Diversity-Promoting GAN: A Cross-Entropy Based Generative Adversarial Network for Diversified Text Generation

Jingjing Xu, Xuancheng Ren, Junyang Lin, Xu Sun

MOE Key Lab of Computational Linguistics, School of EECS, Peking University jingjingxu,renxc,linjunyang,xusun@pku.edu.cn

Abstract

Task:

• Text Generation.

• Problem:

• Existing text generation methods tend to produce repeated and "boring" expressions.

• Proposal:

- We propose a new model, called Diversity-Promoting Generative Adversarial Network (DP-GAN) for diversified text generation.
- The proposed model assigns low reward for repeatedly generated text and high reward for "novel" and fluent text.
- Moreover, we propose a novel language model based discriminator without the saturation problem.

Approach

Our model contains a **generator** and a **discrim-inator**. The sketch is shown in Figure 1.

- The **generator** G_{θ} is responsible for generating text, which is based on a sequence-to-sequence structure.
- The discriminator D_{ϕ} is a language model.
- We define **cross entropy** as the reward to train the generator.

Figure 1: Illustration of DP-GAN. Lower: The generator. Upper: The discriminator.

Rewards

Our reward function consists of two parts:

Sentence-Level Reward

For a sentence y_t of K words, the reward at the sentence level is the averaged reward of each word:

$$R(y_t) = -\frac{1}{K} \sum_{k=1}^{K} \log D_{\phi}(y_{t,k}|y_{t,< k})$$
 (1)

Word-Level Reward

Considering that the reward for different words in a sentence y_t should be different, we further propose to use the reward at the word level as follows:

$$R(y_{t,k}|y_{t,< k}) = -\log D_{\phi}(y_{t,k}|y_{t,< k}) \tag{2}$$

Policy Gradient Training

Adversarial reinforcement training:

- 1: Initialize G_{θ} , D_{ϕ} with random weights θ , ϕ 2: Pre-train G_{θ} using MLE on a sequence dataset $\mathcal{D}=$
- (X,Y)3: Generate samples using $G_{ heta}$ for training D_{ϕ}
- 4: Pre-train D_{ϕ}
- 5: N = number of training iterations
- 6: M = number of training generator
- 7: K = number of training discriminator
- 8: **for** each i = 1, 2, ..., N **do**
- 9: **for** each j = 1, 2, ..., M **do**
- Generate a sequence $Y_{1:T} \sim G_{ heta}$
- .: Update generator via policy gradient
- Canada a annua V
- : Sample a sequence $Y_{1:T} \sim \mathcal{D}$: Update generator parameters
- end for
 - **for** each j = 1, 2, ..., K **do**
 - Generate samples using $G_{ heta}$
 - Train discriminator D_ϕ
 - end for
- 19: end for

Experiment Dataset

Task:

- Review generation: Yelp & Amazon.
- Dialogue generation: OpenSub.

Results

Automatic evaluation results:

Yelp	Token	Dist-1	Dist-2	Dist-3	Dist-S
MLE	151.2K	1.2K	3.9K	6.6K	3.9K
PG-BLEU	131.1K	1.1K	3.3K	5.5K	3.1K
SeqGAN	140.5K	1.1K	3.5K	6.1K	3.6K
DP-GAN	406.8K	3.4K	22.3K	49.6K	17.3K
Dialogue	Token	Dist-1	Dist-2	Dist-3	Dist-S
MLE	81.1K	1.4K	4.4K	6.3K	4.1K
PG-BLEU	97.9K	1.2K	3.9K	5.5K	3.3K
SeqGAN	83.4K	1.4K	4.5K	6.5K	4.5K
DP-GAN	97.3K	2.1K	10.8K	19.1K	8.0K

Human evaluation results:

Yelp	Relevance	Diversity	Fluency	All
MLE	1.49	1.73	1.78	1.89
PG-BLEU	1.47	2.59	1.38	2.22
SeqGAN	1.48	2.40	1.54	2.12
DP-GAN	1.32	1.23	1.66	1.51
Dialogue	Relevance	Diversity	Fluency	All
MLE	1.19	1.84	1.37	1.87
PG-BLEU	1.13	1.85	1.21	1.75
SeqGAN	1.13	1.71	1.20	1.64
DP-GAN	1.13	1.50	1.30	1.55

Case Study

• Examples generated by our method and the state-of-art models.

Input: One of my favorite places to eat.

MLE: Service is great.

PG-BLEU: Service is always good.

SeqGAN: Love the chicken and waffles. Service is always great.

DP-GAN: Love the fact that they have a large selection of food. Service is always great and the food is always fresh. I've been to this place a few times and have never been disappointed.

Input: I don't think it's too spicy, so i add a little hot curry spice to the sauce.

MLE: It's great for cooking. I have to say, I'm not sure if it is the same.

PG-BLEU: Love it!

SeqGAN: Love it! Love this stuff. I have used it for years and it is very good.

DP-GAN:I've tried many different brands of hot sauces but this one is the best. I've also used it in soups and stews. I also like that it is organic and has a great flavor.

Analysis

Figure 2: Distribution of rewards between SeqGAN and DP-GAN. The upper two sentences are sampled from the real-world data and the lower two sentences are sampled from the generated data.

Contributions

- We propose a new model, called DP-GAN, for diversified text generation, which assigns low reward for repeated text and high reward for novel and fluent text.
- We propose a novel language-model based discriminator that can better distinguish novel text from repeated text without the saturation problem.
- The experimental results on review generation and dialogue generation tasks show that our method can generate substantially more diverse and informative text than existing methods.