Stop Guessing, GET Requesting

Back of the envelope estimations to get started with.

Scheduled Sync:

Questions to answer:

- * Concurrent requests?
- * Single process?
- * Bottlenecks?

Info to collect and estimates to make

- * How many requests?
- * avg response time?
- * origin limits?
- * Sync frequency?
- * DB limitations?

How?

- * Service Docs
- * Existing metrics
- * Comparables
- * Simulation
- * "Guesstimates"

Request Considerations

- * Stay under rate limit
- * Don't kill the target service

Little's Law C = RL

Little's Law C = RL

Little's Law C = RL

Back to our Scheduled Sync Task

1,800,000 requests to be made.

$$1,000*0.5 = 500 <- \text{Little's Law}$$

...but, diminishing returns

...because

We need more GIL's

$$1/0.01 = 100 \text{ p/s}$$

Amdahl's Law

G: processing time averaged per request T: target rate

$$R(C) = 1 / (G + (L / C))$$

Calculating number of processes needed. P(C, T) = T / R(C)

R(50) -> 50 requests/s

1,000 / 50 = 20

What about the DB?

100 rows per request 0.5 response time.

Client A Limit 3 Client B Limit 3 5 6 Client C Limit 5 6

3

2

Client A Limit 3 6 Client B Limit 5 6 3 Client C Limit 5 6 3 DB Limit 5 6

1=2*0.5

2 * 100 = 200 rows/second

200 < 1,000

The DB is a bottleneck

Do we care? Enough?

1,800,000 / 200 / 60 / 60 = ~2.5 hrs

Other considerations

* DB connection limits (e.g. PostgreSQL sans PGBouncer)

What if tasks overlap?

Things to note

- * Only as good as the inputs
- * Model a distribution of possible inputs
- * Just one example.

Key Takeaway

- 1. Resource contention -> queuing -> Queuing theory
- 2. Metrics and models

GitHub: steven-cutting

References:

- * "Stop Rate Limiting! Capacity Management Done Right" by Jon Moore, StrangeLoop 2017
- * Amdahl's Law, Jakob Jenkov, jenkov.com
- * Probability and Statistics with Reliability, Queuing, and Computer Science Applications, Kishor S. Trivedi