Nozzle Flow Analyzer Project Agile Tracking Sheet

Logan White

2/24/2023

CS 225, Spring 2023

Embry-Riddle Aeronautical University

Daytona Beach campus

1 Aerospace Boulevard

Daytona Beach, FL 32114

INTRODUCTION:

This Test requirement doc describes the required testing functions of a Nozzle Flow analyzing system (NFA). In this system a flow path can be built from a list of set components, and the user can input data for calculating the properties of the flow. The user selects from a set number of conditions called flow nodes, referred to as such because each node can act independently of each other, with the exit conditions of one node acting as the inlet conditions of the next. For the system as a whole, isentropic flow relations are used with the exception of if a shock is detected. In essence this will be a basic CFD, computational fluid dynamics calculator.

BACKGROUND INFORMATION:

The majority of the values that this program calculates are tabulated in appendixes A-E, Farokhi, S. (2021). Aircraft Propulsion. John Wiley and Sons. To check for the flow properties through a nozzle Appendix A offers tabulated values when mach is entering a diverging nozzle at M=1, or leaving a converging nozzle at M=1 (converging nozzles are diverging nozzles but flipped). Appendix D offers the tabulated values for heat addition, and Appendix E offers the tabulated values for friction tubes. These problems must be checked by hand, as these tabulated values need to be matched with exit values in the tables for tabulation. If a normal shock occurs that problem must be checked by working it out by hand with the equations discussed in the Software design document.

REQUIREMENTS:

For the first deliverable the flow nodes are not working in sequence yet and the user has to pick one to test. For any of the pieces they must be checked against the tables for correct values, for project validity estimations are assumed.

Table 1: Requirement Specifications

ID	Requirement Specification
1	The program asks for the needed data matching with the selected flow piece. ATS12
	Heat tubes ask for heat added, friction tubes ask for length and friction coefficient R1
2	As a developer I want the program to have exception handling.
	Program will continue to run even if string is put instead of number R2
3	As I developer I want the program to properly detect a shock and notify the user
	If a shock is detected the Program prints that a shock is detected. R3
4	As a developer I want the program to notify the user of choked flow
	Program prints that the flow is choked (not valid in diverging nozzle type) R4
5	As a developer I want the program to properly use normal shock relations
	If a shock is detected NormalShock.java is called and calculates ratios R5.
6	As a developer I want every output from a node to be a valid input for the next
	Mach, Pressure, stored as exit values in a node, Mach prints to user. R6
7	As a user I want the program to tell the exit condition of a diverging nozzle
	Program prints out the exit condition for a diverging nozzle. R7
8	As a developer I want isentropic values to be called, where the flow has constant PO and TO (not heat tubes, and not in shocks)
	When isentropic values are needed the program calls Isentropic.java and uses said ratios. R8
9	I want the program to determine flow through a diverging nozzle when Mach is >1 (hard)
	Program uses an iterative method of the A/A* equation to create a ratio between inlet and outlet machs. R9
10	As a user I want the program to place a shock in friction tubes, but not heat tubes
	If the L* value is reached in the equation a shock is placed, Mach after that point =1 and flow displays as choked. R10
	As a user I want the program to Notify me of the exit condition on every node
11	If the User runs a node, an exit condition is calculated.

[Shall be completed for user stories actively worked in the current sprint. Add rows as needed.]

TEST CASES:

Table 2: Test Cases and Results

Req't ID	Test Case ID	Initial Conditions And Input	Expected Behavior Or Output	Actual Behavior Or Output	Pass Fail
R1	1	User inputs 1 for diverging nozzle	Program asks for Area1, area2, Pressure in, atmospheric pressure, temperature, and initial mach	Program does Expected Behavior	Pass
R2	2	User inputs a string for one of the flow properties	System uses default values, proceeds to run.	System skips to the next value	Pass
R3	3	(example values for shock) User selects diverging noz and puts in, Area1 = 1; Area2 = 4 Pressure in = 15 Atmospheric P = 1 Temp = 300, Mach in = 1	User says shock occurs in nozzle (these values happen to cause this)	Program prints out that a shcok was detected, and the area at which it was detected	Pass
R4	4	User selects heat tube and puts in: Area 1 = 1 Mach in = 3 Pressure in = 15 Atms P = 1 T = 600 Heat added = 3000000	System says that the heat tube is choked.	Program throughs a choked flow Boolean and prints out that it is choked	Pass
R5	5	User Makes a Converging nozzle with an outlandish set	System Prints a shock	System Prints that a shock has formed	Pass

		of values to cause a shock			
R6	6	User runs a modules (Any module) And inputs all data	System outputs an exit mach.	System has an output Mach value	pass
R7	7	User runs a diverging nozzle, runs any input	System outputs an exit condition.	System outputs an exit condition	Pass
R8	8	User runs a diverging nozzle	System calls on the isentropic values for the entrance mach	System calls on the isentropic values	Pass
R9	9	User runs a diverging nozzle, inputs a Mach in greater than 1, other values can be anything	System computes an exit mach, and runs normally, as if it would have if Min was 1 or <1	System has an output, using ratios of areas, and runs normally as it would have if Mach in was <1	Pass
R10	10	User runs a heat tube, Set friction = .005, And length equal to 60	Program prints an exit mach of 1	Program Prints choked flow	Pass
R11	11	User runs any node at with any conditions	An exit value is printed	An exit value is printed	Pass

REFERENCES:

Farokhi, S. (2021). Aircraft Propulsion. John Wiley and Sons.

APPENDICES:

Appendices Blank For Now Will be Updated as Project Progresses