

Schletter, Inc.		25° Tilt w/o Seismic Design
HCV	Standard PVMini Racking System	
	Representative Calculations - ASCE 7-10	

1. INTRODUCTION

1.1 Project Description

The following sections will cover the determination of forces and structural design calculations for the Schletter, Inc. PVMini ground mount system.

1.2 Construction

Photovoltaic modules are attached to aluminum purlins using clamp fasteners. Purlins are clamped to inclined aluminum girders, which are then connected to aluminum struts. Each support structure is equally spaced.

PV modules are required to meet the following specifications:

	<u>Maximum</u>		<u>Minimum</u>
Height =	1700 mm	Height =	1550 mm
Width =	1050 mm	Width =	970 mm
Dead Load =	3.00 psf	Dead Load =	1.75 psf

Modules Per Row = 1 Module Tilt = 25°

Maximum Height Above Grade = 3 ft

1.3 Technical Codes

- ASCE 7-10 Chapter 26-31, Wind Loads
- ASCE 7-10 Chapter 7, Snow Loads
- ASCE 7-10 Chapter 2, Combination of Loads
- International Building Code, IBC, 2012, 2015
- Aluminum Design Manual, Eighth Edition, 2005

Typical loading conditions of the module dead loads, snow loads, and wind loads are shown on the left.

2. LOAD ACTIONS

2.1 Permanent Loads

9мах	=	3.00 pst
g _{мім}	=	1.75 psf

2.2 Snow Loads

Ground Snow Load,
$$P_g =$$
 30.00 psf Sloped Roof Snow Load, $P_s =$ 18.56 psf (ASCE 7-10, Eq. 7.4-1)
$$I_s = 1.00$$

$$C_s = 0.82$$

$$C_e = 0.90$$

1.20

 $C_t =$

2.3 Wind Loads

Design Wind Speed, V =	140 mph	Exposure Category = C
Height ≤	15 ft	Importance Category = II

Peak Velocity Pressure, $q_z = 30.77$ psf Including the gust factor, G=0.85. (ASCE 7-10, Eq. 27.3-1)

Pressure Coefficients

Cf+ TOP	=	1.1 (Pressure)	Provided pressure coefficients are the result of wind tunnel
Cf+ BOTTOM	=	1.7	testing done by Ruscheweyh Consult. Coefficients are
Cf- _{TOP}	=	-2.2 (Suction)	located in test report # 1127/0611-1e. Negative forces are
Cf- BOTTOM	=	-1 (Suction)	applied away from the surface.

2.4 Seismic Loads - N/A

S _S =	0.00	R = 1.25	ASCE 7, Section 12.8.1.3: A maximum S of 1.5
$S_{DS} =$	0.00	$C_S = 0$	may be used to calculate the base shear, C_s , of
$S_1 =$	0.00	$\rho = 1.3$	structures under five stories and with a period, T,
$S_{D1} =$	0.00	$\Omega = 1.25$	of 0.5 or less. Therefore, a S_{ds} of 1.0 was used to
T_ =	0.00	$C_d = 1.25$	calculate C _s .

2.5 Combination of Loads

ASCE 7 requires that all structures be checked by specified combinations of loads. Applicable load combinations are provided below.

Strength Design, LRFD

Component stresses are checked using the following LRFD load combinations:

1.2D + 1.6S + 0.5W 1.2D + 1.0W + 0.5S 0.9D + 1.0W ^M 1.54D + 1.3E + 0.2S ^R 0.56D + 1.3E ^R 1.54D + 1.25E + 0.2S ^O 0.56D + 1.25E O

Allowable Stress Design, ASD

Member deflection checks and foundation designs are done according to the following ASD load combinations:

1.0D + 1.0S 1.0D + 0.6W 1.0D + 0.75L + 0.45W + 0.75S 0.6D + 0.6W ^M (ASCE 7, Eq 2.4.1-1 through 2.4.1-8) & (ASCE 7, Section 12.4.3.2) 1.238D + 0.875E ° 1.1785D + 0.65625E + 0.75S ° 0.362D + 0.875E °

3. STRUCTURAL ANALYSIS

3.1 RISA Results

Appendix B.1 contains outputs from the structural analysis software package, RISA. These outputs are used to accurately determine resultant member and reaction forces from the loads seen throughout Section 2.

3.2 RISA Components

A member and node list has been provided below to correlate the RISA components with the design calculations in Section 4. Items of significance have been listed.

<u>Purlins</u>	<u>Location</u>	<u>Diagonal Struts</u>	<u>Location</u>	Front Reactions	<u>Location</u>
M13	Тор	M3	Outer	N7	Outer
M16	Bottom	M7	Inner	N15	Inner
		M11	Outer	N23	Outer
<u>Girders</u>	<u>Location</u>	Rear Struts	<u>Location</u>	Rear Reactions	Location
M1	Outer	M2	Outer	N8	Outer
M5	Inner	M6	Inner	N16	Inner
M9	Outer	M10	Outer	N24	Outer
Front Struts	<u>Location</u>	Bracing	<u>9</u>		
M4	Outer	M15	5		
M8	Inner	M16A	A		
M12	Outer				
M8	Inner		-		

^M Uses the minimum allowable module dead load.

^R Include redundancy factor of 1.3.

^o Includes overstrength factor of 1.25. Used to check seismic drift.

4.1 Purlin Design

Aluminum purlins are used to transfer loads to the support structure. Purlins are designed as continous beams with cantilevers. These are considered beams with internal hinges that can be joined with splices at 25% of the support respective span. See Appendix A.1 for detailed member calculations. Section units are in (mm).

Purlin Type =	ProfiPlus	
Aluminum Type =	6105-T5	
$F_{ty} =$	35	ksi
L _b =	<u>57</u>	in
$\Phi F_{ty STRONG-AXIS} =$	29.41	ksi
$\Phi F_{ty WEAK-AXIS} =$	28.47	ksi
S _y =	0.51	in ³
$S_x =$	0.37	in ³
E =	10100	ksi
I _y =	0.60	in ⁴
I _x =	0.29	in ⁴
A =	0.90	in ²
g =	1.08	lbs/ft
M _y =	0.422	k-ft
$M_z =$	0.089	k-ft
M _{y allowable} =	1.251	k-ft
M _{z allowable} =	0.871	k-ft
Utilization =	44%	

4.2 Girder Design

Loads from purlins are transferred using an inclined girder, which is connected to a set of aluminum struts. Loads on the girder result from the support reactions of the purlins. See Appendix A.2 for detailed member calculations. Section units are in (mm).

4.3 Front Strut Design

The front aluminum strut connects a portion of the girder to the foundation. Vertical girder forces are then transferred down through the strut into the foundation. The strut is attached with single M8 bolts at each end. See Appendix A.3 for detailed member calculations. Section units are in (mm).

4.4 Diagonal Strut Design

A diagonal aluminum strut braces the support structure. It connects at a front portion of the girder and transfers horizontal forces to the rear foundation connection. The strut is attached with single M8 bolts at each end. See Appendix A.4 for detailed member calculations. Section units are in (mm).

4.5 Rear Strut Design

An aluminum strut connects the rear portion of the girder to the rear foundation connection. Both vertical and horizontal forces are transferred from the girder. The strut is attached with single M8 bolts at each end. See Appendix A.5 for detailed member calculations. Section units are in (mm).

4.6 Cross Brace Design

In order to resist weak side loading, aluminum cross bracing kits are provided. The cross bracing is attached at one end of a rear aluminum strut diagonally down to the bottom end of an adjacent strut. Single M10 bolts are provided at each of the cross bracing. Section units are in (mm).

Brace Type = Aluminum Type =	1.5x0.25 6061-T6	
$F_{tv} =$	35 k	ksi
Φ =	0.90	
S _y =	0.02 j	n^3
E =	10100 l	ĸsi
I _y =	33.25 į	n^4
A =	0.38 j	n ²
g =	0.45	bs/ft
M _y =	0.002 H	<-ft
P _n =	0.077 H	<
M _{y allowable} =	0.046 H	<-ft
P _{n allowable} =	11.813 l	<
Utilization =	<u>5%</u>	

A cross brace kit is required every 39 bays and is to be installed in centermost bays.

5. FOUNDATION DESIGN CALCULATIONS

5.1 Helical Pile Foundations

The following LRFD loads include a safety factor of 1.3, and are to be used in conjunction with a Schletter, Inc. Geotechnical Investigation Report. The forces below should fall within the guidelines provided in the Geotechnical Investigation Report. If a Geotechnical Investigation Report is not present, please proceed to Section 5.2 for a concrete foundation design.

<u>Maximum</u>	Front	Rear	
Tensile Load =	<u>171.21</u>	<u>1645.31</u>	k
Compressive Load =	<u>1218.77</u>	1132.45	k
Lateral Load =	<u>1.70</u>	869.34	k
Moment (Weak Axis) =	0.00	0.00	k

5.2 Design of Ballast Foundations

Ballast foundations are used to secure the racking structure in place. The foundations are checked for potential overturning and sliding. Bearing pressures applied by the racking and ballast foundations are checked against the allowable bearing pressures provided by the IBC table 1806.2 (2012, 2015).

Concrete Properties Footing Reinforcement Weight of Concrete = 145 pcf Use fiber reinforcing with (1) #5 rebar. 2500 psi Compressive Strength = Yield Strength = 60000 psi Overturning Check $M_0 =$ 23461.4 in-lbs Resisting Force Required = 782.05 lbs A minimum 60in long x 21in wide x S.F. = 1.67 18in tall ballast foundation is required Weight Required = 1303.41 lbs to resist overturning. Minimum Width = 21 in in Weight Provided = 1903.13 lbs Sliding 200.53 lbs Force = Use a 60in long x 21in wide x 18in tall Friction = 0.4 Weight Required = 501.34 lbs ballast foundation to resist sliding. Resisting Weight = 1903.13 lbs Friction is OK. Additional Weight Required = Cohesion Sliding Force = 200.53 lbs Cohesion = 130 psf Use a 60in long x 21in wide x 18in tall 8.75 ft² Area = ballast foundation. Cohesion is OK. Resisting = 951.56 lbs Additional Weight Required = 0 lbs Shear Key Additional Force = 0 lbs 200 psf/ft Lateral Bearing Pressure = Required Depth = 0.00 ft Shear key is not required. 2500 psi f'c = Length = 8 in

 Ballast Width

 21 in
 22 in
 23 in
 24 in

 P_{ftg} = (145 pcf)(5 ft)(1.5 ft)(1.75 ft) =
 1903 lbs
 1994 lbs
 2084 lbs
 2175 lbs

ASD LC	1.0D + 1.0S				1.0D + 0.6W			1.0D + 0.75L + 0.45W + 0.75S			0.6D + 0.6W					
Width	21 in	22 in	23 in	24 in	21 in	22 in	23 in	24 in	21 in	22 in	23 in	24 in	21 in	22 in	23 in	24 in
FA	418 lbs	418 lbs	418 lbs	418 lbs	426 lbs	426 lbs	426 lbs	426 lbs	598 lbs	598 lbs	598 lbs	598 lbs	-76 lbs	-76 lbs	-76 lbs	-76 lbs
FB	295 lbs	295 lbs	295 lbs	295 lbs	463 lbs	463 lbs	463 lbs	463 lbs	544 lbs	544 lbs	544 lbs	544 lbs	-758 lbs	-758 lbs	-758 lbs	-758 lbs
F _V	38 lbs	38 lbs	38 lbs	38 lbs	359 lbs	359 lbs	359 lbs	359 lbs	294 lbs	294 lbs	294 lbs	294 lbs	-401 lbs	-401 lbs	-401 lbs	-401 lbs
P _{total}	2616 lbs	2707 lbs	2797 lbs	2888 lbs	2793 lbs	2883 lbs	2974 lbs	3064 lbs	3045 lbs	3136 lbs	3226 lbs	3317 lbs	308 lbs	362 lbs	417 lbs	471 lbs
M	295 lbs-ft	295 lbs-ft	295 lbs-ft	295 lbs-ft	489 lbs-ft	489 lbs-ft	489 lbs-ft	489 lbs-ft	565 lbs-ft	565 lbs-ft	565 lbs-ft	565 lbs-ft	622 lbs-ft	622 lbs-ft	622 lbs-ft	622 lbs-ft
е	0.11 ft	0.11 ft	0.11 ft	0.10 ft	0.18 ft	0.17 ft	0.16 ft	0.16 ft	0.19 ft	0.18 ft	0.18 ft	0.17 ft	2.02 ft	1.72 ft	1.49 ft	1.32 ft
L/6	0.83 ft	0.83 ft	0.83 ft	0.83 ft	0.83 ft	0.83 ft	0.83 ft	0.83 ft	0.83 ft	0.83 ft	0.83 ft	0.83 ft	0.83 ft	0.83 ft	0.83 ft	0.83 ft
f _{min}	258.6 psf	256.7 psf	255.0 psf	253.4 psf	252.1 psf	250.5 psf	249.1 psf	247.7 psf	270.4 psf	268.0 psf	265.8 psf	263.8 psf	0.0 psf	0.0 psf	0.0 psf	0.0 psf
f _{max}	339.4 psf	333.8 psf	328.8 psf	324.1 psf	386.2 psf	378.5 psf	371.5 psf	365.1 psf	425.5 psf	416.1 psf	407.4 psf	399.5 psf	244.7 psf	168.4 psf	144.0 psf	133.2 psf

Maximum Bearing Pressure = 426 psf Allowable Bearing Pressure = 1500 psf Use a 60in long \times 21in wide \times 18in tall ballast foundation for an acceptable bearing pressure.

Bearing Pressure

Weak Side Design

Overturning Check

 $M_0 = 174.9 \text{ ft-lbs}$

Resisting Force Required = 199.90 lbs S.F. = 1.67 Weight Required = 333.17 lbs

Minimum Width = 21 in in
Weight Provided = 1903.13 lbs

A minimum 60in long x 21in wide x 18in tall ballast foundation is required to resist overturning.

Bearing Pressure

ASD LC	1	.238D + 0.875	ēΕ	1.1785D + 0.65625E + 0.75S			0.362D + 0.875E			
Width		21 in			21 in		21 in			
Support	Outer	Inner	Outer	Outer	Inner	Outer	Outer	Inner	Outer	
F _Y	59 lbs	149 lbs	56 lbs	203 lbs	586 lbs	199 lbs	17 lbs	43 lbs	16 lbs	
F _V	0 lbs	0 lbs	0 lbs	1 lbs	1 lbs	0 lbs	0 lbs	0 lbs	0 lbs	
P _{total}	2415 lbs	2505 lbs	2412 lbs	2445 lbs	2829 lbs	2442 lbs	706 lbs	732 lbs	705 lbs	
M	0 lbs-ft	0 lbs-ft	0 lbs-ft	2 lbs-ft	1 lbs-ft	1 lbs-ft	0 lbs-ft	0 lbs-ft	0 lbs-ft	
е	0.00 ft	0.00 ft	0.00 ft	0.00 ft	0.00 ft	0.00 ft	0.00 ft	0.00 ft	0.00 ft	
L/6	0.29 ft	1.75 ft	1.75 ft	1.75 ft	1.75 ft	1.75 ft	1.75 ft	1.75 ft	1.75 ft	
f _{min}	275.9 sqft	286.2 sqft	275.6 sqft	278.6 sqft	323.0 sqft	278.9 sqft	80.7 sqft	83.7 sqft	80.6 sqft	
f _{max}	276.1 psf	286.3 psf	275.7 psf	280.4 psf	323.6 psf	279.3 psf	80.7 psf	83.7 psf	80.6 psf	

Maximum Bearing Pressure = 324 psf Allowable Bearing Pressure = 1500 psf

Use a 60in long x 21in wide x 18in tall ballast foundation for an acceptable bearing pressure.

Foundation Requirements: 60in long x 21in wide x 18in tall ballast foundation and fiber reinforcing with (1) #5 rebar.

5.3 Foundation Anchors

Threaded rods are anchored to the ballast foundations using the Simpson AT-XP epoxy solution. LRFD load results are compared to the allowable strengths of the epoxy solution. Please see the supplementary calculations provided by the Simpson Anchor Designer software.

6. DESIGN OF JOINTS AND CONNECTIONS

6.1 Anchorage of Modules to Purlins and Connection of Purlins to Girders

Modules are secured to the purlins with Schletter, Inc. Rapid2+ mounting clamps. Purlins are secured to the girders with the use of a Schletter, Inc. Klicktop connector. The reliability of calculations is uncertain due to limited standards, therefore the strength of the fasteners has been evaluated by load testing.

6.2 Bolted Connections

The aluminum struts connect the aluminum girder ends to custom brackets with mounting holes. Cross bracing is attached to rear struts to provide lateral stability. Single M8 bolts are used to attach each end of the strut to the girder and post. ASTM A193/A193M-86 equivalent stainless steel bolts are used.

Front Strut		Rear Strut	
Maximum Axial Load =	0.938 k	Maximum Axial Load =	1.116 k
M8 Bolt Capacity =	5.692 k	M8 Bolt Capacity =	5.692 k
Strut Bearing Capacity =	7.952 k	Strut Bearing Capacity =	7.952 k
Utilization =	<u>16%</u>	Utilization =	<u>20%</u>
Diagonal Strut		<u>Bracing</u>	
Maximum Axial Load =	0.458 k	Maximum Axial Load =	0.077 k
M8 Bolt Shear Capacity =	5.692 k	M10 Bolt Capacity =	8.894 k
Strut Bearing Capacity =	7.952 k	Strut Bearing Capacity =	7.952 k
Utilization =	<u>8%</u>	Utilization =	<u>1%</u>

Bolt and bearing capacities are accounting for double shear (ASCE 8-02, Eq. 5.3.4-1). Struts under compression are shown to demonstrate the load transfer from the girder. Single M8 bolts are located at each end of the strut and are subjected to double shear.

7. SEISMIC DESIGN

7.1 Seismic Drift - N/A

The racking structure has been analyzed under seismic loading. The allowable story drift of the structure must fall within the limits provided by (ASCE 7, Table 12.12-1).

 $\begin{array}{ccc} \text{Mean Height, h}_{\text{sx}} = & & 30.83 \text{ in} \\ \text{Allowable Story Drift for All Other} \\ \text{Structures, } \Delta = \{ & & 0.020 h_{\text{sx}} \\ \text{0.617 in} \\ \text{Max Drift, } \Delta_{\text{MAX}} = & & 0.01 \text{ in} \\ \end{array}$

N/A

The racking structure's reaction to seismic loads is shown to the right. The deflections have been magnified to provide a clear portrayal of potential story drift.

APPENDIX A

A.1 Design of Aluminum Purlins - Aluminum Design Manual, 2005 Edition

Purlin = **ProfiPlus**

Strong Axis:

3.4.14

$$L_{b} = 57.00 \text{ in}$$

$$J = 0.255$$

$$148.425$$

$$61 = \left(\frac{Bc - \frac{\theta_{y}}{\theta_{b}} Fcy}{16Bc}\right)^{\frac{1}{2}}$$

$$1.6Dc$$

S1 = 0.51461

$$(C_{-})^{2}$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$

S2 = 1701.56

$$\phi F_L \text{= } \phi b [\text{Bc-1.6Dc*} \sqrt{((\text{LbSc})/(\text{Cb*} \sqrt{(\text{lyJ})/2}))]}$$

$$\phi F_L = 29.4 \text{ ksi}$$

3.4.16

b/t = 7.4

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi y Fcy$$

$$\varphi F_L = 33.3 \text{ ksi}$$

3.4.16.1

Rb/t = 0.0

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^{\frac{1}{2}}$$
S1 = 1.1

$$S2 = C_t$$

$$\phi F_L = 1.17 \phi y F c y$$

$$\phi F_L = 38.9 \text{ ksi}$$

Weak Axis:

3.4.14

4.14
$$L_b = 57.00 \text{ in}$$

$$J = 0.255$$

$$154.13$$

$$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b} Fcy}{1.6Dc}\right)^2$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$

$$S2 = 1701.56$$

$\varphi F_L = \varphi b[Bc-1.6Dc^*\sqrt{(LbSc)/(Cb^*\sqrt{(lyJ)/2)})}]$

$$\phi F_1 = 29.3$$

3.4.16

b/t = 23.9

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi b [Bp-1.6Dp*b/t]$$

$$\varphi F_L = 28.5 \text{ ksi}$$

3.4.16.1

N/A for Weak Direction

SCHLETTER

3.4.18

$$h/t = 23.9$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 30$$

$$Cc = 30$$

$$A = \frac{k_1Bbr}{m}$$

$$Cc = 30$$

$$S2 = \frac{k_1 Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\varphi F_L = 1.3 \varphi \varphi F c \varphi$$

$$\varphi F_L = 43.2 \text{ ksi}$$

$$\phi F_L St = 29.4 \text{ ksi}$$

$$lx = 250988 \text{ mm}^4$$

$$0.603 \text{ in}^4$$

$$y = 30 \text{ mm}$$

$$Sx = 0.511 \text{ in}^3$$

$$M_{max} St = 1.251 \text{ k-ft}$$

3.4.18

 $M_{max}Wk =$

h/t = 7.4

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$M = 0.65$$

$$C_0 = 20$$

$$Cc = 20$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\phi F_L Wk = 28.5 \text{ ksi}$$

0.871 k-ft

Compression

3.4.9

b/t = 7.4

S1 = 12.21 (See 3.4.16 above for formula)

S2 = 32.70 (See 3.4.16 above for formula)

$$\phi F_L = \phi y F c y$$
 $\phi F_L = 33.3 \text{ ksi}$

$$b/t = 23.9$$

 $S1 = 12.21$
 $S2 = 32.70$
 $\phi F_L = \phi c [Bp-1.6Dp*b/t]$
 $\phi F_L = 28.5 \text{ ksi}$

Rb/t = 0.0

$$S1 = \left(\frac{Bt - \frac{\theta_y}{\theta_b}Fcy}{Dt}\right)^T$$

$$S1 = 6.87$$

$$S2 = 131.3$$

$$\phi F_L = \phi y Fcy$$

$$\phi F_L = 33.25 \text{ ksi}$$

$$\begin{array}{lll} \phi F_{\text{L}} & 28.47 \text{ ksi} \\ A = & 578.06 \text{ mm}^2 \\ & 0.90 \text{ in}^2 \\ P_{\text{max}} = & 25.51 \text{ kips} \end{array}$$

A.2 Design of Aluminum Girders - Aluminum Design Manual, 2005 Edition

Girder = Flex Profi

Strong Axis:

3.4.11 $L_b = 33.78 \text{ in}$ ry = 1.374 Cb = 1.24

$$S1 = \frac{1.2(Bc - \frac{\theta_y}{\theta_b}Fcy)}{Dc}$$
$$S1 = 1.37733$$

22.039

$$S2 = 1.2C_c$$

S2 = 79.2

$$\varphi F_L = \varphi b[Bc-Dc^*Lb/(1.2^*ry^*\sqrt(Cb))]$$

$\phi F_L = 29.6 \text{ ksi}$

3.4.15

N/A for Strong Direction

Weak Axis:

3.4.11

$$L_{b} = 33.78 \text{ in}$$

$$ry = 1.374$$

$$Cb = 1.24$$

$$24.5845$$

$$S1 = \frac{1.2(Bc - \frac{\theta_{y}}{\theta_{b}}Fcy)}{Dc}$$

$$S1 = 1.37733$$

$$S2 = 1.2C_{c}$$

$$S2 = 79.2$$

 $\varphi F_L = \varphi b[Bc-Dc*Lb/(1.2*ry*\sqrt{Cb})]$

 $\phi F_1 = 29.6 \text{ ksi}$

3.4.15

b/t = 24.46

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{5.1Dp}$$

$$S1 = 3.8$$

$$S2 = \frac{k_1 Bp}{5.1Dp}$$

$$S2 = 14.7$$

$$F_{UT} = (\phi bk2^* \sqrt{(BpE)})/(5.1b/t)$$

$$F_{UT} = 9.4 \text{ ksi}$$

3.4.16

$$b/t = 4.29$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\phi F_L = \phi y Fcy$$

$$\phi F_L = 33.3 \text{ ksi}$$

3.4.16

N/A for Weak Direction

3.4.16

N/A for Strong Direction

$$b/t = 24.46$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$F_{ST} = \phi b [Bp-1.6Dp*b/t]$$

$$F_{ST} = 28.2 \text{ ksi}$$

3.4.16.1 Not Used Rb/t = 0.0
$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$
 S1 = 1.1

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$S2 = 141.0$$

$$\phi F_L = 1.17 \phi y F c y$$

$\phi F_L = 38.9 \text{ ksi}$

3.4.16.2

N/A for Strong Direction

3.4.18

$$h/t = 24.46$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 34.4$$

$$m = 0.70$$

$$C_0 = 34.23$$

$$Cc = 37.77$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 72.1$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\phi F_L St = 29.6 \text{ ksi}$$

$$Ix = 364470 \text{ mm}^4$$

$$0.876 \text{ in}^4$$

$$y = 37.77 \text{ mm}$$

$$Sx = 0.589 \text{ in}^3$$

$$M_{max} St = 1.455 \text{ k-ft}$$

Compression

3.4.7

$$\lambda = 0.46067$$

$$r = 1.374 \text{ in}$$

$$S1^* = \frac{Bc - Fcy}{1.6Dc^*}$$

$$S1^* = 0.33515$$

$$S2^* = \frac{Cc}{\pi} \sqrt{Fcy/E}$$

$$S2^* = 1.23671$$

$$\phi cc = 0.90326$$

$$\phi F_L = \phi cc(Bc-Dc^*\lambda)$$

$$\phi F_L = 30.1251 \text{ ksi}$$

3.4.16.1

N/A for Weak Direction

3.4.16.2

$$b/t = 24.46$$

$$t = 2.6$$

$$ds = 6.05$$

$$rs = 3.49$$

$$S = 21.70$$

$$\rho st = 0.22$$

$$F_{UT} = 9.37$$

$$F_{ST} = 28.24$$

$$\phi F_L = Fut + (Fst - Fut)\rho st < Fst$$

$$\phi F_L = 13.5 \text{ ksi}$$

$$h/t = 4.29$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 29$$

$$Cc = 29$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\begin{split} \phi F_L W k &= 13.5 \text{ ksi} \\ ly &= 217168 \text{ mm}^4 \\ 0.522 \text{ in}^4 \\ x &= 29 \text{ mm} \\ Sy &= 0.457 \text{ in}^3 \\ M_{max} W k &= 0.513 \text{ k-ft} \end{split}$$

3.4.8

 $\begin{array}{lll} b/t = & 24.46 \\ S1 = & 3.83 \\ S2 = & 10.30 \\ \phi F_L = & (\phi ck2^* \sqrt{(BpE))/(5.1b/t)} \\ \phi F_1 = & 10.4 \text{ ksi} \end{array}$

3.4.9

b/t =4.29 S1 = 12.21 (See 3.4.16 above for formula) S2 = 32.70 (See 3.4.16 above for formula) $\phi F_L = \phi y F c y$ $\phi F_L =$ 33.3 ksi b/t =24.46 S1 = 12.21 S2 = 32.70 $\phi F_L = \phi c[Bp-1.6Dp*b/t]$

3.4.9.1

 $\varphi F_L =$

b/t =24.46 2.6 t = ds = 6.05 rs = 3.49 S = 21.70 ρst = 0.22 $F_{UT} =$ 10.43 F_{ST}= 28.24 $\phi F_L = Fut + (Fst - Fut)\rho st < Fst$ $\phi F_L =$ 14.3 ksi

0.0

28.2 ksi

3.4.10

Rb/t =

$$S1 = \left(\frac{Bt - \frac{1}{\theta_b}Fcy}{Dt}\right)$$

$$S1 = 6.87$$

$$S2 = 131.3$$

$$\phi F_L = \phi y Fcy$$

$$\phi F_L = 33.25 \text{ ksi}$$

$$\phi F_L = 14.29 \text{ ksi}$$

$$A = 576.21 \text{ mm}^2$$

$$0.89 \text{ in}^2$$

$$P_{\text{max}} = 12.76 \text{ kips}$$

A.3 Design of Aluminum Struts (Front) - Aluminum Design Manual, 2005 Edition

Strut = 30x30x3

Strong Axis:

3.4.14

$$L_{b} = 18.00 \text{ in}$$

$$J = 0.16$$

$$47.2194$$

$$S1 = \left(\frac{Bc - \frac{\theta_{y}}{\theta_{b}}Fcy}{1.6Dc}\right)^{2}$$

$$S1 = 0.51461$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$

$$S2 = 1701.56$$

$$φF_L$$
= $φb[Bc-1.6Dc*√((LbSc)/(Cb*√(lyJ)/2))]$

$$\varphi F_L = 31.2 \text{ ksi}$$

Weak Axis:

3.4.14

$$L_{b} = 18.00 \text{ in}$$

$$J = 0.16$$

$$47.2194$$

$$S1 = \left(\frac{Bc - \frac{\theta_{y}}{\theta_{b}} Fcy}{1.6Dc}\right)^{2}$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_{c}}{1.6}\right)^{2}$$

$$S2 = 1701.56$$

$\varphi F_L = \varphi b[Bc-1.6Dc^*\sqrt{(LbSc)/(Cb^*\sqrt{(lyJ)/2)})}$ $\phi F_L = 31.2$

3.4.16

b/t = 7.75

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi y Fcy$$

Not Used 0.0 3.4.16.1

 $\phi F_1 = 33.3 \text{ ksi}$

$$Rb/t = 0.0$$

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$S2 = 141.0$$

$$\varphi F_1 = 1.17 \varphi y Fcy$$

 $\phi F_L = 38.9 \text{ ksi}$

3.4.16

$$b/t = 7.75$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi y Fcy$$

$$\varphi F_I = 33.3 \text{ ksi}$$

3.4.16.1

N/A for Weak Direction

3.4.18

$$h/t = 7.75$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 15$$

$$Cc = 15$$

$$S2 = \frac{k_1 Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\begin{aligned} \phi F_L St &= & 31.2 \text{ ksi} \\ lx &= & 39958.2 \text{ mm}^4 \\ & & & 0.096 \text{ in}^4 \\ y &= & & 15 \text{ mm} \end{aligned}$$

$$Sx = 0.163 \text{ in}^3$$

 $M_{max}St = 0.423 \text{ k-ft}$

3.4.18

$$S1 = \frac{Bbr - \frac{\theta_{y}}{\theta_{b}} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_{0} = 15$$

$$Cc = 15$$

$$S2 = \frac{k_{1}Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_{L} = 1.3\phi y Fcy$$

$$\phi F_{L} = 43.2 \text{ ksi}$$

$$\phi F_{L}Wk = 31.2 \text{ ksi}$$

$$\phi F_{L}Wk = 39958.2 \text{ mm}^{4}$$

$$0.096 \text{ in}^{4}$$

$$x = 15 \text{ mm}$$

 $Sy = 0.163 \text{ in}^3$

 $M_{max}Wk = 0.423 \text{ k-ft}$

h/t = 7.75

SCHLETTER

Compression

3.4.7

$$\lambda = 0.77182$$

$$r = 0.437 \text{ in}$$

$$S1^* = \frac{Bc - Fcy}{1.6Dc^*}$$

$$S1^* = 0.33515$$

$$S2^* = \frac{Cc}{\pi} \sqrt{Fcy/E}$$

$$S2^* = 1.23671$$

$$\phi cc = 0.83792$$

$$\phi F_L = \phi cc(Bc-Dc^*\lambda)$$

 ϕF_L = 24.5226 ksi

3.4.9

$$\begin{array}{lll} b/t = & 7.75 \\ S1 = & 12.21 \text{ (See 3.4.16 above for formula)} \\ S2 = & 32.70 \text{ (See 3.4.16 above for formula)} \\ \phi F_L = & \phi F_C \\ \phi F_L = & 33.3 \text{ ksi} \\ \\ b/t = & 7.75 \\ S1 = & 12.21 \\ S2 = & 32.70 \\ \phi F_L = & \phi F_C \\ \phi F_L = & 33.3 \text{ ksi} \\ \end{array}$$

3.4.10

Rb/t =

$$S1 = \left(\frac{Bt - \frac{1}{\theta_b} Fty}{Dt}\right)$$

$$S1 = 6.87$$

$$S2 = 131.3$$

$$\phi F_L = \phi y Fcy$$

$$\phi F_L = 33.25 \text{ ksi}$$

$$\phi F_L = 24.52 \text{ ksi}$$

$$A = 323.87 \text{ mm}^2$$

$$0.50 \text{ in}^2$$

$$P_{max} = 12.31 \text{ kips}$$

0.0

A.4 Design of Aluminum Struts (Diagonal) - Aluminum Design Manual, 2005 Edition

Strut = 30x30x3

Strong Axis:

3.4.14

$$L_b = 46.38 \text{ in}$$
 $J = 0.16$
 121.663

$$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b}Fcy}{1.6Dc}\right)$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$

$$S2 = 1701.56$$

$$φF_L$$
= $φb[Bc-1.6Dc*√((LbSc)/(Cb*√(lyJ)/2))]$

$$\phi F_L = 29.8 \text{ ksi}$$

3.4.16

$$b/t = 7.75$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$S2 = 46$$

 $\phi F_L = \phi y F c y$

$$\phi F_L = 33.3 \text{ ksi}$$

3.4.16.1 Rb/t = 0.0

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$S2 = 141.0$$

$$\varphi F_L = 1.17 \varphi y Fcy$$

 $\phi F_1 = 38.9 \text{ ksi}$

7.75

3.4.18

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 15$$

$$Cc = 15$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\varphi F_L = 1.3\varphi y Fcy$$

$$\varphi F_L = 43.2 \text{ ksi}$$

$$\phi F_L St = 29.8 \text{ ksi}$$

$$lx = 39958.2 \text{ mm}^4$$

$$0.096 \text{ in}^4$$

$$y = 15 \text{ mm}$$

$$Sx = 0.163 \text{ in}^3$$

$$M_{max}St = 0.404 \text{ k-ft}$$

Weak Axis:

3.4.14

$$L_{b} = 46.38 \text{ in}$$

$$J = 0.16$$

$$121.663$$

$$S1 = \left(\frac{Bc - \frac{\theta_{y}}{\theta_{b}} Fcy}{1.6Dc}\right)^{2}$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$

$$S2 = 1701.56$$

$$\phi F_L \text{= } \phi b [\text{Bc-1.6Dc*} \sqrt{(\text{LbSc})/(\text{Cb*} \sqrt{(\text{lyJ})/2)})}]$$

$$\phi F_L = 29.8$$

3.4.16

$$b/t = 7.75$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b}Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi F C y$$

$$\varphi F_L = 33.3 \text{ ksi}$$

3.4.16.1

N/A for Weak Direction

h/t = 7.75

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 15$$

$$Cc = 15$$

$$S2 = \frac{k_1 Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\varphi F_L = 1.3\varphi y Fcy$$

$$\varphi F_L = 43.2 \text{ ksi}$$

$$\begin{array}{lll} \phi F_L W k = & 33.3 \text{ ksi} \\ \text{ly} = & 39958.2 \text{ mm}^4 \\ & 0.096 \text{ in}^4 \\ \text{x} = & 15 \text{ mm} \\ \text{Sy} = & 0.163 \text{ in}^3 \\ M_{\text{max}} W k = & 0.450 \text{ k-ft} \end{array}$$

SCHLETTER

Compression

3.4.7

$$\begin{array}{lll} \lambda = & 1.98863 \\ r = & 0.437 \text{ in} \\ S1^* = & \frac{Bc - Fcy}{1.6Dc^*} \\ S1^* = & 0.33515 \\ & S2^* = & \frac{Cc}{\pi} \sqrt{Fcy/E} \\ S2^* = & 1.23671 \\ & \phi cc = & 0.85841 \\ & \phi F_L = & (\phi cc Fcy)/(\lambda^2) \\ & \phi F_L = & 7.59722 \text{ ksi} \end{array}$$

3.4.9

b/t = 7.75
S1 = 12.21 (See 3.4.16 above for formula)
S2 = 32.70 (See 3.4.16 above for formula)

$$\phi F_L = \phi y F c y$$

 $\phi F_L = 33.3 \text{ ksi}$
b/t = 7.75
S1 = 12.21
S2 = 32.70
 $\phi F_L = \phi y F c y$
 $\phi F_L = 33.3 \text{ ksi}$

3.4.10

Rb/t =

$$S1 = \left(\frac{Bt - \theta_b + t \cdot y}{Dt}\right)$$

$$S1 = 6.87$$

$$S2 = 131.3$$

$$\phi F_L = \phi y F c y$$

$$\phi F_L = 33.25 \text{ ksi}$$

$$\phi F_L = 7.60 \text{ ksi}$$

$$A = 323.87 \text{ mm}^2$$

$$0.50 \text{ in}^2$$

$$P_{max} = 3.81 \text{ kips}$$

0.0

A.5 Design of Aluminum Struts (Rear) - Aluminum Design Manual, 2005 Edition

Strut = 30x30x3

Strong Axis:

3.4.14
$$L_b = 36.18 \text{ in}$$

$$J = 0.16$$

$$94.9139$$

$$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b} Fcy}{1.6Dc}\right)^2$$

$$S1 = 0.51461$$

$$\begin{split} S2 &= \left(\frac{C_c}{1.6}\right)^2 \\ S2 &= 1701.56 \\ \phi F_L &= \phi b [Bc-1.6Dc^* \sqrt{((LbSc)/(Cb^* \sqrt{(lyJ)/2)})]} \end{split}$$

$$\phi F_L = 30.2 \text{ ksi}$$

3.4.16

$$b/t = 7.75$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi y Fcy$$

$$\varphi F_L = 33.3 \text{ ksi}$$

3.4.16.1 Not Used Rb/t = 0.0

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$S2 = 141.0$$

$$\varphi F_L = 1.17 \varphi y Fcy$$

$$\varphi F_L = 38.9 \text{ ksi}$$

0.16

$$\begin{array}{ll} \mathsf{L_b} = & 36.18 \text{ in} \\ \mathsf{J} = & 0.16 \\ 94.9139 \\ \\ S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b} Fcy}{1.6Dc}\right)^2 \\ \mathsf{S1} = & 0.51461 \\ \\ S2 = & \left(\frac{C_c}{1.6}\right)^2 \\ \mathsf{S2} = & 1701.56 \\ \\ \varphi \mathsf{F_L} = & \varphi \mathsf{b} [\mathsf{Bc-1.6Dc}^* \sqrt{((\mathsf{LbSc})/(\mathsf{Cb}^* \sqrt{(\mathsf{lyJ})/2}))}] \end{array}$$

 $\phi F_L = 30.2$

Weak Axis:

3.4.14

3.4.16

b/t = 7.75

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi y Fcy$$

$$\varphi F_L = 33.3 \text{ ksi}$$

3.4.16.1

N/A for Weak Direction

3.4.18

h/t = 7.75

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 15$$

$$Cc = 15$$

$$S2 = \frac{k_1 Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\varphi F_L = 1.3\varphi y Fcy$$

$$\varphi F_L = 43.2 \text{ ksi}$$

$$\varphi F_L St = 30.2 \text{ ksi}$$

15 mm

0.163 in³

3.4.18

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 15$$

$$Cc = 15$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\phi F_L Wk = 33.3 \text{ ksi}$$

$$\phi F_L Wk = 39958.2 \text{ mm}$$

h/t = 7.75

$$\begin{aligned} \phi F_L W k &= & 33.3 \text{ ksi} \\ ly &= & 39958.2 \text{ mm}^4 \\ &= & 0.096 \text{ in}^4 \\ x &= & 15 \text{ mm} \\ \text{Sy} &= & 0.163 \text{ in}^3 \\ M_{\text{max}} W k &= & 0.450 \text{ k-ft} \end{aligned}$$

y =

 $M_{max}St = 0.410 \text{ k-ft}$

Sx =

SCHLETTER

Compression

3.4.7

$$\begin{array}{lll} \lambda = & 1.5514 \\ r = & 0.437 \text{ in} \\ & S1^* = \frac{Bc - Fcy}{1.6Dc^*} \\ S1^* = & 0.33515 \\ & S2^* = \frac{Cc}{\pi} \sqrt{Fcy/E} \\ S2^* = & 1.23671 \\ & \phi cc = & 0.7972 \\ & \phi F_L = (\phi cc Fcy)/(\lambda^2) \\ & \phi F_L = & 11.5927 \text{ ksi} \\ \\ \hline \hline & 3.4.9 \\ & b/t = & 7.75 \\ & S1 = & 12.21 \text{ (See 3.4.16 above for formula)} \\ & S2 = & 32.70 \text{ (See 3.4.16 above for formula)} \\ & \phi F_L = & \phi y Fcy \\ & \phi F_L = & 33.3 \text{ ksi} \\ \hline \end{array}$$

3.4.10

b/t =

S1 =

S2 =

 $\varphi F_L = \varphi y F c y$ $\varphi F_L = 33$

7.75

12.21

32.70

33.3 ksi

Rb/t = 0.0

$$S1 = \left(\frac{Bt - \frac{\theta_y}{\theta_b}Fcy}{Dt}\right)^2$$
S1 = 6.87
S2 = 131.3
 $\phi F_L = \phi y Fcy$
 $\phi F_L = 33.25 \text{ ksi}$

$$\phi F_L = 11.59 \text{ ksi}$$

$$A = 323.87 \text{ mm}^2$$

$$0.50 \text{ in}^2$$

$$P_{max} = 5.82 \text{ kips}$$

APPENDIX B

B.1

The following pages will contain the results from RISA. Please refer back to Section 2 for load information and Section 4-5 for member and foundation design.

Model Name

Schletter, Inc.HCV

: Standard PVMini Racking System

Dec 11, 2015

Checked By:___

Basic Load Cases

	BLC Description	Category	X Gravity	Y Gravity	Z Gravity	Joint	Point	Distribut	.Area(Me	Surface(
1	Dead Load, Max	DĽ	_	-1	,			2	,	,
2	Dead Load, Min	DL		-1				2		
3	Snow Load	SL						2		
4	Wind Load - Pressure	WL						2		
5	Wind Load - Suction	WL						2		
6	Seismic - Lateral	EL								

Member Distributed Loads (BLC 1 : Dead Load, Max)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	Υ	-8.366	-8.366	0	0
2	M16	Υ	-8.366	-8.366	0	0

Member Distributed Loads (BLC 2 : Dead Load, Min)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	Υ	-4.45	-4.45	0	0
2	M16	Υ	-4.45	-4.45	0	0

Member Distributed Loads (BLC 3: Snow Load)

	Member Label	Direction	Start Magnitude[lb/ft,F] End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	Υ	-51.748	-51.748	0	0
2	M16	Υ	-51.748	-51.748	0	0

Member Distributed Loads (BLC 4: Wind Load - Pressure)

	Member Label	Direction	Start Magnitude[lb/ft,F	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	V	-94.402	-94.402	0	0
2	M16	V	-145.893	-145.893	0	0

Member Distributed Loads (BLC 5: Wind Load - Suction)

	Member Label	Direction	Start Magnitude[lb/ft,F] End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	V	188.803	188.803	0	0
2	M16	V	85.82	85.82	0	0

Load Combinations

	Description	S	P	S	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa
1	LRFD 1.2D + 1.6S + 0.5W	Yes	Υ		1	1.2	3	1.6	4	.5														
2	LRFD 1.2D + 1.0W + 0.5S	Yes	Υ		1	1.2	3	.5	4	1														
3	LRFD 0.9D + 1.0W	Yes	Υ		2	.9					5	1												
4	LATERAL - LRFD 1.54D + 1.3E	Yes	Υ		1	1.54	3	.2			6	1.3												
5	LATERAL - LRFD 0.56D + 1.3E	Yes	Υ		1	.56					6	1.3												
6	LATERAL - LRFD 1.54D + 1.25	Yes	Υ		1	1.54	3	.2			6	1.25												
7	LATERAL - LRFD 0.56D + 1.25E	Yes	Υ		1	.56					6	1.25												
8																								
9	ASD 1.0D + 1.0S	Yes	Υ		1	1	3	1																
10	ASD 1.0D + 0.6W	Yes	Υ		1	1			4	.6														
11	ASD 1.0D + 0.75L + 0.45W + 0	Yes	Υ		1	1	3	.75	4	.45														
12	ASD 0.6D + 0.6W	Yes	Υ		2	6.					5	.6												
13	LATERAL - ASD 1.238D + 0.875E	Yes	Υ		1	1.2					6	.875												
14	LATERAL - ASD 1.1785D + 0.65.	.Yes	Υ		1	1.1	3	.75			6	.656												
15	LATERAL - ASD 0.362D + 0.875E	Yes	Υ		1	.362					6	.875												

Model Name

: Schletter, Inc. : HCV

: Standard PVMini Racking System

Dec 11, 2015

Checked By:__

Envelope Joint Reactions

	Joint		X [lb]	LC	Y [lb]	LC	Z [lb]	LC	MX [k-ft]	LC	MY [k-ft]	LC	MZ [k-ft]	LC
1	N8	max	177.406	2	267.153	2	0	15	0	9	0	1	0	1
2		min	-216.676	3	-391.953	3	139	3	0	3	0	1	0	1
3	N7	max	0	15	333.194	1	025	15	0	15	0	1	0	1
4		min	126	2	-30.46	3	635	1	001	1	0	1	0	1
5	N15	max	0	15	937.519	1	.262	1	0	1	0	1	0	1
6		min	-1.304	2	-131.701	3	522	3	0	3	0	1	0	1
7	N16	max	611.498	2	871.117	2	0	2	0	1	0	1	0	1
8		min	-668.723	3	-1265.62	3	-63.654	3	0	3	0	1	0	1
9	N23	max	0	15	333.175	1	1.233	1	.002	1	0	1	0	1
10		min	126	2	-29.97	3	.036	10	0	10	0	1	0	1
11	N24	max	177.407	2	269.826	2	64.168	3	0	1	0	1	0	1
12		min	-216.996	3	-390.589	3	.001	10	0	3	0	1	0	1
13	Totals:	max	964.754	2	2862.472	1	0	2						
14		min	-1102.577	3	-2240.293	3	0	1						

Envelope Member Section Forces

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
1	M2	1	max	238.761	1_	.644	4	.223	1	0	15	0	15	0	1
2			min	-353.712	3	.152	15	076	3	0	1	0	1	0	1
3		2	max	238.877	1	.598	4	.223	1	0	15	0	15	0	15
4			min	-353.624	3	.141	15	076	3	0	1	0	1	0	4
5		3	max	238.994	1	.553	4	.223	1	0	15	0	9	0	15
6			min	-353.537	3	.13	15	076	3	0	1	0	3	0	4
7		4	max	239.11	1	.507	4	.223	1	0	15	0	1	0	15
8			min	-353.45	3	.12	15	076	3	0	1	0	3	0	4
9		5	max	239.226	1	.461	4	.223	1	0	15	0	1	0	15
10			min	-353.363	3	.109	15	076	3	0	1	0	3	0	4
11		6	max	239.343	1	.416	4	.223	1	0	15	0	1	0	15
12			min	-353.275	3	.098	15	076	3	0	1	0	3	0	4
13		7	max	239.459	1	.37	4	.223	1	0	15	0	1	0	15
14			min	-353.188	3	.087	15	076	3	0	1	0	3	0	4
15		8	max	239.576	1	.324	4	.223	1	0	15	0	1	0	15
16			min	-353.101	3	.077	15	076	3	0	1	0	3	0	4
17		9	max	239.692	1	.279	4	.223	1	0	15	0	1	0	15
18			min	-353.013	3	.066	15	076	3	0	1	0	3	0	4
19		10	max	239.808	1	.233	4	.223	1	0	15	0	1	0	15
20			min	-352.926	3	.055	15	076	3	0	1	0	3	0	4
21		11	max		1	.187	4	.223	1	0	15	0	1	0	15
22				-352.839	3	.044	15	076	3	0	1	0	3	0	4
23		12		240.041	1	.142	4	.223	1	0	15	0	1	0	15
24				-352.751	3	.034	15	076	3	0	1	0	3	0	4
25		13	1	240.158	1	.103	2	.223	1	0	15	0	1	0	15
26			min	-352.664	3	.019	12	076	3	0	1	0	3	0	4
27		14	max	240.274	1	.067	2	.223	1	0	15	0	1	0	15
28			min		3	002	3	076	3	0	1	0	3	0	4
29		15	max	240.39	1	.031	2	.223	1	0	15	0	1	0	15
30			min	-352.49	3	028	3	076	3	0	1	0	3	0	4
31		16	1	240.507	1	004	2	.223	1	0	15	0	1	0	15
32					3	055	3	076	3	0	1	0	3	0	4
33		17		240.623	1	02	15	.223	1	0	15	0	1	0	15
34				-352.315	3	087	4	076	3	0	1	0	3	0	4
35		18	max		1	031	15	.223	1	0	15	0	1	0	15
36			min		3	132	4	076	3	0	1	0	3	0	4
37		19	max		1	042	15	.223	1	0	15	0	1	0	15
					•	, .J. <u>-</u>									

Model Name

Schletter, Inc.HCV

: Standard PVMini Racking System

Dec 11, 2015

Checked By:__

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC			Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	<u>LC</u>
38			min	-352.14	3	178	4	076	3	0	1	0	3	0	4
39	M3	1	max	127.625	2	1.779	4	009	15	0	15	0	1	0	4
40			min	-126.265	3	.418	15	232	1	0	1	0	15	0	15
41		2	max		2	1.601	4	009	15	0	15	0	1	0	2
42			min	-126.316	3	.377	15	232	1	0	1	0	15	0	12
43		3		127.488	2	1.424	4	009	15	0	15	0	1	0	2
44			min		3	.335	15	232	1	0	1	0	15	0	3
45		4		127.419	2	1.247	4	009	15	0	15	0	1	0	15
46		1	min	-126.419	3	.293	15	232	1	0	1	0	15	0	4
47		5			2	1.07	4	009	15		15	0	1		15
48		1 3	max	-126.471		.252	15	232	1	0	1	0	15	0	
			min		3					0				0	4
49		6		127.282	2	.893	4	009	15	0	15	0	1_	0	15
50		_	min		3	.21	15	232	1_	0	1	0	15	0	4
51		7	max		2	.715	4	009	15	0	15	0	1	0	15
52			min	-126.573	3	.168	15	232	1	0	1	0	15	0	4
53		8	max	127.145	2	.538	4	009	15	0	15	0	_1_	0	15
54			min	-126.625	3	.127	15	232	1	0	1	0	15	001	4
55		9	max	127.076	2	.361	4	009	15	0	15	0	1	0	15
56			min	-126.676	3	.085	15	232	1	0	1	0	15	001	4
57		10	max	127.008	2	.184	4	009	15	0	15	0	1	0	15
58			min	-126.728	3	.043	15	232	1	0	1	0	15	001	4
59		11	max		2	.027	2	009	15	0	15	0	1	0	15
60			min		3	021	3	232	1	0	1	0	15	001	4
61		12	max	126.87	2	04	15	009	15	0	15	0	1	0	15
62		12	min	-126.831	3	171	4	232	1	0	1	0	15	001	4
63		13		126.802	2	081	15	009	15	0	15	0	1	0	15
		13								_					
64		4.4	min		3	348	4	232	1	0	1	0	10	001	4
65		14	max		2	123	15	009	15	0	15	0	1	0	15
66		4.5	min	-126.934	3	<u>525</u>	4	232	1_	0	1	0	10	001	4
67		15	max		2	165	15	009	15	0	15	0	1	0	15
68			min	-126.985	3	702	4	232	1_	0	1	0	10	0	4
69		16		126.596	2	206	15	009	15	0	15	0	15	0	15
70			min		3	879	4	232	1	0	1	0	1_	0	4
71		17	max	126.527	2	248	15	009	15	0	15	0	15	0	15
72			min	-127.088	3	-1.057	4	232	1	0	1	0	1	0	4
73		18	max	126.459	2	29	15	009	15	0	15	0	15	0	15
74			min	-127.139	3	-1.234	4	232	1	0	1	0	1	0	4
75		19	max	126.39	2	331	15	009	15	0	15	0	15	0	1
76			min	-127.191	3	-1.411	4	232	1	0	1	0	1	0	1
77	M4	1	max		1	0	1	025	15	0	1	0	3	0	1
78				-31.334	3	0	1	672	1	0	1	0	2	0	1
79		2		332.094	1	0	1	025	15	0	1	0	15	0	1
80			min		3	0	1	672	1	0	1	0	1	0	1
81		3	max		1	0	1	025	15	0	1	0	15	0	1
82		3			_	0	1		1	0	1	-	1	0	1
		4	min	-31.237	3			672	_			0			•
83		4	max		1	0	1	025	15	0	1	0	15	0	1
84		_	min	-31.188	3	0	1	672	1_	0	1	0	1	0	1
85		5	max		1_	0	1	025	15	0	1	0	15	0	1
86			min	-31.14	3	0	1	672	1	0	1	0	1_	0	1
87		6	max		1	0	1	025	15	0	1	0	15	0	1
88			min	-31.091	3	0	1	672	1	0	1	0	1	0	1
89		7	max	332.418	1	0	1	025	15	0	1	0	15	0	1
90			min	-31.043	3	0	1	672	1	0	1	0	1	0	1
91		8	max		1	0	1	025	15	0	1	0	15	0	1
92			min	-30.994	3	0	1	672	1	0	1	0	1	0	1
93		9	max		1	0	1	025	15	0	1	0	15	0	1
94			min	-30.946	3	0	1	672	1	0	1	0	1	0	1
J+			1111111	-50.340	J	U		012		U		U		U	

Schletter, Inc.HCV

Model Name : Standard PVMini Racking System

Dec 11, 2015

Checked By:____

	Member	Sec	1	Axial[lb]	LC	y Shear[lb]	LC			Torque[k-ft]	LC	y-y Mome		z-z Mome	_ LC_
95		10	max	332.612	1	0	1	025	15	0	1	0	15	0	1
96			min	-30.897	3	0	1	672	1	0	1	0	1	0	1
97		11	max	332.677	1	0	1	025	15	0	1	0	15	0	1
98			min	-30.849	3	0	1	672	1	0	1	0	1	0	1
99		12	max	332.741	1	0	1	025	15	0	1	0	15	0	1
100			min	-30.8	3	0	1	672	1	0	1	0	1	0	1
101		13		332.806	1	0	1	025	15	0	1	0	15	0	1
102		-10	min	-30.751	3	0	1	672	1	0	1	0	1	0	1
103		14	max	332.871	1	0	1	025	15	0	1	0	15	0	1
104		17		-30.703	3	0	1	672	1	0	1	0	1	0	1
		15	min				1		_	_	_	_	_		
105		15	max		1	0		025	15	0	1	0	15	0	1
106		4.0	min	-30.654	3	0	1	672	1_	0	1_	0	1	0	1
107		16	max	333	1_	0	1_	025	15	0	_1_	0	15	0	1
108			min	-30.606	3	0	1	672	1	0	1	0	1	0	1
109		17	max	333.065	_1_	0	_1_	025	15	0	_1_	0	15	0	1
110			min	-30.557	3	0	1	672	1	0	1	0	1	0	1
111		18	max	333.13	1	0	1	025	15	0	1	0	15	0	1
112			min	-30.509	3	0	1	672	1	0	1	001	1	0	1
113		19	max	333.194	1	0	1	025	15	0	1	0	15	0	1
114			min	-30.46	3	0	1	672	1	0	1	001	1	0	1
115	M6	1	max		1	.643	4	.058	1	0	3	0	3	0	1
	IVIO			-1115.805	3	.151	15	225	3	0	2	0	2	0	1
116		2	min												
117		2	max		1	.597	4	.058	1	0	3	0	3	0	15
118			min		3	.141	15	225	3	0	2	0	2	0	4
119		3		760.146	1	.551	4	.058	1	0	3_	0	3	0	15
120			min	-1115.631	3	.13	15	225	3	0	2	0	2	0	4
121		4	max	760.263	1	.506	4	.058	1	0	3	0	3	0	15
122			min	-1115.543	3	.119	15	225	3	0	2	0	2	0	4
123		5	max	760.379	1	.46	4	.058	1	0	3	0	1	0	15
124			min	-1115.456	3	.108	15	225	3	0	2	0	2	0	4
125		6	max		1	.416	2	.058	1	0	3	0	1	0	15
126			min	-1115.369	3	.098	15	225	3	0	2	0	3	0	4
127		7		760.612	1	.38	2	.058	1	0	3	0	1	0	15
128				-1115.282	3	.087	12	225	3	0	2	0	3	0	4
129		8		760.728	1	.345	2	.058	1	0	3	0	1	0	15
		0	max												
130			min	-1115.194	3	.069	12	225	3	0	2	0	3	0	4
131		9		760.845	1	.309	2	.058	1	0	3	0	1	0	15
132			_	-1115.107	3	.051	12	225	3	0	2	0	3	0	4
133		10		760.961	1_	.273	2	.058	1	0	3_	0	1	0	15
134				-1115.02	3	.034	12	225	3	0	2	0	3	0	4
135		11		761.078	1_	.238	2	.058	1	0	3	0	1	0	15
136			min	-1114.932	3	.014	3	225	3	0	2	0	3	0	2
137		12	max	761.194	1	.202	2	.058	1	0	3	0	1	0	15
138				-1114.845	3	013	3	225	3	0	2	0	3	0	2
139		13		761.31	1	.167	2	.058	1	0	3	0	1	0	12
140		10		-1114.758	3	039	3	225	3	0	2	0	3	0	2
141		14	_	761.427	1	.131	2	.058	1	0	3	0	1	0	12
142		14				066	3	225	3	0	2	0	3	0	2
		4.5		-1114.67	3							-			
143		15		761.543	1	.095	2	.058	1	0	3_	0	1	0	12
144		4.0		-1114.583	3	093	3	225	3	0	2	0	3	0	2
145		16	max		1	.06	2	.058	1	0	3	0	1	0	12
146			min		3	119	3	225	3	0	2	0	3	0	2
147		17		761.776	1_	.024	2	.058	1	0	3	0	1	0	12
148			min	-1114.409	3	146	3	225	3	0	2	0	3	0	2
149		18	max	761.893	1	011	2	.058	1	0	3	0	1	0	12
150				-1114.321	3	173	3	225	3	0	2	0	3	0	2
151		19		762.009	1	042	15	.058	1	0	3	0	1	0	12
•													-		

Model Name

Schletter, Inc.HCV

. : Standard PVMini Racking System

Dec 11, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC					Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	
152			min	-1114.234	3	199	3	225	3	0	2	0	3	0	2
153	M7	1	max	457.514	2	1.78	4	.016	3	0	1	0	1	0	2
154			min	-368.333	3	.419	15	008	1	0	3	0	3	0	12
155		2	max	457.445	2	1.603	4	.016	3	0	1	0	1	0	2
156			min	-368.384	3	.377	15	008	1	0	3	0	3	0	3
157		3	max		2	1.425	4	.016	3	0	1	0	1	0	2
158			min	-368.436	3	.335	15	008	1	0	3	0	3	0	3
159		4	max		2	1.248	4	.016	3	0	1	0	1	0	2
160			min	-368.487	3	.294	15	008	1	0	3	0	3	0	3
161		5	max	457.24	2	1.071	4	.016	3	0	1	0	1	0	15
162		5			3	.252	15	008	1	0	3	0	3	0	3
			min	-368.539											
163		6	max		2	.894	4	.016	3	0	1	0	1	0	15
164		_	min	-368.59	3	.21	15	008	1	0	3	0	3	0	4
165		7	max	457.102	2	.717	4	.016	3	0	1	0	1	0	15
166			min	-368.641	3	.169	15	008	1	0	3	0	3	0	4
167		8	max		2	.539	4	.016	3	0	_1_	0	_1_	0	15
168			min	-368.693	3	.127	15	008	1	0	3	0	3	001	4
169		9	max	456.965	2	.362	4	.016	3	0	1	0	1	0	15
170			min	-368.744	3	.085	15	008	1	0	3	0	3	001	4
171		10	max	456.897	2	.216	2	.016	3	0	1	0	1	0	15
172			min	-368.796	3	.025	12	008	1	0	3	0	3	001	4
173		11	max		2	.078	2	.016	3	0	1	0	1	0	15
174			min	-368.847	3	074	3	008	1	0	3	0	3	001	4
175		12	max	456.759	2	04	15	.016	3	0	1	0	1	0	15
176		12	min	-368.899	3	177	3	008	1	0	3	0	3	001	4
177		13	max		2	081	15	.016	3	0	1	0	1	0	15
		13									3				
178		4.4	min	-368.95	3	347	4	008	1	0		0	3	001	4
179		14	max		2	123	15	.016	3	0	1	0	1	0	15
180		4.5	min	-369.002	3	524	4	008	1	0	3	0	3	001	4
181		15	max	456.554	2	165	15	.016	3	0	1	0	1	0	15
182			min	-369.053	3	701	4	008	1	0	3	0	3	0	4
183		16	max		2	206	15	.016	3	0	1	0	1	0	15
184			min	-369.105	3	878	4	008	1	0	3	0	3	0	4
185		17	max	456.416	2	248	15	.016	3	0	1	0	1	0	15
186			min	-369.156	3	-1.055	4	008	1	0	3	0	3	0	4
187		18	max	456.348	2	289	15	.016	3	0	1	0	1	0	15
188			min	-369.207	3	-1.233	4	008	1	0	3	0	3	0	4
189		19	max	456.279	2	331	15	.016	3	0	1	0	1	0	1
190			min	-369.259	3	-1.41	4	008	1	0	3	0	3	0	1
191	M8	1	max		1	0	1	.309	1	0	1	0	2	0	1
192				-132.574		0	1	511	3	0	1	0	1	0	1
193		2		936.419	1	0	1	.309	1	0	1	0	1	0	1
194		_			3	0	1	511	3	0	1	0	3	0	1
195		3	max		1	0	1	.309	1	0	1	0	1	0	1
196				-132.477	3	0	1	511	3	0	1	0	3	0	1
197		4		936.548	<u> </u>	0	1	.309	1	0	1	0	1	0	1
		4						511	3						
198		-			3	0	1			0	1_	0	3	0	1
199		5	max		1	0	1	.309	1	0	1	0	1	0	1
200			min	-132.38	3	0	1	511	3	0	1	0	3	0	1
201		6	max		1	0	1	.309	1	0	1	0	1	0	1
202			min	-132.332	3	0	1	511	3	0	1	0	3	0	1
203		7		936.742	1	0	1	.309	1	0	1	0	1	0	1
204			min	-132.283	3	0	1	511	3	0	1	0	3	0	1
205		8	max	936.807	1	0	1	.309	1	0	1	0	1	0	1
206			min	-132.235	3	0	1	511	3	0	1	0	3	0	1
207		9	max		1	0	1	.309	1	0	1	0	1	0	1
208					3	0	1	511	3	0	1	0	3	0	1
													_		

Model Name

: Schletter, Inc. : HCV

. : Standard PVMini Racking System

Dec 11, 2015

Checked By:____

200	Member	Sec		Axial[lb]	LC 1						LC	y-y Mome		_	
209		10	max	936.937	3	0	1	.309 511	3	0	1	0	<u>1</u> 3	0	1
211		11		937.001	1	0	1	.309	1	0	1	0	<u> </u>	0	1
212			min	-132.089	3	0	1	511	3	0	1	0	3	0	1
213		12	max	937.066	1	0	1	.309	1	0	1	0	<u> </u>	0	1
214		12	min	-132.04	3	0	1	511	3	0	1	0	3	0	1
215		13	max		1	0	1	.309	1	0	1	0	1	0	1
216		13			3	0	1	511	3	0	1	0	3	0	1
217		14	max		1	0	1	.309	1	0	1	0	<u> </u>	0	1
218		14	min	-131.943	3	0	1	511	3	0	1	0	3	0	1
219		15	max	937.26	1	0	1	.309	1	0	1	0	1	0	1
220		10	min	-131.895	3	0	1	511	3	0	1	0	3	0	1
221		16		937.325	1	0	1	.309	1	0	1	0	1	0	1
222		10	min	-131.846	3	0	1	511	3	0	1	0	3	0	1
223		17	max		1	0	1	.309	1	0	1	0	1	0	1
224		- 17	min	-131.798	3	0	1	511	3	0	1	0	3	0	1
225		18	max		1	0	1	.309	1	0	1	0	1	0	1
226		10			3	0	1	511	3	0	1	0	3	0	1
227		19	max		1	0	1	.309	1	0	1	0	1	0	1
228		19	min	-131.701	3	0	1	511	3	0	1	0	3	0	1
229	M10	1	max		1	.644	4	003	15	0	1	0	<u> </u>	0	1
230	IVITO		min	-312.19	3	.152	15	113	1	0	3	0	3	0	1
231		2		240.869	1	.598	4	003	15	0	1	0	1	0	15
232			min	-312.103	3	.141	15	113	1	0	3	0	3	0	4
233		3	max	240.986	1	.552	4	003	15	0	1	0	<u> </u>	0	15
234		3	min	-312.015	3	.13	15	113	1	0	3	0	3	0	4
235		4	max		1	.507	4	003	15	0	1	0	1	0	15
236		4	min	-311.928	3	.119	15	113	1	0	3	0	3	0	4
237		5	max	241.219	1	.461	4	003	15	0	1	0	<u> </u>	0	15
238		5	min	-311.841	3	.109	15	113	1	0	3	0	3	0	4
239		6	max	241.335	1	.415	4	003	15	0	1	0	<u> </u>	0	15
240		-	min	-311.753	3	.098	15	113	1	0	3	0	3	0	4
241		7	max		1	.37	4	003	15	0	1	0	1	0	15
242			min	-311.666	3	.087	15	113	1	0	3	0	3	0	4
243		8	max	241.568	1	.324	4	003	15	0	1	0	9	0	15
244			min	-311.579	3	.077	15	113	1	0	3	0	3	0	4
245		9	max	241.684	1	.278	4	003	15	0	1	0	15	0	15
246			min	-311.491	3	.066	15	113	1	0	3	0	3	0	4
247		10	max	241.801	1	.233	4	003	15	0	1	0	15	0	15
248		10	min	-311.404	3	.055	15	113	1	0	3	0	3	0	4
249		11		241.917	1	.187	4	003	15	0	1	0	15	0	15
250			min		3	.044	15	113	1	0	3	0	3	0	4
251		12		242.033	1	.141	4	003	15	0	1	0	15	0	15
252		12	min		3	.034	15	113	1	0	3	0	3	0	4
253		13			1	.103	2	003	15	0	1	0	15		15
254		-10	min	-311.142	3	.023	15	113	1	0	3	0	3	0	4
255		14		242.266	1	.067	2	003	15	0	1	0	15	0	15
256				-311.055	3	.012	15	113	1	0	3	0	3	0	4
257		15	max		1	.031	2	003	15	0	1	0	15	0	15
258					3	004	9	113	1	0	3	0	3	0	4
259		16	max		1	004	2	003	15	0	1	0	15	0	15
260		<u>.</u>	min	-310.88	3	041	4	113	1	0	3	0	3	0	4
261		17		242.615	1	02	15	003	15	0	1	0	15	0	15
262					3	087	4	113	1	0	3	0	3	0	4
263		18		242.732	1	031	15	003	15	0	1	0	15		15
264			min	-310.706	3	132	4	113	1	0	3	0	3	0	4
265		19		242.848	1	042	15	003	15	0	1	0	15		15
			mux	_ 12.070			-0	.000					.0		

Model Name

Schletter, Inc. HCV

Standard PVMini Racking System

Dec 11, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC '	y-y Mome	LC	z-z Mome	. LC
266			min	-310.618	3	178	4	113	1	0	3	0	1	0	4
267	M11	1	max	127.162	2	1.779	4	.253	1	0	3	0	3	0	4
268			min	-126.926	3	.418	15	031	3	0	10	0	1	0	15
269		2	max	127.093	2	1.601	4	.253	1	0	3	0	3	0	2
270			min	-126.977	3	.377	15	031	3	0	10	0	1	0	12
271		3	max	127.025	2	1.424	4	.253	1	0	3	0	3	0	2
272			min	-127.029	3	.335	15	031	3	0	10	0	1	0	3
273		4	max		2	1.247	4	.253	1	0	3	0	3	0	15
274			min	-127.08	3	.293	15	031	3	0	10	0	1	0	3
275		5	max	126.888	2	1.07	4	.253	1	0	3	0	3	0	15
276			min	-127.132	3	.252	15	031	3	0	10	Ö	1	0	4
277		6	max		2	.893	4	.253	1	0	3	0	3	0	15
278			min	-127.183	3	.21	15	031	3	0	10	0	1	0	4
279		7	max	126.75	2	.715	4	.253	1	0	3	0	3	0	15
280			min	-127.235	3	.168	15	031	3	0	10	0	1	0	4
281		8	max	126.682	2	.538	4	.253	1	0	3	0	3	0	15
282			min	-127.286	3	.127	15	031	3	0	10	0	1	001	4
283		9	max		2	.361	4	.253	1	0	3	0	3	0	15
284			min	-127.338	3	.085	15	031	3	0	10	0	1	001	4
285		10	max		2	.184	4	.253	1	0	3	0	3	0	15
286		10	min	-127.389	3	.043	15	031	3	0	10	0	1	001	4
287		11	max		2	.027	2	.253	1	0	3	0	3	0	15
288			min	-127.441	3	035	3	031	3	0	10	0	1	001	4
289		12	max	126.407	2	04	15	.253	1	0	3	0	3	0	15
290		12	min	-127.492	3	171	4	031	3	0	10	0	1	001	4
291		13	max		2	081	15	.253	1	0	3	0	3	0	15
292		13	min	-127.543	3	348	4	031	3	0	10	0	1	001	4
293		14			2	123	15	.253	1		3	0	3	0	15
		14	max		3		4		3	0	10	0	1		
294		15	min	-127.595		525		031		0				001	4
295 296		15	max	126.202 -127.646	3	165 702	1 <u>5</u>	.253 031	3	0	10	0	2	0	1 <u>5</u>
		16	min								3				_
297		16	max		2	206	15	.253	1	0		0	3	0	15
298		47	min	-127.698	3	879	4	031	3	0	10	0	10	0	4
299		17	max		2	248	15	.253	1	0	3	0	3	0	15
300		4.0	min	-127.749	3	-1.057	4	031	3	0	10	0	10	0	4
301		18	max		2	29	15	.253	1	0	3	0	3	0	15
302		40	min	-127.801	3	-1.234	4	031	3	0	10	0	10	0	4
303		19	max		2	331	15	.253	1	0	3	0	3	0	1
304	MAO	4	min	-127.852	3	-1.411	4	031	3	0	10	0	10	0	1
305	M12	1_	max	332.01	1	0	1	1.305	1	0	1	0	2	0	1
306			min		3	0	1	.037	10	0	1 1	0	3	0	1
307		2	max		1	0	1	1.305	1	0	1	0	1_	0	1
308			min		3	0	1	.037	10	0	1	0	15	0	1
309		3	max		1	0	1	1.305	1	0	1	0	1	0	1
310			min	-30.747	3	0	1	.037	10	0	1	0	15	0	1
311		4	max		1	0	1	1.305	1	0	1	0	1_	0	1
312			min	-30.698	3	0	1	.037	10	0	1	0	15	0	1
313		5		332.269	1	0	1	1.305	1	0	1	0	1_	0	1
314			min	-30.65	3	0	1	.037	10	0	1	0	15	0	1
315		6	max		1	0	1	1.305	1	0	1	0	1	0	1
316			min	-30.601	3	0	1	.037	10	0	1	0	15	0	1
317		7	max		1_	0	1	1.305	1	0	1	0	1_	0	1
318			min		3	0	1	.037	10	0	1	0	15	0	1
319		8	max		1_	0	1	1.305	1	0	1	0	1	0	1
320			min	-30.504	3	0	1	.037	10	0	1	0	15	0	1
321		9	max	332.528	1	0	1	1.305	1	0	1	0	1	0	1
322			min	-30.456	3	0	1	.037	10	0	1	0	10	0	1

Model Name

: Schletter, Inc. : HCV

. : Standard PVMini Racking System

Dec 11, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
323		10	max	332.593	1	0	_1_	1.305	1	0	1	.001	1	0	1
324			min	-30.407	3	0	1	.037	10	0	1	0	10	0	1
325		11	max	332.658	1	0	1	1.305	1	0	1	.001	1	0	1
326			min	-30.359	3	0	1	.037	10	0	1	0	10	0	1
327		12	max	332.722	1	0	1_	1.305	1	0	1	.001	1	0	1
328			min	-30.31	3	0	1	.037	10	0	1	0	10	0	1
329		13	max	332.787	1	0	1	1.305	1	0	1	.001	1	0	1
330			min	-30.262	3	0	1	.037	10	0	1	0	10	0	1
331		14	max	332.852	1	0	1	1.305	1	0	1	.002	1	0	1
332			min	-30.213	3	0	1	.037	10	0	1	0	10	0	1
333		15	max	332.916	1	0	1	1.305	1	0	1	.002	1	0	1
334			min	-30.165	3	0	1	.037	10	0	1	0	10	0	1
335		16	max	332.981	1	0	1	1.305	1	0	1	.002	1	0	1
336			min	-30.116	3	0	1	.037	10	0	1	0	10	0	1
337		17	max	333.046	1	0	1	1.305	1	0	1	.002	1	0	1
338			min	-30.067	3	0	1	.037	10	0	1	0	10	0	1
339		18	max	333.11	1	0	1_	1.305	1	0	1	.002	1	0	1
340			min	-30.019	3	0	1	.037	10	0	1	0	10	0	1
341		19	max	333.175	1	0	1	1.305	1	0	1	.002	1	0	1
342			min	-29.97	3	0	1	.037	10	0	1	0	10	0	1
343	M1	1	max	87.048	1	333.387	3	-1.037	15	0	1	.053	1	0	2
344			min	3.207	15	-240.582	1	-27.025	1	0	3	.002	15	0	3
345		2	max	87.166	1	333.198	3	-1.037	15	0	1	.047	1	.052	1
346			min	3.243	15	-240.835	1	-27.025	1	0	3	.002	15	073	3
347		3	max	58.099	3	4.893	9	-1.028	15	0	3	.041	1	.104	1
348			min	-7.085	10	-18.777	2	-26.904	1	0	1	.002	15	143	3
349		4	max	58.188	3	4.683	9	-1.028	15	0	3	.035	1	.105	1
350			min	-6.986	10	-19.03	2	-26.904	1	0	1	.001	15	14	3
351		5	max	58.276	3	4.472	9	-1.028	15	0	3	.029	1	.109	2
352			min	-6.888	10	-19.283	2	-26.904	1	0	1	.001	15	136	3
353		6	max	58.365	3	4.261	9	-1.028	15	0	3	.023	1	.113	2
354			min	-6.79	10	-19.536	2	-26.904	1	0	1	0	15	132	3
355		7	max	58.453	3	4.05	9	-1.028	15	0	3	.018	1	.117	2
356			min	-6.691	10	-19.789	2	-26.904	1	0	1	0	15	128	3
357		8	max	58.542	3	3.839	9	-1.028	15	0	3	.012	1	.122	2
358			min	-6.593	10	-20.042	2	-26.904	1	0	1	0	15	124	3
359		9	max	58.63	3	3.628	9	-1.028	15	0	3	.006	1	.126	2
360			min	-6.495	10	-20.295	2	-26.904	1	0	1	0	15	12	3
361		10	max	58.719	3	3.417	9	-1.028	15	0	3	.001	3	.13	2
362			min	-6.396	10	-20.548	2	-26.904	1	0	1	0	10	116	3
363		11	max	58.807	3	3.206	9	-1.028	15	0	3	0	3	.135	2
364			min	-6.298	10	-20.801	2	-26.904	1	0	1	006	1	112	3
365		12	max		3	2.995	9	-1.028	15	0	3	0	12	.139	2
366			min	-6.2	10	-21.054	2	-26.904	1	0	1	012	1	108	3
367		13	max	58.984	3	2.785	9	-1.028	15	0	3	0	15	.144	2
368			min	-6.101	10	-21.307	2	-26.904	1	0	1	017	1	104	3
369		14	max	59.073	3	2.574	9	-1.028	15	0	3	0	15	.149	2
370			min	-6.003	10	-21.56	2	-26.904	1	0	1	023	1	1	3
371		15	max	59.161	3	2.363	9	-1.028	15	0	3	001	15	.153	2
372			min	-5.905	10	-21.813	2	-26.904	1	0	1	029	1	096	3
373		16	max	84.161	2	76.357	2	-1.037	15	0	1	001	15	.157	2
374			min	-19.418	3	-119.62	3	-27.11	1	0	12	035	1	09	3
375		17	max	84.279	2	76.104	2	-1.037	15	0	1	002	15	.141	2
376			min	-19.329	3	-119.809	3	-27.11	1	0	12	041	1	064	3
377		18	max	-3.242	15	325.915	2	-1.062	15	0	3	002	15	.071	2
378			min	-87.149	1	-148.434	3	-27.813	1	0	2	047	1	032	3
379		19	max	-3.206	15	325.662	2	-1.062	15	0	3	002	15	0	2

Model Name

Schletter, Inc. HCV

Standard PVMini Racking System

Dec 11, 2015

Checked By:____

	Member	Sec		Axial[lb]					LC	Torque[k-ft]			LC	z-z Mome	LC
380			min	-87.031	1	-148.623	3	-27.813	1	0	2	053	1_	0	3
381	<u>M5</u>	1	max	204.059	1	1084.175	3	0	2	0	1	.008	3	0	3
382			min	2.946	12	-780.237	1_	-57.508	3	0	3	0	10	0	2
383		2	max	204.177	1	1083.985	3	0	2	0	1	0	1	.169	1
384			min	3.005	12	-780.49	1_	-57.508	3	0	3	005	3	235	3
385		3	max	165.08	3	5.691	9	6.355	3	0	3	0	1	.335	1
386			min	-24.006	10	-67.78	2	334	1	0	1	017	3	465	3
387		4	max	165.169	3	5.48	9	6.355	3	0	3	0	1	.341	1
388			min	-23.907	10	-68.033	2	334	1	0	1	015	3	451	3
389		5	max	165.257	3	5.269	9	6.355	3	0	3	0	1	.353	2
390			min	-23.809	10	-68.286	2	334	1	0	1	014	3	437	3
391		6	max	165.346	3	5.058	9	6.355	3	0	3	0	1_	.368	2
392			min	-23.711	10	-68.539	2	334	1	0	1	013	3	424	3
393		7	max	165.434	3	4.848	9	6.355	3	0	3	0	1	.383	2
394			min	-23.612	10	-68.792	2	334	1	0	1	011	3	41	3
395		8	max	165.523	3	4.637	9	6.355	3	0	3	0	1	.398	2
396			min	-23.514	10	-69.046	2	334	1	0	1	01	3	396	3
397		9	max	165.611	3	4.426	9	6.355	3	0	3	0	1	.413	2
398			min	-23.416	10	-69.299	2	334	1	0	1	008	3	382	3
399		10	max	165.7	3	4.215	9	6.355	3	0	3	0	2	.428	2
400			min	-23.317	10	-69.552	2	334	1	0	1	007	3	369	3
401		11	max	165.788	3	4.004	9	6.355	3	0	3	0	2	.443	2
402			min	-23.219	10	-69.805	2	334	1	0	1	006	3	355	3
403		12	max	165.877	3	3.793	9	6.355	3	0	3	0	2	.458	2
404			min	-23.121	10	-70.058	2	334	1	0	1	004	3	341	3
405		13	max	165.965	3	3.582	9	6.355	3	0	3	0	2	.473	2
406			min	-23.022	10	-70.311	2	334	1	0	1	003	3	327	3
407		14	max	166.054	3	3.371	9	6.355	3	0	3	0	2	.488	2
408			min	-22.924	10	-70.564	2	334	1	0	1	001	3	313	3
409		15	max	166.142	3	3.16	9	6.355	3	0	3	0	2	.504	2
410			min	-22.826	10	-70.817	2	334	1	0	1	0	1	299	3
411		16	max	275.768	2	288.106	2	6.325	3	0	3	0	3	.516	2
412			min	-63.476	3	-353.899	3	345	1	0	2	0	1	282	3
413		17	max	275.886	2	287.853	2	6.325	3	0	3	.002	3	.454	2
414			min	-63.388	3	-354.089	3	345	1	0	2	0	1	205	3
415		18	max	-5.163	12	1053.91	2	5.817	3	0	3	.003	3	.228	2
416			min	-204.21	1	-474.926	3	078	1	0	1	0	1	103	3
417		19	max	-5.104	12	1053.657	2	5.817	3	0	3	.005	3	0	3
418			min	-204.092	1	-475.116	3	078	1	0	1	0	1	0	2
419	M9	1	max	86.809	1	333.335	3	61.377	3	0	3	002	15	0	2
420			min	3.196	15	-240.58	1	1.055	15	0	1	053	1	0	3
421		2	max	86.928	1	333.145	3	61.377	3	0	3	0	12	.052	1
422			min	3.231	15	-240.834	1	1.055	15	0	1	047	1	073	3
423		3	max	57.901	3	4.874	9	26.361	1	0	1	.012	3	.104	1
424			min	-6.714	10	-18.749	2	-1.933	3	0	15	04	1	143	3
425		4	max	57.989	3	4.663	9	26.361	1	0	1	.011	3	.105	1
426			min	-6.616	10	-19.002	2	-1.933	3	0	15	034	1	14	3
427		5	max	58.078	3	4.452	9	26.361	1	0	1	.011	3	.109	2
428			min	-6.517	10	-19.255	2	-1.933	3	0	15	029	1	136	3
429		6	max	58.166	3	4.241	9	26.361	1	0	1	.01	3	.113	2
430			min	-6.419	10	-19.509	2	-1.933	3	0	15		1	132	3
431		7	max	58.255	3	4.031	9	26.361	1	0	1	.01	3	.117	2
432			min	-6.321	10	-19.762	2	-1.933	3	0	15	017	1	128	3
433		8	max		3	3.82	9	26.361	1	0	1	.01	3	.122	2
434			min	-6.222	10	-20.015	2	-1.933	3	0	15		1	124	3
435		9	max	58.432	3	3.609	9	26.361	1	0	1	.009	3	.126	2
436			min	-6.124	10	-20.268	2	-1.933	3	0	15		1	12	3

Model Name

: Schletter, Inc. : HCV

: Standard PVMini Racking System

Dec 11, 2015

Checked By:____

	Member	Sec		Axial[lb]		y Shear[lb]			LC	Torque[k-ft]	LC			z-z Mome	
437		10	max	58.52	3	3.398	9	26.361	1	0	1	.009	3	.13	2
438			min	-6.026	10	-20.521	2	-1.933	3	0	15	0	1	116	3
439		11	max	58.609	3	3.187	9	26.361	1	0	1	.008	3	.135	2
440			min	-5.927	10	-20.774	2	-1.933	3	0	15	0	15	112	3
441		12	max	58.697	3	2.976	9	26.361	1	0	1	.011	1	.139	2
442			min	-5.829	10	-21.027	2	-1.933	3	0	15	0	15	108	3
443		13	max	58.786	3	2.765	9	26.361	1	0	1	.017	1	.144	2
444		4.4	min	<u>-5.731</u>	10	-21.28	2	-1.933	3	0	15	0	15	<u>104</u>	3
445		14	max	58.874	3	2.554	9	26.361	1	0	1	.023	1	.149	2
446		4.5	min	<u>-5.632</u>	10	-21.533	2	-1.933	3	0	15	0	15	<u>1</u>	3
447		15	max	58.963	3	2.343	9	26.361	1	0	1	.029	1	.153	2
448		4.0	min	-5.534 84.317	10	-21.786	2	-1.933	3	0	15	.001	15	096	3
449 450		16	max		2	76.022	2	26.589	3	0	15	.035 .001	15	.157	2
451		17	min	-20.018 84.435	2	-120.058 75.769	3	-1.955 26.589	1	0	15	.001	1	091 .141	3
451		17	max min	-19.929	3	-120.248	3	-1.955	3	0	1	.002	15	064	3
453		18	max	-3.231	15	325.915	2	27.896	1	0	2	.046	1	.071	2
454		10	min	-86.911	1	-148.427	3	-1.542	3	0	3	.002	15	032	3
455		19	max	-3.195	15	325.662	2	27.896	1	0	2	.053	1	0	2
456		10	min	-86.793	1	-148.617	3	-1.542	3	0	3	.002	15	0	3
457	M13	1	max	61.373	3	240.341	1	-3.196	15	0	2	.053	1	0	1
458	14110		min	1.055	15	-333.36	3	-86.803	1	0	3	.002	15	0	3
459		2	max	61.373	3	170.405	1	-2.433	15	0	2	.012	1	.15	3
460		_	min	1.055	15	-236.094	3	-65.808	1	0	3	0	10	108	1
461		3	max	61.373	3	100.469	1	-1.671	15	0	2	.007	3	.249	3
462			min	1.055	15	-138.828	3	-44.813	1	0	3	017	1	18	1
463		4	max	61.373	3	30.532	1	908	15	0	2	.004	3	.297	3
464			min	1.055	15	-41.561	3	-23.817	1	0	3	035	1	214	1
465		5	max	61.373	3	55.705	3	1.035	10	0	2	.002	3	.293	3
466			min	1.055	15	-39.404	1	-3.407	3	0	3	042	1	212	1
467		6	max	61.373	3	152.972	3	18.174	1	0	2	0	3	.238	3
468			min	1.055	15	-109.34	1	-2.297	3	0	3	038	1	173	1
469		7	max	61.373	3	250.238	3	39.169	1	0	2	0	3	.132	3
470			min	1.055	15	-179.277	1	-1.188	3	0	3	023	1	097	1
471		8	max	61.373	3	347.504	3	60.164	1	0	2	.004	2	.016	1
472			min	1.055	15	-249.213	1	078	3	0	3	0	3	026	3
473		9	max	61.373	3	444.771	3	81.16	1	0	2	.041	1	.166	1
474			min	1.055	15	-319.149	1_	.901	12	0	3	0	3	235	3
475		10	max	61.373	3	542.037	3	102.155	1	0	2	.089	1	.353	1
476		4.4	min	1.055	15	-389.086	1	1.641	12	0	3	007	3	496	3
477		11	max		1	319.149		467	3	0	3	.04	1	.166	1
478		40	min	1.037	15		3	-80.921	1	0	2	008	3	235	3
479		12			1	249.213	1	.643	3	0	3	.004	2	.016	1
480		40	min	1.037	15	-347.504	3	-59.926	1	0	2	007 0	3	026	3
481 482		13	max min	27.081 1.037	15	179.277 -250.238	3	1.752 -38.93	3	0	3	023	15	.132 097	3
483		11	max			109.34		2.862	3		3	023 001	15	.238	3
484		14			1 1 5	-152.972	1			0	2			. <u>.230</u> 173	
485		15	min	1.037 27.081	1 <u>5</u> 1	39.404	<u>3</u> 1	-17.935 3.972	3	0	3	038 002	15	.293	3
486		10	max min	1.037	15	-55.705	3	-1.035	10	0	2	002	1	212	1
487		16	max	27.081	1	41.561	3	24.056	1	0	3	042 0	12	.297	3
488		10	min	1.037	15	-30.532	1	.92	15	0	2	035	1	214	1
489		17	max	27.081	1	138.828	3	45.051	1	0	3	.002	3	.249	3
490		17	min	1.037	15	-100.469	1	1.682	15	0	2	017	1	18	1
491		18	max	27.081	1	236.094	3	66.047	1	0	3	.013	1	.15	3
492		10	min	1.037	15	-170.405	1	2.445	15	0	2	0	10	108	1
493		10	max		1	333.36	3	87.042	1	0	3	.053	1	0	1
T30		נו	παλ	27.001		555.50	J	07.042		U	J	.000		U	

Model Name

Schletter, Inc.HCV

: Standard PVMini Racking System

Dec 11, 2015

Checked By:____

	Member	Sec		Axial[lb]			LC			Torque[k-ft]	LC	y-y Mome		z-z Mome	
494			min	1.037	15	-240.342	1	3.207	15	0	2	.002	15	0	3
495	M16	1	max	1.544	3	325.781	2	-3.195	15	0	3	.053	1	0	2
496			min	-27.838	1	-148.637	3	-86.799	1	0	2	.002	15	0	3
497		2	max	1.544	3	230.985	2	-2.433	15	0	3	.012	1	.067	3
498			min	-27.838	1	-105.723	3	-65.804	1	0	2	0	10	147	2
499		3	max	1.544	3	136.189	2	-1.67	15	0	3	0	12	.112	3
500			min	-27.838	1	-62.809	3	-44.809	1	0	2	017	1	244	2
501		4	max	1.544	3	41.393	2	908	15	0	3	001	15	.133	3
502			min	-27.838	1	-19.894	3	-23.813	1	0	2	035	1	291	2
503		5	max	1.544	3	23.02	3	1.029	10	0	3	002	15	.133	3
504		5	min	-27.838	1	-53.403	2	-2.818	1	0	2	042	1	287	2
					_								-		
505		6	max	1.544	3	65.934	3	18.178	1	0	3	001	15	.109	3
506		_	min	-27.838	1	-148.199	2	-1.18	3	0	2	038	1	234	2
507		7	max	1.544	3	108.849	3	39.173	1	0	3	0	15	.063	3
508			min	-27.838	1	-242.994	2	07	3	0	2	023	1	131	2
509		8	max	1.544	3	151.763	3	60.168	1	0	3	.004	2	.022	2
510			min	-27.838	1	-337.79	2	.832	12	0	2	005	3	006	3
511		9	max	1.544	3	194.677	3	81.164	1	0	3	.041	1	.225	2
512			min	-27.838	1	-432.586	2	1.571	12	0	2	004	3	097	3
513		10	max	-1.064	15	-9.103	15	102.159	1	0	15	.089	1	.479	2
514			min	-27.838	1	-527.382	2	-4.067	3	0	2	003	3	211	3
515		11	max	-1.062	15	432.586	2	-2.053	12	0	2	.04	1	.225	2
516			min	-27.758	1	-194.677	3	-80.925	1	0	3	0	3	097	3
517		12	max	-1.062	15	337.79	2	-1.314	12	0	2	.004	2	.022	2
518		12	min	-27.758	1	-151.763	3	-59.93	1	0	3	0	3	006	3
519		13		-1.062	15	242.994	2	574	12	0	2	0	15	.063	3
		13	max								3				2
520		4.4	min	-27.758	1	-108.848	3	-38.935	1	0		023	1	131	
521		14	max	-1.062	15	148.199	2	.372	3	0	2	001	12	.109	3
522		4.5	min	-27.758	1	-65.934	3	-17.939	1	0	3	038	1	234	2
523		15	max	-1.062	15	53.403	2	3.056	1	0	2	0	12	.133	3
524			min	-27.758	1	-23.02	3	-1.029	10	0	3	042	1	287	2
525		16	max	-1.062	15	19.894	3	24.051	1	0	2	0	3	.133	3
526			min	-27.758	1	-41.393	2	.919	15	0	3	035	1	291	2
527		17	max	-1.062	15	62.809	3	45.047	1	0	2	.001	3	.112	3
528			min	-27.758	1	-136.189	2	1.681	15	0	3	017	1	244	2
529		18	max	-1.062	15	105.723	3	66.042	1	0	2	.013	1	.067	3
530			min	-27.758	1	-230.985	2	2.444	15	0	3	0	10	147	2
531		19	max	-1.062	15	148.637	3	87.038	1	0	2	.053	1	0	2
532			min	-27.758	1	-325.781	2	3.206	15	0	3	.002	15	0	3
533	M15	1	max	0	1	.978	3	.096	3	0	1	0	1	0	1
534			min	-75.572	3	0	1	0	1	0	3	0	3	0	1
535		2	max	0	1	.87	3	.096	3	0	1	0	1	0	1
536		_	min	-75.637	3	0	1	0	1	0	3	0	3	0	3
537		3	max	0	1	.761	3	.096	3	0	1	0	1	0	1
538			min	-75.702	3	0	1	0	1	0	3	0	3	0	3
539		4	max	0	1	.652	3	.096	3	0	1	0	1	0	1
		-	min	-75.768	3	0	1	0	1	0	3		3	0	3
540		_				_						0			
541		5	max	0	1	.544	3	.096	3	0	1	0	1	0	1
542			min	-75.833	3	0	1	0	1	0	3	0	3	0	3
543		6_	max	0	1	.435	3	.096	3	0	1	0	1	0	1
544			min	-75.898	3	0	1	0	1	0	3	0	3	001	3
545		7	max	0	1	.326	3	.096	3	0	1	0	3	0	1
546			min	-75.963	3	0	1	0	1	0	3	0	1	001	3
547		8	max	0	1	.217	3	.096	3	0	1	0	3	0	1
548			min	-76.028	3	0	1	0	1	0	3	0	1	001	3
549		9	max	0	1	.109	3	.096	3	0	1	0	3	0	1
550			min	-76.094	3	0	1	0	1	0	3	0	1	001	3
								_							

Model Name

: Schletter, Inc. : HCV

: Standard PVMini Racking System

Dec 11, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC			Torque[k-ft]	<u>LC</u>	y-y Mome	LC	z-z Mome	LC
551		10	max	0	1	0	1	.096	3	0	1	0	3	0	1
552			min	-76.159	3	0	1	0	1	0	3	0	1	001	3
553		11	max	0	1_	0	1	.096	3	0	1_	0	3	0	1
554			min	-76.224	3	109	3	0	1	0	3	0	1	001	3
555		12	max	0	1	0	1	.096	3	0	1	0	3	0	1
556		4.0	min	-76.289	3	217	3	0	1	0	3	0	1	001	3
557		13	max	0	1	0	1	.096	3	0	1	0	3	0	1
558		4.4	min	-76.354	3	326	3	0	1	0	3	0	1	001	3
559		14	max	0	1	0	1	.096	3	0	1	0	3	0	1
560		4.5	min	-76.42	3	435	3	0	1	0	3	0	1	001	3
561		15	max	0	1	0	1	.096	3	0	1	0	3	0	1
562		4.0	min	-76.485	3	544	3	0	1	0	3	0	1	0	3
563		16	max	70.55	1	0	1	.096	3	0	1	0	3	0	1
564		17	min	-76.55	3	652	1	0		0	3	0		0	3
565 566		17	max	-76.615	3	761	3	.096	3	0	3	0	3	0	3
567		18	min	0	1	0	1	.096	3	0	1	0	3	0	1
568		10	max min	-76.68	3	87	3	.090	1	0	3	0	1	0	3
569		19	max	0	1	0	1	.096	3	0	1	0	3	0	1
570		19	min	-76.745	3	978	3	.090	1	0	3	0	1	0	1
571	M16A	1	max	0	2	1.674	4	.035	1	0	3	0	3	0	1
572	WITOA		min	-75.637	3	0	2	039	3	0	1	0	1	0	1
573		2	max	0	2	1.488	4	.035	1	0	3	0	3	0	2
574			min	-75.572	3	0	2	039	3	0	1	0	1	0	4
575		3	max	0	2	1.302	4	.035	1	0	3	0	3	0	2
576			min	-75.506	3	0	2	039	3	0	1	0	1	0	4
577		4	max	0	2	1.116	4	.035	1	0	3	0	3	0	2
578			min	-75.441	3	0	2	039	3	0	1	0	1	001	4
579		5	max	0	2	.93	4	.035	1	0	3	0	3	0	2
580			min	-75.376	3	0	2	039	3	0	1	0	1	002	4
581		6	max	0	2	.744	4	.035	1	0	3	0	3	0	2
582			min	-75.311	3	0	2	039	3	0	1	0	1	002	4
583		7	max	0	2	.558	4	.035	1	0	3	0	3	0	2
584			min	-75.246	3	0	2	039	3	0	1	0	1	002	4
585		8	max	0	2	.372	4	.035	1	0	3	0	3	0	2
586			min	-75.18	3	0	2	039	3	0	1	0	1	002	4
587		9	max	0	2	.186	4	.035	1	0	3	0	3	0	2
588			min	-75.115	3	0	2	039	3	0	1	0	1	002	4
589		10	max	0	2	0	1	.035	1	0	3	0	3	0	2
590		4.4	min	<u>-75.05</u>	3	0	1	039	3	0	1	0	1	002	4
591		11	max		2	0	2	.035	1	0	3	0	3	0	2
592		40	min	-74.985	3	186	4	039	3	0	1	0	1	002	4
593		12		74.02	2	0	2	.035	1	0	3	0	3	0	2
594		12	min	-74.92	3	372	4	039	3	0	1	0	1	002	4
595 596		13	max	.072 -74.855	13 3	559	2	.035 039	3	0	3	0	4	002	4
		1.4	min		13	558	2					0			_
597		14	max		3	744		.035 039	3	0	3	0	3	0	2
598		15	min	<u>-74.789</u>	13	744	2	.035	1	0	3	0	1	002 0	2
599 600		15	max min	.251 -74.724	3	93	4	039	3	0	1	0	3	002	4
601		16	max	.341	13	93 0	2	.035	1	0	3	0	1	<u>002</u> 0	2
602		10	min	-74.659	3	-1.116	4	039	3	0	1	0	3	001	4
603		17	max	.43	13	0	2	.035	1	0	3	0	1	0	2
604		17	min	-74.594	3	-1.302	4	039	3	0	1	0	3	0	4
605		18	max	.52	13	0	2	.035	1	0	3	0	1	0	2
606			min	-74.529	3	-1.488	4	039	3	0	1	0	3	0	4
607		19	max	.61	13	0	2	.035	1	0	3	0	1	0	1
													•		

Model Name

: Schletter, Inc. : HCV

: Standard PVMini Racking System

Dec 11, 2015

Checked By:_

Envelope Member Section Forces (Continued)

	Membe	er Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
60)8		min	-74.463	3	-1.674	4	039	3	0	1	0	3	0	1

Envelope Member Section Deflections

	siope ivicini			on Dene											
	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r			LC	(n) L/z Ratio	LC
1	M2	1	max	.002	1	.008	2	.005	1	-1.567e-5	15	NC	3	NC	2
2			min	003	3	007	3	002	3	-4.131e-4	1	4693.72	2	7261.958	1
3		2	max	.002	1	.007	2	.005	1	-1.501e-5	15	NC	3	NC	2
4			min	003	3	007	3	001	3	-3.955e-4	1	5117.842	2	7841.324	1
5		3	max	.002	1	.006	2	.004	1	-1.435e-5	15	NC	1	NC	2
6			min	003	3	007	3	001	3	-3.779e-4	1	5621.511	2	8524.922	1
7		4	max	.002	1	.006	2	.004	1	-1.369e-5	15	NC	1	NC	2
8		-		003	3	007	3	001	3	-3.603e-4	1	6223.938	2	9337.92	1
9		5	min	.002			2		1			NC	1	NC	1
		5	max		1	.005		.004		-1.303e-5	<u>15</u>		2		1
10			min	002	3	006	3	001	3	-3.427e-4	1_	6950.743		NC NC	1
11		6	max	.002	1	.005	2	.003	1	-1.237e-5	<u>15</u>	NC 7000.00	1_	NC	1
12			min	002	3	006	3	0	3	-3.25e-4	1_	7836.66	2	NC	1
13		7	max	.001	1	.004	2	.003	1	-1.171e-5	15	NC	1_	NC	1
14			min	002	3	006	3	0	3	-3.074e-4	1_	8929.702	2	NC	1
15		8	max	.001	1	.004	2	.002	1	-1.104e-5	15	NC	_1_	NC	1
16			min	002	3	005	3	0	3	-2.898e-4	1	NC	1	NC	1
17		9	max	.001	1	.003	2	.002	1	-1.038e-5	15	NC	1_	NC	1
18			min	002	3	005	3	0	3	-2.722e-4	1	NC	1	NC	1
19		10	max	.001	1	.003	2	.002	1	-9.723e-6	15	NC	1	NC	1
20			min	002	3	005	3	0	3	-2.546e-4	1	NC	1	NC	1
21		11	max	0	1	.002	2	.002	1	-9.062e-6	15	NC	1	NC	1
22			min	001	3	004	3	0	3	-2.369e-4	1	NC	1	NC	1
23		12	max	0	1	.002	2	.001	1	-8.402e-6	15	NC	1	NC	1
24		12	min	001	3	004	3	0	3	-2.193e-4	1	NC	1	NC	1
25		13	max	0	1	.001	2	0	1	-7.741e-6	15	NC	1	NC	1
26		13	min	001	3	003	3	0	3	-2.017e-4	1	NC	1	NC	1
27		1.1			1	003 .001	2		1		•	NC NC	1	NC NC	1
		14	max	0				0		-7.08e-6	<u>15</u>				
28		4.5	min	0	3	003	3	0	3	-1.841e-4	1_	NC	1_	NC	1
29		15	max	0	1	0	2	0	1	-6.419e-6	<u>15</u>	NC	1	NC	1
30			min	0	3	002	3	0	3	-1.665e-4	_1_	NC	1_	NC	1
31		16	max	0	1	0	2	0	1	-5.692e-6	10	NC	1	NC	1
32			min	0	3	002	3	0	3	-1.489e-4	1_	NC	1	NC	1
33		17	max	0	1	0	2	0	1	-4.827e-6	<u>10</u>	NC	<u>1</u>	NC	1
34			min	0	3	001	3	0	3	-1.312e-4	1_	NC	1	NC	1
35		18	max	0	1	0	2	0	1	-3.963e-6	10	NC	1	NC	1
36			min	0	3	0	3	0	3	-1.136e-4	1	NC	1	NC	1
37		19	max	0	1	0	1	0	1	-3.098e-6	10	NC	1	NC	1
38			min	0	1	0	1	0	1	-9.599e-5	1	NC	1	NC	1
39	M3	1	max	0	1	0	1	0	1	4.469e-5	1	NC	1	NC	1
40			min	0	1	0	1	0	1	1.449e-6	10	NC	1	NC	1
41		2	max	0	3	0	2	0	10		1	NC	1	NC	1
42			min	0	2	0	3	0	1	2.123e-6	10	NC	1	NC	1
43		3	max	0	3	0	2	0	10		1	NC	1	NC	1
44		3	min	0	2	002	3	0	1	2.646e-6	15	NC	1	NC	1
		1									10				
45		4	max	0	3	0	2	0	12	8.081e-5	4.5	NC	1_4	NC NC	1
46		-	min	0	2	002	3	0	1	3.091e-6	<u>15</u>	NC NC	1_	NC NC	1
47		5	max	0	3	0	2	0	3	9.285e-5	1_	NC	1	NC	1
48			min	0	2	003	3	0	1	3.535e-6	<u>15</u>	NC	1_	NC	1
49		6	max	0	3	0	2	0	3	1.049e-4	_1_	NC	_1_	NC	1
50			min	0	2	004	3	0	1	3.979e-6	15	NC	1_	NC	1
51		7	max	0	3	0	2	0	3	1.169e-4	1	NC	1_	NC	1

Model Name

: Schletter, Inc. : HCV

: Standard PVMini Racking System

Dec 11, 2015

Checked By:____

Envelope Member Section Deflections (Continued)

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC				LC	(n) L/z Ratio	LC
52			min	0	2	004	3	0	1	4.424e-6	15	NC	1	NC	1
53		8	max	0	3	0	2	0	3	1.29e-4	_1_	NC	_1_	NC	1
54			min	0	2	005	3	0	9	4.868e-6	<u>15</u>	NC	1_	NC	1
55		9	max	0	3	.001	2	0	2	1.41e-4	1_	NC	1	NC	1
56		40	min	0	2	006	3	0	9	5.313e-6	<u>15</u>	NC NC	1_	NC NC	1
57		10	max	0	3	.001	2	0	1	1.53e-4	1_	NC NC	1	NC NC	1
58		11	min	<u> </u>	3	006 .002	2	<u> </u>	15	5.757e-6 1.651e-4	<u>15</u>	NC NC	<u>1</u> 1	NC NC	1
59 60			max	0	2	007	3	0	15	6.202e-6	<u>1</u> 15	NC NC	1	NC NC	1
61		12	max	0	3	.002	2	0	1	1.771e-4	1	NC	1	NC	1
62		12	min	0	2	007	3	0	15	6.646e-6	15	NC	1	NC	1
63		13	max	0	3	.003	2	.001	1	1.892e-4	1	NC	1	NC	1
64		10	min	0	2	007	3	0	15	7.091e-6	15	NC	1	NC	1
65		14	max	.001	3	.004	2	.001	1	2.012e-4	1	NC	1	NC	1
66			min	001	2	007	3	0	15	7.535e-6	15	NC	1	NC	1
67		15	max	.001	3	.005	2	.002	1	2.132e-4	1	NC	1	NC	1
68			min	001	2	007	3	0	15	7.98e-6	15	NC	1	NC	1
69		16	max	.001	3	.005	2	.002	1	2.253e-4	1	NC	1	NC	1
70			min	001	2	007	3	0	15	8.424e-6	15	8466.723	2	NC	1
71		17	max	.001	3	.006	2	.002	1	2.373e-4	1	NC	1	NC	1
72			min	001	2	007	3	0	15	8.869e-6	15	7230.115	2	NC	1
73		18	max	.001	3	.007	2	.003	1	2.494e-4	1_	NC	3	NC	1
74			min	001	2	007	3	0	15	9.313e-6	15	6273.957	2	NC	1
75		19	max	.001	3	.008	2	.003	1	2.614e-4	_1_	NC	3	NC	1
76			min	001	2	007	3	0	15	9.757e-6		5526.807	2	NC	1
77	M4	1_	max	.002	1	.009	2	0	15		15	NC	_1_	NC	2
78			min	0	3	007	3	002	1	-3.366e-4	1_	NC	1_	8900.261	1
79		2	max	.001	1	.008	2	0			15	NC	1_	NC	2
80			min	0	3	007	3	002	1	-3.366e-4	_1_	NC	1_	9709.783	
81		3	max	.001	1	.008	2	0	15	-1.284e-5	<u>15</u>	NC	1	NC	1
82		1	min	0	3	007	3	002	1	-3.366e-4	1_	NC NC	1_	NC	1
83		4	max	.001	1	.007	2	0			<u>15</u>	NC NC	1	NC NC	1
84		_	min	0	3	006	3	002	1	-3.366e-4	1_	NC NC	1_	NC NC	1
85		5	max	.001	3	.007	2	0		-1.284e-5	<u>15</u>	NC NC	<u>1</u> 1	NC NC	1
86 87		6	min max	<u> </u>	1	006 .006	2	001 0	15	-3.366e-4 -1.284e-5	<u>1</u> 15	NC NC	1	NC NC	1
88		0	min	0	3	005	3	001	1	-3.366e-4	1	NC NC	1	NC NC	1
89		7	max	.001	1	.006	2	<u>001</u> 0	15			NC	1	NC	1
90		+-	min	0	3	005	3	001	1	-3.366e-4	1	NC	+	NC	1
91		8	max	0	1	.005	2	0	15	-1.284e-5		NC	1	NC	1
92			min	0	3	005	3	0		-3.366e-4		NC	1	NC	1
93		9	max	0	1	.005	2	0		-1.284e-5		NC	1	NC	1
94			min	0	3	004	3	0	1	-3.366e-4	1	NC	1	NC	1
95		10	max	0	1	.004	2	0		-1.284e-5	15	NC	1	NC	1
96			min	0	3	004	3	0	1	-3.366e-4	1	NC	1	NC	1
97		11	max	0	1	.004	2	0	15	-1.284e-5	15	NC	1	NC	1
98			min	0	3	003	3	0	1	-3.366e-4	1	NC	1	NC	1
99		12	max	0	1	.003	2	0	15	-1.284e-5	15	NC	1	NC	1
100			min	0	3	003	3	0	1	-3.366e-4	1	NC	1	NC	1
101		13	max	0	1	.003	2	0	15	-1.284e-5	15	NC	1	NC	1
102			min	0	3	002	3	0	1	-3.366e-4	1	NC	1	NC	1
103		14	max	0	1	.002	2	0	15	-1.284e-5	15	NC	1	NC	1
104			min	0	3	002	3	0	1	-3.366e-4	1	NC	1	NC	1
105		15	max	0	1	.002	2	0	15	-1.284e-5	15	NC	1	NC	1
106			min	0	3	002	3	0	1	-3.366e-4	1_	NC	1_	NC	1
107		16	max	0	1	.001	2	0		-1.284e-5		NC	1_	NC	1
108			min	0	3	001	3	0	1	-3.366e-4	<u>1</u>	NC	1	NC	1

Model Name

Schletter, Inc.HCV

: Standard PVMini Racking System

Dec 11, 2015

Checked By:____

Envelope Member Section Deflections (Continued)

	Member	Sec		x [in]	LC	y [in]	LC	z [in]		x Rotate [r	LC	(n) L/y Ratio	LC	(n) L/z Ratio	LC
109		17	max	0	1	0	2	0	15	-1.284e-5	15	NC	1_	NC	1
110			min	0	3	0	3	0	1	-3.366e-4	1_	NC	1_	NC	1
111		18	max	0	1	0	2	0	15	-1.284e-5	15	NC	1	NC	1
112			min	0	3	0	3	0	1	-3.366e-4	1	NC	1	NC	1
113		19	max	0	1	0	1	0	1	-1.284e-5	15	NC	1	NC	1
114			min	0	1	0	1	0	1	-3.366e-4	1	NC	1	NC	1
115	M6	1	max	.007	1	.026	2	.002	1	3.641e-4	3	NC	3	NC	1
116	1110		min	01	3	023	3	005	3	-7.923e-8	2	1387.641	2	7638.768	_
117		2	max	.006	1	.024	2	.002	1	3.537e-4	3	NC	3	NC	1
118			min	009	3	022	3	004	3	-7.48e-8	2	1484.16	2	8142.986	
119		3	max	.006	1	.023	2	.002	1	3.432e-4	3	NC	3	NC	1
120		- 3	min	009	3	02	3	004	3	-7.038e-8	2	1594.683	2	8737.822	
		1													3
121		4	max	.006	1	.021	2	.001	1	3.327e-4	3_	NC 4700.000	3_	NC 0440444	1
122		_	min	008	3	019	3	004	3	-1.506e-6	1_	1722.023	2	9443.144	
123		5	max	.005	1	.019	2	.001	1	3.222e-4	3	NC	3	NC	1
124			min	008	3	018	3	004	3	-4.393e-6	1_	1869.806	2	NC	1
125		6	max	.005	1	.018	2	.001	1	3.118e-4	3_	NC	3	NC	1
126			min	007	3	017	3	003	3	-7.279e-6	1_	2042.782	2	NC	1
127		7	max	.005	1	.016	2	0	1	3.013e-4	3	NC	3	NC	1
128			min	007	3	016	3	003	3	-1.017e-5	1	2247.289	2	NC	1
129		8	max	.004	1	.015	2	0	1	2.908e-4	3	NC	3	NC	1
130			min	006	3	014	3	003	3	-1.305e-5	1	2491.978	2	NC	1
131		9	max	.004	1	.013	2	0	1	2.803e-4	3	NC	3	NC	1
132			min	006	3	013	3	002	3	-1.594e-5	1	2788.965	2	NC	1
133		10	max	.003	1	.012	2	0	1	2.699e-4	3	NC	3	NC	1
134		10	min	005	3	012	3	002	3	-1.883e-5	1	3155.76	2	NC	1
135		11	max	.003	1	.01	2	0	1	2.594e-4	3	NC	3	NC	1
136			min	004	3	011	3	002	3	-2.171e-5	1	3618.625	2	NC	1
137		12	max	.003	1	.009	2	<u>.002</u>	1	2.489e-4	3	NC	3	NC	1
138		12	min	004	3	009	3	001	3	-2.46e-5	1	4218.834	2	NC	1
139		13	max	.002	1	.007	2	<u>001</u> 0	1	2.384e-4	3	NC	3	NC	1
		13			3		3				-	5025.176			1
140		4.4	min	003		008		001	3	-2.749e-5	1_		2	NC NC	
141		14	max	.002	1	.006	2	0	1	2.28e-4	3_	NC	3_	NC NC	1
142			min	003	3	007	3	0	3	-3.037e-5	1_	6161.458	2	NC	1
143		15	max	.002	1	.005	2	0	1	2.175e-4	3	NC	1_	NC	1
144			min	002	3	005	3	0	3	-3.326e-5	1_	7875.279	2	NC	1
145		16	max	.001	1	.003	2	0	1	2.07e-4	3_	NC	_1_	NC	1
146			min	002	3	004	3	0	3	-3.615e-5	1_	NC	1_	NC	1
147		17	max	0	1	.002	2	0	1	1.965e-4	3	NC	1_	NC	1
148			min	001	3	003	3	0	3	-3.903e-5	1	NC	1_	NC	1
149		18	max	0	1	.001	2	0	1	1.86e-4	3	NC	1	NC	1
150			min	0	3	001	3	0	3	-4.192e-5	1	NC	1	NC	1
151		19	max	0	1	0	1	0	1	1.756e-4	3	NC	1	NC	1
152			min	0	1	0	1	0	1	-4.48e-5	1	NC	1	NC	1
153	M7	1	max	0	1	0	1	0	1	2.071e-5	1	NC	1	NC	1
154			min	0	1	0	1	0	1	-8.13e-5	3	NC	1	NC	1
155		2	max	0	3	.001	2	0	3	1.81e-5	1	NC	1	NC	1
156			min	0	2	002	3	0	1	-6.134e-5	3	NC	1	NC	1
157		3		0	3	.003	2	0	3	1.548e-5	<u> </u>	NC	1	NC	1
		<u> </u>	max		2		3	0	1			NC NC	1	NC NC	1
158		A	min	0		004			_	-4.138e-5	3				-
159		4	max	0	3	.004	2	.001	3	1.287e-5	1	NC NC	1_	NC NC	1
160		-	min	0	2	00 <u>5</u>	3	0	1	-2.142e-5	3	NC NC	1	NC NC	1
161		5_	max	0	3	.005	2	.001	3	1.026e-5	1	NC	1_	NC NC	1
162			min	001	2	007	3	0	1	-1.465e-6	3	9314.337	2	NC	1
163		6	max	.001	3	.006	2	.002	3	1.849e-5	3	NC	1_	NC	1
164			min	001	2	009	3	0	1	0	2	7465.284	2	NC	1
165		7	max	.001	3	.007	2	.002	3	3.845e-5	3	NC	3	NC	_1_

Model Name

: Schletter, Inc. : HCV

: Standard PVMini Racking System

Dec 11, 2015

Checked By:____

Envelope Member Section Deflections (Continued)

	Member	Sec		x [in]	LC	y [in]	LC	z [in]		x Rotate [r					
166			min	002	2	01	3	0	1	-1.245e-7		6198.456	2	NC	1
167		8	max	.002	3	.009	2	.002	3	5.841e-5	3	NC	3	NC	1
168			min	002	2	012	3	0	1	-1.673e-6		5268.111	2	NC	1
169		9	max	.002	3	.01	2	.002	3	7.837e-5	3	NC	3	NC	1
170		40	min	002	2	013	3	0	1	-3.853e-6	9	4551.875	2	NC NC	1
171		10	max	.002	3	.012	2	.002	3	9.833e-5	3	NC	3	NC NC	1
172		4.4	min	003	2	014	3	0	1	-6.032e-6	9	3981.933	2	NC NC	1
173		11	max	.002	2	.013	2	.003	3	1.183e-4	3	NC 3517.545	2	NC NC	1
174		12	min	003		016	3	003		-8.212e-6 1.383e-4		NC		NC NC	1
175 176		12	max	.003 003	2	.015 017	3	.003	3	-1.039e-5	9	3132.604	2	NC NC	1
177		13	min max	.003	3	.016	2	.003	3	1.582e-4	3	NC	3	NC NC	1
178		13	min	003	2	018	3	<u>.003</u>	1	-1.257e-5	9	2809.458	2	NC	1
179		14	max	.003	3	.018	2	.003	3	1.782e-4	3	NC	3	NC	1
180		14	min	004	2	019	3	0	1	-1.475e-5	9	2535.623	2	NC	1
181		15	max	.003	3	.02	2	.003	3	1.981e-4	3	NC	3	NC	1
182		10	min	004	2	02	3	0	1	-1.693e-5	9	2301.935	2	NC	1
183		16	max	.003	3	.022	2	.003	3	2.181e-4	3	NC	3	NC	1
184		1.0	min	004	2	021	3	0	1	-1.911e-5	9	2101.459	2	NC	1
185		17	max	.004	3	.024	2	.003	3	2.38e-4	3	NC	3	NC	1
186			min	005	2	021	3	0	1	-2.129e-5	9	1928.814	2	NC	1
187		18	max	.004	3	.026	2	.002	3	2.58e-4	3	NC	3	NC	1
188			min	005	2	022	3	001	1	-2.37e-5	1	1779.749	2	NC	1
189		19	max	.004	3	.028	2	.002	3	2.78e-4	3	NC	3	NC	1
190			min	005	2	023	3	001	1	-2.631e-5	1	1650.859	2	NC	1
191	M8	1	max	.004	1	.03	2	0	1	-8.975e-8	10	NC	1	NC	1
192			min	0	3	023	3	002	3	-2.106e-4	3	NC	1	NC	1
193		2	max	.004	1	.028	2	0	1	-8.975e-8	10	NC	1_	NC	1
194			min	0	3	022	3	001	3	-2.106e-4	3	NC	1_	NC	1
195		3	max	.004	1	.026	2	0	1	-8.975e-8	10	NC	_1_	NC	1
196			min	0	3	021	3	001	3	-2.106e-4	3	NC	1	NC	1
197		4	max	.004	1	.025	2	0	1	-8.975e-8		NC	1	NC	1
198		_	min	0	3	<u>019</u>	3	001	3	-2.106e-4	3	NC	1_	NC	1
199		5	max	.003	1	.023	2	0	1	-8.975e-8	10	NC	1_	NC	1
200			min	0	3	018	3	001	3	-2.106e-4	3	NC NC	1_	NC	1
201		6	max	.003	1	.021	2	0	1	-8.975e-8	10	NC	1	NC	1
202		-	min	0	3	017	3	0	3	-2.106e-4	3	NC NC	1_	NC NC	1
203		7	max	.003	1	.02	2	0	1	-8.975e-8		NC NC	1	NC	1
204		0	min	0	3	015	3	0	3	-2.106e-4	3	NC NC	_	NC NC	
205 206		8	max min	.003 0	3	.018 014	3	<u> </u>	1	-8.975e-8 -2.106e-4	10	NC NC	1	NC NC	1
207		9	max	.002	1	.014 .016	2	0	1	-8.975e-8		NC NC	1	NC NC	1
208		9	min	0	3	013	3	0	3	-2.106e-4		NC NC	1	NC	1
209		10	max	.002	1	.015	2	0	1	-8.975e-8		NC	1	NC	1
210		10	min	0	3	012	3	0	3	-2.106e-4		NC	1	NC	1
211		11	max	.002	1	.013	2	0	1	-8.975e-8		NC	1	NC	1
212			min	0	3	01	3	0	3	-2.106e-4		NC	1	NC	1
213		12	max	.002	1	.012	2	0	1	-8.975e-8		NC	1	NC	1
214		T'-	min	0	3	009	3	0	3	-2.106e-4		NC	1	NC	1
215		13	max	.001	1	.01	2	0	1	-8.975e-8		NC	1	NC	1
216			min	0	3	008	3	0	3	-2.106e-4		NC	1	NC	1
217		14	max	.001	1	.008	2	0	1	-8.975e-8		NC	1	NC	1
218			min	0	3	006	3	0	3	-2.106e-4		NC	1	NC	1
219		15	max	0	1	.007	2	0	1	-8.975e-8		NC	1	NC	1
220			min	0	3	005	3	0	3	-2.106e-4		NC	1	NC	1
221		16	max	0	1	.005	2	0	1	-8.975e-8		NC	1	NC	1
222			min	0	3	004	3	0	3	-2.106e-4	3	NC	1	NC	1

Model Name

Schletter, Inc.HCV

: Standard PVMini Racking System

Dec 11, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r	LC	(n) L/y Ratio	LC	(n) L/z Ratio	LC
223		17	max	0	1	.003	2	0	1	-8.975e-8	10	NC	1	NC	1
224			min	0	3	003	3	0	3	-2.106e-4	3	NC	1_	NC	1
225		18	max	0	1	.002	2	0	1	-8.975e-8	10	NC	1	NC	1
226			min	0	3	001	3	0	3	-2.106e-4	3	NC	1	NC	1
227		19	max	0	1	0	1	0	1		10	NC	1	NC	1
228		1.0	min	0	1	0	1	0	1	-2.106e-4	3	NC	1	NC	1
229	M10	1	max	.002	1	.008	2	0	3	4.227e-4	1	NC	3	NC	1
230	IVITO	+ -	min	003	3	007	3	001	1	-4.367e-4	3	4700.076	2	NC	1
231		2		.002	1	.007	2	<u>001</u>	3	4.014e-4	1	NC	3	NC	1
232			max		3		3	001	1				2	NC NC	1
		-	min	003		007				-4.226e-4	3	5124.951			_
233		3	max	.002	1	.006	2	0	3	3.801e-4	1	NC	1	NC	1
234			min	002	3	007	3	001	1	-4.086e-4	3	5629.548	2	NC	1
235		4	max	.002	1	.006	2	0	3	3.588e-4	_1_	NC	_1_	NC	1
236			min	002	3	007	3	001	1	-3.946e-4	3	6233.13	2	NC	1
237		5	max	.002	1	.005	2	0	3	3.375e-4	1	NC	1	NC	1
238			min	002	3	006	3	001	1	-3.805e-4	3	6961.388	2	NC	1
239		6	max	.002	1	.005	2	0	3	3.162e-4	1	NC	1	NC	1
240			min	002	3	006	3	0	1	-3.665e-4	3	7849.154	2	NC	1
241		7	max	.001	1	.004	2	0	3	2.949e-4	1	NC	1	NC	1
242		-	min	002	3	006	3	0	1	-3.525e-4	3	8944.584	2	NC	1
243		8		.002	1	.004	2	0	3		1	NC	1	NC NC	1
		-	max							2.736e-4					
244			min	002	3	005	3	0	1	-3.385e-4	3_	NC	1_	NC NC	1
245		9	max	.001	1	.003	2	0	3	2.522e-4	1_	NC	1_	NC	1
246			min	002	3	005	3	0	1	-3.244e-4	3	NC	1_	NC	1
247		10	max	.001	1	.003	2	0	3	2.309e-4	1_	NC	1_	NC	1
248			min	001	3	005	3	0	1	-3.104e-4	3	NC	1	NC	1
249		11	max	0	1	.002	2	0	3	2.096e-4	1	NC	1	NC	1
250			min	001	3	004	3	0	1	-2.964e-4	3	NC	1	NC	1
251		12	max	0	1	.002	2	0	3	1.883e-4	1	NC	1	NC	1
252		T -	min	001	3	004	3	0	1	-2.824e-4	3	NC	1	NC	1
253		13	max	0	1	.001	2	0	3	1.67e-4	1	NC	<u> </u>	NC	1
254		10	min	0	3	003	3	0	1	-2.683e-4	3	NC	1	NC	1
255		14			1	.001	2	0	3		1	NC	1	NC	1
		14	max	0	_					1.457e-4					_
256		4.5	min	0	3	003	3	0	1	-2.543e-4	3	NC NC	1_	NC NC	1
257		15	max	0	1	0	2	0	3	1.244e-4	1_	NC	1_	NC	1
258			min	0	3	002	3	0	1	-2.403e-4	3	NC	1_	NC	1
259		16	max	0	1	0	2	0	3	1.031e-4	_1_	NC	_1_	NC	1
260			min	0	3	002	3	0	1	-2.262e-4	3	NC	1_	NC	1
261		17	max	0	1	0	2	0	3	8.179e-5	1	NC	1	NC	1
262			min	0	3	001	3	0	1	-2.122e-4	3	NC	1	NC	1
263		18	max	0	1	0	2	0	3		1	NC	1	NC	1
264			min	0	3	0	3	0	1	-1.982e-4	3	NC	1	NC	1
265		19	max	0	1	0	1	0	1	3.918e-5	1	NC	1	NC	1
266		10	min	0	1	0	1	0	1	-1.842e-4	3	NC	1	NC	1
267	M11	1		0	1	0	1	0	1	8.581e-5	3	NC	1	NC NC	1
	IVI I I		max	0	1	0	1	0	1		<u>3</u>	NC NC	1	NC NC	1
268		_	min							-1.859e-5			•		
269		2	max	0	3	0	2	0	1	6.588e-5	3_	NC	1_	NC NC	1
270			min	0	2	0	3	0	3	-3.608e-5	1_	NC	1_	NC	1
271		3	max	0	3	0	2	0	2	4.594e-5	3	NC	_1_	NC	1
272			min	0	2	002	3	0	3	-5.357e-5	1	NC	1	NC	1
273		4	max	0	3	0	2	0	2	2.601e-5	3	NC	1	NC	1
274			min	0	2	002	3	001	3	-7.106e-5	1	NC	1	NC	1
275		5	max	0	3	0	2	0	2	6.069e-6	3	NC	1	NC	1
276		Ť	min	0	2	003	3	001	3	-8.855e-5	1	NC	1	NC	1
277		6	max	0	3	<u>005</u>	2	0	2		15	NC	1	NC	1
278		U		0	2	004	3	002	3	-1.06e-4	1	NC NC	1	NC NC	1
		7	min								•		•		
279		7	max	0	3	0	2	0	10	-4.739e-6	<u>15</u>	NC	1_	NC	1_

Model Name

Schletter, Inc.HCV

: Standard PVMini Racking System

Dec 11, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC x Rotate [r	LC	(n) L/y Ratio	LC	(n) L/z Ratio	LC
280			min	0	2	005	3	002	3 -1.235e-4	1	NC	1	NC	1
281		8	max	0	3	0	2	0	10 -5.423e-6	15	NC	1	NC	1
282			min	0	2	005	3	002	3 -1.41e-4	1	NC	1	NC	1
283		9	max	0	3	.001	2	0	10 -6.107e-6	15	NC	1	NC	1
284			min	0	2	006	3	002	3 -1.585e-4	1	NC	1	NC	1
285		10	max	0	3	.001	2	0	10 -6.792e-6	15	NC	1	NC	1
286			min	0	2	006	3	002	3 -1.76e-4	1	NC	1	NC	1
287		11	max	0	3	.002	2	0	10 -7.476e-6	15	NC	1	NC	1
288			min	0	2	007	3	003	3 -1.935e-4	1	NC	1	NC	1
289		12	max	0	3	.002	2	0	10 -8.16e-6	15	NC	1	NC	1
290			min	0	2	007	3	003	3 -2.11e-4	1	NC	1	NC	1
291		13	max	0	3	.003	2	0		15	NC	1	NC	1
292			min	0	2	007	3	003	1 -2.285e-4	1	NC	1	NC	1
293		14	max	.001	3	.004	2	0		15	NC	1	NC	1
294			min	001	2	007	3	003	1 -2.459e-4	1	NC	1	NC	1
295		15	max	.001	3	.005	2	0		15	NC	1	NC	1
296			min	001	2	007	3	003	1 -2.634e-4	1	NC	1	NC	1
297		16	max	.001	3	.005	2	0	10 -1.09e-5	15	NC	1	NC	1
298			min	001	2	008	3	004	1 -2.809e-4	1	8478.975	2	NC	1
299		17	max	.001	3	.006	2	0		15	NC	1	NC	1
300			min	001	2	008	3	004	1 -2.984e-4	1	7239.563	2	NC	1
301		18	max	.001	3	.007	2	0		15	NC	3	NC	1
302		1.0	min	001	2	008	3	005	1 -3.159e-4	1	6281.456	2	NC	1
303		19	max	.001	3	.008	2	0		15	NC	3	NC	2
304		1.0	min	001	2	007	3	005	1 -3.334e-4	1	5532.924	2	9306.688	
305	M12	1	max	.002	1	.009	2	.003	1 3.037e-4	1	NC	1	NC	2
306	IVIIZ	-	min	0	3	007	3	0	10 1.163e-5	15	NC	1	4635.665	1
307		2	max	.001	1	.008	2	.004	1 3.037e-4	1	NC	1	NC	2
308			min	0	3	007	3	0	10 1.163e-5	15	NC	1	5055.805	
309		3	max	.001	1	.008	2	.003	1 3.037e-4	1	NC	1	NC	2
310		1	min	0	3	007	3	<u>.003</u>	10 1.163e-5	15	NC	1	5555.901	1
311		4	max	.001	1	.007	2	.003	1 3.037e-4	1	NC	1	NC	2
312		+-	min	0	3	006	3	0	10 1.163e-5	15	NC	1	6157.029	1
313		5	max	.001	1	.007	2	.003	1 3.037e-4	1	NC	1	NC	2
314		1 5		0	3	006	3	<u>.003</u>	10 1.163e-5	15	NC NC	1	6887.905	
315		6	min	.001	1	.006	2	.002	1 3.037e-4	1 <u>1</u>	NC NC	1	NC	2
316		+ 6	max	0	3	005	3	_	10 1.163e-5	15	NC NC	1	7788.465	4
		7			1			<u> </u>			NC NC	1		1
317		+ ′	max	.001	3	.006 005	3			<u>1</u> 15	NC NC	1	NC 901F F00	2
318		0	min	0				0				_	8915.599	
319		8	max	0	3	.005	3	.002	1 3.037e-4	1_	NC NC	1	NC	1
320			min	0		005		0		<u>15</u>		1_	NC NC	
321		9	max	0	1	.005	2	.002	1 3.037e-4	1_	NC NC	1	NC	1
322		10	min	0	3	004	3	0	10 1.163e-5	<u>15</u>	NC NC	1_	NC NC	1
323		10	max	0	1	.004	2	.001	1 3.037e-4	1_	NC	1_	NC	1
324		1.4	min	0	3	004	3	0	10 1.163e-5	15	NC	1_	NC	1
325		11	max	0	1	.004	2	.001	1 3.037e-4	1_	NC	1	NC	1
326			min	0	3	003	3	0	10 1.163e-5	<u>15</u>	NC	_1_	NC	1
327		12	max	0	1	.003	2	0	1 3.037e-4	1_	NC	1_	NC	1
328			min	0	3	003	3	0	10 1.163e-5	15	NC	1_	NC	1
329		13	max	0	1	.003	2	0	1 3.037e-4	1_	NC	_1_	NC	1
330			min	0	3	002	3	0	10 1.163e-5	15	NC	1_	NC	1
331		14	max	0	1	.002	2	0	1 3.037e-4	_1_	NC	_1_	NC	1
332			min	0	3	002	3	0	10 1.163e-5	15	NC	1_	NC	1
333		15	max	0	1	.002	2	0	1 3.037e-4	1_	NC	1	NC	1
334			min	0	3	002	3	0	10 1.163e-5	15	NC	1	NC	1
335		16	max	0	1	.001	2	0	1 3.037e-4	1_	NC	_1_	NC	1
336			min	0	3	001	3	0	10 1.163e-5	15	NC	1	NC	1

Model Name

Schletter, Inc.HCV

: Standard PVMini Racking System

Dec 11, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r	LC	(n) L/y Ratio	LC	(n) L/z Ratio	LC
337		17	max	0	1	0	2	0	1	3.037e-4	1_	NC	1	NC	1
338			min	0	3	0	3	0	10	1.163e-5	15	NC	1	NC	1
339		18	max	0	1	0	2	0	1	3.037e-4	1	NC	1	NC	1
340			min	0	3	0	3	0	10	1.163e-5	15	NC	1	NC	1
341		19	max	0	1	0	1	0	1	3.037e-4	1	NC	1	NC	1
342			min	0	1	0	1	0	1	1.163e-5	15	NC	1	NC	1
343	M1	1	max	.007	3	.023	3	.003	3	8.129e-3	1	NC	1	NC	1
344	141.1		min	007	2	02	2	002	1	-1.106e-2	3	NC	1	NC	1
345		2	max	.007	3	.013	3	.002	3	3.912e-3	2	NC	4	NC	1
346			min	007	2	011	2	004	1	-5.456e-3	3	5020.156	3	NC	1
347		3		.007	3	.004	3	.002	3		3	NC	4	NC	1
		3	max							4.554e-5					
348		-	min	007	2	003	2	005	1	-2.371e-4	1_	2603.984	3	NC NC	1
349		4	max	.007	3	.004	2	.001	3	4.607e-5	3	NC	_4_	NC	1
350			min	007	2	003	3	006	1	-1.998e-4	1_	1860.605	3	NC	1
351		5	max	.007	3	.01	2	0	3	4.661e-5	3	NC	_4_	NC	1
352			min	007	2	01	3	006	1	-1.624e-4	_1_	1494.122	2	NC	1
353		6	max	.007	3	.016	2	0	3	4.714e-5	3	NC	4_	NC	1
354			min	007	2	015	3	005	1	-1.251e-4	1	1271.411	2	NC	1
355		7	max	.007	3	.02	2	0	3	4.768e-5	3	NC	5	NC	1
356			min	007	2	018	3	005	1	-8.775e-5	1	1134.285	2	NC	1
357		8	max	.007	3	.023	2	0	3	4.821e-5	3	NC	5	NC	1
358			min	007	2	021	3	004	1	-5.042e-5	1	1048.538	2	NC	1
359		9	max	.007	3	.025	2	0	3	4.874e-5	3	NC	5	NC	1
360			min	007	2	022	3	003	1	-1.791e-5	9	998.036	2	NC	1
361		10	max	.007	3	.026	2	<u>.005</u>	3	4.928e-5	3	NC	5	NC	1
362		10	min	007	2	023	3	001	1	6.471e-7	15	975.103	2	NC	1
		11			3		2		•			NC			_
363		11	max	.007		.025		0	3	6.159e-5	1_		5	NC NC	1
364		40	min	007	2	022	3	0	9	2.09e-6	15	977.007	2	NC NC	1
365		12	max	.007	3	.024	2	0	1	9.893e-5	1_	NC	_5_	NC	1
366		10	min	007	2	02	3	0	15	3.534e-6	15	1004.93	2	NC	1
367		13	max	.007	3	.021	2	.002	1	1.363e-4	1_	NC	4	NC	1
368			min	007	2	<u>017</u>	3	0	15	4.977e-6	15		2	NC	1
369		14	max	.007	3	.016	2	.003	1	1.736e-4	<u>1</u>	NC	4	NC	1
370			min	007	2	013	3	0	15	6.42e-6	15	1169.157	2	NC	1
371		15	max	.007	3	.011	2	.003	1	2.109e-4	1	NC	4	NC	1
372			min	007	2	009	3	0	15	7.864e-6	15	1347.404	2	NC	1
373		16	max	.007	3	.004	2	.003	1	2.378e-4	1	NC	4	NC	1
374			min	007	2	003	3	0	15		15	1669.581	2	NC	1
375		17	max	.007	3	.003	3	.002	1	4.65e-5	3	NC	4	NC	1
376			min	007	2	005	2	0		-7.413e-7	9	2358.898	2	NC	1
377		18	max	.007	3	.01	3	0	1	5.473e-3	2	NC	4	NC	1
378		10		007	2	015	2	0		-2.601e-3		4567.043	2	NC	1
379		19	min	.007	3	.018	3	<u> </u>	3	1.102e-2	2	NC	1	NC NC	1
		19													
380	N.4.5	A	min	007	2	025	2	001	1	-5.297e-3	3	NC NC	1_	NC NC	1
381	<u>M5</u>	1	max	.021	3	.072	3	.003	3	3.801e-6	3	NC NC	1_	NC NC	1
382			min	025	2	064	2	002	1	0	15	NC	1_	NC NC	1
383		2	max	.021	3	.041	3	.004	3	9.893e-5	3	NC	_4_	NC	1
384			min	025	2	036	2	002	1	-3.355e-5	<u>1</u>	1568.618	3	NC	1
385		3	max	.021	3	.013	3	.005	3	1.922e-4	3	NC	5	NC	1
386			min	025	2	009	2	002	1	-6.651e-5	1_	813.969	3	NC	1
387		4	max	.021	3	.014	2	.006	3	1.873e-4	3	NC	5	NC	1
388			min	025	2	011	3	002	1	-6.299e-5	1	577.603	2	NC	1
389		5	max	.021	3	.034	2	.006	3	1.824e-4	3	NC	5	NC	1
390			min	025	2	031	3	002	1	-5.947e-5	1	457.694	2	NC	1
391		6	max	.021	3	.051	2	.006	3	1.775e-4	3	NC	5	NC	1
392			min	025	2	047	3	002	1	-5.595e-5	1	389.234	2	NC	1
393		7	max	.021	3	.065	2	.002	3	1.726e-4	3	NC	5	NC	1
UJU			παλ	.021	J	.000		.000		1.7205-4	<u> </u>	INC	<u> </u>	INC	

Model Name

Schletter, Inc.HCV

: Standard PVMini Racking System

Dec 11, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r	LC				
394			min	025	2	058	3	002	1	-5.243e-5	1	347.063	2	NC	1
395		8	max	.021	3	.075	2	.006	3	1.677e-4	3	NC	5	NC	1
396			min	025	2	066	3	002	1	-4.891e-5	1_	320.672	2	NC	1
397		9	max	.021	3	.081	2	.006	3	1.628e-4	3	NC	5	NC	1
398			min	025	2	071	3	001	1	-4.538e-5	1	305.099	2	NC	1
399		10	max	.021	3	.084	2	.006	3	1.579e-4	3	NC	5	NC	1
400			min	025	2	072	3	001	1	-4.186e-5	1	297.983	2	NC	1
401		11	max	.021	3	.083	2	.005	3	1.53e-4	3	NC	5	NC	1
402			min	025	2	069	3	001	1	-3.834e-5	1	298.48	2	NC	1
403		12	max	.021	3	.077	2	.005	3	1.481e-4	3	NC	5	NC	1
404			min	025	2	063	3	001	1	-3.482e-5	1	306.947	2	NC	1
405		13	max	.021	3	.068	2	.004	3	1.432e-4	3	NC	5	NC	1
406		1	min	025	2	055	3	001	1	-3.13e-5	1	325.13	2	NC	1
407		14	max	.021	3	.054	2	.004	3	1.383e-4	3	NC	5	NC	1
408		1 1 7	min	025	2	043	3	001	1	-2.778e-5	1	357.053	2	NC	1
409		15	max	.021	3	.035	2	.003	3	1.335e-4	3	NC	5	NC	1
410		10	min	025	2	028	3	001	1	-2.492e-5	9	411.533	2	NC	1
411		16	max	.021	3	.012	2	.002	3	1.247e-4	3	NC	5	NC	1
412		10	min	025	2	01	3	001	1	-2.381e-5	9	510.107	2	NC	1
413		17		.023	3	.01	3	.002	3	2.546e-5	3	NC	5	NC	1
414		17	max	025	2	016	2	<u>.002</u>	1	-7.524e-5	1	721.502	2	NC NC	1
		10	min		3		3				•	NC			
415		18	max	.021		.032		.001	3	1.162e-5	3		4	NC NC	1
416		40	min	025	2	048	2	0	1	-3.849e-5	1_	1397.687	2	NC NC	1
417		19	max	.021	3	.055	3	0	3	0	9	NC	1_	NC NC	1
418	140		min	025	2	083	2	0	1	-6.179e-7	3	NC	1_	NC NC	1
419	<u>M9</u>	1_	max	.007	3	.022	3	.002	3	1.107e-2	3_	NC	1_	NC NC	1
420			min	007	2	02	2	002	1	-8.129e-3	1_	NC	_1_	NC	1
421		2	max	.007	3	.013	3	.001	3	5.471e-3	3	NC	4_	NC	1
422			min	007	2	011	2	0	9	-3.98e-3	1_	5021.918	3	NC	1
423		3	max	.007	3	.004	3	.001	1	9.139e-5	1_	NC	4	NC	1
424			min	007	2	003	2	0	3	-2.415e-5	3	2604.917	3	NC	1
425		4	max	.007	3	.004	2	.002	1	6.014e-5	_1_	NC	4_	NC	1
426			min	007	2	004	3	001	3	-3.126e-5	3	1861.255	3	NC	1
427		5	max	.007	3	.01	2	.002	1	3.045e-5	2	NC	4	NC	1
428			min	007	2	01	3	002	3	-3.836e-5	3	1494.488	2	NC	1
429		6	max	.007	3	.016	2	.002	1	1.965e-5	2	NC	4	NC	1
430			min	007	2	015	3	003	3	-4.547e-5	3	1271.737	2	NC	1
431		7	max	.007	3	.02	2	.002	1	8.855e-6	2	NC	5	NC	1
432			min	007	2	019	3	003	3	-5.257e-5	3	1134.588	2	9330.935	3
433		8	max	.007	3	.023	2	0	1	-7.025e-7	10	NC	5	NC	1
434			min		2	021	3	004	3	-6.487e-5			2	8832.005	3
435		9	max	.007	3	.025	2	0	2	-2.206e-6			5	NC	1
436			min	007	2	022	3	004	3	-9.612e-5	1	998.325	2	8612.896	_
437		10	max	.007	3	.026	2	0	2	-3.71e-6	10	NC	5	NC	1
438		10	min	007	2	023	3	004	3	-1.274e-4	1	975.395	2	8624.443	
439		11	max	.007	3	.025	2	<u>004</u>	10	-5.214e-6	10	NC	5	NC	1
440			min	007	2	022	3	004	3	-1.586e-4	1	977.308	2	8857.698	
441		12	max	.007	3	.024	2	004 0	10	-6.717e-6	10	NC	5	NC	1
442		12			2				3			1005.248	2		3
		12	min	007	3	02	2	004		-1.899e-4 -8.221e-6	10	NC		9338.571	1
443		13	max	.007	2	.021		0	10				2	NC NC	1
444		4.4	min	007		017	3	004	1	-2.211e-4	1	1064.942		NC NC	
445		14	max	.007	3	.016	2	0	10		<u>10</u>	NC	4_	NC NC	1
446		- , -	min	007	2	<u>014</u>	3	<u>005</u>	1	-2.524e-4	1_	1169.542	2	NC NC	1
447		15	max	.007	3	.011	2	0		-1.098e-5	<u>15</u>	NC	4_	NC	1
448			min	007	2	009	3	005	1	-2.836e-4	_1_	1347.85	2	NC	1
449		16	max	.007	3	.004	2	0		-1.191e-5	<u>15</u>	NC	4_	NC	1
450			min	007	2	003	3	005	1	-3.079e-4	1	1670.128	2	NC	1

Model Name

Schletter, Inc.HCV

. : Standard PVMini Racking System

Dec 11, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC x Rotate [r	LC	(n) L/y Ratio	LC	(n) L/z Ratio	LC
451		17	max	.007	3	.003	3	0	10 2.777e-5	3	NC	4	NC	1
452			min	007	2	005	2	004	1 -1.659e-4	1	2359.615	2	NC	1
453		18	max	.007	3	.01	3	0	10 2.639e-3	3	NC	4	NC	1
454			min	007	2	015	2	003	1 -5.474e-3	2	4568.387	2	NC	1
455		19	max	.007	3	.018	3	0	3 5.296e-3	3	NC	1	NC	1
456			min	007	2	025	2	0	1 -1.102e-2	2	NC	1	NC	1
457	M13	1	max	.002	1	.022	3	.007	3 3.626e-3	3	NC	1	NC	1
458	IVITO	<u> </u>	min	002	3	02	2	007	2 -3.277e-3	2	NC	1	NC	1
459		2	max	.002	1	.09	3	.006	9 4.518e-3	3	NC	4	NC	1
		-			3		2			2		3	NC	1
460		-	min	002		068		005			1682.812			
461		3	max	.002	1	.146	3	.017	1 5.409e-3	3	NC	5	NC	2
462			min	002	3	109	1	004	10 -4.919e-3	2	919.581	3	5530.929	-
463		4	max	.002	1	.183	3	.025	1 6.301e-3	3	NC	5	NC	2
464			min	002	3	137	1	004	10 -5.741e-3	2	708.642	3	3883.001	1
465		5	max	.002	1	.197	3	.028	1 7.192e-3	3	NC	5	NC	2
466			min	002	3	148	1	005	10 -6.562e-3	2	652.577	3	3510.267	1
467		6	max	.002	1	.188	3	.025	1 8.084e-3	3	NC	5	NC	2
468			min	002	3	142	2	007	10 -7.383e-3	2	687.876	3	3957.726	1
469		7	max	.002	1	.161	3	.016	9 8.975e-3	3	NC	5	NC	2
470			min	003	3	124	2	009	2 -8.204e-3	2	824.164	3	5996.356	
471		8		.002	1	.123	3	.016	3 9.867e-3	3	NC	5	NC	1
		0	max											
472			min	003	3	099	2	016	2 -9.026e-3	2	1130.156	3_	NC NC	1
473		9	max	.002	1	.088	3	.019	3 1.076e-2	3	NC	4	NC	1
474			min	003	3	075	2	022	2 -9.847e-3	2	1731.986	3	7634.805	2
475		10	max	.002	1	.072	3	.021	3 1.165e-2	3	NC	4	NC	4
476			min	003	3	064	2	025	2 -1.067e-2	2	2295.319	3	6456.484	2
477		11	max	.002	1	.088	3	.023	3 1.076e-2	3	NC	4	NC	1
478			min	003	3	075	2	022	2 -9.847e-3	2	1731.985	3	7031.349	3
479		12	max	.002	1	.123	3	.024	3 9.87e-3	3	NC	5	NC	1
480			min	003	3	099	2	016	2 -9.026e-3	2	1130.155	3	6748.83	3
481		13	max	.002	1	.161	3	.023	3 8.979e-3	3	NC	5	NC	2
482		13	min	003	3	124	2	009	2 -8.204e-3	2	824.163	3	5968.689	
-		1.1												
483		14	max	.002	1	.188	3	.025	1 8.089e-3	3_	NC 007.070	5_	NC	2
484			min	003	3	142	2	007	10 -7.383e-3	2	687.876	3	3953.785	
485		15	max	.002	1	.197	3	.028	1 7.199e-3	3	NC	5_	NC	2
486			min	003	3	148	1	005	10 -6.562e-3	2	652.576	3	3514.649	
487		16	max	.002	1	.183	3	.025	1 6.309e-3	3	NC	5	NC	2
488			min	003	3	137	1	004	10 -5.741e-3	2	708.642	3	3896.103	1
489		17	max	.002	1	.146	3	.016	1 5.419e-3	3	NC	5	NC	2
490			min	003	3	109	1	004	10 -4.919e-3	2	919.58	3	5564.74	1
491		18	max	.002	1	.09	3	.009	3 4.528e-3	3	NC	4	NC	1
492		10	min	003	3	068	2	005	2 -4.098e-3	2	1682.811	3	NC	1
493		19	max	.002	1	.023	3	.007	3 3.638e-3	3	NC	1	NC	1
		13			3		2	007	2 -3.277e-3		NC	1	NC	1
494	NAAC	1	min	003		02	_			2		_		
495	M16	1	max	0	1	.018	3	.007	3 4.004e-3	2	NC	1	NC NC	1
496			min	0	3	025	2	007	2 -2.8e-3	3	NC	1_	NC	1
497		2	max	0	1	.05	3	.009	3 5.015e-3	2	NC	4_	NC	1
498			min	0	3	093	2	005	2 -3.467e-3	3	1688.491	2	NC	1
499		3	max	0	1	.077	3	.016	1 6.025e-3	2	NC	5	NC	2
500			min	0	3	149	2	004	10 -4.135e-3	3	921.068	2	5544.866	1
501		4	max	0	1	.096	3	.025	1 7.035e-3	2	NC	5	NC	2
502			min	0	3	186	2	004	10 -4.802e-3	3	707.567	2	3893.3	1
503		5	max	0	1	.104	3	.028	1 8.046e-3	2	NC	5	NC	2
504		-	min	0	3	201	2	005	10 -5.469e-3	3	648.256	2	3521.438	
		6			1		_							
505		6	max	0		.102	3	.024	1 9.056e-3	2	NC	5	NC	2
506		-	min	0	3	193	2	007	10 -6.137e-3	3	677.593	2	3975.326	
507		7	max	0	1	.092	3	.022	3 1.007e-2	2	NC	5	NC	2

Model Name

: Schletter, Inc. : HCV

. : Standard PVMini Racking System

Dec 11, 2015

Checked By:____

509		Member	Sec		x [in]	LC	y [in]	LC	z [in]		x Rotate [r					
510	508			min		3	168	2	009	2	-6.804e-3	3	800.16	2		
511			8													
512										_						3
513			9			-										1
Section			40													
516			10			_										_
Second Color			44								-8.806e-3					
STOCK STOC			11													
State			40													
Sign			12													
Secondary Seco			12													
S21			13													_
S22			1.1		<u> </u>							_				-
523			14			-										4
S24			15													2
525			10			_										
S26			16													
527			10			_										1
S28			17													2
529			17							•	4 1260 2					
S30			10													
531			10													
S32			10											_		-
533			19			-										
534		M15	1													
535		IVIIJ														
S36			2			-								•		
537 3 max 0 3 002 15 .003 1 1.24e-3 3 NC 1 NC 1 1538 min 0 2 008 4 003 3 -9.397e-4 2 8209.481 4 NC 1 1539 4 max 0 3 003 15 .006 1 1.678e-3 3 NC 5 NC 4 1540 min 0 2 012 4 007 3 -1.384e-3 2 5632.183 4 6230.592 3 541 5 max 0 3 004 15 .01 1 2.117e-3 3 NC 5 NC 4 4 542 min 0 2 016 4 011 3 -1.828e-3 2 4394.85 4 4091.702 3 4 544 min 0 2 018 4 016 3 -2.272e-3 3 NC 5 NC 4 4 544 min 0 2 018 4 016 3 -2.272e-3 2 3698.731 4 2980.454 3 545 7 max 0 3 005 15 .018 1 2.994e-3 3 NC 15 NC 4 546 min 001 2 021 4 021 3 -2.716e-3 2 3280.107 4 2330.57 3 3 3 3 3 3 3 3 3							-									
538			3													
S39																
540 min 0 2 012 4 007 3 -1.384e-3 2 5632.183 4 6230.592 3 541 5 max 0 3 004 15 .01 1 2.117e-3 3 NC 5 NC 4 542 min 0 2 016 4 011 3 -1.828e-3 2 4394.85 4 4091.702 3 543 6 max 0 3 004 15 014 1 2.555e-3 3 NC 5 NC 4 544 min 0 2 018 4 016 3 -2.272e-3 2 3698.731 4 2980.454 3 545 7 max 0 3 005 15 .018 1 2.994e-3 3 NC 15 NC 4 546 min 001 2 023 <td></td> <td></td> <td>4</td> <td></td> <td>•</td>			4													•
541 5 max 0 3 004 15 .01 1 2.117e-3 3 NC 5 NC 4 542 min 0 2 016 4 011 3 -1.828e-3 2 4394.85 4 4091.702 3 543 6 max 0 3 004 15 .014 1 2.555e-3 3 NC 5 NC 4 544 min 0 2 018 4 016 3 -2.272e-3 2 3698.731 4 2980.454 3 545 7 max 0 3 005 15 .018 1 2.994e-3 3 NC 15 NC 4 546 min 001 2 025 15 .022 1 3.43e-3 3 NC 15 NC 4 548 min 001 2 023											-1 384e-3					
542 min 0 2 016 4 011 3 -1.828e-3 2 4394.85 4 4091.702 3 543 6 max 0 3 004 15 .014 1 2.555e-3 3 NC 5 NC 4 544 min 0 2 018 4 016 3 -2.272e-3 2 3698.731 4 2980.454 3 545 7 max 0 3 005 15 .018 1 2.994e-3 3 NC 15 NC 4 546 min 001 2 021 4 021 3 -2.716e-3 2 3280.107 4 2330.57 3 547 8 max 0 3 005 15 .022 1 3.432e-3 3 NC 15 NC 4 548 min 001 2 0			5		<u> </u>											
543 6 max 0 3 004 15 .014 1 2.555e-3 3 NC 5 NC 4 544 min 0 2 018 4 016 3 -2.272e-3 2 3698.731 4 2980.454 3 545 7 max 0 3 005 15 .018 1 2.994e-3 3 NC 15 NC 4 546 min 001 2 021 4 021 3 -2.716e-3 2 3280.107 4 2330.57 3 547 8 max 0 3 005 15 .022 1 3.432e-3 3 NC 15 NC 4 548 min 001 2 023 4 025 3 -3.16e-3 2 3028.869 4 1921.997 3 549 9 max 0 3 006 <td< td=""><td></td><td></td><td>ľ</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>			ľ													
544 min 0 2 018 4 016 3 -2.272e-3 2 3698.731 4 2980.454 3 545 7 max 0 3 005 15 .018 1 2.994e-3 3 NC 15 NC 4 546 min 001 2 021 4 021 3 -2.716e-3 2 3280.107 4 2330.57 3 547 8 max 0 3 005 15 .022 1 3.432e-3 3 NC 15 NC 4 548 min 001 2 023 4 025 3 -3.16e-3 2 3028.869 4 1921.997 3 549 9 max 0 3 006 15 .026 1 3.871e-3 3 NC 15 NC 4 550 min 001 2 <t< td=""><td></td><td></td><td>6</td><td></td><td></td><td></td><td></td><td>-</td><td></td><td></td><td></td><td></td><td></td><td>_</td><td></td><td></td></t<>			6					-						_		
545 7 max 0 3 005 15 .018 1 2.994e-3 3 NC 15 NC 4 546 min 001 2 021 4 021 3 -2.716e-3 2 3280.107 4 2330.57 3 547 8 max 0 3 005 15 .022 1 3.432e-3 3 NC 15 NC 4 548 min 001 2 023 4 025 3 -3.16e-3 2 3028.869 4 1921.997 3 549 9 max 0 3 006 15 .026 1 3.871e-3 3 NC 15 NC 4 550 min 001 2 024 4 03 3 -3.604e-3 2 2893.639 4 1654.611 3 551 10 min 002																
546 min 001 2 021 4 021 3 -2.716e-3 2 3280.107 4 2330.57 3 547 8 max 0 3 005 15 .022 1 3.432e-3 3 NC 15 NC 4 548 min 001 2 023 4 025 3 -3.16e-3 2 3028.869 4 1921.997 3 549 9 max 0 3 006 15 .026 1 3.871e-3 3 NC 15 NC 4 550 min 001 2 024 4 03 3 -3.604e-3 2 2893.639 4 1654.611 3 551 10 max 0 3 006 15 .029 1 4.309e-3 3 NC 15 NC 4 552 min 002 2			7													
547 8 max 0 3 005 15 .022 1 3.432e-3 3 NC 15 NC 4 548 min 001 2 023 4 025 3 -3.16e-3 2 3028.869 4 1921.997 3 549 9 max 0 3 006 15 .026 1 3.871e-3 3 NC 15 NC 4 550 min 001 2 024 4 03 3 -3.604e-3 2 2893.639 4 1654.611 3 551 10 max 0 3 006 15 .029 1 4.309e-3 3 NC 15 NC 4 552 min 002 2 024 4 033 3 -4.048e-3 2 2850.858 4 1478.127 3 553 11 max 0 3 006 15 .0																_
548 min 001 2 023 4 025 3 -3.16e-3 2 3028.869 4 1921.997 3 549 9 max 0 3 006 15 .026 1 3.871e-3 3 NC 15 NC 4 550 min 001 2 024 4 03 3 -3.604e-3 2 2893.639 4 1654.611 3 551 10 max 0 3 006 15 .029 1 4.309e-3 3 NC 15 NC 4 552 min 002 2 024 4 033 3 -4.048e-3 2 2850.858 4 1478.127 3 553 11 max 0 3 006 15 .031 1 4.748e-3 3 NC 15 NC 5 554 min 002 2			8											15		
549 9 max 0 3 006 15 .026 1 3.871e-3 3 NC 15 NC 4 550 min 001 2 024 4 03 3 -3.604e-3 2 2893.639 4 1654.611 3 551 10 max 0 3 006 15 .029 1 4.309e-3 3 NC 15 NC 4 552 min 002 2 024 4 033 3 -4.048e-3 2 2850.858 4 1478.127 3 553 11 max 0 3 006 15 .031 1 4.748e-3 3 NC 15 NC 5 554 min 002 2 024 4 035 3 -4.491e-3 2 2893.639 4 1366.143 3 555 12 max 0					001					3	-3.16e-3					
550 min 001 2 024 4 03 3 -3.604e-3 2 2893.639 4 1654.611 3 551 10 max 0 3 006 15 .029 1 4.309e-3 3 NC 15 NC 4 552 min 002 2 024 4 033 3 -4.048e-3 2 2850.858 4 1478.127 3 553 11 max 0 3 006 15 .031 1 4.748e-3 3 NC 15 NC 5 554 min 002 2 024 4 035 3 -4.491e-3 2 2893.639 4 1366.143 3 555 12 max 0 3 005 15 .032 1 5.186e-3 3 NC 15 NC 5 556 min 002 2			9													
551 10 max 0 3 006 15 .029 1 4.309e-3 3 NC 15 NC 4 552 min 002 2 024 4 033 3 -4.048e-3 2 2850.858 4 1478.127 3 553 11 max 0 3 006 15 .031 1 4.748e-3 3 NC 15 NC 5 554 min 002 2 024 4 035 3 -4.491e-3 2 2893.639 4 1366.143 3 555 12 max 0 3 005 15 .032 1 5.186e-3 3 NC 15 NC 5 556 min 002 2 023 4 036 3 -4.935e-3 2 3028.869 4 1305.562 3 557 13 max 0				min						3						3
552 min 002 2 024 4 033 3 -4.048e-3 2 2850.858 4 1478.127 3 553 11 max 0 3 006 15 .031 1 4.748e-3 3 NC 15 NC 5 554 min 002 2 024 4 035 3 -4.491e-3 2 2893.639 4 1366.143 3 555 12 max 0 3 005 15 .032 1 5.186e-3 3 NC 15 NC 5 556 min 002 2 023 4 036 3 -4.935e-3 2 3028.869 4 1305.562 3 557 13 max 0 3 005 15 .031 1 5.625e-3 3 NC 15 NC 5 558 min 002 2			10					15		1		3		15		4
553 11 max 0 3 006 15 .031 1 4.748e-3 3 NC 15 NC 5 554 min 002 2 024 4 035 3 -4.491e-3 2 2893.639 4 1366.143 3 555 12 max 0 3 005 15 .032 1 5.186e-3 3 NC 15 NC 5 556 min 002 2 023 4 036 3 -4.935e-3 2 3028.869 4 1305.562 3 557 13 max 0 3 005 15 .031 1 5.625e-3 3 NC 15 NC 5 558 min 002 2 021 4 035 3 -5.379e-3 2 3280.107 4 1292.584 3 559 14 max 0					002					3						3
554 min 002 2 024 4 035 3 -4.491e-3 2 2893.639 4 1366.143 3 555 12 max 0 3 005 15 .032 1 5.186e-3 3 NC 15 NC 5 556 min 002 2 023 4 036 3 -4.935e-3 2 3028.869 4 1305.562 3 557 13 max 0 3 005 15 .031 1 5.625e-3 3 NC 15 NC 5 558 min 002 2 021 4 035 3 -5.379e-3 2 3280.107 4 1292.584 3 559 14 max 0 3 004 15 .029 1 6.063e-3 3 NC 5 NC 5 560 min 002 2			11					15		1		3		15		
555 12 max 0 3 005 15 .032 1 5.186e-3 3 NC 15 NC 5 556 min 002 2 023 4 036 3 -4.935e-3 2 3028.869 4 1305.562 3 557 13 max 0 3 005 15 .031 1 5.625e-3 3 NC 15 NC 5 558 min 002 2 021 4 035 3 -5.379e-3 2 3280.107 4 1292.584 3 559 14 max 0 3 004 15 .029 1 6.063e-3 3 NC 5 NC 5 560 min 002 2 019 4 033 3 -5.823e-3 2 3698.731 4 1332.849 3 561 15 max .001					002					3			2893.639	4	1366.143	
556 min 002 2 023 4 036 3 -4.935e-3 2 3028.869 4 1305.562 3 557 13 max 0 3 005 15 .031 1 5.625e-3 3 NC 15 NC 5 558 min 002 2 021 4 035 3 -5.379e-3 2 3280.107 4 1292.584 3 559 14 max 0 3 004 15 .029 1 6.063e-3 3 NC 5 NC 5 560 min 002 2 019 4 033 3 -5.823e-3 2 3698.731 4 1332.849 3 561 15 max .001 3 004 15 .024 1 6.502e-3 3 NC 5 NC 4 562 min 003 2			12							1		3		15		
557 13 max 0 3 005 15 .031 1 5.625e-3 3 NC 15 NC 5 558 min 002 2 021 4 035 3 -5.379e-3 2 3280.107 4 1292.584 3 559 14 max 0 3 004 15 .029 1 6.063e-3 3 NC 5 NC 5 560 min 002 2 019 4 033 3 -5.823e-3 2 3698.731 4 1332.849 3 561 15 max .001 3 004 15 .024 1 6.502e-3 3 NC 5 NC 4 562 min 003 2 016 4 027 3 -6.267e-3 2 4394.85 4 1447.064 3 563 16 max .001				min	002					3		2				3
558 min 002 2 021 4 035 3 -5.379e-3 2 3280.107 4 1292.584 3 559 14 max 0 3 004 15 .029 1 6.063e-3 3 NC 5 NC 5 560 min 002 2 019 4 033 3 -5.823e-3 2 3698.731 4 1332.849 3 561 15 max .001 3 004 15 .024 1 6.502e-3 3 NC 5 NC 4 562 min 003 2 016 4 027 3 -6.267e-3 2 4394.85 4 1447.064 3 563 16 max .001 3 003 15 .017 1 6.94e-3 3 NC 5 NC 4			13			3		15		1		3		15		
559 14 max 0 3 004 15 .029 1 6.063e-3 3 NC 5 NC 5 560 min 002 2 019 4 033 3 -5.823e-3 2 3698.731 4 1332.849 3 561 15 max .001 3 004 15 .024 1 6.502e-3 3 NC 5 NC 4 562 min 003 2 016 4 027 3 -6.267e-3 2 4394.85 4 1447.064 3 563 16 max .001 3 003 15 .017 1 6.94e-3 3 NC 5 NC 4										3						
560 min 002 2 019 4 033 3 -5.823e-3 2 3698.731 4 1332.849 3 561 15 max .001 3 004 15 .024 1 6.502e-3 3 NC 5 NC 4 562 min 003 2 016 4 027 3 -6.267e-3 2 4394.85 4 1447.064 3 563 16 max .001 3 003 15 .017 1 6.94e-3 3 NC 5 NC 4			14					15		1				5		
561 15 max .001 3 004 15 .024 1 6.502e-3 3 NC 5 NC 4 562 min 003 2 016 4 027 3 -6.267e-3 2 4394.85 4 1447.064 3 563 16 max .001 3 003 15 .017 1 6.94e-3 3 NC 5 NC 4										3						
562 min 003 2 016 4 027 3 -6.267e-3 2 4394.85 4 1447.064 3 563 16 max .001 3 003 15 .017 1 6.94e-3 3 NC 5 NC 4			15		.001		004	15		1		3		5		
563 16 max .001 3003 15 .017 1 6.94e-3 3 NC 5 NC 4										3				4		3
			16			3		15		1		3		5		
304	564			min	003	2	013	4	019	3	-6.711e-3	2	5632.183	4	1691.464	3

Company Designer Job Number Model Name : Schletter, Inc. : HCV

Standard PVMini Racking System

Dec 11, 2015

Checked By:__

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r	LC	(n) L/y Ratio	LC	(n) L/z Ratio	LC
565		17	max	.001	3	002	12	.008	1	7.379e-3	3	NC	1	NC	4
566			min	003	2	009	4	008	3	-7.155e-3	2	8209.481	4	2242.48	3
567		18	max	.001	3	0	2	.007	3	7.817e-3	3	NC	1	NC	4
568			min	003	2	005	4	01	2	-7.599e-3	2	NC	1	3992.619	3
569		19	max	.001	3	.004	2	.025	3	8.256e-3	3	NC	1	NC	1
570			min	003	2	002	9	026	2	-8.043e-3	2	NC	1	NC	1
571	M16A	1	max	0	10	0	10	.008	3	2.399e-3	3	NC	1	NC	1
572			min	001	3	0	9	008	2	-2.395e-3	2	NC	1	NC	1
573		2	max	0	10	001	15	.002	9	2.303e-3	3	NC	1	NC	1
574			min	001	3	005	4	003	2	-2.286e-3	2	NC	1	NC	1
575		3	max	0	10	002	15	.005	1	2.207e-3	3	NC	1	NC	4
576			min	001	3	009	4	004	3	-2.177e-3	2	8209.481	4	6371.308	3
577		4	max	0	10	003	15	.008	1	2.111e-3	3	NC	5	NC	4
578			min	001	3	012	4	007	3	-2.069e-3	2	5632.183	4	4847.76	3
579		5	max	0	10	004	15	.011	1	2.015e-3	3	NC	5	NC	4
580			min	001	3	016	4	01	3	-1.96e-3	2	4394.85	4	4188.636	3
581		6	max	0	10	004	15	.012	1	1.919e-3	3	NC	5	NC	4
582			min	0	3	019	4	012	3	-1.851e-3	2	3698.731	4	3902.295	3
583		7	max	0	10	005	15	.013	1	1.823e-3	3	NC	15	NC	4
584			min	0	3	021	4	012	3	-1.742e-3	2	3280.107	4	3834.941	3
585		8	max	0	10	005	15	.012	1	1.727e-3	3	NC	15	NC	4
586			min	0	3	023	4	012	3	-1.634e-3	2	3028.869	4	3934.401	3
587		9	max	0	10	006	15	.012	1	1.632e-3	3	NC	15	NC	4
588			min	0	3	024	4	012	3	-1.525e-3	2	2893.639	4	4194.484	3
589		10	max	0	10	006	15	.011	1	1.536e-3	3	NC	15	NC	4
590			min	0	3	024	4	011	3	-1.416e-3	2	2850.858	4	4642.417	3
591		11	max	0	10	006	15	.009	1	1.44e-3	3	NC	15	NC	4
592			min	0	3	024	4	009	3	-1.307e-3	2	2893.639	4	5345.219	3
593		12	max	0	10	005	15	.008	1	1.344e-3	3	NC	15	NC	4
594			min	0	3	023	4	007	3	-1.199e-3	2	3028.869	4	6436.366	3
595		13	max	0	10	005	15	.006	1	1.248e-3	3	NC	15	NC	2
596			min	0	3	021	4	006	3	-1.09e-3	2	3280.107	4	8184.509	3
597		14	max	0	10	004	15	.004	1	1.152e-3	3	NC	5	NC	1
598			min	0	3	018	4	004	3	-9.812e-4	2	3698.731	4	NC	1
599		15	max	0	10	004	15	.003	1	1.056e-3	3	NC	5	NC	1
600			min	0	3	015	4	002	3	-8.725e-4	2	4394.85	4	NC	1
601		16	max	0	10	003	15	.001	9	9.605e-4	3	NC	5	NC	1
602			min	0	3	012	4	0	3	-7.638e-4	2	5632.183	4	NC	1
603		17	max	0	10	002	15	0	4	8.646e-4	3	NC	1	NC	1
604			min	0	3	008	4	0	2	-6.55e-4	2	8209.481	4	NC	1
605		18	max	0	10	0	15	0	4	7.687e-4	3	NC	1	NC	1
606			min	0	3	004	4	0	2	-5.463e-4	2	NC	1	NC	1
607		19	max	0	1	0	1	0	1	6.728e-4	3	NC	1	NC	1
608			min	0	1	0	1	0	1	-4.376e-4	2	NC	1	NC	1

Company:	Schletter, Inc.	Date:	12/10/2015
Engineer:	HCV	Page:	1/5
Project:	Standard PVMini - Worst Case		
Address:			
Phone:			
E-mail:			

1.Project information

Customer company: Customer contact name: Customer e-mail: Comment:

Project description: Location: Fastening description:

2. Input Data & Anchor Parameters

General

Design method:ACI 318-05 Units: Imperial units

Anchor Information:

Anchor type: Bonded anchor

Material: A193 Grade B8/B8M (304/316SS)

Diameter (inch): 0.500

Effective Embedment depth, hef (inch): 6.000

Code report: IAPMO UES ER-263

Anchor category: -Anchor ductility: Yes hmin (inch): 8.50 cac (inch): 9.67 C_{min} (inch): 1.75 Smin (inch): 3.00

Load and Geometry

<Figure 1>

Load factor source: ACI 318 Section 9.2

Load combination: not set Seismic design: No

Anchors subjected to sustained tension: No Apply entire shear load at front row: No Anchors only resisting wind and/or seismic loads: No

Base Material

Concrete: Normal-weight

Concrete thickness, h (inch): 18.00

State: Cracked

Compressive strength, f'c (psi): 2500

 $\Psi_{c,V}$: 1.0

Reinforcement condition: B tension, B shear Supplemental reinforcement: Not applicable Reinforcement provided at corners: No

Do not evaluate concrete breakout in tension: No Do not evaluate concrete breakout in shear: No

Hole condition: Dry concrete

Inspection: Periodic

Temperature range, Short/Long: 110/75°F Ignore 6do requirement: Not applicable

Build-up grout pad: No

Base Plate

Length x Width x Thickness (inch): 4.00 x 4.00 x 0.28

Company:	Schletter, Inc.	Date:	12/10/2015
Engineer:	HCV	Page:	2/5
Project:	Standard PVMini - Worst Case		
Address:			
Phone:			
E-mail:			

<Figure 2>

Recommended Anchor

Anchor Name: AT-XP® - AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS)

Code Report: IAPMO UES ER-263

Company:	Schletter, Inc.	Date:	12/10/2015
Engineer:	HCV	Page:	3/5
Project:	Standard PVMini - Worst Case		
Address:			
Phone:			
E-mail:			

3. Resulting Anchor Forces

Anchor	Tension load, N _{ua} (lb)	Shear load x, V _{uax} (lb)	Shear load y, V _{uay} (lb)	Shear load combined, $\sqrt{(V_{uax})^2+(V_{uay})^2}$ (lb)	
1	405.0	6.0	101.0	101.2	
Sum	405.0	6.0	101.0	101.2	_

Maximum concrete compression strain (‰): 0.00 Maximum concrete compression stress (psi): 0

Resultant tension force (lb): 405 Resultant compression force (lb): 0

Eccentricity of resultant tension forces in x-axis, e'_{Nx} (inch): 0.00 Eccentricity of resultant tension forces in y-axis, e'_{Ny} (inch): 0.00 Eccentricity of resultant shear forces in x-axis, e'_{Vx} (inch): 0.00 Eccentricity of resultant shear forces in y-axis, e'_{Vy} (inch): 0.00

<Figure 3>

4. Steel Strength of Anchor in Tension(Sec. D.5.1)

N _{sa} (lb)	ϕ	ϕN_{sa} (lb)
8095	0.75	6071

5. Concrete Breakout Strength of Anchor in Tension (Sec. D.5.2)

 $N_b = k_c \lambda \sqrt{f'_c h_{ef}}^{1.5}$ (Eq. D-7)

Kc	λ	f'_c (psi)	h _{ef} (in)	N_b (lb)			
17.0	1.00	2500	5.333	10469			
$\phi N_{cb} = \phi (A_N$	$_{lc}$ / A_{Nco}) $\Psi_{ed,N}$ $\Psi_{c,N}$	$_{N}\Psi_{cp,N}N_{b}$ (Sec.	D.4.1 & Eq. D-4)			
A_{Nc} (in ²)	A_{Nco} (in ²)	$\Psi_{ed,N}$	$arPsi_{c,N}$	$arPsi_{cp,N}$	N_b (lb)	ϕ	ϕN_{cb} (lb)
253 92	256.00	0 995	1.00	1 000	10469	0.65	6717

6. Adhesive Strength of Anchor in Tension (AC308 Sec. 3.3)

Ksat

 $\tau_{k,cr} = \tau_{k,cr} f_{short-term} K_{sat}$

f_{short-term}

 $\tau_{k,cr}$ (psi)

1035	1.00	1.00	1035				
$N_{a0} = \tau_{k,cr} \pi d_a$	h _{ef} (Eq. D-16f)						
$\tau_{k,cr}$ (psi)	d _a (in)	h _{ef} (in)	N_{a0} (lb)				
1035	0.50	6.000	9755				
$\phi N_a = \phi (A_{Na})$	/ A _{Na0}) Ψ _{ed,Na} Ψ _{p,l}	NaNa0 (Sec. D.4	I.1 & Eq. D-16a)				
A_{Na} (in ²)	A_{Na0} (in ²)	$\Psi_{\sf ed,Na}$	$arPsi_{ extsf{p}, extsf{Na}}$	N _{a0} (lb)	ϕ	ϕN_a (lb)	
109.66	109.66	1.000	1.000	9755	0.55	5365	

 $\tau_{k,cr}$ (psi)

Company:	Schletter, Inc.	Date:	12/10/2015
Engineer:	HCV	Page:	4/5
Project:	Standard PVMini - Worst Case		
Address:			
Phone:			
E-mail:			

8. Steel Strength of Anchor in Shear (Sec. D.6.1)

V_{sa} (lb)	$\phi_{ extit{grout}}$	ϕ	$\phi_{grout}\phi V_{sa}$ (lb)	
4855	1.0	0.65	3156	

9. Concrete Breakout Strength of Anchor in Shear (Sec. D.6.2)

Shear perpendicular to edge in y-direction:

$V_{by} = 7(I_e/d_e)$	$(a)^{0.2}\sqrt{d_a}\lambda\sqrt{f'_c}c_{a1}^{1.2}$	⁵ (Eq. D-24)					
le (in)	da (in)	λ	f'c (psi)	Ca1 (in)	V _{by} (lb)		
4.00	0.50	1.00	2500	8.00	8488		
$\phi V_{cby} = \phi (A_V$	$(c/A_{Vco})\Psi_{ed,V}\Psi_{c,v}$	$_{V}\varPsi_{h,V}V_{by}$ (Sec.	D.4.1 & Eq. D-2	1)			
Avc (in ²)	A_{Vco} (in ²)	$\Psi_{ed,V}$	$arPsi_{ extsf{c}, extsf{V}}$	$\Psi_{h,V}$	V _{by} (lb)	ϕ	ϕV_{cby} (lb)
238.44	288.00	0.897	1.000	1.000	8488	0.70	4411

Shear perpendicular to edge in x-direction:

$V_{bx} = 7(I_e/d_s)$	$(a)^{0.2}\sqrt{d_a}\lambda\sqrt{f'_c}c_{a1}^{1.5}$	⁵ (Eq. D-24)					
I _e (in)	d _a (in)	λ	f'c (psi)	<i>c</i> _{a1} (in)	V_{bx} (lb)		
4.00	0.50	1.00	2500	7.87	8282		
$\phi V_{cbx} = \phi (A_V$	$(c/A_{Vco})\Psi_{ed,V}\Psi_{c,v}$	$_{V}\Psi_{h,V}V_{bx}$ (Sec.	D.4.1 & Eq. D-2	1)			
A_{Vc} (in ²)	A_{Vco} (in ²)	$\Psi_{ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V_{bx} (lb)	ϕ	ϕV_{cbx} (lb)
188.88	278.72	0.903	1.000	1.000	8282	0.70	3549

Shear parallel to edge in x-direction:

$V_{by} = 7(I_e/d_e)$	a) ^{0.2} √ d aλ√ f 'c C a1 ^{1.5}	5 (Eq. D-24)					
I _e (in)	d _a (in)	λ	f'c (psi)	c _{a1} (in)	V_{by} (lb)		
4.00	0.50	1.00	2500	8.00	8488		
$\phi V_{cbx} = \phi (2)(2)$	Avc/Avco) Yed, V	$\Psi_{c,V}\Psi_{h,V}V_{by}$ (Se	c. D.4.1, D.6.2.1	(c) & Eq. D-21)			
A_{Vc} (in ²)	A_{Vco} (in ²)	$\Psi_{ed,V}$	$\varPsi_{c,V}$	$arPsi_{h,V}$	V_{by} (lb)	ϕ	ϕV_{cbx} (lb)
238.44	288.00	1.000	1.000	1.000	8488	0.70	9838

Shear parallel to edge in y-direction:

$V_{bx} = 7(I_e/d$	$_{a})^{0.2}\sqrt{d_{a}}\lambda\sqrt{f'_{c}c_{a1}}^{1.5}$	⁵ (Eq. D-24)						
le (in)	da (in)	λ	f'c (psi)	Ca1 (in)	V _{bx} (lb)			
4.00	0.50	1.00	2500	7.87	8282			
$\phi V_{cby} = \phi (2)($	$(A_{Vc}/A_{Vco})\Psi_{ed,V}$	$\mathcal{V}_{c,V} \mathcal{V}_{h,V} V_{bx}$ (Se	c. D.4.1, D.6.2.1	(c) & Eq. D-21)				
Avc (in ²)	A_{Vco} (in ²)	$\Psi_{ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V_{bx} (lb)	ϕ	ϕV_{cby} (lb)	
188.88	278.72	1.000	1.000	1.000	8282	0.70	7858	_

10. Concrete Pryout Strength of Anchor in Shear (Sec. D.6.3)

IV. OUTICI	ote i iyout ou	cingui di Anc	iloi ili olicai	(OCC. D.0.0)				
$\phi V_{cp} = \phi \text{mi}$	$\phi V_{cp} = \phi \min k_{cp} N_a; k_{cp} N_{cb} = \phi \min k_{cp} (A_{Na} / A_{Na0}) \Psi_{ed,Na} \Psi_{p,Na} N_{a0}; k_{cp} (A_{Nc} / A_{Nco}) \Psi_{ed,N} \Psi_{c,N} \Psi_{cp,N} N_{b} \text{ (Eq. D-30a)}$							
Kcp	A_{Na} (in ²)	A_{Na0} (in ²)	$\Psi_{\sf ed,Na}$	$\Psi_{p,Na}$	N _{a0} (lb)	Na (lb)		
2.0	109.66	109.66	1.000	1.000	9755	9755		
A_{Nc} (in ²)	A_{Nco} (in ²)	$\Psi_{ed,N}$	$\Psi_{c,N}$	$arPsi_{cp,N}$	N_b (lb)	N_{cb} (lb)	ϕ	ϕV_{cp} (lb)
253.92	256.00	0.995	1.000	1.000	10469	10334	0.70	13657

Company:	Schletter, Inc.	Date:	12/10/2015
Engineer:	HCV	Page:	5/5
Project:	Standard PVMini - Worst Case		
Address:			
Phone:			
E-mail:			

11. Results

Interaction of Tensile and Shear Forces (Sec. D.7)

Tension	Factored Load, Nua (lb)	Design Strength, øNn (lb)	Ratio	Status
Steel	405	6071	0.07	Pass
Concrete breakout	405	6717	0.06	Pass
Adhesive	405	5365	0.08	Pass (Governs)
Shear	Factored Load, V _{ua} (lb)	Design Strength, øVn (lb)	Ratio	Status
Steel	101	3156	0.03	Pass (Governs)
T Concrete breakout y+	101	4411	0.02	Pass
T Concrete breakout x+	6	3549	0.00	Pass
Concrete breakout y+	6	9838	0.00	Pass
Concrete breakout x+	101	7858	0.01	Pass
Concrete breakout, combined	-	-	0.02	Pass
Pryout	101	13657	0.01	Pass
Interaction check Nua	/φN _n V _{ua} /φV _n	Combined Rati	o Permissible	Status
Sec. D.7.1 0.0	8 0.00	7.5 %	1.0	Pass

AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS) with hef = 6.000 inch meets the selected design criteria.

12. Warnings

- This temperature range is currently outside the scope of ACI 318-11 and ACI 355.4, and is provided for historical purposes.
- Designer must exercise own judgement to determine if this design is suitable.
- Refer to manufacturer's product literature for hole cleaning and installation instructions.

Company:	Schletter, Inc.	Date:	12/10/2015
Engineer:	HCV	Page:	1/5
Project:	Standard PVMini - Worst Case		
Address:			
Phone:			
E-mail:			

1.Project information

Customer company: Customer contact name: Customer e-mail: Comment:

2. Input Data & Anchor Parameters

General

Design method:ACI 318-05 Units: Imperial units

Anchor Information:

Anchor type: Bonded anchor

Material: A193 Grade B8/B8M (304/316SS)

Diameter (inch): 0.500

Effective Embedment depth, hef (inch): 6.000

Code report: IAPMO UES ER-263

Anchor category: Anchor ductility: Yes
hmin (inch): 8.50
cac (inch): 9.67
Cmin (inch): 1.75
Smin (inch): 3.00

Load and Geometry

<Figure 1>

Load factor source: ACI 318 Section 9.2

Load combination: not set Seismic design: No

Anchors subjected to sustained tension: No Apply entire shear load at front row: No Anchors only resisting wind and/or seismic loads: No Base Material

Location:

Project description:

Fastening description:

Concrete: Normal-weight

Concrete thickness, h (inch): 18.00

State: Cracked

Compressive strength, f'c (psi): 2500

 $\Psi_{c,V}$: 1.0

Reinforcement condition: B tension, B shear Supplemental reinforcement: Not applicable Reinforcement provided at corners: No

Do not evaluate concrete breakout in tension: No Do not evaluate concrete breakout in shear: No

Hole condition: Dry concrete

Inspection: Periodic

Temperature range, Short/Long: 110/75°F Ignore 6do requirement: Not applicable

Build-up grout pad: No

Base Plate

Length x Width x Thickness (inch): 9.00 x 4.00 x 0.28

Company:	Schletter, Inc.	Date:	12/10/2015
Engineer:	HCV	Page:	2/5
Project:	Standard PVMini - Worst Case		
Address:			
Phone:			
E-mail:			

<Figure 2>

Recommended Anchor

Anchor Name: AT-XP® - AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS)

Code Report: IAPMO UES ER-263

Company:	Schletter, Inc.	Date:	12/10/2015
Engineer:	HCV	Page:	3/5
Project:	Standard PVMini - Worst Case		
Address:			
Phone:			
E-mail:			

3. Resulting Anchor Forces

Anchor	Tension load, N _{ua} (lb)	Shear load x, V _{uax} (lb)	Shear load y, V _{uay} (lb)	Shear load combined, $\sqrt{(V_{uax})^2+(V_{uay})^2}$ (lb)
1	732.5	499.5	0.0	499.5
2	732.5	499.5	0.0	499.5
Sum	1465.0	999.0	0.0	999.0

Maximum concrete compression strain (%): 0.00

Maximum concrete compression stress (psi): 0

Resultant tension force (lb): 1465

Resultant compression force (lb): 0 Eccentricity of resultant tension forces in x-axis, e'_{Nx} (inch): 0.00

Eccentricity of resultant tension forces in y-axis, e'_{Ny} (inch): 0.00 Eccentricity of resultant shear forces in x-axis, e'_{Vx} (inch): 0.00

Eccentricity of resultant shear forces in y-axis, e^{iy}_y (inch): 0.00 Eccentricity of resultant shear forces in y-axis, e^{iy}_y (inch): 0.00

<Figure 3>

4. Steel Strength of Anchor in Tension(Sec. D.5.1)

N _{sa} (lb)	ϕ	ϕN_{sa} (lb)	
8095	0.75	6071	

5. Concrete Breakout Strength of Anchor in Tension (Sec. D.5.2)

 $N_b = k_c \lambda \sqrt{f'_c h_{ef}^{1.5}}$ (Eq. D-7)

256.00

k c	λ	f'c (psi)	h _{ef} (in)	N_b (lb)				
17.0	1.00	2500	5.333	10469				
$\phi N_{cbg} = \phi (A$	Nc / A Nco $)$ Ψ ec,N Ψ ec	$_{l,N} arPsi_{c,N} arPsi_{cp,N} \mathcal{N}_b$ (Sec. D.4.1 & Eq	. D-5)				
A_{Nc} (in ²)	A_{Nco} (in ²)	$arPsi_{ec,N}$	$\Psi_{ed,N}$	$\Psi_{c,N}$	$arPsi_{cp,N}$	N_b (lb)	ϕ	ϕN_{cbg} (lb)

1.00

1.000

10469

0.65

7233

6. Adhesive Strength of Anchor in Tension (AC308 Sec. 3.3)

1.000

0.865

 $\tau_{k,cr} = \tau_{k,cr} f_{short-term} K_{sat}$

314.72

τ _{k,cr} (psi)	f _{short-term}	K _{sat}	τ _{k,cr} (psi)					
1035	1.00	1.00	1035					
$N_{a0} = \tau_{k,cr} \pi d_a$	hef (Eq. D-16f)							
$\tau_{k,cr}$ (psi)	d _a (in)	h _{ef} (in)	N _{a0} (lb)					
1035	0.50	6.000	9755					
$\phi N_{ag} = \phi (A_N$	$_{a}$ / $A_{Na0})$ $\Psi_{ed,Na}$ Ψ_{g}	$_{ extstyle I,Na}arPhi_{ extstyle ec,Na}arPhi_{ extstyle p,Na} \Lambda$	l _{a0} (Sec. D.4.1 &	Eq. D-16b)				
A_{Na} (in ²)	A_{Na0} (in ²)	$\Psi_{\sf ed,Na}$	$arPsi_{g,Na}$	$\Psi_{ec,Na}$	$\mathscr{\Psi}_{ extsf{ extsf{p}}, extsf{Na}}$	$N_{a0}(lb)$	ϕ	ϕN_{ag} (lb)
177.03	109.66	0.952	1.021	1.000	1.000	9755	0.55	8418

Company:	Schletter, Inc.	Date:	12/10/2015
Engineer:	HCV	Page:	4/5
Project:	Standard PVMini - Worst Case		
Address:			
Phone:			
E-mail:			

8. Steel Strength of Anchor in Shear (Sec. D.6.1)

V_{sa} (lb)	ϕ_{grout}	ϕ	$\phi_{ extit{grout}} \phi V_{ ext{sa}}$ (lb)	
4855	1.0	0.65	3156	

9. Concrete Breakout Strength of Anchor in Shear (Sec. D.6.2)

Shear perpendicular to edge in x-direction:

$V_{bx} = 7(I_e/d$	la) ^{0.2} √daλ√f'c C a1 ^{1.}	⁵ (Eq. D-24)					
le (in)	da (in)	λ	f'c (psi)	Ca1 (in)	V_{bx} (lb)		
4.00	0.50	1.00	2500	12.00	15593		
$\phi V_{cbx} = \phi (A_1)$	$_{Vc}$ / A_{Vco}) $\Psi_{ed,V}$ $\Psi_{c,v}$	$_{V}\Psi_{h,V}V_{bx}$ (Sec.	D.4.1 & Eq. D-2	1)			
Avc (in ²)	Avco (in ²)	$\Psi_{\sf ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V_{bx} (lb)	ϕ	ϕV_{cbx} (lb)
288.00	648.00	0.833	1.000	1.000	15593	0.70	4043

Shear parallel to edge in x-direction:

$V_{by} = 7(I_e/a$	$(J_a)^{0.2} \sqrt{d_a \lambda} \sqrt{f'_c c_{a1}}^{1.2}$	⁵ (Eq. D-24)						
I _e (in)	d _a (in)	λ	f_c (psi)	c _{a1} (in)	V_{by} (lb)			
4.00	0.50	1.00	2500	8.00	8488			
$\phi V_{cbgx} = \phi (2$	$2)(A_{Vc}/A_{Vco})\Psi_{ec}$	V $\Psi_{\text{ed,V}} \Psi_{\text{c,V}} \Psi_{\text{h,V}}$	V _{by} (Sec. D.4.1, [D.6.2.1(c) & Eq.	D-22)			
A_{Vc} (in ²)	A_{Vco} (in ²)	$\Psi_{ec,V}$	$\Psi_{\sf ed,V}$	$\Psi_{c,V}$	$arPsi_{h,V}$	V_{by} (lb)	ϕ	ϕV_{cbgx} (lb)
284.04	288.00	1.000	1.000	1.000	1.000	8488	0.70	11720

10. Concrete Pryout Strength of Anchor in Shear (Sec. D.6.3)

$\phi V_{cpg} = \phi \mathrm{m}$	in <i>kcpNag</i> ; <i>kcpN</i>	$I_{cbg} = \phi \min k_{cp} $	(ANa/ANa0)Ψe	$_{d,Na} arPsi_{g,Na} arPsi_{ec,Na} arPsi_{ec,Na}$	$\Psi_{p,Na}N_{a0}$; $K_{cp}(A_{c})$	Nc / ANco) $\Psi_{\text{ec},N} \Psi$	$V_{ed,N} \Psi_{C,N} \Psi_{Cp,N} N_{b}$	(Eq. D-30b)
K cp	A_{Na} (in ²)	A_{Na0} (in ²)	$\Psi_{\sf ed,Na}$	$\varPsi_{g,Na}$	$\Psi_{ec,Na}$	$\Psi_{ m p,Na}$	N_{a0} (lb)	Na (lb)
2.0	177.03	109.66	0.952	1.021	1.000	1.000	9755	15305
Anc (in²)	Anco (in²)	$\Psi_{ec,N}$	$\Psi_{ed,N}$	$\Psi_{c,N}$	$arPsi_{cp,N}$	N _b (lb)	Ncb (lb)	ϕ
314.72	256.00	1.000	0.865	1.000	1.000	10469	11128	0.70

φV_{cpg} (lb) 15580

11. Results

Interaction of Tensile and Shear Forces (Sec. D.7)

Tension	Factored Load, Nua (lb)	Design Strength, øNn (lb)	Ratio	Status
Steel	733	6071	0.12	Pass
Concrete breakout	1465	7233	0.20	Pass (Governs)
Adhesive	1465	8418	0.17	Pass
Shear	Factored Load, V _{ua} (lb)	Design Strength, øVn (lb)	Ratio	Status
Steel	500	3156	0.16	Pass
T Concrete breakout x+	999	4043	0.25	Pass (Governs)
Concrete breakout y-	999	11720	0.09	Pass (Governs)
Pryout	999	15580	0.06	Pass
Interaction check Nua/g	φNn Vua/φVn	Combined Rati	o Permissible	Status

Company:	Schletter, Inc.	Date:	12/10/2015
Engineer:	HCV	Page:	5/5
Project:	Standard PVMini - Worst Case		
Address:			
Phone:			
E-mail:			

Sec. D.7.3	0.20	0.25	45.0 %	1.2	Pass

AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS) with hef = 6.000 inch meets the selected design criteria.

12. Warnings

- This temperature range is currently outside the scope of ACI 318-11 and ACI 355.4, and is provided for historical purposes.
- Designer must exercise own judgement to determine if this design is suitable.
- Refer to manufacturer's product literature for hole cleaning and installation instructions.