Produkt- og brøkregelen

Oppgave 1

Skriv først uttrykkene nedenfor som potenser, og skriv deretter svaret som rotuttrykk hvis du mener det er hensiktsmessig.

a)
$$\sqrt[3]{x^{12}}$$

b)
$$\sqrt[8]{(x^2+4)^4}$$

c)
$$\sqrt{x} \cdot \sqrt[3]{x}$$

a)
$$\sqrt[3]{x^{12}}$$
 b) $\sqrt[8]{(x^2+4)^4}$ c) $\sqrt{x} \cdot \sqrt[3]{x}$ d) $\sqrt[4]{(x+2)^{1/2}}$

Finn så f'(x) til følgende funksjoner:

e)
$$f(x) = x^4 \cdot x^5$$

$$\mathbf{f)} \ f(x) = x \cdot \sqrt{x}$$

g)
$$\frac{2}{x^3}$$

e)
$$f(x) = x^4 \cdot x^5$$
 f) $f(x) = x \cdot \sqrt{x}$ g) $\frac{2}{x^3}$ h) $f(x) = \frac{x^2 - 2}{x^3}$

$$\mathbf{i)} \ f(x) = \sqrt{x} \cdot x$$

j)
$$f(x) = x \cdot (x^2 + 1)$$

i)
$$f(x) = \sqrt{x} \cdot x^6$$
 j) $f(x) = x \cdot (x^2 + 1)$ k) $f(x) = \frac{x^2 + 4}{x^3 - 1}$

1)
$$f(x) = \frac{x^2}{x^2 + 2x}$$

1)
$$f(x) = \frac{x^2}{x^2 + 2x}$$
 m) $f(x) = \frac{x^2 + 4x + 2}{x - 2}$

Oppgave 2

Deriver de tre funksjonene nedenfor.

a)
$$f(x) = \frac{x^3 - 2x}{x^2 - 1}$$

a)
$$f(x) = \frac{x^3 - 2x}{x^2 - 1}$$
 b) $f(x) = (x^2 + 1)(x^2 - 1)$ c) $f(x) = \frac{3x - 4}{x^3 + 7}$

1

c)
$$f(x) = \frac{3x - x}{x^3 + x^3}$$