Examenul de bacalaureat național 2013

Proba E. c)

Matematică *M_tehnologic*

Barem de evaluare și de notare

Model

Model

Filiera tehnologică: profilul servicii, toate calificările profesionale; profilul resurse, toate calificările profesionale; profilul tehnic, toate calificările profesionale

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
- Se acordă 10 puncte din oficiu. Nota finală se calculează prin împărțirea la 10 a punctajului total acordat pentru lucrare.

SUBIECTUL I (30 de puncte)

БОВ	1ECTOLT (50 de puncte	,
1.	$9x^2 + 12x = 0$	3 p
	$x = 0 \text{ sau } x = -\frac{4}{3}$	2p
2.	$-\frac{b}{2a} = \frac{3m}{2}$	2p
	2a - 2	
	$\frac{3m}{2} = \frac{3}{2}$	2p
	m=1	1p
3.		
3.	$3^{2x} = 3^2$	2p
	$2x = 2 \Rightarrow x = 1$	3 p
4.	$C_4^2 = 6$	2p
	$A_5^2 = 20$	2p
	$5C_4^2 - A_5^2 = 10$	1p
5.	C mijlocul lui $(AB) \Rightarrow x_C = \frac{x_A + x_B}{2}$ și $y_C = \frac{y_A + y_B}{2}$	1p
	$x_C = -2$	2p
	$x_C = -2$ $y_C = 4$	2p
6.	$m(\prec BAD) = 60^{\circ}$	2 p
	$\triangle ABD$ este echilateral	1 p
	BD = 4	2p

SUBIECTUL al II-lea (30 de puncte)

1.a)	$\Delta(1) = \begin{vmatrix} -1 & 2 & 1 \\ 2 & -1 & 1 \\ 1 & 1 & 2 \end{vmatrix}$	2p
	$\Delta(1) = 0$	3p
b)	$\Delta(x) = 2 + 2 \cdot x^2 + 2 \cdot x^2 + x^2 + x^2 - 8$	3p
	Finalizare	2p
c)	$\Delta(0) = -6$	2p
	$(A(0))^{-1} = \frac{1}{6} \cdot \begin{pmatrix} 2 & 4 & 0 \\ 4 & 2 & 0 \\ 0 & 0 & 3 \end{pmatrix}$	3 p
2.a)	$f(1) = 1^3 - 1^2 + a \cdot 1 + b$	3p

Probă scrisă la matematică $M_tehnologic$

Barem de evaluare și de notare

Filiera tehnologică: profilul servicii, toate calificările profesionale; profilul resurse, toate calificările profesionale; profilul tehnic, toate calificările profesionale

	a+b=0	2p
b)	$f = X^3 - X^2 - X + 1 \Rightarrow f = (X - 1)^2 (X + 1)$	3p
	Finalizare: $x_1 = 1$, $x_2 = 1$, $x_3 = -1$	2p
c)	$f(1) = 0 \Rightarrow a + b = 0$	1p
	$f(2) = 0 \Rightarrow 2a + b = -4$	2p
	Finalizare: $a = -4$, $b = 4$	2p

SUBIECTUL al III-lea

(30 de puncte)

SOD	iECT OL al III-lea (50 de puncte	,
1.a)	$f'(x) = 1 \cdot \ln x + x \cdot \frac{1}{x}$ pentru orice $x \in (0, +\infty)$	3р
	Finalizare	2p
b)	$f'(x) = 0 \Rightarrow x = \frac{1}{e}$	2p
	$f'(x) \ge 0$ pentru orice $x \in \left[\frac{1}{e}, +\infty\right) \Rightarrow f$ crescătoare pe intervalul $\left[\frac{1}{e}, +\infty\right)$	3 p
c)	$f'(x) \le 0$ pentru orice $x \in \left(0, \frac{1}{e}\right] \Rightarrow f$ descrescătoare pe intervalul $\left(0, \frac{1}{e}\right]$	3 p
	Din tabelul de variație al funcției obținem $f(x) \ge f\left(\frac{1}{e}\right) = -\frac{1}{e}$ pentru orice $x \in (0, +\infty)$	2p
2.a)	$F'(x) = \left(x - \frac{1}{x} + \ln x\right)' = 1 + \frac{1}{x^2} + \frac{1}{x}$	3 p
	F este derivabilă pe $(0,+\infty)$ și $F'=f$	2p
b)	$\int_{1}^{e} x \cdot f(x^{2}) dx = \frac{1}{2} \int_{1}^{e} f(x^{2}) \cdot 2x dx = \frac{1}{2} \int_{1}^{e^{2}} f(t) dt =$	3p
	$= \frac{1}{2} \left(t - \frac{1}{t} + \ln t \right) \Big _{1}^{e^{2}} = \frac{1}{2} \left(e^{2} - \frac{1}{e^{2}} + 2 \right)$	2p
c)	$\int_{1}^{a} \left(f\left(x\right) - \frac{1}{x} \right) dx = \left(x - \frac{1}{x} \right) \Big _{1}^{a} = a - \frac{1}{a}$	2p
	$a - \frac{1}{a} = \frac{3}{2} \Rightarrow a = 2 \text{ sau } a = -\frac{1}{2}$ Finalizare: $a = 2$	2p 1p