MACHINE LEARNING LAB

EXERCISE 9

Aim:

1.Implement a neural network from scratch. Take any dataset. Run minimum 200 iterations and get the result. Use the gradient descent optimization technique for weight optimization.

2.For the same dataset, build a neural network using keras library. Run the same number of epochs and compare the results obtained with your model vs the built-in keras mode.

Algorithm:

1. Load and Preprocess the Dataset:

- Choose a dataset suitable for binary classification.
- Preprocess the dataset by normalizing the features and encoding the labels if necessary.

2. Initialize the Neural Network Class:

• Define a class NeuralNetwork with methods for initialization, forward propagation, backward propagation, training, prediction, and evaluation.

3. Implement the Neural Network from Scratch:

- Define the architecture of the neural network including the number of layers, neurons in each layer, activation functions, loss function, and optimization technique (Gradient Descent).
- Implement methods for weight initialization, activation functions (ReLU and Sigmoid), loss calculation (cross-entropy), and gradient descent optimization.

4. Train the Neural Network from Scratch:

- Initialize an instance of the NeuralNetwork class.
- Split the dataset into training and testing sets.
- Train the neural network on the training data for a minimum of 200 iterations using gradient descent optimization.
- Monitor the training loss and accuracy.

5. Evaluate the Performance of the Scratch Model:

- Use the trained model to predict labels for the testing data.
- Evaluate the accuracy and other performance metrics of the model.

6. Build and Train a Neural Network using Keras:

- Use the Keras library to define a neural network with the same architecture as the one implemented from scratch.
- Compile the model with appropriate loss function, optimizer (Gradient Descent), and metrics.

• Train the Keras model on the same dataset for the same number of epochs as the scratch model.

7. Compare the Results:

• Compare the accuracy and other metrics obtained from both models.

Code and Output Part 1:

Importing required libraries

```
In [18]:
           import pandas as pd
           import numpy as np
           import seaborn as sns
           import matplotlib.pyplot as plt
           from sklearn.preprocessing import OneHotEncoder, StandardScaler, PolynomialFeatures,
           from sklearn.metrics import confusion_matrix
           from sklearn import preprocessing
           from sklearn.model_selection import train_test_split
In [19]:
           df=pd.read_csv(r"C:\Users\TEJU\Downloads\osteoporosis.csv")
In [20]:
           df.head()
Out[20]:
                                         Hormonal
                                                     Family
                                                                                 Body
                                                                                         Calcium
                                                                                                  Vitamin E
                                                            Race/Ethnicity
                   ld Age
                           Gender
                                                                                          Intake
                                                                                                     Intake
                                          Changes
                                                   History
                                                                               Weight
             1734616
                            Female
                                            Normal
                                                                                                   Sufficien<sup>-</sup>
                                                        Yes
                                                                    Asian
                                                                           Underweight
                                                                                            Low
             1419098
                        32
                            Female
                                            Normal
                                                        Yes
                                                                     Asian
                                                                           Underweight
                                                                                            Low
                                                                                                   Sufficien
          2 1797916
                        89
                                    Postmenopausal
                                                        No
                                                                 Caucasian
                                                                                       Adequate
                                                                                                   Sufficien<sup>-</sup>
                            Female
                                                                               Normal
             1805337
                            Female
                                            Normal
                                                        No
                                                                 Caucasian
                                                                           Underweight Adequate
                                                                                                 Insufficien<sup>-</sup>
                                                                   African
                                                                                                   Sufficien<sup>-</sup>
             1351334
                        38
                              Male
                                    Postmenopausal
                                                        Yes
                                                                               Normal
                                                                                            Low
                                                                 American
In [21]:
           df.info()
          <class 'pandas.core.frame.DataFrame'>
          RangeIndex: 1958 entries, 0 to 1957
          Data columns (total 16 columns):
           #
                Column
                                       Non-Null Count
                                                         Dtype
           0
                Ιd
                                       1958 non-null
                                                         int64
           1
                                       1958 non-null
                                                         int64
                Age
            2
                                       1958 non-null
                                                         object
                Gender
            3
                Hormonal Changes
                                       1958 non-null
                                                         object
            4
                                       1958 non-null
                                                         object
                Family History
            5
                Race/Ethnicity
                                       1958 non-null
                                                         object
                                                         object
            6
                Body Weight
                                       1958 non-null
            7
                Calcium Intake
                                       1958 non-null
                                                         object
```

1958 non-null

object

Vitamin D Intake

```
9 Physical Activity 1958 non-null object 10 Smoking 1958 non-null object 11 Alcohol Consumption 1958 non-null object 12 Medical Conditions 1958 non-null object 13 Medications 1958 non-null object 14 Prior Fractures 1958 non-null object 15 Osteoporosis 1958 non-null int64 https: int64(3), object(13)
```

dtypes: int64(3), object(13)
memory usage: 244.9+ KB

```
In [22]:
df.drop(columns = ['Id'], inplace = True)
```

```
In [23]:
    encoder = LabelEncoder()
    for col in df.columns[1:-1]:
        df[col] = encoder.fit_transform(df[col].values)

    df.head()
```

Out[23]:

	Age	Gender	Hormonal Changes	-	Race/Ethnicity	Body Weight	Calcium Intake	Vitamin D Intake	Physical Activity	Smoking
0	69	0	0	1	1	1	1	1	1	1
1	32	0	0	1	1	1	1	1	1	0
2	89	0	1	0	2	0	0	1	0	0
3	78	0	0	0	2	1	0	0	1	1
4	38	1	1	1	0	0	1	1	0	1


```
In [24]: X=df.drop('Osteoporosis',axis=1)
```

```
In [25]: y=df['Osteoporosis'].values.reshape(X.shape[0], 1)
```

Splitting into training and testing dataset

```
In [26]: X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_stat
```

Standardising

```
In [27]:
    sc = StandardScaler()
    sc.fit(X_train)
    X_train = sc.transform(X_train)
    X_test = sc.transform(X_test)
```

Neural Network from scratch

```
In [28]:
    class NeuralNetwork():
        A two layer neural network having
```

```
- input layer ( 14 nodes)
- hidden layer (8 nodes)
- output layer (1 node) (binary classification)
def __init__(self, layers=[14,8,1], lr=0.005, epochs=200):
    self.parameters = {}
    self.lr = lr
    self.epochs = epochs
    self.losses = []
    self.sample_size = None
    self.layers = layers
    self.X = None
    self.y = None
def parameter_init(self):
    Initialize the weights randomly using numpy
    W1- weights of the nodes in input layer (8,5)
    b1- biases of nodes in hidden layer
    W2- weights of the nodes in hidden layer (5,1)
    b2- biases of nodes in output layer
    np.random.seed(42) # Seed the random number generator
    self.parameters["W1"] = np.random.randn(self.layers[0], self.layers[1])
    self.parameters['b1'] =np.random.randn(self.layers[1],)
    self.parameters['W2'] = np.random.randn(self.layers[1],self.layers[2])
    self.parameters['b2'] = np.random.randn(self.layers[2],)
def relu(self,Z):
    ReLU (Rectified Linear Unit)
    It will return the value passed to it if it is greater than zero;
    otherwise, it returns zero.
    The weighter sum and bias term from the input layer is passed to this activa-
    return np.maximum(0,Z)
def relu_der(self, x):
    x[x \le 0] = 0
    x[x>0] = 1
    return x
def eta(self, x):
    When our neural network gives 0 value to log, this results in infinity which
    To avoid this, if our value is 0, then it is replaced with an extremely smal
    ETA = 0.00000001
    return np.maximum(x, ETA)
def sigmoid(self,Z):
    Sigmoid function
    Take a real number and squashes it to value between 0 and 1.
    return 1/(1+np.exp(-Z))
def entropy_loss(self,y, yhat):
    nsample = len(y)
    yhat_inv = 1.0 - yhat
    y_{inv} = 1.0 - y
    yhat = self.eta(yhat) ## clips value to avoid NaNs in log
```

```
yhat inv = self.eta(yhat inv)
    loss = -1/\text{nsample} * (\text{np.sum}(\text{np.multiply}(\text{np.log}(\text{yhat}), y) + \text{np.multiply}((\text{y_in}))
    return loss
def forward_propagation(self):
    #Performs the forward propagation
    Z1 = self.X.dot(self.parameters['W1']) + self.parameters['b1']
    A1 = self.relu(Z1)
    Z2 = A1.dot(self.parameters['W2']) + self.parameters['b2']
    yhat = self.sigmoid(Z2)
    loss = self.entropy_loss(self.y,yhat)
    # save calculated parameters
    self.parameters['Z1'] = Z1
    self.parameters['Z2'] = Z2
    self.parameters['A1'] = A1
    return yhat,loss
def back_propagation(self,yhat):
    # Computes the derivatives and update weights and bias according.
    y_{inv} = 1 - self.y
    yhat_inv = 1 - yhat
    dl_wrt_yhat = np.divide(y_inv, self.eta(yhat_inv)) - np.divide(self.y, self.
    dl wrt sig = yhat * (yhat_inv)
    dl_wrt_z2 = dl_wrt_yhat * dl_wrt_sig
    dl_wrt_A1 = dl_wrt_z2.dot(self.parameters['W2'].T)
    dl_wrt_w2 = self.parameters['A1'].T.dot(dl_wrt_z2)
    dl_wrt_b2 = np.sum(dl_wrt_z2, axis=0, keepdims=True)
    dl_wrt_z1 = dl_wrt_A1 * self.relu_der(self.parameters['Z1'])
    dl_wrt_w1 = self.X.T.dot(dl_wrt_z1)
    dl_wrt_b1 = np.sum(dl_wrt_z1, axis=0, keepdims=True)
    #gradient descent weight optimisation
    self.parameters['W1'] = self.parameters['W1'] - self.lr * dl_wrt_w1
    self.parameters['W2'] = self.parameters['W2'] - self.lr * dl wrt w2
    self.parameters['b1'] = self.parameters['b1'] - self.lr * dl_wrt_b1
    self.parameters['b2'] = self.parameters['b2'] - self.lr * dl_wrt_b2
def fit(self, X, y):
    Trains the neural network using the specified data and labels
    self.X = X
    self.y = y
    self.parameter init()
    for i in range(self.epochs):
        yhat, loss = self.forward propagation()
        self.back_propagation(yhat)
        self.losses.append(loss)
def predict(self, X):
    Predicts on a test data
    Z1 = X.dot(self.parameters['W1']) + self.parameters['b1']
    A1 = self.relu(Z1)
    Z2 = A1.dot(self.parameters['W2']) + self.parameters['b2']
    pred = self.sigmoid(Z2)
```

```
In [29]:
     nn=NeuralNetwork()
     nn.fit(X_train, y_train)
```

```
In [30]: nn.plot_loss()
```



```
In [31]:
    train_pred = nn.predict(X_train)
    test_pred = nn.predict(X_test)

    print("Train accuracy is {}".format(nn.acc(y_train, train_pred)))
    print("Test accuracy is {}".format(nn.acc(y_test, test_pred)))

    conf_matrix = confusion_matrix(y_test ,test_pred)
    print(conf_matrix)
```

C:\Users\TEJU\AppData\Local\Temp/ipykernel_13592/3831387372.py:138: DeprecationWarnin g: Conversion of an array with ndim > 0 to a scalar is deprecated, and will error in future. Ensure you extract a single element from your array before performing this op

ML EX 9 4/1/24, 6:15 PM

```
eration. (Deprecated NumPy 1.25.)
  acc = int(sum(y == yhat) / len(y) * 100)
```

Code and Output Part 2:

```
In [1]:
          import tensorflow as tf
          import pandas as pd
          import seaborn as sns
          import matplotlib.pyplot as plt
          from sklearn.preprocessing import OneHotEncoder, StandardScaler, PolynomialFeatures,
          from sklearn.metrics import confusion_matrix
          from sklearn import preprocessing
          from sklearn.model_selection import train_test_split
         C:\Users\TEJU\anaconda3\lib\site-packages\scipy\__init__.py:146: UserWarning: A NumPy
         version >=1.16.5 and <1.23.0 is required for this version of SciPy (detected version
         1.26.4
           warnings.warn(f"A NumPy version >={np_minversion} and <{np_maxversion}"</pre>
In [2]:
          df2=pd.read_csv(r"C:\Users\TEJU\Downloads\osteoporosis.csv")
In [3]:
          df2.head()
Out[3]:
                                        Hormonal
                                                    Family
                                                                                 Body
                                                                                        Calcium
                                                                                                 Vitamin E
                  ld Age
                           Gender
                                                            Race/Ethnicity
                                          Changes
                                                   History
                                                                               Weight
                                                                                          Intake
                                                                                                     Intake
                                                                                                   Sufficien<sup>-</sup>
            1734616
                       69
                           Female
                                           Normal
                                                       Yes
                                                                    Asian
                                                                          Underweight
                                                                                            Low
                                                                                                   Sufficien
            1419098
                           Female
                                           Normal
                       32
                                                       Yes
                                                                    Asian
                                                                          Underweight
                                                                                            Low
            1797916
                       89
                           Female
                                   Postmenopausal
                                                       No
                                                                Caucasian
                                                                               Normal Adequate
                                                                                                   Sufficien<sup>-</sup>
            1805337
                                                                          Underweight Adequate
                                                                                                 Insufficien<sup>-</sup>
                       78
                           Female
                                           Normal
                                                       No
                                                                Caucasian
                                                                   African
                                                                                                   Sufficien
            1351334
                       38
                                                                               Normal
                             Male Postmenopausal
                                                       Yes
                                                                                            Iow
                                                                 American
In [4]:
          df2.drop(columns = ['Id'], inplace = True)
In [5]:
          encoder = LabelEncoder()
          for col in df2.columns[1:-1]:
               df2[col] = encoder.fit_transform(df2[col].values)
          df2.head()
Out[5]:
                                                                              Vitamin
                                                                                       Physical
                          Hormonal
                                                              Body
                                                                     Calcium
                                      Family
            Age Gender
                                              Race/Ethnicity
                                                                                                Smoking
                                                            Weight
                                                                                       Activity
                            Changes
                                     History
                                                                      Intake
                                                                               Intake
         0
              69
                       0
                                  0
                                           1
                                                         1
                                                                  1
                                                                           1
                                                                                    1
                                                                                             1
                                                                                                       1
              32
                                  0
                                                                                                       0
                                                         2
                                                                  0
                                                                           0
                       0
                                           0
                                                                                    1
                                                                                             0
                                                                                                       0
```

1

89

2

```
Vitamin
                             Family
                                                        Body Calcium
                                                                                 Physical
                 Hormonal
                                      Race/Ethnicity
                                                                                           Smokina
   Age Gender
                                                                                  Activity
                   Changes History
                                                     Weight
                                                                Intake
                                                                         Intake
    78
                          0
                                                           1
                                                                     0
3
              0
                                                  2
                                                                                                  1
                                                  n
                                                           0
                                                                     1
                                                                                        0
4
    38
              1
                          1
                                   1
                                                                              1
                                                                                                  1
```

```
In [6]:
          X=df2.drop('Osteoporosis',axis=1)
 In [7]:
          y=df2['Osteoporosis'].values.reshape(X.shape[0], 1)
 In [8]:
          X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_stat
 In [9]:
          sc = StandardScaler()
          sc.fit(X_train)
          X_train = sc.transform(X_train)
          X_test = sc.transform(X_test)
          X_train.shape
          (1566, 14)
Out[9]:
In [10]:
          from keras.models import Sequential
          from keras.layers import Dense
In [11]:
          ann = Sequential()
          ann.add(Dense(units=14, activation='relu',
           input dim=14))
          ann.add(Dense(units=8, activation='relu'))
          ann.add(Dense(units=1, activation='sigmoid'))
         C:\Users\TEJU\anaconda3\lib\site-packages\keras\src\layers\core\dense.py:88: UserWarn
         ing: Do not pass an `input_shape`/`input_dim` argument to a layer. When using Sequent
         ial models, prefer using an `Input(shape)` object as the first layer in the model ins
         tead.
           super().__init__(activity_regularizer=activity_regularizer, **kwargs)
In [12]:
          ann.compile(optimizer='sgd', loss=
           'binary_crossentropy',
           metrics=['accuracy'])
In [13]:
          history=ann.fit(X_train,y_train, epochs=200,batch_size=32)
         Epoch 1/200
         49/49
                                   - 1s 2ms/step - accuracy: 0.5249 - loss: 0.7126
         Epoch 2/200
         49/49
                                     0s 1ms/step - accuracy: 0.5610 - loss: 0.6914
         Epoch 3/200
         49/49
                                     0s 2ms/step - accuracy: 0.5914 - loss: 0.6661
         Epoch 4/200
         49/49
                                   - 0s 2ms/step - accuracy: 0.6142 - loss: 0.6481
```

					WIE EX O				
	5/200	0s	1ms/step	_	accuracy:	0.6667	_	loss:	0.6284
Epoch	6/200				-				
Epoch	7/200								
	8/200	0s	1ms/step	-	accuracy:	0.6877	-	loss:	0.6088
49/49		0s	1ms/step	-	accuracy:	0.6903	-	loss:	0.5947
	9/200	0s	2ms/step	_	accuracy:	0.7182	_	loss:	0.5809
	10/200	00	1mc/s+on		2661112611	A 720E		10551	A EE90
Epoch	11/200				-				
	12/200	0s	2ms/step	-	accuracy:	0.7550	-	loss:	0.5309
49/49		0s	2ms/step	-	accuracy:	0.7482	-	loss:	0.5360
Epoch 49/49	13/200	95	1ms/sten	_	accuracy:	0.7771	_	loss:	0.5028
Epoch	14/200								
	15/200	0s	2ms/step	-	accuracy:	0.7773	-	loss:	0.4994
49/49	15/200	0s	2ms/step	_	accuracy:	0.8030	_	loss:	0.4842
Epoch	16/200								
	17/200	ØS.	2ms/step	-	accuracy:	0.8013	-	loss:	0.4/20
49/49		0s	1ms/step	-	accuracy:	0.7931	-	loss:	0.4711
	18/200	Q.c	1mc/c+on		accupacy:	0 0000		10551	0 1117
Epoch	19/200								
	20/200	0s	1ms/step	-	accuracy:	0.8307	-	loss:	0.4267
	20/200	0s	2ms/step	_	accuracy:	0.8092	_	loss:	0.4421
	21/200	00	Ams/stan		2661122611	a 0111		10551	0 4102
Epoch	22/200				-				
	23/200	0s	1ms/step	-	accuracy:	0.8231	-	loss:	0.4119
		0s	2ms/step	-	accuracy:	0.8264	-	loss:	0.4101
	24/200	Q.c	2ms/ston		accupacy:	0 0267		1055	0 2005
Epoch	25/200				-				
	26/200	0s	1ms/step	-	accuracy:	0.8392	-	loss:	0.3922
49/49	20/200	0s	1ms/step	_	accuracy:	0.8435	_	loss:	0.3820
	27/200	۵c	2ms/stan	_	accuracy:	0 8106	_	1000	0 3851
Epoch	28/200		·		-				
	29/200	0s	2ms/step	-	accuracy:	0.8287	-	loss:	0.3764
49/49		0s	1ms/step	_	accuracy:	0.8314	_	loss:	0.3826
Epoch	30/200	00	2ms/stan		2661122611	0 0242		10551	0 2072
Epoch	31/200								
	22/200	0s	2ms/step	-	accuracy:	0.8405	-	loss:	0.3692
49/49	32/200	0s	2ms/step	_	accuracy:	0.8256	_	loss:	0.3884
Epoch	33/200				accuracy:				
Fnoch	3/1/200								
	,	0s	1ms/step	-	accuracy:	0.8442	-	loss:	0.3598
±poch 49/49	35/200	0s	2ms/step	_	accuracy:	0.8417	_	loss:	0.3674
Epoch	36/200								
49/49		0s	2ms/step	-	accuracy:	0.8211	-	loss:	0.3987

				IVIL EX 9			
	37/200	0s	2ms/step -	accuracy:	0.8501	- loss:	0.3711
Epoch	38/200						
Epoch	39/200						
Epoch	40/200		·	-			
Epoch	41/200						
	42/200	0s	1ms/step -	accuracy:	0.8382	- loss:	0.3672
49/49	43/200	0s	3ms/step -	accuracy:	0.8625	- loss:	0.3250
49/49		0s	4ms/step -	accuracy:	0.8436	- loss:	0.3622
49/49	44/200	0s	1ms/step -	accuracy:	0.8509	- loss:	0.3465
Epoch 49/49	45/200 	0s	2ms/step -	accuracy:	0.8455	- loss:	0.3514
Epoch 49/49	46/200	0s	3ms/step -	accuracy:	0.8339	- loss:	0.3615
Fnoch	47/200						
Epoch	48/200		1ms/step -				
Epoch	49/200			-			
Epoch	50/200		1ms/step -				
Epoch	51/200		1ms/step -				
	52/200	0s	2ms/step -	accuracy:	0.8516	- loss:	0.3503
-	53/200	0s	2ms/step -	accuracy:	0.8522	- loss:	0.3502
49/49		0s	2ms/step -	accuracy:	0.8326	- loss:	0.3867
49/49		0s	2ms/step -	accuracy:	0.8524	- loss:	0.3569
49/49		0s	1ms/step -	accuracy:	0.8474	- loss:	0.3465
49/49	56/200	0s	1ms/step -	accuracy:	0.8319	- loss:	0.3676
	57/200 ————————	0s	991us/step	- accurac	y: 0.849	7 - los	s: 0.3552
Epoch 49/49	58/200	0s	1ms/step -	accuracv:	0.8385	- loss:	0.3629
Epoch	59/200		1ms/step -				
Epoch	60/200			-			
Epoch	61/200		1ms/step -				
Epoch	62/200		1ms/step -				
Epoch	63/200	0s	1ms/step -	accuracy:	0.8548	- loss:	0.3443
-	64/200	0s	3ms/step -	accuracy:	0.8499	- loss:	0.3458
49/49		0s	1ms/step -	accuracy:	0.8498	- loss:	0.3409
49/49		0s	3ms/step -	accuracy:	0.8535	- loss:	0.3362
49/49		0s	1ms/step -	accuracy:	0.8563	- loss:	0.3386
49/49		0s	3ms/step -	accuracy:	0.8368	- loss:	0.3595
	68/200	0s	960us/step	- accurac	y: 0.852	5 - los	s: 0.3371

				IVIL EX 9				
	69/200	0s	958us/step	- accurac	y: 0.856	59	- loss	s: 0.3292
Epoch	70/200							
Epoch	71/200							
Epoch	72/200		·	-				
Epoch	73/200							
Epoch	74/200							
Epoch	75/200							
Epoch	76/200							
Epoch	77/200							
49/49	78/200	0s	1ms/step -	accuracy:	0.8486	-	loss:	0.3381
49/49	79/200	0s	1ms/step -	accuracy:	0.8401	-	loss:	0.3418
49/49		0s	1ms/step -	accuracy:	0.8548	-	loss:	0.3249
49/49		0s	1ms/step -	accuracy:	0.8376	-	loss:	0.3396
49/49		0s	1ms/step -	accuracy:	0.8571	-	loss:	0.3352
49/49		0s	2ms/step -	accuracy:	0.8459	-	loss:	0.3364
	83/200	0s	1ms/step -	accuracy:	0.8470	-	loss:	0.3297
•	84/200	0s	1ms/step -	accuracy:	0.8418	_	loss:	0.3456
	85/200	0s	1ms/step -	accuracy:	0.8386	_	loss:	0.3414
	86/200		2ms/step -					
Epoch	87/200							
Epoch	88/200							
Epoch	89/200							
Epoch	90/200							
Epoch	91/200							
Epoch	92/200							
Epoch	93/200		1ms/step -	-				
Epoch	94/200		2ms/step -	-				
	95/200	0s	1ms/step -	accuracy:	0.8609	-	loss:	0.3184
	96/200	0s	1ms/step -	accuracy:	0.8516	-	loss:	0.3292
49/49		0s	2ms/step -	accuracy:	0.8575	-	loss:	0.3259
49/49		0s	2ms/step -	accuracy:	0.8511	-	loss:	0.3282
49/49		0s	1ms/step -	accuracy:	0.8389	-	loss:	0.3490
49/49		0s	1ms/step -	accuracy:	0.8478	-	loss:	0.3349
	100/200	0s	1ms/step -	accuracy:	0.8614	-	loss:	0.3133

					IVIL EX 9				
	101/200	0s	1ms/step	_	accuracy:	0.8629	_	loss:	0.3130
	102/200	0s	2ms/step	_	accuracy:	0.8327	_	loss:	0.3569
Epoch	103/200				_				
Epoch	104/200		·						
Epoch	105/200				accuracy:				
Epoch	106/200								
Epoch	107/200				accuracy:				
Epoch	108/200								
Epoch	109/200		·		accuracy:				
Epoch	110/200		•		accuracy:				
Epoch	111/200	0s	1ms/step	-	accuracy:	0.8376	-	loss:	0.3358
Epoch	112/200	0s	1ms/step	-	accuracy:	0.8421	-	loss:	0.3382
-	113/200	0s	1ms/step	-	accuracy:	0.8467	-	loss:	0.3276
	114/200	0s	1ms/step	-	accuracy:	0.8277	-	loss:	0.3609
	115/200	0s	1ms/step	-	accuracy:	0.8369	-	loss:	0.3438
-	116/200	0s	1ms/step	-	accuracy:	0.8549	-	loss:	0.3124
49/49		0s	1ms/step	-	accuracy:	0.8418	-	loss:	0.3505
49/49		0s	1ms/step	-	accuracy:	0.8562	-	loss:	0.3172
49/49		0s	1ms/step	-	accuracy:	0.8477	-	loss:	0.3333
49/49		0s	1ms/step	-	accuracy:	0.8420	-	loss:	0.3436
49/49		0s	1ms/step	-	accuracy:	0.8500	-	loss:	0.3332
49/49		0s	2ms/step	-	accuracy:	0.8438	-	loss:	0.3425
49/49		0s	1ms/step	-	accuracy:	0.8550	-	loss:	0.3288
49/49		0s	1ms/step	-	accuracy:	0.8584	-	loss:	0.3241
49/49		0s	1ms/step	-	accuracy:	0.8539	-	loss:	0.3181
49/49		0s	1ms/step	-	accuracy:	0.8460	-	loss:	0.3312
49/49		0s	1ms/step	-	accuracy:	0.8443	-	loss:	0.3339
49/49		0s	1ms/step	-	accuracy:	0.8503	-	loss:	0.3351
49/49		0s	1ms/step	-	accuracy:	0.8443	-	loss:	0.3335
	129/200	0s	998us/ste	ер	- accuracy	y: 0.831	L5	- loss	s: 0.3534
49/49		0s	1ms/step	-	accuracy:	0.8362	-	loss:	0.3532
	131/200	0s	1ms/step	-	accuracy:	0.8171	-	loss:	0.3723
	132/200	0s	1ms/step	-	accuracy:	0.8571	-	loss:	0.3127

					WIE EX 0				
Epoch 49/49	133/200	0s	1ms/step	-	accuracy:	0.8358	-	loss:	0.3416
Epoch	134/200								
Epoch	135/200								
Epoch	136/200								
Epoch	137/200				_				
Epoch	138/200				_				
Epoch	139/200								
Epoch	140/200				_				
Epoch	141/200								
49/49	142/200	0s	1ms/step	-	accuracy:	0.8532	-	loss:	0.3133
49/49	143/200	0s	1ms/step	-	accuracy:	0.8521	-	loss:	0.3312
49/49	144/200	0s	1ms/step	-	accuracy:	0.8362	-	loss:	0.3405
49/49		0s	1ms/step	-	accuracy:	0.8591	-	loss:	0.3252
49/49	145/200								
Epoch 49/49	146/200	0s	1ms/step	-	accuracy:	0.8543	-	loss:	0.3271
Epoch 49/49	147/200	0s	1ms/step	_	accuracy:	0.8459	-	loss:	0.3382
	148/200	0s	1ms/step	_	accuracy:	0.8534	_	loss:	0.3224
	149/200	0s	1ms/step	_	accuracy:	0.8468	_	loss:	0.3374
Epoch	150/200				_				
Epoch	151/200				accuracy:				
Epoch	152/200								
Epoch	153/200				_				
Epoch	154/200				_				
Epoch	155/200				_				
Epoch	156/200				_				
Epoch	157/200								
Epoch	158/200								
Epoch	159/200								
49/49	160/200	0s	1ms/step	-	accuracy:	0.8604	-	loss:	0.3142
49/49	161/200	0s	1ms/step	-	accuracy:	0.8561	-	loss:	0.3110
49/49		0s	1ms/step	-	accuracy:	0.8690	-	loss:	0.2958
49/49	162/200	0s	1ms/step	-	accuracy:	0.8597	-	loss:	0.3026
49/49		0s	1ms/step	-	accuracy:	0.8485	-	loss:	0.3241
Epoch	164/200	0s	1ms/step	-	accuracy:	0.8476	-	loss:	0.3233

					IVIL EX 9				
49/49	165/200	0s	1ms/step	-	accuracy:	0.8535	_	loss:	0.3202
Epoch 49/49	166/200	0s	1ms/step	_	accuracy:	0.8564	_	loss:	0.3110
	167/200	0s	1ms/step	_	accuracy:	0.8492	_	loss:	0.3217
Epoch	168/200		·						
Epoch	169/200								
Epoch	170/200								
Epoch	171/200								
Epoch	172/200								
Epoch	173/200								
	174/200	0s	1ms/step	-	accuracy:	0.8607	-	loss:	0.3132
49/49	175/200	0s	1ms/step	-	accuracy:	0.8506	-	loss:	0.3251
49/49	176/200	0s	1ms/step	-	accuracy:	0.8618	-	loss:	0.3137
49/49		0s	1ms/step	-	accuracy:	0.8703	-	loss:	0.3100
49/49		0s	1ms/step	-	accuracy:	0.8622	-	loss:	0.3133
	178/200	0s	1ms/step	_	accuracy:	0.8551	-	loss:	0.3290
	179/200	0s	1ms/step	_	accuracy:	0.8692	_	loss:	0.3011
	180/200	0s	1ms/step	_	accuracy:	0.8540	_	loss:	0.3254
	181/200				accuracy:				
Epoch	182/200				accuracy:				
Epoch	183/200								
Epoch	184/200								
Epoch	185/200								
Epoch	186/200								
Epoch	187/200								
Epoch	188/200	0s	1ms/step	-	accuracy:	0.8628	-	loss:	0.3107
-	189/200	0s	1ms/step	-	accuracy:	0.8579	-	loss:	0.3214
-	190/200	0s	1ms/step	-	accuracy:	0.8617	-	loss:	0.3110
49/49		0s	1ms/step	-	accuracy:	0.8505	-	loss:	0.3171
49/49		0s	1ms/step	-	accuracy:	0.8712	-	loss:	0.2954
49/49		0s	1ms/step	-	accuracy:	0.8589	-	loss:	0.3206
49/49		0s	1ms/step	-	accuracy:	0.8559	-	loss:	0.3172
49/49		0s	2ms/step	-	accuracy:	0.8578	-	loss:	0.3158
49/49		0s	2ms/step	-	accuracy:	0.8496	-	loss:	0.3260
	196/200	0s	1ms/step	-	accuracy:	0.8558	_	loss:	0.3242

```
In [14]: loss = history.history['loss']
In [15]: plt plot(loss)
```

```
In [15]:
    plt.plot(loss)
    plt.title('Training Loss')
    plt.xlabel('Epochs')
    plt.ylabel('Log Loss')
    plt.show()
```



```
In [16]:
    losstest, accuracy = ann.evaluate(X_test, y_test, verbose=0)

In [17]:
    print("Test Loss:", losstest)
    print("Test Accuracy:", accuracy)
```

Test Loss: 0.3878213167190552 Test Accuracy: 0.8214285969734192

Comparative Analysis:

Neural Networks implemented from scratch and using the keras library:

- Used the same number of nodes in input, hidden and output layer (14,8,1)
- Used the same gradient descent optimisation for weights

From scratch:

- Train set accuracy 87
- Test set accuracy 83

Using keras (tensorflow) library:

• Train set accuracy - 85.9

Test set accuracy - 82.1

Based on the provided data comparing the neural network implemented from scratch and using the Keras library:

1. Performance Consistency:

- The accuracy achieved by the scratch implementation on both the train and test sets (87% and 83% respectively) is slightly higher than that achieved by the Keras implementation (85.9% and 82.1% respectively).
- This consistency in performance suggests that the scratch implementation is effective in learning the underlying patterns in the data and generalizing well to unseen samples, comparable to the performance of the Keras library.

2. Implementation Complexity vs. Performance:

- The scratch implementation requires more effort in terms of coding and understanding the underlying algorithms, but it achieves similar performance to the Keras library.
- While the Keras library offers convenience and abstraction, allowing for faster prototyping and implementation, the scratch implementation provides a deeper understanding of neural network concepts and greater flexibility in customization.
- Therefore, the choice between the two approaches depends on factors such as the trade-off between implementation complexity and performance consistency, as well as the specific requirements of the project.

Conclusion: In this particular scenario, the neural network implemented from scratch yielded better results. But it is possible that on improving the parameters (like using adam instead of sgd for optimisation and so on) could make the keras library neural network yield better results.

Results:

Therefore, we were successfully able to implement a neural network using the tensorflow (keras) library as well as from scratch and draw insights from the same.