Respuestas: Teoría de conjuntos

1.
$$A = \{-1, 1\}$$
 $B = \{12\}$ $C = \{1, 2, 3\}$

2.

$$A = \{x / x \in N \land x = 2.n \land n \in N\}$$

$$B = \{x / x \in N \land 4 < x < 6\}$$

$$C = \{x / |x| = 5\}$$

$$D = \{x / x \in N \land x = 3 \land x \neq 3\}$$

$$E = \{x / x \in Z \land x = 5\}$$

5.
$$A = \{2\}$$
 y $a = 2$, por lo tanto $a \neq A$ y $a \in A$

6. Las respuestas son variadas.

8.

a)
$$P(A) = {\emptyset, \{a\}, \{b\}, \{c\}, \{a, b\}, \{c, b\}, \{a, c\}, A\}}$$

b)
$$P(B) = {\emptyset, {\emptyset}, {1}, {\{1\}}, {\emptyset}, {1}, {\{0\}}, {1}}, {\{1, {1}\}}, B}$$

c)
$$P(C) = {\emptyset, {\{1\}\}, \{2\}, C\}}$$

d)
$$P(D) = {\emptyset, {\{1,2\}\}, \{0\}, D\}}$$

9.
$$P(A) = {\emptyset, \{5\}, \{\{1, 2\}\}, \{3\}, \{5, \{1, 2\}\}, \{5, 3\}, \{\{1, 2\}, 3\}, A\}}$$

10.

$$(A \cup B) \cap C = (A \cap C) \cup (B \cap C)$$

$$x \in [(A \cup B) \cap C] \Leftrightarrow x \in (A \cup B) \land x \in C$$

definición de unión

definición de intersección

$$\Leftrightarrow$$
 (x \in A v x \in B) \land x \in C

$$\Leftrightarrow$$
 (x \in A \land x \in C) v (x \in B \land x \in C)

prop.distributiva de la conjunción respecto de la disyunción.

$$\Leftrightarrow$$
 x \in (A \cap C) v x \in (A \cap C)

definición de intersección.

$$\Leftrightarrow$$
 $x \in [(A \cap C) \cup (B \cap C)]$

definición de unión

11. Demostrar: $A - B = A \cap B^c$

$$x \in A - B \Leftrightarrow x \in A \land x \notin B$$

 \Leftrightarrow x \in A \land x \in B c

$$\Leftrightarrow$$
 x \in (A \cap B °)

definición de diferencia

definición de complemento

definición de intersección

12. Demostrar De Morgan.

13.

14.

a) (
$$A \cap B$$
) $\cup C$

d)
$$[(A \cup C) - (A \cap C)] - B$$

15.

a) (U - A)
$$\cap$$
 (B \cup Bc) = Ac \cap U = Ac

c)
$$A \cup (A \cap U) \cup Ac = A \cup A \cup Ac$$

= $A \cup (A \cup Ac)$
= $A \cup U$
= U

 $d) \varnothing$

e)
$$(A \cup \phi) \cap U = A \cap U = A$$

f) U

g)
$$(A - Ac) \cup (U \cap A) = A \cup A = A$$

h) A

16.

a)

$$A - (A \cap B) = A \cap \overline{(A \cap B)} =$$

$$= A \cap (\overline{A} \cup \overline{B}) =$$

$$= (A \cap \overline{A}) \cup (A \cap \overline{B}) =$$

$$= \emptyset \cup (A \cap \overline{B}) = (A \cap \overline{B})$$

$$= A - B$$

propiedad de la diferencia ley de De Morgan distributiva de la intersección respecto de la unión Intersección con el complemento

b)
$$(A \cup B) - C = (A - C) \cup (B - C)$$

= $(A \cup B) \cap C^c$ definición de diferencia
= $(A \cap C^c) \cup (B \cap C^c)$ prop. Distributiva

c) Resuelto en plantilla

d)
$$(A-B)-C = A - (B \cup C)$$

 $(A-B)-C = (A \cap B^c) \cap C^c$ definición de diferencia
 $= A \cap (B^c \cap C^c)$ asociativa de la intersección.
 $= A \cap (B \cup C)^c$ Ley de De Morgan
 $= A - (B \cup C)$ definición de diferencia

e) Resuelto en plantilla

$$\begin{split} f)\,(A-B)-C \, \subseteq \, A-(B-C) \\ x \in [(A-B)-C] &\Leftrightarrow x \in [\,(\,A \cap B^c\,) \cap C^c\,] \\ &\Leftrightarrow x \in [\,A \cap (\,B^c \cap C^c\,)\,] \\ &\Leftrightarrow x \in [A \cap (B \cup C)^c\,] \\ &\Leftrightarrow x \in [A - (\,B \cup C\,)\,] \end{split} \qquad \text{Asociativa de la intersección} \\ \Leftrightarrow x \in [A \cap (B \cup C)^c\,] \\ &\Leftrightarrow x \in [A - (\,B \cup C\,)\,] \end{aligned}$$

Por lo tanto, no se verifica, también se puede verificar gráficamente.

g)
$$(A \cup B)$$
 – $(C - A) = (A \cup B) \cap \overline{(C - A)} =$

$$(A \cup B) \cap \overline{(C \cap \overline{A})}$$

Definición de diferencia

$$(A \cup B) \cap \overline{(C} \cup A) =$$

ley de De Morgan

$$(A \cup (B \cap \bar{C}) =$$

distributiva de unión respecto de intersección

$$A \cup (B - C)$$

h)
$$A = (A \cap B) \cup (A \cap B^c)$$

$$(A \cap B) \cup (A \cap B^c) = A \cap (B \cup B^c)$$

= $A \cap U$

= A

prop. Distributiva

i)
$$A - (A - B) = A \cap \overline{(A \cap \overline{B})} = A \cap (\overline{A} \cup B) = (A \cap \overline{A}) \cup (A \cap B) = (A \cap B)$$

j)

$$A \cup (B - A) = A \cup B$$

$$A \cup (B - A) = A \cup (B \cap A^{c})$$

$$= (A \cup B) \cap (A \cup A^{c})$$

$$= (A \cup B) \cap U$$

$$= A \cup B$$

definición de diferencia

prop. Distributiva

elemento neutro de la intersección

$$A \cap (B - C) = (A \cap B) - (A \cap C)$$

$$(A \cap B) - (A \cap C) = (A \cap B) \cap \overline{(A \cap C)} =$$

$$(A \cap B) \cap \overline{(A \cup C)} =$$

$$(A \cap B \cap \overline{A}) \cup (A \cap B \cap \overline{C}) =$$

$$\emptyset \cup (A \cap B \cap \overline{C}) =$$

$$A \cap (B \cap \overline{C}) = A \cap (B - C)$$

Definición de diferencia

ley de De Morgan

distributiva de intersección respecto de unión

Intersección con el complemento

asociativa y definición de diferencia

17.

a)
$$A \cup C = \{a; b; c; d; e; f; g\}$$

b) B
$$\cap$$
 A = { a; c; e}

c)
$$C - B = \{ b; f \}$$

d)
$$B^c = \{ b; d; f \}$$

e)
$$A^{c} - B = \{ f \}$$

f)
$$B^{c} \cup C = \{ b; d; e; f; g \}$$

g)
$$C^{c} \cap A = \{a; b; c; d; e; f; g\}$$

h)
$$(A \cap A^c)^c = \{a; b; c; d; e; f; g\}$$

i)
$$(A \cup A^c)^c = \emptyset$$

j)
$$(A \cup B)^{c} = \{f\}$$

k)
$$A^c \cap B^c = \{f\}$$

18. A =
$$\{1, 3, 6, 9, 5, 7, 8\}$$
 B = $\{2, 3, 6, 9, 10\}$

19. Aplicando la definición de igualdad de conjuntos:

$$\forall x: (x \in A \leftrightarrow x \in B) \Leftrightarrow (x \in A \rightarrow x \in B \land x \in B \rightarrow x \in A) \Leftrightarrow x \notin B \rightarrow x \notin A \land x \notin A \rightarrow x \notin B \Leftrightarrow x \notin B \leftrightarrow x \notin A \Leftrightarrow A^c = B^c$$

equivalencia para la doble implicación por contra reciproco equivalencia para la doble implicación

20.

a) Si A
$$\cup$$
 B = A, entonces B \subseteq A

b)
$$A \cap B = A$$
, entonces $A \subseteq B$

c)
$$A - B = A$$
, entonces A y B son disjuntos

d)
$$A - B = B - A$$
 entonces $A = B$