Lecture 26 [10.CHAOS]

Density: we say that $Y \subseteq X$ is dense in X if 0 for any open set $A \subseteq X$, $A \cap Y \neq \emptyset$

1 for any xex, there is yne Y s.t. d(x, yn) ->0

3 Y=X

Example: The set of periodic points in Σ is dense in Σ .

Take SE = (SoS152...)

Define to=(So) to=(SoSoSoSo) to=(SoSoSoSo) to=(SoSoSoSo)

d[s,tn] ≤ 1 By the Proximity thm, since s and t have the same first n+1 entries 2^n so d[s,tn] $\rightarrow 0$

2) The orbit of S=(0,100,01,100,100,101,100,10

The orbit of \hat{S} under σ is dense in Σ .

Proof: Let $s < \Sigma$, and $\Sigma > 0$ then there is $n \in \mathbb{N}$ s.t. $\frac{1}{2^n} < \Sigma$

at some point n, the (n+1)-block region or & there is a sequence which matches Sos...Sn.

That means there is $k \in \mathbb{N} s.t. o + (\hat{s}) = (s.s. ... sn other terms)$ By the proximity thm, $d[s, o + (\hat{s})] \leq \frac{1}{2^n} < \varepsilon$

Transitivity: $f: X \longrightarrow X$ is transitive if for any pair of points, $x, y \in X$. And any $\varepsilon > 0$, there is a third point $z \in X$ s.t. the orbit of z under F passes within distance ε of both X and Y.

Equivalently, for all x, $y \in X$, E > 0, there is $Z \in X$ and $k \in \mathbb{N}s$.t. d(x,z) < E and $d(F^k(z), y) < E$

Example: The shift map is transitive.

$$X=(10\cdots)$$
 $y=(01\cdots)$
 $Z=\sigma^{6}(9) \sim X$

$$\sigma^{6}(z)=\sigma^{14}(9) \sim y$$

Proof: we have seen that the orbit of & is dense in Σ . so for any $t, s \in \Sigma$, $\varepsilon > 0$. • there is $j \in \mathbb{N}$ st. $d [\sigma^{i}(\hat{s}), s] < \varepsilon$ • there is $k \in \mathbb{N}$ st. $d [\sigma^{i+k}(\hat{s}), t] < \varepsilon$

Proposition: Amy dynamic system with a dense orbit is transitive. The converse is disotrue: A transitive dynamic system must have a dense orbit.

Sensitivity: $F: X \rightarrow Y$ is sensitive if there is $\beta > 0$ st. for any $x \in X$ and $\epsilon > 0$, there exists $y \in X$ within distance ϵ of X and there is $k \in |N| \le t$. or equivalently, there is $\beta > 0$ s.t. for any $x \in X$, there exists $y \in X$ and $k \in N$ st. d(x,y)<& BUT d (FKx), FK(y) >B

Remarks: Oroughly, it means that we can find yas close to x as we want, and the orbits will eventually be separated by B.

2 Numerically, it implies that small errors on lead to completely different orbits.