# Analoge elektronische schakelingen

Jan Genoe (jan.genoe@kuleuven.be)

# Versterkers

| Ι   | Versterkers                                                                                                                                                                                                                                                                                      | 2                                      |  |  |  |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|--|--|--|
| 1   | Klasse A versterkers  1.1 Indeling vermogenversterkers                                                                                                                                                                                                                                           | <b>3</b>                               |  |  |  |
| 2   | Klasse B versterkers  2.1 Indeling vermogenversterkers  2.2 Basisschema  2.3 Gebruik van de voorinstelspanning  2.4 Voorbeeld 1: Klasse B versterker  2.5 Voorbeeld 2: Klasse B versterker  2.6 Voorbeeld 3: Klasse B versterker  2.7 Uitgewerkt voorbeeld van een klasse AB met MOS transistors | 10<br>10<br>15<br>21<br>21<br>21<br>33 |  |  |  |
| 3   | Klasse G versterkers  3.1 Indeling vermogenversterkers                                                                                                                                                                                                                                           | <b>36</b> 36                           |  |  |  |
| II  | II Voedingen 40                                                                                                                                                                                                                                                                                  |                                        |  |  |  |
| 4   | Buck Converter of step-down Convertor 4.1 Zonder belasting van de uitgang                                                                                                                                                                                                                        | <b>41</b><br>41<br>41                  |  |  |  |
| 5   | Boost Converter of Step-up Converter  5.1 Oefening Boost convertor                                                                                                                                                                                                                               | 43<br>45<br>48<br>50                   |  |  |  |
| 6   | Inverter of Buck-Boost Converter                                                                                                                                                                                                                                                                 | 54                                     |  |  |  |
| 7   | Flyback converter                                                                                                                                                                                                                                                                                | 55                                     |  |  |  |
| III | I References                                                                                                                                                                                                                                                                                     | 56                                     |  |  |  |
| 8   | Referenties                                                                                                                                                                                                                                                                                      | 57                                     |  |  |  |
| IV  | Overzicht                                                                                                                                                                                                                                                                                        | 58                                     |  |  |  |
| Bil | Bibliografie                                                                                                                                                                                                                                                                                     |                                        |  |  |  |

#### door Jan Genoe

Welkom bij de notebooks van het vak Analoge Elektronische Schakelingen.

Deze notebooks bevatten materiaal en oefeningen, in het formaat van Jupyter Book, ontwikkeld als aanvullingen bij het vak Analoge Elektronische Schakelingen aan de KU Leuven, campus Diepenbeek.

**Notitie:** Dit is momenteel nog werk in progress. De cursus zoals aanwezig op Toledo blijft het voornaamste leerinstrument. Dit is enkel een hulpmiddel.

## Inhoudsopgave

- Versterkers
  - Klasse A versterkers
  - Klasse B versterkers
  - Klasse G versterkers
- Voedingen
  - Buck Converter of step-down Convertor
  - Boost Converter of Step-up Converter
  - Inverter of Buck-Boost Converter
  - Flyback converter
- References
  - Referenties
- Overzicht
  - Lijst cursussen
  - Auteur Jan Genoe

#### Licenties

Een licentie voor de inhoud wordt gegeven onder de Creative Commons Attribution 4.0 International License en voor de software code onder de MIT license

Versterkers 1

# Deel I

# Versterkers

# HOOFDSTUK 1

### Klasse A versterkers

```
📜 reveal.js slides 💆 open in JupyterLite 💆 JupyterDeck slides
```

## 1.1 Indeling vermogenversterkers

In Tabel 1.1 geven we een overzicht van de verschillende versterkers die we zullen bespreken in de leerlijn analoge elektronica. In dit hoofdstuk behandelen we de klasse A versterkers. Zoals je in de tabel kan zien, zijn dit versterkers die aan een lage frequentie werken en ook niet een resonant kring hebben zijn. Bovendien is er slechts 1 transistor die het vermogen van de finale trap gaat leveren. Natuurlijk zijn er normaal heel wat andere transistors aanwezig in het schema maar die werken op een veel lager vermogen, dit is een veel lagere stroom en in vele gevallen ook een veel lagere spanning.

Tabel 1.1: Indeling van de vermogenversterkers

|                                          | laagfrequent of breedband | hoogfrequent of resonant   |
|------------------------------------------|---------------------------|----------------------------|
|                                          |                           |                            |
| 1 transistor in de vermogentrap          | Klasse A                  | Klasse C Klasse F Klasse E |
| 2 of meer transistors in de vermogentrap | Klasse B Klasse G         | Klasse D                   |

#### 1.1.1 Basisschema

Het basisschema van de klasse A versterker vinden we terug in Fig. 1.1. Om hiervan een Spice simulatie te maken, nummeren we de verschillende knopen in dit netwerk zoals je kan zien in Fig. 1.2.



Fig. 1.1: Basisschema van de Klasse A versterker.



Fig. 1.2: Basisschema van de Klasse A versterker.

#### 1.1.2 Overeenkomende Spice listing

De overeenkomende spice listing wordt dan:

Spice Listing 1.1: basis Klasse A circuit

```
* Spice file van een eenvoudige Klasse A versterker
R_R6
             0 1 8
R R7
             3 2
                 1
             3 4 25m
L1_TX1
L2_TX1
             1 0 1m
K_TX1
             L1_TX1 L2_TX1 1.
Q_Q5
             4 5 0 Q2
I_I4
             0 5
                 SIN(17m 15m 10k) DC=17m
V_VDD
             2 0 66V
.model Q2 NPN(Is=14.34p BF=20)
```

Vergelijk deze Spice list aandachtig met Fig. 1.2. Voor elk element, met uitzondering van de transformator, vinden we de 2 of 3 knopen terug die ook in het schema staan. De uitgang wordt belast met een weerstand van 8  $\Omega$ . De weerstand van de primaire wikkeling van de transformator is natuurlijk ongewenst maar we kunnen deze niet zomaar verwaarlozen. We moeten dit correct inbrengen om een realistische simulatie te bekomen. We doen dit door een weerstand van 1  $\Omega$  te plaatsen tussen knopen 2 en 3. Voor de vermogentransistor (Q5) nemen we in deze simulatie een bipolaire transistor. In het model van deze transistor (de naam van het model is Q2) zien we dat deze transistor een voorwaartse stroomversterking ( $\beta_F$ ) heeft van 20.

De transformator TX1 implementeren we in spice aan de hand van de 2 spoelen L1\_TX1 en L2\_TX1 die gekoppeld worden door de koppeling K\_TX1. De koppelingsfactor is 1. Uit de ratio van de 2 spoelwaardes ( $\frac{25mH}{1mH}$  =25) kunnen we ook de wikkelverhouding (N) afleiden:  $5 = \sqrt{25}$ .

De bovenstaande netwerkcode simuleren we in Spice. Fig. 1.3 toont zowel de stromen (rechts) als de spanningen (links) als functie van de tijd.



Fig. 1.3: Klasse A versterker: stromen en spanningen als functie van de tijd.

Het is ook altijd interessant om van dezelfde simulatie de stroom door de transistor versus de spanning over de transistor te plotten. Dit zien we in Fig. 1.4.



Fig. 1.4: Belastingskarakteristiek van de klasse A versterker.

Wanneer we de spoelwaarde van de primaire en de secundaire wikkeling heel erg sterk verhogen (zonder de wikkelverhouding van 5 hierbij aan te passen), valt het faseverschil tussen de stroom en de spanning weg en krijgen we een plot waarbij we een mooi linair verband zien tussen stroom en spanning, zowel over de primaire (blauwe curve) als over de secundaire wikkeling (orange curve) (zie Fig. 1.5). De spice code voor deze simulatie met aangepaste wikkelverhouding kan je hieronder terugvinden.

#### Spice Listing 1.2: basis Klasse A circuit

```
* Spice file van een eenvoudige Klasse A versterker
R_R6
       0 1 8
            3 2 1
R_R7
            3 4 25
L1_TX1
L2_TX1
            1 0 1
K_TX1
            L1_TX1 L2_TX1 1.
Q_Q5
            4 5 0 Q2
I_I4
            0 5 SIN(17m 15m 10k) DC=17m
V_VDD
            2 0 66V
.model Q2 NPN(Is=14.34p BF=20)
```



Fig. 1.5: Stroom-spanningsrelaties voor de primaire en de secundaire wikkeling in het geval van een grote inductantie van de spoelen.

Het verschil in fase tussen de stroom door de transistor en de spanning over de transistor kunnen we ook verkleinen door de frequentie te verhogen. In de onderstaande spice listing is de frequentie van de stroombron I4 aan de basis van de bipolaire transistor verhoogt van 10 kHz naar 100 kHz. Uit de simulatie in Fig. 1.6 zien we dat ook hier weer een bijna linair verloop tussen stroom en spanning wodt bekomen.

#### Spice Listing 1.3: basis Klasse A circuit

```
* Spice file van een eenvoudige Klasse A versterker
R_R6
             0 1 8
             3 2 1
R_R7
L1_TX1
             3 4 25m
L2_TX1
             1 0 1m
K_TX1
             L1_TX1 L2_TX1 1.
             4 5 0 Q2
Q_Q5
             0 5 SIN(17m 15m 100k) DC=17m
I_I4
V_VDD
             2 0 66V
.model Q2 NPN(Is=14.34p BF=20)
```



Fig. 1.6: Stroom door de transistor versus spanning over de transistor in het geval van aansturing aan 100 kHz.



Fig. 1.7: Ogenblikkelijk vermogen als functie van de tijd voor de simulatie van Fig. 1.3

We kunnen de simulatie van het ogenblikkelijk vermogen in Fig. 1.7 ook integreren over een aantal periodes. We bekomen dat het gemiddeld vermogen:

$$P_{in} = \frac{1}{T} \int_0^T V_{over} I_{door} \partial t$$

Het gemiddelde inputvermogen gedurende de 10 eerste periodes is 22.44 W Het gemiddelde vermogenverlies in de transistor gedurende de 10 eerste periodes. 37.8 W Het gemiddelde vermogen aan de uitgang gedurende de 10 eerste periodes is 8.50 W De gemiddelde efficentie gedurende de 10 eerste periodes is 37.89 %

# HOOFDSTUK 2

### Klasse B versterkers



## 2.1 Indeling vermogenversterkers

In Tabel 2.1 hernemen we een overzicht van de verschillende versterkers die we bespreken in de leerlijn analoge elektronica.

Tabel 2.1: Indeling van de vermogenversterkers

|                                          | laagfrequent of breedband | hoogfrequent of resonant   |
|------------------------------------------|---------------------------|----------------------------|
| 1 transistor in de vermogentrap          | Klasse A                  | Klasse C Klasse F Klasse E |
| 2 of meer transistors in de vermogentrap | Klasse B Klasse G         | Klasse D                   |

### 2.2 Basisschema

### 2.2.1 Schema voor DC werking

Het is belangrijk in dit schema de verschillende bouwblokken te herkennen. Fig. 2.2 toont deze bouwblokken. We hebben natuurlijk in de eerste plaats de belasting  $R_L$ . Daarnaast zien we (in de groene box) zowel het pull-up netwerk als het pull-down netwerk aangeduid.



Fig. 2.1: Basisschema van de klasse B versterker voor DC werking.



Fig. 2.2: Basisschema van de klasse B versterker voor DC werking met aangeduide bouwblokken.

#### 2.2.2 Schema voor AC werking



Fig. 2.3: Basisschema van de klasse B versterker voor AC werking.

#### Spice Listing 2.1: basis Klasse B circuit

```
Klasse B versterker
* SUPPLY VOLTAGES
VPOS 8 0 DC
                 +15V
VNEG 9 0 DC
                  -15V
* input source
VS1 1 0 DC 0 SIN(OV 5VPEAK 10KHZ)
* PUSH-PULL TRANSISTOR OUTPUT STAGE
Q1 8 1 2 QNPN
Q2 9 1 2 QPNP
* Load resistance
RL1 2 0 100
* DEVICE MODELS
.model QNPN
                  NPN (BF=50)
.model QPNP
                  PNP (BF=50)
```

De simulatie (zie Fig. 2.4) van de spice codeSpice Listing 2.1 geeft duidelijk de dode zone aan bij de nuldoorgang van de spanning. In Fig. 2.5 bekijken we deze nuldoorgang in meer detail.

Fig. 2.6 toont de stroom door als functie van de spanning over de transistor voor de npn transistor. Voor de pnp transistor bekomen we dezelfde grafiek.



Fig. 2.4: De klasse B versterker: stromen en spanningen als functie van de tijd.



Fig. 2.5: De klasse B versterker: detail van de stromen en spanningen als functie van de tijd in de buurt van de nuldoorgang.



Fig. 2.6: De klasse B versterker: de stroom door een npn transistor als functie van de spanning.

## 2.3 Gebruik van de voorinstelspanning

### 2.3.1 diodes als voorinstelspanning



Fig. 2.7: Basisschema van de klasse B versterker voor DC werking met diode voorinstelspanning.

Hieronder tonen we de spice listing van de klasse B versterker waarbij we een voorinstelspanning voorzien tussen de basissen van de npn en de pnp transistor. Deze voorinstelspanning is hier uitgevoerd door diodes. in Fig. 2.8 merken we hierbij op dat dit tot gevolg heeft dat er toch een stroom blijft lopen door de transistor die niet in geleiding is. Dit noemen we de klasse AB werking van deze klasseB versterker.

Spice Listing 2.2: Klasse B circuit met voorinstelspanning

```
Klasse B versterker
* SUPPLY VOLTAGES
VPOS 8 0 DC +15V
VNEG 9 0 DC -15V
VS2 10 0 DC 0 SIN(OV 5VPEAK 10KHZ)
D1 13 10
          DNOM
RB1 13 8 10K
Q11 8 13 12 QNPN
         DNOM
D2 10 14
RB2 14 9
         10K
Q12 9 14 12 QPNP
RL2 12 0 100
* DEVICE MODELS
.model QNPN NPN(BF=50)
```

(Vervolgt op volgende pagina)

125

150

175

(Vervolgd van vorige pagina)

```
.model QPNP PNP(BF=50)
.model DNOM D()
```

Fig. 2.8: De klasse B versterker: stromen en spanningen als functie van de tijd.

In de grafiek (Fig. 2.9) wordt dit nog duidelijker.

125

150

We kunnen ook proberen de dode zone weg te werken aan de hand van feedback, zoals in het onderstaande schema aan de hand van een opamp. Op het eerste zicht lijkt dat te lukken, als we de simulatie in Fig. 2.10 bekijken. De  $V_{in}$  en  $V_{out}$  liggen zo goed als volledig op elkaar dat we het verschil niet merken. Enkel als we heel erg inzoemen, zoals in Fig. 2.11 lijkt er een klein verschil te zijn langs de nuldoorgang. Laat je hierbij echter niet vangen. Deze simualtie is gedaan met een ideale OpAmp, warvan de stijsnelheid niet realistisch is. Wanneer we diezelfde simulatie hernemen met een realistische OpAmp, zie onder, blijft dit bijna ideale gedrag niet behouden.

Spice Listing 2.3: SPICE code met OPAMP feedback

```
.title Klasse B versterker PUSH-PULL PLACED IN OPAMP FEEDBACK LOOP

* SUPPLY VOLTAGES

VPOS 8 0 DC +15V

VNEG 9 0 DC -15V

*

VS3 20 0 DC 0 SIN(0V 5VPEAK 10KHZ)

*

Q21 8 23 22 QNPN
Q22 9 23 22 QPNP
RL3 22 0 100

*

XOPAMP 20 22 8 9 23 8 opamp

*

DEVICE MODELS
.model QNPN NPN(BF=50)
.model QNPP PNP(BF=50)
.model DNOM D()
```



Fig. 2.9: De klasse B versterker: de stroom door een npn transistor als functie van de spanning.



Fig. 2.10: De klasse B versterker teruggekoppeld met een ideale OpAmp: stromen en spanningen als functie van de tiid.



Fig. 2.11: De klasse B versterker teruggekoppeld met een ideale OpAmp: stromen en spanningen als functie van de tijd in de nabijheid van de nuldoorgang.



Fig. 2.12: De klasse B versterker: de stroom door een npn transistor als functie van de spanning.

#### Spice Listing 2.4: SPICE code met OPAMP feedback

```
.title Klasse B versterker PUSH-PULL PLACED IN OPAMP FEEDBACK LOOP

* 
* SUPPLY VOLTAGES

VPOS 8 0 DC +2.5V

VNEG 9 0 DC -2.5V

*

VS3 20 0 DC 0 SIN(0V 1VPEAK 10KHZ)

*

Q21 8 23 22 QNPN
Q22 9 23 22 QPNP
RL3 22 0 100

*

XOpAmp 20 22 8 9 23 8 opamp
```

(Vervolgt op volgende pagina)

\*
\* DEVICE MODELS
.model QNPN NPN(BF=50)
.model QPNP PNP(BF=50)
.model DNOM D()



Fig. 2.13: De klasse B versterker met lagere voedingsspanning teruggekoppeld met een ideale OpAmp: stromen en spanningen als functie van de tijd.

Echter, wanneer we een realistisch model van een opamp invoeren, zoals de LMV981-N van Texas Instruments, zien we een heel ander gedrag in de dode zone.



Fig. 2.14: De klasse B versterker met lagere voedinsspanning teruggekoppeld met een realistisch OpAmp model LMV981-N: stromen en spanningen als functie van de tijd.



Fig. 2.15: De klasse B versterker met 2 opeenvolgende drive transistors.

### 2.4 Voorbeeld 1: Klasse B versterker



## 2.5 Voorbeeld 2: Klasse B versterker



### 2.6 Voorbeeld 3: Klasse B versterker





Fig. 2.16: Basisschema van de versterker



Fig. 2.17: Interne structuur van de versterkerchip



Fig. 2.18: Foto van de versterker



Fig. 2.19: Layout van de versterker



Fig. 2.20: Bestukking van de versterker



Fig. 2.21: Basisschema van de versterker



Fig. 2.22: Interne structuur van de versterkerchip



Fig. 2.23: Foto van de versterker



Fig. 2.24: Layout van de versterker



Fig. 2.25: Bestukking van de versterker



Fig. 2.26: Basisschema van de versterker



Fig. 2.27: Foto van de versterker



Fig. 2.28: Layout van de versterker

## 2.7 Uitgewerkt voorbeeld van een klasse AB met MOS transistors



In [1] wordt de klasse AB werking getoond aan de hand van het schema in Fig. 2.29. We bestuderen dit schema in meer detail. Eerst bekijken we de voorinsteltak. De 2 weerstanden R, samen met de 2 diodes zorgen ervoor dat zonder aangelegd signaal de spanning  $V_i$  gelegen is midden de 2 voedingsspanningen. De 2 weerstanden R zijn dan zo gekozen dat de  $I_B$  een DC stroomcomponenten heeft die mooi kan ingesteld worden door R.

Wanneer we vervolgens een AC signaal aanleggen, krijgen we de volgende signalen:

- $V_I + V_D$  aan de ingang van de nMOS transistor  $M_N$
- +  $V_I V_D$  aan de ingang van de pMOS transistor  ${\cal M}_P$

Onder zo goed als alle omstandigheden zullen zowel de nMOS als de pMOS in saturatie zijn. Dit wil zeggen dat de stromen door deze transistors voldoen aan de vergelijkingen:

$$I_n = \mu_n C_{ox} \frac{W_n}{2L_n} (V_{GSn} - V_{Tn})^2 \label{eq:interpolation}$$

als  $V_{GSn} > V_{Tn}$ 

$$I_p = \mu_p C_{ox} \frac{W_p}{2L_p} (V_{GSp} - V_{Tp})^2$$

als  $V_{GSp} < V_{Tp}$ 



Fig. 2.29: Klasse AB versterker met MOS transistors [1].

Wanneer we de spanning aan de gate en de source invullen krijgen we:

- $I_n = \mu_n C_{ox} \frac{W_n}{2L_n} (V_I + V_D V_{out} V_{Tn})^2$  als  $V_I + V_D V_{out} > V_{Tn}$
- $V_{out} = (I_n I_p)R_L$

In Fig. 2.30 berekenen we deze stromen. We veronderstellen hierbij dat:  $\mu_n C_{ox} \frac{W_n}{2L_n} = \mu_p C_{ox} \frac{W_p}{2L_p} = 0.02 A/V^2, V_D = 0.7V, V_{Tn} = 0.3V V_{Tp} = -0.3V$  en  $R_L = 80\Omega$ .

In Fig. 2.31 zoemen we in op een detail rond de oorsprong.



Fig. 2.30: Transfer curve en stroom van de beide transistors.



Fig. 2.31: Detail van de zone rond de oorsprong. We zien dat hier beide transistors in geleiding zijn.

#### Klasse G versterkers

```
📒 reveal js slides 💆 open in JupyterLite 💆 JupyterDeck slides
```

### 3.1 Indeling vermogenversterkers

In Tabel 3.1 hernemen we een overzicht van de verschillende versterkers die we bespreken in de leerlijn analoge elektronica.

Tabel 3.1: Indeling van de vermogenversterkers

|                                          | laagfrequent of breedband | hoogfrequent of resonant   |
|------------------------------------------|---------------------------|----------------------------|
| 1 transistor in de vermogentrap          | Klasse A                  | Klasse C Klasse F Klasse E |
| 2 of meer transistors in de vermogentrap | Klasse B Klasse G         | Klasse D                   |

### 3.2 Basisschema

Spice Listing 3.1: basis Klasse G circuit

(Vervolgt op volgende pagina)



Fig. 3.1: Basisschema van de Klasse G versterker.



Fig. 3.2: Basisschema van de klasse G versterker met compensatie voor de saturatie spanning.

3.2. Basisschema 37

(Vervolgd van vorige pagina)

```
^{\star} PUSH-PULL TRANSISTOR OUTPUT STAGE
Q1h 8 1 9 QNPN
Q1s 9 12 2 QNPN
Q2s 7 13 2 QPNP
Q2h 6 1 7 QPNP
Dpos 5 9 DNOM
Dneg 7 4 DNOM
*compensatie Vsat
Db1 1 12 DNOM
Db4 13 1 DNOM
* Load resistance
RL1 2 0 8
* DEVICE MODELS
.model QNPN NPN(BF=50)
.model QPNP PNP(BF=50)
.model DNOM D()
```



Fig. 3.3: Klasse G versterker: stromen en spanningen als functie van de tijd.

3.2. Basisschema 38



Fig. 3.4: Klasse G versterker: de stroom door de verschillende transistor als functie van de spanning over deze transistors.

3.2. Basisschema 39

# **Deel II**

# Voedingen

### **Buck Converter of step-down Convertor**

```
📒 reveal.js slides 💆 open in JupyterLite 💆 JupyterDeck slides
```

In dit hoofdstuk bespreken we de voedingen die een (eventueel veranderlijke) ingangsspanning omzetten in een stabiele en ook lagere uitgangsspanning. In het engels gebruiken we hiervoor typisch de volgende namen:

- Buck converter
- Step-down converter

### 4.1 Zonder belasting van de uitgang

## 4.2 Onder belasting van de uitgang: 5uA



Fig. 4.1: Schakelspanning en bekomen spanning voor een step-down converter met een inputspanning van 12 V die opstart van 0V naar 5V, zonder stroom aan de uitgang. De gewenste spanning is aangegeven in het rood.



Fig. 4.2: Schakelspanning en bekomen spanning voor een step-down converter met een inputspanning van 12 V die opstart van 0V naar 5V, onder een uitgangsstroom van 5 uA. De gewenste spanning is aangegeven in het rood.

### Boost Converter of Step-up Converter



De relatie tussen de Duty cycle (D) en de uitgangsspanning  $(V_{uit})$  voor een gegeven ingangsspanning  $(V_{in})$  kunnen we het best bereken vanuit het perspectief van de stroomverandering door het spoel. Inderdaad, de spanning over het spoel is evenredig met de stroomstijging per tijdseenheid.

$$U_L = L \frac{dI}{dt}$$

Hieruit volgt dat tijdens de tijd dat de transistor aan staat  $(T_{on})$ :

$$U_L = L \frac{\Delta I}{T_{on}}$$

en tijdens de tijd dat de transistor af staat  $(T_{off})$ :

$$U_L = L \frac{-\Delta I}{T_{off}}$$

We vullen dit in en we bekomen:

$$U_L = L \frac{\Delta I}{T_{on}} =$$

$$U_L = -L \frac{\Delta I}{T_{off}} =$$

met \*\* zijnde \*\*\*. Uit beide vergelijkingen kunnen we nu  $L\Delta I$  extraheren en deze 2 waardes aan elkaar gelijkstellen. Dit geeft:

$$L\Delta I = T_{on}() = -T_{off}()$$

Wanneer we deze vergelijking nu oplossen naar  $V_{uit}$  en de stroom door het spoel  $I_L$  bekomen we:

$$V_{uit} = \frac{1}{1-D} V_{in} - V_D - \frac{1}{1-D} R_L I_L - \frac{D}{1-D} R_T I_L$$

In de meeste gevallen willen we echter de uitgangsspanning als functie van een gegeven uitgangsstroom  $I_{out}$ .

$$V_{uit} = \frac{1}{1-D}V_{in} - V_D - \frac{1}{(1-D)^2}R_LI_{out} - \frac{D}{(1-D)^2}R_TI_{out}$$

We kunnen de vergelijking ook schrijven in functie van de duty cycle D. We zien dat er hier 2 oplossingen zijn.



Fig. 5.1: Visualisatie van de werking van de boost convertor

### 5.1 Oefening Boost convertor



#### **5.1.1** opgave

Het onderstaande schema beschikbaar op het internet. De ingangsspanning is 12V en de uitgangsspanning is 48V. De voorwaartse spanning over D1 is typisch 0.45V en de aan weerstand van M1 is typisch  $0.028\,\Omega$ . De weerstand van het spoel L1 is verwaarloosbaar klein ten opzichte van de weerstand  $R_{SENSE}$  (zie schema) die wel moet meegerekend worden.

- 1. Wat is de duty cycle als er een verwaarloosbare stroom aan de uitgang loopt?
- 2. Bereken de duty cycle D als een functie van de stroom  ${\cal I}_L$
- 3. Bereken de duty cycle D als een functie van de stroom  $I_{out}$ . Hier bekijken we enkel de duty cycle waarbij een stabiele waarde van de stroom wordt bekomen.
- 4. Bereken de efficientie als een functie van de stroom  $I_{out}$
- 5. Bereken de efficientie als een functie van de output Power  $P_{out}$ .
- 6. Hoe verandert deze efficientie als de chip nog bijkomend 22mA uit de 12V voeding verbruikt?



Fig. 5.2: Commercieel boost convertor circuit

#### 5.1.2 Oplossing

We berekenen hier eerst de duty cycle als een functie van de stroom die door het spoel loopt  $(I_L)$ .

#### Bereken de duty cycle D als een functie van de stroom ${\cal I}_L$

$$\begin{split} D\left(V_{in} - (R_L + R_{SENSE} + R_T)I_L\right) + (1 - D)\left(V_{in} - V_D - (R_L + R_{SENSE})I_L - V_{out}\right) &= 0 \\ D\left(V_{in} - (R_L + R_{SENSE} + R_T)I_L\right) - D\left(V_{in} - V_D - (R_L + R_{SENSE})I_L - V_{out}\right) &= V_{out} + V_D + (R_L + R_{SENSE})I_L - V_{in} \\ D\left( - (R_T)I_L\right) - D\left( - V_D - V_{out}\right) &= V_{out} + V_D + (R_L + R_{SENSE})I_L - V_{in} \\ D\left(V_{out} + V_D - R_TI_L\right) &= V_{out} + V_D + (R_L + R_{SENSE})I_L - V_{in} \\ D &= \frac{V_{out} + V_D + (R_L + R_{SENSE})I_L - V_{in}}{(V_{out} + V_D - R_TI_L)} \\ D &= \frac{36.45 + 0.005I_L}{48.45 - 0.028I_L} \end{split}$$

Fig. 5.3 toont het verloop van de bekomen Duty Dycle als een functie van de stroom die door het spoel loopt  $(I_L)$ .



Fig. 5.3: Duty cycle als een functie van de stroom door de spoel

Wanneer we deze grafiek bekijken, lijkt het in dit geval dat we een lineaire benadering kunnen uitvoeren.  $$D=\frac{36.45}{48.45}\frac{1+\frac{0.0005}{10.645}I_L}{1-\frac{0.028}{48.45}I_L}$$ 

Dit doen we door een reeks ontwikkeling van de noemer uit te werken:

$$D = \frac{36.45}{48.45} \left( 1 + \frac{0.005}{36.45} I_L \right) \left( 1 + \frac{0.028}{48.45} I_L + \dots \right)$$

en deze reeks vervolgens te benaderen door de eerste term:

$$\begin{split} D &\approx \frac{36.45}{48.45} \left( 1 + \frac{0.005}{36.45} I_L \right) \left( 1 + \frac{0.028}{48.45} I_L \right) \\ D &\approx \frac{36.45}{48.45} \left( 1 + \left( \frac{0.005}{36.45} + \frac{0.028}{48.45} \right) I_L \right) \\ D &\approx 0.7523 \left( 1 + 0.000715 I_L \right) \end{split}$$

#### Bereken de duty cycle D als een functie van de stroom $I_{out}$

$$\begin{split} I_L(1-D) &= I_{out} \\ D(V_{out} + V_D - R_T I_L) &= V_{out} + V_D + (R_L + R_{SENSE})I_L - V_{in} \\ D((1-D)(V_{out} + V_D) - R_T I_{out}) &= (1-D)(V_{out} + V_D - V_{in}) + (R_L + R_{SENSE})I_{out} \\ -(V_{out} + V_D)D^2 + (2V_{out} + 2V_D - R_T I_{out} - V_{in})D - (V_{out} + V_D - V_{in} + (R_L + R_{SENSE})I_{out}) \\ D &= \frac{-(2V_{out} + 2V_D - R_T I_{out} - V_{in}) + \sqrt{(2V_{out} + 2V_D - R_T I_{out} - V_{in})^2 - 4(V_{out} + V_D)(V_{out} + V_D - V_{in} + (R_L + R_{SENSE})I_{out})}{-2(V_{out} + V_D)} \end{split}$$



Fig. 5.4: Duty cycle als een functie van de stroom aan de uitgang

Aangezien de duty cycle erg lineair was als functie van  $I_L$  kunnen we dit ook als basis nemen voor de verdere berekening van de duty cycle als functie van de  $I_{out}$ 

$$\begin{split} D &\approx 0.7523 \left(1 + 0.000715 I_L\right) \\ D &\approx 0.7523 \left(1 + 0.000715 \frac{I_{out}}{1 - D}\right) \\ D(1 - D) &= 0.7523 \left(1 - D + 0.000715 I_{out}\right) \\ D^2 - D + 0.7523 \left(1 - D + 0.000715 I_{out}\right) &= 0 \\ D^2 - 1.7523D + 0.7523 + 0.0005378945 I_{out} &\approx 0 \end{split}$$

Opnieuw heeft deze vierkantsvergelijking 2 oplossingen. De berekening met de + levert ons het onstabiele stroompunt op. De correcte benadering vinden we in:

$$D \approx \frac{1.7523 - \sqrt{1.7523^2 - 4(0.7523 + 0.0005378945I_{out})}}{2}$$

Fig. 5.4 toont dat zowel de correcte berekening als de benadering weinig van elkaar verschillen.

0.0005378945

$$D \approx \frac{1.7523 - \sqrt{0.061355(1 - 0.035I_{out})}}{2}$$
 
$$D \approx 0.7523 + 0.00217I_{out}$$

#### Bereken de efficientie als een functie van de stroom $I_{out}$



Fig. 5.5: efficientie als een functie van de stroom aan de uitgang

Bereken de efficientie als een functie van de output Power  $P_{out}$ 

## 5.2 Boost Converter oefening 2



- (a) Het schema in Fig. 5.7 komt uit een datasheet die je van het internet kan downloaden. Wat verwacht je dat er binnen in deze component zit en hoe werkt dit circuit dan? De Ron van de schakeltransistor veronderstel je  $0.3\Omega$  en de weerstand van het spoel L1 mag je verwaarlozen, VD veronderstel je 0.3V.
- (b) Reken uit hoe de Duty cycle en de efficiëntie veranderen als de output stroom gaat van 0 mA naar 500 mA.



Fig. 5.6: Efficientie als een functie van de output power



Fig. 5.7: Schema van een Step-up converter ontworpen door ST-microelectronics [bron toevoegen].

### 5.3 Boost Converter oefening 3



Fig. 5.8: (links) Duty-cycle als functie van de input spanning en (rechts) efficientie als functie van de output stroom voor de ontworpen Step-up converter.

```
[0.5934959349593495,

0.6108333333333333333,

0.6290598290598289,

0.6482456140350876,

0.6684684684684684,

0.6898148148148148]

[97.56097560975613,

93.4,

89.02564102564105,

84.42105263157899,

79.56756756756758,

74.44444444444446]
```

(Vervolgt op volgende pagina)



Fig. 5.9: Duty cycle als functie van de input spanning voor de ontworpen Step-up converter.



Fig. 5.10: Efficientie als functie van de output stroom voor de ontworpen Step-up converter

(Vervolgd van vorige pagina)

0.07418803418803421,

0.1055263157894737,

0.13261261261261265,

0.15509259259259262]

### Inverter of Buck-Boost Converter

reveal.js slides 💆 open in JupyterLite 💆 JupyterDeck slides

## Flyback converter

reveal.js slides 💆 open in JupyterLite 💆 JupyterDeck slides

## **Deel III**

# References

Referenties

## **Deel IV**

# Overzicht

| Bibliografie |  |
|--------------|--|
|              |  |
|              |  |

[1] X. Jiang. Fundamentals of Audio Class D Amplifier Design: A Review of Schemes and Architectures. *IEEE Solid-State Circuits Magazine*, 9(3):14–25, 2017. doi:10.1109/MSSC.2017.2712368.