Operating System Services.
1) User interface (CII) Graphical user interface (CiVI)
2) program Execution. 3) I 10 operation
(1) Out a una manipulation
5) communication (communication between process)
6) Error detection.
7) Resource Allocation
8) Accounting
which user use how much & what I kind
Mesources
9) Don't this data was scientists can kimp no we
Protection & sereouty
User operating system Interface
CLI (37) command Interpreter
GUI
* some 05 include the command Interpret
in kernel and mompt prominal
ciners windows xp, UNIX 11 cass as
Special program
* Command interpreter are also I chown as shells
-> Bourne shell
C shell
Bourne - Again Shell (BASH)
Con chew (atr)

System calls

They provide an interface to the Services that are made available by an Operating system.

Usey mode:

then it doesn't have dissect access to shosowicas.

It programuach in user than entire system doesn't crash.

Kernal mode:

- has direct access to resources
 - -) it is in privileged mode.
- -> It program crash in kernel mode then entire system crashes.
- The call program makes when it tries to switch from user mode to berned mode to access nesourses.
- System calls are generally available as noutines written in C& C++

Types of system calls. 1) process control: for controlling process a end, about -) load, execute -) create process, terminate process I get process attributes, set process attributes wait for time wait event, signal event allocate and free memory 2) File manipulation: -) create file, delete file open, dose read, write paposition get tile attributer, set file attributes 3) Device manipulation: - request device, replease device read, write, reposition get device attributes, set device attributes logically attach of detach devices. 4) Information Maintence I get time on date, set time on date get system data, set system data Jet procen, file, or device attributés fet process, ble or device attributes

S.) Communication. create , delete communication connection send, gleceive memages -) teamsfer status information attach of detach remote devices Alten brodraws. They are above Os in him-cachy -> System programs provide a convenient environment for program development System program , create, delete, copy Grename, point, durof -) File managment > List, pale, time I pale, time of available mensy Status information Number of users s detailed performance logging & dolugging into -) Pile modification compilers) Programming Language Support > Debuggers -> Program Loading and execution: - Absolute loaders Relocatable loaders - unkage editors overly loaders

communications to brown webpages

Send electronic-mail message

Bend messages.

OS Design & Implementation.

User goals Convenient to use

Convenient to use

Convenient to use

Casy to learn & use

Reliable

Safe & feet

System goods Easy to design, implement maintains operate texible, reliable error free e efficient.

mainly schoice of hardward ,

Mechanism > how to do sometting.

Policies - what will be done.

* seperation of policy from mechanism.

Imple mentation.

initially os were written in assembly languages

but now they are written in higher-level
languages like C, C++ etc

8	Ms-Dos -> Intel 8088 assembly language
	Li so, it supports only intel family
¥	linux -, C
	Structures of operating systems
_3	Simple struture (MS-DOS)
	Base hardware is accessed by everything more vulnivable when program fail entire system crashes:
) when program fail entire system crashes:
	Monolithic structure (earlier UNIX OS)
e	packed into one lovel; c, I cornel.
\rightarrow	Implementation, debugging is difficult. Layered structure. Juster
	tunctionalites ento largers harder
	-> casy to implement and debugg.
	-> difficient in designing.

-> Micro-Karnels
it provides core
-) we have small kerned -) bunctionalities -) we have small kerned -) bunctionalities -) we remove non-escential transments in learned.
D. 11) D. 11-18 85.1 M
and we implement them as system queer level
grams
in micro-lamale
most of functionalities are
-> performance decrease due to increased system
Ovenhead
-> Modules -> see video.
Virtual Machines. Toreates the illusion that each be parale execution environment is nunning its own private computer
-) creates the illusion that each of mivake computer
environment is nunning its own private computer
cernel mode
Virtual machine software gruns in lærnel mode. Nirtual machine itself runs in User mode.
Virtual magnine itseld
- Virtual user mode of physical user
mode mode
Ly Virtual warned mode. I physical vser mode

Operation System Generation

System Boot

System generation (SYSGEN)

4. 05 will be generated in such a way the it will suttable to specific computer which your are using.

- Sysgen program bnust determine!
 - -> What CPU is to be used?
 - How much memory is available?
 - 1 what devices are available.
 - What OS options are desired?

System Book

a computer by loading Booking - stoating a compute.

-> Bootsbrap program -> it locates tornel. L ROM

chaning something EPROM solved the problem rom chip.