Fundamentals of Machine Learning

Chapter 8: Evaluation Sections 8.4, 8.5

 k-Fold Cross Validation Leave-one-out Cross Validation Bootstrapping Out-of-time Sampling **Performance Measures: Categorical Targets** Confusion Matrix-based Performance Measures Precision. Recall and F₁ Measure Average Class Accuracy Measuring Profit and Loss **Performance Measures: Prediction Scores** Receiver Operating Characteristic Curves Kolmogorov-Smirnov Statistic Measuring Gain and Lift **Performance Measures: Multinomial Targets Performance Measures: Continuous Targets** Basic Measures of Error Domain Independent Measures of Error

Hold-out Sampling

Designing Evaluation Experiments

- **Evaluating Models after Deployment** Monitoring Changes in Performance Measures Monitoring Model Output Distributions Monitoring Descriptive Feature Distribution Changes
- Comparative Experiments Using a Control Group Summary

Designing Evaluation Experiments

Sometimes we use a "validation set" to avoid overfitting during modelling, such as for pruning a decision tree.

(a) A 50:20:30 split

(b) A 40:20:40 split

Figure: Hold-out sampling can divide the full data into training, validation, and test sets.

Fundamental Rule: The data used to evaluate a model must be different from the data used to train it.

Chapter 8B 4 / 82

Figure: Using a validation set to avoid overfitting in iterative machine learning algorithms.

(Example: least squares iterations for training a logistic regression model)

Chapter 8B 5 / 82

10-fold Cross Validation (CV)

Figure: The division of data during the *k*-fold cross validation process. Black rectangles indicate test data, and white spaces indicate training data.

Why k-fold CV: (1) We might not have enough data for hold-out sampling. (2) Reduce effects of a "lucky" split: we happen to put difficult instances in the training data and the easy ones in the test data.

Chapter 8B 7 / 82

	Fold	Confusion	Confusion Matrix			
Example: Predict		Target 'lateral' 'frontal'	Prediction 'lateral' 'frontal' 43 9 10 38	81%		
orientation of x-ra Total of 500 instal	2	Target 'lateral'	Prediction 'lateral' 'frontal' 46 9 3 42	88%		
with 100 in each f	•	Target 'lateral'	Prediction 'lateral' 'frontal' 51 10 8 31	82%		
	4	Target 'lateral' 'frontal'	Prediction 'lateral' 'frontal' 51 8 7 34	85%		
	5	Target 'lateral' 'frontal'	Prediction 'lateral' 'frontal' 46 9 7 38	84%		
Pay attention _ to the sums	Overall	Target 'lateral' 'frontal'	Prediction "lateral" 'frontal' 237 45 35 183	84%		

Fold 1	
Fold 2	
Fold 3	
Fold 4	
Fold 5	
	•
	•
Fold <i>k-2</i>	
Fold <i>k-1</i>	

Figure: The division of data during the **leave-one-out cross validation** process. Black rectangles indicate instances in the test set, and white spaces indicate training data.

LOOCV: Extreme form of k-fold CV where k = number of training instances. We use this method when the amount of data available is too small for k-fold CV.

Chapter 8B 8 / 82

Performance Measures: Categorical Targets

Remember:

Table: The structure of a confusion matrix.

		Prediction positive negative		
Toract	positive	TP	FN	
Target	negative	FP	TN	

Table: A confusion matrix for the set of predictions shown in Table 1 [7].

		Prediction		
		'spam'	'ham'	
Torget	'spam'	6	3	
Target	'ham'	2	9	

$$TPR = \frac{TP}{(TP + FN)} \tag{1}$$

$$TNR = \frac{TN}{(TN + FP)}$$
 (2)

$$\mathsf{FPR} = \frac{\mathit{FP}}{(\mathit{TN} + \mathit{FP})} \tag{3}$$

$$FNR = \frac{FN}{(TP + FN)} \tag{4}$$

TPR: True Positive Rate FNR: False Negative Rate

TPR
$$=\frac{6}{(6+3)} = 0.667$$

TNR $=\frac{9}{(9+2)} = 0.818$
FPR $=\frac{2}{(9+2)} = 0.182$

FNR
$$=\frac{3}{(6+3)} = 0.333$$

$$precision = \frac{TP}{(TP + FP)}$$
 (5)

$$recall = \frac{TP}{(TP + FN)}$$
 (6)

Precision: How "precise" are the results? That is, how many of the positives found by the classifier are truly positive?

Recall: How many "recalls"? That is, how many of the true positives can the classifier find, that is "recall"?

Example: Breast cancer dataset

Positive class: cancer Negative class: healthy

Precision is what percent of the cancer predictions are truly cancers.

Recall is what percent of the cancers did the classifier correctly labeled as cancer.

Chapter 8B 14 / 82

$$\begin{aligned} \text{precision} &= \frac{6}{(6+2)} \ = 0.75 \\ \text{recall} &= \frac{6}{(6+3)} = 0.667 \end{aligned}$$

$$F_{1}\text{-measure} = 2 \times \frac{(\text{precision} \times \text{recall})}{(\text{precision} + \text{recall})}$$
 (7)

F1 measure: harmonic mean of precision and recall

In general, harmonic mean tends toward the smaller values in a list of numbers and therefore it can be less sensitive to large outliers than the arithmetic mean, which tends toward higher values.

er 8B 16 / 82

$$F_{1}\text{-measure} = 2 \times \frac{(\text{precision} \times \text{recall})}{(\text{precision} + \text{recall})}$$
(7)

$$\begin{aligned} \text{F}_{1}\text{-measure} &= 2 \times \frac{\left(\frac{6}{(6+2)} \times \frac{6}{(6+3)}\right)}{\left(\frac{6}{(6+2)} + \frac{6}{(6+3)}\right)} \\ &= 0.706 \end{aligned}$$

Chapter 8B

16 / 82

Table: A confusion matrix for a k-NN model trained on a churn prediction problem. **Precision** = 1/1

Accuracy: 91%

Table: A confusion matrix for a naive Bayes model trained on a churn prediction problem.

Precision = 8/28

			Predicti		
Target	'non-churn'	70	20		
	'churn'	2	8 🛑	Recall = 8/10	

Accuracy: 78%

Chapter 8B 17 / 82

average class accuracy =
$$\frac{1}{|levels(t)|} \sum_{l \in levels(t)} recall_l$$
 (8) (using arithmetic mean)

average class accuracy_{HM} =
$$\frac{1}{\frac{1}{|levels(t)|} \sum_{l \in levels(t)} \frac{1}{\text{recall}_{l}}}$$
(9)

Average class accuracy using harmonic mean:

k-NN model:
$$\frac{1}{\frac{1}{2}\left(\frac{1}{1.0} + \frac{1}{0.1}\right)} = \frac{1}{5.5} = 18.2\%$$

Naive Bayes
$$\frac{1}{\frac{1}{2}\left(\frac{1}{0.778}+\frac{1}{0.800}\right)}=\frac{1}{1.268}=78.873\%$$

Figure: Surfaces generated by calculating (a) the **arithmetic mean** and (b) the **harmonic mean** of all combinations of features A and B that range from 0 to 100.

Chapter 8B 21 / 82

- It is not always correct to treat all outcomes equally
- In these cases, it is useful to take into account the cost of the different outcomes when evaluating models

Chapter 8B 22 / 82

Table: The structure of a **profit matrix**.

		Prediction positive negative		
Target	positive negative	TP _{Profit} FP _{Profit}	FN _{Profit} TN _{Profit}	

Table: The **profit matrix** for the pay-day loan credit scoring problem.

		Prediction		
		'good' 'bad	,	
Target	'good'	140 -140)	
	'bad'	_700 C)	

Table: (a) The confusion matrix for a k-NN model trained on the pay-day loan credit scoring problem (average class accuracy $_{HM} = 83.824\%$); (b) the confusion matrix for a decision tree model trained on the pay-day loan credit scoring problem (average class accuracy $_{HM} = 80.761\%$).

	((a) <i>k</i> -NN r	nodel	(b) decision tree				
	Prediction 'good' 'bad'			Prediction 'good' 'bad				
_	Target	'good'	57	3	Target	'good'	43	17
		'bad'	10	30		'bad'	3	37

pter 8B 25 / 82

Table: (a) Overall profit for the k-NN model using the profit matrix in Table 4 ^[25] and the **confusion matrix** in Table 5(a) ^[26]; (b) overall profit for the decision tree model using the profit matrix in Table 4 ^[25] and the **confusion matrix** in Table 5(b) ^[26].

	(a) k-NN model				(b) decision tree			
Predic			tion			Predic	ction	
		'good'	'bad'			'good'	'bad'	
Target	'good'	7 980	-420	Target	'good'	6 020	-2380	
iaigei	'bad'	-7000	0	larget	'bad'	-2100	0	
	Profit		560	-	Profit		1 540	

Chapter 8B 26 / 82

Performance Measures: Prediction Scores

27 / 82

 All our classification prediction models return a score which is then thresholded.

Example

$$\textit{threshold(score}, 0.5) = \begin{cases} \textit{positive} & \textit{if score} \geq 0.5 \\ \textit{negative} & \textit{otherwise} \end{cases} \tag{10}$$

Chapter 8B 28 / 82

Table: A sample test set with model predictions and scores (threshold= 0.5.

		Pred-		Out-			Pred-	
	_		_			_		_
ID	Target	iction	Score	come	ID	Target	iction	Score
7	ham	ham	0.001	TN	- 5	ham	ham	0.302
11	ham	ham	0.003	TN	14	ham	ham	0.348
15	ham	ham	0.059	TN	17	ham	spam	0.657
13	ham	ham	0.064	TN	8	spam	spam	0.676
19	ham	ham	0.094	TN	6	spam	spam	0.719
12	spam	ham	0.160	FN	10	spam	spam	0.781
2	spam	ham	0.184	FN	18	spam	spam	0.833
3	ham	ham	0.226	TN	20	ham	spam	0.877
16	ham	ham	0.246	TN	9	spam	spam	0.960
1	spam	ham	0.293	FN	4	spam	spam	0.963

Chapter 8B 29 / 82

- We have ordered the examples by score so the threshold is apparent in the predictions.
- Note that, in general, instances that actually should get a
 prediction of 'ham' generally have a low score, and those that
 should get a prediction of 'spam' generally get a high score.

Chapter 8B 30 / 82

- There are a number of performance measures that use this ability of a model to rank instances that should get predictions of one target level higher than the other, to assess how well the model is performing.
- The basis of most of these approaches is measuring how well the distributions of scores produced by the model for different target levels are separated

Figure: Prediction score distributions for two different prediction models. The distributions in (a) are much better separated than those in (b).

Chapter 8B 32 / 82

Figure: Prediction score distributions for the (a) 'spam' and (b) 'ham' target levels based on the data in Table 7 [30].

Chapter 8B 33 / 82

- The receiver operating characteristic index (ROC index), which is based on the receiver operating characteristic curve (ROC curve), is a widely used performance measure that is calculated using prediction scores.
- TPR and TNR are intrinsically tied to the threshold used to convert prediction scores into target levels.
- This threshold can be changed, however, which leads to different predictions and a different confusion matrix.

Chapter 8B 34 / 82

Table: Confusion matrices for the set of predictions shown in Table 7 ^[30] using (a) a prediction score threshold of 0.75 and (b) a prediction score threshold of 0.25.

(a	ı) Thresho	ld: 0.75		(b) Threshold: 0.25				
Prediction 'spam' 'ham'						Predic		
Target	'spam'	5	5	Target	'spam'	7	2	
J	'ham'	∣ 1	10	•	'ham'	4	1	

Chapter 8B 35 / 82

	·		Pred.	Pred.	Pred.	Pred.	Pred.
ID	Target	Score	(0.10)	(0.25)	(0.50)	(0.75)	(0.90)
7	ham	0.001	ham	ham	ham	ham	ham
11	ham	0.003	ham	ham	ham	ham	ham
15	ham	0.059	ham	ham	ham	ham	ham
13	ham	0.064	ham	ham	ham	ham	ham
19	ham	0.094	ham	ham	ham	ham	ham
12	spam	0.160	spam	ham	ham	ham	ham
2	spam	0.184	spam	ham	ham	ham	ham
3	ham	0.226	spam	ham	ham	ham	ham
16	ham	0.246	spam	ham	ham	ham	ham
1	spam	0.293	spam	spam	ham	ham	ham
5	ham	0.302	spam	spam	ham	ham	ham
14	ham	0.348	spam	spam	ham	ham	ham
17	ham	0.657	spam	spam	spam	ham	ham
8	spam	0.676	spam	spam	spam	ham	ham
6	spam	0.719	spam	spam	spam	ham	ham
10	spam	0.781	spam	spam	spam	spam	ham
18	spam	0.833	spam	spam	spam	spam	ham
20	ham	0.877	spam	spam	spam	spam	ham
9	spam	0.960	spam	spam	spam	spam	spam
4	spam	0.963	spam	spam	spam	spam	spam
		fication Rate	0.300	0.300	0.250	0.300	0.350
		e Rate (TPR)	1.000	0.778	0.667	0.444	0.222
	•	ve rate (TNR)	0.455	0.636	0.818	0.909	1.000
		e Rate (FPR)	0.545	0.364	0.182	0.091	0.000
Fals	se Negativ	e Rate (FNR)	0.000	0.222	0.333	0.556	0.778

- Note: as the threshold increases TPR decreases and TNR increases (and vice versa).
- Capturing this tradeoff is the basis of the ROC curve.

Chapter 8B 37 / 82

Figure: (a) The changing values of TPR and TNR for the test data shown in Table 36 ^[37] as the threshold is altered; (b) points in ROC space for thresholds of 0.25, 0.5, and 0.75.

Chapter 8B 38 / 82

Figure: (a) A complete ROC curve for the email classification example; (b) a selection of ROC curves for different models trained on the same prediction task.

Chapter 8B 39 / 82

Area under the ROC curve is called "AUC" and it is a fundamental performance metric for binary classification problems. Higher AUC is better.

- We can also calculate a single performance measure from an ROC curve
- The ROC Index measures the area underneath an ROC curve.

ROC index =

$$\sum_{i=2}^{|\mathsf{T}|} \frac{(FPR(\mathsf{T}[i]) - FPR(\mathsf{T}[i-1])) \times (TPR(\mathsf{T}[i]) + TPR(\mathsf{T}[i-1]))}{2} \tag{11}$$

Interpretation of AUC: Say AUC is 97%. This means that if we present two observations to the classifier, one positive one negative, the classifier will find make the correct decision 97% of the time.

Most important property of AUC is that it is robust to the "class imbalance problem" where one class (usually the negative class) dominates the other class, such as internet users who click on a particular ad.

Chapter 8B 40 / 82

Performance Measures: Multinomial Targets

Table: The structure of a confusion matrix for a multinomial prediction problem with *I* target levels.

		level1	Recall				
	level1	-	-	-		-	-
	level2	-	-	-		-	-
Target	level3	-	-	-		-	-
_	:				٠.		:
	levell	-	-	-		-	-
	Precision	-	-	-		-	

$$precision(I) = \frac{TP(I)}{TP(I) + FP(I)}$$

$$recall(I) = \frac{TP(I)}{TP(I) + FN(I)}$$
(20)

$$recall(I) = \frac{TP(I)}{TP(I) + FN(I)}$$
 (21)

Table: A sample test set with model predictions for a bacterial species identification problem.

ID	Target	Prediction	ID	Target	Prediction	
1	durionis	fructosus	16	ficulneus	ficulneus	
2	ficulneus	fructosus	17	ficulneus	ficulneus	
3	fructosus	fructosus	18	fructosus	fructosus	
4	ficulneus	ficulneus	19	durionis	durionis	
5	durionis	durionis	20	fructosus	fructosus	
6	pseudo.	pseudo.	21	fructosus	fructosus	
7	durionis	fructosus	22	durionis	durionis	
8	ficulneus	ficulneus	23	fructosus	fructosus	
9	pseudo.	pseudo.	24	pseudo.	fructosus	
10	pseudo.	fructosus	25	durionis	durionis	
11	fructosus	fructosus	26	pseudo.	pseudo.	
12	ficulneus	ficulneus	27	fructosus	fructosus	
13	durionis	durionis	28	ficulneus	ficulneus	
14	fructosus	fructosus	29	fructosus	fructosus	
15	fructosus	ficulneus	30	fructosus	fructosus	

pter 8B 60 / 82

Table: A confusion matrix for a model trained on the bacterial species identification problem.

			Recall			
		'durionis'	necali			
	'durionis'	5	0	2	0	0.714
Toward	'ficulneus'	0	6	1	0	0.857
Target	'fructosus'	0	1	10	0	0.909
	'pseudo.'	0	0	2	3	0.600
	Precision	1.000	0.857	0.667	1.000	

• The average class accuracy_{HM} for this problem is:

$$\frac{1}{\frac{1}{4}\left(\frac{1}{0.714} + \frac{1}{0.857} + \frac{1}{0.909} + \frac{1}{0.600}\right)} = \frac{1}{1.333} = 75.000\%$$

Performance Measures: Continuous Targets

sum of squared errors =
$$\frac{1}{2} \sum_{i=1}^{n} (t_i - \mathbb{M}(\mathbf{d}_i))^2$$
 (22)

ti is the true target feature value for the i-th instance, M(di) is the model's prediction.

respectively. The prediction
$$\sum_{i=1}^{n}(t_{i}-\mathbb{M}(\mathbf{d}_{i}))^{2}$$
 mean squared error $=\frac{\sum_{i=1}^{n}(t_{i}-\mathbb{M}(\mathbf{d}_{i}))^{2}}{n}$ (23)

root mean squared error =
$$\sqrt{\frac{\sum_{i=1}^{n} (t_i - \mathbb{M}(\mathbf{d}_i))^2}{n}}$$
 (24)

A nice feature of RMSE is that its value is in the same unit as the target value, e.g., meters.

lue, e.g., meters.
$$\sum_{i=1}^{n} abs(t_i - \mathbb{M}(\mathbf{d}_i))$$
 mean absolute error $=\frac{\sum_{i=1}^{n} abs(t_i - \mathbb{M}(\mathbf{d}_i))}{n}$

Chapter 8B 64 / 82

(25)

		Linear Reg	ression	k-NN	1
ID	Target	Prediction	Error	Prediction	Error
1	10.502	10.730	0.228	12.240	1.738
2	18.990	17.578	-1.412	21.000	2.010
3	20.000	21.760	1.760	16.973	-3.027
4	6.883	7.001	0.118	7.543	0.660
5	5.351	5.244	-0.107	8.383	3.032
6	11.120	10.842	-0.278	10.228	-0.892
7	11.420	10.913	-0.507	12.921	1.500
8	4.836	7.401	2.565	7.588	2.752
9	8.177	8.227	0.050	9.277	1.100
10	19.009	16.667	-2.341	21.000	1.991
11	13.282	14.424	1.142	15.496	2.214
12	8.689	9.874	1.185	5.724	-2.965
13	18.050	19.503	1.453	16.449	-1.601
14	5.388	7.020	1.632	6.640	1.252
15	10.646	10.358	-0.288	5.840	-4.805
16	19.612	16.219	-3.393	18.965	-0.646
17	10.576	10.680	0.104	8.941	-1.634
18	12.934	14.337	1.403	12.484	-0.451
19	10.492	10.366	-0.126	13.021	2.529
20	13.439	14.035	0.596	10.920	-2.519
21	9.849	9.821	-0.029	9.920	0.071
22	18.045	16.639	-1.406	18.526	0.482
23	6.413	7.225	0.813	7.719	1.307
24	9.522	9.565	0.043	8.934	-0.588
25	12.083	13.048	0.965	11.241	-0.842
26	10.104	10.085	-0.020	10.010	-0.095
27	8.924	9.048	0.124	8.157	-0.767
28	10.636	10.876	0.239	13.409	2.773
29	5.457	4.080	-1.376	9.684	4.228
30	3.538	7.090	3.551	5.553	2.014
	MSE		1.905		4.394
	RMSE		1.380		2.096
	MAE		0.975		1.750
	R^2		0.889		0.776

R-squared measure is domain-independent. It compares performance against an imaginary model that always predicts the "average value", denoted by t-bar:

$$R^2 = 1 - \frac{\text{sum of squared errors}}{\text{total sum of squares}}$$
 (26)

total sum of squares =
$$\frac{1}{2} \sum_{i=1}^{n} (t_i - \overline{t})^2$$
 (27)

Interpretation: R-squared times 100 is the percentage of variation in the target feature that is explained by the descriptive features in the model.

Chapter 8B 66 / 82

Evaluating Models after Deployment

To monitor the on-going performance of a model, we need a signal that indicates that something has changed. There are three sources from which we can extract such a signal:

- The performance of the model measured using appropriate performance measures
- The distributions of the outputs of a model
- The distributions of the descriptive features in query instances presented to the model

Chapter 8B 68 / 82

- The simplest way to get a signal that concept drift has occurred is to repeatedly evaluate models with the same performance measures used to evaluate them before deployment.
- We can calculate performance measures for a deployed model and compare these to the performance achieved in evaluations before the model was deployed.
- If the performance changes significantly, this is a strong indication that concept drift has occurred and that the model has gone stale.

Moral of the story: Models tend to "wear out" over time and they will need to be re-trained.

Chapter 8B 69 / 82

 Although monitoring changes in the performance of a model is the easiest way to tell whether it has gone stale, this method makes the rather large assumption that the correct target feature value for a query instance will be made available shortly after the query has been presented to a deployed model.

Example: In credit loan scoring, whether a customer is "good" is understood only after years of on-time payments.

Chapter 8B 70 / 82

 An alternative to using changing model performance is to use changes in the distribution of model outputs as a signal for concept drift.

$$\text{stability index} = \sum_{l \in \textit{levels}(t)} \left(\left(\frac{|\mathcal{A}_{t=l}|}{|\mathcal{A}|} - \frac{|\mathcal{B}_{t=l}|}{|\mathcal{B}|} \right) \times \textit{log}_{e} \left(\frac{|\mathcal{A}_{t=l}|}{|\mathcal{A}|} / \frac{|\mathcal{B}_{t=l}|}{|\mathcal{B}|} \right) \right) \tag{28}$$

Chapter 8B 71 / 82

In general,

- stability index < 0.1, then the distribution of the newly collected test set is broadly similar to the distribution in the original test set.
- stability index is between 0.1 and 0.25, then some change has occurred and further investigation may be useful.
- stability index > 0.25 suggests that a significant change has occurred and corrective action is required.

Chapter 8B 72 / 82

Table: Calculating the **stability index** for the bacterial species identification problem given new test data for two periods after model deployment. The frequency and percentage of each target level are shown for the original test set and for two samples collected after deployment. The column marked SI_t shows the different parts of the stability index sum based on Equation (28)^[72].

	Orig	inal	Ne	w Sample	e 1	Ne	w Sample	e 2
Target	Count	%	Count	%	SI_t	Count	%	SI_t
'durionis'	7	0.233	12	0.267	0.004	12	0.200	0.005
'ficulneus'	7	0.233	8	0.178	0.015	9	0.150	0.037
'fructosus'	11	0.367	16	0.356	0.000	14	0.233	0.060
'pseudo.'	5	0.167	9	0.200	0.006	25	0.417	0.229
Sum	30		45		0.026	60		0.331

Stability index calculations for New Sample 1:

$$\begin{array}{ll} \text{stability index} & = & \left(\frac{7}{30} - \frac{12}{45}\right) \times log_{e}\left(\frac{7}{30} / \frac{12}{45}\right) \\ & + \left(\frac{7}{30} - \frac{8}{45}\right) \times log_{e}\left(\frac{7}{30} / \frac{8}{45}\right) \\ & + \left(\frac{11}{30} - \frac{16}{45}\right) \times log_{e}\left(\frac{11}{30} / \frac{16}{45}\right) \\ & + \left(\frac{5}{30} - \frac{9}{45}\right) \times log_{e}\left(\frac{5}{30} / \frac{9}{45}\right) \\ & = & 0.026 \end{array}$$

 We use control groups not to evaluate the predictive power of the models themselves, but rather to evaluate how good they are at helping with the business problem when they are deployed.

> Doing a good job with the predictions is not enough. The real question is:

> > Do these predictions translate to Dollars?

Chapter 8B 78 / 82

Table: The number of customers who left the mobile phone network operator each week during the comparative experiment from both the control group (random selection) and the treatment group (model selection).

	Control Group	Treatment Group		
Week	(Random Selection)	(Model Selection)		
1	21	23		
2	18	15		
3	28	18		
4	19	20		
5	18	15		
6	17	17		
7	23	18		
8	24	20		
9	19	18		
10	20	19		
11	18	13		
12	21	16		
Mean	20.500	17.667		
Std. Dev.	3.177	2.708		

 These figures show that, on average, fewer customers churn when the churn prediction model is used to select which customers to call.

Here, 1000 random customers were selected for the Control Group for each week from a pool of 400,000 customers.

Likewise, the Treatment Group contains 1000 customers with the highest churn risk scores for each week.

Each group of customers were contacted by phone by the customer service centre and churners were recorded.

Chapter 8B 80 / 82