

CLASIFICACIÓN INTELIGENTE DE DATOS

Sección: D01

(Lunes - Miércoles 11:00 - 12:55 hrs.)

Actividad No 12

Alumno:

Sotelo Palacios, Miguel Angel - 215490012

23 sept 2023

Índice

Índice		
Desarrollo de la Actividad	3	
Dataset IMECA(Índice Metropolitano de la calidad del Aire)	3	
Dataset: Covid-19 Tasa de Mortalidad	3	
Bibliografía	4	

Desarrollo de la Actividad

Dataset IMECA(Índice Metropolitano de la calidad del Aire)

Bases de datos - Red Automática de Monitoreo Atmosférico (RAMA)

Con el objetivo de facilitar la interpretación de la información en las bases de datos, te sugerimos leas las siguientes especificaciones Descarga aquí 146 kb.

Datos horarios desde enero de 1986:

Se calcula para cinco de los contaminantes criterio:

dióxido de azufre: SO2
 monóxido de carbono: CO
 dióxido de nitrógeno: NO2

4. ozono: 03

5. partículas suspendidas: PM2.5, PM10

Su fundamento es el Pollutant Standard Index o PSI de los Estados Unidos de América y las normas de protección a la salud vigentes.

¿Cómo se calcula el IMECA?

Se presentan las fórmulas (algoritmos) para calcular el IMECA, a partir de concentración de los contaminantes, ya sea en partes por millón (ppm) y/o en microgramos por metro cúbico $(\mu/m3)$.

La expectativa con este tipo de estudios es por lo general:

 Conocer la calidad del aire a esperar según los registros de los años anteriores para determinado día.

- Predecir los valores estimados de los próximos años
- Conocer las diferencias entre años atípicos y años regulares
- Descubrir relaciones entre la calidad del aire con acontecimientos no previstos en este punto.

El objetivo es obtener una proyección de la tendencia anual del comportamiento (ya sea aumento o decremento) de la contaminación de monóxido de carbono en la ciudad de México.

Técnicas:

- Analizaremos los datos registrados para estimar la calidad de aire de partículas de un determinado día.
- Tomaremos la medición más alta del día en cuestión, a lo largo de los años.
- Iremos completando los datos faltantes para hacer una regresión lineal.
- Haremos modelos sobre la tendencia de años atípicos.

ZVM: ZONA DEL VALLE DE MEXICO

	Nombre	Alcaldia o municipio	Entidad
ACO	Acolman	Acolman	Estado de México
AJU	Ajusco	Tlalpan	CDMX
AIM	Ajusco Medio	Tlalpan	CDMX
ATI	Atizapán	Atizapán de Zaragoza	Estado de México
BJU	Benito Juarez	Benito Juárez	CDMX
CAM	Camarones	Azcapotzalco	CDMX
CCA	Centro de Ciencias de la Atmósfera	Coyoacán	CDMX
TEC	Cerro del Tepeyac	Gustavo A. Madero	CDMX
CHO	Chalco	Chalco	Estado de México
COR	CORENA	Xochimilco	CDMX
CUA	Cuajimalpa	Cuajimalpa de Morelos	CDMX
CUT	Cuautitlán	Cuautitlán Izcalli	Estado de México
DIC	Diconsa	Tlalpan	CDMX
EAJ	Ecoguardas Ajusco	Tlalpan	CDMX
EDL	Ex Convento Desierto de los Leones	Cuajimalpa de Morelos	CDMX
FAC	FES Acatlán	Naucalpan de Juárez	Estado de México
FAR	FES Aragón	Nezahualcóyotl	Estado de México
GAM	Gustavo A. Madero	Gustavo A. Madero	CDMX
HGM	Hospital General de México	Cuauhtémoc	CDMX
INN	Investigaciones Nucleares	Ocoyoacac	Estado de México
IZT	Iztacalco	Iztacalco	CDMX
LPR	La Presa	Tlainepantia de Baz	Estado de México
LAA	Laboratorio de Análisis Ambiental	Gustavo A. Madero	CDMX
IBM	Legaria	Miguel Hidalgo	CDMX
LOM	Lomas	Miguel Hidalgo	CDMX
LLA	Los Laureles	Ecatepec de Morelos	Estado de México
MER	Merced	Venustiano Carranza	CDMX
MGH	Miguel Hidalgo	Miguel Hidalgo	CDMX
MPA	Milpa Alta	Milpa Alta	CDMX
MON	Montecillo	Техсосо	Estado de México
MCM	Museo de la Ciudad de México	Cuauhtémoc	CDMX
NEZ	Nezahualcóyotl	Nezahualcóyotl	Estado de México
PED	Pedregal	Álvaro Obregón	CDMX
SAG	San Agustín	Ecatepec de Morelos	Estado de México
SNT	San Nicolás Totolapan	La Magdalena Contreras	CDMX
SFE	Santa Fe	Cuajimalpa de Morelos	CDMX
SAC	Santiago Acahualtepec	Iztapalapa	CDMX
TAH	Tláhuac	Xochimilco	CDMX
TLA	Tlalnepantla	Tlainepantia de Baz	Estado de México
TU	Tultitlán	Tultitlán	Estado de México
UIZ	UAM Iztapalapa	Iztapalapa	CDMX
UAX	UAM Xochimilco	Coyoacán	CDMX
VIF	Villa de las Flores	Coacalco de Berriozábal	Estado de México
XAL	Xalostoc	Ecatepec de Morelos	Estado de México

Se comparan los datos en 2 muestras anuales:

Se requieren hacer peticiones de datos como los de a continuación:

```
Microsoft Windows [Version 10.0.22000.1219]
(c) Microsoft Corporation. All rights reserved.

C:\Users\jehu\Downloads\uvircorn example(1):app --reload
'\uvircorn' is not recognized as an internal or external command, operable program or batch file.

C:\Users\jehu\Downloads\uvircorn example(1):app --reload
'\uvircorn' is not recognized as an internal or external command, operable program or batch file.

C:\Users\jehu\Downloads\uvircorn example(1):app --reload
'INFO: \u00edlife \u00
```

Se necesito realizar estaciones hardcodeadas:

```
rec as traceres; > Millionicons > Mi
```

Por último pudimos visualizar una predicción con los datos con los que se trabajaron:

Dataset: Accidentes de tránsito

Accidentes de tránsito terrestre en zonas urbanas y suburbanas

Conjunto de datos: Accidentes de tránsito terrestre

Información de 1997 a 2022

Se exportan datos que necesitaremos en un archivo csv

Contiene información oficial proporcionada por el Gobierno de la Ciudad de México acerca de los incidentes de tráfico anuales. El conjunto de datos abarca años recientes, aunque se ha limitado la cantidad de datos utilizados para este ejercicio en particular. Incluye detalles como el número de referencia del incidente, la fecha de registro, la hora en que se registró, el día de la semana en que ocurrió, y el código que clasifica el incidente como afirmativo, negativo, informativo, falso o duplicado, basado en la información confirmada por el equipo de emergencia que respondió al evento.

Además, proporciona la delegación en la que tuvo lugar, una breve descripción del incidente, las coordenadas geográficas aproximadas de donde ocurrió y el mes en que se produjo el incidente.

En la sección de Gráficas se presenta información que indica la cantidad de accidentes ocurridos en cada delegación, una representación gráfica en forma de pastel que muestra la distribución de accidentes por delegación, una gráfica de barras que ilustra los días de la semana junto con la cantidad acumulada de accidentes en cada uno de ellos, y otra gráfica de barras que representa la cantidad de accidentes ocurridos a lo largo del mes.

En la sección de Estadísticas, se encontrará una representación gráfica en forma de barras que muestra la clasificación de los accidentes, un gráfico circular que detalla cómo se obtuvo la información sobre los accidentes, una gráfica de barras que desglosa los incidentes por delegación, y otra que muestra el medio utilizado para reportar los accidentes, también desglosado por delegación.

Dataset: Covid-19 Tasa de Mortalidad

COVID-19 Case Mortality Ratios by Country Confirmed cases, deaths, case mortality ratios, country, latitude, longitude

El conjunto de datos incluye los registros de casos confirmados de COVID-19 por nación, fallecimientos asociados, la tasa de mortalidad, así como las coordenadas geográficas. Fue generado inicialmente el 12 de marzo de 2020 y se ha mantenido actualizado hasta el 25 de septiembre de 2020.

En la primera página, se presenta una tabla en la que se eligen los atributos a emplear, junto con dos paneles que muestran la cantidad de contagios y decesos registrados hasta ese instante.

Se exhibe un mapa de calor que presenta información sobre los fallecimientos por país, el total global acumulado de muertes, la tasa de mortalidad por nación y una representación gráfica en forma de pastel que ilustra las defunciones por país en un período específico.

En esta página, se presentan dos gráficas: una de barras que muestra los casos confirmados por país y otra de caja y bigotes que representa las defunciones por país.

Bibliografía

- Edomexico Collaborators (s.f.) ¿ QUE ES EL IMECA ?, Recuperado en Octubre de 2022, Publicación por "edomexico.gob.mx". Consulta sitio web en: http://www.edomexico.gob.mx/calidaddelaire/html/conceptos_imeca.htm
- Wikipedia editores (Septiembre 27, 2022) Índice metropolitano de la calidad del aire.
 Recuperado en Octubre de 2022, Publicación por wikipedia.org. Consulta sitio en:
 https://es.wikipedia.org/wiki/%C3%8Dndice metropolitano de la calidad del aire
- Prabhavalkar, N. (30 de Septiembre de 2020). Kaggle. Obtenido de Kaggle: https://www.kaggle.com/nehaprabhavalkar/indian-food-101/metadata
- Romero, E. (5 de Febrero de 2020). Kaggle. Obtenido de Kaggle: https://www.kaggle.com/laloromero/mexico-road-accidents-during-2019