

Mu2e Measurements

- Ratio of conversions R_{II}
- Measurement has some backgrounds
 - Weak Decay of Muons (DIO)
 - Explains the need for high resolution
 - Beam Background
 - RPC (radiative pion capture)
 - Reason for pulsed beams to suppress it
 - Cosmic ray background
 - Everything happening outside detector (will go back to this later)

Solutions to background effects

- Muonic Weak Decay (DIO)
 - Focus on momentum spectrum
 - The michel spectrum endpoint at 52.8 MeV (refer to this later in straw tube tracker)
 - 2 e- 2 neutrinos vs just 1 electron
- Resolution
 - 10¹⁷ muons ---> 1 event within the MeV of the required endpoint
- Momentum resolution = 1Me v/c or less
- Beam Flash
 - Proton collisions produced charged and neutral pions
 - Photons ---> electrons go into stopping target, distorting signal
 - Analysis begins at 700 ns to address this, aluminum decay separated from the flash at 864 ns

Background solutions cont.

- Antiproton background
 - Antiprotons higher momentum, thus increased radius of gyration
 - This is filtered by solenoid
 - Antiprotons also have lower KE values, and thus lose energy easily
 - Implementation of 3 absorbers
- Cosmic ray background
 - Need of a cosmic ray background veto system
 - Backgrounds results indistinguishable from signal electrons
 - CRV muon can be misidentified as the electron
 - Electron trapped in the field can be moved to the stopping region
 - Cosmic ray muon striking the stopping target can knock electron out of the signal region (same path as the signal electron)

Experimental Setup

- Magnetic fields transport muons from production target to stopping target
 - 1T 4.6 T gradient
- System: Production, Transport, Detector
- Production Solenoid
 - Proton beams towards the right "forward" orientation
 - Leftover proton beams backwards
 - Fields drop as muons progress (hence negative gradient)
 - Positive gradients can trap particles
- Transport Solenoid
 - S shape
 - No positive muons captured in stopping target

Experimental Setup 2

- Detector Solenoid
 - Stopping target and detector system
 - Filters antiprotons
 - Higher momentum than muons
 - Higher radius of gyration
 - If not properly stopped increases RPC background
 - Muon Extinction
- Stopping target
 - Pure aluminum
 - Muons pass through stopping material and lose energy
 - Pushes electrons into DIO region

Experimental Setup 3

- Tracker
 - High resolution (minimize backgrounds)
 - Bad resolution: increased background from DIO spectrum
 - Energy loss must be minimized, why?
 - Electrons with a lot of energy loss can be in DIO spectrum as well
- Straw tube tracker
 - Low mass good resolution
 - Mylar
 - Filters out Michel decays
- Calorimeter
 - Disks with holes to accommodate muon beam remnants and beam flash
 - Electrons enter at 55 degrees