Додаток 1

Міністерство освіти і науки України Національний технічний університет України «Київський політехнічний інститут імені Ігоря Сікорського" Факультет інформатики та обчислювальної техніки

Кафедра інформатики та програмної інженерії

Звіт

з лабораторної роботи № 8 з дисципліни «Алгоритми та структури даних-1. Основи алгоритмізації»

«Дослідження алгоритмів пошуку та сортування»

Варіант 34

Виконав студент <u>ІП-13 Шиманська Ганна Артурівна</u>

(шифр, прізвище, ім'я, по батькові)

Перевірила Вечерковська Анастасія Сергіївна

(прізвище, ім'я, по батькові)

Лабораторна робота 8

Дослідження алгоритмів пошуку та сортування

Мета — дослідити алгоритми пошуку та сортування, набути практичних навичок використання цих алгоритмів під час складання програмних специфікацій.

Варіант 34

№	Розмірність	Тип	Обчислення значень елементів
варіанта		даних	одновимірного масиву
34	5 x 7	Дійсний	Із середнього арифметичного додатних значень елементів стовпців двовимірного масиву. Відсортувати обміном за спаданням.

• Постановка задачі

Необхідно розробити алгоритм та написати програму, яка складається з наступних дій:

- 1. Опису змінної індексованого типу (двовимірний масив).
- 2. Ініціювання даної змінної.
- 3. Створення нової змінної індексованого типу (одновимірний масив) та її ініціювання значеннями середнього арифметичного додатних значень елементів стовпців двовимірного масиву.
- 4. Відсортовування одновимірного масиву за спаданням.

Побудова математичної моделі

Складемо таблицю змінних

Змінна	Tun	Ім'я	Призначення
Двовимірний	double	matrix	Проміжні дані
масив			

Основи програмування – 1. Алгоритми та структури даних

Одновимірний	double	array	Проміжні дані
масив			
Сума додатніх	double	columnSum	Проміжні дані
елементів			
стовпця			
Кількість	int	counter	Проміжні дані
знайдених			
елементів			
Лічильник і	int	i	Проміжні дані
Лічильник ј	int	j	Проміжні дані
Змінна для запису	double	tmp	Проміжні дані
і-того елементу			
на ітерації			

Складемо таблицю функцій

Назва	Синтаксис	Призначення
Округлення до певної	Round(a, b)	Округлює до в знаків
кількості знаків після		після коми числа а
коми в залежності від		
другого параметра		
Генерація	Next(a,b)	Генерує ціле число з
випадкового		проміжку [a, b)
цілочисельного		
значення у певному		
діапазоні		
Генерація випадкової	NextDouble()	Генерує правильний
дробової частини		десятковий дріб з
числа		проміжку (0, 1)

Повернення довжини	GetLength(a)	Повертає довжину а-
потрібного виміру		го виміру масиву
багатовимірного		
масиву		

Отже, ми будемо заповнювати двовимірний масив за допомогою підпрограми **FillMatrix**, яка за допомогою двох арифметичних циклів заповнить **matrix** з вимірами 5×7 випадково згенерованими дійсними числами.

Далі використовуючи підпрограму **FindPosArithmetic**, робота якої базується на двох for- та одному if- циклах, заповнимо одновимірний масив **array** середнім арифметичним кожного стовпця матриці.

За допомогою підпрограми **SortArray,** у якій за допомогою двох forта одного іf- циклу реалізовано сортування бульбашкою, відсортуємо масив **array** за спаданням.

Використовуючи підпрограму **DisplayArray**, яка реалізується за допомогою арифметичного for- циклу, виведемо кожен елемент відсортованого масиву **array**.

Розв'язання

Програмні специфікації запишемо у псевдокоді та графічній формі у вигляді блок-схеми.

- Крок 1. Визначимо основні дії.
- Крок 2. Деталізуємо дію оголошення двовимірного та одновимірного масивів.
- *Крок 3.* Деталізуємо підпрограму заповнення матриці випадково згенерованими значеннями.

Крок 4. Деталізуємо підпрограму заповнення одновимірного масиву середнім арифметичним додатніх елементів кожного стовпця.

Крок 5. Деталізуємо підпрограму сортування масиву за спаданням.

Крок 6. Деталізуємо підпрограму виведення заповненого одновимірного масиву.

• Псевдокод алгоритму

початок

double[][]matrix = new double[5][7];

double[] array = new double[7];

Виклик підпрограми FillMatrix(matrix)

Виклик підпрограми FindPosArithmetic(array, matrix)

Виклик підпрограми SortArray(array)

Виклик підпрограми DisplayArray(array)

кінець

підпрограма FillMatrix(double[][] matrix)

для і від 0 до 5 повторити

для ј від 0 до 7 повторити

matrix[i][j] = Math.Round(rand.Next(-100, 100) + rand.NextDouble(), 2)

все повторити

все потворити

все підпрограма

підпрограма FindPosArithmetic(double[] array, double[][] matrix)

```
double columnSum
      int counter;
      для ј від 0 до 7 повторити
           counter = 0
           columnSum = 0
           для і від 0 до 7 повторити
                 якщо matrix[i][j] > 0
                 columnSum += matrix[i, j]
                 counter++
                 все якщо
           все повторити
       якщо counter != 0
           array[j] = columnSum / counter
       все якщо
все підпрограма
підпрограма SortArray(double[] array)
     double tmp;
           для і від 0 до 6 повторити
                 для ј від 0 до 6 повторити
```

якщо array[j] < array[j + 1]

$$tmp = array[j]$$
 $array[j] = array[j + 1]$
 $array[j + 1] = tmp$

все якщо

все повторити

все повторити

все підпрограма

підпрограма DisplayArray(double[] array)

для і від 0 до 7 повторити

виведення array[i]

все повторити все підпрограма

• Блок-схема

Основна програма

Підпрограми

• Код програми

Основна програма

Підпрограми

```
static void FindPosArithmetic(dguble[] array, double[,] matrix)

{
    double columnSum;
    int counter;
    for (int j = 0; j < matrix.GetLength(dimension:1); j++)

    {
        counter = 0;
        columnSum = 0;
        for (int i = 0; i < matrix.GetLength(dimension:0); i++)

        {
            columnSum += matrix[i, j];
            counter++;
        }

        if (counter != 0)
        array[j] = columnSum / counter;
}
</pre>
```

• Висновки:

Виконуючи лабораторну роботу, я дослідила особливості алгоритмів пошуку та сортування, набула практичних навичок їх використання під час складання програмних специфікацій. Зокрема, я створила програму для знаходження середнього арифметичного додатніх елементів стовпців матриці та відсортувала

отриманий масив значень бульбашкою. Після сортування елементи розмістилися за спаданням. На третьому тестуванні помітно також, що у випадку, коли в стовпці матриці немає додатніх елементів, у масив передається значення "0" на місці відповідної суми.