Листок №Г4 02.02.2019

Обоснование кодирования

Пусть T некоторая теория в языке арифметики.

Определение. Отношение $P(\vec{x}) \subseteq \mathbb{N}^k$ разрешимо в T, если существует формула $\varphi(\vec{x})$, что $\forall \vec{n}$

$$P(\vec{n}) \Rightarrow T \vdash \varphi(\underline{\vec{n}})$$
$$\neg P(\vec{n}) \Rightarrow T \vdash \neg \varphi(\vec{n})$$

Определение. Функция $f(\vec{x})$ *представима* в T, если существует $\varphi(\vec{x}, y)$ такая, что:

$$f(\vec{n}) = m \Rightarrow T \vdash \varphi(\underline{\vec{n}}, \underline{m}),$$

$$T \vdash \forall y \ (\varphi(\underline{\vec{n}}, y) \rightarrow y = \underline{m}).$$

Для того, чтобы можно было формулировать в арифметике утверждения, подобные теоремам Гёделя (о доказуемости чего-либо в арифметике) нам понадобиться следующая теорема, обосновывающая тот синтаксис, который мы ввели в предыдущем листке.

Теорема Г4.1 (Обоснования). • Любая $\Pi P\Phi \Sigma_1$ -определима в \mathbb{N} ;

• Рассмотрим РА, в которой схему индукции заменим аксиомой $\forall y \ (y \neq 0 \to \exists x \ y = S(x).$ В Q разрешимы все ПР отношения и представимы все ПРФ.

Определение. Функция $\beta(x,y,z)=rm((z+1)\cdot y+1,x)$ называется β функцией Гёделя.

Задача Г4.1. Покажите, что β является Σ_1 -определимой.

Задача Г4.2. Пусть $m = \max(n, k_0, \dots, k_n)$, c = m!, $u_i = c(i+1) + 1$. Покажите, что $(u_i, u_j) = 1$, если $i \neq j$.

Теорема Г4.2 (Китайская теорема об остатках).

$$\forall \{k_0, \dots, k_n\} \quad \exists b < u_1, \dots, u_n \quad \forall i \leqslant n \quad b \equiv k_i \pmod{u_i}$$

Задача Г4.3. Докажите, что

$$\forall \{k_0, \dots, k_n\} \quad \exists a, b \quad \forall i \leqslant n \quad \beta(a, b, i) = k_i.$$

Задача Г4.4. Докажите, что любая ПРФ Σ_1 -определима в \mathbb{N} .

Задача Г4.5. Докажите, что всякая Δ_0 -формула разрешима в Q.

Задача Г4.6. Докажите, что всякая вычислимая формула представима в Q.

Задача Г4.7. Докажите, что всякая Σ_1 -формула разрешима в Q.

Задача Г4.8. Завершите доказательство второго пункта теоремы Обоснования.

 $^{^{1}}$ Такая теория называется *арифметикой Робинсона* Q. В ней, в отличии от РА конечное число аксиом.