

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ

ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ

Εισαγωγικό εργαστήριο ηλεκτρονικής και τηλεπικοινωνιών

3η εργαστηριακή άσκηση Προσομοίωση LTspice

Διδάσκοντες:

Ι. Παπανάνος Ν. Βουδούκης

Ειρήνη Δόντη Α.Μ 03119839

3ο εξάμηνο

Πείραμα 5

<u>Βήμα 1-2</u>

i) Ο συντελεστής ενίσχυσης (κέρδος τάσης) δίνεται από τον τύπο $\frac{\textit{VOUT}}{\textit{VIN}}\!\!=\!\!1\!+\!\!\frac{\textit{R2}}{\textit{R1}}\!\!.$ Οπότε, για κέρδος τάσης ίσο με 100 και αντίσταση R1=1kΩ, προκύπτει ότι R2= 99 kΩ.

(α): Χρήση Universal Opamp 2:

Η τάση εξόδου VOUΤ συναρτήσει της τάσης εισόδου VIN, είναι η παρακάτω:

Η κλίση της γραφικής στην απότομη περιοχή είναι: $\frac{4,8-0}{0,048-0}=10$

(β): Χρήση **LT1001**:

Η τάση εξόδου VOUT συναρτήσει της τάσης εισόδου VIN, είναι η παρακάτω:

Η κλίση της γραφικής στην απότομη περιοχή είναι: $\frac{\text{0}-\text{4}}{\text{0}-\text{0,04}}=10$

ii) Ο συντελεστής ενίσχυσης (κέρδος τάσης) δίνεται από τον τύπο $\frac{\textit{vout}}{\textit{vin}} = 1 + \frac{\textit{R2}}{\textit{R1}}. \ \text{Οπότε, για κέρδος τάσης ίσο με 5 και αντίσταση } \ R1 = 1 \ \text{k}\Omega,$ προκύπτει ότι $\ R2 = 4 \ \text{k}\Omega.$

(α): Χρήση Universal Opamp 2:

Η τάση εξόδου VOUΤ συναρτήσει της τάσης εισόδου VIN, είναι η παρακάτω:

Η κλίση της γραφικής στην απότομη περιοχή είναι: $\frac{\mathsf{5}-\mathsf{0}}{\mathsf{1}-\mathsf{0}}=\mathsf{5}$

(β): Χρήση **LT1001**:

Η τάση εξόδου VOUT συναρτήσει της τάσης εισόδου VIN, είναι η παρακάτω:

Η κλίση της γραφικής στην απότομη περιοχή είναι: $\frac{4-0}{0.8-0}=5$

<u>Βήμα 3-4</u>

Για κέρδος τάσης ίσο με 100 και R1 = 1k Ω :

(α): Χρήση Universal Opamp 2:

- (i) Το εύρος τάσεων εισόδου για το οποίο το κύκλωμα συμπεριφέρεται γραμμικά είναι 0 V έως 48mV.
- (ii) Η μέγιστη επιτεύξιμη τάση εξόδου είναι 5V ενώ η ελάχιστη επιτεύξιμη τάση εξόδου είναι $0~{\rm mV}.$

(iii) Εάν η τάση εισόδου ήταν ημιτονοειδές σήμα, το μέγιστο πλάτος του πριν οδηγήσει το κύκλωμα στη μη-γραμμική περιοχή λειτουργίας του είναι 5 V. Αυτό διακρίνεται και στην παρακάτω γραφική της τάσης εξόδου συναρτήσει της τάσης εισόδου :

Η παραπάνω γραφική, προκύπτει από το παρακάτω προσομοιωμένο κύκλωμα:

- (iv) Το σχήμα της κυματομορφής της τάσης εξόδου εάν δεν ξεπερνούσε αυτό το πλάτος θα ήταν μία ημιτονοειδής κυματομορφή η οποία θα έπαιρνε το μέγιστο πλάτος της κανονικά.
- (ε) Το σχήμα της κυματομορφής της τάσης εξόδου εάν *ξεπερνούσε* αυτό το πλάτος θα ήταν μία ημιτονοειδής κυματομορφή η οποία θα έπαιρνε ως μέγιστη τιμή πλάτους την μέγιστη τιμή του πλάτους που υπολογίσαμε στο ερώτημα (iii).

Επιπλέον, η κυματομορφή των τάσεων VIN και VOUT είναι η παρακάτω:

Η κυματομορφή της τάσης εισόδου VIN είναι με μπλε χρώμα, ενώ της τάσης εξόδου VOUT είναι με το πράσινο χρώμα. Παρατηρούμε ότι η είσοδος αυξάνεται κατά τον αναμενόμενο συντελεστή με σημεία αποκοπής τις τάσεις εξόδου +5V και -5V.

(β): Χρήση **LT1001**:

- (i) Το εύρος τάσεων εισόδου για το οποίο το κύκλωμα συμπεριφέρεται γραμμικά είναι από 0 V έως 40 mV.
- (ii) Η μέγιστη επιτεύξιμη τάση εξόδου είναι 4V, ενώ η ελάχιστη επιτεύξιμη τάση εξόδου είναι 0 V.
- (iii) Εάν η τάση εισόδου ήταν ημιτονοειδές σήμα, το μέγιστο πλάτος του πριν οδηγήσει το κύκλωμα στη μη-γραμμική περιοχή λειτουργίας του είναι 4 V. Αυτό διακρίνεται και στην παρακάτω γραφική της τάσης εξόδου συναρτήσει της τάσης εισόδου:

Η παραπάνω γραφική, προκύπτει από το παρακάτω προσομοιωμένο κύκλωμα:

- (iv) Το σχήμα της κυματομορφής της τάσης εξόδου εάν δεν ζεπερνούσε αυτό το πλάτος θα ήταν μία ημιτονοειδής κυματομορφή η οποία θα έπαιρνε το μέγιστο πλάτος της κανονικά.
- (ε) Το σχήμα της κυματομορφής της τάσης εξόδου εάν *ξεπερνούσε* αυτό το πλάτος θα ήταν μία ημιτονοειδής κυματομορφή η οποία θα έπαιρνε ως μέγιστη τιμή πλάτους την μέγιστη τιμή του πλάτους που υπολογίσαμε στο ερώτημα (iii).

Επιπλέον, η κυματομορφή των τάσεων VIN και VOUT είναι η παρακάτω:

Η κυματομορφή της τάσης εισόδου VIN είναι με μπλε χρώμα, ενώ της τάσης εξόδου VOUT είναι με το πράσινο χρώμα. Παρατηρούμε ότι η είσοδος αυξάνεται κατά τον αναμενόμενο συντελεστή με σημεία αποκοπής τις τάσεις εξόδου +4V και -4V.

<u>Βήμα 6-10</u>

Προσομοιώνουμε τα κυκλώματα όπως εκείνα του οδηγού μαθήματος:

(α): Χρήση Universal Opamp 2:

To κέρδος τάσης είναι
$$\frac{\textit{R2}}{\textit{R1}}$$
 = 100 ή R2 = 200 kΩ με R1 = 2 kΩ.

Για διάφορα πλάτη έχουμε τις παρακάτω γραφικές παραστάσεις της τάσης εξόδου συναρτήσει του χρόνου:

Παρατηρούμε ότι πρόκειται για ημιτονοειδείς συναρτήσεις με πλάτος εξόδου που αυξάνεται με την αύξηση του πλάτους εισόδου.

(β): Χρήση **LT1001**:

To κέρδος τάσης είναι $\frac{\textit{R2}}{\textit{R1}}$ = 120 ή R2 = 120 kΩ με R1 = 1 kΩ.

Για διάφορα πλάτη έχουμε τις παρακάτω γραφικές παραστάσεις της τάσης εξόδου συναρτήσει του χρόνου:

Παρατηρούμε ότι πρόκειται για ημιτονοειδείς συναρτήσεις με πλάτος εξόδου που αυξάνεται με την αύξηση του πλάτους εισόδου.

Επιπλέον Άσκηση

Χρησιμοποιούμε, στο προσομοιωμένο κύκλωμα, τελεστικό ενισχυτή LT1022:

Με μεταβλητή τη συχνότητα f, έχουμε το παρακάτω προσομοιωμένο κύκλωμα:

Παρακάτω απεικονίζεται το ζητούμενο, δηλαδή απεικονίζεται η τάση Vo συναρτήσει της συχνότητας:

Με μεταβλητή την αντίσταση ${f R}$, έχουμε το παρακάτω προσομοιωμένο κύκλωμα:

Παρακάτω απεικονίζεται το ζητούμενο, δηλαδή απεικονίζεται η τάση Vo συναρτήσει της συχνότητας:

