

Information Retrieval

Instructor: Dr. Hanaa Bayomi Ali

Mail : h.mobarz @ fci-cu.edu.eg

Information Retrieval

Information Retrieval (IR) is finding material (usually documents) of an unstructured nature (usually text) that satisfies an information need from within large collections(usually stored on computers).

Information Retrieval

- What do we understand by documents? How do we decide what is a document and whatnot?
- What is an information need? What types of information needs can we satisfy automatically?
- What is a large collection? Which environments are suitable for IR

Basic assumptions of Information Retrieval

- Collection: A set of documents
 - Assume it is a static collection

 Goal: Retrieve documents with information that is relevant to the user's information need and helps the user complete a task

Why IR is hard?

IR is mostly about relevance

- Relevance is the core concept in IR, but nobody has a good definition
- Relevance = useful
- Relevance = topically related
- Relevance = new
- Relevance = interesting
- Relevance = ???
- However we still want relevant information

Why IR is hard?

- Information needs must be expressed as a query
 - But users don't often know what they want
- Problems
 - Verbalizing information needs
 - Understanding query syntax
 - Understanding search engines

Why this is hard?

- Documents/images/ video/speech/etc are complex. We need some representation
- Semantics
 - What do words mean?
- Natural language
 - How do we say things?
- Omputers cannot deal with these easily

Semantics

Bank Note

River Bank

Bank

Blood bank

Information Retrieval Techniques

- Index Terms (Attribute) Selection:
 - Stop list
 - Word stem
 - Index terms weighting methods
- Terms X Documents Frequency Matrices
- Information Retrieval Models:
 - Boolean Model (incident matrix)
 - Vector Model
 - Probabilistic Model

Boolean Model

- Consider that index terms are either present or absent in a document
- As a result, the index term weights are assumed to be all binaries
- A query is composed of index terms linked by three connectives: not, and, and or
 - e.g.: car and repair, plane or airplane
- The Boolean model predicts that each document is either relevant or non-relevant based on the match of a document to the query

Example

Brutus AND Caesar BUT NOT Calpurnia

Antony 1 1 0 0 0 1 Brutus 1 1 0 1 0 0 Caesar 1 1 0 1 1 1 Calpurnia 0 1 0 0 0 0 Cleopatra 1 0 0 0 0 0 mercy 1 0 1 1 1 1 0		Antony and Cleopatra	Julius Caesar	The Tempest	Hamlet	Othello	Macbeth
Caesar 1 1 0 1 1 1 Calpurnia 0 1 0 0 0 0 0 Cleopatra 1 0 0 0 0 0 0 mercy 1 0 1 1 1 1 1	Antony	1	1	0	0	0	1
Calpurnia 0 1 0 0 0 0 Cleopatra 1 0 0 0 0 0 mercy 1 0 1 1 1 1	Brutus	1	1	0	1	0	0
Cleopatra 1 0 0 0 0 0 mercy 1 0 1 1 1 1	Caesar	1	1	0	1	1	1
mercy 1 0 1 1 1 1	Calpurnia	0	1	0	0	0	0
	Cleopatra	1	0	0	0	0	0
worser 1 0 1 1 1 0	mercy	1	0	1	1	1	1
1 1 1	worser	1	0	1	1	1	0

1 if play contains word, 0 otherwise

Example

So we have a 0/1 vector for each term.

To answer query: take the vectors for *Brutus, Caesar* and *Calpurnia* (complemented) → bitwise *AND*.

- 110100 AND
- 110111 AND
- 101111 =
- 100100

	Antony and Cleopatra	Julius Caesar	The Tempest	Hamlet	Othello	Macbeth
Antony	1	1	0	0	0	1
Brutus	1	1	0	1	0	0
Caesar	1	1	0	1	1	1
Calpurnia	0	1	0	0	0	0
Cleopatra	1	0	0	0	0	0
mercy	1	0	1	1	1	1
Worser	1	0	1	1	1	0

Boolean Models – Problems

- Very rigid: AND means all; OR means any.
- Difficult to express complex user requests.
- Difficult to control the number of documents retrieved.
 - All matched documents will be returned.
- Difficult to rank output.
 - All matched documents logically satisfy the query.
- Difficult to perform relevance feedback.
 - If a document is identified by the user as relevant or irrelevant, how should the query be modified?

Indexing Techniques

Inverted index

- Maintains two hash- or B+-tree indexed tables:
 - document_table: a set of document records <doc_id, postings_list>
 - term_table: a set of term records, <term, postings_list>
- Answer query: Find all docs associated with one or a set of terms
- + easy to implement
- do not handle well synonymy and polysemy, and posting lists could be too long (storage could be very large)

Example

For each term t, we must store a list of all documents that contain t.

Identify each doc by a document serial number

Can we used fixed-size arrays for this?

What happens if the word *Caesar* is added to document 14?

Example

We need variable-size postings lists

- On disk, a continuous run of postings is normal and best
- In memory, can use linked lists or variable length arrays

Sorted by docID (more later on why).

Inverted index construction

Documents to be indexed

Token stream

Friends, Romans, countrymen. Tokenizer Friends Countrymen Romans Linguistic modules friend countryman roman Indexer friend roman

countryman

Modified tokens

Inverted index

Initial Stages of Text Processing

Tokenization

- Cut character sequence into word tokens (=what is a word!)
 - Deal with "John's", a state-of-the-art solution

Normalization

- Map text and query term to same form
 - You want U.S.A. and USA to match

Stemming

- We may wish have different forms of a root to match
 - authorize, authorization

Stop words

- We may omit very common words (or not)
 - the, a, to, of, over, between, his, him

Indexer Steps: Token Sequence

Sequence of (Modified token, Document ID) pairs.

Doc 1

I did enact Julius Caesar I was killed i' the Capitol; Brutus killed me.

So let it be with
Caesar. The noble
Brutus hath told you
Caesar was ambitious

Term	docID
1	1
did	1
enact	1
julius	1
caesar	1
1	1
was	1
killed	1
i'	1
the	1
capitol	1
brutus	1
killed	1
me	1
so	2
let	2
it	2 2 2 2 2
be	2
with	2
caesar	2
the	2 2 2
noble	2
brutus	2
hath	2
told	2
you	2
caesar	2
was	2
ambitious	2

Indexer Steps: Sort

Sort by terms

- And then docID

Term	docID
I	1
did	1
enact	1
julius	1
caesar	1
1	1
was	1
killed	1
i'	1
the	1
capitol	1
brutus	1
killed	1
me	1
so	2
let	2
it	2 2 2 2 2 2 2 2 2 2
be	2
with	2
caesar	2
the	2
noble	2
brutus	2
hath	2
told	2
you	2 2 2 2
caesar	2
was	2
ambitious	2

Indexer Steps: Dictionary & Postings

Multiple term entries in a single document are merged.

Split into Dictionary and Postings

Doc. frequency information is added.

ambitious be brutus brutus capitol caesar caesar did enact hath I I i' it julius killed	2 2 1 2 1 1 2 2 2 1 1 1 1 1 1 1 1 1 1 1
brutus brutus capitol caesar caesar did enact hath I i' it julius killed	1 2 1 1 2 2 1 1 1 1 1 1 1
brutus capitol caesar caesar did enact hath I i' it julius killed	1 2 1 1 2 2 1 1 1 1 1 1 1
capitol caesar caesar did enact hath I i' it julius killed	2 1 1 2 2 1 1 1 1 1 1 1
caesar caesar did enact hath I i' it julius killed	1 2 2 1 1 1 1 1 1 1 1
caesar caesar did enact hath I i' it julius killed	1 2 2 1 1 1 1 1 1 1 1
caesar did enact hath I i' it julius killed	2 1 1 1 1 1 1 2
did enact hath I i' it julius killed	1 1 1 1 1 1 2
enact hath I I i' it julius killed	1 1 1 1 1 1 2
hath I I i' it julius killed	1 1 1 1 2
I I i' it julius killed	1 1 1 2
i' it julius killed	1 1 2
i' it julius killed	1
it julius killed	2
julius killed	
killed	
	1
killed	1
MIIOU	1
let	2
me	1
noble	2
so	2
the	1
the	2
told	2 1 2 2 1 2 2 2 2 1 1 2 2
you	2
was	1
was	2
with	2

Where do we pay in storage?

Query processing: AND

Consider processing the query:

Brutus AND Caesar

- Locate Brutus in the Dictionary;
 - Retrieve its postings.
- Locate Caesar in the Dictionary;
 - Retrieve its postings.
- "Merge" the two postings (intersect the document sets):

The Merge

Walk through the two postings simultaneously, in time linear in the total number of postings entries

Vector Space Model

- Represent a doc by a term vector
 - Term: basic concept, e.g., word or phrase
 - Each term defines one dimension
 - N terms define a N-dimensional space
 - Element of vector corresponds to term weight
 - E.g., $d = (x_1,...,x_N)$, x_i is "importance" of term i
- New document is assigned to the most likely category based on vector similarity.

VS Model: Illustration

What VS Model Does Not Specify

- How to select terms to capture "basic concepts"
 - Word stopping
 - e.g. "a", "the", "always", "along"
 - Word stemming
 - e.g. "computer", "computing", "computerize" => "compute"
- How to assign weights
 - Not all words are equally important: Some are more indicative than others
 - e.g. "algebra" vs. "science"
- How to measure the similarity

How to Assign Weights

- Two-fold heuristics based on frequency
 - TF (Term frequency)
 - More frequent within a document → more relevant to semantics
 - e.g., "query" vs. "commercial"
 - IDF (Inverse document frequency)
 - Less frequent among documents → more discriminative
 - e.g. "algebra" vs. "science"

Term Weights: Term Frequency

 More frequent terms in a document are more important, i.e. more indicative of the topic.

 f_{ij} = frequency of term i in document j

 May want to normalize term frequency (tf) by dividing by the frequency of the most common term in the document:

$$tf_{ij} = f_{ij} / max_i \{f_{ij}\}$$

Term Weights: Inverse Document Frequency

 Terms that appear in many different documents are less indicative of overall topic.

```
df_i = document frequency of term i
= number of documents containing term i
idf_i = inverse document frequency of term i,
= \log_{10} (N/df_i)
(N: total number of documents)
```

- An indication of a term's discrimination power.
- Log used to dampen the effect relative to tf.

idf example, suppose N = 1 million

term	df _t	idf _t
calpurnia	1	6
animal	100	
sunday	1,000	
fly	10,000	
under	100,000	
the	1,000,000	0

$$idf_t = \log_{10} \left(N/df_t \right)$$

There is one idf value for each term *t* in a collection.

TF-IDF Weighting

 A typical combined term importance indicator is tf-idf weighting:

$$w_{ij} = tf_{ij} idf_i = tf_{ij} \log_{10} (N/df_i)$$

- A term occurring frequently in the document but rarely in the rest of the collection is given high weight.
- Many other ways of determining term weights have been proposed.
- Experimentally, *tf-idf* has been found to work well.

Binary → count → weight matrix

	Antony and Cleopatra	Julius Caesar	The Tempest	Hamlet	Othello	Macbeth
Antony	5.25	3.18	0	0	0	0.35
Brutus	1.21	6.1	0	1	0	0
Caesar	8.59	2.54	0	1.51	0.25	0
Calpurnia	0	1.54	0	0	0	0
Cleopatra	2.85	0	0	0	0	0
mercy	1.51	0	1.9	0.12	5.25	0.88
worser	1.37	0	0.11	4.15	0.25	1.95

Each document is now represented by a real-valued vector of tf-idf weights $\in \mathbb{R}^{|V|}$

How to Measure Similarity?

Given two document

$$D_i = (w_{i1}, w_{i2}, \cdots, w_{iN})$$
 $D_j = (w_{j1}, w_{j2}, \cdots, w_{jN})$

- Similarity definition
 - dot product

$$Sim(D_i, D_j) = \sum_{t=i}^{N} w_{it} * w_{jt}$$

normalized dot product (or cosine)

$$Sim(D_i, D_j) = \frac{\sum_{t=i}^{N} w_{it} * w_{jt}}{\sqrt{\sum_{t=1}^{N} (w_{it})^2 * \sum_{t=1}^{N} (w_{jt})^2}}$$

Illustrative Example

