# BIRLA INSTITUTE OF TECHNOLOGY & SCIENCE, PILANI

## Hyderabad Campus AGSRD DIVISION FIRST SEMESTER 2023 - 2024 COURSE HANDOUT

Date: 23 / 07 / 2023

Course No : EEE G613

Course Title : Advanced Digital Signal Processing

*Instructor-in-charge* : Dr. Rajesh Kumar Tripathy

Instructors: **Practical**: Ms. Shaswati Dash

#### 1. Course Description:

This course deals with introduction to random processes and spectral representation, modeling of AR, ARMA time-series processes, spectrum estimation, spectrum analysis and design of optimum (Wiener and Kalman) filters for estimating signals in noise, adaptive filters for estimating & predicting non-stationary signal and linear prediction. Some applications based on algorithms for adaptive statistical signal processing would be included.

### 2. Scope and Objective:

To provide a strong background on most important advanced DSP topics. It will include topics, which are used in different fields of signal processing applications, which include linear prediction and optimal filter design using Wiener and Kalman filters. The focus is on adaptive signal processing. It deals with signal modeling, optimal filtering, spectrum estimation and adaptive filtering.

#### 3. Text Book:

- 1. Monson H. Hayes, *Statistical Digital Signal Processing and Modeling*, Wiley-India, 2008. **Reference books:**
- 1. Manolakis, D., Ingle, M., Kogon, S., *Statistical and Adaptive Signal Processing*, McGraw-Hill, 2000.
- 2. Simon Haykin, *Adaptive Filter Theory*, Pearson Education, Fourth Edition, 2002.

#### 4. Course Plan:

| Lecture | Topics to be covered                            | Learning Objectives     | References         |
|---------|-------------------------------------------------|-------------------------|--------------------|
| No.     |                                                 |                         |                    |
| 1       | Introduction to the course, evaluation system   |                         | 1                  |
| 2-4     | Background: z-transform, DTFT principles,       | Fourier transform       | T1: 2              |
|         | matrix algebra, complex gradients               | orthogonality principle |                    |
|         |                                                 |                         |                    |
| 5-8     | Random variables and random processes and       | Difference between      | T1: 3.1-3.3        |
|         | basic probability theory for statistical signal | Random variables and    |                    |
|         | analysis                                        | random processes        |                    |
| 9-13    | Special types of random processes, signal       | Model approximation     | T1: 4.1-4.4.4, 4.6 |
|         | modeling and approximation methods (Pade,       | methods least square    |                    |
|         | Prony)                                          | approach                |                    |

| 14-17  | Stochastic Models , AR, MA and ARMA               | Difference between AR,      | T1: 4.7           |
|--------|---------------------------------------------------|-----------------------------|-------------------|
|        |                                                   | ARMA and MA models          |                   |
| 18-21  | Levinson-Durbin Recursion Algorithm and           | Efficient algorithm to      | T1: 5, 5.2.6,     |
|        | Lattice Filter Structure, Cholesky                | compute filter coefficients | 5.2.7             |
|        | Decomposition                                     | and their practical         |                   |
|        |                                                   | implementation              |                   |
| 22-25  | Introduction to filtering, Optimal FIR filtering: | Optimum filters for various | T1: 7             |
|        | Wiener filter                                     | applications such as noise  |                   |
|        |                                                   | cancellation, removal of    |                   |
|        |                                                   | degradation                 |                   |
| 26-28  | Kalman filters                                    | Optimum filters for various | T1: 7.4           |
|        |                                                   | applications such as noise  |                   |
|        |                                                   | cancellation, removal of    |                   |
|        |                                                   | degradation                 |                   |
| 29-30  | Non parametric spectrum estimation                | Power spectrum estimation   | T1: 8.2           |
|        |                                                   | for non-stationary signals  |                   |
| 31-33  | Minimum variance spectrum estimation,             | Different algorithms to     | T1: 8.3,8.5,8.6   |
|        | Parametric spectrum estimation, Frequency         | perform spectrum            |                   |
|        | estimation: Pisarenko, MUSIC                      | estimation                  |                   |
| 34-38  | Steepest descent algorithm and convergence        | Different types of          | T1: 9.2.1, 9.2.2, |
|        | analysis LMS, NLMS, Adaptive filters, Least       | algorithms for estimating   | 9.2.3, 9.2.4, :   |
|        | Square methods and The RLS algorithm,             | filter coefficients in an   | 9.3, 9.4          |
|        | Acoustic Echo Cancellation                        | optimal manner              |                   |
| 39- 42 | Term Project presentations                        |                             |                   |

### **5. Evaluation Scheme:**

| Component                | Duration | Weightage | Marks | Date & Time         | Evaluation type |
|--------------------------|----------|-----------|-------|---------------------|-----------------|
| Midsem                   | 2 hours  | 20%       | 60    | 14/10 4.00 - 5.30PM | Closed book     |
| Take-home<br>Assignments |          | 20%       | 60    | To be announced     | Open book       |
| Compre. Exam.            | 3 hours  | 40%       | 120   | 21/12               | Closed Book     |
| Lab                      | Regular  | 20%       | 60    | -                   | Open Book       |
| Total                    |          |           | 300   |                     |                 |

- **6. Chamber Consultation Hours:** To be announced in the class.
- **7. Make-up Policy:** Make-up for the tests will be granted as per ID rules. In all cases prior intimation must be given to IC. **There will be no make-up for the term paper/project presentations.**
- **8. Notices:** Notices regarding the course will be displayed in CMS/Google Classroom



Instructor - in - charge