TAYLOR SPECTRUM FOR MODULE OVER LIE ALGEBRA

BILICH BORIS

- 1. Introduction
- 2. Preliminaries
- 3. Taylor spectrum of g-module

Let \mathfrak{g} be an arbitary Lie algebra and E be a left \mathfrak{g} -module. We will denote by $\hat{\mathfrak{g}}$ the set of isomorphism classes of simple finite dimensional \mathfrak{g} -modules.

Definition 1. The Taylor spectrum of E is the set, defined as

$$\sigma(E) = \{ V \in \hat{\mathfrak{g}} \mid \exists k \colon \operatorname{Tor}_{k}^{U\mathfrak{g}}(V^*, E) \neq 0 \}.$$

From it follows, that the definition above coincides with the original Taylor's definition in \square Add ref case of abelian \mathfrak{g} .

- 4. Case of semisimple Lie algebra
- 5. Spectrum of one-dimensional extensions
 - 6. Case of solvable Lie algebra
 - 7. Case of Nilpotent Lie algebra
- 8. Case of Borel Subalgebra of Semisimple Lie Algebra