INTRODUCTION TO CATEGORY THEORY

CHAPTER 1 PART 1

LET'S LOOK AT AN EXAMPLE FIRST

Is A connected to C?

LET'S LOOK AT AN EXAMPLE FIRST

Is A connected to C?

ANSWER TO COMBINATION
OF OBSERVATIONS
!=
COMBINATION OF ANSWERS
TO INDIVIDUAL
OBSERVATIONS

HOW TO WE FORMULATE IT MATHEMATICALLY?

Is A connected to C?

HOW TO WE FORMULATE IT MATHEMATICALLY?

HOW TO WE FORMULATE IT MATHEMATICALLY?

BUT WHAT IS A PARTITION?

PARTITIONS CAN BE UNDERSTOOD USING SURJECTIVE FUNCTIONS

LET'S COME BACK TO THE ORIGINAL EXAMPLE

Is A connected to C?

Some are "smaller" than others

↑

"Combining" gives an idea of making a "larger" observation

↑

What do we mean by combining observations?

↑

ANSWER TO COMBINATION OF OBSERVATIONS

!=

COMBINATION OF ANSWERS TO INDIVIDUAL

OBSERVATIONS

Set A = { ° , ° , ° , ° , ° }

Define a relation R: roughly a condition that involves two elements Eg: a is related to b if b is divisible

by a

Pick any two elements x and y

 $x \sim y$ (x is related to y) if R is satisfied by x and y

Set $A = \{1,2,3,4\}$ R: a is related to b if

sum of a and b is even a + b = 5 a + b = 5 a + b = 4 a + b = 5

 $a \sim a \forall a \in A$ 1 ~ 3, 3 ~ 1, 2 ~ 4 and 4 ~ 2

Set $A = \{1,2,3,4\}$

R: a is related to b if R: a is related to b if sum of a and b is even a + b = 5

 $a \sim a \forall a \in A$ 1 ~ 3, 3 ~ 1, 2 ~ 4 and 4 ~ 2 2 ~ 3, 3 ~ 2, 1 ~ 4 and 4 ~ 1

Is a \sim a \forall a \in A?

Reflexive property

Does a \sim b \Rightarrow b \sim a?

Symmetric property

Does a \sim b and b \sim c \Rightarrow a \sim c?

Transitive property

Set $A = \{1,2,3,4\}$

R: a is related to b if R: a is related to b if sum of a and b is even a + b = 5

a~a∀a∈A 1 ~ 3, 3 ~ 1, 2 ~ 4 and 4 ~ 2 2 ~ 3, 3 ~ 2, 1 ~ 4 and 4 ~ 1

Is a \sim a \forall a \in A?

Does a \sim b \Rightarrow b \sim a?

Does a \sim b and b \sim c \Rightarrow a \sim c?

Set $A = \{1,2,3,4\}$

R: a is related to b if R: a is related to b if

sum of a and b is even a + b = 5

a~a∀a∈A 1 ~ 3, 3 ~ 1, 2 ~ 4 and 4 ~ 2 2 ~ 3, 3 ~ 2, 1 ~ 4 and 4 ~ 1

Is a ~ a ∀ a ∈ A? YES

Does a \sim b \Rightarrow b \sim a ? YES

Does a \sim b and b \sim c \Rightarrow a \sim c ? YES

Set $A = \{1,2,3,4\}$

R: a is related to b if R: a is related to b if

sum of a and b is even a + b = 5

a~a∀a∈A 1 ~ 3, 3 ~ 1, 2 ~ 4 and 4 ~ 2 2 ~ 3, 3 ~ 2, 1 ~ 4 and 4 ~ 1

Is a \sim a \forall a \in A?

Does $a \sim b \Rightarrow b \sim a$?

Does a \sim b and b \sim c \Rightarrow a \sim c?

Set $A = \{1,2,3,4\}$

R: a is related to b if R: a is related to b if sum of a and b is even a + b = 5

a~a∀a∈A 1 ~ 3, 3 ~ 1, 2 ~ 4 and 4 ~ 2 2 ~ 3, 3 ~ 2, 1 ~ 4 and 4 ~ 1

Is a ~ a ∀ a ∈ A? NO

Does a \sim b \Rightarrow b \sim a ? YES

Does a \sim b and b \sim c \Rightarrow a \sim c? NO

Is a \sim a \forall a \in A?

Reflexive property

Does $a \sim b \Rightarrow b \sim a$?

Symmetric property

Does a \sim b and b \sim c \Rightarrow a \sim c?

Transitive property

When these two conditions are met, the binary relation is called a preorder

The relation R is denoted by ≤

PREORDERS

Define ≤ as: a ≤ b if a divides b

Thus $3 \le 6$ but $4 \le 6$

 $A = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$

In a set A, if a is related to b, we can draw an arrow from a to b

 $1 \le 1, 2 \le 2$ etc

 $2 \le 4$ and $4 \le 8 \Rightarrow 2 \le 8$

PREORDER ON BOOL

Bool is an important preorder:

B = {false, true}

false ≤ false true ≤ true false ≤ true

PREORDERS ON POWER SET

Define ≤ as:

 $a \le b \text{ if } a \subseteq b$

Thus $\{a,b\} \le \{a,b\}$ but $\{a\} \le \{a,c\}$

 $A = \{1,2,3\}$

 $A = \{1,2\}$

PREORDERS ON POWER SET

The Hasse diagram for a power set of a finite set with n elements looks like a cube of dimension n

$$A = \{1,2,3\}$$

$$A = \{1,2\}$$

Square

Cube

PREORDERS ON DIVISORS

Define \leq as: a \leq b if a divides b Thus $14 \leq 42$

A = set of all divisors of 42

42 6 14 21 2 3 7 1 Define \leq as: $a \leq b$ if $a \subseteq b$ Thus $\{a,b\} \leq \{a,b\}$ but $\{a\} \leq \{a,c\}$

 $A = \{a,b,c\}$

NOTATION FOR PREORDER

If A is a set and the relation ≤ is defined on it, the resulting preorder is denoted by:

 (A, \leq)

Eg (X, \leq_X) and (Y, \leq_Y) are two preorders. The relation \leq_X is defined on XThe relation \leq_Y is defined on Y

 (X, \leq_X)

 $(Y,\,\leq_Y)$

Is this a monotone map?

$$(X, \leq_X)$$
 (Y, \leq_Y)

$$-2 \le_X -1$$
 BUT $f(-2) ! \le_Y f(-1)$

Booleans {true, false}	Power set of any set A P(a,b,c,d,e,)	Positive integers {1,2,3,4,}
AND operation	Intersection of two sets	Highest common factor (最大公因數)
OR operation	Union of two sets	Least common multiple (最小公倍數)

These operations share a common structure

Booleans {true, false}	Power set of any set A P(a,b,c,d,e,)	Positive integers {1,2,3,4,}
AND operation	Intersection of two sets	Highest common factor (最大公因數)
OR operation	Union of two sets	Least common multiple (最小公倍數)

These operations share a common structure

	Booleans {true, false}	Power set of any set A P(a,b,c,d,e,)	Positive integers {1,2,3,4,}
	AND operation	Intersection of two sets	Highest common factor (最大公因數)
	OR operation	Union of two sets	Least common multiple (最小公倍數)
rue	x ≤ a and x ≤ b		false AND false = false false AND true = false true AND false = false true AND true = true
alse			false OR false = false false OR true = true true OR false = true true OR true = true

	Booleans {true, false}	Power set of any set A P(a,b,c,d,e,)	Positive integers {1,2,3,4,}
	AND operation	Intersection of two sets	Highest common factor (最大公因數)
	OR operation	Union of two sets	Least common multiple (最小公倍數)
A = $\{1,2\}$ a \cap b largest element x such that $\{1,2\}$ x \leq a and x \leq b		ement x such that	{1,2} ∩ {2} {2}
	{2}	a∪b	{1,2} ∪ {2}

smallest element x such that

 $a \le x$ and $b \le x$

{1,2}

	Booleans {true, false}	Power set of any set A P(a,b,c,d,e,)	Positive integers {1,2,3,4,}
	AND operation	Intersection of two sets	Highest common factor (最大公因數)
	OR operation	Union of two sets	Least common multiple (最小公倍數)
42 14 6 14	HCF(a,b) A2 largest element x such that $x \le a \text{ and } x \le b$		HCF(6,21) = 3 $3 \le 6$ and $3 \le 21$
2 3 1	LCM(a,b) smallest element x such that $a \le x$ and $b \le x$		LCM(6,21) = 42 6 \le 42 and 21 \le 42

Let (P, \leq) be a preorder, and let $A \subseteq P$ be a subset.

 $p \in P$ is a meet of A if

a) p≤a ∀ a∈A

b) $q \le p \ \forall \ q \in P$ such that $q \le a$

 $p \in P$ is a join of A if

a) a≤p ∀ a∈A

b) $p \le q \ \forall \ q \in P$ such that $a \le q$

Example:

 $A = \{b,c\}$ meet of A = ajoin of A = d

MEETS, JOINS & MONOTONE MAPS

Consider a monotone map $f: P \rightarrow Q$

 $\label{eq:pq} \begin{array}{l} \forall \ p,q \in P \ \text{if} \\ \\ \text{f(meet of p and q)} \ = \ meet \ of \ f(p) \ and \ f(q) \\ \\ \text{then} \\ \\ \text{f is called meet preserving map} \end{array}$

 \forall p,q \in P if f(join of p and q) = join of f(p) and f(q) then f is called join preserving map

Is A connected to C?

1. Think of it as a function

Observation —— Answer

3. View the sets as preorders

2. Think of observations as partitions of the set {A,B,C}

Is A connected to C?

1. Think of it as a function

Observation —— Answer

- 3. View the sets as preorders
- 2. Think of observations as partitions of the set {A,B,C}

Is A connected to C?

1. Think of it as a function

Does it preserve meets? Yes! Eg

f (meet of $\{A,B\},\{C\}$ and $\{A,B,C\}$) = $f(\{A,B\},\{C\})$ = false

meet of f({A,B},{C}) and f({A,B,C})
= meet of (false and true)
= false

3. View the sets as preorders

2. Think of observations as partitions of the set {A,B,C}

1. Think of it as a function

Does it preserve joins? No

f (join of {A,B},{C} and {A},{B,C}) = f({A,B,C}) = true

join of f({A,B},{C}) and f({A},{B,C}) = meet of (false and false) = false

- 3. View the sets as preorders
- 2. Think of observations as partitions of the set {A,B,C}

GENERATIVE EFFECTS

Is A connected to C?

a monotone map $f: P \to Q$ has a generative effect if there exist elements $a, b \in P$ such that $f(a) \lor f(b) \neq f(a \lor b)$.

GENERATIVE EFFECTS

Is A connected to C?

a monotone map $f: P \to Q$ has a generative effect if there exist elements $a, b \in P$ such that $f(a) \lor f(b) \neq f(a \lor b)$.

GENERATIVE EFFECTS

a monotone map $f: P \to Q$ has a generative effect if there exist elements $a, b \in P$ such that $f(a) \lor f(b) \neq f(a \lor b)$.

THANK YOU