An Attempt at Implementing the MMFF94 for Linear Alkanes.

CHEM179: Final Project

Ivan Nygaard

Merck Molecular Force Field. I. Basis, Form, Scope, Parameterization, and Performance of MMFF94*

THOMAS A. HALGREN

Department of Molecular Design and Diversity, Merck Research Laboratories, Rahway, New Jersey 07065

Received 20 March, 1995; accepted 31 August, 1995

$$\vec{F} = -\nabla U(\vec{r})$$

Build lists:

-Neighbors

- -Bond lengths
- -Bond angles
- -Out of plane angles
- -Torsion angles
- -Interacting atoms

$$E_{MMFF} = \sum EB_{ij} + \sum EA_{ijk} + \sum EBA_{ijk} + \sum EOOP_{ijk;l} + \sum ET_{ijkl} + \sum EvdW_{ij} + \sum EQ_{ij}$$

$$EB_{ij} = 143.9325 \frac{k_{b_{IJ}}}{2} \Delta r_{ij}^2 \left(1 + cs \Delta r_{ij} + \frac{7}{12} cs^2 \Delta r_{ij}^2 \right)$$

$$EA_{ijk} = 0.043844k_{a_{IJK}}\Delta\vartheta_{ijk}^2(1 + cb\Delta\vartheta_{ijk})$$

$$EBA_{ijk} = 2.51210(kba_{IJK}\Delta r_{ij} + kba_{KIJ}\Delta r_{kj})\Delta \vartheta_{ijk}$$

$$EOOP_{ijk;l} = 0.043844 \frac{koop_{IJK:L}}{2} \chi^2_{ijk;l}$$

$$ET_{ijkl} = 0.5 \left[V_1 (1 + \cos \Phi) + V_2 (1 - \cos 2\Phi) + V_3 (1 + \cos 3\Phi) \right]$$

$$EvdW_{ij} = \varepsilon_{IJ} \left(\frac{1.07R_{IJ}^*}{R_{ij} + 0.07R_{IJ}^*} \right)^7 \left[\frac{1.12(R_{IJ}^*)^7}{R_{ij}^7 + 0.12(R_{IJ}^*)^7} - 2 \right]$$

$$R_{II}^* = A_I \alpha_I^{1/4}$$
 $\gamma_{IJ} = \frac{R_{II}^* - R_{JJ}^*}{R_{II}^* + R_{JJ}^*}$

$$R_{IJ}^* = 0.5(R_{II}^* + R_{JJ}^*) [1 + 0.2(1 - \exp(-12\gamma_{IJ}^2))]$$

$$\varepsilon_{IJ} = 181.16G_I G_J \alpha_I \alpha_J \left(\frac{1}{(\alpha_I/N_I)^{1/2} + (\alpha_J/N_J)^{1/2}} \right) \frac{1}{(R_{IJ}^*)^6}$$

$$EQ_{ij} = 332.0716 \frac{q_i q_j}{D(R_{ij} + \delta)^n}$$

$$q_i = q_i^0 + \sum_{i=1}^n \omega_{KI}$$

$$q_i = q_i^0 + \sum \omega_{KI}$$

$$\omega_{KI} = \rho_I - \rho_K$$

From .xyz to bonds and angles

$$r_{ij} = \sqrt{(x_i - x_j)^2 + (y_i - y_j)^2 + (z_i - z_j)^2}$$

$$\cos\vartheta=\mathbf{e}_{ji}\cdot\mathbf{e}_{jk}$$

$$\cos \tau = \frac{(\mathbf{e}_{ji} \times \mathbf{e}_{jk}) \cdot (\mathbf{e}_{jk} \times \mathbf{e}_{kl})}{\sin \vartheta_{ijk} \sin \vartheta_{jkl}}$$

Workflow


```
/*
STRUCTS AND CLASSES USED TO REPRESENT THE MOLECULAR TOPOLOGY:
*/
struct Bond {
          double distance;
          int atom1;
          int atom2;
};

class Molecule {
public:
          // Attributes
          int nr_atoms;
          arma::vec atom_vec;
          arma::vec enumerated_atom_vec;
          arma::wet enumerated_atom_vec;
          std::vector<std::pair<int, arma::vec>> neighbor_vec;
          std::vector<sbod> bond_vec;
          std::vector<std::pair<double, std::array<int, 3>>> bond_angles;
          std::vector<std::pair<double, std::array<int, 4>>> torsional_angles;
          std::vector<std::pair<double, std::array<int, 4>>> torsional_angles;
          std::vector<std::pair<int, int>> interacting_atoms;
```

A First Challenge

TABLE II.

(continued)						
Conformational comparison	Relative energy, enthalpy, or free energy					
	Exp.	"MP4" ^a	MMFF94	MM2X	ММЗ	
Isopropylamine, Ip — N — C — H anti-gauche	0.45 ^t	0.50	0.45	0.10	0.22 ^t	
Cyclohexylamine, ax -eq	1.1 -1.8 ^u	0.69	0.67	1.17		
Piperidine, ax -eq	0.4 ^t	0.78	0.90	-0.30	0.29^{t}	
N-methylpiperidine, ax -eq	3.15 ^v	3.58	3.28	2.23	_	
Ethanol, gauche -anti	0.12, w 0.4 ×	-0.06	0.18	0.62	0.40 ^s	
Isopropanol, H — C — O — H anti-gauche	0.28 ^y	0.20	0.17	0.60	_	
Cyclohexanol, ax C ₁ -eq C ₁	0.52 ^s	0.33	0.32	0.75	0.74 ^s	
Methyl ethyl ether, gauche -anti	1.5 ^s	1.41	1.50	1.75	1.49 ^s	
Methyl vinyl ether, C=C-O-C skew-cis	1.7 ^z	2.27	2.22	_	2.44 ^z	
Diethyl ether, (C — C — O — C a, C — O — C — C g) – (C — C — O — C a, C — O — C — C a)	1.1 ^s	1.48	1.52	1.77	1.51 ^s	
Methoxycyclohexane, ax C₁ -eq C₁	0.45 ^{aa}	-0.01	0.41	0.74	0.77 ^s	
Butane, gauche-anti	0.75, ^{bb} 0.97°	0.65	0.78	0.36	0.81 ^{bb}	
Cyclohexane, twist -boat -chair	5.5 ^{cc}	6.14	5.93	5.52	5.76 ^{bb}	
Methylcyclohexane, ax -eq	1.75 ^{dd}	1.69	1.37	1.86	1.77 ^{bb}	
2,3-Dimethylbutane, $H - C_2 - C_3 - H$ gauche $-H - C_2 - C_3 - H$ anti	0.05, 0.17 ^{dd}	0.04	-0.23	0.17	0.38 ^{bb}	
Cyclooctane, D _{4d} –C _s boat chair	1.9 ^{bb}	2.00	1.44	0.97	1.12bb	
Cyclononane, [255] C ₂ -[333] D ₃	0.95 ^{ee}	0.98	1.21	0.67	0.84bb	
1-Butene, cis-skew	0.53 ^{ff}	0.26	0.26	1.10	0.69ff	
2-Butene, cistrans	1.0 ^{ff}	1.27	1.35	1.55		
(rms value), rms deviation vs. exp. rms deviation vs. "MP4SDQ / TZP"	(2.33)	0.37 ⁹⁹	0.38 ⁹⁹ 0.33	0.84 ^{gg} 0.81	0.37 ^{hh} 0.49	

a"MP4SDQ / TZP" calculations (see text).

Anti

My code: 0.807905 kcal/mol

Gauche

Table 1 Conformational energies and barrier heights of *n*-butane

Method	Energies (kcal/mol)			
	trans	gauche		
HF/6-31G*//HF/6-31G*	0.0	0.95		
MP2/6-31G*//MP2/6-31G*	0.0	0.68		
MP3/6-31G * //MP2/6-31G *	0.0	0.74		
MP4(SDTQ)/6-31G * //MP2/6-31G *	0.0	0.69		
CCSD(T)/6-31G * //MP2/6-31G *	0.0	0.70		
QCISD(T)/6-31G*//MP2/6-31G*	0.0	0.70		
BLYP/6-31G*//MP2/6-31G*	0.0	0.68		
BLYP/6-31G*//BLYP/6-31G*	0.0	0.85		
electron diffraction c	0.0	0.75 ± 0.24		
IR in solid neon d	0.0	< 0.73		

^a Internal rotational barrier height between the trans and the gauche rotamers.

^bAverage of values cited in: D. M. Schnur, Y. H. Yuh, and D. R. Dalton, J. Org. Chem., 54, 3779 –3785 (1989).

^dRef. 33.

eRef. 34. 'As cited in ref. 35.

⁹B. P. van Eijc and F. B. van Duijneveldt, *J. Mol. Struct.*, **39**, 157 –163 (1977).

^hJ. R. Durig, D. A. C. Compton, and A. Q. McArver, J. Chem. Phys., 73, 719 -724 (1980).

^{&#}x27;As cited in N. L. Allinger, K. Chen, M. Rahman, and A. Pathiaseril, J. Am. Chem. Soc., 113, 4505-4517 (1991).

^kAverage of values cited in K. B. Wiberg, P. R. Rablen, and M. Marquez, J. Am. Chem. Soc., 114, 8654 –8668 (1992).

^mY. N. Panchenko, V. I. Pupyshev, A. V. Abramenkov, M. Traetteberg, and S. J. Cyvin, J. Mol. Struct., 130, 355-359 (1985).

ⁿN. L. Allinger, S. Rodriguez, and K. Chen, *J. Mol. Struct.*, **260**, 161 –178 (1992).

[°]Preferred value cited in ref. 38. Other cited values range from -1.41 to +1.98 kcal/mol. PAverage of 13 experimental determinations cited in ref. 39.

^qRef. 40.

Ref. 41.

^tAs cited in L. R. Schmitz and N. L. Allinger, J. Am. Chem. Soc., 112, 8307 -8315 (1990).

^{&#}x27;As cited in ref. 30.

WRef. 46.

^{*}Ref. 45.

^yE. Hirota, as cited in W. A. Latham, L. Radom, W. J. Hehre, and J. A. Pople, J. Am. Chem. Soc., 95, 699 (1973).

²As cited in N. L. Allinger and L. Yan, J. Am. Chem. Soc., 115, 11918 –11925 (1993).

^{aa}As cited in N. L. Allinger and D. Y. Chung, *J. Am. Chem. Soc.*, **98**, 6798 (1976).

bb As cited in ref. 7.

^{cc}M. Squillacote, R. S. Sheridan, O. L. Chapman, and F. A. L. Anet, *J. Am. Chem. Soc.*, **97**, 3244 –3246 (1975).

dd As cited in ref. 29b.

eeRef. 51.

^{ff}As cited in N. L. Allinger, F. Li, and L. Yan, *J. Comput. Chem.*, 11, 848-867 (1990).

⁹⁹Computed using the experimental result closest to the MP4SDQ / TZP value when more than one experimental value is listed.

hh Computed using the experimental result closest to the MM3 value.

b Internal rotational barrier height of the eclipse saddle point.

^c Ref. [22]. ^d Ref. [23].

A Big Challenge

Figure 1. Thirteen *n*-dodecane conformers of the ACONF12 subset. The conformer **0** is the lowest conformer, and the numbering of the conformers does not necessarily correspond to their energetic order.

Problems Encountered

- -no koop parameters for H-C-C-H or C-C-C-H
- -double counting angles
- -how many torsions (unique or all permutations)
- -constants defined per bond or per angle?
- -checking that the number of angles and 1-4+ interactions are correct (9N-1 for N \geq 4, angles)
- -«shooting in the dark» at 0.78 kcal/mol
- -Ideally a pentane test too (geometric type)

Thank you, questions?