		pectral	Analysis	Power	Speetrum Pensity)
			X(t) determi	L .	
Fourier	Trainsfer	m-			can. be decomposed.
1) Periodic	Case :	文(t)=义(t+T)	, = T =) X(t)=.	$\sum_{k} \propto_{k} \exp(j k \frac{2x}{T})$	can. be decomposed.
			$\propto_{K} = \frac{1}{27}$	$\frac{1}{2}\int x(t) \exp(-jk^2)$	f(t) dt =) fourier length.
i) Xtt)	k √∑∝k o	p(jk智t)	$\lim_{t\to\infty}\int_{T} \chi(t) - \sum_{k} \chi_{k} \exp \left(\frac{1}{k}\right)$	$(jk^{\frac{2\pi}{T}}t)$ $dt=0$	mean square sense
ii) inside	a peno	od [-\frac{7}{2},\frac{7}{2}]	Non-periodic => trun	eate in a r	ange [13] \$136 126)
Fourie	r Series	9: T→∞			
			$\int_{T} x(t) \exp(-jk^{\frac{22}{T}}t) dt$	· explik z t)	
= 5	$\frac{1}{2}\sum_{k}\int_{T}$	X(t) exp(-jk=22 t)	dt). 22 eqljk=t)		
(et T-	700, K	(2 → ω, <u></u>	→ ∫		
$L(t) = \frac{1}{2\lambda}$	$\int_{\mathbb{R}} \left(\int_{\mathbb{R}} x \right)$	(It) expl-jwt) dt)	dw expljwt)		
-'- X(m)	$=\int_{\mathbb{R}}\chi(\tau)$	exp(-jwt) dt	Fourier Tr	ansform =>	adapt to random signals?
χ(t) =	= = 1 IR /	X(w) exp(jwt) dv			(not deterministic)
	V	for random sig			\(\t\) exp(-jwt)dt?
	y		$\int_{\mathbb{R}} x(t) dt$	t < ∞	
when Stock	astic prou	85 13 W.S.S., t	hen the signal is	not absolutely	integrable
Signa	l itself	doesn't have a	FT		
			andom case? [
) Perform	FT on	a short per	and of time: $\int_{-\frac{T}{2}}^{\frac{T}{2}}$	X(t) exp(-jwt) d	It (Short-time FT)

```
Second - Order Information
                         S_{X,+X_2}(w) \neq S_{X_1}(w) + S_{X_2}(w)
                              S_(w) ≥ 0 (Consistent with Bochner's Result (p.d. ) FT pos.))
                                         [ Rx(u) exp(-jwu)du Sx(w)= Six Rx(t) coswedt +j Six Rx(t) snwt dt
                  Wiener-Khinchin Relation
                                                                                                                                              = SR RxIt) wswtdT
                                                                                                                                                                 = Sx (-w)
Properties of PSD:
      Sx(w) >0, Sx(w)=Sx(-w) (Sx(w) real + Rx(u) even => Sx(w) even)
    Input-Output Relation of LTI Systems:
    \chi(t) \rightarrow h(t) \rightarrow \chi(t) : \chi(t) = \chi(t) \star h(t) = \int_{IR} \chi(\tau) h(t-\tau) d\tau Convolution.
     X(t) w.s.s. 2 Y(t) w.s.s. 2 Sy(w) =?
                                                                                                                                            Impulse Response
E[(it) (is)] = E[ ] X(w) h(t-w)du ] X(v) h(s-v)dv]
                                = IR IR h(t-u) h*15-v) E[X(u)X*(v)] dudv
                                = \iint_{\mathbb{R}^2} h(t-u) h^*(s-u) R_X(u-u) dudv => 2^{nd} -order convolution. Still w.s.s. (Yit))
                              = \left| \int_{\mathbb{R}^2} h(t-u) h^{\frac{1}{2}} [-(v-s)] R_{\times}(u-v) du dv \right| = \left[ h \otimes h^{\frac{1}{2}} [-(v-s)] R_{\times} [-(v-s)] \right]
      Sylw) = \int_{IR} Rylw \oxpl-jwn)du = \int_{IR} [h\omega h*(-)\omega Rx] \int \omega xp(-jwn)du = \int_{Iw} \cdot \cdot \omega \
                                                                                                                                                                                Sx(w): 2nd-order property
                                                                                                                                                                                双 RXIT 的是宝性有认识
1 = [ ( = x / (u) exp(-jk=u) du] exp(jk=t). 22
                                                                                                                                                                                       ( F(Rxtt) > 0)
                                                     Singularity corresponde to non-differetiable point

Spectral Representation
```

```
() w \neq w' \Rightarrow E[dF_{x}|w)[dF_{x}(w')]^{*}] = 0 Orthogonal (acrement
                                                                                                - Why?
2 w=w' => E[dFx1w) (dfx1w))*] = E|dFx1w) = Sx1w) dw
 R_{X}[t,s) = E[X_{tt}]X^{*}(s)] = E[\int exp(jwt)df_{X}(w).[\int exp(jws)df_{X}(w')]^{*}]
          = \left[ \left[ \exp(ji\omega t - w's) \right] \in \left[ d F_{X}(\omega) d F_{X}(w') \right]^{*} \right]
          = 1 exp(jwlt-s)) [|dfx1w|2 (w=w', +0)
\sqrt{|t|^2} = \int_{\mathbb{R}} h(t-u) \chi(u) du = \frac{1}{2\pi} \int h(t-u) \int \exp(jwu) dF_{\chi(w)} du = \frac{1}{2\pi} \int dF_{\chi(w)} \int h(t-u) \exp(jwu) du  (T=t-u, u=t-t)
      = \frac{1}{2a}\int dF_{X}(w)\cdot\left(\int h(\tau)\exp(j\omega(t-\tau))d(t-\tau)\right)
                                                                                              And Sylwidw = EldFylwil2
     = 1/22 Jd FxIW). exp(jwt). [-/IW)
 = \frac{1}{2\pi} \int \exp(j\omega t) H(\omega) dF_{\chi}(\omega) - dF_{\chi}(\omega) = H(\omega) dF_{\chi}(\omega)
= \frac{1}{2\pi} \int \exp(j\omega t) dF_{\chi}(\omega)
                                                                                                                         = [H(w)]25x1w)dw
                                                                                                        Sy=HI3SX
```