Explorando sitios de comercio electrónico

Análisis Inteligente de Datos

Leonardo Aranda

Maestría en Explotación de Datos y Descubrimiento del Conocimiento

Introducción

- Descubrir patrones en sitios de comercio electrónico con más visitas.
- Datos de Alexa + SimilarWeb. Ejemplo de amazon.com:

Variables

- Comportamiento de usuarios y fuentes de tráfico web.
- 1928 sitios.
- 403 sitios con position = 1, 1525 sitios con position = 0.

Variable	Descripción
url	Dirección del sitio web (ID)
position	Pertenece o no al Top 50.000 mundial (Clase)
bounce	Porcentaje de visitas con una sola página vista
ppv	Páginas vistas por visita
time	Tiempo promedio de la visita
paid_search	Tráfico pago
traffic_direct	Tráfico directo
traffic_display	Tráfico de redes de publicidad
traffic_search	Tráfico de buscadores
traffic_mail	Tráfico de correo electrónico
traffic_social	Tráfico de redes sociales
traffic_referrals	Tráfico referido desde otras páginas

Vector de medias

- Diferencia en la media de los grupos
- ¿ Son significativas ?

	V1	V2	
Group.1	0	1	
bounce	40.48	43.03	
paid_search	13.92	18.46	
ppv	4.52	5.80	
time	172.99	255.88	
traffic_direct	24.46	28.58	
traffic_display	0.88	1.74	
traffic_search	54.47	45.90	
traffic_mail	4.21	5.20	
traffic_social	3.12	3.84	
traffic_referrals	12.86	14.74	

Tiempo de visita - Distribución

Tiempo de visita - Normalidad

■ Prueba de Shapiro-Wilk

position	p-value
0	0.0000000 0.0240839
	0.02 10005

■ Transformación de Box-Cox

position	p-value
0	0.0002660
1	0.0019657

Tiempo de visita - Prueba de Mann-Whitney-Wilcoxon

- H_0 : Los grupos pertenecen a la misma distribución.
- *H*₁: Existen diferencias significativas en la distribución.

```
##
## Wilcoxon rank sum test with continuity correction
##
## data: time by position
## W = 148840, p-value < 2.2e-16
## alternative hypothesis: true location shift is not equal to 0</pre>
```

Matriz de correlación

- Correlación negativa entre Search vs Referido y Directo.
- Correlación positiva entre Directo y Tiempo de Visita.

Componentes principales - Scree Plot

■ Tres componentes explican el 60% de la variabilidad.

Componentes principales - Componente 1

- Nivel de interacción
- Componente de forma

Componentes principales - Componente 2

- Conocimiento de marca
- Componente de forma

Componentes principales - Componente 3

- Tráfico pago
- Componente de forma

Componentes principales - Biplot

- Grupo 1 proyecta valores positivos sobre la primer componente.
- Grupo 1 tiene mayor Tiempo de Visita, tráfico Directo, Referido y desde Email.
- Grupo 0 tiene mayor Bounce.

Clustering - K-means

- Cluster 3 agrupa a los sitios con mejor desempeño.
- Cluster 4 agrupa a los sitios con peor desempeño.

Clustering - Grupos identificados

- Cluster 3: Baja tasa de rebote, elevado tiempo de visita, elevado tráfico directo.
- Cluster 4: Bajo nivel de páginas por visita, elevado tráfico pago.
- ¿ Hub vs Authority ?

	V1	V2	V3	V4
Group.1	1	2	3	4
bounce	40.46	46.59	34.99	45.03
paid_search	38.13	7.37	11.38	8.28
ppv	5.02	3.83	6.58	3.44
time	212.41	142.62	263.66	130.75
traffic_direct	22.66	21.16	34.77	19.82
traffic_display	3.64	0.55	0.63	0.30
traffic_search	54.04	33.90	37.91	67.13
traffic_mail	5.60	12.36	5.12	1.89
traffic_social	2.17	15.56	3.01	1.77
traffic_referrals	11.89	16.46	18.56	9.10

Análisis discriminante - Resumen

- No se satisfacen supuestos de normalidad y homocedasticidad
- Análisis discriminante cuadrático
- 70% training / 30% testing.

```
## Confusion Matrix and Statistics
##
            Reference
##
## Prediction
            0 333 57
##
            1 48 44
##
##
##
                  Accuracy: 0.7822
##
                    95% CI: (0.7426, 0.8182)
               Sensitivity: 0.43564
##
               Specificity: 0.87402
##
##
         Balanced Accuracy: 0.65483
```

Análisis discriminante - Puntuaciones

Puntuaciones discriminantes

Software

■ Python: Preparación de datos.

RStudio: Análisis y documentación.

■ GitHub: Almacenamiento y versionado del código.

Conclusiones

- Los resultados permiten hacer un diagnóstico de los sitios de comercio electrónico.
- El Tiempo de Visita es significativamente más elevado en sitios con mayor volumen de tráfico.
- Sus principales fuentes de tráfico son Directo, Email y Referido.
- Los sitios con poco nivel de tráfico presentan mayor Tasa de Rebote.
- Para trabajos futuros, se podrían aplicar otros métodos que intenten mejorar el desempeño de clasificación del análisis discriminante.