Due: September 19, 2019

- 1. For each of the following problems determine if the sequence is increasing, decreasing, not monotonic, bounded below, bounded above and/or bounded.
 - (a) $\{\frac{1}{n^3+1}\}_{n=1}^{\infty}$
 - (b) $\{\sin(n)\}_{n=1}^{\infty}$
 - (c) $\{(1-n)e^n\}_{n=1}^{\infty}$
- 2. Determine if the following series converge or diverge
 - (a) $\sum_{n=0}^{\infty} \frac{n^3}{n^4+1}$
 - (b) $\sum_{n=0}^{\infty} \frac{3^n + n}{2^{n+1}}$
 - (c) $\sum_{n=2}^{\infty} \frac{n^n(n+1)}{n^2-1}$
 - (d) $\sum_{n=0}^{\infty} \frac{(2n-1)!}{(3n)!}$
 - (e) $\sum_{n=1}^{\infty} \frac{\ln(n^2)}{n}$
- 3. Find the Taylor expansion of each of the following functions about c. Expand to three terms.
 - (a) $f(x) = \ln(1 x)$ about x = -2
 - (b) $f(x) = e^{1-8x}$ about x = 3