MAT201A Homework 6 Fall 2019

Professor Qinglan Xia Due Date: Wednesday, November 6th at 9:00am

- 1. Exercise 5.3 of the textbook, page 121.
- 2. Prove that the sequence (f_n) defined in Example 5.11 in the textbook is a Schauder basis of $(C([0,1]), ||\cdot||_{\infty})$.
- 3. Exercise 5.4 of the textbook, page 121.
- 4. Exercise 5.5 of the textbook, page 121. Is it possible that ||K|| = 1 but $||K^2|| = 0$? Justify your answers.
- 5. Let $||\cdot||_1$ and $||\cdot||_2$ be two norms on a linear space X. We say $||\cdot||_2$ is stronger than $||\cdot||_1$ if for any sequence (x_n) in X, $||x_n||_2 \to 0$ always implies $||x_n||_1 \to 0$. Show that $||\cdot||_2$ is stronger than $||\cdot||_1$ if and only if there exists a constant C > 0 such that

$$||x||_1 \le C||x||_2, \quad \forall x \in X.$$