Упражнение: Повторения с цикли – For-цикъл

Задачи за упражнение в клас и за домашно към курса "Основи на програмирането" @ СофтУни.

Тествайте решенията си в Judge системата: https://judge.softuni.bg/Contests/2382

1. Числа до 1000, завършващи на 7

Напишете програма, която отпечатва числата в диапазона от 1 до 1000, които завършват на 7.

вход	изход
(няма)	7 17 27
	 997

Насоки

1. Направете **for цикъл** от 7 до 997 и проверете всяко число дали завършва на 7. Едно число завършва на 7, когато резултатът от модулното деление на числото и 10 е равен на 7.

```
for (int i = 7; i \le 997; i++)
   if (i % 10 == 7)
      Console.WriteLine(i);
```

2. Елемент, равен на сумата на останалите

Да се напише програма, която чете **n-на брой** цели числа, въведени от потребителя, и проверява дали сред тях съществува число, което е равно на сумата на всички останали.

- Ако има такъв елемент печата "Yes" и на нов ред "Sum = " + неговата стойност
- Ако няма такъв елемент печата "No" и на нов ред "Diff = " + разликата между най-големия елемент и сумата на останалите (по абсолютна стойност)

вход	изход	коментари
7	Yes	3 + 4 + 1 + 2 + 1 + 1 = 12
3	Sum = 12	
4		
1		
1		
2		
12		
1		
4	Yes	1 + 2 + 3 = 12
6	Sum = 6	

1 2 3		
3 1 1 10	No Diff = 8	10 - (1 + 1) = 8
3 5 5 1	No Diff = 1	5 - (5 + 1) = 1
3 1 1 1	No Diff = 1	

Насоки

1. Прочетете число \mathbf{n} и завъртете цикъл до него, като на всеки нов ред четете число $\mathbf{n}\mathbf{u}\mathbf{m}$.

```
int n = int.Parse(Console.ReadLine());
for (int i = 0; i < n; i++)
    int num = int.Parse(Console.ReadLine());
```

2. Създайте променливи **sum**, която ще държи сумата на **num** и **max**, която ще пази най-голямото число.

```
int sum = 0;
int max = int.MinValue;
for (int i = 0; i < n; i++)
    int num = int.Parse(Console.ReadLine());
    sum += num;
   if (num > max)
       max = num;
```


3. Проверете дали сумата е равна на **тах** и принтирайте съответният изход.

```
int sumWithoutMaxNumber = sum - max;
if (max == sumWithoutMaxNumber)
1
    Console.WriteLine("Yes");
    Console.WriteLine("Sum = " + max);
else
{
    int diff = Math.Abs(max - sumWithoutMaxNumber);
    Console.WriteLine("No");
    Console.WriteLine("Diff = " + diff);
```

Примерни изпитни задачи

3. Хистограма

Дадени са **п цели числа** в интервала [1...1000]. От тях някакъв процент **p1** са под 200, друг процент **p2** са от 200 до 399, друг процент **р3** са от 400 до 599, друг процент **р4** са от 600 до 799 и останалите **р5** процента са от 800 нагоре. Да се напише програма, която изчислява и отпечатва процентите р1, р2, р3, р4 и р5.

Пример: имаме n = 20 числа: 53, 7, 56, 180, 450, 920, 12, 7, 150, 250, 680, 2, 600, 200, 800, 799, 199, 46, 128, 65. Получаваме следното разпределение и визуализация:

Диапазон	Числа в диапазона	Брой числа	Процент
< 200	53, 7, 56, 180, 12, 7, 150, 2, 199, 46, 128, 65	12	p1 = 12 / 20 * 100 = 60.00 %
200 399	250, 200	2	p2 = 2 / 20 * 100 = 10.00 %
400 599	450	1	p3 = 1 / 20 * 100 = 5.00 %
600 799	680, 600, 799	3	p4 = 3 / 20 * 100 = 15.00 %
≥ 800	920, 800	2	p5 = 2 / 20 * 100 = 10.00 %

Вход

На първия ред от входа стои цялото число \mathbf{n} ($1 \le \mathbf{n} \le 1000$) — брой числа. На следващите \mathbf{n} реда стои \mathbf{n} 0 едно цяло число в интервала [1...1000] – числата върху които да бъде изчислена хистограмата.

Изход

Да се отпечата на конзолата хистограмата – 5 реда, всеки от които съдържа число между 0% и 100%, с точност две цифри след десетичната точка, например 25.00%, 66.67%, 57.14%.

3 66.67% 1 0.00% 2 0.00% 0.00%
33.33%

Вход	Изход
4	75.00%
53	0.00%
7	0.00%
56	0.00%
999	25.00%
333	

Вход	Изход
7	14.29% 28.57%
800 801 250 199	14.29% 14.29% 28.57%

Вход	Изход
9	33.33%
367	33.33%
99	11.11%
200	11.11%
799	11.11%

Вход	Изход
14 53 7 56	57.14% 14.29% 7.14% 14.29% 7.14%
180	7.14%

	399 599	999 333	450 920
	799	555	12
		111	7
		9	150
			250
			680
			2
			600
			200

4. Умната Лили

Лили вече е на **N години**. За всеки свой рожден ден тя получава подарък.

- За нечетните рождени дни (1, 3, 5...п) получава играчки.
- За четните рождени дни (2, 4, 6...п) получава пари.

За втория рожден ден получава 10.00 лв, като сумата се увеличава с 10.00 лв., за всеки следващ четен рожден ден (2 -> 10, 4 -> 20, 6 -> 30...и т.н.). През годините Лили тайно е спестявала парите. Братът на Лили, в годините, които тя получава пари, взима по 1.00 лев от тях. Лили продала играчките получени през годините, всяка за Р лева и добавила сумата към спестените пари. С парите искала да си купи пералня за Х лева. Напишете програма, която да пресмята, колко пари е събрала и дали ѝ стигат да си купи пералня.

Вход

Програмата прочита **3 числа**, въведени от потребителя, на отделни редове:

- Възрастта на Лили цяло число в интервала [1...77]
- **Цената на пералнята** число в интервала [1.00...10 000.00]
- Единична цена на играчка цяло число в интервала [0...40]

Изход

Да се отпечата на конзолата един ред:

- Ако парите на Лили са достатъчни:
 - о "Yes! {N}" където N е остатъка пари след покупката
- Ако парите не са достатъчни:
 - "No! {M}" където М е сумата, която не достига

Числата N и M трябва да за форматирани до вторият знак след десетичната запетая.

вход	изход	Коментари
10	Yes! 5.00	Първи рожден ден получава играчка
170.00 6		Втори рожден ден получава пари (10 лв.)
		Трети рожден ден получава играчка
		Четвърти рожден ден получава пари (20 лв.)
		Пети рожден ден получава играчка
		Шести рожден ден получава пари (30 лв.)
		Седми рожден ден получава играчка

			Осми рожден ден получава пари (40 лв.)
			Девети рожден ден получава играчка
			Десети рожден ден получава пари (50 лв.)
			Спестила e: 10 + 20 + 30 + 40 + 50 = 150 лв.
			Продала е 5 броя играчки * 6 лв. = 30 лв .
			Брат ѝ взел 5 пъти * 1 лев = <mark>5</mark> лв.
			Общо спестени пари: (150 + 30) — 5 = 175 лв.
			175 >= 170 (цената на пералнята)
			=> успяла е да я купи
			Остават: 175 - 170 = 5 лв.
21	No! 99	7.98	Спестила е 550 лв.
1570.98 3			Продала е 11 играчки * 3 лв. = 33 лв.
			Брат ѝ взимал 10 години * 1 лев = 10 лв .
			Общо спестени пари: (550 + 33) — 10 = 573 лв.
			573 < 1570.98 – не е успяла да купи пералня
			Нужни пари: 1570.98 – 573 = 997.98 лв.

5. Заплата

Шеф на компания забелязва че все повече служители прекарват време в сайтове, които ги разсейват. За да предотврати това, той въвежда изненадващи проверки на отворените табове на браузъра на служителите си.

Според отворения сайт в таба се налагат следните глоби:

- "Facebook" -> 150 лв.
- "Instagram" -> 100 лв.
- "Reddit" -> 50 лв.

От конзолата се четат два реда:

- Брой отворени табове в браузъра n цяло число в интервала [1...10]
- Заплата число в интервала [500...1500]

След това n – на брой пъти се чете име на уебсайт – текст

Изход

- Ако по време на проверката заплатата стане по-малка или равна на 0 лева, на конзолата се изписва "You have lost your salary." и програмата приключва.
- В противен случай след проверката на конзолата се изписва остатъкът от заплатата (да се изпише като цяло число).

Ī	Вход	Изход	Обяснения
	• •	•	

10 750 Facebook Dev.bg Instagram Facebook Reddit Facebook	You have lost your salary.	Има 10 отворени таба в браузъра. Първоначалната заплата е: 750 За първия таб -> Facebook -> глоба 150 лв. (заплата: 750 – 150 = 600) За втория таб -> Dev.bg -> няма глоба За третия таб -> Instagram -> глоба 100 лв. (заплата: 600 – 100 = 500) За четвъртия таб -> Facebook -> глоба 150 лв. (заплата: 500 – 150 = 350) За петия таб -> Reddit -> глоба 50 лв. (заплата: 350 – 50 = 300) За шестия таб -> Facebook -> глоба 150 лв. (заплата: 300 – 150 = 150) За седмия таб -> Facebook -> глоба 150 лв. (заплата: 150 – 150 = 0) Заплатата е равна на 0 => изписва съответният изход и програмата приключва	
Вход	Изход	Вход	Изход
3 500 Github.com Stackoverf low.com softuni.bg	500	3 500 Facebook Stackoverflow.com softuni.bg	350

6. Оскари

Поканени сте от академията да напишете софтуер, който да пресмята точките за актьор/актриса. Академията ще ви даде първоначални точки за актьора. След това всеки оценяващ ще дава своята оценка. Точките, които актьора получава се формират от: дължината на името на оценяващия умножено по точките, които дава делено на две.

Ако резултатът в някой момент надхвърли 1250.5 програмата трябва да прекъсне и да се отпечата, че дадения актьор е получил номинация.

Вход

- Име на актьора текст
- Точки от академията реално число в интервала [2.0... 450.5]
- Брой оценяващи **n цяло число в интервала[1... 20]**

На следващите п-на брой реда:

- о Име на оценяващия текст
- Точки от оценяващия реално число в интервала [1.0... 50.0]

Изход

Да се отпечата на конзолата един ред:

- Ако точките са над **1250.5**:
 - "Congratulations, {име на актьора} got a nominee for leading role with {точки}!"
- Ако точките не са достатъчни:
 - "Sorry, {име на актьора} you need {нужни точки} more!"

Резултатът да се форматирана до първата цифра след десетичния знак!

Вход	Изход	Обяснения
Zahari Baharov		Zahari Baharov започва с 205 точки, като 4 човека ще го
205	you need 247.5 more!	оценяват.
4		Първи е Johnny Depp

Johnny Depp		=> 205 + ((11 * 45) / 2) = 452.5
45		Втори е Will Smith
Will Smith		=> 452.5 + ((10 * 29) / 2) = 597.5
29		Трети e Jet Lee
Jet Lee		=> 597.5 + ((7 *10) / 2) = 632.5
10		Четвърти е Matthew Mcconaughey
Matthew Mcconaughey		=> 632.5 + ((19 * 39) / 2) = 1003.0
39		1003.0 < 1250.5
		=> Точките не са достатъчни.
		Нужни точки: 1250.5 - 1003.0 = 247.5
Sandra Bullock	Congratulations,	
340	Sandra Bullock got a	
5	nominee for leading	
Robert De Niro	role with 1268.5!	
50		
Julia Roberts		
40.5		
Daniel Day-Lewis		
39.4		
Nicolas Cage		
29.9		
Stoyanka Mutafova		
33		

7. Трекинг мания

Катерачи от цяла България се събират на групи и набелязват следващите върхове за изкачване. Според размера на групата, катерачите ще изкачват различни върхове.

- Група до 5 човека изкачват Мусала
- Група от 6 до 12 човека изкачват Монблан
- Група от 13 до 25 човека изкачват Килиманджаро
- Група от 26 до 40 човека изкачват К2
- Група от 41 или повече човека изкачват Еверест

Да се напише програма, която изчислява процента на катерачите изкачващи всеки връх.

Вход

От конзолата се четат поредица от числа, всяко на отделен ред:

- На първия ред броя на групите от катерачи цяло число в интервала [1...1000]
- За всяка една група на отделен ред броя на хората в групата цяло число в интервала [1...1000]

Изход

Да се отпечатат на конзолата 5 реда, всеки от които съдържа процент между 0.00% и 100.00% с точност до втората цифра след десетичната запетая.

- Първи ред процентът изкачващи Мусала
- Втори ред процентът изкачващи Монблан
- Трети ред процентът изкачващи Килиманджаро

- **Четвърти ред процентът** изкачващи **К2**
- Пети ред процентът изкачващи Еверест

Примерен вход и изход

Вход	Изход	Обяснения
10 10 5 1 100 12 26 17 37 40 78	1.84% 6.75% 5.21% 31.60% 54.60%	Общ брой хора: 10 + 5 + 1 + 100 + 12 + 26 + 17 + 37 + 40 + 78 = 326 Изкачващи Мусала: 6 / 326 * 100 = 1.84% Изкачващи Монблан: 22/326*100 = 6.75% Изкачващи Килиманджаро: 17/326*100 = 5.21% Изкачващи К2: 103/326*100 = 31.60% Изкачващи Еверест: 178/326*100 = 54.60%
Вход	Изход	Обяснения
5 25 41 31 250 6	0.00% 1.70% 7.08% 8.78% 82.44%	Общ брой хора: 25 + 41 + 31 + 250 + 6 = 353 Изкачващи Мусала: 0 / 353 * 100 = 0.00% Изкачващи Монблан: 6 / 353 * 100 = 1.78% Изкачващи Килиманджаро: 25 / 353 * 100 = 7.08% Изкачващи К2: 31 / 353 * 100 = 8.78% Изкачващи Еверест: 291 / 353 * 100 = 82.44%

8. Световна ранглиста по тенис

Григор Димитров е тенисист, чиято следваща цел е изкачването в световната ранглиста по тенис за мъже.

През годината Гришо участва в определен брой турнири, като за всеки турнир получава точки, които зависят от позицията, на която е завършил в турнира. Има три варианта за завършване на турнир:

- W ако е победител получава 2000 точки
- F ако е финалист получава 1200 точки
- SF ако е полуфиналист получава 720 точки

Напишете програма, която изчислява колко ще са точките на Григор след изиграване на всички турнири, като знаете с колко точки стартира сезона. Също изчислете колко точки средно печели от всички изиграни турнири и колко процента от турнирите е спечелил.

Вход

От конзолата първо се четат два реда:

- Брой турнири, в които е участвал цяло число в интервала [1...20]
- Начален брой точки в ранглистата цяло число в интервала [1...4000]

За всеки турнир се прочита отделен ред:

Достигнат етап от турнира – текст – "W", "F" или "SF"

Изход

Отпечатват се три реда в следния формат:

- "Final points: {брой точки след изиграните турнири}"
- "Average points: {средно колко точки печели за турнир}"
- "{процент спечелени турнири}%"

Средните точки да бъдат закръглени към най-близкото цяло число надолу, а процентът да се форматира до втората цифра след десетичния знак.

Вход	Изход	Обяснения		
5 1400 F SF W W SF	Final points: 8040 Average points: 1328 40.00%	5 турнира и начален брой точки: 1400 1-ви турнир -> финал (F) -> точки = 1400 + 1200 = 2600 2-ри турнир -> полуфинал (SF) -> точки = 2600 + 720 = 3320 3-ти турнир -> победител (W) -> точки = 3320 + 2000 = 5320 4-ти турнир -> победител (W) -> точки = 5320 + 2000 = 7320 5-ти турнир -> полуфинал (SF) -> точки = 7320 + 720 = 8040 Точки след изиграване на турнирите: 8040 Средно спечелени точки за турнир: (1200 + 720 + 2000 + 2000 + 720) / 5 = 6640 / 5 = 1328 Брой спечелени турнири: 2 Процент спечелени турнири: (2 / 5) * 100 = 40 %		
Вход	Изход	Вход	Изход	
4 750 SF W SF W	Final points: 6190 Average points: 1360 50.00%	7 1200 SF F W F W SF	Final points: 11040 Average points: 1405 42.86%	

