Ain Shams University Faculty of Engineering

Alpha-Beta Pruned Chess AI Engine

Project Description

This project involves the development of an interactive chess game in which a human player competes against an AI agent. The AI engine must implement the **Alpha-Beta pruning algorithm**, an optimized version of the minimax algorithm widely used in adversarial search problems.

The project emphasizes understanding core AI techniques for decision-making in competitive environments, especially two-player games. It also offers flexibility for students to explore further enhancements such as **move ordering**, **heuristic evaluation functions**, and other performance optimizations.

Students are expected to implement a functional chessboard that enforces the official rules of chess, including legal move validation, check, and checkmate detection. The AI component should be capable of planning multiple moves ahead using alpha-beta pruning and should adapt to different configurations.

Project goals

The goals of this project are two-fold:

1. **Functional Chess Game**: Build a complete and playable chess interface where a human player can make any legal move. The game must enforce check, checkmate, and no illegal moves should be allowed.

2. Al Chess Agent using Alpha-Beta Pruning:

- Implement an AI agent that uses alpha-beta pruning to search for at least 4 plies
 (2 moves per player) into the future.
- The agent should consistently outperform a random move generator.
- The alpha-beta engine should be configurable, allowing experiments with different depths, evaluation strategies, or enhancements (optionally) (e.g., move ordering, iterative deepening).
- It must be possible to simulate a match between two AI agents using different alpha-beta configurations, with the stronger agent winning in most simulations.

Ain Shams University Faculty of Engineering

Assumptions

Students are allowed and encouraged to make and document reasonable assumptions to guide their implementations. Some examples include:

- The choice of heuristic evaluation function to score non-terminal board states.
- How move ordering is implemented (e.g., ordering captures first to improve pruning efficiency).
- Handling of special rules like castling, en passant, and pawn promotion—either implemented or excluded, but clearly stated.
- The internal representation of the board and search tree.
- Stating optimizations if they are used with the motivation behind each optimization.
- Programming language and libraries (e.g., using pygame for GUI or python-chess for board validation).

Milestones

Milestone 1: Functional Chessboard + Random Agent (10 marks)

- Develop the complete chessboard interface with rule enforcement (legal move generation, check, and checkmate detection). (5 marks)
- Implement a random move generator agent as the initial AI opponent. (3 marks)
- Human player should be able to play against the random agent interactively. (2 marks)

Milestone 2: Alpha-Beta Al Engine + Simulation Experiments (20 marks)

- Implement the alpha-beta pruning algorithm as the main AI opponent. (10 marks)
- Enable depth configuration, move ordering, and optional enhancements. (3 marks)
- Evaluate and report on performance and outcomes. (3 marks)
- Simulate games between:
 - Alpha-beta agent vs random agent (alpha-beta must win most games). (2 marks)
 - Alpha-beta agent (simple config) vs alpha-beta agent (optimized config). (2 marks)

Ain Shams University Faculty of Engineering

Deliverables

1. Source Code:

- Fully functional codebase that runs the chess game with both random and alpha-beta agents.
- Code must be modular and readable, with clear documentation on how to configure Al parameters.

2. Documentation:

A short report detailing:

- Project overview
- Assumptions made
- Implementation choices
- Description of the AI agent(s) and the strategy made
- Heuristic function motivation
- detailed problem formulation and task environment
- Parameter configurations and experimental setup
- Results and observations from simulations

3. **Demonstration Meeting**:

Each student/team will attend a brief live session to:

- Run their program
- Show a few moves between human vs AI and AI vs AI
- Discuss their approach and results