---------------|------------------|--------------|-------|--------|---------|----------------|------|
| PRICE         |                  |              |       |        |         |                |      |
| Pepsi         | 387656           | .039985      | -9.70 | 0.000  | 466026  | 309287         | 1.25 |
| 7Up           | .193828          | .019992      | 9.70  | 0.000  | .154644 | .233013        | 1.25 |
| Coke          | .193828          | .019992      | 9.70  | 0.000  | .154644 | .233013        | 1.25 |
| FEATURE       |                  |              |       |        |         |                |      |
| Pepsi         | 002356           | .017764      | -0.13 | 0.894  | 037173  | .03246         | 0    |
| 7Up           | .001178          | .008882      | 0.13  | 0.894  | 01623   | .018586        | 0    |
| Coke          | .001178          | .008882      | 0.13  | 0.894  | 01623   | .018586        | 0    |
| DISPLAY       |                  |              |       |        |         |                |      |
| Pepsi         | .102766          | .020677      | 4.97  | 0.000  | .062239 | .143293        | 0    |
| 7Up           | 051383           | .010339      | -4.97 | 0.000  | 071647  | 03112          | 0    |
| Coke          | 051383           | .010339      | -4.97 | 0.000  | 071647  | 03112          | 0    |
| Pr(choice = 7 | Up 1 select      | red) = .3333 | 3333  |        |         |                |      |
| variable      | dp/dx            | Std. err.    | Z     | P>   z | [ 95%   | C.I. ]         | Х    |
| PRICE         |                  |              |       |        |         |                |      |
| Pepsi         | .193828          | .019992      | 9.70  | 0.000  | .154644 | .233013        | 1.25 |
| 7Up           | 387656           | .039985      | -9.70 | 0.000  | 466026  | 309287         | 1.25 |
| Coke          | .193828          | .019992      | 9.70  | 0.000  | .154644 | .233013        | 1.25 |
| FEATURE       |                  |              |       |        |         |                |      |
| Pepsi         | .001178          | .008882      | 0.13  | 0.894  | 01623   | .018586        | 0    |
| 7Up           | 002356           | .017764      | -0.13 | 0.894  | 037173  | .03246         | 0    |
| Coke          | .001178          | .008882      | 0.13  | 0.894  | 01623   | .018586        | 0    |
| DISPLAY       |                  |              |       |        |         |                |      |
| Pepsi         | 051383           | .010339      | -4.97 | 0.000  | 071647  | 03112          | 0    |
| 7Up           | .102766          | .020677      | 4.97  | 0.000  | .062239 | .143293        | 0    |
| Coke          | 051383           | .010339      | -4.97 | 0.000  | 071647  | 03112          | 0    |
| Pr(choice = C | oke 1 selec      | cted) = .333 | 33333 |        |         |                |      |
| variable      | dp/dx            | Std. err.    | Z     | P>   z | [ 95%   | C.I. ]         | Х    |
| PRICE         |                  |              |       |        |         |                |      |
| Pepsi         | .193828          | .019992      | 9.70  | 0.000  | .154644 | .233013        | 1.25 |
| 7Up           | .193828          | .019992      | 9.70  | 0.000  | .154644 | .233013        | 1.25 |
| Coke          | 387656           | .039985      | -9.70 | 0.000  | 466026  | 309287         | 1.25 |
| FEATURE       |                  |              |       |        |         |                |      |
| Pepsi         | .001178          | .008882      | 0.13  | 0.894  | 01623   | .018586        | 0    |
| 7Up           | .001178          | .008882      | 0.13  | 0.894  | 01623   | .018586        | 0    |
| 7 O P         |                  | 017764       | -0.13 | 0.894  | 037173  | .03246         | 0    |
| Coke          | 002356           | .017764      | 0.15  |        |         |                |      |
|               | 002356           | .017764      |       |        |         |                |      |
| Coke          | 002356<br>051383 | .010339      | -4.97 | 0.000  | 071647  | 03112          | 0    |
| DISPLAY       |                  |              |       |        |         | 03112<br>03112 | 0    |

The probability ratio is given by:

$$\frac{Pr(y = Coke)}{Pr(y = Pepsi)} = \frac{Pr(y = Coke)}{Pr(y = 7Up)} \frac{0.333}{0.333} = 0.5$$
 (3)

(c) Compute the probability ratio of choosing Coke relative to Pepsi and 7Up if the

price of each is \$1.25, a display is present for *Coke* but not for the others, and none of the items is featured.

. estat mfx, at (PRICE=1.25 Coke:DISPLAY=1 Pepsi:DISPLAY=0 7Up:DISPLAY=0 FEATURE=0)

| Dr | (choice | _ [ | Dancil1 | (hattallas | = .27871022 |
|----|---------|-----|---------|------------|-------------|
|    |         |     |         |            |             |

| variable         | dp/dx            | Std. err.            | z              | P>   z         | [ 95%            | C.I. ]           | Х    |
|------------------|------------------|----------------------|----------------|----------------|------------------|------------------|------|
| PRICE            |                  |                      |                |                |                  |                  |      |
| Pepsi            | 350689           | .040498              | -8.66          | 0.000          | 430064           | 271314           | 1.25 |
| 7Up              | .135508          | .021051              | 6.44           | 0.000          | .094249          | .176767          | 1.25 |
| Coke             | .215181          | .021391              | 10.06          | 0.000          | .173255          | .257107          | 1.25 |
| FEATURE          |                  |                      |                |                |                  |                  |      |
| Pepsi            | 002132           | .016057              | -0.13          | 0.894          | 033602           | .029339          | 0    |
| 7Up              | .000824          | .006193              | 0.13           | 0.894          | 011314           | .012962          | 0    |
| Coke             | .001308          | .009864              | 0.13           | 0.895          | 018025           | .020641          | 6    |
| DISPLAY          |                  |                      |                |                |                  |                  |      |
| Pepsi            | .092966          | .016356              | 5.68           | 0.000          | .060908          | .125024          | 6    |
| 7Up              | 035923           | .004269              | -8.41          | 0.000          | 04429            | 027555           | 6    |
| Coke             | 057044           | .012087              | -4.72          | 0.000          | 080734           | 033353           | 1    |
| Pr(choice = 7    | Up 1 select      | ed) = .278           | 71022          |                |                  |                  |      |
| variable         | dp/dx            | Std. err.            | Z              | P>   z         | [ 95%            | C.I. ]           | Х    |
| PRICE            |                  |                      |                |                |                  |                  |      |
| Pepsi            | .135508          | .021051              | 6.44           | 0.000          | .094249          | .176767          | 1.25 |
| 7Up              | 350689           | .040498              | -8.66          | 0.000          | 430064           | 271314           | 1.25 |
| Coke             | .215181          | .021391              | 10.06          | 0.000          | .173255          | .257107          | 1.25 |
| FEATURE          |                  |                      |                |                |                  |                  |      |
| Pepsi            | .000824          | .006193              | 0.13           | 0.894          | 011314           | .012962          | (    |
| 7Up              | 002132           | .016057              | -0.13          | 0.894          | 033602           | .029339          | 6    |
| Coke             | .001308          | .009864              | 0.13           | 0.895          | 018025           | .020641          | (    |
| DISPLAY          |                  |                      |                |                |                  |                  |      |
| Pepsi            | 035923           | .004269              | -8.41          | 0.000          | 04429            | 027555           | 6    |
| 7Up              | .092966          | .016356              | 5.68           | 0.000          | .060908          | .125024          | 6    |
| Coke             | 057044           | .012087              | -4.72          | 0.000          | 080734           | 033353           | 1    |
| Pr(choice = C    | oke 1 selec      | :ted) = <b>.44</b> 2 | 257956         |                |                  |                  |      |
| variable         | dp/dx            | Std. err.            | z              | P>   z         | [ 95%            | C.I. ]           | Х    |
| PRICE            |                  |                      |                |                |                  |                  |      |
| Pepsi            | .215181          | .021391              | 10.06          | 0.000          | .173255          | .257107          | 1.25 |
| 7Up              | .215181          | .021391              | 10.06          | 0.000          | .173255          | .257107          | 1.25 |
| Coke             | 430362           | .042783              | -10.06         | 0.000          | 514215           | 346509           | 1.25 |
| FEATURE          |                  |                      |                |                |                  |                  |      |
| Pepsi            | .001308          | .009864              | 0.13           | 0.895          | 018025           | .020641          | 6    |
| 7Up              | .001308          | .009864              | 0.13           | 0.895          | 018025           | .020641          | 6    |
| Coke             | 002616           | .019728              | -0.13          | 0.895          | 041282           | .03605           | 6    |
| COKE             |                  |                      |                |                |                  |                  |      |
|                  |                  |                      |                |                |                  |                  |      |
|                  | 057044           | .012087              | -4.72          | 0.000          | 080734           | 033353           | e    |
| DISPLAY          | 057044<br>057044 | .012087              | -4.72<br>-4.72 | 0.000<br>0.000 | 080734<br>080734 | 033353<br>033353 | 0    |
| DISPLAY<br>Pepsi |                  |                      |                |                |                  |                  |      |

The probability ratio is given by:

$$\frac{Pr(y = Coke|DISPLAY = 1)}{Pr(y = Pepsi|DISPLAY = 0)} = \frac{Pr(y = Coke|DISPLAY = 1)}{Pr(y = 7Up|DISPLAY = 0)} = \frac{0.44257956}{0.27871022} = 1.58795 \tag{4}$$

(d) Compute the change in the probability of purchase of each type of soda if the price of *Coke* changes from \$1.25 to \$1.30, with the prices of the *Pepsi* and *7Up* remaining at \$1.25. Assume that a display is present for *Coke*, but not for the others, and none of the items is featured.

We create the same table as in (c) using:

estat mfx, at (Coke:PRICE=1.30 Pepsi:PRICE=1.25 7Up:PRICE=1.25 Coke:DISPLAY=1 Pepsi:DISPLAY=0 7Up:DISPLAY=0 FEATURE=0).

The full table is omitted for space, but the probabilities are represented in the table below:

Table 6: Probability of Choosing Different Sodas: Conditional Logit Model

| Price of Coke | $Pr(y = Coke)^a$ | Pr(y = Pepsi) | Pr(y = 7Up) |
|---------------|------------------|---------------|-------------|
| \$ 1.25       | 0.44257956       | 0.27871022    | 0.27871022  |
| \$ 1.30       | 0.4211822        | 0.2894089     | 0.2894089   |
| Change        | -0.02139736      | +0.01069868   | +0.01069868 |

 $<sup>^</sup>a$ Note: Coke has a display, Pepsi and 7Up do not.

(e) Add the alternative specific "intercept" terms for *Pepsi* and *7Up* to the model in (a). Estimate the conditional logit model. Compute the probability ratio in (c) based upon these new estimates.

| Alternatives variable: ALT  Alts per case: min = avg = max =  Wald chi2(3) = 30 | Alternative-specific conditional logit |               |           |        | Number o | f obs    | =    | 5,466     |
|---------------------------------------------------------------------------------|----------------------------------------|---------------|-----------|--------|----------|----------|------|-----------|
| avg = max =  Wald chi2(3) = 30  Log likelihood = -1811.3543 Prob > chi2 = 0.    | se ID variab                           | ole: ID       |           |        | Number o | f cases  | =    | 1822      |
| avg = max =  Wald chi2(3) = 30  Log likelihood = -1811.3543 Prob > chi2 = 0.    | lternatives v                          | variable: ALT |           |        | Alts per | case: mi | n =  | 3         |
| max =  Wald chi2(3) = 30  Log likelihood = -1811.3543 Prob > chi2 = 0.          |                                        |               |           |        |          |          |      | 3.0       |
| Wald chi2(3) = 30 Log likelihood = -1811.3543 Prob > chi2 = 0.                  |                                        |               |           |        |          |          | 9    | 3         |
| Log likelihood = -1811.3543                                                     |                                        |               |           |        |          | ilia     | ^ -  | 3         |
|                                                                                 |                                        |               |           |        | Wald     | chi2(3)  | =    | 302.93    |
| CHOICE Coefficient Std. err. z P> z  [95% conf. inter                           | og likelihood                          |               | Prob      | > chi2 | =        | 0.0000   |      |           |
| CHOICE Coefficient Std. err. z P> z  [95% conf. inter                           |                                        |               |           |        |          |          |      |           |
|                                                                                 | CHOICE                                 | Coefficient   | Std. err. | Z      | P>   z   | [95% c   | onf. | interval] |
| ALT                                                                             | _т                                     |               |           |        |          |          |      |           |
| PRICE -1.849186 .1886595 -9.80 0.000 -2.218952 -1.4                             | PRICE                                  | -1.849186     | .1886595  | -9.80  | 0.000    | -2.2189  | 52   | -1.47942  |
| FEATURE0408576 .0830752 -0.49 0.6232036821 .121                                 | FEATURE                                | 0408576       | .0830752  | -0.49  | 0.623    | 20368    | 21   | .1219669  |
| DISPLAY .4726786 .0935445 5.05 0.000 .2893346 .656                              | DISPLAY                                | .4726786      | .0935445  | 5.05   | 0.000    | .28933   | 46   | .6560225  |
|                                                                                 |                                        |               |           |        |          |          |      |           |
| Pepsi                                                                           | epsi                                   |               |           |        |          |          |      |           |
| _cons .2840865 .0625595 4.54 0.000 .1614722 .406                                | _cons                                  | .2840865      | .0625595  | 4.54   | 0.000    | .16147   | 22   | .4067008  |
| 7Up                                                                             | Jp                                     |               |           |        |          |          |      |           |
| ·                                                                               |                                        | .0906629      | .0639666  | 1.42   | 0.156    | 03470    | 94   | .2160352  |
| Coke (base alternative)                                                         | ke                                     | (base alter   | native)   |        |          |          |      |           |

. estat mfx, at (PRICE=1.25 Coke:DISPLAY=1 Pepsi:DISPLAY=0 7Up:DISPLAY=0 FEATURE=0)

| Pr( | choice | = F | Pensil1 | selected) | = | .32985 |
|-----|--------|-----|---------|-----------|---|--------|
|     |        |     |         |           |   |        |

| variabl     | Le          | dp/dx                       | Std. err.   | z      | P>   z | [ 95%            | C.I. ]            | Х                |
|-------------|-------------|-----------------------------|-------------|--------|--------|------------------|-------------------|------------------|
| PRICE       |             |                             |             |        |        |                  |                   |                  |
|             | Pepsi       | 408761                      | .046806     | -8.73  | 0.000  | 500498           | 317023            | 1.25             |
|             | 7Up         | .16581                      | .024974     | 6.64   | 0.000  | .116862          | .214758           | 1.25             |
|             | Coke        | .242951                     | .02675      | 9.08   | 0.000  | .190522          | .295379           | 1.25             |
| FEATURE     |             |                             |             |        |        |                  |                   |                  |
|             | Pepsi       | 009032                      | .018341     | -0.49  | 0.622  | 044979           | .026916           | 0                |
|             | 7Up         | .003664                     | .007365     | 0.50   | 0.619  | 010772           | .018099           | 0                |
|             | Coke        | .005368                     | .010982     | 0.49   | 0.625  | 016157           | .026893           | 0                |
| DISPLAY     | <u>′</u>    |                             |             |        |        |                  |                   |                  |
|             | Pepsi       | .104485                     | .018887     | 5.53   | 0.000  | .067467          | .141503           | 0                |
|             | 7Up         | 042383                      | .005483     | -7.73  | 0.000  | 05313            | 031637            | 0                |
|             | Coke        | 062102                      | .013761     | -4.51  | 0.000  | 089072           | 035131            | 1                |
| Pr(choi     | ice = 7l    | Jp 1 select                 | ed) = .271  | 18402  |        |                  |                   |                  |
| variabl     | Le          | dp/dx                       | Std. err.   | z      | P>   z | [ 95%            | C.I. ]            | Х                |
| PRICE       |             |                             |             |        |        |                  |                   |                  |
|             | Pepsi       | .16581                      | .024974     | 6.64   | 0.000  | .116862          | .214758           | 1.25             |
|             | 7Up         | 366034                      | .040076     | -9.13  | 0.000  | 444582           | 287485            | 1.25             |
|             | Coke        | .200224                     | .018788     | 10.66  | 0.000  | .163399          | .237048           | 1.25             |
| FEATURE     |             |                             |             |        |        |                  |                   |                  |
|             | Pepsi       | .003664                     | .007365     | 0.50   | 0.619  | 010772           | .018099           | 0                |
|             | 7Up         | 008087                      | .016348     | -0.49  | 0.621  | 040129           | .023954           | 0                |
|             | Coke        | .004424                     | .008989     | 0.49   | 0.623  | 013194           | .022042           | 0                |
| DISPLAY     | <i>'</i>    |                             |             |        |        |                  |                   |                  |
|             | Pepsi       | 042383                      | .005483     | -7.73  | 0.000  | 05313            | 031637            | 0                |
|             | 7Up         | .093563                     | .016297     | 5.74   | 0.000  | .061622          | .125505           | 0                |
|             | Coke        | 05118                       | .011129     | -4.60  | 0.000  | 072992           | 029368            | 1                |
| Pr(choi     | ice = Co    | oke 1 selec                 | ted) = .398 | 330979 |        |                  |                   |                  |
| variabl     | Le          | dp/dx                       | Std. err.   | Z      | P>   z | [ 95%            | C.I. ]            | Х                |
| PRICE       |             | _                           |             | _      |        |                  |                   |                  |
|             | Pepsi       | .242951                     | .02675      | 9.08   | 0.000  | .190522          | .295379           | 1.25             |
|             | 7Up         | .200224                     | .018788     | 10.66  | 0.000  | .163399          | .237048           | 1.25             |
|             | Coke        | 443174                      | .043583     | -10.17 | 0.000  | 528595           | 357754            | 1.25             |
| FEATURE     | -           |                             |             |        |        |                  |                   |                  |
|             | Pepsi       | .005368                     | .010982     | 0.49   | 0.625  | 016157           | .026893           | 0                |
|             |             |                             |             | 0 10   | 0.623  | 013194           | .022042           | 0                |
|             | 7Up         | .004424                     | .008989     | 0.49   |        |                  |                   |                  |
|             |             |                             | .008989     | -0.49  | 0.624  | 048931           | .029347           | 0                |
|             | 7Up<br>Coke | .004424<br>009792           | .019969     | -0.49  | 0.624  | 048931           | .029347           |                  |
| <br>DISPLAY | 7Up<br>Coke | .004424<br>009792<br>062102 | .019969     | -0.49  | 0.624  | 048931<br>089072 | .029347<br>035131 | 0                |
| <br>DISPLAY | 7Up<br>Coke | .004424<br>009792           | .019969     | -0.49  | 0.624  | 048931           | .029347           | 0<br>0<br>0<br>1 |

The probability ratios are given by:

$$\frac{Pr(y = Coke|DISPLAY = 1)}{Pr(y = Pepsi|DISPLAY = 0)} = \frac{0.39830979}{0.32985} = 1.2075482$$
 (5)

$$\frac{Pr(y = Coke|DISPLAY = 1)}{Pr(y = 7Up|DISPLAY = 0)} = \frac{.39830979}{0.2718402} = 1.465235$$
 (6)

# (f) Based on the estimates in (e), calculate the effects of the price change in (d) on the choice probability for each brand.

As in (d), the full table is omitted for space, but the probabilities are represented in the table below:

Table 7: Probability of Choosing Different Sodas: Conditional Logit Model

| Price of Coke | $Pr(y = Coke)^{a}$ | Pr(y = Pepsi) | Pr(y = 7Up) |
|---------------|--------------------|---------------|-------------|
| \$ 1.25       | 0.39830979         | 0.32985       | 0.2718402   |
| \$ 1.30       | 0.37637297         | 0.3418759     | 0.28175114  |
| Change        | -0.021936          | +0.012025     | +0.009910   |

 $<sup>^</sup>a\mathrm{Note}\colon$  Coke has a display, Pepsi and 7Up do not.

# (g) Estimate a nested logit model with cola and non-cola nest, and repeat (d).

| RUM-consisten<br>Case variable |                | regression |            | Number o |             | 5,466<br>1822    |
|--------------------------------|----------------|------------|------------|----------|-------------|------------------|
| Alternative va                 | ariable: ALT   |            |            | Alts per | case: min = | 3                |
|                                |                |            |            |          | avg =       | 3.0              |
|                                |                |            |            |          | max =       | 3                |
|                                |                |            |            | Wald     | chi2(7) =   | 170 00           |
| Log likelihoo                  | d = -1801.6476 | 1          |            |          | > chi2 =    | 179.89<br>0.0000 |
| Log CIRCCINOO                  | u = 100110470  |            |            | 1105     | - 1112 -    | 0.0000           |
| CHOICE                         | Coefficient    | Std. err.  | Z          | P>   z   | [95% conf.  | interval]        |
| ALT                            |                |            |            |          |             |                  |
| FEATURE                        | 0370077        | .0897056   | -0.41      | 0.680    | 2128276     | .1388121         |
| ALT equations                  |                |            |            |          |             |                  |
| Pepsi                          |                |            |            |          |             |                  |
| PRICE                          | -2.306575      | .3183694   | -7.24      | 0.000    | -2.930567   | -1.682582        |
| DISPLAY                        | .5644912       | .1513013   | 3.73       | 0.000    | .2679461    | .8610363         |
| _cons                          | 0              | (base)     |            |          |             |                  |
| 7Up                            |                |            |            |          |             |                  |
| PRICE                          | -1.967287      | .2342082   | -8.40      | 0.000    | -2.426327   | -1.508247        |
| DISPLAY                        | .3273523       | .130295    | 2.51       | 0.012    | .0719788    | .5827259         |
| _cons                          | 4797802        | .3959623   | -1.21      | 0.226    | -1.255852   | .2962916         |
| Coke                           |                |            |            |          |             |                  |
| PRICE                          | -1.229497      | .2913356   | -4.22      | 0.000    | -1.800504   | 6584893          |
| DISPLAY                        | .6303467       | .1552597   | 4.06       | 0.000    | .3260432    | .9346503         |
| _cons                          | -1.587008      | .4672671   | -3.40      | 0.001    | -2.502835   | 6711816          |
| dissimilarity                  | parameters     |            |            |          |             |                  |
| /type                          |                |            |            |          |             |                  |
| Cola_tau                       | 1.040659       | .1422981   |            |          | .76176      | 1.319558         |
| Other_tau                      | 1              | 75542.11   |            |          | -148058.8   | 148060.8         |
| LR test for I                  | IA (tau=1): ch | Prob > chi | 2 = 0.9586 |          |             |                  |

Table 8: Probability of Choosing Different Sodas: Nested Logit Model

|               | ·                  | _             | -           |  |
|---------------|--------------------|---------------|-------------|--|
| Price of Coke | $Pr(y = Coke)^{a}$ | Pr(y = Pepsi) | Pr(y = 7Up) |  |
| \$ 1.25       | 0.4320086          | 0.297075      | 0.2709164   |  |
| \$ 1.30       | 0.4174125          | 0.3045048     | 0.2780827   |  |
| Change        | -0.0145961         | +0.0074298    | +0.0071663  |  |

 $<sup>^</sup>a\mathrm{Note}\colon$  Coke has a display, Pepsi and 7Up do not.

#### Question4

(a) Use an ordered probit to explain the probability of PSECHOICE as a function of GRADES. Calculate the probability that a student will choose no college, a two-year college, and a four-year college if the student's grades are the median value, GRADES = 6.64. Recompute these probabilities assuming that GRADES = 4.905. Discuss the probability changes. Are they what you anticipated? Explain.

#### . oprobit PSECHOICE GRADES

Iteration 0: log likelihood = -1018.6575 Iteration 1: log likelihood = -876.21962 Iteration 2: log likelihood = -875.82172 Iteration 3: log likelihood = -875.82172

| PSECH0ICE      | Coefficient          | Std. err.            | Z      | P>   z | [95% conf.             | interval]              |
|----------------|----------------------|----------------------|--------|--------|------------------------|------------------------|
| GRADES         | 3066252              | .0191735             | -15.99 | 0.000  | 3442045                | 2690459                |
| /cut1<br>/cut2 | -2.9456<br>-2.089993 | .1468283<br>.1357681 |        |        | -3.233378<br>-2.356094 | -2.657822<br>-1.823893 |

The predicted probabilities (presented below) are in line with the expected once we consider that the grades are in an inverted scale; that is, better grades have smaller values. With that in mind, it makes sense that better grades (though smaller in value) have a positive effect on the probability that the student has a more valuable degree. A student in the 25th percentile has a 71.6% probability of going to a 4-year college, whereas one with the median grades has only a 52.1% probability.

#### . margins, at(GRADES=6.64)

Adjusted predictions Number of obs = 1,000

Model VCE: 0IM

1.\_predict: Pr(PSECHOICE==1), predict(pr outcome(1))
2.\_predict: Pr(PSECHOICE==2), predict(pr outcome(2))
3.\_predict: Pr(PSECHOICE==3), predict(pr outcome(3))

At: GRADES = 6.64

|          | Margin   | Delta-method<br>std. err. | z     | P>   z | [95% conf. | interval] |
|----------|----------|---------------------------|-------|--------|------------|-----------|
| _predict |          |                           |       |        |            |           |
| 1        | .1815145 | .0130109                  | 13.95 | 0.000  | .1560136   | .2070154  |
| 2        | .2969523 | .015928                   | 18.64 | 0.000  | .2657339   | .3281706  |
| 3        | .5215332 | .0170868                  | 30.52 | 0.000  | .4880437   | .5550227  |

#### . margins, at(GRADES=4.95)

Adjusted predictions Number of obs = 1,000

Model VCE: 0IM

1.\_predict: Pr(PSECHOICE==1), predict(pr outcome(1))
2.\_predict: Pr(PSECHOICE==2), predict(pr outcome(2))
3.\_predict: Pr(PSECHOICE==3), predict(pr outcome(3))

At: GRADES = 4.95

|          | Margin   | Delta-method<br>std. err. | Z     | P>   z | [95% conf. | interval] |
|----------|----------|---------------------------|-------|--------|------------|-----------|
| _predict |          |                           |       |        |            |           |
| 1        | .076674  | .0093575                  | 8.19  | 0.000  | .0583336   | .0950144  |
| 2        | .2069197 | .0138072                  | 14.99 | 0.000  | .1798581   | .2339813  |
| 3        | .7164063 | .0185133                  | 38.70 | 0.000  | .6801209   | .7526916  |

(b) Expand the ordered probit model to include family income (FAMINC), family size (FAMSIZ), and the indicator variables BLACK and PARCOLL. Discuss the estimates and their signs and significance.

#### . oprobit PSECHOICE GRADES FAMINC FAMSIZ BLACK PARCOLL

```
log\ likelihood = -1018.6575
Iteration 0:
Iteration 1:
               log\ likelihood = -841.36397
Iteration 2:
               log\ likelihood = -839.86676
Iteration 3:
               log\ likelihood = -839.86473
Iteration 4:
               log\ likelihood = -839.86473
Ordered probit regression
                                                          Number of obs = 1,000
                                                          LR chi2(5)
                                                                         = 357.59
                                                          Prob > chi2
                                                                         = 0.0000
Log likelihood = -839.86473
                                                          Pseudo R2
                                                                         = 0.1755
   PSECHOICE
               Coefficient
                           Std. err.
                                             Z
                                                  P> | z |
                                                             [95% conf. interval]
      GRADES
                -.2952923
                             .0202251
                                         -14.60
                                                  0.000
                                                           -.3349328
                                                                        -.2556518
      FAMINC
                  .0052525
                              .001322
                                          3.97
                                                  0.000
                                                             .0026615
                                                                         .0078435
      FAMSIZ
                -.0241215
                             .0301846
                                          -0.80
                                                  0.424
                                                           -.0832822
                                                                         .0350391
       BLACK
                 .7131312
                             .1767871
                                           4.03
                                                  0.000
                                                             .3666348
                                                                         1.059628
     PARCOLL
                  .4236226
                             .1016424
                                           4.17
                                                  0.000
                                                             .2244071
                                                                         .6228381
       /cut1
                -2.595845
                             .2045863
                                                           -2.996827
                                                                        -2.194864
                -1.694591
       /cut2
                             .1971365
                                                           -2.080971
                                                                         -1.30821
```

#### (c) Test the joint significance of the variables added in (b) using a likelihood ratio test.

As the likelihood ratio test presented below shows, the added variables are jointly significant at the 99.9% level.

#### . lrtest rest unrest

```
Likelihood-ratio test
Assumption: rest nested within unrest

LR chi2(4) = 71.91
Prob > chi2 = 0.0000
```

(d) Compute the probability that a black student from a household of four members, including a parent who went to college, and household income of \$52,000, will attend a four-year college if (i) GRADES = 6.64 and (ii) GRADES = 4.905.

```
. margins, at (BLACK=1 FAMINC=52 FAMSIZ=4 PARCOLL=1 GRADES=(6.64,4.95))
```

```
Adjusted predictions
                                                        Number of obs = 1,000
Model VCE: 0IM
1._predict: Pr(PSECHOICE==1), predict(pr outcome(1))
2._predict: Pr(PSECHOICE==2), predict(pr outcome(2))
3._predict: Pr(PSECHOICE==3), predict(pr outcome(3))
1._at: GRADES = 6.64
       FAMINC =
                  52
       FAMSIZ =
      BLACK
                   1
      PARCOLL =
2._at: GRADES = 4.95
       FAMINC =
                  52
       FAMSIZ =
       BLACK =
                   1
      PARCOLL =
```

|              | Margin   | Delta-method<br>std. err. | z     | P>   z | [95% conf. | interval] |
|--------------|----------|---------------------------|-------|--------|------------|-----------|
| _predict#_at |          |                           |       |        |            |           |
| 1 1          | .0256775 | .0115091                  | 2.23  | 0.026  | .0031199   | .048235   |
| 1 2          | .0071916 | .0040241                  | 1.79  | 0.074  | 0006955    | .0150788  |
| 2 1          | .1218153 | .0322475                  | 3.78  | 0.000  | .0586113   | .1850193  |
| 2 2          | .0538255 | .0196685                  | 2.74  | 0.006  | .0152759   | .0923751  |
| 3 1          | .8525072 | .0432158                  | 19.73 | 0.000  | .7678058   | .9372087  |
| 3 2          | .9389829 | .0235394                  | 39.89 | 0.000  | .8928465   | .9851193  |

The outcomes of interest are the last two lines (3,1) and (3,2). A black student (with the other variables at the values described above) has a 85.25% probability of going to a 4-year college if the has median grades and a 93.89% probability of the same outcome if the is the top 25th percentile of grades.

(e) Repeat (d) for a "non-black" student and discuss the differences in your findings.

```
. margins, at (BLACK=0 FAMINC=52 FAMSIZ=4 PARCOLL=1 GRADES=(6.64,4.95))
```

```
Adjusted predictions
                                                       Number of obs = 1,000
Model VCE: 0IM
1._predict: Pr(PSECHOICE==1), predict(pr outcome(1))
2._predict: Pr(PSECHOICE==2), predict(pr outcome(2))
3._predict: Pr(PSECHOICE==3), predict(pr outcome(3))
1._at: GRADES = 6.64
      FAMINC =
                  52
      FAMSIZ =
      BLACK =
      PARCOLL =
                   1
2._at: GRADES = 4.95
      FAMINC = 52
      FAMSIZ =
      BLACK =
      PARCOLL =
```

|              | Delta-method |           |       |        |            |           |  |
|--------------|--------------|-----------|-------|--------|------------|-----------|--|
|              | Margin       | std. err. | Z     | P>   z | [95% conf. | interval] |  |
| _predict#_at |              |           |       |        |            |           |  |
| 1 1          | .1083463     | .0169399  | 6.40  | 0.000  | .0751447   | .1415478  |  |
| 1 2          | .0414223     | .0086218  | 4.80  | 0.000  | .0245238   | .0583207  |  |
| 2 1          | .2607997     | .0201004  | 12.97 | 0.000  | .2214037   | .3001958  |  |
| 2 2          | .160955      | .0179199  | 8.98  | 0.000  | .1258327   | .1960773  |  |
| 3 1          | .630854      | .0320606  | 19.68 | 0.000  | .5680164   | .6936916  |  |
| 3 2          | .7976228     | .0247454  | 32.23 | 0.000  | .7491227   | .8461229  |  |

For a "non-black" student with the all other characteristics being the same, these probabilities are lower. A "non-black" student has with median grades has a 63.08% probability of attending a 4-year college, or a 79.76% probability if their grades are on the top 25th percentile.

## Question 5

var(e.logspend)

1.633056

# 1. Estimate the following model

$$logspend = \beta_1 + \beta_2 \ln income + \beta_3 Age + \beta_4 Adepcnt + \beta_5 ownrent + \epsilon$$
 (7)

## (a) Using OLS, what is the effect of 10% increase in income on credit card expenditure?

## . reg logspend logincome age adepcnt ownrent

| Source                                          | SS                                      | d f                                                      | MS                                          |                                           | er of ob<br>10494)       | s =<br>=          | 10,499<br>306.36                                       |
|-------------------------------------------------|-----------------------------------------|----------------------------------------------------------|---------------------------------------------|-------------------------------------------|--------------------------|-------------------|--------------------------------------------------------|
| Model<br>Residual                               | 2166.35661<br>18551.6408                | 4<br>10,494                                              | 541.589151<br>1.76783313                    | l Prob<br>B R-sq                          | > F<br>uared<br>R-square | =                 | 0.0000<br>0.1046<br>0.1042                             |
| Total                                           | 20717.9974                              | 10,498                                                   | 1.97351852                                  | _                                         | MSE                      | =                 | 1.3296                                                 |
| logspend                                        | Coefficient                             | Std. err.                                                | t                                           | P> t                                      | [95%                     | conf.             | interval]                                              |
| logincome<br>age<br>adepcnt<br>ownrent<br>_cons | 1.121208014558102727342033712 -3.363318 | .0325205<br>.0014062<br>.0111879<br>.0297326<br>.2433664 | 34.48<br>-10.35<br>-2.44<br>-6.84<br>-13.82 | 0.000<br>0.000<br>0.015<br>0.000<br>0.000 | 1.057017304922616 -3.840 | 146<br>038<br>527 | 1.184954<br>0118017<br>0053429<br>1450897<br>-2.886273 |

A 10% increase in income is associated with a 11.2% increase in credit card expenditure, all else equal.

# (b) Using Censored regression, what is the effect of 10% increase in income on credit card expenditure?

| Tobit regression |             |           |        | Number  | of obs   | =     | 10,499    |
|------------------|-------------|-----------|--------|---------|----------|-------|-----------|
|                  |             |           |        |         | Uncensor | ed =  | 10,251    |
| Limits: Lower =  | 1           |           |        | Lef     | t-censor | ed =  | 248       |
| Upper = +        | -inf        |           |        | Righ    | t-censor | ed =  | 0         |
|                  |             |           |        | LR chi2 | (4)      | =     | 1186.53   |
|                  |             |           |        | Prob >  | chi2     | =     | 0.0000    |
| Log likelihood = | -17455.665  |           |        | Pseudo  | R2       | =     | 0.0329    |
| logspend         | Coefficient | Std. err. | t      | P> t    | [95%     | conf. | interval] |
| logincome        | 1.094635    | .0314454  | 34.81  | 0.000   | 1.032    | 996   | 1.156274  |
| age              | 0144051     | .0013544  | -10.64 | 0.000   | 01       | 706   | 0117501   |
| adepcnt          | 0256828     | .010766   | -2.39  | 0.017   | 0467     | 862   | 0045793   |
| ownrent          | 1913027     | .0286148  | -6.69  | 0.000   | 2473     | 931   | 1352123   |
| _cons            | -3.153538   | .2352271  | -13.41 | 0.000   | -3.614   | 628   | -2.692448 |
|                  |             |           |        |         |          |       |           |

A 10% increase in income is associated with a 10.94% increase in credit card expenditure, all else equal.

1.588575

1.678782

.0230068

# (c) Using Heckman Two-Step Estimator, what the is effect of 10% increase in income on credit card expenditure?

|                | kman selection model<br>gression model with sample selection) |           |        |                   | of obs = elected = onselected = | 13,444<br>10,499<br>2,945 |
|----------------|---------------------------------------------------------------|-----------|--------|-------------------|---------------------------------|---------------------------|
| Log likelihood | d = -24165.62                                                 |           |        | Wald ch<br>Prob > | , ,                             | 457.11<br>0.0000          |
|                | Coefficient                                                   | Std. err. | Z      | P>   z            | [95% conf.                      | interval]                 |
| logspend       |                                                               |           |        |                   |                                 |                           |
| logincome      | .6813308                                                      | .0372162  | 18.31  | 0.000             | .6083884                        | .7542732                  |
| age            | 0116583                                                       | .0016161  | -7.21  | 0.000             | 0148257                         | 0084908                   |
| adepcnt        | .0580111                                                      | .0127608  | 4.55   | 0.000             | .0330005                        | .0830217                  |
| ownrent        | 3394852                                                       | .0340503  | -9.97  | 0.000             | 4062226                         | 2727478                   |
| _cons          | .4844651                                                      | .2788994  | 1.74   | 0.082             | 0621676                         | 1.031098                  |
| cardhldr       |                                                               |           |        |                   |                                 |                           |
| logincome      | .3844089                                                      | .0276048  | 13.93  | 0.000             | .3303045                        | .4385133                  |
| age            | .0019958                                                      | .00122    | 1.64   | 0.102             | 0003954                         | .004387                   |
| adepcnt        | 0902368                                                       | .0092953  | -9.71  | 0.000             | 1084553                         | 0720183                   |
| ownrent        | .1976502                                                      | .0254879  | 7.75   | 0.000             | .1476948                        | .2476055                  |
| _cons          | -2.284821                                                     | .2056409  | -11.11 | 0.000             | -2.68787                        | -1.881772                 |
| /athrho        | -1.720274                                                     | .0320709  | -53.64 | 0.000             | -1.783131                       | -1.657416                 |
| /lnsigma       | .4965339                                                      | .0082761  | 60.00  | 0.000             | .4803131                        | .5127548                  |
| rho            | 937896                                                        | .0038598  |        |                   | 9450309                         | 9298683                   |
| sigma          | 1.643017                                                      | .0135978  |        |                   | 1.61658                         | 1.669885                  |
|                | -1.540979                                                     | .0168915  |        |                   | -1.574085                       | -1.507872                 |

A 10% increase in income is associated with a 6.81% increase in credit card expenditure, all else equal.

- 2. Create a subsample where only credit cardholders appear and do the following:
- (a) Estimate the above model using OLS. What is the difference in credit card spending between home owner and renter?

#### . reg logspend logincome age adepcnt ownrent if cardhldr==1

|   | Source   | SS         | d f    | MS         | Number of obs | = | 10,499 |
|---|----------|------------|--------|------------|---------------|---|--------|
| _ |          |            |        |            | F(4, 10494)   | = | 306.36 |
|   | Model    | 2166.35661 | 4      | 541.589151 | Prob > F      | = | 0.0000 |
|   | Residual | 18551.6408 | 10,494 | 1.76783313 | R-squared     | = | 0.1046 |
| _ |          |            |        |            | Adj R-squared | = | 0.1042 |
|   | Total    | 20717.9974 | 10,498 | 1.97351852 | Root MSE      | = | 1.3296 |

| logspend  | Coefficient | Std. err. | t      | P> t  | [95% conf. | interval] |
|-----------|-------------|-----------|--------|-------|------------|-----------|
| logincome | 1.121208    | .0325205  | 34.48  | 0.000 | 1.057462   | 1.184954  |
| age       | 0145581     | .0014062  | -10.35 | 0.000 | 0173146    | 0118017   |
| adepcnt   | 0272734     | .0111879  | -2.44  | 0.015 | 0492038    | 0053429   |
| ownrent   | 2033712     | .0297326  | -6.84  | 0.000 | 2616527    | 1450897   |
| _cons     | -3.363318   | .2433664  | -13.82 | 0.000 | -3.840362  | -2.886273 |

A renter has a credit card expenditure 22.55% lower than a homeowner, on average.

(b) Estimate the above model using truncated regression. What is the difference in credit card spending between home owner and renter?

```
. truncreg logspend logincome age adepcnt ownrent if cardhldr==1, ll(1)
```

(248 obs truncated)

Fitting full model:

Iteration 0: log likelihood = -15858.701Iteration 1: log likelihood = -15858.46Iteration 2: log likelihood = -15858.46

 ${\tt Truncated}\ {\tt regression}$ 

| logspend                                        | Coefficient                                            | Std. err.                                                | Z                                           | P>   z                                    | [95% conf.                                            | interval]                                               |
|-------------------------------------------------|--------------------------------------------------------|----------------------------------------------------------|---------------------------------------------|-------------------------------------------|-------------------------------------------------------|---------------------------------------------------------|
| logincome<br>age<br>adepcnt<br>ownrent<br>_cons | .9829195<br>0138854<br>0157937<br>1493865<br>-2.242699 | .0292028<br>.0012399<br>.0097809<br>.0259945<br>.2181561 | 33.66<br>-11.20<br>-1.61<br>-5.75<br>-10.28 | 0.000<br>0.000<br>0.106<br>0.000<br>0.000 | .9256831<br>0163155<br>034964<br>2003349<br>-2.670277 | 1.040156<br>0114553<br>.0033765<br>0984382<br>-1.815121 |
| /sigma                                          | 1.141809                                               | .0081287                                                 | 140.47                                      | 0.000                                     | 1.125877                                              | 1.157741                                                |

A renter has a credit card expenditure 16.11% lower than a homeowner, on average.

<sup>&</sup>lt;sup>1</sup>Using: Effect =  $(e^{\beta_k} - 1) \times 100$ 

- 3. Now we are interested in explaining the number of major derogatory reports as function of log income, age, the number of dependents, home ownership status and ratio of monthly credit card expenditure to yearly income.
- (a) Estimate this model using Poisson regression for credit cardholders only. What is the effect of 10% increase in income on the expected value (mean) of the number of major derogatory reports? Is Poisson regression a good specification for the data at hand?

#### . poisson minordrg logincome age adepcnt ownrent exp\_inc if cardhldr==1

Iteration 0:  $\log \text{ likelihood} = -6371.1793$ Iteration 1:  $\log \text{ likelihood} = -6371.179$ 

Poisson regression Number of obs = 10,499 LR chi2(5) = 289.28

Log likelihood = -6371.179

| Prob > | chi2 | = 0.0000 |
|--------|------|----------|
| Pseudo | R2   | = 0.0222 |
|        |      |          |

| minordrg                                   | Coefficient | Std. err. | Z    | P>   z | [95% conf. | interval] |
|--------------------------------------------|-------------|-----------|------|--------|------------|-----------|
| logincome age adepcnt ownrent exp_inc cons | .2511779    | .0503345  | 4.99 | 0.000  | .1525241   | .3498318  |
|                                            | .0152978    | .0020865  | 7.33 | 0.000  | .0112084   | .0193873  |
|                                            | .0789871    | .0162789  | 4.85 | 0.000  | .047081    | .1108932  |
|                                            | .2370228    | .0486273  | 4.87 | 0.000  | .141715    | .3323306  |
|                                            | .7503179    | .1620077  | 4.63 | 0.000  | .4327887   | 1.067847  |

# . mfx

| variable | dy/dx    | Std. err. | Z    | P>   z | [ 95%   | C.I. ]  | Х       |
|----------|----------|-----------|------|--------|---------|---------|---------|
| loginc~e | .0521607 | .01041    | 5.01 | 0.000  | .031756 | .072565 | 7.76554 |
| age      | .0031768 | .00043    | 7.40 | 0.000  | .002335 | .004018 | 33.6749 |
| adepcnt  | .0164028 | .00337    | 4.87 | 0.000  | .009801 | .023005 | .99038  |
| ownrent* | .0495816 | .01021    | 4.85 | 0.000  | .029565 | .069598 | .479093 |
| exp_inc  | .1558144 | .03354    | 4.64 | 0.000  | .090068 | .221561 | .090744 |

(\*) dy/dx is for discrete change of dummy variable from 0 to 1

A 10% increase in income is associated with 0.0104% increase in derogatory reports.

## . summarize minordrg, detail

MINORDRG

|     | Percentiles | Smallest |             |          |
|-----|-------------|----------|-------------|----------|
| 1%  | 0           | 0        |             |          |
| 5%  | 0           | 0        |             |          |
| 10% | 0           | 0        | 0 b s       | 13,444   |
| 25% | 0           | 0        | Sum of wgt. | 13,444   |
| 50% | 0           |          | Mean        | .2905385 |
|     |             | Largest  | Std. dev.   | .7676199 |
| 75% | 0           | 7        |             |          |
| 90% | 1           | 8        | Variance    | .5892402 |
| 95% | 2           | 9        | Skewness    | 3.733436 |
| 99% | 4           | 11       | Kurtosis    | 21.84461 |
|     |             |          |             |          |

The poisson model requires the assumption that the mean of the dependent variable is equal to its variance. As it can be seen above, it is not suitable as the variance is more than twice the value of the mean. We should use the negative binomial model instead.

(b) Estimate this model using negative binomial regression for credit cardholders only. What is the effect of 10% increase in income on the expected value (mean) of the number of major derogatory reports?

| minordrg  | Coefficient | Std. err. | Z      | P>   z | [95% conf. | interval] |
|-----------|-------------|-----------|--------|--------|------------|-----------|
| logincome | .0559386    | .0655147  | 0.85   | 0.393  | 0724678    | .184345   |
| age       | .0148228    | .0029555  | 5.02   | 0.000  | .0090301   | .0206154  |
| adepcnt   | .1178443    | .0215002  | 5.48   | 0.000  | .0757047   | .1599839  |
| ownrent   | .1592426    | .0591841  | 2.69   | 0.007  | .0432439   | .2752413  |
| exp_inc   | -3.910639   | .2963569  | -13.20 | 0.000  | -4.491487  | -3.32979  |
| _cons     | -2.810009   | .4904226  | -5.73  | 0.000  | -3.771219  | -1.848798 |
| cardhldr  | 1           | (offset)  |        |        |            |           |
| /lnalpha  | 1.625203    | .0381283  |        |        | 1.550473   | 1.699933  |
| alpha     | 5.079448    | .1936708  |        |        | 4.713697   | 5.473579  |

#### . mfx

| variable | dy/dx    | Std. err. | Z    | P>   z | [ 95%   | C.I. ]  | Х       |
|----------|----------|-----------|------|--------|---------|---------|---------|
| loginc~e | .0621476 | .01491    | 4.17 | 0.000  | .032925 | .09137  | 7.76554 |
| age      | .0036212 | .00064    | 5.68 | 0.000  | .002372 | .004871 | 33.6749 |
| adepcnt  | .0156676 | .00479    | 3.27 | 0.001  |         | .025052 | .99038  |
| ownrent* | .0458399 | .01357    | 3.38 | 0.001  | .019234 | .072445 | .479093 |
| exp_inc  | .1714965 | .05613    | 3.06 | 0.002  |         | .281503 | .090744 |

(\*) dy/dx is for discrete change of dummy variable from 0 to 1

A 10% increase in income is associated with 0.0621% increase in derogatory reports.

(c) Estimate the two models taking into account the truncation. What is the effect of 10% increase in income on the expected value (mean) of the number of major derogatory reports?

#### (i) Poisson

. poisson minordrg logincome age adepcnt ownrent exp\_inc, offset(cardhldr)

Iteration 0: log likelihood = -10877.824Iteration 1: log likelihood = -10877.787Iteration 2: log likelihood = -10877.787

Poisson regression Number of obs = 13,444LR chi2(5) = 560.18

Prob > chi2 = 0.0000Log likelihood = -10877.787 Pseudo R2 = 0.0251

minordrg Coefficient Std. err. P> | z | [95% conf. interval] logincome .0216212 .0378257 0.57 0.568 -.0525158 .0957583 age .0114671 .0016232 7.06 0.000 .0082858 .0146485 adepcnt .105451 .0123339 8.55 .081277 .1296249 0.000 .1673314 .0366663 .2391959 ownrent 4.56 0.000 .0954668 exp\_inc -3.265179 .2400541 -13.60 0.000 -3.735676 -2.794681 -2.638729 .2836133 -9.30 0.000 -2.082857 \_cons -3.1946 1 (offset) cardhldr

#### . mfx

Marginal effects after poisson
y = Predicted number of events (predict)
= .25791819

| variable | dy/dx    | Std. err. | Z      | P>   z | [ 95%   | C.I. ]  | Х       |
|----------|----------|-----------|--------|--------|---------|---------|---------|
| loginc~e | .0055765 | .00975    | 0.57   | 0.567  | 013535  | .024688 | 7.72481 |
| age      | .0029576 | .00042    | 7.10   | 0.000  | .002141 | .003774 | 33.4718 |
| adepcnt  | .0271977 | .00317    | 8.57   | 0.000  | .020981 | .033414 | 1.01726 |
| ownrent* | .0435277 | .00959    | 4.54   | 0.000  | .024737 | .062318 | .455965 |
| exp_inc  | 842149   | .06114    | -13.77 | 0.000  | 961988  | 72231   | .070974 |
| cardhldr | (offset) |           |        |        |         |         | .780943 |

(\*) dy/dx is for discrete change of dummy variable from 0 to 1  $\,$ 

A 10% increase in income is associated with 0.0055% increase in derogatory reports.

## (ii) Negative Binomial

Negative binomial regression

Dispersion: mean

Log likelihood = -9223.5203

Number of obs = 13,444

LR chi2(5) = 329.25Prob > chi2 = 0.0000

Pseudo R2 = **0.0175** 

| minordrg                                             | Coefficient                                                            | Std. err.                                                                        | Z                                               | P>   z                                             | [95% conf.                                                            | interval]                                                            |
|------------------------------------------------------|------------------------------------------------------------------------|----------------------------------------------------------------------------------|-------------------------------------------------|----------------------------------------------------|-----------------------------------------------------------------------|----------------------------------------------------------------------|
| logincome age adepcnt ownrent exp_inc _cons cardhldr | .0559386<br>.0148228<br>.1178443<br>.1592426<br>-3.910639<br>-2.810009 | .0655147<br>.0029555<br>.0215002<br>.0591841<br>.2963569<br>.4904226<br>(offset) | 0.85<br>5.02<br>5.48<br>2.69<br>-13.20<br>-5.73 | 0.393<br>0.000<br>0.000<br>0.007<br>0.000<br>0.000 | 0724678<br>.0090301<br>.0757047<br>.0432439<br>-4.491487<br>-3.771219 | .184345<br>.0206154<br>.1599839<br>.2752413<br>-3.32979<br>-1.848798 |
| /lnalpha                                             | 1.625203                                                               | .0381283                                                                         |                                                 |                                                    | 1.550473                                                              | 1.699933                                                             |

LR test of alpha=0: chibar2(01) = 3308.53

Prob >= chibar2 = **0.000** 

Marginal effects after nbreg

y = Predicted number of events (predict)

= .30547998

| variable | dy/dx     | Std. err. | Z      | P>   z | [ 95%    | C.I. ]   | Х       |
|----------|-----------|-----------|--------|--------|----------|----------|---------|
| loginc~e | .0170881  | .02       | 0.85   | 0.393  | 022117   | .056294  | 7.72481 |
| age      | .0045281  | .00091    | 5.00   | 0.000  | .002754  | .006302  | 33.4718 |
| adepcnt  | .0359991  | .0066     | 5.45   | 0.000  | .023057  | .048941  | 1.01726 |
| ownrent* | .0490395  | .01839    | 2.67   | 0.008  | .012996  | .085083  | .455965 |
| exp_inc  | -1.194622 | .09283    | -12.87 | 0.000  | -1.37656 | -1.01268 | .070974 |
| cardhldr | (offset)  |           |        |        |          |          | .780943 |

<sup>(\*)</sup> dy/dx is for discrete change of dummy variable from 0 to 1  $\,$ 

A 10% increase in income is associated with 0.017% increase in derogatory reports.