Forelesning - 21.01.22

FYS009-G 21H - Fysikk realfagskurs

Kapittel 14 - Bevegelse II

Forelesningene dekker i hovedsak boken *Rom-Stoff-Tid - Fysikk forkurs* fra Cappelen Damm. I tillegg til teorien gjennomgåes det endel simuleringer og regnede eksempler. De fleste eksemplene er orientert etter oppgaver fra boka, men også andre oppgaver og problemstillinger kan taes opp.

Bevegelsesligningene

Sammenheng mellom tidløsformelen og «Arbeid-Energi-setningen». Boka: øverst side 109.

Tidløsformelen + Arbeid-Energi setningen

Regnet: Oppgave 14.310

Vektorer

Gjennomgang av vektorer. Boka: side 380-383.

Vektorer

Uavhengighetsprinsippet

Boka: side 384.

Regnet: Oppgave 14.07

Link: Simulering - Kastebevegelse

Link: Simulering - Skrått kast I

Link: Simulering - Skrått kast II

Kastbevegelse

Boka: side 386-389.

Bevegelse med konstant akselerasjon i to dimensjoner

Regnet: Eksempel 14.5

Regnet: Eksempel 14.6

Regnet: Eksempel 14.7

Kastbevegelse som parabel i xy-planet

Boka: side 390.

Regnet: Oppgave: 14.333

Tidløsfonneler og Arbeid-Energi setnunger

Tidlasformelen:

$$V^{2} = V_{0}^{2} + 2as$$

$$= V_{0}^{2} - V_{0}^{2} = 2as$$

Articl-Energi setnemen (side 109):

$$W_{tot} = \Delta E_{L}$$

$$F_{tot} \cdot S = \frac{1}{2} m v^{2} - \frac{1}{2} m v^{2}$$

$$m \cdot q_{tot} \cdot S = \frac{1}{2} m \left(v^{2} \cdot v^{2}\right)$$

$$F_{tot}$$

$$QaS = v^{2} - Vo^{2}$$

$$Tiddes formula)$$

Vektorer

Posisjonsvektor

Vi bruker ofte \vec{s} . Endringen i \vec{s} mellom to tidspunkter t_0 og t_1 er $\Delta \vec{s} = \vec{s}_1 - \vec{s}_0$. Vi skriver også i to dimensjoner at

$$\vec{s} = [s_x, s_y] = [x, y]$$

Posisjonsvektoren defineres utfra et eller annet origo.

Fartsvektor

Vi bruker ofte \vec{v} . Endringen i \vec{v} mellom to tidspunkter t_0 og t_1 er $\Delta \vec{v} = \vec{v}_1 - \vec{v}_0$. Vi skriver også i to dimensjoner at

$$\vec{v} = [v_x, v_y] = \frac{d\vec{s}}{dt} = \left[\frac{dx}{dt}, \frac{dy}{dt}\right]$$

Fartsvektoren er alltid tangent til banen.

Akselerasjonsvektor

Vi bruker ofte \vec{a} . Endringen i \vec{a} mellom to tidspunkter t_0 og t_1 er $\Delta \vec{a} = \vec{a}_1 - \vec{a}_0$. Vi skriver også i to dimensjoner at

$$\vec{a} = [a_x, a_y] = \frac{d\vec{v}}{dt} = \left[\frac{dv_x}{dt}, \frac{dv_y}{dt}\right]$$

Akselerasjonsvektoren har alltid samme retning som totalsummen av kreftene.

Eksempel: Sirkelbevegelse

Her ser vi at det virker en kraft (sentripetalkraft) på massen, slik at den går i en sirkel. Denne kraften endrer ikke på absoluttverdien $v=|\vec{v}|$ til hastigheten, men bare på retningen av \vec{v} .

Noen viktige regneregler

Med
$$\vec{a} = [a_x, a_y]$$
 og $\vec{b} = [b_x, b_y]$

$$\vec{a} \cdot \vec{b} = a_x \cdot b_x + a_y \cdot b_y = \text{Skalar (tall)}$$

Vi har også

$$|\vec{a}| = \sqrt{\vec{a}^2} = \sqrt{\vec{a} \cdot \vec{a}} = \sqrt{a_x^2 + a_y^2}$$

Noen vinkeluttrykk

$$\cos \angle (\vec{a}, \vec{b}) = \frac{\vec{a} \cdot \vec{b}}{|\vec{a}| \cdot |\vec{b}|}$$

Bevegelse med konstant akselerasjon i to dimensjoner

Bevegelseslikninger

Vi husker bevegelseslikningene for s og v i en dimensjon (rettlinjet bevegelse)

$$s = s_0 + v_0 t + \frac{1}{2}at^2$$
 og $v = v_0 + at$

Når vi skriver disse i to dimensjoner som vektorer, må vi ta med både x- og y-retningen.

$$\vec{s} = \vec{s}_0 + \vec{v}_0 t + \frac{1}{2} \vec{a} t^2$$
 og $\vec{v} = \vec{v}_0 + \vec{a} t$

eller

$$[x, y] = [x_0, y_0] + [v_{0x}, v_{0y}]t + \frac{1}{2}[a_x, a_y]t^2$$
$$[v_x, v_y] = [v_{0x}, v_{0y}] + [a_x, a_y]t$$

Vi tenker oss et legeme som starter fra origo $(x_0, y_0) = (0, 0)$ ved tiden t = 0, og har en starthastighet $\vec{v}_0 = [v_{0x}, v_{0y}]$ som danner en vinkel α med x-aksen.

Legemet påvirkes av en kraft $\vec{F} = [F_x, F_y]$ som gir en konstant akselerasjonsvektor $\vec{a} = [a_x, a_y]$.

Vi ser at de to vektorligningene egentlig er fire skalare likninger:

$$x = v_{0x}t + \frac{1}{2}a_xt^2$$
 $y = v_{0y}t + \frac{1}{2}a_yt^2$ $v_x = v_{0x} + a_xt$ $v_y = v_{0y} + a_yt$

Kastbevegelse

Her forenkles ligningene ganske mye fordi $\,a_x=0\,$ og hvis man velger positiv retning oppover så blir $\,a_y=-g$. Dette gir

$$x = v_{0x}t$$

$$y = v_{0y}t - \frac{1}{2}gt^{2}$$

$$v_{x} = v_{0x}$$

$$v_{y} = v_{0y} - gt$$

eller

$$[x, y] = [v_{0x}t, v_{0y}t - \frac{1}{2}gt^2]$$

$$[v_x, v_y] = [v_{0x}, v_{0y} - gt]$$

LØST OPPGAVE 14.310

14.310

En skilpadde krabber langs en rett linje. Vi legger inn et koordinatsystem og finner at posisjonen s som funksjon av tida er gitt ved

$$s(t) = 40 \text{ cm} + 2,4 \text{ cm/s} \cdot t - 0,10 \text{ cm/s}^2 \cdot t^2$$

- a) Finn posisjonen, farten og akselerasjonen til skilpadda ved start, t = 0.
- b) Når er farten til skillpadda lik null?
- c) Når er skilpadda kommet tilbake til startposisjonen?
- d) Når er skilpadda 10 cm fra startstedet?
 Hvor stor er farten, verdi og retning, ved disse tidspunktene?
- e) Skisser posisjons-, farts- og akselerasjonsgrafene for bevegelsen i tidsintervallet t = 0 til t = 40 s.

Løsning:

a) For å finne farten og akselerasjonen deriverer vi *s*(*t*) med hensyn på tida to ganger:

$$v(t) = s'(t) = 2.4 \text{ cm/s} - 0.10 \text{ cm/s}^2 \cdot 2t$$

= 2.4 cm/s - 0.20 cm/s² · t
 $a(t) = v'(t) = -0.20 \text{ cm/s}^2$

Vi setter så inn t = 0 i uttrykkene for s, v og a:

$$s(0) = 40 \text{ cm} + 2,4 \text{ cm/s} \cdot 0 - 0,10 \text{ cm/s}^2 \cdot 0^2 = \underline{40 \text{ cm}}$$

$$v(0) = 2,4 \text{ cm/s} - 0,20 \text{ cm/s}^2 \cdot 0 = \underline{2,4 \text{ cm/s}}$$

$$a(0) = -0,20 \text{ cm/s}^2$$

b) Vi løser likningen

$$v(t) = 0$$
2,4 cm/s - 0,20 cm/s² · t = 0
$$t = \frac{-2,4 \text{ cm/s}}{-0.20 \text{ cm/s}^2} = \frac{12 \text{ s}}{12 \text{ s}}$$

c) Startposisjonen er s = 40 cm. Skilpadda er altså kommet tilbake til startposisjonen når

$$s(t) = 40 \text{ cm}$$

$$40 \text{ cm} + 2,4 \text{ cm/s} \cdot t - 0,10 \text{ cm/s}^2 \cdot t^2 = 40 \text{ cm}$$

Vi ordner likningen og løser med hensyn på t:

$$-0.10 \text{ cm/s}^2 \cdot t^2 + 2.4 \text{ cm/s} \cdot t = 0$$

$$-0.10t \text{ cm/s}^2 \cdot t(t-24 \text{ s}) = 0$$

$$t = 0$$
 eller $t = 24$ s

d) Skilpadda er 10 cm fra startposisjonen når s(t) = 30 cm og når s(t) = 50 cm. Vi løser først likningen

$$40 \text{ cm} + 2,4 \text{ cm/s} \cdot t - 0,10 \text{ cm/s}^2 \cdot t^2 = 30 \text{ cm}$$

Vi ordner likningen og løser med hensyn på t:

$$-0.10 \text{ cm/s}^2 \cdot t^2 + 2.4 \text{ cm/s} \cdot t + 10 \text{ cm} = 0$$

$$t = \frac{-2.4 \text{ cm/s} \pm \sqrt{(2.4 \text{ cm/s})^2 - 4 \cdot (-0.10 \text{ cm/s}^2) \cdot 10 \text{ cm}}}{2 \cdot (-0.10 \text{ cm/s}^2)}$$

$$t = -3,620 \text{ s}, t = 27,62 \text{ s}$$

Så løser vi likningen

$$40 \text{ cm} + 2,4 \text{ cm/s} \cdot t - 0,10 \text{ cm/s}^2 \cdot t^2 = 50 \text{ cm}$$

Vi ordner likningen og løser med hensyn på t:

$$-0.10 \text{ cm/s}^2 \cdot t^2 + 2.4 \text{ cm/s} \cdot t - 10 \text{ cm} = 0$$

$$t = \frac{-2.4 \text{ cm/s} \pm \sqrt{(2.4 \text{ cm/s})^2 - 4 \cdot (-0.10 \text{ cm/s}^2) \cdot (-10 \text{ cm})}}{2 \cdot (-0.10 \text{ cm/s}^2)}$$

$$t = 5,366 \text{ s}, t = 18,63 \text{ s}$$

Svar: Skilpadda var 10 cm fra startposisjonen etter 5,4 s, 19 s og 28 s.

Vi finner farten ved disse tidspunktene ved å sette inn i uttrykket for *v*. Fortegnet gir retningen til *v*.

$$v_1 = v(5,366 \text{ s})$$

= 2,4 cm/s - 0,20 cm/s² · 5,366 s = 1,3 cm/s
 $v_2 = v(18,63 \text{ s})$
= 2,4 cm/s - 0,20 cm/s² · 18,63 s = -1,3 cm/s
 $v_3 = v(27,62 \text{ s})$
= 2,4 cm/s - 0,20 cm/s² · 27,62 s = -3,1 cm/s

e) Vi tegner grafene med et digitalt hjelpemiddel.

Illustrusjon ar narhenigighets prinsippet Oppjave 14.07 3 m/5 4 m/s Vy Vx ~= [3, 4] \Rightarrow $|\vec{v}'| = \sqrt{3^2 + y^2} = \sqrt{25} = 5$ Vinhelm & med elvibredden: fan x = \frac{Vy}{V} = \frac{4}{3} =) x = 53.13° loom / $fan \alpha = \frac{100}{x} \Rightarrow x = \frac{100}{fan \alpha}$ = 75m

 $\Rightarrow t = \frac{5y}{V_y} = \frac{400m}{4m/8} = 255$

LØST OPPGAVE 14.333

14.333

En kule blir skutt oppover i en retning som danner 60° med horisontalplanet. Kula treffer en bygning 30 m unna, 15 m over utskytingspunktet.

Finn hvor stor fart kula hadde da den ble skutt ut.

Løsning:

Vi legger inn et koordinatsystem med vannrett *x*-akse og origo i startstedet. Vi har skissert banen til kula på figuren nedenfor. Her er:

$$\alpha = 60^{\circ}$$
$$x = 30 \text{ m}$$
$$y = 15 \text{ m}$$

Komponentene av begynnelsesfarten \vec{v}_0 er

$$v_{0x} = v_0 \cos \alpha$$
$$v_{0y} = v_0 \sin \alpha$$

Bevegelseslikningene for konstant akselerasjon

$$x = v_{0x}t + \frac{1}{2}a_xt^2$$
$$y = v_{0y}t + \frac{1}{2}a_yt^2$$

gir da denne parameterframstillingen for bevegelsen:

$$x = v_0 \cos \alpha \cdot t \tag{1}$$
$$y = v_0 \sin \alpha \cdot t - \frac{1}{2} g t^2 \tag{2}$$

Her har vi brukt at $a_x = 0$ og $a_y = -g$ der g er akselerasjonen ved fritt fall.

Vi skal nå løse linkningssettet ovenfor med hensyn på v_0 .

Vi finner først t uttrykt ved hjelp av x av likning (1):

$$t = \frac{x}{v_0 \cos \alpha}$$

Dette uttrykket setter vi inn i likning (2):

$$y = v_0 \sin \alpha \cdot \frac{x}{v_0 \cos \alpha} - \frac{1}{2} g \left(\frac{x}{v_0 \cos \alpha} \right)^2$$
$$y = \tan \alpha \cdot x - \frac{gx^2}{2v_0^2 \cos \alpha}$$

Vi løser så denne likningen med hensyn på v_0 :

$$y = \tan \alpha \cdot x - \frac{gx^2}{2\cos^2 \alpha \cdot v_0^2}$$

$$\frac{gx^2}{2\cos^2 \alpha \cdot v_0^2} = \tan \alpha \cdot x - y$$

$$v_0^2 = \frac{gx^2}{2\cos^2 \alpha \cdot (\tan \alpha \cdot x - y)}$$

$$v_0 = \sqrt{\frac{gx^2}{2\cos^2 \alpha \cdot (\tan \alpha \cdot x - y)}}$$

$$= \sqrt{\frac{9.81 \text{ m/s}^2 \cdot (30 \text{ m})^2}{2\cos^2 60^\circ \cdot (\tan 60^\circ \cdot 30 \text{ m} - 15 \text{ m})}} = \frac{22 \text{ m/s}}$$

(Hvis du husker de eksakte verdiene for cos og tan til 60°, blir oppgaven noe enklere.)