Stochastic Processes 15. Distributions of Markov processes

Peter Pfaffelhuber

December 11, 2024

FDDs for a Markov process

▶ Markov kernels $\mu_{s,t}$ and transition operator $T_{s,t}$ of \mathcal{X} are

$$\mu_{s,t}(X_s, B) := \mathbf{P}(X_t \in B | X_s) = \mathbf{P}(X_t \in B | \mathcal{F}_s),$$

$$T_{s,t}f(x) := \mathbf{E}[f(X_t) | X_s = x] = \int \mu_{s,t}(x, dy)f(y).$$

$$(\mu \otimes \nu)(x, A \times B) = \int \mu(x, dy)\nu(y, dz)1_{y \in A, z \in B},$$

$$(\mu\nu)(x, A) = (\mu \otimes \nu)(x, E \times A).$$

FDDs for a Markov process

Lemma 15.15: $\mathcal{X} = (X_t)_{t \in I}$ Markov with $X_t \sim \nu_t$ for distributions ν_t on E and Markov kernels $(\mu_{s,t})_{s \leq t}$. Then, for $t_0 < \dots < t_n$

$$(X_{t_0},...X_{t_n}) \sim \nu_{t_0} \otimes \mu_{t_0,t_1} \otimes \cdots \otimes \mu_{t_{n-1},t_n}$$

and

$$\mathbf{P}((X_{t_1},...,X_{t_n}) \in \cdot | \mathcal{F}_{t_0}) = (\mu_{t_0,t_1} \otimes \cdots \otimes \mu_{t_{n-1},t_n})(X_{t_0},\cdot)$$

Chapman-Kolmogorov equations

 $ightharpoonup \mathcal{X}$ Markov with $X_t \sim \nu_t$ for distributions ν_t on E, Markov kernels $(\mu_{s,t})_{s \leq t}$ and transition operators $(T_{s,t})_{s \leq t}$. Then,

$$\mu_{s,t}\mu_{t,u} = \mu_{s,u}, \qquad s \leq t \leq u$$

$$(T_{s,t}(T_{t,u}f))(X_s) = (T_{s,u}f)(X_s), \qquad f \in \mathcal{B}(E).$$

▶ Proof: For ν_s -almost all X_s for $A \in \mathcal{B}(E)$ and for $f \in \mathcal{B}(E)$

$$\mu_{s,u}(X_s, A) = \mathbf{P}(X_u \in A | \mathcal{F}_s) = \mathbf{P}((X_t, X_u) \in E \times A | \mathcal{F}_s)$$

$$= (\mu_{s,t} \otimes \mu_{t,u})(X_s, E \times A) = (\mu_{s,t}\mu_{t,u})(X_s, A),$$

$$(\mathcal{T}_{s,u}f)(X_s) = \mathbf{E}[f(X_u)|\mathcal{F}_s] = \mathbf{E}[\mathbf{E}[f(X_u)|\mathcal{F}_t]|\mathcal{F}_s]$$

$$= \mathbf{E}[(\mathcal{T}_{t,u}f)(X_t)|\mathcal{F}_s] = (\mathcal{T}_{s,t}(\mathcal{T}_{t,u}f))(X_s).$$

Existence of Markov processes

- I index set with min I=0, $\nu_0\in\mathcal{P}(I)$. Assume $(\mu_{s,t})_{s\leq t}$ is a family of Markov kernels with $\mu_{s,t}\mu_{t,u}=\mu_{s,u}$ $((T_{s,t})_{s\leq t}$ is a family of transition operators with with $T_{s,t}T_{t,u}=T_{s,u}$) for all $s\leq t\leq u$. Then there is a Markov process with ν_0 and kernels $(\mu_{s,t})_{s\leq t}$ (and operators $(T_{s,t})_{s\leq t}$).
- Proof: It is sufficient to show the first assertion since $(T_{s,t}f)(x) := \int \mu_{s,t}(x,dy)f(y), \qquad \mu_{s,t}(x,A) = (T_{s,t}1_A)(x).$

The family $(\nu_{t_1,\ldots,t_n})_{\{t_1,\ldots,t_n\}\subseteq_f I}$ given by

$$\nu_{t_1,\ldots,t_n}=\nu_0\mu_{0,t_1}\otimes\mu_{t_1,t_2}\otimes\cdots\otimes\mu_{t_{n-1},t_n}.$$

is projective.

Existence of Markov processes

- I index set with min I=0, $\nu_0\in\mathcal{P}(I)$. Assume $(\mu_{s,t})_{s\leq t}$ is a family of Markov kernels with $\mu_{s,t}\mu_{t,u}=\mu_{s,u}$ $((T_{s,t})_{s\leq t}$ is a family of transition operators with with $T_{s,t}T_{t,u}=T_{s,u}$) for all $s\leq t\leq u$. Then there is a Markov process with ν_0 and kernels $(\mu_{s,t})_{s\leq t}$ (and operators $(T_{s,t})_{s\leq t}$).
- ▶ To show: \mathcal{X} is Markov. Let $A \in \mathcal{B}(E^J)$ for some $J \subseteq_f I$, max $J = s \le t$, $B \in \mathcal{B}(E)$. Then,

$$\mathbf{P}((X_r)_{r\in J}\in A, X_t\in B) = \nu_{J\cup\{t\}}(A\times B)$$
$$= \mathbf{E}[\mu_{s,t}(X_s, B), (X_r)_{r\in J}\in A].$$

If $(\mathcal{F}_t)_{t\in I}$ is the filtration generated by \mathcal{X} , then for $A\in\mathcal{F}_s$

$$P(X_t \in B, A) = E[\mu_{s,t}(X_s, B), A].$$

Distribution of Markov processes

Corollary 15.18: ν , $(\mu_{s,t})_{s \leq t}$ as in Theorem 15.17. Then, there is a probability distribution \mathbf{P}_{ν} on $\mathcal{B}(E)^I$, such that \mathbf{P}_{ν} is the distribution of the Markov process with transition kernels $(\mu_{s,t})_{s \leq t}$ and initial distribution ν . Furthermore, $x \mapsto \mathbf{P}_x := \mathbf{P}_{\delta_x}$ defines a transition kernel from E to $\mathcal{B}(E)^I$ and

$$\mathbf{P}_{\nu} = \int \nu(dx) \mathbf{P}_{x}.$$