

Aula 02 – Gestão da Integração, Escopo e Tempo

Prof Dr. Renato de Oliveira Moraes remo@usp.br

Sumário

- Gestão da Integração
- Gestão do Escopo
- Construção do WBS
- Estimativa de duração e custo das atividades
- Programação das atividades

Gestão da Integração

Inclui processos e atividades necessárias para: Identificar, Definir, Combinar, Unificar e Coordenar os vários processos e atividades dos grupos de processos de gerenciamento.

Processos descritos no PMBoK:

- 4.1. Desenvolver o termo de abertura do projeto
- 4.2. Desenvolver o plano de gerenciamento de projeto
- 4.3. Orientar e gerenciar a execução do projeto
- 4.4. Monitorar e controlar o trabalho do projeto
- 4.5. Realizar o controle integrado de mudanças
- 4.6. Encerrar o projeto ou fase

4.1. Desenvolver o termo de abertura do projeto

- Contém a justificativa do projeto;
- Descreve em alto nível as entregas do projeto (produto, serviço ou resultado);
- Business Case: necessidade do negócio e analise de custo/beneficio;
- Riscos de alto nível;
- Resumo do cronograma de marcos;
- Resumo do orçamento;
- Aloca o gerente de projeto e lhe autoriza a utilizar os recursos da organização para finalizar o projeto;
- Deve ser assinado por um individuo hierarquicamente superior ao gerente de projeto (patrocinador, diretor, etc) que é externo ao projeto.

4.2. Desenvolver o plano de gerenciamento de projeto

É o processo de documentação necessário para definir, integrar e coordenar todos os planos auxiliares:

- Estabelece qual o ciclo de vida do projeto e quais processos serão aplicados em cada fase;
- Estabelece qual será o nível de implementação de cada processo selecionado;
- Descrição das ferramentas e técnicas a serem usados por processo;
- Estabelece as dependências e interações entre processos, e as entradas e saídas essenciais;
- Documenta como as mudanças serão monitoradas e controladas;

4.3. Orientar e gerenciar a execução do projeto

É o processo de realização do trabalho para atingir os objetivos. Essas atividades incluem:

- Executar as atividades para realizar os objetivos do projeto;
- Criar as entregas do projeto;
- Formar, gerenciar e treinar os membros da equipe do projeto;
- Obter, gerenciar e usar recursos (materiais, ferramentas, equipamentos,...);
- Gerar dados do projeto (custo, cronograma, progresso técnico,..);
- Emitir solicitações de mudança e adaptar mudanças aprovadas

4.4. Monitorar e controlar o trabalho do projeto

É o processo de acompanhamento, revisão e ajuste do progresso para atender aos objetivos. Inclui as atividades:

- Comparação do desempenho real do projeto X plano de gerenciamento;
- Identificação, análise e acompanhamento de novos riscos e o monitoramento de riscos existentes e que o plano de respostas aos riscos sejam implementados;
- Solicitações de mudanças: ação corretiva, preventiva e reparo de defeitos.
- Fornecimento das previsões para atualização do custo de informações dos cronogramas atuais;
- Monitoramento da execução das mudanças aprovadas conforme ocorrem.

4.5. Realizar o controle integrado de mudanças

É o processo de revisão de todas as solicitações, aprovação e gerenciamento de mudanças em entregas, ativos de processos organizacionais e documentos de projeto. Inclui as atividades:

- Atualização do andamento das solicitações de mudança;
- Atualização do plano de gerenciamento;
- -Atualização das documentações do projeto.

4.6. Encerrar o projeto ou fase

É o processo de finalização das atividades, é o encerramento formal do projeto ou fase:

- Determina os procedimentos para investigar ou documentar os motivos de ações realizadas;
- Determina as ações e atividades necessárias para satisfazer a conclusão ou critérios de saída para fase ou projeto;
- Atividades necessárias para coletar registros do projeto ou fase, coletar lições aprendidas e arquivar informações do projeto para o uso futuro da organização.

Gestão do Escopo

O objetivo principal é definir todo o trabalho necessário, e somente o que de fato é necessário, para conclusão do projeto. Define e gerencia o que é parte ou não do projeto. É um processo altamente interativo, devendo ocorrer no mínimo uma vez – e frequentemente ocorre muitas – durante o ciclo de vida do projeto.

Processos:

- 5.1. Coletar os requisitos
- 5.2. Definir o escopo
- 5.3. Criar a EAP
- 5.4. Verificar o escopo
- 5.5. Controlar o escopo

Tipos de Escopo

Aspectos e Funções que caracterizam um produto/serviço

Características, Funções

Χ

Produto, Serviço

Escopo do projeto

Trabalho que deve ser feito para fornecer o produto/serviço conforme acordado

Plano do Projeto

5.1. Coletar os requisitos

- O processo de definição e documentação das necessidades das partes interessadas para alcançar os objetivos do projeto.
- Documentação dos requisitos. Os requisitos devem ser não ambíguos (mensuráveis e passiveis de testes), investigáveis, completos, consistentes e aceitáveis para as principais partes interessadas.
- Necessidade do negócio, situação atual, situação pretendida, requisitos funcionais, requisitos não funcionais, requisitos de qualidade, critérios de aceitação, regras de negocio, impactos, premissas e restrições

5.2. Definir o escopo

O processo de desenvolvimento de uma descrição detalhada do projeto e do produto.

Descrição do escopo do produto: elabora progressivamente as características do produto, serviço ou resultado descritos no termo de abertura do projeto e na documentação dos requisitos;

- Critérios de aceitação do produto;
- Entregas do projeto;
- Exclusões do projeto (fora do escopo);
- Restrições do projeto;
- Premissas do projeto.

5.3. Criar a EAP

• É o processo de subdivisão das tarefas e do trabalho do projeto em componentes menores e mais facilmente gerenciáveis.

A estrutura do EAP pode ser criada:

 Usando as fases do ciclo de projeto como primeiro nível, com o produto e entregas no segundo nível;

A estrutura do EAP pode ser criada:

Usando entregas principais como primeiro nível da decomposição;

A estrutura do EAP pode ser criada:

Usando Subprojeto;

5.3. Criar a EAP

Dicionário EAP:

- Código identificador
- Descrição do trabalho
- Organização responsável pela execução
- Lista de marcos do cronograma
- Atividades do cronograma
- Recursos necessários
- Estimativa de custos
- Requisitos de qualidade
- Critérios de aceitação
- Referências técnicas
- Informações do contrato

Linha de base do escopo

- Declaração do escopo do projeto
- EAP
- Dicionário da EAP

5.4. Verificar o escopo

O processo de formalização da aceitação das entregas do projeto.

- Entregas aceitas: são formalmente assinadas e aprovadas pelo cliente ou patrocinador;
- Solicitações de mudança: as entregas finalizadas que não foram formalmente aceitas são documentadas, juntamente com as razões para sua rejeição

5.5. Controlar o escopo

É o processo de monitoramento do progresso do escopo do projeto e escopo do produto e gerenciamento das mudanças feitas na linha de base do escopo.

- Análise de variação: medições de desempenho de projeto são usadas para avaliar a magnitude de variação a partir da linha de base do escopo.
 - Causa das variações;
 - Ação corretiva escolhida e suas razões;
 - E outros tipos de lições aprendidas a partir do controle do escopo do projeto.
- Atualização do documento de requisitos e de rastreabilidade.

Gestão do Tempo

Inclui os processos necessários para gerenciar o termino pontual do projeto.

Processos:

- 6.1. Definir as atividades
- 6.2. Sequenciar as atividades
- 6.3. Estimar os recursos das atividades
- 6.4. Estimar a duração das atividades
- 6.5. Desenvolver o cronograma
- 6.6. Controlar o cronograma

O cronograma finalizado e aprovado é a linha de base que será usado no processo Controlar o Cronograma (6.6)

6.1. Definir as atividades:

- Identifica as ações especificas a serem realizadas.
- EAP identifica as entregas (pacote de trabalho) que são decompostos em componentes menores chamados de atividades (tarefas).
- As atividades proporcionam um base para estimativa, desenvolvimento do cronograma, execução e monitoramento e controle do trabalho de projeto.

6.2. Sequenciar as atividades:

- •Tipos de relações de precedência (diagrama de precedência)
 - oTérmino-Início (FS)
 - oTérmino-Término (FF)
 - Olnício-Início (SS)
 - Olnício-Término (ST)
- •Tipos de precedência
 - Obrigatórias
 - Arbitradas
 - Externas

6.3. Estimar recursos das atividades:

Tipos e quantidades de material, pessoas, equipamentos ou suprimentos necessários a cada atividade

- Opinião especializada
- Análise de Alternativas
- Dados publicados para auxílio de estimativas
- •Estimativa Bottom-Up

Estimativas

Papel e Lápis

Responda em 5 segundos cada uma das duas perguntas a seguir

1. Quantas moedas existem dentro desta sala?

2. Qual o valor total das moedas desta sala?

6.4. Estimar as durações das atividades:

- Opinião especializada
- Estimativa por analogia
- Estimativa paramétrica (exemplo: COCOMO)
- Estimativas de três pontos

$$t_E = \frac{t_O + 4t_M + t_P}{6}$$

6.5. Desenvolver Cronograma:

- •Os modelos mais conhecidos para programação de projetos são:
 - Diagrama de barras: Gráficos de Gantt
 - Rede de atividades: PERT/CPM

Técnicas de Programação das Atividades

Programação de atividades em Projetos

- Programar as atividades de um projeto consiste em determinar para cada atividade:
 - A quantidade de recursos alocados
 - A data de início da atividade
 - A data de término da atividade

Programação de atividades em Projetos

- Técnicas usuais
 - Gráfico de Gantt
 - Programação por marco (milestones)
 - Método do Caminho Crítico (CPM)
 - Probabilistic Evaluation Review Technique (PERT)
 - Redes Genéricas de Atividades
 - Modelos de Compressão de redes
 - Técnicas de Nivelamento de Recursos

Gráfico de Gantt

- O Gráfico de Gantt é o método mais popular de programação. É, basicamente, um cronograma, onde cada barra representa o período de execução de uma atividade.
- Seu grande apelo é a facilidade de leitura e interpretação. Contudo, ele não considera formalmente as relações de precedência entre as atividades e nem a limitação de recursos. Por isso, a habilidade do programador é essencial para o resultado. É recomendado para projetos de baixa complexidade.
- O Gráfico de Gantt pode ser utilizado não como ferramenta de programação, mas como uma forma de ilustrar graficamente um programa (cronograma) obtido com uma técnica mais elaborada.

Gráfico de Gantt

Programação por marco (milestones)

- Nas situações de grande incerteza, onde nem as atividades ainda foram identificadas, não é possível utilizar técnicas de programação baseadas em atividades com Gráfico de Gantt, CPM ou PERT, por exemplo. Casos assim são muito comuns nas fases inicias de projetos.
- Os marcos devem ser definidos por um estado de desenvolvimento do projeto em determinada fase. Eles determinam o ponto que deve ser atingido, mas ignoram como.

Programação por marco (milestones)

- O Critical Path Method (CPM), ou Método do Caminho Crítico, surgiu na segunda metade da década de 50, na DuPont, como ferramenta para trabalhos de manutenção. Era o nascimento da principal técnica de programação de projetos. O CPM é relativamente simples e quase sempre apresenta resultados satisfatórios. Atualizou-se com a informática e hoje uma grande quantidade de software suporta a sua aplicação.
- A estrutura do CPM assenta-se na teoria dos grafos. Os projetos são representados através de um grafo (ou rede) e a análise deste grafo permite programar o projeto com maior facilidade.

Um grafo é composto basicamente de dois elementos: **nó** e **arco**. Duas alternativas de modelagens estão por trás de um projeto representado por um grafo:

- Na primeira, cada nó representa um evento e cada arco uma atividade
- Na segunda, cada nó representa uma atividade e cada arco uma relação de precedência.

Elementos do Grafo	Modelo 1	Modelo 2
Arco	atividade	relação de precedência
Nó	evento	atividade

Atividade nos nós

- a) Maior facilidade de construção do grafo
- b) maior clareza nas interligações entre as atividades
- c) Menor complexidade na diagramação, pois não há necessidade de atividades fantasmas
- d) Permite a passagem mais rápida para o Gráfico de Gantt
- e) Define as folgas com relação às atividades e não aos eventos, o que facilita os cálculos
- f) Facilita a integração de várias redes sem submetê-las a artificios ou obrigar a desenhá-las várias vezes
- g) Os programas de computador mais populares suportam esta modelagem

Atividade nos arcos

- a) Esta modelagem nem sempre estabelece claramente marcos (milestones) no tempo para o término de algumas etapas de trabalho.
- b) Tradicionalmente, esta modelagem é menos popular
- c) no caso de ser necessário o desenho do grafo, esta modelagem ocupa mais papel, uma vez que o seu tamanho é proporcional ao número de atividades, enquanto o tamanho do grafo na outra modelagem é proporcional ao número de eventos
- d) em curso s dados para mestres de obras semialfabetizado s a representação das atividades por arcos pareceu ser mais eloquente
- e) Os cálculos da folga livre, dependente e independente são mais simples com as atividades nos arcos.

Atividades	Precedente	Duração
А	-	3
В	А	6
С	А	3
D	В	5
E	В, С	3
F	D, E	4

Atividades	Precedente	Duração
А	1	3
В	А	6
С	А	3
D	В	5
E	В, С	3
F	D, E	4

Atividades	Precedente	Duração
А	-	3
В	А	6
С	А	3
D	В	5
E	В, С	3
F	D, E	4

Atividade	Duração	Atividade
		Precedente
A	2	-
В	5	A
С	8	A
D	9	B; C

Através do CPM podemos determinar

- As folgas de cada atividade
 - a) Folga total: o prazo em que uma atividade pode atrasar sem afetar o término do projeto.
 - b) Folga livre: o prazo em que uma atividade pode atrasar sem afetar a folga de outras atividades.
 - c) Folga dependente: o prazo em que uma atividade pode atrasar sem atrasar o término do projeto, tendo como referência as antecessoras que terminaram na última data possível.
 - d) Folga independente: o quanto uma atividade pode atrasar sem afetar a folga de outras atividades, tendo como referência as antecessoras que terminaram na última data possível.
- As atividades críticas São atividades em que qualquer tipo de folga implica atraso do projeto. Estas atividades estão sempre sob um esforço de supervisão maior porque sua duração afeta diretamente a duração do projeto.

A partir da rede a seguir, responda:

- a) Qual o caminho crítico?
- b) Quanto tempo será necessário par que o projeto seja concluído?
- c) A atividade B pode sofrer atrasos sem que o projeto seja comprometido? Em caso afirmativo, de quantos dias?

Duração = 22

Folgas das atividades

- Folga Total o quanto uma atividade, que foi iniciada na data mais cedo, pode atrasar sem atrasar do projeto.
- Folga Livre o quanto uma atividade, que foi iniciada na data mais cedo, pode atrasar sem afetar as folgas das demais atividades subsequentes.
- Folga Dependente o quanto uma atividade, que foi iniciada na data mais tarde, pode atrasar sem atrasar do projeto.
- Folga Independente o quanto uma atividade, que foi iniciada na data mais tarde, pode atrasar sem afetar as folgas das demais atividades subsequentes.

Folgas das atividades

- Folga Total: $FT = (T_i C_i) DUR$
- Folga Livre: FL = (C_i-C_i)-DUR
- Folga Dependente: $FD = (T_j T_i) DUR$
- Folga Independente: $FI = (C_i T_i) DUR$

	Folga	Folga	Folga	Folga
Ativ.	Total	Livre	Depend.	Independ.
Α	0	0	0	0
В	1	1	1	1
С	0	0	0	0
D	2	2	2	2
Е	0	0	0	0
F	1	0	1	0
G	0	0	0	0
Н	1	1	0	0

Atividade	Duração	Ativid Precedente
Α	8	_
В	10	_
С	3	Α
D	7	Α
E	6	B; C
F	7	B; C
G	5	D; E
Н	3	F

Atividades nos Nós

Atividades nos Nós

Probabilistic Evaluation Review Technique (PERT)

- A diferença básica entre o Probabilistic Evaluation Review Technique (PERT) e o CPM é que a duração das atividades no PERT é probabilística e no CPM, determinística. No PERT a duração das atividades é uma variável aleatória com distribuição Beta. Isto faz com a sua operacionalização também seja diferente.
- Para cada atividade devemos estimar três durações (e não apenas uma, como no CPM)
 - a duração otimista, (A)
 - a duração pessimista (B)
 - a duração mais provável. (M)

Probabilistic Evaluation Review Technique (PERT)

Exercício

A parir dos tempos estimados (tabela abaixo) para as atividades da rede acima. Qual a probabilidade de projeto ser completado em:

- a) 21 dias?
- b) 22 dias?
- c) 25 dias?

	Pessimista	Mais Provável	Pessimista
Atividade	(a)	(m)	(b)
A	6	7	14
В	8	10	12
С	2	3	4
D	6	7	8
E	5	5,5	9
F	5	7	9
G	4	6	8
H	2,5	3	3,5

			Duração				
	Atividade		Mais	Pessi-			Desvio
Ativi-	Predeces-		Provável	mista	Média	Variância	Padrão
dade	sora	Otimista (a)	(m)	(c)	μ	σ^2	σ
Α	_	6	7	14	8	1,78	1,33
В	_	8	10	12	10	0,44	0,67
С	Α	2	3	4	3	0,11	0,33
D	Α	6	7	8	7	0,11	0,33
E	B, C	5	5,5	9	6	0,44	0,67
F	B, C	5	7	9	7	0,44	0,67
G	D, E	4	6	8	6	0,44	0,67
Н	F	2,5	3	3,5	3	0,03	0,17

Atividades nos Nós

Caminho Crítico: $A \rightarrow C \rightarrow E \rightarrow G$

Gerenciamento do Tempo – Compressão de redes

- Podemos dividir os custo associados a uma atividade em duas categorias:
 - custos diretos ou internos, e
 - custos indiretos ou externos
- Desta forma, podemos determinar o custo de cada atividade em função da duração. Está na hora de perguntar: Qual deve ser a duração de cada atividade para que o projeto possa ser realizado dentro do prazo estipulado a um mínimo custo?

Modelos de Compressão de redes

Compressão de redes

Existem dois caminhos possíveis:

- Constrói-se uma rede CPM com todas as atividades executadas em ritmo normal (mínimo custo).
 Se nestas condições o projeto pode ser concluído dentro do prazo, o problema está resolvido. Caso contrário, verifica-se em qual das atividades que
 - compõem o caminho crítico é mais barato acelerar o projeto. A rede CPM é revista para se saber se o prazo de execução do projeto está sendo atendido. Este processo é repetido até que o projeto possa ser executado dentro do
- 2. Através de uma formulação de programação linear determina-se a duração de cada atividade, para permitir que o projeto seja executado dentro do prazo a um custo mínimo.

prazo.

Para comprimir um projeto utilize os seguintes passos:

- 1. Atribua a cada atividade do projeto sua duração normal
- 2. Calcule a duração do projeto
- 3. Se a duração for menor ou igual ao prazo do projeto, você encontrou a solução de mínimo custo
- 4. Caso a duração ainda seja maior que o prazo, determine as atividades que compõem o caminho crítico
- 5. Dentre as atividade críticas selecione aquela onde a redução de uma unidade em sua duração terá o menor incremento de custo
- 6. Reduza a duração desta atividade em uma unidade, e retorne ao passo 2

Exemplo – Prazo do projeto 165 dias

	Atividade	Ritmo Normal		Ritmo Acelerado	
Atividade	Precedente	Dura ç ão (dias)	Custo	Duração (dias)	Custo
A	-	21	300	15	366
В	-	25	120	18	190
С	A	28	150	21	206
D	B, C	21	160	15	190
Е	С	45	200	30	305
F	D	28	300	20	388
G	Е	26	450	23	486
Н	G, F	25	270	20	315
I	Н	26	125	20	215

Rede de Atividades

Nivelamento de Recursos

 A falta de consideração pelo consumo e pela limitação de recursos no projeto, faz com que na técnica CPM a taxa de consumo dos recursos flutue significativamente. Para evitar verbas ociosas, acabamos por assumir custos de mobilização e desmobilização (admissão e demissão). Nivelar os recursos equivale à tentativa de *suavizar* o consumo dos recursos, procurar diminuir a variação da taxa de consumo do recurso.

Técnicas de Nivelamento de Recursos

Técnicas de Nivelamento de Recursos

Utilizando apenas as folgas das atividades não-críticas, podemos construir um novo cronograma para o projeto onde o consumo do recurso "operário" fica suavizado

