SRI 1ère année – Arbre binaire d'entiers

Un arbre binaire d'entiers est représenté par un pointeur vers une cellule qui contient d'une part un entier et d'autre part deux pointeurs vers d'autres cellules.

Créer l'unité Arbre binaire et le fichier de test associé qui permettent de :

- 1. Définir le type ARBRE d'entiers (dynamique).
- 2. Définir la fonction INIT_ARBRE qui initialise l'arbre binaire.
- 3. Définir une fonction récursive AFFICHE_ARBRE qui permet d'afficher tous les éléments de l'arbre (donné en paramètre) dans l'ordre croissant.
- 4. Définir une fonction ARBRE_VIDE qui permet de tester si l'arbre (donné en paramètre) est vide.
- 5. Définir une fonction AJOUT_DS_ARBRE qui permet d'ajouter un entier (donné en paramètre) à un arbre (donné en paramètre). Pour ajouter un entier, on doit parcourir l'arbre de façon à positionner l'entier à sa place : l'arbre est trié en GRD (gauche racine droite : le plus petit entier est le plus à gauche possible de l'arbre).

Exemple : insérer successivement 7, 65, 8, 12 et 3 donne l'arbre suivant :

- 6. Définir une fonction ENLEVER_MIN_DE_ARBRE qui permet d'enlever le plus petit élément de l'arbre (donné en paramètre) cette fonction doit renvoyer l'élément en question.
- 7. (a) Peut-on transformer la fonction récursive AFFICHE_ARBRE en une fonction itérative, qui fait la même chose, sans utiliser de structure de données auxilliaire et sans modifier le type ARBRE?
 - (b) Si non, quelle structure de données auxilliaire, autre qu'un arbre proposez-vous? Donnez alors la fonction itérative correspondante.
 - (c) Peut-on éviter la structure de données auxilliaire en modifiant le type ARBRE ? Donnez alors le nouveau type ARBRE et la fonction itérative correspondante.

Vous devez tester TOUTES vos fonctions en envisageant TOUS LES CAS possibles.