人民网留言板-数据分析

数据爬取

首先人民网是有反爬虫机制的,里面设置了对应的密钥,所以采用常规爬虫是无法爬取的,这时候我们就要采取另类措施了

这里我们采用的是selenium技术去实现自动化爬取内容

所谓自动化就是模拟人的行为去对网页进行数据采集

这里是对应的官方文档介绍: https://selenium-python-zh.readthedocs.i o/en/latest/getting-started.html

这里的操作一共分为两步走,首先先去留言板获取对应的ID

然后再根据这些ID去伪造对应的URL

然后再去通过伪造的这个URL去获取对于的标签和内容

最后根据5个关键词一共获取1147条正文内容

其中领导有回复到的帖子一共为1070条内容

数据获取到的下一步就是数据处理工作

这里首先是把获取到两个文件进行合并,这里采用的是pandas中的concat函数去对文件进行合并,然后去进行去重drop_duplicates,再把多余的空值全部给删除,最后保留一个完整的文件

这个便是完整的文件

接着进行数据分析工作,先进行词云以及NLP分析

首先我们进行的是词云处理,这里一共分两步走,一是去分析提问里面的词云,二是 分析官方回复里面的词云

这里我们首先需要一个停用词表,停用词表的意义就是帮助我们筛除一些无意义的词,也就是无效词和标点符号

接着我们根据jieba进行分词处理,分好词之后,我们写一个中文函数,也就是判断这个词是否为中文,如果是中文就保留下来,不是的话就去除,这个便是中文判断函数

```
def is_all_chinese(strs):
    for _char in strs:
        if not '\u4e00' <= _char <= '\u9fa5':
        return False
    return True</pre>
```

把词处理好之后,这里我们采用的stylecloud这个词云库,帮助我们有效的将词处理成词云图

接着我们再去把TOP200的词用pandas保存下来,放在data文件夹里面

然后我们再去对文本进行情感分析,这里情感分析我们采用的是百度开源成熟的NLP 模型库,paddlehub

对应的文档介绍: https://www.paddlepaddle.org.cn/hubdetail?name=senta_bilstm&en_category=SentimentAnalysis

通过这个库去对文本内容进行打分

接着我们再去把我们的得到的情感得分用可视化的方式展示出来

首先我们把时间转化为序列,这里采用了pandas中的parse_dates方式,把时间作为序列,接着采用resample的方法把时间调为月份

接着我们采用matplotlib的方式进行可视化处理,最后生成的图片为:

从这里我们可以很好的看出,每个月情感的趋势是怎么样的一个情况

接着对文本进行一个聚类处理

聚类参考文献: https://zhuanlan.zhihu.com/p/78798251

首先我们还是先分词, 把无效词给除去掉,

然后我们先把文本中的词转化为矩阵,这里采用的是sklearn中的CountVectorizer

接着再去统计每个词中的tf-idf权重,这里采用的是sklearn中的TfidfTransformer

然后根据计算出来的权重和矩阵,进行平滑处理,也就是sklearn中的fit_transform

最后得出来的数据,我们再采用sklearn中的KMeans进行聚类

聚类结束后, 我们先用PCA模块进行降维处理

接着再用matplotlib可视化出来,得出两个聚类后的结果展示图,这两个聚类,可以简单看着一个是非负,一个是负面,它们聚类的效果是怎么样的,这里只能清晰的判断,聚类的效果如何

接着我们再进行LDA主题建模

LDA参考文献: https://zhuanlan.zhihu.com/p/75222819

https://zhuanlan.zhihu.com/p/76636216

这里我们的步骤和上面和一样

首先我们还是先分词, 把无效词给除去掉

接着我们开始构造主题数,寻找最优主题数,这里采用困惑度严格来说,判断标准并不合适,基于此我们这里采用的是另一种方式,也就是通过各个主题间的余弦相似度来衡量主题间的相似程度

(2) 寻找最优主题数

基于相似度的自适应最优LDA模型选择方法,确定主题数并进行主题分析。实验证明该方法可以在不需要人工调试主题数目的情况下,用相对少的迭代,找到最优的主题结构。具体步骤如下。

- ① 取初始主题数k值,得到初始模型,计算各主题之间的相似度 (平均余弦距离)。
- ② 增加或减少k值,重新训练模型,再次计算各主题之间的相似度。
- ③ 重复步骤②直到得到最优k值。

利用各主题间的余弦相似度来度量主题间的相似程度。从词频入手,计算它们的相似度,用词越相似,则内容越相近。假定A和B是两个n维向量,A是,B是,则A与B的夹角的的余弦值通过式(4)计算。

$$P \text{ (} w_j \text{ | } d_j \text{) } = \sum_{s=1}^K P \text{ (} w_i | z = s \text{) } \times P \left(z = s | d_j \right) \text{ (3)}$$

$$\cos\!\theta = \frac{\sum_{i=1}^{n} A_{i}B_{i}}{\sum_{i=1}^{n} (A_{i})^{2} \sum_{i=1}^{n} (B_{i})^{2}} = \frac{AB}{|AB|} \ (4)$$

使用LDA主题模型,找出不同主题数下的主题词;每个模型各取出若干个主题词(比如前100个),合并成一个集合;生成任何两个主题 间的词频向量;计算两个向量的余弦相似度,值越大就表示越相似;计算个主题数的平均余弦相似度,寻找最优主题数,如以下代码清单 所示。

具体代码实现方式

```
# 构造主题数寻优函数
   def cos(vector1, vector2): # 余弦相似度函数
       dot_product = 0.0
       normA = 0.0
       normB = 0.0
       for a, b in zip(vector1, vector2):
          dot_product += a * b
          normA += a ** 2
           normB += b ** 2
       if normA == 0.0 or normB == 0.0:
          return (None)
       else:
           return (dot_product / ((normA * normB) ** 0.5))
       # 主题数寻优
   def lda_k(x_corpus, x_dict):
       # 初始化平均余弦相似度
       mean_similarity = []
       mean_similarity.append(1)
       # 循环生成主题并计算主题间相似度
       for i in np.arange(2, 11):
```

```
lda = models.LdaModel(x_corpus, num_topics=i,
id2word=x_dict) # LDA模型训练
           for j in np.arange(i):
               term = lda.show_topics(num_words=30)
           # 提取各主题词
           top_word = []
           for k in np.arange(i):
               top_word.append([''.join(re.findall('"(.*)"', i)) \
                               for i in term[k][1].split('+')]) #
列出所有词
           # 构造词频向量
           word = sum(top_word, []) # 列出所有的词
           unique_word = set(word) # 去除重复的词
           # 构造主题词列表, 行表示主题号, 列表示各主题词
           mat = []
           for j in np.arange(i):
               top_w = top_word[j]
               mat.append(tuple([top_w.count(k) for k in
unique_word]))
           p = list(itertools.permutations(list(np.arange(i)), 2))
           l = len(p)
           top_similarity = [0]
           for w in np.arange(l):
               vector1 = mat[p[w][0]]
               vector2 = mat[p[w][1]]
               top_similarity.append(cos(vector1, vector2))
           # 计算平均余弦相似度
           mean_similarity.append(sum(top_similarity) / l)
       return (mean_similarity)
```

处理好之后, 再通过matplotlib来进行作图

通过这种清晰的拐点,我们可以很好的判断对应的主题数是多少,例如官方答复这里,5是一个很好的拐点,所以我们可以采用5作为我们的官方答复的主题数

这里提问内容的拐点则是4

处理好之后,我们再采用gensim中的LdaModel去构建主题模型,最后把该主题用可视化的方式展示就是如图所示

接着我们再用gensim中的get_document_topics模块对我们的主题进行判断对每个对应的文本的主题数计算出来

在得到它们的每个文档的主题数后,我们再用matplotlib进行饼图可视化出来

提问内容-主题强度

官方答复-主题强度

	_		_	_	_
所属主题	文章数量	特征词	主题强度		
Topic0	156	工作、 <mark>网友、相关、支持、收悉</mark> 、	0.14579		
Topic1	336	回复、 <mark>网友、工作、情况、收悉</mark> 、	0.31402		
Topic2	185	网友、工作、情况、相关、高度	0.1729		
Topic3	99	网友、工作、相关、情况、回复	0.092523		
Topic4	294	网友、工作、防控、情况、收悉	0.27477		

A	В	С	D	E	F	G	H	J	K
Topic0-主题	Topic0-权i	Topic1-主题	Topic1-权i	Topic2-主题	Topic2-权	Topic3-主	Topic3-权重		
防控	0.008	口罩	0.011	疫苗	0.01	小区	0.006		
影响	0.007	建议	0.006	口罩	0.007	疫苗	0.005		
希望	0.006	小区	0.005	防控	0.007	病毒	0.005		
病毒	0.006	希望	0.005	接种	0.007	口罩	0.004		
口罩	0.005	人员	0.005	请问	0.006	接种	0.004		
核酸	0.005	病毒	0.005	希望	0.006	希望	0.004		
疫苗	0.005	防控	0.005	人员	0.005	隔离	0.004		
居民	0.004	疫苗	0.004	工作	0.005	工作	0.004		
人员	0.004	社区	0.004	健康	0.004	防控	0.003		
接种	0.004	工作	0.004	谢谢	0.004	谢谢	0.003		
检测	0.004	防疫	0.004	小区	0.004	时间	0.003		
孩子	0.004	核酸	0.003	病毒	0.004	社区	0.003		
政策	0.004	部门	0.003	核酸	0.004	相关	0.003		
部门	0.004	风险	0.003	影响	0.004	通知	0.003		
建议	0.004	影响	0.003	检测	0.004	影响	0.003		
小区	0.003	政府	0.003	政策	0.003	人员	0.003		
防疫	0.003	政策	0.003	医院	0.003	孩子	0.003		
工作	0.003	情况	0.003	地方	0.003	原因	0.003		
生活	0.003	发现	0.003	解决	0.003	年月日	0.002		
书记	0.003	你好	0.003	防疫	0.003	请问	0.002		

以及不同主题,它们top20的词的权重给对应计算出来

最后就是根据上面获取到的内容, 进行一些可视化

首先我们这里根据获取的文本内容,统计一下,每个月的推文是多少

这里就是根据文档,然后先是用pandas中的parse_dates去把时间转为序列,接着对序列进行月份统计

最后再用resample得出每个月份的推文数量是多少,接着根据这些的数据用 matplotlib来进行可视化处理

接着我们需要得知,每个地方他们的情感占比是一个什么样的情况

这里我们先是把当地转化为对应的省份、市、自治区

这里就是自己编写对应的清洗函数,接着调用pandas中的apply模块,把数据清洗好之后

我们再用pandas中的groupby模块把地区进行归类统计

最后得到的数据, 我们再用pyecharts进行可视化出来

而后,主题的情感统计和上面的思路一样,采用的技术也是一样,只是个别地方需要 修改代码

这里有一点是需要注意的,因为中立其实有点难以判断,所以一般业内统计都是归为 非负和负面这两类

以上便是全部分析的思路和方法