Homework 7

CMPSC 360

Kinner Parikh March 17, 2022

Question 1:

Base Case: $a_1 = 1$

Recurrence relation: $a_n = a_{n-1} \cdot n$ for $n \geq 2$

Question 2:

a) Base Case: $a_1 = 15$

Recurrence relation: $a_n = a_{n-1} - 7$ for $n \ge 2$

b) $(-1)^{n-1} \cdot \frac{n-1}{n}$ for all integers $n \geq 1$

Question 3:

a) Domain: $(-16, -4) \cup [4, \infty)$

b) Co-domain: \mathbb{R}

c) Image: $(-8, -2) \cup [-16, \infty]$

d) Prove it is injective

Proof: Let $x_1, x_2 \in (-16, -4) \cup [4, \infty)$

$$f(x) = \begin{cases} -x^2, & \text{if } x \ge 0\\ \frac{x}{2}, & \text{if } x < 0 \end{cases}$$

Case 1: $x_1, x_2 \in [4, \infty)$

From the definition of the function, $-x_1^2 = -x_2^2$

$$x_1^2 = x_2^2$$
 [divide by -1]
 $x_1 = x_2$ [square root]

So, when $x_1, x_2 \in [4, \infty)$, f is injective

Case 2: $x_1, x_2 \in (-16, -4)$

From the definition of the function, $\frac{x_1}{2} = \frac{x_2}{2}$ $x_1 = x_2 \text{ [multiply by 2]}$

$$x_1 = x_2$$
 [multiply by 2]

So, when $x_1, x_2 \in (-16, -4)$, f is injective

Case 3: Without loss of generality, $x_1 \in (-16, -4)$ and $x_2 \in [4, \infty)$

From the definition of the function, $f(x_1) = \frac{x_1}{2}$, $f(x_2) = -x_2^2$

Taking the inverse of $f(x_1)$, we get $f^{-1}(x_1) = 2x_1$ Taking the inverse of $f(x_2)$, we get $f^{-1}(x_2) = \sqrt{x_2}$

Since both functions are invertible, this function is injective

The function is injective in all cases

Therefore f is injective. \square

e) Proof: From the definitions of the codomain and the image above, we notice that they are not the same.

Therefore, f is not surjective.

Question 4: Let $f: C \to B$ and $g: A \to C$. Suppose that $f \circ g$ is bijective.

a) Proof: Assume that $f \circ g$ is bijective.

By definition of bijective, we know that $f \circ g$ is both injective and surjective.

Case 1: q is injective

For the sake of contradiction, assume that g is not injective

By definition, we know that $\exists x, y$ where $x \neq y$ such that g(x) = g(y)

We know that $f \circ g$ is injective, so we know that there cannot be a case where g(x) = g(y)

We have arrived at a contradiction, where $\exists x, y \ g(x) = g(y)$ and $\forall x, y \ g(x) \neq g(y)$

Therefore, g must be injective.

Case 2: f is surjective

Take some arbitrary $b \in B$ and some arbitrary $a \in A$ such that f(g(a)) = b

Set g(a) = x, so f(x) = b

Thus, f is surjective

Therefore, g is injective and f is surjective when $f \circ g$ is bijective. \square

b) Consider $A = \{\alpha\}, B = \{\beta\}, C = \{\gamma_1, \gamma_2\}$

Take the case of $f(g(\alpha))$. $g(\alpha) = \gamma_1$ so $f(g(\alpha)) = f(\gamma_1) = \beta$.

Since the codomain of $f \circ g$ is equal to its image, the function is surjective.

Furthermore, since the domain is α and as we know from above that the codomain is equal to the image, the function is injective.

So, since $f \circ g$ is both surjective and injective, it is bijective.

However, $g(\alpha)$ can result in either γ_1 or γ_2 . So when plugged into f, we see that $f(\gamma_1) = f(\gamma_2)$. Therefore, f is not injective.

Question 5:

- a) $d_{1,\text{blue}} = p_{1,\text{blue}} + p_{0,\min(\text{yellow, green})}$
 - $d_{1,\text{yellow}} = p_{1,\text{yellow}} + p_{0,\min(\text{green, blue})}$
 - $d_{1,\text{green}} = p_{1,\text{green}} + p_{0,\min(\text{yellow, blue})}$
- b) Base Case: $d_{0,c} = p_{0,c}$

Recurrence relation: $d_{i,c} = d_{i-1,c} + p_{i,c}$ for all $i \ge 1$

Question 6:

1)

$$f(x) = \frac{7-x}{6}$$

$$y = \frac{7-x}{6} \text{ (by definition of f)}$$

$$6y = 7-x$$

$$6y - 7 = -x$$

$$f^{-1}(x) = 7 - 6y$$

2)

$$g(x) = \sqrt[3]{x+5} + 6$$

$$y = \sqrt[3]{x+5} + 6 \text{ (by definition of f)}$$

$$y-6 = \sqrt[3]{x+5}$$

$$(y-6)^3 = x+5$$

$$(y-6)^3 = x+5$$

$$f^{-1}(x) = (y-6)^3 - 5$$

3)

$$h(x) = \frac{x+6}{x+2}$$

$$y = \frac{x+6}{x+2} \text{ (by definition of f)}$$

$$y(x+2) = x+6$$

$$yx+2y-6 = x$$

$$2y-6 = x-yx$$

$$2y-6 = x(1-y)$$

$$f^{-1}(x) = \frac{2y-6}{1-y}$$

4)

$$f(x) = 4 - 6x^{7}$$

$$y = 4 - 6x^{7} \text{ (by definition of f)}$$

$$y - 4 = -6x^{7}$$

$$\frac{4 - y}{6} = x^{7}$$

$$f^{-1}(x) = \sqrt[7]{\frac{4 - y}{6}}$$

Question 7:

$$f \circ g = \{(a, 3), (b, 8), (c, 2), (d, 3)\}$$

$$f^{-1} = \{(2, 3), (3, 2), (8, 1)\}$$

$$f \circ f^{-1} = \{(8, 8), (3, 3), (2, 2)\}$$

Question 8: f(x) = x + 4, $g(x) = 5 - x^2$

a) $(f \circ g)(x) = f(5-x^2) = 5-x^2+4 = \frac{9-x^2}{8}$ b) $(g \circ f)(x) = g(x+4) = 5-(x+4)^2 = 5-(x^2+8x+16) = \frac{-x^2-8x-11}{8}$ c) $(f \circ g)(-1) = 9-(-1)^2 = 9-1 = \frac{8}{8}$

Question 9:

If $F: X \to Y$ is bijective, then function F has an inverse

Proof: Let $F: X \to Y$

For the sake of proof by contrapositive, assume that F does not have an inverse.

That means for an arbitrary $\exists p, q$ where $p \neq q$ that satisfies the condition F(p) = F(q)

So, this means that the function is not injective.

Thus, the function is not bijective.

Therefore, from proof by contrapositive, we know that if $F: X \to Y$ is bijective, then function F has an inverse. \square

Question 10: If you randomly choose five numbers from the integers 1 through 8, then two of them must add up to 9.

Proof:

For this set of integers, there are an invertible set of pairs of numbers that add up to 9.

The set is: $\{(1, 8), (2, 7), (3, 6), (4, 5)\}$

There are k=4 cases in which the two values can add up to 9.

When choosing n = 5 random integers, we see that k < n.

By applying the Pigeonhole Theorem, we can conclude that at least two of the randomly chosen integers must sum to 9. \Box

Question 11:

Let $s_n = \sum_{x=1}^n w_x$ where w_x are the total number of wins on the x^{th} day.

Since there is at least one win per day, we know that $s_1 < s_2 < ... < s_{77}$, where 77 days have passed in 11 weeks

Since we know that the maximum total wins is a week is 12, we know that $s_{77} \le 12 * 11 = 132$ We also know that he wins at least once per day, so $1 \le s_1$

So we can say that $1 \le s_1 < s_2 < ... < 132$

Adding 21 to this, we get $22 \le s_1 + 21 < s_2 + 21 < ... < 153$

Since the sequence $\{s_1, s_2, ..., s_{77}\}$ is distinct and has no repeats, we know that after adding 21 the sequence will be distinct.

Therefore, we can conclude that there must be some $s_i - s_j = 21$ for some i, j. \square