

第7章 交流电动机 III

电气工程学院 刘宇

• 填空及判断对错

1.定子感应电势频率 f_1 ≠ 转子感应电势频率 f_2 √

转子频率 $f_2 = sf_1 \sqrt{$

2.下列关系式是否正确

$$E_2 = 4.44 f_1 N_2 \Phi$$

$$T = \frac{P}{\frac{2\pi n}{60}} = 9550 \frac{P}{n} \quad \checkmark$$

3.机械特性曲线的稳定工作区域为?

• 提纲

- 7.1 三相异步电动机的构造
- 7.2 三相异步电动机的转动原理
- 7.3 三相异步电动机的电路分析
- 7.4 三相异步电动机转矩与机械特性
- 7.5 三相异步电动机的起动
- 7.6 三相异步电动机的调速
- 7.7 三相异步电动机的制动
- 7.8 三相异步电动机铭牌数据
- 7.9 三相异步电动机的选择
- 7.10 同步电动机(略)
- 7.11 单相异步电动机

7.5 三相异步电动机的起动

7.5.1 起动性能

起动: n = 0, s = 1,接通电源。

起动问题:起动电流大,起动转矩小。

- 一般中小型笼型电机起动电流为额定电流的5~
- 7 倍; 电动机的起动转矩为额定转矩的(1.0~2.2)倍。 原因:

起动时, n=0, 转子导体切割磁力线速度很大,

→转子感应电势 → 转子电流 → 定子电流 ↑

后果:

【频繁起动时造成热量积累,使电机过热 大电流使电网电压降低,影响邻近负载的工作

7.5.2 起动方法

- (1) 直接起动
- 二、三十千瓦以下的异步电动机一般都采用直接起动。
- (2) 降压起动: {星形-三角形(Y-Δ) 换接起动 自耦降压起动 (适用于笼型电动机)
- (3) 转子串电阻起动

(适用于绕线型电动机)

以下介绍降压起动和转子串电阻起动。

PIP

1. 降压起动 (1)Y- △换接起动

设: 电机每相阻抗为 | Z |

三角形联结时:
$$I_{l\Delta} = \sqrt{3} \frac{U_l}{|Z|}$$

星形联结时:
$$I_{IY} = \frac{U_l}{\sqrt{3}|Z|}$$

 $\frac{I_{lY}}{I_{l\Delta}} = \frac{1}{3}$

.. 降压起动时的电流为直接起动时的 1

東南大學電氣工程學院

南京 四牌楼2号 http://ee.seu.edu.cn

5

Y- △换接起动应注意的问题

(a) 仅适用于正常运行为三角形联结的电机。

(b) Y- Δ 起动 $I_{\text{st}} \downarrow \to T_{\text{st}} \downarrow (T_{\text{St}} \propto U^2)$

$$U_{P} = \frac{1}{\sqrt{3}}U_{l} \implies T_{\text{sty}} = \frac{1}{3}T_{\text{sta}}$$

Y-△ 换接起动适合于空载或轻载起动的场合

末街大学电私上往学院

合刀闸开关Q

Q₂上合: 切除自耦变 压器,全压 工作。

Q₂下合: 接入自耦变 压器,降压 起动。

自耦降压起动适合于容量较大的或正常运行时 联成Y形不能采用Y-△起动的笼型异步电动机。

交流电动机

起动时将适当的R 串入转子电路中,起动后将R 短路。

$$I_{2\mathrm{st}} = \frac{E_{20}}{\sqrt{R'^2 + (X_{20})^2}} \Rightarrow R' \uparrow \Rightarrow I_2 \downarrow \Rightarrow I_1 \downarrow$$
東南大學電氣工程學院

转子电路串电阻起动的特点

若R₂选得适当,转子电路串电阻起动既可以降低起动电流,又可以增加起动转矩。 常用于要求起动转矩较大的生产机械上。

$$T_{\rm st} = K \frac{R_2 U_1^2}{R_2^2 + X_{20}^2}$$

$$R_2 \Rightarrow T_{\rm st}$$

三相异步电动机的正、反转

方法:任意调换电源的两根进线,电动机反转。

例1: 一台Y225M-4型的三相异步电动机,定子绕组△型联结,其额定数据为: P_{2N} =45kW, n_N =1480r/min, U_N =380V, η_N =92.3%, $\cos \varphi_N$ =0.88, I_{st}/I_N =7.0, T_{st}/T_N =1.9, T_{max}/T_N =2.2,求:

- (1) 额定电流 I_N ? (2) 额定转差率 S_N ?
- (3) 额定转矩 T_N 、最大转矩 T_{max} 、和起动转矩 T_N 。

解: (1)
$$I_{N} = \frac{P_{2N} \times 10^{3}}{\sqrt{3}U_{N} \cos \varphi_{N} \eta_{N}}$$

$$= \frac{45 \times 10^{3}}{\sqrt{3} \times 380 \times 0.88 \times 0.923} = 84.2 \text{ A}$$

(2) 由 n_N =1480r/min,可知p=2 (四极电动机)

$$n_0 = 1500 \, \text{r} / \text{min}$$

$$S_{\rm N} = \frac{n_0 - n}{n_0} = \frac{1500 - 1480}{1500} = 0.013$$

(3)
$$T_{\rm N} = 9550 \frac{P_{\rm 2N}}{n_{\rm N}} = 9550 \times \frac{45}{1480} = 290.4 \,\mathrm{N} \cdot \mathrm{m}$$

$$T_{\text{max}} = (\frac{T_{\text{max}}}{T_{\text{N}}})T_{\text{N}} = 2.2 \times 290.4 = 638.9 \text{ N} \cdot \text{m}$$

$$T_{\rm st} = (\frac{T_{\rm st}}{T_{\rm N}})T_{\rm N} = 1.9 \times 290.4 = 551.8 \,\mathrm{N} \cdot \mathrm{m}$$

例2: 在上例中(1)如果负载转矩为 510.2N·m, 试 问在 $U=U_N$ 和 $U'=0.9U_N$ 两种情况下电动机能否起 动? (2) 采用Y- △ 换接起动时, 求起动电流和 起动转矩。 又当负载转矩为起动转矩的80%和 50%时, 电动机能否起动?

解: (1) 在*U=U*_N时

 $T_{\rm st} = 551.8 \text{N} \cdot \text{m} > 510.2 \text{ N. m}$ 能起动 在*U* = 0.9*U*_N 时

 $T_{\rm st} = 0.9^2 \times 551.8 = 447 \,\rm N \cdot m < 510.2 \,\rm N \cdot m$

(2) $I_{\text{st}} = 7I_{\text{N}} = 7 \times 84.2 = 589.4 \text{ A}$

不能起动

(3)
$$T_{\text{stY}} = \frac{1}{3} T_{\text{st}\Delta} = \frac{1}{3} \times 551.8 = 183.9 \,\text{N} \cdot \text{m}$$

在80%额定负载时

$$\frac{T_{\text{stY}}}{T_{\text{N}} \times 80\%} = \frac{183.9}{290.4 \times 80\%} = \frac{183.9}{232.3} < 1$$
 不能起动

在50%额定负载时

$$\frac{T_{\text{stY}}}{T_{\text{N}} \times 50\%} = \frac{183.9}{290.4 \times 50\%} = \frac{183.9}{145.2} > 1$$
 可以起动

例3: 对例1中的电动机采用自耦变压器降压起动,起动时加到电动机上的电压为额定电压的64%,求这时的线路起动电流 I_{st} 和电动机的起动转矩 T_{st} 。

 \mathbf{m} : 设电动机的起动电压为U',电动机的起动电流为 I_{st}'

$$I'_{\rm st} = \frac{U'}{|Z|} = \frac{0.64U_{\rm N}}{|Z|} = 0.64I_{\rm st}$$

依据变压器的一次、二次侧电压电流关系,可求得线路起动电流 I_{st} 。

$$\frac{I_{\rm st}''}{I_{\rm st}'} = \frac{U'}{U_{\rm N}} = 0.64$$

$$I''_{st} = 0.64I'_{st} = 0.64 \times 0.64I_{st} = 0.64^2 I_{st}$$

= $0.64^2 \times 589.4 = 241.4A$

$$\mathbf{X} :: \mathbf{T} \propto \mathbf{U}^2$$

$$\therefore \frac{T_{\rm st}'}{T_{\rm st}} = \left(\frac{U'}{U_{\rm N}}\right)^2 = 0.64^2$$

$$T_{st}' = 0.64^2 T_{st} = 0.64^2 \times 551.8$$
$$= 226 \text{ N} \cdot \text{m}$$

结论:采用自耦降压法起动时,若加到电动机上的 电压与额定电压之比为 x , 则线路 起动电流

 $I_{\rm st}$ "为

$$I_{\rm st}'' = x^2 I_{\rm st}$$

电动机的起动转距 $T_{\rm st}$ 为

$$T_{\rm st}' = x^2 T_{\rm st}$$

7.6 三相异步电动机的调速

$$n = (1-s)n_0 = (1-s)\frac{60f_1}{p}$$
 \Longrightarrow 三种电气 调速方法

7.6.1 变频调速 (无级调速)

频率调节范围: 0.5~几百赫兹

变频调速方法可实现无级平滑调速,调速性能优异,因而正获得越来越广泛的应用。

7.6.2 变极调速 (有级调速)

采用变极调速方法的电动机称作双速电机,由于调速时 其转速呈跳跃性变化,因而只用在对调速性能要求不高的场 合,如铣床、镗床、磨床等机床上。

7.6.3 变转差率调速(无级调速)

变转差率调速是绕线型电动机特有的一种调速方法。其优点是调速平滑、设备简单投资少, 缺点是能耗较大。这种调速方式广泛应用于各种 提升、起重设备中。

7.7 三相异步电动机的制动

7.7.1 能耗制动

在断开三相电源的同时,给电动机其中两相 绕组通入直流电流,直流电流形成的固定磁场与 旋转的转子作用,产生了与转子旋转方向相反的 转距(制动转距),使转子迅速停止转动。

7.7.2 反接制动

停车时,将接入电动机的三相电源线中的任意 两相对调,使电动机定子产生一个与转子转动方向 相反的旋转磁场,从而获得所需的制动转矩,使转 子迅速停止转动。

7.7.3 发电反馈制动

当电动机转子的转速大于旋转磁场的转速时,旋 转磁场产生的电磁转距作用方向发生变化,由驱动转 距变为制动转距。电动机进入制动状态,

同时将外力作用于转 子的能量转换成电能 回送给电网。

第七章-Part III 结束

