



Course: EE3063 - Dr. Pham Viet Cuong

Conducted by Group 09

21/11/2018



### Content

- Problem definition
- Literature review
- Implementation
- Experimental results
- Demo















#### **Constraints:**

- Single face
- Frontal view
- Standard webcam (480x640)
- Open-set recognition

Nguyen Tan Sy

Graphic User Interact

**Le Van Hoang Phuong**Attention, Attendance Management

Nguyen Van Qui Face and Landmark Detection



**Nguyen Tan Phu**Blur Detection

#### A. Relative works

#### 1. Face Detection and Alignment

The face detector proposed by Viola and Jones used Haar-Like features and AdaBoost algorithm to train cascaded classifiers



#### A Convolutional Neural Network Cascade for Face Detection



#### Multi-task Convolutional Network





The learning objective is formulated as a regression problem, and the Euclidean loss:

$$L_i^{box} = \|y_i^{prediction} - y_i^{truth}\|_2^2$$

#### A. Relative works

### 2. Face Recognition

| Method                | Net. Loss        | Outside data | # models | Aligned | Verif. metric | Layers | Accu.            |
|-----------------------|------------------|--------------|----------|---------|---------------|--------|------------------|
| DeepFace [97]         | ident.           | 4M           | 4        | 3D      | wt. chi-sq.   | 8      | 97.35±0.25       |
| Canon. view CNN [115] | ident.           | 203K         | 60       | 2D      | Jt. Bayes     | 7      | 96.45±0.25       |
| DeepID [92]           | ident.           | 203K         | 60       | 2D      | Jt. Bayes     | 7      | 97.45±0.26       |
| DeepID2 [88]          | ident. + verif.  | 203K         | 25       | 2D      | Jt. Bayes     | 7      | 99.15±0.13       |
| DeepID2+ [93]         | ident. + verif.  | 290K         | 25       | 2D      | Jt. Bayes     | 7      | 99.47±0.12       |
| DeepID3 [89]          | ident. + verif.  | 290K         | 25       | 2D      | Jt. Bayes     | 10-15  | $99.53 \pm 0.10$ |
| Face++ [113]          | ident.           | 5M           | 1        | 2D      | L2            | 10     | 99.50±0.36       |
| FaceNet [82]          | verif. (triplet) | 260M         | 1        | no      | L2            | 22     | 99.60±0.09       |
| Tencent [8]           | -                | 1M           | 20       | yes     | Jt. Bayes     | 12     | 99.65±0.25       |

Deep Learning Face Representation from Predicting 10,000 Classes (DeepID 1)



One CNN for a feature extractor, 60 CNNs in total.

DeepID 2 (NIPS 2014)



Patches selected for feature extraction



#### FaceNet



### **B. Proposal Model**







System pipeline

#### Blur detection



#### Face detection (based on Histogram Of Gradient)





#### Landmark detection





#### Landmark detection





#### Landmark detection



#### Face recognition



#### Input image:

- High-dimensional
- · Rich detail

#### **Feature vector:**

- Low-dimensional
- Representative

#### Face recognition (based on FaceNet)





### Face recognition (based on FaceNet)



TABLE II. DATASET SUMMARY

| Dataset    | Subset      | #identities | #images<br>per identity | #images<br>totally |
|------------|-------------|-------------|-------------------------|--------------------|
| Training   | -           | 52          | 30                      | 1560               |
| Validating | -           | 52          | 10                      | 520                |
| Testing    | Known (1)   | 52          | 20                      | 1040               |
|            | Unknown (2) | 4069        | 1                       | 4069               |



Visualization using PCA

Visualization using t-SNE



TABLE III. ACCURACIES AMONG DATASETS

| Dataset                      | Training | Validating | Testing (1)<br>(Closed set) | Testing (1+2)<br>(Open set) |
|------------------------------|----------|------------|-----------------------------|-----------------------------|
| #images #identities Accuracy | 1560     | 520        | 1040                        | 5109                        |
|                              | 52       | 52         | 52                          | 4121                        |
|                              | 100%     | 99.36%     | 98.85%                      | 96.48%                      |

## Demo

### Conclusion

#### **Hard:**

- Face Attendance Checking
- Deep-learning based
- Standard hardware
- High accuracy
- Easy-use GUI

### Soft:

- Specialized-task assignment
- GitHub: store, collaborate, refer
- Open-source: MIT license
- Scientific-form paper report
- Unity

## Acknowledge

- Dr. Pham Viet Cuong: promote a chance.
- Course-EE3063 students: donate data.