Course: Modern Cryptography

Design Principles of Block Ciphers/Pseudorandom Permutations (AES)

Shashank Singh

IISER Bhopal

Sept 18, 2025

BRIEF HISTORY OF BLOCK CIPHERS

- 1972: The National Institute of Standards and Technology (NIST) solicits proposals for encryption algorithms for the protection of computer data.
- 1973-1974: IBM develops DES.
- 1975: The National Security Agency (NSA) "fixed" DES.
- 1977: DES adopted as a US Federal Information Processing Standard (FIPS 46).
- 1981: DES adopted as a US banking standard (ANSI X3.92).
- 1988: Triple-DES standardized (ANSI X9.52).
- 1997: NIST begins the AES (Advanced Encryption Standard) competition.
- 1999: 5 finalists for AES announced.
- 2001: Rijndael adopted for AES (FIPS 197).
- 2024: No significant weaknesses have been found with AES

SOME DESIRABLE PROPERTIES OF BLOCK CIPHERS

Security:

- Diffusion: each ciphertext bit should depend on all plaintext bits.
- Confusion: the relationship between key and ciphertext bits should be complicated.
- Key length: should be small, but large enough to preclude exhaustive key search.

SOME DESIRABLE PROPERTIES OF BLOCK CIPHERS

Security:

- Diffusion: each ciphertext bit should depend on all plaintext bits.
- Confusion: the relationship between key and ciphertext bits should be complicated.
- Key length: should be small, but large enough to preclude exhaustive key search.

Efficiency:

- Simplicity: easier to implement and analyze.
- Speed: high encryption and decryption rates. should be complicated.
- Platform: suitable for hardware and software.

BLOCK CIPHER INTERNALS

AES BLOCK CIPHER

Key	Rounds
128	10
192	12
256	14

- We will primarily focus on the design of 128 bit AES only.
- Internally, the AES operations are performed on a two-dimensional array of bytes called the State.

Table: Key-Block-Round Combinations

	Key Length (Nk words)		Number of Rounds (Nr)
AES-128	4	4	10
AES-192	6	4	12
AES-256	8	4	14

Source: https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.197.pdf

Algorithm 1: Figure 5. Pseudo Code for the Cipher.

```
Input : byte in[4*Nb], byte out[4*Nb], word
         w[Nb*(Nr+1)]
  Output: Encrypted output block out
1 byte state[4][Nb];
2 state \leftarrow in:
3 AddRoundKey(state, w[0..Nb-1])
4 for round = 1 to Nr - 1 do
     SubBytes(state);
   ShiftRows(state);
   MixColumns(state);
    AddRoundKey(state, w[round*Nb ...
   (round+1)*Nb - 1])
9 SubBytes(state);
10 ShiftRows(state);
11 AddRoundKey(state, w[Nr*Nb .. (Nr+1)*Nb -
   11);
12 out \leftarrow state;
```

5

6

AES-128 ENCRYPTION

AES-128 ENCRYPTION

A ROUND IN AES

- The basic unit for processing in the AES algorithm is a byte.
- All byte values will be represented as the concatenation of its individual bit between braces in the order $\{b_7, b_6, b_5, b_4, b_3, b_2, b_1, b_0\}$.
- It is often convenient to denote byte values using hexa-decimal notation e.g., {01100011} can be represented as 63.
- These bytes are also interpreted as finite field elements using a polynomial representation:

$$b(x) = \sum_{i=0}^{7} b_i x^i \in \mathbb{F}_{2^8} \langle x \rangle = \frac{\mathbb{F}_2[X]}{\langle X^8 + X^4 + X^3 + X + 1 \rangle}$$

– A word $w_0 = [s_{0,0} \ s_{1,0} \ s_{0,2} \ s_{0,3}]$ i.e., 4 bytes is represented as polynomial

$$w_0(Y) = s_{0,0} + s_{1,0} Y + s_{0,2} Y^2 + s_{0,3} Y^3 \in \mathbb{F}_{2^8}[Y]$$

- The multiplication "·" of $\mathfrak{a}(Y)$, $\mathfrak{b}(Y)$ ∈ $\mathbb{F}_{2^8}[Y]$ is defined modulo $Y^4 + 1$. (Note that $Y^4 + 1$ is not irreducible)
- For the polynomial

$$a(Y) = \{03\} Y^3 + \{01\} Y^2 + \{01\} Y + \{03\} \in \mathbb{F}_{2^8}[Y]$$

and $a^{-1}(Y)$ exists, and

$$a^{-1}(Y) = \{0B\} \, Y^3 + \{0D\} \, Y^2 + \{09\} \, Y + \{0E\} \in \mathbb{F}_{2^8}[Y]$$

SUBBYTE()

 $S: \{0,1\}^8 \mapsto \{0,1\}^8$ is a fixed, public, invertible, non-linear function.

SUBBYTE()..

- − Let $a \in \{0,1\}^8$. Consider a as an element of GF(2⁸).
- Let $b = a^{-1}$ if $a \neq 0$, and b = a if a = 0. Let $b = (b_0b_1 \dots b_7)$.
- Compute

$$\begin{bmatrix} b'_0 \\ b'_1 \\ b'_2 \\ b'_3 \\ b'_4 \\ b'_5 \\ b'_6 \\ b'_7 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 & 1 & 1 & 1 & 1 \\ 1 & 1 & 0 & 0 & 0 & 1 & 1 & 1 \\ 1 & 1 & 1 & 0 & 0 & 0 & 1 & 1 \\ 1 & 1 & 1 & 1 & 0 & 0 & 0 & 1 \\ 1 & 1 & 1 & 1 & 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 1 & 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 & 1 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 & 1 & 1 & 1 & 1 \end{bmatrix} \cdot \begin{bmatrix} b_0 \\ b_1 \\ b_2 \\ b_3 \\ b_4 \\ b_5 \\ b_6 \\ b_7 \end{bmatrix} \oplus \begin{bmatrix} 1 \\ 1 \\ 0 \\ 0 \\ 0 \\ 1 \\ 1 \\ 0 \end{bmatrix}$$

$$- S(a) = b' = (b'_0, b'_1 \dots b'_7).$$

SUBBYTE() USING TABLE

Table: AES S-box (SubBytes Table)

	0	1	2	3	4	5	6	7	8	9	Α	В	C	D	E	F
0	63	7C	77	7B	F2	6B	6F	C5	30	01	67	2B	FE	D7	AB	76
1	CA	82	C9	7D	FA	59	47	F0	AD	D4	A2	AF	9C	A4	72	C0
2	В7	FD	93	26	36	3F	F7	CC	34	A5	E5	F1	71	D8	31	15
3	04	C7	23	C3	18	96	05	9A	07	12	80	E2	EB	27	B2	75
4	09	83	2C	1A	1B	6E	5A	A0	52	3B	D6	В3	29	E3	2F	84
5	53	D1	00	ED	20	FC	B1	5B	6A	CB	BE	39	4A	4C	58	CF
6	D0	EF	AA	FB	43	4D	33	85	45	F9	02	7F	50	3C	9F	A8
7	51	A3	40	8F	92	9D	38	F5	BC	B6	DA	21	10	FF	F3	D2
8	CD	0C	13	EC	5F	97	44	17	C4	A7	7E	3D	64	5D	19	73
9	60	81	4F	DC	22	2A	90	88	46	EE	B8	14	DE	5E	0B	DB
Α	E0	32	3A	0A	49	06	24	5C	C2	D3	AC	62	91	95	E4	79
В	E7	C8	37	6D	8D	D5	4E	A9	6C	56	F4	EA	65	7A	ΑE	08
C	BA	78	25	2E	1C	A6	B4	C6	E8	DD	74	1F	4B	BD	8B	8A
D	70	3E	B5	66	48	03	F6	0E	61	35	57	B9	86	C1	1D	9E
E	E1	F8	98	11	69	D9	8E	94	9B	1E	87	E9	CE	55	28	DF
F	8C	A1	89	0D	BF	E6	42	68	41	99	2D	0F	B0	54	BB	16

SHIFTROW()

MIX COLUMNS()

$$s'_{0,c} = \{02\} \cdot s_{0,c} \oplus \{03\} \cdot s_{1,c} \oplus s_{2,c} \oplus s_{3,c}$$

$$s'_{1,c} = s_{0,c} \oplus \{02\} \cdot s_{1,c} \oplus \{03\} \cdot s_{2,c} \oplus s_{3,c}$$

$$s'_{2,c} = s_{0,c} \oplus s_{1,c} \oplus \{02\} \cdot s_{2,c} \oplus \{03\} \cdot s_{3,c}$$

$$s'_{3,c} = \{03\} \cdot s_{0,c} \oplus s_{1,c} \oplus s_{2,c} \oplus \{02\} \cdot s_{3,c},$$

where \cdot denotes multiplication over the finite field $GF(2^8)$.

MIXCOLUMNS()

$$\begin{bmatrix} 02 & 03 & 01 & 01 \\ 01 & 02 & 03 & 01 \\ 01 & 01 & 02 & 03 \\ 03 & 01 & 01 & 02 \end{bmatrix} \begin{bmatrix} S_{0,0} & S_{0,1} & S_{0,2} & S_{0,3} \\ S_{1,0} & S_{1,1} & S_{1,2} & S_{1,3} \\ S_{2,0} & S_{2,1} & S_{2,2} & S_{2,3} \\ S_{3,0} & S_{3,1} & S_{3,2} & S_{3,3} \end{bmatrix} \rightarrow \begin{bmatrix} S'_{0,0} & S'_{0,1} & S'_{0,2} & S'_{0,3} \\ S'_{1,0} & S'_{1,1} & S'_{1,2} & S'_{1,3} \\ S'_{2,0} & S'_{2,1} & S'_{2,2} & S'_{2,3} \\ S'_{3,0} & S'_{3,1} & S'_{3,2} & S'_{3,3} \end{bmatrix}$$

$$w'_{j}(Y) = w_{j}(Y) * a(Y) \pmod{Y^{4} + 1} \text{ where,}$$

 $a(Y) = \{03\}Y^3 + \{01\}Y^2 + \{01\}Y + \{02\}$ $a(Y)^{-1} = \{0b\}Y^3 + \{0d\}Y^2 + \{09\}Y + \{0e\}$

ADROUNDKEYS()

AES KEY EXPANSION

AES KEY EXPANSION...

The function $f_i: \{0,1\}^{32} \mapsto \{0,1\}^{32}$ are defined as follows:

- The input is divided into four bytes: (a|b|c|d)
- Left-rotate the bytes: (b|c|d|a)
- Apply the AES S-box to each byte:
- XOR the leftmost byte with the constant ℓ_i and output the result: $(S(b) \oplus \ell_i | S(c) | S(d) | S(a))$ The constants ℓ_i (in hexadecimal):

$$\ell_0 = 0 \times 01, \ell_1 = 0 \times 02, \ell_2 = 0 \times 04, \ell_3 = 0 \times 08, \ell_4 = 0 \times 10$$

$$\ell_5 = 0 \times 20, \ell_6 = 0 \times 40, \ell_7 = 0 \times 80, \ell_8 = 0 \times 1b, \ell_9 = 0 \times 36$$

Appendix B – Cipher Example

The following diagram shows the values in the State array as the Cipher progresses for a block length and a Cipher Key length of 16 bytes each (i.e., Nb = 4 and Nk = 4).

```
Input = 32 43 f6 a8 88 5a 30 8d 31 31 98 a2 e0 37 07 34
Cipher Key = 2b 7e 15 16 28 ae d2 a6 ab f7 15 88 09 cf 4f 3c
```

The Round Key values are taken from the Key Expansion example in Appendix A.

Round Number					s	Aff ubB	ter yte	s		Sì	Aft nift		ws		Mi	Af xCo		ıns		Ro	Va.		∌y	
input	32	88	31	e0					l					1	Г				l	2b	28	ab	09	
	43	5a	31	37										1					Ф	7e	ae	£7	cf	_
	f6	30	98	07						Г					Г				Ψ	15	d2	15	4f	-
	a8	8d	a2	34																16	a6	88	3с	ı
	_									_				ı	_					_				
1	19	a0	9a	e9	d4	e0	b8	1e	1	d4	e0	ъ8	1e	1	04	e0	48	28		a 0	88	23	2a	
	3d	£4	c6	f8	27	bf	b4	41		bf	b4	41	27	1	66	cb	f8	06		fa	54	a3	6c	_
	е3	e2	8d	48	11	98	5d	52		5d	52	11	98	1	81	19	d3	26	Ф	fe	2c	39	76	· _
	be	2b	2a	08	ae	f1	e 5	30		30	ae	f1	e 5	1	e5	9a	7a	4c		17	b1	39	05	l
	_	_					_			_	_			,	_					_	_		_	
	a4	68	6b	02	49	45	7£	77	1	49	45	7£	77	1	58	1b	db	1b		f2	7a	59	73	
2	9с	9f	5b	6a	de	db	39	02		db	39	02	de	ı	4d	4b	e 7	6b	_	c2	96	35	59	_
	7£	35	ea	50	d2	96	87	53		87	53	d2	96		ca	5a	ca	ь0	⊕	95	b9	80	f6	-
	f2	2b	43	49	89	f1	1a	3b		3ъ	89	f1	1a		f1	ac	a8	e 5		f2	43	7a	7£	ı
		_	_				_				_			J			_				_		_	

Source: https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.197.pdf

AES DECRYPTION

