3. Peng, R. & Matsui, E. (2016) The Art of Data Science Lulu.com

DATOS GENERALES DE LA UNIDAD DE APRENDIZAJE

Identificación	
Nombre: Modelos Matemáticos para Ciencia de Datos	Área: Formación Básica
Clave:	Tipo de curso: Obligatoria
Modalidad educativa: Escolarizada.	Modalidad de Enseñanza Aprendizaje: Maestría de investigación.
Número de horas: 128	Créditos: 8
Secuencia: Ninguna. Colaterales: Ninguna. Posteriores: Ninguna.	Requisitos de admisión: Ninguna
Fecha de elaboración: 05/10/2022	Fecha de aprobación:

1. Justificación y Fundamentos

La fundamentación matemática de la Ciencia de datos es indispensable para un correcto procesamiento y análisis de la información. Todo algoritmo, modelo matemático o estadístico sienta sus bases en una matemática sólida. Por esta razón

es necesario que el estudiante de esta Maestría cuente con los conocimientos necesarios de matemáticas para su formación.

2. Objetivos

Conocer los conceptos generales de álgebra lineal, necesarios el análisis de datos multivariados; así como los conceptos generales de probabilidad y distribuciones de probabilidad.

Para el logro del anterior objetivo se deben propiciar los siguientes **objetivos** particulares:

- Conocer las propiedades de vectores y matrices, así como las operaciones básicas de estos objetos.
- Entender los conceptos generales de probabilidad.
- Conocer las principales distribuciones de probabilidad

3. Competencias a desarrollar

Conocimientos	Habilidades y destrezas	valores
Conoce los conceptos de vectores y matrices.	Realiza operaciones elementales con vectores y matrices.	Responsabilidad, ética profesional, honestidad, respeto, compromiso.
Conoce los conceptos generales de la probabilidad frecuentista	Aplica las definiciones y resultados de probabilidad para el cálculo de probabilidades	
Conoce las principales distribuciones de probabilidad	Identificar las distribuciones de conjuntos de datos dados.	

4. Contenidos

Unidad 1. Algebra de matrices y vectores

- 1.1 Definición y propiedades de los vectores
- 1.2 Operaciones con vectores
- 1.3 Definición y propiedades de matrices
- 1.4 Operaciones con matrices

Unidad 2. Álgebra de matrices y vectores aleatorios

- 2.1. Matrices definidas positivas
- 2.2. Raíz cuadrada de una matriz
- 2.3. Vector de medias y matrices de covarianza

Unidad 3. **Probabilidad**

- 3.1. Espacio muestral
- 3.2. Eventos
- 3.3. Probabilidad de eventos
- 3.4. Probabilidad condicional
- 3.5. Reglas multiplicativas
- 3.6. Regla de Bayes

Unidad 4. Distribuciones de probabilidad

- 4.1. Definición de variable aleatoria
- 4.2. Distribuciones discretas de probabilidad
- 4.3. Distribuciones continúas de probabilidad
- 4.4. Distribuciones de probabilidad conjunta

5. Orientaciones didácticas

Acciones del docente facilitador en este contexto:

1. El docente elabora material didáctico, para impartir el curso.

- 2. Enseñará algún software matemático para la operación de matrices.
- 3. Enseñará algún software estadístico para el cálculo de probabilidades, generación de variables aleatorias y estudio de las distribuciones de probabilidad.

6. Actividades de Aprendizaje

Bajo la conducción del docente	Trabajo independiente del alumno
 Exposición de temas en clase 	En el aula: Exposiciones, tareas, lectura de libros.
 Socialización de bibliografía relacionada con la unidad de aprendizaje. 	Fuera del aula: Lectura de artículos, análisis, investigación, vinculación con sectores de interés del profesionista.
 Dinámicas de aprendizaje de apropiación tecnológica para las organizaciones. 	

7. Evaluación

Proyecto semestral 60%

Evaluaciones parciales 40%

Total 100%

8. Perfil del profesor

El profesor debe de contar con el grado de maestría o doctorado en Matemáticas o Estadística, con experiencia en el análisis de datos reales, preferentemente que realice investigación.

9. Bibliografía Básica

- 1. Meyer, C. D. (2000). Matrix analysis and applied linear algebra (Vol. 71). Siam.
- 2. Spence, L. E., Insel, A. J., & Friedberg, S. H. (2000). Elementary linear algebra. Prentice Hall.
- 3. Grossman, S. I. (2008). Álgebra lineal. McGraw Hill Educación.
- 4. Searle, S. R., & Gruber, M. H. (2016). Linear models. John Wiley & Sons.
- 5. Johnson, R. A., & Wichern, D. W. (2015). Applied multivariate statistical analysis. Statistics, 6215(10), 10.
- 6. Rencher, A. C., & Schimek, M. G. (1997). Methods of multivariate analysis. Computational Statistics, 12(4), 422-422.
- 7. Mood, A. M. (1950). Introduction to the Theory of Statistics.
- 8. Larsen, R. J., & Marx, M. L. (2005). An introduction to mathematical statistics. Prentice Hall.
- 9. DeGroot, M. H., & Schervish, M. J. (2012). Probability and statistics. Pearson Education.

DATOS GENERALES DE LA UNIDAD DE APRENDIZAJE

Identificación		
Nombre: Visualización de datos y narración de historias	Área:	
Clave:	Tipo de curso: Optativa	
Modalidad educativa: Escolarizada.	Modalidad de Enseñanza Aprendizaje: Maestría de Investigación experimental	
Número de horas: 128	Créditos: 8	