1 Бинарное дерево поиска

В каждом узле бинарного дерева поиска хранятся κ люч a и два поддерева, правое и левое. Все ключи в левом поддереве не превосходят a, а в правом — не меньше a. Алгоритм поиска — начиная с корня, сравниваем искомый ключ с ключом в узле, в зависимости от сравнения спускаемся в правое или в левое поддерево.

Вставка в бинарное дерево — поиск + вставляем туда, куда пришёл поиск. Чтобы удалить элемент — ставим на его место самый левый элемент в его правом поддереве.

Проблема такой наивной структуры — может вместо дерева получиться палка (если, например, ключи приходят в порядке по убыванию), и поиск будет занимать $\mathcal{O}(n)$. Красно-чёрные деревья, например, следят за тем, чтобы дерево всегда имело высоту $\mathcal{O}(\log n)$.

Definition 1. Дерево называется идеально сбалансированным (perfectly balanced tree), если размеры детей каждой ее вершины отличаются не больше, чем на 1.

Хотим научиться поддерживать \pm баланс, не храня много дополнительной информации (такой, как атрибуты red/black) — в идеале, $\mathcal{O}(1)$ дополнительных данных, какие-нибудь несколько чисел про дерево в целом. Это умеют две структуры.

2 Scapegoat tree

Источники: [GR93; And89]. Мы в основном опираемся на [GR93].

2.1 Структура дерева

Зафиксируем константу $\frac{1}{2} < \alpha < 1$. Будем рассматривать структуру данных, в которой хранится дерево tree. Также будем хранить текущее количество узлов в дереве — size. У каждого узла node есть дети left, right и ключ key.

```
structure TREE
      root
      size
      maxSize
  structure NODE
      left, right
      kev
    Мы хотим, чтобы глубина дерева была \mathcal{O}(\log n), где n — количество узлов в дереве.
Для этого заведем несколько условий
  condition \alpha-WEIGHT(node x)
      \max\{\text{size}(x.\text{left}), \text{size}(x.\text{right})\} \leq \alpha \cdot \text{size}(x)
  condition \alpha-HEIGHT(node x)
      depth(x) \le |\log size| + 1
  condition WEAK \alpha-HEIGHT(node x)
                                                                    ▷ maxSize will be defined later
      depth(x) \leq |\log \max Size| + 1
```

Желаемая максимальная высота дерева (n- количество узлов с ключами $)-\mathcal{O}(\log_{\frac{1}{2}}n).$

Если $\alpha = \frac{1}{2}$, то результатом будет идеально сбалансированное дерево, то есть α — это, грубо говоря, разрешённое отклонение размера поддеревьев от состояния баланса.

Узел называется *глубоким*, если он нарушает weak α -height condition. Глубокие узлы мы не любим и каждый раз, когда они у нас будут появляться, мы будем переподвешивать часть дерева так, чтобы они переставали быть глубокими.

Заметим, что если дерево α -weight balanced, то оно и α -height balanced. Обратного следствия нет, потому что может быть «один сын справа, а слева сбалансированное поддерево».

Иногда мы будем перестраивать все дерево. Чтобы реализовать вставку и удаление, нам также потребуется хранить величину maxSize для всего дерева tree. maxSize — штука, отвечающая какой максимальный размер был у дерева с момента последней его полной перестройки. (То есть, кроме собственно дерева с ключами, мы храним дополнительно только size и maxSize — два числа.) Также, нам понадобится еще один инвариант для нашего дерева

Инвариант: $\alpha \cdot \text{maxSize} < \text{size} < \text{maxSize}$

Заметим, что из этого инварианта следует, что глубина дерева без глубоких вершин не превосходит $\mathcal{O}(\log n)$.

Удаление: просто удаляем. Проверяем, не нарушился ли инвариант. Если нарушился — просто перестроим всё дерево с нуля, сделав массив с ключами за линию и соорудив из него идеально сбалансированное дерево. size при этом уменьшается на 1, а maxSize = size.

Bcmaeка: сначала стандартная вставка, добавляем ключ в лист. При этом size увеличивается на 1,

$$\max Size := \max \{\max Size, size\}.$$

Может, однако, оказаться так, что новый узел x оказался глубоким. Тогда рассмотрим путь от x до корня $a_0 \dots a_H$ и найдём среди этих узлов (просто за линию, посчитав количество) самый нижний, не сбалансированный по весу (такой найдётся, докажем) и перестраиваем (глупо, за линию) дерево под ним.

Theorem 1. Среди $a_0 \dots a_H$ всегда найдётся узел, не сбалансированный по весу (козёл отпущения).

Доказательство. Пусть нет, тогда $\operatorname{size}(a_i) \leq \alpha \cdot \operatorname{size}(a_{i+1})$. Тогда $\operatorname{size}(x) \leq \alpha^H \cdot \operatorname{size}(T)$. Прологарифмируем это неравенство по основанию $\frac{1}{\alpha}$:

$$0 \le -H + \log_{\frac{1}{\alpha}} n$$

Theorem 2. При вставке элемента сохраняется сбалансированность по высоте.

Доказательство. Интересен только случай, когда вставленный элемент глубокий. Достаточно показать, что при перестройке глубина перестроенного поддерева уменьшится. Заметим, что у нас в каждый момент времени бывает не более одного глубокого

элемента (при вставке может появится только один, вот-вот вставленный, а при удалении maxSize меняется только если все дерево было перестроено), значит, глубина поддерева может остаться прежней тогда и только тогда, когда выбранное поддерево состояло из полного поддерева с добавленным к нему одним глубоким элементом. Но такое поддерево удовлетворяет условию сбалансированности по весу, а значит, мы его не могли выбрать.

Корректность мы показали, но у нас остались операции перестройки, которые работают в худшем случае за линию. Покажем, что они хорошо амортизируются.

2.2 Время работы

Сначала разберемся с перестройкой дерева при удалении. Эта операция линейна и происходит не чаще, чем раз в $\alpha \cdot \text{size}(T)$ операций удаления, а значит, имеет ее амортизированная сложность $\mathcal{O}(1)$.

Осталась операция перестройки нижнего несбалансированного поддерева при вставке. Пусть корень этого дерева — x. У этого поддерева есть больший ребенок (не умаляя общности будем считать, что он левый) и меньший (соответственно, правый). Рассмотрим все операции вставки в левое поддерево и удаления из правого поддерева с момента последней перестройки какого-либо родителя x. Для того, чтобы x перестал быть сбалансированный по высоте, их количество должно быть хотя бы линейно от size(x). Сопоставим все эти операции перестройке дерева. Заметим, что каждая вставка и удаление была сопоставлена не более чем $\mathcal{O}(\log n)$ перестройкам, значит, амортизированная сложность этих операций не увеличилась. При этом каждой перестройке мы сопоставили линейное количество вставок и удалений, значит, амортизированная сложность всех перестроек не превосходит $\mathcal{O}(1)$.

Таким образом, операции вставки у удаления работают за амортизированное время $\mathcal{O}(\log n)$.

3 Splay tree

Оригинальная статья: [ST85]

3.1 Общая структура дерева

В этом дереве мы каждый раз, когда захотим что-то сделать с вершиной, будем поднимать ее до корня (операция splay). В самом дереве в этот раз мы можем не хранить ничего, кроме корня гоот. Но часто хочется уметь быстро считать размер дерева, для этого можно хранить отдельную переменную size для всего дерева.

```
structure TREE

root
size ▷ optional

structure NODE
left, right
key
```

Рис. 1: Zig

Выразим сначала операции insert и erase через операцию splay, а потом будем разбираться со splay. Для erase нам понадобится операция splay_front(node). Эта операция делает splay для наименьшего ключа в поддереве.

- 1: **procedure** INSERT(x)
- 2: standard insert(x)
- 3: splay(x)
- 4: **procedure** GET(x)
- 5: splay(x)
- 6: **procedure** ERASE(x)
- 7: splay(x)
- 8: splay front(root.right)
- 9: standard erase(x)

Два вызова функции splay при удалении нужны для того, чтобы правый сын корневой вершины не имел левого сына (потому что он содержит наименьший ключ в своем поддереве) и операция standard_erase(x) работала за $\mathcal{O}(1)$ (потому что она просто возьмет этого правого сына и поставит на место удаленного корня). Еще стоит отметить, что даже при простом доступе к вершине мы вызываем операцию splay, это нужно потому что наше дерево может иметь довольно большую глубину во время работы, а оценка у нас будет только на амортизированную сложность операции splay.

3.2 Splay

Итак, нам надо научиться понимать вершину в корень. Это делается при помощи нескольких видов вращений дерева. Все вращения в дальнейшем будем рассматривать с точностью до симметрии. Простейшее вращение называется zig (см. рис. 1). Легко видеть, что это вращение поднимает вершину x на один уровень выше. При помощи одного этого вращения можно поднять вершину в корень, но для амортизационного анализа нам этого не хватит, поэтому мы будем делать сразу двойные вращения.

Двойные вращения бывают двух видов: zig-zig (рис. 2) и zig-zag (рис. 3). Оба эти вращения реализуются при помощи пары вращений zig, но для того, чтобы выразить zig-zig, надо сначала выполнить zig от вершины p, и только потом от x. Zig-zag при этом выражается как два вызова zig от x. Стоит отметить, что при splay мы не сможем выполнить двойное вращение, если интересующая нас вершина непосредственный сын

Рис. 2: Zig-zig

Рис. 3: Zig-zag

корня, тогда мы должны сделать zig и не забыть его посчитать при анализе (но он может быть только один).

Для анализа, мы воспользуемся методом потенциалов. Для начала заведем функцию $w: \text{keys} \to \mathbb{R}_{\geq 1}$. На нее тоже будут какие-то условия. Про то, какой она может быть, поймем позже, пока можно считать, что она всегда возвращает 1, реально менять ее придется только для следствий. Определим функцию «размера» поддерева $s(x) = \sum_{v \in \text{subtree of } x} w(v)$ и функцию «ранга» $r(x) = \log_2 s(x)$ (логарифм двоичный, это неожиданно важно, но дальше основание писать не будем), а функцией потенциала всего дерева T будет $\Phi(T) = \sum_{x \in T} r(x)$. Для того, чтобы метод потенциалов работал, нужно чтобы Φ всегда было неотрицательно. При $w \equiv 1$ это очевидно, а вообще это надо запомнить как первое ограничение на w. Амортизированная стоимость операции splay am.cost = $\Delta \Phi$ + #rotations (да, это просто определение). Пусть мы выполнили один splay. Теперь r(x) и s(x) будут обозначать значения до вызова операции, а r'(x) и s'(x) — после. Тогда на самом деле мы хотим доказать следующую теорему:

Theorem 3.
$$am.cost \leq 3(r'(x) - r(x)) + \mathcal{O}(1)$$

 $extit{Доказательство}.$ Надо оценить $\Delta\Phi$ для каждого из вращений.

Zig:

$$\Delta \Phi = r'(p) - r(p) + r'(x) - r(x)$$

$$= r'(p) - r(x) \qquad \text{since } r'(x) = r(p)$$

$$\leq r'(x) - r(x) \qquad \text{since } p \text{ is lower than } x \text{ after zig}$$

Дополнительно стоит отметить, что $r'(x) \ge r(x)$ поскольку слева написана сумма по большему множеству, поэтому если мы вдруг захотим это умножить на какую-нибудь произвольно взятую константу 3, ничего не испортится.

Zig-zig:

$$\begin{split} \Delta \Phi &= r'(g) - r(g) + r'(p) - r(p) + r'(x) - r(x) \\ &= r'(g) + r'(p) - r(p) - r(x) \\ &\leq r'(g) + r'(x) - 2r(x) & \text{due to the tree structure} \\ &\leq 3(r'(x) - r(x)) - 2 & \text{since } r'(g) + r(x) \leq 2(r'(x) - 1) \end{split}$$

Осталось показать почему $r'(g) + r(x) \le 2(r'(x) - 1)$.

$$\frac{r'(g) + r(x)}{2} = \log s'(g) + \log s(x)$$

$$\leq \log \left(\frac{s'(x) - w(p)}{2}\right)$$

$$= \log(s'(x) - w(p)) - 1$$

$$\leq r'(x) - 1$$
Jensen's inequality

Zig-zag:

$$\begin{split} \Delta \Phi &= r'(g) - r(g) + r'(p) - r(p) + r'(x) - r(x) \\ &= r'(g) + r'(p) - r(p) - r(x) \\ &\leq r'(g) + r'(p) - 2r(x) & \text{due to the tree structure} \\ &\leq 3(r'(x) - r(x)) - 2 & \text{since } r'(g) + r'(p) \leq 2(r'(x) - 1) \end{split}$$

Доказательство неравенства $r'(g) + r'(p) \le 2(r'(x) - 1)$ в точности повторяет доказательство аналогичного неравенства выше.

Изменения потенциала от каждого двойного вращения мы оценили как 3(r'(x)-r(x))-2. Все наши страдания были на самом деле направлены на то, чтобы получить двойку в конце. Теперь, когда мы просуммируем по всем вращениям при операции splay, мы получим оценку $\Delta\Phi \leq 3(r'(x)-r(x))-\#\text{rotations}+\mathcal{O}(1)$, поскольку все промежуточные r(x) скомпенсируются, zig будет вызван не более одного раза, а в оценке двойных вращений есть слагаемое -2, которые просуммируются в количество вращений. Таким образом, am.cost = $\Delta\Phi+\#\text{rotations} \leq 3(r'(x)-r(x))+\mathcal{O}(1)$, что нам и надо.

Следствия я тоже допишу позже.

todo 1

Список литературы

- [And89] Arne Andersson. «Improving partial rebuilding by using simple balance criteria». B: Workshop on Algorithms and Data Structures. Springer. 1989, c. 393—402.
- [GR93] Igal Galperin и Ronald L Rivest. «Scapegoat Trees.» В: SODA. Т. 93. 1993, с. 165—174.
- [ST85] Daniel Dominic Sleator и Robert Endre Tarjan. «Self-Adjusting Binary Search Trees». В: J. ACM 32.3 (июль 1985), с. 652—686. ISSN: 0004-5411. DOI: 10. 1145/3828.3835. URL: https://doi.org/10.1145/3828.3835.