11 Cluster Analysis

The next two chapters address classification issues from two varying perspectives. When considering groups of objects in a multivariate data set, two situations can arise. Given a data set containing measurements on individuals, in some cases we want to see if some natural groups or classes of individuals exist, and in other cases, we want to classify the individuals according to a set of existing groups. Cluster analysis develops tools and methods concerning the former case, that is, given a data matrix containing multivariate measurements on a large number of individuals (or objects), the objective is to build some natural subgroups or clusters of individuals. This is done by grouping individuals that are "similar" according to some appropriate criterion. Once the clusters are obtained, it is generally useful to describe each group using some descriptive tool from Chapters 1, 8 or 9 to create a better understanding of the differences that exist among the formulated groups.

Cluster analysis is applied in many fields such as the natural sciences, the medical sciences, economics, marketing, etc. In marketing, for instance, it is useful to build and describe the different segments of a market from a survey on potential consumers. An insurance company, on the other hand, might be interested in the distinction among classes of potential customers so that it can derive optimal prices for its services. Other examples are provided below.

Discriminant analysis presented in Chapter 12 addresses the other issue of classification. It focuses on situations where the different groups are known *a priori*. Decision rules are provided in classifying a multivariate observation into one of the known groups.

Section 11.1 states the problem of cluster analysis where the criterion chosen to measure the similarity among objects clearly plays an important role. Section 11.2 shows how to precisely measure the proximity between objects. Finally, Section 11.3 provides some algorithms. We will concentrate on hierarchical algorithms only where the number of clusters is not known in advance.

11.1 The Problem

Cluster analysis is a set of tools for building groups (clusters) from multivariate data objects. The aim is to construct groups with homogeneous properties out of heterogeneous large

samples. The groups or clusters should be as homogeneous as possible and the differences among the various groups as large as possible. Cluster analysis can be divided into two fundamental steps.

- 1. Choice of a proximity measure:
 - One checks each pair of observations (objects) for the similarity of their values. A similarity (proximity) measure is defined to measure the "closeness" of the objects. The "closer" they are, the more homogeneous they are.
- 2. Choice of group-building algorithm:
 On the basis of the proximity measures the objects assigned to groups so that differences
 between groups become large and observations in a group become as close as possible.

In marketing, for exmaple, cluster analysis is used to select test markets. Other applications include the classification of companies according to their organizational structures, technologies and types. In psychology, cluster analysis is used to find types of personalities on the basis of questionnaires. In archaeology, it is applied to classify art objects in different time periods. Other scientific branches that use cluster analysis are medicine, sociology, linguistics and biology. In each case a heterogeneous sample of objects are analyzed with the aim to identify homogeneous subgroups.

Summary

- The methods used are usually divided into two fundamental steps: The choice of a proximity measure and the choice of a group-building algorithm.

11.2 The Proximity between Objects

The starting point of a cluster analysis is a data matrix $\mathcal{X}(n \times p)$ with n measurements (objects) of p variables. The proximity (similarity) among objects is described by a matrix

 $\mathcal{D}(n \times n)$

$$\mathcal{D} = \begin{pmatrix} d_{11} & d_{12} & \dots & \dots & d_{1n} \\ \vdots & d_{22} & & & \vdots \\ \vdots & \vdots & \ddots & & \vdots \\ \vdots & \vdots & & \ddots & \vdots \\ \vdots & \vdots & & \ddots & \vdots \\ d_{n1} & d_{n2} & \dots & \dots & d_{nn} \end{pmatrix}.$$
(11.1)

The matrix \mathcal{D} contains measures of similarity or dissimilarity among the n objects. If the values d_{ij} are distances, then they measure dissimilarity. The greater the distance, the less similar are the objects. If the values d_{ij} are proximity measures, then the opposite is true, i.e., the greater the proximity value, the more similar are the objects. A distance matrix, for example, could be defined by the L_2 -norm: $d_{ij} = ||x_i - x_j||_2$, where x_i and x_j denote the rows of the data matrix \mathcal{X} . Distance and similarity are of course dual. If d_{ij} is a distance, then $d'_{ij} = \max_{i,j} \{d_{ij}\} - d_{ij}$ is a proximity measure.

The nature of the observations plays an important role in the choice of proximity measure. Nominal values (like binary variables) lead in general to proximity values, whereas metric values lead (in general) to distance matrices. We first present possibilities for \mathcal{D} in the binary case and then consider the continuous case.

Similarity of objects with binary structure

In order to measure the similarity between objects we always compare pairs of observations (x_i, x_j) where $x_i^{\top} = (x_{i1}, \dots, x_{ip}), x_j^{\top} = (x_{j1}, \dots, x_{jp}),$ and $x_{ik}, x_{jk} \in \{0, 1\}$. Obviously there are four cases:

$$x_{ik} = x_{jk} = 1,$$

 $x_{ik} = 0, x_{jk} = 1,$
 $x_{ik} = 1, x_{jk} = 0,$
 $x_{ik} = x_{jk} = 0.$

Name	δ	λ	Definition
Jaccard	0	1	$\frac{a_1}{a_1 + a_2 + a_3}$
Tanimoto	1	2	$\frac{a_1 + a_4}{a_1 + 2(a_2 + a_3) + a_4}$
Simple Matching (M)	1	1	$\frac{a_1 + a_4}{p}$
Russel and Rao (RR)	_	_	$\frac{a_1}{p}$
Dice	0	0.5	$\frac{2a_1}{2a_1 + (a_2 + a_3)}$
Kulczynski	_	_	$\frac{a_1}{a_2 + a_3}$

Table 11.2. The common similarity coefficients.

Define

$$a_{1} = \sum_{k=1}^{p} I(x_{ik} = x_{jk} = 1),$$

$$a_{2} = \sum_{k=1}^{p} I(x_{ik} = 0, x_{jk} = 1),$$

$$a_{3} = \sum_{k=1}^{p} I(x_{ik} = 1, x_{jk} = 0),$$

$$a_{4} = \sum_{k=1}^{p} I(x_{ik} = x_{jk} = 0).$$

Note that each a_{ℓ} , $\ell = 1, \ldots, 4$, depends on the pair (x_i, x_i) .

The following proximity measures are used in practice:

$$d_{ij} = \frac{a_1 + \delta a_4}{a_1 + \delta a_4 + \lambda (a_2 + a_3)}$$
(11.2)

where δ and λ are weighting factors. Table 11.2 shows some similarity measures for given weighting factors.

These measures provide alternative ways of weighting mismatchings and positive (presence of a common character) or negative (absence of a common character) matchings. In principle, we could also consider the Euclidian distance. However, the disadvantage of this distance is that it treats the observations 0 and 1 in the same way. If $x_{ik} = 1$ denotes, say, knowledge of

a certain language, then the contrary, $x_{ik} = 0$ (not knowing the language) should eventually be treated differently.

EXAMPLE 11.1 Let us consider binary variables computed from the car data set (Table B.7). We define the new binary data by

$$y_{ik} = \begin{cases} 1 & \text{if } x_{ik} > \overline{x}_k, \\ 0 & \text{otherwise,} \end{cases}$$

for i = 1, ..., n and k = 1, ..., p. This means that we transform the observations of the k-th variable to 1 if it is larger than the mean value of all observations of the k-th variable. Let us only consider the data points 17 to 19 (Renault 19, Rover and Toyota Corolla) which lead to (3×3) distance matrices. The Jaccard measure gives the similarity matrix

$$\mathcal{D} = \left(\begin{array}{ccc} 1.000 & 0.000 & 0.333\\ & 1.000 & 0.250\\ & & 1.000 \end{array}\right),$$

the Tanimoto measure yields

$$\mathcal{D} = \left(\begin{array}{ccc} 1.000 & 0.231 & 0.600 \\ & 1.000 & 0.455 \\ & & 1.000 \end{array}\right),$$

whereas the Single Matching measure gives

$$\mathcal{D} = \left(\begin{array}{ccc} 1.000 & 0.375 & 0.750 \\ & 1.000 & 0.625 \\ & & 1.000 \end{array}\right).$$

Distance measures for continuous variables

A wide variety of distance measures can be generated by the L_r -norms, $r \geq 1$,

$$d_{ij} = ||x_i - x_j||_r = \left\{ \sum_{k=1}^p |x_{ik} - x_{jk}|^r \right\}^{1/r}.$$
 (11.3)

Here x_{ik} denotes the value of the k-th variable on object i. It is clear that $d_{ii} = 0$ for i = 1, ..., n. The class of distances (11.3) for varying r measures the dissimilarity of different weights. The L_1 -metric, for example, gives less weight to outliers than the L_2 -norm (Euclidean norm). It is common to consider the squared L_2 -norm.

EXAMPLE 11.2 Suppose we have $x_1 = (0,0)$, $x_2 = (1,0)$ and $x_3 = (5,5)$. Then the distance matrix for the L_1 -norm is

$$\mathcal{D}_1 = \left(\begin{array}{rrr} 0 & 1 & 10 \\ 1 & 0 & 9 \\ 10 & 9 & 0 \end{array} \right),$$

and for the squared L_2 - or Euclidean norm

$$\mathcal{D}_2 = \left(\begin{array}{rrr} 0 & 1 & 50 \\ 1 & 0 & 41 \\ 50 & 41 & 0 \end{array} \right).$$

One can see that the third observation x_3 receives much more weight in the squared L_2 -norm than in the L_1 -norm.

An underlying assumption in applying distances based on L_r -norms is that the variables are measured on the same scale. If this is not the case, a standardization should first be applied. This corresponds to using a more general L_2 - or Euclidean norm with a metric \mathcal{A} , where $\mathcal{A} > 0$ (see Section 2.6):

$$d_{ij}^2 = ||x_i - x_j||_{\mathcal{A}} = (x_i - x_j)^{\top} \mathcal{A}(x_i - x_j).$$
(11.4)

 L_2 -norms are given by $\mathcal{A} = \mathcal{I}_p$, but if a standardization is desired, then the weight matrix $\mathcal{A} = \operatorname{diag}(s_{X_1X_1}^{-1}, \ldots, s_{X_pX_p}^{-1})$ may be suitable. Recall that $s_{X_kX_k}$ is the variance of the k-th component. Hence we have

$$d_{ij}^2 = \sum_{k=1}^p \frac{(x_{ik} - x_{jk})^2}{s_{X_k X_k}}.$$
(11.5)

Here each component has the same weight in the computation of the distances and the distances do not depend on a particular choice of the units of measure.

EXAMPLE 11.3 Consider the French Food expenditures (Table B.6). The Euclidean distance matrix (squared L_2 -norm) is

$$\mathcal{D} = 10^4 \cdot \begin{pmatrix} 0.00 & 5.82 & 58.19 & 3.54 & 5.15 & 151.44 & 16.91 & 36.15 & 147.99 & 51.84 & 102.56 & 271.83 \\ 0.00 & 41.73 & 4.53 & 2.93 & 120.59 & 13.52 & 25.39 & 116.31 & 43.68 & 76.81 & 226.87 \\ 0.00 & 44.14 & 40.10 & 24.12 & 29.95 & 8.17 & 25.57 & 20.81 & 20.30 & 88.62 \\ 0.00 & 0.76 & 127.85 & 5.62 & 21.70 & 124.98 & 31.21 & 72.97 & 231.57 \\ 0.00 & 121.05 & 5.70 & 19.85 & 118.77 & 30.82 & 67.39 & 220.72 \\ 0.00 & 96.57 & 48.16 & 1.80 & 60.52 & 28.90 & 29.56 \\ 0.00 & 9.20 & 94.87 & 11.07 & 42.12 & 179.84 \\ 0.00 & 46.95 & 6.17 & 18.76 & 113.03 \\ 0.00 & 61.08 & 29.62 & 31.86 \\ 0.00 & 15.83 & 116.11 \\ 0.00 & 53.77 \\ 0.00 \end{pmatrix}$$

Taking the weight matrix $\mathcal{A} = diag(s_{X_1X_1}^{-1}, \dots, s_{X_7X_7}^{-1})$, we obtain the distance matrix (squared L_2 -norm)

$$\mathcal{D} = \begin{pmatrix} 0.00 & 6.85 & 10.04 & 1.68 & 2.66 & 24.90 & 8.28 & 8.56 & 24.61 & 21.55 & 30.68 & 57.48 \\ 0.00 & 13.11 & 6.59 & 3.75 & 20.12 & 13.13 & 12.38 & 15.88 & 31.52 & 25.65 & 46.64 \\ 0.00 & 8.03 & 7.27 & 4.99 & 9.27 & 3.88 & 7.46 & 14.92 & 15.08 & 26.89 \\ 0.00 & 0.64 & 20.06 & 2.76 & 3.82 & 19.63 & 12.81 & 19.28 & 45.01 \\ 0.00 & 17.00 & 3.54 & 3.81 & 15.76 & 14.98 & 16.89 & 39.87 \\ 0.00 & 17.51 & 9.79 & 1.58 & 21.32 & 11.36 & 13.40 \\ 0.00 & 1.80 & 17.92 & 4.39 & 9.93 & 33.61 \\ 0.00 & 10.50 & 5.70 & 7.97 & 24.41 \\ 0.00 & 24.75 & 11.02 & 13.07 \\ 0.00 & 9.39 \\ 0.00 \end{pmatrix}.$$
(11.6)

When applied to contingency tables, a χ^2 -metric is suitable to compare (and cluster) rows and columns of a contingency table.

If \mathcal{X} is a contingency table, row i is characterized by the conditional frequency distribution $\frac{x_{ij}}{x_{i\bullet}}$, where $x_{i\bullet} = \sum_{j=1}^{p} x_{ij}$ indicates the marginal distributions over the rows: $\frac{x_{i\bullet}}{x_{\bullet\bullet}}$, $x_{\bullet\bullet} = \sum_{i=1}^{n} x_{i\bullet}$. Similarly, column j of \mathcal{X} is characterized by the conditional frequencies $\frac{x_{ij}}{x_{\bullet j}}$, where $x_{\bullet j} = \sum_{i=1}^{n} x_{ij}$. The marginal frequencies of the columns are $\frac{x_{\bullet j}}{x_{\bullet\bullet}}$.

The distance between two rows, i_1 and i_2 , corresponds to the distance between their respective frequency distributions. It is common to define this distance using the χ^2 -metric:

$$d^{2}(i_{1}, i_{2}) = \sum_{j=1}^{p} \frac{1}{\left(\frac{x_{\bullet j}}{x_{\bullet \bullet}}\right)} \left(\frac{x_{i_{1} j}}{x_{i_{1} \bullet}} - \frac{x_{i_{2} j}}{x_{i_{2} \bullet}}\right)^{2}.$$
 (11.7)

Note that this can be expressed as a distance between the vectors $x_1 = \left(\frac{x_{i_1j}}{x_{\bullet\bullet}}\right)$ and $x_2 = \left(\frac{x_{i_2j}}{x_{\bullet\bullet}}\right)$ as in (11.4) with weighting matrix $\mathcal{A} = \left\{diag\left(\frac{x_{\bullet j}}{x_{\bullet\bullet}}\right)\right\}^{-1}$. Similarly, if we are interested in clusters among the columns, we can define:

$$d^{2}(j_{1}, j_{2}) = \sum_{i=1}^{n} \frac{1}{\left(\frac{x_{i\bullet}}{x_{\bullet\bullet}}\right)} \left(\frac{x_{ij_{1}}}{x_{\bullet j_{1}}} - \frac{x_{ij_{2}}}{x_{\bullet j_{2}}}\right)^{2}.$$

Apart from the Euclidean and the L_r -norm measures one can use a proximity measure such as the Q-correlation coefficient

$$d_{ij} = \frac{\sum_{k=1}^{p} (x_{ik} - \overline{x}_i)(x_{jk} - \overline{x}_j)}{\left\{\sum_{k=1}^{p} (x_{ik} - \overline{x}_i)^2 \sum_{k=1}^{p} (x_{jk} - \overline{x}_j)^2\right\}^{1/2}}.$$
(11.8)

Here \overline{x}_i denotes the mean over the variables (x_{i1}, \ldots, x_{ip}) .

Summary

- \hookrightarrow The proximity between data points is measured by a distance or similarity matrix \mathcal{D} whose components d_{ij} give the similarity coefficient or the distance between two points x_i and x_j .
- \hookrightarrow A variety of similarity (distance) measures exist for binary data (e.g., Jaccard, Tanimoto, Simple Matching coefficients) and for continuous data (e.g., L_r -norms).
- \hookrightarrow The nature of the data could impose the choice of a particular metric \mathcal{A} in defining the distances (standardization, χ^2 -metric etc.).

11.3 Cluster Algorithms

There are essentially two types of clustering methods: hierarchical algorithms and partioning algorithms. The hierarchical algorithms can be divided into agglomerative and splitting procedures. The first type of hierarchical clustering starts from the finest partition possible (each observation forms a cluster) and groups them. The second type starts with the coarsest partition possible: one cluster contains all of the observations. It proceeds by splitting the single cluster up into smaller sized clusters.

The partioning algorithms start from a given group definition and proceed by exchanging elements between groups until a certain score is optimized. The main difference between the two clustering techniques is that in hierarchical clustering once groups are found and elements are assigned to the groups, this assignment cannot be changed. In partitioning techniques, on the other hand, the assignment of objects into groups may change during the algorithm application.

Hierarchical Algorithms, Agglomerative Techniques

Agglomerative algorithms are used quite frequently in practice. The algorithm consists of the following steps:

Agglomerative Algorithm

- 1. Construct the finest partition.
- 2. Compute the distance matrix \mathcal{D} .

DO

- 3. Find the two clusters with the closest distance.
- 4. Put those two clusters into one cluster.
- 5. Compute the distance between the new groups and obtain a reduced distance matrix \mathcal{D} .

UNTIL all clusters are agglomerated into \mathcal{X} .

If two objects or groups say, P and Q, are united, one computes the distance between this new group (object) P + Q and group R using the following distance function:

$$d(R, P + Q) = \delta_1 d(R, P) + \delta_2 d(R, Q) + \delta_3 d(P, Q) + \delta_4 |d(R, P) - d(R, Q)|.$$
(11.9)

The δ_j 's are weighting factors that lead to different agglomerative algorithms as described in Table 11.4. Here $n_P = \sum_{i=1}^n \mathbf{I}(x_i \in P)$ is the number of objects in group P. The values of n_Q and n_R are defined analogously.

Name	δ_1	δ_2	δ_3	δ_4
Single linkage	1/2	1/2	0	-1/2
Complete linkage	1/2	1/2	0	1/2
Average linkage (unweighted)	1/2	1/2	0	0
Average linkage (weighted)	$\frac{n_P}{n_P + n_Q}$	$\frac{n_Q}{n_P + n_Q}$	0	0
Centroid	$\frac{n_P}{n_P + n_Q}$	$\frac{n_Q}{n_P + n_Q}$	$-\frac{n_P n_Q}{(n_P + n_Q)^2}$	0
Median	1/2	1/2	-1/4	0
Ward	$\frac{n_R + n_P}{n_R + n_P + n_Q}$	$\frac{n_R + n_Q}{n_R + n_P + n_Q}$	$-\frac{n_R}{n_R + n_P + n_Q}$	0

Table 11.4. Computations of group distances.

EXAMPLE 11.4 Let us examine the agglomerative algorithm for the three points in Example 11.2, $x_1 = (0,0)$, $x_2 = (1,0)$ and $x_3 = (5,5)$, and the squared Euclidean distance matrix with single linkage weighting. The algorithm starts with N = 3 clusters: $P = \{x_1\}$, $Q = \{x_2\}$ and $R = \{x_3\}$. The distance matrix \mathcal{D}_2 is given in Example 11.2. The smallest distance in \mathcal{D}_2 is the one between the clusters P and Q. Therefore, applying step 4 in the above algorithm we combine these clusters to form $P + Q = \{x_1, x_2\}$. The single linkage distance between the remaining two clusters is from Table 11.4 and (11.9) equal to

$$d(R, P + Q) = \frac{1}{2}d(R, P) + \frac{1}{2}d(R, Q) - \frac{1}{2}|d(R, P) - d(R, Q)|$$

$$= \frac{1}{2}d_{13} + \frac{1}{2}d_{23} - \frac{1}{2} \cdot |d_{13} - d_{23}|$$

$$= \frac{50}{2} + \frac{41}{2} - \frac{1}{2} \cdot |50 - 41|$$

$$= 41$$
(11.10)

The reduced distance matrix is then $\begin{pmatrix} 0 & 41 \\ 41 & 0 \end{pmatrix}$. The next and last step is to unite the clusters R and P+Q into a single cluster \mathcal{X} , the original data matrix.

When there are more data points than in the example above, a visualization of the implication of clusters is desirable. A graphical representation of the sequence of clustering is called a dendrogram. It displays the observations, the sequence of clusters and the distances between the clusters. The vertical axis displays the indices of the points, whereas the horizontal axis gives the distance between the clusters. Large distances indicate the clustering of heterogeneous groups. Thus, if we choose to "cut the tree" at a desired level, the branches describe the corresponding clusters.

EXAMPLE 11.5 Here we describe the single linkage algorithm for the eight data points displayed in Figure 11.1. The distance matrix (L₂-norms) is

$$\mathcal{D} = \begin{pmatrix} 0 & 10 & 53 & 73 & 50 & 98 & 41 & 65 \\ 0 & 25 & 41 & 20 & 80 & 37 & 65 \\ 0 & 2 & 1 & 25 & 18 & 34 \\ & & 0 & 5 & 17 & 20 & 32 \\ & & & 0 & 36 & 25 & 45 \\ & & & & 0 & 13 & 9 \\ & & & & & 0 & 4 \\ & & & & & 0 \end{pmatrix}$$

and the dendrogram is shown in Figure 11.2.

If we decide to cut the tree at the level 10, three clusters are defined: $\{1,2\}$, $\{3,4,5\}$ and $\{6,7,8\}$.

Figure 11.1. The 8-point example. • MVAclus8p.xpl

The single linkage algorithm defines the distance between two groups as the smallest value of the individual distances. Table 11.4 shows that in this case

$$d(R, P+Q) = \min\{d(R, P), d(R, Q)\}. \tag{11.11}$$

This algorithm is also called the *Nearest Neighbor* algorithm. As a consequence of its construction, single linkage tends to build large groups. Groups that differ but are not well separated may thus be classified into one group as long as they have two approximate points. The *complete linkage* algorithm tries to correct this kind of grouping by considering the largest (individual) distances. Indeed, the complete linkage distance can be written as

$$d(R, P + Q) = \max\{d(R, P), d(R, Q)\}.$$
(11.12)

It is also called the *Farthest Neighbor* algorithm. This algorithm will cluster groups where all the points are proximate, since it compares the largest distances. The *average link-age* algorithm (weighted or unweighted) proposes a compromise between the two preceding

Figure 11.2. The dendrogram for the 8-point example, Single linkage algorithm.

MVAclus8p.xpl

algorithms, in that it computes an average distance:

$$d(R, P+Q) = \frac{n_P}{n_P + n_Q} d(R, P) + \frac{n_Q}{n_P + n_Q} d(R, Q).$$
 (11.13)

The *centroid* algorithm is quite similar to the average linkage algorithm and uses the natural geometrical distance between R and the weighted center of gravity of P and Q (see Figure 11.3):

$$d(R, P+Q) = \frac{n_P}{n_P + n_Q} d(R, P) + \frac{n_Q}{n_P + n_Q} d(R, Q) - \frac{n_P n_Q}{(n_P + n_Q)^2} d(P, Q).$$
(11.14)

The Ward clustering algorithm computes the distance between groups according to the formula in Table 11.4. The main difference between this algorithm and the linkage procedures is in the unification procedure. The Ward algorithm does not put together groups with smallest distance. Instead, it joins groups that do not increase a given measure of heterogeneity

Figure 11.3. The centroid algorithm.

"too much". The aim of the Ward procedure is to unify groups such that the variation inside these groups does not increase too drastically: the resulting groups are as homogeneous as possible.

The heterogeneity of group R is measured by the inertia inside the group. This inertia is defined as follows:

$$I_R = \frac{1}{n_R} \sum_{i=1}^{n_R} d^2(x_i, \overline{x}_R)$$
 (11.15)

where \overline{x}_R is the center of gravity (mean) over the groups. I_R clearly provides a scalar measure of the dispersion of the group around its center of gravity. If the usual Euclidean distance is used, then I_R represents the sum of the variances of the p components of x_i inside group R.

When two objects or groups P and Q are joined, the new group P + Q has a larger inertia I_{P+Q} . It can be shown that the corresponding increase of inertia is given by

$$\Delta(P,Q) = \frac{n_P n_Q}{n_P + n_Q} d^2(P,Q). \tag{11.16}$$

In this case, the Ward algorithm is defined as an algorithm that "joins the groups that give the smallest increase in $\Delta(P,Q)$ ". It is easy to prove that when P and Q are joined, the new criterion values are given by (11.9) along with the values of δ_i given in Table 11.4, when the centroid formula is used to modify $d^2(R, P+Q)$. So, the Ward algorithm is related to the centroid algorithm, but with an "inertial" distance Δ rather than the "geometric" distance d^2 .

As pointed out in Section 11.2, all the algorithms above can be adjusted by the choice of the metric \mathcal{A} defining the geometric distance d^2 . If the results of a clustering algorithm are illustrated as graphical representations of individuals in spaces of low dimension (using principal components (normalized or not) or using a correspondence analysis for contingency tables), it is important to be coherent in the choice of the metric used.

Figure 11.4. PCA for 20 randomly chosen bank notes.

MVAclusbank.xpl

EXAMPLE 11.6 As an example we randomly select 20 observations from the bank notes data and apply the Ward technique using Euclidean distances. Figure 11.4 shows the first two PCs of these data, Figure 11.5 displays the dendrogram.

EXAMPLE 11.7 Consider the French food expenditures. As in Chapter 9 we use standardized data which is equivalent to using $\mathcal{A} = diag(s_{X_1X_1}^{-1}, \ldots, s_{X_7X_7}^{-1})$ as the weight matrix in the L_2 -norm. The NPCA plot of the individuals was given in Figure 9.7. The Euclidean distance matrix is of course given by (11.6). The dendrogram obtained by using the Ward algorithm is shown in Figure 11.6.

If the aim was to have only two groups, as can be seen in Figure 11.6, they would be {CA2, CA3, CA4, CA5, EM5} and {MA2, MA3, MA4, MA5, EM2, EM3, EM4}. Clustering three groups is somewhat arbitrary (the levels of the distances are too similar). If we were interested in four groups, we would obtain {CA2, CA3, CA4}, {EM2, MA2, EM3, MA3}, {EM4, MA4, MA5} and {EM5, CA5}. This grouping shows a balance between socio-professional levels and

Figure 11.5. The dendrogram for the 20 bank notes, Ward algorithm.

MVAclusbank.xpl

size of the families in determining the clusters. The four groups are clearly well represented in the NPCA plot in Figure 9.7.

Summary

Summary (continued)

- → Hierarchical agglomerative techniques are frequently used in practice. They start from the finest possible structure (each data point forms a cluster), compute the distance matrix for the clusters and join the clusters that have the smallest distance. This step is repeated until all points are united in one cluster.
- The process of the unification of clusters can be graphically represented by a dendrogram.

11.4 Boston Housing

We have motivated the transformation of the variables of the Boston housing data many times before. Now we illustrate the cluster algorithm with the transformed data $\widetilde{\mathcal{X}}$ excluding \widetilde{X}_4 (Charles River indicator). Among the various algorithms, the results from the Ward algorithm are presented since this algorithm gave the most sensible results. In order to be

Variable	Mean C1	SE C1	Mean C2	SE C2
1	-0.7105	0.0332	0.6994	0.0535
2	0.4848	0.0786	-0.4772	0.0047
3	-0.7665	0.0510	0.7545	0.0279
5	-0.7672	0.0365	0.7552	0.0447
6	0.4162	0.0571	-0.4097	0.0576
7	-0.7730	0.0429	0.7609	0.0378
8	0.7140	0.0472	-0.7028	0.0417
9	-0.5429	0.0358	0.5344	0.0656
10	-0.6932	0.0301	0.6823	0.0569
11	-0.5464	0.0469	0.5378	0.0582
12	0.3547	0.0080	-0.3491	0.0824
13	-0.6899	0.0401	0.6791	0.0509
14	0.5996	0.0431	-0.5902	0.0570

Table 11.6. Means and standard errors of the 13 standardized variables for Cluster 1 (251 observations) and Cluster 2 (255 observations).

Q MVAclusbh.xpl

Figure 11.6. The dendrogram for the French food expenditures, Ward algorithm.

MVAclusfood.xpl

coherent with our previous analysis, we standardize each variable. The dendrogram of the Ward method is displayed in Figure 11.7. Two dominant clusters are visible. A further refinement of say, 4 clusters, could be considered at a lower level of distance.

To interprete the two clusters, we present the mean values and their respective standard errors of the thirteen $\widetilde{\mathcal{X}}$ variables by group in Table 11.6. Comparing the mean values for both groups shows that all the differences in the means are individually significant and that cluster one corresponds to housing districts with better living quality and higher house prices, whereas cluster two corresponds to less favored districts in Boston. This can be confirmed, for instance, by a lower crime rate, a higher proportion of residential land, lower proportion of blacks, etc. for cluster one. Cluster two is identified by a higher proportion of older houses, a higher pupil/teacher ratio and a higher percentage of the lower status population.

This interpretation is underlined by visual inspection of all the variables presented on scatterplot matrices in Figures 11.8 and 11.9. For example, the lower right boxplot of Figure 11.9 and the correspondingly colored clusters in the last row confirm the role of each variable in

Figure 11.7. Dendrograms of the Boston housing data using the Ward algorithm.

MVAclusbh.xpl

determining the clusters. This interpretation perfectly coincides with the previous PC analysis (Figure 9.11). The quality of life factor is clearly visible in Figure 11.10, where cluster membership is distinguished by the shape and color of the points graphed according to the first two principal components. Clearly, the first PC completely separates the two clusters and corresponds, as we have discussed in Chapter 9, to a quality of life and house indicator.

11.5 Exercises

EXERCISE 11.1 Prove formula (11.16).

EXERCISE 11.2 Prove that $I_R = tr(S_R)$, where S_R denotes the empirical covariance matrix of the observations contained in R.

11.5 Exercises 319

Figure 11.8. Scatterplot matrix for variables \widetilde{X}_1 to \widetilde{X}_7 of the Boston housing data. \P MVAclusbh.xpl

EXERCISE 11.3 Prove that

$$\Delta(R, P + Q) = \frac{n_R + n_P}{n_R + n_P + n_Q} \ \Delta(R, P) + \frac{n_R + n_Q}{n_R + n_P + n_Q} \ \Delta(R, Q) - \frac{n_R}{n_R + n_P + n_Q} \ \Delta(P, Q),$$

when the centroid formula is used to define $d^2(R, P+Q)$.

Figure 11.9. Scatterplot matrix for variables \widetilde{X}_8 to \widetilde{X}_{14} of the Boston housing data. \square MVAclusbh.xpl

EXERCISE 11.4 Repeat the 8-point example (Example 11.5) using the complete linkage and the Ward algorithm. Explain the difference to single linkage.

EXERCISE 11.5 Explain the differences between various proximity measures by means of an example.

11.5 Exercises 321

Figure 11.10. Scatterplot of the first two PCs displaying the two clusters.

MVAclusbh.xpl

EXERCISE 11.6 Repeat the bank notes example (Example 11.6) with another random sample of 20 notes.

EXERCISE 11.7 Repeat the bank notes example (Example 11.6) with another clustering algorithm.

EXERCISE 11.8 Repeat the bank notes example (Example 11.6) or the 8-point example (Example 11.5) with the L_1 -norm.

EXERCISE 11.9 Analyze the U.S. companies example (Table B.5) using the Ward algorithm and the L_2 -norm.

EXERCISE 11.10 Analyze the U.S. crime data set (Table B.10) with the Ward algorithm and the L_2 -norm on standardized variables (use only the crime variables).

EXERCISE 11.11 Repeat Exercise 11.10 with the U.S. health data set (use only the number of deaths variables).

EXERCISE 11.12 Redo Exercise 11.10 with the χ^2 -metric. Compare the results.

EXERCISE 11.13 Redo Exercise 11.11 with the χ^2 -metric and compare the results.