ECEN 227 - Introduction to Finite Automata and Discrete Mathematics

ECEN 227

Dr. Mahmoud Nabil

North Carolina A & T State University

February 17, 2020

ECEN 227

Talk Overview

- Mathematical definitions
- Introduction to proofs
- Proof by Exhaustion
- Proof by Counter Example
- Direct Proof
- Proof by Contrapositive
- Indirect Proof
- Proof by Cases

Outline

- Mathematical definitions
- 2 Introduction to proofs
- Proof by Exhaustion
- Proof by Counter Example
- Direct Proof
- 6 Proof by Contrapositive
- Indirect Proof
- 8 Proof by Cases

Even and Odd Integers

Even Integer

An integer x is even if there is an integer k such that x = 2k

Ex.

- 0 = 2*0
- 2 = 2*1
- 4 = 2*2

Odd Integer

An integer x is odd if there is an integer k such that x = 2k+1.

Ex.

- 1 = 2*0+1
- 3 = 2*1+1
- 5 = 2*2+1

Equality and Inequality

Negation of the inequalities

Divides

Divides

An integer x divides an integer y if and only if y = kx, for some integer k.

Ex

• 5 divides 20, in other words 20=5*4

The fact that x divides y is denoted $x \mid y$. If x does not divide y, then that fact is denoted $x \nmid y$.

If x divides y, then y is said to be a multiple of x, and x is a factor or divisor of y.

Prime and Composite Numbers

Prime Numbers

An integer n is prime if and only if n > 1, and for every positive integer m, if m divides n, then m = 1 or m = n.

Ex.

- n=7
- n=13

Combosite Numbers

An integer n is composite if and only if n > 1, and there is an integer m such that 1 < m < n and m divides n.

Ex.

• n=10 , m=2 or m=5

Outline

- Mathematical definitions
- 2 Introduction to proofs
- Proof by Exhaustion
- Proof by Counter Example
- Direct Proof
- Proof by Contrapositive
- Indirect Proof
- 8 Proof by Cases

9 / 46

Introduction

Theorem

A theorem is a statement that can be proven to be true.

Axiom

It is a statement which is accepted without question, and which has no proof.

Proof

A proof is of a series of steps, each of which follows logically from assumptions, axioms, or from previously proven statements, whose final step should result in the statement or the theorem being proven.

Introduction

- One of the hardest parts of writing proofs is knowing where to start.
- Proofs have common patterns, we will cover:
 - Proof by Exhaustion.
 - Proof by Counter Example.
 - Direct Proof.
 - Proof by Contrapositive.
 - Proof by Contradiction.
 - Proof by Cases.
- Coming up with proofs requires trial and error, even for experienced mathematicians.

How to start a proof?

- Usually proofs start with One or more assumption then some statements to show the proof goal.
- Assumptions can be inferred from the theorem text.
- Goal can also be inferred from the theorem text.
- Restating the assumption and the goal is the first step in building a proof.

 The average of two real numbers is less than or equal to at least one of the two numbers.

- The average of two real numbers is less than or equal to at least one
 of the two numbers.
 - Assumption: Let x and y are two real numbers.

- The average of two real numbers is less than or equal to at least one of the two numbers.
 - Assumption: Let x and y are two real numbers.
 - Goal: $(x+y)/2 \le x$ or $(x+y)/2 \le y$.

- The average of two real numbers is less than or equal to at least one of the two numbers.
 - Assumption: Let x and y are two real numbers.
 - Goal: $(x+y)/2 \le x$ or $(x+y)/2 \le y$.
- The difference of two odd integers is even.

- The average of two real numbers is less than or equal to at least one of the two numbers.
 - Assumption: Let x and y are two real numbers.
 - Goal: $(x+y)/2 \le x$ or $(x+y)/2 \le y$.
- The difference of two odd integers is even.
 - Assumption: Let x = 2k+1, y=2j+1

- The average of two real numbers is less than or equal to at least one of the two numbers.
 - Assumption: Let x and y are two real numbers.
 - Goal: $(x+y)/2 \le x$ or $(x+y)/2 \le y$.
- The difference of two odd integers is even.
 - Assumption: Let x = 2k+1, y=2j+1
 - Goal: (x-y) is even.

- The average of two real numbers is less than or equal to at least one of the two numbers.
 - Assumption: Let x and y are two real numbers.
 - Goal: $(x+y)/2 \le x$ or $(x+y)/2 \le y$.
- The difference of two odd integers is even.
 - Assumption: Let x = 2k+1, y=2j+1
 - Goal: (x-y) is even.
- Among any two consecutive integers, there is an odd number and an even number.

- The average of two real numbers is less than or equal to at least one of the two numbers.
 - Assumption: Let x and y are two real numbers.
 - Goal: $(x+y)/2 \le x$ or $(x+y)/2 \le y$.
- The difference of two odd integers is even.
 - Assumption: Let x = 2k+1, y=2i+1
 - Goal: (x-y) is even.
- Among any two consecutive integers, there is an odd number and an even number.
 - Assumption: Let x is an integer

- The average of two real numbers is less than or equal to at least one of the two numbers.
 - Assumption: Let x and y are two real numbers.
 - Goal: $(x+y)/2 \le x$ or $(x+y)/2 \le y$.
- The difference of two odd integers is even.
 - Assumption: Let x = 2k+1, y=2j+1
 - Goal: (x-y) is even.
- Among any two consecutive integers, there is an odd number and an even number.
 - Assumption: Let x is an integer
 - Goal: x is even and x+1 is odd or x is odd and x+1 is even

Theorem

Every positive integer is less than or equal to its square.

Theorem

Every positive integer is less than or equal to its square.

Proof.

• Let x be an integer x > 0. Name a generic object in the domain and state given assumptions about the object

Theorem

Every positive integer is less than or equal to its square.

- Let x be an integer x > 0. Name a generic object in the domain and state given assumptions about the object
- Since x is an integer and x > 0, then $x \ge 1$. State reasoning in complete sentence

Theorem

Every positive integer is less than or equal to its square.

- Let x be an integer x > 0. Name a generic object in the domain and state given assumptions about the object
- Since x is an integer and x > 0, then $x \ge 1$. State reasoning in complete sentence
- Since x > 0, we can multiply both sides of the inequality by x to get:

$$x * x > 1 * x$$
.

Theorem

Every positive integer is less than or equal to its square.

Proof.

- Let x be an integer x > 0. Name a generic object in the domain and state given assumptions about the object
- Since x is an integer and x > 0, then $x \ge 1$. State reasoning in complete sentence
- Since x > 0, we can multiply both sides of the inequality by x to get:

$$x * x > 1 * x$$
.

Simplify the expression we get

$$x^2 > x$$
.

Outline

- Mathematical definitions
- Introduction to proofs
- Proof by Exhaustion
- Proof by Counter Example
- Direct Proof
- Proof by Contrapositive
- Indirect Proof
- 8 Proof by Cases

Prove by Exhaustion

 For universal statements, if the domain is small, it may be easiest to prove the statement by checking each element individually.

Theorem

for
$$n \in \{-1, 0, 1\}$$
 we have $n^2 = |n|$

•
$$n = -1$$
: $(-1)^2 = 1 = |-1|$.

Prove by Exhaustion

 For universal statements, if the domain is small, it may be easiest to prove the statement by checking each element individually.

Theorem

for
$$n \in \{-1, 0, 1\}$$
 we have $n^2 = |n|$

- n = -1: $(-1)^2 = 1 = |-1|$.
- n = 0: $(0)^2 = 0 = |0|$.

Prove by Exhaustion

 For universal statements, if the domain is small, it may be easiest to prove the statement by checking each element individually.

Theorem

for $n \in \{-1, 0, 1\}$ we have $n^2 = |n|$

- n = -1: $(-1)^2 = 1 = |-1|$.
- n = 0: $(0)^2 = 0 = |0|$.
- n = 1: $(1)^2 = 1 = |1|$.

Proof by exhaustion

• For every integer n such that $0 \le n < 4$, $2^{(n+2)} > 3^n$.

- For every integer n such that $0 \le n < 4$, $2^{(n+2)} > 3^n$.
 - When n = 0, $2^{(0+2)} = 4$ and $3^0 = 1$. 4 > 1.

- For every integer n such that $0 \le n < 4$, $2^{(n+2)} > 3^n$.
 - When n = 0, $2^{(0+2)} = 4$ and $3^0 = 1$. 4 > 1.
 - When n = 1, $2^{(1+2)} = 8$ and $3^1 = 3$. 8 > 3.

- For every integer n such that $0 \le n < 4$, $2^{(n+2)} > 3^n$.
 - When n = 0, $2^{(0+2)} = 4$ and $3^0 = 1$. 4 > 1.
 - When n = 1, $2^{(1+2)} = 8$ and $3^1 = 3$. 8 > 3.
 - When n = 2, $2^{(2+2)} = 16$ and $3^2 = 9$. 16 > 9.

- For every integer n such that $0 \le n < 4$, $2^{(n+2)} > 3^n$.
 - When n = 0, $2^{(0+2)} = 4$ and $3^0 = 1$. 4 > 1.
 - When n = 1, $2^{(1+2)} = 8$ and $3^1 = 3$. 8 > 3.
 - When n = 2, $2^{(2+2)} = 16$ and $3^2 = 9$. 16 > 9.
 - When $n = 3 \ 2^{(3+2)} = 32$ and $3^3 = 27$. 32 > 27.

Outline

- Mathematical definitions
- 2 Introduction to proofs
- Proof by Exhaustion
- Proof by Counter Example
- Direct Proof
- Proof by Contrapositive
- Indirect Proof
- 8 Proof by Cases

Counter example

- A counterexample is an assignment of values to variables.
- A counterexample can be used to proof/disproof a logical statement.

Ex

" If n is an integer greater than 1, then $(1.1)^n < n^{10}$ ".

For n = 686, the statement is false because

$$(1.1)^{686} > 686^{10}$$

- A counterexample can be used to disproof a conditional statement must satisfy all the hypotheses and contradict the conclusion.
- Proofing conditional statement can use proof by exhaustion or other mathematical derivation to reach the goal.

Ex.

• **Theorem:** For any real number x, if $x \ge 0$ and x < 1, then $x^2 < x$.

- A counterexample can be used to disproof a conditional statement must satisfy all the hypotheses and contradict the conclusion.
- Proofing conditional statement can use proof by exhaustion or other mathematical derivation to reach the goal.

- **Theorem:** For any real number x, if $x \ge 0$ and x < 1, then $x^2 < x$.
 - Counter example: x = 0, satisfy the hypotheses and contradict the conclusion

- A counterexample can be used to disproof a conditional statement must satisfy all the hypotheses and contradict the conclusion.
- Proofing conditional statement can use proof by exhaustion or other mathematical derivation to reach the goal.

- **Theorem:** For any real number x, if $x \ge 0$ and x < 1, then $x^2 < x$.
 - Counter example: x = 0, satisfy the hypotheses and contradict the conclusion
- **Theorem:** if x is positive integer, then 1/x < x.

- A counterexample can be used to disproof a conditional statement must satisfy all the hypotheses and contradict the conclusion.
- Proofing conditional statement can use proof by exhaustion or other mathematical derivation to reach the goal.

- **Theorem:** For any real number x, if $x \ge 0$ and x < 1, then $x^2 < x$.
 - Counter example: x=0, satisfy the hypotheses and contradict the conclusion
- **Theorem:** if x is positive integer, then 1/x < x.
 - Counter example: x = 1, satisfy the hypotheses and contradict the conclusion

Universal Statement Proof/Disproof

- A counterexample can be used to disproof a universal statement.
- Proofing universal statement can use proof by exhaustion or other mathematical derivation to reach the goal.

Ex.

• Theorem: All primes are odd.

Universal Statement Proof/Disproof

- A counterexample can be used to disproof a universal statement.
- Proofing universal statement can use proof by exhaustion or other mathematical derivation to reach the goal.

- Theorem: All primes are odd.
 - Counter example: x = 2, prime but not odd

A counterexample can be used to proof a existential statement, this
method called constructive proof of existence.

Ex.

• **Theorem:** There is an integer that can be written as the sum of the squares of two positive integers in two different ways.

 A counterexample can be used to proof a existential statement, this method called constructive proof of existence.

- **Theorem:** There is an integer that can be written as the sum of the squares of two positive integers in two different ways.
 - $50 = 1^2 + 7^2$

 A counterexample can be used to proof a existential statement, this method called constructive proof of existence.

Ex.

• **Theorem:** There is an integer that can be written as the sum of the squares of two positive integers in two different ways.

•
$$50 = 1^2 + 7^2$$

• **Theorem:** There are two consecutive positive integers whose product is less than their sum.

22 / 46

• A counterexample can be used to proof a existential statement, this method called constructive proof of existence.

Ex.

- **Theorem:** There is an integer that can be written as the sum of the squares of two positive integers in two different ways.
 - $50 = 1^2 + 7^2$
- **Theorem:** There are two consecutive positive integers whose product is less than their sum.
 - 1 and 2

22 / 46

• Disproofing existential statement can use proof by exhaustion or other mathematical derivation to reach the **negation** of the goal

Ex.

• **Theorem:** There is a real number whose square is negative.

• Disproofing existential statement can use proof by exhaustion or other mathematical derivation to reach the **negation** of the goal

- **Theorem:** There is a real number whose square is negative.
 - Disproof Goal: It is not true that there is a real number whose square is negative.

• Disproofing existential statement can use proof by exhaustion or other mathematical derivation to reach the **negation** of the goal

- **Theorem:** There is a real number whose square is negative.
 - Disproof Goal: It is not true that there is a real number whose square is negative.
 - Disproof Goal: Every real number does not have a negative square.

• Disproofing existential statement can use proof by exhaustion or other mathematical derivation to reach the **negation** of the goal

- **Theorem:** There is a real number whose square is negative.
 - Disproof Goal: It is not true that there is a real number whose square is negative.
 - Disproof Goal: Every real number does not have a negative square.
 - Disproof Goal: Every real number have a square that is greater than or equal zero.

Find a counterexample to show that each of the statements is false.

• Every month of the year has 30 or 31 days.

- Every month of the year has 30 or 31 days.
 - February

- Every month of the year has 30 or 31 days.
 - February
- If n is an integer and n^2 is divisible by 4, then n is divisible by 4.

- Every month of the year has 30 or 31 days.
 - February
- If n is an integer and n^2 is divisible by 4, then n is divisible by 4.
 - n = 2

- Every month of the year has 30 or 31 days.
 - February
- If n is an integer and n^2 is divisible by 4, then n is divisible by 4.
 - n = 2
- For every positive integer x, $x^3 < 2^x$

- Every month of the year has 30 or 31 days.
 - February
- If n is an integer and n^2 is divisible by 4, then n is divisible by 4.
 - n = 2
- For every positive integer x, $x^3 < 2^x$
 - x = 3

Outline

- Mathematical definitions
- 2 Introduction to proofs
- Proof by Exhaustion
- Proof by Counter Example
- Direct Proof
- Proof by Contrapositive
- Indirect Proof
- 8 Proof by Cases

Direct Proof

Used to proof Conditional Statements such as $p \rightarrow c$ are correct.

Direct Proof

In a direct proof of a conditional statement, the hypothesis p is assumed to be true and the conclusion c is proven as a direct result of the assumption.

Theorem

if x is an odd integer and y is an even integer then:

$$x + y$$
 is odd

Proof.

Assume:

$$\therefore x = 2j+1$$

Theorem

if x is an odd integer and y is an even integer then:

x + y is odd

Proof.

Assume:

$$\because x = 2j+1$$

$$∵$$
 y = 2k

Theorem

if x is an odd integer and y is an even integer then:

x + y is odd

Proof.

Assume:

$$\because x = 2j+1$$

$$\because y = 2k$$

$$\therefore x + y = 2j + 1 + 2k$$

Theorem

if x is an odd integer and y is an even integer then:

x + y is odd

Proof.

Assume:

$$\therefore x = 2j+1$$

$$\because y = 2k$$

$$\therefore x + y = 2j + 1 + 2k$$

$$\therefore x + y = 2(j+k)+1$$

Theorem

if x is an odd integer and y is an even integer then:

x + y is odd

Proof.

Assume:

$$\therefore x = 2j+1$$

$$\because y = 2k$$

Then:

$$\therefore x + y = 2j + 1 + 2k$$

$$\therefore x + y = 2(j+k)+1$$

$$\therefore x + y = 2m + 1$$

m is an integer = j+k

Theorem

if x is an odd integer and y is an even integer then:

$$x + y$$
 is odd

Proof.

Assume:

$$\therefore x = 2j+1$$

Then:

$$\therefore x + y = 2j + 1 + 2k$$

$$\therefore x + y = 2(j+k)+1$$

$$\therefore x + y = 2m+1$$

 $m \ is \ an \ integer = j{+}k$

$$\therefore x + y$$
 is odd

Theorem

if r and s are rational numbers then:

r + s is a rational number.

Proof.

Assume:

$$\because \mathbf{r} = \frac{a}{b} \qquad \text{a and b are integers } b \neq 0$$

Theorem

if r and s are rational numbers then:

r + s is a rational number.

Proof.

Assume:

```
\therefore \mathbf{r} = \frac{a}{b} a and b are integers b \neq 0
\therefore \mathbf{S} = \frac{c}{d} c and d are integers d \neq 0
```

Theorem

if r and s are rational numbers then:

r + s is a rational number.

Proof.

Assume:

 $\therefore r = \frac{a}{b}$ $\therefore s = \frac{c}{1}$

a and b are integers $b \neq 0$

 $\because S = \frac{c}{d} \qquad c \text{ and d are integers } d \neq 0$

$$\therefore r + s = \frac{a}{b} + \frac{c}{d}$$

Theorem

if r and s are rational numbers then:

r + s is a rational number.

Proof.

Assume:

$$\therefore r = \frac{a}{b}$$
$$\therefore s = \frac{c}{b}$$

a and b are integers $b \neq 0$

$$\because S = \frac{c}{d}$$
 c and d are integers $d \neq 0$

$$\therefore$$
 r + s= $\frac{a}{b}$ + $\frac{c}{a}$

$$\therefore r + s = \frac{a}{b} + \frac{c}{d}$$
$$\therefore r + s = \frac{(ad + cb)}{db}$$

Theorem

if r and s are rational numbers then:

r + s is a rational number.

Proof.

Assume:

$$\therefore \mathbf{r} = \frac{a}{b} \qquad \text{a and b are integers } b \neq 0$$

$$\therefore \mathbf{S} = \frac{c}{d} \qquad \text{c and d are integers } d \neq 0$$

Theorem

if r and s are rational numbers then:

r + s is a rational number.

Proof.

Assume:

$$\therefore \mathbf{r} = \frac{a}{b} \qquad \text{a and b are integers } b \neq 0$$

$$\therefore \mathbf{S} = \frac{c}{d} \qquad \text{c and d are integers } d \neq 0$$

Then:

∴ r+s is rational

Theorem

if x and y are positive real numbers then:

$$\frac{x}{y} + \frac{y}{x} \ge 2$$

Proof.

Assume:

∴ x and y are real numbers

Theorem

if x and y are positive real numbers then:

$$\frac{x}{y} + \frac{y}{x} \ge 2$$

Proof.

Assume:

∴ x and y are real numbers

Then:

 $\therefore x - y$ is also a real number.

Theorem

if x and y are positive real numbers then:

$$\frac{x}{y} + \frac{y}{x} \ge 2$$

Proof.

Assume:

∴ x and y are real numbers

- $\therefore x y$ is also a real number.
- $\therefore (x-y)^2 \ge 0$, the square of any real number is greater than or equal to 0.

Theorem

if x and y are positive real numbers then:

$$\frac{x}{y} + \frac{y}{x} \ge 2$$

Proof.

Assume:

∴ x and y are real numbers

Then:

 $\therefore x - y$ is also a real number.

 $(x-y)^2 \ge 0$, the square of any real number is greater than or equal to 0.

$$\therefore x^2 - 2xy + y^2 \ge 0$$

Theorem

if x and y are positive real numbers then:

$$\frac{x}{y} + \frac{y}{x} \ge 2$$

Proof.

Assume:

∴ x and y are real numbers

Then:

 $\therefore x - y$ is also a real number.

 $(x-y)^2 \ge 0$, the square of any real number is greater than or equal to 0.

 $\therefore x^2 - 2xy + y^2 \ge 0$

 $\therefore \frac{x}{y} - 2 + \frac{y}{x} \ge 0$ divide both sides of the inequality by xy

Theorem

if x and y are positive real numbers then:

$$\frac{x}{y} + \frac{y}{x} \ge 2$$

Proof.

Assume:

∴ x and y are real numbers

- $\therefore x y$ is also a real number.
- $(x-y)^2 \ge 0$, the square of any real number is greater than or equal to 0.
- $\therefore x^2 2xy + y^2 \ge 0$
- $\therefore \frac{x}{y} 2 + \frac{y}{y} \ge 0$ divide both sides of the inequality by xy
- $\therefore \frac{x}{y} + \frac{y}{x} \ge 2$ Adding 2 to both sides

Outline

- Mathematical definitions
- 2 Introduction to proofs
- Proof by Exhaustion
- Proof by Counter Example
- Direct Proof
- Open Proof by Contrapositive
- Indirect Proof
- 8 Proof by Cases

Proof by Contrapositive

- Used to proof Conditional Statements such as $p \rightarrow c$ are correct.
- Remember if $p \to c$ then $\neg c \to \neg p$ (i.e., contrapositive)

Proof by Contrapositive

In a proof by contrapositive of a conditional statement, the conclusion c is assumed to be false (i.e., $\neg c = true$) and the hypothesis p is proven as false (i.e., $\neg p = true$).

Theorem

If 3n + 7 is an odd integer, then n is an even integer

Proof.

Assume:

n is an odd integer

negation of conclusion

Theorem

If 3n + 7 is an odd integer, then n is an even integer

Proof.

Assume:

n is an odd integer negation of conclusion

Then:

:: n = 2k + 1 for some integer k

Theorem

If 3n + 7 is an odd integer, then n is an even integer

Proof.

Assume:

n is an odd integer negation of conclusion

Then:

 \therefore n = 2k + 1 for some integer k

 $\therefore 3n + 7 = 3(2k + 1) + 7$

Theorem

If 3n + 7 is an odd integer, then n is an even integer

Proof.

Assume:

n is an odd integer negation of conclusion

Then:

 \therefore n = 2k + 1 for some integer k

$$\therefore 3n + 7 = 3(2k + 1) + 7$$

$$\therefore 3n + 7 = 6k + 3 + 7$$

Theorem

If 3n + 7 is an odd integer, then n is an even integer

Proof.

Assume:

n is an odd integer negation of conclusion

Then:

 \therefore n = 2k + 1 for some integer k

$$\therefore 3n + 7 = 3(2k + 1) + 7$$

$$\therefore 3n + 7 = 6k + 3 + 7$$

$$\therefore 3n + 7 = 6k + 10$$

Theorem

If 3n + 7 is an odd integer, then n is an even integer

Proof.

Assume:

n is an odd integer negation of conclusion

Then:

: n = 2k + 1 for some integer k

$$\therefore 3n + 7 = 3(2k + 1) + 7$$

$$\therefore 3n + 7 = 6k + 3 + 7$$

$$\therefore 3n + 7 = 6k + 10$$

$$\therefore 3n + 7 = 2(3k + 5)$$

Theorem

If 3n + 7 is an odd integer, then n is an even integer

Proof.

Assume:

n is an odd integer negation of conclusion

Then:

 \therefore n = 2k + 1 for some integer k

$$\therefore 3n + 7 = 3(2k + 1) + 7$$

$$\therefore 3n + 7 = 6k + 3 + 7$$

$$\therefore 3n + 7 = 6k + 10$$

$$\therefore 3n + 7 = 2(3k + 5)$$

$$\therefore 3n + 7 = 2 m$$

Theorem

If 3n + 7 is an odd integer, then n is an even integer

Proof.

Assume:

n is an odd integer negation of conclusion

Then:

$$: n = 2k + 1$$
 for some integer k

$$\therefore 3n + 7 = 3(2k + 1) + 7$$

$$\therefore 3n + 7 = 6k + 3 + 7$$

$$\therefore 3n + 7 = 6k + 10$$

$$\therefore 3n + 7 = 2(3k + 5)$$

$$\therefore$$
 3n + 7 = 2 m

Therefore: 3n + 7 is an even integer.

Theorem

For every integer x, if x^2 is even, then x is even.

Proof.

Assume:

x is an odd integer negation of conclusion

Theorem

For every integer x, if x^2 is even, then x is even.

Proof.

Assume:

x is an odd integer negation of conclusion

Then:

x = 2k+1

Theorem

For every integer x, if x^2 is even, then x is even.

Proof.

Assume:

x is an odd integer negation of conclusion

$$x = 2k+1$$

$$\therefore x^2 = (2k+1)^2$$

Theorem

For every integer x, if x^2 is even, then x is even.

Proof.

Assume:

x is an odd integer negation of conclusion

$$x = 2k+1$$

$$\therefore x^2 = (2k+1)^2$$

$$\therefore x^2 = 4k^2 + 4k + 1$$

Theorem

For every integer x, if x^2 is even, then x is even.

Proof.

Assume:

x is an odd integer negation of conclusion

$$x = 2k+1$$

$$\therefore x^2 = (2k+1)^2$$

$$\therefore x^2 = 4k^2 + 4k + 1$$

$$\therefore x^2 = 2(2k^2 + 2k) + 1$$

Theorem

For every integer x, if x^2 is even, then x is even.

Proof.

Assume:

x is an odd integer negation of conclusion

$$x = 2k+1$$

$$\therefore x^2 = (2k+1)^2$$

$$\therefore x^2 = 4k^2 + 4k + 1$$

$$\therefore x^2 = 2(2k^2 + 2k) + 1$$

$$\therefore x^2 = 2m + 1$$

Theorem

For every integer x, if x^2 is even, then x is even.

Proof.

Assume:

x is an odd integer negation of conclusion

Then:

$$x = 2k+1$$

$$\therefore x^2 = (2k+1)^2$$

$$\therefore x^2 = 4k^2 + 4k + 1$$

$$\therefore x^2 = 2(2k^2 + 2k) + 1$$

$$\therefore x^2 = 2m + 1$$

$$\therefore x^2$$
 is odd

negation of hypothesis

Theorem

For every integer x, if x^2 is even, then x is even.

Proof.

Assume:

x is an odd integer negation of conclusion

Then:

$$x = 2k+1$$

$$\therefore x^2 = (2k+1)^2$$

$$\therefore x^2 = 4k^2 + 4k + 1$$

$$\therefore x^2 = 2(2k^2 + 2k) + 1$$

$$\therefore x^2 = 2m + 1$$

$$\therefore x^2$$
 is odd

negation of hypothesis

Theorem

For every positive real number r, if r is irrational, then \sqrt{r} is also irrational.

Theorem

For every positive real number r, if r is irrational, then \sqrt{r} is also irrational.

Proof.

Assume:

 \sqrt{r} is rational number

negation of conclusion

ECEN 227 February 17, 2020 34 / 46

Theorem

For every positive real number r, if r is irrational, then \sqrt{r} is also irrational.

Proof.

Assume:

 \sqrt{r} is rational number

negation of conclusion

$$\therefore \sqrt{r} = \frac{x}{y}$$

Theorem

For every positive real number r, if r is irrational, then \sqrt{r} is also irrational.

Proof.

Assume:

 \sqrt{r} is rational number negation of conclusion

Then:

$$\therefore \sqrt{r} = \frac{x}{y}$$

$$\therefore \sqrt{r} = \frac{x}{y}$$

$$\therefore r = \frac{x^2}{y^2}$$

Squaring both sides

Theorem

For every positive real number r, if r is irrational, then \sqrt{r} is also irrational.

Proof.

Assume:

 \sqrt{r} is rational number negation of conclusion

Then:

$$\therefore \sqrt{r} = \frac{x}{y}$$

$$\therefore \sqrt{r} = \frac{x}{y}$$

$$\therefore r = \frac{x^2}{y^2}$$

Squaring both sides

Note : x and y are integers, also x^2 and y^2 are both integers.

Since $y \neq 0$, y^2 is also non-zero. The number r is equal to the ratio of two integers in which the denominator is non-zero.

Theorem

For every positive real number r, if r is irrational, then \sqrt{r} is also irrational.

Proof.

Assume:

 \sqrt{r} is rational number negation of conclusion

Then:

$$\therefore \sqrt{r} = \frac{x}{y}$$

$$\therefore \sqrt{r} = \frac{x}{y}$$

$$\therefore r = \frac{x^2}{y^2}$$
 Squaring both

Squaring both sides

Note : x and y are integers, also x^2 and y^2 are both integers.

Since $y \neq 0$, y^2 is also non-zero. The number r is equal to the ratio of two integers in which the denominator is non-zero.

r is rational

negation of hypothesis

Theorem

For every positive real number r, if r is irrational, then \sqrt{r} is also irrational.

Proof.

Assume:

 \sqrt{r} is rational number negation of conclusion

Then:

$$\therefore \sqrt{r} = \frac{x}{y}$$

$$\therefore \sqrt{r} = \frac{x}{y}$$

$$\therefore r = \frac{x^2}{y^2}$$

Squaring both sides

Note : x and y are integers, also x^2 and y^2 are both integers.

Since $y \neq 0$, y^2 is also non-zero. The number r is equal to the ratio of two integers in which the denominator is non-zero.

r is rational

negation of hypothesis

ECEN 227 February 17, 2020

Outline

- Mathematical definitions
- 2 Introduction to proofs
- Proof by Exhaustion
- Proof by Counter Example
- Direct Proof
- Proof by Contrapositive
- Indirect Proof
- 8 Proof by Cases

Proof by Contradiction (Indirect Proof)

Proof by contradiction

A proof by contradiction starts by assuming that the theorem is false and then shows that some logical inconsistency arises as a result of this assumption.

 Unlike direct proofs a proof by contradiction can be used to prove theorems that are not conditional statements.

Ex. To prove the statement $p \to q$ then the beginning assumption is $p \land \neg q$ which is logically equivalent to $\neg (p \to q)$.

Theorem

If a and b are positive real numbers then $\sqrt{a} + \sqrt{b} \neq \sqrt{a+b}$

Proof.

Assume:

1.
$$a > 0, b > 0$$

1.
$$a > 0, b > 0$$

2. $\sqrt{a} + \sqrt{b} = \sqrt{a+b}$

Theorem

If a and b are positive real numbers then $\sqrt{a} + \sqrt{b} \neq \sqrt{a+b}$

Proof.

Assume:

1.
$$a > 0, b > 0$$

2.
$$\sqrt{a} + \sqrt{b} = \sqrt{a+b}$$

Then:

$$\therefore (\sqrt{a} + \sqrt{b})^2 = (\sqrt{a+b})^2$$

Squaring both sides of 2

Theorem

If a and b are positive real numbers then $\sqrt{a} + \sqrt{b} \neq \sqrt{a+b}$

Proof.

Assume:

1.
$$a > 0, b > 0$$

2.
$$\sqrt{a} + \sqrt{b} = \sqrt{a+b}$$

Then:

$$\therefore (\sqrt{a} + \sqrt{b})^2 = (\sqrt{a+b})^2$$
 Square

Squaring both sides of 2

$$\therefore (\sqrt{a^2} + 2\sqrt{ab} + \sqrt{b^2}) = a + b$$

Theorem

If a and b are positive real numbers then $\sqrt{a} + \sqrt{b} \neq \sqrt{a+b}$

Proof.

Assume:

1.
$$a > 0, b > 0$$

2.
$$\sqrt{a} + \sqrt{b} = \sqrt{a+b}$$

Then:

$$\therefore (\sqrt{a} + \sqrt{b})^2 = (\sqrt{a+b})^2$$

Squaring both sides of 2

$$\therefore (\sqrt{a^2} + 2\sqrt{ab} + \sqrt{b^2}) = a + b$$

$$\therefore (\sqrt{a^2} + 2\sqrt{ab} + \sqrt{b^2}) = a + b$$

ECEN 227 February 17, 2020 37 / 46

Theorem

If a and b are positive real numbers then $\sqrt{a} + \sqrt{b} \neq \sqrt{a+b}$

Proof.

Assume:

1.
$$a > 0, b > 0$$

2.
$$\sqrt{a} + \sqrt{b} = \sqrt{a+b}$$

Then:

$$(\sqrt{a} + \sqrt{b})^2 = (\sqrt{a+b})^2$$

Squaring both sides of 2

$$\therefore (\sqrt{a^2} + 2\sqrt{ab} + \sqrt{b^2}) = a + b$$

$$\therefore (\sqrt{a^2} + 2\sqrt{ab} + \sqrt{b^2}) = a + b$$

$$\therefore a + 2\sqrt{ab} + b = a + b$$
 Subtract a+b

Theorem

If a and b are positive real numbers then $\sqrt{a} + \sqrt{b} \neq \sqrt{a+b}$

Proof.

Assume:

1.
$$a > 0, b > 0$$

2.
$$\sqrt{a} + \sqrt{b} = \sqrt{a+b}$$

Then:

$$\therefore (\sqrt{a} + \sqrt{b})^2 = (\sqrt{a+b})^2$$
 Squaring both sides of 2

$$\therefore (\sqrt{a^2} + 2\sqrt{ab} + \sqrt{b^2}) = a + b$$

$$\therefore (\sqrt{a^2} + 2\sqrt{ab} + \sqrt{b^2}) = a + b$$

$$\therefore a + 2\sqrt{ab} + b = a + b$$
 Subtract a+b

$$\therefore 2\sqrt{ab} = 0$$

ECEN 227 February 17, 2020 37 / 46

Theorem

If a and b are positive real numbers then $\sqrt{a} + \sqrt{b} \neq \sqrt{a+b}$

Proof.

Assume:

1.
$$a > 0, b > 0$$

2.
$$\sqrt{a} + \sqrt{b} = \sqrt{a+b}$$

Then:

$$\therefore (\sqrt{a} + \sqrt{b})^2 = (\sqrt{a+b})^2$$
 Squaring both sides of 2

$$\therefore (\sqrt{a^2} + 2\sqrt{ab} + \sqrt{b^2}) = a + b$$

$$\therefore (\sqrt{a^2} + 2\sqrt{ab} + \sqrt{b^2}) = a + b$$

$$\therefore a + 2\sqrt{ab} + b = a + b$$
 Subtract $a+b$

$$\therefore 2\sqrt{ab} = 0$$

Either a = 0 or b = 0, Contradiction with 1

ECEN 227 February 17, 2020 37 / 46

 $\sqrt{2}/2$ is an irrational number.

Assume:

 $\sqrt{2}/2$ is rational

Then:

 $\sqrt{2}/2$ is an irrational number.

Assume:

 $\sqrt{2}/2$ is rational

Then:

$$\therefore \sqrt{2}/2 = \frac{a}{b}$$
 a and b are integers $b \neq 0$

 $\sqrt{2}/2$ is an irrational number.

Assume:

 $\sqrt{2}/2$ is rational

Then:

$$\therefore \sqrt{2}/2 = \frac{a}{b}$$

a and b are integers $b \neq 0$

$$\therefore \sqrt{2} = \frac{2a}{b}$$

multiplying both sides by 2

 $\sqrt{2}/2$ is an irrational number.

Assume:

 $\sqrt{2}/2$ is rational

Then:

$$\therefore \sqrt{2}/2 = \frac{a}{b}$$

a and b are integers $b \neq 0$

$$\therefore \sqrt{2} = \frac{2a}{b}$$

multiplying both sides by 2

$$\therefore \sqrt{2} = \frac{c}{b}$$

where both c and b are integers

 $\sqrt{2}/2$ is an irrational number.

Assume:

 $\sqrt{2}/2$ is rational

Then:

$$\therefore \sqrt{2}/2 = \frac{a}{b}$$
 a and b are integers $b \neq 0$

$$\therefore \sqrt{2} = \frac{2a}{b}$$
 multiplying both sides by 2

$$\therefore \sqrt{2} = \frac{c}{b}$$
 where both c and b are integers

 $\sqrt{2}$ is rational which contradicts that $\sqrt{2}$ is irrational number.

Theorem

Among any group of 25 people, there must be at least three who are all born in the same month.

Theorem

p: group of 25 people,

g: there must be at least three who are all born in the same month.

 $p \rightarrow q$

Theorem

- x_1 : # of people in Jan
- x_2 : # of people in Feb
- ...
- x_{12} : # of people in Dec
- $x_1 + x_2 + \cdots + x_{12} = 25$
- $(x_1 + x_2 + \dots + x_{12} = 25) \rightarrow ((x_1 \ge 3) \lor \dots \lor (x_{12} \ge 3))$

Proof.

Assume:

1.
$$(x_1 + x_2 + \cdots + x_{12} = 25)$$

2.
$$((x_1 \le 2) \land ... \land (x_{12} \le 2))$$

Then.

$$(x_1 + x_2 + \cdots + x_{12}) \le (2 + x_2 + \cdots + x_{12})$$

$$\therefore (x_1 + x_2 + \dots + x_{12}) \le (2 + 2 + \dots + x_{12})$$

$$(x_1 + x_2 + \cdots + x_{12}) \le 24$$

Contradiction with 1.

Outline

- Mathematical definitions
- 2 Introduction to proofs
- Proof by Exhaustion
- Proof by Counter Example
- Direct Proof
- Proof by Contrapositive
- Indirect Proof
- Proof by Cases

Proof by cases

- A proof by cases of a universal statement such as $\forall x P(x)$ breaks the domain for the variable x into different cases and gives a different proof for each case.
- Every value in the domain must be included in at least one case.

Theorem

For every integer x, $x^2 - x$ is an even integer.

Proof.

Case 1 x is even: x = 2k for some integer k

Theorem

For every integer x, $x^2 - x$ is an even integer.

Proof.

Case 1 x is even: x = 2k for some integer k

$$x^{2} - x = (2k)^{2} - 2k$$
$$= 4k^{2} - 2k$$
$$= 2(2k^{2} + k)$$
$$= 2d$$

∴ theorem is correct for Case 1

Theorem

For every integer x, $x^2 - x$ is an even integer.

Proof.

Case 2 x is odd: x = 2k + 1 for some integer k

Theorem

For every integer x, $x^2 - x$ is an even integer.

Proof.

Case 2 x is odd: x = 2k + 1 for some integer k

$$x^{2} - x = (2k+1)^{2} - (2k+1)$$

$$= 4k^{2} + 4k + 1 - (2k+1)$$

$$= 4k^{2} + 2k$$

$$= 2(2k^{2} + k)$$

$$= 2d$$

∴ theorem is correct for Case 2

Theorem

For any real number x, |x + 5| - x > 1

Proof.

Case 1.
$$(x+5) \ge 0$$
: Therefore : $|x+5| = +(x+5)$

$$|x + 5| - x = (x + 5) - x$$

= 5 > 1

∴ theorem is correct for Case 1

44 / 46

Theorem

For any real number x, |x + 5| - x > 1

Proof.

Case 2. $(x+5) \le 0$: Therefore : |x+5| = -(x+5)

LHS =
$$|x + 5| - x = -(x + 5) - x$$

= $2(-x) - 5$

Theorem

For any real number x, |x + 5| - x > 1

Proof.

Case 2.
$$(x+5) \le 0$$
: Therefore : $|x+5| = -(x+5)$

$$LHS = |x + 5| - x = -(x + 5) - x$$
$$= 2(-x) - 5$$

$$(x+5) \leq 0$$

Theorem

For any real number x, |x + 5| - x > 1

Proof.

Case 2.
$$(x+5) \le 0$$
: Therefore : $|x+5| = -(x+5)$

LHS =
$$|x + 5| - x = -(x + 5) - x$$

= $2(-x) - 5$

$$(x+5) \le 0$$

$$\therefore x \leq -5$$

Theorem

For any real number x, |x + 5| - x > 1

Proof.

Case 2.
$$(x+5) \le 0$$
: Therefore : $|x+5| = -(x+5)$

$$LHS = |x + 5| - x = -(x + 5) - x$$
$$= 2(-x) - 5$$

$$(x+5) \leq 0$$

$$\therefore x \leq -5$$

$$\therefore -x \ge 5$$

Theorem

For any real number x, |x + 5| - x > 1

Proof.

Case 2.
$$(x+5) \le 0$$
: Therefore : $|x+5| = -(x+5)$

$$LHS = |x + 5| - x = -(x + 5) - x$$
$$= 2(-x) - 5$$

$$(x+5) \leq 0$$

$$\therefore x \leq -5$$

$$\therefore -x \ge 5$$

$$\therefore 2(-x) \ge 10$$

Multiply both sides by 2

Theorem

For any real number x, |x + 5| - x > 1

Proof.

Case 2.
$$(x+5) \le 0$$
: Therefore : $|x+5| = -(x+5)$

$$LHS = |x + 5| - x = -(x + 5) - x$$
$$= 2(-x) - 5$$

$$(x+5) \leq 0$$

$$\therefore x < -5$$

$$\therefore -x \ge 5$$

$$\therefore 2(-x) \ge 10$$

$$\therefore 2(-x) - 5 \ge 5$$

Multiply both sides by 2

Theorem

For any real number x, |x + 5| - x > 1

Proof.

Case 2.
$$(x+5) \le 0$$
: Therefore : $|x+5| = -(x+5)$

LHS =
$$|x + 5| - x = -(x + 5) - x$$

= $2(-x) - 5$

$$\therefore (x+5) \leq 0$$

$$\therefore x \leq -5$$

$$\therefore -x \ge 5$$

$$\therefore 2(-x) \ge 10$$

$$\therefore 2(-x) - 5 \ge 5$$

Multiply both sides by 2

$$\therefore 2(-x) - 5 > 1$$

ECEN 227

Questions &

