[CSE3081(2반)] 알고리즘 설계와 분석

2020학년도 2학기 강의자료 (2020.11.12 목요일)

서강대학교 공과대학 컴퓨터공학과 임 인 성 교수

본 강의에서 제작하여 제공하는 PDF 파일, 동영상, 그리고 예제 코드 등의 강의 자료의 저작권은 특별히 명기되어 있지 않은 한 서강대학교에 있습니다.

본인의 학습 목적 외에 공개된 장소에 올리거나 타인에게 배포하는 등의 행위를 금합니다. 협조 부탁합니다.

[주제 5] Greedy Methods

The Greedy Method

 A technique to follow the problem-solving heuristic of making the locally optimal choice at each stage.

Strategy

- Make the choice that appears best at each moment!
- ✓ It is hoped to arrive at a globally optimal solution by making a locally optimal choice.

Pros and cons

https://en.wikipedia.org/wiki/Greedy_algorithm

- Simple and straightforward to design an algorithm.
- Does not guarantee the optimal solution to all problems
 - Local maximum versus global maximum

Maximum Non-overlapping Intervals

• **Problem:** Let $A = \{a_1, a_2, \dots, a_n\}$ be a set of n activities, where a_i has start times s_i and finish times f_i ($0 \le s_i < f_i < \infty$). If selected, activity a_i takes place druing the time interval $[s_i, f_i)$. Two activities a_i and a_j are called *compatible* if the time intervals $[s_i, f_i)$ and $[s_j, f_j)$ do not overlap. Now, select a largest set S of mutually compatible activities.

Example

$$A = \{a_1, a_2, \dots, a_n\}$$
 with $a_i = [s_i, f_i)$ for $0 \le s_i < f_i < \infty$

 $A = \{a_1, a_2, \dots, a_n\}$ with $a_i = [s_i, f_i)$ for $0 \le s_i < f_i < \infty$

- Possible strategies for choosing activities
 - Longest one first
 - Shortest one first

Earliest start first

Earliest finish first

Correctness of "Earliest-finish-first"-based algorithm

- \circ **Assertion 1:** For any set A of n activities, there always exists an optimal solution S that contains a_1 with the earliest finish time.
- Assertion 2: If S is an optimal solution for A containing a_1 , $S^* = S \setminus \{a_1\}$ is an optimal solution for $A^* = \{a_i \in A \mid s_i \geq f_1\}$.
 - Selecting a_1 reduces the problem to finding an optimal solution for activities not overlapping with a_1 .

$$A = \{a_1, a_2, \dots, a_n\}$$
 with $a_i = [s_i, f_i)$ for $0 \le s_i < f_i < \infty$

Greedy algorithm

Input: $A = \{a_1, a_2, \dots, a_n\}$ with $a_i = [s_i, f_i)$ for $0 \le s_i < f_i < \infty$

- 1. Sort the activities so that $f_1 \leq f_2 \leq f_3 \leq \cdots \leq f_{n-1} \leq f_n$.
- 2. $S = \{a_1\};$
- 3. k = 1;
- 4. **for** j = 2 **to** n
- 5. if $(s_j \ge f_k)$
- $6. S = S \cup \{a_j\};$
- 7. k = j;
- 8. return S;

Scheduling: Minimizing Total Time in the System

Problem

- Consider a system in which a server is about to serve n clients. Let $T = \{t_1, t_2, ..., t_n\}$ be a set of positive numbers, where t_i is the estimated **time-to-completion** for the ith client. What is the optimal order of service where **the total (wait+service) time in the system is minimized**?

Hair stylist with waiting clients, pending operations on a shared

hard disk, etc.

Example

$$- T = \{t_1, t_2, t_3\} = \{5, 10, 4\}$$

Schedule	Total Time in the System	
[1, 2, 3]	5 + (5 + 10) + (5 + 10 + 4) = 39	
[1, 3, 2]	33	
[2, 1, 3]	10 + (10 + 5) + (10 + 5 + 4) = 44	
[2, 3, 1]	43	
[3, 1, 2]	4 + (4 + 5) + (4 + 5 + 10) = 32	
[3, 2, 1]	37	

A naïve approach

- Enumerate all possible schedules of service, and select the optimal one. $\rightarrow O(n!)$

A greedy approach

- Algorithm: Sort T in nondecreasing order to get the optimal schedule.
 → O(n log n)
- **Correctness:** Does the greedy approach always find a schedule that minimizes the total time in the system? 기류법 (Proof by contradiction)
 - Let $S = [s_1, s_2, ..., s_n]$ be an optimal schedule, and C(S) be the total time for S.

•
$$C(S)$$
 = $s_1 + (s_1 + s_2) + (s_1 + s_2 + s_3) + \dots + (s_1 + s_2 + \dots + s_n)$
= $n \cdot s_1 + (n-1) \cdot s_2 + \dots + 2 \cdot s_{n-1} + 1 \cdot s_n$
= $\sum_{i=1}^{n} (n+1-i) \cdot s_i = (n+1) \sum_{i=1}^{n} s_i - \sum_{i=1}^{n} i \cdot s_i$

- If they are not scheduled in nondecreasing order, then, for at least one i ($1 \le i \le n$ -1), $s_i > s_{i+1}$.
- Now consider the schedule $S' = [s_1, s_2, ..., s_{i+1}, s_i, ..., s_n]$ that is obtained by interchanging s_i and s_{i+1} .
- Then, $C(S)-C(S')=(i\cdot s_{i+1}+(i+1)\cdot s_i)-(i\cdot s_i+(i+1)\cdot s_{i+1})=s_i-s_{i+1}>0.$ Therefore, ...

Scheduling: Minimizing Lateness

Problem

- Let $J = \{1, 2, ..., n\}$ be a set of jobs to be served by a single processor.
- The *i*th job takes t_i units of processing time, and is due at time d_i .
- When the *i*th job starts at time s_i , its **lateness** $l_i = \max\{0, s_i + t_i d_i\}$.
- **Goal:** Find a schedule S so as to minimize the maximum lateness $L = \max\{l_i\}$.

Example

 $- S = \{3, 2, 6, 1, 5, 4\} \rightarrow \text{maximum lateness} = 6$

Job	t_i	d_i
1	3	6
2	2	8
3	1	9
4	4	9
5	3	14
6	2	15

Possible greedy approaches

 \triangleright Sort jobs in nondecreasing order of processing time t_i :

$$(t_1 = 2, d_1 = 50), (t_2 = 10, d_2 = 11)$$

 \triangleright Sort jobs in nondecreasing order of slack d_i - t_i :

$$(t_1 = 1, d_1 = 3), (t_2 = 7, d_2 = 8)$$

 \triangleright Sort jobs in nondecreasing order of deadline d_i :

Earliest Deadline First (0)

✓ An optimal schedule $S = \{1, 2, 3, 4, 5, 6\}$ → maximum lateness = 1

Job	t_i	d_i
1	3	6
2	2	8
3	1	9
4	4	9
5	3	14
6	2	15

Correctness of "Earliest-deadline-first"-based algorithm

▶ 사실

- 1.만약 주어진 schedule에 **inversion**이 있을 경우, 최소한 연달아 schedule된 두 개의 inversion된 job이 있음.
 - Inversion이란 deadline 관점에서 봤을 때 서로 순서가 뒤 바뀐 두 개의 job의 쌍을 말함.
- 2. 연달아 있는 inversion 상태의 두 개의 job의 순서를 서로 바꿀 경우, maximum lateness를 증가시키지 않음.

$$[\cdots, d_j, d_i, \cdots] (d_i < d_j) \rightarrow [\cdots, d_i, d_j, \cdots]$$

$$\downarrow j \qquad \downarrow i \qquad \downarrow j$$

$$l'_k = l_k \text{ for all } k \neq i, j$$

$$l'_i \leq l_i$$

$$l'_j = f'_j - d_j = f_i - d_j \leq f_i - d_i = l_i$$

▶ 증명

- 1. S를 최소 개수의 inversion을 가지는 최적의 schedule이라 가정.
- 2. 만약 S에 inversion이 없다면, 위의 방법으로 구한 schedule과 동일.
- 3.만약 S에 inversion이 있다면, 이 경우 연달아 있는 inversion된 두 job의 순서를 서로 바꾸면, 결과로 발생하는 schedule S'는 maximum lateness를 증가시키지 않음으로 역시 또 다른 최적의 schedule임.
- 4.그러나 S'는 S 보다 inversion의 개수가 적음. 이는 S에 대한 가정에 대한 모순. 따라서 S에는 inversion이 없고 따라서 이는 위의 방법으로 구한 schedule과 동일함.

