Group 3: Product Backlog

Explanation

The columns are based on the scrum workshop example.

- Prioritization
 - Must have: Critical feature for the projectShould have: Important but not critical
 - o Could have: Nice thing to have
 - o Won't have: Things agreed upon to be excluded
- Estimation (Story Points)
 - o **N/A:** Not assigned
 - o **1-2 SP:** Small complexity
 - o **3-5 SP:** Medium complexity
 - o 8-13 SP: High complexity
 - o 13 or more SP: Ultra complexity
- Connextra template
 - o "As a [type of user], I want [some goal] so that [some reason]."
- ID Naming Scheme
 - Asset Manager (AM)
 - Source Data Manager (SDM)
 - o Result Data Manager (RDM)
 - Optimizer (OPT)
 - Data Visualization (DV)
 - _ ΔΡ
- **Scenario 1:** Using a gas boiler and an oil boiler to meet heat demand cost-effectively, prioritizing the cheaper gas boiler.
- **Scenario 2:** Adds a gas motor and an electric boiler to optimize heat and electricity production based on varying electricity prices.

ID	User Story	Priority	Estimate	Confirmation
AM-1	As a dev, I want to initialize the AM so that we	Must	3	By getting the
	can easily and statically manage system info.	have		static system info
	, , , , , ,			from the AM
				successfully.
SDM-	As a dev, I want to set up the SDM so that it	Must	5	By dynamically
1	can manage dynamic system data e.g., heat	have		updating and
	demand and prices for Optimization.			accessing demand
				and prices.
RDM-	As a dev, I want to configure the RDM so that	Must	3	By having the
1	it can store and retrieve the optimization	have		ability to save and
	results to analyze performance.			recall optimization
				results.
OPT-1	As a dev, I want to create a simple OPT	Must	8	By Displaying a
	algorithm for the first scenario so that we can	have		cost-effective heat
	efficiently schedule heat production with the			production
	least expenses.			schedule in the first scenario.
ODT 2	As a day I want to improve the ODT algorithm	Should	13	
OPT-2	As a dev, I want to improve the OPT algorithm for the second scenario so that electricity	have	15	By Displaying cost and profit OPT for
	production for cost and profit OPT is included.	liave		electricity
	production for cost and profit of 1 is included.			production in the
				second scenario.
DV-1	As a user, I want a simple DV so that I can see	Could	8	By having the
	the results and analyze them.	have		ability to visually
	,			analyze the results.
AM-2	As a dev, I want to ensure boilers are easy to	Must	2	By showing off
	configure, so that I can simulate their	have		easy configuration
	operation and impact.			and simulation of
				the boiler.
SDM-	As a dev, I want to use real heat demand and	Must	5	By using real-world
2	price data, so that it can reflect actual	have		heat demand and
	conditions.			price data.
API-1	As a dev, I want APIs for module	Could	5	By having data
	communication so that data flow and the	have		exchange with the
	system run smooth.		_	APIs.
API-2	As a dev, I want to get real-time prices so that	Could	5	By showing the use
	we can have a relevant and accurate	have		of real-time prices
ODT 3	optimization.	Carrie	0	in the OPT process.
OPT-3	As a user, I want to compare the different	Could	8	By giving options to
	configs in the second scenario so that I can make informed decisions about our setup.	have		compare configs and their
	make informed decisions about our setup.			outcomes.
OPT-4	As a dev, we won't implement machine	Won't	N/A	By not having
OF 1-4	learning so that we cam predict heat demand	have	13/74	machine learning
	and prices due to our level and timeframe.	liave		implemented in
	and prices due to our level and timename.			the scope.
		<u> </u>		the scope.

Definition of Done (DoD)

Done	Definition
	Code is complete and follows the team standards (Industry standards).
	Code has been Refactored.
	Code has undergone peer review by at least one other member.
	We have met the acceptance criteria.
	Unit tests are written and passed.
	Documentation is up-to-date and reflects changes.
	Product owner has reviewed feature or user story and approves.
	No high severity/noticeable bugs.
	All code and documentation are available in the repository.