

Recursion

PROBLEM SOLVING AND PROGRAM DESIGN In C

7th EDITION Jeri R. Hanly, Elliot B. Koffman

By: Mamoun Nawahdah (PhD) 2013/2014

Recursion

- ❖ A function that calls **itself** is said to be recursive.
- ❖ A function f1 is also recursive if it calls a function f2, which under some circumstances calls f1, creating a cycle in the sequence of calls.
- The ability to invoke itself enables a recursive function to be repeated with different parameter values.
- You can use recursion as an alternative to iteration (looping).

The Nature of Recursion

- Problems that lend themselves to a recursive solution have the following characteristics:
 - One or more simple cases of the problem have a straightforward, non recursive solution.
 - The other cases can be redefined in terms of problems that are closer to the simple cases.
 - By applying this redefinition process every time the recursive function is called, eventually the **problem** is reduced entirely to simple cases, which are relatively easy to solve.

The Nature of Recursion

❖ The recursive algorithms that we write will generally consist of an if statement with the following form:

```
if this is a <u>simple case</u>solve itelse
```

redefine the problem using recursion

Example

- Solve the problem of **multiplying** 6 by 3, assuming we only know addition:
- ❖ Simple case: any number multiplied by 1 gives us the original number.
- The problem can be split into the two problems:
 - 1. Multiply 6 by 2.
 - 1.1 Multiply 6 by 1.
 - 1.2 Add 6 to the result of problem 1.1. ✓
 - 2. Add **6** to the result of problem 1.


```
FIGURE 9.2 Recursive Function multiply
    * Performs integer multiplication using + operator.
     * Pre: m and n are defined and n > 0
     * Post: returns m * n
   int
   multiply(int m, int n)
                                       The simplest case is
                                       reached when n == 1
        int ans;
10.
11.
        if (n == 1)
                           /* simple case */
12.
              ans = m;
13.
              ans = m + multiply(m, n - 1); /* recursive step */
15.
16.
       return (ans);
```

Tracing a Recursive Function

- Hand tracing an algorithm's execution provides us with valuable insight into how that algorithm works.
- By drawing an activation frame corresponding to each call of the function.
- ❖ An activation frame shows the parameter values for each call and summarizes the execution of the call.

Self-Check

Using diagrams (similar to previous slide) show the specific problems that are generated by the following call.

multiply(5, 4)

❖ Write a recursive function add that computes the sum of its two integer parameters. Assume add does not know general addition tables but does know how to add or subtract 1.

Recursive Mathematical Functions

- Many mathematical functions can be defined recursively.
- ❖ An example is the **factorial** of **n** (**n!**):
- •0! is 1

The simplest case

- n! is n * (n- 1)!, for n> 0
- ❖ Thus 4! is 4 *3!, which means 4 *3 *2 *1, or 24.


```
FIGURE 5.7 Function to Compute Factorial
    * Computes n!
    * Pre: n is greater than or equal to zero
   int
   factorial(int n)
                      /* local variables */
            product;
                      /* accumulator for product computation */
10.
11.
        product = 1;
       /* Computes the product n x (n-1) x (n-2) x . . . x 2 x 1 */
13.
       for (i = n; i > 1; --i) {
             product = product * i;
14.
15.
        /* Returns function result */
17.
18.
        return (product);
```

```
FIGURE 9.10 Recursive factorial Function
1. /*
2. * Compute n! using a recursive definition
   * Pre: n >= 0
4.
   */
5. int
factorial(int n)
7.
                                    The simplest case
8.
          int ans;
10.
          if (n == 0)
11.
                ans = 1;
12.
          else
13.
                ans = n * factorial(n - 1);
14.
15.
          return (ans);
16. }
```


Fibonacci Numbers

- ❖ The Fibonacci sequence is defined as:
 - Fibonacci 1 is 1

The simplest cases

- Fibonacci 2 is 1
- Fibonacci n is Fibonacci n-2 + Fibonacci n-1, for n> 2


```
FIGURE 9.13 Recursive Function fibonacci
     * Computes the nth Fibonacci number
    * Pre: n > 0
    int
    fibonacci(int n)
8.
          int ans;
9.
          if (n == 1 || n == 2)
10.
11.
                 ans = 1;
12.
          else
                 ans = fibonacci(n - 2) + fibonacci(n - 1);
13.
14.
15.
          return (ans);
16.
```

Self Check

Write and test a recursive function that returns the value of the following recursive definition:

```
• f(x) = 0 if x = 0
```

•
$$f(x) = f(x - 1) + 2$$
 otherwise

What set of numbers is generated by this definition?

Example

```
#include <stdio.h>
int sum(int n);
int main(){
    int num,add;
    printf("Enter a positive integer:\n");
    scanf("%d",&num);
    add=sum(num);
    printf("sum=%d",add);
}
int sum(int n){
    if(n==0)
        return n;
    else
        return n+sum(n-1);
}
```

Visualization of Recursion

```
Enter a positive integer:

5

15

sum(5)
= 5+sum(4)
= 5+4+sum(3)
= 5+4+3+sum(2)
= 5+4+3+2+sum(1)
= 5+4+3+2+1+sum(0)
= 5+4+3+2+1+0
= 5+4+3+2+1
= 5+4+3+3
= 5+4+6
= 5+10
= 15
```