

Eksempelsett

13.09.2021

REA3056 Matematikk R1

Bokmål

Eksamensinformasjon					
Eksamenstid	Eksamen varer i 5 timer. Delen uten og delen med hjelpemidler skal deles ut samtidig. Delen uten hjelpemidler skal leveres etter 1 time. Etter 1 time kan kandidaten bruke hjelpemidler. Delen med hjelpemidler skal leveres innen 5 timer.				
Del uten hjelpemidler	Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler.				
Del med hjelpemidler	Alle hjelpemidler er tillatt, med unntak av internett og andre verktøy som tillater kommunikasjon.				
Framgangsmåte	Delen uten hjelpemidler har 5 oppgaver. Delen med hjelpemidler har 7 oppgaver. Der oppgaveteksten ikke sier noe annet, kan du fritt velge framgangsmåte. Dersom oppgaven krever en bestemt løsningsmetode, kan en alternativ metode gi lav/noe uttelling. Bruk av digitale verktøy skal dokumenteres.				
Veiledning om vurderingen	Karakteren blir fastsatt etter en samlet vurdering. Det betyr at sensor vurderer i hvilken grad du - viser regneferdigheter og matematisk forståelse - gjennomfører logiske resonnementer - ser sammenhenger i faget, er oppfinnsom og kan ta i bruk fagkunnskap i nye situasjoner - kan bruke hensiktsmessige hjelpemidler - forklarer framgangsmåter og begrunner svar - skriver oversiktlig og er nøyaktig med utregninger, benevninger, tabeller og grafiske framstillinger - vurderer om svar er rimelige				
Andre opplysninger	Tegninger og grafiske framstillinger: Utdanningsdirektoratet				

DEL 1 Uten hjelpemidler

Oppgave 1

Bestem grenseverdien

$$\lim_{x\to 1}\frac{x-1}{x^2+x-2}$$

Oppgave 2

Vi har gitt vektorene $\vec{a} = [2, -5], \vec{b} = [1, -4], \vec{c} = [-2, 10] \text{ og } \vec{d} = [4, 1]$

- a) Avgjør om noen av vektorer har lik lengde.
- b) Avgjør om noen av vektorer står normalt på hverandre.
- c) Avgjør om noen av vektorene er parallelle.

Oppgave 3

En elev har skrevet programkoden ovenfor.

- a) Hva ønsker eleven å finne ut?
- b) Forklar hva som skjer når programmet kjøres. Hva blir resultatet?

Bruk vektorregning til å bestemme koordinatene til punktet vi får når vi speiler P(6,1) om linjen y=2x+4.

Oppgave 5

Funksjonen f er gitt ved

$$f(x) = 4x \cdot e^{-x}$$

En av grafene nedenfor er grafen til f.

Begrunn hvilken av grafene nedenfor som er grafen til f.

DEL 2 Med hjelpemidler

Oppgave 1

En fotballspiller tok et frispark. Han sparket ballen i retning av motstandernes mål. Ballens posisjon t sekunder etter at frisparket ble tatt er gitt ved vektorfunksjonen

$$\vec{r}(t) = \left[28t - 3t^2, 10t - 5t^2\right]$$

Enheten langs aksene er meter.

- a) Bestem banefarten ballen fikk da den ble sparket.
- b) Hvor lang tid tok det fra ballen ble sparket til den traff bakken?
- c) Bestem ballens banefart da den var i sitt høyeste punkt.

Oppgave 2

Funksjonen f er gitt ved

$$f(x) = x^4 - b \cdot x^3 + 2$$
, $D_f = [-3, \rightarrow)$

For hvilke verdier av b har f en omvendt funksjon?

En sirkel C kan beskrives ved å oppgi sentrum S(a, b) og radius r.

- a) Beskriv en algoritme som du kan bruke til å avgjør om et gitt punkt P(s,t) ligger på, inni eller utenfor sirkelen C.
- b) Skriv en kode basert på algoritmen fra oppgave a). Input skal være a, b, r, s og t. Output skal være en av følgende tekster:
 - Punktet ligger innenfor sirkelen
 - Punktet ligger på sirkelen
 - Punktet ligger utenfor sirkelen

Oppgave 4

Temperaturen i en kopp kaffe blir målt hvert fjerde minutt. Temperaturen i rommet der koppen står er 21,2 °C. Resultatet av målingene er vist i tabellen nedenfor.

Tid (minutt)	0	4	8	12	16
Temperatur (°C)	70	53	42	35	30

En elev har brukt et digitalt verktøy og kommet fram til følgende regresjonsmodeller ut fra tallene i tabellen:

$$f(x) = -2,45x + 65,6$$

$$g(x) = 0,13x^{2} - 4,45x + 70$$

$$h(x) = 21,2 + 49 \cdot e^{-0,11x}$$

- a) Vis hvordan eleven kan ha kommet fram til modellen h.
- b) Vurder gyldighetsområdet til de ulike modellene ut fra den praktiske situasjonen.

En funksjon f er gitt ved

$$f(x) = \begin{cases} 2x^2 + 3x + a, & x < 1 \\ -2x^2 + b \cdot x, & x \ge 1 \end{cases}$$

- a) Bestem a og b slik at f blir deriverbar i x = 1
- b) Avgjør om grafen til f har vendepunkt.

Oppgave 6

Funksjonen f er gitt ved

$$f(x) = \frac{e^x}{e^x + C}$$

der C er en konstant.

- a) Finnes det noen verdier for *C* som gjør at grafen til *f* har et topp- eller bunnpunkt?
- b) Undersøk og bestem hvilke verdier for *C* som gjør at grafen til *f* har et vendepunkt.
- c) Anta C > 0. Vis at $f(x + \ln C) = \frac{e^x}{e^x + 1}$. Beskriv hvordan grafen til f påvirkes når verdien til C endres.
- d) Anta C < 0. Beskriv hvordan grafen til f påvirkes når verdien til C endres.

Vi har følgende resultat:

Anta at grafen til en tredjegradsfunksjon f skjærer en linje ℓ i tre punkter med x-koordinater x_1 , x_2 og x_3 . La $m = \frac{x_1 + x_2}{2}$.

Da vil tangenten til grafen til f i punktet (m,f(m)) gå gjennom punktet $(x_3,f(x_3))$.

a) Vis at resultatet stemmer for funksjonen f gitt ved

$$f(x) = x^3 - x^2 - 2x + 3$$

og linjen
$$y = 2x - 1$$
 når $x_1 = -2$, $x_2 = 1$ og $x_3 = 2$.

La g være en tredjegradsfunksjon. Anta at en linje y = ax + b skjærer grafen til g i $(x_1, f(x_1)), (x_2, f(x_2))$ og $(x_3, f(x_3))$.

b) Forklar at vi kan skrive g på formen

$$g(x) = k(x - x_1)(x - x_2)(x - x_3) + (ax + b)$$
, der $k \in \mathbb{R}$.

c) Vis at tangenten til grafen til g i $m = \frac{x_1 + x_2}{2}$ går gjennom $(x_3, g(x_3))$.

Gitt funksjonen $h(x) = x^3 - 2x + 1$ og punktet P(2,5). Vi ønsker å tegne en tangent til grafen til h som går gjennom P.

d) Forklar hvordan vi kan bruke linjen y = 2x + 1 til å bestemme tangeringspunktet.

Takk for at du gjennomgikk eksempeloppgavene!

Her kan du gi oss dine tilbakemeldinger (questback):

https://response.questback.com/utdanningsdirektoratet/cukpc0zvn8

TIPS TIL DEG SOM AKKURAT HAR FÅTT EKSAMENSOPPGÅVA:

- Start med å lese oppgåveinstruksen godt.
- Hugs å føre opp kjeldene i svaret ditt dersom du bruker kjelder.
- Les gjennom det du har skrive, før du leverer.
- Bruk tida. Det er lurt å drikke og ete undervegs.

Lykke til!

TIPS TIL DEG SOM AKKURAT HAR FÅTT EKSAMENSOPPGAVEN:

- Start med å lese oppgaveinstruksen godt.
- Husk å føre opp kildene i svaret ditt hvis du bruker kilder.
- Les gjennom det du har skrevet, før du leverer.
- Bruk tiden. Det er lurt å drikke og spise underveis.

Lykke til!