## Corpus Analysis with Open Source Tools

#### Camilo Thorne

Data and Web Science (DWS) Group Universität Mannheim, Germany

#### NASSLLI 2016





## Outline

- Introduction
- 2 Descriptive Statistics
- 3 Corpora Data
- 4 Inferential Statistics
- 5 Regression
- 6 Word Spaces and Lexical Resources
- 7 Case Study
- 8 References



2 / 34

## Motivation - Corpora





3 / 34

#### **Tutorial Materials**

During the labs, we will be using

```
 R: https://cran.rstudio.com/
 Python: https://www.python.org/downloads/
 a number of and tools and datasets
```

- Please refer to the course's Git repository for detailed instructions
  - URI: https://github.com/camilothorne/nasslli2016
    (you can check it out without entering any credentials!)



#### Introduction

- Words and structures in English occur following some general laws or empirical hypothesis
- A distribution describes how often they occur/probable they are
- Many such distributions may hold:
  - power laws (Zipfian distributions)
  - normal distributions
  - binomial distributions
  - Poisson distributions
  - ...
- We can leverage on such distributions to infer or empirically validate such hypothesis



#### Introduction

- Words and structures in English occur following some general laws or empirical hypothesis
- A distribution describes how often they occur/probable they are
- Many such distributions may hold:
  - power laws (Zipfian distributions)
  - normal distributions
  - binomial distributions
  - Poisson distributions
  - · . . .
- We can leverage on such distributions to infer or empirically validate such hypothesis
- Methodology:
  - 1 Use corpora to reasonable approximate full English
  - ② Use descriptive and inferential statistics to fit/estimate distributions and validate hypothesis



## Population, Sample, Feature

- ullet By population we mean the universe S of all possible observable events
  - ullet e.g., the set W of all sentences ever written in English
- A sample is any representative subset  $S' \subseteq S$  of the population
  - ullet e.g., a given corpus  $W\subset W'$ , such as the Brown corpus
- A feature X is any property we may observe over S (or S'), viz., a random variable  $X:S\to D$ , where
  - ullet if D is a number domain, X is a numeric feature
  - (e.g.,  $X_l$ : lengths |w| of words w)
  - if  $D = \{x_1, \dots, x_n\}$ , X is an (ordered) factor (e.g.,  $X_s$ : syntactic categories syn(w) of words w) of words w)



Consider a feature X, concentration measures how similar the values  $x\in X$  are, and dispersion how much they differ

Measures of concentration:



Consider a feature X, concentration measures how similar the values  $x\in X$  are, and dispersion how much they differ

Measures of concentration:

$$\bullet \ \ \text{mean} \ \mu = E[X] = \begin{cases} \sum_{x \in X} x \, P(X=x), & \text{if } X \text{ is dicrete} \\ \int_{-\infty}^{\infty} x \, P(X=x) \, d(x), & \text{otherwise} \end{cases}$$



Consider a feature X, concentration measures how similar the values  $x\in X$  are, and dispersion how much they differ

Measures of concentration:

$$\bullet \ \ \text{mean} \ \mu = E[X] = \begin{cases} \sum_{x \in X} x \, P(X = x), & \text{if } X \text{ is dicrete} \\ \int_{-\infty}^{\infty} x \, P(X = x) \, d(x), & \text{otherwise} \end{cases}$$
 
$$\bullet \ \ \text{mode} \ \ mod \in \{x \mid \ \text{for all } x' \in X, x \geq x'\} \quad \text{(need not be unique)} \end{cases}$$



Consider a feature X, concentration measures how similar the values  $x \in X$  are, and dispersion how much they differ

Measures of concentration:



Consider a feature X, concentration measures how similar the values  $x\in X$  are, and dispersion how much they differ

Measures of concentration:

② Measures of dispersion:



Consider a feature X, concentration measures how similar the values  $x \in X$  are, and dispersion how much they differ

Measures of concentration:

② Measures of dispersion:

$$\quad \text{o variance } \sigma^2 = \mathit{Var}(X) = \sum_{x \in X} (\mu - x)^2$$



Consider a feature X, concentration measures how similar the values  $x \in X$  are, and dispersion how much they differ

Measures of concentration:

② Measures of dispersion:

• variance 
$$\sigma^2 = Var(X) = \sum_{x \in X} (\mu - x)^2$$

• standard deviation  $\sigma = \sqrt{\textit{Var}(X)}$ 



#### Parameters and Distributions

### Definition (Distribution)

A distribution with parameters  $\theta_1, \ldots, \theta_k$  is a function  $F(\theta_1, \ldots, \theta_k)$  that describes the likelihood/probability of a feature (random variable) X taking value x, i.e.,  $P(X = x) = F(x; \theta_1, \ldots, \theta_k)$ .

#### Normal distribution:

$$N(x;\mu,\sigma^2) = \frac{1}{\sqrt{2\sigma^2\pi}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$



#### Binomial distribution:

$$B(x; n, p) = p^x C_n^x (1 - p)^{n-x}$$





## Measures of Correspondence

Question: Given two features X and Y, how to know if they relate two each other?

f 1 X and Y are numeric, in that case measure correlation

$$\mathit{Corr}(X,Y) = \frac{\mathit{Cov}(X,Y)}{\sigma_X \sigma_Y} = \frac{E[(X - \mu_X)(Y - \mu_Y)]}{\sigma_X \sigma_Y}$$

 ${f 2}$  X and Y are factors, in that case measure mutual information

$$MI(X;Y) = \sum_{x \in X} \sum_{y \in Y} P(X=x,Y=y) \log_2 \left( \frac{P(X=x,Y=y)}{P(X=x)P(Y=y)} \right)$$



## English Corpora

- A corpus is a collection of written sentences
- It codifies information about a number of topics...

| Size (# words)     | Source                                              |
|--------------------|-----------------------------------------------------|
| > 100 billion      | link                                                |
| $\sim 1$ million   | link                                                |
| $\sim 100$ million | link                                                |
| $\sim 1$ billion   | link                                                |
| :                  | :                                                   |
|                    | $>$ 100 billion $\sim$ 1 million $\sim$ 100 million |

 $\Rightarrow$  Rem: many small ones available with NLTK v2.0+



## **English Corpora**

- A corpus is a collection of written sentences
- It codifies information about a number of topics...
- but also about language use!

| Format       | Size (# words)     | Source |
|--------------|--------------------|--------|
| Google NGram | > 100 billion      | link   |
| Brown        | $\sim 1$ million   | link   |
| BNC          | $\sim 100$ million | link   |
| WaCkY        | $\sim 1$ billion   | link   |
| :            | :                  | :      |

⇒ Rem: many small ones available with NLTK v2.0+



# Annotation Standards [GB12]

- Sometimes, corpora are annotated to support NLP tasks
- This annotation is usually done manually, but sometimes also (semi)automatically
- The annotation labels typically respect a predefined format

| Format                 | Task                 | Source       |
|------------------------|----------------------|--------------|
| Brown/Penn tagging     | POS tagging          | POS tags     |
| CoNLL NER              | NER                  | entities     |
| CoNNL chunk            | chunk parsing        | chunks       |
| Penn treebank          | constituency parsing | parse tags   |
| Universal dependencies | dependency parsing   | dependencies |
| :                      | :                    | :            |
| •                      | •                    |              |



# Hypothesis Testing

- A hypothesis h is a statement inferred from a sample S' that we would like generalize to the complete population S, for example:
  - proper names of persons ("Jane Eyre") start with a capital letter and are not preceded by temporal prepositions ("during", "until")
  - 2 collocations/multiwords ("lone wolf") occur more frequently than the random combination of their constituent words
  - . . .
- Procedure:
  - ensure S' is representative
  - 2 consider the alternative null hypothesis  $h_0$
  - try to reject  $h_0$  via an statistical test
  - $\bullet$  if the test shows that  $h_0$  doesn't fit  $S' \implies h$  may hold over S



## Test Statistics: The Chisq(k) Distribution



- ullet Measure over H their goodness of fit X w.r.t. S
- $X \sim \mathit{Chisq}(k)$  with k+1 degrees of freedom  $(k+1=|S| \leq 100)$
- If X(h) lies in region where  $p = P(X > x) < 0.05 \implies$  accept
- 0 is called the significance level



### How to reason?

• Rejection of  $h_0 \implies$  acceptance of alternative h

$$\frac{h_0 \vee h \qquad h_0 \text{ false}}{h \text{ true}}$$

Minimize Type II error

|              | $h_0$ true                        | $h_0$ false    |
|--------------|-----------------------------------|----------------|
| $h_0$ accept | true positive                     | (Type I error) |
|              |                                   | false positive |
| $h_0$ reject | (Type II error)<br>false negative | true negative  |

- Idea: we want as candidates as many true hypothesis as possible, even if the results are imprecise
- ullet But: if  $H_0$  clearly false, we can reasonably assume that H is a true positive



Rutgers, 09-10.07,2016

#### Definition (Linear Regression)

A linear regression model has the form

$$E(Y \mid X_1, \dots, X_n) = \theta_1 X_1 + \dots + \theta_k X_k + \theta_{k+1}$$



#### Definition (Linear Regression)

A linear regression model has the form

$$E(Y \mid X_1, \dots, X_n) = \theta_1 X_1 + \dots + \theta_k X_k + \theta_{k+1}$$

- Assumptions:
  - ① The  $X_i$ s are conditionally independent on Y
  - ② The sample if it is normally distributed (i.e., whenever  $(Y \mid X_1, \dots, X_n) \sim N(\mu, \sigma^2)$ )



#### Definition (Linear Regression)

A linear regression model has the form

$$E(Y \mid X_1, \dots, X_n) = \theta_1 X_1 + \dots + \theta_k X_k + \theta_{k+1}$$

- Assumptions:
  - 1 The  $X_i$ s are conditionally independent on Y
  - ② The sample if it is normally distributed (i.e., whenever  $(Y \mid X_1, \dots, X_n) \sim N(\mu, \sigma^2)$ )
- Linear models describe the average  $E(Y \mid X_1, \dots, X_n)$  a dependent feature Y and features  $X_1, \dots, X_n$



#### Definition (Linear Regression)

A linear regression model has the form

$$E(Y \mid X_1, \dots, X_n) = \theta_1 X_1 + \dots + \theta_k X_k + \theta_{k+1}$$

- Assumptions:
  - 1 The  $X_i$ s are conditionally independent on Y
  - ② The sample if it is normally distributed (i.e., whenever  $(Y \mid X_1, \ldots, X_n) \sim N(\mu, \sigma^2)$ )
- Linear models describe the average  $E(Y \mid X_1, \dots, X_n)$  a dependent feature Y and features  $X_1, \dots, X_n$
- The parameters/coefficients  $\theta_1, \dots, \theta_k, \theta_{k+1}$  can be estimated via different (equivalent methods): square error minimization, maximum likelihood, etc.



### Definition (Linear Regression)

A linear regression model has the form

$$E(Y \mid X_1, \dots, X_n) = \theta_1 X_1 + \dots + \theta_k X_k + \theta_{k+1}$$

- Assumptions:
  - 1 The  $X_i$ s are conditionally independent on Y
  - ② The sample if it is normally distributed (i.e., whenever  $(Y \mid X_1, \ldots, X_n) \sim N(\mu, \sigma^2)$ )
- Linear models describe the average  $E(Y \mid X_1, \dots, X_n)$  a dependent feature Y and features  $X_1, \dots, X_n$
- The parameters/coefficients  $\theta_1, \dots, \theta_k, \theta_{k+1}$  can be estimated via different (equivalent methods): square error minimization, maximum likelihood, etc.
- We can quantify how well the model fits the data via a number of indexes
  - external:  $\chi^2$ -goodness of fit, etc.
  - internal:  $R^2$ -goodness of fit, BIC, AIC, etc.



# Analysis of Variance (ANOVA)

- Once we have fitted a regression model to a dataset we can use it to
  - explore the impact of each single factor
  - 2 the impact of a factor is reflected by the variation it induces
- A technique to understand variation w.r.t. factors is analysis of variance (ANOVA)
- Procedure:
  - ① consider factor X of k levels/groups
  - ② for each level i, consider a linear model where levels/groups  $j \neq i$  are fixed
  - 3 test (reject) if  $\mu = \mu_i$ , where
    - ullet  $\mu$  original conditional expectation
    - ullet  $\mu_i$  conditional expectation of linear model w.r.t. level/group i



#### Generalized Linear Models

- What do we do when a dependency is non-linear?
- What do we do when  $(Y|X_1,\ldots,X_k)$  is not normally distributed?



### Generalized Linear Models

- What do we do when a dependency is non-linear?
- What do we do when  $(Y|X_1,\ldots,X_k)$  is not normally distributed?
- Answer: generalize linear models to arbitrary distributions, modulo some kind of transformation

### Definition (GLM)

A generalized linear model has the form

$$f(E(Y|X_1,\ldots,X_k)) = \theta_1 X_1 + \cdots + \theta_k X_k + \theta_{k+1}$$

where

- ①  $f: \mathbb{R} \to \mathbb{R}$  is a link function
- ②  $(Y|X_1,\ldots,X_k)\sim D$ , with D an arbitrary distribution



#### Mixed Effects Models

- Sometimes, when doing regression, some factors, while important, behave like error terms
  - example: when you repeatedly observe the same feature over the same individual over time
  - each time you make a measurement, some random noise gets mixed in the measurement!



#### Mixed Effects Models

- Sometimes, when doing regression, some factors, while important, behave like error terms
  - example: when you repeatedly observe the same feature over the same individual over time
  - each time you make a measurement, some random noise gets mixed in the measurement!
- One can refine linear models by letting such features to vary randomly



#### Mixed Effects Models

- Sometimes, when doing regression, some factors, while important, behave like error terms
  - example: when you repeatedly observe the same feature over the same individual over time
  - each time you make a measurement, some random noise gets mixed in the measurement!
- One can refine linear models by letting such features to vary randomly
- This results in a linear mixed model of the form

$$f(E(Y|X_1,...,X_k)) = \theta_1 X_1 + \dots + \theta_n X_n + \theta_{n+1} Z_1 + \dots + \theta_{n+m} Z_m + \theta_{(n+m)+1}$$

where the  $X_i$ s are fixed and the  $Z_j$ s are non-fixed



## Power Laws [Bar09]

- The frequency of a word w in a sample  $S'\subseteq S$  over vocabulary W is the number of times (count) we observe it in S', viz.,  $\mathit{Freq}\colon W\to \mathbb{N}$  s.t.  $\mathit{Freq}(w)=P(W=w)\times |S'|$
- $\bullet$  Words can be ordered by frequency rank Rank:  $W \to |W|$  s.t.  $\mathit{Rank}(w) < R(w)$  if
  - ① Freq(w) < Freq(w'), or
  - ② Freq(w) = Freq(w') and w comes before w' in lexicographic order
- $\bullet$  We can use regression on the  $\log{-}\log$  scale to model power laws among word frequency and rank

$$\begin{split} \log \textit{Freq}(w) &= \log(\theta) - \theta' \log(\textit{Rank}(w)) \\ \Longrightarrow & \textit{Freq}(w) = \frac{\theta}{\textit{Rank}(w)^{\theta'}} \\ \Longrightarrow & \textit{Rank} \sim PL(\theta, \theta'), \text{ for some } \theta, \theta' \geq 0 \end{split}$$



19 / 34

# Semantic Relatedness [Nav09]

#### **Distributional Hypothesis**

- f a The meaning of a word w is given by sentential context
- 2 Sentential context is the window of k words surrounding w
- - $\bullet$  The semantic relatedness of two words can be estimated by computing context similarity over very large word corpora of vocabulary W
  - Idea: compute a word space over the corpus
    - ① a word space is a matrix  $M_{|W| \times k}$  where each  $m_{i,j}$  is the "F.IJF" of words  $w_i, w_j \in W \colon m_{i,j} = \textit{freq}(w_i) \times \textit{ijfreq}(w_i, w_j)$
    - ②  $M_{|W| imes k}$  defines a k-dimensional real-valued vector space  $\subseteq \mathbb{R}^k$
    - 3 each word  $w_i$  is mapped to a vector  $\overrightarrow{w_i} = (m_{i,1}, \dots, m_{i,k})^T$



Vector space  $\mathbb{R}^k$  with dimensions |k| (size of context window) (size of vocabulary)



Model semantic relatedness in terms of cosine similarity

$$\mathit{rel}(\mathsf{clear},\mathsf{mind}) = \mathit{cos}(\alpha) = \frac{\overrightarrow{\mathsf{clear}} \bullet \overrightarrow{\mathsf{mind}}}{||\overrightarrow{\mathsf{clear}}|| \times ||\overrightarrow{\mathsf{mind}}||}$$



# The WaCkY Corpus [BBFZ09]

| <s></s> |               |          |       |    |      |   |      |
|---------|---------------|----------|-------|----|------|---|------|
| Flender | Flender       | NP       | 1     | 3  | VMOD |   |      |
| Werke   | Werke         | NP       | 2     | 3  | SBJ  |   |      |
| was     | be            | VBD      | 3     | 0  | ROOT |   |      |
| a       | a             | DT       | 4     | 7  | NMOD |   |      |
| German  | German        | JJ       | 5     | 7  | NMOD |   |      |
| shipbui | lding         | shipbuil | Lding | NN | 6    | 7 | NMOD |
| company | company       | NN       | 7     | 3  | PRD  |   |      |
| ,       | ,             | ,        | 8     | 7  | P    |   |      |
| located | locate        | VVN      | 9     | 7  | NMOD |   |      |
| in      | in            | IN       | 10    | 9  | ADV  |   |      |
| T11     | TII           | TIA      | 10    | 9  | AD V |   |      |
| Lubeck  | III<br>Lubeck | NP       | 11    | 10 | PMOD |   |      |
|         |               |          |       | -  |      |   |      |

|             | Sentences         | Tokens             | Source               |
|-------------|-------------------|--------------------|----------------------|
| WaCkY (Eng) | $\sim$ 43 million | $\sim$ 800 million | Wikipedia (EN, 2008) |



# Answer Time and Complexity [Szy09]



Parity: "exactly 2" Cardinal: all the other counting quantifiers



# Corpus Analysis [TS15]

- We can build a list of simple patterns to identify and count quantifiers in corpora
  - 1 Aristotelian quantifiers: all, some
  - ② counting quantifiers: k, less (more) than k

```
• Examples: { most = most/dt, most/jjs [a-z]{1,12}/nns \ some = some/det}
```

- Understand how much their frequency is influenced by
  - ① length (characters, word units) ⇒ "syntactic complexity"
  - ② quantifier class ⇒ "semantic complexity"
  - 3 other factors/features



#### GQ distribution



GQ index

- distribution not normal
- heavy (right) tailed
- most GQs in the sample are very rare (frequency  $\leq 1$ )



#### GQ distribution w.r.t. class



- most quantifiers are Aristotelian
- Aristotelian quantifiers show a lot of variability
- proportional quantifiers contain some outliers ("most", "few")



#### GQ frequency vs. rank log-log regression



• log-log (ln-ln) regression (to test for power law):

$$R^2 = 0.7581$$
  
 $p = 0.0001074$ 



## Larger is Better!

### Theorem (Law of Big Numbers)

Let  $S_1, S_2, \ldots, S_i$  be a family of increasingly large samples of some population S (i.e.,  $S_i \subseteq S_{i+1} \subseteq S$ ) distributed under  $F(\theta_1, \ldots, \theta_k)$  (i.e.,  $S \sim F(\theta_1, \ldots, \theta_k)$ ). Then, for  $i \ge 1$ , the estimators  $\hat{\theta}_{i,1}, \ldots, \hat{\theta}_{i,k}$  converge to the true parameters  $\theta_1, \ldots, \theta_k$ ) of F (i.e., for  $j \in [1, k]$ ,  $\lim_{i \to \infty} \theta_{i,j} = \theta_j$ ).

- The larger the sample, the better we can observe or fit to it a distribution!
- Grain of salt:
  - a samples are assumed to be representative w.r.t. population and i.i.d.
  - 2 samples are assumed to contain minimal noise
  - 3 the distribution should fit the data
- Meaning in practice:
  - 1 avoid making inferences over very small corpora
  - 2 trade-off corpora size by corpora quality







### References I



Marco Baroni.

Distributions in text.

In Mouton de Gruyter, editor, *Corpus linguistics: An International Handbook*, volume 2, pages 803–821. 2009.



Marco Baroni, Silvia Bernardini, Adriano Ferraresi, and Eros Zanchetta.

The WaCky Wide Web: A collection of very large linguistically processed web-crawled corpora.

Language Resources and Evaluation, 43(3):209–226, 2009.



Stefan Th. Gries and Andrea L. B.

Linguistic annotation in/for corpus linguistics.

Preprint: http://www.linguistics.ucsb.edu/faculty/stgries/research/InProgr\_STG\_ALB\_LingAnnotCorpLing\_HbOfLingAnnot.pdf (to appear in the Handbook of Linguistic Annotation)., 2012.



Roberto Navigli.

Word sense disambiguation: A survey.

ACM Computing Surveys, 41(2):10:1-10:69, 2009.



### References II



Jakub Szymanik.

Quantifiers in Time and Space.

Institute for Logic, Language and Computation, 2009.



Camilo Thorne and Jakub Szymanik.

Semantic complexity of quantifiers and their distribution in corpora.

In Proceedings of the 11th International Conference in Computational Semantics (IWCS 2015), 2015.



## Appendix: Regression Inference and Validation

• The least squares method computes the linear model whose parameters  $(\theta_1,\ldots,\theta_{k+1})^*$  minimize square error  $J(\cdot)$ 

$$(\theta_1, \dots, \theta_{k+1})^* = \arg \min_{(\theta_1, \dots, \theta_{k+1})} J(\theta_1, \dots, \theta_{k+1})$$
$$= \arg \min_{(\theta_1, \dots, \theta_{k+1})} \sum_i \sum_j (y_i - \theta_j(x_{i,j}))^2$$

• The  $R^2$  coefficient provides a measure of confidence in the inferred model and is defined as the ratio of square error variance and dependent variable variance, i.e.,

$$R^{2} = 1 - \left[ \frac{\sum_{i} \sum_{j} (\theta_{j}^{*}(x_{i,j}) - E[Y])^{2}}{Var(Y)} \right]$$



## Appendix: Regression BIC and AIC

The Bayesian information criterion (BIC) is defined by

$$BIC(k+1, S') = -([2 \times \ln L^*] + [(k+1) \times \ln(|S'|)])$$

where

- ①  $L^* = P(S \mid (\theta_1, \dots, \theta_{k+1})^*)$  (maximum likelihood)
- 2  $(\theta_1, \dots, \theta_{k+1})^*$  are the optimal model parameters
- 3 k+1 is the number of parameters/coefficients of the model
- $\P$   $S'\subseteq S$  is the sample to which we fit the linear model
- The Akaike information criterion (AIC) is defined by

$$AIC(k+1, S') = -([2 \times (k+1)] - [2 \times \ln L^*])$$

with parameters as for BIC

 Note: these measures are useful when evaluating regression models, where the output/dependent variable is numeric, they are not appropriate for classification or clustering

# Appendix: Confidence Intervals

- ullet The theoretical mean  $\mu$  of feature X is the expected value E[X] of X
- $\bullet$  We can estimate the theoretical mean from a sample  $S'\subseteq S$  via maximum likelihood, giving rise to the known empirical mean

$$\hat{\mu} = \frac{1}{|X|} \sum_{x \in X} x$$

- $\bullet$  Confidence intervals allow to infer, from  $\hat{\mu},\,\hat{\sigma},\,X$  and S' the potential range of values of  $\mu$
- $\bullet$  Let p < 0.05 be the significance level of test statistic T, then

$$\mu \in \left[\hat{\mu} - \frac{t^* \hat{\sigma}}{\sqrt{|X|}}, \ \hat{\mu} + \frac{t^* \hat{\sigma}}{\sqrt{|X|}}\right]$$

where  $t^{\ast}$  is the upper (1-p)/2 critical value of test T distribution with |X|-1 degrees of freedom

