Partiel 2012 – Proposition de correction par Tien THACH (Tackounet ©)

Exercice 1:

Tableau de S:

On va échantillonner la bête :

$$H(z) = \sum_{n=0}^{+\infty} u(nT)z^{-n} \quad avec \ u(nT) = \frac{S(n)}{E(n)} \ (donc \ T = 1)$$

On va seulement calculer les 8 premiers termes, la suite étant clairement divergente :

$$H_8(z) = \sum_{n=0}^{8} u(n)z^{-n} = 0 + 2z^{-1} + 6z^{-2} + 8z^{-3} - 22z^{-5} - 42z^{-6} - 16z^{-7} + 96z^{-8} + [\dots]$$

Exercice 2:

Soit

$$X(z) = \frac{z^2(5.1z - 3)}{4(z - 1)(z - 0.6)(z - 0.8)}$$

Divisions polynomiales:

On met le dénominateur sous la forme $D(z)=a+\sum_{i=1}^n \alpha_i z^{-i}$

On divise donc le numérateur et le dénominateur par z^3 , soit :

$$X(z) = \frac{5.1 - 3z^{-1}}{4 - 9.6z^{-1} + 7.52z^{-2} - 1.92z^{-3}}$$

(Et c'est parti mon kiwi \o/) (Pardonnez la microscopie de la chose svp ...)

1	z ⁻¹	z ⁻²	z ⁻³	z ⁻⁴	z ⁻⁵	1	z ⁻¹	z ⁻²	z ⁻³	z ⁻⁴	z -5
						ii					
5.1	-3					4	-9.6	7.52	-1.92		
	9.24	-9.588	2.448			1.275	2.31	3.147	3.822	4.36524	4.801776
		12.588	-14.9232	4.4352							
			15.288	-19.23024	-6.04224						
				17.46096	-22.6992						

$$\Rightarrow X(0) = 1.275$$

$$\Rightarrow X(T) = 2.31$$

$$\Rightarrow X(2T) = 3.147$$

$$\Rightarrow X(3T) = 3.822$$

$$\Rightarrow X(4T) = 4.36524$$

$$\Rightarrow X(5T) = 4.801776$$

(Ne faîtes pas trop attention aux chiffres significatifs)

On utilise le théorème de la valeur finale pour déterminer X(nT).

$$\lim_{n \to \infty} X(nT) = \lim_{z \to 1} \left(\frac{z - 1}{z} \cdot \frac{z^2 (5.1z - 3)}{4 (z - 1) (z - 0.6) (z - 0.8)} \right) = \lim_{z \to 1} \left(\frac{2.1}{0.32} \right) = 6.5625$$

Division par 'z' puis décomposition :

$$\frac{X(z)}{z} = \frac{z(5.1z - 3)}{4(z - 1)(z - 0.6)(z - 0.8)} = \frac{1}{4} \left(\frac{A}{z - 1} + \frac{B}{z - 0.6} + \frac{C}{z - 0.8} \right)$$

avec
$$A = \frac{105}{4}$$
; $B = \frac{9}{20}$ et $C = \frac{108}{5}$

(Les calculs peuvent faire peurs, je n'ai pas réussi à faire quelque chose de très simple)

On reprend notre fonction X(z) en multipliant par z l'équation ci-dessus, on se reporte au tableau des transformées inverses et on remarque en supposant :

$$A(t) = \frac{105z}{4(z-1)} \; ; \; B(t) = \frac{9z}{20(z-0.6)} \; et \; C(t) = \frac{108z}{5(z-0.8)}$$

$$Z^{-1}[{\rm A}({\rm z})] = \frac{105}{4} {\rm u}({\rm t}) \ ; \quad Z^{-1}[{\rm B}({\rm z})] = \frac{9}{20} \, 0.6^n. \, u(t) \, \, et \, ; \quad Z^{-1}[{\rm C}({\rm z})] = \frac{108}{5} \, 0.8^n. \, u(t) \, \, et \, ; \quad Z^{-1}[{\rm C}({\rm z})] = \frac{108}{5} \, 0.8^n. \, u(t) \, \, et \, ; \quad Z^{-1}[{\rm C}({\rm z})] = \frac{108}{5} \, 0.8^n. \, u(t) \, \, et \, ; \quad Z^{-1}[{\rm C}({\rm z})] = \frac{108}{5} \, 0.8^n. \, u(t) \, \, et \, ; \quad Z^{-1}[{\rm C}({\rm z})] = \frac{108}{5} \, 0.8^n. \, u(t) \, \, et \, ; \quad Z^{-1}[{\rm C}({\rm z})] = \frac{108}{5} \, 0.8^n. \, u(t) \, \, et \, ; \quad Z^{-1}[{\rm C}({\rm z})] = \frac{108}{5} \, 0.8^n. \, u(t) \, \, et \, ; \quad Z^{-1}[{\rm C}({\rm z})] = \frac{108}{5} \, 0.8^n. \, u(t) \, \, et \, ; \quad Z^{-1}[{\rm C}({\rm z})] = \frac{108}{5} \, 0.8^n. \, u(t) \, \, et \, ; \quad Z^{-1}[{\rm C}({\rm z})] = \frac{108}{5} \, 0.8^n. \, u(t) \, \, et \, ; \quad Z^{-1}[{\rm C}({\rm z})] = \frac{108}{5} \, 0.8^n. \, u(t) \, \, et \, ; \quad Z^{-1}[{\rm C}({\rm z})] = \frac{108}{5} \, 0.8^n. \, u(t) \, \, et \, ; \quad Z^{-1}[{\rm C}({\rm z})] = \frac{108}{5} \, 0.8^n. \, u(t) \, \, et \, ; \quad Z^{-1}[{\rm C}({\rm z})] = \frac{108}{5} \, 0.8^n. \, u(t) \, \, et \, ; \quad Z^{-1}[{\rm C}({\rm z})] = \frac{108}{5} \, 0.8^n. \, u(t) \, \, et \, ; \quad Z^{-1}[{\rm C}({\rm z})] = \frac{108}{5} \, 0.8^n. \, u(t) \, \, et \, ; \quad Z^{-1}[{\rm C}({\rm z})] = \frac{108}{5} \, 0.8^n. \, u(t) \, \, et \, ; \quad Z^{-1}[{\rm C}({\rm z})] = \frac{108}{5} \, 0.8^n. \, u(t) \, \, et \, ; \quad Z^{-1}[{\rm C}({\rm z})] = \frac{108}{5} \, 0.8^n. \, u(t) \, \, et \, ; \quad Z^{-1}[{\rm C}({\rm z})] = \frac{108}{5} \, 0.8^n. \, u(t) \, \, et \, ; \quad Z^{-1}[{\rm C}({\rm z})] = \frac{108}{5} \, 0.8^n. \, u(t) \, \, et \, ; \quad Z^{-1}[{\rm C}({\rm z})] = \frac{108}{5} \, 0.8^n. \, u(t) \, \, et \, ; \quad Z^{-1}[{\rm C}({\rm z})] = \frac{108}{5} \, 0.8^n. \, u(t) \, \, et \, ; \quad Z^{-1}[{\rm C}({\rm z})] = \frac{108}{5} \, 0.8^n. \, u(t) \, \, et \, ; \quad Z^{-1}[{\rm C}({\rm z})] = \frac{108}{5} \, 0.8^n. \, u(t) \, \, et \, ; \quad Z^{-1}[{\rm C}({\rm z})] = \frac{108}{5} \, 0.8^n. \, u(t) \, \, et \, ; \quad Z^{-1}[{\rm C}({\rm z})] = \frac{108}{5} \, 0.8^n. \, u(t) \, \, et \, ; \quad Z^{-1}[{\rm C}({\rm z})] = \frac{108}{5} \, 0.8^n. \, u(t) \, \, et \, ; \quad Z^{-1}[{\rm C}({\rm z})] = \frac{108}{5} \, 0.8^n. \, u(t) \, \, et \, ; \quad Z^{-1}[{\rm C}({\rm z})] = \frac{108}{5} \, 0.8^n. \, u(t) \, \, et \, ; \quad Z^{-1}[{\rm C}({\rm z})] = \frac{108}{5} \, 0.8^n. \, u(t) \, \, et \, ; \quad Z^{-1}[{\rm$$

Et donc

$$X(nT) = \frac{1}{4} \left(\frac{105}{4} + \frac{9}{20} \cdot 0.6^n + \frac{108}{5} \cdot 0.8^n \right) u(nT)$$

(Vérification de la cohérence)

$$\Rightarrow X(0) = 1.275$$

$$\Rightarrow X(T) = 2.31$$

$$\Rightarrow X(2T) = 3.147$$

$$\Rightarrow X(3T) = 3.822$$

$$\Rightarrow X(4T) = 4.36524$$

$$\Rightarrow X(5T) = 4.801776$$

C'est donc juste (faut pas s'attendre à des trucs sympa de sa part alors, contrairement à notre autre professeur de mathématiques).

Exercice 3:

Soit la fonction $y(t) = e^{-t} \cos t \cdot u(t)$

On suppose que l'entrée est un échelon unitaire (les transformées étant linéaires, on peut donc se désintéresser de l'amplitude d'entrée, étant un coefficient multiplicatif constant).

Soit F la fonction de transfert :

$$F(p) = L(y(t))$$

Par la formule d'Euler, on décompose notre cosinus de tel sorte que :

$$y(t) = e^{-t} \left(\frac{e^{-it} + e^{it}}{2} \right) u(t)$$

$$y(t) = \left(\frac{e^{-(1+i)t} + e^{-(1-i)t}}{2}\right) u(t)$$

On en déduit, par le tableau des correspondances :

$$Y(p) = L^{-1} \left[\left(\frac{e^{-(1+i)t} + e^{-(1-i)t}}{2} \right) u(t) \right] = \frac{1}{2} \left(\frac{1}{p+(1+i)} + \frac{1}{p+(1-i)} \right)$$

$$Y(p) = \frac{1}{2} \left(\frac{1}{(p+1)+i} + \frac{1}{(p+1)-i} \right)$$

$$Y(p) = \frac{p+1}{(p+1)^2 + 1}$$