Nome:_____

Data: 08/11/2021.

Atividade 05 - Apresentar desenvolvimento:

1
$$\lim_{x \to 0} \frac{senx}{x} = 1$$
 4 $\lim_{x \to 0} \frac{e^{kx} - 1}{x} = k$
2 $\lim_{x \to 0} \frac{1 - \cos x}{x} = 0$ 5 $\lim_{x \to 0} \frac{a^{kx} - 1}{x} = k \ln a$

$$7 \lim_{t\to 0} (1+t)^{\frac{1}{t}} = e$$

01- Limites fundamentais Trigonométricos:

a)
$$\lim_{x \to 0} \frac{sen 2x}{x} =$$

b)
$$\lim_{x \to 0} \frac{\sec 3x}{5x} =$$

c)
$$\lim_{x \to 0} \frac{sen 3x}{sen 2x} =$$

d)
$$\lim_{x \to 0} \frac{tg x}{x} =$$

e)
$$\lim_{x \to 0} \frac{\cos x - 1}{x} =$$

f)
$$\lim_{x \to 0} \frac{sen 3x}{x} =$$

g)
$$\lim_{x \to 0} \frac{tg \, 2x}{x} =$$

h)
$$\lim_{x \to 0} \frac{tg \, 5x}{tg \, x} =$$

i)
$$\lim_{x \to 0} \frac{\sin^2 x}{x} =$$

$$j) \lim_{x \to 0} \frac{\frac{sen x}{tg 2x}}{=}$$

02- Limites fundamentais Exponenciais e logaritmo natural - ln:

a)
$$\lim_{x \to +\infty} \left(1 + \frac{1}{x}\right)^{2x} =$$

b)
$$\lim_{x \to +\infty} \left(1 + \frac{2}{x}\right)^{-x} =$$

c)
$$\lim_{x \to +\infty} \left(1 + \frac{2}{x}\right)^{3x} =$$

d)
$$\lim_{x \to -\infty} \left(1 - \frac{2}{x}\right)^{3x} =$$

e)
$$\lim_{x \to 0} (1 + 4x)^{-1/x} =$$

f)
$$\lim_{x \to 0} (1 - 3x)^{2/x} =$$

g)
$$\lim_{x \to +\infty} \left(\frac{x-4}{x-1} \right)^{-x+3} =$$

h)
$$\lim_{x \to +\infty} \left(\frac{2x+3}{2x+1} \right)^{-x} =$$

i)
$$\lim_{x \to 0} \frac{\ln(1+x)}{2x} =$$

j)
$$\lim_{x \to 0} \frac{\ln(1+2x)}{3x} =$$

Gabarito:

atividade 01

a)2 b)% c)3/2 d)1 e)0 f)3 g)2 h)5 i)0 j)
$$\frac{1}{2}$$

Atividade 02

a)
$$e^2$$
 b) e^2 c) e^6 d) e^{-6} e) e^4 f) e^{-6} g) e^{-3} h) e i) $\frac{1}{2}$ j) $\frac{2}{3}$