微介實驗七

計時計數器

日期:2023/11/19

報告者:林柏均

Outline

- 實驗目的
- 材料清單
- 實驗原理
- 實驗電路
- 實驗程式

Outline

- 實驗目的
- 材料清單
- 實驗原理
- 實驗電路
- 實驗程式

實驗目的

• 了解8051之計時/計數器的功能與相關暫存器設定

Outline

- 實驗目的
- 材料清單
- 實驗原理
- 實驗電路
- 實驗程式

材料清單

器材	才名稱	數量
AT8	1	
12MHz 石	1	
LED	8	
按厦	2	
a	1kΩ	9
電阻	10 kΩ	1
雨凉	20pF	2
電容	10μF	1

Outline

- 實驗目的
- 材料清單
- 實驗原理
- 實驗電路
- 實驗程式

- 計時器/計數器Timer/Counter
 - 中斷程式, 當溢位時產生中斷
 - 計時與計數的差別在於觸發方式
 - ▶計時器是依靠內部的時脈計時
 - ▶計數器是依靠外部的接腳計數
 - -8051提供2組計時/計數器(Timer0、Timer1)
 - 8052則是3組(Timer0、Timer1、 Timer2)

- 計時/計數器中斷相關暫存器
 - TCON
 - 控制Timer/Counter開關與否
 - -TMOD
 - 控制Timer/Counter的模式
 - TH/TL
 - 控制Timer觸發中斷所需的時間或是Counter觸發中斷所需的記數次數
 - IE & IP
 - 中斷開關與優先權,詳見實驗六

- 計時/計數器控制暫存器TCON(可位元定址)
 - 8-bits,僅TCON.4~7與計時/計數器有關
 - 當TRX = 1時, 啟動TimerX; 反之則關閉TimerX
 - = aTimer X的THX溢位時, TFX = 1; 進入中斷向量後TFX= 0
 - 例如今天想啟動Timer 0與Timer 1,須設定TCON為0x50
 - 0x50 = 01010000B

TCON

TF1	TR1	TF0	TR0	IE1	IT	IEO	IT0
0	1	0	1	0	0	0	0

- 計時/計數器模式控制暫存器TMOD(不可位元定址)
 - 一個Timer/Counter各自使用4 bits
 - GATE
 - ➤如果GATE = 1,代表該Timer/Counter外部啟動
 TCON的TRX = 1且接腳INTX為HIGH時TimerX才會啟動
 - ➤ 反之GATE = 0時僅需TRX = 1便可啟動TimerX
 - -C/T = 0時為計時器,C/T = 1時為計數器

TMOD

GATE	C/T	M1	M0	GATE	C/T	M1	M0
	Tim	ner 1			Tim	ner 0	

- 計時/計數器模式控制暫存器TMOD(不可位元定址)
 - M1、M0為控制計時/計數模式

M1	M0	模式
0	0	Mode 0: 13-bits Timer/Counter
0	1	Mode 1: 16-bits Timer/Counter
1	0	Mode 2: 8-bits auto-reload Timer/Counter
1	1	Mode 3: 一個8-bits Timer/Counter, 一個8-bits Timer

TMOD

GATE	C/T	M1	M0	GATE	C/T	M1	M0
	Tim	ner 1			Tim	ner O	

- TH/TL暫存器
 - Timer/Counter的計時記數是利用TH和TL兩個暫存器達成
 - 當TH暫存器發生溢位時會使Timer Flag(TF)升起,讓程式有分 支跳躍的根據
 - 根據Timer/Counter模式的不同,TH和TL會有不同的使用方法

高位元

低位元

- 計時/計數器中斷相關暫存器設定範例
 - 啟動Timer 0和1與其中斷,其中Timer 1為counter, Mode 1; Timer 0需外部啟動, Mode 2。相關暫存器需如此設定:
 - IE
 - TCON
 - TMOD

EA	-	-	ES	ET1	EX1	ET0	EX0
1	0	0	0	1	0	1	0

TF1	TR1	TF0	TR0	IE1	IT	IE0	IT0

GATE	C/T	M1	M0	GATE	C/T	M1	M0	
	Tim	er 1		Timer 0				

- 計時/計數器中斷相關暫存器設定範例
 - 啟動Timer 0和1與其中斷,其中Timer 1為counter, Mode 1; Timer 0需外部啟動, Mode 2。相關暫存器需如此設定:
 - IE
 - TCON
 - TMOD

EA	-	-	ES	ET1	EX1	ET0	EX0
1	0	0	0	1	0	1	0

TF1	TR1	TF0	TR0	IE1	IT	IE0	IT0
0	1	0	1	0	0	0	0

GATE	C/T	M1	M0	GATE	C/T	M1	M0	
	Tim	er 1		Timer 0				

- 計時/計數器中斷相關暫存器設定範例
 - 啟動Timer 0和1與其中斷,其中Timer 1為counter, Mode 1; Timer 0需外部啟動, Mode 2。相關暫存器需如此設定:
 - IE
 - TCON
 - TMOD

EA	-	-	ES	ET1	EX1	ET0	EX0
1	0	0	0	1	0	1	0

TF1	TR1	TF0	TR0	IE1	IT	IE0	IT0
0	1	0	1	0	0	0	0

GATE	C/T	M1	M0	GATE	C/T	M1	M0	
0	1	0	1	1	0	1	0	
	Tim	er 1		Timer 0				

- Timer/Counter 模式介紹
 - Mode 0: 13-bits的Timer/Counter
 - TL僅使用前5個bits,可以視為一個13-bits的暫存器隨Machine cycle累加, 溢位時TF升起

0	0	0	0	0	0	0	0	•	ı	ı	0	0	0	0	0
	ТН										Т	L			

- Mode 1: 16-bits的Timer/Counter
 - TL與TH皆使用8個bits,可以視為一個16-bits的暫存器隨Machine cycle累加,溢位時TF升起

0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	ТН										Т	L			

- Timer/Counter 模式介紹
 - Mode 2: 8-bits且具auto-reload功能的Timer/Counter
 - 僅使用TL計時/計數,TH用作紀錄TL的預設值使用
 - 在其他模式中,TF升起後下次的計時計數會從0開始計算,但通常我們不希望每次都是從0開始,因此都會在ISR中設定下次TH和TL的初始值, Mode 2便是省去設定TH和TL的動作
 - Mode 3: 一個8-bits Timer/Counter, 一個8-bits Timer
 - Mode 3的狀況較為複雜且不常使用,以下以Timer 0的Mode 3為例
 - TLO是一個由C/T控制的Timer/Counter,溢位時TFO升起
 - THO是一個Timer,溢位時TF1升起

- TH/TL 計算與設定
 - 因本實驗使用的石英震盪器為12MHz
 - ➤ Machine cycle頻率為12MHz / 12 = 1MHz
 - ▶一個Machine cycle需要一微秒,意即TL每一微秒+1
 - 為了方便計算中斷時間以提高計時精準度,通常會將TH和TL設定 定為特定數值

• TH/TL 計算與設定 (以Mode 1為例)

0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ТН										Т	L				

• TH/TL 計算與設定 (以Mode 1為例)

• TH/TL 計算與設定(以Mode 1為例)

• TH/TL 計算與設定(以Mode 1為例)

• TH/TL 計算與設定(以Mode 1為例)

- TH/TL 計算與設定(以Mode 1為例)
 - 目標是讓TH和TL在50000個Machine cycle後溢位
 - 將TH和TL共16 bits設定為65536-50000=15536=11110010110000
 - 將前八位放進TH,後八位放進TL並將剩餘位元補0

0	0	1	1	1	1	0	0	1	0	1	1	0	0	0	0
ТН										Т	L				

• TH/TL 計算與設定

Mode1:每50ms觸發一次中斷

```
TH0=(65536-50000)/256; //除完的商寫入TH0 TL0=(65536-50000)%256; //除完的餘數寫入TL0
```

Mode2:每250us觸發一次中斷

```
TH0=0x06; //TH0 = 256 - 250
TL0=0x06; //TL0 = 256 - 250
```

Outline

- 實驗目的
- 材料清單
- 實驗原理
- 實驗電路
- 實驗程式

實驗電路

Outline

- 實驗目的
- 材料清單
- 實驗原理
- 實驗電路
- 實驗程式

- LED閃爍
 - 連接於P2.0的LED使用delay function作為閃爍的時間間隔
 - 連接於P2.1的LED使用Timer O的interrupt作為閃爍的時間間隔
 - 調整參數,使兩個LED的閃爍時間間隔接近一致

```
1. #include <regx51.h> // include header file for 8051

2. #define TH0_init 0x06 //TH0_init = 256 - 250

3. #define TL0_init 0x06 //TL0_init = 256 - 250

4. #define Timer0_int_exe_time 2000 //the parameter can be changed

5. void delay(int t);

6. int counter;
```

```
7. void main()
8. {
           TMOD = 0x02;
9.
                                            //set timer0 to mode 2(8-bits and auto-reload)
           IP = 0x02;
10.
                                            //timer0 interrupt has high priority
11.
           IE = 0x82;
                                            //enable timer0 interrupt
12.
           P2 = Oxff;
           TLO = TLO_init; THO = THO_init;
                                           //set TH0 & TL0
13.
           TCON = 0x10;
                                            //enable timer0
14.
15.
           while (1)
16.
                      delay(10000);
                                            // adjust this parameter to match timer
17.
                      P2_0 = ~P2_0;
                                            //inverse P2.0
18.
19.
20. }
```

```
21. void timer0_interrupt(void) interrupt 1
                                                        // 'interrupt 1' is int vector of INTO
22. {
23.
           counter++;
24.
                                                        //250clock cycle * 2000 = 0.5 second
           if (counter == Timer0_int_exe_time)
25.
                                                        //inverse P2.0
26.
                      P2_1 = ^P2_1;
27.
                      counter = 0;
28.
29. }
30. //delay function
31. void delay(int t)
32. {
33.
           while(t--);
34. }
```

• 本次實驗開始使用C語言,請開啟一個新project並在project 中加入STARTUP. A51

- 如果已經習慣組合語言或是碰到必須使用組合語言指令的場合,可參考以下網址以便在C語言中使用組合語言指令
 - http://qmierhuang.blogspot.com/2016/05/8051c.html

- 在C語言中,觸發中斷時會自動呼叫中斷的function,該 function有著指定的宣告格式
 - void 中斷function名稱 (void) interrupt 中斷型號 {}

中斷源	中斷向量	中斷型號
外部中斷0	0x03	0
計時/計數器0	0x0B	1
外部中斷1	0x13	2
計時/計數器1	0x1B	3
串列埠	0x23	4

- 例: void ex0 interrupt(void) interrupt0

• 8051 C語言程式常用的資料型態(data type)

資料型態	Bits(位元)	Data Range(數值範圍)			
Unsigned char	8-bit	0 to 255			
(signed)char	8-bit	-128 to +127			
Unsigned int	16-bit	0 to 65535			
(signed) int	16-bit	-32768 to +32767			
sbit	1-bit	0 to 1			
bit	1-bit	0 to 1			
sfr	8-bit	0 to 255			

Q & A