Introduction au traitement du signal Signaux continus

MINES ParisTech, Tronc commun 1A

9 février 2023

Signaux périodiques continus

Définition

La fonction $x : \mathbb{R} \to \mathbb{C}$ est T-périodique ssi

$$x(t+T)=x(t)$$

- Période T, fréquence f = 1/T, pulsation $\omega = 2\pi f$
- \triangleright Fonctions périodiques L^2 : Espace vectoriel de produit scalaire

$$\langle x, y \rangle = \frac{1}{T} \int_0^T x(t) \overline{y(t)} dt$$

Norme associée

$$||x||_{L^2} = \sqrt{\frac{1}{T} \int_0^T |x(t)|^2 dt}$$

L'espace $L^2([0, T[)$

Proposition

La famille $\{t\mapsto e^{-\frac{2\pi int}{T}}, n\in\mathbb{Z}\}$ est une famille orthonormée de fonctions de L^2 .

Preuve.

$$\forall p,q \in \mathbb{Z}^2 < e^{-\frac{2\pi i p \cdot}{T}}, e^{-\frac{2\pi i q \cdot}{T}} > = \frac{1}{T} \int_0^T e^{-\frac{2\pi i (p-q)t}{T}} \mathrm{d}t = \left\{ \begin{array}{l} 0 \quad \text{si } p \neq q \\ 1 \quad \text{sinon.} \end{array} \right.$$

Coefficients de Fourier

Définition (Coefficient de Fourier)

Soit $x \in L^2([0, T[)$. Alors, pour tout $n \in \mathbb{Z}$, le *n*-ième coefficient de Fourier de x est défini par

$$c_n(x) = \frac{1}{T} \int_0^T x(t) e^{-\frac{2\pi i n t}{T}} dt.$$

Le n-ième coefficient de Fourier de x s'interprète de façon immédiate comme le produit scalaire

$$c_n(f) = < x, e_n > .$$

Série de Fourier

Définition (Série de Fourier)

Soit $x \in L^2([0, T[)$. Alors, on appelle série de Fourier de x et on note S(x) la série

$$S(x)(t) = \sum_{n \in \mathbb{Z}} c_n(x) e^{\frac{2\pi i n t}{T}}$$

On note $S_N(x)$ la N-ième somme partielle de S(x):

$$S_N(x)(t) = \sum_{n=-N}^{n=N} c_n(x) e^{\frac{2\pi i nt}{T}}.$$

Coefficients de Fourier

$$c_n = \langle x, e_n \rangle$$

,

Somme partielle de la série

$$S_n(t) = \sum_{k=-n}^n c_k e_k(t)$$

ò

Coefficients de Fourier

$$c_n = \langle x, e_n \rangle$$

,

Somme partielle de la série

$$S_n(t) = \sum_{k=-n}^n c_k e_k(t)$$

0.75 - 0.50 - 0.50 - 0.00 - 0.00 - 0.75 - 0.05 - 0.05 - 0.05 - 0.05 - 0.05 - 0.05 - 0.05 - 0.05 - 0.075 - 1.00 - 0.75 - 1.00 - 0.75 - 1.00 - 0.75 - 1.00 - 0.75 - 0.75 - 0.05 - 0.75 - 0.05 - 0.75 - 0.05 - 0

1.00

Coefficients de Fourier

$$c_n = \langle x, e_n \rangle$$

,

Somme partielle de la série

$$S_n(t) = \sum_{k=-n}^n c_k e_k(t)$$

x(t)

Coefficients de Fourier

$$c_n = \langle x, e_n \rangle$$

,

Somme partielle de la série

$$S_n(t) = \sum_{k=-n}^n c_k e_k(t)$$

Exercice

Calculer les coefficients de Fourier de la fonction 2π -périodique sur $\mathbb R$ définie sur $[-\pi,\pi]$ par:

$$f(t) = \left\{ egin{array}{ll} 1 & ext{si } t \in [0,\pi] \ -1 & ext{si } t \in [-\pi,0] \end{array}
ight.$$

Théorème de Dirichlet

► Caractérise les convergences *simple* et *uniforme* de la série de Fourier de *x* vers *x*.

Théorème (Dirichlet)

Soit $x : \mathbb{R} \to \mathbb{C}$ une fonction T-périodique et de classe C^1 par morceaux. Alors:

1. $\forall t \in \mathbb{R}$,

$$\lim_{n \to +\infty} S_n(x)(t) = \frac{1}{2}(x(t^+) + x(t^-)).$$

2. Si de plus x est continue sur \mathbb{R} , alors la convergence des sommes de Fourier partielles est uniforme sur \mathbb{R} .

Convergence dans L^2

Théorème (Parseval)

Soit $f: \mathbb{R} \to \mathbb{C}$ une fonction de L^2 . On a alors les résultats suivants:

- 1. $||f||_{L^2}^2 = \sum_{n \in \mathbb{Z}} |c_n(f)|^2$
- 2. $\forall g \in L^2([0,T[),(f,g)) = \frac{1}{T} \int_0^T f(t)\overline{g(t)} dt = \sum_{n \in \mathbb{Z}} c_n(f)\overline{c_n(g)}.$
- 3. $\lim_{n \mapsto +\infty} \|f S_n(f)\|_{L^2} = 0$.

Notion d'énergie

Definition (Energie d'un signal)

On définit l'énergie d'un signal périodique x par $||x||_{L^2([0,T])}^2$.

Théorème

Soit $x: \mathbb{R} \to \mathbb{C}$ une fonction T-périodique et continue par morceaux. Alors, on a l'identité

$$\frac{1}{T}\int_0^T |x(t)|^2 dt = \sum_{n=-\infty}^{+\infty} |c_n(x)|^2$$

Les coefficients $c_n(x)$ représentent la quantité d'énergie contenue dans x à la pulsation $\omega_n=\frac{2n\pi}{T}$.

Spectre d'un signal

Signal x(t)

Spectre du signal : répartition fréquentielle de l'énergie (discrète)

Intérêt de la représentation de Fourier

- Représentation d'une fonction défini sur un ensemble continu par un ensemble dénombrable de coefficients
- Possibilité d'approximer une fonction en tronquant sa série de Fourier ▶ représentation d'une fonction par un ensemble fini de coefficients
- ► Troncature en gardant les termes de plus basse fréquence (linéaire) ou en gardant les termes de plus grande amplitude (non-linéaire)
- ► En pratique, plus une fonction est "régulière", plus il est facile de l'approximer par sa série de Fourier tronquée

Approximation par une série de Fourier: Phénomène de Gibbs

Coefficients de Fourier

$$c_n = \langle x, e_n \rangle$$

Sommes partielles de la série

$$S_n(t) = \sum_{k=-n}^n c_k e_k(t)$$

Approximation par une série de Fourier: Phénomène de Gibbs

Coefficients de Fourier

$$c_n = \langle x, e_n \rangle$$

Sommes partielles de la série

$$S_n(t) = \sum_{k=-n}^{n} c_k e_k(t)$$

Approximation par une série de Fourier: Phénomène de Gibbs

Coefficients de Fourier

$$c_n = \langle x, e_n \rangle$$

Sommes partielles de la série

$$S_n(t) = \sum_{k=1}^{n} c_k e_k(t)$$

Motivation

Peut-on caractériser fréquentiellement des signaux non-périodiques?

Figure: Signal de houle¹

¹Coudurier, Conception, modélisation et contrôle d'un tube anti-roulis multidirectionnel pour une barge offshore portant une éolienne, Dec. 2017

L'espace $L^1(\mathbb{R})$

On note $L^1(\mathbb{R})$ l'espace des fonctions intégrables sur \mathbb{R} . L^1 est un espace de Banach complet i.e un espace vectoriel complet pour la norme

$$||f||_{L^1}=\int_{\mathbb{R}}|f(t)|\mathrm{d}t.$$

 $\underline{\wedge} L^1(\mathbb{R})$ n'est PAS un espace de Hilbert (pas de produit scalaire)

Transformée de Fourier

Definition (Transformée de Fourier)

Soit $f \in L^1(\mathbb{R})$. Pour tout $\omega \in \mathbb{R}$, la transformée de Fourier de f, que nous noterons indifféremment $\mathcal{F}f$ ou \hat{f} dans la suite, est donnée par:

$$\mathcal{F}f(\omega)=\int_{\mathbb{R}}f(t)e^{-i\omega t}\mathrm{d}t$$

Exercice: transformée de Fourier d'une fonction créneau

En partant de la définition, calculer la transformée de Fourier du créneau:

$$f:t\to 1_{[-1,1](t)}$$

Exercice: transformée de Fourier d'une fonction créneau

En partant de la définition, calculer la transformée de Fourier du créneau:

$$f: t \to 1_{[-1,1](t)}$$

Solution:

$$\hat{f}(\omega) = \frac{2\sin\omega}{\omega}$$

Propriétés de calcul

Proposition (Propriétés de calculs)

Soit $f \in L^1(\mathbb{R})$.

- 1. $\forall a \in \mathbb{R}, \mathcal{F}(t \to f(t+a))(\omega) = e^{ia\omega} \mathcal{F}f(\omega)$
- 2. Réciproquement, $\forall a \in \mathbb{R}, \mathcal{F}(t \to e^{-iat}f(t))(\omega) = \mathcal{F}f(\omega + a)$
- 3. $\forall \lambda > 0, \mathcal{F}(t \to f(t/\lambda))(\omega) = \lambda \mathcal{F}f(\lambda \omega)$

Exemple: fonction gaussienne

La fonction $g_\sigma: t\in \mathbb{R}\mapsto \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{t^2}{2\sigma^2}}$ définit la fonction gaussienne d'écart-type σ .

Proposition (Transformée de Fourier d'une gaussienne)

La transformée de Fourier de la fonction g_{σ} est la fonction gaussienne

$$\hat{g}_{\sigma}:\omega\in\mathbb{R}\mapsto e^{-rac{\sigma^2\omega^2}{2}}.$$

Formule de transfert

Proposition (Propriété de transfert)

Si $f,g\in L^1(\mathbb{R})$, alors

$$\int_{\mathbb{R}} f(t) \mathcal{F}g(t) dt = \int_{\mathbb{R}} \mathcal{F}f(t)g(t) dt.$$

Preuve.

Comme f et g sont intégrables sur \mathbb{R} , la fonction $(u,t) \to f(t)g(u)e^{-iut}$ est nécessairement intégrable sur \mathbb{R}^2 . D'après le thérème de Fubini, on a donc:

$$\int_{\mathbb{R}} f(t) \mathcal{F} g(t) \mathrm{d}t = \int_{\mathbb{R}} \int_{\mathbb{R}} f(t) g(u) e^{-iut} \mathrm{d}u \mathrm{d}t = \int_{\mathbb{R}} \mathcal{F} f(u) g(u) \mathrm{d}u$$

Propriétés (i)

Théorème

La transformation de Fourier est une application linéaire, continue et de norme 1 de $L^1(\mathbb{R})$ dans l'espace $C_0(\mathbb{R})$ des fonctions continues sur \mathbb{R} qui tendent vers 0 en $\pm \infty$ muni de la norme L^{∞} .

Preuve.

- 1. Linéarité Découle directement de la linéarité de l'intégrale
- 2. Image dans $C(\mathbb{R})$ Application basique du théorème de continuité de Lebesgue.
- 3. Continuité Pour tout $\omega \in \mathbb{R}$, on a $|\hat{f}(\omega)| \leq \int |f(t)| dx := ||f||_{L^1}$. On en déduit que

$$\sup_{\omega \in \mathbb{R}} \hat{f}(\omega) := ||\hat{f}||_{L^{\infty}} \leq ||f||_{L^{1}},$$

ce qui prouve la continuité de la transformation de Fourier de $L^1(\mathbb{R})$ dans $C(\mathbb{R})$.

Propriétés (ii)

Preuve (suite).

4. Limite nulle en $\pm \infty$ Soit $\epsilon > 0$. Par densité, il existe $g \in C_{\epsilon}^{\infty}$ tel que

$$||f-g||_{L^1(\mathbb{R})}<\epsilon/2.$$

En outre, comme g est de classe C^{∞} et à support compact:

$$|\hat{g}(\omega)| := \left| \int_{\mathbb{R}} g(t) e^{-i\omega t} dt \right| = \left| \int_{\mathbb{R}} g'(t) \frac{e^{-i\omega t}}{i\omega} dt \right| \le \frac{1}{\omega} ||g'||_{L^1(\mathbb{R})} \to 0.$$

lorsque $\omega\mapsto\pm\infty$. Il existe donc $\omega_0>0$ tel que si $|\omega|>\omega_0$, alors $|\hat{g}(\omega)|<\epsilon/2$ et

$$|\hat{f}(\omega)| \leq \|\hat{f} - \hat{g}\|_{L^{\infty}} + |\hat{g}(\omega)| \leq \|f - g\|_{L^{1}} + |\hat{g}(\omega)| \leq \epsilon$$

Théorème d'inversion

Théorème (Théorème d'inversion dans $L^1(\mathbb{R})$)

La transformation de Fourier est injective de $L^1(\mathbb{R})$ dans $C_0(\mathbb{R})$. De plus, si $\mathcal{F}f \in L^1(\mathbb{R})$, alors, pour presque tout $t \in \mathbb{R}$, on vérifie

$$f(t) = rac{1}{2\pi} \int_{\mathbb{R}} \mathcal{F} f(\omega) \mathrm{e}^{i\omega t} \mathrm{d}\omega.$$

Autrement dit, on a

$$f = \frac{1}{2\pi} \bar{\mathcal{F}}(\mathcal{F}f),$$

où $\bar{\mathcal{F}}$ désigne la transformée de Fourier inverse, définie pour toute fonction $f\in L^1(\mathbb{R})$ par

$$ar{\mathcal{F}}f(\omega) = \int_{\mathbb{R}} \mathcal{F}f(t)e^{i\omega t}\mathrm{d}t = \mathcal{F}f(-\omega).$$

Sommaire

Théorie L^2

Motivations

L'espace $L^1(\mathbb{R})$ possède de "bonnes" propriétés vis à vis de la transformée de Fourier

- définition possible via une intégrale
- ightharpoonup image dans l'espace $C_0^\infty(\mathbb{R})$

mais:

- $ightharpoonup L^1(\mathbb{R})$ n'est pas stable par transformation de Fourier
- on "perd" certains résultats obtenus pour les séries de Fourier (formule de Plancherel, etc.)

Peut-on étendre la définition de la transformée de Fourier à l'espace $L^2(\mathbb{R})$ des fonctions de carré intégrable?

L'espace $L^2(\mathbb{R})$

On note $L^2(\mathbb{R})$ l'espace des fonctions de carré intégrable sur \mathbb{R} . Muni du produit scalaire hermitien défini par

$$\forall f, g \in L^2 \times L^2, \langle f, g \rangle := \int_{\mathbb{R}} f(t) \overline{g(t)} dt,$$

 $L^2(\mathbb{R})$ est un espace de Hilbert i.e un espace vectoriel doté d'un produit scalaire hermitien et complet pour la norme associée

$$||f||_{L^2} = \sqrt{\int_{\mathbb{R}} |f(t)|^2 \mathrm{d}t}$$

 \triangle Une fonction de $L^2(\mathbb{R})$ n'est pas nécessairement intégrable:

$$L^2(\mathbb{R}) \not\subset L^1(\mathbb{R})$$

Transformée de Fourier dans $L^2(\mathbb{R})$

- ▶ On peut montrer que si $f \in L^1(\mathbb{R}) \cap L^2(\mathbb{R})$, alors la transformée de f est nécessairement dans $L^2(\mathbb{R})$.
- ▶ Par ailleurs, on sait que l'ensemble C_c^{∞} est dense à la fois dans $L^1(\mathbb{R})$ et dans $L^2(\mathbb{R})$, ce qui prouve que $L^1(\mathbb{R}) \cap L^2(\mathbb{R})$ est dense dans $L^2(\mathbb{R})$.

Proposition

L'application $f \in L^1(\mathbb{R}) \cap L^2(\mathbb{R}) \to \hat{f} \in L^2(\mathbb{R})$ peut être prolongée en une application \mathcal{F} sur $L^2(\mathbb{R})$ telle que

$$\forall f \in L^2(\mathbb{R}), \|\mathcal{F}f\|_{L^2(\mathbb{R})} = \sqrt{2\pi} \|f\|_{L^2(\mathbb{R})}.$$

On voit que la transformée de Fourier est un automorphisme de $L^2(\mathbb{R})$.

Transformée de Fourier dans $L^2(\mathbb{R})$

La définition de la TF sur $L^2(\mathbb{R})$ est abstraite: quel sens donner à la formule $\hat{f}(\omega) = \int_{\mathbb{R}} f(t)e^{-i\omega t}\mathrm{d}t$?

Dans le cas général, cette formule n'a pas de sens: rien ne prouve l'intégrabilité de $t \to f(t)e^{-i\omega t}$.

MAIS:

▶ Si $f \in L^1(\mathbb{R}) \cap L^2(\mathbb{R})$, pour presque tout $\omega \in \mathbb{R}$,

$$\mathcal{F}f(\omega) = \int_{\mathbb{R}} f(x)e^{-ix\omega}dx.$$

Formule de Plancherel

Proposition (Formule de Plancherel)

Soit $f \in L^2$. On a l'égalité suivante

$$||f||_{L^2} = \frac{1}{\sqrt{2\pi}} ||\mathcal{F}f||_{L^2}. \tag{1}$$

Plus généralement, on vérifie, pour tout couple de fonctions f et g dans L^2 :

$$\int_{\mathbb{R}} f(t) \overline{g(t)} dt = \frac{1}{2\pi} \int_{\mathbb{R}} \mathcal{F} f(\omega) \overline{\mathcal{F} g(\omega)} d\omega.$$
 (2)

En d'autres termes, le produit scalaire de deux fonctions est invariant par la transformation de Fourier.

Exemple: spectre du signal de houle

Figure: Spectre du signal de houle