《常微分方程》期末考试试卷(A)

(2020-2021 学年度上学期,经济与管理学院 金融学专业)

- 一、求解如下问题(每题10分,共80分)
- 1. 求方程 $xy' = y + x\cos^2 \frac{y}{x}$ 的通解.
- 2. 求方程 $(2x^2+3y^2-7)x$ d $x+(3x^2+2y^2-8)y$ d y=0 满足y(0)=1 的特解.
- 3. 求方程 $xy' 4y = x^3 \sqrt{y}$ 的通解.
- **4.** 求方程 $x^3y''' + 3x^2y'' 3xy' = x$ 的通解.
- 5. 求方程 $y' = -2 + xe^{2x+y}$ 的通解.
- 6. 已知 α 和 β 为常数_{,求} α 、 β 的取值范围,使得微分方程组 $\frac{dY}{dx} = \begin{pmatrix} -2 & \beta & 0 \\ \beta & -2 & 0 \\ 0 & 0 & \alpha \end{pmatrix} Y$ 满足任意初始条件的解Y(x),有 $\lim_{x \to +\infty} Y(x) = \vec{0}$.
- 7. 已知常系数三阶线性齐次微分方程 $y'''+a_1y''+a_2y'+a_3y=0$ 的通解为 $\tilde{y}(x)=c_1e^x+c_2xe^x+c_3e^{-2x}, x\in (-\infty,+\infty)$,求此微分方程的具体形式. 并利用待定系数法,给出其对应非齐次方程 $y'''+a_1y''+a_2y'+a_3y=x^2+3x+1+xe^x$ 特解 $y^*(x)$ 的具体形式 (不必具体求出待定的系数值).
- 8. 判断微分方程 $y' = -x + \sqrt{x^2 + 2y}$ 是否有奇解? 如果有奇解, 求出奇解.
- 二、 证明(每题 10 分, 共 20 分)
- 1. 讨论微分方程 $\frac{dy}{dx} = \frac{\sin(x^2 + y^2)}{1 + \cos^2(x + y)}$ 过平面上任意初始点 (x_0, y_0) , 其解的存在性、唯一性以及解的存在区间,并对其结果予以证明.
- 2. 若函数 $p_i(x)$, i=1,2,3满足 $\beta^2 p_1(x) + \beta p_2(x) + p_3(x) = 0$, $x \in (-\infty, +\infty)$,其中 β 为某个非零常数,证明线性齐次微分方程 $p_1(x)y'' + p_2(x)y' + p_3(x)y = 0$ 必有一解 $y(x) = e^{\beta x}$ 。试求微分方程(x-2)y'' xy' + 2y = 0 的通解.