CS 321H Homework 4

Lyell Read

1. (5 pts) Convert the grammar below to CNF.

$$\begin{split} G &= (V,T,S,P) \text{ where} \\ V &= \{S,A,B,C,D\} \\ T &= \{0,1,2\} \\ P &= \\ & \begin{array}{c|cccc} S &\to A & | & ABD & | & 0BB \\ A &\to 0 & | & BAA \\ B &\to & BB & | & 1 & | & 2 & | & \lambda \\ C &\to & CD & | & 0 \\ \end{array} \end{split}$$

Answer:

• Eliminate start symbols from RHS (none)

| DD

• Remove lambda symbols

 $S \rightarrow A$

 $\mathrm{D} \ \to \ \mathrm{D1}$

 $S \rightarrow ABD$

 $S \ \to \ aBB$

 $A \ \to \ b$

 $A \ \to \ BAA$

 $\mathrm{B} \to \mathrm{BB}$

 $B \rightarrow b$

 $B \ \to \ c$

 $D \rightarrow Db$

 $D \rightarrow DD$

 $S \rightarrow AD$

 $S \rightarrow a$

 $S \ \to \ aB$

 $A \ \to \ AA$

 $\mathrm{B} \ \to \ \mathrm{B}$

• Eliminate unit productions

 $S \rightarrow ABD$

 $S \rightarrow aBB$

 $A \rightarrow b$

 $A \rightarrow BAA$

 $\mathrm{B} \ \to \ \mathrm{BB}$

 $B \rightarrow b$

 $B \ \to \ c$

 $D \rightarrow Db$

 $D \rightarrow DD$

 $S \ \to \ AD$

 $S \rightarrow a$

 $S \rightarrow aB$

 $A \ \to \ AA$

- $S \rightarrow b$
- $S \ \to \ BAA$
- $S \ \to \ AA$
- Eliminate useless productions
 - $S \rightarrow aBB$
 - $S \ \to \ a$
 - $S \rightarrow aB$
 - $S \rightarrow b$
 - $S \rightarrow BAA$
 - $S \rightarrow AA$
 - $A \rightarrow AA$
 - $B \rightarrow c$
 - $B \rightarrow b$
 - $\mathrm{B} \to \mathrm{BB}$
 - $A \rightarrow BAA$
 - $A \rightarrow b$

Convert to Chomsky

- $S \rightarrow Ba \mid D2$
- $D2 \rightarrow BB$
- $S \ \to \ a$
- $S \rightarrow Ba \mid B$
- $\mathrm{Ba} \ \to \ \mathrm{a}$
- $S \ \to \ b$
- $S \rightarrow BD1$
- $S \rightarrow AA$
- $A \ \to \ b$
- $A \rightarrow BD1$
- $D1 \rightarrow AA$
- $A \ \to \ AA$
- $B \ \to \ BB$
- $B \rightarrow b$
- $B \rightarrow c$

2. (10 pts) Consider the CNF grammar

$$G = (V, T, S, P)$$
 where

$$V = \{S, A, B, C, D\}$$

$$T=\{a,b,c\},$$

$$S = S$$

P =

$$S \rightarrow AB \mid AD \mid AC$$

- $A \rightarrow AA \mid a$
- $B \rightarrow BB \mid AB \mid b$
- $C \rightarrow AC \mid DC \mid c$
- $D \rightarrow DD \mid b \mid c$

Use the CYK algorithm to determine if the strings $w_1 = \text{babbc}$ and $w_2 = \text{aaaabb}$ are in the language L(G). Show the DP table. If the string is in L(G) construct the parse tree.

Response:

• $w_1 = babbc$

i/j	1	2	3	4	5
1 2 3 4 5	B,D	A	B,D	B,D	$_{\mathrm{C,E}}$
i/j	1	2	3	4	5
1 2 3 4 5	B,D	Ø A	B,S B,D	B,D B,D	C,E C,E
i/j	1	2	3	4	5
1 2 3 4 5	В,Д	Ø A	B B,S B,D	S,B B,D B,D	C,E C,E C,E
i/j	1	2	3	4	5
1 2 3 4 5	В,Д	Ø A	B B,S B,D	B S,B B,D B,D	S C,D C,D C,D
i/j	1	2	3	4	5
1 2 3 4 5	В,D	Ø A	B B,S B,D	B S,B B,D B,D	Ø S C,D C,D C,D

String not accepted, as there is no S in top right corner.

• $w_2 = aaaabb$

i/j	1	2	3	4	5	6
1	A					
2		A				
3 4			A	A		
5				Л	B,D	
6					,	$_{\mathrm{B,D}}$
i/j	1	2	3	4	5	6
1	A	A				
2		A	A A			
3			A	A		
4				A	S	D D
5 6					$_{\mathrm{B,D}}$	B,D B,D
i/j	1	2	3	4	5	6
1	A	A	A			
2		A	A	A	~	
3 4			A	A A	$rac{ ext{S}}{ ext{S}}$	S
5				А	B,D	B,D
6					Б,Б	$_{\mathrm{B,D}}^{\mathrm{B,D}}$
i	1	2	3	4	5	6
$\frac{-73}{1}$	A	A	A	A		
2	11	A	A	A	\mathbf{S}	
3			A	A	S S	\mathbf{S}
4				A	\mathbf{S}	\mathbf{S}
5					$_{\mathrm{B,D}}$	B,D
6						В,D
i/j	1	2	3	4	5	6

A A A

A A A

A S A S A S A S B,D

S S S B,D B,D

i/j	1	2	3	4	5	6
1	A	A	A	A	S	S
2		A	A	A	\mathbf{S}	\mathbf{S}
3			A	A	\mathbf{S}	\mathbf{S}
4				A	\mathbf{S}	\mathbf{S}
5					$_{\mathrm{B,D}}$	$_{\mathrm{B,D}}$
6						$_{\mathrm{B,D}}$

String accepted, as S is in top right corner.

Parse Tree:

Figure 1: Parse Tree

3. (15 pts) Construct npda's that accept the following languages on $\Sigma = \{a,b\}$. Give both a verbal explanation on how your npda works and the formal definition including the transition function and/or transition graph. You must use JFLAP. Submit the transition graph in the HW pdf and the JFLAP code file for each problem.

• a.
$$L = \{a^n b^{2n} : n \ge 0\}$$

NPDA:

Figure 2: NPDA for Excercise 3a

Explanation:

This NPDA works as a result of the stack being used as a tally of the required remaining b characters - that is, every time it reads an a, it adds two b characters to the stack, and when it reads the first b, it begins pulling from the stack.

• b.
$$L = \{w : n_a(w) = 2n_b(w)\}$$

NPDA:

Figure 3: NPDA for Excercise 3b

Credit: https://scholar.harvard.edu/files/harrylewis/files/ps4a_solutions.pdf

Explanation:

This NPDA operates very simply and beautifully to ensure that when the stack is empty, the number of b characters is double the number of a characters. It does this using the nondeterminism of an NDPA. After pushing an end of stack character, the program decides whether to push a b or pop an a when it locates a b at the start of the string. It also makes a choice between the following:

- 1. Push a b and push another b
- 2. Push a b and pop an a
- 3. Push an a and push a b
- 4. Push an a and pop an a

when it encounters an a character at the start of the string. Finally, when it encounters the end of stack character at the top of the stack, it will succeed.

c. $L = \{wcw^R : w \in \{a, b\} * \}$

NPDA:

Figure 4: NPDA for Excercise 3c

Sources:

https://www.geeksforgeeks.org/npda-for-accepting-the-language-l-wwr-w-ab/

http://www.cs.sjsu.edu/faculty/pollett/154.3.07s/Hw4.pdf

Explanation:

This NPDA is essentially a palindrome checker that specifies that there must be a c in the middle of the palindrome, and the word alphabet is $\Sigma = \{a, b\}$. It does this by pushing a copy of the start of the palindrome, up to c on the stack, and verifying that the same string is read after c, before finishing. Even knowing that $R \geq 0$, we include a case to catch the string c, as this would be a string where $R = 1, w = \lambda$.