Contents

- Step 1: Import CSV Data
- Step 2: R Bridge Implementation
- Step 3: MDFT Formulation to Calculate Preference Dynamics
- Helper Functions

Step 1: Import CSV Data

(reference apolloMain_5 amd apolloMain_6 as example for data manipulation) biasData = readtable('user_choices.csv'); % Replace with the path to your data file disp('user bias data imported successfully.'); taskChoice_Data = readtable('user_choices.csv'); % Replace with the path to your data file disp('user task choice data imported successfully.');

```
robotChoice_Data = readtable('G:\My Drive\myResearch\Research Experimentation\Apollo\apollo\data\Bounding_Overwatch_Data\HumanData_Bounding_Overwatch.csv');
% Convert all column headers to lowercase
robotChoice_Data.Properties.VariableNames = lower(robotChoice_Data.Properties.VariableNames);
disp('User robot choice data imported successfully.');
% Randomly select 10 rows (or all rows if fewer than 10)
numRows = height(robotChoice_Data);
randomIndices = randperm(numRows, min(10, numRows));
robotChoice_Data = robotChoice_Data(randomIndices, :);
% Extract robot state attributes dynamically
robot_states = struct();
attributeSuffixes = {'traversability', 'visibility'}; % No leading underscores
for i = 1:3
    for attr = attributeSuffixes
        csvColName = sprintf('robot%d_%s', i, attr{1});  % Matches CSV column names
        structFieldName = attr{1};  % Valid field name
        if ismember(csvColName, robotChoice_Data.Properties.VariableNames)
            robot states.(['robot' num2str(i)]).(structFieldName) = robotChoice Data.(csvColName);
        else
            warning('Missing attribute column: %s', csvColName);
            robot_states.(['robot' num2str(i)]).(structFieldName) = NaN(height(robotChoice_Data), 1);
        end
    end
end
% Extract choice data and other metadata
choices = robotChoice Data.choice;
participant_ids = robotChoice_Data.id;
stake_types = robotChoice_Data.stakes;
time_spent = robotChoice_Data.timeelapsed;
```

User robot choice data imported successfully.

Step 2: R Bridge Implementation

```
disp('Initializing R bridge...');

% Configure paths
rscript_path = 'C:\Program Files\R\R-4.4.2\bin\x64\Rscript.exe';
r_script = 'G:\My Drive\myResearch\Research Experimentation\Apollo\apollo\example\DFT_Bounding_Overwatch.R';
csvFile = 'G:\My Drive\myResearch\Research Experimentation\Apollo\apollo\data\Bounding_Overwatch_Data\HumanData_Bounding_Overwatch.csv';
outputDir = 'G:\My Drive\myResearch\Research Experimentation\Apollo\apollo\output_BoundingOverwatch';

% Verify installations
if ~isfile(rscript_path)
    error('Rscript.exe not found at: %s', rscript_path);
elseif ~isfile(r_script)
    error('R script not found at: %s', r_script);
elseif ~isfile(csvFile)
```

```
error('Input CSV not found at: %s', csvFile);
elseif ~isfolder(outputDir)
   warning('Output folder does not exist, creating: %s', outputDir);
   mkdir(outputDir);
% Execute R with JSON output
   % Use proper argument formatting
    cmd = sprintf(['"%s" "%s" ', ...
               '-i "%s" -o "%s"'], ...
               rscript_path, r_script, csvFile, outputDir);
[status,result] = system(cmd);
    if status == 0
        % Handle output path (whether directory or file)
        if isfolder(outputDir)
           jsonFile = fullfile(outputDir, 'DFT_output.json');
           jsonFile = outputDir;
        end
       % Parse JSON output
        if exist(jsonFile, 'file')
            jsonText = fileread(jsonFile);
            params = jsondecode(jsonText);
            \% Extract parameters with validation
            %Boundedphi1, phi2 parameters
            phi1 = max(0, validateParam(params, 'phi1', 0.5)); % Ensure non-negative
            phi2 = min(max(0, validateParam(params, 'phi2', 0.8)), 1); % Constrain 0-1
            %Raw phi1, phi2 parameters
            %phi1 = validateParam(params, 'phi1', 0.5);
            %phi2 = validateParam(params, 'phi2', 0.8);
            tau = 1 + exp(validateParam(params, 'timesteps', 0.5));
            error_sd = min(max(0.1, validateParam(params, 'error_sd', 0.1)), 1); % still clip here
            % Extract attribute weights
            beta_weights = [
               params.b_attr1;
               params.b_attr2;
               params.b_attr3;
               params.b_attr4
            1;
            % Get initial preferences from ASCs
            initial P = [
               validateParam(params, 'asc_1', 0);
               validateParam(params, 'asc_2', 0);
                validateParam(params, 'asc_3', 0);
            disp('Estimated Parameters:');
            disp(['phi1: ', num2str(phi1)]);
            disp(['phi2: ', num2str(phi2)]);
            disp(['tau: ', num2str(tau)]);
            disp(['error_sd: ', num2str(error_sd)]);
            disp('Initial Preferences (from ASCs):');
            disp(initial_P');
           error('R output file not found');
        end
       error('R execution failed: %s', result);
   end
catch ME
   disp('Error during R execution:');
    disp(getReport(ME, 'extended'));
    [phi1, phi2, tau, error_sd] = getFallbackParams();
   beta_weights = [0.3; 0.2; 0.4; 0.5]; % Default weights
   initial_P = zeros(3,1); % Neutral initial preferences
```

Initializing R bridge...

Step 3: MDFT Formulation to Calculate Preference Dynamics

(MDFT calculations based on estimated parameters) Create M matrix from current trial's attributes C11-C14 are consequence attributes for Robot 1 C21-C24 are consequence attributes for Robot 3

```
for current_trial = 1:height(robotChoice_Data)
         num_attributes = 4;
                    robotChoice_Data.c11(current_trial), robotChoice_Data.c12(current_trial), robotChoice_Data.c13(current_trial), robotChoice_Data.c14(current_trial);
                    robotChoice\_Data.c21(current\_trial), \ robotChoice\_Data.c22(current\_trial), \ robotChoice\_Data.c23(current\_trial); \\ robotChoice\_Data.c23(current\_trial), \ robotChoice\_Data.c24(current\_trial); \\ robotChoice\_Data.c23(current\_trial), \ robotChoice\_Data.c24(current\_trial), \\ robotChoice\_Data.c24(current\_trial), robotChoice\_Data
                    robotChoice\_Data.c31(current\_trial), \ robotChoice\_Data.c32(current\_trial), \ robotChoice\_Data.c34(current\_trial), \ robotChoice\_Data
         1;
         % Normalize M values by dividing by 2 and clamping to [0.01, 1]
         M = M / 2;
         M = max(0.01, min(1, M));
         attributes = {'C1 - Easy Nav, Low Exposure', 'C2 - Hard Nav, Low Exposure', 'C3 - Easy Nav, High Exposure', 'C4 - Hard Nav, High Exposure'};
         beta = beta_weights ./ sum(abs(beta_weights));
         beta = beta';
          [E_P, V_P, choice_probs, P_tau] = calculateDFTdynamics(...
                    phi1, phi2, tau, error_sd, beta, M, initial_P);
         \% Display results for the trial
         disp('=== Trial Analysis ===');
          disp(['Trial: ', num2str(current_trial)]);
          disp(['Participant: ', num2str(participant_ids(current_trial))]);
          disp(['Actual Choice: Robot ', num2str(choices(current_trial))]);
          \label{disp('M matrix (alternatives <math>\times \ \text{attributes}):');}
          disp(array2table(M, ...
                      'RowNames', {'Robot1','Robot2','Robot3'}, ...
                     'VariableNames', attributes));
         disp('DFT Results:');
         disp(['E_P: ', num2str(E_P', '%.2f ')]);
          disp(['Choice probabilities: ', num2str(choice_probs', '%.3f ')]);
          [~, predicted_choice] = max(choice_probs);
          disp(['Predicted choice: Robot ', num2str(predicted_choice)]);
          disp(['Actual choice: Robot ', num2str(choices(current_trial))]);
         disp(' ');
          if predicted_choice == choices(current_trial)
                  disp('√ Prediction matches actual choice');
          else
                    disp('X Prediction differs from actual choice');
         % Plot evolution
         figure:
         plot(0:tau, P_tau);
         xlabel('Preference Step (\tau)');
         ylabel('Preference Strength');
         legend({'Robot1', 'Robot2', 'Robot3'});
          title(sprintf('Preference Evolution (Trial %d)', current_trial));
         grid on;
end
%{
%% Step 4: Output Results
disp('Saving results to CSV...');
output_table = table(E_P, V_P, P_tau(end,:)', ...
                                                      'VariableNames', {'ExpectedPreference', 'VariancePreference', 'FinalPreferences'});
writetable(output_table, 'results.csv');
disp('Results saved successfully!');
%}
=== Trial Analysis ===
Trial: 1
Participant: 181700
Actual Choice: Robot 2
M matrix (alternatives × attributes):
                                  C1 - Easy Nav, Low Exposure C2 - Hard Nav, Low Exposure C3 - Easy Nav, High Exposure C4 - Hard Nav, High Exposure
         Robot1
                                                                         1
                                                                                                                                         0.76061
                                                                                                                                                                                                                      0.75914
                                                                                                                                                                                                                                                                                                        0.13816
          Robot 2
                                                           0.76209
                                                                                                                                         0.41111
                                                                                                                                                                                                                      0.42719
                                                                                                                                                                                                                                                                                                      0.076209
          Robot3
                                                                                                                                         0.65172
                                                                                                                                                                                                                                                                                                        0.11152
                                                                                                                                                                                                                           0.575
DFT Results:
E_P: -149.54 236.54 -87.10
Choice probabilities: 0.000 1.000 0.000
Predicted choice: Robot 2
Actual choice: Robot 2
```

✓ Prediction matches actual choice

=== Trial Analysis ===

Trial: 2

Participant: 214504

Actual Choice: Robot 1

M matrix (alternatives × attributes):

C1 - Easy Nav, Low Exposure C2 - Hard Nav, Low Exposure C3 - Easy Nav, High Exposure C4 - Hard Nav, High Exposure

Robot1	0.37014	0.21347	0.19368	0.037014
Robot2	0.3567	0.21128	0.18109	0.03567
Robot3	0.59097	0.3893	0.26076	0.059097

DFT Results:

E P: 85.50 105.97 -191.57

Choice probabilities: 0.000 1.000 0.000

Predicted choice: Robot 2 Actual choice: Robot 1

X Prediction differs from actual choice

=== Trial Analysis ===

Trial: 3

Participant: 124737 Actual Choice: Robot 3

M matrix (alternatives \times attributes):

C1 - Easy Nav, Low Exposure C2 - Hard Nav, Low Exposure C3 - Easy Nav, High Exposure C4 - Hard Nav, High Exposure

Robot1	0.89528	0.54714	0.43768	0.089528
Robot2	0.93259	0.56376	0.46209	0.093259
Robot3	0.87915	0.5069	0.46017	0.087915

DFT Results:

E_P: 14.68 -37.86 23.08

Choice probabilities: 0.000 0.000 1.000

Predicted choice: Robot 3 Actual choice: Robot 3

✓ Prediction matches actual choice

=== Trial Analysis ===

Trial: 4

Participant: 142426 Actual Choice: Robot 1

M matrix (alternatives × attributes):

C1 - Easy Nav, Low Exposure C2 - Hard Nav, Low Exposure C3 - Easy Nav, High Exposure C4 - Hard Nav, High Exposure

Robot1	0.78613	0.43592	0.42882	0.078613
Robot2	0.78639	0.42333	0.44171	0.078639
Robot3	0.79292	0.45043	0.42179	0.079292

DFT Results:

E_P: 3.47 -2.48 -1.10

Choice probabilities: 0.987 0.003 0.010

Predicted choice: Robot 1 Actual choice: Robot 1

 \checkmark Prediction matches actual choice

=== Trial Analysis ===

Trial: 5

Participant: 125802 Actual Choice: Robot 2

M matrix (alternatives × attributes):

C1 - Easy Nav, Low Exposure C2 - Hard Nav, Low Exposure C3 - Easy Nav, High Exposure C4 - Hard Nav, High Exposure

Robot1	0.6582	0.39539	0.32864	0.06582
Robot1	0.52379	0.28068	0.29549	0.052379
Robot3	0.52353	0.25542	0.32046	0.052353

DFT Results:

E P: -106.72 58.52 48.09

Choice probabilities: 0.000 1.000 0.000

Predicted choice: Robot 2 Actual choice: Robot 2

✓ Prediction matches actual choice

=== Trial Analysis ===

Trial: 6

Participant: 123310

Actual Choice: Robot 3

M matrix (alternatives × attributes):

C1 - Easy Nav, Low Exposure C2 - Hard Nav, Low Exposure C3 - Easy Nav, High Exposure C4 - Hard Nav, High Exposure

Robot1 Robot2	0.59274 0.56783	0.35696 0.32455	0.29505 0.30006	0.059274 0.056783
Predicted choice:	ies: 0.000 1.000 0.000 Robot 2	0.41313	0.3031	0.065112
=== Trial Analysi Trial: 7 Participant: 1424 Actual Choice: Ro M matrix (alterna	fers from actual choice .s === .26	C2 - Hard Nav, Low Exposure	C3 - Easy Nav, High Exposure	C4 - Hard Nav, High Exposure
Robot1 Robot2 Robot3	0.64294 0.6032 0.61625	0.38263 0.32883 0.33223	0.3246 0.33469 0.34564	0.064294 0.06032 0.061625
DFT Results: E_P: -20.40 19. Choice probabilit Predicted choice: Actual choice: Ro	ies: 0.000 1.000 0.000 Robot 2			
=== Trial Analysi Trial: 8 Participant: 1750 Actual Choice: Ro M matrix (alterna	144	C2 - Hard Nav, Low Exposure	C3 - Easy Nav, High Exposure	C4 - Hard Nav, High Exposure
Robot1 Robot2 Robot3	0.73237 0.63258 0.59864	0.44331 0.32982 0.32401	0.3623 0.36601 0.33449	0.073237 0.063258 0.059864
Predicted choice: Actual choice: Ro X Prediction diff === Trial Analysi Trial: 9 Participant: 1817 Actual Choice: Ro M matrix (alterna	ties: 0.000 0.000 1.000 Robot 3 bot 1 fers from actual choice S ===	C2 - Hard Nav, Low Exposure	C3 - Easy Nav, High Exposure	C4 - Hard Nav, High Exposure
Robot1 Robot2	1 1	0.76257 0.61847	0.66706 0.64028	0.12997 0.11443
Robot3 DFT Results: E_P: -77.32 -75. Choice probabilit Predicted choice: Actual choice: Ro	0.84703 88 153.10 dies: 0.000 0.000 1.000 Robot 3 dbot 3	0.44494	0.4868	0.084703
Participant: 2145 Actual Choice: Ro M matrix (alterna		C2 - Hard Nav, Low Exposure	C3 - Easy Nav, High Exposure	C4 - Hard Nav, High Exposure
Robot1 Robot2 Robot3	0.59037 0.29446 0.47225	0.36202 0.17861 0.3114	0.28739 0.1453 0.20807	0.059037 0.029446 0.047225

E_P: -186.97 206.83 -19.96 Choice probabilities: 0.000 1.000 0.000 Predicted choice: Robot 2

Predicted choice: Robot 2 Actual choice: Robot 2

 \checkmark Prediction matches actual choice

Helper Functions

```
function param = validateParam(params, name, default)
    if isfield(params, name) && isnumeric(params.(name))
        param = params.(name);
    else
        warning('Using default for %s', name);
        param = default;
    end
end

function [phi1, phi2, tau, error_sd] = getFallbackParams()
    phi1 = 0.5 + 0.1*randn();
    phi2 = 0.8 + 0.1*randn();
    tau = 10 + randi(5);
    error_sd = 0.1 + 0.05*rand();
    warning('Using randomized default parameters');
end
```

```
Estimated Parameters:
phi1: 3.3786
phi2: 0
tau: 22027.4658
error_sd: 1
Initial Preferences (from ASCs):
-0.0165 -0.0888 0
```

Published with MATLAB® R2022b