

Universidade Federal do Ceará Centro de Ciências

Departamento de Computação

PLANO DE ENSINO DE DISCIPLINA

Ano/Semestre **2019.2**

1. Identificação							
1.1. Unidade: Centro de Ciências							
1.2. Cursos: Matemática Industrial (código 80) e Computação (código 65)							
1.3. Nome da Disciplina: Estruturas de Dados							
1.4. Código da Disciplina: CK0109							
1.5. Caráter da Disciplina: (X) Obrigatória () Optativa							
1.6. Regime de Oferta da Disciplina: (X) Semestral () Anual () Modular							
1.7. Carga Horária (CH) Total: 96	C.H. Teórica: 96	C.H. Prática: 0	C.H. EaD: 0	C.H. Extensão: 0	C.H. Prática como componente curricular – PCC¹ (apenas para cursos de licenciatura):		
 1.8. Pré-requisitos: No curso de Matemática Industrial: CK0087 - Fundamentos de Programação No curso de Computação: CB0661 - Matemática Discreta CK0108 - Fundamentos de Programação 							
1.9. Co-requisitos: –							
1.10. Equivalências: —							
1.11. Professor: Pablo Mayckon Silva Farias							
2. Justificativa							

Nesta disciplina, o aluno é apresentado às formas clássicas de organização de dados em programas de computador, por meio das quais são realizadas de forma eficiente as tarefas básicas da atividade

¹ O registro da carga horária de PCC deve ser realizado apenas como informação da característica do componente, sem ser somada com os demais elementos (CH prática, teórica, EAD e extensão), visto que a PCC pode estar diluída em qualquer um desses.

da programação.

3. Ementa

Introdução. Listas Lineares. Árvores balanceadas. Listas de prioridades. Tabelas de dispersão.

4. Objetivos – Geral e Específicos

Apresentação de modelos matemáticos que representam tipos abstratos de dados que ocorrem com frequência em algoritmos, além de operações definidas sobre esses modelos.

5. Descrição do Conteúdo/Unidades	Carga Horária
Base de Programação em C++ (Introdução, Ponteiros e sua Aritmética, Alocação Dinâmica de Memória, Polimorfismo Paramétrico, Funções-membro)	10h
Expansão e Contração Eficientes de Vetores	2h
Tipos Abstratos de Dados Representados via Vetor (Motivação, Pilhas, Filas, Conjuntos Dinâmicos e Iteradores, Dicionários)	16h
Tipos Abstratos de Dados Representados via Listas Encadeadas (Pilhas, Filas, Deques e Encadeamento Duplo, Conjuntos Dinâmicos, Listas Circulares, Sentinelas e Iteradores)	12h
Notações Assintóticas e Complexidade de Algoritmos (Notações O, Ômega e Teta; Tempo de Execução e Complexidade de Algoritmos)	6h
Tabelas de Dispersão (Encadeamento Externo, Expansão e Contração, Dispersão por Divisão e por Multiplicação, Endereçamento Aberto)	10h
Busca Binária e Aplicações	2h
Árvores Binárias de Busca e n-árias (Introdução a Árvores Binárias de Busca, Inserção, Remoção, Percursos, Árvores n-árias)	6h
Árvores Balanceadas e AVL (Balanceamento, Critério AVL, Altura de Árvores AVL, Inserção e Remoção)	6h
Filas de Prioridades e Montes ("Heaps") Binários (Estrutura, Representação, Inserção, Remoção, Construção em Tempo Linear, Ordenação por Monte ("heapsort"))	6h
Avaliações Parciais	6h
Correções de Provas em Sala e Revisão	6h
Eventos Universitários (Semana Acadêmica da Computação, Encontros Universitários, Semana da Matemática Industrial)	14h

6. Metodologia de Ensino

Em sala de aula, serão realizadas aulas expositivas dialogadas, nas quais o professor tipicamente começará com um problema motivador e em seguida passará a uma discussão com os alunos, percorrendo, na medida em que o tempo de aula permitir, o caminho de uma redescoberta da solução clássica para o problema.

Essas aulas serão complementadas por exercícios para casa e 4 trabalhos de programação durante o semestre, nos quais os alunos colocarão em prática o aprendizado das aulas.

7. Atividades Discentes

Os alunos deverão:

- Acompanhar e participar das aulas.
- Fazer os exercícios para casa e tirar as respectivas dúvidas.
- Acompanhar as notícias enviadas por e-mail a partir do SIGAA, bem como os arquivos colocados na turma virtual do sistema.
- Acompanhar o calendário da disciplina (http://dc.ufc.br/~pablo/2019-2/ed/#plano).
- Fazer os 4 trabalhos de programação da disciplina.
- Fazer as 3 avaliações parciais da disciplina, bem com a avaliação final, quando for o caso.

8. Avaliação

A nota de cada aluno na disciplina será a soma das notas do aluno nas 3 avaliações parciais e nos 4 trabalhos de programação da disciplina. As pontuações desses elementos da nota serão as seguintes:

- Cada um dos 4 trabalhos valerá 0,5 ponto da nota.
- A AP1 e a AP2 valerão 2,5 pontos cada uma, e a AP3 valerá 3 pontos da nota.

Assim sendo, 80% da nota do aluno na disciplina virá das avaliações parciais, e 20% dos trabalhos.

9. Bibliografia Básica e Complementar

Bibliografia Básica:

- 1. Lilian Markenzon, Jayme Luiz Szwarcfiter, *Estruturas de Dados e Seus Algoritmos (3ª edição)*, LTC, 2010. ISBN-13: 9788521617501.
- 2. Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, Clifford Stein, *Algoritmos 3^a Edição*, Elsevier, 2009. ISBN-13: 978-8535236996.
- 3. Niklaus E. Wirth, *Algoritmos e Estruturas de Dados*, Rio de Janeiro, LTC editora, 1999. ISBN: 978-8521611905.

Bibliografia Complementar:

- 1. Clifford A. Shaffer, *Data Structures and Algorithm Analysis in C++ (Third Edition)*, Dover Publications, 2013. (http://people.cs.vt.edu/~shaffer/Book/C++3elatest.pdf)
- 2. Mark Allen Weiss, *Data Structures and Algorithm Analysis in C++ (4th edition)*, Prentice Hall, 2014. ISBN-13: 978-0132847377.
- 3. Ellis Horowitz, Sartaj Sahni, Dinesh Mehta, *Fundamentals of Data Structures in C++ (2nd edition)*, Silicon Press, 2006. ISBN-13: 978-0929306377.
- 4. Alfred V. Aho, Jeffrey D. Ullman, John E. Hopcroft, *Data Structures and Algorithms*, Addison-Wesley, 1983. ISBN-13: 978-0201000238.
- 5. Donald E. Knuth, *Art of Computer Programming, Volume 1: Fundamental Algorithms*, Addison-Wesley, 1997. ISBN-13: 978-0201896831.

10. Parecer

Aprovação do Colegiado	o do Departamento	
//	Assinatura da Chefia do Departamento	
Aprovação do Colegiado	o de Coordenação do Curso	
//		
	Assinatura do Coordenador	