RISC-V Lab

Ex7: Architectures

Mid term Presentation(s)

Content

- 1. Application specific Architectures
- 2. Interfacing External Hardware
- 3. Mid Term presentation

Application specific Architectures

Global DMA

- route data / processing via xbar_main
- CPU needs to access data
- large external memory used
- reuse of internal memory

ASA: Local DMA

- bandwidth of SRAM limits performance -> multiple
- dedicated TU-UL xbar or SW conrolled SRAM MUX

ASA: Few Multi core

"interconnect" = 1:N (TL-UL)

- map SRAMs of cores into global address map
- 50% of SRAM bandwidth lost
- routing & area limits number of cores
- timing/latency limits BW 4 lbex
- f(core) >> f(system)

ASA: Multi core

"interconnect" = sparse

- indirect access of SRAM of cores via "interconnect"
- ring -> many cores (high latency, BW/N)
 e.g. for SRAM preload
- log networke.g. for jobs & results
- 2D, 3D matrix -> routing issues
- ...
- f(core) >> f(system)

Arch: Multi core

Using both ports for each core still possible.

Interfacing External Hardware

External HW: Basics

- 1. Read the "Nexys Video Reference Manual"
- 2. Read the IC's data sheet, esp. the timing diagram (s/h times!)
- 3. Search the net for examples: Verilog, Arduino libraries, ...

Peripheral 4 "slow" external HW

- 1. peri IO synchronous to clk from FPGA
 AND f(peripheral clock) <= 2x f(fpga internal e.g. I2S, xSPI, OLED, ...
 => FPGA knows when its inputs are valid
- 2. peri IO synchronous to clk from periAND f(peripheral clock) < ~4x f(fpga internal clock)=> FPGA needs to sample peri clk to know when its inputs are valid
- => use design running *only* on fpga internal clock (basically same as lauflicht)

"slow" external HW (1)

- Ex: ADAU1761 @ fs=25/512=48.828
 bclk=25/512*64=3.125 MHz
- all IO directly from/to dFF!
- unmask inputs only when valid!
 (input DFFs are X most of the time)

"slow" external HW (2)

- "input synchronizer" for peri clk
 - 1..2 clk cycles delay
 - "detects" when peri clk rises / falls
 - outputs decides when to unmask FPGA inputs / set outputs
- all IO directly from/to FF!
- unmask inputs only when valid!
 (input DFFs are X most of the time)

"Fast" peripherals

- f(peripheral clock) > 0.5 f(fpga internal)
- e.g. Ethernet (GMII), RGB camera, HDMI
- => new clock domain in FPGA:
- instantiate BUFG to drive clk of new domain
- synchronize nres (opt: add BUFG to drive nres of new domain)
- add clock constraints to XDC (frequency, false paths)
- add clock crossings to "rest" of design

"Fast" peripherals: streaming

"Fast" peripherals: (frame) buffer

Mid term presentation

- strict time limit: 6min per group + 2min for questions
 => FEW (<6) slides & pictures & diagrams & (ultra brief texts)
- all team members must present
- aim / content
 - SELL your project
 - WHAT do you want to achieve (functional specification)
 - HOW do you plan to do it (architecture)

Mid term pres: Slide 0 - WHO

- project name
- list of group members

This is the only mandatory slide.
Following slides are example to give you ideas!
They can be omitted, changed etc.

Mid term presentation: Slide 1 - WHAT

DONT: Copy bullet points from your functional spec.:

- real time sound processing
- 16bit @ 48kHz stereo audio in and out
- 200k long FIR filter, latency < 5ms

DO: Create a vision and explain the challenge

- hall effect generator (headline)
- pictures of church and organ
- sound / video file
- challenges: very long FIR filter (200k for church)
 a short latency (5ms for organist)

Mid term presentation: Slide 2 - HOW

- Hardware top level block diagram (MOST important picture)
- (re) use it to explain
 - environment (I/O)
 e.g. diagram include speaker & mic symbols
 (if its shows nicely may additionally replace WHAT slide)
 - general data / event flow
 e.g. add colored arrows to explain data / event flow
 - functional partitioning
 e.g. add highlight to individual module

O ...

Mid term presentation: Slide 3..X - HOW

- present interesting / remarkable architectural features, e.g.
 - o flowchart for main algorithm e.g. ray tracing
 - networks connecting CPU arrays
 - DMA descriptors
 - 0
- explain major / interesting modules (architecture, functionality, register interface)