Supplement 1

Demographic characteristics

Peter Kamerman

Last updated: 31 August 2019

Contents

Import data	1
Quick look	1
Check missingness	2
Full cohort	2
HIV	3
HIV+	3
Numeric data	4
Age	4
Point estimates	4
Full cohort	4
By HIV status	5
95% CI of the point estimates	6
Whole cohort	6
By HIV status	6
95% CI of the difference in mean	7
CD4 T-cell count	8
Point estimates	8
95% CI of the point estimates	9
Hopkins Symptom Checklist 25	10
Depression vs anxiety	10
Total vs depression	11
Total vs anxiety	12
Point estimates	13
Full cohort	13
By HIV status	14
95% CI of the point estimates	16
Whole cohort	16
By HIV status	16
95% CI of the difference in mean	16
Alcohol consumption	18
Process data	18
Point estimates	19
Full cohort	19
By HIV status	20
95% CI of the point estimates	21
Whole cohort	21
By HIV status	21
05% CI of the difference in modian	22

Categorical data	23
Sex (self-identified)	23
Point estimates	23
Full cohort	23
By HIV status	24
95% confidence intervals for the point estimates	26
Full cohort	26
By HIV status	27
95% CI of the difference in proportions	27
School grade	29
Point estimates	29
Full cohort	29
By HIV status	30
95% confidence intervals for the point estimates	31
Full cohort	31
By HIV status	33
95% confidence interval of the difference in proportions	34
Employment	36
Point estimates	36
Full cohort	36
By HIV status	39
95% confidence intervals for the point estimates	40
Full cohort	40
By HIV status	41
v	42
Session information	44

This script generates summaries of key demographic information for the full cohort, with and without conditioning on HIV status.

We present the data in tabular and graphical format, and calculate the precision of the estimates using bootstrap 95% confidence intervals.

To describe any differences between the HIV+ and HIV- groups, we have calculated 95% confidence intervals of the difference in mean/proportion.

Import data

```
# Import data
general <- read_rds('data-cleaned/general_info.rds') %>%
    select(PID, age, sex, educational_level, employment)

mental_health <- read_rds('data-cleaned/hscl.rds') %>%
    select(PID, anxiety_score, depression_score, total_score)

medical_info <- read_rds('data-cleaned/medical_info.rds') %>%
    select(PID, alcohol_consumption, alcohol_type, alcohol_freq, alcohol_per_sitting)

# Join to core_info
data <- read_rds('data-cleaned/hiv_test.rds') %>%
```

```
select(PID, test_result, CD4_count) %>%
left_join(general) %>%
left_join(mental_health) %>%
left_join(medical_info)
```

Quick look

```
# Dataframe dimensions
dim(data)
## [1] 539 14
# Column names
names (data)
## [1] "PID"
                             "test_result"
                                                   "CD4_count"
  [4] "age"
                             "sex"
##
                                                   "educational_level"
  [7] "employment"
                             "anxiety_score"
                                                   "depression_score"
## [10] "total_score"
                             "alcohol_consumption" "alcohol_type"
## [13] "alcohol_freq"
                             "alcohol_per_sitting"
# Glimpse data
glimpse(data)
## Observations: 539
## Variables: 14
## $ PID
                        <chr> "001", "003", "004", "005", "006", "007", ...
## $ test_result
                        <chr> "HIV negative", "HIV negative", "HIV negat...
## $ CD4 count
                        ## $ age
                        <dbl> 35, 50, 38, 37, 30, 25, 39, 27, 23, 32, 36...
                        <chr> "male", "female", "male", "male", "male", ...
## $ sex
## $ educational level
                        <ord> secondary school, no/primary school, secon...
## $ employment
                        <chr> "unemployed", "disability grant", "employe...
                        <dbl> 3.5, 1.2, 2.1, 1.0, 2.7, 1.5, 1.7, 2.0, 2....
## $ anxiety_score
                        <dbl> 3.333333, 1.333333, 1.800000, 1.066667, 2....
## $ depression_score
## $ total_score
                        <dbl> 3.40, 1.28, 1.92, 1.04, 2.72, 1.64, 1.76, ...
## $ alcohol_consumption <chr>> "yes", "no", "yes", "no", "yes", "yes", "yes", "y...
## $ alcohol_type
                        <chr> "spirits", NA, "spirits", NA, "beer", "bee...
## $ alcohol_freq
                        <fct> monthly, NA, monthly, NA, weekly, weekly, ...
## $ alcohol_per_sitting <fct> 1-2, NA, 1-2, NA, 3-4, >4, 3-4, >4, 1-2, 1...
```

Check missingness

```
data %>%
    profile_missing() %>%
    mutate(pct_missing = round(100 * pct_missing)) %>%
    arrange(pct_missing)

## # A tibble: 14 x 3
## feature num_missing pct_missing
```

```
<fct>
                                            <dbl>
##
                                <int>
## 1 PTD
                                   0
                                               0
                                   2
                                               0
## 2 sex
## 3 anxiety_score
                                   2
                                               0
## 4 alcohol_consumption
                                   0
                                               0
## 5 test_result
                                   4
                                               1
## 6 age
                                               1
## 7 employment
                                   3
                                               1
## 8 depression_score
                                   4
                                               1
## 9 total_score
                                  5
                                               1
## 10 educational_level
                                 14
                                               3
                                 182
                                              34
## 11 alcohol_type
                                 182
                                              34
## 12 alcohol_freq
## 13 alcohol_per_sitting
                                 182
                                              34
## 14 CD4_count
                                 474
                                              88
# Remove rows with missing HIV test results (n = 4)
data %<>%
    filter(!is.na(test_result))
HIV-
data %>%
    select(-CD4_count) %>%
    filter(test_result == 'HIV negative') %>%
    profile_missing() %>%
    mutate(pct_missing = round(100 * pct_missing)) %>%
    arrange(pct_missing)
## # A tibble: 13 x 3
     feature
                         num_missing pct_missing
##
      <fct>
                                           <dbl>
                               <int>
## 1 PID
                                   0
                                               0
## 2 test_result
                                   0
                                               0
## 3 age
                                   2
                                               0
## 4 sex
                                   1
                                               0
                                   2
## 5 anxiety_score
                                               0
                                  0
                                               0
## 6 alcohol consumption
## 7 employment
                                   3
                                               1
## 8 depression_score
                                  4
                                               1
                                  5
                                               1
## 9 total_score
## 10 educational level
                                 14
                                               3
                                155
                                              33
## 11 alcohol_type
## 12 alcohol_freq
                                 155
                                              33
## 13 alcohol_per_sitting
                                 155
                                              33
HIV+
data %>%
    filter(test_result == 'HIV positive') %>%
    profile_missing() %>%
    mutate(pct_missing = round(100 * pct_missing)) %>%
    arrange(pct_missing)
```

##	# 1	A tibble: 14 x 3		
##		feature	${\tt num_missing}$	<pre>pct_missing</pre>
##		<fct></fct>	<int></int>	<dbl></dbl>
##	1	PID	0	0
##	2	test_result	0	0
##	3	educational_level	0	0
##	4	employment	0	0
##	5	anxiety_score	0	0
##	6	depression_score	0	0
##	7	total_score	0	0
##	8	${\tt alcohol_consumption}$	0	0
##	9	age	1	1
##	10	sex	1	1
##	11	CD4_count	5	7
##	12	alcohol_type	27	39
##	13	alcohol_freq	27	39
##	14	${\tt alcohol_per_sitting}$	27	39

Numeric data

Age

Point estimates

Table 1: Age (full cohort)

variable	missing	complete	n	mean	sd	p0	p25	p50	p75	p100
age	3	532	535	34.3	11.11	15	26	32	41	72

Age for the full cohort

By HIV status

```
# Tabular summary
data %>%
    select(test_result, age) %>%
    group_by(test_result) %>%
    skim_to_wide() %>%
    select(-type, -hist) %>%
    kable(caption = 'Age (by HIV status)') %>%
    kable_styling(latex_options = c('scale_down', 'hold_position'))
```

Table 2: Age (by HIV status)

test_result	variable	missing	complete	n	mean	sd	p0	p25	p50	p75	p100
HIV negative	age	2	463	465	33.93	11.22	15	26	31	41	72
HIV positive	age	1	69	70	36.77	10.12	22	29	34	42	67

```
# Graphical summary
ggplot(data = data) +
   aes(x = test_result,
```

Age by HIV status

95% CI of the point estimates

Whole cohort

```
By HIV status
set.seed(2019)
groupwiseMean(age ~ test_result,
               data = data,
               percent = TRUE) %>%
    select(-starts with('Trad'))
                     n Mean Conf.level Percentile.lower Percentile.upper
      test_result
## 1 HIV negative 463 33.9
                                    0.95
                                                       32.9
## 2 HIV positive 69 36.8
                                    0.95
                                                       34.6
                                                                          39.2
95% CI of the difference in mean
# Boot function
func_tmp <- function(d, i){</pre>
    data <- d[i, ]
    data_hiv <- filter(data, test_result == 'HIV positive')</pre>
    data_nohiv <- filter(data, test_result == 'HIV negative')</pre>
    mean_yes <- mean(data_hiv$age, na.rm = TRUE)</pre>
    mean_no <- mean(data_nohiv$age, na.rm = TRUE)</pre>
    mean_yes - mean_no
}
# Confidence interval of the difference in proportions (HIV+ minus HIV-)
set.seed(2019)
boot_tmp <- boot(data = data,</pre>
                  statistic = func_tmp,
                  R = 999.
                  stype = 'i')
bootci_tmp <- boot.ci(boot_tmp,</pre>
                        type = 'perc')
tibble_tmp <- tibble(`difference in mean` = round(boot_tmp$t0, 2),</pre>
                       `lower 95% CI` = round(bootci_tmp$percent[[4]], 2),
                       `upper 95% CI` = round(bootci_tmp$percent[[5]], 2))
tibble_tmp %>%
    kable(caption = 'Age (years) - 95% CI of the difference (HIV+ minus HIV-)')
\left\{ \text{begin} \left\{ \text{table} \right\} \right[t]
                 \caption{Age (years) - 95\% CI of the difference (HIV+ minus HIV-)}
                          difference in mean
                                             lower 95% CI
                                                            upper 95% CI
                                       2.84
                                                      0.37
                                                                     5.53
                                            \end{table}
# Plot
ggplot(data = tibble_tmp) +
    aes(x = 'ID',
        y = `difference in mean`,
        ymin = `lower 95% CI`,
```

ymax = `upper 95% CI`) +

geom_point(size = 8) +

Age (years)

95% CI of the difference in age (HIV+ minus HIV-)

CD4 T-cell count

Only for participants that tested positive for HIV.

Point estimates

```
# Tabular summary
data %>%
    filter(test_result != 'HIV negative') %>%
    select(CD4_count) %>%
    skim_to_wide() %>%
    select(-type, -hist) %>%
    kable(caption = 'Age (full cohort)') %>%
    kable_styling(latex_options = c('scale_down', 'hold_position'))
# Graphical summary
data %>%
```

Table 3: Age (full cohort)

variable	missing	complete	n	mean	sd	p0	p25	p50	p75	p100
CD4_count	5	65	70	449.42	286.28	15	240	436	648	1176

```
filter(test_result != 'HIV negative') %>%
ggplot(data = .) +
aes(x = 'HIV + cohort',
    y = CD4_count) +
geom_boxplot(alpha = 0.7,
             colour = '#000000',
             fill = '#999999') +
geom_point(position = position_jitter(height = 0),
           fill = '#FFFFFF',
           alpha = 0.7,
           stroke = 0.8,
           size = 2,
           shape = 21) +
labs(subtitle = 'CD4 count for the HIV positive cohort',
     y = 'CD4 count (cells/ml)') +
theme(axis.title.x = element_blank())
```

CD4 count for the HIV positive cohort

95% CI of the point estimates

```
cd4 <- data %>%
   filter(test_result != 'HIV negative') %>%
```

Hopkins Symptom Checklist 25

Check whether anxiety and depression subscales are correlated with each other and with the total score.

Depression vs anxiety

HSCL depression score vs anxiety score

HIV status

- HIV negative
- HIV positive

Correlation

```
with(data, cor.test(depression_score, anxiety_score))
##
## Pearson's product-moment correlation
##
## data: depression_score and anxiety_score
## t = 25.239, df = 528, p-value < 2.2e-16
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
## 0.6982537 0.7757623
## sample estimates:
## cor
## 0.7394487</pre>
```

Total vs depression

HSCL total score vs depression score

HIV status

- HIV negative
- HIV positive

Correlation

```
with(data, cor.test(total_score, depression_score))
##
## Pearson's product-moment correlation
##
## data: total_score and depression_score
## t = 79.476, df = 528, p-value < 2.2e-16
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
## 0.9534984 0.9667276
## sample estimates:
## cor
## 0.9606542</pre>
```

Total vs anxiety

```
# Scatterplot
ggplot(data = data) +
   aes(x = anxiety_score,
        y = total_score) +
   geom_point(aes(fill = test_result),
        shape = 21,
        size = 2) +
   labs(title = 'HSCL anxiety score vs total score',
```

HSCL anxiety score vs total score

HIV status

- HIV negative
- HIV positive

```
# Correlation
```

```
with(data, cor.test(total_score, anxiety_score))
##
## Pearson's product-moment correlation
##
## data: total_score and anxiety_score
## t = 46.719, df = 528, p-value < 2.2e-16
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
## 0.8793747 0.9127496
## sample estimates:
## cor
## 0.8973375</pre>
```

Summary: Use the total HSCL score. $\,$

Point estimates

```
# Tabular summary
data %>%
    select(total_score) %>%
```

```
skim_to_wide() %>%
select(-type, -hist) %>%
kable(caption = 'HSCL total score (full cohort)') %>%
kable_styling(latex_options = c('scale_down',
                                'hold_position'))
```

Table 4: HSCL total score (full cohort)

variable	missing	complete	n	mean	sd	p0	p25	p50	p75	p100
total_score	5	530	535	1.68	0.58	1	1.24	1.52	2	4

```
# Graphical summary
ggplot(data = data) +
    aes(x = 'Full cohort',
        y = total_score) +
   geom_boxplot(alpha = 0.7,
                 colour = '#000000',
                 fill = '#999999') +
   geom_point(position = position_jitter(height = 0),
               fill = '#FFFFFF',
               alpha = 0.7,
               stroke = 0.8,
               size = 2,
               shape = 21) +
   labs(subtitle = 'HSCL total score for the full cohort',
         y = 'HSCL total score') +
   theme(axis.title.x = element_blank())
```

HSCL total score for the full cohort

Full cohort

By HIV status

Table 5: HSCL total score (by HIV status)

test_result	variable	missing	complete	n	mean	sd	p0	p25	p50	p75	p100
HIV negative	total_score	5	460	465	1.68	0.57	1	1.24	1.52	2	3.52
HIV positive	total_score	0	70	70	1.72	0.64	1	1.25	1.5	2	4

```
# Graphical summary
ggplot(data = data) +
   aes(x = test_result,
       y = total_score) +
   geom_boxplot(alpha = 0.7,
                 colour = '#000000',
                 fill = '#999999') +
   geom_point(position = position_jitter(height = 0),
               fill = '#FFFFFF',
               alpha = 0.7,
               stroke = 0.8,
               size = 2,
               shape = 21) +
   labs(subtitle = 'HSCL total score by HIV status',
         y = 'HSCL total score') +
   theme(axis.title.x = element_blank(),
          legend.position = 'none')
```

HSCL total score by HIV status

95% CI of the point estimates

Whole cohort

```
set.seed(2019)
groupwiseMean(total_score ~ 1,
              data = data[!is.na(data$total_score), ],
              percent = TRUE) %>%
    select(-.id, -starts_with('Trad'))
       n Mean Conf.level Percentile.lower Percentile.upper
## 1 530 1.68
                    0.95
                                     1.64
                                                       1.73
                                     By HIV status
set.seed(2019)
groupwiseMean(total_score ~ test_result,
              data = data[!is.na(data$total_score), ],
              percent = TRUE) %>%
    select(-starts_with('Trad'))
      test_result n Mean Conf.level Percentile.lower Percentile.upper
                                                                    1.73
                                 0.95
## 1 HIV negative 460 1.68
                                                   1.63
## 2 HIV positive 70 1.72
                                 0.95
                                                   1.57
                                                                    1.87
```

95% CI of the difference in mean

```
# Boot function
func_tmp <- function(d, i){</pre>
    data <- d[i, ]
    data <- data[!is.na(data$total_score), ]</pre>
    data_hiv <- filter(data, test_result == 'HIV positive')</pre>
    data nohiv <- filter(data, test result == 'HIV negative')</pre>
    mean yes <- mean(data hiv$total score, na.rm = TRUE)</pre>
    mean_no <- mean(data_nohiv$total_score, na.rm = TRUE)</pre>
    mean_yes - mean_no
}
# Confidence interval of the difference in proportions (HIV+ minus HIV-)
set.seed(2019)
boot_tmp <- boot(data = data,</pre>
                  statistic = func_tmp,
                  R = 999,
                  stype = 'i')
bootci_tmp <- boot.ci(boot_tmp,</pre>
                       type = 'perc') # BCa gave extreme order statistics
tibble_tmp <- tibble(`difference in mean` = round(boot_tmp$t0, 2),</pre>
                       `lower 95% CI` = round(bootci_tmp$percent[[4]], 2),
                      `upper 95% CI` = round(bootci_tmp$percent[[5]], 2))
tibble tmp %>%
    kable(caption = 'HSCL total score - 95% CI of the difference (HIV+ minus HIV-)')
                                         \left\{ \text{table} \right\} [t]
              \caption{HSCL total score - 95\% CI of the difference (HIV+ minus HIV-)}
                                                          upper 95% CI
                                            lower 95% CI
                         difference in mean
                                                   -0.12
                                                                   0.22
                                     0.04
                                           \end{table}
# Plot
ggplot(data = tibble_tmp) +
    aes(x = 'ID',
        y = `difference in mean`,
        ymin = `lower 95% CI`,
        ymax = `upper 95% CI`) +
    geom_point(size = 8) +
    geom_errorbar(size = 1,
                   width = 0.3) +
    geom_hline(yintercept = 0,
                linetype = 2) +
    labs(title = 'HSCL total score',
         subtitle = '95% CI of the difference in HSCL total score (HIV+ minus HIV-)',
         y = 'Difference in mean') +
    theme(axis.title.x = element_blank())
```

HSCL total score

95% CI of the difference in HSCL total score (HIV+ minus

Alcohol consumption

Process data

```
oh <- data %>%
   filter(!is.na(alcohol_consumption)) %>%
   filter(!is.na(test_result)) %>%
   select(PID, test_result, starts_with('alcohol')) %>%
   mutate(oh_freq = case_when(
        alcohol_freq == 'daily' ~ 30.4,
        alcohol freq == 'weekly' ~ 4.4,
        alcohol_freq == 'monthly' ~ 1,
        TRUE ~ 0
   )) %>%
   mutate(oh_sitting = case_when(
        alcohol_per_sitting == '1-2' ~ 1.5,
        alcohol_per_sitting == '3-4' ~ 3.5,
        alcohol_per_sitting == '>4' ~ 5,
        TRUE ~ 0
   )) %>%
   mutate(oh_type = case_when(
        alcohol_type == 'beer' ~ 1.7,
        alcohol_type == 'spirits' ~ 1,
        TRUE ~ 0
   )) %>%
   mutate(oh_units_per_month = oh_freq * oh_sitting * oh_type) %>%
```

```
select(PID, test_result, oh_units_per_month)
```

Point estimates

Table 6: Estimated alcohol units per month (full cohort)

variable	missing	complete	n	mean	sd	p0	p25	p50	p75	p100
oh_units_per_month	0	535	535	10.63	29.76	0	0	3.5	8.5	258.4

```
# Graphical summary
ggplot(data = oh) +
   aes(x = 'Full cohort',
       y = oh_units_per_month) +
   geom_boxplot(alpha = 0.7,
                 colour = '#000000',
                 fill = '#999999') +
   geom_point(position = position_jitter(height = 0),
               fill = '#FFFFFF',
               alpha = 0.7,
               stroke = 0.8,
               size = 2,
               shape = 21) +
   labs(subtitle = 'Estimated alcohol units per month for the full cohort',
         y = 'Alcohol units per month') +
   theme(axis.title.x = element_blank())
```

Estimated alcohol units per month for the full cohort

By HIV status

Table 7: Estimated alcohol units per month (by HIV status)

$\operatorname{test_result}$	variable	missing	complete	n	mean	sd	p0	p25	p50	p75	p100
HIV negative	oh_units_per_month	0	465	465	9.72	26.28	0	0	3.5	8.5	258.4
HIV positive	oh_units_per_month	0	70	70	16.7	46.55	0	0	3.5	8.5	258.4

```
alpha = 0.7,
    stroke = 0.8,
    size = 2,
    shape = 21) +
labs(subtitle = 'Estimated alcohol units per month by HIV status',
    y = 'Alcohol units per month') +
theme(axis.title.x = element_blank(),
    legend.position = 'none')
```

Estimated alcohol units per month by HIV status

95% CI of the point estimates

Whole cohort

```
data = oh,
                 bca = FALSE,
                 percentile = TRUE) %>%
    select(-starts_with('Trad'))
##
      test result
                     n Median Conf.level Percentile.lower Percentile.upper
## 1 HIV negative 465
                                     0.95
                                                                         3.50
                          3.5
                                                       3.50
## 2 HIV positive 70
                                                       0.75
                                                                         5.95
                          3.5
                                     0.95
                            95% CI of the difference in median
# Boot function
func_tmp <- function(d, i){</pre>
    data <- d[i, ]
    data <- data[!is.na(data$oh_units_per_month), ]</pre>
    data_hiv <- filter(data, test_result == 'HIV positive')</pre>
    data nohiv <- filter(data, test result == 'HIV negative')</pre>
    median_yes <- median(data_hiv$oh_units_per_month, na.rm = TRUE)</pre>
    median_no <- median(data_nohiv$oh_units_per_month, na.rm = TRUE)</pre>
    median_yes - median_no
}
# Confidence interval of the difference in proportions (HIV+ minus HIV-)
set.seed(2019)
boot_tmp <- boot(data = oh,</pre>
                  statistic = func_tmp,
                  R = 999.
                  stype = 'i')
bootci_tmp <- boot.ci(boot_tmp,</pre>
                       type = 'perc') # BCa gave extreme order statistics
tibble_tmp <- tibble(`difference in mean` = round(boot_tmp$t0, 2),</pre>
                       `lower 95% CI` = round(bootci_tmp$percent[[4]], 2),
                      `upper 95% CI` = round(bootci_tmp$percent[[5]], 2))
tibble_tmp %>%
    kable(caption = 'Alcohol units per month - 95% CI of the difference (HIV+ minus HIV-)')
                                        \begin{table}[t]
           \caption{Alcohol units per month - 95% CI of the difference (HIV+ minus HIV-)}
                         difference in mean
                                           lower 95% CI
                                                          upper 95% CI
                                                    -3.5
                                                                   2.45
                                          \end{table}
# Plot
ggplot(data = tibble_tmp) +
    aes(x = 'ID',
        y = `difference in mean`,
        ymin = `lower 95% CI`.
        ymax = `upper 95% CI`) +
    geom_point(size = 8) +
    geom_errorbar(size = 1,
                   width = 0.3) +
```

Alcohol units per month

95% CI of the difference in alcohol units per month (HIV+ m

Categorical data

Sex (self-identified)

Point estimates

```
# Total cohort
data %>%
    filter(!is.na(test_result)) %>%
    filter(!is.na(sex)) %>%
    group_by(sex) %>%
    summarise(count = n()) %>%
    ungroup() %>%
    mutate(total = sum(count)) %>%
    mutate(proportion = round(count/total, 2)) %>%
    kable(caption = 'Sex - total cohort (point estimates)')
```

Table 8: Sex - total cohort (point estimates)

	,	1	
sex	count	total	proportion
female	292	533	0.55
male	241	533	0.45

Sex

Whole cohort

By HIV status

```
# Count and proportion by HIV status
data %>%
    filter(!is.na(sex)) %>%
```

Table 9: Sex - by HIV status (point estimates)

			\ -	
test_result	sex	count	total	proportion
HIV negative	female	248	464	0.53
HIV negative	male	216	464	0.47
HIV positive	female	44	69	0.64
HIV positive	male	25	69	0.36

```
filter(!is.na(test_result)) %>%
    group_by(test_result, sex) %>%
    summarise(count = n()) %>%
    group_by(test_result) %>%
    mutate(total = sum(count)) %>%
    mutate(proportion = round(count/total, 2)) %>%
    kable(caption = 'Sex - by HIV status (point estimates)')
## Plot
data %>%
    filter(!is.na(sex)) %>%
    filter(!is.na(test_result)) %>%
    ggplot(data = .) +
    aes(x = test_result,
       fill = sex) +
    geom_bar(position = position_fill()) +
    scale_fill_manual(values = pal,
                     na.value = '#000000') +
    labs(title = 'Sex',
         subtitle = 'By HIV status',
         y = 'Proportion',
         x = 'Status') +
    theme(legend.title = element_blank())
```

Sex
By HIV status

95% confidence intervals for the point estimates

```
# Boot functions
func_tmp <- function(d, i){</pre>
    data <- d[i, ]
    data <- data %>%
        filter(!is.na(sex))
    prop <- mean(data$sex == 'female')</pre>
    prop
}
# Whole cohort
set.seed(2019)
boot_tmp <- boot(data = data,</pre>
                  statistic = func_tmp,
                  R = 999,
                  stype = 'i')
bootci_tmp <- boot.ci(boot_tmp,</pre>
                       type = 'perc')
tibble(sex = 'female',
       proportion = round(boot_tmp$t0, 2),
       `lower 95% CI` = round(bootci_tmp$percent[[4]], 2),
        `upper 95% CI` = round(bootci_tmp$percent[[5]], 2)) %>%
```

```
kable(caption = 'Sex - total cohort (95% CI)')

| begin{table}[t] |
| caption{Sex - total cohort (95% CI)}
| sex | proportion | lower 95% CI | upper 95% CI |
| female | 0.55 | 0.51 | 0.59
```

 \end{table}

By HIV status

```
# By HIV status (HIV- reported first)
set.seed(2019)
boot tmp <- data %>%
    filter(!is.na(sex)) %>%
    filter(!is.na(test_result)) %>%
    group_by(test_result) %>%
    nest() %>%
    mutate(boot = map(.x = data,
                        ~ boot(data = .x,
                                statistic = func_tmp,
                                R = 999,
                                stype = 'i'))) %>%
    mutate(boot_ci = map(.x = boot,
                            ~ boot.ci(.x,
                                      type = 'perc')))
tibble(`status` = c('HIV negative', 'HIV positive'),
       sex = c('female', 'female'),
       proportion = c(round(boot_tmp$boot[[1]]$t0, 2),
                        round(boot tmp$boot[[2]]$t0, 2)),
       `lower 95% CI` = c(round(boot_tmp$boot_ci[[1]]$percent[[4]], 2),
                             round(boot_tmp$boot_ci[[2]]$percent[[4]], 2)),
       `upper 95% CI` = c(round(boot_tmp$boot_ci[[1]]$percent[[5]],2 ),
                            round(boot_tmp$boot_ci[[2]]$percent[[5]], 2))) %>%
    kable(caption = 'Sex - by HIV status (95% CI)')
                                          \begin{table}[t]
                               \operatorname{Sex} - \operatorname{by} \operatorname{HIV} \operatorname{status} (95\% \operatorname{CI})
```

 status
 sex
 proportion
 lower 95% CI
 upper 95% CI

 HIV negative
 female
 0.53
 0.49
 0.58

 HIV positive
 female
 0.64
 0.52
 0.75

 \end{table}

95% CI of the difference in proportions

```
# Boot function
func_tmp <- function(d, i){
   data <- d[i, ]
   data <- data %>%
      filter(!is.na(sex)) %>%
      filter(!is.na(test result))
```

```
data_hiv <- filter(data, test_result == 'HIV positive')</pre>
    data_nohiv <- filter(data, test_result == 'HIV negative')</pre>
    prop yes <- mean(data hiv$sex == 'female')</pre>
    prop_no <- mean(data_nohiv$sex == 'female')</pre>
    prop_yes - prop_no
}
# Confidence interval of the difference in proportions (HIV+ minus HIV-)
set.seed(2019)
boot_tmp <- boot(data = data,</pre>
                  statistic = func_tmp,
                  R = 999,
                  stype = 'i')
bootci_tmp <- boot.ci(boot_tmp,</pre>
                       type = 'perc')
tibble_tmp <- tibble(`difference in proportion` = round(boot_tmp$t0, 2),
                      `lower 95% CI` = round(bootci_tmp$percent[[4]], 2),
                      `upper 95% CI` = round(bootci_tmp$percent[[5]], 2))
tibble_tmp %>%
    kable(caption = 'Sex - 95% CI of the difference (HIV+ minus HIV-)')
                                        \begin{table}[t]
                    \caption{Sex - 95\% CI of the difference (HIV+ minus HIV-)}
                      difference in proportion
                                             lower 95% CI
                                                            upper 95% CI
                                                                     0.22
                                        0.1
                                                     -0.02
                                          \end{table}
# Plot
ggplot(data = tibble_tmp) +
    aes(x = 'ID',
        y = `difference in proportion`,
        ymin = `lower 95% CI`,
        ymax = upper 95\% CI) +
    geom_point(size = 8) +
    geom_errorbar(size = 1,
                  width = 0.3) +
    geom_hline(yintercept = 0,
               linetype = 2) +
    labs(title = 'Sex',
         subtitle = '95% CI of the difference in proportion (HIV+ minus HIV-)',
         y = 'Difference in proportion') +
    theme(axis.title.x = element_blank())
```

Table 10: Schooling - total cohort (point estimates)

		\ <u> -</u>	
educational_level	count	total	proportion
no/primary school	24	521	0.05
secondary school	322	521	0.62
post-school qualification	175	521	0.34

Sex 95% CI of the difference in proportion (HIV+ minus HIV-)

School grade

Point estimates

```
# Total cohort
data %>%
    filter(!is.na(educational_level)) %>%
    filter(!is.na(test_result)) %>%
    group_by(educational_level) %>%
    summarise(count = n()) %>%
    ungroup() %>%
    mutate(total = sum(count)) %>%
    mutate(proportion = round(count/total, 2)) %>%
    kable(caption = 'Schooling - total cohort (point estimates)')
## Plot
data %>%
    filter(!is.na(educational_level)) %>%
```

Schooling

Whole cohort

By HIV status

```
# Count and proportion by HIV status
data %>%
    filter(!is.na(educational_level)) %>%
    filter(!is.na(test_result)) %>%
    group_by(test_result, educational_level) %>%
    summarise(count = n()) %>%
    group_by(test_result) %>%
    mutate(total = sum(count)) %>%
    mutate(proportion = round(count/total, 2)) %>%
    kable(caption = 'Schooling - by HIV status (point estimates)')
## Plot
data %>%
    filter(!is.na(educational_level)) %>%
```

Table 11: Schooling - by HIV status (point estimates)

educational_level	count	total	proportion
no/primary school	14	451	0.03
secondary school	277	451	0.61
post-school qualification	160	451	0.35
no/primary school	10	70	0.14
secondary school	45	70	0.64
post-school qualification	15	70	0.21
	no/primary school secondary school post-school qualification no/primary school secondary school	no/primary school14secondary school277post-school qualification160no/primary school10secondary school45	no/primary school14451secondary school277451post-school qualification160451no/primary school1070secondary school4570

Schooling

By HIV status

95% confidence intervals for the point estimates

```
school tmp <- data %>%
    select(-CD4_count, -age, -sex, -employment,
           -anxiety score, -depression score, -total score,
           -starts_with('alcohol')) %>%
    filter(!is.na(educational level)) %>%
    filter(!is.na(test result)) %>%
    mutate(dummy = row number()) %>%
    spread(key = educational level,
           value = dummy) %>%
    mutate_if(is.integer, ~ ifelse(!is.na(.),
                                    yes = 'yes',
                                    no = 'no')) \%>\%
    gather(key = grade,
           value = value,
           -PID, -test_result)
# Boot functions
func_tmp <- function(d, i){</pre>
    data <- d[i. ]
    data <- data %>%
        filter(!is.na(value))
    prop <- mean(data$value == 'yes')</pre>
    prop
}
# Whole cohort
set.seed(2019)
boot_tmp <- school_tmp %>%
    group_by(grade) %>%
    nest() %>%
    mutate(boot = map(.x = data,
                       \sim boot(data = .x,
                              statistic = func_tmp,
                              R = 999,
                              stype = 'i',
                             parallel = 'multicore',
                             ncpus = 4))) %>%
    mutate(boot_ci = map(.x = boot,
                          ~ boot.ci(.x,
                                    type = 'perc')))
tibble(grade = boot_tmp$grade,
       proportion = c(round(boot_tmp$boot[[1]]$t0, 2),
                      round(boot_tmp$boot[[2]]$t0, 2),
                      round(boot_tmp$boot[[3]]$t0, 2)),
       `lower 95% CI` = c(round(boot_tmp$boot_ci[[1]]$percent[[4]], 2),
                           round(boot_tmp$boot_ci[[2]]$percent[[4]], 2),
                           round(boot_tmp$boot_ci[[3]]$percent[[4]], 2)),
       `upper 95% CI` = c(round(boot_tmp$boot_ci[[1]]$percent[[5]], 2),
                           round(boot_tmp$boot_ci[[2]]$percent[[5]], 2),
                           round(boot_tmp$boot_ci[[3]]$percent[[5]], 2))) %>%
    kable(caption = 'Schooling - whole cohort (95% CI)')
                                       \begin{table}[t]
```

\caption{Schooling - whole cohort (95% CI)}

grade	proportion	lower 95% CI	upper 95% CI
no/primary school	0.05	0.03	0.06
secondary school	0.62	0.58	0.66
post-school qualification	0.34	0.30	0.38

By HIV status

```
# Boot functions
func_tmp <- function(d, i){</pre>
    data <- d[i, ]
    data <- data %>%
        filter(!is.na(value))
    prop <- mean(data$value == 'yes')</pre>
    prop
}
# Whole cohort
set.seed(2019)
boot_tmp <- school_tmp %>%
    group_by(test_result, grade) %>%
    nest() %>%
    mutate(boot = map(.x = data,
                      \sim boot(data = .x,
                             statistic = func tmp,
                             R = 999,
                             stype = 'i',
                             parallel = 'multicore',
                             ncpus = 4))) %>%
    mutate(boot ci = map(.x = boot,
                         ~ boot.ci(.x,
                                   type = 'perc')))
tibble(test_result = boot_tmp$test_result,
       grade = boot_tmp$grade,
       proportion = c(round(boot_tmp$boot[[1]]$t0, 2),
                      round(boot_tmp$boot[[2]]$t0, 2),
                      round(boot_tmp$boot[[3]]$t0, 2),
                      round(boot_tmp$boot[[4]]$t0, 2),
                      round(boot_tmp$boot[[5]]$t0, 2),
                      round(boot_tmp$boot[[6]]$t0, 2)),
       `lower 95% CI` = c(round(boot_tmp$boot_ci[[1]]$percent[[4]], 2),
                           round(boot_tmp$boot_ci[[2]]$percent[[4]], 2),
                          round(boot_tmp$boot_ci[[3]]$percent[[4]], 2),
                          round(boot_tmp$boot_ci[[4]]$percent[[4]], 2),
                          round(boot_tmp$boot_ci[[5]]$percent[[4]], 2),
                          round(boot_tmp$boot_ci[[6]]$percent[[4]], 2)),
       `upper 95% CI` = c(round(boot_tmp$boot_ci[[1]]$percent[[5]], 2),
                           round(boot_tmp$boot_ci[[2]]$percent[[5]], 2),
                          round(boot_tmp$boot_ci[[3]]$percent[[5]], 2),
                           round(boot_tmp$boot_ci[[4]]$percent[[5]], 2),
                           round(boot_tmp$boot_ci[[5]]$percent[[5]], 2),
```

test_result	grade	proportion	lower 95% CI	upper 95% CI
HIV negative	no/primary school	0.03	0.02	0.05
HIV positive	no/primary school	0.14	0.07	0.23
HIV negative	secondary school	0.61	0.57	0.66
HIV positive	secondary school	0.64	0.53	0.74
HIV negative	post-school qualification	0.35	0.31	0.40
HIV positive	post-school qualification	0.21	0.11	0.31

95% confidence interval of the difference in proportions

```
# Boot function
func_tmp <- function(d, i){</pre>
    data <- d[i, ]
    data <- data %>%
        filter(!is.na(value)) %>%
        filter(!is.na(test_result))
    data_hiv <- filter(data, test_result == 'HIV positive')</pre>
    data_nohiv <- filter(data, test_result == 'HIV negative')</pre>
    prop_yes <- mean(data_hiv$value == 'yes')</pre>
    prop no <- mean(data nohiv$value == 'yes')</pre>
    prop_yes - prop_no
}
# Confidence interval of the difference in proportions (HIV+ minus HIV-)
set.seed(2019)
boot_tmp <- school_tmp %>%
    group_by(grade) %>%
    nest() %>%
    mutate(boot = map(.x = data,
                       \sim boot(data = .x,
                              statistic = func tmp,
                              R = 999,
                              stype = 'i',
                              parallel = 'multicore',
                              ncpus = 4))) %>%
    mutate(boot_ci = map(.x = boot,
                          ~ boot.ci(.x,
                                    type = 'perc')))
tibble_tmp <- tibble(grade = boot_tmp$grade,</pre>
                      `difference in proportion` = c(round(boot_tmp$boot[[1]]$t0, 2),
                                                       round(boot_tmp$boot[[2]]$t0, 2),
                                                       round(boot_tmp$boot[[3]]$t0, 2)),
                      `lower 95% CI` = c(round(boot_tmp$boot_ci[[1]]$percent[[4]], 2),
                                          round(boot_tmp$boot_ci[[2]]$percent[[4]], 2),
                                          round(boot_tmp$boot_ci[[3]]$percent[[4]], 2)),
```

```
`upper 95% CI` = c(round(boot_tmp$boot_ci[[1]]$percent[[5]], 2),
                                           round(boot_tmp$boot_ci[[2]]$percent[[5]], 2),
                                           round(boot_tmp$boot_ci[[3]]$percent[[5]], 2))) %>%
    mutate(grade = factor(grade,
                            levels = c('no/primary school',
                                        'secondary school',
                                        'post-school qualification'),
                            labels = c('0-7', '8-12', '>12'),
                            ordered = TRUE))
tibble_tmp %>%
    kable(caption = 'Schooling - 95% CI of the difference (HIV+ minus HIV-)')
                                         \left\{ \text{table} \right\} [t]
                  \caption{Schooling - 95% CI of the difference (HIV+ minus HIV-)}
                          difference in proportion
                                                  lower 95% CI
                                                                 upper 95% CI
                   grade
                                                           0.03
                                                                          0.20
                   0 - 7
                                            0.11
                   8-12
                                            0.03
                                                          -0.09
                                                                          0.14
```

-0.24

-0.03

-0.14

```
# Plot
```

> 12

Table 12: Employment - total cohort (point estimates)

		(-	
employment	count	total	proportion
disability grant	6	532	0.01
employed	182	532	0.34
employed (part time)	60	532	0.11
pension grant	13	532	0.02
unemployed	271	532	0.51

Schooling

95% CI of the difference in proportion (HIV+ minus HIV-)

Employment

Point estimates

```
# Total cohort
data %>%
    filter(!is.na(employment)) %>%
    filter(!is.na(test_result)) %>%
    group_by(employment) %>%
    summarise(count = n()) %>%
    ungroup() %>%
    mutate(total = sum(count)) %>%
    mutate(proportion = round(count/total, 2)) %>%
    kable(caption = 'Employment - total cohort (point estimates)')
```

```
## Plot
data %>%
    filter(!is.na(employment)) %>%
    filter(!is.na(test_result)) %>%
    ggplot(data = .) +
    aes(x = 'ID',
        fill = employment) +
    geom_bar(position = position_fill()) +
    scale_fill_grey() +
    labs(title = 'Employment',
        subtitle = 'Whole cohort',
        y = 'Proportion') +
    theme(axis.title.x = element_blank())
```

Employment

Whole cohort

Table 13: Employment (collapsed groups) - total cohort (point estimates)

employment	count	total	proportion
grant	19	532	0.04
employed	242	532	0.45
unemployed	271	532	0.51

```
summarise(count = n()) %>%
   ungroup() %>%
   mutate(total = sum(count)) %>%
   mutate(proportion = round(count/total, 2)) %>%
   kable(caption = 'Employment (collapsed groups) - total cohort (point estimates)')
## Plot
data %>%
   filter(!is.na(employment)) %>%
   filter(!is.na(test_result)) %>%
   ggplot(data = .) +
   aes(x = 'ID',
        fill = employment) +
   geom_bar(position = position_fill()) +
    scale_fill_grey() +
   labs(title = 'Employment (collapsed groups)',
         subtitle = 'Whole cohort',
         y = 'Proportion') +
   theme(axis.title.x = element_blank(),
          legend.title = element_blank())
```

Employment (collapsed groups)

Whole cohort

Table 14: Employment - by HIV status (point estimates)

test_result	employment	count	total	proportion
HIV negative	grant	16	462	0.03
HIV negative	employed	215	462	0.47
HIV negative	unemployed	231	462	0.50
HIV positive	grant	3	70	0.04
HIV positive	employed	27	70	0.39
HIV positive	unemployed	40	70	0.57

By HIV status

```
# Count and proportion by HIV status
data %>%
   filter(!is.na(employment)) %>%
   filter(!is.na(test_result)) %>%
   group_by(test_result, employment) %>%
   summarise(count = n()) %>%
   group_by(test_result) %>%
   mutate(total = sum(count)) %>%
   mutate(proportion = round(count/total, 2)) %>%
   kable(caption = 'Employment - by HIV status (point estimates)')
## Plot
data %>%
   filter(!is.na(employment)) %>%
   filter(!is.na(test_result)) %>%
   ggplot(data = .) +
   aes(x = test_result,
       fill = employment) +
   geom_bar(position = position_fill()) +
   scale_fill_grey() +
   labs(title = 'Employment',
         subtitle = 'By HIV status',
        y = 'Proportion',
         x = 'Status') +
   theme(legend.title = element_blank())
```

Employment By HIV status

95% confidence intervals for the point estimates

```
employment_tmp <- data %>%
    select(-CD4_count, -age, -sex, -educational_level,
           -anxiety_score, -depression_score, -total_score,
           -starts with('alcohol')) %>%
    filter(!is.na(test_result)) %>%
    filter(!is.na(employment)) %>%
    mutate(dummy = row_number()) %>%
    spread(key = employment,
           value = dummy) %>%
    mutate_if(is.integer, ~ ifelse(!is.na(.),
                                    yes = 'yes',
                                    no = 'no')) \%>\%
    gather(key = employment,
           value = value,
           -PID, -test_result)
# Boot functions
func_tmp <- function(d, i){</pre>
    data <- d[i, ]
    data <- data %>%
        filter(!is.na(value))
    prop <- mean(data$value == 'yes')</pre>
    prop
```

```
}
# Whole cohort
set.seed(2019)
boot_tmp <- employment_tmp %>%
    group_by(employment) %>%
    nest() %>%
    mutate(boot = map(.x = data,
                       ~ boot(data = .x,
                              statistic = func_tmp,
                              R = 999,
                              stype = 'i',
                              parallel = 'multicore',
                              ncpus = 4))) %>%
    mutate(boot_ci = map(.x = boot,
                          ~ boot.ci(.x,
                                    type = 'perc')))
tibble(employment = boot_tmp$employment,
       proportion = c(round(boot_tmp$boot[[1]]$t0, 2),
                      round(boot_tmp$boot[[2]]$t0, 2),
                      round(boot_tmp$boot[[3]]$t0, 2)),
       `lower 95% CI` = c(round(boot_tmp$boot_ci[[1]]$percent[[4]], 2),
                           round(boot_tmp$boot_ci[[2]]$percent[[4]], 2),
                           round(boot_tmp$boot_ci[[3]]$percent[[4]], 2)),
       `upper 95% CI` = c(round(boot_tmp$boot_ci[[1]]$percent[[5]], 2),
                           round(boot_tmp$boot_ci[[2]]$percent[[5]], 2),
                           round(boot_tmp$boot_ci[[3]]$percent[[5]], 2))) %>%
    kable(caption = 'Employment - whole cohort (95% CI)')
                                       \begin{table}[t]
                         \caption{Employment - whole cohort (95% CI)}
                                             lower 95% CI
                                                            upper 95% CI
                     employment
                                  proportion
                                        0.04
                                                      0.02
                                                                    0.05
                     grant
                                        0.45
                                                     0.41
                                                                    0.50
                     employed
                     unemployed
                                       0.51
                                                     0.47
                                                                    0.55
```

 \end{table}

By HIV status

```
# Boot functions
func_tmp <- function(d, i){
    data <- d[i, ]
    data <- data %>%
        filter(!is.na(value))
    prop <- mean(data$value == 'yes')
    prop
}

# Whole cohort
set.seed(2019)
boot_tmp <- employment_tmp %>%
    group_by(test_result, employment) %>%
```

```
nest() %>%
   mutate(boot = map(.x = data,
                      \sim boot(data = .x,
                             statistic = func_tmp,
                             R = 999,
                             stype = 'i',
                             parallel = 'multicore',
                             ncpus = 4))) %>%
   mutate(boot_ci = map(.x = boot,
                         ~ boot.ci(.x,
                                   type = 'perc')))
tibble(test_result = boot_tmp$test_result,
       grade = boot_tmp$employment,
       proportion = c(round(boot_tmp$boot[[1]]$t0, 2),
                      round(boot_tmp$boot[[2]]$t0, 2),
                      round(boot_tmp$boot[[3]]$t0, 2),
                      round(boot tmp$boot[[4]]$t0, 2),
                      round(boot_tmp$boot[[5]]$t0, 2),
                      round(boot tmp$boot[[6]]$t0, 2)),
       `lower 95% CI` = c(round(boot_tmp$boot_ci[[1]]$percent[[4]], 2),
                          round(boot_tmp$boot_ci[[2]]$percent[[4]], 2),
                          round(boot_tmp$boot_ci[[3]]$percent[[4]], 2),
                          round(boot_tmp$boot_ci[[4]]$percent[[4]], 2),
                          round(boot_tmp$boot_ci[[5]]$percent[[4]], 2),
                          round(boot_tmp$boot_ci[[6]]$percent[[4]], 2)),
       `upper 95% CI` = c(round(boot_tmp$boot_ci[[1]]$percent[[5]], 2),
                          round(boot_tmp$boot_ci[[2]]$percent[[5]], 2),
                          round(boot_tmp$boot_ci[[3]]$percent[[5]], 2),
                          round(boot_tmp$boot_ci[[4]]$percent[[5]], 2),
                          round(boot_tmp$boot_ci[[5]]$percent[[5]], 2),
                          round(boot_tmp$boot_ci[[6]]$percent[[5]], 2))) %>%
   kable(caption = 'Employment - by HIV status (95% CI)')
                                       \begin{table}[t]
```

\caption{Employment - by HIV status (95% CI)}

test_result	grade	proportion	lower 95% CI	upper 95% CI
HIV negative	grant	0.03	0.02	0.05
HIV positive	grant	0.04	0.00	0.10
HIV negative	employed	0.47	0.42	0.51
HIV positive	employed	0.39	0.27	0.49
HIV negative	unemployed	0.50	0.45	0.55
HIV positive	unemployed	0.57	0.46	0.69

95% confidence interval of the difference in proportions

```
# Boot function
func_tmp <- function(d, i){
   data <- d[i, ]
   data <- data %>%
      filter(!is.na(value)) %>%
```

```
filter(!is.na(test result))
    data_hiv <- filter(data, test_result == 'HIV positive')</pre>
    data nohiv <- filter(data, test result == 'HIV negative')</pre>
    prop_yes <- mean(data_hiv$value == 'yes')</pre>
    prop_no <- mean(data_nohiv$value == 'yes')</pre>
    prop_yes - prop_no
}
# Confidence interval of the difference in proportions (HIV+ minus HIV-)
set.seed(2019)
boot_tmp <- employment_tmp %>%
    group_by(employment) %>%
    nest() %>%
    mutate(boot = map(.x = data,
                        ~ boot(data = .x,
                               statistic = func_tmp,
                               R = 999,
                               stype = 'i',
                               parallel = 'multicore',
                               ncpus = 4))) %>%
    mutate(boot_ci = map(.x = boot,
                           ~ boot.ci(.x,
                                      type = 'perc')))
tibble_tmp <- tibble(employment = boot_tmp$employment,</pre>
                       `difference in proportion` = c(round(boot_tmp$boot[[1]]$t0, 2),
                                                        round(boot_tmp$boot[[2]]$t0, 2),
                                                        round(boot_tmp$boot[[3]]$t0, 2)),
                       `lower 95% CI` = c(round(boot_tmp$boot_ci[[1]]$percent[[4]], 2),
                                           round(boot_tmp$boot_ci[[2]]$percent[[4]], 2),
                                           round(boot_tmp$boot_ci[[3]]$percent[[4]], 2)),
                       `upper 95% CI` = c(round(boot_tmp$boot_ci[[1]]$percent[[5]], 2),
                                           round(boot_tmp$boot_ci[[2]]$percent[[5]], 2),
                                           round(boot_tmp$boot_ci[[3]]$percent[[5]], 2)))
tibble tmp %>%
    kable(caption = 'Employment - 95% CI of the difference (HIV+ minus HIV-)')
                                         \left\{ \text{begin} \left\{ \text{table} \right\} \right[t]
                \caption{Employment - 95% CI of the difference (HIV+ minus HIV-)}
                                                     lower 95% CI
                employment
                             difference in proportion
                                                                    upper 95% CI
                grant
                                               0.01
                                                             -0.04
                                                                             0.06
                employed
                                               -0.08
                                                             -0.21
                                                                             0.04
                unemployed
                                               0.07
                                                             -0.05
                                                                             0.20
                                           \end{table}
# Plot
ggplot(data = tibble_tmp) +
    aes(x = employment,
        y = `difference in proportion`,
```

ymin = `lower 95% CI`,
ymax = `upper 95% CI`) +

geom_point(size = 8) +

Employment

95% CI of the difference in proportion (HIV+ minus HIV-)

Session information

sessionInfo()

```
## R version 3.6.0 (2019-04-26)
## Platform: x86_64-apple-darwin15.6.0 (64-bit)
## Running under: macOS Mojave 10.14.6
##
## Matrix products: default
## BLAS: /Library/Frameworks/R.framework/Versions/3.6/Resources/lib/libRblas.0.dylib
## LAPACK: /Library/Frameworks/R.framework/Versions/3.6/Resources/lib/libRlapack.dylib
##
locale:
## locale:
## [1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8
##
## attached base packages:
```

```
## [1] stats
                 graphics grDevices utils
                                                datasets methods
                                                                    base
##
## other attached packages:
   [1] boot_1.3-23
                           rcompanion_2.2.2
                                               DataExplorer_0.8.0
##
   [4] kableExtra 1.1.0
                           skimr_1.0.7
                                               magrittr_1.5
  [7] forcats 0.4.0
                           stringr_1.4.0
                                               dplyr 0.8.3
##
                           readr 1.3.1
                                               tidyr 0.8.99.9000
## [10] purrr_0.3.2
                           ggplot2_3.2.1
## [13] tibble_2.1.3
                                               tidyverse_1.2.1
##
## loaded via a namespace (and not attached):
   [1] nlme_3.1-141
                           matrixStats_0.54.0 lubridate_1.7.4
   [4] webshot_0.5.1
                           httr_1.4.1
                                               tools_3.6.0
  [7] backports_1.1.4
                           utf8_1.1.4
                                               R6_2.4.0
                           lazyeval_0.2.2
## [10] nortest_1.0-4
                                               colorspace_1.4-1
## [13] withr_2.1.2.9000
                           tidyselect_0.2.5
                                               gridExtra_2.3
## [16] compiler_3.6.0
                           cli_1.1.0
                                               rvest_0.3.4
## [19] expm_0.999-4
                           xm12_1.2.2
                                               sandwich_2.5-1
## [22] labeling 0.3
                           scales 1.0.0
                                               1mtest 0.9-37
                           multcompView_0.1-7 digest_0.6.20
## [25] mvtnorm_1.0-11
## [28] foreign_0.8-72
                           rmarkdown_1.14
                                               pkgconfig_2.0.2
## [31] htmltools_0.3.6
                           manipulate_1.0.1
                                               htmlwidgets_1.3
## [34] rlang_0.4.0
                           readxl 1.3.1
                                               rstudioapi_0.10
## [37] generics_0.0.2
                           zoo_1.8-6
                                               jsonlite_1.6
## [40] modeltools 0.2-22
                           Matrix 1.2-17
                                               Rcpp_1.0.2
## [43] DescTools_0.99.28
                           munsell_0.5.0
                                               fansi_0.4.0
## [46] lifecycle_0.1.0
                           stringi_1.4.3
                                               multcomp_1.4-10
## [49] yaml_2.2.0
                           MASS_7.3-51.4
                                               plyr_1.8.4
## [52] grid_3.6.0
                           parallel_3.6.0
                                               crayon_1.3.4
## [55] lattice_0.20-38
                           haven_2.1.1
                                               splines_3.6.0
                           zeallot_0.1.0
## [58] hms_0.5.0
                                               knitr_1.24
## [61] pillar_1.4.2
                           igraph_1.2.4.1
                                               EMT_1.1
## [64] codetools_0.2-16
                           stats4_3.6.0
                                               glue_1.3.1
## [67] evaluate_0.14
                           data.table_1.12.2
                                               modelr_0.1.5
## [70] vctrs_0.2.0
                           networkD3_0.4
                                               cellranger_1.1.0
## [73] gtable_0.3.0
                           assertthat_0.2.1
                                               xfun 0.8
## [76] coin_1.3-0
                                               broom_0.5.2
                           libcoin_1.0-4
## [79] survival 2.44-1.1
                           viridisLite_0.3.0
                                               ellipsis_0.2.0.1
## [82] TH.data_1.0-10
```