Практическая работа № 1

АТАКА НА АЛГОРИТМ ШИФРОВАНИЯ RSA ПОСРЕДСТВОМ МЕТОДА ФЕРМА

Цель работы: изучить атаку на алгоритм шифрования RSA посредством метода Ферма для случая неудачного выбора параметров.

Взлом алгоритма RSA при неудачном выборе параметров криптосистемы

Обеспечение безопасности RSA зависит от реализации этого метода. Неудачный выбор параметров позволяет найти эквивалентные ключи или факторизовать модуль. Рассмотрим ряд примеров.

<u>Пример 1</u>. Пусть N = 2047, e = 179, d = 411. Так как $2047 = 23 \times 89$, а $\phi(23) = 22$, $\phi(89) = 88$ имеют наименьшее общее кратное 88, то любой обратный к 179 по модулю 88, например 59, будет действовать как d.

Пример 2. Число 23360947609 является очень плохим выбором для N из-за того, что два его простых

делителя слишком близки к друг другу. Пусть p>q , тогда $N=\left(\frac{p+q}{2}\right)^2-\left(\frac{p-q}{2}\right)^2$. Пусть

 $t=rac{p+q}{2}$, $s=rac{p-q}{2}$, т.к. последняя величина небольшая, то и $t-\sqrt{N}$ также является небольшим числом и t^2-N является полным квадратом. Переберем все числа $t>\sqrt{N}$ и проверим на выполнение условия $t^2-N=a^2$, где a и есть s :

$$t_1 = 152843, t_2 = 152844, t_3 = 152845$$
 _M $t_3^2 - N = 804^2$

Далее нахождение p и q не представляет большого труда.

Ход работы:

- 1. исходные данные для своего варианта взять из табл. 1;
- 2. используя разложение модуля на простые числа методом Ферма и полученные исходные данные, определить следующие показатели:
 - множители модуля $(p \ u \ q)$;
 - значение функции Эйлера для данного модуля $\phi(N)$;
 - обратное значение экспоненты по модулю $\phi(N)$;
- 3. дешифровать зашифрованный текст, исходный текст должен быть фразой на русском языке;
- 4. результаты и промежуточные вычисления оформить в виде отчета.

Варианты заданий к выполнению практической работы № 1

Таблица 1.

Вариант	Модуль (<i>N</i>)	Экспонента (е)	Блоки зашифрованного текста
13	72903890242273	3261683	37429454018574 4059818986
	t = 8538383	p = 8528687	65632293727338 3894472160
	s = 9696	q = 8548079	71955235122455 552792288
			71474662312159 3992055790
	phiN =		18537435780920 4042452462
	72903873165508		58372142077460 3961582576
	d =		68330829196451 4007849445
	16406932632835		60882917270796 539828463
			24142764117328 4042194914
			31238010810556 3959416306

			66143215653810 4060029165
			30769266886306 3760217951
19	59046883376179	4044583	32279109612093 4092653282
	t = 7684202	p = 7675427	17838629182964 3991219744
	s = 8775	q = 7692977	4165776716262 3487953125
			13093284635895 4159238635
	phiN =		20048651313008 3907789039
	59046868007776		54626454832531 4041795565
	d =		12801053743903 3773491232
	31944145322807		54675332003643 3991272948
			4544911979279 4108708594
			31928373564570 3907186158
			798945495513 3824034024
			19569174668782 4059033323
23	48992988576733	4545733	12530303611339 4008702696
	t = 6999503	p = 6992177	47274247086952 3974163452
	s = 7326	q = 7006829	20068556933394 3992710176
			41300245344157 1297372448
	phiN =		27564916776233 3990888691
	48992974577728		45997492729411 4042187501
	d =		11416336760074 3844097100
	25037979834125		17516700753417 1126965484
			10586755223028 3773556205
			5642378694993 4243253481
			17949047899806 539551979
			13276902592875 3894435679
29	33644210466973	5285461	2887763929737 4008898544
	t = 5800367	p = 5793521	14268468183889 3772967648
	s = 6846	q = 5807213	17106478222082 552263908
			11308338337725 4042187296
	phiN =		22932870001788 3808161774
	33644198866240		22780920502986 3958243301
	d =		3159009422412 4075945760
	18224590060541		22191880208231 4059095271
			24883589317156 4079022062
			20042326937734 4058768672
			21464252061935 3908378719
			6743660373779 1600085855

Практическая работа № 2

АТАКА НА АЛГОРИТМ ШИФРОВАНИЯ RSA МЕТОДОМ ПОВТОРНОГО ШИФРОВАНИЯ

Цель работы: изучить атаку на алгоритм шифрования RSA посредством повторного шифрования.

Атака повторным шифрованием

Рассмотрим последовательность

$$y_1 = y = x^e \bmod N, y_2 = y_1^e \bmod N, ..., y_s = y_{s-1}^e \bmod N, ...$$
 Так как $(e, \varphi(N)) = 1$, то
$$\exists k \in Z, k > 0 : e^k = 1 \bmod \varphi(N)$$
 и $y_k = y_{k-1}^e = y \bmod N$, следовательно $y_{k-1} = x$.

Ход работы:

- 1. по исходным данным варианта используя идею перешифрования определить порядок числа $e \in Z_{\varphi(N)}$;
- 2. используя значение порядка экспоненты, получить исходный текст методом перешифрования;
- 3. результаты и промежуточные вычисления оформить в виде отчета.

Варианты заданий к выполнению практической работы № 2

Таблица 2

Вариант	Модуль (<i>N</i>)	Экспонента (е)	Блоки зашифрованного текста		
13	915012974539	1001953	763770087861 4092719856		
	k = 4919		432343847598 3773687277		
			764682728575 3909034223		
			206635140312 4042187243		
			627210520886 3857513262		
			794063631890 549777121		
			309297959146 3772967909		
			68118108284 3991463200		
			116045398315 3974687472		
			912085643674 4008702190		
			257483784869 4142264817		
			167814127445 4008763436		
			55188158350 550422483		
19	762930465497	369197	272601390768 4075155954		
	k = 68639		146191862405 3908103906		

<u> </u>	
56417639739 377368	88063
25010208392 552083	3682
569176485965 42268	305483
292815488501 39912	268840
152909580675 42803	346592
634319609453 40255	544433
578700740159 40077	796776
648142948177 39908	888701
39319966771 407569	92065
517127377434 40590)33329
490584971826 40077	783931
23 888532740131 508097 251133768996 <mark>39079</mark>	008325
k = 78539 359801014616 39920)53986
557356431645 39918	359698
75854873865 423001	6760
768478933532 39071	20874
624174758081 74035	52032
306027834198 40748	326470
586384787006 38441	40783
155294489444 40415	598181
358096762086 39579	912316
197284968232 55253	30413
498688500894 40078	349467
467532994504 38441	04031
29 414634315817 1039187 200343263939 13826	541255
k = 68819 13939901815 740352	2032
329718769183 40748	326470
169659670872 38441	41038
49667978685 384106	52885
11286581382 406224	13552
92461615100 384099	95042
173590557244 53955	50240
62542045222 407574	14288
310782145259 41592	238635
348390168011 38441	.04818
308011216304 18686	53667

Практическая работа № 3

АТАКА НА АЛГОРИТМ ШИФРОВАНИЯ RSA МЕТОДОМ БЕСКЛЮЧЕВОГО ЧТЕНИЯ.

Цель работы: изучить атаку на алгоритм шифрования RSA посредством метода бесключевого чтения.

Метод бесключевого чтение

Пусть два пользователя выбрали одинаковый модуль N и разные экспоненты e_1 и e_2 . Третий пользователь посылает им некое циркулярное сообщение x, то криптоаналитик может получить в свое распоряжение два шифрованных текста

$$y_1 = x^{e_1} \bmod N \quad \quad y_2 = x^{e_2} \bmod N$$

В этом случае криптоаналитик может получить исходное открытое сообщение, используя расширенный алгоритм Евклида, выполнив следующую последовательность действий:

• находим r, s такие, что

$$r \cdot e_1 + s \cdot e_2 = 1$$

• получаем открытое сообщение

$$y_1^r \cdot y_2^s = x^{r \cdot e_1 + s \cdot e_2} = x$$

Ход работы:

- 1. по исходным данных варианта задания определить значения r и s
- 2. используя полученные значения r и s, записать исходный текст;
- 3. результаты и промежуточные вычисления значений для любых трех блоков шифрованного текста оформить в виде отчета.

Варианты заданий к выполнению практической работы № 3

Таблица 3

Вариан	Модуль(N	Экспонент		Блоки зашифрованного текста		
T)	Ы				
		e_1	e_2	\mathbf{y}_1	y_2	x
13	51858780	29317	120	373852443734	22286870422	3488671776
	7081	7	978	447989059513	343015689591	4058965988
	r =		1	140756140384	281801228231	3773688040
	559972			207791711792	360270382562	552726245
	$_{\mathrm{S}} =$			252160015422	264253306719	3840470501
	-135703			151272799305	128520421967	3991469856
				431450717984	399665129411	4059229936
				252882800366	448878989738	4008573728
				112417596471	70913527757	4007783653
				301753741810	295285211952	3991462624
				480461056512	247990966487	4277334527
				334158277030	202711954425	552461809

				368394150653	201121363025	3941474336
19	50098430	47014	267	274230487503	176943898057	4074826470
19		9				
	6287	9	797	6821302647 172152295595	272954693703 141643708385	3844140270
	r = 82649					3873829408
	S = 1.45100			454539302130	238296127866	4092256487
	-145100			462305524774	270971764501	3774020640
				73589652382	389314459147	4058378466
				274794725040	476866404163	3857773344
				295185494003	295344931481	3974163185
				159348742119	288885538254	3907838187
				62021560582	144738759088	4243454953
				311827395163	52793710114	552657127
				159638616315	416204845784	3974492192
23	30395882	11735	136	300865234944	158205869566	4159237600
	3183	51	669	280167078723	47430389231	552067306
	r =		3	44778324729	235868270647	3959355360
	-439603			15647443106	60933642983	3857904127
	$_{\mathrm{S}} =$			72500796041	230961885063	551690482
	377478			127042219796	189840956692	4008455200
				220297476381	155026770625	4159893024
				159193146152	118061171422	3990940648
				281783946206	64695094087	4159235360
				83397684706	90093203015	3974489834
				218587175059	140628953794	3773100270
				32628200905	156685525752	3807306734
				87293077359	96578125026	538976288
29	11768799	55016	376	236505725833	169179266140	808335670
	50087	9	237	12096288569	617962027334	552397553
	r =			1062670335800	332483986069	551873535
	127008			541231133081	1065692323879	540094512
	$_{\mathrm{S}} =$			529745761698	420409290920	550298088
	-185723			79574674510	733896529297	4063228192
				518908160088	201622748685	686960160
				195753762481	457529162746	3845005537
				284194617926	1037225648947	3857179374
				861518052504	732504268577	3890409696
				844805726716	1172056967964	4075679264
				575330762793	1002467039854	4075155711
				319168661888	850197148213	3857904127
				377123370130	279510203667	538976288