WeeklyNote

2019.12.24 張慕琪

INTERNATIONAL JOURNAL OF CLIMATOLOGY

Int. J. Climatol. 34: 3264-3281 (2014)

Published online 20 January 2014 in Wiley Online Library

(wileyonlinelibrary.com) DOI: 10.1002/joc.3914

Statistical downscaling of general circulation model outputs to precipitation – part 1: calibration and validation

D. A. Sachindra, a* F. Huang, A. Barton and B. J. C. Perera

^a College of Engineering and Science, Footscray Park Campus, Victoria University, Melbourne, Australia

^b School of Science, Information Technology and Engineering, University of Ballarat, Victoria, Australia

- 1. 地表降水速率被认为是研究降水的最具代表的变量(列表中除7月不包含,其余月份均包含);
- 湿度变量(相对湿度和比湿)是大气水汽的代表性变量(12个月中有7个月均包含[February, March, May, September, October, November, December]);
- 3. 在7月中,被选中的变量仅有风速和 850hPa地势高度——这表明这些变量 在一定程度上也可解释降水过程;
- 4. 表格中被选中的格点基本围绕{4, 4}; 因此在选择变量时,不仅要考虑 其和观测降水的相关性还需考虑时间 尺度上的相关性。

Table 2. Final sets of potential predictors for each calendar month.

	montn.					
Month	Potential variables used in the model with grid locations					
January	Surface precipitation rate {(3,3),(4,4)} 1000 hPa specific humidity {(3,3),(3,4),(4,4)} 850 hPa meridional wind {(2,6),(3,5),(3,6)} 850 hPa relative humidity {(1,2)} 2 m specific humidity {(3,3),(3,4)}					
February	Surface precipitation rate {(3,4),(4,4),(4,5)}					
March	Surface precipitation rate {(3,3),(3,4),(3,5),(4,3),(4,4),(4,5),(4,6)}					
April	850hPa relative humidity {(4,3),(4,4)} Surface precipitation rate {(4,3)}					
May	Surface precipitation rate {(4,4),(5,5)} 850hPa geopotential height {(4,3)}					
June	Surface precipitation rate {(3,2),(3,3),(4,2),(4,3),(4,4),(4,5)} Mean sea level pressure {(4,3),(5,3)} 850hPa zonal wind {(2,4)} Surface pressure{(4,3),(5,3),(5,4)}					
July	850hPa zonal wind {(1,3),(1,4)} 850hPa geopotential height {(4,3),(4,4),(4,5)}					
August	Surface precipitation rate {(4,3),(5,4),(5,5)}					
September	Surface precipitation rate {(2,1),(2,2),(3,2),(3,3),(3,5),(4,2),(4,3),(4,4),(4,5)} 850hPa relative humidity {(3,3)} 700hPa relative humidity {(3,4)}					
October	Surface precipitation rate {(3,2),(4,2),(4,3),(4,4)} 850hPa relative humidity {(4,3)} 700hPa geopotential height {(1,1)}					
November	850hPa relative humidity {(3,2),(3,3)} Surface precipitation rate {(4,3),(4,5)}					
December	Surface precipitation rate {(2,1),(3,2),(4,3),(4,4),(5,5)} 850hPa relative humidity {(3,2)}					

hPa, atmospheric pressure in hectopascal; the locations are given within brackets (see Figure 1).

- 1. 该降尺度模型具有捕捉月降水特征和强度的能力。
- 在降水较小时被高
 估,在降水高值区域
 则又被低估。

Figure 2. Observed and Model_(NCEP/NCAR) reproduced monthly precipitation (1950 to 2010).

Figure 3. Scatter plots of observed and Model_(NCEP/NCAR) reproduced monthly precipitation for calibration (1950-1989) and validation

- 1. 该降尺度模型并未较 好的重现降水的高值 部分;
- 2. 并且,该模型对观测 数据的再现不如使用 NCEP/NCAR数据作 为输出的模型好;
- 然而,该模型还是可以大致捕捉了观测数据的降水特征;

(b) Validation

训练集和验证集中,均表现为在降水较小时被高估,在降水高值区域则又被低估;

(a) Calibration

2. 这是由于降水观测数据的方差要比GCM或再分析资料的方差大得多,因此在 降尺度过程中,模型只能观测数据方差的部分,而无法表达高值和低值。

- 1. 两个模型在训练集和 验证集均对观测的平 均值捕捉的很好;
- 2. 然而两个模型均无法 正确捕捉到观测数据 的标准差和方差;
- 3. 相较而言,使用NCEP/ NCAR数据作为输出的 降尺度模型表现更 好。

Table 3. Performances of downscaling models in calibration and validation.

Statistic	C	Calibration (1950–19	89)	Validation (1990-2010)/(1990-1999) ^a				
	Observations	Model _(NCEP/NCAR)	Model _(HadCM3)	Observ	vations	Model _(NCEP/NCAR)	Model _(HadCM3)	
				1990-2010	1990-1999			
Avg	81.8	82.0	81.7	73.3	81.8	81.0	87.6	
Std	61.7	53.2	41.1	56.9	64.3	51.9	44.5	
$C_{\rm v}$	0.75	0.65	0.50	0.78	0.79	0.64	0.51	
NSE		0.74	0.44			0.70	0.17	
SANS		0.66	0.26			0.61	-0.20	
R^2		0.74	0.44			0.72	0.22	

Avg, average of monthly precipitation in mm; C_v , coefficient of variation; NSE, Nash-Sutcliffe efficiency; R^2 , coefficient of determination; Std, standard deviation of monthly precipitation in mm; SANS, Seasonally Adjusted Nash-Sutcliffe efficiency. ^aBold italicized values in the table refer to period 1990–1999.

Table 4. Seasonal performances of downscaling models.

Model	Statistic	Calibration (1950–1989) Season			Validation (1990–2010)/(1990–1999) ^a Season				
		Summer	Autumn	Winter	Spring	Summer	Autumn	Winter	Spring
Observed Model _(NCEP/NCAR) Model _(HadCM3)	Avg	40.7 40.7 40.3	73.7 73.7 73.8	125.1 125.1 125.1	87.7 87.7 87.8	42.9/(44.3) 49.2 (44.9)	54.1/(57.0) 57.8 (78.8)	119.4/(136.1) 132.5 (128.3)	78.3/(89.8) 85.1 (98.5)
Observed Model _(NCEP/NCAR) Model _(HadCM3)	Std	33.7 26.0 15.6	58.8 46.6 34.4	64.5 54.1 26.7	53.5 43.9 30.5	41.0/(46.8) 29.8 (12.7)	43.1/(46.5) 33.1 (39.0)	61.2/(66.3) 54.1 (30.0)	48.4/(55.1) 41.7 (42.0)
Observed Model _(NCEP/NCAR) Model _(HadCM3)	C_{v}	0.83 0.64 0.39	0.80 0.63 0.47	0.52 0.43 0.21	0.61 0.50 0.35	0.96/(1.06) 0.61 (0.28)	0.80/(0.82) 0.57 (0.49)	0.51/(0.49) 0.41 (0.23)	0.62/(0.61) 0.49 (0.43)
$\begin{array}{l} Model_{(NCEP/NCAR)} \\ Model_{(HadCM3)} \end{array}$	NSE	0.60 0.16	0.63 0.34	0.70 0.17	0.67 0.33	0.42 (0.12)	0.75 (-0.58)	0.58 (-0.20)	0.64 (-0.15)
$\begin{array}{l} Model_{(NCEP/NCAR)} \\ Model_{(HadCM3)} \end{array}$	R^2	0.60 0.16	0.63 0.34	0.70 0.17	0.67 0.33	0.45 (0.13)	0.71 (0.04)	0.63 (0.00)	0.65 (0.09)

Avg, average of monthly precipitation in mm; C_v , coefficient of variation; NSE, Nash-Sutcliffe efficiency; R^2 , coefficient of determination; Std, standard deviation of monthly precipitation in mm. ^aBold italicized values in brackets in the table refer to period 1990–1999.

Figure 7. Seasonal scatter plots of observed and Model_(HadCM3) reproduced monthly precipitation for calibration (1950–1989) and validation (1990–1999).

Figure 6. Seasonal scatter plots of observed and Model_(NCEP/NCAR) reproduced monthly precipitation for calibration (1950–1989) and validation (1990–2010).

Figure 8. Precipitation probability exceedance curves (1950-1999).

Conclusions

- 1. 对于全年的降水,降水速率被认为是最可用于解释观测降水数据的变量(除去7月),湿度、地势高度、平均海平面高度地表压力、和风速都在整个时间段上和观测降水变量有较高的相关性;
- 2. 使用NCEP/NCAR作为输出的降尺度模型在训练集和验证集上均表现良好,而使用HadCM3的模型表现较差;
- 3. HadCM3输出和观测数据相差较大(There was a quality mismatch between the NCEP/NCAR reanalysis and HadCM3 outputs, over the period 1950–1999)。

谢谢