Neuron OmniBot Vehicle Dynamic and Motor Controller Communication and Operation Manual

Author: Hsin-Yi Kang (Ewing Kang)
Contact: https://github.com/EwingKang/

Ver. 0.3

Table of Contents

Operation State Machine	3
	0
Serial Command (Rx)	4
Serial Data Output (Tx)	5
	_
Vehicle Parameters	6
Control equation	7
Odometry equation	8
Appendix	9

Operation State Machine

Initialization / Paused

- Serial Tx: 1 Hz System info (Initialization / Paused)
- Serial Rx: system state command (Ascii)
- Screen showing "system pause" information

Nominal mode

- Serial Tx:
 - (a) 100Hz IMU data
 - (b) 10Hz Encoder data
- Serial Rx:
 - (a) system state command (Ascii)
 - (b) Control Data Frame
- Screen showing general control information

IMU only mode

- Serial Tx:
 - (c) 100Hz IMU data
- Serial Rx:
 - (c) system state command (Ascii)
 - (d) Control Data Frame
- Screen showing general control information

Serial Command (Rx)

- Serial initialization: 3 arbitrary byte
- System state command:

Function	Force start	Pause/ Un-Pause	Reset
Character	S	Р	R
Hex (Ascii)	0x53	0x50	0x52
Note:			

- Control Method: Velocity control / Positional control:
 Set by the onboard switch. Please reboot to enable the different mode.
- Control data frame:

[0]	[1]	[2]	[3]	[4]	[5]	[6]	[7]	[8]
0xFF	0xFE	MODE	CMD_A_H	CMD_A_L	CMD_B_H	CMD_B_L	CMD_C_H	CMD_C_L

- MODE
 - 0×01 : Mode1/ Base Vector Control (BVC)
 - 0x02: Mode2/Independent Wheel Drive (IWD)
 - 0x10: Emergency Stop (ES)
- CMD A / CMD B / CMD C
 - ◆ Format: short (16-bit) H: MSB, L: LSB [+32,767-32,768]

 $\text{Mode1 BVC: } [u_{\text{A}} \quad u_{\text{B}} \quad u_{\text{C}}] \rightarrow [X \quad Y \quad \Theta] \text{ or } [V_{\text{x}} \quad V_{\text{y}} \quad \Omega], \text{ where } [X \quad Y \quad \Theta] \text{ is the vehicle position and } [V_{\text{x}} \quad V_{\text{y}} \quad \Omega] \text{ velocity command.}$

Mode2 IWD: $[u_A \quad u_B \quad u_C] \rightarrow [v_A \quad v_B \quad v_C]$ direct motor velocity command

Serial Data Output (Tx)

- 1 Hz System info (only tx at Initialization / Paused)
 - Ascii string: "Paused: $i \mid n$ ", where i is an ascending uint8_t number
- 100Hz IMU data

[0]	[1]	[2]	[3]	[4]	[5]	[6]	[7]	[8]	[9]	[10]	[11]	[12]	[13]
hea	der	Acce	el_X	Acce	el_Y	Acce	el_Z	Gyr	o_X	Gyr	O_Y	Gyr	o_Z
0xFF	0xFA	AX H	AX L	AY H	AY L	AZ H	AZ L	GX H	GX L	GY H	GY L	GZ H	GZ L

- Length: 14 byte
- Data: raw MPU6050 accelerometer/gyro output byte
- 25Hz Encoder data

[0]	[1]	[2]	[3]	[4]	[5]	[6]	[7]	[8]
0xFF	0xFB	X DIF H	X DIF L	Y DIF H	Y DIF L	TH DIF H	TH DIF L	SEQ

- Length: 9 byte
- Format: signed short (2 bytes, 8-bit), range [+32,767 -32,768]. _H: MSB; _L:LSB
- X_DIF / Y_DIF: Odometry positional difference between this transmission and last transmission, in 0.1mm (10000 = 1meters)
 - ♦ Velocity is limited at ~3.2767 meters per 1/25s, or ~81.92m/s (294.9km/h).
- TH_DIF: Odometry rotational difference between this transmission and last transmission, in 1/10000 radians (10000 = 1 rad.)
 - ◆ rotation at 3.2767 rad per 1/25s, or ~13 rps
- SEQ: 1-byte sequence (0-255) for continuity check.
- 5Hz Data

[0]	[1]	[2]-[5]	[6]-[9]	[10]-[13]	[8]
0xFF	0xFC	X_E	Y_E	TH_E	SEQ

- Length: 15 byte
- Format: float (4 bytes, 32-bit). Little-endian (ex: [2] is the MSB of XE, [5] is the LSB of XE)
- X E / Y E: Odometry linear coordinate in earth frame, in millimeters (1000 = 1m)
- TH E: Body rotation angle from earth frame, in milli-radians (1000 = 1rad)
- SEQ: 1-byte sequence (0-255) for continuity check.

Vehicle Parameters

	Symbol	Value	Unit	Description						
Geometrical paramete	rc.									
deometrical paramete	-	0.440		D. H. CH. L. L. L.						
	L	0.143	m	Radius of the vehicle chassis.						
	r	0.029	m	Radius of the bi-directional wheel.						
Electromagnetic parameters:										
	N	390 × 4	-	Quadrature wheel encoder count per wheel revolution						
Controller parameters:	<u>.</u>									
	K_{Ω}	0.8		Rotational gain						
	$K_{\omega_y^B}$	0.1		Gyro scaling gain						
	K_{ff}	40		Wheel velocity controller feed-forward gain						
	K_{V_P}	10		Wheel velocity controller feedback Proportional gain						
	K_{V_I}	1.5		Wheel velocity controller feedback Integral gain						

Control equation

Vehicle control with input $[u_A \quad u_B \quad u_C]$:

Base Vector Control (Mode1):

In BVC mode, we'll control the movement of the vehicle, that is the $[x,y]^B$ translation of the body frame and the vehicle rotation ω_Z^B . First, we map the 16-bit, signed short input to velocity and angular rate command:

$$[V_x \quad V_y \quad \Omega]^T = [u_A \quad u_B \quad u_C]^T$$

Than velocity command for each wheel is calculated:

$$\begin{cases} v_A = -\cos(30^\circ) \ V_x - \sin(30^\circ) \ V_y - K_\Omega L \left(\Omega - K_\omega \omega_y^B\right) \\ v_B = \cos(30^\circ) \ V_x - \sin(30^\circ) \ V_y - K_\Omega L \left(\Omega - K_\omega \omega_y^B\right) \\ v_C = V_y - K_\Omega L \left(\Omega - K_\omega \omega_y^B\right) \end{cases}$$

Where L is the radius of the vehicle chassis.

Individual Wheel Drive (Mode2):

In IWD mode, three packet of the command data is directly sent to wheel as velocity command.

$$[v_A \quad v_B \quad v_C]^T = [u_A \quad u_B \quad u_C]^T$$

Wheel control: 100Hz loop

With velocity command of each wheel $[v_A \quad v_B \quad v_C]$, wheels are controlled by three independent PI controller:

$$u(k) = K_{ff}v_A + u(k-1) + K_{V_P}\big(e_A(k) - e(k-1)\big) + K_{V_I}e(k) \quad \text{, where } \begin{cases} k: \text{this sample} \; ; \; (k-1): \text{last sample} \\ K_{ff}: \text{feed forward term} \\ K: PI \; \text{controller gains} \end{cases}$$

Where error:

$$e_A = v_A - (n_A(k) - n_A(k-1)),$$
 n: Encoder count

Each wheel motor driver is than fed with the generated PWM signal u(k)

Odometry equation

Encoder estimation is called at the same block of control loop, i.e. 100Hz.

Given encoder count $[n_A \quad n_B \quad n_C]^T$ at t = k

$$\begin{bmatrix} d\theta_{\rm A} \\ d\theta_{\rm B} \\ d\theta_{\rm C} \end{bmatrix} = \frac{2\pi r}{N} [n_{\rm A} \quad n_{\rm B} \quad n_{\rm C}]^T$$

Where N is the quadrature encoder count per wheel revolution.

The deviation of state at given sampling time is calculated as follow:

$$\begin{bmatrix} dx \\ dy \\ d\theta \end{bmatrix} = \begin{bmatrix} -\frac{1}{2\cos(30^{\circ})} & \frac{1}{2\cos(30^{\circ})} & 0 \\ -\frac{1}{3\times2\sin(30^{\circ})} & -\frac{1}{3\times2\sin(30^{\circ})} & \frac{2}{3} \\ -\frac{1}{3L\times2\sin(30^{\circ})} & -\frac{1}{3L\times2\sin(30^{\circ})} & -\frac{1}{3L} \end{bmatrix} \begin{bmatrix} d\theta_{A} \\ d\theta_{B} \\ d\theta_{C} \end{bmatrix} = \begin{bmatrix} (-d\theta_{A} + d\theta_{B})\cos(30^{\circ})/2 \\ ((-d\theta_{A} - d\theta_{B}) + 2d\theta_{C})/3 \\ ((-d\theta_{A} - d\theta_{B}) - d\theta_{C})/3L \end{bmatrix}$$

With proper coordinate transformation, we can calculate our velocity w.r.t earth frame, and make positional integration accordingly

$$\begin{bmatrix} V_x \\ V_y \\ \omega \end{bmatrix}^E = \frac{1}{\delta t} \begin{bmatrix} \cos\left(\theta + \frac{d\theta}{2}\right) & -\sin\left(\theta + \frac{d\theta}{2}\right) & 0 \\ \sin\left(\theta + \frac{d\theta}{2}\right) & \cos\left(\theta + \frac{d\theta}{2}\right) & 0 \\ 0 & 0 & 1 \end{bmatrix}_R^E \begin{bmatrix} dx \\ dy \\ d\theta \end{bmatrix}^B, \qquad \delta t = t(\mathbf{k}) - t(\mathbf{k} - 1)$$

$$\begin{bmatrix} X \\ Y \\ \theta \end{bmatrix}^{E} = \int \begin{bmatrix} V_{x} \\ V_{y} \\ \omega \end{bmatrix}^{E} \cong \sum \begin{bmatrix} V_{x} \\ V_{y} \\ \omega \end{bmatrix}^{E} \delta t = \sum \begin{bmatrix} \cos\left(\theta + \frac{d\theta}{2}\right) & -\sin\left(\theta + \frac{d\theta}{2}\right) & 0 \\ \sin\left(\theta + \frac{d\theta}{2}\right) & \cos\left(\theta + \frac{d\theta}{2}\right) & 0 \\ 0 & 0 & 1 \end{bmatrix}_{E}^{B} \begin{bmatrix} dx \\ dy \\ d\theta \end{bmatrix}^{B}$$

Appendix

Useful serial command

USE	eiui seriai c	Omman	iu							
	М		MODE	CM	D_A	CMD_B		CMD_C		
	Stop:									
		0xFF	0xFE	0x02	0x0	0x0	0x0	0x0	0x0	0x00
	E-stop:									
		0xFF	0xFE	0x10	0x0	0x0	0x0	0x0	0x0	0x00
	Direct wh	neel con	ntrol							
	Rota	ate all: (•							
		0xFF	0xFE	0x02	0x0	0x20	0x0	0x20	0x0	0x20
	Rota	ate all re	eversed	: (-32)						
		0xFF	0xFE	0x02	0xFF	0xE0	0xFF	0xE0	0xFF	0xE0
	Rota	ate A:								
		0xFF	0xFE	0x02	0x0	0x20	0x0	0x0	0x0	0x00
	Rota	ate B:								
		0xFF	0xFE	0x02	0x00	0x00	0x00	0x20	0x0	0x00
	Rota	ate C:								
			0xFE	0x02	0x00	0x00	0x00	0x00	0x0	0x20
	Vehicle c									
	$V_{x} =$		_							
			0xFE	0x01	0x00	0x20	0x00	0x00	0×00	0x00
	$V_{\mathcal{Y}} =$		_							
			0xFE	0x01	0x00	0x00	0x00	0x20	0×00	0x00
	$\Omega =$	•	0	0 01	0 00	0 00	0 00	0 00	0 00	0 00
		0xFF	UxFE	0x01	0x00	0x00	0x00	0x00	0x00	0x08

Deprecated

25Hz Encoder data

[0]	[1]	[2]	[3]	[4]	[5]	[6]	[7]	[8]	
0xFF	0xFB	ENC_DIF_A_H	ENC_DIF_A_L	ENC_DIF_B_H	ENC_DIF_B_L	ENC_DIF_C_H	ENC_DIF_C_L	SEQ	l

■ Length: 9 byte

■ ENC_DIF: encoder position difference between this tx and last tx

■ signed short (2bytes, 8-bit), [+32,767 -32,768]

■ SEQ: 1-byte sequence (0-255) for continuity check.