ใบงานที่ 3

1. จากข้อมูลการวางแผนครอบครัวแสดงดังตารางที่ 1 ข้างล่างนี้ และมีคำอธิบายตัวแปรดังตารางที่ 2 ให้นักศึกษา อธิบายการทำความสะอาดข้อมูลของแต่ละตัวแปร พร้อมเขียนคำสั่งในโปรแกรม R

ตารางที่ 1 ข้อมูลการวางแผนครอบครัว

4.05	DELLO	DED	11100115		DE 4 CO 1 :	D.D.C	222	\ \ /T	
AGE	RELIG	PED	INCOME	AM	REASON	BPS	BPD	WT	HT
25	2	9	9	20	1	120	80	40	152
25	1	9	9	23	1	120	80	44	150
	2	2	1	19	1	100	60	45	145
24	9	3	9	20	1	110	70	45	146
22	1	3	2	18	1	110	80	54	155
30	1	7	4	25	2	100	60	1150	165
19	1	3	9	17	2	110	60	51	157
8	1	2	1	17	1	140	90	68	149
21	1	2	1	15	2	140	8	58	151
31	1	9	9	99	2	110	70	58	163
21	2	2	3	20	2	110	80	52	150
24	1	2	2	19	2	110	70	54	161
29	1	6	2	21	2	90	60	59	155
38	1	2	1	20	1	999	999	100	999
	1	2	1	20	1	130	90	56	153
21	1	5	2	20	2	110	70	48	156
31	-1	9	9	20	1	170	110	61	159
28	2	6	3	25	1	120	70	65	158
35	1	2	1	18	1	120	80	58	169
70	1	9	9	20	1	90	60	47	1520
26	1	5	4	20	1	90	70	100	162
26	1	2	2	17	2	120	80	45	151
30	9	7	4	22	1	120	70	57	163
28	1	7	3	23	1	110	70	60	163
32	1	3	5	24	1	12	70	50	150

ตารางที่ 2 คำอธิบายตัวแปรของข้อมูลการวางแผนครอบครัว

VI 10 INVI Z 1	1 1000 1071 3660 3 00 1 00 2 6111 13 3 1 1 667 2611 3 0					
AGE	a numeric vector					
RELIG	a numeric vector: Religion					
	1 = Buddhist					
	2 = Muslim					
PED	a numeric vector: Patient's education level					
	1 = none					
	2 = primary school					
	3 = secondary school					
	4 = high school					
	5 = vocational school					
	6 = university					
	7 = other					
INCOME	a numeric vector: Monthly income in Thai Baht					
	1 = nil					
	2 = < 1,000					
	3 = 1,000-4,999					
	4 = 5,000-9,999					
	5 = 10,000					
AM	a numeric vector: Age at marriage					
REASON	a numeric vector: Reason for family planning					
	1 = birth spacing					
	2 = enough children					
	3 = other					
BPS	a numeric vector: systolic blood pressure					
BPD	numeric vector: diastolic blood pressure					
WT	a numeric vector: weight (Kg)					
HT	a numeric vector: height (cm)					

a) ตัวแปร AGE

ปัญหาที่เจอ และวิธีการจัดการข้อมูล

ปัญหาที่เจอคือ ตัวแปร AGE มีข้อมูลสูญหายและอายุ 8ปี ซึ่งไม่สอดคล้องกับความเป็นจริง วิธีการจัดการข้อมูล คือ ต้องเปลี่ยนข้อมูลทั้งหมดมาเป็น NA

คำสั่งในโปรแกรม R

dt\$AGE <- ifelse(dt\$AGE=="8" | dt\$AGE==" ",NA, dt\$AGE)

b) ตัวแปร RELIG

ปัญหาที่เจอ และวิธีการจัดการข้อมูล

ปัญหาที่เจอคือ ตัวแปร RELIG มีข้อมูลศาสนาเป็น 9 และ -1 ซึ่งไม่สอดคล้องกับความเป็นจริง วิธีการจัดการข้อมูล คือ ต้องเปลี่ยนข้อมูลที่ไม่สอดคล้องมาเป็น NA

คำสั่งในโปรแกรม R

dt\$RELIG<- ifelse(dt\$RELIG== -1 | dt\$RELIG== 9,NA, dt\$RELIG)

c) ตัวแปร PED

ปัญหาที่เจอ และวิธีการจัดการข้อมูล

ปัญหาที่เจอคือ ตัวแปร PED มีข้อมูลระดับการศึกษา เป็น 9 ซึ่งไม่สอดคล้องกับข้อมูล วิธีการจัดการข้อมูล คือ ต้องเปลี่ยนข้อมูลที่ไม่สอดคล้องมาเป็น NA

คำสั่งในโปรแกรม R

dt\$PED <- ifelse(dt\$PED==9,NA,dt\$PED)

d) ตัวแปร INCOME

ปัญหาที่เจอ และวิธีการจัดการข้อมูล

ปัญหาที่เจอคือ ตัวแปร INCOME มีข้อมูลเงินเดือน เป็น 9 ซึ่งไม่สอดคล้องกับความเป็นจริง วิธีการจัดการข้อมูล คือ ต้องเปลี่ยนข้อมูลที่ไม่สอดคล้องมาเป็น NA

คำสั่งในโปรแกรม R

dt\$INCOME <- ifelse(dt\$INCOME==9,NA,dt\$INCOME)

e) ตัวแปร AM ปัญหาที่เจอ และวิธีการจัดการข้อมูล ไม่มีข้อมูลที่ผิด
คำสั่งในโปรแกรม R
f) ตัวแปร REASON
ปัญหาที่เจอ และวิธีการจัดการข้อมูล
ไม่มีข้อมูลที่ผิด
คำสั่งในโปรแกรม R
g) ตัวแปร BPS
ปัญหาที่เจอ และวิธีการจัดการข้อมูล
ปัญหาที่เจอคือ ตัวแปร BPS มีข้อมูลความดันโลหิตBPS เป็น999 ซึ่งไม่สอดคล้องกับความเป็นจริง
วิธีการจัดการข้อมูล คือ ต้องเปลี่ยนข้อมูลที่ไม่สอดคล้องมาเป็น NA
คำสั่งในโปรแกรม R
dt\$BPS <- ifelse(dt\$BPS==999,NA,dt\$BPS)
h) ตัวแปร BPD
ปัญหาที่เจอ และวิธีการจัดการข้อมูล
ปัญหาที่เจอคือ ตัวแปร BPD มีข้อมูลความดันโลหิตBPD เป็น999 ซึ่งไม่สอดคล้องกับความเป็นจริง
วิธีการจัดการข้อมูล คือ ต้องเปลี่ยนข้อมูลที่ไม่สอดคล้องมาเป็น NA
คำสั่งในโปรแกรม R
dt\$BPD <- ifelse(dt\$BPD==999,NA,dt\$BPD)

i) ตัวแปร WT

ปัญหาที่เจอ และวิธีการจัดการข้อมูล
ปัญหาที่เจอคือ ตัวแปร WT มีน้ำหนัก เป็น1150 ซึ่งไม่สอดคล้องกับความเป็นจริง
วิธีการจัดการข้อมูล คือ ต้องเปลี่ยนข้อมูลที่ไม่สอดคล้องมาเป็น NA
คำสั่งในโปรแกรม R
dt\$WT <- ifelse(dt\$WT==150,NA,dt\$WT)

j) ตัวแปร HT

ปัญหาที่เจอ และวิธีการจัดการข้อมูล ปัญหาที่เจอคือ ตัวแปร BPD มีส่วนสูง เป็น999 และ1520 ซึ่งไม่สอดคล้องกับความเป็นจริง วิธีการจัดการข้อมูล คือ ต้องเปลี่ยนข้อมูลที่ไม่สอดคล้องมาเป็น NA คำสั่งในโปรแกรม R dt\$HT<- ifelse(dt\$HT==999 | dt\$HT == 1520,NA,dt\$HT)