2.5 Слабая сходимость. ЗБЧ. ЦПТ.

Пререквизиты

Сходимость. Слабая. По распределению.

 $\xi_n \xrightarrow{d} \xi$, если для любой непрерывной функции $\phi(x)$ определенной на $\mathbb R$

$$\int_{\Omega} \phi(\xi_n(\omega)) \mathbb{P}(d\omega) \to \int_{\Omega} \phi(\xi(\omega)) \mathbb{P}(d\omega)$$

ИЛИ

$$\int_{\mathbb{R}} \phi(x) \mu_n(dx) \to \int_{\mathbb{R}} \phi(x) \mu_n(dx)$$

ИЛИ

$$\forall x F_{\xi_n}(x) \to F_{\xi}(x) \quad F_{\mu}(x) = \mu((-\infty, x))$$

Сходимость. В среднем.

$$\mathbb{E}|\xi_n - \xi|^p \to 0$$

Характеристические функции

$$\chi_{\xi}(t) = \mathbb{E}(e^{it\xi})$$

Закон больших чисел Чебышева

Для попарно независимых и одинаковораспределенных $\{\xi_i\}_{i=1}^\infty$ с конечными вторыми моментами

$$\frac{\sum_{i=1}^{n} \xi_i}{n} \xrightarrow{\mathbb{P}} \mathbb{E}\xi_1$$

Закон больших чисел Хинчина

Для в совокупности независимых и одинаковораспределенных $\{\xi_i\}_{i=1}^\infty$ с конечными первыми моментами

$$\frac{\sum_{i=1}^{n} \xi_i}{n} \stackrel{\mathbb{P}}{\to} \mathbb{E}\xi_1$$

Закон больших чисел Маркова

Для необязательно независимых и необязательно одинаковораспределенных $\{\xi_i\}_{i=1}^\infty$, для которых $\sum_{i=1}^n \mathbb{D}(\xi_i) = o(n^2)$

$$\frac{\sum_{i=1}^{n} \xi_i}{n} \stackrel{\mathbb{P}}{\to} \mathbb{E}\xi_1$$

Усиленный Закон больших чисел Колмогорова

Для тех же условий, что и обычные ЗБЧ

$$\frac{\sum_{i=1}^{n} \xi_i}{n} \stackrel{\text{\tiny II.H.}}{\to} \mathbb{E}\xi_1$$

Классическая ЦПТ

Для в совокупности независимых и одинаковораспределенных $\{\xi_i\}_{i=1}^\infty$ с конечными вторыми моментами удовлетворяет

$$\frac{\left(\sum_{i=1}^{n} \xi_i\right) - n\mathbb{E}(\xi_1)}{\sqrt{n\mathbb{D}(\xi_1)}} \to N(0,1)$$

ЦПТ Линдеберга

Для независимых $\{\xi_i\}_{i=1}^{\infty}$ с конечными **вторыми** моментами и условия Линдерберга

$$\forall \varepsilon > 0 \lim_{n \to \infty} \sum_{i=1}^{n} \mathbb{E} \left[\frac{(\xi_i - \mu_i)^2}{s_n^2} \mathbf{1}_{\{|X_i - \mu_i| > \varepsilon s_n\}} \right]$$
$$\frac{(\sum_{i=1}^{n} \xi_i) - n\mathbb{E}(\xi_1)}{\sqrt{n\mathbb{D}(\xi_1)}} \to N(0, 1)$$

2.5 Слабая сходимость. ЗБЧ. ЦПТ. Х-ские функции

Практика

- 1. Пусть $\xi_n \stackrel{d}{\to} \xi$ и g(x) непрерывная функция. Докажите, что $g(\xi_n) \stackrel{d}{\to} g(\xi)$
- 2. Если $\xi_n \xrightarrow{d} const$, то $\xi_n \xrightarrow{\mathbb{P}} const$
- 3. Пусть $\{\xi_i\}_{i=1}^{\infty}$ положительно определенные и $E|\xi_n-\xi|\to 0$. Сходится ли $E|\xi_n+k|\to E|\xi+k|$ для k из \mathbb{R}_+ . Докажите, что в общем случае это не верно.
- 4. Найти характеристические функции для кубика и экспоненциального распределения.
- 5. (1)Пусть ξ_n принимает значения n, -n, 0 с вероятностями: $\frac{1}{2\sqrt{n}}, \frac{1}{2\sqrt{n}}, 1 \frac{1}{\sqrt{n}}$ Выполнен ли закон больших чисел?
- 6. Пусть $\xi_1 \sim N(0,1)$. Положим $\chi_n^2 = \sum_{i=1}^n \xi_i^2$ и $\tau_n = \frac{\xi_{n+1}}{\sqrt{\frac{\chi_n^2}{n}}}$ Найти предельное распределение величины τ

Домашка

- 1. (1) Пусть $\xi_n \xrightarrow{d} \xi$ и $\mu_n \xrightarrow{d} \mu$. Доказать, тчо $\xi_n + \mu_n \xrightarrow{d} \xi + \mu$
- 2. (1) Пусть $\xi_n \stackrel{d}{\to} \xi$ и $\mu_n \stackrel{d}{\to} \mu$. Для любой непрерывной функции f. $f(\xi_n, \mu_n) \stackrel{d}{\to} f(\xi, \mu)$
- 3. (2) Пусть $\alpha>0$ и $E|\xi_n|^{\alpha}<\infty$ при всех n. Доказать, что следующие утверждения эквивалентны:
 - (a) $\xi_n \to \xi$ по вероятности и $E|\xi_n|^\alpha \to E|\xi|^\alpha < \infty$ при $n \to \infty$;
 - (b) $E|\xi_n \xi|^{\alpha} \to 0$ при $n \to \infty$.
- 4. (1)Вычислить характеристическую функцию распределения Лапласа.
- 5. (1)Пусть ξ_n принимает значения n^3 , $-n^3$, 0 с вероятностями:
 - (a) $\frac{1}{2\sqrt{n}}$, $\frac{1}{2\sqrt{n}}$, $1 \frac{1}{\sqrt{n}}$
 - (b) $\frac{1}{2n}$, $\frac{1}{2}$, $1 \frac{1}{n}$

Выполнен ли закон больших чисел?

6. (2)Пусть $\{\xi_n\}_{n=1}^{\infty}$ - последовательность независимых одинаково распределенных (н.о.р) случайных величин с конечной дисперсией. Доказать:

$$\frac{\max\left(\xi_1,\ldots,\xi_n\right)}{\sqrt{n}} \stackrel{\mathrm{d}}{\to} 0$$