The Capacitated Vehicle Routing Problem (CVRP):

General Mathematical Formulation:

Sets and Parameters:

- ullet $V=\{0,1,2,\ldots,n\}$: Set of vertices, where 0 represents the depot.
- ullet $C=\{1,2,\ldots,n\}$: Set of customers.
- $K = \{1, 2, \dots, m\}$: Set of vehicles.
- ullet A: Set of arcs, where $A=\{(i,j)\mid i,j\in V, i
 eq j\}.$
- q: Capacity of each vehicle.
- d_i : Demand of customer i.
- c_{ij} : Cost (distance) of traveling from node i to node j.

Decision Variables:

- x_{ijk} : Binary variable, where $x_{ijk}=1$ if vehicle k travels directly from node i to node j, and 0 otherwise.
- $ullet y_{ik}$: Binary variable, where $y_{ik}=1$ if vehicle k visits customer i, and 0 otherwise.
- q_{ik} : Continuous variable representing the load of vehicle k after servicing customer i.

Objective Function:

Minimize the total cost of the routes of all the vehicles:

$$\text{Minimize } \sum_{k \in K} \sum_{(i,j) \in A} c_{ij} x_{ijk}$$

Constraints:

1. Each customer is visited exactly once:

2. Vehicle capacity:

$$\sum_{i \in C} d_i y_{ik} \leq q \quad orall k \in K$$

3. Flow conservation constraint:

$$\sum_{j \in V, j
eq i} x_{ijk} - \sum_{j \in V, j
eq i} x_{jik} = 0 \quad orall i \in V, orall k \in K$$

4. Depot departure and return constraints:

$$x_{0jk}=1 \quad orall k \in K$$

$$x_{i0k} = 1 \quad \forall k \in K$$

5. Load constraints:

6.Binary and non-negativity constraints:

$$egin{aligned} x_{ijk} \in \{0,1\} & orall (i,j) \in A, orall k \in K \ \ y_{ik} \in \{0,1\} & orall i \in C, orall k \in K \ \ \ q_{ik} \geq 0 & orall i \in C, orall k \in K \end{aligned}$$