Кривая Филлипса для страны Индия

Получим данные о динамике безработицы(Inflation rate (%)) и динамике безработицы(Unemployment rate (%)) из статистики Мирового Банка о стране Индия.

date	Inflation rate	Unemployment rate
1991	26.1320914258645	6.85
1992	29.2124945523449	6.853
1993	31.0607370914259	6.859
1994	34.2438214116532	6.828
1995	37.7452131691141	6.99
1996	41.1336584557082	7.147
1997	44.0805774514448	7.335
1998	49.9128076740881	7.517
1999	52.2436461392705	7.682
2000	54.3383216485078	7.856
2001	56.3919261013738	8.039
2002	58.815172903837	8.248
2003	61.0535954523922	8.397
2004	63.3536380862151	8.551
2005	66.0438512553292	8.697
2006	69.8720985315016	8.614
2007	74.3249644718143	8.534
2008	80.5305542396968	8.486
2009	89.2941733775462	8.406
2010	100	8.318
2011	108.911793364834	8.222

2012	119.235538897084	8.156
2013	131.18041028234	8.088
2014	139.924446113916	7.992
2015	146.790501522574	7.894
2016	154.054013105394	7.8
2017	159.18119775209	7.723
2018	165.451068899504	7.652
2019	171.621576003377	6.51
2020	182.988822584425	7.859
2021	192.378724699015	6.38
2022	205.266241146235	4.822
2023	216.862025027426	4.172

Стандартизируем полученные данные и выведем получившеееся распределение точек

Проведем анализ изменения инфляции и безработицы в стране.

Как видно из графиков, за рассматриваемый период инфляция достигла максимального значения в 2023 году, а безработица в 2005 году, а минимумы в 1991 и 2023 годах соответственно для инфляции и безработицы.

Построим модель линейной регрессии на получившихся данных

OLS Regression Results

	==		==	
Dep. Vari	able:	y R-square	ed:	0.149
Model:		OLS Adj. R-sq	quared:	0.122
Method:	Leas	st Squares F-stat	istic:	5.446
Date:	Sun, 03 N	ov 2024 Prob (F	F-statistic):	0.0263
Time:	20:	45:16 Log-Likel	lihood:	-44.155
No. Obser	vations:	33 AIC:		92.31
Df Resid	uals:	31 BIC:		95.30
	Df M	odel:	1	

	Cov	variance Type: nonrobust
	coef	std err t $P> t $ [0.025 0.975]
const	-7.633e-17	0.166 -4.61e-16 1.000 -0.338 0.338
x1	-0.3866	0.166 -2.334 0.026 -0.724 -0.049
Omni	ibus:	======================================
Prob(C	Omnibus):	0.032 Jarque-Bera (JB): 2.149
Sk	ew:	-0.129 Prob(JB): 0.341
Ku	rtosis:	1.777 Cond. No. 1.00

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified. Как видно, качество модели мало

Построим модель гиперболической функции:

	OLS Regression Results	S
Dep. Variable:	y R-squared:	0.090
Model:	OLS Adj. R-squared:	0.061
Method:	Least Squares F-statistic:	3.063
Date: Sun,	03 Nov 2024 Prob (F-statistic):	0.0900
Time:	20:45:16 Log-Likelihood:	-45.270
No. Observations	: 33 AIC:	94.54
Df Residuals:	31 BIC:	97.53
]	Df Model: 1	
Cov	variance Type: nonrobust	
coef	std err t $P> t $ [0.025]	0.975]
x1 0.0578	0.033 1.750 0.090 -0.0	10 0.125

const	-0.0329	0.172	-0.191	0.850	-0.384	0.319

	_	 		_	_	_	_	_

Omnibus:	3.368 Durbin-Watson:	0.198
Prob(Omnibus):	0.186 Jarque-Bera (JB):	2.969
Skew:	0.655 Prob(JB):	0.227
Kurtosis:	2.336 Cond. No.	5.25

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.Как видно, качество модели также мало

Попробуем совершить полиномиальные преобразования

Степень полинома = 0, R2 значение модели = 0.0

Степень полинома = 13, R2 значение модели = 0.7659892546195457

Степень полинома = 26, R2 значение модели = 0.7415783081424667

Все равно R2 счет мал.

Если смотреть на график распределения под углом в 90 градусов, то можно предположить, что это полином степени N.

Попробуем сменить зависимую свободную переменные местами и построить модель.

Степень полинома = 0, R2 значение модели = 0.0

Степень полинома = 13, R2 значение модели = 0.969899049060189

Степень полинома = 26, R2 значение модели = 0.9997805164378454

Мы нашли модель с R2 = 0.9997805164378454

Проведем тестирование модели.

Проверим остатки на нормальность визуально

K-S тест

Тест Колмогорова-Смирнова (или K-S тест) — это непараметрический статистический тест, применяемый для проверки соответствия распределения выборки заданному теоретическому распределению. Тест позволяет оценить, насколько эмпирическое распределение данных совпадает с нормальным распределением или с любым другим теоретическим распределением.

Основные этапы алгоритма теста Колмогорова-Смирнова: Сбор данных. Получаем выборку, для которой нужно проверить соответствие распределению.

Определение теоретического распределения. Выбираем теоретическое распределение, с которым будем сравнивать данные (например, нормальное, равномерное и т.д.).

Построение эмпирической функции распределения (ЭФР):

Вычисляем кумулятивные частоты значений в выборке, чтобы построить эмпирическую функцию распределения.

Построение теоретической функции распределения (ТФР):

На основе выбранного теоретического распределения рассчитываем его кумулятивную функцию распределения для каждого значения в выборке.

Вычисление статистики Колмогорова-Смирнова:

Определяем максимальное отклонение между эмпирической и теоретической функциями распределения: $D = \max | F_{\mathfrak{I}}(x) - F_{\mathfrak{I}}(x)|$, где $F_{\mathfrak{I}}(x) - F_{\mathfrak{I}}(x)$ значение эмпирической функции распределения, $F_{\mathfrak{I}}(x) - F_{\mathfrak{I}}(x)$ значение теоретической функции распределения для каждого значения $F_{\mathfrak{I}}(x) - F_{\mathfrak{I}}(x)$ в выборке.

Сравнение с критическим значением:

Полученное значение D сравнивается с критическим значением для заданного уровня значимости (обычно 0,05 или 0,01), которое зависит от объема выборки.

Если D превышает критическое значение, гипотеза о совпадении распределений отклоняется.

Интерпретация результатов:

Если D меньше критического значения: гипотеза о том, что данные следуют теоретическому распределению, не отклоняется.

Если D больше критического значения: гипотеза о соответствии распределению отклоняется, что говорит о значительных отклонениях данных от выбранного распределения.

Тест Колмогорова-Смирнова часто используется для проверки нормальности и других распределений. Он также применим для двухвыборочного теста, когда нужно проверить, принадлежат ли две выборки одному и тому же распределению.

Jarque-Bera

Тест Джарка-Бера (Jarque-Bera) — это статистический тест, используемый для проверки нормальности распределения данных. Он основывается на оценке асимметрии (сместности) и эксцесса (пиковости) распределения, чтобы определить, насколько распределение данных отличается от нормального.

Основные этапы алгоритма теста Джарка-Бера:

Сбор данных. Получаем выборку, для которой нужно проверить нормальность.

Вычисление параметров:

п: объем выборки.

Среднее значение выборки.

Стандартное отклонение выборки.

Рассчитываем асимметрию и эксцесс:

Асимметрия (skewness). Измеряет, насколько данные симметричны относительно среднего. Формула: $S = (1/n) * сумма [(x i - среднее) / стандартное отклонение]^3.$

Эксцесс (kurtosis). Показывает, насколько распределение «пикообразно» или «плосковершинно». Формула: $K = (1/n) * \text{сумма} [(x_i - \text{среднеe}) / \text{стандартноe}) / \text{стандартноe}$ отклонение]^4 - 3.

Расчет статистики теста Джарка-Бера: $JB = (n/6) * (S^2 + (K^2)/4)$. Чем больше значение JB, тем сильнее отклонение от нормальности.

Сравнение с критическим значением:

Полученное значение статистики ЈВ сравнивается с критическим значением из распределения хи-квадрат с 2 степенями свободы на выбранном уровне значимости (обычно 0,05).

Если ЈВ превышает критическое значение, то гипотеза нормальности отклоняется.

Интерпретация результатов:

Если JB меньше критического значения: гипотеза о нормальности не отклоняется, и можно предположить, что данные распределены нормально.

Если JB больше критического значения: гипотеза о нормальности отклоняется, что говорит о наличии значительной асимметрии или отклонений от нормальной формы распределения.

Этот тест полезен для предварительного анализа данных и проверки предположения о нормальности, что важно во многих статистических методах и эконометрических моделях.

Статистика Jarque-Bera: 19.57625069164637

р-значение: 5.611399306311759е-05

Данные не распределены нормально

Shapiro-Wilk

Статистика Shapiro-Wilk: 0.8510308430092555

р-значение: 0.0003587078429321765

Распределение данных отличается от нормального

Helwig

Шаг 1: Сортируем данные и определяем размер выборки

Шаг 2: Оценка среднего и стандартного отклонения

Шаг 3: Вычисляем эмпирическую функцию распределения (ЭФР)

Шаг 4: Строим теоретическую нормальную функцию распределения (НФР)

Шаг 5: Вычисляем максимальное отклонение между ЭФР и НФР

Вывод результата

Максимальное отклонение (D): 0.2560889275648254

Гипотеза о нормальности отвергается на уровне значимости 0.05.

Сравнение тестов

Сравнение методов согласия Хельвига, Шапиро-Вилька и Джарка-Бера (Jarque-Bera) полезно для выбора подходящего теста для проверки нормальности распределения данных. Каждый из этих методов имеет свою область применения и особенности, которые могут быть полезны в разных контекстах.

1. Тест Хельвига

Цель: Метод Хельвига основан на анализе корреляций и используется для оценки согласия признаков, особенно в социально-экономических и психометрических исследованиях.

Применение: Обычно применяется для оценки многомерного согласия признаков или при проведении факторного анализа.

Преимущества:

Хорошо подходит для многомерных данных, поскольку анализирует согласие между несколькими переменными.

Позволяет оценить общую структуру корреляций между признаками, что важно для анализа взаимозависимости.

Нелостатки:

Не подходит для проверки нормальности распределения данных.

Может требовать больших выборок для корректного анализа многомерных данных.

2. Тест Шапиро-Вилька

Цель: Проверка нормальности распределения данных в выборке.

Применение: Часто используется для малых и средних выборок (до 2000 наблюдений), чтобы оценить, насколько распределение данных близко к нормальному.

Преимущества:

Очень чувствителен к отклонениям от нормальности, особенно в малых выборках. Является одним из самых мощных тестов для проверки нормальности, так как учитывает порядок значений в выборке.

Недостатки:

Может давать ложные результаты для больших выборок (более 2000 наблюдений), так как становится излишне чувствительным к малейшим отклонениям.

Не подходит для многомерных данных, так как используется для одномерного распределения.

3. Тест Джарка-Бера (Jarque-Bera)

Цель: Проверка нормальности распределения путем оценки асимметрии (skewness) и эксцесса (kurtosis).

Применение: Часто применяется для данных больших объемов, особенно в эконометрических и финансовых исследованиях.

Преимущества:

Хорошо подходит для больших выборок, так как рассчитывается на основе асимметрии и эксцесса, которые более устойчивы в больших объемах данных.

Удобен для случаев, когда нужны простые показатели нормальности (асимметрия и эксцесс).

Недостатки:

Менее чувствителен для малых выборок, так как асимметрия и эксцесс могут быть нестабильными.

Не учитывает порядок значений в выборке, что делает его менее точным для малых выборок.

Вывод:

Для малых выборок (до 2000 наблюдений) тест Шапиро-Вилька наиболее подходит для проверки нормальности, поскольку он высокочувствителен к отклонениям и учитывает порядок значений.

Для больших выборок (более 2000 наблюдений) тест Джарка-Бера предпочтителен, так как он основан на асимметрии и эксцессе, что стабильно в больших объемах данных.

Тест Хельвига лучше использовать, когда требуется оценить согласие нескольких

переменных, а не нормальность, так как он лучше подходит для анализа многомерных зависимостей.

Таким образом, выбор метода зависит от цели исследования, объема выборки и характеристик данных.