Discrete Semiconductors Derating

This section describes derating requirements for Discrete Semiconductors. Use this section to select, design and derate Discrete Semiconductors.

Tables <u>1A</u>, <u>1B</u> and <u>1C</u> illustrate derating requirements for silicon-based Discrete Semiconductors. Discrete semiconductors are divided into diode and transistor categories. For silicon Discrete Semiconductors, each part type has Derating Parameters, Quality Level, and Environmental Category for derating. Use these derating tables in conjunction with the manufacturer's specification sheet to properly rate each part.

Non-military parts are not designed to operate over the required 10 to 20 years life span or to meet the extreme environmental conditions of a "severe" environment. This is why non-military consumer parts are not allowed to be used in "severe" environments. Up screening or Up-Rating of Discrete Semiconductor parts is not allowed.

Table 1A. Silicon-Based Discrete Semiconductor Derating Requirements

			Environmental Category			
Part Type	Derating Parameter	Quality Level 1/	Protected	Normal	Severe	
<u>Diode</u> General	Forward Current (I _F)	1	100%	100%	100%	
Purpose (Small	Reverse Voltage (V _R)		95%	90%	85%	
Signal – Switching)	Surge Current (I _{FSM})		100%	90%	80%	
	Max T _J (°C)		150°C	125°C	125°C	
	I _F	2	90%	90%	70%	
	V _R		80%	75%	50%	
	I _{FSM}		80%	80%	50%	
	TJ		100°C	85°C	70°C	
	I _F	3	75%	70%		
	V_R		70%	60%		
	I _{FSM}		60%	30%		

	T _J		70°C	35°C	
Power Rectifier	Forward Current (I _F)	1	100%	100%	90%
	Reverse Voltage (V _R)		95%	90%	85%
	Max T _J (°C)		150°C	125°C	125°C
		2	90%	85%	60%
	l _F	2			
	V _R		80%	75%	30%
	TJ		100°C	85°C	70°C
	1	3	600/	F09/	
	l _F	3	60%	50%	
	V _R		50%	30%	
	TJ		70°C	35°C	
Schottky - PIN	Power Dissipation (P _D)	1	100%	100%	90%
	Reverse Voltage (V _R)		95%	90%	85%
	Max T _J (°C)		150°C	125°C	125°C
	P _D	2	90%	90%	50%
	V_R		80%	80%	25%
	T _J		100°C	85°C	70°C
	P _D	3	75%	75%	
	V _R		50%	30%	
	TJ		70°C	35°C	

^{1/} The Quality Levels are: (1) QML-19500, JANTX minimum; (2) Automotive parts certified QS-9000, Industrial-grade parts certified ISO-9000, or QML-19500 manufacturer with part less than JANTX level; and (3) Non-military consumer-grade parts certified ISO-9000.

Table 1B. Silicon-Based Discrete Semiconductors Derating Requirements

			Environmental Category			
Part Type	Derating Parameter	Quality Level 1/	Protected	Normal	Severe	
Voltage Regulator/	Power Dissipation (P _D)	1	100%	100%	90%	
Reference	Max T _J (°C)		150°C	125°C	125°C	
	P _D	2	90%	80%	50%	
	TJ		100°C	85°C	70°C	
	P _D	3	50%	50%		
	TJ		70°C	35°C		
Transient Voltage Suppress	Power Dissipation (P _D)	1	100%	100%	90%	
	Average Current (I _O)		100%	100%	90%	
	Max T _J (°C)		150°C	125°C	125°C	
	Power Dissipation (P _D)	2	80%	80%	50%	
	Average Current (I _O)		80%	80%	50%	
	TJ		100°C	85°C	70°C	
	Power Dissipation (P _D)	3	75%	50%		
	Average Current (I _O)		75%	50%		
	TJ		70°C	35°C		
Thyristor	On-State Current (I _t)	1	100%	100%	90%	
	Off-State Voltage (VDM)		100%	100%	90%	
	Max T _J (°C)		150°C	125°C	125°C	
	I _t	2	90%	80%	50%	
	VDM		90%	80%	50%	

TJ		100°C	85°C	70°C
I _t	3	60%	50%	
VDM		60%	50%	
TJ		70°C	35°C	

Table 1C. Silicon-Based Discrete Semiconductors Derating Requirements

			Enviro	onmental Cate	egory
Part Type	Derating Parameter	Quality Level 1/	Protected	Normal	Severe
Microwave	Power Dissipation (P _D)	1	100%	100%	90%
	Reverse Voltage (V _R)		90%	90%	85%
	Max T _J (°C)		150°C	125°C	125°C
	P_{D}	2	90%	80%	60%
	V_{R}		80%	75%	30%
	TJ		100°C	85°C	70°C
	P _D	3	75%	70%	
	V_R		50%	30%	
	TJ		70°C	35°C	
Transistors Bipolar	Power Dissipation (P _D)	1	100%	100%	90%
	Breakdown Voltage (V _{BR})		100%	90%	80%
	Safe Operating Area (SOA)		100% V _{CE}	90% V _{CE}	80% V _{CE}
	Collector Current (I _C)		100% I _C	90% I _C	90% I _C
	Max T _J (°C)		150°C	125°C	125°C
	P _D	2	90%	80%	60%
	V_{BR}		80%	75%	30%

	SOA		80% V _{CE}	75% V _{CE}	40% V _{CE}
	Collector Current (I _C)		90% I _C	80% I _C	60% I _C
	TJ		100°C	85°C	70°C
	P_{D}	3	50%	50%	
	V_{BR}		25%	25%	
	SOA		50% V _{CE}	50% V _{CE}	
	Collector Current (I _C)		50% I _C	50% I _C	
	TJ		70°C	35°C	
Transistors FET	Power Dissipation (P _D)	1	100%	100%	90%
	Breakdown Voltage (V _{BR})		100%	95%	90%
	Max T _J (°C)		150°C	125°C	125°C
	P_{D}	2	90%	80%	50%
	V_{BR}		80%	75%	50%
	TJ		100°C	85°C	70°C
	P_{D}	3	50%	50%	
	V_{BR}		25%	25%	
	TJ		70°C	35°C	

Table <u>2A</u>, and <u>2B</u> detail derating requirements for GaAs Discrete Semiconductors. Since GaAs Discrete Semiconductors are not as mature as their silicon counterparts, they are not derated by quality level or application life span. All derating values are based on manufacturers rated specifications and recommended derating figures.

Table 2A. GaAs Transistor Derating Requirements

					tegory
Part Type(Transistors)	Derating Parameter	Recommended Maximum Value	Protected	Normal	Severe
71 \		Iviaximum value	1		
MESFET(Low	Drain to Source Voltage (V _{ds})	5V	80%	75%	60%
Noise)	Gate to Source Voltage (V _{gs})	-6V	80%	75%	60%
	Drain Current (I _{ds})	Idss	90%	85%	80%

	Gate Current (I _{gsf})	0.05 mA	100%	90%	85%
	Reverse Gate Current (I _{gsr})	0.01 mA	100%	95%	90%
	Power Dissipation (P _d)	Mfg. Spec.	100%	90%.	80%.
	Channel Temperature (T _{ch})	175°C	175°C	150°C	125°C
	Storage Temperature (T _{st})	-65 to 175°C			
PHEMT	Drain to Source Voltage (V _{ds})	2V	80%	75%	50%
(Low Noise)	Gate to Source Voltage (V _{gs})	-3V	90%	80%	70%
	Drain Current (I _{ds})	Idss	100%	95%	90%
	Forward Gate Current (I _{gsf})	1.0 mA	100%	90%	85%
	Power Dissipation (P _d)	Mfg. Spec.	100%	90%	80%.
	Channel Temperature (T _{ch})	175°C	175°C	150°C	125°C
	Storage Temperature (T _{st})	-65 to 175°C			
MESFET(Power)	Drain to Source Voltage (V _{ds})	10V	100%	90%	85%
	Gate to Source Voltage (V _{gs})	-5V	100%	90%	85%
	Drain Current (I _{ds})	Idss	100%	90%	85%
	Forward Gate Current (I _{gsf})	2.0 mA	100%	90%	85%
	Reverse Gate Current (I _{gsr})	-0.5 mA	100%	85%	80%
	Power Dissipation (P _d)	Mfg. Spec.	100%	90%	80%
	Channel Temperature (T _{ch})	175°C	175°C	150°C	125°C
	Storage Temperature (T _{st})	-65 to 175°C			
HEMT/	Drain to Source Voltage (V _{ds})	9V	100%	90%	85%
PHEMT (Power)	Gate to Source Voltage (V _{gs})	-6V	100%	90%	85%
	Drain Current (I _{ds})	ldss	100%	90%	85%
	Gate Current (I _{gsf})	2.0 mA	100%	90%	85%
	Power Dissipation (P _d)	Mfg. Spec.	100%	90%	80%
	Channel Temperature (T _{ch})	175°C	175°C	150°C	125°C
	Storage Temperature (T _{st})	-65 to 175°C			

Note: All parameters are the manufacturers recommended maximum operating values.

Table 2B. GaAs Diode Derating Requirements

			Environmental Category		
Part Type(Diodes)	Derating Parameter	Recommended Maximum Value	Protected	Normal	Severe
Varactor	Reverse Voltage (V _r)	80% of rated V _{br}	100%	95%	90%
	Forward Current (I _f)	80 mA	90%	85%	80%
	Power Dissipation (P _d)	200 mW	100%	90%	80%
	Operating Temperature (T)	150°C	150°C	135°C	125°C
	Storage Temperature (T _s)	-65 to 175°C			
Schottky	Reverse Voltage (V _r)	80% of rated V _{br}	100%	95%	
	Forward Current (I _f)	80% of rated I _f	100%	95%	
	Power Dissipation (P _d)	Mfg. Spec.	90%	80%	
	Operating Temperature (T)	150°C	150°C	135°C	
	Storage Temperature (T _s)	-65 to 175°C			
Schottky	Power Dissipation (P _d)	Mfg. Spec.	80%		
	Operating Temperature (T)	150°C	70°C		
	Junction Temperature (T _j)	175°C	150°C		
	Storage Temperature (T _s)	-65 to 175°C			