International car accident database

This dataset contains registered car accidents from several countries of Europe (2000-2011).

The fields are: * accident_id: unique ID of the registers

- * accident_date, time_of_the_day and year, month, day: time information of the accident
- * cost: (calculated) cost of the renovation after the accident
- * car_brand (and brand, type): car manufacturer
- * car_type: gas / diesel / electric
- * country: country name
- * weather: wheather condition, rainy
- * reported: nature of accident being reported (1) or not (0), toward authorities or insurance companies
- * and least important field as **factory_id**: parts of original car factory ID

Data analysis

Some topics and questions are elaborated in this notebook, some are presented in a separate file.

Understanding the dataset

Loading the data from a csv file

```
In [1]:
    import numpy as np
    import pandas as pd
    import matplotlib
    import matplotlib.pyplot as plt
    %matplotlib inline

In [2]: accidents = pd.read_csv ('accidents.csv', delimiter =',')
```

In [27]:	ac	accidents.head()											
Out[27]:	car_type		city	factory_id	accident_date	accident_id	car_brand	country	reported	weather	time_of_the_day	cost	yeaı
	0	Gas	SALONIKA	C3532xx	2000-01-01	535167	FORD KUGA	Greece	False	Rainy	Day	0	2000
	1	Gas	UNKNOWN	C3333xx	2000-01-01	547337	VOLKSWAGEN GOLF	NaN	False	NaN	NaN	0	2000
	2	Gas	COPENHAGEN	C3333xx	2000-01-01	547339	VOLKSWAGEN GOLF	Denmark	False	NaN	NaN	0	2000
	3	Gas	KIEV	C3232xx	2000-01-01	542341	VOLKSWAGEN GOLF	Ukraine	False	NaN	NaN	0	2000
	4	Gas	UNKNOWN	C55x	2000-01-01	540395	BMW 1	France	False	NaN	Day	0	2000
	4												•

For specific plots of time periods we split the accident_date string into year, month, day data.

```
In [3]: accidents[['year', 'month', 'day']]= accidents['accident_date'].str.split("-", expand=True)
```

1) Seasonality of accidents

In which month did the most accidents occur between January 1, 2000 and December 31, 2011? Monthly list is calculated as percentage of total accident amount.

```
In [57]: step = accidents[['month', 'cost']]
    step = step.groupby(['month']).count()
    step['sum'] = step['cost'].sum()
    step ['percent'] = step ['cost'] / step ['sum']
    step = step [['percent']]
    step
```

	Out[57]: percen
--	-----------------

month								
01	0.033405							
02	0.028930							
03	0.049663							
04	0.078701							
05	0.106283							
06	0.076770							
07	0.116289							
80	0.134217							
09	0.137404							
10	0.130922							
11	0.070181							
12	0.037236							

2) In what weather are more expensive accidents?

Is the average accident damage higher in rainy, windy or sunny weather? (average of non-zero values are compared)

```
In [16]: tfw = accidents[['weather', 'cost']][accidents.cost >0]
    tfw = tfw.groupby('weather').agg (['sum', 'mean', 'count', 'max', 'median'])
    tfw
```

Out[16]: cost

sum		mean	count	max	median
weather					
Rainy	278397	1062.583969	262	43928	84
Sunny	479809	647.515520	741	75681	43
Windy	260447	566.189130	460	29253	66

As generally would be expected, rainy days cause the highest accident costs, however the number of registered accidents on rainy days is the lowest (in this dataset).

3) In which year were the most *reported* accidents?

Yearly data is calculated (count), including basic statistical values of the costs (sum, mean, median, minimum, maximum, standard error).

```
In [18]: step = accidents[accidents.reported == True]
    step = step[['year', 'cost']][accidents.cost > 0]
    step = step.groupby('year')['cost'].agg(['sum', 'mean','count', 'median', 'min', 'max', 'std'])
    step = step.sort_values (by= ['sum'], ascending = False)
    step
```

/usr/local/lib/python3.6/dist-packages/ipykernel_launcher.py:2: UserWarning: Boolean Series key will be reindexed to match Data Frame index.

Out[18]:		sum	mean	count	median	min	max	std
	year							
	2011	144909	1575.097826	92	40.5	1	30107	5516.109355
	2009	117214	1698.753623	69	110.0	1	75681	9216.142026
	2005	93292	2392.102564	39	180.0	1	43928	7391.847553
	2006	65254	1553.666667	42	161.5	1	29253	5059.975965
	2010	62060	838.648649	74	83.5	1	29374	3500.238166
	2008	61694	907.264706	68	60.5	1	17760	3219.275531
	2007	58973	1072.236364	55	113.0	1	12018	2443.683361
	2002	52157	1372.552632	38	72.0	1	9751	2755.206567
	2003	39406	772.666667	51	126.0	3	11656	1948.869392
	2000	31006	1240.240000	25	68.0	2	17269	3489.690486
	2004	29353	815.361111	36	155.5	1	15418	2581.293487
	2001	21480	795.555556	27	166.0	6	5646	1555.858910

Above only those accidents are considered which are reported and have non-zero (repair) costs. In general, for the complete list of accidents this query provides the answer for the question:

```
In [ ]: step = accidents['year']
step = step.groupby('year')['year'].agg(['count'])
```

4 A) What ratio of the accidents are reported?

```
In [70]: step = accidents[['reported']][accidents.reported == True].count() / accidents[['reported']].count()
    step
```

```
Out[70]: reported 0.187695 dtype: float64
```

Which means, in general (for all Europe) ~18,8% of the cases are reported.

A yearly tendency report is included in the separate presentation file.

4 B) What ratio of the accidents with costs are reported?

Compared to previous calculation this result shows higher reporting rate in the case of costly crashes.

4 C) In which year was the highest rate of reporting?

no: not reported, yes: reported cases

```
In [73]: step = accidents[['year', 'cost','reported']]
    step = step.groupby(['year', 'reported']).count()
    step = step.unstack('reported')
    step = step.cost.reset_index()
    step.columns = ['year', 'no', 'yes']
    step['ratio'] = (step.yes / (step.no + step.yes))
    step
```

Out[73]:		year	no	yes	ratio
	0	2000	4625	160	0.033438
	1	2001	4308	205	0.045424
	2	2002	4438	509	0.102891
	3	2003	4177	691	0.141947
	4	2004	4494	1094	0.195777
	5	2005	4874	599	0.109446
	6	2006	4629	818	0.150174
	7	2007	4794	1000	0.172592
	8	2008	4374	1118	0.203569
	9	2009	4868	1742	0.263540
	10	2010	4028	2140	0.346952
	11	2011	3402	2173	0.389776

5) For which car brands, the average damage cost value of accidents is the highest?

Values greater than zero were involved.

```
In [74]: accidents[['brand', 'type1']]= accidents['car_brand'].str.split(" ", n=1, expand=True)
    tfw = accidents[['cost', 'brand']][accidents.cost >0]
    tfw = tfw.groupby('brand').agg(['sum', 'count', 'mean' , 'max'])
    tfw = tfw.cost.reset_index()
    tfw.columns = ['brand', 'total_cost', 'no_of_cases', 'mean' , 'max']
    tfw.sort_values(by = ['mean'], inplace= True, ascending = False)
    tfw
```

Out[74]:

	brand	total_cost	no_of_cases	mean	max
14	OPEL	31947	14	2281.928571	27846
9	LADA	17382	8	2172.750000	15418
4	FIAT	42015	21	2000.714286	15653
2	CITROEN	24155	18	1341.944444	17269
21	VOLKSWAGEN	893806	1004	890.245020	75681
6	HYUNDAI	7328	9	814.222222	5128
18	SKODA	41487	58	715.293103	18689
19	SUZUKI	685	1	685.000000	685
15	PEUGEOT	51751	77	672.090909	17760
12	MINI	1141	2	570.500000	1139
10	MAZDA	569	1	569.000000	569
0	AUDI	32650	62	526.612903	22694
8	KIA	5315	12	442.916667	2925
11	MERCEDES	15309	36	425.250000	5022
5	FORD	90186	224	402.616071	16769
3	DACIA	18620	49	380.000000	4749
13	NISSAN	16614	49	339.061224	4250
7	JEEP	1674	5	334.800000	993
16	RENAULT	80764	314	257.210191	5646
20	TOYOTA	6982	41	170.292683	948
17	SEAT	2667	16	166.687500	1267
1	BMW	4758	34	139.941176	2047

	brand	total_cost	no_of_cases	mean	max
22	VOLVO	2	1	2.000000	2

Opel, Lada, Fiat concerns' cars made the highest damage.

Weekday names has to be defined for each day given in the register.

 Friday
 9640
 65260
 0.147717

 Monday
 9113
 65260
 0.139641

 Saturday
 7414
 65260
 0.113607

 Sunday
 7617
 65260
 0.116718

 Thursday
 10717
 65260
 0.164220

 Tuesday
 10445
 65260
 0.160052

 Wednesday
 10314
 65260
 0.158045

7) Which day of the week there are the most accidents?

```
In [75]: step = accidents[['day of week', 'cost']][accidents.cost > 0]
         step = step.groupby(['day of week']).agg(['sum', 'count', 'mean', 'max'])
Out[75]:
                                               cost
                        sum count
                                        mean
                                               max
         day_of_week
              Friday 200486
                              325 616.880000 27846
             Monday 158201
                              277 571.122744 29374
            Saturday 155773
                              212 734.778302 17760
             Sunday 183472
                             225 815.431111 56195
            Thursday 165803
                              341 486.225806 16650
             Tuesday 336450
                              349 964.040115 75681
          Wednesday 187622
                              327 573.767584 29253
```

In the above (non-ordered) list the count value of Tuesday is the highest.

8) Fun fact question: is Friday the 13th the most dangerous day?

Let's compare with other day results as well.

```
In [80]: df = accidents[(accidents.day == '13') & (accidents.day_of_week == "Friday")]
    df = df['cost'] .mean()
    df
```

Out[80]: 47.20503597122302

```
In [81]: df = accidents[(accidents.day != '13') & (accidents.day of week != "Friday")]
         df = df['cost'].mean()
         df
Out[81]: 21.781015510082483
In [82]: df = accidents[(accidents.day == '13') & (accidents.day of week == "Friday")]
         df = df['cost'] .count()
         df
Out[82]: 278
In [83]: df = accidents[(accidents.day == '13') & (accidents.day of week == "Friday")]
         df = df['cost'][df.cost >0] .count()
         df
Out[83]: 13
In [86]: df = accidents[(accidents.day != '13') & (accidents.day of week != "Friday")]
         df = df['cost'] .count()
         df
Out[86]: 53707
In [85]: df = accidents[(accidents.day != '13') & (accidents.day of week != "Friday")]
         df = df['cost'][df.cost >0] .count()
         df
Out[85]: 1662
         The average cost of accidents on 278 events on 13th Friday was 47.2 (unit), while Fridays, not being the 13th has lower average.
         Further analysis results may be found in the separate presentation file.
```

In []: