ISFA 2017 OPTION PROBA

1 Partie I :Quelques calculs avec la loi uniforme sur]0,1[

1.1 QUESTION 1

soit $u \in [0, 1]$ alors

$$F_U(u) = \mathbb{P}(U \le u) = \int \mathbf{1}_{U \le u} d\mathbb{P}_U = \int \mathbf{1}_{U \le u} f_U(u) du$$

comme $f_U(u) = \mathbf{1}_{[0,1]}(u)$ alors

$$F_U(u) = \int \mathbf{1}_{U \le u} \mathbf{1}_{[0,1]}(u) du = \int_0^u du = u$$

1.2 QUESTION 2

Soit a, b tels que $0 \le a \le b \le 1$ alors

$$\mathbb{P}(a \le U \le b) = \int \mathbf{1}_{a \le U \le b} d\mathbb{P}_U = \int \mathbf{1}_{a \le U \le b} f_U(u) du$$

donc

$$\mathbb{P}(a \le U \le b) = \int \mathbf{1}_{a \le U \le b} \mathbf{1}_{[0,1]}(u) du = \int_{a}^{b} du = b - a$$

1.3 QUESTION 3

Montrer que la variable aléatoire 1-U suit également la loi uniforme sur l'intervalle]0, 1[Comme $0 \le U \le 1$ presque surement alors on a $0 \le 1-U \le 1$ presque surement .De plus en considérant $0 \le u \le 1$

$$\mathbb{P}(1 - U \le u) = \mathbb{P}(U \ge 1 - u) = \int \mathbf{1}_{U \ge 1 - u} \mathbf{1}_{[0,1]}(u) du = u$$

1.4 QUESTION 4 ET 5

soit
$$m \geq 1$$
 alors $\mathbb{E}(U^m) = \int U^m d\mathbb{P}_U = \int_0^1 u^m du = \frac{1}{m+1}$

2 Partie II Fonction quantile q_X

2.1 QUESTION 6

Il suffit d'appliquer le théoreme de la bijection . Par hypothèse la fonction F_X est continue et strictement croissante sur $]0,+\infty[$ donc elle réalise une bijection de $]0,+\infty[$ vers]0,1[Par le théorème de la bijection $\forall u\in]0,1[$, l'équation $F_X(x)=u$ admet une unique solution .

2.2 QUESTION 7 ET 8

$$\forall u \in]0,1[, \mathbb{P}(X \ge q_X(u)) = \int \mathbf{1}_{X \ge q_X(u)} d\mathbb{P}_X = 1 - \int \mathbf{1}_{X \le q_X(u)} d\mathbb{P}_X = 1 - \mathbb{P}(X \le q_X(u))$$
$$\mathbb{P}(X \ge q_X(u)) = 1 - F_X(q_X(u)) = 1 - u$$

soit $0 \le u < v \le 1$ alors

$$\mathbb{P}(X \ge q_X(u)) = 1 - u > 1 - v = \mathbb{P}(X \ge q_X(v))$$

donc
$$\{X \ge q_X(v)\} \subsetneq \{X \ge q_X(u)\}$$
 donc $q_X(u) < q_X(v)$

2.3 QUESTION 9

Il s'agit de montrer une équivalence . Pour cela il faut rappeler que F_X est strictement croissante sur $]0, +\infty[$ alors $\forall x > 0$ on a

$$q_X(u) \le x \iff F_X(q_X(u)) \le F_X(x)$$

et c'est gagné. On pouvait Poser $T_u = \{x > 0 : F_X(x) \ge u\}$ Et remarquer que

$$\inf T_u = q_X(u) \Longleftrightarrow T_u =]0, +\infty[$$

2.4 QUESTION 10

Determinons la de Y soit h une fonction positive bornée alors

$$\mathbb{E}(h(Y)) = \mathbb{E}(h(q_X(U))) = \int h(q_X(U))d\mathbb{P}_U = \int_0^1 h(q_X(u))f_U(u)du$$
$$\mathbb{E}(h(Y)) = \int h(q_X(u))\mathbf{1}_{0 \le F(q_X(u)) \le 1} f_U(u)du$$

posons $t = q_X(u)$ alors $u = F_X(t)$ donc $du = f_X(t)dt$ comme

$$\mathbf{1}_{0 \le F(q_X(u)) \le 1} = \mathbf{1}_{F_X(0) \le F_X(t) \le F_X(+\infty)} = \mathbf{1}_{]0, +\infty[}(t)$$

donc

$$\mathbb{E}(h(Y)) = \int h(t) f_X(t) \mathbf{1}_{]0,+\infty[}(t) dt = \int h(X) d\mathbb{P}_X = \mathbb{E}(h(X))$$

et c'est gagné. On pouvait raisonner comme suit

$$\mathbb{P}(Y \le y) = \mathbb{P}(q_X(U) \le y) = \mathbb{P}(U \le F_X(y))$$

comme $0 \le U \le 1$ alors $q_X(U) > 0$ pour y > 0 on a $F_X(y) \in]0,1[$ comme U est une variable uniforme alors

$$\mathbb{P}(Y \le y) = F_X(y)$$

donc X et Y ont la même loi .

2.5 QUESTION 11 ET 12

On définit la variable aléatoire V par $V = F_X(X)$. alors $X = q_X(V)$ comme X est positif alors V est bien dans [0,1]. Soit $v \in [0,1]$ on a

$$\mathbb{P}(V \le v) = \mathbb{P}(F_X(X) \le v) = 1 - \mathbb{P}(F_X(X) \ge v) = 1 - \mathbb{P}(X \ge q_X(v))$$

donc

$$\mathbb{P}(V \le v) = 1 - (1 - v) = v$$

Montrons la relation $\mathbb{E}(X) = \text{On a}$

$$\mathbb{E}(X) = \int X \mathbb{P}_X = \int_0^{+\infty} x dF_X(x) = \int x \mathbf{1}_{0 \le F_X(x) \le 1} dF_X(x)$$

posons $u = F_X(x)$ alors $x = q_X(u)$ donc

$$\mathbb{E}(X) = \int q_X(u) \mathbf{1}_{0 \le u \le 1} du = \int_0^1 q_X(u) du$$

3 Partie III : Expériences répétées

3.1 QUESTION 13 ET 14

Soit $k \ge 1$ alors

$$\{T_1(u) = k\} = \{\inf\{n \ge 1 : X_n \ge q_X(u)\} = k\} = \bigcap_{j=1}^{k-1} \{X_i \le q_X(u)\} \cap \{X_k \ge q_X(u)\}$$

Par indépendance des variables X_i on déduit que

$$\mathbb{P}(\{T_1(u) = k\}) = \prod_{j=1}^{k-1} \mathbb{P}(X_i \le q_X(u)) \mathbb{P}(X_k \ge q_X(u)) = u^{k-1}(1-u)$$

3.2 QUESTION 15

Il suffit de remarquer $T_1(u)$ est une variable geometrique de paramêtre 1-u alors on aura

$$\mathbb{E}(T_1(u)) = \frac{1}{1-u}, var(T_1(u)) = \frac{u}{(1-u)^2}$$

Le lecteur pourrait calculer simplement .

3.3 QUESTION 16

La question 16 est simple il suffit d'ecrire les choses .Allons !!!

$$\mathbb{P}(X_{T_1(u)} \le x \mid T_1(u) = k) = \int \mathbf{1}_{X_{T_1(u)} \le x \mid T_1(u) = k} d\mathbb{P}_x = \frac{\int \mathbf{1}_{q_X(u) \le X_k \le x} d\mathbb{P}_x}{\mathbb{P}(X_k \ge q_X(u))}$$
$$\mathbb{P}(X_{T_1(u)} \le x \mid T_1(u) = k) = \frac{\mathbb{P}(q_X(u) \le X_k \le x)}{\mathbb{P}(X_k \ge q_X(u))} = \frac{F_X(x) - u}{1 - u}$$

3.4 QUESTION 17

Il suffit de remarquer que

$$\mathbb{P}(X_{T_1(u)} \le x) = \sum_{k>1} \mathbb{P}(X_{T_1(u)} \le x \mid T_1(u) = k) \mathbb{P}(T_1(u) = k)$$

et c'est gagné.

3.5 QUESTION 18

On a

$$\mathbb{E}(X_{T_1(u)}) = \int_0^{+\infty} \mathbb{P}(X_{T_1(u)} > w) dw = \int_0^{q_X(u)} \mathbb{P}(X_{T_1(u)} > w) dw + \int_{q_X(u)}^{+\infty} \mathbb{P}(X_{T_1(u)} > w) dw$$

Par definition de

$$T_1(u)$$

on a toujours

$$X_{T_1(u)} > w, \forall w \le q_X(u)$$

donc

$$\mathbb{P}(X_{T_1(u)} > w) = 1$$

et

$$\mathbb{E}(X_{T_1(u)}) == \int_0^{q_X(u)} dw + \int_{q_X(u)}^{+\infty} (1 - \mathbb{P}(X_{T_1(u)} \le w)) dw$$

et c'est gagné.

3.6 QUESTION 19

posons

$$g(X_j) = \mathbf{1}_{X_j \ge q_X(u)}$$

alors de l'indépendance des X_j on déduit l'indépendance des $g(X_j)$ de plus les $g(X_j)$ sont des variables de bernouilli donc $\sum_{j=1}^n g(X_j)$ est une variable binomiale de parametre $n, p = \mathbb{P}(X_j \ge q_X(u)) = 1 - u$

3.7 QUESTION 20

On applique la loi forte des grands nombre à $g(X_j)$ comme les X_j sont iid alors $g(X_j)$ sont iid donc $\frac{\sum_{j=1}^n g(X_j)}{n}$ converge presque surement vers

$$\mathbb{E}(g(X_1)) = 1 - u$$

3.8 QUESTION 21

Pour repondre à cette question il suffit d'utiliser 20 . et deduire que $q_X(u)$ en resolvant $F_{X_1}(x) = u$ donc $q_X(u)$ est le quantile d'ordre u de la variable X_1

3.9 QUESTION 22

posons $S_n = \frac{N_n(u)}{n}$ et $T_n = \frac{\sum_{j=1}^n X_j \mathbf{1}_{X_j \ge q_X(u)}}{n}$ alors

$$R_n(u) = \frac{T_n}{S_n} = h(T_n, S_n),$$

avec $h(x,y) = \frac{x}{y}$ Par le theoreme de grands nombres et la contuinite de h on a $R_n(u)$ converge vers $h(\mathbb{E}(X\mathbf{1}_{X\geq q_X(u)}), 1-u) = \frac{\mathbb{E}(X\mathbf{1}_{X\geq q_X(u)})}{1-u}$ comme

$$\frac{\mathbb{E}(X\mathbf{1}_{X \ge q_X(u)})}{1 - u} = \frac{1}{1 - u} \int_{q_X(u)}^{+\infty} x f_X(x) dx$$

4 Partie IV Deux exemples

4.1 QUESTION 23

On a

$$\forall u \in]0,1[,\mathbb{P}(X \ge q_X(u)) = \int_{q_X(u)}^{+\infty} \lambda e^{-\lambda x} dx = e^{-\lambda q_X(u)} = 1 - u$$

donc

$$q_X(u) = -\frac{\ln(1-u)}{\lambda}$$

4.2 QUESTION 24

On sait que posons V=1-U comme U est une variable on déduit des questions précedentes que V est une variable de loi uniforme donc $Y=q_X(V)$ et X ont la même loi . comme $Y=-\frac{\ln(U)}{\lambda}$ d'où le resultat.

4.3 QUESTION 25 et 26

$$\mathbb{E}(X_{T_1(u)}) = q_X(u) + \frac{1}{1-u} \int_{q_X(u)}^{+\infty} (1 - F_X(x)) dx = q_X(u) + \frac{1}{\lambda}$$

de plus

$$\frac{\mathbb{E}(X_{T_1(u)})}{q_X(u)} = 1 + \frac{1}{q_X(u)\lambda} * *$$

comme

$$F_X(q_X(u)) = u$$

donc quand u tend vers 1 alors $q_X(u)$ tend vers $+\infty$ et c'est gagné.

4.4 QUESTION 27

On a $F_X(x) = \int_{-\infty}^x f_X(t)dt = 0, x \le 0$ et

$$F_X(x) = \int_0^x f_X(t)dt = \int_0^x \frac{\alpha}{s} \frac{dt}{(1 + \frac{t}{s})^{\alpha + 1}} = 1 - \frac{s^{\alpha}}{(s+x)^{\alpha}} \forall x \ge 0$$

En resolvant

$$F_x(q_X(u)) = u$$

on déduit que

$$q_X(u) = s(-1 + \frac{1}{\sqrt[\alpha]{1-u}})$$

En considerant ** on deduit le comportement du rapport.

5 PARTIE DISCRETE

Cette partie est simple et laissé au lecteur

6 EXERCICE

La partie restante est laissé au lecteur elle n'est pas compliquée