

MENINGEOMA

CASO

- L Paciente do sexo masculino, 28A, D39.2, neoplasia benigna das meninges
- \downarrow Prescrição: 5400 cGy (28 \times 180 cGy) em lesão residual fronto temporal esquerda

SIMULAÇÃO E ACESSÓRIOS

- La Decúbito dorsal, head first
- L Máscara termoplástica + apoio de joelhos + braços sobre o tórax
- Slice da CT: 2,5 mm

STRUCTURE SET EM ORDEM DE IMPORTÂNCIA

PRV Vias Ópticas (Nervos Ópticos D/E + Quiasma), PTV, Tronco, Cristalino (D/E), Olho (D/E), Encéfalo, Cócleas (D/E) e Hipófise

PRIORIDADES

Ly Por ser uma lesão benigna e em função da proximidade com as vias ópticas (nervos ópticos e quiasma), as proximidades com o PTV foram descobertas.

DEFINIÇÃO DOS PONTOS

MARCADOR CT → X: -0.10 Y: 13.35 Z: -0.01

ISOCENTRO → X: -5.10 Y: 10.35 Z: 2.09

Deslocamento do paciente no primeiro dia de seção:5.2 cm para esquerda, 3.0 cm inferior e 2.1 cm anterior.

CONFIGURAÇÃO DE CAMPOS

ACELERADOR → Synergy

IGRT: Imagem Portal (iView)

ENERGIA → 6 MV

GEOMETRIA → 2 arcos não coplanares

CAMPO	1_CCW_M90	2_CW_M0
Gantry	0° ⇄ 100°	0° ⇄ 150°
Incremento	15°	20°
Colimador	15°	345°
Mesa	O°	O°

 $^{^{}st}$ O primeiro arco foi o com mesa a 90º para facilitar a entrega de dose

PROPRIEDADES DE CÁLCULO E SEGMENTAÇÃO

M□□□ → Dose to medium

GRADE DE CÁLCULO → 0.27 [1] [2]

INCERTEZA DE DOSE → 1% por cálculo

CONTROL POINTS | COMP. SEGMENTO \rightarrow 180 *control points* **I** 1 cm

V FERNANDE/

ESTRATÉGIAS DE OTIMIZAÇÃO

- L Modo → Otimização por restrição nas duas fases, MCO ativo nas duas fases.
- L O PRV das vias ópticas foi colocado em primeiro na lista de prioridades do Mônaco para garantir a descobertura local

L PRV VVOO

QOD (5380 cGy, RMS = 2.0, SM = 0.0, p = 2) Parallel (1000 cGy, 60%, PLE = 3, SM = 0, p = 1)

L PTV 28x180

T. Penalty (5420 cGy, 95% do volume, p = 1)
QOD (5778 cGy, RMS = 2.0, SM = 0.0, p = 0.01)

L Quiasma

Max Dose (3980 cGy, Opt. Over All Voxels, p = 2)

▶ NOE

Max Dose (4735 cGy, Opt. Over All Voxels, p = 2)

↳ Cristalino E

Max Dose (500 cGy, Opt. Over All Voxels, p = 2)

L Olho E

QOD (3000 cGy, RMS = 2, SM = 0.0, p = 1) Parallel (1000 cGy, 45%, PLE = 3, SM = 0, p = 2)

L Encéfalo

Parallel (2000 cGy, 18%, PLE = 3, SM = 0, p = 1)

L Cóclea E

Max Dose (500 cGy, Opt. Over All Voxels, p = 2)

L Tronco

Max Dose (3860 cGy, Opt. Over All Voxels, p = 2)

L Hipófise

Max Dose (2800 cGy, Opt. Over All Voxels, p = 2)

L, NOD E / Cristalino E / Olho E

ALARA \rightarrow Max Dose (Opt. Over All Voxels, p = 2)

└ Patient

QOD (5400 cGy, RMS = 2.0, SM = 0, p = 1) I QOD (4050 cGy, RMS = 2.0, SM = 1.0, p = 1) QOD (2700 cGy, RMS = 35.0, SM = 2.0, p = 1) I Max Dose (5778 cGy, Opt. Over All Voxels, p = 20) Conformality (0.55, p = 1)

NORMALIZAÇÃO

- Ly Foi criado um zPTV de normalização, cropado do PRV das vias ópticas com uma margem de 3 mm.
- 👃 O planejamento foi normalizado para que a dose de 5400 cGy cubra 95% do zPTV de normalização.

V FERNANDEZ

DISTRIBUIÇÃO DE ISODOSES

ESTATÍSTICAS DO DVH

ESTRUTURA	DESCRITOR DVH	IDEAL	ACEITÁVEL	RESULTADO	VALOR
ZPTV 30x180 CGY	D95% [Gy]	>= 54.00 (100%)	>= 58.80 (98%)		54.01 Gy
(NORM)	D0.03% [Gy]	<= 59.40 (110%)	-		56.69 Gy
TRONCO	Máx [Gy]	54 Gy	-		34.93 Gy
TRONCO PRV	Máx [Gy]	59 Gy	-		39.92 Gy
QUIASMA	Máx [Gy]	50 Gy	54 Gy		33.23 Gy
VIAS ÓPTICAS	Máx [Gy]	50 Gy	54 Gy		47.04 Gy
VIAS ÓPTICAS PRV	Máx [Gy]	54 Gy	60 Gy		52.49 Gy
NERVO ÓPTICO D	Máx [Gy]	50 Gy	54 Gy		13.20 Gy
NERVO ÓPTICO E	Máx [Gy]	50 Gy	54 Gy		45.93 Gy
CÓCLEA D	Mean [Gy]	50 Gy	52.5 Gy		6.21 Gy
CÓCLEA E	Mean (Gy)	50 Gy	52.5 Gy		19.63 Gy
OLHO D	Máx [Gy]	50 Gy	52.5 Gy		5.82 Gy
	Mean (Gy)	35 Gy	36.8 Gy		4.25 Gy
OLHO E	Máx [Gy]	50 Gy	52.5 Gy		24.21 Gy
	Mean [Gy]	35 Gy	36.8 Gy		7.96 Gy
CRISTALINO D	Máx [Gy]	<= 7 Gy	<= 10 Gy		4.35 Gy
CRISTALINO E	Máx [Gy]	<= 7 Gy	<= 10 Gy		4.15 Gy
HIPÓFISE	Máx [Gy]	50 Gy	54 Gy		22.37 Gy

REFERÊNCIAS

[1] - WOLFF, Dirk. *Monaco TPS Advanced Workshop,* Istanbul. 2019.

[2] - PRAH, Douglas. *Guidelines for Monaco VMAT/IMRT Optimization*. Wisconsin. 2022