Distributed by:

JAMECO

ELECTRONICS

www.Jameco.com * 1-800-831-4242

The content and copyrights of the attached material are the property of its owner.

Jameco Part Number 38973

SCM2114AL 1024 x 4 Static CMOS RAM

Preliminary

Features

- Fast Access Time Selection: 100ns/120ns/150ns/200ns
- Direct Replacement for NMOS 2114 RAMs
- 883 Qualified Version: 883/2114ALM
- Three-State Outputs
- True TTL Compatibility
- Single 5V ± 10% Supply
- **■** Fully Static Asychronous Operation
- Three-State Outputs
- Common Data I/O Bus

Description

The SCM2114AL is a static silicon-gate CMOS RAM, a direct replacement for the NMOS 2114 4K RAM. The device is fully static and requires no clocks.

The Common Data lines (I/O) allow for simple interfacing with most microprocessors. A Chip Select input (\overline{CS}) is provided for memory expansion. The I/O lines are in a high impedance state when the chip is not selected ($\overline{CS} = 1$). The Write Enable (\overline{WE}) is used to select either the read ($\overline{WE} = 1$) or write ($\overline{WE} = 0$) mode.

The SCM2114AL is fully socket and spec compatible with NMOS 2114 RAMS. For applications where CS and address access timing can be coincident, even lower power can be achieved using the SCM21C14 which features a standby current of 50µA max.

The SCM2114AL is available in industry standard 18 pin packages. The different versions of the SCM2114AL are outlined below.

Operating Characteristics Summary

Туре	Access Time t _A (max.)	Operating Current I _{CC} (max.)		
SCM2114AL-1	100ns	40mA		
SCM2114AL-2	120ns	40mA		
SCM2114AL-3	150ns	40mA		
SCM2114AL-4	200ns	40mA		
SCM2114ALM	200ns	50mA		
883/2114ALM	200ns	50mA		

Pin Configuration

Block Diagram

Absolute Maximum Limits

DC Supply Voltage (V_{CC}):

-0.5 to +6.0V

Storage Temperature (T_S):

-65° to +150°C

Input Voltage (VIN):

 $(V_{SS}-0.3V) \leq V_{IN} \leq (V_{CC}+0.3V)$

Pin Description

A_{0.9} CS

Address Inputs

WE

Chip Select Write Enable

1/01-4

Data In/Out

Recommended Operating Conditions

Limits Parameter DC Supply Voltage (V_{CC}) 5V 2 10% Operating Temperature (T_A) 2114AL-1/-2/-3/-4 0° to +70°C -55° to +125°C 2114ALM

Truth Table

cs	WE	I/O ₁₋₄	Mode		
1	×	High Z	Not Selected		
0	1	Outputs	Read		
0	0	Inputs	Write		

D. C. Characteristics $(V_{CC} = 5V \pm 10\%)$

Symbol	Parameter	Min.	Typ.(1)	Max.	Units	Test Conditions
լը	Input Current			1.0	μΑ	
ILO	Output Leakage Current			1.0	Aμ	
V _{IL}	Input Low Voltage	•		0.8	V	
V _{IH}	Input High Voltage	2.0			lv	
VOL	Output Low Voltage			0.4	V	$I_{OL} = 3.2 \text{mA}$
/ он	Output High Voltage	2.4			V	$I_{OH} = -1.0 \text{mA}$
cc	Operating Current 2114AL		25	40	m A	$V_{1H}/V_{1L} = 2.0/0.8V$
cc	Operating Current 2114ALM		25	50	mA	$V_{1H}/V_{1L} = 2.0/0.8V$

A. C. Characteristics (2) $(V_{CC} = 5V \pm 10\%)$

Symbol	Parameter	2114 Min.	4AL-1 Max.	2114 Min.	Max.	2114 Min.	AL-3 Max.	2114/ Min.	NL-4/M Max.	Units
Read Cycl	8									
tac	Read Cycle	100		120		150		200	-	ns
tA	Access from Address		10 0		120		150		200	ns
tco	Chip Select to Output Valid		50		70		70		70	ns
t _{CX}	Chip Select to Output Active	5		5		5		5		ns
torp	Chip Select to Output Float		30		35		40	İ	50	ns
t _{OHA}	Output Hold from Address Change	5		5		5		5		ns
Write Cyc	le									
twc	Write Cycle	100		120		150		200		ns
tw	Write Pulse Width	50	-	70		90		120		ns
tow	Data Setup	50		70		90		120		ns
toH	Data Hold	0		0		0		0		ns
torw	Write to Output Float		30		35		40		50	ns
twa	Write Recovery	0		0	·	0		0		ns

Read Cycle (3)

Write Cycle

Input Pulse Levels:

Input Rise/Fall Times:

Time Measurement

Reference Level:

Output Load:

1 TTL Load and $C_L = 100 \, pF$

0.8 to 2.4V

≤ 10ns

^{1.} $T_A = 25$ °C; $V_{CC} = 5.0$ V 2. A.C. TEST CONDITIONS

^{3.} WE is high for a read cycle.

^{4.} tw is measured from the latter of CS or WE going low to the earlier of CS or WE going high. WE must be high during address transitions.