

An (Almost) Optimally Fair 3-Party Coin-Flipping

Iftach Haitner and Eliad Tsfadia

TCE Summer School on Computer Security

September 2014

Coin-Flipping Protocols

I want c = 0

Parties want to jointly flip a uniform bit

$$c \leftarrow \{0,1\}$$

Output C

Blum's Coin-Flipping Protocol

Negligible bias

$$z \leftarrow commit(a)$$

$$a \leftarrow \{0,1\}$$

$$b \leftarrow \{0,1\}$$

 $a \leftarrow decommit(z)$

Output: $a \oplus b$

A cheats or aborts. B aborts.

If Honest Party Must output a Bit

Output: $a \oplus b$

A cheats or aborts: B outputs some bit

2-Party Coin-Flipping Protocols

Efficient 2-party protocol (A,B) is δ -bias CF:

- 1. $\Pr[(A,B)(1^n) = 0] = \Pr[(A,B)(1^n) = 1] = \frac{1}{2}$
- 2. For any PPT \mathcal{A}^* and bit c:

$$\Pr[(\mathcal{A}^*, B)(1^n) = c] \le \frac{1}{2} + \delta(n)$$
(Same for B)

Honest party must output a bit.

[Cleve '86]: Any m-round 2-party CF protocol can be biased by $\Omega\left(\frac{1}{m}\right)$

 \implies m-round $\Theta\left(\frac{1}{m}\right)$ -bias CF is called optimally fair.

Many-Party Coin-Flipping Protocols

A t-party δ -bias CF is analogously defined.

- 1. In honest execution, parties output common uniform bit.
- 2. Even if some parties cheats, honest parties output common δ -close to uniform bit.

- Negative results for 2-party protocols applied to many-party case.
- Positive results for many-party protocols seem harder to get than in the 2-party case.
- ❖ We focus on the 3-party case.

Known Results (positive)

- [Blum '82]: $\frac{1}{4}$ -bias CF.
- [Cleve '86]: m-round 2-party $\Theta\left(\frac{1}{\sqrt{m}}\right)$ -bias CF.
 - ❖ Both results assume One-Way Functions (OWFs)
 - * Both can be extended to the multiparty case.
- [Moran, Naor, Segev '09]: m-round 2-party $\Theta\left(\frac{1}{m}\right)$ -bias CF
- [Beimel, Omri, Orlov '11]: m-round t-party $\Theta\left(\frac{1}{m}\right)$ -bias CF, against $\ell < \frac{2}{3} \cdot t$ corrupted parties.
 - * Both results assume Oblivious Transfer (OT).
- For $\frac{2}{3}$ or more corrupted parties [Cleve '86] was the best known protocol.

Known Results (negative)

- [Cleve '86]: Any m-round 2-party CF protocol can be biased by $\Omega\left(\frac{1}{m}\right)$. Holds in any computational model.
- [Cleve, Impagliazzo '93] In the fail-stop model, any m-round 2-party CF protocol can be biased by $\Omega\left(\frac{1}{\sqrt{m}}\right)$.

fail-stop model: parties are unbounded, and their only malicious action is abort prematurely.

In the random oracle model:

- [Soled et. al '11]: No $m \in o\left(\frac{n}{\log(n)}\right)$ -round 2-party optimally fair CF, where n is oracle input length.
- [Soled et. al '14]: No oblivious 2-party optimally fair CF protocol.
- [Berman, Haitner, Tentes' 14]: CF (even "unfair") of any constant bias implies OWF.

Our Result

Theorem:

Assuming Oblivious Transfer,

there exists m-round, 3-party $O(\frac{\log^2 m}{m})$ -bias CF.

Construction outline:

- New 2-party $O(\frac{\log^2 m}{m})$ -bias CF
 - ➤ Builds upon Cleve's majority protocol
 - Does not use threshold round paradigm, used in [MNS '09] and [BOO '11]
- 3-party CF using the new 2-party CF.

Why Optimally-Fair Coin Flipping?

- Fundamental and natural primitive
- Step towards general optimally-fair SFE

Cleve's 2-Party Majority Protocol

Cleve's 2-Party Protocol

Output: Sign($\sum_{i=1}^{m} c_i$).

A aborts at round i: B chooses uniform c_i , ..., c_m by itself.

 $c_i = a_i \cdot b_i$

Analysis

For i = 1 to m:

By aborting, \mathcal{A}^* "gains" the difference between (protocol) expected outcome, and B's expected output in case of abort

$$\begin{array}{c}
z \leftarrow commit(a_i) \\
b_i \leftarrow \{-1,1\} \\
\hline
a_i \leftarrow decommit(z)
\end{array}$$

$$\begin{array}{c}
c_i = a_i \cdot b_i
\end{array}$$

Output: Sign($\sum_{i=1}^{m} c_i$).

A aborts at round i: B chooses uniform c_i , ..., c_m by itself.

Analysis, cont.

$$S_k = \sum_{j=1}^k c_j \approx N(0, k) \approx \text{uniform over} \left[-\sqrt{k}, \sqrt{k} \right]$$

- $|S_{i-1}| > \sqrt{m-i}$: abort at round i gains nothing
- $|S_{i-1}| \le \sqrt{m-i}$: abort at round i gains bias $\frac{1}{\sqrt{m-i}}$ ($\Pr[S_m \in \{-1,1\}]$ conditioned on $|S_{i-1}| \le \sqrt{m-i}$)
- $\Pr[|S_{i-1}| \le \sqrt{m-i}] = \frac{\sqrt{m-i}}{\sqrt{m}}$ (for $i \in \Omega(m)$)

On average: abort at round i gains bias
$$\frac{\sqrt{m-i}}{\sqrt{m}} \cdot \frac{1}{\sqrt{m-i}} = \frac{1}{\sqrt{m}}$$

Our 2-Party Protocol

Unfairness in Cleve's Protocol

For i = 1 to m:

 $\frac{1}{\sqrt{m}}$ difference between expected outcome, and B's expected output

Output: Sign($\sum_{i=1}^{m} c_i$).

A aborts at round i: B chooses uniform c_i , ..., c_m by itself.

Where does B get the sample from? Now B can bias A's outcome...

B gets sample according to expected outcome at end of round i

Output: Sign($\sum_{i=1}^{m} c_i$).

A aborts at round i: B outputs the (i-1)'th sample.

The (Non-fair) Dealer Paradigm

Construct CF by 2-phase protocol:

- 1. Honest, non-fair dealer outputs shares to the parties.
 - ➤ Non-fair Rushing adversary gets its shares first and might abort (preventing the other party from getting its shares)
- 2. Parties use shares as auxiliary input for their interaction.
- ❖ Parties are fail-stop follow the protocol but might abort.

Assuming oblivious transfer,

 δ -bias CF in this model $\Longrightarrow \delta$ -bias CF in the standard model.

Cleve's Protocol Using Dealer Paradigm

- B's shares of $\{c_i\}_{i=1}^m$
- 1. For i = 1 to m: $c_i \leftarrow \{-1,1\}.$
- 2. Split $\{c_i\}_{i=1}^m$ into two sets of shares using 2-out-of-2 Secret Sharing Scheme (SSS).

For i = 1 to m:

B sends his share of c_i

A sends her share of c_i

A's shares of $\{c_i\}_{i=1}^m$

Both parties reconstruct c_i

Output: $\operatorname{Sign}(\sum_{i=1}^{m} c_i)$.

A aborts at round i: B chooses uniform c_i, \dots, c_m by itself.

Our 2-Party Protocol, the Dealer

Dealer:

1. For i = 1 to m:

a) $c_i \leftarrow \{-1,1\}$ b) $\delta_i = \Pr\left[\sum_{j=1}^m c_j \ge 0 | c_1, ..., c_i\right]$ c) $d_i^A, d_i^B \leftarrow Ber(\delta_i), \quad (1 \text{ w.p. } \delta_i \text{ and } 0 \text{ o/w})$ 2. Split $\left\{d_i^A, d_i^B, c_i\right\}_{i=1}^m$ into two sets of shares using 2-out-of-2 SSS

• δ_i is protocol expected outcome given c_1, \dots, c_i .

We call $\{d_i^A, d_i^B\}$ the "defense values"

Analysis

 d_i^A and d_i^B are sampled according to expected outcome at end of round (i, b)

Aborting at round (i,b) is harmless

Aborting at round (i,a):

$$S_k = \sum_{i=1}^k c_i \approx \text{uni. over} \left[-\sqrt{k}, \sqrt{k} \right]$$

- $|S_{i-1}| > \sqrt{m-i}$: abort at round i, gives nothing
- $|S_{i-1}| \le \sqrt{m-i}$: abort at round i, yields bias $\frac{1}{m-i}$

On average: abort at round j achieves bias $\frac{\sqrt{m-i}}{\sqrt{m}} \cdot \frac{1}{m-i} = \frac{1}{\sqrt{m(m-i)}}$

$$\Theta\left(\frac{1}{m}\right)$$
 for "small" i (e.g., $i=1$), but $\Theta\left(\frac{1}{\sqrt{m}}\right)$ for "large" i (e.g., $i=m$)

Compare to $\frac{1}{\sqrt{m-i}}$ in Cleve

Weighted Majority Protocol

First rounds get larger influence

m	m-1	 3	2	1
c_1	c_2	 c_{m-2}	c_{m-1}	c_m

- Aborting at round (i,a) yields bias $\Theta\left(\frac{1}{m}\right)$, for any i
- Since \mathcal{A}^* might be adaptive, additional $\log m$ factor is paid.

Our 3-Party Protocol

3-Party Coin-Flipping (reminder)

Efficient 3-party protocol (A,B,C) is δ -bias CF:

- 1. $Pr[(A,B,C)(1^n) = 0] = Pr[(A,B,C)(1^n) = 1] = \frac{1}{2}$
- 2. For any PPTs \mathcal{A}^* and \mathcal{B}^* , and bit \mathcal{C} :

$$\Pr[(\mathcal{A}^*, B^*, C)(1^n) = c] \le \frac{1}{2} + \delta(n)$$
(Same for other two-party collations)

* Non-aborting parties must output the **same** bit.

Unfairness in 3-party Cleve

For i = 1 to m:

 $\frac{1}{\sqrt{m}}$ difference between expected outcome and (B,C)'s expected output

$$c_i = a_i \cdot b_i \cdot e_i$$

Output: Sign($\sum_{i=1}^{m} c_i$).

commit(ei

A aborts at round i: (B,C) chooses c_i, \ldots, c_m by themselves.

Use hiding 2-party dealer that leaks limited information about expected outcome

(B,C) get shares for 2-party $\operatorname{sub-protocol}$, whose outcome is sampled according to expected outcome at end of round i

Output: Sign($\sum_{i=1}^{m} c_i$).

A aborts at round i: (B,C) chooses c_i, \ldots, c_m by themselves.

Hiding Dealer

D is a parameterized dealer, if:

 $D(\gamma, m)$ outputs shares of m-round $\tilde{O}\left(\frac{1}{m}\right)$ -bias 2-party CF, with expected outcome γ (i.e., 1 w.p. γ and 0 o/w).

D is hiding if: $SD(D(\alpha, m), D(\alpha + \Delta)) \in \Theta(\Delta)$

 $D(\gamma, m)$ does not leak more information about γ than a γ -biased coin

A variant of our 2-party dealer is a parameterized hiding dealer for $\Delta \in o(1)$

Such dealer suffices, since underlying Cleve protocol is "smooth"

Our 3-Party Protocol

Dealer:

D — parameterized hiding dealer for m-round, 2-party $\tilde{O}\left(\frac{1}{m}\right)$ -bias CF

1. For i = 1 to m:

- a) $c_i \leftarrow \{-1,1\}$
- b) Let $\delta_i = \Pr[\sum_{j=1}^m c_j \ge 0 \mid c_1, ..., c_i].$
- c) $(d_i^{AB,\#A}, d_i^{AB,\#B}), (d_i^{AC,\#A}, d_i^{AC,\#C}), (d_i^{BC,\#B}, d_i^{BC,\#C})$ $\leftarrow D(\delta_i, m)$
- 2. Split $\{d_i^{AB,\#A}, d_i^{AB,\#B}, d_i^{AC,\#A}, d_i^{AC,\#C}, d_i^{BC,\#B}, d_i^{BC,\#C}, c_i\}_{i=1}^m$ into 3 sets of shares using 3-out-of-3 SSS.

Our 3-Party Protocot

- - a) $c_i \leftarrow \{-1,1\}$
 - b) Let $\delta_i = \Pr[\sum_{i=1}^m c_i \ge 0 \mid c_1, ..., c_i].$
 - c) $(d_i^{AB,\#A}, d_i^{AB,\#B}), (d_i^{AC,\#A}, d_i^{AC,\#C}), (d_i^{BC,\#B}, d_i^{BC,\#C})$ $\leftarrow D(\delta_i, m)$
- 2. Split $\{d_i^{AB,\#A}, d_i^{AB,\#B}, d_i^{AC,\#A}, d_i^{AC,\#C}, d_i^{BC,\#B}, d_i^{BC,\#C}, c_i\}_{i=1}^m$ into 3 sets of shares using 3-out-of-3 SSS.

sends his shares of di #A di #C Sends his share of ci

For i = 1 to m:

sends her shares of $d_i^{:,\#B}$, $d_i^{:,\#C}$ Sends her share of c_i

Broadcast Channel

sends his shares of d;#A Sends his share of ci

A aborts at round (i,a): B and C interact in

2-party CF using $(d_{i-1}^{BC,\#B}, d_{i-1}^{BC,\#C})$

A aborts at round (i,b): B and C interact in

2-party CF using $(d_i^{BC,\#B}, d_i^{BC,\#C})$

Analysis

1. For i = 1 to m:

a) $c_i \leftarrow \{-1,1\}$ b) Let $\delta_i = \Pr[\sum_{j=1}^m c_j \ge 0 \mid c_1, ..., c_i]$.

c) $(d_i^{AB,\#A}, d_i^{AB,\#B}), (d_i^{AC,\#A}, d_i^{AC,\#C}), (d_i^{BC,\#B}, d_i^{BC,\#C})$ $\leftarrow D(\delta_i, m)$ 2. Split $\{d_i^{AB,\#A}, d_i^{AB,\#B}, d_i^{AC,\#A}, d_i^{AC,\#C}, d_i^{BC,\#B}, d_i^{BC,\#C}, c_i\}_{i=1}^m$

into 3 sets of shares using 3-out-of-3 SSS.

I. For i=1 to m:

a) $c_i \leftarrow \{-1,1\}$ b) Let $\delta_i = \Pr[\sum_{j=1}^m c_j \ge 0 \mid c_1, \dots, c_l\}$.
c) (d_i^{ABBA}, d_i^{ABBA}) , (d_i^{BCBA}, d_i^{BCBC}) , $(d_i^{BCBA}, d_i^{BCBC}, d_i^{BCBC})$, $(d_i^{BCBA}, d_i^{BCBC}, d_i^{BCBC})$, $(d_i^{BCBA}, d_i^{BCBC}, d_i^{BCBC})$, $(d_i^{BCBA}, d_i^{BCBC}, d_i^{BCBC}, d_i^{BCBC})$, $(d_i^{BCBA}, d_i^{BCBC}, d_i^{BCBC}, d_i^{BCBC}, d_i^{BCBC})$ Sends his shares of d_i^{BCB} , d_i^{BCC} Sends her share of c_i Sends his shares of d_i^{BCBC} , d_i^{BCC} , d_i^{BCBC} , d_i^{BCC} , d_i^{BCBC} , d_i^{BCC} , d

- \mathcal{A}^* and \mathcal{B}^* wants to bias the protocol using 2 aborts.
- \bullet $D(\delta_i, m)$ hides $\delta_i \Longrightarrow$ First abort achieves $\tilde{O}\left(\frac{1}{m}\right)$ bias.
- * $D(\delta_i, m)$ is $\tilde{O}\left(\frac{1}{m}\right)$ -bias CF \Longrightarrow Second abort achieves $\tilde{O}\left(\frac{1}{m}\right)$ bias.

2-Party Hiding Dealer

Hiding Dealer (reminder)

D is a parameterized dealer, if:

 $D(\gamma, m)$ outputs shares of m-round $\tilde{O}\left(\frac{1}{m}\right)$ -bias 2-party CF, with expected outcome γ (i.e., 1 w.p. γ and 0 o/w).

D is hiding if: $SD(D(\alpha, m), D(\alpha + \Delta)) \in \Theta(\Delta)$

Non-Hiding Dealer

• C_{ϵ} – distribution over $\{-1,1\}$, taking 1 w.p. $\frac{1}{2} + \epsilon$ and -1 o/w.

Input: γ:

- 1. Set $\epsilon = (\gamma \frac{1}{2})/\sqrt{m}$ $\binom{\Pr}{(c_1, ..., c_m) \leftarrow (C_{\epsilon})^m} [\sum_{i=1}^m c_i \ge 0] = \gamma)$
- 2. For i = 1 to m, let
 - a) $c_i \leftarrow C_{\epsilon}$
 - b) $\delta_i = \Pr[\sum_{j=1}^m c_j \ge 0 \mid c_1, ..., c_i]$
 - c) $d_i^A, d_i^B \leftarrow Ber(\delta_i)$
- 3. Split $\{d_i^A, d_i^B, c_i\}_{i=1}^m$ into two sets of shares using 2-out-of-2 secret sharing scheme

Effectively, $\{d_i^A, d_i^B\}_{i=1}^m$ form 2m independent samples from $Ber(\gamma)$, and thus determine γ .

Hiding Dealer

• C_{ϵ} – dist. over $\{-1,1\}$, taking 1 w.p. $\frac{1}{2} + \epsilon$ and -1 o/w.

Let $S \leftarrow (C_{\epsilon})^{2m}$

Input: γ

- 1. Set $\epsilon = (\gamma \frac{1}{2})/\sqrt{m}$
- 2. For i = 1 to m, let
 - a) $c_i \leftarrow C_{\epsilon}$
 - b) $\delta_i = \Pr[\sum_{j=1}^m c_j \ge 0 \mid c_1, ..., c_i]$
 - c) $d_i^A, d_i^B \leftarrow Ber(\delta_i)$
- 3. Sp $Ber(\delta_i)$: Sign $(\sum_{j=1}^i c_j + \sum_{c \in S_{m-i}} c)$ where S_{m-i} is a random subset of S of size m-i
 - Only 2m samples from C_{ϵ}
 - $SD(D(\alpha, m), D(\alpha + \Delta)) \in \Theta(\Delta)$, for $\Delta \in o(1)$
 - Proving fairness is harder

Open Problems

- Removing the $O(\log^2 m)$ factor
- More than 3 parties
- Necessity of Oblivious Transfer
- Applications to fair SFE