Zotikon

Athlete Analysis System

The Zotikon Team

Bruce Bowlin

Eric Farmer

Joseph Hastings

Van Kingma

Curtis Prehn

Zotikon's Advisor

Dr. Mehmet Kurum

- Assistant Professor
 - PhD, Electrical and Computer Engineering, George Washington University, 2009
- Fields of Interest
 - Microwave and Millimeter-wave Remote Sensing
 - RF Sensors & Systems
 - Radiation and Scattering Theory
 - Antennas & Computational Electromagnetics
 - Subsurface & Subcanopy Sensing and Imaging
 - GNSS Reflectometry

Outline

Althlete Analysis System **Zotikon**

NOUN: (Greek origin) health and vitality

Applications

Team-based and individual athlete performance measurement system

AND

Real-time trainer monitoring system to observe athlete performance

Features

Heart rate and jump power _ monitoring

Reliable mesh network system

Realtime graphical presentation

Specifications

2.4GHz Band wireless communication

Up to 0.5 mile range

Accurate ECG heart rate monitoring

System Overview

Design Constraints Technical

Name	Description		
Transmission Range	The Zotikon system must be able to reliably transmit data to at least 70 meters in a noisy environment with radio interference with a success rate of at least 90 percent.		
Max Beats per Minute (BPM)	The maximum beats per minute the athlete-worn device must be able to measure is 220 BPM.		
Simultaneous Users	The monitoring station must be able to receive data from 11 athlete-worn devices simultaneously.		
Runtime	The athlete-worn device must be able to operate continuously for no less than 4 hours.		
Skin Temperature Measurable Range	The athlete-worn device must be able to measure temperatures in the range of 15°C - 47°C with 0.25°C accuracy.		

Design Constraints Practical

Туре	Name	Description		
Economic	Cost	 Total System Cost: \$3,000 Athlete-Worn Device: \$150 Monitoring Station: \$1,500 		
Environmental	Physical	 IP64 Compliant Temperature Range: -40°C to 85°C 		

Approach

Hardware Heart Rate System

Approach Hardware

Hardware Heart Rate System

Component (IA)	Voltage Rail Style	Supply Voltage (V)	Supply Current (µ)	Gain (V/V)	Gain Error (%)	Cost (USD)
Texas Instruments INA126PA	Single or Dual	2.7 - 36	175	10000	0.1	3.15
Analog Devices AD623ANZ	Single or Dual	2.7 - 12	375	1000	0.35	6.31
Texas Instruments INA122P	Single or Dual	2.2 - 36	60	10000	0.1	7.65

Approach Hardware Heart Rate System

Component (ADC)	Communication Interface	Max Single-Ended Reference Voltage	Supply Voltage (V)	Resolution (bits)	Cost (USD)
Synapse SM200	On-Chip	1.8V	3.3V	10	30.07
Microchip MCP3002	SPI	2.7 – 5.5	2.7 – 5.5	10	2.30

Approach Hardware

Hardware Temperature System

Component (Thermometer)	Price (USD)	Communication Interface	Sensor Type	Degree Accuracy (°C)	Measurement Resolution (°C)	Max V _{DD} (V)
Melexis MLX90615	13.09	SMBus or PWM	IR	0.5	0.02	3.4
TI TMP20AIDCKR	1.29	Analog Voltage	Contact	2.5	0.05	5.5
Microchip MCP9808T- E/MS	1.19	I2C or SMBus	Contact	0.5	0.05	5.5

Approach Hardware

Radio

Component (Radio)	Current Draw (mA)	Range (m)	Network Protocol	Cost (USD)	Bandwidth (Kbps)	Noise (dBm)	Encryption
Synapse SM200	22.5	457 - 762	SNAP (mesh)	30.07	250 - 2000	-100	AES 128-bit
Atmel ATmega128RFA1	12.5	457 – 762	IEEE 802.15.4	6.63	250 – 2000	-100	AES 128-bit
Time Domain PulsON330	440	240 - 1000	ALOHA or TDMA	_	19.2 – 612	-113 to -98	Not Implemented
Decawave DW1000	70	100	Not Implemented	15.19	110 - 6800	-106 to -94	Not Implemented

Athlete-Worn Device – Measurement Collection Flow Diagram

Athlete-Worn Device – Data Transmission Flow Diagram

Zotikon **Athlete Analysis System System Overview Monitoring Station** Athlete Monitoring Webpage Athlete-Worn Device Temperature Web Server Sensor Input Synapse SNAP OS synapse **Heart Rate** Time-Series Database **SQL Database** Sensor (A) influxdb **SQL** Atmel ATmega128

Synapse SN220-001 USB Adapter

Monitoring Station – Database Design

Progress

Test Number	Parameters	Signal Strength (%)	Ping Successful	Data Sent
1	Device A facing monitoring station	35	Good	Good
2	Device A facing basketball goal	28	Good	Good
3	Device A facing monitoring station on opposite side in the middle of the court.	41	Good	Good
	Device B facing the basketball goal			

Project Timeline

Althlete Analysis System **Zotikon**

NOUN: (Greek origin) health and vitality

Applications

Team-based and individual athlete performance measurement system

AND

Real-time trainer monitoring system to observe athlete performance

Features

Heart rate and jump power _ monitoring

Reliable mesh network system

Realtime graphical presentation

Specifications

2.4GHz Band wireless communication

Up to 0.5 mile range

Accurate ECG heart rate monitoring

