Controlul Accesului Mandatat. Modelele Bell-LaPadula, Biba

Breviar Teoretic

Problema:

Fie T, D, H - subiecţi (utilizatori sistem), P - obiect (fişier). T deţine fişierul confidenţial P (are drepturi o, r, w), D are drept de citire (r) asupra lui P, H nu are drept de citire asupra lui P. D creează un nou fişier CP (are drepturile o, r, w asupra lui CP), copiind conţinutul lui P in CP, şi ii acordă lui H drept de citire asupra lui CP. Astfel, H poate citi CP şi implicit P atât timp cât D actualizează CP la fiecare modificare a lui P.

Alt scenariu (fără colaborarea lui D - trojan horse): H programează editorul să salveze o copie a fișierului P asupra căruia să aibă drept de citire.

Soluție: la DAC trebuie adăugat MAC (Mandatory Access Control).

Modelele MAC respectă axiomele lui Denning

```
Fie IF = (SC, \rightarrow, \oplus) un model IF (information flow).
```

A1. SC finită;

A2. \rightarrow ordine parțială (reflexivă, antisimetrică, tranzitivă);

A3. \rightarrow are cel mai mic element;

A4. \oplus (operator combinare) - reprezintă supremum $(A, B \in SC, A \rightarrow A \oplus B, B \rightarrow A \oplus B)$.

Modelul Bell-LaPadula

- matrice de control al accesului (poate fi modificată de subiecți)
- etichete de securitate (λ) asociate subiecţilor, obiectelor nu pot fi modificate;

Condiții necesare:

- simple-security (no read-up): s poate citi o doar dacă $\lambda(s) \geq \lambda(o) \ (\lambda(o) \rightarrow \lambda(s))$ (flux de la obiect la subiect);
- *-property (no write-down): s poate scrie o doar dacă $\lambda(s) \leq \lambda(o)$ $(\lambda(s) \to \lambda(o))$ (flux de la subiect la obiect interzice unui program secret să scrie intr-un document public; un utilizator secret care dorește să scrie intr-un document public trebuie să se logheze ca utilizator public);

Dezavantaj: un subiect public poate distruge date confidențiale; se poate utiliza proprietatea strong-* (s poate scrie o doar dacă $\lambda(s) = \lambda(o)$).

Problema reluată:

Asociem următoarele etichete de securitate:

$$\lambda(T) = S, \ \lambda(D) = S, \ \lambda(H) = U, \ \mathrm{cu} \ U \to S.$$

T creează P, $\lambda(P) = S$. D creează CP, $\lambda(CP) = S$.

H nu poate citi indirect P, CP $(\lambda(H) \not\geq \lambda(P))$.

Modelul Biba

- model de integritate;
- integritate obiect: are in vedere gradul de incredere pt informaţia din obiect precum şi eventualele probleme ce pot apare in urma modificărilor neautorizate;
- integritate subiect: nivel de incredere pt subiecți relativ la operațiile de ștergere, modificare, adăugare informație.
- model dual Bell-LaPadula;

Condiții necesare:

- simple integrity (no read-down)

 s poate citi o doar dacă $\omega(s) \leq \omega(o)$;
- integrity *-property (no write-up) s poate scrie o doar dacă $\omega(s) \ge \omega(o)$.

Combinare BLP, Biba

- etichete independente pt confidențialitate, integritate;
- laticele au clasele de securitate maximală în direcții diferite $(\lambda_L \to \lambda_H, \omega_H \to \omega_L)$;

Rezultă (grafic pe slide curs):

 $\bullet \ s$ poate citiodoar dacă:

$$\lambda(s) \ge \lambda(o)$$
 și $\omega(s) \ge \omega(o)$;

• s poate scrie o doar dacă:

$$\lambda(s) \le \lambda(o)$$
 şi $\omega(s) \le \omega(o)$;

Exerciții

Exemplu 1 Se dă următorul model Bell-LaPadula:

 $SC = \{Public, Confidential, Secret, TopSecret\};$

 $Public \rightarrow Confidential, Confidential \rightarrow Secret, Secret \rightarrow TopSecret.$

Se dau următoarele subiecte și obiecte cu etichetele λ corespunzătoare (Tabelul 1):

λ	Subjecte	Obiecte
TopSecret	General	CodNuclear
Secret	Colonel	PoziţieArmată
Confidential	Maior	NrUnitArmată, NrUnitNucleare
Public	Soldat	CostProgramNuclear, CostArmată

Table 1: Funcția de etichetare λ (Exercițiul .)

Precizați care dintre următoarele afirmații sunt adevărate. Justificați răspunsul.

- a) Generalul poate calcula costurile totale (armată și program nuclear);
- b) Maiorul poate calcula numărul total de unități nucleare și armate;
- c) Colonelul poate calcula numărul total de unități nucleare și armate.
- d) Colonelul poate modifica poziția armatei;
- e) Maiorul poate modifica costul programului nuclear.
- f) Soldatul poate modifica codul nuclear.

Exemplu 2 Descrieți un model Biba și atribuiți etichetele de integritate corespunătoare subiectelor și obiectelor de la Exemplul astfel încât, după combinarea lui cu modelul Bell-LaPadula de la Exemplul (caz de combinare 3), codul nuclear să poată fi modificat doar de către General.

Rezolvare:

Considerăm următorul model Biba: $SC = Trusted, Untrusted, \omega_H = Trusted, \omega_L = Untrusted.$

Combinare (Figura 1)

Figure 1: Combinare Exemplu 2

$$\omega(General) = \omega(CodNuclear) = Trusted,$$

 $\omega(Maior) = \omega(Colonel) = \omega(Soldat) = Untrusted.$

- General poate scrie CodNuclear:
 - $\lambda(General) = TS = \lambda(CodNuclear);$ $\omega(General) = T = \omega(CodNuclear);$
- Colonel (Maior, Soldat) nu poate scrie CodNuclear: $\lambda(Colonel) = S, \lambda(CodNuclear) = TS;$ $\omega(Colonel) = U, \omega(CodNuclear) = T;$ (S,U) incomparabil in modelul combinat față de (TS,T). Analog pentru ceilalți subiecți.

Exercițiul 4

Modelele Bell-LaPadula, Biba

Se dă următorul model Bell-LaPadula:

 $SC = \{High, Medium1, Medium2, VeryLow\},\$

 $VeryLow \rightarrow Medium1,\ VeryLow \rightarrow Medium2,\ Medium1 \rightarrow High,\ Medium2 \rightarrow High.$

Se consideră următoarele subiecte și obiecte, cu etichetele de confidențialitate precizate în Tabelul 4.1.

λ	Subjecte	Obiecte
High	$User_1$	$File_1$
Medium2	$User_2$	$File_2$
Medium1	$User_3$	$File_3$
VeryLow	$User_4$	$File_4$

Table 4.1: Funcția de etichetare λ (Exercițiul ??.)

- a) Completați tabelul de mai jos (Tabelul 4.2) cu valorile -, r, w, r, w, unde:
 - — : subiectul $User_i$ nu are nici un drept (nu poate scrie, nici citi) asupra obiectului $File_i$;
 - r: subjectul $User_i$ poate doar citi objectul $File_i$;
 - w: subjectul $User_i$ poate doar scrie objectul $File_i$;
 - r, w: subjectul $User_i$ poate citi și scrie objectul $File_i$;
- b) Descrieți un model simplu Biba, atașând etichete de integritate (ω) pentru subiectele și obiectele date și combinați modelul Biba cu modelul Bell-LaPadula dat astfel incât să fie respectate drepturile din următorul tabel (4.3):

	S/O	$File_1$	$File_2$	$File_3$	$File_4$
	$User_1$				
_	$User_2$				
	$User_3$				
	$User_4$				

Table 4.2: Tabel drepturi Subiecte \rightarrow Obiecte pentru Exercițiul ??.

S/O	$File_1$	$File_2$	$File_3$	$File_4$
$User_1$	r, w		_	_
$User_2$	w	\overline{w}	_	_
$User_3$	_	_	r, w	r
$\overline{User_4}$	_	\overline{w}	\overline{w}	r, w

Table 4.3: Tabel drepturi Subiecte \rightarrow Obiecte pentru Exercițiul ??, punctul b).

Rezolvare:

a) Tabelul (cf. reguli BLP):

S/O	$File_1$	$File_2$	$File_3$	$File_4$
$User_1$	r, w	r	r	r
$User_2$	w	r, w	_	r
$User_3$	w	_	r, w	r
$User_4$	w	w	w	r, w

b) Model Biba: doua clase de integritate: $Trusted = \omega_H$, $Untrusted = \omega_L$.

Combinare (Figura 4.1):

Etichete integritate:

ω	Subjecte	Obiecte
Trusted	$User_1, User_2$	$File_1$
Untrusted	$User_3, User_4$	$File_2, File_3, File_4$

Combinare

Figure 4.1: Combinare modele BLP, Biba - caz $3\,$