Exercice 1. /4

Calculer les limites suivantes :

$$\mathbf{0} \lim_{x \to -\infty} 5x^2 - 4x + 1$$

$$\lim_{x \to -\infty} x^3 \left(x^2 - \frac{1}{x} \right)$$

$$\lim_{\substack{x \to 5 \\ x > 5}} \frac{1 - 2x}{5 - x}$$

4
$$\lim_{x \to -\infty} \frac{-3x^2}{1 + 2x^2}$$

6
$$\lim_{x \to -\infty} 4x + 1 - \cos(x)$$

$$\mathbf{6} \lim_{x \to +\infty} e^{-x^2}$$

$$\mathbf{9} \lim_{\substack{x \to 0 \\ x < 0}} e^{-\frac{1}{x^2}}$$

Exercice 2. /3

Calculer la dérivées des fonctions suivantes :

1.
$$f_1(x) = (x^3 - 4x^2 + 2x + 1)^5$$
 sur $I = \mathbb{R}$.

2.
$$f_2(x) = \sqrt{x^2 + e^x}$$
 sur sur $I = \mathbb{R}$.

3.
$$f_3(x) = e^{2x^3 - 9x^2 + 5x + 4}$$
 sur sur $I = \mathbb{R}$.

Exercice 3. /3

Soit une fonction f dont le tableau de variation est donné ci-après :

x	$-\infty$	-1	() +∞
signe de $f'(x)$	_	0	+	+
Variations de f	$+\infty$		+∞	-∞ ⁶

Déterminer, en justifiant, si la courbe représentative de la fonction f admet des asymptotes. Si oui, préciser leurs équations.

Exercice 4. /2

Soit f une fonction définie sur $]-\infty$; 0[telle que pour tout réel x<0,

$$3 - \frac{1}{x} \leqslant f(x) \leqslant 3 + \frac{1}{x}$$

- 1. Calculer $\lim_{x \to -\infty} f(x)$.
- 2. Interpréter graphiquement le résultat précédent.

Exercice 5.

Soit f la fonction définie sur l'intervalle $[0; +\infty[$ par :

$$f(x) = 3 - \frac{2}{x+1}.$$

Le but de cet exercice est d'étudier des suites (u_n) définies par un premier terme positif ou nul u_0 et vérifiant pour tout entier naturel n:

$$u_{n+1} = f\left(u_n\right).$$

- 1. Étude de propriétés de la fonction f
 - (a) Démontrer que la fonction f est strictement sur l'intervalle $[0; +\infty[$.
 - (b) Résoudre dans l'intervalle $[0; +\infty[$ l'équation f(x) = x. On note α la solution.
 - (c) Montrer que si x appartient à l'intervalle $[\alpha; 6]$, alors f(x) appartient à l'intervalle $[\alpha; 6]$.
- 2. Étude de la suite (u_n) pour $u_0 = 6$.

Dans cette question, on considère la suite (u_n) définie par $u_0 = 6$ et pour tout entier naturel n:

$$u_{n+1} = f(u_n) = 3 - \frac{2}{u_n + 1}.$$

(a) Sur le graphique représenté ci-dessous, sont représentées les courbes d'équations y = x et y = f(x).

Placer le point A_0 de coordonnées $(u_0; 0)$, et, en utilisant ces courbes, construire à partir de A_0 les points A_1 , A_2 , A_3 et A_4 d'ordonnée nulle et d'abscisses respectives u_1 , u_2 , u_3 et u_4 .

Quelles conjectures peut-on émettre quant au sens de variation et à la convergence de la suite (u_n) ?

- (b) Démontrer, par récurrence, que, pour tout entier naturel $n, \ \alpha \leq u_{n+1} \leq u_n \leq 6$.
- (c) En déduire que la suite (u_n) est convergente.
- (d) Soit ℓ la limite de la suite (u_n) . Démontrer que $f(\ell) = \ell$ puis en déduire la valeur de ℓ .

