Coordinate geometry

Lego/

LENGTH OF A LINE SEGMENT AND MIDPOINT

M-midpoint M((x1+x2)/2, (y1+y2)/2)) $AB^2 = (x2-x1)^2 + (y2-y1)^2$ Gradient = (y2-y1) / (x2-x1)

Parallel

- In the same plane
- Never intersect
- Always the same distance apart
- Have the same slope
- Symbol is ||
- Railroad tracks are an example

Perpendicular

- In the same plane
- Always intersect
- Intersect at a 90° angle
- One line has slope m, other has slope -1/m
- Symbol is ⊥
- The letter "T" is an example

Gradient of parallel lines are same

m1*m2=-1

Equations of straight lines

y=mx+c c - y-intercept m - gradient

passes through P(x1, y1)(y-y1)=m(x-x1)

Three points have coordinates A(0, 7), B(8, 3) and C(3k, k). Find the value of the constant k for which

(i) C lies on the line that passes through A and B,

5/2k=7

k=5/14

[4]

(ii) C lies on the perpendicular bisector of AB.

[4]

The equation of a circle

 $(x-h)^2 + (y-k)^2 = r^2$ center coordinate (h; k)

REMEMBER

Discriminant of a Quadratic Equation

Given the quadratic equation $y = ax^2 + bx + c$

The discriminant $D = b^2 - 4ac$ tells the types of roots the equation has.

Discriminant	D < 0	D = 0	D > 0
Types of Roots	No real roots; Two imaginary roots	One real root	Two distinct real roots
	-3 =2 =1 0	-4 -3 -2 -1 0 1	-5 -3 -2 -5 -5 -5 -2 -5 -2 -5 -2 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5