Lec7_Counting sort, radix sort, lower bounds for sorting and searching

Lower Bounds

- Searching among n preprocessed items requires Ω(lg n) time
 ⇒ binary search, AVL tree search optimal
- Sorting n items requires Ω(n * lg n)
 - ⇒ merge sort, heapsort, AVL sort optimal

Comparison model of computation

- Input items are black boxes (Abstract Data types)
- Only support comparisons(<, >, >=, etc.)
- time costs = # comparisons

Decision tree

• Any comparison algorithms can be viewed /specified as a tree of all possible comparison outcomes & resulting output, for a particular n :

Decision Tree	Algorithm
Internal node	Binary Decision
Leaf	Found answer
Root to leaf	Algorithm Execution
Path length	Running Time
Height of the tree	Worst case running time

Lower Bound of Searching

- # of leaves ≥ # possible answers
 ≥ n(at least 1 per A[i])
- Decision tree is binary
 - ⇒ height ≥ $Ig \Theta(n) = Ig n \pm \Theta(1)$

Lower Bound of Sorting

- Leaf specifies answers as permutation
- All n! are possible answers
 - ⇒ # leaves ≥ n!
 - ⇒ height \geq lg n! = $\Omega(n | g(n))$ → by Sterling's formula

Linear - Time Sorting

- If n keys are integers ∈ {0,1,2, ..., k-1} can do more than compare them
 ⇒ lower bounds don't apply
- If $k = n \wedge (O(1))$, can sort in O(n) time

Types of Sorts

- Counting Sort
 - Code

```
\label{eq:linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_line
```

- o Time : $\Theta(n+k)$ / Space : $\Theta(n+k)$
- Radix Sort
 - Imagine integer in base b⇒ d = logb(k) digits ∈ {0,1,..., b-1}

- o Sort by least significant digits to the most significant digit
 - ⇒ don't mess up previous sorting

- o Time
 - $\Rightarrow \Theta(n+b)$ per digit
 - $\Rightarrow \Theta((n+b)^*d) = \Theta((n+b)^*logb(k)) \rightarrow minimized when b = n$
 - $\Rightarrow \Theta((n)^*logn(k))$
 - \Rightarrow O(cn) if k \leq n^c