Assignment 4

Foundations of Machine Learning

IIT-Hyderabad

Sept-Dec 2021

Submitted by:

Ankita Jain

BM21MTECH14001

1. Non-Uniform Weights in Linear Regression

A dataset:
$$(x_n, t_n)$$
; $n = 0, 1, ... N$

Non negative very ling factor $g_n > 0$

for each data point

Rex ultant error function:

$$F_{(w)} = \frac{1}{2} \times g_n (t_n - w^T \phi(x_n)) - (1)$$

$$\phi(1) \Rightarrow \text{any representation } \partial_1 \text{ data}$$

(a) To be find $w + \text{that minimizes } f_n(w)$

Solin Let's first evaluate the derivative of the above error function $-(1)$
 $w \cdot r \cdot t \cdot w$

$$\frac{\partial f_n(w)}{\partial w} = \frac{1}{2} \sum_{n=1}^{N} g_n (t_n - w^T \phi(x_n)) \cdot 2 \cdot (-\phi_n)$$

Equaling the derivative to $g_n = g_n (t_n - w^T \phi(x_n)) \cdot 2 \cdot (-\phi_n)$

Equaling the derivative to $g_n = g_n (t_n - w^T \phi(x_n)) \cdot 2 \cdot (-\phi_n)$

Equaling the derivative to $g_n = g_n (t_n - w^T \phi(x_n)) \cdot 2 \cdot (-\phi_n)$

Equaling the derivative to $g_n = g_n (t_n - w^T \phi(x_n)) \cdot 2 \cdot (-\phi_n)$

Equaling the derivative to $g_n = g_n (t_n - w^T \phi(x_n)) \cdot 2 \cdot (-\phi_n)$

Equaling the derivative $g_n = g_n (t_n - w^T \phi(x_n)) \cdot 2 \cdot (-\phi_n)$

Equations of $g_n = g_n (t_n - w^T \phi(x_n)) \cdot 2 \cdot (-\phi_n)$

Equations of $g_n = g_n (t_n - w^T \phi(x_n)) \cdot 2 \cdot (-\phi_n)$

Equations of $g_n = g_n (t_n - w^T \phi(x_n)) \cdot 2 \cdot (-\phi_n)$

Equations of $g_n = g_n (t_n - w^T \phi(x_n)) \cdot 2 \cdot (-\phi_n)$

Equations of $g_n = g_n (t_n - w^T \phi(x_n)) \cdot 2 \cdot (-\phi_n)$

Equations of $g_n = g_n (t_n - w^T \phi(x_n)) \cdot 2 \cdot (-\phi_n)$

Equations of $g_n = g_n (t_n - w^T \phi(x_n)) \cdot 2 \cdot (-\phi_n)$

Equations of $g_n = g_n (t_n - w^T \phi(x_n)) \cdot 2 \cdot (-\phi_n)$

Equations of $g_n = g_n (t_n - w^T \phi(x_n)) \cdot 2 \cdot (-\phi_n)$

Equations of $g_n = g_n (t_n - w^T \phi(x_n)) \cdot 2 \cdot (-\phi_n)$

Equations of $g_n = g_n (t_n - w^T \phi(x_n)) \cdot 2 \cdot (-\phi_n)$

Equations of $g_n = g_n (t_n - w^T \phi(x_n)) \cdot 2 \cdot (-\phi_n)$

Equations of $g_n = g_n (t_n - w^T \phi(x_n)) \cdot 2 \cdot (-\phi_n)$

Equations of $g_n = g_n (t_n - w^T \phi(x_n)) \cdot 2 \cdot (-\phi_n)$

Equations of $g_n = g_n (t_n - w^T \phi(x_n)) \cdot 2 \cdot (-\phi_n)$

Equations of $g_n = g_n (t_n - w^T \phi(x_n)) \cdot 2 \cdot (-\phi_n)$

Equations of $g_n = g_n (t_n - w^T \phi(x_n)) \cdot 2 \cdot (-\phi_n)$

Equations of $g_n = g_n (t_n - w^T \phi(x_n)) \cdot 2 \cdot (-\phi_n)$

Equations of $g_n = g_n (t_n - w^T \phi(x_n)) \cdot 2 \cdot (-\phi_n)$

Equations of $g_n = g_n (t_n - w^T \phi(x_n)) \cdot 2 \cdot (-\phi_n)$

Equat

(b) To find love allematines of the above weighted sum of squares or or function for concell is (1) Data dependent noise variance Data dependent noise variance à indicated by B in the following equation. [3m_ = 1 & [tn-wTilb(xn)] - 0) also known as maximuzing the log thetihand Lunction w.r.t. Now, of we substitute Rul = In B? our egn (2) becomes: JANIN Egn Edn-woben 3 Hence we, see this is oneg the unterportation in terms of date independent nois variance " > A . Mata Frinte (b) Replicated Data Points the variable go which has been bermed as a mon negative weight for an undividual data point (Xn, tn) can also be the number of lumes a surgle doda point has been suplicated

has been replicated
i.e the effective number of times
the data point has been repeated
to some as a weight attached
to a specific data point

2. Bayes Optimal Classifier:

Giuna	51	÷ 1				
robol	to m	one e	uther	Forw	guide and CF	=)
P(hi D)	P(Flhi)	PLLIhi		1 / /	t Cl ht (R	-/
0.4	(0	0 0	2 0		
0.7	0	0	1	agentific of a	from the	
0.1	0	1 1	10		, ₄₀ , 31,	Ą
			1127 /	17:3 ~		

MAP Estimate:

MAP hypothesis is defined as follows:

MAP

Bayes Optimal Estimate Bayes Optimal Clarification is defined as: hBo = argmax & P(Volhi) PChilD where V + Set of possible darrification gthe examples From the table provided provided: E PCHhi) PChilD = (1x0.4)= 0.4 NEH PCHhi) PChilD = (1x0.2) = 0.5 NEH PCHhi) PChilD = (1x0.2) = 0.5 E P(Rhi) P(hild) = (1 +0.1) h3 = 0.1. .. h Bo = argman (0.4,0-5,0.1) Bayes Ophimal recommends the robot to move Left As we see both recommendations are notsame No other dassification method using the some hypothesis apaco & prior knowledge can outperform Bayes Optimal Classifier on the overage

3. VC-Dimension:

3. Given: 10 data & where Hypothesis His panemetrized by [P, or] & hpia = { 1 ; of p < 2 a To find V Cdimension of A Soln Led's assume to VC=2 then for any 2 values, Homest beable to shatter this subset of 2 7 = 2x1, x2 where p 2x1, 72 & 9 possible de cholomies Later 2, 00 1 1 22 0101 . Inthis all x1, 2 < q & 7/11; x2>P the H can shotler one subject of x Hence VC dimension is atleast 2

Now, Let's assume VGB
then H must be able to shatter any one
Subset of n (n, x2, x3) toprovethe
abone. 2000 1 111
2200110011
α_3 0 1 0 1 0 1 0 1
". the condulion for hypothesis
"! the condulion for hypothesis to be bure, per 19
i.e. if we assume, $x_1 < x_2 < x_3$ any
then Ix, x, y will aways
Contain 22, hence not all
the dicholomies ean he redized
as marked above
Hence the VCalimension for the
owien hypothesis is 2

.

4. Regularizer:
4. Given: Dolimensional dada {x1,,x0} Lunear model: y(x1,w) = wo + \(\xi \) wo \(\xi \)
Linea model : u/x = 12 + E .
1901/w) wo 12 work
N such data samples
MSE: $E(\omega) = \frac{1}{2} \cdot \frac{\xi}{\xi} \left(y(\gamma_1, \omega) - t_1 \right)$
Suppose Gaussiano Woise MOSO2) us
added to each input of Variable &
O. I. II WE Talloom day
Tofind: Relation of minimizing Beautiques MS
avereged over noise free data
and agreed, the town
with a 12 regularization term,
with bias we omitted
Soldier Let the model with noisy ripuls be
defined as:
g'Ex,w)=No + Z WK (KNK+CNK)
where en > rose added to input
except bias
-2 N (0,02)
Reducing the about egn , D
Reducing the abow ear D û (x,w) = w + Eurani + Elnu

 $y(y,\omega) = \omega_0 + \underbrace{\xi \omega_r x_{ni}}_{u=1} + \underbrace{\xi e_{nu}}_{u=1}$ $y'(y,\omega) = y(y,\omega) + \underbrace{\xi}_{u=1} e_{nu}$ Subduting this in MSE for around input: $\hat{E} = \underbrace{1}_{z} \underbrace{z}_{z} \underbrace{(\hat{y}_n - t_n)}_{z}$ $= \underbrace{1}_{z} \underbrace{z}_{z} \underbrace{(\hat{y}_n)^2}_{z} - 2y_n t_n + \underbrace{t_n}_{z}^2$

Where E is MSEducto noisy input 15thern is due to sed MSE 2nd herm Regularizer Input

5. Logistic Regression:

Cost after 0 epoch is: 0.6793333930895056
Solution to 5b(i)
The undated value of w b at the end of the epoch

The updated value of w,b at the end of the epoch is: $[1.45104757\ 0.49269336]\ -1.0073819919017042$

Solution to 5b(ii)
The logistic model P(y=1|x1,x2) is:
0.577540312892111
Corresponding cross entropy function =
0.6770734435545663

The solution to 5b(iii)

Accuracy: 66.6666666666667

Precision: 60.0 Recall: 100.0

6. Kaggle - Taxi Fare Prediction:

The following two models performed best.

- o An ensemble of kNN and lightGBM
- LightGBM model

A brief on the models selected and why they performed better.

1. LightGBM

Faster training speed and higher efficiency: Light GBM use histogram based algorithm i.e binning information Lower memory usage: Replaces continuous values to discrete bins which result in lower memory.

2. Ensemble

There are two main reasons to use an ensemble over a single model, and they are related; they are: Performance: An ensemble can make better predictions and achieve better performance than any single contributing model. Robustness: An ensemble reduces the spread or dispersion of the predictions and model performance