O nekaterih iracionalnih desetiških ulomkih

Gaja Jamnik

Fakulteta za matematiko in fiziko Oddelek za matematiko

2. april 2021

Definicija

Desetiški ulomek je ulomek, katerega imenovalec je potenca števila 10.

 $\frac{73}{1000}$

Za poenostavitev uporabljamo zapis z decimalno vejico:

0,073

Definicija

Desetiški ulomek je ulomek, katerega imenovalec je potenca števila 10.

 $\frac{73}{1000}$

Za poenostavitev uporabljamo zapis z decimalno vejico:

0,073

Kakšna je razlika v decimalnem zapisu racionalnega in iracionalnega števila?

Definicija

Desetiški ulomek je ulomek, katerega imenovalec je potenca števila 10.

$$\frac{73}{1000}$$

Za poenostavitev uporabljamo zapis z decimalno vejico:

Kakšna je razlika v decimalnem zapisu racionalnega in iracionalnega števila?

- racionalna števila: 5,6; 0, 26
- irracionalna števila: $\pi = 3,1415926535...$

Definicija

Naj bo x realno število, 0 < x < 1, podano z decimalnim zapisom:

$$x = \sum_{i=1}^{n} c_i 10^{-i} =$$

$$= 0, c_0 c_1 c_2 \cdots c_n,$$

kjer so $0 \le c_i \le 9 \ \forall i = 1, \ldots, s$.

Z b označimo celo število sestavljeno iz zaporedja števk $b_1b_2b_3...b_s$, kjer je $s \ge 1$ in $0 \le b_i \le 9$ $\forall i = 1,...,s$. Pravimo, da število x vsebuje blok števil $(b) = (b_1b_2b_3...)$, če obstaja $j \ge 0$, da je $c_{i+j} = b_i$ za vse i = 1,2,...s.

Definicija

Naj bo x realno število, 0 < x < 1, podano z decimalnim zapisom:

$$x = \sum_{i=1}^{n} c_i 10^{-i} =$$

$$= 0, c_0 c_1 c_2 \cdots c_n,$$

kjer so $0 \le c_i \le 9 \ \forall i = 1, \ldots, s$.

Z b označimo celo število sestavljeno iz zaporedja števk $b_1b_2b_3...b_s$, kjer je $s \ge 1$ in $0 \le b_i \le 9$ $\forall i = 1,...,s$. Pravimo, da število x vsebuje blok števil $(b) = (b_1b_2b_3...)$, če obstaja $j \ge 0$, da je $c_{i+j} = b_i$ za vse i = 1,2,...s.

Primer

0,5934 vsebuje blok (593), ne vsebuje pa (594) ali (43).

Poljubno decimalno število lahko razumemo kot zaporedje blokov celih števil.

Poljubno decimalno število lahko razumemo kot zaporedje blokov celih števil.

 $0,235711131719\dots$

Poljubno decimalno število lahko razumemo kot zaporedje blokov celih števil.

$$0, (p_1)(p_2)(p_3)(p_4)...$$

 $\{p_i\}$ predstavlja zaporedje praštevil.

Poljubno decimalno število lahko razumemo kot zaporedje blokov celih števil.

$$0, (p_1)(p_2)(p_3)(p_4)...$$

 $\{p_i\}$ predstavlja zaporedje praštevil.

Ali je to število iracionalno?

Trditev

Število 0,23571113... je iracionalno.

Trditev

Število 0, 23571113 . . . je iracionalno.

Izrek (Dirichletov izrek)

V vsakem zaporedju $\{an+b\}_{n\in\mathbb{N}_0}$ naravnih števil, kjer sta a in b tuji si naravni števili, je neskončno praštevil.

Trditev

Število 0, 23571113 . . . je iracionalno.

Izrek (Dirichletov izrek)

V vsakem zaporedju $\{an + b\}_{n \in \mathbb{N}_0}$ naravnih števil, kjer sta a in b tuji si naravni števili, je neskončno praštevil.

Dokaz: Naj bo $s\geq$ poljubno celo število Po Dirichletovem izreku $\{10^{s+1}k+1\}$, $k\in\mathbb{N}$ vsebuje neskončno praštevil.

Trditev

Število 0, 23571113 . . . je iracionalno.

Izrek (Dirichletov izrek)

V vsakem zaporedju $\{an + b\}_{n \in \mathbb{N}_0}$ naravnih števil, kjer sta a in b tuji si naravni števili, je neskončno praštevil.

Dokaz: Naj bo $s\geq$ poljubno celo število Po Dirichletovem izreku $\{10^{s+1}k+1\}$, $k\in\mathbb{N}$ vsebuje neskončno praštevil. Obstajajo praštevila oblike:

$$(k) \underbrace{00 \dots}_{s} 1$$

Trditev

Število 0, 23571113 . . . je iracionalno.

Izrek (Dirichletov izrek)

V vsakem zaporedju $\{an + b\}_{n \in \mathbb{N}_0}$ naravnih števil, kjer sta a in b tuji si naravni števili, je neskončno praštevil.

Dokaz: Naj bo $s\geq$ poljubno celo število Po Dirichletovem izreku $\{10^{s+1}k+1\}$, $k\in\mathbb{N}$ vsebuje neskončno praštevil. Obstajajo praštevila oblike:

$$(k) \underbrace{00 \dots 1}_{s}$$

Taka števila obstajajo za $\forall s \geq 0.0,2357...$ je sestavljeno iz blokov takšne oblike, zato ne bo periodično.

Decimalna števila z naraščajočimi bloki

Decimalna števila z naraščajočimi bloki

Naj bo $1 \le a_1 < a_2 < \dots$ strogo naraščajoče zaporedje celih števil. Označimo:

$$Dec\{a_k\} = 0, (a_1)(a_2)(a_3)... \; ; a_k \in \mathbb{Z} \; k \in \mathbb{N}$$

Decimalna števila z naraščajočimi bloki

Naj bo $1 \le a_1 < a_2 < \dots$ strogo naraščajoče zaporedje celih števil. Označimo:

$$Dec\{a_k\} = 0, (a_1)(a_2)(a_3)... ; a_k \in \mathbb{Z} \ k \in \mathbb{N}$$

Izrek

Če za strogo naraščajoče zaporedje celih števil $\{a_i\}_{i\in\mathbb{N}}$ velja

$$\sum_{i=1}^{\infty} \frac{1}{a_i} = \infty,$$

potem je $Dec\{a_k\}$ iracionalno.

Ali število 0,23571113... zadošča pogoju izreka?

Ali število 0,23571113... zadošča pogoju izreka?

$$\sum_{p \text{ praštevilo}} \frac{1}{p} = \frac{1}{2} + \frac{1}{3} + \frac{1}{5} + \frac{1}{7} + \dots \stackrel{?}{=} \infty$$

Ali število 0,23571113... zadošča pogoju izreka?

$$\sum_{p \text{ praštevilo}} \frac{1}{p} = \frac{1}{2} + \frac{1}{3} + \frac{1}{5} + \frac{1}{7} + \dots \stackrel{?}{=} \infty$$

Divergenco vrste $\sum_{p \text{ praštevilo}} \frac{1}{p}$ je leta 1737 dokazal Leonhard Euler.