Applied Bayesian Analysis: NCSU ST 540

Homework 7

 $Bruce\ Campbell$

In this assignment we will performing random slopes logistic regression in JAGS using the Gambia data described in http://www4.stat.ncsu.edu/~reich/ABA/code/GLM Let Y_i be the binary response for individual i, and let $\nu_i \in 1 \cdots 65$ denote the village of individual i Let $X_i = 1$ if individual i regularly sleeps under a bed-net and $X_i = 0$ otherwise. Fit the model

$$logit(P(Y_i = 1)) = \alpha_{\nu_i} + X_i \beta_{\nu_i}$$

where α_{ν_i} and β_{ν_i} are the intercept and slope for village j The priors (independent over village and with each other) are

$$\alpha_{\nu_i} \sim Normal(\mu_a, \sigma_a^2)$$

and

$$\beta_{\nu_i} \sim Normal(\mu_b, \sigma_b^2)$$

Choose uninformative priors for $\mu_a, \sigma_a^2, \mu_b, \sigma_b^2$

In your report address the follow questions: (1) Scientifically, why might the effect of bed-net vary by village? (2) Did the MCMC algorithm converge? (3) Do you see evidence that the slopes and/or intercepts vary by village? (4) Which village has the largest intercept? Slope? Does this agree with the data in these villages?

```
library(rjags)
library(coda)
library(modeest)
DEBUG <- FALSE
if (DEBUG)
{
nSamples <- 10000
n.chains <- 1
} else
{
nSamples <- 10000
n.chains <- 1
}
load("gambia.RData")
X.net <- as.numeric((X$netuse==1) | (X$treated==1))</pre>
Y <- pos
n <- length(X.net)
```

```
names(df) <- c("net", "village", "pos")</pre>
numVillages <- length(unique(df$village))</pre>
villages <- df$village
#boxplot(pos ~ village, data = df)
#plot(df$village,df$pos)
#ggplot(df, aes(x=village, y=net, color=pos))
#plot(df$village)
#village.counts <- unlist(table(df$village))</pre>
model_string.logistic_random_slopes <- "model{</pre>
   # Likelihood
   for(i in 1:n){
      Y[i] ~ dbern(q[i])
      logit(q[i]) <- beta[villages[i],1] + beta[villages[i],2]*X.net[i]</pre>
   }
   # Random effects
   for(j in 1:numVillages){
   beta[j,1] ~dnorm(0,0.1)
   beta[j,2] ~dnorm(0,0.1)
   }
    for(j in 1:numVillages){
      pred[j] <- beta[j,1] + beta[j,2]</pre>
    }
  }"
model.logistic_random_slopes <- jags.model(textConnection(model_string.logistic_random_slopes)</pre>
## Compiling model graph
      Resolving undeclared variables
##
##
      Allocating nodes
## Graph information:
##
      Observed stochastic nodes: 2035
      Unobserved stochastic nodes: 130
##
##
      Total graph size: 6625
##
## Initializing model
update(model.logistic_random_slopes, nSamples, progress.bar="none"); # Burnin
samp.coeff.logistic_random_slopes <- coda.samples(model.logistic_random_slopes, variable.names</pre>
sum.logistic_random_slopes <- summary(samp.coeff.logistic_random_slopes)</pre>
quantiles <- sum.logistic_random_slopes $quantiles
```

df <- data.frame(cbind(X.net,village,pos))</pre>

```
left.05.quantile.sign <- sign(quantiles[,1])==-1
right.95.quantile.sign <- sign(quantiles[,5])==1
significant <- xor(left.05.quantile.sign ,right.95.quantile.sign)
beta.significant <- quantiles[significant,]

pander(data.frame(beta.significant), caption = "significant ")</pre>
```

Table 1: significant

	X2.5.	X25.	X50.	X75.	X97.5.
beta[8,1]	-6.549	-4.069	-3.044	-2.162	-0.7341
beta[9,1]	-3.095	-2.444	-2.144	-1.866	-1.377
beta[10,1]	-1.839	-1.199	-0.9	-0.61	-0.07173
${ m beta}[16,\!1]$	-4.113	-2.519	-1.814	-1.179	-0.1003
tota[40,1]	-4.369	-2.9	-2.257	-1.693	-0.7715
${ m beta}[44,\!1]$	-6.083	-3.648	-2.649	-1.771	-0.4612
${ m beta}[51,\!1]$	0.07391	0.6129	0.9084	1.209	1.833
${ m beta}[56,\!1]$	0.2184	1.549	2.425	3.388	5.668
${ m beta}[60,\!1]$	0.5581	1.039	1.302	1.573	2.151
${ m beta}[61,\!1]$	0.1112	0.6795	0.9843	1.307	1.985
beta[64,1]	0.6911	1.76	2.405	3.152	4.945
$\mathbf{beta[45,\!2]}$	-3.914	-2.662	-2.103	-1.605	-0.7383
$\mathbf{beta[51,\!2]}$	-4.8	-3.021	-2.221	-1.479	-0.1849

```
credible.widths <- beta.significant[,5]-beta.significant[,1]
pander(data.frame(credible.widths), caption = "credible widths ")</pre>
```

Table 2: credible widths

	credible.widths
beta[8,1]	5.815
beta[9,1]	1.718
${ m beta}[10,\!1]$	1.767
${ m beta}[16,\!1]$	4.013
${ m beta}[40,\!1]$	3.597
$\mathrm{beta}[44,\!1]$	5.621
${ m beta}[51,\!1]$	1.759
${f beta[56,\!1]}$	5.449
${ m beta}[60,\!1]$	1.593
${ m beta}[61,\!1]$	1.874
$\mathrm{beta}[64,\!1]$	4.254
${\rm beta}[45,\!2]$	3.176
beta[51,2]	4.615

```
if (DEBUG)
{
   autocorr.plot(samp.coeff.logistic_random_slopes)

plot(samp.coeff.logistic_random_slopes)

#Sample again and estimate posterior means and MAP posterior modes.
samp.coeff.logistic_random_slopes.jags <- jags.samples(model.logistic_random_slopes, variable posterior_means.logistic_random_slopes <- lapply(samp.coeff.logistic_random_slopes.jags, app. pander(posterior_means.logistic_random_slopes, caption = "posterior means second sample")

posterior_modes.logistic_random_slopes <- lapply(samp.coeff.logistic_random_slopes.jags, app. posterior_modes.logistic_random_slopes

if(n.chains>1)
{
   gelman.plot(samp.coeff)
}
}
```