

UNITED STATES DEPARTMENT OF COMMERCE United States Patent and Trademark Office Addiese: COMMISSIONER FOR PATENTS P O Box 1450 Alexandra, Virginia 22313-1450 www.wepto.gov

APPLICATION NO.	FILING DATE	FIRST NAMED INVENTOR	ATTORNEY DOCKET NO.	CONFIRMATION NO.
10/811,892	03/30/2004	Eun-sup Kim	1793.1184	1320
2117 7590 9928/2010 STAAS & HALSEY LLP SUITE 700 1201 NEW YORK AVENUE, N.W. WASHINGTON, DC 20005			EXAMINER	
			SITTA, GRANT	
			ART UNIT	PAPER NUMBER
	. ,		2629	
			MAIL DATE	DELIVERY MODE
			09/28/2010	PAPER

Please find below and/or attached an Office communication concerning this application or proceeding.

The time period for reply, if any, is set in the attached communication.

Application No. Applicant(s) 10/811.892 KIM, EUN-SUP Office Action Summary Examiner Art Unit GRANT D. SITTA 2629 -- The MAILING DATE of this communication appears on the cover sheet with the correspondence address --Period for Reply A SHORTENED STATUTORY PERIOD FOR REPLY IS SET TO EXPIRE 3 MONTH(S) OR THIRTY (30) DAYS. WHICHEVER IS LONGER, FROM THE MAILING DATE OF THIS COMMUNICATION. Extensions of time may be available under the provisions of 37 CFR 1.136(a). In no event, however, may a reply be timely filed after SIX (6) MONTHS from the mailing date of this communication. If NO period for reply is specified above, the maximum statutory period will apply and will expire SIX (6) MONTHS from the mailing date of this communication - Failure to reply within the set or extended period for reply will, by statute, cause the application to become ABANDONED (35 U.S.C. § 133). Any reply received by the Office later than three months after the mailing date of this communication, even if timely filed, may reduce any earned patent term adjustment. See 37 CFR 1.704(b). Status 1) Responsive to communication(s) filed on 28 July 2010. 2a) This action is FINAL. 2b) This action is non-final. 3) Since this application is in condition for allowance except for formal matters, prosecution as to the merits is closed in accordance with the practice under Ex parte Quayle, 1935 C.D. 11, 453 O.G. 213. Disposition of Claims 4) Claim(s) 1-4.6.8.13.19.20.22 and 25-29 is/are pending in the application. 4a) Of the above claim(s) is/are withdrawn from consideration. 5) Claim(s) _____ is/are allowed. 6) Claim(s) 1-4,6,8,13,19,20,22 and 25-29 is/are rejected. 7) Claim(s) _____ is/are objected to. 8) Claim(s) _____ are subject to restriction and/or election requirement. Application Papers 9) The specification is objected to by the Examiner. 10) ☐ The drawing(s) filed on 21 September 2007 is/are: a) ☐ accepted or b) ☐ objected to by the Examiner. Applicant may not request that any objection to the drawing(s) be held in abeyance. See 37 CFR 1.85(a). Replacement drawing sheet(s) including the correction is required if the drawing(s) is objected to. See 37 CFR 1.121(d). 11) The oath or declaration is objected to by the Examiner. Note the attached Office Action or form PTO-152. Priority under 35 U.S.C. § 119 12) Acknowledgment is made of a claim for foreign priority under 35 U.S.C. § 119(a)-(d) or (f). a) All b) Some * c) None of: Certified copies of the priority documents have been received. 2. Certified copies of the priority documents have been received in Application No. Copies of the certified copies of the priority documents have been received in this National Stage application from the International Bureau (PCT Rule 17.2(a)). * See the attached detailed Office action for a list of the certified copies not received. Attachment(s) 1) Notice of References Cited (PTO-892) 4) Interview Summary (PTO-413)

Paper No(s)/Mail Date

Notice of Draftsperson's Patent Drawing Review (PTO-948)

3) Information Disclosure Statement(s) (PTO/SB/08)

Paper No(s)/Mail Date.

6) Other:

5) Notice of Informal Patent Application

Page 2

Application/Control Number: 10/811,892

Art Unit: 2629

DETAILED ACTION

Response to Arguments

- Applicant's arguments filed 7/28/2010 have been fully considered but they are not persuasive.
- In response to Applicant's remarks:

Although Shin discusses supplying or cutting off power to the backlight according to the determination of a video signal input, Shin, or the other relied upon references, do not discuss a backlight driver to drive the backlights in synchronization with the detected horizontal synchronization signal and being turned on or off according to the on/off signals, input from the controller. In particular, this technical feature of claim 1 provides that the backlight driver is turned off during the display mode change, and turned on thereafter, but the backlight driver is prevented from being turned off due to a transient horizontal synchronization signal, which in turn provides that the panel and the backlight driver in the LCD are synchronized with one another to avoid oscillatory interference therebetween and remove noise on a screen, and the backlight driver is turned off during the display mode change to prevent the backlights from being turned off, which is an advantage and technical feature not realized in the other relied upon references.

Examiner respectfully disagrees. Saito teaches wherein the synchronization period generally means a so called blanking period. The period other than the synchronization period generally means a period in which a video signal for display appears and may be called a "video signal period" or a "display period". The synchronization period of the synchronizing signal in which the voltage applied to the backlight device is kept reduced may be a horizontal synchronization (blanking) period of a horizontal synchronization signal. Saito provides the ON/OFF controls from the computer in fig. 1 (7) via the backlight controller (10). Saito fails to teach turning OFF the backlight controller, as Saito appears to be silent with respect to the hardware involved with the backlight. However, Park teaches using an inverter (fig. 1 (110)) col. 4, lines 27-40 of Park). Backlights normally require relatively large amounts of energy to

Art Unit: 2629

drive and an inverter, steps of the voltage, for instance, necessary to drive the backlight. Therefore, it would have been obvious to one of ordinary skill in the art, at the time of the invention, to modify Saito to include the use of a scaler and <u>backlight driver</u> as taught by Park in order to provide a flat panel display with optimize structure and processing for various signals as stated in (col. 2, lines 8-27 of Park).

In response to applicant's argument that the references fail to show certain features of applicant's invention, it is noted that the features upon which applicant relies (i.e., In particular, this technical feature of claim 1 provides that the backlight driver is turned off during the display mode change, and turned on thereafter, but the backlight driver is prevented from being turned off due to a transient horizontal synchronization signal, which in turn provides that the panel and the backlight driver in the LCD are synchronized with one another to avoid oscillatory interference therebetween and remove noise on a screen, and the backlight driver is turned off during the display mode change to prevent the backlights from being turned off, which is an advantage and technical feature not realized in the other relied upon references) are not recited in the rejected claim(s). Although the claims are interpreted in light of the specification, limitations from the specification are not read into the claims. See In re Van Geuns, 988 F.2d 1181, 26 USPQ2d 1057 (Fed. Cir. 1993). The claims do no currently reflect applicant's arguments, i.e, and the backlight driver is turned off during the display mode change to prevent the backlights from being turned off, since claim 1 recites a backlight driver to drive the backlights in synchronization with the detected horizontal synchronization signal and being turned on or off according to the inverter on/off

Application/Control Number: 10/811,892 Page 4

Art Unit: 2629

signals, the current claim language recites being either turned on or off or according to an on/off signal which allows for a broader interpretation, i.e., on with respect to an ON signal or can be interpreted as being on with respect to an OFF signal.

Claim Rejections - 35 USC § 112

- The following is a quotation of the second paragraph of 35 U.S.C. 112:
 The specification shall conclude with one or more claims particularly pointing out and distinctly claiming the subject matter which the applicant regards as his invention.
- Claim 1 recites the limitation ""the inverter on/off" in claim 1, line 15. There is insufficient antecedent basis for this limitation in the claim.

Claim Rejections - 35 USC § 103

- 5. The following is a quotation of 35 U.S.C. 103(a) which forms the basis for all obviousness rejections set forth in this Office action:
 - (a) A patent may not be obtained though the invention is not identically disclosed or described as set forth in section 102 of this title, if the differences between the subject matter sought to be patented and the prior art are such that the subject matter as a whole would have been obvious at the time the invention was made to a person having ordinary skill in the art to which said subject matter pertains. Patentability shall not be negatived by the manner in which the invention was made.
- 6. The factual inquiries set forth in *Graham v. John Deere Co.*, 383 U.S. 1, 148 USPQ 459 (1966), that are applied for establishing a background for determining obviousness under 35 U.S.C. 103(a) are summarized as follows:
 - Determining the scope and contents of the prior art.
 - Ascertaining the differences between the prior art and the claims at issue.
 - Resolving the level of ordinary skill in the pertinent art.
 - Considering objective evidence present in the application indicating obviousness or nonobviousness.

Art Unit: 2629

 Claims 13-15 and 17-18 and 21 are rejected under 35 U.S.C. 103(a) as being unpatentable over Saito et al (6,404,145) hereinafter, Saito in view of Shin et al (5,078476), hereinafter, Shin.

8. In regards to claim 13, Saito teaches a method of driving backlights before, during, and after a change in a display mode, and turned on thereafter, the method comprising (col. 1, lines 28-67 of Saito):

driving the backlights in synchronization with a first synchronization signal in a video signal (fig. 3 sync signal);

determining whether the first synchronization signal has been transiently changed (fig. 3 sync signal and the change when the sync signal goes from (on) to (off));

stopping the driving <u>if a user has changed</u> the display mode (fig. 3 video signal is stopped);

checking whether the display mode change is completed (fig. 3 sync signal and video signal); and

resuming driving the backlights (fig. 3 backlight control voltage) in synchronization with a second synchronization (fig. 3 sync signal) signal in a video signal (fig. 3 video signal) if the display mode change is completed (fig. 3 from off to on).

Art Unit: 2629

Saito fails to expressly teach stopping the driving if a user has changed the display mode.

However, However, Shin teaches stopping the driving if a user has changed the display mode (col. 1, lines 37-67). "Another object of the present invention is to provide an improved backlight on/off control apparatus for amplifying composite video signals, detecting a synchronizing signal out of the composite video signals, determining whether the video signal is inputted or not according to the synchronizing signal being detected or not, and supplying or cutting off the electric power to the backlight according to the determination of the existing or non-existing of the video signal input" Examiner asserts the determining whether a video signal is inputted our not includes when a user turns off the power to the display, the user disconnects a video signal cable, or changes a channel and a new sync signal needs to be acquired.

It would have been obvious to one of ordinary skill in the art to modify the <u>backlight driver</u> and horizontal synchronization backlight control of Saito to include wherein the controller generates stopping the driving <u>if a user has changed</u> the display mode as taught by Shin in order to save power (col. 1, lines 37-60 Shin).

9. In regards to claim 21, Saito teaches a method of controlling a liquid crystal display having backlights in which selectively input video signals are converted into digital video signals to be sampled, comprising (col. 1, lines 25-67):

extracting a first synchronization signal from the sampled digital video signals (col. 2, lines 5-15);

Art Unit: 2629

driving the backlights in synchronization with the first synchronization signal (fig. 3 sync and backlight);

stopping the driving if the first synchronization signal of the liquid crystal display is transiently changed (fig. 3 sync and backlight off and on);

extracting a second synchronization signal from the sampled digital video signals (fig. 3 sync Examiner is considering the first and second synchronization signals the same signal);

driving the backlights in synchronization with the second synchronization signal if the changing of the display mode is determined to be completed (fig. 3 backlight and sync signal).

Saito fails to teach the stopping the driving continuing until the second synchronization signal is detected.

However, However, Shin teaches wherein stopping the driving continuing until the second synchronization signal is detected (col. 1, lines 37-67).

It would have been obvious to one of ordinary skill in the art to modify the <u>backlight driver</u> and horizontal synchronization backlight control of Saito to include wherein the controller generates the <u>backlight driver</u> off signals until the horizontal synchronization signal is detected, or to turning off the backlight off in cases where there is not input of any video signal as taught by Shin in order to save power (col. 1, lines 37-60 Shin).

Art Unit: 2629

- 10. In regards to claim 14, Saito modified by Shin further comprising repeating the checking if the display mode change is not completed (fig. 3 vertical sync Saito)
 Examiner notes that the checking will be continues until a new signal is detected).
- 11. In regards to claim 15, Saito as modified by Shin teaches further comprising skipping the determining, the inputting, the stopping, and the checking operations if the display mode is not changed (fig. 3 Vertical sync Saito).
- In regards to claim 17, Saito as modified by Shin wherein the checking lasts until the second synchronization signal is generated (fig. 3 sync signal Saito).
- 13. In regards to claim 18, Saito as modified Shin teaches wherein the checking comprises determining whether the second synchronization signal exists in the video signal (fig. 3 video signal Saito).
- Claims 1, 3-8, 10-12, 19-20, 22-24, and 28-29 are rejected under 35 U.S.C.
 103(a) as being unpatentable over, Saito et al (6,404,145) hereinafter, Saito in view of Park et al (7,098,903) hereinafter, Park

Art Unit: 2629

15. In regards to claim 1, Saito discloses the limitations of a liquid crystal display (fig. 1 (4)), having a liquid crystal panel and backlights (fig. 1 (5)), comprising:

a signal converter (fig. 1 (3)) to convert selectively input analogue video signals into digital video signals in synchronization with a first predetermined sampling clock signal (fig. 1 signal from 6), a panel driver to display the digital video signals on the liquid crystal panel (fig. 1 (3));

a controller to detect the extracted horizontal synchronization signal from the digital video signals to determine a display mode (fig. 1 (10) and (6)), to output the first and second predetermined sampling clock signals to the signal converter (fig. 1 (6) to 3 and 10), according to the determined display mode (fig. 1 (3)), and to generate on/off signals whenever the horizontal synchronization signal is transiently changed (col. 5, lines 54-67); and

to drive the backlights in synchronization with the detected horizontal synchronization signal and being turned on or off according to the on/off signals, inputs from the controller. ("Although the backlight lamp 5 is off during the vertical synchronization period in this embodiment, it may also be possible that the backlight lamp 5 is off during the horizontal synchronization period of the horizontal synchronizing signal. This is especially effective in a case where the backlight lamp 5 is realized by a high speed response element or a semiconductor light emitting device such as an LED." Col. 5, lines 38-45)

Art Unit: 2629

Saito differs from the claimed invention in that Saito does not explicitly disclose a scaler to sample the digital video signals at a <u>panel</u> resolution in synchronization with a second predetermined sampling clock signal, and to extract a horizontal synchronization signal from the sampled digital video signals; and a <u>inverter</u>

However, Park teaches a system and method for a scaler (fig. 1 (340)) to sample a digital video signals at a <u>panel</u> resolution in synchronization with a predetermined sampling clock signal (col. 5, lines 18-27), and to extract a horizontal synchronization signal from a sampled digital video signals (col. 5, lines 18-27); and an (inverter) <u>backlight driver</u> to drive the backlight (fig. 1 (110)) (col. 3, lines 18-30 of Park).

It would have been obvious to one of ordinary skill in the art, at the time of the invention, to modify Saito to include the use of a scaler and <u>backlight driver</u> as taught by Park in order to provide a flat panel display with optimize structure and processing for various signals as stated in (col. 2, lines 8-27 of Park).

Therefore Saito as modified by Park teaches a scaler (fig. 1 (340) Park) to sample the digital video signals at a <u>panel</u> resolution (col. 5, lines 28-50 Park) in synchronization with a second predetermined sampling clock signal (col. 4, lines 15-30 Saito), and to extract a horizontal synchronization signal from the sampled digital video signal (col. 4, lines 15-30 Saito).

16. In regards to claim 4, Saito discloses the limitations of a method of controlling to drive backlights in a liquid crystal display (fig. 1 (4)), comprising:

Art Unit: 2629

determining whether horizontal synchronization signal transiently changes while video signals are displayed (col. 1,lines 28-54); and

applying backlight off signals to the while the horizontal synchronization signal is changing ("Although the backlight lamp 5 is off during the vertical synchronization period in this embodiment, it may also be possible that the backlight lamp 5 is off during the horizontal synchronization period of the horizontal synchronizing signal. This is especially effective in a case where the backlight lamp 5 is realized by a high speed response element or a semiconductor light emitting device such as an LED." Col. 5, lines 38-45), and applying backlight on signals when the horizontal synchronization signal is detected (col. 4, lines 59-67).

Saito differs from the claimed invention in that Saito does not explicitly disclose an (inverter) backlight driver circuit.

However, Park teaches a system and method for using an (inverter) <u>backlight</u> <u>driver</u> for a backlight (fig. 1 (110)) col. 4, lines 27-40 of Park).

It would have been obvious to one of ordinary skill in the art, at the time of the invention, to modify Saito to include the use of an <u>backlight driver</u> as taught by Park in order to provide a flat panel display with optimize structure and processing for various signals as stated in (col. 2, lines 8-27 of Park).

Saito and Park fail to expressly teach applying backlight off signals until the horizontal synchronization signal is detected.

However, Shin teaches wherein a backlight off signals until the horizontal synchronization signal is detected (col. 1, lines 37-67).

Art Unit: 2629

It would have been obvious to one of ordinary skill in the art to modify the <u>backlight driver</u> and horizontal synchronization backlight control of Saito and Park to include wherein the controller generates the <u>backlight driver</u> off signals until the horizontal synchronization signal is detected, or to turning off the backlight off in cases where there is not input of any video signal as taught by Shin in order to save power (col. 1, lines 37-60 Shin).

17. In regards to claim 6, Saito discloses the limitations of a method in which a controller controls backlights (col. 1, lines 28-42) in a liquid crystal display (col. 1, line 33), comprising:

driving the backlights in synchronization with a first horizontal synchronization signal in a digital video signal when video signals are input (col. 2, lines 4-10);

determining whether \underline{a} user has changed a display mode (col. 5, lines 22-37);

inputting a backlight off signal (col. 5, lines 22-37), if the first horizontal synchronization signal is transiently changed (col. 5, lines 5-14), to control to not drive the backlights (col. 5, lines 22-37):

checking whether the first horizontal synchronization signal mode change is completed (fig. 3 (Vertical SYNC) Examiner notes the picture shows Vertical Sync but states col. 2, lines 4-10 that a horizontal sync can also be used); and

inputting an on signal if the first horizontal synchronization signal change is completed (fig. 3 Video signal and Vertical SYNC ON and OFF) so as to control to drive

Art Unit: 2629

the backlights in synchronization with a second horizontal synchronization signal (fig. 3 backlight control and Vertical SYNC Examiner is viewing the synchronization signal as first and second synchronization signal since the signals do not have to be independent and distinct).

Saito differs from the claimed invention in that Saito does not explicitly disclose controlling an (inverter) <u>backlight driver</u> to drive a backlight.

However, Park teaches a system and method for using an (inverter) <u>backlight</u> <u>driver</u> for a backlight (fig. 1 (110)) col. 4, lines 27-40 of Park).

It would have been obvious to one of ordinary skill in the art, at the time of the invention, to modify Saito to include the use of an (inverter) <u>backlight driver</u> that is controlled to drive the backlight as taught by Park in order to provide a flat panel display with optimize structure and processing for various signals as stated in (col. 2, lines 8-27 of Park).

Saito and Park fail to expressly teach generating the <u>backlight driver</u> off signals until a second horizontal synchronization signal is detected.

However, Shin teaches wherein generating the <u>backlight driver</u> off signals until a second horizontal synchronization signal is detected (col. 1, lines 37-67 Shin).

It would have been obvious to one of ordinary skill in the art to modify the backlight driver and horizontal synchronization backlight control of Saito and Park to include wherein the controller generates the backlight driver off signals until the horizontal synchronization signal is detected, or to turning off the backlight off in cases

Art Unit: 2629

where there is not input of any video signal as taught by Shin in order to save power (col. 1, lines 37-60 Shin).

Therefore, Saito and Park as modified by Shin teaches generating the <u>backlight</u> <u>driver</u> (fig. 1 (110)) col. 4, lines 27-40 of Park) off signal until the second horizontal synchronization signal is detected (col. 5, lines 5-14 Saito); and

turning the <u>backlight driver</u> (fig. 1 (110)) col. 4, lines 27-40 of Park) on or off according to the <u>backlight driver</u> on/off signals (col. 5, lines 22-37 Saito).

18. In regards to claim 19, Saito discloses the limitations of a panel and an backlight in a liquid crystal display having backlights (fig. 3 backlight, sync and video signal), which are synchronized with one another to avoid oscillatory (col. 2, lines 4-16) interference therebetween and to remove noise from a screen (col. 2, lines 23-29),

Saito differs from the claimed invention in that Saito does not explicitly disclose controlling an (inverter) <u>backlight driver</u> to drive the backlights.

However, Park teaches a system and method for using an (inverter) <u>backlight</u> <u>driver</u> for a backlight (fig. 1 (110)) col. 4, lines 27-40 of Park).

It would have been obvious to one of ordinary skill in the art, at the time of the invention, to modify Saito to include an <u>backlight driver</u> that is controlled to drive a backlight as taught by Park in order to provide a flat panel display with optimize structure and processing for various signals as stated in (col. 2, lines 8-27 of Park).

Art Unit: 2629

Saito and Park fail to expressly teach an <u>backlight driver</u> off signals being qenerated until a horizontal synchronization signal is detected.

However, Shin teaches wherein a backlight off signals being generated until a horizontal synchronization signal is detected (col. 1, lines 37-67 Shin).

It would have been obvious to one of ordinary skill in the art to modify the backlight driver and horizontal synchronization backlight control of Saito and Park to include wherein the controller generates the backlight driver off signals until the horizontal synchronization signal is detected, or to turning off the backlight off in cases where there is not input of any video signal as taught by Shin in order to save power (col. 1, lines 37-60 Shin).

Therefore, Saito and Park as modified by Shin teaches wherein <u>backlight driver</u> (fig. 1 (110)) col. 4, lines 27-40 of Park) on/off signals are generated during transient horizontal synchronization signal change to prevent the backlights from being turned off (fig. 3 backlight control Saito)

the <u>backlight driver</u> (110)) col. 4, lines 27-40 of Park) being turned on or off according to the <u>backlight driver</u> on/off signals (fig. 3 backlight control Saito)., and the <u>backlight driver</u> off signals being generated until a horizontal synchronization signal (fig. 3 backlight control Saito). is detected (col. 1, lines 37-67 Shin).

Art Unit: 2629

19. In regards to claim 20, Saito discloses the limitations of a panel and an backlight in a liquid crystal display having backlights (fig. 3 backlight, sync and video signal), which are synchronized with one another, (col. 2, lines 4-16 and col. 2, lines 23-29),

Saito differs from the claimed invention in that Saito does not explicitly disclose controlling an (inverter) <u>backlight driver</u> to drive the backlights.

However, Park teaches a system and method for using an (inverter) <u>backlight</u> <u>driver</u> for a backlight (fig. 1 (110)) col. 4, lines 27-40 of Park).

It would have been obvious to one of ordinary skill in the art, at the time of the invention, to modify Saito to include an <u>backlight driver</u> that is controlled to drive a backlight as taught by Park in order to provide a flat panel display with optimize structure and processing for various signals as stated in (col. 2, lines 8-27 of Park).

Saito and Park fail to expressly teach an <u>backlight driver</u> off signals being generated until a horizontal synchronization signal is detected.

However, Shin teaches wherein a backlight off signals being generated until a horizontal synchronization signal is detected (col. 1, lines 37-67 Shin).

It would have been obvious to one of ordinary skill in the art to modify the backlight driver and horizontal synchronization backlight control of Saito and Park to include wherein the controller generates the backlight driver off signals until the horizontal synchronization signal is detected, or to turning off the backlight off in cases where there is not input of any video signal as taught by Shin in order to save power (col. 1, lines 37-60 Shin).

Art Unit: 2629

Therefore, Saito as modified by Park teaches wherein <u>backlight driver</u> (fig. 1 (110)) col. 4, lines 27-40 of Park) on/off signals are generated during transient horizontal synchronization signal change to prevent the backlights from being turned on (fig. 3 backlight control Saito)

the <u>backlight driver</u> (110)) col. 4, lines 27-40 of Park) being turned on or off according to the <u>backlight driver</u> on/off signals (fig. 3 backlight control Saito), and the <u>backlight driver</u> off signals being generated until a horizontal synchronization signal (fig. 3 backlight control Saito), is detected (col. 1, lines 37-67 Shin).

 In regards to claim 22, Saito discloses the limitations of a liquid crystal display (fig. 1 (4)), having a liquid crystal panel and backlights (fig. 1 (4 and 5)), comprising:

a signal converter (fig. 1 (3)) to convert a video signal into a digital video signal in synchronization with a first sampling clock signal (fig. 1 signals from 6);

a panel driver (fig. 1 (7)) to display the digital video signals on the liquid crystal panel (fig. 1 (4));

a controller to detect the synchronization signal from the digital video signal to determine a display mode (fig. 1 (3 and 7)).

to drive the backlight in synchronization with a second synchronization signal and an on/off signals (col. 5, lines 5-37).

Saito differs from the claimed invention in that Saito does not disclose a scaler to sample the digital video signal in synchronization with a second sampling clock signal,

Art Unit: 2629

and to extract a first synchronization signal therefrom; and (inverter) backlight driver to drive the backlight.

However, Park teaches a system and method for a scaler (fig. 1 (340)) to sample the digital video signal at a panel resolution in synchronization with a second sampling clock signal, and to extract a first synchronization signal therefrom(col. 5, lines 18-27) and an <u>backlight driver</u> to drive the backlight (fig. 1 (110) (col. 3, lines 18-30 of Park).

It would have been obvious to one of ordinary skill in the art, at the time of the invention, to modify Saito to include the use of a scaler and <u>backlight driver</u> to drive the backlight as taught by Park in order to provide a flat panel display with optimize structure and processing for various signals as stated in (col. 2, lines 8-27 of Park).

Saito and Park fail to expressly teach an off signals being generated until a horizontal synchronization signal is detected.

However, Shin teaches wherein a backlight off signals being generated until a horizontal synchronization signal is detected (col. 1, lines 37-67 Shin).

It would have been obvious to one of ordinary skill in the art to modify the backlight driver and horizontal synchronization backlight control of Saito and Park to include wherein the controller generates the off signals until the horizontal synchronization signal is detected, or to turning off the backlight off in cases where there is not input of any video signal as taught by Shin in order to save power (col. 1, lines 37-60 Shin).

Art Unit: 2629

Therefore, Saito as modified by Park teaches a controller to detect the synchronization signal from the digital video signal to determine a display mode (fig. 1 (3 and 7) Saito), to output the first and second sampling clock signals (col. 4, lines 15-30) Saito) to the signal converter (fig. 1 (3) Saito) and the scaler (fig. 1 (340)), respectively, according to the determined display mode (fig. 3 (video signal)), and to generate (fig. 1 (110) Park) on/off signals (col. 2, lines 4-16 of Saito) whenever the synchronization signal is transiently is changed (fig. 3 (video signal)); and

an <u>backlight driver</u> (fig. 1 (110) Park) to drive the backlights in synchronization with a second synchronization signal (col. 2, lines 4-16 Saito) and the (fig. 1 (110) Park) on/off signals (col. 5, lines 22-37 Saito) input from the controller (fig. 1 (10)).

wherein the controller generates the off signals unto the second synchronization (fig. 3 backlight control Saito) signal is detected (col. 1, lines 37-67 Shin).

21. In regards to claim 29, Saito discloses the limitations of a liquid crystal display (fig. 1 (4)), having a liquid crystal panel and backlights (fig. 1 (4 and 5)), comprising:

a signal converter (fig. 1 (3)) to convert a video signal into a digital video signal in synchronization with a first sampling clock signal (fig. 1 signals from 6);

a panel driver (fig. 1 (7)) to display the digital video signals on the liquid crystal panel (fig. 1 (4));

Art Unit: 2629

a controller to detect the synchronization signal from the digital video signal to determine a display mode (fig. 1 (3 and 7)). Saito differs from the claimed invention in that

Saito does not disclose a scaler to sample the digital video signal at a panel resolution in synchronization with a second sampling clock signal and to extract a first synchronization signal therefrom and an (inverter) backlight driver to drive the backlight.

However, Park teaches a system and method for scaler to sample the digital video signal <u>at a panel resolution</u> in synchronization with a second sampling clock singal and to extract a first synchronization signal therefrom (fig. 1(340) (col. 5, lines 18-27)) and an (inverter) <u>backlight driver</u> to drive the backlight (fig. 1 (110) (col. 3, lines 18-30 of Park).

It would have been obvious to one of ordinary skill in the art, at the time of the invention, to modify Saito to include the use of a scaler and <u>backlight driver</u> to drive a backlight as taught by Park in order to provide a flat panel display with optimize structure and processing for various signals as stated in (col. 2, lines 8-27 of Park).

Saito and Park fail to expressly teach an <u>backlight driver</u> off signals being generated until a horizontal synchronization signal is detected.

However, Shin teaches wherein a backlight off signals being generated until a horizontal synchronization signal is detected (col. 1, lines 37-67 Shin).

It would have been obvious to one of ordinary skill in the art to modify the backlight driver and horizontal synchronization backlight control of Saito and Park to include wherein the controller generates the <u>backlight driver</u> off signals until the

Art Unit: 2629

horizontal synchronization signal is detected, or to turning off the backlight off in cases where there is not input of any video signal as taught by Shin in order to save power (col. 1, lines 37-60 Shin).

Therefore, Saito and Park as modified by Shin teaches a controller to detect the synchronization signal from the digital video signal to determine a display mode (fig. 1 (3 and 7) Saito), to output the first and second sampling clock signals (col. 4, lines 15-30) Saito) to the signal converter (fig. 1 (3) Saito) and the scaler (fig. 1 (340)), respectively, according to the determined display mode (fig. 3 (video signal)), and to generate <u>backlight driver</u> (fig. 1 (110) Park) on/off signals (col. 2, lines 4-16 of Saito) whenever the synchronization signal is transiently is changed (fig. 3 (video signal)); and

an <u>backlight driver</u> (fig. 1 (110) Park), which is synchronized with the liquid crystal panel to avoid oscillatory interference therebetwen (col. 2, lines 4-16, and col. 2, lines 23-34), to drive the backlights in synchronization with a second synchronization signal and being turned on or off according to (fig. 3 backlight control and Vertical SYNC Saito) the <u>backlight driver</u> (fig. 1 (110) Park) on/off signals input from the controller (col. 2, lines 4-16 of Saito).

wherein the controller generates the <u>backlight driver</u> off signals unto the second synchronization (fig. 3 backlight control Saito) signal is detected (col. 1, lines 37-67 Shin).

Art Unit: 2629

- 22. In regards to claim 3, Saito and Park as modified by Shin teaches wherein the controller generates and outputs the (fig. 1 (110) Park) off signals to the <u>backlight driver</u> (fig. 1 (110) Park) when the horizontal synchronization signal is changed(fig. 2 (vertical sync and backlight control and col. 2, lines 5-16) Saito).
- 23. In regards to claim 5, Saito and Park as modified by Shin teaches wherein the horizontal synchronization signal begins to cause a transient effect when changed (col. 2, lines 22-28 Saito).
- 24. In regards to claim 7, Saito and Park as modified by Shin teaches further comprising repeating the checking if the first horizontal synchronization signal change is not completed (fig. 3 video signal and col. 5, lines 22-45 Saito).
- 25. In regards to claim 8, Saito and Park as modified by Shin teaches skipping the determining, the inputting the <u>backlight driver</u> off signal, and the checking operations if the user has not changed the first horizontal synchronization signal (fig. 3 and col. 2, lines 27-67 Saito).

Art Unit: 2629

26. In regards to claim 10, Saito and Shin differ from the claimed invention in that Saito does not disclose wherein the determining comprises determining whether the display mode is changed from a PC to that of a DTV.

However, Park teaches a system and method for wherein the determining comprises determining whether the display mode is changed from a PC to that of a DTV. (fig. 3 Analog RGB and DVI-D input (col. 5, lines 18-51).

It would have been obvious to one of ordinary skill in the art, at the time of the invention, to modify Saito and Shin to include the use of wherein determining comprises determining whether the display mode is changed from a PC to that of a DTV as taught by Park in order to properly display on the display screen because when a low-resolution are displayed on the high resolution panel, the signals are not displayed on the whole screen but on a part of the screen as stated in (col. 5, lines 18-40 of Park).

- 27. In regards to claim 11, Saito and Park as modified by Shin teaches wherein the checking lasts until the second horizontal synchronization signal is generated (fig. 3 wherein the second vertical sync signal turns from (off) to (on) Saito).
- 28. In regards to claim 12, Saito and Park as modified by Shin teaches wherein the checking comprises determining whether the second horizontal synchronization signal exists in the video signals (fig. 3 wherein the second vertical sync signal turns from (off) to (on) Saito).

Art Unit: 2629

29. In regards to claim 23, Saito and Park as modified by Shin teaches wherein the

controller determines a display mode (fig. 1 (7) and col. 4, lines 1-8 Saito).

30. In regards to claim 24. Saito and Park as modified by Shin teaches wherein the

controller (fig. 1 (7) and (6) Saito) outputs the first and second sampling clock signals

(col. 4, lines 15-30) Saito) to the signal converter (fig. 1 (3) Saito) and the scaler (fig. 1

(340) Park), respectively, according to the determined display mode ((col. 1, lines 28-

40) Saito).

31. In regards to claim 28, Saito and Park as modified by Shin teaches wherein the

controller (fig. 1 (6 and 7) Saito) generates and outputs (fig. 1 (110)) off signals to the

backlight driver when the display mode is changed (col. 2, lines 4-16), and continues

generating and outputting off signals until the second synchronization signal is detected

(col. 2, lines 4-16, fig. 3 Sync signal).

32. Claims 2 and 25-27 are rejected under 35 U.S.C. 103(a) as being unpatentable

over Saito and Park as modified by Shin, and further in view of Yoo et. al (US

2003/0214478) hereinafter, Yoo.

Art Unit: 2629

 In regards to claim 2, Saito and Park as modified by Shin discloses the limitations of claim 1,

Saito and Park as modified by Shin differs from the claimed invention in that

Saito and Park as modified by Shin does not expressly disclose the means by which the

<u>backlight driver</u> controls the backlight. Examiner notes Shin does teach a "pulse
generator".

However, Yoo teaches a system and method for a pulse width modulator (fig. 9 (140)) to generate pulse width modulation signals [0122], which are synchronized with the horizontal synchronization signal (figs. 3 Sync Saito), and to turn the pulse width modulation signals on or off ([0122] "on/off") according to the on/off signals generated by the controller [0122 ""The PWM control part is turned on or off by an external on/off control signal"); a switching transformer (fig. 9 (150) which controls the switch Q1) to switch a power supply on or off (fig. 9 Vin (DC)) according to the pulse width modulation signals (fig. 9 signal from 140); and a radiator lamp (fig. 9 (110) [0112] "lamp array" Examiner notes lamp arrays radiate light) which radiates light using the power supplied by the switching transformer ([0111-0126].

It would have been obvious to one of ordinary skill in the art, at the time of the invention, to modify the <u>backlight driver</u> control means of Saito and Park as modified by Shin to include the use of PWM as taught by Yoo in order to control the <u>backlight driver</u> and backlight assembly as stated in (fig. 9 the lamp driving device, [0112-0126]), since PWM can be used to reduce the total amount of power delivered to a load.

Art Unit: 2629

- 34. In regards to claim 25, Saito, Park and Shin as modified by Yoo teaches wherein the <u>backlight driver</u> comprises a pulse width modulator (fig. 9 (140) Yoo) to generate pulse width modulation signals ([0122] "on/off" Yoo) synchronized with the first synchronization signal (fig. 3 Sync Saito, and to turn the pulse width modulation signals on and off (fig. 9 signal from 140); and a lamp (fig. 9 (110) [0112] "lamp array" Yoo) according to the <u>backlight driver</u> (fig. 1 (110) Park) on/off signals generated by the controller (col. 1-2, lines 28-16 of Saito).
- 35. In regards to claim 26, Saito, Park and Shin as modified by Yoo teaches wherein the <u>backlight driver</u> further comprises a switching transformer to switch a power supply on or off according to the pulse width modulation signals input from the pulse width modulator (fig. 9 T1, T3 and 120 Yoo).
- 36. In regards to claim 27, Saito, Park and Shin as modified by Yoo teaches wherein the <u>backlight driver</u> further comprises a lamp to radiate light using the power supplied by the switching transformer (abstract of Yoo).
- Claims 9 is rejected under 35 U.S.C. 103(a) as being unpatentable over Saito and Park and modified by Shin, in view of Anderson et. al (US 6,678,005) hereinafter, Anderson.

Art Unit: 2629

38. In regards to claim 9, Saito and Park as modified by Shin discloses the limitations of claim 6, Saito and Park as modified by Shin differ from the claimed invention in that Saito and Park do not disclose wherein the determining comprises recognizing key signals as first horizontal synchronization change signals if the video signals are those of a PC and are displayed when the user inputs the key signals to change the video signals.

However, Anderson teaches a system and method for recognizing key signals (Examiner notes key signals will be necessary when the user is prompted with the choice) as first horizontal synchronization change signals if the video signals are those of a PC (Abstract "PC") and are displayed (fig. 3, (370)) when the user inputs the key signals to change the video signals (fig. 3 (360). (col. 2, lines 20-50 of Anderson).

It would have been obvious to one of ordinary skill in the art, at the time of the invention, to modify Saito and Park as modified by Shin to include the use of means recognizing key signals as display mode change when the video signal are those of a PC as taught by Anderson in order to "...accommodate for concurrent presence of multiple video signals in a PC or TV environment." as stated in (col. 2, lines 15-20 of Anderson).

 Claims 16 is rejected under 35 U.S.C. 103(a) as being unpatentable over Saito as modified by Shin, in view of Anderson et. al (US 6,678,005) hereinafter, Anderson.

Art Unit: 2629

40. Claim 16 is rejected for the same reasoning as claim 9. Since Anderson teaches a system and method for recognizing key signals (Examiner notes key signals will be necessary when the user is prompted with the choice) (Abstract "PC") (fig. 3, (370)) (fig. 3 (360), (col. 2, lines 20-50 of Anderson).

It would have been obvious to one of ordinary skill in the art, at the time of the invention, to modify Saito and Park as modified by Shin to include the use of means recognizing key signals as display mode change when the video signal are those of a PC as taught by Anderson in order to "...accommodate for concurrent presence of multiple video signals in a PC or TV environment." as stated in (col. 2, lines 15-20 of Anderson).

Conclusion

The prior art made of record and not relied upon is considered pertinent to applicant's disclosure

Konopka et al (5,574,336)

Any inquiry concerning this communication or earlier communications from the examiner should be directed to GRANT D. SITTA whose telephone number is (571)270-1542. The examiner can normally be reached on M-F 9-6.

If attempts to reach the examiner by telephone are unsuccessful, the examiner's supervisor, Sumati Lefkowitz can be reached on 571-272-3638. The fax phone number for the organization where this application or proceeding is assigned is 571-273-8300.

Application/Control Number: 10/811,892 Page 29

Art Unit: 2629

Information regarding the status of an application may be obtained from the Patent Application Information Retrieval (PAIR) system. Status information for published applications may be obtained from either Private PAIR or Public PAIR. Status information for unpublished applications is available through Private PAIR only. For more information about the PAIR system, see http://pair-direct.uspto.gov. Should you have questions on access to the Private PAIR system, contact the Electronic Business Center (EBC) at 866-217-9197 (toll-free). If you would like assistance from a USPTO Customer Service Representative or access to the automated information system, call 800-786-9199 (IN USA OR CANADA) or 571-272-1000.

/Grant D Sitta/ Examiner, Art Unit 2629