松弛涡旋积累法测量大气颗粒物通量

答辩人: 赵鹏

导 师: 朱彤

北京大学环境学院 环境模拟与污染控制国家重点联合实验室

主要内容

- 研究背景、目的和意义
- 研究方法
- 观测条件
- 观测结果与讨论
- 结论与展望

研究背景

- 大气颗粒物:
 - 影响:环境质量,人体健康
 - 研究内容: 化学成分, 粒径分布, 源汇机制等
- 颗粒物的通量研究:
 - 通量: 近地层的通量可以估计地面-大气的作用。
 - 外场观测:
 - 不同模式对沉降速度的估计结果有明显差异;缺乏足够的实验证据;急需外场观测的支持
 - 沉降受多种因素共同制约: 粒径、大气稳定性
 - 排放同气象条件和颗粒物的形成密切相关
 - 沉降与排放的准确定量困难,交换和输送研究较少,限制了对颗粒物地-气交换的认识。对通量测量技术的需要非常迫切。

微气象学方法

研究湍流作用下物质和能量穿过地表或者在地表层的输送和 扩散。

几种通量测量方法的比较

方法	原理	优势	局限
梯度法 AGM	$=\frac{ku^*\left(C_{z_2}-C_{z_1}\right)}{\ln\left(\frac{z_2-d}{z_1-d}\right)+\Psi_c\left(\frac{z_1-d}{L}\right)-\Psi_c\left(\frac{z_2-d}{L}\right)}$	理论成熟; 仪器简单	多点测量; 平均通量
涡旋相关 EC	$F_{c} = \overline{w' \rho_{c}'}$	理论上最为完善	快响应浓度传 感器 的要求
松弛涡旋积 REA	累		

松弛涡旋积累法(REA)

$$F = \beta \sigma_{w} (\overline{c^{+}} - \overline{c^{-}})$$

- 采样:
 - 实时采集w信号,得到 σ_w 。
 - 向上和向下运动的气流以稳定的采样流速分别采集。
- 分析:
 - -样品在线分析或带回实验室分析得到 m^+ 和 m^- 。
 - 根据采样体积计算得到浓度。
- **\beta** :

$$\beta = \frac{F_{q,EC}}{\sigma_w(c_q^+ - c_q^-)}$$

REA应用现状

优势

- EC基础上, 仪器要求较松弛; 可在线分析, 也可对样品富集或 采集后通过保存带回实验室分析

不足

- 要求高精度的分析仪器
- 研究较少

• 观测对象

- 地面观测塔和飞机航测: CO₂, H₂O, CH₄, N₂O, VOCs, NH₃,
 COS和CS₂, Hg, 农药, 大气颗粒物等。
- 国内报道: DDTs, N₂O

研究意义

- REA已有研究——颗粒物数浓度通量
 - · Scherry(1998)首次测量纳米粒子的数浓度通量。
 - Gaman (2004) 首次测量亚微米粒子的数浓度通量和沉降速度
- 颗粒物质量浓度通量和离子通量
 - 质量浓度是颗粒物的重要特征,考察地-气颗粒物的质量交换具有重大的现实意义。
 - 颗粒物中的化学成分;氮、硫等物质的定量交换信息将有利于 揭示它们在地面-大气之间的输入和输出规律。
- 农田的大气颗粒物
 - 过量使用化肥(氮肥)——氨的释放——细颗粒物的生成
 - 鉴别农业地区大气颗粒物的来源和输送规律

研究目的和内容

- 建立大气颗粒物通量测量的REA方法
 - 首次用来测量颗粒物质量通量
 - 考察REA方法应用于颗粒物通量测量的适用性
 - 拓展REA方法的应用范围
- 研究农田大气颗粒物的排放和沉降
 - 农田中地表-大气的交换规律

技术路线

主要内容

- 研究背景、目的和意义
- 研究方法
- 观测条件
- 观测结果与讨论
- 结论与展望

采样系统EC-REA

采样系统MOUDI

- 微孔均匀沉积式碰撞采样器
 - 颗粒物质量粒径分布
 - 前置扩散管:除去NH3(梁宝生)

扩散管-MOUDI实图

<u>1:</u>	<u>10 ~18</u>	μm
<u>2:</u>	5.4 ∼10	μm
<u>3:</u>	3.2 ~5.4	μm
4:	1.8 ~3.2	um
5:	1.0 ~1.8	μm
6:		•
7:		•
8:	$0.18 \sim 0.32$	μm

粗粒子

细粒子

实验室分析

• 质量:

- 百万分之一天平(MX5型天平,Mettler-Toledo公司,瑞士): 可读性1 μ g,最大负载5.1 g,配有 φ 110 mm滤纸称量组件。
- 超净实验室恒温(20±1℃)恒湿(RH 45±5%)放置24 h以上平衡,除去静电干扰

$$c(\text{air}, \mu g \cdot \text{m}^{-3}) = \frac{m_2(g) - m_1(g)}{V(\text{air}, L)} \cdot 10^9$$

• 水溶性无机离子:

- 离子色谱: Na+, NH₄+, K+, Mg²⁺, Ca²⁺; F-, Cl-, NO₃-, SO₄²⁻

-
$$c(\text{air}, \mu g \cdot \text{m}^{-3}) = \frac{c(\text{sol}, \mu g \cdot \text{mL}^{-1}) \cdot V(\text{sol}, \text{mL})}{V(\text{air}, \text{L})} \cdot 10^3$$

采样的质量保证和质量控制

- 样品编号规则
- 超声风速仪探头:垂直方向——水平尺
- w、T、CO₂/H₂O浓度: 野点剔除(康凌)
- w = UV, T, H_2O , CO_2 的协谱图: 湍流的准确性(康凌)

DOY 222 10: 00~11:00 REA系统采样流速

样品处理和分析中的质量保证和质量控制

- 采样膜称重
- 采样膜提取效率
- 空白
 - 野外空白,运输空白,实验室空白,滤膜过滤器空白
 - 计算通量时未扣除空白
- 离子色谱分析
 - 标准曲线: 样品浓度的0.5~2倍,每天样品溶液、标准溶液和空白同一批分析, $\mathbb{R}^2 \ge 0.995$ 。
 - 保留时间的RSD < 0.4%, 浓度的RSD在0.2~4.6%
 - 保留时间,灵敏度,检测限

	F	C1 ⁻	NO_3	SO_4^{2-}	Na ⁺	NH_4^+	K^+	Mg^{2+}	Ca ²⁺
保留时间(min)	2.93	4.09	7.36	10.44	3.97	4.54	6.02	8.73	11.28
灵敏度(μS min ppm ⁻¹)	0.731	0.517	0.271	0.347	0.360	0.275	0.237	0.644	0.418
DL(溶液中)(ppm)	0.059	0.115	0.364	0.332	0.013	0.031	0.026	0.022	0.041

主要内容

- 研究背景、目的和意义
- 研究方法
- 观测条件
- 观测结果与讨论
- 结论与展望

观测点选取

农田

- 氮肥的施用造成NH₃
 的挥发和细粒子的
 生成。
- 南北方农田的差异: 肥料品种,土壤酸 碱特性。

观测点描述

| 順义 惠州 | 100 亩蔬菜, 0.15~0.35 m | 800 亩蔬菜, 0.02~0.40 m | 超声风速仪探头 | 1.5 m, 西南风 | 1.5 m, 北风 | 次业活动 | 狮马牌高氮型 21-8-11s 复合肥, 海藻素复肥 | 含氮量 21%, 其中 35% 为硝态氮, 65% 为铵态氮 | 07:00~19:30 | 07:00~17:30

主要内容

- 研究背景、目的和意义
- 研究方法
- 观测条件
- 观测结果与讨论
- 结论与展望

观测期间的气象条件

顺义				惠州			
DOY	气温(°C)	水平风速 (m s ⁻¹)	天气	DOY	气温 (℃)	水平风速 (m s ⁻¹)	天气
220	28.7	0.99	多云	324	20.6	1.64 NNW	晴
221	30.6	0.73	多云	325	19.8	0.79 SSW	晴
222	29.8	1.36	多云	326	18.0	1.01 NNE	晴
223			多云	328	22.3	0.84 WNW	晴转多云
224	26.9	1.60	阴	329	24.8	0.65 NNW	阴转多云
225			雨	331	20.1	4.96 NNE	多云转晴
226	23.2	0.84	阴转晴	333	20.3	1.45 NNW	晴
227	24.3	0.60	阴转晴	334	22.1	1.90 NNW	晴
228	22.4	0.92	阴有短时小雨	335	22.2	1.19 NNW	晴
				336	21.9	0.95 SSW	晴
				337	23.4	1.82 NNW	晴
				338	23.3	3.52 NNE	晴转多云

顺义大气颗粒物的垂直通量

• 排放为主

- \checkmark $F = 2.9 \pm 5.1$ μg m⁻² s⁻¹ (n=38) ,范围-3.5~17.6 μg m⁻² s⁻¹
- ✓ 降雨前F相对较大,降雨 后明显减少
- ✓ 气温和颗粒物浓度呈类似 现象

惠州大气颗粒物的垂直通量

• 沉降为主

 \checkmark $F = -0.42 \pm 3.9 \mu g m^{-2} s^{-1}$ (n=67) ,范围-15~8.2 $\mu g m^{-2} s^{-1}$

大气颗粒物的质量浓度谱分布

• 细粒子主导:

- 顺义: 占PM₁₀的59%, 相关系数0.987
- 惠州: 占PM₁₀的70%, 相关系数0.980

• 细粒子主要成分:

- 顺义: SO₄²-、NO₃-和NH₄+占53%
- 惠州: SO₄²⁻、NH₄⁺和NO₃-占34%
- SO₄²·、NO₃·和NH₄+主要存在于细粒子中

• 颗粒物的通量:

- 细粒子通量
- SO₄²-、NO₃-和NH₄+的通量

细粒子离子浓度的逐日变化

□□□ 细粒子SO

//// 细粒子NO。

-风速

── 细粒子NH』

NH3的排放和光化学反应

 $NH_3(g)+HNO_3(g, aq)$ $\stackrel{\circ}{\mathbb{R}}$ $NH_4NO_3(s)$

NH』NO。形式存在

两观测点通量的差异

- 细粒子NH₄+
 - 土壤酸性: 南方高于北方
 - 施肥种类: 铵态氮
 - 作物种类: 植物气孔排放的不确定性
 - 光化学反应

土壤,肥料,作物,气候的不同

农田NH3的排放量和酸性气体的生成量不同

细粒子的生成量不同

两观测点地-气净通量的不同

观测点大气颗粒物离子通量(白天)

• 顺义: 地表向大气输入

 $-NH_4^+$: 0.034 kg ha⁻¹ d⁻¹

 $-NO_3^-$: 0.023 kg ha⁻¹ d⁻¹

 $-SO_4^{2-}$: 0.91 kg ha-1 d⁻¹

• 惠州: 大气向地表输入

	NH_4 - $N/mg m^{-2} d^{-1}$	SO ₄ -S/mg m ⁻² d ⁻¹	沉降界面
Harrison and Allen, 1991	0.274		
Tanner <i>et al.</i> , 2001	0.05~0.17	0.423~0.897	建筑顶
Krupa, 2003	5.4~26		森林冠层,草地等
Erisman, 1994	3.2		
Nemitz et al., 2004	1.07(白天)	1.34(白天)	heathland
本研究	2.4(白天)	4.0(白天)	菜地

沉降速度的比较

	$V_d/(\text{cm s}^{-1})$	沉降界面	参考文献
NH ₄ ⁺	1.0	Beech canopy	Hofken and Gravenhorst, 1982
	0.7~1.3	Beech	Hofken et al., 1983
		canopy(throughfall)	
	0.7~2.1	Spruce	Hofken et al., 1983
		canopy(throughfall)	
	0.5~1.5	Spruce/beach	Gravenhorst et al., 1983
		forest(throughfall)	
	0.44~0.60	Ceanothus	Bytnerowicz et al., 1987
		crassifolius	
		leaves/canopy	
	0.2	Heathlands/bogs	Duyzer et al., 1987
	0.15		Harrison and Allen, 1991
	0.02~1.04		Nemitz <i>et al.</i> , 2000
	0.04~0.06		Tanner <i>et al.</i> , 2001
	1.1~2.3		Rattray, 2001
	4.8±3.7		本研究
SO_4^{2-}	0.7~2.7	Forest canopy	Duyzer, 1994
	0.49		Nemitz <i>et al.</i> , 2000
	0.23~0.25		Tanner <i>et al.</i> , 2001
	0.7		Hicks, 1982
	4.5±3.5		本研究
NO ₃	0.7~9.0	Forest canopy	Duyzer, 1994
	0.15		Harrison and Allen, 1991
	1.01		Nemitz et al., 2000
	0.29~0.35		Tanner, et al., 2001
	5.4 ±4.2		本研究

 $V_d = F/c$,结果高于文献值

❖粒径的差异

❖ V_a测量值明显高于预测值

❖Ⅴ。白天比夜间高

❖沉降来自测量水平上方的源。沉降速度依赖于气象条件、空气质量、植物生理参数和气溶胶组成等多种因素

主要内容

- 研究背景、目的和意义
- 研究方法
- 观测条件
- 观测结果与讨论
- 结论与展望

结论1

- 首次建立了测量大气颗粒物质量和离子组分通量的 REA方法:
 - 采用超声风速仪-两通阀控制的条件采样装置,利用EC法 测量潜热通量来得到经验参数β,扩散管-层叠膜系统采集 颗粒物,样品采用微克级天平和离子色谱法进行质量和离子成分的分析。
 - 建立了采样、前处理和分析过程一系列质量保证和质量控制措施。
 - 通量、沉降速度与已有研究具有一定的可比性。

结论2

- REA结合大气颗粒物的分级采样,于北京顺义和 广东惠州的农田进行了观测:
 - 顺义与惠州白天农田颗粒物分别以排放和沉降为主; 以细粒子(NH₄)₂SO₄和NH₄NO₃的形式,分别有一定量 的N、S的输出和输入。
 - 观测点颗粒物的通量和浓度同农田NH₃的排放和光化学 反应有密切关系。肥料种类、土壤酸性和作物种类的 不同可能是造成两观测点颗粒物及其离子成分地-气交 换方向的差异。

展望——REA改进

- 采样装置:安置粒径切割头
 - 简化研究对象
 - 细粒子通量具有代表性: N,S
 - 需要增加采样流速
- 控制系统
 - 设置 w_d =0.5 σ_w , 测得 β = 0.392 ± 0.002 (Katul, 1996; Christensen, 2000; Gaman, 2004)
 - 消除了β对采样条件如风速和大气稳定性的依赖
- 结果的验证
 - 数浓度通量: EC
 - 离子通量: AGM
 - 沉降速度——通量"归一化"
- 在线分析
 - 膜采样: 耗费人力,容易引入误差
 - TEOM(锥形元件振荡微天平): 颗粒物质量浓度
 - SJAC(蒸汽喷射气溶胶颗粒物采集器): 颗粒物离子浓度

谢 谢!