# **Notes of Cryptography**

Squirrel

April 14, 2025

## **Preface**

## Course

密碼學設計與分析 Cryptography Design and Analysis (11320IIS500900) in NTHU

## 1 L1

## 1.1 Merkle 的故事

Merkle 在大學部修了一個課,然後要交一個 project。他在交這個作業的時候,提到了 Public Key Cryptography 的想法。當時的導師並不看好這個東西,所以 reject 了,最後他也退掉了這門課。之後他找到另一個很欣賞他的老師,覺得應該要「Publish it, win fame and fortune」,所以他將這篇文章那個投到了 CACM (Communications of the ACM)。第一次投期刊就因為「這個想法不是當今的主流想法」而被拒絕。在 Merkle 的某些堅持之下,過了快三年終於讓 CACM 接受了這篇文章。

這邊的故事及當時的論文,可以在 https://ralphmerkle.com/1974/找到。

另外影片中的 link 有誤,應該改成 https://ralphmerkle.com,不然你只會找到一間搞 CRM 和賣資料的公司。

### 1.2 Conventions

- 離散且有限的時間 (discrete and finite world)
  - ⇒ 因為我們正在討論 computer science
- · Data v.s. Information
- Machine (function/algorithm) 需要在 polynomial time 下執行
  - ⇒ 因為我們需要能在一定時間內看到結果,不想要等到天荒地老
  - ⇒ 不一定**強制**要求 polynomial time,但這堂課大部分會是這樣
- Alice and Bob: 就是 sender 和 receiver, 通常是 Alice 要傳訊息給 Bob
  - ⇒ 還有其他角色,可以參見 Wikipedia:

https://en.wikipedia.org/wiki/Alice and Bob

- 計算 (computation): 任何遵循 well-defined model (例如 algorithm、protocol)的 calculation。
- Efficiency

Input size: |x| = n bits

其他的就是拿 complexity 概念來作為 efficiency 的概念

• Crypto 像是信仰 (Faith)?

密碼學不一定總是對的,但我們需要相信某些東西才能繼續在密碼學上前進 這些東西包含:

- ⇒ 某些數學問題很難被解決
- ⇒某些假設無法被打破(通常指在 poly-time 底下)
- ⇒ 某些底層的密碼工具 (underlying crypto primitives) 是安全的
- $\Rightarrow P \neq NP$
- ⇒ 亂數/隨機 (randomness),因為我們不知道真的亂數長什麼樣,所以無法驗證

#### 1.3 Overview

如果我們不在意安全,那麼我們不需要密碼學。 (If do not care security, we won't need crypto.)

安全 (security) 可以由以下兩點來定義:

- 目的 (purposes): 我們需要達到什麼效果
- 需求 (requirements):為了達到目的,我們需要達成哪些目標

#### 一些密碼學相關的內容:

- 加密 (entryption)
- 數位簽章 (signature)
- 零知識 (zero knowledge)
- 安全計算 (secure computation)

#### 1.4 Notations

## Private key encryption (or "secret key encryption")

就是對稱式加密,加密和解密皆使用同一個 kev

#### **Public key encryption**

公鑰系統。一個公鑰會對應一個私鑰。公鑰會公開,私鑰不公開。

若 Alice 要傳訊息給 Bob · 則 Alice 會使用自己的公鑰加密 · 並且讓 Bob 使用「與 Alice 的公鑰相對應的」私鑰進行解密。

## Zero knowledge

A 想向 B 證明某件事情,但不想透漏任何其他的額外資訊。

Ex1:我想向你證明我有 100 萬,但不想真的放 100 萬現金在你眼前(以免被你搶走),所以我可以要求銀行開立證明來達到這個目的。Ex2:我想向你證明我真的知道「威利在哪裡」。我可以用一張比原圖更大張的紙,並且在上面挖一個威利形狀的洞,以此來達到目的。

## 1.5 Story of solving impossibility

#### (這邊的例子經過一點點調整)

你的上司要求你解決一個問題 Q,並且告知你如果無法解決問題就會被炒魷魚,並被另一個比你聰明的像伙取代。你雖然不知道怎麼解決 Q,但你知道另一個相關的知名問題  $\tilde{Q}$  (Q tilde) 在現今根本就沒人會解。最後你告訴你的上司,由於「現在根本沒人知道如何解  $\tilde{Q}$ 」,所以「也沒人會解 Q」,因此這問題解不了,而另一個自稱聰明的像伙其實是騙子。

#### 重點就是

If there's a good algorithm for Q, then there exists a good one for another well-known problem  $\widetilde{Q}$ .

這句話的逆否命題就是

If there's no algorithm for  $\widetilde{Q}$ , then there's no algorithm for Q either.

這背後的概念就是 reduction (就演算法的那個 reduction)。

## 1.6 Principle of modern crypto

### Kerckhoff's principle

「加密方法不能被要求是保密的,就算它落入敵人手中也不應該造成麻煩」 意即,整套加密方法的安全性只仰賴金鑰的保密。

(原文: It should not require secrecy, and it should not be a problem if it falls into enemy hands.)

## Principle of modern crypto

- 1. Formal definition
  - System framework (model):系統長什麼樣子
  - Security definition:如何定義安全
- 2. Precise assumption  $\Pi'$

通常會是已知難題

從上一節的重點可以知道,我們通常會將加密法與某個已經被研究過的難題 (well-studied hardness) 做連結。若難題不是 well-studied,一來無法說服別人這個加密法安全,二來代表可能有人知道這個問題如何解決。

- 3. Construction Ⅲ 加密法的步驟是什麼
- 4. Security proof

基本上就是上一節的 reduction

如果假象的攻擊者可以在 definition (即第一個要素)底下破解  $\Pi$  · 那麼我可以構造另一個攻擊者 · 使其破解已知難題  $\Pi$  '。

上面逆否命題的推論可以寫成:如果  $\Pi'$  是安全的(意即不被破解),那麼  $\Pi$  就是安全的。

加密系統 = 產生 key (key generation) + 加密 (encryption) + 解密 (decryption)

## 1.7 History of cryptography

#### § Shift cipher

使用 private key encryption。 Key 是每個字母需要做 shift 的次數。

Key generation:選擇一個  $key \in \{0, 1, ..., 25\}$  Encryption:將每個字母對應的數字 shift key 位

Decryption:將每個字母對應的數字**反方向** shift key 位

破解:最多嘗試 26 次就可以找到答案

## § Substitution cipher

使用 private key encryption。

Key generation:將每個字母逐一對應到另一個字母,以此這個 mapping 作為 key

Encryption:將明文中的字母按照 key 逐一對應過去 Decryption:將密文中的字母按照 key 逐一對應回來

破解:字典攻擊(常用詞)+頻率分析(「E」在英文中出現的次數比較多)

加強:明文中不使用頻率較高的字母

### § Stronger cipher?

Vigenère cipher:設定偏移量為字母在明文中所在的位置。

DES (first published in 1975, and standardized in 1977)

**AES** 

## § History about PKC

1974: Merkle proposed the notion

1976: Diffie-Hellman proposed the key exchange solution (Turing Awad 2015)

1977: Rivest-Shamir-Adleman proposed the first PKE (Turing Award 2002)

UK claimed their Government Communications Headquarters proposed such PKC idea before them.

Other impovements: ID-based encryption from Weil Pairing

使用了不同的 assumption,所以概念上較簡單,執行起來也較有效率(關於 ID-based 的概念,之後如果有時間,可能會提到)

## 2 L2: Perfect Secrecy

## 2.1 Encryption definition

### 三個 space:

•  $\mathcal{M}$ : message space

• C: ciphertext space

•  $\mathcal{K}$ : key space

### 三種動作:

- Gen (key generation): probabilistic algorithm  $\operatorname{Gen}(1^{\lambda}) \to k \in \mathcal{K}$ , where  $\lambda$  is security parameter, or a symbol length (usually related to enc/dec execution time).
- Enc (encryption): probabilistic algorithm For  $m \in \mathcal{M}$ ,  $\operatorname{Enc}_k(m) \to c \in \mathcal{C}$
- Dec (decryption): deterministic algorithm For  $c \in \mathcal{C}$ ,  $\mathrm{Dec}_k(c) \coloneqq m \in \mathcal{M}$

注意上述使用 → 表示 probabilistic algorithm;使用 := 表示 deterministic algorithm。Probabilistic algorithm 就是每次執行都有可能產生不同結果,而 deterministic algorithm 則代表每次執行必定產生出相同結果。

正確性 (Correctness) 定義:

$$\Pr[\operatorname{Dec}_k(c) := m : c \leftarrow \operatorname{Enc}_k(m), k \leftarrow \operatorname{Gen}(1^{\lambda})] = 1$$

即由正確的金鑰一定可以成功進行解密。

對於某些系統,我們不一定會要求其機率是1,可能會是接近1(即 $\approx 1$ )

### 2.2 Notations

Distribution over  $\mathcal K$ : denoted as  $\mathrm{dist}(\mathcal K)$ , which is defined by running  $\mathrm{Gen}$ , and taking the output key  $^\circ$ 

一個好的 key generation algorithm 應該要均勻地 (uniformly) 選擇 key (即選擇 key space 中的每個 key 的機率都是相等的)。因為如果我們有意地提高某些 key 的選擇機率,那麼攻擊者便可以藉由頻率分析知道我們的偏好,進而增加破解的機率。

K: a random variable, denoting the value of key generated by Gen.

 $\Pr[K=k]$ : for all  $k \in \mathcal{K}$ , it denotes the probability that the key generated by Gen is equal to k.

上面三項皆可以套用至明文 (  $\operatorname{dist}(\mathcal{M}) \setminus M \setminus \Pr[M=m]$  ) 和密文 (  $\operatorname{dist}(\mathcal{C}) \setminus C \setminus \Pr[C=c]$  )。

當我們固定一個 encryption scheme  $\Pi = (Gen, Enc, Dec)$  且 dist over  $\mathcal{M}$  · 這就可以根據所給定的  $k \in \mathcal{K}$  和  $m \in \mathcal{M}$  · 確定  $\operatorname{dist}(\mathcal{C})$  °

## 2.3 Examples of notations

## § Example 1

一個 adversary A 知道訊息是「attack today」的機率是 70%、「not attack」的機率是 30%,所以

$$Pr[M = A.T.] = 0.7, Pr[M = N.A.] = 0.3$$

Random variables K 和 M 會假設沒有關係 (independent)。因為  $\operatorname{dist}(\mathcal{K})$  由  $\operatorname{Gen}$  決定,而  $\operatorname{dist}(M)$  由 我們想要加密的 context 決定。

## § Example 2 - Shift cipher

 $K=\{0,1,2,\ldots,25\}$  with  $\Pr[K=k]=rac{1}{26}$  (aka uniformly distributed).

Let distribution of  $\mathcal{M}$ 

$$\operatorname{dist}(\mathcal{M}) = \begin{cases} \Pr[M = '\mathbf{a}'] = 0.7 \\ \Pr[M = '\mathbf{z}'] = 0.3 \end{cases}$$

Then

$$\begin{split} \Pr[C = \text{'b'}] &= \Pr[M = \text{'a'} \land K = 1] + \Pr[M = \text{'z'} \land K = 2] \\ &= \Pr[M = \text{'a'}] \cdot \Pr[K = 1] + \Pr[M = \text{'z'}] \cdot \Pr[K = 2] \quad \text{(By independence)} \\ &= 0.7 \cdot \frac{1}{26} + 0.3 \cdot \frac{1}{26} \\ &= \frac{1}{26} \end{split}$$

Condition probability

$$\begin{split} \Pr[M = \text{'a'} \mid C = \text{'b'}] &= \frac{\Pr[C = \text{'b'} \mid M = \text{'a'}] \cdot \Pr[M = \text{'a'}]}{\Pr[C = \text{'b'}]} \\ &= \frac{\frac{1}{26} \cdot 0.7}{\frac{1}{26}} \\ &= 0.7 \end{split}$$

where  $\Pr[C = \mathsf{'b'} \mid M = \mathsf{'a'}]$  iff. K = 1, and  $\Pr[K = 1] = \frac{1}{26}$ 

[Bayes' theorem]

$$\Pr[A \mid B] = \frac{\Pr[B \mid A] \cdot \Pr[A]}{\Pr[B]}$$
 if  $\Pr[B] \neq 0$ 

## 2.4 Intuition for security

Adversary 通常在收發兩端的中間進行竊聽 (eavesdrop)。 Adversary 知道  $\operatorname{dist}(\mathcal{M})$  和 encryption scheme  $\Pi = (\operatorname{Gen}, \operatorname{Enc}, \operatorname{Dec})$ ,而不知道 key。

A scheme  $\Pi$  meets **perfect secrecy** means observation (usually from adversary) on ciphertext c should give no additional infomation.

意即密文c不能給攻擊者有更多的資訊可以更準確地進行猜測,也可以說c不會洩漏更多的資訊。

## 2.5 Perfect secrecy

#### Formal definition of perfect secrecy (Definition 1)

An encrytion scheme  $\Pi=(\mathrm{Gen},\mathrm{Enc},\mathrm{Dec})$  with message space  $\mathcal M$  is perfect secrecy if for every probability distribution over  $\mathcal M$ , every message  $m\in\mathcal M$  and every chiphertext  $c\in\mathcal C$  for  $\Pr[C=c]>0$ 

$$\Pr[M = m \mid C = c] = \Pr[M = m]$$

簡單來說,就是在觀察 c 之後,所得知的  $\operatorname{dist}(\mathcal{M})$  與在觀察 c 之前相等。若 c 洩漏了某些資訊,則上式中的等號 (=) 應該改成大於符號 (>)。

#### **Example: shift cipher**

這邊用和前面一樣的例子:

$$\begin{split} \Pr[C = \text{'b'}] &= \Pr[M = \text{'a'} \land K = 1] + \Pr[M = \text{'z'} \land K = 2] \\ &= \Pr[M = \text{'a'}] \cdot \Pr[K = 1] + \Pr[M = \text{'z'}] \cdot \Pr[K = 2] \quad \text{(By independence)} \\ &= 0.7 \cdot \frac{1}{26} + 0.3 \cdot \frac{1}{26} \\ &= \frac{1}{26} \end{split}$$

$$\begin{split} \Pr[M = \text{'a'} \mid C = \text{'b'}] &= \frac{\Pr[C = \text{'b'} \mid M = \text{'a'}] \cdot \Pr[M = \text{'a'}]}{\Pr[C = \text{'b'}]} \\ &= \frac{\frac{1}{26} \cdot 0.7}{\frac{1}{26}} \\ &= 0.7 \\ &= \Pr[M = \text{'a'}] \end{split}$$

由此可知,shift cipher 是 prefect secrecy。

## 3.1 Perfect secrecy II

### Formal definition of perfect secrecy (Definition 2)

For every  $m, m' \in \mathcal{M}$  and every  $c \in \mathcal{C}$ ,

$$\Pr[\operatorname{Enc}_K(m) = c] = \Pr[\operatorname{Enc}_K(m') = c]$$

### **Example: shift cipher**

$$\Pr[M = 'a'] = 0.7$$
  
 $\Pr[M = 'z'] = 0.3$ 

Let m = 'a', and m' = 'z'.

Then

$$\Pr[\operatorname{Enc}_K(\mathsf{'a'}) = \mathsf{'b'}] = \frac{1}{26} = \Pr[\operatorname{Enc}_K(\mathsf{'z'}) = \mathsf{'b'}]$$

(For further explanantion, if  $\operatorname{Enc}_K('a') = 'b'$ , K must be 1, where probability is  $\frac{1}{26}$ ; similarly, if  $\operatorname{Enc}_K('z') = 'b'$ , K must be 2. That's why their probabilities are same.)

#### Lemma

An encryption scheme  $\Pi = (\mathrm{Gen}, \mathrm{Enc}, \mathrm{Dec})$  with message space is perfectly secret (which means  $\Pi$  satisfies Def. 1), the above equation (which is Def. 2) holds for every  $m, m' \in \mathcal{M}$  and every  $c \in \mathcal{C}$ .

意即 Def. 1 等價 (equivalent) 於 Def. 2.

#### **Proof** (Proof from Def. 2 to Def. 1)

Fix a  $\operatorname{dist}(\mathcal{M})$ , a message m and a ciphertext c for which  $\Pr[C=c]>0$ . If  $\Pr[M=m]=0$ , then  $\Pr[M=m\mid C=c]=\Pr[M=m]$ . It always holds. If  $\Pr[M=m]>0$ :

(i) 
$$\Pr[C = c \mid M = m] = \Pr[\operatorname{Enc}_K(M) = c \mid M = m] = \Pr[\operatorname{Enc}_K(m) = c] = \alpha$$

(ii) For every  $m' \in \mathcal{M}$ ,

$$\Pr[C = c \mid M = m'] = \Pr[\operatorname{Enc}_K(M) = c \mid M = m'] = \Pr[\operatorname{Enc}_K(m') = c] = \alpha$$

(iii) By Bayes' Theorem,

$$\Pr[M = m \mid C = c] = \frac{\Pr[C = c \mid M = m] \cdot \Pr[M = m]}{\Pr[C = c]}$$

$$= \frac{\Pr[C = c \mid M = m] \cdot \Pr[M = m]}{\sum_{m' \in \mathcal{M}} \Pr[C = c \mid M = m'] \cdot \Pr[M = m']}$$

$$= \frac{\alpha \cdot \Pr[M = m]}{\sum_{m' \in \mathcal{M}} \alpha \cdot \Pr[M = m']}$$

$$= \frac{\alpha \cdot \Pr[M = m]}{\alpha \cdot \sum_{m' \in \mathcal{M}} \Pr[M = m']}$$

$$= \frac{\alpha \cdot \Pr[M = m]}{\alpha \cdot \sum_{m' \in \mathcal{M}} \Pr[M = m']}$$

$$= \Pr[M = m]$$

$$= \Pr[M = m]$$
(by (i) and (ii))

### **Proof** (Proof from Def. 1 to Def. 2 (Quiz))

Fix a  $\operatorname{dist}(\mathcal{M})$ , a message m and a ciphertext c for which  $\Pr[C=c]>0$ . If  $\Pr[C=c]=0$ , then  $\Pr[C=c\mid M=m]=\Pr[C=c\mid M=m']=0$ . It always holds. If  $\Pr[C=c]>0$ :

(i) For  $\Pr[\operatorname{Enc}_K(m) = c]$ ,

$$\Pr[\operatorname{Enc}_{K}(m) = c] = \Pr[C = c \mid M = m]$$

$$= \frac{\Pr[M = m \mid C = c] \cdot \Pr[C = c]}{\Pr[M = m]}$$

$$= \frac{\Pr[M = m] \cdot \Pr[C = c]}{\Pr[M = m]}$$

$$= \frac{\Pr[M = m] \cdot \Pr[C = c]}{\Pr[M = m]}$$

$$= \Pr[C = c]$$
(by Def. 1)

(ii) For  $\Pr[\operatorname{Enc}_K(m') = c]$ ,

$$\Pr[\operatorname{Enc}_{K}(m) = c] = \Pr[C = c \mid M = m']$$

$$= \frac{\Pr[M = m' \mid C = c] \cdot \Pr[C = c]}{\Pr[M = m']}$$

$$= \frac{\Pr[M = m'] \cdot \Pr[C = c]}{\Pr[M = m']}$$

$$= \frac{\Pr[M = m'] \cdot \Pr[C = c]}{\Pr[M = m']}$$

$$= \Pr[C = c]$$
(by Def. 1)

From (i) and (ii), we know that

$$\Pr[\operatorname{Enc}_K(m) = c] = \Pr[\operatorname{Enc}_K(m') = c]$$

## 3.2 Perfect secrecy III

### **Adversarial indistinguishability**

Adversarial indistinguishable experiment

$$PrivK_{A\Pi}^{eav}$$

其中 A 代表 adversary,  $\Pi$  代表 scheme, and eav 代表 eavesdropper.



這個 experiment 有兩個人: adversary 和 Challenger。

Step 1: Adversary 會從 message space 中選出兩份訊息  $m_0$  和  $m_1$ ,並這兩份訊息發送給 Challenger。

Step 2: Challenger 會執行 key generation algorithm Gen 來產生 key k,並 generate 一個 uniform random bit  $b \in \{0,1\}$ 。最後產生出 ciphertext  $c \leftarrow \operatorname{Enc}_k(m_b)$ ,再將 c 回傳給 adversary。

Step 3: Adversary 會 output 一個 b' 來代表它猜測 b 的結果。

Step 4: 若 b' = b · 則 adversary 成功猜對了。

這個 experiment  $PrivK^{eav}_{A,\Pi}$  的 output 就是 adversary 是否猜對;也可以說,當  $PrivK^{eav}_{A,\Pi}=1$ ,則 b'=b 。

## Formal definition of perfect secrecy (Definition 3, defined by perfect indistinguishability)

 $\Pi = (Gen, Enc, Dec)$  with message space  $\mathcal{M}$  is perfectly indistinguishable if for every adversary A, it holds

$$\Pr[PrivK_{A,\Pi}^{eav} = 1] = \frac{1}{2}$$

意思:猜中的機率為  $\frac{1}{2}$  · 和沒有 c 的前提下 · 隨便亂猜的機率 ( 即  $\Pr[(\mathbf{randomly\ output\ }b') \land (b'=b)] = \frac{1}{2}$  ) 是一樣的 · 代表 c 並沒有洩漏任何額外資訊 ·

這個命題和  $\Pr[PrivK_{A,\Pi}^{eav}=0]=rac{1}{2}$  是等價的。

注意:若  $\Pr[PrivK_{A,\Pi}^{eav}=1]<\frac{1}{2}$  並不代表攻擊者更不會猜。因為  $\Pr[PrivK_{A,\Pi}^{eav}=1]+\Pr[PrivK_{A,\Pi}^{eav}=0]=1$ ,所以  $\Pr[PrivK_{A,\Pi}^{eav}=0]>\frac{1}{2}$ 。因此猜另一種情況的正確機率會更高。

#### Lemma

 $\Pi$  is perfectly secret if and only if it is perfectly indistinguishable.

**Proof** (Proof from Def. 2 to Def. )

由 Def. 2 可知

$$\Pr[\operatorname{Enc}_K(m_0) = c] = \Pr[\operatorname{Enc}_K(m_1) = c]$$

又因為 $c \leftarrow \operatorname{Enc}_k(m_b)$ ,所以

$$Pr[Enc_K(m_0) = c] = Pr[b = 0]$$
  
$$Pr[Enc_K(m_1) = c] = Pr[b = 1]$$

因此 
$$\Pr[b=0]=\Pr[b=1]=rac{1}{2}$$
 ( 因為在本例中  $\Pr[b=0]+\Pr[b=1]=1$  )。

$$\begin{array}{l} \Pr[PrivK_{A,\Pi}^{eav}] = \Pr[b' = b] \\ = \Pr[b' = b \land b = 0] + \Pr[b' = b \land b = 1] \\ = \Pr[b' = b \mid b = 0] \times \Pr[b = 0] + \Pr[b' = b \mid b = 1] \times \Pr[b = 1] \\ = \Pr[b' = 0] \times \Pr[b = 0] + \Pr[b' = 1] \times \Pr[b = 1] \\ = \Pr[b' = 0] \times \frac{1}{2} + \Pr[b' = 1] \times \frac{1}{2} \\ = \frac{1}{2} (\Pr[b' = 0] + \Pr[b' = 1]) \\ = \frac{1}{2} \\ \text{($\because$ $\Pr[b' = 0] + \Pr[b' = 1]$)} \\ \end{array}$$

#### Proof of Def. 3 to Def. 2 (Bonus)

欲證 Def. 3 ( 
$$\Pr[PrivK_{A,\Pi}^{eav}=1]=\frac{1}{2}$$
 )  $\Rightarrow$  Def. 2 (  $\Pr[\operatorname{Enc}_K(m)=c]=\Pr[\operatorname{Enc}_K(m')=c]$  )

**Proof** (Prove by contraposition)

## 3.3 One-Time Pad (OTP)

#### **Construction of OTP**

Fix an integer l > 0, and let  $|\mathcal{M}| = |\mathcal{C}| = |\mathcal{K}| = l$ . (which means all are binary strings of length l, i.e.,  $\{0,1\}^l$ )

Key generation algorithm Gen: uniformly randomly chooses a key  $k \in \mathcal{K}$ , k is l-bit key.

Encryption algorithm Enc: given  $k \in \{0,1\}^l$  and a message  $m \in \{0,1\}^l$ , Enc outputs a ciphertext  $c = m \oplus k$ .

Decryption algorithm Dec: given k, c, Dec outputs message  $m = c \oplus k$ .

#### **Prove that OTP is perfectly secret**

## **Proof** (Proved by Def. 1)

(i) For an arbitrary  $c \in \mathcal{C}$  and  $m \in \mathcal{M}$ 

$$\Pr[C = c \mid M = m] = \Pr[\operatorname{Enc}_K(m) = c] = \Pr[m \oplus K = c] = \Pr[K = m \oplus c] = \frac{1}{2^l}$$

(ii) Fix any  $\operatorname{dist}(\mathcal{M})$ , for any  $c \in \mathcal{C}$ 

$$\begin{split} \Pr[C = c] &= \sum_{m' \in \mathcal{M}} \Pr[C = c \mid M = m'] \cdot \Pr[M = m'] \\ &= \sum_{m' \in \mathcal{M}} \frac{1}{2^l} \cdot \Pr[M = m'] \\ &= 2^{-l} (\sum_{m' \in \mathcal{M}} \Pr[M = m']) \\ &= 2^{-l} \end{split}$$

(iii)

$$\begin{split} \Pr[M = m \mid C = c] &= \frac{\Pr[C = c \mid M = m] \cdot \Pr[M = m]}{\Pr[C = c]} \\ &= \frac{2^{-l} \cdot \Pr[M = m]}{2^{-l}} \\ &= \Pr[M = m] \end{split}$$

## 4.1 Limitation of Perfect Secrecy

**Theorem 1** (Limitation of perfect secrecy)

If  $\Pi=(\mathrm{Gen},\mathrm{Enc},\mathrm{Dec})$  is a perfectly secret encryption scheme with message space  $\mathcal M$  and key space  $\mathcal K$ , then

$$|\mathcal{M}| \leq |\mathcal{K}|$$

### Proof

Suppose  $|\mathcal{K}| < |\mathcal{M}|$ ,  $\Pi$  cannot be perfectly secret.

Consider the uniform  $\operatorname{dist}(\mathcal{M})$  and fix  $c \in \mathcal{C}$ ,  $\Pr[C = c] = 0$ .

Let  $\mathcal{M}(c)$  be the set of possible message which contains all possible messages decrypted by c. That is,

$$\mathcal{M}(c) \stackrel{\text{def}}{=} \{ m \mid m = \mathrm{Dec}_K(c) \text{ for some } k \in \mathcal{K} \}$$

Dec is deterministic function, so  $|\mathcal{M}(c)| \leq |\mathcal{K}|$ .

(We know  $\mathrm{Dec}_k(c) \coloneqq m$ , and different values of k may map to the same m. If all m are distinct for different k, then equation holds; otherwise,  $|\mathcal{M}(c)| < |\mathcal{K}|$ .)

If 
$$|\mathcal{K}| < |\mathcal{M}|$$
 and  $\mathcal{M}(c) \le |\mathcal{K}|$ , there exist some  $m' \in \mathcal{M}$  but  $m' \notin \mathcal{M}(c)$ .  
 $\Rightarrow \Pr[M = m' \mid C = c] = 0 \ne \Pr[M = m']$ , which is not perfect secrecy.

#### Quiz

We know that it's impossible to achieve pefect secrecy with shorter key size. So, what can we do or modify some factors to achieve shorter key? Any tradeoff (factor)?

### § Shannon's Theorem

**Theorem 2** (Shannon's theorem)

Let  $\Pi = (Gen, Enc, Dec)$  be an encryption scheme with message space M for which  $|\mathcal{M}| = |\mathcal{K}| = |\mathcal{C}|$ .

The scheme is perfectly secret if and only if:

- 1. Every key  $k \in \mathcal{K}$  is chosen with probability  $\frac{1}{|\mathcal{K}|}$  by Gen
- 2. For every  $m \in \mathcal{M}$  and every  $c \in \mathcal{C}$ , there exists a unique key  $k \in \mathcal{K}$  such that  $\operatorname{Enc}_k(m)$ .

#### Quiz

Design a tricky scheme  $\Pi$  that  $k \in \mathcal{K}$  is **NOT** uniformly chosen. Show  $\Pi$  is **NOT** perfectly secret by using Definition 1, 2 or 3.

(Hint: modify shift cipher or one-time pad)

## 4.2 Private Key Encryption

## § Computational Security

Perfect secrecy 的缺點 (weakness):

- 只能用一次 (one-time use)
- key 的長度一定要大於訊息的長度 ( $|\mathcal{K}| \ge |\mathcal{M}|$ )

Computational security 是從計算上保證安全的一種安全性。它不像 pefect secrecy 那樣地完美,但可以更靈活地建立 scheme (如減少 key 的長度 )。

從 adversary 的觀點來看:

| Adversary's power      | time/space      | success probability                |
|------------------------|-----------------|------------------------------------|
| Perfect secrecy        | unbounded       | = random guess                     |
| Computational security | polynomial time | = random guess + small probability |

目的:減少安全性,來換取更好的效率 (by weakening the security, to achieve better efficiency)。

#### § Concrete Definition

**Definition 1** (Concrete definition)

A scheme  $\Pi$  is  $(t,\epsilon)$ -secure if any adversary A running for time at most t, succeeds in breaking  $\Pi$  with probability at most  $\epsilon$ .

Ex: 
$$t=2^{10}$$
,  $\epsilon=\frac{1}{2^{100}}$ 

## § Asymptotic Definition

在這裡的 adversary A 的能力 (power) 是以漸進式術語來定義的 (asymptotic setting):

- Efficient adversary: 這種 adversary 會執行可以在 polynomial time 內跑完的演算法。這種演算法的執行時間是 p(n),其中 p 為多項式集合,而 n 為安全參數 (security parameter)。
- Small probability of success: 成功機率小於任何 polynomial 的倒數。也就是

$$\Pr[\text{success}] < \frac{1}{p(n)}$$
, where  $p$  is arbitary polynomial

PPT = Probabilistic Polynomial Time

#### **Definition 2** (Asymptotic definition)

A scheme is secure if for any PPT adversary succeeds in breaking the scheme with at most **negligible** probability.

## § Negligible Probability

Negligible function 是漸進小於 (asymptotic smaller) 任何 polynomial function 的函數。

#### **Definition 3**

A function f is negligible if

for every positive polynomial p, there exists a number N such that  $f(n) < \frac{1}{p(n)}$  where n > N.

Example:

Let 
$$g(x) = \frac{1}{2^x}$$
.

There exists N such that  $g(n) < \frac{1}{p(n)}$ .

$$g(n) < \frac{1}{p(n)}$$

$$\Rightarrow \frac{1}{2^n} < \frac{1}{n^k}$$

$$\Rightarrow 2^n > n^k$$

$$\Rightarrow n > k \cdot log_2(n)$$

$$\Rightarrow \frac{n}{log_2(n)} > k$$

(k is positive constant)

If  $n > k^2$ , this inequality holds.

#### Quiz

Let negl(x), negl'(x) be negligible functions.

- 1. A function  $f_1$ , defined by  $f_1(x) = \text{negl}(x) + \text{negl}'(x)$
- 2. A function  $f_2$ , defined by  $f_2(x) = p(x) \cdot \operatorname{negl}(x)$ , where p(x) is positive polynomial.

Are  $f_1$  and  $f_2$  are still negligible functions? **Yes** 

## **Summary**

任何關於 computational security 的 security definition 都由下列組成:

- 1. 破解 scheme 的定義(也就是怎麼樣才叫 scheme 被破解了)
- 2. 關於 adversary 的能力

我們通常將 adversary 塑造 (model) 成有效率(有計算能力)的演算法,且只考慮 adversary 可以在 polynomial time 之內執行的 probabilistic stratigies。

#### **Definition 4**

A scheme is secure if for every PPT adversary A carrying out an attack of some formally specified attack type, and the probability that A succeeds is negligible.

## § Private Key Encryption

**Definition 5** (Private key encryption)

A private key encryption is a tuple of PPT algorithm (Gen, Enc, Dec)

- Key generation:  $Gen(1^k) \to k$ . 這裡 n 的意義是  $|\mathcal{K}| \ge n$  或  $|\mathcal{K}| = poly(n)$  °
- Encryption:  $\operatorname{Enc}_k(m) \to c$ , where key k and  $m \in \{0,1\}^*$  are inputs. 若  $m \in \{0,1\}^{l(n)}$  ,我們會稱 這個等式為 fixed-length private key encryption with message length l(n) 。
- Decryption:  $\mathrm{Dec}_k(c) \coloneqq m$ . If c cannot be decrypted, then outupt  $\bot$  (error).

## **Basic definition of security**

Eavesdropping (竊聽): adversary 的策略或能力

這裡和之前的  $PrivK^{eav}_{A,\Pi}$  大致一樣,參見 3.2 Perfect secrecy III。

## 差異:

• Perfect secrecy:沒有 security parameter,因為不在意 adversary 有多少的能力

$$\Pr[PrivK_{A,\Pi}^{eav}=1]=\frac{1}{2}$$

• Computational security: 有 security parameter n

$$\Pr[PrivK_{A,\Pi}^{eav}=1] \leqslant \frac{1}{2} + \operatorname{negl}(n)$$

### 5.1 Basics

#### § Scenario

Sender S 和 receiver R 彼此有有一把相同的 key k,且 S 想要發送訊息給 R。 在發送訊息前,S 會先使用 k 將明文 m 加密為密文 c (  $c \leftarrow \operatorname{Enc}_k(m)$  ),之後 S 將 c 傳送給 R。 R 在收到 c 後,使用同一把 key k 將 c 解密 (  $m \coloneqq \operatorname{Dec}_k(c)$  ) 來得到 m。

關於這個 scenario 的正式的定義可以參見 Definition 5 Private key encryption。

## § 安全性定義

使用前面提到的  $PrivK_{A,\Pi}^{eav}$  , 參見 3.2 Perfect secrecy III。

## 5.2 EAV-security

EAV = eavesdropping

**Definition 6** (EAV-secruity of private key encryption)

A private key encryption scheme  $\Pi$  is **EAV-secure** if for all PPT adversary A, there is a negligible function negl such that for all n,

$$\Pr[PrivK_{A,\Pi}^{eav}(n) = 1] \leqslant \frac{1}{2} + \operatorname{negl}(n)$$

(The probability is taken over randomness used by adversary and used in experiment.)

### § Equivalent Formulation of EAV-security

前一節 EAV-security 的定義等價於下面這句話:

「無論 PPT adversary A 看到由  $m_0$  或  $m_1$  加密過後的密文,其表現都相同。」

(Every PPT adversary behaves the same whether it sees ciphertext of  $m_0$  or  $m_1$ .)

## 更精確的定義是:

- 修改之前的定義為  $PrivK^{eav}_{A,\Pi}(n,b)$  · 其定義都和之前一樣 · 除了 b 是固定的 · 而不是隨機選擇的 ·
- 定義  $out_A(PrivK_{A,\Pi}^{eav}(n,b)) = b'$  · 其中 b' 是 A 的 output 。
- 沒有 PPT adversary A 可以知道現在是 experiment  $PrivK_{A,\Pi}^{eav}(n,0)$  或  $PrivK_{A,\Pi}^{eav}(n,1)$  。

#### 正式定義如下:

**Definition 7** (Equivalent formulation of EAV-security)

 $\Pi$  is EAV-secure if for all PPT adversary A, there is a negligible function  $\operatorname{negl}$  such that

$$|\Pr[out_A(PrivK_{A,\Pi}^{eav}(n,0))=1] - \Pr[out_A(PrivK_{A,\Pi}^{eav}(n,1))=1]| \le \operatorname{negl}(n)$$



#### Quiz

In PrivK, we define A to choose two messages with the same length. Please write your thought for the impossibility to support arbitrary-length messages.

## 5.3 Private Key Encryption

## § Pseudorandom Generator

**Definition 8** (pseudorandom generator, PRG)

Let l be a polynomial and G is a deterministic polynomial-time algorithm. For any n and input  $s \in \{0,1\}^n$ , the output of G(s) is l(n)-length.

We say G is a PRG if:

- Expansion: for every n, it holds l(n) > n. l is a so-called expansion factor of G.
- $\bullet\,$  Pseudorandomness: for any PPT algorithm D (aka distinguisher), there is a negligible function negl such that

$$|\Pr[D(G(s)) = 1] - \Pr[D(r) = 1]| \le \operatorname{negl}(n)$$

where  $s \in \{0,1\}^n$  and  $r \in \{0,1\}^{l(n)}$  is a turly random variable.

#### § PRG-based Construction of Fixed-length Private Key Encryption

Let G be a PRG with expansion factor l.

Scheme  $\Pi = (Gen, Enc, Dec)$ .

- Gen(1<sup>n</sup>): on input 1<sup>n</sup>, choose uniform  $k \in \{0, 1\}^n$ .
- Enc(k,m): with input of a message  $m \in \{0,1\}^{l(n)}$  and outputs a ciphertext  $c = G(k) \oplus m$
- $\operatorname{Dec}(k,c)$ : with input of a ciphertext  $c \in \{0,1\}^{l(n)}$  and outputs a message  $m = G(k) \oplus c$

這種構造法和 OTP (見 3.3 One-Time Pad (OTP)) 很像。那時候的 OTP 會遇到 perfect secrecy 的限制,也就是 key 的長度至少要和 message 一樣長 ( $|\mathcal{K}| \ge |\mathcal{M}|$ )。在這裡,我們通過 PRG 來將原本的 key 長度 n 擴展成 l(n),藉此來降低 key 的長度。而其代價就是,這種使用 PRG 的方法一定不是 perfect secrecy。

P.S. 由於 private key encryption 要求雙方要事先使用安全通道交換同一把 key。若在這種情景下使用和 message 一樣長的 key,那我們就可以直接使用這個安全通道交換訊息本身了,而無需進行加密。

#### § PRG-based construction is EAV-secure





(a) Distinguisher D and adversary A

(b) Reduction in proof

#### Theorem 3

If G is a pseudorandom generator, then the construction  $\Pi$  is a EAV-secure.

其逆否命題為「如果  $\Pi$  不是 EAV-secure,則 G 也不是 PRG」。

#### 證明思路

由D扮演 challenger。

在 reduction 時是 D 包在 A 的外面。

Let  $\widetilde{\Pi} = (\widetilde{\operatorname{Gen}}, \widetilde{\operatorname{Enc}}, \widetilde{\operatorname{Dec}})$  be one-time pad.

1. If w is uniform chosen form  $\{0,1\}^{l(n)}$ ,

$$\Pr[D(w) = 1] = \Pr[PrivK_{A,\widetilde{\mathbf{n}}}^{eav}(n) = 1] = \frac{1}{2}$$

這種情況是 one-time pad 的情況,也就是使用 true randomness。

2. If w = G(k) by choosing uniform  $k \in \{0, 1\}^n$ ,

$$\Pr[D(G(k)) = 1] = \Pr[PrivK_{A, \blacksquare}^{eav}(n) = 1]$$

這種情況是使用 pseudorandomness。

這個機率是我們所要證明的,可以透過第三點來反推其機率為  $\leq \frac{1}{2} + \operatorname{negl}(n)$ 

3. If G is PRG,

$$|\Pr[D(G(k)) = 1] - \Pr[D(w) = 1]| \leq \operatorname{negl}(n)$$

#### **Proof details**

Let A be a PPT adversary. Our goal is to contract a distinguisher D (which is going to break PRG) that takes a string w as input.

Goal of D: determine whether

- (i) w was chosen uniformly (where  $w \in \{0, 1\}^{l(n)}$ )
- (ii) w was generated by choosing uniform  $k \in \{0,1\}^n$  and computing w = G(k) (where  $w \in \{0,1\}^{l(n)}$  and l(n) > n)

Output of D: outputs 1 if case (i) mentioned above; otherwise, outputs 0

Theorem used:

$$|\Pr[D(r) = 1] - \Pr[D(G(k)) = 1]| \le \operatorname{negl}(n)$$

where  $r \leftarrow \{0,1\}^{l(n)}$ , and  $k \leftarrow \{0,1\}^n$ .

Activites of *D*: (connect *A* and *D*)

Emulate the eav experiment  $PrivK_{A,\Pi}^{eav}$  for A

- If A wins, D thinks w = G(k).
- If A fails, D thinks w is uniform chosen.

## Proof

(Refer to figure Reduction in proof)

Distinguisher D get an input of a string  $w \in \{0, 1\}^{l(n)}$ .

Step 1: Run A to obtain a pair of messages  $m_0, m_1 \in \{0, 1\}^{l(n)}$ 

Step 2 : Choose a uniform bit  $b \in 0, 1$ . Set  $c = w \oplus m_b$ 

Step 3: Send c to A

Step 4: Later, A returns b'

D outputs

— 1, if b' = b

— 0, if  $b' \neq b$ 

Note that probability of output of D is related to  $\Pr[PrivK_{A,\Pi}^{eav}]$ .

If 
$$\Pr[PrivK_{A,\Pi}^{eav}] > \frac{1}{2} + \text{negl}$$
,

$$\Pr[out_D = 1] > \frac{1}{2} + \text{negl}$$

$$\Pr[out_D = 0] \leqslant \frac{1}{2} - \text{negl}$$

## 5.4 Chosen Plaintext attack & CPA-security

CPA = Chosen Plaintext Attack

## § CPA security

在這個情景下的 adversary A 可以存取 encryption oracle。

Encryption oracle:是一個黑盒子,我們不知道其運作原理,但給它輸入和取得它的輸出。A 可以將明文 m 給 oracle · 之後 oracle 會將明文加密為密文  $c \leftarrow \operatorname{Enc}_k(m)$  回傳給 A 。

Experiment  $PrivK_{A,\Pi}^{cpa}$ 

Step 1: A 可以選擇明文  $m_i$  給 C

Step 2: C 建立密鑰  $k \leftarrow \text{Gen}(1^n)$ ,並將明文加密為密文  $c_i \leftarrow \text{Enc } m_i$ ) 回傳給 A。

Step 3: A 此時可以將這些收集到明文-密文對(plaintext-ciphertext pair)儲存起來。由於 A 是 PPT adversary,所以 A 可以收集的 pair 數為 poly-many。

Step 4: A 選擇  $m_0$  和  $m_1$  傳給 C 進行 chanllenge。之後的事情都和之前的 EAV-secure 的 exper-

iment 一樣。

Step 5: 若 A 贏了,則  $PrivK_{A,\Pi}^{cpa}(1^n) = 1$ 。

P.S. 前三步稱為 encryption oracle query。而 challenge 之後一樣可以進行 eneryption oracle query  $\cdot$  直到 A output b' 。

## Quiz

Show PRG-based construction  $\Pi$  is not CPA-secure.

(Hint: give A in  $PrivK_{A,\Pi}^{\ \ \ \ \ \ \ }$  to break  $\Pi$ )

## 6.1 CPA-secure Encryption

### § Pseudorandom Function (PRF)

Let  $F:\{0,1\}^n \times \{0,1\}^n \to \{0,1\}^n$  be an efficient length-perserving keyed function. F is a pseudorandom function (PRF) if all PPT distinguisher D, there is a negligible function such that

$$|\Pr[D^{F_k(\cdot)}(1^n) = 1] - \Pr[D^{f(\cdot)}(1^n) = 1]| \le \operatorname{negl}(n)$$

where  $k \leftarrow \{0,1\}^n$ , and  $f \leftarrow \operatorname{Func}_n$  is a random function .

Note that Func<sub>n</sub> is a set containing all posibilities of  $\{0,1\}^n \to \{0,1\}^n$ .

簡而言之,無法區分是否為 random function 的 function,即為 pseudorandom function。

#### Quiz

Show that the size of  $\operatorname{Func}_n$  (aka  $|\operatorname{Func}_n|$ ) equals to  $2^{n \cdot 2^n}$ .

### Ans:

The domain  $\{0,1\}^n$  has  $2^n$  elements, and the codomains  $\{0,1\}^n$  also has  $2^n$  elements. For each of the  $2^n$  inputs, a function can assign any of  $2^n$  outputs. So the number of such functions is

$$(2^n)^{2^n} = 2^{n \cdot 2^n}.$$

## § PRF-based Construction

這裡的 distinguisher D 有一個特別的能力,可以詢問  $F(\cdot)$  (可以將它視為是一種 oracle ),而  $F(\cdot)$  可能是 PRF  $F_k(\cdot)$  或是 random function  $f(\cdot)$ ,但 D 無法區分到底是哪一種。





Let F be a PRF and  $\Pi = (Gen, Enc, Dec)$ :

- $Gen(1^n)$ : uniformly choose  $k \in \{0,1\}^n$  as the key.
- Enc(k,m):  $m \in \{0,1\}^n$ , uniformly choose  $r \in \{0,1\}^n$ , and compute  $s = F_k(r) \oplus m$  and c = (r,s).
- $\operatorname{Dec}(k,c)$ : parse c=(r,s), output  $m=F_k(r)\oplus s$

Theorem 4 (PRF-based construction is CPA-secure)

If F is a PRF, the construction  $\Pi$  is CPA-secure.

#### 證明思路

Contraposition: If  $\Pi$  is not CPA-secure, then F is not PRF.

## **Proof**

Let  $\widetilde{\Pi} = (\widetilde{\operatorname{Gen}}, \widetilde{\operatorname{Enc}}, \widetilde{\operatorname{Dec}})$  be one-time pad.

By modeling D and A:

(i)

$$\Pr[D^{F_k(\cdot)}(1^n) = 1] = \Pr[PrivK^{cpa}_{A,\Pi}(n) = 1]$$

(ii)

$$\Pr[D^{f(\cdot)}(1^n) = 1] = \Pr[PrivK^{cpa}_{A.\widetilde{\Pi}}(n) = 1]$$

(iii) By assumption,

$$|\Pr[D^{F_k(\cdot)}(1^n) = 1] - \Pr[D^{f(\cdot)}(1^n) = 1]| \le \text{negl}(n)$$

 $\Pr[PrivK^{cpa}_{A,\widetilde{\Pi}}(n) = 1] = ?$ 

• Case 1: If  $r^*$  is never used in  $\operatorname{Enc}$  query,  $\Pr[A_{win}^{case1}] = \frac{1}{2}$ 



• Case 2: If  $r^*$  is used in  $\operatorname{Enc}$  query,  $\Pr[A_{win}^{case2}]=1$ 



Define an event: Repeat, if  $r^*$  is used.

$$\begin{split} \Pr[PrivK^{cpa}_{A,\widetilde{\Pi}}(n) = 1] &= \Pr[PrivK^{cpa}_{A,\widetilde{\Pi}}(n) = 1 \land Repeat] + \Pr[PrivK^{cpa}_{A,\widetilde{\Pi}}(n) = 1 \land \neg Repeat] \\ &\leqslant \Pr[Repeat] + \Pr[PrivK^{cpa}_{A,\widetilde{\Pi}}(n) = 1 \land \neg Repeat] \\ &= \frac{q(n)}{2^n} + \frac{1}{2} \\ &= \operatorname{negl}(n) + \frac{1}{2} \end{split}$$

Use this result to the previous (ii), and then we can get the result of

$$\Pr[D^{F_k(\cdot)}(1^n) = 1] \leqslant \frac{1}{2} + \operatorname{negl}(n)$$

## 6.2 Encryption for Arbitrary Length Message

當我們有任意長度 L 的訊息需要加密,我們可以對每 n bit 為一塊的訊息個別進行加密,如此便可以達到加密任意長度訊息的目的。

但前面提到的 CPA-secure 的方法會讓密文長度變成明文長度的兩倍,原本 n-bit block message 就會變成 2n-bit ciphertext,最終使得長度為 L 的訊息在加密後會變成長度的 2L 的 ciphertext。

接下來會介紹數個解決這問題的方法,統稱為 mode of encryption。

### § Counter Mode (CTR Mode)

 $\operatorname{Enc}_k(m_1,\ldots,m_t)$ , whose total length is  $n \cdot t$ 

- Ramdomly choose  $\operatorname{ctr} \leftarrow \{0,1\}^n$ , set  $c_0 = \operatorname{ctr}$ , whose length is n
- For i=1 to t, compute  $c_i=m_i\oplus F_k(\operatorname{ctr}+i)$ , where F is PRF
- Output ciphertext  $(c_0, c_1, \dots, c_t)$ , whose length is  $n \cdot (t+1)$



#### Theorem 5

If F is PRF, then CTR mode is CPA-secure.

#### § Cipher Block Chaining (CBC mode)

CBC mode is more practical and used in our life.

 $\operatorname{Enc}_k(m_1,\ldots,m_t)$ 

- Randomly choose  $c_0 \leftarrow \{0,1\}^n$
- For i=1 to t, compute  $c_i=F_k(m\oplus c_{i-1})$
- Output ciphertext  $(c_0, c_1, \dots, c_t)$

Note that decryption needs  $F_k^{-1}$ .



#### Theorem 6

F is PRF, CBC mode is CPA-secure.

## Quiz

Show decryptiong of CBC. Draw a flowchart.

## § Electronic Codebook (ECB mode)

$$\operatorname{Enc}_k(m_1,\ldots,m_t) \to F_k(m_1),\ldots,F_k(m_t)$$

Decryption also needs  $F_k^{-1}$ .

ECB is not EAV-secure and CPA-secure (: ECB is deterministic).

## Quiz

Prove ECB is not EAV-secure or CPA-secure. 寫出 EAV 的攻擊手段。

## 7.1 CCA-security

CCA = Chosen Ciphertext Attack

允許攻擊者使用 decryption oracle,給予其密文,它會回傳明文。但限制攻擊者不可使用欲 challenge 的密文  $c^*$ 。



## § Remark on CCA-security

CCA => Lunch time attack

Is CCA realistic (現實可行)?

No, but still have weak decryption oracle which only leak 1-bit message from decrypted ciphertext, which is suffice to learn the entire message (plaintext).

### § Padding for Arbitrary Length

Assuming block size is L bytes.

If message length = L(t-1) + 2, then we need padding which is L-2 bytes.

One of the pratical padding solution is PKCS #5:

- Block length: L byte
- b bytes to apppend the message to a multiple of L, where  $1 \le b \le L$ . Note that  $b \ne 0$ .
- Append b (encoded 1 byte), b time(s).
   i.e., b=3 ⇒ 0x03 03 03, where underlines indicate 1 byte.

#### Quiz

當最後一個 block 本來就是滿的,應該如何進行 padding?

#### Ans:

額外補上一個 block,並在每個 byte 填入 block size 大小的數值。 E.g. 設 block size 為 8 bytes,則額外新增一個 block,並在八個 bytes 中填入 0x08。

## § Decryption

使用 CBC mode 解密。

在 decryption 後檢查 encoded data, 設最後一個 byte 為 b:

- 若 b=0 或 b>L return error
- 若最後 b 個 bytes 並不全都等於 b, return error
- 否則,去除 padding 的部分,並 return message

## Quiz

Ans: (2)

#### § Weak CCA with Padding Oracle

這裡出現了一種新的 oracle。給定 ciphertext,它會 return padding 是正確或錯誤。



## § Padding Oracle Attack

## 基本原理



其中 encoded data =  $F_k^{-1}(c) \oplus IV$ 

我們可以觀察到,若 attacker A 修改了 IV 的第 i 個 byte,這個動作只會影響到 encoded data 的第 i 個 byte。(  $\cdot$  : CBC 使用 XOR 運算 )

#### 攻擊過程

Attacker 會先由左至右逐個修改 byte · 並在每次修改完之後都詢問 oracle · 直到 oracle return error · 該 byte 到最右邊即為 padding bytes :



之後 attacker 便可藉由 IV 和 encoded data 反推  $F_k^{-1}(c)$  的 padding 部分為何:



為了得到非 padding 部分的 message 為何·attacker 可以藉由修改 padding 部分為原本的值再加一·並重新計算新 IV 的 padding 部分:



再來是持續修改非 padding 部分的最後(最右)一個 byte,直到 padding oracle return correctattacker 就可以知道此時的 encoded data 中的對應 byte 為原本的 padding 值再加一。最後依序計算  $F_k^{-1}(c)$  得到密鑰,再將密鑰與 IV 做 XOR 得到原本的 encoded data。



持續進行這些步驟就可以得到完整的 encoded data 為何。

#### **Remark on Padding Oracle Attack**

- # of pading bytes: < L padding oracle queries (確定 padding byte 的數量所需的次數)
- contain of one byte of the message:  $\leq 2^8 = 256$  padding oracle queries (最多嘗試 256 次即可猜到 encoded data 中非 padding 部分的一個 byte )
- In  $PrivK_{A,\Pi}^{weak-cca}$  with padding oracle, A choose  $m_0, m_1$  such that  $|m_0| = |m_1|$  and last significant byte of  $m_0$  is different from correspondence of  $m_1$ . And it only needs  $\leq L + 2^8$  padding

## 7.2 Message Authentication Code (MAC)

Secrecy:由 Enc 提供、adversary無法知道訊息內容、不能涵蓋所有的 concerns (例如:訊息篡改)

Integrity:確保訊息不被篡改 (tampering)、驗證訊息的正確性

MAC = Message Authentication Code

### § Syntax

Alice 傳 message m 及一個可以驗證 message 的 tag t 給 Bob,而 Bob 在收到訊息後,透過 t 來驗證 m °

 $\Pi$  is a MAC construction.  $\Pi = (Gen, Mac, Vrfy)$ 

- Key generation  $Gen(1^n) \rightarrow k$ : a key
- Message authentication code  $Mac(k, m) \rightarrow t$ : a tag
- Verification Vrfy(k, m, t) := 0 or 1, where 0 stands for rejection, 1 stands for acceptance.

#### Remark

- m is not hidden for Vrfy.
- 對於一個 deterministic MAC · Vrfy 在做的事情就是重新建立一次 t · 並比較其是否與接收到的 t 相同 。
- If  $m \in \{0,1\}^{l(n)}$  where l(n) is a polynomial, then MAC is fixed-length MAC.

## § Experiment MAC-Forge<sub>A, $\Pi$ </sub>(n)



有 challenger C 和 adversary A:

Step 1: C 產生 key  $\cdot$  即  $k \leftarrow Gen(1^n)$ 

Step 2: A選擇一個 message  $m_i$ ,以此詢問C,而C再 return 一個計算過後的 tag  $t_i \leftarrow \text{Mac}(k, m_i)$ 

給 A。此外,C 可以使用一個 list Q 來收集所有來自 A 的 queries。

Step 3: A outputs 他的偽造  $(m^*, t^*)$ 

A 成功的條件 ( 即 MAC-Forge<sub>A,II</sub>(n) = 1 ) 有兩個 ( 都要符合 · if and only if ):

- (1)  $Vrfy(k, m^*, t^*) = 1$
- (2)  $m^* \notin Q$

#### Remark

MAC-Forge 的 strong 版本是 MAC-sForge。

MAC-sForge: 比 MAC-Forge 寬鬆一點,只要求  $(m^*, t^*)$  也不在 Q 中,即  $(m^*, t^*) \notin Q$ 。

If a deterministic MAC satisfies existential unforgeability in MAC-Forge, it also satisfies strong unforgeability in MAC-sForge.

解釋:因為 deterministic MAC 會將一個 m 只對應到一個 t ,所以如果  $m^*$  不在 Q 中,則與之對應的  $t^*$  也不會在 Q 中。因此  $(m^*,t^*) \notin Q$  。

## § Strong Verison of Previous Experiment MAC-sForge<sub>A,II</sub>(n)

大致和之前相同,唯一不同處在於 A 成功的第二個條件改成  $(m^*,t^*) \notin Q$ 。這意味著 A 可以向 C query  $m^*$ ,但只要可以偽造另一組不在 Q 中的  $(m^*,t^*)$  並且仍可以使用它通過 Vrfy,那麼就算 A 成功了。

只要在 MAC-sForge 是安全的,那它在 MAC-Forge 也是安全的。反之則不成立。

**Definition 9** (Strong Security)

$$\Pr[\text{MAC-sForge}_{A,\Pi}(n) = 1] \leq \operatorname{negl}(n)$$

## § Security Definition of MAC

#### **Definition 10**

A message authentication code  $\Pi = (Gen, Enc, Vrfy)$  is existentially unforgeable under adaptive chosen message attacks, if for all PPT adversaries A there is a ngeligible function negl such that

$$\Pr[\mathsf{MAC\text{-}Forge}_{A,\Pi}(n) = 1] \leqslant \mathsf{negl}(n)$$

#### **§ Construction**

#### **Pseudorandom Function**

Pseudorandom function (PRF) 的定義請參見 6.1 CPA-secure Encryption。

#### **Construction of Fixed-length MAC**

Let  $F: \{0,1\}^n \times \{0,1\}^n \to \{0,1\}^n$  be a PRF.

 $\Pi = (Gen, Mac, Vrfy)$  is a fixed-length MAC for message fo length n.

- $Gen(1^n)$ : uniform  $k \in {0, 1}^n$
- Mac(k, m): on input k and message  $m \in \{0, 1\}^n$ , outputs a tag  $t = F_k(m)$  where t is t-bit tag.
- Vrfy(k, m, t): on input k, m, t, outputs 1 if and only if  $t = F_k(m)$ ; otherwise, outputs 0.