

2010 Trial Examination

FORM VI MATHEMATICS EXTENSION 1

Wednesday 11th August 2010

General Instructions

- Reading time 5 minutes
- Writing time 2 hours
- Write using black or blue pen.
- Board-approved calculators may be used.
- A list of standard integrals is provided at the end of the examination paper.
- All necessary working should be shown in every question.
- Start each question in a new booklet.

Structure of the paper

- Total marks 84
- All seven questions may be attempted.
- All seven questions are of equal value.

Collection

- Write your candidate number clearly on each booklet.
- Hand in the seven questions in a single well-ordered pile.
- Hand in a booklet for each question, even if it has not been attempted.
- If you use a second booklet for a question, place it inside the first.
- Place the question paper inside your answer booklet for Question One.

Checklist

• SGS booklets — 7 per boy

• Candidature — 132 boys

Examiner

SJE

SGS Trial 2010 Form VI Mathematics Extension 1 Page 2 QUESTION ONE (12 marks) Use a separate writing booklet. Marks (a) The polynomial $P(x) = x^4 - x^3 + kx - 4$ has a factor (x+1). Find the value of k. 1 1 (b) Differentiate $y = \sin(\log_e x)$. 2 (c) Find, correct to the nearest degree, the acute angle between the lines x - 3y + 4 = 0 and 2x + y - 1 = 0. 2 (d) Find the coordinates of the point that divides the interval from (-3,4) to (5,-2) in the ratio 1:3. (e) Find the exact value of $\int_0^2 \frac{4}{4+x^2} dx$. $\mathbf{2}$ (f) Find $\lim_{x \to 0} \left(\frac{\sin x \cos x}{x} \right)$. 1 (g) Find the term independent of x in the expansion of $\left(x^2 + \frac{2}{x}\right)^{13}$. 3 QUESTION TWO (12 marks) Use a separate writing booklet. Marks (a) The equation $x^3 + bx^2 + cx + d = 0$ has roots $2 + \sqrt{3}$, $2 - \sqrt{3}$ and -3. Use the sum 3 and the product of the roots to find b, c and d. (b) Consider the curve $f(x) = \sin^{-1}(2x)$. 2 (i) Sketch the curve. (ii) Find the gradient of the tangent to the curve at the point where $x = \frac{1}{4}$. 2 (c) A particle is undergoing simple harmonic motion subject to the equation $\frac{d^2x}{dt^2} = -6x$. Initially it is at rest at x = 2. 1 (i) In which direction will it start to move? (ii) Show that $v^2 = 6(4 - x^2)$. (iii) State the period and the amplitude of the motion.

QUESTION THREE (12 marks) Use a separate writing booklet.

Marks

(a) Use the substitution
$$u = x - 1$$
 to find $\int x(x-1)^4 dx$.

- (b) (i) Express $\cos \theta \sqrt{3} \sin \theta$ in the form $R \cos(\theta + \alpha)$, where R > 0 and $0 < \alpha < \frac{\pi}{2}$.
 - (ii) Hence, or otherwise, solve $\cos \theta \sqrt{3} \sin \theta = 1$, for $0 \le \theta \le 2\pi$.
- (c) Consider the function $f(x) = \frac{x-1}{x-2}$.

(i) Show that
$$f^{-1}(x) = \frac{2x-1}{x-1}$$
.

- (ii) Find the vertical and horizontal asymptotes of $f^{-1}(x)$.
- (iii) Sketch $f^{-1}(x)$ showing the asymptotes and any x or y intercepts.
- (iv) Hence, or otherwise, solve $\frac{2x-1}{x-1} \ge 1$.

QUESTION FOUR (12 marks) Use a separate writing booklet.

Marks

(a)

A square pyramid has altitude PQ of length h and base ABCD of side length x, as shown above. Each face makes an angle α with PQ and each edge makes an angle β with PQ. Assume that it is a right pyramid, so that Q lies in the centre of the base.

(i) Show that
$$AQ = \frac{x}{\sqrt{2}}$$
.

- (ii) Hence express x in terms of h and β .
- (iii) Show that $\sqrt{2} \tan \alpha = \tan \beta$.

QUESTION FOUR (Continued)

(b) Solve for x and y:

$$\log_3 x + \log_3 y = 6$$
$$\log_2 x - \log_2 y = 4$$

(c) (i) Write $\cos^2 x$ in terms of $\cos 2x$.

(ii) Hence evaluate $\int_0^{\frac{\pi}{3}} \sin 2x \cos^2 x \, dx$.

In the diagram above, two circles intersect and P is one of the points of intersection. A straight line is drawn through P cutting the two circles at X and Y. An isosceles triangle XYZ is constructed with XZ = YZ. Suppose that XZ cuts the smaller circle at A and YZ cuts the larger circle at B. Suppose also that the line AB cuts the circles at C and D. Let $\angle XYZ$ be θ .

Prove that $\triangle CPD$ is isosceles.

NOTE: You do not have to copy the diagram above. It has been reproduced for you on a tear-off sheet at the end of this paper. Insert this sheet into your answer booklet.

(a)	Consider the two points $P(4t, 2t^2)$ and $Q(8t, 8t^2)$ on the parabola $x^2 = 8y$. The tangents at P and Q intersect at R .	
	(i) Find the equations of the tangents at P and Q .	2
	(ii) Find the coordinates of R .	$\begin{bmatrix} 2 \\ 1 \end{bmatrix}$
	(iii) Hence find the locus of R .	1
(b)	By substituting a suitable value for x in the expansion of $(1+x)^n$, show that	2
	$1 + 2\binom{n}{1} + 4\binom{n}{2} + \ldots + 2^{n-1}\binom{n}{n-1} = 3^n - 2^n.$	
(c)	A forensic scientist is called upon to determine the time of death of a corpse found in a room which is maintained at a constant temperature of 20° C. The temperature T of the corpse was initially measured at midnight to be 29° C. The scientist measured the temperature of the corpse one hour later and it had fallen to 26° C. Assume that the temperature of the body at the time of death was 36.8° C and that the rate of temperature decrease obeys Newton's law of cooling. Let t be the number of hours	

QUESTION FIVE (12 marks) Use a separate writing booklet.

after midnight.

(iii) Hence estimate the time of death, to the nearest minute.

Marks

QUESTION SIX (12 marks) Use a separate writing booklet.

Marks

(a) Prove by mathematical induction that for all positive integer values of n,

3

$$\frac{1}{2!} + \frac{2}{3!} + \frac{3}{4!} + \ldots + \frac{n}{(n+1)!} = 1 - \frac{1}{(n+1)!}.$$

(b) A film director must decide whether a stuntman is able to perform a dangerous stunt. The stuntman must leap from a building onto the centre of some erected scaffolding. The centre of the scaffolding is 5 m below his initial position and at a horizontal distance of 14 m. The stuntman jumps at an angle of 30° above the horizontal. Let the stuntman's initial velocity be V, and let x and y be his horizontal and vertical displacements respectively from his initial position. You may assume that the velocity and displacement equations are:

 $\dot{x} = V \cos 30^{\circ}$ $\dot{y} = -10t + V \sin 30^{\circ}$ $x = Vt \cos 30^{\circ}$ $y = -5t^2 + Vt \sin 30^{\circ}$

(i) Show that the Cartesian equation of the stuntman's path is

2

$$y = -\frac{20x^2}{3V^2} + \frac{x}{\sqrt{3}}.$$

(ii) Hence determine the required initial velocity V so that he lands in the centre of the scaffolding. Write your answer to the nearest m/s.

2

2

(iii) Safety requirements are such that if the impact velocity is greater than $15\,\mathrm{m/s}$, then padding must be placed on the scaffolding. Assuming that the stuntman leaps at the required speed, determine whether or not padding is needed.

QUESTION SIX (Continued)

(c)

The diagram above shows two straight lines OX and OY. The points $P_0, P_2, P_4, ...$ lie on OX, while the points $P_1, P_3, P_5, ...$ lie on OY.

 P_1 is the foot of the perpendicular from P_0 to OY,

 P_2 is the foot of the perpendicular from P_1 to OX,

 P_3 is the foot of the perpendicular from P_2 to OY, and so on.

Let $\angle XOY = \theta$, where $0^{\circ} < \theta < 90^{\circ}$, let $OP_0 = x$, and let the length of the line joining P_{r-1} to P_r be denoted by d_r , for $r = 1, 2, 3, \ldots$

(i) Show that the lengths d_1, d_2, d_3, \ldots form a geometric series.

2

(ii) Hence prove that
$$\sum_{r=1}^{\infty} d_r = x \cot \frac{\theta}{2}$$
.

QUESTION SEVEN (12 marks) Use a separate writing booklet.

Marks

1

2

(a)

The diagram above shows a semi-circle with centre O, radius r and diameter AB. Let P be a point on arc AB. The arc PQ has centre A and Q lies on AB. Let $\angle PAQ = \theta$.

- (i) Show that $AP = 2r \cos \theta$.
- (ii) Prove that as θ varies, the arc PQ will have maximum length when $\theta \sin \theta = \cos \theta$.
- (iii) Taking $\theta = 1$ as a first approximation to the value of θ that maximises the arc PQ, use one application of Newton's method to find a better approximation. Round your answer to two decimal places.

(b)

The diagram above shows a rotating wheel with radius $40 \,\mathrm{cm}$ and a connecting rod AP with length $120 \,\mathrm{cm}$. The pin P slides back and forth along the x-axis as the wheel rotates anticlockwise at a rate of 6 revolutions per second. In each part below you need only address the case where A is in the first quadrant.

(i) Show that
$$\alpha = \sin^{-1}\left(\frac{\sin\theta}{3}\right)$$
.

(ii) Use the chain rule to show that
$$\frac{d\alpha}{dt} = \frac{12\pi\cos\theta}{\sqrt{9-\sin^2\theta}}$$
 radians per second.

(iii) Show that
$$x = 40 \left(\cos \theta + \sqrt{9 - \sin^2 \theta}\right)$$
.

(iv) Find an expression for the velocity of the pin P in terms of θ .

END OF EXAMINATION

 $B\ L\ A\ N\ K\quad P\ A\ G\ E$

The following list of standard integrals may be used:

$$\int x^n \, dx = \frac{1}{n+1} \, x^{n+1}, \ n \neq -1; \ x \neq 0, \text{ if } n < 0$$

$$\int \frac{1}{x} \, dx = \ln x, \ x > 0$$

$$\int e^{ax} \, dx = \frac{1}{a} e^{ax}, \ a \neq 0$$

$$\int \cos ax \, dx = \frac{1}{a} \sin ax, \ a \neq 0$$

$$\int \sin ax \, dx = -\frac{1}{a} \cos ax, \ a \neq 0$$

$$\int \sec^2 ax \, dx = \frac{1}{a} \tan ax, \ a \neq 0$$

$$\int \sec^2 ax \, dx = \frac{1}{a} \tan ax, \ a \neq 0$$

$$\int \frac{1}{a^2 + x^2} \, dx = \frac{1}{a} \tan^{-1} \frac{x}{a}, \ a \neq 0$$

$$\int \frac{1}{\sqrt{a^2 - x^2}} \, dx = \sin^{-1} \frac{x}{a}, \ a > 0, \ -a < x < a$$

$$\int \frac{1}{\sqrt{x^2 - a^2}} \, dx = \ln \left(x + \sqrt{x^2 - a^2} \right), \ x > a > 0$$

$$\int \frac{1}{\sqrt{x^2 + a^2}} \, dx = \ln \left(x + \sqrt{x^2 + a^2} \right)$$

NOTE: $\ln x = \log_e x, \ x > 0$

$SGS Trial 2010 \dots \dots \dots$	Form V	I Mathematics	Extension 1	1	Page 11
------------------------------------	--------	---------------	-------------	---	---------

CANDIDATE NUMBER:

DETACH THIS SHEET AND BUNDLE IT WITH THE REST OF QUESTION FOUR.

QUESTION FOUR

Extension | Mathematics Trial 2010 (e)
$$\int_{0}^{2} \frac{4}{4 + x^{2}} dx = 4 \left[\frac{1}{2} + \cos^{-1}(\frac{x}{2}) \right]_{0}^{2}$$

Question |
= $2 \left[+ \cos^{-1}(1) - + \cos^{-1}(2) \right]_{0}^{2}$

= $2 \left[+ \cos^{-1}(1) - + \cos^{-1}(2) \right]_{0}^{2}$

= $2 \left[+ \cos^{-1}(1) - + \cos^{-1}(2) \right]_{0}^{2}$

= $2 \left[+ \cos^{-1}(1) - + \cos^{-1}(2) \right]_{0}^{2}$

= $2 \left[+ \cos^{-1}(1) - + \cos^{-1}(2) \right]_{0}^{2}$

= $2 \left[+ \cos^{-1}(1) - + \cos^{-1}(2) \right]_{0}^{2}$

= $2 \left[+ \cos^{-1}(1) - + \cos^{-1}(2) \right]_{0}^{2}$

= $2 \left[+ \cos^{-1}(1) - + \cos^{-1}(2) \right]_{0}^{2}$

= $2 \left[+ \cos^{-1}(1) - + \cos^{-1}(2) \right]_{0}^{2}$

= $2 \left[+ \cos^{-1}(1) - + \cos^{-1}(2) \right]_{0}^{2}$

= $2 \left[+ \cos^{-1}(1) - + \cos^{-1}(2) \right]_{0}^{2}$

= $2 \left[+ \cos^{-1}(1) - + \cos^{-1}(2) \right]_{0}^{2}$

= $2 \left[+ \cos^{-1}(1) - + \cos^{-1}(2) \right]_{0}^{2}$

= $2 \left[+ \cos^{-1}(1) - + \cos^{-1}(2) \right]_{0}^{2}$

= $2 \left[+ \cos^{-1}(1) - + \cos^{-1}(2) \right]_{0}^{2}$

= $2 \left[+ \cos^{-1}(1) - + \cos^{-1}(2) \right]_{0}^{2}$

= $2 \left[+ \cos^{-1}(1) - + \cos^{-1}(2) \right]_{0}^{2}$

= $2 \left[+ \cos^{-1}(1) - + \cos^{-1}(2) \right]_{0}^{2}$

= $2 \left[+ \cos^{-1}(1) - + \cos^{-1}(2) \right]_{0}^{2}$

= $2 \left[+ \cos^{-1}(1) - + \cos^{-1}(2) \right]_{0}^{2}$

= $2 \left[+ \cos^{-1}(1) - + \cos^{-1}(2) \right]_{0}^{2}$

= $2 \left[+ \cos^{-1}(1) - + \cos^{-1}(2) \right]_{0}^{2}$

= $2 \left[+ \cos^{-1}(1) - + \cos^{-1}(2) \right]_{0}^{2}$

= $2 \left[+ \cos^{-1}(1) - + \cos^{-1}(2) \right]_{0}^{2}$

= $2 \left[+ \cos^{-1}(1) - + \cos^{-1}(2) \right]_{0}^{2}$

= $2 \left[+ \cos^{-1}(1) - + \cos^{-1}(1) \right]_{0}^{2}$

= $2 \left[+ \cos^{-1}(1) - + \cos^{-1}(1) \right]_{0}^{2}$

= $2 \left[+ \cos^{-1}(1) - + \cos^{-1}(1) \right]_{0}^{2}$

= $2 \left[+ \cos^{-1}(1) - + \cos^{-1}(1) \right]_{0}^{2}$

= $2 \left[+ \cos^{-1}(1) - + \cos^{-1}(1) \right]_{0}^{2}$

= $2 \left[+ \cos^{-1}(1) - + \cos^{-1}(1) \right]_{0}^{2}$

= $2 \left[+ \cos^{-1}(1) - + \cos^{-1}(1) \right]_{0}^{2}$

= $2 \left[+ \cos^{-1}(1) - + \cos^{-1}(1) \right]_{0}^{2}$

= $2 \left[+ \cos^{-1}(1) - + \cos^{-1}(1) \right]_{0}^{2}$

= $2 \left[+ \cos^{-1}(1) - \cos^{-1}(1) \right]_{0}^{2}$

= 2

(a) Sim droots:
$$2+\sqrt{3}+2-\sqrt{3}-3=-\frac{b}{1}$$

Product of routs:
$$(2+\sqrt{3})(2-\sqrt{3})(-3) = -d$$

$$(4-3)(-3) = -d$$

 $d = 3$

Mso,
$$(2+\sqrt{3})(2-\sqrt{3}) + (2-\sqrt{3})(-3) + (-3)(2+\sqrt{3}) = C$$

 $(2+\sqrt{3})(2-\sqrt{3}) + (-3)(2+\sqrt{3}) = C$

(ii)
$$\int_{0}^{1} (ne) = \frac{2}{\sqrt{1-(2x)^2}}$$

$$\frac{4}{\sqrt{3}}$$

$$\frac{d^2x}{dt^2} = -6x$$

ci, Negative direction towards the origin

(ii)
$$\frac{d}{dx}\left(\frac{1}{2}v^2\right) = -6x$$

$$1v^2 = -3x^2 + c$$

$$v^2 = -6x^2 + c_2$$

$$n = 6$$

$$n = \sqrt{6}$$

```
Question 3
(a) \int_{\mathcal{H}} \chi(\chi-1)^4 d\chi
                             u= x-1 , x= u+1
                            du = dx
   = (u+1) u4 dre /
   = ( u5du + (u4du
  = 4 4 4 c
    = (\underline{x-1})^6 + (\underline{x-1})^5 + c
(i) \cos \theta - \sqrt{3} \sin \theta = R \cos (\theta + \alpha)
       = R[cosocosa - sinosina]
  Equaling coefficients.
          R cosx = 1
R sind = 13
   Squarky and adding R^2 = 4
: R = 2
                  cos x = 1/2 (ox acute)
     So cos O - 13 sin O = 2 cos (0 + 43)
      Cus (0 + 1/3) = 1/2
          0+3=3,57,73
         · 0 = 0, 49, 27
```

(c) (i) $f(x) = y = \frac{x-1}{2-2}$ Interchange & and y $y = \frac{y-1}{9x-2}$ $\chi(y-2) = y-1$ y = -1 + 2xy(x-1) = 2x-1y = 2x-1 ... $f(x) = \frac{2x-1}{x-1}$ as required. (ii) Vertical asymptote: >c = 1 $f^{-}(x) = \frac{2-\frac{1}{2}}{1-\frac{1}{2}}$ as $2c \rightarrow \pm \infty$ f'(x) $\rightarrow 2$.: Horizontal asymptote: y = 2(iii) y -intercept (x=0) y=1? x-intercept (y=0) $|x=\frac{1}{2}|$ when 2 ≤0 or 2>1

(a) (i)
$$AC^2 = x^2 + x^2$$

= $2x^2$
 $AC = \sqrt{2}x$

$$AC = \sqrt{2} \times AQ =$$

=
$$\frac{\times}{\sqrt{2}}$$
 as required

$$\tan \beta = \frac{AQ}{h}$$

$$= \frac{2C}{\sqrt{2}}$$

(iii)
$$\tan x = \frac{x}{2}$$

: 2 tan
$$\alpha = \frac{x}{h}$$
 and $\sqrt{2} \tan \beta = \frac{2c}{h}$

(b)
$$\log_3 x + \log_3 y = 6$$

 $\log_2 x - \log_2 y = 4$

(e) (i)
$$\cos^2 z = \frac{1}{2} \cos z + \frac{1}{2}$$

(ii)
$$\int_{0}^{\pi/3} \sin 2x \cos^{2}x \, dx = \frac{1}{2} \int_{0}^{\pi/3} (\sin 2x \cos 2x + \sin 2x) dx$$

$$= \frac{1}{2} \left[\frac{\sin^{2}2x}{4} \right]_{0}^{\pi/3} + \frac{1}{2} \left[-\frac{\cos 2x}{2} \right]_{0}^{\pi/3}$$

$$= \frac{1}{8} \left[(\frac{\sqrt{3}}{2})^{2} - 0 \right] + \frac{1}{4} \left[-\frac{1}{2} - 1 \right]$$

$$= \frac{3}{32} + \frac{3}{8}$$

$$= \frac{15}{2}$$
(3)

$$\int_{0}^{\pi/3} \sin^{3} \lambda x \cos^{2} x dx = \frac{1}{2} \int_{0}^{\pi/3} \sin^{3} \lambda x \left(1 + \cos^{3} \lambda x\right) dx$$

$$= \frac{1}{2} \int_{0}^{\pi/3} \sin^{3} \lambda x dx + \frac{1}{2} \int_{0}^{\pi/3} \sin^{3} \lambda x \cos^{3} \lambda x dx$$

$$= -\frac{1}{4} \left[\cos^{3} \lambda x\right]_{0}^{\pi/3} + \frac{1}{4} \int_{0}^{\pi/3} \sin^{3} \lambda x dx$$

$$= \left[-\frac{\cos^{3} \lambda x}{4} \right]_{0}^{\pi/3} + \left[-\frac{\cos^{3} 4x}{16} \right]_{0}^{\pi/3}$$

$$= \frac{1}{8} + \frac{1}{4} + \frac{1}{32} + \frac{1}{16}$$

(c) Alternate Solution.

$$\int_{0}^{\pi/3} \sin \lambda x \cos^{2}x \, dx = 2 \int_{0}^{\pi/3} \cos^{3}x \sin x \, dx$$

$$= -2 \left(\frac{1}{64} - \frac{1}{4}\right) = \frac{15}{32}$$

LYXZ = 0 (base angles of isosceles briangle XYZ) LPXA = LPCA (angles subtended at the circumference by are PA) LPDC = O (exterior angle of a cyclic quadrilateral PYBD)

-. LPCD = LPDC = 0 .. DCPD is isosceles

Overtion 5

(i) gradient of tangent at $P(4t, 2t^2)$ is to equation of tangent at $P: y-2t^2=t(x-4t)$ y= tx-2t2 /

gradient of tangent at a (8t,8t2) = 2t equation of tangent at Q: $y - 8t^2 = 2t(x - 8t)$ y= 2tx -8t2 /

(") Solving the equation of the tangents is multaneously tx -2t2 = 2tx -8t2

$$6t^2 = tx$$

$$x = 6t$$

$$t((t))$$

y = t(6t) -2t2

.. Coordinates of R re (6t, 4t²)

how of R: $t = \frac{2c}{6}$ $y = 4(\frac{x}{6})^2$

 $= \frac{4x^{2}}{36}$ $x^{2} = 9y$ (5)

b)
$$(1+x)^n = \binom{n}{0} + \binom{n}{1}x + \binom{n}{2}x^{\frac{n}{2}} + \dots + \binom{n}{n}x^{\frac{n}{n}}$$

Substitute $x = 2$
 $3^n = 1 + \binom{n}{1}2 + \binom{n}{2}4 + \dots + \binom{n}{n-1}2^{n-1} + \binom{n}{n}2^n$

Now $\binom{n}{n} = 1$
 $3^n = 1 + 2\binom{n}{1} + 4\binom{n}{2} + \dots + 2^{n-1}\binom{n}{n-1} + 2^n$
 $3^n - 2^n = 1 + 2\binom{n}{1} + 4\binom{n}{2} + \dots + 2^{n-1}\binom{n}{n-1}$

as required 2

(e) It midnight: $t = 0$, $T = 29^n C$
 $t = 1$, $T = 26^n C$

(i) $T = 20 + 9e^{-kt} \implies T - 20 = 9e^{-kt}$
 $dT = -k$, $9e^{-kt}$
 $dT = -k$, $9e^{-kt}$
 $dT = -k$, $9e^{-kt}$
 $dT = -k$
 $dT = 20 + 9e^{-kt}$
 $dT = -k$
 $dT = -k$

Question 5. (cont.) (iii) For time of death solve for t when T = 36.8. 36.8 = 20 + 9e-kt (k= ln 3) $\frac{16.8}{9} = e^{-kt}$ $ln\left(\frac{16.8}{9}\right) = -k +$ $t = \ln(\frac{16.8}{9})$ $\frac{1}{\ln\left(\frac{3}{2}\right)}$ = -1.54 hours = -1 hour 32 mins.

(I hour 32 minutes before midnight)

Question 6 (a) Step1: n=1 LHS = RHS = 1 - 1/2 Hence, the result is tree for n=1. Step 2: Suppose the result is tree for n=k. i.e. $\frac{1}{2!} + \frac{3}{3!} + \frac{3}{4!} + \cdots + \frac{1}{(k+1)!} = 1 - \frac{1}{(k+1)!}$ We need to show that the result is due for n= k+1 (e. $\frac{1}{2!} + \frac{2}{3!} + \frac{3}{4!} + \dots + \frac{k}{(k+1)!} + \frac{k+1}{(k+2)!} = 1 - \frac{1}{(k+2)!}$ $kHS = 1 - \frac{1}{(k+1)!} + \frac{k+1}{(142)!}$ by (*) $= 1 - \frac{(1c+2) - (1c+1)}{(1c+2)!}$

$$= 1 - \frac{|k+2-k-1|}{(k+2)!}$$

$$= 1 - \frac{1}{(k+2)!}$$

Step 3 It Johns from Step 1 and Step 2 by mathematical induction that it is Ince for all positive integers.

- RHS

Obestion 6 (cont.) (b) (i) ze = Vtcos 30° = V<u>√3</u>+ So $y = -5\left(\frac{2x}{\sqrt{3}v}\right)^2 + \chi \frac{2x}{\sqrt{3}} \frac{1}{\sqrt{2}}$ $= -\frac{20x^2}{3V^2} + \frac{\pi}{\sqrt{3}}$ as required. Sub. nc = 14, y = -5 and solve for V. $-5 = -\frac{20(14)^2}{3V^2} + \frac{14}{\sqrt{3}}$ $-15V^2 = -20 \times 196 + 14\sqrt{3} V^2$ $V^{2}(14\sqrt{3}+15) = 20 \times 196$

= 99.87589...

.: V = 10 m/s

First, calculate time of flight,
$$x=14$$
, $v=10$

$$t=\frac{2(14)}{\sqrt{3}(10)}$$

$$=\frac{14}{8}$$

$$\dot{x} = \frac{10\sqrt{3}}{5\sqrt{3}} + \frac{10\sqrt{2}}{5\sqrt{3}} + \frac{10\sqrt{2}}{5\sqrt{3}} = \frac{-28}{\sqrt{3}} + \frac{5}{\sqrt{3}} = \frac{-28\sqrt{3}}{3} + \frac{15}{3}$$

$$V = \sqrt{(5\sqrt{3})^2 + (15 - 28\sqrt{3})^2}$$

$$= \sqrt{199.99...}$$

Question 6 (cont.)

(C) (i)
$$\angle OP_0P_1 = 90-0$$
 (angle sum of $\triangle OP_0P_1$)

 $\angle P_2P_1P_0 = 0$ (angle sum of $\triangle P_2P_1P_0$)

Now $\cos 0 = \frac{d_2}{d_1}$

Similarly $\angle P_3P_2P_1 = 0$

and $\cos 0 = \frac{d_3}{d_2}$

Geometric series as $\frac{d_3}{d_2} = \frac{d_2}{d_1} = \cos 0$
 $a = d_1 = x \sin 0$ (from $\triangle P_1OP_0$)

 $= \cos 0$

(ii)
$$\sum_{r=1}^{\infty} dr = \frac{2c \sin \theta}{1 - \cos \theta} \qquad \sin \omega |\cos \theta| < 1$$

$$= \frac{2 \sin \theta}{2 \sin^2 \theta/2}$$

Question 7

a) i) Join PB ::
$$\angle APB = 90^{\circ}$$
 (ample in a semi-circle)

So $\frac{AP}{2r} = \cos \Theta$
 $AP = 2r\cos \Theta$

(ii) Let L be an length PQ

 $L = AP \times \Theta$
 $= 2r\cos \Theta \times \Theta$ (O in radians)

 $\frac{dL}{d\theta} = 2r\cos \Theta \times \Theta$ (O in radians)

Stationary point when $\cos \Theta - O\sin \Theta = O$
 $O\sin \Theta = \cos \Theta$

Now $\frac{d^{2}L}{d\theta^{2}} \neq O$ for a maximum

 $\frac{d^{2}L}{d\theta^{2}} \neq O$ for a maximum

 $\frac{d^{2}L}{d\theta^{2}} \neq O$ for a maximum

 $\frac{d^{2}L}{d\theta^{2}} = 2r(-\sin \Theta) - 2r[\sin \Theta + \Theta\cos \Theta]$
 $= 2r(-2\sin \Theta + O\cos \Theta)$
 $= -2r(2\sin \Theta + O\cos \Theta)$
 $\sin \cos \Theta + \cos \Theta$
 $\sin \cos \Theta + \cos \Theta$
 $\sin \cos \Theta + \cos \Theta$
 $\sin \cos \Theta + \cos \Theta + \cos \Theta$
 $\sin \cos \Theta + \cos \Theta + \cos \Theta$
 $\sin \cos \Theta + \cos \Theta + \cos \Theta$
 $\sin \cos \Theta + \cos \Theta + \cos \Theta$
 $\sin \cos \Theta + \cos \Theta + \cos \Theta$
 $\sin \cos \Theta + \cos \Theta + \cos \Theta$
 $\sin \cos \Theta + \cos \Theta + \cos \Theta$
 $\sin \cos \Theta + \cos \Theta + \cos \Theta$
 $\sin \cos \Theta + \cos \Theta + \cos \Theta$
 $\sin \cos \Theta + \cos \Theta + \cos \Theta$
 $\sin \cos \Theta + \cos \Theta + \cos \Theta$
 $\sin \cos \Theta + \cos \Theta + \cos \Theta$
 $\sin \cos \Theta + \cos \Theta + \cos \Theta$
 $\sin \cos \Theta + \cos \Theta + \cos \Theta$
 $\sin \cos \Theta + \cos \Theta + \cos \Theta$
 $\sin \cos \Theta + \cos \Theta + \cos \Theta$
 $\sin \cos \Theta + \cos \Theta + \cos \Theta$
 $\sin \cos \Theta + \cos \Theta + \cos \Theta$
 $\sin \cos \Theta + \cos \Theta + \cos \Theta$
 $\sin \cos \Theta + \cos \Theta + \cos \Theta$
 $\sin \cos \Theta + \cos \Theta + \cos \Theta$
 $\sin \cos \Theta + \cos \Theta + \cos \Theta$
 $\sin \Theta + \cos \Theta + \cos \Theta$
 $\cos \Theta + \cos \Theta + \cos \Theta$

Chestion 7 (cont.)

(a) (iii) cont.
$$O_1 = 1 - \frac{f(O_0)}{f'(O_0)}$$

$$= 1 - \frac{1 \times \sin 1 - \cos 1}{1 \times \cos 1 + 2 \sin 1}$$

$$= \frac{\cos 1 + 2 \sin 1 - \sin 1 + \cos 1}{\cos 1 + 2 \sin 1}$$

$$= \frac{2 \cos 1 + 2 \sin 1}{\cos 1 + 2 \sin 1}$$

$$= \frac{2 \cos 1 + 2 \sin 1}{\cos 1 + 2 \sin 1}$$

$$= \frac{2 \cos 1 + 2 \sin 1}{\cos 1 + 2 \sin 1}$$

$$= \frac{2 \cos 1 + 2 \sin 1}{\cos 1 + 2 \sin 1}$$

$$= \frac{2 \cos 1 + 2 \sin 1}{\cos 1 + 2 \sin 1}$$

$$= \frac{2 \cos 1 + 2 \sin 1}{\cos 1 + 2 \sin 1}$$

$$= \frac{2 \cos 1 + 2 \sin 1}{\cos 1 + 2 \sin 1}$$

$$= \frac{2 \cos 1 + 2 \sin 1}{\cos 1 + 2 \sin 1}$$

$$= \frac{2 \cos 1 + 2 \sin 1}{\cos 1 + 2 \sin 1}$$

$$= \frac{2 \cos 1 + 2 \sin 1}{\cos 1 + 2 \sin 1}$$

$$= \frac{2 \cos 1 + 2 \sin 1}{\cos 1 + 2 \sin 1}$$

$$= \frac{2 \cos 1 + 2 \sin 1}{\cos 1 + 2 \sin 1}$$

$$= \frac{2 \cos 1 + 2 \sin 1}{\cos 1 + 2 \sin 1}$$

$$= \frac{2 \cos 1 + 2 \sin 1}{\cos 1 + 2 \sin 1}$$

$$= \frac{2 \cos 1 + 2 \sin 1}{\cos 1 + 2 \sin 1}$$

$$= \frac{2 \cos 1 + 2 \sin 1}{\cos 1 + 2 \sin 1}$$

$$= \frac{2 \cos 1 + 2 \sin 1}{\cos 1 + 2 \sin 1}$$

$$= \frac{2 \cos 1 + 2 \sin 1}{\cos 1 + 2 \sin 1}$$

$$= \frac{2 \cos 1 + 2 \sin 1}{\cos 1 + 2 \sin 1}$$

$$= \frac{2 \cos 1 + 2 \sin 1}{\cos 1 + 2 \sin 1}$$

$$= \frac{2 \cos 1 + 2 \sin 1}{\cos 1 + 2 \sin 1}$$

$$= \frac{2 \cos 1 + 2 \sin 1}{\cos 1 + 2 \sin 1}$$

$$= \frac{2 \cos 1 + 2 \sin 1}{\cos 1 + 2 \sin 1}$$

$$= \frac{2 \cos 1 + 2 \sin 1}{\cos 1 + 2 \sin 1}$$

$$= \frac{2 \cos 1 + 2 \sin 1}{\cos 1 + 2 \sin 1}$$

$$= \frac{2 \cos 1 + 2 \sin 1}{\cos 1 + 2 \sin 1}$$

$$= \frac{2 \cos 1 + 2 \sin 1}{\cos 1 + 2 \sin 1}$$

$$= \frac{2 \cos 1 + 2 \sin 1}{\cos 1 + 2 \sin 1}$$

$$= \frac{2 \cos 1 + 2 \sin 1}{\cos 1 + 2 \sin 1}$$

$$= \frac{3 \cos 0}{\sqrt{1 - \frac{3 \cos 0}{1 + 2 \cos 0}}$$

$$= \frac{1}{3} \cos 0$$

$$= \frac{1}{3} \cos 0$$

$$= \frac{1}{3} \cos 0$$

$$= \frac{1}{3} \cos 0$$

$$\frac{dx}{d\theta} = \frac{1}{3} \cos \theta \frac{3}{\sqrt{9 - \sin^2 \theta}}$$

$$= \frac{\cos \theta}{\sqrt{9 - \sin^2 \theta}}$$

So
$$\frac{d\alpha}{dt} = \frac{\cos \theta}{\sqrt{9 - \sin^2 \theta}}$$
. 1277
$$= \frac{12\pi \cos \theta}{\sqrt{9 - \sin^2 \theta}}$$
 as required

(iii) Drop a perpendicular AX from A intersecting of at X

2c = OX + XP

$$= 40\cos\theta + 120\sqrt{1-\sin^2\alpha}$$

$$= 40\cos\theta + 120\sqrt{1-\frac{\sin^2\theta}{q}} \text{ from (i)}$$

$$= 40(\cos\theta + 3\sqrt{9-\sin^2\theta})$$

$$= 40(\cos\theta + \sqrt{9-\sin^2\theta})$$

Alternate solution to (iii) using cosine rule $\cos \theta = \frac{40^2 + \chi^2 - 120^2}{2(40) \times}$ $\chi^2 - 80 \times \cos \theta + (40^2 - 170^2) = 0$ Using the quadratic formula $\chi = 80 \cos \theta \pm \sqrt{80^2 \cos^2 \theta} - 4(40^2 - 120^2)$ $= 40 \cos \theta \pm 40 \sqrt{\cos^2 \theta + 8}$ $= 40 (\cos \theta + \sqrt{\cos^2 \theta + 8})$, $\chi = 70$ $= 40 (\cos \theta + \sqrt{9 - \sin^2 \theta})$ as required.

$$\frac{dx}{dt} = \frac{dx}{d\theta} \cdot \frac{d\theta}{dt}$$

$$= 40(-\sin\theta + \frac{1}{2} \frac{1}{\sqrt{9-\sin^2\theta}} - 2\sin\theta\cos\theta)$$

$$= 480\pi \left[-\sin\theta - \frac{\cos\theta\sin\theta}{\sqrt{9-\sin^2\theta}} \right]$$