E. Coli as a host organism in molecular biology

Electron micrograph of an E. coli cell ruptured to release its DNA. The tangle is a portion of a single DNA molecule containing over 4.6 million base pairs encoding approximately 4,300 genes. The small circlets are plasmids.

(Courtesy of Huntington Potter and David Dressler, Harvard Medical School, accessed at http://users.rcn.com/jkimball.ma.ultranet/BiologyPages/R/RecombinantDNA.html

Plasmid DNA: extrachromosomal circular molecules in the bacterial cell

http://w3.uniroma1.it/centric nr-can/edocs/gme3.htm

http://intranet.siu.edu/~mbmb/451resources/supercoiling.html

Shigella Outbreaks in Japan, 1953-1960: occurrence of antibiotic-resistant strains

Year	# Strains tested	Sm	Тс	Cm	Sm + Cm	Sm + Tc	Cm + Tc	Sm, Cm & Tc
1953	4900	5	2	0	0	0	0	0
1954	4876	11	0	0	0	0	0	0
1955	5327	4	0	0	0	0	0	1
1956	4399	8	4	0	0	0	1	0
1957	4873	13	46	0	2	2	0	37
1958	6563	18	20	0	7	2	0	193
1959	4071	16	32	0	71	0	0	74
1960	3396	29	36	0	61	9	7	308

(From http://www.mun.ca/biochem/courses/4103/topics/plasmids.html)

- •Plasmids confer antibiotic resistance to strains harboring them!
- •Plasmids can be "shared" between strains by lateral transfer!

Another View: Plasmid Maps

This plasmid is a bacterial:yeast shuttle vector!

Plasmids can be used as vectors to carry a gene of interest

Cloning into a plasmid

(from http://www.accessexcellence.org/RC/VL/GG/plasmid.html)

Gene Cloning I

- Provides an easily replicated source of a gene.
- Enables detailed analysis of gene structure.
- Permits production of large quantities of the gene product for functional and structural analysis.

Taking a closer look at our plasmid, pMSH2

MSH2 construct for mutagenesis and functional assays

-produces a protein product of the expected molecular weight

-complements $msh2\Delta$ defects, therefore the construct is functional

Strategy for subcloning DNA fragments into a plasmid vector

Inserting a DNA Sample into a Plasmid

Another View: Plasmid Maps

What are restriction sites for??

Biological function of restriction endonucleases is to protect cells from foreign DNA

Infecting DNA is cleaved (restricted) by the restriction enzymes, preventing it from successfully replicating and parasitizing the cell

most lab strains are completely "domesticated" (R-M systems have been inactivated)

some examples in the genotypes:

hsd

mcrA

*mcr*BC

Restriction Endonucleases

- Over 10,000 bacteria and archaea have been screened for restriction enzymes
- Restriction enzymes are not confined exclusively to bacteria
- Nearly 3,000 enzymes have been found, exhibiting over 200 different specificities (many of the 3000 are isoschizomers; different enzyme, same recognition site)

Activity of a typical Restriction Enzyme

Restriction Enzyme
Action of EcoRI

ends generated from a Type II restriction endonucleases

	enzyme	recognition site	end generated	<u> </u>
defined	Pvull	5'CAGCTG	5'CAG CTG	blunt
ends		3'GTCGAC 5'GGATCC	3'GTC GAC 5'G GATCC	
	<i>Bam</i> HI	3'CCTAGG	3'CCTAG G	5' overhang
	<i>Pst</i> I	5'CTGCAG	5'CTGCA G	3' overhang
		3'GACGTC	3'G ACGTC	
variable	Xmnl	5'GAANNNNTTC 3'CTTNNNNAAG	5'GAANN NNTT 3'CTTNN NNAA	blunt
ends	Banl	5'GGPyPuCC 3'CCPuPyGG	5'G GPyPuC	CC 5' overhang
	BstXI	5'CCANNNNNTGG 3'GGTNNNNNNACC	5'CCANNNNN NTO 3'GGTN NNNNNAO	3' overhang

Restriction Enzymes I

- Restriction enzymes can be used:
 - to cut DNA at specific nucleotide sequences.
 - Example to cut chromosomes into smaller pieces for analysis by gel electrophoresis.
 - for cloning or the generation of genetic libraries.

Restriction Enzymes II

- Can be used to detect mutations in DNA.
 - Example The enzyme called Ddel can identify the mutation that causes sickle cell anemia.
 - The mutation changes the DNA sequence so that Ddel cannot cut the DNA if the mutation is present.

Courtesy of Alford, Rossiter, and Caskey

We will use restriction digestion to distinguish between WT and mutagenized alleles of our pMSH2 vector

After the diagnostic gel, only proceed with a plasmid showing the altered restriction endonuclease digestion pattern (e.g. 2 or 5)

✓ Inoculate 25 ml of media with the correct bacterial colony for a midi-scale plasmid preparation (anion exchange chromatography)

✓ Use miniprep DNA to transform yeast to begin the functional analyses

Project Overview

Manipulate the yeast *MSH2* gene to determine which human missense mutations are likely to be benign or pathogenic in nature.

Examine the defect at a molecular level to determine why the Msh2 variants are dysfunctional.

Locating the codon to be mutagenized

Note that the two sequences don't have corresponding codon numbers for example Ala 719 in yeast is Ala 700 in humans

Yeast	600	INITLTYTPVFEKLSLVLAHLDVIASFAHTSSYAPIPYIRPKLHPMDSERRTHLISSRHP 659	9
		+NI+ Y + L+ VLA LD + SFAH S+ AP+PY+RP + + R L +SRH	
Human	582	VNISSGYVEPMQTLNDVLAQLDAVVSFAHVSNGAPVPYVRPAILE-KGQGRIILKASRHA 640	0
Yeast	660	VLEMQDDISFISNDVTLESGKGDFLIITGPNMGGKSTYIRQVGVISLMAQIGCFVPCEEA 719	9
		+E+QD+I+FI NDV E K F IITGPNMGGKSTYIRQ GVI LMAQIGCFVPCE A	
Human	641	CVEVQDEIAFIPNDVYFEKDKQMFHIITGPNMGGKSTYIRQTGVIVLMAQIGCFVPCESA 700	0
Yeast	720	EIAIVDAILCRVGAGDSQLKGVSTFMVEILETASILKNASKNSLIIVDELGRGTSTYDGF 779	9
		E++IVD IL RVGAGDSQLKGVSTFM E+LETASIL++A+K+SLII+DELGRGTSTYDGF	
Human	701	EVSIVDCILARVGAGDSQLKGVSTFMAEMLETASILRSATKDSLIIIDELGRGTSTYDGF 760	0
Yeast	780	GLAWAIAEHIASKIGCFALFATHFHELTELSEKLPNVKNMHVVAHIEKNLKEQKHDDEDI 839	9
		GLAWAI+E+IA+KIG F +FATHFHELT L+ ++P V N+HV A +E +	
Human	761	GLAWAISEYIATKIGAFCMFATHFHELTALANQIPTVNNLHVTALTTEETL 81	1
Yeast	840	TLLYKVEPGISDQSFGIHVAEVVQFPEKIVKMAKRKANELDDLKTNNEDLKKAK 89	3
		T+LY+V+ G+ DQSFGIHVAE+ FP+ +++ AK+KA EL++ + E D+ + AK	
Human	812	TMLYQVKKGVCDQSFGIHVAELANFPKHVIECAKQKALELEEFQYIGESQGYDIMEPAAK 87	1

Designing a mutagenic oligonucleotide - choosing the codon guided by a yeast codon usage table

yeast codon 122 changed from glycine (G) to serine (S) termed G122S mutation

wild-type MSH2 coding sequence

A S P G N I E 5 'CGCATCTCCAGGGAACATTGAGC

missense mutation in MSH2 coding sequence

A S P S N I E 5 'CGCATCTCCATCTAACATTGAGC

A S P S N I E 5 'CGCATCTCCATCAAACATTGAGC

Codon usage in yeast (Appendix of manual)

AmAcid	Codon	Number	/1000	Fraction
Ser	AGT	2411.00	11.14	0.14
Ser	AGC	1599.00	7.39	0.09
Ser	TCG	1411.00	6.52	0.08
Ser	TCA	3316.00	15.33	0.19
Ser	TCT	5495.00	25.40	0.32
Ser	TCC	3198.00	14.78	0.18

A S P S N I E 5 'CGCATCTCCATCCAACATTGAGC

A S P <mark>S</mark> N I E 5'CGCATCTCCA<mark>AGT</mark>AACATTGAGC

top four candidates

Designing a mutagenic oligonucleotide:

choosing the codon to create or destroy a restriction endonuclease site

wild-type *MSH2* coding sequence

missense mutation in MSH2 coding sequence

✓ best codon choice

√lose a BstNI site

Designing a mutagenic oligonucleotide - choosing the codon guided by a yeast codon usage table

yeast codon 122 changed from glycine (G) to serine (S) termed G122S mutation

wild-type MSH2 coding sequence

A S P G N I E 5 'CGCATCTCCAGGGAACATTGAGC

missense mutation in MSH2 coding sequence

A S P S N I E 5 'CGCATCTCCATCTAACATTGAGC

A S P S N I E 5 'CGCATCTCCATCAAACATTGAGC

Codon usage in yeast (Appendix of manual)

AmAcid	Codon	Number	/1000	Fraction
Ser	AGT	2411.00	11.14	0.14
Ser	AGC	1599.00	7.39	0.09
Ser	TCG	1411.00	6.52	0.08
Ser	TCA	3316.00	15.33	0.19
Ser	TCT	5495.00	25.40	0.32
Ser	TCC	3198.00	14.78	0.18

A S P S N I E 5 'CGCATCTCCATCCAACATTGAGC

A S P <mark>S</mark> N I E 5'CGCATCTCCA<mark>AGT</mark>AACATTGAGC

top four candidates

Laboratory Session 3 (Mon/Tue)

designing the mutagenic oligonucleotide

important considerations:

•23 nucleotide long (for efficient annealing to the template)

- codon preference for expression in yeast
- creating/destroying a restriction site for screening
- •strand must be complementary to template