CSCI 6110.H001 Applied Combinatorics & Graph Theory Dr. N. Adlai A. DePano Fall 2021 ndepano@uno.edu

1

Principle of Inclusion and Exclusion (PIE)

- Yet another basic counting tool
- Example:

In a group of 18 job applicants:

- 10 have computer programming expertise
- 5 have statistical expertise
- 2 have both types of expertise

How many in the pool of applicants have neither expertise?

2

Principle of Inclusion and **Exclusion (PIE)**

• THEOREM 7.1

If *N* is the number of objects in a set *A*, the number of objects in *A* having none of the properties $a_1, a_2, ..., a_r$ is given by

$$\begin{split} N(a'_1 \ a'_2, \, ..., \, a'_r) &= N - \sum_i N(a_i) + \sum_{i \neq j} N(a_i a_j) \\ &- \sum_{i \neq j \neq k} N(a_i a_j a_k) + ... + (-1)^r \ N(a_1 a_2 ... a_r) \end{split}$$

Principle of Inclusion and **Exclusion (PIE)**

Example 7.3:

How many integers between 1 and 1000 are:

- a) Not divisible by 2?
- b) Not divisible by either 2 or 5?
- c) Not divisible by 2, 5, or 11?

PIE can be applied here!

Let a_1 be the property of being divisible by 2. Let a_2 be the property of being divisible by 5.

Let a_3 be the property of being divisible by 11.

5

Principle of Inclusion and **Exclusion (PIE)**

• Example 7.3:

How many integers between 1 and 1000 are:

a) Not divisible by 2?

The answer here is $N(a'_1)$:

Every other integer is divisible by 2, hence $N(a_1) = 500.$

Therefore, $N(a_1) = N - N(a_1)$ = 1000 - 500 = 500

Principle of Inclusion and Exclusion (PIE)

• Example 7.3:

How many integers between 1 and 1000 are:

b) Not divisible by either 2 or 5?

The answer here is $N(a'_1 a'_2)$:

Every fifth integer is divisible by 5, hence $N(a_2) = 1000/5 = 200$.

Every tenth integer is divisible by 2 and 5, hence $N(a_1a_2) = 1000/10 = 100$.

By PIE, $N(a'_1 a'_2) = 1000 - 500 - 200 + 100 = 400$

7

Principle of Inclusion and Exclusion (PIE)

• Example 7.3:

How many integers between 1 and 1000 are:

c) Not divisible by 2, 5, or 11?

The answer here is $N(a'_1a'_2a'_3)$:

Every eleventh integer is divisible by 11, hence $N(a_3) = \lfloor 1000/11 \rfloor = 90$. Similarly, $N(a_1a_3) = \lfloor 1000/22 \rfloor = 45$. Also, $N(a_2a_3) = \lfloor 1000/55 \rfloor = 18$. And, finally, $N(a_1a_2a_3) = \lfloor 1000/110 \rfloor = 9$.

By PIE, $N(a'_1a'_2a'_3) = 1000 - (500 + 200 + 90) + (100 + 45 + 18) - 9 = 364.$

8

Principle of Inclusion and Exclusion (PIE)

Derangements

We can calculate the number of derangements using PIE:

Let a_i be the property that the ith letter is placed in the ith envelope.

Clearly, the number of derangements is $D_n = N(a'_1 a'_2 a'_3 \dots a'_n)$.

Time to call on PIE!

Our *N* here is n! And, for i=1,2,...,n $N(a_i) = (n-1)!$

Principle of Inclusion and Exclusion (PIE)

Derangements

Clearly, the number of derangements is $D_n = N(a'_1 a'_2 a'_3 \dots a'_n)$.

For any
$$i \neq j$$
,
 $N(a_i a_j) = (n - 2)!$

And for any t subset of the indices 1..n, $N(a_{i_1}a_{i_2}...a_{i_t}) = (n - t)!$

$$D_n = N(a_1'a_2'a_3' \dots a_n') =$$

$$n! - C(n,1)(n-1)! + C(n,2)(n-2)! - \dots$$

10

Principle of Inclusion and Exclusion (PIE)

Derangements

Clearly, the number of derangements is $D_n = N(a'_1 a'_2 a'_3 \dots a'_n)$.

$$D_n = n! \Big[1 - (1/1!) + (1/2!) - (1/3!) + \dots (-1)^n (1/n!) \Big]$$

= $\langle n! / e \rangle$

11

Number of Objects Having Exactly m Properties

A generalization of PIE

• Example:

Number of Objects Having Exactly *m* Properties

 PIE allowed us to compute the number of objects exhibiting none of the properties

Let us assume that there are r properties that an object can exhibit, namely, a_1, a_2, \dots, a_r .

For $m \le r$, we designate e_m to be the number of objects exhibiting exactly m of the properties. For $t \ge 1$, let

$$s_t = \sum N(a_{i_1}, a_{i_2}, \dots, a_{i_t})$$

where the sum ranges over all possible combinations of *t* <u>distinct</u> properties.

13

Number of Objects Having Exactly m Properties

• Main result:

Theorem 7.4: The number of objects having exactly m properties if there are r properties and $m \le r$ is given by

$$e_m = s_m - \binom{m+1}{1} s_{m+1} + \binom{m+2}{2} s_{m+2} - \binom{m+3}{3} s_{m+3} \dots \pm + (-1)^p \binom{m+p}{p} s_{m+p} \pm \dots + (-1)^{r-m} \binom{m+r-m}{r-m} s_r$$

14

Number of Objects Having Exactly m Properties

- A generalization of PIE
- Example:

$$s_1 = 6 + 4 + 3 = 13$$

$$s_2 = 3 + 2 + 1 = 6$$

$$s_3 = 1$$

Hence, by the theorem:

$$e_1 = 13 - C(2,1) \times 6 + C(3,2) \times 1$$

$$= 13 - 2 \times 6 + 3 \times 1$$

$$= 13 - 12 + 3 = 4$$