

KIT-Fakultät für Informatik

Prof. Dr.-Ing. Tamim Asfour

Lösungsblätter zur Klausur

Robotik I: Einführung in die Robotik

am 07. April 2022

Name:	Vorname:		Matrikelnummer:		
Aufgabe 1			von	6 Punkten	
Aufgabe 2			von	8 Punkten	
Aufgabe 3			von	7 Punkten	
Aufgabe 4			von	7 Punkten	
Aufgabe 5			von	7 Punkten	
Aufgabe 6			von	7 Punkten	
Aufgabe 7			von	3 Punkten	
Gesamtpunktzahl:					
		Note:			

Aufgabe 1 Transformationen

1. Rotationsachse und Rotationswinkel:

2. Transformations matrix $^{BKS}T_{OKS}$: Name: Vorname: Matr.-Nr.: 3

3. Transformations matrix $^{OKS}T_{BKS}\colon$

Aufgabe 2 Kinematik

1. Jakobi-Matrix:

2. Jacobi-Matrix für $\boldsymbol{\theta} = (3, \frac{\pi}{2}, -\frac{\pi}{2})^T$:

3. Geschwindigkeit $\dot{\boldsymbol{x}}$:

Aufgabe 3 Regelung

y

 \boldsymbol{x}

1.	Sp	orungantworten							
	A	:							
	В	B:							
	C	:							
	D	:							
2.	Pı	roportional-Integral-	Derivative Controller						
	τ ((t) =							
	K_p :								
	K	d:							
	K	$_{i}$:							
3.	Ve	ervollständigen Sie d	ie Tabelle:						
		Regelkreisgröße	Name						
		Block 1							
		Block 2							
		w							
		x_d							

Aufgabe 4 Bewegungsplanung

- 1. (a) Konfiguration:
 - (b) Konfigurationsraum:
 - (c) Weitere Freiheitsgrade:
- 2. (a) Ziel der Bewegungsplanung:
 - (b) Änderung der Problemstellung:
- 3. (a) Vorverarbeitungsschritt:
 - (b) Zulässige Heuristik?

Funktion	ja / nein
$h_1(p, p_{end})$	
$h_2(p, p_{end})$	
$h_3(p, p_{end})$	

Aufgabe 5 Greifen

1. Begriffe:

2. Definition:

3. Objekthülle:

Abbildung 1: Objekthülle in 2D.

4. Griff:					
Aufgab	e 6 B	ild verarbeii	tung		
1. Bildre	präsentation	:			
Änder	rung mit Fer	ster:			
2. Minim	nale Numme	r von Korrespo	ondenzen:		
Objek	t:				
3. Morph	ıologischer (Operator Schlie	Eßen:		

Matr.-Nr.:

Vorname:

Name:

8

Name:	Vorname:	MatrNr.:	9
-------	----------	----------	---

Aufgabe 7 Roboterprogrammierung

-1	τ	T	C	1			
	١.	\triangle	rt.	വ	กา	eı	n·

• Szenario (a):

• Szenario (b):

• Szenario (c):

• Szenario (d):

2. Grund: