

AOTF66919L

100V N-Channel AlphaSGT[™]

General Description

- Trench Power AlphaSGTTM technology
- Low R_{DS(ON)}
- Logic Level Driving
- Excellent Q_g x R_{DS(ON)} Product (FOM)
- RoHS 2.0 and Halogen-Free Compliant

Applications

• High Frequency Switching and Synchronous Rectification

Product Summary

 V_{DS} 100V I_D (at V_{GS}=10V) 50A R_{DS(ON)} (at V_{GS}=10V) < 6.5mΩ $R_{DS(ON)}$ (at V_{GS} =4.5V) < 8.5mΩ

100% UIS Tested 100% Rg Tested

Orderable Part Number Part AOTF66919L		Package Type	Form	Minimum Order Quantity
		TO-220F	Tube	1000
Absolute Maximum	Ratings T _A =25°	C unless otherwise noted	1	
Parameter		Symbol	Maximum	Units
Drain-Source Voltage		V_{DS}	100	V
Gate-Source Voltage		V_{GS}	±20	V
Continuous Drain	T _C =25°C		50	
Current	T _C =100°C	I _D	31	A
Pulsed Drain Current ^C		I _{DM}	200	
Continuous Drain	T _A =25°C		25	^
Current	T _A =70°C	IDSM	20	Α
Avalanche Current C		I _{AS}	48	A
Avalanche energy	L=0.1mH	E _{AS}	115	mJ
	T _C =25°C	D	32	W
Power Dissipation ^B	T _C =100°C	P_{D}	12.5	VV
	T _A =25°C	Ь	8.3	W
Power Dissipation ^A	T _A =70°C	P _{DSM}	5.3	vv
Junction and Storage Temperature Range		ange T _J , T _{STG}	-55 to 150	°C

Thermal Characteristics								
Parameter	Symbol	Тур	Max	Units				
Maximum Junction-to-Ambient A	t ≤ 10s	D	10	15	°C/W			
Maximum Junction-to-Ambient AD	Steady-State R _{0JA}		45	55	°C/W			
Maximum Junction-to-Case	Steady-State	$R_{\theta JC}$	3.2	3.9	°C/W			

Electrical Characteristics (T_{.I}=25°C unless otherwise noted)

Symbol	Parameter	Conditions	Min	Тур	Max	Units			
STATIC PARAMETERS									
BV _{DSS}	Drain-Source Breakdown Voltage	$I_D = 250 \mu A, V_{GS} = 0 V$	100			V			
I _{DSS} Ze	Zero Gate Voltage Drain Current	V _{DS} =100V, V _{GS} =0V			1	μA			
·DSS	Zero Gate Voltage Brain Gurrent	T _J =55	°C		5				
I_{GSS}	Gate-Body leakage current	$V_{DS}=0V$, $V_{GS}=\pm20V$			±100	nA			
$V_{GS(th)}$	Gate Threshold Voltage	$V_{DS}=V_{GS}$, $I_{D}=250\mu A$		2	2.6	V			
		V _{GS} =10V, I _D =20A		5.3	6.5	mΩ			
$R_{DS(ON)}$	Static Drain-Source On-Resistance	T _J =125	S°C	9.5	11.5	11177			
		V_{GS} =4.5V, I_D =20A		6.6	8.5	mΩ			
g _{FS}	Forward Transconductance	Forward Transconductance V _{DS} =5V, I _D =20A		88		S			
V_{SD}	Diode Forward Voltage	Diode Forward Voltage I _S =1A, V _{GS} =0V		0.7	1	V			
Is	Maximum Body-Diode Continuous Curr			40	Α				
DYNAMIC	PARAMETERS								
C _{iss}	Input Capacitance			3420		pF			
C _{oss}	Output Capacitance	V_{GS} =0V, V_{DS} =50V, f=1MHz		790		pF			
C_{rss}	Reverse Transfer Capacitance			14		pF			
R_g	Gate resistance	f=1MHz	0.8	1.7	2.7	Ω			
SWITCHI	NG PARAMETERS								
Q _g (10V)	Total Gate Charge			47	66	nC			
Q _g (4.5V)	Total Gate Charge	V _{GS} =10V, V _{DS} =50V, I _D =20A		22	31	nC			
Q_{gs}	Gate Source Charge	V _{GS} =10V, V _{DS} =30V, I _D =20A		10		nC			
Q_{gd}	Gate Drain Charge			5		nC			
Q _{oss}	Output Charge	V _{GS} =0V, V _{DS} =50V		70		nC			
t _{D(on)}	Turn-On DelayTime			11		ns			
t _r	Turn-On Rise Time	V_{GS} =10V, V_{DS} =50V, R_{L} =2.5 Ω ,		5.5		ns			
t _{D(off)}	Turn-Off DelayTime	$R_{GEN}=3\Omega$		43		ns			
t _f	Turn-Off Fall Time			9.5		ns			
t _{rr}	Body Diode Reverse Recovery Time	I _F =20A, di/dt=500A/μs		36		ns			
Q _{rr}	Body Diode Reverse Recovery Charge	I _F =20A, di/dt=500A/μs		214		nC			

A. The value of $R_{\theta,JA}$ is measured in a still air environment with $T_A = 25^{\circ}$ C. The Power dissipation P_{DSM} is based on $R_{\theta,JA}$ ≤ 10s and the maximum allowed junction temperature of 150° C. The value in any given application depends on the user's specific board design.

APPLICATIONS OR USES AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS ARE NOT AUTHORIZED. AOS DOES NOT ASSUME ANY LIABILITY ARISING OUT OF SUCH APPLICATIONS OR USES OF ITS PRODUCTS. AOS RESERVES THE RIGHT TO MAKE CHANGES TO PRODUCT SPECIFICATIONS WITHOUT NOTICE. IT IS THE RESPONSIBILITY OF THE CUSTOMER TO EVALUATE SUITABILITY OF THE PRODUCT FOR THEIR INTENDED APPLICATION. CUSTOMER SHALL COMPLY WITH APPLICABLE LEGAL REQUIREMENTS, INCLUDING ALL APPLICABLE EXPORT CONTROL RULES, REGULATIONS AND LIMITATIONS.

AOS' products are provided subject to AOS' terms and conditions of sale which are set forth at: http://www.aosmd.com/terms and conditions of sale

 Rev.1.1: September 2023
 www.aosmd.com
 Page 2 of 6

B. The power dissipation P_D is based on T_{J(MAX)}=150° C, using junction-to-case thermal resistance, and is more useful in setting the upper dissipation limit for cases where additional heatsinking is used.

C. Single pulse width limited by junction temperature $T_{J(MAX)}$ =150° C.

D. The $R_{\theta JA}$ is the sum of the thermal impedance from junction to case $R_{\theta JC}$ and case to ambient.

E. The static characteristics in Figures 1 to 6 are obtained using <300μs pulses, duty cycle 0.5% max.

F. These curves are based on the junction-to-case thermal impedance which is measured with the device mounted to a large heatsin k, assuming a maximum junction temperature of T_{J(MAX)}=150° C. The SOA curve provides a single pulse rating.

G. The maximum current rating is package limited.

H. These tests are performed in a still air environment with $T_A=25^{\circ}\,$ C.

TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS

 $V_{\rm DS}$ (Volts) Figure 1: On-Region Characteristics (Note E)

V_{GS} (Volts) Figure 2: Transfer Characteristics (Note E)

 ${\rm I_D}\left({\rm A} \right)$ Figure 3: On-Resistance vs. Drain Current and Gate Voltage (Note E)

Temperature (°C)
Figure 4: On-Resistance vs. Junction Temperature
(Note E)

Figure 5: On-Resistance vs. Gate-Source Voltage (Note E)

V_{SD} (Volts) Figure 6: Body-Diode Characteristics (Note E)

TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS

 ${\bf Q_g}$ (nC) Figure 7: Gate-Charge Characteristics

V_{DS} (Volts)
Figure 8: Capacitance Characteristics

V_{GS}> or equal to 4.5V Figure 9: Maximum Forward Biased Safe Operating Area (Note F)

Pulse Width (s)
Figure 10: Single Pulse Power Rating Junction-toCase (Note F)

Pulse Width (s)
Figure 11: Normalized Maximum Transient Thermal Impedance (Note F)

Rev.1.1: September 2023 **www.aosmd.com** Page 4 of 6

TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS

T_{CASE} (° C)
Figure 12: Power De-rating (Note F)

T_{CASE} (° C)
Figure 13: Current De-rating (Note F)

Figure 15: Single Pulse Power Rating Junctionto-Ambient (Note H)

Pulse Width (s)
Figure 16: Normalized Maximum Transient Thermal Impedance (Note H)

www.aosmd.com Page 5 of 6 Rev.1.1: September 2023

Figure A: Gate Charge Test Circuit & Waveforms

Figure B: Resistive Switching Test Circuit & Waveforms

Figure C: Unclamped Inductive Switching (UIS) Test Circuit & Waveforms

Figure D: Diode Recovery Test Circuit & Waveforms

Rev.1.1: September 2023 **www.aosmd.com** Page 6 of 6