```
In [68]: import pandas as pd
import warnings
warnings.filterwarnings("ignore")
```

In [69]: data=pd.read_csv("/home/placenent/Downloads/Titanic Dataset.csv")

In [70]: data.describe()

Out[70]:

	Passengerld	Survived	Pclass	Age	SibSp	Parch	Fare
count	891.000000	891.000000	891.000000	714.000000	891.000000	891.000000	891.000000
mean	446.000000	0.383838	2.308642	29.699118	0.523008	0.381594	32.204208
std	257.353842	0.486592	0.836071	14.526497	1.102743	0.806057	49.693429
min	1.000000	0.000000	1.000000	0.420000	0.000000	0.000000	0.000000
25%	223.500000	0.000000	2.000000	20.125000	0.000000	0.000000	7.910400
50%	446.000000	0.000000	3.000000	28.000000	0.000000	0.000000	14.454200
75%	668.500000	1.000000	3.000000	38.000000	1.000000	0.000000	31.000000
max	891.000000	1.000000	3.000000	80.000000	8.000000	6.000000	512.329200

In [71]: data.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 891 entries, 0 to 890
Data columns (total 12 columns):

#	Column	Non-Null Count	Dtype
0	PassengerId	891 non-null	int64
1	Survived	891 non-null	int64
2	Pclass	891 non-null	int64
3	Name	891 non-null	object
4	Sex	891 non-null	object
5	Age	714 non-null	float64
6	SibSp	891 non-null	int64
7	Parch	891 non-null	int64
8	Ticket	891 non-null	object
9	Fare	891 non-null	float64
10	Cabin	204 non-null	object
11	Embarked	889 non-null	object
d+vn	as: float64/2) in $+64(5)$ obj	act (5)

dtypes: float64(2), int64(5), object(5)

memory usage: 83.7+ KB

In [72]: data.head()

Out[72]:

:		Passengerld	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Cabin	Embarked
-	0	1	0	3	Braund, Mr. Owen Harris	male	22.0	1	0	A/5 21171	7.2500	NaN	S
	1	2	1	1	Cumings, Mrs. John Bradley (Florence Briggs Th	female	38.0	1	0	PC 17599	71.2833	C85	С
	2	3	1	3	Heikkinen, Miss. Laina	female	26.0	0	0	STON/O2. 3101282	7.9250	NaN	S
	3	4	1	1	Futrelle, Mrs. Jacques Heath (Lily May Peel)	female	35.0	1	0	113803	53.1000	C123	S
	4	5	0	3	Allen, Mr. William Henry	male	35.0	0	0	373450	8.0500	NaN	S

```
In [73]: data.isna().sum()
Out[73]: PassengerId
                           0
         Survived
                            0
         Pclass
         Name
                            0
         Sex
                            0
                         177
         Age
         SibSp
                            0
         Parch
                            0
         Ticket
                            0
         Fare
                            0
         Cabin
                         687
         Embarked
                           2
         dtype: int64
In [74]: data1=data.drop(['PassengerId','Name','Ticket','Cabin','SibSp','Parch'],axis=1)
         data1
Out[74]:
              Survived Pclass
                                          Fare Embarked
                              Sex Age
```

	Surviveu	rciass	Jex	Age	raic	Lilibaikeu
0	0	3	male	22.0	7.2500	S
1	1	1	female	38.0	71.2833	С
2	1	3	female	26.0	7.9250	S
3	1	1	female	35.0	53.1000	S
4	0	3	male	35.0	8.0500	S
886	0	2	male	27.0	13.0000	S
887	1	1	female	19.0	30.0000	S
888	0	3	female	NaN	23.4500	S
889	1	1	male	26.0	30.0000	С
890	0	3	male	32.0	7.7500	Q

891 rows × 6 columns

In [75]: data2=data1.fillna(data.median()) data2

Out[75]:

	Survived	Pclass	Sex	Age	Fare	Embarked
0	0	3	male	22.0	7.2500	S
1	1	1	female	38.0	71.2833	С
2	1	3	female	26.0	7.9250	S
3	1	1	female	35.0	53.1000	S
4	0	3	male	35.0	8.0500	S
		•••				
886	0	2	male	27.0	13.0000	S
887	1	1	female	19.0	30.0000	S
888	0	3	female	28.0	23.4500	S
889	1	1	male	26.0	30.0000	С
890	0	3	male	32.0	7.7500	Q

891 rows × 6 columns

In [76]: data2.isna().sum()

Out[76]: Survived 0 **Pclass** Sex Age Fare Embarked dtype: int64

Out[77]:

	Survived	Pclass	Sex	Age	Fare	Embarked
0	0	3	male	22.0	7.2500	S
1	1	1	female	38.0	71.2833	С
2	1	3	female	26.0	7.9250	S
3	1	1	female	35.0	53.1000	S
4	0	3	male	35.0	8.0500	S
886	0	2	male	27.0	13.0000	S
887	1	1	female	19.0	30.0000	S
888	0	3	female	28.0	23.4500	S
889	1	1	male	26.0	30.0000	С
890	0	3	male	32.0	7.7500	Q

891 rows × 6 columns

```
In [78]: data2.isna().sum()
```

Out[78]: Survived

Survived 0
Pclass 0
Sex 0
Age 0
Fare 0
Embarked 0
dtype: int64

```
In [79]: data2.dtypes
Out[79]: Survived
                          int64
          Pclass
                          int64
                         object
          Sex
          Age
                       float64
                       float64
          Fare
          Embarked
                         object
          dtype: object
In [80]: data2['Sex']=data2['Sex'].map({'male':0, 'female':1})
          data2
Out[80]:
               Survived Pclass Sex Age
                                          Fare Embarked
             0
                     0
                            3
                                0 22.0
                                        7.2500
                                                      S
                                1 38.0 71.2833
             1
                     1
                                                      С
                            1
             2
                     1
                            3
                                1 26.0
                                        7.9250
                                                      S
             3
                     1
                                1 35.0 53.1000
                                                      S
                            1
                     0
                                        8.0500
                                                      S
                                0 35.0
           886
                     0
                                0 27.0 13.0000
                                                      S
                                1 19.0 30.0000
           887
                                                      S
                     1
                            1
                                                      S
           888
                     0
                            3
                                1 28.0 23.4500
           889
                     1
                            1
                                0 26.0 30.0000
                                                      С
           890
                     0
                            3
                                0 32.0
                                       7.7500
                                                     Q
          891 rows × 6 columns
In [81]: x=data2.drop('Survived',axis=1)
          y=data2['Survived']
```

In [82]: x=pd.get_dummies(x)
x

Out[82]:

	Pclass	Sex	Age	Fare	Embarked_35	Embarked_C	Embarked_Q	Embarked_S
0	3	0	22.0	7.2500	0	0	0	1
1	1	1	38.0	71.2833	0	1	0	0
2	3	1	26.0	7.9250	0	0	0	1
3	1	1	35.0	53.1000	0	0	0	1
4	3	0	35.0	8.0500	0	0	0	1
					•••			
886	2	0	27.0	13.0000	0	0	0	1
887	1	1	19.0	30.0000	0	0	0	1
888	3	1	28.0	23.4500	0	0	0	1
889	1	0	26.0	30.0000	0	1	0	0
890	3	0	32.0	7.7500	0	0	1	0

891 rows × 8 columns

```
In [83]: #divide the data into testing & training
from sklearn.model_selection import train_test_split
x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.33,random_state=42)
```

from sklearn.model selection import GridSearchCV #GridSearchCV is for parameter tuning

In [84]: #importing Random Forest Classifier from sklearn.ensemble

```
from sklearn.ensemble import RandomForestClassifier
          cls=RandomForestClassifier()
          n estimators=[25,50,75,100,125,150,175,200] #number of decision trees in the forest, default = 100
          criterion=['gini', 'entropy'] #criteria for choosing nodes default = 'gini'
          max depth=[3,5,10] #maximum number of nodes in a tree default = None (it will go till all possible nodes)
          parameters={'n estimators': n estimators, 'criterion':criterion, 'max depth':max depth} #this will undergo 8*2
          RFC cls = GridSearchCV(cls, parameters)
          RFC cls.fit(x train,y train)
Out[84]: GridSearchCV(estimator=RandomForestClassifier(),
                        param grid={'criterion': ['gini', 'entropy'],
                                     'max depth': [3, 5, 10],
                                     'n estimators': [25, 50, 75, 100, 125, 150, 175, 200]})
          In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
          On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.
In [85]: RFC cls.best_params_
Out[85]: {'criterion': 'entropy', 'max depth': 5, 'n_estimators': 200}
In [86]: | cls=RandomForestClassifier(n estimators=175,criterion='entropy',max depth=10)
In [87]: cls.fit(x train,y train)
Out[87]: RandomForestClassifier(criterion='entropy', max_depth=10, n_estimators=175)
          In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
          On GitHub, the HTML representation is unable to render, please try loading this page with nbyiewer.org.
```

```
In [88]: rfy pred=cls.predict(x test)
         rfy pred
Out[88]: array([0, 0, 0, 1, 1, 1, 1, 0, 1, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1,
                0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 0, 0, 0,
                0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1,
                0, 0, 0, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 0, 0, 1, 1, 0, 1, 1, 1, 1,
                0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0,
                1, 0, 1, 1, 0, 0, 1, 0, 1, 0, 0, 1, 1, 1, 0, 0, 1, 1, 0, 0, 1, 0,
                0, 1, 1, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 0, 0, 1,
                0, 0, 0, 1, 1, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 1, 1, 1, 1, 0, 0,
                0, 1, 1, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0,
                1, 0, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 1, 1, 1, 0,
                0, 1, 0, 0, 0, 1, 0, 1, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1,
                0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 1, 0, 1, 0,
                0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 0, 1, 0, 1, 0,
                1, 0, 1, 1, 0, 0, 1, 1, 0])
In [89]: from sklearn.metrics import confusion matrix
         confusion matrix(y test,rfy_pred)
Out[89]: array([[148, 27],
                [ 34, 86]])
In [90]: from sklearn.metrics import accuracy score
         accuracy score(y test,rfy pred)
Out[90]: 0.7932203389830509
In [ ]:
```