1. Demonstre cada afirmação usando a definição ε , δ de limite.

(a)
$$\lim_{x \to 2} x^2 = 4$$

(d)
$$\lim_{x \to 2} (x^2 - 1) = 3$$

(g)
$$\lim_{x \to 1} (x^2 + 2x - 7) = -4$$

(b)
$$\lim_{x \to 2} x^3 = 8$$

(e)
$$\lim_{x \to -6} \sqrt{6+x} = 0$$

(h)
$$\lim_{x \to 2} \sqrt[3]{x-3} = -1$$

(c)
$$\lim_{x \to 1} \frac{2+4x}{3} = 2$$

(f)
$$\lim_{x \to -\frac{1}{2}} \frac{9 - 4x^2}{3 + 2x} = 2$$

(d)
$$\lim_{x \to 2} (x^2 - 1) = 3$$
 (g) $\lim_{x \to 1} (x^2 + 2x - 7) = -4$
(e) $\lim_{x \to -6} \sqrt{6 + x} = 0$ (h) $\lim_{x \to 2} \sqrt[3]{x - 3} = -1$

$$= 2$$
 (i) $\lim_{x \to 2} \frac{x^2 + x - 6}{x - 2} = 5$

2. Encontre os pontos nos quais f é descontínua. Em quais desses pontos f é contínua à direita, à esquerda ou em nenhum deles? Esboce o gráfico de f.

(a)
$$f(x) = \begin{cases} 1 + x^2 & \text{se } x \le 0\\ 2 - x & \text{se } 0 < x \le 2\\ (x - 2)^2 & \text{se } x > 2 \end{cases}$$

(c)
$$f(x) = \begin{cases} x+2 & \text{se } x < 0\\ \cos(x) & \text{se } 0 \le x \le 1\\ 2-x & \text{se } x > 1 \end{cases}$$

(a)
$$f(x) = \begin{cases} 1+x^2 & \text{se } x \le 0 \\ 2-x & \text{se } 0 < x \le 2 \\ (x-2)^2 & \text{se } x > 2 \end{cases}$$
 (c) $f(x) = \begin{cases} x+2 & \text{se } x < 0 \\ \cos(x) & \text{se } 0 \le x \le 1 \\ 2-x & \text{se } x > 1 \end{cases}$ (b) $f(x) = \begin{cases} x+1 & \text{se } x \le 1 \\ x^{-1} & \text{se } 1 < x < 3 \\ \sqrt{x-3} & \text{se } x \ge 3 \end{cases}$ (d) $f(x) = \begin{cases} x^2-1 & \text{se } x < -1 \\ 2x+1 & \text{se } -1 \le x < 2 \\ x^3-x & \text{se } x \ge 2 \end{cases}$

(d)
$$f(x) = \begin{cases} x^2 - 1 & \text{se } x < -1 \\ 2x + 1 & \text{se } -1 \le x < 2 \\ x^3 - x & \text{se } x \ge 2 \end{cases}$$

3. Calcule os seguintes limites:

(a)
$$\lim_{x \to 2} \frac{x^2 + x - 6}{x - 2}$$
.

(a)
$$\lim_{x \to 2} \frac{x^2 + x - 6}{x - 2}$$
. (d) $\lim_{x \to -\infty} \frac{4x^7 - 3x + 2}{12x^8 + 7x^7 + 9x^4}$. (g) $\lim_{x \to 0} \frac{x^3 + x^2}{x^2 + x}$. (b) $\lim_{x \to \infty} \frac{2x^3 + 5x - 1}{x^3 - 4x^2 + 6}$. (e) $\lim_{x \to -\infty} \frac{3x^4 + x^2 - 7}{5x^4 + 2x + 1}$. (f) $\lim_{x \to -7} \frac{x^2 - 49}{x + 7}$. (i) $\lim_{x \to 2} \frac{2x^3 - 16}{x - 2}$.

(g)
$$\lim_{x \to 0} \frac{x^3 + x^2}{x^2 + x}$$
.

(b)
$$\lim_{x \to \infty} \frac{2x^3 + 5x - 1}{x^3 - 4x^2 + 6}$$

(e)
$$\lim_{x \to -\infty} \frac{3x^4 + x^2 - 7}{5x^4 + 2x + 1}$$

(h)
$$\lim_{x \to \infty} \frac{7x^5 - x^3 + 1}{3x^5 + 2x^4 - x}$$

(c)
$$\lim_{x \to -\infty} \frac{3x^4 + x^2 - 7}{5x^4 + 2x + 1}$$

(f)
$$\lim_{x \to -7} \frac{x^2 - 49}{x + 7}$$

(i)
$$\lim_{x \to 2} \frac{2x^3 - 16}{x - 2}$$
.

4. Determine:

(a)
$$\lim_{h \to 0} \frac{\sqrt{9+h} - 3}{h}$$

(c)
$$\lim_{x \to \infty} \frac{\sqrt{x^2 + 2x} - x}{x}.$$

(e)
$$\lim_{x\to 0} \frac{\sqrt[3]{8+x}-2}{x}$$

(a)
$$\lim_{h \to 0} \frac{\sqrt{9+h} - 3}{h}$$
. (c) $\lim_{x \to \infty} \frac{\sqrt{x^2 + 2x} - x}{x}$. (e) $\lim_{x \to 0} \frac{\sqrt[3]{8+x} - 2}{x}$. (b) $\lim_{x \to \infty} \frac{\sqrt[3]{x^2 + x} - x^{2/3}}{x^{1/3}}$. (d) $\lim_{x \to 0} \frac{\sqrt{x^2 + 16} - 4}{x^2}$. (f) $\lim_{x \to 0} \frac{\sqrt{1+x} - \sqrt{1-x}}{x}$.

(d)
$$\lim_{x \to 0} \frac{\sqrt{x^2 + 16} - 4}{x^2}$$
.

(f)
$$\lim_{x\to 0} \frac{\sqrt{1+x} - \sqrt{1-x}}{x}$$

5. Encontre:

(a)
$$\lim_{x \to 0} \frac{\tan(x)}{x}$$

(c)
$$\lim_{x \to 0} \sin\left(\frac{1}{x}\right)$$
.

(e)
$$\lim_{x \to 0} \frac{\sqrt{1 - \cos^2(x/2)}}{x}.$$
(f)
$$\lim_{x \to 0} x \csc(x).$$

(a)
$$\lim_{x \to 0} \frac{\tan(x)}{x}$$
. (c) $\lim_{x \to 0} \sin\left(\frac{1}{x}\right)$.
(b) $\lim_{x \to \pi/4} \frac{\sin(x) - \cos(x)}{\tan(x) - 1}$. (d) $\lim_{x \to 0} \frac{1 - \cos(x)}{x^2}$.

(d)
$$\lim_{x \to 0} \frac{1 - \cos(x)}{x^2}$$

(f)
$$\lim_{x \to 0} x \csc(x)$$

6. Determine

$$\lim_{x \to a^{-}} f(x), \quad \lim_{x \to a^{+}} f(x), \quad e \lim_{x \to a} f(x)$$

para cada uma das seguintes funções e valores de a:

(a) a = 1,

$$f(x) = \begin{cases} x^2 & \text{se } x < 1, \\ 2x - 1 & \text{se } x \ge 1. \end{cases} \qquad f(x) = \begin{cases} 2x + 3 & \text{se } x < 0, \\ x^2 - 1 & \text{se } x \ge 0. \end{cases} \qquad f(x) = \begin{cases} (x + 1)^2 & \text{se } x \le -1, \\ x^2 + 1 & \text{se } x > -1. \end{cases}$$

$$f(x) = \begin{cases} 2x + 3 & \text{se } x < 0, \\ x^2 - 1 & \text{se } x \ge 0. \end{cases}$$

$$f(x) = \begin{cases} (x+1)^2 & \text{se } x \le -1, \\ x^2 + 1 & \text{se } x > -1. \end{cases}$$

7. Calcule os seguintes limites:

(a)
$$\lim_{x \to 0} \frac{1}{x} \left(1 - \frac{1}{(x+1)^3} \right)$$

(a)
$$\lim_{x\to 0} \frac{1}{x} \left(1 - \frac{1}{(x+1)^3} \right)$$
 (c) $\lim_{x\to 0} \frac{1}{x} \left(1 - \frac{1}{(x+2)^2} \right)$. (e) $\lim_{x\to 0} \frac{1}{x^3} \left((x+1)^4 - 1 \right)$.

(e)
$$\lim_{x \to 0} \frac{1}{x^3} ((x+1)^4 - 1)$$

(b)
$$\lim_{x \to -7} \frac{1}{x+7} \left(\frac{1}{x} + \frac{1}{7} \right)$$

(d)
$$\lim_{x \to 1} \frac{1}{x - 1} \left(\frac{1}{x^2} - 1 \right)$$

(b)
$$\lim_{x \to -7} \frac{1}{x+7} \left(\frac{1}{x} + \frac{1}{7} \right)$$
. (d) $\lim_{x \to 1} \frac{1}{x-1} \left(\frac{1}{x^2} - 1 \right)$. (f) $\lim_{x \to 0} \frac{1}{x} \left(\frac{1}{(x+1)^2} - \frac{1}{(x+2)^2} \right)$.

8. Determine a equação da reta tangente ao gráfico das seguintes funções no ponto x_0 indicado:

(a)
$$r(x) = \sqrt{x}, \quad x_0 = 4$$

(d)
$$q(x) = \sqrt{x^2 + 4}$$
, $x_0 = 1$

(b)
$$f(x) = x^3 - x$$
, $x_0 = 1$

(e)
$$s(x) = x^3 - 3x + 2$$
, $x_0 = -1$

(c)
$$h(x) = \frac{1}{x^2 + 1}$$
, $x_0 = 1$

(f)
$$q(x) = \frac{2x+1}{x+2}$$
, $x_0 = 1$

9. Calcule a derivada da função dada usando a definição. Diga quais são os domínios da função e da derivada.

(a)
$$f(x) = \frac{1}{2}x - \frac{1}{3}$$

(d)
$$f(x) = \frac{1}{x}$$

(a)
$$f(x) = \frac{1}{2}x - \frac{1}{3}$$
 (d) $f(x) = \frac{1}{x}$ (g) $f(x) = \frac{x^2 - 1}{2x + 3}$ (b) $f(x) = 5x - 9x^2$ (e) $f(x) = x^3 - 3x + 5$ (h) $f(x) = \sqrt{4 - x}$

(b)
$$f(x) = 5x - 9x^2$$

(e)
$$f(x) = x^3 - 3x + 5$$

$$(h) \ f(x) = \sqrt{4 - x}$$

(c)
$$f(x) = 5x^2 - x + \frac{1}{2}$$

(c)
$$f(x) = 5x^2 - x + 7$$
 (f) $f(x) = x + \sqrt{x}$ (i) $f(x) = x^{3/2}$

(i)
$$f(x) = x^{3/2}$$