Investigating Dark Matter with Gravitational waves and cosmology

Dark Matter?

- Makes up the majority of the universe's matter budget
- Has only very limited interactions with standard model particles
- Clusters gravitationally, at least on large scales

 Surveys and experiments have ruled out, or constrained many models: we know a lot about what dark matter is not, but not what it is! Relevant papers:

2207.03107

2207.14126

2011.04206

'All roads lead to Rome'?

 Several types of dark matter models lead to suppressed structure at small scales - this can give similar observational signatures despite different origins.

Relevant papers:

2207.03107

2207.14126

2011.04206

@M Mosbech

From DM interactions to GWs

Relevant papers:

2207.03107

2207.14126

2011.04206

@M Mosbech

@mosbech.bsky.social

A similar analysis of host galaxies was later done by Rauf et al. '23

*Star formation rate density

Sidebar: Galaxy constraints

- Observed galaxy populations offer a strong constraint on DM-neutrino interactions
- Rules out previous hint (<u>Hooper & Lucca '22</u>) + improves bounds.

Relevant papers:

2207.03107

2207.14126

2011.04206

@M Mosbech

The GW signal

- Effect of suppressed structure is largest at early times
- LVK bounds on BBH rate can not yet improve dark matter bounds.

Relevant papers:

2207.03107

2207.14126

2011.04206

@M Mosbech

The next generation

• The next generation of GW detectors (Einstein telescope + Cosmic explorer) has much improved redshift range, allowing improved constraints.

Relevant papers:

2207.03107

2207.14126

2011.04206

@M Mosbech

Markus R. Mosbech - Investigating Dark Matter with GWs and Cosmology

IDM vs WDM

- Differences between interacting and warm dark matter are erased by non-linear structure formation
- Good: constraints universal; Bad: cannot distinguish at low z
- Warm dark matter constraints will apply to DM-neutrino interactions
- SKA-low can potentially constrain to $u_{\nu\chi}$ ~4x10⁻⁸.

Relevant papers:

2207.03107

2207.14126

2011.04206

@M Mosbech

Identifying differences

- Differences exist at high redshift.
- Percent-level measurement of P(k) required
- Further studies required to determine feasibility

Relevant papers:

2207.03107

2207.14126

2011.04206

@M Mosbech

Conclusions and Overview

- Gravitational waves offer a new and exciting probe of structure formation - also at early times.
- Upcoming radio telescopes can provide powerful constraints with 21cm line intensity mapping.
- High precision measurements of the matter power spectrum at high redshift is crucial to distinguish between dark matter models with suppressed small scale structure.
- Thanks for listening!

Relevant papers: 2207.03107

2207.14126

2011.04206

@M Mosbech

Bonus slide: Numbers

m_{wdm}	$u_{ u_{DM}}$	$u_{\gamma DM}$
1 keV	8.5×10^{-7}	4.0×10^{-7}
2 keV	1.75×10^{-7}	9.0×10^{-8}
3 keV	7×10^{-8}	3.5×10^{-8}
4 keV	3.6×10^{-8}	1.8×10^{-8}

Data	Max $u_{ u_{DM}}$	Source
Planck + SDSS	$\sim 3 \times 10^{-4}$	Mosbech et al. arXiv:2011.04206
Planck + SDSS+Ly $lpha$	~10 ⁻⁵	Hooper & Lucca arXiv:2110.04024
SKA 21cm line intensity map	$\sim 4 \times 10^{-8}$	Mosbech, Boehm, & Wong arXiv.2207.03107
2dF galaxy counts	$\sim 3 \times 10^{-6} - 10^{-7}$	Mosbech et al. arXiv:2207.14126
Einstein Telescope + Cosmic Explorer	$\sim 4 \times 10^{-7}$ *	Mosbech et al. arXiv:2207.14126

^{*:} Forecast – constraint assuming non-detection

Relevant papers:

2207.03107

2207.14126

2011.04206

@M Mosbech

