Lingur).com/apexcalculus We have a first def. of limiting value for functions. Ne say limit of f(n) as naproaches a in L to mean the values f (n) get closer and closer to Las N gets closer and closer to a. In notation it is. $\lim_{n \to a} f(n) = L$ $f(n) \rightarrow L \quad \text{as} \quad n \rightarrow a$

"Noser and closer" What exactly does this mean? How 'fast" is this happening? Suggests a need for a more preuse definition Schon 1.2 definition The epsilon, delta E - epsilon S - detta, $|f(n) - L| < \varepsilon$ $|f(n) - L| < \varepsilon$ $|f(n) - L| < \varepsilon$ Formal definition of "lim f(n)=1" a

"for every \$20 there exists \$20
for every \$20 there exists \$20 Such that for every n Satisfying
n-a < 8, we have f(n) - L < 2
" u-v " the distance between u and
von the rumber line
Two Hungs we'll get from this
definition the abstity, in some cases, to directly prove timiting values for functions.
The alphty, in some casts, to
directly prove timiting values
for functions.
o the abouting to prove general
Statements about the
concept of himiting value such as theorem 1.3.1.
Continue at 10:07.
Comparet notation for formal def.

live f(n)=L (=) V2>0]8>0 |n-a|48=)|f(n)-1/29 Conerder Q8 from See. 1.2. Use E-8 definition to prove. $\lim_{n\to 4} \left(n^2 + n - 5\right) = 15.$ So f'in the function $f(n) = n^2 + n - 5$. Well begin hy investigating. $|f(n)-15|<\varepsilon$ $\langle \Rightarrow | \chi^2 + \chi - 20 | < \xi$ $(=) \left((\chi - 1) (\chi + 5) \right) < \epsilon$ (=) | x-4 | x+5 | < 2, xu, x | unt= | ull x | But note \(\frac{\x}{1\x + 51}\) Still depends on n!

Let $8 = \min(1, \frac{\xi}{10})$ then $|n-4| < 8 = |n-4| < 1 \text{ and } |n-4| < \frac{\xi}{10}$ $=) |f(n)-15| < \epsilon$

Theorem 1.3.1 Sum case. $f(x) \longrightarrow L$ Assume as n -> c, g (n) -> K. $f(n)+g(n) \longrightarrow L+K.$ We will prove. Inrestigate. $|f(n)+g(n)-(L+K)|<\varepsilon$ $= |(f(n)-L)+(g(n)-K)|<\varepsilon$ Apply the Friangle Theorality $|u+w| \leq |u|+|w|$

Ldea

So It E/2 can arrange 1 f(n) - L| + | g(n) - K| < E then I'll Know 1 f(n) - L + g(n) - K / 2 E By defuntion 3 8,00 such that 12-c/<8,=) [f(n)-L/=2 JE20 such that $|\chi-c|<\epsilon_2 \Rightarrow |g(\chi)-k|^2 \leq$ So Moore S=Min(81,82) So now, It In-c/28 1 f(n)-1 + g(n)- x

< |+(n)-1|+|g(n)-+| $|f(n)+g(n)-(L+K)|\leq 2$ from in stigations also C. The war. Setion 1.2 exercises