03

Módulo 03 - Principais abordagens em IA - aprendizagem de máquina (Machine Learning)

Fundamentos de Inteligência Artificial (IA)

Resumo do Módulo

- ◆Definição e Exemplos de Uso no Dia a Dia
- ◆Como os Algoritmos Aprendem a Partir dos Dados
- ◆Diferenças entre Modelos Estatísticos Tradicionais e Aprendizagem de Máquina
- **◆**Lab

Pergunta

◆Onde colocaria a maçã (a,b,c ou d)? 🎽

E porquê?

Porque é uma fruta, bla, bla.

Mas qual é o verdadeiro motivo?

E como uma máquina aprenderia com esta pergunta?

Aprendizagem de máquina (Machine Learning)

 Machine learning é a capacidade dos computadores aprenderem e melhorarem com dados, sem programação explícita.

Definição e Exemplos de Uso no Dia a Dia

e punições baseadas nas suas ações.

um modelo explora
dados sem
respostas
conhecidas (dados
sem rótulos prédefinidos),
procurando padrões
ou grupos ocultos
para entender
melhor a estrutura
dos dados.

Como os Algoritmos Aprendem a Partir dos Dados

◆Através da procura de padrões nos dados

Regressão

Classificação

Comparação de Tipos de Aprendizagem em Machine Learning

Tipo de Aprendizagem	Dados discretos	Dados Contínuos
Aprendizagem Supervisionada	Classificação: Previsão de categorias a partir de entradas Ex.: Detecção de Spam	Regressão: Previsão de valores numéricos contínuos Ex.: Previsão de preços de imóveis
Aprendizagem não Supervisionada	Agrupamento (Clustering): Agrupamento de dados em clusters com base na similaridade Ex.: Segmentação de clientes	Redução de Dimensionalidade: Simplificação de dados mantendo a informação relevante Ex.: PCA para compressão de dados
Aprendizagem por Reforço	Política de Ações Discretas: Decisão em ambientes com estados e ações discreto Ex.: Jogos como Xadrez	Política de Ações Contínuas: Decisão em ambientes com ações contínuas Ex.: Controlo de robôs com braços

Diferenças entre Modelos Estatísticos Tradicionais e Aprendizagem de Máquina

	Modelos Estatísticos	Machine Learning
Objetivo	Explicar e inferir relações entre variáveis	Prever e encontrar padrões com precisão
Complexidade	Simples e interpretáveis	Complexos e menos interpretáveis
Dados Necessários	Pequenos volumes	Grandes volumes
Foco	Explicação e inferência	Previsão e precisão
Sobre ajustamento	Menos propenso	Mais propenso, com técnicas para evitar
Generalização	Base em fórmulas explícitas	Padrões encontrados nos dados

exploratório

Quais características dos Formandos mais influenciam na frequência da academia?

Estatística

Há uma relação entre o desempenho académico dos Formandos e a frequência da academia?

Machine Learning

Como estará o conhecimento dos Formandos no próximo mês?

confirmatório

preditivo

Preparação dos dados para machine learning

Modelos

Principais Bibliotecas em Python

Machine Learning

v1.5.2 a 2024-09-11

1^a release: Junho 2007

Scikit-learn: Modelagem preditiva (classificação, regressão), clustering, e redução de dimensionalidade.

https://scikit-learn.org/stable

Deep Learning

TensorFlow

TensorFlow: Ideal para grandes volumes e modelos complexos (difícil sem **Keras -** https://keras.io).

https://www.tensorflow.org

v2.17.0 a 2024-07-11 1^a release: 2015-11-09

1^a release: Set 2016

| pandas

Pandas: Manipulação e análise de dados tabulares (limpeza, transformação).

https://pandas.pydata.org

v2.2.3 a 2024-09-20 1ª release: 2008-01-11

v2.1 a 2024-08-18 1ª release: Numeric, 1995; NumPy, 2006

NumPy: Operações matemáticas, manipulação de arrays e álgebra linear https://numpy.org

O PyTorch

PyTorch: Flexível e intuitivo, amplamente utilizado em pesquisa e desenvolvimento. V2.5.0 a 2024-10-17

https://pytorch.org/

v0.4.31 a 2024-07-30

JAX: Biblioteca para aceleração de computação numérica, focada em diferenciação automática e paralelização, altamente eficiente para deep learning https://jax.readthedocs.io/en/latest

Lab

◆Lab 03 - Principais abordagens em IA - aprendizagem de máquina (Machine Learning)