Almost local metrics

The problem at hand is the following: we wish to construct a notion of distance between two points in $B_e(S^1, \mathbb{R}^2)$ by defining a metric, such that the distance between two points is the length of geodesics between the points. As we have seen, the distance induced by the L^2 -metric vanishes on $B_e(S^1, \mathbb{R}^2)$, so we seek to define metrics, which do not vanish. One type of such metrics is almost local metrics, which, given $f \in B_e(S^1, \mathbb{R}^2)$, are metrics of the form

$$G_f^{\Phi}(h,k) = \int_M \Phi(\operatorname{Vol}(f), H_f, K_f) \bar{g}(h,k) \operatorname{vol}(f^*\bar{g}),$$

where $\Phi: \mathbb{R}^3 \to \mathbb{R}_{>0}$ is smooth, $\operatorname{Vol}(f) = \int_M \operatorname{vol}(f^*\bar{g})$ is the total volume of f(M), H_f is the mean curvature of f and K_f is the Gauss curvature of f. Both H_f and K_f are local invariant properties with respect to the Riemannian metric, defined to be the tree and the determinant of the Weingarten mapping, respectively, and so Φ is often chosen to only depend on one of the two curvatures.

The total volume of f, $\operatorname{Vol}(f)$, is defined via the volume form induced by the pullback metric, $f^*\bar{g}$, so this definition of almost-local metrics only applies to manifolds which posses a volume form. All compact, oriented manifolds do this (Reference?), and almost local metrics are often defined for this class of manifolds. In the case of $f \in B_e(S^1, \mathbb{R}^2)$, the volume form on S^1 induced by f, is given by $\operatorname{vol}(f^*\bar{g}) = |f_{\theta}| d\theta$. (Reference to Riemannian Geometries on Spaces of PLane Curves 2.2)

Vol(f) is a non-local property of f, and thus the metrics are not only dependent on the local properties, K_f, H_f , but must be *almost* local metrics.

Note that if Φ depends only on f through $\operatorname{Vol}(f)$ then $G_f^{\Phi}(h,k)$ is equal to the L^2 -metric (up to a constant) (is this obvious from our definition of the L^2 metric?). But if Φ actually depends on either curvature and the total volume, then point-separation is achieved under certain conditions imposed on Φ ;

Theorem 0.1. If $\Phi(Vol(f), H_f, K_f) \ge AH_f$ for some A > 0, then G_f^{Φ} induces a point-separating metric on $B_e(S^1, \mathbb{R}^2)$.

Proof.

Reference - perhaps explain heuristically?

□