★ Which of the following logical entailments is true? *	0/1
Sentence 1 entails Sentence 4	
Sentence 6 entails Sentence 3	
Sentence 5 entails Sentence 6	
Sentence 2 entails Sentence 5	
Sentence 6 entails Sentence 2	×
Sentence 1 entails Sentence 2	

- ✓ There are other logical connectives that exist, other than the ones discussed in lecture. One of the most common is "Exclusive Or" (represented using the symbol ⊕). The expression A ⊕ B represents the sentence "A or B, but not both." Which of the following is logically equivalent to A ⊕ B? *
- $(A \lor B) \land (A \land B)$
- (A \vee B) $\wedge \neg$ (A \wedge B)
- $\bigcirc (A \land B) \lor \neg (A \lor B)$
- (A ∨ B) ∧ ¬ (A ∨ B)

✓ Let propositional variable R be that "It is raining," the variable C be that "It 1/1 is cloudy," and the variable S be that "It is sunny." Which of the following a propositional logic representation of the sentence "If it is raining, then it is cloudy and not sunny."? *

- \bigcap R \rightarrow C \rightarrow \neg S
- \bigcap R \land C \land \neg S

~	Consider, in first-order logic, the following predicate symbols. Student(x) 1/1 represents the predicate that "x is a student." Course(x) represents the predicate that "x is a course." Enrolled(x, y) represents the predicate that "x is enrolled in y." Which of the following is a first-order logic translation of the sentence "There is a course that Harry and Hermione are both enrolled in."? *
0	∀x. Enrolled(Harry, x) ∧ ∀y. Enrolled(Hermione, y)
0	$\exists x. Course(x) \land Enrolled(Harry, x) \land Enrolled(Hermione, x)$
0	$\forall x. Course(x) \land Enrolled(Harry, x) \land Enrolled(Hermione, x)$
0	∃x. Enrolled(Harry, x) ∧ ∃y. Enrolled(Hermione, y)
0	∀x. Enrolled(Harry, x) ∨ Enrolled(Hermione, x)
0	$\exists x. \; Enrolled(Harry, x) \lor Enrolled(Hermione, x)$
Cor	nments, if any

This form was created inside of CS50.