Теорема Безу. Теорема о рациональном корне

Любой многочлен степени n можно разделить c остатком на многочлен степени k < n (например, в столбик).

В частном получится многочлен степени n-k, а в остатке — многочлен степени меньше k.

В частности, если разделить произвольный многочлен на многочлен первой степени x-a, то в остатке получится многочлен нулевой степени, то есть число.

Теорема Безу. Остаток от деления многочлена p(x) на x-a равен p(a) Следствия

- 1) Число α является корнем многочлена F(x) тогда и только тогда, когда многочлен F(x) делится на многочлен $(x \alpha)$.
- 2) Если α и β различные корни многочлена F(x), то он делится на многочлен $(x \alpha)(x \beta)$.
- 3) Многочлен степени п не может иметь более п корней.

Теорема о рациональном корне.

Если многочлен с целыми коэффициентами

 a_0x $n+a_1xn-1+\ldots+a_{n-1}x+a_n$ имеет рациональный корень p/q (дробь несократима), то старший коэффициент a_0 делится на q, а свободный член a_n делится на p.