Examenul de bacalaureat național 2013 Proba E. c) Matematică M mate-info Barem de evaluare și de notare

Varianta 6

Filiera teoretică, profilul real, specializarea matematică-informatică Filiera vocațională, profilul militar, specializarea matematică-informatică

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
- Se acordă 10 puncte din oficiu. Nota finală se calculează prin împărțirea la 10 a punctajului total acordat pentru lucrare.

SUBIECTUL I (30 de puncte)

4		
1.	$\left(\sqrt{3}-1\right)^2 = 4-2\sqrt{3}$	3 p
	$n=4\in\mathbb{N}$	2p
2.	$f(x) = g(x) \Leftrightarrow x + 1 = 2x - 1$	2p
	$x=2 \Rightarrow y=3$	3 p
3.	$6 - x^2 = x \Rightarrow x^2 + x - 6 = 0$	3 p
	x = -3 sau $x = 2$	2p
4.	Numerele \overline{abc} cu $a+b+c=2$ sunt 101, 110 şi $200 \Rightarrow 3$ cazuri favorabile	2p
	Numărul numerelor de 3 cifre este $900 \Rightarrow 900$ de cazuri posibile	1p
	$p = \frac{\text{nr. cazuri favorabile}}{\text{cazuri favorabile}} = \frac{1}{1}$	2
	$p = \frac{1}{\text{nr. cazuri posibile}} = \frac{1}{300}$	2p
5.	Mijlocul segmentului AB este punctul $M(2,2)$	2p
	$m_{AB} = \frac{y_B - y_A}{1} = -1 \Rightarrow$ panta mediatoarei segmentului AB este egală cu 1	200
	$\frac{m_{AB}}{x_B - x_A} = 1 \Rightarrow \text{paintal infection of segmentation } PB \text{ esce equilibrium } PB$	2p
	Ecuația mediatoarei segmentului AB este $y = x$	1p
6.	$\triangle ABC$ dreptunghic în $A \Rightarrow R = \frac{BC}{2}$	3 p
	$\frac{\Delta n b c \text{ displaine in } n \to \kappa - 2}{2}$	
	R=4	2p

(30 de puncte) **SUBIECTUL al II-lea**

1.a)	$A(0) \cdot A(1) = \begin{pmatrix} 1 & 0 & 1 \\ 1 & -1 & 1 \\ 0 & -1 & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 & 1 & 1 \\ 1 & -1 & 1 \\ 1 & -1 & 1 \end{pmatrix} =$	2p
	$= \begin{pmatrix} 2 & 0 & 2 \\ 1 & 1 & 1 \\ 0 & 0 & 0 \end{pmatrix}$	3 p
b)		
	$\det(A(x)) = \begin{vmatrix} 1 & x & 1 \\ 1 & -1 & 1 \\ x & -1 & 1 \end{vmatrix} = -1 - 1 + x^2 + x - x + 1 =$	3р
	$=x^2-1$	2p
c)	$(A(x))^{-1}$ este inversa lui $A(x) \Rightarrow A(x) \cdot (A(x))^{-1} = I_3 \Rightarrow \det(A(x)) \cdot \det((A(x))^{-1}) = 1$	1p
	$x \in \mathbb{Z} \Rightarrow \det(A(x)) \in \mathbb{Z}$	1p
	$(A(x))^{-1}$ are elementele numere întregi $\Rightarrow \det((A(x))^{-1}) \in \mathbb{Z}$	1p
	$\det(A(x)) = \pm 1 \Rightarrow x = 0$ care verifică cerința	2p

2.a)	$2 \circ 3 = \sqrt{4 \cdot 9 + 4 + 9} =$	3 p
	= 7	2p
b)	$x \circ y = \sqrt{x^2(y^2+1) + y^2} = \sqrt{x^2(y^2+1) + (y^2+1) - 1} =$	2 p
	$=\sqrt{(x^2+1)(y^2+1)-1}$, pentru orice $x, y \in \mathbb{R}$	3 p
c)	$x \circ x \circ x = \sqrt{\left(x^2 + 1\right)^3 - 1}$	2p
	$\sqrt{(x^2+1)^3-1} = x \Rightarrow x = 0$, care verifică ecuația	3 p

	V()			
SUBIECTUL al III-lea (30 de puncte)				
1.a)	$g'(x) = 2x + 2$, pentru orice $x \in \mathbb{R}$	3 p		
	g'(2) = 6	2 p		
b)	$\lim_{x \to 0} \frac{2e^x - x^2 - 2x - 2}{2x^3} = \lim_{x \to 0} \frac{2e^x - 2x - 2}{6x^2} =$	2 p		
	$= \lim_{x \to 0} \frac{e^x - 1}{6x} = \frac{1}{6}$	3 p		
c)	n:[0,1] $n:[0,1]$ $n:[0$	2 p		
	orice $x \in [0, +\infty)$ h' crescătoare $\Rightarrow h'(x) \ge h'(0) = 0$, pentru orice $x \in [0, +\infty)$	1p		
	$h \text{ crescătoare} \Rightarrow h(x) \ge h(0) = 0$, pentru orice $x \in [0, +\infty)$	2p		
2.a)	(x+2)y(x)=x+4x+3	1p		
	$\int_{0}^{1} \left(x^{2} + 4x + 5 \right) dx = \left(\frac{x^{3}}{3} + 2x^{2} + 5x \right) \Big _{0}^{1} =$	2 p		
	$=\frac{22}{3}$	2p		
b)	$F'(x) = \left(\frac{x^2}{2} + 2x + \ln(x+2)\right)' = x + 2 + \frac{1}{x+2}, \text{ pentru orice } x \in (-2, +\infty)$	3 p		
	$F'(x) = f(x)$, pentru orice $x \in (-2, +\infty) \Rightarrow F$ este o primitivă a funcției f	2p		
c)	$\int_{-1}^{0} F(x) \cdot f(x) dx = \int_{-1}^{0} F(x) \cdot F'(x) dx =$	2p		
	$= \frac{F^{2}(x)}{2} \Big _{-1}^{0} = \frac{F^{2}(0) - F^{2}(-1)}{2} = \frac{1}{2} \left(\ln^{2} 2 - \frac{9}{4} \right)$	3 p		