Examenul de bacalaureat național 2014 Proba E. c)

Matematică *M_tehnologic* Simulare pentru elevii clasei a XII-a

Barem de evaluare și de notare

Filiera tehnologică: profilul servicii, toate calificările profesionale; profilul resurse, toate calificările profesionale; profilul tehnic, toate calificările profesionale

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
- Se acordă 10 puncte din oficiu. Nota finală se calculează prin împărțirea la 10 a punctajului total acordat pentru lucrare.

SUBIECTUL I (30 de puncte)

1.	$a_1 + a_2 + a_3 = (a_2 - r) + a_2 + (a_2 + r) =$	3p
	$=3a_2=12$	2p
2.		2p
	$(f(1))^{2014} = 1$	3 p
3.	2-3x=x+6	2p
	x = -1	3p
4.	Numerele naturale de o cifră, divizori ai lui 10, sunt 1, 2 și 5, deci sunt 3 cazuri favorabile	2p
	Sunt 10 numere naturale de o cifră, deci sunt 10 cazuri posibile	1p
	$n - \frac{\text{nr. cazuri favorabile}}{2} - \frac{3}{2}$	
	$p = \frac{1}{\text{nr. cazuri posibile}} = \frac{1}{10}$	2p
5.	$AB: \frac{y-3}{1-3} = \frac{x-1}{-1-1}$	3р
	1-3 -1-1	op.
	AB: y = x + 2	2p
6.	$\cos 30^\circ = \frac{\sqrt{3}}{2}, \sin 45^\circ = \frac{\sqrt{2}}{2}$	20
	$\cos 30 = \frac{1}{2}, \sin 43 = \frac{1}{2}$	2p
	$\sqrt{3}\cos 30^\circ + \sqrt{2}\sin 45^\circ = \frac{3}{2} + \frac{2}{2} = \frac{5}{2}$	3 p

SUBIECTUL al II-lea

(30 de puncte)

1.a)	1 1 1	
	$\det A = \begin{vmatrix} 1 & 2 & 3 \end{vmatrix} = 18 + 4 + 3 - 2 - 12 - 9 =$	3 p
	$\begin{vmatrix} 1 & 4 & 9 \end{vmatrix}$	
	= 2	2p
b)	$\begin{pmatrix} 1+m & 1 & 1 \end{pmatrix}$	
	$A + mI_3 = \begin{pmatrix} 1 + m & 1 & 1 \\ 1 & 2 + m & 3 \\ 1 & 4 & 9 + m \end{pmatrix}$	3 p
	$\begin{pmatrix} 1+m & 1 & 1 \\ 1 & 2+m & 3 \\ 1 & 4 & 9+m \end{pmatrix} = \begin{pmatrix} 0 & 1 & 1 \\ 1 & 1 & 3 \\ 1 & 4 & 8 \end{pmatrix} \Rightarrow m = -1$	
	$\begin{vmatrix} 1 & 2+m & 3 \end{vmatrix} = \begin{vmatrix} 1 & 1 & 3 \end{vmatrix} \Rightarrow m = -1$	2 p
	$\begin{pmatrix} 1 & 4 & 9+m \end{pmatrix} \begin{pmatrix} 1 & 4 & 8 \end{pmatrix}$	
c)	$\int x + y + z = 0$	
	$\begin{cases} x + 2y + 3z = 1\\ x + 4y + 9z = 3 \end{cases}$	2 p
	$\left(x+4y+9z=3\right)$	
	x = -1, y = 1, z = 0	3 p

2.a)	2*(-2) = -5	2p
	$2014*(-2014) = -5 \Rightarrow 2*(-2) = 2014*(-2014)$	3 p
b)	(x*y)*z = (x+y-5)*z = x+y+z-10	2p
	x*(y*z) = x*(y+z-5) = x+y+z-10 = (x*y)*z, pentru orice numere reale x, y şi z	3 p
c)	(-4)*(-3)*(-2)*(-1)*0*1*2*3*4 = ((-4)*4)*((-3)*3)*((-2)*2)*((-1)*1)*0 = (-4)*(-3)*(-3)*(-2)*(-1)*0*1*2*3*4 = ((-4)*4)*(-3)*(-3)*(-3)*(-2)*(-1)*0*1*2*3*4 = ((-4)*4)*((-3)*3)*((-2)*2)*((-1)*1)*0 = (-4)*(-3)*(-3)*(-3)*(-3)*(-3)*(-3)*(-3)*(-3	2p
	= (-5)*(-5)*(-5)*(-5)*(-5)*0 = ((-5)*(-5))*((-5)*(-5))*0 = (-15)*(-15)*0 = -40	3 p

SUBIECTUL al III-lea

(30 de puncte)

1.a)	$\lim_{r \to 0} \frac{f(x) - f(0)}{r} = f'(0)$	2 p
	$f'(x) = 3x^2 - 3 \Rightarrow f'(0) = -3$	3 p
b)	$\lim_{x \to +\infty} \frac{f(x)}{x(2x+1)(3x+2)} = \lim_{x \to +\infty} \frac{x^3 \left(1 - \frac{3}{x^2} + \frac{7}{x^3}\right)}{x^3 \left(2 + \frac{1}{x}\right) \left(3 + \frac{2}{x}\right)} =$	2p
	$=\frac{1}{6}$	3 p
c)	$f'(x) = 0 \Rightarrow x = -1 \text{ sau } x = 1$	2p
	f descrescătoare pe $[-1,1]$, f crescătoare pe $[1,+\infty)$ și $f(1)=5 \Rightarrow f(x) \ge 5, \forall x \in [-1,+\infty)$	3p
2.a)	$\int_{1}^{2} (f(x) - e^{x}) dx = \int_{1}^{2} 2x dx =$	2p
	$=x^2\Big _1^2=3$	3 p
b)	$F'(x) = (e^x + x^2 + 2014)' = e^x + 2x =$	3 p
	$= f(x)$ pentru orice $x \in \mathbb{R}$, deci F este o primitivă a funcției f	2p
c)	$\int_{0}^{1} f(x)F(x)dx = \frac{F^{2}(x)}{2}\Big _{0}^{1} =$	3p
	$=\frac{\left(e+2015\right)^2-2015^2}{2}=\frac{e^2+4030e}{2}$	2p