Computing Project for CTA200: Galaxy Pairs and $24\mu m$ Star Formation Rates

SURP Student: Mie Beers

May 2016

The goal of this project is to familiarize yourself with both the photometric redshift catalogs and $24\mu\text{m}$ -MIPS imaging that cover the GCLASS galaxy clusters.

Identifying Cluster Members

- 1) Using either Python or IDL, read in each of the ten photometric redshift catalogs from your data directory: /PHOTOZ/PHOTOZ_CATS.
- 2) Determine how many galaxies are likely cluster members, i.e. have a photometric redshift (given by the z_peak column in the catalogs) within ± 0.05 of the cluster redshift (listed in the GCLASS table in your summary document). You can use the equation: $|z_{phot} z_{cluster}|/(1 + z_{phot}) \le 0.05$.
- 3) Repeat the process for $|\Delta z| \leq 0.1$ how many more cluster members does this add?
- 4) Make a table with your results.

Calculating Distance to Nearest Neighbor

- 1) Using your photometric-redshift cluster catalogs (with $|\Delta z| \leq 0.1$), for each cluster member calculate the distance to the nearest neighboring galaxy in the cluster. There is a pre-defined IDL routine for this called gcirc, which calculates the great circle distance between two galaxies. You might be able to find an equivalent routine in Python.
- 2) Plot the number of cluster galaxy "pairs" as a function of distance, i.e. make a histogram of separation distances. Make sure galaxies are not double-counted (i.e. each cluster member is only in a single pair).

Matching to the 24 μ m-MIPS Images

- 1) Match your photometric-redshift cluster catalogs to the $24\mu m$ galaxy positions (using the SWIRE catalogs in mips/catalogs).
 - You will have to first get the RA and Dec for the photo-z members by matching the id column in the /PHOTOZ/PHOTOZ_CATS to the id column in /PHOTOZ/PHOTOM_CATS.
 - You can then search for $24\mu m$ galaxy counterparts in the SWIRE catalogs by identifying $24\mu m$ galaxies within 3 arcsec of the cluster member positions. RA and Dec are in decimal degrees within both catalogs.
 - There is a pre-defined routine in IDL called srcor which finds the closest match between catalogs within a critical distance. I have also included an example IDL code of matching the spec-z catalogs to the MIPS catalogs in codes. Feel free to adapt these into Python if you prefer.
- 2) Include the number of $24\mu m$ MIPS-detected photo-z cluster members into your table.
- 3) Calculate the clustercentric radius (the distance from the cluster center to the galaxy position) for each $24\mu m$ MIPS-detected photo-z cluster member. You can take the cluster center as the position of the brightest cluster galaxy (BCG), listed in Table 1 in van der Burg 2014.
- 4) Plot the $24\mu m$ flux (for each MIPS-detected photo-z cluster member) as a function of clustercentric distance, for each galaxy cluster separately.
- 5) (Extra) For all 24μ m-detected photo-z cluster members, calculate their star formation rate and now plot the star formation rate as a function of clustercentric distance.
 - The easiest way to do this is to first use the Chary and Elbaz 2001 templates to convert the $24\mu m$ flux into an infrared luminosity ($L_{\rm IR}$). The $24\mu m$ flux is listed in the flux column in the SWIRE catalogs. You can download pre-written idl routines from David Elbaz's webpage. The main routine is called chary_elbaz_24um.pro.
 - You can then use the Kennicutt 1998 relation to convert the infrared luminosity ($L_{\rm IR}$) into a star formation rate, using the equation: SFR (M_{\odot} yr⁻¹)= $4.5 \times 10^{44} L_{\rm IR}$ (erg s⁻¹).