

(Artificial) Neural Networks

Industrial AI Lab.

Prof. Seungchul Lee

Artificial Neural Networks: Perceptron

- Perceptron for $h(\theta)$ or $h(\omega)$
 - Neurons compute the weighted sum of their inputs
 - A neuron is activated or fired when the sum a is positive

- $a=\omega_0+\omega_1x_1+\cdots \ o=\sigma(\omega_0+\omega_1x_1+\cdots)$

- A step function is not differentiable
- One layer is often not enough

Artificial Neural Networks: MLP

Multi-layer Perceptron (MLP) = Artificial Neural Networks (ANN)
 multi-neurons

Artificial Neural Networks: Activation Func.

• differentiable non-linear activation function

Artificial Neural Networks

• in a compact representation

Artificial Neural Networks

• multi-layer perceptron

ANN: Transformation

• Affine (or linear) transformation and nonlinear activation layer (notations are mixed: $g = \sigma, \omega = \theta, \omega_0 = b$)

$$o(x) = g\left(heta^T x + b
ight)$$

• Nonlinear activation functions $(g = \sigma)$

ANN: Structure

- A single layer is not enough to be able to represent complex relationship between input and output
 - ⇒ perceptron with many layers and units

$$\sigma_{2}=\sigma_{2}\left(heta_{2}^{T}o_{1}+b_{2}
ight)=\sigma_{2}\left(heta_{2}^{T}\sigma_{1}\left(heta_{1}^{T}x+b_{1}
ight)+b_{2}
ight)$$

• The perceptron classification rule boils down to

$$f(x) = \sigma(w \cdot x + b).$$

• For neural networks, the function σ that follows a linear operator is called the activation function.

• We can also use tensor operations, as in

$$f(x) = \sigma(w \cdot x + b).$$

• We can represent this "neuron" as follows:

$$f(x) = \sigma(w \cdot x + b).$$

• The main weakness of linear predictors is their lack of capacity. For classification, the populations have to be linearly separable.

• The xor example can be solved by pre-processing the data to make the two populations linearly separable.

$$\Phi: (x_u, x_v) \mapsto (x_u, x_v, x_u x_v).$$

• The xor example can be solved by pre-processing the data to make the two populations linearly separable.

$$\Phi: (x_u, x_v) \mapsto (x_u, x_v, x_u x_v).$$

• The xor example can be solved by pre-processing the data to make the two populations linearly separable.

$$\Phi: (x_u, x_v) \mapsto (x_u, x_v, x_u x_v).$$

• Nonlinear mapping + neuron

$$\Phi: (x_u, x_v) \mapsto (x_u, x_v, x_u x_v).$$

- Nonlinear mapping can be represented by another neurons
- We can generalize an MLP

Linear Classifier

• Perceptron tries to separate the two classes of data by dividing them with a line

Neural Networks

• The hidden layer learns a representation so that the data is linearly separable

Understanding a Network's Behavior

- Understanding what is happening in a deep architectures after training is complex and the tools we have at our disposal are limited.
- We can look at
 - the network's parameters, filters as images,
 - internal activations as images,
 - distributions of activations on a population of samples,
 - derivatives of the response(s) wrt the input,
 - maximum-response synthetic samples,
 - adversarial samples.

Nonlinearly Distributed Data

Multi Layers

Multi Layers

Multi Neurons

Summary

• Learning weights and biases from data using gradient descent

Machine Learning

Machine Learning

Deep Learning

Recall Supervised Learning Setup

TRADITIONAL MACHINE LEARNING

DEEP LEARNING

Machine Learning and Deep Learning

Machine Learning

Deep supervised learning

Artificial Neural Networks

- Complex/Nonlinear universal function approximator
 - Linearly connected networks
 - Simple nonlinear neurons

Output

Artificial Neural Networks

- Complex/Nonlinear universal function approximator
 - Linearly connected networks
 - Simple nonlinear neurons

Input

POSTPEH

Deep Artificial Neural Networks

- Complex/Nonlinear universal function approximator
 - Linearly connected networks
 - Simple nonlinear neurons

