Proof. $j = j_1 = j_2$, and k_1k_2 . To show orthogonality, we must show that the value of the inner product of the two different functions is zero.

(1)
$$\left\langle 2^{\frac{j}{2}}\Psi\left(2^{j}x-k_{1}\right),2^{\frac{j}{2}}\Psi\left(2^{j}x-k_{2}\right)\right\rangle$$

(2)
$$= 2^{j} \int_{-\infty}^{\infty} \Psi\left(2^{j}x - k_{1}\right) \Psi\left(2^{j}x - k_{2}\right) dx$$

Similarly to proof ??, we want to change the bounds of integration. We can use much of the work from proof ??.

Case 1. $k_1 > k_2$. We can then write an expression for k_1 in terms of k_2 . $k_1 = \alpha + k_2$, where $\alpha \geq 1$. Taking the lower bound for Ψ_1 , we can say

$$\frac{1}{2^j}(\alpha+k_2)$$

Once again we are able to ignore the $\frac{1}{2^{j}}$, Now we can notice

$$(4) 1 + k_2 \le \alpha + k_2$$

Thus for any values of j, and k_1 , and k_2 , then there will be no overlap between the functions, and so the integral will always be zero.

Case 2. $k_2 > k_1$. Without loss of generality we can apply the same process as in case 1, because the multiplication of two functions is commutative.

Thus we are able to conclude that for any case where $k_1 \neq k_2$ and $j_1 = j_2$ that the two wavelets will not overlap, and thus they will be orthogonal.