Лабораторная работа 14 Модели обработки заказов

Кадирова Мехрубон Рахматжоновна

Содержание

1 Цель работы	. 1
2 Задание	.1
3 Выполнение лабораторной работы	.2
3.1 Модель оформления заказов клиентов одним оператором	2
3.2 Построение гистограммы распределения заявок в очереди	7
3.3 Модель обслуживания двух типов заказов от клиентов в интернет-магазине1	.1
3.4 Модель оформления заказов несколькими операторами1	.7
4 Выводы	<u>'</u> 3

1 Цель работы

Реализовать модели обработки заказов и провести анализ результатов.

2 Задание

Реализовать с помощью gpss:

- модель оформления заказов клиентов одним оператором;
- построение гистограммы распределения заявок в очереди;
- модель обслуживания двух типов заказов от клиентов в интернет-магазине;
- модель оформления заказов несколькими операторами.

3 Выполнение лабораторной работы

3.1 Модель оформления заказов клиентов одним оператором

Порядок блоков в модели соответствует порядку фаз обработки заказа в реальной системе:

- 1) клиент оставляет заявку на заказ в интернет-магазине;
- 2) если необходимо, заявка от клиента ожидает в очереди освобождения оператора для оформления заказа;
- 3) заявка от клиента принимается оператором для оформления заказа;
- 4) оператор оформляет заказ;
- 5) клиент получает подтверждение об оформлении заказа (покидает систему).

Модель будет состоять из двух частей: моделирование обработки заказов в интернет-магазине и задание времени моделирования. Для задания равномерного распределения поступления заказов используем блок GENERATE, для задания равномерного времени обслуживания (задержки в системе) – ADVANCE. Для моделирования ожидания заявок клиентов в очереди используем блоки QUEUE и DEPART, в которых в качестве имени очереди укажем operator_q Для моделирования поступления заявок для оформления заказов к оператору используем блоки SEIZE и RELEASE с параметром operator — имени «устройства обслуживания».

Требуется, чтобы модельное время было 8 часов. Соответственно, параметр блока GENERATE – 480 (8 часов по 60 минут, всего 480 минут). Работа программы начинается с оператора START с начальным значением счётчика завершений, равным 1; заканчивается – оператором TERMINATE с параметром 1, что задаёт ординарность потока в модели.

Таким образом, имеем (рис. [fig:001?]).

```
; operator
GENERATE 15,4
QUEUE operator_q
SEIZE operator
DEPART operator_q
ADVANCE 10,2
RELEASE operator
TERMINATE 0
; timer
GENERATE 480
TERMINATE 1
START 1
```

Модель оформления заказов клиентов одним оператором После запуска симуляции получаем отчёт (рис. [fig:002?]).

	TIME					
	0.000	480.000	9	1	0	
N.	AME		VALUE			
OPERA:	OR	10	001.000			
OPERA1	TOR_Q	10	000.000			
LABEL				IT CURRENT C	OUNT RETRY	
		RATE			0	
				0		
				0		
				0		
				1		
				0		
				0		
		RATE		-	0	
	9 TERN	MINATE	1	0	0	
ACILITY	ENTRIES UT	IL. AVE. T	IME AVAIL	OWNER PEND	INTER RETRY	DELAY
OPERATOR	32 0	.639 9	.589 1	33 0	0 0	0
JEUE OPERATOR Q	MAX CONT.	ENTRY ENTRY	(0) AVE.CO	ONT. AVE.TIM	E AVE.(-0)	RETRY
OPERATOR_Q	1 0	32 3	1 0.00	0.02	1 0.671	0
EC XN PRI	BDT	ASSEM CUR	RENT NEXT	PARAMETER	VALUE	
	489.786					
			0 1			
34 0 35 0	960.000					

Отчёт по модели оформления заказов в интернет-магазине

Результаты работы модели:

- модельное время в начале моделирования: START TIME=0.0;
- абсолютное время или момент, когда счетчик завершений принял значение 0: END TIME=480.0;
- количество блоков, использованных в текущей модели, к моменту завершения моделирования: BLOCKS=9;
- количество одноканальных устройств, использованных в модели к моменту завершения моделирования: FACILITIES=1;
- количество многоканальных устройств, использованных в текущей модели к моменту завершения моделирования: STORAGES=0. Имена, используемые в программе модели: operator, operator q.

Далее идёт информация о блоках текущей модели, в частности, ENTRY COUNT – количество транзактов, вошедших в блок с начала процедуры моделирования.

Затем идёт информация об одноканальном устройстве FACILITY (оператор, оформляющий заказ), откуда видим, что к оператору попало 33 заказа от клиентов (значение поля 0WNER=33), но одну заявку оператор не успел принять в обработку до окончания рабочего времени (значение поля ENTRIES=32). Полезность работы оператора составила 0, 639. При этом среднее время занятости оператора составило 9, 589 мин.

Далее информация об очереди:

- QUEUE=operator q имя объекта типа «очередь»;
- MAX=1 в очереди находилось не более одной ожидающей заявки от клиента;
- CONT=0 на момент завершения моделирования очередь была пуста;
- ENTRIES=32 общее число заявок от клиентов, прошедших через очередь в течение периода моделирования;
- ENTRIES(0)=31 число заявок от клиентов, попавших к оператору без ожидания в очереди;
- AVE.CONT=0, 001 заявок от клиентов в среднем были в очереди;
- AVE.TIME=0.021 минут в среднем заявки от клиентов провели в очереди (с учётом всех входов в очередь);
- AVE. (-0) = 0, 671 минут в среднем заявки от клиентов провели в очереди (без учета «нулевых» входов в очередь).

В конце отчёта идёт информация о будущих событиях:

- XN=33 порядковый номер заявки от клиента, ожидающей поступления для оформления заказа у оператора;
- PRI=0 все клиенты (из заявки) равноправны;
- BDT=489, 786 время назначенного события, связанного с данным транзактом;
- ASSEM=33 номер семейства транзактов;
- CURRENT=5 номер блока, в котором находится транзакт;
- NEXT=6 номер блока, в который должен войти транзакт.

Упражнение

Изменим интервалы поступления заказов и время оформления клиентов (рис. [fig:003?]).

```
; operator
GENERATE 3.14,1.7
QUEUE operator_q
SEIZE operator
DEPART operator_q
ADVANCE 6.66,1.7
RELEASE operator
TERMINATE 0
; timer
GENERATE 480
TERMINATE 1
START 1
```

Модель оформления заказов клиентов одним оператором с измененными интервалами заказов и времени оформления клиентов

После запуска симуляции получаем отчёт (рис. [fig:004?]).

						FACILITIES		
	0.0	000	4.8	30.000	9	1	0	
	NAME			7				
	OPERATOR			1000	01.000			
	OPERATOR_	Q		1000	00.000			
LABEL.		TOC	BIOCK TYPE	, p	TEV COIT	NT CURRENT C	OUNT DETDY	
LAULL			GENERATE		152		OUNI REIRI	
			QUEUE		152		0	
			SEIZE		70	0	-	
			DEPART		70	-	0	
			ADVANCE		70		0	
		6	RELEASE		69		0	
		7	TERMINATE		69		0	
		8	GENERATE		1	0	0	
		9	TERMINATE		1	0	0	
FACILITY OPERATOR							INTER RETRY 0 0	
QUEUE		MAX CO	ONT. ENTRY	ENTRY (O) AVE.C	ONT. AVE.TIM	E AVE.(-0)	RETRY
OPERATO	R_Q	82	82 152	1	39.0	96 123.46	1 124.279	0
FEC XN	PRI	BDT	ASSEN	1 CURRI	ENT NEX	T PARAMETER	VALUE	
	0	480.4	105 71	5				
71								
71 154	0	483.3	330 154 000 155					

Отчёт по модели оформления заказов в интернет-магазине с измененными интервалами заказов и времени оформления клиентов

Результаты работы модели:

- модельное время в начале моделирования: START TIME=0.0;
- абсолютное время или момент, когда счетчик завершений принял значение 0: END TIME=480.0;
- количество блоков, использованных в текущей модели, к моменту завершения моделирования: BLOCKS=9;
- количество одноканальных устройств, использованных в модели к моменту завершения моделирования: FACILITIES=1;
- количество многоканальных устройств, использованных в текущей модели к моменту завершения моделирования: STORAGES=0.

Имена, используемые в программе модели: operator, operator_q.

• количество транзактов, вошедших в блок с начала процедуры моделирования ENTRY COUNT = 152;

Затем идёт информация об одноканальном устройстве FACILITY (оператор, оформляющий заказ), откуда видим, что к оператору попало 71 заказ от клиентов (значение поля 0WNER=71), но оператор успел принять в обработку до окончания рабочего времени только 70 (значение поля ENTRIES=70). Полезность

работы оператора составила 0,991. При этом среднее время занятости оператора составило 6,796 мин.

Далее информация об очереди:

- QUEUE=operator q имя объекта типа «очередь»;
- MAX=82 в очереди находилось 82 ожидающих заявок от клиента;
- CONT=82 на момент завершения моделирования в очереди было 82 заявки;
- ENTRIES=82 общее число заявок от клиентов, прошедших через очередь в течение периода моделирования;
- ENTRIES(0) = 1 число заявок от клиентов, попавших к оператору без ожидания в очереди;
- AVE.CONT=39,096 заявок от клиентов в среднем были в очереди;
- AVE.TIME=123.461 минут в среднем заявки от клиентов провели в очереди (с учётом всех входов в очередь);
- AVE. (-0)=123,279 минут в среднем заявки от клиентов провели в очереди (без учета «нулевых» входов в очередь).

В конце отчёта идёт информация о будущих событиях.

3.2 Построение гистограммы распределения заявок в очереди

Требуется построить гистограмму распределения заявок, ожидающих обработки в очереди в примере из предыдущего упражнения. Для построения гистограммы необходимо сформировать таблицу значений заявок в очереди, записываемых в неё с определённой частотой.

Команда описания такой таблицы QTABLE имеет следующий формат: Name QTABLE A,B,C,D Здесь Name – метка, определяющая имя таблицы. Далее должны быть заданы операнды: А задается элемент данных, чьё частотное распределение будет заноситься в таблицу (может быть именем, выражением в скобках или системным числовым атрибутом (СЧА)); В задается верхний предел первого частотного интервала; С задает ширину частотного интервала — разницу между верхней и нижней границей каждого частотного класса; D задаёт число частотных интервалов.

Код программы будет следующим(рис. [fig:005?]).

```
Waittime QTABLE operator_q,0,2,15
GENERATE 3.34,1.7
TEST LE Q$operator_q,1,Fin
SAVEVALUE Custnum+,1
ASSIGN Custnum,X$Custnum
QUEUE operator_q
SEIZE operator
DEPART operator_q
ADVANCE 6.66,1.7
RELEASE operator
Fin TERMINATE 1
```

Построение гистограммы распределения заявок в очереди

Здесь Waittime — метка оператора таблицы очередей QTABLE, в данном случае название таблицы очереди заявок на заказы. Строка с оператором TEST по смыслу аналогично действиям оператора IF и означает, что если в очереди 0 или 1 заявка, то осуществляется переход к следующему оператору, в данном случае к оператору SAVEVALUE, в противном случае (в очереди более одной заявки) происходит переход к оператору с меткой Fin, то есть заявка удаляется из системы, не попадая на обслуживание. Строка с оператором SAVEVALUE с помощью операнда Custnum подсчитывает число заявок на заказ, попавших в очередь. Далее оператору ASSIGN присваивается значение СЧА оператора Custnum.

Получим отчет симуляции и проанализируем его (рис. [fig:006?], [fig:007?]).

STA	RT TIME 0.000		ME BLOCKS F 95 10	ACILITIES	STORAGES 0	
CUST FIN OPER	ATOR ATOR_Q		VALUE 10002.000 10.000 10003.000 10001.000 10000.000			
LABEL	LOC	BLOCK TYPE	ENTRY COUNT	CURRENT (COUNT RETRY	
	1	GENERATE	102	(0	
	2	TEST	102	Ċ	0	
	3	SAVEVALUE	55	Ċ	0	
	4	ASSIGN	55	Ċ	0	
	5	OUEUE	55		. 0	
	6	SEIZE	54			
	7	DEPART	53	-		
	8	ADVANCE	53	·	0	
	9	RELEASE	53	Ċ	0	
FIN	10	TERMINATE	100	(0	
FACILITY OPERATOR	ENTRIES 54	UTIL. AVE.	TIME AVAIL. 6.470 l	OWNER PENI		DELAY
QUEUE OPERATOR Q	MAX C	ONT. ENTRY ENT		IT. AVE.TIN		

Отчёт по модели оформления заказов в интернет-магазине при построении гистограммы распределения заявок в очереди

TABLE WAITTIME	MEAN 10.709	STD.DEV. 2.702	RAN	IGE	RETRY 0	FREQUENCY	CUM.%
			-	0.000		1	1.89
		0	.000 -	2.000		0	1.89
		2	.000 -	4.000		1	3.77
		4	.000 -	6.000		0	3.77
		6	.000 -	8.000		4	11.32
		8	.000 -	10.000		12	33.96
		10	.000 -	12.000		17	66.04
		12	.000 -	14.000		14	92.45
		14	.000 -	16.000		4	100.00
SAVEVALUE CUSTNUM			VALUE 55.000				
CEC XN PRI 98 0	M1 341.23	ASSEM 6 98	CURRENT 6	NEXT PARAM	METER	VALUE	
30 0	011120			CUST	IUM	54.000	
FEC XN PRI 103 0	BDT 356.55	ASSEM 3 103	CURRENT 0	NEXT PARAM	METER	VALUE	

Отчёт по модели оформления заказов в интернет-магазине при построении гистограммы распределения заявок в очереди

Результаты работы модели:

- модельное время в начале моделирования: START TIME=0.0;
- абсолютное время или момент, когда счетчик завершений принял значение 0: END TIME=353.895;
- количество блоков, использованных в текущей модели, к моменту завершения моделирования: BLOCKS=10;
- количество одноканальных устройств, использованных в модели к моменту завершения моделирования: FACILITIES=1;

• количество многоканальных устройств, использованных в текущей модели к моменту завершения моделирования: STORAGES=0.

Имена, используемые в программе модели: operator, operator q.

• количество транзактов, вошедших в блок с начала процедуры моделирования ENTRY COUNT = 102;

Затем идёт информация об одноканальном устройстве FACILITY (оператор, оформляющий заказ), откуда видим, что к оператору попало 98 заказов от клиентов (значение поля 0WNER=98), но оператор успел принять в обработку до окончания рабочего времени только 54 (значение поля ENTRIES=54). Полезность работы оператора составила 0,987. При этом среднее время занятости оператора составило 6,470 мин.

Далее информация об очереди:

- QUEUE=operator q имя объекта типа «очередь»;
- MAX=2 в очереди находилось не более двух ожидающих заявок от клиента;
- CONT=2 на момент завершения моделирования в очереди было два клиента;
- ENTRIES=55 общее число заявок от клиентов, прошедших через очередь в течение периода моделирования;
- ENTRIES(0) = 1 число заявок от клиентов, попавших к оператору без ожидания в очереди;
- AVE.CONT=1,652 заявок от клиентов в среднем были в очереди;
- AVE.TIME=10.628 минут в среднем заявки от клиентов провели в очереди (с учётом всех входов в очередь);
- AVE. (-0)=10,824 минут в среднем заявки от клиентов провели в очереди (без учета «нулевых» входов в очередь).

Также появилась таблица с информацией для гистограммы: частотность разделена на 15 частотных интервалов с шагом 2 и началом в 0, как мы и задали. Наибольшее количество заявок(17) обрабатывалось в диапазоне 10-12 минут.

В конце отчёта идёт информация о будущих событиях.

Проанализируем гистограмму (рис. [fig:008?]).

Гистограмма распределения заявок в очереди

Частотность разделена на 15 частотных интервалов с шагом 2 и началом в 0, как мы и задали. Наибольшее количество заявок (17) обрабатывалось 10-12 минут, 14 заявок – 12-14 минут, 12 заявок – 8-10 минут, в остальных диапазонах 0-4 заявок.

3.3 Модель обслуживания двух типов заказов от клиентов в интернет-магазине

Необходимо реализовать отличие в оформлении обычных заказов и заказов с дополнительным пакетом услуг. Такую систему можно промоделировать с помощью двух сегментов. Один из них моделирует оформление обычных заказов, а второй – заказов с дополнительным пакетом услуг. В каждом из сегментов пара QUEUE—DEPART должна описывать одну и ту же очередь, а пара блоков SEIZE—RELEASE должна описывать в каждом из двух сегментов одно и то же устройство и моделировать работу оператора. Код и отчет результатов моделирования следующие (рис. [fig:009?], [fig:010?]).

```
Model 3.gps
ADVANCE 10,2
RELEASE operator
TERMINATE 0
; order and service package
GENERATE 30,8
QUEUE operator q
SEIZE operator
DEPART operator q
ADVANCE 5,2
ADVANCE 10,2
RELEASE operator
TERMINATE 0
;timer
GENERATE 480
TERMINATE 1
START 1
```

Модель обслуживания двух типов заказов от клиентов в интернет-магазине

Model 3.1.1 - RE						
	суббо	та, июня 08,	2024 18:12:4	0		
ST			TIME BLOCKS			
	0.000	480	.000 17	1	0	
	NAME		VALUE			
OPE	RATOR RATOR_Q		10001.000			
LABEL			ENTRY COU			
		GENERATE	32 32	0	0	
		QUEUE SEIZE	28	4	0	
		DEPART	28	0	0	
		ADVANCE	28	1	0	
	_	RELEASE	27	0	0	
	-	TERMINATE	27	0	0	
		GENERATE	15	0	_	
		QUEUE	15	3	0	
		SEIZE	12	0	0	
		DEPART	12	0	0	
			12	0	0	
	13	ADVANCE ADVANCE	12	0	0	
		RELEASE	12	0	0	
	15	TERMINATE	12	0	0	
	16	GENERATE	1	0	0	
	17	TERMINATE	1	0	0	
ACTLITY	FNTRIFS	IITTI. AVI	E. TIME AVAIL	OWNER PEND	INTER RETRY	DFI.AY
OPERATOR			11.365 1			
UEUE	MAX C	ONT. ENTRY E	NTRY(0) AVE.C	ONT. AVE.TIM	E AVE.(-0)	RETRY
OPERATOR_Q	8	7 47	2 3.3	55 34.26	35.784	0
TEC XN PRI		ASSEM 825 42	CURRENT NEX	T PARAMETER	VALUE	

Отчёт по модели оформления заказов двух типов

Результаты работы модели:

- модельное время в начале моделирования: START TIME=0.0;
- абсолютное время или момент, когда счетчик завершений принял значение 0: END TIME=480.0;
- количество блоков, использованных в текущей модели, к моменту завершения моделирования: BLOCKS=17;
- количество одноканальных устройств, использованных в модели к моменту завершения моделирования: FACILITIES=1;
- количество многоканальных устройств, использованных в текущей модели к моменту завершения моделирования: STORAGES=0.

Имена, используемые в программе модели: operator, operator_q.

• количество транзактов, вошедших в блок первого типа заказов с начала процедуры моделирования ENTRY COUNT = 32, а второго типа(с дополнительными услугами) ENTRY COUNT = 15; обработано 12+27 = 39;

Затем идёт информация об одноканальном устройстве FACILITY (оператор, оформляющий заказ), откуда видим, что к оператору

попало 42 заказ от клиентов (значение поля 0WNER=42), но оператор успел принять в обработку до окончания рабочего времени только 40 (значение поля ENTRIES=40). Полезность работы оператора составила 0,947. При этом среднее время занятости оператора составило 11,365 мин.

Далее информация об очереди:

- QUEUE=operator q имя объекта типа «очередь»;
- MAX=8 в очереди находилось не более двух ожидающих заявок от клиента:
- CONT=7 на момент завершения моделирования в очереди было 7 клиентов;
- ENTRIES=47 общее число заявок от клиентов, прошедших через очередь в течение периода моделирования;
- `ENTRIES(0)=2 число заявок от клиентов, попавших к оператору без ожидания в очереди;
- AVE.CONT=3,355 заявок от клиентов в среднем были в очереди;
- AVE.TIME=34,261 минут в среднем заявки от клиентов провели в очереди (с учётом всех входов в очередь);
- AVE. (-0)=35,784 минут в среднем заявки от клиентов провели в очереди (без учета «нулевых» входов в очередь).

В конце отчёта идёт информация о будущих событиях.

Упражнение

Скорректируем модель так, чтобы учитывалось условие, что число заказов с дополнительным пакетом услуг составляет 30% от общего числа заказов.

Будем использовать один блок order, а разделим типы заявок с помощью переходов оператором TRANSFER. Каждый заказ обрабатывается 10 ± 2 минуты, после этого зададим оператор TRANSFER, в котором укажем, что с вероятностью 0.7 происходит обработка заявки (переход к блоку noextra RELEASE operator), а с вероятностью 0.3 дополнительно заказ обрабатывается еще 5 ± 2 минуты (переход к блоку extra ADVANCE 5,2) и только после этого является обработанным (рис. [fig:011?]).

```
; order
GENERATE 15,4
QUEUE operator_q
SEIZE operator
DEPART operator_q
ADVANCE 10,2
TRANSFER 0.3,noextra,extra
extra ADVANCE 5,2
noextra RELEASE operator
TERMINATE 0
; timer
GENERATE 480
TERMINATE 1
START 1
```

Модель обслуживания двух типов заказов с условием, что число заказов с дополнительным пакетом услуг составляет 30% от общего числа заказов

Проанализируем результаты моделирования (рис. [fig:012?]).

		TIME .000								
							_		-	
	NAM	E			VA					
	EXTRA				7 8	.000				
	NOEXTRA				8	.000				
	OPERATO				10001	.000				
	OPERATO	R_Q			10000	.000				
LABEL		T.OC	BLOCK	TYPE	ENT	RY COUN	T CURRE	NT COU	NT RETRY	
									0	
								0	0	
		3	SEIZE			33		0	0	
		4	DEPART	1		33		0	0	
						33		0	0	
		6	TRANSI	FER		33		0	Ö	
EXTRA		7 8	ADVANO	Œ		8			0	
NOEXTRA		8	RELEAS	SE.		32				
						1				
		11	TERMIN	NATE		1		0	0	
FACILITY		ENTRIES	UTIL	. AV	E. TIME	AVAIL.	OWNER	PEND I	NTER RETRY	DELAY
OPERATOR		33	0.76	56	11.14	6 1	34	0	NTER RETRY 0 0	C
OHEHE		MAY C	ONT FI	ITDV F	NTDV (A)	AVE CO	NT AVE	TIME	AVE.(-0)	וסדדסו
OPERATOR_	_Q	1	0	33	25	0.05	4	0.781	3.220	0
					eurnn					
FEC XN I	LKI	ADT	2	ADDEM	CURREN	I NEXT	PAKAM	FIEK	VALUE	
34 35	0	482.	725	25	7 0 0	1				
33	0	-10/.	120	35	0	10				

Отчёт по модели оформления заказов двух типов заказов

Результаты работы модели:

- модельное время в начале моделирования: START TIME=0.0;
- абсолютное время или момент, когда счетчик завершений принял значение 0: END TIME=480.0;
- количество блоков, использованных в текущей модели, к моменту завершения моделирования: BLOCKS=11;
- количество одноканальных устройств, использованных в модели к моменту завершения моделирования: FACILITIES=1;
- количество многоканальных устройств, использованных в текущей модели к моменту завершения моделирования: STORAGES=0.

Имена, используемые в программе модели: operator, operator q.

• количество транзактов, вошедших в блок заказов с начала процедуры моделирования ENTRY COUNT = 33, при этом из них второго типа (с дополнительными услугами) ENTRY COUNT = 8; обработано 32 заказа;

Затем идёт информация об одноканальном устройстве FACILITY (оператор, оформляющий заказ), откуда видим, что к оператору попало 34 заказа от клиентов (значение поля 0WNER=34), но оператор успел принять в обработку до окончания рабочего времени только 33 (значение поля ENTRIES=33). Полезность

работы оператора составила 0,766. При этом среднее время занятости оператора составило 11,146 мин.

Далее информация об очереди:

- QUEUE=operator q имя объекта типа «очередь»;
- MAX=1 в очереди находилось не более двух ожидающих заявок от клиента;
- CONT=0 на момент завершения моделирования в очереди было ноль клиентов;
- ENTRIES=33 общее число заявок от клиентов, прошедших через очередь в течение периода моделирования;
- ENTRIES(0) = 25 число заявок от клиентов, попавших к оператору без ожидания в очереди;
- AVE.CONT=0,054 заявок от клиентов в среднем были в очереди;
- AVE.TIME=0.781 минут в среднем заявки от клиентов провели в очереди (с учётом всех входов в очередь);
- AVE. (-0)=3,220 минут в среднем заявки от клиентов провели в очереди (без учета «нулевых» входов в очередь).

В конце отчёта идёт информация о будущих событиях.

3.4 Модель оформления заказов несколькими операторами

В интернет-магазине заказы принимают 4 оператора. Интервалы поступления заказов распределены равномерно с интервалом 5 ± 2 мин. Время оформления заказа каждым оператором также распределено равномерно на интервале 10 ± 2 мин. обработка поступивших заказов происходит в порядке очереди (FIFO). Требуется определить характеристики очереди заявок на оформление заказов при условии, что заявка может обрабатываться одним из 4-х операторов в течение восьмичасового рабочего дня

С помощью строки operator STORAGE 4 указываем, что у нас 4 оператора, затем к обычной процедуре генерации и обработки заявки добавляется, что заявку обрабатывает один оператор operator, 1, сегмент моделирования времени остается без изменений (рис. [fig:013?]).

```
operator STORAGE 4
GENERATE 5,2
QUEUE operator_q
ENTER operator,1
DEPART operator_q
ADVANCE 10,2
LEAVE operator,1
TERMINATE 0
;timer
GENERATE 480
TERMINATE 1
START 1
```

Модель оформления заказов несколькими операторами Далее получим и проанализируем отчет (рис. [fig:014?]).

				ACILITIES STO	
NAME OPERATOR OPERATOR	₹		VALUE 000.000 01.000		
LABEL	LOC BLOCK 1 GENERA 2 QUEUE 3 ENTER 4 DEPART 5 ADVANG 6 LEAVE 7 TERMIN 8 GENERA 9 TERMIN	TE E ATE TE	93 93 93 93 93	CURRENT COUNT 0 0 0 0 0 2 0 0 0 0 0 0 0 0	0 0 0 0 0
QUEUE OPERATOR_Q				T. AVE.TIME 0.000	
STORAGE OPERATOR				. AVE.C. UTIL 1.926 0.48	
FEC XN PRI 95 0 93 0		95 0	1	PARAMETER	VALUE

Отчет по модели оформления заказов несколькими операторами Результаты работы модели:

- модельное время в начале моделирования: START TIME=0.0;
- абсолютное время или момент, когда счетчик завершений принял значение 0: END TIME=480.0;
- количество блоков, использованных в текущей модели, к моменту завершения моделирования: BL0CKS=9;
- количество одноканальных устройств, использованных в модели к моменту завершения моделирования: FACILITIES=1;
- количество многоканальных устройств, использованных в текущей модели к моменту завершения моделирования: STORAGES=0.

Имена, используемые в программе модели: operator, operator_q.

• количество транзактов, вошедших в блок заказов с начала процедуры моделирования ENTRY COUNT = 93; обработан 91 заказ;

Далее информация об очереди:

- QUEUE=operator_q имя объекта типа «очередь»;
- MAX=1 в очереди находилось не более двух ожидающих заявок от клиента;
- CONT=0 на момент завершения моделирования в очереди было ноль клиентов;

- ENTRIES=93 общее число заявок от клиентов, прошедших через очередь в течение периода моделирования;
- ENTRIES(0) = 93 число заявок от клиентов, попавших к оператору без ожидания в очереди;
- AVE.CONT=0,000 заявок от клиентов в среднем были в очереди;
- AVE.TIME=0.000 минут в среднем заявки от клиентов провели в очереди (с учётом всех входов в очередь);
- AVE. (-0)=0,000 минут в среднем заявки от клиентов провели в очереди (без учета «нулевых» входов в очередь).

Затем идёт информация о многоканальном устройстве STORAGE (оператор, оформляющий заказ), откуда видим, что к операторам попало 93 заказа от клиентов, но не указано, сколько операторы успели принять в обработку. Полезность работы операторов составила 0,482. При этом среднее время занятости оператора составило 1,926 мин. Также появились значения, характерные для STORAGE: вместительность 4, максимальное число одновременно работающих операторов – 4, минимальное – 0.

В конце отчёта идёт информация о будущих событиях.

Упражнение

Изменим модель: требуется учесть в ней возможные отказы клиентов от заказа – когда при подаче заявки на заказ клиент видит в очереди более двух других заявок, он отказывается от подачи заявки, то есть отказывается от обслуживания (используем блок TEST и стандартный числовой атрибут Qj текущей длины очереди j).

Добавим строчку TEST LE Q\$operator_q,2, которая проверяет больше ли в очереди клиентов, чем два, если нет – клиент поступает на обработку, иначе уходит. Также в ранее проанализированном отчете видно, что клиентов в очереди не было больше 2, поэтому увеличим время обработки заказов до 30 ± 2 мин., чтобы проверить результаты изменений модели (рис. [fig:015?]).

```
operator STORAGE 4
GENERATE 5,2
TEST LE Q$operator_q,2
QUEUE operator_q
ENTER operator_1
DEPART operator_q
ADVANCE 30,2
LEAVE operator,1
TERMINATE 0
;timer
GENERATE 480
TERMINATE 1
START 1
```

Модель оформления заказов несколькими операторами с учетом отказов клиентов

Проанализируем полученный отчет (рис. [~ fig:016?]).

Model 4.3.1 - REP	ORT				
STAF	T TIME 0.000	END TIME 480.000			
OPER#	NAME NTOR NTOR_Q	100	VALUE 000.000 01.000		
LABEL		RATE E R R R INT		CURRENT COU 27 0 3 0 0 0 0 0	0 0 0 0 0
QUEUE OPERATOR_Q	MAX CONT. 3 3				AVE.(-0) RETRY 20.576 27
STORAGE OPERATOR					IL. RETRY DELAY 971 0 3
FEC XN PRI 96 0 62 0 63 0 64 0 65 0	491.784 491.929 495.070	96 0 62 6	1 5 7 5 7 5 7	PARAMETER	VALUE

Отчет по модели оформления заказов несколькими операторами с учетом отказов клиентов

Результаты работы модели:

- модельное время в начале моделирования: START TIME=0.0;
- абсолютное время или момент, когда счетчик завершений принял значение 0: END TIME=480.0;
- количество блоков, использованных в текущей модели, к моменту завершения моделирования: BL0CKS=9;
- количество одноканальных устройств, использованных в модели к моменту завершения моделирования: FACILITIES=1;
- количество многоканальных устройств, использованных в текущей модели к моменту завершения моделирования: STORAGES=0.

Имена, используемые в программе модели: operator, operator_q.

• количество транзактов, вошедших в блок заказов с начала процедуры моделирования ENTRY COUNT = 94; обработано 60 заказа; 27 человек отказались оставлять заявки, поскольку очередь была более 2ух заявок.

Далее информация об очереди:

• QUEUE=operator_q - имя объекта типа «очередь»;

- MAX=3 в очереди находилось не более трех ожидающих заявок от клиента(как и было указано);
- CONT=3 на момент завершения моделирования в очереди было ноль клиентов;
- ENTRIES=67 общее число заявок от клиентов, прошедших через очередь в течение периода моделирования;
- ENTRIES(0) = 4 число заявок от клиентов, попавших к оператору без ожидания в очереди;
- AVE.CONT=2,701 заявок от клиентов в среднем были в очереди;
- AVE.TIME=19,347 минут в среднем заявки от клиентов провели в очереди (с учётом всех входов в очередь);
- AVE. (-0) = 20,576 минут в среднем заявки от клиентов провели в очереди (без учета «нулевых» входов в очередь).

Затем идёт информация о многоканальном устройстве STORAGE (оператор, оформляющий заказ), откуда видим, что к операторам попало 64 заказов от клиентов. Полезность работы операторов составила 0,971. При этом среднее время занятости оператора составило 3,885 мин. Также появились значения, характерные для STORAGE: вместительность 4, максимальное число одновременно работающих операторов – 4, минимальное – 0.

В конце отчёта идёт информация о будущих событиях.

4 Выводы

В результате была реализована с помощью gpss:

- модель оформления заказов клиентов одним оператором;
- построение гистограммы распределения заявок в очереди;
- модель обслуживания двух типов заказов от клиентов в интернет-магазине;
- модель оформления заказов несколькими операторами.