

จุฬาลงกรณ์มหาวิทยาลัย ประมวลรายวิชา (Course Syllabus)

1.รหัสวิชา 2758688

2.ชื่อย่อภาษาอังกฤษ ML PRIN APPLN

3.ชื่อวิชา

้ชื่อภาษาไทย : หลักการเรียนรู้ของเครื่องและการประยุกต์

ชื่อภาษาอังกฤษ : Machine Learning Principles and Application

4.หน่วยกิต 2.0 (1.0 – 2.0 – 5.0)

5.ส่วนงาน

5.1.คณะ/หน่วยงานเทียบเท่า คณะครุศาสตร์

5.2.ภาควิชา ภาควิชาวิจัยและจิตวิทยาการศึกษา

5.3.สาขาวิชา สาขาวิชาสถิติการศึกษา

6.วิธีการวัดผล Letter Grade (A B+ B C+ C D+ D F)

7.ประเภทรายวิชา Semester Course 8.ภาคการศึกษาที่เปิดสอน ทวิภาค ภาคปลาย

9.ปีการศึกษาที่เปิดสอน 2565

10. การจัดการสอน

	ตอนเรียน	ผู้สอน	ช่วงเวลาประเมิน
I		10018602 ผศ. ดร. สิวะโชติ ศรีสุทธิยากร	30-03-2566 ถึง 30-05-2566

11.เงื่อนไขรายวิชา

12.หลักสูตรที่ใช้รายวิชานี้

25510011108963 : วิธีวิทยาการพัฒนานวัตกรรมทางการศึกษา (rev.2020)

13.ระดับการศึกษา มหาบัณฑิต ชั้นปีที่ 1 ดุษฎีบัณฑิต ชั้นปีที่ 1

14.สถานที่เรียน 15.เนื้อหารายวิชา

มโนทัศน์และหลักการของการเรียนรู้ของเครื่อง ประเภทของการเรียนรู้ของเครื่อง เทคนิคสำหรับ จำแนกประเภทข้อมูล ได้แก่ การวิเคราะห์ความถดถอยโลจิสติก แรมดอมฟอร์เรสท์ ต้นไม้ตัดสินใจ ซัพพอร์ต เวกเตอร์แมทชีน เค-เนียร์เรสท์เนเบอร์ และ เนอีฟเบย์ เทคนิคสำหรับทำนายแนวโน้ม เช่น การวิเคราะห์ความ ถดถอยเชิงเส้น การวิเคราะห์ความถดถอยพหุนาม การวิเคราะห์ความถดถอยแบบลาสโซ่ การตัดสินใจแบบ มาร์คอฟ และการทำนายแบบมอนติคาร์โล เทคนิคสำหรับจัดกลุ่มข้อมูล เช่น เค-มีน เค-เนียร์เรสท์เนเบอร์ การ เรียนรู้ด้วยกฎของความสัมพันธ์ และดีบีสแกน เทคนิคสำหรับลดจำนวนมิติของข้อมูล เช่น การวิเคราะห์องค์ ประกอบหลัก การแยกค่าแบบเดี่ยว และเทคนิคที-เอสเอ็นฮี เทคนิคโครงข่ายใยประสาท เช่น โครงข่ายใยประสาท แบบคอนโวลูซัน โครงข่ายใยประสาทแบบวนซ้ำ โครงข่ายใยประสาทแบบแอลเอสทีเอ็ม และโครงข่ายใยประสาท แบบเกทรีเคอเรนยูนิต และเทคนิคเอ็นเซ็มเบิล การตรวจสอบ ประเมินความเหมาะสม และการปรับปรุงโมเดล การประมวลผลบนระบบคลาวด์ เน้นการประยุกต์ใช้การเรียนรู้ของเครื่องในการวิจัยและจิตวิทยาการศึกษา

Concepts and principles of machine learning; Types of machine learning; Classification techniques, such as, logistic regression, random forest, decision trees, support vector machines, k-nearest neighbors, and Naïve Bayes; Prediction techniques, such as, linear regression, polynomial regression, least absolute shrinkage and selection operator (LASSO), Markov decision, and Monte Carlo prediction; Clustering techniques, such as, k-means, k-nearest neighbor, association rule learning, and density-based spatial

clustering of applications with noise (DBSCAN); Dimensionality reduction techniques, such as, principal component analysis (PCA), singular value decomposition (SVD), and t-distributed stochastic neighbor embedding (t-SNE); Neural networks techniques, such as, convolutional neural network (CNN), recurrent neural network (RNN), long short-term memory (LSTM), gated recurrent units (GRU); Ensemble techniques; Model validation, evaluation and improvement; Cloud computing; Emphasis on applications of machine learning in educational research and psychology.

16.ประมวลการเรียนรายวิชา

- 16.1.รูปแบบการจัดการเรียนรู้
 - ✓ แบบออนไลน์ (Online)

16.2.วัตถประสงค์เชิงพฤติกรรม

#	วัตถุประสงค์เชิงพฤติกรรม	
1	สามารถอธิบายหลักการของอัลกอริทึมการเรียนรู้ของเครื่อง ผลการเรียนรู้ : • 01.1.รู้รอบ • 01.2.รู้ลึก • 02.1.มีคุณธรรมและจริยธรรม • 02.2.มีจรรยาบรรณ • 03.3.มีทักษะในการคิดแก้ปัญหา • 04.1.มีทักษะทางวิชาชีพ • 04.2.มีทักษะการสื่อสาร • 04.3.มี ทักษะทางเทคโนโลยีสารสนเทศ • 04.4.มีทักษะทางคณิตศาสตร์และสถิติ • 05.1.ใฝ่รู้ • 05.2.รู้จักวิธี การเรียนรู้ วิธีการสอน/พัฒนา : • การบรรยาย • การอภิปราย • การฝึกปฏิบัติ • การเรียนรู้ด้วยตนเอง วิธีการประเมิน : • การสอบข้อเขียน • การประเมินการบ้าน • การประเมินรายงาน/โครงงาน • การเข้า ชั้นเรียน	
2	เขียนโปรแกรม R หรือ Python เพื่อวิเคราะห์ข้อมูลโดยใช้อัลกอริทึมการเรียนรู้ของเครื่องได้ ผลการเรียนรู้ : • 01.1.รู้รอบ • 01.2.รู้สึก • 02.1.มีคุณธรรมและจริยธรรม • 02.2.มีจรรยาบรรณ • 03.1.สามารถคิดอย่างมีวิจารณญาณ • 03.2.สามารถคิดริเริ่มสร้างสรรค์ • 03.3.มีทักษะในการคิด แก้ปัญหา • 04.1.มีทักษะทางวิชาชีพ • 04.2.มีทักษะการสื่อสาร • 04.3.มีทักษะทางเทคโนโลยี สารสนเทศ • 04.4.มีทักษะทางคณิตศาสตร์และสถิติ • 04.5.มีทักษะการบริหารจัดการ • 05.1.ใฝ่รู้ • 05.2.รู้จักวิธีการเรียนรู้ วิธีการสอน/พัฒนา : • การบรรยาย • การอภิปราย • การฝึกปฏิบัติ • การเรียนรู้ด้วยตนเอง วิธีการประเมิน : • การสอบข้อเขียน • การประเมินการบ้าน • การประเมินรายงาน/โครงงาน • การเข้า ชั้นเรียน	
3	เลือกและประยุกต์ใช้อัลกอริทึมการเรียนรู้ของเครื่องในการวิจัยและจิตวิทยาการศึกษาได้ ผลการเรียนรู้ : • 01.1.รู้รอบ • 01.2.รู้สึก • 02.1.มีคุณธรรมและจริยธรรม • 02.2.มีจรรยาบรรณ • 03.1.สามารถคิดอย่างมีวิจารณญาณ • 03.2.สามารถคิดริเริ่มสร้างสรรค์ • 03.3.มีทักษะในการคิด แก้ปัญหา • 04.1.มีทักษะทางวิชาชีพ • 04.2.มีทักษะการสื่อสาร • 04.3.มีทักษะทางเทคโนโลยี สารสนเทศ • 04.4.มีทักษะทางคณิตศาสตร์และสถิติ • 04.5.มีทักษะการบริหารจัดการ • 05.1.ใฝ่รู้ • 05.2.รู้จักวิธีการเรียนรู้ • 10.มีความเป็นครู วิธีการสอน/พัฒนา : • การบรรยาย • การอภิปราย • การฝึกปฏิบัติ • การสอนโดยใช้วิจัยเป็นฐาน • การสอนโดยใช้ปัญหาเป็นฐาน • การสอนโดยใช้โครงงาน • การให้คำปรึกษารายบุคคล • กิจกรรม • การเรียนรู้ด้วยตนเอง วิธีการประเมิน : • การสอบข้อเขียน • การสอบทักษะ • การสังเกตพฤติกรรม • การประเมินผลงาน/ บทเรียนที่ถอดประสบการณ์จากนิสิต • การประเมินการบ้าน • การประเมินรายงาน/โครงงาน • Performance testing • การเข้าชั้นเรียน	

ตารางแสดงวัตถุประสงค์เชิงพฤติกรรม

รายละเอียด 01 02 03 04 05 06 07 08 09 10 01.101.202.102.203.103.203.304.104.204.304.404.505.105.2

16.3.แผนการสอนรายสัปดาห์

สัปดาห์ที่	เนื้อหาที่สอน	การมอบหมายงาน	
1	Introduction to machine learning - คำและ concepts พื้นฐานที่สำคัญ - โปรแกรม/เครื่องมือที่ใช้ - workflow ของการพัฒนาโมเดลการเรียนรู้ของเครื่อง	การบ้าน 1	

	ประกอบด้วย การแบ่งส่วนข้อมูล การ fit โมเดลทำนาย และการตรวจสอบประสิทธิภาพในการทำนายของโมเดล โดยจะใช้ linear regression และ logistic regressio model เป็นตัวอย่าง วัตถุประสงค์เชิงพฤติกรรม: • 1 ผลการเรียนรู้: • 01.1 • 01.2 • 02.1 • 02.2 • 03.3 • 04.1 • 04.2 • 04.3 • 04.4 • 05.1 • 05.2 ผู้สอน: • สิวะโชติ		
2	Data Preprocessing เนื้อหาส่วนนี้เกี่ยวข้องกับการเต รียมและทำความสะอาดข้อมูลสำหรับกระบวนการพัฒนา โมเดลการเรียนรู้ของเครื่อง เช่น การจัดระเบียบและจัด กระทำข้อมูล การแปลงข้อมูล การจัดการกับค่าสูญหาย การแก้ปัญหา Imbalance class การคัดเลือกตัวแปร เป็นต้น วัตถุประสงค์เชิงพฤติกรรม : • 1 • 2 • 3 ผลการเรียนรู้ : • 01.1 • 01.2 • 02.1 • 02.2 • 03.3 • 04.1 • 04.2 • 04.3 • 04.4 • 05.1 • 05.2 • 03.1 • 03.2 • 04.5 • 10 ผู้สอน : • สิวะโชติ	การบ้าน 2	CU C
3-4	- Regression and Classification Models เช่น Regularization Regression, MARs, k-nearest neighbors, naive bayes, decision trees, support vector machine, Hyperparameter tuning วัตถุประสงค์เชิงพฤติกรรม : • 1 • 2 • 3 ผลการเรียนรู้ : • 01.1 • 01.2 • 02.1 • 02.2 • 03.3 • 04.1 • 04.2 • 04.3 • 04.4 • 05.1 • 05.2 • 03.1 • 03.2 • 04.5 • 10 ผู้สอน : • สิวะโชติ	การบ้าน 3	CU C
5-6	Clustering Methods เนื้อหาเกี่ยวข้องกับการจัดกลุ่ม ข้อมูลด้วยอัลกอริทึมในกลุ่ม unsupervised learning ได้แก่ k-means clustering, hierarchical clustering, DBSCAN หรือ model-based clustering เป็นต้น วัตถุประสงค์เชิงพฤติกรรม:•1•2•3 ผลการเรียนรู้:•01.1•01.2•02.1•02.2•03.3•04.1•04.2•04.3•04.4•05.1•05.2•03.1•03.2•04.5•10 ผู้สอน:•สิวะโชติ		CU C
7 CV		การบ้าน 5	CU C
8-9	Ensemble Methods เนื้อหาจะกล่าวถึง supervised learning ที่มีประสิทธิภาพสูงขึ้นมากกว่ากลุ่ม single learning ได้แก่ เทคนิคในกลุ่ม bagging, boosting และ random forests เป็นต้น วัตถุประสงค์เชิงพฤติกรรม : • 1 • 2 • 3 ผลการเรียนรู้ : • 01.1 • 01.2 • 02.1 • 02.2 • 03.3 • 04.1 • 04.2 • 04.3 • 04.4 • 05.1 • 05.2 • 03.1 • 03.2 • 04.5 • 10 ผู้สอน : • สิวะโชติ	การบ้าน 6	CU C

10	สอบกลางภาค (น่าจะ 1 เมษายน 2566) วัตถุประสงค์เชิงพฤติกรรม : • 1 • 2 • 3 ผลการเรียนรู้ : • 01.1 • 01.2 • 02.1 • 02.2 • 03.3 • 04.1 • 04.2 • 04.3 • 04.4 • 05.1 • 05.2 • 03.1 • 03.2 • 04.5 • 10 ผู้สอน : • สิวะโชติ	
11-13	Deep learning เนื้อหาส่วนนี้จะกล่าวถึงพื้นฐานของ deep learning และโมเดล deep learning ที่ เกี่ยวข้องได้แก่ neural networks, convolutional neural networks (CNNs) และ recurrent neural networks (RNNs) เป็นต้น วัตถุประสงค์เชิงพฤติกรรม : • 1 • 2 • 3 ผลการเรียนรู้ : • 01.1 • 01.2 • 02.1 • 02.2 • 03.3 • 04.1 • 04.2 • 04.3 • 04.4 • 05.1 • 05.2 • 03.1 • 03.2 • 04.5 • 10 ผู้สอน : • สิวะโชติ	CU CAS
14-15	Reinforcement learning เนื้อหาเกี่ยวข้องกับการ สร้าง agent เพื่อเรียนรู้จากการลองผิดลองถูก โดยใช้ เทคนิคที่เกี่ยวข้องเช่น Q-learning และ Monte Carlo methods เป็นต้น วัตถุประสงค์เชิงพฤติกรรม: • 1 • 2 • 3 ผลการเรียนรู้: • 01.1 • 01.2 • 02.1 • 02.2 • 03.3 • 04.1 • 04.2 • 04.3 • 04.4 • 05.1 • 05.2 • 03.1 • 03.2 • 04.5 • 10 ผู้สอน: • สิวะโชติ	CU CAS
16	นำเสนอผลการวิจัย (งานกลุ่ม) วัตถุประสงค์เชิงพฤติกรรม : • 1 • 2 • 3 ผลการเรียนรู้ : • 01.1 • 01.2 • 02.1 • 02.2 • 03.3 • 04.1 • 04.2 • 04.3 • 04.4 • 05.1 • 05.2 • 03.1 • 03.2 • 04.5 • 10 ผู้สอน : • สิวะโซติ	2 CU CAS

16.4. สื่อการสอน (Media)

- ✓ สื่อนำเสนอในรูปแบบ Powerpoint media
- ✓ สื่ออิเล็กทรอนิกส์ เว็บไซต์
- ✓ สื่ออิเล็กทรอนิกส์ เว็บไซต์

16.5.การติดต่อสื่อสารกับนิสิตผ่านระบบเครือข่าย

16.5.1.รูปแบบการสื่อสารและวิธีการ

ใช้งาน: ✓ อีเมล์/Email ✓ Facebook ✓ slack ✓ KruRoo LMS

16.5.2.ระบบจัดการการเรียนรู้ (LMS)

ที่ใช้ ✓ google classroom ✓ KruRoo LMS

16.6.จำนวนชั่วโมงที่ให้คำปรึกษาแก่

นิสิต 2.0 ชั่วโมงต่อสัปดาห์

16.7.การประเมินผล

กิจกรรมการประเมิน	ร้อยละ
สอบกลางภาค	30.00
งานวิจัยกลุ่ม	40.00
การบ้านหรืองานที่ได้รับมอบหมาย	20.00
การเข้าและมีส่วนร่วมในชั้นเรียน	10.00

เกณฑ์การวัดผล

17.รายชื่อหนังสืออ่านประกอบ

17.1.หนังสือบังคับ

17.2.หนังสืออ่านเพิ่มเติม

- 1.Agresti, A. (2003). Categorical Data Analysis. Wiley Series in Probability and Statistics. Wiley.
- 7. Faraway, J. J. (2016b). Linear Models with R. Chapman and Hall/CRC.
- 9.Géron, A. (2017). Hands-on Machine Learning with Scikit-Learn and Tensor- Flow: Concepts, Tools, and Techniques to Build Intelligent Systems. O'Reilly Media, Inc. 10.Goodfellow, I., Bengio, Y., and Courville, A. (2016). Deep Learning, volume 1. MIT Press Cambridge.
- 12.Harrell, F. E. (2015). Regression Modeling Strategies: With Applications to Linear Models, Logistic and Ordinal Regression, and Survival Analysis. Springer Series in Statistics. Springer International Publishing.
- 18.Kuhn, M. and Johnson, K. (2013). Applied Predictive Modeling, volume 26. Springer. 19.Kutner, M. H., Nachtsheim, C. J., Neter, J., and Li, W. (2005). Applied Linear Statistical Models. McGraw Hill, 5th edition.

17.3.บทความวิจัย/บทความวิชาการ (ถ้ามี)

- 6.Efron, B. and Tibshirani, R. (1997). Improvements on cross-validation: the 632+ bootstrap method. Journal of the American Statistical Association, 92(438):548–560.
- 11.Greenwell, B. M., McCarthy, A. J., Boehmke, B. C., and Lui, D. (2018c). Residuals and diagnostics for binary and ordinal regression models: An introduction to the sure package. The R Journal, 10(1):1–14.
- 13. Hartigan, J. A. and Wong, M. A. (1979). Algorithm as 136: A k-means clustering algorithm. Journal of the Royal Statistical Society. Series C (Applied Statistics), 28(1):100–108.
- 14. Hawkins, D. M., Basak, S. C., and Mills, D. (2003). Assessing model fit by cross-validation. Journal of Chemical Information and Computer Sciences, 43(2):579–586.
- 15. Hoerl, A. E. and Kennard, R. W. (1970). Ridge regression: Biased estimation for nonorthogonal problems. Technometrics, 12(1):55–67.
- 16.Ke, G., Meng, Q., Finley, T., Wang, T., Chen, W., Ma, W., Ye, Q., and Liu, T.-Y. (2017). Lightgbm: A highly efficient gradient boosting decision tree. In Advances in Neural Information Processing Systems, pages 3146–3154.
- 22.Tibshirani, R. (1996). Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society. Series B (Methodological), pages 267–288.

17.4.สื่ออิเล็กทรอนิกส์ หรือเว็บไซต์ที่เกี่ยวข้อง

- 2.Allaire, J. and Chollet, F. (2019). keras: R Interface to 'Keras'. R package version 2.2.4.1.9001.
- 3.Biecek, P. (2019). DALEX: Descriptive mAchine Learning EXplanations. R package version 0.4.
- 4.Deane-Mayer, Z. A. and Knowles, J. E. (2016). caretEnsemble: Ensembles of Caret Models. R package version 2.0.0.
- 5.Dorogush, A. V., Ershov, V., and Gulin, A. (2018). Catboost: gradient boosting with categorical features support. arXiv preprint arXiv:1810.11363.
- 8.Fraley, C., Raftery, A. E., Murphy, T. B., and Scrucca, L. (2012). mclust Version 4 for R: Normal Mixture Modeling for Model-based Clustering, Classification, and Density Estimation. Technical report, University of Washington.
- 17.Kuhn, M. (2017a). AmesHousing: The Ames Iowa Housing Data. R package version 0.0.3.
- 20. Molnar, C. (2019). iml: Interpretable Machine Learning. R package version 0.9.0.
- 21.Liaw, A. and Wiener, M. (2002). Classification and regression by randomforest. R News, 2(3):18–22.

18.การประเมินการสอน

18.1.การประเมินการสอน

ผ่านระบบ CUCAS - SCE

18.2.การปรับปรุงจากผลการประเมินการสอนครั้งที่ผ่านมา

1. เพิ่มตัวอย่าง จัดลำดับเนื้อหาใหม่ 2. ปรับปรุงระบบและวิธีการสอนให้เหมาะกับการสอนแบบ

online

19.หมายเหตุ