# co2 emmission(R code)

## December 3, 2024

# 0.1 Including Libraries

```
[1]: library(ggplot2)
     library(dplyr)
     library(tidyr)
     library(plotly)
    Attaching package: 'dplyr'
    The following objects are masked from 'package:stats':
        filter, lag
    The following objects are masked from 'package:base':
        intersect, setdiff, setequal, union
    Attaching package: 'plotly'
    The following object is masked from 'package:ggplot2':
        last_plot
    The following object is masked from 'package:stats':
        filter
    The following object is masked from 'package:graphics':
        layout
```

```
[3]: # load Data

df <- read.csv("/Users/VSR/Desktop/AR Assignment/owid-co2-data.csv")
```

### 0.2 Data Preprocessing

```
[6]: # Data grouping
     special_groups <- c(</pre>
       "High-income countries", "Least developed countries (Jones et al.)", "

¬"Low-income countries",
       "Lower-middle-income countries", "Middle East (GCP)", "Non-OECD (GCP)", "OECD
      ⇔(GCP)",
       "OECD (Jones et al.)", "Panama Canal Zone", "Panama Canal Zone (GCP)",
       "St. Kitts-Nevis-Anguilla", "St. Kitts-Nevis-Anguilla (GCP)",
       "Upper-middle-income countries", "World",
       "Africa", "Africa (GCP)", "Antarctica", "Asia", "Asia (GCP)", "Asia (excl.
      ⇔China and India)",
       "Central America (GCP)", "Europe", "Europe (GCP)", "Europe (excl. EU-27)",
      ⇔"Europe (excl. EU-28)",
       "European Union (27)", "European Union (28)", "Middle East (GCP)", "North

→America",
       "North America (GCP)", "North America (excl. USA)", "Oceania", "Oceania
      \hookrightarrow (GCP)",
       "South America", "South America (GCP)", "International aviation", __

¬"International shipping",
       "International transport"
     )
     continents <- c('Africa', 'Asia', 'Europe', 'North America', 'South America',
      ⇔'Oceania')
     income group <- c('High-income countries', 'Upper-middle-income countries', '</pre>
      → 'Lower-middle-income countries', 'Low-income countries')
     global_data <- df %>% filter(country == "World")%>% filter(year >= 1990)
     global_data1 <- df %>%filter(country %in% income_group )%>% filter(year == 2022)
[8]: # Drom NA Values
     df1 <- df %>% drop_na(iso_code)
```

```
[10]: # Remove special groups
df1 <- df1 %>%
    filter(!country %in% special_groups)
```

```
[12]: # Find the top 20, top 10, and top 5 polluters in the world
      top20_countries <- df1 %>%
        group_by(country) %>%
        summarise(total_co2 = sum(co2, na.rm = TRUE)) %>%
        arrange(desc(total_co2)) %>%
        slice(1:20)
      top10_countries <- top20_countries %>% slice(1:10)
      top5_countries <- top10_countries %>% slice(1:5)
[14]: # Filter the dataset to include only continents
      co2_2022 <- df %>% filter(year == 2022) %>%
        filter(country %in% continents) %>%
        select(country, co2)
      co2_2021 <- df %>% filter(year == 2021) %>%
        filter(country %in% continents) %>%
        select(country, co2)
      co2_2020 <- df %>% filter(year == 2020) %>%
        filter(country %in% continents) %>%
        select(country, co2)
      co2 2022 <- co2 2022 %>%
        mutate(percentage = round((co2 / sum(co2)) * 100, 1))
      co2 2021 <- co2 2021 %>%
        mutate(percentage = round((co2 / sum(co2)) * 100, 1))
      co2_2020 <- co2_2020 %>%
        mutate(percentage = round((co2 / sum(co2)) * 100, 1))
[16]: # Calculate the percentage for each income group
      global_data1 <- global_data1 %>%
        mutate(percentage = round((co2 / sum(co2)) * 100, 1))
 []:
```

### 0.3 Global analysis

#### Global CO2, Methane and Nitrous Oxide emissions over time

```
[20]: # Create a line chart for the global gases emmission
ggplot(global_data, aes(x = year)) +
    geom_line(aes(y = co2, color = "Carbon Dioxide")) +
    geom_line(aes(y = methane, color = "Methane")) +
    geom_line(aes(y = nitrous_oxide, color = "Nitrous Oxide")) +
    labs(title = "Global Carbon dioxide, Methane and Nitrous Oxide Emissions",
```

```
x = "Year", y = "Emissions (Mt)") +
theme_minimal()
```

### Warning message:

"Removed 2 rows containing missing values or values outside the scale range

(`geom\_line()`)."

Warning message:

"Removed 2 rows containing missing values or values outside the scale range

(`geom\_line()`)."





[22]: ggplotly()

HTML widgets cannot be represented in plain text (need html)

### Global Temperature Change Due to CO2, Methane, and N2O

```
[29]: ggplot(global_data, aes(x = year)) +
        geom line(aes(y = temperature change from co2, color = "CO2")) +
        geom_line(aes(y = temperature_change_from_ch4, color = "Methane")) +
        geom_line(aes(y = temperature_change_from_n2o, color = "Nitrous Oxide")) +
       labs(title = "Global Temperature Change from CO2, Methane, and Nitrous_
       ⇔Oxide",
             x = "Year", y = "Temperature Change (°C)") +
        scale_color_manual(values = c("CO2" = "red", "Methane" = "green", "Nitrous__
       0xide'' = "blue")) +
        theme_minimal()
```

# Global Temperature Change from CO2, Methane, and Nitrous Oxide



### 0.3.1 Contribution of Every continent to the CO2 emmissions.

```
[32]: ggplot(co2_2022, aes(x = "", y = co2, fill = country)) +
        geom_bar(stat = "identity", width = 1) +
        coord_polar("y", start = 0) + # This makes it a pie chart
        labs(title = "CO2 Emissions by Continent (Most Recent Year)", fill =
        "Continents") +
        theme_void() +
        geom_text(aes(label = paste0(percentage, "%")), position =
        →position_stack(vjust = 0.5), size = 4)
```

## CO2 Emissions by Continent (Most Recent Year)



# 0.4 GDP and Population relationship with emmisions

```
[35]: # create a scatter plot
      ggplot(df1 %>% filter(country %in% top20_countries$country, year == 2022),
             aes(x = gdp, y = co2, color = country)) +
        geom_point(size = 3) +
        labs(title = "GDP vs CO2 Emissions (2022)",
             x = "GDP (International $)",
             y = "CO2 Emissions (Mt)") +
        scale_x_continuous(breaks = c(4e12, 8e12, 12e12, 16e12, 20e12),
                           labels = c("4 Trillion", "8 Trillion", "12 Trillion", "16
       →Trillion", "20 Trillion")) +
        theme_minimal()
```





```
[37]: ggplotly()
```

HTML widgets cannot be represented in plain text (need html)

The plot indicates that the relationship between GDP and CO2 emissions almost linear.

### [40]: ggplotly()

HTML widgets cannot be represented in plain text (need html)

HTML widgets cannot be represented in plain text (need html)

#### 0.5 Sources of CO2 Emissions

```
ggplotly(b)
```

The above graph shows the sources from which different countries emit CO2 in the environment. It helps us to identify the main polluters.





[]:

### 0.6 CO2 Emissions Per Capita

```
[52]: ggplot(df1 %>% filter(country %in% top10_countries$country, year == 2022),
             aes(x = population, y = co2, color = country)) +
          geom_point(size = 4) +
          labs(title = "Population vs CO2 Emissions (2022)", x = "Population", y = ⊔
       ⇔"CO2<sub>11</sub> Emissions (Mt)") +
        theme minimal()
     Warning message in grid.Call(C_textBounds, as.graphicsAnnot(x$label), x$x, x$y,
     "conversion failure on 'CO2_{\sqcup} Emissions (Mt)' in 'mbcsToSbcs': dot substituted
     for <e2>"
     Warning message in grid.Call(C_textBounds, as.graphicsAnnot(x$label), x$x, x$y,
     "conversion failure on "CO2" Emissions (Mt)' in 'mbcsToSbcs': dot substituted
     for <90>"
     Warning message in grid.Call(C_textBounds, as.graphicsAnnot(x$label), x$x, x$y,
     "conversion failure on \texttt{'CO2}_{\sqcup} Emissions (Mt)' in 'mbcsToSbcs': dot substituted
     for <a3>"
     Warning message in grid.Call(C_textBounds, as.graphicsAnnot(x$label), x$x, x$y,
     "conversion failure on "CO2" Emissions (Mt)' in 'mbcsToSbcs': dot substituted
     for <e2>"
     Warning message in grid.Call(C_textBounds, as.graphicsAnnot(x$label), x$x, x$y,
     "conversion failure on "CO2" Emissions (Mt)' in 'mbcsToSbcs': dot substituted
     for <86>"
     Warning message in grid.Call(C_textBounds, as.graphicsAnnot(x$label), x$x, x$y,
     "conversion failure on CO2_{\square} Emissions (Mt)' in 'mbcsToSbcs': dot substituted
     for <aa>"
     Warning message in grid.Call.graphics(C_text, as.graphicsAnnot(x$label), x$x,
     "conversion failure on \texttt{'CO2}_{\sqcup} Emissions (Mt)' in 'mbcsToSbcs': dot substituted
     for <e2>"
     Warning message in grid.Call.graphics(C_text, as.graphicsAnnot(x$label), x$x,
     "conversion failure on 'CO2 ... Emissions (Mt)' in 'mbcsToSbcs': dot substituted
     for <90>"
     Warning message in grid.Call.graphics(C_text, as.graphicsAnnot(x$label), x$x,
     "conversion failure on CO2_{\square} Emissions (Mt)' in 'mbcsToSbcs': dot substituted
     for <a3>"
     Warning message in grid.Call.graphics(C_text, as.graphicsAnnot(x$label), x$x,
```

#### x\$y,:

"conversion failure on 'CO2 $_{\!\sqcup}$  Emissions (Mt)' in 'mbcsToSbcs': dot substituted for <e2>"

Warning message in grid.Call.graphics(C\_text, as.graphicsAnnot(x\$label), x\$x,
x\$y, :

"conversion failure on 'CO2 $_{\sqcup}$  Emissions (Mt)' in 'mbcsToSbcs': dot substituted for <86>"

Warning message in grid.Call.graphics(C\_text, as.graphicsAnnot(x\$label), x\$x,
x\$y, :

"conversion failure on 'CO2 $_{\sqcup}$  Emissions (Mt)' in 'mbcsToSbcs': dot substituted for <aa>"



Above graphs show how emissions per capita differ across countries. Even though some countries emit large amounts of CO2, their per capita emissions may vary.

# 0.7 Temperature Change and Greenhouse Gas Impact

HTML widgets cannot be represented in plain text (need html)

#### 0.8 Economic Factors





# []:

It shows emmissions are not just from domestic activity but also about import/export and supply chains.



# 1 Cumulative CO2 Emissions Over Time



## 1.1 CO2 emmissions relationship with growth rate

HTML widgets cannot be represented in plain text (need html)

HTML widgets cannot be represented in plain text (need html)

### 1.2 CO2 Emissions Growth Rate %

#### 1.2.1 Income Groups comparision

HTML widgets cannot be represented in plain text (need html)

geom\_text(aes(label = paste0(percentage, "%")), position =\_\_

⇒position\_stack(vjust = 0.5), size = 4) # Adding percentage labels

theme\_void() + # Removes the background grid and axes for a cleaner pie chart

# CO2 Emissions by Income Group (2022)



[]: