Федеральное государственное автономное образовательное учреждение высшего образования

НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ «ВЫСШАЯ ШКОЛА ЭКОНОМИКИ»

Факультет: Московский институт электроники и математики Образовательная программа «Прикладная математика»

Отчет

по проектной работе

«Отображение 3D сцены в виде случайной точечной стереограммы»

Содержание

1	Техническое задание			
	1.1	Команда проекта		
	1.2	Цель проекта		
	1.3	Задачи		
	1.4	Актуальность проекта		
	1.5	Матрица распределения ответственности		
	1.6	Этапы реализации		
	1.7	Подходы к конвертации в стереограмму		
	1.8	Описание алгоритма построение стереограммы		
	1.9	Приобретаемые навыки и знания		
	1.10	Критерии завершенности проекта		
	1.11	Критерии качества выполнения проекта		
	1.12	Форма отчетности		
	1.13	Трудоемкость проекта в зачетных единицах		
2	Описание полученного результата			
3	Хол работ и роли участников команлы			

1 Техническое задание

1.1 Команда проекта

Руководитель проекта — Тадамаса Савада, доцент департамента психологии НИУ ВШЭ, tsawada@hse.ru

Лысов Игорь — Программист/Математик, iilysov@edu.hse.ru Антонов Матвей — Программист/Математик, maantonov 1@edu.hse.ru

1.2 Цель проекта

Разработка приложения для гарнитуры VR, конвертирующее виртуальную сцену в случайную точечную стереограмму и использующее гарнитуру для её просмотра.

1.3 Задачи

В процессе работы были определены следующие задачи проекта:

- 1) Подбор алгоритма создания стереограммы и путей реализации
- 2) Разработка приложения для гарнитуры VR, конвертирующее виртуальное окружение в случайную точечную стереограмму
- 3) Потенциальный эксперимент в будущем, целью которого является тестирование приложения и изучение человеческого стереозрения

1.4 Актуальность проекта

Разработанное приложение после тестов и доработок будет использовано для проведения экспериментов на базе департамента психологии, целью которых будет являться изучение человеческого стереозрения.

1.5 Матрица распределения ответственности

О-отвечает, У-утверждает, К-консультирует

	План работ		
$\mathcal{N}_{ar{o}}$	Наименование ра-	Участник 1	Участник 2
	бот (конкретных		
	действий)		
		Программист/Математик	Программист/Математик
		Лысов	Антонов
1.	Определение задач	У	У
0	проекта		
2.		рвому промежуточному отче	
2.1	Создание презента-	УО	УК
2.2	Запись проморолика	K	УО
2.3	Представление про-	O	О
	екта		
3.	Анализ научно-	УО	УО
	технической литера-		
	туры		
4.	Подготовка постера	УО	УО
	проекта и презента-		
	ции для постерной		
	сессии		
5.		Практическая часть	
5.1	Поиск и опробация различных решений	OK	OK
5.2	Разработка VR части	K	УО
0.2	приложения		0
5.2	Разработка ча-	УО	K
	сти приложения,		
	отвечающей за		
	стереограмму		
5.2	Разработка космети-	K	УО
	ческих и функцио-		
	нальных решений		
6.	Составление ито-	УО	УО
	гового отчета и		
	презентации по		
	результатам проекта		
		I .	1

1.6 Этапы реализации

Пройденные этапы:

- 1) Анализ теории создания стереограмм
- 2) Обучение работе с VR гарнитурами в среде Unity3D
- 3) Разработка подхода к конвертации виртуального окружения в стереограмму
- 4) Реализация выбранного подхода
- 5) Выделение гипотезы о просмотре стереограммы с помощью VR гарнитуры

Планы:

- 1) Исследование выдвинутой гипотезы
- 2) Улучшение качества генерируемой стереограммы
- 3) Масштабирование виртуальной сцены
- 4) Проведение потенциального эксперимента

1.7 Подходы к конвертации в стереограмму

В ходе разработки приложения были опробованы несколько различных подходов к конвертации виртуального окружения в стереограмму:

1) Использование встроенных проекторов из Unity3D

Идея состояла в применению техники наложения текстуры, называемой projection mapping. Её смысл заключается в проецировании текстуры на окружающие объекты таким образом, чтобы эти объекты стали своего рода экраном. В нашем случае накладывался паттерн случайного шума. От этого подхода было решено отказаться в силу наличия артефактов, не являющихся следствием стерео эффектов.

2) Пост-обработка изображения, получаемого с камеры

Новый подход предусматривал не наложение текстуры на окружение, а изменение самого изображения, получаемого виртуальной камерой. Делалось это с помощью так называемых шейдеров - программ, выполняющихся на графическом процессоре видеокарты и являющихся частью процесса по визуализации графических данных. Они выполняются попиксельно, что позволило воспользоваться алгоритмом создания Автостереограммы - стереограммы, состоящей из одного изображения.

В процессе разработки была выдвинута гипотеза о том, что VR гарнитура при такой реализации выступает как средство просмотра стереограммы без прилагания усилий пользователем. Такой эффект может быть вызван тем, что VR гарнитура по

отдельности преобразовывает изображения, получаемые с двух камер, симулирующих зрение человека (расстояние между ними и немного разный угол наклона), а после накладывает их друг на друга, что позволяет увидеть скрытое изображение.

Однако, на данном этапе её проверка не представляется возможной в полной мере в связи с технической невозможностью научного руководителя посмотреть на текущие результаты.

1.8 Описание алгоритма построение стереограммы

Для создания автостереограммы нам понадобятся две вещи: карта глубины - текстура, цветовое значение пикселей которой указывает нам на дальность до объектов, видимых камерой, а также текстура - в нашем случае это исходное изображение, на которое в итоге накладывается паттерн псевдослучайных точек. Чтобы сгенерировать стереограмму, мы делим карту глубины и текстуру на вертикальные полосы - текстуру на количество полос равное "Strips", карту глубины на количество полос равное "Strips - 1". Первую полосу текстуры мы просто отрисовываем - нам нужна полоса, с которой начнется алгоритм. Потом в цикле мы вычисляем величину глубины по карте глубины и текущей координате, копируем содержимое с предыдущей полосы и смещаем координату на коэффициент смещения, формула для которого ниже, величину глубины мы также будем находить в смещенных координатах карты глубины:

$$displace = depthValue\left(b \cdot \frac{x}{c-1}, y\right) \cdot |DepthFactor| \cdot stripWidth$$

Здесь $b=\frac{1}{Strips-1},\, c=\frac{1}{Strips},\, x,y$ - координаты на карте глубины.

Смещение и копирование происходит на результирующей текстуре (в нашем случае изображение с камеры) так:

$$textureCoord.x = textureCoord.x - stripwidth + displace$$

После этого мы накладываем шум, динамичность которого обеспечиваем изменением "у" координаты текущего положения добавлением времени прошедшего с загрузки уровня. Получаем величину шума и составляем из неё четырехмерный вектор, олицетворяющий цветовой вектор RGBA.

На программном уровне всё это было реализовано с помощью шейдеров, написанных на языке HLSL - алгоритм проделывается для всех пикселей.

1.9 Приобретаемые навыки и знания

Опыт разработки VR приложений на движке Unity3D, навыки работы с шейдерами и пост-обработкой изображений, опыт работы с C.

1.10 Критерии завершенности проекта

Приложение для конвертации виртуальной 3D сцены в случайную точечную стереограмму и её просмотра с помощью VR гарнитуры.

1.11 Критерии качества выполнения проекта

- Разработан прототип приложения
- Проект успешно защищен
- Полученные решение реализовано в среде Unity3D с использованием языка программирования С

В будущем планируется доработка приложения и потенциально проведения экспериментов.

1.12 Форма отчетности

Контроль по плану и контрольным точкам, предусмотренным Проектным офисом. Представление проекта. Постерная сессия. Защита проекта.

1.13 Трудоемкость проекта в зачетных единицах

Трудоемкость проектной работы оценивается для 3-х участников команды по 5 кредитов на каждого.

2 Описание полученного результата

- Был создан подход к конвертации виртуального окружения в случайную точечную стереограмму;
- Был разработан прототип приложения для конвертации виртуального окружения в случайную точечную стереограмму и её просмотра с помощью VR гарнитуры;
- Была выработана гипотеза о просмотре стереограммы с помощью VR гарнитуры;

3 Ход работ и роли участников команды

Ход работы отображает дорожная карта проекта:

Роли и задачи участников проекта:

Игорь	Матвей		
Анализ предметной области			
	Обучение работе с VR в Unity3D,		
Изучение стереограмм и путей конвертации	добавление функционала,		
виртуального окружения в них, их реализация	изучение взаимодействия внешней		
	гарнитуры с Unity3D		
Написание шейдеров, в частности	Реализация интерфейса, написание скриптов		
- для создания автостереограммы	, реализующих функционал приложения		
Робото во вуринтоми новт обработун	Работа со сценами в Unity3D,		
Работа со скриптами пост-обработки	объединение компонент воедино		
Изучение особенностей работы VR гарнитуры			
со стереограммами, выдвижение гипотезы			