Práctica 4:

Derivadas parciales de orden superior - Polinomio de Taylor

Derivadas de orden superior

- 1. Calcular las derivadas parciales de segundo orden para las siguientes funciones, verificando la igualdad de las derivadas parciales mixtas para aquellas funciones de clase C^2 :
 - (a) $f(x,y) = x^3y + e^{xy^2}$
 - (b) $f(x, y, z) = ye^z + \frac{e^y}{x} + xy \operatorname{sen}(z)$
 - (c) $f(x, y, z) = \sqrt{x^2 + y^2} + \ln(z)$
- 2. Calcular todas las derivadas de tercer orden para las siguientes funciones:
 - (a) f(x, y, z) = xyz

(c) $f(x, y, z) = \cos(x^2 + y) - \sin(y^2 z)$

(b) $f(x, y, z) = e^{xyz}$

- (d) $f(x, y, z) = (x^2 + y^2 + z^2)^{-1}$
- 3. Sea $f(x,y) = \cos(xy)$. Además, x e y son funciones de las variables u y v de acuerdo a las siguientes fórmulas: x(u,v) = u + v, y(u,v) = u v. Calcular

$$\frac{\partial^2}{\partial u^2} f\left(x(u,v),y(u,v)\right) \qquad \text{y} \qquad \frac{\partial^3}{\partial u \partial v^2} f\left(x(u,v),y(u,v)\right)$$

- (a) Sustituyendo
- (b) Usando la regla de la cadena.

Laplaciano - Función armónica

4. Se dice que una función $f: \mathbb{R}^n \to \mathbb{R}$ de clase C^2 satisface la ecuación de Laplace o bien que es una función armónica en un conjunto abierto $U \subset \mathbb{R}^n$ si:

$$\triangle f = \frac{\partial^2 f}{\partial x_1^2} + \dots + \frac{\partial^2 f}{\partial x_n^2} = \nabla^2 f \equiv 0 \text{ en } U$$

Verificar que las siguientes funciones son armónicas en $U\subset\mathbb{R}^3$ abierto. Determinar U en cada caso:

1

- (a) $f(x, y, z) = x^2 + y^2 2z^2$
- (c) $f(x, y, z) = \frac{1}{\sqrt{x^2 + y^2 + z^2}}$
- (b) $f(x, y, z) = \ln \sqrt{x^2 + y^2}$
- (d) $f(x, y, z) = e^{3x+4}\cos(3z) + 4y$

5. Sean f, g dos funciones C^2 definidas en un abierto $U \subset \mathbb{R}^2$ y tales que

$$\frac{\partial f}{\partial x} = -\frac{\partial g}{\partial y}$$
 $\frac{\partial f}{\partial y} = \frac{\partial g}{\partial x}$

Probar que f y g son armónicas en U.

Polinomio de Taylor

- 6. (a) Desarrollar la función $p(x) = x^4 5x^3 + 5x^2 + x + 2$ en potencias de x 2;
 - (b) Desarrollar la función $g(x) = \sqrt{x}$ en potencias de x-1 hasta orden 3.
 - (c) Hallar el polinomio de Maclaurin de grado tres para la función $f(x) = \ln(x+1)^2$.
 - (d) Hallar el polinomio de Maclaurin de grado tres para la función $g(x) = e^{x+2}$.
- 7. (a) Hallar el polinomio de Maclaurin de orden 2 y la expresión del resto para la función $f(x) = \sqrt{1+x}$.
 - (b) Evaluar el error de la igualdad aproximada $\sqrt{1+x} \approx 1 + \frac{1}{2}x \frac{1}{8}x^2$ cuando
- (a) Sea $\alpha \in \mathbb{R}$. Hallar el polinomio de Maclaurin de grado n de la función y =
 - (b) Calcular el valor de $(1,3)^{2/3}$ con error menor que 1/100.
- 9. Calcular:
 - (a) el número e con error menor que 10^{-4} ;
 - (b) $\ln \frac{2}{3}$ con error menor que 10^{-3} .
- 10. Calcular el polinomio de Taylor de segundo orden de las funciones dadas en el punto indicado. Escribir la forma de Lagrange del residuo.
 - a) $f(x,y) = (x+y)^2$ en (0,0)
 - $b) \quad f(x,y) = e^{x+y}$ en (0,0)
 - en (0,0)
 - c) $f(x,y) = \frac{1}{x^2 + y^2 + 1}$ d) $f(x,y) = e^{(x-1)^2} \cos(y)$ en (1,0)
 - e) $f(x,y) = \operatorname{sen}(xy)$ en $(1,\pi)$
 - en $(2, \frac{\pi}{4})$ en (2, 3) $f(x,y) = e^x \operatorname{sen}(y)$
 - $g) \quad f(x,y) = \ln(1+xy)$
 - $h) \quad f(x,y) = x + xy + 2y$ en (1,1)
 - i) $f(x,y) = x^y$ en (1,2)
 - j) $f(x,y,z) = x + \sqrt{y} + \sqrt[3]{z}$ en (2,3,4)

- 11. Utilizando los resultados anteriores calcular $(0.95)^{2.01}$
 - (a) con error menor que 1/200.
 - (b) con error menor que 1/5000.
- 12. Sea $f(x, y) = xe^y$.
 - (a) Calcular el polinomio de Taylor de orden 1 de f en el punto P = (1,0).
 - (b) Usar este polinomio para aproximar el valor f(0, 98; 0, 02). Estimar el error cometido.
- 13. Obtener la fórmula aproximada

$$\frac{\cos x}{\cos y} = 1 - \frac{1}{2}(x^2 - y^2)$$

para valores suficientemente pequeños de |x|, |y|.

- 14. (a) Calcular el polinomio de Taylor de grado 1 centrado en (1,1) de la función $f(x,y)=e^{x^2-y^2}$
 - (b) Usar la parte a) para evaluar $e^{\frac{4}{10}}$ usando que $\frac{4}{10} = (1 + \frac{1}{10})^2 (1 \frac{1}{10})^2$. Comprobar que el error que cometió es menor que 0.3
- 15. Calcular el polinomio de segundo grado que mejor aproxima en el origen a la función

$$f(x,y) = \operatorname{sen}(x)\operatorname{sen}(y).$$

16. Dada $f(x,y)=(x+1,2y-e^x)$ y sea $g:\mathbb{R}^2\to\mathbb{R}$ diferenciable, tal que el polinomio de Taylor de grado 2 de $g\circ f$ en (0,0) es

$$4 + 3x - 2y - x^2 + 5xy.$$

Calcular $\nabla g(1,-1)$.

- 17. Sea $f(x,y) = e^{xy} \cos(x+y)$.
 - (a) Hallar el polinomio de Taylor de orden 2 de f centrado en (0,0).
 - (b) Calcular

$$\lim_{(x,y)\to(0,0)} \frac{f(x,y)+x^2+y^2-1}{x^2+y^2}.$$

18. Sea $f: \mathbb{R}^2 \to \mathbb{R}$ una función de clase C^3 tal que su polinomio de Taylor de orden 3 en (1,1) es $p(x,y)=1-3x+x^2+xy+y^2-y^3$. Analizar la existencia de los siguientes límites:

a)
$$\lim_{(x,y)\to(1,1)} \frac{f(x,y)}{\|(x,y)-(1,1)\|},$$
 b) $\lim_{(x,y)\to(1,1)} \frac{f(x,y)}{\|(x,y)-(1,1)\|^2}.$