## TP9: Smoothing splines

A smoothing spline allows to satisfy a compromise between the fidelity to noisy observations and the smoothness of a fitting spline. Precisely, given a set of data points  $(u_k, z_k)$ , k = 1, ..., N, with  $u_1 < u_2 < \cdots < u_N$ , where the observations  $z_k$  are assumed to be noisy, we consider a sequence of spline knots

$$x_1 < x_2 < \cdots < x_n$$

such that  $\{u_k\}_{1\leq k\leq N}\subset [x_1,x_n]$ , and the space  $S[x_1,x_n]$  of the natural splines associated with these knots. We then consider the optimization problem

$$\min_{s \in S[x_1, x_n]} E_{0,2}(s) \tag{1}$$

with

$$E_{0,2}(s) = \sum_{k=1}^{N} \left( z_k - s(u_k) \right)^2 + \rho \int_{x_1}^{x_n} \left[ s''(t) \right]^2 dt$$
 (2)

where  $\rho \in \mathbb{R}^+$  is a smoothing parameter that controls the tradeoff between data fidelity and smoothness of the function. With reasonable assumptions, this minimization problem admits a unique solution  $\hat{s} \in S[x_1, x_n]$  which is called a *smoothing spline*.

## Exercise 1

Récupérer le fichier data.txt contenant les données  $(u_k, z_k)$  de la figure ci-dessous. Ces données seront ensuite récupérées avec la commande

$$(uk, zk) = np.loadtxt('data.txt')$$

Implémenter la méthode du cours (cas général) permettant de déterminer la spline de lissage pour différentes valeurs du paramètre  $\rho$ . On considérera le cas des splines uniformes (noeuds équidistants).



Le compte rendu de ce TP consistera en un fichier Python dont le nom sera TP9\_NOM1\_NOM2.py L'éxécution de ce script devra permettre de reproduire directement la figure ci-dessus avec les mêmes données numériques (nombre de noeuds de la spline et même valeurs de  $\rho$ ).