Objective:

To analyze the financial behavior of college students by exploring their income, expenses, and savings trends using data-driven tools. The goal is to uncover key insights about budgeting challenges and spending distribution to improve financial planning awareness among students.

Tools Used:

- Excel Data cleaning, formulas, dashboard creation
- **SQL** (MySQL Workbench) Table creation and query execution
- **Tableau Public** Interactive dashboard visualizations
- Python (Jupyter Notebook) EDA, plots, and correlation analysis
- Pandas, Seaborn, Matplotlib For data handling & visualization

Dataset Overview:

• File: student_budget_data.csv

• **Records:** 1000 students

• Fields:

- o Demographics: major, monthly_income, financial_aid
- o Expenses: tuition, housing, food, transportation, etc.
- o Derived columns: total_expense, savings, savings_percent, overbudget_flag

Excel Work Summary:

- Cleaned dataset in Budget_Analyzer.xlsx
- Created calculated columns:
 - o Total_Income = monthly_income + financial_aid
 - Total_Expense = SUM(all expenses)
 - Savings = Total_Income Total_Expense
 - Savings_% = Savings / Total_Income
 - o Overbudget Flag = Yes/No
- Create Conditional Formating:
 - o Savings_%
 - o Overbudget_Flag

- Built chart in Budget_Calculator.xlsx with:
 - o Expence Breakdown of Student 1

o Average Expense by Category

o Budges Status by Major

o Savings % Distribution Among Students

• Final Dashboard

Student Budget Dashboard – Insights & Spending Trends

SQL Work Summary:

CREATE DATABASE student_budget;

USE student_budget;

• Imported cleaned .csv using MySQL Workbench

- Created schema in schema.sql
- Planned to run queries (to be added in queries.sql) like:
- -- Top 10 Students with Highest Savings

SELECT age, gender, major, total_income, total_expense, savings

FROM student_budget.budget_analyzer

ORDER BY savings DESC

LIMIT 10;

-- Average Expense by Category

SELECT

AVG(tuition) AS avg_tuition,

AVG(housing) AS avg_housing,

AVG(food) AS avg_food,

AVG(transportation) AS avg_transportation,

AVG(books_supplies) AS avg_books_supplies,

AVG(entertainment) AS avg_entertainment,

AVG(personal_care) AS avg_personal_care,

AVG(technology) AS avg_technology,

AVG(health_wellness) AS avg_health_wellness,

AVG(miscellaneous) AS avg_miscellaneous

FROM student_budget.budget_analyzer;

-- Total Overbudget Students by Major

SELECT major, COUNT(*) AS overbudget_count

FROM student_budget.budget_analyzer

WHERE overbudget_flag = 'Yes'

GROUP BY major

ORDER BY overbudget_count DESC;

-- Savings % Distribution

SELECT

SUM(CASE WHEN savings_percent < 0 THEN 1 ELSE 0 END) AS below_0,

SUM(CASE WHEN savings_percent BETWEEN 0 AND 0.1 THEN 1 ELSE 0 END) AS between_0_10,

SUM(CASE WHEN savings_percent > 0.1 AND savings_percent <= 0.2 THEN 1 ELSE 0 END) AS between_10_20,

SUM(CASE WHEN savings_percent > 0.2 THEN 1 ELSE 0 END) AS above_20

FROM student_budget.budget_analyzer;

-- Count of Students by Preferred Payment Method

SELECT preferred_payment_method, COUNT(*) AS total

FROM student_budget.budget_analyzer

GROUP BY preferred_payment_method

ORDER BY total DESC;

-- Major-wise Average Savings %

SELECT major, ROUND(AVG(savings_percent), 4) AS avg_savings_percent

FROM student_budget.budget_analyzer

GROUP BY major

ORDER BY avg_savings_percent DESC;

Tableau Work Summary:

Dashboard created in Tableau Public with:

• Chart 1: Average Expense by Category

• Chart 2: Budget Status by Major

• Chart 3: Savings % Distribution

• Final Dashboard

Published as: dashboard.twbx

Python Work Summary:

Jupyter notebook: analysis.ipynb

Import Libraries

import pandas as pd

import matplotlib.pyplot as plt

import seaborn as sns

Load Data

df = pd.read_csv(r'E:/Student_Budget_Planner_Project/excel/Budget_Analyzer.csv')
df.head()

	age	gender	year_in_school	major	$monthly_income$	financial_aid	tuition	housing	food	transportation	 personal_care	technology	health_wellness	misce
0	19	Non- binary	Freshman	Psychology	958	270	5939	709	296	123	 78	134	127	
1	24	Female	Junior	Economics	1006	875	4908	557	365	85	 92	226	129	
2	24	Non- binary	Junior	Economics	734	928	3051	666	220	137	 23	239	112	
3	23	Female	Senior	Computer Science	617	265	4935	652	289	114	 30	163	105	
4	20	Female	Senior	Computer Science	810	522	3887	825	372	168	 71	88	71	

5 rows × 22 columns

Basic Overview

df.info()

df.describe()

Total_Expense Savings Savings_Percent Overbudget_Flag dtype: int64

df.isnull().sum()

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1000 entries, 0 to 999
Data columns (total 22 columns):
# Column
                           Non-Null Count Dtype
--- -----
                             -----
0 age
                            1000 non-null int64
1 gender
                           1000 non-null
                          1000 non-null
1000 non-null
    year_in_school
                                            object
    major
                                            object
                         1000 non-null
1000 non-null
1000 non-null
4 monthly_income
                                            int64
    financial_aid
6 tuition
                            1000 non-null
    housing
                                            int64
    food
                            1000 non-null
                                             int64
 9 transportation
                           1000 non-null
10 books_supplies
                            1000 non-null
                           1000 non-null
11 entertainment
                                            int64
                         1000 non-null
1000 non-null
12 personal_care
13 technology
14 health_wellness 1000 non-null
15 miscellaneous 1000 non-null
                                            int64
15 miscellaneous
                                            int64
16 preferred_payment_method 1000 non-null
                                            object
17 Total_Income 1000 non-null
18 Total_Expense
                             1000 non-null
19 Savings
                            1000 non-null
                                            int64
                       1000 non-null
20 Savings_Percent
                                            float64
21 Overbudget_Flag
                             1000 non-null
dtypes: float64(1), int64(16), object(5)
memory usage: 172.0+ KB
gender
year_in_school
major
monthly_income
financial_aid
tuition
housing
food
transportation
books_supplies
entertainment
personal_care
technology
health_wellness
miscellaneous
preferred_payment_method
Total Income
```

Visualizations


```
# Budget Status by Major

plt.figure(figsize=(8,5))

sns.countplot(data=df, x='major', hue='Overbudget_Flag', palette={'Yes':'red', 'No':'green'})

plt.title("Budget Status by Major")

plt.ylabel("Number of Students")

plt.xticks(rotation=45)

plt.tight_layout()

plt.show()
```


Savings % Distribution

plt.figure(figsize=(10,5))

sns.histplot(df['Savings_Percent'], bins=30, kde=True)

plt.title("Distribution of Savings Percentage")

plt.xlabel("Savings %")

plt.ylabel("Number of Students")

plt.tight_layout()

plt.show()


```
# Correlation Heatmap

plt.figure(figsize=(10,8))

sns.heatmap(df[expense_cols + ['Savings', 'Savings_Percent']].corr(), annot=True, cmap='coolwarm')

plt.title("Correlation Heatmap")

plt.tight_layout()

plt.show()
```


Insights & Summary:

- **High tuition & housing costs** are main drivers of overbudgeting
- More than 90% students are spending more than their income
- Biology majors had the highest overbudget count
- Financial aid doesn't fully cover expense burden for most

Conclusion:

This project successfully tracks and visualizes key student budgeting patterns. It provides insight into overspending behaviors, allowing institutions or students to take corrective financial actions. It also showcases a complete end-to-end data analysis lifecycle using multiple tools, making it an ideal addition to a data analytics portfolio.