Answers sheet. Only answers on this sheet will be corrected. Only those multiple choice answers circled here will be graded.

CANDIDATE NUMBER:	

1.	Fundame	entals				6	•	Γhread-	Level I	Parallel	ism		
	1.1.	A	B	\mathbf{C}	D		6	5.1.	A	В	C	D	
	1.2.	A	B B	C	D		6	5.2.	A	В	C	D	
	1.3.	A	В	C	D		6	5.3.	A	В	C	D	
	1.4.	A	В	C	D		6	5.4.	A	В	C	D	
2.	Memory	Hierar	chy			7	. 1	Warehouse-Scale Computers					
	2.1.	A	B	C	D		7	7.1.	A	В	C	D	
	2.2.	A	В	C	D		7	7.2.	A	В	C	D	
	2.3.	A	В	C	D		7	7.3.	A	В	C	D	
	2.4.	A	В	C	D		7	7.4.	A	B	C	D	
3.	Caches					8	. 1	Network	KS	_			
	3.1.	A	B	C	D		8	3.1.	A	B	C	D	
	3.2.	A	В	C	D		8	3.2.	A	В	C	D	
	3.3.	A	В	C	D		8	3.3.	A	В	C	D	
	3.4.	A	B	C	D		8	3.4.	A	В	C	D	
4.	Instructi	on-Lev	el Para	llelism		9	. 1	Prefetch	ing	_			
	4.1.	A	В	C	D		Ģ	9.1.	A	B	C	D	
	4.2.	A	В	C	D		9	9.2.	A	B	C	D	
	4.3.	A	В	C	D		Ģ	9.3.	A	B	C	D	
	4.4.	A	В	C	D		Ç	9.4.	A	В	C	D	
5.	Data-Lev	vel Para	allelism	ı		1	0. <i>A</i>	Articles					
	5.1.	A	В	C	D		1	10.1.	A	В	C	D	
	5.2.	A	B	C	D]	10.2.	A	В	C	D	
	5.3.	A	В	C	D		1	10.3.	A	В	C	D	
	5.4.	A	В	C	D]	10.4.	A	В	C	D	

Answer each of the five open questions as concisely as possible. Only answers on this sheet will be graded so use the space wisely.

Answer 1:
Energy proportionality is when the power consumption of a core is proportional to
the performance, e.g., 10% power consumption at 10% performance and
90% power consumption at 90% performance.
Many contemporary systems operate at less than 100% performance, e.g.,
datacenters often operate at less than 50% of peak performance. Without an
energy proportional system the operations per watt is not maximized.

Answer 2:
A web search can be performed by splitting the search index across multiple
machines and then have each machine produce a partial result from its part of the
index, i.e., the map functionality in MapReduce.
The partial results can be collected and, e.g., each word in the search can be
allocated to a machine to rank the pages for that particular word. The ranked pages
are then globally ranked to preduce the final result, i.e., the
reduce functionality in MapReduce.
Answer 3:
False sharing is when it appears like to processors share the same data when they in
reality does not.
Two processors sharing the same cache line but they write to two different words.
Two processors sharing the same cache line but they write to two different words.
Answer 4:
Modified - only this cache has the data and it's dirty
Exclusive - only this cache has the data and it's clean
Shared - the data resides in multiple caches and it's clean
Invalid - the data in this cache is not valide and have to be fetched
Answer 5:
The address is split into a tag, index, and offset.
The index is used to access the correct set and reads the tag and data.
The tag (page) is translated from virtual to physical address space by the TLB.
The translated tag is compared against the stored tag.
If the tags match (hit in the cache) then the offset is used to access the correct
word/half-word/byte in the cache line and the data is returned to the pipeline.
If the tags do not match (miss in the cache) then the data is fetched and installed
in the cache and the data is returned to the pipeline.