COSTANTI FISICHE

Massa elettrone m_e =9x10⁻³¹ kg; carica elettrone -e=-1.6x10⁻¹⁹ C; $ε_0$ =8.85x10⁻¹² (SI); 1/4 $πε_0$ =9x10⁹ (SI); $μ_0$ =4π 10⁻⁷ (SI)

COMPITO

ESERCIZIO DI ELETTROSTATICA

Si consideri uno schermo elettrostatico composto da due sfere conduttrici concentriche ($R_1=1cm$; $R_2=2cm$; $R_3=5cm$). Sulla superficie R_1 del conduttore interno viene depositata la carica $Q_{int}=10^{-7}C$ e sulla superficie R_3 del conduttore esterno viene depositata la carica $Q_{est}=-2x10^{-7}C$. Il sistema finale è isolato e in equilibrio elettrostatico.

- 1- Calcolare la distribuzione di carica sui conduttori (Q e densità)
- 2- Ricavare, applicando il teorema di Gauss, il campo elettrico **E(r)** generato in tutto lo spazio. Disegnare le linee di campo. Disegnare il grafico di **E(r)**.
- 3- Ricavare il potenziale elettrostatico **V(r)** nella regione esterna.
- 4- Calcolare la densità di energia elettrostatica nella regione esterna

Un elettrone viene posizionato a distanza d=10cm dalla superficie esterna R₃.

- 5- Calcolare la forza agente sull'elettrone.
- 6- Calcolare il lavoro del campo elettrico per far compiere all'elettrone il suo percorso.

La superficie esterna viene collegata a terra e la cavità riempita di dielettrico

7- Enunciare la legge di Gauss per i dielettrici e utilizzarla per calcolare il vettore spostamento D

ESERCIZIO DI MAGNETOSTATICA

Un cavo conduttore cilindrico di raggio R_1 =0.5cm è percorso da una corrente elettrica stazionaria i=3A parallela all'asse e distribuita uniformemente su tutta la <u>sezione</u>.

- 1- Calcolare, usando il teorema di Ampere, il campo magnetico generato nello spazio e disegnare in un grafico **B(r)**.
- 2- Calcolare la densità di energia del campo magnetico
- 3- Calcolare, per unità di lunghezza, il flusso del campo magnetico concatenato con il conduttore
- 4- Calcolare, per unità di lunghezza, il coefficiente di autoinduzione del sistema

A distanza **d=10cm** dall'asse del sistema viene posizionato un filo conduttore percorso dalla stessa corrente ma in verso opposto

5- Calcolare la forza agente F (modulo direzione e verso) tra filo e conduttore

Un elettrone in moto a velocità \mathbf{v} e posto alla stessa distanza \mathbf{d} risente della stessa Forza (modulo direzione verso) del filo.

6- Calcolare la velocità **v** (modulo direzione e verso) dell'elettrone.

ESERCIZIO DI INDUZIONE ELETTROMAGNETICA

Un circuito a U vincolato nel piano XY e formato da due binari paralleli ad X distanti **a=2cm**, ha una parte mobile libera di scorrere senza attrito, in direzione x. Nello spazio è presente un campo magnetico stazionario e uniforme **B=+0.5T** in direzione normale al circuito (fig.). Il tratto mobile viene tenuto in moto con velocità **v**₀=**0.5ms**⁻¹ lungo x costante.

- 1- Enunciare la legge del flusso di Faraday
- 2- Determinare il flusso del campo magnetico concatenato al circuito
- 3- Calcolare il valore della forza elettromotrice indotta nel circuito
- a) Il circuito viene chiuso con un condensatore C=2mF e una resistenza $R=5\Omega$ posti in serie si trascuri ogni fenomeno di autoinduzione.
 - 4- Scrivere la legge di Ohm del circuito **RC** e dare la legge oraria della corrente indotta **i(t)** riportando anche un grafico.
- b) il circuito viene chiuso con un induttore $L=10^{-2}H$ e una resistenza $R=5\Omega$ posti in serie
 - 5- Scrivere la legge di Ohm per il circuito **RL** e dare la legge oraria della corrente indotta i(t) riportando anche un grafico.

Per i casi a) e b) discutere il bilancio energetico calcolando:

- 6- la potenza elettrica erogata nel circuito.
- 7- la potenza dissipata nel circuito per effetto joule.