Predicting traffic incidents using historical data

Predicting severity of traffic incidents is useful for

- The General Public
 - We can alert drivers to be more alert in hazardous conditions
- First responders
 - We can provide insight on areas to be present that have a higher likelihood of severe accident

Data Acquisition and Cleaning

- The data we used is provided from coursera and has all collisions in Seattle as provided by SPD and recorded by Traffic Records from 2004 to present.
- Excess data from severity code was reduced to create a more accurate model
- Cleaned data removed excess data and converted written types to numerical data

Using Logistic Regression to create model

```
n [21]: yhat prob = LR.predict proba(X test)
        yhat prob
 Out[21]: array([[0.57133499, 0.42866501],
                  [0.47089523, 0.52910477],
                  [0.67367858, 0.32632142],
                  [0.47096955, 0.52903045],
                  [0.47089523, 0.52910477],
                  [0.47096955, 0.52903045]])
```

Confusion Matrix and f1-score

In [27]:	print (clas	sific	cation_report	(y_test,	yhat))		
			precision	recall	f1-score	support	
		1	0.54	0.36	0.43	17409	
		2	0.52	0.70	0.60	17504	
	micro	avg	0.53	0.53	0.53	34913	
	macro	avg	0.53	0.53	0.51	34913	
	weighted	avg	0.53	0.53	0.51	34913	
<pre>In [28]: from sklearn.metrics import log_loss log_loss(y_test, yhat_prob)</pre>							
Out[28]: 0.6849475402881953							

Conclusion

• Due to lack of severity options we were unable to create an effective predictive model