Homophily and Collaboration in Global Teams

Gábor Békés* and Gianmarco I.P. Ottaviano**

*CEU, KRTK KTI and CEPR; ** Bocconi University, Baffi-CAREFIN, IGIER, CEP and CEPR

CEU Brownbag // October 2021

- ▶ Globalization mixing the best of global expertise in multinational teams
 - ► Diversity benefits: learning, innovation
 - ► Hurdles: communication, trust
- ► Interaction between people of different cultural background key to understand function of teams
- Homophily is association of similar people (shared cultural background)
- ▶ What we know most: how teams are formed, tie-formation, friendship networks
- Our focus is collaboration (work for a common purpose)
- ► How do barriers related to nationality and language affect collaboration in multinational teams?

0000000

- ► Homophily = Opportunity (induced) + Preference (choice)
 - Opportunity: mechanically induced distributions across categories define the probability they choose similar others
- ► Challenge: partial out induced homophily to measure choice homophily in a setup with external validity to modern workplaces
 - ▶ Option A: With experiment / find a case with random team formation
 - ▶ Option B: With observational data / model baseline.

How we measure choice homophily: Setting

- ▶ Use professional football top European leagues
- ► Collaboration can be measured by pass rate between a pair of players
- ► Team composition is exogenous to players' decisions, collaboration is individual choice.
- ▶ Observe collaboration and human characteristics, repeatedly in great detail
- Ideal setting:
 - Collaborative with well defined objectives and roles.
 - ► Rules are simple and known allow calculating baseline
 - ▶ Global workplace: data from several countries, with players from 130 countries

Estimation and results

0000000

How we measure choice homophily: Data and model

- Exhaustive dataset recording passing events from professional football
 - Five countries: Spain, Germany, France, Italy and England, 8 seasons

Model

- ▶ Players from 132 countries
- ▶ all 10.7 million passes (origin and destination player ID, location)
- all 7000 players' characteristics.
- ► Model baseline a discrete choice model of players' passing behavior.
 - Pass rate for a pair of players is pinned down by their characteristics and opportunities during the matches
 - Estimate directly in model.

- ► Same ethnicity workers collaborate better, learn less: Lazear (1999) Lang (1986)
- ▶ Diversity spillovers' diverse environments improve team performance in cities, plants: Ottaviano and Peri (2006, 2005) Buchholz (2021)
- Diversity in teams: team performance and composition
 - ▶ Hockey: Kahane et al. (2013), Football: Nüesch and Haas (2013), Tovar (2020).
 - ► Ethnic conflict: Hjort (2014), Laurentsyeva (2019),
 - ► Team formation process, diversity and performance: Calder-Wang et al. (2021)
- ► Homophily in finding partners in scientific publishing: Freeman and Huang (2015), AlShebli and Woon (2018)
- ► Homophily in network formation in friendships: Currarini et al. (2009, 2010)
- ► Great deal more in psychology, finance, management (Lawrence and Shah, 2020; Ertug et al., 2021).

Contributions

- 1. Focus on everyday workplace collaboration high skilled, lowly charged context in a developed area with no real conflicts.
- 2. Well defined measure of collaboration at individual level through time (not rare pair formation)
- 3. Careful model of baseline, both theory and empirics (go beyond randomization)
- 4. Rich and precise measures of individual characteristics
- 5. Very large, global sample external validity

Data

Summary

Introduction

0000000

- Baseline difference is around 6.8%
- Once partialling out induced homophily, we find that pairs with a same nationality will pass 2.8% more (choice homophily)
 - Language plays some role
 - There is selection into same nationality pairs spending more time together, too.
 - Findings stronger for deep collaboration (intensive passing plays)

Model

Data: sources

- ► Event data each event separately recorded with a timestamp
 - originally created by OPTA (cameras+algorithms + humans)
 - Scraped from a sports website (whoscored.com)
 - Pass events separated
- ► Player information comes from scraping Transfermarkt, a player information database
 - Player characteristics: nationalities, valuations, position
- Massive data work
 - dealing with very large datasets
 - combing datasets: entity resolution / coreference

Data: scope

- ▶ 5 top leagues (France, Germany, Spain, Italy, England),
- ▶ 8 seasons (2011/12-2018/19) every teams play with every other twice
 - ▶ 20 (18) teams per league, 14,608 games in total
 - 800 passes/game/team
- ▶ 10.7 million passes in total
- ▶ 154 team, each with 25-30 strong squad, regular churning (twice a year)
- ▶ 7000 players in sample from 132 countries

Data: Same nationality definition

- ▶ 26% of players have two or three nationalities
 - Born in a country and moved to another as minor and got nationality with family (Argentina and Spain)
 - ► Parents have multiple nationalities (French and Algerian)
- ► Same nationality definition = two players have a common nationality

Model

Example: French-Algerian dual citizenship player will have common nationality with both a French and an Algerian player.

- From a choice model, aggregate to relative frequencies
- ▶ Aggregate to half-seasons (16-20 games), compromise between games and seasons
 - Squads are large, only 11 players at field at once, lot of variation across games, selection major issue for a single game.
- ► Noise is high / randomness of games
 - ► There is churning in mid-season
 - Assume player quality is stable within a half-season (4 months) but may vary across half -seasons.
- ▶ Key object of interest is number of passes for player pairs per minute
 - compared to total passes for the team in a game.

- ▶ Football team N = 11 players, two players indexed o, d.
- ► The passer's decision = problem of passing the ball to the receiver who generates the highest expected benefit for the *team*.
- ▶ Game = series of short units of time (t) up to T ('periods').
 - ▶ Players o and d are together in the football pitch for $T^{o,d}$ periods.
 - ▶ In any t, a player is identified by his ID and position.
 - ▶ Two periods: t (current period') and t + 1 ('future period').
- A 'pass' (o, d, t) = player o ('passer') to teammate d ('receiver'). Started by o in t, received by d in t+1
- ▶ Passer takes into account the current and future implications for the team's payoff.

The passer's decision = passing the ball to the receiver who generates the highest expected benefit for the team. Benefit to have + option value.

Model

- ▶ In u_t^d = benefit due to player d's characteristics
- $ightharpoonup z_t^d = random part (shock')$
- $ightharpoonup \widetilde{c}^{o,d} = \text{challenges} \text{'passing cost'}$
- $ightharpoonup \varphi^d = \text{probability of successful pass to receiver } d$

$$U_t^o = \ln u_t^o + \beta \max_{\{d\}_{d=0}^N} \left\{ \varphi^d E \left[U_{t+1}^d \right] - \widetilde{c}^{o,d} + z_t^d \right\}. \tag{1}$$

Model: Passing cost

Introduction

Model passing cost

$$\widetilde{c}^{o,d} = \left(g^{o,d}\right)^{\gamma} \left(I^{o,d}\right)^{\lambda} \tag{2}$$

- \triangleright $g^{o,d}$ captures all distance-related frictions
- ► I^{o,d} captures all non-distance-related frictions.
 - ► This is where we may see homophily same nationality indicator
 - May be high if o and d find it hard to collaborate
 - In model, assume separability (true empirically)

- ► The probability that player *o* with ball in *t* successfully passes to teammate *d* depends on
 - ▶ the (relative) value of both players
 - ability to pass/receive a pass successfully
 - cost of the pass
- ► Aggregation to *T* probabilities to relative frequency
- Probability = the average share of successful passes that player o makes to player d per episode over a half-season
 - ▶ in the subset of time (passing episodes) $T^{o,d}$ when both o and d are fielded and player o has ball possession

Model Estimation

- ► Pass rate = f(player characteristics, position, friction)
- ► Homophily: same nationality interaction
- Poisson model for count of passes conditional on time (passes) they spent together
 - Poisson (PPML-FE) with many fixed effects has several advantages over In count (Fally, 2015; Santos-Silva and Tenreyro, 2021)
 - ► Result is robust to OLS with In *count*
- Results roadmap
 - Core results of model estimation
 - Deeper collaboration
 - ► The role of managers, selection into the team
 - ► The role of language

Estimated models 1: Poisson with player characteristics

Model

$$\mu_{p1,p2,t} := E(pass_count_{p1,p2,t}|...) = exp(\gamma SameNat_{p1,p2,t} + \lambda PassDist_{p1,p2,t} + \\ +1 \ln minutes_shared + \theta_1 playerchar_{p1,t} + \theta_2 playerchar_{p2,t})$$
(3)

- ► SameNat=Same Nationality Indicator (in $I_{p1,p2,t}$)
- ▶ PassDist=In(Average pass distance) (in $g_{p1,p2,t}$)
- For both players

- playerchar: valuation × half _season, position × half _season, nationality × half _season
- team × half season dummies.

Estimated models 1: Poisson with player fixed effects

Second, we estimate a version of the Poisson model with $player_1 \times half_season$ and $player_2 \times half_season$ fixed effects:

Model

$$\mu_{p1,p2,t} := E(pass_count_{p1,p2,t}|...) = exp(\gamma SameNat_{p1,p2} + \lambda PassDist_{p1,p2,t} + \\ +1 \ln minutes_shared + \gamma_{p1,t}^1 + \gamma_{p1,t}^2)$$

$$(4)$$

- ► SameNat=Same Nationality Indicator $(I_{p1,p2,t})$
- ▶ PassDist=In(Average pass distance) $(g_{p1,p2,t})$
- $ightharpoonup \gamma_{p1,t}^1$ and $\gamma_{p1,t}^1$ are player₁ \times half season and player₂ \times half season fixed effects

Dep var: pass_count	(1)	(2)	(3)
Shared nationality (0/1)	0.0681***	0.0240***	0.0288***
	(0.0111)	(0.0062)	(0.0067)
Average length of passes (In)		-1.033***	-1.159***
		(0.0125)	(0.0138)
Pseudo R ²	0.05837	0.75632	0.80188
FE: team * season_half	✓	✓.	✓
FE: p1_features * season_half		✓	
FE: p2_features * season_half		\checkmark	
FE: player_id1 * season_half			✓.
FE: player_id2 * season_half			✓

Poisson regression model. N= 335,610. Standard errors, clustered at player 1 level, are in parentheses. *** p < 0.01, ** p < 0.05, * p < 0.1. Player features: position, value, total passes, citizenship. Exposure=In shared minutes

Summary

Result discussion

- ▶ (Unconditional) Same nationality players tend to pass 6.8% more compared to different nationality players
- ▶ Partialing out baseline homophily: it is around 2.8%
 - Robust to a variety of specifications I.- confounders/selection
 - More variables on passes (direction)
 - Physical differences
 - Assortative matching
 - Experience with club
 - Robust to a variety of specifications II.- functional form
 - ► Allowing minutes coefficient to vary (1.07)
 - log count as dependent variable.

Deeper collaboration

Introduction

- Passing is collaboration
- Deeper collaboration = pass sequences (like ABAB)
- For deeper collaboration, trust/understanding/taste should be more important

Model

Instead of pass count: count of pass sequences

Data

Dep. var.	Count of pass sequences				
	all_count	complex_count	all_count	complex_count	
	(1)	(2)	(3)	(4)	
Shared nationality $(0/1)$	0.0205***	0.0450***	0.0249***	0.0531***	
	(0.0058)	(0.0097)	(0.0062)	(0.0103)	
Average length of passes (In)	-0.8927***	-2.079***	-1.008***	-2.412***	
	(0.0116)	(0.0177)	(0.0129)	(0.0197)	
Pseudo R ²	0.75035	0.56048	0.79217	0.62074	
teamid-time fixed effects	✓	✓	✓	✓	
FE: p1_features * season_half	\checkmark	✓			
FE: p2_features * season_half	\checkmark	✓			
FE: player_id1 * season_half			\checkmark	✓	
FE: player_id2 * season_half			\checkmark	✓	

Poisson regression model. N= 335,610. Standard errors, clustered at player 1 level, are in parentheses. *** p < 0.01, ** p < 0.05, * p < 0.1. Exposure=In shared minutes

Endogeneity of time spent together

Data

- ▶ We estimated homophily effect in the model
 - ► Taking minutes spent together as given
- ▶ But minutes playing together on the pitch may be endogenous: coach selects teams based on expected play together.
- In this sense: time spent together is a mechanism for choice homophily to effect collaboration
- Minutes played together is also a function of shared nationality
- Homophily premium is 3.8% once minutes spent together is not partialled out.

Model estimation: endogeneity of time together

	pass_count (1)	minutes_shared (2)	pass_count (3)
Shared nationality $(0/1)$	0.0288*** (0.0067)	0.0089*** (0.0030)	0.0370*** (0.0076)
Average length of passes (In)	-1.159*** (0.0138)	,	-1.261*** (0.0146)
Pseudo R ²	0.80188	0.88506	0.74159
FE: player_id1 * season_half FE: player_id2 * season_half	✓ ✓	√ ✓	✓ ✓

Poisson regression model. N= 335,610. Standard errors, clustered at player 1 level, are in parentheses. **** p < 0.01, *** p < 0.05, * p < 0.1. Exposure=In shared minutes

Introduction

Summary

Nationality or language?

Data

- ▶ Maybe it's all about communication: language may be crucial
- ► Common language if there exists a common official (or widely spoken) language
- ▶ Identification: non national, but same language speaker

Model estimation: Language

Introduction

	$\begin{array}{c} pass_count \\ (1) \end{array}$	minutes_shared (2)	pass_count (3)
Shared nationality (0/1)	0.0326*** (0.0071)	0.0107*** (0.0031)	0.0418*** (0.0080)
Shared only language $(0/1)$	0.0167* (0.0087)	0.0072** (0.0035)	0.0208** (0.0098)
Average length of passes (In)	-1.159*** (0.0138)	,	-1.261*** (0.0146)
Pseudo R ²	0.80189	0.88506	0.74160
FE: player_id1 * season_half FE: player_id2 * season_half	√ ✓	√ ✓	√ ✓

Model

Poisson regression model. N= 335,610. Standard errors, clustered at player 1 level, are in parentheses. *** p < 0.01, ** p < 0.05, * p < 0.1. Player features: position, value, total passes, citizenship. Exposure=In shared minutes

Other issues (+pipeline)

- Heterogeneity
 - ► Largest impact when *both* players are young
 - ► Effect does not go away with experience in team
 - ► Effect seems higher for better players
 - League rules (EU, non-EU) matter, especially in Spain.
 - ▶ No interaction between pass type (distance) and same nationality
- Pipeline
 - Allow language to be learnt over time
 - ► More on experience (in league, etc)

Results summary

- ▶ Evidence of homophily: player pairs of same nationality pass more
 - ► More likely engaged in deeper collaboration
 - Shared language has about half the impact of same nationality.
- Additional channel exists via how frequently they play together
- ► Homophily is pervasive even in teams of
 - very high skill individuals
 - with clear common objectives and aligned incentives
 - and involved in well defined tasks
 - activities not particularly language-intensive.