

Mark Scheme (Results) Summer 2009

GCE

GCE Mathematics (6666/01)

June 2009 6666 Core Mathematics C4 Mark Scheme

Question Number	Scheme	Marks
Q1	$f(x) = \frac{1}{\sqrt{(4+x)}} = (4+x)^{-\frac{1}{2}}$	M1
	$= (4)^{-\frac{1}{2}} (1 + \dots)^{-1} \qquad \frac{1}{2} (1 + \dots)^{-1} \text{ or } \frac{1}{2\sqrt{1 + \dots}}$	B1
	$= \dots \left(1 + \left(-\frac{1}{2}\right)\left(\frac{x}{4}\right) + \frac{\left(-\frac{1}{2}\right)\left(-\frac{3}{2}\right)}{2}\left(\frac{x}{4}\right)^2 + \frac{\left(-\frac{1}{2}\right)\left(-\frac{3}{2}\right)\left(-\frac{5}{2}\right)}{3!}\left(\frac{x}{4}\right)^3 + \dots\right)$	M1 A1ft
	ft their $\left(\frac{x}{4}\right)$	
	$= \frac{1}{2} - \frac{1}{16}x_1 + \frac{3}{256}x^2 - \frac{5}{2048}x^3 + \dots$	A1, A1 (6)
		[6]
	Alternative	
	$f(x) = \frac{1}{\sqrt{4+x}} = (4+x)^{-\frac{1}{2}}$	M1
	$= \underline{4^{-\frac{1}{2}}} + \left(-\frac{1}{2}\right)4^{-\frac{3}{2}}x + \frac{\left(-\frac{1}{2}\right)\left(-\frac{3}{2}\right)}{1.2}4^{-\frac{5}{2}}x^2 + \frac{\left(-\frac{1}{2}\right)\left(-\frac{3}{2}\right)\left(-\frac{5}{2}\right)}{1.2.3}4^{-\frac{7}{2}}x^3 + \dots$	<u>B1</u> M1 A1
	$= \frac{1}{2} - \frac{1}{16}x_1 + \frac{3}{256}x^2 - \frac{5}{2048}x^3 + \dots$	A1, A1 (6)

Question Number		Scheme		Marl	ks
Q2	(a)	1.14805	awrt 1.14805	B1	(1)
	(b)	$A \approx \frac{1}{2} \times \frac{3\pi}{8} (\dots)$		B1	
		$= \dots \left(3 + 2(2.77164 + 2.12132 + 1.14805) + 0\right)$	0 can be implied	M1	
		$= \frac{3\pi}{16} (3 + 2(2.77164 + 2.12132 + 1.14805))$	ft their (a)	A1ft	
		$= \frac{3\pi}{16} \times 15.08202 \dots = 8.884$	cao	A1	(4)
	(c)	$\int 3\cos\left(\frac{x}{3}\right) dx = \frac{3\sin\left(\frac{x}{3}\right)}{\frac{1}{3}}$		M1 A1	
		$=9\sin\left(\frac{x}{3}\right)$			
		$A = \left[9\sin\left(\frac{x}{3}\right)\right]_0^{\frac{3\pi}{2}} = 9 - 0 = 9$	cao	A1	(3)
					[8]

	stion nber	Scheme	Mar	·ks
Q3	(a)	$f(x) = \frac{4-2x}{(2x+1)(x+1)(x+3)} = \frac{A}{2x+1} + \frac{B}{x+1} + \frac{C}{x+3}$ $4-2x = A(x+1)(x+3) + B(2x+1)(x+3) + C(2x+1)(x+1)$ A method for evaluating one constant	M1 M1	
		$x \to -\frac{1}{2}$, $5 = A(\frac{1}{2})(\frac{5}{2}) \Rightarrow A = 4$ any one correct constant $x \to -1$, $6 = B(-1)(2) \Rightarrow B = -3$	A1	
		$x \rightarrow -3$, $10 = C(-5)(-2) \Rightarrow C = 1$ all three constants correct	A1	(4)
	(b)	(i) $\int \left(\frac{4}{2x+1} - \frac{3}{x+1} + \frac{1}{x+3}\right) dx$		
		$= \frac{4}{2} \ln(2x+1) - 3\ln(x+1) + \ln(x+3) + C$ A1 two ln terms correct	M1 A1	ft
		All three ln terms correct and " $+C$ "; ft constants	A1ft	(3)
		(ii) $\left[2\ln(2x+1)-3\ln(x+1)+\ln(x+3)\right]_0^2$		
		$= (2 \ln 5 - 3 \ln 3 + \ln 5) - (2 \ln 1 - 3 \ln 1 + \ln 3)$	M1	
		$=3\ln 5 - 4\ln 3$		
		$=\ln\left(\frac{5^3}{3^4}\right)$	M1	
		$= \ln\left(\frac{125}{81}\right)$	A1	(3)
				[10]

Question Number		Scheme	٨	Marks	
Q4	(a)	$e^{-2x} \frac{dy}{dx} - 2y e^{-2x} = 2 + 2y \frac{dy}{dx}$ A1 correct RHS	- M1	A1	
		$\frac{\mathrm{d}}{\mathrm{d}x}\left(y\mathrm{e}^{-2x}\right) = \mathrm{e}^{-2x}\frac{\mathrm{d}y}{\mathrm{d}x} - 2y\mathrm{e}^{-2x}$	B1		
		$\left(e^{-2x} - 2y\right) \frac{dy}{dx} = 2 + 2y e^{-2x}$	M1		
		$\frac{dy}{dx} = \frac{2 + 2y e^{-2x}}{e^{-2x} - 2y}$	A1	((5)
	(b)	At P, $\frac{dy}{dx} = \frac{2+2e^0}{e^0-2} = -4$	M1		
		Using $mm' = -1$ $m' = \frac{1}{4}$	M1		
		$y-1=\frac{1}{4}(x-0)$	M1		
		x-4y+4=0 or any integer multiple	A1	((4)
				[9]
		Alternative for (a) differentiating implicitly with respect to y.			
		$e^{-2x} - 2y e^{-2x} \frac{dx}{dy} = 2 \frac{dx}{dy} + 2y$ A1 correct RHS	M1	A1	
		$\frac{\mathrm{d}}{\mathrm{d}y}\left(y\mathrm{e}^{-2x}\right) = \mathrm{e}^{-2x} - 2y\mathrm{e}^{-2x}\frac{\mathrm{d}x}{\mathrm{d}y}$	B1		
		$(2+2ye^{-2x})\frac{dx}{dy} = e^{-2x} - 2y$	M1		
		$\frac{dx}{dy} = \frac{e^{-2x} - 2y}{2 + 2y e^{-2x}}$			
		$\frac{dy}{dx} = \frac{2 + 2y e^{-2x}}{e^{-2x} - 2y}$	A1	((5)

Ques		Scheme	Marks	S
Q5	(a)	$\frac{dx}{dt} = -4\sin 2t, \frac{dy}{dt} = 6\cos t$ $\frac{dy}{dx} = -\frac{6\cos t}{4\sin 2t} \left(= -\frac{3}{4\sin t} \right)$ At $t = \frac{\pi}{3}$, $m = -\frac{3}{4 \times \frac{\sqrt{3}}{2}} = -\frac{\sqrt{3}}{2}$ accept equivalents, awrt -0.87	B1, B1 M1 A1	(4)
	(b)	Use of $\cos 2t = 1 - 2\sin^2 t$ $\cos 2t = \frac{x}{2}, \sin t = \frac{y}{6}$ $\frac{x}{2} = 1 - 2\left(\frac{y}{6}\right)^2$ Leading to $y = \sqrt{(18 - 9x)} \left(= 3\sqrt{(2 - x)}\right) \text{cao}$	M1 M1 A1	
	(c)	$-2 \le x \le 2$ $k = 2$ $0 \le f(x) \le 6$ either $0 \le f(x)$ or $f(x) \le 6$ Fully correct. Accept $0 \le y \le 6$, $[0, 6]$	B1 B1 B1	(4)
				[10]
		Alternatives to (a) where the parameter is eliminated		
		$y = (18 - 9x)^{\frac{1}{2}}$ $\frac{dy}{dx} = \frac{1}{2}(18 - 9x)^{-\frac{1}{2}} \times (-9)$ At $t = \frac{\pi}{3}$, $x = \cos\frac{2\pi}{3} = -1$ $\frac{dy}{dx} = \frac{1}{2} \times \frac{1}{\sqrt{(27)}} \times -9 = -\frac{\sqrt{3}}{2}$	B1 B1 M1 A1	(4)
		$y^{2} = 18 - 9x$ $2y \frac{dy}{dx} = -9$ At $t = \frac{\pi}{3}$, $y = 6\sin\frac{\pi}{3} = 3\sqrt{3}$ $\frac{dy}{dx} = -\frac{9}{2 \times 3\sqrt{3}} = -\frac{\sqrt{3}}{2}$	B1 B1 M1 A1	(4)

Ques Num		Scheme	Marks	5
Q6	(a)	$\int \sqrt{(5-x)} dx = \int (5-x)^{\frac{1}{2}} dx = \frac{(5-x)^{\frac{3}{2}}}{-\frac{3}{2}} (+C)$ $\left(= -\frac{2}{3} (5-x)^{\frac{3}{2}} + C \right)$	M1 A1	(2)
	(b)	(i) $\int (x-1)\sqrt{(5-x)} dx = -\frac{2}{3}(x-1)(5-x)^{\frac{3}{2}} + \frac{2}{3}\int (5-x)^{\frac{3}{2}} dx$ $= $	M1 A1ft M1 A1	(4)
		(ii) $\left[-\frac{2}{3}(x-1)(5-x)^{\frac{3}{2}} - \frac{4}{15}(5-x)^{\frac{5}{2}} \right]_{1}^{5} = (0-0) - \left(0 - \frac{4}{15} \times 4^{\frac{5}{2}} \right)$ $= \frac{128}{15} \left(= 8 \frac{8}{15} \approx 8.53 \right) \text{awrt } 8.53$	M1 A1	(2) [8]
		Alternatives for (b) and (c) (b) $u^2 = 5 - x \Rightarrow 2u \frac{du}{dx} = -1$ $\left(\Rightarrow \frac{dx}{du} = -2u \right)$ $\int (x-1)\sqrt{(5-x)} dx = \int (4-u^2)u \frac{dx}{du} du = \int (4-u^2)u(-2u) du$ $= \int (2u^4 - 8u^2) du = \frac{2}{5}u^5 - \frac{8}{3}u^3 (+C)$ $= \frac{2}{5}(5-x)^{\frac{5}{2}} - \frac{8}{3}(5-x)^{\frac{3}{2}} (+C)$ (c) $x = 1 \Rightarrow u = 2, x = 5 \Rightarrow u = 0$ $\left[\frac{2}{5}u^5 - \frac{8}{3}u^3 \right]_{2}^{0} = (0-0) - \left(\frac{64}{5} - \frac{64}{3} \right)$	M1 A1 M1 A1	
		$\left[\frac{5}{5}u^{2} - \frac{3}{3}u^{2}\right]_{2} = (6 - 6) - \left(\frac{5}{5} - \frac{3}{3}\right)$ $= \frac{128}{15} \left(=8\frac{8}{15} \approx 8.53\right)$ awrt 8.53	A1	(2)

Question Number	Scheme	Marks
Q7 (a)	$\overrightarrow{AB} = \overrightarrow{OB} - \overrightarrow{OA} = \begin{pmatrix} 10 \\ 14 \\ -4 \end{pmatrix} - \begin{pmatrix} 8 \\ 13 \\ -2 \end{pmatrix} = \begin{pmatrix} 2 \\ 1 \\ -2 \end{pmatrix}$ or $\overrightarrow{BA} = \begin{pmatrix} -2 \\ -1 \\ 2 \end{pmatrix}$ $\mathbf{r} = \begin{pmatrix} 8 \\ 13 \\ 2 \end{pmatrix} + \lambda \begin{pmatrix} 2 \\ 1 \\ 2 \end{pmatrix}$ or $\mathbf{r} = \begin{pmatrix} 10 \\ 14 \\ 4 \end{pmatrix} + \lambda \begin{pmatrix} 2 \\ 1 \\ 2 \end{pmatrix}$ accept equivalents	M1 M1 A1ft (3)
(b)	$(-2) (-2) (-4) (-2)$ $\overrightarrow{CB} = \overrightarrow{OB} - \overrightarrow{OC} = \begin{pmatrix} 10 \\ 14 \\ -4 \end{pmatrix} - \begin{pmatrix} 9 \\ 9 \\ 6 \end{pmatrix} = \begin{pmatrix} 1 \\ 5 \\ -10 \end{pmatrix} \text{or } \overrightarrow{BC} = \begin{pmatrix} -1 \\ -5 \\ 10 \end{pmatrix}$ $CB = \sqrt{(1^2 + 5^2 + (-10)^2)} = \sqrt{(126)} (= 3\sqrt{14} \approx 11.2) \text{awrt } 11.2$	M1 A1 (2)
(c)	$\overrightarrow{CB}.\overrightarrow{AB} = \left \overrightarrow{CB} \right \left \overrightarrow{AB} \right \cos \theta$ $(\pm)(2+5+20) = \sqrt{126}\sqrt{9}\cos \theta$	M1 A1
(d)	$\cos \theta = \frac{3}{\sqrt{14}} \implies \theta \approx 36.7^{\circ} \qquad \text{awrt } 36.7^{\circ}$ $\frac{d}{\sqrt{126}} = \sin \theta$ $d = 3\sqrt{5} (\approx 6.7) \qquad \text{awrt } 6.7$	A1 (3) M1 A1ft A1 (3)
(e)	$BX^{2} = BC^{2} - d^{2} = 126 - 45 = 81$ $! CBX = \frac{1}{2} \times BX \times d = \frac{1}{2} \times 9 \times 3\sqrt{5} = \frac{27\sqrt{5}}{2} (\approx 30.2) \text{ awrt } 30.1 \text{ or } 30.2$	M1 A1 (3)
	Alternative for (e) ! $CBX = \frac{1}{2} \times d \times BC \sin \angle XCB$ $= \frac{1}{2} \times 3\sqrt{5} \times \sqrt{126} \sin(90 - 36.7)^{\circ}$ sine of correct angle ≈ 30.2 $\frac{27\sqrt{5}}{2}$, awrt 30.1 or 30.2	[14] M1 M1 A1 (3)

	stion nber	Scheme	M	arks
Q8	(a)	$\int \sin^2\theta d\theta = \frac{1}{2} \int (1 - \cos 2\theta) d\theta = \frac{1}{2} \theta - \frac{1}{4} \sin 2\theta (+C)$	M1 A	.1 (2)
	(b)	$x = \tan \theta \implies \frac{\mathrm{d}x}{\mathrm{d}\theta} = \sec^2 \theta$		
		$\pi \int y^2 dx = \pi \int y^2 \frac{dx}{d\theta} d\theta = \pi \int (2\sin 2\theta)^2 \sec^2 \theta d\theta$	M1 A	.1
		$=\pi \int \frac{\left(2 \times 2 \sin \theta \cos \theta\right)^2}{\cos^2 \theta} d\theta$	M1	
		$=16\pi \int \sin^2 \theta d\theta \qquad \qquad k=16\pi$	A1	
		$x = 0 \implies \tan \theta = 0 \implies \theta = 0, x = \frac{1}{\sqrt{3}} \implies \tan \theta = \frac{1}{\sqrt{3}} \implies \theta = \frac{\pi}{6}$	B1	(5)
		$\left(V = 16\pi \int_0^{\frac{\pi}{6}} \sin^2 \theta \mathrm{d}\theta\right)$		
	(c)	$V = 16\pi \left[\frac{1}{2}\theta - \frac{\sin 2\theta}{4} \right]_0^{\frac{\pi}{6}}$	- M1	
		$=16\pi \left[\left(\frac{\pi}{12} - \frac{1}{4} \sin \frac{\pi}{3} \right) - (0-0) \right]$ Use of correct limits	M1	
		$=16\pi \left(\frac{\pi}{12} - \frac{\sqrt{3}}{8}\right) = \frac{4}{3}\pi^2 - 2\pi\sqrt{3}$ $p = \frac{4}{3}, q = -2$	A1	(3)
				[10]