Comenzado en	Friday, 3 de March de 2023, 15:57
Estado	Terminados
Finalizado en	Friday, 3 de March de 2023, 17:27
Tiempo empleado	1 hora 30 mins
Calificación	66.67 de un total de 100.00

Pregunta 1

Correcta

Puntúa 50.00 sobre 50.00

Un cilindro sólido uniforme de 24cm de diámetro y 25kg de masa, se encuentra sobre una mesa horizontal, una cuerda que pasa por una polea de 6cm de diámetro y 5kg de masa, lo une a un bloque de masa 12kg que cae.

a. La aceleración de la masa, en m/s^2 , es de:

4.93

V

b. La aceleración angular del cilindro, en rad/s^2 , es de:

20.5

V

c. La aceleración angular de la polea, en rad/s^2 , es de:

164

V

d. La tensión de la cuerda entre el cilindro y la polea, en N, es de:

46.2

V

e. La tensión de la cuerda entre el bloque y la polea, en N, es de:

58.5

V

Pregunta 2

Parcialmente correcta

Puntúa 16.67 sobre 50.00

Una rueda de masa 80.0 kg y radio de 0.50 m, rueda gira con respecto a un eje fijo centroidal y tiene una inercia de 16.00 $kg \cdot m^2$ con respecto a ese eje.

Se le proporciona un Torque ${\bf T}$ que hace que gire a favor de las agujas del reloj durante 10.0 s <u>a partir del reposo</u>. Existe todo el tiempo un torque por fricción en el eje constante de 10.00 $N\cdot m$ que hace que después de los 10.0 s iniciales la rueda llegue al reposo. Si en los primeros 10 s tiene una aceleración angular de 5.0 rad/s². Calcule:

a) La magnitud del Torque T en $N \cdot m$ durante los 10.0 s

b) El cambio de la energía cinética en ${\bf J}$ que tiene en esos 10.0 s

Incorrecta

La respuesta correcta es: 20000

Puntúa 0.00 sobre 1.00

c) El tiempo en s de frenado de la rueda

Incorrecta

La respuesta correcta es: 80 Puntúa 0.00 sobre 1.00

→ Actividad 10

Ir a...

Actividad 12 ►