

Report No: CCISE170707803

FCC REPORT

(WIFI)

Applicant: Interglobe Connection Corp

Address of Applicant: 8228 NW 30th Terrace. Doral, Miami, FL 33122

Equipment Under Test (EUT)

Product Name: mobile phone

Model No.: Star G50E

Trade mark: EKO

FCC ID: 2AC7IEKOSG50E

Applicable standards: FCC CFR Title 47 Part 15 Subpart C Section 15.247

Date of sample receipt: 29 Jun., 2017

Date of Test: 29 Jun., to 06 Jul., 2017

Date of report issued: 06 Jul, 2017

Test Result: PASS*

Authorized Signature:

Bruce Zhang Laboratory Manager

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product and does not permit the use of the CCIS product certification mark. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report.

This report may only be reproduced and distributed in full. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards.

This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

^{*} In the configuration tested, the EUT complied with the standards specified above.

2 Version

Version No.	Date	Description
00	06 Jul, 2017	Original

Tested by:

Zora Lee
Date: 06 Jul, 2017

Test Engineer

Reviewed by: Date: 06 Jul, 2017

Project Engineer

3 Contents

			Page
1	cov	ER PAGE	1
2	VER:	SION	2
_	_		
5	GEN	ERAL INFORMATION	5
	5.1	CLIENT INFORMATION	5
	5.2		
	5.3		
	5.4		
	5.5	LABORATORY FACILITY	7
	5.6	LABORATORY LOCATION	8
	5.7	TEST INSTRUMENTS LIST	9
6	VERSION CONTENTS TEST SUMMARY GENERAL INFORMATION. 5.1 CLIENT INFORMATION. 5.2 GENERAL DESCRIPTION OF E.U.T. 5.3 TEST ENVIRONMENT AND MODE 5.4 MEASUREMENT UNCERTAINTY. 5.5 LABORATORY FACILITY 5.6 LABORATORY FACILITY 5.6 LABORATORY LOCATION 5.7 TEST INSTRUMENTS LIST. TEST RESULTS AND MEASUREMENT DATA 6.1 ANTENNA REQUIREMENT: 6.2 CONDUCTED EMISSION 6.3 CONDUCTED DUTPUT POWER 6.4 OCCUPY BANDWIDTH 6.5 POWER SPECTRAL DENSITY 6.6 BAND EDGE 6.6.1 Conducted Emission Method 6.2 Radiated Emission Method 6.7 SPURIOUS EMISSION 6.7.1 Conducted Emission Method 6.7.2 Radiated Emission Method 6.7.2 Radiated Emission Method 6.7.2 Radiated Emission Method 6.7.2 Radiated Emission Method		10
	6.1	ANTENNA REQUIREMENT:	10
	6.2	CONDUCTED EMISSION	11
	6.3	CONDUCTED OUTPUT POWER	14
	6.4	OCCUPY BANDWIDTH	18
	6.5	POWER SPECTRAL DENSITY	25
	6.6	BAND EDGE	29
	6.6.1	Conducted Emission Method	29
	6.6.2	Radiated Emission Method	32
	6.7	Spurious Emission	45
	6.7.1	Conducted Emission Method	45
	6.7.2	Radiated Emission Method	52
5.1 CLIENT INFORMATION 5.2 GENERAL DESCRIPTION OF E.U.T 5.3 TEST ENVIRONMENT AND MODE 5.4 MEASUREMENT UNCERTAINTY 5.5 LABORATORY FACILITY 5.6 LABORATORY LOCATION 5.7 TEST INSTRUMENTS LIST 6 TEST RESULTS AND MEASUREMENT DATA 6.1 ANTENNA REQUIREMENT: 6.2 CONDUCTED EMISSION 6.3 CONDUCTED EMISSION 6.4 OCCUPY BANDWIDTH 6.5 POWER SPECTRAL DENSITY 6.6 BAND EDGE 6.6.1 Conducted Emission Method 6.2 Radiated Emission Method 6.7 SPURIOUS EMISSION 6.7.1 Conducted Emission Method 6.7.2 Radiated Emission Method 6.7.1 TEST SETUP PHOTO			59
8	EUT	CONSTRUCTIONAL DETAILS	60

4 Test Summary

Test Item	Section in CFR 47	Result
Antenna requirement	15.203/15.247 (c)	Pass
AC Power Line Conducted Emission	15.207	Pass
Conducted Peak Output Power	15.247 (b)(3)	Pass
6dB Emission Bandwidth 99% Occupied Bandwidth	15.247 (a)(2)	Pass
Power Spectral Density	15.247 (e)	Pass
Band Edge	15.247(d)	Pass
Spurious Emission	15.205/15.209	Pass

Pass: The EUT complies with the essential requirements in the standard.

5 General Information

5.1 Client Information

Applicant:	Interglobe Connection Corp.
Address of Applicant:	8228 NW 30th Terrace. Doral, Miami, FL 33122
Manufacturer/ Factory:	Interglobe Connection Limited
Address of Manufacturer/ Factory:	UNIT 1302(A),13/F,PROSPERITY COMMERCIAL CENTRE,982 CANTON ROAD,MONGKOK,KOWLOON,HONG KONG

5.2 General Description of E.U.T.

Product Name:	mobile phone
Model No.:	Star G50E
Operation Frequency:	2412MHz~2462MHz (802.11b/802.11g/802.11n(H20))
Channel numbers:	11 for 802.11b/802.11g/802.11(H20)
Channel separation:	5MHz
Modulation technology: (IEEE 802.11b)	Direct Sequence Spread Spectrum (DSSS)
Modulation technology: (IEEE 802.11g/802.11n)	Orthogonal Frequency Division Multiplexing(OFDM)
Data speed (IEEE 802.11b):	1Mbps, 2Mbps, 5.5Mbps, 11Mbps
Data speed (IEEE 802.11g):	6Mbps, 9Mbps, 12Mbps, 18Mbps, 24Mbps, 36Mbps, 48Mbps,54Mbps
Data speed (IEEE 802.11n):	Up to 150Mbps
Antenna Type:	Internal Antenna
Antenna gain:	-1.5 dBi
Power supply:	Rechargeable Li-ion Battery DC3.8V-2000mAh
AC adapter:	Model: 853-5010 Input: AC100-240V 50/60Hz 0.15 A Output: DC 5.0V, 1.0 A

Operation Frequency each of channel For 802.11b/g/n(H20)							
Channel Frequency Channel Frequency Channel Frequency Channel Frequency							
1	2412MHz	4	2427MHz	7	2442MHz	10	2457MHz
2	2417MHz	5	2432MHz	8	2447MHz	11	2462MHz
3	3 2422MHz 6 2437MHz 9 2452MHz						

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

802.11b/802.11g/802.11n (H20)

Channel	Frequency
The lowest channel	2412MHz
The middle channel	2437MHz
The Highest channel	2462MHz

Report No: CCISE170707803

5.3 Test environment and mode

Operating Environment:	Operating Environment:				
Temperature:	24.0 °C				
Humidity:	54 % RH				
Atmospheric Pressure:	1010 mbar				
Test mode:					
Operation mode Keep the EUT in continuous transmitting with modulation					

The sample was placed 0.8m(below 1GHz)/1.5m(above 1GHz) above the ground plane of 3m chamber. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case are shown in Test Results of the following pages.

We have verified the construction and function in typical operation. All the test modes were carried out with the EUT in transmitting operation, which was shown in this test report and defined as follows:

Per-scan all kind of data rate in lowest channel, and found the follow list which it was worst case.

Mode	Data rate	
802.11b	1Mbps	
802.11g	6Mbps	
802.11n(H20)	6.5Mbps	

Final Test Mode:

According to ANSI C63.4 standards, the test results are both the "worst case" and "worst setup" 1Mbps for 802.11b, 6Mbps for 802.11g, 6.5Mbps for 802.11n(H20). Duty cycle setting during the transmission is 100% with maximum power setting for all modulations.

5.4 Measurement Uncertainty

Items	Expanded Uncertainty (Confidence of 95%)
Conducted Emission (9kHz ~ 30MHz)	2.14 dB (k=2)
Radiated Emission (9kHz ~ 30MHz)	4.24 dB (k=2)
Radiated Emission (30MHz ~ 1000MHz)	4.35 dB (k=2)
Radiated Emission (1GHz ~ 18GHz)	4.44 dB (k=2)
Radiated Emission (18GHz ~ 26.5GHz)	4.56 dB (k=2)

5.5 Laboratory Facility

The test facility is recognized, certified, or accredited by the following organizations:

• FCC - Registration No.: 817957

Shenzhen Zhongjian Nanfang Testing Co., Ltd. EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in out files. Registration 817957, February 27, 2012.

• IC - Registration No.: 10106A-1

The 3m Semi-anechoic chamber of Shenzhen Zhongjian Nanfang Testing Co., Ltd. has been Registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 10106A-1.

• CNAS - Registration No.: CNAS L6048

Shenzhen Zhongjian Nanfang Testing Co., Ltd. is accredited to ISO/IEC 17025:2005 General Requirements for the Competence of Testing and Calibration laboratories for the competence of testing. The Registration No. is CNAS L6048.

Shenzhen Zhongjian Nanfang Testing Co., Ltd. No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road, Bao'an District, Shenzhen, Guangdong, China Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

Report No: CCISE170707803

5.6 Laboratory Location

Shenzhen Zhongjian Nanfang Testing Co., Ltd.

Address: No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road,

Bao'an District, Shenzhen, Guangdong, China

Website: http://www.ccis-cb.com

Tel: +86-755-23118282 Fax:+86-755-23116366 Email: info@ccis-cb.com

5.7 Test Instruments list

Radia	Radiated Emission:							
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)		
1	3m SAC	SAEMC	9(L)*6(W)* 6(H)	CCIS0001	08-23-2014	08-22-2017		
2	BiConiLog Antenna	SCHWARZBECK	VULB9163	CCIS0005	02-25-2017	02-24-2018		
3	Horn Antenna	SCHWARZBECK	BBHA9120D	CCIS0006	02-25-2017	02-24-2018		
4	Pre-amplifier (10kHz-1.3GHz)	HP	8447D	CCIS0003	02-25-2017	02-24-2018		
5	Pre-amplifier (1GHz-18GHz)	Compliance Direction Systems Inc.	PAP-1G18	CCIS0011	02-25-2017	02-24-2018		
6	Pre-amplifier (18-26GHz)	Rohde & Schwarz	AFS33-18002 650-30-8P-44	GTS218	02-25-2017	02-24-2018		
7	Horn Antenna	ETS-LINDGREN	3160	GTS217	02-25-2017	02-24-2018		
8	Spectrum analyzer 9k-30GHz	Rohde & Schwarz	FSP30	CCIS0023	02-25-2017	02-24-2018		
9	EMI Test Receiver	Rohde & Schwarz	ESRP7	CCIS0167	02-25-2017	02-24-2018		
10	Loop antenna	Laplace instrument	RF300	EMC0701	02-25-2017	02-24-2018		
11	EMI Test Software	AUDIX	E3	N/A	N/A	N/A		
12	Coaxial Cable	N/A	N/A	CCIS0018	02-25-2017	02-24-2018		
13	Coaxial Cable	N/A	N/A	CCIS0020	02-25-2017	02-24-2018		

Cond	Conducted Emission:							
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)		
1	Shielding Room	ZhongShuo Electron	11.0(L)x4.0(W)x3.0(H)	CCIS0061	08-23-2014	08-22-2017		
2	EMI Test Receiver	Rohde & Schwarz	ESCI	CCIS0002	02-25-2017	02-24-2018		
3	LISN	CHASE	MN2050D	CCIS0074	02-25-2017	02-24-2018		
4	Coaxial Cable	CCIS	N/A	CCIS0086	02-25-2017	02-24-2018		
5	EMI Test Software	AUDIX	E3	N/A	N/A	N/A		

6 Test results and Measurement Data

6.1 Antenna requirement:

Standard requirement: FCC Part 15 C Section 15.203 /247(c)

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(c) (1)(i) requirement:

(i) Systems operating in the 2400-2483.5 MHz band that is used exclusively for fixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6dBi.

E.U.T Antenna:

The WiFi antenna is an internal antenna which cannot replace by end-user, the best case gain of the antenna is -1.5 dBi.

6.2 Conducted Emission

Test Requirement:	FCC Part 15 C Section 1	5.207					
Test Method:	ANSI C63.10: 2013						
Test Frequency Range:	150 kHz to 30 MHz	150 kHz to 30 MHz					
Class / Severity:	Class B						
Receiver setup:	RBW=9 kHz, VBW=30 kl	 Hz					
Limit:	Frequency range	Limit (dBuV)				
Limit.	(MHz)	Quasi-peak	Average				
	0.15-0.5	66 to 56*	56 to 46*				
	0.5-5	56	46				
	5-30	60	50				
	* Decreases with the loga	arithm of the frequency.					
Test procedure	 The E.U.T and simulators are connected to the main power through a line impedance stabilization network (L.I.S.N.), which provides a 50ohm/50uH coupling impedance for the measuring equipment. The peripheral devices are also connected to the main power through a LISN that provides a 50ohm/50uH coupling impedance with 50ohm termination. (Please refer to the block diagram of the test setup and photographs). Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.4: 2014 on conducted measurement. 						
Test setup:	AUX Equipment Test table/Insula Remark: E.U.T: Equipment Under: LISN: Line Impedence State Test table height=0.8m	E.U.T EMI Receiver	ilter — AC power				
Test Instruments:	Refer to section 5.6 for d	etails					
Test mode:	Refer to section 5.3 for d	etails					
Test results:	Passed						

Measurement Data:

Neutral:

Trace: 9 Site

: CCIS Shielding Room : FCC PART15 B QP LISN NEUTRAL Condition

EUT : mobile phone Model : Star G50E Test Mode : Wifi mode

Power Rating : AC 120/60Hz Environment : Temp: 23 C Huni:56% Atmos:101KPa

Test Engineer: Zora

(emark	:	N220000 41020				20120000000	32030C00	
		Read	LISN	Cable		Limit	Over	
	Freq	Level	Factor	Loss	Level	Line	Limit	Remark
	MHz	dBu∀	dB	₫B	dBu₹	dBu√	dB	
1	0.166	37.88	-0.37	10.77	48.28	65.16	-16.88	QP
2	0.166	21.61	-0.37	10.77	32.01	55.16	-23.15	Average
3	0.190	21.81	-0.35	10.76	32.22	54.02	-21.80	Average
4	0.194	35.50	-0.34	10.76	45.92	63.84	-17.92	QP
2 3 4 5 6 7	0.222	33.52	-0.33	10.76	43.95	62.74	-18.79	QP
6	0.222	19.96	-0.33	10.76	30.39	52.74	-22.35	Average
7	0.246	31.46	-0.33	10.75	41.88	61.91	-20.03	QP
8	0.555	26.31	-0.30	10.76	36.77	56.00	-19.23	QP
8	0.579	23.21	-0.30	10.76	33.67	46.00	-12.33	Average
10	0.853	19.87	-0.29	10.83	30.41	46.00	-15.59	Average
11	1.043	25.27	-0.29	10.88	35.86	56.00	-20.14	QP
12	1.077	19.27	-0.29	10.88	29.86	46.00	-16.14	Average

Notes:

- 1. An initial pre-scan was performed on the live and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level = Receiver Read level + LISN Factor + Cable Loss.

Line:

Trace: 11

: CCIS Shielding Room : FCC PART15 B QP LISN LINE Site

Condition

EUT : mobile phone Model : Star G50E Test Mode : Wifi mode Power Rating : AC 120/60Hz

Environment : Temp: 23 °C Huni:56% Atmos:101KPa

Test Engineer: Zora

(emark	:							
	Freq	Read Level	LISN Factor	Cable Loss		Limit Line	Over Limit	Remark
	MHz	dBu₹	<u>dB</u>	dB	dBu₹	dBu₹	<u>d</u> B	
1	0.166	37.48	-0.55	10.77	47.70	65.16	-17.46	QP
2	0.166	21.96	-0.55	10.77	32.18	55.16	-22.98	Average
3	0.194	34.55	-0.52	10.76	44.79	63.84	-19.05	QP
2 3 4 5 6 7 8 9	0.194	19.13	-0.52	10.76	29.37	53.84	-24.47	Average
5	0.219	31.85	-0.52	10.76	42.09	62.88	-20.79	QP
6	0.219	18.85	-0.52	10.76	29.09	52.88	-23.79	Average
7	0.246	31.34	-0.51	10.75	41.58	61.91	-20.33	QP
8	0.246	16.73	-0.51	10.75	26.97	51.91	-24.94	Average
9	0.579	28.34	-0.49	10.76	38.61	56.00	-17.39	QP
10	0.579	17.30	-0.49	10.76	27.57	46.00	-18.43	Average
11	0.743	14.66	-0.48	10.79	24.97	46.00	-21.03	Average
12	0.747	25, 81	-0.48	10.79	36, 12	56,00	-19.88	QP

Notes:

- 1. An initial pre-scan was performed on the live and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level =Receiver Read level + LISN Factor + Cable Loss.

6.3 Conducted Output Power

Test Requirement:	FCC Part 15 C Section 15.247 (b)(3)				
Test Method:	ANSI C63.10:2013 and KDB558074v01r04 section 9.2.2.2				
Limit:	30dBm				
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane				
Test Instruments:	Refer to section 5.6 for details				
Test mode:	Refer to section 5.3 for details				
Test results:	Passed				

Measurement Data:

Test CH	Maximum Condu	ıcted Output Powe	Limit(dBm)	Result		
1001 011	802.11b	802.11g	802.11n(H20)	Ziiiii(GBiii)	result	
Lowest	14.24	11.41	10.68			
Middle	14.70	12.12	11.39	30.00	Pass	
Highest	15.44	13.10	12.25			

Test plot as follows:

Test mode: 802.11b

Lowest channel

Middle channel

Highest channel

Lowest channel

Middle channel

Highest channel

10.68 dBm

Tx Channel

20 MHz

Lowest channel

Middle channel

Highest channel

6.4 Occupy Bandwidth

Test Requirement:	FCC Part 15 C Section 15.247 (a)(2)				
Test Method:	ANSI C63.10:2013 and KDB558074v01r04 section 8.1				
Limit:	>500kHz				
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane				
Test Instruments:	Refer to section 5.6 for details				
Test mode:	Refer to section 5.3 for details				
Test results:	Passed				

Measurement Data:

Test CH	6dB	Emission Bandwid	Limit(kHz)	Result		
1631 611	802.11b	802.11g	802.11n(H20)	- Limit(Ki 12)	rtosuit	
Lowest	10.24	16.24	17.44			
Middle	10.24	16.24	17.60	>500	Pass	
Highest	10.24	16.08	17.44			
Test CH	99%	Occupy Bandwidt	Limit(kHz)	Result		
1 001 011	802.11b	802.11g	802.11n(H20)		rtodut	
Lowest	12.64	16.40	17.68			
Middle	12.64	16.48	17.68	N/A	N/A	
				1		

Test plot as follows:

6dB EBW

Date: 3.JUL.2017 11:19:22

Lowest channel

Date: 3.JUL.2017 11:20:15

Middle channel

Date: 3.JUL.2017 11:32:43

Highest channel

Date: 3.JUL.2017 11:07:43

Lowest channel

Date: 3.JUL.2017 11:08:44

Middle channel

Date: 3.JUL.2017 11:14:39

Highest channel

Date: 3.JUL.2017 11:15:50

Lowest channel

Date: 3.JUL.2017 11:17:19

Middle channel

Date: 3.JUL.2017 11:18:14

Highest channel

99% OBW

Date: 3.JUL.2017 11:22:22

Lowest channel

Date: 3.JUL.2017 11:22:40

Middle channel

Date: 3.JUL.2017 11:23:07

Highest channel

Date: 3.JUL.2017 11:23:49

Lowest channel

Date: 3.JUL.2017 11:24:10

Middle channel

Date: 3.JUL.2017 11:24:29

Highest channel

Date: 3.JUL.2017 11:25:00

Lowest channel

Date: 3.JUL.2017 11:25:20

Middle channel

Date: 3.JUL.2017 11:25:37

Highest channel

6.5 Power Spectral Density

Test Requirement:	FCC Part 15 C Section 15.247 (e)			
Test Method:	ANSI C63.10:2013 and KDB558074v01r04 section 10.2			
Limit:	8dBm			
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane			
Test Instruments:	Refer to section 5.6 for details			
Test mode:	Refer to section 5.3 for details			
Test results:	Passed			

Measurement Data:

Test CH	Pow	er Spectral Dens	Limit(dBm)	Result		
	802.11b	802.11g	802.11n(H20)	,		
Lowest	5.30	-0.39	-1.15			
Middle	6.01	0.79	-0.08	8.00	Pass	
Highest	7.02	2.02	1.22			

Test plot as follows:

Date: 3.JUL.2017 15:10:51

Lowest channel

Date: 3.JUL.2017 15:11:32

Middle channel

Date: 3.JUL.2017 15:12:13

Highest channel

Date: 3.JUL.2017 15:15:23

Lowest channel

Date: 3.JUL.2017 15:15:56

Middle channel

Date: 3.JUL.2017 15:16:37

Highest channel

Page 27 of 60

Date: 3.JUL.2017 15:13:44

Lowest channel

Date: 3.JUL.2017 15:14:30

Middle channel

Date: 3.JUL.2017 15:14:03

Highest channel

6.6 Band Edge

6.6.1 Conducted Emission Method

Test Requirement:	FCC Part 15 C Section 15.247 (d)				
Test Method:	ANSI C63.10:2013 and KDB558074v01r04 section 13				
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 30 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.				
Test setup:					
	Spectrum Analyzer E.U.T				
	77 0 1 1711				
	Non-Conducted Table				
	Ground Reference Plane				
Test Instruments:	Refer to section 5.6 for details				
Test mode:	Refer to section 5.3 for details				
Test results:	Passed				

Test plot as follows:

Lowest channel

Highest channel

Lowest channel

Highest channel

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

6.6.2 Radiated Emission Method

Test Requirement:	FCC Part 15 C Section 15.209 and 15.205							
Test Method:	ANSI C63.10: 2	013 and KDI	B558074v01r0	4 section	12.1			
Test Frequency Range:	2.3GHz to 2.5GHz							
Test site:		Measurement Distance: 3m						
Receiver setup:	Frequency	Detector	RBW	VBW	/ Remark			
rtessiver setap.	Above 1GHz	Peak	1MHz	3MHz				
		RMŞ	1MHz	3MHz				
Limit:	Frequency	y Lir	nit (dBuV/m @	3m)	Remark			
	Above 1GF	łz —	54.00		Average Value			
Test Procedure:	 The EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak value of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasipeak or average method as specified and then reported in a data 							
Test setup:	sheet.	(Turntable)	Ground Reference Plane	rn Antenna Ante	enna Tower			
	Refer to section 5.6 for details							
Test Instruments:	Trefer to section	3.0 IOI detail	3		l			
Test Instruments: Test mode:	Refer to section							

802.11b

Test channel: Lowest

Horizontal:

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18G) HORIZONTAL Condition

: mobile phone : Star G50E FIIT Model Test mode : b-L mode Power Rating : AC120V/60Hz

Environment : Temp: 25.5°C Huni: 55% 101KPa

Test Engineer: Zora REMARK :

иппл		525			100		2 20 35 3	323	
		Read	Ant enna	Cable	Preamp		Limit	Over	
	Freq	Level	Factor	Loss	Factor	Level	Line	Limit	Remark
	MHz	dBu₹	-dB/m	dB	<u>dB</u>	dBuV/m	dBu√/m	<u>dB</u>	
1	2390.000	19.90	25.45	4.69	0.00	50.04	74.00	-23.96	Peak
2	2390 000	7 48	25 45	4 69	0.00	37 62	54 00	-16.38	Average

Remark:

- Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor 1.
- The emission levels of other frequencies are very lower than the limit and not show in test report.

Vertical:

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18G) VERTICAL : mobile phone Condition

EUT Model : Star G50E Test mode : b-L mode Power Rating : AC120V/60Hz

Environment : Temp:25.5°C Test Engineer: Zora Huni:55% 101KPa

REMARK

м	rv :								
		Read	Antenna	Cable	Preamp		Limit	Over	
	Freq	Level	Factor	Loss	Factor	Level	Line	Limit	Remark
	MHz	dBu₹	$\overline{-dB/m}$	<u>d</u> B	<u>dB</u>	dBuV/m	dBuV/m	dB	
	2390.000	18.57	25.45	4.69	0.00	48.71	74.00	-25.29	Peak
	2390.000	7.43	25.45	4.69	0.00	37.57	54.00	-16.43	Average

Remark:

1 2

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor
- The emission levels of other frequencies are very lower than the limit and not show in test report.

Test channel: Highest

Horizontal:

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18G) HORIZONTAL Condition

: mobile phone : Star G50E EUT Model Test mode : b-H mode
Power Rating : AC120V/60Hz
Environment : Temp:25.5°C Huni:55% 101KPa

Test Engineer: Zora REMARK :

TIT!										
	Freq		Antenna Factor						Remark	
	MHz	dBu∜	<u>dB</u> /m	<u>d</u> B	<u>dB</u>	dBuV/m	dBuV/m	dB		
	2483.500 2483.500									

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- The emission levels of other frequencies are very lower than the limit and not show in test report.

Vertical:

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18G) VERTICAL Condition

: mobile phone : Star G50E EUT Model Test mode : b-H mode Power Rating : AC120V/60Hz Environment : Temp:25.5°C Huni:55% 101KPa Test mode

Test Engineer: Zora REMARK :

п	u .	Read	Ant enna	Cable	Preamo		Limit	Over	
	Freq		Factor						Remark
	MHz	dBuV	<u>dB</u> /m	₫B	<u>dB</u>	dBuV/m	dBuV/m	dB	
	2483.500 2483.500			07/20/20/20					

Remark:

2

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- The emission levels of other frequencies are very lower than the limit and not show in test report.

802.11g

Test channel: Lowest

Horizontal:

Site : 3m chamber

Condition : FCC PART 15 (PK) 3m BBHA9120(1G18G) HORIZONTAL

: mobile phone : Star G50E EUT Model Test mode : g-L mode Power Rating : AC120V/60Hz

Huni:55% 101KPa Environment : Temp: 25.5°C

Test Engineer: Zora REMARK :

M	MA :								
		Read	Antenna	Cable	Preamp		Limit	Over	
	Freq	Level	Factor	Loss	Factor	Level	Line	Limit	Remark
	MHz	dBu∀		<u>dB</u>	dB	dBuV/m	dBuV/m	<u>dB</u>	
	2390.000	21.19	25.45	4.69	0.00	51.33	74.00	-22.67	Peak
	2390.000	7.53	25.45	4.69	0.00	37.67	54.00	-16.33	Average

Remark:

1 2

- Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor 1.
- The emission levels of other frequencies are very lower than the limit and not show in test report.

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18G) VERTICAL : mobile phone : Star G50E Condition

EUT Model Test mode : g-L mode Power Rating : AC120V/60Hz Environment : Temp:25.5°C Huni:55% 101KPa

Test Engineer: Zora

REMARK

THA									
	Freq		Antenna Factor				Limit Line		Remark
	MHz	dBu₹	<u>dB</u> /m	<u>dB</u>	dB	dBuV/m	dBu√/m	dB	
Ĺ	2390.000	20.58	25.45	4.69	0.00	50.72	74.00	-23.28	Peak
2	2390,000	7.55	25.45	4.69	0.00	37.69	54.00	-16.31	Average

Remark:

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- The emission levels of other frequencies are very lower than the limit and not show in test report.

Test channel: Highest

Horizontal:

Site Condition : 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18G) HORIZONTAL

mobile phone Star G50E EUT Model Test mode : g-H mode Power Rating : AC120V/60Hz Environment : Temp:25.5°C

Huni:55% 101KPa

Test Engineer: Zora REMARK :

Freq				e Preamp s Factor				
 MHz	dBu₹	dB/m	<u>d</u> B	<u>dB</u>	dBuV/m	dBuV/m	<u>dB</u>	
		25.66 25.66						Peak Average

Remark:

1 2

- Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor 1.
- The emission levels of other frequencies are very lower than the limit and not show in test report.

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18G) VERTICAL Condition

EUT : mobile phone : Star G50E Model Test mode : g-H mode
Power Rating : AC120V/60Hz
Environment : Temp:25.5°C
Test Engineer: Zora

Huni:55% 101KPa

REMARK

	Read	Ant enna	Cable	Preamo		Limit	Over	
Freq		Factor						Remark
MHz	dBu₹	dB/m	<u>dB</u>	<u>dB</u>	dBuV/m	dBuV/m	<u>dB</u>	
2483.500 2483.500								

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor
- The emission levels of other frequencies are very lower than the limit and not show in test report.

802.11n (H20)

Test channel: Lowest

Horizontal:

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18G) HORIZONTAL Condition

FIIT : mobile phone Model : Star G50E Test mode : n20-L mode Power Rating : AC120V/60Hz

Environment : Temp: 25.5°C Test Engineer: Zora Huni:55% 101KPa

REMARK

K	:								
		Read	Antenna	Cable	Preamp		Limit	Over	
	Freq	Level	Factor	Loss	Factor	Level	Line	Limit	Remark
	MHz	dBu₹	$\overline{-dB/m}$	dB	<u>dB</u>	dBuV/m	dBu√/m	<u>dB</u>	
2390	0.000	29.87	25.45	4.69	0.00	60.01	74.00	-13.99	Peak
2390	000	11 47	25.45	4 69	0.00	41.61	54,00	-12 39	Average

Remark:

- Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- The emission levels of other frequencies are very lower than the limit and not show in test report.

Site Condition

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18G) VERTICAL

EUT : mobile phone : Star G50E Model Test mode : n20-L mode Power Rating : AC120V/60Hz

Environment : Temp: 25.5°C Huni:55% 101KPa

Test Engineer: Zora REMARK :

m	un .								
		Read	Antenna	Cable	Preamp		Limit	Over	
	Freq	Level	Factor	Loss	Factor	Level	Line	Limit	Remark
	MHz	dBu∜	dB/m	dB	<u>ab</u>	dBuV/m	dBuV/m	<u>dB</u>	
	2390.000	21.09	25.45	4.69	0.00	51.23	74.00	-22.77	Peak
2	2390.000	11.35	25.45	4.69	0.00	41.49	54.00	-12.51	Average

Remark:

1 2

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- The emission levels of other frequencies are very lower than the limit and not show in test report.

Test channel: Highest

Horizontal:

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18G) HORIZONTAL Condition

EUT : mobile phone : Star G50E : n20-H mode Model Test mode

Power Rating: AC120V/60Hz Environment: Temp:25.5°C Huni:55% 101KPa

Test Engineer: Zora

REMARK

		Read	ReadAntenna		Preamp		Limit	Over		
	Freq	Level	Factor	Loss	Factor	Level	Line	Limit	Remark	
	MHz	dBu∜	dB/m	<u>dB</u>	<u>d</u> B	dBu√/m	$\overline{dBuV/m}$	<u>dB</u>		
4110,033,0340			25.66 25.66				A 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		Peak Average	

Remark:

- Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor 1.
- The emission levels of other frequencies are very lower than the limit and not show in test report.

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18G) VERTICAL Condition

: mobile phone : Star G50E EUT Model

Test mode : n20-H mode
Power Rating : AC120V/60Hz
Environment : Temp:25.5°C
Test Engineer: Zora

Huni:55% 101KPa

REMA

EMAR	K :	Read	Antenna	Cabla	Presmn		Limit	Ottor	
	Freq		Factor						
	MHz	dBu∀	dB/m	dB	<u>dB</u>	dBuV/m	$\overline{dBuV/m}$	d <u>B</u>	
1	2483.500	36.93	25.66	4.81	0.00	67.40	74.00	-6.60	Peak
2	2483.500	21.45	25.66	4.81	0.00	51.92	54.00	-2.08	Average

Remark:

- Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- The emission levels of other frequencies are very lower than the limit and not show in test report.

6.7 Spurious Emission

6.7.1 Conducted Emission Method

Test Requirement:	FCC Part 15 C Section 15.247 (d)					
Test Method:	ANSI C63.10:2013 and KDB558074v01r04 section 11					
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph(b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB.					
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane					
Test Instruments:	Refer to section 5.6 for details					
Test mode:	Refer to section 5.3 for details					
Test results:	Passed					

Test plot as follows:

Test mode: 802.11b

Date: 3.JUL.2017 16:37:07

30MHz~25GHz

Date: 3.JUL.2017 16:38:06

30MHz~25GHz

Date: 3.JUL.2017 16:48:01

30MHz~25GHz

Test mode: 802.11g

Lowest channel

Date: 3.JUL.2017 16:43:12

30MHz~25GHz

Date: 3.JUL.2017 16:43:54

30MHz~25GHz

Date: 3.JUL.2017 16:44:57

30MHz~25GHz

Test mode: 802.11n(H20)

Date: 3.JUL.2017 16:40:39

30MHz~25GHz

Date: 3.JUL.2017 16:41:16

30MHz~25GHz

Date: 3.JUL.2017 16:47:06

30MHz~25GHz

6.7.2 Radiated Emission Method

Test Requirement:	FCC Part 15 C S	ection 15.	.209 aı	nd 15.205			
Test Method:	ANSI C63.10:201	13					
Test Frequency Range:	9kHz to 25GHz						
Test site:	Measurement Dis	stance: 3n	m				
Receiver setup:	Frequency	Detecto	tor	RBW	V	BW	Remark
·	30MHz-1GHz	Quasi-pe	eak	120KHz	300)KHz	Quasi-peak Value
	Above 1GHz	Peak		1MHz		ИHz	Peak Value
		RMS		1MHz		ЛHz	Average Value
Limit:	Frequency		Limit ((dBuV/m @3	m)		Remark
	30MHz-88MH			40.0			uasi-peak Value
	88MHz-216MH			43.5			uasi-peak Value
	216MHz-960M			46.0			uasi-peak Value
	960MHz-1GH	Z		54.0			uasi-peak Value
	Above 1GHz	: -		54.0		F	Average Value
Test Procedure:	1. The EUT was placed on the top of a rotating table 0.8m(b						Peak Value
	1GHz)/1.5m The table wa highest radia 2. The EUT wa antenna, wh tower. 3. The antenna the ground the Both horizon make the me 4. For each suscase and the meters and to find the m 5. The test-reconspecified Base 6. If the emission the limit spen of the EUT whave 10dB m.	(above 10 as rotated ation. as set 3 moisted ation as set 3 moisted at a height is to determinate and verse and aximum resiver system and width won level of cified, there argin won argin won a rotate argin won argin	GHz) as I 360 d an eters a mounte so variectine the ertical ent. Emission tenna value was reading tem was with Ma for the Een testing reported build be	above the gradegrees to deaway from the degrees to degrees to degree to the degree degree to the degree to the degree degree to the degree to	he into of a meter value s of the was a point of a mode stoppe the ne by	at a 3 sine the erferent variable to four of the fine ante errange phts from degree tect Funde. Example was 1 poed and emission one us	meter chamber. e position of the ace-receiving e-height antenna meters above field strength. enna are set to ed to its worst m 1 meter to 4 s to 360 degrees

Below 1GHz

Horizontal:

Site : 3m chamber Condition : FCC PART15 CLASS B 3m VULB9163(30M3G) HORIZONTAL

EUT : mobile phone
Model : Star G50E
Test mode : Wifi mode

Power Rating: AC120V/60Hz Environment: Temp:25.5°C Huni:55% 101KPa

Test Engineer: Zora

REMARK

	Freq		Antenna Factor					Over Limit	
_	MHz	—dBu∜	<u>dB</u> /m	<u>d</u> B	<u>dB</u>	$\overline{dBuV/m}$	dBuV/m	<u>dB</u>	
1	33.799	34.83	14.14	0.98	29.96	19.99	40.00	-20.01	QP
2	104.536	39.60	10.62	1.99	29.50	22.71	43.50	-20.79	QP
2	185.788	42.40	9.49	2.77	28.93	25.73	43.50	-17.77	QP
4	204.955	42.73	10.43	2.86	28.80	27.22	43.50	-16.28	QP
5	244.232	45.28	11.84	2.82	28.57	31.37	46.00	-14.63	QP
6	366.823	40.47	14.78	3.09	28.64	29.70	46.00	-16.30	QP

Site

: 3m chamber : FCC PART15 CLASS B 3m VULB9163(30M3G) VERTICAL Condition

: mobile phone EUT : Star G50E : Wifi mode Model Test mode

Power Rating : AC120V/60Hz Environment : Temp:25.5°C Huni:55% 101KPa

Test Engineer: Zora REMARK :

TEMALL									
	Freq		Antenna Factor				Limit Line	Over Limit	
	MHz	dBu₹	$-\overline{dB}/\overline{m}$	<u>d</u> B	<u>dB</u>	dBuV/m	dBuV/m	<u>d</u> B	
1	33.799	39.70	14.14	0.98	29.96	24.86	40.00	-15.14	QP
2 3 4 5	124.569	48.75	12.04	2.22	29.36	33.65	43.50	-9.85	QP
3	134.088	43.63	12.05	2.33	29.31	28.70	43.50	-14.80	QP
4	244.232	35.70	11.84	2.82	28.57	21.79	46.00	-24.21	QP
5	322.189	37.97	13.34	3.01	28.50	25.82	46.00	-20.18	QP
6	369.405	37.08	14.84	3.09	28.65	26.36	46.00	-19.64	QP

Above 1GHz

Test mode: 80	Test mode: 802.11b			Test channel: Lowest			Remark: Peak		
Frequency	Read Level	Antenna Factor	Cable Loss	Preamp Factor	Level	Limit Line	Over Limit	Polar.	
(MHz)	(dBuV)	(dB/m)	(dB)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	i olai.	
4824.00	49.22	36.06	6.81	41.82	50.27	74.00	-23.73	Vertical	
4824.00	48.78	36.06	6.81	41.82	49.83	74.00	-24.17	Horizontal	
Test mode: 80	02.11b		Test char	Test channel: Lowest			Remark: Average		
Frequency	Read	Antenna	Cable	Preamp			Over		
(MHz)	Level (dBuV)	Factor (dB/m)	Loss (dB)	Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Limit (dB)	Polar.	
				Factor			Limit	Polar. Vertical	

Test mode: 80	Test mode: 802.11b			Test channel: Middle			Remark: Peak		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4874.00	47.14	36.32	6.85	41.84	48.47	74.00	-25.53	Vertical	
4874.00	46.71	36.32	6.85	41.84	48.04	74.00	-25.96	Horizontal	
Test mode: 80	02.11b		Test char	nnel: Middle		Remark: Ave	rage		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4874.00	42.35	36.32	6.85	41.84	43.68	54.00	-10.32	Vertical	
4874.00	44.52	36.32	6.85	41.84	45.85	54.00	-8.15	Horizontal	

Test mode: 80	Test mode: 802.11b			Test channel: Highest			Remark: Peak		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4924.00	48.85	36.58	6.89	41.86	50.46	74.00	-23.54	Vertical	
4924.00	46.90	36.58	6.89	41.86	48.51	74.00	-25.49	Horizontal	
Test mode: 80	02.11b		Test channel: Highest			Remark: Average			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4924.00	42.27	36.58	6.89	41.86	43.88	54.00	-10.12	Vertical	
4924.00	44.45	36.58	6.89	41.86	46.06	54.00	-7.94	Horizontal	

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Test mode: 80	02.11g		Test channel: Lowest			Remark: Peak			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4824.00	48.56	36.06	6.81	41.82	49.61	74.00	-24.39	Vertical	
4824.00	48.24	36.06	6.81	41.82	49.29	74.00	-24.71	Horizontal	
Test mode: 80	02.11g		Test channel: Lowest			Remark: Average			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4824.00	42.69	36.06	6.81	41.82	43.74	54.00	-10.26	Vertical	
4824.00	43.28	36.06	6.81	41.82	44.33	54.00	-9.67	Horizontal	

Test mode: 80	Test mode: 802.11g			Test channel: Middle			Remark: Peak		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4874.00	47.55	36.32	6.85	41.84	48.88	74.00	-25.12	Vertical	
4874.00	47.28	36.32	6.85	41.84	48.61	74.00	-25.39	Horizontal	
Test mode: 80	02.11g		Test channel: Middle			Remark: Average			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4874.00	42.59	36.32	6.85	41.84	43.92	54.00	-10.08	Vertical	
4874.00	43.78	36.32	6.85	41.84	45.11	54.00	-8.89	Horizontal	

Test mode: 8	02.11g		Test char	nnel: Highest		Remark: Peak			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4924.00	48.59	36.58	6.89	41.86	50.20	74.00	-23.80	Vertical	
4924.00	47.62	36.58	6.89	41.86	49.23	74.00	-24.77	Horizontal	
Test mode: 8	02.11g		Test channel: Highest			Remark: Average			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4924.00	43.26	36.58	6.89	41.86	44.87	54.00	-9.13	Vertical	
4924.00	43.10	36.58	6.89	41.86	44.71	54.00	-9.29	Horizontal	

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Test mode: 8	02.11n(H20)		Test char	nnel: Lowest		Remark: Pea			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4824.00	49.10	36.06	6.81	41.82	50.15	74.00	-23.85	Vertical	
4824.00	48.52	36.06	6.81	41.82	49.57	74.00	-24.43	Horizontal	
Test mode: 8	02.11n(H20)		Test char	nnel: Lowest		Remark: Average			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4824.00	42.77	36.06	6.81	41.82	43.82	54.00	-10.18	Vertical	
4824.00	43.19	36.06	6.81	41.82	44.24	54.00	-9.76	Horizontal	

Test mode: 80	Test mode: 802.11n(H20)			Test channel: Middle			Remark: Peak		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4874.00	48.05	36.32	6.85	41.84	49.38	74.00	-24.62	Vertical	
4874.00	47.62	36.32	6.85	41.84	48.95	74.00	-25.05	Horizontal	
Test mode: 80	02.11n(H20)		Test char	nnel: Middle		Remark: Ave	rage		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4874.00	42.47	36.32	6.85	41.84	43.80	54.00	-10.20	Vertical	
4874.00	43.32	36.32	6.85	41.84	44.65	54.00	-9.35	Horizontal	

Test mode: 80	02.11n(H20)		Test char	nnel: Highest		Remark: Peak		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4924.00	48.55	36.58	6.89	41.86	50.16	74.00	-23.84	Vertical
4924.00	47.92	36.58	6.89	41.86	49.53	74.00	-24.47	Horizontal
Test mode: 80	02.11n(H20)		Test channel: Highest			Remark: Average		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4924.00	43.28	36.58	6.89	41.86	44.89	54.00	-9.11	Vertical
4924.00	42.95	36.58	6.89	41.86	44.56	54.00	-9.44	Horizontal

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.