

# LINEAR COMPLEXITY

## Introduction

- Transformers are O(n²) in time and memory complexity.
- Self-attention is the bottleneck of Transformers.
- BERT, GPT, T5, RoBERTa

INTRODUCTION PAGE 02

# Related Works



**Sparse Attention** 



LSH Attention



**Knowledge Distillation** 

RELATED WORKS
PAGE 03

# Idea and key principle

The context mapping matrix is approximaly low rank





# Model

• Self-Attention is O(n) in time and memory complexity.



MODEL PAGE 05

### Results/Limits

| $\overline{n}$ | Model                              | SST-2 | IMDB | QNLI | QQP  | Average |
|----------------|------------------------------------|-------|------|------|------|---------|
|                | Liu et al. (2019), RoBERTa-base    | 93.1  | 94.1 | 90.9 | 90.9 | 92.25   |
|                | Linformer, 128                     | 92.4  | 94.0 | 90.4 | 90.2 | 91.75   |
|                | Linformer, 128, shared kv          | 93.4  | 93.4 | 90.3 | 90.3 | 91.85   |
|                | Linformer, 128, shared kv, layer   | 93.2  | 93.8 | 90.1 | 90.2 | 91.83   |
| 512            | Linformer, 256                     | 93.2  | 94.0 | 90.6 | 90.5 | 92.08   |
|                | Linformer, 256, shared kv          | 93.3  | 93.6 | 90.6 | 90.6 | 92.03   |
|                | Linformer, 256, shared kv, layer   | 93.1  | 94.1 | 91.2 | 90.8 | 92.30   |
| 512            | Devlin et al. (2019), BERT-base    | 92.7  | 93.5 | 91.8 | 89.6 | 91.90   |
|                | Sanh et al. (2019), Distilled BERT | 91.3  | 92.8 | 89.2 | 88.5 | 90.45   |
|                | Linformer, 256                     | 93.0  | 93.8 | 90.4 | 90.4 | 91.90   |
| 1024           | Linformer, 256, shared kv          | 93.0  | 93.6 | 90.3 | 90.4 | 91.83   |
|                | Linformer, 256, shared kv, layer   | 93.2  | 94.2 | 90.8 | 90.5 | 92.18   |

Comparing the pretraining perplexities of various models.

RESULTS/LIMITS PAGE 06

#### Inference-time Efficiency Results

| length n | projected dimensions k |      |      |      | length n | projected dimensions k |      |      |      |      |      |
|----------|------------------------|------|------|------|----------|------------------------|------|------|------|------|------|
|          | 128                    | 256  | 512  | 1024 | 2048     | length n               | 128  | 256  | 512  | 1024 | 2048 |
| 512      | 1.5x                   | 1.3x | -    | -    | -        | 512                    | 1.7x | 1.5x | -    | -    | -    |
| 1024     | 1.7x                   | 1.6x | 1.3x | -    | -        | 1024                   | 3.0x | 2.9x | 1.8x | -    | -    |
| 2048     | 2.6x                   | 2.4x | 2.1x | 1.3x | -        | 2048                   | 6.1x | 5.6x | 3.6x | 2.0x | -    |
| 4096     | 3.4x                   | 3.2x | 2.8x | 2.2x | 1.3x     | 4096                   | 14x  | 13x  | 8.3x | 4.3x | 2.3x |
| 8192     | 5.5x                   | 5.0x | 4.4x | 3.5x | 2.1x     | 8192                   | 28x  | 26x  | 17x  | 8.5x | 4.5x |
| 16384    | 8.6x                   | 7.8x | 7.0x | 5.6x | 3.3x     | 16384                  | 56x  | 48x  | 32x  | 16x  | 8x   |
| 32768    | 13x                    | 12x  | 11x  | 8.8x | 5.0x     | 32768                  | 56x  | 48x  | 36x  | 18x  | 16x  |
| 65536    | 20x                    | 18x  | 16x  | 14x  | 7.9x     | 65536                  | 60x  | 52x  | 40x  | 20x  | 18x  |

Time Memory

# Experiment

• Implementation of the Linformer self-attention & Transformer self-attention



EXPERIMENT PAGE 08

# Limits

- Efficient for long sequences tasks only
- Quality loss
- Not used nowadays

CONCLUSION

### Conclusion

- Transformer models are slow to train and deploy.
- Theoretical and empirical demonstration.
- Efficient self-attention mechanism, O(n) with respect to sequence length.
- Other solutions: Flash attention, quantization techniques

CONCLUSION PAGE 10

# Thanks

THANKS! PAGE 11