```
# Importing libraries
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
from scipy.stats import shapiro
from statsmodels.graphics.gofplots import qqplot
from sklearn.model selection import train test split
from sklearn.preprocessing import StandardScaler, MinMaxScaler,
PolynomialFeatures
from sklearn.linear model import LinearRegression, Ridge, Lasso
from sklearn.metrics import mean absolute error, mean squared error,
r2 score
import statsmodels.api as sm
from statsmodels.stats.outliers influence import
variance inflation factor
import warnings
warnings.simplefilter('ignore')
df = pd.read csv('/content/sample data/Jamboree Admission.csv')
df.head()
   Serial No. GRE Score TOEFL Score University Rating SOP LOR
CGPA \
            1
                     337
                                   118
                                                           4.5
                                                                 4.5
0
9.65
            2
                     324
                                  107
                                                           4.0
                                                                 4.5
1
8.87
2
            3
                     316
                                  104
                                                           3.0
                                                                 3.5
8.00
                     322
                                  110
                                                           3.5
                                                                 2.5
8.67
            5
                     314
                                  103
                                                        2
                                                           2.0
                                                                 3.0
4
8.21
   Research Chance of Admit
0
                         0.92
          1
                         0.76
1
2
          1
                         0.72
3
          1
                         0.80
4
          0
                         0.65
```

EDA

```
df.shape
(500, 9)
```

Dataset has 500 rows and 9 columns

```
df.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 500 entries, 0 to 499
Data columns (total 8 columns):
#
     Column
                         Non-Null Count
                                          Dtype
     -----
0
     GRE Score
                         500 non-null
                                          int64
 1
     TOEFL Score
                         500 non-null
                                          int64
 2
     University Rating
                         500 non-null
                                          int64
 3
                                          float64
     S<sub>0</sub>P
                         500 non-null
4
     L0R
                         500 non-null
                                          float64
5
     CGPA
                         500 non-null
                                          float64
     Research
                         500 non-null
                                          int64
     Chance of Admit
                         500 non-null
                                          float64
7
dtypes: float64(4), int64(4)
memory usage: 31.4 KB
df.drop('Serial No.', axis = 1, inplace = True)
df.head()
   GRE Score TOEFL Score University Rating
                                                SOP LOR
                                                            CGPA
Research
         337
                                                4.5
                                                      4.5 9.65
0
                       118
1
1
         324
                       107
                                                4.0
                                                      4.5 8.87
1
2
         316
                       104
                                             3
                                                3.0
                                                      3.5 8.00
1
3
         322
                       110
                                             3
                                                3.5
                                                      2.5 8.67
1
4
         314
                       103
                                             2 2.0
                                                      3.0 8.21
0
   Chance of Admit
0
               0.92
1
               0.76
2
               0.72
3
               0.80
4
               0.65
```

Dropping Serial No column as it does not have any major role in the dataset, so keeping it might affect our model.

```
df.isna().sum()

GRE Score     0
TOEFL Score     0
```

```
University Rating 0
SOP 0
LOR 0
CGPA 0
Research 0
Chance of Admit 0
dtype: int64
```

There is no missing values.

<pre>df.describe().T</pre>					
	count	mean	std	min	25%
50% \					
GRE Score	500.0	316.47200	11.295148	290.00	308.0000
317.00	F00 0	107 10200	C 0010C0	02.00	102 0000
TOEFL Score 107.00	500.0	107.19200	6.081868	92.00	103.0000
University Rating	500.0	3.11400	1.143512	1.00	2.0000
3.00	300.0	3.11400	1.143312	1.00	2.0000
SOP	500.0	3.37400	0.991004	1.00	2.5000
3.50					
LOR	500.0	3.48400	0.925450	1.00	3.0000
3.50					
CGPA	500.0	8.57644	0.604813	6.80	8.1275
8.56 Research	500.0	0.56000	0.496884	0.00	0.0000
1.00	300.0	0.30000	0.490004	0.00	0.0000
Chance of Admit	500.0	0.72174	0.141140	0.34	0.6300
0.72		-	-		
CDE C	75%	max			
GRE Score	325.00	340.00			
TOEFL Score University Rating	112.00	120.00 5.00			
SOP	4.00	5.00			
LOR	4.00	5.00			
CGPA	9.04	9.92			
Research	1.00	1.00			
Chance of Admit	0.82	0.97			

Analysing all numerical columns.

```
for col in ['GRE Score','TOEFL Score','University Rating','SOP','LOR
', 'CGPA']:
  plt.figure(figsize= (8, 6))
  sns.histplot(df[col], bins = 20, kde = True)
  plt.title(f'Columns distribution {col}')
  plt.show()
```


Columns distribution TOEFL Score

Columns distribution CGPA

- 1. Different graph shows the distribution of all numerical columns.
- 2. Graph shows GRE Score, TOEFL Score and CGPA column are normally distributed which indicates them being correlated.

```
df['Research'].value_counts()

1    280
0    220
Name: Research, dtype: int64

for col in ['Research']:
    sns.countplot(data=df, x=col)
    plt.title(f'Count of {col}')
    plt.show()
```


Using count plot to Research feature which shows 280 candidate with 1 year research experience and 220 candidate with no research experience

```
sns.pairplot(df[['GRE Score','TOEFL Score', 'University Rating',
'Chance of Admit ']])
plt.show()
```


- 1. Using pairplot to graphically analyse the correlation between different features.
- 2. Plot shows high correlation between chance of admit and gre score feature also with toefl score
- 3. TOEFL and GRE score are highly related indicating greater score between anyone of them indicates that candidate will score high in the other feature also.

df.corr()				
	GRE Score	TOEFL Score	University Rating	S0P
\				
GRE Score	1.000000	0.827200	0.635376	0.613498

University Rating 0.635376 0.649799 1.000000 0.728024 SOP 0.613498 0.644410 0.728024 1.000000 LOR 0.524679 0.541563 0.608651 0.663707 CGPA 0.825878 0.810574 0.705254 0.712154 Research 0.563398 0.467012 0.427047 0.408116						
SOP 0.613498 0.644410 0.728024 1.000000 LOR 0.524679 0.541563 0.608651 0.663707 CGPA 0.825878 0.810574 0.705254 0.712154 Research 0.563398 0.467012 0.427047 0.408116 Chance of Admit 0.810351 0.792228 0.690132 0.684137 LOR CGPA Research Chance of Admit GRE Score 0.524679 0.825878 0.563398 0.810351 TOEFL Score 0.541563 0.810574 0.467012 0.792228 University Rating 0.608651 0.705254 0.427047 0.690132 SOP 0.663707 0.712154 0.408116 0.684137 LOR 1.000000 0.637469 0.372526 0.645365 CGPA 0.637469 1.000000 0.501311 0.882413 Research 0.372526 0.501311 1.000000 0.545871	TOEFL Score	0.827200	1.000	000	0.649799	0.644410
LOR 0.524679 0.541563 0.608651 0.663707 CGPA 0.825878 0.810574 0.705254 0.712154 Research 0.563398 0.467012 0.427047 0.408116 Chance of Admit 0.810351 0.792228 0.690132 0.684137 GRE Score 0.524679 0.825878 0.563398 0.810351 TOEFL Score 0.541563 0.810574 0.467012 0.792228 University Rating 0.608651 0.705254 0.427047 0.690132 SOP 0.663707 0.712154 0.408116 0.684137 LOR 1.000000 0.637469 0.372526 0.645365 CGPA 0.637469 1.000000 0.501311 0.882413 Research 0.372526 0.501311 1.000000 0.545871	University Rating	0.635376	0.649	799	1.000000	0.728024
CGPA 0.825878 0.810574 0.705254 0.712154 Research 0.563398 0.467012 0.427047 0.408116 Chance of Admit 0.810351 0.792228 0.690132 0.684137 LOR CGPA Research Chance of Admit GRE Score 0.524679 0.825878 0.563398 0.810351 TOEFL Score 0.541563 0.810574 0.467012 0.792228 University Rating 0.608651 0.705254 0.427047 0.690132 SOP 0.663707 0.712154 0.408116 0.684137 LOR 1.000000 0.637469 0.372526 0.645365 CGPA 0.637469 1.000000 0.501311 0.882413 Research 0.372526 0.501311 1.000000 0.545871	SOP	0.613498	0.644	410	0.728024	1.000000
Research 0.563398 0.467012 0.427047 0.408116 Chance of Admit 0.810351 0.792228 0.690132 0.684137 LOR CGPA Research Chance of Admit GRE Score 0.524679 0.825878 0.563398 0.810351 TOEFL Score 0.541563 0.810574 0.467012 0.792228 University Rating 0.608651 0.705254 0.427047 0.690132 SOP 0.663707 0.712154 0.408116 0.684137 LOR 1.000000 0.637469 0.372526 0.645365 CGPA 0.637469 1.000000 0.501311 0.882413 Research 0.372526 0.501311 1.000000 0.545871	LOR	0.524679	0.541	563	0.608651	0.663707
Chance of Admit 0.810351 0.792228 0.690132 0.684137 LOR CGPA Research Chance of Admit GRE Score 0.524679 0.825878 0.563398 0.810351 TOEFL Score 0.541563 0.810574 0.467012 0.792228 University Rating 0.608651 0.705254 0.427047 0.690132 SOP 0.663707 0.712154 0.408116 0.684137 LOR 1.000000 0.637469 0.372526 0.645365 CGPA 0.637469 1.000000 0.501311 0.882413 Research 0.372526 0.501311 1.000000 0.545871	CGPA	0.825878	0.810	574	0.705254	0.712154
LOR CGPA Research Chance of Admit GRE Score 0.524679 0.825878 0.563398 0.810351 TOEFL Score 0.541563 0.810574 0.467012 0.792228 University Rating 0.608651 0.705254 0.427047 0.690132 SOP 0.663707 0.712154 0.408116 0.684137 LOR 1.000000 0.637469 0.372526 0.645365 CGPA 0.637469 1.000000 0.501311 0.882413 Research 0.372526 0.501311 1.000000 0.545871	Research	0.563398	0.467	012	0.427047	0.408116
GRE Score 0.524679 0.825878 0.563398 0.810351 TOEFL Score 0.541563 0.810574 0.467012 0.792228 University Rating 0.608651 0.705254 0.427047 0.690132 SOP 0.663707 0.712154 0.408116 0.684137 LOR 1.000000 0.637469 0.372526 0.645365 CGPA 0.637469 1.000000 0.501311 0.882413 Research 0.372526 0.501311 1.000000 0.545871	Chance of Admit	0.810351	0.792	228	0.690132	0.684137
D 2 D C D T T D D D T T	TOEFL Score University Rating SOP LOR CGPA Research	0.524679 0.541563 0.608651 0.663707 1.000000 0.637469 0.372526	0.825878 0.810574 0.705254 0.712154 0.637469 1.000000 0.501311	0.563398 0.467012 0.427047 0.408116 0.372526 0.501311 1.000000	0.81 0.79 0.69 0.68 0.64 0.88	0351 2228 0132 4137 5365 2413 5871

Shows correlation between all features.

```
plt.figure(figsize = (10, 8))
sns.heatmap(df.corr(),cmap="coolwarm", annot=True)
plt.show()
```



```
for col in ['GRE Score','TOEFL Score','University Rating','SOP','LOR
', 'CGPA', 'Chance of Admit ']:
  plt.figure(figsize = (8, 6))
  sns.boxplot(df[col])
  plt.title(f'{col}')
  plt.show()
```


The box plot for all features show that there are no outliers among any feature.

There is no need for outlier treatment.

Model Building: Linear Regression

```
X = df.drop('Chance of Admit ', axis = 1)
y = df['Chance of Admit ']

X_train, X_test, y_train, y_test = train_test_split(X, y,
test_size=0.2, random_state= 2, shuffle = True)
```

Using train and test split to select data for training and testing.

```
X_train
X_col = X_train.columns
y_train.shape
```

```
(400,)
scaler = StandardScaler()
X_train_scaled = scaler.fit_transform(X_train)
```

Scaling the model and fitting the model.

```
X train = pd.DataFrame(X train scaled, columns= X col)
X train
    GRE Score TOEFL Score University Rating
                                                   S0P
                                                            L<sub>0</sub>R
CGPA \
     -0.040169 -0.679294
                                    -0.966900 -1.396982 1.114121
0.281025
    -0.861817 -0.347121
                                    -0.966900 -0.885735 1.114121 -
0.757792
     0.690184
                  0.815485
                                     0.775263  0.648005 -1.083899 -
0.791302
      0.233713
                  0.483312
                                    -0.095819 -0.374488 -1.083899
0.364801
     0.872772
                  0.151139
                                    -0.095819 -0.374488 0.015111
0.532352
                                     1.646344 1.670499 1.663626
395 1.055361
                  1.479832
1.554413
396
     0.416301
                  0.649399
                                     1.646344 1.670499 1.663626
1.470638
397 -1.500876
                 -2.007987
                                    -0.966900 -0.374488 -2.182909 -
0.590241
                                    -0.095819  0.136759  -1.083899  -
398 -0.222758 -0.347121
0.456200
399 -2.139935
                 -1.675814
                                    -0.966900 -1.396982 0.564616 -
1.293955
    Research
   -1.128152
1
    0.886405
2
    0.886405
3
   -1.128152
4
   -1.128152
395 0.886405
396 0.886405
397
    0.886405
398 -1.128152
399 0.886405
[400 rows x 7 columns]
```

```
X_test_scaled = scaler.transform(X_test)

lr = LinearRegression()
lr.fit(X_train, y_train)
print(f'Train_R2_score: {lr.score(X_train_scaled, y_train)}')
print(f'Test_R2_score: {lr.score(X_test_scaled, y_test)}')

Train_R2_score: 0.829322723369172
Test_R2_score: 0.7927524897595929
```

Linear Regression shows Train R2_score = 0.83 and Test R2_score = 0.80.

The obtained score are almost similar which shows model is working well on both for train and test data but score shows model can be improved more.

```
degree = 2
poly = PolynomialFeatures(degree = degree)
X_train_pol = poly.fit_transform(X_train_scaled)
X_test_pol = poly.fit_transform(X_test_scaled)

poly_lr = LinearRegression()
poly_lr.fit(X_train_pol, y_train)
print("Train r2_score:",poly_lr.score(X_train_pol,y_train))
print("Test r2_score:",poly_lr.score(X_test_pol,y_test))

Train r2_score: 0.8467241531716378
Test r2_score: 0.7901333886055277
```

Using Polynomial Regression to improve the r2 score.

But still scores are almost similar to linear regression.

Some other method can be used to improve the r2_score.

```
X_train.reset_index(drop=True, inplace=True)
y_train.reset_index(drop=True, inplace=True)
model = sm.OLS(y_train, sm.add_constant(X_train)).fit()
```

Using stats model to improve r2_score.

0.826			_			
Method: 272.1		Least	Squares	F-statistic:		
Date:		Sat, 30 D	ec 2023	Prob (F-stati	stic):	
3.33e-146				(, , , , , , , , , , , , , , , , , , ,		
Time:		1	4:37:16	Log-Likelihoo	od:	
573.41	44 a.a.		400	ATC.		
No. Observa -1131.	tions:		400	AIC:		
Df Residual	S!		392	BIC:		
-1099.	J.		332	DIC.		
Df Model:			7			
Covariance	Type:	no	nrobust			
	=====	coef	std err	+	D> +	===
[0.025	0.9751	CUET	Stu eil	t	P> t	
		0 7221	0 000	247 702	0.000	
const 0.716	0.728	0.7221	0.003	247.782	0.000	
GRE Score	0.720	0.0234	0.006	3.893	0.000	
0.012	0.035	010251	0.000	3.033	0.000	
TOEFL Score		0.0178	0.006	3.024	0.003	
0.006	0.029					
University		0.0056	0.005	1.185	0.237	-
0.004	0.015	0.0020	0 005	0 420	0.660	
SOP 0.007	0.011	0.0020	0.005	0.428	0.669	-
LOR	0.011	0.0169	0.004	4.131	0.000	
0.009	0.025	0.0103	0.001	11131	0.000	
CGPA		0.0677	0.006	10.633	0.000	
0.055	0.080			_		
Research	0.010	0.0123	0.004	3.476	0.001	
0.005 =======	0.019					===:
======						
Omnibus:			94.166	Durbin-Watsor	1:	
1.943	•		0.000		(TD)	
Prob(Omnibu	S):		0.000	Jarque-Bera (JB):	
231.309			-1.158	Prob(JB):		
			-1.130	FIUD(JD):		
Skew: 5.92e-51						
5.92e-51 Kurtosis:			5.918	Cond. No.		

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

The summary shows r2 score and adjusted r2_score are similar i.e 0.829 and 0.826

HO: Feature is likely to become zero

Ha: Feature will not become zero

In this summary Univerity rating and SOP has pvalue greater tha 0.05hence they are not likely to become zero which can impact our model hence we will use modelling by removing these features.

```
X train d = X train.drop(columns = 'SOP')
model = sm.OLS(y train, sm.add constant(X train d)).fit()
print(model.summary())
                            OLS Regression Results
_____
Dep. Variable:
                     Chance of Admit
                                        R-squared:
0.829
Model:
                                  OLS Adj. R-squared:
0.827
                        Least Squares F-statistic:
Method:
318.1
                     Sat, 30 Dec 2023 Prob (F-statistic):
Date:
1.96e-147
Time:
                             14:37:16 Log-Likelihood:
573.32
No. Observations:
                                  400
                                       AIC:
-1133.
Df Residuals:
                                  393
                                        BIC:
-1105.
Df Model:
                                    6
Covariance Type:
                            nonrobust
==========
                        coef std err
                                                        P>|t|
[0.025
           0.9751
                      0.7221
                                 0.003
                                           248.040
                                                        0.000
const
0.716
           0.728
GRE Score
                      0.0233
                                 0.006
                                             3.883
                                                        0.000
0.011
            0.035
```

TOEFL Score					
0.007	0.030	0.0181	0.006	3.114	0.002
University	Rating	0.0063	0.004	1.430	0.153 -
0.002 LOR	0.015	0.0174	0.004	4.452	0.000
0.010 CGPA	0.025	0.0681	0.006	10.835	0.000
0.056 Research	0.080	0.0123	0.004	3,483	0.001
0.005	0.019				
======================================			02 062	Dunkin Water	
Omnibus: 1.939		· ·	92.863	Durbin-Watson	:
Prob(Omnibu 226.009	s):		0.000	Jarque-Bera (JB):
Skew: 8.37e-50			-1.146	<pre>Prob(JB):</pre>	
Kurtosis:			5.883	Cond. No.	
========	=======				
	OLS(y_tr	ain, sm.add_		University Rat	
					fit()
				(X_train_d2)). ion Results	fit()
	======================================		Regress:		fit() =======
Dep. Variab 0.828 Model:	======================================	0LS	Regress:	ion Results	==========
Dep. Variab 0.828 Model: 0.826	 le:	OLS Chance of	Regress: ======= Admit OLS	ion Results ======== R-squared:	=========
Dep. Variab 0.828 Model: 0.826 Method: 380.3	 le:	OLS Chance of A	Regress: ======= Admit OLS quares	ion Results ====================================	======= d:
Dep. Variab 0.828 Model: 0.826 Method: 380.3 Date:	 le:	Chance of A Least So Sat, 30 Dec	Regress:	ion Results R-squared: Adj. R-square F-statistic: Prob (F-stati	======== d: stic):
Dep. Variab 0.828 Model: 0.826 Method: 380.3 Date: 2.65e-148 Time:		Chance of A Least So Sat, 30 Dec	Regress: ======= Admit OLS quares	ion Results ====================================	======== d: stic):
Dep. Variab 0.828 Model: 0.826 Method: 380.3 Date: 2.65e-148 Time: 572.28 No. Observa		Chance of A Least So Sat, 30 Dec	Regress:	ion Results R-squared: Adj. R-square F-statistic: Prob (F-stati	======== d: stic):
Dep. Variab 0.828 Model: 0.826 Method: 380.3 Date: 2.65e-148	tions:	Chance of A Least So Sat, 30 Dec	Regress: ===================================	ion Results R-squared: Adj. R-square F-statistic: Prob (F-stati	======== d: stic):
Dep. Variab 0.828 Model: 0.826 Method: 380.3 Date: 2.65e-148 Time: 572.28 No. Observa	tions:	Chance of A Least So Sat, 30 Dec	Regress:	ion Results R-squared: Adj. R-square F-statistic: Prob (F-stati Log-Likelihoo	======================================

Covariance Type): 	nonrobus	;t				
0.975]	coef	std err	t	P> t	[0.025		
const 0.728	0.7221	0.003	247.712	0.000	0.716		
GRE Score	0.0238	0.006	3.970	0.000	0.012		
0.036 TOEFL Score	0.0191	0.006	3.298	0.001	0.008		
0.030 LOR	0.0190	0.004	5.050	0.000	0.012		
0.026 CGPA	0.0702	0.006	11.465	0.000	0.058		
0.082 Research 0.020	0.0126	0.004	3.573	0.000	0.006		
======================================		90.91	======== l3	======== Watson:	-=====		
1.941 Prob(Omnibus): 218.765		0.00	00 Jarque-l	Bera (JB):			
Skew:		-1.12	Prob(JB):			
3.13e-48 Kurtosis: 4.63		5.83	37 Cond. No	0.			
=======							
Notes: [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.							

Summary shows still no effect on r2_score which indicates some different method might improve the score i.e improving the complexity of model.

```
ridge_model = Ridge(alpha=0.1)
ridge_model.fit(X_train_pol, y_train)
print(f'Ridge Coefficients: {ridge_model.coef_}')

print("*"*50)
print("Degree: ", degree)
print("Train r2_score:",ridge_model.score(X_train_pol,y_train))
print("Test r2_score:",ridge_model.score(X_test_pol,y_test))
```

```
Ridge Coefficients: [ 0.
                                                                                                                                                                                               0.01690838 0.02074965
                                                                                                                                                                                                                                                                                                                                      0.0072882
0.0059243
                                                                   0.01569447
            0.06390535 \quad 0.01197212 \quad -0.00105736 \quad -0.01266717 \quad 0.00257734 \quad -0.00257734 \quad -0.0025774 \quad -0.002574 \quad -0.0025774 \quad 
0.00021989
           0.0156172 - 0.0023023 - 0.00488274  0.00122205  0.00790986
0.01389655
      -0.01196011 -0.00418238 0.00501263 -0.00228258 0.02676843 -
0.00457004
                                                                             0.0043675 -0.01542188 0.00272575 -0.00067111 -
      -0.0121225
0.00113057
           0.00342725 - 0.01268339 - 0.00465992  0.00765165  0.00469252 -
0.002894221
******************
Train r2 score: 0.8467243297179153
Test r2 score: 0.7901645207851495
```

Using ridge method to improve the model.

The score shows same value as previous model.

```
lasso model = Lasso(alpha=0.1)
lasso model.fit(X train pol, y train)
print(f'Ridge Coefficients: {ridge model.coef }')
print("*"*50)
print("Degree: ", degree)
print("Train r2 score:",lasso model.score(X train pol,y train))
print("Test r2 score:",lasso_model.score(X_test_pol,y_test))
                                                                                                                                        0.01690838 0.02074965 0.0072882
Ridge Coefficients: [ 0.
0.0059243
                                                0.01569447
        0.06390535 \quad 0.01197212 \quad -0.00105736 \quad -0.01266717 \quad 0.00257734 \quad -0.00197212 \quad -0.00105736 \quad -0.001266717 \quad 0.00257734 \quad -0.00105736 \quad -0.00105756 \quad -0.
0.00021989
        0.0156172 - 0.0023023 - 0.00488274  0.00122205  0.00790986
0.01389655
    -0.01196011 -0.00418238  0.00501263 -0.00228258  0.02676843 -
0.00457004
    -0.0121225
                                                       0.0043675 -0.01542188 0.00272575 -0.00067111 -
0.00113057
        0.00342725 - 0.01268339 - 0.00465992  0.00765165  0.00469252 -
0.002894221
***************
Degree: 2
Train r2 score: 0.2687752696330791
Test r2 score: 0.26929314054867604
```

This model gives bad score so cannot be used.

Test of the Assumptions

Assumption 1: Multicollinearity

```
plt.figure(figsize=(10,4))
sns.heatmap(X_train_d2.corr(),cmap="coolwarm", annot=True)
plt.show()
```


Shows high collinearity among features.

Assumption 2: VIF

```
X_train_d2
     GRE Score
                TOEFL Score
                                  L0R
                                             CGPA
                                                   Research
0
     -0.040169
                   -0.679294
                              1.114121
                                         0.281025 -1.128152
1
     -0.861817
                   -0.347121
                              1.114121 -0.757792
                                                   0.886405
2
      0.690184
                    0.815485 -1.083899 -0.791302
                                                   0.886405
3
      0.233713
                    0.483312 -1.083899
                                        0.364801 -1.128152
4
      0.872772
                    0.151139
                              0.015111
                                        0.532352 -1.128152
      1.055361
                                                   0.886405
395
                    1.479832
                              1.663626
                                         1.554413
396
      0.416301
                    0.649399
                              1.663626
                                         1.470638
                                                   0.886405
397
     -1.500876
                   -2.007987 -2.182909 -0.590241
                                                   0.886405
     -0.222758
398
                   -0.347121 -1.083899 -0.456200
                                                  -1.128152
399
     -2.139935
                   -1.675814
                              0.564616 -1.293955
                                                   0.886405
```

```
[400 rows x 5 columns]
vif = pd.DataFrame()
X_t = pd.DataFrame(X_train_d2, columns=X_train_d2.columns)
vif['Features'] = X t.columns
vif['VIF'] = [variance_inflation_factor(X_t.values, i) for i in
range(X t.shape[1])]
vif['VIF'] = round(vif['VIF'], 2)
vif = vif.sort_values(by="VIF", ascending=False)
vif
      Features VIF
3
          CGPA 4.41
     GRE Score 4.22
  TOEFL Score 3.94
1
2
          LOR
               1.67
4
      Research 1.46
```

Here VIF value is <5 for all fetures.

Obtained VIF shows there is no Variance Inflation Factor

No VIF assumption hold true.

Assumption 3: Residual Error(Error must be normally distributed)

```
X_sm = sm.add_constant(X_train_d2)
sm_model = sm.OLS(y_train, X_sm).fit()

y_train.shape
(400,)

Y_hat = sm_model.predict(X_sm)
errors = Y_hat - y_train

errors.plot(kind = 'kde')
plt.xlabel(" Residuals")
plt.title("Density of residuals")
plt.show()
```


Errors are normally distributed.

Graph shows errors are centred around zero which is mean value and also less variance.

```
from scipy import stats
res = stats.shapiro(errors)
res.statistic
0.9354482293128967
```

Test for normality of distribution obtained value is 0.935 which shows graph is normally distributed.

Assumption 4: Homoskedacity

```
sns.scatterplot(x=Y_hat,y=errors)
plt.xlabel("Predicted Chance of Admission")
plt.ylabel("Residuals")
plt.title("Predicted values vs Residuals")

Text(0.5, 1.0, 'Predicted values vs Residuals')
```

Predicted values vs Residuals

H0: Homoskedacity exist

Ha: Model is heteroskedic

```
from statsmodels.compat import lzip
import statsmodels.stats.api as sms

name = ['F statistic', 'p-value']
test = sms.het_goldfeldquandt(y_train, X_sm)
lzip(name, test)
[('F statistic', 1.0695200311468724), ('p-value', 0.32010091217135295)]
```

From the goldfeld-quandt test:

F Statistic comes out to be 1.06 => Implying minimal difference in variance between groups.

p-value of 0.320 indicates that this difference is statistically significant at conventional levels of significance (e.g., 0.05).

Therefore, we accept the null hypothesis of homoscedasticity, and conclude that there is no strong evidence of heteroscedasticity in the data.

```
X test scaled = pd.DataFrame(X test scaled, columns = X col)
X test scaled = sm.add constant(X test scaled)
X test scaled = X test scaled.drop(columns = ['University Rating',
'SOP'])
X test scaled
   const GRE Score TOEFL Score
                                               CGPA Research
                                      L0R
0
     1.0
           1.511831
                        1.812005 1.663626 1.303087
                                                     0.886405
                       -0.845381 0.564616 0.113474 0.886405
1
     1.0
          -0.496640
2
     1.0
          -1.044405
                       -0.513208 -2.182909 -1.310710 -1.128152
3
     1.0
           2.150891
                        0.981572 1.663626 1.956536 0.886405
4
     1.0
          -1.866053
                       -1.343641 -1.083899 -0.908588 -1.128152
     . . .
95
          -0.861817
                       1.0
                       -0.513208 -1.083899 -1.863629 -1.128152
96
     1.0
          -2.413818
97
     1.0
           0.598890
                        0.483312 1.663626 0.515597 0.886405
98
     1.0
           0.690184
                        0.483312  0.015111  0.783678  0.886405
99
     1.0 -0.131464
                       -0.347121 -1.083899 -0.154608 -1.128152
[100 rows x 6 columns]
y pred = model.predict(X test scaled)
print(f'MAE: {mean_absolute_error(y_test, y_pred)}')
print(f'RMSE: {np.sqrt(mean_squared_error(y_test, y_pred))}')
print(f'R2 Score: {r2_score(y_test, y_pred)}')
print(f'Adjusted R2 Score: {1 - (1-r2 score(y test,
y_pred))*(len(y_test)-1)/(len(y_test)-X_test.shape[1]-1)}')
MAE: 0.047347725647416475
RMSE: 0.06690331530026929
R2 Score: 0.790564197286199
Adjusted R2 Score: 0.7746288644710184
```

Mean absolute error and root mean square error is close to zero.

R2_score is 0.79 on test data shows model can be improved further.

```
fig = plt.figure()
plt.scatter(y_test.values, y_pred)
fig.suptitle('y_test vs y_pred', fontsize=20) # Plot head
plt.xlabel('y_test', fontsize=18) # X-label
plt.ylabel('y_pred', fontsize=16)
plt.show()
```

y_test vs y_pred

Weights and constant value.

Actionable Insights

- 1. Data is simple with no outliers.
- 2. Features are correlated may require some feature engineering.
- 3. GRE Scores and TOEFL Scores seem to have a strong positive correlation with the Chance of Admit.
- 4. Research Experience might be a significant predictor, but it depends on the coefficient and p-value.
- 5. There is a strong variance in test and predcited value when prediction value(Chance of Admit) is low but variance reduces when value predicted is high.

Recommendations:

- 1. More complex method required to improve the model.
- 2. Hyperparameter and regularization method can be used to improve the score.
- 3. Some other modelling method can be used to improve the model.
- 4. Cross validation method can be applied.