Today's outline - February 14, 2023

- State-dependent amplitude and phase changes
- Deutch-Josza problem
- Bernstein-Vazirani problem

Reading Assignment: Reiffel: 7.7–7.8 Wong: 7.3–7.5

Homework Assignment #04: Exam #1 Tuesday, February 28, 2023 due Friday, February 17, 2023 Covers Reiffel Chapters 2–5, HW# 1–4

State-dependent phase changes

Suppose we wish to apply a phase shift that depends on the state of a specific qubit, $|x\rangle \to e^{i\phi(x)}|x\rangle$ where there is an associated function $f: \mathbf{Z_n} \to \mathbf{Z_s}$ that is efficiently computable

The i^{th} bit of f(x) is the i^{th} term of the binary expansion for the phase, $\phi(x) \approx 2\pi f(x)/2^s$

Given a transformation U_f that is efficient, it is possible to perform the state-dependent phase shift in O(s) steps plus 2 invocations of U_f

Suppose that f(x)=x, we want a subroutine that changes the phase of an s-qubit standard basis state $|x\rangle$ by $\phi(x)=2\pi x/2^s$ using the transformation

$$P(\phi) = T\left(-rac{\phi}{2}
ight) K\left(rac{\phi}{2}
ight) = \left(egin{array}{cc} 1 & 0 \ 0 & \mathrm{e}^{i\phi} \end{array}
ight)$$

define Phase $|a[s]\rangle =$

- 1. **for** $i \in [0...s-1]$
- 2. $P\left(\frac{2\pi}{2i}\right)|a_i\rangle$

loop over all s bits in register $|a\rangle$

apply the specified rotation to the i^{th} qubit

State-dependent phase changes

Using the subroutine $Phase: |a\rangle \to e^{i2\pi s/2^s}$ it is now possible to write a program that implements the n-qubit transformation $Phase_f: |x\rangle \to e^{i2\pi f(x)/2^s}$

define
$$Phase_f |x[k]\rangle =$$

- 1. **qubit** a[s] create an s-qubit temporary register
- 2. $U_f|x\rangle|a\rangle$ compute f in a
- 3. Phase $|a\rangle$ perform phase shift by $2\pi a/2^s$
- 4. $U_f^{-1}|x\rangle|a\rangle$ uncompute f

Step 2 entangles $|a\rangle$ with $|x\rangle$ and is set to the binary expansion of $\phi(x)$ for the desired phase shifts to $|x\rangle$

Step 3 changes the phase of $|a\rangle$ and also of $|x\rangle$ because they are entangled

Step 4 unentangles $|a\rangle$ from $|x\rangle$ leaving it in the desired state

State-dependent amplitude shifts

We wish to rotate each term in a superposition by a single qubit rotation $R(\beta(x))$ where $\beta(x)$ is state-dependent such that $|x\rangle \otimes |b\rangle \rightarrow |x\rangle \otimes (R(\beta(x))|b\rangle$

If
$$\beta(x) \approx 2\pi f(x)/2^s$$
 and $f: \mathbf{Z}_n \to \mathbf{Z}_s$ define a subroutine define $Rot \ |a[s]\rangle |b[1]\rangle = 1$. for $i \in [0, \dots, s-1]$ loop over all s bits in register $|a\rangle$

1. **for**
$$i \in [0 \dots s - 1]$$

2.
$$|a_i\rangle \operatorname{control} R\left(\frac{2\pi}{2^i}\right)|b\rangle$$

apply a controlled rotation to the $|b\rangle$ qubit

create an s-qubit temporary register

The full program is thus

define
$$Rot_f |x[k]\rangle |b[1]\rangle =$$

1. qubit
$$a[s]$$

2.
$$U_f|x\rangle|a\rangle$$

3. Rot
$$|a,b\rangle$$

4.
$$U_{\epsilon}^{-1}|x\rangle|a\rangle$$

compute
$$f$$
 in a

perform rotation by
$$2\pi a/2^s$$

uncompute
$$f$$

State-dependent amplitude shifts

define
$$Rot_f |x[k]\rangle |b[1]\rangle =$$

- 1. **qubit** a[s] create an s-qubit temporary register
- 2. $U_f|x\rangle|a\rangle$ compute f in a
- 3. Rot $|a,b\rangle$ perform rotation by $2\pi a/2^s$
- 4. $U_f^{-1}|x\rangle|a\rangle$ uncompute f

The Deutsch-Jozsa problem

This is a multi-qubit generalization of the Deutsch problem where a function is balanced if an equal number of input values return 0 and 1

Given a function $f: \mathbf{Z}_{2^n} \mapsto \mathbf{Z}_2$ that is known to be either constant or balanced, and a quantum oracle $U_f: |x\rangle|y\rangle \to |x\rangle|y \oplus f(x)\rangle$, determine whether the function f is constant or balanced

Start by using the $\phi=\pi$ phase change subroutine to negate terms of the superposition of basis vectors $|x\rangle$ with f(x)=1 which returns

Next apply the Walsh transform to $|\psi\rangle$ recalling that for a vector $|r\rangle$, the Walsh transform is

$$|\psi\rangle = \frac{1}{\sqrt{N}} \sum_{i=0}^{N-1} (-1)^{f(i)} |i\rangle$$

$$|W|r
angle = rac{1}{\sqrt{N}} \sum_{s=0}^{N-1} (-1)^{r \cdot s} |s
angle$$

$$|\phi
angle=W|\psi
angle=rac{1}{N}\sum_{i=0}^{N-1}\left((-1)^{f(i)}\sum_{j=0}^{N-1}(-1)^{i\cdot j}|j
angle
ight)$$

For each vector $|i\rangle$ in the sum that makes up $|\psi\rangle$, the Walsh transform applies a sign change depending on the number of common 1 bits between $|i\rangle$ and $|j\rangle$

The Deutsch-Jozsa problem

$$|\phi\rangle = rac{1}{N} \sum_{i=0}^{N-1} \left((-1)^{f(i)} \sum_{j=0}^{N-1} (-1)^{i \cdot j} |j
angle
ight)$$

For constant f(x), $|\phi\rangle = |0\rangle$ For balanced f(x), $|\phi\rangle = |i\rangle \neq |0\rangle$

For constant $f_{i}(-1)^{f(i)} = (-1)^{f(0)}$ is a global phase and can be pulled out of the sum

 $|\phi\rangle = (-1)^{f(0)} \frac{1}{N} \sum_{i=1}^{N-1} \left(\sum_{j=1}^{N-1} (-1)^{i \cdot j} \right) |j\rangle$

But
$$\sum_{x=0}^{N-1} (-1)^{x \cdot y} = \begin{cases} N & y = 0 \\ 0 & y \neq 0 \end{cases}$$

$$= (-1)^{f(0)} \frac{1}{N} \sum_{i=0}^{N-1} (-1)^{i \cdot 0} |0\rangle = (-1)^{f(0)} |0\rangle$$

For balanced f, f(i) = 0 when $i \in X_0$ and the two internal sums must cancel when $|j\rangle = |0\rangle$ but not otherwise

$$|\phi\rangle = \frac{1}{N} \sum_{j=0}^{N-1} \left(\sum_{i \in X_0} (-1)^{i \cdot j} - \sum_{i \notin X_0} (-1)^{i \cdot j} \right) |j\rangle$$

This solves the Deutsch-Jozsa problem with a single call to U_f which is exponentially better than the classical solution

But

Deutsch-Jozsa – Quirk implementation

$$U_f:|x,y\rangle\rightarrow|x,y\oplus f(x)\rangle \qquad U_f:|x,0\rangle\rightarrow|x,f(x)\rangle$$

https://tinyurl.com/3zujxrte

The Bernstein-Vazirani problem

The Bernstein-Vazirani problem is to determine the value of an unknown string u of bit length n using only queries of the form $q \cdot u$

The quantum algorithm can solve this using a single query to a transformation U_{f_u} where $f_u(q) = q \cdot u \mod 2$ and

$$U_{f_u}:|q
angle|b
angle\mapsto|q
angle|b\oplus f_u(q)
angle$$

This is solved by starting with the circuit that was used to apply the $\phi=\pi$ phase change which gives

$$|\psi_X
angle = rac{1}{\sqrt{N}} \sum_{a=0}^{N-1} (-1)^{f_u(q)} |q
angle = rac{1}{\sqrt{N}} \sum_{a=0}^{N-1} (-1)^{u\cdot q} |q
angle$$

If the Walsh-Hadamard transformation is now applied to $|\psi_X\rangle$ we have

$$W|\psi_X\rangle = W\left(\frac{1}{\sqrt{N}}\sum_{q=0}^{N-1}(-1)^{u\cdot q}|q\rangle\right) = \frac{1}{\sqrt{N}}\sum_{q=0}^{N-1}(-1)^{u\cdot q}W|q\rangle = \frac{1}{N}\sum_{q=0}^{N-1}(-1)^{u\cdot q}\left(\sum_{z=0}^{N-1}(-1)^{q\cdot z}|z\rangle\right)$$

The Bernstein-Vazirani problem

$$egin{aligned} W|\psi_X
angle &=rac{1}{N}\sum_{q=0}^{N-1}(-1)^{u\cdot q}\left(\sum_{z=0}^{N-1}(-1)^{q\cdot z}|z
angle
ight) \ &=rac{1}{N}\sum_{z=0}^{N-1}\left(\sum_{q=0}^{N-1}(-1)^{(u\oplus z)\cdot q}|z
angle \end{aligned}$$

$$(-1)^{u\cdot q+q\cdot z}\equiv (-1)^{(u\oplus z)\cdot q}$$

$$=\frac{1}{N}\sum_{q=0}^{N-1}(-1)^{q\cdot 0}|u\rangle=\frac{1}{N}N|u\rangle=|u\rangle$$

And the internal sum is zero unless $u \oplus z \equiv 0$ so only the term where $z \equiv u$ remains

This illustrates a common interpretation of how quantum circuits work, that is using parallelism to perform a computation on all possible inputs then manipulate the resulting superposition to get the result

https://tinyurl.com/fx3nyxj2