(5) G(R) 的每个顶点处均有环.

定理 2.11 设 $R \subset A \times A$, 则下面的命题是等价的:

(1) *R* 是反自反的;

(2) $I_A \cap R = \emptyset$;

(3) R^{-1} n是反自反的:

- (4) M(R) 主对角线上的元素全为 0;
- (5) G(R) 的每个顶点处均无环.

定理 2.12 设 $R \subset A \times A$, 则下面的命题是等价的:

(1) R 是对称的;

(2) $R^{-1} = R$;

- (3) M(R) 是对称的;
- (4) G(R) 中任何二个顶点之间若有有向边,必有两条相反的有向边.

定理 2.13 设 $R \subset A \times A$, 则下面的命题是等价的:

(1) *R* 是反对称的:

- (2) $R \cap R^{-1} \subseteq I_A$;
- (3) 在 M(R) 中, 若任意的 $r_{ij} = 1 (i \neq j)$, 则必有 $r_{ji} = 0$;
- (4) 在 G(R) 中,对于任何二个顶点 $x_i, x_j (i \neq j)$,若有有向边 $\langle x_i, x_j \rangle$,则必没有 $\langle x_j, x_i \rangle$.

定理 2.14 设 $R \subset A \times A$, 则下面的命题是等价的:

(1) R 是传递的;

- (2) $R \circ R \subseteq R$;
- (3) 在 $M(R \circ R)$ 中, 若任意的 $r'_{ij} = 1$, 则 M(R) 中相应的元素 $r_{ij} = 1$;
- (4) 在 G(R) 中,对于任何二个项点 x_i, x_j, x_k ,若有有向边 $\langle x_i, x_j \rangle, \langle x_j, x_k \rangle$,则必有有向边 $\langle x_i, x_k \rangle$ (即若从 x_i 到 x_k 有长为 2 的有向通路,则从 x_i 到 x_k 必有长度为 1 的有向通路).

定理 2.15 设 $R_1, R_2 \subseteq A \times A$.

- (2) 若 R_1, R_2 是反自反的,则 $R_1^{-1}, R_2^{-1}, R_1 \cup R_2, R_1 \cap R_2, R_1 R_2, R_2 R_1$ 也是反自反的;
- (3) 若 R_1 , R_2 是对称的,则 R_1^{-1} , R_2^{-1} , $R_1 \cup R_2$, $R_1 \cap R_2$, $R_1 R_2$, $R_2 R_1$, $\sim R_1 (= E_A R_1)$, $\sim R_2$ 也是对称的;
- (5) 若 R_1, R_2 是传递的,则 $R_1^{-1}, R_2^{-1}, R_1 \cap R_2$ 也是传递的.

定理 2.16 设 A 为含 n 个元素的有穷集合, $R \subseteq A \times A$,则存在自然数 s,t,且满足 $0 \le s < t \le 2^{n^2}$,使得 $R^s = R^t$.

定理 2.17 设 $R \subseteq A \times A$, m, n 为任意的自然数,则下面的等式成立:

 $(1) \quad R^m \circ R^n = R^{m+n};$

 $(2) (R^m)^n = R^{mn}.$

定理 2.18 设 $R \subseteq A \times A$,若存在自然数 s, t(s < t),使得 $R^s = R^t$,则下面的等式成立:

- (1) $R^{s+k} = R^{s+t}, \forall k \in \mathbb{N};$
- (2) $R^{s+kp+i} = R^{s+i}$, $\not = k, i \in \mathbb{N}, p = t s$;
- (3) 令 $S = \{R^0, R^1, \dots, R^{t-1}\}$,则对于任意 $q \in \mathbb{N}$,均有 $R^q \in S$.

定理 2.19 设 $R \subseteq A \times A$ 且 $A \neq \emptyset$, 则

- (1) R 是自反的当且仅当 r(R) = R;
- (2) R 是对称的当且仅当 s(R) = R;
- (3) R 是传递的当且仅当 t(R) = R.

定理 2.20 设集合 $A \neq \emptyset$, $R_1, R_2 \subseteq A \times A$, 且 $R_1 \subseteq R_2$, 则

- (1) $r(R_1) \subseteq r(R_2)$;
- (2) $s(R_1) \subseteq s(R_2)$;
- (3) $t(R_1) \subseteq t(R_2)$.