6.003: Signals and Systems

CT Feedback and Control

March 16, 2010

Feedback and Control

This week: using feedback to enhance performance.

Examples:

- increasing speed and bandwidth
- controlling position instead of speed
- reducing sensitivity to parameter variation
- reducing distortion
- stabilizing unstable systems
 - magnetic levitation
 - inverted pendulum

Op-amps

An "ideal" op-amp has many desireable characteristics.

- high speed
- large bandwidth
- high input impedance
- low output impedance
- ..

It is difficult to build a circuit with all of these features.

Op-Amp

The gain of an op-amp depends on frequency.

Frequency dependence of LM741 op-amp.

Op-Amp

Low-gain at high frequencies limits applications.

Unacceptable frequency response for an audio amplifier.

Op-Amp

An ideal op-amp has fast time response.

Step response:

$$V_o(t) = s(t)$$

$$A = \underbrace{ }$$

$$t$$

Check Yourself

Op-Amp

We can use feedback to improve performance of op-amps.

$$V_{-} = \beta V_o = \left(\frac{R_2}{R_1 + R_2}\right) V_o$$

6.003 model

$$\frac{V_o}{V_i} = \frac{K(s)}{1 + \beta K(s)}$$

Dominant Pole

Op-amps are designed to have a dominant pole at low frequencies: \rightarrow simplifies the application of feedback.

$$lpha=40\,\mathrm{rad/s}=rac{40\,\mathrm{rad/s}}{2\pi\,\mathrm{rad/cycle}}pprox 6.4\,\mathrm{Hz}$$

Improving Performance

Using feedback to improve performance parameters.

circuit

$$V_{-} = \beta V_o = \left(\frac{R_2}{R_1 + R_2}\right) V_o$$

6.003 model

$$\frac{v_o}{V_i} = \frac{K(s)}{1 + \beta K(s)}$$
$$= \frac{\frac{\alpha K_0}{s + \alpha}}{1 + \beta \frac{\alpha K_0}{s + \alpha}}$$
$$= \frac{\alpha K_0}{s + \alpha}$$

Check Yourself

What is the most negative value of the closed-loop pole that can be achieved with feedback?

- 1. $-\alpha(1+\beta)$
- 2. $-\alpha(1 + \beta K_0)$
- 3. $-\alpha(1+K_0)$
- 4. −∞

- 5. none of the above

Improving Performance

Feedback extends frequency response by a factor of $1+\beta K_0$ ($K_0=2\times 10^5$).

Improving Performance

Feedback produces higher bandwidths by **reducing** the gain at low frequencies. It trades gain for bandwidth.

Improving Performance

Feedback makes the time response faster by a factor of $1+\beta K_0$ $(K_0=2\times 10^5).$

Step response

$$s(t) = \frac{K_0}{1 + \beta K_0} (1 - e^{-\alpha(1 + \beta K_0)t}) u(t)$$

Improving Performance

Feedback produces faster responses by **reducing** the final value of the step response. It trades gain for speed.

Step response

$$s(t) = \frac{K_0}{1 + \beta K_0} (1 - e^{-\alpha(1 + \beta K_0)t}) u(t)$$

The maximum rate of voltage change $\left.\frac{ds(t)}{dt}\right|_{t=0+}$ is not increased.

Improving Performance

Feedback improves performance parameters of op-amp circuits.

- can extend frequency response
- can increase speed

Performance enhancements are achieved through a reduction of gain.

Motor Controller

We wish to build a robot arm (actually its elbow). The input should be voltage v(t), and the output should be the elbow angle $\theta(t)$.

We wish to build the robot arm with a DC motor.

$$v(t) \longrightarrow \text{DC motor} \longrightarrow \theta(t)$$

This problem is similar to the head-turning servo in 6.01!

Check Yourself

What is the relation between v(t) and $\theta(t)$ for a DC motor?

- 1. $\theta(t) \propto v(t)$
- 2. $\cos \theta(t) \propto v(t)$
- 3. $\theta(t) \propto \dot{v}(t)$
- 4. $\cos \theta(t) \propto \dot{v}(t)$
- 5. none of the above

Motor Controller

Use proportional feedback to control the angle of the motor's shaft.

$$\frac{\Theta}{V} = \frac{\alpha \gamma \mathcal{A}}{1 + \alpha \beta \gamma \mathcal{A}} = \frac{\alpha \gamma \frac{1}{s}}{1 + \alpha \beta \gamma \frac{1}{s}} = \frac{\alpha \gamma}{s + \alpha \beta \gamma}$$

Motor Controller

The closed loop system has a single pole at $s=-\alpha\beta\gamma$.

$$\frac{\Theta}{V} = \frac{\alpha \gamma}{s + \alpha \beta \gamma}$$

As α increases, the closed-loop pole becomes increasingly negative.

Motor Controller

Find the impulse and step response.

The system function is

$$\frac{\Theta}{V} = \frac{\alpha \gamma}{s + \alpha \beta \gamma} \,. \label{eq:theta_var}$$

The impulse response is

$$h(t) = \alpha \gamma e^{-\alpha \beta \gamma t} u(t)$$

and the step response is therefore

$$s(t) = \frac{1}{\beta} \left(1 - e^{-\alpha \beta \gamma t} \right) u(t).$$

The response is faster for larger values of α .

Try it: Demo.

Motor Controller

The speed of a DC motor does not change instantly if the voltage is stepped. There is lag due to rotational inertia.

First-order model integrator $V \longrightarrow \gamma A \longrightarrow \Theta_1$

Second-order model integrator with lag

Step response of the models:

Motor Controller

Analyze second-order model.

$$\frac{\Theta}{V} = \frac{\frac{\alpha\gamma p \mathcal{A}^2}{1+p\mathcal{A}}}{1 + \frac{\alpha\beta\gamma p \mathcal{A}^2}{1+p\mathcal{A}}} = \frac{\alpha\gamma p \mathcal{A}^2}{1 + p\mathcal{A} + \alpha\beta\gamma p \mathcal{A}^2} = \frac{\alpha\gamma p}{s^2 + ps + \alpha\beta\gamma p}$$
$$s = -\frac{p}{2} \pm \sqrt{\left(\frac{p}{2}\right)^2 - \alpha\beta\gamma p}$$

Motor Controller

For second-order model, increasing α causes the poles at 0 and -p to approach each other, collide at s=-p/2, then split into two poles with imaginary parts.

Increasing the gain $\boldsymbol{\alpha}$ does not increase speed of convergence.

Motor Controller

Step response.

Step response.

Feedback and Control: Summary

CT feedback is useful for many reasons. Today we saw two:

- increasing speed and bandwidth
- controlling position instead of speed

Next time we will look at several others:

- reduce sensitivity to parameter variation
- reduce distortion
- stabilize unstable systems
 - magnetic levitation
 - inverted pendulum

MIT OpenCourseWare http://ocw.mit.edu

6.003 Signals and Systems Spring 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.