Chapter 25 Applications linéaires

Exercice 1 (25.1)

Soit E l'espace vectoriel des fonctions continues de \mathbb{R} dans \mathbb{R} . À toute application $f \in E$, on associe l'application A(f) définie par

 $x \mapsto \int_0^x f(t) dt$.

- 1. Justifier que A est une application de E à valeurs dans E.
- 2. Montre que A est linéaire.

Solution 1 (25.1)

- **1.** Puisque f est continue sur \mathbb{R} , l'application $x \mapsto \int_0^x f(t) dt$ est une primitive de f sur \mathbb{R} . Celle-ci est donc dérivable est a fortiori continue, autrement dit $A(f) \in E$.
- **2.** Soit $f, g \in E$ et $\alpha, \beta \in \mathbb{R}$. Nous devons montrer l'égalité entre fonction de \mathbb{R} dans \mathbb{R}

$$A(\alpha f + \beta g) = \alpha A(f) + \beta A(g).$$

Pour $x \in \mathbb{R}$,

$$A(\alpha f + \beta g)(x) = \int_0^x (\alpha f + \beta g)(t) dt$$

$$= \int_0^x \alpha f(t) + \beta g(t) dt$$

$$= \alpha \int_0^x f(t) dt + \beta \int_0^x g(t) dt \qquad \therefore \text{linéarité de } \int_{[0,x]}$$

$$= \alpha A(f)(x) + \beta A(g)(x)$$

$$= (\alpha A(f) + \beta A(g))(x).$$

Cette égalité étant valable pour tout $x \in \mathbb{R}$, on a bien

$$A(\alpha f + \beta g) = \alpha A(f) + \beta A(g).$$

L'application A est donc linéaire.

Exercice 2 (25.1)

Vérifier la linéarité des applications suivantes.

1.
$$f_1: \mathbb{R}^3 \to \mathbb{R}^3$$
 $(x, y, z) \mapsto (x, y)$

4.
$$f_4$$
: $\mathbb{R}[X] \rightarrow \mathbb{R}[X]$. $P \mapsto X^2 P'$

5.
$$f_5: \mathbb{R}^{\mathbb{N}} \to \mathbb{R}^{\mathbb{N}}$$
. $(u_n)_{n\in\mathbb{N}} \mapsto (u_{2n})_{n\in\mathbb{N}}$.

Solution 2 (25.1)

Fait en cours.

Exercice 3 (25.1)

Montrer que l'application
$$f: \mathbb{R}^2 \to \mathbb{R}^2$$
 appartient à $GL(\mathbb{R}^2)$. Préciser f^{-1} .

Vérifier que f^{-1} est effectivement linéaire.

Solution 3 (25.1)

Soit $v = (x, y) \in \mathbb{R}^2$, $w = (x', y') \in \mathbb{R}^2$ et $\alpha \in \mathbb{R}$.

$$f(v + w) = f(x + x', y + y')$$

$$= (x + x' + 3(y + y'), 4(x + x') - 2(y + y'))$$

$$= (x + 3y + x' + 3y', 4x - 2y + 4x' - 2y')$$

$$= (x + 3y, 4x - 2y) + (x' + 3y', 4x' - 2y')$$

$$= f(v) + f(w),$$
et $f(\alpha v) = f(\alpha x, \alpha y)$

$$= (\alpha x + 3\alpha y, 4\alpha x - 2\alpha y)$$

$$= \alpha (x + 3y, 4x - 2y)$$

$$= \alpha f(v).$$

Ainsi, l'application f est linéaire : c'est un endomorphisme de \mathbb{R}^2 . Montrons que f est bijective, c'est-à-dire

$$\forall v \in \mathbb{R}^2, \exists ! u \in \mathbb{R}^2 f(u) = v.$$

Soit $u = (x, y) \in \mathbb{R}^2$, $v = (x', y') \in \mathbb{R}^2$,

$$f(u) = v \iff \begin{cases} x + 3y = x' \\ 4x - 2y = y' \end{cases} \iff \begin{cases} x + 3y = x' \\ -14y = -4x' + y' \end{cases} \iff \begin{cases} x = \frac{1}{7}x' + \frac{3}{14}y' \\ y = \frac{2}{7}x' - \frac{1}{14}y' \end{cases}$$

Ce qui assure l'existence et l'unicité de u tel que f(u) = v. L'application f est donc bijective et

$$f^{-1}: \mathbb{R}^2 \to \mathbb{R}^2$$

 $(x,y) \mapsto \left(\frac{1}{7}x + \frac{3}{14}y, \frac{2}{7}x - \frac{1}{14}y\right)$

Il ne (*vous*) reste plus qu'a montrer que f^{-1} est bien linéaire.

Exercice 4 (25.1)

Soient E un \mathbb{K} -espace vectoriel et $f \in \mathbf{L}(E)$ vérifiant

$$(f - \operatorname{Id}_E) \circ (f + 2\operatorname{Id}_E) = 0. \tag{1}$$

Montrer que f est bijective.

Solution 4 (25.1)

Puisque f et Id_E sont linéaires,

$$\left(f-\operatorname{Id}_{E}\right)\circ\left(f+2\operatorname{Id}_{E}\right)=f\circ f-\operatorname{Id}_{E}\circ f+f\circ (2\operatorname{Id}_{E})-\operatorname{Id}_{E}\circ (2\operatorname{Id}_{E})=f\circ f+f-2\operatorname{Id}_{E}=0. \tag{2}$$

Ainsi,

$$f \circ f + f = 2 \operatorname{Id}_{E}$$

d'où

$$f\circ \left(\frac{1}{2}(f+\operatorname{Id}_E)\right)=\operatorname{Id}_E \ \operatorname{et} \ \left(\frac{1}{2}(f+\operatorname{Id}_E)\right)\circ f=\operatorname{Id}_E.$$

L'application f est donc bijective et $f^{-1} = \frac{1}{2} \left(f + \operatorname{Id}_E \right)$.

Exercice 5 (25.2)

Montrer que les applications suivantes sont linéaires, préciser leur noyau et leur image, préciser aussi si celles-ci sont injectives ou surjectives.

1.
$$f: \mathbb{R}^2 \to \mathbb{R}^3$$
 définie par $f(x, y) = (y - 3x, 5x + 2y, x + y)$.

2.
$$f: \mathbb{R}^3 \to \mathbb{R}^3$$
 définie par $f(x, y, z) = (x + y + z, x + 3y + 2z, 3x + y + 2z)$.

3.
$$f: \mathbb{R}^3 \to \mathbb{R}^4$$
 définie par $f(x, y, z) = (2x - y + z, 3x + y - z, x - 3y + 3z, 2x + 4y - 4z).$

Solution 5 (25.2)

Exercice 6 (25.2)

Montrer que les applications suivantes sont linéaires, préciser leur noyau et leur image, préciser aussi si celles-ci sont injectives ou surjectives.

- **1.** $f: \mathbb{R}_3[X] \to \mathbb{R}_3[X]$ définie par f(P) = X(P'(X+1) P'(1)).
- 2. $f : \mathbb{R}[X] \to \mathbb{R}[X]$ définie par f(P) = P XP' P(0).

Solution 6 (25.2)

Exercice 7 (25.2)

Montrer que les applications suivantes sont linéaires, préciser leur noyau et leur image, préciser aussi si celles-ci sont injectives ou surjectives.

1.
$$f: \mathbb{R}^3 \to \mathbb{R}^2$$
 définie par $f(x, y, z) = (2x + y - z, x + y)$.

2.
$$M: \mathbb{R}[X] \to \mathbb{R}[X]$$
 définie par $M(P) = XP$.

3.
$$\phi: \mathscr{C}^1(\mathbb{R}, \mathbb{K}) \to \mathscr{C}(\mathbb{R}, \mathbb{K})$$
 définie par $\phi(f) = f' - f$.

4.
$$T: \mathbb{C}^{\mathbb{N}} \to \mathbb{C}^{\mathbb{N}}$$
 définie par $T\left((u_n)_{n \in \mathbb{N}}\right) = \left(u_{n+1}\right)_{n \in \mathbb{N}}$.

5.
$$f: \mathbb{C} \to \mathbb{R}$$
 définie par $f(z) = \mathfrak{Tm}(z) - \mathfrak{Re}(z)$.

Solution 7 (25.2)

Exercice 8 (25.2)

Soit
$$\phi$$
: $\mathbb{R}_3[X] \rightarrow \mathbb{R}^3$
 $P \mapsto (P(0), P'(1), P(2))$.

- 1. Prouver que ϕ est linéaire.
- **2.** Déterminer le noyau de ϕ .
- 3. Déterminer l'image de ϕ .
- **4.** L'application ϕ est-elle injective? est-elle surjective?

Solution 8 (25.2)

Exercice 9 (25.2)

Soit
$$\phi$$
: $\mathbb{R}_2[X] \rightarrow \mathbb{R}^4$
 $P \mapsto (P(0), P(1), P(2), P(3))$

- 1. Prouver que ϕ est linéaire.
- **2.** Déterminer le noyau de ϕ .
- 3. Soit $y = (y_1, y_2, y_3, y_4) \in \mathbb{R}^4$. Déterminer une condition nécessaire et suffisante sur y pour avoir $y \in \text{Im}(\phi)$.
- **4.** L'application ϕ est-elle injective? est-elle surjective?

Solution 9 (25.2)

Exercice 10 (25.2)

On désigne par $E=\mathscr{C}^1(\mathbb{R},\mathbb{R})$ et on considère l'application ϕ définie sur E par

$$\forall f \in E, \phi(f) = f'(1).$$

- 1. Démontrer que ϕ est une forme linéaire sur E.
- **2.** En déduire que $F = \{ f \in E \mid f'(1) = 0 \}$ est un sous-espace vectoriel de E.

Solution 10 (25.2)

1. Soit $(f,g) \in E^2$ et $\alpha \in \mathbb{R}$.

$$\phi(f+g) = (f+g)'(1) = f'(1) + g'(1) = \phi(f) + \phi(g) \text{ et } \phi(\alpha f) = (\alpha f)'(1) = \alpha f'(1) = \alpha \phi f.$$

L'application $\phi: E \to \mathbb{R}$ est donc une forme linéaire.

2. $F = \ker \phi$, c'est donc un sous-espace vectoriel de E.

Exercice 11 (25.2)

Soient E, F, G trois \mathbb{K} -espace vectoriel, $f \in \mathbf{L}(E, F)$ et $g \in \mathbf{L}(F, G)$.

- **1.** Montrer que $g \circ f = 0$ si et seulement si Im $f \subset \ker g$.
- **2.** Montrer que ker $f \subset \ker g \circ f$.
- **3.** Montrer que $\operatorname{Im} g \circ f \subset \operatorname{Im} g$.

Solution 11 (25.2)

1. Supposons $g \circ f = 0$, c'est-à-dire

$$\forall x \in E, g(f(x)) = 0.$$

Soit $y \in \text{Im } f$, il existe $x \in E$ tel que y = f(x). On a alors,

$$g(y) = g(f(x)) = 0$$

c'est-à-dire $y \in \ker g$.

Conclusion. Im $f \subset \ker g$.

Réciproquement, supposons Im $f \subset \ker g$.

Soit $x \in E$,

$$g \circ f(x) = g(f(x))$$

Or $f(x) \in \text{Im } f$, donc $f(x) \in \text{ker } g$, c'est-à-dire $g \circ f(x) = 0$. Ce résultat étant valable pour tout $x \in E$, on a bien $g \circ f = 0$.

2. Soit $x \in \ker f$. Alors

$$g \circ f(x) = g(f(x)) = g(0) = 0,$$

donc $x \in \ker g \circ f$.

On a montré ker $f \subset \ker g \circ f$.

3. Soit $y \in \text{Im } g \circ f$. Il existe $x \in E$ tel que $g \circ f(x) = y$. On a donc

$$y = g(f(x))$$
 et $f(x) \in F$

d'où $y \in \text{Im } g$.

On a montré $\operatorname{Im} g \circ f \subset \operatorname{Im} g$.

Exercice 12 (25.2)

Soient E un \mathbb{K} -espace vectoriel et $f \in \mathbf{L}(E)$. On note $f^2 = f \circ f$. Montrer que $\ker f \subset \ker f^2$ et $\operatorname{Im} f^2 \subset \operatorname{Im} f$.

Solution 12 (25.2)

C'est un cas particulier de l'exercie précédent...

Exercice 13 (25.2)

Soient E un \mathbb{K} -espace vectoriel et $f \in \mathbf{L}(E)$. On note $f^2 = f \circ f$. Montrer que $\ker f = \ker f^2$ si et seulement si $\ker f \cap \operatorname{Im} f = \{\, 0_E \,\}$.

Solution 13 (25.2)

Ça ressemble à 12 (25.2).

Exercice 14 (25.2)

Soit E un \mathbb{K} -espace vectoriel et u et v deux endomorphismes de E qui commutent. Montrer que ker u et Im u sont stables par v.

Exercice 15 (25.2)

Soient E un espace vectoriel sur un corps \mathbb{K} et $u \in \mathbf{L}(E)$.

1. Montrer que $(\ker u^k)_{k\in\mathbb{N}}$ est une suite croissante et $(\operatorname{Im} u^k)_{k\in\mathbb{N}}$ est une suite décroissante, c'est-à-dire

$$\forall k \in \mathbb{N}, \ker u^k \subset \ker u^{k+1} \text{ et } \operatorname{Im} u^{k+1} \subset \operatorname{Im} u^k.$$

2. On suppose qu'il existe un entier naturel d tel que ker $u^d = \ker u^{d+1}$. Montrer

$$\forall k \in \mathbb{N}, k \ge d \implies \ker u^{k+1} = \ker u^k.$$

3. Démontrer que, p étant un entier strictement positif, on a

$$\ker u^p = \ker u^{p+1} \iff \ker u^p \cap \operatorname{Im} u^p = \left\{ \ 0_E \ \right\}.$$

4. On suppose qu'il existe un entier naturel d tel que $\operatorname{Im} u^d = \operatorname{Im} u^{d+1}$. Montrer

$$\forall k \in \mathbb{N}, k \ge d \implies \operatorname{Im} u^{k+1} = \operatorname{Im} u^k.$$

Solution 15 (25.2)

Un exercice pour futur MPI!

Exercice 16 (25.2)

Soit f une application linéaire d'un espace vectoriel E vers un espaces vectoriels F. Montrer que pour tout partie A de E,

$$f(\operatorname{Vect}(A)) = \operatorname{Vect}(f(A))$$
.

Solution 16 (25.2)

Exercice 17 (25.2)

Déterminer le noyau et l'image de l'application linéaire

$$u: \mathbb{R}^3 \to \mathbb{R}^2$$

 $(x, y, z) \mapsto (x + y - z, x - y + 2z)$

Est-elle injective ? Surjective ?

Solution 17 (25.2)

$$\ker f = \operatorname{Vect} \left\{ \begin{pmatrix} -1 \\ 3 \\ 2 \end{pmatrix} \right\} \quad \text{et} \quad \operatorname{Im} f = \mathbb{R}^2.$$

f est surjective et n'est pas injective.

Exercice 18 (25.2)

Soit
$$\theta$$
: $\mathbb{R}_2[X] \rightarrow \mathbb{R}^3$
 $P \mapsto (P(0), P(1), P(2))$

- **1.** Prouver que $\theta \in L(\mathbb{R}_2[X], \mathbb{R}^3)$.
- **2.** Montrer que θ est injective.
- 3. Montrer que θ est surjective.

Solution 18 (25.2)

1. Soit $P, Q \in \mathbb{R}[X]$ et $\alpha \in \mathbb{R}$.

$$\begin{split} \theta(P+Q) &= ((P+Q)(0), (P+Q)(1), (P+Q)(2)) \\ &= (P(0)+Q(0), P(0)+Q(1), P(2)+Q(2)) \\ &= (P(0), P(1), P(2)) + (Q(0), Q(1), Q(2)) \\ &= \theta(P) + \theta(Q) \\ \text{et } \theta(\alpha P) &= ((\alpha P)(0), (\alpha P)(1), (\alpha P)(2)) \\ &= (\alpha P(0), \alpha P(1), \alpha P(2)) \\ &= \alpha \left(P(0), P(1), P(2) \right). \end{split}$$

L'application θ est donc linéaire.

2. Soit $P \in \ker \theta$, alors P(0) = P(1) = P(2) = 0. Ainsi P a au moins 3 racines et deg $P \le 2$, le polynôme P est donc nul. Ainsi $\ker \theta = \{0\}$ et l'application linéaire θ est injective.

Variante. (À la main). Soit $P \in \mathbb{R}_2[X]$, $P = aX^2 + bX + c$.

$$P \in \ker \theta \iff \begin{cases} P(0) &= 0 \\ P(1) &= 0 \\ P(2) &= 0 \end{cases} \iff \begin{cases} c &= 0 \\ a+b+c &= 0 \\ 4a+2b+c &= 0 \end{cases}$$
$$\iff \begin{cases} c &= 0 \\ a &= -b \\ -2b &= 0 \end{cases} \iff a = b = c = 0 \iff P = 0.$$

Ainsi ker $\theta = \{0\}$ et l'application linéaire θ est injective.

Variante (à la main). Soit $(x, y, z) \in \mathbb{R}^3$, on cherche $P = aX^2 + bX + c \in \mathbb{R}_2[X]$ tel que $\theta(P) = (x, y, z)$.

$$\theta(P) = (x, y, z) \iff \begin{cases} P(0) &= x \\ P(1) &= y \\ P(2) &= z \end{cases} \iff \begin{cases} c &= x \\ a+b+c &= y \\ 4a+2b+c &= z \end{cases} \iff \begin{cases} a+b+c &= y \\ -2b-3c &= z-4y \\ c &= x \end{cases}$$

Ce système est toujours compatible : $(x, y, z) \in \text{Im } \theta$. Ainsi θ est une application surjective.

Exercice 19 (25.2)

Vérifier que les applications suivantes sont \mathbb{R} -linéaires et déterminer dans chaque cas l'image et le noyau. En déduire si elles sont injectives, surjectives, bijectives.

1.
$$u: \mathbb{R}^3 \to \mathbb{R}^2$$

 $(x, y, z) \mapsto (x, y)$

2.
$$u: \mathbb{R}^3 \rightarrow \mathbb{R}^2$$
 $(x, y, z) \mapsto (x + 2y + z, x - z)$

3.
$$u: \mathbb{R}^3 \rightarrow \mathbb{R}^3$$
 . $(x, y, z) \mapsto (x - y, y + z, x + y + z)$

4.
$$u: \mathcal{F}(\mathbb{R}, \mathbb{R}) \to \mathbb{R}$$
 . $f \mapsto f(0)$

6.
$$u : \mathbb{R}[X] \rightarrow \mathbb{R}$$

 $P \mapsto P(0)$

7.
$$u: \mathbb{R}[X] \to \mathbb{R}[X]$$
.
 $P \mapsto X^2 P'$

8.
$$f: \mathbb{R}^{\mathbb{N}} \to \mathbb{R}$$
. $(u_n)_{n \in \mathbb{N}} \mapsto u_3$

9.
$$f: \mathbb{R}^{\mathbb{N}} \to \mathbb{R}^{\mathbb{N}}$$
 $(u_n)_{n \in \mathbb{N}} \mapsto (u_{n+1})_{n \in \mathbb{N}}$.

10.
$$f: \mathbb{R}^{\mathbb{N}} \to \mathbb{R}^{\mathbb{N}}$$
 . $(u_n)_{n \in \mathbb{N}} \mapsto (u_{2n})_{n \in \mathbb{N}}$.

Exercice 20 (25.3)

Vérifier que les applications suivantes sont \mathbb{R} -linéaires et déterminer dans chaque cas l'image et le noyau. En déduire si u est injective, surjective, bijective.

1.
$$u: \mathbb{R}[X] \to \mathbb{R}[X]$$
.
 $P \mapsto P'$

$$\begin{array}{cccc} \textbf{2.} \ u : & \mathbb{R}_3[X] & \rightarrow & \mathbb{R}_3[X] \ . \\ & P & \mapsto & P' \end{array}$$

3.
$$u : \mathbb{R}[X] \to \mathbb{R}^3$$
 $P \mapsto (P(-1) P(0) P(1))$

4.
$$u : \mathbb{R}[X] \rightarrow \mathbb{R}[X]$$

 $P \mapsto P - (X - 2)P'$

Solution 20 (25.3)

1. Soit $P, Q \in \mathbb{R}[X]$ et $\alpha \in \mathbb{R}$, alors

$$u(P+Q) = (P+Q)' = P' + Q' = u(P) + u(Q)$$
 et $u(\alpha P) = (\alpha P)' = \alpha P' = \alpha u(P)$.

L'application *u* est donc linéaire.

Soit
$$P = \sum_{n \ge 0} a_n X^n \in \mathbb{R}[X]$$
.

$$\begin{split} u(P) &= 0 \iff P' = 0 \iff \sum_{n \geq 0} (n+1)a_{n+1}X^n = 0 \\ &\iff \forall n \in \mathbb{N}, (n+1)a_{n+1} = 0 \iff \forall n \geq 1, a_n = 0 \iff P = a_0. \end{split}$$

On a donc $ker(u) = \mathbb{R}_0[X]$.

Soit $Q = \sum_{n \geq 0} b_n X^n \in \mathbb{R}[X]$. En posant $P = \sum_{n \geq 0} \frac{b_n}{n+1} X^{n+1} = \sum_{n \geq 1} \frac{b_{n-1}}{n} X^n$, on a bien $P \in \mathbb{R}[X]$ et u(P) = P' = Q, et donc $Q \in \text{Im}(u)$. Finalement, $\text{Im}(u) = \mathbb{R}[X]$.

L'application u est donc surjective, mais n'est pas injective.

2. Soit $P, Q \in \mathbb{R}_3[X]$ et $\alpha \in \mathbb{R}$, alors

$$u(P+Q) = (P+Q)' = P' + Q' = u(P) + u(Q)$$
 et $u(\alpha P) = (\alpha P)' = \alpha P' = \alpha u(P)$.

L'application *u* est donc linéaire.

Soit
$$P = a_0 + a_1 X + a_2 X^2 + a_3 X^3 \in \mathbb{R}_3[X]$$
.

$$u(P) = 0 \iff P' = 0 \iff a_1 + 2a_2X + 3a_3X^2 = 0 \iff a_1 = 0, a_2 = 0, a_3 = 0 \iff P = a_0.$$

On a donc $ker(u) = \mathbb{R}_0[X]$.

Soit $Q = b_0 + b_1 X + b_2 X^2 + b_3 X^3 \in \mathbb{R}_3[X]$. On cherche s'il existe $P = a_0 + a_1 X + a_2 X^2 + a_3 X^3 \in \mathbb{R}_3[X]$ tel que u(P) = Q.

$$u(P) = Q \iff a_1 + 2a_2X + 3a_3X^2 = b_0 + b_1X + b_2X^2 + b_3X^3 \iff \begin{cases} a_1 &= b_0 \\ 2a_2 &= b_1 \\ 3a_3 &= b_2 \\ 0 &= b_3. \end{cases}$$

Ce système, d'inconnues a_0, \ldots, a_3 est compatible si, et seulement si, $b_3 = 0$, c'est-à-dire $Q = b_0 + b_1 X + b_2 X^2$, autrement dit, $Q \in \mathbb{R}_2[X]$.

On a donc $Im(u) = \mathbb{R}_2[X]$.

L'application *u* est donc ni surjective, ni injective.

3. Soit $P, Q \in \mathbb{R}[X]$ et $\alpha \in \mathbb{R}$.

$$\begin{split} u(P+Q) &= ((P+Q)(-1), (P+Q)(0), (P+Q)(1)) = (P(-1)+Q(-1), P(0)+Q(0), P(1)+Q(1)) \\ &= (P(-1), P(0), P(1)) + (Q(-1), Q(0), Q(1)) = u(P) + u(Q) \\ &\text{et } u(\alpha P) = ((\alpha P)(-1), (\alpha P)(0), (\alpha P)(1)) = (\alpha P(-1), \alpha P(0), \alpha P(1)) \\ &= \alpha \left(P(-1), P(0), P(1) \right) = \alpha u(P). \end{split}$$

L'application *u* est donc linéaire.

De plus,

$$P \in \ker(u) \iff P(-1) = 0, P(0) = 0, P(1) = 0$$

on a donc

$$\ker u = \{ P \in \mathbb{R}[X] \mid P(-1) = 0 \text{ et } P(0) = 0 \text{ et } P(1) = 0 \} = \{ (X+1)X(X-1)Q \mid Q \in \mathbb{R}[X] \}.$$

L'application linéaire u n'est donc pas injective.

On remarque que

$$u(X(X-1)) = (2,0,0)$$
 $u((X-1)(X+1)) = (0,-1,0)$ $u(X(X+1)) = (0,0,2)$

Ainsi

Vect {
$$(2,0,0),(0,-1,0),(0,0,2)$$
 } $\subset \text{Im}(u) \subset \mathbb{R}^3$.

Et on vérifie facilement que ((2,0,0),(0,-1,0),(0,0,2)) est une base de \mathbb{R}^3 . Ainsi, $\text{Im}(u)=\mathbb{R}^3$: l'application u est surjective.

4. Soit $P, Q \in \mathbb{R}[X]$ et $\alpha \in \mathbb{R}$.

$$u(P+Q) = (P+Q) - (X-2)(P+Q)' = P + Q - (X-2)(P'+Q')$$

$$= P - (X-2)P' + Q - (X-2)Q' = u(P) + u(Q)$$
et $u(\alpha P) = \alpha P - (X-2)(\alpha P)'$

$$= \alpha P - (X-2)\alpha P' = \alpha (P - (X-2)P') = \alpha u(P).$$

L'application *u* est donc linéaire.

Soit $P \in \ker(u)$, alors u(P) = 0, c'est-à-dire, P = (X - 2)P'. En dérivant cette relation, on obtient P' = P' + (X - 2)P'' d'où (X - 2)P'' = 0 et donc P'' = 0. Ainsi, $\deg(P) \le 1$. On peut donc écrire P = aX + b où $a, b \in R$. On a alors,

$$u(P) = 0 \iff P - (X - 2)P' = 0 \iff aX + b - (X - 2)a = 0$$
$$\iff b + 2a = 0 \iff b = -2a \iff P = a(X - 2).$$

Ainsi, $ker(u) = Vect \{ X - 2 \}$ et l'application u n'est pas injective.

Soit $Q \in \mathbb{R}[X]$, on cherche $P \in \mathbb{R}[X]$ tel que u(P) = Q. Notons $Q = \sum_{n \geq 0} b_n (X-2)^n$ et $P = \sum_{n \geq 0} a_n (X-2)^n$ (cette écriture est possible, on peut par exemple invoqué la formule de Taylor). Alors

$$u(P) = P - (X - 2)P' = a_0 + \sum_{n \ge 1} a_n (1 - n)(X - 2)^n = a_0 + \sum_{n \ge 2} a_n (1 - n)(X - 2)^n.$$

Ainsi,

$$u(P) = Q \iff \begin{cases} a_0 = b_0 \\ 0 = b_1 \\ a_n = \frac{b_n}{1-n} & \text{si } n \ge 2. \end{cases}$$

Ainsi $Q \in \text{Im}(u)$ si, et seulement si $b_1 = 0$. L'application u n'est donc pas surjective. De plus,

$$Im(u) = \left\{ a_0 + (X - 2)^2 A \mid A \in \mathbb{R}[X] \right\}.$$

Exercice 21 (25.3)

On définit sur le \mathbb{R} -espace vectoriel $\mathbb{R}[X]$ des polynômes à coefficients dans \mathbb{R} deux applications A et B par

$$A(P(X)) = P'(X) \qquad \text{et} \qquad B(P(X)) = XP(X).$$

Démontrer les assertion suivantes.

- **1.** A et B sont des endomorphismes de $\mathbb{R}[X]$.
- **2.** Im $A = \mathbb{R}[X]$ et ker $A \neq \{0\}$.
- 3. ker $B = \{0\}$ et B n'a pas d'application réciproque.
- **4.** $A \circ B B \circ A = \operatorname{Id}_{\mathbb{R}[X]}$.
- 5. Pour tout $k \in \mathbb{N}^{\star}$, $A^k \circ B B \circ A^k = kA^{k-1}$.

Solution 21 (25.3)

1. Soit $P, Q \in \mathbb{R}[X]$ et $\alpha \in \mathbb{R}$.

$$A(P+Q) = (P+Q)' = P' + Q' = A(P) + A(Q)$$
 et $A(\alpha P) = (\alpha P)' = \alpha P' = \alpha A(P)$.

L'application A est donc un endomorphisme de $\mathbb{R}[x]$.

De plus,

$$B(P+Q) = X(P+Q) = XP + XQ = B(P) + B(Q)$$
 et $B(\alpha P) = X(\alpha P) = \alpha XP = \alpha B(P)$.

L'application B est donc un endomorphisme de $\mathbb{R}[x]$.

2. Soit *P* un polynôme, $P(X) = a_n X^n + a_{n-1} X^{n-1} + \dots + a_1 X + a_0$. On pose

$$R(X) = \frac{a_n}{n+1} X^{n+1} + \frac{a_{n-1}}{n} X^n + \dots + a_0 X.$$

On a A(R) = P donc $P \in \text{Im } A$. Ainsi $\text{Im } A = \mathbb{R}[x]$.

De plus, si Q est un polynôme constant, A(Q) = 0. Par conséquent ker $A \neq \{0\}$ (en fait ker $A = \mathbb{R}_0[X]$).

3. Soit *P* un polynôme, $P(X) = a_n X^n + a_{n-1} X^{n-1} + \dots + a_1 X + a_0$. On a

$$B(P) = XP(X) = a_n X^{n+1} + a_{n-1} X^n + \dots + a_1 X^2 + a_0 X.$$

Si B(P) = 0, alors $a_k = 0$ pour tout $k \in [0, n]$ et P = 0. Ainsi ker $B = \{0\}$. Par ailleurs, B n'est pas surjective, puisqueles polynômes constants différents du polynôme nul n'ont pas d'antécédent. L'application B n'étant pas bijective, elle n'a pas d'application réciproque.

4. Avec les même notations que précédement, on a

$$(A \circ B - B \circ A)(P) = (XP)' - XP' = P + XP' - XP' = P = \operatorname{Id}_{\mathbb{R}[X]}(P).$$

d'où $A \circ B - B \circ A = \operatorname{Id}_{\mathbb{R}[X]}$.

5. On a déjà démontré la proposition pour k=1 à la question précédente. On suppos qu'elle est vérifiée pour un certain $k \in \mathbb{N}^*$. On a alors,

$$(k+1)A^{k} = A \circ kA^{k-1} + A^{k}$$

$$= A \circ (A^{k} \circ B - B \circ A^{k}) + A^{k}$$

$$= A^{k+1} \circ B - (A \circ B - \operatorname{Id}_{\mathbb{R}[X]}) \circ A^{k}$$

$$= A^{k+1} \circ B - (B \circ A) \circ A^{k}$$

$$= A^{k+1} \circ B - B \circ A^{k+1}.$$

On a ainsi établi par récurrence que $A^k \circ B - B \circ A^k = kA^{k-1}$ pour tout $k \in \mathbb{N}^*$.