Observe that the Problem (SVM_{h1}) has an optimal solution $\delta > 0$ iff the two subsets are linearly separable. We used the constraint $||w|| \le 1$ rather than ||w|| = 1 because the former is qualified, whereas the latter is not. But if (w, b, δ) is an optimal solution, then ||w|| = 1, as shown in the following proposition.

Proposition 50.12. If (w, b, δ) is an optimal solution of Problem (SVM_{h1}), so in particular $\delta > 0$, then we must have ||w|| = 1.

Proof. First, if w=0, then we get the two inequalities

$$-b \ge \delta$$
, $b \ge \delta$,

which imply that $b \leq -\delta$ and $b \geq \delta$ for some positive δ , which is impossible. But then, if $w \neq 0$ and ||w|| < 1, by dividing both sides of the inequalities by ||w|| < 1 we would obtain the better solution $(w/||w||, b/||w||, \delta/||w||)$, since ||w|| < 1 implies that $\delta/||w|| > \delta$.

We now prove that if the two subsets are linearly separable, then Problem (SVM_{h1}) has a unique optimal solution.

Theorem 50.13. If two disjoint subsets of p blue points $\{u_i\}_{i=1}^p$ and q red points $\{v_j\}_{j=1}^q$ are linearly separable, then Problem (SVM_{h1}) has a unique optimal solution consisting of a hyperplane of equation $w^{\top}x - b = 0$ separating the two subsets with maximum margin δ . Furthermore, if we define $c_1(w)$ and $c_2(w)$ by

$$c_1(w) = \min_{1 \le i \le p} w^\top u_i$$

$$c_2(w) = \max_{1 \le j \le q} w^\top v_j,$$

then w is the unique maximum of the function

$$\rho(w) = \frac{c_1(w) - c_2(w)}{2}$$

over the convex subset U of \mathbb{R}^n given by the inequalities

$$w^{\top}u_i - b \ge \delta$$
 $i = 1, \dots, p$
 $-w^{\top}v_j + b \ge \delta$ $j = 1, \dots, q$
 $||w|| \le 1$,

and

$$b = \frac{c_1(w) + c_2(w)}{2}.$$