

Chapter 5 Divide and Conquer

Slides by Kevin Wayne. Copyright © 2005 Pearson-Addison Wesley. All rights reserved.

5.6 Convolution and FFT

Fast Fourier Transform: Applications

Applications.

- Optics, acoustics, quantum physics, telecommunications, control systems, signal processing, speech recognition, data compression, image processing.
- DVD, JPEG, MP3, MRI, CAT scan.
- Numerical solutions to Poisson's equation.

The FFT is one of the truly great computational developments of this [20th] century. It has changed the face of science and engineering so much that it is not an exaggeration to say that life as we know it would be very different without the FFT. -Charles van Loan

Fast Fourier Transform: Brief History

Gauss (1805, 1866). Analyzed periodic motion of asteroid Ceres.

Runge-König (1924). Laid theoretical groundwork.

Danielson-Lanczos (1942). Efficient algorithm.

Cooley-Tukey (1965). Monitoring nuclear tests in Soviet Union and tracking submarines. Rediscovered and popularized FFT.

Importance not fully realized until advent of digital computers.

Polynomials: Coefficient Representation

Polynomial. [coefficient representation]
Add: O(n) arithmetic operations.
Evaluate: O(n) using Horner's method.
Multiply (convolve): $O(n^2)$ using brute force.

Polynomials: Point-Value Representation

Fundamental theorem of algebra. [Gauss, PhD thesis] A degree n polynomial with complex coefficients has n complex roots.

Corollary. A degree n-1 polynomial A(x) is uniquely specified by its evaluation at n distinct values of x.

Polynomials: Point-Value Representation

Polynomial. [point-value representation]

Add: O(n) arithmetic operations.

Multiply: O(n), but need 2n-1 points.

Evaluate: $O(n^2)$ using Lagrange's formula.

Converting Between Two Polynomial Representations

Tradeoff. Fast evaluation or fast multiplication. We want both!

Representation	Multiply	Evaluate
Coefficient	O(n ²)	O(n)
Point-value	O(n)	O(n ²)

Goal. Make all ops fast by efficiently converting between two representations.

Converting Between Two Polynomial Representations: Brute Force

Coefficient to point-value. Given a polynomial $a_0 + a_1 \times + ... + a_{n-1} \times^{n-1}$, evaluate it at n distinct points $x_0, ..., x_{n-1}$.

 $O(n^2)$ for matrix-vector multiply

O(n³) for Gaussian elimination

Point-value to coefficient. Given n distinct points x_0 , ..., x_{n-1} and values y_0 , ..., y_{n-1} , find unique polynomial $a_0 + a_1 \times + ... + a_{n-1} \times^{n-1}$ that has given values at given points.

Coefficient to Point-Value Representation: Intuition

Coefficient to point-value. Given a polynomial $a_0 + a_1 \times + ... + a_{n-1} \times^{n-1}$, evaluate it at n distinct points $x_0, ..., x_{n-1}$.

Divide. Break polynomial up into even and odd powers.

$$= a_0 + a_1 x + a_2 x^2 + a_3 x^3 + a_4 x^4 + a_5 x^5 + a_6 x^6 + a_7 x^7.$$

$$A_{even}(x) = a_0 + a_2x + a_4x^2 + a_6x^3.$$

$$A_{odd}(x) = a_1 + a_3x + a_5x^2 + a_7x^3.$$

•
$$A(x) = A_{\text{even}}(x^2) + x A_{\text{odd}}(x^2)$$
.

•
$$A(-x) = A_{even}(x^2) - x A_{odd}(x^2)$$
.

Intuition. Choose two points to be ± 1 .

•
$$A(1) = A_{\text{even}}(1) + 1 A_{\text{odd}}(1)$$
.

$$A(-1) = A_{even}(1) - 1 A_{odd}(1)$$

Can evaluate polynomial of degree \leq n at 2 points by evaluating two polynomials of degree $\leq \frac{1}{2}$ n at 1 point.

Coefficient to Point-Value Representation: Intuition

Coefficient to point-value. Given a polynomial $a_0 + a_1 \times + ... + a_{n-1} \times^{n-1}$, evaluate it at n distinct points $x_0, ..., x_{n-1}$.

Divide. Break polynomial up into even and odd powers.

$$= a_0 + a_1 x + a_2 x^2 + a_3 x^3 + a_4 x^4 + a_5 x^5 + a_6 x^6 + a_7 x^7.$$

$$A_{even}(x) = a_0 + a_2x + a_4x^2 + a_6x^3$$
.

$$A_{odd}(x) = a_1 + a_3x + a_5x^2 + a_7x^3.$$

•
$$A(x) = A_{\text{even}}(x^2) + x A_{\text{odd}}(x^2)$$
.

•
$$A(-x) = A_{even}(x^2) - x A_{odd}(x^2)$$
.

Intuition. Choose four points to be ± 1 , $\pm i$.

•
$$A(1) = A_{\text{even}}(1) + 1 A_{\text{odd}}(1)$$
.

$$A(-1) = A_{even}(1) - 1 A_{odd}(1)$$
.

•
$$A(i) = A_{even}(-1) + i A_{odd}(-1)$$
.

$$A(-i) = A_{even}(-1) - i A_{odd}(-1).$$

Can evaluate polynomial of degree \leq n at 4 points by evaluating two polynomials of degree $\leq \frac{1}{2}$ n at 2 points.

Discrete Fourier Transform

Coefficient to point-value. Given a polynomial $a_0 + a_1 \times + ... + a_{n-1} \times^{n-1}$, evaluate it at n distinct points $x_0, ..., x_{n-1}$.

Key idea: choose $x_k = \omega^k$ where ω is principal n^{th} root of unity.

Roots of Unity

Def. An n^{th} root of unity is a complex number x such that $x^n = 1$.

Fact. The nth roots of unity are: ω^0 , ω^1 , ..., ω^{n-1} where $\omega = e^{2\pi i / n}$. Pf. $(\omega^k)^n = (e^{2\pi i k / n})^n = (e^{\pi i})^{2k} = (-1)^{2k} = 1$.

Fact. The $\frac{1}{2}$ nth roots of unity are: v^0 , v^1 , ..., $v^{n/2-1}$ where $v = e^{4\pi i/n}$. Fact. $\omega^2 = v$ and $(\omega^2)^k = v^k$.

Fast Fourier Transform

Goal. Evaluate a degree n-1 polynomial $A(x) = a_0 + ... + a_{n-1} x^{n-1}$ at its nth roots of unity: ω^0 , ω^1 , ..., ω^{n-1} .

Divide. Break polynomial up into even and odd powers.

- $A_{\text{even}}(x) = a_0 + a_2 x + a_4 x^2 + ... + a_{n/2-2} x^{(n-1)/2}.$
- $A_{\text{odd}}(x) = a_1 + a_3x + a_5x^2 + ... + a_{n/2-1}x^{(n-1)/2}.$
- $A(x) = A_{even}(x^2) + x A_{odd}(x^2)$.

Conquer. Evaluate degree $A_{\text{even}}(x)$ and $A_{\text{odd}}(x)$ at the $\frac{1}{2}$ nth roots of unity: v^0 , v^1 , ..., $v^{n/2-1}$.

Combine.

■
$$A(\omega^k) = A_{even}(v^k) + \omega^k A_{odd}(v^k)$$
, $0 \le k < n/2$

■
$$A(\omega^{k+n}) = A_{even}(v^k) - \omega^k A_{odd}(v^k)$$
, $0 \le k < n/2$

$$v^{k} = (\omega^{k})^{2} = (\omega^{k+n})^{2}$$

FFT Algorithm

```
fft(n, a_0, a_1, ..., a_{n-1}) {
     if (n == 1) return a_0
     (e_0, e_1, ..., e_{n/2-1}) \leftarrow FFT(n/2, a_0, a_2, a_4, ..., a_{n-2})
     (d_0, d_1, ..., d_{n/2-1}) \leftarrow FFT(n/2, a_1, a_3, a_5, ..., a_{n-1})
     for k = 0 to n/2 - 1 {
          \omega^k \leftarrow e^{2\pi i k/n}
          y_k \leftarrow e_k + \omega^k d_k
          y_{k+n/2} \leftarrow e_k - \omega^k d_k
     }
     return (y_0, y_1, ..., y_{n-1})
}
```

FFT Summary

Theorem. FFT algorithm evaluates a degree n-1 polynomial at each of the n^{th} roots of unity in $O(n \log n)$ steps.

Running time. $T(2n) = 2T(n) + O(n) \Rightarrow T(n) = O(n \log n)$.

Recursion Tree

Point-Value to Coefficient Representation: Inverse DFT

Goal. Given the values y_0 , ..., y_{n-1} of a degree n-1 polynomial at the n points ω^0 , ω^1 , ..., ω^{n-1} , find unique polynomial $a_0 + a_1 \times + ... + a_{n-1} \times^{n-1}$ that has given values at given points.

Inverse FFT

Claim. Inverse of Fourier matrix is given by following formula.

Consequence. To compute inverse FFT, apply same algorithm but use $\omega^{-1} = e^{-2\pi i / n}$ as principal n^{th} root of unity (and divide by n).

Inverse FFT: Proof of Correctness

Claim. F_n and G_n are inverses.

Pf.

Summation lemma. Let ω be a principal nth root of unity. Then

Pf.

- If k is a multiple of n then $\omega^k = 1 \implies$ sums to n.
- Each nth root of unity ω^k is a root of $x^n 1 = (x 1)(1 + x + x^2 + ... + x^{n-1})$.
- if $\omega^k \neq 1$ we have: $1 + \omega^k + \omega^{k(2)} + \ldots + \omega^{k(n-1)} = 0 \Rightarrow \text{sums to } 0$.

Inverse FFT: Algorithm

```
ifft(n, a_0, a_1, ..., a_{n-1}) {
     if (n == 1) return a_0
     (e_0, e_1, ..., e_{n/2-1}) \leftarrow FFT(n/2, a_0, a_2, a_4, ..., a_{n-2})
     (d_0, d_1, ..., d_{n/2-1}) \leftarrow FFT(n/2, a_1, a_3, a_5, ..., a_{n-1})
     for k = 0 to n/2 - 1 {
         \omega^k \leftarrow e^{-2\pi i k/n}
         y_k \leftarrow (e_k + \omega^k d_k) / n
         y_{k+n/2} \leftarrow (e_k - \omega^k d_k) / n
     return (y_0, y_1, ..., y_{n-1})
```

Inverse FFT Summary

Theorem. Inverse FFT algorithm interpolates a degree n-1 polynomial given values at each of the n^{th} roots of unity in $O(n \log n)$ steps.

assumes n is a power of 2

Polynomial Multiplication

Theorem. Can multiply two degree n-1 polynomials in O(n log n) steps.

FFT in Practice

Fastest Fourier transform in the West. [Frigo and Johnson]

- Optimized C library.
- Features: DFT, DCT, real, complex, any size, any dimension.
- Won 1999 Wilkinson Prize for Numerical Software.
- Portable, competitive with vendor-tuned code.

Implementation details.

- Instead of executing predetermined algorithm, it evaluates your hardware and uses a special-purpose compiler to generate an optimized algorithm catered to "shape" of the problem.
- Core algorithm is nonrecursive version of Cooley-Tukey radix 2 FFT.
- O(n log n), even for prime sizes.

Reference: http://www.fftw.org

Integer Multiplication

Integer multiplication. Given two n bit integers $a = a_{n-1} \dots a_1 a_0$ and $b = b_{n-1} \dots b_1 b_0$, compute their product $c = a \times b$.

Convolution algorithm.

- Form two polynomials.
- Note: a = A(2), b = B(2).
- Compute $C(x) = A(x) \times B(x)$.
- Evaluate $C(2) = a \times b$.
- Running time: O(n log n) complex arithmetic steps.

Theory. [Schönhage-Strassen 1971] O(n log n log log n) bit operations.

Practice. [GNU Multiple Precision Arithmetic Library] GMP proclaims to be "the fastest bignum library on the planet." It uses brute force, Karatsuba, and FFT, depending on the size of n.

Extra Slides

Fourier Matrix Decomposition

Fourier matrix decomposition.

