Doni	ivaba	4											
56.													

Derivadu Implicite	
Seu le ecración F(x,y) = 0, donde y = f(x) entre de finide implicitmente y podemos determinar	
$\gamma' = \frac{dy}{dx}$ Eyemplus	
- de bermine y'	
1) x2 + y2 - 9 -1)regla de la cadance 2x + 2y-y1=0	
2, v' = -2x 2) Oper a is ones	
y = -2x 3) de spejar y 1 Zy 4) de les minns desivada implicida	
2) 3 x y 2 - x + y - 25 = 0 / d	
$\frac{d}{dx}\left(3xy^2-x+y-25\right)=\frac{d(0)}{dx}$	
$3(xy^2)' - x + y' = 0$	
$3(1 \cdot y^{2} + x \cdot 2y \cdot y^{1}) - 1 + y^{1} = 0$ $3y^{2} + 6xy \cdot y^{1} - 1 + y^{1} = 0$ $6xyy^{1} + y^{1} = 1 - 3y^{2}$ $y^{1}(6xy + 1) = 1 - 3y^{2}$	
$6 \times 4 \times 4 \times 4 \times 5 \times 5 \times 5 \times 5 \times 5 \times 5 \times 5$	
$y'(6xy + 1) = 1 - 8y^2$ $y' = 1 - 8y^2$	
6x1+1	

Ejemplo 2: Derive	
1) y: 2x / h()	
$\begin{cases} n(y) = \langle n(2^{x}) \rangle \\ n(y) = x \langle n(2) \rangle \\ \frac{A}{dx} \\ y' = \langle n(2) \rangle \\ y \end{cases}$	
2) y = x ^x	
\sqrt{n} (x) = x \sqrt{n} ($\frac{d}{dx}$	
$\frac{1}{V} \cdot y' = \ln(x) + x \cdot \frac{1}{x}$	
y y = y (/n(x) + 1)	
$y^1 = x^x \left(\ln (x) + 1 \right)$	
3) y = \(\frac{1}{x}\) ex	4) y = (x , 1) x2
\n(y) = \n (\Jx, ex)	\n(y) = \n(x+1x2)
lncy) = ex ln (JZ) / dx	$ n(y) = 2x n(x, i) \frac{d}{dx}$
$\frac{1}{y} \cdot y! = e^{x} / n (\sqrt{x}) + e^{x} \frac{1}{\sqrt{x}} \cdot \frac{1}{2\sqrt{x}^{2}}$	1. y' = 2x \n (x11) + x2 1 . 1
y = ex((n vx1) 1 1 2x)	7, = 5× (×+1)
1 = vx1ex ex ((n(vx1) + 1))	

```
Aplicaciones . Maximos y minimos
 ey: g(x) = x^{4} - 11x^{3} + 10

g(x) = 11x^{3} - 12x^{2} = 0

g(x) = 11x^{3} - 12x^{2} = 0
Maximo Relativo:
          Si f(x) < f(xo), Vx & I, , I, & Dom(f)
Minimo Relativo
          Si f(x) > f(xo), Vx & I, I, & Dom(f)
Crecimiento y de crecimiento:
         Si f(x) > 0 , Vx & I, enfonces f en creciente entodo el intervalo
          Si fin < 0 , Vx & I, enfonces for decreciente entodo el intervalo
Concavidad V N
           olos: derivadas de orden soperia:
erislen f', f", f", ..., f"
                     Ej: Sea f(x) = (1x3-2x2 + 3x + 1)

P'(x) = (2x2-4x + 3)

P''(x) = 24x - 4

P'''(x) = 24
```

(1) pu	nlo Ju i	n flexion:			
		mi ni mos u la prine o	a diriva	du	
	2)				
E3.	1) Puntos 2) Intera 3) Intera	cia la fun cilicos valos de cre alos de conco nos y minin	iniento.		