Gamma dağılımı:

Tanım: $\forall n > 0$ için tanımlanan Gamma fonksiyonu aşağıdaki gibidir.

$$\Gamma(n) = \int_{0}^{\infty} x^{n-1} e^{-x} dx$$

 $\Gamma(n) = (n-1)\Gamma(n-1)$ bulunur.n tamsayı ise

$$\Gamma(n) = (n-1)(n-2) \dots \Gamma(1)$$

$$\Gamma(1) = \int_{0}^{\infty} e^{-x} dx = 1$$

ve böylece

$$\Gamma(n) = (n-1)!$$

elde edilir. Ayrıca

$$\Gamma\left(\frac{1}{2}\right) = \sqrt{\pi}$$

$$\Gamma(k+1) = k\Gamma(k)$$

$$\Gamma\left(\frac{1}{2}+1\right) = \frac{1}{2} \Gamma(k)$$

$$=\frac{\sqrt{\pi}}{2} dir.$$

Tanım:Bağımsız tesadüfi değişkenler $X_1, X_2, \dots, X_n {\sim} \ddot{\mathbb{U}} stel(\lambda)$ olmak üzere

$$X = X_1 + X_2 + \dots + X_n$$

Tesadüfi değişkenin olasılık yoğunluk fonksiyonu,

$$f(x) = \begin{cases} \frac{\lambda(\lambda x)^{n-1}e^{-\lambda x}}{\Gamma(n)}, & x > 0\\ 0, & x \le 0 \end{cases}$$

verildiğinde X'e Gamma tesadüfi değişkeni f(x)' e de X' in olasılık yoğunluk fonksiyonu denir. Ve $X \sim Gamma(n, \lambda)$ ile gösterilir. Gamma dağılımının kullanım alanı oldukça geniştir.

Beklenen Değer ve Varyans:

$$E(X) = \int\limits_{DX} x f(x) dx$$

$$E(X) = \int_{0}^{\infty} \frac{x\lambda(\lambda x)^{n-1}e^{-\lambda x}}{\Gamma(n)} dx$$

Pay ve payda $n\lambda$ ile çarpılırsa

$$E(X) = \frac{n}{\lambda} \int_0^\infty \frac{x\lambda(\lambda x)^n e^{-\lambda x}}{\Gamma(n+1)} dx = \frac{n}{\lambda}$$

$$E(X^{2}) = \int_{DX} x^{2} f(x) dx$$
$$= \int_{0}^{\infty} \frac{x^{2} \lambda (\lambda x)^{n-1} e^{-\lambda x}}{\Gamma(n)} dx$$

pay ve payda $n(n+1)\lambda^2$ ileçarpılırsa,

$$E(X^{2}) = \frac{n(n+1)}{\lambda^{2}} \int_{0}^{\infty} \frac{\lambda(\lambda x)^{n+1} e^{-\lambda x}}{\Gamma(n+2)!} dx$$

$$= \frac{n(n+1)}{\lambda^2}$$

$$Var(X) = E(X^2) - [E(X)]^2$$

$$=\frac{n(n+1)}{\lambda^2}-\frac{n^2}{\lambda^2}=\frac{n}{\lambda^2}$$

İkinci yol

 $i=1,2,\ldots,n$ için bağımsız tesadüfi değişkenler $X_i \sim$ üstel (λ) ve

$$X = \sum_{i=1}^{n} X_i$$

Alındığında

$$E(X) = E(\sum_{i=1}^{n} X_i)$$

$$= E(X_1 + X_2 + \dots + X_n)$$

$$= E(X_1) + E(X_2) + \dots + E(X_n)$$

$$= \frac{1}{\lambda} + \frac{1}{\lambda} + \dots + \frac{1}{\lambda} = \frac{n}{\lambda}$$

ve

$$Var(X) = Var\left(\sum_{i=1}^{n} X_i\right)$$

$$Var(X_1 + X_2 + \dots + X_n)$$

$$= Var(X_1) + Var(X_2) + \dots + Var(X_n)$$

$$= \frac{1}{\lambda^2} + \frac{1}{\lambda^2} + \dots + \frac{1}{\lambda^2} = \frac{n}{\lambda^2}$$

bulunmuş olur.

Moment Çıkaran Fonksiyon

 $i=1,2,\ldots,n$ için bağımsız tesadüfi değişkenler $X_i \sim \ddot{\mathsf{U}} \mathsf{stel}(\lambda)$ ve

$$X = \sum_{i=1}^{n} X_i$$

alındığında $X \sim Gama(\lambda)$ olur.

$$M_X(t) = E(e^{tX_1})$$

$$= E(e^{tX_1}e^{tX_2} \dots e^{tX_n})$$

$$= E(e^{tX_1})E(e^{tX_2}) \dots E(e^{tX_n})$$

$$= M_{X_1}(t)M_{X_2}(t) \dots M_{X_n}(t)$$

$$= \left(\frac{\lambda}{\lambda - t}\right) \left(\frac{\lambda}{\lambda - t}\right) \dots \left(\frac{\lambda}{\lambda - t}\right) = \left(\frac{\lambda}{\lambda - t}\right)^n$$

Gamma Dağılımı ile Üstel, Erlang ve Ki Kare Dağılımı

Özel olarak f(x) fonksiyonunda,

1) n = 1 alınırsa X tesadüfi değişkeni üstel dağılıma sahip olur.

$$X \sim \ddot{u}stel(\lambda)$$

2) $\forall n \in \mathbb{Z}^+$ iken X tesadüfi değişkeni erlang dağılımına sahip olur.

$$X \sim Erlang(n, \lambda)$$

olarak gösterilir X tesadüfi değişkeninin olasılık yoğunluk fonksiyonu

$$f(x) = \begin{cases} \frac{\lambda(\lambda x)^{n-1}e^{-\lambda x}}{(n-1)!}, & x > 0\\ 0, & d.d \end{cases}$$

Olur. Dağılım fonksiyonu

$$F(x) = \begin{cases} 0, & x \le 0 \\ 1 - e^{-\mu x} \sum_{i=1}^{n-1} \frac{(\mu x)^i}{i!}, & x > 0 \\ 1, & x \to \infty \end{cases}$$

olur.

3) $n = \frac{k}{2} ve \lambda = \frac{1}{2} alınırsa$ X tesadüfi değişkeni Ki-kare dağılımına sahip olur.

$$X \sim X_k^2$$

Örnek: Bir süpermarkete gelen müşterilerin gelişler arası süreleri dakikada 0,4 ortalama ile üstel dağılıma uymaktadır. Buna göre,

- a) 2.müşterinin 1.dakika içinde gelmesi olasılığı nedir?
- b) 5.müşterinin kaç dakika içinde gelmesi beklenir?

Çözüm.

a) A: "2.müşterinin 1.dakikada gelmesi" olayını tanımlayalım.

i. müşterinin geliş süresi T_i olmak üzere ve 1.
müşterinin geliş süresi $T_1{\sim} \ddot{\mathsf{U}} stel(0,\!4)$

1. müşterinin geliş anı arasındaki süre de $T_2 \sim \ddot{\text{U}} stel(0,4)$ olmak üzere,

2. müşterinin geliş anına kadar geçen sürede $t_2=T_1+T_2ve\ t_2{\sim}Gamma(2;0,4)$ olur. t_2 tesadüfi değişkeninin olasılık yoğunluk fonksiyonu da.

$$f_{t_2}(x) = \begin{cases} \frac{(0,4)(0,4)^{2-1}e^{-0,4x}}{\Gamma(2)} &, & x > 0\\ 0 &, & d.d \end{cases}$$

$$P(A) = \int_{0}^{1} (0.4)(0.4x)e^{-0.4x}dx$$

$$= 0.0615 bulunur$$

c) 5.müşterinin geliş anı 5 müşterinin gelişler arası sürelerinin toplamına eşittir, yani

$$t_5 = T_1 + T_2 + \dots + T_5$$

$$E(t_5) = E(T_1 + T_2 + \dots + T_5)$$

$$E(T_1) + E(T_2) + \dots + E(T_5)$$

$$= \frac{1}{0.4} + \frac{1}{0.4} + \dots + \frac{1}{0.4}$$

= 12,5 dakika içinde gelmesi beklenir.

Örnek: Bir orijinal birde yedek üniteden oluşan bir sistemin ömrünü (ay cinsinden) X tesadüfi değişkeni ile gösterelim. X' in olasılık fonksiyonu,

$$f(x) = \begin{cases} cxe^{-\frac{x}{2}}, & x > 0\\ 0, & x \le 0 \end{cases}$$

Olarak tanımlı ise, bu sistemin en az 15 ay boyunca çalışma olasılığı nedir?

Çözüm. Bir orijinal birde yedek üniteden oluşan bir sistemin ömrünün 15 ay ve daha fazla olması olasılığını bulmak için özelikle sistemin ömrüne ait olasılık yoğunluk fonksiyonunda verilen c sabiti bulunur.

$$\int_{-\infty}^{\infty} f(x)dx = 1$$

$$c\int_{0}^{\infty}xe^{-\frac{x}{2}}dx=1$$

Kısmi integral alınırsa $u = x \ ve \ dv = e^{-x/2} dx$ alınır ise

$$c\left[-2xe^{-\frac{x}{2}} + 4e^{-\frac{x}{2}}\right]_0^{\infty} = 1 \implies c = \frac{1}{4}$$

Bulunur. Olasılık yoğunluk fonksiyonu

$$f(x) = \begin{cases} \frac{1}{4} x e^{-\frac{x}{2}}, & x > 0\\ 0, & x \le 0 \end{cases}$$

Olarak bulunur. Bu dağılım $\lambda=\frac{1}{2}ve\;n=2\;olan\;Gamma\;dağılımına sahiptir.$

İstenen olasılık,

$$P(X \ge 15) = \int_{15}^{\infty} \frac{1}{4} x e^{-x/2} dx$$

dir. Bu olasılık için kısmi integral alınırsa

$$P(X \ge 15) = e^{-\frac{15}{2}} \left(\frac{15}{2} + 1 \right)$$

$$P(X \ge 15) = \frac{17}{2}e^{-\frac{15}{2}} \cong 0,0047$$

bulunur.