Inhaltsverzeichnis

1	Kon	nplexe Zahlen	7
	1.1	Definition	7
	1.2	Veranschaulichung	7
	1.3	Rechenregeln in \mathbb{C}	7
	1.4	Definition Absolutbetrag	8
	1.5	Rechenreglen für den Absolutbetrag	9
	1.6	Darstellung durch Polarkoordinaten	10
	1.7	Additionstheoreme der Trigonometrie	11
	1.8	geometrische Interpretation der Multiplikation	11
	1.9	Bemerkung und Definition	11
	1.10	Satz: Komplexe Wurzeln	13
		Beispiel	13
		Bemerkung	13
2	Folg	gen und Reihen	14
	2.1	Definition	14
	2.2	Beispiel	14
	2.3	Definition	15
	2.4	Definition	15
	2.5	Beispiele	15
	2.6	Satz: Beschränktheit und Konvergenz	16
	2.7	Bemerkung	17
	2.8	Satz (Rechenregeln für konvergente Folgen)	17
	2.9	Satz: Kriterien für Nullfolgen	18
	2.10	Bemerkung	19
	2.11	Definition	20
	2.12	Satz: Landausymbole bei Polynomen	20
	2.13	Bemerkung	21
	2.14	Definition	21
	2.15	Beispiel	21
	2.16	Satz: Monotonie und Konvergenz	21
		Satz (Cauchy'sches Konvergenzkriterium)	22
		Definition	23
		Satz: Reihenkonvergenz	23
		Beispiele	24
		Satz (Leibniz-Kriterium)	25
		Satz (Majoranten-Kriterium)	26
		Beispiel	26
		Definition	26

	2.25	Korollar
	2.26	Satz: Wurzel- und Quotientenkriterium
	2.27	Bemerkung
	2.28	Beispiel
	2.29	Bemerkung
	2.30	Definition
	2.31	Satz: Konvergenz im Cauchy Produkt
3	Pote	nzreihen 30
	3.1	Definition
	3.2	Beispiel
	3.3	Satz
	3.4	Bemerkung
		Die Exponentialreihe
4	Funl	ctionen und Grenzwerte 34
	4.1	Definition
		Beispiel
		Definition
		Beispiel
		Definition
		Beispiel
		Satz $(\varepsilon - \delta)$ -Kriterium
		Satz (Rechenregeln für Grenzwerte)
		Beispiel
		Bemerkung
		Beispiel
		Definition
		Beispiel
		Bemerkung
		Definition
	4.16	Satz: Grenzwerte gegen unendlich
		Beispiel
5	Steti	gkeit 48
		Definition
		Satz
		Beispiel
		Satz (Rechenregeln für Stetigkeit)
		Satz: Hintereinanderausführung von stetigen Funktionen 50
		Beispiel
		-

INHALTSVERZEICHNIS

	5.7	Satz: Stetigkeit von Potenzreihen	51
	5.8	Korollar	51
	5.9	Satz (Nullstellensatz für stetige Funktionen)	51
	5.10	Korollar (Zwischenwertsatz)	52
			52
	5.12	Definition	53
	5.13	Satz: Injektive Funktionen nur bei Monotonie	53
	5.14	Satz (Stetigkeit der Umkehrfunktion)	53
	5.15	Korollar	55
	5.16	Satz: Exponentialfunktion und Logarithmus naturalis	55
	5.17	Satz: Wachstum des natürlichen Logarithmus'	56
	5.18	Definition	56
	5.19	Satz:	56
	5.20	Bemerkung	56
	5.21	Definition	57
	5.22	Satz:	57
_	- 100		
6			57
			58
	6.2	1	58
	6.3		59
	6.4		59
	6.5	` 0 0 /	59
	6.6	1	60
	6.7		60
	6.8	0 0	61
	6.9	1	61
			62
			62
		` '	62
		O .	63
			64
		8, 111111111111111111111111111111111111	64
		1	64
			64
			64
			65
			66
			67
		` 0 1 /	67
	6.23	Beispiel	67

7	Das	bestimmte Integral 68
	7.1	Definition
	7.2	Definition
	7.3	Satz: Regelfunktionen
	7.4	Satz: Regelfunktion und Stetigkeit
	7.5	Beispiel
	7.6	Lemma
	7.7	Definition
	7.8	Beispiel
	7.9	Satz (Rechenregeln für Integrale)
	7.10	Beispiel
	7.11	Satz (Mittelwertsatz der Integralrechnung)
8	Der	Hauptsatz der Differential- und Integralrechnung 75
	8.1	Definition
	8.2	Definition
	8.3	Bemerkung
	8.4	Beispiel
	8.5	Satz:Rechenregeln von Stammfunktionen
	8.6	Satz:
	8.7	Definition
	8.8	Satz (Hauptsatz der Differential- und Integralrechnung)
	8.9	Beispiele
		Beispiel
		Satz (Partielle Integration)
		Beispiele
		Satz (Integration durch Substitution)
		Satz:
		Beispiel
	0,10	
Λl	.h:I	dungayayaiahnia
AL	ווטנ	dungsverzeichnis
	1	Veranschaulichung Komplexe Zahlen
	2	Absolutbetrag
	3	Imaginäre Zahlen im Koordinatensystem durch Polarkoordinaten 10
	4	Winkel im Bogenmaß
	5	Multiplizieren komplexer Zahlen
	6	Multiplikation mit i
	7	Beschränktheit von Folgen
	8	Beschränkte aber nicht konvergente Folge

9	Cauchy'sches Konvergenzkriterium	22
10	Monotonie	25
11	Konvergenzradien	31
12	Die Exponentialreihe	33
13	$f(x) = x^3 - 2x^2 - x + 2$	35
14	e^x	36
15	Bogenmaß	36
16	Sinus und Cosinus	37
17	Tangens und Kotangens	37
18	x^2	39
19	x+1	39
20	Abschnittsweise definierte Funktion	40
21	$\sin(\frac{1}{r})$	41
22	$x \cdot \sin(\frac{1}{x})$	41
23	geometrische Darstellung des $\varepsilon - \delta$ Kriteriums	42
24	Abschnittsweise definierte Funktion	43
25	Grenzwerte gegen einen Festen Wert	44
26	Funktionen $\lim_{x\to\infty} = \infty$	46
27	$sin(\frac{1}{x})$	47
28	$\frac{e^x}{x^n}$	48
29	Abschnittsweise definierte Funktion	49
30	Zwischenwerte	52
31	Eine Fallunterscheidugn für 5.13	54
32	Eine Funktion und ihre Umkehrfunktion	54
33	$\exp(x)$ und $\ln(x)$	55
34	Logithmen mit Basen > 1 und < 1	57
35	Sekante an Funktion	59
36	Abschnittsweise definierte cosinus Funktion	62
37	Zwei Funktionen an der Winkelhalbierenden	63
38	Ableitung keine Hinreichende Bedingung für Minima/Maxima	65
39	Eine Funktion und ihrer Steigung an der Stelle c	66
40	Flächeninhalt unter einer Funktion f	69
41	Treppenfunktion	70
42	Treppenfunktion	70
43	Abschnittsweise stetige Funktion	71
44	Treppenfunktion (Untersumme) von x^2	71
45	Nicht integrierbare Funktion	72
46	Mittelwertsatz der Integralrechnung	75
47	Die Welt der Funktionen	78
48	Stammfunktionbildung	79
40	Stallillunktiviiviiutiig	13

ARRII	DHNG	SVERZE	ICHNIS
Δ DDH	オフレノコマモ	2 V 1 2112 / 12	

ADDII	DIII	CCI	TED ZE	CHNIS
AKKII	1) 1 1 1 1	(- >)	/ H K / H	IC HIVITS

49 Integral Berechnung $x \cdot \cos(x)$ 82

1 Komplexe Zahlen

1.1 Definition

Menge der komplexen Zahlen $\mathbb{C} = \{a + bi : a, b \in \mathbb{R}\}\$

```
Addition: (a+bi)+(c+di)=(a+c)+(b+d)i
Multiplikation: (a+bi)\cdot(c+di)=(ac-bd)+(ad+bc)i^1
```

 $\mathbb{R} \subset \mathbb{C}, \ a \in \mathbb{R} : a+0 \cdot i = a$. Rein imaginäre Zahlen: $b \cdot i, b \in \mathbb{R}, \ (0+bi)$ i imaginäre Einheit. $z = a+bi \in \mathbb{C}$. $a = \Re(z)$ Realteil von z (Re(z)). $b = \Im(z)$ Imaginärteil von z (Im(z)). $\bar{z} = a-bi \ (= a+(-b)i)$ Die zu z konjugiert komplexe Zahl.

1.2 Veranschaulichung

Abbildung 1: Addition entspricht Vektoraddition

1.3 Rechenregeln in \mathbb{C}

a) Es gelten alle Rechenregeln wie in \mathbb{R} . (z.B Kommutativität bzgl. +,·: $z_1+z_2=z_2+z_1$ und $z_1\cdot z_2=z_2\cdot z_1$) *Inversenbildung bzgl.* ·: $z=a+bi\neq 0$, d.h $a\neq 0$ oder $b\neq 0$:

¹Ausmultiplizieren und $i^2 = -1$ beachten

$$z^{-1} = \frac{1}{z} = \frac{a}{a^2 + b^2} - \frac{b}{a^2 + b^2}i$$
$$z \cdot z^{-1} = 1$$

Beispiel:
$$\frac{5-7i}{3+2i} = (5-7i) \cdot (3+2i)^{-1}$$

= $(5-7i) \cdot (\frac{3}{13} - \frac{2}{13}i)$
= $(\frac{15}{13} - \frac{14}{13}) + (-\frac{10}{13} - \frac{21}{13})i$
= $\frac{1}{13} - \frac{31}{13}i$

Speziell: $(bi)^{-1} = \frac{1}{bi} = -\frac{1}{b}i$ insbesondere: $\frac{1}{i} = -i$

1.4 Definition Absolutbetrag

a) Absolutbetrag von $z = a + bi \in \mathbb{C}$: $|z| = +\underbrace{\sqrt{a^2 + b^2}}_{\in \mathbb{R}, \geq 0}$

$$a^2 + b^2 = z \cdot \bar{z}$$

$$|z| = +\sqrt{z \cdot \bar{z}}$$

$$(a+bi)\cdot(a-bi) = (a^2+b^2)+0i = a^2+b^2$$

|z| = Abstand von z zu 0

= Länge des Vektors, der z entspricht

b) Abstand von $z_1, z_2 \in \mathbb{C}$:

$$d(z_1, z_2) := |z_1 - z_2|$$

Abbildung 2: Graphische Definition des Absolutbetrages

1.5 Rechenreglen für den Absolutbetrag

(a)
$$|z| = 0 \Leftrightarrow z = 0$$

(b)
$$|z_1 \cdot z_2| = |z_1| \cdot |z_2|$$

(c)
$$|z_1 + z_2| \le |z_1| + |z_2|$$

$$||z_1| - |z_2|| \le |z_1 - z_2| \le |z_1| + |z_2|$$

$$|-z| = |z|$$

1.6 Darstellung durch Polarkoordinaten

a) Jeder Punkt \neq (0,0) lässt sich durch seine Polarkoordinaten (r, φ) beschreiben: $-r \geq 0, r \in \mathbb{R}$

Abbildung 3: Polarkoordinaten

 $0 \leq \varphi \leq 2\pi,$ wird gemessen von der positiven x-Achse entgegen des Uhrzeigersinnes

Abbildung 4: Umrechnung Grad zu Bogenmaß

Umfang: 2π φ in Grad $=\frac{2\pi \cdot \varphi}{360}$ im Bogenmaß

Für Punkte mit kartesischen Koordinaten \neq (0,0) werden als Polarkoordinate (r, φ) verwendet.

b) komplexe Zahl z = a + ib

$$r = |z| = +\sqrt{a^2 + b^2}$$

$$a = |z| \cdot \cos(\varphi)$$

$$b = |z| \cdot \sin(\varphi)$$

$$z = |z| \cdot \cos(\varphi) + i \cdot |z| \cdot \sin(\varphi)$$

$$z = |z| \cdot (\cos(\varphi) + i \cdot \sin(\varphi))$$

Darstellung von z durch Polarkoordinate

Beispiel:

a)
$$z_1 = 2 \cdot (\cos(\frac{\pi}{4}) + i \cdot \sin(\frac{\pi}{4}))$$

= $2 \cdot (0.5\sqrt{2} + i \cdot 0.5\sqrt{2})$

b)
$$z_2 = 2 + i$$

 $|z_2| = \sqrt{5}$

$$z_2 = \sqrt{5} \cdot (\frac{2}{\sqrt{5} + \frac{1}{\sqrt{5}}}i) \text{ Suche } \varphi \text{ mit } 0 \le 2\pi \text{ mit } \cos(\varphi) = \frac{2}{\sqrt{5}}, \sin(\frac{1}{\sqrt{5}}z_2 \approx \sqrt{5} \cdot \frac{1}{\sqrt{5}}i)$$

$$(\cos(0,46) + i \cdot \sin(0,46))$$

c) Die komplexen Zahlen von Betrag 1 entsprechen den Punkten auf Einheitskreis:

$$cos(\varphi) + i sin(\varphi), 0 \le \varphi \le 2\pi$$

1.7 Additionstheoreme der Trigonometrie

(a)
$$\sin(\varphi + \psi) = \sin(\varphi) \cdot \cos(\psi) + \cos(\varphi) \cdot \sin(\psi)$$

(b)
$$\cos(\varphi + \psi) = \cos(\varphi) \cdot \cos(\psi) - \sin(\varphi) \cdot \sin(\varphi) \cdot \sin(\psi)$$

1.8 geometrische Interpretation der Multiplikation

a)
$$w = |w| \cdot (\cos(\varphi) + i \cdot \sin(\varphi))$$

 $z = |z| \cdot (\cos(\psi) + i \cdot \sin(\psi))$
 $w \cdot z = |w| \cdot |z| \cdot (\cos(\varphi) \cdot \cos(\psi) - \sin(\varphi) \cdot \sin(\psi)) + i(\sin(\varphi) \cdot \cos(\psi) + \cos(\varphi) \cdot \sin(\psi))$
 $w \cdot z = |w \cdot z|(\cos(\varphi + \psi) + i \cdot \sin(\varphi + \psi))$

b)
$$z = i, w = a + ib$$

 $i \cdot w = -b \cdot ia$

1.9 Bemerkung und Definition

Wir werden später die komplexe Exponentialfunktion einführen. e^z für alle $z \in \mathbb{C}$ e = Euler'sche Zahl $\approx 2,718718...$

Abbildung 5: Multiplizieren komplexer Zahlen

Abbildung 6: Multiplikation mit i

$$e^{z_1}=cde^{z_2}=e^{z_1+z_2}, e^{-z}=\frac{1}{e^z}$$
 Es gilt: $t\in\mathbb{R}$: $e^{it}=\cos(t)+i\cdot\sin(t)$ Jede komplexe Zahl lässt sich schreiben $z=r\cdot e^{i\cdot \varphi}, r=|z|, \varphi$ Winkel $r\cdot(\cos(\varphi)+i\sin(\varphi))$ ist Polarform von z . $z=a+bi$ ist kartesische Form von z . $\bullet(r,\varphi)$ Polarkoordinaten $|e^{i\varphi}|=+\sqrt{cos^2(\varphi)+\sin^2(\varphi)}=1$ $e^{i\varphi}, 0\leq\varphi\leq 2\pi$, Punkte auf dem Einheitskreis. $e^{i\pi}=-1$ $e^{i\pi}+1=0$ Euler'sche Gleichung

1.10 **Satz**

Sei $w = |w| \cdot (\cos(\varphi) + i \cdot \sin(\varphi)) \in \mathbb{C}$

- a) Ist $m \in \mathbb{Z}$, so ist $w^m = |w|^m \cdot (\cos(m \cdot \varphi) + i \cdot \sin(m \cdot \varphi))$ $(m < 0: w^m = \frac{1}{w^{|m|}}), w \neq 0$
- b) Quadratwurzeln
- c) Ist $n \in \mathbb{N}$, $w \neq 0$, so gibt es genau n n-te Wurzeln von w: $\sqrt[n]{w} = +\sqrt[n]{|w|} \cdot (\cos(\frac{\varphi}{n} + \frac{2\pi \cdot k}{n}) + i\sin(\frac{\varphi}{n} + \frac{2\pi \cdot k}{n})), n \in \mathbb{N}, k \in \{0, \dots, n-1\}$

Beweis. a) richtig, wenn m = 0, 1

 $m \ge 2$. Folgt aus (\star)

$$m = -a$$
:

$$m = -a:$$

$$w^{-1} = \frac{1}{w} = \frac{1}{|w|^2 \cdot (\cos^2(\varphi) + i \cdot \sin^2(\varphi))} \cdot |w| \cdot \cos(\varphi) - \sin(\varphi)$$

$$= \frac{1}{w} = \frac{1}{midw| \cdot (\cos^2(\varphi) + i \cdot \sin^2(\varphi))} \cdot |w| \cdot \cos(\varphi) - \sin(\varphi)$$

$$= \frac{1}{|w|} \cdot (\cos(-\varphi + i \cdot \sin(-\varphi)) = |w|^{-1} \cdot (\cos(-\varphi) + \sin(-\varphi))$$

1.11 Beispiel

Quadratwurzel aus i:

$$|i| = 1$$

Nach 1.10 b):
$$\sqrt{i} = \pm(\cos(\frac{\pi}{4} + i \cdot \sin(\frac{\pi}{4})))$$

= $\pm(\frac{1}{2}\sqrt{2} + \frac{1}{2}\sqrt{2}i)$

1.12 Bemerkung

Nach 1.10 hat jedes Polynom

$$x^n - w \ (w \in \mathbb{C})$$

eine Nullstelle in $\mathbb C$ (sogar n verschiedene wenn $w \neq 0$)

Es gilt sogar : Fundamentalsatz der Algebra

(C. F. Gauß 1777-1855)

Jedes Polynom $a_n x^n + ... + a_0$

mit irgendwelchen Koeffizienten: $a_n \dots a_0 \in \mathbb{C}$ hat Nullstelle in \mathbb{C}

13

2 Folgen und Reihen

2.1 Definition

Sei $k \in \mathbb{Z}$, $A_k := \{m \in \mathbb{Z} : m > k\}$ $(k = 0A_0 \in \mathbb{N}_0, k = 1, A_n \in \mathbb{N})$

Abbildung a : $A \Rightarrow \mathbb{R}(\text{oder }\mathbb{C})$

$$m \Rightarrow a_n$$

heißt Folge reeller Zahlen

$$(a_k, a_{k-1}...)$$

Schreibweise:

 $(a_m)_{m>k}$ oder einfach (a_m)

 a_m heißt m-tes Glied der Folge, m Index

2.2 Beispiel

- b) $a_n = n$ für alle n > 1 (1,2,3,4,5,6,7,8,9,10,...)
- c) $a_n = \frac{1}{n}$ $(\frac{1}{1}, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, ...)$
- d) $a_n \frac{(n+1)^2}{2^n}$ $(2, \frac{9}{4}, 2, \frac{25}{16}, ...)$
- e) $a_n = (-1)^n$ (-1, 1, -1, 1, -1, 1, ...)
- f) $a_n = \frac{1}{2}a_{n_1} = \frac{1}{a_{n-1}}$ für $n \ge 2$, $a_1 = 1$ $(1, \frac{3}{2}, \frac{17}{12}, ...)$
- g) $a_n = \sum_{i=1}^n \frac{1}{i}$ $(1, \frac{3}{2}, \frac{11}{6}, ...)$

h)
$$a_n = \sum_{i=1}^n (-1)^i \cdot \frac{1}{i}$$

 $(-1, \frac{-1}{2}, -\frac{-5}{6}, ...)$

2.3 Definition

Eine Folge $(a_n)_{n>k}$ heißt beschränkt, wenn die Menge der Folgenglieder beschränkt ist

D.h. $\exists D > 0 : -D \le a_n \le D$ für alle n > k.

2.4 Definition

Eine Folge $(a_n)_{n\geq k}$ heißt *konvergent* gegen $\varepsilon\in\mathbb{R}$ (konvergent gegen ε), falls gilt:

 $\forall \varepsilon > 0 \exists n(\varepsilon) \in \mathbb{N} \forall n \ge n(\varepsilon) : |a_n - c| < \varepsilon$

 $c = \lim_{n \to \infty} a_n$ (oder einfach $c = \lim a_n$)

c heißt *Grenzwert* (oder Limes) der Folge (a_n)

(Grenzwert hängt nicht von endlich vielen Anfangsgliedern ab (der Folge))

Eine Folge die gegen 0 konvertiert, heißt Nullfolge

2.5 Beispiele

a)
$$r \in \mathbb{R}$$
: $a_n = r$ für alle $n \ge 1$

 (r, r, \ldots)

 $\lim_{n\to\infty} = r$

 $|a_n - r| = 0$ für alle n

Für jedes $\varepsilon > 0$ kann man $n(\varepsilon) = 1$ wählen

- b) $a_n = n$ für alle $n \ge 1$ Folge ist nicht beschränkt, konvergiert nicht.
- c) $a_n = \frac{1}{n}$ für alle $n \ge 1$ (a_n) ist Nullfolge.

Sei $\varepsilon > 0$ beliebig. Suche Index $n(\varepsilon)$ mit $|a_n - o| < \varepsilon$ für alle $n \ge n(\varepsilon)$

D.s. es muss gelten.

 $\frac{1}{n} < \varepsilon$ für alle $n \ge n(\varepsilon)$ Ich brauche: $\frac{1}{n(\varepsilon)} < \varepsilon$

Ich brauche $n(\varepsilon) > \frac{1}{\varepsilon}$

Aus Mathe I folgt, dass solch ein $n(\varepsilon)$ existiert.

z.B
$$n(\varepsilon) - \lceil \frac{1}{2} \rceil + 1 > \frac{1}{\varepsilon}$$

Dann:

 $|a_n - 0| < \frac{1}{n} < \varepsilon$ für alle $n \ge n(\varepsilon)$

d) $a_n = \frac{3n^2+1}{n^2+n+1}$ für lle $n \ge 1$ Behauptung: $\lim_{n \to \infty} a_n = 3$

$$|a-3| = |\frac{3n^2+1}{n^2+n+1} - 3| = |\frac{3n^2+1-3(n^2+n+1)}{n^2+n+1}|$$

$$= |\frac{-3n-2}{n^2+n+1}| = \frac{3n+2}{n^2+n+1}$$
Sei $\varepsilon > 0$. Benötigt wird $n(\varepsilon) \in \mathbb{N}$ mit $\frac{3n+2}{n^2+n+1} < \varepsilon$ für alle $n > n(\varepsilon)$.

$$\frac{3n+2}{n^2+n+1} \le \frac{5n}{n^2} = \frac{5}{n}$$

Wähle $n(\varepsilon)$ so, dass $n(\varepsilon) > \frac{5}{\varepsilon}$

Dann gilt für alle
$$n \ge n(\varepsilon)$$
.
 $|a_n - 3| = \frac{3n+2}{n^2+n+1} \le \frac{5}{n} \le \frac{5}{n(\varepsilon)} < \frac{5\varepsilon}{5} = \varepsilon$
Für alle $n \ge n(\varepsilon)$

e) $a_n = (-1)^n$ beschränkte Folge $-1 \le a \le 1$ konvergiert nicht. Sei $c \in \mathbb{R}$ beliebig, Wähle $\varepsilon = \frac{1}{2}$

$$2 = |a_n - a_{n+1}| \le |a_n - c| + |c - a_{n+1}| < \frac{1}{2} + \frac{1}{2} = 1 \ \text{ } \ \text{ } \ \ \text{ } \ \ \ \ \ \ \ \ \ \ \ \ \ }$$

2.6 Satz

Jede konvergente Folge ist beschränkt. (Umkehrung nicht: 2.5e))

Beweis. Sei $c = \lim a_n$, wähle $\varepsilon = 1$,

Es existiert $n(1) \in \mathbb{N}$ mit $|a_n - c| < 1$ für alle $n \ge n(1)$

Dann ist

$$|a_n| = |a_n - c + c| \le |a_n - c| + |c| < 1 + |c|$$
 für alle $n \ge n(1)$

 $M = max\{|a_k|, |a_{k+1}|, \dots, |a_{n(1)-1}|, 1+|c|\}$

Abbildung 8: $(-1)^n$ ist beschränkt aber konvergiert nicht

Dann: $|a_n| \le M$ für alle $n \ge k$ - $M \le a_n \le M$

2.7 Bemerkung

- a) $(a_n)_{n\geq 1}$ Nullfolge $\Leftrightarrow (|a_n|)_{n\geq 1}$ Nullfolge $(|a_n-0|=|a_n|-||a_n|-0||$
- b) $\lim_{n\to\infty} a_n = c \Leftrightarrow (a_n c)_{n\geq k}$ ist Nullfolge $\Leftrightarrow (|a_n c|)_{n\geq k}$ ist Nullfolge

2.8 Satz (Rechenregeln für konvergente Folgen)

Seien $(a_n)_{n\geq k}$ und $(b_n)_{n\geq k}$ konvergente Folgen, $\lim a_n=c$, $\lim b_n=d$.

- a) $\lim |a_n| = |c|$
- b) $\lim(a_n \pm b_n) = c \pm d$
- c) $\lim (a_n \cdot b_n) = c \cdot d$ insbesondere $\lim (r \cdot b_N) = r \cdot \lim b_n = r \cdot d$ für jedes $r \in \mathbb{R}$.
- d) Ist $b_n \neq 0$ für alle $n \geq k$ und ist $d \neq 0$, so $\lim(\frac{a_n}{k_n}) = \frac{c}{d}$
- e) Ist (b_n) Nullfolge, $b_n \neq 0$ für alle $n \geq k$, so konvergiert $(\frac{1}{b_n} \ nicht!)$.
- f) Existiert $m \ge k$ mit $a_n \le b_n$ für alle $n \ge m$, so ist $c \le d$.
- g) Ist $(c_n)_{n\geq k}$ Folge und existiert $m\geq k$ mit $0\leq c_n\leq a_n$ für alle $n\geq m$ und ist (a_n) eine Nullfolge, so ist auch (c_n) eine Nullfolge.

h) Ist $(c_n)_{n\geq l}$ beschränkte Folge und ist $(a_n)_{n\geq k}$ Nullfolge, so ist auch $(c_n\cdot a_n)_{n\geq k}$ Nullfolge.

 c_n muss nicht konvergieren!

Beweis. Exemplarisch:

- b) Sei $\varepsilon > 0$. Dann existiert $n_1(\frac{\varepsilon}{2})$ und $n_2(\frac{\varepsilon}{2})$ und $|a_n c| < \frac{\varepsilon}{2}$ für alle $n \ge n_1(\frac{\varepsilon}{2})$ $|b_n d| < \frac{\varepsilon}{2}$ für alle $n \ge n_2(\frac{\varepsilon}{2})$ Suche $n(\varepsilon) = \max(n_1(\frac{\varepsilon}{2}, n_2(\frac{\varepsilon}{2}))$ Dann gilt für alle $n > n(\varepsilon)$: $|a_n + b_n (c + d)| = |(a_n c) + (b_n d)| \le |a_n c| + |b_n d| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon$
- f) Angenommen c > d. Setze $\delta = c d > 0$ Es existiert $\tilde{m} \ge m$ mit $|c a_n| < \frac{\delta}{2}$ und $|b_n d| < \frac{\delta}{2}$ für alle $n \ge \tilde{m}$.

 Für diese n gilt: $0 < \delta \le \delta + b_n a_n = c d + b_n a_n \ge 0 \text{ nach Voraussetzung}$ $= |c a_n d + b_n| \le |c a_n| + |d b_n|$ $\le \frac{\delta}{2} + \frac{\delta}{2} = \delta \cancel{4}$

2.9 Satz

- a) $0 \le q \le 1$ Dann ist $(q^n)_{n \ge 1}$ Nullfolge
- b) Ist $m \in \mathbb{N}$, so ist $((\frac{1}{n^m})_{n \ge 1}$ Nullfolge.
- c) Sei $0 \le q < 1, m \in \mathbb{N}$ Dann ist $(n^m \cdot q^n)_{n \ge 1}$ Nullfolge
- d) Ist r > 1, $m \in \mathbb{N}$, so ist $(\frac{n^m}{r^n})_{r \ge 1}$ eine Nullfolge)
- e) $P(x) = a_m \cdot x^m + \dots a_0, a_i \in \mathbb{R}, a_m \neq 0$ $Q(x) = b_e \cdot x^e + \dots b_0, b_i \in \mathbb{R}, b_e \neq 0$ Sei $Q(n) \neq 0$ für alle $n \geq k$.
 - Ist m > e, so ist $\frac{P(n)}{Q(n)}$ nicht konvergent
 - Ist m = e, so ist $\lim_{n \to \infty} \frac{P(n)}{Q(n)} = \frac{a_m}{b_e} = \frac{a_m}{b_m}$
 - Ist m < l, so ist $(\frac{P(n)}{Q(n)})$ ein Nullfolge

a) Sei $0 \le q \le 1$ Dann ist $(q^n)_{n \ge 1}$ eine Nullfolge

Beweis. a) Richtig für q > 0. Sei jetzt q > 0.

Sei $\varepsilon > 0$. Mathe I: Es gibt ein $n(\varepsilon) \in \mathbb{N}$ mit $q^{n(\varepsilon)} < \varepsilon$.

Für alle $n \ge n(\varepsilon)$ gilt: $|q^n - o| = q^n < q^{n(\varepsilon)} < \varepsilon$.

- b) 2.5c): $\frac{1}{n}$ Nullfolge Beh. folgt mit 2.8.c)
- c) Richtig für q = 0. Sei jetzt q > 0.

$$\frac{1}{q}=1+t,\,t>0.$$

$$(t+1)^{n} = 1 + nt + \frac{n(n+1)}{2}t^{2} > \frac{n(n-1)}{2}t^{2} \text{ für alle } n \ge 2$$

$$q^{n} = \frac{1}{(1+t)^{n}} < \frac{2}{n(n-1)t^{2}}$$

$$0 \le n \cdot q^{n} < \frac{2}{(n-1)t^{2}} \Leftarrow \text{Nullfolge 2.5e),2.8e}$$
Nach 2.8g) ist $(n \cdot q^{n})_{n \ge q}$ Nullfolge, also auch $(n \cdot q^{n})_{n \ge 1}$.

$$a^n = \frac{Binomialsatz}{2}$$

$$0 < n \cdot a^n < \frac{2}{n(n-1)t^2} \leftarrow \text{Nullfolge 2 5e) 2 8e}$$

2. Fall: m > 1.

Setze
$$0 < q' = \sqrt[m]{q} \in \mathbb{R}$$

$$n^m \cdot q^n = n^m \cdot (q')^n)^m$$

= $(n \cdot (q')^n)^m)^n$
= $(n \cdot (q')^n)^m)^n$ = 1anwenden

 $(n^m + q^n)_{n \ge 1}$ Nullfolge noch Fall m = 1 und 2.8e)

- d) Folgt aus c) und $q = \frac{1}{r}$
- e) Ist $m \le l$, so ist $\frac{P(n)}{Q(n)} = \frac{n^m (a_m + a_{m-1} \cdot \frac{1}{n} + \dots + a_1 \cdot \frac{1}{n^{m-1}} + a_0 \cdot \frac{1}{n^m})}{n^l (b_l + b_{l-1} \cdot \frac{1}{n} + \dots + b_1 \cdot \frac{1}{n^{l-1}} + b_0 \cdot \frac{1}{n^l})} = \frac{1}{n^{l-m}} \cdot \frac{I}{II}$

$$(I) \longrightarrow a_m, (II) \longrightarrow b_l \xrightarrow{(I)} \Rightarrow \frac{a_m}{b_l}$$

$$n < l, \frac{1}{n^{l-m}}$$
 Nullfolge

$$\frac{P(n)}{Q(n)} \Rightarrow 0 \cdot \frac{a_m}{b_l}$$

$$m > l$$
:

Beh. folgt aus Fall m < l und 2.8e).

Bemerkung 2.10

Betrachte Bijektionsverfahren, die Zahl $x \in \mathbb{R}$ bestimmt.

$$a_0 \le a_1 \le a_2 \le \dots$$

$$b_0 \ge b_1 \ge b_2 \ge \dots$$

$$a_n \le x \le b_n$$
 $0 < b_n - a_n = \frac{b_0 - a_0}{2^n}$
 $0 \le |x - a_n| \le b_n - a_n = \frac{b_0 - a_n}{2} \Leftarrow \text{Nullfolge (2.9b)}$
 $2.8e)(|x - a_n|) \text{ Nullfolge.}$
 $2.7e): \lim_{n \to \infty} a_n = x$
Analog: $\lim_{n \to \infty} b_n = x$
 $2.9 \text{ d) e) sind Beispiele für asymptotischen Vergleich von Folgen$

2.11 Definition

a) Eine Folge $(a_n)_{n\geq k}$ heißt *strikt positiv*, falls $a_n>0$ für alle $n\geq k$. Sei im Folgenden $(a_n)_{n\geq k}$ eine strikt positive Folge.

b)
$$\mathbb{O}(a_n) = \{(b_n)_{n \ge k} : \text{ist beschränkt}\}\$$

= $\{(b_n)_{n \ge k} \exists C > 0 \text{ mit } |b_n| \le C \cdot a_n\}$

c) $O(a_n) = \{(b_n)_{n \geq k} : (\frac{b_n}{a_n} \text{ist Nullfolge}\}$ $(b_n) \in o(a_n)$ heißt Folge (a_n) wächst wesentlich schneller als die Folge (b_n) . Klar: $o(a_n) \subset O(a_n)$ O, o("groß Oh", "klein Oh")

Landau-Symbole

z.B
$$(n^2)$$
 $\in o(n^3)$
 $(n^2 + n + 1)$ $\in O(n^2)$ $n^2 + n + 1 \le 3n^2$
 (n^2) $\in O(n^2 + n + 1)$ $n^2 \le n^2 + n + 1$

O(1) = Menge der beschränkten Folgen

o(1) = Menge aller Nullfolgen

Häufig gewählte Schreibweise:

$$n^2 = o(n^2)$$
 statt $(n^2) \in o(n^3)$
eig. falsch!
 $n^2 + n + 1 = O(n^2)$ statt $(n^2 + n + 1)$

2.12 Satz

Sei
$$P(x) = a_m \cdot x^m + ... + a_1 \cdot x + a_0, m \ge 0, a_m \ne 0.$$

- a) $(P(n)) \in o(n!)$ für alle l > m und $(P(n)) \in O(n')$ für alle $l \ge m$.
- b) ist r > 1, so ist $(P(n)) \in o(r^n)$. $[(r^n)$ wächst deutlich schneller als (P(n))]

Beweis. a) folgt aus 2.9e).m = l (2.6)b) folgt aus 2.9d) und 2.8 b)c)

2.13 Bemerkung

Algorithmus:

Sei t_n = maximale Anzahl von Reihenschritten des Algorithmus' bei Input der Länge n (binär codiert).

Worst-Case-Komplexität:

Algorithmus hat polynomielle Zeitkomplexität, falls ein $l \in \mathbb{N}$ existiert mit $(t_n) \in O(n^l)$. (gutartig)

Algorithmus hat polynomielle Zeitkomplexität, falls ein $l \in \mathbb{N}$ existiert mindestens exponentielle Zeitkomplexität, falls r > 1 exestiert mit $(r^n) \in O(b_n)$ (*bösartig*)

2.14 Definition

- a) Eine Folge $(a_n)_{n\geq k}$ heißt monoton wachsend (steigend), wenn $a_n\leq a_{n+1}$ für alle $n\geq k$. Sie heißt steng monoton wachsend (steigend), wenn $a_n< a_{n+1}$ für alle $n\geq k$
- b) $(a_n)_{n\geq k}$ heißt monoton fallend, falls $a\geq a_{n+1}$ für alle $n\geq k$

2.15 Beispiel

- a) $a_n = 1$ für alle $n > 1(a_n)$ ist monoton steigend und monoton fallend.
- b) $a_n = \frac{1}{n}$ für alle $n \ge 1$. (a_n) streng monoton fallend.
- c) $a_n = \sqrt{n}$ (positive Wuzel) (a_n) $n \ge 1$ streng monoton steigend.
- d) $a_n = 1 \frac{1}{n}, n \ge 1$ $(a_n)_{n \ge 1}$ streng monoton steigend.
- e) $a_n = (-1)^n, n \ge 1$ (a_n) ist weder monoton steigend noch monoton fallend.

2.16 Satz

a) Ist $(a_n)_{n\geq k}$ monoton steigend und nach oben beschränkt (d.h es existiert $D\in\mathbb{R}$ mit $a_n\leq D$ für alle $n\geq k$), so konvergiert $(a_n)'$ und $\lim_{n\to\infty}a_n=\sup\{a_n:n\geq k\}$

b) $(a_n)_{n\geq k}$ monoton fallend und nach unten beschränkt, so konvergiert $(a_n)_{n\geq k}$ und $\lim_{n\to\infty}a_n=\inf\{a_n:n\geq k\}.$

Beweis. a)

 $c \sup\{a_n : n \ge k\}$. existiert (Mathe I). Zeige: $\lim_{a} = c$.

Sei $\varepsilon > 0$. Dann existiert $n(\varepsilon)$ mit $c - \varepsilon < a_{n(\varepsilon)} \le c$

Denn sonst $a_n \le c - \varepsilon$ für alle $n \ge k$ und $c - \varepsilon$ wäre obere Schranke für $\{a_n : n \ge k\}$ Widerspruch dazu, dass c kleinste obere Schranke. Für alle $n \ge n(\varepsilon)$

$$c - \varepsilon \le a_{n(\varepsilon)} \le a_n \le c$$

$$|a_n - c| < \varepsilon$$
 für alle $n \ge n(\varepsilon)$.

2.17 Satz (Cauchy'sches Konvergenzkriterium)

(Cauchy, 1789 - 1859)

Sei $(a_n)_{n\geq k}$ eine Folge. Dann sind äquivalent:

- (1) $(a_n)_{n\geq k}$ konvergent
- (2) $\forall \varepsilon > 0 \exists N M(\varepsilon) \forall n, m \ge N : |a_n a_m| < \varepsilon$ (Cauchyfolge) Grenzwert muss nicht bekannt sein!

Abbildung 9: Cauchy'sches Konvergenzkriterium

2.18 Definition

a) Sei $(a_i)_{i \ge k}$ eine Folge, $s_n \sum_{i=k}^n a_i, n \ge k$ (Partialsummen der Folge)

Dann heißt $(s_n)_{n\geq k}$ eine *unendliche Reihe*

$$(k-1:a_1,a_1+a_2,a_1+a_2+a_2,\ldots)$$

 $(k-1: a_1, a_1 + a_2, a_1 + a_2 + a_2,...)$ Schreibweise: $\sum_{i=k}^{\infty} a_i$

b) Ist die Folge $(s_n)_{n\geq k}$ konvergent mit $\lim_{n\to\infty} s_n = c$,

so schreibt man $\sum_{i=k}^{\infty} a_i = c$. Reihe *konvergiert*.

Wenn (s_n) nicht konvergiert, so heißt die Reihe $\sum_{i=k}^{\infty} a_i$ divergent.

(Zwei Bedeutungen von $\sum_{i=k}^{\infty} a_i$:

- Folge der Partialsummen
- Grenzwert von (s_n) , falls dieser existiert

$$\sum_{i=k}^{\infty} a_i = \sum_{n=k}^{\infty} a_n = (s_m)_{m \ge k}$$

2.19 Satz

- a) Ist die Reihe $\sum_{i=k}^{\infty} a_1$ konvergent, so ist $(a_1)_{i \geq k}$ eine Nullfolge.
- b) Ist die Folge der Partialsummen $s_n = \sum_{i=k}^{\infty} a_i$ beschränkt und ist $a_i \ge 0$ für alle i, so ist $\sum_{i=1}^{\infty} a_i$ konvergent.

Beweis. a) Sei
$$\sum_{i=k}^{\infty} a_i = c$$
.

Sei $\varepsilon > 0$ Dann existiert $n(\frac{\varepsilon}{2}) \ge k$ mit $|\sum_{i=k}^{\infty} 2a_i - c| < \frac{\varepsilon}{2}$ für alle $n \ge n(\frac{\varepsilon}{2})$ Dann gilt $|a_{n+1} - o| = |a_n + 1| = |\sum_{i=k}^{n+1} a_i + \sum_{i=k}^n a_i| =$

Dann gilt
$$|a_{n+1} - o| = |a_n + 1| = |\sum_{i=1}^{n+1} a_i + \sum_{i=1}^{n} a_i| =$$

$$|\sum_{i=k}^{n+1} a_i + c - \sum_{i=k}^{n} a_i + c| \le |\sum_{i=k}^{n+1} a_i + c| + |\sum_{i=k}^{n} a_i - c| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon.$$

 (a_n) ist Nullfolge

b) folgt aus 2.16 a), denn (s_n) ist monoton steigend

Beispiele 2.20

a) Sei $q \in \mathbb{R}$.

Ist
$$q \neq 1$$
, so ist $\sum_{i=k}^{n} q^i = \frac{q^{n+1}-1}{q-1}$
 $\left[\left(\sum_{i=k}^{n} q^i\right) \cdot (q-1)\right]$
Sei $|q| < 1$, d.h $-1 < q < 1$.
Dann ist $\sum_{i=k}^{\infty} q^i = \frac{1}{1-q}$ (konvergiert)
 $s_n = \sum_{i=k}^{n} q^1 = \frac{q^{n+1}-1}{q-1}$
 $\lim_{n \to \infty} s_n = \lim_{n \to \infty} \frac{q^{n+1}=1}{q-1}$
 (q^n) Nullfolge (2.9_a) für $q \geq 0, 2.8_e) + 2.9_a$ für $q < 0, q = -|q|$)
Geometrische Reihe
Sei $|q| \geq 1$. Dann ist $\sum_{i=k}^{\infty} q^i$ divergent, da dann (q^i) keine Nullfolge (2.18_a)

b)
$$\sum_{i=k}^{\infty} \frac{1}{i}$$
 divergiert
harmonische Reihe
 $\sum_{i=k}^{n} \frac{1}{n}$
 $n=2^0=1: s_1=1$
 $n=2^1=2: s_2=1+\frac{1}{2}$...
 $n=2^3=8: s_8=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\frac{1}{6}+\frac{1}{7}+\frac{1}{8}>s_7>s_6...$
Per Induktion zu beweisen!

c) $\sum_{i=0}^{\infty} \frac{1}{n^2}$ konvergiert.

Folge der Partialsummen ist monoton steigend.

2.16a) Zeige, dass die Folge der Partialsummen nach aber beschränkt ist.

$$s_{n} \leq s_{2^{n}-1} = 1 + (\frac{1}{2} + \frac{1}{3}) + (\frac{1}{4^{2}} + \frac{1}{5^{2}} + \frac{1}{6^{2}} + \frac{1}{7^{2}}) + \dots + (\frac{1}{(2^{n-1})^{2}} + \dots + \frac{1}{(2^{n-1})^{2}})$$

$$\leq 1 + 2 \cdot \frac{2}{2^{2}} + 4 \cdot \frac{1}{4^{4}} + \dots + 2^{n-1} \cdot \frac{1}{(2^{n-1})^{2}}$$

$$\leq \sum_{i=0}^{\infty} \frac{1}{2^{i}} = \frac{1}{1 - \frac{1}{2}} = 2$$

2.16a) $\sum_{i=0}^{\infty} \frac{1}{2^i}$ Kgt., Grenzwert \le 2. (sp\(\text{spater: Grenzwert ist }\frac{\pi^2}{6}\))

Es gilt allgemeiner:

 $s \in \mathbb{N}, s \ge 2 \Rightarrow \sum_{i=0}^{\infty} \frac{1}{i^s}$ konvergiert.

Allgemeiner: $s \in \mathbb{R}$, $s > 1 \Rightarrow \sum_{i=0}^{\infty} \frac{i}{i^2}$ konvergiert

d) $\sum_{i=0}^{\infty} (-1)^i \cdot \frac{1}{i}$ konvergiert:

$$s_{2n} = \underbrace{(-1 + \frac{1}{2})}_{<0} + \underbrace{(-\frac{1}{3} + \frac{1}{4})}_{<0} + \dots \underbrace{(-\frac{1}{2n-1} + \frac{1}{2n})}_{<0}$$

$$s_{2n} \le s2(n+1) \text{ für alle } n \in \mathbb{N}$$

$$s_{2n} \le s2(n+1)$$
 for all $n \in \mathbb{N}$
 (s_{2n}) ist monoton fallend. $s_{2n-1} = -1 + (\underbrace{\frac{1}{2} - \frac{1}{3}}_{>0}) + \dots + (\underbrace{\frac{1}{2n-2} - \frac{1}{2n-1}}_{>0})$

 (s_{2n-1}) ist monoton wachsend

Ist k ungerade, so ist $s_k < s_l$: Wähle n so, dass $2n - a \ge k, 2n \ge l$

$$s_k \leq s_{2n-1} < s_{2n} \leq s_l$$

$$s_{2n} = s_{2n-1} + \frac{1}{2n}$$

 $s_{2n} = s_{2n-1} + \frac{1}{2n}$ Abstand $s_{2n} - s_{2n-1} = \frac{1}{2n}$ geht gegen 0.

Abbildung 10: Monotonie
$$s_1 \quad s_3 \quad s_5 \quad s_6 \quad s_4 \quad s_2$$

$$\sup\{s_{2n-1}: n \ge 1\}$$

$$\inf\{s_{2n}: n \ge 1\}$$

$$\inf\{s_{2n}: n \ge 1\}$$

$$= \lim_{i \leftarrow \infty} (-1^i) \frac{1}{i} \in]-1, -\frac{1}{2}[\text{ (Es gilt $limes = -\ln 2$)}$$

Bemerkung

Was bedeutet $0.\bar{8} = 0.88888888...$? (Dezimalsystem)

$$0.\bar{8} = \frac{8}{10} + \frac{8}{100} + \frac{8}{1000} + \dots = 8 \cdot \sum_{i=0}^{\infty} \frac{1}{10^i} = 8 \cdot (\frac{10}{9} - 1) = \frac{8}{9}$$

$$\sum_{i=0}^{\infty} \frac{1}{10^i} = \sum_{i=0}^{\infty} (\frac{1}{10})^i = \frac{1}{1 - \frac{1}{10}} = \frac{10}{9}$$

Satz (Leibniz-Kriterium)

Ist $(a_i)_{i\geq k}$ eine monoton fallende Nullfolge (insbesondere $a_i\geq 0$ falls $i\geq k$), so ist $\sum_{i=k}^{\infty} (-1)^i a_i$ konvergent.

2.22 Satz (Majoranten-Kriterium)

Seien $(a_i)_{i \ge k}$, $(b_i)_{i \ge k}$ Folgen, wobei $b_i \ge 0$ für alle $i \ge k$ und $|a_i| \le b_i$ für alle $i \ge k$.

Ist $\sum_{i=k}^{\infty} b_i$ konvergent, so auch $\sum_{i=k}^{\infty} a_i$ und $\sum_{i=k}^{\infty} |a_i|$. Für die Grenzwerte gilt:

$$|\sum_{i=k}^{\infty} a_i| \le \sum_{i=k}^{\infty} |a_i| \le \sum_{i=k}^{\infty} b_i$$

Beweis. Konvergenz

von $\sum_{i=k}^{\infty} |a_i|$ folgt aus 2.16 a).

$$\sum_{i=k}^{\infty} |a_i| \le \sum_{i=k}^{\infty} b_i \text{ folgt aus 2.8 f)}.$$

$$|\sum_{i=k}^{m} a_i - \sum_{i=k}^{n} b_i| = \sum_{i=n+1}^{m} a_i \le \sum_{i=n+1}^{m} |a_i| = |\sum_{i=k}^{m} |a_i| - \sum_{i=k}^{n} |a_i||$$

Mit Cauchy-Kriterium 2.17 folgt daher aus der Konvergenz von $\sum_{i=k}^{m} |a_i|$ auch die von

$$\sum_{i=k}^{\infty} a_i.$$

2.23 Beispiel

$$\sum_{i=1}^{\infty} \frac{1}{+\sqrt{i}}$$

 $\sqrt[l-1]{i} \le i$ für alle $i \in \mathbb{N}$ $\frac{1}{\sqrt{i}} \ge \frac{1}{i}$ für alle $i \in \mathbb{N}$

$$\frac{1}{\sqrt{i}} \ge \frac{1}{i}$$
 für alle $i \in \mathbb{N}$

Ang. $\sum_{i=1}^{\infty} \frac{1}{+\sqrt{i}}$ konvergiert. $\Rightarrow \sum_{i=1}^{\infty} \frac{1}{i}$ konvergiert. $\frac{1}{2}$

$$a_i = (-1)^{i} \frac{1}{i}$$

2.20d): $\sum_{i=1}^{\infty} a_i$ konvergiert, aber $\sum_{i=1}^{\infty} |a_i|$ konvergiert nicht. (\star)

2.24 Definition

 $\sum\limits_{i=k}^{\infty}a_{i}$ heißt *absolut konvergent*, falls $\sum\limits_{i=k}^{\infty}|a_{i}|$ konvergiert. (Falls alle $a_{i}\geq0$: Konvergent = absolut Konvergent)

2.25 Korollar

Ist $\sum\limits_{i=k}^{\infty}a_i$ absolut konvergent, sp ist auch konvergiert. Die Umkehrung gilt im Allgemeinen nicht

Beweis: 1.Behauptung 2.22 mit $b_i = |a_i|$ Umkehrung siehe (\star)

Bermerkung

Was bedeutet $0, a_1, a_2, a_3, a_4 \dots$ $a_i \in \{0 \dots 9\}$ (Dezimalsystem) $a_1 \cdot \frac{1}{10} a_2 \cdot \frac{1}{100} \dots a_n \cdot \frac{1}{10^n} \le 9 \cdot \frac{1}{10} 9 \cdot \frac{1}{100} \dots 9 \cdot \frac{1}{10^n}$ $a_i \cdot \frac{1}{10} \le 9 \cdot \frac{1}{10}$ $\sum_{i=k}^{\infty} 9 \cdot \frac{1}{10} = 9 \cdot (\frac{1}{1 - \frac{1}{10}} - 1) = 1 \Rightarrow \sum_{i=k}^{\infty} a_i \cdot \frac{1}{10}$ konvergiert

2.26 Satz

Sei $\sum_{i=k}^{\infty} a_i$ eine Reihe.

a) Wurzelkriterium

Existiert q < 1 und ein Index i_0 , so dass $\sqrt[i]{|a_i|} \le q$ für alle $i \ge i_0$. so konvergiert die Reihe $\sum\limits_{i=k}^{\infty} a_i$ absolut. Ist $\sqrt[i]{|a_i|} \ge 1$ für unendlich viele i so divergiert $\sum\limits_{i=k}^{\infty} a_i$.

b) Quotientenkriterium

Existiert q > 1 und ein Index i_0 , so dass $|\frac{a_{i+1}}{a_i}| \le$ für alle $i \ge i_0$, so konvergiert $\sum_{i=k}^{\infty} a_i$ absolut.

Beweis.

a) $|a_i| \le q^i$ für alle $i \ge i_0$

$$\sum_{i=i_0}^{\infty} q^i \text{ konvergiert (2.20 a))}$$

$$\Rightarrow \sum_{i=i_0}^{\infty} |a_i|$$
 konvergiert

$$\Rightarrow \sum_{i=k}^{\infty} |a_i|$$
 konvergiert.

$$\sqrt[i]{|a_i|} \ge 1$$
 für unendlich viele i

- \Rightarrow | a_i | ≥ 1 für unendlich viele i
- \Rightarrow (a_i) sind keine Nullfolge

$$\Rightarrow \sum_{i=k}^{\infty} a_i$$
 divergiert.

b) Sei
$$i \ge i_0$$
.

b) Sei
$$i \ge i_0$$
.
$$|\frac{a_i}{a_{i0}}| = |\frac{a_i}{a_{i-1}}| \cdot |\frac{a_i}{a_{i-2}}| \cdot \dots \cdot |\frac{a_{io+1}}{a_{i0}}| \le q \cdot q \cdot \dots \le q^{i-i0} = \frac{q^i}{q^{i0}}$$

$$\uparrow \text{ Voraussetzung:}$$

$$|a_i| \le \underbrace{\frac{|a_i0|}{q^{i0}}}_{=:c} \cdot q^i$$

$$\sum_{i=i_0}^{\infty} c \cdot q^i \text{ konvergent}$$

$$|a_i| \le \frac{|a_i 0|}{q^{i0}} \cdot q^i$$

$$\sum_{i=i_0}^{\infty} c \cdot q^i \text{ konvergent}$$

$$\underset{2.22}{\Rightarrow} \sum_{i=i_0}^{\infty} |a_i| \text{ konvergiert.}$$

$$\Rightarrow \sum_{i=k}^{\infty} |a_i|$$
 konvergiert

Bemerkung 2.27

- a) Es reicht nicht in 2.26 nur vorauszusetzen, dass $\sqrt[i]{|a_i|} > 1$ für alle $i \ge i_o$ bzw. $\frac{a_{i+1}}{a_i} < 1$ für alle $i \ge i_0$.
 - z.B. harmonische Reihen : $\sum_{i=1}^{\infty} \frac{1}{i}$ divergiert.

Aber:
$$\sqrt[i]{\frac{1}{i}} > 1$$
 für alle i. $\frac{i}{i+1} < 1$ für alle i

b) Es gibt Beispiele von absolut konvergenten Reihen mit $|\frac{a_{i+1}}{a_i}|$ für unendlich viele i.

2.28 Beispiel

Sei $x \in \mathbb{R}$. Dann konvergiert $\sum_{i=0}^{\infty} \frac{x^i}{i!}$ absolut $(0^0 = 1, 0! = 1)$:

Quotientenkriterium:
$$|\frac{x^{i+1} \cdot i!}{(i+1)! \cdot x^i}| = |fracxi+1| = \frac{|x|}{i+1} \text{ W\"ahle } i_o \text{, so dass } i_0+1 > 2 \cdot |x|$$
 F¨ur alle $i \geq i_0$:
$$\frac{|x|}{(i+1)} \leq \frac{|x|}{(i_0+1)} < \frac{|x|}{2 \cdot |x|} = \frac{1}{2} = q.$$

Bemerkung 2.29

Gegeben seien zwei endliche Summen

$$\sum_{a_n}^{k} n = 0, \sum_{b_n}^{l} n = 0.$$

$$(\sum_{a_n}^{k} n = 0)(\sum_{b_n}^{l} n = 0) \quad (\bigstar)$$

Distributivgesetz: Multipliziere a_i mit jedem b_i und addiere diese Produkte.

$$(\bigstar) = \underbrace{a_0b_0}_{\text{Indexsumme 0}} + \underbrace{(a_0b_1 + a_1b_0)}_{\text{Indexsumme 2}} + \dots + \underbrace{a_kb_l}_{\text{Indexsumme k+l}}$$

Definition 2.30

Seien $\sum_{i=0}^{\infty} a_n$, $\sum_{i=0}^{\infty} b_n$ unendliche Reihen.

Das Cauchy-Produkt(Faltungsprodukt) der beiden Reihen ist die Reihe $\sum_{i=0}^{\infty} c_n$, wobei

$$c_n = \sum_{i=0}^{\infty} a_i \cdot b_{n-1} = a_0 b_n + a b_{n-1} + \dots + a_n b_0$$

2.31 Satz

Sind $\sum_{i=0}^{\infty} a_n$, $\sum_{i=0}^{\infty} b_n$ absolut konvergent Reihen mit Grenzwert c, d, so ist das Cauchy Produkt auch absolut konvergent mit Grenzwert $c \cdot d$.

Beweis: [1]

3 Potenzreihen

3.1 Definition

Sei (b_n) eine reelle Zahlenfolge, $a \in \Re$

Dann heißt $\sum_{n=0}^{\infty} b_n \cdot (x-a)^n$ eine *Potenzreihe* (mit *Entwicklungspunkt* a)) Speziell: a=0

$$\sum_{n=0}^{\infty} b_n \cdot x^n$$

(Potenzreihe im engeren Sinne)

Hauptfolge: Für welche $x \in \mathbb{R}$ konv. die Potenzreihe (absolut)?

Suche für x = a

Dann Grenzwert b_0 (da $0^0 = 1$)

Ob Potenzreihe für andere x konvergiert, hängt von b_n ab!

3.2 Beispiel

- a) $\sum_{i=0}^{\infty} x^n (b_n = 1 \text{ für alle } n)$ geometrische Reihe, konvergiert für alle $x \in]-1,1[$
- b) $\sum_{i=0}^{\infty} 2^n \cdot x^n (b_n = 2^n) = \sum_{i=0}^{\infty} (2 \cdot x)^n \text{ konvergiert genau dann nach a), wenn } |2x| < 1, \text{ d.h.}$ $|x| < \frac{1}{2} \text{ d.h. } x \in]-0.5, 0.5[$
- c) $\sum_{i=0}^{\infty} \frac{x^n}{n!} (b_n = \frac{1}{n})$ konvergiert für alle $x, x \in]-\infty, \infty[=\mathbb{R}]$

3.3 Satz

Sei $\sum_{i=0}^{\infty} b_n \cdot x^n$ eine Potenzreihe (um 0). Dann gibt es $R \in \mathbb{R} \cup \{\infty\}$, $R \ge 0$, so dass gilt.

1. Für alle $x \in \mathbb{R}$ und |x| < R konvergiert Potenzreihe absolut (d.h. $\sum_{i=0}^{\infty} b_n \cdot x^n$ konvergiert, dann auch $\sum_{i=0}^{\infty} b_n \cdot x^n$)
Falls $R = \infty$, so heißt das, dass Potenzreihe für alle $x \in \mathbb{R}$ absolut konvergiert.

3 POTENZREIHEN 3.3 Satz

Abbildung 11: Konvergenzradien und ihre Aussagen

2. Für alle $x \in \mathbb{R}$ mit |x| > R divergiert $\sum_{i=0}^{\infty} b_n \cdot x^n$

 $(\lim_{n\to\infty} \sqrt[n]{|b_n|} = 0 \Rightarrow R = \infty)$ (Für |x| = R lassen sich keine allgemeine Aussagen treffen).

R heißt der *Konvergenzradius* der Potenzreihe $\sum_{n=0}^{\infty} b_n \cdot x^n$

Konvergenzintervall < -R, R >

besteht aus allen x für die $\sum_{i=0}^{\infty} b_n \cdot x^n$ konvergiert.

- < kann [oder] bedeuten.
- > kann] oder [bedeuten.

Beweis. $|x_1, x_2| \mathbb{R}, |x_1| \le |x_2|$

Dann: Falls $\sum_{i=0}^{\infty} |b_n| \cdot |x_n|^n$ konvergiert, so auch $\sum_{i=0}^{\infty} |b_n| \cdot |x_n|^n$ (2.22) (\bigstar) Falls $\sum b_n \cdot x_n$ für alle x absolut konvergiert, so setze $R = \infty$

Wenn nicht, so setze $R = \sup\{|x| : x \in \mathbb{R}, \sum_{i=0}^{\infty} |b_n| \cdot |x_n| \text{ konvergient}\} < \infty \text{ Nach } (\star) \text{ gilt:}$

 $|x| < R \Rightarrow \sum b_n x^n$ konvergiert absolut.

Für |x| > R konvergiert $\sum b_n x^n$ nicht absolut.

Sie konvergiert sogar selbst nicht. ([?])

$$\sqrt[n]{|b_n| \cdot |x|^n} \le q < 1$$
 für alle $n \ge n_0$

$$\Leftrightarrow |x| \cdot \sqrt[n]{|b_n|} \le 1 < 1 \text{ für alle } n \ge n_0$$

$$\Leftrightarrow \lim_{n \to \infty} |x_n| \cdot \sqrt[n]{|b_n|} < 1$$

$$\uparrow \text{ (setze } \varepsilon = 1 - \lim_{n \to \infty} |x| \cdot \sqrt[n]{|b_n|} > 0)$$

$$\Leftrightarrow |x| < \frac{1}{\lim_{r \to \infty} \sqrt[n]{|b_n|}}$$

$$\exists n_0 \, \forall \, n \geq n_0 : s - \tfrac{\varepsilon}{2} < |x| \cdot \sqrt[n]{b_n} \leq s + \tfrac{\varepsilon}{2} =: q < 1$$

3.4 Bemerkung

Konvergenz von Potenzreihen der Form $\sum_{i=0}^{\infty} b_n \cdot (x-a)^n$:

gleichen Konvergenzradius R wie $\sum\limits_{i=0}^{\infty}b_n\cdot x^n$

konvergiert absolut für |x - a| < R, d.h $x \in (a - R)$, a + R[Divergiert für |x - a| > R.

Keine Aussage für |x - a| = R, d.h x = a - R oder x = a + R

Konvergenzintervall < a - R, a + R >

3.5 Die Exponentialreihe

a) Exponentialreihe

$$\sum_{i=0}^{\infty} \frac{x^n}{n!} (b_n = \frac{1}{n!})$$

2.28 Reihe konvergiert für alle $x \in \mathbb{R}$.

Setze für $x \in \mathbb{R}$: $\exp(x) := \sum_{i=0}^{\infty} \frac{x^n}{n!}$

Exponential funktion $\exp(0) = \frac{0^n}{0!} = 1$

b) Serien $x, y \in \mathbb{R}$ $\exp(x) \cdot \exp(y) = \text{Limes des Cauchy Produkts der beiden Reihen.}$

$$= \sum_{n=0}^{\infty} \left(\sum_{i=0}^{\infty} \frac{x^i}{i!} \cdot \frac{y^{n-i}}{(n-i)!} \right)$$

$$= \sum_{n=0}^{\infty} \left(\sum_{i=0}^{\infty} \frac{1}{n!} \cdot \frac{n!}{i! \cdot (n-i)!} \cdot x^{i} \cdot y^{n-i} \right)$$

$$= \sum_{n=0}^{\infty} \left(\sum_{i=0}^{\infty} {n \choose i} \cdot x \cdot y^{n-i} \right)$$

$$= \sum_{i=0}^{\infty} \frac{1}{n}! \cdot (x+y)^n = \exp(x+y)$$

 $\exp(x + y) = \exp(x) \cdot \exp(y)$ für alle $x, y \in \mathbb{R}$

Daraus folgt: $1 = \exp(0) = \exp(x + (-x)) = \exp(x) \cdot \exp(-x)$

$$exp(-x) = \frac{1}{\exp(x)} \text{ für alle } x \in \mathbb{R}$$

Für alle $x \ge 0$: $\exp(x) > 0$. Dann auch wegen (\star)

 $\exp(x) > 0$ für alle $x \in \mathbb{R}$

Abbildung 12: Die Exponentialreihe

c)
$$\exp(1) = \sum_{i=0}^{\infty} \frac{1}{n!} = e$$

Euler'sche Zahl

Approximation
$$e$$
 durch $\sum_{i=0}^{\infty} \frac{1}{n!} = 2$ $m=2$ $1+1+\frac{1}{2} = 2,5$ $m=3$ $2,5+\frac{1}{6} = 2,\bar{6}$... $m=6$ $\frac{326}{126} + \frac{1}{720} = 2,7180\bar{5}$

...m = 6Es ist: $e \approx 2,71828...$ (irrationale Zahl) $\sum_{i=0}^{\infty} \frac{1}{n!}$ konvergiert schnell

$$m \in \mathbb{N}$$

$$\exp(m) = \exp(1 + \dots + 1)$$

$$\exp(1)^m = e^m$$

$$\exp(m) = \exp(1 + \dots + 1)$$

$$\exp(1)^m = e^m$$

$$e^0 = 1 \exp(-m) = \frac{1}{\exp(m)} = e^{-m}$$

$$n \neq 0, n \in \mathbb{N}$$

 $n \neq 0, n \in \mathbb{N}$:

$$n \neq 0, n \in \mathbb{N}:$$

$$e = \exp(1) = \exp(\frac{n}{n}) = \exp(\frac{1}{n}^{n})$$

$$\exp(\frac{1}{n}) = + \sqrt[n]{e} = e^{\frac{1}{n}}$$

$$\exp(\frac{m}{n}) = e^{\frac{m}{n}}.$$

$$\exp(\frac{1}{n}) = + \sqrt[n]{e} = e^{\frac{1}{n}}$$

$$\exp(\frac{m}{n}) = e^{\frac{m}{n}}$$

Für alle $x \in \mathbb{Q}$ stimmt $\exp(x)$ mit der 'normalen' Potenz e^x überein.

Dann definiert man für beliebige $x \in R$:

$$e^x := \exp(x) = \sum_{i=0}^{\infty} \frac{x^n}{n!}$$

In kürze: Definition a^x für $a > 0, x \in \mathbb{R}$

d) Bei komplexen Zahlen kam e^{it} $(i^2=-1,t\in\mathbb{R})$ vor als Abkürzung für $\cos(t)+$

 $i\sin(t)$

Tatsächlich kann auch für jedes $z \in \mathbb{C}$ definieren $e^z = \sum_{i=0}^{\infty} \frac{z^n}{n!}$

Dabei: Konvergenz von Folgen/Reihen in $\mathbb C$ wie in $\mathbb R$ mit komplexem Absolutbetrag.

Man kann dann zeigen:

$$\sum_{i=0}^{\infty} \frac{z^n}{n!}$$
 konvergiert für alle $z \in \mathbb{C}$.

Dass tatsächlich dann gilt:

$$e^{it} = \sum_{i=0}^{\infty} \frac{(it)^n}{n!} = \cos(t) + \sin(t)$$
. zeigen wir später

2.718...) Man kann zeigen.

$$e = \lim_{n \to \infty} (1 + (\frac{1}{n})^n)$$

Bedeutung:

- Angelegtes Guthaben G wird in einem Jahr mit 100% verzinst. Guthaben am Ende eines Jahres 2G = G(1+1)
- Angelegtes Geld wird jedes halbe Jahr mit 50% verzinst. Am Ende eines Jahres (mit Zinsenzinsen)

$$G(1+\frac{1}{2})(1+\frac{1}{2})=2,25G$$

n- mal pro Jahr mit $\frac{100}{n}$ % verzinsen. Am Ende desx Jahres $G(1+\frac{1}{n})^n$. $\lim_{n\to\infty} G(1+\frac{1}{n})^n = e\cdot G \approx 2.718...\cdot G$ (stetige Verzinsung)

$$\lim_{n \to \infty} G(1 + \frac{1}{n})^n = e \cdot G \approx 2.718... \cdot G \text{ (stetige Verzinsung)}$$

$$a\%$$
 statt $100\% \cdot Ge^{\frac{a}{100}}$

Reelle Funktionen und Grenzwerte von Funktionen

Definition 4.1

Reelle Funktionen fin einer Variable ist Abbildung

 $f: D \to \mathbb{R}$, wobei $D \subset \mathbb{R}$ (D = Definitions bereich).

Typisch: $D = \mathbb{R}$, Intervall, Verschachtelung von Intervallen

4.2 Beispiel

a) Polynomfunktionen (ganzrationale Funktion, Polynome)

$$\begin{cases} \mathbb{R} \to \mathbb{R} \\ x \to a_n \cdot x^n + \dots + a_1 x + a_0 \\ f(x) = a_n \cdot x^n + \dots + a_1 \cdot x + q \\ a_n \neq 0 : n = \text{Grad } (f) \text{ f} = 0 \text{ (Nullfunktion), Grad } (f) = \infty \end{cases}$$

Grad 0: konstante Funktionen \neq 0 Graph von f:

Abbildung 13: $f(x) = x^3 - 2x^2 - x + 2$

- b) $f,g:D\to R$ $(f\pm g)(x):=f(x)\pm g(x)$ für alle $x\in D$ *Summe*: Differenz, Produkt von f und g. Ist $g(x)\neq 0$ für $x\in D$, so *Quotient*. $\frac{f}{g}(x):=\frac{f(x)}{g(x)}$ für alle $x\in D$, Quotient von Polynomen = (gebrochen-)rationalen Funktionen |f|(x):=|f(x)| Betrag von f.
- c) Potenzreihe definiert Funktion auf ihrem Konvergenzintervall.

z.B:
$$e^x = \sum_{n=0}^{\infty} \frac{x^n}{n!}$$

Fkt. $\mathbb{R} \to \mathbb{R}$

d) Hintereinanderausführung von Funktionen:

$$f: D_1 \to \mathbb{R}, g: D_2 \to \mathbb{R}f(D_1) \subset f(D_2), \text{ dann } g \circ f:$$

$$\begin{cases} D_1 \Rightarrow \mathbb{R} \\ x \to g(f(x)) \end{cases}$$

e)
$$f(x) = e^x$$
, $g(x) = x^2 + 1$
 $f, g : \mathbb{R} \to \mathbb{R}$
 $(g \circ f)(x) = g(e^x) = (e^x)^2 + 1 = e^2x + 1$
 $(f \circ g)(x) = f(x^2 + 1) = e^{x^2 + 1}$

f) Trigonometrische Funktionen: Sinus- und Cosinusfunktion (vgl. \mathbb{C})

Abbildung 15: Bogenmaß

```
0 \ge x \ge 2\pi x = Bogenmaß von \varphi in Grad, so x = \frac{\varphi}{360} \cdot \pi \sin(x) = s, \cos(x) = c Für beliebig x \in \mathbb{R}:
Periodische Fortsetzung, d.h. x \in \mathbb{R}.x = x' + k \cdot 2\pi, k \in \mathbb{Z}, x' \in [0, 2\pi[\sin(x) := \sin(x')] \cos(x) := \cos(x') |\cos(x)|, |\sin(x)| \le 1 \cos^2(x) + \sin^2(x) = 1 \cos(x) = \sin(x + \frac{\pi}{2}) \sin(x) = 0 \Leftrightarrow x = k\pi, k \in \mathbb{Z} \cos(x) = 0 \Leftrightarrow x = \frac{\pi}{2} + k\pi, k \in \mathbb{Z} Tangens und Cotangensfunktion
```


Abbildung 16: sin(x) und cos(x)

 $\tan(x) = \frac{\sin(x)}{\cos(x)}$ für alle $x \in \mathbb{R}$ mit $\cos(x) \neq 0$ $\cot(x) = \frac{\cos(x)}{\sin(x)}$ für alle $x \in \mathbb{R}$ mit $\sin(x) \neq 0$

Abbildung 17: tan(x) and cot(x)

4.3 Definition

Sei $D \subset \mathbb{R}, c \in \mathbb{R}$ heißt Adharenzpunkt von D, falls es eine Folge $(a_n)_n, a_n \in D$, mit $\lim_{n \to \infty} a_n = c$ gibt.

 \bar{D} = Menge der Adharenzpunkte von D

= Abschluss von D

klar: $D \subset \bar{D}$.

 $d \in D$. konstante Folge $(a_n)_{n \ge 1}$ mit $a_n = d$. $\lim_{n \to \infty} a_n = \lim_{n \to \infty} d = d$.

Also: $d \in \bar{D}$.

4.4 Beispiel:

a)
$$a, b \in \mathbb{R}, a > b, D =]a, b[$$

$$c \quad a \quad b$$

$$\bar{D} = [a,b]D \in \bar{D}$$

$$a \in \bar{D}$$

$$a_n = a + \frac{b-a}{n} \in D, n \ge 2$$

$$\lim_{n \to \infty} a_n = a$$

$$\lim_{n \to \infty} a_n = a$$

Also $[a, b] \subset \bar{D}$.

Ist $c \notin [a, b]$, etwa c < a, dann ist $|a_n - c| \ge a - c > 0$ für alle $a_n \in a$, b[Also: $\lim_{n \to a} f(a) = a$]

b) \mathscr{I} Intervall in $\mathbb{R}, x_1, \dots, x_r \in \mathscr{I}$,

$$D = \mathcal{I} \{x_1, ..., x_r\}$$
a $x_1 x_2 x_3 x_4 x_5 ... x_r b$

$$\bar{D} = \bar{\mathscr{I}} = [a, b],$$

falls
$$\mathcal{I} = \langle a, b \rangle$$
.

c)
$$\mathbb{Q} \subset \mathbb{R}$$

$$\bar{\mathbb{Q}} = \mathbb{R}$$

4.5 Definition

 $f: D \rightarrow , c \in \bar{D}$.

 $d \in \mathbb{R}$ heißt Grenzwert von f(x) für x gegen $c,d = \lim_{n \to \infty}$, wenn für jede Folge $(a_n) \in D$, die gegen c konvergiert, die Bildfolge $(f(a_n))_n$ gegen d konvergiert.

4.6 Beispiel:

a) Sei $f(x) = b_k x^k + ... + b_1 x + b_0$, eine Polynomfunktion, $c \in \mathbb{R}$. Sei (a_n) Folge mit $\lim_{n\to\infty}a_n=c$

 $\lim_{n \to \infty} f(a_n) = \lim_{n \to \infty} b_k x^k + \dots + b_1 x + b_0$ $= b_k (\lim_{n \to \infty} a_n)^k + b_{k-1} \cdot (\lim_{n \to \infty} a_n)^{k-1} + \dots + b_0 \text{ Rechenregeln für Folgen, 2.8}$ $= b_k \cdot c^k + b_{k-1} \cdot c^{k-1} + \dots + b_1 \cdot c + b_0 = f(c).$

Abbildung 18: x^2

b) Sei
$$f(x) = \frac{x^2 - 1}{x - 1}$$
,
 $D = R \setminus \{1\}$
Auf D ist $f(x) = \frac{(x + 1)(x - 1)}{(x - 1)} = (x + 1)$ $\bar{D} = \mathbb{R}$

Abbildung 19: x+1

$$\lim_{x \to 1} f(x) = ?$$

Sei
$$(a_n)$$
 Folge mit $D = \mathbb{R} \setminus \{1\}$ mit $\lim_{n \to \infty} a_n = 1$
 $f(a_n) = a_n + 1$
 $\lim_{n \to \infty} f(a_n) = \lim_{n \to \infty} (a_n + 1) = 1 + 1 + 2 \cdot \lim_{x \to 1} = 2$.

c)
$$f(x) = \begin{cases} 1 & \text{für } x > 0 \\ 0 & \text{für } x < 0 \end{cases} D = \mathbb{R}$$
$$\lim_{x \to 0} f(x) ?$$

Abbildung 20: Abschnittsweise definierte Funktion

$$a_n = \frac{1}{n}.\lim a_n = 0.$$

$$\lim_{x \to \infty} f(a_n) = \lim_{n \to \infty} 1 = 1$$

$$a_n = -\frac{1}{n},\lim a_n = 0$$

$$\lim_{n \to \infty} f(a_n) = \lim_{n \to \infty} 0 = 0.$$

$$\lim_{x \to 0} \text{ existiert nicht.}$$

d)
$$f(x) = \sin(\frac{1}{x}), D = \mathbb{R} \setminus \{0\}$$
 $a_n = \frac{1}{n\pi}, f(a_n) = \sin(n\pi) = 0$ $a'_n = \frac{1}{(2n + \frac{1}{2}\pi)} \to 0, f(a'n) = \sin(2\pi n + \frac{\pi}{2}) = 1$ $\lim(a_n) = 0$ $\lim(f(a_n)) = \lim 0 = 0\lim(f(a'_n)) = \lim 1 = 1$ $\lim(f(x))_{x \to 0}$ existiert nicht

e)
$$f(x) = x \cdot \sin(\frac{1}{x}), D = \mathbb{R} \setminus \{0\} \lim_{x \to 0} f(x) = 0$$
 dann: $(a_n) \to 0, a_n \in \mathbb{R} \setminus \{0\}$
$$\lim_{n \to \infty} f(a_n) = \lim_{n \to \infty} a_n \cdot \sin(\frac{1}{a_n}) \underset{2.8g}{=} 0$$

Abbildung 21: $\sin(\frac{1}{x})$

Abbildung 22: $x \cdot \sin(\frac{1}{x})$

4.7 Satz $(\varepsilon - \delta)$ -Kriterium

 $f: D \to \mathbb{R}, c \in \bar{D}$. Dann gilt: $\lim_{x \to c} f(x) = d \Leftrightarrow \forall \varepsilon > 0 \exists \delta \forall x \in D : |x - c| \le \delta \to |f(x) - d| \le \varepsilon$

Beweis. →: Angenommen falsch.

Dass heißt $\exists \varepsilon > 0$, so dass für alle $\delta > 0$ (z.B $\delta = \frac{1}{n}$) ein $x_n \in D$ existiert mit $|x_n - c| \le \frac{1}{n}$ und $|f(x_n) - d| > \varepsilon$

 $\lim_{n\to\infty} x_n = c.$ Aber:

 $\lim_{n \to \infty} f(x_n) \neq d \nleq$ $\iff \text{Sei } (a_n) \text{ Folge, } a_n \in D$

Abbildung 23: geometrische Darstellung des $\varepsilon - \delta$ Kriteriums

 $\lim_{n\to\infty}a_n=c.$

Zu zeigen : $\lim_{n\to\infty} f(a_n) = d$, d.h $\forall \varepsilon > 0 \exists n(\varepsilon) \forall n \ge n(\varepsilon) : |f(a_n) - d| < \varepsilon$.

Sei $\varepsilon > 0$ beliebig, ex. d > 0:

(★)

Für alle $x \in D$ mit $|x - c| \le \delta$ gilt $|f(x) - d| < \varepsilon$.

Da $\lim_{n\to\infty} a_n = c$, existiert n_0 mit $|a_n - c| \ge \delta$ für alle $n \ge n_0$

Nach
$$(\star)$$
 gilt: $|f(a_n) - d| < \varepsilon \forall n \ge n_0. \checkmark$

Bemerkung

 $\lim_{x \to c} f(x) = d \Leftrightarrow \text{Für alle Folgen } (a_n), a_n \in D, \text{ mit } \lim_{n \to \infty} a_n = c \text{ gilt } \lim_{n \to \infty} f(a_n) = e \text{ Wenn } \text{man zeigen will, dass } \lim_{x \to c} f(x) \text{ nicht existiert, gibt es 2 Möglichkeiten:}$

- Suche *eine bestimmte* Folge (a_n) , $\lim_{n\to\infty}a_n=c$, so dass $\lim_{x\to\infty}f(a_n)$ nicht existiert.
- Suche zwei Folgen (a_n) , (b_n) , $\lim_{x\to\infty}a_n=c$, $\lim_{x\to\infty}b_n=c$ und $\lim_{x\to\infty}f(a_n)\neq\lim_{x\to\infty}f(b_n)$

$$a_n = (-1)^n \cdot \frac{1}{n}$$

$$\lim_{n\to\infty}a_n=0$$

$$f(a_n) = (101010...)$$

 $\lim_{n\to\infty} f(a_n)$ existiert nicht.

Oder:

$$a_n = \frac{1}{n} \lim_{n \to \infty} a_n = 0$$

$$b_n = -\frac{1}{n} \lim_{n \to \infty} b_n = 0$$

Aber: $\lim_{x \to \infty} f(a_n) \neq \lim_{x \to \infty} f(b_n)$

Abbildung 24: Abschnittsweise definierte Funktion

4.8 Satz (Rechenregeln für Grenzwerte)

 $f, g, D \to \mathbb{R}, c \in \overline{D}$, Existieren die Grenzwerte auf der rechten Seite der folgenden Gleichungen, so auch die auf der linken (und es gilt Gleichheit)

- a) $\lim_{x \to c} (f \pm / \cdot g) = \lim_{x \to c} f(x) \pm / \cdot \lim_{x \to c} g(x).$
- b) Ist $g(x) \neq 0$ für alle $x \in D$ und $\lim_{x \to c} g(x) \neq 0$, so

$$\lim_{x \to c} \left(\frac{f(x)}{g(x)} \right) = \frac{\lim_{x \to c} f(x)}{\lim_{x \to c} g(x)}$$

c) $\lim_{x \to c} |f(x)| = |\lim_{x \to c} f(x)|$

Beweis. Folgt aus den entsprechenden Regeln für Folgen.

4.9 Beispiel:

$$f(x) = \frac{x^3 + 3x + 1}{2x^2 + 1}, D = \mathbb{R}$$

$$\lim_{x \to 2} = \frac{\lim_{x \to 2} (x^3 + 3x + 1)}{\lim_{x \to 2} (2x^2 + 1)}$$

$$= \frac{4 + 6 + 1}{8 + 1} = \frac{11}{9}$$

4.10 Bemerkung

Rechts- und linksseitige Grenzwerte:

Rechtsseitiger Grenzwert:

 $\lim_{\substack{x\to c^+\\ \text{linksseitiger Grenzwert: } \lim_{\substack{x\to c^-}} f(x)=d} f(a_n)_n, a_n\in D, a_n\geq c \text{ und } \lim_{\substack{n\to\infty\\ x\to c^-}} a_n=c \text{ gilt: } \lim_{\substack{n\to\infty\\ x\to c^-}} f(a_n)=d. \text{ Analog: } \lim_{\substack{n\to\infty\\ x\to c^-}} f(x)=d$

4.11 Beispiel:

$$f(x) = \begin{cases} 1 & x > 0 \\ 0 & x < 0 \end{cases} D = \mathbb{R} \setminus \{0\}, c = 0 \in \bar{D}$$

$$\lim_{x \to 0^+} f(x) = 1, \lim_{x \to 0^-} f(x) = 0.$$

$$\lim_{x \to 0} f(x) \text{ existiert nicht.}$$
 Falls
$$\lim_{x \to c^+} \text{ und } \lim_{x \to c^+} \text{ existieren}$$

$$und \lim_{x \to c^+} f(x) = \lim_{x \to c^-} = d$$
 so existiert
$$\lim_{x \to c} f(x) = d. \text{ Grenzwert: } d \in \mathbb{R}$$

Abbildung 25: Grenzwerte gegen einen Festen Wert

4.12 Definition

$$D = \langle b, \infty[, f : D \to \mathbb{R}]$$
 (z.B $D = \mathbb{R}$)
f konvergiert gegen $d \in \mathbb{R}$ für x gegen unendlich,

 $\lim = d$, falls gilt:

 $\forall \varepsilon > 0 \exists M = M(\varepsilon) \forall x \ge M : |f(x) - d| < \varepsilon.$

(Analog: $\lim_{x \to -\infty} f(x) = d$)

4.13 Beispiel

a)
$$\lim_{x \to \infty} \frac{1}{x} = 0$$
 $\frac{4}{2}$ $\frac{4}{2}$ $\frac{1}{2}$ $\frac{4}{2}$ $\frac{1}{2}$ $\frac{4}{2}$ $\frac{1}{2}$ $\frac{1}{2}$

Sei $\varepsilon > 0$. Wähle $M = \frac{1}{\varepsilon}$. Dann gilt für alle $x \ge M$: $|f(x) - 0| = |\frac{1}{x}| \le \frac{1}{m} = \varepsilon$.

$$|f(x) - 0| = |\frac{1}{x}| \le \frac{1}{m} = \varepsilon$$

b) Allgemein gilt:

P, Q Polynome vom Grad k bzw. l $l \ge k$

$$P(x) = a_k \cdot x^k + \dots, Q(x) = b_i \cdot x^i + \dots, a_k \neq 0, b_i \neq 0 \lim_{x \to \infty} \frac{P(x)}{Q(x)} = \begin{cases} 0 & \text{für } l \geq k \\ \frac{a_k}{b_k} & \text{für } l = k \end{cases}$$

(Beweis wie für Folgen $\lim_{x\to\infty} \frac{P(n)}{Q(n)}$)

$$\lim_{x \to \infty} \frac{7x^5 + 205x^3 + x^2 + 17}{14x^5 + 0.5} = \frac{1}{2}$$

4.14 Bemerkung

Die Rechenregeln aus 4.8 gelten auch für $x \to \infty / - \infty$

Definition 4.15

a) $f: D \to \mathbb{R}, c \in \bar{D}$

f geht gegen ∞ für x gegen c,

 $\lim_{x \to \infty} f(x) = \infty$, falls gilt:

$$\forall L > 0 \exists \delta > 0 \forall x \in D : |x - c| \le \delta \Rightarrow f(x) \ge L.$$

$$= \delta(L)$$

b) $< b, \infty [\supset D, f: D \to \mathbb{R}, f geht gegen \infty, f \ddot{u} r x gegen \infty: \lim_{x \to \infty} f(x) = \infty,$

falls gilt:

$$\forall L > 0 \exists M > 0 \forall x \in D, x \ge M, f(x) \ge L.$$

(Entsprechend:
$$\lim_{x \to c} f(x) = -\infty$$

Abbildung 26: Funktionen $\lim_{x\to\infty} = \infty$

4.16 **Satz**

$$f: D \to \mathbb{R}$$
.

- a) Sei $c \in \bar{D}$, oder $c = \infty, -\infty$ falls $\lim_{x \to c} f(x) = \infty$ oder $-\infty$, so ist $\lim_{x \to c} \frac{1}{f(x)} = 0$.
- b) $c \in \bar{D} \supset \mathbb{R}$. Falls $\lim_{x \to c} f(x) = 0$ und falls s > 0existiert mit f(x) > 0 für alle $x \in [c - s, c + s], (f(x) < 0)$ dann ist $\lim_{x \to c} \frac{1}{f(x)} = \infty(-\infty)$
- c) Falls $\lim_{x\to\infty} = 0$ und falls T > 0 existiert mit f(x) > 0 $f.ax \ge T$, so (f(x) < 0)

Abbildung 27: $sin(\frac{1}{x})$

ist
$$\lim_{x \to \infty} \frac{1}{f(x)} = \infty(-\infty)$$

(Entsprechend für $\lim_{x \to -\infty}$)

4.17 Beispiel

a)
$$f(x) = \frac{1}{x}, D =]0, \infty[$$
$$\lim_{x \to 0} f(x) = \infty$$

•
$$f(x) = \frac{1}{x}, D =]-\infty, 0[$$

$$\lim_{x \to 0} f(x) = -\infty$$

•
$$f(x) = \frac{1}{x}, D =]0, \infty[$$

$$\lim_{x \to 0} f(x) = \infty$$

c)
$$P(x) = ak_x^k + ... + a_0$$
.

$$\lim_{x \to \infty} P(x) = \begin{cases} \infty, \text{falls} & a_k > 0 \\ -\infty, \text{falls} & a_k < 0 \end{cases}$$

$$\lim_{x \to -\infty} P(x) = \begin{cases} \infty, \text{falls} & a_k > 0 \text{k gerade oder } a_k < 0 \text{ k ungerade} \\ -\infty, \text{falls} & a_k < 0 \text{k gerade oder } a_k > 0 \text{ k ungerade} \end{cases}$$

d)
$$P(x)$$
 wie in c)

$$Q(x) = b_1^l + \ldots + b_0$$

 $\lim_{x \to \infty} \frac{P(x)}{Q(x)} = \begin{cases} \infty, & \text{falls } a_k \text{ und } b_k \text{ gleiche Vorzeichen} \\ -\infty, & \text{falls } a_k \text{ und } b_k \text{ verschiedene Vorzeichen} \end{cases}$

e)
$$\lim_{x \to \infty} \frac{e^x}{x^n} = \infty \ \forall L > 0 \exists M \forall x \gg M : f(x) \gg L$$

Abbildung 28: $\frac{e^x}{x^n}$

Sei L
$$> 0, x > 0$$

$$e^x = \sum_{k=0}^{\infty} \frac{x^k}{k!} > \frac{x^{n+1}}{(n+1)!}$$

$$\frac{e^x}{x^n} > \frac{x}{(n+1)}$$

Sei
$$L \ge 0, x > 0$$
.
 $e^x = \sum_{k=0}^{\infty} \frac{x^k}{k!} > \frac{x^{n+1}}{(n+1)!}$
 $\frac{e^x}{x^n} > \frac{x}{(n+1)!}$
Ist $x \ge (n+1)!L =: M$, so ist $\frac{e^x}{x^n} > L$.

f) $\lim_{x \to \infty} \frac{x^n}{e^x} = 0$. Folgt aus e) und 4.16a)

Stetigkeit

Definition

 $f: D \to \mathbb{R}$.

- a) f ist stetig an $c \in D$, fallse $\lim_{x \to c} f(x) = f(c)$.
- b) f heißt (absolut) stetig, falls f an allen $c \in D$ stetig ist.

5 Stetigkeit 5.2 Satz

5.2 Satz

$$f: D \to \mathbb{R}, c \in D$$
.

Existiert Konstante $\mathbf{K} > 0$ mit $|f(x) - f(c)| \le \mathbf{K} \cdot |x - c|$ für alle $x \in D$, dann ist f stetig in c.

Beweis.

Sei $\varepsilon > 0$.

Wähle
$$\delta = \frac{\varepsilon}{\mathbf{K}}$$
. Ist $|x - c| \le \delta$, so ist $|f(x) - f(c)| \le \mathbf{K} \cdot |x - c| \le \mathbf{K} \cdot \delta - \varepsilon$.
 $4.7 \lim_{x \to c} f(x) = f(c)$.

5.3 Beispiel

a) Polynome sind auf ganz \mathbb{R} stetig

b)
$$f(x) = \begin{cases} 0, \text{ falls} & , x \neq 0 \\ 1, \text{ falls} & , x = 0 \end{cases}$$
 f ist nicht steig in 0.

Abbildung 29: Abschnittsweise definierte Funktion

$$a_n = \frac{1}{n}, a_n \to 0$$

$$f(a_n) = 0$$

$$(f(f(a_n)) \to 0 \neq f(0)$$

c)
$$f(x) = \begin{cases} 0, \text{falls} & , x > 0 \\ 1, \text{falls} & , x < 0 \end{cases}$$

f ist nicht stetig in 0. $\begin{array}{c} 4 \\ 2 \\ \hline -5-2 \\ -4 \end{array}$

d)
$$f(x) = \begin{cases} \sin(\frac{1}{x}), \text{ falls} &, x \neq 0 \\ 0, \text{ falls} &, x = 0 \end{cases}$$
 $x \neq 0$ $x \neq 0$

$$f$$
 ist nicht stetig in 0.
$$-\frac{0/5}{1} = 0.5$$

e)
$$f(x) = \begin{cases} x \cdot \sin(\frac{1}{x}), \text{ falls} &, x \neq 0 \\ 0, \text{ falls} &, x = 0 \end{cases} \lim_{x \to 0} x \cdot \sin(\frac{1}{x}) = 0 = f(0)$$

f ist stetig in 0.
$$\begin{array}{c|c}
 & 1 \\
 \hline
 & 0.5 \\
 \hline
 & -1 \\
 \hline
 & -0.5 \\
 \hline
 & 1
\end{array}$$

f)
$$f(x) = \sin(x)$$

 $g(x) = \sin(x)$ Sind stetig auf \mathbb{R} : TODO: Halbkreis plotten.

Fúr alle $x, c \in \mathbb{R}$ gilt:

$$|\sin(x) - \sin(c)| \le |x - c|.$$

 $\sin(x)$ ist stetig auf \mathbb{R} (5.2, **K** =1)

5.4 Satz (Rechenregeln für Stetigkeit)

 $f, g: D \to \mathbb{R}, c \in D$

sind f und g stetig in c, dann auch $f \pm / \cdot$ und |f|. Ist $g(x) \ne 0$ für alle $x \in D$, so ist auch $\frac{f}{g}$ stetig in c.

Beweis. Folgt aus 4.8

5.5 Satz

 $D, D' \subseteq \mathbb{R}, F: D \to \mathbb{R},$

 $g: D' \to \mathbb{R}$, $f(D) \subseteq D'$.. Ist f stetig in $c \in D$ und ist g stetig in $f(c) \in D'$, so ist $g \circ f$ stetig in c,

Beweis. $(a_n) \rightarrow c, a_n \in D$.

f stetig: $f(a_n) \rightarrow f(c)$

g stetig in f(c): $(g \circ f)(a_n)(a_n)$ $(g \circ f)(c)$

5 Stetigkeit 5.6 Beispiel

5.6 Beispiel

a) $f(x) = \sin(\frac{1}{|x^2 - 1|}), D = \mathbb{R} \setminus \{1, -1\}. f$ ist stetig auf D. Folgt aus $5.3_{a), f \text{ und } 5.4, 5.5}.$

b)
$$f(x) = \begin{cases} x \cdot \sin(\frac{1}{x}) & \text{falls } x \neq 0 \\ 0 & \text{falls } x = 0 \end{cases}$$
 stetig auf \mathbb{R} , 5.3e) für $c = 0$ für $c \neq 0$. 5.3,5.4,5.5

c)
$$f(x) = \tan(x) (= \frac{\sin(x)}{\cos(x)})$$

 $D = \mathbb{R} \setminus \{\frac{\pi}{2} + k\pi : k \in \mathbb{Z}\} f \text{ stetig auf D}$

5.7 Satz

Sei
$$f(x) = \sum_{i=0}^{\infty} a_i (x-a)^i$$

eine Potenzreihe mit Konvergenzradius R. Dann ist f stetig m]a-R[=:D $c\in D\lim_{x\to c}f(x)$

$$= \lim_{x \to c} f(x) \lim_{n \to \infty} \sum_{i=0}^{\infty} a_i (x - a)^i$$

$$\lim_{n \to \infty} \lim_{x \to c} \sum_{i=0}^{\infty} a_i (x - a)^i$$
 [3]

$$= \lim_{n \to \infty} \sum_{i=0}^{\infty} a_i (x-a)^i = f(c)$$

5.8 Korollar

 $f(x = \exp(x) = e^x \text{ ist stetig auf } \mathbb{R}$

5.9 Satz (Nullstellensatz für stetige Funktionen)

 $f: D \to \text{stetig}, [u, v] \subset D, u < v$

Es gelte $f(v) \cdot f(v) < 0$

(d.h f(u) > 0, f(v) > 0, oder f(u) > 0, f(v) < 0) Dann existiert $w \in]u, v[mit f(v) = 0]$

Beweis. O.B.d.A., f(n) < 0 < f(v).

Bijektionsverfahren:

$$c$$
 $v = b$

Falls f(c) < 0, so a = c, sonst b = c. Liefert Folgen (a_n) , (b_n) und eindeutig bestimmte

$$\begin{split} &w\in [u,v] \text{ mit } a_n \leq a_{n+1}w \leq b_{n+1} \leq b_n \text{ für alle } n\\ &f(a_n) < 0\\ &f(b_n) \geq 0\\ &\text{für alle } n. \lim_{n \to \infty} a_n = \lim_{n \to \infty} b_n = wf \text{ ist stetig in } w \Rightarrow \lim_{n \to \infty} f(a_n) = \lim_{n \to \infty} f(b_n) = f(b_n) = f(w).\\ &f(a_n) < 0 \forall n \to \lim_{n \to \infty} f(a_n) \leq 0.\\ &f(b_n) \geq 0 \forall n \to \lim_{n \to \infty} f(b_n) \geq 0.\\ &\Rightarrow 0 = \lim(a_n) = \lim(b_n) = f(w). \end{split}$$

5.10 Korollar (Zwischenwertsatz)

$$f: D \to \mathbb{R}$$
 stetig, $[u, v] \subseteq D$

Dann nimmt f in [u, v] jeden Wert zwischen f(u) und f(v) an (und evtl. weitere)

Abbildung 30: Zwischenwerte

Beweis. O.B.d.A f(u) < f(v)Sei f(u) < b < f(w) b beliebig, aber dann fest. Definiere g(x) = f(x) - b stetig g(u) = f(u) - bg(v) = f(v) - b5.9 (angewandt auf g): Ex. $w \in]u, v[$ mit g(w) = 0,d.h f(w) = b.

5.11 Satz (Min-Max-Theorem)

 $a, b \in \mathbb{R}, a < b, f : [a, b] \to \mathbb{R}$ (Wichtig: *abgeschlossenes* Intervall)

Dann hat f ein Maximum und ein Minimum auf [a, b], d.h es existieren

5 Stetigkeit 5.12 Definition

 x_{min} , $x_{max} \in [a, b]$ mit $f(x_{max}) \le f(x) \le f(x_m ax)$ für alle $x \in [a, b]$ (Beweis mit Bisektionsverfahren, [4])

Zur Erinnerung

 $f:D\to D'$ bijektiv, dann existiert Umkehrfunktion $f^{-1}D'\to D$ mit $f\circ f^{-1}=id_{D'}$ und $f^{-1}\circ f=id_{D}$ zum Beispiel $f(x)=x^2$ $f:[0,\infty[\to[0,\infty[$ bijektiv $f^{-1}:[0,\infty[\to[0,\infty[$ $f^{-1}(x)=+\sqrt{x}$

5.12 Definition

 $f: D \to \mathbb{R}$ heißt (streng) monoton wachsend (oder steigend), falls gilt:

Sind $x, y \in D$, x < y, so ist $f(x) \le f(y)(f(x) < f(y))$

Entsprechend: *streng monoton fallend. f* heißt *(streng) monoton*, dalls sie entweder (streng) monoton wachsend oder (steng) monoton fallend ist.

5.13 Satz

D Intervall (rechte

linke Grenze) ∞ , $-\infty$ möglich), $fD \to \mathbb{R}$ stetig. Dann gilt: f ist injektiv auf $D \Leftrightarrow f$ ist streng monoton auf D.

Beweis. $\Leftarrow \checkmark$

 \Rightarrow : Angenommen f ist nicht streng monoton auf D.

Dann existieren $x_1, x_2, x_3, x_4 \in D$. mit $x_1 < x_2$ und $f(x_1) < f(x_2)$ und $x_3 < x_4$ und $f(x_3) > f(x_4)$

 $(f(x_1) = f(x_2)$ bzw. $f(x_3) = f(x_4)$ nicht möglich, da f injektiv) Jetzt muss man Fallunterscheidungen machen.

z.B

$$x_1 < x_2 < x_3 < x_4, \ f(x_1) < f(x_3) < f(x_2)$$

5.14 Satz (Stetigkeit der Umkehrfunktion)

D Intervall, $f: D \to f(D) =: D'$

eine stetige, streng monotone (also bijektive) Funktion. Dann ist die Umkehrfunktion

Abbildung 31: Eine Fallunterscheidugn für 5.13

 $f^{-1}D' \to D$ stetig.

Beweis: [5] f streng monoton wachsend (fallend) $\Rightarrow f-1$ streng monoton wachsend

Abbildung 32: Eine Funktion und ihre Umkehrfunktion

(fallend)

5 Stetigkeit 5.15 Korollar

5.15 Korollar

Ist
$$n \in \mathbb{N}$$
 $\begin{cases} \operatorname{gerade} \\ \operatorname{ungerade} \end{cases}$, so $\inf f(x) = x^n$ stetig und bijektiv $\begin{cases} [0, \infty[\to [0, \infty[\\ \mathbb{R} \to \mathbb{R} \end{cases}]] \\ \mathbb{R} \to \mathbb{R} \end{cases}$ Die Umkehrfunktion $f^{-1} = \sqrt[n]{x}$ ist stetig und bijektiv $\begin{cases} [0, \infty[\to [0, \infty[\\ \mathbb{R} \to \mathbb{R} \end{cases}]] \\ \exp(x)$ stetig auf \mathbb{R} . Nach 3.5b) ist $\exp(x) > 0$ für alle $x \in \mathbb{R}$. Für $x > 0$, so ist $\exp(x) = 1 + x + \frac{x^2}{2} + \frac{x^2}{3!} + \ldots \ge 1$, Ist $x > y$ so ist $\exp(y) = \exp(x + (y - x)) = \exp(x) \cdot \exp(y - x) > 0$ $\exp(x) = \exp(x)$

5.16 Satz

 $\exp: \mathbb{R} \to]0, \infty[$ ist streng monoton wachsend und bijektiv. Die Umkehrfunktion heißt $\ln(x):]0, \infty[\to \mathbb{R}$ ist stetig und streng monoton wachsend und bijektiv. Es gilt: $\ln(x \cdot y) = \ln(x) + \ln(y)$ für alle x, y > 0, $\ln(1) = 0$

Abbildung 33: $\exp(x)$ und $\ln(x)$

Beweis. exp streng monoton steigen s.V, $\lim_{x\to\infty} \exp(x) = \infty \qquad (4.17e)$ $\lim_{x\to\infty} \exp(x) = \lim_{x\to\infty} \exp(-x) = \lim_{x\to\infty} \frac{1}{\exp(x)} = 0 \text{ Also: exp: } \mathbb{R} \to]0, \infty[\text{ bijektiv ln: }]0, \infty[\to \mathbb{R}, \text{ streng monoton wachsend, stetig, bijektiv }(5.14).$

 $x, y > 0. \exists a, b \in \mathbb{R} \text{ mit } x \in \exp(a), y = \exp(b).$

$$\ln(xy) = \ln(\exp(a) \cdot \exp(b))$$

$$= \ln(\exp(a+b)) = a+b$$

$$= \ln(x) + \ln(y)$$

5.17 Satz

$$\lim_{x \to \infty} \frac{\ln(x)}{x^n} = 0 \text{ (für jedes } k \in \mathbb{N})$$
(D.h. (ln(n) \in o(n))

Beweis.
$$x = \exp(y), x \le 1, \text{ d.h } y \le 0.$$

$$\frac{\ln(x)}{x^k} = \frac{y}{(\exp(y)^k)} \le \frac{y}{\exp(y)} \to 04.17e)$$

5.18 Definition

Für a > 0 setze $a^x = \exp(x \cdot \ln(a)) \underbrace{(\exp(\ln(a)))}_{0} a \le e : e^x = \exp(x), a^x$, falls a > 0 TODO:

komischer plott mit exponentialfunktionen

5.19 Satz

Sei a > 0

- a) $a^x : \mathbb{R} \to]0, \infty[$ ist streng monoton wachsend für alle a > 1 und streng monoton fallend für 0 < a < 1.
- b) a^x , $a^y = a^{x+y}$ $(a^{x^y} = a^{xy})$ für alle $x, y \in \mathbb{R}$
- c) Für $x = \frac{p}{q} \in Q(p \in \mathbb{Z}, q > 0)$ stimmt Def. von a^x entsprechend. 5.18 mit der der üblichen Definition $a^{\frac{p}{q}} = \sqrt[q]{a^p}$ überein.

Beweis. Folgt aus Definition mit 3.5

5.20 Bemerkung

Ist
$$x \in \mathbb{R}$$
 und (x_n) Folge mit $x_n \in \mathbb{Q}$, $\lim_{n \to \infty} x_n = x$, so $\lim_{n \to \infty} a^{x_n} = a^x$ (Stetigkeit) D.h a^x lässt sich durch $a^{x_n}, x_n \in \mathbb{Q}$, beliebig gut approximieren

56

5.21 Definition

Für $a>0, a\ne 1$, heißt die Umkehrfunktion von a^x Logarithmus zur Basis a $\log_a(x)$ (a=2, a=e, a=10 wichtig) $\log_e(x)=\ln(x)$

Abbildung 34: Logithmen mit Basen > 1 und < 1

5.22 Satz

Seien $a, b > 0, a \ne 1 \ne b, x, y > 0$

(a)
$$\log_a(x \cdot y) = \log(x) + \log(y)$$

(b)
$$\log_a(x^y) = y \cdot \log(x)$$

(c)
$$\log_a(x) = \log_a(b) \cdot \log_b(x)$$

(d) Sind a,b > 1, so
$$O(\log_a(n)) = O(\log_b(n))$$

Beweis. a) wie 5.10

b)
$$a^{y \cdot \log_a(a^y)} = (a^{\log_a(x)})^y = x^y$$

$$\Rightarrow \log_a(x^y) = \log_a(a^{y \cdot \log_a(x)}) = y \cdot \log_a(x)$$

c)
$$\log_a(x) = \log_a(b^{\log_a(x)}) \stackrel{b)}{=} \log_b(x) \cdot \log_a(b)$$

d) Folgt aus c), da
$$\log_a(b) > 0$$

6 Differenzierbare Funktionen

TODO PLOT mit steigungsdreieck Sekante durch (c,f(c)), (x,f(x)) Steigung der Sekante:

$$x \neq c : \frac{f(x) - f(c)}{x - c} = s(x) \text{ definiert auf } \mathbb{R} \setminus \{c\}$$
Differenzenquotient

Falls $\lim_{x\to c}\frac{f(x)-f(c)}{x-c}$ existiert: Steigung der Tangente an Graph von f in (c,f(c)) (Änderungsrate von f in (c,f(c))

6.1 Definition

 \mathscr{I} Intervall, $f: \mathscr{I} \to \mathbb{R}$, $c \in \mathscr{I}$

- a) f heßt differenzierbar (diffbar) an der Stelle c, falls $\lim_{x\to c} \frac{f(x)-f(c)}{x-c}$ existiert. Grenzwert heißt Ableitung oder Differential quotient von f an der Stelle c. $f'(c) = \left(\frac{df}{dx}(c)\right) \qquad \left[f'(c) = \lim_{n\to 0} \frac{f(c+h)-f(c)}{h}, \ h := x-c\right]$
- b) f heißt *differenzierbar* auf \mathscr{I} , falls f in jedem Punkt von \mathscr{I} differenzierbar ist. $f' : \begin{cases} \mathscr{I} \to R \\ x \to f(x) \end{cases}$

6.2 Beispiel

- a) $f(x) = a \cdot x^n, n \in \mathbb{N} a \in \mathbb{R}$. $x \neq c : \frac{ax^n - ac^n}{x - c} = \frac{a(x - c)(x^{n-1}...)}{x - c}$ $\lim_{x \to c} \frac{ax^n - ac^n}{x - c} = \lim_{x \to c} = \frac{a(x - c)(x^{n-1}...)}{x - c} = a \cdot n \cdot c^{n-1} = f(x)$. $f'(x) = a \cdot n \cdot x^{n-1}$ Gilt auch für n = 0. (f konstant auf f' = 0)
- b) f(x) = |x| $\begin{array}{c}
 3 \\
 2 \\
 1 \\
 -2
 \end{array}$

f ist diffbar in 0?

Zu zeigen $\lim_{x\to 0} \frac{|x|-0}{x-0}$ existiert nicht.

Sei (a_n) Folge, $a_n < 0$, $\lim_{n \to \infty} a_n = 0$ (z.B $a_n = -\frac{1}{n}$)

$$\lim_{n \to \infty} \frac{|a_n|}{a_n} = -1$$

$$b_n > 0, \lim b_n = 0 \text{ (z.B } b_n = \frac{1}{n})$$

$$\lim_{n \to \infty} \frac{|b_n|}{b_n} = \lim_{n \to \infty} \frac{b_n}{b_n} = 1$$

$$f'(0) existiert nicht!$$

6.3 Satz

 $f: \mathcal{I} \to \mathbb{R}$ in $c \in \mathcal{I}$ diffbar. Dann gilt für alle $x \in \mathcal{I}$: $f(x) = f(c) + f'(c) \cdot (x - c) + \mathcal{R}(x) \cdot (x - c)$, wobei $\mathcal{R}, \mathcal{I} \to \mathbb{R}$ stetig in $c, \lim_{x \to c} \mathcal{R}(c) = 0$

D.h.: f lässt sich in der Nähe von c sehr gut durch eine lineare Funktion (d.h Graph

Abbildung 35: Sekante an Funktion

ist Gerade) approximieren.

6.4 Korollar

 $f: \mathscr{I} \to \mathbb{R}$ diffbar in $c \Rightarrow f$ ist steig in c. Beweis folgt aus 6.3 Beachte: Umkehrung von 6.4 gilt im Allgemeinen nicht. 6.2b). Diffbare Funktionen sind stetig, aber sie haben keine Knicke im Graphen.

6.5 Satz (Ableitungsregeln)

 $\mathcal I$ Intervall, $c \in \mathcal I$. Für a)-c) seien $f,g:\mathcal I \to \mathbb R$ diffbar in c

a) $\alpha, \beta \in \mathbb{R}$, so $\alpha f + \beta g$ diffbar in c,

$$(\alpha f + \beta g)'(c) = \alpha \cdot f'(c) + \beta \cdot g'(c)$$

b) (Produktregel) $f \cdot g$ diffbar in c,

$$(f \cdot g)'(c) = f(c) \cdot g'(c) + f'(c) \cdot g(c)$$

c) (Quotientenregel) Ist $g(x) \neq 0$ auf \mathcal{I} , so

$$\frac{f'}{g}(c) = \frac{f'(c) \cdot g(c) - f(c) \cdot g'(c)}{g(c)^2}$$

d) (Kettenregel) \mathscr{I}_1 Intervall, $f: \mathscr{I} \to \mathscr{I}_1$, diffbar in $c, g: \mathscr{I} \to \mathbb{R}$ diffbar in f(c), so $g \circ f$ diffbar in c, und

$$(g \circ f)' = g'(f(c)) \cdot f'(c)$$

Beweis. Nur b):
$$\lim_{x \to c} \frac{f(x) \cdot g(x) - f(c) \cdot g(c)}{x - c} = \lim_{x \to c} \frac{f(x)(g(x) - g(c)) + g(c)(f(x) - f(c))}{x - c} = \lim_{x \to c} f(x) \cdot \lim_{x \to c} \frac{g(x) - g(c)}{x - c} + g(c) \cdot \lim_{x \to c} \frac{f(x) - f(c)}{x - c} = f(c)g'(c) + g(c)f'(c).$$

6.6 Beispiel

a)
$$f(x) = a_n \cdot x^n + a_{n-1} \cdot x^{n-1} + \dots + a_0$$

 $f'(x) = a_n \cdot n \cdot x^{n-1} \cdot x^{n-2} + \dots + a_1$
6.2a)

b)
$$f(x) = \frac{1}{x^n} = x^{-n} \ (n \in \mathbb{N})$$

 $\mathscr{I} =]0, \infty[$
 $f'(x) = 0.2a) \frac{0 \cdot x^n - 1 \cdot x^{n-1}}{x^{2n}} = \frac{-n}{x^{n+1}} = (-n) \cdot x^{-n-1} \text{ gilt auch auf }] - \infty, 0[$

c)
$$h(x) = (x^2 + x + 1)^2$$

 $(6.5d)$: $f(x) = x^2 + x + 1$
 $g(x) = x^2$
 $h'(x) = 2 \cdot (x^2 + x + 1) \cdot (2x + 1)$

6.7 Satz

a)
$$\lim_{x \to 0} \frac{\sin(x)}{1}$$

b)
$$\lim_{x \to 0} \frac{1 - \cos(x)}{x} = 0$$

60

Beweis.

a) Elementargeometrisch + Additionstheoreme 1.7 (Man zeig: $\cos(x) < \frac{\sin(x)}{x} < 1$ für $0 < x < \frac{\pi}{2}$

b)
$$\frac{1-\cos(x)}{x} = \frac{(1-\cos(x))}{x(1+\cos(x))} = \frac{1-\cos(x)}{x(1+\cos(x))} = \frac{\sin^2(x)}{x} \cdot \frac{x}{1+\cos(x)} \to 0$$

6.8 Satz

a)
$$f(x) = \sin(x)$$
, so $f'(x) = \cos(x)$

b)
$$f(x) = \cos(x)$$
, so $f'(x) = -\sin(x)$

c)
$$f(x) = \tan(x)$$
, so $f'(x) = 1 + \tan^2(x)$

$$\begin{split} &Beweis. \ \ \text{a), } c \in \mathbb{R} \\ &\sin'(c) = \lim_{h \to 0} \frac{\sin(h+c) + \sin(c)}{h} \\ &\lim_{h \to 0} \frac{\sin(c) \cdot \cos(h) + \cos(c) \cdot \sin(h) - \sin(c)}{h} \\ &= \frac{\sin(c) \cdot \cos(h) - 1}{h} + \lim_{h \to 0} \frac{\cos(c) \sin(h)}{h} = \sin(c) \cdot 0 + \cos(c) \cdot 1 = \cos(c) \text{ b) analog} \\ &\text{c) } f(x) = \frac{\sin(x)}{\cos(x)} \text{ Quotientenregel + a)b) + \sin^2(x) + \cos^2(x) = 1. \end{split}$$

6.9 Beispiel

a)
$$f(x) = \begin{cases} 1 & \text{für } x < 0 \\ \cos(x) & \text{für } x > 0 \end{cases}$$
$$f \text{ ist diffbar für alle } x \neq 0$$
$$\lim_{x \to 0} \frac{f(x) - f(0)}{x}$$
$$\lim_{x \to 0^{+}} \frac{\cos(x) - 1}{x} = 0$$
$$\lim_{x \to 0^{-}} \frac{1 - 1}{x} = 0$$
$$\lim_{x \to 0} \frac{f(x) - f(0)}{x} = 0 = f'(0)$$

b)
$$f(x) = \sin^2(x^3) = (\sin(x^3))^2$$

 $f'(x) = 2 \cdot \sin(x^3) \cdot (\sin(x^3))' = 6 \cdot \sin(x^3) \cdot \cos(x^3) \cdot x^2$

Abbildung 36: Abschnittsweise definierte cosinus Funktion

6.10 Satz

Im Inneren ihres Konvergenzintervalls definieren Potenzreihen eine Funktion

Sei
$$f(x) = \sum_{k=0}^{\infty} a_k (x-a)^k$$

eine Potenzreihe um a mit Konvergenzradius ${\bf R}>0$.

Dann ist f in]a-R, a+R[diffbar und es gilt $: \sum_{k=1}^{\infty} k \cdot a_k \cdot (x-a)^{k-1} = f'(x)$.

(gliedweise Ableitung)

(Beweis [7])

Korollar 6.11

$$(\exp(x))' = \exp(x)$$

Beweis. $\exp(x) = \sum_{k=0}^{\infty} \frac{x^k}{k!}$ für alle $x \in \mathbb{R}$ $(\frac{x^k}{k!}) = \frac{k \cdot x^{k-1}}{k!} = \frac{x^{k-1}}{(k-1)!}$

$$\left(\frac{x^k}{k!}\right) = \frac{k \cdot x^{k-1}}{k!} = \frac{x^{k-1}}{(k-1)!}$$

Beweis folgt.

6.12 Satz (Ableitung der Umkehrfunktion)

 $f: \mathcal{I} \to \mathcal{I}_1$ bijektiv, $\mathcal{I}, \mathcal{I}_1$ Intervall (linke und rechte Grenze darf nicht $-\infty/\infty$ sein) Sei f in $c \in \mathcal{I}$ diffbar und $f'(c) \neq 0$.

Dann ist $f': \mathcal{I}_1 \to \mathcal{I}$ in $f(c) \in \mathcal{I}_1$ diffbar, und es gilt: $(f^{-1})'(f(c)) = \frac{1}{f(c)}$

Ist f überall auf $\mathscr I$ diffbar und $f'(y) \neq 0$ für alle $y \in \mathscr I$, so ist f^{-1} auf $\mathscr I_1$ diffbar und es

gilt:

$$(f^{-1})'(x) = \frac{1}{f'(f^{-1}(x))}$$

für alle $x \in \mathcal{I}$.

Beweisidee: f^{-1} diffbar an Stelle f(c), falls $f'(c) \neq 0$. Grund: Graph von f' = Graph von f gespiegelt an Winkelhalbierende s(x) = x.

$$(f^{-1} \circ f)(x) = x$$

Abbildung 37: Zwei Funktionen an der Winkelhalbierenden

Ableiten mit Kettenregel.

$$f^{-1}(f(x)) \cdot f'(x) = 1$$
. Beweis folgt.

6.13 Bemerkung

Bedingung $f'(c) \neq 0$ in 6.12 ist notwendig.

$$f:\begin{cases} \mathbb{R} \to R \\ x \to x^3 \end{cases} \text{ bijektiv}$$

$$f'(0) = 0. \qquad (f'(x) = 3x^2)$$

$$\lim_{x \to 0} \frac{x^{\frac{1}{3}} - 0}{x - 0} = \lim_{x \to 0} \frac{1}{x^{\frac{2}{3}}} = \infty$$

$$(f^{-1})'(0) \text{ existiert nicht. (jedenfalls nicht als reelle Zahl!)}$$

6.14 Satz

$$f(x)$$
 $f'(x)$

 a) a^x
 $(a \in \mathbb{R}, a > 0), x \in \mathbb{R}$
 $\ln(a) \cdot a^x$

 b) $\ln(x)$
 $\inf]0, \infty[$
 $\frac{1}{x}$

 c) $\log_{10}(x)$
 $(\text{konst. } a > 0, a \neq 1) \text{ auf }]0, \infty[$
 $\frac{1}{\ln(a) \cdot x}$

 d) $x \cdot (\ln(x) - 1)$
 $\inf]0, \infty[$
 $\ln(x)$

 e) $x^b \cdot (b \in \mathbb{R})$
 $\inf]0, \infty[$
 $b \cdot x^{b-1}$

Beweis. a)

$$f(x) = \exp(x \cdot \ln(a))$$

$$f'(x) = \underset{\text{Kettenregel}}{=} \exp(x \cdot \ln(a)) \cdot \ln(a) = a^x \cdot \ln(a)$$

b)
$$\ln(x)' = \frac{1}{6.12} \frac{1}{\exp'(\ln(x))} = \frac{1}{x}$$

c) $\log'_a(x) = \frac{1}{6.12} \frac{1}{\ln(a) \cdot a^{\log_a(x)}} = \frac{1}{\ln(a) \cdot x}$

6.15 Satz (logarithmische Abbildung)

 $f: \mathcal{I} \to]0, \infty[$ diffbar.

$$(\ln(f(x)))' = \frac{f'(x)}{f(x)}$$

Beweis: Kettenregel und 6.14b)

6.16 Beispiel

$$f(x) = e^{x} \cdot (\sin(x) + 2) \cdot x^{6} \text{ für } x \neq 0$$

$$\ln(f(x)) = x + \ln(\sin(x) + 2) + 6 \cdot \ln(x)$$

$$\ln(f(x))' = 1 + \frac{\cos(x)}{\sin(x)} + \frac{6}{x}$$

$$f'(x) = (1 + \frac{\cos(x)}{\sin(x) + 2} + \frac{6}{x}) \cdot e^{x} \cdot (\sin(x) + 2) \cdot x^{6}$$

6.17 Definition

 $f: D \to \mathbb{R}$ hat lokales Maximum

6.18 Satz

 $f: D \to \mathbb{R}$ diffbar.

Hat f in $c \in D$ lokales Minimum/Maximum, so f'(c) = 0

64

Beweis.

c lokale Max.stelle.

f'(c) existiert nach Voraussetzung.

$$f'(c) = \lim_{x \to c^+} \frac{f(x) - f(c)}{x - c} \le 0.$$

$$f'(c) = \lim_{x \to c^{-}} \frac{f(x) - f(c)}{x - c} \ge 0.$$

$$\Rightarrow f'(c) = 0.$$

$$\Rightarrow f'(c) = 0.$$

Vorsicht: f'(c) = 0 ist nicht hinreichend für lokale Maxima/Minima.

z.B
$$f(x) = x^3$$
 $f'(x) = 3x^2$ $f'(0) = 0$

f hat kein Maximum oder Minimum in 0

Globale Max/Min von f auf [a, b]:

Abbildung 38: Ableitung keine Hinreichende Bedingung für Minima/Maxima

- Bestimme $c \in]a, b[$ mit f'(c) = 0 Teste, ob lokale Max/Min.
- Teste Intervallgrenzen a und b.

6.19 Satz (Mittelwertsatz)

$$\mathcal{I} = [a,b], a < b, a,b \in \mathbb{R}$$

 $f: \mathcal{I} \to \mathbb{R}$ stetig und diffbar auf] a, b[.

Dann existiert $c \in a, b$ mit $f'(c) = \frac{f(b) - f(a)}{b - a}$

Beweis. Setze $s(x) = f(a) + \frac{f(b) - f(a)}{b - a} \cdot (x - a)$ (Sekante durch (a, f(a)), (b, f(b))

Def. h(x) = f(x) - s(x). h(a) = h(b) = 0.

Speziell: f(a) = $f(b) \Rightarrow \exists c \in]a,b[$ mit f'(c) = 0 Satz von Rolle

Abbildung 39: Eine Funktion und ihrer Steigung an der Stelle c

Zeige: $\exists c \in]a, b[$ mit h'(c) = 0. Fertig, denn

$$h'(x) = f'(x) - s'(x) = f'(x) - \frac{f(b) - f(a)}{b - a}$$
$$h'(c) = 0 \Rightarrow f'(c) = \frac{f(b) - f(a)}{b - a}$$

Ist h konstant, so kann man jedes $c \in]a,b[$ wählen. Also sei h nicht konstant. h ist stetig auf [a.b]. 5.11. h nimmt auf [a,b] globales Max. und Min. an: $x_{max}, x_{min}, x_{max} \neq x_{min}$, da h nicht konstant h(a) = h(b) O.B.d.A

$$x_{max} \in]a, b[.6.18: h'(x_{max}) = 0$$

6.20 Korollar

 $\mathscr{I} = [a,b].a < b,f:I \to \mathbb{R}$ stetig, diffbar in]a,b[. (auch $\mathscr{I} = \mathbb{R}$ oder $[a,\infty]$, $]-\infty,b]$ erlaubt)

- a) Ist f'(x) = 0 für alle $x \in a, b$, so ist f konstant auf [a, b],
- b) Ist $f'(x) \ge 0$ für alle $x \in]a, b[$, so ist f (streng) monoton wachsend auf \mathscr{I}
- c) Ist $f(x) \le 0$ für alle $x \in a$, b[so ist f (streng) monoton fallend auf \mathcal{I} .

Beweis.

Wähle u < v, $u, v \in [a, b]$ beliebig.

Wende 6.19 auf [u, v] an. $\exists c \in]u, v[$ mit

$$f'(c) = \frac{f(v) - f(u)}{v - u}$$

Daraus folgt im Fall

a) f(v) = f(u)

b) $f(v) \ge f(u)$

c) $f(v) \le f(u)$

Bedingung für strenge Montonie nur hinreichend, nicht notwendig $f(x) = x^3$ streng monoton steigend f'(0) = 0

6.21 Korollar

 $\mathcal{I} = [a, b], a < b \text{ wie in 6.20.}$

 $c \in]a, b[.f : \mathcal{I} \to \mathbb{R} \text{ sei stetig in } \mathcal{I}.$

 $f \operatorname{auf} \mathcal{I}_0 =]a, b[\setminus \{c\} \operatorname{diffbar}]$

Existiert $\lim_{x \to c} f'(x)$ auf \mathscr{I}_0 , so existiert f'(c) und $f'(c) = \lim_{x \to c} f'(x)$.

Satz (Regeln von L'Hôpital)

a) \mathcal{I} Intervall, $c \in \mathcal{I}$, $f, g : \mathcal{I} \setminus \{c\} \to \mathbb{R}$ diffbar.

Es gelte g'(x) > 0 für alle $x \in \mathcal{I} \setminus \{c\}$

Oder : g'(x) > 0 für alle $x \in \mathcal{I} \setminus \{c\}$

Es gelte $\lim_{x \to c} f(x) = \lim_{x \to c} g(x) = 0$ oder ∞ Existiert $\lim_{x \to c} \frac{f'(x)}{g'(x)} = L$, so ist $\lim_{x \to c} \frac{f(x)}{g(x)} = L$

b) $f,g:[a,\infty[\to\mathbb{R} \text{ diffbar.}]$

Es gelte g'(x) > 0 für alle $x \in [a, \infty[$

g'(x) < 0 für alle $x \in [a, \infty[$ und $\lim_{x \to \infty} f(x) = \lim_{x \to \infty} g(x) = 0$ oder ∞ oder

Existiert $\lim_{x\to\infty} \frac{f'(x)}{g'(x)} = L$, so ist

 $\lim_{x \to \infty} \frac{f(x)}{g(x)} = L.$ a

6.23 Beispiel

a) $\lim_{x\to\infty} \frac{\ln(1+ax)}{x} = ?(a \in \mathbb{R})$ Zähler definiert für alle $x \in \mathbb{R}$ mit 1 + ax > 0 6.22a):

$$\lim_{x\to 0}\frac{\ln(1+ax)}{x}$$

$$\lim_{x \to 0} \frac{\frac{a}{1+ax}}{1} = a$$

b) lim $x \cdot \ln(x)$

$$\lim_{x \to 0^{+}} -\frac{-\ln(x)}{\frac{1}{x}} = \lim_{x \to 0^{0}} \frac{\frac{1}{x}}{-\frac{1}{x^{2}}} = \lim_{x \to 0^{+}} -\frac{x^{2}}{x} = \lim_{x \to 0^{+}} -x = 0$$

- c) $\lim_{x \to 0} x^x = \lim_{x \to 0} \exp(x \cdot \ln(x))$ $= \exp(\lim_{x \to 0} x \cdot \ln(x)) = \exp(0) = 1.$ (Deshalb definiert man $0^0 = 1$)
- d) $\lim_{x \to \infty} = \frac{\ln(x)}{x} = \lim_{6.22} \lim_{x \to \infty} \frac{\frac{1}{x}}{1} = \lim_{x \to \infty} = \frac{1}{x} = 0 \text{ (schon in 5.17)}$

7 Das bestimmte Integral

Ziel: Bestimmung des Flächeninhalts zwischen Graph einer Funktion und x-Achse zwischen zwei Grenzen a und b (sofern möglich).

7.1 Definition

- a) $a, b \in \mathbb{R}, a < b.f : [a, b] \to \mathbb{R}$ heißt *Treppenfunktion*, falls es $a = a_0 < a_1 < ... < a_n = b$ gibt, so dass f auf jedem offenem Intervall $]a_i, a_{i+1}[/, i = 0..., n-1]$, konstant ist. (Wert an den a_i beliebig.)
- b) *f* wie in a).

$$\int_{a}^{b} f dx = \int_{a}^{b} f(x) dx := \sum_{i=0}^{n-1} c_{i} (a_{i+1} - a_{i})$$

wobei $f(x) = c_i$ auf $]a_i, a_{i+1}[$.

Integral von f über [a, b] (Integral kann negativ sein)

7.2 Definition

 $a, b \in \mathbb{R}.a < b.$

 $f:[a,b]\to\mathbb{R}$ heißt *Regelfunktion* (oder integrierbare Funktion) \Leftrightarrow

 $\forall \varepsilon > 0 \exists$ Treppenfunktion $g : [a, b] \to \mathbb{R}$ (abh. von ε): $|f(x) - g(x)| \ge \varepsilon$ für alle $x \in [a, b]$. Bedeutung:

Gleichmäßige Approximierbarkeit durch Treppenfunktion.

Abbildung 40: Flächeninhalt unter einer Funktion f

7.3 Satz

 $\mathcal{I} = [a, b], a, b \in \mathbb{R}, a < b.$

- a) Jede Regelfunktion f auf $\mathcal I$ ist beschränkt d.h. $\exists m, M \in \mathbb R$: $m \le f(x) \le M$ für alle $x \in [a,b]$.
- b) Summe, Produkt und Betrag von Regelfunktionen ist wieder eine Regelfunktion

Abbildung 41: Treppenfunktion

Beweisidee für a),b):

Man beweist 7.3 zunächst für Treppenfunktionen. Für b): Bestimme gemeinsame Verfeinerung der Intervallunterteilung der beiden Treppenfunktionen Dann auf Regelfunktionen übertragen.

7.4 Satz

Jede stetige Funktion auf [a, b] ist Regelfunktion Beweis: [8] 7.4 gilt auch für soge-

Abbildung 42: Treppenfunktion

nannte stückweise stetige Funktionen auf [a, b] [a, b] ist Vereinigung endlicher Teilin-

Abbildung 43: Abschnittsweise stetige Funktion

tervalle, auf denen Funktion stetig ist.

7.5 Beispiel

a) $f(x) = x^2$, $\mathcal{I} = [0, t]$

Definition für $x \in \mathbb{N}$ Treppenfunktion.

Abbildung 44: Treppenfunktion (Untersumme) von \boldsymbol{x}^2

$$f_n:[0,t]\to\mathbb{R}$$

$$\begin{split} f_n(x) &= \begin{cases} (\frac{it^2}{n}) & \text{falls } x \in [\frac{it}{n}, \frac{(i+1)t}{n}] \text{ für ein } i \in \{0, \dots, n-1\} \\ t^2 & \text{falls } x = t \end{cases} \\ x &\in [0,t]: |f(x) - f_n(x)| = ? \\ x &= t: |f(t) - f_n(x)| = 0. \\ 0 &\leq x < t: \text{Dann } x \in [\frac{it}{n}, \frac{(i+1)t}{n}] \text{ für alle } i \in \{0, \dots, n-1\}. \\ |f(x) - f_n(x)| &= |x^2 - (\frac{it}{n})^2| \leq (\frac{(i+1)t}{n})^2 - (\frac{it}{n})^2 = \frac{2it + t^2}{n^2} \leq \frac{2t}{n} + \frac{t^2}{n^2} \xrightarrow[n \to \infty]{} 0 \end{split}$$

b)
$$f(x) = \begin{cases} 0 & x \in \mathbb{Q} \\ 1 & x \notin \mathbb{Q} \end{cases}$$

 $f: [0,1] \to \mathbb{R}$

Abbildung 45: Nicht integrierbare Funktion

7.6 Lemma

f Regelfunktion auf [a, b]

a) $(f_n)_n$ Folge von Treppenfunktion, die *gleichmäßig* gegen f konvergiert, dass heißt es existiert Nullfolge $(a_n)_n$, $a \ge 0$, und $|f_n(x) - f(x)| \le a_n$ für alle $x \in [a, b]$. Dann konvergiert die Folge

$$\underbrace{\left(\int_{a}^{b} f_{n}(x) dx\right)_{n}}_{\in \mathbb{R}}$$

b) Sind $(f_n)_n$ und $(g_n)_n$ zwei Folgen von Treppenfunktionen die gegen f gleichmäßig konvergieren, so:

(WHK, 7.20)
$$\lim_{n \to \infty} \int_a^b f_n(x) dx = \lim_{n \to \infty} \int_a^b g_n(x) dx$$

7.7 **Definition**

 $f:[a,b]\to\mathbb{R}$ Regelfunktion, $(f_n)_n$ Folge von Treppenfunktionen, die gleichmäßif gegen f konvergiert (wie in 7.6 a). Definition (bestimmtes) Integral:

$$\int_{a}^{b} f(x)dx = \lim_{n \to \infty} \int_{a}^{b} f_{n}(x)dx$$

Treppenfunktion:
$$\sum_{i=0}^{n-1} c_i(x_m - x_i)$$

$$a = x_0 \qquad b = x_n$$

$$a = x_i \qquad a = x_{i+1}$$

Beispiel 7.8

$$f(x) = x^2 \text{ auf } [0, t]$$

 f_n wie in 7.5.

$$\int_{a}^{b} f_{n}(x) dx = \sum_{i=0}^{n-1} \left(\frac{it}{n}\right)^{2} \cdot \frac{t}{n} = \sum_{i=0}^{n+1} i^{2} \cdot \frac{t^{2}}{n^{3}} = \frac{t^{3}}{n^{3}} \cdot \sum_{i=0}^{n-1} i^{2}$$

Per Induktion nach n
 kann man zeigen : $\sum\limits_{i=0}^{n-1}i^2=\frac{(n-1)n(2n-1)}{6}$

Also:
$$\int_0^t f_n(x) dx = \frac{t^3}{n^3} \cdot \frac{(n-1)n(2n-1)}{6}$$

 $\lim_{n \to \infty} \int_0^t f_n(x) dx = \frac{t^3}{6} \cdot 2 = \frac{t^3}{3}$ Falls $t > 0 - \frac{t^3}{3}$

Satz (Rechenregeln für Integrale)

f, g Regelfunktionen auf [a, b].

$$\int_{a}^{b} (f+g)(x)dx = \int_{a}^{b} f(x)dx + \int_{a}^{b} g(x)dx$$

$$\int_{a}^{b} a \cdot f(x)dx = a \cdot \int_{a}^{b} f(x)dx$$
(a)

(b)
$$f(x) \le g(x)$$
 für alle $x \in [a, b] \Rightarrow \int_a^b f(x) dx \le \int_a^b g(x) dx$

(c)
$$\left| \int_{a}^{b} f(x) dx \right| \le \int_{a}^{b} |f(x)| dx$$

Sei $m \le f(x) \le M$ für alle $x \in [a, b]$:

(d)
$$m(b-a) \le \int_a^b f(x) dx \le M(b-a)$$

(e)
$$a < c < b$$
, so $\int_a^c f(x) dx = \int_c^b f(x) dx$

Beispiel 7.10

$$a < b. \int_{a}^{b} x^{2} dx = \frac{b^{3}}{3} - \frac{a^{3}}{3}$$

$$(o < a < b:) 7.9e \int_{a}^{b} x^{2} dx = \int_{0}^{b} x^{2} dx - \int_{0}^{a} x^{2} dx = \frac{b^{3}}{3} - \frac{a^{3}}{3})$$
Analog für die Fälle $a \le 0 < b$ und $a < b \le 0$

Satz (Mittelwertsatz der Integralrechnung) 7.11

 $f:[a.b]\to\mathbb{R}$ stetig. Dann existiert $c \in [a, b]$ mit $\int_{b}^{a} f(x) dx = f(c) \cdot (b - a)$

Beweis. f ist stetig nimmt also das Maximum von m an Stelle x_{min} und Maximum Man der Stelle x_{max} an. (5.11)

7.9d):
$$m(b-a) \le \int_{a}^{b} f(x) dx$$

 $f(x_{min}) = m \le \frac{1}{b-a} \cdot \int_a^b f(x) dx \le M = f(x_{max})$ Zwischenwertsatz für stetige Funktionen 5.10: $\exists c$ zwischen x_{min} und x_{max} (d.h $c \in [a,b]$) mit $f(c) = \frac{1}{b-a} \int_a^b f(x) dx$

Abbildung 46: Mittelwertsatz der Integralrechnung

8 Der Hauptsatz der Differential- und Integralrechnung

8.1 Definition

a) Sei [a, b] abgeschlossenes, beschränktes (d.h $a, b \in \mathbb{R}, a < b$) Intervall. $f: [a, b] \to \mathbb{R}$ integrierbar,

$$\int_{a}^{b} f(t)dt = -\int_{b}^{a} f(t)dt$$

$$\int_{a}^{a} f(t)dt = 0$$

7.8
$$x > 0$$

 $x > 0 \int_0^x t^2 dt = \boxed{\frac{x^3}{3}}$
 $\left(\frac{x^3}{3}\right)' = x^2$
Kein Zufall
 $x \le 0$
 $\int_0^x t^2 dt = -\int_x^0 = -(-\frac{x^3}{3}) = \frac{x^3}{3}$
 $\int_a^b t^2 = \frac{b^3}{3} - \frac{a^3}{3}$ gilt für alle $a, b \in \mathbb{R}$

8.2 Definition

Sei $\mathscr I$ beliebiges Intervall ($-\infty$ bzw. ∞ als linke/rechte Grenze erlaubt).

a) $f: \mathcal{I} \to \mathbb{R}$ heißt *lokal integrierbar*,wenn f auf jedem ageschlossenem beschränktem Teilintervall [u, v] von \mathcal{I} integrierbar ist.

TODO: Sehr wellige Funktion

(Ist \mathscr{I} selbst abgeschlossen und beschränkt, so "lokal integrierbar "= "integrierbar ")

b) $F: \mathscr{I} \to \mathbb{R}$ heißt Stammfunktion der lokal Integrierbaren Funktion $f: \mathscr{I} \to \mathbb{R}$, wenn gilt

$$\int_{a}^{V} f(t)dt = F(v) - F(u)$$

für alle $u, v \in \mathcal{I}$.

Eine Stammfunktion von f wird auch als *unbestimmtes Integral* von f bezeichnet $F = \int f(t) dt$

8.3 Bemerkung

Ist f lokal integrierbar auf \mathcal{I} , so gilt

$$\int_{u}^{v} f(t)dt + \int_{v}^{w} f(t)dt = \int_{u}^{w} f(t)dt$$

Folgt aus 7.9 + 8.1

für alle $u, v, w \in \mathcal{I}$ (nicht notwendig u < v < w)

8.4 Beispiel

a) $f(x) = x^2$ lokal integrierbar auf \mathbb{R} .

Stammfunktion von f.

$$F(x) = \frac{x^3}{3}$$

$$\int_{a}^{b} F(b) - F(a)$$

b)
$$f(x) = \begin{cases} 0 & \text{für } x < 0 \\ 1 & \text{für } x \ge 0 \end{cases}$$

Heaviside - Funktion

f ist lokal integrierbar auf \mathbb{R}

TODO: PLOT abschnittsweisedefinierte Funktion

Stammfunktion von *f*:

$$F(x) = \begin{cases} 0 & \text{für } x < 0 \\ x & \text{für } x \ge 0 \end{cases}$$
TODO: PLOT

Zeige: $\forall u, v \in \mathbb{R}$:

$$\int_{u}^{v} f(t)dt = F(v) - F(u)$$

$$\begin{aligned} & \int_{u}^{v} f(t) dt = 0 F(v) - F(u) \\ & (u < 0 < v) & \int_{u}^{v} f(t) dt = 0 = \int_{0}^{v} f(t) dt = 1 \cdot v = F(v) - F(u) \\ & (0 < u < v) & \int_{u}^{v} f(t) dt = 1 \cdot (v - u) F(v) - F(u) \\ & (u \ge 0) & \int_{u}^{v} f(t) dt = -(F(u) - F(v)) = F(v) - F(u) \end{aligned}$$

8.5 Satz

Sei $\mathcal{I} \neq \emptyset$ Intervall, $f: \mathcal{I} \to \mathbb{R}$ lokal "Integrierbar"

- a) Ist *F* Stammfunktion von *f* , so auch G(x) = F(x) + c für jedes $c \in \mathbb{R}$.
- b) Sind F und G Stammfunktionen von f, so ist F(x) = G(x) + c für ein $c \in \mathbb{R}$
- c) Sei $x_0 \in \mathcal{I}$ beliebig, aber fest gewählt. Dann ist $F(x) = \int_{x_0}^x f(t) \, dt$ eine Stammfunktion von f.

(Beachte

$$\int_{x_0}^x f(t)dt = \int_{x_0'}^x f(t)dt + \int_{x_0'}^x f(t)dt$$

)

Beweis. a),b)

F Stammfunktion, $c \in \mathbb{R}G(x) = F(x) + c$ ist Stammfunktion von f:

$$G(v) - G(u) = F(v) = F(u) = \int_{u}^{v} f(t) dt$$

 $G(v)-G(u)=F(v)=F(u)=\int_u^v f(t)dt$ Umgekehrt: Seien F,G zwei Stammfunktionen von f. Sei $x_0 \in \mathcal{J}$ halte es fest.

$$G(x) - G(x_0) = \int_{x_0}^{x} f(t) dt = F(x) - F(x_0) \text{ für alle } x \in \mathcal{J}$$

$$G(x) = F(x) + \underbrace{G(x_0) - F(x_0)}_{=:c} \text{ für alle } x \in \mathcal{J} \text{ c) } u, v \in \mathcal{J}$$

$$F(v) - F(u) = \int_{x_0}^{v} f(t)dt = \int_{x_0}^{u} f(t)dt = + \int_{u}^{x_0} f(t)dt + \int_{x_0}^{v} f(t)dt = \int_{u}^{x_0} f(t)dt$$

Abbildung 47: Die Welt der Funktionen

8.6 Satz

Jede Stammfunktion einer lokal integrierbaren Funktion ist stetig.

Beweis. $f: \mathcal{J} \to \mathbb{R}$ lokal integrierbar $x_0 \in \mathcal{J}$. Zeige: F ist stetig in x_0 (Stammfunktion von f). Betrachte f auf $[x_0 - 1, x_0 + 1] \cap \mathcal{J}$ Sei $|f(x)| \le M$ für alle $\in \mathcal{J}_0.(7.3a)$ $|F(x) - F(x_0)| = |\int\limits_{x_0}^x f(t) dt| \underset{7.9c}{\ge} \int\limits_{x_0}^x |f(t) dt| \underset{7.9d}{\ge} M \cdot |x - x_0|$ für alle $x \in \mathcal{J}_0$. F stetig in x_0 nach 5.2

8.7 Definiton

 $f: \mathscr{J} \to \mathbb{R}$ heißt stetig differenzierbar, falls f differenzierbar ist und die Ableitung f' stetig ist.

[Beachte: Nicht jede differenzierbare Funktion ist stetig diffbar

Beachte: Nicht jede differenzierb

$$Bsp: f(x) = \begin{cases} x^2 \cdot \sin(\frac{1}{x}) & \text{für } x \neq 0 \\ 0 & \text{für } x = 0 \end{cases}$$

f' nicht stetig in 0

Abbildung 48: Stammfunktionbildung

8.8 Satz (Hauptsatz der Differential- und Integralrechnung)

 \mathcal{J} beliebiges Intervall, $f: \mathcal{J} \to \mathbb{R}$.

a) Ist f stetig, so ist jede Stammfunktion F von f differejzierbar auf $\mathscr J$ und es gilt F'=f.

$$\left(\int f(t)dt\right)' = f$$

Dass heißt
$$F(x) = \int_{x_0}^{x} f(t) dt \Rightarrow F'(x) = f(x)$$

b) Ist f stetig diffbar auf \mathcal{J} , so ist f Stammfunktion von f', dass heißt.

$$\int_{x_0}^x f'(dt) = f + c$$

 $\forall u, v \in \mathcal{J}$:

$$\int_{u}^{v} f'(t)dt = f(v) - f(u) = f(x)\Big|_{u}^{v}$$

Beweis. a) Sei $c \in \mathcal{J}$.

Zu zeigen: $\lim_{x \to c} \frac{F(x) - F(c)}{x - c} = f(c), x \neq c, x \in \mathcal{J}$: $\frac{F(x) - F(c)}{x - c} = \frac{1}{x - c} \int_{c}^{x} f(t) dt$ Mittelwertsatz der Integralrechnung (??). Es existiert $\Theta(x)$ zwischen x und c mit

$$\int_{x}^{c} f(t)dt = f(\Theta(x)) \cdot (x - c)$$

$$\frac{F(x)-F(c)}{x-c} = \frac{1}{x-c} \cdot f(\Theta(x)) \cdot (x-c)$$

$$= f(\Theta(x)) \xrightarrow[\Theta(x)\to c]{x\to c, \text{so}} f(c), \text{ da } f \text{ stetig} b) f' \text{ ist stetig.}$$

Sei F eine Stammfunktion von f'. Nach a): F' = f'.

$$(F-f)'=0.$$

6.20a) F - f = c konstant, dass heißt F = f + c

8.9 Beispiele

Zu. 8.8a):

a)
$$g(x) = \int_1^x e^{t^2} \cdot (\sin(t) + \cos(\frac{t}{2})) dt$$
 8.8a) : $g'(x) = e^{x^2} \cdot (\sin(x) + \cos(\frac{x}{2}))$

b)
$$g(x) = \int_0^{x^2} e^t \cdot \sin(t) dt$$

 $F(x) = \int_0^x e^t \cdot \sin(t) dt$
 $h(x) = x^2$
 $g = F(h(x)) = (F \circ h)(x)$
 $g'(x) = F'(h(x)) \cdot h'(x) = e^{x^2} \cdot \sin(x^2) \cdot 2x$

8.10 Beispiel

zu 8.8b)

a)
$$n \in \mathbb{N}_0$$
:
 $\int ax^n dx = a \cdot \frac{x^{n+1}}{n+1} + c \operatorname{denn} \left(a \frac{x^{n+1}}{n+1} \right)' = ax^n$
 $\operatorname{d.h}: \int_{u}^{v} a \cdot x^n dx = \frac{a}{n+1} (v^{n+1} - u^{n+1})$
 $\operatorname{Damit}: \int \sum_{i=0}^{n} a_i \cdot x^i = \sum_{i=0}^{n} a_i \frac{x^{i+1}}{(i+1)}$

b) $n \ge -2$, so

$$\int \frac{1}{x^n} dx = \frac{1}{n+1} \cdot \frac{1}{x^{1-n}} + c$$

c) Für
$$x > 0$$
 ist $\ln(x)' \frac{1}{x}$ (6.14b)
Also $\int \frac{1}{x} dx = \ln(x) + c$ auf $]0, \infty[$
Auf $]-\infty, 0[$ gilt $\int \frac{1}{x} dx = \ln(|x|) + c$

d)
$$\int \ln(x) dx = x \cdot \ln(x) - x + c \text{ auf }]0, \infty[$$
 (6.14d)

e)
$$\int e^x dx = e^x + c$$

f)
$$\int \sin(x) dx = -\cos(x) + c \int \cos(x) dx = \sin(x) + c$$

8.11 Satz (Partielle Integration)

Seien f und g stetig diffbare Funktionen auf Intervall \mathcal{J} . Dann:

$$fg'dx = f \cdot g - \int f' \cdot g dx$$

Für bestimmte Integrale heißt das:

$$\int_{u}^{v} f(x) \cdot g'(x) dx = \underbrace{f \cdot g}_{f(v) \cdot g(v) - f(u) \cdot g(u)} \left| - \int_{y}^{u} f'(x) g(x) dx \right|$$

Für alle $u, v \in \mathcal{J}$

Beweis. 8.8b)
$$(f \cdot g)' = f \cdot g' + f' \cdot g$$

$$\int (f \cdot g' + f' \cdot g) dx = f \cdot g + c$$

$$\int f \cdot g' + \int f' g \cdot g = f \cdot g$$

Abbildung 49: $\int_0^{\pi} x \cdot \cos(x) dx = 2$

8.12 Beispiele

a)
$$\int \underbrace{x}_{f} \cdot \underbrace{\cos(x)}_{g'} dx = \underbrace{x} \cdot \sin(x) - \int \sin(x) dx = \underbrace{x} \cdot \sin(x) + \cos(x) + c$$

b)
$$\int \ln(x) dx = \int \underset{f'}{1} \cdot \ln(x) dx = x \cdot \ln(x) - \int x \cdot \frac{1}{x} dx = x \ln(x) - x + c$$
 (vgl. **??**d)

c)
$$\int \cos^{2}(x)dx = \cos(x) \cdot \sin(x) + \int \sin(x)dx$$

$$\int \cos^{2}(x)dx = \cos(x) \cdot \sin(x) + \int 1 - \cos^{2}(x)dx$$

$$= \cos(x) \cdot \sin(x) + x - \int \cos^{x}(x)dx$$

$$\Rightarrow 2 \cdot \int \cos^{2}(x)dx = \cos^{2}(x)dx = \cos(x) \cdot \sin(x) + x + c$$

$$(*)$$

8.13 Satz (Integration durch Substitution)

 \mathcal{I} , \mathcal{I} Intervalle $f: \mathcal{I} \to \mathcal{I}$ stetig diffbar, $g: \mathcal{I} \to \mathbb{R}$ stetig mit Stammfunktion G. Dann ist:

$$\int g(f(x)) \cdot f'(x) dx = G(f(x)) + c$$

Für das bestimmte Integral heißt das:

$$\int_{u}^{v} g(f(x)) \cdot f'(x) dx = G(f(v)) - G(f(u)) = \int_{f(u)}^{f(v)} g(t) dt$$

für alle $u, v \in \mathcal{I}$

Beweis. $G \circ f$ diffbar: 8.8a)

Kettenregel:

$$(G \circ f)'(x) = G'(f(x)) - f'(x)$$

$$= g(f(x)) \cdot f'(x)$$
stetig

Hauptsatz $G \circ f$ ist Stammfunktion von $g(f(x)) \cdot f'(x)$

Bemerkung: 8.13 kann in 2 Arten angewandt werden: *1.Art*: Mann hat ein Integral der Form

$$\int g(f(x)) \cdot f'(x) dx$$

Berechne

$$\int g(t)dt = \int_{x_0}^{x} g(t)dt = G(x)$$

$$\int_{\text{und ersetze } x \text{ durch } f(x)}^{x}$$

2.Art:

Man will $\int g(t)dt$ berechnen Ersetze t durch f(x) (Substitution) $\left[\frac{dt}{dx} = f'(x) \to dt = f'(x)dx\right]$ und dt durch f'(x)dx ersetzen. $\to \int g(f(x)) \cdot f'(x)dy$ Hoffnung: \uparrow ist einfacher zu berechnen.

8.14 Satz

f ist stetig diffbar auf \mathcal{I} , f stetig auf \mathcal{I} .

a) Ist
$$f(x) \neq 0$$
 auf \mathscr{I} , so $\int \frac{f'(x)}{f(x)} dx = \ln(|f(x)|) + c$ dass heißt $\int_a^b \frac{f'(x)}{f(x)} = \ln(|f(b)|) - \ln(|f(a)|)$ für alle $a, b \in \mathscr{I}$

b)
$$\int_{a}^{b} g(x+c)dx = \int_{a+c}^{b+c} g(x)dx$$
 für alle c mit $a+c, b+c \in \mathcal{I}$.

c)
$$\int_{a}^{b} g(c \cdot x) dx = \frac{1}{c} \int_{a \cdot c}^{b \cdot c} g(x) dx \text{ für alle } c \neq 0 \text{ mit } a \cdot c, b \cdot c \in \mathscr{I}$$

8.15 Beispiel LITERATUR

Beweis. a) Setze
$$g(x) = \frac{1}{x}$$
.
Also: $G(x) = \ln(|x|) + c$ für alle $x \ne 0$.
 $8.13 \int \frac{f'(x)}{f(x)} dx = \ln(|f(x)|) + c$ b) Setze $f(x) = x + c$, 8.13
c) Setze $f(x) = x \cdot c$, 8.13²

8.15 Beispiel

a)
$$\int \tan(x) dx = \int \frac{\sin(x)}{\cos(x)} = -\int \frac{-(\cos(x))'}{\cos(x)} dx = -\ln(|\cos(x)|) + c^3$$

b)
$$x \cdot \sin(x^2) dx = \frac{1}{2} \int 2x \sin(x^2) dx = \frac{1}{8.13} - \frac{1}{2} \cos(x^2) + c$$

c)
$$\int \frac{x}{x^2 + a^2} dx = \frac{1}{2} \int \frac{2x}{x^2 + a^2} dx = \ln(x^2 + a^2) + c \operatorname{auf} \mathbb{R} \ (a \neq 0)$$

d)
$$\int_{-1}^{1} \sqrt{1-t^2} dt$$

Fläche des Halbkreises vom Radius 1.

Substitution $t = \sin(x)$

Substitution
$$t = \sin(x)$$

$$\frac{dt}{dx} = \cos(x), dt = \cos(x)dx$$

$$\int_{-1 = \sin(-\frac{\pi}{2})}^{1 = \sin(\frac{\pi}{2})} \sqrt{1 - t^2} \stackrel{8.13}{=} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \sqrt{1 - \sin(x)^2} \cdot \cos(x) dx = \int \cos^2(x) dx \stackrel{8.11c}{=} \frac{\cos(x) \cdot \sin(x)}{2} = \frac{\frac{\pi}{2}}{\frac{\pi}{2}} - (\frac{\frac{\pi}{2}}{2}) - (\frac{\pi}{4} + \frac{\pi}{4} = \frac{\pi}{2})$$

Literatur

- [1] Kreußler, Phister Satz 33.16
- [2] WHK 5.37
- [3] WHK 6.21
- [4] WHK 6.24
- [5] WHK 6.25
- [6] WHK 6.25

²Beachte f'(x) = c

³Gilt auf jedem Intervall] $k\pi + \frac{\pi}{2}$, $(k+1)\pi + \frac{\pi}{2}$ [

LITERATUR LITERATUR

- [7] WHK 7.32
- [8] WHK 7.19