

Training DNNs in Tiny Subspaces

Introductory Talk | **Janik Philipps**

Low Dimensional Landscape Hypothesis is True: DNNs can be Trained in Tiny Subspaces

Tao Li¹ Lei Tan¹ Qinghua Tao² Yipeng Liu³ Xiaolin Huang*¹

¹Shanghai Jiao Tong University ²Tsinghua University

³University of Electronic Science and Technology

Motivation: Deep neural networks depend on million of parameters causing severe problems

Models	# Parameter	Potential overfitting of the data
VGG11_bn [41]	28.5M	
EfficientNet-B0 [47]	4.14M	Only first order methods applicable
MobileNet [20]	3.3M	
DenseNet121 [22]	7.0M	Computationally and time intensive
Inceptionv3 [46]	22.3M	training
Xception [7]	21.0M	
GoogLeNet [45]	6.2M	NA
ShuffleNetv2 [35]	1.3M	Many training data needed
SequeezeNet [23]	0.78M	
SEResNet18 [21]	11.4M	Questionable solution quality
NasNet [53]	5.2M	
		-

Motivation: The number of independent optimization variables may be smaller than the number of parameters

- Due to strong mutual relationships, regarding each parameter of deep neural networks as an independent variable is too rough
- ► The **gradients of parameters are strongly related** due to the training via backpropagation
- The parameters in the same layers also have synergy correlations

 \downarrow

"DNNs can be trained in low-dimensional subspaces"

Motivation: Pioneering work achieved 90% accuracy in smaller spaces

- ► There exists pioneering work on **training via random projections**
- ► For example, on CIFAR-10, LeNet with 62006 parameters could be optimized in 2900-dimensional subspaces with **90% accuracy of regular SGD training**.

 \downarrow

Very promising but we can do even better!

Many standard neural network architectures could be **well trained by only 40 independent variables** with almost the same performance.

Approach in the paper

- There are **three parameters** w(1), w(2), w(3) **to optimize**.
- The training trajectory $\{w_i\}_{i=0,...,t}$ could be in a **two-dimensional** subspace spanned by e_1 and e_2
- Training in the low-dimensional space can have comparable performance as training in the regular space

Agenda

- Dynamic Linear Dimensionality Reduction (DLDR)
- DLDR-based Quasi-Newton Algorithm
- Numerical Experiments

Agenda

- Dynamic Linear Dimensionality Reduction (DLDR)
- DLDR-based Quasi-Newton Algorithm
- Numerical Experiments

Assumption: The layer width is unlimited.

 Under infinite-width limit, a wide neural network estimator can be approximated by a linear model under gradient descent, such that

$$f^{lin}(x, w_t) \approx f(x, w_0) + \nabla_w f(\mathcal{X}, w_0)(w_t - w_0)$$

We formulate the gradient flow of a single-output neural network:

$$\dot{\mathbf{w}}_t = -\nabla_{\mathbf{w}} f(\mathcal{X}, \mathbf{w}_t)^T \nabla_{f_t(\mathcal{X}, \mathbf{w}_t)} \mathcal{L}$$

Using the linearized model, the dynamics of gradient flow are governed by

$$\dot{\mathbf{w}}_t = -\nabla_{\mathbf{w}} f(\mathcal{X}, \mathbf{w}_0)^T \nabla_{f^{lin}(\mathcal{X}, \mathbf{w}_t)} \mathcal{L}$$

• Applying Singular Value Decomposition on $\nabla_w f(\mathcal{X}, w_0)$ yields

$$\nabla_{w} f(\mathcal{X}, w_0) = U_0 \Sigma_0 V_0^T \in \mathbb{R}^{m \times n}$$

By definition of the Neural Tangent Kernel, we have

$$\Theta_0 = \nabla_w f(\mathcal{X}, w_0) \nabla_w f(\mathcal{X}, w_0)^T = U_0 \Sigma_0 \Sigma_0^T U_0^T$$

▶ Based on the properties of NTK in infite-width limit, we can approximate Σ_0 by a low-rank matrix $\tilde{\Sigma}_0 \in \mathbb{R}^{d \times d}$ containing the first d largest singular values, such that

$$\Sigma_0 pprox ilde{U}_0 ilde{\Sigma}_0 ilde{V}_0^T$$

Thus we derive the approximations

$$egin{aligned}
abla_w f(\mathcal{X}, w_0) &pprox U_0 ilde{U}_0 ilde{\Sigma}_0 ilde{V}_0^{ au} V_0^{ au} \ \dot{w}_t &pprox - V_0 ilde{V}_0 \left(ilde{\Sigma}_0 ilde{U}_0^{ au} U_0^{ au}
abla_{f^{ ilde{lin}}(\mathcal{X}, w_t)}^{ au} \mathcal{L}
ight) \end{aligned}$$

How to find the low-dimensional subspace?

- ▶ 1) Sample t steps of parameters during the training, namely, $\{w_1, w_2, \dots, w_t\}$.
- ▶ 2) Centralize these as $\bar{w} = \frac{1}{t} \sum_{i=1}^{t} w_i$ and let $W = [w_1 \bar{w}, \dots, w_t \bar{w}]$.
- ▶ 3) Find a d-dimensional subspace spanned by $P = [e_1, e_2, \dots, e_d]$ to cover W.

The third step is to find a subspace that the distance of W and P^TW is minimized.

- We consider the SVD $W = U\Sigma V^T$ with $U = [u_1, \ldots, u_n]$, $\Sigma = \text{diag}(\sigma_1, \ldots, \sigma_t)$ and $V = [v_1, \ldots, v_t]$. The first d columns of U are the independent variables.
- Compute v_i for $i=1,\ldots,d$ by the spectral decomposition of W^TW and derive

$$Wv_i = \sigma_i u_i, \quad i = 1, \ldots, d.$$

Algorithm 1 Dynamic Linear Dimensionality Reduction (DLDR)

- 1: Sample parameter trajectory $\{\mathbf{w}_1, \mathbf{w}_2, \dots, \mathbf{w}_t\}$ along the training;
- 2: $\overline{\mathbf{w}} = \frac{1}{t} \sum_{i=1}^{\overline{t}} \mathbf{w}_i;$
- 3: $W = [\mathbf{w}_1 \overline{\mathbf{w}}, \mathbf{w}_2 \overline{\mathbf{w}}, \dots, \mathbf{w}_t \overline{\mathbf{w}}];$
- 4: Perform spectral decomposition on $W^{\top}W$ and obtain the largest d eigenvalues $[\sigma_1^2, \sigma_2^2, \dots, \sigma_d^2]$ with the corresponding eigenvectors $[\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_d]$;
- 5: $\mathbf{u}_i = \frac{1}{\sigma_i} W \mathbf{v}_i$;
- 6: Return $[\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_d]$ as the orthonormal bases.

Setting: learning rate 0.1, batch size 128, SGD with momentum of 0.9, 3 trials total

dimension reduction method	dimension	test accuracy
	78330	83.84 ± 0.34
Li et al. [31] Gressmann et al. [15] DLDR (ours)	7982 7982 15	58.35±0.04 70.26±0.02 85.18 ± 0.20

Test accuracy of ResNet8 on CIFAR-10

PCA ratio of the first 30 epochs training trajectory in the principal directions

Training performance of SGD and P-SGD (in 15D subspace)

Agenda

- Dynamic Linear Dimensionality Reduction (DLDR)
- DLDR-based Quasi-Newton Algorithm
- Numerical Experiments

DLDR-based Quasi-Newton Algorithm

 Working in the low-dimensional space has the advantage that we can approximate the Hessian matrix as

$$H \approx PH_0P^T$$

 We use the BFGS algorithm with rank two correction update to approximate the inverse Hessian matrix as

$$egin{aligned} B_{k+1} &= V_k^T B_k V_k +
ho_k ilde{s}_k ilde{s}_k^T \ y_k &= ilde{g}_{k+1} - ilde{g}_k \
ho_k &= (y_k^T ilde{s}_k)^{-1} \ V_k &= I -
ho_k y_k ilde{s}_k^T \end{aligned}$$

where $\tilde{g}_k = P^T g_k$ is the projected gradient and $\tilde{s}_k = P^T (w_{k+1} - w_k)$ is the projected difference between the parameters

DLDR-based Quasi-Newton Algorithm

Algorithm 2 P-BFGS

```
1: Obtain P = [\mathbf{e}_1, \mathbf{e}_2, \dots, \mathbf{e}_d] by DLDR in Algorithm 1;
 2: Initialize k \leftarrow 0 and B_k \leftarrow I;
 3: while not converging do
           Sample the mini-batch data \mathcal{B}_k;
 4:
           Compute the gradient \mathbf{g}_k on \mathcal{B}_k;
 5:
           Perform the projection \tilde{\mathbf{g}}_k \leftarrow P^{\top} \mathbf{g}_k;
 6:
           if k>0 then
 7:
                 Do Quasi-Newton update B_k with (13);
 8:
           Compute \alpha_k using backtracking line search;
 9:
           \tilde{\mathbf{s}}_k \leftarrow -\alpha_k B_k \tilde{\mathbf{g}}_k;
10:
           \mathbf{w}_{k+1} \leftarrow \mathbf{w}_k + P\tilde{\mathbf{s}}_k; \qquad \triangleright \text{Update the parameters}
11:
           k \leftarrow k + 1:
12:
```


Agenda

- Dynamic Linear Dimensionality Reduction (DLDR)
- DLDR-based Quasi-Newton Algorithm
- Numerical Experiments

Models	# Parameter	SGD (#training epochs)			P-SGD (#sample epochs)	
		50	100	200	50	100
VGG11_bn [41]	28.5M	58.38	59.90	68.87	68.72	70.18
EfficientNet-B0 [47]	4.14M	62.53	63.68	72.94	71.68	72.64
MobileNet [20]	3.3M	57.15	58.67	67.94	66.86	68.00
DenseNet121 [22]	7.0M	65.39	64.57	76.76	74.25	76.34
Inceptionv3 [46]	22.3M	61.68	64.00	76.25	75.15	76.83
Xception [7]	21.0M	64.57	65.81	75.47	75.68	75.56
GoogLeNet [45]	6.2M	62.32	66.32	76.88	75.66	77.27
ShuffleNetv2 [35]	1.3M	62.90	63.15	72.06	71.34	72.29
SequeezeNet [23]	0.78M	59.52	58.56	70.29	69.89	70.60
SEResNet18 [21]	11.4M	64.74	64.68	74.95	74.33	75.09
NasNet [53]	5.2M	63.73	66.80	77.34	77.19	77.03

Test accuracy on CIFAR-100 for regular training and optimization in 40D subspaces

The accuracy of ResNet20 on CIFAR-10 in different epochs

Dataset		CIFAR-10	CIFAR-100	ImageNet
Mo	odel	ResNet20	ResNet32	ResNet18
SGD	epochs acc	$\begin{array}{ c c c }\hline 150 \\ 91.55 \pm 0.23 \end{array}$	$200 \\ 68.40 \pm 0.45$	90 69.794
P-BFGS	sampling epochs acc	$ \begin{array}{ c c } 80 \\ 20 \\ 91.72 \pm 0.10 \end{array} $	100 20 69.90 ± 0.48	60 4 69.720

Test accuracy obtained by SGD and P-BFGS

Wall-clock time consumption comparisons

The performance under different level of label noise

Are there any questions?

Ideas for further exploration

- Test different second order methods
- Improve the subspace extraction (different sampling strategies, different dimensions, etc.)

Further ideas?

