I confini orizzontali dell'impresa

Prof. Edoardo Mollona

Il concetto di confine orizzontale e verticale

Espansione orizzontale

Economie di scala

La produzione di un certo bene/servizio presenta economie di scala su un certo intervallo di produzione quando il costo medio diminuisce su quell'intervallo.

 $C_{ma} < C_{me}$

Economie di scala

La produzione di un certo bene/servizio presenta diseconomie di scala su un certo intervallo di produzione quando il costo medio aumenta su quell'intervallo.

 $C_{ma} > C_{me}$

Diseconomie di scala

Economie di scala di lungo periodo

Economie di scala e trade-off tra tecnologie

Impianto 1 automatizzato: 50'000'000 € con costo opportunità al 10% → costo fisso annuo: 5'000'000 Impianto 2 semi-automatizzato: 12'500'000 € con costo opportunità al 10% → costo fisso annuo: 1'250'000

Costo unitario materie prime: 0,03

Costo unitario manodopera (impianto semi-automatizzato): 0,01

Economie di scala e trade-off tra tecnologie

- Sinergie
- Complementarietà (Milgrom & Roberts)
- Strategic fit (Porter)

$$CT(Q_x, Q_y)$$
 $CT(0,0) = 0$
$$CT(Q_x, Q_y) < CT(Q_x, 0) + CT(0, Q_y)$$

Ipotizziamo che x e y siano due prodotti che presentano delle sinergie produttive. Per esempio, ipotizziamo che x e y siano rispettivamente: *post-it* e nastro adesivo.

Considerando un'azienda che inizialmente produce solo nastro adesivo con la seguente struttura dei costi:

$$CT(0, Q_y) = 100 + 0.2 * Q_y$$

$$Q_y = 600$$

$$CT(0, Q_y) = 100 + 0.2 * 600 = 220$$

Ipotizziamo che la nostra aziende intenda aggiungere alla produzione di nastro adesivo anche il post-it (x):

$$Q_y = 600$$
 $CT(Q_x, Q_y) = 120 + 0.2 * Q_y + 0.05 * Q_x$ $Q_x = 100$ $CT(Q_x, Q_y) = 120 + 0.2 * 600 + 0.05 * 100$ $CT(Q_x, Q_y) = 120 + 0.2 * 600 + 0.05 * 100$ $CT(Q_x, Q_y) = 120 + 120 + 5 = 245$

Confrontiamo ora l'incremento di costo della produzione congiunta con il costo della produzione singola di post-it (x):

Incremento di costo della produzione congiunta: $\Delta CT = 245 - 220 = 25$

 $Q_x = 100$

Costo della produzione singola di *x*:

 $Cvar_x = 0.05$

 $Cfissi_x = 50$

 $CT(Q_x) = 50 + 0.05 * 100 = 55$

L'azienda iniziando a produrre post-it avrebbe CT pari a 55 mentre aggiungendo la produzione di post-it alla produzione di nastro adesivo avrebbe un incremento di costo pari a 25.

Confrontiamo ora i costi totali nel caso della produzione congiunta e nel caso delle produzioni disgiunte di post-it (x) e nastro adesivo (y):

Costo produzione congiunta: $CT(Q_x, Q_y) = 245$

Costo produzione disgiunta: $CT(Q_x, 0) + CT(0, Q_y) = 55 + 220 = 275$

Economie di scopo: CT = 275 - 245 = 30

Fonti economie di scala e di scopo

- Indivisibilità di alcuni componenti e frazionamento dei costi fissi;
 - R&S
 - Pubblicità e Umbrella Branding
- Maggiore produttività degli input per effetto della maggiore specializzazione;
- Maggiore efficienze negli impianti di maggiori dimensioni.
- Proprietà fisiche e geometriche della produzione;
- Economie di densità;
- Minori costi unitari di acquisto:
 - È meno costo per un venditore avere a che fare con un solo cliente,
 - Un acquirente che acquista grandi dimensioni e più sensibile a prezzo,
 - Mantenimento di un flusso di fatturato.

Economie di scala. Relazione input-output.

Area cerchio
$$\pi r^2$$
 Cosa succede se raddoppio il raggio? $\pi (2r^2)$ $\pi 4r^2$

Raddoppiando il raggio quadruplico l'area.

Economie di scala. Relazione input-output.

Economie di scala. Il settore dei semiconduttori.

Aumento del raggio del wafer da 8 a 12 inch:

Aumento dell'area

$$A_1 = \pi(8)^2 = \pi 64 = 200,96$$
 $A_1 = 5500\$$ $A_1 = 23\$$ $A_2 = \pi(12)^2 = \pi 144 = 452,16$ $A_2 = 8000\$$ $A_2 = 14\$$ $\Delta^+ = \frac{452,16-200,96}{200,96} = 125\%$ $\Delta^+ = \frac{8000-5500}{5500} = 45\%$ $\Delta^+ = \frac{23-14}{23} = 40\%$

Aumento dei costi totali

$$A_1 = 5500\$$$
 $A_1 = 23\$$
 $A_2 = 8000\$$ $A_2 = 14\$$
 $\Delta^+ = \frac{8000 - 5500}{5500} = 45\%$ $\Delta^+ = \frac{23 - 23}{25}$

Diminuzione costi medi

$$A_2 = 14$$
\$
$$\Delta^+ = \frac{23 - 14}{32} = 40\%$$

Economie di scala. Il settore dei semiconduttori.

Aumento n° microchip contenuti nel wafer:

$$240 \rightarrow 575$$

$$\Delta^{+} = \frac{250 - 575}{250} = 140\%$$

Tecniche di produzione. Settore dell'acciaio. Colata continua.

Tecniche di produzione. Settore dell'acciaio. Colata continua.

Tecniche di produzione. Settore dell'acciaio. Colata continua.

Fonti diseconomie di scala

- Costi della manodopera
- Peso della burocrazia
- Risorse strategiche dissipate su troppi impieghi
- Conflitti di interesse

Economie di esperienza.

Total airbus prodotti	Totale giornate di manodopera necessarie	
1	200	
2	160,5	
3	140,4	
4	128	
5	119,1	
6	112,3	
7	106,9	
8	102,4	

E. Mollona 24

Economie di esperienza.

Total airbus prodotti	Totale giornate di manodopera necessarie	(n/n-1)*100	
1	200		
2	160,5	80	2/1=0,8
3	140,4	87	
4	128	91	4/2=0,8
5	119,1	93	
6	112,3	94	
7	106,9	95	
8	102,4	95	8/4=0,8

E. Mollona

25

Economie di esperienza.

Relazione tra economie di scala e di esperienza.

27

Relazione tra economie di scala e di esperienza.

