Fingerübungen

Thema: Funktionsgraphen und Grenzwerte. Wie immer: Sie werden von diesen Aufgaben nur profitieren, wenn Sie sie per Hand lösen, ohne Computer- oder Taschenrechnereinsatz!

- Einige Hilfsmittel zum Skizzieren von Funktionsgraphen (später kommen noch mehr dazu):

 Die wichtigsten kennen, z.B.: (affin-)lineare Funktionen ↔ Geraden; quadratische Funktionen
 - \leftrightarrow Parabeln; Graph der Exponentialfunktion; etc. • Einige Funktionswerte ausrechnen. Insbesondere f(0) (Schnitt mit u-Achse); ggf. Schnitt mit
 - Einige Funktionswerte ausrechnen. Insbesondere f(0) (Schnitt mit y-Achse); ggf. Schnitt mit x-Achse bestimmen (d.h. f(x) = 0 nach x auflösen)
 - Verschiebungs- und Skalierungsgesetze ($a \in \mathbb{R}, c \in \mathbb{R} \setminus \{0\}$):
 - Ersetzung von x durch x-a bzw. von f(x) durch f(x)+a bewirkt Verschiebung des Graphen um a nach rechts bzw. nach oben.
 - Ersetzung von x durch $\frac{x}{c}$ bzw. von f(x) durch cf(x) bewirkt Streckung in x- bzw. y-Richtung um den Faktor |c| (für |c| < 1 würde man wohl eher von Stauchung sprechen), und bei c < 0 zusätzlich Spiegelung an y- bzw. x-Achse.
 - 1. Skizzieren Sie den Graphen folgender Funktionen. Definitionsbereich ist jeweils \mathbb{R} .

a)
$$f(x) = x$$

b)
$$f(x) = 2x + 3$$

c)
$$f(x) = x^2 - 1$$

d)
$$f(x) = \left(\frac{x}{2}\right)^2 - 1$$

e)
$$f(x) = (x-3)^2$$

f)
$$f(x) = (x+2)^2 + 1$$

g)
$$f(x) = x^2 + 4x + 3$$

h)
$$f(x) = 2e^{-x} + 2$$

2. Skizzieren Sie die Graphen folgender Paare von Funktionen, jeweils im selben Koordinatensystem.

a)
$$f(x) = x + 1$$
, $g(x) = 2x + 1$

b)
$$f(x) = e^x$$
, $g(x) = e^{2x}$

c)
$$f(x) = x^3, g(x) = \left(-\frac{x}{2}\right)^3$$

d)
$$f(x) = e^x$$
, $g(x) = \frac{x^2}{2} + 1$

3. Skizzieren Sie den Graphen und bestimmen Sie den linksseitigen Grenzwert $\lim_{x \to x_0 -} f(x)$ und den rechtsseitigen Grenzwert $\lim_{x \to x_0 +} f(x)$.

a)
$$f(x) = \frac{1}{x}, x_0 = 0$$

b)
$$f(x) = \frac{1}{x+1}$$
, $x_0 = -1$

c)
$$f(x) = \frac{x}{x+1}, x_0 = 5$$

d)
$$f(x) = \frac{x^2 + x}{x^2}$$
, $x_0 = 0$

e)
$$f(x) = \frac{x - x^2}{x - 1} + 1, x_0 = 1$$

f)
$$f(x) = |x - 3|, x_0 = 2$$

g)
$$f(x) = \frac{x}{|x|}, x_0 = 0.$$

4. Finden Sie Funktionsterme, die zu den gegebenen Graphen führen können.

a)

d)

b)

e)

c)

f)

