

Missouri Department of Natural Resources Air Pollution Control Program 2022 Monitoring Network Plan

September 7, 2022

Table of Contents

Summa	ry of Recent and Proposed Changes	3
How to	Make Public Comments Concerning this Plan	5
Introdu	ıction	5
2022 Aı	mbient Air Monitoring Network, State Sites	8
2022 Aı	mbient Air Monitoring Network, Industrial Sites	10
Monito	ring Network and Proposed Changes	12
1.	Lead (Pb) Monitoring Network	12
2.	Sulfur Dioxide (SO ₂) Monitoring Network	15
3.	National Air Toxics Trends Stations (NATTS), and Other Non-Criteria Pollutants Special Purpose Monitoring	22
4.	PM _{2.5} Monitoring Network	23
5.	Ozone Monitoring Network	29
6.	PM ₁₀ Monitoring Network	31
7.	Nitrogen Dioxide (NO2) Monitoring Network	33
8.	Carbon Monoxide (CO) Monitoring Network	35
9.	Photochemical Assessment Monitoring Station	37
Networ	k Description/ Components	42
Append	lix 1: Missouri Monitoring Network Description	
	lix 2: Comments on Proposed 2022 Monitoring Network esponses to Comments and Corrections	

Summary of Proposed and Recent Changes

The Missouri Department of Natural Resources (department) operates an extensive network of ambient air monitors. Missouri's Monitoring Network Plan describes the network and discusses proposed and recent changes. The changes are summarized below.

Proposed Changes

- 1. The department proposes to discontinue lead monitoring at the Fletcher site in 2023 after EPA approves this plan. Reported lead emissions from the nearby Bunker-Fletcher mine are less than 0.5 tons per year (tpy). The Fletcher site has not violated the lead standard since monitoring began in 2010, and the highest three-month average during the last three years (2019-2021) was 0.02 μg/m³.
- 2. The department proposes to discontinue lead monitoring at the Ursuline North site near Herculaneum in 2023 after EPA approves this plan. When the lead smelter in Herculaneum was operating, the Ursuline site served as a background site since it was generally upwind of the facility. The Ursuline North site has not monitored a violation of the lead standard since monitoring began in 2010, and the highest three-month average during the last three years (2019-2021) was 0.01 μg/m³.
- 3. Doe Run plans to discontinue monitoring at the two non-ambient sites in Glover following the U.S. Environmental Protection Agency (EPA) approval on April 27, 2022 of the revisions to the State Implementation Plan (SIP) and Consent Agreement applicable to monitoring in Glover. Lead monitoring in Glover may resume if demolition activity at the Glover facility is resumed.
- 4. The department will continue to replace aging 1405-DF instruments with 1405-Fs for PM_{2.5} measurement. Initially, the department retrofitted 1405-DFs to 1405-Fs and subsequently procured new 1405-Fs to replace the aging 1405DFs. The department proposes to replace the TEOM-1405-DF at Blair Street with a new TEOM-1405-F for PM_{2.5} measurement (subject to the availability of funds) and, at the same time, retain the Federal Reference Method (FRM) PM_{2.5} sampler already operating at Blair Street as the collocated FRM sampler for the network of TEOM-1405-F samplers. This change will allow for the discontinuation of the FRM PM_{2.5} sampler at Ladue.
- 5. The department proposes to replace the aging TEOM-1405-DFs at the Forest Park and Blue Ridge I-70 near-road sites with 1405-Fs for PM_{2.5} measurement (subject to the availability of funds) and subsequently discontinue measuring PM_{10-LC} and PM_{10-2.5} at these two sites. The department is not required to monitor PM_{10-LC} and PM_{10-2.5} measurements at near-road sites. 40 C.F.R. § 58 Appendix D, 4.8 requires monitoring for PM_{10-2.5} at the National Core (NCore) sites only.

Changes since the 2021 Monitoring Network Plan

- 1. Doe Run discontinued operation of the non-ambient Church Street site in Herculaneum on April 1, 2022. There is no consent judgment or state implementation plan requirement that requires the continuation of monitoring at Church Street.
- 2. In April 2022, Doe Run reduced the sampling frequency for the collocated sampler at the City Hall site in Herculaneum from once every three days to once every six days. This reduced collocated sampling frequency still meets the requirements of 40 C.F.R. § 58 Appendix A.
- 3. The department discontinued lead monitoring at St. Joe State Park at the end of 2021, as proposed in the 2021 Monitoring Network Plan. The department completed the bulk of the remediation activity near the monitoring site in 2014. From 2017 to 2021, the three-month average lead concentration at that site has not exceeded 0.03 micrograms per cubic meter (μg/m³).
- 4. Beginning with measurements made in 2018, the department previously computed time-average concentrations at the Dunklin High School site in Herculaneum using a combination of (every sixth day) state measurement results and (every third day) Doe Run measurements for days when only Doe Run sampled. In 2021, EPA informed the department they did not allow this procedure, because the state and Doe Run are two different Primary Quality Assurance Organizations (PQAO). Subsequently, the department revised data reported to the EPA Air Quality System (AQS) so that lead concentrations measured by the state and by Doe Run at Dunklin High School are not averaged together, but reported separately.
- 5. The department installed a Teledyne API T640X at the Hillcrest High School site in Springfield in February 2022 as a Special Purpose Monitor (SPM) to continue the evaluation of the instrument in different regions of the state. T640Xs were already operating at the Blair Street, Branch Street and Troost sites.
- 6. The West Alton site was inoperative from May 2 to 16, and from May 22 to July 16, 2019, because of damage threats from flooding. The department evaluated the days with missing ozone measurement at West Alton based on temperature and ozone concentrations measured at nearby sites. The evaluation revealed that 62 of the 72 missing days were not conducive to ozone concentrations above the level of the standard. EPA Region 7 approved the department's submission of the evaluation. Therefore, West Alton meets the data completeness requirement for 2019 data. However, because of the importance of West Alton as the design value site for the St. Louis area, in 2021, the department constructed an elevated platform at West Alton above the 1993 and 2019 high water levels. The site still meets regulatory probe height requirements.

How to Make Public Comments Concerning this Plan

The department posted Revision 0 of the 2022 Monitoring Network Plan on the web for public review and comment on May 24, 2022. The department accepted comments concerning the plan electronically at cleanair@dnr.mo.gov, or by mail to the following address:

Missouri Department of Natural Resources Air Pollution Control Program Air Quality Analysis Section/Air Monitoring Unit PO Box 176 Jefferson City MO 65102

The department has included all comments received through June 23, 2022, and responses to comments in Appendix 2 of this final version of the plan (Revision 1). Additionally, the department has identified corrections and changes to the plan in Appendix 2. The only changes were a revision of this section and the footer to indicate that this is the final version of the plan and minor corrections in Appendix 1.

Introduction

The department operates an extensive network of ambient air monitors to comply with the Clean Air Act and its amendments. The Ambient Air Quality Monitoring Network for Missouri includes State and Local Air Monitoring Stations (SLAMS), SPMs and an NCore monitoring site consistent with requirements in federal regulation in Title 40, Code of Federal Regulations, Part 58 (40 C.F.R. § 58).

40 C.F.R. § 58.10 requires states to submit an annual monitoring network plan to EPA, including any proposed network changes. In accordance with 40 C.F.R. § 58.10, Missouri must include in the plan a statement of whether the operation of each monitor meets the requirements of appendices A, B, C, D and E of 40 C.F.R. § 58, where applicable. All monitors in the Missouri air monitoring network, including those operated by the state and industries under state review, meet the applicable requirements of 40 C.F.R. § 58. Any changes to the SLAMS requires approval by the EPA Regional Administrator.

The plan must contain the following information for each monitoring station in the network; (See Appendix 1 and the body of this document):

- 1. The AQS site identification number for existing stations
- 2. The location, including the street address and geographical coordinates, for each monitoring station
- 3. The sampling and analysis method used for each measured parameter
- 4. The operating schedule for each monitor
- 5. Any proposal to remove or move a monitoring station within a period of 18 months following the plan submittal
- 6. The monitoring objective and spatial scale of representativeness for each monitor

- 7. The identification of any sites that are or are not suitable for comparison against the annual PM_{2.5} National Ambient Air Quality Standard (NAAQS)
- 8. The metropolitan statistical area, core-based statistical area (CBSA), combined statistical area or other area represented by the monitor

EPA requires a network assessment every five years. The department completed the most recent network assessment in June 2020.

Network Design

Federal regulation 40 C.F.R. 58 establishes the design criteria for the ambient air monitoring network. The state must design the network to meet three general objectives:

- 1. Provide air pollution data to the public in a timely manner
- 2. Support compliance with ambient air quality standards and emissions strategy development
- 3. Support air pollution research studies

Specific objectives for the monitoring sites are:

- 1. Determine the highest pollution concentrations in an area
- 2. Measure typical concentrations in areas of high population density
- 3. Determine the impact of significant sources or source categories
- 4. Determine general background levels
- 5. Determine the extent of regional pollutant transport among populated areas

Minimum site requirements, based on CBSA population, are provided for ozone (O_3) , sulfur dioxide (SO_2) , carbon monoxide (CO), nitrogen dioxide (NO_2) , airborne particulate matter with aerodynamic diameter equal to or smaller than 10 micrometers (PM_{10}) and airborne particulate matter with aerodynamic diameter equal to or smaller than 2.5 micrometers $(PM_{2.5})$.

40 C.F.R. § 58 Appendix E establishes the specific requirements for monitor/ probe siting to ensure the ambient data represents the stated objectives and spatial scale. The requirements are pollutant/ scale specific. Periodically, department staff visit and evaluate each monitoring site to ensure compliance with the requirements of 40 C.F.R. § 58 Appendix E. Additional details concerning the sites are available in Appendix 1.

Unanticipated Network Modifications

Changes to the monitoring network may occur outside the annual monitoring network planning process due to unforeseen circumstances including, but not limited to, severe weather, natural events, changes in property ownership, changes in federal funding, or changes in funding available from air emission fees from industrial facilities. The department will communicate any changes to the network that result from conditions outside the state's logistical control and not included in the current monitoring network plan to EPA Region 7 staff and identify such changes in the subsequent annual monitoring network plan.

Special Purpose Monitors

A monitor is designated as an SPM consistent with the regulatory definition in 40 C.F.R. § 58.20 (a): "An SPM is defined as any monitor included in an agency's monitoring network that the agency has designated as a special purpose monitor in its annual monitoring network plan and in AQS, and which the agency does not count when showing compliance with the minimum requirements of this subpart for the number and siting of monitors of various types."

SPMs may be established for many different purposes, including but not limited to NAAQS compliance evaluation, air quality research and characterization, air quality investigation and monitoring method evaluation.

The department includes SPMs in the annual monitoring network plan required by 40 C.F.R. § 58.10. The department installs or approves the installation of these monitors consistent with 40 C.F.R. § 58.20 (f). The department removes, or allows the removal of, these monitors following federal guidelines, which are different for SPMs than for SLAMS. There is more description of each SPM later in the document. The Missouri Monitoring Network Description, Appendix 1, specifies SPM sites and SLAMS sites.

Industrial Monitors

Ambient air monitoring sites classified as Industrial, in this document, indicate sites the industrial source or its contractor operates under an approved industrial monitoring Quality Assurance Project Plan (QAPP) and departmental Quality Management Plan (QMP). Department staff conduct quality assurance audits of these monitoring sites consistent with the approved OAPP.

Missouri oversees ambient air monitoring sites operated by industrial sources for NAAQS compliance. The department has incorporated these industrial sites in the annual Monitoring Network Plan and the ambient air monitoring network. Currently, lead and SO₂ industrial sites are in the Missouri monitoring network.

Some industrial lead monitoring sites are classified in the AQS as non-regulatory due to the sites transitioning to non-ambient status. However, the department has required continued monitoring at these locations in agreements with the industrial source for trends analysis or other purposes.

2022 Ambient Air Monitoring Network, State Sites

The 2022 statewide monitoring network is shown in the following map and table.

Marion 39 Lafa yette 03 20 **3**7 Osage Morgan 28 29 30_31 34 Ozark McDonald 37.5 75 150 Miles MISSOURI DEPARTMENT OF NATURAL RESOURCES

2022 Missouri State Monitoring Network

	uis Area		Springfiel			Acronyms	
Site#	Site Name	Parameter Monitored	Site#	Site Name	Parameter Monitored	PM ₁₀	Particulate Matter (Diameter size ≤10 micrometer
01	Blair Street [^]	PM ₁₀ , PM _{2.5} , PM _{2.5} (Spec), PMCoarse, PM ₁₀ -LC,	21	Fellows Lake	O ₃ , IT	PM _{2.5}	Particulate Matter (Diameter size ≤2.5 micrometer)
		PM ₁₀ -Pb, O ₃ , SO ₂ , NO ₂ , NO ₂ , NO ₃ , NO, CO,	22	Hillcrest High	O ₃ , PM ₁₀ , PM _{2.5} , OT, IT, BP, RH	PMCoarse	Particulate Matter (Diameter size between 2.5 and 10
		Carbonyls, PAHs, VOCs, Air Toxics, Carbons, PM ₁₀		School		Spec	micrometer) Speciation
		Metals, Prec, WS, WD,		Mark Carlot		SO ₂	Sulfur Dioxide
		OT, IT, SR, BP, RH, PAMS	Herculane		1	NO ₂	Nitrogen Dioxide
02	Branch	PM ₁₀ , PM _{2.5} , WS, WD,	Site#	Site Name	Parameter	NO ₂	Nitric Oxide
02	Street	OT, IT, BP, RH	22	CI	Monitored Ph	NOv	Reactive Oxides of Nitrogen
03	Forest Park	PM _{2.5} , NO ₂ , NO _x , NO,	23	Sherman		NOx	Oxides of Nitrogen
03	Torestrain	CO, BC, WS, WD, OT, IT,	24	Dunklin	Pb	O ₃	Ozone
		SR, BP, RH, Prec		High		CO	Carbon Monoxide
04	South	PM ₁₀ , PM _{2.5} , IT, BP, RH	25	School	DI CO	Pb	Lead (High Volume)
	Broadway	1 10120, 1 10123, 11, 51 , 111	25	Mott	Pb, SO ₂	BC	Black Carbon
05	Orchard	O ₃ , IT	26	Street Ursuline	Pb	Prec	Precipitation
	Farm	- 3,	20		PD	WS	Resultant Wind Speed
06	West Alton	O ₃ , WS, WD, OT, IT, SR		North+		WD	Resultant Wind Direction
07	Rider Trail	NO2, NOx, NO, WS, WD,				ОТ	Outside Temperature
	1-70	OT, IT, SR, Prec, BP		Belt Area		IT	Inside Temperature
		SO ₂ (RES)	Site#	Site Name	Parameter	SR	Solar Radiation
08	Maryland	O₃, IT	Part of the	1011020000	Monitored	BP	Barometric Pressure
	Heights	6617473	27	Buick NE	Pb, SO ₂ , WS, WD,	RH	Relative Humidity
09	Ladue	PM _{2.5} , OT, IT, BP, RH			IT	IMPROVE	Interagency Monitoring of
10	Pacific	O ₃ , IT	28	Oates	Pb		Protected Visual Environment
11	Arnold West	PM ₁₀ , PM _{2.5} , PM _{2.5} (Spec), IT, O ₃ , WS, WD OT, IT,	29	Fletcher+	Pb	RES	(Regional Haze) Research
12	Foley West*	BP, RH O₃, IT				PAMS	Photochemical Assessment
			Outstate !				Monitoring Station
	s City Area		Site#	Site Name	Parameter	PAHs	Polycyclic Aromatic
Site#	Site Name	Parameter Monitored			Monitored		Hydrocarbons
13	Trimble	O ₃ , IT	30	Alba	O ₃ , IT		
14	Watkins Mill	O ₃ , IT	31	Carthage	PM ₁₀ , WS, WD, IT		
15	Liberty	PM _{2.5} , O ₃ , OT, IT, SR, BP, RH	32	El Dorado Springs	PM _{2.5} , O ₃ , WS, WD, OT, IT, BP, RH		
16 17	Rocky Creek Troost	O ₃ , IT PM _{2.5} , PM ₁₀ , SO ₂ , NO ₂ ,	33	Hercules Glades	PM _{2.5} (Spec)- IMPROVE		
18	Front Street	NOx, OT, IT PM ₁₀	34	Mingo	PM _{2.5} (Spec)-		
19	Blue Ridge	PM _{2.5} , NO ₂ ,			IMPROVE		
	1-70	NOx, NO, CO, BC, WS,	35	Farrar	O ₃ , IT		
		WD, OT, IT, SR, BP, RH, Prec	36	Bonne Terre	O₃, IT, SR		
20	Richards Gebaur-	PM _{2.5} , PM ₁₀ -LC, O ₃ , WS, WD, OT, IT, BP, RH	37	New Bloomfield	O₃, IT		
	South		38	Finger Lakes	O ₃ , IT		
			39	Mark Twain State Park	PM ₁₀ , SO ₂ , NO ₂ , NOx, NO, O ₃ , WS, WD, IT		
			40	St. Joseph Pump	PM ₁₀ , PM _{2.5} , PM ₁₀ - LC, WS, WD, OT,		
				Station	IT, RH		
			41	Savannah	O ₃ , IT		
			42	Forest City, Exide	Pb		
				from former Fole			
				to discontinue			

Notes:

- 1. The acronym PM_{10-LC} is also commonly referred to as PM_{10c} when collected with a low volume sampler consistent with 40 C.F.R. § 50 Appendix O. PM_{10-LC} means particulate matter with an aerodynamic diameter less than or equal to a nominal 10 micrometers where the concentration is reported at local conditions of ambient temperature and barometric pressure. PM_{10-LC} is used in this document to describe any continuous or filter based PM₁₀ low volume measurement concentration reported at local conditions of ambient temperature and barometric pressure.
- 2. PM₁₀ means particulate matter with an aerodynamic diameter less than or equal to a nominal 10 micrometers where the concentration is adjusted to EPA reference conditions of ambient temperature and barometric pressure (25 °C and 760 millimeters of mercury or STP).
- 3. PMCoarse is also frequently referred to as $PM_{10-2.5}$.

2022 Ambient Air Monitoring Network, Industrial Sites

Monitoring sites operated by industries are shown in the following map and listed in the following table.

2022 Missouri Industry Monitoring Networks

Legend (Industry Monitoring Network)

<u>Ameren, Labadie Energy Center</u>				
Site#	Site Name	Parameter Monitored		
01	Northwest	SO ₂ , (WS, VWS, WD, OT, σ_{ϕ} , σ_{e} , RH) ^{Λ}		
02	Valley	SO ₂ , (WS, VWS, WD, OT, SR, BP, RH,		
		Prec, σ_{ϕ} , σ_{e})^		
03	Southwest	SO ₂		
04	North	SO ₂		
05	Labadie Plant	SODAR (WS, WD, OT, σ_{e_i} σ_{ϕ})^		

Doe Run, Herculaneum

Site#	Site Name	Parameter Monitored
06	Dunklin	Pb
07	Broadway	(WS, WD, OT, SR, BP, RH, Prec, σ_e) ^{Λa}
08	Mott Street	Pb
09	North Cross	Pb

Acronyms

SO ₂	Sulfur Dioxide		
Pb	Lead (High Volume)		
σе	Sigma Theta (Standard Deviation of Horizontal Wind Direction		
WS	Resultant Wind Speed		
WD	Resultant Wind Direction		
OT	Outside Temperature		
SR	Solar Radiation		
BP	Barometer Pressure		
RH	Relative Humidity		
σ_{ϕ}	Sigma Theta (Standard Deviation of the Vertical Wind Speed)		
Prec	Precipitation		

Ameren, Rush Island

Energy Center

Site#	Site Name	Parameter Monitored
10	Weaver-AA	SO ₂
11	Johnson Tall Tower	(WS, VWS, WD, OT, σ_{ϕ} , σ_{e})^
12	Natchez	SO ₂
13	Fults, IL	SO ₂ , (WS, VWS, WD, OT, SR, BP, RH,
		Prec. oh. oe)^

(AQS) Database

VWS Vertical Wind Speed

Metrological Data is not submitted to the EPA Air Quality
 (AOS) Potcheses

Regulatory Dispersion Modeling Grade Parameters
 Non-Ambient Monitor

Doe Run, Glover

Site#	Site Name	Parameter Monitored
14	Post Office #2*+	Pb
15	Big Creek*+	Pb

Doe Run, Buick

Site#	Site Name	Parameter Monitored
16	Buick NE	Pb
17	Buick North#5*	Pb
18	Buick South#1*	Pb, (WS, WD, OT, SR, BP, RH, Prec, σ_e) ^a
19	Hwy 32 Northeast	SO ₂
20	West Entrance	SO ₂
21	County Road 75	SO ₂

Parameter Monitored

Magnitude 7 Metals Site# Site Name

22	Site #1	SO ₂
23	Site #2	SO ₂
24	Site #3	SO ₂ , (WS, WD, OT)

Proposed to Discontinue

Monitoring Network and Proposed Changes

1. Lead (Pb) Monitoring Network

EPA requires the monitoring of lead sources emitting 0.50 tpy or more. Prior to 2010, EPA required monitoring for sources emitting one tpy or more. All airports in Missouri are exempt from this requirement. A review of current 2020 emission data did not identify any new sources emitting greater than 0.50 tpy. The department will continue to review emission data for new sources in the future.

1.1 Doe Run Operated Sites

Doe Run operates lead monitoring sites in the vicinity of its industrial facilities in Herculaneum, Glover and Boss. The operation of some of these sites is under consent judgments or agreements with the department. Doe Run operates other sites voluntarily.

Doe Run Herculaneum also operates one 10-meter tower meteorological monitoring at the Broadway site as per the language set forth under the 2011 Consent Judgment. Doe Run Herculaneum discontinued the Broad Street 40-meter tower per the Consent Judgment.

Doe Run discontinued operation of the non-ambient Church Street site in Herculaneum on April 1, 2022. There is no consent judgment or SIP requiring the continuation of monitoring at Church Street. At the same time, Doe Run reduced the sampling frequency for the collocated sampler at the City Hall site in Herculaneum from once every three days to once every six days. This reduced collocated sampling frequency continues to meet the requirements of 40 C.F.R. § 58 Appendix A.

Doe Run plans to discontinue monitoring at the two non-ambient sites in Glover following EPA approval on April 27, 2022 of the revisions to the SIP and consent agreement applicable to monitoring in Glover. The Final Rule is effective on May 27, 2022. Lead monitoring in Glover may resume if demolition activity at the Glover facility is resumed.

1.2 State Operated Sites

The department monitored airborne lead concentrations at the St. Joe State Park SPM site during remediation activities involving old lead mining waste in the Federal Mine tailings. The bulk of the remediation activity was completed by early August 2014. The three-month rolling average lead concentration has not exceeded the lead standard, 0.15 μ g/m³, since the site began monitoring on July 1, 2010. The highest three-month rolling average airborne lead concentration at that site was 0.14 μ g/m³ in July-September 2011. This elevated lead concentration was attributable to remediation activities near the monitor. From 2017 to 2021, the three-month average lead concentration has not exceeded 0.03 μ g/m³. Because remediation activities in St. Joe State Park are now complete, and the site has not monitored an exceedance of the lead standard, the department discontinued monitoring at St. Joe State Park at the end of 2021, as proposed in the 2021 Monitoring Network Plan, which was approved by EPA.

The department proposes to discontinue lead monitoring at the Fletcher site located in Reynolds County in 2023 after EPA approves this plan. Reported lead emissions from the nearby Bunker-Fletcher mine are less than 0.5 tpy. The Fletcher site has not violated the lead standard since monitoring began in 2010, and the highest three-month average during the last three years (2019-2021) was $0.02~\mu g/m^3$.

The department proposes to discontinue lead monitoring at the Ursuline North site near Herculaneum in 2023 after EPA approves this plan. When the lead smelter in Herculaneum was operating, the Ursuline North monitor served as a background site, due to its location, generally upwind of the facility in Herculaneum. The Ursuline North site has not monitored a violation of the lead standard since monitoring began in 2010, and the highest three-month average during the last three years (2019-2021) was $0.01 \, \mu g/m^3$.

The department monitors airborne lead at the Dunklin High School site in Herculaneum every sixth day. Doe Run monitors lead at the same site every third day. Beginning with measurements made in 2018, the department previously computed time-average concentrations at that site using a combination of (every sixth day) state measurement results and (every third day) Doe Run measurements. In 2021, EPA informed the department they did not allow this procedure, because the state and Doe Run are two different PQAOs. Subsequently, the department revised data reported to EPA's AQS so that lead concentrations measured by the state and by Doe Run at Dunklin High School are not averaged together but reported separately.

The 2022 lead monitoring network is shown in the following map.

2022 Missouri Lead Monitoring Network*, NAAQS=0.15µg/m³ (3 month). (Numbers in parenthesis are 2019-2021 Design Values)

^{*}Monitoring at the Fletcher and Ursuline sites will be discontinued after this plan is approved by EPA. No other changes are proposed in this plan.

2. Sulfur Dioxide (SO₂) Monitoring Network

EPA reviewed the SO₂ standard and announced, in March 2019, the standard would remain at 75 parts per billion (ppb), established in 2010. The *2011 Monitoring Network Plan* identified the minimum network monitoring required by the Population Weighted Emissions Index (PWEI). The department updated the analysis using the most recent population and emission data, 2021 estimated population data from the United States Census Bureau and 2017 National Emission Inventory (NEI) emissions data. The following table summarizes the results. The required numbers of monitoring sites based on the PWEI are two sites in the St. Louis CBSA, and one in the Kansas City CBSA. All other Missouri CBSAs require no monitoring sites. The department and the Illinois Environmental Protection Agency meet this requirement in the St. Louis area with the Blair Street site in Missouri and the East St. Louis site in Illinois, and in the Kansas City area with the Troost site. The SO₂ monitoring network exceeds requirements by including the Wood River site in Illinois, the Herculaneum site in Missouri and the JFK site in Kansas. Communications received from the Illinois Environmental Protection Agency and the Kansas Department of Health and Environment (KDHE) indicate those agencies expect to continue SO₂ monitoring at the sites.

In addition to the minimum network requirements, the department oversees several industrial SO₂ monitoring sites and one additional site. The following sections detail this information.

Population Weighted Emission Index (PWEI) Summary

Area	Estimated 2021 Population	2017 SO2 Emissions (tpy)	PWEI	Required Number of SO2 Monitors
Kansas City	2,199,490	9,703.06	21,342	1
St. Louis	2,809,299	67,179.86	188,728	2
Fayetteville-Springdale-Rogers	584,092	2,450.66	1,431	0
Springfield	481,483	3,477.18	1,674	0
Joplin	182,541	1,244.75	227	0
Columbia	185,840	1,560.22	290	0
Jefferson City	150,706	773.09	117	0
St. Joseph	120,424	561.49	68	0
Cape Girardeau	97,699	714.96	70	0
Maryville	21,160	165.46	4	0
Warrensburg	54,150	65.01	4	0
Marshall	23,289	58.77	1	0
Sedalia	43,188	195.16	8	0
Branson	87,935	709.18	62	0
Kirksville	29,210	150.29	4	0
Moberly	24,760	16,556.63	410	0
Lebanon	36,133	187.95	7	0
Mexico	24,982	48.62	1	0
Fort Leonard Wood	53,816	128.70	7	0
Rolla	44,937	172.68	8	0
West Plains	39,975	293.39	12	0
Fort Madison-Keokuk	57,351	998.13	57	0
Quincy	74,954	895.05	67	0
Hannibal	38,879	859.58	33	0
Farmington	67,541	168.78	11	0
Poplar Bluff	42,101	179.61	8	0
Sikeston	37,840	4,746.17	180	0
Kennett	27,717	42.02	1	0

PWEI=population*SO2(tpy)/1,000,000

PWEI > 1,000,000: 3 monitors 1,000,000 > PWEI > 100,000: 2 monitors 100,000 > PWEI > 5,000: 1 monitor

SO2 totals from 7/2017 spreadsheet including fire emissions

2022 Missouri Sulfur Dioxide (SO₂) Monitoring Network*, NAAQS=75 ppb (1 hour). (Numbers in Parentheses are 2019-2021 Design Values)

^{*}No changes to the SO₂ network are proposed in this plan.

In 2015, EPA finalized the SO₂ Data Requirements Rule (DRR). This rule required air agencies to characterize air quality, either by monitoring or modeling, around sources that emit 2,000 tpy or more of SO₂.

Sources monitoring due to the DRR include Ameren Labadie Energy Center, Magnitude 7 Metals (formerly Noranda Aluminum) and Doe Run Buick Resource Recycling Facility. In addition, Ameren Rush Island Energy Center is conducting monitoring on an accelerated schedule (compared to the DRR timeline) based on an agreement with the department associated with the Jefferson County nonattainment plan submitted to EPA in May 2015. The following sections include discussions of these sources.

The industrial sources are conducting the SO₂ monitoring in accordance with the SLAMS requirements in 40 C.F.R. § 58. The department reviewed and approved the siting of the monitors based on federal regulations. To meet the requirements of the DRR, the monitors need a minimum of three years of monitoring data, which is now complete. However, the sources cannot discontinue monitoring without EPA approval based on the requirements of 40 C.F.R. § 51.1203(c) (3) or 40 C.F.R. § 58.14.

2.1 Industrial SO₂ and Meteorological Monitoring near the Labadie and Rush Island Energy Centers

Ameren operates two SO₂ ambient air monitoring networks around the Labadie and Rush Island power plants. The department classifies the monitors in the Ameren networks as industrial SO₂ monitors. Sections 2.1.1 and 2.1.2 describe the current status of the Labadie and Rush Island SO₂ monitoring networks.

2.1.1 Labadie Energy Center

Two industrial SO₂ ambient air monitoring sites and a meteorological monitoring station began operation in April 2015, in the area around the Ameren Labadie Energy Center, located at 226 Labadie Power Plant Road in Franklin County. Ameren installed two additional industrial SO₂ monitoring sites southwest and north of the Labadie Energy Center, which began operation on Jan. 1, 2017. In addition, Ameren added meteorological monitoring using a 10-meter tower at the Northwest site. A sound detection and ranging (SODAR) instrument was initially located at the Valley site, relocated to the Northwest site in February 2017, and relocated again to the Labadie plant site in August 2017. Ameren operates these monitoring sites (see the following table) under a department-approved QAPP. The 2015 and 2016 monitoring network plans provide a detailed discussion on the modeling results that support the site selection. These monitors have not shown a violation of the NAAQS. EPA proposed redesignation of the area in St. Charles and Franklin counties around this facility from unclassifiable to attainment in September 2020, but the redesignation has not yet been finalized as of this writing (May 2022).

Summary of Labadie Area Industrial Monitoring Stations:

Monitoring Objective: Source Oriented

Spatial Scale of representativeness: Middle Scale (100 square meters [m²] to 0.5 square

kilometer [km²])

Labadie Northwest -SO₂, 10-Meter Meteorological Station. (Latitude: 38.5818

Longitude: -90.865528)

Labadie Valley -SO₂, 10-Meter Meteorological Station. (Latitude: 38.572522

Longitude: -90.796911)

Labadie Southwest -SO₂, (Latitude: 38.52825 Longitude: -90.86301) Labadie North -SO₂, (Latitude: 38.59557 Longitude: -90.82864) Labadie Plant -SODAR, (Latitude: 38.54860 Longitude -90.83750)

2.1.2 Rush Island Energy Center

On March 23, 2015, the department and Ameren entered into a consent agreement (see Appendix 3 of the 2015 Monitoring Network Plan) that included Ameren installing and operating an SO₂ monitoring network around the Rush Island Energy Center under department oversight. The siting of these monitors was consistent with the technical process described in the SO₂ DRR. The Rush Island monitoring network design was based on an evaluation of dispersion modeling, as described in the 2015 and 2016 Monitoring Network Plans. This network began operation in December 2015. These monitors have not shown a violation of the NAAQS.

The department requested in February 2016 that EPA make a clean data determination for the Jefferson County area, and EPA published a clean data determination for the area on Sept. 13, 2017. The department submitted to EPA a redesignation request and maintenance plan in December 2017, followed by a maintenance plan supplement in April 2021. EPA proposed redesignation of the Jefferson County SO₂ nonattainment area to attainment of the 2010 SO₂ standard on June 29, 2021 (86 F. R. 34177). In January 2022, EPA published a final rule to approve Missouri's maintenance plan for this area and redesignate it to attainment, effective on Feb. 28, 2022.

Summary of Rush Island area Industrial Monitoring Stations:

Monitoring Objective: Source Oriented

Spatial Scale of representativeness: Middle Scale (100 m² to 0.5 km²) Weaver-AA -SO₂. (Latitude: 38.144529 Longitude: -90.304726)

Natchez -SO₂, (Latitude: 38.10525 Longitude: -90.29842)

Fults, IL, -SO₂, 10-Meter Meteorological Station (Latitude: 38.15908 Longitude: -90.22728) Johnson Tall Tower -Meteorological Station Only, anemometers at 62.5 meter (m) and 132.5 m

levels (Latitude: 38.11999 Longitude: -90.28214)

2.2 Industrial SO₂ and Meteorological Monitoring near the Doe Run Buick Resource Recycling Facility

The Doe Run Company began SO₂ monitoring at three sites in the area around the Buick Resource Recycling Facility near Boss starting Jan. 1, 2017. Meteorological monitoring is also conducted at the Buick South lead monitoring site, south of the facility. These sites are operated under a department-approved QAPP, which includes performance evaluations (audits) by

department staff. Locations of these ambient SO₂ monitoring sites were determined on the basis of air quality modeling of the impact of facility emissions, as described in the 2016 Monitoring Network Plan. These monitors have not shown a violation of the NAAQS, and EPA announced the designation of Iron County, where this facility is located, as attainment/ unclassifiable in December 2020 (effective April 2021).

Summary of Doe Run Buick area Industrial Monitoring Stations:

Monitoring Objective: Source Oriented

Spatial Scale of representativeness: Middle Scale (100 m² to 0.5 km²) West Entrance -SO₂. (Latitude: 37.63211 Longitude: -91.13565) County Road 75 -SO₂, (Latitude: 37.64876 Longitude: -91.14890)

Hwy. 32 Northeast (Former PSD site) -SO₂, (Latitude: 37.65319 Longitude: 91.12795)

2.3 Industrial SO₂ and Meteorological Monitoring near the Magnitude 7 Metals (formerly Noranda Aluminum) Facility

Magnitude 7 Metals (M7M) is conducting SO₂ monitoring at three sites and meteorological monitoring at one in the area around its facility near New Madrid. Monitoring at these sites started in January 2017. M7M operates these sites under a department-approved QAPP, which includes performance evaluations (audits) by department staff. The department determined the locations for these ambient SO₂ monitoring sites based on air quality modeling of the impact of facility emissions. The potential area for meteorological monitoring was based on an analysis by a department meteorologist. The 2016 Monitoring Network Plan includes descriptions of these evaluations.

Two of the M7M sites are in violation of the NAAQS based on 2017 through 2019 data. In December 2020 (effective April 2021), EPA announced the designation of an area surrounding the facility as a nonattainment area for the SO₂ NAAQS, based on 2017-2019 data. EPA designated the remainder of New Madrid County as attainment/unclassifiable.

Summary of Magnitude 7 Metals area Industrial Monitoring Stations:

Monitoring Objective: Source Oriented

Spatial Scale of representativeness: Middle Scale (100 m² to 0.5 km²)

Site 1 -SO₂, (Latitude: 36.51361 Longitude: -89.56111) Site 2 -SO₂, (Latitude: 36.50861 Longitude: -89.56083)

Site 3 -SO₂ and Meteorology, (Latitude: 36.50889 Longitude: -89.57083)

2.4 Rider Trail I-70 Site

The department added an SO₂ monitor, designated as an SPM, to the existing Rider Trail I-70 monitoring site in May 2016 to evaluate SO₂ levels in the general area. Since installing the site, the annual fourth-highest daily one-hour SO₂ concentration has ranged from 12 to 19 ppb.

Since the monitor is in the near-roadway environment and is in an area with several SO₂ sources, the department initially classified the spatial scale of representativeness of the SO₂ measurements as middle-scale. The department may reevaluate this classification if trends in the monitoring

data and other analyses warrant incr objective for this monitor is to meas	reasing the spatial scale	le of representativeness. ure.	The monitoring

3. National Air Toxics Trends Stations (NATTS), and Other Non-Criteria Pollutant Special Purpose Monitoring

3.1 National Air Toxics Trends Stations Monitoring

Routine NATTS monitoring will continue at Blair Street as described in the NATTS work plan.

3.2 Black Carbon

Black Carbon is monitored with an aethalometer as part of the NATTS program at Blair Street. Also, as part of the condition of receiving one-time Section 103 grant funds to implement sites for the near-roadway monitoring network, the department will continue to conduct special purpose PM_{2.5} black carbon monitoring at the Forest Park and Blue Ridge I-70 near-roadway NO₂ sites using aethalometers.

4. PM_{2.5} Monitoring Network

4.1 PM_{2.5} SLAMS Network

The minimum monitoring requirement based on population and historic PM_{2.5} measurements (40 C.F.R. § 58 Appendix D) requires three sites in St. Louis (because of PM_{2.5} concentrations measured on the Illinois side) and two in Kansas City. St. Louis meets the requirement with four Missouri sites plus three Illinois sites in the St. Louis CBSA (in addition to the near-road sites). Kansas City meets the requirements with three Missouri sites plus three Kansas sites in the Kansas City CBSA (in addition to the near-road site).

There is one PM_{2.5} monitor in Missouri that is not applicable for comparison to the annual NAAQS. The Branch Street site is a middle-scale site focused on a group of sources in the industrial riverfront area of St. Louis. This site is not representative of a neighborhood or larger spatial scale for PM_{2.5} monitoring. The PM_{2.5} monitors deployed to collocate with the near-roadway NO₂ monitors are micro-scale monitors, but EPA has indicated in 40 C.F.R. § 58 Appendix D, 4.7.1(c)(2) that "In many situations, monitoring sites that are representative of microscale or middle-scale impacts are not unique and are representative of many similar situations. This can occur along traffic corridors or other locations in a residential district. In this case, one location is representative of a number of small scale sites and is appropriate for evaluation of long-term or chronic effects." EPA may consider these monitors representative of larger areas near roadways and comparable to the annual PM_{2.5} NAAQS consistent with 40 C.F.R. § 58.30.

The Hercules Glades and Mingo Interagency Monitoring of Protected Visual Environments (IMPROVE) sites meet the requirement for regional background PM_{2.5} monitoring. In addition to these sites, the Arnold West and El Dorado Springs sites serve to monitor transport into eastern and western Missouri urban areas, respectively.

TEOM-1405-DFs and TEOM-1405-Fs are the primary FEM reporting instruments in the Missouri network for $PM_{2.5}$ measurement. However, the department does not report data from the PM_{10} FEM channels of the TEOM-1405-DF instruments to AQS.

Network PM_{2.5} 1405-DF FEM/FRM collocation requirements are currently satisfied at the Blair Street NCore site in St. Louis. The following figure shows FRM/FEM comparability statistics (Class III performance criteria of 40 C.F.R. § 53) for the TEOM-1405-DF (EQPM-0609-182) operating at Blair Street. The additive and multiplicative bias meet the Class III performance criteria of 40 C.F.R. § 53.

The department is continuing to replace the 1405-DF instruments with 1405-Fs. Initial replacements were done by retrofits of 1405-DFs to 1405-Fs, and subsequent replacements are being done with new 1405-Fs. This process is expected to be accelerated using one-time American Rescue Plan funds that will be made available through EPA. To date (May 2022) 1405-F instruments are being operated at 10 sites; see the table at the end of this section.

Two TEOM-1405-F instruments are operated at the St. Joseph Pump Station site, one designated as primary, and one as collocated to satisfy the collocation requirement for that FEM method. The TEOM-1405-DF at Blair Street is currently designated as the primary PM_{2.5} instrument at that site. The department proposes to replace it with a new TEOM-1405-F (subject to the availability of funds) and, at the same time, designate the FRM PM_{2.5} sampler already operating at Blair Street as the collocated FRM sampler for the network of TEOM-1405-F samplers. This will allow the department to discontinue the FRM PM_{2.5} sampler at Ladue.

Only NCore sites require PM_{10-2.5} (40 C.F.R. § 58 Appendix D, 4.8). PM_{10-2.5} is currently being reported at the Blair Street NCore site and the Forest Park and Blue Ridge I-70 near-road sites. PM_{10-2.5} is measured at the Blair Street site with the Teledyne API T640X. The department proposes to replace the aging TEOM-1405-DFs at Forest Park and Blue Ridge I-70 with 1405-Fs for PM_{2.5} measurement and discontinue measuring PM_{10-2.5} at these two sites.

The department is operating a Teledyne API T640X instrument at Blair Street and one at Troost as an SPM for PM₁₀ measurement and to evaluate this instrument, which measures airborne particulate concentration using light scattering, for possible future use in the PM_{2.5} network. Two T640X instruments operated at Blair Street showed excellent agreement. Therefore, to further evaluate the instrument, the department relocated one of the T640X instruments at Blair Street to the Branch Street site in July 2020 to evaluate its performance in a location with a higher atmospheric particulate concentration. The department also installed an additional T640X instrument at the Hillcrest High School site in Springfield in February 2022 in order to continue evaluation of the instrument in different regions of the state.

The department is also operating a Teledyne API T640, provided by EPA, at the Forest Park site in St. Louis. EPA is using data with a time resolution as short as one minute from that instrument and time-resolved data from the TEOM-1405-DF and meteorological instruments in non-parametric trajectory analysis (NTA), which uses high time resolution PM_{2.5} concentrations, other air quality data, and wind data to help identify source impacts. The department also provides time-resolved data to EPA from the Teledyne API T640X and other instruments at the Troost site in Kansas City.

FRM/ FEM Comparability Assessment Blair Street, St. Louis, 2019-2021

from EPA PM_{2.5} Continuous Monitor Comparability Assessments

2022 Missouri PM_{2.5} Monitoring Network*, NAAQS=35 μ g/m³ (24 hours), 12 μ g/m³ (Annual). (Numbers in Parentheses are 2019-2021 Design Values for the 24-hour and Annual Standards)

^{*}No changes to the $PM_{2.5}$ network are proposed in this plan other than continuing retrofitting of 1405-DFs to 1405-Fs and discontinuing the FRM sampler at Ladue (see text).

4.2 PM_{2.5} Chemical Speciation Network (CSN)

The department is currently conducting PM_{2.5} speciation sampling at two locations: Blair Street in St. Louis and Arnold West. EPA modified the sampling schedule at Arnold West to every six days in February 2015. The sampling schedule at Blair Street is every three days.

4.3 PM_{2.5} Section 103 Federal Funding

The department is not proposing any changes to the PM_{2.5} monitoring network other than to replace aging equipment and discontinue the FRM sampler at Ladue as described previously. This plan, however, is contingent on EPA providing adequate grant funds to operate and maintain the PM_{2.5} monitoring network.

40 C.F.R. § 58.14 (c) indicates, "State, or where appropriate, local agency requests for SLAMS monitor station discontinuation, subject to the review of the Regional Administrator, will be approved if any of the following criteria are met and if the requirements of appendix D to this part, if any, continue to be met. Other requests for discontinuation may also be approved on a case-by-case basis if discontinuance does not compromise data collection needed for implementation of a NAAQS and if the requirements of appendix D to this part if any, continue to be met." If reductions to the network become necessary, the department will provide written communication describing the network changes to the EPA Regional Administrator for review and approval, consistent with 40 C.F.R. § 58.14(b).

2022 Missouri PM_{2.5} Monitoring Network*

Site	Schedule*	Type	Agency	Purpose
St. Louis				•
1. Blair Street	3	Collocated FRM	ESP	Ncore and Quality Assurance
	3	Speciation	ESP	Chemical Speciation Network
	Н	TEOM-1405-DF FEM	ESP	24 hr & Amrual NAAQS/AQI, Ncore, PM10-2.5 continous
	Н	T640X PM Mass Monitor FEMs	ESP	Method Performance Evaluation Research Not for NAAQS Compliance Determination
2. Branch Street	H	TEOM-1405-F FEM	ESP	24 hr NAAQS/AQI (unique middle scale monitor†)
	Н	T640X PM Mass Monitor FEM	ESP	Method Performance Evaluation Research Not for NAAQS Compliance Determination
3. Forest Park, I-64 (near-roadway)	Н	TEOM-1405-DF FEM	ESP	24 hr & Ammel/AQI, PM10-2.5 continuous (micro scale monitor)
4. South Broadway	Н	TEOM-1405-F FEM	ESP	24 hr & Armuel NAAQS/AQI
5. Ladue	Н	TEOM-1405-F FEM	ESP	24 hr & Amrazal NAAQS/AQI
	6	Collocated FRM	ESP	Quality Assurance
6. Arnold West	6	Speciation	ESP	Chemical Speciation Network
o. Ambia west	H	TEOM-1405-F FEM	ESP	24 hr & Amrual NAAQS/AQI
		ILOMPI403-I ILM	201	2+ in containing the logority i
Kansas City				
7. Liberty	Н	TEOM-1405-F FEM	ESP	24 hr & Annual NAAQS/AQI
8. Troost	Н	TEOM-1405-F FEM	ESP	24 hr & Ammail NAAQS/AQI
		T640X PM Mass Monitor FEM	ESP	Method Performance Evaluation/Research Not for NAAQS Compliance Determination
9. Blue Ridge I-70 (near-roadway)	Н	TEOM-1405-DF FEM	ESP	24 hr & Ammal/AQI, PM10-2.5 continuous (micro scale monitor)
10. Richards-Gebaur South	Н	TEOM-1405-F FEM	ESP	24 hr & Amruzi NAAQS/AQI
Springfield				
11. Hillcrest High School	Н	TEOM-1405-F FEM	ESP	24 hr & Ammal NAAQS/AQI
<u>-</u>	Н	T640X PM Mass Monitor FEM	ESP	Method Performance Evaluation Research Not for NAAQS Compliance Determination
Outstate				
12. St. Joseph Pump Station	Н	TEOM-1405-F FEM	ESP	24 hr & Ammuel NAAQS/AQI
-1. 11 vospiii anp otaton	Н	Collocated TEOM-1405-F FEM	ESP	Quality Assurance
13. E1Dorado Springs	H	TEOM-1405-F FEM	ESP	24 hr & Annual/AQI
14. M i ngo	3	IMPROVE	Fish & Wildlife Service	Chemical Speciation Network
15. Hercules Glades	3	IMPROVE	Forest Service	Chemical Speciation Network
* 3 = Every third day; 6 = Every sixth of The Branch St. Monitor is a unique m			to the Annual PM _{2.5}	NAAQS consistent with 40 CFR 58.30.

^{*}This plan proposes to replace the 1405-DFs with 1405-Fs at Blair Street, Forest Park, I-64 and Blue Ridge I-70 and discontinue the collocated FRM at Ladue.

5. Ozone Monitoring Network

The department is not planning any changes to the ozone monitoring network. The department completed modifying the West Alton site. Ozone monitoring will continue all year at the Mark Twain State Park (MTSP) site to collect ozone background concentrations needed for Prevention of Significant Deterioration (PSD) modeling projects and at Blair Street to meet the NCore ozone monitoring requirement. The current monitoring network meets the population-based requirements in 40 C.F.R § 58 Appendix D, which requires a minimum of two sites each in the St. Louis, Kansas City and Springfield areas. Ozone monitoring at two sites in Arkansas meets the requirement for the Fayetteville-Springdale-Rogers CBSA since 96% of the population of that CBSA is in Arkansas and only 4% in Missouri.

The West Alton site is approximately 16 miles north of the center of St. Louis between the Missouri and Mississippi rivers and approximately seven miles northwest of their confluence. It is in a relatively flat area, with an elevation of approximately 420 to 430 feet above sea level. This area is subject to flooding caused by the rivers. Widespread flooding occurred in the area during spring and early summer 2019. As a result, the site was inoperative from May 2 to 16 and from May 22 to July 16, 2019. The department evaluated the days with missing ozone measurements at West Alton using temperature and ozone concentrations measured at nearby sites. Based on this evaluation, 62 of the 72 missing days were not conducive to ozone concentrations above the level of the standard. EPA Region 7 approved the department's ozone evaluation submission. Therefore, West Alton continues to meet the data completeness requirement for 2019 data. Because of the importance of West Alton as the design value site for the St. Louis area, the department constructed an elevated platform above the 193 and 2019 high water levels and installed the shelter and instrumentation on the elevated platform in 2021. The site still meets probe height requirements.

2022 Missouri Ozone (O₃) Monitoring Network*, NAAQS=70 ppb (8 hour). (Numbers in Parentheses are 2019-2021 Design Values)

^{*}No changes to the O₃ network are proposed in this plan.

6. PM₁₀ Monitoring Network

The department discontinued collocated FRM PM₁₀ monitoring at Blair Street in St. Louis in February 2018. EPA no longer requires the collocation of the manual PM₁₀ sampler (40 C.F.R. § 58 Appendix A, 3.3.4). The department designated the continuous PM₁₀ from the Teledyne API T640X FEM monitor as primary and discontinued the primary FRM PM₁₀ monitor at the site effective July 1, 2019. The Teledyne API T640X also reports PM_{Coarse} for the Blair NCore requirements.

The St. Louis CBSA includes four PM₁₀ sites (not including the microscale Forest Park site), enough to meet the minimum monitoring requirement of four to eight sites specified in 40 C.F.R. § 58 Appendix D, 4.6. This monitor count includes the Granite City Fire Station site in Illinois, which the Illinois Environmental Protection Agency expects to continue operating based on the communication with the agency.

The PM₁₀ monitors at Front Street in Missouri and JFK in Kansas meet the minimum monitoring requirement of two to four sites in the Kansas City CBSA. KDHE will continue monitoring PM₁₀ at the JFK site, as confirmed by correspondence with KDHE staff, because it is an NCore site, as stated in the 2021 Kansas Air Monitoring Network Plan.

In February 2019, the department began monitoring PM_{10} and $PM_{2.5}$ at Troost in Kansas City with a Teledyne API T640X instrument as an SPM for ongoing evaluation of the performance of that instrument. Similarly, in February 2022, the department began monitoring PM_{10} and $PM_{2.5}$ at Hillcrest High School in Springfield with a Teledyne API T640X instrument as an SPM for ongoing evaluation of the performance of that instrument.

The PM₁₀ minimum monitoring requirement in the Springfield CBSA is zero to one, and monitoring at the Hillcrest High School site meets this requirement. The 2021 estimated population of the Springfield CBSA is 481,483. If this population increases to 500,000 or more, the minimum requirement will increase to one to two sites, and the Springfield CBSA will continue to meet the monitoring requirement.

The 2021 estimated population of the Fayetteville-Springdale-Rogers CBSA is 584,092, but only 4% of this population (23,383) is in Missouri. Therefore, establishing a site in the Arkansas area to meet the PM₁₀ monitoring requirement for this area is reasonable. Based on correspondence from the Arkansas Department of Environmental Quality (ADEQ), the ADEQ established such a site on Jan. 1, 2017.

The department installed a collocated PM_{10} TEOM-1400ab monitor at the Carthage site in April 2016 and will continue to operate it because of the importance of that site being near a source.

2022 Missouri PM_{10} Monitoring Network*, NAAQS=150 $\mu g/m^3$ (24 hour). (Numbers in Parentheses are 2019-2021 Design Values)

^{*}No changes to the PM₁₀ network are proposed in this plan.

7. Nitrogen Dioxide (NO₂) Monitoring Network

The 2010 revisions to the NO₂ NAAQS require two near-road NO₂ monitoring sites in the St. Louis CBSA and one in the Kansas City CBSA. The department established the first St. Louis area site in January 2013, the Kansas City area site in July 2013 and the second near-roadway site in the St. Louis area in January 2015.

The first St. Louis area near-roadway site, Forest Park, is adjacent to I-64 west of downtown St. Louis. Air monitoring results at that site are consistent with commuter traffic, heaviest on weekday mornings. The second St. Louis area site, Rider Trail I-70, is adjacent to Interstate 70, just west of Interstate 270. Interstate 70 extends across the United States and carries through traffic in addition to commuter traffic and other local traffic. Therefore, the fleet mix and congestion patterns, relative to time of day and day of the week, are different than at the Forest Park site.

The Troost site in Kansas City meets the requirement for community-wide monitoring in CBSAs with a population larger than 1 million (40 C.F.R. § 58 Appendix D, 4.3.3(a)). Blair Street meets the requirement in St. Louis. Both the Kansas City and St. Louis areas exceed the requirement with monitoring at the JFK site and East St. Louis site, respectively.

40 C.F.R. § 58, Appendix D, 4.3.4 includes the following additional requirement for NO₂ monitoring:

"4.3.4 Regional Administrator Required Monitoring

1. The Regional Administrators, in collaboration with States, must require a minimum of forty additional NO₂ monitoring stations nationwide in any area, inside or outside of CBSAs, above the minimum monitoring requirements, with a primary focus on siting these monitors in locations to protect susceptible and vulnerable populations...."

The department discontinued NO₂ monitoring at the Margaretta site at the beginning of 2019 and requested that EPA designate Blair Street as a site located in an area where susceptible and vulnerable populations live, work and play, therefore meeting this requirement.

The department is currently operating a photolytic NO₂ monitor at the Blair Street site. This monitor supplements the required NO_y monitoring at the Blair Street NCore site. The department plans to replace the photolytic NO₂ monitor with a cavity attenuated phase shift CAPS) NO/NO₂/NO_X analyzer in approximately May 2022. Either instrument will satisfy the requirement for True NO₂ monitoring as part of the PAMS program (see Section 9).

2022 Missouri Nitrogen Dioxide (NO₂) Monitoring Network*, NAAQS=100 ppb (1 hour). (Numbers in Parentheses are 2019-2021 Design Values)

^{*}No changes to the NO₂ network are proposed in this plan.

8. Carbon Monoxide (CO) Monitoring Network

The 2013 NAAQS rule for CO requires near-road CO monitoring at one site in the St. Louis CBSA. The department established CO monitoring sites at the same time as the NO₂ monitoring sites at the Forest Park I-40/64 and Blue Ridge I-70 near-roadway monitoring sites. The department is not proposing any changes to the CO monitoring network in this plan.

2022 Missouri Carbon Monoxide (CO) Monitoring Network*, NAAQS=35 ppm (1 hour), 9 ppm (8 hour). (Numbers in Parentheses are 2019-2021 Design Values for the 1-hour and 8-hour Standards)

^{*}No changes to the CO network are proposed in this plan.

9. Photochemical Assessment Monitoring Station

In previous versions of the Monitoring Network Plan, this section served as the Photochemical Assessment Monitoring Station (PAMS) Implementation Plan. PAMS monitoring began in June 2021, so that this section now describes an ongoing program.

9.1 Introduction: Regulatory Requirements and Guidance Documents

The "National Ambient Air Quality Standards for Ozone; Final Rule," (*Federal Register*, volume 80, number 206, Oct. 26, 2015), included amendment of 40 C.F.R. § 58, Appendix D (5) to include the following:

"5. NETWORK DESIGN FOR PHOTOCHEMICAL ASSESSMENT MONITORING STATIONS (PAMS) AND ENHANCED OZONE MONITORING

1. State and local monitoring agencies are required to collect and report PAMS measurements at each NCore site required under paragraph 3(a) of this appendix located in a CBSA with a population of 1,000,000 or more, based on the latest available census figures.

2. PAMS measurements will include:

- (1) Hourly averaged speciated volatile organic compounds (VOCs);
- (2) Three 8-hour averaged carbonyl samples per day on a 1 in 3 day schedule, or hourly averaged formaldehyde;
- (3) Hourly averaged O₃;
- (4) Hourly averaged nitrogen oxide (NO), true nitrogen dioxide (NO₂), and total reactive nitrogen (NO_y);
- (5) Hourly averaged ambient temperature;
- (6) Hourly vector-averaged wind direction;
- (7) Hourly vector-averaged wind speed;
- (8) Hourly average atmospheric pressure;
- (9) Hourly averaged relative humidity;
- (10) Hourly precipitation;
- (11) Hourly averaged mixing-height;
- (12) Hourly averaged solar radiation; and
- (13) Hourly averaged ultraviolet radiation...
- (g) At a minimum, the monitoring agency shall collect the required PAMS measurements during the months of June, July and August."

The same rule included amendment of 40 C.F.R. § 58.10 (a) (10) to include the following:

"A plan for making Photochemical Assessment Monitoring Stations (PAMS) measurements, if applicable, in accordance with the requirements of appendix D paragraph 5(a) of this part shall be submitted to the EPA Regional Administrator no later

than July 1, 2018. The plan shall provide for the required PAMS measurements to begin by June 1, 2019."

Primarily because of delays in national procurement of some of the required equipment for PAMS measurement, EPA revised this regulation to change the required start date for PAMS measurement to June 1, 2021 (*Federal Register*, volume 85, number 5, Jan. 8, 2020, page 834).

EPA has published a guidance document entitled *PAMS Required Sites Quality Assurance Implementation Plan [QAIP]*, October 2016. The QAIP provides guidance for both EPA and monitoring organizations in implementation of the above-referenced PAMS requirements. The QAIP includes the following recommendations:

"Monitoring organization PAMS Implementation Plan: The monitoring organization Implementation Plan document will specify how the monitoring organization will perform the measurements for the Required Network. The plan will include details on activities such as monitoring site location, costs and schedule of events, among other information. The plan will also include any waivers to siting or monitoring methods." (page 13).

"Monitoring organizations should have their PAMS waivers and Required Network Implementation Plans finalized by July 2017 and must have them completed by the end of October 2017.²⁰

²⁰ The regulation requires that monitoring organization Required Network IPs be developed in their Annual Network Plans due July 2018. However, in order to be operational by June 2019, it would be beneficial to have plans finalized by the end of October 2017." (page 21).

EPA has provided additional guidance including a PAMS Technical Assistance Document (TAD), finalized in 2019, and a national QAPP, finalized in 2020, and draft standard operating procedures for PAMS instrument systems. EPA also conducts monthly conference calls to disseminate information and guidance on PAMS monitoring.

Section 9 of the 2018 (and 2019 and 2020) Monitoring Network Plan(s) fulfilled the regulatory requirement in 40 C.F.R. § 58.10 (a) (10) for submittal of a PAMS Implementation Plan by July 2018. The 2017 Monitoring Network Plan included an early version of the plan to meet the recommended schedule in the QAIP for submittal by July 2017 in advance of the regulatory requirement. The department completed and revised a QAPP for the PAMS project based on the national QAPP in 2021 in 2022, respectively.

9.2 PAMS Measurements

The department conducts PAMS monitoring at the Blair Street Station in St. Louis. The Blair Street Station is an NCore site in a CBSA with a population of greater than 1 million. The JFK site in Kansas City, Kansas is also an NCore site and a PAMS site according to the *2021 Kansas Air Monitoring Network Plan*. PAMS monitoring began at Blair Street in 2021. As long as the regulatory requirements are in place and funding is available to support this activity, monitoring

will continue during the months of June, July and August each year. The department will report data from PAMS monitoring to EPA's AQS database except for carbonyl and mixing height data as noted below.

The department has not requested any of the waivers from EPA described in 40 C.F.R. § 58, Appendix D (5) (c) through (f).

Each of the required measurements in 40 C.F.R. § 58, Appendix D (5) (b) is discussed below.

9.2.1. Hourly Averaged Speciated Volatile Organic Compounds (VOCs)

EPA has evaluated several gas chromatographs (GC) designed to measure concentrations of hourly average speciated VOCs. EPA has contracted with two of the vendors of these GC systems to provide instruments to each monitoring organization required to conduct PAMS monitoring. The department selected the Consolidated Analytical Systems (CAS)/Chromatotec AirmOzone Auto-Gas Chromatograph with Flame Ionization Detection. The department received and installed the GC in fall 2020.

The following table lists target compounds for this measurement (carbonyl compounds included in the table are measured in samples described under 9.2.2 below).

9.2.2 Three 8-hour Averaged Carbonyl Samples per Day on a 1 in 3 Day Schedule, or Hourly Averaged Formaldehyde

The department installed and operates a sampler capable of collecting multiple 8-hour samples using derivatized sorbent tubes according to EPA method TO-11A. Analysis of TO-11A samples for the carbonyls listed in the following table (identified by footnote b) is being made available by EPA using its national contract analytical laboratory. The contract laboratory will also enter the carbonyl data into EPA's AQS database.

9.2.3 Hourly Averaged O₃

Hourly averaged ozone is measured at Blair Street as a part of the NCore requirements (see Section 5).

Revised PAMS Target List^a

From EPA Memorandum, Oct. 2, 2017, "Additional Revisions to the Photochemical Assessment Monitoring Stations Compound Target List"

Existing Priority Compounds	Optional Compounds
1,2,3-Trimethylbenzene	1,3 Butadiene
1,2,4-Trimethylbenzene	1,3,5-Trimethylbenzene
1-Butene	1-Pentene
2,2,4-Trimethylpentane	2,2-Dimethylbutane
Acetaldehyde ^b	2,3,4-Trimethylpentane
Benzene	2,3-Dimethylbutane
Cis-2-Butene	2,3-Dimethylpentane
Ethane	2,4-Dimethylpentane
Ethylbenzene	2-Methylheptane
Ethylene	2-Methylhexane
Formaldehyde ^b	2-Methylpentane
Isobutane	3-Methylheptane
Isopentane	3-Methylhexane
Isoprene	3-Methylpentane
M/P Xylene	Acetone
M-Ethyltoluene	Acetylene
N-Butane	Alpha Pinene
N-Hexane	Benzaldehyde ^b
N-Pentane	Beta Pinene
O-Ethyltoluene	Cis-2-Pentene
O-Xylene	Carbon Tetrachloride
P-Ethyltoluene	Cyclohexane
Propane	Cyclopentane
Propylene	Ethanol
Styrene	Isopropylbenzene
Toluene	M-Diethylbenzene
Trans-2-Butene	Methylcyclohexane
	Methylcyclopentane
	N-Decane
	N-Heptane
	N-Nonane
	N-Octane
	N-Propylbenzene
	N-Undecane
	P-Diethylbenzene
	Tetrachloroethylene
	Trans-2-Pentene

^a This table only includes individual target compounds. Monitoring agencies should continue measuring and reporting total non-methane organic compounds (TNMOC)

organic compounds (TNMOC)

b These compounds are carbonyls and are measured using Method TO-

9.2.4 Hourly Averaged Nitrogen Oxide (NO), True Nitrogen Dioxide (NO₂) and Total Reactive Nitrogen (NO_y)

NO and NO_y are measured at Blair Street as a part of the NCore requirements and will continue. Currently, the department is measuring true NO₂ at Blair Street using an analyzer with a photolytic NO₂ converter. The department plans to replace this instrument in May 2022 with a cavity attenuated phase shift spectroscopy (CAPS) NO/NO₂/NO_X analyzer designated as FEM that will provide NO and NO_X in addition to the true NO₂ measurement.

9.2.5-9.2.10 Hourly Averaged Ambient Temperature, Hourly Vector-Averaged Wind Direction, Hourly Vector-Averaged Wind Speed, Hourly Averaged Atmospheric Pressure, Hourly Averaged Relative Humidity, and Hourly Precipitation

The department will continue to measure temperature, wind direction, wind speed, atmospheric pressure, and relative humidity at Blair Street. The department has also installed an instrument for precipitation measurement at the site.

9.2.11 Hourly Averaged Mixing Height

EPA provided funding for the procurement of a ceilometer, which is an instrument that uses a laser to measure mixing height. The department has installed and begun operation of a Vaisala CL-51 ceilometer. The department plans to transfer data from the ceilometer to a national network at the University of Maryland, Baltimore County (UMBC) that is processing ceilometer data. UMBC will input mixing height data into EPA's AQS database.

9.2.12 Hourly Averaged Solar Radiation

Solar radiation was already measured at Blair Street and will continue.

9.2.13 Hourly Averaged Ultraviolet Radiation

The department has installed and begun the operation of an ultraviolet radiation measurement instrument.

Network Description/ Components

See Appendix 1 for the Network Description, which includes the following components:

Site Data

All ambient air monitoring sites are recorded in the EPA's AQS database. Site data include:

AOS Site Code

The site code includes a numerical designation for state, county and individual site. The state and county codes are assigned a number based on the alphabetical order of the state or county. Site numbers are assigned sequentially by date established in most counties. St. Louis County sites also have a division for municipality within St. Louis County.

Street Address

The official post office address of the lot where the monitors are located. Because not all sites are located in cities or towns, the street address is occasionally given as the intersection of the nearest streets or highways.

Geographical Coordinates

The coordinate system used by the department is latitude and longitude.

Air Quality Control Region

Air Quality Control Regions (AQCR) are defined by EPA and designate either urban regions, like St. Louis or Kansas City, or rural sections of a state, such as northeast or southwest Missouri.

AQCR	AQCR Name
070	Metropolitan St. Louis
094	Metropolitan Kansas City
137	Northern Missouri
138	Southeast Missouri
139	Southwest Missouri

Core Based Statistical Area

Core Based Statistical Areas (CBSA) are defined by the U.S. Census Bureau.

CBSA Code	CBSA Name
00000	Not in a CBSA
16020	Cape Girardeau-Jackson, Missouri-Illinois
17860	Columbia
22220	Fayetteville-Springdale-Rogers, Arkansas-Missouri
27620	Jefferson City
27900	Joplin
28140	Kansas City, Missouri-Kansas
41140	St. Joseph, Missouri-Kansas
41180	St. Louis, Missouri-Illinois

44180 Springfield

Monitor Data

Each monitor is designed to detect a specific chemical pollutant or group of related pollutants. A site may have one or many monitors and not all sites will have the same monitors. Monitor data include:

Pollutant

The common name of the pollutant. Criteria pollutants are defined by statute in the Clean Air Act.

AQS Pollutant Code

Each pollutant has a unique numerical code. PAMS pollutant codes are listed in the PAMS QAPP.

Pollutant Code	Pollutant
14129	Lead – Local Conditions (LC)
42101	Carbon Monoxide
42401	Sulfur Dioxide
42406	Sulfur Dioxide 5-minute
42600	Reactive Oxides of N (NO _y)
42601	Nitric Oxide
42602	Nitrogen Dioxide
42603	Oxides of Nitrogen
44201	Ozone
61103	Resultant Wind Speed
61104	Resultant Wind Direct
62101	Outdoor Temperature
62107	Indoor Temperature
62201	Relative Humidity
63301	Solar Radiation
64101	Barometric Pressure
68105	Average Ambient Temperature
68108	Sample Barometric Pressure
81102	PM_{10}
88313	Black Carbon-LC
85101	$PM_{10} - LC$
85129	Lead PM10 LC - FRM/FEM
86101	PMCoarse – LC (FRM Difference)
88101	PM _{2.5} FRM
88500	PM _{2.5} Total Atmospheric
88502	PM _{2.5} AQI/Speciation
88503	PM _{2.5} Reference
61106	Sigma Theta
62106	Temperature Difference
65102	Precipitation

88314	UV Carbon PM _{2.5} -Local Condition
85102	Antimony
85103	Arsenic PM ₁₀ LC
85107	Barium PM ₁₀ LC
85109	Bromine PM ₁₀ LC
85110	Cadmium PM ₁₀ LC
85111	Calcium PM ₁₀ LC
85112	Chromium PM ₁₀ LC
85113	Cobalt PM ₁₀ LC
85114	Copper PM ₁₀ LC
85126	Iron PM ₁₀ LC
85128	Lead PM ₁₀ LC
85132	Manganese PM ₁₀ LC
85136	Nickel PM ₁₀ LC
85142	Mercury PM ₁₀ LC
85154	Selenium PM ₁₀ LC
85160	Tin PM ₁₀ LC
85161	Titanium PM ₁₀ LC
85164	Vanadium PM ₁₀ LC
85166	Silver PM ₁₀ LC
85167	Zinc PM ₁₀ LC
85173	Thallium PM ₁₀ LC
85180	Potassium PM ₁₀ LC
88160	Tin PM ₁₀ LC
	Organic Carbon Chemical Speciation Network Unadjusted
88305	PM _{2.5} LC TOT
88312	Total Carbon PM _{2.5} LC TOT
88316	Optical Elemental Carbon PM _{2.5} LC TOT

Parameter Occurrence Code

The Parameter Occurrence Code (POC) distinguishes between different monitors for the same pollutant, most often collocated monitors used for precision and quality assurance. For PM_{2.5}, different parameter occurrence codes are assigned to FRM, collocated FRM, continuous and speciation monitors.

Collocated

Collocated monitors are used for precision and quality assurance activities, and for redundancy for critical pollutants such as ozone.

Sampling Frequency

Sampling frequency varies for each pollutant, depending on the nature of the NAAQS and the technology used in the monitoring method. Most gaseous pollutants, PM_{2.5} and PM₁₀ monitors use continuous monitoring FEM methods and are averaged over one hour. Some particulate pollutants are filter-based FRM methods and averaged over one day.

Scale of Representation

Each monitor is intended to represent an area with similar pollutant concentration. The scales range from only a few meters to many kilometers.

- **MIC Microscale** defines the concentration in air volumes associated with area dimensions ranging from several meters up to about 100 meters.
- MID Middle defines the concentration typical of areas up to several city blocks in size with dimensions ranging from about 100 meters to 0.5 kilometers.
- **NBR Neighborhood** defines concentrations within an extended area of a city that has relatively uniform land use with dimensions in the 0.5 to 4.0 kilometers.
- **URB Urban** defines an overall citywide condition with dimensions on the order of 4 to 50 kilometers.
- **REG** Regional defines air quality levels over areas having dimensions of 50 to hundreds of kilometers.

Monitor Type/ Network Affiliation

The monitor's administrative classification is determined by the purpose for the monitor in the agency sampling strategy. Assignment of monitor types "NCORE" and "PAMS" is limited to EPA headquarters and is done only after a complete review and approval for all site or monitor metadata.

Code	Description
IMPROVE	IMPROVE or IMPROVE Protocol
INDEX SITE	(not currently used by Missouri)
INDUSTRIAL	Used to indicate sites operated by an industry
	Primary Quality Assurance Organization (PQAO)
NATTS	National Air Toxics Trends Station
NEAR ROAD	Near Road monitoring station
NCORE	National Core monitoring station
NON-EPA FEDERAL	(not currently used by Missouri)
NON-REGULATORY	Not used for NAAQS Compliance
PAMS	Photochemical Assessment Monitoring Stations
PROPOSED NCORE	Proposed NCore
QA COLLOCATED	Collocated to Satisfy 40 C.F.R 58 Appendix A
SLAMS	State or Local Air Monitoring Station
SPECIAL PURPOSE	Special Purpose Monitoring Station (SPM or
	SPMS)
SUPLMNTL SPECIATION	Supplemental Speciation
TRENDS SPECIATION	Trends Speciation
TRIBAL MONITORS	(not currently used by Missouri)
UNOFFICIAL PAMS	(not currently used by Missouri)

State Monitoring Objective

Each monitor has a distinct objective such as providing real-time data for public awareness or use in determining compliance with regulations. The state monitoring objective provides more information about the purpose of the monitoring in addition to the monitor objective required of 40 C.F.R. § 58.10(a)(6).

State Objective Code	Objective
AQI	Public Information
COM	NAAQS Compliance
MET	Meteorological Data
RES	Research
SIP	State Implementation Plan
SPP	Special Purpose Project
STA	State Standard

Units

The physical terms used to quantify the pollutant concentration, such as parts per million or micrograms per cubic meter.

Unit Code	Unit Description
001	$\mu g/m^3$
007	parts per million
800	parts per billion
011	meters per second
012	miles per hour
013	knots
014	degree, compass
015	degree Fahrenheit
016	millibars
017	degree Celsius
018	Langleys
019	percent humidity
021	inches
022	inches Mercury
025	Langleys per minute
059	Millimeter (Mercury)
073	Liters/ minute STP-Flow
077	Micrograms
079	Watts/ m ²
083	Cubic meter/minute
105	$\mu g/m^3 LC$
106	Minutes
107	Percent
118	Liters/minute LC-Flow
119	Cubic meters/minute LC-Flow
121	parts per trillion

Monitoring/ Analytical Method

Each monitor relies on a scientific principle to determine the pollutant concentration, which is described by the sampling method. Each method code is specific for a particular pollutant; therefore a three numeral code may be used for different methods for different pollutants. This is required by 40 C.F.R. § 58.10(a)(3).

Monitoring Objective

This is the primary monitoring objective(s) for the monitoring parameter required by 40 C.F.R. § 58.10(a)(6). The monitoring objective is specific to the pollutant. Some sites may have more than one monitoring objective, but the primary objective is listed first.

Appendix 1: Missouri Monitorin	ng Network Descripti	on	

Missouri Ambient Air Monitoring Network

MIC Microscale Several meters up to about 100 meters

MID Middle 100 meters to 0.5 kilometer NBR Neighborhood 0.5 to 4.0 kilometers range

URB Urban 4 to 50 kilometers

REG Regional Tens to hundreds of kilometers

COM National Ambient Air Quality Standards (NAAQS) Compliance

MET Meteorological Data N/A Not Applicable

NCore National Multi-Pollutant Monitoring Stations

NON-A Non-Ambient Site NON-R Non-Regulatory

POAO Primary Quality Assurance Organization

RES Research

SLAMS State and Local Monitoring Stations

SIP State Implementation Plan

SPEC Speciation STA State Standard

SPM Special Purpose Monitoring SPP Special Purpose Project

Coll Collocated monitor. A secondary monitor at a site.

Ameren Missouri (PQAO - 1440)

Labadie "F	abadie "Plant" Site AQS Site Number 29-071-9003											
~1.5 km sout	h of the Laba	die Energ	y Cent	er, La	ıbadie,	MO 63	3055					
Latitude:	38.5486	AQCR:	070	Metro	opolitan S	St. Louis						
Longitude:	-90.83725	MSA:	7040	St. Lo	ouis, MO-	-IL						
Elevation (ft):	AQS Code	AQS Monitor Type	AQS POC	Coll	AQS Freq	AQS Scale	State- Obj	AQS Unit- Code	AQS Unit	AQS Method Code		AQS Monitor Objective
Std Dev Hz Wind	Direction 61106	Industrial	1		1	N/A	MET	014	deg	127	Scintec MFAS Sodar/RASS Acoustic Sounder	Other (40m)
Std Dev Hz Wind	Direction 61106	Industrial	2		1	N/A	MET	014	deg	127	Scintec MFAS Sodar/RASS Acoustic Sounder	Other (60m)
Std Dev Hz Wind	Direction 61106	Industrial	3		1	N/A	MET	014	deg	127	Scintec MFAS Sodar/RASS Acoustic Sounder	Other (80m)
Std Dev Hz Wind	Direction 61106	Industrial	4		1	N/A	MET	014	deg	127	Scintec MFAS Sodar/RASS Acoustic Sounder	Other (100m)
Std Dev Hz Wind	Direction 61106	Industrial	5		1	N/A	MET	014	deg	127	Scintec MFAS Sodar/RASS Acoustic Sounde	Other (120m)
Std Dev Hz Wind	Direction 61106	Industrial	6		1	N/A	MET	014	deg	127	Scintec MFAS Sodar/RASS Acoustic Sounder	Other (140m)
Std Dev Hz Wind	Direction 61106	Industrial	7		1	N/A	MET	014	deg	127	Scintec MFAS Sodar/RASS Acoustic Sounde	Other (160m)

Wednesday, September 7, 2022

Std Dev Hz Wind Direction	61106	Industrial	8	1	N/A	MET	014	deg	127	Scintec MFAS Sodar/RASS Acoustic Sounder	Other (180m)
Std Dev Hz Wind Direction	61106	Industrial	9	1	N/A	MET	014	deg	127	Scintec MFAS Sodar/RASS Acoustic Sounder	Other (200m)
Std Dev Hz Wind Direction	61106	Industrial	10	1	N/A	MET	014	deg	127	Scintec MFAS Sodar/RASS Acoustic Sounder	Other (220m)
Std Dev Hz Wind Direction	61106	Industrial	11	1	N/A	MET	014	deg	127	Scintec MFAS Sodar/RASS Acoustic Sounder	Other (240m)
Std Dev Hz Wind Direction	61106	Industrial	12	1	N/A	MET	014	deg	127	Scintec MFAS Sodar/RASS Acoustic Sounder	Other (260m)
Std Dev Hz Wind Direction	61106	Industrial	13	1	N/A	MET	014	deg	127	Scintec MFAS Sodar/RASS Acoustic Sounder	Other (280m)
Std Dev Hz Wind Direction	61106	Industrial	14	1	N/A	MET	014	deg	127	Scintec MFAS Sodar/RASS Acoustic Sounder	Other (300m)
Temperature Virtual	62102	Industrial	1	1	N/A	MET	017	deg C	128	Scintec MFAS Sodar/RASS Radar Profiler	Other (40m)
Temperature Virtual	62102	Industrial	2	1	N/A	MET	017	deg C	128	Scintec MFAS Sodar/RASS Radar Profiler	Other (60m)
Temperature Virtual	62102	Industrial	3	1	N/A	MET	017	deg C	128	Scintec MFAS Sodar/RASS Radar Profiler	Other (80m)
Temperature Virtual	62102	Industrial	4	1	N/A	MET	017	deg C	128	Scintec MFAS Sodar/RASS Radar Profiler	Other (100m)

Temperature Virtual	62102	Industrial	5	1	N/A	MET	017	deg C	128	Scintec MFAS Sodar/RASS Radar Profiler	Other (120m)
Temperature Virtual	62102	Industrial	6	1	N/A	MET	017	deg C	128	Scintec MFAS Sodar/RASS Radar Profiler	Other (140m)
Temperature Virtual	62102	Industrial	7	1	N/A	MET	017	deg C	128	Scintec MFAS Sodar/RASS Radar Profiler	Other (160m)
Temperature Virtual	62102	Industrial	8	1	N/A	MET	017	deg C	128	Scintec MFAS Sodar/RASS Radar Profiler	Other (180m)
Temperature Virtual	62102	Industrial	9	1	N/A	MET	017	deg C	128	Scintec MFAS Sodar/RASS Radar Profiler	Other (200m)
Temperature Virtual	62102	Industrial	10	1	N/A	MET	017	deg C	128	Scintec MFAS Sodar/RASS Radar Profiler	Other (220m)
Temperature Virtual	62102	Industrial	11	1	N/A	MET	017	deg C	128	Scintec MFAS Sodar/RASS Radar Profiler	Other (240m)
Temperature Virtual	62102	Industrial	12	1	N/A	MET	017	deg C	128	Scintec MFAS Sodar/RASS Radar Profiler	Other (260m)
Temperature Virtual	62102	Industrial	13	1	N/A	MET	017	deg C	128	Scintec MFAS Sodar/RASS Radar Profiler	Other (280m)
Temperature Virtual	62102	Industrial	14	1	N/A	MET	017	deg C	128	Scintec MFAS Sodar/RASS Radar Profiler	Other (300m)

Wednesday, September 7, 2022 Page 4 of 73

Wind Direction - Resultant 61104	Industrial	1	1	N/A	MET	014	deg	127	Scintec MFAS Sodar/RASS Acoustic Sounder	Other (40m)
Wind Direction - Resultant 61104	Industrial	2	1	N/A	MET	014	deg	127	Scintec MFAS Sodar/RASS Acoustic Sounder	Other (60m)
Wind Direction - Resultant 61104	Industrial	3	1	N/A	MET	014	deg	127	Scintec MFAS Sodar/RASS Acoustic Sounder	Other (80m)
Wind Direction - Resultant 61104	Industrial	4	1	N/A	MET	014	deg	127	Scintec MFAS Sodar/RASS Acoustic Sounder	Other (100m)
Wind Direction - Resultant 61104	Industrial	5	1	N/A	MET	014	deg	127	Scintec MFAS Sodar/RASS Acoustic Sounder	Other (120m)
Wind Direction - Resultant 61104	Industrial	6	1	N/A	MET	014	deg	127	Scintec MFAS Sodar/RASS Acoustic Sounder	Other (140m)
Wind Direction - Resultant 61104	Industrial	7	1	N/A	MET	014	deg	127	Scintec MFAS Sodar/RASS Acoustic Sounder	Other (160m)
Wind Direction - Resultant 61104	Industrial	8	1	N/A	MET	014	deg	127	Scintec MFAS Sodar/RASS Acoustic Sounder	Other (180m)
Wind Direction - Resultant 61104	Industrial	9	1	N/A	MET	014	deg	127	Scintec MFAS Sodar/RASS Acoustic Sounder	Other (200m)
Wind Direction - Resultant 61104	Industrial	10	1	N/A	MET	014	deg	127	Scintec MFAS Sodar/RASS Acoustic Sounder	Other (220m)
Wind Direction - Resultant 61104	Industrial	11	1	N/A	MET	014	deg	127	Scintec MFAS Sodar/RASS Acoustic Sounder	Other (240m)

Wednesday, September 7, 2022 Page 5 of 73

Wind Direction - Resultant	61104	Industrial	12	1	N/A	MET	014	deg	127	Scintec MFAS Sodar/RASS Acoustic Sounder	Other (260m)
Wind Direction - Resultant	61104	Industrial	13	1	N/A	MET	014	deg	127	Scintec MFAS Sodar/RASS Acoustic Sounder	Other (280m)
Wind Direction - Resultant	61104	Industrial	14	1	N/A	MET	014	deg	127	Scintec MFAS Sodar/RASS Acoustic Sounder	Other (300m)
Wind Speed - Resultant	61103	Industrial	1	1	N/A	MET	011	m/s	127	Scintec MFAS Sodar/RASS Acoustic Sounder	Other (40m)
Wind Speed - Resultant	61103	Industrial	2	1	N/A	MET	011	m/s	127	Scintec MFAS Sodar/RASS Acoustic Sounder	Other (60m)
Wind Speed - Resultant	61103	Industrial	3	1	N/A	MET	011	m/s	127	Scintec MFAS Sodar/RASS Acoustic Sounder	Other (80m)
Wind Speed - Resultant	61103	Industrial	4	1	N/A	MET	011	m/s	127	Scintec MFAS Sodar/RASS Acoustic Sounder	Other (100m)
Wind Speed - Resultant	61103	Industrial	5	1	N/A	MET	011	m/s	127	Scintec MFAS Sodar/RASS Acoustic Sounder	Other (120m)
Wind Speed - Resultant	61103	Industrial	6	1	N/A	MET	011	m/s	127	Scintec MFAS Sodar/RASS Acoustic Sounder	Other (140m)
Wind Speed - Resultant	61103	Industrial	7	1	N/A	MET	011	m/s	127	Scintec MFAS Sodar/RASS Acoustic Sounder	Other (160m)
Wind Speed - Resultant	61103	Industrial	8	1	N/A	MET	011	m/s	127	Scintec MFAS Sodar/RASS Acoustic Sounder	Other (180m)

Wind Speed - Resultant	61103	Industrial	9	1	N/A	MET	011	m/s	127	Scintec MFAS Sodar/RASS Acoustic Sounder	Other (200m)
Wind Speed - Resultant	61103	Industrial	10	1	N/A	MET	011	m/s	127	Scintec MFAS Sodar/RASS Acoustic Sounder	Other (220m)
Wind Speed - Resultant	61103	Industrial	11	1	N/A	MET	011	m/s	127	Scintec MFAS Sodar/RASS Acoustic Sounder	Other (240m)
Wind Speed - Resultant	61103	Industrial	12	1	N/A	MET	011	m/s	127	Scintec MFAS Sodar/RASS Acoustic Sounder	Other (260m)
Wind Speed - Resultant	61103	Industrial	13	1	N/A	MET	011	m/s	127	Scintec MFAS Sodar/RASS Acoustic Sounder	Other (280m)
Wind Speed - Resultant	61103	Industrial	14	1	N/A	MET	011	m/s	127	Scintec MFAS Sodar/RASS Acoustic Sounder	Other (300m)
WS - Sigma Theta (Vertical)	61110	Industrial	1	1	N/A	MET	011	m/s	127	Scintec MFAS Sodar/RASS Acoustic Sounder	Other (40m)
WS - Sigma Theta (Vertical)	61110	Industrial	2	1	N/A	MET	011	m/s	127	Scintec MFAS Sodar/RASS Acoustic Sounder	Other (60m)
WS - Sigma Theta (Vertical)	61110	Industrial	3	1	N/A	MET	011	m/s	127	Scintec MFAS Sodar/RASS Acoustic Sounder	Other (80m)
WS - Sigma Theta (Vertical)	61110	Industrial	4	1	N/A	MET	011	m/s	127	Scintec MFAS Sodar/RASS Acoustic Sounder	Other (100m)

Wednesday, September 7, 2022 Page 7 of 73

WS - Sigma Theta (Vertical)	61110	Industrial	5	1	N/A	MET	011	m/s	127	Scintec MFAS Sodar/RASS Acoustic Sounder	Other (120m)
WS - Sigma Theta (Vertical)	61110	Industrial	6	1	N/A	MET	011	m/s	127	Scintec MFAS Sodar/RASS Acoustic Sounder	Other (140m)
WS - Sigma Theta (Vertical)	61110	Industrial	7	1	N/A	MET	011	m/s	127	Scintec MFAS Sodar/RASS Acoustic Sounder	Other (160m)
WS - Sigma Theta (Vertical)	61110	Industrial	8	1	N/A	MET	011	m/s	127	Scintec MFAS Sodar/RASS Acoustic Sounder	Other (180m)
WS - Sigma Theta (Vertical)	61110	Industrial	9	1	N/A	MET	011	m/s	127	Scintec MFAS Sodar/RASS Acoustic Sounder	Other (200m)
WS - Sigma Theta (Vertical)	61110	Industrial	10	1	N/A	MET	011	m/s	127	Scintec MFAS Sodar/RASS Acoustic Sounder	Other (220m)
WS - Sigma Theta (Vertical)	61110	Industrial	11	1	N/A	MET	011	m/s	127	Scintec MFAS Sodar/RASS Acoustic Sounder	Other (240m)
WS - Sigma Theta (Vertical)	61110	Industrial	12	1	N/A	MET	011	m/s	127	Scintec MFAS Sodar/RASS Acoustic Sounder	Other (260m)
WS - Sigma Theta (Vertical)	61110	Industrial	13	1	N/A	MET	011	m/s	127	Scintec MFAS Sodar/RASS Acoustic Sounder	Other (280m)
WS - Sigma Theta (Vertical)	61110	Industrial	14	1	N/A	MET	011	m/s	127	Scintec MFAS Sodar/RASS Acoustic Sounder	Other (300m)

Wednesday, September 7, 2022 Page 8 of 73

Relative Humidity	62201	Industrial	1	1	N/A	MET	019	%humidity	061	Met One 083D	Other
Std Dev Hz Wind Direction	n 61106	Industrial	1	1	N/A	MET	014	deg	063	Arithmetic Standard Deviation	Other (10m Tower)
Std Dev Vt Wind Direction	61107	Industrial	1	1	N/A	MET	014	deg	020	Arithmetic Standard Deviation	Other (10m Tower)
Sulfur Dioxide	42401	Industrial	1	1	MID	COM	008	ppb	100	Ultra-violet Fluorescence	Source Oriented
Sulfur Dioxide Max 5-min Avg	42406	Industrial	1	1	MID	СОМ	008	ppb	100	Ultra-violet Fluorescence	Source Oriented
Wind Direction - Resultant	61104	Industrial	1	1	N/A	MET	014	deg	020	Vector Summation	Other (10m Tower)
Wind Direction - Scalar	61102	Industrial	1	1	N/A	MET	014	deg	063	Climatronics	Other (10m Tower)
Wind Speed - Resultant	61103	Industrial	1	1	N/A	MET	011	m/s	020	Vector Summation	Other (10m Tower)
Wind Speed - Scalar	61101	Industrial	1	1	N/A	MET	011	m/s	063	Climatronics	Other (10m Tower)

Wednesday, September 7, 2022 Page 10 of 73

Wind Speed - Vertice	cal 61109	Industrial	1		1	N/A	MET	011	m/s	020	Electronic Averaging	Other (10m Tower)
WS - Sigma Theta (Vertical)	61110	Industrial	1		1	N/A	MET	011	m/s	020	Arithmetic Standard Deviation	Other (10m Tower)
Labadie, So	outhwest								AQ	S Site Nu	mber29-071	-9002
870 Albertina	Lane, Laba	die, MO 63	3055									
Latitude:	38.52825	AQCR:	070	Metro	opolitan S	t. Louis						
Longitude:	-90.86301	MSA:	7040	St. Lo	ouis, MO-	IL						
Elevation (ft):	630 <i>AQS</i>	AQS Monitor	AQS		AQS	_	State-	AQS Unit-	AQS	AQS Method	AQS	AQS Monitor
Parameter	Code	Type	POC	Coll	Freq	Scale	Obj	Code	Unit	Code	Method	Objective
Sulfur Dioxide	42401	Industrial	1		1	MID	СОМ	008	ppb	100	Ultra-violet Fluorescence	Source Oriented
Sulfur Dioxide Max Avg	5-min 42406	Industrial	1		1	MID	COM	008	ppb	100	Ultra-violet Fluorescence	Source Oriented
Labadie. Vo	allon Cito								4.0	C Cita No.	mber29-071	-9001
2901 Labadie	rite, site	nd Labadie	· MO	6305	5				AQ	s sue mu	mber 23-01	-3001
Latitude:	38.572522	AQCR:	070		opolitan S	t. Louis						
Longitude:	-90.796911	MSA:	7040	St. Lo	ouis, MO-	IL						
Elevation (ft):	525											
Parameter	AQS Code	AQS Monitor Type	AQS POC	Coll	AQS Freq	AQS Scale	State- Obj	AQS Unit- Code	AQS Unit	AQS Method Code	AQS Method	AQS Monitor Objective
Barometric Pressul	re 64101	Industrial	1		1	N/A	MET	016	Millbars	015	Instrumental- Barometric Press Transducer	Other S

Outdoor Temperature	62101	Industrial	2	1	N/A	MET	017	deg C	040	Electronic Averaging	Other (10m Probe Height)
Outdoor Temperature	62101	Industrial	3	1	N/A	MET	017	deg C	040	Electronic Averaging	Other (2m Probe Height)
Outdoor Temperature Diff	62106	Industrial	1	1	N/A	MET	116	Temp Diff deg C	041	Instrumental: Elect or Mach Avg Lev 2-Lev1	Other (10m - 2m Probe Heights)
Precipitation	65102	Industrial	1	1	N/A	MET	021	inches	014	Heated Tipping Bucket	Other
Relative Humidity	62201	Industrial	1	1	N/A	MET	019	%humidity	061	Met One 083D	Other
Solar Radiation	63301	Industrial	1	1	N/A	MET	079	W/m^2	011	Instrumental- Pyranometer	Other
Std Dev Hz Wind Direction	n 61106	Industrial	1	1	N/A	MET	014	deg	063	Arithmetic Standard Deviation	Other (10m Tower)
Std Dev Vt Wind Direction	n 61107	Industrial	1	1	N/A	MET	014	deg	020	Arithmetic Standard Deviation	Other (10m Tower)
Sulfur Dioxide	42401	Industrial	1	1	MID	СОМ	800	ppb	100	Ultra-violet Fluorescence	Source Oriented

Wednesday, September 7, 2022 Page 12 of 73

Sulfur Dioxide Max 5-min Avg	42406	Industrial	1		1	MID	СОМ	008	ppb	100	Ultra-violet Fluorescence	Source Oriented
Wind Direction - Resultant	61104	Industrial	1		1	N/A	MET	014	deg	020	Vector Summation	Other (10m Tower)
Wind Direction - Scalar	61102	Industrial	1		1	N/A	MET	014	deg	063	Climatronics	Other (10m Tower)
Wind Speed - Resultant	61103	Industrial	1		1	N/A	MET	011	m/s	020	Vector Summation	Other (10m Tower)
Wind Speed - Scalar	61101	Industrial	1		1	N/A	MET	011	m/s	063	Climatronics	Other (10m Tower)
Wind Speed - Vertical	61109	Industrial	1		1	N/A	MET	011	m/s	020	Electronic Averaging	Other (10m Tower)
WS - Sigma Theta (Vertical)	61110	Industrial	1		1	N/A	MET	011	m/s	020	Arithmetic Standard Deviation	Other (10m Tower)
Rush Island, Fu	ılts-Sı	ite, IL							AQ	S Site Nu	mber17-133	3-9001
Off Ivy Road, Fults	, IL 62	244										
<i>Latitude:</i> 38.15	908	AQCR:	138	SE Mi	issouri							
Longitude: -90.22	2728	MSA:	0000	Not in	a MSA							
Elevation (ft): 446		AQS						AQS		AQS		AQS
	AQS Code	Monitor Type	AQS POC	Coll	AQS Freq	AQS Scale	State- Obj	Unit- Code		Method Code	AQS Method	Monitor Objective

Wednesday, September 7, 2022

Barometric Pressure	64101	Industrial	1	1	N/A	MET	016	Millbars	015	Instrumental- Barometric Press Transducer	Other S
Outdoor Temperature	62101	Industrial	2	1	N/A	MET	017	deg C	040	Electronic Averaging	Other (10m Probe Height)
Outdoor Temperature	62101	Industrial	3	1	N/A	MET	017	deg C	040	Electronic Averaging	Other (2m Probe Height)
Outdoor Temperature Diff	62106	Industrial	1	1	N/A	MET	116	Temp Diff deg C	041	Instrumental: Elect or Mach Avg Lev 2-Lev1	Other (10m - 2m Probe Heights)
Precipitation	65102	Industrial	1	1	N/A	MET	021	inches	014	Heated Tipping Bucket	Other
Relative Humidity	62201	Industrial	1	1	N/A	MET	019	%humidity	061	Met One 083D	Other
Solar Radiation	63301	Industrial	1	1	N/A	MET	079	W/m^2	011	Instrumental- Pyranometer	Other
Std Dev Hz Wind Direction	n 61106	Industrial	1	1	N/A	MET	014	deg	063	Arithmetic Standard Deviation	Other (10m Tower)
Std Dev Vt Wind Direction	61107	Industrial	1	1	N/A	MET	014	deg	020	Arithmetic Standard Deviation	Other (10m Tower)

Wednesday, September 7, 2022 Page 14 of 73

Sulfur Dioxide	42401	Industrial	1	1	MID	COM	008	ppb	100	Ultra-violet Fluorescence	Source Oriented
Sulfur Dioxide Max 5-min Avg	42406	Industrial	1	1	MID	СОМ	008	ppb	100	Ultra-violet Fluorescence	Source Oriented
Wind Direction - Resultant	61104	Industrial	1	1	N/A	MET	014	deg	020	Vector Summation	Other (10m Tower)
Wind Direction - Scalar	61102	Industrial	1	1	N/A	MET	014	deg	063	Climatronics	Other (10m Tower)
Wind Speed - Resultant	61103	Industrial	1	1	N/A	MET	011	m/s	020	Vector Summation	Other (10m Tower)
Wind Speed - Scalar	61101	Industrial	1	1	N/A	MET	011	m/s	063	Climatronics	Other (10m Tower)
Wind Speed - Vertical	61109	Industrial	1	1	N/A	MET	011	m/s	020	Electronic Averaging	Other (10m Tower)
WS - Sigma Theta (Vertical)	61110	Industrial	1	1	N/A	MET	011	m/s	020	Arithmetic Standard Deviation	Other (10m Tower)

Wednesday, September 7, 2022 Page 15 of 73

Musii Isimii	i, juliust	<u> </u>	UYVE						AQ.	J Due Iva	mver23-033	3000
600 Johnson I	Rd., Festus,	MO 63028										
Latitude:	38.11999	AQCR:	070	Metr	opolitan S	t. Louis						
Longitude:	-90.28214	MSA:	7040	St. L	ouis, MO-	·IL						
Elevation (ft): Parameter	656 AQS Code	AQS Monitor Type	AQS POC	Coll	AQS Freq	AQS Scale	State- Obj	AQS Unit- Code	AQS Unit	AQS Method Code	AQS Method	AQS Monitor Objective
Outdoor Temperati	ure 62101	Industrial	2		1	N/A	MET	017	deg C	040	Electronic Averaging	Other (62.5m Probe Height)
Outdoor Temperate	ure 62101	Industrial	3		1	N/A	MET	017	deg C	040	Electronic Averaging	Other (132.5m Probe Height)
Outdoor Temperati	ure Diff 62106	Industrial	1		1	N/A	MET	116	Temp Diff deg C	041	Instrumental: Elect or Mach Avg Lev 2-Lev1	Other (132.5m- 62.5m Probe Heights)
Std Dev Hz Wind D	Direction 61106	Industrial	1		1	N/A	MET	014	deg	063	Arithmetic Standard Deviation	Other (132.5m, 15 min)
Std Dev Hz Wind D	Direction 61106	Industrial	2		1	N/A	MET	014	deg	063	Arithmetic Standard Deviation	Other (132.5m, 60 min)
Std Dev Hz Wind D	Direction 61106	Industrial	3		1	N/A	MET	014	deg	063	Arithmetic Standard Deviation	Other (62.5m, A-15 min)
Std Dev Hz Wind D	Direction 61106	Industrial	4		1	N/A	MET	014	deg	063	Arithmetic Standard Deviation	Other (62.5m, A-60 min)
Std Dev Hz Wind D	Direction 61106	Industrial	5		1	N/A	MET	014	deg	063	Arithmetic Standard Deviation	Other (62.5m, B-15 min)

Std Dev Hz Wind Direction 61106	Industrial	6	1	N/A	MET	014	deg	063	Arithmetic Standard Deviation	Other (62.5m, B-60 min)
Std Dev Vt Wind Direction 61107	Industrial	1	1	N/A	MET	014	deg	020	Arithmetic Standard Deviation	Other (132.5m, 15 min)
Std Dev Vt Wind Direction 61107	Industrial	2	1	N/A	MET	014	deg	020	Arithmetic Standard Deviation	Other (132.5m, 60min)
Std Dev Vt Wind Direction 61107	Industrial	3	1	N/A	MET	014	deg	020	Arithmetic Standard Deviation	Other (62.5m, A-15 min)
Std Dev Vt Wind Direction 61107	Industrial	4	1	N/A	MET	014	deg	020	Arithmetic Standard Deviation	Other (62.5m, A-60min)
Std Dev Vt Wind Direction 61107	Industrial	5	1	N/A	MET	014	deg	020	Arithmetic Standard Deviation	Other (62.5m, B-15 min)
Std Dev Vt Wind Direction 61107	Industrial	6	1	N/A	MET	014	deg	020	Arithmetic Standard Deviation	Other (62.5m, B-60 min)
Wind Direction - Resultant 61104	Industrial	1	1	N/A	MET	014	deg	020	Vector Summation	Other (132.5m Probe Height)
Wind Direction - Resultant 61104	Industrial	2	1	N/A	MET	014	deg	020	Vector Summation	Other (62.5m Probe Height)
Wind Direction - Resultant 61104	Industrial	3	1	N/A	MET	014	deg	020	Vector Summation	Other (62.5m Probe Height)

Wednesday, September 7, 2022 Page 17 of 73

Wind Direction - Scalar	61102	Industrial	1	1	N/A	MET	014	deg	063	Climatronics	Other (132.5m Probe Height)
Wind Direction - Scalar	61102	Industrial	2	1	N/A	MET	014	deg	063	Climatronics	Other (62.5m Probe Height)
Wind Direction - Scalar	61102	Industrial	3	1	N/A	MET	014	deg	063	Climatronics	Other (62.5m Probe Height)
Wind Speed - Resultant	61103	Industrial	1	1	N/A	MET	011	m/s	020	Vector Summation	Other (132.5m Probe Height)
Wind Speed - Resultant	61103	Industrial	2	1	N/A	MET	011	m/s	020	Vector Summation	Other (62.5m Probe Height)
Wind Speed - Resultant	61103	Industrial	3	1	N/A	MET	011	m/s	020	Vector Summation	Other (62.5m Probe Height)
Wind Speed - Scalar	61101	Industrial	1	1	N/A	MET	011	m/s	063	Climatronics	Other (132.5m Probe Height)
Wind Speed - Scalar	61101	Industrial	2	1	N/A	MET	011	m/s	063	Climatronics	Other (62.5m Probe Height)
Wind Speed - Scalar	61101	Industrial	3	1	N/A	MET	011	m/s	063	Climatronics	Other (62.5m Probe Height)
Wind Speed - Vertical	61109	Industrial	1	1	N/A	MET	011	m/s	020	Electronic Averaging	Other (132.5m Probe Height)

Wednesday, September 7, 2022 Page 18 of 73

Wind Speed - Vertic	cal 61109	Industrial	2		1	N/A	MET	011	m/s	020	Electronic Averaging	Other (62.5m Probe Height)
Wind Speed - Vertice	cal 61109	Industrial	3		1	N/A	MET	011	m/s	020	Electronic Averaging	Other (62.5m Probe Height)
WS - Sigma Theta (Vertical)	61110	Industrial	1		1	N/A	MET	011	m/s	020	Arithmetic Standard Deviation	Other (132.5m Probe Height)
WS - Sigma Theta (Vertical)	61110	Industrial	2		1	N/A	MET	011	m/s	020	Arithmetic Standard Deviation	Other (62.5m Probe Height)
WS - Sigma Theta (Vertical)	61110	Industrial	3		1	N/A	MET	011	m/s	020	Arithmetic Standard Deviation	Other (62.5m Probe Height)
Rush Island	l. Natche.	7							AO	S Site Nu	mber29-099	9-9009
Rush Island 917 Natchez T		•	le, Mo	O 636	27				AQ	S Site Nu	mber 29-09 9	9-9009
		•	le, M (27 opolitan S	St. Louis			AQ	S Site Nu	mber 29-09 \$	9-9009
917 Natchez T	race Drive,	Bloomsda		Metro					AQ	S Site Nu	mber 29-09 \$	9-9009
917 Natchez T Latitude:	race Drive, 38.10525	Bloomsda AQCR: MSA:	070	Metro	opolitan S			405	AQ		mber 29-09 \$	
917 Natchez T Latitude: Longitude:	Trace Drive, 38.10525 -90.29842	Bloomsda	070	Metro	opolitan S	-IL	State- Obj	AQS Unit- Code	AQS	S Site Nu AQS Method Code		AQS Monitor Objective
917 Natchez T Latitude: Longitude: Elevation (ft):	Trace Drive, 38.10525 -90.29842 505 AQS	Bloomsda AQCR: MSA: AQS Monitor	070 7040 <i>AQS</i>	Metro	opolitan S $_{ m outs}$, MO $_{ m outs}$	-IL AQS		Unit-	AQS	AQS Method	AQS	AQS Monitor

Rush Island, Weaver Road & Highway AA

802 Weaver F	Road, Festus	, MO 6302	8									
Latitude:	38.144972	AQCR:	070	Metro	opolitan S	St. Louis						
Longitude:	-90.304783	MSA:	7040	St. L	ouis, MO	-IL						
Elevation (ft):	502	AQS						AQS		AQS		405
Parameter	AQS Code	Monitor Type	AQS POC	Coll	AQS Freq	AQS Scale		Unit- Code	_	Method Code	AQS Method	AQS Monitor Objective
Sulfur Dioxide	42401	Industrial	1		1	MID	СОМ	008	ppb	100	Ultra-violet Fluorescence	Source Oriented
Sulfur Dioxide Max Avg	c 5-min 42406	Industrial	1		1	MID	СОМ	800	ppb	100	Ultra-violet Fluorescence	Source Oriented

Doe Run Buick (PQAO - 1290)

County Roc	ıd 75								AQS	S Site Nu	mber29-093	3-9010
98 Iron Count	y Road, Bix	by, MO 65	3439									
Latitude:	37.64876	AQCR:	138	SE M	lissouri							
Longitude:	-91.14980	MSA:	0000	Not in	n a MSA							
Elevation (ft): Parameter	1365 AQS Code	AQS Monitor Type	AQS POC	Coll	AQS Freq	AQS Scale	State- Obj	AQS Unit- Code		AQS Method Code	AQS Method	AQS Monitor Objective
Sulfur Dioxide	42401	Industrial	1		1	MID	СОМ	008	ppb	060	Pulsed Fluorescent	Source Oriented
Sulfur Dioxide Max Avg	: 5-min 42406	Industrial	1		1	MID	COM	008	ppb	060	Pulsed Fluorescent	Source Oriented
Doe Run Bi	uick - Rui	ick NE							AOS	S Site Nu	mber 29-09 3	3-9008
346 Power La			5439									
Latitude:	37.65214	AQCR:	138	SE M	lissouri							
Longitude:	-91.11689	MSA:	0000	Not in	n a MSA							
Elevation (ft): Parameter	1423 AQS Code	AQS Monitor Type	AQS POC	Coll	AQS Freq	AQS Scale	State- Obj	AQS Unit- Code	_	AQS Method Code	AQS Method	AQS Monitor Objective
Lead (TSP) - LC Fi	RM/FEM 14129	Industrial	1		1/1	MID	СОМ	105	ug/m^3-LC	C 192	Inductive Coupled Plasma Spectrometry	Source Oriented

Wednesday, September 7, 2022 Page 21 of 73

Doe Run Bi	uick - Noi	rth #5 (1	VON	(-A)					AQ	S Site Nu	mber 29-09 3	3-0021
Doe Run Buic	ck - North#5	, Buick, M	O 654	139								
Latitude:	37.65178	AQCR:	138	SE M	lissouri							
Longitude:	-91.13094	MSA:	0000	Not i	n a MSA							
Elevation (ft): Parameter	1443 AQS Code	AQS Monitor Type	AQS POC	Coll	AQS Freq	AQS Scale	State- Obj	AQS Unit- Code	AQS Unit	AQS Method Code	AQS Method	AQS Monitor Objective
Lead (TSP) - LC Fl	RM/FEM 14129	Industrial	1		1/6	MID	SIP	105	ug/m^3-L	C 192	Inductive Coupled Plasma Spectrometry	Source Oriented
Doe Run Bi	uick - Soi	uth #1 (1	VON	(-A)					AQ	S Site Nu	mber29-093	3-0016
Doe Run Buic	ck - South#1	, Buick, M	O 654	139								
Latitude:	37.62400	AQCR:	138	SE M	lissouri							
Longitude:	-91.12827	MSA:	0000	Not in	n a MSA							
Elevation (ft): Parameter	1502 AQS Code	AQS Monitor Type	AQS POC	Coll	AQS Freq	AQS Scale	State- Obj	AQS Unit- Code	AQS Unit	AQS Method Code	AQS Method	AQS Monitor Objective
Lead (TSP) - LC FI	RM/FEM 14129	Industrial	1		1/6	MID	SIP	105	ug/m^3-Li	C 192	Inductive Coupled Plasma Spectrometry	Source Oriented
Lead (TSP) - LC FI	RM/FEM 14129	Industrial	2	✓	1/6	MID	SIP	105	ug/m^3-L	C 192	Inductive Coupled Plasma Spectrometry	Quality Assurance (Collocation)
Hwy 32 No	rtheast								AO.	S Site Nu	mber 29-09 3	3-9009
1582 Highway		MO 6543	9									
Latitude:	37.65319	AQCR:	138	SE M	lissouri							
Longitude:	-91.12795	MSA:	0000	Not in	n a MSA							
Elevation (ft):	1384	AQS						4.00		1.00		4.00
Parameter	AQS Code	Monitor Type	AQS POC	Coll	AQS Freq	AQS Scale	State- Obj	AQS Unit- Code	AQS Unit	AQS Method Code	AQS Method	AQS Monitor Objective

Sulfur Dioxide	42401	Industrial	1		1	MID	СОМ	008	ppb	060	Pulsed Fluorescent	Source Oriented
Sulfur Dioxide Max 5- Avg	min 42406	Industrial	1		1	MID	СОМ	008	ppb	060	Pulsed Fluorescent	Source Oriented
West Entrand	ce								AQ	QS Site Nu	mber 29-09	3-9011
18594 Hwy KK	, Boss, Mo	O 65440										
Latitude: 3	7.63211	AQCR:	138	SE M	lissouri							
Longitude: -	91.13565	MSA:	0000	Not i	n a MSA							
Elevation (ft): 1	463	AQS						AQS		AQS		AQS
Parameter	AQS Code	Monitor Type	AQS POC	Coll	AQS Freq	AQS Scale		Unit- Code	_	Method Code	AQS Method	Monitor Objective
Sulfur Dioxide	42401	Industrial	1		1	MID	СОМ	008	ppb	060	Pulsed Fluorescent	Source Oriented
Sulfur Dioxide Max 5- Avg	min 42406	Industrial	1		1	MID	СОМ	800	ppb	060	Pulsed Fluorescent	Source Oriented

Wednesday, September 7, 2022 Page 23 of 73

Doe Run Glover (PQAO - 1290)

Due Kun O	<u>llover - Bi</u>	g Creek	$\mathcal{I} \# \mathcal{I}$	NUI	N-A	Pro	<u>osea</u>	to D	ISCAQ	Site Nu	<i>mber</i> 29-093	-0029
Doe Run Glo	ver - Big Cre	ek #5, Hw	y 49 (Glove	r, MO	55439						
Latitude:	37.47211	AQCR:	138	SE M	lissouri							
Longitude:	-90.68919	MSA:	0000	Not in	n a MSA							
Elevation (ft):	836	AQS						4.00		4.00		4.00
Parameter	AQS Code	Monitor Type	AQS POC	Coll	AQS Freq	AQS Scale	State- Obj	AQS Unit- Code	AQS Unit	AQS Method Code	AQS Method	AQS Monitor Objective
Lead (TSP) - LC F	RM/FEM 14129	Industrial	1		1/6	MID	SIP	105	ug/m^3-L(C 192	Inductive Coupled Plasma Spectrometry	Source Oriented
Doe Run G	lover - Pa	ost Offic	e #2	(NC	0N-A	(Pro	opose	d to i	Dis AQS	S Site Nu	mber 29-093	3-0027
Doe Run Glo	T											
Doc Run Glo	ver - Post Of	fice #2, H	wy 49	Glove	er, MC	65439	9					
Latitude:	ver - Post Of 37.48532	fice #2, Hv AQCR:	wy 49 138		er, MC lissouri	65439	9					
			•	SE M		65439	9					
Latitude:	37.48532 -90.68991	AQCR:	138	SE M	lissouri		State-	AQS Unit- Code	_	AQS Method Code	AQS Method	AQS Monitor Objective
Latitude: Longitude: Elevation (ft):	37.48532 -90.68991 831 <i>AQS</i> <i>Code</i>	AQCR: MSA: AQS Monitor	138 0000 <i>AQS</i>	SE M	lissouri n a MSA AQS	AQS	State-	Unit-	_	Method Code		Monitor Objective Source

Wednesday, September 7, 2022 Page 24 of 73

Doe Run Herculaneum (PQAO - 1290)

Herculanei	ım, City I	Hall (Me	ott Si	reet)				AQS	Site Nu	mber29-099	-0020
360 Short Str	eet, Hercular	neum, MO,	6304	8								
Latitude:	38.263394	AQCR:	070	Metro	opolitan S	t. Louis						
Longitude:	-90.379667	MSA:	7040	St. Lo	ouis, MO-	IL						
Elevation (ft):	468	AQS						4.00		1.00		4.00
Parameter	AQS Code	Monitor Type	AQS POC	Coll	AQS Freq	AQS Scale	State- Obj	AQS Unit- Code		AQS Method Code	AQS Method	AQS Monitor Objective
Lead (TSP) - LC F	RM/FEM 14129	Industrial	1		1/1	MID	СОМ	105	ug/m^3-LC	: 192	Inductive Coupled Plasma Spectrometry	Source Oriented & Highest Concentration
Lead (TSP) - LC F	RM/FEM 14129	Industrial	2	✓	1/6	MID	COM	105	ug/m^3-LC	192	Inductive Coupled Plasma Spectrometry	Quality Assurance (Collocation)
Herculanei	ım. Dunk	lin High	Sch	ool					AOS	S Site Nu	mber 29-09 9	-9002
1 Black cat D									~			
Latitude:	38.26703	AQCR:	070	Metro	opolitan S	t. Louis						
Longitude:	-90.37875	MSA:	7040	St. Lo	ouis, MO-	IL						
Elevation (ft): Parameter	AQS Code	AQS Monitor Type	AQS POC	Coll	AQS Freq	AQS Scale	State- Obj	AQS Unit- Code		AQS Method Code	AQS Method	AQS Monitor Objective
Lead (TSP) - LC F	RM/FEM 14129	Industrial	1		1/3	NBR	СОМ	105	ug/m^3-LC	: 192	Inductive Coupled Plasma Spectrometry	Source Oriented and Population Exposure

Wednesday, September 7, 2022 Page 25 of 73

North Cross, Herculaneum, MO 63048

Latitude:

070 Metropolitan St. Louis AQCR: 38.26216

7040 St. Louis, MO-IL Longitude: MSA: -90.38126

463 Elevation (ft):

AQS

AQS AQS AQS **Monitor AQS AQS** AQS State-Unit- AQS *AQS* Method AQS Monitor

Type Parameter POC Coll Scale Obj Code Unit Method Code Freq Code **Objective**

Lead (TSP) - LC FRM/FEM 14129

Industrial

1/3

NBR COM 105 ug/m^3-LC

192

Inductive Coupled Plasma Spectrometry

Source Oriented & Population Exposure

Environmental Services Program (ESP) [PQAO - 0588]

Uba									AQS	S Site Nu	mber29-097	7-0004
20400 Millwo	od Rd., Alb	a, MO 648	30									
Latitude:	37.2385	AQCR:	139	SW N	Missouri							
Longitude:	-94.42468	MSA:	3710	Joplii	n, MO							
Elevation (ft): Parameter	965 AQS Code	AQS Monitor Type	AQS POC	Coll	AQS Freq	AQS Scale	State-	AQS Unit- Code		AQS Method Code	AQS Method	AQS Monitor Objective
1 arameter	Coae	1340	roc	Con	rreq	Scare	Ouj	Coae	Onu	Coae	Метноа	Objective
Indoor Temperatur	e 62107	SPM	1		1	N/A	MET	017	deg C	013	Electronic Averaging	Other
Ozone	44201	SLAMS	1		1	NBR	СОМ	007	ppm	047	Ultraviolet Photometric	Max Ozone Concentratio & Population Exposure
Ozone	44201	SLAMS	2	✓	1	NBR	СОМ	007	ppm	047	Ultraviolet Photometric	-
Arnold Wes		1 MO 620	10						AQS	S Site Nu	mber 29-09 9	9-0019
1709 Lonedel <i>Latitude:</i>	38.44862	ı, MO 030 <i>AQCR:</i>	070	Metro	opolitan S	St. Louis						
Longitude:	-90.3958	MSA:	7040		· ouis, MO-							
Elevation (ft): Parameter		AQS Monitor Type	AQS POC	Coll		AQS Scale		AQS Unit- Code		AQS Method Code	AQS Method	AQS Monitor Objective
Ammonium Ion PN	12.5 LC 88301	SLAMS	6		1/6	NBR	RES	105	ug/m^3-LC	C 812	Met One SASS Nylon	Population Exposure (UC-Davis)

Wednesday, September 7, 2022 Page 27 of 73

Barometric Pressure	64101	SPM	1		1	N/A	MET	059	mm (Hg)	014	Instrumental- Barometric Sensor	Other
Indoor Temperature	62107	SPM	1		1	N/A	MET	017	deg C	013	Electronic Averaging	Other
OP CSN_Rev Undj PM2.5 LC TOR	5 88378	SLAMS	6		1/6	NBR	RES	105	ug/m^3-LC	842	URG 3000N w/Pall Quartz filter & Cyclone Inlet	Population Exposure (UC-Davis)
Outdoor Temperature	62101	SPM	1		1	N/A	MET	017	deg C	040	Electronic Averaging	Other (4m Probe Height)
Ozone	44201	SLAMS	1		1	NBR	СОМ	007	ppm	047	Ultraviolet Photometric	Population Exposure
Ozone	44201	SLAMS	2	✓	1	NBR	СОМ	007	ppm	047	Ultraviolet Photometric	-
PM10 - STP FRM/FEM	81102	SLAMS	3		1	NBR	СОМ	001	ug/m^3	079	R&P SA246B TEOM	Population Exposure
PM2.5 - LC FRM/FEM	88101	SLAMS	4		1	NBR	СОМ	105	ug/m^3-LC	181	PM2.5 VSCC FEM or Thermo Scientific 1405-F	
PM2.5 Volatile Channel	88503	SPM	4		1	NBR	AQI	105	ug/m^3-LC	181	PM2.5 VSCC FEM or Thermo Scientific 1405-F	Population Exposure

Wednesday, September 7, 2022 Page 28 of 73

Relative Humidity	62201	SPM	1		1	N/A	MET	019	%humidity	020	Instrumental- Computed (Indirect)	Other
Wind Direction - Resulta	nt 61104	SPM	1		1	N/A	MET	014	deg	065	Instrumental: RM Young Model 05305	Other (10m Tower)
Wind Speed - Resultant	61103	SPM	1		1	N/A	MET	012	mph	065	Instrumental: RM Young Model 05305	Other (10m Tower)
Blair Street (P	M2.5	method	to ch	iang	e fro	m 18:	2 to 1	81)	AQS	Site Nu	mber29-510	-0085
3247 Blair Street,	St. Loui	is, MO 63	107									
Latitude: 38.6	55638	AQCR:	070	Metro	opolitan S	St. Louis						
Longitude: -90.	19825	MSA:	7040	St. Lo	ouis, MO-	-IL						
Elevation (ft): 492		AQS						AQS		AQS		AQS
Parameter	AQS Code	Monitor Type	AQS POC	Coll	AQS Freq	AQS Scale	State- Obj	Unit- Code	AQS	Method Code	AQS Method	Monitor Objective
1,2,3-trimethylbenzene	45225	PAMS	1		1	URB	PAMS	078	ppbC	128	CAS Auto-Gas Chromatograph	Max precursor emissions impact
1,2,4-trimethylbenzene	45208	PAMS	1		1	URB	PAMS	078	ppbC	128	CAS Auto-Gas Chromatograph	Max precursor emissions impact
1-butene	43280	PAMS	1		1	URB	PAMS	078	ppbC	128	CAS Auto-Gas Chromatograph	Max precursor emissions impact
2,2,4-trimethylpentane												

Wednesday, September 7, 2022 Page 29 of 73

Acetaldehyde	43503	PAMS	1	1	URB	PAMS	078	ppbC	202	CAS Auto-Gas Chromatograph	Max precursor emissions impact
Ammonium Ion PM2.5 LC	88301	SPM	6	1/3	NBR	RES	105	ug/m^3-LC	812	Met One SASS Nylon	
Barometric Pressure	64101	SLAMS	1	1	N/A	MET	059	mm (Hg)	014	Instrumental- Barometric Sensor	Other
Benzene	45201	PAMS	1	1	URB	PAMS	078	ppbC	128	CAS Auto-Gas Chromatograph	Max precursor emissions impact
Black Carbon PM2.5 LC	88313	SLAMS	1	1	NBR	RES	105	ug/m^3-LC	894	Magee Scientific TAPI M633 Aethalometer	Population Exposure
Carbon Monoxide	42101	NCORE	1	1	NBR	СОМ	007	ppm	554	Gas Filter Corr Thermo Electron 48i TLE	Population Exposure
cis-2-butene	43217	PAMS	1	1	URB	PAMS	078	ppbC	128	CAS Auto-Gas Chromatograph	Max precursor emissions impact
Ethane	43202	PAMS	1	1	URB	PAMS	078	ppbC	128	CAS Auto-Gas Chromatograph	Max precursor emissions impact
Ethylbenzene	45203	PAMS	1	1	URB	PAMS	078	ppbC	128	CAS Auto-Gas Chromatograph	Max precursor emissions impact

Wednesday, September 7, 2022 Page 30 of 73

Ethylene	43203	PAMS	1		1	URB	PAMS	078	ppbC	128	CAS Auto-Gas Chromatograph	Max precursor emissions impact
Formaldehyde	43502	PAMS	1		1	URB	PAMS	078	ppbC	202	CAS Auto-Gas Chromatograph	Max precursor emissions impact
Indoor Temperature	62107	SLAMS	1		1	N/A	MET	017	deg C	013	Electronic Averaging	Other (Large Shelter)
Indoor Temperature	62107	SLAMS	2		1	N/A	MET	017	deg C	013	Electronic Averaging	Other (Small Shelter)
Isobutane	43214	PAMS	1		1	URB	PAMS	078	ppbC	128	CAS Auto-Gas Chromatograph	Max precursor emissions impact
Isopentane	43221	PAMS	1		1	URB	PAMS	078	ppbC	128	CAS Auto-Gas Chromatograph	Max precursor emissions impact
Isoprene	43243	PAMS	1		1	URB	PAMS	078	ppbC	128	CAS Auto-Gas Chromatograph	Max precursor emissions impact
Lead PM10 LC	85128	SPM	6		1/6	NBR	RES	108	ng/m^3-LC	907	R&P Partisol 2025 Teflon	Population Exposure (ERG)
Lead PM10 LC	85128	SPM	7	•	1/6	NBR	RES	108	ng/m^3-LC	907	R&P Partisol 2025 Teflon	Population Exposure (ERG)
M&P-xylenes	45109	PAMS	1		1	URB	PAMS	078	ppbC	128	CAS Auto-Gas Chromatograph	Max precursor emissions impact

Wednesday, September 7, 2022 Page 31 of 73

M-ethyltoluene	45212	PAMS	1	1	URB	PAMS	078	ppbC	128	CAS Auto-Gas Chromatograph	Max precursor emissions impact
Mixing Layer Height	61301	PAMS	1	1	NBR	MET	058	m	011	Ceilometer	Max precursor emissions impact
N-butane	43212	PAMS	1	1	URB	PAMS	078	ppbC	128	CAS Auto-Gas Chromatograph	Max precursor emissions impact
N-hexane	43231	PAMS	1	1	URB	PAMS	078	ppbC	128	CAS Auto-Gas Chromatograph	Max precursor emissions impact
Nitric Oxide	42601	NCORE	1	1	NBR	СОМ	008	ppb	699	Teledyne API 200 EU/501	Population Exposure
Nitric Oxide	42601	SLAMS	2	1	NBR	СОМ	008	ppb	200	Teledyne API T200UP Photolytic	Population Exposure
Nitrogen Dioxide	42602	SLAMS	2	1	NBR	СОМ	008	ppb	200	Teledyne API T200UP Photolytic	Population Exposure
N-pentane	43220	PAMS	1	1	URB	PAMS	078	ppbC	128	CAS Auto-Gas Chromatograph	Max precursor emissions impact
O-ethyltoluene	45211	PAMS	1	1	URB	PAMS	078	ppbC	128	CAS Auto-Gas Chromatograph	Max precursor emissions impact

Wednesday, September 7, 2022 Page 32 of 73

OP CSN_Rev Undj PM2.5 LC TOR	88378	SPM	6		1/3	NBR	RES	105	ug/m^3-LC	842	URG 3000N w/Pall Quartz filter & Cyclone Inlet	Highest Concentration (UC-Davis)
Outdoor Temperature	62101	NCORE	1		1	N/A	MET	017	deg C	040	Electronic Averaging	Other (4m Probe Height)
Oxides of Nitrogen	42603	SLAMS	2		1	NBR	СОМ	008	ppb	200	Teledyne API T200UP Photolytic	Population Exposure
Ozone	44201	NCORE	1		1	NBR	СОМ	007	ppm	047	Ultraviolet Photometric	Population Exposure
Ozone	44201	NCORE	2	✓	1	NBR	СОМ	007	ppm	047	Ultraviolet Photometric	
PM10 - LC/FEM/NonFEM	85101	SLAMS	5		1	NBR	СОМ	105	ug/m^3-LC	790	FDMS- Gravimetric 1405- DF	Population Exposure
PM10 - LC/FEM/NonFEM	85101	SPM	6		1	NBR	RES	105	ug/m^3-LC	239	Teledyne API T640x	Population Exposure
PM10 - STP FRM/FEM	81102	SLAMS	6		1	NBR	RES	001	ug/m^3	239	Teledyne API T640x	Population Exposure
PM2.5 - LC FRM/FEM	88101	SLAMS	4		1	NBR	СОМ	105	ug/m^3-LC	182	FMDS- Gravimetric 1405- DF	Population Exposure
PM2.5 - LC FRM/FEM	88101	SPM	6		1	NBR	RES	105	ug/m^3-LC	238	Teledyne API T640x	Population Exposure

Wednesday, September 7, 2022 Page 33 of 73

PM2.5 Tot Atmospheric	88500	SLAMS	1	1	NBR	AQI	105	ug/m^3-LC	790	FDMS- Gravimetric 1405- DF	Population - Exposure
PM2.5 Volatile Channel	88503	SLAMS	1	1	NBR	AQI	105	ug/m^3-LC	790	FDMS- Gravimetric 1405- DF	Population - Exposure
PMCoarse - LC FRM/FEM	l 86101	NCORE	6	1	NBR	RES	105	ug/m^3-LC	240	Teledyne API T640x	Population Exposure
PMCoarse - LC FRM/FEM	l 86101	SLAMS	8	1	NBR	СОМ	105	ug/m^3-LC	207	FMDS- Gravimetric 1405- DF	Population - Exposure
Precipitation	65102	PAMS	1	1	NBR	MET	021	inches	014	Heated Tipping Bucket	Max precursor emissions impact
Propane	45204	PAMS	1	1	URB	PAMS	078	ppbC	128	CAS Auto-Gas Chromatograph	Max precursor emissions impact
Propylene	43205	PAMS	1	1	URB	PAMS	078	ppbC	128	CAS Auto-Gas Chromatograph	Max precursor emissions impact
Reactive Oxides of N (NOY)	42600	NCORE	1	1	NBR	СОМ	008	ppb	699	Teledyne API 200 EU/501	Population Exposure
Relative Humidity	62201	NCORE	1	1	N/A	MET	019	%humidity	014	Instrumental- Hygromer C94 Probe	Other

Wednesday, September 7, 2022 Page 34 of 73

Solar Radiation	63301	SLAMS	1	1	N/A	MET	079	W/m^2	011	Instrumental- Pyranometer	Other
Std Dev Hz Wind Direction	n 61106	SPM	1	1	N/A	MET	014	deg	020	Arithmetic Standard Deviation	Other (10m Tower)
Styrene	45220	PAMS	1	1	URB	PAMS	078	ppbC	128	CAS Auto-Gas Chromatograph	Max precursor emissions impact
Sulfur Dioxide	42401	NCORE	1	1	NBR	СОМ	008	ppb	560	Pulsed Flourescent 43i- TLE	Population Exposure
Sulfur Dioxide Max 5-min Avg	42406	NCORE	1	1	NBR	СОМ	008	ppb	560	Pulsed Fluorescent	Population Exposure
Toluene	45202	PAMS	1	1	URB	PAMS	078	ppbC	128	CAS Auto-Gas Chromatograph	Max precursor emissions impact
Trans-2-butene	43216	PAMS	1	1	URB	PAMS	078	ppbC	128	CAS Auto-Gas Chromatograph	Max precursor emissions impact
Ultraviolet Radiation	63302	PAMS	1	1	NBR	MET	025	Langleys/ min	011	UV Radiometer (Photometer)	Max precursor emissions impact
UV Carbon PM2.5 LC	88314	SLAMS	1	1	NBR	RES	105	ug/m^3-LC	894	Magee Scientific TAPI M633 Aethalometer	Population Exposure

Wednesday, September 7, 2022 Page 35 of 73

Wind Direction - Res	sultant 611	04 NCORE	1		1	N/A	MET	014	deg	065	Instrumental: RM Young Model 05305	Other (10m Tower)
Wind Speed - Result	tant 611	03 NCORE	1		1	N/A	MET	012	mph	065	Instrumental: RM Young Model 05305	Other (10m Tower)
Blue Ridge,	I-70 (PM2.5 m	ethoe	l to c	chang	ge fro	m 18.	2 to 1	181 AQ	S Site Nu	mber29-095	-0042
4018 Harvard I	Lane, Ka	ınsas City, M	I O 641	33								
Latitude:	39.047911	AQCR:	094	Metro	opolitan k	Kansas Ci	ty					
Longitude:	-94.450513	MSA:	3760	Kans	as City, N	MO-KS						
Elevation (ft): Parameter	960 <i>AQS</i> <i>Code</i>			Coll	AQS Freq	AQS Scale	State- Obj	AQS Unit- Code	AQS Unit	AQS Method Code		AQS Monitor Objective
					•							
Barometric Pressure	e 641	01 SPM	1		1	N/A	MET	059	mm (Hg)	014	Instrumental- Barometric Sensor	Other
Black Carbon PM2.5	5 LC 883	13 SPM	1		1	MIC	СОМ	105	ug/m^3-L0	C 894	Magee Scientific TAPI M633 Aethalometer	Source Oriented
Carbon Monoxide	421	01 SLAMS	1		1	MIC	СОМ	007	ppm	554	Gas Filter Corr Thermo Electron 48i TLE	Source Oriented
Indoor Temperature	621	07 SPM	1		1	N/A	MET	017	deg C	013	Electronic Averaging	Other
Nitric Oxide	426	01 SPM	1		1	MIC	СОМ	008	ppb	074	Chemiluminescer ce	n Source Oriented

Nitrogen Dioxide	42602	SLAMS	1	1	MIC	СОМ	008	ppb	074	Chemiluminescen ce	Source Oriented
Outdoor Temperature	62101	SPM	1	1	N/A	MET	017	deg C	040	Electronic Averaging	Other (4m Probe Height)
Outdoor Temperature	62101	SPM	2	1	N/A	MET	017	deg C	040	Electronic Averaging	Other (10m Probe Height)
Outdoor Temperature	62101	SPM	3	1	N/A	MET	017	deg C	040	Electronic Averaging	Other (2m Probe Height)
Outdoor Temperature Diff	62106	SPM	1	1	N/A	MET	116	Temp Diff deg C	041	Instrumental: Elect or Mach Avg Lev 2-Lev1	Other
Oxides of Nitrogen	42603	SPM	1	1	MIC	СОМ	800	ppb	074	Chemiluminescen ce	Source Oriented
PM2.5 - LC FRM/FEM	88101	SLAMS	4	1	MIC	СОМ	105	ug/m^3-LC	182	FMDS- Gravimetric 1405- DF	Source Oriented
PM2.5 Tot Atmospheric	88500	SPM	1	1	MIC	AQI	105	ug/m^3-LC	790	FDMS- Gravimetric 1405- DF	Source Oriented
PM2.5 Volatile Channel	88503	SPM	1	1	MIC	AQI	105	ug/m^3-LC	790	FDMS- Gravimetric 1405- DF	Source Oriented
Precipitation	65102	SPM	1	1	N/A	MET	021	inches	014	Heated Tipping Bucket	Other

Wednesday, September 7, 2022 Page 37 of 73

Relative Humidity	62201	SPM	1		1	N/A	MET	019	%humidity	020	Instrumental- Computed (Indirect)	Other
Solar Radiation	63301	SPM	1		1	N/A	MET	079	W/m^2	011	Instrumental- Pyranometer	Other
Std Dev Hz Wind Direction	n 61106	SPM	1		1	N/A	MET	014	deg	020	Arithmetic Standard Deviation	Other (10m Tower)
UV Carbon PM2.5 LC	88314	SPM	1		1	MIC	СОМ	105	ug/m^3-LC	894	Magee Scientific TAPI M633 Aethalometer	Source Oriented
Wind Direction - Resultant	61104	SPM	1		1	N/A	MET	014	deg	065	Instrumental: RM Young Model 05305	Other (10m Tower)
Wind Speed - Resultant	61103	SPM	1		1	N/A	MET	012	mph	065	Instrumental: RM Young Model 05305	Other (10m Tower)
Bonne Terre									AQS	Site Nu	mber29-186	-0005
15797 Highway D,	Bonne	Terre, MO	O 6362	28					~			
Latitude: 37.90	084	AQCR:	138	SE Mi	issouri							
Longitude: -90.42	2388	MSA:	0000	Not in	a MSA							
Elevation (ft): 840		AQS						AQS		AQS		AQS
	AQS Code	Monitor Type	AQS POC	Coll	AQS Freq	AQS Scale	State- Obj	Unit- Code	AQS	Method Code	AQS	Monitor Objective
Indoor Temperature	62107	SPM	1		1	N/A	MET	017	deg C	013	Electronic Averaging	Other

Wednesday, September 7, 2022

Ozone	44201	SLAMS	1		1	REG	СОМ	007	ppm	047	Ultraviolet Photometric	Regional Transport
Ozone	44201	SLAMS	2	✓	1	REG	COM	007	ppm	047	Ultraviolet Photometric	-
Solar Radiation	63301	SPM	1		1	N/A	MET	079	W/m^2	011	Instrumental- Pyranometer	Other
Branch Street	4								AQS	Site Nu	mber29-51(0-0093
100 Branch St., S	t. Louis,	MO 6310	2									
Latitude: 38.	65643	AQCR:	070	Metro	opolitan S	St. Louis						
Longitude: -90	.18977	MSA:	7040	St. Lo	ouis, MO-	-IL						
Elevation (ft): 429 Parameter	AQS Code	AQS Monitor Type	AQS POC	Coll	AQS Freq	AQS Scale	State- Obj	AQS Unit- Code	AQS	AQS Method Code	AQS Method	AQS Monitor Objective
Barometric Pressure	64101	SPM	1		1	N/A	MET	059	mm (Hg)	014	Instrumental- Barometric Sensor	Other
Indoor Temperature	62107	SPM	1		1	N/A	MET	017	deg C	013	Electronic Averaging	Other
Outdoor Temperature	62101	SPM	1		1	N/A	MET	017	deg C	040	Electronic Averaging	Other (4m Probe Height)
PM10 - LC/FEM/NonFE	EM 85101	SPM	6		1	NBR	RES	105	ug/m^3-LC	239	Teledyne API T640x	Source Oriented

Wednesday, September 7, 2022 Page 39 of 73

PM10 - STP FRM/FEM	81102	SPM	6	1	NBR	RES	105	ug/m^3-LC	239	Teledyne API T640x	Source Oriented
PM2.5 - LC FRM/FEM	88101	SLAMS	4	1	MID	СОМ	105	ug/m^3-LC	181	PM2.5 VSCC FEM or Thermo Scientific 1405-F	Source Oriented
PM2.5 - LC FRM/FEM	88101	SPM	6	1	NBR	RES	105	ug/m^3-LC	238	Teledyne API T640x	Source Oriented
PM2.5 Volatile Channel	88503	SPM	4	1	MID	AQI	105	ug/m^3-LC	181	PM2.5 VSCC FEM or Thermo Scientific 1405-F	Source Oriented
PMCoarse - LC FRM/FEM	/I 86101	SPM	6	1	NBR	RES	105	ug/m^3-LC	240	Teledyne API T640x	Source Oriented
Relative Humidity	62201	SPM	1	1	N/A	MET	019	%humidity	020	Instrumental- Computed (Indirect)	Other
Std Dev Hz Wind Direction	n 61106	SPM	1	1	N/A	MET	014	deg	020	Arithmetic Standard Deviation	Other (10m Tower)
Wind Direction - Resultan	t 61104	SPM	1	1	N/A	MET	014	deg	065	Instrumental: RM Young Model 05305	Other (10m Tower)
Wind Speed - Resultant	61103	SPM	1	1	N/A	MET	012	mph	065	Instrumental: RM Young Model 05305	Other (10m Tower)

Wednesday, September 7, 2022 Page 40 of 73

Buick NE									AQS	Site Nu	mber29-093	-0034
346 Power La	ne, Bixby W	Vest, MO	55439									
Latitude:	37.65212	AQCR:	138	SE M	lissouri							
Longitude:	-91.11653	MSA:	0000	Not i	n a MSA							
Elevation (ft):	1423	AQS						AQS		AQS		AQS
Parameter	AQS Code	Monitor Type	AQS	Coll	AQS Freq	AQS Scale	State-	Unit-	AQS Unit	Method	AQS	Monitor
<u>1 arameter</u>	Coue	13pc	roc	Con	rreq	Scare	Obj	Code	Onu	Code	Meinoa	Objective
Indoor Temperatur	e 62107	SPM	1		1	N/A	MET	017	deg C	013	Electronic Averaging	Other
Lead (TSP) - LC F	RM/FEM 14129	SLAMS	1		1/6	MID	СОМ	105	ug/m^3-L0	C 813	Inductively Coupled Plasma Mass Spectroscopy	Source Oriented & Highest Concentration
Lead (TSP) - LC F	RM/FEM 14129	SLAMS	2	✓	1/6	MID	СОМ	105	ug/m^3-L0	C 813	Inductively Coupled Plasma Mass Spectroscopy	Quality Assurance (Collocation)
Sulfur Dioxide	42401	SPM	1		1	MID	СОМ	008	ppb	060	Pulsed Fluorescent	Source Oriented
Sulfur Dioxide Max Avg	: 5-min 42406	SPM	1		1	MID	СОМ	008	ppb	060	Pulsed Fluorescent	Source Oriented
Wind Direction - Re	esultant 61104	SPM	1		1	N/A	MET	014	deg	065	Instrumental: RM Young Model 05305	Other (10 meters)
Wind Speed - Res	ultant 61103	SPM	1		1	N/A	MET	012	mph	065	Instrumental: RM Young Model 05305	Other (10 meters)

Carthage										AQ	S Site Nui	mber29-097	-0003
530 Juniper, C	Carth	age, MO) 64836										
Latitude:	37.19	9822	AQCR:	139	SW N	/lissouri							
Longitude:	-94.3	31702	MSA:	3710	Joplin	n, MO							
Elevation (ft): Parameter	986	AQS Code	AQS Monitor Type	AQS POC	Coll	AQS Freq	AQS Scale	State- Obj	AQS Unit- Code	AQS Unit	AQS Method Code	AQS	AQS Monitor Objective
Indoor Temperature	е	62107	SPM	1		1	N/A	MET	017	deg C	013	Electronic Averaging	Other
PM10 - STP FRM/f	FEM	81102	SLAMS	3		1	MID	СОМ	001	ug/m^3	079	R&P SA246B TEOM	Source Oriented
PM10 - STP FRM/I	FEM	81102	SLAMS	4	✓	1	MID	СОМ	001	ug/m^3	079	R&P SA246B TEOM	Quality Assurance (Collocation)
Wind Direction - Re	esultan	nt 61104	SPM	1		1	N/A	MET	014	deg	065	Instrumental: RM Young Model 05305	Other (5.5 meters)
Wind Speed - Resu	ultant	61103	SPM	1		1	N/A	MET	012	mph	065	Instrumental: RM Young Model 05305	Other (5.5 meters)
Dunklin Hi	gh S	Schoo	l							AQ	S Site Nui	mber 29-0 99	-0005
1 Black Cat D	r., H	erculan	eum, MO,	63048	3								
Latitude:	38.26	6703	AQCR:	070	Metro	politan S	t. Louis						
Longitude:	-90.3	37875	MSA:	7040	St. Lo	ouis, MO-	IL						
Elevation (ft): Parameter	445	AQS Code	AQS Monitor Type	AQS POC	Coll	AQS Freq	AQS Scale	State- Obj	AQS Unit- Code	AQS Unit	AQS Method Code		AQS Monitor Objective

El Dorado	Spi	rings								AQ	S Site Nu	mber29-039	-0001
Highway 97 &	& Ва	rnes Ro	ad, El Dor	ado S _I	orings	, MO 6	4744						
Latitude:	37.7	70097	AQCR:	139	SW N	Missouri							
Longitude:	-94.	03474	MSA:	0000	Not i	n a MSA							
Elevation (ft): Parameter	965	AQS Code	AQS Monitor Type	AQS POC	Coll	AQS Freq	AQS Scale	State- Obj	AQS Unit- Code	AQS Unit	AQS Method Code	AQS Method	AQS Monitor Objective
Barometric Pressu	ure	64101	SPM	1		1	N/A	MET	059	mm (Hg)	014	Instrumental- Barometric Sensor	Other
Indoor Temperatur	re	62107	SPM	1		1	N/A	MET	017	deg C	013	Electronic Averaging	Other
Outdoor Temperat	ure	62101	SPM	1		1	N/A	MET	017	deg C	040	Electronic Averaging	Other (4m Probe Height)
Ozone		44201	SLAMS	1		1	REG	СОМ	007	ppm	047	Ultraviolet Photometric	Regional Transport
Ozone		44201	SLAMS	2	✓	1	REG	COM	007	ppm	047	Ultraviolet Photometric	-
PM2.5 - LC FRM/F	EM	88101	SLAMS	4		1	REG	СОМ	105	ug/m^3-L0	C 181	PM2.5 VSCC FEM or Thermo Scientific 1405-F	Regional Transport

PM2.5 Volatile Channel	88503	SPM	4		1	REG	AQI	105	ug/m^3-LC	: 181	PM2.5 VSCC FEM or Thermo Scientific 1405-F	Regional Transport
Relative Humidity	62201	SPM	2		1	N/A	MET	019	%humidity	020	Instrumental- Computed (Indirect)	Other
Wind Direction - Resultant	61104	SPM	1		1	N/A	MET	014	deg	065	Instrumental: RM Young Model 05305	Other (5.5 meters)
Wind Speed - Resultant	61103	SPM	1		1	N/A	MET	012	mph	065	Instrumental: RM Young Model 05305	Other (5.5 meters)
Farrar									AQS	S Site Nui	mber29-157	-0001
County Rd. 342, Fa	ırrar, M	O 63746										
County Rd. 342, Fa		O 63746 AQCR:	138	SE M	issouri							
·	264		138		issouri ı a MSA							
Latitude: 37.70	264	AQCR: MSA:						405		40S		405
Latitude: 37.70 Longitude: -89.69 Elevation (ft): 497	264	AQCR:		Not in		AQS Scale	State- Obj	AQS Unit- Code	AQS	AQS Method Code	AQS	AQS Monitor Objective
Latitude: 37.70 Longitude: -89.69 Elevation (ft): 497	264 98640 <i>AQS</i>	AQCR: MSA: AQS Monitor	0000 AQS	Not in	a MSA AQS	Scale		Unit-	AQS	Method Code	AQS	Monitor
Latitude: 37.70 Longitude: -89.69 Elevation (ft): 497 Parameter	264 98640 AQS Code	AQCR: MSA: AQS Monitor Type	AQS POC	Not in	AQS Freq	Scale	Obj	Unit- Code	AQS Unit	Method Code	AQS Method	Monitor Objective

Fellows La	ke								AQ	S Site Nu	mber29-07	7-0042
4208 E. Farm	Rd. 66, Spri	ngfield, M	10 658	303								
Latitude:	37.31912	AQCR:	139	SW I	Missouri							
Longitude:	-93.20422	MSA:	7920	Sprir	ngfield, M	0						
Elevation (ft):	1346	AQS						AQS		AQS		AQS
.	AQS	Monitor	AQS	~ !!	AQS		State-	Unit-	~	Method		Monitor
Parameter	Code	Type	POC	Coll	Freq	Scale	Obj	Code	Unit	Code	Method	Objective
Indoor Temperatur	e 62107	SPM	1		1	N/A	MET	017	deg C	013	Electronic Averaging	Other
Ozone	44201	SLAMS	1		1	URB	СОМ	007	ppm	047	Ultraviolet Photometric	Max Ozone Concentration & Population Exposure
Ozone	44201	SLAMS	2	✓	1	URB	СОМ	007	ppm	047	Ultraviolet Photometric	-
Finger Lak	0.0								10	DC Cita No.	mber29-01	Q_0011
1505 E. Peabo		olumbia N	AO 65	202					AQ	s sue Mu	mber 25-0 i	3-0011
Latitude:	39.07803	AQCR:			nern Miss	ouri						
Longitude:	-92.31632	MSA:	1740	Colu	mbia, MC)						
Elevation (ft):	726											
Parameter	AQS Code	AQS Monitor Type	AQS POC	Coll	AQS Freq	AQS Scale	State- Obj	AQS Unit- Code		AQS Method Code	AQS Method	AQS Monitor Objective
Indoor Temperatur	e 62107	SPM	1		1	N/A	MET	017	deg C	013	Electronic Averaging	Other
Ozone	44201	SLAMS	1		1	NBR	СОМ	007	ppm	047	Ultraviolet Photometric	Max Ozone Concentration & Population Exposure

Ozone 44201 SLAMS 2 🗹 1 NBR COM 007 ppm 047 Ultraviolet Photometric

Fletcher (P	roposed i	to Disco	ontini	ue)					AQ	S Site Nui	mber29-179	9-0002
Forest Rd. 22	36, Westfork	x, MO 644	98									
Latitude:	37.46889	AQCR:	138	SE M	lissouri							
Longitude:	-91.08847	MSA:	0000	Not in	n a MSA							
Elevation (ft):	1256	AQS						405		408		400
Parameter	AQS Code	Monitor Type	AQS POC	Coll	AQS Freq	AQS Scale	State- Obj	AQS Unit- Code	AQS Unit	AQS Method Code	AQS Method	AQS Monitor Objective
Lead (TSP) - LC F	RM/FEM 14129	SLAMS	1		1/6	NBR	СОМ	105	ug/m^3-L	C 813	Inductively Coupled Plasma Mass Spectroscopy	Source Oriented
Foley West									AQ	S Site Nu	mber29-113	3-0004
2100 Highway	y Y Foley, M	1O 63347										
Latitude:	39.04577	AQCR:	137	North	ern Miss	ouri						
Longitude:	-90.84927	MSA:	7040	St. Lo	ouis, MO-	IL						
Elevation (ft):	715 <i>AQS</i>	AQS Monitor	AQS	Call	AQS	_	State-	AQS Unit-	~	AQS Method		AQS Monitor
Parameter	Code	Type	POC	Coll	Freq	Scale	ОЫ	Code	Unit	Code	Method	Objective
Indoor Temperatur	e 62107	SPM	1		1	N/A	MET	017	deg C	013	Electronic Averaging	Other
Ozone	44201	SLAMS	1		1	NBR	СОМ	007	ppm	047	Ultraviolet Photometric	Extreme Downwind
Ozone	44201	SLAMS	2	✓	1	NBR	СОМ	007	ppm	047	Ultraviolet Photometric	-

Wednesday, September 7, 2022

Nitric Oxide	42601	SPM	1	1	MIC	СОМ	008	ppb	074	Chemiluminescen ce	Source Oriented
Nitrogen Dioxide	42602	SLAMS	1	1	MIC	СОМ	008	ppb	074	Chemiluminescen ce	n Source Oriented
Outdoor Temperature	62101	SPM	1	1	N/A	MET	017	deg C	040	Electronic Averaging	Other (4m Probe Height)
Outdoor Temperature	62101	SPM	2	1	N/A	MET	017	deg C	040	Electronic Averaging	Other (10m Probe Height)
Outdoor Temperature	62101	SPM	3	1	N/A	MET	017	deg C	040	Electronic Averaging	Other (2m Probe Height)
Outdoor Temperature Diff	62106	SPM	1	1	N/A	MET	116	Temp Diff deg C	041	Instrumental: Elect or Mach Avg Lev 2-Lev1	Other (10m - 2m Probe Height)
Oxides of Nitrogen	42603	SPM	1	1	MIC	СОМ	008	ppb	074	Chemiluminescen ce	n Source Oriented
PM2.5 - LC FRM/FEM	88101	SLAMS	4	1	MIC	СОМ	105	ug/m^3-LC	182	FMDS- Gravimetric 1405- DF	Source Oriented
PM2.5 Tot Atmospheric	88500	SPM	1	1	MIC	AQI	105	ug/m^3-LC	790	FDMS- Gravimetric 1405- DF	Source - Oriented

Wednesday, September 7, 2022 Page 48 of 73

PM2.5 Volatile Channel	88503	SPM	1	1	MIC	AQI	105	ug/m^3-LC	790	FDMS- Gravimetric 1405- DF	Source - Oriented
Precipitation	65102	SPM	1	1	N/A	MET	021	inches	014	Heated Tipping Bucket	Other
Relative Humidity	62201	SPM	1	1	N/A	MET	019	%humidity	020	Instrumental- Computed (Indirect)	Other
Solar Radiation	63301	SLAMS	1	1	N/A	MET	079	W/m^2	011	Instrumental- Pyranometer	Other
Std Dev Hz Wind Direction	61106	SPM	1	1	N/A	MET	014	deg	020	Arithmetic Standard Deviation	Other (10m Tower)
UV Carbon PM2.5 LC	88314	SPM	1	1	MIC	СОМ	105	ug/m^3-LC	894	Magee Scientific TAPI M633 Aethalometer	Source Oriented
Wind Direction - Resultant	61104	SPM	1	1	N/A	MET	014	deg	065	Instrumental: RM Young Model 05305	Other (10m Tower)
Wind Speed - Resultant	61103	SPM	1	1	N/A	MET	012	mph	065	Instrumental: RM Young Model 05305	Other (10m Tower)

Wednesday, September 7, 2022 Page 49 of 73

Front Stree	et								AQS	Site Nu	mber29-095	5-0018
1331 N. Jacks	son, Kansas (City, MO	64120									
Latitude:	39.13198	AQCR:	094	Metro	opolitan K	ansas Ci	ty					
Longitude:	-94.52137	MSA:	3760	Kans	as City, N	IO-KS						
Elevation (ft): Parameter	728 AQS Code	AQS Monitor Type	AQS POC	Coll	AQS Freq	AQS Scale	State- Obj	AQS Unit- Code		AQS Method Code	AQS Method	AQS Monitor Objective
Indoor Temperatur	re 62107	SPM	1		1	N/A	MET	017	deg C	013	Electronic Averaging	Other
PM10 - STP FRM/	FEM 81102	SLAMS	3		1	NBR	СОМ	001	ug/m^3	079	R&P SA246B TEOM	Highest Concentration & Population Exposure
Herculanei	ım. Mott	Street							AQS	Site Nu	mber29-099	-0027
747 Mott St.,	Herculaneur	n, MO, 63	048									
Latitude:	38.263394	AQCR:	070	Metro	opolitan S	t. Louis						
Longitude:	-90.379667	MSA:	7040	St. L	ouis, MO-	IL						
Elevation (ft):	468											
Parameter	AQS Code	AQS Monitor Type	AQS POC	Coll	AQS Freq	AQS Scale	State- Obj	AQS Unit- Code		AQS Method Code	AQS Method	AQS Monitor Objective
Parameter Indoor Temperatur	AQS Code	Monitor		Coll	_	~		Unit-	AQS	Method		Monitor
	AQS Code	Monitor Type	POC		Freq	Scale	<i>Obj</i>	Unit- Code	AQS Unit	Method Code 013	Method Electronic	Monitor Objective Other

Herculaneu 460 Sherman S Latitude:			0, 6304 070		opolitan S	t. Louis			AQ	S Site Nu	mber29-099	-0013
Longitude:	-90.37658	MSA:	7040	St. Lo	ouis, MO-	·IL						
Elevation (ft): Parameter	462 AQS Code	AQS Monitor Type	AQS POC	Coll	AQS Freq	AQS Scale	State- Obj	AQS Unit- Code	_	AQS Method Code		AQS Monitor Objective
•	AQS Code	AQS Monitor Type	POC			Scale		Unit- Code	_	Method Code	AQS	Monitor Objective Source
Parameter	AQS Code RM/FEM 1412	AQS Monitor Type	POC		Freq	Scale	Obj	Unit- Code	Unit ug/m^3-L	Method Code	AQS Method Inductively Coupled Plasma Mass	Monitor Objective Source Oriented
Parameter Lead (TSP) - LC FR	AQS Code RM/FEM 1412	AQS Monitor Type 9 SLAMS	POC		Freq	Scale	Obj	Unit- Code	Unit ug/m^3-L	Method Code	AQS Method Inductively Coupled Plasma Mass Spectroscopy	Monitor Objective Source Oriented
Parameter Lead (TSP) - LC FR	AQS Code RM/FEM 1412	AQS Monitor Type 9 SLAMS	POC		Freq	Scale	Obj	Unit- Code	Unit ug/m^3-L	Method Code	AQS Method Inductively Coupled Plasma Mass Spectroscopy	Monitor Objective Source Oriented
Parameter Lead (TSP) - LC FR	AQS Code RM/FEM 1412	AQS Monitor Type 9 SLAMS	1 1 303	SWA	1/6	Scale NBR	Obj	Unit- Code	Unit ug/m^3-L	Method Code	AQS Method Inductively Coupled Plasma Mass Spectroscopy	Monitor Objective Source Oriented

Wednesday, September 7, 2022

Page 51 of 73

Barometric Pressure	64101	SPM	1		1	N/A	MET	059	mm (Hg)	014	Instrumental- Barometric Sensor	Other
Indoor Temperature	62107	SPM	1		1	N/A	MET	017	deg C	013	Electronic Averaging	Other
Outdoor Temperature	62101	SPM	1		1	N/A	MET	017	deg C	040	Electronic Averaging	Other (4m Probe Height)
Ozone	44201	SLAMS	1		1	URB	СОМ	007	ppm	047	Ultraviolet Photometric	Population Exposure
Ozone	44201	SLAMS	2	✓	1	URB	COM	007	ppm	047	Ultraviolet Photometric	-
PM10 - LC/FEM/NonFEM	85101	SLAMS	6		1	NBR	RES	105	ug/m^3-LC	239	Teledyne API T640x	Population Exposure
PM10 - STP FRM/FEM	81102	SLAMS	6		1	NBR	RES	105	ug/m^3-LC	239	Teledyne API T640x	Population Exposure
PM2.5 - LC FRM/FEM	88101	SLAMS	4		1	NBR	СОМ	105	ug/m^3-LC	181	PM2.5 VSCC FEM or Thermo Scientific 1405-F	Population Exposure
PM2.5 - LC FRM/FEM	88101	SPM	6		1	NBR	RES	105	ug/m^3-LC	238	Teledyne API T640x	Population Exposure
PM2.5 Volatile Channel	88503	SPM	1		1	NBR	AQI	105	ug/m^3-LC	181	PM2.5 VSCC FEM or Thermo Scientific 1405-F	Population Exposure

Wednesday, September 7, 2022 Page 52 of 73

Relative Humidity	62201	SPM	1		1	N/A	MET	019	%humidity	v 020	Instrumental- Computed (Indirect)	Other
Ladue (To 1	Discontin	iue FRN	<u>(</u>)						AQS	S Site Nu	mber 29-1 89	-3001
73 Hunter Ave	e., Ladue, M	IO 63124										
Latitude:	38.65028	AQCR:	070	Metro	opolitan S	St. Louis						
Longitude:	-90.35021	MSA:	7040	St. L	ouis, MO-	-IL						
Elevation (ft): Parameter	AQS Code	AQS Monitor Type	AQS POC	Coll	AQS Freq	AQS Scale	State- Obj	AQS Unit- Code		AQS Method Code	AQS Method	AQS Monitor Objective
Barometric Pressu	re 64101	SPM	1		1	N/A	MET	059	mm (Hg)	014	Instrumental- Barometric Sensor	Other
Indoor Temperature	e 62107	SPM	1		1	N/A	MET	017	deg C	013	Electronic Averaging	Other
Outdoor Temperatu	ire 62101	SPM	1		1	N/A	MET	017	deg C	040	Electronic Averaging	Other (4m Probe Height)
PM2.5 - LC FRM/FI	EM 88101	SLAMS	2	✓	1/6	NBR	СОМ	105	ug/m^3-L(C 145	R&P 2025 Sequential w/VSCC	Quality Assurance (Collocation)
PM2.5 - LC FRM/FI	EM 88101	SLAMS	4		1	NBR	COM	105	ug/m^3-L0	C 181	PM2.5 VSCC FEM or Thermo Scientific 1405-F	
PM2.5 Volatile Cha	nnel 88503	SLAMS	4		1	NBR	СОМ	105	ug/m^3-L0	C 181	PM2.5 VSCC FEM or Thermo Scientific 1405-F	Population Exposure

Relative Humidity 62201 SPM 1 \square 1 N/A MET 019 %humidity 020 Instrumental- Other Computed (Indirect)

Liberty									AQS	S Site Nu	mber 29-04 7	'-0005
Highway 33 &	& County Ho	ome Rd., L	iberty	, MO	64068							
Latitude:	39.30314	AQCR:	094	Metro	opolitan k	(ansas Ci	ty					
Longitude:	-94.37678	MSA:	3760	Kans	as City, N	MO-KS						
Elevation (ft): Parameter	941 AQS Code	AQS Monitor Type	AQS POC	Coll	AQS Freq	AQS Scale	State-	AQS Unit- Code	AQS Unit	AQS Method Code	AQS Method	AQS Monitor Objective
<u>1 arameter</u>	Coue	-JF -	100	Con	rreq	Scare	Obj	Coue	Onu	Coue	Memou	Objective
Barometric Pressu	ure 64101	SPM	1		1	N/A	MET	059	mm (Hg)	014	Instrumental- Barometric Sensor	Other
Indoor Temperatur	re 62107	SPM	1		1	N/A	MET	017	deg C	013	Electronic Averaging	Other
Outdoor Temperat	ure 62101	SPM	1		1	N/A	MET	017	deg C	040	Electronic Averaging	Other (4m Probe Height)
Ozone	44201	SLAMS	1		1	NBR	СОМ	007	ppm	047	Ultraviolet Photometric	Population Exposure
Ozone	44201	SLAMS	2	✓	1	NBR	СОМ	007	ppm	047	Ultraviolet Photometric	-
PM2.5 - LC FRM/F	FEM 88101	SLAMS	4		1	NBR	COM	105	ug/m^3-L(C 181	PM2.5 VSCC FEM or Thermo Scientific 1405-F	

PM2.5 Volatile Channel	88503	SPM	1		1	NBR	AQI	105	ug/m^3-LC	: 181	PM2.5 VSCC FEM or Thermo Scientific 1405-F	Population Exposure
Relative Humidity	62201	SPM	1		1	N/A	MET	019	%humidity	020	Instrumental- Computed (Indirect)	Other
Solar Radiation	63301	SPM	1		1	N/A	MET	079	W/m^2	011	Instrumental- Pyranometer	Other
Mark Twain St	ate Pa	ark							AQS	Site Nu	mber29-137	-0001
20057 State Park C	Office R	d., Stouts	ville, N	AO 65	5283							
Latitude: 39.47	74906	AQCR:	137	North	ern Miss	ouri						
Longitude: -91.7	8878	MSA:	0000	Not in	n a MSA							
Elevation (ft): 710	AQS	AQS Monitor	AQS		AQS		State-	AQS Unit-	AQS	AQS Method	AQS	AQS Monitor
Parameter	Code	Type	POC	Coll	Freq	Scale	Obj	Code	Unit	Code	Method	Objective
Indoor Temperature	62107	SPM	1		1	N/A	MET	017	deg C	013	Electronic Averaging	Other
Nitric Oxide	42601	SPM	1		1	REG	СОМ	008	ppb	074	Chemiluminescer ce	n General/Back ground
Nitrogen Dioxide	42602	SPM	1		1	REG	СОМ	008	ppb	074	Chemiluminescer	n General/Back ground

Wednesday, September 7, 2022 Page 55 of 73

Wednesday, September 7, 2022 Page 56 of 73

Indoor Temperature	62107	SPM	1		1	N/A	MET	017	deg C	013	Electronic Averaging	Other
Ozone	44201	SLAMS	1		1	NBR	СОМ	007	ppm	047	Ultraviolet Photometric	Population Exposure
Ozone	44201	SLAMS	2	✓	1	NBR	СОМ	007	ppm	047	Ultraviolet Photometric	
New Bloom	field								AQ	S Site Nu	mber 29-0 2	27-0002
2625 Meadow	Lake View	, New Blo	omfiel	d, MO	0, 6506	53						
Latitude:	38.70608	AQCR:	137	North	nern Miss	ouri						
Longitude:	-92.09308	MSA:	0000	Not ir	n a MSA							
Elevation (ft): Parameter	AQS Code	AQS Monitor Type	AQS POC	Coll	AQS Freq	AQS Scale	State- Obj	AQS Unit- Code	AQS Unit	AQS Method Code	AQS Method	AQS Monitor Objective
•	AQS Code	Monitor		Coll	_			Unit-		Method		Monitor
Parameter	AQS Code	Monitor Type	POC		Freq	Scale	<i>Obj</i>	Unit- Code	Unit	Method Code	Method Electronic	Monitor Objective

Wednesday, September 7, 2022 Page 57 of 73

Pacific									AQ	S Site Nu	mber29-18	9-0005
18701 Old Hi	ghway 66, P	acific, MO	6306	59								
Latitude:	38.49011	AQCR:	070	Metro	opolitan S	St. Louis						
Longitude:	-90.70509	MSA:	7040	St. L	ouis, MO	-IL						
Elevation (ft): Parameter	524 AQS Code	AQS Monitor Type	AQS POC	Coll	AQS Freq	AQS Scale	State- Obj	AQS Unit- Code		AQS Method Code	AQS Method	AQS Monitor Objective
Indoor Temperatui	re 62107	SPM	1		1	N/A	MET	017	deg C	013	Electronic Averaging	Other
Ozone	44201	SLAMS	1		1	NBR	СОМ	007	ppm	047	Ultraviolet Photometric	Population Exposure
Ozone	44201	SLAMS	2	✓	1	NBR	СОМ	007	ppm	047	Ultraviolet Photometric	-
Richards G	Sebaur-Sa	outh							AO	S Site Nu	mber29-03	7-0003
1802 E. 203rd			4012						\mathcal{L}			
Latitude:	38.75961	AQCR:	094	Metro	opolitan k	Kansas Ci	ity					
Longitude:	-94.57983	MSA:	3760	Kans	as City, I	MO-KS						
Elevation (ft): Parameter	1082 AQS Code	AQS Monitor Type	AQS POC	Coll	AQS Freq	AQS Scale	State- Obj	AQS Unit- Code	AQS Unit	AQS Method Code	AQS Method	AQS Monitor Objective
Barometric Pressi	ure 64101	SPM	1		1	N/A	MET	059	mm (Hg)	014	Instrumental- Barometric Sensor	Other
Indoor Temperatui	re 62107	SPM	1		1	N/A	MET	017	deg C	013	Electronic Averaging	Other

Outdoor Temperature	62101	SPM	1		1	N/A	MET	017	deg C	040	Electronic Averaging	Other (4m Probe Height)
Ozone	44201	SLAMS	1		1	NBR	СОМ	007	ppm	047	Ultraviolet Photometric	Population Exposure
Ozone	44201	SLAMS	2	✓	1	NBR	COM	007	ppm	047	Ultraviolet Photometric	-
PM2.5 - LC FRM/FEM	88101	SLAMS	4		1	NBR	СОМ	105	ug/m^3-LC	181	PM2.5 VSCC FEM or Thermo Scientific 1405-F	Population Exposure
PM2.5 Volatile Channel	88503	SPM	1		1	NBR	AQI	105	ug/m^3-LC	181	PM2.5 VSCC FEM or Thermo Scientific 1405-F	Population Exposure
Relative Humidity	62201	SPM	1		1	N/A	MET	019	%humidity	020	Instrumental- Computed (Indirect)	Other
Wind Direction - Resultant	t 61104	SPM	1		1	N/A	MET	014	deg	065	Instrumental: RM Young Model 05305	Other (10m Tower)
Wind Speed - Resultant	61103	SPM	1		1	N/A	MET	012	mph	065	Instrumental: RM Young Model 05305	Other (10m Tower)

Wednesday, September 7, 2022 Page 60 of 73

Ruce France	1 / 0								112	o one ma	muci = 0 100	00.0
13080 Hollen	berg Driv	e, Bridgeton	, MO 6	53044								
Latitude:	38.75264	AQCR:	070	Metro	opolitan S	St. Louis						
Longitude:	-90.44884	MSA:	7040	St. L	ouis, MO-	·IL						
Elevation (ft): Parameter	515 <i>AQS Code</i>		AQS POC	Coll	AQS Freq	AQS Scale	State- Obj	AQS Unit- Code	_	AQS Method Code	AQS	AQS Monitor Objective
Barometric Pressu	ire 641	01 SPM	1		1	N/A	MET	059	mm (Hg)	014	Instrumental- Barometric Sensor	Other
Indoor Temperatur	e 621	07 SPM	1		1	N/A	MET	017	deg C	013	Electronic Averaging	Other
Nitric Oxide	426	501 SPM	1		1	MIC	СОМ	008	ppb	074	Chemiluminescer ce	n Source Oriented
Nitrogen Dioxide	426	502 SLAMS	1		1	MIC	СОМ	008	ppb	074	Chemiluminescer	n Source Oriented
Outdoor Temperate	ure 621	01 SPM	2		1	N/A	MET	017	deg C	040	Electronic Averaging	Other (10m Probe Height)
Outdoor Temperate	ure 621	01 SPM	3		1	N/A	MET	017	deg C	040	Electronic Averaging	Other (2m Probe Height)
Outdoor Temperati	ure Diff 621	06 SPM	1		1	N/A	MET	116	Temp Diff deg C	f 041	Instrumental: Elect or Mach Avg Lev 2-Lev1	Other (10m - 2m Probe Height)

Oxides of Nitrogen	42603	SPM	1	1	MIC	COM	008	ppb	074	Chemiluminescen ce	Source Oriented
Precipitation	65102	SPM	1	1	N/A	MET	021	inches	014	Heated Tipping Bucket	Other
Relative Humidity	62201	SPM	1	1	N/A	MET	019	%humidity	020	Instrumental- Computed (Indirect)	Other
Solar Radiation	63301	SPM	1	1	N/A	MET	079	W/m^2	011	Instrumental- Pyranometer	Other
Std Dev Hz Wind Direction	61106	SPM	1	1	N/A	MET	014	deg	020	Arithmetic Standard Deviation	Other (10m Tower)
Sulfur Dioxide	42401	SPM	1	1	MID	SPP	008	ppb	060	Pulsed Fluorescent	Population Exposure
Sulfur Dioxide Max 5-min Avg	42406	SPM	1	1	MID	SPP	008	ppb	060	Pulsed Fluorescent	Population Exposure
Wind Direction - Resultant	61104	SPM	1	1	N/A	MET	014	deg	065	Instrumental: RM Young Model 05305	Other (10m Tower)
Wind Speed - Resultant	61103	SPM	1	1	N/A	MET	012	mph	065	Instrumental: RM Young Model 05305	Other (10m Tower)

Wednesday, September 7, 2022 Page 62 of 73

Rocky Cree	ek								AQ	S Site Nu	mber29-04	7-0006
2-114 NW 13	2 St., Kansa	s City, MC	6416	55								
Latitude:	39.33181	AQCR:	094	Metro	opolitan k	(ansas Ci	ty					
Longitude:	-94.58069	MSA:	3760	Kans	as City, N	ио-кѕ						
Elevation (ft): Parameter	990 AQS Code	AQS Monitor Type	AQS POC	Coll	AQS Freq	AQS Scale	State- Obj	AQS Unit- Code	AQS Unit	AQS Method Code	AQS Method	AQS Monitor Objective
Indoor Temperatur	re 62107	SPM	1		1	N/A	MET	017	deg C	013	Electronic Averaging	Other
Ozone	44201	SLAMS	1		1	NBR	COM	007	ppm	047	Ultraviolet Photometric	Population Exposure
Ozone	44201	SLAMS	2	✓	1	NBR	СОМ	007	ppm	047	Ultraviolet Photometric	-
Savannah									10	DS Sita Nu	mber 29-0 0	3-0001
11796 Highw	av 71. Savar	nnah MO	64485						AQ	is sue mu	mber 23-00	3-000 i
Latitude:	39.9544	AQCR:	137		nern Miss	ouri						
Longitude:	-94.849	MSA:	7000	St. Jo	oseph, M	0						
Elevation (ft):	1120	AQS Monitor	4.00		4.00	4.00	G	AQS	4.05	AQS	4.05	AQS
Parameter	AQS Code	Type	AQS POC	Coll	AQS Freq	AQS Scale		Unit- Code		Method Code	AQS Method	Monitor Objective
Indoor Temperatur	re 62107	SPM	1		1	N/A	MET	017	deg C	013	Electronic Averaging	Other
Ozone	44201	SLAMS	1		1	NBR	COM	007	ppm	047	Ultraviolet Photometric	Population Exposure

Ozone 44201 SLAMS 2 🗹 1 NBR COM 007 ppm 047 Ultraviolet Photometric

South Broa	dwe	l V								AQ	S Site Nu	mber29-510	-0007
8227 South B	roadv	way, St.	Louis, Mo	O 631	11								
Latitude:	38.54	425	AQCR:	070	Metro	opolitan S	St. Louis						
Longitude:	-90.2	63611	MSA:	7040	St. Lo	ouis, MO-	·IL						
Elevation (ft): Parameter		AQS Code	AQS Monitor Type	AQS POC	Coll	AQS Freq	AQS Scale	State- Obj	AQS Unit- Code	AQS Unit	AQS Method Code	AQS Method	AQS Monitor Objective
Barometric Pressu	ıre	64101	SLAMS	1		1	N/A	MET	059	mm (Hg)	014	Instrumental- Barometric Sensor	Other
Indoor Temperatur	re	62107	SPM	1		1	N/A	MET	017	deg C	013	Electronic Averaging	Other
Outdoor Temperati	ure	62101	SPM	1		1	N/A	MET	017	deg C	040	Electronic Averaging	Other (4m Probe Height)
PM2.5 - LC FRM/F	FEM	88101	SLAMS	4		1	NBR	СОМ	105	ug/m^3-L(C 181	PM2.5 VSCC FEM or Thermo Scientific 1405-F	
PM2.5 Volatile Cha	annel	88503	SPM	4		1	NBR	AQI	105	ug/m^3-L(C 181	PM2.5 VSCC FEM or Thermo Scientific 1405-F	Population Exposure
Relative Humidity		62201	SPM	1		1	N/A	MET	019	%humidity	, 020	Instrumental- Computed (Indirect)	Other

St. Joseph P	<u>'ump Sta</u>	<u>tion</u>							AQS	S Site Nu	mber29-021	-0005
S. Highway 75	9, St. Josep	h, MO 64	501									
Latitude:	39.741667	AQCR:	094	Metro	opolitan K	(ansas Ci	ty					
Longitude:	-94.858333	MSA:	7000	St. J	oseph, M	0						
Elevation (ft):	845 <i>AQS</i>	AQS Monitor	AQS		AQS	AQS	State-	AQS Unit-	AQS	AQS Method		AQS Monitor
Parameter	Code	Type		Coll	Freq	Scale		Code	Unit	Code	Method	Objective
Barometric Pressur	e 64101	SPM	1		1	N/A	MET	059	mm (Hg)	014	Instrumental- Barometric Sensor	Other
Barometric Pressure	e 64101	SPM	2	•	1	N/A	MET	059	mm (Hg)	014	Instrumental- Barometric Sensor	Other
Indoor Temperature	62107	SPM	1		1	N/A	MET	017	deg C	013	Electronic Averaging	Other
Outdoor Temperatur	re 62101	SPM	1		1	N/A	MET	017	deg C	040	Electronic Averaging	Other (4m Probe Height)
Outdoor Temperatur	re 62101	SPM	2	✓	1	N/A	MET	017	deg C	040	Electronic Averaging	Other (4m Probe Height)
PM10 - STP FRM/FI	EM 81102	SLAMS	3		1	NBR	СОМ	001	ug/m^3	079	R&P SA246B TEOM	Population Exposure
PM2.5 - LC FRM/FE	M 88101	SLAMS	4		1	NBR	СОМ	105	ug/m^3-L0	C 181	PM2.5 VSCC FEM or Thermo Scientific 1405-F	Population Exposure

Elevation (ft): Parameter		QS ode	AQS Monitor Type	AQS POC	Coll	AQS Freq	AQS Scale	State- Obj	AQS Unit- Code	AQS	AQS Method Code	AQS	AQS Monitor Objective
Longitude:	-94.555	94	MSA:	3760	Kans	as City, M	10-KS						
Latitude:	39.5306	3	AQCR:	137		ern Misso							
7536 SW. O F	Highwa	ıy, Tri											
Trimble										AQS	Site Nu	mber 29-049	-0001
Wind Speed - Resu	ultant	61103	SPM	1		1	N/A	MET	012	mph	065	Instrumental: RM Young Model 05305	Other (5.5 meters)
Wind Direction - Re	esultant	61104	SPM	1		1	N/A	MET	014	deg	065	Instrumental: RM Young Model 05305	Other (5.5 meters)
Relative Humidity	(62201	SPM	2	✓	1	N/A	MET	019	%humidity	020	Instrumental- Computed (Indirect)	Other
Relative Humidity		62201	SPM	1		1	N/A	MET	019	%humidity	020	Instrumental- Computed (Indirect)	Other
PM2.5 Volatile Cha	annel	88503	SPM	2	✓	1	NBR	AQI	105	ug/m^3-LC	: 181	PM2.5 VSCC FEM or Thermo Scientific 1405-F	Quality Assurance (Collocation)
PM2.5 Volatile Cha	annel	88503	SPM	1		1	NBR	AQI	105	ug/m^3-LC	: 181	PM2.5 VSCC FEM or Thermo Scientific 1405-F	Population Exposure
PM2.5 - LC FRM/F	EM	88101	SLAMS	5	✓	1	NBR	СОМ	105	ug/m^3-LC	: 181	PM2.5 VSCC FEM or Thermo Scientific 1405-F	Quality Assurance (Collocation)

Indoor Temperature	62107	SPM	1		1	N/A	MET	017	deg C	013	Electronic Averaging	Other
Ozone	44201	SLAMS	1		1	NBR	СОМ	007	ppm	047	Ultraviolet Photometric	Max Ozone Concentration
Ozone	44201	SLAMS	2	✓	1	NBR	СОМ	007	ppm	047	Ultraviolet Photometric	-
Troost									AQ	S Site Nu	mber29-095	-0034
724 Troost (Rear), Kansa	•										
Latitude: 39.	10463	AQCR:			opolitan K		ty					
Longitude: -94.	57040	MSA:	3760	Kans	sas City, N	MO-KS						
Elevation (ft): 941 Parameter	AQS Code	AQS Monitor Type	AQS POC	Coll	AQS Freq	AQS Scale	State- Obj	AQS Unit- Code	_	AQS Method Code	AQS	AQS Monitor Objective
Barometric Pressure	64101	SPM	1		1	N/A	MET	059	mm (Hg)	014	Instrumental- Barometric Sensor	Other
Indoor Temperature	62107	SPM	1		1	N/A	MET	017	deg C	013	Electronic Averaging	Other
Nitric Oxide	42601	SPM	1		1	URB	СОМ	008	ppb	074	Chemiluminescer ce	Population Exposure
Nitrogen Dioxide	42602	SLAMS	1		1	URB	СОМ	008	ppb	074	Chemiluminescer ce	Population Exposure

Wednesday, September 7, 2022 Page 67 of 73

Outdoor Temperature	62101	SPM	1	1	N/A	MET	017	deg C	040	Electronic Averaging	Other (4m Probe Height)
Oxides of Nitrogen	42603	SPM	1	1	URB	СОМ	008	ppb	074	Chemiluminescer ce	n Population Exposure
PM10 - LC/FEM/NonFEM	85101	SPM	6	1	NBR	RES	105	ug/m^3-LC	239	Teledyne API T640x	Population Exposure
PM10 - STP FRM/FEM	81102	SPM	6	1	NBR	RES	001	ug/m^3	239	Teledyne API T640x	Population Exposure
PM2.5 - LC FRM/FEM	88101	SLAMS	4	1	NBR	СОМ	105	ug/m^3-LC	181	PM2.5 VSCC FEM or Thermo Scientific 1405-F	Population Exposure
PM2.5 - LC FRM/FEM	88101	SPM	6	1	NBR	RES	105	ug/m^3-LC	238	Teledyne API T640x	Population Exposure
PM2.5 Volatile Channel	88503	SPM	4	1	NBR	AQI	105	ug/m^3-LC	181	PM2.5 VSCC FEM or Thermo Scientific 1405-F	Population Exposure
Relative Humidity	62201	SPM	1	1	N/A	MET	019	%humidity	020	Instrumental- Computed (Indirect)	Other
Sulfur Dioxide	42401	SLAMS	1	1	MID	СОМ	008	ppb	060	Pulsed Fluorescent	Source Oriented

Wednesday, September 7, 2022 Page 68 of 73

Avg	x 5-min 42406	SLAMS	1		1	MID	COM	800	ppb	060	Pulsed Fluorescent	Source Oriented
Ursuline N	orth (Pro	posed to	o Dis	cont	inue)			AQ	S Site Nu	mber 29-099)-0025
210 Glennon	Heights Rd.,	Crystal C	ity, M	O 630)19							
Latitude:	38.243	AQCR:	070	Metro	politan S	St. Louis						
Longitude:	-90.37372	MSA:	7040	St. Lo	ouis, MO	-IL						
Elevation (ft):	578	400										
Parameter	AQS Code	AQS Monitor Type	AQS POC	Coll	AQS Freq	AQS Scale	State- Obj	AQS Unit- Code	AQS Unit	AQS Method Code	AQS Method	AQS Monitor Objective
Lead (TSP) - LC F	FRM/FEM 14129	SLAMS	1		1/6	NBR	COM	105	ug/m^3-L	C 813	Inductively	Source
2000 (1017) 201	,,	<u> </u>	·		., 0			.00	ag, o =		Coupled Plasma Mass Spectroscopy	
Watkins M	ill State P	ark							AQ	S Site Nu	mber29-047	'-0003
Watkins Mill	Road, Laws	on, MO 64	1062									
Latitude:	39.40770	AQCR:	094	Metro	opolitan k	Kansas Ci	ty					
Latitude: Longitude:	39.40770 -94.26539	AQCR: MSA:	094 3760		opolitan k as City, N		ty					
	-94.26539	MSA:					ty					
Longitude:	-94.26539	_		Kans		MO-KS	State-	AQS Unit- Code	AQS Unit	AQS Method Code	AQS Method	AQS Monitor Objective
Longitude: Elevation (ft):	-94.26539 1009 <i>AQS</i>	MSA: AQS Monitor	3760 <i>AQS</i>	Kans	as City, M AQS	MO-KS AQS	State-	Unit-	_	Method		Monitor
Longitude: Elevation (ft):	-94.26539 1009 AQS Code	MSA: AQS Monitor	3760 <i>AQS</i>	Kans	as City, M AQS	MO-KS AQS	State-	Unit-	_	Method		Monitor
Longitude: Elevation (ft): Parameter	-94.26539 1009 AQS Code	MSA: AQS Monitor Type	3760 AQS POC	Kans Coll	as City, N AQS Freq	AQS Scale	State- Obj	Unit- Code	Unit	Method Code	Method Electronic	Monitor Objective

West Atton									AQ_i	5 Sue Mu	mber 23-103	1002
General Elecric S	tore, Hig	ghway 94,	West .	Alton	, MO 6	3386						
Latitude: 38.8	3725	AQCR:	070	Metro	opolitan S	t. Louis						
Longitude: -90.	226389	MSA:	7040	St. L	ouis, MO-	·IL						
Elevation (ft): 425 Parameter	AQS Code	AQS Monitor Type	AQS POC	Coll	AQS Freq	AQS Scale	State- Obj	AQS Unit- Code	AQS Unit	AQS Method Code	AQS	AQS Monitor Objective
Indoor Temperature	62107	SPM	1		1	N/A	MET	017	deg C	013	Electronic Averaging	Other
Outdoor Temperature	62101	SPM	1		1	N/A	MET	017	deg C	040	Electronic Averaging	Other
Ozone	44201	SLAMS	1		1	URB	СОМ	007	ppm	047	Ultraviolet Photometric	Max Ozone Concentration & Population Exposure
Ozone	44201	SLAMS	2	✓	1	URB	СОМ	007	ppm	047	Ultraviolet Photometric	
Relative Humidity	62201	SPM	1		1	N/A	MET	019	%humidity	y 020	Instrumental- Computed (Indirect)	Other
Solar Radiation	63301	SPM	1		1	N/A	MET	079	W/m^2	011	Instrumental- Pyranometer	Other
Wind Direction - Resulta	nt 61104	SPM	1		1	N/A	MET	014	deg	065	Instrumental: RM Young Model 05305	Other (10m Tower)

Wind Speed - Resultant 61103 SPM 1 \square 1 N/A MET 012 mph 065 Instrumental: RM Other (10m Young Model Tower) 05305

Wednesday, September 7, 2022

Magnitude 7 Metals (PQAO - 2368)

Magnitude	7 Metals,	Site #	l AE	CI V	Vater	Tow	er Lo	catio	n A Q	QS Site Nu	mber29-14	l3-9001
391 St Jude In	ndustrial Parl	k, New Ma	adrid,	MO 6	3869							
Latitude:	36.51364	AQCR:	138	SE M	lissouri							
Longitude:	-89.56093	MSA:	0000	Not i	n a MSA							
Elevation (ft): Parameter	AQS Code	AQS Monitor Type	AQS POC	Coll	AQS Freq	AQS Scale	State- Obj	AQS Unit- Code		AQS Method Code	AQS Method	AQS Monitor Objective
Indoor Temperatur	re 62107	Industrial	1		1	MID	MET	017	deg C	013	Electronic Averaging	Other
Sulfur Dioxide	42401	Industrial	1		1	MID	СОМ	008	ppb	060	Pulsed Fluorescent	Source Oriented
Sulfur Dioxide Max Avg	s 5-min 42406	Industrial	1		1	MID	СОМ	008	ppb	060	Pulsed Fluorescent	Source Oriented
Magnitudo	7 Metals	Cito # '		at C	avev	and			14	OC C#4 N.	mber29-14	13-0003
391 St Jude In	, Tractorio,					ara			AÇ	zs sue mu	mver 2 3- 1 -	13-3002
Latitude:	36.50838	AQCR:	138		lissouri							
Longitude:	-89.56074	MSA:	0000	Not i	n a MSA							
Elevation (ft): Parameter		AQS Monitor Type	AQS POC	Coll	AQS Freq	AQS Scale	State- Obj	AQS Unit- Code		AQS Method Code	AQS Method	AQS Monitor Objective
Indoor Temperatur	e 62107	Industrial	1		1	MID	MET	017	deg C	013	Electronic Averaging	Other

Wednesday, September 7, 2022

Sulfur Dioxide	42401	Industrial	1		1	MID	СОМ	008	ppb	060	Pulsed Fluorescent	Source Oriented
Sulfur Dioxide Max 5-mir Avg	า 42406	Industrial	1		1	MID	СОМ	008	ppb	060	Pulsed Fluorescent	Source Oriented
	<u> 1etals,</u>	<i>Site</i> # 3			itran	ce			AQ	S Site Nu	mber 29-143	-9003
391 St Jude Indus	trial Park											
	0899	AQCR:	138		ssouri							
J	57099	MSA:	0000	Not in	a MSA							
Elevation (ft): 298 Parameter	AQS Code	AQS Monitor Type	AQS POC	Coll	AQS Freq	AQS Scale	State- Obi	AQS Unit- Code	AQS Unit	AQS Method Code	AQS Method	AQS Monitor Objective
						50000		Couc		Couc	1/20000	<u>o o jecure</u>
Indoor Temperature	62107	Industrial	1		1	MID	MET	017	deg C	013	Electronic Averaging	Other
Sulfur Dioxide	42401	Industrial	1		1	MID	СОМ	008	ppb	060	Pulsed Fluorescent	Source Oriented
Sulfur Dioxide Max 5-mir Avg	n 42406	Industrial	1		1	MID	СОМ	008	ppb	060	Pulsed Fluorescent	Source Oriented
Wind Direction - Resulta	nt 61104	Industrial	1		1	MID	MET	014	deg	065	Instrumental: RM Young Model 05305	Other
Wind Speed - Resultant	61103	Industrial	1		1	MID	MET	011	m/s	065	Instrumental: RM Young Model 05305	Other

Wednesday, September 7, 2022 Page 73 of 73

Appendix 2: Comments on Proposed 2022 Monitoring Network Plan, Responses to Comments, and Corrections

Comment from City of Springfield

From: Evans, Austin

Sent: Tuesday, May 24, 2022 3:52 PM **To:** cleanair <cleanair@dnr.mo.gov>

Subject: comment about springfield iron and metals

I think it would be good to have some air quality monitors just north of the Springfield Iron and Metals plant in Springfield, Missouri. It is a facility that has generated a lot of complaints in the past, although violations are hard to catch since their metal grinding operation occurs in the dark and during the earliest morning hours. There is a neighborhood just to the north that I would say is frequently impacted.

An air monitor that stays in place would really help to determine how often and severe the pollution is.

Thanks,

Austin Evans

Environmental Specialist Department of Environmental Services 290 E. Central St Springfield, MO 65802

Response to Comment from City of Springfield

Springfield Iron and Metal is a scrap metal facility in Springfield, Missouri (https://www.springfieldiron.com/). The facility has a permit from the Air Pollution Control Program. In the past, the facility had an issue with explosions when persons would leave propane tanks in the trunks of junked cars. The facility implemented new policies to prevent this issue. Other air quality concerns relate to emissions from cutting torches and steam emitted from the shredder. Torch cutting can generate particulate matter emissions. The shredder operates with friction that causes heat and steam to emanate from the process. The steam can have the appearance of smoke, especially during the night hours when it tends to be closer to the ground. There are also sometimes metal and oily odors associated with the steam, but the odors have never been at a violation level. The department has received and investigated 10 communications of air quality concerns related to the facility between 2009 and 2022 to date, which is not a large number for such a facility. The department's Southwest Regional Office staff inspected the facility in 2020 and 2022. The only unsatisfactory findings in the most recent inspection related to record-keeping required as a permit condition.

Because the most recent inspection did not show a violation of permit conditions on facility operation and the number of air quality concerns is small (less than one per year on average), installation of a permanent air monitoring site close to the facility is not warranted. Oversight of the facility operation by the department's Southwest Regional Office will continue.

Comment from City Utilities of Springfield

From: Daniel Hedrick

Sent: Thursday, June 23, 2022 4:03 PM
To: cleanair <cleanair@dnr.mo.gov>

Subject: City Utilities of Springfield, Missouri Comments to Missouri Department of Natural Resources' Draft 2022 Monitoring Network Plan

City Utilities of Springfield, Missouri fully supports the draft 2022 Monitoring Network Plan proposed by the Missouri Department of Natural Resources (MDNR) Air Program. Springfield/Greene County and City Utilities is investing in quality of place and enjoyment for our community of many its amenities like Miller Park at Fellows Lake. Over the past several years, use of Fellows Lake, the marina, and now the bike park (mountain bike trails) has increased and the need for investment to provide safe access for our community has followed. Part of those improvements include a new entrance to Miller Park for both bike and boating patrons. The newly designed entrance and roadway will directly impact the MDNR Fellows Lake air monitoring site (EPA Site ID: 29-077-0042) listed in the Monitoring Network Plan. In order to continue to provide for these new activities, but remain a strong, supportive partner in protecting attainment/maintenance of the current ozone NAAQS for the Springfield/Greene Co. community, City Utilities requests moving the ambient monitoring site to an alternate location within Miller Park.

As a continued integrated planning partner, City Utilities provides the following input as an alternate site location:

Movement of the monitoring location westward at or near current elevation.

Electric supply to shelter can be modified to new location.

Location chosen can be secured to allow for maximum setback limits from trees and roadways.

Addresses relocation that does not disrupt design value data historically collected and attainment demonstration achieved over the past 16 years.

Hold off construction of the new entrance/access roadway until after current ozone season. However, any leeway between late September and the end of October would be welcomed.

Provided in the Figure below, is a snapshot of the current location and the proposed alternate site for the Air Program to consider. City Utilities is available for further consultation and ready to assist the MDNR in making this transition at the MDNR's earliest convenience.

Figure 1: Snapshot of existing location and proposed alternate site with 5 ft contours depicted.

Figure 2: Photo of the general vicinity of the proposed location alternative.

Please contact me if there are additional questions or concerns.

Thank you.

Daniel Hedrick Director-Environmental Affairs

PO Box 551 | Springfield, MO 65801-0551 cityutilities.net

Response to Comment from City Utilities of Springfield

This comment documents a situation as described in the plan under the heading "Unanticipated Network Modifications." Communication between City Utilities of Springfield staff and department staff regarding the possibility of relocating the Fellows Lake site only began after the posting of the draft plan for public review. The comment from Mr. Hedrick of City Utilities serves to document that communication.

The department appreciates the support of City Utilities for air monitoring, the communication of the issue, the offer of a new monitoring site and assistance with installation of utilities, and the willingness to accommodate monitoring during the current ozone season. The Fellows Lake site is designated as urban scale, representative of an area with dimensions on the order of four to 50 kilometers, or 2.5 to 30 miles (40 C.F.R. § 58, Appendix D). The proposed new site is approximately one-half mile west of the current site and is representative of the same air mass. Therefore, data continuity will not be affected by the relocation. Based on current understanding of the proposed new site, we believe that the new site will meet siting criteria (40 C.F.R. § 58, Appendix E). We will continue to work over the next few months to evaluate the site, including onsite evaluation, and, if it continues to appear suitable, to relocate the monitoring station to the proposed location. The department will provide details of the site evaluation and documentation of the relocation to EPA Region 7 staff and will also address this location change in the 2023 plan.

Comment from D. Zink

DNR: Public Comment, Draft Air Monitoring Plan 2022

D. Zink

6/23/22

I am very appreciative of the consistent effort put forth by DNR to maintain the qualities of life in the State of MO. Publishing the air monitoring data online is an excellent step toward ensuring transparency, which builds trust between citizens, government and industry.

Industry holds a high degree of responsibility for protecting the health of the community and surrounding area of operations. As such, they should be proactively supportive of monitoring in order to address issues related to industrial operations to reduce harm to the population in that area, to preserve the natural values of this State and to avoid the costs of remediation.

Some general comments regarding the draft monitoring plan:

- 1. When any anaerobic digester is installed, for any type of operation, the expected output and potential impact on local populations should be evaluated and permitted. Releases from anaerobic digesters pose multiple public health concerns, and should therefore be monitored regularly. Areas with multiple anaerobic digesters should have permanent monitoring sites.
 - a. Methane a greenhouse gas whose impact is four times greater than carbon dioxide *Piping and transportation of biogases is another part of the risk of release.
 - b. NOx and ammonia in addition to health concerns, these may lead to increased formation of ozone at low altitudes, exacerbating health impacts.
 - c. PM 2.5 the levels and impacts of PM2.5 are becoming more and more apparent. It is probably no coincidence that areas where PM 2.5 are high are also areas with the highest rates of childhood asthma.
 - d. H2S, SO2 these are known health hazards released during anaerobic digestion or during flaring of gases produced; acid rain is an additional potential as the combined output of SO2 increases with increasing release from multiple sources.
- 2. When a requirement for monitoring is discontinued, it should be clearly stated that the release from monitoring does not release the operation responsible for the conditions which led to the monitoring requirement from future issues resulting from the release. When a remediation plan is abandoned by DNR, this should be similarly handled. Future reuse of spent material may occur or future technology for reprocessing the waste may occur, leading to potential air and water contamination. The party responsible for the cost and successful remediation, whether the original operation or whether that is assumed by a new owner, should be clearly documented. This should not be nebulous, left to assumption.

Comments specific to the Draft Plan:

Responses to Proposed Changes:

Item 1: When an operation has a history of successfully meeting discharge limits, it seems appropriate to drop the frequency to a lower audit level, but when the pollutant discharged has a high health impact on a community and is a persistent pollutant, it also seems inappropriate to abandon monitoring altogether. Perhaps a random, unannounced audit every 2-3 years for sampling or scanning key parameters would be a way to ensure that attention to standards is maintained in the absence of regular monitoring.

Items 4 and 5: In addition to replacing aging equipment, new installations are needed in order to more fully represent the conditions in different areas of the State and the diversity of operations in those different areas. In addition to forested areas and urban and industrial areas, rural agricultural areas must be included. Geographical area as well as population density needs to be considered. Air distributes further and faster than water, crossing state and national boundaries and carrying any releases originating from the geographical swath represented and the concentration of industries within those geographical areas. In particular, continuous monitors should be installed in the Bootheel area of MO as well as in the northeast and north central areas of the State. Further, an active effort to engage with public health representatives from areas where monitors are implemented should be done so possible correlations can be evaluated and remedies planned. A clear example in the SO2 Monitoring Network, page 16 of the draft, would be why St. Louis, Moberly and Sikeston have such high releases relative to the population and area. Overlaying a map of the rate of childhood asthma, inflammatory illnesses or cancers to the monitoring maps should provide some useful insights for coordinated efforts to have positive impact. Total tons emitted from an urban area may appear large, but should total tons emitted from a larger rural area be assessed, those numbers could easily be considerably larger. Allocation of resources toward resolution of issues cannot be effective without more comprehensive evaluation.

Sections 4 and 5:

Rural and agricultural areas are grossly under-represented in this monitoring plan, which means that health impacts are not properly assessed and data necessary for planning, evaluation and impact reduction cannot be accomplished. The role of DNR in protecting public health should not be under-estimated.

Thank you in advance for your consideration of these comments.

D. Zink

Response to Comment from D. Zink

(Bold headers are short summaries of comment subjects.)

Emissions and population impact of any anaerobic digester should be evaluated and a permit required. Releases should be monitored, and areas with multiple anaerobic digesters should have permanent monitoring sites.

The Annual Monitoring Network Plan fulfills the obligation under the Code of Federal Regulations (CFR), Title 40, § 58.10(a) requiring the Missouri Department of Natural Resources to assess and demonstrate that its ambient monitoring network meets the applicable monitoring requirements of 40 CFR Part 58 and to identify any proposed network changes. A primary purpose of the monitoring network is to determine whether areas in Missouri are meeting National Ambient Air Quality Standards (NAAQS). The Clean Air Act (CAA) requires the Environmental Protection Agency (EPA) to establish NAAQS for designated Criteria Pollutants and the states to adopt enforceable plans to achieve those standards. Thus, the plan addresses ambient air monitoring and does not describe all of the other activities of the Air Pollution Control Program, which include permitting, compliance and enforcement, promulgation of rules, and planning related to meeting other federal requirements. Anaerobic digesters, along with other facilities, require permits that include conditions for emissions. There could be a need for air monitoring in an area with multiple anaerobic digesters depending on permitted emission limitations and on the results of modeling.

When a monitor is discontinued, it should be clearly stated that the discontinuation does not release a facility from emission limits. This should be true of remediation activities.

As stated above, the primary purpose of the plan is to fulfill the regulatory requirement for submittal of an annual monitoring network plan to EPA. The plan addresses ambient air monitoring and does not describe all of the other activities of the Air Pollution Control Program, which include permitting, compliance and enforcement, promulgation of rules, and planning related to meeting other federal requirements. Discontinuation of an ambient monitor does not change any facility's permit conditions, including emission limits. In some cases, air monitoring is required during remediation activities and discontinued when remediation is complete. Such monitoring is not covered by the Air Monitoring Network Plan but is governed by remediation plans under the jurisdiction of the department's Environmental Remediation Program.

Referring to no. 1 in the plan under proposed changes, facility-related monitoring should not be discontinued altogether, but should be repeated at random intervals to ensure that the facility continues to meet requirements.

The referenced item in the plan proposes discontinuation of a lead monitor near a specific lead mine. Reported emissions from that facility are less than 0.5 tons per year. Therefore, monitoring near that facility is not required by federal regulations. Also, since the installation of the expanded lead monitoring network in 2010, that specific monitor has not shown a violation of the lead NAAQS. Permit conditions related to operation of that facility would

continue to apply, and permitted facilities are subject to inspection to evaluate their compliance with permit conditions.

Referring to no. 4 and 5 in the plan under proposed changes, in addition to replacing aging equipment, new monitoring sites are needed in new locations, including rural areas, in particular in the bootheel, northeast, and north central areas of Missouri. SO₂ emissions in the St. Louis, Moberly, and Sikeston areas should be considered. Rates of childhood asthma and cancer should be considered.

The referenced items in the plan describe replacement of aging monitors with retrofitted or new instruments in order to maintain the reliability of particulate monitoring in the network. Please see the section below for additional discussion of sites in rural areas.

The relatively high SO₂ emissions listed in the plan for some areas with relatively low populations are a result of emissions from power plants or other large industrial facilities. The SO₂ Data Requirements Rule (DRR), which applies to facilities with greater than 2,000 tons per year of actual SO₂ emissions, provides three ways that a facility can characterize air quality to comply with the rule: through ambient air quality monitoring, through air quality modeling, or through the establishment of permanent, enforceable limits of SO₂ emissions to less than 2,000 tons per year. The Thomas Hill plant near Moberly, the Sikeston plant, and several facilities in the greater St. Louis area opted for modeling. The Labadie and Rush Island plants opted for monitoring, and monitoring near those plants is currently underway. Monitoring is also currently taking place near the New Madrid plant and Magnitude 7 aluminum plant, very close to the bootheel.

The Blair Street site in St. Louis and the Troost site in Kansas City are examples of sites located in urban areas with increased population density.

Rural and agricultural areas are grossly under-represented in this plan.

There is a higher concentration of monitoring sites in urban areas because there is a higher concentration of emission sources and population in those areas. However, 18 of the 42 monitoring sites in Missouri are in locations that could be considered to be rural and/or agricultural, including: Orchard Farm, West Alton, Foley West, Trimble, Watkins Mill, Liberty, Rocky Creek, Richards Gebaur-South, Buick Northeast, Oates, Carthage, El Dorado Springs, Hercules Glades, Mingo, Farrar, Bonne Terre, and Mark Twain State Park. Note that some of these sites are named for the town nearest the site, but are located in rural areas.

Comment from Great Rivers Environmental Law Center, Missouri Coalition for the Environment, Opponents of Cooper County CAFOs, Socially Responsible Agriculture Project, and Moniteau County Neighbors Alliance

June 23, 2022

VIA ELECTRONIC MAIL

Missouri Department of Natural Resources Air Pollution Control Program Air Quality Analysis Section/Air Monitoring Unit P.O. Box 176 Jefferson City, MO 65102-0176 cleanair@dnr.mo.gov

Re: Comments to Draft 2022 Monitoring Network Plan

To Whom It May Concern:

Great Rivers Environmental Law Center ("Great Rivers"), Missouri Coalition for the Environment ("MCE"), Opponents of Cooper County CAFOs ("OCCC"), Social Responsible Agriculture Project ("SRAP"), and Moniteau County Neighbors Alliance respectfully submit to the Missouri Department of Natural Resources ("MDNR") the following comments to the proposed Draft 2022 Monitoring Network Plan (the "Plan").

Great Rivers is a public interest law firm that provides free legal services to individuals, organizations and citizen groups working to protect the environment and public health.

MCE is Missouri's independent, citizens' environmental organization for clean water, clean air, clean energy and a healthy environment. MCE is a trusted, non-partisan, 501(c)(3) state-level environmental advocacy organization, an informed educator, a passionate advocate, and a state-wide partner supporting allied organizations and initiatives around the state. With the help of its over 800 members and more than 2000 allies across the State, MCE delivers vital information to thousands of Missourians on issues that affect the State's water, air, food, health, and environment. Throughout its existence, MCE has actively engaged in efforts to preserve

Missouri's air quality, including seminal litigation that helped strengthen National Ambient Air Quality Standards.

OCCC is a rural community organization committed to protecting the clean air, water and natural resources in rural Cooper and Moniteau Counties in Missouri.

For more than 20 years, SRAP has served as a mobilizing force to help communities protect themselves from the damages caused by industrial livestock operations and to advocate for a food system built on regenerative practices, justice, democracy, and resilience.

Moniteau County Neighbors Alliance supports community health and economic well-being through education and advocacy.

The Plan fails to address the impacts of air pollution on low-income people of color; fails to address several important state-wide sources of air pollution such as pollution from coal plants, CAFOs and mining operations; and on the whole fails to endorse a monitoring plan that includes sufficient ambient air monitoring. MDNR should address these failings in the Plan before issuing it in final form so as to protect the health of all Missourian, but in particular, the low-income people of color who have been systematically overburdened by air pollution in the state and as a result, are most vulnerable to its continued impacts. Doing so would be of direct benefit to Great Rivers and the members of all undersigned organizations.

The Plan Fails to Comply with Title VI

MDNR appears to be in violation of Title VI of the Civil Rights Act of 1964, 42 U.S.C. § 2000d, and 40 C.F.R. Part 7 by releasing the Plan 1) without complying with any of the EPA procedural safeguard regulations found in 40 C.F.R. Part 7 to prevent discrimination; and 2) by failing to analyze whether the Plan causes disproportionate and disparate environmental and human health effects on low-income communities of color in the State. MDNR must rectify these violations to avoid any unlawful discrimination by 1) implementing a Title VI program that complies with EPA regulations before issuing the Plan in final form and 2) including in the Plan an analysis of whether the Plan causes disproportionate or disparate environmental or human health impacts on low-income communities of color in the State.

Recipients of federal funding are prohibited from taking actions that have a discriminatory impact on people of color. Title VI of the Civil Rights Act of 1964 states:

No person in the United States shall, on the ground of race, color, or national origin, be excluded from participation in, denied the benefits of, or otherwise be subjected to discrimination under any program or activity receiving any Federal financial assistance. ¹

¹ 42 U.S.C. § 2000d.

EPA's implementing regulations further prohibit recipients of EPA funding from discriminating. Specifically, EPA's Title VI regulations provide that an EPA funding recipient:

shall not use criteria or methods of administering its program or activity which have the effect of subjecting individuals to discrimination because of their race, color, national origin, or sex, or have the effect of defeating or substantially impairing accomplishment of the objectives of the program or activity with respect to individuals of a particular race, color, national origin, or sex.²

EPA's regulations make clear that discrimination on the basis of race is a violation of Title VI whether such discrimination is the purpose of the decision or its effect.³

As a condition of receiving federal funding, recipient agencies such as MDNR must comply with EPA's Title VI regulations, which are incorporated by reference into the grants. These regulations proscribe discrimination on the basis of race, color or national origin by any program or agency receiving financial assistance from the EPA. 4 In other words, Title VI creates for recipients a nondiscrimination obligation that is contractual in nature, in exchange for Federal funding. Acceptance of EPA funding creates an obligation on the recipient to comply with the regulations for as long as that funding is provided.⁵ In particular, a state agency accepting EPA funding may not take any action that is intentionally discriminatory or that will have a discriminatory effect based on race, color, or national origin. 6 MDNR, a state agency, is a recipient of federal funds governed by these requirements. It does not appear that MDNR has conducted any of the safeguard procedures or analyses required by Title VI and EPA's implementing regulations in preparing the Plan. It is also notable that MDNR has received two grants totaling \$168,648 "to operate and maintain the national ambient air toxics site in St. Louis...to improve air quality." These funds were granted to support "[p]rojects [which] should also focus on addressing environmental justice (EJ) concerns in communities," through "fair treatment and meaningful involvement of all people regardless of race, color, national origin, or income."8 Under these circumstances it is even more important that MDNR take environmental justice concerns into consideration in monitoring planning and decision making such as that set forth in the Plan.⁹

```
<sup>2</sup> 40 C.F.R. §§ 7.35(b).
```

⁴ 40 C.F.R. §§ 7.30; 7.35.

⁵ 40 C.F.R. § 7.35.

⁶ *Id*.

USA Spending.gov, located at: https://www.usaspending.gov/#/award/ASST_NON_97764201_6800 (last visited August 28, 2020) and https://www.usaspending.gov/#/award/ASST NON 97782701 6800 (last visited August 28, 2020)

⁸ *Id*.

⁹ For purposes of this comment letter, the phrase "environmental justice" is intended to have the meaning accorded to it by U.S. EPA in their recently issued Guidance, EPA Legal Tools to Advance Environmental Justice (May 22): "Environmental justice is the fair treatment and meaningful involvement of all people regardless of race, color,

Before issuing the Plan in final form, MDNR must satisfy the safeguarding requirements set forth in 40 CFR Part 7. These include, but are not limited to:

- facilitating informational meetings for low-income communities of color about the Plan and the impacts it might have on those communities;
- providing public information about the Plan in languages other than English, and offering translators and interpreters at public meetings; and
- establishing and publishing grievance procedures, in accordance with EPA's Title VI
 implementing regulations, to ensure the prompt and fair resolution of discrimination
 complaints.

Further, MDNR must include a consideration and analysis of the disparate and cumulative impacts that the Plan may have on low-income communities and/or communities of color. The undersigned respectfully request that MDNR take into consideration any such cumulative impacts that air pollution in Missouri has on low-income communities and communities of color in designing and maintaining its air monitoring network.

The Plan Contains Insufficient Ozone Monitoring

Relatedly, the undersigned take issue with the lack of ozone air monitoring in Missouri that is endorsed by the Plan. Although additional ozone monitoring may not be required in Missouri by the letter of applicable laws and regulations, additional monitoring would serve to provide information that would be helpful to populations of Missourians who already shoulder a significant share of the state's air pollution burden. It is well-documented that air pollution, including ozone and its precursors, more severely impacts low-income people of color, many of whom are already overburdened by other sources of pollution. ¹⁰ This is the case because people of color, as well as those with lower incomes, are more likely to live near truck and traffic routes, as well as stationary sources of pollution. ¹¹ The St. Louis metropolitan area is no exception – many areas bordering major highways and traffic thoroughfares and industrial polluters in the St. Louis area are populated by people of color and other economically disadvantaged communities. ¹²

national origin, or income with respect to the development, implementation, and enforcement of environmental laws, regulations, and policies." *Id.* at p. 5.

U.S. EPA, Control of Air Pollution From New Motor Vehicles: Heavy-Duty Engine and Vehicle Standards Proposed Rule, 87 Fed. Reg. 17414, 17418, 17452 and 17584 (March 28, 2022).
 Id

¹² Interdisciplinary Environmental Clinic at Washington University School of Law, *Environmental Racism in St. Louis*, located at https://7gxs110eqdj9anba1k3swtoo-wpengine.netdna-ssl.com/wp-content/uploads/2020/08/2019-09-30 STL Env Racism Report REVISED FINAL Cropped.pdf. See also, US EPA, *EJScreen*, Map

It is well established that heightened exposure to NOx and ozone contributes to a variety of adverse health impacts – in particular asthma and respiratory illness, as well as cardiovascular problems. ¹³ Unfortunately, these heightened health risks bear out in St. Louis, especially in the low-income, predominantly Black neighborhoods in St. Louis City and County. In St. Louis County and the City of St. Louis, the same zip code areas that have large low-income, majority-Black populations also have significantly higher rates of asthma-related emergency room visits than the Missouri and National averages. ¹⁴ The City of St. Louis has the dubious honor of ranking first out of the 35 largest United States metropolitan areas in terms of asthma risk. ¹⁵ This risk has increased over the last decade. ¹⁶ Perhaps more startlingly, in a recent equity study compiled by the City of St. Louis, the City was awarded an equity score of 1 out of a possible 100 in the category of child asthma. The exceedingly low score was bestowed as a result of data showing that Black children living in the City of St. Louis are more than 10 times as likely as white children to visit emergency rooms for asthma-related complications. ¹⁷

Perhaps even more compelling is data obtained from the Missouri Department of Health and Senior Services that compares the three-year moving average rates of emergency room visits due to asthma in Missouri and St. Louis for white and Black residents. These data show that Black residents were admitted to the emergency room for asthma at rates more than six times that of white residents in St. Louis County, and more than seven times that of white residents in St. Louis City. Perhaps worse yet, the data demonstrates that over the course of the 11-year period for which data was examined, these asthma-related emergency room admission rates have dropped for white residents of Missouri and St. Louis City, but those for Black residents continue to climb. These data are proof that asthma disproportionately impacts Black residents of the St. Louis area. Additional ozone monitoring is needed to help document any air pollution-

Comparisons for St. Louis, Missouri, Pct. People of Color and Traffic Proximity, located at https://ejscreen.epa.gov/mapper/comparemapper.html; US EPA, ECHO Enforcement and Compliance History Online, mapping tools for stationary air sources in the St. Louis area, located at https://echo.epa.gov/facilities/facility-search/results.

¹³ See Note 10 at pp.17444-17447.

¹⁴ Missouri Department of Health and Senior Services, *EPHT Asthma Data by zip code*, located at https://healthapps.dhss.mo.gov/MoPhims/QueryBuilder?qbc=EA&q=1&m=1; City of St. Louis Department of Health, *Understanding Our Needs*, *Update* (2016), page 15, located at https://www.stlouismo.gov/government/departments/health/documents/upload/UON-20160102.pdf.

¹⁵ East-West Gateway Council of Governments, *Where We Stand: Twenty Years Later*, located at: https://www.ewgateway.org/wp-content/uploads/2017/08/WWS6EdNo3.pdf.

¹⁶ *Id.*

¹⁷ City of St. Louis, *Equity Indicators Toward a St. Louis Region that works for us all, Baseline Report* (2018), at pp. 36-37, located at: https://www.stlouis-mo.gov/government/departments/mayor/initiatives/resilience/equity/documents/upload/Equity-Indicators-Baseline-2018-Report-Document.pdf.

¹⁸ Missouri Department of Health and Senior Services, *DHSS-MOPHIMS Community Data Profiles*, located at https://healthapps.dhss.mo.gov/MoPhims/ProfileTrendAnalysis?pid=25&iid=25000153&ge=CNTY&gf=189&de=R ACE.

related sources of this asthma. The undersigned request that MDNR consider adding additional ozone and NOx monitors to the Plan.

Additional ozone monitoring also would be helpful to understanding and addressing the ozone nonattainment status of the St. Louis metropolitan area. The St. Louis metropolitan area (including St. Louis City, St. Louis County and several surrounding counties) is currently designated as a marginal nonattainment area for ozone. Further, EPA has proposed to bump the area up to moderate nonattainment, in light of a history of continued ozone exceedances. Additional ozone and NOx monitors would go a long way towards understanding where this excess pollution is coming from, and in turn, would help MDNR to devise mechanisms for addressing it. Data from additional monitors would also help inform residents' immediate health decisions, such as whether to let a child with asthma play outside on a high-ozone day.

The Plan Fails to Adequately Address the Pollution Risks from Coal Plants

In light of Missouri's continued overreliance on coal-fired power, the Plan is shockingly lacking in any analysis of the air pollution risks associated with the many coal energy generation facilities operating across the state. In 2021, coal provided 74% of Missouri's electricity net generation, the second-highest share of any state, behind only West Virginia. Despite this prevalence of coal-fired power plants around the state, as is shown on the map below, there are very few air monitors endorsed by the Plan that are specifically designed to address the air pollution from these coal plants. The undersigned call on MDNR to address this significant source of air pollution in the state.

¹⁹ U.S. EPA, *Missouri Nonattainment/Maintenance Status for Each County by Year for All Criteria Pollutants*, data current as of April 30, 2022, located at https://www3.epa.gov/airquality/greenbook/anayo mo.html.

²⁰ U.S. EPA, *Reclassification of Areas Classified as Marginal for the 2015 Ozone National Ambient Air Quality Standards*, 87 Fed. Reg. 21842, 21845 Table 1 (April 13, 2022).

²¹ U.S. Energy Information Administration, *Missouri State Profile and Energy Estimates*, located at https://www.eia.gov/state/?sid=MO.

The combustion of coal produces an exothermic reaction that releases particulate, gaseous, and metallic pollutants into the environment.²² One of the biggest pollutants from coal plants is sulfur dioxide (SO₂). In the United States, coal-fired power plants account for 60% of sulfur dioxide emissions.²³ Exposure to air pollutants from coal plants produces significant adverse health effects, especially for children due to their developing physiology, anatomy, metabolism, and health behaviors.²⁴ Additionally, people of color and impoverished groups are more likely to live close to industrial areas like coal-fired power plants.²⁵ The map above shows the locations of the coal plants in Missouri versus the locations of the ambient air monitors for SO₂ run by MDNR as outlined in the air monitoring plan. The undersigned call on MDNR to include more SO₂ monitors in the Plan to address the pollution from these coal facilities, especially in areas where coal plants are located in or near low-income communities of color. For example, there are two coal plants in operation around Columbia, Missouri, home of the University of Missouri. In light of the fact that many teenagers whose brains are still developing

²² Amster, E. and Lew Levy, C., "Impact of Coal-fired Power Plant Emissions on Children's Health: A Systematic Review of the Epidemiological Literature," International Journal of Research and Public Health 16(11) (June 2019), located at https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6604200/. ²³ *Id*.

 $^{^{24}}$ *Id*

²⁵ Israel, B., "Coal Plants Smother Communities of Color," Scientific American, (Nov. 16, 2012), located at https://www.scientificamerican.com/article/coal-plants-smother-communities-ofcolor/#:~:text=People%20living%20near%20coal%20plants,percent%20are%20people%20of%20color.

live in and around the University, MDNR should be monitoring the SO₂ emissions that could be impacting this especially vulnerable population. Additionally, as shown by the map above, there is a significant lack of SO₂ monitoring around I-70 and in the southwest portion of the state, although there are many coal plants located in these areas. The lack of SO₂ monitoring near I-70 is of particular concern as people of color, as well as those with lower incomes, are more likely to live near truck routes.²⁶

As cited in MDNR's proposed air monitoring plan for 2022, the EPA finalized the SO₂ Data Requirements Rule (DRR) in 2015. This rule requires air agencies to characterize air quality, either by monitoring or modeling, around sources that emit 2,000 tpy or more of SO₂.²⁷ However, MDNR fails to meet the requirements of the DRR with their current proposed plan. MDNR cites Moberly, MO (in Randolph County just northwest of Boone County where the University of Missouri is) as having 16,556.63 tpy of SO₂ emissions in 2017.²⁸ According to this data, MDNR is likely required by the DRR to put an SO₂ monitor on the Thomas Hill coal plant that is in Moberly. Additionally, Sikeston, Springfield, and the Fayetteville-Springdale-Rogers area (a portion of which extends into Southern Missouri) all have SO₂ emissions greater than 2,000 tpy, but seem to be missing SO₂ monitors at coal plants in the vicinity.²⁹ While there are industrial air monitors located at some of the coal plants in Missouri, there are not enough. Additionally, the process for determining where MDNR will require an SO2 monitor at a coal plant is unclear. Overall, there is a significant lack of ambient air monitoring near coal plants in Missouri. The undersigned call on MDNR to implement additional air monitoring in these areas due to the high levels of emissions, the common presence of populations especially vulnerable to these coal emissions because of age, infirmity or cumulative impacts, as well as the significant health impacts associated with the operation of these plants.

The Plan Fails to Address Air Pollution from CAFOs

The Plan is notably lacking in any discussion of air pollution from concentrated animal feeding operations (CAFOs) across the state. Further, as is shown on the map below, there do not appear to be any air monitors endorsed by the Plan designed to address CAFO-related air pollution.

²⁶ U.S. EPA, Control of Air Pollution From New Motor Vehicles: Heavy-Duty Engine and Vehicle Standards Proposed Rule, 87 Fed. Reg. 17414, 17418 (March 28, 2022).

²⁷ The Plan at p. 18.

²⁸ *Id.* at 16.

²⁹ *Id*.

CAFOs can be extremely detrimental to both human health and the environment.³⁰ A recent study published in the National Academy of Sciences shows that over 17,000 annual deaths in the U.S. are attributable to pollution from farms.³¹ Of these deaths, around 80% are due to air pollution from animal agriculture.³² Further, emissions from animal agriculture now account for more annual deaths than pollution from coal power plants.³³ Harmful air pollutants produced from these operations include ammonia, hydrogen sulfide, methane, and particulate matter.³⁴ The decomposition of animal manure is the main cause of these gaseous emissions, while particulate matter is caused by the movement of animals.³⁵ Repeated exposure to particulate matter can have significant adverse health effects, including chronic bronchitis, chronic respiratory symptoms, decline in lung function, and organic dust toxic syndrome.³⁶ While CAFOs present adverse health effects for all people, children are especially at-risk

National Association of Local Boards of Health, *Understanding Concentrated Animal Feeding Operations and Their Impact on Communities*, located at https://www.cdc.gov/nceh/ehs/docs/understanding_cafos_nalboh.pdf
 Domingo, N. et al., "Air quality-related health damages of food," *PNAS* (May 10, 2021), located at https://www.pnas.org/doi/10.1073/pnas.2013637118.

³² *Id*.

³³ *Id*.

³⁴ See Note 29.

³⁵ *Id*.

³⁶ *Id*.

because they take in 20-50% more air than adults, and their bodies are still developing.³⁷ Researchers in North Carolina have found that the closer a child lives to a CAFO, the greater the risk that they have asthma.³⁸ Further, the schools that are closer to CAFOs often are attended by students of lower socioeconomic status.³⁹ Particulate matter is of especially great concern because exposure over a long period of time can lead to decreased lung function.⁴⁰

Considering the significant adverse health and environmental effects that CAFOs can have on communities, the Plan proposes a noticeable lack of air monitoring to address these facilities. The map above shows the locations of Missouri's Class 1A CAFOs versus the locations of MDNR's PM₁₀ ambient air monitors as outlined in the air monitoring plan. Class 1A CAFOs are the biggest category of CAFOs in Missouri, meaning that they have 7,000 or more animal units. As shown on this map, most of Missouri's Class 1A CAFO operations are concentrated in the northwest portion of the state, particularly in Sullivan, Putnam, and Mercer counties. The Plan proposes virtually no PM monitoring in these same locations. The undersigned call on MDNR to add monitors to the Plan to address this significant source of pollutants.

In addition, we know that many of Missouri's Class IA CAFOs utilize anaerobic digesters to create and capture biogas. ⁴² Understanding that some states already require air permits for livestock anaerobic digesters, we believe it is also necessary for Missouri to consider monitoring and/or permitting these systems to better understand and regulate emissions from anaerobic digestion and biogas capture. We ask that MDNR make evident in the Plan what air quality monitoring and/or permitting is currently being done at these CAFOs, if any.

Further, although ambient monitoring of ammonia, hydrogen sulfide, and methane emissions is not required by applicable laws and regulations, the undersigned urge MDNR to address these dangerous CAFO-related pollutants as well. MDNR includes no proposed monitors to address these three dangerous pollutants in the Plan, even though these pollutants are

³⁷ Kleinman, M., "The Health Effects of Air Pollution on Children," *South Coast Air Quality Management District* (Fall 2000), located at http://www.aqmd.gov/docs/default-source/students/health-effects.pdf.

³⁸ Barrett, J., "Hogging the Air: CAFO Emissions Reach into Schools," *Environmental Health Perspective* 114(4), located at

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1440820/#:~:text=Of%20the%20226%20schools%20included,reported%20noticeable%20livestock%20odors%20indoors.

³⁹ Mirabelli, M. et al., "Race, Poverty and Potential Exposure of Middle-School Students to Air Emissions from Confined Swine Feeding Operations," *Environmental Health Perspective* 114(4): 591-596, located at https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1440786/.

⁴⁰ Michigan Department of Environmental Quality Toxics Steering Group, *Concentrated Animal Feedlot Operations Chemicals Associated with Air Emissions* (May 10, 2006), located at https://www.michigan.gov/-/media/Project/Websites/mdhhs/Folder1/Folder50/CAFOs-Chemicals_Associated_with_Air_Emissions_5-10-06.pdf?rev=ac7b6d7bb56c4b85a378ce8fb9a30442.

⁴¹ MDNR, *CAFO Permits*, located at https://dnr.mo.gov/water/business-industry-other-entities/permits-certification-engineering-fees/concentrated-animal-feeding-operation-cafo.

engineering-fees/concentrated-animal-feeding-operation-cafo.

42 U.S. EPA, *AgSTAR Livestock Anaerobic Digester Database*, located at https://19january2021snapshot.epa.gov/agstar/livestock-anaerobic-digester-database .html.

dangerous to public health. The undersigned believe it would be appropriate for MDNR to utilize Special Purpose Monitors (SPMs) to address these dangerous CAFO-related emissions.

The Plan Disturbingly Fails to Address the Pollution Risks from Mining

The Plan also has failed to address mineral mining in Missouri. Mineral mining is a very big industry in Missouri. According to MDNR, Missouri currently has 864 active sites permitted to mine industrial minerals, under the Land Reclamation Act, and sites permitted to mine metallic minerals under the Metallic Minerals Waste Management Act. And Notably, Missouri leads in fire clay, lead, lime, montmorillonite, and tripoli production and is a major producer of crushed stone, cement, and zinc. And Common pollutants from these mining operations include sulfur dioxide and particulate matter. SO₂ is of particular concern because it reacts with atmospheric water vapor to form sulfuric acid or acid rain. Acid rain can be extremely detrimental to plants and agriculture - harming existing vegetation and making the soil unsuitable for future growth. Further, mining operations can cause significant adverse public health impacts for nearby communities; for example, higher levels of lead in blood have been measured in residents of some communities located near lead-zinc smelters during their operation. The Plan does not in any way address this potentially enormous source of pollution in the State. The undersigned request that MDNR include a consideration of mining-related air pollution in the Plan, and make provisions for monitoring to address it.

Concern Over Functionality of Certain Air Monitors

The undersigned remain concerned over the functionality of certain air monitors that are a part of the monitoring network as laid out in the Plan. Numerous situations occurred in 2021 and this year when data was missing from both primary and secondary air monitors in certain locations; when MDNR had to rely on data from a secondary air monitor because the primary one was inoperative; or when both data sets failed to meet the completeness criteria set forth in 40 C.F.R. Part 50. Monitoring stations of concern include Hillcrest High School (Springfield), Maryland Heights (St. Louis), Watkins Mill (Kansas City), Liberty (Kansas City), Foley West (St. Louis), Orchard Farm (St. Louis), West Alton (St. Louis), Fellow Lake (Springfield) and Trimble (Kansas City) for ozone; Ameren Missouri, Labadie Valley site (St. Louis), Ameren Missouri, Rush Island Fults, IL site

⁴³ MDNR, *Industrial Minerals and Metallic Mineral Waste Management Areas*, located at https://modnr.maps.arcgis.com/apps/webappviewer/index.html?id=9ce9dbcc86a04cd78cd5554799155ac2.

⁴⁴ USGS National Minerals Information Center, *The Mineral Industry of Missouri*, located at https://www.usgs.gov/centers/national-minerals-information-center/mineral-industry-missouri.

⁴⁵ American Geosciences Institute, *How Can Metal Mining Impact the Environment*, located at https://www.americangeosciences.org/critical-issues/faq/how-can-metal-mining-impact-environment#id4.

⁴⁶ *Id*.

⁴⁷ *Id*.

⁴⁸ *Id*.

(St. Louis) for SO₂; and Hillcrest High School (Springfield) for PM_{2.5}.⁴⁹ The functionality of the Hillcrest High School monitoring station in Springfield seems to be of particular concern because it appears that readings for both ozone and PM_{2.5} were unavailable on numerous dates. The undersigned request that MDNR address these potentially faulty air monitors in the Plan.

MDNR Should Embrace and Support Community Air Monitoring as Part of the Plan

Born out of concerns that State criteria pollutant monitors do not provide meaningful information about air quality in specific neighborhoods, several organizations in Missouri are engaged in community air monitoring projects around the state. MCE is currently supporting community-based air quality monitoring of hydrogen sulfide, ammonia and particulate matter emissions. Great Rivers is installing a network of ozone monitors in the Dutchtown neighborhood in South City. Metropolitan Congregations United has installed PM monitors at churches around the St. Louis area. KC Digital Drive and other community partners are gathering climate and particulate matter air quality data along the Troost Avenue corridor in Kansas City. The undersigned intend to use the air quality monitoring data they collect to educate and empower residents about their air quality, and to advocate in support of the need for stricter air pollution controls. There is currently no federal or state regulatory support for the type of citizen data these systems will collect, either in the air permitting process, or the state implementation planning processes. However, the opportunity certainly exists for EPA and MDNR to engage with citizen data on many levels – through community education and engagement; pollution control planning, stationary source permitting being just a few. To the extent MDNR supported citizen science efforts such as those described herein, the data could be used for community engagement and education on a state regulatory level. In addition, organizations such as the undersigned could use their data to work with MDNR to lobby for additional funds to be directed to MDNR for monitoring purposes. The undersigned respectfully request that MDNR consider enacting regulations that recognize and support community science.

We look forward to MDNR's response to these comments. Thank you for your consideration.

Sincerely,

Sarah Rubenstein, Staff Attorney

Great Rivers Environmental Law Center

319 N. 4th Street, Suite 800

Suling

St. Louis, MO 63102

⁴⁹ Monitoring data was obtained from MDNR, *Air Pollutants and Sources*, individual pollutant sites, located at https://dnr.mo.gov/air/hows-air/pollutants-sources.

Comments submitted on behalf of

Missouri Coalition for the Environment Melissa Vatterott Sophie Watterson 725 Kingsland Ave., Suite 100 St. Louis, MO 63130 swatterson@moenviron.org mvatterott@moenviron.org (314) 727-0600

Opponents of Cooper County CAFOs Susan Williams 18370 AA Hwy Clarksburg MO

Socially Responsible Agriculture Project Ashlen Busick Regional Representative ashlenb@sraproject.org (660) 342-1655

Moniteau County Neighbors Alliance Jeanne Heuser President mcnamissouri@gmail.com (573) 533-8036 Response to Comment from Great Rivers Environmental Law Center, Missouri Coalition for the Environment, Moniteau County Neighbors Alliance, Socially Responsible Agriculture Project, and Moniteau County Neighbors Alliance

(Bold headers correspond to underlined headers in the comment document.)

The plan fails to comply with Title VI of the Civil Rights Act of 1964.

Comment authors argue that the plan violates Title VI of the Civil Rights Act of 1964 because (1) the department does not have procedural safeguards in place under the Code of Federal Regulations (CFR) Title 40, §§5 and 7; and, (2) the plan fails to evaluate disproportionate impacts and disparate impacts on protected class communities.

The purpose of the Annual Monitoring Network Plan is to fulfill the obligation under 40 CFR 58.10(a), requiring the Missouri Department of Natural Resources to assess and demonstrate that its ambient air monitoring network meets the applicable monitoring requirements of 40 CFR Part 58, and to identify any proposed network changes. The primary purpose of the monitoring network is to determine whether areas in Missouri are meeting National Ambient Air Quality Standards (NAAQS). The Clean Air Act (CAA) requires the U.S. Environmental Protection Agency (EPA) to establish NAAQS for designated Criteria Pollutants and the states to adopt enforceable plans to achieve those standards.

The department followed its process for public notice and comments. The department posted the plan on the internet for 30 days for public review and comment as required by the same regulation and in accordance with Title VI procedural safeguards. The department announced the availability of the plan for public review by email to 2,440 recipients on various mailing lists of persons who have expressed an interest in receiving information from the Air Pollution Control Program with an 88 percent delivery success rate. This final version of the plan includes the comments received and the department's responses to comments.

The department has Title VI procedural safeguards as required by 40 CFR Parts 5 and 7. (https://dnr.mo.gov/ada-non-discrimination), (https://dnr.mo.gov/document-search/notice-under-americans-disabilities-act), (https://dnr.mo.gov/document-search/grievance-procedures-under-americans-disabilities-act), (https://dnr.mo.gov/document-search/modnr-policy-111-external-complaint-response-policy), (https://dnr.mo.gov/document-search/external-complaint-discrimination-form-mo-780-2926).

All monitors in the Missouri air monitoring network, including those operated by the state and industries under state review, meet the applicable requirements of 40 CFR 58, and siting requirements described at Appendix E. The monitoring plan does not violate Title VI. Comment authors assert Title VI was violated by failing to consider disparate impacts (a Title VI consideration), disproportionate impacts (federal policy guidance) and cumulative impacts (federal policy guidance). First, the authors provide no specific justification for the alleged deficiency, only that the plan as drafted violates Title VI because it presents the prior EPA-

approved plan, facts that have changed since the plan was adopted and proposed changes in accordance with the law. The authors present no data for the department to respond or evaluate in terms of the pollutant/siting requirements of the law. Next, the authors identify a failure to conduct a disproportionate impact or cumulative impact analysis. However, the purpose of a monitoring plan is to measure effects of air emissions on communities throughout the state in locations determined according to the pollutant/scale specific requirements per 40 CFR 58. The pollutant specific siting requirements at Appendix E do not include guidance on how to identify impacts in terms other than specific pollutants to warrant moving monitors from one location to another. Lastly, as described in more detail below and in the 2018 Monitoring Network Plan (https://dnr.mo.gov/document-search/2018-monitoring-network-plan), the Blair Street site measures the NO₂ exposure of a susceptible and vulnerable community, and the Forest Park, Rider Trail, and Blue Ridge sites measure the concentrations of NO₂ near the I-70 and I-64 highways.

The plan contains insufficient ozone and NO_X monitoring.

The comments focus on ozone and NO_X monitoring in the St. Louis area. The 2019-2021 ozone design value for the St. Louis area is 0.069 parts per million (ppm), which is less than the health-effects-based NAAQS. In consideration of the design value and the population of the St. Louis core-based statistical area (CBSA) of 2,809,299, the required number of ozone monitors in the St. Louis area is two (40 CFR 58, Appendix D). There are currently 15 ozone monitors in the St. Louis CBSA, seven in Missouri, and eight in Illinois. The ozone monitoring network in the St. Louis area is considerably denser than the minimum regulatory requirement.

Chemical reactions of a combination of primary pollutants emitted from stationary and mobile sources cause the formation of ozone. Therefore, ozone tends to be regional, not local in its distribution. The highest concentration of ozone in an urban area is generally downwind of the city center. The network in the St. Louis CBSA in Missouri includes one site upwind of the city center, one in the city center, and five sites downwind of the city center, distributed so as to capture the highest concentration regardless of variations in wind direction. The West Alton site in St. Charles County, approximately 16 miles north of and generally downwind of the city center, has consistently been the design value site for the area. The Blair Street site in St. Louis City is an indicator of the ozone exposure of persons living in the city.

Appendix D of 40 CFR 58 requires 40 NO₂ monitors nationwide to be located in susceptible and vulnerable communities. For CBSAs with a population greater than 2.5 million, EPA requires two near-road sites. Previously, the Margaretta site in St. Louis was designated as an NO₂ site located in a susceptible and vulnerable community. The department replaced Margaretta for this designation with the Blair Street site as described in the 2018 Monitoring Network Plan (https://dnr.mo.gov/document-search/2018-monitoring-network-plan), which EPA approved in 2019. The Forest Park and Rider Trail sites measure the concentrations of NO₂ near the I-70 and I-64 highways in the St. Louis area, and the Blue Ridge I-70 site measures the concentration of NO₂ near I-70 in Kansas City. Recent design values for all sites are significantly less than the NAAQS. In addition, there are two NO₂ monitoring sites in the St. Louis CBSA in Illinois and one NO₂ monitoring site in the Kansas City CBSA in Kansas.

The plan fails to adequately address the pollution risks from coal plants.

The purpose of the Annual Monitoring Network Plan is to fulfill the obligation under 40 CFR 58.10(a), requiring the department to assess and demonstrate that its ambient air monitoring network meets the applicable requirements of 40 CFR 58, and to identify any proposed network changes. Thus, the plan addresses ambient air monitoring and does not describe all of the other activities of the Air Pollution Control Program, which includes permitting, compliance and enforcement, promulgation of rules, and planning activities related to meeting other federal requirements.

Coal-fired power generation plants, along with other facilities, require permits that include conditions on fuel use and require record-keeping, including source monitoring of the flue gas emitted from the plant. Ambient concentrations of pollutants, for example, sulfur dioxide (SO₂) can be measured by air monitors or can be conservatively estimated using air quality simulation modeling based on plant physical parameters, flue gas emission rates, and pollutant concentration measured in the flue gas. As discussed below, and as discussed in the monitoring plan where applicable, the air quality impacts of all coal-fired power plants in Missouri are being characterized by either air monitoring or by modeling.

The map in the comment document indicates approximately 28 coal-fired power plants. The source of the map is an out-of-date database and includes plants that are not coal-fired. Following are a few examples of incorrect indicators on the map. The star in the center of the state near the border of Callaway and Osage Counties may indicate the Callaway nuclear generating station or the Chamois power plant, which was retired in 2013. The Montrose plant near Clinton retired in 2018. The James River plant in Springfield retired in 2021. The Asbury plant in southwest Missouri retired in 2020. Online information sources consistently indicate ten coal-fired power plants in Missouri or 11 if the University of Missouri plant in Columbia is included (https://www.eia.gov/state/?sid=MO, https://www.eia.gov/siarmarkets/power-plants-and-neighboring-communities#mapping, https://coal.sierraclub.org/coal-plant-map, https://coal

The comment states that "people of color and impoverished groups are more likely to live close to industrial areas like coal-fired power plant" and references a 2012 article in *Scientific American* that references a report by the National Association for the Advancement of Colored People (NAACP) titled "Coal Blooded: Putting Profits Before People" (https://naacp.org/resources/coal-blooded-putting-profits-people). The report evaluated 378 coal-fired power plants in the United States and ranked them using a scoring system based on emissions of SO₂ and NO_x, population within three miles, income of that population, and percentage of people of color in that population. Of the 378 plants, 15 were in Missouri. Of those 15, at least seven are closed, planned to be closed soon, or converted to natural gas. Of the 378 plants, 75 were given a grade of F. Only one of those 75 was in Missouri. Therefore, the statement quoted above is not characteristic of Missouri plants in 2022.

The comment identified several coal-fired facilities, referenced the SO₂ data requirements rule (DRR), and stated that ambient SO₂ monitoring should be done near those facilities. The DRR applies to facilities with greater than 2,000 tons per year of actual SO₂ emissions. It did not only provide for monitoring; it provided three ways that a facility could characterize air quality to comply with the rule: through ambient air quality monitoring, through air quality modeling, or through establishment of permanent enforceable limits of SO₂ emissions to less than 2,000 tons per year. Each of the following facilities referenced in the comment chose the modeling option for compliance with the DRR: Thomas Hill plant near Moberly, Sikeston plant, Twitty plant in Springfield, and Flint Creek plant near Gentry, Arkansas (https://dnr.mo.gov/sites/default/files/2016-

<u>07/documents/arkansas source characterization 2.pdf</u>). The University of Missouri plant chose an enforceable emission limit, and the other power plants in Columbia are no longer burning coal.

The plan fails to address air pollution from CAFOs.

This comment states that the plan lacks discussion of air pollution from Concentrated Animal Feeding Operations (CAFOs).

The purpose of the Annual Monitoring Network Plan is to fulfill the obligation under 40 CFR 58.10(a), requiring the department to assess and demonstrate that its ambient air monitoring network meets the applicable monitoring requirements of 40 CFR 58, and to identify any proposed network changes. The primary purpose of the monitoring network is to determine whether areas in Missouri are meeting the NAAQS. The CAA requires EPA to establish NAAQS for designated Criteria Pollutants and the states to adopt enforceable plans to achieve those standards. Most Animal Feeding Operation (AFO) air emissions of concern are not classified as Criteria Pollutants and are, therefore, not regulated by any federal AFO-specific NAAQS under the CAA.

The comment further states that the plan proposes a noticeable lack of PM₁₀ monitoring to address the facilities depicted in the map of Class 1A CAFO and PM₁₀ Ambient Air Monitors. Page 32 of the 2022 Monitoring Network Plan describes the existing PM₁₀ monitoring network, which meets the federal minimum requirement for monitoring PM₁₀. Appendix D of 40 CFR 58 specifies the approximate number of permanent stations required in Metropolitan Statistical Areas (MSAs) to characterize PM₁₀ concentrations in areas where the population exceeds 100,000 residents. The St. Louis area meets this requirement with four monitoring sites, including one in Illinois. According to the 2021 United States Census Bureau Population Estimates (https://www.census.gov/data/tables/time-series/demo/popest/2020s-counties-total.html), none of the CAFO locations without PM₁₀ monitoring sites have a population over 100,000 or qualify as an MSA and therefore all CAFO locations fall short of meeting the criteria that require PM₁₀ monitoring.

The Annual Monitoring Network Plan documents that Missouri's air monitoring network complies with current federal regulations, details any changes proposed for the 18 months

following its publication and submittal, and provides specific information on the existing and proposed monitoring sites. Other activities of the air program, such as permitting, compliance and enforcement, planning, and promulgating rules, fall outside the scope of the plan.

The plan fails to address the pollution risks from mining.

As stated above, the primary purpose of the plan is to fulfill the regulatory requirement for the submittal of an annual monitoring network plan. The plan addresses ambient air monitoring and does not describe all of the other activities of the Air Pollution Control Program, which includes permitting, compliance and enforcement, the promulgation of rules, and planning related to meeting other federal requirements. Mining operations require permits that include emission limits.

The comment lists lead and zinc as metals mined in Missouri and states that "common pollutants from these mining operations include sulfur dioxide and particulate matter." However, the reference cited for this statement clearly states that smelting generates SO₂ emissions (https://www.americangeosciences.org/critical-issues/faq/how-can-metal-mining-impact-environment#id4). The last primary lead smelter in the U.S., in Herculaneum, Missouri, ceased operation at the end of 2013. The only primary zinc smelter operating in the U.S. is in Tennessee (https://www.nyrstar.com/operations/processing/nyrstar-clarksville). Therefore, SO₂ emission from metal mining or related activities is not an issue in Missouri.

Lead mining, secondary smelting, and, through 2013, primary smelting are (or were) conducted in Missouri. The department significantly expanded the network of lead monitors in Missouri in 2010 following the adoption of a more stringent lead NAAQS in 2008. The network included monitors in areas near primary and secondary smelters, near active lead mines and mills, and near areas where lead mining waste was disposed of in the past, some of which were undergoing remediation. None of the monitors showed a violation of the lead NAAQS attributable to mining or milling operations. Monitors near the secondary smelters showed exceedances of the NAAQS in the past but not in recent years. Monitors near the primary smelter showed exceedances in the past but not in recent years. The most recent exceedance near the primary smelter resulted from demolition activities after the smelter ceased operation. The department continues to monitor lead near the secondary smelters and in the area near the discontinued primary smelter.

Particulate matter, primarily PM_{10} , can be a result of mining operations or related minerals-processing activities. One of the department's PM_{10} monitoring sites, near Carthage, Missouri, is located near such a facility. The department continues to work with that facility to minimize emissions of particulate matter.

Concern over functionality of certain air monitors (incomplete data).

The comment stated that some sites did not meet data completeness requirements for ozone or SO₂ in 2021 or 2022. Actually, all ozone and SO₂ sites met the 40 CFR 50 data completeness requirements for 2021 and the first quarter of 2022. Note that ozone monitoring in Missouri is required only during March through October except at the Blair Street NCore site. Some of the sites mentioned (West Alton, Weaver, Fults, and Valley) had completeness issues in earlier years (especially in 2019) because of flooding, but none of them had completeness issues in 2021 or

2022 to date. As described in the plan, the West Alton monitoring station has been elevated on a platform above the 1993 flood level so that flooding is now much less likely to interrupt ozone measurements. Also, occasional reliance on a secondary ozone monitor if a primary monitor malfunctions should not be a cause for concern. Because of the importance of ozone monitoring, the department operates two ozone analyzers continuously at each site, and both monitors must meet the same quality assurance requirements. This redundancy helps to ensure data completeness with no reduction in data quality.

The comment also mentioned PM_{2.5} data incompleteness at the Hillcrest High School site in Springfield. PM_{2.5} data completeness at Hillcrest in 2021 was approximately 69 percent. As stated in the plan, the reliability of particulate matter measurement is improving with the replacement of aging equipment with either new or retrofitted instruments.

The department should support community air monitoring as part of the plan.

The purpose of the Annual Monitoring Network Plan is to fulfill the obligation under 40 CFR 58.10(a), requiring the department to assess and demonstrate that its ambient air monitoring network meets the applicable monitoring requirements of 40 CFR 58, and identify any proposed network changes. Compliant monitoring requires the use of Federal Reference Method (FRM) or Federal Equivalent Method (FEM) instruments and following strict protocols for instrument operation and quality assurance. Current community monitoring projects typically involve the use of less expensive sensors that do not meet the federal requirements for air monitoring, but nevertheless provide useful data, typically with enhanced spatial density. These projects are therefore outside the scope of the plan.

However, the department is supportive of community monitoring projects and has participated in community-oriented air quality projects in the past, including the St. Louis Community Air Project, and a project called "Advanced Sampling and Data Analysis for Source Attribution of Ambient Particulate Arsenic and Other Air Toxics Metals in St. Louis," which was funded by a Community Scale Air Toxics Ambient Monitoring grant by EPA.

The department continues to be supportive of current community monitoring projects, including the projects identified in the comment. One of the sensors in the Tetrad sensor network operated by KC Digital Drive and others in Kansas City is collocated with department FEM instruments at the Troost site. The department provides data from the FEM instruments at that site to the project, and department staff participate in periodic project conference calls.

Two of the sensors used in the Metropolitan Congregated United St. Louis Community-Based Air Quality Monitoring Program, Air Watch St. Louis, are located at department air monitoring sites. Calibration of those sensors is based in part on collocated monitoring with department FEM instruments by Washington University researchers at those sites during recent years.

Department staff were not aware of the Great Rivers ozone monitoring network in the Dutchtown neighborhood in St. Louis, but we are interested in seeing the results of the project and comparing them to department monitoring data. Similarly, we were not aware of the MCE

community-based air monitoring of hydrogen sulfide, ammonia, and particulate matter emissions, but we are interested in seeing the results of that project as well.

Corrections in Final Version of the 2022 Monitoring Network Plan

The department revised the section entitled "How to Make Public Comments Concerning this Plan" to indicate that it posted Revision 0 of the plan on May 24, 2022, received public comments on the plan through June 23, 2022, and has included comments and responses in Appendix 2 of this final version of the plan (Revision 1).

The department made corrections in Appendix 1 to indicate that the TEOM instruments at Hillcrest High School and St. Joseph Pump Station are 1405Fs, not 1405 DFs, and that the associated codes are the correct ones for those instruments.

The department added Appendix 2 (this appendix), which includes comments received, responses to comments, and identification of any corrections in the final version of the plan.

The department has made no other changes to the 2022 Monitoring Network Plan.