Владимир Подольский

Факультет компьютерных наук, Высшая Школа Экономики

Линейность математического ожидания

Задача о днях рождения

• Пусть у нас есть две случайные величины f и g на одном и том же вероятностном пространстве

- Пусть у нас есть две случайные величины f и g на одном и том же вероятностном пространстве
- Значения f равны a_1,\dots,a_k , значения g равны b_1,\dots,b_k , вероятности равны p_1,\dots,p_k

- Пусть у нас есть две случайные величины f и g на одном и том же вероятностном пространстве
- Значения f равны a_1,\dots,a_k , значения g равны b_1,\dots,b_k , вероятности равны p_1,\dots,p_k
- Рассмотрим f + g

- Пусть у нас есть две случайные величины f и g на одном и том же вероятностном пространстве
- Значения f равны a_1,\dots,a_k , значения g равны b_1,\dots,b_k , вероятности равны p_1,\dots,p_k
- Рассмотрим f + g
- Это тоже случайная величина на том же вероятностном пространстве

- Пусть у нас есть две случайные величины f и g на одном и том же вероятностном пространстве
- Значения f равны a_1,\dots,a_k , значения g равны b_1,\dots,b_k , вероятности равны p_1,\dots,p_k
- Рассмотрим f + g
- Это тоже случайная величина на том же вероятностном пространстве
- Значения f+g равны a_1+b_1,\dots,a_k+b_k

- Пусть у нас есть две случайные величины f и g на одном и том же вероятностном пространстве
- Значения f равны a_1,\dots,a_k , значения g равны b_1,\dots,b_k , вероятности равны p_1,\dots,p_k
- Рассмотрим f + g
- Это тоже случайная величина на том же вероятностном пространстве
- Значения f+g равны a_1+b_1,\dots,a_k+b_k
- Можем ли мы что-то сказать о матожидании f+g?

- Пусть у нас есть две случайные величины f и g на одном и том же вероятностном пространстве
- Значения f равны a_1,\dots,a_k , значения g равны b_1,\dots,b_k , вероятности равны p_1,\dots,p_k
- Рассмотрим f + g
- Это тоже случайная величина на том же вероятностном пространстве
- Значения f+g равны a_1+b_1,\dots,a_k+b_k
- Можем ли мы что-то сказать о матожидании f+g? Да!

Линейность матожидания

Пусть у нас есть случайные величины f и g над одним и тем же вероятностным распределением. Тогда

$$\mathsf{E}(f+g) = \mathsf{E}f + \mathsf{E}g$$

Линейность матожидания

Пусть у нас есть случайные величины f и g над одним и тем же вероятностным распределением. Тогда

$$\mathsf{E}(f+g) = \mathsf{E}f + \mathsf{E}g$$

• Действительно,

$$\begin{split} & \mathsf{E}(f+g) = (f_1+g_1)p_1+\ldots+(f_k+g_k)p_k \\ & = (f_1p_1+\ldots+f_kp_k)+(g_1p_1+\ldots+g_kp_k) = \mathsf{E}f+\mathsf{E}g \end{split}$$

Линейность матожидания

Пусть у нас есть случайные величины f и g над одним и тем же вероятностным распределением. Тогда

$$\mathsf{E}(f+g) = \mathsf{E}f + \mathsf{E}g$$

• Линейность — это очень полезное свойство

Линейность матожидания

Пусть у нас есть случайные величины f и g над одним и тем же вероятностным распределением. Тогда

$$\mathsf{E}(f+g) = \mathsf{E}f + \mathsf{E}g$$

- Линейность это очень полезное свойство
- Она очень упрощает вычисление матожиданий

Задача

Задача

Мы бросаем два кубика. Чему равно матожидание суммы чисел на них?

 Если мы будем считать матожидание по определению, нам придется посчитать вероятности всех значений суммы

Задача

- Если мы будем считать матожидание по определению, нам придется посчитать вероятности всех значений суммы
- Не трудно, но требует времени

Задача

- Если мы будем считать матожидание по определению, нам придется посчитать вероятности всех значений суммы
- Не трудно, но требует времени
- Вместо этого мы можем рассмотреть две случайные величины на нашем вероятностном распределении

Задача

Мы бросаем два кубика. Чему равно матожидание суммы чисел на них?

• f_1 равна значению первого кубика

Задача

- f_1 равна значению первого кубика
- f_2 равна значению второго кубика

Задача

- f_1 равна значению первого кубика
- f_2 равна значению второго кубика
- Нас интересует $\mathsf{E}(f_1+f_2)$

Задача

- f_1 равна значению первого кубика
- f_2 равна значению второго кубика
- Нас интересует $\mathsf{E}(f_1+f_2)$
- Мы уже вычисляли матожидания бросания одного кубика: Е $f_1 = \mathrm{E} f_2 = 3.5$

Задача

- f_1 равна значению первого кубика
- f_2 равна значению второго кубика
- Нас интересует $\mathsf{E}(f_1+f_2)$
- Мы уже вычисляли матожидания бросания одного кубика: Е $f_1 = \mathrm{E} f_2 = 3.5$
- Следовательно, $\mathsf{E}(f_1+f_2)=\mathsf{E} f_1+\mathsf{E} f_2=7$

Задача

Задача

Мы бросаем монетку 5 раз подряд. Чему равно матожидание числа орлов?

• Вновь, можно посчитать напрямую

Задача

- Вновь, можно посчитать напрямую
- Но это требует вычисления вероятностей для всех количеств выпавших орлов

Задача

- Вновь, можно посчитать напрямую
- Но это требует вычисления вероятностей для всех количеств выпавших орлов
- Нужно вспоминать комбинаторику...

Задача

- Вновь, можно посчитать напрямую
- Но это требует вычисления вероятностей для всех количеств выпавших орлов
- Нужно вспоминать комбинаторику...
- Но по линейности мы можем посчитать ответ почти мгновенно

Задача

Мы бросаем монетку 5 раз подряд. Чему равно матожидание числа орлов?

• Пусть f_i результат i-го бросания: она равна 1 если выпал «орел» и 0, если выпала «решка»

Задача

- Пусть f_i результат i-го бросания: она равна 1 если выпал «орел» и 0, если выпала «решка»
- Hac интересует $\mathsf{E}(f_1 + f_2 + f_3 + f_4 + f_5)!$

Задача

- Пусть f_i результат i-го бросания: она равна 1 если выпал «орел» и 0, если выпала «решка»
- Нас интересует $\mathsf{E}(f_1 + f_2 + f_3 + f_4 + f_5)!$
- Матожидание легко посчитать для одной монеты: $\mathsf{E} f_i = 0 \times \tfrac{1}{2} + 1 \times \tfrac{1}{2} = \tfrac{1}{2}$

Задача

- Пусть f_i результат i-го бросания: она равна 1 если выпал «орел» и 0, если выпала «решка»
- Нас интересует $\mathsf{E}(f_1 + f_2 + f_3 + f_4 + f_5)!$
- Матожидание легко посчитать для одной монеты: $\mathsf{E} f_i = 0 \times \tfrac{1}{2} + 1 \times \tfrac{1}{2} = \tfrac{1}{2}$
- По линейности $\mathsf{E}(f_1+f_2+f_3+f_4+f_5)=\mathsf{E}f_1+\mathsf{E}f_2+\mathsf{E}f_3+\mathsf{E}f_4+\mathsf{E}f_5=2.5$

Задача

Пусть средний доход на душу населения в некоторой стране равен X рублей в месяц, а средние расходы на питание равны Y рублей в месяц. Каковы средние доходы населения, остающиеся после трат на питание?

Задача

Пусть средний доход на душу населения в некоторой стране равен X рублей в месяц, а средние расходы на питание равны Y рублей в месяц. Каковы средние доходы населения, остающиеся после трат на питание?

 Будем брать случайно и равновероятно жителя страны

Задача

Пусть средний доход на душу населения в некоторой стране равен X рублей в месяц, а средние расходы на питание равны Y рублей в месяц. Каковы средние доходы населения, остающиеся после трат на питание?

- Будем брать случайно и равновероятно жителя страны
- Пусть f случайная величина, равная его доходам

Задача

Пусть средний доход на душу населения в некоторой стране равен X рублей в месяц, а средние расходы на питание равны Y рублей в месяц. Каковы средние доходы населения, остающиеся после трат на питание?

- Будем брать случайно и равновероятно жителя страны
- Пусть f случайная величина, равная его доходам
- Пусть g случайная величина, равная его расходам

Задача

Пусть средний доход на душу населения в некоторой стране равен X рублей в месяц, а средние расходы на питание равны Y рублей в месяц. Каковы средние доходы населения, остающиеся после трат на питание?

• Тогда Еf=X и Еg=Y

Линейность матожидания, примеры

Задача

Пусть средний доход на душу населения в некоторой стране равен X рублей в месяц, а средние расходы на питание равны Y рублей в месяц. Каковы средние доходы населения, остающиеся после трат на питание?

- Тогда Еf=X и Еg=Y
- f-g случайная величина, равная доходам, остающимся после трат на питание

Линейность матожидания, примеры

Задача

Пусть средний доход на душу населения в некоторой стране равен X рублей в месяц, а средние расходы на питание равны Y рублей в месяц. Каковы средние доходы населения, остающиеся после трат на питание?

- Тогда Еf=X и Еg=Y
- f-g случайная величина, равная доходам, остающимся после трат на питание
- $\mathsf{E}(f-g) = X-Y$, и это как раз то, что мы искали

Линейность математического ожидания

Линейность математического ожидания

Задача о днях рождения

Задача о днях рождения

Рассмотрим 28 случайно выбранных людей. Рассмотрим число пар (i,j), таких что i-й и j-й человек имеют день рождения в один день. Докажите, что матожидание этой величины больше 1.

 Есть есть два человека с общим днем рождения, они добавят 1 к числу пар в задаче

Задача о днях рождения

- Есть есть два человека с общим днем рождения, они добавят 1 к числу пар в задаче
- Если есть три человека с общим днем рождения, они образуют 3 пары

Задача о днях рождения

- Есть есть два человека с общим днем рождения, они добавят 1 к числу пар в задаче
- Если есть три человека с общим днем рождения, они образуют 3 пары
- Так что они добавят 3 к числу пар в задаче

Задача о днях рождения

Рассмотрим 28 случайно выбранных людей. Рассмотрим число пар (i,j), таких что i-й и j-й человек имеют день рождения в один день. Докажите, что матожидание этой величины больше 1.

Утверждение выглядит удивительно: людей не так уж много

Задача о днях рождения

- Утверждение выглядит удивительно: людей не так уж много
- Но мы это докажем!

Задача о днях рождения

Рассмотрим 28 случайно выбранных людей. Рассмотрим число пар (i,j), таких что i-й и j-й человек имеют день рождения в один день. Докажите, что матожидание этой величины больше 1.

• Но нужно формализовать задачу

Задача о днях рождения

- Но нужно формализовать задачу
- Мы предполагаем, что дни рождения распределены равномерно среди 365 дней в году

Задача о днях рождения

- Но нужно формализовать задачу
- Мы предполагаем, что дни рождения распределены равномерно среди 365 дней в году
- Мы не будем это обсуждать, но на самом деле неравномерность распределения дней рождения только увеличивает матожидание!

Задача о днях рождения

- Но нужно формализовать задачу
- Мы предполагаем, что дни рождения распределены равномерно среди 365 дней в году
- Мы не будем это обсуждать, но на самом деле неравномерность распределения дней рождения только увеличивает матожидание!
- Люди выбираются независимо

• Мы используем линейность матожидания

- Мы используем линейность матожидания
- Обозначим число пар людей с днями рождения в один день через f

- Мы используем линейность матожидания
- Обозначим число пар людей с днями рождения в один день через f
- Перенумеруем людей от $1\ \mathrm{дo}\ 28$

- Мы используем линейность матожидания
- Обозначим число пар людей с днями рождения в один день через f
- Перенумеруем людей от $1\ \mathrm{дo}\ 28$
- Рассмотрим случайную величину g_{ij} , равную 1, если люди i и j имеют день рождения в один день, и равную 0 иначе

- Мы используем линейность матожидания
- Обозначим число пар людей с днями рождения в один день через f
- Перенумеруем людей от $1\ \mathrm{дo}\ 28$
- Рассмотрим случайную величину g_{ij} , равную 1, если люди i и j имеют день рождения в один день, и равную 0 иначе
- Наблюдение: f равна сумме g_{ij} по всем (неупорядоченным) парам i и j!

- Мы используем линейность матожидания
- Обозначим число пар людей с днями рождения в один день через f
- Перенумеруем людей от $1\ \mathrm{дo}\ 28$
- Рассмотрим случайную величину g_{ij} , равную 1, если люди i и j имеют день рождения в один день, и равную 0 иначе
- Наблюдение: f равна сумме g_{ij} по всем (неупорядоченным) парам i и j!
- Почему?

Для примера рассмотрим 5 людей

Пять людей: 1, 2, 3, 4, 5

Для примера рассмотрим 5 людей

Пять людей: 1, 2, 3, 4, 5

Список всех пар:

{1,2}	{2,4}
{1,3}	{2,5}
{1,4}	{3,4}
{1,5}	{3,5}
{2,3}	{4,5}
(=/0)	(1,0)

Для примера рассмотрим 5 людей

Пять людей: 1, 2, 3, 4, 5

Список всех пар:

$$\begin{array}{llll} \{ \hbox{1,2} \} & g_{1,2} = 0 & \{ \hbox{2,4} \} & g_{2,4} = 0 \\ \{ \hbox{1,3} \} & g_{1,3} = 1 & \{ \hbox{2,5} \} & g_{2,5} = 0 \\ \{ \hbox{1,4} \} & g_{1,4} = 0 & \{ \hbox{3,4} \} & g_{3,4} = 0 \\ \{ \hbox{1,5} \} & g_{1,5} = 0 & \{ \hbox{3,5} \} & g_{3,5} = 0 \\ \{ \hbox{2,3} \} & g_{2,3} = 0 & \{ \hbox{4,5} \} & g_{4,5} = 1 \\ \end{array}$$

Для примера рассмотрим 5 людей

Пять людей: 1, 2, 3, 4, 5

Список всех пар:

Заметим, что f равна количеству пар $\{i,j\}$ с $g_{ij}=1$.

Для примера рассмотрим 5 людей

Пять людей: 1, 2, 3, 4, 5

Список всех пар:

Заметим, что f равна количеству пар $\{i,j\}$ с $g_{ij}=1$. Сумма g_{ij} равна тому же самому!

Задача о днях рождения

Задача о днях рождения

Рассмотрим 28 случайно выбранных людей. Рассмотрим число пар (i,j), таких что i-й и j-й человек имеют день рождения в один день. Докажите, что матожидание этой величины больше 1.

• Вернемся к доказательству

Задача о днях рождения

- Вернемся к доказательству
- Мы знаем, что Еf равно сумме Е g_{ij} для всех пар $\{i,j\}$

Задача о днях рождения

- Вернемся к доказательству
- Мы знаем, что Еf равно сумме Е g_{ij} для всех пар $\{i,j\}$
- Нужно посчитать Е g_{ij}

Задача о днях рождения

- Вернемся к доказательству
- Мы знаем, что Еf равно сумме Е g_{ij} для всех пар $\{i,j\}$
- Нужно посчитать Е g_{ij}
- Еще нужно посчитать число пар $\{i,j\}$

• Матожидание отдельных g_{ij} посчитать легко:

$$\mathrm{E}g_{ij} = 1 \times \frac{1}{365} + 0 \times \frac{364}{365} = \frac{1}{365}$$

• Матожидание отдельных g_{ij} посчитать легко:

$$\mathrm{E}g_{ij} = 1 \times \frac{1}{365} + 0 \times \frac{364}{365} = \frac{1}{365}$$

• Почему $\frac{1}{365}$?

• Матожидание отдельных g_{ij} посчитать легко:

$$\mathrm{E}g_{ij} = 1 \times \frac{1}{365} + 0 \times \frac{364}{365} = \frac{1}{365}$$

- Почему $\frac{1}{365}$?
- Есть 365×365 исходов для дней рождения двух людей

• Матожидание отдельных g_{ij} посчитать легко:

$$\mathrm{E} g_{ij} = 1 \times \frac{1}{365} + 0 \times \frac{364}{365} = \frac{1}{365}$$

- Почему $\frac{1}{365}$?
- Есть 365×365 исходов для дней рождения двух людей
- И только 365 исходов с днями рождения в один день

• Сколько всего есть пар i и j?

- Сколько всего есть пар i и j?
- У нас всего 28 людей

- Сколько всего есть пар i и j?
- У нас всего 28 людей
- Есть $\binom{28}{2} = \frac{28 \times 27}{2} = 378$ способа выбрать неупорядоченную пару из них

- Сколько всего есть пар i и j?
- У нас всего 28 людей
- Есть $\binom{28}{2} = \frac{28 \times 27}{2} = 378$ способа выбрать неупорядоченную пару из них
- Напоминание: есть 28 вариантов для первого человека в паре, есть 27 вариантов для второго человека, и мы посчитали каждую пару дважды

Задача о днях рождения

Задача о днях рождения

Рассмотрим 28 случайно выбранных людей. Рассмотрим число пар (i,j), таких что i-й и j-й человек имеют день рождения в один день. Докажите, что матожидание этой величины больше 1.

• В итоге, мы получаем следующее

Задача о днях рождения

- В итоге, мы получаем следующее
- Еf равно сумме Е g_{ij} по всем парам $\{i,j\}$

Задача о днях рождения

- В итоге, мы получаем следующее
- Еf равно сумме Е g_{ij} по всем парам $\{i,j\}$
- $\mathsf{E}g_{ij} = \tfrac{1}{365}$

Задача о днях рождения

- В итоге, мы получаем следующее
- Еf равно сумме Е g_{ij} по всем парам $\{i,j\}$
- $\mathsf{E}g_{ij} = \tfrac{1}{365}$
- Есть 378 пар людей

Задача о днях рождения

- В итоге, мы получаем следующее
- Еf равно сумме Е g_{ij} по всем парам $\{i,j\}$
- $\mathsf{E}g_{ij} = \tfrac{1}{365}$
- Есть 378 пар людей
- Получаем

$$\mathsf{E}f = 378 imes rac{1}{365} > 1$$

Задача о днях рождения

Рассмотрим 28 случайно выбранных людей. Рассмотрим число пар (i,j), таких что i-й и j-й человек имеют день рождения в один день. Докажите, что матожидание этой величины больше 1.

• Мы доказали, что матожидание больше 1

Задача о днях рождения

- Мы доказали, что матожидание больше 1
- Совпадение дней рождения вероятно

Задача о днях рождения

- Мы доказали, что матожидание больше 1
- Совпадение дней рождения вероятно
- Но это не дает оценку на вероятность того, что будут общие дни рождения

Задача о днях рождения

Рассмотрим 28 случайно выбранных людей. Рассмотрим число пар (i,j), таких что i-й и j-й человек имеют день рождения в один день. Докажите, что матожидание этой величины больше 1.

 Совпадение сразу нескольких дней рождения дает больший вклад в матожидание

Задача о днях рождения

- Совпадение сразу нескольких дней рождения дает больший вклад в матожидание
- Оценка вероятности будет обсуждаться в курсе вероятности

 На этой неделе мы обсудили начала теории вероятностей

- На этой неделе мы обсудили начала теории вероятностей
- Мы обсудили дискретную модель вероятностей

- На этой неделе мы обсудили начала теории вероятностей
- Мы обсудили дискретную модель вероятностей
- Мы обсудили численные меры случайных объектов, случайные величины

- На этой неделе мы обсудили начала теории вероятностей
- Мы обсудили дискретную модель вероятностей
- Мы обсудили численные меры случайных объектов, случайные величины
- Мы обсудили их основной параметр, математическое ожидание

- На этой неделе мы обсудили начала теории вероятностей
- Мы обсудили дискретную модель вероятностей
- Мы обсудили численные меры случайных объектов, случайные величины
- Мы обсудили их основной параметр, математическое ожидание
- Этого достаточно для основных учебных применений

- На этой неделе мы обсудили начала теории вероятностей
- Мы обсудили дискретную модель вероятностей
- Мы обсудили численные меры случайных объектов, случайные величины
- Мы обсудили их основной параметр, математическое ожидание
- Этого достаточно для основных учебных применений
- Гораздо подробнее о вероятности будет в одном из следующих курсов