Situated Comprehension of Action Commands

Shiwali Mohan and John E. Laird

Computer Science and Engineering University of Michigan

June 20, 2012

Outline

- 1 Introduction
- 2 Grounded Comprehension in BOLT
- 3 Agent Design
- 4 Discussion
- **6** Conclusions

- Use natural language for task-oriented communication.
 - Work collaboratively with humans
 - Learn from natural language communication in a complex environment

- Use natural language for task-oriented communication.
 - Work collaboratively with humans
 - Learn from natural language communication in a complex environment
- Focus on
 - Comprehension of actions commands
 - Move the blue, large cube to the table.
 - Acquire new knowldege (linguistic/extra linguistic)
 - How actions can be performed?
 - How language is used?

- Use natural language for task-oriented communication.
 - Work collaboratively with humans
 - Learn from natural language communication in a complex environment
- Focus on
 - Comprehension of actions commands
 - Move the blue, large cube to the table.
 - Acquire new knowldege (linguistic/extra linguistic)
 - How actions can be performed?
 - How language is used?
- NL exploits (non linguistic) context

Pick up the blue cube.

- Use natural language for task-oriented communication.
 - Work collaboratively with humans
 - Learn from natural language communication in a complex environment
- Focus on
 - Comprehension of actions commands
 - Move the blue, large cube to the table.
 - Acquire new knowldege (linguistic/extra linguistic)
 - How actions can be performed?
 - How language is used?
- NL exploits (non linguistic) context

Pick up the large, blue cube.

- Use natural language for task-oriented communication.
 - Work collaboratively with humans
 - Learn from natural language communication in a complex environment
- Focus on
 - Comprehension of actions commands
 - Move the blue, large cube to the table.
 - Acquire new knowldege (linguistic/extra linguistic)
 - How actions can be performed?
 - How language is used?
- NL exploits (non linguistic) context

Pick up the cube on the left of the red cylinder.

- Use natural language for task-oriented communication.
 - Work collaboratively with humans
 - Learn from natural language communication in a complex environment
- Focus on
 - Comprehension of actions commands
 - Move the blue, large cube to the table.
 - Acquire new knowldege (linguistic/extra linguistic)
 - How actions can be performed?
 - How language is used?
- NL exploits (non linguistic) context

Put down the object.

- Sentences become meaningful by grounding their interpretation in situated action
 - *index* words and phrases to referents.
 - derive affordances from these referents.
 - mesh these affordances under syntactical constraints, physical constraints of the environment

- Sentences become meaningful by grounding their interpretation in situated action
 - *index* words and phrases to referents.
 - derive affordances from these referents.
 - mesh these affordances under syntactical constraints, physical constraints of the environment
- In general,
 - linguistic information specifies a scene.
 - affordances specify the details for taking action.

- Sentences become meaningful by grounding their interpretation in situated action
 - *index* words and phrases to referents.
 - derive affordances from these referents.
 - mesh these affordances under syntactical constraints, physical constraints of the environment
- In general,
 - linguistic information specifies a scene.
 - affordances specify the details for taking action.
- Indexing facilitates situated learning
 - Acquire knowledge (spatial, perceptual, procedural) through examples in the real world

- Sentences become meaningful by grounding their interpretation in situated action
 - index words and phrases to referents.
 - derive affordances from these referents.
 - mesh these affordances under syntactical constraints, physical constraints of the environment
- In general,
 - linguistic information specifies a scene.
 - affordances specify the details for taking action.
- Indexing facilitates situated learning
 - Acquire knowledge (spatial, perceptual, procedural) through examples in the real world
- Our contribution
 - Formalization
 - Implementation in Soar

Using Language for Indexing Barsalou (1999)

Using Language for Indexing

Barsalou (1999)

- Immediate Indexing
 - "the white board"
 - Participants are simultaneously embedded in the environment
 - Language is used to refer to objects and event in the current situation.
 - Used in learning nouns/adjectives and spatial relationships

Using Language for Indexing

Barsalou (1999)

- Immediate Indexing
 - "the white board"
 - Participants are simultaneously embedded in the environment
 - Language is used to refer to objects and event in the current situation.
 - Used in learning nouns/adjectives and spatial relationships
- Displaced Indexing
 - "the parking lot in front of BBB"
 - Referents are not currently present
 - Language is used to refer to objects and events from prior experiences with the environment
 - $\bullet \ \ shared, \ componential, \ future$

Situated Comprehension

 \leftarrow Interaction Management

Behavior Execution \rightarrow

Environment and Representation

- (limited) Partial Observability
 - Distance limited sensing
 - Complete value assignment is known, if perceptible

Figure: BOLT++

Environment and Representation

- (limited) Partial Observability
 - Distance limited sensing
 - Complete value assignment is known, if perceptible
- Primitive actions
 - goto, pick-up(obj), put-down(obj)
 - put-down(obj,loc), put-down(obj,obj)
 - known proposal/application/termination
 - Affordance based proposals
 - pick-up proposed for all 'perceptible' objects
 - put-down proposed for objects in the gripper

. .

Figure: BOLT++

Background Knowledge

(Noun/Adj:Perceptual Symbols, Preposition:Spatial Relationship)

• Domain Semantic Knowledge

- May be acquired from previous experiences
- Allows the agent to communicate non-perceptible locations

Background Knowledge

(Noun/Adj:Perceptual Symbols, Preposition:Spatial Relationship)

• Domain Semantic Knowledge

- May be acquired from previous experiences
- Allows the agent to communicate non-perceptible locations
- Verb-Action Mapping

Background Knowledge

(Noun/Adj:Perceptual Symbols, Preposition:Spatial Relationship)

• Domain Semantic Knowledge

- May be acquired from previous experiences
- Allows the agent to communicate non-perceptible locations
- Verb-Action Mapping

- Action Models
 - Changes in the world for primitive actions

- Immediate Indexing
 - match description to perceptible objects
 - add all matching objects to arg-candidate set $CA_{dO} = \{A, C\}$
 - if nothing matches, displaced indexing

- Immediate Indexing
 - match description to perceptible objects
 - add all matching objects to arg-candidate set $CA_{dO} = \{A, C\}$
 - if nothing matches, displaced indexing
- Displaced Indexing
 - match description to semantic objects
 - add all to arg-candidate set $CA_{in} = \{dishwasher\}$

- Immediate Indexing
 - match description to perceptible objects
 - add all matching objects to arg-candidate set $CA_{dO} = \{A, C\}$
 - if nothing matches, displaced indexing
- Displaced Indexing
 - match description to semantic objects
 - add all to arg-candidate set $CA_{in} = \{dishwasher\}$
- If $CA = \phi$, communicate

- Immediate Indexing
 - match description to perceptible objects
 - add all matching objects to arg-candidate set $CA_{dO} = \{A, C\}$
 - if nothing matches, displaced indexing
- Displaced Indexing
 - match description to semantic objects
 - add all to arg-candidate set $CA_{in} = \{dishwasher\}$
- If $CA = \phi$, communicate
- Displaced indexing into episodic memory?

"Put a blue cube in the dishwasher"

Phase: Index Verb

"Put a blue cube in the dishwasher"

Phase: Index Verb

Possible Interpretations CI
 op_put-down-object-location [A] [dishwasher]
 op_put-down-object-location [C] [dishwasher]

- Generate all possible interpretations CI
 - \bullet Using all candidate objects, CA for all arguments of the verb

- Generate all possible interpretations CI
 - Using all candidate objects, CA for all arguments of the verb
- Generate all possible actions PA
 - Using affordances, physical constraints
 - Soar proposals
 - op_put-down-object-location [A] [dishwasher]

- Generate all possible interpretations CI
 - \bullet Using all candidate objects, CA for all arguments of the verb
- Generate all possible actions PA
 - Using affordances, physical constraints
 - Soar proposals
 - op_put-down-object-location [A] [dishwasher]
- Compute the intersection
 - $CI \cap PA$

- Generate all possible interpretations CI
 - Using all candidate objects, CA for all arguments of the verb
- Generate all possible actions PA
 - Using affordances, physical constraints
 - Soar proposals
 - op_put-down-object-location [A] [dishwasher]
- Compute the intersection
 - $CI \cap PA$
- Excute action if only one element
 - Ground preposition: predicate projection, tracking

- Generate all possible interpretations CI
 - Using all candidate objects, CA for all arguments of the verb
- Generate all possible actions PA
 - Using affordances, physical constraints
 - Soar proposals
 - op_put-down-object-location [A] [dishwasher]
- Compute the intersection
 - $CI \cap PA$
- Excute action if only one element
 - Ground preposition: predicate projection, tracking
- Communicate if empty or multiple elements

Linguistic Capabilities

Linguistic Capabilities

- Situated Referent Resolution
 - Using perceptual information
 - Use of most distinctive description given the perceptual state
 - Using semantic knowledge
 - mapping the dishwasher to a semantic object
 - Using procedural knowledge
 - Can only put down the object in gripper

Linguistic Capabilities

- Situated Referent Resolution
 - Using perceptual information
 - Use of most distinctive description given the perceptual state
 - Using semantic knowledge
 - mapping the dishwasher to a semantic object
 - Using procedural knowledge
 - Can only put down the object in gripper
- Situated Action Resolution
 - Using the argument structure

Future Work

- Resolve PP phrase ambiguities using context
- Use episodic memory for displaced indexing
- Co reference resolution
- Exploiting other context
 - linguistic, interaction, procedural, perceptual, semantic, episodic

Nuggets and Coal

- Nuggets
 - Proposed a scheme for comprehending action commands
 - Uses real-world context
- Coal
 - Only action-commands!
 - Evaluation?
 - Information theoritic analysis