Transcript quantification

We will be using RSEM to quantify the expression levels of the transcripts that were assembled by Trinity.

Make sure that you are in your

```
/pool/genomics/<username>/RNAseq workshop directory.
```

To use RSEM, we will use the wrapper script included in the Trinity package called align and estimate abundance.pl.

This script makes it very easy to take Trinity output and run RSEM.

Create another job file with QSubGen. This will be a serial job and you should reserve 4GB of memory. It will also run fine in the short queue.

Load the trinity module and enter the following program command:

```
align_and_estimate_abundance.pl --seqType fq \
    --left data/GSNO_SRR1582648_1.fastq \
    --right data/GSNO_SRR1582648_2.fastq \
    --transcripts trinity_out_dir.Trinity.fasta \
    --output_prefix GSNO_SRR1582648 \
    --est_method RSEM --aln_method bowtie \
    --trinity_mode --prep_reference --coordsort_bam \
    --output_dir GSNO_SRR1582648.RSEM
```

Save the script into a file called trinity_rsem_GNSO_SRR1582648.job. Since there are six biological replicates, we'll need to make six of these files-one for each replicate.

Take some time to create the five other files for the other treatments. Be sure to change both the names of the reads, the <code>--output_prefix</code>, and the <code>--output_dir</code> according to the sample name. Double check that you are calling both the correct reads and using the correct names. It is always important to check twice, run once.

Now you can submit each of these jobs using <code>qsub job_file_name</code>. This is the magic of parallel computing clusters--you can run many jobs at once.

These jobs should run pretty fast. Once they are finished, you can check the output with, e.g.:

```
$ head GSNO SRR1582648.RSEM/GSNO SRR1582648.genes.results | column -t
```

Your output should look something like:

```
gene id transcript id(s) length effecti
```

3 <u>-</u>			
ve_length expected_	count TPM FPKM		
TRINITY_DN100_c0_g1	TRINITY_DN100_c0_g1_i1	253.00	238.93
0.00	0.00 0.00		
TRINITY_DN103_c0_g1	TRINITY_DN103_c0_g1_i1	524.00	509.93
0.00	0.00 0.00		
TRINITY_DN103_c1_g1	TRINITY_DN103_c1_g1_i1	152.00	138.05
0.00	0.00 0.00		
TRINITY_DN104_c0_g1	TRINITY_DN104_c0_g1_i1	174.00	160.01
0.00	0.00 0.00		
TRINITY_DN105_c0_g1	TRINITY_DN105_c0_g1_i1	221.00	206.95
0.00	0.00 0.00		
TRINITY_DN105_c1_g1	TRINITY_DN105_c1_g1_i1	238.00	223.93
1.00	1139.60 2872.63		
TRINITY_DN107_c0_g1	TRINITY_DN107_c0_g1_i1	161.00	147.03
0.00	0.00 0.00		
TRINITY_DN108_c0_g1	TRINITY_DN108_c0_g1_i1	190.00	175.99
0.00	0.00 0.00		
TRINITY_DN108_c1_g1	TRINITY_DN108_c1_g1_i1	195.00	180.98
0.00	0.00 0.00		

Generate a transcript counts matrix and perform cross-sample normalization

Each rsem file holds the expression estimates for each of the samples. Now we will use these samples to create a counts matrix and to perform cross-sample normalization. The script included in the Trinity packages does this for you according to the TMM method. If you want to read more about this normalization method, you can do so in this paper, "A scaling normalization method for differential expression analysis of RNA-seg data."

Go ahead and generate a job file using the QSubGen. Assuming that you set up the remaining 5 jobs the same way that you did the first job, your job command would be:

```
abundance_estimates_to_matrix.pl --est_method RSEM \
    --out_prefix Trinity_trans \
    GSNO_SRR1582648.RSEM/GSNO_SRR1582648.isoforms.results

GSNO_SRR1582646.RSEM/GSNO_SRR1582646.isoforms.results

GSNO_SRR1582647.RSEM/GSNO_SRR1582647.isoforms.results

wt_SRR1582649.RSEM/wt_SRR1582649.isoforms.results \
    wt_SRR1582651.RSEM/wt_SRR1582651.isoforms.results \
    wt_SRR1582650.RSEM/wt_SRR1582650.isoforms.results
```

Choose a serial key and 2GB of memory. Either save the job file and transfer it to Hydra, or copy and paste the text into your terminal window with nano. Subit the job.

A file called Trinity_trans.counts.matrix should be written as a result. Let's look at the first 20 lines:

```
$ head -20 Trinity_trans.counts.matrix | column -t
```

The resulting output will look someting like this:

GSNO_SRR1582648	-	-	wt
_SRR1582649 wt_SRR1582	651 wt_SRR158265	0	
TRINITY_DN270_c0_g1_i1		0.00	0.
1.00	0.00	1.00	
TRINITY_DN286_c0_g1_i1		36.00	3
.00 5.00	7.00	8.00	
TRINITY_DN472_c0_g1_i1		0.00	0
0.00	0.00	0.00	
TRINITY_DN269_c0_g1_i1	0.00	0.00	0
0.00	0.00	0.00	
TRINITY_DN378_c0_g1_i1	0.00	0.00	0
0.00		0.00	
TRINITY_DN258_c0_g1_i1		0.00	0
0.00	0.00	0.00	
TRINITY_DN392_c0_g1_i1	0.00	0.00	2
0.00	0.00	0.00	
TRINITY_DN407_c0_g1_i1	0.00	0.00	0
0.00	0.00	0.00	
TRINITY_DN328_c0_g1_i1		0.00	0
0.00	0.00	0.00	
TRINITY_DN61_c0_g1_i1	0.00	0.00	0
0.00	0.00	0.00	
TRINITY_DN221_c0_g1_i1	0.00	0.00	0
0.00	0.00	0.00	
TRINITY_DN260_c1_g1_i1	3.00	4.00	7
00 8.00	8.00	5.00	
TRINITY_DN357_c0_g1_i1	0.00	0.00	0
0.00	0.00	0.00	
TRINITY_DN63_c1_g1_i1	19.00	26.00	3
.00 3.00	4.00	3.00	
TRINITY_DN401_c0_g1_i1	2.00	3.00	4
3.00	6.00	2.00	
TRINITY_DN637_c0_g1_i1	0.00	0.00	0
1.00	2.00	1.00	
TRINITY_DN288_c0_g1_i1	0.00	0.00	1
0.00	0.00	0.00	
TRINITY_DN625_c0_g1_i1	0.00	0.00	1
2.00	3.00	1.00	
TRINITY_DN97_c0_g1_i1	0.00	0.00	0
0.00	0.00	0.00	

Now look at the output generated from the TMM normalized counts:

The output from this file will look a bit different. As described in the paper linked to above, this normalization method assumes that most transcripts are not differentially expressed and linearly scales the values with that assumption in mind.

GSNO_SRR1582648	GSNO_SRR1582646	GSNO_SRR1582647	wt
_SRR1582649 wt_SRR1582	651 wt_SRR158265	50	
TRINITY_DN270_c0_g1_i1	0.000	0.000	0.
000 1382.140			
TRINITY_DN286_c0_g1_i1	19831.723	15748.460	16
547.800 2036.568	3442.755	3763.621	
TRINITY_DN472_c0_g1_i1	3139.756	0.000	0.
000 0.000	0.000	0.000	
TRINITY_DN269_c0_g1_i1	0.000	0.000	0.
000 0.000	0.000	0.000	
TRINITY_DN378_c0_g1_i1	0.000	0.000	0.
000 0.000	0.000	0.000	
TRINITY_DN258_c0_g1_i1	0.000	0.000	0.
0.000	0.000	0.000	
TRINITY_DN392_c0_g1_i1	0.000	0.000	25
11.305 0.000	0.000	0.000	
TRINITY_DN407_c0_g1_i1	0.000	0.000	0.
0.000	0.000	0.000	
TRINITY_DN328_c0_g1_i1		0.000	0.
000 0.000	0.000	0.000	
TRINITY_DN61_c0_g1_i1	0.000	0.000	0.
000 0.000	0.000	0.000	
TRINITY_DN221_c0_g1_i1		0.000	0.
000 0.000		0.000	
TRINITY_DN260_c1_g1_i1	1701.427	1902.282	32
28.057 3540.731	4288.504	2556.256	
TRINITY_DN357_c0_g1_i1	0.000	0.000	0.
000 0.000	0.000	0.000	
TRINITY_DN63_c1_g1_i1		13440.787	16
537.510 1442.567	2337.418	1666.528	
TRINITY_DN401_c0_g1_i1	1288.233	1621.389	20
95.379 1507.745		1161.284	
TRINITY_DN637_c0_g1_i1	0.000	0.000	0.
000 1155.640	2970.275	1337.249	
TRINITY_DN288_c0_g1_i1	0.000	0.000	24
3.398 0.000	0.000	0.000	
TRINITY_DN625_c0_g1_i1	0.000	0.000	10
48.765 2006.101	3821.984	1160.229	
TRINITY_DN97_c0_g1_i1	0.000	0.000	0.
000 0.000	0.000	0.000	

Now we will generate the matrices for genes. Create another job file, but this time, the command will include the gene results from RSEM:

```
--out_prefix Trinity_genes \
GSNO_SRR1582648.RSEM/GSNO_SRR1582648.genes.results \
GSNO_SRR1582646.RSEM/GSNO_SRR1582646.genes.results \
GSNO_SRR1582647.RSEM/GSNO_SRR1582647.genes.results \
wt_SRR1582649.RSEM/wt_SRR1582649.genes.results \
wt_SRR1582651.RSEM/wt_SRR1582651.genes.results \
wt_SRR1582650.RSEM/wt_SRR1582650.genes.results
```

Now that we have expression values we can estimate some new statistics. We will use the expression quantification values to calculate the ExN50, which is restricted to only the most highly expressed transcripts. This is more informative of the quality of the assembly since it only uses the transcripts that have suitable coverage.

The file that you generate from QSubGen should choose the short queue and the default RAM. Load the bioinformatics/trinity/2.1.1 module. The command that you should use is:

```
contig ExN50 statistic.pl Trinity trans.TMM.EXPR.matrix trinity out dir.Trinity.fasta > ExN50.stats
```

When your job is completed, you will see a new output file called, ExN50.stats. Go ahead and take a look at your new file with:

```
$ cat ExN50.stats | column -t
```

Your output should look like this:

```
#E
     min_expr
                E-N50
                      num_transcripts
E2
     48510.841 470
     35522.525 470
                       2
E4
     35522.525 329
E6
                       3
E7
     35522.525 470
                       4
     33698.327 453
                       5
E9
     28346.056 453
                       6
E11
     22770.403 453
                       7
E13
E14
     22770.403 416
                       8
     22770.403 417
E16
                       9
     22770.403 417
                      10
E17
     22770.403 417
E18
                      11
E20
     22770.403 416
                      12
     22770.403 416
E21
                      13
     22770.403 417
E23
                      14
     16940.365 416
E24
                      15
E25
     16940.365 417
                      16
E27
     16940.365 453
                      17
E28
     16940.365 459
                      18
E29
     16940.365 470
                      19
E30
     16940.365 459
                      20
E31
     16940.365 459
                      21
E32
     16940.365 453
                       22
E33
     16940.365 459
                       23
E35 16940.365 459
```

E26	13602.022	170	25
E36			
E37	13602.022	470	26
E38	13602.022	470	27
E39	12842.900	470	29
E40	12842.900	470	30
E41	12842.900	470	31
E42	12842.900	470	32
E43	12842.900	470	33
E44	12842.900	470	34
E45			36
E46	12842.900		
E47	12842.900	470	38
E48	12099.821		
E49	12099.821		41
E50	12099.821	476	43
E51	11837.930	485	44
E52	9272.015	485	46
E53	9272.015	489	48
E54	9272.015	489	49
E55	9272.015	489	51
E56	9272.015	490	53
	9272.015		55
	9272.015		57
шэо	2212.013	107	51