PSY9511: Seminar 2

The basics of regression and classification

Esten H. Leonardsen 26.02.2024

Outline

Today's lecture:

- 1. Recap of last lecture
- 2. Proposed solution for Assignment 1
- 3. Basics of regression and classification
- 4. Presentation of Assignment 2

What is statistical learning?

What is statistical learning?

• Inferentiental view: Finding a function $\hat{f}(X)$ that describes the relationship between some input variables X and an output variable y.

What is statistical learning?

- Inferentiental view: Finding a function $\hat{f}(X)$ that describes the relationship between some input variables X and an output variable y.
- Predictive view: Finding a function $\hat{f}(X)$ that, when given a new set of inputs X allows us to predict an output y.

What is statistical learning?

- Inferentiental view: Finding a function $\hat{f}(X)$ that describes the relationship between some input variables X and an output variable y.
- Predictive view: Finding a function $\hat{f}(X)$ that, when given a new set of inputs X allows us to predict an output y.

Regression

y181518

16

17

Classification

cat cat dog cat dog

The predictive target y is a continuous (or quantitative) variable.

The predictive target y is a categorical (or qualitative) variable.

- Parametric models The function $\hat{f}(X)$ is relatively simple and can be described by a small number of parameters.
 - Linear regression: $\hat{f}(X) = \beta_0 + \beta_1 X$
- Non-parametric models The function $\hat{f}(X)$ is more complex and often relies directly on the data.

