Algoritmos de Procura e de Ordenação III

06/10/2025

Ficheiro – Algoritmos de Ordenação

- Está disponível no Moodle um ficheiro ZIP de suporte aos tópicos de hoje
- Implementação dos algoritmos de ordenação e contagem das operações realizadas
- Podem realizar testes computacionais com arrays de elementos aleatórios

Sumário

- Recap
- Bubble Sort Ordenação por troca sequencial
- Insertion Sort Ordenação por inserção
- Exercícios / Tarefas
- Sugestão de leitura

Recapitulação

Selection Sort – Lembram-se do exemplo?

0	1	2	3	4
7	2	6	4	3

7	2	6	4	3
3	2	6	4	7
3	2	4	6	7
3	2	4	6	7
2	3	4	6	7

5 elementos4 passos

- Nº de comparações = 4 + 3 + 2 + 1
- N° de trocas = 1 + 1 + 0 + 1

Selection Sort

```
void selectionSort( int a[], int n ) {
      for( int k = n - 1; k > 0; k--) {
             int indMax = 0;
             for( int i = 1; i <= k; i++ ) {
                    if(a[i] >= a[indMax]) indMax = i;
             if(indMax!= k) swap(&a[indMax], &a[k]);
```

Selection Sort – Ordem de Complexidade

Nº fixo de Comparações entre elementos do array :

$$C(n) \approx \frac{n^2}{2} \Rightarrow O(n^2)$$

• Nº de Trocas entre elementos do array:

$$W_T(n) = n - 1 \Rightarrow \mathbf{O}(n)$$

 $A_T(n) \approx n - \ln n \Rightarrow \mathbf{O}(n)$
 $B_T(n) = 0$

Bubble Sort

Ordenação por Troca Sequencial

Bubble Sort – Estratégia

- Percorrer o array da esquerda para a direita
- Trocar elementos adjacentes, se estiverem fora de ordem
 - Quantas comparações ?
- A última ocorrência do maior elemento fica na sua posição final
- Repetir o processo para os restantes elementos
 - Parar logo que possível!
- Algoritmo in-place
- Shaker Sort : alternar o sentido : esquerda-direita / direita-esquerda

Exemplo

 0
 1
 2
 3
 4

 7
 2
 6
 4
 3

Exemplo – 1º Iteração

7 2 6 4 3

7	2	6	4	3
2	7	6	4	3

7	2	6	4	3
2	7	6	4	3
2	6	7	4	3

7	2	6	4	3
2	7	6	4	3
2	6	7	4	3
2	6	4	7	3

Exemplo – Posição final

0	1	2	3	4
7	2	6	4	3

1ª iteração

7	2	6	4	3
2	7	6	4	3
2	6	7	4	3
2	6	4	7	3
2	6	4	3	7

• 4 comparações + 4 trocas

Exemplo – 2ª Iteração

2 6 4 3 7

2	6	4	3	7
2	6	4	3	7

2	6	4	3	7
2	6	4	3	7
2	4	6	3	7

Exemplo – Posição final

2ª iteração

2	6	4	3	7
2	6	4	3	7
2	4	6	3	7
2	4	3	6	7

• 3 comparações + 2 trocas

Exemplo – 3ª Iteração

4

2	4	3	6	7
2	4	3	6	7

Exemplo – Posição final

3ª iteração

2	4	3	6	7
2	4	3	6	7
2	3	4	6	7

• 2 comparações + 1 troca

Exemplo – Posição final – Array ordenado

2	3	4	6	7
2	3	4	6	7

- 1 comparação + 0 trocas
- TOTAL de comparações = 4 + 3 + 2 + 1
- TOTAL de trocas = 4 + 2 + 1 + 0

Bubble Sort

```
void bubbleSort( int a[], int n ) {
       int k = n; int stop = 0;
       while( stop == 0 ) {

→ stop = 1; k--; ←
              for( int i = 0; i < k; i++)
                      if( a[i] > a[i + 1] ) {
                             swap( &a[i], &a[i + 1] );
                             stop = 0;
```

Nº de Comparações – Melhor Caso e Pior Caso

- Melhor Caso? Array ordenado
- $\bullet B_c(n) = n 1$

O(n)

Pior Caso? - Array pela ordem inversa, sem elementos repetidos

•
$$W_c(n) = \sum_{k=1}^{n-1} k = \frac{n(n-1)}{2} = \frac{n^2}{2} - \frac{n}{2}$$

 $O(n^2)$

Nº de Trocas – Melhor Caso e Pior Caso

- Melhor Caso? Array ordenado
- $B_t(n) = 0$
 - Pior Caso? Array pela ordem inversa, sem elementos repetidos
 - 1 troca para cada comparação
- $W_{t(n)} = W_c(n) = \sum_{k=1}^{n-1} k = \frac{n(n-1)}{2} = \frac{n^2}{2} \frac{n}{2}$ O(n²)

O(1)

Nº de Comparações – Caso Médio

Casos possíveis ?

Nº de iterações do ciclo while	Nº de comparações realizadas : C(j)	Probabilidade
1	(n – 1)	
2	(n − 1) + (n − 2)	
j	(n-1) + (n-2) + + (n-j)	
n – 2	(n - 1) + (n - 2) + + 2	
n – 1	(n − 1) + (n − 2) + + 2 + 1	

•
$$C(j) = \sum_{i=1}^{j} (n-i) = \frac{j}{2} [(n-1) + (n-j)] = \frac{j}{2} [(2n-1) - j]$$

Nº de Comparações – Caso Médio

Probabilidade ? Simplificação...

Nº de iterações do ciclo while	Nº de comparações realizadas : C(j)	Probabilidade
1	(n – 1)	1 / (n — 1)
2	(n-1) + (n-2)	1 / (n — 1)
		
j	(n-1) + (n-2) + + (n-j)	1 / (n — 1)
n – 2	(n − 1) + (n − 2) + + 2	1 / (n — 1)
n – 1	(n − 1) + (n − 2) + + 2 + 1	1 / (n — 1)

• Habitualmente, para arrays aleatórios, o número de iterações do ciclo while é próximo do seu número máximo

Nº de Comparações – Caso Médio

$$A_c(n) = \sum_{k=1}^{n-1} \frac{1}{n-1} C(k) = \dots = \frac{1}{2(n-1)} \sum_{k=1}^{n-1} [(2n-1)k - k^2]$$

Expressão auxiliar:
$$\sum_{k=1}^{n} k^2 = \frac{1}{6}n(n+1)(2n+1)$$

$$A_c(n) = \frac{1}{3}n^2 - \frac{1}{6}n$$
 O(n²)

• Façam o desenvolvimento e confirmem o resultado

Insertion Sort – Ordenação por Inserção

Insertion Sort – Estratégia

- O elemento a[0] constitui um subconjunto de um só elemento
- Inserir ordenadamente o elemento a[1] nesse subconjunto
 - 1 comparação + 0 ou 1 troca de posição
- Temos agora um subconjunto ordenado com dois elementos
- Repetir o processo, um a um, para os restantes elementos do array
 - Casos possíveis? Quantas comparações? Quantos deslocamentos?
- Algoritmo in-place
- Variante: começar na outra extremidade do array

Exemplo

 0
 1
 2
 3
 4

 7
 2
 6
 4
 3

Exemplo – 1º Iteração

7 2 6 4 3

Exemplo – Inserir ordenadamente

6

1ª iteração

3

Exemplo – Posição final

1ª iteração

7	2	6	4	3
2	7	6	4	3

• 1 comparação + 1 deslocamento

Exemplo – Inserir ordenadamente

Exemplo – Posição final

2ª iteração

2	7	6	4	3
2	6	7	4	3

• 2 comparações + 1 deslocamento

Exemplo – Inserir ordenadamente

3ª iteração

Exemplo – Continuar a deslocar

3ª iteração

2	6	7	4	3
2	6	4	7	3

Exemplo – Posição final

3ª iteração

2	6	7	4	3
2	6	4	7	3
2	4	6	7	3

• 3 comparações + 2 deslocamentos

Exemplo – Inserir ordenadamente

4ª iteração

Exemplo – Continuar a deslocar

4º iteração

2	4	6	7	3
2	4	6	3	7

Exemplo – Continuar a deslocar

4º iteração

2	4	6	7	3
2	4	6	3	7
2	4	3	6	7

Exemplo – Posição final

4ª iteração

2	4	6	7	3
2	4	6	3	7
2	4	3	6	7
2	3	4	6	7

4 comparações + 3 deslocamentos

Função Auxiliar – Inserção Ordenada

```
void insertElement( int sorted[], int n, int elem ) {
      // Array sorted está ordenado
      // Há espaço para acrescentar mais um elemento
       int i;
       for( i = n - 1; (i >= 0) && (elem < sorted[i]); i--)
              sorted[i + 1] = sorted[i]
       sorted[i + 1] = elem;
```

• Deslocamentos para a direita, para abrir espaço e inserir

Comparações – Melhor Caso e Pior Caso

- Melhor Caso
- B(n) = 1
- elem \geq sorted[n 1]

- Pior Caso
- W(n) = n
- elem < sorted[0] OU sorted[0] <= elem < sorted[1]

Comparações – Caso Médio

Casos possíveis	Nº de comparações	Probabilidade
elem < sorted[0]	n	1 / (n + 1)
sorted[0] <= elem < sorted[1]	n	1 / (n + 1)
sorted[1] <= elem < sorted[2]	n – 1	1 / (n + 1)
sorted[i] <= elem < sorted[i+1]	n – i	1 / (n + 1)
sorted[n-2] <= elem < sorted[n-1]	2	1 / (n + 1)
sorted[n-1] <= elem	1	1 / (n + 1)

$$A_c(n) = \frac{1}{n+1}[1+2+\dots+n+n] = \frac{n}{2} + \frac{n}{n+1} \approx \frac{n}{2} + 1$$

Insertion Sort

- Deslocamentos (i.e., atribuições) são efetuados pela função auxiliar
- Contar também as comparações feitas pela função auxiliar !!

Comparações – Melhor Caso e Pior Caso

- Melhor Caso
- $B_c(n) = n 1$

O(n)

- Array ordenado: A função auxiliar nunca é chamada
- Pior Caso
- $W_c(n) = \sum_{i=1}^{n-1} (1+i) = \frac{n-1}{2} \times (n+2)$

 $O(n^2)$

- A função auxiliar é sempre chamada!!
- E tem sempre o comportamento de pior caso!!

Comparações – Caso Médio

- Análise simplificada!
- Considera-se que em cada iteração a função auxiliar tem sempre o comportamento do caso médio (i/2 + 1)

$$A_c(n) \approx \sum_{i=1}^{n-1} \left[1 + \left(\frac{i}{2} + 1 \right) \right] = \left[2(n-1) + \frac{n(n-1)}{4} \right]$$

$$A_c(n) \approx \frac{n^2}{4} + \frac{7n}{4}$$

Comparar com o pior caso!

Exercícios / Tarefas

Tarefa 1 – Bubble Sort

- Encontrar configurações de um array com n elementos que, para o algoritmo **Bubble Sort**, correspondam:
- Ao melhor caso para as comparações
- Ao pior caso para as comparações
- Ao melhor caso para as trocas
- Ao pior caso para as trocas

• Alguns dos casos anteriores ocorrem em simultâneo ?

Exercício 1 – Escolha múltipla

Considere o seguinte *array* de 6 elementos, que se pretende ordenar usando o algoritmo *Bubble Sort*.

0	1	2	3	4	5
6	5	4	3	2	1

- a) São efetuadas **15 comparações** entre elementos do *array*, para que seja ordenado por **ordem crescente**.
- b) São efetuadas 15 trocas entre elementos do *array*, para que seja ordenado por ordem crescente.
- c) Ambas estão corretas.
- d) Nenhuma está correta.

Exercício 2 – Escolha múltipla

Considere o seguinte *array* de 6 elementos, que se pretende ordenar usando o algoritmo *Bubble Sort*.

0	1	2	3	4	5
6	5	2	3	4	1

- a) São efetuadas 12 trocas entre elementos do *array*, se este for ordenado por ordem crescente.
- b) São efetuadas 3 trocas entre elementos do *array*, se este for ordenado por ordem decrescente.
- c) Ambas estão corretas.
- d) Nenhuma está correta.

Tarefa 2 – Bubble Sort – Trocas – Caso Médio

 Bubble Sort : Efetuar a análise do caso médio para o número de trocas efetuadas

- Possível cenário :
- Igualmente provável terminar após qualquer uma das iterações do ciclo externo (while)
- Em cada iteração do ciclo externo (while) fazem-se, em média, 50% do nº de trocas possíveis

Tarefa 3 – Insertion Sort

- Encontrar configurações de um array com n elementos que, para o algoritmo Insertion Sort, correspondam:
- Ao melhor caso para as comparações
- Ao pior caso para as comparações
- Ao melhor caso para os deslocamentos
- Ao pior caso para os deslocamentos
- Alguns dos casos anteriores ocorrem em simultâneo ?

Exercício 3 – Escolha múltipla

Considere o seguinte *array* de 6 elementos, que se pretende ordenar usando o algoritmo *Insertion Sort*.

0	1	2	3	4	5
6	5	4	4	2	1

- a) São efetuadas **15 comparações** entre elementos do *array*, para que seja ordenado por **ordem crescente**.
- b) São efetuadas **25 atribuições** entre elementos do *array*, para que seja ordenado por **ordem decrescente**.
- c) Ambas estão corretas.
- d) Nenhuma está correta.

Tarefa 4 – Insertion Sort – Caso Médio

 Função auxiliar de inserção ordenada: Efetuar a análise do caso médio para o número de deslocamentos efetuados, i.e., das atribuições efetuadas envolvendo elementos do array

- Possível cenário :
- Igualmente provável terminar após qualquer uma das iterações

Tarefa 5 – Insertion Sort – Caso Médio

• Insertion Sort : Efetuar a análise para o caso médio dos deslocamentos, i.e., das atribuições efetuadas envolvendo elementos do array

- Possível cenário simplificado :
- Em cada iteração fazem-se, em média, 50% do nº de deslocamentos possíveis

Tarefa – Overview – Algoritmos de Ordenação

- Construir uma tabela que agrupe as características dos algoritmos analisados, relativamente à sua ordem de complexidade
- E uma outra **tabela** que mostre como evolui o número de comparações efetuadas, para sucessivos valores de n
- n = 100, 1000, 10000, 100000, 1000000, ...
- Qual é o maior array que consegue processar, em tempo útil, no seu computador ?

Sugestão de leitura

Sugestão de leitura

- J. J. McConnell, Analysis of Algorithms, 1st Edition, 2001
 - Capítulo 3: secções 3.1 e 3.2