超大型積體電路設計 VLSI Design Homework I

系所:電子所碩二

中文姓名:李聖謙

學號:111063517

授課老師:謝志成

- 1. Run simulation to answer the following question. (40%)
- (a) Please design a INVERTER schematic with $(W/L)n = 1 \mu m/0.18 \mu m$ while (W/L)p is your design. Design the transfer curve according to Fig. 1 with VDD = 1V and transition point VM = 0.5VDD. (Vout = 0.5VDD@Vin = 0.5VDD) in 3 process corner. (TT, SS, FF) Please print out both input and output waveforms in each condition.

Corner	PMOS size (W/L)
TT	5.4u/180.0n
SS	4.4u/180.0n
FF	5.4u/180.0n

Table 1 180nm size

Figure 1 180nm Inverter schematic

I. TT

Figure 2 TT inverter pulse waveform (add 1pF capacitance)

Figure 3 TT inverter VTC

II. SS

Figure 4 SS inverter pulse waveform (add 1pF capacitance)

Vin =500mV Vout=496mV

Figure 5 SS inverter VTC

III. FF

Figure 6 FF inverter pulse waveform (add 1pF capacitance)

Vin =496mV Vout=504mV

Figure 7 FF inverter VTC

(b) Comment on the different PMOS size in each corner.

Figure 8 Compare pulse waveform (add 1pF capacitance)

TT : Black SS : Blue

FF: Red

Figure 9 Compare VTC(Before modify pmos size)

TT : Black SS : Blue

FF : Red

Figure 10 Compare VTC(After modify pmos size)

TT,SS,FF 為 NMOS 與 PMOS 的切換速率,由 Figure 8 可知 TT 的 waveform 會界在兩者之間,SS 電壓上升較慢,FF 則較快,在 SS 時模擬元件 在低電壓高溫時速度下降的現象,如果使用和 TT 相同的 PMOS size 結果顯示 如下圖 Figure 11,vout 的曲線往右平移了,這表示 PMOS 的電流太大,所以要將 PMOS 的 size 調小,才能符合題目需要的 Vm=0.5Vdd,而 FF 在模擬的結果 顯示在與 TT 相同的 PMOS size 下,結果是相近的。

Figure 11 180nm Inverter SS corner VTC(Pmos size 4.4u/180.0n)

- 2. Run simulation to answer the following question. (40%)
- (a) Please design a INVERTER schematic with length=14nm while nfinn and nfinp are your design. Design the transfer curve according to Fig. 1 with VDD = 0.8V and transition point VM = 0.5VDD. (Vout = 0.5VDD@Vin = 0.5VDD) in 3 process corner. (TT, SS, FF) Please print out both input and output waveforms in each condition.

Corner	$nfin_n$	$nfin_p$
TT	2	2
SS	6	5
FF	2	2

Table 2 14nm size

Figure 12 14nm Inverter schematic

I. TT

Figure 13 TT inverter pulse waveform (add 1pF capacitance)

Figure 14 TT inverter VTC

II. SS

Figure 15 SS inverter pulse waveform (add 1pF capacitance)

Vin =400mV Vout=407mV

Figure 16 SS inverter VTC

III. FF

Figure 17 FF inverter pulse waveform (add 1pF capacitance)

Vin =400mV Vout=414mV

Figure 18 SS inverter VTC

(b) Comment on your design in each corner.

TT : Black SS : Blue

FF : Red

Figure 19 Compare pulse waveform (add 1pF capacitance)

TT : Black

SS : Blue

FF : Red

Figure 20 Compare VTC(Before modify pmos size)

TT: Black

SS: Blue

FF: Red

Figure 21 Compare VTC(After modify pmos size)

由 Figure 20 可知 TT 和 FF 的 VM 值是接近的,但因為 FF 開關速度較快,溫度低,電流較小,所以 slope 較小,在 nmos 導通時的曲率較小,相反的 SS 開關速度較慢,溫度高,電流較大,所以 slope 較小。

3. Compare the result of two different process. (20%)

因使用 14nm 的製程可調整的是 fin 的數量,所以在調整 Vm 時會較難將數值調整到接近的值,從 Figure 8 和 Figure 18 的比較可以發現在 180nm 時,inverter 在 FF corner 可以達到較佳的輸出波型,而 14nm 的則相反,在 SS corner 的輸出波型較較還原輸入,由此推測,較大的製程下,元件需要在高電壓、低溫運作,而製成縮小後變成在低電壓、高溫時有較佳的效能。

Figure 22 No capacitance 180nm Inverter

Figure 23 No capacitance 14nm Inverter

Figure 21 是將 inverter 的輸出電容拿掉的情況,可以發現在上升下降時會有突波產生,原因可能是因為 tpHL和 tpLH 的時間不足所造成的,或是在沒有電容的情況下,變成 mos 內部的小電容在反相時的電壓造成的突波,mos 中影響通道的電容可以可以分成 Cox 和 Cj,在導通時兩者串連形成。

Figure 24 與 180nm 不同的是,在沒加入電容時 14nm 沒有在反相時有突波的現象,我推測可能是製程下降,使 Cox 或是 Cj 下降,使電容的效應較不明顯。