Lógica Digital (1001351)

Exemplos de projetos

Prof. Ricardo Menotti menotti@ufscar.br

Atualizado em: 19 de março de 2024

Departamento de Computação Centro de Ciências Exatas e de Tecnologia Universidade Federal de São Carlos Prof. Luciano de Oliveira Neris Ineris@ufscar.br

- Em uma sala grande com três portas e um interruptor em cada porta, projete um sistema capaz de acender ou apagar as luzes da sala alterando o estado de qualquer uma das chaves;
- Obtenha uma função $f(x_1, x_2, x_3)$ que solucione este problema.

- Em uma sala grande com três portas e um interruptor em cada porta, projete um sistema capaz de acender ou apagar as luzes da sala alterando o estado de qualquer uma das chaves;
- Obtenha uma função $f(x_1, x_2, x_3)$ que solucione este problema.

linha	<i>x</i> ₁	<i>X</i> ₂	<i>X</i> 3	f
0	0	0	0	0

- Em uma sala grande com três portas e um interruptor em cada porta, projete um sistema capaz de acender ou apagar as luzes da sala alterando o estado de qualquer uma das chaves;
- Obtenha uma função $f(x_1, x_2, x_3)$ que solucione este problema.

linha	<i>x</i> ₁	<i>X</i> ₂	<i>X</i> 3	f
0	0	0	0	0
1	0	0	1	1

- Em uma sala grande com três portas e um interruptor em cada porta, projete um sistema capaz de acender ou apagar as luzes da sala alterando o estado de qualquer uma das chaves;
- Obtenha uma função $f(x_1, x_2, x_3)$ que solucione este problema.

linha	<i>x</i> ₁	<i>X</i> ₂	<i>X</i> 3	f
0	0	0	0	0
1	0	0	1	1
2	0	1	0	1

- Em uma sala grande com três portas e um interruptor em cada porta, projete um sistema capaz de acender ou apagar as luzes da sala alterando o estado de qualquer uma das chaves;
- Obtenha uma função $f(x_1, x_2, x_3)$ que solucione este problema.

linha	x_1	<i>x</i> ₂	<i>X</i> 3	f
0	0	0	0	0
1	0	0	1	1
2	0	1	0	1
3	0	1	1	0

- Em uma sala grande com três portas e um interruptor em cada porta, projete um sistema capaz de acender ou apagar as luzes da sala alterando o estado de qualquer uma das chaves;
- Obtenha uma função $f(x_1, x_2, x_3)$ que solucione este problema.

linha	<i>x</i> ₁	<i>X</i> ₂	<i>X</i> 3	f
0	0	0	0	0
1	0	0	1	1
2	0	1	0	1
3	0	1	1	0
4	1	0	0	1

- Em uma sala grande com três portas e um interruptor em cada porta, projete um sistema capaz de acender ou apagar as luzes da sala alterando o estado de qualquer uma das chaves;
- Obtenha uma função $f(x_1, x_2, x_3)$ que solucione este problema.

linha	<i>x</i> ₁	<i>X</i> 2	<i>X</i> 3	f
0	0	0	0	0
1	0	0	1	1
2	0	1	0	1
3	0	1	1	0
4	1	0	0	1
5	1	0	1	0

- Em uma sala grande com três portas e um interruptor em cada porta, projete um sistema capaz de acender ou apagar as luzes da sala alterando o estado de qualquer uma das chaves;
- Obtenha uma função $f(x_1, x_2, x_3)$ que solucione este problema.

linha	<i>x</i> ₁	<i>X</i> ₂	<i>X</i> 3	f
0	0	0	0	0
1	0	0	1	1
2	0	1	0	1
3	0	1	1	0
4	1	0	0	1
5	1	0	1	0
6	1	1	0	0

- Em uma sala grande com três portas e um interruptor em cada porta, projete um sistema capaz de acender ou apagar as luzes da sala alterando o estado de qualquer uma das chaves;
- Obtenha uma função $f(x_1, x_2, x_3)$ que solucione este problema.

linha	x_1	<i>X</i> ₂	<i>X</i> 3	f
0	0	0	0	0
1	0	0	1	1
2	0	1	0	1
3	0	1	1	0
4	1	0	0	1
5	1	0	1	0
6	1	1	0	0
7	1	1	1	1

- Em uma sala grande com três portas e um interruptor em cada porta, projete um sistema capaz de acender ou apagar as luzes da sala alterando o estado de qualquer uma das chaves;
- Obtenha uma função $f(x_1, x_2, x_3)$ que solucione este problema.

linha	x_1	<i>X</i> 2	<i>X</i> 3	f
0	0	0	0	0
1	0	0	1	1
2	0	1	0	1
3	0	1	1	0
4	1	0	0	1
5	1	0	1	0
6	1	1	0	0
7	1	1	1	1

$$f = m_1 + m_2 + m_4 + m_7$$

- Em uma sala grande com três portas e um interruptor em cada porta, projete um sistema capaz de acender ou apagar as luzes da sala alterando o estado de qualquer uma das chaves;
- Obtenha uma função $f(x_1, x_2, x_3)$ que solucione este problema.

linha	x_1	<i>X</i> ₂	<i>X</i> 3	f
0	0	0	0	0
1	0	0	1	1
2	0	1	0	1
3	0	1	1	0
4	1	0	0	1
5	1	0	1	0
6	1	1	0	0
7	1	1	1	1

$$f = m_1 + m_2 + m_4 + m_7$$

$$f = \overline{x}_1 \overline{x}_2 x_3 + \overline{x}_1 x_2 \overline{x}_3 + x_1 \overline{x}_2 \overline{x}_3 + x_1 x_2 x_3$$

- Em uma sala grande com três portas e um interruptor em cada porta, projete um sistema capaz de acender ou apagar as luzes da sala alterando o estado de qualquer uma das chaves;
- Obtenha uma função $f(x_1, x_2, x_3)$ que solucione este problema.

linha	x_1	<i>X</i> ₂	<i>X</i> 3	f
0	0	0	0	0
1	0	0	1	1
2	0	1	0	1
3	0	1	1	0
4	1	0	0	1
5	1	0	1	0
6	1	1	0	0
7	1	1	1	1

$$f = m_1 + m_2 + m_4 + m_7$$

$$f = \overline{x}_1 \overline{x}_2 x_3 + \overline{x}_1 x_2 \overline{x}_3 + x_1 \overline{x}_2 \overline{x}_3 + x_1 x_2 x_3$$

$$f = M_0 M_3 M_5 M_6$$

- Em uma sala grande com três portas e um interruptor em cada porta, projete um sistema capaz de acender ou apagar as luzes da sala alterando o estado de qualquer uma das chaves;
- Obtenha uma função $f(x_1, x_2, x_3)$ que solucione este problema.

linha	<i>X</i> ₁	<i>X</i> ₂	<i>X</i> 3	f
0	0	0	0	0
1	0	0	1	1
2	0	1	0	1
3	0	1	1	0
4	1	0	0	1
5	1	0	1	0
6	1	1	0	0
7	1	1	1	1

$$f = m_1 + m_2 + m_4 + m_7$$

$$f = \overline{x}_1 \overline{x}_2 x_3 + \overline{x}_1 x_2 \overline{x}_3 + x_1 \overline{x}_2 \overline{x}_3 + x_1 x_2 x_3$$

$$f = M_0 M_3 M_5 M_6$$

$$f = (x_1 + x_2 + x_3)(x_1 + \overline{x}_2 + \overline{x}_3)$$

$$(\overline{x}_1 + x_2 + \overline{x}_3)(\overline{x}_1 + \overline{x}_2 + x_3)$$

(a) Sum-of-products realization

(b) Product-of-sums realization

Figure 2.32 Implementation of the function in Figure 2.31.

Figure 2.32 Implementation of the function in Figure 2.31.

- Em sistemas de computadores, muitas vezes é necessário escolher dados de várias fontes possíveis;
- Suponha que haja duas fontes de dados, fornecidas como sinais de entrada x_1 e x_2 ;
- Os valores desses sinais mudam no tempo, talvez em intervalos regulares;
- Queremos projetar um circuito que produza uma saída que tenha o mesmo valor de x₁ ou x₂, dependendo do valor de um sinal de controle de seleção s;
- Portanto, o circuito deve ter três entradas: x₁, x₂ e s;
- Suponha que a saída do circuito será igual ao valor da entrada x_1 , se s=0, e será o valor da entrada x_2 , se s=1;
- Obtenha uma função $f(x_1, x_2, s)$ que solucione este problema.

linha	S	<i>x</i> ₁	<i>X</i> ₂	f
0	0	0	0	0
1	0	0	1	0
2	0	1	0	1
3	0	1	1	1
4	1	0	0	0
5	1	0	1	1
6	1	1	0	0
7	1	1	1	1

_			
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	0
1	1	1	1
	0 0 1 1	0 0 0 1 0 1 1 0 1 0 1 1	0 0 1 0 1 0 0 1 1 1 0 0 1 0 1 1 1 0

$$f(s,x_1,x_2) = \overline{s}x_1\overline{x}_2 + \overline{s}x_1x_2 + s\overline{x}_1x_2 + sx_1x_2$$

linha	S	<i>x</i> ₁	<i>X</i> ₂	f
0	0	0	0	0
1	0	0	1	0
2	0	1	0	1
3	0	1	1	1
4	1	0	0	0
5	1	0	1	1
6	1	1	0	0
7	1	1	1	1

$$f(s, x_1, x_2) = \overline{s}x_1\overline{x}_2 + \overline{s}x_1x_2 + s\overline{x}_1x_2 + sx_1x_2$$
$$\overline{s}x_1(\overline{x}_2 + x_2) + s(\overline{x}_1 + x_1)x_2$$

linha	S	<i>x</i> ₁	<i>X</i> ₂	f
0	0	0	0	0
1	0	0	1	0
2	0	1	0	1
3	0	1	1	1
4	1	0	0	0
5	1	0	1	1
6	1	1	0	0
7	1	1	1	1

$$f(s, x_1, x_2) = \overline{s}x_1\overline{x}_2 + \overline{s}x_1x_2 + s\overline{x}_1x_2 + sx_1x_2$$
$$\overline{s}x_1(\overline{x}_2 + x_2) + s(\overline{x}_1 + x_1)x_2$$
$$\overline{s}x_1.1 + s.1.x_2$$

linha	S	<i>x</i> ₁	<i>X</i> ₂	f
0	0	0	0	0
1	0	0	1	0
2	0	1	0	1
3	0	1	1	1
4	1	0	0	0
5	1	0	1	1
6	1	1	0	0
7	1	1	1	1

$$f(s, x_1, x_2) = \overline{s}x_1\overline{x}_2 + \overline{s}x_1x_2 + s\overline{x}_1x_2 + sx_1x_2$$

$$\overline{s}x_1(\overline{x}_2 + x_2) + s(\overline{x}_1 + x_1)x_2$$

$$\overline{s}x_1.1 + s.1.x_2$$

$$\overline{s}x_1 + sx_2$$

(d) More compact truth-table representation

Figure 2.33 Implementation of a multiplexer.

	s_1	s_0	а	b	С	d	e	f	g
0	0	0 1 0	1	1	1	1	1	1	0
1	0	1	0	1	1	0	0	0	0
5	1	0	1	1	0	1	1	0	1

$$a = d = e = \overline{s}_0$$

	s_1	s_0	а	b	c	d	e	f	g
0	0	0 1 0	1	1	1	1	1	1	0
- 1	0	1	0	1	1	0	0	0	0
5	1	0	1	1	0	1	1	0	1

 $a=d=e=\overline{s}_0$

b=1

	s_1	s_0	а	b	С	d	e	f	g
0	0	0 1 0	1	1	1	1	1	1	0
- 1	0	1	0	1	1	0	0	0	0
5	1	0	1	1	0	1	1	0	1

(a) Logic circuit and 7-segment display

	s_1	s_0	а	b	С	d	e	f	g
0	0	0 1 0	1	1	1	1	1	1	0
1	0	1	0	1	1	0	0	0	0
2	1	0	1	1	0	1	1	0	1

 $a = d = e = \overline{s}_0$

b = 1

 $c=\overline{s}_1$

(a) Logic circuit and 7-segment display

	s_1	s ₀ 0 1 0	а	b	c	d	e	f	g
0	0	0	1	1	1	1	1	1	0
- 1	0	1	0	1	1	0	0	0	0
5	1	0	1	1	0	1	1	0	1

 $a = d = e = \overline{s}_0$

$$b = 1$$

$$c = \overline{s}_1$$

$$f = \overline{s}_1 \overline{s}_0$$

	s_1	s ₀ 0 1 0	а	b	С	d	e	f	g
0	0	0	1	1	1	1	1	1	0
1	0	1	0	1	1	0	0	0	0
5	1	0	1	1	0	1	1	0	1

$$a=d=e=\overline{s}_0$$

$$b = 1$$

$$c = \overline{s}_1$$

$$f=\overline{s}_1\overline{s}_0$$

$$g = s_1 \overline{s}_0$$

Bibliografia

Bibliografia

 Brown, S. & Vranesic, Z. - Fundamentals of Digital Logic with Verilog Design, 3rd Ed., Mc Graw Hill, 2009

Lógica Digital (1001351)

Exemplos de projetos

Prof. Ricardo Menotti menotti@ufscar.br

Atualizado em: 19 de marco de 2024

Departamento de Computação Centro de Ciências Exatas e de Tecnologia Universidade Federal de São Carlos Prof. Luciano de Oliveira Neris Ineris@ufscar.br