

THE ANNUAL DEATH RATE AMONG PEOPLE WHO KNOW THAT STATISTIC IS ONE IN SIX.

Probability and Statistics

Marco Loog

Outline

- Probability
- Statistics
- Hypothesis testing

Note: see Appendix C of TSK, first edition

Probabilistic Reasoning

Concepts

- Random experiment
 - Rolling a die, flipping a coin, monitoring network traffic
- Sample space, all possible (single) outcomes : Ω
 - $\Omega = \{1,2,3,4,5,6\}$ for rolling a die
 - Ω = {heads,tails} for flipping a coin
 - $\Omega = [0, +\infty)$ for number of collisions per hour
- Event E is a subset of these outcomes : $E \subseteq \Omega$
 - $E = \{2,4,6\}$ observing an even number

Probability

- A probability is a real-valued function define on the sample space Ω
 - Probabilities are between 0 and 1:

$$E \subseteq \Omega : 0 \le P(E) \le 1$$

$$P(\Omega) = 1$$

- Probabilities over disjoint events add:

If
$$E_1 \cap E_2 = \emptyset$$
 then $P(E_1 \cup E_2) = P(E_1) + P(E_2)$

Random Variable

- Quantity of interest related to a random experiment
 - *X* equals number of heads when flipping a coin 30 times
 - X is time required to get back home
- Probability distribution [a.k.a. probability mass function]
 for a discrete random variable X

:

$$P(X = v) = P(E = \{e \mid e \in \Omega, X(e) = v\})$$

Probability Distribution [Example]

- A fair die is rolled 4 times
- *X* is number of times the outcome is 3 or higher
- Possible outcomes: 6⁴=1296
- Possible values for X are 0, 1, 2, 3, 4

X	0	1	2	3	4
P(X)					77 .
					14

Probability Density Function

$$P(a < x < b) = \int_{a}^{b} f(x) dx$$

- f(x) is called a probability density function
- Questions:
 - Probability that *X* takes a single, particular value equals?
 - Can f(x) be negative?
 - Can f(x) be larger than 1?

Gaussian Distribution

- Applicable in many fields due to central limit theorem
 - "Sum of many RVs is Gaussian"
 - Error / noise model

Location parameter
 [mean] μ and spread
 [standard deviation] σ

$$f(x; \mu, \sigma) = \frac{1}{\sqrt{2\pi\sigma}} \exp \left[-\frac{(x-\mu)^2}{2\sigma^2} \right]$$

Binomial Distribution

- Number of successes in a number of independent yes/no trials
 - Tossing a coin many times
 - # sixes in a game of dice

 Number of trials n and probability of success p

$$P(X=k;n,p) = \binom{n}{k} p^k (1-p)^{n-k}$$

Poisson Distribution

- Probability of number of events occurring in a fixed period of time/space
 - # people entering a building per hour
 - # hedgehogs killed per km of road
 - # mutations per 100.000 base pairs
 - # students dozing of per minute

Rate parameter λ

$$P(X = k; \lambda) = \frac{\lambda^k e^{-\lambda}}{k!}$$

Exponential Distribution

- Probability density of times between events, e.g. :
 - Time it takes before the next person enters the building
 - Time between hits on a website

Rate parameter λ

$$f(x;\lambda) = \lambda e^{-\lambda x}$$

Gamma Distribution

- "Gaussian" for only positive values
 - Distribution of incomes
 - Lifetime of light bulbs

Scale parameter θ
 and shape parameter k

$$f(x;\theta,k) = \frac{x^{k-1} e^{-x/\theta}}{\theta^k \Gamma(k)}$$

Chi-square Distribution

- Often used in statistical significance tests
- Special case of Gamma distribution [with $\theta \rightarrow 2$, $k \rightarrow k/2$]

Degrees of freedom k:

 [distribution of sum of the squares of k normally distributed random variables]

$$f(x;k) = \frac{x^{(k/2)-1} e^{-x/2}}{2^{k/2} \Gamma(k/2)}$$

Tails Matter...

- Cauchy distribution
 - Looks like a "fat tailed" Gaussian...
 - ... but has no mean and no variance[!]
 - Very insensitive to outliers

Location parameter μ and scale parameter γ

$$f(x; \mu, \gamma) = \frac{1}{\pi \gamma \left[1 + \left(\frac{x - \mu}{\gamma}\right)^{2}\right]}$$

Stuff with Multiple Variables

And some expectations...

Multiple Random Variables

- If X and Y are two RVs, then P(X, Y) is their joint probability distribution
- If the random variables are independent, we have

$$P(X,Y) = P(X)P(Y)$$

- Example: Throwing a fair die
 - X: outcome of die is 3 or higher;
 - Y: even outcome

-
$$P(X) = P({3,4,5,6}) = 2/3$$
,

-
$$P(Y) = P({2,4,6}) = 1/2$$
,

-
$$P(X,Y) = P({4,6}) = 1/3 = P(X) P(Y)$$
, so yes, independent

Conditional Probability

Definition :

$$P(Y \mid X) = \frac{P(X,Y)}{P(X)}$$

Probability of "Y given X"

- Example : throwing a fair die
 - X: outcome of die is 3 or higher
 - Y: even outcome
 - \Rightarrow What is P(Y|X)?
 - Direct: $P(Y|X) = P(\{4,6\} \mid \{3,4,5,6\}) = \frac{1}{2}$
 - Formula : $P(Y|X) = (P(X,Y) = \frac{1}{3}) / (P(X) = \frac{2}{3}) = \frac{1}{2}$

Bayes' Theorem

• From
$$P(Y \mid X) = \frac{P(X,Y)}{P(X)}$$

and
$$P(X \mid Y) = \frac{P(X,Y)}{P(Y)}$$

we have
$$P(X \mid Y) = \frac{P(Y \mid X)P(X)}{P(Y)}$$

Using Bayes' rule, we can invert the probability
 of effect given cause to the probability
 of cause given effect: probabilistic reasoning

Expected Value [Discrete]

The expected value of a function g of a discrete random variable X:

$$E[g(X)] = \sum_{k} g(k)P(X = k)$$

- Example:
 - If you throw outcome k, you receive k^2 euros
 - What is your expected pay-off for a fair die?

$$E[k^2] = \sum_{k=1}^{6} k^2 \frac{1}{6} = \frac{1+4+9+16+25+36}{6} = \frac{91}{6}$$

Expected Value [Continuous]

The expected value of a function g of a continuous random variable X:

$$E[g(X)] = \int g(x)f(x) dx$$

- Example:
 - X homogeneously [i.e. uniform] distributed between 0 and 1
 - What is $E[x^2]$?

$$E[x^{2}] = \int_{0}^{1} x^{2} 1 dx = \frac{1}{3} x^{3} \Big|_{0}^{1} = \frac{1}{3}$$

Common Expected Values

Mean value :

$$\mu_X = E[X] = \sum_k k \ P(X = k) \text{ or } \mu_X = \int x \ f(x) \ dx$$

Variance :

$$\sigma_X^2 = Var[X] = E[(X - \mu_X)^2] = E[X^2] - \mu_X^2$$

Covariance :

$$Cov[X,Y] = E[(X - \mu_X)(Y - \mu_Y)] = E[XY] - \mu_X \mu_Y$$

"If this works, it'll change everything. We could open a casino."

Statistics

- "Inverse" probability theory
- Probability: given the rules of probability theory, compute probabilities and expected values of interest given a particular probability model
- Statistics: given a finite set of data [and assuming some underlying probability model], estimate the parameters of the model

Point estimation

- Given data, what is our best estimate for μ_X and σ_X^2 ?
- Obvious[?] choices :
 - Sample mean

$$\overline{x} = \frac{1}{N} \sum_{i=1}^{N} X_i$$

$$s_X^2 = \frac{1}{N-1} \sum_{i=1}^{N} (X_i - \overline{x})^2$$

Unbiased Estimator

- Thought experiment: repeat the previous many times, i.e.
 - Generate N samples X_i from some probability density with mean μ_X and variance σ_X^2
 - Compute the resulting sample mean and sample variance
 - Check whether, on average, the answer is correct

Easy to check for the sample mean :

$$E[\overline{X}] = E\left[\frac{1}{N}\sum_{i=1}^{N}X_{i}\right] = \frac{1}{N}\sum_{i=1}^{N}E[X_{i}] = \frac{1}{N}\sum_{i=1}^{N}\mu_{X} = \mu_{X}$$

Sample Variance

$$E[S_X^2] = E\left[\frac{1}{N-1}\sum_{i=1}^N (X_i - \overline{X})^2\right] = \frac{1}{N-1}E\left[\sum_{i=1}^N (X_i - \frac{1}{N}\sum_{j=1}^N X_j)^2\right]$$

$$= \frac{1}{N-1} E \left[\sum_{i=1}^{N} \left(X_i^2 - \frac{2}{N} \sum_{j=1}^{N} X_i X_j + \left\{ \frac{1}{N} \sum_{j=1}^{N} X_j \right\}^2 \right) \right]$$

$$= \frac{1}{N-1} E \left[\sum_{i=1}^{N} X_i^2 - \frac{2}{N} \sum_{i,j=1}^{N} X_i X_j + \frac{1}{N} \left\{ \sum_{j=1}^{N} X_j \right\}^2 \right]$$

this is where it happens...

$$= \frac{1}{N-1} E \left[\sum_{i=1}^{N} X_i^2 - \frac{1}{N} \sum_{i,j=1}^{N} X_i X_j \right] = \frac{1}{N-1} E \left[\sum_{i=1}^{N} X_i^2 - \frac{1}{N} \sum_{i=1}^{N} X_i^2 - \frac{1}{N} \sum_{i,j=1;j\neq i}^{N} X_i X_j \right]$$

Sample Variance

From previous slide :

$$E[S_X^2] = \frac{1}{N-1} E\left[\sum_{i=1}^N X_i^2 - \frac{1}{N} \sum_{i=1}^N X_i^2 - \frac{1}{N} \sum_{i,j=1; j \neq i}^N X_i X_j\right]$$

From definitions and independent samples :

$$E[X_i^2] = \mu_X^2 + \sigma_X^2; \quad E[X_i X_j] = \mu_X^2 \text{ if } j \neq i$$

And thus :

$$E[S_X^2] = \frac{1}{N-1} \left[N(\mu_X^2 + \sigma_X^2) - \frac{1}{N} N(\mu_X^2 + \sigma_X^2) + \frac{1}{N} N(N-1) \mu_X^2 \right] =$$

$$= \frac{1}{N-1} \left[(N-1)(\mu_X^2 + \sigma_X^2) - (N-1) \mu_X^2 \right] = \sigma_X^2$$

 $\sigma_X^2 = E[X^2] - \mu_X^2$ $Cov[X,Y] = E[XY] - \mu_X \mu$

Standard Error of the Mean

Using similar calculations, it can be shown that

$$E\left[\left(\overline{X} - \mu_X\right)^2\right] = \frac{1}{N}\sigma_X^2$$

• Substitute the estimate s_X for the [unknown] σ_X

• $s_{\scriptscriptstyle X}/\sqrt{N}$ is called the *standard error of the mean*

Central Limit Theorem

- Consider the sample mean \bar{X} of N samples from some distribution with **mean** μ_X and **variance** σ_X^2
- For large N, the distribution of the sample mean \bar{X} approaches a **Gaussian** with mean μ_X and variance σ_X^2/N
- This is independent of the underlying distribution of the samples!

Histogram of ProportionOfHeads

Confidence Intervals

- Would like to say a bit more than just our best [point] guess
- Next best : mention the standard error
- Even better : give a confidence interval

$$P(\theta_1 < \theta < \theta_2) = 1 - \alpha$$

• (θ_1, θ_2) is the confidence interval for θ at the **confidence level** α

Interpretations of Confidence Interval

 "Were this procedure to be repeated on multiple samples, the calculated confidence interval [which would differ for each sample] would encompass the true population parameter 90% of the time"

• "The confidence interval for α = 0.1 represents values for the population parameter for which the difference between the parameter and the observed estimate is not statistically significant at the 10% level"

Confidence Interval for Sample Mean

- Central limit theorem : the distribution of the population mean \overline{X} approaches a normal distribution with mean μ_X and variance σ_X^2/N
- That is, the variable

$$Z = \frac{\overline{X} - \mu_X}{\sigma_X / \sqrt{N}}$$

has a **standard normal** distribution [mean 0, variance 1]:

$$P(\mu_{X} - z^{*}\sigma_{X} / \sqrt{N} < \overline{X} < \mu_{X} + z^{*}\sigma_{X} / \sqrt{N})$$

$$= P(-z^{*} < Z < z^{*})$$

Confidence Interval for Sample Mean

• Rewriting : **observe** a sample mean \bar{x} , the confidence interval for μ_X reads

$$P(\bar{x} - z^* \sigma_X / \sqrt{N} < \mu_X < \bar{x} + z^* \sigma_X / \sqrt{N}) = P(-z^* < Z < z^*)$$

• We typically don't know σ_X and so substitute our **best estimate** s_X

$$P(\bar{x} - z^* s_X / \sqrt{N} < \mu_X < \bar{x} + z^* s_X / \sqrt{N})$$

= $P(-z^* < Z < z^*)$

Hypothesis Testing

Should we accept or reject a hypothesis
 [e.g., "Barbie is more clever than Ken"] given the data available?

 Typical question in data mining: is one method or model significantly better than another?

- Results are often only publishable if they show a significant improvement at significance level $\alpha = 0.05$
 - Following this "rule" blindly is not necessarily a good idea...

Confirmatory Data Analysis

- Assuming that the null hypothesis is true, what is the probability of observing a value for the test statistic that is at least as extreme as the value that was actually observed?
- Example null hypotheses :
 - Coin / die is fair
 - No difference between classification methods
 - Random variables *X* and *Y* are independent
- Example test statistics :
 - Number of heads
 - Difference between performance scores
 - Chi-squared statistic as normalized sum of squared difference between observed and expected frequencies under the null hypothesis...

Procedure

- Formulate the null ["simple"] hypothesis
- Define a significance level α
- Define a test statistic θ with a known probability distribution under the null hypothesis
- Compute θ^* as the value of θ from the **observed data**
- Compute the p-value : the probability of θ under the null hypothesis at least as extreme as the observed value θ^*
- Reject the null hypothesis if the p-value
 is smaller than the significance level α

In Terms of Confidence Intervals

- Formulate the *null* ["simple"] *hypothesi*s
- Define a significance level α
- Define a test statistic θ with a known probability distribution under the null hypothesis
- Compute the value of θ from the observed data
- Compute the **confidence interval** for θ under the null hypothesis for confidence level α
- Reject the null hypothesis if the observed value θ*
 is outside the confidence interval

Example: Fair Coin

- Null hypothesis : our coin is fair
- Choose significance level, e.g., α =0.05
- Observed data : *N* = 100 throws, 60 heads, 40 tails
- Enough evidence to reject the null hypothesis?

"Do we want to just flip a coin, or hire expensive consultants so they can flip a coin?"

Example: Fair Coin

- Test statistic: H = number of heads
- Observed: $H^* = 60$
- Probability distribution of *H* under null hypothesis: binomial distribution

at least as extreme as observed

$$P(H=k) = {N \choose k} 0.5^k (1-0.5)^{N-k} = {N \choose k} 0.5^N$$

- p-value [red area] : 0.057, i.e., not significant at 0.05 level
 - That is, no [or not enough] reason to reject the null hypothesis

One-sided Versus Two-sided Tests

- One-sided:
 - "better/larger/heavier than"
 - consider only one of the tails to compute p-value

- Two-sided:
 - "different from"
 - consider both tails to compute p-value
 - [or consider one tail, but then divide the significance level by 2]

Publication Bias and p-Value Hunting/p-Hacking

- Results that are not statistically significant are hard to publish...
- Publication bias
- P-value hunting/hacking

Think back of First Lecture...

Rough Explanation of "Data Fishing"

- Data set with
 - 50 data vectors
 - 100 variables
 - Even if data are entirely random [no dependence] there is a very high probability some variables will appear dependent just by chance.

http://io9.com/i-fooled-millions-into-thinking-chocolate-helps-weight-1707251800

f 9 8 % Log

Reproducibility of Psychological Science

Publishing Negative Results

Why we need journals with negative result

