Les vecteurs M01

Exercice 1

Dans le qua drillage ci-dessous, on considère la translation T de vecteur \overrightarrow{u} :

1. Tracer l'image A' du point A par la translation de vecteur \vec{u} .

- 2. Effectuer le tracé de l'image du rectangle BCDE par la translation T
- 3. Tracer le translaté du polygone FGHIJ par le vecteur

Correction 1

Exercice 2

Compléter chaque case du tableau ci-dessous avec les mots "identique", "différent" ou "opposé" :

Par rapport $\overrightarrow{a} \overrightarrow{u}$ comparaison	du sens	de la longueur
\overrightarrow{v}		
\overrightarrow{w}		
\overrightarrow{r}		
$\frac{\rightarrow}{s}$		
\overrightarrow{t}		

Correction 2

Par rapport $\overrightarrow{a} \overrightarrow{u}$ comparaison	direction	du sens	de la longueur
\overrightarrow{v}	identique	identique	identique
\overrightarrow{w}	différent	différent	identique
\overrightarrow{r}	identique	opposé	différent
\overrightarrow{s}	identique	opposé	identique
\overrightarrow{t}	différent	différent	différent

Exercice 3

Dans le plan, on considère les trois points $A,\,B,\,M$ représentés ci-dessous :

Considérons les deux distances: r = AB ; r' = AM

- 1. a. Tracer le cercle \mathscr{C} de centre M et de rayon r.
 - b. Tracer le cercle \mathscr{C}' de centre A et de rayon r'.
- 2. (a.) Parmi les deux points d'intersection des cercles \mathscr{C} et \mathscr{C}' , noter N le point tel que le quadrilatère ABNMest un parallélogramme.
 - b. Justifier que les vecteurs \overrightarrow{AB} et \overrightarrow{MN} sont égaux.
- 3. Parmi les quatre propriétés caractérisantes du parallélogramme, laquelle peut-être utilisée pour justifier la réponse à la question 2. (a.)

Propriété 1: si les diagonales d'un quadrilatère se coupent en leurs milieux alors ce quadrilatère est un parallélogramme.

Propriété 2: si un quadrilatère a ses côtés opposées parallèles entre eux alors ce quadrilatère est un parallélogramme.

Propriété 3: si un quadrilatère a ses côtés opposées ont la même mesure alors ce quadrilatère est un parallélogramme.

Propriété 4: si deux côtés opposés d'un quadrilatère sont parallèles et de même longueur alors ce quadrilatère est un parallélogramme.

Correction 3

Voici la représentation de ces deux cercles:

- (b.) Puisque ABNM est un parallélogramme:
 - les vecteurs \overrightarrow{AB} et \overrightarrow{MN} sont de même direction (les droites (AB) et (MN) sont parallèles);
 - les vecteurs \overrightarrow{AB} et \overrightarrow{MN} sont de même norme (AB =

Graphiquement, on confirme que les vecteurs \overrightarrow{AB} et \overrightarrow{MN} sont de même sens.

Ces trois propriétés confirment que les vecteurs \overrightarrow{AB} et \overrightarrow{MN} sont égaux.

- 3. La propriété utilisée est la **propritété 3** car:
 - puisque $N \in \mathcal{C}$, on a: MN = AB
 - puisque $N \in \mathcal{C}'$, on a: AM = BN