pyCloudy, a tool to manage Cloudy

Christophe Morisset Instituto de Astronomia UNAM, Mexico chris_morisset@gmail.com

Christophe Morisset

- Working on HII regions, Planetary Nebulae, Wolf Rayet nebulae
- Interested in abundance determination, models of complex objects (3D, multi-phase, multi-components)
- Main developer of:
 - pyCloudy
 - PyNeb
 - 3MdB
- Interested in using Machine Learning techniques to interpolate in grids of models (Cloudy models for example)

The pyCloudy ecosystem

Main page:

https://sites.google.com/site/pycloudy

- Installing via pip install pyCloudy
- Github repository:

https://github.com/Morisset/pyCloudy

• Forum:

https://groups.google.com/forum/#!forum/pycloudy

PyCloudy (and PyNeb)

- Makes it easier to interact with Cloudy from any python script or notebook:
 - Write input file, run Cloudy, read output files from a single script
 - Easy to run grids of models (just a loop in python)
 - Make 3D models (actually pseudo-3D)
 - Allow to generate big grids of models (3MdB)
- PyNeb is another library that can be used to compute line emissivities, and determine electron temperature and densities from line ratios.

Why 3D?

 As we all know, PN are spherical, and HII regions plan parallels :-)

Planetary Nebula IC 418

Not O nor //

Aperture effects

- Color = dominating emission line.
- Position : different line ratios.

Velocity field

A&A 585, A69 (2016) DOI: 10.1051/0004-6361/201526653 © ESO 2015

3D pyCloudy modelling of bipolar planetary nebulae: Evidence for fast fading of the lobes*

K. Gesicki¹, A. A. Zijlstra², and C. Morisset³

MODELLING OF ASYMMETRIC NEBULAE. II. LINE PROFILES

Revista Mexicana de Astronomía y Astrofísica, 42, 153–166 (2006)

C. Morisset¹ and G. Stasińska²

Huge grids of models

- Sometimes one needs to compute huge grids of models (from a few 10³ to 10⁷ models...).
- In this case one cannot rely on reading all the output files, it would take tooooo much time and memory (RAM and ROM).
- The solution is to store the results of the models into a database.
- This is the main idea behind 3MdB (Mexican Million Models dataBase).

3MdB

https://sites.google.com/site/mexicanmillionmodels/