Combination of three spins Spin = + spin = spin =

$$\frac{1}{2} \otimes \frac{1}{2} = O \oplus I$$

$$\frac{1}{2} \otimes \frac{1}{2} \otimes \frac{1}{2} = (0 \oplus 1) \otimes \frac{1}{2} = (0 \otimes \frac{1}{2}) \oplus (7 \otimes \frac{1}{2})$$

$$= \frac{1}{2} \oplus \frac{1}{2} \oplus \frac{3}{2}$$

-> 3 manifold with distinct symmetry properties.

Choice of basis set for analysing methyl groups:

Cand H spins weakly coupled -> tensor product

| \(\frac{1}{1} \) = | \(\frac{1}{1} \) \(\frac{1} \) \(\frac{1} \) \(\frac{1}{1} \) \(\frac{1} \) \(\frac{1} \) \(\frac{1}

form symmetrised combinations.

		total spin, I	exclainge 2/3
	1>= 222	3/2	S
1	2> = (XXB> + XBX> + BXX>) / J3	3/2	S
	13>= (1BBX>+1BXB>+ XBB>) /J3	3/2	S
1	$4\rangle = \beta\beta\rangle$	3/2	S
-	5) = (daB> - aBa>) /JZ	1/2	A
1	6> = (1BaB>- BBX>)/JZ	1/2	A
17	7> = (x x 3> + x B x> - 2 B x x>) / V 6	1/2	S
1	3 > = (183x) + 1843 > -2 xp3>)/56	1/2	S
1 -		assaugate vas , "La more regionale existing van des autorioris descripe van des design (hydroxic des de descrip	

-> Division into 3 manifolds with distinct symmetries.

These form subspaces that evolve independently, during free evolution but also through pulses etc.

Methyl relaxation! Sources of relaxations -dipolar ----- oxternal - CSA - not significant
- exchange, paramagnets &c.
- external field
(i.e. other protons) From now on, going to assume we are in MACROMOLECULAR LIMIT: WOT. >>> 1 In this limit, we only care about J(0). Rebration is caused by fluctuating fields:

Bloc(t)

Min String (7)

ACF

fait fluctuation

Te Te Relaxation rates related to model-free formalism' field strength and refused density: $R = a B_{local}^{2} J(0) + b \cdot B_{loc}^{2} J(\omega_{c}) + c \cdot B_{loc}^{2} J(\omega_{H}) + ...$ The reduced spectral density $j(\omega) = 2 \int_{0}^{\infty} e^{-i\omega \tau} g(\tau) d\tau$ Macromolecular limit: $R = a \cdot \overline{B_{loc}^2} \cdot j(0)$ $j(0) = 2 \int g(\tau) d\tau = 5^2 \tau_c + (1-S^2) \tau_e \approx 5^2 \tau_c$

	13C relaxation rate:
and the state of t	$B_{2,c} \ll B_{loc}^2 j(0) \sim \frac{\mu_0^2}{4\pi} \frac{\chi^2 \chi^2}{\zeta_H} - S^2 \gamma_c$
	Effect of It spin states?
	9× difference in relaxation rates.
1	9× difference in relaxation rates. (3C) (1) Example 10 Exam
1	So we expect 13C to have 2 relaxation rates!
	R tast = 1 (2) 7 2 7 H S 2 (dax), 13/3/3)
	and R3/00 ~ 1 /2 /2 /4 5 /2 (4) (4) (4) (4) (4)
	N.B. unlike NH TROSY, this is field strength independent.
~	14 relaxation rate:
	2 govres: C-H dipole and H-H dipoles.
	(1) (1) (2) (2) (2) (2) (2) (3) (4) (4) (5) (5) (7) (7) (7) (7) (7) (7) (7) (7) (7) (7
	(t) cancellation!
	13C) PS/OW 1/2 2 2 2 2H 5 1/1 F 6 . 52 TC CH unlike
	(1) (Bdd) (Bd)

transi60

Evolution of density operators

How does a density operator of evolve in time under either the Hamiltonian for free evolution, Home, or for an r.f. pulse, House?

The fine evolution is given by the Von Neumann equation: $\frac{\partial \rho}{\partial t} = \frac{1}{ik} (H\rho - \rho H) = \frac{1}{ik} [H, \rho]$

This is easy to clerive from the TDSE:

it 2/4) = H/Y), L.c. -it 2/4/= # < +/H

The density operator is defined as p = Zp: /Y: XT: |

 $-\frac{\partial p}{\partial t} = \sum_{i} \left[\frac{\partial}{\partial t} \left(|\gamma_{i}\rangle \langle \gamma_{i}| \right) \right] = \sum_{i} \left[\left(\frac{\partial}{\partial t} |\gamma_{i}\rangle \rangle \langle \gamma_{i}| + |\gamma_{i}\rangle \frac{\partial t}{\partial t} \langle \gamma_{i}| \right]$

 $= \mathcal{Z}_{Pi} \left(\frac{1}{i \pi} H | Y_i \rangle \langle Y_i | + | Y_i \rangle \left(-\frac{1}{i \pi} \right) \langle Y_i | H \right)$

= \frac{1}{\pi} \left[H \left(\frac{\pi}{\pi} \right) \frac{\pi}{\pi} \right] - \left(\frac{\pi}{\pi} \right) \right(\frac{\pi}{\pi} \right) H \right]

 $= \frac{1}{i t} \left(H \rho - \rho H \right) .$

He What is the solution of the Von Neumann equation? If H is time independent, easy to solve the TDSE:

 $\frac{\partial}{\partial t} | \Upsilon \rangle = \frac{1}{i \pi} H \Upsilon \rangle$ and $\frac{\partial}{\partial t} \langle \Upsilon | = \frac{1}{i \pi} \langle \Upsilon | H$

=) $|\gamma(t)\rangle = \exp\left(\frac{1}{ik}Ht\right)|\gamma(0)\rangle$ and $|\gamma(t)| = |\gamma(0)|\exp\left(-\frac{1}{ik}Ht\right)$

 $= \rho(t) = \sum_{k} p_i \left| \gamma_i(t) \right\rangle \left\langle \gamma_i(t) \right|$

= $2p_i e | \gamma(0) \langle \gamma(0) | e^{+iHe/t} = e^{-iHe/t} (2p_i | \gamma_i \times \gamma_i) | e^{iHe/t}$ = $e^{-iHe/t} \rho(0) e^{+iHe/t}$

How much signal arises from spin-i manifolds? Consider a simple pulse-observe experiment: IH ______ p, identical to previous calculations. Observed signal = Tr (Mp.H.+) of which only 2x = i arises from pin = manifolds => 1/6 of total signal = 17%.