Lecture 8: Integrity

Stephen Huang

UNIVERSITY of HOUSTON

1

1. Attacks Against Communication · Protecting confidentiality against passive attacks. **Encrypted Message** insecure channel Message Receiver · Active attacks eavesdropper **Encrypted Message** insecure Modified channel Message Receiver • Data integrity: information cannot be modified in an unauthorized and undetected manner UNIVERSITY of HOUSTON

Content

- 1. Review on Attacks Against the Communication
- 2. Message Authentication Code (MAC)
- 3. Message Authentication
 - Based on Block Ciphers
 - Based on Hash Functions
- 4. Authenticated Encryption

UNIVERSITY of HOUSTON

)

Active Attacks in Communication Channel

- Content modification: changing the contents of a message
- Sequence modification: changing the sequence of messages, including deleting some of them
- Timing modification: delay or replay messages
- Masquerade (i.e., forgery): inserting messages of fraudulent source

UNIVERSITY of HOUSTON

4

3

Message Authentication

- An authenticator produces a value to be used to authenticate a message.
- The authenticator is used in a protocol that verifies the authenticity of a message (for not being altered).
- · There are three classes of authenticators.
 - **1. Message Encryption**: The ciphertext of the entire message serves as its authenticator.
 - **2. Hash Function**: A function that maps a message of any length into a fixed-length hash value.
 - Message Authentication Code (MAC): A function of the message and a secret key that produces a fixed-length value.
- MAC is also known as cryptographic checksum.
- · We will concentrate on the MAC in this lecture.

UNIVERSITY of HOUSTON

5

7

MAC vs. Hashing

- Hashing is a one-way encryption process applied to the original plaintext to generate a fixed-size ciphertext, called a message digest or a hash.
 - Hash functions are used to ensure data integrity (has not been changed) only.
- MAC is an algorithm that takes a message M combined with a shared secret key K.
 - Also called a keyed hash function,
 - MACs are employed for data integrity (has not been changed) and authentication (came from the stated sender).

Some textbooks define authentication differently.

UNIVERSITY of HOUSTON

2. Message Authentication Code

- Message authentication verifies that received messages come from the alleged source and have not been altered.
- Message authentication code MAC(K, M): takes a secret key K and an arbitrary-length input M and produces a tag T.
 - can be efficiently and deterministically computed given key K and message M
 - cannot be computed efficiently given only a message M without key K

UNIVERSITY of HOUSTON

(

9

11

Brute-Force Attacks

- Tag forging: What is the probability that a random tag matches a message? Success attack depends on the length of the tag (independent of the message length).
 - too short: high probability of an arbitrary tag matching a modified message (with an n-bit tag, the probability is 2⁻ⁿ)
 - too long: consumes bandwidth
- Key search
 - suppose that the key length is k bits,
 - finding the right key takes, on average, 2^{k-1} steps.

UNIVERSITY of HOUSTON

Message Authentication Code Properties

- MAC(K, M)
 - Looks like a pseudorandom function to the attacker.
 - It does not need to be invertible; the sender and receiver use it the same way.
- Correct tag proves
 - Authenticity: the message is from an entity that knows the secret key.
 - Integrity: the message has not been altered by an entity that does not know the key.
- Detecting timing or sequence attacks: include a timestamp or sequence number in the message.
- MAC can be independent of encryption: we can provide only integrity, confidentiality, or both.

UNIVERSITY of HOUSTON

1

10

3. Message Authentication

- · Based on Block Ciphers
- · Based on Hash Functions

MAC: Based on Block Ciphers

• Based on the CBC mode of operation

13

Cipher-based MAC (CMAC)

- · Standardized in 2005 by NIST
- Thwarts forgery for variable-length messages
- Second key K₁ is derived from E(K, 0)

CBC-MAC

- Based on the Cipher Block Chaining (CBC) mode of operation
- Must use different keys for CBC encryption and CBC-MAC authentication.

- Not secure for variable-length messages
 - given a one-block message X and its tag T = MAC(K, X), attacker can create message X | (X ⊕ T), whose tag is also T.

UNIVERSITY of HOUSTON

14

Reminder: Cryptographic Hash Functions

- Hash function H: deterministically maps an input M to a fixed-length hash value H(M)
- Requirements
 - one-way: finding an input for which the output is a given hash value is hard (i.e., function is hard to invert)
 - collision-resistant: finding two input for which the hash values are the same is hard
 - efficient: computing the hash value of a given input is easy
 - pseudorandom: output meets standard tests for pseudorandomness

16

UNIVERSITY of HOUSTON

HMAC

- **HMAC**, Hash-based Message Authentication Code, is a MAC using a cryptographic hash function and a secret key.
- Published in 1996 by Mihir Bellare, Ran Canetti, and Hugo Krawczyk.
- Provably secure if the hash function is pseudorandom (collision-resistance is not necessary).
- · Works with any hash function
 - but it is more efficient with iterative hash functions.
- Widely used
 - part of the IPSec and SSL/TLS protocols.
 - standardized in NIST FIPS PUB 198 and RFC 2104.
- Formula:

 $HMAC(K, M) = H(K_{outer} | H(K_{inner} | M))$

UNIVERSITY of HOUSTON

17

- H = embedded hash function (e.g., MD5, SHA-1, etc.)
- IV = initial value input to hash function
- *M* = message input to HMAC (including the padding specified in the embedded hash function)
- $Y_i = i$ th block of M, $0 \le i \le (L 1)$.
- L = number of blocks in M.
- b = number of bits in a block.
- n = length of hash code produced by embedded hash function.
- K = secret key; recommended length is $\geq n$; if key length is greater than b, the key is input to the hash function to produce an n-bit key.
- K^+ = K padded with zeros on the left so that the result is b bits in length.
- Ipad = 00110110, Opad = 01011100, repeated b/8 times.

UNIVERSITY of HOUSTON

19

HMAC Design Objectives

- To use available hash functions without modifications ("black box").
- To allow easy replacement in anticipation of faster, more secure hash function ("Plug-and-Play").
- To preserve the performance of the hash function with no significant overhead.
- To use and handle keys in a simple way.
- The strength of the authentication mechanism is based on reasonable assumptions about the embedded hash function.

UNIVERSITY of HOUSTON

1

18

HMAC Structure b: block size of the hash function IV: initial value of the hash function b bits Inputs Y_{L-1} - Y₀, ..., Y₁₋₁: message blocks - K+: key (padded with zeros) - ipad = 00110110 repeated \square H($S_i \parallel M$) - opad = 01011100 repeated Pad to b bits Output HMAC(K, M) = $H(K^+ \oplus \text{opad} \mid H(K^+ \oplus \text{ipad} \mid M))$ Iterative hash \square HMAC(K, M) UNIVERSITY of HOUSTON

The Algorithm

 $HMAC(K, M) = H[K^+ \oplus opad || H[(K^+ \oplus ipad) || M]]$

- Append zeros to the left end of K to create K+.
- S_i = K⁺ ⊕ ipad (b-bits), read i as inner
- Append M to S_i to produce (S_i ||M)
- Apply H to (S_i || M).
- $S_0 = K^+ \oplus \text{ opad (b-bits)}$, read o as outer.
- Append $H(S_i || M)$ to S_o . To get S.
- · Compute H(S).

UNIVERSITY of HOUSTON

21

4. Authentication Encryption

- Motivation
 - widely-used cryptographic primitives are (almost always) secure
 - secure encryption + secure authentication → secure combination
 - some security protocols have used cryptographic primitives in an insecure way (e.g., WEP)
- Authenticated encryption: encryption systems that provide both <u>confidentiality</u> and <u>integrity</u>
 - \sim block cipher modes that provide confidentiality and integrity

UNIVERSITY of HOUSTON

23

HMAC Precomputation

- Precompute
 - f(IV, K⁺ ⊕ ipad)
 - f(IV, K⁺ ⊕ opad)

Iterative hash function:

UNIVERSITY of HOUSTON

 For L input blocks, we need only L + 1 compressions

22

Approaches

- Different Approaches
 - authentication followed by encryption (e.g., SSL/TLS)
 - encryption followed by authentication (e.g., IPSec)
 - independently encrypt and authenticate (e.g., SSH)

UNIVERSITY of HOUSTON

-

25

Counter with CBC-MAC (CCM)

- · Standardized by NIST in NIST SP 800-38C
 - standard was developed in 2004 for WPA2
 - defined for the AES block cipher
- Encryption: based on the Counter (CTR) block-cipher mode
 - converts a block cipher into a stream cipher
 - $\,-\,$ very efficient, blocks can be encrypted/decrypted in parallel
- Authentication: based on CBC-MAC message authentication
- Combination: first <u>authenticate</u>, then <u>encrypt</u>
 - compute CBC-MAC of the message, a nonce, and associated data (e.g., protocol headers) that may need integrity protection
 - encrypt message and authentication tag in CTR mode

UNIVERSITY of HOUSTON

27

Reminder: CTR Mode of Operation Counter 1 Encrypt Encrypt P1 P2 P2 UNIVERSITY of HOUSTON

26

Galois/Counter Mode (GCM)

- Standardized in 2007 by NIST.
- Encryption: based on the Counter (CTR) block-cipher mode
- Authentication: GHASH_H(X)
 - inputs: hash key H, message blocks X₁, ..., X_m (in 128-bit blocks)
 - output: $(X_1 \cdot H^m) \oplus (X_2 \cdot H^{m-1}) \oplus \cdots \oplus (X_{m-1} \cdot H^2) \oplus (X_m \cdot H)$ where \cdot is a special multiplication for 128-bit numbers
 - $H^{\rm m},$ $H^{\rm m\text{-}1},$..., H^2 can be precomputed, \cdot can be performed in parallel
- · Combination: first encrypt, then authenticate
 - authentication includes message length and associated data
- Overall, GCM mode is very efficient and parallelizable

 widely used (e.g., in HTTPS)

UNIVERSITY of HOUSTON

28

Message Authentication Conclusion

- Message authentication code (MAC)
 - ensures authenticity and integrity
 - requires a secret key
- Based on block-cipher: CMAC
- Based on hash-function: HMAC
- Authenticated encryption: CCM and GCM

UNIVERSITY of HOUSTON

29

30

• Integrity

• Digital Signature, Key Distribution

Next Topic

Wifi Security

UNIVERSITY of HOUSTON