Chapter 4: Network Layer

Chapter goals:

- understand principles behind network layer services:
 - o network layer service models
 - forwarding versus routing
 - how a router works
 - routing (path selection)
 - o dealing with scale
 - advanced topics: IPv6, mobility
- instantiation, implementation in the Internet

Chapter 4: Network Layer

- 4.1 Introduction
- 4.2 Virtual circuit and datagram networks
- 4.3 What's inside a router
- 4.4 IP: Internet Protocol
 - Datagram format
 - IPv4 addressing
 - NAT
 - ICMP
 - o IPv6

- □ 4.5 Routing algorithms
 - Link state
 - Distance Vector
 - Hierarchical routing
- 4.6 Routing in the Internet
 - ORIP
 - OSPF
 - BGP
- 4.7 Broadcast and multicast routing

Network layer

- on sending side encapsulates segments into datagrams
- on rcving side, delivers segments to transport layer
- network layer protocols in every host, router
- Router examines header fields in all IP datagrams passing through it

Key Network-Layer Functions

- forwarding: move packets from router's input to appropriate router output
- □ routing: determine route taken by packets from source to dest.
 - Routing algorithms

analogy:

- routing: process of planning trip from source to dest
- forwarding: process of correct left turns, right turns, exits, etc.

Interplay between routing and forwarding

Connection setup

- important function in some network architectures:
 - o ATM, frame relay, X.25
- Before datagrams flow, two hosts and intervening routers establish virtual connection
 - Routers get involved
- □ Network and transport layer cnctn service:
 - Network: between two hosts
 - Transport: between two processes

Network service model

Q: What service model for "channel" transporting datagrams from sender to rcvr?

Example services for individual datagrams:

- guaranteed delivery
- Guaranteed delivery with less than 40 msec delay

Example services for a flow of datagrams:

- In-order datagram delivery
- Guaranteed minimum bandwidth to flow
- Restrictions on changes in interpacket spacing

Chapter 4: Network Layer

- 4.1 Introduction
- 4.2 Virtual circuit and datagram networks
- 4.3 What's inside a router
- 4.4 IP: Internet Protocol
 - Datagram format
 - IPv4 addressing
 - ICMP
 - o IPv6

- □ 4.5 Routing algorithms
 - Link state
 - Distance Vector
 - Hierarchical routing
- 4.6 Routing in the Internet
 - ORIP
 - OSPF
 - BGP
- 4.7 Broadcast and multicast routing

Network layer connection and connection-less service

- Datagram network provides network-layer connectionless service
- □ VC network provides network-layer connection service
- Analogous to the transport-layer services, but:
 - Service: host-to-host
 - No choice: network provides one or the other
 - Implementation: in the core

Virtual circuits

"source-to-dest path behaves much like telephone circuit"

- o performance-wise
- network actions along source-to-dest path
- call setup, teardown for each call before data can flow
- each packet carries VC identifier (not destination host address)
- every router on source-dest path maintains "state" for each passing connection
- link, router resources (bandwidth, buffers) may be allocated to VC

VC implementation

A VC consists of:

- 1. Path from source to destination
- 2. VC numbers, one number for each link along path
- 3. Entries in forwarding tables in routers along path

Example next slide

- Packet belonging to VC carries a VC number.
- VC number must be changed on each link.
 - New VC number comes from forwarding table

Forwarding table

Forwarding table in northwest router:

Incoming interface	Incoming VC #	Outgoing interface	Outgoing VC #
1	12	3	22
2	63	1	18
3	7	2	17
1	97	3	87
			•••

Routers maintain connection state information!

Virtual circuits: signaling protocols

- used to setup, maintain teardown VC
- □ used in ATM, frame-relay, X.25
- not used in today's Internet

<u>Datagram networks</u>

- no call setup at network layer
- routers: no state about end-to-end connections
 - no network-level concept of "connection"
- packets forwarded using destination host address
 - packets between same source-dest pair may take different paths

Forwarding table

4 billion possible entries

Destination Address Range	Link Interface
11001000 00010111 00010000 000000000 through 11001000 00010111 00010111 11111111	0
11001000 00010111 00011000 00000000 through 11001000 00010111 00011000 11111111	1
11001000 00010111 00011001 00000000 through 11001000 00010111 00011111 11111111	2
otherwise	3

Longest prefix matching

<u>Prefix Match</u>	Link Interface
11001000 00010111 00010	0
11001000 00010111 00011000	1
11001000 00010111 00011	2
otherwise	3

Examples

DA: 11001000 00010111 00010 110 10100001 Which interface?

DA: 11001000 00010111 00011000 10101010 Which interface?

Datagram or VC network: why?

Internet

- data exchange among computers
 - "elastic" service, no strict timing req.
- "smart" end systems (computers)
 - can adapt, perform control, error recovery
 - simple inside network, complexity at "edge"
- many link types
 - different characteristics
 - uniform service difficult

ATM

- evolved from telephony
- human conversation:
 - strict timing, reliability requirements
 - need for guaranteed service
- "dumb" end systems
 - telephones
 - complexity inside network