Notes on 'Basic Algebraic Topology'

Bailey Arm

$\mathrm{June}\ 22,\ 2025$

Contents

1	Intr	roduction
	1.1	The Basic Problem
	1.2	Fundamental Group
	1.3	Function Spaces and Quotient Spaces
	1.4	Relative Homology
	1.5	Some Typical Constructions
	1.6	Cofibrations
	1.7	Fibrations
	1.8	Categories and Functors
	1.9	Exercises
2	Cell	l Complexes and Simplicial Complexes
	2.1	Basics of Convex Polytopes
	2.2	Cell Complexes
	2.3	Products of Cell Complexes
	2.4	Homotopical Aspects
	2.5	Cellular Maps
	2.6	Abstract Simplicial Complexes
	$\frac{2.0}{2.7}$	Geometric Realisation of Simplicial Complexes
	2.8	Barycentric Subdivision
	$\frac{2.0}{2.9}$	Simplicial Approximation
		Links and Stars
	2.11	Exercises
3	Cov	vering Spaces and Fundamental Group
	3.1	Basic Definitions
	3.2	Lifting Properties
	3.3	Relation with the Fundamental Group
	3.4	Classification of Covering Projections
	3.5	Group Action
	3.6	Pushouts and Free Products
	3.7	Siefert-van Kampen Theorem
	3.8	Applications
	3.9	Exercises
4	Hor	nology Groups
-	4.1	Basic Homological Algebra
	4.2	Singular Homology Groups
	4.3	Construction of Some Other Homology Groups
	4.4	Some Applications of Homology
	$\frac{4.4}{4.5}$	••
	4.6	All Postponed Proofs

	4.7	Exercises	5
5	Top	ology of Manifolds	5
	5.1	 	5
	5.2		5
	5.3		5
	5.4		5
	5.5	Exercises	5
	0.0	LACTURES	0
6	Uni	versal Coefficient Theorem for Homology	5
	6.1	Method of Acyclic Models	5
	6.2	Homology with Coefficients: The Tor Functor	5
	6.3	Künneth Formula	5
	6.4	Exercises	5
_	C 1		_
7			5
	$7.1 \\ 7.2$	1	5
	7.3	₩	5
	7.4		5
	7.5	Exercises	5
8	Hon	nology of Manifolds	5
	8.1		5
	8.2	·	5
	8.3		5
	8.4		5
	8.5	Exercises	5
	~ .		_
9		Ov	5
	9.1		5
	9.2		5
	9.3	0,	5
	9.4	Čech Cohomology	5
	9.5	Exercises	5
10	Hon	notopy Theory	5
		H-Spaces and H' -Spaces	5
		Higher Homotopy Groups	5
		Change of Base Point	5
		Hurewicz Isomorphism	5
		Obstruction Theory	5
		Homotopy Extension and Classification	5
			5
		Moore-Postnikov Decomposition	5
		Computation with Lie Groups and their Quotients	5
		OHomology with Local Coefficients	5
		1Exercises	5
	10.1	TEXELCISES	J
11	Hor	nology of Fibre Spaces	5
	11.1	Generalities about Fibrations	5
	11.2	Thom Isomorphism Theorem	5
	11.3	Fibrations over Suspensions	5
	11.4	Cohomology of Classical Groups	5
		Exercises	5

12 Cha	aracterisic Classes
12.1	Orientation and Euler Class
12.2	2 Construction of Steifel-Whitney Classes and Chern Classes
	Fundamental Properties
12.4	Splitting Principles and Uniqueness
	6 Complex Bundles and Pontrjagin Classes
	Exercises
13 Spe	ectral Sequences 5
$1\bar{3}.1$	Warm-Up
	Exact Couples
	3 Algebra of Spectral Sequences
	Leray-Serre Spectral Sequences
	Immediate Applications
	Transgression
	Cohomology Spectral Sequences
	Serre Classes
	Homotopy Groups of Spheres

1 Introduction

- 1.1 The Basic Problem
- 1.2 Fundamental Group
- 1.3 Function Spaces and Quotient Spaces
- 1.4 Relative Homology
- 1.5 Some Typical Constructions
- 1.6 Cofibrations
- 1.7 Fibrations
- 1.8 Categories and Functors
- 1.9 Exercises

2 Cell Complexes and Simplicial Complexes

- 2.1 Basics of Convex Polytopes
- 2.2 Cell Complexes
- 2.3 Products of Cell Complexes
- 2.4 Homotopical Aspects
- 2.5 Cellular Maps
- 2.6 Abstract Simplicial Complexes
- 2.7 Geometric Realisation of Simplicial Complexes
- 2.8 Barycentric Subdivision
- 2.9 Simplicial Approximation
- 2.10 Links and Stars
- 2.11 Exercises

3 Covering Spaces and Fundamental Group

- 3.1 Basic Definitions
- 3.2 Lifting Properties
- 3.3 Relation with the Fundamental Group
- 3.4 Classification of Covering Projections
- 3.5 Group Action
- 3.6 Pushouts and Free Products
- 3.7 Siefert-van Kampen Theorem
- 3.8 Applications
- 3.9 Exercises

4 Homology Groups

- 4.1 Basic Homological Algebra
- 4.2 Singular Homology Groups
- 4.3 Construction of Some Other Homology Groups