	Lecture 3.
	0 44
	Recall
<i>(</i>)	Last time we discussed notion
	of condition and instability of numerical methods.
	yumen cer methods.
າ)	We also discussed some mathematical preliminaries that we need
7	preliminaries that we need
	notable, the intermediate value theorem of continuous functions,
	The important of
	Continuous filma m
	the meen value theolem,
	(ayur) theorem,
	Taylor heorem, The fundamental theorem of algebra.

Polynomial -) Power form $p(n) = e_0 + e_1 \times + e_2 \times^2 + \cdots + e_n \times^n$ This form may lead to loss of significant digits -> Remedy use shifted power form $p(x) = b_0 + b_1(x-c) + b_2(x-c)^2 + \cdots + b_n(x-c)^n$ to compute p(x) near c. Elementory Numerical Analysis
- an algorithmic approach

S. D. Conte and C-de Boor

Emppose you have to p(n) = b0 + (x-c) } b1 + b2(x-c)+- +bn(x-c) = bo + (x-1) { b, + (x-1) [b+ - - - b, 1x-1)

Last time I had told you to compute polynomials by the "nested form"

 $\frac{\text{Example}}{p(x) = x^3 - 6.1 x^2 + 3.2 x + 1.5}$

(4 sis digit)

 $P(4.71) = -14.26 \qquad (sorrect upto)$ 4 sig digits)

However if you directly compute $P(4.71) = 4.71^3 - 6.7(4.71)^2 + 3.2 \times 4.71 + 19$

= -14.23

In nested form $p(x) = x (x^2 - 6.1x + 3.2) + 1.5$

 $= \times (\times (\times -6.1) + 3.2) + 1.5$ p(4.71) = -14.26

loday me discuss "Interpolation" We have $f(x_1), f(x_2), ---, f(x_4)$. We need to approximate idea is to fit a curve passing through (x, f(x,)) (x, f(x,)), --, (x, f(x,)) and then approximate fa).

Question: Which curve to fit.?
One classical (and non-trivial) result
is the following
Theolem (Weierstrans Approximation) therem
Suppose $f: [a, b] \rightarrow \mathbb{R}$ is continuous.
For each & >0, there exists a
polynumial P(x) such that
[f(t)-P(t)] < E for all t in [a,b]
However, the polynomial constructed for proving this theolem has show convergence. So ineffective in
practice

We might be tempted to use Taylor polynomials ne[1,4] $\sum_{k=1}^{\infty} (-1)^{k} (x-1)^{k}$

			A	1	1	1	T	J
	Υ	2	3	4	5	6	7	_
_	In (3)	3	-5		-21	43	-85	_
	n 1				(A)			_

Problem

Given n+1 distinct points 20,21, ---, 2n in [a, 6], and a function f: [a, 6] -> IR dues, there exists a polynomial p(x) of degree < n which interpolates f(2) at the points No, x,, -, x, 1-e, p(x) sætisfis $p(x_i) = f(x_i) \quad \text{for } i = 0, 1, --0, n$

We prove that there exists a unique polynomial which does the job.

degrange polynomials

Given
$$x_0, x_1, \dots, x_n$$
 distinct pts

 $k(x) = \prod_{i=0}^{\infty} \frac{x_i - x_i}{x_k - x_i}$
 $i \neq k$

for example

 $n = 1 \quad x_0, x_1, x_2 \quad \text{distinct pts}$
 $k(x) = \frac{(x_1 - x_1)(x_2 - x_2)}{(x_0 - x_1)(x_0 - x_2)}$
 $k(x) = \frac{(x_1 - x_0)(x_2 - x_2)}{(x_1 - x_0)(x_1 - x_2)}$
 $k(x) = \frac{(x_1 - x_0)(x_2 - x_2)}{(x_1 - x_0)(x_2 - x_2)}$

(x2-76)(x2-x1)

$$\chi_{0}, \chi_{1}, \dots, \chi_{n}$$
 $\chi_{0}, \chi_{1}, \dots, \chi_{n}$
 $\chi_{0}, \chi_{0}, \dots, \chi_{n}$
 $\chi_{0}, \chi_{0}, \dots, \chi_{n}$
 $\chi_{0}, \chi_{0}, \dots, \chi_{n}$

$$f(x)$$
 is a degeree $n-polynomial$
 $f(x)$ is a degeree $n-polynomial$

$$2) \ell_{k}(\chi_{k}) = 1$$

$$\frac{\text{Motice}}{P_n(n)} = \sum_{i=0}^{\infty} f(x_i) l_i(n)$$

has the property
$$p(n_k) = f(n_k)$$

for $k = 0,1,...,n$

Thus
$$p(x) = \sum_{k=0}^{\infty} f(n_k) l_k(x)$$

is an interpolating polynomial

(Uniquen)

If $p(x)$, $q(x)$ interpolate $f(x)$

in $xo_1 - ..., x_n$ then $p(x) = q(x)$

Porf deg $p(x) \le n$
 $p(x) - q(x)$ has $n+1$ zeros

so is identically zero.

i.e. $p(x) = q(x)$.

	Example	\sim	f(x)	
• •		a	6.931 E-1	
		3	1-099	
		4	1-386	
	approximate f (3-2)) '		
٨.,	1.			
AN T	$\int_{2}(x) = f(2) \int_{0}(x)$) + f	(3) 4(x) + f(4) 2(x)	
	interpolates	f(x)	•	
	Recall			
	$l_0(x) = \frac{(x-1)^n}{n}$	χ_{\downarrow})(1	L-22)	
	(20	$-x_1)$	$(\chi_0 - \chi_2)$	
The	_	D C =		
	$l_0(3.2) = (3.2 -$	3)(3	2-4) = -8 E-2	
Si	milarly (2-)	3)(2-4)	
<u> </u>	(3.2) = (3.2)	2)(3	·2-4) = 9.6 E-1	
	4(3.2) = (3.2)	-2) (3-4)	
	$\ell_{\lambda}(3\cdot\lambda) = (3\cdot\lambda)$			
	14.	-2)(4-3)	
£(2.21 C [4.931 E-	1) (-8	E-2) + (9,6 E-1)(1.099)	
1	+ 1.386 × 1.2 E-1 = 1.166			
	f(n) = ln(n)	£ (3:	(3.2) = ln(3.2)	
	, ,	T	= 11163	

 $p(n) = \sum_{k=1}^{\infty} f(x_k) \ell_k(x)$ is called "Lagrange" form of interpolating polynomial. Problem with Lagrange form Suppose we have found $g_n(x)$ interpolating f(n) at points no, 24, -, 2, Suppose we also know f(xn+1) Then we can form P (x) interpolating f(n) at no, x1,-., xn, 2n+1 There is no obvious relation between Py(n) and Pn+1 (n).

We write $P_n(x) = q_n + q_n$

 $P_n(x) = q_0 + q_1(x - x_0) + q_2(x - x_0)(x - x_0)$

+ - - · + Qn(x-x0)(x-x1)--- (x-xn-1)

Set

9(2) = 90+9(x-x0)+--+an-(x-x0)---(x-xn-2)

Thus Pn(x) = 9(x) + an (x-x0) - - - (x-xn-1)

Note $q(x_i) = P_n(x_i) = f(x_i)$ for i = 0, 1, -, n-1

So by uniquen of interpolating polynomial $q(x) = P_{n-1}(x)$

 $P_{N}(x) = P_{N-1}(x) + Q_{N}(x-x_{0})(x-x_{1}) - (x-x_{N-1})$ = Coefficient of x in (n(x). 2 =: an f[xo,-... Kn] is called the no divided difference of f(x) at the point No, M, - -, In. We write Pm(x) = f[xo] + f[xo,x,] (x-xo) + f[x0,x1,x2] (x-x0)(x-x1)+- $-\cdots + f[x_0, ... x_n](x_{-x_0})(x_{-x_1})\cdots (x_{-x_{n-1}})$

$$f[x_0] = f(x_0)$$

$$P_1(x) = f[x_0] + f[x_0,x_1](x-x_1)$$

$$\frac{f(x_1) - f(x_0)}{x_1 - x_0} = f[x_0, x_1]$$

Claim

$$\frac{f[x_0,...x_k] - f[x_0,...x_k] - f[x_0,...x_k]}{x_k - x_0}$$

Proof of claim.

Let $P_i(x) = \text{polynomial of deg} \leq i$ which agrees with f(x) at the pt $\chi_0, \chi_1, \dots, \chi_i$ Let $q_{k-1}(x)$ be the polynomial of degree < k-1 which agrees with f(x) at the points 22, -, 74. $P(x) = \frac{\chi - \chi_0}{\chi_k - \chi_0} = \frac{\chi_0 - \chi_0}{\chi_0 - \chi_0} = \frac{\chi_0 - \chi_0}{\chi_0} = \frac$ note p(xi) = f(xi) for i=01,-, k by uniques of interpolating jolynomial P(x) = Pk(x) $[x_0, -, x_k] = \text{ Geff } g x^k \text{ in } P_k(x)$ = coeff of x to - in 2k-(x) well of x in = f[x1,-,xk]-f[x0,-xk] /k-x0

f[2,3]-f(3)-f(2)Example : 1[,7 f[,,] f(x) f[,,,] 6.931 E-0 4.059 E-1 -5-945E-2 9.15 E-3 [2,3,4] f[2,3,4,5] 1-099 -3.2 E-2 2-87 E-1 £[3,4,t 1.386 2.230 E-1 f[4,t] 1-609 Approximate f(3.2) 12(2) = f[2] + f[2,3] (x-2) + +[2,3,4](x-2) (x-3) 6.931 E-01 + 4.059 E-1 (X-1) P, (x) = -5.945 E-2 (X-2)(X-3) So 7 (3.2) = 1.166 (3-2) = ln (3-2) = 1-163 P(x) = P2(x) + 9.15 E-3 (x-2)(x-3)(x-4) 1.166 + 9.15 E-3 (1.2)(0.2)(-0.8) 12 (3·2) = 1·164

+(m)-f/no) x_0, x_1 happens when 24- $\lim_{x_1 > x_4} f[x_0, x_1] = f'(x_0)$