Example E2.1: Analyze the block diagram of the LTI discrete-time system of Figure E2.1 and develop the relation between y[n] and x[n].

Figure E2.1

Answer: From the figure shown below we obtain

$$\begin{split} v[n] &= x[n] - w[n], \quad w[n] = d_1v[n-1] + d_2u[n], \text{ and } u[n] = v[n-2] + x[n]. \quad \text{From these} \\ &= \text{equations we get} \quad w[n] = d_2x[n] + d_1x[n-1] + d_2x[n-2] - d_1w[n-1] - d_2w[n-2]. \quad \text{From the} \\ &\text{figure we also obtain } y[n] = v[n-2] + w[n] = x[n-2] + w[n] - w[n-2], \quad \text{which yields} \\ &d_1y[n-1] = d_1x[n-3] + d_1w[n-1] - d_1w[n-3], \quad \text{and} \\ &d_2y[n-2] = d_2x[n-4] + d_2w[n-2] - d_2w[n-4], \quad \text{Therefore,} \\ &y[n] + d_1y[n-1] + d_2y[n-2] = x[n-2] + d_1x[n-3] + d_2x[n-4] \\ &+ \left(w[n] + d_1w[n-1] + d_2w[n-2]\right) - \left(w[n-2] + d_1w[n-3] + d_2w[n-4]\right) \\ &= x[n-2] + d_2x[n] + d_1x[n-1] \quad \text{or equivalently,} \\ &y[n] = d_2x[n] + d_1x[n-1] + x[n-2] - d_1y[n-1] - d_2y[n-2]. \end{split}$$

Example E2.2: The sequence $\{0 \quad \sqrt{2} \quad -2 \quad \sqrt{2} \quad 0 \quad \sqrt{2} \quad 2 \quad \sqrt{2} \}$ represents one period of a sinusoidal sequence $x[n] = A\sin(\omega_0 n + \phi)$. Determine the values of the parameters A, ω_0 , and ϕ .

Answer: Given $x[n] = \{0 - \sqrt{2} - 2 - \sqrt{2} \ 0 \sqrt{2} \ 2 \sqrt{2} \}$. The fundamental period is N = 4, hence $\omega_0 = 2\pi / 8 = \pi / 4$. Next from $x[0] = A\sin(\phi) = 0$ we get $\phi = 0$, and solving $x[1] = A\sin(\frac{\pi}{4} + \phi) = A\sin(\pi / 4) = -\sqrt{2}$ we get A = -2.

Example E2.3: Determine the fundamental period of the periodic sequence $\tilde{x}[n] = \sin(0.6\pi n + 0.6\pi)$.

Answer: Here, $\omega_0 = 0.6\pi$. From Eq. (2.47a), we thus get $N = \frac{2\pi r}{\omega_0} = \frac{2\pi r}{0.6\pi} = \frac{10}{3}r = 10$ for r = 3.

Example E2.4: Determine the fundamental period of the periodic sequence $\tilde{y}[n] = 3\sin(1.3\pi n) - 4\cos(0.3\pi n + 0.45\pi)$.

Answer: $N_1 = \frac{2\pi \, r_1}{1.3\pi} = \frac{20}{13} \, r_1$ and $N_2 = \frac{2\pi \, r_2}{0.3\pi} = \frac{20}{3} \, r_2$. To be periodic we must have $N_1 = N_2$. This implies, $\frac{20}{13} \, r_1 = \frac{20}{3} \, r_2$. This equality holds for $r_1 = 13$ and $r_2 = 7$, and hence $N = N_1 = N_2 = 20$.

Example E2.5: Let $\{y[n]\} = \{-1 \ -1 \ 11 \ -3 \ 30 \ 28 \ 48\}$ obtained by a linear convolution of the sequence $\{h[n]\} = \{-1 \ 2 \ 3 \ 4\}$ with a finite-length sequence $\{x[n]\}$. The first sample in each sequence is time instant n = 0. Determine x[n].

Answer: The length of x[n] is 7 - 4 + 1 = 4. Using x[n] = $\frac{1}{h[0]} \left\{ v[n] - \sum_{k=1}^{7} h[k] x[n-k] \right\}$ we arrive at x[n] = $\{1 \ 3 \ -2 \ 12\}, \ 0 \le n \le 3$.

Example E2.6: Determine the expression for the impulse response of the LTI discrete-time system shown in Figure E2.2.

Answer: From the figure shown below we observe

 $v[n] = (h_1[n] + h_3[n] * h_5[n]) * x[n] \text{ and } y[n] = h_2[n] * v[n] + h_3[n] * h_4[n] * x[n].$ $Thus, y[n] = (h_2[n] * h_1[n] + h_2[n] * h_3[n] * h_5[n] + h_3[n] * h_4[n]) * x[n].$

Hence the impulse response is given by

$${}_{h[n] \,=\, h_2[n]} \textcircled{\$}_{h_1[n] \,+\, h_2[n]} \textcircled{\$}_{h_3[n]} \textcircled{\$}_{h_5[n] \,+\, h_3[n]} \textcircled{\$}_{h_4[n]}.$$

Example E2.7: Determine the total solution for $n \ge 0$ of the difference equation $y[n] + 0.1y[n-1] - 0.06y[n-2] = 2^n \mu[n]$, with the initial condition y[-1] = 1 and y[-2] = 0.

Answer: $y[n] + 0.1y[n-1] - 0.06 y[n-2] = 2^n \mu[n]$ with y[-1] = 1 and y[-2] = 0. The complementary solution $y_c[n]$ is obtained by solving $y_c[n] + 0.1y_c[n-1] - 0.06 y_c[n-2] = 0$. To this end we set $y_c[n] = \lambda^n$, which yields $\lambda^n + 0.1\lambda^{n-1} - 0.06 \lambda^{n-2} = \lambda^{n-2}(\lambda^2 + 0.1\lambda - 0.06) = 0$ whose solution gives $\lambda_1 = -0.3$ and $\lambda_2 = 0.2$. Thus, the complementary solution is of the form $y_c[n] = \alpha_1(-0.3)^n + \alpha_2(0.2)^n$. For the particular solution we choose $y_p[n] = \beta(2)^n$. ubstituting this solution in the difference equation representation of the system we get $\beta 2^n + \beta(0.1)2^{n-1} - \beta(0.06)2^{n-2} = 2^n \mu[n]$. For n = 0 we get $\beta + \beta(0.1)2^{-1} - \beta(0.06)2^{-2} = 1$ or $\beta = 200 / 207 = 0.9662$. The total solution is therefore given by $y[n] = y_c[n] + y_p[n] = \alpha_1(-0.3)^n + \alpha_2(0.2)^n + \frac{200}{207}2^n$.

From the above $y[-1] = \alpha_1(-0.3)^{-1} + \alpha_2(0.2)^{-1} + \frac{200}{207}2^{-1} = 1$ and $y[-2] = \alpha_1(-0.3)^{-2} + \alpha_2(0.2)^{-2} + \frac{200}{207}2^{-2} = 0$ or equivalently, $-\frac{10}{3}\alpha_1 + 5\alpha_2 = \frac{107}{207}$ and $\frac{100}{9}\alpha_1 + 25\alpha_2 = -\frac{50}{207}$ whose solution yields $\alpha_1 = -0.1017$ and $\alpha_2 = 0.0356$. Hence, the total solution is given by $y[n] = -0.1017(-0.3)^n + 0.0356(0.2)^n + 0.9662(2)^n$, for $n \ge 0$.

Example E2.8: Determine the total solution for $n \ge 0$ of the difference equation y[n] + 0.1y[n-1] - 0.06y[n-2] = x[n] - 2x[n-1], with the initial condition y[-1] = 1 and y[-2] = 0, when the forcing function is $x[n] = 2^n \mu[n]$.

Answer: y[n] + 0.1y[n-1] - 0.06y[n-2] = x[n] - 2x[n-1] with $x[n] = 2^n \mu[n]$, and y[-1] = 1 and y[-2] = 0. For the given input, the difference equation reduces to $y[n] + 0.1y[n-1] - 0.06y[n-2] = 2^n \mu[n] - 2(2^{n-1})\mu[n-1] = \delta[n]$. The solution of this equation is thus the complementary solution with the constants determined from the given initial conditions y[-1] = 1 and y[-2] = 0.

From the solution of the previous problem we observe that the complementary solution is of the form $y_c[n] = \alpha_1(-0.3)^n + \alpha_2(0.2)^n$.

For the given initial conditions we thus have

$$y[-1] = \alpha_1(-0.3)^{-1} + \alpha_2(0.2)^{-1} = 1 \text{ and } y[-2] = \alpha_1(-0.3)^{-2} + \alpha_2(0.2)^{-2} = 0. \text{ Combining these two equations we get } \begin{bmatrix} -1/0.3 & 1/0.2 \\ 1/0.09 & 1/0.04 \end{bmatrix} \begin{bmatrix} \alpha_1 \\ \alpha_2 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \end{bmatrix} \text{ which yields } \alpha_1 = -0.18 \text{ and } \alpha_2 = 0.08.$$

Therefore, $y[n] = -0.18(-0.3)^n + 0.08(0.2)^n$.

Example E2.9: Determine the impulse response h[n] of the LTI discrete-time system described by the difference equation

$$y[n] + 0.1y[n-1] - 0.06y[n-2] = x[n] - 2x[n-1].$$

Answer: The impulse response is given by the solution of the difference equation $y[n] + 0.1y[n-1] - 0.06 y[n-2] = \delta[n]$. From Example E2.7, the complementary solution is given by $y_c[n] = \alpha_1(-0.3)^n + \alpha_2(0.2)^n$. To determine the constants α_1 and α_2 , we observe y[0] = 1 and y[1] + 0.1y[0] = 0 as y[-1] = y[-2] = 0. From the complementary solution $y[0] = \alpha_1(-0.3)^0 + \alpha_2(0.2)^0 = \alpha_1 + \alpha_2 = 1$, and $y[1] = \alpha_1(-0.3)^1 + \alpha_2(0.2)^1 = -0.3\alpha_1 + 0.2\alpha_2 = -0.1$. Solution of these equations yields $\alpha_1 = 0.6$ and $\alpha_2 = 0.4$. Therefore, the impulse response is given by $h[n] = 0.6(-0.3)^n + 0.4(0.2)^n$.