Обзор

Александров Кирилл

12 августа 2024 г.

KAN: Kolmogorov-Arnold Networks.

1 Мотивация

В основе полносвязных нейронных сетей (MLP) лежит универсальная теорема приближения (UAT). Авторы статьи решили пойти другим путем и оттолкнуться от теоремы Колмагорова-Арнольда о представимости многомерных функций.

Теорема 1.1 (Колмогоров-Арнольд)

Каждая многомерная непрерывная функция может быть представлена в виде суперпозиции непрерывных функций одной переменной.

Опираясь на Теорему (1.1), была представлена новая архитектура нейронных сетей KAN: Kolmogorov–Arnold Networks.

2 Основные идеи

- 1. Функции активации ставятся обучаемыми
- 2. Для работы с функциями активавции используется метод сплайнов[1]

Рис. 1: Модель нейронной сети

- 3. Не используется типичная для (MLP) матрица весов. Вместо нее матрица функций активации.
- 4. Нейрон получает на вход сумму из импульсов, предназначеных только для него.
- 5. Преобразования между слоями обучаемые и нелинейные.

3 Реализация

1. Функции активации представляют собой непрерывные дифференцируемые выражения.

$$\phi(x) = \omega_1 b(x) + \omega_2 spline(x) \tag{1}$$

где b(x) - это особая базисная функция, которая нужна для оптимизации работы. Примером такой функции может послужить:

$$b(x) = x/1 + e^{-x} = silu(x)$$
 (2)

второе слагаемое выражения (1) представляет собой:

$$spline(x) = \sum_{i} c_i B_i(x)$$
 (3)

 $B_i(x)$ -так называемые В-*сплайны*[1], c_i - обучаемые параметры.

- 2. Рассмотри нашу нейронную сеть со следующими парметрами:
 - L глубина
 - \bullet n_i ширина i-го слоя
 - $[n_1, n_2, ..., n_L]$ массив с параметрами сети

Коротко сеть записывается как - KAN $[n_1, n_2, ..., n_L]$. Так, напирмер, сеть KAN[1] - это простая интерполяция.

3. Определим i-тый нейрон l-го слоя как (l,i). $x_{l,i}$ - величиной активации этого нейрона. Между слоями l и l+1 есть $n_l n_{l+1}$ функций активации. Функцией акстивации, которая соединяет (l,i) и (l+1,j) будем обозначать:

$$\phi_{l,j,i}, \quad l = 0, \dots, L - 1, \quad i = 1, \dots, n_l, \quad j = 1, \dots, n_{l+1}.$$
 (4)

Преактивация $\phi_{l,j,i}$ - это $x_{l,i}$; постакивация $\phi_{l,j,i}$ определяется как $\tilde{x}_{l,j,i} \equiv \phi_{l,j,i}(x_{l,i})$. Величина активации нейрона (l+1,j) сумма всех приходящих постактиваций.

$$x_{l+1,j} = \sum_{i=1}^{n_l} \tilde{x}_{l,j,i} = \sum_{i=1}^{n_l} \phi_{l,j,i}(x_{l,i}), \qquad j = 1, \dots, n_{l+1}.$$
 (5)

Матричный вид:

$$x_{l+1} = \underbrace{\begin{pmatrix} \phi_{l,1,1}(\cdot) & \phi_{l,1,2}(\cdot) & \cdots & \phi_{l,1,n_l}(\cdot) \\ \phi_{l,2,1}(\cdot) & \phi_{l,2,2}(\cdot) & \cdots & \phi_{l,2,n_l}(\cdot) \\ \vdots & \vdots & & \vdots \\ \phi_{l,n_{l+1},1}(\cdot) & \phi_{l,n_{l+1},2}(\cdot) & \cdots & \phi_{l,n_{l+1},n_l}(\cdot) \end{pmatrix}}_{\Phi_l} x_l,$$
(6)

Тогда полную работу Нейронной сети можно описать следующим выражением:

$$KAN(x) = (\Phi_{L-1} \circ \Phi_{L-2} \circ \dots \circ \Phi_1 \circ \Phi_0)x. \tag{7}$$

4 Обоснование работы данного подхода

Исходя из предыдущего пункта, можно понять то, что преобразования исходных данных дифференцируемы и непрерывны, поэтому обучить систему можно уже привычным нам градиентным спуском.

Также авторы статьи доказали теорему, которая показывает, что эта архитектура способна довольно хорошо приблежать исходные данные

Теорема 4.1 ((Approximation theory, KAT)

Пусть $x = (x_1, x_2, ..., x_n)$. Предположим что функция f(x) представима седующим образом

$$f = (\Phi_{L-1} \circ \Phi_{L-2} \circ \dots \circ \Phi_1 \circ \Phi_0) x, \tag{8}$$

тогда существует константа C зависящая от f и ее вида и существуют G - размер сетки и k - порядок B-spline для $\Phi^G_{l,i,j}$ такие, что для любого m $0 \le m \le k$ выполнено

$$||f - (\Phi_{L-1}^G \circ \Phi_{L-2}^G \circ \dots \circ \Phi_1^G \circ \Phi_0^G)x||_{C^m} \le CG^{-k-1+m}.$$
 (9)

 $e \partial e$

$$||g||_{C^m} = \max_{|\beta| \le m} \sup_{x \in [0,1]^n} |D^{\beta}g(x)|.$$

Про размер сетки и порядок сплайна можно почитать [1]

5 Сравнение KAN с MPL

Из-за того что мы избавились от линейной матрицы весов, взяв вместо нее матрицы функций активаций, то полученные нами данные входе работы алгоритма могут быть интерпретируемы человеком. Также *КАНЫ* быстро и легко переобучать, так как можно просто добавить дополнительный нейрон в слой зафиксировав уже обученные функции активации. Основным минусом является количество обучаемых параметров, сеть обучается медленее, но требует меньше слоев что иногда компесирут проблему времени.

6 Заключение

В данном обзоре я описал лишь принцип устройства новой архитектуры, лишь слегка затронув тему ее точности и ее сравнения с MLP. Гораздо подробнее про тесты и применение KAN можно почитать в оригинальной статье [0].

7 Ссылки

 $[0] \ https://arxiv.org/abs/2404.19756 \\ [1] \ https://www.brnt.eu/phd/node11$