

Dipartimento di Scienze Matematica, Informatiche e Fisiche Corsi di Laurea in Informatica e in TWM

Esercizi di Analisi Matematica

Esercizi del 3 ottobre 2016

- 1. Nella rappresentazione decimale di un numero irrazionale non c'è nessun blocco di 5 cifre che si ripeta infinite volte. O sì? E per un numero razionale?
- **2.** Chiamiamo x il numero decimale infinito ottenuto giustapponendo le rappresentazioni in base dieci dei numeri naturali in questo modo: x = 0,12345678910111213141516... Dimostrare che x non è periodico.
- **3.** Chiamiamo x il numero decimale infinito ottenuto facendo sequenze crescenti di zeri e di uni in questo modo: x = 0.101100111100011110000... Dimostrare che x non è periodico.
- 4. Interpretare i puntini nelle seguenti espressioni:

5. Quali fra le seguenti frasi possono essere enunciati di teoremi, di definizioni matematiche, o nessuno dei due?

Dato un triangolo, tracciare la bisettrice di uno degli angoli. Il rettangolo è un poligono con quattro lati Trovare un x per il quale $x^2 - 3x < 0$. Il quadrato è un quadrilatero con quattro angoli retti Il quadrato è un rettangolo con quattro lati uguali

- 6. Dimostrare che l'insieme dei numeri positivi dispari è numerabile.
- 7. Dimostrare che l'insieme delle potenze di 2 è numerabile.
- **8.** Dimostrare che l'insieme $\mathbb{N} \times \mathbb{N}$ è numerabile.

Esercizi del 17 ottobre 2016

9. Vero, falso, senza senso?

$$-\frac{1+\sqrt{2}}{2} = \frac{-1+\sqrt{2}}{2}, \qquad \frac{\log(1+x)}{x} = \log\frac{(1+x)}{x},$$

$$\frac{3+x}{2-\sqrt{x}} \cdot \frac{2+\sqrt{x}}{2+\sqrt{x}} = \frac{3+x}{4-x} \cdot 2 + \sqrt{x},$$

$$\sqrt{2x+1}\sqrt{2x+1} = \sqrt{\sqrt{2x+1}},$$

$$\frac{\log(x)}{x} = \log\frac{(x)}{x}, \qquad \sin(1-x)(1+x) = \sin(1-x^2),$$

$$\frac{\cos(a-b)(a+b)}{a+b} = \cos(a-b), \qquad \cos 1 = 0,$$

$$\frac{\log(1+x)}{x} - \frac{1+\sqrt{2}}{2} = \frac{-1+\sqrt{2}}{2}$$

$$-\frac{1+\sqrt{2}}{2} = \frac{-1+\sqrt{2}}{2}, \qquad -\frac{1+\sqrt{2}}{2} = \frac{-1-\sqrt{2}}{2}$$

$$\frac{a}{b+1} + \frac{a}{a+b+3} \cdot \frac{b}{b+1} = \frac{ab}{a+b+3}.$$

I connettivi logici che useremo sono \neg la negazione (not), \lor la disgiunzione (or), \land la congiunzione (and), \Rightarrow l'implicazione (if...then...), \Leftarrow l'implicazione inversa, \iff la doppia implicazione o equivalenza (iff). Si rammenta la tabella di verità:

p	q	$\neg p$	$p \wedge q$	$p \lor q$	$p \Rightarrow q$	$p \Leftarrow q$	$p \iff q$
vero	vero	falso	vero	vero	vero	vero	vero
vero	falso	falso	falso	vero	falso	vero	falso
falso	vero	vero	falso	vero	vero	falso	falso
falso	falso	vero	falso	falso	vero	vero	vero

10. Di ciascuna delle seguenti espressioni dire innanzitutto se hanno senso, poi se hanno o no un valore di verità (vero o falso), e, se sì, quale:

$$1+1=2, \quad 4-1=3, \quad \frac{4}{3}+\frac{1}{4}=\frac{5}{7}, \quad 3-7, \quad 5-4=4-5,$$

$$3-(2-1)=(3-2)-1, \quad \frac{51}{\frac{13}{7}}=\frac{51}{7}\cdot 13, \quad \frac{17}{\frac{9}{7}}=\frac{\frac{17}{9}}{7}, \quad \frac{11}{\frac{3}{4}},$$

$$\frac{1}{\frac{2}{3}+\frac{2}{5}}=\frac{3}{2}+\frac{5}{2}, \quad \frac{1/2}{3/5}=2\cdot \frac{3}{5}, \quad \frac{3/2}{5/7}=\frac{2}{3}\cdot \frac{7}{5}, \quad \frac{3/2}{5/7}=\frac{3}{2}\cdot \frac{7}{5}, \quad 3-2\geq 1,$$

$$7\geq 4+3, \quad (-1)^5<(-1)^4, \quad -1<3-2<2, \quad 1+2+3+4, \quad \frac{7}{2>1}, \quad 1>\pm \sqrt{3}$$

$$1+1=2\vee 2+2=3, \quad 1-1=2\wedge 2+2=3, \quad 3\geq \pi\vee 3<\pi, \quad 3\geq \pi\wedge 3<\pi,$$

$$1\in\mathbb{Q}, \quad 1\subset\mathbb{Q}, \quad \frac{2}{3}\in\{\mathbb{R}\}, \quad \{-1\}\in\{\mathbb{Z}\}, \quad \{1,-1/2\}\subset\mathbb{Q}.$$

11. Di ciascuna delle seguenti espressioni discutere innanzitutto se hanno senso, poi se hanno o no un valore di verità (vero o falso) per valori reali generici delle variabili, e, se sì, quale:

$$a+b=b+a, \qquad a-b=b-a, \qquad a-b=-b+a, \\ (a-2x)^2, \qquad \frac{1}{x-y}=\frac{-1}{y-x}, \\ \frac{1}{a+b}=\frac{1}{a}+\frac{1}{b}, \qquad \frac{\frac{a}{b}}{\frac{c}{d+e}}=\frac{b}{a}\cdot\frac{c}{d+e}, \qquad \frac{\frac{a}{b}}{\frac{c}{d+e}}=\frac{a}{b}\cdot c(d+e), \\ \frac{\frac{a}{b}}{\frac{c}{d+e}}=\frac{a}{b}\cdot\frac{d+e}{c}, \qquad \frac{1}{\frac{a}{b}-\frac{c}{d}}=\frac{b}{a}-\frac{d}{c}, \qquad \frac{1}{\frac{a}{b}+\frac{c}{d}}=\frac{b}{a}+\frac{d}{c}, \\ x^4-2x+1=x\Big(x^{4-1}-2+\frac{1}{x}\Big), \qquad x-2b=\frac{x+2b}{x^2-4b^2}.$$

12. Un quiz apparso in rete:

13. Supponiamo di sapere che vagono le implicazioni seguenti

Se p_1 è vero, quali altri sono necessariamente veri? Se p_7 è vero, quali altri sono veri? Se p_4 è vero, quali altri lo sono? E per p_8 ? E se p_2 è falso, quali altri sono falsi?

14. Di ciascuna delle seguenti espressioni dire innanzitutto se hanno senso, poi se hanno o no un valore di verità (vero o falso), e, se sì, quale (la variabile x si intende reale):

$$\begin{aligned} 7 \vee 8 - 1, & \neg (-1), & \neg (1 > 3), & 4 < 2 \vee \text{vero}, & \text{vero} \wedge 3 > 4, & \text{vero} + 1, \\ \text{falso} &\Rightarrow 1 - 1, & 1 + 2 + 3 \Rightarrow 1 + 2 + 3 + 4, & \text{vero} \Leftarrow \text{falso}, & \text{falso} \Rightarrow 1 + 2 = 4., \\ 2 < 3 &\iff 4 = 2 + 2, & 2 \leq 2 \iff 2 = 2, & \text{falso} \iff \text{falso}, \\ -3 \in \{-3, -2\}, & \{1, -1\} \Rightarrow 0, & x + 1 = x - 1 \iff x \in \varnothing, \\ & x^2 < 0 \iff x \in \{\varnothing\}, & (x - 1)^2 \geq 0 \iff \mathbb{R}, \\ & (0 < x \leq 1 \vee 1 \leq x \leq 3) \iff 0 < x \leq 1 \leq x \leq 3. \end{aligned}$$

15. Di ciascuna delle seguenti espressioni discutere innanzitutto se hanno senso, poi se hanno o no un valore di verità (vero o falso) per valori reali generici delle variabili, e, se sì, quale:

$$3x+1 < y \Rightarrow 3x+3 < y+2, \quad 3x+1 < y \Leftarrow 3x+3 < y+2,$$

$$3x \le 2 \iff x \le 2/3, \quad -3x \le 2 \Leftarrow -x \le 2/3, \quad \left(x < 2 \lor x < -1\right) \iff x+1 < 0,$$

$$x > 3 \iff 3x > 9, \quad \left(x > -2 \lor x < 1\right) \iff \text{vero}, \quad \left(x < 1 \land x \ge 2\right) \iff \text{falso}$$

$$x > 0 \iff x^2 > 0, \quad x > -1 \Rightarrow x^2 > (-1)^2, \quad x > 1 \Leftarrow x^2 > 1,$$

$$x > 2 \lor x < (-1)^2, \quad x^2 \ge -x, \quad x \le \pm \sqrt{2}, \quad x = \pm 5, \quad \pm \frac{1}{\sqrt{2}} < x \le \mp \sqrt{8}.$$

16. Vero, falso, malformato, senza senso?

$$a = b \Rightarrow -b = -a, \quad x^2 + 2x - 3 = 2 \iff x^2 - 3 = 2 - 2x$$

$$x = 2 \lor x = 1 \quad \Rightarrow \quad (x - 2)(x - 1) = 0,$$

$$\begin{cases} a + b = c \\ a - b = c \end{cases} \Rightarrow \quad a = c, \quad \begin{cases} a + b = c \\ a - b = c \end{cases} \iff a = c,$$

$$\begin{cases} a + b = c \\ a - b = c \end{cases} \iff a = c$$

- 17. Ai tempi delle trasvolate oceaniche, attorno al 1930, fu coniato un motto di cui ho trovato in rete tre versioni. Una è "Chi vola vale, chi non vale non vola, chi vale e non vola è un vile". Un'altra è "Chi vola vale, chi non vola non vale, chi vale e non vola è un vile". La terza è "Chi vale vola. Chi vola vale. Chi vale e non vola è un vile!". Farne l'analisi logica.
- 18. Nelle espressioni seguenti, si possono cancellare delle coppie di parentesi in modo che rimanga inalterato il valore?

$$-(a+b), \quad 2(a-x), \quad \frac{(ab)+1}{a(b+1)}, \quad \sqrt{\left(1+\sqrt{2}\right)},$$

$$\frac{x-2}{x^2+3}(x^2-3), \quad (\log x)y, \quad (\cos x^2)2x, \quad (\tan x) - (\tan y), \quad \sin 2(x+\pi),$$

$$2^{(x-y)}, \quad 3^{(x^2)}, \quad (a+2)^{a-2}.$$

19. Al posto dei punti interrogativi inserire il più appropriato fra $=, \Rightarrow, \Leftarrow, \iff$, o niente:

$$x = x^{2} - 1 \quad ? \quad x + 1 = x^{2},$$

$$x^{2} - 1 \quad ? \quad (x - 1)(x + 1),$$

$$2x - 1 = \sqrt{2} \quad ? \quad (2x - 1)^{2} = 2,$$

$$x > \sqrt{2} \quad ? \quad x + 1 > \sqrt{2},$$

$$2x - 1 < \sqrt{2} \quad ? \quad (2x - 1)^{2} < 2,$$

$$x < 3 \land a < 1 \quad ? \quad x + a < 4,$$

$$\begin{cases} x < 1 \\ 1 > y \end{cases} \quad x > y,$$

$$x > 2 \lor x < 4 \quad ? \quad x > 4,$$

$$2 < x > 4 \quad ? \quad x > 4,$$

$$2 < x > 4 \quad ? \quad x > 4,$$

$$2 < x > 4 \quad ? \quad x > 4,$$

$$2 > x < 4 \quad ? \quad x < 4,$$

$$2 > x < 4 \quad ? \quad x < 4,$$

$$(x^{3} - 2x + 5)(3x^{2} - 1) = 0 \quad ? \quad (x^{3} - 2x + 5) = 0 \lor (3x^{2} - 1) = 0$$

$$xy \le ab \quad ? \quad x \le a \land y \le b,$$

$$xy \le ab \quad ? \quad x \le a \land y \le b,$$

$$0 \le a = b \quad ? \quad a^{2} = b^{2},$$

$$\begin{split} 0 & \leq a < b & ? & a^2 < b^2, \\ 0 & \leq a \geq b & ? & a^2 \geq b^2, \\ n & \in \mathbb{Z} & ? & n < \frac{1}{3} \lor n \geq 1, \\ n & \in \mathbb{Z} & ? & n^2 \in \mathbb{Z}. \end{split}$$

20. Al posto dei punti interrogativi inserire il più appropriato fra \Rightarrow , \Leftarrow , \Longleftrightarrow , o niente:

Di seguito diamo degli esempi di come rappresentare graficamente semplici insiemi di numeri reali. Il grafico ha in alto i valori cardine della variabile. In basso i pallini pieni significano punti che appartengono all'insieme, i pallini vuoti sono per punti che non appartengono all'insieme, le linee continue indicano che tutti i loro punti (esclusi forse gli estremi) appartengono all'insieme. Le linee continue che proseguono come tratteggiate si intende che si estendono fino all'infinito.

Un modo per indicare un insieme è la forma compatta che non contiene variabili, come per esempio [0,1]:

valore di
$$x$$
 0 1 insieme [0,1[

Un'altra notazione è l'insieme degli x reali che verificano certe condizioni, come per esempio $\{x \in \mathbb{R} \mid 0 \le x < 1\}$:

valore di
$$x$$
 0 1 insieme $\{x \in \mathbb{R} : 0 \le x < 1\}$

Un altro modo ancora è l'insieme delle soluzioni di una disequazione, per esempio $0 \le x < 1$:

Nel grafico precedente non sono state rispettate le proporzioni delle distanze fra i valori di x. Se serve si possono anche rispettare:

valore di
$$x$$
 -2 -1 1 $\frac{3}{2}$ 2 insieme $\left\{x \in \mathbb{R} : x < -2 \bigvee -1 < x \le 1 \bigvee x > 2 \bigvee x = \frac{3}{2}\right\}$ \bullet \bullet \bullet \bullet \bullet \bullet \bullet insieme $\{-1,2,3\}$ \bullet \bullet \bullet \bullet

Quando l'insieme è formato da infiniti punti discreti e si rispettano le proporzioni i punti si possono accavallare:

valore di
$$x$$

$$\frac{11}{543} \frac{1}{2} \qquad 1$$
 insieme $\left\{\frac{1}{n} \mid n \in \mathbb{N}\right\}$

21. Dare una rappresentazione grafica dei seguenti insiemi di numeri reali:

22. Vero, falso, malformato?

$$\forall x \in \{0, 1, 2, 3\} \quad x^2 > 1; \qquad \exists x \in \{0, 1, 2, 3\} \text{ tale che } x^2 > 1;$$
$$\exists ! x \in \{0, 1, 2, 3\} \text{ tale che } x^2 > 1; \qquad \forall n \in \mathbb{N} \quad n^2 + 2n - 1;$$
$$\forall x \in \mathbb{R} \quad x > 1 \Rightarrow x > 2; \qquad \exists x \in \mathbb{R} \text{ tale che } x > 1 \Rightarrow x > 2;$$
$$\forall x \in \mathbb{R} \quad x > 1 \Rightarrow x \geq 0; \qquad (\forall x \in \mathbb{R} \quad x > 1) \Rightarrow (\forall x \in \mathbb{R} \quad x > 0).$$

23. Delle seguenti espressioni dire quali hanno senso compiuto, e in tal caso se sono vere o false o altro:

$$\forall x \in \mathbb{R} \text{ tale che } x < 0,$$

$$\exists x \in \mathbb{R} \text{ tale che } x^2 < 0,$$

$$\forall x \in \mathbb{R} : (x - 1)^2 \ge 0,$$

$$\forall x < 1,$$

$$\{\forall x < 1\},$$

$$\{\forall x \in \mathbb{R} \mid x > 0\},$$

$$\{x^2 - 1 \mid \forall x \in \mathbb{R}\},$$

$$\{\exists x \mid x^2\},$$

$$\{\exists x \in \mathbb{R}\},$$

$$\{x \in \mathbb{R} \mid [0, 1] \cup [3, 5]\}.$$

24. Vogliamo formalizzare l'affermazione "tutti gli uomini hanno gli stessi diritti". Sia U l'insieme di tutti gli uomini. Quale delle formulazioni seguenti è corretta?

$$\forall U \quad U$$
 ha gli stessi diritti,
$$\forall x \in U \quad x \text{ ha gli stessi diritti},$$

$$\forall x \in U \quad x \text{ ha gli stessi diritti di } U,$$

$$\forall x, y \in U \quad x \text{ ha gli stessi diritti di } y.$$

25. Vogliamo formalizzare l'affermazione "gli esseri umani sono tutti diversi". Sia U l'insieme di tutti gli esseri umani. Qualcuna delle formulazioni seguenti è corretta?

$$\forall x \in U \quad x \text{ è diverso,}$$

 $\forall x \in U \quad x \text{ è diverso da } U,$
 $\forall x, y \in U \quad x \neq y.$

26. Dare una rappresentazione grafica degli insiemi di numeri reali x che verificano le condizioni seguenti:

$$\begin{aligned} &x<1\vee x>3,\quad x<1\wedge x>3,\quad \neg(x<0),\quad x<2\wedge x=-1,\\ &x<1\Rightarrow 2x<2,\quad x<1\iff x<0,\quad x>2\Rightarrow x^2>4,\quad x\in\mathbb{R}\setminus\{-2,1\}. \end{aligned}$$

27. Sia A l'insieme che comprende i numeri reali > 2 e quelli < -1, e nessun altro. Dire quali dei seguenti insiemi coincidono con A:

$$\{x \in \mathbb{R} \mid x > 2 \land x < -1\}, \qquad \{x \in \mathbb{R} \mid x > 2 \lor x < -1\},$$

$$\{x \in \mathbb{R} \mid (x-2)(x+1) > 0\}, \qquad \{(x-2)(x+1) \mid x \in \mathbb{R}, (x-2)(x+1) > 0\},$$

$$|-\infty, -1[\ \cup \]2, +\infty], \qquad |-\infty, -1[\ \cap \]2, +\infty]$$

28. Usando le regole di base delle disuguaglianze, dimostrare che se a, b, c > 0 allora a/(b+c) < a/b < (a+c)/b. Cioè se si parte da una frazione positiva, questa aumenta se si aumenta il numeratore, ma cala se si aumenta il denominatore.

- **29.** Dimostrare che $x/(1+x^2) \le x$ quando $x \ge 0$.
- **30.** La sottrazione è commutativa? È associativa? La divisione è commutativa? È associativa? L'elevamento a potenza è commutativo? È associativo? Come vanno interpretate espressioni come 1-2-3, 1/2/3, 2^{3^4} , a/bc?

Esercizi del 17 ottobre 2016

31. Risolvere le seguenti disequazioni:

$$\begin{split} \max\{x,2\} < 2x\,, \quad \max\{x,2x\} > 1-x\,, \quad \min\{x-1,1-x\} \ge 0\,, \\ \min\{x,-2x\} < \max\{1+2x,-1\}\,, \quad \min\{x,3|x-1|\} < \frac{x}{2}\,. \end{split}$$

32. Vero o falso? (Per ogni valore reale delle variabili che renda sensata l'espressione).

$$\begin{split} 2\max\{x,y\} &= \max\{2x,y\}\,,\quad 3\max\{x,y\} = \max\{3x,3y\}\,,\\ \min\{x+y,x-y\} &= x-y\,,\quad \max\{x/y,y/x\} = (x+y)/(x-y)\,,\\ \min\{x,y,z\} &= -\max\{x,\max\{y,z\}\}\,,\quad \max\{x,-y\} = -\min\{-x,y\},\\ \min\{-x,-y\} &= -\max\{x,y\},\quad \max\{x+z^2,y+z^2\} = z^2 + \max\{x,y\}\,,\\ \max\Big\{\frac{1}{x^2},\frac{1}{y^2}\Big\} &= \frac{1}{\min\{x^2,y^2\}},\quad x < \min x,y,\quad x \geq \max\{x-1,x+1\}. \end{split}$$

33. Disegnare il grafico delle funzioni seguenti:

$$f(x) := \max\{x - 1, 2 - x\}, \quad f(x) := \min\{2x, 3x + 1\},$$

$$f(x) := \max\{1 - x, 3 + x, 2\}, \quad f(x) := \min\{x^2 - 1, 2 - 2x^2\},$$

$$f(x) := x + \max\{x, \min\{2x, 3x\}\}, \quad f(x) := |x^2 - 3x + 1|,$$

$$f(x) := \max\{2x^2 - 1, 5 - x\}, \quad f(x) := \min\{2x^2 - 1, 5 - x\}$$

Quando si chiede di studiare graficamente il segno di un'espressione, bisogna indicare in forma grafica per quali valori della variabile l'espressione è > 0, quando è = 0, quando è < 0, ed eventualmente quando non ha senso. La convenzione grafica in questo corso è che i tratti continui indicano zone in cui l'espressione è > 0, tratti tratteggiati zone in cui è < 0, pallini sono punti in cui è = 0, e quadratini vuoti e linee a zigzag punti in cui l'espressione non esiste. Sono ammissibili convenzioni diverse, in particolare quella con segni + e - invece di tratti continui o tratteggiati, ma comunque bisogna che ci sia un modo chiaro di indicare quando l'espressione vale 0 o non esiste, cosa che molti studenti non hanno imparato a fare bene alle superiori.

I casi base dello studio del segno sono quando l'espressione è un polinomio di primo o secondo grado. Quando il grado è 1, cioè quando l'espressione è del tipo mx + q, si trova dove il polinomio si annulla, e poi in base al coefficiente di x si assegna il

Quando l'espressione è il reciproco di un polinomio di primo o secondo grado, gli zeri del polinomio sono punti di non esistenza dell'espressione. Questi punti si segnalano vistosamente nel grafico con un quadratino vuoto e una linea a zigzag verticale. Per il resto il reciproco ha lo stesso segno del polinomio.

34. Tracciare lo schema grafico del segno delle espressioni seguenti:

$$x+2$$
, $3x-1$, $3-x$, $2x^2-3x$, $(3x-1)^2$, x^2-x-2 , $-2x^2+1$, $1+2x-x^2$, $1/(x-2)$, $\frac{1}{x^2+2x-1}$, $\frac{1}{2x^2-x-1}$.

Esercizi del 27 ottobre 2016

Quando si chiede di studiare il segno di un'espressione che è il prodotto di fattori di primo o secondo grado (o loro reciproci), si applica la regola dei segni. Lo schema grafico riporta il segno dei singoli fattori, e poi il segno risultante.

35. Fare lo schema grafico del segno delle espressioni seguenti:

$$(x^{2} - 2x - 1)(2x^{2} + 1), \quad (x + 3)(1 - 3x + x^{2}), \quad (-2x^{2} + 1)(x^{2} + x + 1),$$
$$\frac{1 - 2x}{1 + 2x - x^{2}}, \quad \frac{-2x^{2} + 1}{x^{2} + x - 2}, \quad x + 2 \cdot \frac{x - 1}{x + 1}.$$

36. Risolvere le disequazioni razionali seguenti:

$$\begin{split} \frac{1}{3+4x} < -1 \,, & \frac{6+3x}{6x+1} - \frac{3}{x+5} > 0 \,, & \frac{x}{3x+4} \ge \frac{5+6x}{3x+4} \,, \\ \frac{x-1}{2-x} + \frac{6}{x} \le 0 \,, & \frac{x^2+2x-3}{x^2+1} < 0 \,, & \frac{2-3x}{1+x} \le \frac{1+x}{5-x} \,. \end{split}$$

37. Risolvere le disequazioni con valori assoluti seguenti:

$$|5+3x| < 1, |2-x| \ge 4, |1+4x| - x < 0, |x-3| \ge x+1,$$

$$-\frac{1}{2}|-2x-6| < 0, \frac{|5+3x|}{3x+6} < 0, \frac{|6x+1|}{4x+1} > 0,$$

$$|-1-3x| - 4 \cdot |x| \le 2x, 5|x| > -1-2x, \frac{|5x+3|}{2x+5} > \frac{5x+2}{|1+2x|}.$$

38. Risolvere i seguenti sistemi di disequazioni:

$$\begin{cases} 1+x>0\\ 2-3x<0 \end{cases} \begin{cases} 6x^2+x-1<0\\ x^2<4 \end{cases} \begin{cases} \frac{5+6x}{2x+1} \le \frac{3x+2}{6x+6}\\ \frac{x}{x+1} < 1 \end{cases}$$
$$\begin{cases} 3x \ge |4x+4|-6\\ x^2-x>0 \end{cases} \begin{cases} \frac{1}{x+2}>0 \end{cases} \begin{cases} \frac{1}{3x+3} \ge 6+5x\\ |x^2+x-1| < 1 \end{cases}$$

Esercizi del 7 novembre 2016

39. Da $a^2 < b^2$ segue che a < b? Segue che |a| < |b|?

40. Vero o falso:

$$\forall n \in \mathbb{N} \text{ si ha che } n^2 - 5n + 6 \ge 0,$$

$$\forall n \in \mathbb{Z} \text{ si ha che } \frac{1 - 3n}{4n + 1} < 1,$$

$$\exists n \in \mathbb{N} \text{ tale che } \frac{3n^2 - 2}{2n^2 + 1} \ge 1.$$

41. Riscrivere le formule seguenti usando connettivi logici $(\vee, \wedge \ldots)$ e disuguaglianze $<, \geq \ldots$, ma senza usare simboli di insiemi o intervalli, presupponendo sempre che la variabile x sia ambientata in \mathbb{R} (esempio: $x \in [0,1]$ diventa $0 \leq x \leq 1$):

$$x \in \mathbb{R} \setminus \{-1, 0\}, \qquad x \in]2, +\infty[, \qquad x \in]2, +\infty[\setminus \{5\},$$

 $x \in]-\infty, -1[\cup]-1, 1[, \qquad x \in \mathbb{R}.$

42. Per ognuna dei predicati seguenti, scrivere l'insieme degli $x \in \mathbb{R}$ che lo rendono vero, usando le notazioni degli intervalli, e senza usare la variabile x (esempio: x > 1 diventa $]1, +\infty[)$:

$$x < 3,$$
 $x < 0 \lor x \ge 2,$ $x \ne 2,$ $x \ne 1 \lor x \ne -1,$ $x \ne 1 \land x \ne -1,$ $(\forall y > 0 \text{ si ha che } x < y),$ $(\exists y \in \mathbb{Z} \text{ tale che } x \ge y).$

43. Studiare il segno delle espressioni seguenti, cioè dire per quali x sono positive, negative, nulle:

$$(1-x)(2x^{2}+x-3), \qquad \frac{1}{3} + \frac{3}{8x+16} - \frac{11}{24(3x-2)}, \qquad \frac{4x^{2}+7x-2}{(5-x)^{3}},$$

$$1-|x-3|, \qquad 1+|x+3|-3|x|, \qquad \frac{|3x+1|}{x+4} + \frac{4x+4}{|6+x|}, \qquad x^{4}+x^{2}-1.$$

I tipi di equazioni irrazionali che abbiamo trattato:

$$\sqrt{A} \ge B \iff \begin{cases} A \ge B^2 \\ B \ge 0 \end{cases} \lor \begin{cases} B < 0 \\ A \ge 0, \end{cases} \qquad \sqrt{A} \le B \iff \begin{cases} A \le B^2 \\ B \ge 0 \\ A \ge 0, \end{cases}$$

$$\sqrt{A} > B \iff \begin{cases} A > B^2 \\ B \ge 0 \end{cases} \lor \begin{cases} B < 0 \\ A \ge 0, \end{cases} \qquad \sqrt{A} < B \iff \begin{cases} A < B^2 \\ B \ge 0 \\ A \ge 0 \end{cases}$$

44. Risolvere le seguenti disequazioni irrazionali:

$$2x + 1 < \sqrt{x+2}, \quad x+4 \le \sqrt{x+1}, \quad x+4 \le \sqrt{2x+7}, \quad 1-2x > \sqrt{x+1},$$

$$x+3 < \sqrt{2x^2+20}, \quad 4-x > \sqrt{x^2-1}, \quad (2-x)\left(\sqrt{x^2-1}-1\right) < 0,$$

$$\sqrt{\frac{x^3-2}{x-1}} < x, \quad \begin{cases} x+1 \ge \sqrt{x^2-8} \\ 2x < 7 \end{cases} \qquad \begin{cases} 2x-1 \ge \sqrt{3x^2-1} \\ \frac{2x+1}{x-1} \ge 0 \end{cases}$$

45. Studiare il segno delle funzioni irrazionali seguenti, usando la regola dei segni:

$$\sqrt{x-1}$$
, $(x+2)\sqrt{1-x}$, $\frac{x+2}{(x-1)\sqrt{x^2-x}}$, $\sqrt[3]{x+2}$, $\frac{\sqrt{|x-2|}}{x-1}$, $\left|\sqrt{x^2+2x}\right|(x+1)$

46. Risolvere le disequazioni irrazionali seguenti, usando la regola dei segni:

$$\sqrt{x-1} > 0,$$
 $(x+2)\sqrt{1-x} \le 0,$ $\frac{x+2}{(x-1)\sqrt{x^2-x}} < 0,$ $\frac{\sqrt[3]{x+2} \ge 0,}{x-1} \le 0,$ $\left|\sqrt{x^2+2x}\right|(x+1)$

47. (Avanzato) Mostrare che la disuguaglianza $\sqrt{A} + \sqrt{B} \ge C$ è equivalente alla seguente espressione in cui non compaiono radici quadrate:

$$\begin{cases} A \ge 0 \\ B \ge 0 \\ C < 0 \end{cases} \lor \begin{cases} A \ge 0 \\ B \ge 0 \\ C \ge 0 \\ C^2 - A - B < 0 \end{cases} \lor \begin{cases} A \ge 0 \\ B \ge 0 \\ C \ge 0 \\ C^2 - A - B \ge 0 \\ 4AB > (C^2 - A - B)^2. \end{cases}$$

Si può omettere una delle disuguaglianze del sistema? Come va modificato il sistema se la disuguaglianza di partenza è $\sqrt{A} + \sqrt{B} > C$?

48. (Avanzato) Mostrare che la disuguaglianza $\sqrt{A} + \sqrt{B} \leq C$ è equivalente al seguente sistema in cui non compaiono radici quadrate:

$$\begin{cases} A \ge 0 \\ B \ge 0 \\ C \ge 0 \\ C^2 - A - B \ge 0 \\ 4AB \le (C^2 - A - B)^2 \end{cases}$$

Si può omettere una delle disuguaglianze del sistema? Come va modificato il sistema se la disuguaglianza è $\sqrt{A} + \sqrt{B} < C$?

49. (Avanzato) Dimostrare che le seguenti uguaglianze sono vere per ogni $x \in \mathbb{R}$, disegnando anche un grafico dei due membri:

$$\max\{x, -x\} = |x|, \quad \max\{x, 0\} = \frac{x + |x|}{2}, \quad \min\{x, 1\} = \frac{x + 1 - |x - 1|}{2},$$

$$\max\{x - 1, 2 - x\} = \left|x - \frac{3}{2}\right| + \frac{1}{2}, \quad \min\{\max\{x, 0\}, 1\} = \frac{2 + x + |x| - \left|x - 2 + |x|\right|}{4}.$$

$$\max\left\{x - 1, -x - 1, \min\{1 - x, 1 + x\}\right\} = \left||x| - 1\right|.$$

50. (Avanzato) Stabilire se le disuguaglianze seguenti sono vere o false per via simbolica (elevando al quadrato o al cubo ambo i membri e rimaneggiando, quando lecito, senza calcoli approssimati in virgola mobile):

$$\sqrt{5} < 1 + \sqrt{2}, \quad \sqrt{2} + \sqrt{4} < 2\sqrt{3}, \quad \sqrt[3]{3} > \sqrt{2},$$

$$\sqrt{1 + \sqrt{2}} < \sqrt[3]{2}, \quad 1 - \sqrt{3} < \sqrt{5} - \sqrt{2}.$$

51. Discutere la validità della formula

$$\frac{\sqrt{x+1}}{x-1} = \sqrt{\frac{x+1}{x-1}}.$$

Esercizi del 14 novembre 2016

52. Per ognuno dei seguenti grafici decidere se si tratta di una funzione, e, qualora lo sia, se è iniettiva o no:

53. Per ognuno dei seguenti grafici di funzioni trovarne un altro, se c'è, che sia il grafico della funzione inversa:

 ${f 54.}\;\;$ Disegnare il grafico cartesiano della seguente funzione, e quello della funzione inversa:

55. Trovare la formula della funzione inversa delle seguenti funzioni:

$$f(x) = 3x - 1,$$
 $f(x) = \frac{2x + 1}{x - 3},$ $f(x) = 5 - 2^{x + 1}.$

56. Supponendo che f, g siano invertibili, trovare la formula della funzione inversa della funzione h definita come $h(x) := g(1/f(x^3))$.

Ripasso su esponenziali e logaritmi

Per le disuguaglianze, usare il fatto che quando a > 1 valgono le equivalenze $x < y \iff a^x < a^y \iff \log_a x < \log_a y$.

A volte viene comoda la notazione alternativa per gli esponenziali: $\exp_a x = a^x$, che si coordina bene con la notazione usuale per i logaritmi.

57. Vero o falso? O senza senso?

$$2^{\log_2 3} = 3, \quad 3^{\log_2 3} = 2, \quad \log_2 4 = 2, \quad \log_3(-3)^2 = -3, \quad 3^{\sqrt{2}} < \sqrt{27}, \quad \sqrt{2^x} = 2^{x/2}, \\ \log_2 \sqrt[3]{2} = \frac{1}{3}, \quad 5^{\log_2 3} < 5^{\log_2 5}, \quad 6^{\log_2 a} = a3^{\log_2 a}, \quad 3^{1/x} = \frac{1}{3^x}, \\ \log_2 \frac{\sqrt{2} + \sqrt{3}}{2} > \frac{1}{2} \log_2 6, \quad \log_a \left(\sqrt{2} + \sqrt{3}\right) = \frac{1}{2} \log_a 2 + \log_a \left(1 + \sqrt{3/2}\right), \\ \log_a(x^2) = (\log_a x)^2, \quad \log_a b^a = b^{\log_a b}, \quad \log_a (\log_b x) = \log_{ab} x, \quad \log_{ab} x = \frac{\log_a x}{1 + \log_a b}, \\ \log_{-1}(-1)^n = n, \quad \log_0 0 = 1, \quad \log_1 1^2 = 2, \quad \log_{-a} x = \frac{1}{\log_a x}, \\ \log_{\sqrt{a}}(x) = 2 \log_a x, \quad \log_{(a^x)}(x) = \frac{\log_a x}{x}, \quad \log_a (\log_a x) = (\log_a x)^2, \\ \frac{\log x}{\log(1 + x)} = \log x - \log(1 + x), \quad \log(a + b) \log(a - b) = \log(a^2 - b^2), \\ (\log(e + x))^{1/x} = \frac{1}{x} \log(e + x), \quad \log_a x = y \iff x = \exp_a y, \\ \log_a x < y \iff x < \exp_a y, \quad \exp_{(a^x)} y = \exp_{(a^y)} x = \exp_a(xy), \\ \exp_a(\exp_b x) = \exp_{ab} x, \quad (\exp_a x)(\exp_b x) = \exp_{ab} x, \\ \exp_a(\exp_b x) = \exp_b(\exp_a x), \quad a^{b^c} = a^{c^b}. \end{cases}$$

- **58.** Mostrare che $\log_a x$ ha lo stesso segno di x-1, quando x>0, a>1. Analogamente a^x-1 ha lo stesso segno di x, $\sqrt{x}-2$ ha lo stesso segno di...
- **59.** Risolvere le disequazioni seguenti:

$$2^x \ge 4^{1-2x}$$
, $\sqrt{3^{x+1}} < 9^{x-1}$, $\log_2 x \le 3$, $\sqrt{\log_2 x} < 4$, $\log_2 \sqrt{x} > \sqrt{2}$, $\log_3 (1-x) < \log_3 (1+x)$.

60. Studiare il segno delle espressioni seguenti:

$$2^{x+1}(x^2-2x)$$
, 3^x-9^x , $(x-2)\log_3(x+1)$, $\frac{\log_2 x - \log_2 x^2}{x-3}$.

61. Trovare l'insieme di definizione delle formule seguenti (quando per i logaritmi non è indicata la base, fate conto che qui non abbia importanza):

$$2^{1/x}, \quad \log|x|, \quad \log(x+\sqrt{x-1}), \quad \log x - \log(1-x), \quad \log \frac{x}{1-x},$$

$$\frac{1}{2-3^x}, \quad \log(2-3^x), \quad \frac{1}{\log(2-3^x)},$$

$$\log((\log_2 x)^2 - 1), \quad \log(1-2x+\sqrt{1+x}), \quad \sqrt{x+2-\sqrt{x+1}},$$

$$\log(\min\{x-1,2-x\}), \frac{1}{1-\sqrt[3]{x^2-1}}.$$

62. Quali delle seguenti funzioni sono esponenziali di x o di n? Quali sono potenze di x o di n? Quali sono polinomi in x o in n?

$$x^{4}, \quad \frac{1}{2^{x}}, \quad \frac{x^{2}}{1+x^{3}}, \quad n!, \quad 2^{n!}, \quad n^{n},$$

$$3^{n}/5^{n}, \quad 2^{3\log_{2}x}, \quad x^{n}, \quad (n+x)^{n}, \quad 2^{n}+3^{n}, \quad 1^{n}+2^{n}+\cdots+n^{n},$$

$$x^{2}+3x^{3}, \quad 2x^{3}+x2^{x}, \quad (n-1)(n-2), \quad \frac{1}{4^{x}}.$$

- **63.** Dire se questo conto è giusto: $2^{n^2} = (2^n)^2 = 2^{n \cdot 2} = 2^{2 \cdot n} = (2^2)^n = 4^n$.
- **64.** (Avanzato) Dimostrare che $\log_2 3$ è irrazionale.