FSAE Continuously Variable Transmission

Team 13

Outline

- Problem Description
- Introduction to Continuously Variable Transmissions
- Key Features: Tuning Parameters
- Performance Analysis
- Implementation and Key Design Analyses
- Cost
- The Future

The Problem

Goal:

- Optimize engine power transmission
- Reduce driver error
- Increase vehicle acceleration
- Accomplish these with a CVT

Restraints:

- Mass, rotational inertia, size, cost, etc.
- Compatible with current vehicle

What is a CVT?

https://auto.howstuffworks.com/cvt2.htm

https://auto.howstuffworks.com/cvt3.htm

CVT vs. Sequential Gearbox

CVT

- Transmission gear ratio is variable
- Peak power achieved throughout operation
- Typical mechanical efficiency 96%
- Complex control mechanism

Sequential

- Engine Speed is variable
- Peak power achieved only for certain speeds in each gear
- Typical mechanical efficiency 98%
- Simple control mechanism

Our Concept

• 6

How does it work?

- Drive Pulley (Primary Clutch)
 - + Driven Pulley (Secondary Clutch) = CVT
- Shifting forces generated based on vehicle operating conditions – load, engine speed, vehicle speed
- Transmission gear ratio is controlled to achieve desired driving condition
- Designed for maximum power output at full load

Drive Pulley

•8

Drive Pulley

Shift Force FBD

- Shifting Forces from 2 sources
- 1. Flyweights
- CompressionSpring
- Oppose normal force of belt

Driven Pulley

Driven Pulley

- Shifting Forces from 2 sources
- 1. Helix
- CompressionSpring
- Oppose normal force of belt

• 11

Power Transmission

Output Power $\sim T_1 - T_2$

Tuning Parameters: Flyweights

13

Tuning Parameters: Helix

- Torque "Sensing"
- Clamp Belt in Driven Pulley
- Helix Angle and Radius

• 14

Tuning Parameters: Compression Springs

Drive Pulley

Opposes clamping force

Driven Pulley

Contributes to clamping force

Preload

 Defines Transmission Engagement

Rate

- Balances Pulley forces
- Influences upshift/downshift behavior

Preload

 Select to ensure sufficient belt clamp force

Rate

- Balances Pulley forces
- Influences upshift/downshift behavior

Tuning Parameters: Compression Springs

Spring Preload and Rate

$$F_{preload} \le \sim 1 \text{ kN}$$

CVT Shift Curve

- 1. Idle
- 2. Engagement
- 3. Low Gear/ Shift in
- 4. Shift
- 5. High Gear/ Shift out

Shift Curve Comparison

Engine Power Curve

Ground Force

Design Considerations

- 1. Friction Drive Requirements
- 2. Required Gearing Ratios
- 3. Functional Requirements
- 4. Design Calculations

Friction Drive

- Sufficient belt clamping forces are needed to ensure belt slip does not occur
- Low belt friction is required
- Belt clamping forces are restricted

Gear Train Torque Analysis

Gearing Ratios

- 1. A gear train ratio change was needed to lower the primary CVT torque
 - A gear ratio was picked that would lower the torque and increase the rotational speed of the primary clutch to crankshaft speed (industry standard)
- 2. Another gear train was needed to lower the final rotational speed of the differential
 - A designed top speed of 110 km/hr at an engine speed of 9000 rpm was chosen for optimal vehicle performance

Gear Train Speed Analysis

Functional Requirements

Transmission Output Shaft

Differential Sprocket

Sourced Components

- Due to the complexity of the primary and secondary clutch designs we chose to:
- Source the primary and secondary clutches from CVTech-ABB
- 2) Provide tuning specifications required for this application

Designed Transmission

Design Calculations

- Maximum transmission loading determined as the torque required to break traction on the rear tires
- Transmission was designed to withstand this continuous maximum load
- Shafts were designed for stress and fatigue with a safety factor of 1.5
- Bearings rated for at least 100 hours of maximum torque operation
- CVT rated for zero belt slip at operating conditions
- Total mass of transmission came to 13 kg

The Cost

Part	Source	Cost (USD)	Qty	Total (USD)
KSS3-15	QTC gears	\$26.99		\$26.99
KSS3-36	QTC gears	\$84.93	1	\$84.93
A 1C 1MYK30016	QTC gears	\$35.66	1	\$35.66
A 1C 1MYK30032	QTC gears	\$82.08	1	\$82.08
Gears Subtotal				\$229.66
Shaft 1	Solidwork	\$124.77	1	\$124.77
Shaft 2	Solidwork	\$88.13	1	\$88.13
Shaft 3	Solidwork	\$87.38	1	\$87.38
Shaft 4	Solidwork	\$185.19	1	\$185.19
Shaft Subtotal				\$485.47
Belt BD52-2167-5	CVTech	\$84.99	1	\$84.99
Driving pully 0600-0030	CVTech	\$349.99	1	\$349.99
Driven pulley 5600-0246	CVTech	\$199.99	1	\$199.99
CVT Subtotal				\$634.97

Part	Source	Cost (USD)	Qty	Total (USD)
FAG QJ304-MPA Four Point Contact Bearing (For primary,secondary and output shaft)	Quality Bearings Online	\$82.92	3	\$248.76
7008-B-2RS-TVP (For trans output shaft)	Applied	\$138.57	1	\$138.57
52 mm Bearing Cap	Solidwork	\$31.28	3	\$93.84
68 mm Bearing Cap	Solidwork	\$162.02	1	\$162.02
Bearing Subtotal				\$643.19
Socket Head Screws (10/pack)	Mcmaster	\$8.99	6	\$53.94
Hex Nuts (100/pack)	Mcmaster	\$2.61	1	\$2.61
Washers (100/pack)	Mcmaster	\$3.23	1	\$3.23
Frame Plate 1	Solidwork	\$97.40	1	\$97.40
Frame Plate 2 Gear Casing	Solidwork	\$97.04	1	\$97.04
Subtotal				\$254.22
Total Cost				\$2,247.51

Future Recommendations

Yamaha Phazer 500 engine

- 1. Yamaha Phazer 500 engine
 - greater compatibility with CVT
- 2. Eliminate additional shafts and gears weight and efficiency
- 3. A used Phazer 500 engine was \$1600.
- 4. Tune the system predicted and actual design performance WILL vary

Questions

Tuning Parameters: Helix

$$\sum F_{axial} = 0$$

$$R_a \cos(\beta) + \mu_a R_a \sin(\beta) = F_a$$

$$\sum F_{tangential} = 0$$

$$R_a \sin(\beta) - \mu_a R_a \cos(\beta) = F_t$$

 F_a – Axial Clamping Force

 F_t – Force due to applied torque

