Algorithmique numérique LINFO1113

by Loïc Quertenmont, PhD

LINF01113 - 2019-2020

Who I am

2007-2016: Physics Research at CERN

- PhD at UCL
- Postdocs at Florida, CERN, UCL
- Machine Learning
- Data Visualization
- (Big) Data analysis (50PB/year)

2016-2018: Senior Data Scientist

- Customer Analytics on Social Networks
- Recommendation engine
- Big Data pipelines for insurance
- Price Forecasting

2018-now: Deeper Data Analytics

- AI & Data Science Consulting
- http://deeperanalytics.be/
- AI & Data Science Trainers
- Invited Lecturer

Contenu

Nous verrons plusieurs problèmes mathématiques bien connus et comment les résoudre numériquement, Par exemple, des problèmes d'interpolation, de résolution d'équations non linéaires, ...

Mais vous apprendrez également:

Comment implémenter correctement les calculs numériques?

Eh bien, ca ne semble pas compliqué?!

Il suffit d'écrire les formules en Python...

Programme

Cours	1	Librairies mathématiques et représentation des nombres en Python
Cours	2,3,4	Résolution des systèmes linéaires
Cours	5,6	Interpolation et Régression Linéaires
Cours	7	Zéro d'équation
Cours	8,9	Différentiation numérique
Cours	10	Intégration numérique
Cours	11,12	Introduction à l'optimisation
Cours	13	Rappel / Répétition

Modalité

- Exercices
 - Une fois par semaine (Jeudi matin)
 - Apportez votre ordinateur portable
 - Environnement Python3 (Jupyter)
 - Numpy, Matplotlib
- Material
 - Livre de référence: Numerical methods in engineering with python3
 - Disponible à la bibliothèque ou sur amazon
 - Slides:
 - En anglais → Mais présenté en français
 - Les slides sont basé sur le livre de référence + cours 2018 (Ramin Sadre)+ ...
 - Jupyter Notebooks
 - Moodle: http://moodleucl.uclouvain.be
 - Slides, Exercices, etc.
 - Annonces importantes uniquement sur Moodle!
- Examen
 - Examen écris sur les sujets discutés dans le cours
 - Les exercices ne compte pas, mais ils préparent à l'examen
 - Important: Vous devez également travailler à la maison!