§8.7 二重积分

2016-2017 **学年** II

Outline

1. 二重积分的基本概念

2. 二重积分的计算

We are here now...

1. 二重积分的基本概念

2. 二重积分的计算

假设

- 区域 D 为平面薄片
- 密度为 μ
- 质量为 m

假设

- 区域 D 为平面薄片
- 密度为 μ
- 质量为 m

当薄片均匀时(μ = 常数),

假设

- 区域 D 为平面薄片
- 密度为 μ
- 质量为 m

• 当薄片均匀时(μ = 常数),

$$m = \mu \cdot \text{Area}(D)$$

假设

- 区域 D 为平面薄片
- 密度为 μ
- 质量为 m

当薄片均匀时(μ = 常数),

$$m = \mu \cdot \text{Area}(D)$$

假设

- 区域 D 为平面薄片
- 密度为 μ
- 质量为 m

当薄片均匀时(μ = 常数),

$$m = \mu \cdot \text{Area}(D)$$

假设

- 区域 D 为平面薄片
- 密度为 μ
- 质量为 m

当薄片均匀时(μ = 常数),

$$m = \mu \cdot \text{Area}(D)$$

假设

- 区域 D 为平面薄片
- 密度为 μ
- 质量为 m

当薄片均匀时(μ = 常数),

$$m = \mu \cdot \text{Area}(D)$$

假设

- 区域 D 为平面薄片
- 密度为 μ
- 质量为 m

当薄片均匀时(μ = 常数),

$$m = \mu \cdot \text{Area}(D)$$

$$\mu(\xi_i, \eta_i)\Delta\sigma_i$$

假设

- 区域 D 为平面薄片
- 密度为 μ
- 质量为 m

当薄片均匀时(μ = 常数),

$$m = \mu \cdot \text{Area}(D)$$

$$\sum_{i=1}^n \mu(\xi_i,\,\eta_i) \Delta \sigma_i$$

假设

- 区域 D 为平面薄片
- 密度为 μ
- 质量为 m

● 当薄片均匀时(µ = 常数),

$$m = \mu \cdot \text{Area}(D)$$

$$\sum_{i=1}^n \mu(\xi_i,\,\eta_i) \Delta \sigma_i$$

假设

- 区域 D 为平面薄片
- 密度为 μ
- 质量为 m

当薄片均匀时(μ = 常数),

$$m = \mu \cdot \text{Area}(D)$$

$$\lim_{\lambda \to 0} \sum_{i=1}^{n} \mu(\xi_i, \, \eta_i) \Delta \sigma_i$$

假设

- 区域 D 为平面薄片
- 密度为 μ
- 质量为 m

当薄片均匀时(μ = 常数),

$$m = \mu \cdot \text{Area}(D)$$

$$m = \lim_{\lambda \to 0} \sum_{i=1}^{n} \mu(\xi_i, \, \eta_i) \Delta \sigma_i$$

二重积分定义 设

- D 是平面上有界闭区域,
- f(x, y) 是 D 上的有界函数,

二重积分定义 设

- D 是平面上有界闭区域,
- *f*(*x*, *y*) 是 *D* 上的有界函数,

二重积分定义 设

- D 是平面上有界闭区域,
- *f*(*x*, *y*) 是 *D* 上的有界函数,

二重积分定义 设

- D 是平面上有界闭区域,
- *f*(*x*, *y*) 是 *D* 上的有界函数,

二重积分定义 设

- D 是平面上有界闭区域,
- *f*(*x*, *y*) 是 *D* 上的有界函数,

二重积分定义 设

- D 是平面上有界闭区域,
- f(x, y) 是 D 上的有界函数,

$$f(\xi_i, \eta_i)\Delta\sigma_i$$

二重积分定义 设

- D 是平面上有界闭区域,
- *f*(*x*, *y*) 是 *D* 上的有界函数,

$$\sum_{i=1}^n f(\boldsymbol{\xi}_i,\,\boldsymbol{\eta}_i) \Delta \sigma_i$$

二重积分定义 设

- D 是平面上有界闭区域,
- *f*(*x*, *y*) 是 *D* 上的有界函数,

$$\lim_{\lambda \to 0} \sum_{i=1}^n f(\xi_i, \, \eta_i) \Delta \sigma_i$$

二重积分定义 设

- D 是平面上有界闭区域,
- *f*(*x*, *y*) 是 *D* 上的有界函数,

若

• 极限 $\lim_{\lambda \to 0} \sum_{i=1}^{n} f(\xi_i, \eta_i) \Delta \sigma_i$ 存在,

二重积分定义 设

- D 是平面上有界闭区域,
- f(x, y) 是 D 上的有界函数,

- 极限 $\lim_{\lambda \to 0} \sum_{i=1}^{n} f(\xi_i, \eta_i) \Delta \sigma_i$ 存在,且极限
- 与上述 D 的划分、 (ξ_i, η_i) 的选取无关,

二重积分定义 设

- D 是平面上有界闭区域,
- *f*(*x*, *y*) 是 *D* 上的有界函数,

若

- 极限 $\lim_{\lambda \to 0} \sum_{i=1}^{n} f(\xi_i, \eta_i) \Delta \sigma_i$ 存在,且极限
- 与上述 D 的划分、(ξ_i, η_i) 的选取无关,

则定义

$$\iint_{D} f(x, y) d\sigma = \lim_{\lambda \to 0} \sum_{i=1}^{n} f(\xi_{i}, \eta_{i}) \Delta \sigma_{i}$$

二重积分定义 设

- D 是平面上有界闭区域,
- f(x, y) 是 D 上的有界函数,

若

- 极限 $\lim_{\lambda \to 0} \sum_{i=1}^{n} f(\xi_i, \eta_i) \Delta \sigma_i$ 存在,且极限
- 与上述 D 的划分、(ξ_i, η_i) 的选取无关,

则定义

$$\iint_D f(x, y) d\sigma = \lim_{\lambda \to 0} \sum_{i=1}^n f(\xi_i, \eta_i) \Delta \sigma_i$$

称为 f(x, y) 在 D 上的二重积分。

二重积分定义 设

- D 是平面上有界闭区域,
- f(x, y) 是 D 上的有界函数,

若

- 极限 $\lim_{\lambda \to 0} \sum_{i=1}^{n} f(\xi_i, \eta_i) \Delta \sigma_i$ 存在,且极限
- 与上述 D 的划分、(ξ_i, η_i) 的选取无关,

则定义

$$\iint_D f(x, y) d\sigma = \lim_{\lambda \to 0} \sum_{i=1}^n f(\xi_i, \eta_i) \Delta \sigma_i$$

称为 f(x, y) 在 D 上的二重积分。 $d\sigma$ 称为面积元素。

二重积分定义 设

- D 是平面上有界闭区域,
- f(x, y) 是 D 上的有界函数,

若

- 极限 $\lim_{\lambda \to 0} \sum_{i=1}^{n} f(\xi_i, \eta_i) \Delta \sigma_i$ 存在,且极限
- 与上述 D 的划分、(ξ_i, η_i) 的选取无关,

则定义

$$\iint_{D} f(x, y) d\sigma = \lim_{\lambda \to 0} \sum_{i=1}^{n} f(\xi_{i}, \eta_{i}) \Delta \sigma_{i}$$

称为 f(x, y) 在 D 上的二重积分。 $d\sigma$ 称为面积元素。

定理 若 f(x, y) 在有界闭区域 D 上连续,则 $\iint_{D} f(x, y) d\sigma$ 存在。

曲顶柱体的体积:

曲顶柱体的体积:

曲顶柱体的体积:

曲顶柱体的体积:

曲顶柱体的体积:

曲顶柱体的体积:

曲顶柱体的体积:

曲顶柱体的体积:

 $V f(\eta_i, \xi_i) \Delta \sigma_i$

$$V \qquad \sum_{i=1}^n f(\eta_i, \, \xi_i) \Delta \sigma_i$$

$$V \qquad \sum_{i=1}^{n} f(\eta_i, \, \xi_i) \Delta \sigma_i$$

$$V \qquad \sum_{i=1}^n f(\eta_i, \, \xi_i) \Delta \sigma_i$$

マヤ:

$$V = \lim_{\lambda \to 0} \sum_{i=1}^{n} f(\eta_i, \, \xi_i) \Delta \sigma_i$$

$$V = \lim_{\lambda \to 0} \sum_{i=1}^{n} f(\eta_i, \, \xi_i) \Delta \sigma_i = \iint_D f(x, \, y) d\sigma$$

性质1(线性性)

 $\iint_{D} \alpha f(x, y) + \beta g(x, y) d\sigma = \alpha \iint_{D} f(x, y) d\sigma + \beta \iint_{D} g(x, y) d\sigma,$ 其中 α , β 是常数。

性质 1 (线性性)

$$\iint_{D} \alpha f(x, y) + \beta g(x, y) d\sigma = \alpha \iint_{D} f(x, y) d\sigma + \beta \iint_{D} g(x, y) d\sigma,$$
其中 α , β 是常数。

$$\iint_{D} \alpha f(x, y) + \beta g(x, y) d\sigma$$

$$= \lim_{\lambda \to 0} \sum_{i=1}^{n} [\alpha f(\xi_{i}, \eta_{i}) + \beta g(\xi_{i}, \eta_{i})] \Delta \sigma_{i}$$

性质1(线性性)

$$\iint_{D} \alpha f(x, y) + \beta g(x, y) d\sigma = \alpha \iint_{D} f(x, y) d\sigma + \beta \iint_{D} g(x, y) d\sigma,$$
其中 α , β 是常数。

$$\iint_{D} \alpha f(x, y) + \beta g(x, y) d\sigma$$

$$= \lim_{\lambda \to 0} \sum_{i=1}^{n} [\alpha f(\xi_{i}, \eta_{i}) + \beta g(\xi_{i}, \eta_{i})] \Delta \sigma_{i}$$

$$= \alpha \cdot \lim_{\lambda \to 0} \sum_{i=1}^{n} f(\xi_{i}, \eta_{i}) \Delta \sigma_{i} + \beta \cdot \lim_{\lambda \to 0} \sum_{i=1}^{n} g(\xi_{i}, \eta_{i}) \Delta \sigma_{i}$$

性质1(线性性)

$$\iint_{D} \alpha f(x, y) + \beta g(x, y) d\sigma = \alpha \iint_{D} f(x, y) d\sigma + \beta \iint_{D} g(x, y) d\sigma,$$
其中 α , β 是常数。

$$\iint_{D} \alpha f(x, y) + \beta g(x, y) d\sigma$$

$$= \lim_{\lambda \to 0} \sum_{i=1}^{n} [\alpha f(\xi_{i}, \eta_{i}) + \beta g(\xi_{i}, \eta_{i})] \Delta \sigma_{i}$$

$$= \alpha \cdot \lim_{\lambda \to 0} \sum_{i=1}^{n} f(\xi_{i}, \eta_{i}) \Delta \sigma_{i} + \beta \cdot \lim_{\lambda \to 0} \sum_{i=1}^{n} g(\xi_{i}, \eta_{i}) \Delta \sigma_{i}$$

$$= \alpha \iint_{D} f(x, y) d\sigma + \beta \iint_{D} g(x, y) d\sigma$$

性质 2 (积分可加性) 将 D 划分成两部分 D_1 和 D_2 , 则

$$\iint_{D} f(x, y) d\sigma = \iint_{D_{1}} f(x, y) d\sigma + \iint_{D_{2}} f(x, y) d\sigma$$

性质 2 (积分可加性) 将 D 划分成两部分 D_1 和 D_2 , 则

$$\iint_{D} f(x, y) d\sigma = \iint_{D_{1}} f(x, y) d\sigma + \iint_{D_{2}} f(x, y) d\sigma$$

性质 2 (积分可加性) 将 D 划分成两部分 D_1 和 D_2 , 则

$$\iint_{D} f(x, y) d\sigma = \iint_{D_{1}} f(x, y) d\sigma + \iint_{D_{2}} f(x, y) d\sigma$$

性质
$$3 \iint_D 1d\sigma = |D|$$
 (D 的面积)。

性质
$$3 \iint_D 1d\sigma = |D|$$
 (D 的面积)。

性质 $3\iint_D 1d\sigma = |D|$ (D 的面积)。

性质
$$3\iint_D 1d\sigma = |D|$$
 (D 的面积)。特别滴, $\iint_D kd\sigma =$ 。

性质 $3\iint_D 1d\sigma = |D|$ (D 的面积)。特别滴, $\iint_D kd\sigma = k|D|$ 。

性质 4 如果在
$$D$$
 上成立 $f(x, y) \le g(x, y)$,则
$$\iint_D f(x, y) d\sigma \le \iint_D g(x, y) d\sigma$$

性质 4 如果在
$$D$$
 上成立 $f(x, y) \le g(x, y)$,则
$$\iint_D f(x, y) d\sigma \le \iint_D g(x, y) d\sigma$$

性质 5 假设在
$$D$$
 上成立 $m \le f(x, y) \le M$,则
$$m\sigma \le \iint_D f(x, y) d\sigma \le M\sigma,$$

性质 4 如果在
$$D$$
 上成立 $f(x, y) \le g(x, y)$,则
$$\iint_D f(x, y) d\sigma \le \iint_D g(x, y) d\sigma$$

性质 5 假设在
$$D$$
 上成立 $m \le f(x, y) \le M$,则
$$m\sigma \le \iint_D f(x, y) d\sigma \le M\sigma, \qquad (\sigma \to D) d\sigma$$

性质 4 如果在 D 上成立 $f(x, y) \le g(x, y)$,则 $\iint_D f(x, y) d\sigma \le \iint_D g(x, y) d\sigma$

性质 5 假设在 D 上成立 $m \le f(x, y) \le M$,则

$$m\sigma \leq \iint_D f(x, y) d\sigma \leq M\sigma,$$
 (σ 为 D 的面积)

$$\iint_{D} md\sigma \leq \iint_{D} f(x, y)d\sigma \leq \iint_{D} Md\sigma$$

性质 4 如果在
$$D$$
 上成立 $f(x, y) \le g(x, y)$,则
$$\iint_D f(x, y) d\sigma \le \iint_D g(x, y) d\sigma$$

性质 5 假设在 D 上成立 $m \le f(x, y) \le M$,则

$$m\sigma \leq \iint_D f(x, y) d\sigma \leq M\sigma,$$
 (σ 为 D 的面积)

$$\iint_{D} md\sigma \leq \iint_{D} f(x, y)d\sigma \leq \iint_{D} Md\sigma = M\sigma$$

性质 4 如果在
$$D$$
 上成立 $f(x, y) \le g(x, y)$,则
$$\iint_D f(x, y) d\sigma \le \iint_D g(x, y) d\sigma$$

性质 5 假设在 D 上成立 $m \le f(x, y) \le M$,则

$$m\sigma \leq \iint_D f(x, y) d\sigma \leq M\sigma,$$
 (σ 为 D 的面积)

$$m\sigma = \iint_{D} md\sigma \le \iint_{D} f(x, y)d\sigma \le \iint_{D} Md\sigma = M\sigma$$

例 估计下列积分 $I = \iint_D (x^2 + 4y^2 + 9) d\sigma$ 值的范围,其中 $D = \{(x, y) | x^2 + y^2 \le 4\}$ 。

例 估计下列积分 $I = \iint_D (x^2 + 4y^2 + 9) d\sigma$ 值的范围,其中 $D = \{(x, y) | x^2 + y^2 \le 4\}$ 。

$$9 \le x^2 + 4y^2 + 9$$

例 估计下列积分 $I = \iint_D (x^2 + 4y^2 + 9) d\sigma$ 值的范围,其中 $D = \{(x,y) | x^2 + y^2 \le 4\}$ 。

$$9 \le x^2 + 4y^2 + 9 = (x^2 + y^2) + 3y^2 + 9$$

例 估计下列积分
$$I = \iint_D (x^2 + 4y^2 + 9) d\sigma$$
 值的范围,其中 $D = \{(x,y) | x^2 + y^2 \le 4\}$ 。

$$9 \le x^2 + 4y^2 + 9 = (x^2 + y^2) + 3y^2 + 9 \le 4 + 3 \cdot 4 + 9$$

例 估计下列积分
$$I = \iint_D (x^2 + 4y^2 + 9) d\sigma$$
 值的范围,其中 $D = \{(x,y) | x^2 + y^2 \le 4\}$ 。

$$9 \le x^2 + 4y^2 + 9 = (x^2 + y^2) + 3y^2 + 9 \le 4 + 3 \cdot 4 + 9 = 25$$

例 估计下列积分
$$I = \iint_D (x^2 + 4y^2 + 9) d\sigma$$
 值的范围,其中 $D = \{(x,y) | x^2 + y^2 \le 4\}$ 。

$$9 \le x^2 + 4y^2 + 9 = (x^2 + y^2) + 3y^2 + 9 \le 4 + 3 \cdot 4 + 9 = 25$$

$$\Rightarrow$$
 9|D| $\leq I \leq 25|D|$

例 估计下列积分
$$I = \iint_D (x^2 + 4y^2 + 9) d\sigma$$
 值的范围,其中 $D = \{(x,y) | x^2 + y^2 \le 4\}$ 。

$$9 \le x^2 + 4y^2 + 9 = (x^2 + y^2) + 3y^2 + 9 \le 4 + 3 \cdot 4 + 9 = 25$$

$$\Rightarrow$$
 9|D| $\leq I \leq 25|D|$ $\stackrel{|D|=4\pi}{\Longrightarrow}$

例 估计下列积分
$$I = \iint_D (x^2 + 4y^2 + 9) d\sigma$$
 值的范围,其中 $D = \{(x, y) | x^2 + y^2 \le 4\}$ 。

$$9 \le x^2 + 4y^2 + 9 = (x^2 + y^2) + 3y^2 + 9 \le 4 + 3 \cdot 4 + 9 = 25$$

$$\Rightarrow 9|D| \le L \le 25|D| \quad \xrightarrow{|D| = 4\pi} \quad 36\pi \le L \le 100\pi$$

$$\Rightarrow 9|D| \le I \le 25|D| \xrightarrow{|D|=4\pi} 36\pi \le I \le 100\pi$$

性质 6(二重积分的中值定理) 设函数 f(x, y) 在闭区域 D 上连续, |D| 是 D 的面积,则在 D 上至少存在一点 (ξ, η) ,使得

$$\iint_D f(x, y) d\sigma = f(\xi, \eta) \cdot |D|.$$

性质 6(二重积分的中值定理) 设函数 f(x, y) 在闭区域 D 上连续, |D| 是 D 的面积,则在 D 上至少存在一点 (ξ, η) ,使得

$$\iint_{D} f(x, y) d\sigma = f(\xi, \eta) \cdot |D|.$$

$$m \cdot |D| \le \iint_D f(x, y) d\sigma \le M \cdot |D|$$

性质 6(二重积分的中值定理) 设函数 f(x, y) 在闭区域 D 上连续, |D| 是 D 的面积,则在 D 上至少存在一点 (ξ, η) ,使得

$$\iint_{D} f(x, y) d\sigma = f(\xi, \eta) \cdot |D|.$$

$$m \cdot |D| \le \iint_D f(x, y) d\sigma \le M \cdot |D| \quad \Rightarrow \quad m \le \frac{1}{|D|} \iint_D f(x, y) d\sigma \le M$$

性质 6(二重积分的中值定理) 设函数 f(x, y) 在闭区域 D 上连续, |D| 是 D 的面积,则在 D 上至少存在一点 (ξ, η) ,使得

$$\iint_D f(x, y) d\sigma = f(\xi, \eta) \cdot |D|.$$

证明 因为

$$m \cdot |D| \le \iint_D f(x, y) d\sigma \le M \cdot |D| \quad \Rightarrow \quad m \le \frac{1}{|D|} \iint_D f(x, y) d\sigma \le M$$

由闭区域上连续函数的中值定理可知:存在 $(\xi, \eta) \in D$,使得

$$f(\xi, \eta) = \frac{1}{|D|} \iint_D f(x, y) d\sigma,$$

二重积分的性质 (Cont.)

性质 6(二重积分的中值定理) 设函数 f(x, y) 在闭区域 D 上连续, |D| 是 D 的面积,则在 D 上至少存在一点 (ξ, η) ,使得

$$\iint_{D} f(x, y) d\sigma = f(\xi, \eta) \cdot |D|.$$

证明 因为

$$m \cdot |D| \le \iint_D f(x, y) d\sigma \le M \cdot |D| \quad \Rightarrow \quad m \le \frac{1}{|D|} \iint_D f(x, y) d\sigma \le M$$

由闭区域上连续函数的中值定理可知:存在 $(\xi, \eta) \in D$,使得

$$f(\xi, \eta) = \frac{1}{|D|} \iint_D f(x, y) d\sigma,$$

即

$$\iint_{D} f(x, y) d\sigma = f(\xi, \eta) \cdot |D|.$$

$$\iint_D f(x, y) d\sigma = h|D|$$

$$\iint_D f(x, y) d\sigma = h|D|$$

$$\iint_D f(x, y) d\sigma = h|D|$$

$$\iint_D f(x, y) d\sigma = h|D|$$

$$\iint_D f(x, y) d\sigma = h|D|$$

§8.7 二重积分

We are here now...

1. 二重积分的基本概念

2. 二重积分的计算

$$\iint_D f(x, y) d\sigma =$$

• 一般方法 化二重积分为 "累次积分": $\iint_{D} f(x, y) d\sigma = \iint_{D} f(x, y) dx dy$

$$\iint_D f(x, y) d\sigma = \iint_D f(x, y) dx dy = \int \int f(x, y) dx dy$$

$$\iint_{D} f(x, y) d\sigma = \iint_{D} f(x, y) dx dy = \int \left[\int f(x, y) dx \right] dy$$

$$\iint_{D} f(x, y) d\sigma = \iint_{D} f(x, y) dx dy = \int \left[\int_{*}^{*} f(x, y) dx \right] dy$$

$$\iint_{D} f(x, y) d\sigma = \iint_{D} f(x, y) dx dy = \int_{*}^{*} \left[\int_{*}^{*} f(x, y) dx \right] dy$$

$$\iint_{D} f(x, y) d\sigma = \iint_{D} f(x, y) dx dy = \int_{*}^{*} \left[\int_{*}^{*} f(x, y) dx \right] dy$$
$$= \int_{*}^{*} \left[\int_{*}^{*} f(x, y) dy \right] dx$$

• 问题: 如何确定积分上下限?

$$\iint_D f(x, y) dx dy = \int \left[\int f(x, y) dy \right] dx$$

$$\iint_D f(x, y) dx dy = \int \left[\int f(x, y) dy \right] dx$$

$$\iint_D f(x, y) dx dy = \int \left[\int f(x, y) dy \right] dx$$

$$\iint_D f(x, y) dx dy = \int \left[\int f(x, y) dy \right] dx$$

$$\iint_D f(x, y) dx dy = \int \left[\int f(x, y) dy \right] dx$$

$$\iint_D f(x, y) dx dy = \int_a^b \left[\int f(x, y) dy \right] dx$$

$$\iint_D f(x, y) dx dy = \int_a^b \left[\int_{\varphi_1(x)}^{\varphi_2(x)} f(x, y) dy \right] dx$$

$$\iint_D f(x, y) dx dy = \int_a^b \left[\int_{\varphi_1(x)}^{\varphi_2(x)} f(x, y) dy \right] dx$$

注 上述区域 D 可以表示成

$$D = \{(x, y) | \varphi_1(x) \le y \le \varphi_2(x), \alpha \le x \le b\}$$

称为 X-型区域。

$$\iint_D f(x, y) dx dy = \int_a^b \left[\int_{\sqrt{\varphi_1(x)}}^{\varphi_2(x)} f(x, y) dy \right] dx$$

注 上述区域 D 可以表示成

$$D = \{(x, y) | \varphi_1(x) \le y \le \varphi_2(x), \alpha \le x \le b\}$$

称为 X-型区域。

$$\iint_D f(x, y) dx dy = \int_a^b \left[\int_{\varphi_1(x)}^{\varphi_2(x)} f(x, y) dy \right] dx$$

注 上述区域 D 可以表示成

$$D = \{(x, y) | \varphi_1(x) \le y \le \varphi_2(x), \alpha \le x \le b\}$$

称为 X-型区域。

• 设
$$D = \{(x, y) | \varphi_1(x) \le y \le \varphi_2(x), \ \alpha \le x \le b\}$$
,则
$$\iint_D f(x, y) d\sigma = \int_a^b \left[\int_{\varphi_1(x)}^{\varphi_2(x)} f(x, y) dy \right] dx$$

•
$$\mathfrak{P} D = \{(x, y) | \varphi_1(x) \le y \le \varphi_2(x), \ \alpha \le x \le b\}, \ \mathfrak{P}$$

$$\iint_D f(x, y) d\sigma = \int_a^b \left[\int_{\varphi_1(x)}^{\varphi_2(x)} f(x, y) dy \right] dx$$

• 设
$$D = \{(x, y) | \varphi_1(x) \le y \le \varphi_2(x), \ \alpha \le x \le b\}, \ 则$$

$$\iint_D f(x, y) d\sigma = \int_a^b \left[\int_{\varphi_1(x)}^{\varphi_2(x)} f(x, y) dy \right] dx$$

• $\[\mathcal{D} = \{(x, y) | \varphi_1(x) \le y \le \varphi_2(x), \ \alpha \le x \le b \}, \ \]$ $\int \int_D f(x, y) d\sigma = V \qquad \int_{\alpha}^b \left[\int_{\varphi_1(x)}^{\varphi_2(x)} f(x, y) dy \right] dx$

• 设 $D = \{(x, y) | \varphi_1(x) \le y \le \varphi_2(x), \ \alpha \le x \le b\}, \ 则$ $\iint_D f(x, y) d\sigma = V \qquad \qquad \int_a^b \left[\int_{\varphi_1(x)}^{\varphi_2(x)} f(x, y) dy \right] dx$

• 设
$$D = \{(x, y) | \varphi_1(x) \le y \le \varphi_2(x), \ a \le x \le b\}, \ 则$$

$$\iint_D f(x, y) d\sigma = V = \int_a^b A(x) dx \int_a^b \left[\int_{\varphi_1(x)}^{\varphi_2(x)} f(x, y) dy \right] dx$$

• 设 $D = \{(x, y) | \varphi_1(x) \le y \le \varphi_2(x), \alpha \le x \le b\}$,则 $\iint_D f(x, y) d\sigma = V = \int_a^b A(x) dx \int_a^b \left[\int_{\varphi_1(x)}^{\varphi_2(x)} f(x, y) dy \right] dx$

• 设 $D = \{(x, y) | \varphi_1(x) \le y \le \varphi_2(x), \alpha \le x \le b\}$,则 $\iint_D f(x, y) d\sigma = V = \int_a^b A(x) dx = \int_a^b \left[\int_{\varphi_1(x)}^{\varphi_2(x)} f(x, y) dy \right] dx$

$$\iiint_{\Omega} xydxdy = \int_{\Omega} \left[\int_{\Omega} xydy \right] dx$$

$$y = 2x$$
, $y = x$ 和 $x = 1$ 所围成区域。

$$\mathbf{H} \qquad \iiint_{D} xydxdy = \iiint_{D} xydy dx$$

$$\mathbf{R} \qquad \iiint_{D} xydxdy = \int \left[\int xydy \right] dx$$

$$\iiint_{\Omega} xydxdy = \int_{0}^{1} \left[\int xydy \right] dx$$

$$\iiint_D xydxdy = \int_0^1 \left[\int_x^{2x} xydy \right] dx$$

$$\mathbf{R} \qquad \iiint_{D} xydxdy = \int_{0}^{1} \left[\int_{x}^{2x} xydy \right] dx$$

$$\frac{1}{2} xy^{2} \Big|_{x}^{2x}$$

$$\widetilde{\mathbb{R}} \int_{D} xy dx dy = \int_{0}^{1} \left[\int_{x}^{2x} xy dy \right] dx$$

$$= \int_{0}^{1} \left[\frac{1}{2} xy^{2} \Big|_{x}^{2x} \right] dx$$

$$\Re \iint_{D} xy dx dy = \int_{0}^{1} \left[\int_{x}^{2x} xy dy \right] dx$$

$$= \int_{0}^{1} \left[\frac{1}{2} xy^{2} \Big|_{x}^{2x} \right] dx$$

$$\frac{3}{2}x^{3}$$

$$\mathbf{\widetilde{H}} \quad \iint_{D} xy dx dy = \int_{0}^{1} \left[\int_{x}^{2x} xy dy \right] dx$$

$$= \int_0^1 \left[\frac{1}{2} x y^2 \Big|_x^{2x} \right] dx = \int_0^1 \frac{3}{2} x^3 dx = \frac{3}{8} x^4 \Big|_0^1 = \frac{3}{8}$$

$$= \int_0^1 \left[\frac{1}{2} x y^2 \Big|_x^{2x} \right] dx = \int_0^1 \frac{3}{2} x^3 dx = \frac{3}{8} x^4 \Big|_0^1 = \frac{3}{8}$$

注 D 是 X-型区域, 可以表示为

$$D = \{(x, y) |$$

$$y = 2x$$

$$y = 2x$$

$$y = x$$

$$y = x$$

$$0 \quad x \quad 1$$

$$x \quad 3$$

$$x^{3} \quad 0 \quad x \quad 3$$

$$x^{4} \quad 1^{3} \quad 3$$

$$\iiint_{D} xydxdy = \int_{0}^{1} \left[\int_{x}^{2x} xydy \right] dx$$

$$= \int_0^1 \left[\frac{1}{2} x y^2 \Big|_x^{2x} \right] dx = \int_0^1 \frac{3}{2} x^3 dx = \frac{3}{8} x^4 \Big|_0^1 = \frac{3}{8}$$

$$D = \{(x, y) | x \le y \le 2x, 0 \le x \le 1\}$$

$$\iint_{D} e^{x+y} dx dy = \int \left[\int e^{x+y} dy \right] dx$$

$$\iint_{D} e^{x+y} dx dy = \int \left[\int e^{x+y} dy \right] dx$$

$$\iint_{D} e^{x+y} dx dy = \int_{0}^{1} \left[\int e^{x+y} dy \right] dx$$

$$\iint_{D} e^{x+y} dx dy = \int_{0}^{1} \left[\int_{x}^{2x} e^{x+y} dy \right] dx$$

$$\iint_{D} e^{x+y} dx dy = \int_{0}^{1} \left[\int_{x}^{2x} e^{x+y} dy \right] dx$$

$$e^{x+y}$$

0 X 1

$$\iint_{D} e^{x+y} dx dy = \int_{0}^{1} \left[\int_{x}^{2x} e^{x+y} dy \right] dx$$

$$e^{x+y}\Big|_x^{2x}$$

$$\iint_{\Omega} e^{x+y} dx dy = \int_{0}^{1} \left[\int_{x}^{2x} e^{x+y} dy \right] dx = \int_{0}^{1} \left[e^{x+y} \Big|_{x}^{2x} \right] dx$$

$$\iint_{D} e^{x+y} dx dy = \int_{0}^{1} \left[\int_{x}^{2x} e^{x+y} dy \right] dx = \int_{0}^{1} \left[e^{x+y} \Big|_{x}^{2x} \right] dx$$
$$e^{3x} - e^{2x}$$

$$\iint_{D} e^{x+y} dx dy = \int_{0}^{1} \left[\int_{x}^{2x} e^{x+y} dy \right] dx = \int_{0}^{1} \left[e^{x+y} \Big|_{x}^{2x} \right] dx$$
$$= \int_{0}^{1} e^{3x} - e^{2x} dx$$

$$\iint_{D} e^{x+y} dx dy = \int_{0}^{1} \left[\int_{x}^{2x} e^{x+y} dy \right] dx = \int_{0}^{1} \left[e^{x+y} \Big|_{x}^{2x} \right] dx$$
$$= \int_{0}^{1} e^{3x} - e^{2x} dx = \frac{1}{3} e^{3x} - \frac{1}{2} e^{2x}$$

$$\iint_{D} e^{x+y} dx dy = \int_{0}^{1} \left[\int_{x}^{2x} e^{x+y} dy \right] dx = \int_{0}^{1} \left[e^{x+y} \Big|_{x}^{2x} \right] dx$$
$$= \int_{0}^{1} e^{3x} - e^{2x} dx = \frac{1}{3} e^{3x} - \frac{1}{2} e^{2x} \Big|_{0}^{1}$$

$$\iint_{D} e^{x+y} dx dy = \int_{0}^{1} \left[\int_{x}^{2x} e^{x+y} dy \right] dx = \int_{0}^{1} \left[e^{x+y} \Big|_{x}^{2x} \right] dx$$
$$= \int_{0}^{1} e^{3x} - e^{2x} dx = \frac{1}{3} e^{3x} - \frac{1}{2} e^{2x} \Big|_{0}^{1} = \frac{1}{3} e^{3} - \frac{1}{2} e^{2} + \frac{1}{6} e^{3} + \frac{1}{2} e^{3} + \frac{1}{$$

例 计算 $\iint_D (2x + 6y) dx dy$, 其中 D 是由 直线 x = 0, y = 1 和 y = x 所围成区域。

例 计算 $\iint_D (2x + 6y) dx dy$, 其中 D 是由 直线 x = 0, y = 1 和 y = x 所围成区域。

例 计算 $\iint_D (2x + 6y) dx dy$, 其中 D 是由 直线 x = 0, y = 1 和 y = x 所围成区域。

例 计算 $\iint_D (2x + 6y) dx dy$,其中 D 是由 直线 x = 0,y = 1 和 y = x 所围成区域。

$$\iint_{D} (2x + 6y) dx dy = \int \left[\int (2x + 6y) dy \right] dx$$

$$\iint_{D} (2x + 6y) dx dy = \int \left[\int (2x + 6y) dy \right] dx$$

$$\iint_{D} (2x + 6y) dx dy = \int \left[\int (2x + 6y) dy \right] dx$$

$$\iint_{D} (2x + 6y) dx dy = \int \left[\int (2x + 6y) dy \right] dx$$

$$\iint_{D} (2x + 6y) dx dy = \int \left[\int (2x + 6y) dy \right] dx$$

$$\iint_{D} (2x + 6y) dx dy = \int_{0}^{1} \left[\int (2x + 6y) dy \right] dx$$

$$\iint_{D} (2x+6y)dxdy = \int_{0}^{1} \left[\int_{x}^{1} (2x+6y)dy \right] dx$$

$$\iint_{D} (2x+6y)dxdy = \int_{0}^{1} \left[\int_{x}^{1} (2x+6y)dy \right] dx$$
$$2xy+3y^{2}$$

$$\iint_{D} (2x + 6y) dx dy = \int_{0}^{1} \left[\int_{x}^{1} (2x + 6y) dy \right] dx$$
$$2xy + 3y^{2} \Big|_{x}^{1}$$

$$\iint_{D} (2x + 6y) dx dy = \int_{0}^{1} \left[\int_{x}^{1} (2x + 6y) dy \right] dx$$
$$= \int_{0}^{1} \left[2xy + 3y^{2} \Big|_{x}^{1} \right] dx$$

$$\iint_{D} (2x+6y)dxdy = \int_{0}^{1} \left[\int_{x}^{1} (2x+6y)dy \right] dx$$
$$= \int_{0}^{1} \left[2xy + 3y^{2} \Big|_{x}^{1} \right] dx \qquad -5x^{2} + 2x + 3$$

$$\iint_{D} (2x+6y)dxdy = \int_{0}^{1} \left[\int_{x}^{1} (2x+6y)dy \right] dx$$
$$= \int_{0}^{1} \left[2xy + 3y^{2} \Big|_{x}^{1} \right] dx = \int_{0}^{1} -5x^{2} + 2x + 3dx$$

$$\iint_{D} (2x+6y)dxdy = \int_{0}^{1} \left[\int_{x}^{1} (2x+6y)dy \right] dx$$
$$= \int_{0}^{1} \left[2xy + 3y^{2} \Big|_{x}^{1} \right] dx = \int_{0}^{1} -5x^{2} + 2x + 3dx$$
$$= -\frac{5}{3}x^{3} + x^{2} + 3x$$

$$\iint_{D} (2x+6y)dxdy = \int_{0}^{1} \left[\int_{x}^{1} (2x+6y)dy \right] dx$$
$$= \int_{0}^{1} \left[2xy + 3y^{2} \Big|_{x}^{1} \right] dx = \int_{0}^{1} -5x^{2} + 2x + 3dx$$
$$= -\frac{5}{3}x^{3} + x^{2} + 3x \Big|_{0}^{1}$$

$$\iint_{D} (2x+6y)dxdy = \int_{0}^{1} \left[\int_{x}^{1} (2x+6y)dy \right] dx$$
$$= \int_{0}^{1} \left[2xy + 3y^{2} \Big|_{x}^{1} \right] dx = \int_{0}^{1} -5x^{2} + 2x + 3dx$$
$$= -\frac{5}{3}x^{3} + x^{2} + 3x \Big|_{0}^{1} = \frac{7}{3}$$

$$\iint_{D} (2x + 6y) dx dy = \int_{0}^{1} \left[\int_{x}^{1} (2x + 6y) dy \right] dx$$

$$= \int_{0}^{1} \left[2xy + 3y^{2} \Big|_{x}^{1} \right] dx = \int_{0}^{1} -5x^{2} + 2x + 3dx$$

$$= -\frac{5}{3}x^{3} + x^{2} + 3x \Big|_{0}^{1} = \frac{7}{3}$$

 $D = \{(x, y) | x \le y \le 1, 0 \le x \le 1\}$

$$\iint_D x^2 y dx dy = \int \left[\int x^2 y dy \right] dx$$

$$\iint_{D} x^{2}y dx dy = \int \left[\int x^{2}y dy \right] dx$$

0

-1

$$\iint_{D} x^{2}y dx dy = \int \left[\int x^{2}y dy \right] dx$$

$$\iint_{D} x^{2}y dx dy = \int \left[\int x^{2}y dy \right] dx$$

$$\iint_{D} x^{2}y dx dy = \int \left[\int x^{2}y dy \right] dx$$

$$\iint_D x^2 y dx dy = \int_{-1}^1 \left[\int x^2 y dy \right] dx$$

$$\iint_D x^2 y dx dy = \int_{-1}^1 \left[\int_{x^2}^1 x^2 y dy \right] dx$$

$$\iint_D x^2 y dx dy = \int_{-1}^1 \left[\int_{x^2}^1 x^2 y dy \right] dx \qquad \frac{1}{2} x^2 y^2 dx$$

$$\iint_{D} x^{2}y dx dy = \int_{-1}^{1} \left[\int_{x^{2}}^{1} x^{2}y dy \right] dx \qquad \frac{1}{2} x^{2}y^{2} \Big|_{x}^{1}$$

$$\iint_{D} x^{2}y dx dy = \int_{-1}^{1} \left[\int_{x^{2}}^{1} x^{2}y dy \right] dx = \int_{-1}^{1} \left[\frac{1}{2} x^{2} y^{2} \Big|_{x^{2}}^{1} \right] dx$$

$$\iint_{D} x^{2}y dx dy = \int_{-1}^{1} \left[\int_{x^{2}}^{1} x^{2}y dy \right] dx = \int_{-1}^{1} \left[\frac{1}{2} x^{2} y^{2} \Big|_{x^{2}}^{1} \right] dx$$

$$\frac{1}{2} x^{2} (1 - x^{4})$$

$$\iint_{D} x^{2}y dx dy = \int_{-1}^{1} \left[\int_{x^{2}}^{1} x^{2}y dy \right] dx = \int_{-1}^{1} \left[\frac{1}{2} x^{2} y^{2} \Big|_{x^{2}}^{1} \right] dx$$
$$= \int_{-1}^{1} \frac{1}{2} x^{2} (1 - x^{4}) dx$$

$$\iint_{D} x^{2}y dx dy = \int_{-1}^{1} \left[\int_{x^{2}}^{1} x^{2}y dy \right] dx = \int_{-1}^{1} \left[\frac{1}{2} x^{2} y^{2} \Big|_{x^{2}}^{1} \right] dx$$
$$= \int_{-1}^{1} \frac{1}{2} x^{2} (1 - x^{4}) dx = \frac{1}{4} (\frac{1}{3} x^{3} - \frac{1}{7} x^{7})$$

$$\iint_{D} x^{2}y dx dy = \int_{-1}^{1} \left[\int_{x^{2}}^{1} x^{2}y dy \right] dx = \int_{-1}^{1} \left[\frac{1}{2} x^{2} y^{2} \Big|_{x^{2}}^{1} \right] dx$$
$$= \int_{-1}^{1} \frac{1}{2} x^{2} (1 - x^{4}) dx = \frac{1}{4} (\frac{1}{3} x^{3} - \frac{1}{7} x^{7}) \Big|_{-1}^{1}$$

$$\iint_{D} x^{2}y dx dy = \int_{-1}^{1} \left[\int_{x^{2}}^{1} x^{2}y dy \right] dx = \int_{-1}^{1} \left[\frac{1}{2} x^{2} y^{2} \Big|_{x^{2}}^{1} \right] dx$$
$$= \int_{-1}^{1} \frac{1}{2} x^{2} (1 - x^{4}) dx = \frac{1}{4} (\frac{1}{3} x^{3} - \frac{1}{7} x^{7}) \Big|_{-1}^{1} = \frac{4}{21}$$

解

$$\iint_{D} x^{2}y dx dy = \int_{-1}^{1} \left[\int_{x^{2}}^{1} x^{2}y dy \right] dx = \int_{-1}^{1} \left[\frac{1}{2} x^{2} y^{2} \Big|_{x^{2}}^{1} \right] dx$$
$$= \int_{-1}^{1} \frac{1}{2} x^{2} (1 - x^{4}) dx = \frac{1}{4} (\frac{1}{3} x^{3} - \frac{1}{7} x^{7}) \Big|_{-1}^{1} = \frac{4}{21}$$

$$D = \{(x, y) |$$

● 暨布大學

§8.7 二重积分

解

$$\iint_{D} x^{2}y dx dy = \int_{-1}^{1} \left[\int_{x^{2}}^{1} x^{2}y dy \right] dx = \int_{-1}^{1} \left[\frac{1}{2} x^{2} y^{2} \Big|_{x^{2}}^{1} \right] dx$$
$$= \int_{-1}^{1} \frac{1}{2} x^{2} (1 - x^{4}) dx = \frac{1}{4} (\frac{1}{3} x^{3} - \frac{1}{7} x^{7}) \Big|_{-1}^{1} = \frac{4}{21}$$

$$D = \{(x, y) | x^2 \le y \le 1, -1 \le x \le 1\}$$

固定 y, 先对 x 积分

$$\iint_D f(x, y) dx dy = \int \left[\int f(x, y) dx \right] dy$$

$$\iint_D f(x, y) dx dy = \int \left[\int f(x, y) dx \right] dy$$

$$\iint_D f(x, y) dx dy = \int \left[\int f(x, y) dx \right] dy$$

$$\iint_D f(x, y) dx dy = \int \left[\int f(x, y) dx \right] dy$$

$$\iint_D f(x, y) dx dy = \int \left[\int f(x, y) dx \right] dy$$

$$\iint_D f(x, y) dx dy = \int_c^d \left[\int f(x, y) dx \right] dy$$

$$\iint_D f(x, y) dx dy = \int_c^d \left[\int_{\psi_1(y)}^{\psi_2(y)} f(x, y) dx \right] dy$$

$$\iint_D f(x, y) dx dy = \int_c^d \left[\int_{\psi_1(y)}^{\psi_2(y)} f(x, y) dx \right] dy$$

注 上述区域 D 可以表示成

$$D = \{(x, y) | \psi_1(y) \le x \le \psi_2(y), c \le y \le d\}$$

$$\iint_D f(x, y) dx dy = \int_c^d \left[\int_{\psi_1(y)}^{\psi_2(y)} f(x, y) dx \right] dy$$

注 上述区域 D 可以表示成

$$D = \{(x, y) | \psi_1(y) \le x \le \psi_2(y), c \le y \le d\}$$

物线 $x = y^2$ 和直线 y = x - 2 所 围成区域。

原式 =
$$\left[\int xydx \right] dy$$

原式 =
$$\left[\int xydx \right] dy$$

物线 $x = y^2$ 和直线 y = x - 2 所 围成区域。

原式 =
$$\left[\int xydx \right] dy$$

原式 =
$$\int_{-1}^{2} \left[\int xy dx \right] dy$$

原式 =
$$\int_{-1}^{2} \left[\int_{y^2}^{y+2} xy dx \right] dy$$

原式 =
$$\int_{-1}^{2} \left[\int_{y^2}^{y+2} xy dx \right] dy$$

$$\frac{1}{2}x^2y$$

原式 =
$$\int_{-1}^{2} \left[\int_{y^2}^{y+2} xy dx \right] dy$$

$$\frac{1}{2}x^2y\Big|_{y^2}^{y+2}$$

原式 =
$$\int_{-1}^{2} \left[\int_{y^2}^{y+2} xy dx \right] dy = \int_{-1}^{2} \left[\frac{1}{2} x^2 y \Big|_{y^2}^{y+2} \right] dy$$

原式 =
$$\int_{-1}^{2} \left[\int_{y^2}^{y+2} xy dx \right] dy = \int_{-1}^{2} \left[\frac{1}{2} x^2 y \Big|_{y^2}^{y+2} \right] dy$$

$$\frac{1}{2} y \left[(y+2)^2 - y^4 \right]$$

原式 =
$$\int_{-1}^{2} \left[\int_{y^2}^{y+2} xy dx \right] dy = \int_{-1}^{2} \left[\frac{1}{2} x^2 y \Big|_{y^2}^{y+2} \right] dy$$

= $\int_{-1}^{2} \frac{1}{2} y \left[(y+2)^2 - y^4 \right] dy$

原式 =
$$\int_{-1}^{2} \left[\int_{y^2}^{y+2} xy dx \right] dy = \int_{-1}^{2} \left[\frac{1}{2} x^2 y \Big|_{y^2}^{y+2} \right] dy$$

= $\int_{-1}^{2} \frac{1}{2} y \left[(y+2)^2 - y^4 \right] dy = \frac{1}{2} \int_{-1}^{2} -y^5 + y^3 + 4y^2 + 4y dy$

解

围成区域。

原式 =
$$\int_{-1}^{2} \left[\int_{y^2}^{y+2} xy dx \right] dy = \int_{-1}^{2} \left[\frac{1}{2} x^2 y \Big|_{y^2}^{y+2} \right] dy$$

= $\int_{-1}^{2} \frac{1}{2} y \left[(y+2)^2 - y^4 \right] dy = \frac{1}{2} \int_{-1}^{2} -y^5 + y^3 + 4y^2 + 4y dy = \frac{45}{8}$

原式 =
$$\int_{-1}^{2} \left[\int_{y^2}^{y+2} xy dx \right] dy = \int_{-1}^{2} \left[\frac{1}{2} x^2 y \Big|_{y^2}^{y+2} \right] dy$$

= $\int_{-1}^{2} \frac{1}{2} y \left[(y+2)^2 - y^4 \right] dy = \frac{1}{2} \int_{-1}^{2} -y^5 + y^3 + 4y^2 + 4y dy = \frac{45}{8}$

<u>注</u> D 是 <math>X-型区域,可以表示为

 $23/25 \triangleleft \triangleright \triangle \nabla$

 $D = \{(x, y) | x^2 \le y \le 1, -1 \le x \le 1\}$

原式 =
$$\int \left[\int xydy \right] dx$$

原式 =
$$\left[\int xydy \right] dx$$

例 计算
$$\iint_D e^{x^2} dx dy$$
,其中 D 是由 $y = x$, $x = 1$, x 轴所围成的区域

$$\iint_D e^{x^2} dx dy = \int \left[\int e^{x^2} dy \right] dx$$

例 计算
$$\iint_D e^{x^2} dx dy$$
,其中 D 是由 $y = x$, $x = 1$, x 轴所围成的区域

$$\iint_D e^{x^2} dx dy = \int \left[\int e^{x^2} dy \right] dx$$

例 计算
$$\iint_D e^{x^2} dx dy$$
,其中 D 是由 $y = x$, $x = 1$, x 轴所围成的区域

$$\iint_D e^{x^2} dx dy = \int_0^1 \left[\int e^{x^2} dy \right] dx$$

例 计算
$$\iint_D e^{x^2} dx dy$$
,其中 D 是由 $y = x$, $x = 1$, x 轴所围成的区域

$$\iint_D e^{x^2} dx dy = \int_0^1 \left[\int_0^x e^{x^2} dy \right] dx$$

$$\iint_D e^{x^2} dx dy = \int_0^1 \left[\int_0^x e^{x^2} dy \right] dx$$

$$e^{x^2}y\Big|_0^x$$

$$\iint_{D} e^{x^{2}} dx dy = \int_{0}^{1} \left[\int_{0}^{x} e^{x^{2}} dy \right] dx = \int_{0}^{1} \left[e^{x^{2}} y \Big|_{0}^{x} \right] dx$$

$$\iint_{D} e^{x^{2}} dx dy = \int_{0}^{1} \left[\int_{0}^{x} e^{x^{2}} dy \right] dx = \int_{0}^{1} \left[e^{x^{2}} y \Big|_{0}^{x} \right] dx$$
$$= x e^{x^{2}}$$

$$\iint_{D} e^{x^{2}} dx dy = \int_{0}^{1} \left[\int_{0}^{x} e^{x^{2}} dy \right] dx = \int_{0}^{1} \left[e^{x^{2}} y \Big|_{0}^{x} \right] dx$$
$$= \int_{0}^{1} x e^{x^{2}} dx$$

$$\iint_{D} e^{x^{2}} dx dy = \int_{0}^{1} \left[\int_{0}^{x} e^{x^{2}} dy \right] dx = \int_{0}^{1} \left[e^{x^{2}} y \Big|_{0}^{x} \right] dx$$
$$= \int_{0}^{1} x e^{x^{2}} dx = \frac{1}{2} e^{x^{2}} \Big|_{0}^{1}$$

$$\iint_{D} e^{x^{2}} dx dy = \int_{0}^{1} \left[\int_{0}^{x} e^{x^{2}} dy \right] dx = \int_{0}^{1} \left[e^{x^{2}} y \Big|_{0}^{x} \right] dx$$
$$= \int_{0}^{1} x e^{x^{2}} dx = \frac{1}{2} e^{x^{2}} \Big|_{0}^{1} = \frac{1}{2} e^{-\frac{1}{2}}$$

例 计算
$$\iint_D e^{x^2} dx dy$$
,其中 D 是由 $y = x$, $x = 1$, x 轴所围成的区域

$$\iint_{D} e^{x^{2}} dx dy = \int_{0}^{1} \left[\int_{0}^{x} e^{x^{2}} dy \right] dx = \int_{0}^{1} \left[e^{x^{2}} y \Big|_{0}^{x} \right] dx$$
$$= \int_{0}^{1} x e^{x^{2}} dx = \frac{1}{2} e^{x^{2}} \Big|_{0}^{1} = \frac{1}{2} e^{-\frac{1}{2}}$$

$$\iint_D e^{x^2} dx dy = \int \left[\int e^{x^2} dx \right] dy$$

例 计算
$$\iint_D e^{x^2} dx dy$$
,其中 D 是由 $y = x$, $x = 1$, x 轴所围成的区域

$$\iint_{D} e^{x^{2}} dx dy = \int_{0}^{1} \left[\int_{0}^{x} e^{x^{2}} dy \right] dx = \int_{0}^{1} \left[e^{x^{2}} y \Big|_{0}^{x} \right] dx$$
$$= \int_{0}^{1} x e^{x^{2}} dx = \frac{1}{2} e^{x^{2}} \Big|_{0}^{1} = \frac{1}{2} e^{-\frac{1}{2}}$$

解法二 固定 V, 先对 X 积分:

$$\iint_{D} e^{x^{2}} dx dy = \int \left[\int e^{x^{2}} dx \right] dy$$

例 计算
$$\iint_D e^{x^2} dx dy$$
,其中 D 是由 $y = x$, $x = 1$, x 轴所围成的区域

$$\iint_{D} e^{x^{2}} dx dy = \int_{0}^{1} \left[\int_{0}^{x} e^{x^{2}} dy \right] dx = \int_{0}^{1} \left[e^{x^{2}} y \Big|_{0}^{x} \right] dx$$
$$= \int_{0}^{1} x e^{x^{2}} dx = \frac{1}{2} e^{x^{2}} \Big|_{0}^{1} = \frac{1}{2} e^{-\frac{1}{2}}$$

$$\iint_{D} e^{x^{2}} dx dy = \iint_{D} \left[\int_{D} e^{x^{2}} dx \right] dy$$

例 计算
$$\iint_D e^{x^2} dx dy$$
,其中 D 是由 $y = x$, $x = 1$, x 轴所围成的区域

$$\iint_{D} e^{x^{2}} dx dy = \int_{0}^{1} \left[\int_{0}^{x} e^{x^{2}} dy \right] dx = \int_{0}^{1} \left[e^{x^{2}} y \Big|_{0}^{x} \right] dx$$
$$= \int_{0}^{1} x e^{x^{2}} dx = \frac{1}{2} e^{x^{2}} \Big|_{0}^{1} = \frac{1}{2} e - \frac{1}{2}$$

$$\iint_{D} e^{x^{2}} dx dy = \int_{0}^{1} \left[\int e^{x^{2}} dx \right] dy$$

例 计算
$$\iint_D e^{x^2} dx dy$$
,其中 D 是由 $y = x$, $x = 1$, x 轴所围成的区域

$$\iint_{D} e^{x^{2}} dx dy = \int_{0}^{1} \left[\int_{0}^{x} e^{x^{2}} dy \right] dx = \int_{0}^{1} \left[e^{x^{2}} y \Big|_{0}^{x} \right] dx$$
$$= \int_{0}^{1} x e^{x^{2}} dx = \frac{1}{2} e^{x^{2}} \Big|_{0}^{1} = \frac{1}{2} e - \frac{1}{2}$$

$$\iint_D e^{x^2} dx dy = \int_0^1 \left[\int_V^1 e^{x^2} dx \right] dy$$

例 计算
$$\iint_D e^{x^2} dx dy$$
,其中 D 是由 $y = x$, $x = 1$, x 轴所围成的区域

$$\iint_{D} e^{x^{2}} dx dy = \int_{0}^{1} \left[\int_{0}^{x} e^{x^{2}} dy \right] dx = \int_{0}^{1} \left[e^{x^{2}} y \Big|_{0}^{x} \right] dx$$
$$= \int_{0}^{1} x e^{x^{2}} dx = \frac{1}{2} e^{x^{2}} \Big|_{0}^{1} = \frac{1}{2} e - \frac{1}{2}$$

解法一 固定 x, 先对 y 积分:

$$\iint_{D} e^{x^{2}} dx dy = \int_{0}^{1} \left[\int_{0}^{x} e^{x^{2}} dy \right] dx = \int_{0}^{1} \left[e^{x^{2}} y \Big|_{0}^{x} \right] dx$$
$$= \int_{0}^{1} x e^{x^{2}} dx = \frac{1}{2} e^{x^{2}} \Big|_{0}^{1} = \frac{1}{2} e - \frac{1}{2}$$

解法二 固定 y, 先对 x 积分:

$$\iint_{\Omega} e^{x^2} dx dy = \int_{0}^{1} \left[\int_{0}^{1} e^{x^2} dx \right] dy = \cdots$$
 积不出

注 选择恰当的积分次序,才能算出二重积分!

