Lecture 30: Fitting Gaussian mixture models

Ciaran Evans

Last time

Last time: Gaussian mixture model

- ightharpoonup Observe data $X_1, ..., X_n$
- Assume each observation i comes from one of k groups. Let Z_i ∈ {1, ..., k} denote the group assignment
 The group Z is an unobserved (latent) variable

Model:

- $P(Z_i = j) = \lambda_j$
- $\blacktriangleright X_i | (Z_i = j) \sim N(\mu_j, \sigma_j^2)$

Last time: Gaussian mixture model

Group probabilities

We never get to see the true group labels Z_i . Instead, we estimate the **probability** of belonging to each group.

Question: If $X_i = 81$, do you think it is more likely that $Z_i = 1$ or $Z_i = 2$?

Group probabilities

We never get to see the true group labels Z_i . Instead, we estimate the **probability** of belonging to each group.

Question: If $X_i = 52$, do you think it is more likely that $Z_i = 1$ or $Z_i = 2$?

Group probabilities

We never get to see the true group labels Z_i . Instead, we estimate the **probability** of belonging to each group.

Question: If $X_i = 65$, do you think it is more likely that $Z_i = 1$ or $Z_i = 2$?

Gaussian mixture model: posterior probabilities

Model:
$$P(Z_i = j) = \lambda_j$$
 $X_i | (Z_i = j) \sim N(\mu_j, \sigma_j^2)$

Parameters: $\lambda = (\lambda_1, ..., \lambda_k), \ \mu = (\mu_1, ..., \mu_k), \ \sigma = (\sigma_1, ..., \sigma_k)$

Given λ , μ , and σ , we would like to calculate the **posterior probability** $P(Z_i = j | X_i)$

- ▶ If we know **true** group labels Z_i , it is easy to estimate λ , μ , σ
- ▶ We don't have the true Z_i , but we **do** have $P(Z_i = j | X_i)$
- ▶ How do we estimate λ , μ , σ using the $P(Z_i = j | X_i)$?

Example: Suppose we observe 6 points:

$$X$$
 | 45 50 65 66 80 90 $P(Z=2|X)$ | 1 1 0 0 0 0

Question: What is your estimate $\hat{\lambda}_2 = \hat{P}(Z=2)$?

- ▶ If we know **true** group labels Z_i , it is easy to estimate λ , μ , σ
- ▶ We don't have the true Z_i , but we **do** have $P(Z_i = j | X_i)$
- ▶ How do we estimate λ , μ , σ using the $P(Z_i = j | X_i)$?

Example: Suppose we observe 6 points:

$$X$$
 | 45 50 65 66 80 90 $P(Z = 2|X)$ | 1 0.75 0.25 0 0 0

Question: What is your estimate $\hat{\lambda}_2 = \hat{P}(Z=2)$?

- ▶ If we know **true** group labels Z_i , it is easy to estimate λ , μ , σ
- ▶ We don't have the true Z_i , but we **do** have $P(Z_i = j | X_i)$
- ▶ How do we estimate λ , μ , σ using the $P(Z_i = j | X_i)$?

Example: Suppose we observe 6 points:

$$X$$
 | 45 50 65 66 80 90 $P(Z=2|X)$ | 1 1 0 0 0 0

Question: What is your estimate $\widehat{\mu}_2$?

- ▶ If we know **true** group labels Z_i , it is easy to estimate λ , μ , σ
- ▶ We don't have the true Z_i , but we **do** have $P(Z_i = j | X_i)$
- ▶ How do we estimate λ , μ , σ using the $P(Z_i = j | X_i)$?

Example: Suppose we observe 6 points:

$$egin{array}{c|ccccc} X & 45 & 50 & 65 & 66 & 80 & 90 \\ P(Z=2|X) & 1 & 0.75 & 0.25 & 0 & 0 & 0 \\ \end{array}$$

Question: What is your estimate $\widehat{\mu}_2$?

Posterior probabilities and parameter estimation

▶ **If** we know the parameters λ , μ , σ , we can calculate posterior probabilities:

$$P(Z_i = j | X_i) = \frac{\lambda_j f(X_i | Z_i = j)}{\lambda_1 f(X_i | Z_i = 1) + \dots + \lambda_k f(X_i | Z_i = k)}$$

▶ If we know the posterior probabilities, we can estimate the model parameters λ , μ , and σ :

$$\widehat{\lambda}_{j} = \frac{1}{n} \sum_{i=1}^{n} P(Z_{i} = j | X_{i})$$

$$\widehat{\mu}_{j} = \frac{\sum_{i=1}^{n} X_{i} P(Z_{i} = j | X_{i})}{\sum_{i=1}^{n} P(Z_{i} = j | X_{i})}$$

$$\widehat{\sigma}_{j} = \sqrt{\frac{\sum_{i=1}^{n} (X_{i} - \widehat{\mu}_{j})^{2} P(Z_{i} = j | X_{i})}{\sum_{i=1}^{n} P(Z_{i} = j | X_{i})}}$$

Putting everything together

Model:
$$P(Z_i = j) = \lambda_j$$
 $X_i | (Z_i = j) \sim N(\mu_j, \sigma_j^2)$
Parameters: $\lambda = (\lambda_1, ..., \lambda_k), \ \mu = (\mu_1, ..., \mu_k), \ \sigma = (\sigma_1, ..., \sigma_k)$

Estimation:

- 1. Initialize parameter guesses $\lambda^{(0)}$, $\mu^{(0)}$, $\sigma^{(0)}$
- 2. Given current parameter estimates, compute $P^{(0)}(Z_i = j|X_i)$ for all i, j
- 3. Given current posterior probabilities $P^{(0)}(Z_i = j|X_i)$, update parameter estimates to $\lambda^{(1)}$, $\mu^{(1)}$, $\sigma^{(1)}$
- 4. Iterate: repeat steps 2–3 until convergence

Your turn

Implement the algorithm to fit a Gaussian mixture model:

 $https://sta379\text{-}s25.github.io/practice_questions/pq_30.html\\$

- Start in class
- Welcome to work with a neighbor
- ▶ Solutions will be posted later on the course website