DEV DAY

Build, train and deploy Machine Learning models at scale

Julien Simon Global Evangelist, AI & Machine Learning @julsimon

Our mission

Put Machine Learning in the hands of every developer and data scientist

The Amazon ML Stack: Broadest & Deepest Set of Capabilities

Amazon SageMaker: Build, Train, and Deploy ML Models at Scale

Collect and prepare training data

Choose and optimize your ML algorithm

Set up and manage environments for training

Train and Tune ML Models

Deploy models in production

Scale and manage the production environment

Machine learning cycle

Manage data on AWS

Build and train models using SageMaker

Deploy models using SageMaker

Amazon SageMaker

Machine Learning Marketplace

DEV DAY

Working with Amazon SageMaker

The Amazon SageMaker API

- Python SDK orchestrating all Amazon SageMaker activity
 - High-level objects for algorithm selection, training, deploying, automatic model tuning, etc.
 - Spark SDK (Python & Scala)

AWS CLI: 'aws sagemaker'

AWS SDK: boto3, etc.

Model options

DEV DAY

Built-in algorithms

Built-in algorithms

orange: supervised, yellow: unsupervised

Linear Learner: regression, classification	Image Classification: Deep Learning (ResNet)	
Factorization Machines: regression, classification, recommendation	Object Detection (SSD): Deep Learning (VGG or ResNet)	
K-Nearest Neighbors: non-parametric regression and classification	Neural Topic Model: topic modeling	
XGBoost: regression, classification, ranking https://github.com/dmlc/xgboost	Latent Dirichlet Allocation: topic modeling (mostly)	
K-Means: clustering	Blazing Text: GPU-based Word2Vec, and text classification	
Principal Component Analysis: dimensionality reduction	Sequence to Sequence: machine translation, speech to text and more	
Random Cut Forest: anomaly detection	DeepAR: time-series forecasting (RNN)	
Object2Vec: general-purpose embedding	IP Insights: usage patterns for IP addresses	
Semantic Segmentation: Deep Learning		

Demo: Image classification with Caltech-256 + model tuning

https://gitlab.com/juliensimon/dlnotebooks/sagemaker/

Blazing Text

BlazingText: Scaling and Accelerating Word2Vec using Multiple GPUs

Saurabh Gupta Amazon Web Services gsaur@amazon.com Vineet Khare Amazon Web Services vkhare@amazon.com

https://dl.acm.org/citation.cfm?id=3146354

Demo: Text Classification with BlazingText

https://github.com/awslabs/amazon-sagemaker-examples/tree/master/introduction to amazon algorithm s/blazingtext text classification dbpedia

XGBoost

- Open Source project
- Popular tree-based algorithm for regression, classification and ranking
- Builds a collection of trees.
- Handles missing values and sparse data
- Supports distributed training
- Can work with data sets larger than RAM

https://github.com/dmlc/xgboost https://xgboost.readthedocs.io/en/latest/ https://arxiv.org/abs/1603.02754

Demo: XGBoost in depth

AWS re:Invent 2018 workshop

https://gitlab.com/juliensimon/ent321

DEV DAY

Built-in frameworks

Demo: Keras + model tuning+ Elastic Inference https://gitlab.com/juliensimon/dlnotebooks/keras/

Demo: Sentiment analysis with Apache MXNet

https://github.com/awslabs/amazon-sagemaker-examples/blob/master/sagemaker-python-sdk/mxnet_se_ntiment_analysis_with_gluon.ipynb

Amazon SageMaker

Build Train Deploy

Score card

Flame war in 3, 2, 1...

	EC2	ECS / EKS	SageMaker
Infrastructure effort	Maximal	Some (Docker tools)	None
ML setup effort	Some (DL AMI)	Some (DL containers)	Minimal
CI/CD integration	No change	No change	Some (SDK, Step Functions)
Build models	DIY	DIY	17 built-in algorithms
Train models (at scale)	DIY	DIY (Docker tools)	2 LOCs
Deploy models (at scale)	DIY (model servers)	DIY (Docker tools)	1 LOCs
Scale/HA inference	DIY (Auto Scaling, LB)	DIY (Services, pods, etc.)	Built-in
Optimize costs	DIY (Spot, RIs, automation)	DIY (Spot, RIs, automation)	On-demand training, Auto Scaling for inference
Security	DIY (IAM, VPC, KMS)	DIY (IAM, VPC, KMS)	API parameters
<u>Personal</u> opinion	Small scale only, unless you have strong DevOps skills and enjoy exercising them.	Reasonable choice if you're a Docker shop and know how to use the rich Docker ecosystem. If not, I'd think twice: Docker isn't an ML platform.	Learn it in a few hours, forget about servers, focus 100% on ML, enjoy goodies like pipe mode, distributed training, HPO, inference pipelines and more.

Getting started

http://aws.amazon.com/free

https://ml.aws

https://aws.amazon.com/sagemaker

https://github.com/aws/sagemaker-python-sdk

https://github.com/aws/sagemaker-spark

https://github.com/awslabs/amazon-sagemaker-examples

https://gitlab.com/juliensimon/ent321

https://medium.com/@julsimon

https://gitlab.com/juliensimon/dlnotebooks

DEV DAY

Thank you!

Julien Simon
Global Evangelist, AI & Machine Learning
@julsimon
https://medium.com/@julsimon

