* We want to transform something like
(to o o o o 'e' SŨ to' o" o" o" o" o" o" > to
(h J LST ISÜ h L'ST > (or the product of
so so+.>
- (Int with completely M. Amil
- Start with simple stuff Airst
Spin and isospin completanoss:
5, 252
$\sum SM_s\rangle\langle SM_s =1 \qquad (1)$
S=15,-52 Ms=-S
S: total spin Ms: total spin projection
si=si= { (nulears) Ms, and Ms, are HA
nulses span prejections
* Note (Ms, Ms, SMs) = 0 Vms, Ms, where
Ms, +Ms, 7 Ms.
·
$\sum_{T= 1,-1_2 }^{+_1+1_2} \sum_{M=-T}^{T} TM_T\rangle \langle TM_T = 1 $ (2)
T= +1-+2 M=-T
Example: do SUSUT metrix elements for
pair nominhum distribution ignoring L, J.
1, (9, Q) ~ [[[] (h n;"n;" n;"" SŨ à mm, n;'n;') ×
Ms Ms Ms" Ms" Ms" Ms""

(3)

Insert completeness relations for times

-> SU, SUT diagnal in S,Ms => 2 sums!

The small my dependence is only in the CG's so we can do those immediately:

 $\frac{\sum_{n_s,n_s'} (n_s n_s') S n_s > (S' n_s') n_s n_s'}{\uparrow} = S_{s,s'} S_{n_s,n_s'}$ $\frac{\uparrow}{\delta U'} + \epsilon m \qquad \delta U' + \epsilon m$

and $\sum_{m_s'',m_s'''}$ $\left(m_s'''n_s''' \mid SM_s \right) \left(SM_s \mid m_s''' m_s''' \right) = S_{s,s'} S_{m_s m_s'}$ $1 \quad SO term \quad 1 \quad SO^* term$

Leaves just Enc

Now for isospin.

Including E -> E (some argument as

The above)

= [(27+1)

Not including Z: -> [[...] | m = m + m

Decomposition of q, C
Average over Rig and Rië
Jolg (9 L'Mi 19) (9/9 L"Mi") ~ Sur Smen"
Jara (ti h LML > (h L"M" (ti > ~ Sum form"
Pet it all together and Eq. (3) result
MU'(q, a) ~ EEEE E E E (LML SMs JMS LS) x
(k J L S T S J 9 J L'S T > (J M L'S L'ML'S MS > x
(TM, M, M,) (M, M, TM,) (L'M'SM, J'M'L'S) x
(q J'L'ST SÜ+ L J'L ST > (J'MJ'LS LMLSMs > x
(4)