Universidad Nacional de Rosario

FACULTAD DE CIENCIAS EXACTAS, INGENIERÍA Y AGRIMENSURA

ARQUITECTURA DEL COMPUTADOR

Representación computacional de datos

Alumno:

Demagistris, Santiago Ignacio

Utilizando el sistema de numeración posicional $(-1)^s(a_na_{n-1}\dots a_1a_0.a_{-1}a_{-2}\dots)_{\beta}$ con $\beta=2$, determinar la representación binaria de los siguientes números:

- 1. 29
- 2. 0.625
- 3. 0.1
- 4. 5.75
- 5. -138
- 6. -5.125

Analizar en cada caso cuántos dígitos son necesarios para poder representar cada uno de los números.

1) $(29)_{10}$

$$b_0$$
: $29/2 = 14$ $resto = 1 \Rightarrow b_0 = 1$

$$b_1$$
: $14/2 = 7$ $resto = 0 \Rightarrow b_1 = 0$

$$b_2$$
: $29/2 = 3$ $resto = 1 \Rightarrow b_2 = 1$

$$b_3$$
: $3/2 = 1$ $resto = 1 \Rightarrow b_3 = 1$

$$b_4$$
: $1/2 = 0$ $resto = 1 \Rightarrow b_4 = 1$

Por lo tanto $(29)_{10} \simeq (0001\ 1101.\ 0000\ 0000)_2$. Estamos trabajando con una representación que admite números con signos por lo tanto se necesitarían al menos 6 bits. Yo lo representé con un byte para la parte decimal y otro para la parte fraccionaria $(b_7=0,$ lo que nos indica que el número es positivo).

 $2) (0.625)_{10}$

$$b_{-1}$$
: $0.625 \cdot 2 = 1.25 \Rightarrow b_{-1} = 1$

$$b_{-2}$$
: $0.25 \cdot 2 = 0.5 \Rightarrow b_{-2} = 0$

$$b_{-3}$$
: $0.5 \cdot 2 = 1.0 \Rightarrow b_{-3} = 1$

Por lo tanto $(0.6250)_{10} \simeq (0000\ 0000.\ 1010\ 0000)_2$. Por lo cual necesitaría al menos 4 bits, en el cual el más significativo sería a_0 representando el signo +. Yo utilicé un byte para la parte decimal y otro para la parte fraccionaria, por lo cual $b_7 = 0$ me indica que es un número positivo.

$$3) (0.1)_{10}$$

$$b_{-1}$$
: $0.1 \cdot 2 = 0.2 \Rightarrow b_{-1} = 0$

$$b_{-2}$$
: $0.2 \cdot 2 = 0.4 \Rightarrow b_{-2} = 0$

$$b_{-3}$$
: $0.4 \cdot 2 = 0.8 \Rightarrow b_{-3} = 0$

$$b_{-4}$$
: $0.8 \cdot 2 = 1.6 \Rightarrow b_{-4} = 1$

$$b_{-5}$$
: $0.6 \cdot 2 = 1.2 \Rightarrow b_{-5} = 1$

$$b_{-6}$$
: $0.2 \cdot 2 = 0.4 \Rightarrow b_{-6} = 0$

$$\beta$$
: $\frac{1}{2}^2 - 6 = 0.0078125$

error relativo:
$$\frac{p-p*}{|p|} = \frac{0.1 - 0.09375000}{0.1} = 0.001953125 \Rightarrow \frac{p-p*}{|p|} < \frac{1}{2}^2 - 6$$

Como se puede observar a partir de b_{-6} vuelven a obtenerse los mismos digitos binarios por lo cual podríamos calcular algunas posiciones más para aproximar mejor pero no podríamos llegar a una respuesta sin error. Utilizando la cota superior de error llego a la conclusión que con al menos 6 bits en la parte fraccionaria la aproximación es buena. Por lo tanto necesitaré al menos 7 bits (a_0 determina el signo).

Por lo tanto $(0.1)_{10} \simeq (0000\ 0000.\ 0001\ 1000)_2$. En mi representación utilicé dos bytes, uno para la parte decimal y otro para la parte fraccionaria. $(b_7=0\ \text{indica que es un número positivo})$

4)
$$(5.75)_{10}$$

Parte decimal:

$$b_0$$
: $5/2 = 2$ $resto = 1 \Rightarrow b_0 = 1$

$$b_1$$
: $2/2 = 1$ $resto = 0 \Rightarrow b_1 = 0$

$$b_2$$
: $1/2 = 0$ $resto = 1 \Rightarrow b_2 = 1$

Parte fraccionaria:

$$b_{-1}$$
: $0.75 \cdot 2 = 1.5 \Rightarrow b_{-1} = 1$

$$b_{-2}$$
: $0.5 \cdot 2 = 1.0 \Rightarrow b_{-2} = 1$

Por lo que $(5.75)_{10} \simeq (0000\ 0101.\ 1100\ 0000)_2$. Necesitaríamos al menos 6 bits $(b_3=0)$ indicaría que el número es positivo). En mi representación utilicé dos bytes, uno para la parte decimal y otro para la parte fraccionaria. $(b_7=0)$ indica que es un número positivo)

5)
$$(-138)_{10}$$

$$b_0$$
: $138/2 = 69$ $resto = 0 \Rightarrow b_0 = 0$

$$b_1$$
: $69/2 = 34$ $resto = 1 \Rightarrow b_1 = 1$

$$b_2$$
: $34/2 = 17$ $resto = 0 \Rightarrow b_2 = 0$

$$b_3$$
: $17/2 = 8$ $resto = 1 \Rightarrow b_3 = 1$

$$b_4$$
: $8/2 = 4$ $resto = 0 \Rightarrow b_4 = 0$

$$b_5$$
: $4/2 = 2$ $resto = 0 \Rightarrow b_5 = 0$

$$b_6$$
: $2/2 = 1$ $resto = 0 \Rightarrow b_6 = 0$

$$b_7$$
: $1/2 = 0$ $resto = 1 \Rightarrow b_7 = 1$

Al ser un número negativo, $(-138)_{10} \simeq (1000\ 0000\ 1000\ 1010.\ 0000\ 0000)_2$. Necesitaríamos al menos 9 bits, donde el 1 en la posición b_8 representa que el número es negativo. En mi representación utilicé 3 bytes, dos para la parte decimal y otro para la parte fraccionaria. $(b_{15}=1\ \text{indica}$ que es un número negativo)

6)
$$(-15.125)_{10}$$

Parte decimal:

$$b_0$$
: $15/2 = 7$ $resto = 1 \Rightarrow b_0 = 1$

$$b_1$$
: $7/2 = 3$ $resto = 1 \Rightarrow b_1 = 1$

$$b_2$$
: $3/2 = 1$ $resto = 1 \Rightarrow b_2 = 1$

$$b_3$$
: $1/2 = 0$ $resto = 1 \Rightarrow b_2 = 1$

Parte fraccionaria:

$$b_{-1}$$
: $0.125 \cdot 2 = 0.25 \Rightarrow b_{-1} = 0$

$$b_{-2}$$
: $0.25 \cdot 2 = 0.5 \Rightarrow b_{-2} = 0$

$$b_{-3}$$
: $0.5 \cdot 2 = 1.0 \Rightarrow b_{-3} = 1$

Por lo que $(-15.125)_{10} \simeq (1000\ 1111.\ 0010\ 0000)_2$. Necesitaríamos al menos 8 bits, donde el 1 en la posición b_7 representa que el número es negativo. En mi representación utilicé dos bytes, uno para la parte decimal y otro para la parte fraccionaria. ($b_7 = 1$ indica que es un número negativo)

Convertir los siguientes números decimales a binario utilizando la representación en complemento a dos con seis bits:

- 1. -16
- 2. 13
- 3. -1
- 4. -10
- 5. 16
- 6. 31

Complemento a dos con 6 dígitos

$$C_2^N = \begin{cases} N & si \ N \ge 0 \\ \\ 2^6 - |N| & si \ N < 0 \end{cases}$$

1) $(-16)_{10}$

$$C_6^{-16_{10}} = (2^6)_{10} - (16)_{10} = (64)_{10} - (16)_{10} = (48)_{10}$$

Pasaje a binario:

$$b_0$$
: $48/2 = 24$ $resto = 0 \Rightarrow b_0 = 0$

$$b_1$$
: $24/2 = 12$ $resto = 0 \Rightarrow b_1 = 0$

$$b_2$$
: $12/2 = 6$ $resto = 0 \Rightarrow b_2 = 0$

$$b_3$$
: $6/2 = 3$ $resto = 0 \Rightarrow b_3 = 0$

$$b_4$$
: $3/2 = 1$ $resto = 1 \Rightarrow b_4 = 1$

$$b_5$$
: $1/2 = 0$ $resto = 1 \Rightarrow b_5 = 1$

Por lo tanto $C_6^{16} = (48)_{10} \simeq (110\ 000)_2$

Método alternativo:

Pasaje a binario:

$$b_0$$
: $16/2 = 8$ $resto = 0 \Rightarrow b_0 = 0$

$$b_1$$
: $8/2 = 4$ $resto = 0 \Rightarrow b_1 = 0$

$$b_2$$
: $4/2 = 2$ $resto = 0 \Rightarrow b_2 = 0$

$$b_3$$
: $2/2 = 1$ $resto = 0 \Rightarrow b_3 = 0$

$$b_4$$
: $1/2 = 0$ $resto = 1 \Rightarrow b_4 = 1$

$$(16)_{10} \simeq (010\ 000)_2 = N$$
. Por lo tanto $C_2^N = (110\ 000)_2$

 $2) (13)_{10}$

Al ser un número positivo, por definición, $C_2^{13_{10}} = (13)_{10}$

Pasaje a binario:

$$b_0$$
: $13/2 = 6$ resto = $1 \Rightarrow b_0 = 1$

$$b_1$$
: $6/2 = 3$ $resto = 0 \Rightarrow b_1 = 0$

$$b_2$$
: $3/2 = 1$ $resto = 1 \Rightarrow b_2 = 1$

$$b_3$$
: $1/2 = 0$ $resto = 1 \Rightarrow b_3 = 1$

Por lo tanto $(13)_{10} \simeq (1101)_2$, lo que implica que $C_2^{13_{10}} = (13)_{10} \simeq (001\ 101)_2$

3)
$$N = (-1)_{10}$$

$$|N| \simeq (000\ 001)_2 \Rightarrow C_2^N = (111\ 111)$$
. Utilizando el método alternativo.

4)
$$N = (-10)_{10}$$

Pasaje de $(10)_{10}$ a binario

$$b_0$$
: $10/2 = 5$ $resto = 0 \Rightarrow b_0 = 0$

$$b_1$$
: $5/2 = 2$ $resto = 1 \Rightarrow b_1 = 1$

$$b_2$$
: $2/2 = 1$ $resto = 0 \Rightarrow b_2 = 0$

$$b_3$$
: $1/2 = 0$ $resto = 1 \Rightarrow b_3 = 1$

Por lo tanto $|N| = (10)_{10} \simeq (001\ 010)_2 \Rightarrow |N| \simeq (001\ 010)_2$.

Utilizando el metodo alternativo: $C_2^N = (110\ 110)_2$

5)
$$N = (16)_{10}$$

Pasaje de $(16)_{10}$ a binario

$$b_0$$
: $16/2 = 8$ $resto = 0 \Rightarrow b_0 = 0$

$$b_1$$
: $8/2 = 4$ $resto = 0 \Rightarrow b_1 = 0$

$$b_2$$
: $4/2 = 2$ $resto = 0 \Rightarrow b_2 = 0$

$$b_3$$
: $2/2 = 1$ $resto = 0 \Rightarrow b_3 = 0$

$$b_4$$
: $1/2 = 0$ $resto = 1 \Rightarrow b_4 = 1$

$$N = C_2^{16_{10}} = (16)_{10} \simeq (010\ 000)_2$$

6)
$$N = (-31)_{10}$$

Pasaje de $(31)_{10}$ a binario

$$b_0$$
: $31/2 = 15$ $resto = 1 \Rightarrow b_0 = 1$

$$b_1$$
: $15/2 = 7$ $resto = 1 \Rightarrow b_1 = 1$

$$b_2$$
: $7/2 = 3$ $resto = 1 \Rightarrow b_2 = 1$

$$b_3$$
: $3/2 = 1$ $resto = 1 \Rightarrow b_3 = 1$

$$b_4$$
: $1/2 = 0$ resto = $1 \Rightarrow b_4 = 1$

Por lo tanto $|N| = (31)_{10} \simeq (011\ 111)_2 \Rightarrow |N| \simeq (011\ 111)_2$.

Utilizando el metodo alternativo: $C_2^N = (100\ 001)_2$

Analizando características

$\beta = 10$	Complemento a 2 (d=6)
$(-16)_{10}$	$(110\ 000)_2$
$(13)_{10}$	$(001\ 101)_2$
$(-1)_{10}$	$(111\ 111)_2$
$(-10)_{10}$	$(110\ 110)_2$
$(16)_{10}$	$(010\ 000)_2$
$(-31)_{10}$	$(100\ 001)_2$

Los números positivos tienen el bit más significativo en 0, mientras que los negativos lo tienen en 1.

Convertir los siguientes números decimales a binario utilizando la representación en complemento a dos con ocho bits:

- 1. -16
- 2. 13
- 3. -1
- 4. -10
- 5. 16
- 6. 31

Complemento a dos con 8 dígitos

$$C_2^N = \begin{cases} N & si \ N \ge 0 \\ 2^8 - |N| & si \ N < 0 \end{cases}$$

1) $(-16)_{10}$

$$C_6^{-16_{10}} = (2^8)_{10} - (16)_{10} = (256)_{10} - (16)_{10} = (240)_{10}$$

Pasaje a binario:

$$b_0$$
: $240/2 = 120$ $resto = 0 \Rightarrow b_0 = 0$

$$b_1$$
: $120/2 = 60$ $resto = 0 \Rightarrow b_1 = 0$

$$b_2$$
: $60/2 = 30$ $resto = 0 \Rightarrow b_2 = 0$

$$b_3$$
: $30/2 = 15$ $resto = 0 \Rightarrow b_3 = 0$

$$b_4$$
: $15/2 = 7$ $resto = 1 \Rightarrow b_4 = 1$

$$b_5$$
: $7/2 = 3$ $resto = 1 \Rightarrow b_5 = 1$

$$b_6: 3/2 = 1 \quad resto = 1 \Rightarrow b_6 = 1$$

$$b_7$$
: $1/2 = 0$ $resto = 1 \Rightarrow b_7 = 1$

Por lo tanto $C_2^{16} = (240)_{10} \simeq (1111\ 0000)_2$

Método alternativo:

Pasaje a binario:

$$b_0$$
: $16/2 = 8$ $resto = 0 \Rightarrow b_0 = 0$

$$b_1$$
: $8/2 = 4$ $resto = 0 \Rightarrow b_1 = 0$

$$b_2$$
: $4/2 = 2$ $resto = 0 \Rightarrow b_2 = 0$

$$b_3$$
: $2/2 = 1$ $resto = 0 \Rightarrow b_3 = 0$

$$b_4$$
: $1/2 = 0$ $resto = 1 \Rightarrow b_4 = 1$

$$(-16)_{10} \simeq (0001\ 0000)_2 = N$$
. Por lo tanto $C_2^N = (1111\ 0000)_2$

 $2) (13)_{10}$

Al ser un número positivo, por definición, $C_2^{13_{10}} = (13)_{10}$ Pasaje a binario:

$$b_0$$
: $13/2 = 6$ $resto = 1 \Rightarrow b_0 = 1$

$$b_1: 6/2 = 3 \quad resto = 0 \Rightarrow b_1 = 0$$

$$b_2$$
: $3/2 = 1$ $resto = 1 \Rightarrow b_2 = 1$

$$b_3$$
: $1/2 = 0$ $resto = 1 \Rightarrow b_3 = 1$

Por lo tanto $(13)_{10} \simeq (0000\ 1101)_2$, lo que implica que $C_2^{13_{10}} = (13)_{10} \simeq (0000\ 1101)_2$

3)
$$N=(-1)_{10}$$
 $|N|\simeq (0000\ 0001)_2\Rightarrow C_2^N=(1111\ 1111).$ Utilizando el método alternativo.

4)
$$N = (-10)_{10}$$

Pasaje de $(10)_{10}$ a binario

$$b_0$$
: $10/2 = 5$ resto = $0 \Rightarrow b_0 = 0$

$$b_1$$
: $5/2 = 2$ $resto = 1 \Rightarrow b_1 = 1$

$$b_2$$
: $2/2 = 1$ $resto = 0 \Rightarrow b_2 = 0$

$$b_3$$
: $1/2 = 0$ $resto = 1 \Rightarrow b_3 = 1$

Por lo tanto $|N|=(10)_{10}\simeq (0000\ 1010)_2\Rightarrow |N|\simeq (0000\ 1010)_2.$ Utilizando el metodo alternativo: $C_2^N=(1111\ 0110)_2$

5)
$$N = (16)_{10}$$

Pasaje de $(16)_{10}$ a binario

$$b_0$$
: $16/2 = 8$ $resto = 0 \Rightarrow b_0 = 0$

$$b_1$$
: $8/2 = 4$ $resto = 0 \Rightarrow b_1 = 0$

$$b_2$$
: $4/2 = 2$ $resto = 0 \Rightarrow b_2 = 0$

$$b_3$$
: $2/2 = 1$ $resto = 0 \Rightarrow b_3 = 0$

$$b_4$$
: $1/2 = 0$ $resto = 1 \Rightarrow b_4 = 1$

$$N = C_2^{16_{10}} = (16)_{10} \simeq (0001 \ 0000)_2$$

6)
$$N = (-31)_{10}$$

Pasaje de $(31)_{10}$ a binario

$$b_0$$
: $31/2 = 15$ $resto = 1 \Rightarrow b_0 = 1$

$$b_1$$
: $15/2 = 7$ $resto = 1 \Rightarrow b_1 = 1$

$$b_2$$
: $7/2 = 3$ $resto = 1 \Rightarrow b_2 = 1$

$$b_3$$
: $3/2 = 1$ $resto = 1 \Rightarrow b_3 = 1$

$$b_4$$
: $1/2 = 0$ $resto = 1 \Rightarrow b_4 = 1$

Por lo tanto $|N| = (31)_{10} \simeq (0001\ 1111)_2 \Rightarrow |N| \simeq (0001\ 1111)_2$.

Utilizando el metodo alternativo: $C_2^{N}=(1110\ 0001)_2$

Analizando características

$\beta = 10$	Complemento a 2 (d=6)	Complemento a 2 (d=8)
$(-16)_{10}$	$(110\ 000)_2$	$(1111\ 0000)_2$
$(13)_{10}$	$(001\ 101)_2$	$(0000\ 1101)_2$
$(-1)_{10}$	$(111\ 111)_2$	$(1111\ 1111)_2$
$(-10)_{10}$	$(110\ 110)_2$	$(1111\ 0110)_2$
$(16)_{10}$	$(010\ 000)_2$	$(0001\ 0000)_2$
$(-31)_{10}$	$(100\ 001)_2$	$(1110\ 0001)_2$

Mientras más bits utilice, tengo que agregar 1's a la izquierda de la representación en binario en el caso de que el número sea negativo y 0's en el caso de ser positivo.

Dadas las siguientes secuencias de bits, indicar a qué números corresponden en sistema decimal utilizando la representaciónn en complemento a dos:

- 1. $(0000\ 1101)_2$
- $2. (0100\ 1101)_2$
- 3. $(1110\ 0001)_2$
- 4. $(1111\ 1001)_2$
- 5. $(1111\ 1111)_2$
- 6. $(0000\ 0000)_2$

Podemos observar que se están utilizando 8bits (1 byte) para la representación. Por lo cual nuestra ley de complemento a dos es:

$$C_2^N = \begin{cases} N & si \ N \ge 0 \\ 2^8 - |N| & si \ N < 0 \end{cases}$$

De aquí podemos despejar |N|:

$$|N| = \begin{cases} N & si \quad signo \ (N) = + \\ \\ 2^{6} - C_{2}^{N} \quad si \quad signo \ (N) = - \end{cases}$$

Por la observación en el ejercicio 2, sabemos que signo(N) = - sii $b_7 = 1$ y que signo(N) = + sii $b_7 = 0$. El bit que se observa es de C_2^N .

Con esta información ya podemos resolver el ejercicio:

1) $C_2^N = (0000 \ 1101)_2 \Rightarrow signo(N) = +$, ya que $b_7 = 0$. Por lo tanto solo hay que buscar el equivalente en sistema decimal multiplicando los coeficientes por los correspondientes valores posicionales.

$$N = 1 \cdot 2^3 + 1 \cdot 2^2 + 1 \cdot 2^0 = (13)_{10}$$

2) $C_2^N = (0100\ 1101)_2 \Rightarrow signo\ (N) = +$, ya que $b_7 = 0$. Por lo tanto solo hay que buscar el equivalente en sistema decimal multiplicando los coeficientes por los correspondientes valores posicionales.

$$N = 1 \cdot 2^6 + 1 \cdot 2^3 + 1 \cdot 2^2 + 1 \cdot 2^0 = (77)_{10}$$

3) $C_2^N=(1110\ 0001)_2\Rightarrow signo\ (N)=-,$ ya que $b_7=1.$ Por lo tanto necesitaremos encontrar el equivalente en sistema decimal a C_2^N :

Pasaje a sistema decimal:

$$C_2^N = 1 \cdot 2^7 + 1 \cdot 2^6 + 1 \cdot 2^5 + 1 \cdot 2^0 = 128 + 64 + 32 + 1 = 225$$

$$|N| = 2^8 - C_2^N = (256)_{10} - (225)_{10} = 31 \Rightarrow N = (-31)_{10}$$

4) $C_2^N=(1111\ 1001)_2\Rightarrow signo\ (N)=-,$ ya que $b_7=1.$ Por lo tanto necesitaremos encontrar el equivalente en sistema decimal a C_2^N :

Pasaje a sistema decimal:

$$C_2^N = 1 \cdot 2^7 + 1 \cdot 2^6 + 1 \cdot 2^5 + 1 \cdot 2^4 + 1 \cdot 2^3 + 1 \cdot 2^0 = 128 + 64 + 32 + 16 + 8 + 1 = 249$$

$$|N| = 2^8 - C_2^N = (256)_{10} - (249)_{10} = 7 \Rightarrow N = (-7)_{10}$$

5) $C_2^N=(1111\ 1111)_2\Rightarrow signo\ (N)=-,$ ya que $b_7=1.$ Por lo tanto necesitaremos encontrar el equivalente en sistema decimal a C_2^N :

Pasaje a sistema decimal:

$$C_2^N = 2^8 - 1 = 255$$

$$|N| = 2^8 - C_2^N = (256)_{10} - (255)_{10} = 1 \Rightarrow N = (-1)_{10}$$

2) $C_2^N = (0000\ 0000)_2 \Rightarrow signo\ (N) = +$, ya que $b_7 = 0$. Por lo tanto solo hay que buscar el equivalente en sistema decimal multiplicando los coeficientes por los correspondientes valores posicionales.

$$N = (0)_{10}$$