Outline

- Classification basics
- Decision tree classifiers
- Overfitting
- Lazy vs Eager Learners
- k-Nearest Neighbors (or learning from your neighbors)
- Evaluation of classifiers

Decision tree (DTs) classifiers

- One of the most popular classification methods
- DTs are included in many commercial systems nowadays
- Easy to interpret, human readable, intuitive
- Simple and fast methods
- Many algorithms have been proposed
 - ID3 (Quinlan 1986)
 - C4.5 (Quinlan 1993)
 - CART (Breiman et al 1984)

Training set

Day	Outlook	Temperature	Humidity	Wind	PlayTennis
D1	Sunny	Hot	High	Weak	No
D2	Sunny	Hot	High	Strong	No
D3	Overcast	Hot	High	Weak	Yes
D4	Rain	Mild	High	Weak	Yes
D5	Rain	Cool	Normal	Weak	Yes
D6	Rain	Cool	Normal	Strong	No
D7	Overcast	Cool	Normal	Strong	Yes
D8	Sunny	Mild	High	Weak	No
D9	Sunny	Cool	Normal	Weak	Yes
D10	Rain	Mild	Normal	Weak	Yes
D11	Sunny	Mild	Normal	Strong	Yes
D12	Overcast	Mild	High	Strong	Yes
D13	Overcast	Hot	Normal	Weak	Yes
D14	Rain	Mild	High	Strong	No

Representation 1/2

- Representation
 - Each internal node specifies a test of some predictor attribute
 - Each branch descending from a node corresponds to one of the possible values for this attribute
 - Each leaf node assigns a class label
- Decision trees classify instances by sorting them down the tree from the root to some leaf node, which provides the classification of the instance.

Representation 2/2

- Decision trees represent a disjunction of conjunctions of constraints on the attribute values of the instances
 - Each path from the root to a leaf node, corresponds to a conjunction of attribute tests
 - The tree corresponds to a disjunction of these conjunctions
- We can "translate" each path into IF-THEN rules (human readable)

The basic decision tree learning algorithm

Basic algorithm (ID3, Quinlan 1986)

- The tree is constructed in a top-down recursive divide-and-conquer manner
- At start, all the training examples are at the root node
- The question is "which attribute should be tested at the root?"
 - Attributes are evaluated using some statistical measure, which determines how well each attribute alone classifies the training examples.
 - The best splitting attribute is selected and used as the test attribute at the root.
- For each possible value of the test attribute, a descendant of the root node is created and the instances are mapped to the appropriate descendant node.
- The procedure is repeated for each descendant node, so instances are partitioned recursively.

Training set

Day	Outlook	Temperature	Humidity	Wind	PlayTennis	
D1	Sunny	Hot	High	Weak	No	
D2	Sunny	Hot	High	Strong	No	
D3	Overcast	Hot	High	Weak	Yes	
D4	Rain	Mild	High	Weak	Yes	
D5	Rain	Cool	Normal	Weak	Yes	
D6	Rain	Cool	Normal	Strong	No	
D7	Overcast	Cool	Normal	Strong	Yes	
D8	Sunny	Mild	High	Weak	No	
D9	Sunny	Cool	Normal	Weak	Yes	
D10	Rain	Mild	Normal	Weak	Yes	
D11	Sunny	Mild	Normal	Strong	Yes	
D12	Overcast	Mild	High	Strong	Yes	
D13	Overcast	Hot	Normal	Weak	Yes	
D14	Rain	Mild	High	Strong	No	

The basic decision tree learning algorithm

Pseudocode

Main loop:

- 1. $A \leftarrow$ the "best" decision attribute for next node
- 2. Assign A as decision attribute for node
- 3. For each value of A, create new descendant of node
- 4. Sort training examples to leaf nodes
- 5. If training examples perfectly classified, Then STOP, Else iterate over new leaf nodes

When do we stop partitioning?

- All samples for a given node belong to the same class
- □ There are no remaining attributes for further partitioning majority voting for classifying the leaf

Which attribute is the best?

Which attribute to choose for splitting? A1 or A2?

- The goal is to select the attribute that is most useful for classifying examples.
- By useful we mean that the resulting partitioning is as pure as possible
 - A partition is pure if all its instances belong to the same class.
- Different attribute selection measures
 - Information gain, gain ratio, gini index, ...
 - all based on the degree of impurity of the parent (before splitting) vs the children nodes (after splitting)

Entropy for measuring impurity of a set of instances

- Let S be a collection of positive and negative examples for a binary classification problem, C={+, -}.
 - p₊: the percentage of positive examples in S
 - p_.: the percentage of negative examples in S
- Entropy measures the impurity of S:

$$Entropy(S) = -p_{+} \log_{2}(p_{+}) - p_{-} \log_{2}(p_{-})$$

Let S: [9+,5-]
$$Entropy(S) = -\frac{9}{14}\log_2(\frac{9}{14}) - \frac{5}{14}\log_2(\frac{5}{14}) = 0.940$$

Let S: [7+,7-]
$$Entropy(S) = -\frac{7}{14}\log_2(\frac{7}{14}) - \frac{7}{14}\log_2(\frac{7}{14}) = 1$$

Let S: [14+,0-]
$$Entropy(S) = -\frac{14}{14}\log_2(\frac{14}{14}) - \frac{0}{14}\log_2(\frac{0}{14}) = 0$$

in the general case (k-classification problem) $Entropy(S) = \sum_{i=1}^{k} -p_i \log_2(p_i)$

Attribute selection measure: Information gain

- Used in ID3
- It uses entropy, a measure of pureness of the data
- The information gain *Gain(S, A)* of an attribute *A* relative to a collection of examples *S* measures the entropy reduction in *S* due to splitting on *A*:

- Gain measures the expected reduction in entropy due to splitting on A
- The attribute with the higher entropy reduction is chosen for splitting

Information Gain example 1

"Humidity" or "Wind"? Which attribute to choose for splitting?

Which attribute is chosen?

Information Gain example 2

Training set

Day	Outlook	Temperature	Humidity	Wind	PlayTennis
D1	Sunny	Hot	High	Weak	No
D2	Sunny	Hot	High	Strong	No
D3	Overcast	Hot	High	Weak	Yes
D4	Rain	Mild	High	Weak	Yes
D5	Rain	Cool	Normal	Weak	Yes
D6	Rain	Cool	Normal	Strong	No
D7	Overcast	Cool	Normal	Strong	Yes
D8	Sunny	Mild	High	Weak	No
D9	Sunny	Cool	Normal	Weak	Yes
D10	Rain	Mild	Normal	Weak	Yes
D11	Sunny	Mild	Normal	Strong	Yes
D12	Overcast	Mild	High	Strong	Yes
D13	Overcast	Hot	Normal	Weak	Yes
D14	Rain	Mild	High	Strong	No

Which attribute should we choose for splitting here?

$$S_{Sunnv} = \{D1,D2,D8,D9,D11\}$$

$$Gain (S_{Sunny}, Humidity) = .970 - (3/5) 0.0 - (2/5) 0.0 = .970$$

$$Gain (S_{Sunny}, Temperature) = .970 - (2/5) 0.0 - (2/5) 1.0 - (1/5) 0.0 = .570$$

$$Gain (S_{Sunny}, Wind) = .970 - (2/5) 1.0 - (3/5) .918 = .019$$

Which attribute is chosen?