STAT 525 — Spring 2020 — Section A1

Homework 7 Solution

- 1. We use the following Gibbs sampling algorithm to sample from the target distribution $\pi(x) \propto \exp\left\{\mu \sum_{i=1}^{d-1} x_i x_{i+1}\right\}$:
 - Draw initial value $x^{(0)} = \left(x_1^{(0)}, \dots, x_d^{(0)}\right)$, with $P(x_i^{(0)} = +1) = P(x_i^{(0)} = -1) = \frac{1}{2}, \quad i = 1, \dots, d$
 - Suppose we get $x^{(t)} = \left(x_1^{(t)}, \dots, x_d^{(t)}\right)$ in the t-th iteration, then at the (t+1)-th iteration, for $i=1,\dots,d$, we draw $x_i^{(t+1)}$ from the conditional distribution $\pi\left(x_i|x_1^{(t+1)},\dots,x_{i-1}^{(t+1)},x_{i+1}^{(t)},\dots,x_d^{(t)}\right)$, with

$$\begin{split} P\left(x_i^{(t+1)} = +1\right) &= \frac{\pi\left(x_1^{(t+1)}, \dots, x_{i-1}^{(t+1)}, +1, x_{i+1}^{(t)}, \dots, x_d^{(t)}\right)}{\pi\left(x_1^{(t+1)}, \dots, x_{i-1}^{(t+1)}, +1, x_{i+1}^{(t)}, \dots, x_d^{(t)}\right) + \pi\left(x_1^{(t+1)}, \dots, x_{i-1}^{(t+1)}, -1, x_{i+1}^{(t)}, \dots, x_d^{(t)}\right)}, \\ P\left(x_i^{(t+1)} = -1\right) &= \frac{\pi\left(x_1^{(t+1)}, \dots, x_{i-1}^{(t+1)}, -1, x_{i+1}^{(t)}, \dots, x_d^{(t)}\right)}{\pi\left(x_1^{(t+1)}, \dots, x_{i-1}^{(t)}, +1, x_{i+1}^{(t)}, \dots, x_d^{(t)}\right) + \pi\left(x_1^{(t+1)}, \dots, x_{i-1}^{(t+1)}, -1, x_{i+1}^{(t)}, \dots, x_d^{(t)}\right)} \end{split}$$

- After updating $x^{(t)}$, we calculate the total magnetization $M^{(t)} = \sum_{i=1}^{d} x_i^{(t)}$
- Repeat the above steps for t = 1, ..., N

We let N = 100000. By implementing the following code, we get the histogram of the total magnetization in Figure 1.

Histogram of the total magnetization

2. In order to design the Gibbs sampling algorithm, we have to calculate the conditional posterior distribution as follows.

$$\pi(\mu|\tau, y_1, \dots, y_n) = \frac{\pi(\mu, \tau|y_1, \dots, y_n)}{\pi(\tau|y_1, \dots, y_n)} = \frac{e^{-\frac{\tau}{2} \sum_{i=1}^n (y_i - \mu)^2} e^{-\frac{\omega}{2} \mu^2}}{\int e^{-\frac{\tau}{2} \sum_{i=1}^n (y_i - \mu)^2} e^{-\frac{\omega}{2} \mu^2} d\mu}$$

$$\propto \exp\left(-\frac{1}{2 \cdot \frac{1}{n\tau + \omega}} \left(\mu - \frac{\tau \sum_{i=1}^n y_i}{n\tau + \omega}\right)^2\right),$$

$$\pi(\tau|\mu, y_1, \dots, y_n) = \frac{\pi(\mu, \tau|y_1, \dots, y_n)}{\pi(\mu|y_1, \dots, y_n)} = \frac{\tau^{\frac{n}{2}} e^{-\frac{\tau}{2} \sum_{i=1}^n (y_i - \mu)^2} \tau^{\alpha - 1} e^{-\frac{\tau}{\beta}}}{\int \tau^{\frac{n}{2}} e^{-\frac{\tau}{2} \sum_{i=1}^n (y_i - \mu)^2} \tau^{\alpha - 1} e^{-\frac{\tau}{\beta}} d\tau}$$

$$\propto \tau^{\frac{n}{2} + \alpha - 1} \exp\left(-\tau \left(\frac{1}{2} \sum_{i=1}^n (y_i - \mu)^2 + \frac{1}{\beta}\right)\right).$$

We use the following Gibbs sampling algorithm to sample from the posterior distribution:

• Set initial values $\mu^{(0)} = 2$, $\tau^{(0)} = 1$

• Draw the parameters from the following distributions

$$\mu^{(t+1)} \sim \mathcal{N}\left(\frac{\tau^{(t)} \sum_{i=1}^{n} y_i}{n\tau^{(t)} + \omega}, \frac{1}{n\tau^{(t)} + \omega}\right)$$
$$\tau^{(t+1)} \sim \operatorname{Gamma}\left(\frac{n}{2} + \alpha, \frac{1}{2} \sum_{i=1}^{n} (y_i - \mu^{(t+1)})^2 + \frac{1}{\beta}\right)$$

• Repeat the above step for t = 1, ..., N, and estimate the posterior means by

$$\mathbb{E}[\mu|y_1,\dots,y_n] = \frac{2}{N} \sum_{t=\frac{N}{2}+1}^{N} \mu^{(t)}, \quad \mathbb{E}[\tau|y_1,\dots,y_n] = \frac{2}{N} \sum_{t=\frac{N}{2}+1}^{N} \tau^{(t)}$$

By implementing the following R code, we find that the estimated posterior mean of μ is 2.1320, and the posterior mean of τ is 1.0174.

```
 \begin{split} N &= 100000; \ n = 6 \\ omega &= 0.04; \ alpha <- 2; \ beta <- 0.5 \\ mu &= rep(2, N); \ tau = rep(1, N) \\ y &= c(1.8, 3.3, 0.4, 2.5, 2.6, 2.3) \\ for \ (i \ in \ 1:(N-1)) \{ \\ mu[i+1] &<- rnorm(1, \ (tau[i]*sum(y))/(n*tau[i]+omega), \\ &\quad sqrt(1/(n*tau[i]+omega))) \\ tau[i+1] &<- rgamma(1, \ shape = n/2+alpha, \\ &\quad scale = 1/(1/2*sum((y-mu[i])^2) + 1/beta)) \\ \} \\ mean(mu) \\ mean(tau) \end{split}
```