

Gamma-Spectroscopy

Nils Breer

12.07.2022

Fakultät Physik

Agenda

What is gamma spectroscopy?

Interactions in the Spectrum

Detectorsystems

Applications

Summary

N.Breer | 12.072022

What is gamma spectroscopy?

studies of energy spectra of gamma rays

identification of gamma-emitting radionuclides

Interactions: Photoeffect, Compton scattering, Pair production

N.Brer | 12.07.2022 3 / 25

WInteraction of y-rays with matter

Abbildung: atomic number Z against photon energy E.

processes above ionization threshold Gamma ray absorption \rightarrow intensity loss Material thickness dependend intensity: $N(D) = N_0 e^{-\mu D}$ D: thickness, μ : absorption coefficient, N_0 : initial intensity

N.Breer | 12.07.2022 4 / 25

Photoeffect

 E_{γ} < several 100 keV ionizing bound electron (K-shell)

 $y + atom \rightarrow atom^+ + e^-$

hole is filled with electrons from higher shells recursively

energy diff. release as x-rays characteristic rarely: photon leaves absorber. often excite more electrons inside

K-L-M-absorption edge: Quantumenergy enough to release bound electron from given shell

Breer | 12.07.2022 5 / 25

Compton scattering

Abbildung: compton continuum

main interaction (100 keV < E < 5 MeV) inelastic scattering photons only transfers an energy fraction cannot view full spectrum ⊕

N.Brer | 12.07.2022 6 / 25

Compton scattering

non-isotropic angular distribution

$$E_{\gamma}' = \frac{E_{\gamma}}{1 + \left(\frac{E_{\gamma}}{511 \text{keV}} (1 - \cos \theta)\right)}$$

$$E_{e^{-}} = E_{\gamma} \left(\frac{\frac{E_{\gamma}}{511 keV} (1 - cos\theta)}{1 + \frac{E_{\gamma}}{511 keV} (1 - cos\theta)} \right)$$

extreme cases: backward scattering, light graze

N.Brer | 12.07.2022 7/ 25

Pair production

photon produces e+e- pair if E is high enough (5 MeV < E < 10 MeV)

occurs in proximity of nucleus/scattering partner photon line visible if both leptons are absorbed; annihilation peak: 511 keV (e- mass) or doubled for both

single- and double-escape peaks

N.Brer | 12.07.2022 8 / 25

Energy spectra

N.Breer | 12.07.2022 9/25

Band structure

electrons in discrete/precise energy bands

valence band: outer band for chemical reactions; most inhibited

conduction band: migration of electrons

N.Brer | 12.07.2022 10 / 25

Mobility of "Holes"

positive charge ≡ hole in the band measuring the energy relies on separating the charge carriers

electrons from valence band filling holes -> effective moving

-> conductivity

N.Brer | 12.07.2022 11 / 25

Creation of charge carriers

excite electrons from low bands through high energies

 $(E > E_{therm})$

redistribution of electrons-holes throughout energy-bands

holes: top of valence band

electrons: bottom of conduction band

external field: charge carriers migrate towards

respective electrode

number of electron-hole pairs n = $E_{\rm abs}/\epsilon$

 ϵ : average energy needed to create electron hole pair

 E_{abs} : absorbed gamma ray energy

N.Brer | 12.07.2022 12 / 25

resolution and suitable semiconductors

resolution ∝ n -> detector needs specific properties

large absorption coefficient (high atomic number Z)

low ϵ : to produce many electron-hole pairs

allow good Mobility (trapping inside semiconductor lattice)

pure crystal structure (traps for charge carriers)

cannot be too expensive

N.Brer | 12.07.2022 13 / 25

Why Germanium as detector material?

Material	Atomic number	Operating temperature	Band gap (eV) ^a	$(eV)^{a,b}$	Density (g cm ⁻³)	Mobility(cm ² V ⁻¹ s ⁻¹) ^a	
						Electrons	Holes
Si	14	RT	1.106	3.62	2.33	1350	480
Ge	32	Liquid N2 (77 K)	0.67	2.96	5.32	3.6×10^{4}	4.2×10^{4}
CdTe	48, 52	RT	1.47	4.43	6.06	1000	80
CdZnTe	48, 30, 52	RT	1.57	4.64	5.78	1000	50-80
HgI,	80, 53	RT	2.13	4.22	6.30	100	4
GaAs	31, 33	RT	1.45	4.51	5.35	8000	400
TlBr	81, 35	-20°C	2.68	?	7.56	_	_
PbI ₂	82, 53	_	2.6	7.68	6.16	8	2
GaSe	31, 34	_	2.03	6.3	4.55	_	_
AISb	13, 51	_	1.62	5.05	4.26	_	_
CdSe	48, 34	_	1.75	?	5.74	_	_

^a Values are given at 77 K for Ge and 300 K otherwise.
^b Electron-hole creation energy.

Silicon: highly pure, low-priced, low atomic number (low energy photons)

Germanium: higher Z -> good for higher energy gamma radiation

improvements reduced resolution to ≈ 1.8 keV

low temperature -> reduce leakage current

N.Breer | 12.07.2022

⁻ Electron-noie creation energ

Why Germanium as detector material?

N.Breer | 12.072022

Semiconductor detector

p-n or M-S junctions possible electrodes form a metal-semiconductor junction impurities: p-type (acceptor states), n-type (donator states)

solid detection material for full energy deposition inside

doping: adding energy states -> narrowing the band gap maximising the depletion zone -> hinder recombination -> reconstruct energy of the event

probability of thermal excitation:

$$p(T) = T^{3/2} exp(-E_a/2k_bT)$$

N.Breer | 12.072022

Metal-Semiconductor junction

 W_0 : vacuum level, E_L : conduction band, E_F : fermi energy E_V : valence band, E_{LM} : energy level in metal, E_{FM} : fermi energy in metal

electrons can migrate from Semiconductor to metal since E-level is lower

probability of finding electrons in conduction band gets lower

N.Brer | 12.07.2022 17 / 25

Metal-Semiconductor junction (n-Si)

migrated charge carriers form depletion zone and lower fermi level

additional e^- must overcome the Schottky-barrier to flow into Metal

fermi levels in metal and semiconductor equalize via diffusion process

N.Brer | 12.07.2022 18 / 25

Why is this junction used over p-n?

Si-Schottky diodes are substantially faster changing from forward bias to reverse bias

-> switching action: 10 - 100 GHz possible because no "holes" in metal

low forward voltage drop (0.15 - 0.45V) p-n: 0.6 - 0.75 V

But: higher reverse leakage current

N.Breer | 12.07.2022 19 / 25

How to semiconductor

p and n doped areas charge carriers diffuse and recombinate surface is charge carrier poor zone acceptor in p, donator in n. electric field hinders carriers the bigger the zone the better the separation -> more U_a seperation before recombination →pulse →quatification of energy only possible if generated in depletion zone (charge carrier poor zone) depletion zone big -> reverse voltage and doping material asymmetric doping (equation) noise: electrons randomly passing reverse voltage, also cool detector veto region with alu case ($E_{min} = 40 - 50 \text{ keV}$) Li in Ge for n, Au in Ge for p

N.Breer | 12.07.2022 20 / 25

Evaluation of gamma spec

PRO:

quite cheap in material costs

relatively fast result evaluation

multinuclide analysis (distinct lines visible for all nuclides)

non-destructive for emitter (radiation hardness of detector given)

remote measurement

CONTRA:

often less sensitive

require large sample masses (if not gamma rays from space)

N.Brer | 12.07.2022 21 / 25

Table of interesting radio nuclides

Radionuclide	Gamma Ray Energy (keV)	Gamma Intensity	
Na-22	1274.5	1.0	
Nd-22	511.0 (annihilation)	1.8	
K-40	1460.8	0.11	
Cr-51	320.1	0.098	
Co-57	122.1	0.855	
Fe-59	1099.2	0.565	
Fe-59	1291.6	0.432	
Co-60	1173.2	1.0	
C0-60	1332.5	1.0	
Zn-65	1115.5	0.507	
Ga-67	93.3	0.357	
Ga-07	300.2	0.16	
Ma 00	739 6	0 128	

N.Brer | 12.07.2022 22 / 25

Summary

N.Breer | 12.072022

Quellen

https://onlinelibrary.wiley.com/doi/book/10.1002/9780470861981 V18_Anleitung.pdf https://www.nrc.gov/docs/ML1122/ML11229A699.pdf https://www.electrical4u.com/schottky-diode/

N.Brer | 12.07.2022 24 / 25

Backup

Attenuation egde for caesium iodine (CsI)

2 K-lines and 2 L-lines

N.Breer | 12.07.2022 25 / 25