月考(多项式)答案

- 一、填空题(每空2分,共20分)
- 1. 多项式 x+2 除 $x^5+2x^4+x^2+2x+3$ 所得的商式为 x^4+x ,余式为 3.
- 2. 多项式 $x^2 + x + 1$ 除 $x^{3m} + x^{3n+1} + x^{3p+2}$ 所得的余式为 $\underline{0}$,其中 m, n, p 是任意非负整数.
- 3. 已知1+2i 是多项式 $f(x)=x^3-x^2+3x+5$ 的一个根,则 f(x) 其余的根为1-2i,-1.
- 4. $(x^{n-1} + x^{n-2} + \dots + x + 1, x^{m-1} + x^{m-2} + \dots + x + 1) = 1$ 当且仅当 m, n 满足 (m, n) = 1.
- 6. 若 x-1 是多项式 $ax^4 + bx^3 + 1$ 的一个 2 重因式,则 a = 3, b = -4.
- 7. 有理系数多项式 $\frac{1}{2}x^3 + \frac{1}{3}x^2 + x + 5$ 的本原分解表达式为 $\frac{1}{6}(3x^3 + 2x^2 + 6x + 30)$.
- 8. $(x^3-1,(x+1)(x^2+x+1),x^6-1)=x^2+x+1$.
- 二、(20 分) 设 $f(x) = x^5 + 2x^4 3x^3 x + 1$, $g(x) = x^3 + 2x^2 x 2$, (1) 求 (f(x), g(x));

(2) 求u(x),v(x),使得u(x)f(x)+v(x)g(x)=(f(x),g(x)).

$$f(x) = g(x)q_1(x) + r_1(x)$$
, $\sharp + q_1(x) = x^2 - 2$, $r_1(x) = 6x^2 - 3x - 3$.

$$g(x) = r_1(x)q_2(x) + r_2(x)$$
, $\sharp + q_2(x) = \frac{1}{6}x + \frac{5}{12}$, $r_2(x) = \frac{3}{4}x - \frac{3}{4}$.

$$r_1(x) = r_2(x)q_3(x) + r_3(x)$$
, $\sharp + q_3(x) = 8x + 4, r_3(x) = 0$.

$$x-1 = -\frac{4}{3}q_2f + \frac{4}{3}(1+q_1q_2)g = (-\frac{2}{9}x - \frac{5}{9})f + (\frac{2}{9}x^3 + \frac{5}{9}x^2 - \frac{4}{9}x + \frac{2}{9})g$$

三、(20 分)把 $f(x) = x^5 - 1$ 表示成x - 1的方幂和.

$$f(x) = x^5 - 1 = 5(x-1) + 10(x-1)^2 + 10(x-1)^3 + 5(x-1)^4 + (x-1)^5$$

四、(20 分) 设 f(x), g(x), h(x) 是同一数域上的三个多项式, 其中 $h(x) \neq 0$,证明 $h(x) \mid (f(x) - g(x))$ 当且仅当 h(x) 除 f(x) 与 h(x) 除 g(x) 所得余式相同.

证明: \Rightarrow . 若 $f = hq_1 + r_1, g = hq_2 + r_2$,其中 $r_1 = 0$ 或 $\partial r_1 < \partial h$, $r_2 = 0$ 或

 $\partial r_2 < \partial h$.而 $f - g = h(q_1 - q_2) + r_1 - r_2$,同时 h(x) | f(x) - g(x),则 $h | r_1 - r_2$,

故 $r_1 - r_2 = 0$.

五、(20 分)设多项式 $f(x), g(x), h(x), k(x) \in P[x]$ 满足

$$(x^{2}+1)h(x)+(x+1)f(x)+(x+2)g(x)=0$$
,

$$(x^2+1)k(x)+(x-1)f(x)+(x-2)g(x)=0$$
,

证明: $x^2 + 1$ 是 f(x), g(x)的公因式.

证明: 方法一: 第一个式子乘x+1减第二个式子乘x-1,得到.

$$2(x^2+1)h(x)+[(x+1)(x-2)-(x-1)(x+2)]g(x)=0$$
,

即 $2(x^2+1)h(x)-2xg(x)=0$,从而 $(x^2+1)h(x)=xg(x)$,而 $(x^2+1,x)=1$,

故 $x^2 + 1 | g(x)$.同理

第一个式子乘x+2减第二个式子乘x-2,得到.

$$4(x^2+1)h(x)+[(x-1)(x+2)-(x+1)(x-2)]f(x)=0,$$

即 $4(x^2+1)h(x)+2xf(x)=0$, 从而 $2(x^2+1)h(x)=-xf(x)$,

而 $(x^2+1,x)=1$, 故 $x^2+1|f(x)$.

方法二: 两式相加,相减分别得:

$$(x^{2}+1)(h(x)+k(x))+2xf(x)+2xg(x)=0,$$

$$(x^2+1)(h(x)-k(x))+2f(x)+4g(x)=0$$
,

即
$$x^2 + 1|2x(f(x) + g(x)), x^2 + 1|2(f(x) + 2g(x))$$
, 故

$$x^{2}+1|2x(f(x)+g(x))-2x(f(x)+2g(x))$$
, $\forall x^{2}+1|-2xg(x)$,

由
$$(x^2+1,x)=1$$
,故 $x^2+1|g(x)$,同时由 $x^2+1|2(f(x)+2g(x))$ 得 $x^2+1|f(x)$.

方法三: 把 x^2 +1的根i,-i 代入两式

$$(i+1)f(i)+(i+2)g(i)=0, (i-1)f(i)+(i-2)g(i)=0,$$

$$(-i+1)f(-i)+(-i+2)g(-i)=0, (-i-1)f(-i)+(-i-2)g(-i)=0,$$
 解得

$$f(i) = g(i) = f(-i) = g(-i) = 0$$
, $ax = x^2 + 1 | g(x) | x^2 + 1 | f(x) |$.