

## Ejercicios Tema 3 - Parte 3

Programación Paralela

Baldomero Imbernón Tudela Grado en Informática



**Ejercicio 1.** El método de Jacobi es un algoritmo popular para la solución de la ecuación de Laplace en un dominio diferencial cuadrado regularmente discretizado. El código secuencial, fue realizado en el seminario 0 de la asignatura, que figura como ejercicio 3. Se pide

- a) Analizar el algoritmo secuencial y explicar las distintas opciones de paralelización que pueden aplicarse. Aplicar dos estrategias distintas y comparar tiempos de ejecución.
- b) Ejecutar el código paralelizado para tamaños de matriz (1024 x 1024, 2048 x 2048 y 4096 x 4096). ¿Ofrece más rendimiento la misma estrategia paralela en todos los casos?.

**Ejercicio 2.** Dado el núcleo secuencial de la multiplicación de matrices cuadradas en la Fig.1. Se pide:

- a) Completar el programa en C de multiplicación de dos matrices cuadradas y explicar las distintas opciones de paralelización que pueden aplicarse al problema.
- b) Ejecutar el código paralelizado para tamaños de matriz (1024 x 1024, 2048 x 2048 y 4096 x 4096). ¿Ofrece más rendimiento la misma estrategia paralela en todos los casos?.

```
for (i=0; i<dimension; i++) {
    for (j=0; j<dimension; j++) {
        sum=0.0;
        for (k=0; k<dimension; k++)
            sum+=A[i][k]*B[k][j];
        C[i][j]=sum;
    }
}</pre>
```

Fig 1. Núcleo secuencial de la multiplicación de dos matrices cuadradas.

**Ejercicio 3.** Los patrones stencil o plantilla son muy utilizados en una amplia variedad de campos de ingeniería, sobre todo para la resolución de ecuaciones diferenciales en derivadas parciales. En el ejercicio 1 del seminiario 0 se planteaba la implementación de un patrón stencil de 1D. En este ejercicio se pide la paralelización de un patrón stencil 2D cuyo núcleo secuencial se aporta en Fig. 2.

```
for (k=0; k<iteraciones; i++) {
    for (i=1; i<(filas-1); i++) {
        for (j=1; j<(columnas-1) ; j++) {
            B[i][j] = A[i-1][j] + A[i+1][j] + A[i][j-1] + A[i][j+1]
        }
    }
}</pre>
```

Fig 2. Núcleo secuencial stencil de 2D.



- a) Completar el programa en C de stencil 2D y explicar las distintas opciones de paralelización que pueden aplicarse al problema.
- b) Ejecutar el código paralelizado para tamaños de matriz (1024 x 1024, 2048 x 2048 y 4096 x 4096), con 100 iteraciones. ¿Ofrece más rendimiento la misma estrategia paralela en todos los casos?.