2024 秋物理化学 I 第二次测验

课堂号: 003154.04 姓名: 学号:

H 1.008																	He 4.003
Li 6.941	Be 9.012											B 10.81	C 12.01	N 14.01	O 16.00	F 19.00	Ne 20.18
Na 22.99	Mg 24.31											Al 26.98	Si 28.09	P 30.97	S 32.07	Cl 35.45	Ar 39.95
K 39.10	Ca 40.08	Sc 44.96	Ti 47.88	V 50.94	$\operatorname*{Cr}_{52.00}$	Mn 54.94	Fe 55.85	Co 58.93	Ni 58.69	Cu 63.55	Zn 65.38	Ga 69.72	Ge 72.61	$\operatorname*{As}_{74.92}$	Se 78.96	Br 79.90	Kr 83.80
Rb 85.47	Sr 87.62	Y 88.91	$\operatorname*{Zr}_{91.22}$	Nb 92.91	Mo 95.94	Tc [98]	Ru 101.1	Rh 102.9	Pd 106.4	Ag 107.9	Cd 112.4	In 114.8	Sn 118.7	Sb 121.8	Te 127.6	I 126.9	Xe 131.3
Cs 132.9	Ba 137.3	Ln	Hf 178.5	Ta 180.9	W 183.8	Re 186.2	Os 190.2	Ir 192.2	Pt 195.1	Au 197.0	Hg 200.6	Tl 204.4	Pb 207.2	Bi 209.0	Po [210]	At [210]	Rn [222]
Fr [223]	Ra [226]	An	Rf [267]	Db [268]	Sg [269]	Bh [274]	Hs [277]	Mt [278]	Ds [281]	Rg [282]	Cn [285]	Nh [284]	Fl [289]	Mc [288]	Lv [292]	Ts [294]	Og [294]
		La 138.9	Ce 140.1	Pr 140.9	Nd 144.2	Pm [145]	Sm 150.4	Eu 152.0	Gd 157.3	Tb 158.9	Dy 162.5	Ho 164.9	Er 167.3	Tm 168.9	Yb 173.0	Lu 175.0	
		Ac [227]	Th [232]	Pa [231]	U [238]	Np [237]	Pu [239]	Am [243]	Cm [247]	Bk [247]	Cf [251]	Es [252]	Fm [257]	Md [258]	No [259]	Lr [262]	

选择题 40'(+12') 请将选择题的答案按照相应的题号填入下表.

其中 $1 \sim 10$ 题为单项选择, 每题 4'.

11,12 题是附加题,为不定项选择,每题 6'. 试卷总分不超过 100'.

No.	1	2	3	4	5	6	7	8	9	10	11	12
Ans												

- 1. 以下关于热机的论述中错误的是
 - A. 在工作于两给定温度之间的所有热机中, Carnot 热机的效率是最高的.
 - B. 工作于两给定温度之间的不同可逆热机可以具有不同的效率.
 - C. Carnot 热机的理想效率一定小于 1.
 - D. 制冷机的效率 (即冷冻系数) 可能大于 1.
- 2. 理想气体经历温度 T 下的等温膨胀, 吸热 Q, 对外所做功是到达相同终态的最大功的 25%, 则理想 气体的熵变 ΔS 为
 - A. $\frac{4Q}{T}$
 - B. $\frac{Q}{4T}$
 - C. $\frac{Q}{T}$
 - D. 0

- 3. 理想气体真空膨胀满足
 - A. $\Delta S = 0, \Delta G = 0$
 - B. $\Delta S = 0, \Delta G < 0$
 - C. $\Delta S > 0, \Delta G = 0$
 - D. $\Delta S > 0, \Delta G < 0$
- 4. 理想气体的等温不可逆压缩过程满足
 - A. $\Delta G = \Delta A$
 - B. $\Delta G < \Delta A$
 - C. $\Delta G > \Delta A$
 - D. 无法确定
- 5. Van der Waals 气体分别经过绝热真空膨胀与节流膨胀, 其温度变化分别为
 - A. 下降; 无法确定
 - B. 不变; 不变
 - C. 上升; 下降
 - D. 无法确定; 上升
- 6. 已知化学反应 $2\operatorname{CO}(g) + \operatorname{O}_2(g) \longrightarrow 2\operatorname{CO}_2(g)$ 在 298 K 下的 $\Delta_{\mathbf{r}}G_{\mathbf{m}}^{\bullet} = -514.2 \text{ kJ} \cdot \text{mol}^{-1}$, 则 $\Delta_{\mathbf{r}}A_{\mathbf{m}}^{\bullet}$
 - A. = $-514.2 \text{ kJ} \cdot \text{mol}^{-1}$
 - B. $< -514.2 \text{ kJ} \cdot \text{mol}^{-1}$
 - C. $> -514.2 \text{ kJ} \cdot \text{mol}^{-1}$
 - D. 无法确定
- 7. 以下对于非体积功 $dW_{\rm f}=0$ 的过程中, 不正确的热力学判据是
 - A. $(dH)_{S,p} \leq 0$
 - B. $(dU)_{S,V} \leq 0$
 - C. $(dV)_{A,T} \geqslant 0$
 - D. $(dS)_{H,p} \ge 0$
- 8. 取 298 K 下的理想气体 He, Ne 各 1 L, 保持气体温度为 298 K 的条件下混合为 1 L 的混合气体, 则
 - A. $\Delta H = 0, \Delta S = 0$
 - B. $\Delta H = 0, \Delta S > 0$
 - C. $\Delta H > 0, \Delta S = 0$
 - D. $\Delta H > 0, \Delta S > 0$
- 9. 以下关于第三定律的说法中, 错误的是
 - A. 对于 $T \to 0$ 的平衡系统, 其内部的反应不改变系统的熵.
 - B. 所有处于内部平衡的系统在绝对零度的熵值相同, 可以人为规定标准值.
 - C. 随着 $T \to 0$, 没有气体保持为理想气体.
 - D. 热力学温度不可能达到绝对零度以下.
- 10. 不考虑组分物质的量变化, 以下表达式错误的是

A.
$$\left(\frac{\partial (G/p)}{\partial T}\right)_p = -\frac{S}{p}$$

B.
$$\lim_{T\to 0} C_p = C_V = 0$$

C.
$$p = T \left(\frac{\partial p}{\partial T} \right)_V - \left(\frac{\partial U}{\partial V} \right)_T$$

D.
$$\left(\frac{\partial C_p}{\partial p}\right)_T = T \left(\frac{\partial^2 V}{\partial T^2}\right)_p$$

- 11. (附加) 现有物质的量 n 的某种气体, 限制于体积 V 中并具有温度 T, 其通过不同过程膨胀至末态体积 αV , $\alpha > 1$, 则以下说法正确的是
 - A. 若气体为理想气体, 其经过自由膨胀至真空, 则 $\Delta S = nR \ln \alpha$, 温度不变.
 - B. 若气体为理想气体, 其经过等温可逆膨胀, 则 $\Delta S = 0$.
 - C. 若气体为 van der Waals 气体 (恒容热容与理想气体相同), 其经过自由膨胀至真空, 则温度变化 量正比于 $(\alpha-1)/\alpha$.
 - D. 若经过等温可逆膨胀,则同样过程下, van der Waals 气体的熵变大于理想气体的熵变.
- 12. (附加) 对于一定量的理想气体, 以下表达式的符号为正的是

A.
$$\left(\frac{\partial p}{\partial S}\right)_H \left(\frac{\partial G}{\partial p}\right)_T$$

B.
$$\left(\frac{\partial p}{\partial S}\right)_T \left(\frac{\partial S}{\partial V}\right)_G \left(\frac{\partial T}{\partial G}\right)_S \left(\frac{\partial G}{\partial T}\right)_V \left(\frac{\partial V}{\partial U}\right)_S$$

C.
$$\left(\frac{\partial H}{\partial S}\right)_V - T - S\left(\frac{\partial T}{\partial S}\right)_V$$

D.
$$\left(\frac{\partial A}{\partial p}\right)_T - \left(\frac{\partial U}{\partial p}\right)_T$$

解答题 60′

13. 对于 368.5 K, p° 时, 硫的同素异形体之间的可逆相变反应:

$$S(斜方) \longrightarrow S(单斜), \quad \Delta_r H_m^{\circ} = 402 \text{ J} \cdot \text{mol}^{-1}$$

其反应的热容差在 $T \in [298, 369]$ K 区间满足

$$\Delta_{\rm r} C_{p,{\rm m}}^{\circ} = 0.356 + 2.76 \times 10^{-3} \frac{T}{\rm K} \ {\rm J \cdot mol^{-1} \cdot K^{-1}},$$

比较在 298.15 K, p° 时, S(斜方) 与 S(单斜) 的稳定性.

- 14. 现有 1 mol 理想气体 $O_2(g)$, $C_{V,m}=\frac{5}{2}R$, 始态 T=298.15 K, $p=10^5$ Pa. 已知 298.15 K 下时, $S_{\rm m}^{\circ}[O_2(g)]=205.14$ J·mol $^{-1}$ ·K $^{-1}$.
- (1) 若以绝热可逆的方式压缩至 10^6 Pa, 求该过程的 $Q, W, \Delta U, \Delta H, \Delta A, \Delta G, \Delta S, \Delta S_{环境}$.
- (2) 若以 pT=常数 的准静态过程膨胀 50000 Pa, 求该过程的 $\Delta S, \Delta A$.

- 13. 广义极化率意为系统某一态函数在施加某一广义力时的相对变化, 如等压膨胀率 $\beta_p = \frac{1}{V} \left(\frac{\partial V}{\partial T} \right)_p$, 等温压缩率 $\kappa_T = -\frac{1}{V} \left(\frac{\partial V}{\partial p} \right)_T$.
- (1) 证明 $C_p C_V = \frac{VT\beta_p^2}{\kappa_T}$.
- (2) 证明 $\left(\frac{\partial U}{\partial V}\right)_T = \frac{C_p C_V}{V\beta_p} p.$
- (3) 计算 $\lim_{T\to 0} \beta_p$.