MACHINE LEARNING: LINEAR REGRESSION

• How to evaluate a model?

Dataset split

Size of the house (m^2)	Price (millions)
20	60
30	100
40	120
50	180
60	200
70	250
80	300
90	350
100	450
110	480

Training set 70%

Test set 30%

Training/cross validation/test set

Dataset split

Size of the house (m^2)	Price (millions)	
20	60	
30	100	
40	120	
50	180	
60	200	
70	250	
80	300	
90	350	-
100	450	
110	480	

Training set 60%

Cross validation set (dev set) 20%

Test set 20%

Cross-validation

https://www.youtube.com/watch?v=Tlgfjmp-4BA

Background-What is Machine Learning?

Applications

- Website search (group website pages)
- Streaming movies (similar movies recommendation)
- OK Google, Siri, Alexa
- Email classification (spam, no spam)
- Healthcare
- Agriculture
-

Background-What is Machine Learning?

MACHINE LEARNING

"Field of study that gives computers the ability to learn without being explicitly programmed" Arthur Samuel (1959).

• Machine Learning Algorithms

Supervised Learning

Unsupervised Learning

■The algorithm learns from *x* to *y* mapping.

$$x \rightarrow y$$
Input Output

■ The algorithm takes examples to learn from. It has to know the "correct labels".

Regression: house price prediction

Regression

It is possible to fit a straight line or a curve

Regression

Regression

It predicts a number

There are many possible outputs

Classification

It predicts a small number of possible outputs or categories (classes)

Categories or classes do not have to be numbers. For example, classify between cats and dogs, classify between malignat or benign for a tumor

- Benign
- × Malignant

- Benign
- × Malignant

- Benign
- × Malignant

Supervised Learning

Regression

Classification

Unsupervised Learning

 Data is not associated with any labels or classes or categories.

•The objective is to find some structure in the data, something interesting.

Unsupervised Learning

Unsupervised Learning

Find some structure un unlabeled data

Example: Google search about a topic

Unsupervised Learning

- Clustering
- Anomaly detection: it finds unusual data
- Dimensionality reduction: PCA

Linear Regression

It fits a straight line to the data

Linear Regression: house price prediction

Size ((m^2)	Price (millions)
20	60
30	100
40	120
50	180

Terminology

- Training set: data that is used to train the model
 - $x \longrightarrow input variable (feature)$
 - $y \longrightarrow \text{output variable}$
 - $\blacksquare m \longrightarrow \text{number of training examples}$
 - \bullet (x,y) a single training example

Size (m^2)	Price (millions)
\boldsymbol{x}	у
20	60
30	100
40	120
50	180

Terminology

•Training set: data that is used to train the

model

$\blacksquare (x^{(i)},$	$y^{(i)})$	$\rightarrow i^{th}$ t	raining	example
--------------------------	------------	------------------------	---------	---------

• *i* refers to the rows in the table

$$-(x^{(3)}, y^{(3)}) = (40, 120)$$

Size (m^2)	Price (millions)	
\boldsymbol{x}	у	
20	60	
30	100	
40	120	
50	180	

f model representation:

$$f_{w,b}(x) = wx + b \longrightarrow f(x) = wx + b$$

The values of w and b are going to determine the prediction \hat{y}

Linear Regression: house price prediction

Supervised Algorithm: Linear Regression with one variable

Cost Function:

It tells how well the model is working, so the idea is to get better results based on it.

For the model:

$$f(x) = wx + b$$

w, b are called parameters, coefficients or weights

Supervised Algorithm: Linear Regression with one variable

w = 0, slope

b = 3, intercept

Linear Regression: house price prediction

$$\hat{y}^{(i)} = f_{w,b}(x^{(i)})$$

$$f_{w,b}(x^{(i)}) = w x^{(i)} + b$$

How to find w and b values so,

$$\hat{y}^{(i)}$$
 is close to $y^{(i)}$ for all $(x^{(i)}, y^{(i)})$

Supervised Learning: Linear Regression

Cost Function: squared error cost function

$$J(w,b) = \frac{1}{2m} \sum_{i=1}^{m} (\hat{y}^{(i)} - y^{(i)})^2$$

m: *number of training examples*

Supervised Learning: Linear Regression

Cost Function: squared error cost function

$$J(w,b) = \frac{1}{2m} \sum_{i=1}^{m} (\hat{y}^{(i)} - y^{(i)})^2$$

m: number of training examples

 $\hat{y}^{(i)}$: prediction

 $y^{(i)}$: target

Cost Function: squared error cost function

$$J(w,b) = \frac{1}{2m} \sum_{i=1}^{m} (f_{w,b}(x^{(i)}) - y^{(i)})^2$$

m: number of training examples

 $f_{w,b}(x^{(i)})$: prediction

 $y^{(i)}$: target

Model: $f_{w,b}(x) = wx + b$

Parameters: w, b

Cost function: $J(w,b) = \frac{1}{2m} \sum_{i=1}^{m} (f_{w,b}(x^{(i)}) - y^{(i)})^2$

Goal: minimize J(w, b) w.b

If
$$b=0$$
,

Model: $f_w(x) = wx$

Parameters: w

Cost function: $J(w) = \frac{1}{2m} \sum_{i=1}^{m} (f_w(x^{(i)}) - y^{(i)})^2$

Goal: minimize J(w)

W

$$W = 0.5$$

$$J(0.5) = \frac{1}{2*3} ((1-2)^2 + (2-4)^2 + (3-6)^2) = 2.3$$

$$J(0.5) = 2.3$$

$$W = 0$$

$$J(0) = \frac{1}{2*3} ((0-2)^2 + (0-4)^2 + (0-6)^2) = 9.3$$

$$J(0) = 9.3$$

How to choose w to minimize J(w)?

Model: $f_{w,b}(x) = wx + b$

Parameters: w, b

Cost function: $J(w,b) = \frac{1}{2m} \sum_{i=1}^{m} (f_{w,b}(x^{(i)}) - y^{(i)})^2$

Goal: minimize J(w, b) w.b

One global minimum in Squared Error Function

Contour plots

Gradient Descent: minimize any function

Outline:

- Start with some w, b
- •Change w, b to reduce J(w,b)
- Keep changing until at or near a minimum

Gradient Descent: minimize any function

More tan one local Minimum: Neural Networks

Gradient Descent algorithm:

Repeat until convergence

$$b = b - \alpha \frac{\partial}{\partial b} J(w, b)$$

 α : Learning rate Control the steps of the algorithm to update the parameters

Gradient Descent algorithm:

$$w_{temp} = w - \alpha \frac{\partial}{\partial w} J(w, b)$$

Simultaneous update

$$b_temp = b - \alpha \frac{\partial}{\partial b} J(w, b)$$

$$w = w_temp$$

$$b = b_temp$$

Gradient Descent algorithm:

Gradient Descent algorithm:

$$w = w - \alpha \frac{\partial}{\partial w} J(w, b)$$

$$w = w - \alpha * positive$$

$$w = w - \alpha * negative$$

Learning Rate:

If ∝ is too small, gradient descent can be very slow

If \propto is too large, gradient descent can never reach the minimum (diverge)

When near a local minimum, gradient descent takes smaller steps (derivative smaller)

Gradient Descent for Linear Regression: $f_{w,b}(x) = wx + b$

$$J(w,b) = \frac{1}{2m} \sum_{i=1}^{m} (f_{w,b}(x^{(i)}) - y^{(i)})^2$$

$$\frac{\partial}{\partial w}J(w,b) = \frac{1}{m}\sum_{i=1}^{m} (f_{w,b}(x^{(i)}) - y^{(i)})x^{(i)}$$

$$\frac{\partial}{\partial b}J(w,b) = \frac{1}{m}\sum_{i=1}^{m} (f_{w,b}(x^{(i)}) - y^{(i)})$$

Gradient Descent Algorithm:

$$f_{w,b}(x) = wx + b$$

Repeat until convergence {

$$w = w - \alpha \frac{1}{m} \sum_{i=1}^{m} (f_{w,b}(x^{(i)}) - y^{(i)}) x^{(i)}$$

$$b = b - \alpha \frac{1}{m} \sum_{i=1}^{m} (f_{w,b}(x^{(i)}) - y^{(i)})$$

"Batch" Gradient Descent:

All the training examples are used in each step of the algorithm.

Linear Regression with Multiple features

(variables)

Size in $m^2(x_1)$	Number of bedrooms (x_2)	Number of bathrooms (x_3)	Price in millions (y)
20	1	1	60
30	1	1	100
40	1	1	120
50	1	2	180
•••			

 $x_j = j^{th}$ feature n = number of features $\vec{x}^{(i)} = features$ of i^{th} training example

Linear Regression with Multiple features

(variables)

Size in $m^2(x_1)$	Number of bedrooms (x_2)	Number of bathrooms (x_3)	Price in millions (y)
20	1	1	60
30	1	1	100
40	1	1	120
50	1	2	180

$$x_j = j^{th}$$
 feature
 $n = number$ of features
 $\vec{x}^{(i)} = features$ of i^{th} training example

Linear Regression with Multiple features (variables)

Size in m^2 (x_1)	Number of bedrooms (x_2)	Number of bathrooms (x_3)	Price in millions (y)
20	1	1	60
30	1	1	100
40	1	1	120
50	1	2	180

 $x_j = j^{th}$ feature n = number of features $x^{(i)} = features$ of i^{th} training example $x_j^{(i)} = feature j$ in the i^{th} training example

Linear Regression with one variable:

$$f_{w,b}(x) = wx + b$$

Linear Regression with multiple variables:

$$f_{w,b}(x) = w_1 x_1 + w_2 x_2 + w_3 x_3 + \dots + w_n x_n + b$$

Linear Regression with multiple variables:

$$w = [w_1 \ w_2 \ w_3 \ w_4 \dots w_n]$$
$$x = [x_1 \ x_2 \ x_3 \ x_4 \dots x_n]$$

$$f_{w,b}(x) = w \cdot x + b$$
Dot product

Multiple Linear Regression

Gradient Descent for Multiple Linear Regression:

Repeat until convergence {

$$w_{1} = w_{1} - \alpha \frac{1}{m} \sum_{i=1}^{m} (f_{w,b}(x^{(i)}) - y^{(i)}) x^{(i)} \xrightarrow{\frac{\partial}{\partial w_{1}}} J(w,b)$$
...
$$w_{n} = w_{n} - \alpha \frac{1}{m} \sum_{i=1}^{m} (f_{w,b}(x^{(i)}) - y^{(i)}) x^{(i)} \xrightarrow{\frac{\partial}{\partial w_{1}}} J(w,b)$$

$$b = b - \alpha \frac{1}{m} \sum_{i=1}^{m} (f_{w,b}(x^{(i)}) - y^{(i)})$$

Gradient Descent for Multiple Linear Regression:

Repeat until convergence {

$$w_{1} = w_{1} - \alpha \frac{1}{m} \sum_{i=1}^{m} (f_{w,b}(x^{(i)}) - y^{(i)}) x^{(i)} \xrightarrow{\frac{\partial}{\partial w_{1}}} J(w,b)$$
...
$$w_{n} = w_{n} - \alpha \frac{1}{m} \sum_{i=1}^{m} (f_{w,b}(x^{(i)}) - y^{(i)}) x^{(i)} \xrightarrow{\frac{\partial}{\partial w_{1}}} J(w,b)$$

$$b = b - \alpha \frac{1}{m} \sum_{i=1}^{m} (f_{w,b}(x^{(i)}) - y^{(i)})$$

THANK YOU ANDREW NG

References

- Christopher M Bishop et al. Pattern recognition and machine learning. Springer New York, 2006.
- Ng, A. (2023). Machine Learning Specialization Coursera. Standford University, DeepLearning.Al
- Samuel, A. L. (1959). Some studies in machine learning using the game of checkers. IBM Journal of research and development, 3(3), 210-229.

🔘 @UdeA f @universidaddeantioquia 🕑 @UdeA

@universidaddeantioquia D @UdeA

