Understanding, Optimising, and Extending Data Compression with Anisotropic Diffusion

Christian Schmaltz · Pascal Peter ·
Markus Mainberger · Franziska Ebel ·
Joachim Weickert · Andrés Bruhn

Received: 25 March 2013 / Accepted: 11 February 2014 / Published online: 26 February 2014 © Springer Science+Business Media New York 2014

Abstract Galić et al. (Journal of Mathematical Imaging and Vision 31:255–269, 2008) have shown that compression based on edge-enhancing anisotropic diffusion (EED) can outperform the quality of JPEG for medium to high compression ratios when the interpolation points are chosen as vertices of an adaptive triangulation. However, the reasons for the good performance of EED remained unclear, and they could not outperform the more advanced JPEG 2000. The goals of the present paper are threefold: Firstly, we investigate the compression qualities of various partial differential equations. This sheds light on the favourable properties of EED in the context of image compression. Secondly, we demonstrate that it is even possible to beat the quality of JPEG 2000 with EED if one uses specific subdivisions on rectangles and several important optimisations. These amendments include improved entropy coding, brightness and diffusivity optimisation, and interpolation swapping. Thirdly, we demonstrate how to extend our approach to 3-D and shape data. Experiments on classical test images and 3-D medical data illustrate the high potential of our approach.

Keywords Image compression · Edge-enhancing anisotropic diffusion (EED) · Partial differential equations (PDEs) · Subdivision · JPEG 2000 · Kanizsa triangle

Communicated by Hiroshi Ishikawa.

C. Schmaltz (\boxtimes) · P. Peter · M. Mainberger · F. Ebel · J. Weickert · A. Bruhn

Faculty of Mathematics and Computer Science, Saarland University, Campus E1.7, 66041 Saarbrücken, Germany e-mail: schmaltz@mia.uni-saarland.de

1 Introduction

As the number and resolution of images is constantly increasing, image compression with high compression rates is becoming more and more important. In this context, in particular lossy image compression algorithms are of interest, since they achieve much higher compressions rates than their lossless counterparts. Among the most popular lossy image compression algorithms are JPEG (Pennebaker and Mitchell 1992), which uses a discrete cosine transform (DCT), and its successor JPEG 2000 (Taubman and Marcellin 2002), which is based on biorthogonal wavelets.

While these so-called transform-based methods mark the quasi-standards in modern applications, interesting alternatives have recently been proposed that proceed in a completely different way: They are based on partial differential equations (PDEs). The interpolation qualities of PDEs have become evident by an axiomatic analysis (Caselles et al. 1998), by applying them to image inpainting (Masnou and Morel 1998; Bertalmío et al. 2000; Chan and Shen 2001; Borzì et al. 2005; Tschumperlé and Deriche 2005; Bornemann and März 2007) and by utilising them for upsampling digital images (Malgouyres and Guichard 2001; Battiato et al. 2003; Belahmidi and Guichard 2004; Aly and Dubois 2005; Weickert and Welk 2006; Roussos and Maragos 2007). Extending this to image compression drives inpainting to the extreme: Only a small set of specifically selected pixels is stored, while the remaining image is reconstructed using the filling-in effect of PDE-based interpolation. This idea has been pursued in Galić et al. (2005), and has later been extended with different amendments in Galić et al. (2008)). By encoding pixel locations in a binary tree that arises from an adaptive triangulation (Distasi et al. 1997), their algorithm can attain a quality that lies between JPEG and JPEG 2000 for medium to high compression ratios.

Both in Galić et al. (2005, 2008), a specific anisotropic diffusion process has been used that is called edge-enhancing anisotropic diffusion [EED, Weickert (1996)]. Although the interpolation qualities of EED have been compared to other partial differential equations in Galić et al. (2005, 2008), the real reason for the favourable performance of EED in the context of compression has not been investigated: All comparisons have been performed on a fixed, preselected set of pixels. This set has been extracted by randomly choosing a specified percentage of pixels. Therefore, one has evaluated the (scattered data) interpolation qualities. However, the theoretical results in Belhachmi et al. (2009) for image inpainting with homogeneous diffusion demonstrate that it is of crucial importance to choose an optimised set of interpolation points for compression. This optimisation step is the fundamental difference between PDE-based interpolation and PDE-based compression. Thus, one should also evaluate the compression qualities of the different PDEs for individually adapted sets of interpolation points. This has not been investigated so far.

An additional problem is that all image compression algorithms described above are only available for grey-valued 2-D images, while different image types such as 3-D images or binary shapes are used in important real world applications such as video coding, medical imaging (Bourne 2010), or geological applications.

For 3-D images, one possibility is to regard one dimension as time and employ standard video compression algorithms. However, such algorithms typically introduce a bias between successive frames, which is often undesired. Therefore, medical image standards like DICOM (National Electrical Manufacturers Association 2004) use 2-D compression methods such as JPEG 2000. For this setting, we propose a natural extension of our compression algorithm which allows to compress 3-D data inherently, i.e. without preferring a certain direction.

Our Contribution The goal of the present paper is three-fold, namely to evaluate inpainting operators within a compression framework, to introduce a PDE-based compression algorithm that can outperform JPEG 2000, and to extend this approach to shape coding and the 3-D setting.

To this end, we first investigate a number of different PDEs in some carefully selected examples that illustrate the advantages and drawbacks of different inpainting algorithms based on partial differential equations. By comparing homogeneous diffusion, isotropic nonlinear diffusion, anisotropic nonlinear diffusion, absolute minimal Lipschitz extension, biharmonic smoothing, triharmonic smoothing, as well as PDE-based inpainting operators introduced by Tschumperlé (2006), and by Bornemann and März (2007), we identify EED as a particularly useful PDE for image compression. Experiments are presented that provide insights into the particular qualities that distinguish EED from other PDEs. Thus, our

paper puts EED-based image compression on a more solid foundation.

Secondly, we show that it is even possible to exceed the quality of JPEG 2000 with an EED-based compression algorithm if several carefully optimised concepts are used that are not considered in Galić et al. (2008): First of all, we replace the adaptive triangulation by a subdivision into a rectangular structure and evaluate different point patterns on this adaptive structure. Furthermore, we use an improved entropy encoding of the stored brightness values, an optimisation of the contrast parameter within the diffusion process, and a swapping of the role of interpolation points and interpolation domain in the decoding step. The resulting novel codec that uses EED within a *rectangular* subdivision is called R-EED. We further validate our result from the first part of the paper by comparing several inpainting operators in our compression framework.

Finally, we carry over the introduced concepts to novel settings by performing shape-encoding using quadrupoles, and by introducing a novel codec for 3-D data that combines *cuboidal* subdivision with 3-D inpainting.

Organisation of the Paper Our paper is structured as follows: Sect. 2 explains how to interpolate an image from single points and sketches several partial differential equations that can be used for image interpolation. In Sect. 3, we evaluate these methods and present a number of experiments that illustrate why EED is well suited for compressing images. Section 4 introduces our complete 2-D image compression framework, which is evaluated in Sect. 5. Section 6 finally extends our framework to shape coding, as well as to coding of 3-D data. The paper is concluded with a summary in Sect. 7.

Related Work Let us now briefly mention some related papers that have not been discussed so far.

In the context of image compression, PDEs and related variational techniques have mainly been used as a preprocessing step before coding images or videos [see e.g. Tsuji et al. (2002), Kopilovic and Szirányi (2005)] or as a postprocessing tool for removing coding artifacts [see e.g. Ford (1996), Alter et al. (2005)].

The papers (Galić et al. 2005, 2008) as well as our present work differ from these strategies by the fact that we use a PDE *within* encoding and decoding rather than applying it before encoding or after decoding. In that sense they are more related to Chan and Zhou (2000) who apply total variation regularisation in order to modify the coefficients in a wavelet decomposition to reduce oscillatory artifacts.

Sometimes PDE-based interpolation strategies have been tailored to specific data sets such as surface data in digital elevation maps (Facciolo et al. 2006; Solé et al. 2004; Xie et al. 2007). Moreover, some variational L^1 minimisation ideas play an important role in recent compressed sensing concepts (Candés et al. 2006).

The usefulness of inpainting concepts for image compression is studied in several papers, where structure and texture inpainting ideas have been integrated into standard codecs such as JPEG (Liu et al. 2007; Rane et al. 2003; Xiong et al. 2007).

With respect to its intention to reconstruct an image from a small set of characteristic data, our paper has some relations to publications where edge information is used to represent the main image content. This has been done in many different formulations (Zeevi and Rotem 1986; Carlsson 1988; Hummel and Moniot 1989; Mallat and Zhong 1992; Acar and Gökmen 1994; Aurich and Daub 1996; Desai et al. 1996; Elder 1999; Wu et al. 2009; Mainberger and Weickert 2009). Methods of this type can be seen as representatives of second-generation coding approaches that exploit perceptually relevant features such as edge contours (Kunt et al. 1985).

An alternative way to represent signals and images by a sparse set of significant points consists of reconstructions from top points in scale-space, as has been investigated by Johansen et al. (1986) and Kanters et al. (2005). More general discussions on how to reconstruct an image from a suitable set of feature points and their derivatives (local jet) have been presented by Lillholm et al. (2003). Impressive global reconstructions of natural images by means of the local jet structure are reported in a classical technical report by Bruckstein (1993), in which was suggested to stabilise this ill-posed process with Tikhonov regularisation and directional filtering.

Regarding our subdivision strategy, many related variable block size image coding algorithms exist, in particular methods based on quadtree decompositions; see e.g. Strobach (1991) and Sullivan and Baker (1994). Interesting adaptive triangulation ideas can be found in Distasi et al. (1997), Demaret et al. (2006), and Bougleux et al. (2009).

In the 3-D setting, there have been no pure PDE-based compression methods so far. However, 3-D diffusion was proposed as a pre- or postprocessing step within transformation-based compression methods such as MPEG4; see e.g. Tsuji et al. (2007) or Bourdon et al. (2004).

A generalisation of image compression ideas with homogeneous diffusion to the compression of surfaces is studied in Bae and Weickert (2010).

The second part of our manuscript extends preliminary results of a conference paper (Schmaltz et al. 2009). Substantial differences are, among other things, the comparison of several differential operators within an image compression framework, the investigation of different point selection patterns within our rectangular subdivision, a more refined quantisation, and an improved interpolation swapping step. We will see that these modifications enhance the compression performance. The extension to 3-D data is based upon the work in Peter (2012).

As explained in the introduction, only the brightness of specific pixels and their positions are stored in our image compression framework. In this section, we explain how the image can be recovered from these sparse data using PDE-based image interpolation.

Let Ω denote the complete domain. For images, we have $\Omega \subset \mathbb{R}^2$, while $\Omega \subset \mathbb{R}^3$ holds for volumetric data. Moreover, let $K \subset \Omega$ be the set of those locations for which the image brightness is known, i.e. for which the brightness is stored in the compressed image. Note that the equations presented in this section are valid for both kinds of data. The set K is called the *interpolation mask*.

The goal behind PDE-based image inpainting is to compute a reconstruction u of the original image $f: \Omega \to \mathbb{R}$ that fulfils the following two properties: First of all, u should be identical to f at those locations for which the brightness is known, i.e.

$$u(x) = f(x) \quad \forall \ x \in K. \tag{1}$$

Secondly, u should own some kind of regularity properties. Typically, u is assumed to be smooth or piecewise smooth outside K. Both properties are fulfilled when using the solution of the following PDE as reconstruction:

$$(1 - c_K) Lu - c_K (u - f) = 0, (2)$$

with reflecting (i.e. homogeneous Neumann) boundary conditions. Here L denotes some differential operator that guarantees the desired smoothness, and c_K is the characteristic function of K that is 1 at the specified set K, and 0 elsewhere. Since the reconstructed image u does not change at the specified locations K, (2) comes down to the simplified PDE

$$Lu = 0 (3)$$

on $\Omega \setminus K$, with Dirichlet boundary conditions (1) on K, and homogeneous Neumann boundary conditions on the boundary of Ω . This equation can be solved by computing the steady state of the evolution equation

$$\partial_t u = L u, \tag{4}$$

where t serves as an artificial time parameter. For $t \to \infty$, we thus obtain the reconstructed image.

In the remainder of this section, we give a short introduction on several possible choices for the differential operator L. The simplest differential operator L that can be used for inpainting is the linear diffusion operator (Iijima 1959; Weickert et al. 1999), which is also known as the Laplacian operator:

$$Lu = \Delta u = \operatorname{div}(\nabla u). \tag{5}$$

We will also consider higher order linear operators such as the *biharmonic operator*

$$Lu = -\Delta^2 u. ag{6}$$

or the triharmonic operator

$$Lu = \Delta^3 u. (7)$$

Another interpolation operator that we will evaluate is the absolute minimal Lipschitz extension (AMLE) introduced in Aronsson (1967). This operator which has been axiomatically justified for interpolation tasks by Caselles et al. (1998) is given by

$$Lu = u_{\eta\eta},\tag{8}$$

where η denotes the normalised gradient. Since this operator interpolates only in the direction of the gradient, it acts anisotropically.

In Perona and Malik (1990), it was proposed to prevent smoothing semantically important edges by reducing the diffusion at edges of the evolving image, namely by using the operator

$$Lu = (\operatorname{div}(g(|\nabla u|^2)|\nabla u), \tag{9}$$

where g is a nonnegative, decreasing function in its argument $|\nabla u|^2$ for which g(0) = 1 holds. In our experiments we use the *Charbonnier diffusivity* (Charbonnier et al. 1997)

$$g(s^2) := \frac{1}{\sqrt{1 + \frac{s^2}{\lambda^2}}},\tag{10}$$

where $\lambda > 0$ is a contrast parameter. Thus, we call the corresponding interpolation operator *Charbonnier diffusion*. With this diffusivity we have observed better interpolation results than for the more rapidly decaying diffusivities of Perona and Malik (1990). For our interpolation experiments it will be instructive to study also a regularised variant of the Charbonnier operator. It is given by

$$Lu = \operatorname{div}(g(|\nabla u_{\sigma}|^{2}) \nabla u), \tag{11}$$

where $u_{\sigma} := K_{\sigma} * u$ is the smoothed image obtained by convolving u with a Gaussian K_{σ} with standard deviation σ . We call (11) the *regularised Charbonnier operator*. In the context of diffusion filtering, this regularisation has been introduced by Catté et al. (1992) in order to make the Perona-Malik filter well-posed and more stable under noise.

Last but not least, let us also study a direction-dependent (and therefore anisotropic) variant of a nonlinear diffusion operator which reduces smoothing across edges while still permitting diffusion along them. It has been introduced for diffusion filtering in Weickert (1996) and is named edge-enhancing (anisotropic) diffusion (EED). For image compression it was first used in Galić et al. (2005). The differential operator of EED replaces the scalar-valued diffusiv-

ity $g(|\nabla u_{\sigma}|^2)$ in (11) by a matrix-valued diffusion tensor $g(\nabla u_{\sigma} \nabla u_{\sigma}^{\top})$:

$$Lu = \operatorname{div}(\mathbf{g}(\nabla u_{\sigma} \nabla u_{\sigma}^{\top}) \nabla u). \tag{12}$$

Thereby, we extend the scalar-valued function g(x) to a matrix-valued function g(A) by applying g only to the eigenvalues of A and leaving the eigenvectors unchanged. Again, we use the Charbonnier diffusivity given in (10). Since EED is designed such that it smoothes along edges but very little across them, this diffusion process respects not only the location but also the direction of sharp edges. Moreover, the Gaussian smoothing within $u_{\sigma} = K_{\sigma} * u$ allows to propagate this anisotropy also to the vicinity of the specified data. We will see that these are important properties for interpolation.

Furthermore, we will evaluate two PDE-based inpainting algorithms introduced by Tschumperlé (2006), and by Bornemann and März (2007), respectively. The approach by Tschumperlé is a tensor-driven PDE which takes the curvature of specific integral curves into account, while the second is an extension of Telea's single-pass algorithm (Telea 2004) that uses an exponentially confining weight function. Since a detailed explanation of these algorithms is beyond the scope of this paper, we refer to Tschumperlé (2006), Bornemann and März (2007), and Telea (2004) for more details.

3 Comparison of Differential Operators

To evaluate the different PDE-based interpolation operators from Sect. 2, we first compare them in several illustrative scenarios, starting with the example shown in Fig. 1. From three black discs with white wedges given as initial data, the remainder of the image is to be reconstructed. In this example, which is similar to the well-known Kanizsa triangle, a human observer sees a triangle.

Even though only points within three small disks are given, EED yields an almost perfect reconstruction of the entire triangle. This favourable performance can be understood as follows: The anisotropy allows EED to create sharp edges, while the Gaussian presmoothing within the diffusion tensor propagates a directional preference also to areas outside the specified disks. Hence, EED features two important qualities: anisotropy and semilocality (in the sense that it is not purely local, but also involves the neighbourhood).

The method by Bornemann and März also creates an almost perfect triangle, as this approach is good at connecting level lines. This explains why it works very well for this example. However, one has to choose the parameters very carefully, as even slight variations significantly alter the results. The method by Tschumperlé, which was created with the G'MIC plug-in for the GIMP, yields rather poor results. Moreover, the algorithm is quite slow and did not converge even after 5,000 iterations. This is more than 20 times the

Fig. 1 (a) Initial image, 189×189 pixels. The brightness values inside the three disks are specified, while the remainder was initialised with uniform noise. (b)–h Reconstruction results with linear diffusion interpolation [see (5)], biharmonic interpolation [see (6)], triharmonic interpolation [see (7)], AMLE [see (8)], Charbonnier interpolation [see (9),

 $\lambda=1$], regularised Charbonnier interpolation [see (11), $\lambda=0.1$, $\sigma=8$], EED interpolation [see (12), $\lambda=0.01$, $\sigma=4$], the method from Bornemann and März (2007) [$\epsilon=5$, $\kappa=100$, $\sigma=4$, $\rho=8$], and the method from Tschumperlé (2006) (30 global and local iterations, dt=17.86, $\alpha=2.81$, $\sigma=0.27$)

number of iterations used in the original paper. Thus, we do not further evaluate this method in our compression framework.

The unsatisfactory results of the other interpolation operators show that the success of EED lies in the *combination* of the two properties explained above. Apart from AMLE, all other operators are isotropic. Unfortunately, AMLE prefers a direction perpendicular to isophotes. The fact that biharmonic and triharmonic interpolation create some blurry triangle-like structure is caused by their higher degree of smoothness, not by any kind of anisotropy. Gaussian smoothing within regularised Charbonnier interpolation gives a better propagation of structures than unregularised Charbonnier interpolation. However, regularised Charbonnier interpolation cannot restore the triangle due to its lack of anisotropy.

It is also interesting to observe that unregularised Charbonnier interpolation does not propagate any white area of the disks. Since it approximates total variation (TV) interpolation and most of the data at the boundary of the disks are black, the total variation is minimised by a black interpolant. This shows that isotropic TV ideas can be problematic for compression tasks, since TV may ignore a substantial part of the data.

It should be noted that using TV in an anisotropic way can be highly successful, though: EED combines linear diffusion interpolation along edges with (an approximation of) TV interpolation across edges. A vanishing diffusion across pronounced edges creates a segmentation of the interpolation

problem into subproblems where the specified grey values are similar if they belong to the same segment. Inside each segment, essentially isotropic linear diffusion interpolation is performed. However, since the grey values are similar, the main problem of isotropic linear diffusion interpolation, namely logarithmic singularities for fluctuating data, is not present.

After we have investigated the differences between EED and isotropic second order differential operators for interpolation, let us now study the difference to higher order differential operators in more detail. This is done in Fig. 2, where we interpolate a "dipole" image in which only two adjacent pixels of black and white colour are specified. We see that both EED and biharmonic interpolation are capable of segmenting the image plane into two halfplanes. However, EED creates sharper boundaries due to its pronounced anisotropic behaviour and the property of TV interpolation to admit jumps across the edge. Biharmonic interpolation, on the other hand, aims at creating a smooth interpolant, also across edges. Moreover, this smoothness is at the expense of violating a maximum-minimum principle, as can be clearly seen from the over- and undershoots at both sides of the dipole.

Our dipole experiment has motivated us to perform another minimalist experiment: Fig. 3 sheds light on the capabilities of EED to encode shapes by means of a sparse set of pixels. We see that four dipoles are sufficient for EED interpolation to reconstruct the shape of a disk. This illustrates

Fig. 2 (a) Input image, 32 × 31 pixels. Only the *black* and the *white* pixels in the *middle* of the image are specified. (b) Interpolation result with the biharmonic operator. (c) Interpolation result with EED. (d) Results of the two interpolation approaches plotted as height field. Biharmonic interpolation produces large over- and undershoots, while EED stays within the specified *grey value* range [0, 255]

Fig. 3 (a) Original image of size 63×63 pixels, where four dipoles are specified. (b) after EED interpolation ($\lambda = 0.01, \sigma = 1$)

that EED also has a tendency to favour shapes of low curvature. The Gaussian smoothing within the diffusion tensor encourages such rounding effects.

4 Our Image Codec

After we have discussed the principles of PDE-based interpolation and evaluated several differential operators in the previous sections, let us now introduce our image compression framework that decides which pixels are kept. Moreover, we will detail on how these pixels can be stored efficiently.

4.1 Selecting and Encoding Pixel Locations

Deciding which pixels of a given image should be kept is a difficult task, as there is little theoretical knowledge about how these pixels should be chosen. One notable exception is homogeneous diffusion, for which analytical answers to this question have been derived using the continuous theory of shape optimisation (Belhachmi et al. 2009). However, even in this case there are still remaining degrees of freedom depending on the model assumptions and the discrete implementation of continuous results (Mainberger et al. 2012). Moreover, optimal interpolation in an approximation theoretic sense may not be optimal for compression if there are suboptimal pixel masks that can be encoded more efficiently.

One obvious possibility would be a simple subsampling approach, where all pixels on a regular subgrid are kept. While this avoids additional costs for storing the pixel locations, such a nonadaptive strategy usually does not give a satisfactory reconstruction quality: In flat image areas, too many points are kept while they may be too sparse in more interesting areas, e.g. near edges.

Another natural idea is to try all possible subsets (with a specified number of pixels) of the set of all pixels, and to choose the subset that yields the best results. Since this is a finite combinatorial problem, we are guaranteed that an optimal solution exists. However, for all but the smallest images, this is infeasible due to the large amount of possible subsets: Selecting e.g. 10% of the pixels of a 256×256 image leaves

$$\begin{pmatrix} 65536 \\ 6554 \end{pmatrix} \approx 3.8 \cdot 10^{9250} \tag{13}$$

options. Moreover, saving the positions of the points is quite expensive in this case, since there is no regular pattern behind the position of optimal points.

As a remedy, we now propose a method that restricts the search space by use of an adaptive rectangular grid that allows to store the pixel positions in an inexpensive way in a tree

Fig. 4 Illustration of the rectangular subdivision scheme. The *white parts* are the (sub)images being processed, while the *circles* show one example for the points saved in this subimage. For this example, Pattern F from Fig. 6 was used

Fig. 5 Left input image "trui" used for several experiments. Right example of an interpolation mask used for this image

structure. We first approximate the image with a few points at fixed positions, e.g. the four corners of the image, and reconstruct the image using one of the inpainting schemes described in Sect. 2. If the reconstruction is not accurate enough, the image is split into two subimages in the middle of the x or y direction, whichever is larger, and the two subimages are saved recursively. This splitting is illustrated in Fig. 4, and a final mask in Fig. 5.

In order to decide if the reconstruction quality is sufficient, i.e. whether a splitting is performed, we compute the mean square error (MSE) between original and reconstructed image part. The MSE is then compared with a threshold. If it exceeds this threshold, we subdivide. The threshold T is given by $T := a\ell^d$, where d is the recursion depth and where a and ℓ are free parameters [see Galić et al. (2005)]. To reduce the size of the tree in the compressed file (see below), it often makes sense to use these thresholds only for a limited recursion depth, i.e. all images are split up to a certain level, and no split is done once a maximal recursion depth is reached.

In Schmaltz et al. (2009), we assumed that the complete subimage boundary is known when deciding whether to subdivide a part of the image. However, since only a few key points are stored, the actual reconstruction is not based on the whole boundary. Thus, in the present article, we use only those points for the compression step that are candidates for being saved.

The location of the stored pixels is uniquely determined by the splitting decisions for the subimages, assuming the saved points in each rectangle are known. Thus, instead of storing the position of each saved pixel individually, it is sufficient to save the binary tree containing the splitting decisions. We store this tree by first saving its minimal and maximal depth, followed by one bit for each tree edge between these two depths. Note that the amount of space necessary to save the minimal and maximal tree depths depend logarithmically on the image dimensions.

Let us now discuss how to choose the mask points in each subimage. A straightforward idea would be to select the two endpoints on the line used to split the image, as well as the point in the middle of this line, as done in Schmaltz et al. (2009). Here we investigate different alternatives for suitable point sets to be stored.

For our experiment we compare the quality obtained with the different point selection patterns. Figure 6 shows the different point patterns we evaluate, and Table 1 the best MSE obtained with each pattern for three different images. While each novel line is approximated by three points in Schmaltz et al. (2009), which corresponds to Pattern C, we observe that pattern F yields better results. This is due to two reasons: First of all, the number of points in the pattern serves as a tradeoff between accurate point localisation and overhead necessary to store the binary tree: In patterns with a low amount of points, more rectangles are necessary to store a certain amount of point positions. Thus, a large tree is needed to encode the positions of a certain number of points, resulting in too much overhead to obtain a good approximation. In patterns with many points, there is little overhead (compared to

Fig. 6 The eleven pixel selection patterns we evaluated in our image compression framework. In *Pattern B*, the two pixels shown are always along the longer side of the *rectangle*. The same is true for the same two points in *Pattern C*, *H*, and *I*

Table 1 Number of points in each of the patterns shown in Fig. 6, and mean square error (MSE) for each pattern when saving different images with a compression rate of 20:1

Pattern	A	В	С	D	Е	F	G	Н	I	J	K
No. of points per subimage	1	2	3	4	4	5	5	6	7	8	9
MSE for image "trui"	47.75	46.49	43.98	38.08	47.53	35.78	46.94	37.60	39.68	44.09	41.86
MSE for image "walter"	23.61	25.13	22.51	20.64	23.27	19.95	24.58	20.27	22.30	22.44	20.90
MSE for image "peppers"	56.50	53.29	54.50	44.13	56.30	45.88	59.05	46.22	50.83	52.70	50.36

The best result in each line is highlighted. No entropy coding was performed for these experiments. The original images are shown in Figs. 7 and 10, respectively

the number of pixels saved), but the point locations are more restricted, again giving suboptimal results. This explains the ordering of all patterns except for Patterns E, G, and J. Here, the problem is that the points are not distributed well over the complete domain. As Patterns D and F have the right number of well distributed points, they yield the best results. We should mention that Pattern D yields good results especially for high compression ratios, as the tradeoff described above slightly favours using less points in case of high compression ratios.

4.2 Quantising and Encoding the Brightness Data

Up to now we have only stored the locations of the points that are kept in a lossless way. In the following we explain a lossy strategy for storing the corresponding brightness values. They are obtained by scanning the interpolation mask from top left to bottom right.

For each point in the mask, the corresponding brightness value is first requantised. Reducing the quantisation levels from the original 256 levels of bytewise coding to a smaller amount allows to save many bytes. These savings can be invested in additional pixels that are stored. There is of course a tradeoff, since a coarser quantisation also deteriorates the approximation quality in the individual pixels. For simplicity we use an equidistant quantisation. In our current implementation this quantisation step may use any integer number of quantisation levels, while this number was restricted to a power of 2 in Schmaltz et al. (2009). Renouncing powers of 2 is no problem, if we apply some suitable entropy encoding of the grey levels. Let us discuss this next.

The quantised pixel values are encoded in a lossless way using a general purpose entropy coder. We tested several different entropy coders including Huffman coding (Huffman 1952), arithmetic coding with static or adaptive model (Rissanen 1976), Lempel–Ziv–Welch coding (Welch 1984), gzip (version 1.3.5), bzip2 (version 1.0.3), and a slightly modified version of PAQ [version paq8o8z-feb28, (Mahoney 2005)]. Except for gzip and bzip2, which are standard tools, and PAQ, the source code of which is available at Mahoney (2009), we used the implementations from Dipperstein (2009) here.

A comparison of the performance of the different entropy coders can be found in Table 2. In the experiments shown in Sects. 5 and 6, we always use the best entropy coder for a given problem (it is stored in the header which coder must be used to decompress the data). This was either PAQ, or, for very small files, arithmetic coding with an adaptive model.

Allowing an MSE of **54.46** for the image "trui", we obtain a compression ratio of **40.02:1** using arithmetic coding with an adaptive model as entropy coder for the brightness values. Using PAQ, the compression ratio even rises to **47.46:1**. In the following sections, we use this as ongoing example to demonstrate the effect of each of our optimisation steps.

4.3 Diffusion Parameter Optimisation

The differential operators from nonlinear diffusion methods involve a contrast parameter λ . It helps to distinguish between high contrast locations where the diffusion is reduced and low contrast regions where one is interested in approximating homogeneous diffusion. While Galić et al. (2008) used a

Raw	НС	НСс	ACs	ACa	PAQ	gzip	bzip2	LZW	RC
7587	3596	3773	3664	3515	2745	3439	3259	3545	3985
3789	1850	2027	1906	1788	1536	1851	1797	1977	2258
1897	973	1150	1012	923	855	975	984	1072	1394
950	530	707	548	487	485	512	533	600	958
469	302	479	297	263	283	284	305	325	734
199	175	352	145	139	154	151	169	164	610

Table 2 Effect of entropy coding of pixel data from the image "trui", with varying splitting thresholds in the subdivision process

Shown are the size of the compressed pixel data in bytes without entropy coding (raw), with Huffman coding (HC), with Huffman coding using canonical codes (HCc), with arithmetic coding with static (ACs) or adaptive (ACa) model, PAQ, gzip, bzip2, Lempel–Ziv–Welch Coding (LZW), and range coding (RC). The best results are highlighted

constant λ , we noticed that the results can be improved by adapting λ to the image and the desired compression ratio. Therefore, we search for the contrast parameter which yields the best reconstruction result and store it in the header of the compressed image.

The contrast parameter is always positive by construction, and the optimal values have a limited range. Thus, we can quantise this range into 256 values in a linear way, and use one byte to store it. Note that the range differs depending on whether Charbonnier interpolation, regularised Charbonnier interpolation or EED interpolation is considered. For example, the interval [0,1] is a useful range when applying EED to images with grey value range [0,255]. In this case we are fairly close to TV interpolation across edges. Here, we tested each of the 256 possible values to find the best λ , but using a golden section search yields only slightly worse results.

In the image "trui", optimising the contrast parameter improves the MSE from **54.46** to **53.35**. In this example, this is only an incremental gain. For other images, however, this step may lead to larger improvements.

Since we optimise the contrast parameter λ , a natural question would be if it makes sense to optimise also the regularisation parameter σ . It determines the amount of Gaussian smoothing within the diffusivity of regularised Charbonnier interpolation and within the diffusion tensor of EED interpolation. We have also tried this and experienced that even variations by a factor 10 have only a very limited impact on the compression quality. It seems that the pure presence of some regularisation is more important than its precise amount. Thus, in our compression experiments with pixel size 1 we have decided to fix σ to 0.8.

4.4 Brightness Optimisation

It is possible to significantly improve the reconstructed image by adapting the brightness of the stored pixels. Obviously, this step introduces an additional error at these pixels. However, the resulting image has a much higher overall reconstruction quality.

Modifying the brightness values of the selected pixel set K can lead to remarkable improvements: Optimisation in a single pass reduces the MSE of our example image "trui" from **53.35** to **36.48**. With multiple optimisations, the MSE improves further to **31.08**.

4.5 Interpolation Swapping

If we use the above mentioned steps, an interesting phenomenon can be observed: It can happen that the reconstruction quality within the "interpolation" set K is worse than in the inpainting domain $\Omega \setminus K$, especially for high compression ratios. There are three reasons for this behaviour:

- (i) A coarser quantisation of the stored brightness values creates errors.
- (ii) Higher errors are accepted in the interpolation set K if this is beneficial for the approximation quality within the inpainting domain $\Omega \setminus K$.
- (iii) In the domain $\Omega \setminus K$, data are inpainted by PDEs that average information from K. Even if the stored brightness values in K are erroneous due to requantisation and brightness optimisation steps, a blend of them averages the errors and may lead to improved results in the inpainting domain $\Omega \setminus K$. This resembles variational optic flow estimation where the results at locations with a large data term are worse than in areas where the smoothness term with its inpainting effect dominates (Bruhn and Weickert 2006).

Moreover, for isotropic linear and nonlinear diffusion interpolation it can be observed that inpainting results may

become singular when approaching an isolated pixel from the set K. In the linear case this can be explained with the well-known logarithmic singularity of the Green's function of the 2-D Laplacian.

Interestingly there is a relatively simple remedy for all these problems: In Bae and Weickert (2010) it is proposed to perform an additional inpainting step in which the role of known and unknown pixels is swapped. That is, after reconstructing the image with inpainting, one regards the reconstructed points in $\Omega \setminus K$ as known and the specified points in K as unknown. Then one inpaints the data in K using the information from K0 in the known and the specified points that is smoother and propagates the high quality solution from K1 in the more erroneous data in K2. While this strategy may appear ad hoc at first glance, it can be justified as a numerically consistent approximation of the inpainting PDE in the sense of so-called Hopscotch schemes (Gourlay 1970).

Here we propose a modification that extends the interpolation swapping of Bae and Weickert (2010): Instead of only recomputing the known points, we also allow the possibility to recompute more points. More precisely, we reconstruct all points within a certain radius around the saved mask points. The radius for which the best reconstruction is achieved is stored in the file header.

Since the best brightness values and the optimal contrast parameter λ can change during these optimisations, brightness optimisation, diffusivity optimisation, and finding an optimal interpolation swapping are interleaved.

The radius that yields the best result is stored in the header of the compressed file and used in the reconstruction step. For our test image "trui" this step reduces the MSE from **31.08** to **28.29**.

4.6 Colour Images

Very little is necessary to extend our algorithm to colour images. Here, we simply save the R, G, and B value of each pixel indicated by the inpainting mask in an interleaved way. The file containing all colour channels is then compressed together using the chosen entropy coder. An additional bit in the file header indicates whether a grey-scale or colour image has been stored. In the decompression step, we reconstruct all three channels simultaneously using vector-valued inpainting operators (Weickert and Brox 2002). Note that this yields different results than inpainting each channel separately when using a nonlinear inpainting process, since the argument of the diffusion tensor depends on all channels.

4.7 Decoding Algorithm

In the decoding step our codec creates the inpainting mask from the splitting information and the image size. The pixel values at these positions are obtained by decoding the pixel data with the entropy coder and inserting them at the appropriate positions. Then the remainder of the image is inpainted using the same inpainting method as in the compression step. Finally, interpolation swapping is performed.

4.8 Numerical Implementations

The PDEs we consider have been implemented using a variety of numerical schemes. Most of them are based on finite difference discretisations of the evolution equation given in (4). To allow for large time steps for the diffusion schemes, (semi-)implicit time discretisations have been implemented which are solved using e.g. SOR or conjugate gradients. AMLE interpolation has been implemented with an explicit scheme, and for the biharmonic and triharmonic interpolation methods also pseudospectral methods are used.

While loading a stored 256×256 image currently requires less than a second using a single CPU thread with EED, it can take several hours to find an optimal encoding. This is due to the fact that we currently lack heuristics how to find good parameters, and therefore search them using brute force approaches. The actual CPU times depend strongly on the choice of the differential operator, the numerical scheme, the optimisation strategy, and the hardware. Since the present paper focusses on modelling and quality issues, a detailed numerical evaluation will be presented in a forthcoming paper that is entirely devoted to these aspects. It should be mentioned that it was already demonstrated in Köstler et al. (2007) that one can achieve real-time performance for diffusion-based codecs on a Playstation 3 with images of size 320×240 pixels.

4.9 File Format

The file format of our image compression framework has the following structure:

- image size (between 10 and 34 bits)
- type of inpainting differential operator (3 bits)
- colour flag (1 bit)
- type of entropy coder (4 bits)
- contrast parameter (1 byte)
- type of interpolation swapping (4 bits)
- number of quantisation levels (1 byte)
- minimal / maximal depth of tree (at most 2 bytes)
- splitting information of the tree (variable size)
- compressed brightness values (variable size)

Ignoring the splitting information of the tree, our header thus occupies less than 10 bytes.

Fig. 7 Reconstruction from optimised point masks with linear diffusion interpolation [see Eq. (5)], biharmonic interpolation [see Eq. (6)], triharmonic interpolation [see Eq. (7)], AMLE [see Eq. (8)], Charbonnier interpolation [see Eq. (9)], regularised Charbonnier interpolation

[see Eq. (11)], EED interpolation [see Eq. (12)], and the method by Bornemann and März (BM). Each point mask is optimised such that the smallest MSE for a compression ratio of 45:1 is obtained. A quantitative evaluation of these images is given in Table 3.

5 Evaluation of Our Compression Framework

In this section, we first compare the performance of different PDE-based inpainting operators within our image compression framework. Afterwards, a comparison against various image compression algorithms is performed.

5.1 Comparison of the Differential Operators in Our Compression Framework

To further evaluate the different PDE-based interpolation operators from Sect. 2, we used them to compress images with our compression framework introduced in the last section. Here, the image "trui" with a compression rate around 45:1 is used. All parameters have been chosen in such a way that optimal point masks, quantisation levels, and tree depths for each method are obtained. The results are shown in Fig. 7 and Table 3.

We see that the best results are obtained with EED. This is true with respect to the MSE (see first rows in Table 3) as well as visually: The method by Bornemann and März creates too many edges, i.e. it oversegments the image. The results from biharmonic or triharmonic interpolation show visible fluctuations due to over- and undershoots at edges. This is characteristic for higher-order differential operators that vio-

The implicit segmentation performed by EED (see Sect. 3) explains the absence of point-like singularities in the EED interpolation of Fig. 7h, which can be found by carefully examining the results of the isotropic second-order operators in Fig. 7b, f, g. The singular behaviour of EED interpolation is restricted to singularities *across* pronounced edges, which is desirable in image processing.

Analysing Table 3 indicates that EED needs a smaller number of points to create good results. Moreover, a precise localisation (given by a high depth range in the tree) seems to be less important than for the other methods. For a specified compression ratio, these savings can be invested in a larger number of quantisation levels that allow a better approximation quality.

5.2 Comparison to Other Compression Methods

Next we compare our compression algorithm with the one proposed in Galić et al. (2008) and with the image compres-

Table 3 Interpolation error obtained in our compression framework with different interpolation operators and a compression rate of 45:1

	Linear	Biharmonic	Triharmonic	AMLE	Charb.	Regul. Charb.	EED	BM
MSE	93.00	59.89	75.77	148.04	93.02	70.42	53.41	99.32
Optimised MSE	35.40	39.79	42.83	64.94	35.25	29.53	28.29	69.45
Obtained SSIM	0.851	0.840	0.835	0.798	0.851	0.860	0.874	0.789
Quantisation levels	11	20	17	11	11	11	24	17
Points saved	3502	2858	3021	3469	3510	3516	2750	2991
Depth range of tree	9–13	10-13	10–13	8-13	9–13	9–13	9–12	9-13

The corresponding images are shown in Fig. 7. MSEs obtained without optimising grey values, diffusion parameters, and interpolation swapping. MSEs obtained with optimisations. Structural similarity index measure (SSIM) obtained after the optimisations. Number of quantisation levels. Number of points saved. Depth range of the adaptive tree structure

Fig. 8 First row Images obtained with JPEG, the method from Galić et al. (2008), JPEG 2000 and with the proposed method (R-EED) with a compression rate close to 56:1. Bottom row Plot showing the MSEs of different compression algorithms and compression rates

sion standards JPEG and JPEG 2000. Figure 8 shows the results for the image "trui". We used the tool "convert" (version ImageMagick 6.6.0-4 2012-05-02 Q16) to create the JPEG and JPEG 2000 images shown here.

Although "convert" uses optimised entropy coding parameters when saving JPEG files, we observe that JPEG is clearly outperformed by the other approaches. Moreover, block artifacts become visible. They are characteristic for JPEG results at high compression rates, since JPEG subdivides the image into 8×8 pixel patches and quantises the coefficients of the discrete cosine transform within each patch.

Interestingly the more recent and more advanced JPEG 2000 standard also produces a noticeably larger mean square error than our R-EED approach: For the shown compression

ratios around 56:1 it is 106 % worse. As visible in the graph shown in Fig. 8, the advantages of R-EED over JPEG and JPEG 2000 increases with the compression rate.

Although it was claimed in Galić et al. (2008) that this approach was not able to beat the quality of JPEG 2000 for classical test images, recent experiments demonstrate that this is possible when considering very high compression ratios. However, the results of our algorithm outperform this method. For the shown compression ratio, the MSE is 124 % worse. Since both algorithms are based on EED as the differential operator of choice, this clearly demonstrates the importance of the additional features of our algorithm, such as rectangular instead of triangular subdivision, diffusion parameter optimisation, more advanced entropy encoders, improved brightness optimisation, and interpolation swapping.

Fig. 9 Results with very strong compression with R-EED (top row) and JPEG 2000 (bottom row)

While the performance of PDE-based inpainting methods is known to deteriorate in highly textured regions, it is remarkable that R-EED still gives a better visual impression than JPEG 2000 in the textured regions of the scarf. Obviously, the distinctive advantages of EED near edges allow to spend more points in order to reconstruct highly textured regions more faithfully.

The previous experiment suggests that R-EED is particularly useful for obtaining high compression rates with good quality. This is studied in more detail in Fig. 9 that displays results with compression ratios of up to 211:1. Although the visual quality deteriorates, one can still recognise the essential image contents. Higher compression rates are also possible with R-EED.

Finally we evaluate our image compression algorithm with two additional standard test images: an image of Wal-

ter Cronkite ("walter") and a subimage of the colour image "peppers". Both images are available from the SIPI webpage http://sipi.usc.edu/database of the University of Southern California. In all cases, the proposed R-EED compression algorithm outperforms JPEG and JPEG 2000 for medium to high compression rates. Details are given in Table 4 and Fig. 10. In this table, one can also see that the MSE difference between our novel results and our preliminary results from Schmaltz et al. (2009) can even exceed 20 % for some images.

6 Extensions

In the third and final part of this paper, we introduce two extensions suitable for shape coding as well as for coding of 3-D data.

6.1 Shape Coding

Due to our rectangular subdivision scheme, the stored points are always (more or less) spread along the whole image domain. However, placing a point exactly to a certain position is very costly. This is no big problem for natural images. When encoding shape data, most points are far away from the contour of the shape, though. This results in a high overhead. Thus, we propose an extension suitable for shape coding that can position the stored information arbitrarily.

First of all, we note that a single point is insufficient to encode a meaningful contour information, and that even dipoles do not provide enough flexibility to encode arbitrary lines. In general, they can only be considered to encode vertical or horizontal directions. In order to encode lines with arbitrary directions, we thus introduce so-called quadrupoles. A quadrupole consists of a 2×2 block of pixels. The line which should be represented by it is assumed to pass through its centre. Two of the pixels, namely the ones lying completely to the left and the right side of the line, take the minimal and maximal grey value, i.e. black and white. The other two pixels, which are split by the line, are shaded in grey corresponding to the fractions of black and white within those

Table 4 Compression results for the images "trui", "walter", and a grey-valued subimage of "peppers" with JPEG, the method from Galić et al. (2008), our preliminary conference paper Schmaltz et al. (2009), and the proposed algorithm (R-EED)

	JPEG		Galić et al	Galić et al.		JPEG 2000		Preliminary results		R-EED	
	Ratio	MSE	Ratio	MSE	Ratio	MSE	Ratio	MSE	Ratio	MSE	
Trui	42.13:1	71.16	43.67:1	53.33	43.44:1	45.99	44.11:1	31.00	46.53:1	28.29	
Walter	45.11:1	39.67	45.58:1	30.84	45.78:1	27.75	45.40:1	20.13	49.36:1	16.43	
Peppers (BW)	42.03:1	70.47	43.93:1	57.27	44.10:1	50.95	42.96:1	42.61	46.26:1	37.17	

Fig. 10 Compression results of the images "walter" $(256 \times 256 \text{ pixels})$ and of a $256 \times 256 \text{ subimage}$ of the image "peppers". The *first two rows* show the input images and images created by the proposed algorithm with different compression ratios. The *last line* shows two plots that

compare the quality obtained with JPEG, JPEG 2000, our algorithm (R-EED). For the first image, the results of Galić et al. are additionally given

pixels. Examples illustrating such quadrupoles are shown in Fig. 11d.

A shape as depicted in Fig. 11a can now be encoded by placing quadrupoles along its contour. Since quadrupoles on the one hand encode lines, EED on the other hand has the tendency to reduce the curvature, we should set more quadrupoles at contour regions with higher curvature. Therefore, we suggest the following algorithm to distribute the quadrupoles along the contour: We first compute the magnitude of the curvature,

$$|\kappa(u)| = \left| \frac{u_x^2 u_{yy} - 2u_x u_y u_{xy} + u_y^2 u_{xx}}{|\nabla u|^3} \right|,$$

in every point along the smoothed shape contour. We rescale the result such that the average curvature value of the contour pixels corresponds to the fraction of pixels which should be kept as quadrupole positions. Then we use one-dimensional error diffusion to binarise the curvature signal along the contour and obtain the positions for our quadrupoles. In this way, we set the number of quadrupoles along the contour in proportion to its curvature. This approach also resembles the method presented in Belhachmi et al. (2009), in which the density of the interpolation data is chosen proportionally to the Laplacian magnitude. Note that the density of quadrupoles at corners can be tuned by replacing $|\kappa|$ by $|\kappa|^p$, with $p \in \mathbb{R}^+$. In our example we use p = 0.5.

Fig. 11 Illustration of the EED shape coding capabilities with 4 % of all quadrupoles (67 of 1672); the *red rectangles* in (a) and (b) mark a difficult area for our algorithm, which is zoomed in (c), (d), and (e). (a) Original shape $(400 \times 380 \text{ pixels})$. (b) Interpolation result with EED,

MSE: 77.79. After thresholding, the binary images only differ in 464 pixels, i.e. in approximately 0.3 % of the pixels. (c) Zoom into marked area of (a). (d) Corresponding selected quadrupoles for zoomed region. (e) Zoom into marked area of (b)

For each of the selected quadrupoles, we finally need to determine the direction which it should encode. This is done by exploiting the dominant eigenvector of the diffusion tensor [see Eq. (12)] at the centre of the quadrupole. It is pointing in the direction of highest contrast within some neighbourhood, i.e. across the contour. Therefore, by choosing the orthogonal direction, it allows a robust estimation of the tangential direction of the contour at the corresponding location.

Figure 11d shows a zoom into the sparse version of the original shape (see Fig. 11a) when applying the afore mentioned method. The reconstruction using EED interpolation is depicted in Fig. 11b.

Obviously, EED is able to encode arbitrary shapes by exploiting simple concepts as provided by quadrupoles. This emphasises once more the excellent interpolation properties of EED. Exploring the shape coding properties of EED in more detail is part of our ongoing research.

6.2 3-D Data

A simple method often used to compress 3-D images is to treat them as a sequence of 2-D image slices. Each slice is then compressed using an established 2-D compression algorithm. However, this approach results in unnecessary overhead and ignores significant potentials for improvement by exploiting redundancies that arise due to the additional dimension. Our 3-D codec C-EED differs from this naive approach in four key aspects:

First of all, file headers are largely redundant for most of the slices. For example, the image dimension is always the same. This overhead can be easily avoided by defining a novel 3-D file format that eliminates header redundancy. Thus, our header has the same structure as in the 2-D case (see Sect. 4.9), except for the additional image size value which has to be stored for the third dimension.

Secondly, entropy coders typically handle large, cohesive data blocks more efficiently than individually coded segments. Therefore, we use global entropy coding of the whole image data instead of treating slices separately.

Thirdly, we use a 3-D version of EED instead of performing 2-D diffusion in each slice to improve the interpolation quality. Even though the third dimension of the original image may have been sampled coarser (e.g. for medical image data), it still offers valuable information that can be exploited for more efficient inpainting. The mathematical theory behind EED in 3-D is very similar to the 2-D case: The only difference is that two eigenvalues of the smoothed diffusion tensor are set to 1 instead of only one (Peter 2012).

Finally, the rectangular subdivision scheme used in R-EED is naturally extended to 3-D by replacing rectangles by their 3-D counterpart, i.e. cuboids. Analogously to the 2-D case, the image is split in the middle of its largest dimension, which yields two cuboidal subimages. Thus, the binary tree structure from the two-dimensional case is preserved. Again, many different point patterns can be defined. According to our experiments, using the centre and corners of each 3-D subimage yields very good results. This choice of points can be regarded as the natural 3-D extension of the 2-D point pattern F (see Fig. 6).

In the 3-D setting, we use real world medical data acquired by computerised tomography (CT) to evaluate the performance of our 3-D codec C-EED. We first compare C-EED to a modified version of R-EED to assess the influence of the 3-D diffusion on compression quality. The only difference between R-EED and C-EED is the application of 2-D EED to image slices (R-EED) instead of 3-D diffusion on the whole image (C-EED). Other influences such as the effects of global entropy coding and header redundancies are avoided. As expected, the 3-D diffusion offers a significant advantage over its 2-D counterpart (see Fig. 12).

Furthermore, we compare our results to a widely-used transformation-based image coding standard for medical images, the DICOM standard (National Electrical Manufacturers Association 2004). In particular, we apply the most efficient compression standard allowed by DICOM, namely

Fig. 12 Images obtained with DICOM (using JPEG 2000), R-EED, and C-EED with compression rates close to 90:1 (*top row*) and 207:1 (*bottom row*). The test data set "trab64" (size $256 \times 256 \times 64$) consists

of the first 64 slices of a femured bone CT. The images above depict the last 2-D slice of "trab64"

JPEG 2000. Just as for R-EED, we eliminate header redundancies and disadvantages due to slice-wise entropy coding by applying JPEG 2000 to a single 2-D image that contains all slices. As the 2-D experiments with R-EED already suggest, C-EED performs significantly better than DICOM.

7 Conclusion

In this article, we have contributed to the advancement of PDE-based image compression in three ways:

Firstly, we have gained a substantially deeper understanding why the EED operator is ideally suited for interpolating missing data in compression applications: Its anisotropy in conjunction with its semilocal behaviour offers specific advantages for this task. It can create edges that are smooth along the edge, but permits contrast jumps across the edge. This allows to model realistic edge contours by specifying only a very small number of pixels. By avoiding singularities at interpolation points as well as over- and undershoots near edges, it combines distinctive advantages of second and higher order interpolation operators.

Our second contribution consists of an improved EED-based codec that outperforms not only the recent EED-based codec from Galić et al. (2008), but also sophisticated compression standards such as JPEG 2000. Its high quality is caused by a careful optimisation of a number of intermedi-

ate steps, such as rectangular subdivision, selection of diffusion parameters, adaptation of the brightness values, entropy encoding, and interpolation swapping.

Thirdly, we have demonstrated that EED-based compression is also applicable for shape coding, and that the concepts of our EED-based codec translate well to the 3-D setting. Especially, we showed that the use of 3-D EED offers significant advantages over slice-wise 2-D diffusion, and that our 3-D codec C-EED outperforms R-EED as well as the DICOM/JPEG 2000 standard on medical data.

It is evident that the basic ideas behind EED-based image compression generalise in a straightforward way to tensor data sets, if one uses the corresponding EED operators from Weickert (1999). It is more challenging to adapt our methods to the efficient compression of image sequences and surface data, see e.g. Bae and Weickert (2010). A more advanced handling of colour images and shapes is also on our agenda. Other ideas include the use of prefilters to further improve the reconstruction quality. Moreover, we are going to focus on approaches that pay specific attention to highly textured images. On an algorithmic side, we are currently evaluating a number of efficient numerical methods, and we are also studying parallel implementations on multi-core architectures such as GPUs.

Acknowledgments We thank Irena Galić (University of Osijek, Croatia) for fruitful discussions and for providing two images and code of her compression algorithm, David Tschumperlé (French National Cen-

ter for Scientific Research, France) for providing the image in Fig. 1, and Wiro Niessen (University Medical Center Rotterdam, The Netherlands) for providing the test image in Fig. 12.

References

- Acar, T., & Gökmen, M. (1994). Image coding using weak membrane model of images. In A. K. Katsaggelos (Ed.), *Proceedings of SPIE on Visual Communications and Image Processing '94* (Vol. 2308). Bellingham: SPIE Press.
- Alter, F., Durand, S., & Froment, J. (2005). Adapted total variation for artifact free decompression of JPEG images. *Journal of Mathematical Imaging and Vision*, 23(2), 199–211.
- Aly, H. A., & Dubois, E. (2005). Image up-sampling using total-variation regularization with a new observation model. *IEEE Transactions on Image Processing*, 14(10), 1647–1659.
- Aronsson, G. (1967). Extension of functions satisfying Lipschitz conditions. Arkiv för Matematik, 6(6), 551–561.
- Aurich, V., & Daub, U. (1996). Bilddatenkompression mit geplanten Verlusten und hoher Rate. In B. Jähne, P. Geißler, H. Haußecker, & F. Hering (Eds.), *Mustererkennung 1996* (pp. 138–146). Berlin: Springer.
- Bae, E., & Weickert, J. (2010). Partial differential equations for interpolation and compression of surfaces. In M. Daehlen, M. Floater, T. Lyche, J. L. Merrien, K. Mørken, & L. L. Schumaker (Eds.), Mathematical methods for curves and surfaces. Lecture notes in computer science (Vol. 5862, pp. 1–14). Berlin: Springer.
- Battiato, S., Gallo, G., & Stanco, F. (2003). Smart interpolation by anisotropic diffusion. In *Proceedings of Twelvth International Con*ference on Image Analysis and Processing (pp. 572–577). Montova: IEEE Computer Society Press.
- Belahmidi, A., & Guichard, F. (2004). A partial differential equation approach to image zoom. In *Procroceedings of 2004 IEEE International Conference on Image Processing* (Vol. 1, pp. 649–652), Singapore.
- Belhachmi, Z., Bucur, D., Burgeth, B., & Weickert, J. (2009). How to choose interpolation data in images. SIAM Journal on Applied Mathematics, 70(1), 333–352.
- Bertalmío, M., Sapiro, G., Caselles, V., & Ballester, C. (2000). Image inpainting. In *Proceedings of SIGGRAPH 2000* (pp. 417–424), New Orleans.
- Bornemann, F., & März, T. (2007). Fast image inpainting based on coherence transport. *Journal of Mathematical Imaging and Vision*, 28(3), 259–278.
- Borzì, A., Grossauer, H., & Scherzer, O. (2005). Analysis of iterative methods for solving a Ginzburg–Landau equation. *International Journal of Computer Vision*, 64(2–3), 203–219.
- Bougleux, S., Peyré, G., & Cohen, L. (2009). Image compression with anisotropic triangulations. In *Proceedings of Tenth International Conference on Computer Vision*, Kyoto.
- Bourdon, P., Augereau, B., Chatellier, C., & Olivier, C. (2004). MPEG-4 compression artifacts removal on color video sequences using 3D nonlinear diffusion. In *Proceedings of IEEE International Conference on Acoustics, Speech, and Signal Processing* (Vol. 3, pp 729–732). Montreal: IEEE Computer Society Press.
- Bourne, R. (2010). Fundamentals of digital imaging in medicine. London: Springer.
- Bruckstein, A. M. (1993). On image extrapolation. Technical Report on CIS9316. Haifa: Computer Science Department, Technion.
- Bruhn, A., & Weickert, J. (2006). A confidence measure for variational optic flow methods. In R. Klette, R. Kozera, L. Noakes, & J. Weickert (Eds.), Geometric properties from incomplete data. Computational imaging and vision (Vol. 31, pp. 283–297). Dordrecht: Springer.

- Candés, E., Romberg, J., & Tao, T. (2006). Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information. *IEEE Transactions on Information Theory*, 52(2), 489–509.
- Carlsson, S. (1988). Sketch based coding of grey level images. Signal Processing, 15, 57–83.
- Caselles, V., Morel, J. M., & Sbert, C. (1998). An axiomatic approach to image interpolation. *IEEE Transactions on Image Processing*, 7(3), 376–386
- Catté, F., Lions, P. L., Morel, J. M., & Coll, T. (1992). Image selective smoothing and edge detection by nonlinear diffusion. SIAM Journal on Numerical Analysis, 32, 1895–1909.
- Chan, T. F., & Shen, J. (2001). Non-texture inpainting by curvaturedriven diffusions (CDD). *Journal of Visual Communication and Image Representation*, 12(4), 436–449.
- Chan, T. F., & Zhou, H. M. (2000). Total variation improved wavelet thresholding in image compression. In *Proceedings of Seventh Inter*national Conference on Image Processing (Vol. 2, pp. 391–394). Vancouver, Canada.
- Charbonnier, P., Blanc-Féraud, L., Aubert, G., & Barlaud, M. (1997).
 Deterministic edge-preserving regularization in computed imaging.
 IEEE Transactions on Image Processing, 6(2), 298–311.
- Demaret, L., Dyn, N., & Iske, A. (2006). Image compression by linear splines over adaptive triangulations. *Signal Processing*, 86(7), 1604–1616.
- Desai, U. Y., Mizuki, M. M., Masaki, I., & Horn, B. K. P. (1996). Edge and mean based image compression. Technical Report 1584 (A.I. Memo). Cambridge, MA: Artificial Intelligence Lab., Massachusetts Institute of Technology.
- Dipperstein, M. (2009). Michael Dipperstein's page o'stuff. http://michael.dipperstein.com/index.html.
- Distasi, R., Nappi, M., & Vitulano, S. (1997). Image compression by B-tree triangular coding. *IEEE Transactions on Communications*, 45(9), 1095–1100.
- Elder, J. H. (1999). Are edges incomplete? *International Journal of Computer Vision*, 34(2/3), 97–122.
- Facciolo, G., Lecumberry, F., Almansa, A., Pardo, A., Caselles, V., & Rougé, B. (2006). Constrained anisotropic diffusion and some applications. In: *Proceedings of 2006 British Machine Vision Conference* (Vol. 3, pp. 1049–1058), Edinburgh.
- Ford, G. E. (1996). Application of inhomogeneous diffusion to image and video coding. In *Proceedings of 13th Asilomar Conference on Signals, Systems and Computers* (Vol. 2, pp. 926–930), Asilomar, CA.
- Galić, I., Weickert, J., Welk, M., Bruhn, A., Belyaev, A., & Seidel, H. P. (2005). Towards PDE-based image compression. In N. Paragios, O. Faugeras, T. Chan, & C. Schnörr (Eds.), Variational, Geometric and Level-Set Methods in Computer Vision. Lecture Notes in Computer Science (Vol. 3752, pp. 37–48). Berlin: Springer.
- Galić, I., Weickert, J., Welk, M., Bruhn, A., Belyaev, A., & Seidel, H. P. (2008). Image compression with anisotropic diffusion. *Journal of Mathematical Imaging and Vision*, 31(2–3), 255–269.
- Gourlay, A. R. (1970). Hopscotch: A fast second-order partial differential equation solver. *IMA Journal of Applied Mathematics*, 6(4), 375–390.
- Huffman, D. A. (1952). A method for the construction of minimum redundancy codes. *Proceedings of the IRE*, 40, 1098–1101.
- Hummel, R., & Moniot, R. (1989). Reconstructions from zero-crossings in scale space. *IEEE Transactions on Acoustics, Speech, and Signal Processing*, 37, 2111–2130.
- Iijima, T. (1959). Basic theory of pattern observation. In *Papers of Technical Group on Automata and Automatic Control*, Japan: IECE (in Japanese).
- Johansen, P., Skelboe, S., Grue, K., & Andersen, J. D. (1986). Representing signals by their toppoints in scale space. In *Proceedings of*

- Eighth International Conference on Pattern Recognition (pp 215–217). Paris.
- Kanters, F. M. W., Lillholm, M., Duits, R., Jansen, B. J. P., Platel, B., Florack, L., et al. (2005). On image reconstruction from multiscale top points. In R. Kimmel, N. Sochen, & J. Weickert (Eds.), Scale Space and PDE Methods in Computer Vision. Lecture Notes in Computer Science (Vol. 3459, pp. 431–439). Berlin: Springer.
- Kopilovic, I., & Szirányi, T. (2005). Artifact reduction with diffusion preprocessing for image compression. *Optical Engineering*, 44(2), 1–14.
- Köstler, H., Stürmer, M., Freundl, C., & Rüde, U. (2007). PDE based video compression in real time. Technical Report 07–11, Lehrstuhl für Informatik 10, Univ. Erlangen-Nürnberg, Germany.
- Kunt, M., Ikonomopoulos, A., & Kocher, M. (1985). Second-generation image-coding techniques. *Proceedings of the IEEE*, 73(4), 549–574.
- Lillholm, M., Nielsen, M., & Griffin, L. D. (2003). Feature-based image analysis. *International Journal of Computer Vision*, 52(2/3), 73–95.
- Liu, D., Sun, X., Wu, F., Li, S., & Zhang, Y. Q. (2007). Image compression with edge-based inpainting. *IEEE Transactions on Circuits*, *Systems and Video Technology*, 17(10), 1273–1286.
- Mahoney, M. (2005). *Adaptive weighing of context models for lossless data compression*. Technical Report CS-2005-16. Melbourne, FL: Florida Institute of Technology.
- Mahoney, M. (2009). Data compression programs. http://mattmahoney.net/dc/.
- Mainberger, M., & Weickert, J. (2009). Edge-based image compression with homogeneous diffusion. In X. Jiang & N. Petkov (Eds.), Computer Analysis of Images and Patterns. Lecture Notes in Computer Science (Vol. 5702, pp. 476–483). Berlin: Springer.
- Mainberger, M., Hoffmann, S., Weickert, J., Tang, C. H., Johannsen, D., Neumann, F., et al. (2012). Optimising spatial and tonal data for homogeneous diffusion inpainting. In A. M. Bruckstein, t B. er Haar Romeny, A. M. Bronstein, & M. M. Bronstein (Eds.), Scale Space and Variational Methods in Computer Vision, Lecture Notes in Computer Science (pp. 26–37). Berlin: Springer.
- Malgouyres, F., & Guichard, F. (2001). Edge direction preserving image zooming: A mathematical and numerical analysis. SIAM Journal on Numerical Analysis, 39(1), 1–37.
- Mallat, S., & Zhong, S. (1992). Characterisation of signals from multiscale edges. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 14, 720–732.
- Masnou, S., & Morel, J. M. (1998). Level lines based disocclusion. In Proceedings of the 1998 IEEE International Conference on Image Processing (Vol. 3, pp. 259–263), Chicago, IL.
- National Electrical Manufacturers Association. (2004). Digital Imaging and Communications in Medicine (DICOM): Part 5 Data Structures and Encoding. PS 3.5-2004.
- Pennebaker, W. B., & Mitchell, J. L. (1992). JPEG: Still image data compression standard. New York: Springer.
- Perona, P., & Malik, J. (1990). Scale space and edge detection using anisotropic diffusion. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 12, 629–639.
- Peter, P. (2012). Three-dimensional data compression with anisotropic diffusion. In *Proceedings of DAGM-OAGM 2012 Symposium for Pattern Recognition, Young Researchers Forum.* Berlin: Springer.
- Rane, S. D., Sapiro, G., & Bertalmio, M. (2003). Structure and texture filling-in of missing image blocks in wireless transmission and compression applications. *IEEE Transactions on Image Processing*, 12(3), 296–302.
- Rissanen, J. J. (1976). Generalized Kraft inequality and arithmetic coding. IBM Journal of Research and Development, 20(3), 198–203.

- Roussos, A., & Maragos, P. (2007). Vector-valued image interpolation by an anisotropic diffusion-projection PDE. In F. Sgallari, F. Murli, & N. Paragios (Eds.), Scale Space and Variational Methods in Computer Vision. Lecture Notes in Computer Science (Vol. 4485, pp. 104–115). Berlin: Springer.
- Schmaltz, C., Weickert, J., & Bruhn, A. (2009). Beating the quality of JPEG 2000 with anisotropic diffusion. In J. Denzler, G. Notni, & H. Süße (Eds.), *Pattern Recognition. Lecture Notes in Computer Science* (Vol. 5748, pp. 452–461). Berlin: Springer.
- Solé, A., Caselles, V., Sapiro, G., & Arandiga, F. (2004). Morse description and geometric encoding of digital elevation maps. *IEEE Transactions on Image Processing*, 13(9), 1245–1262.
- Strobach, P. (1991). Quadtree-structured recursive plane decomposition coding of images. *IEEE Transactions on Signal Processing*, 39(6), 1380–1397
- Sullivan, G. J., & Baker, R. J. (1994). Efficient quadtree coding of images and video. *IEEE Transactions on Image Processing*, 3(3), 327–331
- Taubman, D. S., & Marcellin, M. W. (Eds.). (2002). JPEG 2000: Image compression fundamentals. Standards and practice. Boston: Kluwer.
- Telea, A. (2004). An image inpainting technique based on the fast marching method. *Journal of Graphics Tools*, 9(1), 23–34.
- Tschumperlé, D. (2006). Fast anisotropic smoothing of multi-valued images using curvature-preserving PDE's. *International Journal of Computer Vision*, 68(1), 65–82.
- Tschumperlé, D., & Deriche, R. (2005). Vector-valued image regularization with PDEs: A common framework for different applications. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 27(4), 506–516.
- Tsuji, H., Sakatani, T., Yashima, Y., & Kobayashi, N. (2002). A non-linear spatio-temporal diffusion and its application to prefiltering in MPEG-4 video coding. In *Proceedings of 2002 IEEE International Conference on Image Processing* (Vol. 1, pp. 85–88), Rochester, NY.
- Tsuji, H., Tokumasu, S., Takahashi, H., & Nakajima, M. (2007). Spatial prefiltering scheme based on anisotropic diffusion in low-bitrate video coding. *Systems and Computers in Japan*, 38(10), 34–45.
- Weickert, J. (1996). Theoretical foundations of anisotropic diffusion in image processing. Computing Supplement, 11, 221–236.
- Weickert, J. (1999). Nonlinear diffusion filtering. In B. Jähne, H. Haußecker, & P. Geißler (Eds.), Handbook on computer vision and applications. Signal processing and pattern recognition (Vol. 2, pp. 423–450). San Diego: Academic Press.
- Weickert, J., & Brox, T. (2002). Diffusion and regularization of vectorand matrix-valued images. In M. Z. Nashed & O. Scherzer (Eds.), *Inverse problems, image analysis, and medical imaging, contempo*rary mathematics (Vol. 313, pp. 251–268). Providence: AMS.
- Weickert, J., & Welk, M. (2006). Tensor field interpolation with PDEs. In J. Weickert & H. Hagen (Eds.), Visualization and processing of tensor fields (pp. 315–325). Berlin: Springer.
- Weickert, J., Ishikawa, S., & Imiya, A. (1999). Linear scale-space has first been proposed in Japan. *Journal of Mathematical Imaging and Vision*, 10(3), 237–252.
- Welch, T. A. (1984). A technique for high-performance data compression. *Computer*, 17(6), 8–19.
- Wu, Y., Zhang, H., Sun, Y., & Guo, H. (2009) Two image compression schemes based on image inpainting. In: Proceedings of the 2009 International Joint Conference on Computational Sciences and Optimization (pp. 816–820). IEEE Computer Society Press: San Francisco, CA.
- Xie, Z., Franklin, W. R., Cutler, B., Andrade, M. A., Inanc, M., & Tracy, D. M. (2007). Surface compression using over-determined Laplacianapproximation. In F. T. Luk (Ed.), Advanced Signal Processing

Algorithms, Architectures, and Implementations XVII. Proceedings of SPIE (Vol. 6697). Bellingham: SPIE Press.

Xiong, Z. W., Sun, X. Y., Wu, F., & Li, S. P. (2007) Image coding with parameter-assistant inpainting. In: *Proceedings of the 2007 IEEE International Conference on Image Processing* (Vol. 2, pp. 369–372), San Antonio, TX.

Zeevi, Y., & Rotem, D. (1986). Image reconstruction from zerocrossings. *IEEE Transactions on Acoustics, Speech, and Signal Processing*, 34, 1269–1277.

