Towards Sample-Optimal Methods for Solving Random Quadratic Equations with Structure

Gauri Jagatap and Chinmay Hegde

Iowa State University

Compressed Sensing Fr-AM-1-5 International Symposium on Information Theory (ISIT), 2018

Problem Setup

Random Quadratic Equations

- ▶ Unknown vector of parameters, $\mathbf{x}^* \in \mathbb{R}^n$
- ▶ Observations $\mathbf{y} \in \mathbb{R}^m$ of the form:

$$y_i = |\langle \mathbf{a}_i, \mathbf{x}^* \rangle|^{p}$$
, $i = [m]$, s.t. $\mathbf{x}^* \in \mathcal{M}_s$

- $\mathcal{M}_s \subset \mathbb{R}^n$ is a *model* set that reflects the structural constraints on \mathbf{x}^* .
- ▶ Under-determined Gaussian observations, $\mathcal{A} = [\mathbf{a}_1 \dots \mathbf{a}_i \dots \mathbf{a}_m]^\top \in \mathbb{R}^{m \times n}$ with m < n.

Task: Estimate \mathbf{x}^* from either absolute-value (p = 1) or quadratic (p = 2) measurements \mathbf{y} .

Applications

- Phase retrieval.
 - Fourier imaging.
 - Sub-diffraction imaging (eg. Ptychography).

Polynomial neural networks with quadratic activation functions.

Standard phase retrieval problem:

Observation Model

Model: $\mathbf{x} \in \mathbb{C}^n$

Standard phase retrieval problem:

Observation Model

Model: $\mathbf{x} \in \mathbb{C}^n$

Observations: Phaseless linear measurements y

$$\mathbf{y} = |\mathcal{A}(\mathbf{x})|, \qquad \mathcal{A} : \mathbb{C}^n \to \mathbb{C}^m, \quad m > n$$

Standard phase retrieval problem:

Observation Model

Model: $\mathbf{x} \in \mathbb{C}^n$

 $\mathbf{x} \in \mathbb{C}^n$

Observations: **Phaseless** linear measurements **y**

$$\mathbf{y} = |\mathcal{A}(\mathbf{x})|, \qquad \mathcal{A} : \mathbb{C}^n \to \mathbb{C}^m, \ \ m > n$$

Goal: Recover x from y.

(Statistical)

How many measurements do we need for stable recovery?

(Computational)

How quickly can we perform the recovery?

$$\mathbf{y} = |\mathcal{A}(\mathbf{x})|, \qquad \mathcal{A} : \mathbb{R}^n \to \mathbb{R}^m, \ m > n$$

Goal: Recover x from y.

$$\mathbf{y} = |\mathcal{A}(\mathbf{x})|, \qquad \mathcal{A} : \mathbb{R}^n \to \mathbb{R}^m, \ m > n$$

Goal: Recover **x** from **y**.

Popular solution methodology involves estimating phase information $phase(\mathcal{A}(\mathbf{x}^{t-1}))$ and linearized signal information \mathbf{x}^t in alternating steps [Gerschberg-Saxton '72, Fienup '78].

$$\mathbf{y} = |\mathcal{A}(\mathbf{x})|, \qquad \mathcal{A} : \mathbb{R}^n \to \mathbb{R}^m, \ m > n$$

Goal: Recover x from y.

Popular solution methodology involves estimating phase information phase $(A(\mathbf{x}^{t-1}))$ and linearized signal information \mathbf{x}^t in alternating steps [Gerschberg-Saxton '72, Fienup '78].

Challenges:

- ▶ High sample complexity $(\mathcal{O}(n))$ measurements for Gaussian operator \mathcal{A} ; can be huge if n is large).
- High running time; algorithms are not scalable.

$$\mathbf{y} = |\mathcal{A}(\mathbf{x})|, \qquad \mathcal{A} : \mathbb{R}^n \to \mathbb{R}^m, \ m > n$$

Goal: Recover x from y.

Popular solution methodology involves estimating phase information $phase(\mathcal{A}(\mathbf{x}^{t-1}))$ and linearized signal information \mathbf{x}^t in alternating steps [Gerschberg-Saxton '72, Fienup '78].

Challenges:

- ▶ High sample complexity $(\mathcal{O}(n))$ measurements for Gaussian operator \mathcal{A} ; can be huge if n is large).
- High running time; algorithms are not scalable.

Solution:

- Utilize inherent structure of x!
 - Most images to be acquired have underlying (structured) sparsity!
 - Weights of teacher network to be learned can be sparse.

Sparsity

Phase Retrieval via Alternating Minimization

New goal: Recover *s*-sparse signal **x** from magnitude-only Gaussian measurements **y**.

Sparsity

Phase Retrieval via Alternating Minimization

New goal: Recover *s*-sparse signal **x** from magnitude-only Gaussian measurements **y**.

Given:

$$\mathbf{y} = |\mathcal{A}(\mathbf{x})|, \qquad \mathcal{A} : \mathbb{R}^n \to \mathbb{R}^m, \quad \mathbf{m} \ll \mathbf{n}$$

Recover: \mathbf{x} , such that $\|\mathbf{x}\|_0 \leq s$.

Sample complexity

A I it-l	Initialization	Convergence	D time	A
Algorithm	Sample complexity	Sample complexity	Running time	Assumptions
AltMin	$\mathcal{O}\left(n\log^3 n\right)$	$\mathcal{O}\left(n\right)$	$\mathcal{O}\left(n^2\log^3 n\right)$	none
				s-sparse
AltMinSparse	$\mathcal{O}\left(s^2\log^3 n\right)$	$\mathcal{O}\left(s ight)$	$\mathcal{O}\left(s^2 n \log n\right)$	$X_{\min}^* pprox rac{c}{\sqrt{s}} \left\ \mathbf{x}^* ight\ _2$
ℓ_1 -PhaseLift	-	$\mathcal{O}\left(s^2 \log n\right)$	$\mathcal{O}\left(\frac{n^3}{\epsilon^2}\right)$	s-sparse
				s-sparse
SPARTA	$\mathcal{O}\left(s^2\log n\right)$	$\mathcal{O}\left(s\log n/s\right)$	$\mathcal{O}\left(s^2n\log n\right)$	$X_{\min}^* pprox \frac{c}{\sqrt{s}} \ \mathbf{x}^*\ _2$
CoPRAM	$\mathcal{O}\left(s^2\log n\right)$	$\mathcal{O}\left(s\log n/s\right)$	$\mathcal{O}\left(s^2 n \log n\right)$	s-sparse

Sample complexity

	Initialization	Convergence		
Algorithm	Sample complexity	Sample complexity	Running time	Assumptions
Algoritiiii		Sample complexity		Assumptions
AltMin	$\mathcal{O}\left(n\log^3 n\right)$	$\mathcal{O}\left(n\right)$	$\mathcal{O}\left(n^2\log^3 n\right)$	none
	, , ,			s-sparse
AltMinSparse	$\mathcal{O}\left(s^2\log^3 n\right)$	$\mathcal{O}\left(s ight)$	$\mathcal{O}\left(s^2n\log n\right)$	$\mathbf{X}_{min}^* pprox rac{c}{\sqrt{s}} \left\ \mathbf{X}^* ight\ _2$
ℓ_1 -PhaseLift	-	$\mathcal{O}\left(s^2 \log n\right)$	$\mathcal{O}\left(\frac{n^3}{\epsilon^2}\right)$	s-sparse
				s-sparse
SPARTA	$\mathcal{O}\left(s^2\log n\right)$	$\mathcal{O}\left(s\log n/s\right)$	$\mathcal{O}\left(s^2 n \log n\right)$	$X_{\min}^* pprox rac{c}{\sqrt{s}} \left\ \mathbf{x}^* \right\ _2$
CoPRAM	$\mathcal{O}\left(s^2\log n\right)$	$\mathcal{O}\left(s\log n/s\right)$	$\mathcal{O}\left(s^2 n \log n\right)$	s-sparse

Is sparsity the only prior that can be used?

Modeling Sparsity

► Block/group sparsity.

Modeling Sparsity

► Block/group sparsity.

Tree sparsity.

Sample complexity

	Initialization	Convergence	
Algorithm	Sample complexity	Sample complexity	Model
AltMin	$\mathcal{O}\left(n\log^3 n\right)$	$\mathcal{O}\left(n\right)$	none
AltMinSparse	$\mathcal{O}\left(s^2\log^3 n\right)$	$\mathcal{O}\left(s\right)$	$X_{\min}^* \approx \frac{c}{\sqrt{s}} \ \mathbf{x}^*\ _2$
	,		s-sparse
SPARTA	$\mathcal{O}\left(s^2 \log n\right)$	$\mathcal{O}(s \log n/s)$	$X_{\min}^* \approx \frac{c}{\sqrt{s}} \ \mathbf{x}^*\ _2$
			s-sparse
CoPRAM	$\mathcal{O}\left(s^2\log n\right)$	$\mathcal{O}(s \log n/s)$	s-sparse
Model-based CoPRAM	??	$\mathcal{O}(s + \log(\operatorname{card}(\mathbb{M}_{4s})))$	model sparse \mathcal{M}_s
Block CoPRAM	$\mathcal{O}\left(s^2/b\log n\right)$	$\mathcal{O}(s + (s/b) \log n)$	model sparse \mathcal{M}_s^b
			s-sparse, block length b
Tree CoPRAM	??	$\mathcal{O}\left(s\right)$	model sparse \mathcal{M}_s
			s-tree sparse

Our contributions

Sample-optimal methods

1. New algorithmic framework for *any* given model-based sparsity constraint.

Our contributions

Sample-optimal methods

1. New algorithmic framework for *any* given model-based sparsity constraint.

2. Theoretical guarantees on convergence.

Our contributions

Sample-optimal methods

1. New algorithmic framework for *any* given model-based sparsity constraint.

2. Theoretical guarantees on convergence.

3. Novel initialization strategy.

Contributions (I): Sparse signal and phase recovery

The signal estimate can be posed as the solution to the non-convex optimization problem:

$$\min_{\boldsymbol{x} \in \mathcal{M}_{s}, \boldsymbol{p} \in \mathcal{P}} \left\| \boldsymbol{A} \boldsymbol{x} - \boldsymbol{p} \circ \boldsymbol{y} \right\|_{2}$$

- $\mathbf{x} \in \mathbb{R}^n$ is a sparse signal (or weight vector),
- Let \mathbb{M}_s denote the set of all allowable supports $\{S_1 \dots S_i \dots S_N\}$, such that $|S_i| \leq s$, then $\mathcal{M}_s = \{\mathbf{x} \in \mathbb{R}^n | \operatorname{supp}(\mathbf{x}) \in \mathbb{M}_s\}$,
- ▶ $\mathbf{A} \in \mathbb{R}^{m \times n}$ is a measurement operator with $a_{ij} \sim \mathcal{N}(0, 1)$,
- ▶ $\mathbf{p} \in \mathbb{R}^m$ is a vector that stores the missing sign information with entries constrained to be in $\{-1, 1\}$ (:= \mathcal{P}),
- ▶ $\mathbf{y} \in \mathbb{R}^m$ are observations or labels.

Utilize the CoPRAM (Compressive Phase Retrieval with Alternating Minimization) framework [Jagatap, Hegde '17]:

Utilize the CoPRAM (Compressive Phase Retrieval with Alternating Minimization) framework [Jagatap, Hegde '17]:

Initialize as:

- ► Compute marginals: diag(**M**) := $M_{ij} = \frac{1}{m} \sum_{i=1}^{m} y_i^2 a_{ii}^2$ for j = [n].
- ▶ Set: $\hat{S} \leftarrow MODELAPPROX(diag(\mathbf{M}))$.
- ▶ $\mathbf{v} \in \mathbb{R}^n \leftarrow \text{top s.v. of } \mathbf{M}_{\hat{S}} = \frac{1}{m} \sum_{i=1}^m y_i^2 \mathbf{a}_{i\hat{S}} \mathbf{a}_{i\hat{S}}^T \text{ for } \hat{S},$ and $\mathbf{0}$ for \hat{S}^c .
- ► Compute: $\mathbf{x}^0 \leftarrow \phi \mathbf{v}$, with $\phi^2 = \frac{1}{m} \sum_{i=1}^m y_i^2$.

Utilize the CoPRAM (Compressive Phase Retrieval with Alternating Minimization) framework [Jagatap, Hegde '17]:

Initialize as:

- ► Compute marginals: diag(**M**) := $M_{ij} = \frac{1}{m} \sum_{i=1}^{m} y_i^2 a_{ii}^2$ for j = [n].
- ▶ Set: $\hat{S} \leftarrow MODELAPPROX(diag(\mathbf{M}))$.
- ▶ $\mathbf{v} \in \mathbb{R}^n \leftarrow \text{top s.v. of } \mathbf{M}_{\hat{S}} = \frac{1}{m} \sum_{i=1}^m y_i^2 \mathbf{a}_{i\hat{S}} \mathbf{a}_{i\hat{S}}^T \text{ for } \hat{S},$ and $\mathbf{0}$ for \hat{S}^c .
- ► Compute: $\mathbf{x^0} \leftarrow \phi \mathbf{v}$, with $\phi^2 = \frac{1}{m} \sum_{i=1}^m y_i^2$.

For t = 0, ..., T, alternate:

- ▶ Phase estimation: $\mathbf{p}^t = \text{sign}(\mathbf{A}\mathbf{x}^t)$.
- ▶ Signal estimation: $\mathbf{x}^t = \operatorname{argmin}_{\mathbf{x}' \in \mathcal{M}_s} \|\mathbf{A}\mathbf{x}' \mathbf{p}^t \circ \mathbf{y}\|_2$.

Utilize the CoPRAM (Compressive Phase Retrieval with Alternating Minimization) framework [Jagatap, Hegde '17]:

Initialize as:

- ► Compute marginals: diag(**M**) := $M_{ij} = \frac{1}{m} \sum_{i=1}^{m} y_i^2 a_{ii}^2$ for j = [n].
- ▶ Set: $\hat{S} \leftarrow MODELAPPROX(diag(\mathbf{M}))$.
- ▶ $\mathbf{v} \in \mathbb{R}^n \leftarrow \text{top s.v. of } \mathbf{M}_{\hat{\mathbf{S}}} = \frac{1}{m} \sum_{i=1}^m y_i^2 \mathbf{a}_{i\hat{\mathbf{S}}} \mathbf{a}_{i\hat{\mathbf{S}}}^T \text{ for } \hat{\mathbf{S}},$ and $\mathbf{0}$ for $\hat{\mathbf{S}}^c$.
- ► Compute: $\mathbf{x}^0 \leftarrow \phi \mathbf{v}$, with $\phi^2 = \frac{1}{m} \sum_{i=1}^m y_i^2$.

For t = 0, ..., T, alternate:

- ▶ Phase estimation: $\mathbf{p}^t = \text{sign}(\mathbf{A}\mathbf{x}^t)$.
- ▶ Signal estimation: $\mathbf{x}^t = \operatorname{argmin}_{\mathbf{x}' \in \mathcal{M}_s} \|\mathbf{A}\mathbf{x}' \mathbf{p}^t \circ \mathbf{y}\|_2$.
- → Model-based CoPRAM

Model-based CoPRAM

Key features

▶ Utilizes Model-based CoSaMP [Baraniuk et. al. '10] to recover (structured) sparse signal estimate x^t ⇒ reduced sample complexity.

Model-based CoPRAM

Key features

- ▶ Utilizes Model-based CoSaMP [Baraniuk et. al. '10] to recover (structured) sparse signal estimate x^t ⇒ reduced sample complexity.
- Initialization strategy for faster convergence.

Model-based CoPRAM

Key features

- ▶ Utilizes Model-based CoSaMP [Baraniuk et. al. '10] to recover (structured) sparse signal estimate x^t ⇒ reduced sample complexity.
- Initialization strategy for faster convergence.
- No tuning parameters!

Contributions (II) - Convergence guarantees

Theorem

Given an initialization $\mathbf{x^0} \in \mathcal{M}_s$ satisfying $\operatorname{dist}\left(\mathbf{x^0},\mathbf{x^*}\right) \leq \delta_0 \|\mathbf{x^*}\|_2$, for $0 < \delta_0 < 1$, if we have number of Gaussian measurements,

$$m > C(s + \log(\operatorname{card}(\mathbb{M}_{4s}))),$$

then the iterates \mathbf{x}^{t+1} of model-based CoPRAM satisfy:

$$\operatorname{dist}\left(\mathbf{x}^{t+1},\mathbf{x}^{*}\right) \leq \rho_{0}\operatorname{dist}\left(\mathbf{x}^{t},\mathbf{x}^{*}\right),$$

where \mathbf{x}^t , \mathbf{x}^{t+1} , $\mathbf{x}^* \in \mathcal{M}_s$, and $0 < \rho_0 < 1$ is a constant, with probability greater than $1 - e^{-\gamma m}$, for positive constant γ .

Contributions (II) - Convergence guarantees Proof outline

► Per-iteration error for the *t*th iteration of model-based CoPRAM, with *L* iterations of model-based CoSaMP:

$$\|\mathbf{x}^{t+1} - \mathbf{x}^*\|_2 \le (\rho_1 \rho_3)^L \|\mathbf{x}^* - \mathbf{x}^t\|_2 + \frac{(\rho_1 \rho_4 + \rho_2)}{(1 - \rho_1 \rho_3)} \|E_{\rho h}\|_2$$

Contributions (II) - Convergence guarantees Proof outline

▶ Per-iteration error for the tth iteration of model-based CoPRAM, with L iterations of model-based CoSaMP:

$$\|\mathbf{x}^{t+1} - \mathbf{x}^*\|_2 \le (\rho_1 \rho_3)^L \|\mathbf{x}^* - \mathbf{x}^t\|_2 + \frac{(\rho_1 \rho_4 + \rho_2)}{(1 - \rho_1 \rho_3)} \|E_{\rho h}\|_2$$

- $ho_1,
 ho_2,
 ho_3,
 ho_4$ are appropriate constants, and E_{ph} is the error in estimating phase in the t^{th} run of Model-based CoPRAM.
- ▶ Bound the phase error term $||E_{ph}||_2$ via Lemma III.2 as:

$$\|E_{ph}\|_{2}^{2} = \frac{4}{m} \sum_{i=1}^{m} (\mathbf{a}_{i}^{\top} \mathbf{x}^{*})^{2} \cdot \mathbf{1}_{\{\operatorname{sign}(\mathbf{a}_{i} \mathbf{x}^{t}) \operatorname{sign}(\mathbf{a}_{i} \mathbf{x}^{*}) = -1\}} < \rho_{5}^{2} \|\mathbf{x}^{t} - \mathbf{x}^{*}\|_{2}^{2}.$$

▶ Per-step error reduction scheme of the form:

$$\left\|\mathbf{x}^{t+1}-\mathbf{x}^*\right\|_2 \leq \rho_0 \left\|\mathbf{x}^t-\mathbf{x}^*\right\|_2$$

Per-step error reduction scheme of the form:

$$\left\|\mathbf{x}^{t+1} - \mathbf{x}^*\right\|_2 \le \rho_0 \left\|\mathbf{x}^t - \mathbf{x}^*\right\|_2$$

▶ Requires: initial estimate $\mathbf{x^0}$ satisfies $\|\mathbf{x^0} - \mathbf{x}^*\|_2 \le \delta_0 \|\mathbf{x}^*\|_2$ (Lemma III.2).

Per-step error reduction scheme of the form:

$$\left\|\mathbf{x}^{t+1} - \mathbf{x}^*\right\|_2 \le \rho_0 \left\|\mathbf{x}^t - \mathbf{x}^*\right\|_2$$

- ▶ Requires: initial estimate $\mathbf{x^0}$ satisfies $\|\mathbf{x^0} \mathbf{x}^*\|_2 \le \delta_0 \|\mathbf{x}^*\|_2$ (Lemma III.2).
- ▶ Convergence criterion of the form (for ρ_0 < 1):

$$\operatorname{dist}\left(\mathbf{x}^{t+1},\mathbf{x}^{*}\right) \leq
ho_{0} \operatorname{dist}\left(\mathbf{x}^{t},\mathbf{x}^{*}\right).$$

as long as \mathbf{x}^0 satisfies dist $(\mathbf{x}^0, \mathbf{x}^*) \leq \delta_0 \|\mathbf{x}^*\|_2$,

Contributions (II) - Convergence guarantees Key Lemma

Lemma

(Lemma III.2) As long as the initial estimate is a small distance away from the true signal $\mathbf{x}^* \in \mathcal{M}_s$, $\operatorname{dist}\left(\mathbf{x^0},\mathbf{x}^*\right) \leq \delta_0 \|\mathbf{x}^*\|_2$, and subsequently, $\operatorname{dist}\left(\mathbf{x}^t,\mathbf{x}^*\right) \leq \delta_0 \|\mathbf{x}^*\|_2$, where \mathbf{x}^t is the t^{th} update of model-based CoPRAM, then the following bound holds,

$$\frac{4}{m} \sum_{i=1}^{m} \left(\mathbf{a}_{i}^{\top} \mathbf{x}^{*} \right)^{2} \cdot \mathbf{1}_{\left\{ (\mathbf{a}_{i}^{\top} \mathbf{x}^{t}) (\mathbf{a}_{i}^{\top} \mathbf{x}^{*}) \leq 0 \right\}} \leq \rho_{5}^{2} \left\| \mathbf{x}^{t} - \mathbf{x}^{*} \right\|_{2}^{2},$$

with probability greater than $1-e^{-\gamma_2 m}$, where γ_2 is a positive constant, as long as $m>C\left(s+\log(\mathrm{card}(\mathbb{M}_{4s}))\right)$ and $\rho_5^2(\delta_0)<1$.

Contributions (II) - Convergence guarantees

Corollary for tree sparse signals

Corollary

As a consequence of Theorem 1, if \mathcal{M}_s is a model representing rooted tree sparse signals with sparsity s, then Tree CoPRAM is linearly convergent and requires a Gaussian sample complexity of m > Cs, as long as the initialization $\mathbf{x^0}$ satisfies $\operatorname{dist}(\mathbf{x^0}, \mathbf{x^*}) \leq \delta_0 \|\mathbf{x^*}\|_2$.

- m = O(s) samples are necessary for reconstructing any s-sparse parameter vector even in the linear case (where perfect phase information is available).
- Implies information-theoretic optimality (up to constants) of our proposed approach.

Contributions (III) - Initialization Strategy

- Spectral initialization [Wang et al '17, Jagatap, Hegde '17].
- ► Construct signal *marginal* matrix: $\mathbf{M} = \frac{1}{m} \sum_{i=1}^{m} y_i^2 \mathbf{a}_i \mathbf{a}_i^{\mathsf{T}}$.
- ▶ The j^{th} signal coefficient can be estimated from the the diagonal term $M_{jj} = \frac{1}{m} \sum_{i=1}^{m} y_i^2 a_{ij}^2$, and the set of all M_{jj} 's can be calculated in $\mathcal{O}(mn)$ time.
- Approximate support estimate \hat{S} via approximate model projection algorithm (for eg. [Hegde et. al. '14] for tree sparsity) on the diag(\mathbf{M}).
- Spectral initialization on sub-matrix M_Ŝ.

Initialization

Intuition

- ▶ Diagonal elements of the expectation matrix $\mathbb{E}[\mathbf{M}]$ are given by $\mathbb{E}[M_{jj}] = \|\mathbf{x}^*\|^2 + 2x_j^{*2}$.
- ▶ The signal marginals M_{jj} corresponding to $j \in S$ are larger, in *expectation*, than those corresponding to $j \in S^c$, where $S \in \mathbb{M}_s$.

Experimental validation

Ground truth

Figure: (a) Image considered for simulations, resized to 32×32 and 64×64 pixels, considered to be sparse in Haar basis. Phase transition diagrams for (b) CoPRAM (c) Tree CoPRAM on signal of dimension n = 4096.

Simulation results

Phase transitions

Figure: Phase transitions for CoPRAM and Tree CoPRAM for sparsities s=10 and s=31 on an n=1024 dimensional signal.

Our contributions:

Alternating minimization gives superior performance for phase recovery in comparison to algorithms with/without sparsity modeling.

Our contributions:

- Alternating minimization gives superior performance for phase recovery in comparison to algorithms with/without sparsity modeling.
- Requires no tuning parameters except for an estimate of sparsity parameters.

Our contributions:

- Alternating minimization gives superior performance for phase recovery in comparison to algorithms with/without sparsity modeling.
- Requires no tuning parameters except for an estimate of sparsity parameters.
- First algorithm to consider general structured models of sparsity.
- Sample optimal convergence analysis.

Our contributions:

- Alternating minimization gives superior performance for phase recovery in comparison to algorithms with/without sparsity modeling.
- Requires no tuning parameters except for an estimate of sparsity parameters.
- First algorithm to consider general structured models of sparsity.
- Sample optimal convergence analysis.

Open questions:

Theoretical guarantees on initializaiton.

Questions?

Interested in knowing more? Check our project website:

https://gaurijagatap.github.io/phase-retrieval-of-structured-signals/