1、利用下面的函数表,作出差商表,写出相应的牛顿插值多项式以及插值误差表达式 并计算 f(1.5) 的近似值

5	x	1.0	2.0	3.0	4.0
f	(X)	20	4.0	5. <i>0</i>	3.0

$$\begin{array}{ll}
\sqrt{3} & \chi_0 = 1. & \chi_1 = 2. & \chi_2 = 3. & \chi_3 = 4 \\

\text{M} & \int [\chi_0, \chi_1] = \frac{2-4}{1-2} = 2 \\
& \int [\chi_1, \chi_2] = \frac{5-4}{3-2} = 1 \\
& \int [\chi_2, \chi_3] = \frac{3-5}{4-3} = -2 \\
& \int [\chi_0, \chi_1, \chi_2] = \frac{2-1}{1-3} = -\frac{1}{2} \\
& \int [\chi_1, \chi_2, \chi_3] = \frac{1-(-2)}{2-4} = -\frac{3}{2} \\
& \int [\chi_0, \chi_1, \chi_2, \chi_3] = \frac{-\frac{1}{2}-(-\frac{3}{2})}{1-4} = -\frac{1}{3}
\end{array}$$

故差商表如下所示

	ì	χì	$f(x_i)$	$f[\chi_{i_1},\chi_{i_2}]$	-[χί-2, χί-1, χί]	-[[Xi-3. X1-z. Xi-1. Xi]
	0	1	Z))	,
Ī	1	Z	4	Z		
Ī	2	3	۲	1	- 1/2	
Į	3	4	3	-2	- 3/2	-3

:. 描值多项式为
$$N_3(X) = Z + Z(X-1) - \frac{1}{2}(X-1)(X-2) - \frac{1}{3}(X-1)(X-2)(X-3)$$

$$f(1.5) \approx N_3(1.5) = 3.$$
 描值误差表达式为: $R_3(X) = \frac{f^{(4)}(3)}{24}(x-1)(x-2)(x-3)(x-4)$

设利用 $\{x_i\}$ 后构造的 $\{x_i\}$ 和造的 $\{x_i\}$ 和力的 $\{x_$

2. 利用数据 f(0)=2.0. f(1)=1.0. f(3)=0.2S. f'(3)=0.6. 构造出3次插值多顶式. 给出其插值误差表达式. 并计算 f(2) 的近似值.

作差商表

_	1				
	0	f(0) = 2			
	1	f(1)=1	f[0,1]= -1		
	ろ	/ f(3)=4	$f[1.3] = -\frac{3}{8}$	$f[0.1.3] = \frac{\zeta}{24}$	
	3	f(3)=本	f [3,3]= 3/7	$f[1.3.3] = \frac{39}{80}$	$f[0.1.3.3] = \frac{67}{720}$

$$N_{3}(X) = Z - X + \frac{5}{24}X(X-1) + \frac{67}{720}X(X-1)(X-3)$$

$$f(2) \otimes N_{3}(2) = \frac{83}{360} \approx 0.230556$$
插值余项: $R(X) = \frac{f^{(4)}(3)}{24}X(X-1)(X-3)^{2}$

3. 设
$$f(x) = 20x^3 + 3x + 2020$$
 求 $f[1.2]$ 如 $f[1.2.3.4]$

$$\int [1,2] = \frac{f(1) - f(2)}{1 - 2} = \frac{2043 - 2186}{1 - 2} = 143$$

$$\int [2,3] = \frac{f(2) - f(3)}{2 - 3} = \frac{2186 - 2569}{2 - 3} = 383$$

$$\int [3,4] = \frac{f(3) - f(4)}{3 - 4} = \frac{2569 - 3312}{3 - 4} = 743$$

$$\int [1,2,3] = \frac{f(1,2) - f(2,3)}{1 - 3} = \frac{143 - 383}{1 - 3} = 120$$

$$\int [2.3.4] = \frac{\int [2.3] - \int [3.4]}{2 - 4} = \frac{383 - 743}{2 - 4} = 180$$

$$\int [1.2.3.4] = \frac{\int [1.2.3] - \int [2.3.4]}{1 - 4} = \frac{120 - 180}{1 - 4} = 20$$