An Algebraic Framework for Updatable and Universal (zk)SNARKs

Carla Ràfols and Arantxa Zapico

4th ZKProof Workshop

Pairing-Based (zk)SNARKs State of the art

Interactive Proof-Systems [GMR89]

State of the art

```
Interactive Proof-Systems [GMR89] → ZK proofs for all NP [GMW] → ... → Succinct arguments without PCPs [Gro10] → QAPs [GGPR13] & Pinnocchio [PGHR13] → ZeroCash
```

State of the art

```
Interactive Proof-Systems [GMR89] → ZK proofs for all NP [GMW] → ... → Succinct arguments without PCPs [Gro10] → QAPs [GGPR13] & Pinnocchio [PGHR13] → ZeroCash → Most efficient zk-SNARK [Gro16]
```

State of the art

```
Interactive Proof-Systems [GMR89] → ZK proofs for all NP [GMW] → ... → Succinct arguments without PCPs [Gro10] → QAPs [GGPR13] & Pinnocchio [PGHR13] → ZeroCash → Most efficient zk-SNARK [Gro16]
```

Trusted Setup!!!

State of the art

```
Interactive Proof-Systems [GMR89] → ZK proofs for all NP [GMW] → ... → Succinct arguments without PCPs [Gro10] → QAPs [GGPR13] & Pinnocchio [PGHR13] → ZeroCash → Most efficient zk-SNARK [Gro16]
```

Trusted Setup!!!

Multiparty Computation (Zcash Ceremony)

State of the art

Interactive Proof-Systems [GMR89] → ZK proofs for all NP [GMW] → ... → Succinct arguments without PCPs [Gro10] → QAPs [GGPR13] & Pinnocchio [PGHR13] → ZeroCash → Most efficient zk-SNARK [Gro16]

Trusted Setup!!!

Multiparty Computation (Zcash Ceremony)

One ceremony per circuit !!!

• Multiparty Computation Model:

• Multiparty Computation Model:

• Updatable Model:

• Multiparty Computation Model:

Updatable Model:

Circuit Specific vs. Universal

Ishai's wisdom

Ishai's wisdom

Great we have a lot of research in zero-knowledge, but comparison is still difficult

Ishai's wisdom

Great we have a lot of research in zero-knowledge, but comparison is still difficult

 Multitude of application scenarios, implementation details, efficiency desiderata, cryptographic assumptions, and trust models,

Ishai's wisdom

Great we have a lot of research in zero-knowledge, but comparison is still difficult

- Multitude of application scenarios, implementation details, efficiency desiderata, cryptographic assumptions, and trust models,
- It is all packed: makes it difficult to apply a mix-and-match approach
 for finding the best combination of the underlying ideas in the context
 of a given application.

Ishai's wisdom

Great we have a lot of research in zero-knowledge, but comparison is still difficult

- Multitude of application scenarios, implementation details, efficiency desiderata, cryptographic assumptions, and trust models,
- It is all packed: makes it difficult to apply a mix-and-match approach for finding the best combination of the underlying ideas in the context of a given application.

"This calls for a modular approach that allows for an easier navigation in the huge design space. A higher level of modularity and abstraction is useful (...)"

Updatable and Universal (zk)SNARKs Common Design Principle

Updatable and Universal (zk)SNARKs Common Design Principle

AHP/ PHP/ ...

Common Design Principle

Common Design Principle

Common Design Principle

Common Design Principle

Holographic:

Indexer computes relation-dependent polynomials

Common Design Principle

- Indexer computes relation-dependent polynomials
- Prover's messages include polynomials

Common Design Principle

- Indexer computes relation-dependent polynomials
- Prover's messages include polynomials
- Verifier has oracle access to both sets of polynomials, can do degree checks, etc.

Common Design Principle

- Indexer computes relation-dependent polynomials
- Prover's messages include polynomials
- Verifier has oracle access to both sets of polynomials, can do degree checks, etc.

This proposal

Motivation This proposal

¿Can we break down further the information theoretic component?

• Break Circuit Satisfiability in three main algebraic components:

- Break Circuit Satisfiability in three main algebraic components:
 - Hadamard Product

- Break Circuit Satisfiability in three main algebraic components:
 - Hadamard Product
 - Inner Product

- Break Circuit Satisfiability in three main algebraic components:
 - Hadamard Product
 - Inner Product
 - Verifiable Subspace Sampling

- Break Circuit Satisfiability in three main algebraic components:
 - Hadamard Product
 - Inner Product
 - Verifiable Subspace Sampling
- Definition of Verifiable Subspace Sampling

Constraint system:

Argument: has two main building blocks

- Argument: has two main building blocks
 - 1. Hadamard product

- Argument: has two main building blocks
 - 1. Hadamard product Universal SRS

- Argument: has two main building blocks
 - 1. Hadamard product Universal SRS
 - 2. Linear Relations

Groth16: Overview Example

Constraint system:

- Argument: has two main building blocks
 - 1. Hadamard product Universal SRS
 - 2. Linear Relations Circuit-Dependent SRS

Main Tool: "Compressed" Linear Algebra Hadamard Product

¹Completeness, soundness: \mathcal{R} arbitrary set, efficiency: \mathcal{R} multiplicative subgroup.

Main Tool: "Compressed" Linear Algebra Hadamard Product

Let $\mathcal{R} = \{r_1, \ldots, r_m\} \subset \mathbb{F}_p^*$.

¹Completeness, soundness: \mathcal{R} arbitrary set, efficiency: \mathcal{R} multiplicative subgroup.

Hadamard Product

Let
$$\mathcal{R} = \{r_1, \ldots, r_m\} \subset \mathbb{F}_p^*$$
.

$$\lambda_i(X) = \prod_{i \neq i} \frac{(X - r_i)}{(r_i - r_i)},$$

 $^{^1}$ Completeness, soundness: $\mathcal R$ arbitrary set, efficiency: $\mathcal R$ multiplicative subgroup.

Hadamard Product

Let $\mathscr{R} = \{r_1, \ldots, r_m\} \subset \mathbb{F}_p^*$.

$$\lambda_i(X) = \prod_{j \neq i} \frac{(X - r_j)}{(r_i - r_j)}, \quad t(X) = \prod_j (X - r_j)$$

 $^{^1}$ Completeness, soundness: $\mathcal R$ arbitrary set, efficiency: $\mathcal R$ multiplicative subgroup.

Hadamard Product

Let
$$\mathcal{R} = \{r_1, \ldots, r_m\} \subset \mathbb{F}_p^*$$
.

$$\lambda_i(X) = \prod_{j \neq i} \frac{(X - r_j)}{(r_i - r_j)}, \quad t(X) = \prod_j (X - r_j)$$

Linear Algebra World	Polynomial World
$\vec{y} = (y_1, \ldots, y_m)$	$Y(X) = \sum_{i=1}^{m} y_i \lambda_i(X)$

 $^{^1}$ Completeness, soundness: $\mathcal R$ arbitrary set, efficiency: $\mathcal R$ multiplicative subgroup.

Hadamard Product

Let $\mathcal{R} = \{r_1, \ldots, r_m\} \subset \mathbb{F}_n^*$.

$$\lambda_i(X) = \prod_{j \neq i} \frac{(X - r_j)}{(r_i - r_j)}, \quad t(X) = \prod_j (X - r_j)$$

Linear Algebra World	Polynomial World
$\vec{y} = (y_1, \ldots, y_m)$	$Y(X) = \sum_{i=1}^{m} y_i \lambda_i(X)$
$ec{ t z} = ec{ t w} \circ ec{ t y}$	t(X) Z(X)-Y(X)W(X)

 $^{^1}$ Completeness, soundness: $\mathcal R$ arbitrary set, efficiency: $\mathcal R$ multiplicative subgroup.

Hadamard Product

Let $\mathscr{R} = \{r_1, \ldots, r_m\} \subset \mathbb{F}_n^*$.

$$\lambda_i(X) = \prod_{j \neq i} \frac{(X - r_j)}{(r_i - r_j)}, \quad t(X) = \prod_j (X - r_j)$$

Linear Algebra World	Polynomial World
$\vec{y} = (y_1, \ldots, y_m)$	$Y(X) = \sum_{i=1}^{m} y_i \lambda_i(X)$
₹ = ѿ ѻ ӯ	$t(X) Z(X)-Y(X)W(X)^{1}$

¹Completeness, soundness: \mathcal{R} arbitrary set, efficiency: \mathcal{R} multiplicative subgroup.

ai's left inputs, bi's right inputs, ci's outputs.

 a_i 's left inputs, b_i 's right inputs, c_i 's outputs.

Hadamard product: $(a_5, a_6) \circ (b_5, b_6) = (c_5, c_6)$

 a_i 's left inputs, b_i 's right inputs, c_i 's outputs.

Hadamard product: $(a_5, a_6) \circ (b_5, b_6) = (c_5, c_6)$

Linear relations:

$$\begin{pmatrix} a_5 \\ a_6 \end{pmatrix} = \begin{pmatrix} 0 & 2 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 & 0 \end{pmatrix} \bar{c}, \begin{pmatrix} b_5 \\ b_6 \end{pmatrix} = \begin{pmatrix} 1 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{pmatrix} \bar{c},$$

• Hadamard Product Relation: $\vec{a} \circ \vec{b} = \vec{c}$

• Hadamard Product Relation: $\vec{a} \circ \vec{b} = \vec{c}$

• Linear Relations: $\vec{a} = \vec{F}\vec{c}$ and $\vec{b} = \vec{G}\vec{c}$,

• Hadamard Product Relation: $\vec{a} \circ \vec{b} = \vec{c}$

• Linear Relations: $\vec{a} = \mathbf{F}\vec{c}$ and $\vec{b} = \mathbf{G}\vec{c}$, or equivalently

$$\left(floor egin{array}{ccc} igl(f I & O & -F igr) igg(ar{b} \ ar{c} igg) = O, & \left(f O & I & -G
ight) igg(ar{b} \ ar{c} igg) = O \end{array}$$

• Hadamard Product Relation: $\vec{a} \circ \vec{b} = \vec{c}$

• Linear Relations: $\vec{a} = F\vec{c}$ and $\vec{b} = G\vec{c}$, or equivalently

$$\left(flue{I} \ flue{O} \ -flue{F}
ight) egin{pmatrix} ec{a} \ ec{b} \ ec{c} \end{pmatrix} = f O, \qquad \left(f O \ I \ -f G
ight) egin{pmatrix} ec{a} \ ec{b} \ ec{c} \end{pmatrix} = f O$$

Number of linear constraints: 2 × #mult. gates

• Define
$$\mathbf{W} = \begin{pmatrix} \mathbf{I} & \mathbf{0} & -\mathbf{F} \\ \mathbf{0} & \mathbf{I} & -\mathbf{G} \end{pmatrix}$$
, check that $\mathbf{W} \cdot (\vec{a}, \vec{b}, \vec{c}) = \vec{0}$

²Aurora's Univariate Sumcheck: Completeness, soundness, efficiency: $\mathcal R$ multiplicative subgroup. This work: New simple proof. Completeness, soundness: $\mathcal R$ arbitrary. Efficiency: $\mathcal R$ multiplicative.

• Define
$$\mathbf{W} = \begin{pmatrix} \mathbf{I} & \mathbf{0} & -\mathbf{F} \\ \mathbf{0} & \mathbf{I} & -\mathbf{G} \end{pmatrix}$$
, check that $\mathbf{W} \cdot (\vec{a}, \vec{b}, \vec{c}) = \vec{0}$

Linear Algebra World	Polynomial World
$\vec{y} = (y_1, \ldots, y_m)$	$Y(X) = \vec{y} \cdot \vec{\lambda}(X) = \sum_{i=1}^{m} y_i \lambda_i(X)$

²Aurora's Univariate Sumcheck: Completeness, soundness, efficiency: $\mathcal R$ multiplicative subgroup. This work: New simple proof. Completeness, soundness: $\mathcal R$ arbitrary. Efficiency: $\mathcal R$ multiplicative.

• Define
$$\mathbf{W} = \begin{pmatrix} \mathbf{I} & \mathbf{0} & -\mathbf{F} \\ \mathbf{0} & \mathbf{I} & -\mathbf{G} \end{pmatrix}$$
, check that $\mathbf{W} \cdot (\vec{a}, \vec{b}, \vec{c}) = \vec{0}$

Linear Algebra World	Polynomial World
$\vec{y} = (y_1, \ldots, y_m)$	$Y(X) = \vec{y} \cdot \vec{\lambda}(X) = \sum_{i=1}^{m} y_i \lambda_i(X)$
$ec{\mathbf{w}}_i \cdot (ec{a}, ec{b}, ec{c}) = 0$	$\exists R(X), \deg R(X) \leq m-2, \text{ s.t. } t(X) \text{ divides}$ $\vec{w}_i(X) \cdot (a(X), b(X), c(X)) - XR(X)$

²Aurora's Univariate Sumcheck: Completeness, soundness, efficiency: $\mathcal R$ multiplicative subgroup. This work: New simple proof. Completeness, soundness: $\mathcal R$ arbitrary. Efficiency: $\mathcal R$ multiplicative.

• Define
$$\mathbf{W} = \begin{pmatrix} \mathbf{I} & \mathbf{0} & -\mathbf{F} \\ \mathbf{0} & \mathbf{I} & -\mathbf{G} \end{pmatrix}$$
, check that $\mathbf{W} \cdot (\vec{a}, \vec{b}, \vec{c}) = \vec{0}$

Linear Algebra World	Polynomial World
$\vec{y} = (y_1, \ldots, y_m)$	$Y(X) = \vec{y} \cdot \vec{\lambda}(X) = \sum_{i=1}^{m} y_i \lambda_i(X)$
$ec{\mathbf{w}}_i \cdot (ec{a}, ec{b}, ec{c}) = 0$	$\exists R(X), \deg R(X) \leq m-2, \text{ s.t. } t(X) \text{ divides}$ $\vec{w}_i(X) \cdot (a(X), b(X), c(X)) - XR(X)^2$

²Aurora's Univariate Sumcheck: Completeness, soundness, efficiency: $\mathcal R$ multiplicative subgroup. This work: New simple proof. Completeness, soundness: $\mathcal R$ arbitrary. Efficiency: $\mathcal R$ multiplicative.

Inner Product

• Define
$$\mathbf{W} = \begin{pmatrix} \mathbf{I} & \mathbf{0} & -\mathbf{F} \\ \mathbf{0} & \mathbf{I} & -\mathbf{G} \end{pmatrix}$$
, check that $\mathbf{W} \cdot (\vec{a}, \vec{b}, \vec{c}) = \vec{0}$

Linear Algebra World	Polynomial World
$\vec{y} = (y_1, \ldots, y_m)$	$Y(X) = \vec{y} \cdot \vec{\lambda}(X) = \sum_{i=1}^{m} y_i \lambda_i(X)$
	$\exists R(X), \deg R(X) \leq m-2, \text{ s.t. } t(X) \text{ divides}$
$ec{\mathbf{w}}_i \cdot (ec{a}, ec{b}, ec{c}) = 0$	$\vec{w}_i(X) \cdot (a(X), b(X), c(X)) - XR(X)^2$
$\Gamma \rightarrow \langle v_i \rangle \supset m$	

 $\{\vec{w}_i(X)\}_{i=1}^m$ can be computed by the indexer, but 2m inner products

²Aurora's Univariate Sumcheck: Completeness, soundness, efficiency: \Re multiplicative subgroup. This work: New simple proof. Completeness, soundness: \Re arbitrary. Efficiency: \Re multiplicative.

Verifiable Subspace Sampling Algebraic Intuition

Verifiable Subspace Sampling Algebraic Intuition

$$egin{pmatrix} \mathbf{I} & \mathbf{O} & -\mathbf{F} \ \mathbf{O} & \mathbf{I} & -\mathbf{G} \end{pmatrix} egin{pmatrix} \vec{a} \ \vec{b} \ \vec{c} \end{pmatrix} = \vec{O}$$

Algebraic Intuition

$$egin{pmatrix} \mathbf{I} & \mathbf{O} & -\mathbf{F} \ \mathbf{O} & \mathbf{I} & -\mathbf{G} \end{pmatrix} egin{pmatrix} \vec{a} \ \vec{b} \ \vec{c} \end{pmatrix} = \vec{\mathsf{O}}$$

• Sample a random vector \vec{d} in the rowspace of the matrix

Algebraic Intuition

$$\begin{pmatrix} \mathbf{I} & \mathbf{O} & -\mathbf{F} \\ \mathbf{O} & \mathbf{I} & -\mathbf{G} \end{pmatrix} \begin{pmatrix} \vec{a} \\ \vec{b} \\ \vec{c} \end{pmatrix} = \vec{O}$$

- Sample a random vector \vec{d} in the rowspace of the matrix
- Check one inner product $\vec{d} \cdot (\vec{a}, \vec{b}, \vec{c}) = 0$.

Algebraic Intuition

$$\vec{d} \left\{ \vec{Samp}(x)^{\mathsf{T}} \begin{pmatrix} \mathbf{I} & \mathbf{0} & -\mathbf{F} \\ \mathbf{0} & \mathbf{I} & -\mathbf{G} \end{pmatrix} \begin{pmatrix} \vec{a} \\ \vec{b} \\ \vec{c} \end{pmatrix} = \vec{0}$$

Algebraic Intuition

$$\vec{d} \left\{ \mathbf{Samp}(\mathbf{x})^{\mathsf{T}} \begin{pmatrix} \mathbf{I} & \mathbf{0} & -\mathbf{F} \\ \mathbf{0} & \mathbf{I} & -\mathbf{G} \end{pmatrix} \begin{pmatrix} \vec{a} \\ \vec{b} \\ \vec{c} \end{pmatrix} = \vec{\mathbf{0}}$$

• Sample a random vector \vec{d} in the rowspace of the matrix

Algebraic Intuition

$$\vec{d} \left\{ \mathbf{Samp}(\mathbf{x})^{\mathsf{T}} \begin{pmatrix} \mathbf{I} & \mathbf{0} & -\mathbf{F} \\ \mathbf{0} & \mathbf{I} & -\mathbf{G} \end{pmatrix} \begin{pmatrix} \vec{a} \\ \vec{b} \\ \vec{c} \end{pmatrix} = \vec{\mathbf{0}}$$

• Sample a random vector \vec{d} in the rowspace of the matrix from the function Samp(X) and some challenge x.

Algebraic Intuition

$$\vec{d} \left\{ \mathbf{Samp}(\mathbf{x})^{\mathsf{T}} \begin{pmatrix} \mathbf{I} & \mathbf{0} & -\mathbf{F} \\ \mathbf{0} & \mathbf{I} & -\mathbf{G} \end{pmatrix} \begin{pmatrix} \vec{a} \\ \vec{b} \\ \vec{c} \end{pmatrix} = \vec{\mathbf{0}}$$

- Sample a random vector \vec{d} in the rowspace of the matrix from the function Samp(X) and some challenge x.
- Check one inner product $\vec{d} \cdot (\vec{a}, \vec{b}, \vec{c}) = 0$.

In the polynomial world

$$D(X) = (\overrightarrow{Samp}(x)^{\mathsf{T}} \mathbf{W}) \vec{\lambda}(X) = \vec{d} \cdot \vec{\lambda}(X)$$

In the polynomial world

$$D(X) = (\overrightarrow{Samp}(x)^{\mathsf{T}} \mathbf{W}) \vec{\lambda}(X) = \vec{d} \cdot \vec{\lambda}(X)$$
$$= P(X, x)$$

In the polynomial world

$$D(X) = (Samp(x)^T \mathbf{W}) \vec{\lambda}(X) = \vec{d} \cdot \vec{\lambda}(X)$$

= $P(X, x)$

$$P(X,Y) = (Samp(Y)^T \mathbf{W}) \vec{\lambda}(X)$$

In the polynomial world

$$D(X) = (\overrightarrow{Samp}(x)^{\mathsf{T}} \mathbf{W}) \vec{\lambda}(X) = \vec{d} \cdot \vec{\lambda}(X)$$
$$= P(X, x)$$

$$P(X, Y) = (Samp(Y)^T \mathbf{W}) \vec{\lambda}(X)$$

Who samples x?

In the polynomial world

$$D(X) = (\overrightarrow{Samp}(x)^{\mathsf{T}} \mathbf{W}) \vec{\lambda}(X) = \vec{d} \cdot \vec{\lambda}(X)$$

= $P(X, x)$

$$P(X, Y) = (Samp(Y)^T \mathbf{W}) \vec{\lambda}(X)$$

Who samples x?

• *Indexer*: x needs to be secret, resulting in a quadratic SRS (Groth et al. 18)

In the polynomial world

$$D(X) = (Samp(x)^T \mathbf{W}) \vec{\lambda}(X) = \vec{d} \cdot \vec{\lambda}(X)$$

= $P(X, x)$

$$P(X, Y) = (Samp(Y)^T \mathbf{W}) \vec{\lambda}(X)$$

Who samples x?

- *Indexer*: x needs to be secret, resulting in a quadratic SRS (Groth et al. 18)
- Prover: yeah, sure...

In the polynomial world

$$D(X) = (Samp(x)^T \mathbf{W}) \vec{\lambda}(X) = \vec{d} \cdot \vec{\lambda}(X)$$

= $P(X, x)$

$$P(X, Y) = (Samp(Y)^T \mathbf{W}) \vec{\lambda}(X)$$

Who samples x?

- Indexer: x needs to be secret, resulting in a quadratic SRS (Groth et al. 18)
- Prover: yeah, sure...
- Verifier: Who evaluates $P(X,Y) = (Samp(Y)^T \mathbf{W}) \vec{\lambda}(X)$ in Y = X?

• Offline phase: Indexer outputs polynomials describing matrix W.

- Offline phase: Indexer outputs polynomials describing matrix W.
- Online phase:

- Offline phase: Indexer outputs polynomials describing matrix W.
- Online phase:
 - Sampling:

- Offline phase: Indexer outputs polynomials describing matrix W.
- Online phase:
 - Sampling:

- Offline phase: Indexer outputs polynomials describing matrix W.
- Online phase:
 - Sampling:

- Prove Sampling:

- Offline phase: Indexer outputs polynomials describing matrix W.
- Online phase:
 - Sampling:

- Prove Sampling:

Definition

- Offline phase: Indexer outputs polynomials describing matrix W.
- Online phase:
 - Sampling:

- Prove Sampling:

• Decision phase: Verifier accepts only if D(X) encodes vector in the rowspace of **W** sampled according to x.

A common strategy

• Setup: Universal SRS

- Setup: Universal SRS
- Preprocessing: on input matrix **W**, outputs **W**.

- Setup: Universal SRS
- Preprocessing: on input matrix **W**, outputs **W**.
- Online phase

- Setup: Universal SRS
- Preprocessing: on input matrix **W**, outputs **W**.
- Online phase
 - Sampling Phase:

- Setup: Universal SRS
- Preprocessing: on input matrix **W**, outputs **W**.
- Online phase
 - Sampling Phase:

Verifiable Subspace Sampling A common strategy

- Prove Sampling Phase:

A common strategy

- Prove Sampling Phase:

A common strategy

- Prove Sampling Phase:

• Decision phase: Verifier accepts only if D(X) encodes $Samp(x)^TW$.

A common strategy

- Prove Sampling Phase:

- Decision phase: Verifier accepts only if D(X) encodes $Samp(x)^TW$.
- Π is a proof that P(y, x) is correctly evaluated (Signature of Correct Computation of Sonic).

Verifiable Subspace Sampling State-of-the-art

Verifiable Subspace Sampling State-of-the-art

• Sonic:

- Sonic:
 - VSSampling, proof grows with size of decomposition of W as permutation.

- Sonic:
 - VSSampling, proof grows with size of decomposition of W as permutation.
 - Amortized VSSampling

- Sonic:
 - VSSampling, proof grows with size of decomposition of W as permutation.
 - Amortized VSSampling
- Marlin, Lunar:

State-of-the-art

• Sonic:

- VSSampling, proof grows with size of decomposition of W as permutation.
- Amortized VSSampling

• Marlin, Lunar:

 Needs a multiplicative subgroup of size spartsity of matrix, relatively large SRS.

- Sonic:
 - VSSampling, proof grows with size of decomposition of W as permutation.
 - Amortized VSSampling
- Marlin, Lunar:
 - Needs a multiplicative subgroup of size spartsity of matrix, relatively large SRS.
- Our work: (soon on eprint)

- Sonic:
 - VSSampling, proof grows with size of decomposition of W as permutation.
 - Amortized VSSampling
- Marlin, Lunar:
 - Needs a multiplicative subgroup of size spartsity of matrix, relatively large SRS.
- Our work: (soon on eprint)
 - Extended Vandermonde Sampling.

State-of-the-art

• Sonic:

- VSSampling, proof grows with size of decomposition of W as permutation.
- Amortized VSSampling

• Marlin, Lunar:

- Needs a multiplicative subgroup of size spartsity of matrix, relatively large SRS.
- Our work: (soon on eprint)
 - Extended Vandermonde Sampling.
 - Reduce SRS size drastically, by decomposing Marlin's VSSampling into simpler building blocks.

State-of-the-art

• Sonic:

- VSSampling, proof grows with size of decomposition of W as permutation.
- Amortized VSSampling

• Marlin, Lunar:

- Needs a multiplicative subgroup of size spartsity of matrix, relatively large SRS.
- Our work: (soon on eprint)
 - Extended Vandermonde Sampling.
 - Reduce SRS size drastically, by decomposing Marlin's VSSampling into simpler building blocks.

• Decomposing constructions of universal and updatable SNARKs into blocks that have a well defined algebraic meaning.

- Decomposing constructions of universal and updatable SNARKs into blocks that have a well defined algebraic meaning.
- Captures several constructions.

- Decomposing constructions of universal and updatable SNARKs into blocks that have a well defined algebraic meaning.
- Captures several constructions.
- In fact, VSSampling is the main bottleneck in efficiency/generality in these constructions.

- Decomposing constructions of universal and updatable SNARKs into blocks that have a well defined algebraic meaning.
- Captures several constructions.
- In fact, VSSampling is the main bottleneck in efficiency/generality in these constructions.
- Isolating this component allows to focus on improvements.

- Decomposing constructions of universal and updatable SNARKs into blocks that have a well defined algebraic meaning.
- Captures several constructions.
- In fact, VSSampling is the main bottleneck in efficiency/generality in these constructions.
- Isolating this component allows to focus on improvements.
- Mix and match: we can combine different VSSampling arguments.

- Decomposing constructions of universal and updatable SNARKs into blocks that have a well defined algebraic meaning.
- Captures several constructions.
- In fact, VSSampling is the main bottleneck in efficiency/generality in these constructions.
- Isolating this component allows to focus on improvements.
- Mix and match: we can combine different VSSampling arguments.

Thank you!³