

What is claimed is:

1. A compound of formula

wherein W^3 and X^3 are independently selected from the group consisting

of $-CR^1R^2$, $-O-$, $-NR^3$, $-S-$, and $-Se$; Y^3 is selected from the group

consisting of $-(CH_2)_a-CONH-Bm$, $-CH_2-(CH_2OCH_2)_b-CH_2-CONH-Bm$,

5 $-(CH_2)_a-NHCO-Bm$, $-CH_2-(CH_2OCH_2)_b-CH_2-NHCO-Bm$,

$-(CH_2)_a-N(R^3)-(CH_2)_b-CONH-Bm$, $(CH_2)_a-N(R^3)-(CH_2)_c-NHCO-Bm$,

$-(CH_2)_a-N(R^3)-CH_2-(CH_2OCH_2)_b-CH_2-CONH-Bm$,

$-(CH_2)_a-N(R^3)-CH_2-(CH_2OCH_2)_b-CH_2-NHCO-Bm$,

$-CH_2-(CH_2OCH_2)_b-CH_2-N(R^3)-(CH_2)_a-CONH-Bm$,

10 $-CH_2-(CH_2OCH_2)_b-CH_2-N(R^3)-(CH_2)_a-NHCO-Bm$,

$-CH_2-(CH_2OCH_2)_b-CH_2-N(R^3)-CH_2-(CH_2OCH_2)_d-CONH-Bm$,

$-CH_2-(CH_2OCH_2)_b-CH_2-N(R^3)-CH_2-(CH_2OCH_2)_d-NHCO-Bm$, $-(CH_2)_a-NR^3R^4$,

and $-CH_2(CH_2OCH_2)_b-CH_2NR^3R^4$; Z^3 is selected from the group consisting

of $-(CH_2)_a-CONH-Dm$, $-CH_2-(CH_2OCH_2)_b-CH_2-CONH-Dm$, $-(CH_2)_a-NHCO-Dm$,

15 $-CH_2-(CH_2OCH_2)_b-CH_2-NHCO-Dm$, $-(CH_2)_a-N(R^3)-(CH_2)_b-CONH-Dm$,

(CH₂)_a-N(R³)-(CH₂)_c-NHCO-Dm, -(CH₂)_a-N(R³)-CH₂-(CH₂OCH₂)_b-CH₂-CONH-

Dm, -(CH₂)_a-N(R³)-CH₂-(CH₂OCH₂)_b-CH₂-NHCO-Dm, -CH₂-(CH₂OCH₂)_b-CH₂-

N(R³)-(CH₂)_a-CONH-Dm, -CH₂-(CH₂OCH₂)_b-CH₂-N(R³)-(CH₂)_a-NHCO-Dm,

5 -CH₂-(CH₂OCH₂)_b-CH₂-N(R³)-CH₂-(CH₂OCH₂)_d-CONH-Dm, -CH₂-(CH₂OCH₂)_b-

CH₂-N(R³)-CH₂-(CH₂OCH₂)_d-NHCO-Dm, -(CH₂)_a-NR³R⁴, and

-CH₂(CH₂OCH₂)_b-CH₂NR³R⁴; A₁ is a single or a double bond; B₁, C₁, and D₁

20 are independently selected from the group consisting of -O-, -S-, -Se-, -P-, -CR¹R², -CR¹, alkyl, NR³, and -C=O; A₁, B₁, C₁, and D₁ may together form a 6- to 12-membered carbocyclic ring or a 6- to 12-membered

heterocyclic ring optionally containing one or more oxygen, nitrogen, or sulfur atom; a₃ and b₃ are independently from 0 to 5; R¹ to R⁴, and R²⁹ to

25 R³⁷ are independently selected from the group consisting of hydrogen, C₁-C₁₀ alkyl, C₅-C₂₀ aryl, C₁-C₁₀ alkoxy, C₁-C₁₀ polyalkoxyalkyl, C₁-C₂₀ polyhydroxyalkyl, C₅-C₂₀ polyhydroxyaryl, C₁-C₁₀ aminoalkyl, cyano, nitro, halogen, saccharide, peptide, -CH₂(CH₂OCH₂)_b-CH₂-OH, -(CH₂)_a-CO₂H, -(CH₂)_a-CONH-Bm, -CH₂-(CH₂OCH₂)_b-CH₂-CONH-Bm, -(CH₂)_a-NHCO-Bm,

30 -CH₂-(CH₂OCH₂)_b-CH₂-NHCO-Bm, -(CH₂)_a-OH and -CH₂-(CH₂OCH₂)_b-CO₂H;

Bm and Dm are independently selected from the group consisting of a bioactive peptide, a protein, a cell, an antibody, an antibody fragment, a saccharide, a glycopeptide, a peptidomimetic, a drug, a drug mimic, a hormone, a metal chelating agent, a radioactive or nonradioactive metal complex, and an echogenic agent; a and c are independently from 1 to

35 20; and b and d are independently vary from 1 to 100.

2. The compound of claim 1 wherein W³ and X³ are independently selected from the group consisting of -C(CH₃)₂, -C((CH₂)_aOH)CH₃, -C((CH₂)_aOH)₂, -C((CH₂)_aCO₂H)CH₃, -C((CH₂)_aCO₂H)₂, -C((CH₂)_aNH₂)CH₃, C((CH₂)_aNH₂)₂, C((CH₂)_aNR³R⁴)₂, -NR³, and -S-; Y³ is selected from the group consisting of -(CH₂)_a-CONH-Bm, -CH₂-(CH₂OCH₂)_b-CH₂-CONH-Bm, -(CH₂)_a-NHCO-Bm, -CH₂-(CH₂OCH₂)_b-CH₂-NHCO-Bm, -(CH₂)_a-NR³R⁴, and -CH₂(CH₂OCH₂)_b-CH₂NR³R⁴; Z³ is selected from the group consisting of -(CH₂)_a-CONH-Dm, -CH₂-(CH₂OCH₂)_b-CH₂-CONH-Dm, -(CH₂)_a-NHCO-Dm, -CH₂-(CH₂OCH₂)_b-CH₂-NHCO-Dm, -(CH₂)_a-NR³R⁴, and -CH₂(CH₂OCH₂)_b-CH₂NR³R⁴; A₁ is a single or a double bond; B₁, C₁, and D₁ are independently selected from the group consisting of -O-, -S-, NR³, (CH₂)_a-CR¹R², and -CR¹; A₁, B₁, C₁, and D₁ may together form a 6- to 10-membered carbocyclic ring or a 6- to 10-membered heterocyclic ring optionally containing one or more oxygen, nitrogen, or sulfur atom; a₃ and b₃ are independently from 0 to 3; R¹ to R⁴, and R²⁹ to R³⁷ are independently selected from the group consisting of hydrogen, C₁-C₁₀ alkyl, C₅-C₁₂ aryl, C₁-C₁₀ alkoxy, C₁-C₁₀ polyhydroxyalkyl, C₅-C₁₂ polyhydroxyaryl, C₁-C₁₀ aminoalkyl, mono- or oligosaccharide, peptide with 2 to 30 amino acid units, -CH₂(CH₂OCH₂)_b-CH₂-OH, -(CH₂)_a-CO₂H, -(CH₂)_a-CONH-Bm, -CH₂-(CH₂OCH₂)_b-CH₂-CONH-Bm, -(CH₂)_a-NHCO-Bm, -CH₂-(CH₂OCH₂)_b-CH₂-NHCO-Bm, -(CH₂)_a-OH and -CH₂-(CH₂OCH₂)_b-CO₂H; Bm and Dm are independently selected from the group consisting of a bioactive peptide containing 2 to 30 amino acid

units, an antibody, a mono- or oligosaccharide, a glycopeptide, a metal
25 chelating agent, a radioactive or nonradioactive metal complex, and an
echogenic agent; a and c are independently from 1 to 10; and b and d are
independently from 1 to 30.

3. The compound of claim 2 wherein each of W³ and X³ is
C((CH₂)OH)₂; Y³ is -(CH₂)₂-CONH-Bm; Z³ is -(CH₂)₂-CONH-Dm; A₁ is a
single bond; A₁, B₁, C₁, and D₁, together form a 6-membered carbocyclic
ring; each of a₃ and b₃ is 1; R²⁹ is galactose; each of R³⁰ to R³⁷ is
5 hydrogen; Bm is Octreotide; and Dm is bombesin.

4. A method for performing a diagnostic or therapeutic procedure

comprising

administering to an individual an effective amount of the

compound of formula

- 5 wherein W³ and X³ are independently selected from the group consisting of -CR¹R², -O-, -NR³, -S-, and -Se; Y³ is selected from the group consisting of -(CH₂)_a-CONH-Bm, -CH₂-(CH₂OCH₂)_b-CH₂-CONH-Bm, -(CH₂)_a-NHCO-Bm, -CH₂-(CH₂OCH₂)_b-CH₂-NHCO-Bm, -(CH₂)_a-N(R³)-(CH₂)_b-CONH-Bm, (CH₂)_a-N(R³)-(CH₂)_c-NHCO-Bm, -(CH₂)_a-N(R³)-CH₂-(CH₂OCH₂)_b-CH₂-CONH-Bm, -(CH₂)_a-N(R³)-CH₂-(CH₂OCH₂)_b-CH₂-NHCO-Bm,
- 10 -(CH₂)_a-N(R³)-CH₂-(CH₂OCH₂)_b-CH₂-NHCO-Bm, -CH₂-(CH₂OCH₂)_b-CH₂-N(R³)-(CH₂)_a-CONH-Bm, -CH₂-(CH₂OCH₂)_b-CH₂-N(R³)-CH₂-(CH₂OCH₂)_a-CONH-Bm, -CH₂-(CH₂OCH₂)_b-CH₂-N(R³)-CH₂-(CH₂OCH₂)_a-NHCO-Bm, -CH₂-(CH₂OCH₂)_b-CH₂-N(R³)-CH₂-(CH₂OCH₂)_a-CONH-Bm, -(CH₂)_a-NR³R⁴, and -CH₂(CH₂OCH₂)_b-CH₂NR³R⁴; Z³ is selected from the
- 15 group consisting of -(CH₂)_a-CONH-Dm, -CH₂-(CH₂OCH₂)_b-CH₂-CONH-Dm, -(CH₂)_a-NHCO-Dm, -CH₂-(CH₂OCH₂)_b-CH₂-NHCO-Dm, -(CH₂)_a-N(R³)-(CH₂)_b-CONH-Dm, (CH₂)_a-N(R³)-(CH₂)_c-NHCO-Dm,

$-(CH_2)_a-N(R^3)-CH_2-(CH_2OCH_2)_b-CH_2-CONH-Dm$, $-(CH_2)_a-N(R^3)-CH_2-(CH_2OCH_2)_b-CH_2-NHCO-Dm$, $-CH_2-(CH_2OCH_2)_b-CH_2-N(R^3)-(CH_2)_a-CONH-(CH_2OCH_2)_b-CH_2-NHCO-Dm$, $-CH_2-(CH_2OCH_2)_b-CH_2-N(R^3)-(CH_2)_a-NHCO-Dm$, $-CH_2-(CH_2OCH_2)_b-CH_2-N(R^3)-CH_2-Dm$, $-CH_2-(CH_2OCH_2)_b-CH_2-N(R^3)-(CH_2)_a-CH_2-(CH_2OCH_2)_d-CONH-Dm$, $-CH_2-(CH_2OCH_2)_b-CH_2-N(R^3)-CH_2-N(R^3)-CH_2-(CH_2OCH_2)_d-NHCO-Dm$, $-(CH_2)_a-NR^3R^4$, and $-CH_2(CH_2OCH_2)_b-CH_2NR^3R^4$; A_1

- is a single or a double bond; B_1 , C_1 , and D_1 are independently selected from the group consisting of $-O-$, $-S-$, $-Se-$, $-P-$, $-CR^1R^2$, $-CR^1$, alkyl, NR^3 , and $-C=O$; A_1 , B_1 , C_1 , and D_1 may together form a 6- to 12-membered carbocyclic ring or a 6- to 12-membered heterocyclic ring optionally containing one or more oxygen, nitrogen, or sulfur atom; a_3 and b_3 are independently from 0 to 5; R^1 to R^4 , and R^{29} to R^{37} are independently selected from the group consisting of hydrogen, C_1-C_{10} alkyl, C_5-C_{20} aryl, C_1-C_{10} alkoxy, C_1-C_{10} polyalkoxyalkyl, C_1-C_{20} polyhydroxyalkyl, C_5-C_{20} polyhydroxyaryl, C_1-C_{10} aminoalkyl, cyano, nitro, halogen, saccharide, peptide, $-CH_2(CH_2OCH_2)_b-CH_2-OH$, $-(CH_2)_a-CO_2H$, $-(CH_2)_a-CONH-Bm$, $-CH_2-(CH_2OCH_2)_b-CH_2-CONH-Bm$, $-(CH_2)_a-NHCO-Bm$, $-CH_2-(CH_2OCH_2)_b-CH_2-NHCO-Bm$, $-(CH_2)_a-OH$ and $-CH_2-(CH_2OCH_2)_b-CO_2H$; Bm and Dm are independently selected from the group consisting of a bioactive peptide, a protein, a cell, an antibody, an antibody fragment, a saccharide, a glycopeptide, a peptidomimetic, a drug, a drug mimic, a hormone, a metal chelating agent, a radioactive or nonradioactive metal complex, and an echogenic agent; a and c are independently from 1 to

20; and b and d are independently from 1 to 100, and a pharmaceutically
40 acceptable carrier or excipient to form a composition,
activating the compound using light, and
performing the diagnostic or therapeutic procedure.

5. The method of claim 4 comprising administering to an individual an effective amount of the compound wherein W³ and X³ are independently selected from the group consisting of -C(CH₃)₂, -C((CH₂)_aOH)CH₃, -C((CH₂)_aOH)₂, -C((CH₂)_aCO₂H)CH₃, -C((CH₂)_aCO₂H)₂, -C((CH₂)_aNH₂)CH₃, C((CH₂)_aNH₂)₂, C((CH₂)_aNR³R⁴)₂, -NR³, and -S-; Y³ is selected from the group consisting of -(CH₂)_a-CONH-Bm, -CH₂-(CH₂OCH₂)_b-CH₂-CONH-Bm, -(CH₂)_a-NHCO-Bm, -CH₂-(CH₂OCH₂)_b-CH₂-NHCO-Bm, -(CH₂)_a-NR³R⁴, and -CH₂(CH₂OCH₂)_b-CH₂NR³R⁴; Z³ is selected from the group consisting of -(CH₂)_a-CONH-Dm, -CH₂-(CH₂OCH₂)_b-CH₂-CONH-Dm, -(CH₂)_a-NR³R⁴, and -CH₂(CH₂OCH₂)_b-CH₂NR³R⁴; A₁ is a single or a double bond; B₁, C₁, and D₁ are independently selected from the group consisting of -O-, -S-, NR³, (CH₂)_a-CR¹R², and -CR¹; A₁, B₁, C₁, and D₁ may together form a 6- to 10-membered carbocyclic ring or a 6- to 10-membered heterocyclic ring optionally containing one or more oxygen, nitrogen, or sulfur atom; a₃ and b₃ independently vary from 0 to 3; R¹ to R⁴, and R²⁹ to R³⁷ are independently selected from the group consisting of hydrogen, C₁-C₁₀ alkyl, C₅-C₁₂ aryl, C₁-C₁₀ alkoxy, C₁-C₁₀ polyhydroxyalkyl, C₅-C₁₂

polyhydroxyaryl, C₁-C₁₀ aminoalkyl, mono- or oligosaccharide, peptide with 2 to 30 amino acid units, -CH₂(CH₂OCH₂)_b-CH₂-OH, -(CH₂)_a-CO₂H, -(CH₂)_a-CONH-Bm, -CH₂-(CH₂OCH₂)_b-CH₂-CONH-Bm, -(CH₂)_a-NHCO-Bm, -CH₂-(CH₂OCH₂)_b-CH₂-NHCO-Bm, -(CH₂)_a-OH and -CH₂-(CH₂OCH₂)_b-CO₂H;

Bm and Dm are independently selected from the group consisting of a bioactive peptide containing 2 to 30 amino acid units, an antibody, a 25 mono- or oligosaccharide, a glycopeptide, a metal chelating agent, a radioactive or nonradioactive metal complex, and an echogenic agent; a and c are independently from 1 to 10; and b and d are independently from 1 to 30.

6. The method of claim 5 comprising administering to an individual an effective amount of the compound wherein each of W³ and X³ is C((CH₂)OH)₂; Y³ is -(CH₂)₂-CONH-Bm; Z³ is -(CH₂)₂-CONH-Dm; A₁ is a single bond; A₁, B₁, C₁, and D₁ together form a 6-membered carbocyclic 5 ring; each a₃ and b₃ is 1; R³⁰ to R³⁷ is hydrogen; Bm is Octreotide; and Dm is bombesin (7-14).

7. The method of claim 4 wherein said procedure uses light of wavelength in the region of 350-1300 nm.

8. The method of claim 4 wherein the diagnostic procedure is optical tomography.

9. The method of claim 4 wherein the diagnostic procedure is fluorescence endoscopy.
10. The method of claim 4 further comprising monitoring a blood clearance profile of said compound by a method selected from the group consisting of fluorescence, absorbance, and light scattering, wherein light of wavelength in the region of 350-1300 nm is used.
11. The method of claim 4 wherein said procedure further comprises imaging and therapy, wherein said imaging and therapy is selected from the group consisting of absorption, light scattering, photoacoustic and sonofluorescence technique.
12. The method of claim 4 wherein said procedure is capable of diagnosing atherosclerotic plaques and blood clots.
13. The method of claim 4 wherein said procedure comprises administering localized therapy.
14. The method of claim 4 wherein said therapeutic procedure comprises photodynamic therapy.

15. The method of claim 4 wherein said therapeutic procedure comprises laser assisted guided surgery for the detection of micrometastases.

16. The method of claim 4 further comprising adding a biocompatible organic solvent to the at a concentration of one to fifty percent to the composition to prevent *in vivo* or *in vitro* fluorescence quenching.

17. The method of claim 16 wherein said compound is dissolved in a medium comprising one to fifty percent dimethyl sulfoxide.

18. A composition comprising a cyanine dye bioconjugate of formula

wherein W^3 and X^3 are independently selected from the group consisting of $-CR^1R^2$, $-O-$, $-NR^3$, $-S-$, and $-Se$; Y^3 is selected from the group consisting of $-(CH_2)_a-CONH-Bm$, $-CH_2-(CH_2OCH_2)_b-CH_2-CONH-Bm$, $-(CH_2)_a-$ 5 $NHCO-Bm$, $-CH_2-(CH_2OCH_2)_b-CH_2-NHCO-Bm$, $-(CH_2)_a-N(R^3)-(CH_2)_b-CONH-$ Bm , $(CH_2)_a-N(R^3)-(CH_2)_c-NHCO-Bm$, $-(CH_2)_a-N(R^3)-CH_2-(CH_2OCH_2)_b-CH_2-$ $CONH-Bm$, $-(CH_2)_a-N(R^3)-CH_2-(CH_2OCH_2)_b-CH_2-NHCO-Bm$, $-CH_2-$ 10 $(CH_2OCH_2)_b-CH_2-N(R^3)-(CH_2)_a-CONH-Bm$, $-CH_2-(CH_2OCH_2)_b-CH_2-N(R^3)-$ $(CH_2)_a-NHCO-Bm$, $-CH_2-(CH_2OCH_2)_b-CH_2-N(R^3)-CH_2-(CH_2OCH_2)_d-CONH-Bm$, $-CH_2-(CH_2OCH_2)_b-CH_2-N(R^3)-CH_2-(CH_2OCH_2)_d-NHCO-Bm$, $-(CH_2)_a-NR^3R^4$, and $-CH_2(CH_2OCH_2)_b-CH_2NR^3R^4$; Z^3 is selected from the group consisting of $-(CH_2)_a-CONH-Dm$, $-CH_2-(CH_2OCH_2)_b-CH_2-CONH-Dm$, $-(CH_2)_a-NHCO-Dm$, $-CH_2-(CH_2OCH_2)_b-CH_2-NHCO-Dm$, $-(CH_2)_a-N(R^3)-(CH_2)_b-CONH-Dm$, $(CH_2)_a-$ 15 $N(R^3)-(CH_2)_c-NHCO-Dm$, $-(CH_2)_a-N(R^3)-CH_2-(CH_2OCH_2)_b-CH_2-CONH-Dm$, $-(CH_2)_a-N(R^3)-CH_2-(CH_2OCH_2)_b-CH_2-NHCO-Dm$, $-CH_2-(CH_2OCH_2)_b-CH_2-$ $N(R^3)-(CH_2)_a-CONH-Dm$, $-CH_2-(CH_2OCH_2)_b-CH_2-N(R^3)-(CH_2)_a-NHCO-Dm$,

-CH₂-(CH₂OCH₂)_b-CH₂-N(R³)-CH₂-(CH₂OCH₂)_a-CONH-Dm, -CH₂-(CH₂OCH₂)_b-CH₂-N(R³)-CH₂-(CH₂OCH₂)_d-NHCO-Dm, -(CH₂)_a-NR³R⁴, and
-CH₂(CH₂OCH₂)_b-CH₂NR³R⁴; A₁ is a single or a double bond; B₁, C₁, and D₁
20 are independently selected from the group consisting of -O-, -S-, -Se-, -P-,
-CR¹R², -CR¹, alkyl, NR³, and -C=O; A₁, B₁, C₁, and D₁ may together form
a 6- to 12-membered carbocyclic ring or a 6- to 12-membered
heterocyclic ring optionally containing one or more oxygen, nitrogen, or
sulfur atom; a₃ and b₃ are independently from 0 to 5; R¹ to R⁴, and R²⁹ to
25 R³⁷ are independently selected from the group consisting of hydrogen, C₁-
C₁₀ alkyl, C₅-C₂₀ aryl, C₁-C₁₀ alkoxy, C₁-C₁₀ polyalkoxyalkyl, C₁-C₂₀
polyhydroxyalkyl, C₅-C₂₀ polyhydroxyaryl, C₁-C₁₀ aminoalkyl, cyano, nitro,
halogen, saccharide, peptide, -CH₂(CH₂OCH₂)_b-CH₂-OH, -(CH₂)_a-CO₂H,
-(CH₂)_a-CONH-Bm, -CH₂-(CH₂OCH₂)_b-CH₂-CONH-Bm, -(CH₂)_a-NHCO-Bm,
30 -CH₂-(CH₂OCH₂)_b-CH₂-NHCO-Bm, -(CH₂)_a-OH and -CH₂-(CH₂OCH₂)_b-CO₂H;
Bm and Dm are independently selected from the group consisting of a
bioactive peptide, a protein, a cell, an antibody, an antibody fragment, a
saccharide, a glycopeptide, a peptidomimetic, a drug, a drug mimic, a
hormone, a metal chelating agent, a radioactive or nonradioactive metal
35 complex, and an echogenic agent; a and c are independently from 1 to
20; and b and d are independently vary from 1 to 100, and a
pharmaceutically acceptable carrier or excipient.

19. The composition of claim 18 wherein W³ and X³ are independently selected from the group consisting of -C(CH₃)₂, -C((CH₂)_aOH)CH₃, -C((CH₂)_aOH)₂, -C((CH₂)_aCO₂H)CH₃, -C((CH₂)_aCO₂H)₂, -C((CH₂)_aNH₂)CH₃, C((CH₂)_aNH₂)₂, C((CH₂)_aNR³R⁴)₂, -NR³, and -S-; Y³ is
5 selected from the group consisting of -(CH₂)_a-CONH-Bm, -CH₂-(CH₂OCH₂)_b-CH₂-CONH-Bm, -(CH₂)_a-NHCO-Bm, -CH₂-(CH₂OCH₂)_b-CH₂-NHCO-Bm, -(CH₂)_a-NR³R⁴, and -CH₂(CH₂OCH₂)_b-CH₂NR³R⁴; Z³ is selected
from the group consisting of -(CH₂)_a-CONH-Dm, -CH₂-(CH₂OCH₂)_b-CH₂-CONH-Dm, -(CH₂)_a-
10 NR³R⁴, and -CH₂(CH₂OCH₂)_b-CH₂NR³R⁴; A₁ is a single or a double bond; B₁, C₁, and D₁ are independently selected from the group consisting of -O-, -S-, NR³, (CH₂)_a-CR¹R², and -CR¹; A₁, B₁, C₁, and D₁ may together
form a 6- to 10-membered carbocyclic ring or a 6- to 10-membered
heterocyclic ring optionally containing one or more oxygen, nitrogen, or
15 sulfur atom; a₃ and b₃ are independently from 0 to 3; R¹ to R⁴, and R²⁹ to
R³⁷ are independently selected from the group consisting of hydrogen, C₁-C₁₀ alkyl, C₅-C₁₂ aryl, C₁-C₁₀ alkoxy, C₁-C₁₀ polyhydroxyalkyl, C₅-C₁₂
polyhydroxyaryl, C₁-C₁₀ aminoalkyl, mono- or oligosaccharide, peptide
with 2 to 30 amino acid units, -CH₂(CH₂OCH₂)_b-CH₂-OH, -(CH₂)_a-CO₂H,
20 -(CH₂)_a-CONH-Bm, -CH₂-(CH₂OCH₂)_b-CH₂-CONH-Bm, -(CH₂)_a-NHCO-Bm,
-CH₂-(CH₂OCH₂)_b-CH₂-NHCO-Bm, -(CH₂)_a-OH and -CH₂-(CH₂OCH₂)_b-CO₂H;
Bm and Dm are independently selected from the group consisting of a
bioactive peptide containing 2 to 30 amino acid units, an antibody, a

mono- or oligosaccharide, a glycopeptide, a metal chelating agent, a

25 radioactive or nonradioactive metal complex, and an echogenic agent; a
and c are independently from 1 to 10; and b and d are independently from
1 to 30.

20. The composition of claim 19 wherein each of W³ and X³ is

C((CH₂)OH)₂; Y³ is -(CH₂)₂-CONH-Bm; Z³ is -(CH₂)₂-CONH-Dm; A₁ is a
single bond; A₁, B₁, C₁, and D₁ together form a 6-membered carbocyclic
ring; each of a₃ and b₃ is 1; R²⁹ is galactose; each of R³⁰ to R³⁷ is
5 hydrogen; Bm is Octreotide; and Dm is bombesin (7-14).

PCT/US2004/016600