Elementos mínimos y minimales

Definición

Elementos mínimos y minimales

Definición

Sea R un orden parcial sobre un conjunto A.

▶ Un elemento $a \in A$ es un elemento mínimo de R si para todo $b \in A$ se tiene que aRb

Elementos mínimos y minimales

Definición

- ▶ Un elemento $a \in A$ es un elemento mínimo de R si para todo $b \in A$ se tiene que aRb
- Un elemento $a \in A$ es un elemento minimal de R si no existe un elemento $b \in A$ tal que $b \neq a$ y bRa

1. Considere el orden usual \leq sobre \mathbb{N} .

1. Considere el orden usual \leq sobre \mathbb{N} . ¿Es 0 un elemento mínimo de \leq ?

1. Considere el orden usual \leq sobre \mathbb{N} . ¿Es 0 un elemento mínimo de \leq ? ¿Es 0 un elemento minimal de \leq ?

- 1. Considere el orden usual \leq sobre \mathbb{N} . ¿Es 0 un elemento mínimo de \leq ? ¿Es 0 un elemento minimal de \leq ?
- 2. Recuerde que el orden parcial \leq_{coord} sobre $\mathbb{N} \times \mathbb{N}$ se define como:

$$(a,b) \leq_{\text{coord}} (c,d)$$
 si y sólo si $a \leq b$ y $c \leq d$.

¿Tiene este orden elementos mínimos?

- 1. Considere el orden usual \leq sobre \mathbb{N} . ¿Es 0 un elemento mínimo de \leq ? ¿Es 0 un elemento minimal de \leq ?
- 2. Recuerde que el orden parcial \leq_{coord} sobre $\mathbb{N} \times \mathbb{N}$ se define como:

$$(a,b) \leq_{\text{coord}} (c,d)$$
 si y sólo si $a \leq b$ y $c \leq d$.

- 1. Considere el orden usual \leq sobre \mathbb{N} . ¿Es 0 un elemento mínimo de \leq ? ¿Es 0 un elemento minimal de \leq ?
- 2. Recuerde que el orden parcial \leq_{coord} sobre $\mathbb{N} \times \mathbb{N}$ se define como:

$$(a,b) \leq_{\mathsf{coord}} (c,d)$$
 si y sólo si $a \leq b$ y $c \leq d$.

¿Tiene este orden elementos mínimos? ¿Tiene elementos minimales?

3. Considere el orden parcial \leq_{coord} definido como antes pero sobre $\mathbb{N} \times \mathbb{N} \setminus \{(0,0)\}.$

- 1. Considere el orden usual \leq sobre \mathbb{N} . ¿Es 0 un elemento mínimo de \leq ? ¿Es 0 un elemento minimal de \leq ?
- 2. Recuerde que el orden parcial \leq_{coord} sobre $\mathbb{N} \times \mathbb{N}$ se define como:

$$(a,b) \leq_{\mathsf{coord}} (c,d)$$
 si y sólo si $a \leq b$ y $c \leq d$.

¿Tiene este orden elementos mínimos? ¿Tiene elementos minimales?

3. Considere el orden parcial \leq_{coord} definido como antes pero sobre $\mathbb{N} \times \mathbb{N} \setminus \{(0,0)\}$. ¿Tiene este orden elementos mínimos?

- 1. Considere el orden usual \leq sobre \mathbb{N} . ¿Es 0 un elemento mínimo de \leq ? ¿Es 0 un elemento minimal de \leq ?
- 2. Recuerde que el orden parcial \leq_{coord} sobre $\mathbb{N} \times \mathbb{N}$ se define como:

$$(a,b) \leq_{\mathsf{coord}} (c,d)$$
 si y sólo si $a \leq b$ y $c \leq d$.

¿Tiene este orden elementos mínimos? ¿Tiene elementos minimales?

3. Considere el orden parcial \leq_{coord} definido como antes pero sobre $\mathbb{N} \times \mathbb{N} \setminus \{(0,0)\}$. ¿Tiene este orden elementos mínimos? ¿Tiene elementos minimales?

- 1. Considere el orden usual \leq sobre \mathbb{N} . ¿Es 0 un elemento mínimo de \leq ? ¿Es 0 un elemento minimal de \leq ?
- 2. Recuerde que el orden parcial \leq_{coord} sobre $\mathbb{N} \times \mathbb{N}$ se define como:

$$(a,b) \leq_{\mathsf{coord}} (c,d)$$
 si y sólo si $a \leq b$ y $c \leq d$.

- 3. Considere el orden parcial \leq_{coord} definido como antes pero sobre $\mathbb{N} \times \mathbb{N} \setminus \{(0,0)\}$. ¿Tiene este orden elementos mínimos? ¿Tiene elementos minimales?
- 4. Demuestre que = es un orden parcial sobre \mathbb{N} .

- 1. Considere el orden usual \leq sobre \mathbb{N} . ¿Es 0 un elemento mínimo de \leq ? ¿Es 0 un elemento minimal de \leq ?
- 2. Recuerde que el orden parcial \leq_{coord} sobre $\mathbb{N} \times \mathbb{N}$ se define como:

$$(a,b) \leq_{\mathsf{coord}} (c,d)$$
 si y sólo si $a \leq b$ y $c \leq d$.

- 3. Considere el orden parcial \leq_{coord} definido como antes pero sobre $\mathbb{N} \times \mathbb{N} \setminus \{(0,0)\}$. ¿Tiene este orden elementos mínimos? ¿Tiene elementos minimales?
- 4. Demuestre que = es un orden parcial sobre \mathbb{N} . ¿Tiene este orden elementos mínimos?

- 1. Considere el orden usual \leq sobre \mathbb{N} . ¿Es 0 un elemento mínimo de \leq ? ¿Es 0 un elemento minimal de \leq ?
- 2. Recuerde que el orden parcial \leq_{coord} sobre $\mathbb{N} \times \mathbb{N}$ se define como:

$$(a,b) \leq_{\mathsf{coord}} (c,d)$$
 si y sólo si $a \leq b$ y $c \leq d$.

- 3. Considere el orden parcial \leq_{coord} definido como antes pero sobre $\mathbb{N} \times \mathbb{N} \setminus \{(0,0)\}$. ¿Tiene este orden elementos mínimos? ¿Tiene elementos minimales?
- 4. Demuestre que = es un orden parcial sobre \mathbb{N} . ¿Tiene este orden elementos mínimos? ¿Tiene elementos minimales?

Teorema

Sea R un orden parcial sobre un conjunto A.

1. Si a y b son elementos mínimos de R, entonces a = b.

Teorema

- 1. Si a y b son elementos mínimos de R, entonces a=b.
- 2. Si a es un elemento mínimo de R, entonces a es un elemento minimal de R.

Teorema

- 1. Si a y b son elementos mínimos de R, entonces a = b.
- 2. Si a es un elemento mínimo de R, entonces a es un elemento minimal de R.
- 3. Si a y b son elementos minimales de R, entonces no se tiene que aRb ni se tiene que bRa.

Teorema

- 1. Si a y b son elementos mínimos de R, entonces a = b.
- 2. Si a es un elemento mínimo de R, entonces a es un elemento minimal de R.
- 3. Si a y b son elementos minimales de R, entonces no se tiene que aRb ni se tiene que bRa.
- 4. Si R es un orden total y a es un elemento minimal de R, entonces a es un elemento mínimo de R.

Teorema

Sea R un orden parcial sobre un conjunto A.

- 1. Si a y b son elementos mínimos de R, entonces a = b.
- 2. Si a es un elemento mínimo de R, entonces a es un elemento minimal de R.
- 3. Si a y b son elementos minimales de R, entonces no se tiene que aRb ni se tiene que bRa.
- 4. Si R es un orden total y a es un elemento minimal de R, entonces a es un elemento mínimo de R.

Ejercicio

Demuestre el teorema.