2022 洛谷网校 学员竞赛能力评估测试

Luogu LSP 2022

入门组

时间: 2022年10月3日08:30~12:00

	1			
题目名称	六则运算	卡牌游戏	成绩统计	栀子花开
题目类型	传统型	传统型	传统型	传统型
目录	calc	card	score	jasmine
可执行文件名	calc	card	score	jasmine
输入文件名	calc.in	card.in	score.in	jasmine.in
输出文件名	calc.out	card.out	score.out	jasmine.out
每个测试点时限	1.0 秒	1.0 秒	1.0 秒	1.0 秒
内存限制	512 MiB	512 MiB	512 MiB	512 MiB
测试点数目	20	20	25	25
测试点是否等分	是	是	是	是

提交源程序文件名

对于 C++ 语言	calc.cpp	card.cpp	score.cpp	jasmine.cpp
-----------	----------	----------	-----------	-------------

编译选项

对于 C++ 语言

-02 -1m

注意事项(请仔细阅读):

- 1. 文件名(程序名和输入输出文件名)必须使用英文小写。
- 2. C++ 中函数 main() 的返回值类型必须是 int,程序正常结束时的返回值必须是 0。
- 3. 若无特殊说明,结果的比较方式为全文比较(过滤行末空格及文末回车),输入文件和输出文件同一行的相邻整数均用一个空格隔开。
- 4. 程序可使用的栈空间内存限制与题目的内存限制一致。
- 5. 统一评测时采用的机器配置为 Inter(R) Core(TM) i7-12700H CPU @2.30GHz, 内存 16GB。上述时限以此配置为准。
- 6. 评测环境为 Windows11 下搭建的 NOI Linux 2.0 虚拟机, 评测系统为 Arbiter。
- 7. 仅提供 Linux 格式的样例附加文件。
- 8. 考生有任何疑问需在课程群内提出,但只会解答提交有关问题,**试题相关描述、所 涉及的算法一律不回答**。比赛过程中选手不得查阅书籍、网络资料,不得互相交流 做法。
- 9. 严格按照试题首页命名程序文件和子文件夹,按照另外发布的提交说明提交文件夹。 监考有关事项按照发布的细则执行。

六则运算(calc)

【题目描述】

华小科正在学习算数,在华小科的学校,基本运算不是四则运算,而是六则运算。 六则运算的运算符、运算结果和运算解释如下表所示:

运算符	运算结果	运算解释
plus a b	a + b	计算得到 a + b 的值
redu a b	a-b	计算得到 a-b 的值
muti a b	$a \times b$	计算得到 a×b 的值
bmod a b	a mod b	计算得到 <i>a</i> 对 <i>b</i> 取模的非负值,如bmod 5 3 = 2, bmod -2 3 = 1
ldiv a b	$\lfloor \frac{a}{b} \rfloor$	计算得到 $\frac{a}{b}$ 向下取整的值
cdiv a b	$\lceil \frac{a}{b} \rceil$	计算得到 $\frac{a}{b}$ 向上取整的值

华小科的数学老师给她布置了 T 道练习题,由于华小科很可爱,你需要帮助她完成这些练习题。

【输入格式】

从文件 calc.in 中读入数据。

输入共 T+1 行。

输入的第一行为一个正整数 T,代表练习题的数目。

接下来 T 行,每行一个运算符,代表作业。

【输出格式】

输出到文件 calc.out 中。

输出共 T 行,每行一个整数为练习题的答案。

【输入输出样例 1】

calc.in	calc.out
6	2
plus 1 1	0
redu 1 1	1
muti 1 1	1
bmod -1 2	0
ldiv 1 2	0
cdiv -1 2	

见选手目录下的 calc/calc.in 和 calc/calc1.ans。

【输入输出样例 2】

见选手目录下的 calc/calc2.in 和 calc/calc2.ans。 该输入输出样例符合数据规模与约定中 20% 的数据。

【输入输出样例 3】

见选手目录下的 calc/calc3.in 和 calc/calc3.ans。 该输入输出样例符合数据规模与约定中 60% 的数据。

【输入输出样例 4】

见选手目录下的 calc/calc4.in 和 calc/calc4.ans。

【数据规模与约定】

对于 20% 的数据, 只包含前两种运算。

对于 60% 的数据,不包含后两种运算。

对于 100% 的数据, $1 \le T \le 10^5$, $-10^6 \le a,b \le 10^6$ 。

对于后三种运算,保证有 $b \neq 0$,对于 bmod 运算,保证有 b > 0。

卡牌游戏 (card)

【题目描述】

华小科非常喜欢一种卡牌游戏,这种游戏需要 n 个人参加。

游戏开始时,每个人会领取到一张牌。之后每一轮游戏,第 i 个人会将手上的卡牌交给第 p_i 个人。在某一轮游戏中,一个玩家可以将卡牌传递给自己。

为了保证每一轮游戏后,每个人手上都有一张卡牌,在设计游戏时, p_1, p_2, \cdots, p_n 需要是一个排列。关于排列的具体定义,可以参阅题目最后的提示部分。

华小科已经设计好了这样的一个排列 p,她想要知道,对于每个玩家,最少多少轮游戏后,手上的卡牌与初始相同。

由于华小科很可爱, 你需要帮助她解决这个问题。

【输入格式】

从文件 **card.in** 中读入数据,输入共两行。 输入的第一行为一个整数 n,代表参加游戏的人数。 输入的第二行为 n 个整数,第 i 个代表 p_i ,含义如题所示。

【输出格式】

输出到文件 card.out 中。 输出一行 n 个整数, 第 i 个整数代表第 i 名玩家所需轮数。

【输入输出样例 1】

card.in	card.out
5 2 3 4 5 1	5 5 5 5 5

见选手目录下的 card/card1.in 和 card/card1.ans。

【样例 1 解释】

假设一开始拿到的卡牌依次为 12345。

第一轮游戏后, 依次为 23451;

第二轮游戏后, 依次为 34512;

第三轮游戏后, 依次为 45123;

第四轮游戏后, 依次为 51234;

第五轮游戏后,依次为 12345。

故答案均为 5。

【输入输出样例 2】

见选手目录下的 card/card2.in 和 card/card2.ans。

【数据规模与约定】

对于 30% 的数据, $1 \le n \le 15$; 对于另外 20% 的数据, $p_i = i \mod n + 1$; 对于另外 20% 的数据,n 为偶数,且 $p_i = 2 \times \big((i \mod 2) - 0.5\big) + i$; 对于 100% 的数据, $1 \le n \le 10^5$ 。

【提示】

若一个长度为 n 的数组 p 为排列,则其满足以下条件:

- 对于任意 $1 \le i \le n$, $i \ne p$ 中的一个元素;
- 对于 p 中任意一个元素 i,满足 $1 \le i \le n$ 。例如,[1,4,3,5,2] 是一个排列,而 [1,2,2] 和 [1,2,4] 都不是排列。

成绩统计 (score)

【题目描述】

华小科的学校举行了期末考试,考试采取网上阅卷。

为了方便阅卷,本科生院为每位考生编制了 14 位的考生号。答题卡在扫描后,得到的图像会被服务器自动按照题目切块并编号(每一题切为一块)。编号是有一定规则的,为扫描的 Unix 时间戳(10 位)、考生号(14 位)、题号(3 位)连续排列得到(共 27 位)。

例如,同学 A 的考生号为 22320801810000,扫描的 Unix 时间戳为 1659015287,则同学 A 第 7 题对应的图像编号为 165901528722320801810000007。

一个 Unix 时间内只能扫描一张答题卡,因此,Unix 时间戳可以被用于判断同一名考生不同科目的试卷。但是,只能据此判断是否为不同科目,无法确定具体为哪一科目。

阅卷已经完成,本科生院公开了图像编号与评分的对应关系。通过公布的数据,华小科得知,经过服务器处理,所有考生的答题卡一共被划分了 N 块图像。由于实行双评(每名考生每题由两名老师批阅),每一个图像编号会对应两个评分,该图像编号对应的试题最终得分为两个评分取平均值。

一门考试的最终得分为,该场考试的答题卡切分的所有图像所对应试题的最终得分的和。如 果这样的和不为整数,则向上取整。

华小科已经拿到了自己的期末成绩单,她一共有 M 门考试,第 i 门课的成绩为 S_i 。不幸的是,华小科忘记了自己的考生号。华小科希望通过期末成绩单、图像编号与评分的对应关系,推算出自己每一门课答题卡扫描时的 Unix 时间戳。

保证每名考生拥有的答题卡数目相同且均为 M,保证华小科可以唯一对应一个考生号。由于华小科很可爱,你需要帮助她解决这个问题。

【输入格式】

从文件 score.in 中读入数据。

输入共 2N+2 行。

输入的第一行为两个正整数 N, M,代表图像编号的数目和每名考生对应答题卡的数目。接下来 2N 行,每行为两个正整数 k, s,分别代表图像编号和评分。

接下来的一行,为M个整数,第i个代表华小科第i门考试的成绩 S_i ,保证没有两门成绩相同。

请注意,除华小科以外的其他考生,允许存在两门成绩相同的情况。

【输出格式】

输出到文件 score.out 中。

输出共 M 行,每行一个正整数,第 i 行代表华小科第 i 门答题卡扫描时的 Unix 时间戳。

【输入输出样例 1】

score.in	score.out
10 2	1248212372
165901528722320801810000001 10	1659015287
165901528722320801810000001 11	
165901528722320801810000002 5	
165901528722320801810000002 6	
165901528722320801810000003 5	
165901528722320801810000003 6	

```
124821237222320801810000001 4
124821237222320801810000002 7
124821237222320801810000002 7
124821237222320801810001001 4
117292345222320801810001001 4
117292345222320801810001002 7
117292345222320801810001002 7
117292375222320801810001001 12
117292375222320801810001001 5
117292375222320801810001002 5
117292375222320801810001002 5
117292375222320801810001003 6
117292375222320801810001003 6
117292375222320801810001003 6
11 22
```

见选手目录下的 score/score1.in 和 score/score1.ans。

【样例 1 解释】

共有两名考生。

考生号为 22320801810000 的考生两门成绩分别为 22(11.5 + 5.5 + 5.5 = 21.5),11(4 + 7 = 11)。

考生号为 22320801810001 的考生两门成绩分别为 11(4+7=11),23(12+5+6=23)。 因此可以知道华小科的考生号为 22320801810000。

成绩为 11 的科目对应的 Unix 时间戳为 1248212372, 成绩为 22 的科目对应的 Unix 时间戳为 1659015287。

【输入输出样例 2】

见选手目录下的 score/score2.in 和 score/score2.ans。 该输入输出样例符合数据规模与约定中测试点 $6 \sim 10$ 。

【输入输出样例 3】

见选手目录下的 score/score3.in 和 score/score3.ans。 该输入输出样例符合数据规模与约定中测试点 15~17。

【输入输出样例 4】

见选手目录下的 score/score4.in 和 score/score4.ans。 该输入输出样例符合数据规模与约定中测试点 18~19。

【输入输出样例 5】

见选手目录下的 score/score5.in 和 score/score5.ans。该输入输出样例符合数据规模与约定中测试点 20~25。

【数据规模与约定】

测试点	N	М	特殊性质
	第7页	共 10 页	

1 2 3 4 5		= 1 = N	
6 7 8 9 10	≤ 500	≤ 15	无
11 12 13 14	-	= 1 = N	11X
15 16 17 18 19 20 21 22 23 24 25	≤ 10 ⁵	≤ 15	A B 无

特殊性质 A: 每张答题卡只有一道题。

特殊性质 B: 华小科的考生号是所有考生中最小的。

对于所有数据, $1 \le N \le 10^5, 1 \le M \le 15, 0 \le s \le 10^4, 0 \le S_i \le 10^9$,Unix 时间戳、考生号不含前导零。

栀子花开(jasmine)

【题目背景】

栀子花开呀开,栀子花开呀开,是淡淡的青春,纯纯的爱栀子花开,如此可爱,挥挥手告别欢乐和无奈 光阴好像流水飞快.日日夜夜也将我们的青春灌溉

【题目描述】

华小科在出题时,助教群正在回忆自己的高中生涯。

华小科的高中有一棵栀子树,这棵树共由 n 个结点组成。第 i 个结点上有 F_i 朵栀子花。华小科喜欢这样赏花:每次选择两个个结点 u,v,接着依次观赏从 u 到 v 路径上的每一个结点上的花。华小科认为,她每次赏花可以获得的愉悦度 H(u,v) 是路径上所有结点 F_i 的异或值。

形式化的,结点 u,v 之间存在路径 $u \to x_1 \to x_2 \to \cdots \to v$, $H(u,v) = F_u \oplus F_{x_1} \oplus F_{x_2} \oplus \cdots \oplus F_v$,其中 \oplus 代表异或。特别地,当 u = v 时,有 $H(u,v) = F_u$ 。

华小科决定将任意两个无序结点对分别作为起点和终点赏花,并想知道自己可以获得的愉悦度是多少。例如,某棵栀子树一共有 3 个结点,用 (S,T) 表示赏花的起点和终点,则华小科会依次进行如下 9 次赏花: (1,1),(1,2),(1,3),(2,1),(2,2),(2,3),(3,1),(3,2),(3,3)。

形式化的,你需要求出 $\sum_{i=1}^{n} \sum_{j=i}^{n} H(i,j)$ 。答案可能很大,你只需要告诉华小科答案对 998244353 取模的结果即可。

由于华小科很可爱, 你需要帮助她解决这个问题。

【输入格式】

从文件 jasmine.in 中读入数据。

输入共 n+1 行。

第一行为一个整数 n,代表结点的数目。

第二行为 n 个整数, 第 i 个代表 F_i 。

接下来 n-1 行,每行两个整数 u,v,代表树上结点 u 与结点 v 有边相连。

【输出格式】

输出到文件 jasmine.out 中。

输出一行一个整数,代表华小科可以获得的愉悦度。

【输入输出样例 1】

jasmine.in	jasmine.out
7	27
0 0 0 0 1 3 1	
2 7	
3 7	
5 2	
1 5	
6 7	
4 3	

见选手目录下的 jasmine/jasmine1.in 和 jasmine/jasmine1.ans。

【输入输出样例 2】

见选手目录下的 jasmine/jasmine2.in 和 jasmine/jasmine2.ans。 该输入输出样例符合数据规模与约定中测试点 4~5。

【输入输出样例 3】

见选手目录下的 jasmine/jasmine3.in 和 jasmine/jasmine3.ans。 该输入输出样例符合数据规模与约定中测试点 6~7。

【输入输出样例 4】

见选手目录下的 jasmine/jasmine4.in 和 jasmine/jasmine4.ans。 该输入输出样例符合数据规模与约定中测试点 21~25。

【数据规模与约定】

测试点	n	特殊性质
1		A
2	≤ 200	В
3		无
4		A
5		A
6		В
7	≤ 1000	Б
8		
9		无
10		
11		
12		
13		\boldsymbol{A}
14		
15		
16		В
17		
18	$\leq 10^5$	
19		
20		
21		
22		
23		无
24		
25		

特殊性质 $A: F_i \in \{0,1\}$

特殊性质 B: 树形态为一条链

对于所有数据, $1 \le n \le 10^5$, $0 \le F_i < 2^{15}$ 。