# Basic Inferential Data Analysis

#### Clément Brutti-Mairesse

### 27/04/2020

#### About the dataset

We make an analysis on an experiment made on 60 pigs, trying to find the effect of Orange Juice and Ascorbic Acid on tooth growth. The metric is the length of odontoblast, evaluated in milligrams/day.

#### **Exploratory Data Analysis**

Here is a table with the count, variance, quartiles of each group.

| supp          | dose | n  | mean  | variance  | q25    | median | q75    | skewness   | kurtosis   |
|---------------|------|----|-------|-----------|--------|--------|--------|------------|------------|
| Orange Juice  | 0.5  | 10 | 13.23 | 19.889000 | 9.700  | 12.25  | 16.175 | 0.4381154  | -1.3697072 |
| Orange Juice  | 1.0  | 10 | 22.70 | 15.295556 | 20.300 | 23.45  | 25.650 | -0.6804992 | -0.6799774 |
| Orange Juice  | 2.0  | 10 | 26.06 | 7.049333  | 24.575 | 25.95  | 27.075 | 0.3685108  | -1.0857354 |
| Ascorbic Acid | 0.5  | 10 | 7.98  | 7.544000  | 5.950  | 7.15   | 10.900 | 0.1330745  | -1.8068950 |
| Ascorbic Acid | 1.0  | 10 | 16.77 | 6.326778  | 15.275 | 16.50  | 17.300 | 0.9255236  | 0.0762364  |
| Ascorbic Acid | 2.0  | 10 | 26.14 | 23.018222 | 23.375 | 25.95  | 28.800 | 0.1605264  | -1.2320527 |

We can already see that groups do not have the same variance.

## Tooth growth by dosage and by supplement



#### Growth analysis

We now compare the six different groups with themselves. We suppose this is a randomized experiment, and that the groups are independents and that the variance is **not** constant between groups. We use a 95% T confidence interval to compare the groups. Here is a reminder of the detail of the t confidence interval calculation with an unequal variance, (we use t.test(, var.equal=FALSE))

$$\bar{Y} - \bar{X} \pm t_{df} \times (\frac{s_x^2}{n_x} + \frac{s_y^2}{n_y})^{1/2}$$

with  $t_{df}$ : t quantile and df equals to

$$df = \frac{(S_x^2/n_x + S_y^2/n_y)^2}{(S_x^2/n_x)^2/(n_x - 1) + (S_y^2/n_y)^2/(n_y - 1)}$$

Here is a table summing up the confidence intervals. Rows are compared with columns. For example: Orange Juice 2mg/day (OJ 2) is 15.8 to 20.36 mg/day better than Ascorbic Acid 0.5mg/day (AA 0.5).

|        | OJ 0.5          | OJ 1             | OJ 2             | AA 0.5         | AA 1            | AA 2              |
|--------|-----------------|------------------|------------------|----------------|-----------------|-------------------|
| OJ 0.5 | NA              | [-14.62;-4.325]  | [-16.7;-8.956]   | [1.263;9.237]  | [-6.706;-0.374] | [-18.26;-7.562]   |
| OJ 1   | [4.325;14.62]   | NA               | [-7.271; 0.5509] | [12;17.44]     | [1.952; 9.908]  | [-6.848;-0.03218] |
| OJ 2   | [8.956;16.7]    | [-0.5509; 7.271] | NA               | [15.8; 20.36]  | [6.833;11.75]   | [-4.329;4.169]    |
| AA 0.5 | [-9.237;-1.263] | [-17.44;-12]     | [-20.36; -15.8]  | NA             | [-12.03; -5.55] | [-22.36;-13.96]   |
| AA 1   | [0.374; 6.706]  | [-9.908; -1.952] | [-11.75;-6.833]  | [5.55;12.03]   | NA              | [-13.33; -5.405]  |
| AA 2   | [7.562;18.26]   | [0.03218; 6.848] | [-4.169; 4.329]  | [13.96; 22.36] | [5.405;13.33]   | NA                |

Similarly, this a table sum up the p-Values in percentage

|        | OJ 0.5  | OJ 1                        | OJ 2                        | AA 0.5                      | AA 1    | AA 2     |
|--------|---------|-----------------------------|-----------------------------|-----------------------------|---------|----------|
| OJ 0.5 | NA      | 0.24%                       | 0.0037%                     | 1.5%                        | 3.2%    | 0.04%    |
| OJ 1   | 0.24%   | NA                          | 8.4%                        | $6.6\mathrm{e}\text{-}05\%$ | 0.82%   | 4.8%     |
| OJ 2   | 0.0037% | 8.4%                        | NA                          | $2.4\mathrm{e}\text{-}06\%$ | 0.0013% | 97%      |
| AA 0.5 | 1.5%    | $6.6\mathrm{e}\text{-}05\%$ | $2.4\mathrm{e}\text{-}06\%$ | NA                          | 0.017%  | 0.00043% |
| AA 1   | 3.2%    | 0.82%                       | 0.0013%                     | 0.017%                      | NA      | 0.046%   |
| AA 2   | 0.04%   | 4.8%                        | 97%                         | 0.00043%                    | 0.046%  | NA       |

#### Conclusions

We can see that Ascorbic Acid had relevant improvement as the dose increase. In opposition as the dose of Orange Juice increase the growth does not increase significantly. Comparing the two supplements with equal dose does not show a relevant difference of growth either. For example the confidence interval comparing  $Orange\ Juice\ 2mg/day\ (OJ\ 2)$  with  $Ascorbic\ Acid\ 0.5mg/day\ (AA\ 2)$  is -4.329:4.169 it contains zero, therefore the difference is not significant with a 95% confidence interval.