

University of Pisa

Laurea Magistrale (MSc) in Artificial Intelligence and Data Engineering

Project

Data Mining and Machine Learning

FEDERATED DBSCAN BASED ON GRID

Alessio Serra, Valerio Giannini

https://github.com/ValeGian/ DMML_FederatedDBSCAN

Academic year 2020-2021

INTRODUCTION TO THE PROBLEM

Federated Learning (FL): Can we train a model, in a "collaborative" way, without transferring the data to a central processing server?

Local Data Owner:

- Contains several samples described with same attributes.
- Can perform local processing.
- Can assign points to clusters depending on the result they

Centraly strong the server.

- Aggregate local models and consolidate the global model.
- Send results to individual Data Owners.

Pratical example:

• **Healthcare domain** in which patient data cannot be transmitted.

STEPS OF THE ALGORITHM

LOCAL	SERVER
Partition the space with a granularity fixed (L), assuming the same range of features for all nodes.	
Evaluates the number of points in each cell and transmits information about non-empty cells to the server.	
	For each cell, add the contributions of all owner of the data.
	Define dense cell the cell with at least MinPts.
	Evaluate clustering by expanding a cluster along adjacent dense cells.
	Return to each local information on cluster membership of each cell.
Assign all the points relating to the cells dense to its cluster.	

Assign the remaining points to the cluster of dense adjacent cell closest to the point.

PARAMETERS TO SET

Real parameter of federated algorithm:

- \triangleright L = fix the granularity of the cell.
- MinPts = determine the minimum number of points in a dense cell.

Parameters to simulate locally a distributed execution:

- \triangleright M = Number of nodes.
- ➤ Partitioning methods.

DATASET ANALIZED

BANANA (4800)

CLUTO-T8.8K (8000)

S-SET-1 (5000)

PARAMETERS REDUCTION

Separated Partitioning

RESULT WITH BANANA

Outliers

MinPts \ L	0.002	0.004	0.006	0.008	0.01	Fee	1 4	9:026	0.018	0.02	0.022	0.024	0.026	0.028	0.03	0.032	0.034	0.036	0.038
2.0	3902.0	1622.0	549.0	203.0	89.0	48.0	23.0	12.0	7.0	3.0	3.0	1.0	2.0	1.0	0.0	1.0	0.0	0.0	0.0
3.0	4725.0	3379.0	1460.0	585.0	213.0	100.0	46.0	31.0	15.0	9.0	4.0	1.0	2.0	1.0	0.0	1.0	0.0	0.0	0.0
4.0	4793.0	4460.0	2639.0	1089.0	442.0	232.0	83.0	38.0	24.0	21.0	5.0	1.0	3.0	2.0	0.0	1.0	0.0	0.0	0.0
5.0	4811.0	4787.0	3516.0	1752.0	873.0	362.0	193.0	80.0	51.0	28.0	12.0	3.0	3.0	2.0	1.0	1.0	0.0	0.0	0.0
6.0	4811.0	4811.0	4229.0	2605.0	1362.0	523.0	297.0	130.0	59.0	40.0	25.0	19.0	5.0	2.0	0.0	1.0	0.0	0.0	0.0
7.0	4811.0	4811.0	4649.0	3271.0	1745.0	816.0	479.0	200.0	85.0	49.0	27.0	19.0	21.0	6.0	3.0	1.0	0.0	0.0	0.0

Outliers DBSCAN

MinPts \ Eps	0.001	0.002	0.003	0.004	0.005	0.006	0.007	0.008	0.009	0.01	0.011	0.012	0.013	0.014	0.015	0.016	0.017	0.018	0.019
2.0	4639.0	3375.0	2021.0	1180.0	757.0	433.0	298.0	204.0	139.0	104.0	70.0	56.0	45.0	34.0	27.0	22.0	19.0	17.0	15.0
3.0	4811.0	4357.0	3035.0	1902.0	1245.0	681.0	470.0	298.0	213.0	152.0	98.0	74.0	59.0	42.0	37.0	32.0	23.0	21.0	17.0
4.0	4811.0	4747.0	3864.0	2694.0	1805.0	1037.0	692.0	458.0	292.0	208.0	141.0	102.0	78.0	56.0	43.0	33.0	27.0	25.0	20.0
5.0	4811.0	4806.0	4429.0	3468.0	2432.0	1417.0	938.0	654.0	398.0	284.0	196.0	151.0	112.0	79.0	56.0	44.0	31.0	27.0	21.0
6.0	4811.0	4811.0	4708.0	4056.0	3010.0	1840.0	1275.0	878.0	602.0	373.0	259.0	193.0	139.0	102.0	74.0	54.0	45.0	31.0	25.0
7.0	4811.0	4811.0	4795.0	4411.0	3596.0	2314.0	1586.0	1108.0	749.0	499.0	344.0	244.0	178.0	136.0	101.0	70.0	52.0	39.0	31.0

PURITY: 1.0 **ARI:** 1.0 **AMI:** 1.0

PRECISION-BCUBED: 1.0
RECALL-BCUBED: 1.0

PURITY: 0.9994 **ARI:** 0.9935 **AMI:** 0.9828

PRECISION-BCUBED:

0.9990

RESULT WITH S-SET-1

Outliers

MinPts \ L	15000	20000	Fee e	e re	t e o	40000	45000	50000	55000	60000	65000
8.0	1148.0	448.0	166.0	72.0	18.0	11.0	0.0	0.0	0.0	0.0	0.0
9.0	1285.0	552.0	217.0	95.0	21.0	11.0	0.0	0.0	0.0	0.0	0.0
10.0	1541.0	676.0	274.0	104.0	29.0	10.0	6.0	0.0	0.0	0.0	0.0
11.0	1552.0	719.0	313.0	119.0	52.0	10.0	7.0	3.0	2.0	0.0	0.0
12.0	1718.0	789.0	356.0	146.0	42.0	12.0	8.0	3.0	0.0	2.0	0.0
13.0	1828.0	924.0	366.0	148.0	57.0	17.0	7.0	3.0	0.0	0.0	0.0
14.0	1937.0	899.0	412.0	188.0	57.0	21.0	13.0	3.0	0.0	0.0	0.0
15.0	2259.0	946.0	461.0	242.0	88.0	44.0	30.0	5.0	7.0	0.0	0.0

Outliers

MinPts \ Eps	7500.0	10000.0	12500.0	15000.0	17500.0	20000.0	22500.0	25000.0	27500.0	30000.0	32500.0	35000.0
8.0	2202.0	1412.0	835.0	569.0	367.0	238.0	178.0	125.0	85.0	54.0	35.0	22.0
9.0	2392.0	1588.0	991.0	623.0	416.0	270.0	207.0	146.0	96.0	61.0	41.0	23.0
10.0	2567.0	1740.0	1091.0	723.0	473.0	306.0	220.0	160.0	108.0	75.0	49.0	28.0
11.0	2717.0	1882.0	1215.0	808.0	518.0	350.0	237.0	174.0	120.0	84.0	49.0	32.0
12.0	2853.0	2023.0	1330.0	876.0	571.0	383.0	271.0	190.0	132.0	89.0	52.0	35.0
13.0	2956.0	2146.0	1421.0	953.0	633.0	414.0	290.0	199.0	140.0	100.0	56.0	37.0
14.0	3070.0	2267.0	1520.0	1043.0	687.0	474.0	321.0	224.0	153.0	111.0	64.0	39.0
15.0	3178.0	2332.0	1614.0	1110.0	744.0	498.0	348.0	244.0	159.0	113.0	77.0	47.0

PURITY: 0.9962 ARI: 0.9885 **AMI:** 0.9860

PRECISION-BCUBED:

0.9902

PURITY: 0.9842 ARI: 0.9763

AMI: 0.9741

PRECISION-BCUBED:

0.9818

DECALL BOURED.

RESULTS WITH CLUTO

PURITY: 0.9776 **ARI:** 0.8305 **AMI:** 0.882

PREC-BCUBED: 0.9427 **REC-BCUBED:** 0.5400 **F-SCORE:** 0.6867

PURITY_DBSCAN

inPts\Ep	5.5	5.75	6.0	6.25	6.5	6.75	7.0	7.25	7.5	7.75	8.0	8.25
3.0	0.9608	0.9687	0.9753	0.9795	0.8783	0.8755	0.8231	0.8131	0.8121	0.8115	0.8107	0.8103
4.0	0.9287	0.9457	0.9568	0.9641	0.973	0.9776	0.8358	0.8113	0.8115	0.8113	0.8106	0.8103
5.0	0.8802	0.9017	0.9238	0.939	0.9532	0.9642	0.9713	0.9776	0.8493	0.8117	0.8107	0.8106

AMI_DBSCAN

Μį	inPts\Ep	5.5	5.75	6.0	6.25	6.5	6.75	7.0	7.25	7.5	7.75	8.0	8.25
	3.0	0.663	0.7373	0.7685	0.8021	0.8061	0.8162	0.8556	0.8711	0.8761	0.8836	0.8856	0.893
	4.0	0.6303	0.674	0.716	0.7578	0.8228	0.8346	0.8353	0.8649	0.8697	0.8852	0.8859	0.8887
[5.0	0.5383	0.6118	0.6527	0.7044	0.7441	0.8104	0.8565	0.882	0.8453	0.8643	0.8709	0.8752

PURITY_FEDERATED

MinPts\L	11.0	11.5	12.0	12.5	13.0	13.5	14.0	14.5	15.0	15.5	16.0	16.5
3.0	0.8193	0.6341	0.6332	0.6086	0.5878	0.5853	0.391	0.3893	0.3872	0.3877	0.2027	0.385
4.0	0.8467	0.93	0.9742	0.657	0.653	0.6238	0.6326	0.4118	0.3887	0.4065	0.3851	0.3861
5.0	0.9706	0.971	0.9681	0.9727	0.834	0.815	0.6482	0.6093	0.3912	0.5818	0.3863	0.406

AMI_FEDERATED

MinPt	ts\L	11.0	11.5	12.0	12.5	13.0	13.5	14.0	14.5	15.0	15.5	16.0	16.5
3	3.0	0.8484	0.7716	0.771	0.7409	0.733	0.7277	0.4929	0.4979	0.4872	0.494	0.025	0.4825
4	1.0	0.8057	0.8485	0.9148	0.7759	0.7807	0.7524	0.7537	0.5426	0.4891	0.5341	0.4811	0.4843
5	5.0	0.7458	0.8081	0.827	0.8453	0.8172	0.7989	0.7643	0.7331	0.4901	0.7036	0.4829	0.5319

Federated - 8000 Points - 26 Clusters - 133 Outliers

L = 12 MinPts = 4

PURITY: 0.9748 ARI: 0.9536 AMI: 0.9148 PREC-BCUBED:

0.9504

REC-BCUBED: 0.9148

RESULTS CHAINLINK

0.5

1.0

-1.0

