La réfraction

$$n_1 sin i_1 = n_2 sin i_2$$

$$0 \le i_1 \ et \ i_2 \le \frac{\pi}{2}$$

sin(x) est une fonction croissante

 i_2 existe?

$$\sin i_2 = \left(\frac{n_1}{n_2}\right) \sin i_1$$

Or sin
$$i_1 \leq 1$$

La lumière va vers un milieu moins réfringent $(n_1>n_2)$ $(\frac{n_1}{n_2}>1)$

$$n_1 sin i_1 = n_2 sin i_2$$

$$i_2$$
 existe \iff

$$n_1 sin i_1 = n_2 sin i_2$$
 i_2 existe \iff $sin i_2 = \frac{n_1}{n_2} sin i_1 \le 1$ $i_1 \le arcsin\left(\frac{n_2}{n_1}\right)$

$$i_1 \leq arcsin\left(\frac{n_2}{n_1}\right)$$

$$\lambda = \arcsin\left(\frac{n_2}{n_1}\right)$$
 λ est appelé angle limite,

$$\frac{\sin i_1}{\sin i_2} = \frac{n_2}{n_1} < 2$$

$$\frac{\sin i_1}{\sin i_2} = \frac{n_2}{n_1} < 1 \qquad \qquad n_1 > n_2 \Longrightarrow i_1 < i_2$$

$$i_1 \in [0, \lambda]$$
 Réfraction \longrightarrow

$$i_1 = \lambda \implies i_2 = 90^{\circ}$$
 Réfraction ———

$$\lambda = 48^{\circ}$$
 eau/air

$$\lambda = 41^{\circ} \text{ verre/air}$$

$$\lambda = 24^{\circ}$$
 Diamant/air

La lumière va vers un milieu plus réfringent $(n_2 > n_1)$ $\frac{n_2}{n_1} > 1$

$$n_1 \sin i_1 = n_2 \sin i_2$$

$$sini_2 = \frac{n_1}{n_2} sini_1 \le 1 \quad \forall i_1$$

$$\frac{n_1}{n_2} < 1$$

$$i_1 \in \left[0, \frac{\pi}{2}\right]$$

$$\frac{\sin i_1}{\sin i_2} = \frac{n_2}{n_1} > 1$$

$$n_1 < n_2 \implies i_1 > i_2$$

$$Si \ i_1 = 90^{\circ}$$
, alors $i_2 = \lambda_{ref}$ avec $\lambda_{ref} = \arcsin(\frac{n_1}{n_2})$

 $i_2 \in [0, \lambda_{ref}]$

$$si i_1 = 0 \ alors i_2 = 0 \ \forall n_1 \ et n_2$$

Au point M , Comme 1 < n \Rightarrow le rayon incident (1/n) donne toujours un rayon réfracté $\forall i \in [0, \pi/2]$: Tout rayon incident pénètre donc dans le prisme ..

LE PRISME

Par contre (pt P) sur la deuxième face n/1 pour que le rayon émerge du prisme il faut que l'angle r' soit inférieur à l'angle limite l' avec $l' = \arcsin(\frac{1}{n})$

$$r' \leq \ell'$$

Remarque $r \leq \ell$

$$\ell = \arcsin\left(\frac{1}{n}\right)$$

la valeur maximale que puisse prendre r est ℓ , correspond à une incidence rasante (i = $\pi/2$).

Considérons le triangle MNP

$$A + \left(\frac{\pi}{2} - r\right) + \left(\frac{\pi}{2} - r'\right) = \pi$$

$$A = r + r'$$

Considérons le triangle MPQ

$$(\pi - D) + (i - r) + (i' - r') = \pi$$

la déviation est : $\mathbf{D} = \mathbf{i} + \mathbf{i'} - \mathbf{A}$ **(4)**

Conditions d'émergence du rayon

Pour que l'émergence soit possible, deux conditions doivent être satisfaites :

- l'une est imposé au prisme
- l'autre à l'angle d'incidence.

Conditions d'émergence du rayon

Condition imposée au prisme :

$$r' \leq \ell'$$

$$\mathbf{r}' \leq \boldsymbol{\ell}'$$
 $l' = \arcsin(\frac{1}{n})$

$$\longrightarrow$$
 A - r $\leq \ell'$

Car r' = A - r

$$A \leq r + \ell'$$

Or
$$r \leq \ell$$

Or
$$r \leq \ell$$
 $\ell = \arcsin\left(\frac{1}{n}\right)$

Dans notre cas $\ell = \ell'$

La valeur maximale de $r + \ell'$ est 2ℓ

 $A \leq 2 \ell$

$$si \ i = \frac{\pi}{2}$$

$$si \ i = \frac{\pi}{2}$$
 $r = l = \arcsin(\frac{1}{n})$

$$r' = A - l$$

sin i' = n sin r'

$$i' = arcsin(n.sin(A - l)) = i_0$$

$$D = \pi/2 + i_0 - A = D_0$$

$$n.\sin(A-l) = \sin(i_0)$$

Condition sur l'angle d'incidence (i)

Emergence
$$\longrightarrow$$
 $\mathbf{r'} \leq \ell$ \longrightarrow A

 $A - r \leq \ell$

 $r \geq A - \ell$

la valeur minimale de r est donc $A-\ell$.

$$\ell = \arcsin\left(\frac{1}{n}\right)$$

On pose: $r_0 = A - \ell$

 $r \ge r_0$

 $n \sin r \ge n \sin r_0$

Or $\sin i = n \sin r$

Or $\sin i_0 = n \sin r_0$

 $\sin i \ge \sin i_0$

Donc $i \ge i_0$

$$i_0 \leq i \leq 90$$

 $\sin i_0 = n \sin (A - \ell)$

Si
$$i = i_0$$
, $r = r_0 = A - \ell$, $r' = \ell$ et $i' = 90^\circ$ $D_0 = i_0 + \frac{\pi}{2} - A$

$$D_0 = i_0 + \frac{n}{2} - A$$

