QUADRA 4 Axis SCARA Robot Command Reference

Chapter Contents

INDEX

Command and Response Structure	4
Communication Protocol	5
Command Type	9
Command Quick Reference Tables	12
Command Reference	13
HLLO	13
CLEAR	
HOME	
GOTO	16
PICK	17
PLACE	18
ZAXIS	19
SERVO	20
ESTOP	21
RQ OPMODE	22
RQ VERSION	23
RQ WAFER	24
RQ HISPD	25
RQ LOSPD	26
RQ ERR	27
RQ POS	28
RQ TEACH	29
RQ ABS	30
RQ OFFSET	31
RQ SERVO	32
SET HISPD	33
SET LOSPD	
SET TEACH	
SET OFFSET	
Error Code	37

Command and Response Structure

Robot에 대한 소프트웨어 명령은 "필드"로 세분할 수 있는 ASCII문자열(문자나 숫자)로 구성되어 있다. Robot의 소프트웨어 회신 또한 "필드"로 세분할 수 있는 ASCII문자열(문자와 숫자)로 구성되어 있다. 이들 필드는 명령의 유형이나 변수 명을 나타내거나 데이터를 담고 있다.

1. Command Fields

명령 필드는 명령의 명칭과 (필요에 따라) 명령의 논리적 분기로 구성되어 있다.

2. Data Fields

데이터 필드는 변수가 요청하는 데이터나 변수에 대해 반환되는 데이터로 구성되어 있다.

3. Variable Fields

변수 필드는 명령에 대한 특정 항목을 명시하기 위해 이용되는 변수 명칭으로 구성되어 있다.

아래의 예에서 "PICK"은 회신의 유형과 그에 대한 데이터의 유형을 나타내는 변수이고 "ARM" 또한 회신되는 데이터의 유형을 나타내는 변수이며 "4","1", "A"는 데이터 필드이다.

PICK 4 SLOT 1 ARM A

Communication Protocol

TCP/IP Communication Pin Description

TCP/IP Communication Setting(Controller)

Item	Detail
	Default : 192.168.0.1
IP Address	Supported IP Format : nnn.nnn.nnn.nnn
Port Number	10100

IP Address의 경우 제어기의 설정을 통해서 변경이 가능하다.

Port Number의 변경이 필요한 경우에는 당사와의 협의가 필요하다.

TCP/IP Communication Setting(Host)

당사의 제어기와 Host(PC)의 연결을 위해서는 아래의 추가 설정이 필요하다.

IP Address: 192.168.0.10 ~ 192.168.0.100 (예 : 192.168.0.55)

Subnet mask: 255.255.255.0

출하 기본설정인 192.168.0.1을 사용하는 경우일 때 해당되는 설정 값이다. 만약 제어기 IP Address를 수정한다면 그에 따라 위 설정 값도 변경되어야 한다.

RS-232C Communication Control Format

Item	Specification	Notes
Method	Asynchronous	
Baud rate	19200	
Data bit	8 bit	
Stop bit	1 bit	
Parity	None	
Flow control	None	

RS-232C Connector Pin Description

Pin No.	Description
1	Not Used
2	Rx
3	Tx
4	Not Used
5	GND
6	Not Used
7	Not Used
8	Not Used
9	Not Used

Communication Format

Host에서 Robot으로 전달되는 Command는 명령부와 구분자로 구성되어 있다. 명령부는 Character String 형태의 지정된 문자열로 되어 있으며 명령어의 끝에는 Carriage Return(CR)을 붙여서 전송한다.

CMD	CR
-----	----

CMD: Command String And Command Parameters

CR: End of Command (0x0D)

Command에 대한 수신확인

Robot은 Command를 수신하면 정상수신 여부를 응답한다.

[_ACK] 명령어 String과 Parameter 가 정상적일 경우 Return 된다.

[_NAK] 잘못된 명령어가 수신된 경우 NAK가 발생한다.

Response

Host로부터 수신된 명령에 대한 응답은 해당 명령의 실행을 완료한 후에 그 결과를 전달한다. 명령에 대한 실행이 정상적으로 완료된 경우에는 해당 명령의 응답형태에 따라 명령이 Action 명령일 경우에는 _RDY 를 송신하고 정보요청일 경우에는 해당 정보를 Host로 송신한다. 명령 실행도중에 Error가 발생한 경우에는 Error Code를 전달한다.

응답은 일반적으로 응답부와 구분자(0x0D)로 되어있다.

명령 실행중에 Error가 발생한 경우의 응답은 Error임을 나타내는 식별문자 '_ERR'와 5자리의 Code로 구성되며 그 뒤에 CR(0x0D)를 붙여서 Host로 송신한다.

Error Response Format

Command Types

Robot는 호스트 컨트롤러로부터 액션 명령, 요청 명령 2가지 유형의 소프트웨어 명령을 전송 받는다. 이들 명령은 각각 다른 목적으로 사용 된다. 유형 별 명령 리스트는 본 장의 간이 참조 표 (Quick Reference Tables)에 나와 있다.

1. Action Commands

액션 명령은 Robot의 컴포넌트를 이동시키거나 컴포넌트에 대한 작업을 시행한다.

2. Request Commands

요청 명령은 동작 Parameter의 동작 상태나 값을 요청한다.

주 :

명령 reference 내에서는 space와 carriage return이 표시 되지 않는다. 필드 사이에는 스페이스가 있고 모든 String의 끝에는 carriage return이 있는 것으로 간주된다.

여 :

<> Space (ASCII 32)

<CR> Carriage return (ASCII 0X0D)

PICK <>1<>SLOT<>2<>ARM<>B<CR>

위의 명령은 Robot에게 암 'B'를 사용하여 스테이션 1, 2번 슬롯에서 웨이퍼를 집어 올릴 것을 지시한다. 암이 명시되지 않는 경우, Robot는 default 암인 'A'를 사용한다.

한 명령의 변수와 데이터 필드의 수와 순서는 고정 되어 있다. 모든 데이터 필드를 채워 명령을 내리는 것을 권장한다.

명령 구문

명령구문은 가변적이며 최소의 형식 규약을 따른다. 어떤 경우에나 명령 필드가 맨 앞에 위치해야 하며 변수와 관련 데이터 또한 해당 순서와 위치에 위치해야 한다. CYMECHS는 각각의 명령에 대해 본 매뉴얼에 제시되어 있는 순서를 따를 것을 권장한다.

하나의 명령이 취할 수 있는 형식이 아래의 예에 나와있다. 첫 번째의 예에서처럼 순서와 인자의 수를 맞춰야 한다.

표준 형식, 표준 순서 (변수 3개)

PICK 1 SLOT 4 ARM A (O)

변수 2개

PICK 1 SLOT 4 (X)

회신 유형과 구문

Robot는 Host 컨트롤러에게 데이터, 에러 시그널, 준비 시그널 등 세가지 유형의 시그널을 보낸다.

로봇에게 보내진 모든 명령은 현재의 동작 모드에 적절한 "준비회신 (Ready Response)"으로 인식된다. 명령이 "요청 명령"인 경우 명령 레퍼런스에 설명돼 있는 것처럼 "준비 회신" 전에 요청에 대한 회신이 제공된다. 명령이 에러 상태를 발생시키는 경우 "준비 회신"전에 "에러 회신 (Error Response)"이 제공된다. "요청 명령"이 에러를 발생시키는 경우 "에러 회신" 만이 반환된다.

회신 유형

- 요청 회신 (Request Response)은 호스트 컨트롤러가 요청한 정보를 반환하는 회신이다.
- 에러 회신 (Error Response)은 에러가 발생하였음을 알리고 어떤 에러가 발생하였는지를 나타내는 회신이다.
- 준비 회신 (Ready Response)은 로봇이 새로운 명령을 수신할 준비가 되어 있음을 나타내는 회신이다.

소프트웨어 회신은 일련의 ASCII필드로 구성 되어 있다. 각 필드의 문자의 수는 가변적이다. 따라서 하나의 필드가 끝나고 다음 필드가 시작됨을 나타내기 위해서는 스페이스 (ASCII32, 아 래의 예에서는 <>로 표시됨)가 필요하다.

회신이 끝났음을 나타내기 위해서는 캐리지 리턴(ASCII13, 아래의 예에서는 <Return>으로 표시됨)이 필요하다. 회신은 언제나 대문자로 표시된다.

주: 명령 레퍼런스 내에서는 스페이스와 캐리지 리턴이 표시되지 않는다. 필드 사이에는 스페이스가 있고 모든 스트링의 끝에는 캐리지 리턴이 있는 것으로 간주된다.

예 :

HOME<>ALL<Return>

위의 명령은 Robot에게 ALL 축의 절대 위치로 복귀할 것을 지시한다.

위의 예에서는 스페이스는"<>"로, 캐리지 리턴은"<Return>"으로 나타내고 있다. 본 매뉴얼에 제시되어 있는 나머지 예에서는 스페이스는 ""로 표시하고 명령의 끝에 캐리지 리턴이 있는 것으로 간주한다.

회신 구문

회신의 구문은 생성되는 회신의 유형에 따라 달라지나 로봇은 회신 다음에는 언제나 캐리지 리턴을 보낸다.

요청 회신 (Request Response)

요청 명령에 대한 회신은 요청의 형식을 그대로 따른다. 아래의 명령은 커뮤니케이션 파라미터에 대한 몇 가지 요청과 그에 대한 회신의 형식을 보여주고 있다. 아래에 나타난 회신은 이 회신이 RQ WAFER 명령에 대한 반응이다.

요청

RQ WAFER ARM arm

회신

WAFER arm Y

에러 회신 (Error Response)

어떤 경우에나 모든 에러에 대한 리턴 코드는 규칙이 있다. 에러 코드 리스트는 본 장의 끝 부분에 나와있다. 명령 처리 시에 혹은 동작 시에 에러가 발생한 경우 로봇은 호스트 컨트롤러에게 에러 시그널과 뒤이어 캐리지 리턴을 보낸다.

_ERR 00002

준비 회신 (Ready Responses)

로봇은 진행중인 동작이 완료되어 Command를 받을 준비가 되면 즉시 준비 (Ready)스트링을 보낸다.

Command Quick Reference Tables

아래의 표는 표준 명령 리스트로서 간이 참조 용으로만 사용된다. 자세한 내용 및 사용 방법은 해당 명령 Page를 참조한다.

Action & Non-Action Commands

Command	Description	비고
HLLO	통신 상태 확인용 명령	
CLEAR	Error를 해제 시킨다.	
HOME	ROBOT 원점 복귀한다.	
GOTO	암을 지정된 스테이션으로 이동시킨다.	
PICK	지정된 스테이션에서 PICK동작을 시행한다.	
PLACE	지정된 스테이션에서 PLACE 동작을 시행한다.	
ZAXIS	지정된 스테이션에서 UP, DOWN 동작을 한다.	
SERVO	ROBOT의 SERVO를 ON/OFF한다.	
ESTOP	로봇을 긴급 정지 시킨다.	

Request Commands

Command	Description	비고
RQ OPMODE	Operation mode를 반환한다. (CDM/HOST)	
RQ VERSION	소프트웨어 버전 번호를 반환한다.	
RQ WAFER	ROBOT의 Wafer Load 상태를 반환한다.	
RQ HISPD	로봇의 Wafer Unload 상태(고속)의 설정된 속도 값을 반	환한다.
RQ LOSPD	로봇의 Wafer Load 상태(저속)의 설정된 속도 값을 반환	한다.
RQ ERR	가장 최근의 Error Code를 반환한다.	
RQ POS	로봇의 현재 위치 정보를 반환한다	
RQ TEACH	지정된 Station의 Teach 값을 반환한다.	
RQ ABS	Robot의 현재 좌표 데이터를 반환한다.	
RQ OFFSET	저장된 Offset 값을 반환한다.	
RQ SERVO	ROBOT의 SERVO ON/OFF 상태를 반환한다.	

Set Commands

Command	Description 비고	
SET HISPD	로봇의 Wafer Unload 상태(고속)의 속도를 설정한다.	
SET LOSPD	로봇의 Wafer Load 상태(저속)의 속도를 설정한다.	
SET TEACH	현재/지정된 로봇의 자세 및 위치를 Teaching 값으로 설정한다.	
SET OFFSET	Offset 값을 설정한다.	

명령 레퍼런스

명령 레퍼런스는 CYMECHS Robot이 지원하는 명령을 자세하게 설명한다.

목적 : 명령의 기능을 간단하게 설명한다.

형식 : 명령이 필요로 하는 인자명을 비롯하여 Robot에 대한 명령의 형식을 보여준다.

회신 : 명령에 응답하는 표준 회신을 나타내고 있다.

인자 : 명령 구문에 포함되어 있는 각 인자를 설명한다.

설명 : 명령과 그 기능을 상세하게 설명한다.

예 : 명령의 용례를 제공한다.

Command Reference

HLLO

목적

Robot이 커뮤니케이션에 반응하는지를 확인하기 위한 비 개입 명령(non-intrusive command) 으로 사용된다.

형식

HLLO

회신

Hello

설명

어떤 동작도 수행하지 않는다. Robot이 반응하는지를 확인하기 위한 비 개입 명령(non-intrusive command)으로 사용된다.

예

HLLO

Hello

CLEAR

```
목적
Robot이 Error 가 발생 하여 Alarm Clear를 하거나, Reset 을 하기 위해 사용된다.
형식
CLEAR
회신
_ACK
_RDY
설명
Clear 명령은 모든 Error 및 Alarm이 Clear 된다
에
CLEAR
_ACK
_RDY
```

HOME

목적

Robot의 HOME 위치로 이동한다.

형식

HOME [ALL]

인자

ALL: Reset 및 Alarm Clear 이후에 T1, T2, A, B가 안전위치로 이동 후 "홈(home)" 시퀀스를 수행을 완료 후 Z1, Z2 축이 "홈(home)" 시퀀스를 수행한다.

주의

다관절 로봇은 개별 축 HOME 동작 진행 시 간섭 및 충돌 가능성이 있으므로 축 별 HOME 동작을 할 수 없다.

설명

HOME 명령은 각 축의 초기 포지션을 정확하게 구축하기 위해 HOME으로 Define 된 위치로 이동 시킨다.

HOME 명령이 입력되었는데 로봇이 이미 HOME에 있다면 어떤 운동도 일어나지 않는다.

예

아래의 예에서 모든 Arm이 먼저 Retract 되어 HOME의 위치로 이동하며 Arm Retract 완료 후 Z1축, Z2축 HOME 위치로 이동한다.

HOME ALL

_ACK

GOTO

목적

지정한 스테이션으로 이동 한다.

형식

GOTO N [station] R [EX|RE] Z [UP|DN] SLOT [num] ARM [arm]

인자

station: 스테이션 번호를 지정한다. 범위 : 1~16

EX|RE: Arm의 radial position 을 명시한다.

EX = extended RE = retracted

UPIDN: Arm의 수직 배치를 명시한다.

UP = up DN = down

slot: 암이 이동해야 하는 슬롯을 나타낸다. 스테이션에 대해서는 1 에서 n값을 이

용한다. 이때 n은 지정된 스테이션에서의 슬롯의 번호를 나타낸다.

arm: 이동해야 하는 암을 나타낸다. A or B

설명

반드시 모든 파라미터를 순서에 맞춰 보내야 한다.

암이 이동하는 경우 현재 정의되어 있는 로드에 대해 주어진 순서에 따라 다음과 같은 순서대로 점검과 운동이 이루어진다.

- "N"이 지정되고(스테이션 번호) "SLOT"이 지정되고 "R RE"(Retract)가 지정되면 암은 아직 Retract 되지 않은 경우에만 Retract 된다.
- 회전축과 Z축은 동시에 목표위치로 이동한다.
- 암은 Extend 명령이 내려진 경우에 Extend 된다. 이때 반드시 "R RE"로 지정하여 동작후 Extend 명령을 내린다.

예

아래의 예는 STATION 5번, SLOT 1번, Z축의 Low Position 으로 이동 후 Arm B를 Extend 한다.

[host]GOTO N 5 R RE Z DN SLOT 1 ARM B

[robot]_ACK

[robot]_RDY

[host]GOTO N 5 R EX Z DN SLOT 1 ARM B

[robot]_ACK
[robot]_RDY

참조: PICK, PLACE

PICK

목적

로봇 암이 지정된 스테이션과 슬롯 번호에서 웨이퍼를 집어 올리게 한다.

형식

PICK [station] SLOT [slot] ARM [arm]

인자

station: Wafer를 집어 올릴 스테이션의 번호. 범위 : 1-16

slot: Wafer를 집어 올릴 슬롯의 번호. 멀티 슬롯 스테이션의 경우 슬롯 번호는 1이

외의 슬롯 번호를 가리키기 위해서만 지정 되어야 한다.

arm: Wafer를 집어 올릴 암 (A,B).

설명

PICK 동작 시에 로봇의 이동 속도와 가속도는 웨이퍼의 존재 유무에 따라 달라진다. Wafer를 이송 할 Arm에 Wafer가 있을 경우 "웨이퍼 있음(with wafer)"(저속) 속도와 가속도로 움직인다. 두 개의 암이 비어있는 경우 로봇 모든 축에 대해 고속으로 동작한다.

PICK 동작 시에 순서는 다음과 같다.

- 현재 정의된 로드에 적절한 속도와 가속 프로파일로 암을 Retract 시킨다.
- 현재 정의된 로드에 적절한 속도와 가속 프로파일로 지정된 스테이션과 슬롯번호로 하향 이동과 회전 이동을 동시에 수행한다.
- 현재 정의된 로드에 적절한 속도와 가속 프로파일로 암을 해당 스테이션의 R포지션으로 Extend 시킨다.
- 현재 정의된 로드에 적절한 속도와 가속 프로파일로 암을 업(UP)포지션으로 이동시키고 웨이퍼를 집어 올린다.
- PICK 운동을 수행하는 암은 "로드(loaded)"상태로 정의한다.
- 현재 정의된 로드에 적절한 속도와 가속 프로파일로 암을 Retract 시킨다.

예

아래의 예에서 로봇은 다음과 같이 동작한다.

로봇은 암을 Retract 시키고, 스테이션 #2의 1번 Slot으로 A Arm을 기준으로 회전시키고, 암을 Extend 시키고, 암을 상승시키고(웨이퍼를 집어 올리고)암을 Retract 시킨다.

PICK 2 SLOT 1 ARM A

_ACK

PLACE

목적

로봇 암이 지정된 스테이션과 슬롯 번호에서 웨이퍼를 놓게 한다.

형식

PLACE [station] SLOT [slot] ARM [arm]

인자

station: Wafer를 배치할 스테이션의 번호. 범위: 1-16

slot: Wafer를 배치할 슬롯의 번호. arm: Wafer를 집어 올릴 암 (A,B).

설명

PLACE 동작 시에 로봇의 이동 속도와 가속도는 웨이퍼의 존재 유무에 따라 달라진다. Wafer를 이송 할 Arm에 Wafer가 있을 경우 "웨이퍼 있음(with wafer)"(저속) 속도와 가속도로 움직인다. 두 개의 암이 비어있는 경우 로봇 모든 축에 대해 고속으로 동작한다.

PLACE 동작 시에 순서는 다음과 같다.

- 현재 정의된 로드에 적절한 속도와 가속 프로파일로 암을 Retract 시킨다.
- 현재 정의된 로드에 적절한 속도와 가속 프로파일로 지정된 스테이션과 슬롯번호로 상향 이동을 하고 동시에 업 포지션으로 회전한다.
- 현재 정의된 로드에 적절한 속도와 가속 프로파일로 암을 해당 스테이션의 R포지션으로 Extend 시킨다.
- 현재 정의된 로드에 적절한 속도와 가속 프로파일로 암을 down 포지션으로 이동시키고 웨이퍼를 놓는다.
- PLACE를 수행하는 암은 "언로드(unloaded)"상태로 정의한다.
- 현재 정의된 로드에 적절한 속도와 가속 프로파일로 암을 Retract 시킨다.

예

아래의 예에서 로봇은 다음과 같이 동작한다.

로봇은 암을 Retract 시키고, 스테이션 #5의 2번 Slot으로 A Arm을 기준으로 회전시키고, 암을 Extend 시키고, 암을 하강시키고(웨이퍼를 내려놓고)암을 Retract 시킨다.

PLACE 5 SLOT 2 ARM A

_ACK

ZAXIS

목적

ROBOT을 UP, DOWN 동작을 한다.

형식

ZAXIS [station] SLOT [slot] [UP|DN] ARM [arm]

인자

station: Wafer를 배치할 스테이션의 번호. 범위 : 1-16

slot: Wafer를 배치할 슬롯의 번호. 범위 : 1-8

UP|DN:ROBOT 상하 이동 위치를 지정한다.arm:Wafer를 운반하는 Arm을 지정한다.

설명

ZAXIS 동작 시에 이전 Station과 현재 Station이 일치해야 Up/Down 동작 가능하다. 일치하지 않으면 _NAK를 반환한다.

주의 Arm이 Extend 상태에서도 UP, DOWN이 가능하다.

현재 Station과 이전 Station이 일치 해야 한다.

예

아래의 예에서 로봇은 다음과 같이 동작한다.

로봇은 암을 Retract 시키고, Station 5번, SLOT 1번, Z축의 DOWN Position 으로 이동 후 ZAXIS 명령을 받아 Station 5번, SLOT 1번 위치에서 UP동작을 한다.

GOTO N 5 R RE Z DN SLOT 1 ARM B

_ACK

_RDY

ZAXIS 5 SLOT 1 UP ARM B

_ACK

SERVO

목적

로봇의 서보 제어를 ON/OFF한다.

형식

SERVO [ON|OFF]

인자

ON|OFF: SERVO를 ON/OFF 할건지를 지정한다.

설명

SERVO OFF 명령은 모든 축의 서보를 OFF시킨다. SERVO ON 명령은 모든 축의 서보를 ON

시킨다.

예

SERVO ON

_ACK

ESTOP

목적

로봇의 동작을 정지시킨다.

형식

ESTOP

설명

ESTOP 명령은 진행 중인 모든 운동을 즉시 정지 시키고 모든 축에 대하여 서보를 중단시키고 레퍼런스 상태를 유지한다

예

ESTOP

_ACK

RQ OPMODE

목적

현재 제어권이 Teaching Pendant인지 Host command중의 한가지 상태를 반환한다.

형식

RQ OPMODE

회신

CDM (Teaching Pendant일 때, Control Display Module)

HOST (Host command일 때)

예

아래의 예는 제어권의 상태를 요청한다.

[host] RQ OPMODE

[robot] CDM

RQ VERSION

목적

S/W 버전을 요청한다.

형식

RQ VERSION

회신

VER xxxxxxxx

설명

이 명령은 Software version확인을 위하여 제공된다.

예

RQ VERSION VER 12345678

RQ WAFER

목적

Wafer 유무 상태를 반환한다.

형식

RQ WAFER ARM [arm]

회신

WAFER [arm] [status]

인자

arm:

A Arm A의 상태를 요청한다.

B Arm B의 상태를 요청한다.

ALL Arm A, B 의 상태를 요청한다.

status:

N End effect 위에 wafer가 없음을 나타낸다..

Y End effect 위에 있음을 나타낸다.

ERR Arm 이 어떤 상태인지 모를 경우 나타낸다.

설명

Endeffector 위에 wafer의 유무를 알 수 있다.

예

아래의 예는 A Arm의 wafer 유무를 요청하고 end effect 위에 wafer가 존재함을 반환하는 예이다.

RQ WAFER ARM A

WAFER A Y

RQ WAFER ARM ALL

WAFER A Y B N

RQ HISPD

목적

로봇의 Wafer Unload 상태에서의 이동 속도를 반환한다.

형식

RQ HISPD ALL

회신

HISPD ALL [speed]

인자

speed: 1 ~ 100 까지의 속도 설정 값을 나타낸다. (단위: %)

예

아래의 예는 Wafer Unload 상태에서의 이동 속도 설정 값을 요청하고 반환하는 예이다. 현재 속도 설정 값은 30%로 설정되어 있다.

RQ HISPD ALL

HISPD ALL 30

RQ LOSPD

목적

로봇의 Wafer load 상태에서의 이동 속도를 반환한다.

형식

RQ LOSPD ALL

회신

LOSPD ALL [speed]

인자

speed: 1 ~ 100 까지의 속도 설정 값을 나타낸다. (단위: %)

예

아래의 예는 Wafer load 상태에서의 이동 속도 설정 값을 요청하고 반환하는 예이다. 현재 속도 설정 값은 30%로 설정되어 있다.

RQ LOSPD ALL LOSPD ALL 30

RQ ERR

목적

가장 최근의 마지막으로 발생한 Error Code를 반환한다.

형식

RQ ERR

회신

ERR XXXXX

설명

최근 마지막으로 발생한 Error 를 확인 할 수 있다.

예

아래의 예는 가장 마지막으로 발생한 Error Code를 반환 하는 예이다.

현재 가장 최근 Error은 Wafer 가 Load 된 상태로 Pick 동작을 한 경우 발생 한 Error를 반환하는 예이다.

RQ ERR

ERR 22106

RQ POS

```
목적
      현재 위치를 반환한다.
형식
      RQ POS [axis]
회신
      POS [axis] [angle|mm]
인자
      axis:
            T1
                  T1 Axis의 현재 위치(angle) 값을 요청한다.
            T2
                  T2 Axis의 현재 위치(angle) 값을 요청한다.
            Ζ1
                  Z Axis의 현재 위치(mm) 값을 요청한다.
            Z2
                  Z2 Axis의 현재 위치(mm) 값을 요청한다.
            Α
                  A Axis의 현재 위치(angle) 값을 요청한다.
            В
                  B Axis의 현재 위치(angle) 값을 요청한다.
            R
                  Arm A, Arm B의 현재 위치(mm) 값을 요청한다.
            ALL
                  모든 축 전체의 현재 위치 값을 요청한다.
                  각도 값을 나타낸다. (단위: degree)
      angle:
      mm:
                  거리 값을 나타낸다. (단위: mm)
설명
      지정된 Axis의 현재 Angle Data를 확인 할 수 있다.
예
      RQ POS T1
      POS T1 270.000
      RQ POS R
      POS A 30.000 B 90.000
      RQ POS ALL
```

POS T1 270.000 T2 270.000 Z1 40.000 Z2 40.000 A 30.000 B 90.000

RQ TEACH

목적

지정된 Station의 Teach 값을 반환한다.

형식

RQ TEACH [station] [arm] [state]

회신

TEACH [station] [arm] [state] T1 [t1] T2 [t2] A [a] B[b] Z1 [zup] [zmid] [zlow] [pitch] Z2 [z2]

인자

station: TEACH 값을 요청할 Station 지정 arm: TEACH 값을 요청할 Arm을 지정

state: TEACH 값을 요청할 자세를 지정 (진입 전: BW, 진입 후: FW)

t1: 지정된 Station, Arm의 T1 TEACH 값을 요청 t2: 지정된 Station, Arm의 T2 TEACH 값을 요청

a: 지정한 Station, Arm의 A 값을 요청 b: 지정한 Station, Arm의 B 값을 요청

zup: 지정된 Station, Arm, Slot 1의 Z-Up의 TEACH 값을 요청zmid: 지정된 Station, Arm, Slot 1의 Z-Mid의 TEACH 값을 요청zlow: 지정된 Station, Arm, Slot 1의 Z-Low의 TEACH 값을 요청

pitch: 지정된 Station의 Slot pitch를 요청.

z2: 지정된 Station, Arm의 Z2 TEACH 값을 요청

설명

지정한 Station 에서 Slot 1으로 저장된 TEACH값을 확인한다.

예

RQ TEACH 1 B BW

TEACH 1 B BW T1 123.456 T2 123.456 A 123.456 B 123.456 Z1 123.456 123.456 123.456 123.456

RQ ABS

목적

Robot의 현재 좌표 데이터를 반환한다.

형식

RQ ABS

회신

ABS X [x] Y [y] Z [z] [R|L] YAW [yaw]

인자

x:end-effector의 기준 좌표에 대한 x좌표 값을 표시y:end-effector의 기준 좌표에 대한 y좌표 값을 표시z:end-effector의 기준 좌표에 대한 z좌표 값을 표시

R|L:

R: Right, 각 링크의 꺽임이 오른쪽으로 꺽임 L: Left, 각 링크의 꺽임이 왼쪽으로 꺽임

yaw: end-effector의 기준 좌표에 대한 yaw회전을 표시

설명

Robot의 현재 위치 좌표 데이터를 반환한다.

예

RQ ABS

ABS X 123.456 Y 123.456 Z 123.456 R YAW 123.456

RQ OFFSET

목적

Pick/Place Offset 값을 반한다.

형식

RQ OFFSET [station] [arm] [PK|PL]

회신

OFFSET [station] [arm] [PK|PL] [offset]

인자

station: offset 값을 요청할 Station 지정 arm: offset 값을 요청할 Arm 지정

PK PL: PICK offset/Place offset인지를 지정

offset: 저장 된 Pick/Place offset 값 (-5.000 ~ +5.000 mm)

설명

설정된 Pick/Place offset을 확인 할 수 있다.

예

RQ OFFSET 1 A PL

OFFSET 1 A PL -1.234

RQ SERVO

목적

ROBOT의 SERVO에 전원인가 상태를 확인한다.

형식

RQ SERVO

회신

SERVO [ON|OFF]

설명

ON|OFF: ROBOT SERVO ON/OFF상태를 표시

설명

SERVO ON/OFF상태를 확인 할 수 있다.

예

RQ SERVO SERVO ON

SET HISPD

목적

Wafer Unload 상태에서의 이동 속도를 설정한다.

형식

SET HISPD ALL [speed]

회신

HISPD ALL [speed]

인자

speed: 1 ~ 100까지의 속도를 설정 할 수 있다.(단위: %)

예

아래의 예는 Wafer Unload 상태에서의 이동 속도를 50%로 설정하고 반환하는 예이다.

SET HISPD ALL 50

HISPD ALL 50

SET LOSPD

목적

Wafer Load 상태에서의 이동 속도를 설정한다.

형식

SET LOSPD ALL [speed]

회신

LOSPD ALL [speed]

인자

speed: 1 ~ 100까지의 속도를 설정 할 수 있다.(단위: %)

예

아래의 예는 Wafer Load 상태에서의 이동 속도를 50%로 설정하고 반환하는 예이다.

SET LOSPD ALL 50

LOSPD ALL 50

SET TEACH

목적

현재 위치 또는 지정 값을 Teach 값으로 저장한다.

형식

SET TEACH [station] [arm] [state]

SET TEACH [station] [arm] [state] T1 [t1] T2 [t2] A [a] B [b] Z1 [zup] [zmid] [zlow] [pitch] Z2 [z2]

회신

TEACH [station] [arm] [state] T1 [t1] T2 [t2] A [a] B [b] Z1 [zup] [zmid] [zlow] [pitch] Z2 [z2]

인자

station: TEACH 값을 저장할 Station 지정 arm: TEACH 값을 저장할 Arm을 지정

state: TEACH 값을 저장할 자세 상태 지정 (진입 전: BWR, 진입 후: FWR)

t1: 지정한 Station, Arm의 T1 값을 저장 t2: 지정한 Station, Arm의 T2 값을 저장 a: 지정한 Station, Arm의 A 값을 저장 b: 지정한 Station, Arm의 B 값을 저장

zup :지정한 Station, Arm, Slot 1의 Z-Up 값을 저장zmid :지정한 Station, Arm, Slot 1의 Z-Mid 값을 저장zlow :지정한 Station, Arm, Slot 1의 Z-Low 값을 저장

pitch: 지정한 Station의 Slot pitch를 저장 Z2: 지정한 Station, Arm의 Z2 값을 저장

설명

현재 위치를 TEACH 값으로 저장할 수 있으며, 또한 인자 별로 설정 값을 입력하여 저장할 수 있다. 지정한 Station, Arm, 자세, Slot 1에 해당 TEACH값을 저장한다.

예

SET TEACH 1 A BWR

TEACH 1 A BWR T1 123.456 T2 123.456 A 123.456 B 123.456 Z1 123.456 123.456 123.456 123.456
12.345 Z2 123.456

SET TEACH 1 A FWR T1 123.456 T2 123.456 A 123.456 B 123.456 Z1 123.456 123.456 123.456

TEACH 1 A FWR T1 123.456 T2 123.456 A 123.456 B 123.456 Z1 123.456 123.456 123.456 123.456
12.345 Z2 123.456

SET OFFSET

목적

Pick/Place Offset 값을 설정 한다.

형식

SET OFFSET [station] [arm] [PK|PL] [offset]

회신

OFFSET [station] [arm] [PK|PL] [offset]

인자

station: offset 값이 설정될 Station 지정 arm: offset 값이 설정될 Arm 지정

PK PL: PICK offset/Place offset인지를 지정

offset: Pick/Place offset 설정 값 (-5.000 ~ +5.000 mm)

설명

Pick/Place Offset 값을 설정한다.

예

SET OFFSET PK 1.234

OFFSET PK 1.234

Error Code

Error Code 는 5 자리의 숫자로 구성이 되어 있으며 각 자리수에 대한 구성은 다음과 같습니다. 첫째 자리는 6 개의 모드로 표시되 Error 가 발생한 위치를 나타내며, 두번째 자리는 Error 가 발생한 축을 표시 하며, 나머지 세 자리는 Error 가 발생한 상황에 따라 Code 3 자리가 조합하여 표시됩니다.

Error Code (5 Digit)

Error Code Description

x는 축별번호임 (1: Z1-Axis, 2: T1-Axis, 3: T2-Axis, 4: Ra-Axis, 5: Rb-Axis, Z2-Axis)

Mode	Code	Description
	00001	Liveman Error
	00002	There is no wafer
	00003	There is a wafer
	00004	Check operation mode
	00005	Home all is not done
	00006	Controller is not ready
	00007	Station or slot number is wrong
Onematica	80000	Command is not correct
Operation	00009	E-Stop/User IO is disconnected
	00010	Station is not match with arm
	00011	Goto is not do after arm changed
-	00012	Error is not Cleared
	00100	Initialization is failed, Reboot Robot Controller
	00101	Host COM was not Initialized
	00102	TP COM was not Initialized
-	00103	Check CDA Pressure
	10001	RA is not retracted
	10002	RB is not retracted
Matian	10005	Check extend interlock
Motion	10009	Check sensor signal
	10010	Drive is not Enabled
	10012	Error Clear is failed
	2x000	Check motion board connection with drive
	2x011	Control power supply under voltage protection
	2x012	Overvoltage protection
	2x013	Main power supply under voltage protection
	2x014	Over current protection
	2x015	Over-heat protection
Motor	2x016	Over-load protection
-	2x018	Over regeneration load protection
	2x021	Encoder communication error protection
	2x023	Encoder communication data error protection
	2x024	Position deviation excess protection
	2x025	Hybrid deviation excess error protection
	2x026	Over-speed protection

		Command Reference
	2x027	Electronic gear error protection
	2x028	External scale communication data error protection
	2x029	Deviation counter overflow protection
	2x034	Software limit protection
	2x035	External scale communication error protection
	2x036	EEPROM parameter error protection
	2x037	EEPROM check code error protection
	2x038	Over-travel inhibit input protection
	2x039	Analog input excess protection
	2x040	Absolute system down error protection
	2x041	Absolute counter over error protection
	2x042	Absolute over-speed error protection
	2x044	Absolute single turn counter error protection
	2x045	Absolute multi-turn counter error protection
	2x047	Absolute status error protection
	2x048	Encoder Z-phase error protection
	2x049	Encoder CS signal error protection
	2x050	External scale status 0 error protection
	2x051	External scale status 1 error protection
Motor	2x052	External scale status 2 error protection
	2x053	External scale status 3 error protection
	2x054	External scale status 4 error protection
	2x055	External scale status 5 error protection
	2x065	CCWTL input excess protection
	2x066	CWTL input excess protection
	2x095	Motor automatic recognition error protection
	2x100	Motor Power on is failed
	2x101	Over Time Error
	2x102	Check Reference Position
	2x103	Check Current Position
-	2x104	Motor Power is not On
	2x105	Check Extend Interlock IO
	2x106	Check Wafer Presence
	2x107	Check Current Position & Encoder value
	2x108	Home Define is failed, Check serial cable with drive
	2x109	Check Grip Status
	2x120	Negative end limit protection
	2x121	Positive end limit protection

		Command Reference
	4x100	Gripper is not Move to UnGrip position
	4x101	Gripper is not Move to Grip position
	4x106	Check Wafer Presence
	4x109	Check Grip Status
	4x130	Place Moving Check Wafer Present
	4x131	Place Done Check Wafer
Grip	4x140	Pick Moving Check Wafer Present
Grip	4x141	Pick Done Check Wafer
	4x200	Check Wafer Error : Pick Start
	4x201	Check Wafer Error : Pick Extend
	4x210	Check Wafer Error : Place Start
	4x211	Check Wafer Error : Place Extend
	4x400	UnGrip Fail : Check Sensor Please
	4x401	Grip Fail : Check Sensor Please
	5x001	Illegal command
	5x002	Wrong number of stage
	5x003	Wrong number of arm
	5x004	Wrong number of slot
	5x005	Illegal speed range
	5x006	Wrong number of robot axis
	5x007	Invalid value of axis location
	5x008	Illegal argument value
	5x010	Invalid argument type
	5x011	Invalid robot number
	5x012	Invalid value of pitch
CCADA	5x013	Invalid value of up stroke
SCARA	5x014	Invalid value of down stroke
	5x015	Invalid value of total number of slot
	5x016	Invalid value of mapping speed
	5x017	Invalid value of reference thickness
	5x018	Invalid value of thickness margin
	5x019	Invalid value of existence margin
	5x020	Invalid robot type number
	5x021	Invalid arm type number
	5x022	Invalid value of total number of axis
	5x023	Invalid grip type number
	5x024	Invalid value of mapping sensor
	5x025	Invalid value of traverse axis

		Command Reference
	5x026	Invalid value of arm location
	5x027	Invalid value of On/Off
	5x028	Invalid signal number
	5x029	Invalid value of delay time
	5x031	Invalid value of retry count on error
	5x033	Invalid value of arm distance
	5x034	Invalid value of protruded material detect start position
	5x035	Invalid value of protruded material detect count
	5x036	Invalid value of clearance
	5x037	Invalid value of material state
	5x038	Invalid value of mode
	5x039	Invalid value of offset
	5x041	Invalid value of aligner argument
	5x042	Aligner communication time-out error
	5x043	Invalid value of IO
	5x051	Data read busy
	5x052	Data write busy
	5x053	Robot control busy
	5x054	Aligner busy
	5x055	Ardiono busy*
	5x061	Flash Busy
	5x081	Stage info file load error
	5x180	File Read Error
	5x181	Pattern file load error
	5x182	Profile file load error
	5x184	Stage info file load error
	5x185	Robot type file load error
	5x186	Option file load error
	5x201	Robot is busy
	5x202	Servo power is off
	5x203	On E-Stop
	5x204	Robot is paused
	5x205	Robot is not paused
	5x206	Robot is not executing command
	5x207	Robot is stopped
	5x208	Robot has an error
	5x209	Servo power is on
	5x211	Robot paused by I/O signal
•	1	·

	-	Command Reference
	5x212	Robot is manual mode
	5x213	Robot is auto mode
	5x215	Robot Stopped by Extend Signal Disable
	5x222	Error on material status during mapping
	5x224	Material detected before mapping
	5x225	Station does not match previous one
	5x232	Map scan data does not exist
	5x233	Map scan data does not Match
	5x234	Map scan data detected over slot
	5x241	Robot hand is already flipped
	5x242	Robot hand is not flipped
	5x243	Robot can't flip this position
	5x261	Aligner module is not connected
	5x262	Aligner connect fail
	5x271	Need re-set variable pitch
	5x291	Need stage teaching
	5x292	Need stage parameter config
	5x293	This stage is flipped location
	5x294	This stage is not flipped location
	5x295	Clearance value is set to be wrong
	5x301	Handling material before GETFROM
	5x302	Not Handling material before PUTINTO
	5x303	Not Handling material after GETFROM
	5x304	Handling material before PUTINTO
	5x307	Illegal Check sensor status
	5x312	Current robot position is dangerous
	5x350	Slave Servo ON Timeout
	5x401	Data read error
	5x402	Writing host serial port time-out error
PA	6x1xx	Robot Related Errors
	6x2xx	Standard System Errors
	6x3xx	Hardware Device Related Errors
	6x4xx	Configuration Parameter Database, Datalogger, and CPU Monitor Errors
	6x500~	Input and Output Errors
	6x550~	Controller Errors
	6x6xx	Network, Socket, and Communication Errors
	6x7xx,6x8xx	Language Related Errors
	6x9xx	Servo Related Errors