Digital Forensics for Network, Internet, and Cloud Computing

Digital Forensics for Network, Internet, and Cloud Computing

A Forensic Evidence Guide for Moving Targets and Data

Terrence V. Lillard

Clint P. Garrison

Craig A. Schiller

James Steele

Technical Editor Jim Murray

SYNGRESS

Syngress is an imprint of Elsevier.
30 Corporate Drive, Suite 400, Burlington, MA 01803, USA

This book is printed on acid-free paper.

© 2010 Elsevier Inc. All rights reserved.

No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, recording, or any information storage and retrieval system, without permission in writing from the publisher. Details on how to seek permission, further information about the Publisher's permissions policies and our arrangements with organizations such as the Copyright Clearance Center and the Copyright Licensing Agency, can be found at our Web site: www.elsevier.com/permissions.

This book and the individual contributions contained in it are protected under copyright by the Publisher (other than as may be noted herein).

Notices

Knowledge and best practice in this field are constantly changing. As new research and experience broaden our understanding, changes in research methods, professional practices, or medical treatment may become necessary.

Practitioners and researchers must always rely on their own experience and knowledge in evaluating and using any information, methods, compounds, or experiments described herein. In using such information or methods, they should be mindful of their own safety and the safety of others, including parties for whom they have a professional responsibility.

To the fullest extent of the law, neither the Publisher nor the authors, contributors, or editors, assume any liability for any injury and/or damage to persons or property as a matter of products liability, negligence or otherwise, or from any use or operation of any methods, products, instructions, or ideas contained in the material herein.

Library of Congress Cataloging-in-Publication Data

Digital forensics for network, Internet, and cloud computing: a forensic evidence guide for moving targets and data/Terrence Lillard ... [et al.].

p. cm.

Includes index.

ISBN 978-1-59749-537-0 (pbk.: alk. paper) 1. Computer crimes—Investigation. 2. Computer security. 3. Computer networks—Security measures. 4. Cloud computing—Security measures. I. Lillard, Terrence.

HV8079.C65D54 2010 363.250285'4678—dc22

2010014493

British Library Cataloguing-in-Publication Data

A catalogue record for this book is available from the British Library.

ISBN: 978-1-59749-537-0

Printed in the United States of America

10 11 12 13 5 4 3 2 1

Elsevier Inc., the author(s), and any person or firm involved in the writing, editing, or production (collectively "Makers") of this book ("the Work") do not guarantee or warrant the results to be obtained from the Work.

For information on rights, translations, and bulk sales, contact Matt Pedersen, Commercial Sales Director and Rights; e-mail m.pedersen@elsevier.com

For information on all Syngress publications, visit our Web site at www.syngress.com

Typeset by: diacriTech, Chennai, India

Working together to grow libraries in developing countries

www.elsevier.com | www.bookaid.org | www.sabre.org

ELSEVIER

BOOK AID International

Sabre Foundation

Contents

About the	Authors	xi
PART I	INTRODUCTION	
CHAPTER	1 What Is Network Forensics?	
	Introduction to Cloud Computing	
	Introduction to the Incident Response Process	
	Investigative and Forensics Methodologies	
	Where Network Forensics Fits In	
	Summary	19
	References	20
PART II	GATHERING EVIDENCE	
CHAPTER	2 Capturing Network Traffic	23
	The Importance of DHCP Logs	
	Using tcpdump/WinDump	
	Limitations of tepdump	25
	tcpdump Command Line	
	Troubleshooting tcpdump	34
	Using Wireshark	36
	Wireshark GUI	37
	Limitations of Wireshark	42
	Limitations of Using Libpcap and Derivatives	43
	Wireshark Utilities	44
	TShark	44
	Rawshark	46
	Dumpcap	46
	Mergecap	47
	Editcap	48
	Text2pcap	48
	Using SPAN Ports or TAPS	48
	SPAN Port Issues	49
	Network Tap	50
	Using Fiddler	51
	Firewalls	56
	Placement of Sensors	57
	Summary	58

CHAPTER	3 Other Network Evidence	59
	Overview of Botnets and Other Network-Aware Malware	
	The Botnet Life Cycle	
	Temporal, Relational, and Functional Analyses	
	and Victimology	65
	First Responder Evidence	
	Sources of Network-Related Evidence	
	Dynamic Evidence Capture	
	Malware Analysis: Using Sandbox Technology	
	Summary	
PART III	ANALYZING EVIDENCE WITH OPEN SOURCE SOFTWARE	
CHAPTER	4 Deciphering a TCP Header	95
	OSI and TCP Reference Models	
	TCP Header	98
	Source Port Number	100
	Destination Port Number	101
	Sequence Number	101
	Acknowledgment Number	102
	Data Offset	102
	Reserved	103
	TCP Flags	103
	Windows Size	106
	TCP Checksum	106
	Urgent Pointer	106
	TCP Options	
	Padding	107
	Decipherment of a TCP Segment	
	TCP Signature Analysis	108
	Summary	111
CHAPTER	5 Using Snort for Network-Based Forensics	113
	IDS Overview	114
	Snort Architecture	116
	Real-Time Network Traffic Capturing	118
	Playback Binary Network Traffic (pcap Format)	118
	Snort Preprocessor Component	118
	Snort Detection Engine Component	123
	Network Forensics Evidence Generated with Snort	129
	Summary	132

PART IV COMMERCIAL NETWORK FORENSICS APPLICATIONS CHAPTER 6 Commercial NetFlow Applications 135 NetFlow Collection 138 Enabling NetFlow 140 What Is an FNF? 146 Which Is Better: NetFlow or sFlow? 153 CHAPTER 7 NetWitness Investigator 165 Parsers, Feeds, and Rules 169

	SilentRunner Terminology	191
	Graphs	191
	Spec Files	
	Customizing the Analyzer	
	Context Management	213
	Data Investigator Tools	215
	Some Final Tricks and Tips	216
	Summary	218
	References	218
PART V	MAKING YOUR NETWORK FORENSICS CASE	
CHAPTER 9	Incorporating Network Forensics into Incident Response Plans .	221
	Investigation Method	222
	Incident Response	
	Spearphishing	
	DMCA Violations	
	Web Site Compromise: Search Engine Spam and Phishing	261
	Summary	
	References	274
CHAPTER 10) Legal Implications and Considerations	275
	Internet Forensics	
	Admissibility of Internet Evidence	277
	Hearsay Exceptions and Internet Evidence	279
	Cloud Forensics	282
	Evidence Collection in the Cloud	282
	Admissibility of Cloud Evidence	284
	E-Discovery in the Cloud	286
	International Complexities of Internet and Cloud Forensics	288
	The Hague Convention on Evidence	292
	Privacy	293
	Summary	296
	References	297
	Case Law	298
	Legislation	299
CHAPTER 1	Putting It All Together	301
• • • • • • • • • • • • • • • • •	Network Forensics Examiner Skills	
	Network Forensics Investigation Life Cycle	

PART VI THE FUTURE OF NETWORK FORENSICS

CHAPTER 12	The Future of Cloud Computing	319
	History of Cloud Computing	320
	What Drives the Cloud	321
	A Break from Dependence on IT to Solve a Business Problem	322
	The Cloud Is Enabled through Virtualization	322
	Accelerating Development and Delivery of New Applications	323
	Private versus Public Cloud Computing	324
	Which Cloud Vendors Will Rise to the Top?	324
	Yes, There Are Risks	326
	The Risks Are Worthwhile	326
	Will Microsoft and Google Be the 1000-Pound	
	Gorillas of the Cloud?	326
	The Current State of Cloud Computing	328
	Cloud Usage Patterns	328
	Who Will Host the Cloud?	328
	Cloud Computing and Collective Intelligence	329
	Security and IT from the Cloud	330
	Other Widely Used Cloud Applications	331
	Cloud Market Size	332
	Elements of the Cloud	333
	The U.S. Federal Government Is Leading the Movement	
	to the Cloud	334
	Rapid Rate of Change	334
	Common Security Risks of the Current Cloud	335
	Next Phases of Cloud Computing	336
	New Database Models Will Greatly Change Product Creation	336
	Integrated Applications Will Accelerate Cloud Product Creation	336
	Microsoft Azure Will Enable a Cloud Cottage Industry	
	Other Changes in the New Cloud World	337
	Security Improvements in the Future Cloud	338
	Summary	339
CHAPTER 13	The Future of Network Forensics	341
	Today's Challenges with Existing Devices for Network Forensics	
	Network Forensics Quadrants of Focus	
	Network Forensics Analysis Tools	
	Summary	
INDEX		34¢

About the Authors

Lead Author

Terrence V. Lillard (Linux+, CEH, CISSP) is an information technology (IT) security architect and cybercrime and cyberforensics expert. He was a contributing author of the *CompTIA Linux+ Certification Study Guide* (*Exam XK0-003*) and the *Eleventh Hour Linux+* (*Exam XK0-003 Study Guide*). He is actively involved in computer, intrusion, network, and steganography cybercrime and cyberforensics cases, including investigations, security audits, and assessments – both nationally and internationally. Terrence has testified in U.S. District Court as a computer forensics/security expert witness. He has designed and implemented security architectures for various government, military, and multinational corporations. His background includes positions as principal consultant at Microsoft, the IT Security Operations Manager for the District of Columbia's government IT Security Team, and instructor at the Defense Cyber Crime Center's Computer Investigation Training Academy Program. He has taught IT security and cybercrime/cyberforensics at the undergraduate and graduate level. He holds a BS in electrical engineering and a Master of Business Administration (MBA). In addition, he is currently pursuing a PhD in information security.

Contributors

Clint P. Garrison (MBS/MS, CISSP, CISM) has over 15 years of experience in information security, law enforcement, and digital forensics. He currently manages enterprise security and compliance programs for a Fortune 100 global online retailer and teaches Cyber Crimes and Information Systems Security for the University of Phoenix's graduate degree program. He is a member of several regional working groups dedicated to improving cloud computing security, compliance, and forensics initiatives, and he volunteers as a police officer for a small Texas community.

Clint has a BS in administration of criminal justice from Mountain State University, an MS in IT, and a MBA in information assurance from the University of Dallas. Clint is also a Certified Information System Security Professional (CISSP) and a Certified Information Security Manager (CISM). He also holds an active Master Peace Officer license and Instructor license from the Texas Commission on Law Enforcement Standards and Education.

Craig A. Schiller (CISSP-ISSMP, ISSAP) is the Chief Information Security Officer for Portland State University, an adjunct instructor of security management for Portland State University, an adjunct instructor of digital forensics for Portland Community College, and President of Hawkeye Security Training, LLC. He is the primary author of Botnets – The Killer Web App (Syngress, ISBN: 9781597491357) and the first Generally accepted System Security Principles (GSSP). He is a contributing author of several editions of the Handbook of Information Security Management and Data Security Management. Craig was also a contributor to Virtualization for Security (Syngress, ISBN 9781597493055), Infosecurity

2008 Threat Analysis (Syngress, ISBN: 9781597492249), Combating Spyware in the Enterprise (Syngress, ISBN: 1597490644), and Winternals Defragmentation, Recovery, and Administration Field Guide (Syngress, ISBN: 1597490792).

Craig was the senior security engineer and coarchitect of the NASA, Mission Operations AIS Security Engineering Team. He cofounded two ISSA U.S. regional chapters – the Central Plains Chapter and the Texas Gulf Coast Chapter – and is currently the Director of Education for ISSA Portland. He is a Police Reserve Specialist for the Hillsboro Police Department in Oregon.

James "Jim" Steele (CISSP #85790, ACE, DREC, MCSE: Security, Security+) is Manager of Digital Forensics with a large wireless carrier. His responsibilities include performing workstation, server, PDA, cell phone, and network forensics, as well as acting as a liaison to multiple law enforcement agencies, including the United States Secret Service and the FBI. On a daily basis, he investigates cases of fraud, employee integrity, and compromised systems. Jim has a career rich with experience in the security, computer forensics, network development, and management fields. For over 18 years, he has played integral roles regarding project management, systems administration, network administration, and enterprise security management in public safety and mission-critical systems. As a senior technical consultant with iXP assigned to the NYPD E-911 Center, he designed and managed implementation of multiple systems for enterprise security; he also supported operations on-site during September 11, 2001, and the blackout of 2003. Jim has also participated in foreign projects such as the development of the London Metropolitan Police C3i Project, for which he was a member of the Design and Proposal Team. His career as a technical consultant also includes time with the University of Pennsylvania and the FDNY. He is a member of HTCC, NYECTF, InfraGard, and the HTCIA. Jim has contributed to several Syngress books, including Cyber Crime Investigations: Bridging the Gaps and Cisco Router Forensics.

Technical Editor

Jim Murray is an information security architect for NCCI Holdings, Inc. in Boca Raton, FL. For the past 12 years, he has served in various IT roles at NCCI with a primary focus on network services and information security. Jim currently holds various certifications, including the CISSP, CEH, EnCE, and a number of GIAC certifications from the SANS Institute. He has also served as a local mentor and community instructor for SANS and coauthored the SANS Securing Linux Step By Step Guide.