Skript Mathe 2

7. Mai 2018

0.1 Bemerkung: Minorantenkriterium

Unter den selben Voraussetzungen wie in 2.10 erhält man anhand von Kontraposition: Ist $\sum_{i=1}^{\infty} a_i$ divergent, so ist auch $\sum_{i=1}^{\infty} b_i$ divergent.

0.2 Beispiele

a)
$$\sum_{i=1}^{\infty} \underbrace{\left(1 - \frac{1}{i}\right)}_{\text{Keine Nullfolge}}$$
 ist divergent. (2.9)

b)
$$\sum_{i=1}^{\infty} \frac{1}{\sqrt{i}}$$
 ist divergent, da $0 \le \frac{1}{i} \le \frac{1}{\sqrt{i}}$ und $\sum_{i=1}^{\infty} \frac{1}{i}$ divergent. (2.11)

c) $\sum_{i=1}^{\infty} \frac{(-1)^i}{2^i}$ ist konvergent, weil absolut konvergent. (2.3e, 2.7)

d)
$$\sum_{i=0}^{\infty} \frac{(-1)^i}{i+1} = 1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} \pm \dots$$
 (alternierende harmonische Reihe) ist konvergent, aber nicht absolut konvergent. Die Konvergenz zeigt man mit

0.3 Satz: Leibniz-Kriterium

Sei (a_n) monoton fallende Nullfolge reeller Zahlen. Dann ist $\sum_{i=0}^{\infty} (-1)^i a_i$ konvergent. **Beweis:** Intervallschachtelung (1.26)

$$A_n := \sum_{i=0}^{2n-1} (-1)^i a_i \quad B_n := \sum_{i=0}^{2n} (-1)^i a_i$$

•
$$(A_n)$$
 \nearrow : $A_{n+1} - A_n = \sum_{i=0}^{2n+1} (-1)^i a_i - \sum_{i=0}^{2n-1} (-1)^n a_i$

$$= (-1)^{2n+1} a_{2n+1} + (-1)^{2n} a_{2n}$$

$$= a_{2n} - a_{2n+1} \ge 0, \text{ da } (a_n) \searrow$$

• Analog:
$$(B_n) \searrow \bullet B_n - A_n = a_{2n} \ge 0 \Leftrightarrow A_n \le B_n \quad \forall n \in \mathbb{N}$$

• $B_n - A_n = a_{2n} \to 0$

$$(A_n), (B_n)$$
 konvergiert mit $\lim_{n\to\infty} A_n = \lim_{n\to\infty} B_n \Rightarrow \sum_{i=1}^{\infty} (-1)^i a_i$ konvergent.

0.4 Satz: Wurzelkriterium

Sei $(a_n)_{n\geq 1}$ mit $a_n\in\mathbb{R}$. Dann:

•
$$\overline{\lim}_{n\to\infty} \sqrt[n]{|a_n|} < 1 \Rightarrow \sum_{k=1}^{\infty} |a_k|$$
 konvergent

•
$$\overline{\lim}_{n\to\infty} \sqrt[n]{|a_n|} > 1 \Rightarrow \sum_{k=1}^{\infty} |a_k| \text{ divergent}$$

•
$$\varlimsup_{n\to\infty}\sqrt[n]{|a_n|}=1$$
 \leadsto keine allgemeine Aussage für $\sum_{k=1}^\infty a_k$ möglich.

Beweis:

Sei
$$\overline{\lim}_{n\to\infty} \sqrt[n]{|a_n|}$$

•
$$a < 1 : \Rightarrow \exists \epsilon > 0 : a + \epsilon < 1$$

 $\Rightarrow \exists N \in \mathbb{N} : \sqrt[n]{|a_n|} \le a + \epsilon \quad \forall n \ge N,$
da a größter HP von $\sqrt[n]{|a_n|}$
 $\Rightarrow |a_n| \le (a + \epsilon)^n \quad \forall n \ge N$
 $\Rightarrow \sum_{k=N}^{\infty} \underbrace{(a + \epsilon)^n}_{<1}$ (geometrische Reihe)

ist konvergente Majorante der Reihe $\sum_{k=N}^{\infty} |a_k|$.

Damit konvergiert auch
$$\sum_{k=1}^{\infty}|a_k|=$$
 $\left[\sum_{k=1}^{N-1}|a_k|\right]+\sum_{k=1}^{\infty}|a_n|$

•
$$a > 1 : \Rightarrow \sqrt[n]{|a_n|} > 1$$
 unendlich oft
$$\Rightarrow |a_n| > 1 \text{ unendlich oft}$$

$$\Rightarrow (a_n) \text{ keine Nullfolge } \Rightarrow \sum_{k=1}^{\infty} a_k \text{ divergent.} \quad \Box$$

0.5 Beispiele

a)
$$\sum_{k=0}^{\infty} \left[\frac{k^3}{3^k} \right] \text{ konvergent, da } \overline{\lim}_{n \to \infty} \frac{\sqrt[n]{n^3}}{\sqrt[n]{3^n}} = \overline{\lim}_{n \to \infty} \frac{\left(\sqrt[n]{n^3}\right)}{3} = \frac{1}{3} < 1$$

b)
$$\sum_{k=0}^{\infty} \frac{1}{k^{\alpha}}$$
 (allgemeine harminische Reihe) liefert $\overline{\lim}_{n\to\infty} \frac{1}{\left(\sqrt[n]{n^{\alpha}}\right)} = 1 \quad (\alpha > 0) \to \text{keine Aussage möglich.}$

0.6 Satz: Quotientenkriterium

Sei $(a_n)_{n\geq 1}$ eine Folge in \mathbb{R} mit $a_n\neq 0 \quad \forall n\in \mathbb{N}$. Dann:

•
$$\overline{\lim}_{n\to\infty} \left| \frac{a_{n+1}}{a_n} \right| < 1 \Rightarrow \sum_{k=1}^{\infty} a_k$$
 absolut konvergent

•
$$\overline{\lim}_{n\to\infty} \left| \frac{a_{n+1}}{a_n} \right| > 1 \Rightarrow \sum_{k=1}^{\infty} a_k$$
 divergent

$$\bullet \ \overline{\lim_{n \to \infty}} \left| \frac{a_{n+1}}{a_n} \right| \ge 1 \ \text{und} \ \underline{\lim_{n \to \infty}} \left| \frac{a_{n+1}}{a_n} \right| \le 1 \ \text{wheine allgemeine Aussage m\"{o}glich}$$

Beweis:

$$\begin{split} \bullet & \overline{\lim}_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| < a < 1 \quad a \in \mathbb{R} \\ \Rightarrow & \exists N \in \mathbb{N} : \left| \frac{a_{n+1}}{a_n} \right| \le a \quad \forall n \ge \mathbb{N} \\ \Rightarrow & |a_n| \le a \cdot |a_{n-1}| \le a^2 \cdot |a_{n-2}| \le \dots \le a^{n-N} \cdot |a_N| \quad \forall n \ge \mathbb{N} \end{split}$$

Da
$$\sum_{N=0}^{\infty}a^{n-N}|a_N|=\frac{|a_N|}{a^N}\sum_{N=0}^{\infty}a^n$$
 konvergiert (geometrische Reihe), folgt mit

Majorantenkriterium, dass $\sum_{n=N}^{\infty} |a_n|$ und somit $\sum_{n=1}^{\infty} |a_n|$ konvergent ist.

$$\bullet \ \overline{\lim}_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| > 1 \Rightarrow \exists N \in \mathbb{N} : \left| \frac{a_{n+1}}{a_n} \right| \ge 1 \quad \forall n \ge N$$

$$\Rightarrow |a_n| \ge |a_{n-1}| \ge \dots \ge |a_N| > 0$$

$$\Rightarrow (a_n)$$
 keine Nullfolge \square

0.7 Beispiele

a)
$$\sum_{k=1}^{\infty} \frac{2^k}{k!} \text{ konvergiert, da } \left| \frac{a_{n+1}}{a_n} \right| = \frac{2^{n+1}}{(n+1)!} \cdot \cancel{2^n} = \frac{2}{n+1} \xrightarrow[n \to \infty]{} 0$$

$$\Rightarrow \lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = 0 < 1$$

b) Wie in 2.15b ist für
$$\sum_{k=1}^{\infty} \frac{1}{k^{\alpha}}$$
 $(\alpha > 0)$ keine Aussage möglich, da $\left| \frac{a_{n+1}}{a_n} \right| = \frac{n^{\alpha}}{(n+1)^{\alpha}} = \left(\frac{n}{n+1} \right)^{\alpha} \xrightarrow[n \to \infty]{} 1$

und somit
$$\overline{\lim}_{n\to\infty} \left| \frac{a_{n+1}}{a_n} \right| = \underline{\lim}_{n\to\infty} \left| \frac{a_{n+1}}{a_n} \right| = 1$$

0.8 Bemerkung

Mit dem Verdichtungssatz von Cauchy (den wir hier nicht zitieren), kann man zeigen, dass die allgemeine harmonische Reihe $\sum_{k=1}^{\infty} \frac{1}{k^{\alpha}}$ für $0 < \alpha < 1$ divergiert und für $\alpha > 1$ konvergiert.