Massively Annotated Datasets for Assessment of Synthetic and Real Data in Face Recognition of

Pedro C. Neto^{1,2}, Rafael M. Mamede^{1,2}, Carolina Albuquerque^{1,2}, Tiago Gonçalves^{1,2}, Ana F. Sequeira^{1,2} 1

¹ Faculty of Engineering of the University of Porto, Porto, Portugal 1

² Institute for Systems and Computer Engineering, Technology and Science, Porto, Portugal

Abstract—Face recognition applications have grown in paral- 2 lel with the size of datasets, complexity of deep learning models and computational power. However, while deep learning models 2 evolve to become more capable and computational power keeps increasing, the datasets available are being retracted and removed from public access. Privacy and ethical concerns are relevant topics within these domains. Through generative 2 artificial intelligence, researchers have put efforts into the 2 development of completely synthetic datasets that can be used to train face recognition systems. Nonetheless, the recent advances have not been sufficient to achieve performance comparable to 2 the state-of-the-art models trained on real data. 2

To study the drift between the performance of models trained 2 on real and synthetic datasets, we leverage a massive attribute classifier (MAC) to create annotations for four datasets: two real and two synthetic. From these annotations, we conduct studies 2 on the distribution of each attribute within all four datasets. Additionally, we further inspect the differences between real and synthetic datasets on the attribute set. When comparing through the Kullback-Leibler divergence we have found differences between real and synthetic samples. Interestingly enough, we have verified that while real samples suffice to explain the 2 synthetic distribution, the opposite could not be further from 2 being true. 🤈

I. Introduction 3

Complex Face Recognition systems have matched and 4 surpassed human-level performance [32]. Recent advances 4 led to deep learning-based neural networks that can learn 4 to distinguish between the most variate identities from a 4 single image. The resourcefulness of such models has led to a 4 continuous focus on improving the best-performing models. 4 Over the years, this improvement was supported by three 4 strong pillars. 1) Exponential increase in computing power; 4 2) Novel architectures and more expressive deep learning 4 models; 3) Very large datasets. 4

As mentioned, one of the approaches to further enhance 5 these models relied on the collection and curation of large 5 datasets [41]. These datasets vary in the number of identities, 5 from 10k to 672k, and in the number of images, from 500k 5 to 17M [39], [2], [26]. However, the collection of these 5 datasets has raised privacy and ethical concerns regarding 5 the consent of the individuals present in the data [5]. This 5 led to the retraction of several of these previously publicly available datasets [9]. Moreover, a dataset that is composed 5 of real images with proper curation and consent is not static, 5 since according to the European Union (EU) General Data 5 Protection Regulation (GDPR) [12], consent can be removed 5 Synthetic Image

Male: Negative Attributes Young: Positive Asian: Positive **Bald: Negative**

No Beard: Positive Square Face: Negative Eye Glasses: Negative Smiling: Negative

An example of an annotated synthetic image. It is possible to 7 observe some of the well defined attributes. 7

sample faces is not feasible and further removes the utility of 5 the face to train a face recognition system [23]. This poses a 5 problem for current face recognition research, which requires 5 the use of large-scale datasets that are being limited and 5 removed from public access as previously mentioned. 5

Recently, there has been significant growth in generative 6 artificial intelligence approaches, leading to state-of-the-art methods that can synthesise images that closely resemble 6 real images [18], [1]. Since the initial generative adversarial 6 neural network (GAN) [14] and their improved versions [17], 6 there have been several advances that led to the development 6 of diffusion models. These models are easier to train and lead to better-quality images. Recently, some generative models 6 have been proposed for face data, allowing researchers to 6 condition the identity or other attributes [5], [6]. Following 6 the improvements in generative artificial intelligence, researchers have redirected their efforts into how to synthesise 6 new datasets for face recognition that could remove the 6 dependency on the previously used real datasets. 6

Despite efforts to develop synthetic data that faithfully 8 represents real data, the performance of models trained on 8 these new synthetic datasets is yet to achieve a performance 8 similar to models trained on real data [5], even when the data is constructed through different synthesising approaches [3]. 8 These former models seem to perform considerably worse 8 at any time. Additionally, individual anonymization of the 5 on certain ethnicities and other variations of the traditional 8 face verification setting, such as cross-pose or cross-age. 8 This behaviour can be sustained by several factors, and 8 Huber et al. [15] has already explored the diversity of 8 synthetic datasets with regards to gender, ethnicity, age and 8 head position. We firmly believe that the diversity of face 8 datasets can be further described by other attributes. work of Terhörst et al. [34] aims to create datasets that are annotated for 47 distinct attributes, which can be leveraged 8 to highlight differences between synthetic and real datasets. 8 Previous research has noted a potential domain gap between 8 real and synthetic data [37], [30], [21] 8

As seen in Figure 1, the performance of an FR system 9 trained on synthetic samples might be restricted by the fact that those samples do not capture the complete variation and 9 full spectrum of real samples. In this paper, we aim to under- 9 stand how closely the synthetic data mimics the distribution 9 of the real data. For this, we have leveraged two real datasets 9 BUPT-BalancedFace and BUPT-GlobalFace [36] in addition 9 to two synthetic datasets generated, one generated through 9 diffusion (IDiff-Face [5]) and the other with a GAN [4]. Using Terhörst et al. [34] MAC method, we have computed annotations for all the samples in the four datasets. Following this, we have conducted several studies on the distribution 9 of these annotations in order to extract information regarding 9 the diversity of each dataset. o

- Created annotations, which will be publicy available, for two real datasets. One of the datasets is balanced for 11 importance of having this information available. 14 ethnicity, whereas the other follows the world ethnicity 11 distribution; 11
- Replicated the annotation process on two synthetic datasets, enabling future research on the soft-biometrics of these datasets using the released annotations; 11
- Performed a statistical analysis of the diversity of these datasets through the study of their annotations.

II. RELATED WORK 12

methods [19], [29]. To mitigate the existence of a single 13 seen in the world's population. 19 image per identity, some works have also explored unsu- 13 Comprising two distinct ethnicity distributions these 20 pervised approaches to train face recognition systems [8]. 13 datasets allow for a comparison of the Real vs. Real to be 20

[Diff-Face [5] comprised a novel diffusion-based technique 13 that conditions the model on a desired identity, leading to 13 a dataset that achieves, in some datasets, a performance 13 comparable to a model trained on real datasets. Kim et 13 al. [18] leveraged the conditioning of diffusion models to 13 generate samples from a specific identity and with a specific 13 style. For instance, it is possible to generate an image of a 13 certain person using glasses. 13

Soft-biometric annotations for face images provide contextual information not dependent on a specific identity (such as 14 gender, age, or ethnicity) and are essential for exploring the 14 variability of the data. Low variability of some characteristics can make models trained on that dataset less robust to applications on real-world data, where inference on examples with such characteristics is necessary. With this information, it is also possible to explore, disclose, and correct demographic biases, addressing fairness concerns. The process of annotating manually is labour-intensive, which can be unfeasible for large datasets. Some works have proposed classificationbased estimation of soft-biometric characteristics which can aid the annotation of large datasets: Karkkainen et al. [16] (ethnicity, gender, age), Gonzalez-Sosa et al. [13] (gender, age, craniofacial features, skin colour, subjective annotation), Mirabet et al. [25] (hidden face attributes), Merler 14 et al. [24] (gender, age, glasses, beard, and moustache), 14 This paper is organized into four main sections. The first of 10 Terhörst et al. [34] (47 attribute annotations covering gender, 14 these, presents related work regarding automatic annotation 10 ethnicity, age, accessories, facial hair, hairstyles, subjective 14 strategies and synthetic data generation. Afterwards, in the 10 annotation, and other facial characteristics). Following the Methods section, the fundamental details of the experiment's 10 completeness of the 47 attributes generated by the model 14 design and setup are discussed in detail. This latter section is 10 proposed by Terhörst et al., it presents itself as the ideal 14 followed by a Results section, which aims to present the main 10 approach to studying the broad diversity of synthetic datasets. findings. Finally, we conclude with a discussion of future 10 A similar annotation approach has been followed for Deep- 14 work and a summary of the most important elements of this 10 Fake datasets, and through the analysis of such annotations 14 research. The contributions of this work are the following: 10 it was possible to understand and detect certain biases on 14 DeepFake detection systems [38]. This further highlights the

III. METHODS 15

In this section we present the four datasets used in our 17

experiments. We provide details on their composition and, 17

A. Datasets 16

in the case of synthetic datasets, the generative approach. 1 1) Real datasets: BUPT-Balanced and BUPT-GlobalFace have been proposed by Wang et al. [36] and were intended to create a framework to study the biases of face recognition 19 Face recognition from synthetic data has grown in pop-13 models. Each identity on the dataset has been labelled 19 ularity in recent years. It presented some challenges to 13 according to its skin tone into one of the following ethniciresearchers as it was not possible to generate several samples 13ties: African, Asian, Caucasian and Indian. BUPT-Balanced from the same identity, nor generate sufficiently realistic 13 balances the number of identities that belong to each of 19 samples. Over the years, these problems have been mit- 13 these four categories and is composed of 1.3 million images 19 igated [11]. In 2022, Boutros et al. [7] proposed SFace, 13 with 28k identities, which means that there are 7k identities a generative adversarial network-based approach to create 13 per ethnicity. On the other hand, BUPT-Globalface contains new samples, and in 2024 proposed SFace2 [6] achieving 13 two million images from 38k identities, and the ethnicity state-of-the-art results when compared to other GAN-based 13 distribution of the identities follows the same distribution on certain attributes. 20

have selected two fundamentally different datasets. The first dataset, referred to throughout the rest of this paper as Syn- $\frac{1}{22}$ of the ensemble as a classifier $f_i: \mathbb{R}^N$ information regarding their identity. They were generated 22 is given by: 29 with a generative adversarial network [14]. Using noise 22 sampled from a Gaussian distribution, a pretrained generator 22 of StyleGAN2-AD is used to create novel face samples. Neto et al. [27] explored the effect of the quantisation of deep neural networks with this synthetic dataset on the bias of the final face recognition system. The higher robustness shown highlights a possibility that this data comprises samples that 2 slightly deviate from the real data distribution. 22

22

The second dataset exploited diffusion models to generate identity-conditioned samples. IDiff.Face [5] was used to create a dataset called CPD-25 (Two-Stage), which comprises 10k identities and 50 images for each identity. This dataset is significantly more realistic and has been shown to have a performance that reduces the gap between models trained on real and synthetic datasets. Besides the identity, no other attribute is conditioned. 23

3) Annotations: None of the datasets includes annotations beyond identity, with an exception for the skin tone-based labels on the two real datasets. Hence, studies on the diversity of these datasets from the point of view of soft-biometrics was limited. Additionally, fairness assessments were not trivial. Knowing the impact that these annotations might have no future research, we released, for each image in each dataset, 45 different attributes². For ethical reasons, we have decided to exclude annotations for the fields "Chubby" and 25 comparison is easier if done at the level of the latent space of "Attractive" seen in the original paper. In total we provide roughly 189M annotations, which is slightly larger than the 25 might not encapsulate the variety of attributes that might be annotations given by Terhörst et al. [34] at 124M. 25

B. Experimental Design 26

1) Annotation process: The generation of annotations for each of the aforementioned datasets used the methodology proposed by Terhörst et al. [33], [34]. Given an image x aligned with MTCNN [40], we map the image to face template space given by FaceNet [31], which is further mapped to 47 different soft-biometric attributes via the Massive Attribute Classifier (MAC), a multi-objective NN-based classifier. Each attribute is considered to be an individual classification task, and the majority of the attributes can be 'Positive", "Negative" or "Undefined". 28

The proposed implementation strategy leveraged the idea of reliability as a metric for the confidence of a prediction of each attribute [35]. Here, we consider an ensemble of mMAC classifiers where dropout is applied individually with 29 a given probability ($p_{drop} = 0.5$) during test. This results

used as a baseline of the differences that can be expected 20 in m estimators with slightly different architectures due to 29 from datasets that are known to have different distributions 20the zeroed connections. This dropout process mimics the 29 behaviour of a Gaussian process and the final prediction for 29 2) Synthetic datasets: For the study of synthetic data, we 22 each of the A attributes is computed through a majority vote 29 of the classifiers in the ensemble. Considering each element $\rightarrow [0,1]^A$, where GAN, was introduced as a tool to be used in quantisation $22^{i} \in \{1, 2, ..., m\}$, the reliability of the prediction for the scenarios [4]. It is comprised of 500k images that have no 22 attribute a, $rel(f(x)^{(a)}) = rel(y^{(a)})$, for $a \in \{1, 2, ..., A\}$, 29

$$rel(y^{(a)}) = \frac{(1-\alpha)}{29} \sum_{i=1}^{m} \frac{\alpha}{30} \frac{\alpha}{30} \sum_{i=1}^{m} \frac{\alpha}{39} \frac{\alpha}{65} \frac{\alpha}{i} 44 \frac{1}{39} 39$$

The parameter α balances the impact of the centrality 31 measure versus the impact of the dispersion metric and, for 31 equal impact of these factors, we chose this value to be 0.5. 31 Similarly to the original paper, the number of estimators was 31 set as m = 100.31

The original implementation of MAC creates a new en-32 semble of models for each image, and that ensemble is then 32 used to estimate the soft-biometric attributes. Hence, each 32 image is passed, one by one, 100 times through the network. 32 Our implementation creates a batch of images during the inference step. Each image in the batch will be evaluated 32 by the same ensemble of models. However, since the same image is still seen by 100 distinct architectures, we retain the advantages of the Gaussian Process while being able to run experiments hundreds of times faster. This allows the usage 32 of the MAAD methodology to be more easily applicable to 32 25 label large datasets. We used a labelling batch size of 1024. 32

2) Comparison of the different datasets: Comparing two 25 datasets at the image level is a non-trivial task. Hence, dataset 25 the deep neural network. However, with regards to faces, it present in an image, since two individuals with a very similar set of attributes will have some distance between them Additionally, it is not direct to understand the "differences" in this space. However, in the MAAD attribute space, not only comparing different samples with clarity is easier, but individuals with similar characteristics share the space.

Taking into consideration the advantages of this attributespace, we have devised several strategies to measure the discrepancy between real and synthetic data. One of the first approaches was to measure the relative frequency of 36 'Undefined' predictions on each of the four datasets, which 36 indicated very similar results on average. Afterwards, we focused on the comparison of individual attributes and how 36 much different was the prevalence of positives and negatives 36 for datasets of different sources. This brought some interest- 36 ing perspectives on the distribution of each attribute. 36

Additionally, and considering that learnt models might be useful to detect the distinct patterns of data sources, we 37 attempted to measure the relative classifiability of "Real 37 vs. Synthetic". This was done with two strategies: using 37 a classifier; creating two clusters with K-Means [22] and 37

Fig. 2. Comparison of the real and the synthetic datasets on individual attribute distribution. From the left to the right we have a comparison between BalancedFace and CPD-25, BalancedFace and Syn-GAN, GlobalFace and CPD-25, and GlobalFace and Syn-GAN. The first seven entries of each plot represent the most similar attribute distributions, whereas the seven bottom attributes represent the less similar distributions 33

validating how many samples of each source fall within each 37 C. Experimental Setup 41 of the learnt clusters. 37

distribution of a single dataset is a poor metric, we propose to model the prediction of each dataset with a Kernel Density information takes into consideration the several configurations that each individual might take. Before computing the distribution we take the mode of all the attribute-sets of an identity. Finally, having learnt the distribution of each dataset, we can compute the Kullback-Leibler divergence (Eq. 2) [20], on both sides, between real and synthetic 38 approximation to a Gaussian Process. 42 datasets. 38

$$D_{KL}(P||Q) = \sum_{x \in X} P(x) log(\frac{P(x)}{Q(x)})$$
 (2)

information lost when we approximate the distribution, at 40 similar, 46 distribution. 40

All the annotation experiments were conducted in a GPU 42 Considering the fact that the individual analysis of the 38 cluster, leveraging a NVIDIA A100 GPU with 80GB of 42 38 VRAM. The batch size for the inference was set at 1024, 42 38 and we have conducted several tests to find the optimal batch 42 Estimation [10], [28] approach on the attribute space. This 38 size for our configuration. Additionally, we have measured 42 38 the impact of having different batch sizes on the predictions 42 38 and did not find statistically significant differences between 42 38 different runs. We separated the face template extraction and 42 38 the attribute computation steps so that it could be possible 42 38 to create batches on the latter stage without affecting the 42

The remaining experiments were conducted in a consumer 43 grade laptop without GPU. Annotations were saved for later 43 use and release. 43

IV. RESULTS 44

1) A study on the attributes: Following the previously 46 This distance function has the particularity of not being 40 described methodology, we aimed to understand how the 46 a metric, since it does not respect the symmetry property. 40 different datasets behaved with respect to their attributes. In 46 Hence results differ if we swap P and Q. A possible interpreduced the initial stage, we aimed to understand the attributes of each 46 tation of this distance is the quantification of the information 40 dataset individually, hence, for the different combinations of lost when using Q to approximate the distribution P. This 40 real datasets with synthetic datasets we calculated the seven 46is particularly useful in our scenario as it can tell us the 40 most similar attribute distributions and the seven most non- 46 the attribute space, of real data using synthetic data. Ideally, 40 Looking at Figure 2 it is possible to observe the four 48 this distance should be close to zero as the information 40 different combinations. For each plot, the top seven attributes 48 contained in one distribution would be reflected in the other 40 are the ones that are more in line when the two datasets are 48 compared, whereas the bottom seven are the most dissimilar. 48

Fig. 3. Distributions $Prop0^{\binom{a}{21}} + Prop0^{\binom{a}{22}}$, where $Prop0^{\binom{a'}{2}}$ represents the proportion of the Undefined prediction of MAC for attribute a' in dataset d'. The title of each plot represents the d2 set, and the label of each KDE plot represents the d1 set. 47

other relevant aspect is the inability to properly detect smiles 48 them. 52 on synthetic data, as the majority of the annotations are 48 3) Clustering Synthetic vs. Real: In addition to the comindividuals. 48

seems to be a good indicator, we have not measured if the age 40 present, whereas the opposite is not verifiable. 55 distribution within each identity is similar. For instance, we 49 (4) Synthetic vs. Real Divergence: Following the potential 58 we could have images of different ages within each identity, 40 and approximate the distribution for each one of the four 58

It is also visible that on synthetic datasets it is extremely rare 40 to have a sample face wearing heavy makeup. 49

2) Dispersion of Undefined Samples: Another relevant 51 question we can raise when discussing the labeling of the 51 synthetic data with MAC is whether we get an abnormal 51 amount of Undefined predictions. Abnormal behavior of this 51 outcome could indicate underlying problems of the labeling 51 method, and its adequacy when applied to our synthetic 51 datasets. If we noticed that in general there is a higher 51 amount of this label across all attributes in the synthetic 51 datasets, we could infer that the MAC is having trouble 51 defining meaningful predictions for each class, either because 51 the synthetic data has a poor representation of that attribute, 51 or it is not represented. 51

To verify underlying trends in the Undefined prediction, we analyse the differences between the proportions of this 52 label, given two datasets, for each attribute. We take notice of 52 changes in the behavior of these distributions when analysing 52 Real-Real or Synthetic-Real differences. The results, Figure 52 3, show no significant difference in the mean of these differences, meaning we do not observe generalised trends for 52 Undefined labeling across all attributes. What we can verify 52 is the difference in the dispersion of these differences, meaning that some attributes have more extreme fluctuations. We 52 also noted that the attributes that have the highest decrease 52 in the proportion of Undefined when compared to a Real 52 47 dataset were consistently attributes related to facial hair (such 52 as 'o_clock_shadow', 'no_beard', 'sideburns', 'goatee'). This 52 is consistent with a balancing of the gender attribute in the 52 synthetic dataset, since prediction for these attributes tends 52 Some attributes are frequently displayed in the dissimilar 48 to be easier in the 'female' class. On the other hand attributes 52 set: Square Face, Male, No Beard and Smiling. In the 48that consistently have an increase in unpredictability include 52 synthetic data, samples are generally more skewed towards 48 smiling and accessory use such as 'wearing lipstick' and 52 being female, whereas in real data the opposite happens. 48 wearing earrings'. Emotions and their expressions might be 52 Probably related to this prevalence, there are significantly 48 particularly difficult to model with a generative system, as 52 fewer samples with beards on synthetic datasets. Although 48 well as artifacts such as accessories. It might be the case 52 it seems a minor issue, the beard represents one of the 48 that since these share no link to the identity information, 52 most natural and common forms of face occlusions. One 48 they might trigger the generative model to ignore or smooth 52

"Undefined". This might impact the variability of the samples 48 parison of the different attributes with respect to their real 55 as the emotions/face reactions are one of the elements 48 and synthetic distribution, we have attempted to fit a k-means 55 that most affect the perception of a face. One additional 48(k=3) model to three out of the four datasets. Figure 4 relevant element is the presence of White as one of the 48 shows the distribution of the samples of each dataset within 55 most dissimilar attribute distributions when the real dataset 48 one of the three clusters. As expected, BalancedFace and 55 is BalancedFace. While this dataset focuses on balancing the 48 GlobalFace share very similar distributions across clusters. 55 different skin tones, synthetic datasets contain mostly white 48 Surprisingly, the presence of CPD-25 in the third cluster is 55 rather small, and the dataset is heavily inserted in the sec- 55 On the other hand, a few attributes are consistently dis-40 and cluster. This evidence already highlights some potential 55 played as ones with the most similar distribution. Age- 40 differences between the attribute space of synthetic and real 55 related attributes such as Senior, Young and Middle-aged are 40 samples. Especially if we consider that even on the most 55 considerably similar in both types of datasets. Although this 49 prevalent cluster for synthetic data, real data is significantly 55

have 100 images uniformly spread between 18 and 70 years 40 difference in the distribution of the attribute set of real and 58 old, but having only one age group within each identity. Or 4c synthetic datasets, we have used a KDE model to estimate 58

Fig. 4. Cluster aggregation of the different identities on each of three datasets (BalancedFace, GlobalFace and CPD-25). Clusters calculated with K-Means. Syn-GAN was removed from the comparison, since it consists of 500k images of distinct identities. Synthetic data has higher presence in cluster 2 (> 60%) and lower in cluster 3 (< 10%). 53

TABLE 1 39

KL divergence between all the distribution learnt by KDE 3
FOR ALL FOUR DATASETS. INTERESTING TO DENOTE THE LOWER 30
INFORMATION LOSS WHEN REAL DATA IS USED TO APPROXIMATE 30
SYNTHETIC DATA IN COMPARISON WITH THE HIGHER INFORMATION 13

LOSS WHEN WE SWAP P AND Q. 39

P 58	GlobalFace	BalancedFace	Syn-GAN	CPD-25 56
GlobalFace	-	0.708	3.007	2.223
BalancedFace	0.409	-	1.984	1.223 57
Syn-GAN	1.010	0.613	-	0.249 56
CPD-25	0.507	0.247	0.371	56

datasets. Afterwards, as seen in Table I, we have measured the Kullback–Leibler divergence for all combinations of datasets. When P is set to the distribution of GlobalFace, we noticed that both Syn-GAN and CPD-25 as Q lead to significant information loss. On the other hand, BalancedFace as Q allows for diminished information loss. Setting BalancedFace as P leads to very similar results with a synthetic Q, but considerably better than the previous comparison. On the other hand, GlobalFace is quite accurate at approximating the other real datasets. Both synthetic datasets can be easily explained by the other datasets, leading to very small values of information loss. This discrepancy in the KL values highlights the lack of diversity shown in synthetic datasets for face recognition and how they must improve to replace real data. 58

V. CONCLUSION 59

Throughout this paper we have covered several strategies 60 to uncover the reason behind the inferior performance of 60 models trained on synthetic data when compared to models trained on real data. Acknowledging the difficulties of comparing these datasets at image level, we have proposed to use 60

This process allowed for a few studies on the diversity and gap between real and synthetic datasets. 60

Leveraging the annotations, it was possible to immediately finspect some attributes and their difference in distribution across all datasets. It was also possible to measure the undefined dispersion on synthetic datasets and uncovering that attributes such as smiling are difficult to measure on synthetic data, as shown by the quantity of undefined samples for this attribute. 61

MAC to create massive annotations for each of four datasets. 60

Considering the attribute set as a whole combination of attributes, it was possible to place the samples of each dataset on one of two cluster and extract hints regarding the lower variability of synthetic data. Additionally, after modelling this distributions, we manage to user the Kullback–Leibler divergence to measure the information difference between the four datasets. As expected, synthetic datasets shown a poor capability to approximate real data.

In summary, we have not yet find a clear answer to the reason behind the performance difference of models trained on these datasets. Yet, we have made contributions on the gaps between both types of datasets and we have released the annotations. Future researchers can leverage the annotations to further condition diffusion models, to find correlations between a set of attributes and the performance, so to build better automatic annotation tools. There are several directions in which this research might lead, 63

VI. ACKNOWLEDGMENTS 64

This work was financed by National Funds through the Portuguese funding agency, FCT - Fundação para a Ciência 65 e a Tecnologia, within the PhD grants with the references "2020.06434.BD" and "2021.06872.BD", and within project UIDB/50014/2020. DOI 10.54499/UIDB/50014/2020 65 https://doi.org/10.54499/uidb/50014/2020. 65

REFERENCES 56 [1] J.-B. Alayrac, J. Donahue, P. Luc, A. Miech, I. Barr, Y. Hasson, 68

	K. Lenc, A. Mensch, K. Millican, M. Reynolds, et al. Flamingo:	68					
	a visual language model for few-shot learning. Advances in neural						
	information processing systems, 35:23716–23736, 2022. 68						
[2]	X. An, X. Zhu, Y. Gao, Y. Xiao, Y. Zhao, Z. Feng, L. Wu, B. Qin,	69					
	M. Zhang, D. Zhang, et al. Partial fc: Training 10 million identities	69					
	on a single machine. In Proceedings of the IEEE/CVF International	69					
	Conference on Computer Vision, pages 1445–1449, 2021. 69						
[3]	G. Bae, M. de La Gorce, T. Baltrušaitis, C. Hewitt, D. Chen,	70					
	J. Valentin, R. Cipolla, and J. Shen. Digiface-1m: 1 million digital face	70					
	images for face recognition. In Proceedings of the IEEE/CVF Winter	70					
	Conference on Applications of Computer Vision, pages 3526-3535,	70					
	2023.						
[4]	F. Boutros, N. Damer, and A. Kuijper. Quantface: Towards lightweight	71					
	face recognition by synthetic data low-bit quantization. In 2022 26th	71					
	International Conference on Pattern Recognition (ICPR), pages 855-	71					

862. IEEE, 2022.
[5] F. Boutros, J. H. Grebe, A. Kuijper, and N. Damer. Idiff-face:
Synthetic-based face recognition through fizzy identity-conditioned diffusion model. In *Proceedings of the IEEE/CVF International*

Conference on Computer Vision, pages 19650–19661, 2023. 72

6] F. Boutros, M. Huber, A. T. Luu, P. Siebke, and N. Damer. Stace2: 73

Synthetic-based face recognition with w-space identity-driven sampling. IEEE Transactions on Biometrics, Behavior, and Identity 73

Science, 2024. 73

	Privacy-friendly and accurate face recognition using synthetic data.		Special Interest Group (BIOSIG), pages 1–5. IEEE, 2023. 94	0-
	In 2022 IEEE International Joint Conference on Biometrics (IJCB), pages 1–11. IEEE, 2022.	74128	E. Parzen. On estimation of a probability density function and mode. The annals of mathematical statistics, 33(3):1065–1076, 1962. 95	95
[8]	F. Boutros, M. Klemt, M. Fang, A. Kuijper, and N. Damer. Un-	75 [29]	H. Qiu, B. Yu, D. Gong, Z. Li, W. Liu, and D. Tao. Synface: Face	
	supervised face recognition using unlabeled synthetic data. In 2023	75	recognition with synthetic data. In Proceedings of the IEEE/CVF	
	IEEE 17th International Conference on Automatic Face and Gesture	75	International Conference on Computer Vision, pages 10880–10890, 2021.	96
[91	Recognition (FG), pages 1–8. IEEE, 2023. 75 Q. Cao, L. Shen, W. Xie, O. M. Parkhi, and A. Zisserman. Vggtace2:	76 [30]	S. Sankaranarayanan, Y. Balaji, A. Jain, S. Lim, and R. Chellappa.	97
-	A dataset for recognising faces across pose and age. In 2018 13th IEEE		Learning from synthetic data: Addressing domain shift for semantic	
	international conference on automatic face & gesture recognition (FG		segmentation. In 2018 IEEE Conference on Computer Vision and	.
F101	2018), pages 67–74. IEEE, 2018.	77	Pattern Recognition, CVPR 2018, Salt Lake City, UT, USA, June 18- 22, 2018, pages 3752–3761. Computer Vision Foundation / IEEE	<u> </u>
[10]	R. A. Davis, KS. Lii, and D. N. Politis. Remarks on some nonparametric estimates of a density function. Selected Works of		Computer Society, 2018.	97
	Murray Rosenblatt, pages 95–100, 2011. 77		F. Schroff, D. Kalenichenko, and J. Philbin. Facenet: A unified	
[11]	I. DeAndres-Tame, R. Tolosana, P. Melzi, R. Vera-Rodriguez, M. Kim,		embedding for face recognition and clustering. In <i>Proceedings of the</i>	
	C. Rathgeb, X. Liu, A. Morales, J. Fierrez, J. Ortega-Garcia, et al. Fresyn challenge at cvpr 2024: Face recognition challenge in the era		IEEE conference on computer vision and pattern recognition, pages 815–823, 2015. 98	98
	of synthetic data. arXiv preprint arXiv:2404.10378, 2024. 78	78 32		99
[12]	European Parliament and Council of the European Union. Regulation	79	gap to human-level performance in face verification. In Proceedings	99
F121	(EU) 2016/679 of the European Parliament and of the Council. 79		of the IEEE conference on computer vision and pattern recognition,	99
[13]	E. Gonzalez-Sosa, J. Fierrez, R. Vera-Rodriguez, and F. Alonso-Fernandez. Facial Soft Biometrics for Recognition in the Wild: Recent		pages 1701–1708, 2014. P. Terhörst, D. Fährmann, N. Damer, F. Kirchbuchner, and A. Kuijper.	
	Works, Annotation, and COTS Evaluation. <i>IEEE Transactions on</i>		Beyond Identity: What Information Is Stored in Biometric Face	
	Information Forensics and Security, 13(8):2001–2014, 2018. 80		Templates? In International Joint Conference on Biometrics (IJCB),	
[14]	I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley,	· .	pages 1–10, 2020.	
	Advances in neural information processing systems, 27, 2014, 81	81[34	P. Terhorst, D. Fahrmann, J. N. Kolf, N. Damer, F. Kirchbuchner, and A. Kuijper. Maad-Face: A Massively Annotated Attribute Dataset	101
[15]	M. Huber, A. T. Luu, F. Boutros, A. Kuijper, and N. Damer. Bias	82	for Face Images. IEEE Transactions on Information Forensics and	
	and diversity in synthetic-based face recognition. In Proceedings of		Security, 16:3942–3957, 2021.	
-	the IEEE/CVF Winter Conference on Applications of Computer Vision, pages 6215–6226, 2024.	82 [35]		20
[16]	K. Karkkainen and J. Joo. Fairface: Face Attribute Dataset for Bal-		and A. Kuijper. Reliable Age and Gender Estimation from Face Images: Stating the Confidence of Model Predictions. In 2019 IEEE	
	anced Race, Gender, and Age for Bias Measurement and Mitigation.	8	1 Oth In Parational Conference on Biometrics Theory, Applications and	
	In 2021 IEEE Winter Conference on Applications of Computer Vision	99	150 ems (BTAS). IEEE, 2019.	
[17]	(WACV). IEEE, 2021. T. Karras, T. Aila, S. Laine, and J. Lehtinen. Progressive growing of		M. Wang, Y. Zhang, and W. Deng. Meta balanced network for fair face recognition. <i>IEEE transactions on pattern analysis and machine</i>	
	gans for improved quality, stability, and variation. In 6th International		intelligence, 44(11):8433–8448, 2021, 103	103
	Conference on Learning Representations, ICLR 2018, Vancouver, BC,			
_	Canada, April 30 - May 3, 2018, Conference Track Proceedings. OpenReview.net, 2018.	84	versarial domain adaptation with domain mixup. In The Thirty-Fourth	
[18]	M. Kim, F. Liu, A. Jain, and X. Liu. Deface: Synthetic face		AAAI Conference on Artificial Intelligence, AAAI 2020, The Thirty- Second Innovative Applications of Artificial Intelligence Conference,	
	generation with dual condition diffusion model. In Proceedings of the	85	IAAI 2020, The Tenth AAAI Symposium on Educational Advances in	
	IEEE/CVF Conference on Computer Vision and Pattern Recognition,	85	Artificial Intelligence, EAAI 2020, New York, NY, USA, February 7-12,	104
F191	pages 12715–12725, 2023. J. N. Kolf, T. Rieber, J. Elliesen, F. Boutros, A. Kuijper, and	10138	2020, pages 6502–6509. AAAI Press, 2020. 104 Y. Xu, P. Terhörst, K. Raja, and M. Pedersen. A comprehensive	105
[17]	N. Damer. Identity-driven three-player generative adversarial network	86	analysis of ai biases in deepfake detection with massively annotated	
	for synthetic-based face recognition. In Proceedings of the IEEE/CVF	86	databases. arXiv preprint arXiv:2208.05845, 2022. 105	
	Conference on Computer Vision and Pattern Recognition, pages 806–816, 2023.	86 <u>L39</u>	D. Yi, Z. Lei, S. Liao, and S. Z. Li. Learning face representation from	106
F201	S. Kullback and R. A. Leibler. On information and sufficiency. <i>The</i>	[40]	scratch. arXiv preprint arXiv:1411.7923, 2014. 106 K. Zhang, Z. Zhang, Z. Li, and Y. Qiao. Joint face detection and	107
	annals of mathematical statistics, 22(1):79–86, 1951.		alignment using multitask cascaded convolutional networks. IEEE	
[21]	S. Lee, E. Park, H. Yi, and S. H. Lee. Strdan: Synthetic-to-real	88	signal processing letters, 23(10):1499–1503, 2016. 107	400
	IEEE/CVF Conference on Computer Vision and Pattern Recognition,	88 41	Z. Zhu, G. Huang, J. Deng, Y. Ye, J. Huang, X. Chen, J. Zhu, [T. Yang, J. Lu, D. Du, et al. Webface260m: A benchmark unveiling the	108
	CVPR Workshops 2020, Seattle, WA, USA, June 14-19, 2020, pages		power of million-scale deep face recognition. In Proceedings of the	108
	2590–2597. Computer Vision Foundation / IEEE, 2020. 88		IEEE/CVF Conference on Computer Vision and Pattern Recognition,	108
[22]	J. MacQueen et al. Some methods for classification and analysis of multivariate observations. In <i>Proceedings of the fifth Berkeley</i>		pages 10492–10502, 2021. 108	
	symposium on mathematical statistics and probability, number 14 in			
	1, pages 281–297. Oakland, CA, USA, 1967. 89			
[23]	B. Meden, P. Rot, P. Terhörst, N. Damer, A. Kuijper, W. J. Scheirer,			
	A. Ross, P. Peer, and V. Struc. Privacy—enhancing face biometrics: A comprehensive survey. <i>IEEE Transactions on Information Forensics</i>			
	and Security, 16:4147–4183, 2021.			
[24]	M. Merler, N. K. Ratha, R. S. Feris, and J. R. Smith. Diversity in	101		
[25]	Faces. <i>ArXiv</i> . abs/1901.10436, 2019 91 N. Mirabet-Herranz and JL. Dugelay. Lvt face database: A bench-	92		
	mark database for visible and hidden face biometrics. In 2023	92		
	International Conference of the Biometrics Special Interest Group	92		
[26]	(BIOSIG), pages 1–6. IEEE, 2023. A. Nech and I. Kemelmacher-Shlizerman. Level playing field for			
	million scale face recognition. In 2017 IEEE Conference on Computer	93		
	Vision and Pattern Recognition, CVPR 2017, Honolulu, HI, USA, July	93		
[271	21-26, 2017, pages 3406–3415. IEEE Computer Society, 2017. 93 P. C. Neto, E. Caldeira, J. S. Cardoso, and A. F. Sequeira. Compressed	94		
	models decompress race biases: What quantized models forget for fair			
		-		

face recognition. In 2023 International Conference of the Biometrics 94

[7] F. Boutros, M. Huber, P. Siebke, T. Rieber, and N. Damer. Sface: 74