テンソル積

テンソル

tensor 積 は加群の直積に多重線形性をもたせた集合である。

.....

テンソル積の定義

可換環 R と R 加群 M, N に対し、直積 $M \times N$ を考える。

この直積集合 $M\times N$ に同値関係 \sim を定め、これによる商 $M\times N/\sim$ を M と N のテンソル積といい $M\otimes_R N$ と書く。

同値関係 \sim は次の様に定義する。 $m_1, m_2 \in M, n_1, n_2 \in N, r \in R$

- $(n_1 + n_2, m_1) \sim (n_1, m_1) + (n_2, m_1)$
- $(n_1, m_1 + m_2) \sim (n_1, m_1) + (n_1, m_2)$
- $r(n_1, m_1) \sim (rn_1, m_1) \sim (n_1, rm_1)$

同値関係 \sim の性質からテンソル積の元 $n \otimes m$ は次のような性質を持つ。

- $\bullet (n_1 + n_2) \otimes m_1 = n_1 \otimes m_1 + n_2 \otimes m_1$
- $n_1 \otimes (m_1 + m_2) = n_1 \otimes m_1 + n_1 \otimes m_2$
- $r(n_1 \otimes m_1) = (rn_1) \otimes m_1 = n_1 \otimes (rm_1)$

.....

テンソル積の定義 2

可換環 R に対し、M,N を R 加群とする。

このとき、R 加群 T と R 双線形写像 $\varphi: M \times N \to T$ が存在し、次を満たす。

任意の R 加群 Z と任意の R 双線形写像 $\psi: M\times N\to Z$ に対して、 $\psi=f\circ\varphi$ を満たす R 線形写像 $f:T\to Z$ が唯一つだけ存在する。

このとき、R 加群 T をテンソル積といい $T = M \otimes_R N$ とかく。

加群のテンソル積は、2つ目の定義 (普遍性での定義)を使うことが多い。

1. m,n を正の整数とし、d を m と n の最大公約数とする。 このとき、 $\mathbb{Z}/m\mathbb{Z} \otimes_{\mathbb{Z}} \mathbb{Z}/n\mathbb{Z}$ は $\mathbb{Z}/d\mathbb{Z}$ と同型であることを示せ。

 $\mathbb{Z}/m\mathbb{Z}$ の元を $[z]_m$ というように右下に添え字を書くことで表すものとする。このとき、 $z\in\mathbb{Z}$ である。

 \mathbb{Z} 準同型写像 f を次のように定める。

$$f: \mathbb{Z} \to \mathbb{Z}/m\mathbb{Z} \otimes_{\mathbb{Z}} \mathbb{Z}/n\mathbb{Z}, \qquad z \mapsto [z]_m \otimes [1]_n$$
 (1)

 $\forall [\alpha]_m \otimes [\beta]_n \in \mathbb{Z}/m\mathbb{Z} \otimes_{\mathbb{Z}} \mathbb{Z}/n\mathbb{Z}$ とする。 $[\alpha]_m \otimes [\beta]_n$ は次のように計算できる。

$$[\alpha]_m \otimes [\beta]_n = \beta([\alpha]_m \otimes [1]_n) = [\alpha\beta]_m \otimes [1]_n \tag{2}$$

つまり、 $[\alpha]_m \otimes [\beta]_n = f(\alpha\beta)$ であるので、f は全射である。 そこで f の準同型定理より次が得られる。

$$\mathbb{Z}/\mathrm{Ker} f \cong \mathbb{Z}/m\mathbb{Z} \otimes_{\mathbb{Z}} \mathbb{Z}/n\mathbb{Z} \tag{3}$$

Ker f について調べる。

d は m,n の最大公約数であるので、ある整数 s,t を用いて d=ms+nt と表せる。 $\forall z \in \mathbb{Z}$ に対して、f(dz) を計算する。

$$f(dz) = [dz]_m \otimes [1]_n = [(ms + nt)z]_m \otimes [1]_n$$
(4)
= $[msz]_m \otimes [1]_n + [ntz]_m \otimes [1]_n = [msz]_m \otimes [1]_n + [1]_m \otimes [ntz]_n$ (5)
= $[0]_m \otimes [1]_n + [1]_m \otimes [0]_n = 0$ (6)

つまり、 $d\mathbb{Z} \subset \operatorname{Ker} f$ である。

写像 $\psi: \mathbb{Z}/m\mathbb{Z} \times \mathbb{Z}/n\mathbb{Z} \to \mathbb{Z}/d\mathbb{Z}$ を $\psi([\alpha]_m, [\beta]_n) = [\alpha\beta]_d$ と定める。 ψ は \mathbb{Z} 双線 形写像である。 $\forall [z]_d \in \mathbb{Z}/d\mathbb{Z}$ に対し、 $[z]_d = \psi([z]_m, [1]_n)$ となるので、 ψ は全射である。

テンソル積の普遍性より次の準同型写像 g が存在する。

$$g: \mathbb{Z}/m\mathbb{Z} \otimes_{\mathbb{Z}} \mathbb{Z}/n\mathbb{Z} \to \mathbb{Z}/d\mathbb{Z}, \qquad [\alpha]_m \otimes [\beta]_n \mapsto [\alpha\beta]_d$$
 (7)

 $\varphi: \mathbb{Z}/m\mathbb{Z} \times \mathbb{Z}/n\mathbb{Z} \to \mathbb{Z}/m\mathbb{Z} \otimes_{\mathbb{Z}} \mathbb{Z}/n\mathbb{Z}$ とすれば、 $\psi = g \circ \varphi$ である。 ψ が全射なので、g も全射である。

g の全射性より $[x]_d=g([x]_m\otimes [1]_n)$ となるが、 $f(x)=[x]_m\otimes [1]_n$ であるので $[x]_d=g(f(x))$ 。 $x\in \operatorname{Ker} f$ から f(x)=0 であるので、 $[x]_d=g(f(x))=[0]_d$ であり、 $\operatorname{Ker} f\subset d\mathbb{Z}$ ということがわかる。

よって、 $\operatorname{Ker} f = d\mathbb{Z}$ であるから式 (3) より次が得られる。

$$\mathbb{Z}/d\mathbb{Z} \cong \mathbb{Z}/m\mathbb{Z} \otimes_{\mathbb{Z}} \mathbb{Z}/n\mathbb{Z} \tag{8}$$

2. R を環とするとき、正の整数 m,n に対し $R^n \otimes_R R^m$ と R^{mn} は同型であることを示せ。

.....

 $u_i=(0,\ldots,0,1,0,\ldots,0)\in R^m$ を i 成分のみ 1 とすると R^m は次のように表せる。

$$R^m = \left\{ \sum_{i=1}^m r_i u_i \middle| r_i \in R \right\} \tag{9}$$

 $v_i = (0, \dots, 0, 1, 0, \dots, 0) \in \mathbb{R}^n$ を i 成分のみ 1 とすると \mathbb{R}^n は次のように表せる。

$$R^n = \left\{ \sum_{i=1}^n r_i v_i \middle| r_i \in R \right\} \tag{10}$$

同様に $w_{ij} \in R^{mn}$ を定義し、 R^{mn} を次のように表す。

$$R^{mn} = \left\{ \sum_{i=1}^{m} \sum_{j=1}^{n} r_{ij} w_{ij} \middle| r_{ij} \in R \right\}$$
 (11)

 $a \in R^n, b \in R^m$ を $a = \sum_{j=1}^n a_j v_j, b = \sum_{i=1}^m b_i u_i$ として、テンソル積 $a \otimes b$ を計算する。

$$a \otimes b = \left(\sum_{j=1}^{n} a_j v_j\right) \otimes \left(\sum_{i=1}^{m} b_i u_i\right) = \sum_{j=1}^{n} a_j \left(v_j \otimes \left(\sum_{i=1}^{m} b_i u_i\right)\right)$$
(12)

$$= \sum_{j=1}^{n} a_{j} \left(\sum_{i=1}^{m} b_{i} \left(v_{j} \otimes u_{i} \right) \right) = \sum_{j=1}^{n} \sum_{i=1}^{m} a_{j} b_{i} \left(v_{j} \otimes u_{i} \right)$$
 (13)

準同型写像 $f: R^n \otimes_R R^m \to R^{mn}$ を $f(v_j \otimes u_i) = w_{ij}$ と定める事により $f(a \otimes b) = \sum_{j=1}^n \sum_{i=1}^m a_j b_i w_{ij}$ とする。

f は全単射であるなら、 $R^n \otimes_R R^m$ と R^{mn} は同型である。

 $0 \in R^{mn}$ の逆像 $f^{-1}(0) \in R^n \otimes_R R^m$ を考える。

$$\sum_{i=1}^{n} \sum_{j=1}^{m} a_j b_i w_{ij} = 0 \iff a_j b_i = 0 \ (j = 1, \dots, n, \ i = 1, \dots, m)$$
 (14)

よって、 $(a_1,\ldots,a_m)=(0,\ldots,0)$ または $(b_1,\ldots,b_n)=(0,\ldots,0)$ であるので、 $\operatorname{Ker} f=\{0\}$ となり f は単射である。 (R は整域 ?)

 $\forall c = \sum_{j=1}^n \sum_{i=1}^m c_{ij} w_{ij} \in R^{mn}$ に対し、 $\sum_{j=1}^n \sum_{i=1}^m c_{ij} (v_j \otimes u_i) \in R^n \otimes_R R^m$ が存在し、次の式が成り立つ。

$$\sum_{j=1}^{n} \sum_{i=1}^{m} c_{ij} w_{ij} = f\left(\sum_{j=1}^{n} \sum_{i=1}^{m} c_{ij} (v_j \otimes u_i)\right)$$
(15)

よって、fは全射である。

以上により、f は同型写像であり、 $R^n \otimes R^m \cong R^{mn}$ である。

3. 整数環 \mathbb{Z} 、多項式環 $\mathbb{R}[x]$ はアルチン環ではないことを示せ。

アルティン

 \widehat{Artin} 環とは、イデアル I_n の無限列 $I_1 \supset I_2 \supset \cdots$ が存在するとき、ある N 番目が存在し、 $I_N = I_{N+1} = \cdots$ となるときを言う。

整数環 \mathbb{Z} について、イデアル I_n を $I_n = (2^n)$ と定める。このとき、無限列 $I_1 \supset I_2 \supset \cdots$ が存在し、任意のNに対して $I_N \neq I_{N+1}$ である。よって、 \mathbb{Z} はアルティン環ではない。

多項式環 $\mathbb{R}[x]$ についてイデアル J_n を $J_n=(x^n)$ と定める。このとき、無限列 $J_1 \supset J_2 \supset \cdots$ が存在し、任意の N に対して $J_N \neq J_{N+1}$ である。よって、 $\mathbb{R}[x]$ は アルティン環ではない。

4. K を体とする。n を正の整数とするとき、左 $M_n(K)$ 加群 K^n は単純であることを示せ。

.....

部分加群 $S \subset K^n$ をとってきて $S \neq \{0\}$ とする。

 $s \in S$ を $s \neq 0$ とし、s の 0 でない成分を s_i とする。

 $\forall k \in K^n$ を $k = (k_1, k_2, \dots, k_n)$ とする。

行列 $A \in M_n(K)$ を次のように i 列目以外はすべて 0 の行列として定める。

$$A = \begin{pmatrix} 0 & \cdots & k_1 s_i^{-1} & \cdots & 0 \\ 0 & \cdots & \vdots & \cdots & 0 \\ 0 & \cdots & k_n s_i^{-1} & \cdots & 0 \end{pmatrix}$$
 (16)

これにより k=As となる。よって、 $k\in S$ となり、 $S=K^n$ となる。 つまり、 K^n は単純加群である。

5. 左 $M_n(K)$ 加群 $M_n(K)$ は組成列を持つことを示せ。

K は体とし、 $M_n(K)$ は n 次正方行列全体の集合とする。

 $M_n(K)$ は環としてみて、左イデアル I を考える。

 $A \in I$ が正則行列とする。 $\forall B \in M_n(K)$ に対し、CA = B となる $C \in M_n(K)$ が存在する。 $(C = BA^{-1}$ より)よって、 $I = M_n(K)$ となる。

つまり、I に正則行列が含まれていれば $I=M_n(K)$ である。

 $A \in M_n(K)$ の (1,1) 成分が 0 以外で、その他の成分が 0 である行列とする。 $\forall B \in M_n(K)$ に対し、BA は第 1 列以外が 0 となる行列である。よって、第 1 列以外が 0 である行列全体の集合 I_1 は $M_n(K)$ の左イデアルである。

同様に i 列以外が 0 である行列全体の集合を I_i とすると、これらはすべて左イデアルである。

行列環 $M_n(K)$ の左イデアルは $M_n(K)$ の他、正則でない行列の集合 I_i $(i=1,\ldots,n)$ と各 I_i の組み合わせた集合である。

左イデアルは左加群であるので、組成列は有限となるよって、 $M_n(K)$ は組成列を持つことがわかる。