```
In [1]:
            import numpy as np
            import pandas as pd
            import matplotlib.pyplot as plt
            import seaborn as sns
            from sklearn.model selection import train test split
            from sklearn import metrics
In [2]:
            from sklearn.datasets import load breast cancer
            cancer = load breast cancer()
In [3]:
            cancer.keys()
Out[3]: dict_keys(['data', 'target', 'frame', 'target_names', 'DESCR', 'feature_names', 'filename'])
In [4]:
            print(cancer['DESCR'])
        .. _breast_cancer_dataset:
        Breast cancer wisconsin (diagnostic) dataset
        **Data Set Characteristics:**
            :Number of Instances: 569
            :Number of Attributes: 30 numeric, predictive attributes and the class
            :Attribute Information:
                - radius (mean of distances from center to points on the perimeter)
                texture (standard deviation of gray-scale values)
                - perimeter
                - area
                smoothness (local variation in radius lengths)
                - compactness (perimeter^2 / area - 1.0)

    concavity (severity of concave portions of the contour)
```

Out[5]:

mean radius	mean texture	mean perimeter	mean area	mean smoothness	mean compactness	mean concavity	mean concave points	mean symmetry	mean fractal dimension	 worst radius	worst texture	worst perimeter	1
o 17.99	10.38	122.80	1001.0	0.11840	0.27760	0.3001	0.14710	0.2419	0.07871	 25.38	17.33	184.60	2
1 20.57	17.77	132.90	1326.0	0.08474	0.07864	0.0869	0.07017	0.1812	0.05667	 24.99	23.41	158.80	1
2 19.69	21.25	130.00	1203.0	0.10960	0.15990	0.1974	0.12790	0.2069	0.05999	 23.57	25.53	152.50	1
3 11.42	20.38	77.58	386.1	0.14250	0.28390	0.2414	0.10520	0.2597	0.09744	 14.91	26.50	98.87	
4 20.29	14.34	135.10	1297.0	0.10030	0.13280	0.1980	0.10430	0.1809	0.05883	 22.54	16.67	152.20	1

5 rows × 30 columns

```
In [9]: 1 scaled_data.shape
```

Out[9]: (569, 30)

```
In [10]: 1 | from sklearn.decomposition import PCA
```

```
Out[11]: PCA(n_components=5)
```

```
In [12]:
                # transform data
                x_pca = pca.transform(scaled_data)
In [14]:
                x_pca.shape
Out[14]: (569, 5)
In [17]:
                plt.figure(figsize = (8,6))
                plt.scatter(x_pca[:,0],x_pca[:,1],c = cancer['target'])
plt.xlabel("First Principle Component")
                plt.ylabel("Second Principle Component")
                plt.show()
              12.5
                                                         •
              10.0
                7.5
            Second Principle Component
                5.0
                2.5
                0.0
              -2.5
              -5.0
              -7.5
In [18]:
                # pca components
                pca.n_components_
Out[18]: 5
```


In []: | 1 | # from graph we will select 2 components, and by using we will build PCA again