

**AN INTEGRATED DISPLAY AND CONTROL SYSTEM
FOR MAN-MACHINE COMMUNICATION**

CURTIS G. LAWSON

LIBRARY
U.S. NAVAL POSTGRADUATE SCHOOL
MONTEREY, CALIFORNIA

AN INTEGRATED DISPLAY AND
CONTROL SYSTEM FOR MAN-MACHINE COMMUNICATION

by

Curtis G. *H* Lawson
Captain, United States Marine Corps

Submitted in partial fulfillment of
the requirements for the degree of

MASTER OF SCIENCE
IN
ENGINEERING ELECTRONICS

United States Naval Postgraduate School
Monterey, California

1962

LIBRARY
U.S. NAVAL POSTGRADUATE SCHOOL
MONTEREY, CALIFORNIA

A PPLIED DISPLAY AND
COMPUTER SYSTEM FOR HUMAN-MACHINE COOPERATION

by

Curtis G. Lawson

This work is accepted as fulfilling
the thesis requirements for the degree of
MASTER OF SCIENCE
IN
ENGINEERING ELECTRONICS
from the
United States Naval Postgraduate School

ABSTRACT

Computer oriented systems have created the need for a closer interaction between men and computers. This thesis is an evaluation of, and the resulting system design of one such system. The main portion of the design is that of the operator's display and control console for this system. Included as a portion of the design problem is a computer program for the mechanization of wiring data for constructing the digital equipment.

The operator's display and control console is presently being constructed by Data Display, Incorporated of Saint Paul, Minnesota.

The author wishes to express his appreciation to Professor Mitchell L. Cotton of the U. S. Naval Postgraduate School, and to Mr. G. N. Grashorn of Data Display, Incorporated for their many helpful suggestions.

TABLE OF CONTENTS

Chapter	Title	Page
1.	Man-Machine Communications in a Digital System	1
2.	Techniques for Man-Computer Communication	11
3.	Design Specifications	16
4.	Hardware Considerations and Mechanization of Design Procedures	27
5.	Radar Conversion Unit	38
6.	Design of Character and Vector Generators	42
7.	Design of the Input, Output and Control Functions	29
8.	System Implementation and Conclusions	74
	Bibliography	84
	Appendix 1	85
	Appendix 2	125

LIST OF ILLUSTRATIONS

Figure	Page
1-1 Flow of Information in a Man-Computer System	4
4-1 Logic Diagrams in Control Data Corporation Notation	29
4-2 Example of an Equation Written from a Logic Diagram	31
4-3 Constraints on Chassis Wiring	32
4-4 Sample of Input to Mechanization Program	34
4-5 Sample of Output of File of Equations	35
4-6 Sample of Card Compilation	36
4-7 Sample of Wiring Tabulation	37
5-1 Comparison Table of Time Available for Display of Symbols as a Function of Range Switch Position	40
5-2 Characteristics of Radars to be Used in the System	41
5-3 Example of the Digital Raster Produced by the Radar Scan	43
5-4 Formation of "Blivets"	45
5-5 Necessary Logic for Addition of Eight Information	48
6-1 Programming Information for String Words	50
6-2 Example of the Trace Produced by Vectors	51
6-3 Programming Information for Coding Vectors	54
6-4 Example of the Trace Produced by Characters	56
6-5 Programming Information for Character Control Codes	58
7-1 General Block Diagram of Control Functions	63
7-2 Symbol Character Codes	65
7-3 Special Keyboard Codes	68
7-4 Range Switch Codes	69
7-5 Sense Function Codes	71

LIST OF ILLUSTRATIONS
(Continued)

Figure	Page
7-6 Select Function Codes for Control Functions	72
7-7 Select Function Codes for Light Feedback	75
8-1 Block Diagram of the Symbol and Radar Generators and the Memory	79
8-2 Block Diagram of the Control Circuits	80
8-3 Block Diagram of the Entire System	81
8-4 Proposed Equipment Layout for the Digital Control and Automation Laboratory	82
8-5 Layout of the Operator's Console	83

I. Man-Machine Communications in a Digital System

The present use of computers in most applications can be classified as one of two categories:

a. Off-line operations in which a preformulated problem and precoded groups of data are fed to the computer along with the programs for processing the information. The computation then proceeds according to the preplanned program, if all data and programs are correct. Upon completion of a successful program, the desired results are then dumped from the computer memory to an output media for printing and evaluation at some later time. The extension of this technique has led to the "closed shop" computing center with their various "auto-monitor" programs in which the individual who wants the problem solved never sees the computer. This technique was prompted by the expense of large digital computers. The major drawback to such a scheme is that in writing new programs or trying to formulate new techniques for solving problems, there is a good chance for errors which will not allow the program to run to completion and may not give any indication of the reasons for stoppage. The cost of off-line formulation and "de-bugging" may be considerable in some circumstances.

b. On-line operations in which the operator is working in real time with the computer on a real time physical problem. This type of operation traditionally employs programs which are necessarily complex to take every possible situation into consideration. The role of the man in this system has been to make simple "yes-no" or similar decisions and to provide a means of accomplishing tasks

which are not automated or programmed whether by reason of difficulty or just oversight. Examples of on-line operation are the military systems (i.e., DGA, NTDS, etc.) and industrial process controls. The cost of such systems are large as the computer is usually in full time use by the system due to the special purpose nature of the equipments.

There has been a recent trend to explore the possibilities of utilizing the best points of both techniques in systems linking man and computer more closely /1, 2/. In order to accomplish this, the basic class of operation must tend toward on-line operation. By having a closer link with the computer, the operator can make decisions at various points in the process based on real time feedbacks; examine changes in results due to varying inputs or parameters in real time; program and check blocks of codings easily before integration into a more complex program; and call up and inspect large blocks of information randomly from a large memory.

In order to accomplish this interaction between man and computer while keeping the overall system flexible and relatively inexpensive, certain requirements must be met: (a) A method of time sharing of the central computer must be implemented, either by programming or hardware techniques. (b) Display and control equipments must be designed to allow the operator to effectively communicate complex ideas to the computer and to allow the computer (through proper programming) to make requests on or display data to the operator. The first requirement is dictated by the desire to perform on-line and off-line computations interlaced in

time, while the second is essential to any closely coordinated man-computer system. The specifications of time sharing systems have been developed in recent literature [28, 29]. It is the purpose of this thesis to develop design criteria and to carry out the design of a display and control console which can be applied to many different type problems.

In a computer oriented system the flow of information is as shown in Figure 1-1.

The man-computer interface consists of two unique parts. There must be a provision for the operator to communicate his desires to the computer, and the computer should have the provision to display results or ask for further instructions. Specific techniques for accomplishing these functions will be discussed in Chapter 2.

In order to intelligently use any or all of the possible information available in a complex system, the display must be able to select various portions of information readily and easily. This means that the display console itself should be a complex buffer and should be able to control the computer's memory and programs. The main control programs in the central computer should be tailored to the display which in turn should be tailored to the human requirements for ease of operation along with flexibility.

Display updating may be done on any of the following criteria:

- a. Upon receipt of new data by the computer
- b. Upon a real time interval
- c. Upon request from the display console

Priority considerations in the case of radar or automatic inputs

Figure 1-1
Flow of Information in a Man-Computer System

versus manual inputs should also be given consideration in the design of a given equipment. There should be a method for overriding any preselected priority sequence without changing the whole sequence.

The amount of information on a given display must be selectable by the human operator. If there is too much information or unwanted information mixed with the desired information, he must be able to remove some portions of the overall display or be able to expand a part of the display on a secondary display. He should also have control over selective portions of the display in order to view tabular or other information at the same time a graphical display is being produced.

All of these factors should be considered in the design of a given man-computer system with the main guide lines of the actual computer characteristics with which it is to operate.

The broad requirement for an input device is that an operator can readily adapt to it and can communicate his desires to the computer in an efficient manner. This requires that the device be designed using a minimum of controls, but with each control uniquely labeled and preferably able to call in a sequence of subroutines. The general purpose (stored program) computer is well suited for this type approach. By inserting an executive program into the memory, the control keys can be uniquely labeled to call out and execute desired portions of the program. Then, by changing the executive program, the functions of the controls can be changed. So by changing the labeling of the controls with an "overlay", many

Special purpose control consoles may be simulated. An additional method for specifying information to a computer is that of allowing the operator to draw lines or symbols on a display surface or some input "sketch pad". An interpretive routine in the computer would then have to perform a pattern recognition, curve fitting, or other similar operation before taking action. One other desired control is closely linked to the display or output device. There must be a method for interrogating the computer about a point, a symbol, or an area on a display for the purpose of obtaining amplifying information about the interrogated portion.

The requirements for a display device are imposed by the user. Some of these are physical requirements based on the constraints of human reaction time and visual resolution, while others are based on clarity or recognition of information [3]. These have been listed with a brief explanation of each.

a. Selective display capability:

The computer can generate and hold in its memory a large amount of display information. The operator can intelligently use only a limited portion of the total supply of data at one time. For example, an aircraft controller may only be interested in traffic within a certain block of altitudes; so, he should be able to call in to the display only the representation of those aircraft within his volume of control.

b. Fast response to commands:

When asking for a new piece of information on a display or when dropping some outdated display, the response to the

com and should be fast enough to allow continuity of thought for the operator. He should not have to wait for the command to be executed and the display changed.

c. Number and size of the display devices should fit the usage requirements:

In a large system several individual operators may be needed for specific tasks. This function may best be implemented by using a group of individual operator consoles working on data from a central computer and display generator. In some systems, a group of specialists may want to arrive at an optimum decision based on information on a central display. For this purpose, a large screen display is necessary with a possibility of inputting commands from one or more input devices.

d. The display should not flicker:

The retention of images by the eye is such that if a display is refreshed at a rate of about 30 frames per second, no flicker will result. The flicker of a display will be dependent on the storage time of the display elements. For example, if a long persistence phosphor is used in a cathode ray tube display, the refresh rate requirement is reduced, but the time required to change the position of any point on the display or the whole display is determined by the decay time of the phosphor. This decay time is dependent on the initial intensity of the display.

e. Resolution of the display should be greater than the resolving power of the eye:

The eye can discriminate parallel lines separated by

intervals equal to the line width to a value of 10 lines per degree. So for a single operator console, if the display surface is considered to be the base of an isosceles triangle and the eye to be the apex of this triangle (actually an isosceles cone), approximately 50% of viewing angle is included. This dictates that the display should have at least 2,000 "bins" for unique storage in each direction. To place this into a digital representation for computer generation the resolution should be at least 11 bits.

f. The contrast and brightness should be such that under ambient light conditions, the operator will not be subject to eye strain:

The intensity difference between background and information should be on the order of thirty to one for normal usage. If the ambient light is high, reflections from the display surface tend to "wash out" this contrast. A cathode ray tube display console that is designed to operate in normal room lighting needs to incorporate a fast phosphor that can be raised to a high intensity level without producing an extended decay time.

g. Accuracy and distortion should be reduced to an acceptable level:

In any display system, the ideal resulting display would have perfect registration and focus at all points of the display. This goal is rarely, if ever, attained due to hardware considerations. For example, in a cathode ray tube display there is definite defocusing effect at the edges of the tube as the path length of the electron beam is longer. Also, the voltages to zero-

duce the desired deflections in an electrostatic deflection tube (or conversely the current to produce deflections in an electromagnetic deflection tube) do not vary linearly with the distance from the center of the tube /4/. This leads to the use of compensation circuits in the control circuitry which can reduce these conditions to an acceptable level.

h. The coding should allow for a variety of presentations:

The requirements for flexibility encompass such ideas as color, size, shape, intensity, position and orientation, and blink rate as a means of attracting attention. Most displays require a set of symbols for normal usage. These would be numbers, the alphabet, and any frequently used symbols. In addition, a method of generating lines should be included for forming special symbols or line drawings. These "vectors" should allow for blanking portions of the length while proceeding along a given direction to enable the further coding of lines into dashed lines.

i. The format for the display should suit the usage requirements:

Some examples of formats are textual, tabular, graphical, situation or overlay map plus defining symbols, line drawings and diagrams, patterns of symbols to show complex situations, and pictorial symbols to show the status and condition of remote elements. The general classification can be termed either fixed or free. The fixed format is considered to be a textual or tabular type where automatic incrementing and positioning of symbols is accomplished on a set of constraints mechanized into the hardware.

The free form is usually implemented through a cursor control feature which must be generated in the computer.

The number of operators and/or viewers of a man-computer console has a direct bearing on the requirements as has been previously noted. For group displays, optical projection and electroluminescent panels have come into usage as the size of direct view cathode ray tubes are limited by deflection techniques. Examples of group displays have been discussed in recent publications /5, 6/. This thesis will discuss only single operator, direct view, non-colored cathode ray tube displays.

2. Techniques for Man-Computer Communication

The methods available for producing commands to a computer are largely dependent on the type computer being used in the system. For normal communications the computer is in control of the data lines, and the executive program just sample the possible inputs at "programmed" time intervals. For priority communications, the operator should have the ability to interrupt the computer and insert the necessary commands. The nature of any input to the computer is one of a digitally coded bit pattern dependent on the setting of switches or digital encoders, and the initiation of a command switch. A good example of this type communication is the console typewriter which can be used for input and output. An exception to this straightforward input technique is that of employing a 'sketch pad' in which the input takes the form of movement of a probe over a display or an analog surface. In these cases, the computer must sample the allowable surface at a rate fast enough so that normal motion of the probe by the operator generates a smooth input of coded positional values corresponding to the desired lines being traced by the probe. In the case of a direct view cathode ray tube, the probe is a light sensitive photo-diode, and the computer program must display a raster of points about the last recorded position of the probe. The new point is recorded as a feedback of information of the position in the raster which coincides with the probe.

In order to produce a visual display on a cathode ray tube surface from a computer output, a certain amount of decoding and

processing must accompany each computer word. Principle requirements by the display device for each piece of information is believed are: (a) positional information, i.e., X and Y or p and s with respect to some reference point; (b) coded information specifying character or line type, intensity, and size of symbol or length of line. The display circuitry must be able to decode this information and convert its meaning into the necessary deflection and intensity signals to produce the desired symbol at the specified location.

The symbol formation signals must be superimposed upon the positional deflection signals. This can be accomplished by voltage or current summers in the analog deflection circuitry. The methods of categorizing the various techniques for symbol generators have been listed in recent publications /7, 8, 9/. These are dot pattern, scanning raster, waveforms or strokes, and shaped beams.

In the dot pattern method, the symbols are made by positioning the beam to a sequence of positions defining the symbol. At each point in the sequence the beam is unblanked. The result is a group of dots oriented to form the desired symbol. The formation may use a cell of computer memory for each point displayed as in the PDP-1 console display /10/. This method is limited in speed to the speed of each memory cycle. An analog method for generating the dot pattern has been devised which makes use of resistor networks /11/.

A combination of scanning and the dot method are used by the Laboratory for Electronics in their S-17 symbol generator. For this method each symbol in the set is represented by a selectable

matrix of magnetic cores. Each core is located at a position where a dot is to appear in the character. The matrix is scanned by rows while the beam is unblanked as a function of the cores.

A variation on the core scanning system is the VISION /12/. Each symbol is again represented by a selectable matrix of magnetic cores. In this generator, the cores are positioned so that they make a double outline of the desired character. The selected matrix is then scanned by rows, and alternate cores turn the beam on and off. This causes the figure to be made up of a group of parallel line segments.

The scanning method of forming characters can be implemented by using flying spot scanner techniques /13/. In this method a fixed size scanning raster is moved to a spot on the generator tube which coincides with the desired character or symbol mask. The portion of the beam that goes through the mask is focused on a photomultiplier, and this signal is amplified to control the intensity grid of the display tube. The scan pattern must be superimposed on the positional information for deflection signals. The combination of intensity and deflection produces the desired symbol on the display.

The stroke method has been used with much success in the "Calliscope" of Lincoln Laboratories /14, 15/, the symbol generator of Strand Engineering Laboratory, and the symbol generator of Data Display, Incorporated. The methods of deriving the deflection and intensity signals for each of these techniques vary considerably, but the results achieved are the same. The symbols are formed by

unblanking the beam at a startin point for each character and then moving the beam while it is unblanked. Some complex symbols require multiple unblanking and blanking during the formation period.

The shaped beam method is used extensively in the military display systems (SAGE and RTDS). The basis of the system is the "Charactron" tube /16/. The tube has a character matrix within the tube envelope. The character desired must be selected by positioning the beam to the associated figure in the mask by a small electrostatic deflection system. The beam is purposefully defocused to obtain a large cross-sectional area, and the shaped beam that gets through the mask is in the outline of the selected symbol. This shaped beam is then magnetically deflected to the desired position on the display surface.

A comparative analysis of these systems has been accomplished by Lowe, Sisson and Horowitz /7/. Two systems not included in this analysis are the "Strand" generator and the "DDI" generator. The respective times for generating a symbol with these systems are 40 and 6.6 microseconds. These rates of 25,000 and 150,000 characters per second compare very favorably with the other systems.

In addition to computer generated displays on cathode ray tubes, a common method for the computer to convey information to an operator is through coded and labeled lights. These are extremely easy for a computer to initiate, and providing the meaning is clear, can be an economical and efficient way for the computer to alert the operator. The main drawback for this technique is the relative inflexibility of the feedback and the possibility of

operator confusion if there are an excessive number of lights on the control console.

2. DESIGN SPECIFICATIONS

The technical requirements for an advanced design digital control display console for the Digital Control and Automation Laboratory were stated as follows:

This unit will provide character and symbol display facilities to either with provision for direct display of radar video signals. In addition, it will function to provide for communications between an operator and a central computer.¹

A research and development contract² was subsequently awarded to Data Display, Incorporated for the design and construction of the unit which has since been designated as the DD-05. The author worked in conjunction with Mr. Gene Grashorn of Data Display, Incorporated to specify and design this equipment. The remainder of this thesis will be devoted to the actual design of the DD-05.

The system requirements are dictated by the equipments that are to be controlled by or input to the DD-05. There are three distinct modes of operation inferred by the requirements:

a. To input radar information and to provide for (1) display of the video in a PPI format and (2) digitizing of any video return which may be determined to be a target by a detection unit so that the computer may act upon the information.

b. To allow the operator to enter information into the computer.

c. To allow the computer to present data to the operator in the form of symbols on a cathode ray tube or by drawing attention to certain input keys by a system of lights.

¹J. L. Cotton, Technical Requirements Summary, Digital Control and Automation Laboratory, pp. 1, Feb., 1960

²Navy Contract N0ber 19578

The following radar units currently installed are to act as inputs to the system:

AR/SPS 10

AR/SPS 10

AR/SPS 12

AR/SPS 20

These radars are installed in the main radar laboratory, and the following information must be made available for use in the D-65:

- a. Azimuth information
- b. "Main bang" or time of pulse transmission
- c. Video return signal which will have any targets along with noise introduced in the process.
- d. Height information in the case of the SPS 10 and AR/SPS 20.

This analog information must be converted to digital information for display and further transfer to the digital processors.

The digital computers incorporated in the system are a large scale scientific computer, the Control Data Corporation 1604 /17/ and a small data processor, the Control Data Corporation 160 /18/. These computers communicate with external equipment by parallel data transfer lines which are controlled by a sequence of control signals. Also, an essential part of the system is the Control Data Corporation 1607 magnetic tape system which contains circuits for a "Satellite" operation between the 160 and the 160⁴ /19/.

In order to perform an output from the computers to one of a number of peripheral equipments, the following sequence must be performed:

- a. Communications established with the desired equipment (exclusive of all others) by a coded select signal preceded by a sense signal to determine if equipment is available.
- b. Data transferred to output lines, and a signal output ready is sent to all peripheral equipment.
- c. The selected equipment (only) recognizes the ready and accepts the data, and at the same time sends an output resume signal back to the computer.
- d. The computer, upon receipt of the resume signal, then drops the data and ready signals and prepares for the next word transfer, if any, or merely continues or the internal program.

In order to perform an input to a computer from an external equipment, the computer program must be written so that it looks to see if any equipment has data ready for input. This must be done by coded sense responses which must be built into the peripheral equipments. The computer, upon recognizing the source and the presence of an input word, then sends an input request signal which signifies that it has accepted the data and allows the equipment to drop the signals for its data lines. This sequence must be repeated for each data word entry.

In the 1604 an additional input mode has been utilized. This is the interrupt mode. This interrupt mode must be preselected by a select code in the program. If the selected interrupt occurs during the program, the program sequence is halted at that point. The address at the time of the halt is inserted into the address portion of the upper half of word number seven of the computer memory.

emory, and a jump made to execute the lower half command word number seven (note that the 1604 has a single address, two command words per word computer /17/. The memory cell number seven should be set up previously to process the interrupt. This coding should place unconditional jump commands in both halves of the word and the address of a restored subroutine in the middle portion of the lower half of the word. This subroutine must be written so that it ends with an unconditional jump to cell number seven. Thus, after having been interrupted, the subroutine is entered, and after processing the interrupt, the control can return to the program step which was being processed at the time of the interrupt.

These then are the physical rules by which the DD-5 was designed to perform its functions of control and display.

Certain other considerations in the realm of flexibility, usefulness and realizability then served to dictate the method of using the basic criteria in the control system design. These will be listed as a collection of engineering decisions and the reasoning behind them.

The display will have a self-contained memory unit. This requirement is set for the purpose of freeing the computers from constant usage in refreshing the displays. The requirement that the display be refreshed every 30 milliseconds in order to obtain a "flicker free" display is one that is set by the response time of the eye. This dictates that if the display were to display text of 5,000 characters at six bits per character, then the bit rate

would be 900,000 bits per second. The 160⁴, if only one channel is active, has a maximum transfer rate of about 50,000 forty-eight bit words per second or about 2,400,000 buffered bits per second. The 160 has a transfer rate of about 80,000 twelve-bit words per second or about 960,000 bits per second (unbuffered). Thus, it is seen that the 160 can just barely do the static display at the necessary rate, and if any change is needed in the display, as would be the normal case for moving radar targets, it could not maintain a steady display. The 160⁴ is not as critical as it has a buffered output, but it still would be taxed in its buffering capabilities if more than a single channel is being used.

The use of a self-contained memory also frees the 160⁴ from the control subroutines which must be returned to in order to restart a display cycle. This allows more program time for computations. (In a real time air traffic control system with mach one aircraft, the computation times are critical.)

The memory package chosen was a 1024 \times 24 bit ferrite core memory, licensed from Control Data Corporation. The size was chosen to compromise between the 12-bit 160 and the 48-bit 160⁴. The cycle time of the memory is 6.4 microseconds which is less than the 6.6 microseconds required to display a character. This allows a new memory cycle to be completed while the last character of the previous word is being displayed. Thus, for all characters to be painted, the total time involved is:

$$(6.6 \text{ microseconds per character}) (4 \text{ characters per word}) \\ (1024 \text{ words per cycle}) \cong 2^8 \text{ milliseconds}$$

The difference between the 1604 execution time and the minimum seconds required for an uninterrupted cycle allows five milliseconds for updating the data each cycle without inducing a flicker.

The intercomputer operation must be selective. In the physical layout of units the Control Data Corporation 1607 and the Control Data Corporation 1604 magnetic tape system are located in the U. S. Naval Postgraduate School computing center on the first floor of the Engineering building. The Digital Control and Automation Laboratory is located on the fifth floor directly above the computing center. The DD-65 and the Control Data Corporation 160 of this system are to be located in that laboratory. Usage requirements dictate that the 1604 will not be available for use at certain times (pending the incorporation of a parallel processing monitor program). This requires a lockout be available for the 1604. Also, the 160 may be required to do full time processing of radar data for the 1604, and the data flow should be via the 1607 satellite system only independent of the DD-65 system. A 1604 lockout is required. The result is the incorporation of a selective mode for using the system.

- a. 1604 only (160 locked out)
- b. both (both computers may establish communications with the DD-65.)
- c. 160 only (1604 locked out)

This is realized by a mode switch on the logic chassis.

The basic format for display information should be sequential, and the display should include vectors as well as characters. The

requirements of a display to designate "where" and "what" for each piece of information displayed would at first seem that a format should be as follows:

X position	Y position	information
------------	------------	-------------

The normal usage of information, however, shows that there is usually a relationship between adjacent pieces of information. In the normal typed text or a train line that has been broken up into segments, the location of the next piece of information is incrementally connected to the previous one in some manner. The special case would then be taken as the carriage return for the typed text or the end of a line segment in the above examples. So only at these positions would an absolute location be required.

In the case of characters, the normal mode is to increment from left to right. This mode, along with an incrementing from up to down, has been included in the design.

In the case of vectors, several methods were examined. The generation of the vectors is to be under computer control so that any format using simple computations could be used. The following were the three possibilities:

a. Given a starting position, let the computer specify a completely variable ΔX and ΔY .

b. Given a starting position, let the computer specify a limited number of ΔX and ΔY in a coded format.

c. Given a starting position, let the computer specify ΔX and ΔY in 45 degree increments in coded format for a limited number of lengths.

Methods a. and b. both require ~~orders~~ or variable length incremental counters in their construction. Also, method a. needs a completely variable intensity compensation over the line length variations. Method c. needs incremental up and down counters only, but needs counting rate changes and intensity compensation for each length of line to be drawn.

The accuracies of methods a. and b. are greater, but they sacrifice packing density, and they require a greater amount of hardware to construct.

Using this criteria (also keeping a six-bit coded vector package to be compatible with the character coding size), the design incorporated was that of method c., but allowing for an extremely short vector so that the error could be minimized if the accuracy was needed. The use of incremental counters also makes easier the sequential designation of vectors for forming continuous lines.

The requirement for both characters and vectors dictated that a bit be set aside in each string designator word for "mode". The details of display coupling will be covered in detail in Chapter 6.

There should be two display tubes, only one of which is a direct slave to the radar inputs. Inasmuch as this system is in part being designed to allow investigation on various digital processing techniques in radar detection, the use for comparative displays is desirable. One display tube must be available to display video information at any time between the "main bang" and the maximum range time (if radar input has been selected). During this time, all display information from the internal memory must be

blocked out. In addition, it can receive a command input. This will indicate the amount of information to be written to the tube at one time. The output is proportional to the amount of time between the maximum and the time of the next update.

The second tube is independent of the radar inputs and can be used to display processed information such as background maps and auxiliary information (such as weight, temperature, etc.). This tube is always available to the system. It is and can be used in conjunction with the direct radar display.

Future displays could incorporate this utilizing dual beam electrostatic tubes¹ to remove the restriction of time sharing of radar signals and computer displays.

The manual inputs should allow flexibility. The system is designed to be used with a stored program computer, so some measure of flexibility is accomplished through use of stored subroutines. The initial calculations in a set of subroutines in a magnetic tape library will allow for different sections of the library to be called in for different uses of the computer. These test handles by an overlay word, in addition to the bits to designate the overlay, can change the exit function code by having the function associated with each site engraved on the overlay board.

¹Electrostatic tube, a cathode ray tube with no electron gun, also - 11 1/2 Inch diameter, dual beam, electrostatic focus and deflection, Cathode ray tube, Corp., Bell

In addition to the basic switches, there are other function keys common to all uses of the console. These are located on a subset of the special overlay function switches, and together they are referred to as keyboard two.

The character keyboard is referred to as keyboard one. This keyboard is made up of all the standard numerals and alphabet, along with special characters to complete the keyboard. These keyboards and their coding will be given full treatment in Chapter 7.

Other manual inputs required are a range switch to control the displayed radar presentation and some method for locating and identifying points on the display. There are two common methods for accomplishing this function directly:

- a. Track ball
- b. Photo electric light gun

In the track ball method, two shaft position encoders are placed at right angles, and a ball in contact with both encoders allows the operator (by rolling the ball) to position the encoders very accurately. A symbol will have to be displayed under program control whose center is located at the X, Y position given by the encoders. Thus, by calling for the program to display track ball, the symbol may be centered over any point of interest, and through a second subroutine this information may be used to enter new information or find a memory cell which contains this point for purposes of changing the display.

The method of the light gun accomplishes the same purpose, but it is positioned by hand over a display, and then the light sensi-

live circuit is energized in the portion of the time frame when the light gun is illuminated, a circuit can be made to extract the contents of that memory cell & find the position.

The light gun is faster, and its rate is a more rapid reaction, but for closely spaced points the track ball with its accuracy is easier to use. Based upon this reasoning, a track ball was used in the DB-65.

The display should allow for an auxiliary output channel to dump radar data. In order to obtain best utilization of the computers, i.e., to let them perform computation at a speed limited by the programs (without interruptions for storing data), an auxiliary channel to accept the digitized α , γ (no Zoom, one with minor modifications) has been provided. A buffer memory unit and associated control circuits should be devised between the radar data, and the computer assigned to do the processing. The radar processing computer can then call for targets at its own rate. The buffer memory unit must have a fast access time in order to accept targets at the rate they are received from the radars. The access time needs to be on the order of 1 microsecond if no targets are to be missed. This requirement can be met by designing the buffer unit from standard flip-flop circuit. This is economically feasible as the word size is only 12 bits, and the number of storage words needed should be small.

4. Hardware Consideration and mechanization of design procedure

In order to design digital equipments to have high component packing density and at the same time to allow for easy maintenance, the computer industry has developed the following technique. The circuits to be used are specified in terms of type (pulse or level signal) and speed of response desired. From these requirements, a family of circuits can be designed which are compatible and which, by interconnection, can perform the logical functions AND, OR, or NOT. These circuits are then placed on printed circuit cards either singly or in small groups. The system designer then need only know the parameters and limitations of the family of logic cards in order to specify the interconnections necessary to design a particular equipment. The construction is then completed by wiring the interconnections on a chassis made up of logic card sockets. In this way all active elements are on the removable cards to allow for easy replacement of a faulty circuit.

The logic card family used in the design of the DR-5 is mainly the Control Data Corporation type as described in their manuals /17, 18/ and reported on by J. L. Farrell /20/. These cards are designed to operate at clock rates up to five megacycles as level signal inverters. The switching delay is between 50 and 100 nanoseconds per card. Additional cards have been developed by Data Display, Incorporated for the special uses needed in displays. These are in two main categories: (a) Digital to analog conversion cards for driving the display beams and (b) a fast set of cards to work at about 20 n.c for the display of digitized radar information.

example, if one has a three level logic system, it is possible to have a four level logic system. This is done by adding a fourth level, compatible with the basic system, and connecting it to the system except for those strings of logic which are to be omitted.

The logic circuitry used in the two basic configurations of the logic circuit is an inverter with memory and the outputs of other inverters in such a way that (a) by connecting the outputs of the inverters together at a single input of another inverter, a logical AND function or (b) by connecting the outputs of more than one inverter together with multiple inputs a logical OR is realized. There are codes for the two basic configurations for the logic designer to denote these functions. These basic functions may be combined to enable the designer to realize an AND-OR logic function desired.

This type of logic circuitry makes it possible to build up logic to system design using an initial input of 01, 10, 00, 11 conditions which are to be implemented. The basic function is built up three level logic (000, 001, 010) until it is no longer necessary to easy to reduce further. The action needed is to expand the functions through conversion. In this way, conditions can easily be built up without carrying along the intermediate logic combinations that would be required. The technique used for generating each inverter is to take the desired function, convert it, an execution file can be written in terms of inputs to the inverter.

¹ A comparative system has been applied successfully to the "Sheffer stroke" system.

$$Z = A + B + C$$

$$\bar{Z} = \overline{A + B + C} = \overline{A} \cdot \overline{B} \cdot \overline{C}$$

LOGICAL SYMBOLS

$$Z = A + B + C$$

$$\bar{Z} = \overline{A + B + C} = \overline{A} \cdot \overline{B} \cdot \overline{C}$$

LOGIC INPUTS

Figure 4-1
Logic diagrams in Control Data Corporation notation

This is shown in Figure 4-2. As the functions are written in terms of inputs, no explicit statement of the inversion is made. When the design diagram have been completed the individual card types may be assigned based on the number of inputs and outputs. Once the card types have been assigned, the total number of cards needed are uniquely known, and a chassis size may be chosen. In this line of cards there are up to three inverter sections on each card. The chassis layout can then be specified by assigning each card section a place on the chassis. This is done by assigning a row, a column, and a section to each inverter. The assignment is usually a compromise between obtaining the minimum lengths of interconnecting wire and keeping sections of the chassis grouped into areas of logical functions.

The last step in committing a logical design to hardware is the actual assignment and completion of the interconnecting wiring. The wiring constraints are set by the fact that each card socket has only two terminals per pin. This means that multiple MD signals have to be distributed along the wiring 'tree'.¹ (See Figure 4-3). The task of assigning pin connectors in a manner to minimize wire length is very tedious, and the tedium of it tends to cause errors in the production of a wiring tabulation.

The desire to minimize the number of errors induced in the process between the design diagram and the wiring tabulation re-

¹a 'tree' is a graph having only one path between every two nodes.

$$J_{101} = R_{1056} + R_{100} \cdot R_{050} + R_{100} \cdot R_{050}$$

Figure 4-2

Example of an equation written from a logic diagram

In order to wire a board plate of more than two inches, the following considerations are necessary:

Each connector has only connection terminals for two wires so that the interconnection similar to the depiction in the logic diagram is not possible. The resulting method is to build up a complete wiring "tree" by first accepting the smallest interconnecting wire and then building on this base until all "nodes" have been added to the tree.

Figure 4-3
Constraints on chassis wiring

solved in program, effort being made to determine some of the functions on the Control Data Corporation 1604 computer. The computer has been assigned the tasks of formalizing and printing out the completed file of equations and the final minimum wire length, wire tabulations. Also, the program will assign card types, call attention to illegal equations, and give a tabular total of the number of cards by types required to implement the design. The necessary inputs are a set of "punched cards" which each such contain the equation for a single logic card section and a location for that logic card. A detailed report on usage of the program and an assembly listing of the program is included as Appendix A of this thesis. Examples of the input and outputs are shown in Figures 4-1, 4-5, 4-6, and 4-7.

The method for computing the minimum length wiring to connect a group of nodes is based on an algorithm by Lober, H. and Seinerer./11/

This program was used in the production of the initial wiring diagram for the D-5. The total card count for the design is over 1500 cards. There are two separate cases which made separate program runs necessary. The time required to compute the complete output listing was less than 20 minutes (exclusive of printing the magnetic tape off-line).

CHASSIS 1 DD 65

A000 = A001 + A002 V205 + A101 N009 + A201 N109	J1 J05A
A001 = A000 J842 + A003 V205 + N108 + GNDE	J1 J06A
A002 = A003 + A001 N800	J1 L04A
A003 = A002 + A000 N800 + GNDE + GNDE	J1 J07A
A010 = A011 + A012 A003 V205 + A111 N009 + A211 N109	J1 J05C
A011 = A010 + A013 A003 V205 + N108 + GNDE	J1 J03A
A012 = A013 + A011 N800	J1 K03C
A013 = A012 + A010 N800	J1 K03A
A020 = A021 + A022 A013 A003 V205 + A121 N009 + A221 N109	J1 L08A
A021 = A020 + A023 A013 A003 V205 + N108 + GNDE	J1 L07A
A022 = A023 + A021 N802	J1 L06A
A023 = A022 + A020 N800	J1 L06C
A030 = A031 + A032 V215 + A131 N009 + A231 N109	J1 L08C
A031 = A030 + A033 V215 + N108 + GNDE	J1 L09A
A032 = A033 + A031 N802	J1 L10C
A033 = A032 + A030 N802	J1 L10A
A040 = A041 + A042 A033 V215 + A141 N009 + A241 N109	J1 N08A
A041 = A040 + A043 A033 V215 + N108 + GNDE	J1 M08A
A042 = A043 + A040 N804	J1 M09A
A043 = A042 + A041 N802	J1 M09C
A050 = A051 + A052 V225 + A151 N019 + A251 N119	J1 N08C
A051 = A050 + A053 V215 + N118 + GNDE	J1 N09A
A052 = A053 + A051 N804	J1 N07C

CHASSIS 1 DD 65

A000 = A001 + A002 V205 + A101 N009 + A201 N109
J1 J05A 24 A005, A001,

A001 = A000 J842 + A003 V205 + N108 + GNDE
J1 J06A 14 T011, H215, A200, A100, A002, A000,

A002 = A003 + A001 N800
J1 L04A 22 T012, T010, A003, A000,

A003 = A002 + A000 N800 + GNDE + GNDE
J1 J07A 14 T013, A021, A020, A011, A010, A002, A001,

A010 = A011 + A012 A003 V205 + A111 N009 + A211 N109
J1 J05C 24 A013, A011,

A011 = A010 + A013 A003 V205 + N108 + GNDE
J1 J03A 14 T013, T012, H215, A210, A110, A012, A010,

A012 = A013 + A011 N800
J1 K03C 22 T011, T010, A013, A010,

A013 = A012 + A010 N800
J1 K03A 22 A021, A020, A012, A011,

A020 = A021 + A022 A013 A003 V205 + A121 N009 + A221 N109
J1 L08A 24 A023, A021,

A021 = A020 + A023 A013 A003 V205 + N108 + GNDE
J1 L07A 14 H215, A220, A120, A022, A020,

A022 = A023 + A021 N802
J1 L06A 22 T001, A023, A020,

A023 = A022 + A020 N800
J1 L06C 22 T000, A022, A021,

A030 = A031 + A032 V215 + A131 N009 + A231 N109
J1 L08C 24 A033, A031,

A031 = A030 + A033 V215 + N108 + GNDE
J1 L09A 14 T002, H225, A230, A130, A032, A030,

A032 = A033 + A031 N802
J1 L10C 22 T003, A033, A030,

U S NAVAL POST GRADUATE SCHOOL DATA PROCESSING LABORATORY

COMPILATION OF CARD ASSIGNMENTS

CARD TYPE	NUMBER OF CARDS
11	1
12	NONE
13	NONE
14	210
15	1
16	36
31	NONE
32	NONE
33	NONE
21	81
22	204 1/2
23	17
24	29
01	21
61	NONE
62	NCNF
S36	3 2/3
S04	NONE

U S NAVAL POST GRADUATE SCHOOL DATA PROCESSING LABORATORY

INTER CARD WIRING TABULATION

	ORIGIN	DESTINATION	DESIGNATIONS	WIRE LENGTH
*	J05-01	J06-12	A000 TO A001	3 INCHES
*	L04-06	J09-12	A002 TO V205	6 1/2 INCHES
	J05-02	J09-12	A000 TO V205	3 1/2 INCHES
*	J05-03	I03-12	A000 TO N009	3 INCHES
	I02-12	I03-12	A101 TO N009	1 1/2 INCHES
*	J05-04	H05-06	A000 TO A201	7 INCHES
	H05-06	H12-06	A201 TO N109	4 INCHES
*	J06-01	J842	A001 TO J842	5 1 1/2 INCHES
	J06-01	J05-06	A001 TO A000	2 INCHES
*	J06-02	J07-12	A001 TO A003	3 INCHES
	J07-12	J09-11	A003 TO V205	2 INCHES
*	J06-03	L01-06	A001 TO N108	8 INCHES
*	J06-04	GNDE	A001 TO GNDE	52 INCHES
*	L04-01	J07-11	A002 TO A003	6 INCHES
*	L04-02	J06-11	A002 TO A001	6 INCHES
	J06-11	J08-12	A001 TO N300	2 INCHES
*	J07-01	L04-05	A003 TO A002	8 INCHES
*	J07-02	J08-11	A003 TO N800	2 1/2 INCHES
*	J07-02	J05-05	A003 TO A000	2 INCHES
*	J07-03	GNDE	A003 TO GNDE	52 INCHES

5. Radar Conversion Unit

The system must perform the two separate functions previously described in Chapter 3, i.e., (a) that of direct display of unprocessed video on a digital raster on a display tube, and (b) that of making available to the computer the digital information on a radar return if it is a possible target.

The requirement of a real time radar display places a restriction on the use of the display for computer generated information. The portion of time between start of sweep and the maximum range to be displayed must generate a signal to lock out any memory references to the display. As a result of this restriction, the system has been designed to include two separate display tubes so that one is always available for computer generated display information. The normal display information in the memory is directed to the designated display tube. The tubes are designated "0" for left and "1" for right for purposes of coding command. The choice of which tube is to present the display is controlled by the use of the tube designator bit in the coding structure which will be discussed later. This "tube bit" controls the intensity pin of the designated tube by enabling the "blanking circuitry" to turn on the electron beam. Also, it sets the condition which permits display deflection signals to the designated tube. When no range information is desired, the range switch is placed to the appropriate range. The receipt of a "min bit" from the receiver sets a flip-flop whose output is used to remove control of the tube and the internally generated display information (see figure -). The

"set" output of the flip-flop enables the X and Y digital radar counters to input to the position registers of the digital to analog converters. The "set" output also "disables" the output of the computer generated display information, even though tube "O" may be designated to display some information while in the radar mode. When the designated maximum range has been reached, a signal is generated which "resets" the flip-flop. Thus, the internal display information can now be displayed on tube "O" until the next "main bang".

The range switch settings are shown in figure 5-1 along with the time required by the radar to display each beam. This is based on the propagation rate of radar signals being 12.5 microseconds per range mile. The radar characteristics of the unclassified radars to be used with the system are shown in figure 4-2. The remainder of the table in figure 5-1 is a listing of the proportion of time remaining for inserting computer generated displays to the total amount of time possible. This information should be used when writing system programs to superimpose target information over a radar display. For example, if using the SPS-3 with the pulse repetition frequency set to 200 cycles per second and the range switch set to 34 miles, the availability of tube "O" to the generated display is 63.4% of the time. This indicates that the information should be written into the memory at two places to insure that it will be displayed. This technique of time sharing limits the amount of information that can be superimposed on the longer ranges. The SPS-26 places a slightly more stringent set of re-

Line Switch Setting in micro- seconds	Radar Dis- play time Requirements in micro- seconds	Ratio of Time Available for Display					
		b = 1.0	P = 1.0	S = 8	b = 1.0	P = 1.0	S = 8
8	10.5	0.19	0.19	0.19	0.19	0.19	0.19
16	19	0.01	0.01	0.01	0.01	0.01	0.01
32	19.5	0.02	0.01	0.01	0.01	0.01	0.01
64	39.6	0.04	0.02	0.01	0.01	0.01	0.01
128	79.2	0.08	0.04	0.02	0.01	0.01	0.01
256	158	X	X	X	X	X	X

Figure 5-1

Comparison Table of the available computing time ratios as a function of the number of bits.

	5-0	5-1	5-2
horizontal beam width (in degrees)	.5	3	.5
Horizontal rotation rate of antenna (in revolutions per minute)	5 to 1	10 to 15	1 to 10
Vertical beam width (in degrees)	.10	.10	.11
Azimuth Information Available	line speed SYNCHRO	line speed SYNCHRO	line speed SYNCHRO
peak power (in kilowatts)	50.	500	1000
pulse width (in microseconds)	4	4	1-10
pulse Repetition Frequency (in cycles per second)	150	100	100 or 200
expected range (in miles for 1 square meter target)	10	20	40

Figure 5-2
Characteristics of Radars to be Used in the System

quarments on the display or time sharing than any of the unclassified radars.

The method of generating the radar sweep requires accurate azimuth information in the form of shaft position from the radar. This shaft motion drives a digital shaft position encoder whose outputs are sine ϕ and cosine ϕ . The outputs have an accuracy of ten magnitude bits plus a sign bit. These quadrature values are then "multiplied" by a series of range pulses in such a manner that counters being driven by the multipliers hold the results $R(\sin \phi) = Y$, and $R(\cos \phi) = X$. When the range counter reaches its maximum value as determined by the range switch, the range counter is cleared, and the X and Y counters are then disconnected from the digital analog converters by the "end of radar" flip-flop previously described.

This technique then describes a radar display raster of the form shown in Figure 5-3. There are 2,400 separate "bins" in X and in Y corresponding to the 11 bits. This gives a possible accuracy of $\pm 1/4$ nautical mile on the 250 mile range with possible accuracies increasing to ± 7.9 yards on the four mile range. The actual accuracy of the video display without a video processor incorporated to use only the centroid of the radar return is mainly limited by the pulse width of the radar used. The pulse widths range from one to four microseconds (see Figure 5-2) with a resulting possible error of approximately $\pm 1/12$ mile to $\pm 1/5$ mile.

The heart of this system is the range counter and the oscillator driving the counter. The clock frequency required to obtain

the accuracies needed is 20.72 °. The range switch then enables different bit positions of the counter to trigger the rate multiplier which results in full scale deflections for the chosen range. The radar section of the logic is the unit that determined the need for the new series of fast cards discussed in Chapter 4. The switching times of these logic cards were required to be much faster to reduce spikes in the radar video raster caused by the carry pulse in the counters when the most significant bit changes. (See figure 5-1) These spikes (or "blivets") should be reduced in width enough to be insignificant by the fast cards.

The requirement of 11 bits of accuracy for the azimuth information requires accuracy to 0.175 degrees. The azimuth information available from the radars is in the form of 60 cycles per second synchro signals. The GPS-8 and S-3-26 have two-speed synchro systems which have an accuracy well within the 11 bits specified by the encoder. The SPC-6 and GPS-12 have only a one-speed synchro system which could have a maximum accuracy of about 0.3 degrees from the components. It is evident then that the available accuracy of bearing information is not quite precise enough for the system requirements. One other problem in this system is that the torque and inertia loads of the shaft position encoder require a high gain servo-system to drive the encoder. In order to furnish the maximum accuracy at suitable power levels to the encoder for each of the radar inputs, it was necessary to convert the individual radar synchro outputs to a single speed, high accuracy synchro output from the radar switch panel. The converter board used for

The waveforms of successive sweeps 1 and 2 in the above raster are shown below.

X deflection Voltage

Y deflection Voltage

Video Signal

Figure 3-3 Example of the digital raster produced by the raster gun

The condition exists where a digital increase of one increment in the lowest order bit position causes a carry bit in the higher order bit positions. For example: for a change of the Y counter from 01111111 to 01000000, two possibilities may occur if the circuits concerned have a large difference in rise times.

1. The carry bits may be too fast resulting in the value of 01111111 for an instant.

2. The carry bits may be too slow resulting in the value of 00000000 for an instant.

Figure 9-4
Formation of "blivets"

this is a "synchro amplifier". The unit is a standard Navy Supply servo system which accepts one or two speed synchro information and furnishes an accurate one speed synchro output. The output is specified to be a 400 cycle synchro signal for the long cable run from the Radar Laboratory to the Digital Control and Automation Laboratory. A commercial high gear servo system is to be purchased for driving the encoder unit in the DD-65.

The remaining requirement that the digital radar information be made available to the computer has been implemented by gating the 11 bits of X and 11 bits of Y to storage registers upon receipt of a signal signifying the presence of a possible target. This signal will be generated from raw video by an automatic detector which is designed to trigger when certain conditions are met, such as amplitude, slope of signal envelope, or combinations of time and amplitude. The study of optimum auto-detection units is to be one of the primary uses of this system. The detection units are to be fabricated on standard computer cards and locations for these circuits have been left in the operator's console of the DD-65. One type of detector has been designed and built by D. R. Briggs. It is a threshold detector with a voltage variable false alarm rate. This unit will be used on initial tests and is documented in a separate report /21/.

In the system design it was assumed that either the 160 or 1604 could be called on to process the radar data; so the X and Y registers were designed to be callible separately by the computers instead of packing them into a 22-bit word. This allows the 16

with its 12-bit word structure to handle the processing too without excessive shifting of bits. The request by the computer for radar information sets a step counter which will sequence the X and then the Y information in a two-word group. The computer program must be tailored to this grouping by using a standard block input coding.

Provision has been left for extending the step counter to a three-word radar sequence. This was done to allow a third word, containing some measure of elevation angle or height information, to be sent to the computer for processing when using the PS-26 or SPS-5. The output register of the DD455 has eight bits set aside for this purpose. The implementation of this will entail an analog to digital conversion of the raw data into eight bits of digital information and provide a gate controlled by the third count of the step counter to enable the lines to the output register (see Figure 5-5).

Analog representation of Beam Elevation at Time of Target

Present logic includes only the X and Y control flip-flops.

NOTE: set side of flip-flop is upper side; reset side of flip-flop is lower side.

Figure 5-5
necessary logic for Addition of eight Information

b. Design of Character and Vector Generators

The display of the actual characters and vectors is performed by cycling through the self-contained memory in the AD-65. This memory size is 1024 x 24. Therefore, in order to fill the memory with information, 512 words of 48 bits each would be required from the Control Data Corporation 1604 or 2, 48 words of 12 bits each would be required from the Control Data Corporation 160. Any updating of information from the computer to the AD-65 breaks the display cycle, but saves the address of the next display word, and continues from the saved address after the new information is read into the memory.

The basic length of the words accessed by the decoding logic is 48 bits. This requirement is dictated by the fact that the number of bits needed for control information, position, and address are more than the 24 bits of the memory word. This then limits the total possible number of display words to 512.

As was mentioned previously, the formation of the characters or vectors are grouped into "strings". The first word of each string is called a "designator word". (see Figure 2-1) This furnishes the control information to the decoding logic to prepare for displaying the information. Two characters or vectors can also be packed into the "designator word" to provide fast updating of a moving symbol. All following words up to the next "designator word" are considered to be string words. They can have up to seven characters or vectors packed into each word. The reason for using only seven of the eight possible symbols is the need to be able to

INITIALISING (11-bit word or 14 words)

DISPLAY STRING WORDS

CONTROL CODES:

Mode: 0 - character (enables logic to decode the character information codes)

1 - Vector mode (enables logic to decode the vector information)

Tube: 0 - Display the stored information on left tube

1 - Display the stored information on right tube

X and Y positional information is formed by an eight-bit "absolute" magnitude code with a sign bit added to indicate direction from the center of the tube (0 sign bit is positive and 1 is negative).

Initial memory address of DD-65 must be specified for each string by a 10-bit address code. The storage of consecutive crit is incremented within the logic.

Figure C-1 Programming Information for String words

uniquely recognize the designator bit "D". Thus, the "D" bit must remain "0" in all string words.

In order to make corrections or update any part of a string, the whole corrected string must be read into the display memory. This is due to the incremental mechanization of the address counter. Only the designator word contains an address reference for the memory. Once a string of display words has been set up to read into the memory, the address counter is incremented as each 24 bits is accepted.

The designator word also contains the initial positioning information for the string. The initial position of the string is specified by nine bits of X and nine bits of Y. This allows a position to be selected to within 1/512 of the usable scope face. The usable portion of a 12-inch diameter tube is a square raster of about 0.5 inches. This allows the position of any symbols to be designated to within 0.0165 inches.

The choice of tube to display the information and the mode (i.e., choice of whether the information is a character or vector string) must be repeated in each word of the string. The appropriate coding for these are shown in Figure C-1.

The vector mode and the character incrementing portion of the character mode use the same logical packages. These are a pair of nine bit position counters. The X and Y position counters are initially set to the position specified in the designator word for a string. The outputs of these counters drive the position registers of the digital-analog converters for the display tubes (see Fig-

ure 5-1). The counters are designed so that the contents may be counted up or down or not incremented depending on the control signals generated in the decoding logic. Thus, the amount and direction of beam movement is determined by the individual mode decoding circuits.

The vector mode requires only initial position information from the designator word. The formation of a line is started by unblanking the beam and then moving it a direction and distance as specified by a six-bit vector code. The beam is then "blanked" while the next six-bit vector code is brought into the decode logic. The sequence is then repeated until the next designator word is encountered. This technique produces a line by starting each new segment from the end point of the last (see Figure 5-2). The blank words between the end of any information and the next designator word causes no problem as the "0" code in either the vector or character mode does not unblank the beam even though the position counters may be incrementing.

The vector decode logic separates the six-bit code into a three-bit direction code, a two-bit size code, and an "unblank" bit. The direction code allows for eight possible directions which corresponds to 45° increments in direction. The size code allows for four possible segment lengths. The unblank bit can be used to form dashed lines by allowing the beam to be blanked while still following a prescribed vector path. The vector codes are shown in Figure 6-5. The direction code determines the operation of the X and Y position counters, i.e., whether to count up, count down or

In order to spare the location of an infantry battalion on a military map, the following symbol is used:

To include this symbol on a map generated by the D-5, the following trace could be generated:

The sequence of necessary vector codes (see figure 6-2) to form the above symbol is:

(A) 110000

(B) 110110

(C) 110111

(D) 110010

(E) 110001

(F) 000011

(G) 110100

Ans: The starting point location must be given in the designator word.

(H) 01100

(I) 10110

(J) 01010

(K) 111111

Figure 6-2 Example of the Trace produced by Vectors

Intensity Information

<u>Code</u>	<u>Interpretation</u>
0	0 deflection of the beam normal intensity
1	1 deflection of the beam normal intensity

Size Information

<u>Code</u>	<u>Interpretation</u>
00	X and/or Y coordinate deflection is 1/128 of full scale deflection
01	X and/or Y coordinate deflection is 1/64 of full scale deflection
10	X and/or Y coordinate deflection is 1/32 of full scale deflection
11	X and/or Y coordinate deflection is 1/8 of full scale deflection

Direction Information

<u>Code</u>	<u>Interpretation</u>
00	Vector is drawn at an angle of 0° from starting point
001	Vector is drawn at an angle of 30° from starting point
010	Vector is drawn at an angle of 60° from starting point
011	Vector is drawn at an angle of 135° from starting point
100	Vector is drawn at an angle of 180° from starting point
101	Vector is drawn at an angle of -135° from starting point
110	Vector is drawn at an angle of -60° from starting point
111	Vector is drawn at an angle of -30° from starting point

Figure 6-3
Programmable Information for Coding Vectors

not count. The length code determines when to stop incrementing the counter. The incrementing rate is 0.4 microseconds per pulse, and the number of counts must increase in proportion with the line length. The longest line length was included for the purpose of economical drawing of ordinates. One line, the length of the digital raster, can be packed into a string of two words. It is felt that the smallest increment will allow special symbols to be made up from coded vector strings without being incompatible with the normal character sizes.

The character decode logic is considered to be proprietary information by Data Display, Incorporated. The general technique is one of micro-positioning the beam in relation to a reference X, Y position on a 5 x 7 matrix. The logic is entirely designed from the basic inverter logic cards. The characters are formed by moving the beam and turning it on and off under a clock control whose pulses occur every 0.2 microseconds. The character rate is determined by the number of increments needed to trace the most complex character. For the symbol selection of the DD-55 the number of increments required is 55 pulses. This sets the time for display of one character at 0.0 microseconds. This time includes the incrementing of the reference position to the next character location (see figure 6-4).

In addition to the initializing information required in the designator word by both the vector and character modes, the character mode requires some additional information on size and incrementing. A convenience intensity control bit is included to

X Y starting
point contained
in descriptor
word

are planned for movement
to next starting point

Orientation is on a 5 x 7 matrix with scaling generated by the
matrix size being slightly smaller than the incrementing deflection.

NOTE: The incrementing information is contained in the descriptor
word.

Figure 3-4
example of the Trace Produced by Characters

allow a digitized word to be read into the computer for all kinds of superimposing data over a background or raster display. The format is shown in figure -1. The bit pattern of these information bits sets flip-flops which control the function to increment the current string. The size selection is limited to only three out of the possible four as no need is seen for the large characters. The character size has a direct relation with the position index ext length. As the vector and characters use the same position counters, the character sizes were adopted to the increments lengths designated for vector lengths. The various codes for character control are shown in Figure 3-3. The normal character sizes are the 32 or 64 per display width. The small size was incorporated to allow for possible future photography techniques which could allow large quantities of printed text to be conveniently recorded for later projection. The direction of incrementing characters within a string, is normally to be left to right as in a printed case, but for possible inclusion of arrows or points, a down increment has been included. This is easily implemented as the down count can be added into the units size of the \downarrow counter for it to have complexity than required for going only into the plus side of the \downarrow counter.

Size Information (2 bits)

<u>Code</u>	<u>Interpretation</u>
00	Character size is 1/128 of full scale deflection
01	Character size is 1/4 of full scale deflection
10	Character size is 1/16 of full scale deflection

Incrementing Information (1 bit)

<u>Code</u>	<u>Interpretation</u>
0	Successive characters are incremented to the right
1	Successive characters are incremented vertically downward

Intensity Information (1 bit)

<u>Code</u>	<u>Interpretation</u>
0	Normal intensity
1	brighter than normal intensity

NOTE: The usage of these character control codes is shown in Figure 3-1.

Figure 3-5
Character Control Codes

7. Design of the Input, Output and Control Functions

In order to commit the requirements of Chapter 6 to hardware, a suitable set of rules in the form of logical circuitry must be designed to allow for the establishment of communications between the various units of the system, and the collection and transfer of data between these units.

The establishment of communications with the computers is accomplished within the standard structure of sense and select commands of the Control Data Corporation 160 and 1604. These commands and the control signals have been documented in the company manuals /17, 18/ and have been included as Appendix 2 to this thesis. All reference to command structures will be made in "octal" notation instead of the actual binary notation. The requirement that the computers can be selectively locked out of the system places an additional restriction on the decode functions. It was decided that in the individual computer operation modes (i.e., 160 only or 1604 only), the select codes for the other computer would be uniquely locked out. In the combined operation mode ("both"), the restrictions were lifted, and the computers can cross-select to control the flow of information. For example, it is possible for the 160 to select an interrupt condition for the 1604 in this mode. The only arbitrary decision concerns the flow of manual input (i.e., keyboards, track ball and range switch). In the "both" mode all manual input selects are laced so that the data is input to the 1604.

The request for information or action by a computer is indicated by a 12-bit external function code being transmitted to all

peripheral equipment along with control signals over their separate lines. From a study of all codes assigned to actual or proposed peripheral equipment for the computers, it was found that the 7XXX series of codes was not designed. This 7XXX series was chosen as the unique code series of the DD-65.

In order to continue further into the design of the control structure of the DD-65, it next became necessary to precisely define the various inputs and outputs and their inter-relationships.

The structure of the display words to be transferred from the computers to the DD-65 has been described in Chapter 6. These are the only data channel inputs to the system from the computers. The transfer of the "strings" of display information is to be by normal computer output blocks. The DD-65 must, then, have the provision for recognizing commands from the computers, to select this transfer, and to set up a "ready - resume" system of signals to control the input of the block of information. These two transfer channels have no restrictions set on them by other data modes of the system, but they should be mutually exclusive.

The digitized radar information is a sequence of words from the radar channel to one of three possible terminal equipments, i.e., the 104, the 160 or the auxiliary channel. The sequence is controlled by a counter which successively gates in the 11 bits of X and the 11 bits of Y, and has provision for extending this to gate in eight bits of height information. These eight bits of elevation allow an angular resolution of about 1/4 degree. This sequence is triggered by an externally produced target pulse which

be manufactured from the views of the detection circuit. This input entails two levels of selection to be made by the select core used. These are: (a) The choice of one out of three possible terminations for the information and (b) the selection of accepting the radar information exclusive of all other inputs to the DD-65 except from the computers.

The group of manual inputs from the operator's console can only be directed to the computer assigned by the mode switch (as described in this section). This places the requirement for only a single input selection on the select core. The selection is to be exclusive of all other normal input selects.

There is one other unique input necessary from the 10-7 to the Control Data Corporation 160. This is the response to a "status request". This response should be selectable to the exclusion of all other inputs when the program on the 160 is checking for the occurrence of conditions at the DD-5. The response is coded into a one out of twelve response. In this way, if more than one recognizable condition has occurred, the response will include them, and it is up to the 160 program to check for the conditions. The "status response" selection is disabled when in the "1604 only" mode. Note that the 1604 operates the sensing of conditions of the peripheral equipment in a different manner. It uses a separate control signal to denote that the condition has been met.

To expand on the manual inputs, the following separate pieces of information are generated:

a. X track ball	9 bits
-----------------	--------

- | | |
|--------------------------------|---------|
| a. Y trace ball | 12 bits |
| c. verlays | 12 bits |
| d. range switch | 3 bits |
| e. symbol keyboard (number 1) | 6 bits |
| f. Control keyboard (number 2) | 6 bits |

The X and Y trace ball information has been made separately selectable to keep the DD-65 output register to less than 12 bits so that the same output register and usage rules may be used by both the 160 and 164. The overlay and the control keyboard have been combined into a nine-bit output, as the method of interpreting the commands of the control keyboard is dependent on the overlay which should control the program sequence. The range switch and the symbol keyboard are treated independently.

The use of light feedbacks to the console operator (in conjunction with the control eyewara) dictated the need for addition select code requirements. These select codes are used to turn on or off any of the lights as dictated by the control keyboard. There is no restriction on the use of these selects as they have no inter-action with the inputs or outputs.

One other mode of operation to be incorporated is to use single the interrupt feature available on the Control Data Corporation 1604. These selections need not be unique or exclusive as the portion of the program entered when an interrupt occurs can be made to sense which of the selected interrupts has occurred.

A general diagram of the control function circuits is shown in Figure 7-1. A more detailed breakdown is given in figure 7-2.

Figure 7-1
General Block Diagram of Control Functions

In order to minimize the number of bits required to precisely define the various commands, the code can make a maximum of 4 possible codes. This is effected by the allocation of six bits in the keyboard codes. In order to determine the necessary number of symbols needed for various number one code (one keyboard), a comparison was made of the symbol sets required for various programming languages. The comparison included the extremely programs AS-2 /1/ and 3GL /2/, the business oriented compiler COBOL /24/, and the algebraic compilers APL /25/, ALGOL /26/, and JIVAL /27/. In addition to the basic set, it was also necessary to include certain few editing keys. These are "carriage return", "tab", and "grade". The choice of symbols for the symbols was made using the criteria that standardization of the code would be desirable. The coding that evolved is an extension of the basic "Binary Coded Decimal" (BCD) which is standardly used in input and output equipments not having a provision for upper and lower case. The code "0" was not assigned an input symbol, but the key was included on the keyboard so it can act as an alternate space code. This allowed all symbols to be assigned to the remaining codes. The final assignment is shown in Figure 7-2. The physical layout of the keyboard was planned to separate the three major functions of its use. A standard typewriter keyboard and a tabular type numeric keyboard were formed by placing the keys of a different color than the special keys around them. This should allow easier identification of these areas of the keyboard for more efficient usage. The ab-key keyboard was bought as a com-

<u>Symbol</u>	<u>Octal Code</u>	<u>Symbol</u>	<u>Octal Code</u>	<u>Symbol</u>	<u>Octal Code</u>
\$	11	C	4	.	72
1	01	D	47	↑	73
L	02	E	50	,	74
3	03	F	51	→	35
4	04	G	22	<	72
5	05	H	23	≥	37
6	06	I	24	≠	14
7	07	J	25	==	15
8	10	K	26	/	21
9	11	L	27	\	22
A	61	M	50	+	50
B	62	N	51	-	45
C	63	CR	70	#	16
D	64	Tab	50	*	27
E	65	Space	20	Space	50
F	66	}	52	^	57
G	67	{	75		
H	70	[17		
I	71]	32		
J	41	:	71		
K	42)	74		
L	43	:	15		
M	44	//	55		
N	45	;	77		

Figure 7-2 Symbol Character Codes

plete actions. Additional logic is also provided to make the unit compatible with the "ready - resume" signals of this system. The keyboard layout is shown in figure 6-5.

The control keyboard (keyboard number two) is a collection of function designators. The proposed usage for them is for calling routines and subroutines for aid in console usage. This keyboard is also closely associated with the overlay and the light feedback features. There are three groupings of switches in this control keyboard (see figure 6-5). The first group is a 20-switch matrix which is used in conjunction with the overlays. The functions performed by each switch are engraved on the plastic overlay and which fits around the switches. The computer can illuminate selectively any switch or switches under program control to present a "guided" choice to the operator for his actions. The eight overlays available give a choice of system programs callable from a single library tape. The second group is a ten-switch unit which is also under computer control for light feedback. These are not associated with changeable overlays and are intended to perform functions which are common to all overlays. For instance, one of these keys could be labeled "display track ball symbol on left". The last group is a diamond of four switches which are intended to be used in editing symbols. They can be used to activate routines to move a marker over the face of the displays. This marker can be used to indicate the position for writing or erasing the next character. The movement commanded by these switches is intended to be incremental in nature as opposed to the "continuous"

nature of the trackball. These track keys are not associated with the computer controlled limit feedback feature.

The coding of keyboard number two is made up from a diode matrix which was designed to use the minimum number of diodes. The coding of these keys is shown in figure 7-1. The depression of a key in keyboard two sets up a ready condition which is held until the computer samples the lines and releases the register. The overlay code is transmitted along with the control keyboard code when the input from keyboard number two is sampled. The overlay code is generated by the presence or absence of a contact post in the three bit positions of each overlay panel. This allows for changing the overlay code with a change of the overlay, and hence, to be able to change the labels associated with each of the 30 switches in the matrix.

The X and Y trackball generators are nine-bit shaft position encoders whose outputs are in "Gray Code" /10/. The outputs are converted to binary code for use in the computer. This coordinate information is always available and need only be selected by the computer to sample the value.

The radar display range switch is an eight-position switch. There are seven selectable ranges and an off position. The codes are shown in figure 7-4. The switch has the dual function of controlling the radar video presentation and providing the computer with a measure of range correlation for ranging computations on target position. The entire operator's console is shown in figure 8-5.

SWITCH POSITION	OCTAL CODE	INPUT CONDITION	OUTPUT CODE	SWITCH POSITION	OCTAL CODE
1-A	01	0-A	1	5-1	01
1-B	02	0-B	2	5-2	02
1-C	03	1-C	3	5-3	03
1-D	04	1-D	4	5-4	04
1-E	05	1-E	5		
2-A	11	5-A	1		
2-B	12	5-B	2		
2-C	13	5-C	3		
2-D	14	5-D	4		
2-E	15	5-E	5		
3-A	21	0-A	1		
3-B	22	0-B	2		
3-C	23	0-C	3		
3-D	24	0-D	4		
3-E	25	0-E	5		

Keyboard = - Function switch designation

Figure 7-2
Function switch Codes

FIG. 10-10Fig. 10-10

Off	0
1 miles	1
2 miles	2
3 miles	3
4 miles	4
5 miles	5
6 miles	6
7 miles	7

Time 7-4
Range switch does

Now that all input and outputs are defined, it is possible to assign Select and sense codes, and design the logic. Two editing functions were added to the sense and interrupt functions. These were the keys 'carriage return' and "tab" of keyboard one. These were included as special cases of keyboard one for the possibility of processing a word or a group of words on a functional command instead of processing single characters. The sense codes are listed in Figure 7-5. The select codes are listed in figures 7-3 and 7-7.

All the function codes are in the 7XXX series. The primary decode is done by checking for the coincidence of a 7XXX and one of the external function signals from the computers. In the "Both" mode of operation a time shared check is made of the external function lines from the 160 and 1604. The checking rate is rapid enough to return to sample each computer bit in the eight microseconds that the function pulse is present. Once the initial 7XXX is recognized, a pulse is formed which samples the lower nine bits of the code and sets the selected flip-flop (or in the case of a sense code for the 1604, allows an output pulse to be formed conditioned on the sense).

The ability to clear all the select flip-flops has been incorporated using the external clear lines of the computer in control (as selected by the mode switch). In addition to these possibilities, the "clear/start" control for the DD-15 memory will clear all select flip-flops. The overall diagram of the control logic is shown in figure 8-2.

<u>Sense Condition</u>	<u>1604 Sense Command Codes</u>	<u>1605 Sense Response Codes</u>
Keyboard no. 2 hit	7101	xx11
Keyboard no. 1 hit	7104	xxxx
Carriage Return hit	7110	xx4x
Tab hit	7110	xxix
Radar target present	140	xx2x
Keyboard no. 2 not hit	7103	
Keyboard no. 1 not hit	7105	
Carriage Return not hit	7111	
Tab not hit	7121	
No radar target	7111	
Keyboard no. 1 selected	7000	xxlx
Radar to AIX selected	7011	x1xx
Radar to 1604 selected	7012	x2xx
Radar to 160 selected	7013	xxxx
DD-05 from 1604 selected	7013	1xxa
DD-05 from 160 selected	7020	2xxz
Keyboard no. 2 selected	7040	4xxx

Figure 7-3
Sense Selection Codes

LIGHT C. 1.0
150W

Select Light 1A-On	7202	8202
Select Light 1A-Off	7203	8203
Select Light 1B-On	7204	8204
Select Light 1B Off	7205	8205
Select Light 1C-On	7210	8210
Select Light 1C-Off	7211	8211
Select Light 1D-On	7220	8220
Select Light 1D-Off	7221	8221
Select Light 1E-On	7240	8240
Select Light 1E-Off	7241	8241
Select Light 2A-On	7302	8302
Select Light 2A-Off	7303	8303
Select Light 2B-On	7741	8741
Select Light 2B-Off	7741	8741

Keyboard 2-Light Designation

A	B	C	D	E
*	*	*	*	*
*	*	*	*	*
*	*	*	*	*
*	*	*	*	*
*	*	*	*	*

A	B	C	D	E
*	*	*	*	*
*	*	*	*	*
*	*	*	*	*
*	*	*	*	*

Figure 7-7
Select Function Codes for Light Selection

6. System Implementation and Conclusions

The preceding chapters described the design details of the functions to be performed by the DD-65. The complete block diagrams for the DD-65 are shown in Figures 6-1 and 6-2. The physical design of the unit requires over 1,500 logic circuit cards. In addition to these components, a number of power supplies and the deflection circuits for the display tubes are required. This large number of components, a number of power supplies and the deflection circuits for the display tubes are required. This large number of components prohibited a single cabinet design for the equipment. The digital logic has been placed in a separate cabinet which also contains all the low voltage power supplies for the digital circuits and the data line terminations from the computers. The operator's console contains the manual inputs and the display tubes as well as the high voltage power supplies to control the display tubes. Also incorporated in the operator's console are the digital to analog conversion circuits and the radar video circuits.

The entire system block diagram is shown in Figure 6-3. The pulse amplifier, video amplifier, and video quantizer are designed for implementation on the same size printed circuit cards as are used in the digital circuits. This allows these circuits to be contained within the logic cabinet of the DD-65. The final configuration of the DD-65 led to the proposed placement of the equipment in the Digital Automation and Control Laboratory as shown in Figure 6-4. The installation should be completed by August 1962.

The system, as designed, allows a great deal of programming flexibility and, therefore, a similar flexibility in respect to use of the operator's console. No attempt will be made here to flow-chart or dictate the type of system programs to be used with the DD-65, but a broad overview of possible functions will be undertaken. The discussion will be slanted toward specification of labels for the various overlays and operator keys. See figure 8-5 for a diagram of entire operator's console.

The basic set of eight overlays could be specified as follows:

- a. Air surveillance and flight following
- b. Air intercept and control
- c. Program composition and de-bugging
- d. Servomechanism design
- e. Network synthesis
- f. Library information retrieval and update
- g. Linear programming package
- h. Statistical analysis package

Additional sets of overlays could be used by merely changing the system library tape in the computing center. These overlays have twenty unique function keys available for use which have the labels associated with them changed each time the overlay is changed. These labels and, hence, the programmed functions should include only those functions which are not common to all usage overlays.

The individual labels and associated programs can be determined only by actually outlining each overlay program in considerable detail. A few possible functions that could be associated with the

"programming" overlay are the selection of the various languages to be used for coding. These language select keys would set up a format subroutine for accepting "symbol keyboard" information. For instance, the "tab" key would produce character spacing which would be compatible with the format normally used to input the language to the computer. Further "step process" keys could be labeled for the storing of a completed program on a magnetic tape library or for a "trace" mode of running for de-bugging purposes.

Those functions which are common to all overlays are to be controlled by the ten function keys which are associated with light feedbacks, but whose labels are not changed with the overlay change. The possible set of functions to be programmed with these keys are:

- a. Tube "0" display
- b. Tube "1" display
- c. "Display" track ball
- d. "Hook" track ball
- e. "Drop" track ball
- f. Enter data
- g. Delete data
- h. Start process
- i. Stop process
- j. Load library

These functions are tentative, but the set of functions described are common to all the proposed overlays, and the subroutines involved should not take many cells of the memory to implement. The track ball sequence, as proposed, will entail calling for the dis-

play of the track ball on a particular tube, and then the operator can move the displayed "TB" symbol to the desired position by movement of the track ball. The "hook" track ball can then be executed which can have various meanings depending on the usage overlay. Possible uses of "hook" would be to insert a point or symbol at the designated spot on the display or the process could be reversed, and information concerning the point which is designated by the "TB" symbol could be displayed. The "drop" track ball could be executed after either a "display" or "hook". This function command could mean to delete a symbol or point from the display or drop the "TB" symbol and/or the amplifying information called up by the hook. The "Load", "Start", and "Stop" functions are proposed to be associated with the handling of display data within the computer. For instance, to enter a line of data could mean to place it into permanent storage location for processing after the temporary (for display purposes) information has been verified as correct.

The remaining four function keys are to be marked with direction arrows and are proposed to be used to move an editing symbol over the chosen display tube for purposes of locating the position for typing in or erasing information.

The actual operation of a system as proposed would require an overlay to be inserted and a library load executed. The computer, when ready to commence, would light the "start" process light. The operator, upon depressing the "start" process button, causes the computer to drop the selected light and start through the executive program. Upon reaching various points in the programs where infor-

mation is needed from the operator, various lights or groups of lights are selected "on" by the computer. The function labels associated with the lights outline the required action or inputs to be initiated by the operator. In this manner of reply-request-display, the man can thread through the programs in close association with the computer until the operator chooses to stop the process by depressing the "stop" function key.

It is felt that the flexibility in usage of the command console and the speed and packing density of the display information will provide an experimental device for man-computer systems which will not rapidly become obsolescent.

FIG. B-1 BLOCK DIAGRAM OF THE SYMBOL & RADAR GENERATORS & THE MEMORY
PAGE 79

REF ID: INMAN 12 DU 6	RM-6P- 50-42		
REVISION DATE	APPROVED	DESCRIPTION	BY
DES			
DWN			
CHK			
PROJ. ENG			
BRANCH HD			
DIVISION HD			
SCALE			
SHEET 1 OF 2		APPROVED	
DATE APRIL 6		FOR INMAN 12ND	ELECTRONICS ASST.
SATISFACTORY TO		FOR	INMAN 12ND SKETCH NO.
		USN	

Industrial Manager, USN, 12th Naval District
ELECTRONICS DEPARTMENT

U.S. NAVAL RESEARCH LABORATORY
DIGITAL CONTROL LABORATORY
COMPUTER COMMUNICATIONS SYSTEMS

FIG. 8-3 BLOCK DIAGRAM OF THE ENTIRE SYSTEM
PAGE 81

REF ID: INMAN12ND.DWG RM-CE-3043

REVISION	DATE	APPROD	DESCRIPTION
DES.	SG. L. LEWIS		BY
DWN.			
CHK.			
PROJ. ENG.			
BRANCH HD.			
DIVISION HD.			
SCALE:	No SCALE	APPROVED	
SHEET	2 OF 2		ELECTRONICS ASST.
DATE	APR 12 1968		FOR INMAN 12ND
SATISFACTORY TO			EQUIPMENT LABORATORY
FOR	USN	INDMAN 12ND SKETCH NO.	
DATE			

Industrial Manager, USN, 12th Naval District
ELECTRONICS DEPARTMENT

U.S. NAVAL POLYTECHNIC SCHOOL
DIGITAL CONTROL LABORATORY
FLOOR PLANS &
EQUIPMENT LAYOUT

APPROVED
FOR INMAN 12ND
ELECTRONICS ASST.
FOR INMAN 12ND
EQUIPMENT LABORATORY

FIG. 8-5 LAYOUT OF THE OPERATORS CONSOLE
PAGE 83

REFERENCES

1. J. C. Wicklader, Computer Displays, IBM Predictions on New Products in Electronics, Rev-1, pp. 1-11, March, 1960.
2. J. C. Wicklader and J. M. Clark, Fine-line Computer Communications, Proceedings Spring Joint Computer Conference, 21, pp. 113-128, National Press, 1962.
3. R. D. Loewe and P. Horowitz, Display System Design Considerations, Proceedings Fall Joint Computer Conference, 20, pp. 52 - 55, Macmillan, 1961.
4. T. Soller, M. A. Starr, and G. L. Valley, Cathode Ray Tube Displays, McGraw Hill, 1946.
5. H. W. Sack, P. H. Wolfe, and J. A. Asars, Construction and Performance of an MIF Display System, Proceedings of the IRE, 50, pp. 401-426, April, 1962.
6. R. A. Barker, Techniques of Dynamic Display - Part 2, Control Engineering, 7, pp. 121-125, April, 1960.
7. R. D. Loewe, R. L. Bisson, and P. Horowitz, Computer Generated Displays, Proceedings of the IRE, 49, pp. 105-105, January, 1961.
8. R. A. Barker, Techniques of Dynamic Display - Part 1, Control Engineering, 7, pp. 100-105, February, 1960.
9. R. A. Barker, Techniques of Dynamic Display - Part 3, Control Engineering, 7, pp. 97-102, June, 1960.
10. Programmed Data Processor -1 Description Manual, Digital Equipment Corporation.
11. S. C. Chao, Character Displays Using Analog Techniques, Electronics, 32, pp. 116-118, October 2, 1959.
12. J. L. Moore and R. Romensky, Generating High Quality Characters and Symbols, Electronics, 33, pp. 55-59, June 10, 1960.
13. J. F. Harrick and R. N. Hart, Design and Construction of a Character Generator for a High Speed Digital Control System, U. S. Naval Test Graduate School Digital Control and Automation Laboratory Report, March, 1961.
14. R. E. Perry, L. J. Aho, Generating Characters for Cathode Ray Readout, Electronics, 31, pp. 74-75, January 1, 1958.
15. R. E. Perry and L. J. Aho, Radar Computer Display Traces alphanumeric Characters, Electronics, 34, pp. 75-79, June 30, 1961.

15. General Dynamics tube type C10 as used in the S. C. 1500 direct view display.
17. 1604 Computer, Volumes 1 and 2, Control Data Corporation.
18. 160 Computer, Volumes 1 and 2, Control Data Corporation.
19. 1607 Magnetic Tape System, Volume 1, Control Data Corporation.
20. J. R. Farrell, Engineering Design of Logical Circuits, U. S. Naval Postgraduate School A. S. Thesis, 1961.
21. D. J. Briggs, Radar Data Processing Techniques and An Automatic Clutter Mapper, U. S. Naval Postgraduate School Digital Control and Automation Laboratory Report, December, 1961.
22. 1604 Assembly Outline, December, 1959.
23. E. N. Ward, Sybolic Loded Telelocatable Assembly Program (SILAP), September, 1961.
24. Department of Defense, Report to Conference on Data Systems Languages and Cobol 1961 Manual, June, 1961.
25. D. D. MacCracken, A Guide to Fortran Programming, John Wiley and Sons, 1961.
26. J. H. Halsted, Machine-Independent Computer Programming, Spartan Books, 1962.
27. C. J. Shaw, A Programmer's Introduction to Basic "Jovial", System Development Corporation, 1971.
28. P. J. Corsato, J. Herwin-Dyett, and R. C. Daley, An Experimental Time Sharing System, Proceedings Spring Joint Computer Conference, 21, pp. 335-341, National Press, 1962.
29. J. J. Carrick, Design of an Automatic Multi-Processing System, U. S. Naval Postgraduate School A. S. Thesis, 1972.
30. G. H. Bruck, J. H. Hawe and D. J. Goldridge, Fundamentals of Information, Computation and Control, Volume 2, pp. 51-56, John Wiley and Sons, 1965.
31. R. Joberman and A. Weisner, Formal Procedures for Connecting Terminals with a Minimum Total Wire Length, J. Assoc. Computing Machinery, Volume 4, pp. 428-437, October, 1957.

A P P E N D I X
B. HIGH LOGICIZATION PROGRAM

Description, use and coding of a Control Data Corporation 1604 program for mechanizing portions of the design of digital equipments using Control Data Corporation type logic cards and format.

This appendix is written in standard "Co-op"¹ program description form.

Examples of sample outputs and inputs are shown in Figures 4-4 through 4-7 of this thesis.

¹ "Co-op" is the Control Data Corporation 1604 user group organization.

A. IDENTIFICATION

Title: Card Assignment and Wiring List Assembler for Control
Data Corporation Input file of Equations

Category: Logical Design Aid

Programmer: C. G. Lawson

Date: 30 January 1962

B. PURPOSE

This routine is a composite of two separate functions:

1. It completes a file of equations and assigns card types to each equation for a given set of input equations.
- . It also computes and lists a wiring table if chassis locations for each section are designated.

In order to accomplish the first function, a magnetic tape containing punched card images of the input equations are processed by compiling an input table for the entire set of equations. This table is then searched to make up a list of outputs for each card. The number of inputs and outputs are then counted and logic cards are assigned, based upon the constraints of the family of cards. Certain special card types may be designated in the equation statements by special symbols. The number of cards required are counted during this process, and any erroneous equations are noted. The output at this point is a magnetic tape having the original input equations, each followed by a line containing the card type and a list of output destinations. Also, for any erroneous equations a star is placed in the left column adjacent to the equations. Following the equation file on the tape is a list of the card types

and the total number of each required for the design.

The second part of the program adds to the output tape a wiring tabulation of the intercard wires. In order to have up "wire tabs" the location of each section must be designated. This is done by adding the location information to the punched card for each equation. The program is then run with jump key one set and with an input of a magnetic tape containing the punched card images of the equations and locations. Then there is a choice of wiring between points, the program compares lengths and assigns the shortest interconnection possible. The output is now a magnetic tape which contains all of the output lists.

The purpose for separating the program outputs is due to consideration of design procedures. In most cases the file of equations are written from logic diagrams which do not necessarily show all the output wires. The clarity of the diagrams is improved if fewer interconnection lines need be shown. Therefore, the type card cannot always be assigned before finding how many outputs are needed. Also, if the total number of outputs required are more than the legal possible number of outputs, paralleling of signals is necessary. These considerations dictate that the completion of a design be done in two parts. The first part is to find out the card types necessary and to point out any errors in the equations. The location for the sections may now be assigned based upon the knowledge of card types and, also, any corrections may be entered into the input equations by changing the erroneous punched cards. The new inputs will now allow the output of all the desired lists

for writing the equations.

b. USING

1. Calling Sequence:

- a. On bi octal tape at present time
- b. Start location = 500
- c. successful completion leaves 1000 in U

2. Arguments: none

3. Space required: 1000 cells

4. Temporary storage requirements: $1000 + 18X$ (number of input equations)

5. Alarms: none

6. Error returns: none

7. Error stops: 5450 in U if output criteria not satisfied

(may be restarted if desired as errors will be indicated on printout)

105 in U if inconsistencies in designation
are encountered

8. Input and output tape mountings:

a. Input:

(1) Source tape: Ch 5 - 102

b. Output:

(1) Output tape A: Ch 4 - 103

9. Input and output formats:

- a. Input: 100 80 character card image of input equations.
Input equations written in standard FORTRAN (see references).

- (1) Input for card assignment only (jump key 1 not set):
- (a) Each term must consist of four alphanumeric characters.
 - (b) The function must be the first term of the equation.
 - (c) The only restrictions on spacing or locations on the card is that columns 70 through 80 be set aside for insertion of location when assigned.
 - (d) The following characters are defined as operators when used in a logical equation:
space + - * / () _ , > .
 - (e) All entries following . / , * , () are treated as remarks.
 - (f) A maximum of 16 input terms may be used in an equation.
 - (g) A maximum of 100 output uses will be compiled for a function.
 - (h) When inserted anywhere following the equation, these symbols define unique types of cards:
 - or space only inverters (series 10 and 20)
 - flip-flops (series 30) (one flip-flop per card)
 - input cards (01) (three inverters per card)
 - / output cards (02) (three inverters per card)
 - clock cards (01) (two oscillators per card)

(single inverter (S5) (three inverters per card)

) diode funcut (S04) (three sets of three diodes each per card)

(i) If flip-flops (series 30) designated, the pair input equations should be adjacent, and the implicit input should be the first C₄ term.

(2) Input for complete program (jump key one set): In addition to (a) through (i) above, the location must be typed into columns 77 through 80 and should have the following format:

Input card column meaning	77	78 and 79	80
Allowable contents	ROW	COLUMN	SECTION
	A thru R	01 thru 99	A for 10 series
			A or C or 40 and 50 series or clock S04
			A, B or C for 60 series or 336

Columns 75 through 76 can be used to identify chassis.

b. Outputs: 120 character line image in program control format for listing on output tape A.

- (1) Outputs for card assignment only (jump key 1 not set):
- comments lines where applicable
 - input equation lines as read in
 - output lines with card type followed by list of output locations (following each input line)
 - tabulation of the number of cards necessary to

implement the design.

(e) If any errors occur, such as too many inputs or outputs, no assignment is made and an error symbol is placed in the output line (along with an error stop).

(2) Outputs for complete program (jump key one set):

(a) as above

(b) input equation lines minus the location information

(c) output lines with location and card type followed by list of output locations (following each input line)

(d) as above

(e) tabulation of wiring data containing the following:

(e-1) origin and destination by row, column and pin number, if an internal card or by designation if external input

(e-2) designations of the above origin and destinations

(e-3) wire length in inches

(e-4) separation of added groups by symbol * in left column

10. Selective jump and stop settings:

a. First run: none - to obtain card types

b. Second run: jump key one set - to allow processing of

location information

11. Timing: depends on number of input equations
12. accuracy: not applicable
13. Cautions to user: No tape errors are checked in the routine.
14. Equipment configuration: 1604 with two 1607 units; 1607 tape mountings to include a "scratch tape" on Ch4 164
15. References:
 - a. 1604 Computer Instruction Book, Vol. 1, Description and Operations, Control Data Corporation
 - b. 1604 Computer Instruction Book, Vol. 2, Principles of Operations, Control Data Corporation
 - c. H. Loberman and A. Weinberger, Formal Procedures for Connecting Terminals with a Minimum Total Wire Length, J. Assoc. Computing Machinery, Vol. 4, no. 4, pp. 426-437, October, 1957

Pass 1 and Pass 2
Forms Master File of
Imports and Comption
Output Lists.

Pass 3 Performs Card Assignment
and Card Compilation

Pass 4
Makeup of Wiring
Tabulations

Supporting APP

Choses and prepared post-fire Collection

05000	50	1	000000		ORG	5000	PART ONE OF THE LOCI
05001	100	0	000000		REM	REM	SUBROUTINE WHICH COL
05002	500	0	100000		REM	REM	LOGICAL EQUATIONS AN
05003	54	1	677000		ENI	0	ON THE LINE IMMEDIATE
05004	75	0	052531	INPUT	ENA	00	
05005	20	0	053107		ESTA	00	
05006	20	0	06067		ESNI	1	
05007	20	0	06064		ESK	67700	
05008	50	0	000000		SLJ	/-1	
05009	74	7	520000		SSSTA	0	
05010	10	0	05267		SSSTA	0	FLAG
05011	61	0	00005		NI	0	PAGE
05012	74	0	52022		XF	0	WAIT
05013	74	7	52000	ELEV	LENA	0	COUNT
05014	74	5	05255		SEE	0	0
05015	74	7	52000		XF	7	52000
05016	75	0	05044		EE	00	INBUFF+100
05017	74	5	05267		XF	00	
05018	50	0	000000		EE	00	
05019	74	0	52005		XF	00	
05020	57	1	07226		EE	00	
05021	12	0	05242		XF	00	
05022	20	0	05242		EE	00	
05023	75	4	05202		XF	00	
05024	50	0	000000		EE	00	
05025	74	7	52000		XF	00	
05026	61	0	05005		EE	00	
05027	74	0	52022		XF	00	
05028	74	7	52000		EE	00	
05029	75	0	05270		XF	00	
05030	74	5	05200		EE	00	
05031	74	7	52000		XF	00	
05032	75	0	05200		EE	00	
05033	74	7	52000		XF	00	
05034	75	0	05200		EE	00	
05035	74	0	05200		XF	00	
05036	74	7	42000		EE	00	
05037	75	0	05246		XF	00	
05038	75	4	05246		EE	00	
05039	75	0	05456	OUTPUT	EE	00	
05040	75	0	05456		XF	00	
05041	75	0	000000		EE	00	
05042	74	7	420000		XF	00	
05043	20	0	05246		EE	00	
05044	72	0	05246		XF	00	
05045	10	0	05310		EE	00	
05046	61	0	00006		XF	00	
05047	74	0	420042		EE	00	
05048	74	7	420042		XF	00	
05049	75	0	05200		EE	00	
05050	74	7	420005		XF	00	
05051	74	0	420005		EE	00	
05052	74	7	420005		XF	00	
05053	75	0	05200		EE	00	
05054	74	7	420005		XF	00	
05055	74	0	420005		EE	00	
05056	74	7	420005		XF	00	
05057	75	0	05200		EE	00	
05058	75	4	05200		XF	00	
05059	75	0	05200		EE	00	
05060	75	4	05200		XF	00	
05061	75	0	05200		EE	00	
05062	75	4	05200		XF	00	
05063	75	0	05200		EE	00	
05064	75	4	05200		XF	00	
05065	75	0	05200		EE	00	
05066	75	4	05200		XF	00	
05067	75	0	05200		EE	00	
05068	75	4	05200		XF	00	
05069	75	0	05200		EE	00	
05070	75	4	05200		XF	00	
05071	75	0	05200		EE	00	
05072	75	4	05200		XF	00	
05073	75	0	05200		EE	00	
05074	75	4	05200		XF	00	
05075	75	0	05200		EE	00	
05076	75	4	05200		XF	00	
05077	75	0	05200		EE	00	
05078	75	4	05200		XF	00	
05079	75	0	05200		EE	00	
05080	75	4	05200		XF	00	
05081	75	0	05200		EE	00	
05082	75	4	05200		XF	00	
05083	75	0	05200		EE	00	
05084	75	4	05200		XF	00	
05085	75	0	05200		EE	00	
05086	75	4	05200		XF	00	
05087	75	0	05200		EE	00	
05088	75	4	05200		XF	00	
05089	75	0	05200		EE	00	
05090	75	4	05200		XF	00	
05091	75	0	05200		EE	00	
05092	75	4	05200		XF	00	
05093	75	0	05200		EE	00	
05094	75	4	05200		XF	00	
05095	75	0	05200		EE	00	
05096	75	4	05200		XF	00	
05097	75	0	05200		EE	00	
05098	75	4	05200		XF	00	
05099	75	0	05200		EE	00	
05100	75	4	05200		XF	00	
05101	75	0	05200		EE	00	
05102	75	4	05200		XF	00	
05103	75	0	05200		EE	00	
05104	75	4	05200		XF	00	
05105	75	0	05200		EE	00	
05106	75	4	05200		XF	00	
05107	75	0	05200		EE	00	
05108	75	4	05200		XF	00	
05109	75	0	05200		EE	00	
05110	75	4	05200		XF	00	
05111	75	0	05200		EE	00	
05112	75	4	05200		XF	00	
05113	75	0	05200		EE	00	
05114	75	4	05200		XF	00	
05115	75	0	05200		EE	00	
05116	75	4	05200		XF	00	
05117	75	0	05200		EE	00	
05118	75	4	05200		XF	00	
05119	75	0	05200		EE	00	
05120	75	4	05200		XF	00	
05121	75	0	05200		EE	00	
05122	75	4	05200		XF	00	
05123	75	0	05200		EE	00	
05124	75	4	05200		XF	00	
05125	75	0	05200		EE	00	
05126	75	4	05200		XF	00	
05127	75	0	05200		EE	00	
05128	75	4	05200		XF	00	
05129	75	0	05200		EE	00	
05130	75	4	05200		XF	00	
05131	75	0	05200		EE	00	
05132	75	4	05200		XF	00	
05133	75	0	05200		EE	00	
05134	75	4	05200		XF	00	
05135	75	0	05200		EE	00	
05136	75	4	05200		XF	00	
05137	75	0	05200		EE	00	
05138	75	4	05200		XF	00	
05139	75	0	05200		EE	00	
05140	75	4	05200		XF	00	
05141	75	0	05200		EE	00	
05142	75	4	05200		XF	00	
05143	75	0	05200		EE	00	
05144	75	4	05200		XF	00	
05145	75	0	05200		EE	00	
05146	75	4	05200		XF	00	
05147	75	0	05200		EE	00	
05148	75	4	05200		XF	00	
05149	75	0	05200		EE	00	
05150	75	4	05200		XF	00	
05151	75	0	05200		EE	00	
05152	75	4	05200		XF	00	
05153	75	0	05200		EE	00	
05154	75	4	05200		XF	00	
05155	75	0	05200		EE	00	
05156	75	4	05200		XF	00	
05157	75	0	05200		EE	00	
05158	75	4	05200		XF	00	
05159	75	0	05200		EE	00	
05160	75	4	05200		XF	00	
05161	75	0	05200		EE	00	
05162	75	4	05200		XF	00	
05163	75	0	05200		EE	00	
05164	75	4	05200		XF	00	
05165	75	0	05200		EE	00	
05166	75	4	05200		XF	00	
05167	75	0	05200		EE	00	
05168	75	4	05200		XF	00	
05169	75	0	05200		EE	00	
05170	75	4	05200		XF	00	
05171	75	0	05200		EE	00	
05172	75	4	05200		XF	00	
05173	75	0	05200		EE	00	
05174	75	4	05200		XF	00	
05175	75	0	05200		EE	00	
05176	75	4	05200		XF	00	
05177	75	0	05200		EE	00	
05178	75	4	05200		XF	00	
05179	75	0	05200		EE	00	
05180	75	4	05200		XF	00	
05181	75	0	05200		EE	00	
05182	75	4	05200		XF	00	
05183	75	0	05200		EE	00	
05184	75	4	05200		XF	00	
05185	75	0	05200		EE	00	
05186	75	4	05200		XF	00	
05187	75	0	05200		EE	00	
05188	75	4	05200		XF	00	
05189	75	0	05200		EE	00	
05190	75	4	05200		XF	00	
05191	75	0	05200		EE	00	
05192	75	4	05200		XF	00	
05193	75	0	05200		EE	00	
05194	75	4	05200		XF	00	
05195	75	0	05200		EE	00	
05196	75	4	05200		XF	00	
05197	75	0	05200		EE	00	
05198	75	4	05200		XF	00	
05199	75	0	05200		EE	00	
05200	75	4	05200		XF	00	
05201	75	0	05200		EE	00	
05202	75	4	05200		XF	00	
05203	75	0	05200		EE	00	
05204	75	4	05200		XF	00	
05205	75	0	05200		EE	00	
05206	75	4	05200		XF	00	
05207	75	0	05200		EE	00	
05208	75	4	05200		XF	00	
05209	75	0	05200		EE	00	
05210	75	4	05200		XF	00	
05211	75	0	05200</				

05041	12 0 05252		LDA 0 SPACE
05042	20 0 05267		STA 0 OUTBUF
05043	20 0 05305		STA 0 OUTBUF+14D
05044	12 0 05241		LDA 0 TEMP
05045	50 0 00000		ENI 0 0
05046	75 0 05125		SLJ 0 SEARCH
05047	50 2 00000	DESASS	ENI 2 0
05048	50 3 00000		ENI 3 0
05049	50 4 00000		ENI 4 0
05050	50 5 00000		ENI 5 0
05051	50 6 00000		ENA 0 0
05052	10 0 00000		LDS 0 INBUF
05053	05 0 00006		STA 0 TEMP
05054	20 0 05241		ENA 0 0
05055	10 0 00006		LDS 0 6
05056	07 0 00006		ENI 0 6
05057	50 6 00013		ENI 6 11D
05058	50 0 00000		EQS 6 LIST
05059	64 6 05206		SLJ 6 THREE
05060	75 0 05063		EMA 6 0
05061	10 6 00000		AJP 1 /+2
05062	22 1 05056		FNA 5 0
05063	10 5 00000		AJP 0 FIVE+2
05064	22 0 05072		ENA 6 0
05065	10 6 00000		SUR 0 UNITS
05066	15 0 05254		AJP 3 FIVE+1
05067	22 3 05071		INI 6 -7
05068	51 6 77770		IJP 6 /+1
05069	55 6 05061		SLJ 0 OR
05070	75 0 05075		IJP 6 /+1
05071	55 6 05062		SLJ 0 OR
05072	75 0 05075		ENA 0 FCUP
05073	10 0 00000		SLJ 0 TIP
05074	75 0 05241		RAD 0 0
05075	50 0 00000		ENI 0 3
05076	54 3 00003		SLJ 0 FCUR
05077	75 0 05067		RAD 1 ALFA
05078	75 0 05062		INI 1 1
05079	70 1 16000		ENA 1 0
05080	51 5 00001		IISK 4 7
05081	51 1 00001		SLJ 0 TWO
05082	10 0 00000		IISK 2 10
05083	54 4 00007		SLJ 0 ONE
05084	75 0 05250		IISK 5 22
05085	54 2 00010		SLJ 0 /+2
05086	75 0 05047		SLJ 0 INPUT
05087	54 5 00022		ENI 0 0
05088	75 0 05073		ENA 0 0
05089	75 0 05005		STA 1 ALFA
05090	50 0 00000		INI 1 1
05091	10 0 00000		SLJ 0 /-3
05092	20 1 16000		LDA 0 BIT48
05093	51 1 00001		STA 1 ALFA
05094	75 0 05071		ENA 0 0
05095	12 0 05455		SLJ 0 FOUR
05096	20 1 16000		SLJ 0 0
05097	10 0 00000		ENA 0 0
05098	75 0 05067		ENI 5 0
05099	75 0 00000		LDD 0 OUTBUF+1
05100	50 5 00000		AES 0 6
05101	16 0 05270		STA 0 TEMP
05102	05 0 00006		ENA 0 0
05103	20 0 05241		ENI 0 0
05104	10 0 00000		LDS 0 6
05105	50 0 00000		ENI 6 11D
05106	07 0 00006		EQS 6 LIST
05107	50 6 00013		SLJ 6 /+3
05108	64 6 05206		ENA 6 0
05109	75 0 05107		
05110	10 6 00000		

05106	22	0	05172	AJP	0	TENA-1
	75	0	05102	SLJ	0	/-4
05107	50	0	00000	FNI	0	TEMP
	70	0	05241	RAD	0	
05110	54	0	000003	ENI	03	/-7
	75	0	0000000	ISK	00	
05111	55	0	0000000	SLJ	50	MARKEX
	50	0	0000000	ENI	03	
05112	54	0	0000000	ENI	20	OUTBUF+1
	75	0	0000000	LEN	00	
05113	55	0	0000000	ENI	00	
	50	0	0000000	LEN	00	
05114	50	0	0000000	ENI	00	
	57	0	000006	LEN	00	
05115	50	6	000007	LEN	06	
	64	6	000206	ESL	67	LIST
05116	75	0	000120	SLJ	66	/+2
	50	0	000122	SEN	60	/+3
05117	54	3	000007	ISK	00	
	75	0	000114	SLJ	00	
05120	54	2	000110	SLA	00	
	75	0	000113	SLA	00	
05121	54	0	000232	SLA	00	CARD21
	75	0	000205	SLA	00	OUTBUF+140
05122	12	6	000221	SLA	00	CHECK
	20	6	000224	SLA	00	EIGHT
05123	61	6	000247	SLA	00	EXTRACT
	75	0	000000	SLJ	00	
05124	50	0	000242	ENI	00	TEMP+1
	50	0	000113	LIL	00	
05125	50	0	000000	ENI	00	LCMASK
	50	0	000000	ENI	00	ALPHA
05126	50	0	000000	ENI	00	BUILDFER.
	50	0	000000	ENI	00	DECRM
05127	50	0	000000	ENI	00	INCRM
	50	0	000000	ENI	00	SEOFFER
05130	50	0	000000	ENI	00	DECOFFER
	50	0	000000	ENI	00	DECRM
05131	50	0	000000	ENI	00	DECRM
	50	0	000000	ENI	00	LCMASK
05132	50	0	000000	ENI	00	ALFA
	50	0	000000	ENI	00	BETA
05133	50	0	000000	ENI	00	TEMP
	50	0	000000	ENI	00	SIX
05134	50	0	000000	ENI	00	SEILL
	50	0	000000	ENI	00	/+1
05135	50	0	000000	ENI	00	HOLD
	50	0	000000	ENI	00	/+2
05136	50	0	000000	ENI	00	OUTBUF+1
	50	0	000000	ENI	00	/PRNONE
05137	50	0	000000	ENI	00	
	50	0	000000	ENI	00	
05140	50	0	000000	ENI	00	
	50	0	000000	ENI	00	
05141	50	0	000000	ENI	00	
	50	0	000000	ENI	00	
05142	50	0	000000	ENI	00	
	50	0	000000	ENI	00	
05143	50	0	000000	ENI	00	
	50	0	000000	ENI	00	
05144	50	0	000000	ENI	00	
	50	0	000000	ENI	00	
05145	50	0	000000	ENI	00	
	50	0	000000	ENI	00	
05146	50	0	000000	ENI	00	
	50	0	000000	ENI	00	
05147	50	0	000000	ENI	00	
	50	0	000000	ENI	00	
05150	50	0	000000	ENI	00	
	50	0	000000	ENI	00	
05151	50	0	000000	ENI	00	

05152	50	4	00002		ENI	4	2
05153	10	3	00000		ENA	3	0
05154	60	0	05162		SAU	0	NINE+5
	60	0	05171		SAU	0	TEN
05155	600	3	00000		ENI	3	0
	550	0	00000		ENI	0	0
05156	16	0	05250	NINE	LDO	0	COMMA
	12	3	05311		LDA	3	BETA
05157	127	0	00030		LLS	0	240
	80	0	00000		ENI	4	OUTBUF+1
05160	75	0	00015		STA	4	
	75	0	05171		ENI	0	13D
05161	75	4	05031		ISK	0	TEN
	75	0	00000		SLJ	4	OUTPUT
05162	64	3	00000		ENI	3	0
	75	0	05164		ISK	0	/+2
05163	75	0	05173		SLJ	0	TEN
	75	0	00000		ENI	0	FILL
05164	75	4	05202		ENI	4	CARD21
	50	0	00000		LDA	0	OUTBUF+1
05165	12	0	05232		STA	0	?
	20	0	05270		ENI	4	NINE
05166	20	4	00002		SLJ	0	NONF
	75	0	05155		STA	0	OUTBUF+3
05167	75	0	05306		ENI	3	TEN+1
	120	0	05272		PRVNE	0	
05170	75	0	05172		TEN	0	
	75	0	00000		TEN	0	
05171	75	4	05155		ENI	3	
	75	4	05031		SLJ	0	
05172	75	0	00000		ENI	4	FILL
	75	0	05202		SLJ	0	
05173	75	4	05031		ENI	4	OUTPUT
	75	0	00000		SLJ	0	
05174	75	0	05174		ENI	4	
	50	0	00000		SLJ	0	
05175	20	0	05246		STA	0	TEMP+5
	10	0	00110		ENI	0	720
05176	65	0	05310		SLJ	0	PAGE
	75	0	05016		ENI	0	ELEV
05177	20	0	05310		STA	0	PAGE
	12	0	05237		LDA	0	EJECT
05200	20	0	05246		STA	0	OUTBUF
	75	0	00000		LDA	0	TEMP+5
05201	75	0	05016		SLJ	0	ELEV
	50	0	00000		ENI	0	
05202	50	0	05252		LDA	0	SPACE
	12	0	00000		STA	0	OUTBUF
05203	75	0	05267		ENI	0	140
	12	0	00016		SLJ	0	/-1
05204	20	0	05267		ENI	0	FILL
	75	0	00000		LDA	0	
05205	75	0	05203		STA	0	
	75	0	00000		ENI	0	
05206	75	0	00000		SLJ	0	
	50	0	00000		ENI	0	
05207	00	0	00000		OCT	73	
	00	0	00054		OCT	54	
05210	00	0	00000		OCT	53	
	00	0	00053		OCT	21	
05211	00	0	00000		OCT	33	
	00	0	00021		OCT	33	
05212	00	0	00000		OCT	34	
	00	0	00033		OCT	34	
05213	00	0	00000		OCT	74	
	00	0	00034		OCT	74	
05214	00	0	00000		OCT	60	
	00	0	00074		OCT	60	
05215	00	0	00000		OCT	13	
	00	0	00060		OCT	13	

05217	00	0	00013		OCT	14
	00	0	00000			
	00	0	00014			
05220	00	0	00000		OCT	20
	00	0	00020			
05221	00	0	00000	CHECK	OCT	10
	00	0	00010			
05222	00	0	00000		OCT	5
	88	8	88888			
05223	00	0	00002		OCT	2
	00	0	00000			
05224	00	0	00000		OCT	1
	00	0	00001			
05225	00	0	00000		OCT	5
	00	0	00005			
05226	00	0	00000		OCT	1
	00	0	00001			
05227	00	0	00000		OCT	3
	00	0	00003			
05230	00	0	00000	INCRM	OCT	22
	00	0	00022			
05231	00	0	00000	DECRM	BSS	1
	00	0	00000			
05232	20	2	02020	CARD21	BCD	/
	20	2	02073			
05233	20	2	02020	CARD31	BCD	/
	20	2	02054			
05234	20	2	02020	CARD61	BCD	/
	20	2	02053			
05235	20	2	02020	CARD62	BCD	/
	20	2	02021			
05236	20	2	02020	CARD01	BCD	/
	20	2	02033			
05237	20	2	02020	CARD56	BCD	/
	20	2	02034			
05240	20	2	02020	CARD54	BCD	/
	20	2	02074			
05241	00	0	00000	TEMP	BSS	6
	00	0	00000			
05247	00	0	00000	EIGHT	OCT	10
	00	0	00010			
05250	33	2	02020	COMMA	BCD	/
	20	2	02020			
05251	20	2	02020	STAR	BCD	/
	20	2	02020			
05252	20	2	02020	SPACE	BCD	/
	20	2	02020			
05253	00	0	00000	FLAG	BSS	1
	00	0	00000			
05254	00	0	00000	UNITS	OCT	7
	00	0	00007			
05255	00	0	00000	INBUF	BSS	100
	00	0	00000			
05267	00	0	00000	OUTBUF	BSS	150
	00	0	00000			
05306	45	4	64565	NONE	BCD	/NONE
	20	2	02020			
05307	01	2	02020	EJECT	BCD	/1
	20	2	02020			
05310	00	0	00000	PAGE	BSS	1
	00	0	00000			
05311	00	0	00000	BETA	BSS	1000
	00	0	00000			
05455	60	0	00000	BIRTH8	OCT	6000000000000000
	00	0	00000			
05456	50	1	00032	PASS3	REM	CARD ASSIGNMENT ROUTINE
	10	0	00000		HNI	1 260
05457	20	1	06027		LNA	0 0
	55	1	05457		STA	1 COUNT
05460	75	4	05700	PASS3A	IJP	1 /
	50	0	00000		SLJ	4 INPUT2
05461	74	7	32006		HNI	0 0
					EXP	7 32006

05462	75 0 05552	SLJ 0 0 TEST
	74 3 05306	EXF 3 0 OUTBUF+150
	75 4 05202	SLJ 4 0 FILL
05463	12 0 06010	LDA 0 0 PAGEJ
	20 0 05267	STA 0 0 OUTBUF
05464	75 4 05705	SLJ 4 0 OUTPUT2
	50 0 00000	ENI 0 0 0
05465	75 4 05717	SLJ 4 0 CLRBUF
	50 0 00000	ENI 0 0 0
05466	10 0 06140	ENA 0 0 HEAD1
	60 0 05713	SAU 0 0 MSG+1
05467	12 0 06012	LDA 0 0 LNGTH1
	60 0 05714	SAU 0 0 MSG+2
05470	75 4 05712	SLJ 4 0 MSG
	50 0 00000	ENI 0 0 0
05471	75 4 05717	SLJ 4 0 CLRBUF
	50 0 00000	ENI 0 0 0
05472	10 0 06150	ENA 0 0 HEAD2
	60 0 05713	SAU 0 0 MSG+1
05473	12 0 06013	LDA 0 0 LNGTH2
	60 0 05714	SAU 0 0 MSG+2
05474	75 4 05712	SLJ 4 0 MSG
	50 0 00000	ENI 0 0 0
05475	75 4 05717	SLJ 4 0 CLRBUF
	50 0 00000	ENI 0 0 0
05476	10 0 06155	ENA 0 0 HEAD3
	60 0 05713	SAU 0 0 MSG+1
05477	12 0 06014	LDA 0 0 LNGTH3
	60 0 05714	SAU 0 0 MSG+2
05500	75 4 05712	SLJ 4 0 MSG
	50 0 00000	ENI 0 0 0
05501	50 5 00000	ENI 5 0
	75 4 05717	SLJ 4 0 CLRBUF
05502	12 0 05252	LDA 0 0 SPACE
	20 0 05274	STA 0 0 OUTBUF+5
05503	20 0 05275	STA 0 0 OUTBUF+6
	50 0 00000	ENI 0 0
05504	12 5 06116	LDA 5 CARD
	20 0 05271	STA 0 0 OUTBUF+2
05505	12 5 06027	LDA 5 ICOUNT
	75 4 05512	SLJ 4 OCTBCD
05506	54 5 00021	ISK 5 17D
	75 0 05502	SLJ 0 /-4
05507	74 0 32005	EXF 0 32005
	12 0 05253	LDA 0 FLAG
05510	75 1 05511	SLJ 1 /+1
	76 0 05000	SLS 0 5000
05511	22 0 06163	AJP 0 PASS4
	76 0 06163	SLS 0 PASS4
05512	75 0 00000	SLJ 0 0
	50 6 00000	ENI 6 0
05513	65 0 06020	THS 0 RFR03
	51 6 00001	INI 6 1
05514	65 0 06017	THS 0 RFR02
	51 6 00001	INI 6 1
05515	65 0 06016	THS 0 RFR01
	51 6 00001	INI 6 1
05516	65 0 06015	THS 0 RFR00
	51 6 00001	INI 6 1
05517	55 6 05520	IJP 6 /+1
	75 0 05532	SLJ 0 FRACT
05520	16 6 06021	LDO 0 MASK
	21 0 05243	STQ 0 TEMP+2
05521	04 0 00000	LNO 0 0
	21 0 05241	STQ 0 TEMP
05522	04 0 00000	ENO 0 0
	25 6 06015	DVI 6 RFR00
05523	22 1 05524	AJP 1 /+1
	12 0 06107	LDA 0 ZERO
05524	20 0 05244	STA 0 TEMP+3
	12 0 05241	LDA 0 TEMP
05525	05 0 00006	ALS 0 6
	14 0 05244	ADD 0 TEMP+3

05526	20	0	05244		STA	0	TEMP
	21	0	05244		STQ	0	TEMP+3
05527	12	0	05244		LDA	0	TEMP+3
	55	6	05522		IJP	6	/-5
05530	12	0	05241		LDA	0	TEMP
	14	0	05243		ADD	0	TEMP+2
05531	20	0	05274		STA	0	OUTBUF+5
	50	0	00000		ENI	0	0
05532	10	5	00000	FRAST	ENA	5	0
	15	0	00000		SUB	0	FR1#
05533	22	2	05542		AJP	2	THIRD
	10	5	00000		ENA	5	0
05534	15	0	06025		SUB	0	DCUB
	22	2	05547		AJP	2	HALF
05535	12	0	05274	TEST	LDA	0	OUTBUF+5
	15	0	05252		SUB	0	SPACE
05536	22	1	05540		AJP	1	OUTLINE
	12	0	05305		LDA	0	NCNE
05537	20	0	05274		STA	0	OUTBUF+5
	50	0	00000		ENI	0	0
05540	75	4	05705	OUTLINE	SLJ	4	OUTPUT2
	50	0	00000		LNI	0	0
05541	75	0	05512		SLJ	0	OCTBCD
	50	0	00000		ENI	0	0
05542	12	5	06040	THIRD	LDA	5	FCOUNT-90
	22	0	05545		AJP	0	TEST
05543	64	0	06015		EQS	0	RFR00
	75	0	05545		SLJ	0	/+2
05544	12	0	06072		LDA	0	ATHIRD
	75	0	05546		SLJ	0	/+2
05545	12	0	06073		LDA	0	BTHIRD
	50	0	00000		ENI	0	0
05546	20	0	05275		STA	0	OUTBUF+6
	75	0	05540		SLJ	0	OUTLINE
05547	12	5	06040	HALF	LDA	5	FCOUNT-90
	22	0	05535		AJP	0	TEST
05550	12	0	06074		LDA	0	AHALF
	20	0	05275		STA	0	OUTBUF+6
05551	75	0	05540		SLJ	0	OUTLINE
	50	0	00000		ENI	0	0
05552	12	0	05305	TEST	LDA	0	OUTBUF+140
	50	1	00000		ENI	1	0
05553	64	0	05252		EQS	0	SPACE
	75	0	05560		SLJ	0	TEST2
05554	75	0	05556		SLJ	0	/+2
	50	0	00000		LNI	0	0
05555	75	5	05734	TEST1	SLJ	5	OUTPIN
	50	0	00000		ENI	0	0
05556	75	4	05705		SLJ	4	OUTPUT2
	50	0	00000		LNI	0	0
05557	75	0	05460		SLJ	0	PASS3A
	50	0	00000		ENI	0	0
05560	64	0	05234	TEST2	EQS	0	CARD61
	75	0	05570		SLJ	0	NEXT1
05561	75	4	05705	ICCD	SLJ	4	OUTPUT2
	50	0	00000		ENI	0	0
05562	75	4	05700		SLJ	4	INPUT2
	50	0	00000		LNI	0	0
05563	12	1	06134		LDA	1	CARD+140
	20	0	05271		STA	0	OUTBUF+2
05564	72	1	06056		RAO	1	FCOUNT+5
	15	0	06077		SUB	0	TRIO
05565	22	0	05566		AJP	0	/+1
	75	0	05555		SLJ	0	TEST1
05566	10	0	00000		ENI	0	0
	20	1	06056		STA	1	FCOUNT+5
05567	72	1	06045		RAO	1	ICCOUNT+140
	75	0	05555		SLJ	0	TEST1
05570	64	0	05235	NEXT1	EQS	0	CARD62
	75	0	05655		SLJ	0	NEXT2
05571	50	1	00001		ENI	1	1
	75	0	05561		SLJ	0	ICCD
05572	64	0	05233	TEST3	ERS	0	CARD51

05573	75 0 05616		SLJ 0 TEST4
	50 6 00012		ENI 6 10D
	75 4 05723		SLJ 4 ORCOUNT
05574	75 4 05705		SLJ 4 OUTPUT2
	50 0 00000		ENI 0 0
05575	75 4 05700		SLJ 4 INPUT2
	50 0 00000		ENI 0 0
05576	12 0 06063		LDA 0 ORGNT
	50 0 00000		ENI 0 0
05577	64 8 00000		EOS 0 DUO
	64 8 00000		SLJ 0 TRY2
05600	75 0 05612	FFCD	LDA 1 CARD+6
	12 1 06124		STA 0 OUTBUF+2
05601	20 0 05271		ENA 0 1
	10 0 00001		STA 0 FFFLG
05602	20 0 06070		RAO 1 ICOUNT+6
	72 1 06035		SLJ 5 OUTPIN
05603	75 5 05734		SLJ 4 OUTPUT2
	75 4 05705		ENI 0 0
05604	50 0 00000		SLJ 4 INPUT2
	75 4 05700		ENI 0 0
05605	50 0 00000		SLJ 4 OUTPUT2
	75 4 05705		ENI 0 0
05606	50 0 00000		SLJ 4 INPUT2
	75 4 05700		ENI 0 0
05607	50 0 00000		LDA 1 CARD+6
	12 1 06124		STA 0 OUTBUF+2
05610	20 0 05271		LDA 0 BIT48
	12 0 05455		STA 2 ALFA+1
05611	20 2 16001		SLJ 0 TEST1
	75 0 05555		ENI 0 0
05612	50 0 00000		EOS 0 TRIO
	64 0 06077		SLJ 0 TRY3
05613	75 0 05614		ENI 1 1
	50 1 00001		SLJ 0 FFCD
05614	75 0 05600		LCS 0 QUAD
	64 0 06076		SLJ 0 ERROR1
05615	75 0 05665		ENI 1 2
	50 1 00002		SLJ 0 FFCD
05616	75 0 05600		ENI 0 T-ST5
	64 0 05232		EOS 0 CARD21
05617	75 0 05661		SLJ 0 T-ST5
	50 6 00012		ENI 6 10D
05620	75 4 05723		SLJ 4 ORCOUNT
	75 4 05705		SLJ 4 OUTPUT2
05621	50 0 00000		ENI 0 0
	75 4 05700		SLJ 4 INPUT2
05622	50 0 00000		ENI 0 0
	75 4 05672		SLJ 4 OUTCOUNT
05623	50 0 00000		ENI 0 0
	12 0 06063		LDA 0 ORCNT
05624	50 0 00000		ENI 0 0
	64 0 06075		EOS 0 QUINT
05625	75 0 05632		SLJ 0 TRY6
	12 1 06101		LIA 1 OUTEND
05626	50 0 00000		ENI 0 0
	65 0 06062		THS 0 OUTCNT
05627	75 0 05630		SLJ 0 /+2
	75 0 05670		SLJ 0 ERROR2
05630	50 0 00000		ENI 0 0
	12 1 06122		ENI 0 0
05631	20 0 05271		ELA 1 CARD+4
	72 1 06033		STA 0 OUTBUF+2
05632	75 0 05555		RAO 1 ICOUNT+4
	64 0 06102		SLJ 0 TEST1
05633	75 0 05634	TRY6	EOS 0 SEXT
	50 1 00001		SLJ 0 INV1
05634	75 0 05625		ENI 1 1
	64 0 06015		SLJ 0 UNCD
05635	75 0 05647	INV1	EOS 0 RFR00
	12 1 06075		SLJ 0 INV2
05636	50 0 00000		LDA 1 QUINT
	65 0 06062		ENI 0 0
05636	75 0 05641		THS 0 OUTCNT
			SLJ 0 SER20

05637	12	1	06116		LDA	1	CARD
	20	0	05271		STA	0	OUTBUF+2
05640	72	1	06027		RAC	1	ICOUNT
	75	0	05555		SLJ	0	TEST1
05641	51	1	00011	SER20	INI	1	90
	12	1	06116		LDA	1	CARD
05642	20	0	05271		STA	0	OUTBUF+2
	72	1	06040		RAC	1	ICOUNT+90
05643	15	0	06100		SUE	0	DUC
	22	0	05645		SLJ	0	TEST1
05644	75	0	05555		ENI	0	0
	50	0	00000		FNA	0	0
05645	10	0	00000		STA	1	ICOUNT+90
	20	1	06040		RAC	1	ICOUNT
05646	72	1	06027		SLJ	0	TEST1
	75	0	05555		EQS	0	DUO
05647	64	0	06100	INV2	SLJ	0	INV3
	75	0	05651		ENI	1	1
05650	50	1	00001		SLJ	0	INCD
	75	0	05635		EQS	0	TRIO
05651	64	0	06077	INV3	SLJ	0	INV4
	75	0	05653		ENI	1	2
05652	50	1	00002		SLJ	0	INCD
	75	0	05625		EQS	0	QUAD
05653	64	0	06076	INV4	SLJ	0	ERROR3
	75	0	05671		ENI	1	3
05654	50	1	00003		SLJ	0	INCD
	75	0	05635		EQS	0	CARDS36
05655	64	0	05237	NEXT2	SLJ	0	NEXT5
	75	0	05657		ENI	1	2
05656	50	1	00002		SLJ	0	ICCD
	75	0	05561		EQS	0	CARD04
05657	64	0	05240	NEXT3	SLJ	0	TEST3
	75	0	05572		ENI	1	3
05660	50	1	00003		SLJ	0	ICCD
	75	0	05561		EQS	0	CARD01
05661	64	0	05236	TEST5	SLJ	0	ERROR1
	75	0	05665		ENI	1	4
05662	50	1	00004		SLJ	4	OUTPUT2
	75	4	05705		SLJ	4	INPUT2
05663	75	4	05700		ENI	0	0
	50	0	00000		SLJ	0	0
05664	75	0	05641		ENI	0	0
	50	0	00000		SLJ	0	SER20
05665	12	0	06103	ERROR1	ENI	0	TAGE
	50	0	00000		LDA	0	0
05666	20	0	05271		ENI	0	0
	72	0	05253		STA	0	OUTBUF+2
05667	75	0	05555		RAC	0	FLAG
	50	0	00000		SLJ	0	TEST1
05670	12	0	06104		ENI	0	0
	75	0	05666		SLJ	0	0
05671	12	0	06105	ERROR2	LDA	0	OUT
	75	0	05666		SLJ	0	/-2
05672	75	0	00000	OUTCOUNT	ENI	0	INE
	50	6	00013		SLJ	0	/-3
05673	10	0	00000		ENI	6	110
	20	0	06062		ENA	0	0
05674	12	0	06110		STA	0	OUTCNT
	16	0	06110		LDA	0	CMASK
05675	46	6	05272		LDC	0	CMASK
	22	1	05677		SBL	6	OUTBUF+3
05676	72	0	06062		AJP	1	/+2
	50	0	00000		RAO	0	OUTCNT
05677	55	6	05674		ENI	0	0
	75	0	05672		IJP	6	/-3
05700	75	0	00000	INPUT2	SLJ	0	OUTCOUNT
	74	7	32000		SLJ	0	0
05701	10	0	05306		EXF	7	32000
	61	0	00003		ENA	0	OUTBUF+150
05702	74	0	32042		SAL	0	3
	74	7	32000		EXF	0	32042
05703	74	3	05267		EXF	7	32000
					EXF	3	OUTBUF

05704	74	7	32000		EXF	7	32000
	75	0	05700		SLJ	0	INPUT2
	50	0	00000		ENI	0	0
05705	75	0	00000	CUTPUT2	SLJ	0	0
	74	7	42000		EXF	7	42000
05706	10	0	05306		ENA	0	OUTBUF+150
	61	0	00004		SAL	0	4
05707	74	0	42032		EXF	0	42032
	74	7	42000		EXF	7	42000
05710	74	4	65207		EXF	4	OUTBUF
	74	7	42000		EXF	7	42000
05711	75	0	05705		SLJ	0	OUTPUT2
	50	0	00000		ENI	0	0
05712	75	0	00000	MSG	SLJ	0	0
	50	5	00000		ENI	5	0
05713	12	5	00000		LDA	5	0
	20	5	05270		STA	5	OUTBUF+1
05714	54	5	00000		ISK	5	0
	75	0	05713		SLJ	0	/-1
05715	75	4	05705		SLJ	4	OUTPUT2
	50	0	00000		ENI	0	0
05716	75	0	05712		SLJ	0	ESC
	50	0	00000		ENI	0	0
05717	75	0	00000	CLRBUF	SLJ	0	0
	12	0	06011		LDA	0	DRSP
05720	20	0	05267		STA	0	OUTBUF
	50	5	00015		ENI	5	130
05721	12	0	05252		LDA	0	SPACE
	20	5	05270		STA	5	OUTBUF+1
05722	55	5	05721		IJP	5	/-1
	75	0	05717		SLJ	0	CLRBUF
05723	75	0	00000	ORCOUNT	SLJ	0	0
	10	0	00000		ENA	0	0
05724	20	0	06063		STA	0	ORCNT
	04	0	00000		ENQ	0	0
05725	16	6	05267		LDO	6	OUTBUF
	50	4	00007		ENI	4	7
05726	07	0	00006		LLS	0	6
	50	0	00000		ENI	0	0
05727	64	0	06106		ES	0	PLUS
	75	0	05731		SLJ	0	/+2
05730	72	0	06063		RAD	0	ORCNT
	50	0	00000		ENI	0	0
05731	10	0	00000		ENA	0	0
	55	4	05726		IJP	4	/-3
05732	55	6	05725		IJP	6	/-5
	72	0	06063		RAD	0	ORCNT
05733	75	0	05723		SLJ	0	ORCCOUNT
	50	0	00000		ENI	0	0
05734	75	0	00000	OUTPIN	SLJ	0	0
	53	2	06067		LIL	2	WAIT
05735	16	0	06071		LDO	0	SMASK
	44	0	05271		LDL	0	OUTBUF+2
05736	15	0	06071		SUB	0	SMASK
	22	0	05752		AJP	0	TYP3
05737	16	0	06111		LDO	0	TMASK
	44	0	05271		LDL	0	OUTBUF+2
05740	22	1	05752		AJP	1	TYP3
	02	0	00001		GRS	0	1
05741	44	0	05271		LDE	0	OUTBUF+2
	22	1	05763		AJP	1	TYP2
05742	10	0	00001		ENA	0	1
	75	4	05771		SLJ	4	INPIN
05743	10	0	00014		ENA	0	120
	50	0	00000		ENI	0	0
05744	05	0	00030	MID	ALS	0	24D
	70	2	16000		RAD	2	ALFA
05745	12	0	06070		LDA	0	FFFFC
	22	0	05750		AJP	0	/+3
05746	12	0	05455		LDA	0	BIT48
	20	2	16001		STA	2	ALFA+1
05747	10	0	00000		ENA	0	0
	20	0	06070		STA	0	FFFFC

05750	51	2	00022		INI	2	22
	57	2	06067		SIL	2	WAIT
05751	75	0	05734		SLJ	0	OUTPIN
	50	0	00000		ENI	0	0
05752	04	0	00077	TYP3	FNQ	0	77
	44	0	05270		LDL	0	OUTBUF+1
05753	64	0	06114		EOS	0	PTA
	75	0	05756		SLJ	0	/+3
05754	10	0	00001		ENA	0	1
	75	4	05771		SLJ	4	INPIN
05755	10	0	00004		ENA	0	4C
	75	0	05744		SLJ	0	MID
05756	64	0	06115		EOS	0	PTB
	75	0	05761		SLJ	0	/+3
05757	10	0	00005		ENA	0	5
	75	4	05771		SLJ	4	INPIN
05760	10	0	00010		ENA	0	8D
	75	0	05744		SLJ	0	MID
05761	10	0	00011		ENA	0	9C
	75	4	05771		SLJ	4	INPIN
05762	75	0	05743		SLJ	0	MID-1
	50	0	00000		ENI	0	0
05763	04	0	00077	TYP2	ENO	0	77
	44	0	05270		LDL	0	OUTBUF+1
05764	64	0	06114		EOS	0	PTA
	75	0	05767		SLJ	0	/+3
05765	10	0	00001		ENA	0	1
	75	4	05771		SLJ	4	INPIN
05766	10	0	00006		ENA	0	6
	75	0	05744		SLJ	0	MID
05767	10	0	00007		ENA	0	7
	75	4	05771		SLJ	4	INPIN
05770	75	0	05743		SLJ	0	MID-1
	50	0	00000		ENI	0	0
05771	75	0	00000	INPIN	SLJ	0	0
	65	0	00036		AES	0	30C
05772	70	2	16000		RAD	2	ALFA
	75	0	05771		SLJ	0	INPIN
05773	75	0	00000	MAKEX	SLJ	0	0
	12	0	05301		LDA	0	OUTBUF+10D
05774	20	0	06066		STA	0	4CE
	41	0	06112		SCL	0	HINASK
05775	07	0	00060		LLS	0	4ME
	12	0	05241		LDA	0	TEMP
05776	75	4	06001		SLJ	4	ENTER
	50	0	00000		ENI	0	0
05777	12	0	05252		LDA	0	SPACE
	20	0	05301		STA	0	OUTBUF+10D
06000	75	0	05773		SLJ	0	MAKEX
	50	0	00000		ENI	0	0
06001	75	0	00000	ENTER	SLJ	0	0
	57	6	06065		SIL	6	STORE
06002	53	6	06064		LIL	6	COUNT
	20	6	10000		STA	6	ARGUE
06003	21	6	13000		STO	6	VALUE
	50	0	00000		ENI	0	0
06004	54	6	02777		ISK	6	2777
	75	0	06006		SLJ	0	/+2
06005	04	0	00000		ENO	0	0
	75	0	06007		SLJ	0	/+2
06006	50	0	00000		ENI	0	0
	57	6	06064		SIL	6	COUNT
06007	53	6	06065		LIL	6	STORE
	75	0	06001		SLJ	0	ENTER
06010	01	2	02020	PAGEJ	BCD	71	
	20	2	02020				
06011	12	2	02020	DRSP	BCD	70	
	20	2	02020				
06012	00	0	00000	LNGTH1	DEC	7	
	00	0	00007				
06013	00	0	00000	LNGTH2	DEC	4	
	00	0	00004				
06014	00	0	00000	LNGTH3	DEC	5	

	00	0	00005			
06015	00	0	00000	RFR00	OCT	1
	00	0	00001			
06016	00	0	00000	RFR01	OCT	12
	00	0	00012			
06017	00	0	00000	RFR02	OCT	144
	00	0	00144			
06020	00	0	00000	RFR03	OCT	1750
	00	0	01750			
06021	20	2	00000	MARK	OCT	202020202020202000
	20	2	02000			
06022	20	2	02020		OCT	2020202020200000
	20	2	00000			
06023	20	2	02020		OCT	2020202020000000
	20	0	00000			
06024	20	2	02020		OCT	202020200000000000
	00	0	00000			
06025	00	0	00000	DOUB	DEC	9
	00	0	00011			
06026	00	0	00000	TRIP	DEC	14
	00	0	00016			
06027	00	0	00000	ICOUNT	BSS	180
	00	0	00000			
06051	00	0	00000	FCOUNT	BSS	90
	00	0	00000			
06062	00	0	00000	OUTCNT	BSS	1
	00	0	00000			
06063	00	0	00000	ORIENT	BSS	1
	00	0	00000			
06064	00	0	00000	COUNT	BSS	1
	00	0	00000			
06065	00	0	00000	STORE	BSS	1
	00	0	00000			
06066	00	0	00000	HOLD	BSS	1
	00	0	00000			
06067	00	0	00000	WAIT	BSS	1
	00	0	00000			
06070	00	0	00000	FFFLG	BSS	1
	00	0	00000			
06071	00	0	02200	SMASK	OCT	220000000000
	00	0	00000			
06072	20	2	00121	ATHIRD	OCT	2020012103202020
	03	2	02020			
06073	20	2	00221	BTHIRD	OCT	2020022103202020
	03	2	02020			
06074	20	2	00121	AHALF	OCT	2020012102202020
	02	2	02020			
06075	00	0	00000	QUINT	OCT	5
	00	0	00005			
06076	00	0	00000	QUAD	OCT	4
	00	0	00004			
06077	00	0	00000	TRIO	OCT	3
	00	0	00003			
06100	00	0	00000	DUO	OCT	2
	00	0	00002			
06101	00	0	00000	OUTEND	OCT	7
	00	0	00007			
06102	00	0	00000	SIXT	OCT	6
	00	0	00006			
06103	00	0	00000	TAGE	OCT	54542020
	54	5	42020			
06104	00	0	00054	OUNE	OCT	5454542020
	54	5	42020			
06105	00	0	05454	INE	OCT	545454542020
	54	5	42020			
06106	00	0	00000	PLUS	OCT	60
	00	0	00060			
06107	00	0	00000	ZERO	OCT	12
	00	0	00012			
06110	00	0	00000	CMASK	OCT	33000000
	33	0	00000			
06111	00	0	00004	TMASK	OCT	400000000
	00	0	00000			

06112	77	7	77777	HIMASK	CCT	7777777700000000
	00	0	00000			
06113	00	0	00000	LOMASK	CCT	77777777
	77	7	77777			
06114	00	0	00000	PTA	OCT	61
	00	0	00061			
06115	00	0	00000	PTE	CCT	62
	00	0	00062			
06116	20	2	02001	CARD	BCD	/ 11
	01	2	02000			
06117	20	2	02001		BCD	/ 12
	02	2	02020			
06120	20	2	02001		BCD	/ 13
	03	2	02020			
06121	20	2	02001		BCD	/ 14
	04	2	02020			
06122	20	2	02001		BCD	/ 15
	05	2	02020			
06123	20	2	02001		BCD	/ 16
	06	2	02020			
06124	20	2	02003		BCD	/ 31
	01	2	02020			
06125	20	2	02003		BCD	/ 32
	02	2	02020			
06126	20	2	02003		BCD	/ 33
	03	2	02020			
06127	20	2	02002		BCD	/ 21
	01	2	02020			
06130	20	2	02002		BCD	/ 22
	02	2	02020			
06131	20	2	02002		BCD	/ 23
	03	2	02020			
06132	20	2	02002		BCD	/ 24
	04	2	02020			
06133	20	2	02012		BCD	/ 01
	01	2	02020			
06134	20	2	02006		BCD	/ 61
	01	2	02020			
06135	20	2	02006		BCD	/ 62
	02	2	02020			
06136	20	2	02203		BCD	/ S36
	06	2	02020			
06137	20	2	02212		BCD	/ S04
	04	2	02020			
06140	24	2	02220	HEAD1	BCD	/ U S NAVA
	45	6	12561			
06141	43	2	04746		BCD	/ L POST G
	22	2	32067			
06142	51	6	16424		BCD	/ RADUATE
	61	2	36520			
06143	22	6	37046		BCD	/ SCHOOL
	46	4	32020			
06144	20	2	06461		BCD	/ DATA P
	23	6	12047			
06145	51	4	66365		BCD	/ ACCESSIN
	22	2	27145			
06146	67	2	04361		BCD	/ G LABORA
	62	4	65161			
06147	23	4	65130		BCD	/ TCRY
	20	2	02020			
06150	20	2	02020	HEAD2	BCD	/
	20	2	02020			
06151	63	4	64447		BCD	/ COMPLAT
	71	4	36123			
06152	71	4	64520		BCD	/ ION OF C
	46	6	62063			
06153	61	5	16420		BCD	/ ARD ASSI
	61	2	22271			
06154	67	4	54465		BCD	/ GNMENTS
	45	2	32220			
06155	20	2	02020	HEAD3	BCD	/
	20	2	02020			
06156	63	6	15164		BCD	/ CARD TYP

06157	20	2	33047			
	65	2	02020	BCD	/E	
	20	2	02020			
06160	20	2	02020	BCD	/	
	20	2	02020			
06161	45	2	44462	BCD	/NUMBER 0	
	65	5	12046			
06162	66	2	06361	BCD	/F CARDS	
06163	51	6	42220			
	50	1	00000	HASH	CNI	1 0
	50	2	00000		ENI	2 0
06164	50	3	00000		ENI	3 0
	50	4	00000		ENI	4 0
06165	50	6	00002		ENI	6 2
	10	0	00000		ENA	0 0
06166	20	0	06027		STA	0 ICOUNT
	20	0	06067		STA	0 WAIT
06167	20	0	06066		STA	0 HOLD
	75	4	05202		SLJ	4 FILL
06170	12	0	06010		LDA	0 PAGEJ
	20	0	05267		STA	0 OUTBUF
06171	75	4	05705		SLJ	4 OUTPUT2
	50	0	00000		ENI	0 0
06172	75	4	05717		SLJ	4 CLRBUF
	50	0	00000		ENI	0 0
06173	10	0	06140		ENA	0 HEAD1
	60	0	05713		SAU	0 MSG+1
06174	12	0	06012		LDA	0 LNCH1
	60	0	05714		SAU	0 MSG#2
06175	75	4	05712		SLJ	4 MSG
	50	0	00000		ENI	0 0
06176	75	4	05717		SLJ	4 CLRBUF
	50	0	00000		ENI	0 0
06177	10	0	06560		ENA	0 HEAD4
	60	0	05713		SAU	0 MSG+1
06200	12	0	06556		LDA	0 LENGTH4
	60	0	05714		SAU	0 MSG+2
06201	75	4	05712		SLJ	4 MSG
	50	0	00000		ENI	0 0
06202	75	0	06206		SLJ	0 ONLY
	50	0	00000		ENI	0 0
06203	75	4	05202	NXTP	SLJ	4 FILL
	50	0	00000		ENI	0 0
06204	12	0	06010		LDA	0 PAGEJ
	20	0	05267		STA	0 OUTBUF
06205	75	4	05705		SLJ	4 OUTPUT2
	50	0	00000		ENI	0 0
06206	75	4	05717	ONLY	SLJ	4 CLRBUF
	50	0	00000		ENI	0 0
06207	10	0	06565		ENA	0 HEAD5
	60	0	05713		SAU	0 MSG+1
06210	12	0	06557		LDA	0 LENGTH5
	60	0	05714		SAU	0 MSG+2
06211	75	4	05712		SLJ	4 MSG
	50	0	00000		CNI	0 0
06212	75	4	05717		SLJ	4 CLRBUF
	50	0	00000		ENI	0 0
06213	75	4	06223		SLJ	4 GET
	50	0	00000		ENI	0 0
06214	75	4	05705		SLJ	4 OUTPUT2
	50	0	00000		ENI	0 0
06215	12	0	05277		LDA	0 OUTBUF+80
	41	0	05252		SCL	0 SPACE
06216	22	1	06221		AJP	1 /+3
	50	0	00000		ENI	0 0
06217	74	0	42003		EXF	0 42003
	74	7	42000		EXF	7 42000
06220	74	0	42005		EXF	0 42005
	76	0	05000		SLS	0 5000
06221	54	6	00043		LSK	6 350
	75	0	06212		SLJ	0 WLINE
06222	75	0	06203		SLJ	0 NXTP
	50	0	00000		ENI	0 0

06223	75	0	00000	• GET	SLJ	0	0
	10	2	00000		ENA	2	0
06224	22	1	06264		AJP	1	PREP
	12	0	06027		LDA	0	ICOUNT
06225	22	1	06321		AJP	1	UDAT
	12	3	16000		LDA	3	ALFA
06226	01	0	00036		ARS	0	30D
	20	0	06611		STA	0	PINNI
06227	10	0	00001		ENA	0	ICOUNT
	20	0	06027	GOT	STA	0	ICOUNT
06230	51	1	00001		INI	1	1
	16	0	06113		LDD	0	LCMASK
06231	44	1	16000		LDE	1	ALFA
	20	2	06603		STA	2	AND
06232	36	1	16001		SSK	1	ALFA+1
	75	0	06235		SLJ	0	PICK
06233	22	0	06230		AJP	0	GCT
	51	2	00001		INI	2	1
06234	75	0	06240		SLJ	0	CCMPUT
	50	0	00000		ENI	0	0
06235	22	0	05237	PICK	AJP	0	/+2
	51	2	00001		INI	2	1
06236	75	0	06230		SLJ	0	GCT
	50	0	00000		ENI	0	0
06237	10	0	00000		ENA	0	0
	20	0	06027		STA	0	ICOUNT
06240	57	2	06066	COMPUT	SIL	2	HOLD
	10	2	00000		ENA	2	0
06241	22	0	06322		AJP	0	LOOK
	16	0	06113		LDD	0	LCMASK
06242	44	3	16000		LDE	3	ALFA
	20	0	06602		STA	0	TAND
06243	55	2	06244		INP	2	/+1
	75	0	06250		SLJ	0	BAT
06244	12	2	06603		LDA	2	AND
	75	4	06504		SLJ	4	SEARCH1
06245	50	0	00000		ENI	0	0
	02	0	00006		ARS	0	0
06246	21	2	06621		STD	2	LOCAT
	75	4	06511		SLJ	4	DECUT
06247	20	2	06612		STA	2	PINNO
	75	0	06243		SLJ	0	/-4
06250	16	0	06113	BAT	LDD	0	LCMASK
	44	3	16000		LDE	3	ALFA
06251	75	4	06504		SLJ	4	SEARCH1
	50	0	00000		ENI	0	0
06252	02	0	00006		ARS	0	0
	21	0	06620		STD	0	OLOC
06253	12	0	06611		LDA	0	PINNI
	11	0	00001		INA	0	1
06254	05	0	00035		ALS	0	30D
	17	0	06743		LDC	0	IMASK
06255	43	3	16000		SSU	3	ALFA
	20	3	16000		STA	3	ALFA
06256	50	0	00000		ENI	0	0
	04	0	00000		END	0	0
06257	12	0	06747		LDA	0	INDIC
	20	0	05270		STA	0	OUTTRUE+1
06260	53	2	06066		LIL	2	HOLD
	75	4	06327		SLJ	4	BEST
06261	12	0	06027		LDA	0	ICOUNT
	22	1	06264		AJP	1	PREP
06262	51	3	00022		INI	3	22
	56	3	06263		SIU	3	/+1
06263	50	1	00000		ENI	1	0
	50	0	00000		END	0	0
06264	51	2	77776	PREP	INI	2	-1
	57	6	05311		SIL	6	BETA
06265	04	0	00000		END	0	0
	12	2	06717		LDA	2	TABLE
06266	07	0	00006		LIS	0	6
	20	0	05246		STA	0	TEMP+5
06267	21	0	05245		STD	0	TEMP+4

	53	6	05245	LIL	6	TEMP+4
06270	12	6	06611	LDA	6	PINNI
	22	0	06275	AJP	0	/+5
06271	75	4	06526	SLJ	4	CNVT
	50	0	00000	ENI	0	0
06272	03	0	00022	LRS	0	18D
	12	6	06620	LDA	6	OLOC
06273	14	0	06737	ADD	0	PRMSK
	07	0	00022	LBS	0	18D
06274	75	0	06776	SLJ	0	/+2
	50	0	00000	ENI	0	0
06275	12	6	06602	LDA	6	IAND
	14	0	06740	ADD	0	UPSPA
06276	20	0	05273	STA	0	OUTBUF+4
	50	0	00000	ENI	0	0
06277	12	6	06602	LDA	6	IAND
	14	0	06741	ADD	0	TOSPA
06300	20	0	05277	STA	0	OUTBUF+8D
	12	0	05246	LDA	0	TEMP+5
06301	04	0	00000	ENO	0	0
	07	0	00006	LLS	0	6
06302	21	0	05245	STQ	0	TEMP+4
	53	6	05245	LIL	6	TEMP+4
06303	12	6	06611	LDA	6	PINNI
	22	0	06310	AJP	0	/+5
06304	75	4	06526	SLJ	4	CNVT
	50	0	00000	ENI	0	0
06305	03	0	00022	LRS	0	18D
	12	6	06620	LDA	6	OLOC
06306	14	0	06737	ADD	0	PRMSK
	07	0	00022	LLS	0	18D
06307	75	0	06311	SLJ	0	/+2
	50	0	00000	ENI	0	0
06310	12	6	06602	LDA	6	IAND
	14	0	06740	ADD	0	UPSPA
06311	20	0	05271	STA	0	OUTBUF+2
	50	0	00000	ENI	0	0
06312	12	6	06602	LDA	6	IAND
	14	0	06740	ADD	0	UPSPA
06313	05	0	00014	ALS	0	12D
	20	0	05276	STA	0	OUTBUF+7
06314	16	0	06113	LDD	0	L0MASK
	44	2	06717	LDL	2	TABLE
06315	75	4	06476	SLJ	4	WIRE
	50	0	00000	ENI	0	0
06316	20	0	05302	STA	0	OUTBUF+11D
	12	0	06601	LDA	0	INCHES
06317	20	0	05303	STA	0	OUTBUF+12D
	53	6	05311	LIL	6	BETA
06320	75	0	06223	SLJ	0	GET
	50	0	00000	ENI	0	0
06321	72	0	06611	RAO	0	PINNI
	75	0	06230	SLJ	0	GOT
06322	12	3	16000	LDA	3	ALFA
	22	0	06223	AJP	0	GET
06323	12	3	16001	LDA	3	ALFA+1
	22	1	06325	AJP	1	/+2
06324	12	0	07227	LDA	0	CLOCK
	20	0	05277	STA	0	OUTBUF+8D
06325	51	3	00022	INI	3	22
	56	3	06326	SIU	3	/+1
06326	50	1	00000	ENI	1	0
	75	0	06223	SLJ	0	GET
06327	75	0	00000	SLJ	0	0
	57	6	06065	SIL	6	STORE
06330	10	0	00000	ENA	0	0
	50	6	00107	ENI	6	7ID
06331	20	6	06627	STA	6	SINK
	55	6	06331	IJP	6	/
06332	20	0	05253	STA	0	FLAG
	75	4	06401	SLJ	4	POSITS
06333	55	2	06332	IJP	2	/-1
	12	0	06066	LDA	0	HOLD

BEST

06334	60	0	06451		SAU	0	DIAG+110
	11	0	77776		INA	0	-1
06335	60	0	06452		SAU	0	DIAG+120
	75	4	06436		SLJ	4	DIAG
06336	12	0	06066		LDA	0	HOLD
	57	2	05245		SIL	2	TEMP+4
06337	11	0	77776		INA	0	-1
	60	0	06376	MAINL	SAU	0	ACCEPT+3
06340	16	0	07224		LDO	0	BLOT
	51	2	77776		INI	0	-T
06341	50	0	00000		END	0	0
06342	44	2	06654		LDL	2	CHAIR
	22	1	06343		AJP	1	/+1
06343	55	2	06341		IJP	2	/-1
06344	04	6	00000		FNO	6	0
	23	1	06351		GJP	1	EARLY
06345	07	0	00006		LLS	0	6
	05	0	00006		ALS	0	6
06346	20	0	06735		STA	0	END1
	20	0	06725		STA	0	SUBTRE
06347	21	0	06736		STO	0	END1+1
	21	0	06727		SEN	0	SURTRE+1
06348	50	4	00002		SIL	4	WAIT
	57	4	06067		ENI	0	ACCEPT
06350	75	0	06373		ENG	0	0
	50	0	00000	EARLY	LLS	0	6
06351	04	0	00000		ALS	0	6
	07	0	00006		ENI	0	0
06352	05	0	00006		EOS	4	END1
	50	0	00000		SLJ	0	RAT
06353	64	4	06735	DOG	SIL	4	TEMP+6
	75	0	06361		ENI	0	0
06354	67	4	05247		LLS	0	48D
	50	0	00000		LIL	4	WAIT
06355	07	0	00060		EOS	4	SUBTRE
	53	4	06067		SLJ	0	WEDO
06356	64	4	06726		ENA	0	0
	75	0	06367		STA	2	CHAIR
06357	10	0	00000		SLJ	0	MAINL
	20	2	06654		STA	0	FLAG
06360	20	0	05253		SLJ	0	MAINL
	75	0	06340	RAT	LIL	4	FLAG
06361	53	4	05253		IJP	4	SKIP
	55	4	06365		LLS	0	48D
06362	07	0	00060		ENI	4	1
	50	4	00001		SIL	4	FLAG
06363	57	4	05253		ENI	4	2
	50	4	00002		SLJ	0	DOG
06364	75	0	06353		ENI	0	0
	50	0	00000	SKIP	SIL	4	FLAG
06365	57	4	05253		ENI	4	2
	50	4	00002		SLJ	0	MAINL
06366	75	0	06340		ENI	0	0
	50	0	00000	WHDO	LIL	4	WAIT
06367	55	4	06067		STA	4	SUBTRE
	20	4	06726		SIL	4	TEMP+6
06370	53	4	05247		STA	4	END1
	20	4	06735		RAO	0	WAIT
06371	72	0	06067		ENA	0	0
	10	0	00000		STA	0	FLAG
06372	20	0	05253		ENI	0	0
	50	0	00000	ACCEPT	LDA	2	CHAIR
06373	12	2	06654		STA	6	TABLE
	20	6	06717		ENA	0	0
06374	10	0	00000		STA	2	CHAIR
	20	2	06654		STA	2	2
06375	50	4	00002		ENI	4	TEMP+4
	53	2	05245		LIL	2	0
06376	54	6	00000		ISK	6	MAINL
	75	0	06340		SLJ	0	HOLD
06377	53	2	06066		LIL	2	STORE
	53	6	06065		LIL	6	BEST
06400	75	0	06327		SLJ	0	

06401	50	0	000000	POSITS	ENI	0	0
	75	0	000000		SLJ	0	0
06402	04	0	00077		ENQ	77	
	44	2	06620		LDL	0	OLCC
06403	22	0	06434		AJP	20	NULOT
	64	0	06107		FOS	0	ZERO
06404	75	0	06405		SLJ	0	/+2
	10	0	00000		ENA	0	0
06405	50	0	05246		ENI	0	TEMP+5
	06	0	00006		CLS	6	
06406	44	2	05620		LDL	20	OLCC
	01	0	00006		ARS	6	
06407	64	0	06107		FOS	0	ZERO
	75	0	06411		SLJ	0	/+2
06410	10	0	00000		ENA	0	0
	50	0	00000		ENI	0	0
06411	24	0	06107		MUI	0	ZERO
	70	0	05246		RAD	0	TEMP+5
06412	24	0	06746		MUI	0	DCCL
	20	2	06701		STA	20	HOR
06413	16	0	07221		LDL	0	GLOC
	44	2	06620		LDL	2	OLCC
06414	22	1	06416		AJP	10	/+2
	10	0	00011		ENA	0	90
06415	20	0	05246		STA	0	TEMP+5
	75	0	06417		SLJ	0	/+2
06416	10	0	00000		ENA	0	0
	20	0	05246		STA	0	TEMP+5
06417	16	0	07222		LDL	0	GLUM
	44	2	06620		LDL	20	OLCC
06420	22	0	06425		AJP	0	/+5
	10	0	00007		ENA	0	TEMP+5
06421	70	0	05246		RAD	0	10000
	04	0	10000		ENQ	0	OLCC
06422	44	2	06620		LDL	20	/+2
	22	0	06424		AJP	0	
06423	10	0	00022		FOS	0	
	75	0	06427		SLJ	0	/+4
06424	10	0	00001		SLJ	0	/+5
	75	0	06427		LDL	0	BLUB
06425	16	0	07225		LDL	20	OLCC
	44	2	06620		ARS	0	120
06426	01	0	00014		ENI	0	0
	50	0	00000		RAD	0	TEMP+5
06427	70	0	05246		MUI	0	DROW
	24	0	06744		STA	0	TEMP+5
06430	20	0	05246		SLA	20	PINNI
	12	0	06611		MUI	0	DPIN
06431	24	0	06785		ADD	0	TEMP+5
	14	0	05246		STA	20	VER
06432	20	2	06710		ENA	0	POSITS
	10	0	00000		SLJ	0	0
06433	75	0	06401		ENI	0	HCR
	50	0	00000		SEA	20	VER
06434	50	0	06701	NULOT	SEA	0	0
	20	0	06710		SEA	0	OPOSITS
06435	10	0	00000		SLJ	0	0
	75	0	06401		SLJ	0	TEMP+5
06436	75	0	00000		SIL	30	
	25	0	05246		ENI	30	
06437	25	0	00000		LDL	1	HCR
	50	0	00001		SLJ	0	
06440	12	0	06701		SLJ	0	
	15	0	06701		SLJ	0	HCR
06441	20	0	05245		SLJ	0	TEMP+4
	24	0	05245		SLJ	0	TEMP+4
06442	20	0	05245		SLJ	0	TEMP+4
	12	0	06710		SLJ	0	VER
06443	15	2	06710		SLJ	20	VER
	20	0	05247		SLJ	0	TEMP+6
06444	24	0	05247		MUI	0	TEMP+6
	70	0	05245		RAD	0	TEMP+4

06445	10 6 00000		ENA 6 0
	05 0 00006		ALS 6 6
06446	11 2 00000		INA 2 0
	05 0 00044		ALS 0 56D
06447	14 0 05245		ADD 0 TEMP+4
	20 3 06627		STA 3 SINK
06450	51 3 00001		INI 3 0
	50 0 00000		ISK 6 0
06451	54 6 00000		SLJ 0 01AGF+2
	75 8 06440		ISK 2 0
06452	54 2 00000		SLJ 0 /+2
	75 0 06454		INI 3 -1
06453	51 3 77776		SLJ 0 ORDER
	75 0 06456		SIL 2 TEMP+4
06454	57 2 05245		LIL 6 TEMP+4
	53 6 05245		INI 6 1
06455	51 6 00001		SLJ 0 DIAG+2
	75 0 06440	ORDER	SIL 3 TEMP+4
06456	57 3 05245		RAO 0 TEMP+4
	72 0 05245		LDO 0 BLAM
06457	16 0 07223		ENA 3 0
	10 3 00000		INA 0 SINK
06460	11 0 06627		SAL 0 /+2
	61 0 06462		SAU 0 VARI
06461	60 0 06471		ENI 0 TEMP+4
	50 0 00000		LIL 6 0
06462	53 6 05245		XTH 6 SINK
	44 0 00000		SLJ 0 /+4
06463	67 6 06627		SIL 6 GOFFR
	75 0 06467		ENA 0 SINK
06464	57 6 07226		ADD 0 GOFFR
	10 0 06627		SAU 0 VARI
06465	14 0 07226		LDL 6 SINK
	60 0 06471		SLJ 0 /-3
06466	44 6 06627		LDA 5 VARI
	75 0 06463		SLJ 0 CHAIR
06467	52 5 06471		STA 2 0
	12 5 00000	VARI	ENA 0 0
06470	20 2 06654		INI 2 1
	10 0 00000		IJP 3 LAMP
06471	20 0 00000		LIL 3 TEMP+5
	51 2 00001		SLJ 0 DIAG
06472	55 3 06474		ENI 0 0
	53 3 05246	LAMP	ELIL 5 ORDER+4
06473	75 0 06436		SLJ 0 0
	50 0 00000		SEN 0 ORDER+4
06474	53 5 06462		SLJ 0 0
	56 5 06471		ENI 0 0
06475	75 0 06462		SIL 6 STORE
	50 0 00000		ENI 6 84D
06476	75 0 00000	WIRE	IHS 6 APPX
	50 0 00000		SLJ 0 /+2
06477	57 6 06065		LDA 6 TYPE
	50 6 00124		SIJ 0 /+2
06500	65 6 07074		LDA 0 MAX
	75 0 06502		ENI 0 0
06501	12 6 06750	SEARCH1	ELIL 6 STORE
	75 0 06503		SLJ 0 0
06502	12 0 07220		END 0 0
	50 0 00000		SLJ 0 0
06503	53 6 06065		ENI 6 COUNT
	75 0 06476		ELIL 6 ARGUE
06504	75 0 000000		SLJ 0 /+2
	04 0 000000		SLJ 0 VALUE
06505	57 6 06065		END 0 0
	53 6 06064		ELIL 6 STORE
06506	64 6 10000		SLJ 0 0
	75 0 06510		ENI 6 SEARCH1
06507	16 6 16000		ELIL 6 0
	50 0 00000		SLJ 0 0
06510	53 6 06065		SLJ 0 0
	75 0 06504		SLJ 0 0
06511	75 0 00000	DECOUT	SLJ 0 0

06512	57	6	06065	SIL	6	STORE
	53	6	05242	LIL	6	TEMP+1
	16	0	06113	LDQ	0	LOMASK
06513	66	6	16000	MEQ	6	ALFA
	75	0	06524	SLJ	0	/+90
06514	16	0	06742	LDO	0	ONASK
	44	6	16000	LDL	6	ALFA
06515	22	1	06517	AJP	1	/+2
	12	2	06603	LDA	2	AND
06516	16	0	04113	LBN	0	LOMASK
	75	0	06513	SLJ	0	/-3
06517	01	0	00030	ARS	0	24D
	20	0	06067	STA	0	WAIT
06520	11	0	77776	INA	0	-1
	05	0	00030	ALS	0	24D
06521	17	0	06742	LQC	0	OMASK
	43	6	16000	SSU	6	ALFA
06522	20	6	16000	STA	6	ALFA
	12	0	06067	LDA	0	WAIT
06523	75	0	06525	SLJ	0	/+2
	50	0	00000	ENI	0	0
06524	50	0	00000	ENA	0	0
06525	53	6	06065	LIL	6	STORE
	75	0	06511	SLJ	0	DECOUT
06526	75	0	00000	CNVT	SLJ	0
	57	6	06065	SLJ	0	0
06527	50	6	00011	ENI	6	STORE
	04	0	00077	END	0	9E
06530	66	6	06542	MIO	6	BACK
	75	0	06532	SLJ	0	/+2
06531	75	0	06537	SLJ	0	/+6
	50	0	00000	ENI	0	0
06532	15	0	06541	SUB	0	FORTN
	22	3	06534	AJP	3	/+2
06533	12	0	06555	LDA	0	BACK+110
	75	0	06540	SLJ	0	RAW
06534	11	0	00001	INA	0	1
	22	3	06536	AJP	3	/+2
06535	12	0	06554	LDA	0	BACK+100
	75	0	06540	SLJ	0	RAW
06536	12	0	06553	LDA	0	BACK+90
	75	0	06540	SLJ	0	RAW
06537	12	6	06542	LDA	6	BACK
	50	0	00000	ENI	0	0
06540	53	6	06065	RAW	LIL	6
	75	0	06526	RAW	SLJ	0
06541	00	0	00000	FORTN	OCT	CNVT
	00	0	00014		OCT	14
06542	00	0	00000	BACK	OCT	401201
	00	4	01201		OCT	401202
06543	00	0	00000		OCT	401203
	00	4	01202		OCT	401204
06544	00	0	00000		OCT	401205
	00	4	01203		OCT	401206
06545	00	0	00000		OCT	401207
	00	4	01204		OCT	401208
06546	00	0	00000		OCT	401209
	00	4	01205		OCT	401210
06547	00	0	00000		OCT	401211
	00	4	01206		OCT	401212
06550	00	0	00000		OCT	401213
	00	4	01207		OCT	401214
06551	00	0	00000		OCT	401215
	00	4	01210		OCT	401216
06552	00	0	00000		OCT	401217
	00	4	01211		OCT	400112
06553	00	0	00000		OCT	400113
	00	4	00112		OCT	400101
06554	00	0	00000		OCT	400102
06555	00	4	00102		OCT	400103

	LEN	THI	LEN	THS	DEC	4	
06556	00	0	00000		LNGTHI	DEC	4
06557	00	0	00004		LNGTHS	DEC	11D
06560	00	0	00013		HEAD4	BCD	/
06561	20	2	02020				
06562	71	4	52365			BCD	/INTER CA
06563	51	2	06361			BCD	/RD WIRIN
06564	51	6	42026			BCD	/G TABULA
06565	67	2	17169			BCD	/TION
06566	62	2	02361			BCD	/
06567	23	7	44361			BCD	/ORIGIN
06568	20	2	14645			BCD	/
06569	20	2	02020			BCD	/
06570	20	2	02020		HEAD5	BCD	/
06571	64	6	52223			BCD	/DESTINAT
06572	71	4	56123			BCD	/ICN
06573	20	2	64520			BCD	/
06574	20	2	02020			BCD	/DESIG
06575	65	2	02064			BCD	/NATIONS
06576	45	6	27167			BCD	/
06577	46	4	12371			BCD	/
06578	20	2	52220			BCD	/
06579	20	2	02020			BCD	/
06580	20	2	02020			BCD	/
06581	26	7	15165			BCD	/WIRE LEN
06600	20	4	36545			BCD	/GTH
06601	67	2	37020			BCD	/
06602	20	2	02020		INCHES	BCD	/INCHES
06603	71	4	56370			BCD	/
06604	65	2	22020			BCD	/
06605	00	0	00000		IAND	BSS	1
06606	00	0	00000		AND	BSS	6
06611	00	0	00000		PINNI	BSS	1
06612	00	0	00000		PINNO	BSS	6
06620	00	0	00000		OLOC	BSS	1
06621	00	0	00000		LOCAT	BSS	6
06627	00	0	00000		SINK	BSS	21D
06654	00	0	00000		CHAIR	BSS	21D
06701	00	0	00000		HOR	BSS	7
06710	00	0	00000		VER	BSS	7
06717	00	0	00000		TABLE	BSS	7
06726	00	0	00000		SUBTRI	BSS	7
06735	00	0	00000		END1	BSS	2
06737	00	0	00000		PRMSK	OCT	2020000000
06740	20	0	00000		UPS2A	OCT	2020202000000000
06741	20	2	02020		UTSPA	OCT	2346202000000000
06742	00	0	00000		OMASK	OCT	7700000000

06743	00 0 00000				
	00 0 07700	IMASK	OCT	770000000000	
	00 0 00000				
06744	00 0 00000	DROW	DEC	38	
	00 0 00046				
06745	00 0 00000	DPIN	DEC	2	
	00 0 00002				
06746	00 0 00000	DCOL	DEC	5	
	00 0 00005				
06747	00 0 00000	TENDIG	BCD	# #	
	00 0 00000				
06750	04 0 32020	TYPE	BCD	143	
	20 2 02020				
06751	04 0 22020		BCD	142 1/2	
	20 2 02020				
06752	04 0 22020		BCD	142	
	20 2 02020				
06753	04 0 12001		BCD	141 1/2	
	21 0 22020				
06754	04 0 12020		BCD	141	
	20 2 02020				
06755	04 1 22001		BCD	140 1/2	
	21 0 22020				
06756	04 1 22020		BCD	140	
	20 2 02020				
06757	03 1 12001		BCD	139 1/2	
	21 0 22020				
06760	03 1 12020		BCD	139	
	20 2 02020				
06761	03 1 02001		BCD	138 1/2	
	21 0 22020				
06762	03 1 02020		BCD	138	
	20 2 02020				
06763	03 0 72001		BCD	137 1/2	
	21 0 22020				
06764	03 0 72020		BCD	137	
	20 2 02020				
06765	03 0 62001		BCD	136 1/2	
	21 0 22020				
06766	03 0 62020		BCD	136	
	20 2 02020				
06767	03 0 52001		BCD	135 1/2	
	21 0 22020				
06770	03 0 52020		BCD	135	
	20 2 02020				
06771	03 0 42001		BCD	134 1/2	
	21 0 22020				
06772	03 0 42020		BCD	134	
	20 2 02020				
06773	03 0 32001		BCD	133 1/2	
	21 0 22020				
06774	03 0 32020		BCD	133	
	20 2 02020				
06775	03 0 22001		BCD	132 1/2	
	21 0 22020				
06776	03 0 22020		BCD	132	
	20 2 02020				
06777	03 0 12001		BCD	131 1/2	
	21 0 22020				
07000	03 0 12020		BCD	131	
	20 2 02020				
07001	03 1 22001		BCD	130 1/2	
	21 0 22020				
07002	03 1 22020		BCD	130	
	20 2 02020				
07003	02 1 12001		BCD	129 1/2	
	21 0 22020				
07004	02 1 12020		BCD	129	
	20 2 02020				
07005	02 1 02001		BCD	128 1/2	
	21 0 22020				
07006	02 1 02020		BCD	128	
	20 2 02020				

07007	02	0	72001	BCD	/27	1/2
07010	21	0	22020	BCD	/27	
07011	02	0	72020	BCD	/26	1/2
07012	21	0	62001	BCD	/26	
07013	02	0	62020	BCD	/25	1/2
07014	21	0	52020	BCD	/25	
07015	02	0	42001	BCD	/24	1/2
07016	21	0	42020	BCD	/24	
07017	02	0	32001	BCD	/23	1/2
07018	21	0	32020	BCD	/23	
07019	02	0	32001	BCD	/22	1/2
07020	21	0	22001	BCD	/22	
07021	02	0	22020	BCD	/21	1/2
07022	21	0	22001	BCD	/21	
07023	02	0	12001	BCD	/21	1/2
07024	21	0	12020	BCD	/21	
07025	02	1	22001	BCD	/20	1/2
07026	21	0	22020	BCD	/20	
07027	02	1	22001	BCD	/19	1/2
07028	21	0	22020	BCD	/19	
07029	01	1	12001	BCD	/18	1/2
07030	20	2	02001	BCD	/18	
07031	01	1	12020	BCD	/18	
07032	21	1	02001	BCD	/18	
07033	20	2	02020	BCD	/17	1/2
07034	01	0	72001	BCD	/17	
07035	21	0	22020	BCD	/16	1/2
07036	01	0	72020	BCD	/16	
07037	20	2	02001	BCD	/15	1/2
07038	01	0	52001	BCD	/15	
07039	21	0	22020	BCD	/15	
07040	01	0	52020	BCD	/14	1/2
07041	20	2	02001	BCD	/14	
07042	01	0	42001	BCD	/14	
07043	20	2	02020	BCD	/13	1/2
07044	01	0	32001	BCD	/13	
07045	21	0	32020	BCD	/12	1/2
07046	01	0	22001	BCD	/12	
07047	20	2	02020	BCD	/11	1/2
07048	01	0	12001	BCD	/11	
07049	21	0	12020	BCD	/10	1/2
07050	01	0	12001	BCD	/10	
07051	20	2	02020	BCD	/10	
07052	01	1	22020	BCD	/9	1/2
07053	20	1	12001	BCD	/9	

07054	21	0	220200		BCD	1 9
07055	20	1	120200		BCD	1 8 1/2
07056	21	0	220200		BCD	1 8
07057	20	1	020200		BCD	1 7 1/2
07060	20	0	720010		BCD	1 7
07061	20	2	020001		BCD	1 6 1/2
07062	21	0	220200		BCD	1 6
07063	20	0	520001		BCD	1 5 1/2
07064	20	0	520200		BCD	1 5
07065	20	0	420001		BCD	1 4 1/2
07066	21	0	420200		BCD	1 4
07067	22	0	020000		BCD	1 3 1/2
07070	20	0	320001		BCD	1 3
07071	22	1	022000		BCD	1 2 1/2
07072	22	0	220200		BCD	1 2
07073	20	0	120001		BCD	1 1 1/2
07074	00	0	220200	APPX	DEC	284516
07075	00	0	53544		DEC	277782
07076	01	0	36426		DEC	271128
07077	00	0	000000		DEC	264556
07100	00	0	000000		DEC	258064
07101	00	7	70020		DEC	251653
07102	00	0	753405		DEC	245322
07103	00	0	37112		DEC	239072
07104	00	0	000000		DEC	232902
07105	00	7	22740		DEC	226814
07106	00	0	000000		DEC	220806
07107	00	6	57206		DEC	214879
07110	00	0	000000		DEC	209032
07111	00	6	30210		DEC	203266
07112	00	0	15002		DEC	197580
07113	00	6	000000		DEC	191975
07114	00	5	66747		DEC	186451
07115	00	5	54123		DEC	181008
07116	00	0	41420		DEC	175645
07117	00	0	27035		DEC	170363
	00	5	000000		DEC	170363
	00	5	14579		DEC	170363

07120	00	0	00000	DEC	165161
07121	00	5	02451	DEC	160040
07122	00	0	00000	DEC	155000
07123	00	4	70450	DEC	150040
07124	00	0	00000	DEC	145161
07125	00	9	34811	DEC	140361
07126	00	0	00000	DEC	135645
07127	00	4	10735	DEC	131008
07130	00	3	77700	DEC	126457
07131	00	3	66771	DEC	121976
07132	00	0	00000	DEC	117580
07133	00	3	56170	DEC	113266
07134	00	0	00000	DEC	109032
07135	00	3	24750	DEC	104879
07136	00	0	00000	DEC	100806
07137	00	3	04706	DEC	96814
07140	00	2	75056	DEC	92903
07141	00	2	65347	DEC	89072
07142	00	0	00000	DEC	85322
07143	00	2	46512	DEC	81653
07144	00	0	00000	DEC	78064
07145	00	2	30360	DEC	74556
07146	00	2	21474	DEC	71129
07147	00	0	00000	DEC	67782
07150	00	2	04306	DEC	64516
07151	00	1	76004	DEC	61331
07152	00	1	67623	DEC	58227
07153	00	1	61563	DEC	55202
07154	00	1	53642	DEC	52258
07155	00	1	46042	DEC	49395
07156	00	1	40363	DEC	46613
07157	00	0	00000	DEC	43911
07160	00	1	25607	DEC	41290
07161	00	0	00000	DEC	38750
07162	00	1	13536	DEC	36290
07163	00	0	00000	DEC	33911
07164	00	1	02167	DEC	31613

07165	00	0	75575			
	00	0	00000		DEC	29395
07166	00	0	71323		DEC	27258
07167	00	0	65172		DEC	25202
07170	00	0	61162		DEC	23226
07171	88	8	55272		HEG	21341
07172	00	0	51523		DEC	19516
07173	00	0	00000		DEC	17782
07174	00	0	42566		DEC	16129
07175	00	0	37401		DEC	14556
07176	00	0	34334		DEC	13064
07177	00	0	31410		DEC	11653
07200	00	0	00000		DEC	10323
07201	00	0	24123		DEC	9073
07202	00	0	21561		DEC	7903
07203	00	0	17337		DEC	6815
07204	00	0	15237		DEC	5806
07205	00	0	13256		DEC	4879
07206	00	0	11417		DEC	4032
07207	00	0	07700		DEC	3266
07210	00	0	06302		DEC	2581
07211	00	0	05025		DEC	1976
07212	00	0	03670		DEC	1452
07213	00	0	02654		DEC	1008
07214	00	0	01760		DEC	645
07215	00	0	01205		DEC	363
07216	00	0	00553		DEC	137
07217	00	0	00211		DEC	70
07220	04	0	36020	MAX	BCD	143+
07221	20	2	02020		OCT	200000
07222	00	0	00000	CLOP	OCT	100000
07223	00	0	00000	GLUM	OCT	0000777777777777
07224	77	7	07777	BLAN	OCT	7777000000000000
07225	00	0	00000	BLOT	OCT	70000
07226	00	0	70000	BLUB	OCT	0
07227	00	0	00000	GOFER	OCT	
	20	2	02063	CLOCK	BCD	/ CLOCK
	43	4	66342	ARGUE	EQU	10000
				VALUE	EQU	13000

ALFA EQU 16000
END

ARITHMATIC II

GENERAL DATA COMMUNICATION TO CPU AND OUTPUT CODING AND CONTROL LINES

K. 1504

L. Coding

The external function instruction (74) acts in three different modes to give (a) activation of a channel; (b) sensing of a condition at an external equipment or (c) selecting an external equipment to communicate with the computer.

The channel activate sub-instructions 74.1 through 74.6 are interpreted as follows:

74	1 thru 6	Base Execution Address
6 bit operation code	3 bit index designator	15 bits which specifies the initial address for data storage in buffering operation

The sense sub-instruction 74.7 is interpreted as follows:

74	7	1 thru 7	1 thru 7	
sense	3 bit channel selection code	3 bits external equipment code	3 bits condition code	which specifies operation being sensed

- Ex: If the sensed condition is met, a full exit from the word is performed. If the sensed condition is not met, a half exit from the word is performed.

The Select sub-instruction 700 is interpreted as follows:

74	0	1 thru 7		
----	---	----------	--	--

6 bit operation index code 3 bits channel selection code 5 bits external equipment code which specifies operation being selected
Select

2. Data and Control Lines

Input equipment to computer

input data Comprise two complete cables and two lines of a third cable of a buffer or transfer cable group
(48 lines)

Input data Function: Indicates equipment input register ready (1 line) contains information which computer may sample.

Operation: Turned off by input data resume from computer. (Computer resync circuitry orients itself about leading edge of ready signal; auxiliary scanner is stopped and input word is passed to computer.)

Computer to Input Equipment

Input data Function: Indicates to equipment that computer resume (1 line) has accepted input word.

Operation: Turned off by input data ready; turned on when computer has accepted and stored input word.

Computer to Output Equipment

Output (48 lines)	Comprise two complete cables and two lines of a third cable of a buffer or transfer cable group.
Output data ready (1 line)	Function: accompanies output data from computer. Operation: turned on when computer has word of information ready for equipment; off by return from equipment.

Output Equipment to Computer

Output data resume (1 line)	Function: indicates that equipment has accepted word. Operation: turned on when equipment has accepted word. (Computer resync circuitry orients itself about the trailing edge of resume; when signal drops auxiliary scanner stops and another word is exchanged. Computer prepares a word for exchange while output data resume signal is up.)
--------------------------------	---

Computer to External Equipment

External function (12 lines)	Function: trigger external function (AF) comes to select or sense a condition within the equipment Operation: lines continuously monitored by all equipment. An appropriate function or sense ready alerts equipment on a
---------------------------------	--

internal selector on code on
lines.

External Master Function: Masters all equipment on the channels.

Clear (1 line) Operation: occurs when clear switch at console
is in up position.

External Equipment to Computer

Sense response function: indicates equipment's reply to sense
code.

Operation: ON indicates presence of condition
specified by sense code; OFF indicates absence of condition.

Interrupt (1 line) Operation: external equipment or internal computer
control sends signal over a
condition arises that was previously
selected by a 7400.

Computer to Input Equipment

Input function ready (1 line) Function: Accompanies IR select code
Operation: turned on by instruction 7400 causes
input equipment to translate IR code.

Input sense ready (1 line) Function: Accompanies IR sense code
Operation: turned on by instruction 7402 causes
input equipment to translate IR code
and send response back to computer.

Input buffer active (1 line) function: indicates computer is prepared to re-
ceive a block of data.

Operation: turned on when input buffer channel

is activated by instruction 74.1, 74.4 or 74.5. Remains on until final word of block is entered in storage.

Computer to Output Equipment

Output Function Function: Accompanies AF select code.

Ready (1 line)

Operation: Turned on by instruction 74.0. Causes output equipment to translate AF code.

Output Sense Function: Accompanies AF sense code.

Ready (1 line)

Operation: Turned on by instruction 74.7. Causes output equipment to translate AF code and send response back to computer.

Output Buffer Function: Indicates computer is prepared to transmit a block of data.

Active (1 line)

Operation: Turned on when output buffer channel is activated by instructions 74.2, 74.4, or 74.6. Remains on until final word of block is transmitted to output equipment.

B. 160

1. Coding

The computer controls the operation of its external equipment by issuing 12 bit function codes. This process, initiated by the external function (75) instruction, places a designated 12-bit code on the output lines and activates the function ready signal. Each external equipment receives the data, but only the equipment recognizing it responds to it by sending back a function resume signal.

The primary status code is built into the INT, otherwise the INT function accuracy depends on the equipment's response from the external equipment. The equipment must be designed to place a 12-bit status response code on the input cable. The loop must then process this response through an input instruction INT (72) which will bring the 12 bits into the "A" register. The status response must be a one out of twelve response for each condition as more than one condition may exist. This allows for only twelve possible conditions for sensing to be designed into any external equipment.

Normal input and output are handled by the INT (72) and OUT (73) commands respectively. These operate on blocks of memory.

2. Data and Control Lines

INPUT Data Lines	FUNCTION
Input data and (12 lines)	mal purpose:
Input status (12 lines)	1) As data lines they hold equipment input re- ister contents which the computer may sample. 2) As input status lines they indicate equip- ment's response to status request interroga- tion.
Input ready (1 line)	Indicates that the external equipment contains information which the computer may sample. (Computer recync circuits are oriented about the leading edge of the ready signal.)
Input request	Indicates to external equipment that computer

(1 line)	Input current limit. Set to zero if no input ready.
Input Disconnect	Indicates to computer that input device has no more data to deliver. Computer then goes to resume main program with no further delay.
(1 line)	Generally the input instruction establishes a storage field; block of greater capacity than the size given in the information block.)
OUTPUT OR LINE	
FUNCTIONS	
Output Data and Output Function (1 line)	Functionally lecture b is equivalent. and purpose: 1) As output data lines, i.e., hold output word which the external device may sample. 2) As output function lines they carry external function (sw) codes to select or sense a condition bit in the equipment. Function ready alerts the equipment to sample the ad- dresses.
Function Ready (1 line)	Accompanies all code. It is turned on by in- struction 70 which ties the address bus to the a code. It is turned off by instruction re- sume from the external equipment.
Information Ready (1 line)	This signal accompanies the output address from the computer and is turned on when the com- puter has a word of information ready for the

external equipment. It is turned off by an output re-use from the equipment.

Output Resume (1 line) This signal is turned on when the external device has accepted the output word or *nr* code. (The computer resync circuitry orients itself about the trailing edge of the resume; when the signal drops the word is exchanged.) The computer prepares a word while the signal is up.

Master Clear (1 line) This signal clears all external equipment. It occurs when the Load-Clear switch at the console is in the Clear (down) position.

thesL334

An integrated display and control system

3 2768 002 11125 4
DUDLEY KNOX LIBRARY