数理逻辑课程整理

吕铭 Lyu Ming

2016年1月27日

E	录		3.10 偏序关系与上下界 1;
1	命题逻辑	1	3.10.1 全系关系 13
_	1.1 命题逻辑的基本定义	1	3.10.2 良序关系 14
	1.2 波兰表达式	2	
	1.3 命题逻辑的等值性	2	A
	1.4 等值公式	2	
	1.5 置换规则	2	A DT \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
	1.6 命题公式与真值表	2	2 1 老河。역苗入師 有人入師 入師亦而
	1.7 联结词的完备性	2	1. 小后: 间半叩赵, 复百叩赵, 叩赵文坝
	1.8 对偶式	3	• 合式公式 (Wff, 命题): 有限次递归定义
	1.9 范式	3	解释 I: 对于命题的各命题变项指定真值
	1.10 推理形式	3	3
	1.11 推理演算	4	文字: 命题变项 P 及其否定式 ¬P
	1.12 归结法	4	互补对: P 与 ¬P
	1.13 命题逻辑的公理化 *	4	• 合 (析) 取式: 一些文字的合 (析) 取组成
2	谓词逻辑	4	的公式
	2.1 普遍有效性和判定问题	5	
	2.2 等值性	5	, 2. 逻辑联结词: 符号 优先级 符号 优先级
	2.3 范式	5	
	2.4 推理演算与归结法	6	
	2.5 一阶形式理论与 Gödel 定理	6	,
	2.6 -演算	7	,
3	集合论	8	双冬件词 (bigonditional) () 4
J	3.1 集合的运算性质	8	見哉 マ Φ
	3.2 集合的关系性质	9	与非 ↑
	3.3 有限集合的基数	9	
	3.4 集合公理系统	10	
	3.5 关系的定义	10	3. 里言式 (Tautology), 7/
	3.6 关系的性质	11	言八)
	3.7 关系的闭包	11	
	3.8 等价关系和划分		,
	3.9 相容关系和覆盖		

1.2 波兰表达式

- 波兰表达式: 所有符号使用前置式
- 逆波兰表达式: 所有符号使用后置式

1.3 命题逻辑的等值性

- 1. 等值: 若在其中的任一解释下, 公式 A 和 B 的真值都相同. 记作 A = B 或 $A \Leftrightarrow B$
 - 充要条件: $A \leftrightarrow B$ 是重言式
- 2. 逆命题, 否命题, 逆否命题
 - 一个命题与它的逆否命题等值
 - 一个命题的逆命题与它的否命题等值

1.4 等值公式

- 1. 基本等值公式 (命题定律):
 - 双重否定率: $\neg \neg P = P$
 - 结合律, 交换律: ∨, ∧, ↔
 - 分配率: ∨ 对 ∧; ∧ 对 ∨, → 对 →
 - 等幂律 (恒等率) $P \lor P = P \land P = P$ $P \to P = P \leftrightarrow P = T$
 - 吸收率 $P \lor (P \land Q) = P$ $P \land (P \lor Q) = P$

• 摩根率

- $\neg (P \lor Q) = \neg P \land \neg Q$ $\neg (P \land Q) = \neg P \lor \neg Q$ $\neg (P \to Q) = P \land \neg Q$ $\neg (P \leftrightarrow Q) = P \leftrightarrow Q = P \leftrightarrow \neg Q = (\neg P \land Q) \lor (P \land \neg Q)$
- 同一律 $P\vee F=P\wedge T=T\to P=T\leftrightarrow P=P$ $P\to F=F\leftrightarrow P=\neg P$
- 零率 $P \lor T = T; \quad P \land F = F$ $P \to T = T; \quad F \leftrightarrow P = T$

- 补余率 $P \vee \neg P = T; \quad P \wedge \neg P = F$ $P \rightarrow \neg P = \neg P; \quad \neg P \rightarrow P = P; \quad P \leftrightarrow \neg P = F$
- 2. 其他常用公式 $P \to Q = \neg P \lor Q$ $P \leftrightarrow Q = (P \to Q) \land (Q \to P)$ $P \leftrightarrow Q = (P \land Q) \lor (\neg P \land \neg Q)$ $P \leftrightarrow Q = (\neg P \lor Q) \land (P \lor \neg Q)$ $P \to (Q \to R) = (P \land Q) \to R$ $P \to (Q \to R) = Q \to (P \to R)$ $(P \to R) \land (Q \to R) = (P \lor Q) \to R$

1.5 置换规则

- 子公式: X 是合式公式 A 的一部分, 且 X 本身也是一个合式公式
- 置换: 设 *X* 为公式 *A* 的子公式, 用与 *X* 等值 的公式 *Y* 将 *A* 中的 *X* 代替
- 置换规则: 置换前后公式等值

1.6 命题公式与真值表

如何从真值表获得逻辑表达式

- 从 T 来列写,用 ∨ 连接
 (∧) ∨ (∧) ∨ (∧)
- 从 F 来列写,用 ∧ 连接
 (•∨•)∧(•∨•)∧(•∨•)

1.7 联结词的完备性

- 1. 真值函项: 所有合式公式关于等值性的等价类
- 2. 联结词的完备集:设 C 是一个联结词的集合,如果任何 n 元 $(n \ge 1)$ 真值函项都可以由仅含 C 中的联结词构成的公式表示,则称 C 是完备的联结词集合,或说 C 是联结词的完备集
- 3. {¬, ∨, ∧}, {¬, ∧}, {¬, ∨}, {¬, →}, {↑}, {↓} 是 联结词完备集

1.8 对偶式

对于仅使用联结词 ¬, ∨, ∧ 的命题公式,

- 1. A 作替换 $(\lor, \land, T, F) \rightarrow (\land, \lor, F, T)$ 得 A^*, A 和 A^* 互为对偶式
- 2. 对于 $A=A(P_1,\cdots,P_n)$,记 $A^-=A(\neg P_1,\cdots,\neg P_n)$
- 3. $\neg (A^*) = (\neg A)^*, \neg (A^-) = (\neg A)^-$
- 4. $(A^*)^* = A, (A^-)^- = A$
- 5. $\neg A = A^{*-}$ (本质是摩根率)
- 6. $A = B \ \mathbb{M} \ A^* = B^*$
- 7. $A \rightarrow B$ 永真则 $B^* \rightarrow A^*$ 永真
- 8. $A 与 A^{-}$; $\neg A 与 A^{*}$ 同永真, 同可满足

1.9 范式

- 1. 析取范式: 形如 $A_1 \lor A_2 \lor \cdots \lor A_n$, 其中 A_i 是合取式
- 2. 合取范式: 形如 $A_1 \wedge A_2 \wedge \cdots \wedge A_n$, 其中 A_i 是析取式
- 3. 范式定理: 任何一命题公式都存在与之等值的 合取范式和析取范式
- 4. 极小项: n 个命题变项 P_i 组成 $Q_1 \wedge \cdots \wedge Q_n$ 其中 $Q_i = P_i$ 或 $\neg P_i$, 记为 m_k $(0 \le k \le 2^n 1)$
 - 每个极小项仅在一个解释下为真
 - 极小项两两不等值, 且 $m_i \wedge m_j = F$ ($i \neq j$)
 - $\bigvee_k m_k = T$
- 5. 极大项: n 个命题变项 P_i 组成 $Q_1 \lor \cdots \lor Q_n$ 其中 $Q_i = P_i$ 或 $\neg P_i$, 记为 M_k $(0 \le k \le 2^n 1)$
 - 每个极大项仅在一个解释下为假
 - 极小项两两不等值, 且 $m_i \lor m_j = T \ (i \neq j)$
 - $\bigwedge_k m_k = F$

- 6. 主析 (合) 取范式: 仅由极小 (大) 项的析 (合) 取构成的析 (合) 取范式称为主析 (合) 取范式
- 7. 主析 (合) 取范式定理: 任一含有 *n* 个命题变项的公式, 都存在唯一的与之等值的且恰仅含这 *n* 个命题变项的主析 (合) 取范式
- 8. 主范式的转换: 对于各项取极大 (小) 项全集 的补集并取非.
- 9. 空公式:
 - 永真式的主合取范式为空公式
 - 矛盾式的主析取范式为空公式

1.10 推理形式

以符号 (合式公式) 表示的推理关系. 正确的推理形式要求前提真则结论必真.

- 重言蕴含 ⇒: 前提 ⇒ 结论, 表示公式间的真值关系
- $A \Rightarrow B$ 的充要条件是 $A \rightarrow B$ 是永真式 / $A \land \neg B$ 是矛盾式
- 基本推理公式
 - 1. $P \wedge Q \Rightarrow P$
 - 2. $\neg (P \rightarrow Q) \Rightarrow P$: 1 的推论
 - 3. $\neg (P \rightarrow Q) \Rightarrow \neg Q$: 1 的推论
 - 4. $P \Rightarrow P \lor Q$
 - 5. $\neg P \Rightarrow P \rightarrow Q$ 2 的逆否
 - 6. $Q \Rightarrow P \rightarrow Q$ 3 的逆否
 - 7. $\neg P \land (P \lor Q) \Rightarrow Q$
 - 8. $P \land (P \rightarrow Q) \Rightarrow Q$: 假言推理, 分离规则, 7 的变形
 - 9. $\neg Q \land (P \rightarrow Q) \Rightarrow \neg P$ 7 的变形
 - $10. (P \to Q) \land (Q \to R) \Rightarrow P \to R$: 三段论
 - 11. $(Q \to R) \Rightarrow ((P \lor Q) \to (P \lor R))$
 - 12. $(Q \to R) \Rightarrow ((P \to Q) \to (P \to R))$
 - 13.

1.11 推理演算

应用如下规则证明推理形式

- 1. 前提引入规则: 推理过程中可随时引入前提
- 2. 结论引入规则: 中间结论可作为后续推理的前提
- 3. 代入规则: 仅限于重言式中的命题变项
- 4. 置换规则: 利用等值公式对部分公式进行置换
- 5. 分离规则: 由 $A \ \mathcal{D} \ A \to B$ 成立, 可将 $B \ \mathcal{D}$ 离出来
- 6. 条件证明规则: $A_1 \land A_2 \Rightarrow B \vdash A_1 \Rightarrow A_2 \rightarrow B$ 等价

1.12 归结法

仅有一条归结推理规则的机械推理法, 基于 $A \Rightarrow$ 成立等价于 $A \land \neg B$ 是矛盾式. 具体步骤:

- 1. A ∧ ¬B 出发
- 2. 建立子句集 S: 取合取范式 $A \wedge \neg B = \bigwedge_i C_i$, $S = \{C_i\}$
- 3. 对于 S 中的子句作归结 (消去互补对), 归结结果放入 S. 重复此步骤
- 4. 直至归结出矛盾式

其中归结式定义: $C_1 = L \lor C_1', C_2 = \neg L \lor C_2'$ 则 归结式 $R(C_1, C_2) = C_1' \lor C_2'$

1.13 命题逻辑的公理化 *

略...

- 1. 公理系统的结构
 - 初始符号: 公理系统内允许出现的全体符号的集合
 - 形成规则: 公理系统内允许出现的合法符号序列的形成方法与规则
 - 公理:精选的最基本的重言式,作为推演 其它所有重言式的依据
 - 变形规则: 公理系统所规定的推理规则

- 建立定理: 公理系统所作演算的主要内容,包括所有的重言式和对它们的证明
- 2. 具有代表性的命题逻辑的公理系统

系统名称	年代	公理总条数*
Russell	1910	5 (4)
Frege	1879	6(3)
Hilbert—Bernays	1934	15
王浩算法	1959	1**
自然演绎系统		0***

- * 括号内是彼此独立的条数:
- ** 10 条变形规则:
- *** 5 条变形规则
- 3. 完备性: 是否所有的重言式或所有成立的定理 都可由所建立的公理系统推导出来
- 4. 可靠性: 非重言式或者不成立的定理是否也可由所建立的公理系统推导出来
- 5. 语义完备性, 语义无矛盾性, 命题演算的可判 定性
- 6. 非标准逻辑: 如多值逻辑, 模态逻辑

2 谓词逻辑

- 1. 个体词: 个体词是指所研究对象中可以独立存在的具体的或抽象的客体.
 - 个体常项 a, b, c, · · ·
 - 个体变项 x, y, z, · · ·
 - 个体域/论域 D
- 2. 谓词: 用来刻划个体词的性质或多个个体词间 关系的词. 又可看作是由给定的个体域到集合 $\{T,F\}$ 上的一个映射, P,Q,R,\cdots
 - 谓词常项, 谓词变项
 - 一元谓词 P(x), 多元谓词 $P(x,y,\cdots)$
 - 命题逻辑中为一个命题是没有个体变项的零元谓词. 谓词逻辑符号中命题变项 p,q,r,\cdots
- 3. 函数:某一个体域到另一个体域的映射.谓词逻辑中的函数一般不单独使用,而是嵌入在谓词中. P(f(x),g(x))

- 4. 量词: 表示个体常项或变项之间数量关系的词
 - 全称量词 (Universal quantifier) ∀
 - 存在量词 (xistential quantifier) ∃
 - 量词的辖域: 量词所约束的范围称
 - 约東出现: (∀x) 和 (∃x) 辖域中, x 的所有出现
 - 约束变元: 所有约束出现的变元
 - 自由变元: 不是约束出现的其它变元
- 5. 一阶谓词逻辑: 在所讨论的谓词逻辑中, 限定量词仅作用于个体变项, 不允许量词作用于命题变项和谓词变项, 也不讨论谓词的谓词
- 6. 合式公式 (谓词公式): 递归定义, 相比命题逻辑特别的 A 是合式公式则, x 是自由变元, 则 $(\forall x)A$, $(\exists x)A$ 也是合式公式
- 7. 自然语句的形式化
 - 唯一性: $(\exists x)(P(x) \land (\forall y)(P(y) \rightarrow (x = y)))$
 - 多次量化: 从右至左依次量化

2.1 普遍有效性和判定问题

- 1. 普遍有效公式: 任何解释下均为真的谓词公式
- 2. 不可满足公式: 任何解释下均为假的谓词公式
- 3. 可满足公式: 至少存在一个解释使之为真的谓词公式
- 4. 普遍有效性的判定:
 - 有限域总能转化为命题逻辑. 普遍有效性依赖于个体域的元素数量.
 - 在 |D| = k 上普遍有效, 则在 $|D'| \le k$ 上普遍有效
 - 在 |D| = k 上可满足, 则在 $|D'| \ge k$ 上可满足
 - 一阶谓词逻辑不可判定: 对任一谓词公 (或不可满式而言, 没有一个能行的方法判明它是否 判定算法

是普遍有效的.1

- 5. 可判定的一阶逻辑子类包括
 - 仅含一元谓词变项的公式
 - 所有变项都被公式最前置的量词约束,且 仅含一种量词的公式
 - 个体域有穷

2.2 等值性

- 1. 等值定义: $A \leftrightarrow B$ 是普遍有效的. 记为 A = B 或 $A \leftrightarrow B$
- 2. 命题公式替换可以得到一类等值公式
- 3. 否定型等值公式 $\neg(\forall x)P(x) = (\exists x)\neg P(x)$ $\neg(\exists x)P(x) = (\forall x)\neg P(x)$
- 4. 量词对 \vee , \wedge , \rightarrow 在其中之一是不含个体变元的 命题变项 (q) 时满足分配率,如 $(\forall x)(P(x) \vee q) = (\forall x)P(x) \vee q$ $(\exists x)(P(x) \vee q) = (\exists x)P(x) \vee q$
- 5. \forall 对 \land , \exists 对 \lor 的分配率 $(\forall x)(P(x) \land Q(x)) = (\forall x)P(x) \land (\forall x)Q(x)$ $(\exists x)(P(x) \lor Q(x)) = (\exists x)P(x) \lor (\exists x)Q(x)$ 弱化的版本 $(\forall x)(P(x) \lor Q(x)) \Rightarrow (\forall x)P(x) \lor (\forall x)Q(x)$ $(\exists x)(P(x) \land Q(x)) \Rightarrow (\exists x)P(x) \land (\exists x)Q(x)$
- 6. 变元易名的分配率 $(\forall x)(\forall y)(P(x)\vee Q(y)) = (\forall x)P(x)\vee (\forall x)Q(x) \\ (\exists x)(\exists y)(P(x)\wedge Q(y)) = (\exists x)P(x)\wedge (\exists x)Q(x)$

2.3 范式

1. 前東范式, 形如:

$$A = (Q_1x_1)\cdots(Q_nx_n)M(x_1,\cdots,x_n)$$

其中 $Q_i \in \{\forall,\exists\};\ M$ 不含量词, 称为 A 的基式或母式

¹1936 年 Turing 和 Church 分别独立地证明: 一阶谓词逻辑的普遍有效性是半可判定的, 即如果公式本身是普遍有效 (或不可满足) 的, 则存在有限的判定算法, 否则不存在有限的判定算法

- 2. 前束范式存在定理: 一阶谓词逻辑的任一公式存在与之等值的前束范式 (不唯一)
- 3. Skolem 标准型, 形如:

$$A = (\exists x_1) \cdots (\exists x_i)(\forall x_{i+1}) \cdots (\forall x_n) M(x_1, \cdots, x_n)$$

- i > 1: ∃前束范式: 逻辑完备性的证明
- *i* = 0: ∀ 前東范式 (Skolem 标准型): 归 结法的定理证明

4. 存在定理:

- 一阶谓词逻辑的任一公式 A 都可转化为 目前束范式,使 A 是普遍有效的当且仅 当其目前束范式是普遍有效的
- 一阶谓词逻辑的任一公式 A 都可转化为
 ∀ 前束范式, 使 A 是不可满足的当且仅
 当其 ∀ 前束范式是不可满足的
- 5. 转换为范式的方法:

$$(\exists x)(\forall y)P(x,y) \xleftarrow{*} (\exists x)\Big((\exists y)$$
$$(P(x,y) \land \neg S(x,y)) \lor (\forall z)S(x,z)\Big)$$
$$(\exists x)P(x) \xleftarrow{**} P(a)$$
$$(\forall x)(\exists y)P(x,y) \xleftarrow{**} (\forall)P(x,f(x))$$

*: 普遍有效意义下的, 用于∃前束范式 **: 不可满足意义下的, 用于∀前束范式

2.4 推理演算与归结法

- 1. 全称量词消去和引入 $(\forall x)P(x) \Leftrightarrow P(y)$
- 2. 存在量词消去和引入 $(\exists x)P(x) \Leftrightarrow P(c)$
- 3. 归结法:
 - (a) $A \to B \Leftrightarrow A \land \neg B$
 - (b) 由 Skolem 标准型建立子句集 S
 - (c) 对 S 进行归结直到出现空子句

2.5 一阶形式理论与 Gödel 定理

- 1. 字符表:
 - 个体变元 *x*, *y*, *z*, · · ·
 - 常项变元 *a*, *b*, *c*, · · ·

- 函词符号 F₁, F₂, F₃, · · · (设定变目个数)
- 谓词符号 *P*₁, *P*₂, *P*₃, · · ·
- 特殊谓词 =
- 逻辑联结词
- 量词 ∀,∃
- 括号
- 2. 递归定义形成规则
- 3. 语句 A: 不含变元的自由出现
- 4. 语言 L: 定义了字符表, 形成规则和语句
- 5. 一阶理论 T 包含:
 - (a) 谓词演算中的所有公理
 - (b) L 中语句形成的集合 (非逻辑公理)
 - (c) 谓词演算的所有推理规则
- 6. 定理: 公理, 非逻辑公理或者他们根据 T 的对立规则得到的语句 A|-T
- 7. *L* 的数学结构 $M = \langle U, f_1, f_2, \dots, R_1, R_2, \dots \rangle$
 - U 是非空集合
 - 对应于 L 的每个函词符号 F_j , f_j 是 A 上的一个 k 元函数
 - 对应于 L 的每个谓词符号 P_j , R_j 是 A 上的一个 k 元关系
- 8. L 在结构 M 上的一个赋值 I 包括以下映射:
 - (a) L 的常项符号 C 到 $A, r: C \mapsto A$ $(r-\mathbb{Z})$ 换, $A_r = r(A)$
 - (b) L 的语句到 $\{0,1\}$ 的映射 I (真值, 对于不同符号分别定义)
- 9. 一阶理论 T 的模型: 有序对 $\langle M, I \rangle$ 满足
 - 所有非逻辑公理 A, I(A) = 1, 记为 $M \models A$ 或 $M \models T$
- 10. 理论 T 是协调的: $T \vdash A$ 及 $T \vdash \neg A$ 不同时成立
 - (a) 紧致性定理: T 是协调的 $\Leftrightarrow T$ 的任一有 穷子集是协调的

- (b) T 是协调的 ⇔ T 有一个模型 $M \models T$
- 11. Gödel 完全性定理: $T \vdash A \Leftrightarrow A$ 在 T 的所有模型中都成立
- 12. 语言 L 的基数 |L|: L 的符号集合的基数. 以下讨论 $|L| \le \aleph_0$
- 13. Lowenheim-Skolem 定理: 如果 T 有一个无穷模型,则 T 有一个基数小于等于 \aleph_0 的模型
- 14. Herbrand 域: $A \not\in L$ 的一个 \forall (无 \exists) 前東范式, Herbrand 域 $H \not\in A$ 中个体常项符号,自由变元符号和函词符号组成的项的集合. A 的母式 (去掉量词余下部分) 中的元素用 H 中任意元素组的替换称为 Herbrand 域上的特例 S
- 15. Herbrand 定理: 任一一阶公式 A 是不可满足的 $\Leftrightarrow \exists S' \subset S, |S| < \infty$ 且 S' 不可满足
- 16. 一阶形式理论 Z_1 : \mathbb{Z}^+ 的形式理论, 公理包含
 - 加法及单位元 0
 - 乘法及单位元1
 - 对于 1 的加法结合律和乘法分配律
 - $\forall x, y(x+1 = y+1 \to x = y)$
 - $\forall x(\neg(x+1=0))$
 - 数学归纳法
- 17. Gödel 不完全性定理: 若 Z_1 是协调的,则存在 Z_1 的语句 A, 在 Z_1 中 A 及 $\neg A$ 都不可能形式证明
- 18. Gödel 第二不完全性定理: Z_1 是否协调可以通过编码表达为 Z_1 的一个形式公式. 某一 Z_1 的语句 ψ 在 Z_1 中不可证明 (如果 Z_1 不协调,任何公式都在 Z_1 中可证)
- 19. 广义 Gödel 不完全性定理: 任何形式理论 T, 它的公理是归纳地给出的, 同时原始归纳函数 在 T 中可以定义, 那么若 T 是协调的, 则:
 - 存在语句 A, 在 T 中 A 及 $\neg A$ 都不可能 形式证明
 - T 的协调性在 T 中不可证明

2.6 λ -演算

λ-演算是表达"代入"和"置换"的形式系统

1. 描述

- 字母表
 - (a) x_1, x_2, \cdots 变元
 - (b) → 归约, = 等价
 - (c) λ , () 辅助工具和括号
- λ -项: (记所有 λ -项组成的集合为 Λ)
 - (a) 任意变元是项
 - (b) M, N 是项 $\Rightarrow (MN)$ 是项
 - (c) M 是项, x 是变元 $\Rightarrow (\lambda x.M)$ 是项
 - (d) 仅以上规则归纳定义的符号串是项
 - (e) M, N 是项, x 在 M 中有自由出现, 以 N 置换 M 中所有 x 的自由出现, 得到另一个项, 记为 M[x/N]
- 公式: $M, N \in \lambda$ -项 $\Rightarrow M \to N, M = N$ 是公式
- 2. 理论: 公理和规则包括
 - (a) $(\lambda x.M)N \to M[x/N]$ (β-归约)
 - (b) $M \to M$
 - (c) $M \to M' \Rightarrow M = M'$
 - (d) $M = M' \Rightarrow M' = M$
 - (e) $M \to N, N \to L \Rightarrow M \to N$
 - (f) $M = N, N = L \Rightarrow M = L$
 - (g) $M \to (\vec{\mathfrak{Q}} =) M' \Rightarrow ZM \to ZM'$
 - (h) $M \to (\vec{\mathbf{y}} =) M' \Rightarrow MZ \to M'Z$
 - (i) $M \to (\vec{\mathbf{x}} =) M' \Rightarrow \lambda x. M \to \lambda x. M'$
 - 如果一个公式可以由以上公式推出,则记为: $\lambda \vdash M \to N, \lambda \vdash M = N$
 - 如果一个 λ-项 M 不含形如 ((λx.N₁)N₂)
 的子项, 则称为 M 为范式, 记为 n.f.
 - 如果一个 λ -项 M 经过有限步 β -归约后 得到范式, δ M 有 n.f.
 - 没有 n.f. 的 λ-项称为 n.n.f.
 - $-M = \lambda x.(xx)\lambda x.(xx)$ 是 n.n.f.

3. 不动点定理:

$$(\forall F \in \Lambda)(\exists M \in \Lambda)(\lambda \vdash FM = M)$$

证明:
$$M = \omega \omega$$
, $\omega = \lambda x.F(xx)$

4. Church-Rosser 定理:

$$\lambda \vdash M = N \Rightarrow (\exists Z)(\lambda \vdash M \to Z, \lambda \vdash N \to Z)$$

5. Diamond Property 定理

$$\lambda \vdash M \to N_1, \lambda \vdash M \to N_2$$

$$\Rightarrow (\exists Z)(\lambda \vdash N_1 \to Z, \lambda \vdash N_2 \to Z)$$

以上两个定理等价,可通过逐一检验公理和规则,按照证明步骤数目归纳证明

3 集合论

1. 集合间关系的形式表示:

(a)
$$A = B \Leftrightarrow (\forall x)(x \in A \leftrightarrow x \in B)$$

(b)
$$A \neq B \Leftrightarrow (\exists x) \neg (x \in A \leftrightarrow x \in B)$$

(c)
$$A \subseteq B \Leftrightarrow (\forall x)(x \in A \to x \in B)$$

(d)
$$A \subset B \Leftrightarrow (A \subseteq B \land A \neq B)$$

2. 集合的运算

(a)
$$A \cap B = \{x | x \in A \land x \in B\}$$

(b)
$$A \cup B = \{x | x \in A \lor x \in B\}$$

(c)
$$A - B = \{x | x \in A \land x \notin B\}$$

(d)
$$-A = E - A = \{x | x \notin A\}$$

(e)
$$A \oplus B = (A - B) \cup (B - A)$$

3. 广义交和广义并

(a)
$$\bigcup A = \{x | (\exists z) (z \in A \land x \in z)\}$$

(b)
$$\bigcap A = \{x | (\forall z) (z \in A \to x \in z)\}$$

- 4. 幂集 $P(A) = \{x | x \subseteq A\}$
- 5. 有序对: $\langle x, y \rangle = \{ \{x\}, \{x, y\} \}$
- 6. 推广 n 元组:

$$\langle x_1, \cdots, x_n \rangle = \langle \langle x_1, \cdots, x_{n-1} \rangle, x_n \rangle \ (n \neq 2)$$

- 7. 笛卡尔积 $A \times B = \{\langle x, y \rangle | x \in A \land y \in B\}$
- 8. 推广 n 阶笛卡尔积 $A_1 \times \cdots \times A_n = \{\langle x_1, \cdots, x_n \rangle | x_1 \in A_1 \wedge \cdots \wedge x_n \in A_n \}$
- 9. 符号优先级依次为
 - (a) 一元运算符 $(-A, P(A), \bigcap A, \bigcup A)$
 - (b) 二元运算符 (-,∩,∪,⊕,×)
 - (c) 集合关系符 (=, ⊆, ⊂, ∈)
 - (d) 一元联结词 (¬)
 - (e) 二元联结词 $(\land, \lor, \rightarrow, \leftrightarrow)$
 - (f) 逻辑关系符 (⇔, ←)
- 10. 图示法: 文氏图; 幂集图示法; 笛卡尔积图示法

图 1: 幂集图示法

图 2: 笛卡尔积图示法

3.1 集合的运算性质

- 1. 交换律与结合律 ∩,∪
- 2. 分配率 ∩ 与 ∪ 互相
- 3. 幂等律 $A \cup A = A \cap A = A$
- 4. 吸收率 $A \cup (A \cap B) = A \cap (A \cup B) = A$

5. 摩根率

$$A - (B \cup C) = (A - B) \cap (A - C)$$
$$A - (B \cap C) = (A - B) \cup (A - C)$$

- 6. 同一律 $A \cup \emptyset = A \cap E = A$
- 7. 零律 $A \cup E = E$, $A \cap \emptyset = \emptyset$
- 8. 补余率 $A \cup -A = E$, $A \cap -A = \emptyset$
- 9. 双补律 -(-A) = A
- 10. 差集的性质

•
$$A - B = A - (A \cap B)$$

- $A B = A \cap -B$
- $A \cup (B A) = A \cup A$
- $A \cap (B-C) = (A \cap B) C$
- 11. 对称差的性质
 - $A \oplus B = B \oplus A$
 - $(A \oplus B) \oplus C = A \oplus (B \oplus C)$
 - $A \cap (B \oplus C) = (A \cap B) \oplus (A \cap C)$
 - $A \oplus \emptyset = A, A \oplus A = \emptyset$
 - $A \oplus (A \oplus B) = B$

3.2 集合的关系性质

1. 任意集合

$$A \subseteq B \Rightarrow (A \cup C) \subseteq (B \cup C)$$

$$A \subseteq B \Rightarrow (A \cap C) \subseteq (B \cap C)$$

$$(A \subseteq B) \land (C \subseteq D) \Rightarrow (A \cup C) \subseteq (B \cup D)$$

$$(A \subseteq B) \land (C \subseteq D) \Rightarrow (A \cap C) \subseteq (B \cap D) \quad \mathbf{3.3}$$

$$(A \subseteq B) \land (C \subseteq D) \Rightarrow (A - C) \subseteq (B - D) \quad \mathbf{1.5}$$

$$C \subseteq D \Rightarrow (A - D) \subseteq (A - C)$$

2. 幂集的性质

$$A \subseteq B \Leftrightarrow P(A) \subseteq P(B)$$

$$A = B \Leftrightarrow P(A) = P(B)$$

$$P(A) \in P(B) \Leftrightarrow A \in B$$

$$P(A) \cap P(B) = P(A \cap B)$$

$$P(A) \cup P(B) \subseteq P(A \cup B)$$

$$P(A - B) \subseteq (P(A) - P(B)) \cup \{\emptyset\}$$

3. 广义交和广义并

$$A \subseteq B \Rightarrow \bigcup A \subseteq \bigcup B$$

$$A \subseteq B \Rightarrow \bigcap B \subseteq \bigcap A$$

$$\bigcup (A \cup B) = (\bigcup A) \cup (\bigcup B)$$

$$\bigcup (A \cup B) = (\bigcup A) \cap (\bigcup B)$$

$$\bigcup (P(A)) = A$$

- 4. 传递集合 $(\forall x)(\forall y)((x \in y \land y \in A) \rightarrow x \in A)$ $\Leftrightarrow A \subseteq P(A) \Leftrightarrow P(A)$ 是传递集合 $\Rightarrow \bigcup A$ 是传递集合 $\Leftarrow A$ 的元素都是传递集 合 $\Rightarrow A \neq \emptyset \rightarrow \bigcap A = \emptyset$ (由正则公理导出) A 的元素都是传递集合,则 $\cap A$ 是传递集合
- 5. 笛卡尔积一般不满足交换律和结合律. $(A \times \emptyset = \emptyset \times A = \emptyset)$
- 6. $x, y \in A \Rightarrow \langle x, y \rangle \in PP(A) \equiv P(P(A))$
- 7. 笛卡尔积的性质

$$A \times (B \cup C) = (A \times B) \cup (A \times C)$$

$$A \times (B \cap C) = (A \times B) \cap (A \times C)$$

$$(B \cup C) \times A = (B \times A) \cup (C \times A)$$

$$(B \cap C) \times A = (B \times A) \cap (C \times A)$$

$$A \subseteq B \Leftrightarrow A \times C \subseteq B \times C \Leftrightarrow C \times A \subseteq C \times B$$

$$A \times B \subseteq C \times D \Leftrightarrow A \subseteq C \land B \subseteq D$$

3.3 有限集合的基数

- 1. 有限集合基数 (cardinal number, potency) 记作 |A| = n 或 $\operatorname{card}(A) = n$. $|\emptyset| = 0$
- 2. $|P(A)| = 2^{|A|}, |A \times B| = |A| \cdot |B|$
- 3. 对于集合 A, B

$$|A \cup B| = |A| + |B| - |A \cap B| \le |A| + |B|$$

 $|A \cap B| \le \min(|A|, |B|)$
 $|A - B| \ge |A| - |B|$
 $|A \oplus B| = |A| + |B| - 2|A \cap B|$

3.4 集合公理系统

任一集合的所有元素都是集合, 其他对象用集合定义. 集合论公理系统的目的:

- 判定集合的存在性
- 构造所有合法集合(合法性)

ZF (Zermelo-Frankel) 集合论公理系统: ²

- 1. 外延公理: 集合相等的条件 $(\forall x)(\forall y)(x = y \leftrightarrow (\forall z)(z \in x \leftrightarrow z \in y)$
- 2. 空集存在公理: 定义空集 $(\exists x)(\forall y)(y \notin x)$ 且由外延公理, 空集是唯一的, 记为 $y = \emptyset$
- 3. 无序对集合存在公理 *: $(\forall x)(\forall y)(\exists z)(\forall u)(u \in z \leftrightarrow (u = x \lor u = y))$
- 4. 并集合存在公理: 集合的广义并的存在性 $(\forall x)(\exists y)(\forall z)(z \in y \leftrightarrow (\exists u)(z \in u \land u \in x))$
- 5. 子集公理模式 (分离公理模式)*: $(\forall x)(\exists y)(\forall z)(z \in y \leftrightarrow (z \in x \land P(z)))$ 谓词公式 P(z) 任取 (公理模式), 交集, 差集, 广义交和笛卡儿积 ³ 的存在性
 - 不存在一切集合的集合: 若存在这样的 A, 由子集公理, 令 $A_0 = \{x | x \in A \land x \notin x\}$, 即 $x \in A \Leftrightarrow x \in A \land x \neq x$. 令 $x = A_0$ 可得矛盾. ($\bigcap \varnothing$ 不存在)
- 6. 幂集合公理: 定义幂集 y = P(x) $(\forall x)(\exists y)(\forall z)(z \in y \leftrightarrow (\forall u)(u \in z \rightarrow u \in x))$
- 7. 正则公理: (排除奇异集合) $(\forall x)(x \neq \varnothing \to (\exists y)(y \in x \land (x \cap y = \varnothing)))$ 称 y 为 x 的极小元
 - $(\forall A)(A \neq A)$
 - $(\forall A_1)(\forall A_2) \neg (A_1 \in A_2 \land A_2 \in A_1)$
 - 奇异集合 A 定义:
 存在集合序列 A_i(i ∈ N), 使得 A_i ∈ A ∧
 A_{i+1} ∈ A_i

- 满足正则公理等价于不是奇异集合
- $(\forall A)$ $A \neq \emptyset$ 是传递集合 $\rightarrow \emptyset \in A$
- 8. 无穷公理: 定义自然数集合 $x = \mathbb{N}$ ($\exists x$)($\emptyset \in x \land (\forall y)(y \in x \rightarrow (y \cup \{y\}) \in x$))
 - 这个定义下 $m < n \Leftrightarrow m \subset n$
 - 集合的三歧性: $(\forall x)(\forall y)((x \in A \land y \in A) \rightarrow (x \in y \lor x = y \lor y \in x))$. 自然数集 合 \mathbb{N} 与每个自然数 $n \in \mathbb{N}$ 都有三歧性
- 9. 替换公理模式: 子集公理模式的二元推广 $(\forall x)(\exists!y)P(x,y) \rightarrow (\forall t)(\exists s)\tilde{P}(s,t)$ 其中 $(\exists!y)P(x,y)$ 表示 $(\exists y)(P(x,y) \wedge (\forall z)(P(x,z) \rightarrow z = y))$ $\tilde{P}(s,t)$ 表示 $(\forall u)(u \in s \leftrightarrow (\exists z)(z \in t \wedge P(z,u))$
 - 根据空集定理和幂集定理, PP(∅) 是集合. 令 P(∅,x) = P({∅},y) = T 得到
 (3) 无序对集合存在
 - 令 $P(x,y) = p(x) \land (x = y)$ 即为 (5) 子 集公理模式
- 10. 选择公理:

 $(\forall x)(R(x) \to (\exists u)S(x,u))$ 其中 R(x) 表示 $(\forall y)\big((y \in x \to y \neq \varnothing) \land (\forall y)(\forall z)((y \in x \land z \in x \land y \neq z) \to (y \cap z = \varnothing))\big)$ S(x,u) 表示 $(\forall y)(y \in x \to (\exists!t)(t \in y \land t \in u).$

- 等价于: 对于任意关系存在子集为函数, 且定义域相等
- * 其中(3) 无序对集合存在与(5) 子集公理模式可由其他公理导出

3.5 关系的定义

- 1. 二元关系: 有序对的集合或者空集, 记作 R. $\langle x,y\rangle \in R$ 记作 xRy
- 2. $A \times B$ 的子集定义 A 到 B 的二元关系; 特别 的 $A \times A$ 的子集定义 A 上的二元关系

²其他还有 GB (Godel & Bernays) 公理系统等.

 $^{^{3}}x \in A \land y \in B \Rightarrow \langle x, y \rangle \in PP(A \cup B)$

- 3. n 元关系: $A_1 \times \cdots \times A_n$ 的子集
- 4. 特殊的二元关系:
 - 恒等关系 $I_A = \{\langle x, x \rangle | x \in A\}$
 - 全关系/全域关系 $E_A = \{\langle x, y \rangle | x \in A \land y \in A\}$
 - 空关系 Ø
- 5. 定义域 (dom), 值域 (ran) 和域 (fld):
 - $dom(R) = \{x | (\exists y)(\langle x, y \rangle \in R)\}$
 - $\operatorname{ran}(R) = \{y | (\exists x) (\langle x, y \rangle \in R) \}$
 - $fld(R) = dom(R) \cup ran(R) = (\bigcup \bigcup R)$
- 6. 关系的逆 R^{-1} $R^{-1} = \{\langle x, y \rangle | \langle y, x \rangle \in R\}$
- 7. 关系的合成 $S \circ R$ $S \circ R = \{ \langle x, z \rangle | (\exists y) (\langle x, y \rangle \in R \land \langle y, z \rangle \in S) \}$
 - $R_1 \circ (R_2 \cup R_3) = R_1 \circ R_2 \cup R_1 \circ R_3$
 - $R_1 \circ (R_2 \cap R_3) \subseteq R_1 \circ R_2 \cap R_1 \circ R_3$
 - $(R_1 \cup R_2) \circ R_3 = R_1 \circ R_3 \cup R_2 \circ R_3$
 - $(R_1 \cap R_2) \circ R_3 \subseteq R_1 \circ R_3 \cap R_2 \circ R_3$
- 8. 关系在集合上的限制 $R \upharpoonright A$ $R \upharpoonright A = \{\langle x,y \rangle | \langle x,y \rangle \in R \land x \in A\}$
- 9. 集合在关系下的象 R[A] $R[A] = \{y | (\exists x) (x \in A \land \langle x, y \rangle \in R\}$
 - $R[\bigcup A] = \bigcup \{R[B] | B \in A\}$
 - $R[\bigcap A] \subseteq \bigcap \{R[B] | B \in A\}$
 - $R[A] R[B] \subseteq R[A B]$
- 10. 关系矩阵 M(R): 对于 $R \subseteq X \times Y$, $M(R) = (r_{ij})_{|X|\times|Y|}$, 其中

$$r_{ij} = \begin{cases} 1, & \langle x_i, y_j \rangle \in R \\ 0, & \langle x_i, y_j \rangle \notin R \end{cases}$$

- 布尔数域上 $M(S \circ R) = M(R)M(S)$
- 11. 关系图 $G(R) = \langle V, E \rangle$ (有向图): 对于 $R \subseteq X \times Y$, $V = X \cup Y$, $E = \{e_{ij} | \langle x_i, y_i \rangle \in R\}$

3.6 关系的性质

R 在 A 上:

- 1. 自反: $(\forall x)(x \in A \to xRx)$
 - R_1, R_2 是自反的,则 $R_1^{-1}, R_1 \cap R_2, R_1 \cup R_2$ 也是自反的
- 2. 非自反: $(\forall x)(x \in A \to x \Re x)$
- 3. 对称: $(\forall x)(\forall y)((x \in A \land y \in A \land xRy) \rightarrow yRx)$
 - R_1, R_2 是对称的,则 $R_1^{-1}, R_1 \cap R_2, R_1 \cup R_2$ 也是对称的
 - R 是对称的, 则 $R^{-1} = R$
- 4. 反对称: $(\forall x)(\forall y)((x \in A \land y \in A \land xRy \land yRx) \rightarrow x = y)$
 - R_1, R_2 是反对称的,则 $R_1^{-1}, R_1 \cap R_2$ 也是反对称的
 - R 是反对称的,则 $R \cap R^{-1} = I_A$
- 5. 传递: $(\forall x)(\forall y)(\forall z)((x \in A \land y \in A \land z \in A \land xRy \land yRz) \rightarrow xRz)$
 - R_1, R_2 是传递的,则 $R_1^{-1}, R_1 \cap R_2$ 也是传递的

3.7 关系的闭包

- 1. 递归推广关系合成到 R^n
- 2. 定理:
 - 有限集合 A 上的关系 R, 存在自然数 $s \neq t$ 使 $R^s = R^t$ (鸽巢原理)
 - $p = |s-t|, B = \{R^0 = I_A, R^1, \cdots, R^{t-1}\},$ $\mathbb{M} (\forall q)(q \in \mathbb{N} \to R^q \in B)$
- 3. 闭包: 对于 $A \neq \emptyset$ 上的关系 R, 若 R' 满足
 - (a) R' 是自反的 (对称的, 传递的)
 - (b) $R \subseteq R'$
 - (c) $(\forall R'')$ R'' 是 A 上自反的 (对称的, 传递的) 关系, $R \subseteq R'' \to R' \subseteq R''$

则称 R' 为关系 R 的自反 (对称, 传递) 闭包, 记作 r(R) (s(R), t(R))

表 1: 关系的特征

	 -	非自反	<u> </u>		传递
	自反		对称	反对称	
	Reflexive	Irreflexive	Symmetric	Antisymmetric	Transitive
	(10.4.1)	(10.4.1)	(10.4.2)	(10.4.2)	(10.4.3)
定义	$x \in A \rightarrow xRx$	$x \in A \rightarrow x R x$	$xRy \rightarrow yRx$	$xRy \land x \neq y$	$xRy \wedge yRz$
要点			$\langle x, y \rangle \in R \rightarrow$	$\rightarrow y R x$	$\rightarrow x R z$
3CAN		$\langle x, x \rangle \notin R$	$\langle x, y \rangle \in R \rightarrow \langle y, x \rangle \in R$	$xRy \wedge yRx$	$\langle x, y \rangle \in R \land$
			$\langle y, x \rangle \in \mathbb{N}$	$\rightarrow x = y$	$\langle y, z \rangle \in R \rightarrow$
					$\langle x, z \rangle \in R$
关系矩 阵的特	$r_{ii} = 1$	$r_{ii} = 0$	对称矩阵	若	无直观特点
点	主对角元	主对角元	$r_{ii} = r_{ii}$	$r_{ij} = 1 \land i \neq j$	
			9).	$\rightarrow r_{ji} = 0$	断
	均为1	均为0		7 1 ji = 0	
关系图	每个结点	每个结点	若两个结点	若两个结点之	若从结点x;到x;
的特点	都有自圈	都没有自圈	之间有边,	间有边,一定	有边, x_j 到 x_k 有
			一定是一对	是一条有向边	边,则从 x_i 到 x_k
			方向相反的 边		一定有边
			KE		

		-			
性质 关系	自反性	非自反性	对称性	反对称性	传递性
恒等关系 I _A	V	×	√	V	V
全域关系 <i>E_A</i>		×	V	×	V
A上的空 关系 の	×	√	√	√	V
N上的整 除关系	$\sqrt{}$	×	×	$\sqrt{}$	√
包含关系 ⊆	√	×	×	√	√
真包含关 系 ⊂	×	1	×	√	V

表 2: 关系的运算特征						
性质 运算	自反性	非自反性	对称性	反对称性	传递性	
R^{-1}	\checkmark	\checkmark	\checkmark	$\sqrt{}$	$\sqrt{}$	
$R_1 \cap R_2$	$\sqrt{}$	√	√	$\sqrt{}$	√	
$R_1 \cup R_2$	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$	×	×	
$R_1 - R_2$	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$	×	
$R_{1^{\circ}} R_2$	$\sqrt{}$	×	×	×	×	

4. 闭包的性质

- *R* 是自反的 (对称的, 传递的) 等价于其 闭包是自身
- $R_1 \subseteq R_2 \to x(R_1) \subseteq x(R_x)$. (x = r, s, t)
- $r(R_1) \cup r(R_2) = r(R_1 \cup R_2)$
- $s(R_1) \cup s(R_2) = s(R_1 \cup R_2)$
- $t(R_1) \cup t(R_2) \subseteq t(R_1 \cup R_2)$
- R 是自反的, 则 s(R) 和 t(R) 是自反的
- R 是对称的, 则 r(R) 和 t(R) 是对称的
- R 是传递的, 则 r(R) 是传递的
- rs(R) = sr(R)
- rt(R) = tr(R)
- $st(R) \subseteq ts(R)$

5. 闭包的构造

- $r(R) = R \cup R^0$
- $s(R) = R \cup R^{-1}$
- $t(R) = R \cup R^2 \cup R^3 \cup \cdots$

特别的, 存在 $k \le n$ 使 $t(R) = R \cup \cdots \cup R^k$

6. 传递闭包构造的 Warshall 算法

Listing 1: Warshall 算法

1 for i=1 to n, j=1 to n, k=1 to n

 $2 \mid r_{jk} = r_{jk} \lor (r_{ji} \land r_{ik})$

3.8 等价关系和划分

- 1. 等价关系: 自反, 对称和传递的关系
- 2. 等价类 $[x]_R = \{y|y \in A \land xRy\}$, 或记作 $[x], \overline{x}$
- 3. 全部等价类的集合: 商集, 记作 A/R
- 4. 划分 π (不多, 非空, 不漏, 不重):
 - (a) $(\forall x)(x \in \pi \to x \subseteq A)$
 - (b) $\varnothing \notin \pi$

- (c) $\bigcup \pi = A$
- (d) $(\forall x)(\forall y)((x \in \pi \land y \in \pi \land x \neq y) \rightarrow x \cap y \varnothing)$
- 5. 等价类是一个划分
- 6. 等价关系诱导划分 π_R ; 划分诱导等价关系 R_{π} .
- 7. $\pi = \pi_R \leftrightarrow R = R_{\pi}$

3.9 相容关系和覆盖

- 1. 相容关系: 自反和对称的关系
- 2. 相容类 $C = \{x | x \in A \land (\forall y)(y \in C \rightarrow xRy)\}$
- 3. 最大相容类 C_R 不是任何相容类的真子集 $(\forall x)(x \in A C_R \to (\exists y)(y \in C_R \land x Ry))$
- 4. 非空有限集合上的任何相容类存在最大相容 类超集
- 5. 覆盖 Ω (不多, 非空, 不漏):
 - (a) $(\forall x)(x \in \Omega \to x \subseteq A)$
 - (b) $\emptyset \notin \Omega$
 - (c) $\bigcup \Omega = A$
- 6. 完全覆盖: 最大相容类的集合 $C_R(A)$. 完全覆盖是唯一的

3.10 偏序关系与上下界

- 1. 偏序关系: 自反, 反对称, 传递的关系, 记作 ≤
- 2. 拟序关系: 非自反, 传递的关系, 记作 <
 - 拟序关系是反对称的
- 3. 对于拟序关系 $R, R \cup R^0$ 是偏序关系
- 4. 对于偏序关系 R, $R R^0$ 是拟序关系
- 5. A 和 A 上关系 R 称为结构 $\langle A, R \rangle$. 偏序结构 或称偏序集
- 6. 盖住: 对于偏序集 $\langle A, \leq \rangle$, 对于 $x, y \in A$ 且 $x \leq y \land x \neq y$, 如果 $\neg(\exists z)(x \leq z \leq y)$, 则称 y 盖住 x
- 7. A 上的盖住关系 $cov A = \{\langle x, y \rangle$ 是唯一的

- 8. 哈斯 (Hasse) 图
 - (a) 每个顶点代表一个元素
 - (b) $x \le y$ 且 $x \ne y$ 则 y 在 x 的上方
 - (c) $\langle x, y \rangle \in \text{cov} A$ 则连无向边
- 9. 对于偏序关系 $\langle A, \leq \rangle$, 且 $B \subseteq A$
 - (a) $(\exists y)(y \in B \land (\forall x)(x \in B \rightarrow y \leq x))$: y 为 B 的最小元
 - (b) $(\exists y)(y \in B \land (\forall x)(x \in B \rightarrow x \leq y))$: y 为 B 的最大元
 - (c) $(\exists y)(y \in B \land (\forall x)((x \in B \land x \le y) \rightarrow x = y))$: $y \ni B$ 的极小元
 - (d) $(\exists y)(y \in B \land (\forall x)((x \in B \land y \le x) \rightarrow x = y)): y 为 B 的极大元$
 - (e) 最小(大)元不一定存在,存在必定唯一; 极小(大)元一定存在,不一定唯一
 - (f) $(\exists y)(y \in A \land (\forall x)(x \in B \rightarrow x \leq y))$: y 为 B 的上界
 - (g) 上确界 (最小上界): 上界集合的最小元
 - (h) $(\exists y)(y \in A \land (\forall x)(x \in B \rightarrow y \leq x))$: y 为 B 的下界
 - (i) 下确界 (最小下界): 下界集合的最大元
 - (j) 上下界不一定存在, 不一定唯一; 上下确界不一定存在, 存在一定唯一

3.10.1 全系关系

- 1. 可比的: $x \leq y \vee y \leq x$
- 2. 全序关系 (线序关系): 任意两个元素可比. 全序集
- 3. 对于偏序关系 $\langle A, \leq \rangle$, 且 $B \subseteq A$
 - (a) 链 B: 元素都可比. 链的长度
 - (b) 反链 B: 元素都不可比. 反链的长度
- 4. $\langle A, \leq \rangle$ 中最长链的长度 n, 则将元素分成不相 交的反链, 反链的个数至少是 n. 极大元的集合是一条反链. 据此做数学归纳可证明

3.10.2 良序关系

- 1. 良序关系: 任何非空子集都有最小元. 良序集
- 2. 良序集一定是全序集. 取二元子集可证
- 3. 有限全序集一定是良序集
- 4. 良序化: 定义良序关系
- 5. 任意集合都可以良序化 (由选择公理证明)