Smart Thermostat (sensor)

Edoardo is getting interested in making his house *smarter*. For this reason, he has bought a smart thermostat, which measures the temperature in his room. Edoardo has gathered so far N measures V_i produced by the sensor and would like to calculate some statistics.

Figure 1: Edoardo's new smart thermostat.

However, the thermostat is not always able to produce a stable measurement: in the case of an unreliable reading, $V_i = -1$ is reported as a special value instead of the correct measure of the room's temperature.

The N measurements were all obtained at regular intervals in a single morning, starting just after switching on the heating system. For this reason, we are certain that during the whole morning the temperature of the room was non-decreasing.

Edoardo wants to fix the errors by changing all the unreliable measurements so that they respect the non-decreasing property (formally, $V_i \ge V_{i-1}$ for each i = 1...N-1). What is the *minimum* sum of the measurements that he can get?

Among the attachments of this task you may find a template file sensor.* with a sample incomplete implementation.

Input

The first line contains the only integer N, the number of measurements. The second line contains N integers V_i , the room temperature's measurements.

Output

You need to write a single line with an integer: the minimum sum of V Edoardo can get, after he changes all the wrong measurements (that is when $V_i = -1$).

sensor Page 1 of 2

Constraints

- $1 \le N \le 10^5$.
- $0 \le V_i \le 10^4$ or $V_i = -1$ for each $i = 0 \dots N 1$.
- $V_0 \neq -1$.
- It is guaranteed that Edoardo can change the unreliable measurements in such a way that $V_{i-1} \leq V_i$ for each $i = 1 \dots N 1$.

Scoring

Your program will be tested against several test cases grouped in subtasks. In order to obtain the score of a subtask, your program needs to correctly solve all of its test cases.

- Subtask 1 (0 points) Examples. *8*|8|8|8| - Subtask 2 (15 points) $N \le 6, V_i \le 10.$ <u>=</u>|8|8|8| $V_i \neq -1$ for each $i = 0 \dots N - 1$. - Subtask 3 (15 points) <u>=</u>8888 $V_i = -1$ for each $i = 1 \dots N - 1$. - Subtask 4 (15 points) *88888* - Subtask 5 (25 points) $N \leq 1000$. <u>=</u>8888 - Subtask 6 (30 points) No additional limitations. <u>=</u>|8|8|8|

Examples

input	output
5 1 -1 2 3 -1	10

Explanation

In the first sample case, the minimum sum of V is obtained if Edoardo fixes the errors by setting $V_1 = 1$ and $V_4 = 3$; in this case V = [1, 1, 2, 3, 3].

sensor Page 2 of 2