角度分布图

2020年10月28日 23:44

波函数角度分布图

2p. 的波函数, 其表达式为

$$\psi_{2, 1, 0} = \frac{1}{4\sqrt{2\pi}} \left(\frac{z}{a_0}\right)^{\frac{5}{2}} r e^{-\frac{zr}{2a_0}} \cos\theta$$
 $R(r) = r e^{-\frac{zr}{2a_0}}$ 为径向部分,

式中a₀称为玻尔半径

$$\psi_{2, 1, 0} = \frac{1}{4\sqrt{2\pi}} \left(\frac{z}{a_0}\right)^{\frac{5}{2}} r e^{-\frac{zr}{2a_0}} \cos\theta$$

 $Y(\theta, \varphi) = \cos\theta$ 为波函数的角度部分。 $2p_z$ 的角度部分的概率密度为

$$|Y(\theta, \varphi)|^2 = \cos^2\theta$$

经过计算,得到与 θ 相对应的 $Y(\theta, \varphi)$

和 $|Y(\theta, \varphi)|^2$ 的数据。

θ /°	$\cos \theta$	$\cos^2\theta$	θ /°	$\cos \theta$	$\cos^2\theta$
0	1.00	1.00	90	0	0
15	0.97	0.93	120	-0.5	0.25
30	0.87	0.75	135	-0.71	0.50
45	0.71	0.50	150	-0.87	0.75
60	0.5	0.25	165	-0.97	0.93
90	0	0	180	-1.00	1.00

根据以上数据可以画出2pz的波函数的角度分布图

各种波函数的角度分布图如下

概率密度角度分布图

各种波函数的概率密度的角度分布图

概率密度角度分布图与波函数角度分布图的区别

概率密度的角度分布图比波函数的角度分布图略"瘦"些。

波函数的图有 +, -号; 概率密度的图 没有 +, -号。

注意,波函数角度分布图的+、-号不表示电性的正负,它是根据波函数的解析式算得的。

+、-号将作为波函数的符号,它表示原子轨道的对称性,因此在讨论化学键的形成时有重要作用。