F ADDITIONAL DATASET: TREC-6 RESULTS

To assess the generalizability of the AutoGeTS workflow, we conducted experiments using the TREC-6 dataset Li & Roth (2002), which comprises 5542 fact-based questions categorized into six semantic classes with varying class sizes from 86 to 1250 questions. Following the experimental setup described in Section 4, we employed an 80-20 split for training/testing, with a further 80-20 division of the training set for validation. We maintained our established protocol of 1 GPU hour fixed-time experiments to enhance M0, utilizing Random, SW, HSW, and GA selection strategies. Each strategy was implemented separately with either Overall Balanced Accuracy (OBA) or Class Balanced Accuracy (CBA) as the optimization objective. We tested both EDA-based and LLM-based AutoGeTS workflows. All experimental parameters specified in Section 4 were maintained. The baseline performance of the original CatBoost model M0 is presented in Table 9.

Table 9: Original CatBoost Model M0 Performance

Class	Class Size	Balanced Accuracy	Recall	F1-Score
ENTY	1250	0.861	0.825	0.757
HUM	1223	0.903	0.850	0.846
DESC	1162	0.881	0.802	0.820
NUM	896	0.908	0.836	0.866
LOC	835	0.882	0.789	0.819
ABBR	86	0.761	0.522	0.686
Overall	5542	0.889	0.816	0.816

F.1 BEST PERFORMANCES: OBA & CBA IMPROVEMENTS

Table 10: OBA (Global) Improvements Comparison with the Best Performance in Green.

Class	Random		Sliding Window		Hierarchical SW		Genetic Algorithm	
Name	EDA	GPT-3.5	EDA	GPT-3.5	EDA	GPT-3.5	EDA	GPT-3.5
ENTY	△0.0011	▲0.0011	△0.0045	▲0.0080	▲0.0017	△0.0033	▲0.0017	△0.0022
HUM	△0.0030	△0.0033	△0.0056	▲0.0086	▲0.0044	△0.0058	▲0.0033	▲0.0067
DESC	△0.0033	△0.0039	△0.0055	△0.0080	△0.0044	△0.0058	▲0.0006	△0.0058
NUM	△0.0036	△0.0039	△0.0078	▲0.0097	△0.0060	▲0.0070	△0.0022	△0.0071
LOC	△0.0019	△0.0041	△0.0056	△0.0093	△0.0039	△0.0082	▲0.0006	△0.0055
ABBR	△0.0052	△0.0055	△0.0057	△0.0080	△0.0059	▲0.0088	△0.0055	▲0.0088

Table 11: CBA (Local) Improvements Comparison with the Best Performance in Green.

Class	Random		Sliding Window		Hierarchical SW		Genetic Algorithm	
Name	EDA	GPT-3.5	EDA	GPT-3.5	EDA	GPT-3.5	EDA	GPT-3.5
ENTY	▲0.0021	▲0.0043	△0.0084	▲0.0207	△0.0083	△0.0125	△0.0045	▲0.0056
HUM	▲0.0071	△0.0124	△0.0135	△0.0289	△0.0214	△0.0283	△0.0148	△0.0204
DESC	△0.0125	△0.0150	△0.0189	△0.0422	△0.0261	△0.0353	△0.0188	△0.0259
NUM	△0.0332	△0.0334	△0.0365	△0.0532	△0.0453	△0.0512	△0.0327	△0.0512
LOC	▲0.0199	△0.0212	△0.0452	△0.0523	△0.0490	△0.0544	△0.0266	▲0.0390
ABBR	△0.0552	△0.0552	△0.0635	▲0.0785	△0.0652	▲0.0785	△0.0652	▲0.0785

Our deployment strategy selects the best-performing model for each target class based on specified objectives. We analyzed the maximum improvements in OBA and CBA, comparing them against the M0 and Random Selection baselines, while

also comparing between the EDA and LLM-based AutoGeTS workflows. These comparative results are presented in Tables 10 and 11. Moreover, to understand the dynamics of improvements, we examined the specific contributions of each selection strategy and optimization objective across both workflows.

All selection strategies, across both workflows, achieved significant improvements over the original M0 model's global (OBA) and local (CBA) performances for all semantic classes. Compared with the random selection in the LLM-based Auto-GeTS, SW selection outperformed it by 0.5% in OBA and 2.24% in CBA averaged across six classes. HSW achieved higher improvements of 0.23% in OBA and 1.98% in CBA, while GA demonstrated higher gains of 0.24% in OBA and 1.32% in CBA.

The LLM-based AutoGeTS workflow consistently outperformed the EDA-based approach across all selection strategies. Under random selection, EDA's best models underperformed compared to LLM by 0.06% in OBA and 0.19% in CBA, showing lower performance in 5 out of 6 classes for both metrics. This performance gap expanded with strategic selection methods: SW selection showed EDA performing 0.28% lower in OBA and 1.50% lower in CBA than LLM, with inferior results across all six classes. HSW revealed similar patterns, with EDA showing 0.21% lower OBA and 0.75% lower CBA on average. GA strategy demonstrated comparable trends, with EDA's best models averaging 0.37% below LLM in OBA and 0.97% below in CBA. These findings underline the effectiveness of the AutoGeTS workflow, particularly when enhanced by LLM-based approaches.

F.2 COMPARISON OF OBA & CBA IMPROVEMENTS OVER TIME

We further analyzed the temporal progression of OBA and CBA improvements across all classes, comparing EDA and LLM (GPT-3.5) results within the 1-GPU hour constraint.

Figures 35 and 36 illustrate these comparisons, showing results for all four selection strategies in both approaches. EDA results are represented by solid lines, while LLM results are shown with dotted or dashed lines of matching colors. The mostly lower positioning of EDA trajectories compared to their LLM counterparts demonstrates the superior performance of the LLM-based AutoGeTS workflow across all classes. These results further validate LLM-based AutoGeTS's potential to improve the accuracy and robustness across different semantic classification tasks.

Figure 35: Fixed 1 Hour GPU time (x-axis, in seconds), Comparing on OBA Improvement (y-axis): solid lines are from EDA and dotted lines are from GPT-3.5.

Figure 36: Fixed 1 Hour GPU time (x-axis, in seconds), Comparing on CBA Improvement (y-axis): solid lines are from EDA and dotted lines are from GPT-3.5.