Algorithms: Greedy Method

An Activity-Selection Problem

Greedy Algorithms: Principles

- A *greedy algorithm* always makes the choice that looks best at the moment.
- A greedy algorithm works in phases.
 At each phase:
 - You take the best you can get right now, without regard for future consequences.
 - You hope that by choosing a local optimum at each step, you will end up at a global optimum.
 - For some problems, it works.

An Activity Selection Problem

- Input: A set of activities $S = \{a_1, ..., a_n\}$
 - Each activity a_i has a start time s_i and a finish time f_i , where $0 \le s_i < f_i < \infty$
 - If selected, activity a_i takes place during the half-open time interval $[s_i, f_i)$
- Two activities are compatible if and only if their intervals do not overlap
- Output: a maximum-size subset of mutually compatible activities

The Activity Selection Problem

• Here are a set of start and finish times

<u>i </u>	1	2	3	4	5	6	7	8	9	10	<u>11</u>
S _i	1	3	0	5	3	5	6	8	8	2	12
f_i	4	5	6	7	8	9	10	11	12	13	14

- What is the maximum number of activities that can be completed?
 - $\{a_3, a_9, a_{11}\}$ can be completed
 - But so can $\{a_1, a_4, a_8, a_{11}\}$ which is a larger set
 - But it is not unique, consider $\{a_2, a_4, a_9, a_{11}\}$

Interval Representation

• Here are a set of start and finish times

<u>i </u>	1	2	3	4	5	6	7	8	9	10	<u> 11</u>
S _i	1	3	0	5	3	5	6	8	8	2	12
f _i	4	5	6	7	8	9	10	11	12	13	14

Dr. Md. Abul Kashem Mia, Professor, CSE Dept, BUET

Dr. Md. Abul Kashem Mia, Professor, CSE Dept, BUET

Dr. Md. Abul Kashem Mia, Professor, CSE Dept, BUET

Dr. Md. Abul Kashem Mia, Professor, CSE Dept, BUET

Early Finish Greedy

- Select the activity with the earliest finish
- Eliminate the activities that could not be scheduled
- Repeat!

Dr. Md. Abul Kashem Mia, Professor, CSE Dept, BUET

Dr. Md. Abul Kashem Mia, Professor, CSE Dept, BUET

Dr. Md. Abul Kashem Mia, Professor, CSE Dept, BUET

Dr. Md. Abul Kashem Mia, Professor, CSE Dept, BUET

Dr. Md. Abul Kashem Mia, Professor, CSE Dept, BUET

Assuming activities are sorted by finish time

```
GREEDY-ACTIVITY-SELECTOR (s, f)
  n \leftarrow length[s]
A \leftarrow \{a_1\}
3 \quad i \leftarrow 1
4 for m \leftarrow 2 to n
           do if s_m \geq f_i
                  then A \leftarrow A \cup \{a_m\}
                         i \leftarrow m
     return A
```