

FACE RECOGNITION ATTENDANCE SYSTEM

24AIM111- INTRODUCTION TO DATA STRUCTURE AND ALGORITHMS 23MAT112- MATHEMATICS FOR INTELLIGENT SYSTEMS 2

Kailash S - CB.AI.U4AIM24017 Shreeram M - CB.AI.U4AIM24023 Mahadev M - CB.AI.U4AIM24025 Sanjay K - CB.AI.U4AIM24038

Faculty In-Charge:
Dr. Manimaran S
Dr. Prem Jagadeesan 1

INTRODUCTION

Face recognition is a critical technology used in security, surveillance, and social media.

This project aims to develop a robust face recognition attendance system using two key techniques — PCA and LBP.

PROBLEM STATEMENT

- Face recognition systems often struggle with varying lighting conditions, which can significantly affect the accuracy of recognition.
- Existing techniques suffer from high computational costs or are limited by accuracy.
- The challenge is to create a fast and accurate face recognition system using PCA and LBP.

DSA PART INCORPORATED

Arrays and Matrices:

- 1.Image Representation: Each face image is stored as a 2D array (matrix).
- 2.Feature Vectors: After applying PCA or LBP, features are stored in 1D arrays (feature vectors) for classification.

Graphs:

• Facial Feature Relationships: Can be used to represent relationships between facial landmarks (e.g., eyes, nose, mouth) as nodes connected by edges.

FaceList:

• Used for storing multiple face images for comparison, allowing efficient retrieval during recognition tasks.

MATHEMATICS PART INCORPORATED

- Eigenvectors and Eigenvalues: PCA computes the covariance matrix and finds eigenvectors (principal components).
- •Local Binary Patterns (LBP): Extracts the local features from images.
- •Support Vector Machine (SVM): Classify the extracted features and find the optimal hyperplane that separates classes in the feature space.

$$C = \frac{1}{n-1}(X-\mu)^T(X-\mu)$$

$$Cv = \lambda v$$

$$LBP(x_c,y_c) = \sum_{p=0}^{P-1} s(g_p - g_c) \cdot 2^p$$

RECOGNITION PROCESS

DATASETS

• ORL Database

AIM Students Dataset

RESULTS

DATASET	MODEL	ACCURACY
ORL Dataset	SVM	95 %
ORL Dataset	FNN	71 %
AIM STUDENTS	SVM	85 %
AIM STUDENTS	FNN	40 %
LFW Dataset	CNN	70 %

UI - INTEGRATION

User have to upload their picture to mark their attendance

Predicted ID	Date	Time
20	20-04-2025	03:25:17
2	20-04-2025	04:15:35
3	20-04-2025	04:16:08

Their attendance is automatically stored in a csv file with date and time.

REAL TIME ATTENDANCE MARKING

• A QR code will be given by the teacher

Student must scan the QR code and go into the website and give required permissions

• Our model will detect the student's face and give their names.

• A CSV will be automatically created and the names of the students will be stored with date and time.

Student Name	Date and Time
Mahadev	12-04-2025 14:31
kishore	12-04-2025 14:31
Neilkumar	12-04-2025 14:32
Abhinav	12-04-2025 14:32
Sanjay	12-04-2025 14:35
Kailash	12-04-2025 14:36

• Duplicate entries will not be stored.(If a student mark attendance again)

[ii] ID 3 already marked today.
[ii] ID 3 already marked today.

THANK YOU