WikipediA

Pseudoconvex function

In <u>convex analysis</u> and the <u>calculus of variations</u>, both branches of <u>mathematics</u>, a **pseudoconvex function** is a <u>function</u> that behaves like a <u>convex function</u> with respect to finding its <u>local minima</u>, but need not <u>actually</u> be convex. Informally, a <u>differentiable function</u> is pseudoconvex if it is increasing in any direction where it has a positive <u>directional derivative</u>. The property must hold in all of the function domain, and not only for nearby points.

Contents

Formal definition

Properties

Relation to other types of "convexity"

Sufficient optimality condition

Examples

Generalization to nondifferentiable functions

Related notions

See also

Notes

References

Formal definition

Consider a <u>differentiable</u> function $f: X \subseteq \mathbb{R}^n \to \mathbb{R}$, defined on a (nonempty) <u>convex open set</u> X of the finite-dimensional <u>Euclidean space</u> \mathbb{R}^n . This function is said to be **pseudoconvex** if the following property holds: [1]

for all
$$x, y \in X$$
: $\nabla f(x) \cdot (y - x) \ge 0 \Rightarrow f(y) \ge f(x)$.

Equivalently:

$$\text{ for all } x,y \in X: \quad f(y) < f(x) \Rightarrow \nabla f(x) \cdot (y-x) < 0.$$

Here
$$\nabla f$$
 is the gradient of f , defined by: $\nabla f = \left(\frac{\partial f}{\partial x_1}, \dots, \frac{\partial f}{\partial x_n}\right)$.

Note that the definition may also be stated in terms of the <u>directional derivative</u> of f, in the direction given by the vector v = y - x. This is because, as f is differentiable, this directional derivative is given by:

$$rac{\partial f}{\partial v}(x) =
abla f(x) \cdot v =
abla f(x) \cdot (y-x).$$

Properties

Relation to other types of "convexity"

Every convex function is pseudoconvex, but the converse is not true. For example, the function $f(x) = x + x^3$ is pseudoconvex but not convex. Similarly, any pseudoconvex function is <u>quasiconvex</u>; but the converse is not true, since the function $f(x) = x^3$ is quasiconvex but not pseudoconvex. This can be summarized schematically as:

 $convex \Rightarrow pseudoconvex \Rightarrow quasiconvex$

To see that $f(x) = x^3$ is not pseudoconvex, consider its derivative at x = 0: f'(0) = 0. Then, if $f(x) = x^3$ was pseudoconvex, we should have:

$$f'(0)(y-0)=0\geq 0 \Rightarrow f(y)\geq f(0), \quad orall\, y\in \mathbb{R}.$$

In particular it should be true for y = -1. But it is not, as: $f(-1) = (-1)^3 = -1 < f(0) = 0$.

12 3 48 46 43 32 52 54 66 68 1 12 16 68 68 1

Functions x^3 (quasiconvex but not pseudoconvex) and x^3 + x (pseudoconvex and thus quasiconvex). None of them is convex.

Sufficient optimality condition

For any differentiable function, we have the <u>Fermat's theorem</u> necessary condition of optimality, which states that: if f has a local minimum at x^* , then x^* must be a <u>stationary point</u> of f (that is: $\nabla f(x^*) = 0$).

Pseudoconvexity is of great interest in the area of <u>optimization</u>, because the converse is also true for any pseudoconvex function. That is: [2] if x^* is a <u>stationary point</u> of a pseudoconvex function f, then f has a global minimum at x^* . Note also that the result guarantees a global minimum (not only local).

This last result is also true for a convex function, but it is not true for a quasiconvex function. Consider for example the quasiconvex function:

$$f(x) = rac{e^x}{x^2 + 1} + rac{1}{e^x}.$$

This function is not pseudoconvex, but it is quasiconvex. Also, the point x = 0 is a critical point of f, as f'(0) = 0. However, f does not have a global minimum at x = 0 (not even a local minimum).

Finally, note that a pseudoconvex function may not have any critical point. Take for example the pseudoconvex function: $f(x) = x^3 + x$, whose derivative is always positive: $f'(x) = 3x^2 + 1 > 0$, $\forall x \in \mathbb{R}$.

Examples

An example of a function that is pseudoconvex, but not convex, is: $f(x) = \frac{x^2}{x^2 + k}$, k > 0. The figure shows this function for the case where k = 0.2. This example may be generalized to two variables as:

The previous example may be modified to obtain a function that is not convex, nor pseudoconvex, but is quasiconvex:

$$f(x)=rac{{{{\left| x
ight|}^p}}}{{{{\left| x
ight|}^p}+k}},\,k>0,\,p\in (0,1).$$

The figure shows this function for the case where k=0.5, p=0.6. As can be seen, this function is not convex because of the concavity, and it is not pseudoconvex because it is not differentiable at x=0.

Example of a quasiconvex function that is not pseudoconvex. The function has a critical point at x = 0, but this is not a minimum.

Pseudoconvex function that is not convex.

Generalization to nondifferentiable functions

The notion of pseudoconvexity can be generalized to nondifferentiable functions as follows. [3] Given any function $f: X \to \mathbb{R}$, we can define the upper Dini derivative of f by:

$$f^+(x,u) = \limsup_{h o 0^+} rac{f(x+hu)-f(x)}{h};$$

Quasiconvex function that is not convex, nor pseudoconvex.

where u is any <u>unit vector</u>. The function is said to be pseudoconvex if it is increasing in any direction where the upper Dini derivative is positive. More precisely, this is characterized in terms of the <u>subdifferential</u> ∂f as follows:

For all $x, y \in X$: if $x^* \in \partial f(x)$ is such that $\langle x^*, y - x \rangle \geq 0$, then $f(x) \leq f(z)$, for all $z \in [x, y]$; where [x, y] denotes the line segment adjoining x and y.

Related notions

A **pseudoconcave function** is a function whose negative is pseudoconvex. A **pseudolinear function** is a function that is both pseudoconvex and pseudoconcave. For example, linear—fractional programs have pseudolinear objective functions and linear—inequality constraints. These properties allow fractional-linear problems to be solved by a variant of the simplex algorithm (of George B. Dantzig). Dantzig). Collection is a function whose negative is pseudoconvex. A **pseudolinear function** is a function whose negative is pseudoconvex. A **pseudolinear function** is a function whose negative is pseudoconvex. A **pseudolinear function** is a function whose negative is pseudoconvex. A **pseudolinear function** is a function whose negative is pseudoconvex. A **pseudolinear function** is a function that is both pseudoconvex and pseudoconcave. In the simple constraints is pseudoconvex. A **pseudolinear function** is a function whose negative is pseudoconvex. A **pseudolinear function** is a function whose negative is pseudoconvex. A **pseudolinear function** is a function whose negative is pseudoconvex. A **pseudolinear function** is a function whose negative is pseudoconvex. A **pseudolinear function** is a function whose negative is pseudoconvex. A **pseudolinear function** is a function whose negative is pseudoconvex. A **pseudolinear function** is a function whose negative is pseudoconvex. A **pseudoconvex** is pseudoconvex. A **pseudoconvex**

Given a vector-valued function η , there is a more general notion of η -pseudoconvexity and η -pseudolinearity; wherein classical pseudoconvexity and pseudolinearity pertain to the case when $\eta(x,y) = y - x$.

See also

- Pseudoconvexity
- Convex function
- Quasiconvex function

Notes

- 1. Mangasarian 1965
- 2. Mangasarian 1965
- 3. Floudas & Pardalos 2001
- 4. Rapcsak 1991
- 5. Chapter five: Craven, B. D. (1988). *Fractional programming*. Sigma Series in Applied Mathematics. Vol. 4. Berlin: Heldermann Verlag. p. 145. ISBN 3-88538-404-3. MR 0949209 (https://www.ams.org/mathscinet-getitem?mr=0949209).
- Kruk, Serge; Wolkowicz, Henry (1999). "Pseudolinear programming". <u>SIAM Review</u>. Vol. 41, no. 4. pp. 795–805. doi:10.1137/S0036144598335259 (https://doi.org/10.1137%2FS0036144598335259). <u>JSTOR 2653207 (https://www.jstor.org/stable/2653207)</u>. <u>MR 1723002 (https://www.ams.org/mathscinet-getitem?mr=1723002)</u>.
- 7. Mathis, Frank H.; Mathis, Lenora Jane (1995). "A nonlinear programming algorithm for hospital management". *SIAM Review*. Vol. 37, no. 2. pp. 230–234. doi:10.1137/1037046 (https://doi.org/10.1137%2F1037046). JSTOR 2132826 (https://www.jstor.org/stable/2132826). MR 1343214 (https://www.ams.org/mathscinet-getitem?mr=1343214).
- 8. Ansari, Qamrul Hasan; Lalitha, C. S.; Mehta, Monika (2013). <u>Generalized Convexity, Nonsmooth Variational Inequalities, and Nonsmooth Optimization</u> (https://books.google.com/books?id=3qzMB QAAQBAJ&q=pseudolinearity&pg=PA107). CRC Press. p. 107. <u>ISBN</u> 9781439868218. Retrieved 15 July 2019.
- Mishra, Shashi K.; Giorgi, Giorgio (2008). Invexity and Optimization (https://books.google.com/books?id=SDbS50KIQGIC&q=pseudolinearity&pg=PA39). Springer Science & Business Media. p. 39. ISBN 9783540785613. Retrieved 15 July 2019.

References

- Floudas, Christodoulos A.; Pardalos, Panos M. (2001), "Generalized monotone multivalued maps", *Encyclopedia of Optimization*, Springer, p. 227, ISBN 978-0-7923-6932-5.
- Mangasarian, O. L. (January 1965). "Pseudo-Convex Functions". Journal of the Society for Industrial and Applied Mathematics, Series A. 3 (2): 281–290. doi:10.1137/0303020 (https://doi.org/10.1137%2F0303020). ISSN 0363-0129 (https://www.worldcat.org/issn/0363-0129)..
- Rapcsak, T. (1991-02-15). "On pseudolinear functions". European Journal of Operational Research. 50 (3): 353–360. doi:10.1016/0377-2217(91)90267-Y (https://doi.org/10.1016%2F0377-2217%2891%2990267-Y). ISSN 0377-2217 (https://www.worldcat.org/issn/0377-2217).

This page was last edited on 6 September 2021, at 08:15 (UTC).

Text is available under the Creative Commons Attribution-ShareAlike License 3.0; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.