

Graf prosty

Podstawowe typy grafów: graf pusty

Podstawowe typy grafów: graf pełny

Podstawowe typy grafów: graf dwudzielny

Podstawowe typy grafów: pełny graf dwudzielny

Podstawowe definicje

Spacer od
$$v$$
 do w :

 $vv_1, v_1v_2, \ldots, v_{k-1}w$.

Oznaczenie:

$$v \rightarrow v_1 \rightarrow v_2 \rightarrow \cdots \rightarrow v_{k-1} \rightarrow w$$
.

- → Długością spaceru jest liczba jego krawędzi.
- \rightsquigarrow Spacer zamknięty: v = w.

- → Droga: spacer bez powtarzających się krawędzi.
- Cykl: ścieżka długości ≥ 2, w której pierwszy i ostatni wierzchołek są połączone krawędzią.

→ Graf spójny: między każdymi dwoma wierzchołkami istnieje spacer.

→ Drzewo: graf spójny bez cykli.

>>> **Drzewo rozpinające**: podgraf, który zawiera wszystkie wierzchołki i jest drzewem.

Mosty królewieckie

Mosty królewieckie

Grafy eulerowskie

- → Droga Eulera: droga przechodząca przez wszystkie krawędzie.
- → Obchód Eulera: zamknięta droga Eulera.
- → Graf eulerowski: graf posiadający obchód Eulera.

Grafy eulerowskie

- → Droga Eulera: droga przechodząca przez wszystkie krawędzie.
- → Obchód Eulera: zamknięta droga Eulera.
- → Graf eulerowski: graf posiadający obchód Eulera.

Twierdzenie

W grafie eulerowskim każdy wierzchołek jest stopnia parzystego.

Grafy eulerowskie

- → Droga Eulera: droga przechodząca przez wszystkie krawędzie.
- → Obchód Eulera: zamknięta droga Eulera.
- → Graf eulerowski: graf posiadający obchód Eulera.

Twierdzenie

W grafie eulerowskim każdy wierzchołek jest stopnia parzystego.

Graf jest eulerowski wtedy i tylko wtedy, gdy jest spójny i każdy jego wierzchołek ma stopień parzysty.

Induhya uzelpdom linby kraupdai. DOD.

1. *E_E*: poszukiwany ciąg krawędzi.

- 1. *E_E*: poszukiwany ciąg krawędzi.
- 2. Jeżeli w grafie istnieje jakiś wierzchołek v stopnia nieparzystego, to go wybierz. Jeżeli taki wierzchołek nie istnieje, to wybierz dowolny wierzchołek v.

- 1. *E_E*: poszukiwany ciąg krawędzi.
- 2. Jeżeli w grafie istnieje jakiś wierzchołek v stopnia nieparzystego, to go wybierz. Jeżeli taki wierzchołek nie istnieje, to wybierz dowolny wierzchołek v.
 - → Jeżeli z wierzchołka v nie wychodzi żadna krawędź, to przerwij.

- 1. *E_E*: poszukiwany ciąg krawędzi.
- 2. Jeżeli w grafie istnieje jakiś wierzchołek v stopnia nieparzystego, to go wybierz. Jeżeli taki wierzchołek nie istnieje, to wybierz dowolny wierzchołek v.
 - → Jeżeli z wierzchołka v nie wychodzi żadna krawędź, to przerwij.
 - Jeżeli pozostała dokładnie jedna krawędź e = vw wychodząca z wierzchołka v do w, to usuń ten wierzchołek i tę krawędź.

- 1. *E_E*: poszukiwany ciąg krawędzi.
- 2. Jeżeli w grafie istnieje jakiś wierzchołek v stopnia nieparzystego, to go wybierz. Jeżeli taki wierzchołek nie istnieje, to wybierz dowolny wierzchołek v.
 - → Jeżeli z wierzchołka v nie wychodzi żadna krawędź, to przerwij.
 - Jeżeli pozostała dokładnie jedna krawędź e = vw wychodząca z wierzchołka v do w, to usuń ten wierzchołek i tę krawędź.
 - Jeżeli pozostała więcej niż jedna krawędź wychodząca z v, to wybierz taką krawędź e = vw, po usunięciu której graf pozostanie spójny, a następnie usuń tę krawędź.

- 1. *E_E*: poszukiwany ciąg krawędzi.
- 2. Jeżeli w grafie istnieje jakiś wierzchołek v stopnia nieparzystego, to go wybierz. Jeżeli taki wierzchołek nie istnieje, to wybierz dowolny wierzchołek v.
 - → Jeżeli z wierzchołka v nie wychodzi żadna krawędź, to przerwij.
 - Jeżeli pozostała dokładnie jedna krawędź e = vw wychodząca z wierzchołka v do w, to usuń ten wierzchołek i tę krawędź.
 - Jeżeli pozostała więcej niż jedna krawędź wychodząca z v, to wybierz taką krawędź e = vw, po usunięciu której graf pozostanie spójny, a następnie usuń tę krawędź.
- 3. Dodaj e do E_E .

- 1. *E_E*: poszukiwany ciąg krawędzi.
- 2. Jeżeli w grafie istnieje jakiś wierzchołek v stopnia nieparzystego, to go wybierz. Jeżeli taki wierzchołek nie istnieje, to wybierz dowolny wierzchołek v.
 - → Jeżeli z wierzchołka v nie wychodzi żadna krawędź, to przerwij.
 - Jeżeli pozostała dokładnie jedna krawędź e = vw wychodząca z wierzchołka v do w, to usuń ten wierzchołek i tę krawędź.
 - Jeżeli pozostała więcej niż jedna krawędź wychodząca z v, to wybierz taką krawędź e = vw, po usunięciu której graf pozostanie spójny, a następnie usuń tę krawędź.
- 3. Dodaj e do E_E .
- 4. Zastąp v przez w i wróć do kroku 2.

$$E_E=1,3,4,$$

$$E_E = 1, 3, 4, 7$$

$$E_E = 1, 3, 4, 7$$

$$E_E = 1, 3, 4, 7$$

$$E_E = 1, 3, 4, 7, 8, 5$$

$$E_E = 1, 3, 4, 7, 8, 5$$

$$E_E = 1, 3, 4, 7, 8, 5, 9$$

$$E_E = 1, 3, 4, 7, 8, 5, 9$$

$$E_E = 1, 3, 4, 7, 8, 5, 9, 10$$

$$E_E = 1, 3, 4, 7, 8, 5, 9, 10$$

$$E_E = 1, 3, 4, 7, 8, 5, 9, 10, 11$$

$$E_E = 1, 3, 4, 7, 8, 5, 9, 10, 11$$

$$E_E = 1, 3, 4, 7, 8, 5, 9, 10, 11, 12, 6, 2$$

 $E_E = 1, 3, 4, 7, 8, 5, 9, 10, 11, 12, 6, 2$

Grafy hamiltonowskie

- → Graf hamiltonowski: graf zawierający cykl Hamiltona.

Grafy hamiltonowskie

Twierdzenie Orego

Jeżeli graf G=(V,E) ma przynajmniej trzy wierzchołki oraz dla każdej pary niesąsiednich wierzchołków v i w zachodzi

Poszukiwanie ścieżek

W	$ v_1 $	<i>V</i> ₂	<i>V</i> 3	<i>V</i> 4	<i>V</i> ₅
$\overline{v_1}$	∞	(4)	7	1	\bigcirc
<i>V</i> ₂	∞	X		$\bigcirc \mathcal{D}$	
<i>V</i> 3	$ \varnothing $	\bigcirc	∞	3	1
<i>V</i> 4	2	\bigcirc	\bigcirc	\bigcirc	7
<i>V</i> 5	\bigcirc	∞	\bigcirc	0	\bigcirc

Algorytm Dijkstry

```
input: graf skierowany G = (\{1, ..., n\}, E), wagi W = W(v, w)
    output: długość D_i najkrótszej ścieżki od 1 do j, j \in \{2, \ldots, n\}
    L \leftarrow \emptyset
    V \leftarrow \{2, \ldots, n\}
 5: | for i \in V do
       D_i \leftarrow W(1,i)
     end for
      while V \setminus L \neq \emptyset do
 8:
           wybierz k \in V \setminus L o najmniejszym (1)_{L}
 9:
           L \leftarrow L \cup \{k\}
10:
           for j \in V \setminus L do
11:
                if D_i > D_k + W(k,j) then
12:
                    D_i \leftarrow D_k + W(k, j)
13:
                end if
14:
           end for
15:
       end while
16:
```


L	DZ2	D_3	<i>D</i> 4	D_5
Ø	4	7	1	
{4}	4	7	1	8
$\{2, 4\}$	4	(5)	1	8
	ı			Y

L	D_2	D_3	D_4	D_5
\emptyset	4	7	1	
{4}	4	7	1	8
{2,4}	4	5	1	8
$\{2, 3, 4\}$	4	5	1	(6)

L	D_2	D_3	D_4	D_5
Ø	4	7	1	
{4}	4	7	1	8
$\{2,4\}$	4	5	1	8
$\{2, 3, 4\}$	4	5	1	6
$\{2,3,4\} \\ \{2,3,4,5\}$	4	5	1	6

Algorytm Dijkstry

```
input: G = (\{1,2,...,n\},E), W = W(v,w)
1
       output: D(j)
2
       L := \emptyset, V := \{2, ..., n\}
3
       for i \in V do D(i) := W(1,i)
4
       # 1. dla i w L, D(i) jest dlugoscia najkrotszej
5
       # sciezki 1->i
6
       # 2. dla i \not\in L, D(i) jest dlugoscia najkrotszej
7
       # sciezki 1->i w L
8
       while \lor \setminus \bot \neq \emptyset do
9
            wybierz k \in V \setminus L o minimalnym D(k)
10
            L := L \cup \{k\}
11
            for j \in V \setminus L do
12
                 if D(j) > D(k) + W(k,j) then
13
                      D(j) := D(k) + W(k,j)
14
```