PHY654

Machine learning (ML) in particle physics

Swagata Mukherjee • IIT Kanpur 23rd September 2024

October (Quiz 2 and Assignment 2)

SUN	MON	TUE	WED	THU	FRI	SAT
29	30	1	2	3	4	5
6	7	8	9	10	11	12
13	14	15	16	17	18	19
20	21	22	23	24	25	26
27	28 Quiz 2	29	30	31 holiday	Deadline for assignment 2 submission	2

Computer vision

- Study of visual data (for example: image).
 - Driven by quest to train machines so that they can "see" like human beings.
- Interdisciplinary field of science.
- Challenging, because visual data is very complex.
- Computationally intensive. Needs lot of data to train.
- Some applications in society: self-driving car, face recognition system, diagnosis based on medical imaging

Image classification: a core task in computer vision. Very difficult task for a machine to do. Very easy for human beings.

The Problem: Semantic Gap

1	[[105	112	108	111	184	99	106	99	96	103	112	119	184	97	93	87]
-	[91	98	102	106	184	79	98	103	99	105	123	136	110	105	94	85]
- 1	[76	85	98	105	128	105	87	96	95	99	115	112	106	103	99	85]
	[99	81	81	93	120	131	127	100	95	98	102	99	96	93	101	94]
	[106	91	61	64	69	91	88	85	101	107	109	98	75	84	96	95]
	[114	108	85	55	55	69	64	54	64	87	112	129	98	74	84	91]
	[133	137	147	103	65	81	88	65	52	54	74	84	102	93	85	82]
	[128	137	144	140	109	95	86	78	62	65	63	63	68	73	86	101]
	[125	133	148	137	119	121	117	94	65	79	88	65	54	64	72	98]
	[127	125	131	147	133	127	126	131	111	96	89	75	61	64	72	84]
	[115	114	109	123	150	148	131	118	113	109	100	92	74	65	72	78]
	[89	93	98	97	108	147	131	118	113	114	113	109	106	95	77	80]
	[63	77	86	81	77	79	102	123	117	115	117	125	125	130	115	87]
	[62	65	82	89	78	71	88	101	124	126	119	101	107	114	131	119]
	[63	65	75	88	89	71	62	81	120	138	135	105	81	98	110	118]
	[87	65	71	87	106	95	69	45	76	130	126	107	92	94	105	112]
	[118	97	82	86	117	123	116	66	41	51	95	93	89	95	102	107]
	[164	146	112	88	82	120	124	184	76	48	45	66	88	101	102	109]
	[157	170	157	120	93	86	114	132	112	97	69	55	70	82	99	94]
	[130	128	134	161	139	100	109	118	121	134	114	87	65	53	69	86]
	[128	112	96	117	150	144	120	115	104	107	102	93	87	81	72	79]
	[123	107	96	86	83	112	153	149	122	109	184	75	88	107	112	99]
	[122	121	102	88	82	86	94	117	145	148	153	102	58	78	92	107]
	[122	164	148	103	71	56	78	83	93	103	119	139	102	61	69	84]]
_																

What the computer sees

Challenges:

- Viewpoint / angle
- Pose / Deformation
- Illumination / light
- Obstruction
- Background clutter
- Size/Color variation

An image is just a big grid of numbers between [0, 255]:

e.g. 800 x 600 x 3 (3 channels RGB)

It is possible to train a DNN on an image (leads to too many parameters)

32x32x3 image -> stretch to 3072 x 1

Convolution Layer

Filters always extend the full depth of the input volume

5x5x3 filter

Convolve the filter with the image i.e. "slide over the image spatially, computing dot products"

Spatial structure preserved.

activation map

convolve (slide) over all spatial locations

Consider a second filter (in green)

activation maps

For example, if we had 6 5x5 filters, we'll get 6 separate activation maps:

	F		
F			

Output size: (N - F) / stride + 1

e.g. N = 7, F = 3:
stride 1 =>
$$(7 - 3)/1 + 1 = 5$$

stride 2 => $(7 - 3)/2 + 1 = 3$
stride 3 => $(7 - 3)/3 + 1 = 2.33$

Avoid such cases. Choose a different filter size.

Note:

Input image may also be non-square matrix.

0	0	0	0	0	0		
0							
0							
0							
0							

It is common to zero-pad the borders of an image.

Input volume: 32x32x3
10 5x5 filters with stride 1, pad 2

Number of parameters in this layer? each filter has 5*5*3 + 1 = 76 params (+1 for bias) => 76*10 = 760

Pooling layer

- makes the representations smaller and more manageable
- operates over each activation map independently:

MAX POOLING

Single depth slice

2 6

max pool with 2x2 filters and stride 2

6	8
3	4

A typical CNN example

In CNN, as we go deeper in the network, height and width of image-representation decreases and number of channels increases.

15

Classic CNN architectures

LeNet-5 http://vision.stanford.edu/cs598_spring07/papers/Lecun98.pdf ~60 thousand parameters

AlexNet https://proceedings.neurips.cc/paper_files/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf ~60 million parameters

VGG-16 https://arxiv.org/abs/1409.1556 ~138 million parameters

Classic CNN architectures

Available models

Model	Size (MB)	Top-1 Accuracy	Top-5 Accuracy	Parameters	Depth	Time (ms) per inference step (CPU)	Time (ms) per inference step (GPU)
Xception	88	79.0%	94.5%	22.9M	81	109.4	8.1
VGG16	528	71.3%	90.1%	138.4M	16	69.5	4.2
VGG19	549	71.3%	90.0%	143.7M	19	84.8	4.4
ResNet50	98	74.9%	92.1%	25.6M	107	58.2	4.6
ResNet50V2	98	76.0%	93.0%	25.6M	103	45.6	4.4
ResNet101	171	76.4%	92.8%	44.7M	209	89.6	5.2
ResNet101V2	171	77.2%	93.8%	44.7M	205	72.7	5.4
ResNet152	232	76.6%	93.1%	60.4M	311	127.4	6.5
ResNet152V2	232	78.0%	94.2%	60.4M	307	107.5	6.6
InceptionV3	92	77.9%	93.7%	23.9M	189	42.2	6.9
InceptionResNetV2	215	80.3%	95.3%	55.9M	449	130.2	10.0
MobileNet	16	70.4%	89.5%	4.3M	55	22.6	3.4
MobileNetV2	14	71.3%	90.1%	3.5M	105	25.9	3.8
DenseNet121	33	75.0%	92.3%	8.1M	242	77.1	5.4
DenseNet169	57	76.2%	93.2%	14.3M	338	96.4	6.3
DenseNet201	80	77.3%	93.6%	20.2M	402	127.2	6.7
NASNetMobile	23	74.4%	91.9%	5.3M	389	27.0	6.7
NASNetLarge	343	82.5%	96.0%	88.9M	533	344.5	20.0
EfficientNetB0	29	77.1%	93.3%	5.3M	132	46.0	4.9

https://keras.io/api/applications/

Keras Applications are deep learning models that are made available alongside pre-trained weights.

1 x 1 convolution (network in network)

It is useful to shrink the number of channels (or depth) when necessary.

1 x 1 convolution (network in network)

It is useful to shrink the number of channels (or depth) when necessary.

This concept is used in inception network → example GoogLeNet

Fun fact: Where does the name inception come from?

The paper actually cites this meme.

http://knowyourmeme.com/memes/we-need-to-go-deeper

More on parameters of CNN

Pooling layers have no parameters.

Conv layers have relatively few parameters. Most parameters are in the fully connected layers.

Activation size goes down gradually as we go deeper in the network. If this drops very quickly, that is generally not good for performance.

ImageNet Large Scale Visual Recognition Challenge (Competition)

Example dataset: CIFAR 10

10 classes50,000 training images10,000 testing images

Widely used dataset in the world of computer vision.

Data augmentation

More data helps to solve overfitting issue

CNN might need GPUs

GPUs not guaranteed in colab.

CNN: application in astrophysics

Galaxy classification

[Dieleman et al. 2014]

From left to right: <u>public domain by NASA</u>, usage <u>permitted</u> by ESA/Hubble, <u>public domain by NASA</u>, and <u>public domain</u>.