Progetto di cinghie trapezoidali

Le cinghie trapezoidali sono utilizzate frequentemente per la trasmissione di potenza Vantaggi Basso costo Semplicità di installazione Capacità di assorbire vibrazioni torsionali e picchi di coppia Svantaggi Mancanza di sincronismo Rendimento non elevato

Equazione di progetto

Separando le variabili si può scrivere:

$$\frac{d(t-qV^2)}{(t-qV^2)} = f^*d\alpha$$

Integrando il primo membro tra t- qV^2 e T- qV^2 ed il secondo tra θ ed α si ottiene: ed il secondo tra θ ed α si ottiene:

$$\int_{-qV^2}^{r-qV^2} \frac{d(t-qV^2)}{(t-qV^2)} = \int_0^{\alpha} f^* d\alpha$$

Equilibrio radiale $dN = (t - qV^2) d\alpha$

Equilibrio tangenziale

grando il primo membro tra
$$t-qV^2$$
 e $T-qV^2$ Equilibrio tangenziale il secondo tra 0 ed α si ottiene:
$$d(t-qV^2) = f^*dN$$

$$d(t-qV^2) = f^*(t-qV^2)d\alpha$$

$$\frac{T-qV^2}{t-qV^2} = e^{f^*\alpha} \longrightarrow t-qV^2 = \frac{T-qV^2}{e^{f\alpha}} \longrightarrow t = qV^2 + \frac{T-qV^2}{e^{f\alpha}}$$

$$T - t = T - qV^2 - \frac{T - qV^2}{e^{f\alpha}} \qquad \qquad T - t = \frac{e^{f\alpha} - 1}{e^{f\alpha}} \left(T - qV^2 \right)$$

Per semplicità nel seguito si ometterà l'asterisco nel coefficiente di attrito: $f \Rightarrow f^*$

Equazione di progetto

Dalla differenza T-t dipende il momento trasmissibile e, di conseguenza, la potenza. Questa relazione può, quindi, essere utilizzata per il progetto della trasmissione introducendo la caratteristica di resistenza della cinghia.

dove σ_0 è la tensione ammissibile e A è l'area resistente della sezione.

La potenza trasmissibile può essere espressa come segue:

Termine che rappresenta le sollecitazioni inerziali

Termine che rappresenta il limite di aderenza della cinghia alla puleggia (con minor angolo di abbraccio).

> Termine che rappresenta la resistenza della cinghia

DM = Cinahie tranezoida

Effetto della flessione

Oltre alle sollecitazioni di trazione è necessario tenere conto della flessione della cinghia che si verifica nell'assumere la curvatura delle pulegge.

$$\frac{M}{EJ} = \frac{1}{r} = \frac{2}{d} \longrightarrow M = \frac{2EJ}{d}$$

$$\sigma_f = \frac{M}{J} h_{\text{max}}$$
 $\sigma_f = \frac{2Eh_{\text{max}}}{d}$

$$\sigma_0 = \sigma_T + \sigma_f = \frac{T}{A} + \frac{2Eh_{\text{max}}}{d}$$
 \longrightarrow $T = \sigma_0 A - \frac{2EAh_{\text{max}}}{d}$

La potenza trasmissibile può, quindi, essere espressa come segue:

$$W_0 = \frac{e^{f\alpha} - 1}{e^{f\alpha}} \left(T - qV^2 \right) V = \frac{e^{f\alpha} - 1}{e^{f\alpha}} \left(\sigma_0 A - \frac{2EAh_{\text{max}}}{d} - qV^2 \right) V$$

IIII - Cinghie trapezoida

Equazione di progetto

In alcuni manuali invece della "potenza tipo" è utilizzata la "potenza base" che è relativa ad una trasmissione con le stesse caratteristiche di quella tipo ($\tau=1$ $\alpha=\pi$) ma che utilizza pulegge di diametro d_I invece di diametro equivalente.

Potenza base

Potenza supplementare

$$W_b = \frac{e^{f\pi} - 1}{e^{f\pi}} \left(\sigma_0 A - \frac{2EAh_{\text{max}}}{d_1} - qV^2 \right) V \qquad \Delta W_b$$

Nel caso reale (rapporto di trasmissione diverso da 1) la cinghia sarà in grado di trasmettere una potenza maggiore di quella base a causa della minore sollecitazione di fatica che si verifica nella puleggia maggiore.

DM - Cinghie trapezoidali	SIMBOLI
	A interasse (mm)
	e ₀ coefficiente di sicurezza supplementare, per trasmissioni con moltiplicazione di velocità (tab. 3)
	 c, coefficiente di correzione in relazione all'arco di avvolgi- mento della cinghia (tab. 4)
	c, coefficiente di sicurezza di carico (tab. 2)
	c _s coefficiente di correzione, in relazione alla lunghezza della cinghia (tab. 6, 9, 12, 15)
	d. diametro primitivo della puleggia piccola (mm)
	D, diametro primitivo della puleggia grande (mm)
	I rapporto di trasmissione
	L. lunghezza primitiva della cinghia (mm)
	n. numero di giri della puleggia piccola (giri/1')
	no numero di giri della puleggia grande (giri/1')
	N potenza da trasmettere (kW)
	N _s potenza addizionale (kW) (tab. 7, 10, 13, 16)
	N _B potenza di calcolo (kW)
	N _E potenza effettiva trasmissibile con una cinghia (kW)
	N _K potenza nominale trasmissibile con una cinghia (kW) (tab. 5, 8, 11,14)
	v velocità della cinghia (m/s)
	z numero di cinghie necessarie per una trasmissione
	α 90-β/2 (gradi)
	 β arco di avvolgimento della cinghia sulla puleggia piccola (gradi)

Esempio di progetto con l'uso di un manuale del costruttore

Procedimento

1) DETERMINAZIONE DELLA POTENZA DI CALCOLO No

Moltiplicare il valore della potenza da trasmettere « N » per il coefficiente di sicurezza di carico « C_2 » (v. tab. 2) e per l'eventuale coefficiente di sicurezza supplementare « C_0 » (v. tab. 3). Si avrà così il valore della potenza di calcolo N_B , che è di base per la scelta degli elementi della trasmissione.

$$N_B = N \cdot C_2 \cdot C_0 \text{ (kW)}$$

			Blackton	metrici		
	- Makeri a see toroond norms - Makeri a see- in derivatives - Makeri a seed prindri o con	ente sontinua (son A o più	- Materi a s in series	unt comerie combras	s jummulazione
	Func	unumeno (oneig	ome	Paral	onaments (sreigi	pane)
Marchine operatrici	100 a 10	10 - 16	O'THE M	5m	11-11	olive 'S
Francisco lagger Ingiliado per loquid agginato Compressor centringis Proposi unitargo gorpana minori di 15 MM Proposi François contro (inggeri)	,	u	12	1.1	u	u
Presentacioni media Empiri generaleri Lime d'alleri Alaminaria per lavanderia (izvarial serinfugha, principezzo. Maccinaria por stamos sistemis, sificat, minipo- Maccinaria por stamos sistemis, ministratoria, Maccinaria della sistemis della sistemis, ministratoria, Presen, segliarina Venosiatori sonore presenti, Venosiatori sponore superiori a 7,5 kMc	· ·	u	13	12	u	1.4
Vasnitationi praenti Compressori a pittinti Directori Francia Maccinistrio per dantineo Maccinistrio per industrio sammico a cisi intendi Maccinistrio per industrio attendico a cisi intendi Maccinistrio per industrio attendico per intendico anciento Proper si prince, prince per disciplipio Traspentiento il princi, a praenti, a hassoi	12	u	1,4	w	1.6	1.6
Transport schapeanti Macchinaria per industria della germa (nasco- latori, salandin, familiary) Statini a pellin, a cimito, monazia	u	ш	u	u	1.0	u

			Macehine	e motriei		
	Motori a corre- torcenti normali Motori a corre- in derivazione; Motori a combi- cilindri a con p	de continus (c	ommutazione son 4 o più	- Motori n in seriej - Motori a	corrente altern levelli corrente contin condustione in cito i 600 girl. ¹⁷	us (pommulazion
	Fundis	samento (oreigio	enoj	Fun	zionamento (orei)	giame)
Macchine operatrici	Fine a 10	13 - 16	office 15	5no n 10	10 - 16	oftw 16
Trasmissioni leggere Agitatori per liquidi Aspiratori Compressori cettirilighi Riccoti vettilatori (potenze minori di 7,5 kW) Pompe Trasportatori a nastro (leggeri)	1	1,1	1,2	1,1	1,2	1.3
AB. 3 - COEPPICIENTI DI SIGUREZZA SUPI	LEMENTARE -		Regoorto di t	nasmissione = i		
	LEMENTARE + 1	1.85-13		naamissione + i 6 - 2,48	2,5 - 3,40	3,5 e sitre

CDM - Cinghie trapezoidal

Esempio di progetto con l'uso di un manuale del costruttore

2) SCELTA DELLA SEZIONE DELLA CINGHIA DA UTILIZZARE E DETERMINAZIONE APPROSSIMATA DEL NUMERO DI GOLE E DEL DIAMETRO PRIMITIVO «d, » DELLA PULEGGIA PICCOLA

In funzione della potenza di calcolo $\propto N_n \approx$ e della velocità $\ll n_1 \approx$ della puleggia piccola si determina nel diagramma A un punto che può trovarsi internamente a una o a più aree delimitate dalle linee diversamente tracciate. A ciascuna area corrisponde una sezione di cinghia diversa.

La sezione più conveniente è normalmente quella a cui corrisponde, nel diagramma, l'area più centrata rispetto al punto determinato.

Sulle linee di confine di ciascuna area sono indicati i valori limite del diametro primitivo e del numero di gole (numero di cinghie da utilizzare) della puleggia piccola della trasmissione. Mediante interpolazione tra questi valori limite, relativamente al punto individuato e alla sezione scelta, si determinano approssimativamente le caratteristiche della puleggia piccola: diametro primitivo e numero di gole.

Esempio di progetto con l'uso di un manuale del costruttore

3) DETERMINAZIONE DEL RAPPORTO DI TRASMISSIONE

$$i = \frac{n_1}{n_2}$$

4) DETERMINAZIONE ESATTA DEL DIAMETRO PRIMITIVO DELLE PULEGGE, DELLA LUNGHEZZA "L" " E DEL NUMERO DI RIFERIMENTO DELLE CINGHIE

In funzione della sezione scelta, del rapporto di trasmissione

i -, dell'interasse - A - e tenendo in considerazione il valore
del diametro - d_n - ricavato approssimativamente al punto 2,
la tab. 17 ci permette di definire esattamente i diametri primitivi delle due pulegge della trasmissione nonché la lunghezza

- L_n - e il numero di riferimento delle cinghie da utilizzare.

N.B. - Nel caso in cui una delle due pulegge sia da montare su un motore elettrico è da verificare che il suo diametro primitivo risulti non inferiore a quello indicato nella tab. 23.

) U	zio	ne	SPE	3																
								-	1											
Dian	netro	Rap-	1200	1340	1410	1590	1800	2020	2150	2290	2410	2530	2680	2840	Rifer 2990	imento 3170		hia 2550	3800	400
d., mm	D. mm	porto i	1257	1333	1409	1587	1790	2019	2146	2273	2400	2527	2679	2832	2984	sner sne «	3340	3540		405
236	236 250 260 315 355	1,00 1,06 1,19 1,33 1,50			334 323	424 413 389 360	509 518 494 466 430	639 626 605 576 543	704 693 670 641 508	769 758 736 706 673	834 823 800 771 739	894 883 860 832 799	969 958 935 907 874	1049 1038 1015 987 954	1134 1113 1090 1062 1029	1214 1203 1160 1152 1119	1299 1298 1265 1237 1205	1404 1393 1370 1342 1313	1529 1518 1495 1467 1435	1650 1640 1620 1550 1560
	400 450 500 560 630	1.69 1.91 2.12 2.37 2.67						504 459	570 526 479	635 592 545	701 658 613 557	761 719 674 619	837 794 751 696 679	917 875 832 778 713	992 950 908 856 791	1083 1041 999 946 883	1168 1136 1084 1032 970	1273 1232 1190 1139 1077	1398 1367 1316 1365 1366 1364	1531 1485 1446 1396 1336
	710 800 900 1000 1250	3.01 3.39 3.81 4.24 5.30												633	713	808 716	896 807	1004 918 816	1133 1049 950 843	1965 1183 1086 986
250	250 260 315 365	1,00 1,12 1,36 1,40				403 379	508 484 455 402	618 594 566 532	683 659 631	748 724 696	813 789 761 720	673 649 621	948 994 896	1028 1004 976	1103 1379 1051	1193 1169 1141	1278 1254 1226	1383 1358 1331	1508 1484 1456	1636 1614 1586

CDM - Cinghie trapezoidal

Esempio di progetto con l'uso di un manuale del costruttore

4.1 Lunghezza primitiva della cinghia « L., »:

può essere calcolata come segue:

approssimativamente

$$L_{*} \approx 2 A + 1.57 (D_{*} + d_{*}) + \frac{(D_{*} - d_{*})^{2}}{4 A} (mm)$$

esattamente

$$L_{v} = 2 \text{ A sin} \frac{\beta}{2} + \frac{\pi}{2} (D_{v} + d_{v}) + \frac{\pi \cdot \alpha}{180} (D_{v} - d_{v}) \text{ (mm)}$$

dove:

$$\alpha = 90 - \frac{\beta}{2}$$
 (gradi)

«β» = angolo di avvolgimento della cinghia sulla puleggia piccola (vedi punto 4.2).

CDM - Cinghie trapezoidal

Esempio di progetto con l'uso di un manuale del costruttore

4.2 Angolo di avvolgimento « β »:

calcolo approssimato (valido per 110° $< \beta <$ 180°)

$$\beta \simeq 180 - 60 \cdot \frac{D_w - d_w}{A}$$
 (gradi)

calcolo esatto

$$\beta = \text{arco cos} \left[2 \left(\frac{D_* - d_*}{2 \, \text{A}} \right)^2 - 1 \right] (\text{gradi})$$

5) INTERASSE + A +

Quando non imposto scegliere

$$A \equiv 2 \cdot \sqrt{(D_w + d_w) \cdot d_w \text{ (mm)}}$$

Quando si conosce L_v , d_v , D_v , si può ricavare « A = dalla tab. 17, oppure calcolare nel seguente modo:

$$A = p + \sqrt{p^{2} - q}$$
 (mm)

dove:

$$p = 0.25 L_w - 0.393 (D_w + d_\eta)$$

 $q = 0.125 (D_w - d_w)^2$

14

Esempio di progetto con l'uso di un manuale del costruttore

6) DETERMINAZIONE DELLA POTENZA EFFETTIVA « N_E » TRASMISSIBILE CON UNA CINGHIA

$$N_E = (N_R + N_A) \cdot C_1 \cdot C_3$$

dove:

- N_x = potenza nominale di una cinghia. Si determina per ciascuna sezione in funzione della velocità « n₁ » e del diametro primitivo « d_x » della puleggia piccola (v. tab. 5 - 8 - 11 - 14).
- N_A = potenza addizionale. Viene determinata, in funzione del rapporto di trasmissione « i » e della velocità « n₁ » della puleggia piccola (v. tab. 7 - 10 - 13 - 16).
- C_i = coefficiente di correzione in relazione all'arco di avvolgimento β; si ricava dalla tab. 4 in funzione di «d_w», «D_w», «A».
- C₃ = coefficiente di correzione in relazione alla lunghezza della cinghia; si ricava dalle tab. 6 - 9 - 12 - 15 in funzione della lunghezza primitiva « L_v ».

Sezione	SPB									
				Nom	eta di trappini					
1.00	1.01	100	172	100	1,27	U.00	1,50	1,00	aine A.00	Will Fr
000 000 000 000	685, 687 630 631	0.14 0.19 0.26 0.36	025 025 030 040 036	01.0 84.6 24.5 24.5	0,40 0,54 0,61 1,60	1,60 1,60 1,60 1,00	1.00 121 137 137	636 676 178 130	6,60 6,60 1,30 3,46	720 960 1460 2880
0,000 0,000 0,000 0,000	681 681 682 683 683	000 004 000 000 000	008 007 030 034 037	9,06 9,09 9,16 9,19 9,29	9,06 9,31 9,37 9,39 9,39	6,0° 6,73 6,36 6,36 6,00	6,76 6,76 6,00 6,00 6,00	6.00 6.00 6.00 6.00	539 537 636 536 536	100 500 500 400 600
0,00 0,00 0,00 0,00	0.04 0.05 0.06 0.06	0.72 0.34 0.86 0.98 0.99	030 034 637 631 034	9,38 9,35 9,37 9,40 9,40	0.36 0.45 0.45 0.37 0.36	1,40 1,46 1,50 1,50 1,60	1,61 1,50 1,50 1,50 0,67 0,71	648 657 638 673 646	5,61 5,60 5,68 6,77 6,66	60 70 80 80 90
0,00 0,00 0,00 0,00 0,00	0,08 0,09 0,09 0,10 0,11	039 039 039 037 039	0.08 0.41 0.44 0.48 0.01	9,54 9,56 9,60 9,65 9,79	9.80 9.87 9.73 9.79 9.84	6,79 6,79 6,86 630 630	6,80 1,80 6,96 1,09 1,71	6,60 6,67 1,65 1,10 1,21	5,54 1,00 1,01 1,00 1,00 1,00	1100 1900 1900 1400 1600
0,00 0,00 0,00 0,00	6/11 6/0 6/0 6/4 6/4	031 038 036 037 039	088 084 084 085	0.7% 0.79 0.54 0.66 0.60	0,00 0,06 1,01 1,07 1,19	1,06 1,09 1,09 1,00 1,00	1,69 139 130 1,61 1,48	139 137 146 138 138	1,60 1,60 134 1,60	100 170 180 180 180
0,000 0,000 0,000 0,000	6/8 6/8 6/8 6/7 6/8	0.41 0.40 0.40 0.40 0.47	079 079 078 089 089	100 100 107 131 136	1,38 1,38 1,30 1,36 1,41	1,68 1,60 1,60 1,60 1,60	156 165 171 179 186	1,76 1,76 1,86 1,94 3,00	1,60 1,66 1,07 3,06 3,14	210 230 230 340 340
0.00 0.00 0.00 0.00 0.00	6/19 6/19 6/80 6/81 6/31	081 083 086 087 089	089 089 086 089 1,63	121 125 130 130 130	1,66 1,00 1,07 1,00 1,00	1,71 1,79 1,80 1,91 1,98	190 200 208 236 236	5.19 3.18 3.38 3.38 3.40	11,00 2,31 2,60 2,60 2,66 237	200 270 566 986
0,00 0,00 0,00 0,00	6.09 6.39 6.34 6.34 6.36	089 089 089 088	1.06 1.09 1.73 1.16 1.19	1,40	1,34 1,80 1,86 1,91	2,08 9,11 9,10 12,9 12,9 2,21	3,80 9,87 9,85 7,99 230	3,50 9,50 3,87 3,75 3,80	2,66 2,74 2,80 2,91 2,91 2,00	206 200 200 200 200

7) DETERMINAZIONE DEL NUMERO DI CINGHIE «z» NECESSARIE PER LA TRASMISSIONE

$$z = \frac{N_B}{N_B}$$

N_s si determina come indicato al punto 1; N_E si determina come indicato al punto 6.

N.B. - Il valore di «z», se risulta decimale, va arrotondato all'unità superiore.

8) SCELTA DELLE BUSSOLE DI BLOCCAGGIO TAPER-LOCK PER LE PULEGGE FENNER

Nelle tabelle 18 ÷ 21 sono riportate le dimensioni delle pulegge normalizzate FENNER ed il numero di riferimento delle bussole TAPER-LOCK relative.

Sulla base di questo riferimento le bussole TAPER-LOCK dovranno essere scelte con un diametro foro corrispondente a quello dell'albero della trasmissione in esame (v. tab. 24). Il diametro dell'albero va indicato a fianco del numero di riferimento della bussola TAPER-LOCK.

Esempio di progetto con l'uso di un manuale del costruttore

Esempio di calcolo

Macchina

Motore

Velocità motore « n₁ »

Velocità compressore « n₂ »

Potenza « N »

Interasse « A »

Funzionamento continuo

Ø albero compressore

Ø albero motore

compressore a pistoni

Diesel

1050 giri/1'

660 giri/1'

45 kW

circa 1125 mm

24 ore/giorno

85 mm

70 mm

Esempio di progetto con l'uso di un manuale del costruttore 1) DETERMINAZIONE DELLA POTENZA DI CALCOLO N. $N_a = N \cdot C_2 = 45 \cdot 1.4 = 63 \text{ kW}$ c2 = 1,4 (v. tab. 2) Co non è da considerare in questo caso. 2) SCELTA DELLA SEZIONE DELLA CINGHIA DA UTILIZZARE E DETERMINAZIONE APPROSSIMATA DEL NUMERO DI GOLE E DEL DIAMETRO PRIMITIVO « d., » DELLA PULEGGIA PICCOLA Nel diagramma A il punto corrispondente a n. = 1050 giri/1' e N_s = 63 kW si trova all'interno delle aree corrispondenti alle sezioni SPB e SPC. Il punto è tuttavia più centrato rispetto all'area della sezione SPB. In questo caso sarà pertanto più conveniente adottare la sezione SPB. Il diametro primitivo approssimato della puleggia piccola risulta * d. * = 290 mm ed il numero delle gole uguale a circa 6.

il - Cinghie trapezoidalli -	- Motori a c in serie) - Motori a c lindri o so	vati corrente continu	ta con moment a (commutazione erna fino a 4 ci
	fino a 10	10 - 16	oltre 16
	1,1	1,2	1,3
Trasmissioni medie Gruppi generatori			
Linee d'alberi Macchinario per lavanderia (lavatrici centrifughe, umidificatrici) Macchinario per stampa (rotative, offset, linotype)	1,2	1,3	
Macchine utensili (torni, rettificatrici, trapani, fresatrici) Presse, taglierine	1,0	1,00	
Trasportatori a nastro (pesanti) Ventilatori (potenze superiori a 7,5 kW)			

Esempio di progetto con l'uso di un manuale del costruttore 3) DETERMINAZIONE DEL RAPPORTO DI TRASMISSIONE $i = \frac{n_1}{n_2} = \frac{1050}{660} = 1,59$ 4) DETERMINAZIONE ESATTA DEL DIAMETRO PRIMITIVO DELLE PULEGGE, DELLA LUNGHEZZA « L. » E DEL NUMERO DI RIFERIMENTO DELLA CINGHIA Dalla tab. 17 relativa alla sezione SPB, in funzione del rapporto i = 1,59, dell'interasse A = 1125 mm, del diametro approssimato d, = 290 mm, si determina: a) la scelta dei diametri primitivi esatti delle pulegge $d_{\rm w}=315~{\rm mm}$ $D_* = 500 \text{ mm}$ b) la scelta della lunghezza e del numero di riferimento delle cinghie da utilizzare $L_{\rm w} = 3550$ mm. SPB 3550

Feempio di progetto con l'uso di un manuale del costruttore 6) DETERMINAZIONE DELLA POTENZA EFFETTIVA « N_E » TRASMISSIBILE DA UNA CINGHIA Nelle condizioni poste, una cinghia tipo SPB 3550 è in grado di trasmettere una potenza effettiva N_E = (N_R + N_A) · C₁ · C₃ = (17,83 + 0,78) · 0,97 · 1,02 = 18,41 kW dove: N_R = 17,83 kW è ricavata, in funzione di n₁ = 1050 giri/1' e di « d_w » = 315 mm, dalla tab. 11 mediante interpolazione. N_A = 0,78 kW è ricavata, in funzione di n₁ = 1050 giri/1' e i = 1,59 dalla tab. 13 mediante interpolazione. C₁ = 0,97 è ricavato dalla tab. 4 in funzione di d_w = 315 mm, D_w = 500 mm, A = 1131 mm. C₃ = 1,02 è ricavato dalla tab. 12 in funzione di L_w = 3550 mm.

Velocità della puleggia					mo					Velocità della cingnia
Oper/17	160	170	180	190		280	315	355	400	on/sec.
720	4,54	5,11	5,68	6.25	3	11,21	13,07	15,15	17,44	
960	5,73	6,47	7.21	7,94)	14,26	16,61	19,20	22,00	
1440	7,85	8,89	9.93	10.95)	19,55	22,59	25,83	-	
2880	12,04	13,68	15.25	16,76		-	-	-	-	
100	0.84	0.93	1.02	1,12	3	1,94	2.25	2,60	3.00	
200	1.53	1.71	1.89	2,06)	3,62	4.21	4.89	5.63	
300	2.17	2,43	2,69	2.94	3	5,20	6.06	7,04	8.12	
400	2.77	3.11	3.45	3.78	5	6,72	7.83	9.09	10,49	10
500	3,35	3,76	4,17	4,58	3	8,18	9,54	11,07	12,77	
600	3.90	4.39	4,87	5.36	9	9,58	11.18	12,97	14,95	
700	4.43	4,99	5,55	6.10	3	10,94	12.76	14,80	17,03	
800	4.95	5,58	6.20	6.83		12,26	14,29	16,55	19.02	
900	5.44	6.14	5.84	7.53		13,53	15.75	18.23	20,91	20
1000	5.92	6,69	7,45	8.21	2	14,75	17,16	19,83	22,70	
1100	6.39	7.22	8.05	8.87	B	15,92	18,51	21,34	24,38	
1200	6.83	7,73	8.62	9.50		17,05	19,79	22,77	25.93	
1300	7,27	8,23	9.18	10.12		18.13	21,00	24,11	27,37	
1400	7,69	8.71	9.72	10.71	1	19,15	22,15	25,36	28,68	30
1500	8,09	9,17	10,24	11,29		20.12	23,22	26,51	-	
1600	8,48	9.62	10.74	11,84	1	21,04	24,22	27,55		
1700	8.85	10,04	11.22	12,37		21,90	25,14	-	-	
1800	9.21	10,45	11.68	12,88		22,70	25,98	-	-	

o di trasmiss	ione -1 -				1 1				
1,27	1,39	1.58	1,95	oltre	Velocită est;= (giri/2*)	1,500 - 1,544	1,00	ains 8,00	Separate Sep
1,38	1,57	1,94	3,38	3,39		171 107 107	638 676 178 139	6,60 6,60 1,30 1,40	736 961 1461 3880
0,40 0,54 0,81	0,47 0,63 0,95	0,53 0,71	0,58 0,78	0,62 0,82	720 960	LIP LIS LIS LIP	6.00 6.04 6.00 6.40	5,59 5,77 6,95 5,94 5,49	100 900 900 400 900
1,62	1,90	2,14	1,18 2,33	1,23 2,46	1440 2880	1,6H 1,50 1,50	6.68 6.57 6.60	1,00 1,00 1,40	901 701 801
0,06	0,07	0,07	0,08	0,09	100	(24)	679 GH	107 106	1000
0,11 0,17 0,22	0,13 0,20 0,26	0,15 0,22 0,30	0,16 0,24 0,32	0,17 0,26 0,34	300 400	186 186 187	1,65 1,05 1,05 1,05	1,00 1,01 1,00 1,00 1,00	190 190 190 140 160
0,28	0,33	0,37	0,40	0,43	500	36	139	100	1001 1700
0.34	0,40	0,44	0,48	0,51	700	.00 .40 .48	188	198 198 197	1963 1963 2011
0,45 0,51 0,56	0,53 0,59 0,66	0,59 0,67 0,74	0,65 0,73 0,61	0,68 0,77 0,86	800 900 1000	36 31 39 38	1,76 1,76 1,86 1,94 3,00	1,80 1,86 1,07 2,36 2,14	210 290 290 340 340
0.62	0,73	0,82	0,89	0,94	1100	199 100 108 118	5.10 5.18 5.26 5.26 5.26	139 231 240 246	300 276 366 366
0,67	0,79	0,89	1.05	1,03	1200	129	140	727	200
0.79	0,92	1,04	1,13	1,11	1400	130	330 350	236	200
0.84	0,99	1,11	1,21	1,28	1500	186	3.8F 3.75	230	XIII
0.90	1.05	1.10	1 20	1.97	1600	130	5,80	2,96	260

		D0	-		0	0,05	0,10	0,15	0,20	0,25	0,30	0,35	0,40	0,45	0,50	0,55	0,60			
		Arco d swolg (gradi)	iment	0 3	180	177	174	171	169	166	163	160	157	154	151	148	145			
		Oi.			1,00	0,99	0,99	0,98	0,97	0,97	0,96	0,95	0,94	0,93	0,93	0,92	0,91			
AB. 12 - COEI	FICIE		1590		NE + 0			-	-	_	3550	-	-	-				7100	7990	900

 DETERMINAZIONE DEL NUMERO DI CINGHIE «z» NECESSARIE PER LA TRASMISSIONE
$z = \frac{N_a}{N_L} = \frac{63}{18.41} = 3,42 \text{ ossia 4 cinghie}$
8) SCELTA DELLE BUSSOLE DI BLOCCAGGIO TAPER-LOCK PER LE PULEGGE FENNER
Nella tab. 20 è indicato:
 a) per la puleggia SPB 315/4 gole l'impiego della bussola TAPER-LOCK 3535;
 b) per la puleggia SPB 500/4 gole l'impiego della bussola TAPER-LOCK 3535.
Nella tabella 24 si osserva che la bussola 3535 prevede la pos- sibilità di bloccare gli alberi Ø 70 e Ø 85 mm. Pertanto i riferimenti delle bussole TAPER-LOCK da implegare saranno:
 a) 3535/70 per il bloccaggio della puleggia motrice SPB 315/4 gole sull'albero Ø 70 mm;
b) 3535/85 per il bioccaggio della puleggia condotta SPB 500/4 gole sull'albero ∅ 85 mm.

DESIGNAZIONE DELLA TRASMISSIONE FENNER PER L'ORDINAZIONE n. 1 puleggia Fenner SPB 315 x 4 con bussola Taper-Lock 3535/70 n. 1 puleggia Fenner SPB 500 x 4 con bussola Taper-Lock 3535/85 n. 4 cinghie Fenner SPB 3550.

1910) - Cinghte trapezoidalli	