Problem set 4 solutions

Math 521 Section 001, UW-Madison, Spring 2024

February 21, 2024

1. Suppose that $g: A \to B$ is surjective and $f: B \to C$ is not injective. Show that $f \circ g$ is also not injective. (*Hint*: It may be helpful to start by drawing a picture.)

Proof. Since $f: B \to C$ is not injective, there exist two elements $w_1 \neq w_2 \in B$ such that $f(w_1) = f(w_2)$. But since g is surjective, there exist two elements $x_1, x_2 \in A$ such that $g(x_1) = w_1$ and $g(x_2) = w_2$. Because $w_1 \neq w_2$, we must have $x_1 \neq x_2$ (because a function takes only one value per element). Therefore $x_1 \neq x_2$, and these elements satisfy

$$(f \circ g)(x_1) = f(g(x_1)) = f(w_1) = f(w_2) = f(g(x_2)) = (f \circ g)(x_2).$$

This shows that $f \circ g$ is not injective, as desired.

2. Let $f: S \to T$ be a function. Suppose that S is uncountable and for each $y \in T$, $f^{-1}(\{y\})$ is countable. Prove that T is uncountable.

Proof. If T were countable, then $S = \bigcup_{y \in T} f^{-1}(\{y\})$ would be a countable union of countable sets, hence countable.

- 3. Consider the following subsets of \mathbb{R}^2 . Which ones are open? Which ones are closed? Please justify each claim briefly; you do not have to give a full proof. (*Note*: For this problem, you are welcome to use drawings as justification.)
 - (a) $A = [0,1] \times (0,1)$
 - (b) $B = \{0\} \times (0,1)$
 - (c) $C = \{(n, n^2) \mid n \in \mathbb{N}\}$

Solution. (a) Neither. For, $[0,1] \times \{0\}$ and $[0,1] \times \{1\}$ belong to $A' \setminus A$, so A is not closed. Meanwhile $\{0\} \times (0,1)$ and $\{1\} \times (0,1)$ belong to $A \setminus \mathring{A}$, so A is not open.

(b) Neither. For, (0,0) and (0,1) belong to $B' \setminus B$, so B is not closed. Meanwhile, for any point $p = (0,b) \in B$, the neighborhood $N_r(p)$ contains points which do not belong

to B: for instance, $(r/2, b) \in N_r(p) \setminus B$. Hence $N_r(p) \notin B$ for all r > 0, and B is not open.

- (c) Closed but not open. The set C has no limit points: given any $x = (n, n^2) \in C$, we have $N_1(x) \cap C = \{x\}$, so x is not a limit point. Hence C is closed (vacuously). The set C is not open because for any r > 0, $N_r(x)$ contains points such as $\left(n + \frac{\min\{1,r\}}{2}, n^2\right)$ which do not belong to C.
- 4. Rudin 2.5, 10 (except the "...compact?" part), 11.
 - (2.5) Recall from class that the set $E_0 = \{1/n \mid n \in \mathbb{N}\}$ has only one limit $\{0\}$. By the same argument, the sets $E_a = \{a+1/n \mid n \in \mathbb{N}\}$ also each have only one limit point, a. We can take

$$E = E_0 \cup E_1 \cup E_2$$
.

Then $E' = E'_0 \cup E'_1 \cup E'_2 = \{0, 1, 2\}$ (since this is a finite union).

(2.10) This is called the "discrete metric." Nonnegativity and symmetry are obvious. To check the triangle inequality, let $p, q, r \in X$. We must show

$$d(p,r) \le d(p,q) + d(q,r).$$

<u>Case 1</u>. p = r. The LHS is zero and the RHS is nonnegative, so we're done.

<u>Case 2.</u> $p \neq r$. The LHS is 1. Now either q = p or $q \neq p$. If q = p, then since $p \neq r$, $q \neq r$. Therefore d(q,r) = 1, so the RHS is a least 1 and the inequality holds. If $q \neq p$, then d(p,q) = 1, so the inequality also holds.

Let $E \subset X$ be a subset. First note that for any point $p \in X$, $N_{1/2}(p) = \{p\}$. Hence p is not a limit point of E. Therefore $E' = \emptyset$, so E is trivially closed. Since E was arbitrary, we conclude that *all* subsets of X are closed. By complementarity, all subsets of X are also open.

- (2.11) (1) Not a metric: triangle inequality fails. Let x = 0, y = 1, z = 2. Then d(x, z) = 4 but d(x, y) + d(y, z) = 1 + 1 = 2.
 - (2) This is a metric. Nonnegativity and symmetry are clear. For the triangle inequality, we have from the ordinary triangle inequality

$$|x-z| \le |x-y| + |y-z|.$$

Adding $2\sqrt{|x-y||y-z|}$ to the RHS, we have

$$|x-z| \le \left(\sqrt{|x-y|} + \sqrt{|y-z|}\right)^2$$

The triangle inequality for d_2 follows by taking square roots.

(3) Not a metric: nonnegativity fails since d(1,-1) = 0 but $1 \neq -1$. (Note: this would be a metric if restricted to nonnegative numbers.)

- (4) Not a metric: nonnegativity and symmetry fail: $d(1,1) = 1 \neq 0$, and $d(1,0) = 1 \neq 2 = d(0,1)$.
- (5) This is a metric. Nonnegativity and symmetry are clear. For the triangle inequality, we first prove:

<u>Claim 1.</u> For $0 \le a \le b$, we have $\frac{a}{1+a} \le \frac{b}{1+b}$.

Proof. We calculate:

$$a \le b$$

$$a + ab \le b + ab$$

$$a(1+b) \le b(1+a).$$

The claim follows by dividing both sides by (1+a)(1+b). \Box Claim 2. For $A, B \ge 0$, we have $\frac{A+B}{1+A+B} \le \frac{A}{1+A} + \frac{B}{1+B}$. *Proof.*

$$\frac{A+B}{1+A+B} = \frac{A}{1+A+B} + \frac{B}{1+A+B}
\leq \frac{A}{1+A} + \frac{B}{1+B},$$
(0.1)

П

since $\frac{1}{1+A+B} \leq \frac{1}{1+A}$ and $\frac{1}{1+A+B} \leq \frac{1}{1+B}.$

To prove the triangle inequality, we let A = |x - y|, B = |y - z|, and C = |x - z|. Since $C \le A + B$, applying claim 1, we have

$$d(x,z) = \frac{C}{1+C} \le \frac{A+B}{1+A+B}.$$

We then apply claim 2 to obtain

$$d(x,z) \le \frac{A}{1+A} + \frac{B}{1+B} = d(x,z) + d(y,z)$$

as desired.

5. (Extra credit + 1) Let S be a nonempty set. Prove that S and its power set $\mathcal{P}(S)$ do not have the same cardinality.

First proof. We will show that any map $F: S \to \mathcal{P}(S)$ is not surjective; hence, it is impossible to have a bijective map.

We must define a subset E such that $E \neq F(x)$ for all $x \in S$. Let

$$E = \{ x \in S \mid x \notin F(x) \}.$$

Then by definition, $x \notin E$ if $x \in F(x)$, whereas $x \in F(x)$ if $x \notin F(x)$. In particular, for each $x \in S$, E and F(x) do not have the same elements. Hence $E \neq F(x) \forall x \in S$, so $E \notin F(S)$. Hence F is not surjective.

Second proof. Recall that we may identify $\mathcal{P}(S)$ with the set $\{0,1\}^S$ of all functions from S to $\{0,1\}$, as follows. Given $E \subset S$, define the function

$$f: S \to \{0, 1\}$$

$$f(x) = \begin{cases} 1 & x \in E \\ 0 & x \notin E \end{cases}$$

$$(0.2)$$

Such an f determines and is uniquely determined by E, so this is a 1-1 correspondence. Hence, it suffices to prove that $\{0,1\}^S$ cannot be put in bijection with S.

As above, we will show that any map $F: S \to \{0,1\}^S$ is not surjective. For each $x \in S$, F(x) is a function which we denote by

$$F(x) = f_x : S \to \{0, 1\}.$$

We must define a function $g: S \to \{0,1\}$ such that $g \neq f_x$ for all $x \in S$. Let

$$g(x) = \begin{cases} 0 & f_x(x) = 1 \\ 1 & f_x(x) = 0. \end{cases}$$