$\label{eq:Msc} \text{Msc thesis} \\ \text{Mathematical Modelling and Computation} \\$

The dynamics of adaptive neuronal networks: influence of topology on synchronisation Simon Aertssen, s181603

 $\begin{array}{c} \textit{Supervisors} \\ \textit{Erik Martens and Poul Hjorth} \\ \textit{February } 1^{\text{st}} \ 2021 \end{array}$

DTU Compute

Department of Applied Mathematics and Computer Science

Contents

- 1. Introduction
- 2. The Theta Neuron Model
- 3. Network Topologies
- 4. Mean Field Reductions
- 5. Investigation: Mean Field Reductions for undirected graphs
- 6. Hebbian Learning and Synaptic Plasticity
- 7. Investigation: Emerging Network Topologies
- 8. Conclusion and Discussion

Introduction

Neuron dynamics

How do neurons communicate?

- Neurons receive neurotransmitters
- Action potential = explosion of electrical activity
- Synapse releases the neurons' neurotransmitter

How can we capture this behaviour?

- Human brain consists of ~ 100 billion neurons
- The MFR yields the average dynamics of the network

The Theta Neuron Model

Model Description

Formulation

$$\dot{\theta} = (1 - \cos \theta) + (1 + \cos \theta) \cdot I \qquad \theta \in \mathbb{T}$$

Normal form of SNIC bifurcation

Excitable regime: I < 0

Bifurcation: I=0

Periodic regime: I > 0

Response

• Formulate bifurcations in terms of spiking frequency or phase angle

Three basic networks

Networks of Theta neurons

For an arbitrary network topology:

$$\dot{\theta}_i = (1 - \cos \theta_i) + (1 + \cos \theta_i) \cdot [\eta_i + I_i(t)] \qquad \theta_i \in \mathbb{T}^N$$

$$I_i(t) = \frac{\kappa}{\langle k \rangle} \sum_{j=1}^N A_{ij} \cdot \mathcal{P}_n(\theta_j)$$

Capture synchronisation

$$Z(t) = \frac{1}{N} \sum_{i=1}^{N} e^{i\theta_j} \qquad Z(t) \in \mathbb{C}_{\circ}$$

Mean Field Reductions

Predict synchronisation dynamics

Investigation: Mean Field Reductions for undirected graphs Investigation: Mean Field Reductions for undirected graphs

Hebbian Learning and Synaptic Plasticity Hebbian Learning and Synaptic Plasticity

Investigation: Emerging Network Topologies
Investigation: Emerging Network Topologies

Conclusion and Discussion

Conclusion and Discussion