

Fig. 2- Airport Arrival/Departure Flow

+2/23

Fig. 3 - DFW CTAS Data, 2200 TO 2230 CMT Arrivals - 11/6/98

+3/23

2218	2219	2219	2220		2221	2221	2222	2222	2223	2223		2226	2226	2228	2229	2230		
18R	17C	18R	17C		13R	18R	13R	17C	18R	17C		18R	17C	18R	18R	17C		
		LGB			SEA	MDW	PHX	ICT	LOS	MC0		SFO	LAX	SFO	ORD	AUS		
36.USA777	37.AAL1016	38.AAL1280	39.AAL1884		40.AAL794	41.AMT255	42.AAL48	43.AAL564	44.AAL496	45.AAL9649		46.AAL1552	47.AAL1890	48.UAL478	49.UAL1055	50.AAL1978		
2208	2209	2209	2209	2210	2210	2210		2211	2212	2213	2214	2214	2215		2216	2217	2217	2218
13R	18R	17L	17C	17L	17C	13R		18R	13R	17C	18R	13R	13R		17C	18R	17C	13R
MAF	ABQ	LCH	EWR	HOU	XNA	ONT		DEN	LAS	MSY	ELP	OKC	SLC		ORD	IAH	COS	MCI
19.EGF718	20.AAL656	21.EGF114	22.AAL2161	23.EGF621	24.EGF704	25.AAL1188		26.AAL50	27.AAL1714	28.AAL839	29.AAL1412	30.AAL1720	31.AAL1306		32.AAL2233	33.COA186	34.AAL1404	35.AAL742
2201	2201	2201	2202	2202	2202	2203	2203	2203	2204	2204	2205		2206	2206	2207	2207	2207	2208
18R	17L	17C	17L	13R	18R	17L	18R	17C	17C	17L	18R		17L	13R	18R	17L	17C	17C
SJC	MEM	TPA	SHV	ACT	STL	TUL	SNA	IAH	EGK	LIT	PHX		TYR	FTW	ATL	999	LIT	TXK
1. AAL458	2. EGF026	3. AAL1707	4. EGF202	5. EGF784	6. TWA453	7. EGF736	8. AAL1498	9. AAL2038	10.AAL79	11.EGF650	12.AWE544		13.EGF854	14. KHA200	15.DAL237	16.EGF094	17.AAL1779	18.EGF128

Fig. 4 - December 2000 DOT Data

DECEMBER 2000 AIR TRAVEL CONSUMER REPORT TABLE 3. PERCENTAGE OF ALL CARRIERS' REPORTED FLIGHT OPERATIONS ARRIVING ON TIME BY AIRPORT AND TIME OF DAY (REPORTABLE AIRPORTS ONLY)

ARRIVAL AIRPORT													
SCHEDULED			1 1 1 1		1 1 1 1 1	1 1 1 1	1 1 1 1			 - - -	1 1 1 1		!
ARRIVAL TIME	ATL	BOS	BWI		CVG	DCA	DEN	DFW	~	EWR	IAH	JFK	LAS
600 - 659 AM	80.4	72.7	•	H.	•	•	•	•	7:	71.0	•	2.	•
700 - 759 AM	71.5	71.1	Ξ.	81.5	9.89	•	71.9	•	9.	72.0	•	5.	•
800 - 859 AM	62.7	68.3	84.6	1		81.5	•	•	Ч	73.3	80.2	80.6	•
~	60.4	•	75.5	66.1	73.8	•	•	•	0.	74.0	•	∞	•
ı	61.3		78.7	•	•	•	•	•	7:	72.7	•		•
- 1259	60.3	•	79.2	•		•	7	•	7:	67.8	•)(•
- 159	52.9	•	68.5	75.0	73.3	71.4		•	9.	8.99	•	2.	•
- 259	9.99	9.79	71.2		71.0	•	∞	•	4.	67.3	•		•
- 359	55.5	•	69.4	67.1	65.2		7	•	Τ.	9.79		6.	•
- 459	54.0	62.9			58.0	9.69	∞.	•	ω.	66.2	•		•
500 - 559 PM	50.6	•	68.1	71.7		٠.	62.7	•	0	60.3	6	ij	•
- 629	52.8	60.4		٠		62.9	٠. ش	•	0.	61.1	•		•
	44.7	•			59.9	•	•	•	9.	63.1	4.	•	•
ī	49.3	0.09		•	•	•	•	•	7:	65.5		•	•
900 - 959 PM	48.7	59.6	5.	•	61.9	0.09	•	•	ς.	66.3	4.	•	•
1000 - 1059 PM	53.8	•	m.	٠.		68.1	•	•	6.	8.09	.•	4.	
1100 - 559 AM	57.7	62.1	63.7	٠. کا	٠.	55.4	59.9	65.5	56.9	70.7	62.8	68.1	61.9
TOTAL by Airport	56.9	65.0		70.1	64.5	69.1	64.1			0.79	•	<u>∞</u>	•

Fig. 5 - The Runway Arrival Trombone

from the base leg to the runway (i.e., extending the trombone), which Note - Additional aircraft are warehoused by extending the distance lengthens the downwind and final approach segments of the approach allowing space for the extra aircraft.

Fig. 6- Miles-In-Trail

The additional miles-in-trail spacing is done by laterally extending the route or turning the aircraft.

Fig. 7 - Airborne Holding

+ 7/23

Holding Stack

Aircraft enter the "holding stack" from the enroute airspace at the top.

Each holding pattern is approximately 10 to 20 miles long and 3 to 5 miles wide. As aircraft exit the bottom of the stack towards the airport, aircraft orbiting above are moved down 1,000 feet to the next level.

Airpor

Fig 9a - Decision/Command Matrix

Critical Factors:

- What is the optimum airport arrival time for each aircraft as determined by the airline/user/pilot?
- What can the individual airlines do to meet the needs of all of the aircraft approaching the airport?
- Is the airspace infrastructure (runways, airspace, arrival fix) capable of meeting the aircraft needs taking into account available assets and the needs of all of the other aircraft?
- What time are the control actions taken? [Note: the future trajectory prediction of all of the assets is an important aspect of this decision]
- Authority (if this is the operator) for integration to the present invention. Decisions 1 and 2 are made by the user and passed to the Aviation Absence any information to from the airline/user/pilot, the present invention works towards safety, operational and efficiency goals. ς.

Decision 1 - Intra-Aircraft Decisions Fig. 9b - Decision/Command Matrix

Focus - Aircraft and User Needs and Wants

What does the individual aircraft need and/or want?

Evaluate future trajectories for needs (Look Ahead) Arrival at airport at OAG Scheduled Arrival Time Enough airport Time to:

- Get Passengers off/on
- Get Baggage off/on
- Get Cargo off/on
- Complete Aircraft Servicing (lavs, food, etc.)
- Complete required maintenance items
- Depart on time for next segment

Enough connection time for passengers

Maintenance Actions

- Scheduled maintenance
- Unscheduled repairs
 - Deicing
- Known repairs

Comfortable ride Shorter route

A gate upon arrival Use Minimum Fuel

Crew (Pilots and Flight Attendants)

Key Questions

What time does aircraft want to arrive in a perfect world? What services does aircraft need? Regular or special?

Aircraft Characteristics

Fuel Burn Model (fuel available to make desired change) Safe Speed Range Wind Model

Altitude Capability (aircraft weight)

Fuel Burn Model (minimum fuel usage)

Enroute Turbulence Model Aircraft position data

Enroute Weather Model

⁺11/23

Fig. 9c - Decision/Command Matrix Decision 2 - Intra-Airline Decisions

Focus - Airline Capabilities to meet needs of all aircraft

Can the airline meet the aircraft's needs?

Gate Availability

Jetway or Stair Availability

Baggage Crew Availability Fueling Availability

Flow of Passenger Connecting Flights Mechanic Availability

Dynamic Gate Management Asset Trajectory Matching Cleaning Crew Availability Agent Availability Galley Loading/Unloading Parts Availability

Key Questions

What is the airline's ability to meet the needs of all aircraft?

Will airline service capability delay aircraft?

Airline Data

Airport data Fuel truck data

Passenger data/model Mechanic data

Crew data Customer Service Agent data Galley data Aircraft parts data

+

Fig. 9d - Decision/Command Matrix

+12/23

Decision 3 - Aviation Authority Decisions

Focus - Infrastructure Capabilities to meet needs of all aircraft

Can the infrastructure meet the aircraft's needs?

Airspace Availability

Runway Availability

Arrival Fix Availability

Infrastructure Trajectory Matching

Weather

Demand

Airline/pilot requirements (Decision 1 and 2 data if available)

Key Questions

What is the aviation authority's ability to meet needs of all aircraft?

Will infrastructure constraints delay aircraft?

Infrastructure Data

Runway Acceptance Rate

Weather

Cornerpost Acceptance Rate Equipment Status

+13/23

Fig. 9e - Decision/Command Matrix

Control Action 1 - Airline/Aviation Authority

Focus - How and When to Make Control Action Happen

Control Actions

Transmit fix crossing time to aircraft

Monitor actions to assure aircraft response meets the new assigned goals

Key Questions

What time should control action take place?

How should pilot be notified?

+

+

Fig. 11b - Sample of the Method's Processing Sequence

Fig. 12 - Random versus Time Sequenced Cornerpost Arrival Flow For the Same Set of Aircraft

Fig. 13 - Typical Hub Arrival Schedules versus Capacity Shown In 15 Minute Blocks

+18/23

Fig. 14 - Single-aircraft Goal Function component for two aircraft (example)

+19/23

Fig. 15 - Total Goal Function for a system of two aircraft (example)

$t_2 = 15$	58	51	50	55	99	1083
t ₂ =14	43	36	35	40	1051	89
t ₂ = 13	34	27	26	1031	45	59
$t_2 = 12$	31	24	1023	28	39	56
t ₂ = 11	34	1027	26	31	42	59
$t_2 = 10$	1043	36	35	40	51	89
	$t_1 = 10$	t ₁ =11	$t_1 = 12$	t ₁ = 13	$t_1 = 14$	t ₁ =15

Fig. 17 – Effects of Variance

+ 22/23

.. effects of variance get worse as demand nears the capacity o the system ..

Fig. 18 – Arrival Path Variance of a Typical Aircraft Arrival Flow to an Airport

+23/23

