UM 101: Lecture 10 (piece missing from the board shots) Purvi Gupta

Example 12 (Geometric Series). Claim. Let -1 < x < 1. Then, $\sum_{n=0}^{\infty} x^n$ converges and its sum is $\frac{1}{1-x}$. For $|x| \ge 1$, $\sum_{n=1}^{\infty} x^n = \frac{1}{1-x}$ diverges.

Proof. Observe that for $x \neq 1$,

$$s_n = 1 + x + \dots + x^n = \frac{1 - x^{n+1}}{1 - x} = \frac{1}{1 - x} - \frac{x}{1 - x} x^n.$$

We inspect the behavior of $\{x_n\}$ as $n \to \infty$. In the case when |x| < 1, we use the fact that $(1+y)^n \ge ny$ for any y > 0 and $n \in \mathbb{N}$, to observe that

$$(1+(1/|x|)-1)^n > n\left(\frac{1}{|x|}-1\right) = nc.$$

Thus, $|x|^n < 1/(nc)$. By the "squeeze theorem" stated in HW04, we have that $\lim_{n\to\infty} x^n = 0$.

In the case, when |x| > 1, $(1 + |x| - 1)^n > n(|x| - 1)$. Thus, for any $R \in \mathbb{R}$, by the Archimedean principle, there exists an $N \in \mathbb{N}$ such that $|x|^N > R$. Thus, $\{x^n\}$ is unbounded, and therefore, divergent.

Returning to the series $\sum_{n=0}^{J} inftyx^n$. When |x| < 1, we use the limit laws of convergent sequences to say that

$$\lim_{n\to\infty} s_n = \frac{1}{1-x}.$$

When |x| > 1, $x \ne 1$, we use the fact that the sum of a convergent and divergent sequence is, in fact, divergent. Thus, $\{s_n\}$ is divergent.

For x = 1, observe that $s_n = n + 1 \to \infty$ as $n \to \infty$. Thus, $\sum_{n=0}^{\infty} (1)^n$ diverges.

UM 101: Lecture 11 Purvi Gupta

Theorem 2.13 (Ratio Test). Let $\sum a_n$ be a series of non-negative terms. Suppose

$$\lim_{n\to\infty}\frac{a_{n+1}}{a_n}=L.$$

- (1) If L < 1, the series converges.
- (2) If L > 1, the series diverges.
- (3) If L = 1, then the test is inconclusive.

Proof. Case 1. L < 1. Choose an r such that L < r < 1. Choosing $\varepsilon = r - L > 0$, we obtain an $N \in \mathbb{N}$ such that $\frac{a_{n+1}}{a_n} < L + \varepsilon = r$ for all $n \ge N$. Thus,

$$a_{N+1} < a_N r$$
 $a_{N+2} < a_{N+1} r < a_N r^2$
 $a_{N+3} < a_{N+2} r < a_N r^3$
 \vdots
 $a_{N+k} < a_N r^k$.

In other words, for $n \ge N$, $a_n \le \frac{a_N}{r^N} r^n = c r^n$. By the Comparison Test, and the convergence of the geometric series $\sum r^n$, r < 1, we have the convergence of $\sum a_n$.

Case 2. L > 1. Choose R such that 1 < R < L. Then, choosing $\varepsilon = L - R$, we have that for some $N \in \mathbb{N}$, $\frac{a_{n+1}}{a_n} > L - \varepsilon = R > 1$ for all $n \ge N$. Thus, $a_{n+1} > a_n$ for all $n \ge N$. The sequence $\{a_n\}$ cannot converge to 0. Thus, $\sum a_n$ diverges.

Case 3. L = 1. $\sum \frac{1}{n^2}$ converges while $\lim_{n \to \infty} \frac{n+1}{n} = 1$. On the other hand, $\sum \frac{1}{n}$ diverges while $\lim_{n \to \infty} \frac{n^2+1}{n^2} = 1$.

Theorem 2.14 (Limit Laws for Series). Suppose $\sum a_n$ and $\sum b_n$ converge with sums a and b respectively. Then, for constants ℓ and m, $\sum \ell a_n + mb_n$ converges to la + mb. Suppose $\sum |a_n|$ and $\sum |b_n|$ converge. Then, so does $\sum |\ell a_n + mb_n|$ for any choice of ℓ and m in \mathbb{R} .

Corollary 2.15. Suppose $\sum a_n$ converges and $\sum b_n$ diverges. Let $m \in \mathbb{R} \setminus \{0\}$. Then, $\sum (a_n + b_n)$ diverges, and $\sum mb_n$ diverges.

Definition 2.16. A series $\sum a_n$ of real numbers is said to converge absolutely if $\sum |a_n|$ converges. A series $\sum a_n$ of real numbers is said to converge conditionally if $\sum |a_n|$ diverges but $\sum a_n$ converges.

Theorem 2.17. If $\sum a_n$ converges absolutely, it must converge. Moreover, $|\sum a_n| \le \sum a_n$

Proof. We will construct a new series as follows:

$$b_n = a_n + |a_n|$$
.

Observe that $0 \le b_n \le 2|a_n|$. Thus, by the comparison test, $\sum b_n$ converges. Now, by the limit laws for convergent series, $\sum a_n = \sum (b_n - |a_n|)$ converges.

Example 13. Claim. $\sum \frac{(-1)^n}{n}$ is convergent.

Proof. Note that

$$s_{1} = -1$$

$$s_{3} = -1 + \frac{1}{2} - \frac{1}{3} > s_{1}$$

$$s_{5} = -1 + \frac{1}{2} - \frac{1}{3} + \frac{1}{4} - \frac{1}{5} > s_{3}$$

$$\vdots$$

$$s_{2k+1} = \left(-1 + \frac{1}{2}\right) + \left(-\frac{1}{3} + \frac{1}{4}\right) + \cdots + \left(-\frac{1}{2k+1}\right) < 0.$$

Thus, $\{s_{2k+1}\}$ being a bounded increasing sequence, converges to some limit, say ℓ .

$$s_{2} = -\frac{1}{2}$$

$$s_{4} = -1 + \frac{1}{2} - \frac{1}{3} + \frac{1}{4} < s_{2}$$

$$\vdots$$

$$s_{2k} = -1 + \left(\frac{1}{2} - \frac{1}{3}\right) + \left(\frac{1}{4} - \frac{1}{5}\right) + \dots + \left(\frac{1}{2k}\right) \ge -1.$$

Thus, $\{s_{2k}\}$ being a bounded decreasing sequence, converges to some limit, say m. Moreover, $s_{2k+1} = s_{2k} + \frac{1}{2k+1}$. So, by limit laws for sequences, $\ell = m$. Exercise: why does this suffice to claim that $\{s_n\}$ converges?

Theorem 2.18 (Alternating Series Test/Leibniz Test). Suppose $\{a_n\}$ is an decreasing sequence of positive numbers going to 0. Then, $\sum (-1)^n a_n$ converges. Denoting the sum by S, we have that

$$0 < (-1)^n (S - s_n) < a_{n+1}.$$

Proof. Same principle as the example of $\sum_{n=1}^{\infty} \frac{(-1)^n}{n}$.

Remark. The estimate in AST allows us to estimate sums of alternating series within any prescribed error. For instance, to know $\sum_{n=1}^{\infty} \frac{(-1)^n}{n}$ up to an error of 0.01. I need to find n so that

$$|S-s_n|<\frac{1}{100}.$$

Take n = 99, or the sum of the first 99 terms.