#### Universitatea Politehnica București Facultatea de Automatică si Calculatoare

# Proiect - proiectare logică Aspirator robot

Brebu Costin Bogdan

Grupa: 311CD

# Cuprins

| Tema proiectului                | 3   |
|---------------------------------|-----|
| Mod de implementare             | 4   |
| Explicarea functionalitatii     | 5   |
| Organigrama aparatului          | 6   |
| Diagrama de stari               | 7   |
| Tabel de iesiri + Karnaugh      | 8   |
| Tabelul tranzitiilor + Karnaugh | 14  |
| Implementarile cu Muxuri        | 23  |
| Implementarea circuitului       | .24 |

# Tema proiectului

Aparatul ales este un aspirator robot, folosit pentru a curăța complet podeaua.

- Aspiră
- Spala
- Usucă

Folosește un sistem minuțios de curățare, datorită căruia robotul curăță podeaua până la capacitatea maximă a bateriei acoperind astfel întotdeauna complet toată suprafața. După finalizarea curățării, acesta este parcat automat în baza de încărcare.

Linie dreapta Program scurt intens pentru o curățare direcționată a suprafeței de 2 x 2 m.

Zig - Zag Program special pentru curățarea suprafețelor mai mari.

#### Mod de implementare



#### Codificarea deciziilor:

#### Suprafata:

- -0- mica
- -1- mare

#### Mod:

- -0- aspirare
- -1- uscare

#### Traseu:

- -0-zz = zig zag
- -1- Id=linie dreapta

### Explicarea functionalitatii

Robotul porneste la apasarea butonului start. La panoul de comanda se selecteaza suprafata si modul.

Daca se selecteaza aspirarea, automat la starsitul aspirarii se trece la spalare si apoi uscare. Daca se selecteaza spalarea se trece automat la uscare. Nu se poate incepe direct cu uscarea. In cazul in care programul selectat este aspirarea, robotul deschide automat saculetul de gunoi, daca e pe spalare isi extrage apa, iar daca e pe uscare coboara automat carpa care absoarbe apa.

Daca se selecteaza de la panoul de comanda o suprafata mare(mai mare de 4 pe 4) aspiratorul va functiona la viteza mai mare (v1). Daca se selecteaza o suprafata mica aspiratorul va functiona la viteza mica (v0).

Durata aspirarii, a spalarii si a uscarii sunt presetate si se fac automat in functie de modul de functionare.

## Organigrama



# Diagrama de stari

| ху | 00     | 01   | 11       | 10   |
|----|--------|------|----------|------|
| // |        |      |          |      |
| zt |        |      |          |      |
| 00 | idle   | Int3 | Int1     | Sel2 |
| 01 | Sel1   | Mare | Aspirare | St2  |
| 11 | Mica   | *    | Sel3     | *    |
| 10 | Uscare | Int2 | Spalare  | St1  |

## Tabel de iesiri

| X^n | Y^n | Z^n | T^n | ара | carpa | sac | V1 | V2 | dur | dur  | Dur | Zz | Ld |
|-----|-----|-----|-----|-----|-------|-----|----|----|-----|------|-----|----|----|
|     |     |     |     |     |       |     |    |    | asp | spal | usc |    |    |
| 0   | 0   | 0   | 0   | 0   | 0     | 0   | 0  | 0  | 0   | 0    | 0   | 0  | 0  |
| 0   | 0   | 0   | 1   | 0   | 0     | 0   | 0  | 0  | 0   | 0    | 0   | 0  | 0  |
| 0   | 0   | 1   | 0   | 0   | 0     | 0   | 0  | 0  | 0   | 0    | 1   | 0  | 0  |
| 0   | 0   | 1   | 1   | 0   | 0     | 0   | 0  | 1  | 0   | 0    | 0   | 0  | 0  |
| 0   | 1   | 0   | 0   | 0   | 1     | 0   | 0  | 0  | 0   | 0    | 0   | 0  | 0  |
| 0   | 1   | 0   | 1   | 0   | 0     | 0   | 1  | 0  | 0   | 0    | 0   | 0  | 0  |
| 0   | 1   | 1   | 0   | 1   | 0     | 0   | 0  | 0  | 0   | 0    | 0   | 0  | 0  |
| 0   | 1   | 1   | 1   | *   | *     | *   | *  | *  | *   | *    | *   | *  | *  |
| 1   | 0   | 0   | 0   | 0   | 0     | 0   | 0  | 0  | 0   | 0    | 0   | 0  | 0  |
| 1   | 0   | 0   | 1   | 0   | 0     | 0   | 0  | 0  | 0   | 0    | 0   | 0  | 1  |
| 1   | 0   | 1   | 0   | 0   | 0     | 0   | 0  | 0  | 0   | 0    | 0   | 1  | 0  |
| 1   | 0   | 1   | 1   | *   | *     | *   | *  | *  | *   | *    | *   | *  | *  |
| 1   | 1   | 0   | 0   | 0   | 0     | 1   | 0  | 0  | 0   | 0    | 0   | 0  | 0  |
| 1   | 1   | 0   | 1   | 0   | 0     | 0   | 0  | 0  | 1   | 0    | 0   | 0  | 0  |
| 1   | 1   | 1   | 0   | 0   | 0     | 0   | 0  | 0  | 0   | 1    | 0   | 0  | 0  |
| 1   | 1   | 1   | 1   | 0   | 0     | 0   | 0  | 0  | 0   | 0    | 0   | 0  | 0  |

### Apa

| ху | 00 | 01 | 11 | 10 |
|----|----|----|----|----|
| // |    |    |    |    |
| zt |    |    |    |    |
| 00 | 0  | 0  | 0  | 0  |
| 01 | 0  | 0  | 0  | 0  |
| 11 | 0  | *  | 0  | *  |
| 10 | 0  | 1  | 0  | 0  |

Apa=!x\*y\*z

### Carpa

| ху | 00 | 01 | 11 | 10 |
|----|----|----|----|----|
| // |    |    |    |    |
| zt |    |    |    |    |
| 00 | 0  | 1  | 0  | 0  |
| 01 | 0  | 0  | 0  | 0  |
| 11 | 0  | *  | 0  | *  |
| 10 | 0  | 0  | 0  | 0  |

Carpa=!x\*y\*!z\*!t

Sac

| ху | 00 | 01 | 11 | 10 |
|----|----|----|----|----|
| // |    |    |    |    |
| zt |    |    |    |    |
| 00 | 0  | 0  | 1  | 0  |
| 01 | 0  | 0  | 0  | 0  |
| 11 | 0  | *  | 0  | *  |
| 10 | 0  | 0  | 0  | 0  |

Sac=x\*y\*!z\*!t

V1

| ху | 00 | 01 | 11 | 10 |
|----|----|----|----|----|
| // |    |    |    |    |
| zt |    |    |    |    |
| 00 | 0  | 0  | 0  | 0  |
| 01 | 0  |    | 0  | 0  |
| 11 | 0  | *  | 0  | *  |
| 10 | 0  | 0  | 0  | 0  |

V1=!x\*y\*t

V2

| ху | 00 | 01 | 11 | 10 |
|----|----|----|----|----|
| // |    |    |    |    |
| zt |    |    |    |    |
| 00 | 0  | 0  | 0  | 0  |
| 01 | 0  | 0  | 0  | 0  |
| 11 | 1  | *  | 0  | *  |
| 10 | 0  | 0  | 0  | 0  |

 $\sqrt{2=!x*z*t}$ 

### Dur asp

| ху | 00 | 01 | 11 | 10 |
|----|----|----|----|----|
| // |    |    |    |    |
| zt |    |    |    |    |
| 00 | 0  | 0  | 0  | 0  |
| 01 | 0  | 0  | 1  | 0  |
| 11 | 0  | *  | 0  | *  |
| 10 | 0  | 0  | 0  | 0  |

Dur asp=x\*y\*!z\*t

## Dur spal

| ху | 00 | 01 | 11 | 10 |
|----|----|----|----|----|
| // |    |    |    |    |
| zt |    |    |    |    |
| 00 | 0  | 0  | 0  | 0  |
| 01 | 0  | 0  | 0  | 0  |
| 11 | 0  | *  | 0  | *  |
| 10 | 0  | 0  | 1  | 0  |

Dur spal=x\*y\*z\*!t

#### Dur usc

| ху | 00 | 01 | 11 | 10 |
|----|----|----|----|----|
| // |    |    |    |    |
| zt |    |    |    |    |
| 00 | 0  | 0  | 0  | 0  |
| 01 | 0  | 0  | 0  | 0  |
| 11 | 0  | *  | 0  | *  |
| 10 | 1  | 0  | 0  | 0  |

Dur usc=!x\*!y\*z\*!t

Zz

| ху | 00 | 01 | 11 | 10 |
|----|----|----|----|----|
| // |    |    |    |    |
| zt |    |    |    |    |
| 00 | 0  | 0  | 0  | 0  |
| 01 | 0  | 0  | 0  | 0  |
| 11 | 0  | *  | 0  | *  |
| 10 | 0  | 0  | 0  | 1  |

 $\overline{Zz=x^*!y^*z}$ 

## Ld

| ху | 00 | 01 | 11 | 10 |
|----|----|----|----|----|
| // |    |    |    |    |
| zt |    |    |    |    |
| 00 | 0  | 0  | 0  | 0  |
| 01 | 0  | 0  | 0  | 1  |
| 11 | 0  | *  | 0  | *  |
| 10 | 0  | 0  | 0  | 0  |

Ld=x\*!y\*t

#### Tabelul tranzitiilor

| X^n | Y^n | Z^n | T^n | X^(n+1) | Y^(n+1) | Z^(n+1) | T^(n+1) | Dx | Ју   | Ку    | Dz     | Jt      | Kt     |
|-----|-----|-----|-----|---------|---------|---------|---------|----|------|-------|--------|---------|--------|
| 0   | 0   | 0   | 0   | 0       | 0       | 0       | Start   | 0  | 0    | 1     | 0      | start   | !start |
| 0   | 0   | 0   | 1   | 0       | supr    | !supr   | 1       | 0  | supr | !supr | !supr  | 1       | 0      |
| 0   | 0   | 1   | 0   | 0       | 1       | 0       | 0       | 0  | 1    | 0     | 0      | 0       | 1      |
| 0   | 0   | 1   | 1   | 1       | 0       | 0       | 0       | 1  | 0    | 1     | 0      | 0       | 1      |
| 0   | 1   | 0   | 0   | 0       | 0       | 0       | 0       | 0  | 0    | 1     | 0      | 0       | 1      |
| 0   | 1   | 0   | 1   | 1       | 0       | 0       | 0       | 1  | 0    | 1     | 0      | 0       | 1      |
| 0   | 1   | 1   | 0   | 0       | 0       | 1       | 0       | 0  | 0    | 1     | 1      | 0       | 1      |
| 0   | 1   | 1   | 1   | *       | *       | *       | *       | *  | *    | *     | *      | *       | *      |
| 1   | 0   | 0   | 0   | 1       | 0       | traseu  | !traseu | 1  | 0    | 1     | traseu | !traseu | traseu |
| 1   | 0   | 0   | 1   | 1       | 1       | 1       | 1       | 1  | 1    | 0     | 1      | 1       | 0      |
| 1   | 0   | 1   | 0   | 1       | 1       | 1       | 1       | 1  | 1    | 0     | 1      | 1       | 0      |
| 1   | 0   | 1   | 1   | *       | *       | *       | *       | *  | *    | *     | *      | *       | *      |
| 1   | 1   | 0   | 0   | 1       | 1       | 1       | 0       | 1  | 1    | 0     | 1      | 0       | 1      |
| 1   | 1   | 0   | 1   | 1       | 1       | 0       | 0       | 1  | 1    | 0     | 0      | 0       | 1      |
| 1   | 1   | 1   | 0   | 0       | 1       | 1       | 0       | 0  | 1    | 0     | 1      | 0       | 1      |
| 1   | 1   | 1   | 1   | 1       | 1       | mod     | !mod    | 1  | 1    | 0     | mod    | !mod    | mod    |

#### X^(n+1)

| ху | 00 | 01 | 11 | 10 |
|----|----|----|----|----|
| // |    |    |    |    |
| zt |    |    |    |    |
| 00 | 0  | 0  | 1  | 1  |
| 01 | 0  | 1  | 1  | 1  |
| 11 | 1  | *  | 1  | *  |
| 10 | 0  | 0  | 0  | 1  |

 $\overline{X^{n}}(n+1)=x^{*}!z+x^{*}!y+z^{*}t+y^{*}t$ 

#### Y^(n+1)

| ху | 00   | 01 | 11 | 10 |
|----|------|----|----|----|
| // |      |    |    |    |
| zt |      |    |    |    |
| 00 | 0    | 0  |    | 0  |
| 01 | supr | 0  | 1  | 1  |
| 11 | 0    | *  | 1  | *  |
| 10 | 1    | 0  | 1  | 1  |

Y^(n+1)=x\*y+x\*t+x\*z+!y\*z\*!t+!y\*!z\*t\*supr

#### Z^(n+1)

| ху | 00    | 01 | 11  | 10     |
|----|-------|----|-----|--------|
| // |       |    |     |        |
| zt |       |    |     |        |
| 00 | 0     | 0  | 1/  | Traseu |
| 01 | !supr | 0  | 0   |        |
| 11 | 0     | *  | Mod | *      |
| 10 | 0     | 1  | 1   | 1      |

Z^(n+1)=x\*y\*!t + !x\*y\*z + x\*!y\*t + x\*z\*!t + x\*z\*mod + + x\*!y\*traseu + !y\*!z\*t\*!supr

T^(n+1)

| ху | 00    | 01 | 11   | 10      |
|----|-------|----|------|---------|
| // |       |    |      |         |
| zt |       |    |      |         |
| 00 | Start | 0  | 0    | !traseu |
| 01 | 1     | 0  | 0    | 1       |
| 11 | 0     | *  | !mod | *       |
| 10 | 0     | 0  | 0    | 1       |

T^(n+1)=!y\*!z\*t + x\*!y\*z + x\*!y\*!traseu + y\*z\*t\*!mod + !x\*!y\*!z\*start

Dx

| ху | 00 | 01 | 11 | 10 |
|----|----|----|----|----|
| // |    |    |    |    |
| zt |    |    |    |    |
| 00 | 0  | 0  | 1  | 1  |
| 01 | 0  | 1  | 1  | 1  |
| 11 | 1  | *  | 1  | *  |
| 10 | 0  | 0  | 0  | 1  |

 $\overline{Dx = x^*!y + x^*!z} + z^*t + y^*t$ 

Jy

| ху | 00   | 01 | 11 | 10 |
|----|------|----|----|----|
| // |      |    |    |    |
| zt |      |    |    |    |
| 00 | 0    | 0  | 1  | 0  |
| 01 | Supr | 0  | 1  | 1  |
| 11 | 0    | *  | 1  | *  |
| 10 | 1    | 0  | 1  | 1  |

Jy=x\*t + x\*y + x\*z + !y\*z\*!t + !y\*!z\*t\*supr

Ку

| ху | 00           | 01 | 11 | 10 |
|----|--------------|----|----|----|
| // |              |    |    |    |
| zt |              |    |    |    |
| 00 | 1            | 1  | 0  | 1  |
| 01 | <b>!supr</b> | 1  | 0  | 0  |
| 11 | 1            | *  | 0  | *  |
| 10 | 0            | 1  | 0  | 0  |

Ky=!x\*y + !y\*!z\*!t + !y\*z\*t + !x\*!z\*t\*!supr

Dz

| ху | 00    | 01 | 11  | 10     |
|----|-------|----|-----|--------|
| // |       |    |     |        |
| zt |       |    |     |        |
| 00 | 0     | 0  | 1   | Traseu |
| 01 | !supr | 0  | 0   | 1      |
| 11 | 0     | *  | Mod | *      |
| 10 | 0     | 1  | 1   | 1      |

Dz=x\*!y\*t + x\*z\*!t + x\*y\*!t + !x\*y\*z + x\*z\*mod + x\*!y\*traseu + !y\*!z\*t\*!supr

Jt

| ху | 00    | 01 | 11   | 10      |
|----|-------|----|------|---------|
| // |       |    |      |         |
| zt |       |    |      |         |
| 00 | Start | 0  | 0    | !traseu |
| 01 | 1     | 0  | 0    |         |
| 11 | 0     | *  | tmod | *       |
| 10 | 0     | 0  | 0    | 1       |

Jt=x\*!y\*z + !y\*!z\*t + x\*!y\*!traseu + !x\*!y\*!z\*start + x\*z\*t\*!mod

Kt

| ху | 00    | 01 | 11  | 10     |
|----|-------|----|-----|--------|
| // |       |    |     |        |
| zt |       |    |     |        |
| 00 | start |    | 1   | Traseu |
| 01 | 0     | 1  | 1   | 0      |
| 11 | 1     | *  | Mod | *      |
| 10 | 1     | 1  | 1   | 0      |

Kt=y\*!z + !x\*z + y\*z\*!t + x\*y\*z\*mod + x\*!z\*!t\*traseu + + !x\*!z\*!t\*!start

#### Dx implementarea cu MUX 2:1

| ху | 00 | 01 | 11       | 10  |
|----|----|----|----------|-----|
| // |    |    |          |     |
| zt |    |    |          |     |
| 00 | 0  | 0  | <u> </u> | 1   |
| 01 | 0  | 1  | 1        | 1   |
| 11 | 1  | *  | 1        | *   |
| 10 | 0  | 0  | 0        | 1 ) |



### Jy Implementarea cu MUX 4:1

| ху | 00   | 01                                              | 11 | 10 |
|----|------|-------------------------------------------------|----|----|
| // |      |                                                 |    |    |
| zt |      |                                                 |    |    |
| 00 | 0    | $\left( \begin{array}{c} 0 \end{array} \right)$ |    | 0  |
| 01 | Supr | 0                                               | 1  | 1  |
| 11 | 0    | *                                               | 1  | *  |
| 10 |      | 0                                               |    |    |



Ky Implementarea cu MUX 8:1

| ху | 00    | 01 | 11  | 10  |
|----|-------|----|-----|-----|
| // |       |    |     |     |
| zt |       |    |     |     |
| 00 |       |    | (0) | (1) |
| 01 | !supr | 1  | 0   | 0   |
| 11 |       | *  | (0) | (*) |
| 10 | 0     |    | 0   | 0   |



# Implementarea circuitului

