Digital Voltage Mode Control of a Buck Converter using FPGA

1. Objective

The objectives of this experiment are:

- 1. To model a Buck Converter in both continuous-time and discrete-time domains.
- 2. To design and implement a digital voltage mode controller (DVMC) using Verilog HDL.
- 3. To deploy the design on an FPGA and validate hardware-level performance.
- 4. To analyze system stability, transient response, ripple, and efficiency across different load and reference conditions.
- 5. To compare experimental results with MATLAB/Simulink simulations for correlation.

2. Theory

2.1 Buck Converter Basics

A Buck Converter is a DC–DC step-down chopper circuit used to regulate voltage. Its operation is governed by switching between ON and OFF states of a MOSFET controlled by a PWM signal.

The ideal voltage conversion ratio is:

 $Vout=D\cdot VinV_{out} = D \cdot V_{in}Vout=D\cdot Vin$

Where:

- VoutV_{out}Vout = Output voltage
- VinV_{in}Vin = Input voltage
- DDD = Duty cycle of PWM

For continuous conduction mode (CCM):

 $\Delta IL=(Vin-Vout)\cdot DL\cdot fs\Delta\ I_L= \frac{(V_{in}-V_{out}) \cdot D}{L \cdot fs \cdot Delta\ V_{out}} = \frac{1_L}{8 \cdot C\cdot fs \cdot Delta\ V_{out$

Where:

- LLL = Inductor
- CCC = Output capacitor
- fsf_sfs = Switching frequency

2.2 Digital Voltage Mode Control

In DVMC, the output voltage is sampled using an ADC and compared with the reference. The error is processed by a **digital controller** (PID in this case). The resulting duty cycle command drives the PWM generator inside the FPGA.

The discrete PID equation is:

 $u[k]=Kpe[k]+Ki\sum_{i=0}^{n}ke[i]Ts+Kde[k]-e[k-1]Tsu[k]=K_pe[k]+K_i \setminus sum_{i=0}^k e[i]T_s+K_d \setminus e[k]-e[k-1]\{T_s\}u[k]=Kpe[k]+Kii=0\sum_{i=0}^{n}ke[i]Ts+KdTse[k]-e[k-1]$

Where:

- e[k]e[k]e[k] = Error at sampling instant k
- TsT_sTs = Sampling period
- Kp, Ki, KdKp, Ki, KdKp, Ki, Kd = PID gains

Stability of the closed-loop system is determined by analysing **phase margin (PM)** and **gain margin (GM)** from the loop frequency response.

3. Experimental Setup

Component	Specification
Input Voltage (Vin)	5 V DC
Nominal Output Voltage (Vout)	4 V DC
FPGA Board	Intel Max 10 (10M50DAF484C7G)
Control Algorithm	Discrete PID
Switching Frequency	500 kHz
Sampling Rate	1 MHz
Load	Programmable resistive load (0–10 A)
Inductor (L)	33 μΗ
Capacitor (C)	220 μF
Tools Used	MATLAB/Simulink, ModelSim, Quartus, Tektronix MSO2024B Oscilloscope

4. Procedure

- 1. Derived continuous-time model of the Buck Converter using state-space averaging.
- 2. Designed discrete PID controller in MATLAB using Tustin's method, tuned for 60° phase margin.
- 3. Developed RTL architecture in Verilog HDL:
 - o PWM generator (10-bit resolution).

- PID controller module.
- ADC interface.
- o Load transient controller.
- 4. Simulated RTL design in ModelSim to verify functional correctness.
- 5. Synthesized design in Quartus and implemented on Intel Max 10 FPGA.
- 6. Connected FPGA to Buck Converter circuit and measured responses for:
 - Reference step input (0.5 V \rightarrow 1.5 V).
 - Load step change (5 A \rightarrow 10 A).
- 7. Measured ripple, overshoot, settling time, and efficiency using oscilloscope and FRA.

5. Observations

5.1 Reference Step Response (0.5 V → 1.5 V)

Parameter Observed Value

Rise Time (10–90 %) 38 μ s

Settling Time (±2 %) 110 μs

Peak Overshoot 4.2 %

Steady-State Error < 0.01 V

5.2 Load Step Response (5 A → 10 A)

Parameter Observed Value

Voltage Dip 240 mV

Recovery Time 120 μs

Ripple Voltage 12 mV (0.3 %)

Efficiency 91.5 %

5.3 Ripple Analysis Across Loads

Load Current (A) Ripple (mV p-p) Ripple (%)

 $2\,A$ 6 mV $0.15\,\%$

5 A 10 mV 0.25 %

Load Current (A) Ripple (mV p-p) Ripple (%)

8 A 11.5 mV 0.28 %

10 A 12 mV 0.30 %

5.4 Frequency Response

Metric Value

Gain Margin 10.5 dB

Phase Margin 60.2°

Unity Gain Frequency 38 kHz

6. Results

- 1. The FPGA-based controller regulated the Buck Converter output to 4 V ±0.01 V.
- 2. Ripple voltage measured <0.3 %, well within design limits.
- 3. Settling time during transients was ~100 μ s, significantly faster than an analog controller tested earlier (~250 μ s).
- 4. Phase margin of **60°** ensured stability with no oscillatory behaviour.
- 5. Efficiency remained above **90** % across a wide load range.
- 6. Experimental waveforms correlated strongly with MATLAB/Simulink simulations.

7. Conclusion

- The experiment successfully validated the implementation of Digital Voltage Mode Control on FPGA.
- The system achieved:
 - o **Stable 4 V output** under 10 A load.
 - \circ Fast transient recovery (<120 μ s).
 - Low ripple (<0.3 %).
 - High efficiency (>90 %).
- This confirms the practicality of FPGA-based digital control for high-performance power electronic applications.
- Compared to analog control, the digital approach provides better accuracy, programmability, and flexibility.

8. Sample Waveforms (Placeholders)

- 1. **Reference Step Response** Smooth rise with <5 % overshoot.
- 2. **Load Step Response** 240 mV dip, fast recovery.
- 3. **PWM Signal** Clean 500 kHz square waveform.
- 4. **Bode Plot** 60° phase margin, unity gain at 38 kHz.