

Fig. 1

Fig. 2

Fig. 3

Figure B.1/G.107 - GOB (Good or Better) and POW (Poor or Worse) as functions of rating factor R

Fig. 4

Figure B.2/G.107 – MOS as function of rating factor R

Fig. 5

Fig. 6

Fig. 7

Limit of acceptability - a hard threshold

Mobile is GSM EFR.
POTS is modelled for an analogue set.
Nat'l = 8000km, Int'l = 27500km.

Fig. 8

What reference calls will be the most demanding quality measure?

Fig. 9

Or this?

Fig. 10

Limit of acceptability - a hard threshold
Mobile is GSM EFR, POTS is modelled for an analogue set. Nat'l = 8000km, Int'l = 27500km.

(*5R = 0.2 MOS over most of the linear range considered in the statistical noise by many practitioners.)

Fig. 11

Limit of acceptability - a hard threshold
Mobile is GSM EFR, POTS is modelled for an analogue set. Nat'l = 8000km, Int'l = 27500km.

Fig. 12

Limit of acceptability - a hard threshold

Mobile is GSM EFR, POTS is modelled for an analogue set. Nat'l = 8000km, Int'l = 27500km.

Fig. 13

EO End Office
TO Tandem Office
T2AMG T2 Multipoint ATM Line/2MG
T2IMG IP/VOIP/VoIP/MG
Line/Link/Intercept/Loop

Fig. 14

Fig. 15

Fig. 16

-national distance
(TO equiv.)

Not recommended, but may be unfortunate reality

Fig. 17

Fig. 18

PSTN TO and MG already
considered eliminated in ATT
packet cable bid.

Fig. 19

Fig. 20

27,500km - 2*(distance from subs to TO equiv.)

lumped national model *lumped international model* *lumped national model*

Fig. 21

The E-model calculates a Transmission Rating Factor R , given by

$$R = R_o - I_s - I_d - I_e + A$$

Fig. 22

E-Model Parameter Default Values

Parameter	Units	Value
SLR (Send Loudness Rating)	dB	8
RLR (Receive Loudness Rating)	dB	2
STM R (Sidetone Masking Rating)	dB	15
LSTR (Listener Sidetone Rating)	dB	18
OLR (Overall Loudness Rating)	dB	10
TEL R (Talker Echo Loudness Rating)	dB	65
WEPL (Weighted Echo Path Loss)	dB	110
T (Mean Intrinsic One-Way Delay)	msec	0
Ta (Absolute Delay)	msec	0
Tr (Round-Trip Delay)	msec	0
QDU (Quantization Distortion Units)	-	1
Ie (Equipment Impairment Factor)	-	0
A (Expectation Factor)	-	0
Ds (Handset Shape Factor – Send Side)	-	3
Dr (Handset Shape Factor – Receive Side)	-	3
Ps (Room Noise at the Send side)	dB(A)	35
Pr (Room Noise at the Receive side)	dB(A)	35
Nc (Circuit Noise referred to 0 dB _r -point)	dBm0p	-70
Nfor (Noise Floor at the Receive Side)	dBmP	-64

Fig. 23

Fig. 24

Fig. 25

Tolerable Model Calculations							
G.711	G.711	G.711	G.729A	G.729A	G.729A	G.729A	G.726
Ref [1]	[Notes 2,3]	Ref [1]	[Notes 2,3]	Ref [1]	[Notes 2,3]	Ref [1]	[Notes 3,5]
Frame Size (ms)	25	125	125	10	10	10	125
Packet Payload (ms)	10	20	30	40	10	20	30
Packet Loss (%)							
0	0	0	0	11	11	11	7
1	5	8	10	13	13	15	N/A
2	7	13	16	19	16	19	21
3	10	19	22	24	19	23	25
4	12.5*	22	26	28	22	26	28
5	15	25	30	32	25	29*	32
							N/A

Notes:

- 1) In the absence of any supporting documentation, these are arbitrary values
- 2) All G.711 vocoders are assumed to have PLC (Packet Loss Concealment) algorithms
- 3) Impairment factors apply for random packet loss conditions
- 4) This is the current capability of the i2004 (in the absence of any download instructions to achieve smaller frame size)
- 5) There is no PLC algorithm for G.726, therefore its deployment might be limited in lossy network
- 6) Interpolated values

Fig. 26

Fig. 27

Fig. 28

Fig. 29

Fig. 30

Fig. 31

Maximum le Margin for Codec and Packet Loss

The contour graphs show the available Delay and le margins for a constant R

R is constant along
the curve

Maximum Delay Margin for
Packetization and Jitter

Fig. 32

Fig. 33

Name	Abbreviation (Object ID)	PCM Mode Input	POTS
Electric Circuit Noise (at 0 dB _T)	N _c (-70 dBmP)		
Room Noise	P _o (35 dBA)	35	
Send Loudness Rating	SLR (8 dB)		11
Receive Loudness Rating	RLR (2 dB)		3
D-factor	D (3)		3
Noise Floor	N _{f0r} (-64 dBm0)	-64	
Side tone Masking Rating	STM R (15)	15	
Equipment Impairment Factor	I _e (0)	0	
Expectation (Advantage) Factor	A (0)	0	
Mean Intrinsic One-Way Delay (upper)	T _u (0 ms)	0	
Mean Intrinsic One-Way Delay (lower)	T _l (0 ms)	0	
Mean Intrinsic One-Way Delay	T _{ul} (0 ms)	0	
Electrical Loss (upper)	L _u (dB)	0	
Electrical Loss (lower)	L _l (dB)	0	
Electrical Loss (upper = lower)	L _{ul} (dB)	0	
Quantizing Distortion Units (upper)	qduu (1) [Note 1]	0	
Quantizing Distortion Units (lower)	qdul (1) [Note 1]	0	
Echo Return Loss	ERL (dB)	17	

Fig. 34

PSTN Wireless Access
Delay, loss and Impairment Summary

	Uplink	Downlink
Mobile Switching Center (MSC) (ms)	1	2
Base Station Controller (BSC) (ms)	2.5	40
Base Station (BTS) (ms)	15.8	40.8
Mobile Set (MS) (ms)	72.1	14.3
PSTN Wireless Access Delay (ms)	91.40	97.10
Impairment Factor (le)	5	5

Fig. 35

Fig. 36

TDDY Configuration	National (8000 km)	International (connection length 27500 km)			
		0 DCME	1 DCME	2 DCME	3 DCME
National Transmission Time	43	43	43	43	43
T2DCME (G.711/G.726 Conversion+DSI) (ms)	-	0	26	52	78
DCME2T (G.726/G.711 Conversion) (ms)	-	0	2	4	6
International Transmission Time (ms)	-	72	72	72	72
National Transmission Time	-	43	43	43	43
Total one-way delay (ms)	43	158	186	214	242
Impairment Factor (le)	0	0	7	14	21

Fig. 37

Fig. 38

Described in section 5.1

Described in section 5.2 and 5.3

Type of Access	National			International 1			International 2			International 3		
	T	Ie	R	T	Ie	R	T	Ie	R	T	Ie	R
Trunk	46	0	87.8	161.22	0	85.8	190.22	7	76.8	218.22	14	66.6
Wireless	139.24	5	81.7	253.22	5	70.6	282.22	12	59.8	310.22	19	49.4

Fig. 39

Wireless Access	National 0 DCME				International 0 DCME				International 1 DCME				International 2 DCME			
	T	Ie	R	T	Ie	R	T	Ie	R	T	Ie	R	T	Ie	R	T
Trunk	141.6	5	81.7	253.2	5	70.6	282.22	12	59.8	310.22	19	49.4				
Wireless	231.5	10	72.7	346.5	10	58.3	374.5	17	48.54	402.5	24	38.98				

Fig. 40

Fig. 41

Fig. 42

Fig. 43

Which impairments are being considered in the models?

Fig. 44

Trunk Access - ATM Core

Trunk Access to ATM Core (before 4 parameters budget assignment)
Delay, loss and impairment Summary

Set delay (Side A) (ms)	0
End Office Delay (Side A) (ms)	1.5
Tandem Office Delay (Side A) (ms)	0.75
T2AMG delay (Side A) (ms)	0.5
Trunk Access delay (ms)	2.75
Impairment Factor (Ie)	0

Fig. 45

Wireless Access - IP Core

Succession Wireless to ATM (Core - Delay, Loss and Impairment Summary before parameter budget assignment)

	Uplink	Downlink
Mobile Switching Center (MSC) (ms)	1	2
Base Station Controller (BSC) (ms)	2.5	40
Base Station (BTS) (ms)	15.8	40.8
Mobile Set (MS) (ms)	72.1	14.3
T2AMG delay (Side A) (ms)	0.5	0.5
Wireless Access delay (ms)	91.40	97.10
Impairment Factor (Ie)	5	5

Fig. 46

The diagram illustrates the architecture of a Cable Access ATM Core. At the top, a telephone icon is connected to a 'POTS' port. This port connects to a 'CABLE CPE' unit, which is part of a larger 'Cable Access - ATM Core' system. The 'CABLE CPE' unit is also connected to an 'HFC' cloud and a 'GMDS' cloud. A large bracket on the left side of the diagram groups the 'POTS', 'CABLE CPE', 'HFC', and 'GMDS' components under the heading 'Cable Access - ATM Core'.

Cable CPE	Cable CPE Upstream	Cable CPE Downstream	Note
Link Speed	510 Kbps	300 Kbps	note [1]
Voice packet size (byte)	160	160	note [2]
Voice packet overhead (RTP/UDP/IP)	48	48	
Data packet size (byte)	512	512	
Data packet overhead	48	48	
Voice packet link utilization (%)	10.0%	10.0%	
Data packet link utilization (%)	90.0%	90.0%	
Fixed Delay			
- Serialization delay for voice packet (ms)	3.26	0.55	note [3]
- DSP & CPU processing delay (ms)	12.00	14.00	note [4]
- Packetization Delay (ms)	0.00	N/A	note [5]
Variable Delay			
- Average Voice data contention (ms)	4.57	0.78	note [6]
- Maximum Voice data contention (ms)	9.15	1.55	note [6]
- De-jitter buffer delay (ms)	N/A	0.00	note [5]
Other Impairments			
- Packet Loss (%)	0.00	0.00	note [5]
Minimum Delay (Fixed Delays) (ms)			
Average Delay (Fixed+Average Delays) (ms)	15.26	14.55	
Maximum Delay (Fixed+ Max Variable Delays) (ms)	24.41	16.11	

Fig. 47

A- Side User Access
(Trunk, Line, Wireless, DSL,
Cable and Enterprise)

Core Transport
Network
(TDM, ATM or IP)

B- side User Access
(Trunk, Line, Wireless, DSL,
Cable and Enterprise)

National ATM Transport Core

International ATM Transport Core

International ATM Transport Core with DCME

Fig. 48

	Total National Transport Distance (km) (IP)	8000 km (ATM)	8000 km (TDM)	Note
Terrestrial Distance (km)	8000	8000	8000	
Terrestrial propagation Delay @ 5us / km (ms)	40	40	40	From G.114
Submarine Distance (km)	-	-	-	
Submarine propagation Delay @ 6us / km (ms)	-	-	-	From G.114
Number of hop	5	8	4	From I.356, TIA IS-810
Equipment processing time (ms)	1ms x 5	0.03ms x 8	0.75ms x 4	G.114
Jitter (ms)	note [1]	1.5 note [3]	0	I.356 QoS class 1
Total Delay (ms)		45	41.74	Note [2]
	International Core Transport delay (IP)	2/500 ms (ATM)	2/500 ms (TDM)	Note
Terrestrial Distance (km)	16000	16000	16000	
Terrestrial Delay @ 5us / km (ms)	80	80	80	
Number of hop	15	19	12	From I.356, TIA IS-810
Equipment processing time per hop	1	0.03	0.75	G.114
Equipment processing time (ms)	15	0.57	9	G.115
Submarine Distance (km)	11500	11500	11500	
Submarine Delay @ 6us / km (ms)	69	69	69	
Jitter (ms)	note [1]	3	0	I.356 QoS class 1
Total Delay (ms)		164	149.57	Note [2]

Fig. 49

Fig. 50

B-Side Access

	ATM Core Transport											
	National			International 0 DCME			International 1 DCME			International 2 DCME		
	T	Ie	R	T	Ie	R	T	Ie	R	T	Ie	R
POTS Trunk	47	0	88	161	0	86	190	7	77	218	14	67
POTS Line	45	0	88	159	0	86	188	7	77	216	14	67
Wireless	139	5	82	253	5	71	282	12	60	310	19	49
VOBIS	66	0	87	180	0	85	209	7	75	237	14	64
ISDN Capable	61	0	88	175	0	85	204	7	75	232	14	65
ISDN Enterprise	48	0	88	162	0	86	191	7	77	219	14	67
ISDN Enterprise IP	64	0	88	178	0	85	207	7	75	235	14	64

Note: The four parameters: packetization delay, delay jitter, codec and packet loss have been set to zero. Those four parameters will be determined based upon the available margin. The margin is determined based on the benchmark comparison of an end-to-end Succession network with the closest benchmark representation of existing networks (PSTN only, mobile to PSTN, or mobile to mobile).

Fig. 51

Note: The four parameters: packetization delay, delay jitter, codec and packet loss have been set to zero. Those four parameters will be determined based upon the available margin. The margin is determined based on the benchmark comparison of an end-to-end Succession network with the closest benchmark representation of existing networks (PSTN only, mobile to PSTN, or mobile to mobile).

Fig. 52

Note: The four parameters: packetization delay, delay jitter, codec and packet loss have been set to zero. Those four parameters will be determined based upon the available margin. The margin is determined based on the benchmark comparison of an end-to-end Succession network with the closest benchmark representation of existing networks (PSTN only, mobile to PSTN, or mobile to mobile).

Fig. 53

R Succession

R "Clarity" Benchmark

ATM Core Transport Network

Succ vs PSTN Int'l			Succ DCME vs PSTN Int'l			Succ DCME vs RSTN Int'l		
DCME			DCME			DCME		
R	R	Delay Margin (ms)	R	R	Delay Margin (ms)	R	R	Delay Margin (ms)
Succ	PSTN		Succ	R		Succ	R	
87.8	87.8	-1.2	0.0	85.8		86.6	171.8	19.2
87.9	87.	1.0	0.1	85.9		86.6	174.0	19.3
81.8	81.	-1.2	0.1	70.7	R	81.4	196.8	21.3
VDSL	87.5	87.	-20.4	-0.2	84.6	81.6	152.6	18.0

B- Side Access		
Cable	87.6	87.8
Enterprise	87.8	87.8
MSS	87.8	-1.6
Enterprise	87.5	87.8
MSS	87.5	-18.4
IPBB	87.5	-0.3

Note: In red indicates the worst case access scenario with the smallest available budget

Fig. 54

Ie Budget =	3	9	18
Delay Budget =	130	186	257

Fig. 55

IE Budget	12.07	19.07	19.07	25.87
Delay Budget	110.9	171.5	171.5	244.4

Fig. 56

Fig. 57

VoDSL Access to VoDSL Access via ATM
(National Connection : 8000 Km)

Ie Budget =	2	8	17	219
Delay Budget =	92	147		

Fig. 58

IE Budget =	9.207	16.21	16.21	23.01
Delay Budget =	72.54	133.1	133.1	206

Fig. 59

Described in section 6.1

ATM Core Transport Network

B-Side User Access (Trunk, Line, Wireless, DSL, Cable and Enterprise)

Described in section 6.2 to 6.14

B- Side Access											
Success vs PSTN National			Success vs PSTN Int'l 0			Success vs PSTN Int'l 1			Success vs PSTN Int'l 2		
R	R	Delay Margin (ms)	Ie Margin	R	R	Delay Margin (ms)	Ie Margin	R	R	Delay Margin (ms)	Ie Margin
POTS Trunk	81.8	81.7	-1.2	0.1	70.7	70.6	-0.2	0.1	70.7	59.8	91.8
POTS Lines	81.8	81.7	1.0	0.1	71.0	70.6	2.0	0.4	71.0	59.8	94.0
Wireless	72.7	72.7	-0.2	0.0	58.5	58.3	0.8	0.2	58.5	48.5	17.8
VoDSL	81.2	81.7	-20.4	-0.5	68.1	70.6	-19.4	-2.5	68.1	59.8	72.6
Cable	81.4	81.7	-14.9	-0.3	68.8	70.6	-13.9	-1.8	68.8	59.8	78.1
Enterprise MSS	81.8	81.7	-1.6	0.1	70.6	70.6	-0.5	0.0	70.6	59.8	91.5
Enterprise T1/PBX	81.2	81.7	-18.4	-0.5	68.4	70.6	-17.3	-2.2	68.4	59.8	74.7

Note: thick line indicates the worst case access scenario with the smallest available budget

Fig. 60

Ie Budget =	3	12	26
Delay Budget =	51	121	249

Fig. 61

Fig. 62

Delay Budget =	3.004	17.34	27.14
Ie Budget =	21.97	145.8	273.1

Fig. 63

Ie Budget = 2 12 19 19 19
Delay Budget = 25 151 181 248 289

Fig. 64

Rank	Codec	E-model Impairment Factor (Le)	Estimated implementation delay (ms)	Note
1	G.711 at 64 kb/s	0	0.125	PCM
2	G.726 at 32 kb/s with Sync Coding	7	0.250	ADPCM
3	GSM-EFR	5	40	GSM
4	IS-733	*	40	
5	G.728 at 16 kb/s	7	1.250	
6	G.729/G.729A at 8 kb/s	10/11	25	
7	IS-641	6	40	TDMA
8	G.723.1 at 6.3 kb/s (not recommended)	15	30	Soft Phone

Fig. 65

Codec type	Codec Ie	packetization delay (ms)	max packet loss (%)	Ie due to packet loss
G.711	0	10	0%	0
G.711	0	20	0%	0
G.726(1)	7	10	0%	0

1. This codec is only really suitable for international

Fig. 66

Codec type	Codec le	packetization delay (ms)	max packet loss (%)	le due to packet loss
G.711	0	10	0%	0
G.711	0	20	0%	0
G.711	0	40	0%	0
G.726	7	10	0%	0
G.726	7	20	0%	0
G.726	7	40	0%	0
G.711	0	10	1%	5
G.711	0	20	1%	5

Fig. 67

Codec		packetization delay (ms)	max packet loss (%)	le due to packet loss
type	Codec le			
G.711	0	10	0%	0
G.711	0	20	0%	0
G.711	0	40	0%	0
G.726	7	10	0%	0
G.726	7	20	0%	0
G.726	7	40	0%	0
G.729	11	10	0%	0
G.729	11	20	0%	0
G.729	11	40	0%	0
G.711	0	10	1%	5
G.711	0	20	1%	5
G.711	0	40	1%	5
G.726	7	10	1%	2
G.726	7	20	1%	4
G.729	11	10	1%	2
G.729	11	20	1%	4

Fig. 68

Fig. 69

Fig. 70

Fig. 71

Fig. 72

Σt $S_{\cdot} \cdot z$

