Chemistry Data Booklet Higher and Advanced Higher

For use in National Qualification Courses

Publication date: 2021 Publication code: BB8396

Published by the Scottish Qualifications Authority The Optima Building, 58 Robertson Street, Glasgow G2 8DQ Lowden, 24 Wester Shawfair, Dalkeith, Midlothian EH22 1FD

www.sqa.org.uk

The information in this publication may be reproduced in support of SQA qualifications. If it is reproduced, SQA should be clearly acknowledged as the source. If it is to be used for any other purpose, then written permission must be obtained from SQA. It must not be reproduced for trade or commercial purposes.

Contents

Relationships for Higher and Advanced Higher Chemistry4
Names, Symbols, Relative Atomic Masses and Densities
Melting and Boiling Points of Selected Elements6
Covalent Radii of Selected Elements
Electron Arrangements of Elements
Formulae of Selected Ions containing more than one kind of Atom9
Solubilities of Selected Compounds in Water
Melting and Boiling Points of Selected Oxides
Melting and Boiling Points of Selected Chlorides
Melting and Boiling Points of Selected Organic Compounds
Enthalpies of Formation and Combustion of Selected Substances
Selected Bond and Mean Bond Enthalpies11
Enthalpy of Sublimation of Carbon
Ionisation Energies and Electronegativities of Selected Elements
Electrochemical Series: Standard Reduction Potentials
Electrolysis of Water
Dissociation Constants of Selected Species14
Acid-base Indicators
Infra-red Correlation Table15
Spectral Lines and Flame Colours
Proton NMR Spectra Correlation Chart
Ionic Radii of Selected Ions
Standard Entropy Values for Selected Substances
Colour Wheel <t< td=""></t<>
Systeme Internationale Units
Physical Constants
Properties of Water
SI Prefixes and Multiplication Factors
Conversion Factors

Relationships for Higher and Advanced Higher Chemistry

$$E_h = cm\Delta T$$

% yield =
$$\frac{Actual\ yield}{Theoretical\ yield} \times 100$$

% atom economy =
$$\frac{\text{Mass of desired product(s)}}{\text{Total mass of reactants}} \times 100$$

$$n = cV$$

$$\frac{c_1 V_1}{n_1} = \frac{c_2 V_2}{n_2}$$

$$n = \frac{m}{GFM}$$

% by mass =
$$\frac{m}{GFM} \times 100$$

$$average \ rate = \frac{\Delta quantity}{\Delta t}$$

reaction rate =
$$\frac{1}{t}$$

$$c = f\lambda$$

$$E = Lhf$$

$$E = \frac{Lhc}{\lambda}$$

$$K = \frac{\left[C\right]^{c} \left[D\right]^{d}}{\left[A\right]^{a} \left[B\right]^{b}} \text{ for } aA + bB \Longrightarrow cC + dD$$

$$pH = -log_{10} \bigg[H_3O^+ \bigg]$$

$$pOH = -\log_{10} \lceil OH^{-} \rceil$$

$$\mathsf{p}K_a = -\log_{10}K_a$$

$$pH = pK_a - \log_{10} \frac{[acid]}{[salt]}$$

$$pH = \frac{1}{2}pK_a - \frac{1}{2}\log_{10}c$$

$$K_{\mathsf{W}} = \left\lceil \mathsf{H}_{\mathsf{3}}\mathsf{O}^{+} \right\rceil \left\lceil \mathsf{O}\mathsf{H}^{-} \right\rceil$$

$$pH + pOH = 14$$

$$K_{\mathrm{ln}} = \frac{\left[\mathrm{H_{3}O^{+}}\right]\!\!\left[\mathrm{In^{-}}\right]}{\left[\mathrm{HIn}\right]}$$

$$pH = pK_{ln} \pm 1$$

$$\Delta H^{\circ} = \sum \Delta H^{\circ}_{f}$$
 (products) $-\sum \Delta H^{\circ}_{f}$ (reactants)

$$\Delta S^{\circ} = \sum S^{\circ}$$
 (products) $-\sum S^{\circ}$ (reactants)

$$\Delta G^{\circ} = \sum \Delta G^{\circ}_{f}$$
 (products) $-\sum \Delta G^{\circ}_{f}$ (reactants)

$$\Delta G = \Delta H - T \Delta S$$

$$\Delta G^{\circ} = \Delta H^{\circ} - T \Delta S^{\circ}$$

Names, Symbols, Relative Atomic Masses and Densities

(Relative atomic masses, also known as average atomic masses, have been rounded to the nearest 0.1)

Element	Symbol	Relative atomic mass	Density (g cm ⁻³)
Actinium	Ac	227.0	10.0
Aluminium	Al	27.0	2.70
Americium	Am	243.1	12.0
Antimony	Sb	121.8	6.68
Argon	Ar	39.9	0.0018
Arsenic	As	74.9	5.75
Astatine	At	210.0	unknown
Barium	Ba	137.3	3.62
Berkelium	Bk	247.1	13.3
Beryllium	Be	9.0	1.85
Bismuth	Bi	209.0	9.79
Boron	В	10.8	2.34
Bromine	Br	79.9	3.10
Cadmium	Cd	112.4	8.69
Calcium	Ca	40.1	1.54
Californium	Cf	251.1	15.1
Carbon	С	12.0	*
Cerium	Ce	140.1	6.77
Caesium	Cs	132.9	1.87
Chlorine	Cl	35.5	0.0032
Chromium	Cr	52.0	7.15
Cobalt	Co	58.9	8.86
Copper	Cu	63.5	8.96
Curium	Cm	247.1	13.51
Dysprosium	Dy	162.5	8.55
Einsteinium	Es	252.1	unknown
Erbium	Er	167.3	9.07
Europium	Eu	152.0	5.24
Fluorine	F	19.0	0.0017
Francium	Fr	223.0	unknown
Gadolinium	Gd	157.3	7.90
Gallium	Ga	69.7	5.91
Germanium	Ge	72.6	5.32
Gold	Au	197.0	19.3
Hafnium	Hf	178.5	13.3
Helium	He	4.0	0.0002
Holmium	Но	164.9	8.80
Hydrogen	Н	1.0	0.00009
Indium	In	114.8	7.31
lodine	"	126.9	4.93
Iridium	lr	192.2	22.6
Iron	Fe	55.8	7.87
Krypton	Kr	83.8	0.0037
Lanthanum	La	138.9	6.15
Lead	Pb	207.2	11.3
Lithium	Li	6.9	0.53
Lutetium	Lu	175.0	9.84
Magnesium	Mg	24.3	1.74

Element	Symbol	Relative atomic mass	Density (g cm ⁻³)
Manganese	Mn	54.9	7.30
Mercury	Hg	200.6	13.5
Molybdenum	Mo	96.0	10.2
Neodymium	Nd	144.2	7.01
Neon	Ne	20.2	0.0009
Neptunium	Np	237.0	20.2
Nickel	Ni	58.7	8.90
Niobium	Nb	92.9	8.57
Nitrogen	N	14.0	0.0013
Osmium	Os	190.2	22.6
Oxygen	0	16.0	0.0014
Palladium	Pd	106.4	12.0
Phosphorus	P	31.0	1.82
Platinum	Pt	195.1	21.5
Plutonium	Pu	244.1	19.7
Polonium	Po	209.0	9.20
Potassium	K	39.1	0.89
Praseodymium	Pr	140.9	6.77
Promethium	Pm	144.9	7.26
Protactinium	Pa	231.0	15.4
Radium	Ra	226.0	5.00
Radon	Rn	222.0	0.0097
Rhenium	Re	186.2	20.8
Rhodium	Rh	102.9	12.4
Rubidium	Rb	85.5	1.53
Ruthenium	Ru	101.1	12.1
Samarium	Sm	150.4	7.52
Scandium	Sc	45.0	2.99
Selenium	Se	79.0	4.81
	Si		2.33
Silicon Silver		28.1 107.9	10.5
Sodium	Ag	23.0	0.97
Strontium	Na Sr	87.6	2.64
Sulfur	S	32.1	2.04
Tantalum	Ta	180.9	16.4
Technetium	Тс	97.9	11.0
Tellurium	Te	127.6	6.23
Terbium	Tb	158.9	8.23
Thallium	Tl	204.4	11.8
Thorium	Th		11.7
Thulium	Tm	168.9	9.32
Tin	Sn	118.7	7.29
Titanium	Ti	47.9	4.51
Tungsten	W	183.8	19.3
Uranium	U	238.0	19.1
Vanadium	V	50.9	6.00
Xenon	Xe	131.3	0.0059
Ytterbium	Yb	173.0	6.90
Yttrium	Y	88.9	4.47
Zinc	Zn	65.4	7.13
Zirconium	Zr	91.2	6.52

^{*}The density of carbon as graphite is 2.27 g cm $^{-3}$ The density of carbon as diamond is 3.51 g cm $^{-3}$

Melting and Boiling Points of Selected Elements

Group 1	Group 2											Group 3	Group 4	Group 5	Group 6	Group 7	Group 0
1 Hydrogen				1/													2 Helium
-259				Key	Ato	mic numb	er										-271
-253					Nam	e of elem	ent										-269
3	4				Melti	ng point ((°C)					5	6	7	8	9	10
Lithium	Beryllium				Boili	ng point (°റ					Boron	Carbon	Nitrogen	Oxygen	Fluorine	Neon
181	1287						•					2077	†3825	-210	-219	-220	-249
1342	2471*											4000		-196	-183	-188	-246
11	12											13	14	15	16	17	18
Sodium	Magnesium											Aluminium	Silicon	Phosphorus	Sulfur	Chlorine	Argon
98	650											660	1414	44	115	-101	-189
883	1090										_	2519	3265	281	445	-34	-186
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
Potassium	Calcium	Scandium	Titanium	Vanadium	Chromium	Manganese	Iron	Cobalt	Nickel	Copper	Zinc	Gallium	Germanium	Arsenic	Selenium	Bromine	Krypton
63	842	1541	1670	1910	1907	1246	1538	1495	1455	1085	420	30	938	817	221	-7	-157
<i>7</i> 59	1484	2836	3287	3407	2671	2061	2861	2927	2913	2560	907	2229	2833	†616	685	59	-153
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
Rubidium	Strontium	Yttrium	Zirconium	Niobium	Molybdenum	Technetium	Ruthenium	Rhodium	Palladium	Silver	Cadmium	Indium	Tin	Antimony	Tellurium	lodine	Xenon
39	777	1522	1854	2477	2622	2157	2333	1963	1555	962	321	157	232	631	450	114	-112
688	1377	3345	4406	4741	4639	4262	4147	3695	2963	2162	767	2072	2586	1587	988	184	-108
55	56	57	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
Caesium	Barium	Lanthanum	Hafnium	Tantalum	Tungsten	Rhenium	Osmium	Iridium	Platinum	Gold	Mercury	Thallium	Lead	Bismuth	Polonium	Astatine	Radon
28	727	920	2233	3017	3414	3185	3033	2446	1768	1064	-39	304	327	271	254	302	-71
671	1845	3464	4600	5455	5555	5590	5008	4428	3825	2836	357	1473	1749	1564	962		-62

^{*} at 28 atmospheres † sublimes

Group Group 2

1	
Hydrogen	
32	
3	4
Lithium	Beryllium
130	99
11	12
Sodium	Magnesium
160	140
19	20
Potassium	Calcium
200	174
37	38
Rubidium	Strontium
215	190
55	56
Caesium	Barium
238	206

Atomic number
Name of element
Covalent radius (pm)

	Covateri	it radius (pm)						
2.1	20		2.1	0.5	24	27	20	20	
21	22	23	24	25	26	27	28	29	30
Scandium	Titanium	Vanadium	Chromium	Manganese	Iron	Cobalt	Nickel	Copper	Zinc
159	148	144	130	129	124	118	117	122	120
39	40	41	42	43	44	45	46	47	48
Yttrium	Zirconium	Niobium	Molybdenum	Technetium	Ruthenium	Rhodium	Palladium	Silver	Cadmiur
176	164	156	146	138	136	134	130	136	140
57	72	73	74	75	76	77	78	79	80
Lanthanum	Hafnium	Tantalum	Tungsten	Rhenium	Osmium	Iridium	Platinum	Gold	Mercury
194	164	158	150	141	136	132	130	130	132

Covalent Radii of Selected Elements

5	6	7	8	9
Boron	Carbon	Nitrogen	Oxygen	Fluorine
84	75	71	64	60
13	14	15	16	17
Aluminium	Silicon	Phosphorus	Sulfur	Chlorine
124	114	109	104	100
31	32	33	34	35
Gallium	Germanium	Arsenic	Selenium	Bromine
123	120	120	118	117
49	50	51	52	53
Indium	Tin	Antimony	Tellurium	lodine
142	140	140	137	136
81	82	83	84	85
Thallium	Lead	Bismuth	Polonium	Astatine
144	145	150	142	148

Electron Arrangements of Elements

					_ (CCCIOII	Allungei	1101103 01	Licincii	.5								
Group 1	Group 2											Group 3	Group 4	Group 5	Group 6	Group 7	Group 0
(1)																	(18)
1 H			Key	Ato	omic num	ber											2 He
1 Hydrogen	(2)				Symbol							(13)	(14)	(15)	(16)	(17)	2 Helium
3	4			Electr	on arrang	ement						5	6	7	8	9	10
Li	Ве				Name							В	С	N	0	F	Ne
2,1	2,2											2,3	2,4	2,5	2,6	2,7	2,8
Lithium	Beryllium											Boron	Carbon	Nitrogen	Oxygen	Fluorine	Neon
11	12											13	14	15	16	17	18
Na	Mg				-	Transition	Element	S				Al	Si	Р	S	Cl	Ar
2,8,1	2,8,2											2,8,3	2,8,4	2,8,5	2,8,6	2,8,7	2,8,8
Sodium	Magnesium	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)	Aluminium	Silicon	Phosphorus	Sulfur	Chlorine	Argon
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
K	Ca	Sc	Ti	V	Cr	Mn	Fe	Со	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
2,8,8,1	2,8,8,2	2,8,9,2	2,8,10,2	2,8,11,2	2,8,13,1	2,8,13,2	2,8,14,2	2,8,15,2	2,8,16,2	2,8,18,1	2,8,18,2	2,8,18,3	2,8,18,4	2,8,18,5	2,8,18,6	2,8,18,7	2,8,18,8
Potassium	Calcium	Scandium	Titanium	Vanadium	Chromium	Manganese	Iron	Cobalt	Nickel	Copper	Zinc	Gallium	Germanium	Arsenic	Selenium	Bromine	Krypton
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
Rb	Sr	Υ	Zr	Nb	Мо	Tc	Ru	Rh	Pd	Ag	Cd	ln 2 2 4 2	Sn	Sb	Те	I	Xe
2,8,18,8,1	2,8,18,8,2	2,8,18,9,2	2,8,18, 10,2	2,8,18, 12,1	2,8,18,13,	2,8,18,13,	2,8,18,15, 1	2,8,18,16,	2,8,18, 18,0	2,8,18, 18,1	2,8,18, 18,2	2,8,18, 18,3	2,8,18, 18,4	2,8,18, 18,5	2,8,18, 18,6	2,8,18, 18,7	2,8,18, 18,8
Rubidium	Strontium	Yttrium	Zirconium	Niobium	Molybdenum	Technetium	Ruthenium	Rhodium	Palladium	Silver	Cadmium	Indium	Tin	Antimony	Tellurium	lodine	Xenon
55	56	57	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
Cs	Ba	La	Hf	Ta	W	Re	Os	lr 2 0 40 22	Pt	Au	Hg	Tl	Pb	Bi	Po	At	Rn
2,8,18,18, 8,1	2,8,18,18, 8,2	2,8,18,18, 9,2	2,8,18,32, 10,2	2,8,18, 32,11,2	2,8,18,32, 12,2	2,8,18,32, 13,2	2,8,18,32, 14,2	2,8,18,32, 15,2	2,8,18,32, 17,1	2,8,18, 32,18,1	2,8,18, 32,18,2	2,8,18, 32,18,3	2,8,18, 32,18,4	2,8,18, 32,18,5	2,8,18, 32,18,6	2,8,18, 32,18,7	2,8,18, 32,18,8
Caesium	Barium	Lanthanum	Hafnium	Tantalum	Tungsten	Rhenium	Osmium	Iridium	Platinum	Gold	Mercury	Thallium	Lead	Bismuth	Polonium	Astatine	Radon
87	88	89	104	105	106	107	108	109	110	111	112	113	114	115	116	117	118
Fr 2,8,18,32, 18,8,1	Ra 2,8,18,32, 18,8,2	Ac 2,8,18,32, 18,9,2	Rf 2,8,18,32, 32,10,2	Db 2,8,18,32, 32,11,2	Sg 2,8,18,32, 32,12,2	Bh 2,8,18,32, 32,13,2	Hs 2,8,18,32, 32,14,2	Mt 2,8,18,32, 32,15,2	Ds 2,8,18,32, 32,17,1	Rg 2,8,18,32, 32,18,1	Cn 2,8,18,32, 32,18,2	Nh 2,8,18,32, 32,18,3	Fl 2,8,18,32, 32,18,4	Mc 2,8,18,32, 32,18,5	Lv 2,8,18,32, 32,18,6	Ts 2,8,18,32, 32,18,7	Og 2,8,18,32 32,18,8
Francium	Radium	Actinium	Rutherfordium		Seaborgium	Bohrium	Hassium			Roentgenium		Nihonium	Flerovium	Moscovium	Livermorium	Tennessine	Oganesso
				F0	F0			(2)	(2)		7.5		(7	(0)	(0)	70	
			57	58	59	60	61	62	63	64	65	66	67	68	69	70	71

Lanthan	ides
---------	------

Ac	tir	nic	de	!S
,	٠	•••	-	_

	57	58	59	60	61	62	63	64	65	66	67	68	69	70	71
00	La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb	Lu
es	2,8,18, 18,9,2	2,8,18, 20,8,2	2,8,18,21, 8,2	2,8,18,22, 8,2	2,8,18,23, 8,2	2,8,18,24, 8,2	2,8,18,25, 8,2	2,8,18,25, 9,2	2,8,18,27, 8,2	2,8,18,28, 8,2	2,8,18,29, 8,2	2,8,18,30, 8,2	2,8,18,31, 8,2	2,8,18,32, 8,2	2,8,18,32, 9,2
	Lanthanum	Cerium	Praseodymium	Neodymium	Promethium	Samarium	Europium	Gadolinium	Terbium	Dysprosium	Holmium	Erbium	Thulium	Ytterbium	Lutetium
	89	90	91	92	93	94	95	96	97	98	99	100	101	102	103
	Ac	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr
es	2,8,18,32, 18,9,2	2,8,18,32, 18,10,2	2,8,18,32, 20,9,2	2,8,18,32, 21,9,2	2,8,18,32, 22,9,2	2,8,18,32, 24,8,2	2,8,18,32, 25,8,2	2,8,18,32, 25,9,2	2,8,18,32, 27,8,2	2,8,18,32, 28,8,2	2,8,18,32, 29,8,2	2,8,18,32, 30,8,2	2,8,18,32, 31,8,2	2,8,18,32, 32,8,2	2,8,18,32, 32,9,2
	Actinium	Thorium	Protactinium	Uranium	Neptunium	Plutonium	Americium	Curium	Berkelium	Californium	Einsteinium	Fermium	Mendelevium	Nobelium	Lawrencium

Formulae of Selected Ions containing more than one kind of Atom

one positive		one negat	ive	two negat	tive	three negative		
lon	Ion Formula		Formula	lon	Formula	lon	Formula	
ammonium	NH ₄ ⁺	ethanoate	CH₃COO [−]	carbonate	CO ₃ ²⁻	phosphate	PO ₄ ³⁻	
			HCO ₃	chromate	CrO ₄ ²⁻			
		hydrogensulfate	HSO ₄ ⁻	dichromate	Cr ₂ O ₇ ²⁻			
		hydrogensulfite	HSO ₃ ⁻	sulfate	SO ₄ ²⁻			
		hydroxide	OH-	sulfite	SO ₃ ²⁻			
			NO ₃ ⁻	thiosulfate	S ₂ O ₃ ²⁻			
		permanganate	MnO ₄					

Solubilities of Selected Compounds in Water

The table shows how some compounds behave in cold water

vs means very soluble (a solubility greater than 10 g l^{-1})

s means soluble (a solubility of between 1 and 10 $\mathrm{g\,l^{-1}}$)

i means insoluble (a solubility of less than $1 g l^{-1}$)

— no data

	bromide	carbonate	chloride	iodide	nitrate	phosphate	sulfate
aluminium	VS	_	VS	VS	VS	i	VS
ammonium	VS	VS	VS	VS	VS	VS	VS
barium	VS	i	VS	VS	VS	i	i
calcium	VS	i	VS	VS	vs	i	S
copper(II)	VS	i	VS	_	VS	i	VS
iron(II)	VS	i	VS	VS	VS	i	VS
iron(III)	VS	_	VS	_	VS	i	VS
lead(II)	S	i	S	i	VS	i	i
lithium	VS	VS	VS	VS	VS	i	VS
magnesium	VS	i	VS	VS	vs	i	VS
nickel	VS	i	VS	VS	VS	i	VS
potassium	VS	VS	VS	VS	vs	VS	VS
silver	i	i	i	i	VS	i	S
sodium	VS	VS	VS	VS	VS	VS	VS
tin(II)	VS	i	VS	S	_	i	VS
zinc	VS	i	VS	VS	VS	i	VS

oxide	hydroxide
i	i
_	_
VS	VS
S	S
i	i
i	i
i	i
i	i
VS	VS
i	i
i	i
VS	VS
i	_
VS	VS
i	i
i	i

Note: Some of the compounds in the table hydrolyse significantly in water.

Melting and Boiling Points of Selected Oxides

Element	Formula of oxide	mp (°C)	bp (°C)
hydrogen	H ₂ O	0	100
lithium	Li ₂ O	1438	
beryllium	BeO	2578	3900
boron	B ₂ O ₃	450	1860
carbon	CO ₂	sublimes at -78	
nitrogen	N ₂ O ₄	-9	21
fluorine	F ₂ O	-224	-144
sodium	Na ₂ O	sublimes at 1134	
magnesium	MgO	2825	3600
aluminium	Al_2O_3	2053	2977
silicon	SiO ₂	1713	2950
phosphorus	P ₄ O ₁₀	sublimes at 300	
sulfur	SO ₂	-75	-10
chlorine	Cl ₂ O	-121	2
potassium	K ₂ O	740	
calcium	CaO	2613	

Melting and Boiling Points of Selected Chlorides

Element	Formula of chloride	mp (°C)	bp (°C)
lithium	LiCl	610	1383
beryllium	BeCl ₂	405	482
boron	BCl ₃	-107	12
carbon	CCl ₄	-23	77
nitrogen	NCl ₃	-40	71
fluorine	FCl	-155	-100
sodium	NaCl	802	1465
magnesium	MgCl ₂	714	1412
aluminium	Al ₂ Cl ₆	sublimes at 180	
silicon	SiCl ₄	-69	58
phosphorus	PCl ₃	-93	76
sulfur	SCl ₂	-122	60
potassium	KCl	771	1680
calcium	CaCl ₂	775	

Melting and Boiling Points of Selected Organic Compounds

Name of compound	mp (°C)	bp (°C)
methane	-182	-162
ethane	-183	-89
propane	-188	-42
butane	-138	-1
pentane	-130	36
hexane	-95	69
heptane	-90	98
octane	-57	126
cyclobutane	-91	12
cyclopentane	-93	49
cyclohexane	7	81
ethene	-169	-104
propene	-185	-48
but-1-ene	-185	-6
pent-1-ene	-165	30
hex-1-ene	-140	63
benzene	6	80

Name of compound	mp (°C)	bp (°C)
methanol	-98	65
ethanol	-114	78
propan-1-ol	-124	97
propan-2-ol	-88	82
butan-1-ol	-89	118
butan-2-ol	-88	99
methanal	-92	-19
ethanal	-123	21
propanal	-80	48
butanal	-97	75
propanone	-95	56
butanone	-87	80
methanoic acid	8	101
ethanoic acid	17	118
propanoic acid	-20	142
butanoic acid	-5	164
methoxyethane	-113	7
ethoxyethane	-116	34

Enthalpies of Formation and Combustion of Selected Substances

Substance	Standard enthalpy of formation (kJ mol ⁻¹)	Standard enthalpy of combustion (kJ mol ⁻¹)
hydrogen	_	-286
carbon (graphite)	_	-394
sulfur (rhombic)	_	-297
methane	–75	-891
ethane	-84	-1561
propane	-104	-2220
butane	-126	-2878
benzene	49	-3268
ethene	52	-1411
ethyne	227	-1300
methanol	-239	-726
ethanol	-278	-1367
propan-1-ol	-303	-2021
methanoic acid	-425	-254
ethanoic acid	-484	-874

Selected Bond and Mean Bond Enthalpies

Bond Enthalpies

Bond	Enthalpy (kJ mol ⁻¹)
H-H	436
O = O	498
N ≡ N	945
F-F	159
Cl – Cl	243
Br – Br	194
1-1	152
H-F	570
H – Cl	431
H – Br	366
H – I	298

Mean Bond Enthalpies

Bond	Mean Enthalpy (kJ mol ⁻¹)
Si – Si	226
C – C	346
C = C	614
C≡C	839
C=C (aromatic)	507
H-0	463
H – N	388
C – H	412
C – N	296
C≡N	937
C-O	360
C = 0	804
C – F	484
C – Cl	338
C – Br	276
C-I	238

Enthalpy of Sublimation of Carbon

The energy required to convert 1 mole solid carbon into 1 mole gaseous carbon atoms is 716 kJ at 298 K (25 °C). The equation is $C(s) \rightarrow C(g) \Delta H = 716 \text{ kJ}$

Ionisation Energies and Electronegativities of Selected Elements

Notes: The first ionisation energy for an element E refers to the reaction $E(g) \to E^+(g) + e^-$; the second ionisation energy refers to $E^+(g) \to E^{2+}(g) + e^-$; etc.

Element	Element Symbol Ionisation Energies (kJ mol ⁻¹)			⁻¹)	Electro- negativity	
		First	Second	Third	Fourth	(Pauling scale)
hydrogen	Н	1312	_	_	_	2.2
helium	Не	2372	5251	_	_	_
lithium	Li	520	7298	11 815	_	1.0
beryllium	Be	900	1757	14 849	21 007	1.6
boron	В	801	2427	3660	25 026	2.0
carbon	С	1086	2353	4620	6223	2.6
nitrogen	N	1402	2856	4578	7475	3.0
oxygen	0	1314	3389	5300	7469	3.4
fluorine	F	1681	3374	6050	8408	4.0
neon	Ne	2081	3952	6122	9371	_
sodium	Na	496	4562	6910	9543	0.9
magnesium	Mg	738	1451	7733	10 543	1.3
aluminium	Al	578	1817	2745	11 577	1.6
silicon	Si	787	1577	3232	4356	1.9
phosphorus	Р	1012	1908	2914	4964	2.2
sulfur	S	1000	2252	3357	4556	2.6
chlorine	Cl	1251	2298	3822	5159	3.2
argon	Ar	1521	2666	3931	5771	_
potassium	K	419	3052	4420	5877	0.8
calcium	Ca	590	1145	4912	6491	1.0
scandium	Sc	633	1235	2389	7091	1.4
titanium	Ti	659	1310	2653	4175	1.5
vanadium	V	651	1410	2828	4507	1.6
chromium	Cr	653	1591	2987	4743	1.7
manganese	Mn	717	1509	3248	4940	1.6
iron	Fe	762	1562	2957	5287	1.8
cobalt	Со	760	1648	3232	4950	1.9
nickel	Ni	737	1753	3395	5297	1.9
copper	Cu	745	1958	3555	5536	1.9
zinc	Zn	906	1733	3833	5731	1.7
gallium	Ga	579	1979	2965	6102	1.8
germanium	Ge	762	1537	3302	4411	2.0
arsenic	As	944	1794	2735	4837	2.0
bromine	Br	1140	2083	3473	4564	3.0
rubidium	Rb	403	2633	3859	5075	0.8
strontium	Sr	549	1064	4138	5500	1.0
silver	Ag	731	2072	3361	_	1.9
tin	Sn	709	1412	2943	3930	2.0
antimony	Sb	831	1605	2441	4265	2.1
iodine	I	1008	1846	3184	_	2.7
caesium	Cs	376	2234	_	_	0.8
barium	Ва	503	965	_	_	0.9
gold	Au	890	1949	_	_	2.4
lead	Pb	716	1450	3081	4083	1.8

Electrochemical Series: Standard Reduction Potentials

Note: The data given below are reduction potentials applicable to standard state conditions.

Re	eaction		E° (V)
Li ⁺ (aq) + e ⁻	=	Li(s)	-3.04
$Cs^+(aq) + e^-$	=	Cs(s)	-3.03
Rb ⁺ (aq) + e ⁻	=	Rb(s)	-2.98
K ⁺ (aq) + e ⁻	=	K(s)	-2.93
Sr ²⁺ (aq) + 2e ⁻	=	Sr(s)	-2.90
Ca ²⁺ (aq) + 2e ⁻	=	Ca(s)	-2.87
Na ⁺ (aq) + e ⁻	=	Na(s)	-2.71
Mg ²⁺ (aq) + 2e ⁻	=	Mg(s)	-2.37
Al ³⁺ (aq) + 3e ⁻	=	Al(s)	-1.68
$2H_2O(\ell) + 2e^-$	=	$H_2(g) + 20H^-(aq)$	-0.83
Zn ²⁺ (aq) + 2e ⁻	=	Zn(s)	-0.76
$Cr^{3+}(aq) + 3e^{-}$	=	Cr(s)	-0.74
Fe ²⁺ (aq) + 2e ⁻	=	Fe(s)	-0.45
Ni ²⁺ (aq) + 2e ⁻	=	Ni(s)	-0.26
Sn ²⁺ (aq) + 2e ⁻	=	Sn(s)	-0.14
Pb ²⁺ (aq) + 2e ⁻	=	Pb(s)	-0.13
$Fe^{3+}(aq) + 3e^{-}$	=	Fe(s)	-0.04
2H ⁺ (aq) + 2e ⁻	=	H ₂ (g)	0.00
$S_4O_6^{2-}(aq) + 2e^-$	=	2S ₂ O ₃ ²⁻ (aq)	0.08
Sn ⁴⁺ (aq) + 2e ⁻	=	Sn ²⁺ (aq)	0.15
Cu ²⁺ (aq) + e ⁻	=	Cu ⁺ (aq)	0.15
SO ₄ ²⁻ (aq) + 2H ⁺ (aq) + 2e ⁻	=	$SO_3^{2-}(aq) + H_2O(\ell)$	0.17
Cu ²⁺ (aq) + 2e ⁻	=	Cu(s)	0.34
$O_2(g) + 2H_2O(\ell) + 4e^-$	=	40H ⁻ (aq)	0.40
$I_2(s) + 2e^-$	=	2l ⁻ (aq)	0.54
$Fe^{3+}(aq) + e^{-}$	\rightleftharpoons	Fe ²⁺ (aq)	0.77
$Ag^{+}(aq) + e^{-}$	=	Ag(s)	0.80
Hg ²⁺ (aq) + 2e ⁻	=	Hg(ℓ)	0.85
$Br_2(\ell) + 2e^-$	=	2Br ⁻ (aq)	1.07
$O_2(g) + 4H^+(aq) + 4e^-$	=	2H ₂ O(ℓ)	1.23
Cr ₂ O ₇ ²⁻ (aq) + 14H ⁺ (aq) + 6e ⁻	=	2Cr ³⁺ (aq) + 7H ₂ O(ℓ)	1.36
$Cl_2(g) + 2e^-$	=	2Cl ⁻ (aq)	1.36
$MnO_4^-(aq) + 8H^+(aq) + 5e^-$	=	$Mn^{2+}(aq) + 4H_2O(\ell)$	1.51
$H_2O_2(aq) + 2H^+(aq) + 2e^-$	=	2H ₂ O(ℓ)	1.78
$F_2(g) + 2e^-$	=	2F ⁻ (aq)	2.87

Electrolysis of Water

Reduction reactions at the negative electrode $2H_2O(\ell) + 2e^- \rightarrow H_2(g) + 2OH^-(aq) \\ 2H^+(aq) + 2e^- \rightarrow H_2(g)$ Oxidation reactions at the positive electrode $2H_2O(\ell) \rightarrow O_2(g) + 4H^+(aq) + 4e^-$

$$40H^{-}(aq) \rightarrow 2H_{2}O(\ell) + O_{2}(g) + 4e^{-}$$

Dissociation Constants of Selected Species

Equi	ilibrium in aqueous sol	utio	n	K _a	pK _a
methanoic acid	HCOOH + H ₂ O	\rightleftharpoons	H ₃ O ⁺ + HCOO ⁻	1.8×10^{-4}	3.75
ethanoic acid	$CH_3COOH + H_2O$	\rightleftharpoons	$H_3O^+ + CH_3COO^-$	1.7×10^{-5}	4.76
propanoic acid	$CH_3CH_2COOH + H_2O$	\rightleftharpoons	$H_3O^+ + CH_3CH_2COO^-$	1.3×10^{-5}	4.87
butanoic acid	$CH_3(CH_2)_2COOH + H_2O$	\rightleftharpoons	$H_3O^+ + CH_3(CH_2)_2COO^-$	1.5×10^{-5}	4.83
benzoic acid	$C_6H_5COOH + H_2O$	\rightleftharpoons	$H_3O^+ + C_6H_5COO^-$	6.3×10^{-5}	4.20
phenol	$C_6H_5OH + H_2O$	\rightleftharpoons	$H_3O^+ + C_6H_5O^-$	1.0×10^{-10}	9.99
hydrofluoric acid	$HF + H_2O$	\rightleftharpoons	$H_3O^+ + F^-$	6.3×10^{-4}	3.20
boric acid	$H_3BO_3 + H_2O$	\rightleftharpoons	$H_3O^+ + H_2BO_3^-$	5.4×10^{-10}	9.27
hydrocyanic acid	$HCN + H_2O$	\rightleftharpoons	$H_3O^+ + CN^-$	6.2×10^{-10}	9.21
carbonic acid	$H_2O + CO_2 + H_2O$	\rightleftharpoons	$H_3O^+ + HCO_3^-$	4.5×10^{-7}	6.35
hydrogencarbonate ion	$HCO_3^- + H_2O$	\rightleftharpoons	$H_3O^+ + CO_3^{2-}$	4.7×10^{-11}	10.33
sulfurous acid	$H_2SO_3 + H_2O$	\rightleftharpoons	$H_3O^+ + HSO_3^-$	1.4×10^{-2}	1.85
hydrogensulfite ion	$HSO_3^- + H_2O$	\rightleftharpoons	$H_3O^+ + SO_3^{2-}$	6.3×10^{-8}	7.20
hydrogen sulfide	$H_2S + H_2O$	\rightleftharpoons	$H_3O^+ + HS^-$	8.9×10^{-8}	7.05
hydrogensulfide ion	$HS^- + H_2O$	\rightleftharpoons	$H_3O^+ + S^{2-}$	1.0×10^{-19}	19.00
phosphoric acid	$H_3PO_4 + H_2O$	\rightleftharpoons	$H_3O^+ + H_2PO_4^-$	6.9×10^{-3}	2.16
dihydrogenphosphate ion	$H_2PO_4^- + H_2O$	\rightleftharpoons	$H_3O^+ + HPO_4^{2-}$	6.2×10^{-8}	7.21
hydrogenphosphate ion	$HPO_4^{2-} + H_2O$	\rightleftharpoons	$H_3O^+ + PO_4^{3-}$	4.8×10^{-13}	12.32
ammonium ion	$NH_4^+ + H_2O$	\rightleftharpoons	$H_3O^+ + NH_3$	5.6×10^{-10}	9.25
methylammonium ion	$CH_3NH_3^+ + H_2O$	\rightleftharpoons	$H_3O^+ + CH_3NH_2$	2.2×10^{-11}	10.66
phenylammonium ion	$C_6H_5NH_3^+ + H_2O$	\rightleftharpoons	$H_3O^+ + C_6H_5NH_2$	1.3×10^{-5}	4.87

Acid-base Indicators

Acid-base indicator	pH range
bromophenol blue	3.0–4.6
methyl orange	3.1–4.4
methyl red	4.4–6.2
phenolphthalein	8.3–10.0
bromocresol green	3.8-5.4
bromocresol purple	5.2–6.8
bromothymol blue	6.0–7.6
cresol red	0.0–1.0; 7.0–8.8
<i>p</i> -nitrophenol	5.4–6.6
phenol red	6.8–8.4
thymol blue	1.2–2.8; 8.0–9.6
thymolphthalein	9.4–10.6
screened methyl orange	2.9–4.4
azolitmin (litmus)	4.5–8.3

Infrared Correlation Table

Wave number range (cm ⁻¹)	Type of compound	Infrared absorption due to
3600–3200	alcohols and phenols	hydrogen bonded O - H stretch
3650–3590	alcohols and phenols	not hydrogen bonded O – H stretch
3500–3300	amine, not hydrogen bonded	N – H stretch
3300	alkyne	C – H stretch in C≡C – H
3095–3010	alkene	C – H stretch in C = C – H
3100–3000	benzene ring	C – H stretch
2962–2853	alkane	C – H stretch
2900–2820	aldehyde	C – H stretch in –CHO
2775–2700	aldehyde	C – H stretch in –CHO
3000–2500	carboxylic acid	hydrogen bonded O - H stretch in -COOH
2260–2215	nitriles	C≡N stretch
2260–2100	alkynes	C≡C stretch
1750–1735	ester	C = O stretch
1740–1700	aldehyde, ketones	C = O stretch
1730–1717	aromatic ester	C = O stretch
1725–1700	carboxylic acid	C = O stretch
1700–1680	aromatic and alkyl ketones aromatic carboxylic acid	C = O stretch
1680–1620	alkene	C = C stretch
1600, 1580, 1500 and 1450	benzene ring	C-C (aromatic) stretch
1485–1340	alkane	C – H bend
1342–1266	aromatic amine	C – N stretch
1275–1200	aromatic ether	C - O stretch
1250–1020	alkyl amine	C – N stretch
1150–1070	alkyl ether	C – O stretch

Spectral Lines and Flame Colours

Gas Discharge Lamps

Element	Wavelength (nm)	Colour
hydrogen	656	red
(Balmer series)	486	blue-green
	434	blue-green
	410	violet
	397	ultra-violet
	389	ultra-violet
helium	706	red
	667	red
	588	orange-yellow

Metal Vapour Lamps

Element	Wavelength (nm)	Colour
cadmium	644	red
	509	green
	480	blue
mercury	579] 577]	yellow doublet
	546	green
	436	blue-violet
	405	violet
	310	ultra-violet
sodium	589.0] 589.6]	orange-yellow doublet

Flame Colours

Note: The data refers to prominent spectral lines.

Element	Wavelength (nm)	Colour
barium	554	green
calcium	620	orange-red
copper	522	blue-green
lithium	671	crimson
potassium	405	lilac
sodium	589	orange-yellow
strontium	650	red

6.0 5.0 4.0 3.0 2.0 1.0

11.0 10.0 9.0

8.0

7.0

6.0

5.0

3.0

4.0

2.0

1.0

 $0.0 \delta (ppm)$

12.0 11.0 10.0 9.0 8.0 7.0

 $R \ = \ alkyl \ group$

Ar = aryl (aromatic) group

X = halogen

 $0.0 \delta (ppm)$

Ionic Radii of Selected Ions

lon	Radius (pm)	
H ⁻	208	
Li ⁺	76	
Be ²⁺	45	
N ³⁻	132	
O ²⁻	140	
F ⁻	133	
Na ⁺	102	
Mg ²⁺	72	
Al ³⁺	54	
P ³⁻	198	
S ²⁻	184	
Cl ⁻	181	
K ⁺	138	
Ca ²⁺	100	
Ti ³⁺	67	
V ³⁺	64	
Cr ²⁺	73	
V ³⁺ Cr ²⁺ Cr ³⁺	62	
Mn ²⁺	83	
Fe ²⁺	61	
Fe ³⁺	55	
Co ²⁺	65	
Co ³⁺	55	
Ni ²⁺	69	
Cu ⁺	77	
Cu ²⁺	73	
Zn ²⁺	74	
Br ⁻	196	
Rb ⁺	152	
Sr ²⁺	118	
Ag ⁺	115	
Sn ²⁺	112	
I-	220	
Cs ⁺	167	
Ba ²⁺	135	
Hg ²⁺	102	
Pb ²⁺	119	

Substance	Standard Entropy (J K ⁻¹ mol ⁻¹)
H ₂ (g)	131
He(g)	126
Li(s)	29
B(s)	5.9
C(s) (graphite)	5.7
C(s) (diamond)	2.4
N ₂ (g)	192
O ₂ (g)	205
F ₂ (g)	203
Na(s)	51
Mg(s)	33
Al(s)	28
Si(s)	19
Cl ₂ (g)	223
K(s)	65
Ca(s)	42
Fe(s)	27
Ni(s)	30
Cu(s)	33
Br₂(ℓ)	152
Ag(s)	43
l ₂ (s)	116
Cs(s)	85
Ba(s)	63
Au(s)	47
Hg(ℓ)	76
H ₂ O(ℓ)	70
H ₂ O(g)	189
CO ₂ (g)	214
MgO(s)	27
$Al_2O_3(s)$	51
SO ₂ (g)	248
CaO(s)	38
BaO(s)	72
NaCl(s)	72
CaCl ₂ (s)	108
CsCl(s)	101

Colour Wheel

Systeme Internationale (SI) Units

Quantity	Name of Unit	Symbol
length	metre	m
mass	kilogram	kg
time	second s	
electric current	ampere	Α
temperature	degree celsius	°C
energy	joule	J
electric charge	coulomb	С
electric potential difference	volt	٧
amount of substance	mole	mol

Physical Constants

Quantity	Symbol	Value
Avogadro constant	L	$6.02 \times 10^{23} \text{mol}^{-1}$
Planck constant	h	$6.63 \times 10^{-34} \text{Js}$
speed of light in vacuum	С	$3.00 \times 10^8 \text{ m s}^{-1}$

Properties of Water

Quantity	Value
specific heat capacity of liquid water	4.18 kJ kg ⁻¹ °C ⁻¹
ionic product of water	1.01 × 10 ⁻¹⁴ at 25 °C

SI Prefixes and Multiplication Factors

SI Prefix	Symbol	Multiplication
tera	Т	10 ¹²
giga	G	10 ⁹
mega	М	10 ⁶
kilo	k	10 ³
deci	d	10 ⁻¹
centi	С	10 ⁻²
milli	m	10 ⁻³
micro	μ	10 ⁻⁶
nano	n	10 ⁻⁹
pico	р	10 ⁻¹²

Conversion Factors

For Volume	For Thermodynamic Temperature
1 litre = $1 \text{ dm}^3 = 1000 \text{ cm}^3$	0.96 272.4
$1000 \text{ litres} = 1000 \text{ dm}^3 = 1 \text{ m}^3$	0 °C = 273 K

Published: June 2021

Change since last published:

House style updates.

Data values updated in line with CRC Handbook of Chemistry and Physics 100th ed.

Removal of material no longer in courses.

Solubilities moved to page 09.

Reorganisation of relationships on page 04.

Addition of carbon to nitrogen mean bond enthalpies.

Addition of thiosulfate and hydrogen peroxide to the Electrochemical Series.

H⁺ changed to H₃O⁺.

C - N stretch added to Infrared Correlation Table.