微分方程数值解 项目作业 3

凌子恒 信息与计算科学 3200102551 2023 年 5 月 29 日

实现细节及解释

传参使用 valarray 以简化向量运算。

定义 solution 类存放结果,使用 operator()访问某点处的函数值。

对于所有的隐式方法,采用迭代法。迭代终止条件为单次变化不超过 10^{-14} 或者迭代次数超过 1000。所有的求解方法均为 IVP 类的间接派生类。继承关系如图:

factory.h 提供了一个对象工厂类,通过输入的字符串返回类型为 shared_ptr<T> 的基类指针。可以使用 insert 加入新派生类,使用 erase 删除派生类,使用 operator[] 查询某个字符串对应的派生类。若不存在,会抛出 invalid_argument。(注: 为编码方便,未使用要求中的名称,但原理效果是相同的)

注意代码运行总时间可能较长(可能达到数十分钟),不建议同时测试多个函数。

误差分析 (11.199)

代码见 error1 函数,从 error1.in 读入输出到 error1.out。error1.in 由 data_gen.py 生成。主要数据表格如下:

名字	N	误差 1	用时1	误差 2	用时 2	收敛阶
Adams-Bashforth(1)	500000	1.73e + 00	0.191	1.64e + 00	0.337	0.078
Adams-Bashforth(2)	500000	8.29e - 01	0.656	1.97e - 01	1.354	2.073
Adams-Bashforth(3)	500000	3.82e - 03	0.861	4.96e - 04	2.058	2.946
Adams-Bashforth(4)	500000	4.40e - 04	1.103	2.80e - 05	2.401	3.973
Adams-Moulton(2)	500000	1.38e - 01	0.161	3.63e - 02	0.301	1.924
Adams-Moulton(3)	500000	4.34e - 04	0.678	5.60e - 05	1.347	2.954
Adams-Moulton(4)	500000	3.35e - 05	0.944	2.05e - 06	1.941	4.033
Adams-Moulton(5)	100000	7.41e - 04	0.317	1.18e - 05	0.639	5.968
BDF(1)	500000	2.03e + 00	0.229	2.01e + 00	0.325	0.017
BDF(2)	500000	4.30e - 01	0.689	1.37e - 01	1.303	1.648
BDF(3)	500000	2.44e - 03	0.952	3.23e - 04	2.051	2.917
BDF(4)	500000	2.46e - 04	1.238	4.95e - 06	2.728	5.633
classical RK	500000	8.12e - 07	0.150	5.20e - 08	0.297	3.963
ESDIRK	500000	3.11e - 07	0.932	1.99e - 08	1.573	3.968
Gauss-Legendre RK(1)	500000	1.66e - 01	0.140	3.96e - 02	0.285	2.068
Gauss-Legendre RK(2)	500000	2.04e - 07	0.252	1.32e - 08	0.487	3.955
Gauss-Legendre RK(3)	20000	4.00e - 04	0.021	6.18e - 06	0.035	6.014
Fehlberg embedded RK	200000	3.72e - 06	0.086	2.21e - 07	0.166	4.069
Dormand-Prince embedded RK	20000	9.91e - 04	0.009	3.60e - 05	0.018	4.782

其中,1为 step=N,2为 step=2N。这里为一些算法设置了特殊的 N 以提高效率及降低机器精度带来的影响。

误差分析 (11.200)

代码见 error2 函数,从 error2.in 读入输出到 error2.out。error2.in 由 data_gen.py 生成。主要数据表格如下:

N	误差 1	用时1	误差 2	用时 2	收敛阶
50000	5.33e - 01	0.018	2.20e - 01	0.029	1.278
50000	2.61e - 04	0.058	6.80e - 05	0.134	1.940
50000	3.33e - 05	0.085	4.16e - 06	0.204	2.999
50000	3.79e - 09	0.105	1.98e - 10	0.242	4.261
50000	5.66e - 05	0.019	1.42e - 05	0.044	2.000
50000	3.70e - 06	0.071	4.62e - 07	0.179	3.000
5000	1.87e - 06	0.018	6.97e - 08	0.031	4.742
1000	1.42e - 02	0.004	5.07e - 04	0.007	4.805
50000	8.42e - 01	0.028	3.90e - 01	0.050	1.110
50000	2.04e - 04	0.089	5.38e - 05	0.155	1.924
5000	2.34e - 02	0.015	2.79e - 03	0.028	3.067
5000	6.41e - 05	0.016	1.04e - 06	0.034	5.949
5000	2.22e - 07	0.001	5.21e - 09	0.003	5.412
5000	7.62e - 08	0.015	3.45e - 09	0.026	4.467
5000	5.38e - 03	0.002	1.34e - 03	0.004	2.004
5000	2.04e - 07	0.004	1.27e - 08	0.007	4.008
2000	1.74e - 09	0.003	4.67e - 11	0.006	5.221
2000	2.05e - 05	0.001	5.90e - 07	0.002	5.121
2000	1.34e - 06	0.001	4.71e - 08	0.002	4.829
	50000 50000 50000 50000 50000 50000 50000 5000 5000 5000 5000 5000 2000 2000	$\begin{array}{c} 50000 \\ 50000 \\ 50000 \\ 2.61e - 04 \\ 50000 \\ 3.33e - 05 \\ 50000 \\ 3.79e - 09 \\ 50000 \\ 5.66e - 05 \\ 50000 \\ 3.70e - 06 \\ 5000 \\ 1.87e - 06 \\ 1000 \\ 1.42e - 02 \\ 50000 \\ 8.42e - 01 \\ 50000 \\ 2.04e - 04 \\ 5000 \\ 2.34e - 02 \\ 5000 \\ 6.41e - 05 \\ 5000 \\ 2.22e - 07 \\ 5000 \\ 7.62e - 08 \\ 5000 \\ 5.38e - 03 \\ 5000 \\ 2.04e - 07 \\ 2000 \\ 1.74e - 09 \\ 2000 \\ 2.05e - 05 \\ \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

其中,1为 step=N,2为 step=2N。这里为一些算法设置了特殊的 N 以提高效率及降低机器精度带来的影响。

作图

计算坐标见 plot 函数,从 plot.in 读入输出到 Euler.in 等文件。plot.py 实现了画图,结果如下: Euler:

classical RK:

Dormand-Prince embedded RK:

(c)

名称	N (11.119)	N (11.120)
Adams-Bashforth(1)	3×10^{6}	7×10^{6}
Adams-Bashforth(2)	2×10^{5}	4×10^{3}
Adams-Bashforth(3)	3×10^{4}	8×10^{3}
Adams-Bashforth(4)	5×10^{4}	2×10^{3}
Adams-Moulton(2)	2×10^5	3×10^{3}
Adams-Moulton(3)	2×10^{4}	4×10^{3}
Adams-Moulton(4)	3×10^{4}	9×10^{2}
Adams-Moulton (5)	1×10^{4}	1×10^{3}
BDF(1)	5×10^{6}	5×10^{6}
BDF(2)	3×10^{5}	4×10^{3}
BDF(3)	4×10^{4}	6×10^{3}
BDF(4)	4×10^{4}	2×10^{3}
classical RK	2×10^{4}	8×10^{2}
ESDIRK	9×10^{3}	9×10^{3}
Gauss-Legendre $RK(1)$	9×10^{4}	3×10^{3}
Gauss-Legendre $RK(2)$	7×10^3	3×10^{2}
Gauss-Legendre $RK(3)$	4×10^{3}	2×10^{2}
Fehlberg embedded RK	7×10^3	5×10^{2}
ormand-Prince embedded RK	7×10^{3}	4×10^{2}

10-3 下速度比较

首先,去除难以到 10-3 精度的五种低阶方法。

由 data_gen.py 生成输入文件 bsearch.in, 由 bsearch 函数从 bsearch.in 读入输出到 bsearch.out。 函数原理是先倍增到可以满足精度要求,再二分最小的 step。由于运行较慢,考虑做一个粗略的二分, 并计算两端点用时确定运行时间区间。

观察输出结果,可以发现 (11.119) 中 Dormand-Prince embedded RK 优于其余所有,而 (11.120) 中 Dormand-Prince embedded RK 和 Fehlberg embedded RK 时间区间有交,无法判断。

进一步只测试这两个方法(见 bsearch2 相关文件),Dormand-Prince embedded RK 仍然用时更少。 故在两例中 Dormand-Prince embedded RK 均更优秀。