

CA2ON
EAB
-0 53

ENVIRONMENTAL ASSESSMENT BOARD

ONTARIO HYDRO DEMAND/SUPPLY PLAN HEARINGS

VOLUME: 126

DATE: Wednesday, April 1, 1992

BEFORE:

HON. MR. JUSTICE E. SAUNDERS Chairman

DR. G. CONNELL Member

MS. G. PATTERSON Member

FARR
ASSOCIATES &
REPORTING INC.

416) 482-3277

2300 Yonge St., Suite 709, Toronto, Canada M4P 1E4

Digitized by the Internet Archive
in 2022 with funding from
University of Toronto

<https://archive.org/details/31761114685621>

ENVIRONMENTAL ASSESSMENT BOARD
ONTARIO HYDRO DEMAND/SUPPLY PLAN HEARING

IN THE MATTER OF the Environmental Assessment Act,
R.S.O. 1980, c. 140, as amended, and Regulations
thereunder;

AND IN THE MATTER OF an undertaking by Ontario Hydro
consisting of a program in respect of activities
associated with meeting future electricity
requirements in Ontario.

Held on the 5th Floor, 2200
Yonge Street, Toronto, Ontario,
on Wednesday, the 1st day of April,
1992, commencing at 10:00 a.m.

VOLUME 126

B E F O R E :

THE HON. MR. JUSTICE E. SAUNDERS	Chairman
DR. G. CONNELL	Member
MS. G. PATTERSON	Member

S T A F F :

MR. M. HARPUR	Board Counsel
MR. R. NUNN	Counsel/Manager, Information Systems
MS. C. MARTIN	Administrative Coordinator
MS. G. MORRISON	Executive Coordinator

(i)

A P P E A R A N C E S

B. CAMPBELL)	ONTARIO HYDRO
L. FORMUSA)	
B. HARVIE)	
J.F. HOWARD, Q.C.)	
J. LANE)	
G. A. KARISH)	
J.C. SHEPHERD)	IPPSO
I. MONDROW)	
J. PASSMORE)	
R. WATSON)	MUNICIPAL ELECTRIC
A. MARK)	ASSOCIATION
S. COUBAN)	PROVINCIAL GOVERNMENT
P. MORAN)	AGENCIES
J. MacDONALD)	
C. MARLATT)	NORTH SHORE TRIBAL COUNCIL,
D. ESTRIN)	UNITED CHIEFS AND COUNCILS
H. DAHME)	OF MANITOULIN, UNION OF
		ONTARIO INDIANS
D. POCH)	COALITION OF ENVIRONMENTAL
D. STARKMAN)	GROUPS
D. ARGUE)	
T. ROCKINGHAM		MINISTRY OF ENERGY
B. KELSEY)	NORTHWATCH
L. GREENSPOON)	
P. MCKAY)	
J.M. RODGER		AMPCO
M. MATTSON)	ENERGY PROBE
T. McCLENAGHAN)	
A. WAFFLE		ENVIRONMENT CANADA
M. CAMPBELL)	ONTARIO PUBLIC HEALTH
M. IZZARD)	ASSOCIATION, INTERNATIONAL
		INSTITUTE OF CONCERN FOR
		PUBLIC HEALTH
G. GRENVILLE-WOOD		SESCI

A P P E A R A N C E S
(Cont'd)

D. ROGERS	ONGA
H. POCH) CITY OF TORONTO
J. PARKINSON)
R. POWER	CITY OF TORONTO, SOUTH BRUCE ECONOMIC CORP.
S. THOMPSON	ONTARIO FEDERATION OF AGRICULTURE
B. BODNER	CONSUMERS GAS
J. MONGER) CAC (ONTARIO)
K. ROSENBERG)
C. GATES)
W. TRIVETT	RON HUNTER
M. KLIPPENSTEIN	POLLUTION PROBE
N. KLEER) NAN/TREATY #3/TEME-AUGAMA
J. OLTHUIS) ANISHNABAI AND MOOSE RIVER/
J. CASTRILLI) JAMES BAY COALITION
T. HILL	TOWN OF NEWCASTLE
M. OMATSU) OMAA
B. ALLISON)
C. REID)
E. LOCKERBY	AECL
C. SPOEL) CANADIAN VOICE OF WOMEN
U. FRANKLIN) FOR PEACE
B. CARR)
F. MACKESY	ON HER OWN BEHALF
D. HUNTER) DOFASCO
M. BADER)
B. TAYLOR) MOOSONEE DEVELOPMENT AREA
D. HORNER) BOARD AND CHAMBER OF
H. WATSON) COMMERCE

(iii)

A P P E A R A N C E S
(Cont'd)

T. HEINTZMAN)	ATOMIC ENERGY OF CANADA
D. HAMER)	
C. FINDLAY)	
P.A. NYKANEN)	CANADIAN MANUFACTURERS ASSOCIATION - ONTARIO
G. MITCHELL		SOCIETY OF AECL PROFESSIONAL EMPLOYEES
S. GOUDGE		CUPE
D. COLBORNE		NIPIGON ABORIGINAL PEOPLES' ALLIANCE
R. CUYLER		ON HIS OWN BEHALF
L. BULLOCK		CANADIAN NUCLEAR ASSOCIATION

I N D E X o f P R O C E E D I N G S

	<u>Page No.</u>
<u>DAVID WHILLANS,</u> <u>KURT JOHANSEN,</u> <u>FRANK CALVIN KING,</u> <u>WILLIAM JOHN PENN,</u> <u>IAN NICHOL DALY;</u> Resumed.	21962
Cross-Examination by Mr. Hamer (Cont'd)	21962

L I S T o f E X H I B I T S

No.	Description	Page No.
551	Document entitled, Ontario/Manitoba Interconnection, Preferred Route, Draft, filed by IPPSO.	21962
520.40	Interrogatory 9.42.6.	21979
552	Document headed Cause of Death Among Long-Term Employees of Chalk River Laboratories, 1966 to 1989, AECL Report 10293.	22003
553	Document entitled Medical Perspective on Nuclear Power, Council on Scientific Affairs.	22026
520.41	Interrogatory No. 9.2.57.	22037
554	Document entitled Tritium Releases from the Pickering Nuclear Generating Station and Birth Defects and Infant Mortality in Nearby Communities 1971-1988.	22052
555	Document entitled Hinkley Point Public Inquiries, A Report by Michael Barnes, Q.C.	22053
556	Hinkley Point Report, tab 5, report by Kinlen, et al, entitled Childhood leukaemia and Poliomyelitis in Relation to Military Encampments.	22071
557	Document entitled Safety of CANDU Nuclear Power Stations, by Dr. V.G. Snell.	22109
558	Senior Expert Symposium on Electricity and the Environment, Helsinki, Finland, 13-17 of May, 1991, Key Issues Papers.	22136
559	Document entitled Chernobyl: A Canadian Perspective.	22150

TIME NOTATIONSPage No.

10:03 a.m.	-----	21962	
10:15 a.m.	-----	21969	
10:26 a.m.	-----	21978	
10:40 a.m.	-----	21987	
10:55 a.m.	-----	22000	
11:15 a.m.	-----	22014	
Recess	11:30 a.m.	-----	22025
Resume	11:50 a.m.	-----	22025
	12:00 p.m.	-----	22031
	12:20 p.m.	-----	22046
	12:40 p.m.	-----	22061
	1:00 p.m.	-----	22077
Luncheon recess	1:05 p.m.	-----	22081
Resume	2:30 p.m.	-----	22081
	2:45 p.m.	-----	22092
	3:05 p.m.	-----	22107
	3:29 p.m.	-----	22121
Recess	3:35 p.m.	-----	22125
Resume	3:53 p.m.	-----	22125
	4:05 p.m.	-----	22133
	4:25 p.m.	-----	22148
	4:45 p.m.	-----	22163
	5:06 p.m.	-----	22175
Adjourned	5:10 p.m.	-----	22177

1 ---Upon commencing at 10:03 a.m.

2 THE REGISTRAR: This hearing is now in
3 session. Be seated, please.

4 THE CHAIRMAN: I would like to note on
5 the record Exhibit 551, filed by the Independent Power
6 Producers Society of Ontario, a document entitled
7 Ontario/Manitoba Interconnection, Preferred Route,
8 Draft.

9 ---EXHIBIT NO. 551: Document entitled, Ontario/
10 Manitoba Interconnection, Preferred Route,
 Draft, filed by IPPSO.

11 Mr. Hamer?

12 MR. HAMER: Thank you, Mr. Chairman.

13 DAVID WHILLANS,
14 KURT JOHANSEN,
15 FRANK CALVIN KING,
 WILLIAM JOHN PENN,
 IAN NICHOL DALY; Resumed

16 CROSS-EXAMINATION BY MR. HAMER (Cont'd):

17 Q. Just before we go back to the table
18 on various sources of radiation, Mr. King, could we
19 look for a moment again at the Hare Report excerpts
20 which I have in my Volume 2, tab 14?

21 I am looking at a section which is headed
22 Biographical Sketches of Commissioner Advisory Panel,
23 et cetera, which is about four pages in from the front
24 of the excerpts.

25 MR. KING: A. Sir, which page?

1 Q. It doesn't have a page number on it.

2 If you count about four pages in it is headed

3 Biographical Sketches.

4 A. Yes, I have it.

5 Q. And we can see, can we not, from that
6 page and following that in addition to his own
7 scientific background Dr. Hare had assistance from
8 Dr. Ian Burton, who was a Professor of Geography at
9 U of T?

10 A. He was a member of the Advisory
11 Panel.

12 Q. And Dr. James Ham, who was a
13 Professor of Science, Technology and Public Policy at
14 the University of Toronto?

15 A. Yes.

16 Q. And Dr. John McGeachy, who is a
17 Professor of Mechanical Engineering at Queen's?

18 A. Yes.

19 Q. And Dr. Vladimir Paskievici, who is
20 Dean of Research and Graduate Studies at the Ecole
21 Polytechnique de Montreal?

22 A. Yes.

23 Q. And he in particular is a recognized
24 expert in the area of nuclear engineering?

25 A. Yes, he has been involved for many

1 years.

2 Q. And Dr. Alec T. Stewart, a Professor
3 of Physics at Queen's University assisted Dr. Hare?

4 A. He was on the Advisory Group, yes.

5 Q. And Dr. Boris P. Stoicheff, who is a
6 Professor of Physics at the University of Toronto?

7 A. Yes.

8 Q. And Mr. Ralph Torrie, who had been
9 Assistant Director of the Energy Research Group of the
10 United Nations University and the International
11 Development and Research Centre?

12 A. Yes, that is what it says.

13 THE CHAIRMAN: Did you deliberately
14 exclude Dr. Robert H. Haynes, New York University?

15 MR. HAMER: Not at all.

16 Q. And he was a member of the Society
17 for Risk Analysis, correct, among other things?

18 MR. KING: A. Dr. Robert Haynes?

19 Q. Yes.

20 A. Yes. I should point out that is not
21 the same institute we were talking about yesterday.

22 That is --

23 Q. Correct. That is a North American
24 body?

25 A. Yes.

1 Q. With membership both in the United
2 States and Canada?

3 A. And in Europe. And international as
4 well.

5 Q. Are you a member of that body?

6 A. I used to be.

7 Q. And the point I try to make is that
8 we can all accept that in carrying out his
9 investigations Dr. Hare had extensive technical and
10 scientific support, did he not?

11 A. I believe so, yes.

12 Q. And, in addition, Dr. Hare had input
13 from a number of public interest groups who functioned
14 in effect as intervenors although it was not an
15 adversarial hearing; is that correct?

16 A. He used the word intervenor to apply
17 to anybody that was assisting, participating beyond the
18 advisory group. It was a very broad use of the term.

19 Q. All right. If we turn over in my
20 excerpts to a document headed Annex 1, again,
21 unfortunately it is not page numbered. The second page
22 is numbered page 198. You will find that it follows
23 page 196 in the excerpts.

24 We find there, do we not, a table of the
25 various intervenors, many of whom are also represented

1 in this hearing?

2 A. This is a table of consultants and
3 intervenors.

4 Q. Yes. For example, my clients were
5 represented there, the Canadian Environmental Law
6 Association, the Canadian Nuclear Association, certain
7 trade unions, the United Church of Canada, and Energy
8 Probe?

9 A. Yes, I have found all of those on the
10 table.

11 Q. And Environment Canada and Friends of
12 the Earth?

13 A. Yes.

14 Q. And the International Institute of
15 Concern for Public Health on the next page--

16 A. Yes.

17 Q. --submitted a brief?

18 A. Yes.

19 Q. Over on the next page, the New
20 Democratic Party of Ontario through its MPP Brian
21 Charlton?

22 A. Yes.

23 Q. The Nuclear Awareness Project, the
24 Ontario Federation of Labour?

25 A. Yes.

1 Q. Science for Peace on the next page?

2 A. Yes.

3 Q. And the Solicitor General of Ontario?

4 A. The Ministry of, yes.

5 Q. Now, I don't have it in my excerpts -

6 I don't think we need to turn it up - but, in addition,
7 Dr. Hare conducted visits at various relevant locations
8 across Canada and internationally in connection with
9 this study of nuclear safety?

10 A. I am aware of some of the visits that
11 he conducted, as well as members of his staff visits,
12 where they traveled alone as well.

13 Q. And in Exhibit 184, which I don't
14 think we need to pull out, there is an "Annex 6", Roman
15 numeral 6, entitled "Site Visits Conducted by the
16 Ontario Nuclear Safety Review", and among other places
17 they went to my client's installations in Mississauga,
18 Chalk River and Whiteshell in Manitoba, to New
19 Brunswick Hydro; you would accept that?

20 A. New Brunswick Electric Power
21 Commission should be the...

22 Q. And the Point Lepreau nuclear
23 generating station in particular, according to this
24 document?

25 A. Yes.

1 THE CHAIRMAN: I am not quite sure --
2 this is all very interesting, but I am not quite sure
3 how it really is cross-examination. Just speaking for
4 myself really, this is all in the report, and, of
5 course, in the course of argument you can draw
6 attention to this.

7 Of course, the whole treatment of Dr.
8 Hare's report is going to be, I suppose, a matter of
9 argument as to how we should deal with it. It is
10 certainly there, and it has significance, but how we
11 should deal with it in this particular proceeding is
12 something I suppose the parties will want to address.

13 MR. HAMER: Mr. Chairman, I appreciate
14 that and certainly it will be a matter of argument.

15 I may have been led astray by your
16 comments that particular passages in documents that
17 were not put to the witnesses and asked and their
18 acknowledgement and agreement requested...

19 I would expect that it would be my
20 client's position, and perhaps others' in argument at
21 the end of this case, that Ontario Hydro as the
22 proponent has relied on the Hare Commission Report
23 quite justifiably, and that, as a matter of fact, that
24 is a document and set of conclusions which although not
25 binding on this Board can certainly be relied upon to

1 some extent by this Board.

2 I understand, and again I may be
3 anticipating cross-examination of later intervenors,
4 but I understand that some parties have criticized the
5 Hare Commission by reason of its composition and the
6 way in which it carried out its inquiries.

7 THE CHAIRMAN: Well, the Hare Report is
8 at the moment evidence at this hearing because it is a
9 document filed by the proponent and is here as evidence
10 in contrast to some of the documents that are filed by
11 the intervenors which may eventually become evidence
12 but at the moment specific extracts are being used to
13 elicit from the witnesses their views about whatever
14 subject happens to be before them at the time.

15 There is a distinction there. For
16 instance, a number of the exhibits that have been put
17 forward by the intervenors for cross-examination I am
18 sure will become part of their cases when the time
19 comes and will have to be weighed like all the other
20 material.

21 [10:15 a.m.]

22 MR. HAMER: Perhaps we could leave it
23 this way, Mr. Chairman, to the extent that the Hare
24 report contains statements of fact as opposed to
25 statements of opinion, we can take it as read that

1 those facts are accepted by Ontario Hydro as the
2 proponent.

3 THE CHAIRMAN: Well, I don't know whether
4 Mr. Campbell has anything to say about that or not.

5 MR. B. CAMPBELL: For instance, dealing
6 with the matter where and an appendix in the Hare
7 Report states that the commission or its agents
8 attended on certain sites and conducted certain
9 conversations, we are certainly not going to dispute
10 that. I am quite willing to accept that that is
11 accurately reported by Dr. Hare.

12 MR. HAMER: And that the general process
13 of his commission is accurately described in his
14 report. There is, for example, quite a lengthy
15 document by at commissioner manager, I believe her name
16 is Margaret Grisdale describing how they went about
17 their work and we can take simply take that as being a
18 factual description of that inquiry.

19 THE CHAIRMAN: I detect at the end of the
20 day what your client will be saying is that we should
21 accept the findings of the Hare Report and why, because
22 of all the matters you have suggesting to the
23 witnesses, that it was a carefully worked out thing by
24 highly qualified people who made extensively
25 investigations. And I suppose there may be others who

1 will take a different position on that.

2 MR. HAMER: Yes.

3 THE CHAIRMAN: But in the narrow ambit of
4 cross-examination, I am not sure, unless these
5 witnesses have some special contribution to make, I am
6 not sure that it is helpful at this stage to go through
7 some of the matters that you have been dealing with.

8 MR. HAMER: Now that I look at it, I
9 think I am finished anyway, Mr. Chairman, or almost.

10 THE CHAIRMAN: Well, at least we got this
11 particular matter out on the record so people can deal
12 with it as they see fit as we go along. That was
13 really my objective.

14 MR. HAMER: Yes.

15 Q. Dr. Whillans, could we go back then,
16 please, to the table which is contained in Exhibit 507
17 which I have excerpted at tab 8 of our Volume 2.

18 DR. WHILLANS: A. I have it.

19 Q. First of all, I believe you were
20 going to check a couple of the entries on that table
21 overnight dealing with the nuclear power occupational
22 dosages and the nuclear fuel cycle.

23 A. Right. Well, with respect to the
24 entry occupational nuclear power I would like to
25 clarify that the number referred to here is the average

1 dose, effective dose for a member of the public, as the
2 title of the whole table suggestions, as a result of
3 nuclear power generation, and I think this is clear
4 from the last paragraph on the previous page which is
5 in Exhibit 507 but not --

6 Q. Which I haven't excerpted.

7 A. Not in your excerpt. Maybe I could
8 read it.

9 It just refers to the radiation dose
10 resulting from radionuclide emissions from nuclear
11 station operation should be compared with the radiation
12 dose received from the public from other sources and
13 the variability of this background radiation.

14 The reason occupational was put in, I
15 believe, was to distinguish it from other artificial
16 sources such as medical and consumer products. But it
17 does refer to dose to the general public as a result of
18 nuclear power generation.

19 With respect to the fuel cycle --

20 Q. Can I just stop you there for a
21 moment.

22 A. Yes.

23 Q. Not a great deal turns on it, but in
24 deriving that annual average dose to members of the
25 public, I take it that the authors included members of

1 the public who happened to be nuclear workers; is that
2 correct?

3 A. Yes, nuclear workers are also members
4 of the public. And this is an upper limit. As I said
5 in the direct evidence, the maximum dose to a member of
6 the public is about .05 millisieverts or less, and
7 that's for a very restricted sub set of the population.
8 The average dose is much less. And whether or not you
9 include radiation workers doesn't make a lot of
10 difference.

11 Q. Yes. And then nuclear fuel cycle?

12 A. Nuclear fuel cycle, I am not sure
13 what your question was.

14 It is intended include all other parts
15 the fuel cycle, including mining, milling, the frontend
16 parts and also waste management.

17 Q. But not generation?

18 A. But not generation. But again, as
19 it's an upper limit, it wouldn't make much difference
20 if it were including generation.

21 Q. And do we take it then that for the
22 whole of the nuclear fuel cycle including generation
23 one sums those two figures as being the upper limit?

24 A. Yes, that would certainly give you a
25 conservative upper limit I think.

1 THE CHAIRMAN: That would be .02.

2 DR. WHILLANS: .02, but it's still an
3 upper limit.

4 My suspicion is that it would still be
5 .01 but technically that's what the table says.

6 MR. HAMER: Q. And that's because of the
7 symbols for less than on the left of each of those
8 figures?

9 DR. WHILLANS: A. Yes.

10 The intent of this part of table was to
11 give an upper limit which is defensible but also to
12 contrast this with the other numbers which are much
13 greater.

14 Q. And now turning back to the other
15 sources of ionizing radiation on the list, I understand
16 that the entry for internal sources relates to
17 irradiation of the human body from elements which are
18 actually present inside the body; is that correct?

19 A. That's right. And I think as I said
20 in the direct evidence, the main contributor to this is
21 the potassium 40, the isotope of potassium which is
22 radioactive and which delivers doses to the body even
23 though it's a natural part of the potassium that's in
24 the body.

25 There are some other contributors which

1 are taken into the body as a result of diet or drinking
2 water and so forth. The second largest contributor is
3 part of the uranium decay chain, lead and polonium 210.
4 The third large is perhaps carbon 14 but we are talking
5 about .01 millisieverts or less.

6 So there is really one large contributor,
7 another one which is somewhat smaller and a number of
8 others which are very much smaller.

9 Q. In sum, those sources produce on
10 average does by my arithmetic, 20 times the maximum
11 average dose from the nuclear fuel cycle which we have
12 just agreed on?

13 A. That's right.

14 Q. And then the entry for medical
15 irradiation relates primarily to X-rays, I take it?

16 A. There is two categories showing
17 X-rays or nuclear medicine, which is a set of
18 diagnostic techniques that involve radioactive
19 materials and...

20 Q. Barium enemas, that sort of thing?

21 A. Well, that might not be a best
22 example.

23 Something like thallium scans for heart
24 function, or technetium is one of the major, technetium
25 99M is one of the major imaging isotopes.

1 Q. And by my count those are again well
2 over 20 times the maximum annual average dose resulting
3 from the nuclear fuel cycle?

4 A. That's true.

5 Q. And consumer products, would that
6 cover things like watches and items like that?

7 A. Yes. The major contributors are
8 actually in tobacco, again the lead polonium 210, and
9 there are a number of others things, tritium dials on
10 watches, uranium isotopes in dinnerware. There is a
11 large range of things.

12 Q. Just going back to radon for a
13 moment. If one were to institute an energy
14 conservation program whereby people's houses were
15 sealed up more tightly than traditionally they were,
16 one could anticipate enhancing the annual average doses
17 to those members of the public who participated in such
18 a program; is that correct?

19 A. Well, I think a fairer description
20 would be to say that if you only seal up a house, and
21 there a source of radon which can get into the house,
22 that will, because the ventilation changes are smaller,
23 that will certainly increase the dose. But there are
24 other ways of reducing that exposure, by sealing up the
25 source, for example.

1 Q. If one merely seals the house with
2 those sticky tapes and that sort of thing, without
3 taking steps to either remove the source or to improve
4 the ventilation, that would be the effect, would it
5 not.

6 A. If that's all you did, that would be
7 the effect, yes.

8 Q. I would like to turn to occupational
9 doses, and to begin with, may we look again at the
10 excerpt from the Hare Report at tab 14, and I am
11 looking at page 106 in that excerpt. It's paragraph
12 No. 232 of the report to the Minister.

13 Do you have that?

14 A. Yes, I do.

15 Q. And we see that in paragraph 232, Dr.
16 Hare or the authors have gone through a discussion of
17 doses to workers in the previous paragraphs, and then
18 in 232 he states:

19 It is obvious, however, that these
20 exposures, that is exposure to workers,
21 are much larger than is typical of the
22 public, even of those resident near the
23 exclusion fences of the nuclear
24 generating stations. If prolonged
25 exposure to ionizing radiation carries

1 with it the penalty of greater proneness
2 to disease, that fact should show up
3 among Ontario Hydro's work force, the
4 same should be true of AECL employees at
5 Chalk River and in nearby town of Deep
6 River where many AECL live.

7 [10:26 a.m.]

8 I take it you would agree with that logic?

9 A. Generally, yes.

10 Q. And another way of putting it is to
11 say perhaps that the radiation workers are in some
12 senses sentinels for the rest of the community; is that
13 fair?

14 A. Yes, I think I could agree with that.

15 Q. And while we needn't turn it up,
16 Exhibit 519 at page 35 tells us that doses to Ontario
17 Hydro's workers have been declining substantially, and
18 I believe you set out there the decline in average
19 doses from 1981 onward and that has been quite
20 substantial; correct?

21 A. Yes.

22 Q. In one of your interrogatory
23 responses, which again we needn't turn up unless we
24 need to clarify, it is stated that the average
25 Ontario Hydro worker receives one of the lowest

1 occupational doses amongst world utilities? Are you
2 familiar with that?

3 A. Could you refer me to the
4 interrogatory, please?

5 Q. Yes. If you turn to my tab 6 in
6 Volume 2 I believe you will find it. This is tab 6 in
7 my Volume 2, and it is Interrogatory 9.42.6.

8 THE REGISTRAR: It is given the number
9 520.40.

10 ---EXHIBIT NO. 520.40: Interrogatory 9.42.6.

11 DR. WHILLANS: Yes, I have it.

12 MR. HAMER: Q. And if one looks at the
13 bar graph headed Dose Per Gross Megawatt Year, which in
14 effect compares worker doses on a basis which is made
15 comparable on the basis of installed capacities in the
16 various utilities, Ontario Hydro's dose is one of the
17 lowest amongst those countries?

18 DR. WHILLANS: A. Yes, I agree with
19 that. I want to make the distinction that we are
20 looking at here is what I call collective dose.

21 Q. Right.

22 A. We had talked about individual dose
23 previously.

24 Q. Some are higher? Right. So that
25 some are higher and some are lower than is shown by

1 these bars, obviously?

2 A. Some...?

3 Q. Some individual workers?

4 A. Well, this is the sum of them all so,
5 yes, they will vary around the average, yes.

6 Q. Right. Okay. Am I correct in
7 thinking that Ontario Hydro in its nuclear stations
8 exposes fewer workers per reactor than many of the
9 other utilities who use nuclear generation? I think we
10 see that in another graph.

11 A. Yes, I think two pages on in the same
12 interrogatory response there is a set of bar charts of
13 exposed workers per reactor.

14 Q. Yes.

15 A. And this is showing over a five-year
16 trend, and Ontario Hydro is in the upper left-hand
17 corner, and you can see -- well, barely, but the scales
18 are the same for all the graphs, and Ontario Hydro's
19 number of workers exposed even over the past five years
20 is lower than most of the others, yes.

21 Q. In fairness, some of Ontario Hydro's
22 exposed workers, however, are at relatively high levels
23 of annual individual dose compared to some of the other
24 average individual doses; is that correct?

25 I have put that inelegantly, but I think

1 we see that in one of other bar --

2 A. That's right.

3 Q. I think the one headed Annual Dose
4 Per Exposed Worker?

5 A. Have you found that?

6 Q. It doesn't --

7 A. All right. On the next page. So
8 what you say is true.

9 Q. But there are fewer workers at that
10 relative high dose level?

11 A. That's right. And the first chart
12 you referred me to, which is the collective dose
13 comparison, is what multiplies the dose per worker
14 times the number of workers and gives the overall
15 impact on the work group in terms of dose.

16 Q. Right. And just while we have that
17 interrogatory open, and if we go back to the bar chart
18 headed Dose Per Gross Megawatt Year, Electrical, that
19 is the one that shows that overall amongst its worker
20 population Ontario Hydro is low in the world; correct?

21 A. Yes.

22 Q. And the comparison is also apt in the
23 sense that the other countries shown on that bar chart
24 are almost all light water reactor countries rather
25 than heavy water reactor countries; is that right?

1 A. That's right. I think there is a
2 note somewhere in this report to that effect.

3 Q. I think the answer to the
4 interrogatory helps make the point?

5 A. Perhaps.

6 Q. The question was: What is the
7 experience with regard to worker radiation doses
8 resulting from CANDU stations compared to those
9 resulting from light water reactors?

10 And in answer Hydro produced this series
11 of graphs.

12 A. Right.

13 MR. KING: A. If I could just add for
14 clarification that in the case of the United Kingdom it
15 is primarily gas-cooled reactors, not water reactors.

16 Q. Right. And that country shows a dose
17 per gross megawatt almost identical to Canada, or
18 rather Ontario Hydro?

19 A. Yes. My understanding is that
20 gas-cooled reactors have an advantage with respect to
21 dose because you don't get some of the sort of
22 corrosion that would occur and the pickup of
23 radioactive materials that would occur in a water
24 reactor.

25 Q. We can agree that it is almost

1 identical to Ontario Hydro's average? .21 is equal or
2 almost equal to .20?

3 A. Yes, I was just adding some
4 clarification on why gas-cooled reactors have low
5 numbers.

6 Q. Mr. King, you would agree that .20 is
7 almost the same as .21?

8 A. Yes.

9 Q. Thank you. Now, Dr. Whillans, the
10 worker population which produces these statistics, as I
11 understand it, actually has their doses measured with
12 those little contraptions that we wore at Darlington?
13 What do you call them?

14 DR. WHILLANS: A. Well, the TLDs? No?

15 Q. What's that?

16 A. They wear a badge which measures
17 external dose.

18 Q. Yes?

19 A. And because internal dose from
20 tritium is a major part of the doses in Ontario Hydro
21 facilities they also submit regular bioassay urine
22 samples, and these are analyzed just to make the
23 internal dose.

24 Q. And they are kept on a dose register,
25 then?

1 A. That's right.

2 Q. Now, if we go to tab 4 of my Volume
3 2 -- this may be an exhibit. I'm sorry, I haven't
4 checked it. It is interrogatory 9.22.32.

5 THE REGISTRAR: .32?

6 MR. HAMER: Yes.

7 THE REGISTRAR: That is .41.

8 THE CHAIRMAN: 41?

9 THE REGISTRAR: Yes.

10 THE CHAIRMAN: Thank you.

11 MR. HAMER: Q. That interrogatory
12 attaches a report summarizing the mortality experience
13 of Ontario Hydro workers; correct?

14 DR. WHILLANS: A. That's correct.

15 Q. And somewhere in the report I think
16 the statement is set out that Ontario Hydro was one of
17 the first corporations in the world to set up a
18 comprehensive system to record the mortality of its
19 workers; is that correct?

20 A. I'm sorry, I am not familiar with
21 that statement.

22 Q. If you turn to page 40 at the back -
23 do you see it - in the first full paragraph, the last
24 four lines:

25 Ontario Hydro thus became one of the

1 first companies in the world to establish
2 any form of routine mortality monitoring
3 program of its employees.

4 A. Yes, I see that.

5 Q. And you are aware of that?

6 A. I am now.

7 Q. And there are still only a handful of
8 such companies. I take it you wouldn't be able to
9 assist us on whether that is true or not.

10 A. Yes, I think only to comment that
11 studies, as you know, are done at AECL and in large
12 companies, but I think that would probably be just a
13 handful, yes.

14 Q. We will come back to the AECL
15 studies.

16 If you go to page 1 of the report -- and
17 before we highlight some of the material items covered
18 in the report, is there another witness on the Panel
19 that can speak better to this report or is this
20 something that is within your area, Dr. Whillans?

21 A. I think it is in my area.

22 Q. What has happened as of the time of
23 this report is that 19 years of mortality experience of
24 the male employees of Ontario Hydro who are either
25 already pensioned or pensionable has been surveyed;

1 correct?

2 A. Yes.

3 Q. And on page 3 there is an explanation
4 of standardized mortality ratios, and that is a typical
5 statistic which is used in monitoring health effects of
6 various kinds of industrial activity; is that correct?

7 A. Yes.

8 Q. And basically, all it does is take
9 the actual deaths occurring in a particular category
10 and comparing that to the number of deaths which are
11 expected to occur in a like category based on
12 historical data; is that correct?

13 A. Yes. I think here it says in this
14 particular case: based on provincial death rates for
15 the same age distribution during approximately the same
16 period of time.

17 Q. So that, for example, one compares I
18 think it is men between the age of 50 and 55 rather
19 than simply comparing the entire male population?

20 A. That is right. It is age
21 standardized.

22 Q. Right.

23 THE REGISTRAR: Mr. Chairman, I have just
24 done another check, and I find that 9.22.32 was
25 previously entered, and it is 520.12.

1 THE CHAIRMAN: Thank you.

2 THE REGISTRAR: So 41 is still vacant.

3 THE CHAIRMAN: Thank you.

4 MR. HAMER: Q. If we go to page 6 of
5 this report in the second last full paragraph we find
6 the statement that:

7 There have now been 3,479 deaths
8 recorded and all standard mortality
9 ratios are below 100, reflecting the
10 usual so-called healthy worker effect.
11 That means that the actual numbers of deaths observed
12 in each category has been less than the expected
13 numbers of death?

14 DR. WHILLANS: A. Based on the
15 provincial average, yes.

16 Q. And the healthy worker effect is
17 basically a phenomenon which is perceived whereby
18 groups of employees in certain enterprises may in
19 effect be self-selecting so that that population is
20 healthier in general than the population at large; is
21 that a fair description?

22 [10:40 a.m.]

23 A. I think that's fair. It is a very
24 common phenomenon in occupation studies because the
25 selection that occurs when someone has to come to work

1 every day is a very strong one in terms of health.

2 Q. You tend to be healthier if you go to
3 work?

4 A. You tend to be healthier if you can
5 keep a job, yes.

6 Q. And then we turn on page 8 to the
7 subject of cancer in men on the dose register. Am I
8 correct in understanding that, first of all, apart from
9 lung cancer there weren't enough deaths from other
10 kinds of cancer to come up with terribly meaningful
11 statistics?

12 A. I think I referred to that in my
13 direct evidence.

14 Q. And then the author says in the last
15 five lines on page 8:

16 The only possible exception is lung
17 cancer which with 24 cases is the only
18 category where the numbers are large
19 enough that a dose response effect might
20 be visible.

21 Then over on page 9 the author deals in
22 the paragraph numbered 1 with the fact:

23 That there is no evidence of a dose
24 response gradient for long cancer.

25 Correct?

1 A. Yes, that's what it says.

2 Q. If you look to the table at the top
3 of the page, you see that for workers who had a zero
4 millisieverts dose, the standard mortality ratio is
5 139, which is more than expected, in quotation marks?

6 A. Yes.

7 Q. And then if you increase the dose to
8 the gradient up to 50 millisieverts, it drops to 124,
9 standard mortality ratio.

10 Do you see that?

11 A. Yes. My copy is not very clear,
12 actually.

13 Q. I'm sorry.

14 The dose is set out in the less than 50
15 at the top?

16 A. I see that.

17 Q. And at the bottom it's dropped from
18 139 to 134. And then if you go to the gradient between
19 50 to 99 it drops again to 82, which is less than
20 expected; correct?

21 A. Yes.

22 Q. And then between 100 and 149
23 millisieverts it goes back up to 101?

24 A. Yes.

25 Q. And between 150 and 199 millisieverts

1 it goes up again to 278, standard mortality ratio?

2 A. Yes.

3 Q. And then the highest dose level, it
4 falls right off to zero?

5 A. Yes.

6 Q. And that's what the authors means
7 when they talk about the absence of a dose response
8 gradient?

9 A. Yes.

10 Just as comment, I was looking as you
11 were talking I don't believe that these statistics are
12 corrected for smoking versus non-smoking and that's by
13 far the most important determinant of lung cancer. And
14 if that is true, I would think that these numbers do
15 not reflect anything to do with doses.

16 Q. Let us go over then to page 11 and
17 deal with leukaemia deaths. The last full paragraph on
18 that page begins:

19 It is of interest that leukaemia
20 deaths remain well below the number
21 expected in the general population of the
22 same age distribution.

23 And then a little further on in the
24 paragraph:

25 The lack of any excess leukaemia in

1 this group of radiation workers is not in
2 itself surprising since from what is
3 already known of the effect of ionizing
4 radiation, the average dose and thus
5 total -- and it should say person
6 sieverts -- has not been large enough to
7 cause any detectable increase in the
8 leukaemia deaths in a group of this size.
9 Et cetera.

10 You would agree with that logic and that
11 conclusion?

12 A. I would.

13 Q. And then the statement is set out on
14 page 12 in the first full paragraph:

15 In view of the mounting public anxiety
16 about a possible causal relationship
17 between electromagnetic fields and
18 leukaemia, it is of interest that Hydro
19 radiation workers, many of whom will have
20 been exposed in nuclear generating
21 stations to both ionizing radiation and
22 electromagnetic fields have shown no
23 evidence of excess leukaemia.

24 And then finally:

25 Similarly, there has so far been no

1 death from multiple myeloma, a disease
2 that has shown a positive relation to
3 ionizing radiation in some large scale
4 studies.

5 And that is it a significant finding, is
6 it not, in terms of the effects of radiation Ontario
7 Hydro's workers?

8 A. Yes. I think as I mentioned in the
9 direct evidence, when we look at the tables of numbers,
10 there are so few - and I think we have already reached
11 this point this morning - so few deaths in individual
12 categories that it would be difficult to say anything.
13 But certainly, I agree with their conclusions here.

14 I would also point out that this is a
15 report up to 1988 and there are some additional studies
16 being carried out now particularly with respect to
17 electromagnetic field exposure and the results of those
18 are not available. But there are some ongoing studies
19 that extend this work.

20 Q. And this is something that it is
21 prudent to study all the time on ongoing basis?

22 A. We believe so.

23 Q. And if cause for concern emerges out
24 of the ongoing study, steps will be taken to deal with
25 that concern?

1 A. Yes.

2 Q. In fact one of your jobs at Hydro is
3 to make recommendations as to whether or not the
4 evolving science indicates the need for a change in
5 radiation protection practices; correct?

6 A. Yes.

7 Q. If we go over to page 20 of this
8 report, we find a table which as I understand it
9 compares workers and their mortality in accordance with
10 the area within the corporation in which they were most
11 recently employed.

12 Do you have that?

13 A. Yes.

14 Q. And that breaks the mortality down
15 amongst the nuclear division, the thermal division, and
16 so-called other areas in the corporation; correct?

17 A. That's correct.

18 Q. We can see that the first category of
19 causes of death broken out there is cancers, and that
20 would be the one of most significant from the point of
21 view of radiation effects; correct?

22 A. Certainly that is the one that we
23 would look at first, based on the evidence today.

24 Q. We find if we look to the total
25 column on the right, that the incidence of cancers is

1 less than expected with the standard mortality ratio of
2 84?

3 A. Yes.

4 Q. And the highest incidence of cancers
5 is in the thermal division with the standard mortality
6 ratio of 93?

7 A. Yes.

8 Q. And the next highest is in the
9 "other" areas of the corporation with the standard
10 mortality ratio of 84?

11 A. Yes.

12 Q. And the lowest is the nuclear
13 division at 62 standard mortality ratio?

14 A. Yes. The row just underneath those
15 numbers is marked CL, that's the confidence limits on
16 that. For example, the 62 for nuclear has confidence
17 limits going from 40 to 91. The point I was going to
18 make is that if you look at the confidence limits on
19 all of those individual numbers, they are not really
20 different.

21 Q. Well, except that the confidence band
22 for the thermal division has an end point in excess of
23 100.

24 A. That's true.

25 Q. And that's significant.

1 A. That is significant, yes.

2 Q. It's one thing that the
3 epidemiologist watches for?

4 A. Yes.

5 What this means is that, for example, the
6 nuclear value of 62 is statistically significantly less
7 than one. That's not true for thermal.

8 Q. Right. And the confidence band means
9 that for the nuclear workers, for example, one can have
10 95 per cent confidence that the true mortality ratio,
11 if you like, is somewhere between 40 and 92; is that
12 fair?

13 A. Yes, in the statistical sense that's
14 exactly what it means.

15 Q. And that's all we are talking about
16 is statistics?

17 A. Right.

18 Q. Right. And we will talk a little
19 later about damn lies?

20 A. Okay.

21 Q. And if we look to the line at the
22 bottom of that table, we see that for all causes of
23 death the standard mortality ratio for the nuclear
24 workers is again lower than for those in the other
25 areas of the corporation, both thermal and "other";

1 correct?

2 A. Correct.

3 Q. And all of the Ontario Hydro workers
4 have standard mortality ratios in respect of which the
5 confidence band is below one when one looks at all
6 causes of death?

7 A. That's right, that's healthy worker
8 effect.

9 Q. And the nuclear workers have the
10 lowest situated confidence band being 49 at the bottom
11 end and 73 at the top end; correct?

12 A. Yes, that's correct.

13 Q. Putting that another way, we can say
14 that in summary, Ontario Hydro's workers are outliving
15 the rest of the population? And I am speaking of
16 quantity of life, not quality of life.

17 A. It's a big step. [Laughter]

18 I am hesitating because for people who
19 are still alive, I am not sure that you can say they
20 are necessarily outliving the rest of the population.
21 But certainly within this time frame, mortality
22 experience is lower than the rest of the population, I
23 would agree with that.

24 Q. And the nuclear workers' mortality
25 experience is lower than in other areas of the

1 corporation?

2 A. Yes.

3 Q. If we go back to an excerpt from the
4 Hare Report at tab 14, I would like to go to the lower
5 case Roman numeral page numbers and look at Roman
6 numeral 15, (xv).

7 A. I have it.

8 Q. And I take it that you agreed with
9 Dr. Hare's conclusion at the bottom of that page under
10 Health Matters and you agree today that:

11 There is no evidence that the normal
12 operation of Ontario Hydro's reactors has
13 caused or will in future cause harmful
14 effects in either the reactor work-force,
15 which is by far the most supposed group,
16 or the general public.

17 You agreed with that conclusion when it
18 came out and you agree with it today?

19 A. Well, we addressed this point I think
20 in an earlier cross-examination. I agree that there is
21 no evidence that we have caused harmful effects in
22 either the work-force or the general public, that's
23 true.

24 Q. And you would also agree with his
25 concluding remark, vigilance is required?

1 A. Yes.

2 Q. And we will come to some of the work
3 which is ongoing with respect to some concerns that
4 have arisen.

5 For example, at Roman numeral 16, in the
6 second paragraph, the last sentence indicates:

7 It is, however, too early for all
8 latent cancers to have been revealed.

9 So of course the corporation will
10 continue to monitor cancer mortality amongst its
11 work-force?

12 A. Yes.

13 Q. And in the next paragraph Dr. Hare
14 says:

15 Epidemiological analysis of the
16 exposed workers of AECL is carried out.

17 It is a longer and larger sample. It too
18 shows cancer mortality to be below that
19 in the general public, although for Chalk
20 River employees it has tended to rise in
21 the past 15 years and is now level with
22 or marginally above that of the public.

23 And that was written in 1987 or 1988?

24 A. That's right.

25 Q. And then Dr. Hare says in the next

1 paragraph:

2 There is no comparable study of
3 public impact in Canada. Public exposure
4 to radiation is at least several hundred
5 times smaller than in either AECL or
6 Ontario Hydro work-forces, hence
7 measurable effects are unlikely.

8 And again that is the sentinel logic at
9 work; correct?

10 A. Yes.

11 Q. And we will see in a few moments, if
12 we turn to tab 3 in my Volume 2, at tab 3 we find an
13 interrogatory answer submitted by Hydro, No. 9.22.30.

14 THE REGISTRAR: That has been previous
15 entered as 520.13.

16 MR. HAMER: Q. And that is a study which
17 was published by some epidemiologists at my client's
18 Chalk River facilities dealing with mortality among
19 long-term Chalk River employees as of 1986; correct.

20 DR. WHILLANS: A. Yes. I am not sure
21 they are both epidemiologists, but the rest of what you
22 say is correct.

23 Q. I think they are health physicists as
24 a matter of fact?

25 A. Health statisticians perhaps.

1 [10:55 a.m.]

2 Q. And we can see from the abstract that
3 no statistically significant increases in cancer deaths
4 were found in any of the groups analyzed?

5 A. That's correct.

6 Q. If we go over to page 3 we find table
7 3, again dealing with standard mortality ratios for
8 major causes of death amongst males who had been
9 employed by AECL at Chalk River where there are nuclear
10 reactors; correct?

11 A. That's correct.

12 Q. And if we look at the line in Table 3
13 headed Cancer, we see five-year intervals for standard
14 mortality ratios: 1966 to 1970, and then 1971 to 1975,
15 and so forth?

16 A. Table 3? Sorry, yes.

17 Q. And in that line headed Cancer, we
18 see that for the first five-year interval the standard
19 mortality ratio was .95, which is 95 in other people's
20 parlance?

21 A. Yes.

22 Q. And then it dropped in the next
23 five-year interval to .72?

24 A. Yes.

25 Q. But then it rose in the next interval

1 to .89 and again in the next interval to 1.07?

2 A. Yes.

3 Q. And that is the increase which Dr.
4 Hare had remarked upon in the excerpt from his report
5 which we were just referring to?

6 A. Yes. What we don't have here are the
7 confidence limits, the 95 per cent confidence limits as
8 were shown on the table 2 above, but if they are
9 similar you could see that the differences are not
10 significant, in some cases anyway.

11 Q. Well, in fact, what we are looking at
12 here is probably an aging population to some extent; is
13 that correct? These are not age-adjusted figures;
14 these are mortality figures overall for that
15 population. Correct?

16 A. Well, without reading the methodology
17 I can't be sure of that, but there has to be some
18 correction done when you calculate an expected number.

19 Q. All right. And you would take into
20 account the ages at which the --

21 A. I would have expected so. I guess we
22 could check that.

23 Q. Well, I don't think it is important.

24 What I want to get to is the more recent
25 report which I have included at tab 3 but which was not

1 part of your interrogatory answer, and I think we find
2 in Dr. Hare's Report that he had recommended continuing
3 monitoring of the AECL employees in view of that
4 increase that we have just observed in cancer
5 mortality; correct?

6 A. Yes.

7 Q. Do we not find a further report
8 published by the same authors which I have inserted at
9 tab 3 behind your interrogatory answer?

10 A. Yes. I see it.

11 Q. And that is headed Cause of Death
12 Among Long-Term Employees of Chalk River Laboratories,
13 1966 to 1989?

14 A. Yes. This is AECL Report 10293.

15 Q. And you recognize that document as
16 one that would come to your attention?

17 A. Until you provided it I haven't seen
18 this document, no.

19 Q. Do you have any reason to believe
20 that it is not published by those authors under those
21 auspices?

22 A. No, I know that they do keep an
23 ongoing review, and this would be a natural update.

24 THE CHAIRMAN: This document should be an
25 exhibit, I take it?

1 MR. HAMER: I would ask that it be
2 marked, Mr. Chairman.

3 THE REGISTRAR: What page are we on?

4 THE CHAIRMAN: Well, it is halfway
5 through tab 3. It is at the back of the interrogatory.

6 MR. HAMER: Mr. Chairman, I would be
7 happy to supply a loose copy if that makes it more
8 convenient for the Registrar.

9 THE REGISTRAR: Just as long as I know
10 where I am going. So the next exhibit number is 552.

11 ---EXHIBIT NO. 552: Document headed Cause of Death
12 Among Long-Term Employees of Chalk River
13 Laboratories, 1966 to 1989, AECL Report 10293.

14 MR. HAMER: Q. And we see at page 3 that
15 the authors indicate in that short paragraph in the
16 middle of page 3 in the last sentence in that short
17 paragraph:

18 The trend upward that was noted in the
19 Hare Report for cancer deaths for the
20 years 1971 to 1985 has not continued in
21 the next four years to 1989. This
22 suggests that the increases were normal
23 statistical variations.

24 DR. WHILLANS: A. I see that, yes.

25 Q. And you would accept that as a
26 logical conclusion, assuming that those increases did

1 not continue?

2 A. Yes, because that is what I was
3 trying to point out when we were looking at the
4 previous table. There really were not statistically
5 significant differences amongst the years that were
6 referred to by Dr. Hare.

7 Q. Right. Well, turn to page 10,
8 please, and you will find the confidence intervals have
9 been thoughtfully supplied for you there, and this
10 table sets the numbers out vertically rather than
11 horizontally, but on the right-hand side we see the
12 standard mortality ratios with 95 per cent confidence
13 intervals in brackets, and we see that for cancer
14 deaths the standard mortality ratio is .89 with an
15 interval of .76 to 1.05?

16 A. Yes.

17 Q. And then if we go to page 12 we see
18 the horizontal table again that we saw in the previous
19 report, table 3?

20 A. Yes.

21 Q. And we see the numbers again for
22 those five-year intervals except that another five-year
23 interval has been added, being the years 1986 to 1990?

24 A. Yes.

25 Q. And this time the standard mortality

1 ratio has dropped from 1.09 to 0.72?

2 A. Yes.

3 Q. And that would indicate that there is
4 reason to be reassured that there is no upward trend
5 emerging in cancer deaths amongst those AECL workers?

6 A. I think that is so.

7 Q. Yes.

8 DR. CONNELL: There have apparently been
9 some corrections or changes in figures for the earlier
10 periods.

11 MR. HAMER: I think we may find that
12 discussed in the body of the report. I can't put my
13 finger on that part of the discussion immediately, Dr.
14 Connell.

15 DR. CONNELL: The biggest change seems to
16 be in the cardiovascular figure for 1976 to 1980.

17 DR. WHILLANS: There also seem to be some
18 changes in the cancer numbers for the period '76 to '80
19 and '81 to '85, but they are small changes.

20 MR. HAMER: Q. And as the health
21 statistician refines the statistical methods and the
22 data collection methods one anticipates seeing small
23 changes like that in follow-up reports?

24 DR. WHILLANS: A. I think that is true.

25 Q. And if we look at, while we have it

1 open, tables 4 and following in that report on page 12
2 we see table 4 covers mortality among 562 AECL
3 participants in the NRX cleanup, and that refers to an
4 accident which occurred in 1952 or '53 at Chalk River;
5 correct?

6 A. I think the dates and the
7 circumstances of the accidents are described somewhere
8 in the text.

9 Q. You are probably quite right.

10 A. On page 5 of this present report
11 there is some comment about the NRX and NRU accidents.

12 Q. Would you accept that the NRX
13 accident was in about 1952 or 1953?

14 A. Approximately that time, yes.

15 Q. Yes. And we see that deaths from all
16 causes for that group of 562 participants has a
17 standard mortality ratio of 0.83 with a confidence
18 limit of .73 to .94?

19 A. Referring to...?

20 Q. Table 4, Deaths from All Causes?

21 A. Oh, from all causes.

22 Q. Yes.

23 A. Yes. Yes.

24 Q. If you look at the individual causes
25 you see that they all have a standard mortality ratio

1 below 1 with the upper limits of the confidence bands
2 being not significantly above 1; is that fair?

3 A. Could you repeat that, please? The
4 upper limits of the confidence band not being
5 significantly above 1?

6 Q. Let's deal with the first barrel
7 first.

8 A. Yes?

9 Q. The standard mortality ratios are all
10 below 1?

11 A. Yes.

12 Q. And the confidence intervals for the
13 standard mortality ratios from the various individual
14 causes of death have upper limits which in no case are
15 significantly above 1; is that fair?

16 A. I don't think this table tells you
17 that, no. I think the numbers say that the confidence
18 range around each of those mortality ratios with the
19 exception of other causes does include 1.

20 Q. Yes.

21 A. But it also includes lower values.

22 Q. Right. But in terms of health
23 statistics, for example, the cancer confidence interval
24 of .67 to 1.16 would not give you cause for undue
25 alarm, would it?

1 A. Well, to me it means that the number
2 is approximately equal to whatever basis was used here,
3 presumably the provincial average.

4 Q. One doesn't see a sudden --

5 A. It is not significantly greater,
6 that's right.

7 Q. Right.

8 A. I guess what you are getting at is if
9 the number were higher than 1 and the lower confidence
10 limit were higher than 1, then the value is
11 statistically greater than 1. And that is not the case
12 here.

13 Q. All right. And one sees similar
14 figures in terms of the concepts that you and I have
15 been discussing in table 5 for mortality among 533 AECL
16 participants in the NRU cleanup which followed an
17 accident in about 1957 or '58?

18 A. Yes, I think it says May, '58 on
19 page 5.

20 Q. Finally, table 6 deals with mortality
21 up until 1989 among 400 or so AECL employees who had
22 lifetime doses in excess of .2 sieverts by 1982;
23 correct?

24 A. Yes.

25 Q. And one sees nothing alarming about

1 the standard mortality ratios for deaths from any of
2 the causes listed there?

3 A. Yes.

4 Q. The recorded accumulated lifetime
5 doses in excess of .2 sieverts would mean that that
6 group is a high exposure group, if I can put it that
7 way; is that fair?

8 A. That would be the highest group by
9 dose interval, yes.

10 Q. I want to deal briefly with dose
11 limits, I believe is the term, established by the ICRP.

12 A. Yes.

13 Q. You are familiar with those?

14 A. Yes.

15 Q. What does that stand for?

16 A. The ICRP?

17 Q. Yes.

18 A. It is the International Commission on
19 Radiological Protection.

20 Q. And I think you told us something
21 about that in your testimony in chief?

22 A. Yes, I did.

23 Q. And would you turn to the Hare
24 Commission excerpts again, please, at tab 14?

25 I take it that in your position you would

1 be familiar with the criticisms which have been
2 circulated concerning dose limits established by the
3 ICRP?

4 A. I have certainly heard some
5 criticisms. I don't know if I have heard them all.

6 Q. And it is not surprising to you that
7 from time to time over the years those dose limits are
8 revised--

9 A. No, that is not surprising.

10 Q. --as our knowledge improves?

11 A. Yes.

12 Q. And are you familiar with the
13 criticisms of the ICRP dose limits which have been
14 advanced by Dr. Rosalie Bertell?

15 A. I have heard some criticisms from Dr.
16 Bertell.

17 Q. And we see that Dr. Hare had a
18 submission filed by Dr. Bertell on behalf of an
19 organization whose initials are IICPH, and I think we
20 saw that in the list of intervenors that I ran through
21 with Mr. King?

22 A. I don't remember whether we saw it
23 actually.

24 Q. All right. We will take it as read.
25 And we see in paragraph 9 of the excerpt -- I'm sorry,

1 have I directed you to the page?

2 A. No.

3 Q. Page 218, please.

4 A. I have it.

5 Q. We see that in paragraph 9 Dr. Hare
6 deals with the IICPH, which is the International
7 Institute of Concern for Public Health, whose principal
8 spokesperson is Dr. Bertell.

9 A. Yes.

10 Q. You would agree that Dr. Bertell is
11 well-known for her crusading work to improve, as she
12 sees it, standards of radiological protection
13 worldwide?

14 A. Yes.

15 Q. In the next paragraph we see that her
16 submission was circulated to Ontario Hydro and AECL for
17 comment?

18 A. That is what it says.

19 Q. And both corporations responded in
20 depth and detail, and those responses were sent to Dr.
21 Bertell who in turn had replied?

22 A. That is what it says.

23 Q. I wanted to ask you if you were part
24 of formulating the response to Dr. Bertell's
25 submissions on behalf of Ontario Hydro.

1 A. This would have been some five years
2 ago. I can't honestly say that I remember contributing
3 to them. It may have been in a fairly informal way.
4 You know, the comments may have been coordinated by
5 someone and I gave comments to him, but I can't
6 honestly remember that.

7 Q. Let us attempt to refresh your memory
8 with some of the further comments from Dr. Hare's
9 report. He says in paragraph 11:

10 Dr. Bertell's main thrust is that the
11 available evidence on dose/response
12 relationships resulting from radiation
13 exposure is being misinterpreted by the
14 scientists who dominate the regulating
15 and standard setting bodies, most notably
16 ICRP.

17 I take it you were aware of criticisms
18 like that being advanced?

19 A. Yes, I have heard that.

20 Q. And she says she is especially
21 critical of the role played by physicists in
22 establishing protective standards and argues that
23 medical and health professionals are being excluded
24 from a proper role in the regulating bodies. She is
25 also critical of AECB because it lacks staff with such

1 qualifications. She herself is a mathematician and
2 biometrician.

3 A. That is what it says.

4 Q. You would accept that that is Dr.
5 Bertell's background and the criticisms that she was
6 advancing at that time?

7 A. She does have a Ph.D. in Mathematics,
8 and I have heard comments that she has made which are
9 similar to this, yes.

10 Q. And in paragraph 12 Dr. Hare states:

11 I cannot agree with the submission's
12 recommendation 'that Canada no longer
13 rely on ICRP, UNSCEAR, or BEIR as the
14 scientific support for radiation
15 protection standards.'

16 And you would agree with his rejection of that
17 proposal, would you not?

18 A. Yes, in my direct evidence I relied
19 on those three groups in my studies.

20 Q. And Dr. Hare goes on, and you would
21 agree with his conclusion that:

22 On the contrary, it is essential that
23 Canada be guided by the findings of these
24 bodies.

25 A. Yes.

1 Q. And they are accepted by the world
2 scientific community as the best clearing
3 houses for the empirical data that are
4 available as the authoritative bodies to
5 judge the meaning of the evidence, and,
6 in the case of ICRP, to suggest standards
7 for safe exposure.

8 You would agree with that?

9 A. I do.

10 Q. And you would further agree that:
11 Canada, Ontario and Ontario Hydro need
12 not be bound in a legal sense by what
13 these bodies find, but that they would be
14 ill-advised to abandon them as the best
15 sources of advice and intellectual
16 authority?

17 [11:15 a.m.]

18 A. Yes. It might be useful to add that
19 the ICRP itself believes that it is providing guidance
20 which can then adopted by national authorities and
21 their legislation. They don't expect that everybody is
22 going to take their recommendations exactly as stated
23 because circumstances differ in different countries and
24 there needs to be more emphasis in one area than
25 another and so forth. But as it says here, they are

1 the best sources of advice and the word here is
2 intellectual authority.

3 Q. In fact, as a general rule, Ontario
4 Hydro tries to beat their guidelines by a substantial
5 margin, do they not?

10 Q. You would agree with me.

11 A. I wouldn't say we try to beat them.
12 It's not a competition to have the lowest.

13 O. Pardon my inelegance.

14 Dr. Hare goes on to describe the IICPH's
15 doubts about ICRP which takes the form of allegations
16 that is ICRP is biased by the origins of its members.

IICPH asserts that ICRP is dominated by physicists and medial administrators, many of them "involved in national atomic energy development", and that ICRP cannot therefore be considered free of all "bias conflict or government pressure".

23 The quotations being taken from their
24 submission.

25 Persons qualified in occupational and

1 public health have been excluded from
2 membership since its conception in 1950.

3 And you would recognize that as a
4 criticism of the kind advanced by Dr. Bertell?

5 A. Yes, I have heard that criticism.

6 Q. And Dr. Hare goes on to reject that
7 criticism as well in paragraph 15 in saying:

8 In fact, ICRP's work is done
9 principally by four expert committees
10 whose composition does include eminently
11 qualified individuals in the appropriate
12 disciplines.

13 The committee chairpersons are also
14 members of ICRP itself, you are aware of that?

15 A. Yes.

16 Q. And then two of the individuals
17 specifically mentioned by IICPH has having been
18 "deliberately excluded" by ICRP have in fact served on
19 these committees and are amongst the authors of ICRP
20 documents.

21 A. I don't know who those two
22 individuals are.

23 Q. Second, scientists of sufficient
24 eminence to be appointed international
25 serve in their person capacities.

1 Regardless of their affiliations they are
2 expected to use their scientific skills
3 objectively and the whole ethos science
4 dictates that they try to do so.

5 I believe that they succeed and you would
6 believe that too, would you not?

7 A. Yes.

8 Q. And then over at page 221, I'm sorry
9 I should start at the bottom of page 220, Dr. Hare
10 refers to the fact that:

11 ICRP's style is indeed laconic, and
12 it's pronouncements are often made ex
13 cathedra in a way that I myself austere.
14 ICRP without any doubt represents the
15 consensus of those most qualified to make
16 such judgments according to the accepted
17 standards of science, the same is true of
18 UNSCEAR and --

19 Do you call that BEIR 5?

20 A. BEIR 5, yes.

21 Q. And that's similar to the opinions
22 that you accepted a moment ago?

23 A. That's true.

24 Q. With respect to those bodies?

25 A. Yes.

1 Q. He goes on to say:

2 I believe that this comment is also
3 valid for Canada's national situation in
4 radiological protection. Our own
5 institutions are responsible and highly
6 competent yet they are in danger of
7 losing public support because of
8 unsubstantiated but widely disseminated
9 criticisms.

10 That is a strong statement.

11 A. Yes, it is.

12 Q. But you would agree with it, would
13 you not?

14 A. Generally, yes.

15 Q. Yes. And then if we go back to the
16 Roman numeral excerpts which set out Dr. Hare's
17 recommendations, to Roman numeral 18.

18 A. Yes.

19 Q. It's called Commission Recommendation
20 11.2, I want to ask you if you agree with this
21 recommendation:

22 In spite of many ill-informed
23 allegations, the International Commission
24 on Radiological Protection remains the
25 best available body for the determination

1 of radiological dose limits. AECB should
2 continue to base its regulations on ICRP
3 guidelines, although not necessarily
4 according to it's timetable. Provincial
5 practice should follow suit.

6 You would agree with that?

7 A. Yes. I think I might reword the
8 first, it's the best available source of information
9 about radiological dose limits.

10 Q. Fair enough.

11 A. As I said previously, I think we do
12 expect that they will be customized to the particular
13 Canadian situation.

14 Q. So they don't determine your dose
15 limits, they provide guidance and you determine the
16 does limits under the AECB's --

17 A. They provide guidance and the AECB
18 determines dose limits, yes

19 Q. And you follow those?

20 A. Yes.

21 Q. If we could go to page 132, arabic
22 numbers, of the Hare excerpts.

23 A. Yes.

24 Dr. Hare deals with the ALARA concept and
25 I believe you dealt with that in chief as well, did you

1 not?

2 A. I did mention it, yes.

3 Q. And just to remind everyone, the
4 ALARA principle states that exposure to radioactivity
5 should be as low as reasonably achievable, social and
6 economic factors being taken into account; correct?

7 A. Yes.

8 Q. And Dr. Hare recalls in paragraph 266
9 that in his own childhood he recalled road safety
10 objectives in his native country being specified in
11 similar terms.

12 And over at page 133, paragraph 270,
13 having referred to the Layfield inquiry in England, Dr.
14 Hare concludes in paragraph 270:

15 In Ontario Hydro's case I am satisfied
16 that ALARA has been both a useful
17 discipline and active principle in
18 decision-making, but the weighing of cost
19 and benefit never ceases.

20 You would agree with that?

21 A. Yes.

22 Q. And he goes on to give an example:

23 The problem arose in the question of a
24 second shutdown system at Pickering A.
25 Was it worth investing a large sum of

1 money and incurring substantial worker
2 radiation exposure to increase safety
3 marginally? The probability that second
4 shutdown system would ever be needed to
5 prevent a serious accident was judged to
6 be extremely low. A much greater gain in
7 safety could be achieved by investing the
8 same amount of money and worker exposure
9 in areas where the threat to safety is
10 higher.

11 And that's the kind of balancing that you
12 and your colleagues in other disciplines go through all
13 the time in Ontario Hydro?

14 A. Yes. Maybe Mr. King would like to
15 comment about that particular one.

16 Q. Well, Mr. King, if I could ask you
17 about the next paragraph, 271:

18 This kind of cost/benefit and
19 risk/benefit analysis can be quantified
20 and applied as a formal discipline.

21 You are aware of that?

22 MR. KING: A. Yes, I am.

23 Q. And he goes on to say:

24 Doing so involves assigning values to
25 human life, health and injury in a

fashion unwelcome to many. It also leads directly to a mechanism for making comparisons with other modes of energy production, or its avoidance, for energy conservation is, in many ways, a form of production.

7 Such choices confront the province now
8 and you would agree, Mr. King, or perhaps even Mr.
9 Penn, that those kinds of choices confront us in this
10 hearing as well.

11 A. The only point I would like to make
12 with respect to that paragraph is the assigning values
13 to human life. You can get substantial benefit in a
14 cost/benefit risk/benefit analysis and you can avoid
15 that and not assign a dollar value. You can express
16 pros and cons in other ways, because as you probably
17 know, it's quite a controversial subject.

18 Q. But my question was: You would agree
19 that those kinds of choices still confront us in this
20 hearing, and I am referring to the choices which Dr.
21 Hare referred to in paragraph 271?

22 A. Yes, I think these choices are always
23 present.

24 Q. And for example, one can not only use
25 this kind of cost/benefit or risk/benefit analysis to

1 compare modes of information of energy production, one
2 can apply the same analysis to energy conservation?

3 A. I would think whenever you have
4 choices before you, you have to look at all the choices
5 with a methodology which brings out all the pros and
6 cons.

7 Q. So the answer is yes?

8 A. Yes.

9 Q. Thank you.

10 Dr. Hare goes on at paragraph 272 to
11 state:

12 If ALARA is a useful discipline when
13 wise people use it, it may also become a
14 counter-productive weapon. If applied
15 without discretion action it may lead to
16 ratcheting - an inevitable increase in
17 safety standards whether or not this is
18 justified. As a result, wrote Layfield,
19 national resources may be misallocated
20 towards nuclear safety and the economics
21 of nuclear power may be unreasonably
22 handicapped.

23 Perhaps, Mr. Penn, I could ask you if you
24 would agree with that logic and that observation?

25 MR. PENN: A. Well, I think all I can

1 give is a personal view on this matter.

2 Q. That would be fine.

3 A. The ALARA principle implies that if a
4 situation is practical from a physical point of view,
5 and a change may lead to some small improvement, that
6 then it should be encouraged to be done.

7 Clearly there is a need to balance the
8 expenditure that would be made to make perhaps a small
9 improvement with that same expenditure that could be
10 made in other areas.

11 And that is a matter of judgment and
12 analysis.

13 Q. And you would agree, however, that
14 there is a danger of ratcheting too high or too low,
15 depending on how you look at it in terms of the
16 benefits achieved through the expenditure?

17 A. Well, I think we are generalizing
18 now. We really have to look at every case on its own
19 merits. But it's my observation that in some
20 jurisdictions there has been a tendency towards
21 ratcheting.

22 Q. I am going to turn to our Volume 3 of
23 materials for Dr. Whillans. I don't know if this would
24 be a convenient time, Mr. Chairman.

25 THE CHAIRMAN: We will break for 15

1 minutes.

2 MR. HAMER: Thank you.

3 THE REGISTRAR: Please come to order.

4 This hearing will recess for 15 minutes.

5 ---Recess at 11:30 a.m.

6 ---On resuming at 11:50 a.m.

7 THE REGISTRAR: Please come to order.

8 This hearing is again in session. Please be seated.

9 THE CHAIRMAN: Mr. Hamer?

10 MR. HAMER: Thank you Mr. Chairman.

11 Q. I am going to refer, Dr. Whillans, to
12 our Volume 3, tab 6, which is the slimmer volume.

13 DR. WHILLANS: A. Yes.

14 Q. This is a publication of the American
15 Medical Association, and as I understand it, it
16 summarizes a larger report which had been prepared by
17 the Council on Scientific Affairs of the American
18 Medical Association.

19 Have you had an opportunity to review
20 this article which I have provided to you a day or so
21 ago?

22 A. Yes, I looked through it last night.

23 Q. Thank you.

24 THE CHAIRMAN: Should this be given an
25 Exhibit No.?

1 MR. HAMER: Yes, please.

2 THE REGISTRAR: The No. 553.

3 THE CHAIRMAN: Thank you.

4 ---EXHIBIT NO. 553: Document entitled "Medical
5 Perspective on Nuclear Power", Council on
Scientific Affairs.

6 MR. HAMER: Q. I appreciate, Dr.

7 Whillans, that you are not a medical doctor, but as
8 someone experienced in the area of health effects of
9 certain processes, I would like to ask you some
10 questions about some of the recommendations that are
11 made by the American Medical Association to its
12 members.

13 DR. WHILLANS: A. Yes.

14 I think I should point out that this is a
15 report prepared by an expert committee and they list on
16 the first page who the members of the Committee were,
17 and they are certainly people well experienced in
18 radiation protection. They are not all medical people
19 though.

20 Q. All right. The point I want to draw
21 in general from this document is that as I understand
22 it, one of the difficulties faced by the nuclear
23 industry, if I can call it that, is in having the
24 scientific community communicate its understanding of
25 nuclear power to lay persons and members of the public;

1 is that fair?

2 A. I think that's fair.

3 Q. And the American Medical Association
4 experts say on page 2728 of this report a number of
5 things about nuclear power in relation to other forms
6 of power generation, and in the middle column under the
7 heading Risks Related to Nuclear Power we see this
8 observation, I would ask for your opinion on that:

9 Generating electricity by my mean
10 entails some risk; for instance, 166
11 persons died in a July 1988 explosion on
12 a North Sea oil rig, underground coal
13 mining is one of the most hazardous
14 occupations, and in of the United States
15 approximately 100 persons are killed
16 annually at grade crossings during the
17 transport of coal to power plants.

18 Emissions from the combustion of coal
19 contribute to air pollution and disease
20 and the ash and residue of coal
21 combustion must be disposed of. All of
22 these activities involve risk.

23 And you would agree with that as a
24 general proposition?

25 A. As a general proposition, yes. I

1 don't know some of these specific numbers.

2 Q. But in terms of someone who assesses
3 the health effects of nuclear power generation and its
4 related activities, you do have some professional
5 awareness of the fact that comparisons are drawn
6 between those risks and the risks attended upon other
7 forms of industrial activity?

8 A. Yes, I am aware that happens, yes.

9 Q. And, for example, lower down in the
10 same column we see a paragraph that begins:

11 In the early 1970s Sagan and Lave and
12 Freeberg compared the public health risks
13 of various energy-generating technologies
14 and concluded that in comparison with
15 coal-fired plants, nuclear power offered
16 substantially lower risk to the public's
17 health.

18 You are aware of literature to that
19 effect, are you not?

20 A. Yes. Yesterday we talked about our
21 Exhibit 507 where some of the references had made
22 similar comparisons.

23 Q. In fact, I think the next sentence
24 refers to:

25 Hamilton's study from Brookhaven

1 National Laboratory in Upton, New York,
2 which reinvestigated the issue in 1974
3 and reported that a modern coal-fired
4 plant still is not as safe as a nuclear
5 power plant.

6 And Hamilton is one of the authorities
7 that you have referred to in Exhibit 507; correct?

8 A. Yes, Hamilton is referred to in 507.

9 Q. You would accept that that's one of
10 the respected authorities in the literature on this
11 kind of risk analysis?

12 A. He certainly has published quite a
13 lot in this area, yes.

14 Q. And these experts go on to say:

15 That for coal underground mining and
16 air pollution dominate both the morbidity
17 and mortality estimates, followed by the
18 hazards of transport. If coal is mined
19 underground and transported by rail, the
20 fuel cycle for mining to combustion is
21 estimated to produce 279 illnesses and
22 injuries, along with 18.1 deaths per
23 gigawatt-year.

24 And that kind of figure is found in the
25 literature and would be one of the figures that was

1 reviewed by Ontario Hydro staff in putting together the
2 tables in Exhibit 507 and the corresponding table from
3 the fossil panel?

4 A. Well, I personally don't know these
5 numbers, but I expect you're right, that this would be
6 the kind of number that was reviewed.

7 Q. And the authors go on:

8 In contrast the nuclear fuel cycle
9 with the uranium mined underground is
10 estimated to produce 17.8 - I think it
11 is - cases of illness and injury and one
12 death per gigawatt-year.

13 And that figure is not a surprising
14 figure to you?

15 A. No, we have a comparable number in
16 507, we could look to see what it is but I would guess
17 it's not very different.

18 Q. And the authors go on in fairness to
19 say that:

20 Mortality and morbidity estimates are
21 somewhat uncertain because agreement is
22 hard to achieve concerning the health
23 effects of particulate and sulphur
24 dioxide emissions from coal-fired plants
25 and the risks to the general population

1 that result from mishaps at nuclear power
2 plants.

3 [12:00 p.m.]

4 And that point about uncertainty was
5 likewise made in your Exhibit 507; correct?

6 A. Yes.

7 Q. And part of the reality of this is
8 that comparative risk analysis is a relatively new
9 discipline?

10 A. I think that is so.

11 Q. Nonetheless, an extremely helpful one
12 in making choices among energy alternatives?

13 A. Well, I don't have a sort of expert
14 view of that, but I would say so, yes.

15 Q. You would agree with that
16 proposition, Mr. Johansen, would you?

17 MR. JOHANSEN: A. Yes, I would.

18 Q. Thank you. And the American Medical
19 Association experts go on in the column on the right
20 under the heading Nuclear Power: The Physician and
21 Society:

22 The United States requires an adequate
23 supply of electricity to run its
24 business, light its homes and schools,
25 air condition its buildings, preserve its

1 food, provide satisfactory medical care,
2 and for many other purposes.

3 And that is an obvious proposition, and it applies just
4 as much to Ontario?

5 DR. WHILLANS: A. Yes.

6 Q. And nuclear energy is an option for
7 generating electricity as are coal, oil,
8 gas, water, wind and the sun. Nuclear
9 energy also involves the production of
10 ionizing radiation which can adversely
11 affect humans. Physicians should
12 understand the principles of this means
13 for generating power.

14 And there I take it that we can assume
15 the authors are referring to the responsibility of
16 scientifically trained people to communicate realities
17 about these kinds of choices to the public?

18 A. In particular physicians, yes.

19 Q. But anyone with a scientific and
20 technical background has that obligation; fair?

21 A. Fair.

22 Q. Over at the last page on the
23 left-hand column the authors state:

24 An additional need that physicians can
25 help address concerns the role of science

1 and society. All persons includes
2 physicians benefit from flourishing
3 science and technology and suffer from
4 languishing ones.

5 And you would agree with that as a general proposition?

6 A. As a general proposition.

7 Q. And if any other member of the Panel
8 feels differently I would be interested in your
9 dissent, but otherwise I will carry on with Dr.
10 Whillans.

11 To function optimally, members of a
12 democratic society should have a
13 reasonable understanding of scientific
14 principles and concepts which will help
15 them make decisions about major issues
16 such as nuclear power, chemicals in
17 drinking water, and so forth.

18 And that is part of the difficulty that
19 nuclear power has faced in competing with other energy
20 technologies; fair?

21 A. I think that is fair.

22 Q. And then the experts set out their
23 recommendations, which include the following, which
24 perhaps are trite but some are more controversial:

25 One, there is a need for electricity.

1 Adequate capacity for generating
2 electricity is necessary for people's
3 health and the progress of society.

4 None of you has any problem with that proposition? Dr.
5 Whillans, you can be the spokesman for the time being.

6 A. Well, I take the need for electricity
7 to be sort of a title for that and adequate capacity is
8 necessary, yes. Certainly.

9 Q. And you would agree as a health
10 effects expert with the third proposition that: Safety
11 of generating electricity during recent decades in the
12 United States -- generating electricity has become
13 increasingly safe and environmentally benign.

14 And that would apply in Ontario as well,
15 would it not?

16 A. I think I would refer the safety
17 aspect to Mr. King.

18 Q. Well, in terms of health effects you
19 would agree that it has become increasingly benign?

20 A. I can really only speak for the
21 nuclear aspect, and I think it is becoming increasingly
22 safe, yes.

23 Q. And not to omit item 2, the authors
24 also recommend emphasis on the conservation and
25 efficient use of energy as something that should

1 continue and accelerate. And we don't disagree with
2 that, do we?

3 A. I don't.

4 Q. And fourth, the authors indicate with
5 regard to safety of nuclear power that generating
6 electricity with nuclear power is acceptably safe in
7 the United States, and you would say the same about
8 Ontario?

9 A. Yes.

10 Q. And the further conclusions that
11 power reactors in the United States are designed and
12 constructed for safe operation.

13 You would agree with that as transmitted
14 to Ontario, or translated to Ontario?

15 A. Well, I think Mr. King's opinion is
16 more important.

17 MR. KING: A. That was the statement.
18 That was the theme of my evidence in chief.

19 Q. Certainly. And the eighth
20 recommendation is that with respect to the role of
21 physicians:

22 Physicians should have information
23 available regarding how to treat persons
24 injured by ionizing radiation. They have
25 a broad responsibility to advise the

1 public and respond to anxieties following
2 a radiation emergency. Also, they should
3 help improve public understanding of the
4 benefits as well as the risks of nuclear
5 power.

6 And as a scientifically trained person, you would agree
7 with that with respect to your own professional
8 discipline, Dr. Whillans?

9 DR. WHILLANS: A. I think it is
10 important that people with specialized knowledge try to
11 present a balanced view to the public, yes.

12 Q. Those are recommendations made by the
13 American Medical Association in 1989?

14 A. Yes. This is a Council report. The
15 Council on Scientific Affairs of the AMA recommends the
16 following, so yes. The date is 1989.

17 Q. Would you agree, Dr. Whillans, that
18 in making choices about nuclear power it is important
19 for the utility and for the public not to be influenced
20 unduly by false alarms concerning health effects?

21 A. I'm not sure exactly what you mean.

22 Q. Well, you are aware that in the past
23 there have been allegations advanced and alarms raised
24 about certain aspects of nuclear power?

25 A. Could you give me an example?

1 Q. The relationship between tritium
2 releases into Lake Ontario and infant mortality in the
3 area?

4 A. Okay. Well, to take that specific
5 example, an alarm was raised, as you say, but it
6 prompted a scientifically fairly thorough study, which
7 resolved to some extent the question of whether there
8 was an unsuspected risk, and, you know, I think that is
9 a reasonable process.

10 I don't think there is any reason why
11 people can't responsibly raise an alarm and the proper
12 response is that some sort of a scientifically valid
13 study will address it.

14 Q. At tab 1 of our Volume 2 we find
15 Interrogatory 9.2.57.

16 THE REGISTRAR: That now is .41.

17 THE CHAIRMAN: Thank you.

18 ---EXHIBIT NO. 520.41: Interrogatory 9.2.57.

19 MR. HAMER: Q. And I haven't attached
20 all of the documents submitted in response to that
21 interrogatory as part of this volume. I have attached
22 only the memorandum to D. McArthur from G. Armitage,
23 and an enclosure to that memorandum being an article
24 called "Who Speaks for Science".

25 I think the record should indicate that

1 that is what we have now marked as the exhibit since
2 not all of the documents are included in my excerpt
3 here, if that is acceptable with the Registrar.

4 And Mr. Armitage, who wrote the
5 memorandum dated December 23rd, 1988, is a colleague of
6 yours, as I understand it, in the health/physics area?

7 DR. WHILLANS: A. He is the Manager of
8 the Health Physics Services Department within the same
9 division, Health and Safety Division, yes.

10 Q. And, in fact, you have co-published
11 articles with Mr. Armitage, if I have reviewed the
12 literature correctly?

13 A. I guess that is true, yes.

14 Q. And this memorandum represents Mr.
15 Armitage's response to an alarm which had been raised
16 being the one that you have just spoken about?

17 A. Yes.

18 Q. It had been suggested that tritium
19 emissions in the late 1970s at Pickering bore some
20 relationship to newborn infant fatalities; is that
21 correct?

22 A. Yes, that is correct.

23 Q. And basically what Mr. Armitage's
24 memorandum does is set out at page 3 some gross
25 statistics dealing with newborn death rates in

1 Pickering and surrounding communities and fatal birth
2 defects in the same area; correct?

3 A. Yes.

4 Q. And then at page 5 he refers to
5 statistical testing of that data as having shown no
6 correlation of newborn infant death rates and total
7 tritium emissions or of fatal birth defects and tritium
8 emissions for the Towns of Pickering, Ajax, Whitby, or
9 Oshawa; correct?

10 A. That is what it says, yes.

11 Q. And looking at page 6 it appears that
12 Mr. McArthur had raised doubts about Ontario Hydro's
13 ability to measure tritium. That is in the indented
14 paragraph on page 6.

15 And Mr. Armitage responds with an offer
16 to have blind samples submitted to the Ontario Hydro
17 laboratories for analysis to test your ability to
18 measure tritium; correct?

19 A. Yes.

20 Q. Was that offer ever taken up; do you
21 know?

22 A. Not to my knowledge. I could point
23 out, though, that there are a number of other blind
24 testing intercomparisons in which we participate with
25 respect to tritium measurement, and, you know, this was

1 sort of an offer beyond those.

2 Q. All right. And you are confident in
3 your ability to measure tritium?

4 A. Yes.

5 Q. In the interrogatory response there
6 was included an article by Dixy Lee Ray which Mr.
7 Armitage had sent out, and have you had an opportunity
8 to review that enclosure to Mr. Armitage's publication?

9 A. I read it some time ago. I didn't
10 review it again recently.

11 Q. And we see at the end of that article
12 which is published in, as I understand it, the Health
13 Physicist's Society Newsletter?

14 A. Newsletter, yes. Not a peer reviewed
15 publication.

16 Q. I beg your pardon?

17 A. It's not a peer reviewed publication.

18 Q. It's a newsletter?

19 A. It's a newsletter.

20 Q. And it refers at the end of the
21 article to other false alarms raised by a Dr. Ernest
22 Sternglass on page 12?

23 A. Yes.

24 Q. At the bottom of the left-hand column
25 the author states:

1 Dr. Ernest Sternglass, much quoted by
2 the media on radiation matters, has never
3 published his claims about the effect of
4 low level radiation in a peer reviewed
5 journal. In an article in Esquire
6 magazine published in 1969 Dr. Sternglass
7 predicted that all children in the United
8 States would die as a result of fallout
9 from nuclear tests. Twenty years have
10 passed and unfortunately for his
11 credibility but fortunately for children
12 he was and is wrong.

13 Had you ever heard of Dr. Sternglass before?

14 A. I have heard of Dr. Sternglass, yes.

15 Q. The author goes on:

16 But his opinions long since dismissed
17 by knowledgeable scientists in his field
18 are still actively sought and quoted by
19 the popular press. Until respected
20 scientists, perhaps through their
21 professional societies or through the
22 National Academy of Science, identify the
23 purveyors of misrepresentation, we have
24 only ourselves to blame for fear,
25 misunderstanding and the rejection of

1 technology.

2 And that is not a bad observation, is it?

3 A. No, I think we have to be careful
4 about just dividing everybody into people who
5 misrepresent and those who have the truth.

6 Q. Quite.

9 Q. Yes. All right. Now, speaking of
10 dealing with concerns that are raised and responding in
11 a measured and scientific manner, there have been more
12 recent suggestions that there may be a connection
13 between tritium releases and Down's Syndrome in the
14 Pickering vicinity: is that correct?

15 A. Well, following on what we were
16 talking about a few moments ago, the alarm, as you say,
17 raised by Mr. McArthur, the Atomic Energy Control Board
18 commissioned a study by epidemiologists at Health and
19 Welfare Canada who hold all the data on birth defects
20 in Canada, and they have recently published a report
21 which reviewed the same kinds of health measures, birth
22 defects, for the Pickering area for a much larger
23 period. I think it was from 1971 to about '87 or '88.
24 And this is probably the study to which you are
25 referring.

1 Q. All right. And that study found,
2 first of all, that the numbers did not support a
3 hypothesis of increased stillbirths, neonatal
4 mortality, or infant mortality in the vicinity of the
5 Pickering station, first of all?

6 A. Generally, that is true, yes. I can
7 give you the exact quotations, if you want them.

8 Q. This is a lengthy report. I think
9 you and I are both looking at copies, and I have copies
10 here. I don't know that we need to enter the entire
11 report as an exhibit, Mr. Chairman.

12 A. Maybe you should just give a
13 reference. It is in the AECB report, INFO-0401, and it
14 is published in October of 1991.

15 Q. And the authors also did detect an
16 elevation in the birth prevalence of Down's Syndrome in
17 Pickering and Ajax but concluded that the
18 interpretation of that elevated risk must be very
19 cautious.

20 A. Yes, I think the point here is that
21 they looked at 22 different categories of birth defects
22 and found one that was statistically elevated.

23 When you do multiple testing like this
24 just because you are setting a criterion which says
25 that something shouldn't occur by chance more than 5

1 per cent of the time - that is the 95 per cent
2 confidence limit - you expect that one in 20 roughly
3 may occur just by chance.

4 I think the interpretation they made was
5 that this is the one that did occur. If you are going
6 to focus on any particular birth defect that might be
7 the one you would look at.

8 But they went beyond that and said: Is
9 there any correlation between the appearance of these
10 in time and tritium releases? And they didn't find
11 such a correlation.

12 Q. Let me stop you there for a moment.
13 They compared the dates at which tritium releases were
14 elevated with the occurrence of Down's Syndrome?

15 A. Yes.

16 Q. And found...?

17 A. And they found that there was no
18 correlation. Maybe I should say exactly what they say
19 here: There was no consistent pattern.

20 I am quoting from the document we just
21 referred to:

22 There is no consistent pattern between
23 tritium release levels and Down's
24 Syndrome birth prevalences. Chance
25 cannot be ruled out for the association.

1 And it goes on.

2 So one I guess what I was trying to say
3 is that if you were going to look at any of the 22, you
4 would look at the one that appeared statistically high,
5 but when you go beyond that and try to ask whether it
6 had any relationship with tritium they couldn't find
7 such a relationship.

8 Q. The general literature does not
9 disclose a recognized association between Down's
10 Syndrome and low level radiation; is that fair?

11 A. Well, I think particularly with
12 respect to Down's the literature is mixed. There
13 certainly are published reports which appear to show a
14 relationship, for example, between Down's and the
15 number of x-rays the mothers had during pregnancy. But
16 there are others which do not show that. In the large
17 study I referred to of the survivors the atomic
18 bombings of Japan has no such elevated risk.

19 I think, as you know, Down's Syndrome is
20 a trisomy. There is one extra chromosome, and these
21 kinds of chromosomal changes have been seen with
22 radiation exposure, but -- so I think that is why there
23 is interest in whether or not there might be a
24 relationship.

25 But, as I say, the epidemiological

1 evidence to date is that there is no clear association.

2 Q. Given the relative levels of
3 radiation from nuclear generating stations with other
4 naturally and artificially occurring sources of low
5 level radiation I take it it would be difficult to sort
6 out, assuming a relationship between radiation and
7 Down's Syndrome, which source was responsible?

8 A. Well, there are many problems. I
9 mean, there are some strong determinants, factors which
10 influence Down's - for example, mother's age - but what
11 you say is also correct.

12 [12:20 p.m.]

13 There is no reason to believe that
14 exposure to tritium is different from exposure due to
15 any other kind of radiation.

16 Q. Like radon in the house?

17 A. Well, radon may not be the best
18 example, because radon particularly irradiates the
19 lung, but the other things that I was talking about the
20 cosmic radiation or terrestrial or internal, the doses
21 received as a result of any tritium in the environment
22 are comparable to those.

23 And so, as I said in the direct evidence,
24 since we are talking about exposures to the most
25 supposed population in this Pickering area which are

1 only a per cent or so of background, it would be
2 difficult to expect that there would be any
3 relationship with Down's.

4 Q. Nonetheless, as responsible
5 scientists one continues to monitor that sort of
6 concern as it's raised?

7 A. Yes. And the agency within Health
8 and Welfare that I mentioned maintains a national
9 congenital anomalies surveillance system just for that
10 purpose, not with respect to tritium only, but for any
11 other reason, and so there is sort of ongoing analysis
12 all the time.

13 DR. CONNELL: Excuse me, could I ask, do
14 we have on the record any description of the releases
15 at Pickering that are cited in this document, the
16 timing and the magnitude?

17 I take it we are talking about
18 atmospheric releases rather than --

19 DR. WHILLANS: Or to water.

20 DR. CONNELL: Are they differentiated in
21 the study?

22 DR. WHILLANS: The report that we are
23 talking about covers a period going back to the early
24 70s. I think the only evidence we have put in, unless
25 it is through some of the interrogatories, and I am not

1 clear on this, refers to perhaps the past five years.
2 Perhaps we should check that.

3 DR. CONNELL: I think it would be helpful
4 just to have a brief summary, because I am sure it will
5 come up again.

6 MR. HAMER: Mr. Chairman, I am happy to
7 file a report as a whole or as well it has sort of an
8 executive summary on the front. I think it might be
9 just as well to file the whole thing. It has some
10 statistical tables in it as well. I can't pretend that
11 I appreciate everything that's in it.

12 THE CHAIRMAN: I am not sure that's the
13 question that Dr. Connell is asking. I think he would
14 like some kind of an analysis of what the tritium
15 output is both through water and air.

16 DR. WHILLANS: We have filed some of that
17 information and I will check to see whether it's
18 complete.

19 DR. CONNELL: If it's in the document I
20 would be happy with that.

21 THE CHAIRMAN: It may be in the document.
22 The document has been referred to several
23 times, so perhaps we should put it in.

24 DR. CONNELL: May I also follow up your
25 observation that tritium is like any other radiation

1 source. I wonder if you could clarify that tritium is
2 a very soft form of radiation, is it not?

3 DR. WHILLANS: Well, I guess that was
4 perhaps an over-generalization.

5 The tritium exposures that we are talking
6 about as a result of releases from Pickering are
7 released actually in the form -- well, entirely in the
8 form of tritiated water from Pickering. And the
9 exposures occur either from a member of the population
10 drinking water that contains some of the tritium, from
11 inhaling some of the air-contained tritium, and also
12 from the deposition of that tritiated water onto the
13 soil and being taken up in food which may be eaten or
14 in other things.

15 Tritiated water exposures in the body,
16 and these are the kind of exposures we see in the
17 stations in the Pickering workers, are as a result of
18 intakes of tritiated water. The exposures that result
19 from that, because tritiated water or any other kind of
20 water distributes uniformly throughout the soft
21 tissues, the exposures from that are not different from
22 any other kind of sort of large whole body exposure.

23 Now, in the environment there is an
24 additional concern that some of the tritium that is
25 ingested may be in the form of an organic-bound

1 tritium, and there have been numerous studies looking
2 at that form of exposure, studies looking at how much
3 of the tritium in a typical environment is in that
4 form, and also some studies in an experimental setting,
5 looking at how that kind of intake compares with the
6 tritiated water intake.

7 I guess as I said, I generalized that
8 they were not different. They are not very different.
9 The amount of tritium intake that is as organic-bound
10 tritium is a small fraction in the critical groups that
11 we talk about, and the dosimetry for that is believed
12 to be within a factor of two or so.

13 Getting away from sort of the environment
14 around Pickering, it's certainly true that an intake of
15 tritiated thymidine or something like that would be
16 very different, but those aren't the kinds of exposures
17 we are talking about here.

18 DR. CONNELL: I would like to just
19 establish two things: One is that tritium that is not
20 ingested or inhaled, apart from the deposition
21 question, is essentially harmless. That is, if this
22 water pitcher were full of tritiated water, as long as
23 it had a secure stopper in it, it would be harmless.

24 DR. WHILLANS: Certainly. Tritium is
25 entirely an internal hazard. I mean, it's a pure beta

1 emitter with a very soft beta, it would pass through
2 the container as you say.

3 DR. CONNELL: In contrast to I131.

4 DR. WHILLANS: Or the noble gases we were
5 talking about, yes. That's right.

6 DR. CONNELL: And the other point is, you
7 may not have this information but, if we are talking
8 just about tritiated water and ingestion of it, a
9 factor to consider here is the biological half life
10 which is quite distinct from the isotopic half life.

11 DR. WHILLANS: Yes. Well, the isotopic
12 half life is 12 plus years. The turnover in a
13 so-called reference man -- the ICRP also has a set of
14 recommendations about typical physiological parameters
15 and they often refer to a reference man who is sort of
16 a typical northern European/North American male. The
17 turnover time for tritiated water, so the biological
18 half time that you are referring to is about 10 days.
19 It's very different from the 12 years. And for
20 children it's somewhat different and for women it's
21 slightly different, but in that range.

22 DR. CONNELL: And very different from
23 strontium which can get absorbed in calcified tissues.

24 DR. WHILLANS: That's right. Other kinds
25 of internal hazards, carbon, for example, or strontium,

1 are incorporated by the normal metabolic processes into
2 special tissues. As you say, strontium goes to bone
3 because it's like calcium, and that's not true of
4 tritiated water.

5 Tritium is an isotope of hydrogen so it
6 is incorporated to a small degree as the body makes
7 chemicals that contain hydrogen, but that's also
8 included in the dose factors that we use. It's a very
9 small percentage, about a per cent or so.

10 But apart from that, it behaves just like
11 water so it turns over fairly quickly.

12 DR. CONNELL: Thank you.

13 MR. B. CAMPBELL: Mr. Chairman, Dr.
14 Connell, if I could point out, there is tritium release
15 information contained in the report which I guess
16 should be given the next exhibit number.

17 THE REGISTRAR: That will be No. 554.

18 ---EXHIBIT NO. 554: Document entitled Tritium
19 Releases from the Pickering Nuclear
20 Generating Station and Birth Defects and
 Infant Mortality in Nearby Communities
 1971-1988.

21 MR. B. CAMPBELL: It's referred to in a
22 variety of places; for instance, on page 30 and 31
23 there is a full history to the end of '88, which I
24 gather is the period over which data was analyzed of
25 tritium releases both airborne and water. This can all

1 be expressed different ways. And there were various
2 later diagrams commencing at page F3, for instance,
3 dealing with tritium observations at various monitoring
4 stations maintained by Health and Welfare Canada, some
5 correlation of that data, page F8 and F9.

6 Perhaps it would be convenient, Dr.
7 Connell, if that information is sufficient for your
8 purposes, once you have had a chance to look at it,
9 then that could serve the purpose. Otherwise, if there
10 is additional information that you require, if you
11 could let us know then we will make sure that it gets
12 produced.

13 DR. CONNELL: Thank you.

14 MR. HAMER: Q. Dr. Whillans, I believe
15 you have also had an opportunity to look at an excerpt
16 from the Hinkley Point inquiry report, is that so?

17 DR. WHILLANS: A. Yes, that's true.

18 Q. And this is found in Volume 3 of our
19 book, tab 7. I will be asking the witness a number of
20 questions about this document and perhaps it might be
21 given an exhibit number.

22 THE REGISTRAR: This one is 555.

23 ---EXHIBIT NO. 555: Document entitled "Hinkley Point
24 Public Inquiries", A Report by Michael
 Barnes, Q.C.

25 MR. HAMER: Q. It's an excerpt from

1 Volume 5 of the Hinkley Point Public Inquiries Report
2 being chapter 41 dealing with leukaemia clusters.

3 DR. WHILLANS: A. I looked particularly
4 the introduction and the conclusions and in some parts
5 of sections B and C.

6 Q. I put this to you simply as a well
7 written lay person's description of the literature and
8 some of the arguments that have been advanced
9 concerning leukaemia clusters in the area of nuclear
10 installations. And without committing to you detail,
11 may I ask if you too found it a helpful and instructive
12 discussion of that issue, based on your knowledge of
13 the actual scientific literature?

14 A. That is a fairly large
15 generalization.

16 Yes, I found it helpful. I think one
17 point I would make is that this was published in 1990,
18 and the whole issue of leukaemia clustering is very
19 much sort of an active area.

20 Q. Yes.

21 A. I referred to some of the initial
22 studies in my direct evidence around Sellafield, since
23 that time there have been many more; in fact, there was
24 a workshop on clustering at the AECB just two weeks ago
25 and some people referred to this in report presented

1 new evidence.

2 So yes, I found it interesting
3 particularly because it was from a British perspective.
4 I am not sure it's entirely up-to-date.

5 Q. And the U.K. was where the leukaemia
6 cluster theory or concern originated, was it not?

7 A. Well, the idea of leukaemia
8 clustering goes back much further than 1983. Even in
9 the 50s there were leukaemia clusters found in the U.S.
10 and there have been investigations of what they causes
11 may be and so forth, but nothing to do with radiation.

12 Q. It goes back before nuclear power,
13 does it not?

14 A. Oh, yes.

15 Q. And in fact, that's some of the
16 evidence that was before Mr. Barnes in the Hinkley
17 Point Inquiry; correct?

18 A. Yes.

19 Q. And it has been found that leukaemia
20 clusters occur in areas now where there is no nuclear
21 installation?

22 A. That's true.

23 Q. And it has been found that they occur
24 in the area of some nuclear installations in the Untied
25 Kingdom but not the vicinity of other nuclear

1 installations in that country?

2 A. Yes.

3 Q. In Canada investigations have been
4 done on that topic as well, in Ontario?

5 A. In Ontario, yes.

6 Q. And while the statistics may move up
7 and down depending on the station and the time of the
8 study and so forth, in general there has been no
9 established connection discovered between the presence
10 of a nuclear station and leukaemia clusters in a causal
11 sense; is that fair?

12 A. I think you are saying two things
13 there.

14 Q. Probably.

15 A. I referred to this in my direct
16 evidence, I believe it's also been sent out, the report
17 that you are referring to has been sent out, in
18 response to an interrogatory.

19 Whenever you are looking at a study like
20 this you have a number of cases and you compare that
21 with a number of expected cases or perhaps with a
22 control group, you come up with some kind of a ratio
23 such as we were talking earlier in the occupational
24 mortality studies, and you can find out whether you
25 have more or less and you have some kind of confidence

1 limit which is based on the sort of sampling statistics
2 associated those numbers.

3 So one thing that you have just said, I
4 think, is that in the studies that were done in Ontario
5 around five different sites, none of them was
6 statistically greater than one.

7 The second question though is, even if
8 you do find a mortality ratio, say, or relative risk
9 which is statistically greater than one, that doesn't
10 necessarily mean that it is a causal relationship. And
11 there are a number of criteria that epidemiologists
12 follow in trying to go from a statistical association
13 to a causal relationship, and these are biological
14 plausibility, consistency as you say amongst other
15 similar situations, things which try to control for
16 confounders which are beyond what the single study can
17 detect.

18 Q. What is a confounder?

19 A. A confounder I think technically is a
20 cause of a disease which is associated with an
21 exposure. And the practical implication of that is
22 that if aren't aware of the confounder you may assume
23 that the exposure caused the disease when in fact it
24 was just because it was related to what really did
25 cause the disease.

1 There is a lots of examples that are
2 used, but the one I remember is there is a very strong
3 association between the number of drownings in a given
4 month and the sales of ice cream, but that doesn't
5 suggest that ice cream causes drowning. There is a
6 common association with warm temperatures, I think.

7 Q. And to put things another way, am I
8 correct in recalling that in the Ontario studies it was
9 found that around my client's nuclear installations at
10 Chalk River it appeared that children were healthier
11 than they are elsewhere, and it wouldn't be reasonable
12 for my clients to claim that it made children healthy
13 to live near their installations because of the
14 relatively small differences in the numbers that turn
15 up there. Is that a fair statement?

16 A. Healthier in the sense that the
17 incidence of childhood leukaemia was less. In my
18 evidence I believe I quoted numbers between something
19 like .3 and .7, depending on just exactly how the
20 analysis was done.

21 Certainly, the relative risk of a child
22 in that part of the province suffering leukaemia was
23 less than in the province as a whole.

24 Q. Statistically?

25 A. Yes.

1 Q. Yes. Well, I think that discussion
2 has been helpful.

3 I would like to take you to a few
4 specific passages in the Hinkley Point excerpt. At
5 page 1500, paragraph 41.5, and I take it you would
6 agree with the observation that fortunately leukaemia
7 is a comparatively rare disease, and Mr. Barnes
8 indicates that only 2 per cent of all cancer
9 registrations in the England and Wales were
10 attributable to leukaemia.

11 A. Yes.

12 Q. And that's a familiar kind of ratio?

13 A. Yes. We have been talking about
14 childhood leukaemia, and I think he makes the
15 distinction someplace in here, but there is two
16 different periods in live in which leukaemia becomes
17 more prominent, one is the early ages up to maybe age
18 14, and then late in life it becomes much more common,
19 and I think this refers to the whole set.

20 Q. One of the things that was found was
21 that one did not find clusters of all leukaemias as
22 opposed to merely childhood leukaemias in the area of
23 nuclear installations; isn't that right, and that was
24 significant?

25 A. This is in this paragraph, 41?

1 Q. No, I'm sorry. I am going broader
2 now.

3 A. Sorry, could you repeat it, please?

4 Q. Yes. You raised the point that this
5 paragraph is speaking about all leukaemias.

6 A. I think so, yes.

7 Q. And I was jumping forward to
8 observations elsewhere that have made in this report
9 and elsewhere that one does not detect clusters of all
10 leukaemias as opposed to childhood leukaemias in
11 association with nuclear stations, and that is a
12 significant finding; is that fair?

13 A. Well, I am not sure whether that's
14 actually been looked for.

15 Q. I'm sorry?

16 A. I am not sure whether that's actually
17 been looked for.

18 Certainly the Ontario studies looked only
19 with a restricted age range up to age 14 at childhood
20 leukaemias. Studies around Sellafield looked only at
21 childhood leukaemias. Some of the other studies in the
22 U.K. which looked at all cancers looked up to about age
23 24.

24 I guess what I am saying is I am not
25 aware that there have actually been studies around

1 these facilities, for example, that looked at
2 leukaemias late in life. That's not to say it hasn't
3 happened.

4 Q. So, I may have got it wrong.

5 What Mr. Barnes did look at was whether
6 or not there was an increased incidence of all cancers
7 in the vicinity of nuclear stations, and if there was a
8 relationship between nuclear stations it and leukaemia
9 one would also expect to see an elevation in all
10 cancers; is that fair?

11 A. Mr. Barnes was looking from the point
12 of the view of the area of Somerset around Hinkley
13 Point and he reviewed evidence which was much wider.
14 So yes, he has looked at the incidence of all cancers
15 around nuclear stations, yes.

16 Q. And the hypothesis being that
17 leukaemias cluster around nuclear stations because of
18 the nuclear station. If that were correct, one would
19 expect to see cancers clustering around nuclear
20 stations due to the same causal relationship; fair?

21 [12:40 p.m.]

22 A. Well, I think it is dangerous to
23 treat all cancers as a single disease.

24 Q. All right.

25 A. You know, I am not an expert in this

1 area particularly, but certainly I think it is believed
2 that different mechanisms may be involved with
3 different kinds of cancer, so that it is possible that
4 some are related to radiation exposures and others
5 aren't.

6 For example, in the studies of the
7 survivors of bombings in Japan some kinds of cancer
8 seem not to be at all related to radiation dose and
9 others do, so I am not sure that we should just
10 consider them all together.

11 Q. But some cancers are specifically
12 associated with radiation exposure, not just leukaemia?

13 A. Yes, that's true.

14 Q. All right. And if there was a causal
15 connection between nuclear stations and leukaemias so
16 that clusters occurred in those vicinities one would
17 also expect to see a cluster of the other kinds of
18 cancers that are associated with radiation exposure?

19 A. Well, whether you would expect to see
20 it or not is a difficult question.

21 I don't know of any kind of cancer for
22 which it is thought that radiation is the only cause.
23 In fact, it is probably a very minor cause for almost
24 every kind of cancer, and so in order to be able to see
25 a cluster you have to be able to pick out cases that

1 are caused by that particular exposure from all the
2 others.

3 Some of these other cancers, for instance
4 breast cancer, are so common that I would think that
5 you wouldn't see a cluster of cases caused by
6 association with radiation just because there are so
7 many other cancers that are caused by other things -
8 breast cancers, for example.

9 Q. Well, if we go --

10 A. Maybe I am missing your point.

11 Q. I think it is because you understand
12 it better than I do.

13 If we go to page 1505 of the report,
14 paragraph 41.12, you see Mr. Barnes saying:

15 I propose to approach the above task -
16 and that is considering the causal
17 connection between leukaemia and nuclear
18 stations, as to whether there is one,
19 that task - by considering first the
20 evidence on the incidence of cancer
21 generally, i.e. all forms and in all age
22 groups, and of leukaemia generally around
23 nuclear installations.

24 A. Right.

25 Q. And that was a legitimate and valid

1 approach, was it not?

2 A. Well, this is how he is focusing in
3 on the things that I think he was asked to check
4 initially. He is starting from a point of view of
5 looking at all cancers generally, yes.

6 Q. And then he says three or four lines
7 down:

8 I will then go on to consider the
9 evidence on the specific question of
10 clusters of childhood leukaemia in the
11 vicinity of nuclear installations.

12 A. Yes.

13 Q. Right. And then he has listed in an
14 earlier paragraph the various United Kingdom studies
15 that he reviewed, and he indicates:

16 Having referred to the studies I will
17 examine and explain the evidence and the
18 contentions on what is the crucial issue;
19 namely, whether there is any established
20 causal link between discharges of
21 radioactive materials from nuclear plants
22 or some other aspect of their operation
23 and the raised incidence of leukaemia
24 among children living in their vicinity.
25 And then in the body of his report he

1 goes through a great number of the studies which have
2 been conducted in the United Kingdom and elsewhere and
3 the evidence which was placed before him.

4 A. Yes.

5 Q. That is correct?

6 A. Yes.

7 Q. And then at page 1547 under the
8 heading "The Evidence on Causation", he says:

9 It seems incontrovertible that
10 childhood leukaemia clusters do occur,
11 both in geographical areas and in time.
12 Some of these clusters have occurred in
13 the vicinity of some nuclear stations.

14 And, parenthetically, you would agree that some
15 clusters occur elsewhere, far away from nuclear
16 stations?

17 A. Yes, I think that is so.

18 Q. Yes. And he says:

19 It seems unlikely the clusters occur
20 solely by the operation of chance.

21 And you would agree with that?

22 A. Yes.

23 Q. And he says:

24 It is plainly a matter of high
25 practical importance, both from a

1 scientific and a humanitarian point of
2 view, to discover the reason or reasons
3 for the clustering. It seems to me that
4 it is greatly in the interest of the
5 nuclear industry that an authoritative
6 explanation should be found.

7 And you would agree with that, and you would have to
8 acknowledge that as of today we don't have all the
9 answers on the causes of any of these clusters, whether
10 near or far from nuclear stations?

11 A. I think that is true, yes.

12 Q. And then at page 1558 at paragraph
13 41.112 Mr. Barnes refers to the vigour of the debate on
14 leukaemia causation, and, not to read it all, a draft
15 paper had been submitted to the inquiries, and then a
16 newspaper report was put into evidence indicating that
17 the draft paper showed a relative increase in the
18 incidence of childhood leukaemia in certain areas of
19 the country and that that was related to fallout, and
20 then some other authorities wrote to the newspaper
21 saying that this was seriously misleading.

22 And then, on page 1559, the work of
23 Bentham and Haynes - that is the draft paper, was
24 almost immediately seized upon by Dr. Robin Russell
25 Jones, Chairman of the Pollution Advisory Committee of

1 Friends of the Earth, who wrote to The Lancet,
2 concluding his letter with the following paragraph:

3 These new data, i.e. the findings of
4 Bentham and Haynes - that is the
5 unpublished draft paper - remove the
6 remaining scientific obstacle to
7 accepting that radioactive discharges
8 from the two reprocessing facilities in
9 the U.K. are responsible for the excess
10 cases of leukaemia and lymphoma in the
11 surrounding population.

12 And you wouldn't agree with that
13 conclusion by that author, Dr. Robin Russell Jones,
14 would you?

15 A. Well, without having seen the
16 unpublished draft report I can't be specific, but no, I
17 don't think so.

18 You also skipped a statement that Richard
19 Doll and Sarah Darby had responded to the letter and
20 made certain comments about it, and these are people
21 who are very well known for their studies of causes of
22 cancer, epidemiologists who are known for that, and I
23 would take their opinion seriously.

24 Q. Well, they were the ones who wrote
25 saying it was seriously misleading to say that a

1 connection had been established between bomb fallout
2 and childhood leukaemia?

3 A. That is right.

4 Q. Dr. Robin Russell Jones concludes:

5 The only problem now is political, the
6 recognition that British children are
7 among the first victims of an independent
8 nuclear deterrent.

9 And I take it that you would agree that that is not
10 really the way in which to address that concern at this
11 time, as a political concern?

12 A. No, I don't think that is helpful.

13 Q. Not to be pejorative about the term
14 'political'.

15 And then Mr. Barnes makes the point that
16 we have been making for some time:

17 This extract may give some flavour of
18 the way in which any new and tentative
19 advance in scientific research is
20 sometimes used.

21 And you would agree with that on that controversy,
22 wouldn't you?

23 A. It would seem so, yes.

24 Q. I believe you referred in chief to
25 the Kinlen hypothesis relating to leukaemia clusters;

1 is that correct?

2 A. I did, yes.

3 Q. And Kinlen, as I understand it, has
4 postulated that where a relatively isolated population
5 comes into contact with an incoming group of people
6 from a different part of the country there may be some
7 infective link between the arrival the newcomers and
8 the appearance of leukaemia clusters?

9 Have I got that roughly correct?

10 A. Yes, I think that is roughly right.

11 Kinlen's hypothesis, I think we have to still regard as
12 a hypothesis--

13 Q. Sure.

14 A. --was in response to the Sellafield
15 situation I described where there was a statistically,
16 very significant excess risk of childhood leukaemia in
17 a small village.

18 And the idea that leukaemia was
19 associated with infective agents is not new. Some of
20 those studies we talked about in the 50s in the U.S.
21 were looking for just that, and in other animals, mice
22 for example, viruses cause leukaemia. So it is not a
23 new idea.

24 What he did was to look at other areas
25 away from nuclear facilities, he specifically looked at

1 a new town in Scotland, known as Glenrothes, and found
2 that using the same sort of methodology there was a
3 statistically significant increase in that town and
4 there was no association with radiation.

5 Q. But there had been population mix?

6 A. There had been. Because it was a new
7 town, a sort of a town that had been set up in a
8 planned way in a rural community there was a large
9 influx of people into that community.

10 Q. And Kinlen doesn't claim that he has
11 proved a causal link between population mixing and
12 leukaemia, but it is fair to say that he strongly
13 suspects one, based on his --

14 A. I think one of your tabs here has a
15 very recent publication of his where he looks at
16 another kind of population movement, the return of
17 soldiers, I think, after the war into communities and
18 how that affected leukaemia rates.

19 Q. Well, if we can keep our place in the
20 Hinkley Point Report and go back to tab 5 in the same
21 book, that is the report to which you refer by Kinlen,
22 et al, entitled Childhood leukaemia and Poliomyelitis
23 in Relation to Military Encampments?

24 A. Right.

25 MR. HAMER: Mr. Chairman, I wonder if

1 that might be given an exhibit number as well.

2 THE REGISTRAR: 556.

3 THE CHAIRMAN: Thank you.

7 MR. HAMER: Q. And if I might correct
8 you for once, he wasn't talking about returning
9 servicemen in that study; he was talking about the high
10 level of national service and people being off in army
11 camps in remote areas in England, was he not?

12 DR. WHILLANS: A. I think you are
13 correct, yes.

14 Q. I'm sorry, the copy came off a fax
15 and then has been mutilated in the binding process, but
16 if we go to the second last two facing pages we see a
17 table on the right-hand and on the left-hand side, and
18 in the right-hand column on the left-hand page there is
19 a line I would just like to have on the record, and it
20 is not very legible but towards the bottom, almost in
21 the centre of that column from top to bottom you see
22 the sentence:

23 The associated excesses of childhood
24 leukaemia are therefore highly relevant
25 to the hypothesis based on infection

1 which postulates that an appreciable
2 increase in the level of new social
3 contacts in a community can increase the
4 incidence of leukaemia.

5 A. No, I can't find that.

6 Q. You can't read it?

7 A. Where is this, I'm sorry?

8 Q. I'm sorry. I am looking at two
9 pages, the number of which have been obliterated. If
10 you look at mine and you see there is tables facing
11 each other?

12 A. Okay. Yes.

13 Q. And I have highlighted in green in
14 the middle column the passage which I just read.

15 THE CHAIRMAN: Let me see that?

16 MR. HAMER: Sorry.

17 DR. WHILLANS: I'm sorry, how did that
18 passage start, the first few words?

19 MR. HAMER: Q. It is at the end of the
20 middle paragraph in that right-hand column, and if you
21 look underneath the spiral binding you will see "The
22 associated excesses of childhood leukaemia...", about
23 six lines from the bottom of that paragraph?

24 I do apologize for this.

25 DR. WHILLANS: A. I should get out my

1 own copy. Oh, yes. Here it is.

2 Q. The associated excesses of childhood
3 leukaemia are therefore highly relevant
4 to the hypothesis based on infection
5 which postulates that an appreciable
6 increase in the level of new social
7 contacts in a community can increase the
8 incidence of leukaemia.

9 And that is his basic point?

10 A. Yes. He has a number of
11 publications, I think some of them are referred to
12 here, which explore basically the same mechanism.

13 Q. And then, just to refer to one other
14 passage on the back page, he summarizes at the end:

15 The findings support the hypothesis
16 that prompted this study that the
17 presence of large numbers of servicemen,
18 particularly in rural districts, was
19 conducive to an increase in the incidence
20 of childhood leukaemia. They also point
21 to an infection transmitted among adults
22 as implied by a recent study of the
23 effects of the population mixing
24 associated with increases in commuting.

25 And that was another study carried out by others, as I

1 understand it; is that correct?

2 Oh, no. It was Kinlen and others who
3 studied the effects of --

4 A. I really can't read this copy at all,
5 certainly not down to the point of reference.

6 Q. All right. And he concludes, saying:

7 The increase was greatest in children
8 under one year, which suggests
9 intrauterine infection with transmission
10 from the servicemen population presumably
11 directly or indirectly by the husband.

12 A. That is what it says.

13 Q. And that is his hypothesis?

14 A. That's right.

15 Q. All right.

16 DR. CONNELL: Do you have the journal and
17 the date?

18 MR. HAMER: Yes, Dr. Connell. It is the
19 British Medical Journal, Volume 303, November 30th,
20 1991.

21 DR. CONNELL: Thank you.

22 DR. WHILLANS: I think the page number is
23 1362?

24 THE CHAIRMAN: You mean the first page?

25 DR. WHILLANS: Pardon me? I was actually

1 asking -- the first page is 1362?

2 MR. HAMER: Q. Ms. Findlay tells me it
3 is 1357 to -62.

4 I will endeavour to obtain a better copy
5 of that and file it, Mr. Chairman. I think some of the
6 footnotes should be made more legible.

7 And then going back to Mr. Barnes' report
8 at the back of my Volume 3, tab 7, at page 1567,
9 paragraph 41.128 at the bottom of that page, Mr. Barnes
10 notes that:

11 Dr. Kinlen has pointed out that work
12 has been done on the occurrence on
13 clusters of cancer cases among children
14 in areas away from the vicinity of
15 nuclear installations. As long as ago as
16 the end of the 19th century a pair of
17 leukaemia case occurring together was a
18 cause for comment. In 1963 it was
19 reported that in Niles, Illinois, a small
20 suburb of Chicago with a population of
21 20,000, eight cases of leukaemia occurred
22 in the period 1957 to 1960.

23 And you are familiar with that occurrence?

24 DR. WHILLANS: A. Yes, I am aware of the
25 study. Yes.

1 Q. And then about 10 lines down, page

2 1568:

3 Over the next few years a number of
4 similar clusters were reported from a
5 variety of locations, mostly in the
6 United States.

7 And about 10 lines further on, referring to studies by
8 Craft, Openshaw and Birch in the United Kingdom, Mr.
9 Barnes writes about 10 lines above the next subtitle:

10 Many small areas of the Northern
11 Region - that is, of the United Kingdom -
12 could be claimed to have an excess rate
13 of childhood cancer. This study is of
14 some importance in establishing that
15 clusters of childhood cancers are by no
16 means confined to the localities which
17 contain nuclear installations. I
18 mentioned earlier that in North Wales an
19 excess of leukaemia cases was discovered,
20 but in elderly people not in children.

21 And you are familiar with that work as well?

22 A. The study in North Wales?

23 Q. Yes.

24 A. No, I'm not actually. That is
25 contrary to the point I was making earlier on, that I

1 wasn't aware of studies that looked at excesses in
2 older people.

3 Q. All right. But are you familiar with
4 Craft, Openshaw and Birch's work?

5 A. Yes.

6 Q. And then if we could go to Mr.
7 Barnes' conclusion, which begins on page 1573, and I
8 will start in at 1574, paragraph 41.142.

9 [1:00 p.m.]

10 He says in the second sentence:

11 It is plainly impossible to conclude
12 with complete certainty that a certain
13 physical factor such as discharges of
14 radioactive material does or does not
15 cause a raised incidence of a certain
16 disease such as leukaemia among those
17 living in a particular locality when the
18 full causes of the disease and the exact
19 mechanism by which it is induced are not
20 known.

21 You would agree with that?

22 DR. WHILLANS: A. Yes.

23 Q. And you would agree with the next
24 sentence:

25 Much of the evidence involves a

1 consideration of statistics, the
2 compilation of which sometimes involves
3 uncertainties since no complete and
4 accurate past record exists of the
5 incidence of or deaths from childhood
6 leukaemia within limited areas or
7 nationally.

8 A. Yes, it sometimes involves that.

9 Q. And about 10 lines from the bottom of
10 the page Mr. Barnes says:

11 Finally, discussion is not helped by
12 the way in which advances in knowledge
13 are sometimes treated as providing
14 ammunition against the nuclear industry
15 rather than as steps towards arriving at
16 the truth. Valuable scientific papers
17 are distorted beyond recognition in the
18 way in which they are reported.

19 And you are familiar with that process, I
20 am sure.

21 A. I have seen that happen, yes.

22 Q. Over on the next page Mr. Barnes
23 refers to a local councillor who claimed to know of a
24 cluster of leukaemia cases in an of Weston-super-Mare.

25 It emerged that when he talked to the

1 local health authority they had concluded
2 there was no excess of cases and that he
3 had no idea of the expected number of the
4 cases for the area and time by reference
5 to which it could be judged whether the
6 actual cases were in truth an excess
7 number. Such anecdotes are worse than
8 useless.

9 And one has to get away from the
10 anecdotal in this kind of issue, does one not?

11 A. Yes. When I read this last night I
12 thought he had been a little hard on the local
13 councillor, because often people who are not trained in
14 scientific methods for judging whether something is
15 real or not can nevertheless notice something which
16 brings an important issue up.

17 I think the important thing is the
18 response to that kind of an alarm, as you said earlier.

19 Q. And Mr. Barnes himself says elsewhere
20 in his report that, indeed, there is nothing wrong with
21 raising concerns like this; the issue is how does one
22 deal with them.

23 A. I agree.

24 Q. And that has to be on a rationale
25 basis.

1 A. I agree.

2 Q. And indeed, in the next paragraph Mr.
3 Barnes says:

4 Any person unaquainted with the full
5 range of technical evidence available on
6 ionizing radiation and leukaemia can be
7 forgiven for adopting a short and
8 seemingly logical train of thought.

9 And that's the train of thought that you
10 just described.

11 A. You are asking me?

12 Q. Let's go on then. He says:

13 The process of reasoning is that
14 ionizing radiation can cause leukaemia
15 and other cancers. Concentrations of
16 childhood leukaemia have been discovered
17 near some nuclear installations which
18 discharge the radioactive material which
19 emits ionizing radiation and therefore it
20 is the radioactive discharges from the
21 installations which have caused the
22 excess cases of leukaemia.

23 What you are saying is that people can be
24 forgiven that logic but it ain't necessarily so?

25 A. Well, I think that's right. The case

1 I just described was Sellafield, and that's exactly
2 what happened. It was a television documentary that
3 have identified the cluster, a reputable group, the
4 National Radiological Protection Board did a very
5 careful assessment of what the releases from the
6 station had been over that whole period and decided
7 that it was very, very unlikely that they could account
8 for it -- if they did account for these cases, then our
9 estimates of risk were wrong by factors of 100, and
10 there was other reasons to believe that wasn't true.
11 And that kind of approach led them to look for other
12 cases of a cluster.

13 MR. HAMER: Mr. Chairman, I had thought I
14 might get through this report before lunch, but I would
15 like to spend a little more time on it.

16 THE CHAIRMAN: All right. We are
17 adjourned until 2:30.

18 THE REGISTRAR: Please come to order.
19 This hearing is adjourned until 2:30.

20 ---Luncheon recess at 1:05 p.m.

21 ---On commencing at 2:30 p.m.

22 THE REGISTRAR: Please come to order.
23 This hearing is again in session. Please be seated.

24 THE CHAIRMAN: Mr. Hamer?

25 MR. HAMER: Thank you, Mr. Chairman.

1 Q. Dr. Whillans, we were in Hinkley
2 Point at tab 7 of Volume 3, and we were starting to
3 look at Mr. Barnes' conclusions at page 1575. And
4 towards the bottom of page 1575, about five lines up
5 Mr. Barnes carries on with the simple logic which would
6 lead to an association between nuclear stations and
7 leukaemia clusters, and says:

8 There are a number of solid reasons
9 for concluding that the excess childhood
10 leukaemias or leukaemia clusters
11 ascertained to exist near some nuclear
12 plants are most unlikely to have been
13 caused by the radioactive discharges from
14 the plants.

15 May I take it that you would agree that
16 that is so, there are a number of solid reasons for
17 that conclusion?

18 DR. WHILLANS: A. Yes.

19 Q. And we can see some of the solid
20 reasons on the next page at the top of 1576. Mr.
21 Barnes says:

22 The primary reason for rejecting a
23 causative link between plant discharges
24 and excess childhood leukaemias is that
25 such a link appears impossible on the

1 basis of all generally accepted knowledge
2 of radiation dosimetry and risk
3 coefficients.

4 And you would agree that that is a prime
5 reason for reaching that conclusion?

6 A. Certainly in the case of Sellafield
7 where a very careful study was done, it's a good
8 estimate of what the discharges were. And as I said,
9 the exposures resulting from those discharges and the
10 risk coefficients which we believe to be true cannot
11 account for the leukaemias, yes. I am not sure that
12 that level of detail has been done in every case.

13 Q. All right. And his second primary
14 reason is at page 1577, No. 2 in brackets, and he
15 refers to the reasoning advanced by Darby and Doll
16 concerning the effect of weapons testing fall-out which
17 systems seems compelling to him.

18 And as I understand it, reading a little
19 lower down in that paragraph:

20 If low doses of ionizing radiation
21 from such radionuclides caused childhood
22 leukaemia in some way not understood,
23 whether through irradiation of the
24 parents or of the fetus or of the young
25 child, the same causative effect should

1 have been observed in the irradiation
2 from weapon test fall-out.

3 You would agree with that logic, may I
4 take it?

5 A. I am not really familiar with how
6 much dosimetric studying there has been of weapon test
7 fall-out.

8 I certainly accept as I said that Darby
9 and Doll are people who have looked at this subject
10 thoroughly and I would treat their conclusions
11 seriously.

12 There has been a recent paper which
13 suggests that alpha emitters may or may not have a
14 different role in radiation induction of disease, and
15 this is just something that's occurring. So I think it
16 is an area where there is still room for research.

17 Q. Would you agree with his third
18 primary reason on the same page, No. 3:

19 Levels of doses from natural radiation
20 are generally much higher than those
21 created by plant discharges.

22 We have been talking about that fact
23 yesterday and today; correct?

24 A. That's certainly true for our plants
25 and it's generally true, yes.

1 Q. And he says two lines on:

2 If the plant discharges do cause
3 excess childhood leukaemias then, due to
4 the effect of natural radiation, much
5 higher levels of leukaemia should exist
6 generally than are in fact found.

7 And again, can we take it that that logic
8 is fair as well?

9 A. It's a generalization. I think it is
10 fair. In my discussion with Dr. Connell this morning
11 we were talking about whether different sources of
12 radiation might have different effects. And while it's
13 true that the levels are much higher from natural
14 radiation, the specific kind of exposures aren't
15 identical.

16 So I think it is generally true but it
17 doesn't cover everything.

18 Q. But it is a valid consideration in
19 coming to a conclusion--

20 A. Yes.

21 Q. --as to whether these leukaemia
22 clusters are caused by nuclear stations?

23 A. Yes.

24 Q. And you would accept, I take it, from
25 your earlier evidence the fourth reason he lists at the

1 bottom of that page:

2 If plant discharges cause excess
3 leukaemias there should be an
4 ascertainable relationship between the
5 level of the discharges and the number of
6 excess leukaemias caused.

7 And he notes that nuclear installations
8 very enormously in the level of their discharges and
9 the resultant doses to the population, and then says:
10 No such relationship has been established.

11 A. Again, I generally agree.

12 My only reservation has to do with the
13 fact that leukaemia particularly is a rare disease, the
14 numbers in most of these studies small so that the
15 uncertainties are significant. But it's true, a number
16 of studies have been carried out and none of them has
17 detected anything.

18 Q. And then the fifth reason on the next
19 page we have been over already and that has to do
20 with the fact that ones finds leukaemia clusters where
21 there is no nuclear station, just as one finds them
22 where -- sometimes one finds them where there is a
23 nuclear station.

24 A. That's true.

25 Q. And item of I think we went over

1 already in our general discussion.

2 If radiation from radioactive
3 materials discharged from the plants did
4 cause excess leukaemias, it might also be
5 expected to cause excesses of cancers in
6 children. There is no general evidence
7 of such other excess cancers.

8 Again that is a valid consideration in
9 coming to the conclusion?

10 A. We talked about the differences
11 between cancers earlier. But certainly the second
12 statement is true, in any of these studies where
13 leukaemia has been found in excess, they have not found
14 the same with other cancers.

15 Q. And in item 7 it is a valid
16 consideration that:

17 If radiation did induce leukaemia in
18 children in some unexplained way and to
19 an unexplained extent, these features
20 would presumably have been present and
21 operated on the child survivors of
22 Hiroshima and Nagasaki. No excess number
23 of child leukaemias is recorded in this
24 group beyond that which would be expected
25 from the application of conventional risk

1 factors.

2 Again, that is a valid consideration in
3 coming to this conclusion?

4 A. I am thinking about the second
5 sentence. There is no excess in the child age group
6 beyond that which would be expected. But the
7 conventional risk factors are derived from the whole
8 population which includes that group. So I guess to
9 the extent that he is not saying there is a large
10 difference between childhood leukaemias and others, I
11 agree, and the rest of it as well.

12 Q. Another way of putting what he has
13 put there in 7 is that the conventional risk factors
14 are valid; is that correct?

15 A. Well, conventional risk factors are
16 what we use.

17 In what sense would you mean valid?

18 Q. Appropriate to use.

19 A. Well, they are the only numbers we
20 have, the conventional risk factors, so there is not
21 really anything to validate them against.

22 They are a synthesis of that study and a
23 number of other studies and they are consistent, and I
24 guess in that sense you would say they are valid.

25 Q. And then 8, Mr. Barnes refers to the

1 Kinlen hypothesis which we discussed this morning
2 concerning population mixing, and says, at the top of
3 page 1579:

4 This hypothesis obviously cannot yet
5 be claimed to have been proved correct,
6 and no it doubt suffers from its own
7 difficulties. Nonetheless, it represents
8 an alternative suggestion which, on the
9 face of it, at least merits examination
10 alongside any radiation link theory.

11 And you would agree with that?

12 A. I think many experts in the area
13 would think that it is worth further examination.

14 DR. CONNELL: I would like to clarify a
15 point about point 3, the natural radiation. Perhaps
16 Dr. Whillans could just give us a little more
17 elaboration.

18 I take it in the reference to alpha
19 radiation he is probably referring mainly to radon.

20 DR. WHILLANS: Radon is one, but I
21 mentioned some of the internal sources where the lead
22 polonium -- the uranium series has a number of alpha
23 emitters and they are found in the diet to some extent.

24 DR. CONNELL: Potassium 40 is not an
25 alpha emitter.

1 DR. WHILLANS: No, it isn't. It's the
2 actonides generally, the uranium polonium series,
3 thorium, a number of the large heavy elements emit
4 alpha particles.

5 DR. CONNELL: And the neutrons would tend
6 to go with the alphas, would they?

7 DR. WHILLANS: I was puzzled when I read
8 this first.

9 My understanding is there is not very
10 much neutron exposure in the environment, and I really
11 can't help you very much more about that.

12 DR. CONNELL: So radon decay does not
13 emit a neutron.

14 DR. WHILLANS: No.

15 I have a very detailed reference, a
16 report from the NCRP in the U.S., the National Council
17 on Radiation Protection, and it has ever source that's
18 known up to 1987. I could certainly check that if you
19 like for more information.

20 DR. CONNELL: Thank you.

21 On point 8 we probably haven't got an
22 authority on viral carcinogenesis, but does anybody on
23 the panel know whether there are any well established
24 cases of viral origin of human cancer?

25 I recall a while back Burkett's lymphoma

1 was suspected, but are there any that you know of that
2 are well validated. Apart from the oncogenes of
3 course.

4 DR. WHILLANS: To my knowledge there
5 hasn't been a proof that's true in humans. As I
6 mentioned, it's certainly true in mice. And there is
7 circumstantial evidence I guess to the extent that
8 there is associations between things like Burkett's
9 lymphoma virus and --

10 THE CHAIRMAN: I'm sorry, I didn't quite
11 hear that.

12 DR. WHILLANS: There are associations
13 between some viral viruses and tumors, but I don't
14 think, in my opinion, that it is really considered
15 proof that it's a cause. But this isn't an area where
16 I really would consider myself expert.

17 DR. CONNELL: Thank you.

18 MR. HAMER: Q. Flipping over to page
19 1582, Mr. Barnes sets out his five principal
20 conclusions having listed the reasons for arriving at
21 the basic conclusion. Item 1:

22 There is no evidence of a generally
23 raised incidence of cancer around nuclear
24 installations in this country.

25 And would you accept that that is correct

1 for Ontario as well?

2 DR. WHILLANS: A. Yes, that's certainly
3 true for Ontario.

4 Q. Item 2:

5 There is no evidence of a generally
6 raised incidence of adult leukaemia
7 around nuclear installations in this
8 country.

9 Would you accept that as true for Ontario
10 as well?

11 A. That's true for Ontario, yes.

12 [2:45 p.m.]

13 Q. I don't mean to restrict it to
14 Ontario, but I mean to bring it over to Ontario.

15 A. That's right. I haven't looked
16 through all of this, but I am not aware of probably all
17 the studies that have been done in the U.K. I think it
18 is generally true, and it is certainly true for
19 Ontario, to my knowledge.

20 Q. And item 3:

21 There is evidence of a raised
22 incidence of childhood leukaemia around
23 some nuclear installations, although the
24 exact incidence or clustering in time and
25 space follows no clear pattern.

1 And you would agree with that from what you know of
2 Ontario and of the literature, would you not?

3 A. Well, there is no evidence of a
4 raised incidence of childhood leukaemia in Ontario.

5 Q. At all.

6 A. At all. And it is true, the clusters
7 that have been reported around some installations in
8 U.K. have different patterns, yes.

9 Q. And fourthly, he concludes:

10 On the evidence and on the present
11 state of knowledge it is possible, but
12 most improbable, that there is some
13 causal link between the discharges of
14 radioactive materials from the
15 installations or some other aspect of
16 their operation and a generally increased
17 risk of leukaemia among children living
18 near the installations.

19 And would you accept that as being a valid conclusion
20 to come to on the basis of the literature and the
21 evidence which is available to date?

22 A. Yes. And as we have said, it is
23 particularly true for Ontario where there is no raised
24 incidence. It is also true in U.K.

25 Q. Then the fifth --

1 THE CHAIRMAN: Assuming the evidence,
2 there is no such evidence in Ontario, assuming that to
3 be so, then conclusion four doesn't have any
4 applicability to Ontario?

5 DR. WHILLANS: That's right.

6 MR. HAMER: Q. All right. And so that
7 we could look at it from the Ontario perspective, which
8 is very reassuring, and then if one looks at it from
9 the perspective of the U.K. studies where all of this
10 originated, it is reassuring as well although perhaps
11 not to the fullest extent that it is in Ontario; is
12 that fair?

13 DR. WHILLANS: A. Well, as I said, I
14 know there was a very thorough study of the discharges
15 from Sellafield, which is the sort of major focus of
16 concern in the U.K..

17 I am not sure how thorough this was done
18 for Dounreay - it was done, but I don't know the detail
19 of it - and similarly for some of the other sites, and
20 in the case of Sellafield it is certainly true that it
21 is very unlikely that the discharges have anything to
22 do with the cluster of leukaemias.

23 Q. You can't assist us on the other
24 studies, the details of which you are not familiar
25 with?

1 A. Well, for example, at Dounray there
2 was a cluster, an increase in local concentration of
3 childhood leukaemia, and papers have been published
4 which looked at a number of factors, one of which was
5 discharge estimates, but they were just one of the
6 factors, and, you know, there isn't the detail to
7 describe whether or not it was done as thoroughly as at
8 Sellafield.

9 I think generally since the NRPB study of
10 the Sellafield discharges there has been much less
11 interest or concern about this as the source of the
12 clusters. And other things have been looked at. The
13 viral hypothesis is one.

14 One which I think we haven't mentioned is
15 the question of paternal radiation, but since you raise
16 the question of Dounray, that was one of the factors
17 that was looked at. In that case it was found not to
18 be significant.

19 So I think it is the case that most
20 people would accept the discharges were not responsible
21 for the major cluster, and although they are being
22 checked in all these other circumstances it is not a
23 major focus.

24 Q. By paternal exposure you mean the
25 children whose fathers have had occupational exposure

1 in nuclear plants; is that correct?

2 A. Yes, that was the Gardner finding at
3 Sellafield.

4 Q. Which was not borne out in the other
5 study at Dounray?

6 A. Well, certainly at Dounray and at the
7 others there was no significant association between the
8 father's exposure and the probability of having a
9 leukaemic child. But they are much smaller studies.

10 Q. Towards the bottom of page 1583 Mr.
11 Barnes then turns to the bearing that this question of
12 childhood leukaemia has on whether or not he should
13 grant consent or recommend the granting of consent for
14 that station, and says in the middle of paragraph
15 41.151:

16 Since I consider it most improbable
17 that an enhanced risk of leukaemia among
18 children who live in the vicinity of
19 nuclear plants is caused by discharges of
20 radioactive materials from the plants or
21 by any other general aspect of their
22 operation I answer the question by
23 concluding that there is no such
24 likelihood.

25 And you would agree that that would be an

1 appropriate conclusion even more so to be drawn in
2 Ontario, I take it?

3 A. I'm not sure what he means by: any
4 other general aspect of their operation. But certainly
5 I can agree with the rest of the statement.

6 Q. And he says towards the bottom of the
7 page that:

8 The question will continue to be asked
9 until a complete scientific understanding
10 of the disease is attained. It is
11 perfectly proper that it should be asked.
12 And you pointed that out earlier when I was referring
13 to the local councillor; correct?

14 A. Yes.

15 Q. And he says:

16 The answer is a matter of judgment,
17 not of logic. It is also an answer which
18 in substance goes to the whole future of
19 the civil use of nuclear power. My
20 judgment is that the possibility is low
21 and that there are substantial benefits
22 to be obtained from continuing with the
23 civil use of nuclear power.

24 I take it that that is the kind of
25 judgment one makes in assessing all forms of energy

1 production and in particular the question of nuclear
2 energy production; is that fair? One balances the
3 benefits to be achieved--

4 A. That is right.

5 Q. --against the weight of the risks
6 that are attendant?

7 A. Of course, yes.

8 Q. All right. I understand as well that
9 in the United States similar studies relating to the
10 risk of cancer in the vicinity of nuclear stations have
11 been carried out and reported recently by an author
12 named Jablon, of the National Cancer Institute? You
13 are familiar with that --

14 A. Yes, I believe I referred to that in
15 my direct evidence.

16 Q. Yes. And those studies related to 62
17 nuclear facilities and the counties surrounding them;
18 correct?

19 A. That's right.

20 Q. And they came to a risk ratio of 1.0,
21 which means normal; correct?

22 A. That's right.

23 Q. And, in fact, they are found that the
24 risk ratio in those 62 counties was slightly higher
25 statistically before startup of the nuclear facilities

1 than it was after?

2 A. I believe that's true.

3 Q. And you refer as well in your report
4 to Atomic Energy Control Board studies here in Ontario,
5 and I believe you may have referred to that in your
6 evidence in chief when you testified orally.

7 A. Yes.

8 Q. And I'm sorry if I am repeating what
9 has gone before, the results of those studies which was
10 to find no differences achieving statistical
11 significance in the areas around nuclear stations; is
12 that correct?

13 A. That's right.

14 Q. Mr. Penn, are you able to tell us
15 anything about operational safety of the nuclear
16 plants?

17 MR. PENN: A. I think Mr. King can do
18 that, or Mr. Daly.

19 Q. Well, Mr. King and Mr. Daly, could we
20 turn to tab 14, which again is the excerpts I have put
21 together from the Hare Report, and I am referring to
22 tab 14 in Volume 2, and Roman numerals page 12.

23 Mr. King, under the heading Risk of
24 Accidents, Commissioner Hare found a severe accident in
25 an Ontario reactor with release of damaging amounts of

1 radioactive substances is very unlikely but cannot be
2 ruled out.

3 And you may have read from that in your
4 evidence in chief, but I take it that you agreed with
5 that conclusion when it was released and you would
6 accept that as a valid conclusion today?

7 MR. KING: A. Yes.

8 Q. And two paragraphs down: The more
9 serious incidents have -- and I am not reading here, I
10 am paraphrasing.

11 The more serious incidents in Ontario's
12 nuclear stations have been those at Pickering "A" in
13 1983 and Bruce "A" in 1986?

14 A. I referred to the Pickering "A"
15 incident in my evidence in chief.

16 Q. All right.

17 A. And I am aware of the event that he
18 is talking about in Bruce "A" in 1986.

19 Q. Am I correct that the one difference
20 between those is that the Pickering "A" incident
21 happened when the plant was in operation, in normal
22 operation producing power, whereas the Bruce "A"
23 incident the plant was either shut down or at very low
24 power levels?

25 A. The plant was shut down.

1 Q. All right. And in neither case were
2 the safety shutdown systems called into use to prevent
3 the release of radioactivity?

4 A. If you are referring just to the
5 shutdown systems...

6 Q. The special safety, the independent
7 shutdown systems.

8 A. In Pickering "A" the reactor was shut
9 down manually using the regulating system, hence the
10 shutdown systems--

11 Q. The normal --

12 A. --were not used.

13 Q. Right.

14 A. And in the Bruce "A" incident, as we
15 have noted, the reactor was already shut down.

16 Q. And there has been no subsequent
17 incident in which the special shutdown systems were
18 called upon to prevent the release of radioactivity
19 into the environment at any of Hydro's stations; is
20 that correct?

21 A. To my knowledge, I believe that is
22 true. Occasionally there are spurious trips of
23 shutdown systems which shut down the reactor by the
24 mechanism, but they weren't there and they didn't occur
25 in response to an accident event.

1 Q. And by accident we can mean a system
2 failure sufficient to trip the shutdown system?

3 A. That's right.

4 Q. If we can turn over in the further
5 excerpts from Dr. Hare's report at tab 15, which is
6 excerpts from the second volume, I would like to refer
7 you to page Roman 1/63, which is an excerpt from Mr.
8 Meneley's paper which was published as an appendix to
9 the Commissioner's report.

10 Do you have that?

11 A. Yes, I do.

12 Q. And Mr. Meneley was with Ontario
13 Hydro and then went to the University of New Brunswick,
14 as I understand it, and is now with AECL?

15 A. Yes. Yes, he is.

16 Q. And at the time he wrote this paper
17 was he with UNB?

18 A. Yes, he was.

19 Q. And he says at paragraph 77, and we
20 have been over some of this in your evidence in chief,
21 that the philosophy guiding the plant designer is one
22 of defence and depth, and the defences range from
23 preventive measures, such as high quality hardware and
24 well-trained, highly motivated staff to mitigative
25 measures such as those represented by special safety

1 systems and establishment of an exclusion zone around
2 each nuclear plant.

3 And you went through that kind of
4 description in your evidence in chief?

5 A. I referred to all of these features.
6 When I was talking about the defence and depth I was
7 going through an explanation of the physical barriers,
8 but defence and depth is also discussed in these terms
9 as well. It can be discussed in these terms as well.

10 Q. It is not only a question of the
11 physical design of the plant but the institutional
12 culture, if you like, that prevails within the plant or
13 the human side of things?

14 A. That's true.

15 Q. And the idea on both sides is that
16 one recognizes from the outset that in any
17 technological process systems can fail?

18 A. That's right. You have overlapping
19 redundant ways of achieving objectives or preventing
20 things from happening, and that is a general
21 description of a defence and depth.

22 Q. So that if the failure occurs one has
23 already made provision in the design to mitigate the
24 effects of that failure?

25 A. Yes.

1 Q. That applies not only to nuclear
2 power stations but to all sorts of industrial
3 activities; correct?

4 A. That's true, and I believe I
5 mentioned that in my evidence in chief as well.

6 Q. And at paragraph 78 Mr. Meneley makes
7 the observation:

8 The underlying reality in the design
9 of any safety system, whether it be in
10 homes, automobiles, aircraft or nuclear
11 power plants, is that the most severe
12 possible accident can occur at some
13 probability. The objective of the design
14 is to make this probability acceptably
15 low. It can never be zero.

16 And you would agree with that?

17 A. I would.

18 Q. And then the difficult part comes
19 next: The value judgment word is "acceptably". And
20 you would agree with that?

21 A. Yes.

22 Q. A real or perceived risk is accepted
23 by society in return for some real or
24 perceived benefit.

25 And that is obvious, isn't it?

1 A. Yes.

2 Q. And dropping to the bottom of the
3 page:

4 Objective measures of safety can be
5 compared easily with alternative ways of
6 achieving the same benefit, but perceived
7 risks and benefits vary considerably with
8 time and with the political mood of the
9 society. Today's 'acceptable' level of
10 safety could be tomorrow's 'not enough',
11 and the next day's 'too much'.

12 And you have observed in the course of your career
13 fluctuations of that kind, I take it, in relation to
14 nuclear safety?

15 A. Well, I certainly see the first part
16 of the equation where today's is tomorrow's 'not
17 enough'. That seems to be the dominant trend.

18 Q. But you would agree with Mr. Meneley
19 that the question of too much, enough, or not enough is
20 as much a matter of perception as objective
21 measurement?

22 A. I would think the lack of objective
23 measures or the lack of accepted comparisons leads to
24 the reliance on perceived values rather than on
25 objective values which...

1 Q. Right. And Mr. Meneley concludes
2 that paragraph:

3 High levels of safety can be achieved
4 but at significant cost and the society
5 must decide the acceptable balance
6 between cost and benefit for regulated
7 activities such as nuclear energy.

8 And, in fact, that is part of what we are engaged in
9 here in this hearing, isn't it?

10 A. That's true.

11 Q. And then in the next paragraph he
12 states:

13 The most fundamental reality of
14 nuclear power plant operation is that the
15 maximum consequences of any severe
16 accident are limited. They can never be
17 large compared with other potential
18 events such as hydraulic dam failures or
19 poisonous chemical releases.

20 You would agree with that, would you not?

21 A. I guess I have a little bit of
22 difficulty with a few of these words in here: The
23 maximum consequences of any severe accident are
24 limited? I guess it really depends what 'limit' is.
25 If you want to establish your limit high enough, then I

1 assume that the consequences of anything are bounded by
2 that limit.

3 Q. Well, he makes the obvious point in
4 the next sentence:

5 A nuclear power reactor absolutely
6 cannot explode like a nuclear weapon.

7 [3:05 p.m.]

8 A. I agree with that.

9 Q. And nor can it release enough energy
10 or fission products to produce devastation equivalent
11 to such an event?

12 A. Also when he is talking about
13 consequences, maybe he is clear in earlier paragraphs,
14 but in this one whether it's health effect, prompt
15 fatality, latent fatality, contamination, I am not sure
16 exactly what he is referring to, and hence when you
17 start comparing to other forms of energy production,
18 you have to make sure you are comparing apples with
19 apples.

20 Q. Right. But that applies to any form
21 of energy production that one can think in terms of say
22 an immediate fatality in a coal mine accident or one
23 can think of delayed fatalities due to lung disease
24 caused by inhalation of coal dust. That's fair; isn't
25 it, the same distinction that you just drew?

1 A. I think both are consequences and in
2 my belief both have to be treated separately. There is
3 a different impact from both latent and prompt health
4 effects.

5 Q. And one has to assure that the
6 likelihood of such effects is acceptably low.

7 A. That's true.

8 Q. But one has to recognize that any
9 industrial activity does carry with it a percentage
10 risk of such effects or similar effects?

11 A. That's true.

12 Q. May we turn, Mr. King, to tab 10 in
13 my Volume 2. Have you had an opportunity to review
14 this booklet entitled Safety of CANDU Nuclear Power
15 Stations by Dr. Snell?

16 A. I have read it in the past when it
17 was first written and have scanned it in the last
18 couple of days, yes.

19 Q. And I am going to take you to some
20 specific passages in it, but in general it is a useful
21 description of the safety systems which are designed
22 into CANDU stations; is that fair?

23 A. Yes.

24 THE CHAIRMAN: Give it a number.

25 THE REGISTRAR: 557:

1 MR. HAMER: Thank you.

2 ---EXHIBIT NO. 557: Document entitled Safety of CANDU
3 Nuclear Power Stations, by Dr. V.G.
 Snell.

4 MR. HAMER: Q. At page 7 of this booklet
5 we see a section entitled Measure of Risk, and that's
6 part of your job in relation to Ontario Hydro's nuclear
7 stations; is that fair?

8 MR. KING: A. Yes.

9 Q. Dr. Snell writes:

10 This section describes the amount of
11 risk implied by the operation of a
12 nuclear power plant. Before we protect
13 against particular accidents we must
14 decide how safe we want the plant to be.
15 Nothing can be made absolutely safe and
16 the safer we try to make the plant, the
17 more it costs in terms of safety devices
18 and reduced output. Indeed, beyond some
19 point the improvements in "real" safety
20 may be illusory.

21 Would you agree with that observation by
22 Dr. Snell?

23 A. Certainly as you add more devices
24 there are cost implications. It does not necessarily
25 imply reduced output.

1 Q. But it may?

2 A. It may, but it's not a given.

3 Q. Right.

4 A. There are some points where if you
5 improve the safety, you are at very low levels of risk,
6 the uncertainty in the gain that you are actually
7 making or the gain that you estimate that you are
8 making may well be swallowed up in the uncertainty
9 around that mean value you may be using.

10 Q. For example, if one were to spend a
11 million dollars to reduce the risk of an accident from
12 one in one million years to one in 10 million years,
13 one may be wasting that million dollars; is that fair?

14 A. It would probably be hard to justify
15 those sorts of expenditures for those levels of risk
16 reduction.

17 Q. And then Dr. Snell writes in the next
18 paragraph:

19 Without numbers for risk, it is as
20 hard to compare the safety of competing
21 energy technologies as it would be to
22 compare their economics without knowing
23 their cost.

24 Would you agree with that logic?

25 A. Yes, I would.

1 Q. Sometimes such quantitative studies
2 give surprises. It is hard to see much
3 risk in solar power and perhaps easier in
4 nuclear power. Yet Inhaber who studied
5 both in an exploratory analysis, claimed
6 the reverse: he have claimed that the
7 public risk of death and of man days lost
8 is higher for solar power than nuclear.

9 The main reason is the enormous amount of
10 materials needed for the "benign"
11 technology - these must be manufactured
12 and transported and that is where most of
13 the risk lies.

14 Are you familiar with those kinds of
15 studies and Inhaber in particular?

16 A. I am aware of the Inhaber study that
17 he is referring to. I know nothing about the estimates
18 of risk from solar power. I make no comment on that.

19 Well, perhaps the only comment that I
20 would make is that if you are looking at the
21 alternatives, you should look at all aspects of all
22 alternatives.

23 Q. Right. And that passage makes that
24 point that one doesn't simply look at the presence of
25 solar panels on the roofs of buildings but what it

1 takes to get them there and the activities associated
2 with that; correct?

3 A. I think that's the same as the
4 statement I just made.

5 Q. You got it.

6 Inhaber is a well recognized authority in
7 the area of risk analysis?

8 A. At the time when he prepared -- I am
9 not sure which study this is referring to.

10 Q. 1978.

11 A. He was a bit of a pioneer, I believe,
12 or one of the first people doing this sort of
13 calculation. I am not sure if he is still publishing
14 in the area or not, but certainly at that time. In
15 fact, he was a member of the Atomic Energy Control
16 Board at that time, I believe.

17 Q. Again, we find another one of his
18 publications in Ontario Hydro's list of references in
19 Exhibit 507, and that's entitled Energy Risk
20 Assessment.

21 Are you familiar with that publication?

22 A. What is the year of that?

23 Q. 1982.

24 A. I just know that he has published in
25 that period, late 70s, early 80s, in this area. I

1 can't confirm that I actually read that particular one.

2 Q. And then Dr. Snell goes on at the top
3 of page 8, left-hand column:

4 In short: we cannot make a human
5 activity absolutely safe. We can improve
6 its safety. This requires social
7 resources. At some point society must
8 judge when the level of safety is good
9 enough so it can use these resources
10 elsewhere.

11 And that's an important point to
12 recognize; is it not?

13 A. There is, I guess, an implication in
14 this sentence that the society has the vehicles
15 available for transferring resources from different
16 parts in society to make that balance. It should be
17 spent here rather than there. I am not sure whether
18 those societal vehicles for doing that are in place and
19 effective.

20 Q. We have to make use of the imperfect
21 institutions that we have. For example, many of the
22 issues in this hearing involve making those kinds of
23 choices with respect to allocation of resources; do
24 they not?

25 A. I would think in this area one should

1 establish reasonable levels of acceptable safety, and
2 if those reasonable levels were applied across the
3 broad range of societal activities, then there would be
4 a reasonable balance across society for the spending of
5 those resources.

6 Q. In fact, that is a problem, is it
7 not, in that some industrial activities through perhaps
8 misperception of the risks attached to them, end up
9 having more resources devoted to making them safer than
10 are actually justified, while other industrial
11 activities go under-regulated, if you like, from the
12 point of view of safety.

13 A. There is certainly a lot of material
14 in the literature which suggests that that is the case.

15 Q. Dr. Snell goes on in the next
16 paragraph to give the simple example of whether or not
17 seatbelts should be used in motor vehicles and says
18 that sometime ago it was fine not to drive with
19 seatbelts and now its compulsory. And that's a way of
20 reducing the effects of an accident if the accident
21 happens and it requires an expenditure of money, not
22 very much, installation of a seatbelt and the
23 enforcement of the Highway Traffic Act.

24 A. Yes.

25 Q. He goes on to make the next obvious

1 analogy that one could spend much more on better road
2 design and improved driver training and avoid a great
3 many further fatalities.

4 A. I would assume that's probably the
5 case, but I have no detailed knowledge of the size of
6 the benefits that could be obtained for any
7 expenditure.

8 Q. That's fair.

9 But you will agree with me that that's an
10 apt example of the perhaps disproportionate allocation
11 of resources to extend life expectancy?

12 A. Well, if society wanted to reduce the
13 number of -- if we are looking at the consequence of
14 prompt fatality, of course one of the things you would
15 do is take a look at the past data, figure out where
16 the largest number of people are being killed from an
17 actual point of view, and try to apply your resources
18 in those areas, because you would probably get the best
19 bang for your buck, as the expression goes, by doing
20 that.

21 Q. I know you haven't done a review of
22 the data, but would it be reasonable to think that in
23 our industrial economy far more fatalities have already
24 been caused in history by motor vehicle accidents than
25 will ever, ever be caused by nuclear power plants?

1 A. Well, ever ever is a long time.

2 In my lifetime, yes.

3 Q. Certainly in the next 25 years.

4 A. I hope I make it that long.

5 Q. And over at page 10, Dr. Snell sets
6 out a table of individual risk of early fatality by
7 various causes, and I am sure that you have seen this
8 kind of comparison before. It's at page 10.

9 A. Yes, I have got it.

10 Yes, I have seen it.

11 Q. We see motor vehicle accidents, and
12 these are U.S. figures but one wouldn't expect Canadian
13 figures to be substantially different; would one?

14 A. There are a few of them which -- the
15 order may not be exactly the same.

16 Q. Firearms might be a little different.

17 A. Yes, firearms, drowning. But
18 generally they would be the same.

19 Q. So that we see that motor vehicle
20 accidents, one has in the United States, at least, a
21 risk of 1 in 3,000 per year of early fatality.

22 A. I see that.

23 Q. And that's not a surprising figure to
24 you?

25 A. No.

1 Q. And air travel carries a risk of 1 in
2 100,000 per annum, and that's not surprising to you?

3 A. The air travel number varies from
4 year to year much greater than, let's say, the motor
5 vehicles would vary from year to year.

6 I assume this is one year, for 1969?

7 Q. The column on the right-hand side
8 says chance per year of early fatality.

9 A. What I am saying, I am not sure over
10 what year period this is the average. But yes, in the
11 air travel it's in the right order, I would guess.

12 Q. All right. And one has, according to
13 this table, a risk of one in two million of being
14 struck by lightening and being killed. Is that a
15 reasonable figure to you?

16 A. I'm sorry, I just don't know how many
17 people are killed by lightening. It says 160, but I
18 take it that that's an accurate figure.

19 Q. At the bottom of the table we have
20 nuclear accidents spread over 100 reactors apparently
21 and the risk given there is 1 in 5 billion; is that
22 correct?

23 You deal with these numbers more than I
24 do.

25 A. I was just trying to check what

1 reference they are using.

2 They are using the 1975 WASH-1400

3 Rasmussen Reactor Safety Study, is the reference.

4 Q. And that's one study among many and
5 they come up with different answers. But in terms of
6 order of magnitude that figure is a reasonable one?

7 A. They are talking about an individual,
8 this is the average individual, I believe.

9 Q. Over a year?

10 A. Once you are talking about fixed
11 facilities, then really there is a large variation in
12 the risk from the person on the boundary to the person
13 who is 200 miles away from the nearest nuclear reactor.
14 They are both small but there is still a large
15 difference between them in both.

16 Q. And apparently according to the
17 footnote, the author of this table has estimate that
18 figure based on a population of 15 million at risk from
19 a nuclear accident, and presumably has spread it over
20 these hundred reactors.

21 A. It appears that they have taken a
22 certain distance from a reactor and that would have
23 included 15 million people and then taken the average
24 within that distance.

25 Q. But in terms of putting the risks of

1 nuclear power generation into one perspective, this
2 table is a reasonable way to go about doing it; isn't
3 it?

4 A. What you are comparing here, though,
5 in some cases you are comparing past statistics which
6 have very low uncertainty bounds on them, compared to
7 estimated probabilities, estimated risks, and you have
8 to be a bit careful when you do that to make sure, as I
9 mentioned before, that the uncertainty bounds around
10 your estimates don't effect the comparison that you are
11 trying to make.

12 Like in this particular case, the events
13 at the top of the list are much more frequent, and it's
14 probably a fairly safe comparison when you are talking
15 about events at the top of the list.

16 Q. I am interested obviously in the
17 event at the bottom of the list, the nuclear accident.

18 A. What I meant was the other list, the
19 list where they had statistics, hard statistics. The
20 list above the middle line.

21 Q. I'm sorry?

22 A. I believe that's the distinction.
23 Between the first two horizontal lines are actual
24 statistics and the nuclear accident is an estimated
25 risk.

1 Q. Based on probability analysis?

2 A. Based on the WASH-1400 Reactor Safety
3 Study, probabilistic risk analysis.

4 Q. Yes. And you are in the business of
5 making those probabilistic risk assessments, aren't
6 you, yourself?

7 A. Yes.

8 Q. And what I am trying to get at is
9 that accepting the distinction you make between
10 historical data and probabilistic risk assessments and
11 accepting the frailty of comparing one to another, that
12 is nonetheless a reasonable way of putting the risk of
13 nuclear accident into some kind of valid perspective?

14 A. It is, with the cautions I have
15 mentioned on uncertainty.

16 So if you are comparing it to the
17 lightening or the tornadoes or the hurricanes, I think
18 you would be a lot more in making the comparison than
19 the motor vehicles, falls, et cetera.

20 Q. I think I understand you now.

21 I want to turn very briefly to the Atomic
22 Energy Control Board as a regulator, and that
23 discussion I will begin with a reference to the
24 excerpts from the Hare commission report at tab 14 in
25 my Volume 2.

1 [3:29 p.m.]

2 I am going to start on Roman numeral 18.

3 Actually, before we go to Roman numeral
4 18, I will start at page 190, and then we will come
5 back to Roman numeral 18.

6 Mr. King, are you the appropriate
7 individual to answer questions relating to the AECB?

8 A. Yes.

9 Q. And Dr. Hare asks the question on
10 page 190: Is AECB sufficiently visible? And the
11 answer to that as of that time:

12 The answer is clearly no. The average
13 citizen is entirely unaware of the
14 watchdog function performed on his or her
15 behalf.

16 This is at the bottom of that page.

17 In fact, outside the nuclear community
18 itself AECB is almost unknown amongst
19 influential groups in Canada and usually
20 confused with AECL when the subject is
21 raised.

22 Would you have an opinion on whether that profile has
23 changed since the Hare Commission released its report?

24 A. Well, I would like to make the
25 comment beforehand that the AECB is certainly very

1 visible to us.

2 The AECB over the last few years have
3 been moving to open up their activities. I believe
4 they have a lot more of their meetings, the board
5 meetings are open to the public, and they are moving
6 the board meetings away from Ottawa. I believe they
7 just had one fairly recently in I think it was
8 Saskatchewan. I'm not sure.

9 But they are moving it out into some of
10 the local communities. So I would agree with the
11 fact -- your statement, I believe it was, that they are
12 becoming more visible.

13 Q. And Dr. Hare refers in the next
14 paragraph to two key safety-related advisory committees
15 of the AECB, and he describes them as highly expert
16 bodies which offer the AECB excellent advice and
17 prepare definitive statements for publication.

18 And he cites two of those publications,
19 one being ACNS-10, Alternative Electrical Energy
20 Systems: A Comparison of the Risks of Occupational and
21 Public Fatalities, and I believe that document is
22 referenced in your Exhibit 507, is it not?

23 A. Yes, it is.

24 Q. And he says that:

25 The work of these committees is

1 admirable and the reports are as good as
2 anything I have seen, but they remain
3 little read, are circulated primarily
4 within the nuclear community, and are
5 slow to appear even within this
6 restricted circle.

7 I am not certain at this point as to how
8 broadly known those reports are, but would you agree
9 that the work of those committees, and in particular
10 those two publications there, are admirable?

11 A. The two publications, you are
12 referring to the ACNS-4, which you didn't mention, and
13 ACNS-10?

14 Q. Actually, let's just refer to
15 ACNS-10.

16 A. I have certainly read this report.
17 It appears to be a good report to me, but again, as I
18 mentioned earlier, I am not an expert in the
19 non-nuclear aspects of the material that they covered
20 in that report, so I would have some difficulty judging
21 the goodness of that work.

22 Q. And Dr. Hare says in the next
23 paragraph:

24 Neither committee seems to feel that
25 it has a responsibility to reply to the

1 frequent allegations by anti-nuclear
2 groups that risks are being
3 underestimated and disquieting evidence
4 ignored. In many ways I support the
5 Committee attitude, which is a normal
6 scientific position, but it leaves a
7 vacuum on the public scene which extreme
8 opinions rush in to fill. The result is
9 doubt, anxiety, and bewilderment in the
10 public's mind. Politicians confronted
11 with this vacuum have no clear way of
12 getting a dispassionate judgment.

13 And that is another way of referring to the difficulty
14 we were discussing earlier of an absence of objective
15 bases on which to make energy choices as compared to
16 subjective perceptions, isn't it?

17 A. Well, I would agree with the
18 statement that is in this report, that these committees
19 probably do not have a very high profile in the
20 non-nuclear community.

21 Q. And you would agree that in some ways
22 there is a vacuum left on the public scene which
23 extreme opinions rush in to fill?

24 A. Well, I am sure we are all aware of
25 that happening, yes.

1 Q. And then going back to Roman numeral
2 18, Dr. Hare concluded at, I think it's Commission
3 recommendation 11.4, if I am reading the shortform
4 correctly, that:

5 AECB is an effective regulating
6 agency. It sets the conditions that
7 guarantee safety to the public and the
8 work-force and leaves it to Ontario Hydro
9 to show that its designs and operating
10 methods are able to meet these
11 conditions.

12 I take it you would agree that that
13 conclusion was valid when it was issued and remains
14 valid today, that the AECB is an effective regulating
15 agency?

16 A. I believe it is.

17 MR. HAMER: Mr. Chairman, I am going to
18 turn to a new topic. I don't know -- frankly, I have
19 forgotten when you usually take a break.

20 THE CHAIRMAN: Well, it is around now so
21 we will take it now, 15 minutes.

22 THE REGISTRAR: Please come to order.

23 This hearing will take a 15-minute recess.

24 ---Recess at 3:35 p.m.

25 ---On resuming at 3:53 p.m.

1 THE REGISTRAR: This hearing is again in
2 session. Please be seated.

3 MR. HAMER: I am in tab 14 of Volume 2
4 dealing with the Chernobyl accident.

5 THE CHAIRMAN: What page?

6 MR. HAMER: Page 157 and -8, and 157 will
7 probably be a loose insert which I didn't put in the
8 first time around, and I have merely inserted that just
9 to provide some context.

10 I am actually going to start on page 158,
11 which is bound in, but 157 is provided just to put that
12 into context.

13 Q. Mr. King, I think you may be the
14 appropriate person to start with. Dr. Hare concludes
15 at page 158 about five lines down...

16 I think you will find 158 is bound into
17 the book, sir. Oh, I see.

18 THE CHAIRMAN: No, it is not. Not in my
19 book anyway. I've got it. It is not bound in, that's
20 all.

21 MR. HAMER: Okay? I think we have got
22 several varieties, Mr. Chairman.

23 MR. KING: I have got page 158.

24 MR. HAMER: Q. Okay. And Dr. Hare
25 concludes in this passage of his consideration of

1 Chernobyl:

2 Clearly, the Pickering "A" event is a
3 pygmy by comparison with that at
4 Chernobyl primarily because of the much
5 lower mass of coolant available at
6 Pickering for the destructive blowdown
7 and because of the very quick termination
8 of the power transient due to loss of
9 moderator. That plus the use of an
10 inflammable moderator at Chernobyl
11 accounts for the better survival
12 expectation at Pickering.

13 There is a lot contained in those sentences, but, first
14 of all, the Pickering "A" event is a probabilistic
15 analysis similar to what we were discussing before the
16 break, and I think we discussed it perhaps yesterday as
17 well; correct?

18 MR. KING: A. No, I believe they are
19 referring to the loss of coolant, loss of shutdown
20 analysis that was performed by Ontario Hydro and
21 Argonne.

22 Q. That is what I meant. It is a
23 probabilistic study?

24 A. We wouldn't call it a 'probabilistic'
25 study. The event was defined, irrespective of the

1 probability of it occurring, and say, could you please
2 analyse that -- Dr. Hare said, could you please analyse
3 that event, and what would be the consequences of that
4 event?

5 Q. And the event --

6 A. Irrespective of probability.

7 Q. Okay. That is helpful. And the
8 event was what?

9 A. It was a large loss of coolant
10 accident, which is a rupture of the largest pipe in the
11 heat transport system of Pickering "A", combined with
12 the failure of the shutdown system in Pickering to
13 operate.

14 Q. And we discussed yesterday I think
15 the fact that it was directed to Pickering "A" because
16 it had only one shutdown system; correct?

17 A. That's correct.

18 Q. And Dr. Hare terms the event
19 predicted and described in that study as a pygmy by
20 comparison with that of Chernobyl?

21 A. That is what it says.

22 Q. I bet you like that fine. And that
23 is premised, first of all, on the fact that there would
24 be a much lower mass of coolant available at Pickering
25 for the destructive blowdown. Do those terms mean

1 something to you, and if so, what do they mean?

2 A. Yes. Well, in fact, I believe in
3 this material in the handout there is a graph, some bar
4 charts at the end which illustrate these points where
5 the mass of coolant -- yes, that is it.

6 Q. Page 159.

7 A. The significance of that is with
8 respect to the integrity of containment, the mass of
9 coolant available in the heat transport system which
10 would blow down and the temperature and pressure of the
11 enthalpy of the cooldown, of the liquid steam mixture
12 that is being blown down, that is discharged into the
13 containment atmosphere. That combined with the volume
14 of the containment atmosphere would lead to a rise in
15 pressure of a certain amount.

16 If you look at the factors which affect
17 the rise in pressure in containment, the mass of
18 coolant available, the volume of containment, the
19 Pickering situation is a lot better than the Chernobyl
20 situation.

21 Q. Why do you use the word blowdown?

22 Blow where?

23 A. It is just the word that is used. If
24 you have a pipe full of high pressure, high temperature
25 water, and if there is a rupture in that pipe you just

1 picture, you know, a line with hot steam in it. It
2 just comes out as mixture of steam and water, and that
3 is just referred to as 'blowdown'.

4 Q. And at Chernobyl was there a steam
5 explosion as a result of the blowdown?

6 A. No.

7 Q. There was no steam explosion?

8 A. Steam explosion in nuclear safety
9 analysis refers to the process of where a very hot
10 solid compound meets a liquid compound and through the
11 fast generation of steam causes a steam explosion.

12 That --

13 Q. Sorry?

14 A. That phenomena, to my knowledge, was
15 not an important phenomena at Chernobyl.

16 Q. We might come back to that a little
17 later. In any event, the volume available to blow down
18 is far smaller in the Ontario Hydro station as we can
19 see on the left-hand side of the bar chart?

20 A. Yes.

21 Q. And Dr. Hare then refers to the very
22 quick termination of the power transient due to loss of
23 moderator. And what does that mean to you?

24 A. In the analysis that we performed,
25 what happens early on in that transient when you have

1 failure to shut down is that the heat transport coolant
2 becomes very hot, very high pressure. The energy in
3 the fuel becomes very high. This leads to a rupture of
4 the channels, of some channels.

5 If you recall our description of the core
6 of a CANDU reactor and the pressure tubes and calandria
7 tubes going through it, there is ruptures of the
8 pressure tubes and calandria tubes and the blowdown of
9 the coolant coming from the heat transport system into
10 the moderator -- at Pickering there is a moderator dump
11 system, and, in fact, it will eject the moderator out
12 of the calandria vessel and shut down the reactor at a
13 very early time in the transient.

14 Q. And sometimes in the literature you
15 see that dump of the moderator referred to as a
16 shutdown system in itself, although it is not
17 independent of the generating process?

18 A. That's right. And the difference
19 with Chernobyl is their moderator is graphite. And
20 graphite, it is in the form of large, very solid heavy
21 blocks of carbon, graphite is, and there isn't the same
22 capability to dislodge the moderator at Chernobyl.

23 Q. And, in fact, those blocks of
24 graphite are very hot in normal operation and in an
25 accident situation such as occurred if there is an

1 explosion that permits air to come into contact with
2 the graphite it burns?

3 A. That's correct.

4 Q. And many of the 31 who died were very
5 seriously burned as a result of the fires started by
6 the graphite?

7 A. That is my understanding. I don't
8 know which percentage of the 31, but I understand it
9 was a significant factor in their deaths.

10 Q. Presumably they also had very high
11 radiation exposure as well?

12 A. Yes.

13 Q. Is that fair?

14 A. Yes.

15 Q. Could we turn then to Roman numeral
16 13, and CR8.5 sets out the formal conclusion of Dr.
17 Hare:

18 If a severe accident were to occur it
19 would be quite unlike that at Chernobyl
20 in 1986. The Chernobyl reactor had seven
21 times as large a coolant volume available
22 for blowdown and used inflammable
23 graphite as a moderator.

24 And then he refers to the point that we
25 just made concerning the burns from graphite fires.

1 And then he says:

2 Other severe accidents can, however,
3 be visualized in CANDU reactors. Two
4 have been identified by AECB. These were
5 failure to shut down following a large
6 loss of coolant or a loss of regulation.

7 And the former of those two visualized
8 severe accidents is what was studied in connection with
9 the Hare Commission; is that correct?

10 A. That is true.

11 Q. Was the latter studied subsequently?

12 A. We have not performed an analysis to
13 the same extent as for the large loss of coolant, loss
14 of shutdown.

15 Q. Have you done any work in that area?

16 A. Well, there is loss of regulation
17 studies done in all our safety reports for all our
18 stations, and actually, it was probably around the time
19 of the Hare Commission where all of that analysis was
20 updated for all the stations, all the loss of
21 regulation analysis, which would search out
22 opportunities and situations where loss of regulation
23 accidents could occur, and they would all be documented
24 in the individual safety reports for all the stations.

25 [4:05 p.m.]

1 Q. You are satisfied with the status of
2 all stations in that respect?

3 A. Yes, as I said, these are all done
4 and submitted to the AECB.

5 And in that analysis all the relevant
6 criteria or acceptance criteria in the regulatory
7 environment were met.

8 Q. As part the continuing licensing
9 process?

10 A. Yes.

11 Q. I want to refer to Exhibit 507, and I
12 hoped that another loose page has been inserted, page
13 519 in my excerpt at tab --

14 A. Just to clarify, I didn't want to
15 leave, I think I may have left the wrong impression.

16 It's the loss of regulation analysis that
17 is performed. It does not, in all the safety reports,
18 include a failure of shut down.

19 Q. No, I appreciate that.

20 At tab 8 of Volume 2 we have the excerpts
21 from Exhibit 507 and you may want to slip in the loose
22 page 519 which I am going to refer to briefly.

23 Do you have that, Mr. King?

24 A. Yes, I do.

25 Q. In the middle paragraph of that page

1 we find a part of the discussion about the various
2 fatality risks relating to the various stages in the
3 nuclear fuel cycle, and the statement appears:

4 Attempts have been made to use the
5 consequences and the single occurrence of
6 the Chernobyl accident to estimate the
7 risk from severe accidents.

8 You refer there to the Helsinki symposium
9 of 1991. We don't need to turn to the footnote, but I
10 think it is an excerpt from something called Key Issues
11 Paper No. 3.

12 Are you familiar with that document?

13 A. Well, you handed us a key issues
14 paper, I am not sure whether it's No. 3 or not.

15 Is this the one that you are referring
16 to?

17 Q. Yes. I don't know if we have
18 provided copies of that to the Board as yet.

19 THE CHAIRMAN: If you have it, it escaped
20 my attention.

21 MR. HAMER: Sorry, we have to locate that
22 to follow this, Mr. Chairman.

23 THE CHAIRMAN: This should be an exhibit,
24 I take it.

25 MR. HAMER: It's referred to in Ontario

1 Hydro's list of references in Exhibit 507, so,
2 presumably it could be entered as one of those
3 references.

4 THE CHAIRMAN: They are not all exhibits,
5 I don't think.

6 MR. HAMER: No. I would like to have it
7 entered, Mr. Chairman.

8 THE REGISTRAR: Is this to be made an
9 Exhibit, Mr. Chairman?

10 THE CHAIRMAN: Yes.

11 THE REGISTRAR: 558.

15 MR. HAMER: Q. This is an excerpt from
16 Key Issue Paper No. 3, and I have the whole of the
17 volume here, if anyone wishes to refer to it. It
18 covers a great many other things.

19 Is this the table from Key Issues Paper
20 No. 3 which is referred to in Exhibit 507. Mr. King?

21 MR. KING: A. I would have to check
22 that, unless some of my colleagues know.

23 Q. You will see at the bottom of the
24 page there is a reference to nuclear as a source of an
25 energy-related accident and then under the column

1 location there is an entry --

2 A. Which page are we talking about?

3 Q. I am looking at the table on page
4 131.

5 A. Okay.

6 Q. At the bottom of that table you see
7 nuclear, location Chernobyl, country USSR, et cetera?

8 A. Yes.

9 Q. And then there is figure for
10 immediate fatalities, occupational 31. And then they
11 have not entered a figure for late effects. And then
12 over the page, two pages on we find table 17 headed
13 Normalized Fatality Rates for Severe Accidents, 1969 to
14 1986, and there again at the bottom of that table we
15 see an entry for nuclear?

16 A. I see that.

17 Q. And as I understand this table, it's
18 taking historical data relating to severe accidents in
19 different kinds of energy production facilities and it
20 attempts to come up with a fatality rate for such
21 severe accidents for the various energy processes.

22 Do you see that?

23 A. They are coming up with a figure in
24 units of immediate fatalities per gigawatt-year.

25 Q. And that is the same kind of ratio

1 that we find throughout Exhibit 507 with respect to the
2 various phases of the nuclear fuel cycle; is that
3 correct?

4 A. Yes.

5 Q. As the table points out in the
6 footnote, we are dealing only with immediate fatalities
7 and not delayed fatalities for all of these figures;
8 correct?

9 A. Yes.

10 Q. And we see that on the basis of the
11 Chernobyl accident, which is the only one that has
12 caused fatalities during the time period 1969 to 1986,
13 the figure of 0.03 fatalities per gigawatt-year
14 appears.

15 A. I see that.

16 Q. And would you accept that as being an
17 accurate figure given its source?

18 A. I have looked at this table before
19 and it is energy produced column - I assume they have
20 done their math correctly, but I am not sure what this
21 energy produced is. Is this all nuclear power?

22 Q. It's my understanding that it is
23 1,100 gigawatt-years which attributable to the
24 Chernobyl station. I maybe completely wrong about
25 that.

1 A. No.

2 Q. That would be 1,000 megawatts?

3 A. The Chernobyl reactor would be - if
4 it ran at full power a full year - would be 1 gigawatt-
5 year.

6 Q. I am told that it is probably all
7 nuclear generation and the fatalities at Chernobyl are
8 in effect spread over all nuclear energy generated for
9 a year. Would that make sense to you at 1,100
10 gigawatts?

11 A. Well, that would assume that there is
12 1,100 thousand megawatt reactors around the world,
13 which seems a bit high to me.

14 Q. I said for a year, it's really 1969
15 to 1986; isn't it?

16 A. But the units are per annum.

17 THE CHAIRMAN: The units are Gwa.

18 MR. B. CAMPBELL: I am not sure it is.

19 MR. KING: I see.

20 MR. B. CAMPBELL: In any event, Mr.
21 Chairman, I am not sure how Mr. King can be asked to
22 verify a figure of the total amount of nuclear
23 electricity produced over all operating reactors over
24 their whole operating history off the top of his head.
25 I am sure that this at least is not a number he carries

1 around with him.

2 THE CHAIRMAN: In the whole world.

3 MR. B. CAMPBELL: In the whole world,
4 that's right.

5 MR. HAMER: Nor do I ask that question,
6 Mr. Chairman.

7 MR. B. CAMPBELL: He already said the
8 math is right, he assumes. I don't think he can help
9 my friend in confirming that figure.

10 MR. HAMER: Q. In Exhibit 507 the
11 statement appears:

12 Attempts have been made to use the
13 consequences in the single occurrence of
14 Chernobyl accident to estimate the risk
15 from severe accidents.

16 And this is the document.

17 MR. KING: A. But these are not our
18 attempts.

19 Q. I appreciate that.

20 I am just trying to understand the
21 document to which Ontario Hydro refers in its exhibit.

22 Mr. Johansen, can you help us on that?

23 A. If you go back to the reference, if
24 you go to the reference in Exhibit 507, it refers to
25 Key Issues Paper 3.

1 Q. Right. And that's what we are
2 looking at?

3 A. Yes.

4 Q. And do you have any understanding of
5 the document to which this exhibit refers, and in
6 particular the table which appears to attempt to use
7 the consequences of Chernobyl to estimate the risk from
8 severe accidents?

9 A. If you continue in that paragraph in
10 507, the one starting with the word "Attempts" into the
11 next couple of sentences, I certainly agree with the
12 argument being presented here, in that you can't take
13 the Chernobyl reactor to be representative of all other
14 reactors in the world in particular the ones that are
15 here.

16 Q. We are going to come to that. We are
17 going to spend time on the fact that Chernobyl is not
18 representative.

19 A. And given that, then it is from a
20 Canadian perspective, that is not a good way of looking
21 at the statistics.

22 Q. But all we know in terms of
23 historical data on fatalities resulting from nuclear
24 accidents in power generators comes from the Chernobyl
25 accident; does it not?

1 No one was killed at Three Mile Island?

2 A. If you are looking at immediate
3 fatalities then that's true.

4 Q. Right. And what the authors of this
5 table appear to be doing is taking the number or the
6 amount of energy produced by nuclear power in the world
7 and simply taking the deaths at Chernobyl and
8 attempting to come up with a fatality rate per
9 gigawatt-year?

10 A. They have taken a world perspective.

11 Q. Right. And come up with a figure
12 0.03 fatalities per gigawatt-year for nuclear?

13 A. Yes.

14 Q. And again, those are prompt
15 fatalities?

16 A. Yes.

17 Q. As compared to 1.41 fatalities per
18 gigawatt year for hydraulic power?

19 A. That's what the table says.

20 Q. And 0.17 fatalities per gigawatt-year
21 for natural gas?

22 A. Again that's what the table says.

23 Q. Would you have any reason to think
24 that the Helsinki Symposium authors were not relying on
25 appropriate literature reviews and other studies?

1 A. I have no reason to believe that.

2 Q. All right. And coal is calculated at
3 0.34 fatalities per gigawatt-year?

4 A. Yes.

5 Q. But as you pointed out a moment ago,
6 you wouldn't accept that figure of 0.03 fatalities per
7 gigawatt-year for nuclear in Ontario, because Ontario
8 reactors are not like the Chernobyl reactor; fair?

9 A. Yes, and I wouldn't accept the other
10 figures for the same reason as well.

11 Q. Are you saying you know something
12 about the characteristics of hydraulic installations --

13 A. No, but this is a matter of
14 principle.

15 Q. What principle is that?

16 A. That if you are trying to predict
17 what are the risks in the future, then you want to take
18 the data which is representative of those facilities
19 that you will have in the future in order to make that
20 prediction. And that's the point I was making with the
21 nuclear power and hence you would have that same
22 principle with respect to anything.

23 Q. But one of the criticisms, Mr. King,
24 of predicting the future and future fatality rates is
25 that there is no historical evidence on which it's

1 based, if you are about talking a theoretical future
2 power generating facility. Is it not appropriate as
3 one way of looking at the problem to look at what has
4 happened in the past with various kind of energy
5 production?

6 A. I go back to my point, it depends
7 what types of facilities those data were collected on
8 in the past and what typed of facilities you are using
9 that data for to predict the rates in the future.

10 Q. And as a rough rule of thumb,
11 however, one can get some useful information by
12 reviewing the literature as Ontario Hydro has done in
13 it's Exhibit 507.

14 A. The greater the difference between
15 what is in the past and what is in the future, the
16 rougher that figure will be.

17 Q. But that's the only historical data
18 you have; isn't it?

19 A. My point with respect to the nuclear
20 is that I would expect the rates to be lower than --

21 Q. We don't have any disagreement on
22 that.

23 But with respect to the other forms of
24 energy production, it's appropriate to look at fatality
25 rates recorded in the past.

1 THE CHAIRMAN: You can't have it both
2 ways, Mr. Hamer. You can't say we must look at it
3 because we have better technology mere, but then look
4 at world technologies such as hydroelectric in India,
5 for example, and say that that's got to be compared.
6 That's an apples and oranges situation. I would think,
7 it seems to me to be that.

8 MR. HAMER: Q. Is that your point, Mr.
9 King.

10 MR. KING: A. That's exactly my point.

11 Q. So you are saying there is no point
12 in looking beyond Ontario or Canada for comparing
13 energy alternatives --

14 THE CHAIRMAN: No, he didn't say. In
15 fairness to him he is not saying that.

16 He is saying if you are going to look at
17 risks you should look at comparable technologies and
18 see what the risks historically have been there, not
19 just a blanket over the world of hydroelectric or coal,
20 when you don't know what the technologies are.

21 I think that's what he was saying. At
22 least that's what I understood him to be saying.

23 Is that the correct, Mr. King?

24 MR. KING: Yes, I think that is a good
25 summary of what I was saying.

1 MR. HAMER: Q. Then as far as we can
2 take these kind of world figures is to say that of the
3 technologies surveyed world-wide in this table, in the
4 Helsinki paper, nuclear comes out the lowest in terms
5 of fatalities per gigawatt-year in comparison with the
6 other energy alternatives for prompt fatalities?

7 MR. KING: A. That's what the table
8 says.

9 THE CHAIRMAN: Actually, it's the second
10 lowest.

11 MR. KING: I believe it's the lowest, Mr.
12 Chairman.

13 MR. HAMER: I think, Mr. Chairman, you
14 may be looking at 0.02.

15 THE CHAIRMAN: Isn't that lower than
16 0.03.

17 MR. KING: That is a sub set of the oil.

18 MR. HAMER: That's only refinery fires.
19 You have to add capsizing and transportation.

20 Q. Is that correct, Mr. King?

21 MR. KING: A. That's my understanding of
22 the table.

23 DR. WHILLANS: A. Can I make an
24 unsolicited comment?

25 I think it is unreasonable... .

1 MR. B. CAMPBELL: Once again, they never
2 pay any attention to what their lawyers tell them.
3 [Laughter]

4 MR. HAMER: Because it's almost at the
5 end of the day, Dr. Whillans, I won't object.

6 DR. WHILLANS: This table refers to, as
7 you kept pointed out, prompt fatalities, but I think it
8 is unreasonable - and it says say in the text - to
9 ignore the fact that there may well be additional
10 facilities as a result of Chernobyl.

11 MR. HAMER: Q. Absolutely. And there
12 may be delayed fatalities from other accidents in other
13 energy --

14 DR. WHILLANS: A. That's true. But
15 without knowing much about it, I would say it would be
16 less likely for hydro power. Those are acute events.

17 Q. How about coal?

18 A. I don't know about coal. There may
19 be a mix.

20 Q. And you don't really know about
21 delayed fatalities or shortened life expectancy from
22 injuries suffered in hydraulic projects, for example?

23 A. That's true. That's true.

24 Q. But these are fair comments, these
25 numbers are never precise measurements, they are simply

1 one indication that can be referred to in making the
2 kinds of choices that have to be made in this case.

3 A. Yes, I agree. I just wanted to
4 emphasize what you did say, which is that these are
5 only the acute fatalities.

6 Q. Right. And another thing that one
7 can draw from these figures, acknowledging that they
8 are not precise measurements, is that nuclear power is
9 not some extremely dangerous form of generating
10 electricity in comparison to other alternatives; fair?

11 MR. KING: A. Are you asking me?

12 Q. Sure.

13 A. When I was looking at this table
14 earlier, I wasn't sure about whether all of these
15 other -- Chernobyl was certainly involved with
16 producing electricity. I am not sure whether all of
17 the other events that are associated technologies just
18 producing electricity.

19 [4:25 p.m.]

20 Q. But they are energy-producing
21 activities?

22 A. Your question was using the word
23 electricity.

24 Q. Well, let's broaden it, then.

25 Nuclear power is not an extremely dangerous form of

1 producing energy in comparison with other systems for
2 producing energy on the basis of these figures?

3 A. On the basis of these figures.

4 Q. While we are on page 5-19, Mr. King,
5 I think you went forward in the paragraph we were
6 referring to to indicate that the authors of your
7 exhibit have said:

8 The future risk of severe accidents

9 could only be predicted using the
10 consequences of Chernobyl and its
11 frequency of occurrence so long as
12 Chernobyl is representative of the
13 reactors and siting of concern.

14 And that is significant to you in the
15 sense that you would not accept Chernobyl as being an
16 appropriate reference for the risks associated with
17 Ontario Hydro power reactors?

18 A. That's true.

19 Q. The authors go on to say: This has
20 been shown in detail not to be the case for CANDU
21 reactors, and refers to Snell and Howieson, and also
22 the Ontario Nuclear Safety Review or the Hare
23 Commission; correct?

24 A. Yes.

25 Q. Could we look at the Snell and

1 Howieson paper, which I think is at tab 11 of Volume 2.
2 And I wonder if this might be given an exhibit number,
3 Mr. Chairman?

4 THE REGISTRAR: Number 559, Mr. Chairman.

5 ---EXHIBIT NO. 559: Document entitled Chernobyl: A
6 Canadian Perspective.

7 MR. HAMER: Q. And it is the same Dr.
8 Snell who wrote this paper, and, Mr. King, would you
9 accept Exhibit 559, "Chernobyl: A Canadian
10 Perspective", as being a useful and detailed discussion
11 of the distinctions between the Chernobyl type of
12 reactor and a CANDU type of reactor?

13 MR. KING: A. Yes, it includes that
14 material.

15 Q. Sorry?

16 A. It includes that material, yes.

17 Q. If we go to page 2 at the bottom of
18 the page we have a reference to the heart or core of an
19 RBMK reactor - that is the Chernobyl type - consisting
20 of a huge container about as big as a Canadian house
21 filled with graphite blocks, and that is the point you
22 were referring to earlier in connection with Dr. Hare's
23 observation; correct?

24 A. Yes. Are you reading from a --

25 Q. Yes, I was reading from the bottom of

1 page 2 and going onto the top of page 4.

2 A. Oh, in the right-hand column.

3 Q. Yes, I'm sorry.

4 A. I was on the wrong column. Yes?

5 Q. And you see the figure on page 4, and
6 is that a representative schematic of the Chernobyl
7 type reactor, as you understand it?

8 A. Yes. I was looking at this figure
9 over the last couple of days. It appears
10 representative to me.

11 Q. And we see the graphite moderator in
12 the left-hand side of that figure, the black squares?

13 A. Yes.

14 Q. And we see that the pressure tubes
15 are connected directly to the heat transport system; is
16 that correct?

17 A. I believe they would have a very
18 similar arrangement to the CANDU reactors in that there
19 is a feeder, a feeder pipe, a smaller diameter pipe
20 connecting each pressure tube to larger piping in the
21 heat transport system.

22 Q. But I thought you had told us in
23 chief that the moderator and the heat transport system
24 were separate in the CANDU reactor; is that right?

25 A. That's right.

1 Q. Whereas in the Chernobyl type reactor
2 they are not separate systems?

3 A. No, the graphite is the moderator.

4 Q. I'm sorry?

5 A. The pressure tubes are inserted in
6 holes which are bored in the solid graphite.

7 Q. Right. Right. But the water that is
8 in the reactor core goes directly to the turbines in
9 the form of steam; is that correct?

10 A. The water goes vertically up through
11 the vertical pressure tubes and is turned to steam as
12 it moves up the vertical pressure tube. And I
13 mentioned that -- I believe there is something like --
14 well, there is in the neighbourhood of 1,600 pressure
15 tubes, and each one of them would be connected with a
16 feeder pipe - feeder means just a smaller diameter pipe
17 to some larger piece of piping - in the heat transport.

18 Q. And to the turbines in the form of
19 steam?

20 A. And that goes, as it shows in the
21 figure, to a steam separator and then the steam from
22 the top of the steam separator would go to the
23 turbines, yes.

24 Q. Whereas in the CANDU system the steam
25 that drives the turbine is separated from the heavy

1 water that is in the reactor core?

2 A. Yes. This is more like a boiling
3 water reactor that was described earlier on. It
4 doesn't have that intermediate loop that a pressurized
5 water reactor or a pressurized heavy water reactor has.

6 Q. And on page 5 Dr. Snell writes in the
7 left-hand column, second sentence:

8 In the CANDU reactors where the
9 moderator water is separate from the
10 cooling water the moderator heat is
11 removed by an independent moderator
12 cooling circuit..., et cetera.

13 Then he goes on in the next sentence:

14 The coolers keep the moderator
15 temperature at about 70 degrees
16 Centigrade or the same as from a hot tap.
17 Obviously, you can't do that with solid
18 graphite. In the RBMK design the
19 graphite operates at a high temperature,
20 about 700 degrees Centigrade, and if you
21 could see it it would be glowing faintly
22 red hot.

23 Is that your understanding as well?

24 A. Yes, it is.

25 Q. And he says towards the bottom of

1 that paragraph:

2 The problem with graphite at high
3 temperature is that if exposed to air it
4 will burn slowly just like the charcoal
5 briquettes on a barbecue, so it is very
6 important in the RBMK design to keep air
7 away from the graphite.

8 A. Yes. That's right.

9 Q. And they do that by filling the metal
10 container with inert gases, helium and nitrogen. That
11 is what he says in the next few lines?

12 A. Yes.

13 Q. And then if we look at the figure on
14 the right-hand side on page 5 we see there is an upper
15 shield in the middle of the Chernobyl reactor with the
16 pressure tubes attached to that shield; correct?

17 A. I see that, yes.

18 Q. That is your understanding of the
19 structure of the Chernobyl reactor?

20 A. Yes, I think this is accurate.

21 Q. And then over the page Dr. Snell
22 discusses the idea of defence and depth that we have
23 discussed earlier: prevention, mitigation and
24 containment. I am paraphrasing what he says on page 6.

25 And then he says on the right-hand column

1 in the last paragraph on page 6:

2 The Chernobyl Unit 4 reactor had shut
3 down an emergency core cooling but had
4 only a partial containment.

5 If we look at the figure at the bottom of that page we
6 see that at the top of the reactor above that shield we
7 were looking at there is a large industrial building as
8 opposed to a containment structure; correct?

9 A. Yes, I see that.

10 Q. That is your understanding of that
11 part of the Chernobyl structure?

12 A. Yes, I would add a comment that I am
13 not familiar with all the details of the Chernobyl
14 physical arrangement and structures. I get my
15 information from figures like this, not from detailed
16 design drawings.

17 Q. But it is well known, is it not, that
18 one of the big problems in the Chernobyl accident was
19 that the reactor had only partial containment?

20 A. Yes. In fact, the capability of the
21 containment it did have I think was limited to the
22 smaller range of loss of coolant accidents.

23 Q. The containment it did have was
24 underneath and not on top of the reactor core; correct?

25 If I could direct you to Dr. Snell's

1 discussion on the right-hand column of page 6 about
2 five lines from the bottom of the text:

3 The pipes below the reactor core were
4 inside what the Soviets called leak tight
5 boxes. These boxes were connected to a
6 huge pool of water under the whole
7 building, the bubbler pond, as the
8 Soviets named it. If one of the pipes in
9 the boxes broke the steam would be forced
10 into the pond where it and any
11 radioactive particles it contained would
12 be trapped in the water and the leak
13 tight boxes would hold.

14 And that was a form of containment
15 underneath the reactor; correct?

16 A. Yes. Why I am hesitating a wee bit
17 is that the design of the containment at the top of the
18 reactor, I'm not quite sure of what exactly that looks
19 like. It is shown on this figure, if you just looked
20 at the cross-hatched sections, is that the whole core
21 is outside of containment.

22 Q. Well, a release downward, though,
23 would be contained within the cross-hatched section;
24 correct?

25 A. Well, given that this figure doesn't

1 show the detail of what it looks like at the top of the
2 core, I can't say. But forgetting about the core
3 itself, just the piping going into the bottom of it,
4 then I think that description you gave would certainly
5 be accurate and that is what would happen.

6 Q. At the bottom of the column on page 7
7 Dr. Snell writes:

8 But the RBMK is a huge reactor. There
9 is a tall fueling machine at the top that
10 replaces the uranium as it is used up so
11 the building above the reactor is large,
12 about 71 metres high. The Soviets felt
13 that to put all this in a containment is
14 difficult and costly. To put the bottom
15 pipes in containment is easier, and this
16 was done. So Chernobyl Unit 4
17 represented a compromise, i.e.
18 containment on the bottom but not on the
19 top.

20 Isn't that so?

21 A. That is what it says. I am not
22 familiar with --

23 There is something in this drawing. They
24 have the industrial building and then they have what
25 looks like a concrete walls above the steam separator.

1 I'm not sure what the capability of that structure is.

2 Q. Well, it says at the top of the
3 column on page 7, three lines from the top: All the
4 steam pipes above the core were inside ordinary
5 industrial buildings.

6 And an Ontario Hydro containment
7 structure is not an ordinary industrial building, is
8 it?

9 A. I just point out that the figure
10 doesn't seem to be consistent. It is showing a single
11 line, which is typically a single metal sheeting type
12 of a building, rather than -- well, the double line
13 normally refers to a concrete, walled building. But
14 you can still have a concrete walled building which
15 still has a small design pressure.

16 Q. Well, are you saying that you
17 understand this document is indicating that there was
18 full containment or are you --

19 A. No. I'm quite aware that there was
20 not.

21 I am just having a little bit of
22 difficulty with this particular drawing, and it is
23 pointing to the building above the core as industrial,
24 and they are using a single line technique for
25 representing that rather than a double line technique

1 for representing some of the other parts of the
2 building above the core.

3 Q. All right. Well, I don't think it is
4 fair to ask you to interpret the diagram that you
5 weren't the author of.

6 A. Well, that is what you are asking me
7 to do, I think.

8 Q. If we could turn the page there is a
9 description of the accident sequence at Chernobyl.
10 Have you had an opportunity to review that description
11 there?

12 A. I scanned it in the last couple of
13 days, yes.

14 Q. We can see in the left-hand column on
15 page 8 about 10 lines down in section 2.1.1 a
16 description of the test which the operators wanted to
17 carry out at Chernobyl.

18 If I can summarize that, as I understand
19 it, they wanted to test a situation in which the
20 ordinarily electricity supply to the power station was
21 lost, and the reactor was shutting down, and they
22 wanted to see whether the spinning turbines slowing
23 down could be used to generate emergency electricity
24 supplies for the short period of time that it would
25 take to have the diesel generators come up to supply

1 emergency electricity; is that correct?

2 A. That is my understanding of the
3 purpose of the test, yes.

4 Q. They had a 30 second interval or so
5 there, and they wanted to see if they could use the
6 spinning turbine to cover that interval so that there
7 would be control power and electricity for other
8 purposes; correct?

9 A. I'm not familiar with the 30 second
10 figure, but otherwise I believe that is correct.

11 Q. We see in the middle of that
12 paragraph I referred to:

13 These diesels usually start up in 30
14 seconds, and for most plants this is
15 short enough interruption to keep
16 important systems going. For the
17 Chernobyl reactor the Soviets felt this
18 was not short enough and they had to have
19 almost an uninterrupted supply.

20 So in an ironic kind of way they wanted
21 to be perfect and they set this chain of events in
22 motion.

23 A. They had performed this same test on
24 one of the other Chernobyl reactors sometime earlier
25 and were successful in showing this, I believe.

1 Q. And we see as well on the right-hand
2 column on that page that there was some time pressure
3 on the operators to carry out this test.

4 In numbered item 1 we see the test was
5 scheduled to be done just before a planned reactor
6 shutdown for routine maintenance. If could not be done
7 successfully this time, then they would have to wait
8 another year to be able to carry out the test. So they
9 felt under pressure to complete it.

10 A. That is my understanding of the
11 situation.

12 Q. All right. Then if we go to the
13 right-hand table on page 9 there is a sequence of the
14 events, and if I can try to boil it down the reactor
15 was placed into a position of very low power operation
16 very early on the morning of April 26th; is that
17 correct?

18 A. Some of these times, there was a
19 recent international meeting just a few months back in
20 Vienna which got some new input from the Soviet Union
21 and wrote a report on the event, and I know that some
22 times have changed but I don't think they substantively
23 changed the sequence of the accident.

24 Q. All right. So that early in the
25 morning the reactor was in a situation of low, very low

1 power operation; correct?

2 A. Yes.

3 Q. And that, we see on the right-hand
4 side under the "Comments", meant that this design was
5 unstable with the core filled with water so that it was
6 in an unstable condition at the time the operator
7 started to carry out the test?

8 A. Well, it was at low power. My
9 understanding that they had all - I forgot whether it
10 is six or eight of their recirculation pumps in
11 operation, and they were very close, just at the
12 threshold of being subcooled, where they were liquid
13 but with just a little more energy in they could
14 convert that liquid to steam.

15 So if that is what you are referring to
16 being 'unstable', then I would agree with that.

17 Q. Well, the comment goes on to say:

18 Small changes in flow or temperature--
19 This is in the right-hand column?

20 A. That is what I was referring to, yes.

21 Q. --can cause large power changes--

22 A. Yes.

23 Q. --and the capability of the emergency
24 shutdown is badly weakened.

25 And that is your understanding of the instability at

1 issue here at that point?

2 A. Yes, my understanding is that in fact
3 the shutdown system was not designed to handle the
4 possible reactivity insertions that could incur when in
5 the low power condition, as they were.

6 [4:45 p.m.]

7 Q. If I recall correctly, they weren't
8 supposed to be operating the reactor at below about 20
9 per cent capacity; is that correct, because of this
10 instability problem?

11 A. Again, I forget the exact number.
12 It's normally referred to as in megawatts thermal,
13 that's the units that the Soviets normally use.

14 There were rules that prevented that or
15 should have prevented that from occurring because there
16 were special concerns from the designers about
17 operating in that condition, yes.

18 Q. In fact, I think we see later on that
19 they were operating in what is called a prohibited
20 range of power.

21 A. Well, I don't recall exactly whether
22 it was unadvisable or prohibited by procedure, or
23 exactly the administrative control that they had on it.
24 If it wasn't prohibited it was certainly highly
25 undesirable.

1 Q. In any event, the next thing that
2 happened is that the operator blocked the automatic
3 reactor shutdown system and there was one trip where
4 there was a low --

5 A. Where are you reading now?

6 Q. I am at 120.

7 A. I know that they were blocking
8 certain trip parameters of the shutdown system. I
9 don't believe they blocked the complete shutdown
10 system.

11 Q. And they then turned off the
12 remaining turbine which was running at 123 or
13 thereabouts?

14 A. Yes.

15 Q. And the power started rising and the
16 operator tried to shut the reactor down manually?

17 A. That's correct.

18 Q. But because the reactor was in this
19 inherently unstable condition, exactly the opposite
20 thing happened to what was supposed to -- or what he
21 hoped would happen?

22 A. The power began to rise because it
23 was in this condition, because when they shut off the
24 turbine, you have lost your power supply to your
25 recirculation pumps, you don't have as much flow, you

1 still have an energy input because you are at one per
2 cent power, you created a void situation and that, with
3 a positive void coefficient, led to an increase in
4 power.

5 When the operator pushed the manual
6 shutdown button, as it, I believe, is noted here on the
7 right-hand side, it's generally accepted now I think
8 that -- and as it's stated here, this was first
9 established as a theory by reactor physicists at AECL,
10 that there is what is called -- the shutdown system
11 rods are designed such that the bottom part of them are
12 made of graphite, and just because the condition that
13 they were in, when the shutoff rods entered the core
14 they in fact inserted positive reactivity instead of
15 what they should have done is inserted negative
16 reactivity, and in fact that was a positive trip, sort
17 of thing, and that once that occurred then the reactor
18 power increased at a very high rate.

19 Q. And those shutdown rods are rather
20 different in operation, as I understand it, from the
21 CANDU shutdown rods; is that correct?

22 A. They are very much different. They
23 are very much slower and they have this particular
24 feature, this graphite trailer on the end.

25 Q. And they move at something like a

1 half a metre a second or something like that?

2 A. I don't know the exact rate, but I
3 know they are very much slower than the Canadian rods.

4 Q. And that was the end of that, about 4
5 seconds later, and the reactor power reached about 100
6 times the normal full power and there was excess steam
7 pressure which broke the pressure tubes, and that
8 caused the top shield with all the pressure tubes
9 attached to it, that we looked at earlier, to blow off,
10 breaking all the rest of the pressure tubes?

11 A. The initial sequence was that some
12 pressure tubes failed, but since I believe that part of
13 the containment was only designed to handle the rupture
14 of two pressure tubes, it caused the top of that
15 reactor, the top of the reactor design, where all those
16 individual pressure tubes to go through, to raise up
17 and in doing so it ripped off all the connections with
18 a large number of the other pressure tubes. And
19 therefore, what started out as a small loss of coolant
20 accident became a very large loss of coolant accident,
21 and that in turn would have augmented the power runaway
22 because now you are having a much faster blow down in
23 the core.

24 Q. And if we could look to the page 11
25 then, section 2.2.1, we see the power surge destroyed

1 the top half of the reactor core, the building
2 immediately above the reactor and some of the walls on
3 either side. That is the ordinary industrial building
4 that we were looking at in one of the earlier figures;
5 correct?

6 A. I believe so.

7 Q. And then with that building
8 destroyed, burning fragments of fuel and graphite were
9 thrown out and landed on the roof of the adjacent
10 building, causing about 30 fires.

11 A. That's my understanding.

12 Q. And if we look to the top of the
13 right-hand column on page 11, Dr. Snell writes:

14 The destruction was not of course
15 caused by a nuclear explosion, but by
16 steam and perhaps chemical explosions.

17 So the damage was confined to Unit 4, is
18 that your understanding as well?

19 A. Well, as I mentioned earlier, I am
20 not aware of the significance of the steam explosions,
21 but I am not saying that this is wrong. I just may be
22 unfamiliar with that part of the sequence of the
23 accident.

24 Q. And then if we can go over to page
25 16, Dr. Snell has table 2 comparing the CANDU and

1 Chernobyl designs, and he is referring here to CANDU 6,
2 but I don't think that in principle, at least, you will
3 find any significant difference with the Ontario Hydro
4 stations.

5 Do you have that table there? I'm sorry,
6 page 16.

7 A. 16, yes. Okay.

8 Q. And we see some of the differences
9 being that the coolant in Chernobyl is ordinary water,
10 CANDU is heavy water. We have referred to the
11 difference in the steam cycle, Chernobyl is a direct
12 steam cycle from the reactor core, CANDU is indirect.

13 A. Yes.

14 Q. And the moderator is graphite bricks
15 in the one, heavy water in the other.

16 And then under safety systems we have
17 talked about containment being incomplete in Chernobyl,
18 and with CANDU you either have a common containment
19 building or a containment structure which surrounds the
20 individual reactor; correct?

21 A. Yes. All the heat transport piping
22 is within a defined containment boundary.

23 Q. In Chernobyl the shutdown mechanism
24 is a single mechanism with the absorber rods which you
25 were referring to a moment ago?

1 A. Yes.

2 Q. And any future CANDU station would
3 have two complete system consisting of absorber rods
4 and liquid injections?

5 A. Yes.

6 Q. And it's effective in two seconds as
7 opposed to ten seconds for the Chernobyl shutdown
8 system?

9 A. Again, I am not familiar with the
10 exact number on the Chernobyl, and the CANDU my
11 understanding is it's less than two seconds.

12 Q. And in the Chernobyl shutdown system
13 the system is not independent of the operation of the
14 plant to generate electricity, whereas in CANDU the
15 shutdown system's effectiveness is independent of the
16 normal operational systems; is that correct?

17 A. As in Chernobyl and with some other
18 types of reactors, there is usage of control rods.
19 When I use the term control rods, that's the use for
20 control of power in the normal power production mode,
21 and those rods are used both for control in normal
22 production and for the emergency shutdown situation,
23 where that's forbidden by AECB rules in the Canadian
24 licensing approach. There is a complete separation of
25 the devices used to control power in normal operation

1 and those devices that are used to control power for
2 the emergency shutdown system.

3 Q. And the difference in the
4 effectiveness of the shutdown systems is a critical
5 difference between CANDU and the Chernobyl type
6 reactor; is that fair?

7 A. Both the effectiveness and the
8 independence between normal power producing systems.
9 Process system is the terminology we use.

10 Q. And then if we could go over to page
11 19 there is a discussion in the right-hand column of
12 something you mentioned a fuel called positive void
13 coefficient, and that is an aspect which is common to
14 the CANDU and Chernobyl reactors; correct?

15 A. Yes.

16 Q. And if I can try and put it into my
17 simple-minded language. The positive void coefficient
18 is the term for the characteristic of the reactor in
19 which the reactor becomes more active when there are
20 steam bubbles formed in the moderator, or, indeed, if
21 the liquid turns to steam.

22 Is that a fair --

23 A. Not really.

24 Q. Well then, I am going to let you go
25 at it.

1 A. There are three important reactivity
2 coefficients in a CANDU reactor or in another type of
3 reactor, they would be a density coefficient in the
4 moderator, a density coefficient in the coolant, and a
5 fuel temperature coefficient.

6 In a light water reactor, of course,
7 which has the moderator and the heat transport as one,
8 then there is just the one coefficient.

9 In a CANDU reactor, what we are talking
10 about is the positive void coefficient. Whether it is
11 called a density coefficient or void, it's really the
12 same thing. A little more general use of the term to
13 call it a density coefficient.

14 What happens is if the density decreases,
15 that increases the reactivity for the fission process,
16 and that will increase power.

17 Now, whether that density decreases due
18 to void creation or whether it is just due to a rise in
19 temperature of the heat transport coolant, then that is
20 a positive void coefficient.

21 If it was the other way around, if an
22 increase in density occurred, and if that lead to --
23 that would, in a CANDU reactor, would lead to a
24 negative insertion of reactivity.

25 So, it is really when we talk to the

1 subject of void coefficient, it's really referring to -
2 not the moderator as you had indicated - but really
3 only to the heat transport coolant.

4 Q. And if we look at the right-hand side
5 of page 19, Dr. Snell writes:

6 Other reactors such as U.S. water
7 cooled reactors have the opposite effect,
8 the power goes down as the boiling
9 increases...

10 And we should substitute the creation of
11 void for boiling in that sense, I take it.

12 So that in a light water reactor, if you
13 have a decrease in density, the power goes down which
14 is a negative void coefficient; is that correct?

15 A. But then if you have an increase in
16 density in that type of reactor, you would have a
17 positive reactivity effect.

18 Q. And that was the point I wanted to
19 come to, which is that you could have a system failure
20 which could cause an increase in density and that would
21 cause increased reactivity?

22 A. In a pressurized water reactor, if
23 you have an over-cooling transient, if the feed water
24 that goes into the steam generator all of a sudden it
25 starts coming in cooler than it should, it cools down

1 the heat transport system, increases its density and
2 that's a positive reactivity insertion into a
3 pressurized light water reactor.

4 In a boiling water reactor, as the type
5 that General Electric, for example, markets, where
6 there is boiling in the core, they have an accident
7 called an isolation accident, and since the water from
8 the core leaves containment and goes to a turbine,
9 similar to the direct cycle of the R&BK, there is an
10 isolation valve as that leaves containment, and if that
11 value of closes spuriously, it causes an increase in
12 density. It's collapsing of the voids in the boiling
13 water reactor and that is a positive reactivity
14 insertion as well.

15 Q. And the point in either case whether
16 you have a positive or negative void coefficient is to
17 have an effective and rapid-acting shutdown system to
18 deal with either type of accident; is that fair, or
19 that's one of the points?

20 A. Your safety systems have to be
21 designed to reflect the characteristics of the
22 accidents you are trying to protect against.

23 So in our case where we have a positive
24 void coefficient, which we have to be extra careful on
25 the shutdown systems, and that's why the rules have

1 developed for having the shutdown systems that we have.

2 Q. And then the last point on this
3 document, and I will stop, Mr. Chairman, is that
4 because of the independence of the safety systems,
5 safety shutdown systems in CANDU, Dr. Snell observes on
6 page 20 under the heading The End Result, he says at
7 the end of that paragraph:

8 In a CANDU, the capability of the
9 safety systems is independent of the
10 operating state. As well, we have much
11 more backup systems especially for
12 shutdown. In that sense CANDU is a much
13 more forgiving design.

14 And you would agree with that
15 characterization, I take it?

16 A. Well, I am hesitating on what he
17 means by the word "forgiving". If he is meaning it can
18 allow for a design -- or system failures or operator
19 failures, and I guess he is just referring in this
20 sentence to the -- no, sorry. He is referring to all
21 safety systems.

22 Well, I would say given that the whole
23 licensing approach where we have our dual failures,
24 where we have to analyze a process system failure and
25 the failure of one of the special safety systems, just

1 by doing that, then we are providing for a more
2 forgiving design and that it can handle the failures of
3 safety systems. If that's what Dr. Snell is referring
4 to, I would certainly degree with that.

5 Q. I should have started earlier in the
6 paragraph, he is describing the Chernobyl
7 characteristics, and he says about four lines down:

8 As we have seen, its safety depended
9 very heavily on operators staying within
10 certain limits.

11 And we talked about that earlier.

12 [5:06 p.m.]

13 If the operators went outside those
14 limits the safety systems could be
15 ineffective in an accident and in a very
16 real sense the operators would be
17 operating blind.

18 A. Well, over the time since '86 when
19 Chernobyl occurred the allocation of blame towards
20 designers and operators, that balance has changed
21 somewhat--

22 Q. Shifted a bit?

23 A. --over those years. This is an '88
24 report, and I think the shift has been to make a more
25 equitable allocation of blame towards the designers and

1 the operators, not just strictly on the operators as
2 perhaps was reflected by international opinion at this
3 time.

4 So whether they should have been in that
5 stage or whether the design should have provided
6 shutdown systems which could have handled the
7 transience that occurred when you were at low power,
8 and therefore, it was more of a design error rather
9 than an operating error, but it is a combination of
10 errors in both areas.

11 Q. In other words, the design on that
12 side should have been more forgiving than it was?

13 A. Yes. The opinion right now is, yes,
14 the design of the shutdown systems should have been a
15 lot better in Chernobyl.

16 MR. PENN: A. One other important point,
17 we don't rely on steam turbine rundown for power supply
18 in those circumstances.

19 Q. We should add that to that table
20 then, shouldn't we.

21 A. If you will.

22 THE CHAIRMAN: How much longer do you
23 think you are going to be?

24 MR. HAMER: I hope to finish by late
25 morning tomorrow, Mr. Chairman.

1 THE CHAIRMAN: You are next up, Mr.

2 Bullock, are you?

3 MR. BULLOCK: I am, sir. If Mr. Hamer is
4 done by mid-morning tomorrow hopefully I can be done by
5 the close of business tomorrow; if not, perhaps into
6 early Monday morning.

7 THE CHAIRMAN: So are you saying unless
8 Mr. Hamer finishes by mid-morning tomorrow you will be
9 at least the rest of the day?

10 MR. BULLOCK: I am saying about a half a
11 day to three quarters of a day, I expect, sir.

12 THE CHAIRMAN: Okay. Thank you. We will
13 adjourn until tomorrow morning at ten o'clock.

14 THE REGISTRAR: This hearing will adjourn
15 until ten o'clock tomorrow morning.

16

17 ---Whereupon the hearing was adjourned at 5:10 p.m. to
18 be reconvened at ten o'clock on Thursday, April
19 2nd, 1992.

20

21

22

23

24

25 RR/JAS [c. copyright 1985]

E R R A T A
and
C H A N G E S

To: Volume 106

Date: Thursday, January 23rd, 1992.

<u>Page No.</u>	<u>Line No.</u>	<u>Discrepancy</u>
v & 18670	2.29.47.	s/r 7.29.47.

3 1761 114685621