Triton-Shared

Scaling Triton to Multiple Platforms

Today

- Why Triton? (5 minutes)
- Triton Compilation (10 minutes)
- Triton-Shared (15 minutes)
- Q&A (10 minutes)

Why Triton?

And why Triton-Shared?

Models and applications Al Frameworks (e.g. PyTorch, ONNX Runtime) Custom Kernels Triton Kernel library Kernel library Kernel library CUDA ROCm Maia API Nvidia GPUs AMD GPUs Maia

Triton for All

Triton for All

Triton for All

Triton Compilation

Triton Language & Compiler Architecture

What is Triton

- A domain specific language and compiler for fast DNN kernels
- Developed and open sourced by Open Al
 - Used by Open AI for latest models
 - Integrated into PyTorch 2.0 via TorchInductor
 - Growing interest throughout the ML community

- Language Features
 - A Python-based programming environment
 - Designed for productively writing custom DNN compute kernels.
 - Supports automatic tuning to find the fastest version of the code
 - Allows non-CUDA-experts to write high-performance kernels

Triton Example Code

y = torch.rand(size, device='cuda')

output triton = add(x, y)

```
@triton.jit
def add_kernel(x_ptr, y_ptr, output_ptr, n_elements, BLOCK_SIZE: tl.constexpr):
  pid = tl.program id(axis=0)
  block start = pid * BLOCK SIZE
  offsets = block start + tl.arange(0, BLOCK SIZE)
  mask = offsets < n_elements</pre>
  x = tl.load(x ptr + offsets, mask=mask)
  y = tl.load(y ptr + offsets, mask=mask)
  output = x + y
  tl.store(output ptr + offsets, output, mask=mask)
def add(x, y):
 output = torch.empty like(x)
 n elements = output.numel()
 grid = lambda meta: (triton.cdiv(n elements, meta['BLOCK SIZE']),)
 add kernel[grid](x, y, output, n elements, BLOCK SIZE=1024)
 return output
def my model():
 x = torch.rand(size, device='cuda')
```


Triton Compiler Architecture

Middle Layer

Language-agnostic & Hardware-agnostic

- Why Hardware-Agnostic?
 - Share representation across hardware targets
 - Common analysis, optimizations and transformations
- Why Language-Agnostic?
 - Bring existing MLIR back-ends
 - Share with other front-ends

Triton Architecture, alternative

What is Triton-Shared

https://github.com/microsoft/triton-shared

- Libraries for Your Compiler
 - Pointer Analysis (SIMT -> SIMD)
 - Dialect Lowering (Triton to Linalg)
- driver: triton-shared-opt
- Example compiler for non-GPU
- How to Use it & How to Contribute

Pointer Analysis

Pointer Analysis: Triton -> Triton IR

```
import triton
import triton.language as tl
@triton.jit
def add_kernel(
   x ptr, # *Pointer* to first input vector.
   y ptr, # *Pointer* to second input vector.
   output ptr, # *Pointer* to output vector.
   n elements, # Size of the vector.
   BLOCK SIZE: tl.constexpr, # Number of elements each program should process.
                # NOTE: `constexpr` so it can be used as a shape value.
   # There are multiple 'programs' processing different data. We identify which program
   pid = tl.program_id(axis=0) # We use a 1D launch grid so axis is 0.
   # This program will process inputs that are offset from the initial data.
   # For instance, if you had a vector of length 256 and block_size of 64, the programs
   # would each access the elements [0:64, 64:128, 128:192, 192:256].
   # Note that offsets is a list of pointers:
   block_start = pid * BLOCK_SIZE
   offsets = block_start + tl.arange(0, BLOCK_SIZE)
   # Create a mask to guard memory operations against out-of-bounds access
   mask = offsets < n_elements</pre>
   # Load x and y from DRAM, masking out any extra element in case the in
   # multiple of the block size.
   x = t1.load(x_ptr + offsets, mask=mask)
   y = tl.load(y_ptr + offsets__m_k-mask)
   output = x + y
   # Write x + y back to DRAM.
   tl.store(output ptr + offsets, output, mask=mask)
```

```
module {
  tt.func public @add_kernel_01234(%arg0: !tt.ptr<f32>, %arg1: !tt.ptr<f32>, %arg2: !tt.ptr<f32>, %arg3: i32) -
   %c1024 i32 = arith.constant 1024 : i32
   %0 = tt.get_program_id {axis = 0 : i32} : i32
   %1 = arith.muli %0, %c1024 i32 : i32
   %2 = tt.make_range {end = 1024 : i32, start = 0 : i32} : tensor<1024xi32>
   %3 = tt.splat %1 : (i32) -> tensor<1024xi32>
   %4 = arith.addi %3, %2 : tensor<1024xi32>
   %5 = tt.splat %arg3 : (i32) -> tensor<1024xi32>
   %6 = arith.cmpi slt, %4, %5 : tensor<1024xi32>
   %7 = tt.splat %arg0 : (!tt.ptr<f32>) -> tensor<1024x!tt.ptr<f32>>
   %8 = tt.addptr %7, %4 : tensor<1024x!tt.ptr<f32>>, tensor<1024xi32>
   %9 = tt.load %8, %6 {cache = 1 : i32, evict = 1 : i32, isVolatile = false} : tensor<1024xf32>
   %10 = tt.splat %arg1 : (!tt.ptr<f32>) -> tensor<1024x!tt.ptr<f32>>
   %11 = tt.addptr %10, %4 : tensor<1024x!tt.ptr<f32>>, tensor<1024xi32>
   %12 = tt.load %11, %6 {cache = 1 : i32, evict = 1 : i32, isVolatile = false} : tensor<1024xf32>
   %13 = arith.addf %9, %12 : tensor<1024xf32>
   %14 = tt.splat %arg2 : (!tt.ptr<f32>) -> tensor<1024x!tt.ptr<f32>>
   %15 = tt.addptr %14, %4 : tensor<1024x!tt.ptr<f32>>, tensor<1024xi32>
   tt.store %15, %13, %6 {cache = 1 : i32, evict = 1 : i32} : tensor<1024xf32>
   tt.return
```

Pointer Analysis: Triton Pointers

```
%13 = arith.addf %9, %12 : tensor<1024xf32>
```

Pointer Analysis: Triton Pointers

```
%8 = tt.addptr %7, %4 : tensor<1024x!tt.ptr<f32>>, tensor<1024xi32>
%9 = tt.load %8, %6 {cache = 1 : i32, evict = 1 : i32, isVolatile = false} : tensor<1024xf32>
%13 = arith.addf %9, %12 : tensor<1024xf32>
```

Pointer Analysis: Triton Pointers

```
%c1024_i32 = arith.constant 1024 : i32
%0 = tt.get_program_id {axis = 0 : i32} : i32
%1 = arith.muli %0, %c1024 i32 : i32
%2 = tt.make_range {end = 1024 : i32, start = 0 : i32} : tensor<1024xi32>
%3 = tt.splat %1 : (i32) -> tensor<1024xi32>
%4 = arith.addi %3, %2 : tensor<1024xi32>
%8 = tt.addptr %7, %4 : tensor<1024x!tt.ptr<f32>>, tensor<1024xi32>
%9 = tt.load %8, %6 {cache = 1 : i32, evict = 1 : i32, isVolatile = false} : tensor<1024xf32>
%13 = arith.addf %9, %12 : tensor<1024xf32>
```

Pointer Analysis: Triton Structured Pointers

```
%0 = tt.get program id x : i32
%1 = arith.muli %0, %c1024 i32 : i32
%2 = arith.index cast %1 : i32 to index
%3 = tts.make_tptr %arg0 to sizes: [1024], strides: [1], offsets: [%2] : tensor<1024x!tt.ptr<f32>>
%8 = tts.load %3, %7 {...} : (tensor<1024x!tt.ptr<f32>>, index) -> tensor<1024xf32>
```

Pointer Analysis: 2-D Example

```
tts.make_tptr %arg1 sizes: [64, 256], strides: [%24, %25], offsets: [%arg15, %26] : tensor<64x256x!tt.ptr<bf16>> tts.make_tptr %arg0 sizes: [128, 64], strides: [%21, %23], offsets: [%arg14, %c0] : tensor<128x64x!tt.ptr<bf16>>
```

Pointer Ana %4 = arith.divsi %3, %c256_i32 : i32 %5 = arith.addi %arg5, %c63_i32 : i32 %6 = arith.divsi %5, %c64_i32 : i32

tts.make tptr %arg1 sizes: [64,

tts.make tptr %arg0 sizes: [128]

```
\%0 = tt.get program id x : i32
%1 = arith.addi %arg3, %c127_i32 : i32
%2 = arith.divsi %1, %c128_i32 : i32
%3 = arith.addi %arg4, %c255_i32 : i32
%4 = arith.divsi %3, %c256 i32 : i32
 %7 = arith.muli %4, %c8 i32 : i32
%8 = arith.divsi %0, %7 : i32
%9 = arith.muli %8, %c8_i32 : i32
%10 = arith.subi %2, %9 : i32
%11 = arith.cmpi slt, %10, %c8 i32 : i32
%12 = arith.select %11, %10, %c8 i32 : i32
%13 = arith.remsi %0, %12 : i32
%14 = arith.addi %9, %13 : i32
%15 = arith.remsi %0, %7 : i32
%16 = arith.divsi %15, %12 : i32
%17 = arith.muli %14, %c128_i32 : i32
%18 = tt.make_range {end = 128 : i32, start = 0 : i32} : tensor<128xi32>
%19 = tt.splat %17 : (i32) -> tensor<128xi32>
%20 = arith.addi %19, %18 : tensor<128xi32>
%21 = arith.muli %16, %c256 i32 : i32
%22 = tt.make_range {end = 256 : i32, start = 0 : i32}_: tensor<256xi32>
%23 = tt.splat %21 : (i32) -> tensor<256xi32>
%24 = arith.addi %23, %22 : tensor<256xi32>
 %25 = tt.make_range {end = 64 : i32, start = 0 : i32} : tensor<64xi32>
%26 = tt.expand_dims %20 {axis = 1 : i32} : (tensor<128xi32>) -> tensor<128x1xi32>
%27 = tt.splat %arg6 : (i32) -> tensor<128x1xi32>
%28 = arith.muli %26, %27 : tensor<128x1xi32>
%29 = tt.expand_dims %25 {axis = 0 : i32} : (tensor<64xi32>) -> tensor<1x64xi32>
%30 = tt.splat %arg7 : (i32) -> tensor<1x64xi32>
%31 = arith.muli %29, %30 : tensor<1x64xi32>
%32 = tt.broadcast %28 : (tensor<128x1xi32>) -> tensor<128x64xi32>
%33 = tt.broadcast %31 : (tensor<1x64xi32>) -> tensor<128x64xi32>
%34 = arith.addi %32, %33 : tensor<128x64xi32>
%35 = tt.splat %arg0 : (!tt.ptr<bf16>) -> tensor<128x64x!tt.ptr<bf16>>
%36 = tt.addptr %35, %34 : tensor<128x64x!tt.ptr<bf16>>, tensor<128x64xi32>
%37 = tt.expand_dims %25 {axis = 1 : i32} : (tensor<64xi32>) -> tensor<64x1xi32>
%38 = tt.splat %arg8 : (i32) -> tensor<64x1xi32>
%39 = arith.muli %37, %38 : tensor<64x1xi32>
%40 = tt.expand_dims %24 {axis = 0 : i32} : (tensor<256xi32>) -> tensor<1x256xi32>
%41 = tt.splat %arg9 : (i32) -> tensor<1x256xi32>
%42 = arith.muli %40, %41 : tensor<1x256xi32>
%43 = tt.broadcast %39 : (tensor<64x1xi32>) -> tensor<64x256xi32>
%44 = tt.broadcast %42 : (tensor<1x256xi32>) -> tensor<64x256xi32>
%45 = arith.addi %43, %44 : tensor<64x256xi32>
%46 = tt.splat %arg1 : (!tt.ptr<bf16>) -> tensor<64x256x!tt.ptr<bf16>>
%47 = tt.addptr %46, %45 : tensor<64x256x!tt.ptr<bf16>>, tensor<64x256xi32>
```

```
5] : tensor<64x256x!tt.ptr<bf16>>
3] : tensor<128x64x!tt.ptr<bf16>>
```

Pointer Analysis: Convert-to-Memref

```
tts.make_tptr %arg1 sizes: [64, 256], strides: [%24, %25], offsets: [%arg15, %26] : tensor<64x256x!tt.ptr<bf16>> tts.make_tptr %arg0 sizes: [128, 64], strides: [%21, %23], offsets: [%arg14, %c0] : tensor<128x64x!tt.ptr<bf16>>
```



```
memref.reinterpret_cast %arg0 to offset: [%54], sizes: [128, 64], strides: [%20, %22]
    : memref<*xbf16> to memref<128x64xbf16, strided<[?, ?], offset: ?>>
memref.reinterpret_cast %arg1 to offset: [%57], sizes: [64, 256], strides: [%23, %25]
    : memref<*xbf16> to memref<64x256xbf16, strided<[?, ?], offset: ?>>
```

Linalg Dialect

- MLIR built-in dialect
- Built-in lowering to other dialects
- The value semantics of linalg match Triton "blocks"
- Linalg provides a powerful way to do further transformations and optimizations (e.g., loop fusion and tiling)
- Built-in transformations -- use out-of-the-box or customize

Linalg Generic

```
%result = linalg.generic
  indexing_maps = [affine_map<(i, j, k) -> (i, k)>,
                   affine_map\langle(i, j, k) -> (k, j)>,
                   affine_map<(i, j, k) -> (i, j)>}
  iterator_types = ["parallel", "parallel", "reduction"]
} ins(%lhs, %rhs : tensor<8x10xf32>,tensor<10x16xf32>)
  outs(%init :tensor<8x16xf32>) {
<del>്പി</del>hs_one: f32, %rhs_one: f32, %init_one: f32).
  %0 = arith.mulf %lhs one, %rhs one : f32
  %1 = arith.addf %init one, %0 : f32
  linalg.yield %1 : f32
} -> tensor<8x16xf32>
```

Reference CPU Backend

- Example usage of Triton-Shared
- Used to validated Triton-Shared
- Currently supports x86-64
- Work ongoing to enable ARMv8 support
- Built using only built-in MLIR passes and dialects
- Proof-of-concept level functionality
 - Triton Tutorials + unit tests

How to Use Triton-Shared

Full directions at https://github.com/microsoft/triton-shared/blob/main/README.md#usage

Stand-alone: includes Triton as a sub-module

Includes triton-shared libs and CPU-reference back-end

• Reference triton-shared libs to use in your back-end

Contributing to Triton-Shared

https://github.com/microsoft/triton-shared

We are accepting contributions small and large

- Looking for
 - Breadth coverage
 - Bug fixes
 - New functionality
 - QoL improvements

