

Theoretische Informatik

Bearbeitungszeit: 10.06.2024 bis 16.06.2024, 16:00 Uhr Besprechung: 17.06.2024, 10:30 Uhr in Hörsaal 5E

> Abgabe: als PDF über das ILIAS Gruppenabgaben möglich und erwünscht

Aufgabe 1 (Turingberechenbarkeit I)10P

Gegeben sei die Turingmaschine $M = (\Sigma, \Gamma, Z, \delta, z_0, \square, F)$ mit $\Sigma = \{0, 1\}, \Gamma = \{0, 1, \square\}, Z = \{z_0, z_1, z_2, z_3, z_4, z_e\}, F = \{z_e\}$ und der untenstehenden Überführungsfunktion δ . Die Turingmaschine berechnet eine Funktion.

δ	z_0	z_1	z_2	z_3	z_4
0	$(z_0, 0, R)$	$(z_2, 0, L)$	$(z_2, 1, L)$	$(z_3, 0, L)$	(z_e, \square, R)
1	$(z_0, 1, R)$	$(z_2, 1, L)$	$(z_3, 0, L)$	$(z_3, 1, L)$	$(z_e, 1, N)$
	(z_1,\square,L)		(z_2, \square, N)	(z_4, \square, R)	

Die passende unvollständige Zustandsbeschreibung ist in folgender Tabelle angegeben.

z_0	
z_1	
z_2	
$\overline{z_3}$	
$\overline{z_4}$	Gegebenenfalls eine führende Null entfernen, fertig
z_e	Endzustand

- a) Füllen Sie die Zustandsbeschreibung für die Zustände z_0, z_1, z_2 und z_3 aus.
- b) Die Turingmaschine M berechnet eine partielle Funktion $f: \mathbb{N} \to \mathbb{N}$ definiert durch

$$f(n) = \begin{cases} & \text{falls } \dots, \\ & \text{undefiniert} & \text{falls } \dots \end{cases}$$

 $\mathbb N$ bezeichnet dabei wie im Skript die natürlichen Zahlen inklusive der 0. Vervollständigen Sie die Funktion f.

- c) Geben Sie eine vollständige Konfigurationenfolge für die Berechnung von f(8) an.
- d) Betrachten Sie M als Akzeptor. Geben Sie L(M) formal als Menge von Wörtern an.

Lösungsvorschlag:

a) Zustandsbeschreibung:

z_0	Start, ans Wortende gehen
$\overline{z_1}$	Ein Zeichen nach links gehen
$\overline{z_2}$	Vorletztes Zeichen betrachten. Falls $0 \rightsquigarrow 1$ und weiter nach links;
	falls $1 \rightsquigarrow 0$ und in z_3 . Falls es kein zweites Zeichen
	gibt, undefiniert, also Endlosschleife
$\overline{z_3}$	Fertig gerechnet, an Anfang laufen
$\overline{z_4}$	Gegebenenfalls eine fürende Null entfernen, fertig
$\overline{z_c}$	Endzustand

b) $f: \mathbb{N} \to \mathbb{N}$ mit

$$f(n) = \begin{cases} n-2 & \text{falls } n \ge 2, \\ \text{undefiniert} & \text{falls } n < 2. \end{cases}$$

- c) $8_{10} = 1000_2$ $z_0 1000 \vdash_M 1z_0 000 \vdash_M 10z_0 00 \vdash_M 100z_0 0 \vdash_M 1000z_0 \Box \vdash_M 100z_1 0\Box \vdash_M 10z_2 00 \vdash_M 1z_2 010 \vdash_M z_2 1110 \vdash_M z_3 \Box 0110 \vdash_M \Box z_4 0110 \vdash_M z_e 110$
- d) $L(M)=\{0^m\ \mathrm{bin}(n)\ |\ n\geq 2, m\geq 0\}\subseteq \{0,1\}^*$

Aufgabe 2 (Turing-Berechenbarkeit II)10P

Geben Sie eine Turingmaschine an, die die Funktion $f: \mathbb{N} \to \mathbb{N}$ mit

$$f(n) = \begin{cases} 1 & \text{falls } n \text{ mod } 5 = 0\\ 0 & \text{sonst} \end{cases}$$

berechnet.

Sie können hierzu gerne Übungsblatt 2 als Inspiration nehmen.

Lösungsvorschlag: Eine mögliche Turingmaschine ist
$$M = (\{0,1\},\{0,1,\square\},Z,\delta,z_0,\square,\{z_F\})$$
 mit $Z = \{z_0,z_1,z_2,z_3,z_4,z_F\}$ und δ wie folgt:
$$\frac{\delta \ | \ z_0 \ | \ z_1 \ | \ z_2 \ | \ z_3 \ | \ z_4 \ |}{0 \ | \ (z_0,\square,R) \ | \ (z_3,\square,R) \ | \ (z_1,\square,R) \ | \ (z_2,\square,R) \ |}$$
 $1 \ | \ (z_1,\square,R) \ | \ (z_2,\square,R) \ | \ (z_3,\square,R) \ | \ (z_0,\square,R) \ |}$ $1 \ | \ (z_1,\square,R) \ | \ (z_2,\square,R) \ | \ (z_3,\square,R) \ |}$ $1 \ | \ (z_1,\square,R) \ | \ (z_2,\square,R) \ |}$ $1 \ | \ (z_1,\square,R) \ | \ (z_2,\square,R) \ |}$ $1 \ | \ (z_1,\square,R) \ | \ (z_2,\square,R) \ |}$ $1 \ | \ (z_1,\square,R) \ | \ (z_2,\square,R) \ |}$ $1 \ | \ (z_1,\square,R) \ |}$ $1 \ |}$

Aufgabe 3 (LOOP-Berechenbarkeit I)10P

Sei $f: \mathbb{N} \to \mathbb{N}$ eine Funktion, die durch das folgende LOOP-Programm berechnet wird:

```
x_0 := 1; \ x_2 := 1;
\texttt{LOOP}\ x_1\ \texttt{DO}
x_3 := 0;
\texttt{LOOP}\ x_2\ \texttt{DO}
\texttt{LOOP}\ x_0\ \texttt{DO}
x_3 := x_3 + 1
\texttt{END}
\texttt{END};
x_0 := x_3 + 0;
x_2 := x_2 + 1
```

END

Zur Erinnerung: Das LOOP-Programm startet mit der Eingabe n in der Variable x_1 , alle anderen Variablen sind mit 0 initialisiert und das Programm stoppt mit dem Wert f(n) in der Variable x_0 , wobei $n \in \mathbb{N}$.

- (a) Führen Sie das LOOP-Programm für n=4 aus und geben Sie f(4) an. Geben Sie dabei die Werte der vier benutzten Variablen (1) vor dem ersten Durchlauf und (2) nach jedem darauf folgenden Durchlauf der äußeren LOOP-Schleife an.
- (b) Beschreiben Sie zunächst informal die Bedeutung der drei LOOP-Schleifen und geben Sie dann eine formale mathematische Beschreibung für die Funktion f an.

Lösungsvorschlag:

(a) - (3 Punkte) Die Variablen nehmen während der Durchführung des Programms die folgenden Werte an.

	x_0	x_1	x_2	x_3
(1)	1	4	1	0
(2) Durchlauf 1	1	4	2	1
(2) Durchlauf 2	2	4	3	2
(2) Durchlauf 3	6	4	4	6
(2) Durchlauf 4	24	4	5	24

Daher ist f(4) = 24, nämlich der Wert von x_0 nach dem vierten Durchlauf der äußeren LOOP-Schleife.

(b) - (2 Punkte) Die zwei inneren ineinander geschachtelten LOOP-Programme berechnen bei jedem Durchlauf der äußeren LOOP-Schleife das Produkt von x_0 und x_2 und speichern das Ergebnis in x_3 . Das LOOP-Programm kann also wie folgt umgeschrieben werden:

```
x_0 := 1; \ x_2 := 1; LOOP x_1 DO x_0 := x_0 * x_2; x_2 := x_2 + 1; END
```

Also f ist die folgende Funktion:

$$f: \mathbb{N} \to \mathbb{N}, \ n \mapsto n!$$

Aufgabe 4 (LOOP-Berechenbarkeit II)10P

Zeigen Sie die folgende Aussage aus der Vorlesung durch Angabe eines LOOP-Programms:

```
IF x_1 = c THEN P ELSE P' END ist LOOP-berechenbar.
```

Verwenden Sie **nur** die elementaren Befehle, wie sie in der Definition von LOOP-Programmen aufgeführt sind.

```
Lösungsvorschlag:
LOOP-Programm:
 x_3 := 0;
 x_4 := 1;
 x_2 := x_1 - c;
 LOOP x_2 DO x_3 := 1 END;
 LOOP x_3 DO P'; x_4 := 0 END;
 LOOP x_4 DO
       x_1 := x_1 + 1;
       x_2 := 1;
       x_3 := 1;
       x_1 := x_1 - c;
       LOOP x_1 DO x_2 := 0 END;
       LOOP x_2 DO P'; x_3 := 0 END;
       {\tt LOOP}\ x_3\ {\tt DO}\ P\ {\tt END}
 END
```