Problem 1

- 1. Charlie's claim is **true** since we are not using the same key to encrypt each segment of the message again. Therefore, a CPA attacker can't recognize the pattern if a message has repeated words since repeated words use different key to encrypt so the ciphertext will be different. $E_{k_i}^i(m_i) \neq E_{k_i}^j(m_j)$ where $m_i = m_j$ since $k_i \neq k_j$
- 2. Ronald's claim is **true** since giving the attacker the advanced knowledge of $c_0(IV)$ doesn't let him gain advatage of knowing any information about the message since the security of the encryption scheme still rely on the key. The attacker will know about c_i where $i \in 0, 1, 2, 3, ...$ but without the knowledge of the key he can't decrypt the ciphertext to know m_b where $b \in 1, 2$. Therefore, this encryption scheme is still secure against CPA attacker.

3. part 3a

- (a) OFB: The whole message will be corrupted since IV is wrong. Therefore, $pad_1, pad_2, ..., pad_t$ will be wrong. In this situation, Bob can't recover or gain any information about the message that Alice sent.
- (b) CBC: The first 5 blocks of the message will be corrupted, the rest will be fine $(m_5, m_6, ..., m_t)$ since starting from c_5 , it will depend on c_4 to get the correct message and c_4 is in the right order. Therefore, only first 5 blocks will be corrupted, and the rest is good.
- (c) CTF: The entire of the message will be corrupted since the initial value of the counter is c_1 not c_0 .

4. part 3b

- (a) OFB: Yes. m_1 will correct. m_2 and m_3 will be corrupted since c_2 and c_3 are out of order. The rest of the message, $m_4, ..., m_t$ will correct.
- (b) CBC: Yes. m_1 will correct, but m_2, m_3, m_4 will be corrupted since these are affected by c_2, c_3 out of orderness. The rest, $m_5, ..., m_t$ will correct.
- (c) CTF: Yes. Only m_2 and m_3 are corrupted since we have the correct initial value of the counter but c_2 and c_3 are out of order. The rest of the message will be fine m_1 and $m_4, ... m_t$.

5. part 4

- (a) If Eve dropped c_0 then on the receiver side, the initial counter value won't be received hence it's impossible to decrypt the message.
- (b) If Eve dropped c_{13} then only m_{13} will be affected, the rest of the message from $m_0, ..., m_{12}$ and $m_{14}, ..., m_{20}$ will be intact and the receiver will be able to decrypt those blocks.
- (c) If Eve dropped c_{20} then only the last block m_{20} will be affected. The rest of the message $m_1, ..., m_{19}$ will be intact and the receiver will be able to decrypt those blocks.
- (d) If Eve flipped the order of the ciphertext then the entire message will be corrupted since the decryption depend on the initial counter value c_0 which is now become c_{20} and c_i where $i \in {1, 2, 3, ..., 20}$ but now the order is swapped.

Problem 2

Let $G: \{0,1\}^{n/2} \to \{0,1\}^n$ be a PRG, and $F: \{0,1\}^n \times \{0,1\}^n \to \{0,1\}^n$ be a PRF. For each of the following MAC constructions, state whether it is a secure MAC and justify your answers.

- 1. Given message $m \in \{0,1\}^{3n/2}$, parse $m = m_0 \parallel m_1$ such that $|m_0| = n$ and $|m_1| = n/2$, then compute the tag as $MAC_k(m) = F_k(m_0) \parallel G(m_1)$.
 - This is a **secure** MAC since the tag function $MAC_k(m) = F_k(m_0) \parallel G(m_1)$ produce an output of $\{0,1\}^{2n}$ which can cover the entire message of length $\frac{3n}{2}$. Basically, we can pad $\frac{n}{2}$ length of all zeros to the front of the message. In addition, since $F_k(m_0)$ a secure MAC since every PRF is a secure MAC. We can use the concatenation property which states that as long as either F or G is a secure MAC then the output will be a secure MAC.
- 2. Given message $m \in \{0,1\}^n$, compute $y = F_k(m)$, parse $y = y_0 || y_1$ such that $|y_0| = |y_1| = n/2$, then compute the tag as $G(y_0)$.
 - This is a **secure** MAC since the output of y is the output of a PRF which is pseudo random. Taking y_0 which has length of $\frac{n}{2}$ as the input of a PRG will provide a indistiguishable pseudo random output. Therefore, the tag is secure and attacker has a probability of guessing the correct tag is $\frac{1}{2^n}$.
- 3. Given message $m \in \{0,1\}^{2n}$, parse m as $m = m_0 \parallel m_1$ such that $|m_0| = |m_1| = n$. Compute the tag as $MAC_k(m) = (F_k(0^n), F_k(m_0 \oplus m_1))$.
 - The first part of the MAC: $F_k(0^n)$ is fixed and deterministic, so an attacker will recognize the pattern of the first part after a few queries. In stead, he will focus on the second part, lets call it tag_2 . The attacker can submit a querry m where $m = m_0 \parallel m_1$ and obtain tag_2 . Since Xor is communicative; therefore, $m_0 \oplus m_1 = m_1 \oplus m_0$. The attacker can sumbit back to the oracle a new message $m' = m_1 \parallel m_0$ along with the tag $m_1 \oplus m_0$. This message and its tag is valid since it hasn't been recored by the oracle. Therefore, it is **not a secure** MAC in which the attacker has a success chance of 1.
- 4. A variation of the CMAC construction: we compute a tage as $tag = CMAC_k(m) = CBC MAC(L(m)) \parallel CBC MAC_k(m)$, and m is a VIL (can be of any length such that it is an integer number of blocks) and L(m) is a block representing the length of the message m.

 Let f = CBC MAC(L(m)) and $g = CBC MAC_k(m)$. This is **not a secure** MAC since neither of f and g a secure MAC. For g, we know in class that a CBC-MAC without prepend is not secure. For f, the attacker can use to different messages but with the same length. For example, he can querry m_1 and receive the tag g. Now, he can submitting his answer to the oracle by submit a new message $m_2 = c \times m_1$ where $c = m_1 \oplus b$ and $|m_2| = |m_1|$. The tag for m_2 is still g (proved in class). This is valid since the attacker did not ask for m_2 and g is a valid tag for g. The successful chance of this attacker is 1.