

basic education

Department:
Basic Education
REPUBLIC OF SOUTH AFRICA

SENIOR CERTIFICATE/SENIOR SERTIFIKAAT
NATIONAL SENIOR CERTIFICATE/
NASIONALE SENIOR SERTIFIKAAT

GRADE 12/GRAAD 12

MATHEMATICS P1/WISKUNDE V1

NOVEMBER 2020

MARKING GUIDELINES/NASIENRIGLYNE

MARKS/PUNTE: 150

These guidelines consist of 18 pages. *Hierdie nasienriglyne bestaan uit 18 bladsye*.

NOTE:

- If a candidate answers a question TWICE, only mark the FIRST attempt.
- Consistent accuracy applies in all aspects of the marking memorandum.

LET WEL:

- Indien 'n kandidaat 'n vraag TWEE keer beantwoord, sien slegs die EERSTE poging na.
- Volgehoue akkuraatheid is op ALLE aspekte van die nasienriglyne van toepassing.

REMEMBER: (A) next o the description of a tick implies accuracy mark **ONTHOU**: (A) langs die beskrywing van 'n regmerk impliseer akkuraatheids-punt QUESTION/VRAAG 1

1.1.1	$x^2 - 6x = 0$ $x(x - 6) = 0$	✓ common factor
	x = 0 or $x = 6$	✓ both answers (2)
1.1.2	$x^2 + 10x + 8 = 0$	
	$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$	
	$\frac{2a}{\sqrt{2a}}$	
	$=\frac{-10\pm\sqrt{10^2-4(1)(8)}}{2(1)}$	✓ substitution into the correct formula
	2(1)	Tormura
	$=\frac{-10\pm\sqrt{68}}{2}$	
	x = -0.88 or $x = -9.12$	✓-0,88 ✓-9,12 (3)
1.1.3	(1-x)(x+2)<0	(0)
	Critical values:	Z
	x = 1 or $x = -2$	✓ critical values
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	✓ correct method
	x < -2 or $x > 1$	✓ answer
1.1.4		(3)
1.1.4	$\sqrt{x+18} = x-2 x+18 = x^2 - 4x + 4$	✓ squaring both sides (m)
	$0 = x^2 - 5x - 14$	
	(x-7)(x+2) = 0	✓ standard form ✓ factors
	$x = 7$ or $x \neq -2$	✓ both answers
		✓ rejection of $x = -2$
		(5)

1.2	x + y = 3		
	$y = 3 - x \dots (1)$	✓ y subject of the formula	
	$2x^2 + 4xy - y = 15 \dots (2)$		
	Substitute (1) into (2):	✓ substitution	
	$2x^2 + 4x(3-x) - (3-x) = 15$	Substitution	
	$2x^2 + 12x - 4x^2 - 3 + x - 15 = 0$		
	$-2x^2 + 13x - 18 = 0$	(-4 11 f	
	$2x^2 - 13x + 18 = 0$	✓ standard form ✓ factors	
	(2x-9)(x-2)=0		
	$x = \frac{9}{2}$ or $x = 2$	✓ x-values	
	4	✓ y-values	
	$y = -\frac{3}{2}$ or $y = 1$	(6	5)
	2		
	OR	OR	
	x + y = 3	$\checkmark x$ subject of the formula	
	$x=3-y\ldots(1)$	N subject of the formula	
	$2x^2 + 4xy - y = 15 \dots (2)$		
	Substitute (1) into (2):	(1	
	$2(3-y)^2 + 4(3-y)y - y = 15$	✓ substitution	
	$2y^2 - 12y + 18 - 4y^2 + 12y - y - 15 = 0$		
	$-2y^2 - y + 3 = 0$		
	$2y^2 + y - 3 = 0$	✓ standard form	
	(2y+3)(y-1)=0	✓ factors	
	$y = -\frac{3}{2}$ or $y = 1$	✓ y-values	
	<u> </u>	✓ x-values	
	$x = \frac{9}{2} \text{or} x = 2$	λ -values (6)	5)
	2	(-	- /
1.3	$n^{200} < 5^{300}$	()400 ()400	
	$(n^2)^{100} < (5^3)^{100}$	$(n^2)^{100} < (5^3)^{100}$	
	$(n^2)^{100} < (125)^{100}$		
	$n^2 < 125$	$\sqrt{n^2} < 125$	
	Maximum value of n is 11.	√ n < 125 ✓ 11	
		(3	3)
	OR	OD	
	UK	OR	
	$200 \log n < 300 \log 5$	✓ use of logs	
	$n < 10^{\frac{3}{2}\log 5}$ $n < 1118$		
	$n < 10^{2}$	(1110	
	$n < 11,18$ $\therefore n = 11$	$\sqrt{n} < 11,18$	
		√ 11 (3	3)
	OR	OR	-)

$n^{200} < 5^{300}$	
$(n^2)^{100} < (5^3)^{100}$	$\checkmark (n^2)^{100} < (5^3)^{100}$
$\sqrt{n^2} < \sqrt{5^3}$ $n < 5^{\frac{3}{2}}$	
n < 3	✓ n < 11,18
n < 11,18	✓ 11 (3)
∴ n = 11	
	OR
OR	
$n^{200} < 5^{300}$	$\checkmark n < 5^{\frac{300}{200}}$
$n < 5^{\frac{300}{200}}$	$\checkmark n < 3$ $\checkmark n < 11,18$
<i>n</i> < 11,18	$\checkmark n = 11$
∴ n = 11	(3)
	[22]

2.1	7 ; x ; y ; -11 ;		
2.1	a = 7 $a + 3d = -11$ $7 + 3d = -11$ $d = -6$ $x = a + d = 7 + (-6) = 1$ $y = a + 2d = 7 + 2(-6) = -5$	√7 + 3d = -11 $ √d = -6 $ ✓ value of x ✓ value of y	(4)
	OR	OR	
	a + 3d = -11		
	3d = -11 - 7 3d = -18	$\checkmark 3d = -11 - 7$	
	d = -6	$\checkmark d = -6$	
	x = 1	$\checkmark x = 1$	
	y = -5	$\checkmark y = -5$	
	O.D.	O.D.	(4)
	OR	OR	
	x - 7 = y - x and $y - x = -11 - y$	✓ 2 equations	
	$2x-7 = y \dots (1)$ $2y = -11 + x \dots (2)$	1	
	(1) into (2)		
	2(2x-7) = -11 + x	✓ substitution	
	4x - 14 = -11 + x		
	3x = 3		
	x = 1	\checkmark value of x	
	y = 2(1) - 7 = -5	\checkmark value of y	
			(4)
2.2.1	-3;6;27;60;		(')
	$\begin{array}{c c} -3 & 6 & 27 & 60 \\ & 21 & 33 & 60 \end{array}$		
	12 12	✓ second difference	
	2a = 12		
	a = 6	$\checkmark a = 6$	
	3a + b = 9 $3(6) + b = 9$		
	b = -9	✓ b = -9	
	a+b+c=-3		
	6 - 9 + c = -3		
	c = 0	$\checkmark c = 0$	(4)
	$T_n = 6n^2 - 9n$		

2.2.2	$T_{50} = 6(50)^2 - 9(50)$ $= 14 550$	Answer Only: Full Marks	✓ substitute 50 ✓ answer	(2)
2.2.3	9; 21; 33; a = 9 d = 12		$\checkmark a \text{ and } d$	
	$S_n = \frac{n}{2} [2a + (n-1)d]$ $S_n = \frac{n}{2} [2(9) + (n-1)(12)]$		✓ substitution into the correct formula	
	$= \frac{n}{2} [18 + 12n - 12]$ $= \frac{n}{2} [12n + 6]$ $= 6n^2 + 3n$		$\checkmark \frac{n}{2} [12n+6]$	(2)
2.2.4	$-3 + S_n = 21060$		$\checkmark -3 + S_n = 21060$	(3)
	$S_n = 21063$ $6n^2 + 3n = 21063$ $6n^2 + 3n - 21063 = 0$ $2n^2 + n - 7021 = 0$		✓ equation ✓ standard form	
	$n = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$	7024)		
	$n = \frac{-1 \pm \sqrt{(1)^2 - 4(1)(-1)^2}}{2(2)}$ $n = 59 \text{ or } n \neq \frac{-119}{2}$	(7021)	✓ answer	
	$\therefore n = 59$ OR			(4)
	$T_n = 21060$ $6n^2 - 9n - 21060 = 0$ $2n^2 - 3n - 7020 = 0$ $n = 60$		✓ equation ✓ standard form	
	∴59 first differences m	nust be added.	✓✓ answer	(4) [1 7]
L				[1/]

3.1	$\sum_{k=1}^{\infty} 4.3^{2-k} = 12 + 4 + \frac{4}{3} + \dots$ $r = \frac{4}{12} = \frac{1}{3}$	$\checkmark 12 + 4 + \frac{4}{3} + \dots \text{ or } 36 \left(\frac{1}{3}\right)^k$
	$\begin{vmatrix} 12 & 3 \\ -1 < \frac{1}{3} < 1 \end{vmatrix}$	\checkmark value of r
	\therefore series is convergent $(-1 < r < 1)$	$\checkmark -1 < r < 1 \tag{3}$
3.2	$\sum_{k=p}^{\infty} 4.3^{2-k} = 4.3^{2-p} + 4.3^{1-p} + 4.3^{-p} + \dots$ $a = 4.3^{2-p}$	\checkmark expression for a
	$r = \frac{1}{3}$ $S_{\infty} = \frac{a}{1 - r}$ $2 = 4 \cdot 2^{2-p}$	✓ substitution of a , r and S_{∞}
	$\frac{2}{9} = \frac{4 \cdot 3^{2-p}}{1 - \frac{1}{3}}$ $4 \cdot 3^{2-p} = \frac{4}{27}$	✓ simplification $\left(4.3^{2-p} = \frac{4}{27}\right)$
	$3^{2-p} = 3^{-3} 2-p = -3$	$\checkmark 3^{2-p} = 3^{-3}$
	<i>p</i> = 5	✓ answer (5)
		[8]

4.1.1	x = 1	$\checkmark x = 1$
4.1.2	$y = 2$ $y = mx + c y - y_1 = m(x - x_1) y = -(x - p) + q$ $2 = -1 + c or y - 2 = -1(x - 1) or = -(x - 1) + 2$ $c = 3 y - 2 = -x + 1 y = -x + 3$ $y = -x + 3$	✓ $y = 2$ (2) ✓ substitution of $m = -1$ and (1; 2) ✓ answer (2)
4.1.3	$\frac{y}{2}$ $\frac{1}{\sqrt{\frac{5}{2}}}$ x	✓ vertical asymptote: $x = 1$ and horizontal asymptote: $y = 2$ ✓ x -intercept: $\frac{5}{2}$ ✓ y -intercept: 5 ✓ shape (A)
4.2.1	(-5; -8)	$\checkmark x = -5 \checkmark y = -8$
4.2.2	$y \ge -8$ or $[-8; \infty)$	✓ answer
4.2.3	$m = -5$ $n = g(-5)$ $= \frac{1}{2}(-5) + \frac{9}{2}$ $= 2$	(1) $\checkmark m = -5$ $\checkmark \text{substitution}$ $\checkmark n = 2$ (3)
4.2.4		(3)
f	Area trapezium = $\frac{1}{2}$ (DE+OC)×OE = $\frac{1}{2}$ (2+4,5)×5 = $\frac{65}{4}$ or 16,25 OR	✓ method ✓ correct substitution ✓ answer (3)
	OK	OR

Area $\Delta = \frac{1}{2}b.h$

$$=\frac{1}{2}(5)\left(\frac{5}{2}\right)$$

$$=\frac{25}{4}$$

Area rect = b.h= (5)(2)

Area trapezium = $\frac{25}{4}$ + 10 = $\frac{65}{4}$ or 16,25

✓ method

✓ correct substitution

✓answer (3)

OR

OR

S(-9;0)

Area
$$\triangle$$
 SOC = $\frac{1}{2}b.h$

$$= \frac{1}{2}(9)\left(\frac{9}{2}\right)$$

$$= \frac{81}{4}$$

Area \triangle SED = $\frac{1}{2}b.h = \frac{1}{2}(4)(2) = 4$

Area trapezium = area \triangle SOC - Area \triangle SED = $\frac{81}{4}$ - 4 = $\frac{65}{4}$ or 16,25 ✓ method

✓ correct substitution

✓answer (3)

4.2.5

$$g^{-1}$$
: $x = \frac{1}{2}y + \frac{9}{2}$

 g^{-1} : y = 2x - 9

 \checkmark changing x and y

✓answer

(2)

4.2.6	$f(x) = \frac{1}{2}(x+5)^2 - 8$		
	$f(x) = \frac{1}{2}(x^2 + 10x + 25) - 8$		
	$f(x) = \frac{1}{2}x^2 + 5x + 4.5$	$\checkmark f'(x)$	
	f'(x) = x+5 $h(x) = 2x-9+k$		
	$ \begin{aligned} x+5 &= 2 \\ x &= -3 y &= -6 \end{aligned} $	$\checkmark x + 5 = 2$ $\checkmark x = -3 \checkmark y = -6$	
	(-3;-6) OR	·	(4)
	f(x) = h(x)	OK	
	$\frac{1}{2}(x+5)^2 - 8 = 2x - 9 + k$	✓ equating	
	$\frac{1}{2}x^2 + 3x + \frac{27}{2} - k = 0$		
	$x = \frac{-3}{2\left(\frac{1}{2}\right)} = -3 \qquad b^2 - 4ac = 0$	✓ turning point / $\triangle = 0$	
	y = -6 $(-3; -6)$	$\checkmark x = -3 \checkmark y = -6 $	(4)
	(-3,-0)		201
		[2	23]

5.1	A(0;1)	✓ answer
		(1)
5.2	$9 = 3^{-x}$	✓ equating
	$3^2 = 3^{-x}$	$\checkmark 3^2 = 3^{-x}$
	x = -2	$\checkmark x = -2$
	B(-2; 9)	x = -2
		(3)
5.3	$x \in (0, \infty)$ or $x > 0$	✓✓answer
	, ,	(2)
5.4	$h(x) = 27.3^{-x}$	
	$h(x) = 3^{-(x-3)}$	$\checkmark h(x) = 3^{-(x-3)}$
	f shifted 3 units to the right	✓3 units
		✓ right
		(3)
5.5	$\frac{27}{3^x} < 1$	
	$3^x > 27$ or $3^{-x+3} < 3^0$	$\checkmark 3^x > 27 \text{ or } 3^{-x+3} < 3^0$
	$3^x > 3^3$ $-x + 3 < 0$	$\checkmark 3^x > 3^3 \text{ or } -x+3 < 0$
	x > 3 $x > 3$	$\checkmark x > 3$
		(3)
	OR	OB
		OR (translation
	The graph shifts 3 units to the right	✓ translation ✓ y-intercept
	Thus the <i>y</i> -intercept shift 3 units to the right (3; 1)	✓ answer (3)
	$\therefore x > 3$	
		[12]

6.1.1	$F = \frac{x[(1+i)^n - 1]}{i}$	✓ n = 145
	i $\begin{bmatrix} 0.075 \end{bmatrix}^{145}$	$\checkmark i = \frac{0,075}{12}$
	$= \frac{1000 \left[\left(1 + \frac{0,075}{12} \right)^{145} - 1 \right]}{0,075}$	12 ✓ substitution into the
	$=\frac{1}{0,075}$	correct formula
	$\frac{12}{12}$ = R234 888,53	✓ answer
612	,	(4)
6.1.2	$A = P(1+i)^n$	
	$= 234 888,53 \left(1 + \frac{0,075}{12}\right)^{12}$	✓ substitution into the correct formula
	= R253 123,54	✓ answer (2)
6.2	$A = P(1-i)^n$	
	$92\ 537,64 = 250\ 000(1-0.22)^n$	✓ substitution into the correct formula
	$0,37015056 = (0,78)^n$	(1)
	$n = \frac{\log 0,37015056}{\log 0,78}$	✓ correct use of logs
	n=4 years	✓answer
6.3.1	•	(3)
	Loan amount: $= \frac{x[1-(1+i)^{-n}]}{i}$	√ 72
		✓ substitution into the correct formula
	0,113	
	12 = R78 173,49323	✓answer (3)
6.3.2	Balance after 5 years: $P = \frac{x[1-(1+i)^{-n}]}{i}$	
	$= \frac{1500 \left[1 - \left(1 + \frac{0,113}{12}\right)^{-12}\right]}{\frac{0,113}{12}}$	✓ substitution (A)
	= R16 945,00629	✓ R16 945,00629 (A)
	Amount paid: R1 $500 \times 60 = R90000$	
	Interest = Amount paid – [Loan – Balance] = R90 000 – [R78 173,49323 – R16 945,00629] = R28 771,51	✓ R90 000 – [Loan – Balance] ✓ answer (4)

OR	OR
Balance	
$= 78173,49 \left(1 + \frac{0,133}{12}\right)^{60} - \frac{1500 \left(1 + \frac{0,113}{12}\right)^{60} - 1}{\frac{0,113}{12}}$	✓ substitution
Balance = R16 945.00	✓ R16 945,00629
Amount paid: R1 $500 \times 60 = R90000$	
Interest = Amount paid – [Loan – Balance] = R90 000 – [R78 173,49323 – R16 945,00629] = R28 771,51	✓ R90 000 – [Loan – Balance] ✓ answer (4)
	[16]

QUESTION/VRAAG 7
Penalty of – 1 for notation only in 7.1

	of – 1 for notation only in 7.1	_
7.1	$f(x) = 2x^2 - 1$	
	$f(x+h) = 2(x+h)^2 - 1$	
	$=2(x^2+2xh+h^2)^2-1$	
	$=2x^2 + 4xh + 2h^2 - 1$	$\checkmark 2x^2 + 4xh + 2h^2 - 1$
	$f(x+h)-f(x)=2x^2+4xh+2h^2-1-(2x^2-1)$	
	$=2x^2+4xh+2h^2-1-2x^2+1$	$\checkmark 4xh + 2h^2$
	$=4xh+2h^2$	
	$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$	
	$=\lim_{h\to 0}\frac{4xh+2h^2}{h}$	✓ substitution
	$=\lim_{h\to 0}\frac{h(4x+2h)}{h}$	✓ simplification
		Simplification
	$= \lim_{h \to 0} (4x + 2h)$	
	=4x	✓ answer (5)
7.2.1	$\frac{d}{dx}\left(\sqrt[5]{x^2} + x^3\right)$	
	$=\frac{d}{dx}\left(x^{\frac{2}{5}}+x^3\right)$	$\checkmark x^{\frac{2}{5}}$ $\checkmark \frac{2}{5}x^{-\frac{3}{5}} \checkmark 3x^{2}$
	$\frac{dy}{dx} = \frac{2}{5}x^{-\frac{3}{5}} + 3x^2$	$\checkmark \frac{2}{5}x^{-\frac{3}{5}} \checkmark 3x^2 \tag{3}$
7.2.2	$4x^2-9$	
	$f(x) = \frac{4x^2 - 9}{4x + 6}$	((2) (2)
	$=\frac{(2x-3)(2x+3)}{2(2x+3)}$	$\checkmark (2x-3)(2x+3)$
	2(2x+3)	$\checkmark 2(2x+3)$
	$=\frac{2x-3}{2}$ $=x-\frac{3}{2}$	
	3	d simplification to t
	$=x-\frac{1}{2}$	✓ simplification to two separate terms
	f'(x)=1	✓ answer
		(4)
		[12]

8.1	-1 < x < 2		✓✓ answer (2)
8.2	1 1	Answer Only: Full Marks	✓ method ✓ answer (2)
8.3	/	Answer Only: Full Marks	✓✓ answer (2)
8.4	$g(x) = ax^{3} + bx^{2} + cx$ $g'(x) = 3ax^{2} + 2bx + c = -6x^{2} + 3a = -6.$ $a = -6.$ $a = -2$ $b = 3$ $g(x) = -2x^{3} + 3x^{2} + 12x$		$\checkmark g'(x) = 3ax^2 + 2bx + c$ $\checkmark a = -2$ $\checkmark b = 3$ $\checkmark g(x) = -2x^3 + 3x^2 + 12x$ (4)
8.5	$g'\left(\frac{1}{2}\right) = -6\left(\frac{1}{2}\right)^{2} + 6\left(\frac{1}{2}\right) + 12$ $m = \frac{27}{2} \text{or } 13,5$ $y = -2\left(\frac{1}{2}\right)^{3} + 3\left(\frac{1}{2}\right)^{2} + 12\left(\frac{1}{2}\right)$ $y = \frac{13}{2} \text{or } 6,5$ $y - y_{1} = m(x - x_{1})$ $y - 6,5 = 13,5(x - 0,5)$ $y = 13,5x - 0,25$		✓ max gradient at $x = \frac{1}{2}$ ✓ answer ✓ y value ✓ substitution ✓ answer (5)
_			[15]

9.1	Total surface area = $2\ell w + 2wh + 2\ell h$	$\checkmark 2\ell w + 2wh + 2\ell h$
	but: $\ell = 3w$	$\checkmark \ell = 3w$
	Total surface area = $6w^2 + 2wh + 6wh$	
	$C = 15(6w^2) + 6(2wh + 6wh)$	$\checkmark 15(6w^2)$ $\checkmark 6(2wh + 6wh)$
	$=15(6w^2)+6(8wh)$	$\checkmark 6(2wh + 6wh)$
	$=90w^2+48wh$	(4)
9.2	$5 = 3w^2h$	
	$h = \frac{5}{3w^2}$	$\checkmark h = \frac{5}{3w^2}$
	$C = 90w^2 + 48wh$	
	$C(w) = 90w^2 + 48w \left(\frac{5}{3w^2}\right)$	✓ substitution
	$=90w^2 + 80w^{-1}$	$\checkmark C(w) = 90w^2 + 80w^{-1}$
	$C'(w) = 180w - 80w^{-2}$	✓ derivative
	$180w - 80w^{-2} = 0$	✓ equating derivative to zero
	$180w^3 - 80 = 0$	
	$w^3 = \frac{80}{180}$	
	$w = \sqrt[3]{\frac{80}{180}}$	
	w = 0.76	✓ value of w
		(6)
		[10]

10.1	10 ¹⁰ or 10 000 000 000	✓✓ answer (2)
10.2.1		$ \begin{array}{c} \checkmark \underline{8} \times \underline{10} \times \underline{10} \\ \text{or} \\ \underline{8} \times \underline{8} \times \underline{10} \end{array} $
	No. of valid 10-digit numbers = $(8 \times 10 \times 10) \times (8 \times 8 \times 10) \times (2 \times 10 \times 10 \times 10)$ = $1,024 \times 10^9$	$\checkmark 2 \times 10 \times 10 \times 10$ $\checkmark 1,024 \times 10^{9} (A) \qquad (3)$
10.2.2	Probability = $\frac{1,024 \times 10^9}{10^{10}}$	$\checkmark \frac{1,024 \times 10^9}{10^{10}}$
	$=\frac{64}{625}=0,1024=10,24\%$	✓ answer (2) [7]

11.2	P (Bull's eye at least twice in 3 shots) = $(0.5 \times 0.5 \times 0.5) + (0.5 \times 0.5 \times 0.5) + ($	✓ $0.5 \times 0.5 \times 0.5$ ✓ four events	
	$= 0.5$ or $\frac{1}{2}$	✓ answer (A)	(3)
11.3	Person shoots first:		
	$(0,5) + (0,5)^3 + (0,5)^5 + \dots$	$\checkmark (0,5) + (0,5)^3$	
	$P = \frac{a}{1 - r}$	$\checkmark (0,5) + (0,5)^3$ $\checkmark + (0,5)^5 +$	
	$P = \frac{0.5}{1 - 0.25}$ $P = \frac{2}{3} = 0.67$	$\checkmark P = \frac{0.5}{1 - 0.25}$	
	$P = \frac{2}{3} = 0,67$	3,20	(3)
			[8]

TOTAL/TOTAAL: 150