QF632-2025-W2

Number of participants: 45

14 correct answers out of 33 respondents

Suppose you're imputing missing FX-rate returns before computing rolling-window volatility features. Why might linear interpolation between returns be inappropriate?

11 correct answers out of 34 respondents

For a credit-scoring model trained on quarterly accounting ratios, missing data occur systematically fo

3. data occur systematically for small firms. Which approach helps mitigate selection bias due to MNAR missingness?

20 correct answers out of 33 respondents

In K-fold cross-validation, as

\boldsymbol{K} increases (with fixed

4. dataset size), the bias and variance of the estimated generalization error behave as:

10 correct answers out of 33 respondents

Which procedure correctly prevents "data leakage" during hyperparameter tuning?

17 correct answersout of 32
respondents

For time-series data (e.g.\ stock prices), which 6. cross-validation scheme properly respects temporal order?

×

You suspect an interaction: "Strategy" (Trend, Mean-Reversion) × "Market Regime" (Bull, Bear)

7. on monthly returns. Which side-by-side boxplot layout would most clearly reveal whether the effect of Strategy changes with Regime?

×

	Two boxes per Strategy (grouped by Regime within each Strategy)	0%	0 votes
⊘	Two boxes per Regime (grouped by Strategy within each Regime)	0%	0 votes
	Four boxes in arbitrary order	0%	0 votes
	A single box per Strategy, ignoring Regime	0%	0 votes

You compute a correlation matrix for five factors and display it as a heatmap ("correlation plot"). You 8. observe two factors with

8.

|r|>0.95. What is the most

serious concern for a linearregression factor model including both? **0** correct answer

out of 0 respondent

	Overfitting due to too many observations	0%	0 votes
⊘	Multicollinearity leading to unstable coefficient estimates	0%	0 votes
	Inability to compute pairwise scatter plots	0%	0 votes
	Reduced predictive power	0%	0 votes

(linear) correlation between 9. two variables affect the slope of the best-fit line in a simple regression?

How does the strength of the

⊘	A stronger (absolute) correlation yields a steeper slope.	0%	0 votes
	The slope is the same regardless of correlation.	0%	0 votes
	The slope equals the correlation coefficient exactly.	0%	0 votes
	A weaker correlation yields a steeper slope.	0%	0 votes

×

Which technique is an 10. example of feature selection (not feature extraction)?

	Principal Component Analysis	0%	0 votes
⊘	Removing predictors whose correlation with the target is below a threshold	0%	0 votes
	Applying a log-transform to a skewed variable	0%	0 votes
	Creating pairwise products of existing features	0%	0 votes

When you add an interaction term between two 11. continuous features, why might you center each first (subtract its mean)?

×

	To speed up tree-based models	0%	0 votes
⊘	To eliminate multicollinearity between main effects and their product	0%	0 votes
	To ensure the interaction term is always positive	0%	0 votes
	To reduce the number of features	0%	0 votes

You're using k

×

-nearest-neighbors for classification. Which

0 correct answer out of 0 respondent

12. transformation of your numeric features is most critical before fitting the model?

✓	Standardization (z-score)	0%	0 votes
	One-hot encoding	0%	0 votes
	Principal Component Analysis	0%	0 votes
	Binning into quartiles	0%	0 votes