Biostat 216 Homework 5

Due Nov 19 Friday @ 11:59pm

Submit a PDF (scanned/photographed from handwritten solutions, or converted from RMarkdown or Jupyter Notebook) to Gracescope on CCLE.

- Q1. Find the three projectors in the first picture in this <u>lecture note (https://ucla-biostat216-2021fall.github.io/slides/07-proj/07-proj.html)</u>.
 - $\qquad \mathbf{P}_1 \text{ projects into span}(\{\mathbf{1}_2\}) \text{ along span}\left(\left\{\begin{pmatrix} 0\\1 \end{pmatrix}\right\}\right).$
 - \mathbf{P}_2 projects into span($\{\mathbf{1}_2\}$) along span $\left(\left\{\begin{pmatrix}1\\0\end{pmatrix}\right\}\right)$.
 - P_3 is the orthogonal projection into span($\{1_2\}$).
- Q2. Let $\mathbf{A} \in \mathbb{R}^{n \times n}$ be a symmetric matrix. Prove that $\langle \mathbf{A}\mathbf{x}, \mathbf{y} \rangle = \langle \mathbf{x}, \mathbf{A}\mathbf{y} \rangle$ for all $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$. Give an example that it is not necessary true if \mathbf{A} is not symmetric.
- Q3. Find the orthogonal projection of the point $\mathbf{1}_3$ into the plane spanned by the vectors $\begin{pmatrix} 1\\1\\0 \end{pmatrix}$ and $\begin{pmatrix} -2\\2\\1 \end{pmatrix}$.
- Q4. Matrices that satisfy $\mathbf{A'A} = \mathbf{AA'}$ are said to be *normal*. Give an example of asymmetric (not symmetric), normal matrix. If \mathbf{A} is normal, then prove that every vector in $\mathcal{C}(\mathbf{A})$ is orthogonal to every vector in $\mathcal{N}(\mathbf{A})$.
- Q5. For $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$, show that $(\mathbf{x} + \mathbf{y}) \perp (\mathbf{x} \mathbf{y})$ if and only if $\|\mathbf{x}\| = \|\mathbf{y}\|$.
- Q6. Let A be a symmetric matrix. Show that the system Ax = b has a solution if and only if b is orthogonal to $\mathcal{N}(A)$.

• Q7. Find an orthonormal basis for each of the four fundamental subspaces of

$$\mathbf{A} = \begin{pmatrix} 2 & -2 & -5 & -3 & -1 & 2 \\ 2 & -1 & -3 & 2 & 3 & 2 \\ 4 & -1 & -4 & 10 & 11 & 4 \\ 0 & 1 & 2 & 5 & 4 & 0 \end{pmatrix}.$$

Hint: Gram-Schmidt algorithm can be helpful

• Q8. Let $\mathbf{A}, \mathbf{B} \in \mathbb{R}^{n \times n}$ be two orthogonal matrices. Show that $\mathbf{A}\mathbf{B}$ is an orthogonal matrix. Construct an example to show that $\mathbf{A} + \mathbf{B}$ need not be orthogonal.

• Q9. Determinant.

• (1). Find the determinant of the following two matrices without doing any computations:

$$\begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix}, \quad \begin{pmatrix} 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}.$$

• (2). Let $\mathbf{A} \in \mathbb{R}^{5 \times 5}$ with $\det(\mathbf{A}) = -3$. Find $\det(\mathbf{A}^3)$, $\det(\mathbf{A}^{-1})$, and $\det(2\mathbf{A})$.

■ (3). Find the determinant of the matrix $\begin{pmatrix} 0 & 0 & 1 \\ 2 & 3 & 4 \\ 0 & 5 & 6 \end{pmatrix}$. Hint: find the row and column permutations that

make A triangular; then use product rule.

Q10. Let

$$\mathbf{A} = \begin{pmatrix} 0 & 2 \\ 1 & 1 \end{pmatrix}, \quad \mathbf{B} = \begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix}$$

- (1). Find eigenvalues and eigenvectors of \mathbf{A} and \mathbf{A}^{-1} . Do they have same eigenvectors? What's the relationship between their eigenvalues?
- (2). Find eigenvalues of $\bf B$ and $\bf A + \bf B$. Are eigenvalues of $\bf A + \bf B$ equal to eigenvalues of $\bf A$ plus eigenvalues of $\bf B$?
- (3). Find eigenvalues of **AB** and **BA**. Are the eigenvalues of **AB** equal to eigenvalues of **A** times eigenvalues of **B**? Are the eigenvalues of **AB** equal to eigenvalues of **BA**?