

Agenda

1 → Overview of App Engine

Design for Scalability And Reliability

3 → App Engine Architecture

Google App Engine

Simple to Scale

- Autoscale

Easy to develop

- Free to start
- Build and test locally
- Focus on App Code

Trivial to manage

- Fully managed
- No patches/updates
 - 24x7 operation by Google

Google App Engine

When to use?

- Focus on your code
- Managed environment
- Build micro-services

Capabilities

- Automatic resource provisioning
- Java, Python, PHP, & Go
- Identity, Memcache, Task
 Queue, Mail, and so on

Google App Engine

Design for Scalability And Reliability

Google App Engine

Use Case - Real Time Earthquake Monitor

- GAE Web App By NIED Japan + Google
 - National research Institute for Earth science and Disaster prev.
 - The blinking dots represents real time
 Peak Ground Acceleration

PGA (Surface)

2012/10/10 05:08:36

- YouTube video
 How it worked at the March 11, 2011
 earthquake
- 20,000 concurrent users
 10,000 reqs/sec at peak

Important Requirements

Scalability

As it gets spike traffic at the event of earthquake

Reliability

It is useless if it does not work at the time of disaster.

Cost Effectiveness

o It would be too expensive to provision the system for peak traffic

Important Requirements

- Scalability
 - As it gets spike traffic at the event of earthquake
- How do I design a web service that is scalable, reliable, and cost effective like this?

App Engine Application Scalability

App Engine watches **Pending Request Queue** of each *app version*

If your app receives a traffic spike:

 Instances dynamically added/removed based on queue size

Benefits of Autoscaling

Notice the huge difference between the traffic volume on the **red line** (the number of requests) and **blue line** (the number of requests handled by the application).

The Earthquake site broadcasts the image file to thousands of users without handling all the requests by the app.

How does it do that?

Important Requirements

What About?

- ☐ Hardware Failures
- ☐ Traffic Spike
- ☐ Growing Data Storage
- Complex Design
- Complex Dev.
- Complex Admin
- Cost

App Engine Solves it:

- ✓ Hardware Failures
- ✓ Traffic Spike
- ✓ Growing Big Data
- ✓ Simpler Design
- ✓ Simpler Dev
- ✓ No Admin
- ✓ No Initial Funding

App Engine Design Goals

- Empowers You to Design Your Applications in Google Way
 - It is not just hosting
 - It is not just data center
- Encapsulates Google's Best Practice for Scalability And Reliability
 - Non-relational data model by Datastore/Bigtable
 - Sharding, Denormalization, and so on
 - Portable and service-oriented app design
 - Independent to each physical server or data center
 - Fast request handling that is horizontally scalable

App Engine Design Goals ...

- Significant Lower TCO Total Cost of Ownership
 - Economy of scale
 - Easy to develop and deploy
 - Free to start no initial cost
 - Lower operation cost
 - No security patch, system upgrade etc
 - 24 x 7 operation by Google

App Engine Architecture

What Is An Application Instance?

Similar to a virtual machine, it provides a runtime environment for your application:

- Dedicated memory for your app
 - See: https://cloud.google.com/appengine/docs/python/modules/#instance_classes
- Fully managed sandbox
- No burden of managing OS; the overhead, device drivers, security, and so on

Unlike a virtual machine, App Engine can monitor user request processing and scale to match demand.

Key Takeaways

App Engine encapsulates all the costs and efforts

- Build and operate a web app with Google scale and reliability
- Encourage Google's best practices for scalability and reliability
- Significantly lower Total Cost of Ownership

Frontends provides scalability and reliability

- Google Frontend
 - Edge Caching and Networking
- App Engine Frontend
 - Static Content delivery
 - Load Balancing

App Engine infrastructure manages scaling

- Automatic scaling of App Engine instances
- Manages Pending Latency and Idle Instances

Hands-on

 Deploy a sample application to Google App Engine

Quiz

Which of the following **runtimes** is it possible to access from within App Engine using the features you've learnt about in this Module? (pick **one** answer)

- Perl
- Node.js
- Ruby
- **⊒** Java
- All of the above
- None of the above

Resources

- Google App Engine: Platform as a Service https://cloud.google.com/appengine/docs
- Overview of App Engine Features
 https://cloud.google.com/appengine/features/
- Google App Engine Articles
 https://cloud.google.com/appengine/articles/

