

COURSE STRUCTURE

Course Code	CET1003A	CET1003A			
Course Category	Engineerin	Engineering Science			
Course Title	Program	Programming and Problem Solving			
Teaching Scheme and Credits	L	T	Laboratory	Credits	
Weekly load hrs	3	-	2	2+0+1=3	

Pre-requisites: Introductory Knowledge of Computers

Course Objectives:

- 1. To understand the problem solving framework and approaches.
- 2. To learn the Programming Language constructs.
- 3. To acquire programming skills for problem solving.

Course Outcomes:

After completion of this course students will be able to

- 1) Develop efficient logic and algorithm for solving a problem.
- 2) Analyze the given problem and solve it using suitable programming constructs.
- 3) Apply programming skills for solving real world problems.

Course Contents:

Basic Concepts of computers: Architecture of computer, Types of Processor, Primary Storage, Secondary Storage, Number Systems, Data Representation-Signed, Unsigned, one's complement, two's complement, Floating point, char, String. Introduction to system software: Operating system, Editor, Compiler, Assembler, Linker, Loader.

Introduction to Problem Solving: Problem solving process/framework, Algorithms, Pseudo-code and flowchart, Case study for Algorithm, flowchart and pseudo code: calculate slope of a line, Factorial, Fibonacci, snake and ladder, tictac-toe. Top down and Bottom up design approach, Software Development life cycle, Programming paradigms: Imperative, object oriented, functional and logic programming. Role of programming languages, need to study programming languages, Characteristics of Programming Languages.

Introductions to C: Fundamentals of C-Programming - Character Set, Identifiers and keywords, Data types, Constants, Variables, Operators, Expression, statements, Library Functions, Pre-processor directives. Data Input and Output, Control Structures- Decision making, Control Structures- Iterative, break and continue statements, Structure of C program, Coding conventions. Array-single, multidimensional arrays, String in C –standard string functions in string.h. Functions in C, recursion, Different parameter passing methods, Lifetime of variables, Scope rules: Static and Dynamic scope, user defined string functions, Structure, Pointers, Structure - Array of structure, Union, Pointers, Pointers and arrays, Dynamic allocation and its application, Files: Types of File, File operation, Processing File.

Introductions to Python Programming: History, Features, Setting up path, Working with python, Basic Syntax, Character Set, Python Tokens, Keywords, Identifiers, Literals, Variables, Operators and Basic and Built-in Data Types: Numeric: int, float, complex, Text: String, Sequence::list, tuple, range, Mapping: dictionary, Set: set, frozenset, Boolean: bool, Arrays data types, Input and Output in Python, Structure of Python program, Control

Structures: Conditional statement, Looping and Iteration, Range Functions, Functions & classes: In-built

functions and user-defined functions, recursive Functions, Classes & Objects, Data Handling: Python libraries for data handling. APIs in Python.

Laboratory Work:

List of Assignments (any 10)

No. Title of the Assignment

- A) Write algorithm and draw a flowchart to log in to gmail account
- B) Write algorithm and draw flowchart to Calculate the volume and area of sphere using the
- 1. formulas

 $V=4*Pi*r^3/3$ and $A=4*pi*r^2$ where r is radius of square of the sphere.

- A) Write algorithm and draw flowchart to calculate roots of a quadratic equation.
- 2. B) Write algorithm and draw flowchart to convert given decimal number to binary.
- **3.** Write a menu driven program in C to implement the basic arithmetic operations.
- 4. Write a menu driven program to perform basic operation such as addition and subtraction of two matrices.
- **5.** Write a menu driven program to perform all string operations (user defined function)
- **6.** Write a C function to compute factorial of a given number using recursion.
- 7. Write a C program to accept student details and display their result using array of structures.
- **8.** Write a C program to swap two numbers using pointers.
- **9.** Write a C program to copy contents of one file to another using File handling.
- **10.** Write a Python program to accept n numbers and sort them in ascending/descending order.
- 11. Write a Python function that accepts a string and calculates the number of uppercase letters and lower-case letters.
- 12. Develop an application using Python API (Domain specific).

Learning Resources:

Reference Books:

- 1. Pradeep Sinha, Priti Sinha, "Computer Fundamentals", Sixth edition, bpb publication.
- 2. Ramon Mata-Toledo, Pauline K. Cushman, "Introduction to Computer Science", Schaum's Outline series.
- 3. Herbert Schildt, "C: The Complete Reference", Fourth Edition, McGraw Hill Professional.
- 4. Yashwant Kanetkar, "Let us C", Fifteenth edition, bpb publication.
- 5. David Ascher and MARK LUTZ, "Learning Python", Packt Publishing Limited.
- 6. Martin C. Brown, "Python: The Complete Reference", McGraw Hill Education.

Web Resources:

Web Links:

- 1. http://www.studytonight.com/c/overview-of-c.php
- 2. https://www.tutorialspoint.com/cprogramming
- 3. https://www.realpython.com/
- 4. https://pythoninstitute.org/

MOOCs:

- 1. http://nptel.ac.in/courses/106105085/2
- 2. http://nptel.ac.in/courses/106104074/1
- 3. https://nptel.ac.in/courses/106/105/106105171
- 4. https://nptel.ac.in/courses/106/106/106106212/
- 5. https://www.coursera.org/projects/introduction-to-python
- 6. https://www.coursera.org/learn/python
- 7. https://www.udemy.com/course/the-python-mega-course/

Pedagogy:

- Power point presentations
- Practical Demos
- Videos
- Online Classroom
- Expert lectures

Syllabus:

Assessment Scheme:

Class Continuous Assessment (CCA): (50 marks)

Assignments	Test	Case study/Group activity Presentations	MCQ	Oral	Attendance
10 Marks 20%	15 Marks 30 %	5 Marks 10%	20 Marks 40%	Nil	Nil

Laboratory Continuous Assessment (LCA): (50 marks)

Each assignment is assessed out of 20 marks and total marks of all assignment is mapped to 50 marks.

Regularity, Punctuality and Ethics	Understanding the objective	Assignment Design	Programming Skills/Logic Design	
5 Marks	5 Marks	5 Marks	5 Marks	
25%	25%	25%	25%	

Term End Examination: (50 marks)

Prepared By

Prof. Nital Adikane

Course Co-Ordinator

Checked By

Dr. Vrushali Kulkarni **HOS, School of CET MITWPU**

Approved By

Dr. Pradnya Deshpande HOS, School of FY BTech **MITWPU**