Chapitre 16

Compléments d'algèbre et d'arithmétique

1. Groupes : compléments

1.1. Sous-groupe engendré par une partie A

a) Définition

Définition 5 : sous-groupe engendré

Soit (G,*) un groupe et A une partie de G.

On appelle sous-groupe engendré par A le plus petit (au sens de l'inclusion) sous-groupe de G contenant A. On le note souvent Gr(A).

- On peut montrer que Gr(A), existe bien : c'est tout simplement l'intersection de tous les sous-groupes de G contenant A (exercice).
- Remarque: la définition est similaire pour Vect(A), sous-espace vectoriel d'un espace vectoriel E.

Propriété : Si H est un sous-groupe de G tel que $H \supset A$, alors $H \supset Gr(A)$.

Démonstration

b) Exemples:

- o Dans un groupe (G,*) de neutre $e: Gr(\emptyset) = \{e\}, Gr(G) = G$
- Dans un groupe (G,.) le sous-groupe engengré par a est le sous-groupe des puissances de a: $Gr(a) = \{a^k ; k \in \mathbb{Z}\}$
 - Attention: en notation additive i.e. dans un groupe G,+ -,

$$Gr(a) = \{ka \; ; k \in \mathbb{Z}\}$$

• Dans
$$(\mathbb{Z},+): Gr(n) = \{kn ; k \in \mathbb{Z}\} = n\mathbb{Z}$$

■ Dans
$$(\mathbb{R},+)$$
: $Gr(\alpha) = \{k\alpha : k \in \mathbb{Z}\} = \alpha \mathbb{Z}$

Dans $(\mathbb{R},+)$: • $Gr(1)=\mathbb{Z}$

•
$$Gr(1,\sqrt{2}) = \{a + b\sqrt{2} ; a,b \in \mathbb{Z}^2\} = \mathbb{Z} + \sqrt{2}\mathbb{Z} \text{ (ex .)}$$

- $Gr(1,\sqrt{2}) = \{a+b\sqrt{2} \ ; \quad a,b \in \mathbb{Z}^2\} = \mathbb{Z} + \sqrt{2}\mathbb{Z} \text{ (ex .)}$ Dans $(\mathbb{C},+): \boxed{Gr(1,i) = \{a+bi \ ; \quad a,b \in \mathbb{Z}^2\} = \mathbb{Z} + i\mathbb{Z}}$ est appelé le groupe des **entiers de Gauss**.
- \mathfrak{S}_n est « engendré par les transpositions, ce qui signifie qu'en notant \mathcal{T} l'ensemble des transpositions de \S, n , alors $Gr(\mathcal{T}) = \mathfrak{S}_n$.

1.2. Le groupe $\mathbb{Z}/_{n\mathbb{Z}}$

- a) Rappel: relation d'équivalence, classes d'équivalence
 - Relation d'équivalence : réflexive $\forall x \in E, x \mathcal{R} x$

symétrique
$$\forall (x,y) \in E^2$$
, $[x\mathcal{R}y] \Rightarrow [y\mathcal{R}x]$
transitive $\forall (x,y,z] \in E^3$, $[x\mathcal{R}y \text{ et } y\mathcal{R}z] \Rightarrow [x\mathcal{R}z]$

- Classe d'équivalence de x: $Cl(a) = \{x \in E / xRa\}$
- Exemple: la relation de congruence modulo n ($n \in \mathbb{N}^*$)

$$[a \equiv b[n]] \Leftrightarrow [\exists k \in \mathbb{Z} / a = b + kn]$$

- La classe d'un élément $a \mod n$ sera notée \bar{a} ou $\bar{a}^{[n]}$ en cas d'ambiguïté
- $\circ \quad \forall a \in \mathbb{Z}, \ \exists r \in [0, n-1] \ / \ a \equiv r \ [n]$
- 3
- Exemple dans $\mathbb{Z}/_{3\mathbb{Z}}$: $\overline{2017} = \overline{1}$, $\overline{1998} = \overline{0}$
- b) Structure de groupe

Définition 1 : l'ensemble $\mathbb{Z}_{n\mathbb{Z}}$ et l'addition dans cet ensemble

- On définit $\mathbb{Z}/_{n\mathbb{Z}}$ comme l'ensemble des classes d'équivalence de la relation de congruence modulo n dans \mathbb{Z} (où $n \in \mathbb{N}^*$).
- Ainsi $\boxed{\mathbb{Z}/_{n\mathbb{Z}} = \{\bar{0}, \bar{1}, ..., \overline{n-1}\}}$
- On définit sur $\mathbb{Z}/n\mathbb{Z}$ une addition notée + par :

$$\forall (\overline{x}, \overline{y}) \in \mathbb{Z}/n\mathbb{Z}^2, \ \overline{x} + \overline{y} = \overline{x+y}$$

- Justification: + est bien définie. 4. CCP oral...

Théorème 1 : $(\mathbb{Z}/_{n\mathbb{Z}},+)$ est un groupe commutatif.

- Démonstration **5**
- Exemple : table de groupe de $\mathbb{Z}_{6\mathbb{Z}}$ et détermination des éléments générateurs 6.
- c) Eléments générateurs du groupe $\frac{\mathbb{Z}_{n}}{n}$

Définition : un élément a d'un groupe G est dit **générateur** si Gr(a) = G

• Exemple : dans $\mathbb{Z}_{12\mathbb{Z}}$, détermination de $Gr(\overline{7})$ 7

Théorème 2 : éléments générateurs de $\mathbb{Z}_{n\mathbb{Z}}$ Soit $\overline{m} \in \mathbb{Z}/_{n\mathbb{Z}}$.

 $[\overline{m}$ est générateur de $\mathbb{Z}/_{n\mathbb{Z}}] \Leftrightarrow [m \wedge n = 1]$

Démonstration

1.3. Ordre d'un élément dans un groupe

a) Etude de Gr(a)

- 9
- **Ľ**.

b) Théorème fondamental et définition

Théorème : Pour tout élément a d'un groupe (G,.) :

- \triangleright ou bien Gr(a) est infini:
 - o $Gr(a) = \{..., a^{-2}, a^{-1}, e, a, a^2, ...\}$ est alors isomorphe à $(\mathbb{Z}, +)$
 - \circ on dit que a est d'ordre infini
 - $\circ \quad \forall k \in \mathbb{Z} : [a^k = e] \Leftrightarrow [k = 0]$
- \triangleright ou bien Gr(a) est fini, de cardinal n:
 - o $Gr(a) = \{e, a, a^2, ..., a^{n-1}\}$ est alors isomorphe à $(\mathbb{Z}/n\mathbb{Z}, +)$
 - o on dit que a est d'ordre n
 - $\circ \quad \forall k \in \mathbb{Z} \ : \ [a^k = e] \Leftrightarrow [k \in n\mathbb{Z}]$

Ainsi, l'**ordre** d'un élément dans un groupe fini est :

- le plus petit entier naturel n tel que $a^n = e$
- le cardinal de Gr(a)
- c) Théorème de Lagrange

Théorème : Soit H sous-groupe d'un groupe fini G : $\operatorname{card}(H) \mid \operatorname{card}(G)$

Corollaire:

l'ordre d'un élément dans un groupe fini divise le cardinal de ce groupe.

- Démonstration dans le cas d'un groupe commutatif
- Exercice : ordre de $\overline{26}$ dans $\mathbb{Z}/_{58\mathbb{Z}}$?

1.4. Groupe monogène, groupe cyclique

a) <u>Définition</u>

Un groupe G est dit **monogène** s'il est engendré par un seul élément a. Il est dit **cyclique** si de plus il est de cardinal fini.

- Exemples: $\mathbb{Z}/n\mathbb{Z} = Gr(\bar{1})$ est cyclique de cardinal n, $\mathbb{Z} = Gr(1)$ est monogène.
- b) <u>Isomorphismes fondamentaux</u>
 - La relecture du théorème 2.4.2 s'écrit :

Théorème : Tout groupe monogène infini est isomorphe à $(\mathbb{Z},+)$.

Tout groupe cyclique est isomorphe à $(\mathbb{Z}/_{n\mathbb{Z}},+)$.

- Conséquence : les éléments générateurs d'un groupe cyclique Gr(a) de cardinal n sont les éléments a^k pour lesquels $k \wedge n = 1$.
- c) $\underline{\text{Exemples}}$:
 - Groupe U_n des racines n-ièmes de l'unité 12.
 - $\bullet \ \ \,$ En géométrie : groupe de frises ; groupe engendré par une rotation

2. L'anneau $\mathbb{Z}/n\mathbb{Z}$

2.1. Rappels sur les congruences

Propriétés : propriétés des congruences

1. Soient $n \in \mathbb{N}^*$, $k \in \mathbb{N}$ et $(a, b, c, d) \in \mathbb{Z}^4$ tel que $a \equiv b$ [n] et $c \equiv d$ [n].

Alors: $a + c \equiv b + d [n]$, $ac \equiv bd [n]$ et $a^k \equiv b^k [n]$

2. Soient $n \in \mathbb{N}^*$ et $m \in \mathbb{N}^*$ tels que $m \wedge n = 1$.

Soit $(a,b) \in \mathbb{Z}^2$ tel que $a \equiv b \ [n]$ et $a \equiv b \ [m]$.

Alors: $a \equiv b \ [mn]$

- On dit que la congruence est compatible avec les lois + et \times .
- Exemple: 6006 est-il divisible par 66?

14

2.2. Structure d'anneau de $\mathbb{Z}/_{n\mathbb{Z}}$

Définition : multiplication dans $\mathbb{Z}/_{n\mathbb{Z}_n}$

On définit sur $\mathbb{Z}/_{n\mathbb{Z}}$ une multiplication notée \times par :

$$\forall (\overline{x}, \overline{y}) \in \mathbb{Z}/n\mathbb{Z}^2, \ \overline{x} \times \overline{y} = \overline{x \times y}$$

• Justification : × est bien définie.

15

Théorème : $(\mathbb{Z}/_{n\mathbb{Z}}, +, \times)$ est un anneau commutatif.

• Démonstration 1

16 .

• Exemple : calculs dans $\mathbb{Z}_{12\mathbb{Z}}$, éléments inversibles de $\mathbb{Z}_{12\mathbb{Z}}$

17

2.3. Eléments inversibles de l'anneau $\mathbb{Z}/n\mathbb{Z}$

a) Le théorème fondamental

Théorème : éléments inversibles de $\mathbb{Z}/_{n\mathbb{Z}}$

Soit $\overline{m} \in \mathbb{Z}/_{n\mathbb{Z}}$. Alors

 $[\overline{m} \text{ est inversible dans l'anneau } \mathbb{Z}/_{n\mathbb{Z}}] \Leftrightarrow [m \wedge n = 1]$

• Démonstration

18

- Il est remarquable que ce sont exactement les éléments générateurs du groupe $(\mathbb{Z}/_{n\mathbb{Z}},+)$. Rechercher à ce sujet l'argument essentiel de ce fait.
- Exemple : éléments inversibles de $\mathbb{Z}/_{12\mathbb{Z}}$ 19
- b) Cas où $p \in \mathbb{P}$

Théorème : Soit $p \in \mathbb{N}^*$ avec $p \geqslant 2$. Alors : $[\mathbb{Z}/p\mathbb{Z} \text{ est un corps}] \Leftrightarrow [p \in \mathbb{P}]$

• Démonstration

20

• Exemple : résolution de $x^2 = 1$ dans $\mathbb{Z}/p\mathbb{Z}$, dans $\mathbb{Z}/2\mathbb{Z}$.

2.4. Théorème chinois

• Rappelons que $\bar{a}^{[n]}$ désigne la classe de a modulo n.

Théorème chinois : Isomorphisme entre $\mathbb{Z}_{(mn)\mathbb{Z}}$ et $\mathbb{Z}_{m\mathbb{Z}} \times \mathbb{Z}_{n\mathbb{Z}}$

Soient m et n deux entiers naturels tels que $m \wedge n = 1$.

L'application $\Phi: \mathbb{Z}/(mn)\mathbb{Z} \to \mathbb{Z}/m\mathbb{Z} \times \mathbb{Z}/n\mathbb{Z}$ définie par $\Phi(\overline{a}^{[mn]}) = (\overline{a}^{[m]}, \overline{a}^{[n]})$ est un isomorphisme d'anneaux.

Corollaire: Soient m et n deux entiers naturels tels que $m \wedge n = 1$.

Le système d'équations $\begin{cases} x \equiv a \ [m] \\ x \equiv b \ [n] \end{cases} \ (x \in \mathbb{Z}) \text{ admet une unique solution}$

 $x_{0}\in [\mid 0\;;\, mn-1\mid] \text{ et pour ensemble solution } \{x\in \mathbb{Z}\,/\,\,x\equiv x_{0}\,\,[mn]\}$

- Démonstrations
- Conséquence: pour résoudre un tel système,
 - On cherche une solution particulière x_0 (il y en a une < mn!)
 - $\circ \quad \text{On a alors } \overline{ \begin{cases} x \equiv a \ [m] \\ x \equiv b \ [n] \end{cases}} \Leftrightarrow x \equiv x_0 \ [mn]$
- Exemple: Mars et Jupiter... conjonction de planètes Recherche de l'année de naissance de Jésus-Christ.

2.5. Fonction indicatrice d'Euler

Définition : Fonction indicatrice d'Euler

On appelle fonction indicatrice d'Euler la fonction $\varphi: \mathbb{N}^* \to \mathbb{N}^*$ définie par $\varphi \ n = card(\{k \in [\mid 0, n-1 \mid] / k \land n = 1\})$

- Ainsi $\varphi(1) = 1$ et si $n \ge 2$, $\varphi(n)$ est donc
 - le nombre d'éléments inversibles de l'anneau ($\mathbb{Z}/_{n\mathbb{Z}},+,\times$)
 - mais aussi le nombre d'éléments générateurs du groupe $(\mathbb{Z}/_{n\mathbb{Z}},+)$.

• Exemples: $\varphi(2) = 1$, $\varphi(7) = 6$, $\varphi(12) = 4$ Propriétés: 1. $\forall (m,n) \in \mathbb{N}^{*2}$: $[m \land n = 1] \Rightarrow [\varphi(m \times n) = \varphi(m) \times \varphi(n)]$

2. $\forall p \in \mathbb{P}, \ \forall \alpha \in \mathbb{N}^* : \varphi(p^{\alpha}) = p^{\alpha} - p^{\alpha-1}$

Théorème : expression de $\varphi(n)$

Si $n \geqslant 2$ admet pour décomposition en facteurs premiers $n = \prod_{i=1}^{n} p_i^{\alpha_i}$,

alors $\varphi(n) = \prod_{i=1}^{r} (p_i^{\alpha_i} - p_i^{\alpha_i-1})$ soit $\varphi(n) = n \times \prod_{i=1}^{r} (1 - \frac{1}{p_i})$ Démonstrations

- Démonstrations
- Exemples: $\varphi(12) = 4$, $\varphi(666) = 216$.

2.6. Théorème d'Euler et petit théorème de Fermat

Théorème d'Euler

Soient $n \in \mathbb{N}^*$ et $a \in \mathbb{Z} / a \wedge n = 1$. Alors $a^{\varphi(n)} \equiv 1 [n]$

• Conséquence 1 :

Petit théorème de Fermat

Soient $p \in \mathbb{P}$ et a un entier non multiple de $p: \boxed{a^{p-1} \equiv \mathbbm{1}\left[p\right]}$

- Conséquence 2 : codage R.S.A.
- Démonstrations 23

Remarque : nombres de Carmichaël (ex. $561 = 3 \times 11 \times 17$)

$$\exists n \in \mathbb{N} \, / \, \forall n \in \mathbb{Z} \, / \, a \wedge n = 1 : a^{n-1} \equiv 1 \, [n]$$

3. Anneaux et idéaux

3.1. Relation de divisibilité dans un anneau A

Définition 3 : diviseur

Soient a et b deux éléments d'un anneau commutatif $(A,+,\times)$.

On dit que a divise b ou que b est un multiple de a et on écrit $a \mid b$ si

$$\exists k \in A \, / \, b = k \times a$$

3.2. Rappels

Définition 3 : idéal d'un anneau commutatif

On dit que \mathcal{I} est un idéal de l'anneau commutatif $(A,+,\times)$ si

- $(\mathcal{I},+)$ est un sous-groupe du groupe (A,+)
- $\forall a \in A, \ \forall x \in \mathcal{I} : \ a \times x \in \mathcal{I} \ (\text{surstabilit\'e})$

3.3. Exemples:

- Exemple 2 (rappel) le noyau d'un morphisme d'anneaux est un idéal

3.4. <u>Divisibilité et idéaux</u>

Propriété : Soient a et b deux éléments d'un anneau commutatif $(A,+,\times)$. Alors $[a\mid b]\Leftrightarrow [(b)\subset (a)]$

• Démonstrations

24

3.5. Intersection et somme d'idéaux

Propriété : Si \mathcal{I} et \mathcal{J} sont des idéaux d'un anneau commutatif $(A,+,\times)$, alors $\mathcal{I} \cap \mathcal{J}$ et $\mathcal{I} + \mathcal{J} = \{a+b ; (a,b) \in \mathcal{I} \times \mathcal{J}\}$ sont des idéaux de A.

• Démonstrations

3.6. Conséquence 1 : arithmétique dans \mathbb{Z}

- a) Idéaux de \mathbb{Z} (rappel) : les seuls idéaux de \mathbb{Z} sont du type $n\mathbb{Z}$
- b) Si $m = a \lor b$, alors $a\mathbb{Z} \cap b\mathbb{Z} = m\mathbb{Z}$, si $d = a \land b$, alors $a\mathbb{Z} + b\mathbb{Z} = d\mathbb{Z}$
- c) Conséquence : théorème de Bezout, théorème de Gauss (réviser)
- d) Savoir faire : algorithme de recherche des coefficients de Bezout 26

3.7. Conséquence 2 : arithmétique dans $\mathbb{K}[X]$

a) Idéaux de $\mathbb{K}[X]$ (rappel) :

Les idéaux de $\mathbb{K}[X]$ sont tous du type $(P) = \{P \times Q, Q \in \mathbb{K}[X]\}$.

 \blacksquare Si $P \neq 0$, P peut être choisi unitaire.

b) P.G.C.D. de deux polynômes

Définition : Soient A et B deux polynômes dont l'un au moins n'est pas nul. Le P.G.C.D. de A et B, noté $A \wedge B$, est l'unique polynôme D unitaire tel que (A) + (B) = (D).

- Justification
- 27
- Conséquences :
- **28**
- o Si $A \wedge B = D,$ il existe $(\overline{U,V}) \in \mathbb{K}[X]^2$ tel que $A\,U + B\,V = D$
- \circ Les diviseurs communs de A et B sont les diviseurs de D.
- o D est un diviseur commun de A et B de degré maximal.
- c) Théorème de Bezout : Soient A et B deux polynômes,

$$[A \wedge B = 1] \Leftrightarrow [\exists (U, V) \in \mathbb{K}[X]^2 / AU + BV = 1]$$
 Démo. **29**

- Savoir faire : algorithme d'Euclide (calcul de $A \wedge B$ et de U et V).
- d) Théorème de Gauss : Soient A et B deux polynômes

Si
$$A \mid (BC)$$
 et si $A \wedge B = 1$ alors $A \mid C$ Démo. **30**

e) Polynômes irréductibles de $\mathbb{K}[X]$

Définition : polynôme irréductible de $\mathbb{K}[X]$

Un polynôme P est dit irréductible s'il n'est pas constant et s'il n'admet pas de diviseurs autres que k et kP $(k \in \mathbb{K}^*)$.

• Ainsi:

Pirréductible \Leftrightarrow les seuls polynômes unitaires qui divisent P sont 1 et P

- Exemple : tout polynôme de degré 1 est irréductible

$$[P \text{ non irréductible}] \Leftrightarrow \exists (A, B) \in K[X]^2 / \begin{cases} P = A \times B \\ 0 < d^{\circ}(A) \leqslant d^{\circ}(B) < d^{\circ}(P) \end{cases}$$

• Remarque : propriété similaire à : pour un entier naturel $n \ge 2$

$$[n \text{ non premier}] \Leftrightarrow [\exists (a,b) \in \mathbb{Z}^2 / n = a \times b \text{ et } 1 < a \leqslant b < n]$$

f) Théorème de décomposition en polynômes irréductibles

Tout polynôme $P \in K[X]$ non constant s'écrit de manière unique, à l'ordre près

$$P = \lambda . \prod_{i=1}^{r} P_i^{\alpha_i}$$
 où

- $\lambda \in K^*, r \in \mathbb{N}^*, (\alpha_1, \alpha_2, ... \alpha_r) \in (\mathbb{N}^*)^r$
- $(P_1, P_2, ... P_r)$ est un r-uplet de polynômes irréductibles tous distincts.
- Démonstration vue en M.P.S.I. (récurrence forte)
- Définition : P est dit **scindé** si tous les polynômes P_i sont de degré 1
- g) Polynômes irréductibles de $\mathbb{C}[X]$ (rappel M.P.S.I.)

Théorème de D'Alembert (trois versions équivalentes)

- Tout polynôme non constant de $\mathbb{C}[X]$ admet au moins une racine dans \mathbb{C}
- Les seuls polynômes irréductibles de $\mathbb{C}[X]$ sont les polynômes de degré 1
- Tout polynôme de $\mathbb{C}[X]$ est scindé.

h) Polynômes irréductibles de $\mathbb{R}[X]$ (rappel M.P.S.I.)

Les seuls polynômes irréductibles de $\mathbb{R}[X]$ sont :

- les polynômes de degré 1
- les polynômes de degré 2 à discriminant strictement négatif
- Exemple : décomposition de X^n-1 dans $\mathbb{C}[X]$ (resp. $\mathbb{R}[X]$)