Geometria com aplicações na gráfica computacional

Folha 1 de exercícios

csaba@mat.ufmg.br

- **1.** Seja V um espaço vetorial de dimensão n e seja B uma base de V. Demonstre que a aplicação $V \to \mathbb{R}^n$ definida por $v \mapsto [v]_B$ é um isomorfismo linear (ou seja, uma aplicação linear injetiva e sobrejetiva).
- **2.** Seja V um espaço vetorial com bases B e C. Demonstre que $[\mathrm{id}]_C^B = ([\mathrm{id}]_B^C)^{-1}$.
- 3. Sejam $T_1:V\to U$ e $T_2:U\to W$ transformações lineares, e sejam $B,\,C,$ e D bases de $V,\,U,$ e W, respetivamente. Mostre que

$$[T_2 \circ T_1]_D^B = [T_2]_D^C \cdot [T_1]_C^B.$$

- 4. Sejam Y_1 e Y_2 matrizes conjugadas. Demonstre as seguintes afirmações.
 - (1) $\det Y_1 = \det Y_2$.
 - (2) Y_1 e Y_2 têm os mesmos autovalores.
 - (3) Seja $Y_2 = XY_1X^{-1}$ e seja $v \in \mathbb{R}^n$. Então v é um autovetor de Y_1 se e somente se Xv é autovetor de Y_2 . Além disso v e Xv correspondem ao mesmo autovalor.
- 5. O traço $\operatorname{Tr} X$ de uma matriz quadrada X é a soma dos seus elementos diagonais.
 - (1) Mostre que Tr(XY) = Tr(YX) para toda matriz X, Y diagonal $n \times n$.
 - (2) Mostre que se X e Y são matrizes conjugadas, então $\operatorname{Tr} X = \operatorname{Tr} Y$.

[Obs.: A afirmação (2) segue também do exercício anterior.]

6. Seja $T: \mathbb{R}^2 \to \mathbb{R}^2$ uma matriz nilpotente (ou seja T^k é a transformação nula com algum $k \geq 1$). Mostre que existe uma base B de \mathbb{R}^2 tal que

$$[T]_B^B = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$$