Data Structures & Algorithms

Week 8 - Priority Queues (Binary Heaps, Skew Heaps, Applications)

Subodh Sharma, Rahul Garg {svs,rahulgarg}@iitd.ac.in

Priority Queues

- An ADT similar to a Queue or Stack but with a caveat
 - Each element has an associated priority

Motivation:

- Many application tasks running on OS, and you press ESC (or Ctrl-C)! What would you expect?
- What would have happened if every task had the same priority?

Applications:

• Scheduling, Algorithmic efficiency (Spanning Trees, Shortest Paths etc.), Simulation Systems (Discrete Event Simulation, etc.), Network Traffic Mgmt. (routing pkts with different service reqs.), E-commerce, Load balancing, etc.

On Priorities

On Priorities

Priorities help rank the elements in a Priority Queue with a total order relation

Total order relation:

• Reflexive: $a \le a$

• Antisymmetric: if $a_1 \le a_2$ and $a_2 \le a_1$, then $a_1 = a_2$

• Transitive: if $a_1 \le a_2$ and $a_2 \le a_3$, then $a_1 \le a_3$

Priority Queue: Model

- Supported operations: Insert and DeleteMin
- Various implementation of PQ:
 - Using simple linked lists:
 - Insertions at the front O(1)
 - Deleting the minimum O(N)
 - Using linked lists that remain sorted:
 - Insertions O(N)
 - DeleteMin (from front) O(1)

(Binary) Heap

 Heap is a binary tree that stores priority or priority-value pairs at its nodes

Heaps have two important properties:

• Structure Property: Heap is completely filled with the exception of the last level.

- The last level is left-filled.
- Order Property: Every node should be smaller than all of its descendants

Examples of Non Heaps

Structure property violation

Order property violation

Height of the Heap

- Suppose a heap of n nodes has height h
- Complete binary tree of height h has $2^{h+1} 1$ nodes
- Hence $2^h 1 < n \le 2^{h+1} 1$
- Thus, $h = \lfloor log_2 n \rfloor$

Implementing Heaps

 Observation: Complete binary tree is so regular that it can be represented by arrays instead of pointers

```
int getParentIndex(int i) {
    return (i - 1) / 2;
}
int getLeftChildIndex(int i) {
    return 2 * i + 1;
}
int getRightChildIndex(int i) {
    return 2 * i + 2;
}
```


Implementing Heaps: Efficiency

 Observation: In binary representation, multiplication by 2 is a left shift and FMA instructions to multiply and add (adding 1 to the lowest bit)

Heap Insertion

- Insert 12
- The process of restoring order is called Heapify

```
void insert(int val) {
  heap.push_back(val);
  heapifyUp(heap.size() - 1);
void heapifyUp(int index) {
 if (index == 0) return;
  int parentIndex = getParentIndex(index);
 if (heap[parentIndex] > heap[index]) {
    swap(heap[parentIndex], heap[index]);
    heapifyUp(parentIndex);
```


Why is Insertion Correct?

- The only nodes whose contents change are the ones on the path
- Heap property may violate only for children of these nodes

But the new contents of these nodes only have lower priority (13)

• Thus, it is correct!

Another View of Heapify

- Heap order property violated at index 0
- The subtrees rooted at index 1 and 2 are valid heaps
 - This is an important point Heapify would work only when this observation holds
- heapifyDown(0)
- ToDo Prove the correctness of HeapifyDown

HeapifyDown

```
void heapifyDown(int index) {
  int leftChild = getLeftChildIndex(index);
  int rightChild = getRightChildIndex(index);
  if (leftChild >= heap.size()) return; // No children
  int minIndex = index;
     (heap[minIndex] > heap[leftChild]) {
    minIndex = leftChild;
  if (rightChild < heap.size() && heap[minIndex] > heap[rightChild]) {
    minIndex = rightChild;
     (minIndex != index)
    swap(heap[minIndex], heap[index]);
    heapifyDown(minIndex);
```

minIndex = 1

68

19

DeleteMin Operation

- Remember that the minimum element is at the root of the heap
 - We can delete this and move one of its children to fill the space!
 - Empty location moves down the tree
 - Resulting tree may not be left-filled

DeleteMin Operation: Attempt 1

- Delete 13
- 16 moves up
- 19 moves up
- Not left-filled

DeleteMin Operation: Attempt 2

- Replace root element with the last element of the heap
- HeapifyDown(rootIndex)

```
void deleteMin() {
  if (heap.empty()) {
    std::cout << "Heap is empty!" << std::endl;
    return;
  }
  heap[0] = heap.back();
  heap.pop_back();
  heapifyDown(0);
}</pre>
```


Building Heap

- Simple method Repeatedly call insert method
 - Time complexity: $\sum_{i=1}^{n} log i = O(log n!) = O(nlog n)$
- Better solution: We start from the bottom and move up
- All leaves are heaps (inductive construction)

```
void buildHeap(const std::vector<int> &arr) {
  heap = arr;
  int n = heap.size();

for (int i = n / 2 - 1; i >= 0; i--) {
   heapifyDown(i);
  }
}
```

Building Heap

```
void buildHeap(const std::vector<int> &arr) {
  heap = arr;
  int n = heap.size();

for (int i = n / 2 - 1; i >= 0; i--) {
   heapifyDown(i);
  }
}
```


Building Heap: Analysis

- Height of node: length of longest path from the node to leaf
- Height of tree: height of root
- Time for HeapifyX(i): O(height of the subtree rooted at i)
- Assume: $n=2^k-1$ (a complete binary tree only help us simplify the analysis)

Building Heap: Analysis

- For the n/2 nodes of height 1: Heapify requires at most 1 swap
- For the n/4 nodes of height 2: Heapify requires at most 2 swaps
- For the $n/2^i$ nodes of height i: Heapify requires at most i swaps
- Total number of swaps: $\sum_{i=1}^{\log n} n \cdot i/2^i = O(n)$

Heap Sort

- Create a heap: T(n) = O(n)
- Do DeleteMin repeatedly till the heap becomes empty: T(n) = O(n log n)
- Alternative strategy: No other space constraint, i.e., in-place sort
 - Do DeleteMin and move the deleted element to the end of the heap
 - Heapify the rest

In-Place Heap Sort

NOTE: Heap size is reduced by 1 after each such operation

```
void heapSort() {
  int n = heap.size();
  // Extract elements from heap one by one
  for (int i = n - 1; i > 0; i--) {
    // Move the root to the end
    std::swap(heap[0], heap[i]);

  // Heapify the reduced heap
    heapifyDown(i,0);
  }
}
```


Time complexity: O(n log n)

Runtime Analysis

- A heap of n nodes has height O(log n)
- Insertion (heapifyUp along a path) at most O(log n) steps
- HeapifyDown O(log n)
 - An element may be moved all the way to the last level
- DeleteMin O(log n)
- BuildHeap O(n)
- HeapSort O(n log n)

- Problem: Find the k^{th} largest element in a list of n elements
- Algorithm1A:
 - Read the elements in an array
 - Sort the array
 - Return the k^{th} indexed element from the sorted array
 - Time complexity: $O(n^2)$ with simple sorting; $O(n \log n)$ otherwise.

- Problem: Find the k^{th} largest element in a list of n elements
- Algorithm1B:
 - Read **only** k elements in an array
 - Sort the array
 - The smallest is at k^{th} position. For the remaining elements:
 - Compare with the k^{th} element —> if the incoming element is larger then replace it with the k^{th} element
 - Time complexity: ?

- Changed Problem: Find the k^{th} smallest element in a list of n elements
- Algorithm2A:
 - Read elements in an array
 - Apply BuildHeap
 - Apply k DeleteMin operations
 - The last extracted element is our answer
 - Time complexity: O(n + k log n). Why?
 - What happens when $k = \lceil n/2 \rceil$ or when $k = O(n/\log n)$?

- Problem: Find the k^{th} largest element in a list of n elements
- Algorithm2B:
 - \bullet Read **only** k elements in an array and build a minheap.
 - New element is compared with the k^{th} largest
 - If the new element is larger, it replaces the root
 - At the end of the input, we return the root.
 - Time complexity: O(k + (n-k).log k)
 - Can we do better? Quickselect O(n) average time!

Extra Reading

For those who want to challenge themselves

- Skew Heaps (efficient merge operations) # (America Time Complexity Analysis)
- Binomial Queues X
- Fibonacci Heaps
- Find the median of an array efficiently # Quiek sint type only
- Understand Quick-select