APPLIED MATHEMATICS FOR CHEMISTS II

VECTOR FIELDS, PARTIAL DIFFERENTIATION, CYLINDRICAL AND SPHERICAL COORDINATES, MULTIPLE INTEGRALS, LINE INTEGRALS, THE WAVE AND THE SCHRÖDINGER EQUATIONS, SEPARATION OF VARIABLES METHOD. INNER PRODUCT SPACES. FOURIER SERIES.

BY

COLIN ROBERTS

Colorado State University

Contents

V	V Further Topics in Linear Algebra					
1	Hill	pert Spaces	2			
2 Linear Operators						
V	I M	Iultivariate Calculus	4			
3	Fun	actions	5			
	1	Overview of multivariate functions	5			
	2	Curves in space	6			
	3	Scalar fields	9			
	4	Level surfaces	11			
	5	Vector Fields	14			
	6	Differentiation of fields	16			
	7	Functions of Fields	17			
	8	Line integrals of scalar fields	18			
	9	Line integrals of vector fields	19			
	10		20			
	11	Optimization	24			
	12	Approximation and the Tangent Space	27			
	13		29			
	14	Divergence and Curl	31			
	15		35			
	16	Integration of Scalar Fields	36			

ᆫ	_

CONTENTS			
17 Antiderivatives		39	

Part V Further Topics in Linear Algebra

spectral theory with fourier and with 1st and second order derivatives and matices. different domains for different spectra, schrodinger equation with quadratic potential QHO. Start with complex functions since they introduce multivariate functions and inner products nicely. Can talk about U(1)?

Part VI Multivariate Calculus

Functions

1 Overview of multivariate functions

Now that we have covered enough of the complex numbers, we will move back into the vector space \mathbb{R}^n and analyze the types of functions we can have with this space. Specifically, we will concentrate on \mathbb{R}^3 (or \mathbb{R}^2) and functions of the form:

$$\gamma \colon \mathbb{R} \to \mathbb{R}^3 \tag{Eq. 3.1.1}$$

$$f: \mathbb{R}^3 \to \mathbb{R}$$
 (Eq. 3.1.2)

$$\mathbf{v} \colon \mathbb{R}^3 \to \mathbb{R}^3.$$
 (Eq. 3.1.3)

Abstractly, I could call each one of these functions a *field* (in the physics sense). However, I'll refrain from this (and let the mathematicians breathe a sigh of relief).