Trojan Detection

Out[2]:

0		Unnamed: 0	Flow ID	Source IP Source Po			Destination Port	Protocol	Timestamp	Du
	0	73217	10.42.0.42- 121.14.255.84- 49975-80-6	10.42.0.42	49975	121.14.255.84	80	6	17/07/2017 01:18:33	107
	1	72089	172.217.6.226- 10.42.0.42- 443-49169-17	10.42.0.42	49169	172.217.6.226	443	17	17/07/2017 10:25:25	ź
	2	96676	10.42.0.1- 10.42.0.42-53- 37749-17	10.42.0.42	37749	10.42.0.1	53	17	30/06/2017 07:16:12	1(
	3	42891	10.42.0.1- 10.42.0.42-53- 41352-17	10.42.0.42	41352	10.42.0.1	53	17	13/07/2017 03:48:44	2
	4	169326	10.42.0.151- 107.22.241.77- 44353-443-6	10.42.0.151	44353	107.22.241.77	443	6	05/07/2017 10:47:35	65(

5 rows × 86 columns

Pre-Cleaning data

```
In [3]: df = df.dropna()

df.drop(["Unnamed: 0"], axis = 1).values

df = df.replace("Trojan", 1)
 df = df.replace("Benign", 0)

df.head()
```

Out[3]:		Unnamed: 0	Flow ID	Source IP	Source Port	Destination IP	Destination Port	Protocol	Timestamp	Du
	0	73217	10.42.0.42- 121.14.255.84- 49975-80-6	10.42.0.42	49975	121.14.255.84	80	6	17/07/2017 01:18:33	107
	1	72089	172.217.6.226- 10.42.0.42- 443-49169-17	10.42.0.42	49169	172.217.6.226	443	17	17/07/2017 10:25:25	2
	2	96676	10.42.0.1- 10.42.0.42-53- 37749-17	10.42.0.42	37749	10.42.0.1	53	17	30/06/2017 07:16:12	1(
	3	42891	10.42.0.1- 10.42.0.42-53- 41352-17	10.42.0.42	41352	10.42.0.1	53	17	13/07/2017 03:48:44	ć
	4	169326	10.42.0.151- 107.22.241.77- 44353-443-6	10.42.0.151	44353	107.22.241.77	443	6	05/07/2017 10:47:35	656

5 rows × 86 columns

Encoding

```
In [4]: from sklearn import preprocessing
  number = preprocessing.LabelEncoder()

df["Flow ID"] = number.fit_transform(df["Flow ID"])
  df["Source IP"] = number.fit_transform(df["Source IP"])
  df["Destination IP"] = number.fit_transform(df["Destination IP"])
  df["Timestamp"] = number.fit_transform(df["Timestamp"])
```

_		F 4 7	
/ Ni	1 -	1 /1	

•	Unname	d: Flow 0 ID		Source Port	Destination IP	Destination Port	Protocol	Timestamp	Flow Duration	To F Pack
	732	7 46111	7	49975	352	80	6	36269	10743584	
	7208	9 74905	7	49169	895	443	17	39241	254217	
1	9667	'6 9217	7	37749	7	53	17	42069	1023244	
;	4289	10418	7	41352	7	53	17	29885	286483	
	4 16932	20763	5	44353	220	443	6	16589	65633087	

5 rows × 86 columns

```
In [5]: from sklearn.model_selection import train_test_split
        # Columns used as predictors
        X = df.drop(["Class"], axis = 1).values
        y = df["Class"].values
        X train, X test, y train, y test = train test split(X, y, random state = 0, test size
In [6]: # from pandas import read_csv
        from tensorflow.keras.models import Sequential
        from tensorflow.keras.layers import Dense
        from tensorflow.keras.wrappers.scikit_learn import KerasRegressor
        from sklearn.model_selection import cross_val_score
        from sklearn.model selection import KFold
        from sklearn.pipeline import Pipeline
        from sklearn.model_selection import train_test_split
        from sklearn.metrics import mean squared error, mean absolute error
        #Scale data, otherwise model will fail.
        #Standardize features by removing the mean and scaling to unit variance
        from sklearn.preprocessing import StandardScaler
        scaler=StandardScaler()
        scaler.fit(X train)
        X train scaled = scaler.transform(X train)
        X test scaled = scaler.transform(X test)
        # define the model
        #Experiment with deeper and wider networks
        model = Sequential()
        model.add(Dense(128, input dim=85, activation='relu'))
        model.add(Dense(64, input dim=85, activation='relu'))
        model.add(Dense(64, input_dim=85, activation='relu'))
        model.add(Dense(64, input_dim=85, activation='relu'))
        #Output Laver
        model.add(Dense(1, activation='relu'))
        model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy'])
        model.summary()
        history = model.fit(X_train_scaled, y_train, validation_split=0.2, epochs =20)
        from matplotlib import pyplot as plt
        #plot the training and validation accuracy and loss at each epoch
        loss = history.history['loss']
        val_loss = history.history['val_loss']
        epochs = range(1, len(loss) + 1)
        plt.plot(epochs, loss, 'y', label='Training loss')
        plt.plot(epochs, val_loss, 'r', label='Validation loss')
        plt.title('Training and validation loss')
        plt.xlabel('Epochs')
        plt.ylabel('Loss')
```

plt.legend()
plt.show()

```
Layer (type)
             Output Shape
                         Param #
______
dense (Dense)
             (None, 128)
                         11008
dense 1 (Dense)
             (None, 64)
                         8256
dense 2 (Dense)
             (None, 64)
                         4160
dense 3 (Dense)
             (None, 64)
                         4160
dense 4 (Dense)
                         65
             (None, 1)
______
Total params: 27,649
Trainable params: 27,649
Non-trainable params: 0
Epoch 1/20
0.9336 - val_loss: 0.2308 - val_accuracy: 0.9801
Epoch 2/20
0.9824 - val loss: 0.2795 - val accuracy: 0.9779
Epoch 3/20
0.9770 - val loss: 0.1510 - val accuracy: 0.9889
Epoch 4/20
0.9827 - val loss: 0.3882 - val accuracy: 0.9735
Epoch 5/20
0.9788 - val loss: 0.2039 - val accuracy: 0.9864
0.9822 - val_loss: 0.2931 - val_accuracy: 0.9804
Epoch 7/20
0.9782 - val loss: 0.4454 - val accuracy: 0.9709
Epoch 8/20
0.9800 - val loss: 0.1580 - val accuracy: 0.9894
Epoch 9/20
0.9854 - val_loss: 0.4135 - val_accuracy: 0.9730
Epoch 10/20
0.9700 - val_loss: 0.5015 - val_accuracy: 0.9671
Epoch 11/20
0.9698 - val_loss: 0.3011 - val_accuracy: 0.9798
Epoch 12/20
0.9857 - val_loss: 0.2024 - val_accuracy: 0.9867
Epoch 13/20
0.9740 - val loss: 0.4089 - val accuracy: 0.9734
Epoch 14/20
```

0.9782 - val loss: 0.2407 - val accuracy: 0.9843

```
Epoch 15/20
0.9818 - val_loss: 0.2496 - val_accuracy: 0.9836
Epoch 16/20
0.9833 - val_loss: 0.2402 - val_accuracy: 0.9843
Epoch 17/20
0.9804 - val loss: 0.3010 - val accuracy: 0.9802
0.9796 - val_loss: 0.1930 - val_accuracy: 0.9873
Epoch 19/20
0.9782 - val_loss: 0.3903 - val_accuracy: 0.9745
Epoch 20/20
0.9790 - val_loss: 0.3507 - val_accuracy: 0.9770
```

