H11T1A1

Im folgenden bezeichnen $U_r(a) := \{z \in \mathbb{C} : |z - a| < r\}$ die offene Kreisscheibe und mit Mittelpunkt $a \in \mathbb{C}$ und Radius r > 0 und $\mathbb{D} := U_1(0)$ die offene Einheitskreisscheibe.

Widerlege oder beweise folgende Aussagen:

- a) Es sei $z_0=0$ eine zweifache Polstelle der in $\mathbb C$ meromorphen Funktion f. Dann gilt $\operatorname{res}_{z_0} f=0$. (Hierbei bezeichnet $\operatorname{res}_{z_0} f$ das Residuum von f im Punkt z_0 .)
- b) Ist $f: \mathbb{D} \to \mathbb{C}$ eine holomorphe Funktion und ist $g: \mathbb{D} \to \mathbb{R}$ mit g = Re(f) + Im(f) konstant, so ist f selbst konstant.
- c) Es sei $f: (-1,1) \times \mathbb{R} \to \mathbb{R}$, $(t,x) \mapsto f(t,x)$ stetig und global Lipschitz-stetig bezüglich x. Dann gibt es für jedes $x_0 \in \mathbb{R}$ eine eindeutige Lösung $\varphi(t)$ des Anfangswertproblems $\dot{x}(t) = f(t,x)$, $x(0) = x_0$, die auf den Intervall (-1,1) definiert ist, d.h. $\varphi: (-1,1) \to \mathbb{R}$.
- d) Jede Lösung der Differentialgleichung $\dot{x}(t) = e^{15t} \cos(x(t)^7)$ kann auf ganz \mathbb{R} fortgesetzt werden.

Zu a):

FALSCH, Gegenbeispiel:

$$f(z) = \frac{1}{z^2} + \frac{1}{z}$$
 hat in $z_0 = 0$ einen Pol 2. Ordnung.

$$\Rightarrow g(z) = (z - 0)^2 f(z) = 1 + z, \quad \text{res}(f, 0) = \frac{1}{(2 - 1)!} g'(0) = 1$$

Zu b):

WAHR. Aus den Cauchy-Riemannschen Differentialgleichungen gilt $u_x = v_y$ und $u_y = -v_x$ für holomorphes g = u + iv. Weil g konstant ist, wissen wir, dass $u_x + v_x = 0$ und $u_y + v_y = 0$.

Also ist in jedem Punkt $u_x = u_y = v_x = v_y = 0$. Das besagt, dass f lokal konstant ist, also konstant auf jeder Zusammenhangskomponente. Weil \mathbb{D} zusammenhängend ist, ist f konstant.

Zu c):

FALSCH. Nach dem Satz von Picard-Lindelöf hat jedes Anfangswertproblem (t_0, x_0) eine eindeutig bestimmte lokale Lösung, wobei $t_0 \in (-1, 1)$ und $x_0 \in \mathbb{R}$. Da f nur lokal Lipschitz-stetig bezüglich x ist, kann es sein, dass die Lösungen des Anfangswertproblems nicht auf (-1, 1) definiert sind. Sie können gegen $\pm \infty$ gehen. Beispiel:

$$x' = x, \quad x(0) = 2$$

$$\begin{cases} \int\limits_2^{\lambda(t)} \frac{1}{x^2} dx = \left[-\frac{1}{x} \right]_2^{\lambda(t)} = \frac{1}{2} - \frac{1}{\lambda(t)} \\ \int\limits_0^t 1 d\tau = [\tau]_0^t = t \end{cases} \lambda(t) = -\frac{1}{t - \frac{1}{2}}$$

Die eindeutig bestimmte Lösung $\lambda(t)$ ist für $t = \frac{1}{2}$ nicht definiert.

Zu d):

WAHR. $f = e^{15t}\cos(x(t)^7)$ ist stetig und lokal Lipschitz-stetig bezüglich x, denn

$$\frac{\partial f}{\partial x}(x,t) = -7e^{15t}\sin(x(t)^7)x^6$$

Das ist auf jedem Intervall [a, b] beschränkt, da f stetig ist und [a, b] kompakt ist. Da f(t, x) Definitionsmenge \mathbb{R}^2 hat, ist die Lösung auf \mathbb{R} definiert, falls sie nicht gegen $\pm \infty$ in einer endlichen Zeit geht.

Sei $x(t_0) = x_0$. Die Lösung erfüllt

$$x(t) - x_0 = \int_{t_0}^t x'(s)ds$$

und $|x'(s)| \leq e^{15t}$, da $\cos(x(t)^7) \in [-1,1]$, impliziert $|x(t) - x_0| \leq e^{15t} + e^{15t_0}$ und insbesondere ist die Lösung für endliche Zeiten auf jedem kompakten Intervall von \mathbb{R} beschränkt.