MISCELLANEOUS STRUCTURES EAST COAST AIR COMBAT MANEUVERING RANGE OFFSHORE. (U) CREST ENGINEERING INC TULSA OK SEP 76 27-771-98 CHES/NAVFAC-FPO-7626 N62477-76-C-0179 MD-8165 615 1/1 UNCLASSIFIED NL

MICROCOPY RESOLUTION TEST CHART

MISCELLANEOUS STRUCTURES

AST EQAST AIR COMBAT MANEUVERING RANGE L'OEFSHORE MITTY HAWK, NORTH CAROLINA

PACIFICES ENGINEERING COMMAND
DEPARTMENT OF THE NAVY...
CHESAPEAKE DIVISION

B.7

CREST FIGH SERING, INC.

86 3 18 067

Unclassified	
SECURITY CLASSIFICATION OF THIS PAGE	
REPORT DOCUMENTA	
la. REPORT SECURITY CLASSIFICATION Unclassified	1b. RESTRICTIVE MARKINGS
2a. SECURITY CLASSIFICATION AUTHORITY	3. DISTRIBUTION AVAILABILITY OF REP. Approved for public release; distribution is unlimited
2b. DECLASSIFICATION/DOWNGRADING SCHEDULE	
4. PERFORMING ORGANIZATION REPORT NUMBER Report No. 27-771-98	5. MONITORING ORGANIZATION REPORT # FPO 7626
6a. NAME OF PERFORM. ORG. 6b. OFFICE SYM Crest Engineering	7a. NAME OF MONITORING ORGANIZATION Ocean Engineering & Construction Project Office CHESNAVFACENGCOM
6c. ADDRESS (City, State, and Zip Code) Tulsa, OK	7b. ADDRESS (City, State, and Zip) BLDG. 212, Washington Navy Yard Washington, D.C. 20374-2121
8a. NAME OF FUNDING ORG. 8b. OFFICE SYM	9. PROCUREMENT INSTRUMENT INDENT # Contract No. N62477-76-C-0179 Modification P0001
8c. ADDRESS (City, State & Zip)	10. SOURCE OF FUNDING NUMBERS PROGRAM PROJECT TASK WORK UNIT ELEMENT # # ACCESS #
11. TITLE (Including Security Classificati Miscellaneous Structures East Coast Air Co Hawk, North Carolina 12. PERSONAL AUTHOR(S)	
13a. TYPE OF REPORT 13b. TIME COVERED FROM TO	14. DATE OF REP. (YYMMDD) 15. PAGES 76-09 94
16. SUPPLEMENTARY NOTATION	
FIELD GROUP SUB-GROUP Air Co	TT TERMS (Continue on reverse if nec.) mbat Maneuvering Range, Towers, construction
19. ABSTRACT (Continue on reverse if neces This report contains design calculations r structural appurtenances for the four trip East Coast Air Combat Maneuvering Range of	elative to the superstructues and od-type ocean structures for the
20. DISTRIBUTION/AVAILABILITY OF ABSTRACT SAME AS RPT.	
22a. NAME OF RESPONSIBLE INDIVIDUAL Jacqueline B. Riley DD FORM 1473, 84MAR	22b. TELEPHONE 22c. OFFICE SYMBOL 202-433-3881 SECURITY CLASSIFICATION OF THIS PAGE
	SECORTII CHASSIFICATION OF THIS PAGE

これ できただいがく かんかんかん

MISCELLANEOUS STRUCTURES
EAST COAST AIR COMBAT MANEUVERING RANGE
OFFSHORE KITTY HAWK, NORTH CAROLINA
CONTRACT NO. N62477-76-C-0179
MODIFICATION NO. P0001

Report No. 27-771-98

Prepared for

NAVY FACILITIES ENGINEERING COMMAND DEPARTMENT OF THE NAVY CHESAPEAKE DIVISION

Ву

CREST ENGINEERING, INC. TULSA, OKLAHOMA

September 1976

TABLE OF CONTENTS

SECTION		TITLE	PAGE NO.
1.0	INTRODU	CTION	
	1.2	Introduction Design Criteria Design Summary Personnel Resumes	1.01 1.02 1.03 1.04
2.0	SUPERST	RUCTURES	
	2.2 2.3 2.4 2.5 2.6	Introduction Elevation Upper Deck Equipment Deck Stairways Dead Weight of Superstructure Paint Area Lifting Lugs - Superstructure	2.01 2.02 2.03 2.07 2.22 2.37 2.44 2.51
3.0	BOAT LANDING		
	3.2 3.3 3.4	Introduction Elevations, Plans and Sections Dead Weight of Boat Landing Paint Area Boat Fenders	3.01 3.02 3.13 3.15 3.16
4.0	EQUIPMENT SUPPORT DETAILS		
		Introduction Antenna Post Solar Panel Support Details	4.01 4.02 4.05

Accesi	on For	
DTIC	ounced	
By Di.t ib	ution /	
A	vailability	Codes
Dist	Avail and Specia	i or I

SECTION 1

INTRODUCTION

1.1 INTRODUCTION

This report contains design calculations relative to the superstructures and structural appurtenances for the four tripod-type ocean structures for the East Coast Air Combat Maneuvering Range offshore Kitty Hawk, North Carolina.

1.2 DESIGN CRITERIA

The criteria employed to design each component of the structure are listed as follows:

(a) Superstructure:

Live Loads:

Upper Deck

100 psf

Equipment Deck

150 psf

Stairway

100 psf

Material:

A36 Structural Steel

(b) Boat Landing:

Design Loads: 4,000 lbs. concentrated load or

equivalent uniform load.

Minimum Plan Dimensions: 4 ft. x 6 ft.

(c) Equipment Supports:

Wind Load: 150 knots at EL(+) 30'-0"

1.3 DESIGN SUMMARY

Pertinent information relative to the superstructure and boat landing are listed as follows:

Superstructure:

Equipment Deck Area

591.5 sq. ft.

Upper Deck Area

362.5 sq. ft.

Structural Steel Weight (including stairways, handrails, and kick plate)

113.5 kips

Paint Area

8,500.0 sq. ft.

Boat Landing:

Overal Dimensions

22 ft. x 12 ft. x 4 ft.

Structural Steel Weight

22.0 kips

Paint Area

1,115.7 sq. ft.

1.4 PERSONNEL RESUMES

The personnel whose resumes follow were actively engaged in this project.

CONCORPORATION OF THE PROPERTY OF THE PROPERTY

Chingmiin (Charlie) Chern

Senior Engineer

University	Degree	Year
National Taiwan	Bachelor of Science	
University	Civil Engineering	1961
North Dakota	Master of Science	
State University	Civil Engineering	1966
Lehigh	Ph.D.	
University	Civil Engineering	1969
Tulsa University	Graduate Study in	
•	Business Administration-	
	Management	1974

Societies, Licenses, and Other Activities: Member American Society of Civil Engineers
Member International Association of Structural and
Bridge Engineers
Member American Society of Engineering Education
Registered Professional Engineer in Oklahoma

Experience:

1973 to Present

Senior Civil Engineer

Crest Offshore, Inc.

Engaged in the feasibility studies, structural analysis and design of offshore structures, equipment supports and other various types of petroleum related civil engineering works. Assignments include:

- ... Evaluation of engineering designs from other agencies.
- ... Analysis and design of offshore structures for oil industry.
- ... Analysis and design of supports and foundations for onshore refinery facilities.
- ... Development of a sequence of computer programs for the analysis of offshore structures.

Chingmiin (Charlie) Chern

Senior Civil Engineer

Experience Continued:

PROPERTY SERVICES CERTIFIED STREET, SERVICE

1969 to 1973 North Dakota State University

Associate Engaged
Professor of engineer
Civil Engineering tion man

Engaged in full-time lecture instruction for civil engineering (graduate school division) and construction management. Also served as consultant to local industry (undergraduate school division) in the area of computer applications in engineering.

1966 to 1969 Fritz Engineering Laboratory

Research Assisted in the design and testing of various types of steel structures.

1966 North Dakota State Highway Department

Highway Responsible for construction surveying. Engineer

1965 U.S. Forest Service

Assistant Assisted in surveying responsibilities.

Crew Chief

SECTION 2 SUPERSTRUCTURES

2.1 INTRODUCTION

Set forth hereinafter are the design calculations for the superstructure which is common to each platform.

Structural steel weights and the surface area to be painted are also tabulated.

CREST OFFSHORE, INC. Sheet 2:02 of _ By C. Chern client U.S. NAUX __ subject Miscellaneaus Structures Date 6-10-76 Job No. 27-771-98_ calculation Superstructures (Elevation) 48" = 1'-0". Scale 2.2 ELEVATION 29'-0" 132" 0x 1"Th. 532"4x1"Th. EL (+) 75-0" Upper Deck WIBHIO EL (+) 60'-0" EQUIPMENT DECK WIBX50 30"0.Dx 1.0"WT 1234"O.D.X.5"WT EL(+)45-0" 424x 304x 1", Cone 42"6x30"4x1"WT Cone 42'0.0'XI"M 42"4×1"WT EL(+) 16'-6 PILE CUT- OFF & W.P.

Sheet 2:05 of ____

2.3 UPPER DECK

Design Live Loads = 100 psf

Scale 1/8"=1-0"

Sheet 2:04 of ____

Design Live Loads = 100 psf

Scale 1/8"=1-0"

By C. Chexne Client U.S. NAVX __ subject Miscellaneous Structures _____ Date 6=10-76 Job No 27-771-98 _ calculation Superstructures (Upper Deck)

4x3/8 Flat/Bars

See Page 9.22 Report on Structural Concept Analysis

Appendix C - 3-pile Structure

Tributary Area = 7.5 x 5.5' = 41.25"

Uniform Loads:

4"R 10.2 x 41.25 = 420.75#

1..L.

100 x 41,25 = 4,125.00#

4,545,75#

Bm. Wt. :

W6x15.5

15.5x7.5 = 116.25#

4× 38" FB.

6x5.10x5.5 = 84.15

200.404

Total Weight = 4,746.15#

Equivalent uniform load = 632.82 #/11 Say 640 #/4

 $M_{\text{max}} = \frac{1}{8} \text{ wl}^2 = \frac{1}{8} \times 640 \times (7.5)^2 \times \frac{12}{1000} = 54 \text{ "K}$

Use W6x15.5 \$ = 10.0 in 5

$$O_t = \frac{54}{10.0} = 5.4 \text{ Ksi}$$

0.14.

Sheet 2.06 of _

By C. Chern client U.S. NAUY __ subject Miscellaneous Structures _____ Date 6-10-76 Job No. 27-77L-98 _ calculation Superstructures (upper Deck)

W 8x24

Uniform Loads:

$$= 140.3^{#}$$
 $476.3^{#}$

$$M_{\text{max}} = \frac{1}{8} \times 650 \times (14)^2 \times \frac{12}{1000} = 191.1 \text{ "-K}$$

Sheet 2:07 of ____

By C. Chern client U.S. NAVY __ subject Missellane ous Structures Date 6=10-76 Job No. 27-771-98 _ calculation Superstructures (Fripment Deck)

2.4 EQUIPMENT DECK

Design Live Loads = 150 PSF

Scale 10"

Sheet 2:08 of ____

By C. Cherry client U.S.NAUY __ subject Miscellaneous Structures Dock)
Dois 6-10-76 Job No. 27-771-98 _ calculation Superstructures (Equipment Dock)

Design Live Loads = 150 PSF

Scale 10 = 1-0"

Sheet 2-09 of ____

w = 416.0 #/c

By C. Chern Client U.S. NAVY _ _ subject Miscellancous Structures (Equipment Deck)
Date 6-10-76 Job No. 27-771-98 _ calculation Superstructures (Equipment Deck)

W 6x 15.5

10

Tributary Area
$$2'-6'' \times 11'-0''$$

D.L.

 $4''$
 $4''$
 $4''$
 $4''$
 $4''$
 $4''$
 $4''$
 $4''$
 $4''$
 $4''$
 $4''$
 $4''$
 $4''$
 $4''$
 $4''$
 $4''$
 $4''$
 $4''$
 $4''$
 $4''$
 $4''$
 $4''$
 $4''$
 $4''$
 $4''$
 $4''$
 $4''$
 $4''$
 $4''$
 $4''$
 $4''$
 $4''$
 $4''$
 $4''$
 $4''$
 $4''$
 $4''$
 $4''$
 $4''$
 $4''$
 $4''$
 $4''$
 $4''$
 $4''$
 $4''$
 $4''$
 $4''$
 $4''$
 $4''$
 $4''$
 $4''$
 $4''$
 $4''$
 $4''$
 $4''$
 $4''$
 $4''$
 $4''$
 $4''$
 $4''$
 $4''$
 $4''$
 $4''$
 $4''$
 $4''$
 $4''$
 $4''$
 $4''$
 $4''$
 $4''$
 $4''$
 $4''$
 $4''$
 $4''$
 $4''$
 $4''$
 $4''$
 $4''$
 $4''$
 $4''$
 $4''$
 $4''$
 $4''$
 $4''$
 $4''$
 $4''$
 $4''$
 $4''$
 $4''$
 $4''$
 $4''$
 $4''$
 $4''$
 $4''$
 $4''$
 $4''$
 $4''$
 $4''$
 $4''$
 $4''$
 $4''$
 $4''$
 $4''$
 $4''$
 $4''$
 $4''$
 $4''$
 $4''$
 $4''$
 $4''$
 $4''$
 $4''$
 $4''$
 $4''$
 $4''$
 $4''$
 $4''$
 $4''$
 $4''$
 $4''$
 $4''$
 $4''$
 $4''$
 $4''$
 $4''$
 $4''$
 $4''$
 $4''$
 $4''$
 $4''$
 $4''$
 $4''$
 $4''$
 $4''$
 $4''$
 $4''$
 $4''$
 $4''$
 $4''$
 $4''$
 $4''$
 $4''$
 $4''$
 $4''$
 $4''$
 $4''$
 $4''$
 $4''$
 $4''$
 $4''$
 $4''$
 $4''$
 $4''$
 $4''$
 $4''$
 $4''$
 $4''$
 $4''$
 $4''$
 $4''$
 $4''$
 $4''$
 $4''$
 $4''$
 $4''$
 $4''$
 $4''$
 $4''$
 $4''$
 $4''$
 $4''$
 $4''$
 $4''$
 $4''$
 $4''$
 $4''$
 $4''$
 $4''$
 $4''$
 $4''$
 $4''$
 $4''$
 $4''$
 $4''$
 $4''$
 $4''$
 $4''$
 $4''$
 $4''$
 $4''$
 $4''$
 $4''$
 $4''$
 $4''$
 $4''$
 $4''$
 $4''$
 $4''$
 $4''$
 $4''$
 $4''$
 $4''$
 $4''$
 $4''$
 $4''$
 $4''$
 $4''$
 $4''$
 $4''$
 $4''$
 $4''$
 $4''$
 $4''$
 $4''$
 $4''$
 $4''$
 $4''$
 $4''$
 $4''$
 $4''$
 $4''$
 $4''$
 $4''$
 $4''$
 $4''$
 $4''$
 $4''$
 $4''$
 $4''$
 $4''$
 $4''$
 $4''$
 $4''$
 $4''$
 $4''$
 $4''$
 $4''$
 $4''$
 $4''$
 $4''$
 $4''$
 $4''$
 $4''$
 $4''$
 $4''$
 $4''$
 $4''$
 $4''$
 $4''$
 $4''$
 $4''$
 $4''$
 $4''$
 $4''$
 $4''$
 $4''$
 $4''$
 $4''$
 $4''$
 $4''$
 $4''$
 $4''$
 $4''$
 $4''$
 $4''$
 $4''$
 $4''$
 $4''$
 $4''$
 $4''$
 $4''$
 $4''$
 $4''$
 $4''$
 $4''$
 $4''$
 $4''$
 $4''$
 $4''$
 $4''$
 $4''$
 $4''$
 $4''$
 $4''$
 $4''$
 $4''$
 4

$$M_{\text{max}} = \frac{1}{8} w l^2 = \frac{416.0 \times 11^2 \times 12}{8 \times 1000} = 75.5$$
 "-K

$$S = \frac{75.5}{22} = 3.43 \text{ m}^3$$

$$G_{\pm} = \frac{75.5}{10.0} = 7.5$$
 Ksi

Sheet 2 - | Oof _ _ _ _

By C. Chern count II. S. NAVY __ subject Miscellanoous Structures _____ Date 6=10-76 Job No. 27-771-98 _ calculation Superstructures (Equipment Deck)

W8x24

(•

$$w = 760 */ft$$
 $14'-0"$

Tributary Area =
$$14'x 1.25' + \frac{1}{2}x 7.5'x 12'$$

= $17.5 + 45$
= $62.5 + 50.FT$

Uniform Loads:
$$4^{\circ}$$
te $10.2 \times 62.5 = 637.5^{\circ}$ th L.L. $150 \times 62.5 = 9.375.0^{\circ}$ th $10.012.5^{\circ}$ th

Beam Wt.:

$$W8x24$$
 $Z4x14$ = 336 #
 $W6x15.5$ $15.5x(6.5+5+3.5+2) = 264 #$

Sheet 2:11 of ____

$$M_{\text{max}} = \frac{1}{8} w l^2 = \frac{1}{8} \times 760 \times 14^2 \times \frac{12}{1000} = 223.44$$
 "-K

A36 Steel 7=22 Ksi

$$S' = \frac{223.44}{22} = 10.2 \text{ in}^3$$

Use W8x24 $S = 20.8 in^3$ $\nabla_t = \frac{223.44}{20.8} = 10.74 \text{ ksi}$

AISC 2-47 Allowable Load = 23.8 kips
710.6 kips

AISC 2-95 Allowable moment = 38 FT-KIPS
= 456 #-kips > 223.44 **

O.K.

Sheet 2-12 of ____

By C. Cherne client U.S. NAVY _ subject Lie ellowers Structures _ Date 6=10-76 Job No. 27-271-98 _ calculation Superstructures (Equipment Deck)

W 18x50

Tributary Area = \frac{1}{2} \times 29' x (\frac{1}{3} \times 25') = 120.83 50. FT

Uniform Loads:

L.L.
$$150 \times 120.83 = 18,124.5 = 19,357.0 =$$

Beam Wt. W 18x50

$$W 18 \times 50$$
 29×50 = 1.450 #
 $W 8 \times 24$ $24 \times (7 + 7)$ = 336 #
 $W 6 \times 15.5$ $15.6 \times (6.5 + 6 + 3.5 + 2) \times 3 = 791$ #

Sheet 2.13 of ____

By C. Chern client U.S. NAVY _ subject Miscellan cous Structures _ Date 6-12-76 Job No. 27-771-98 _ colculation Superstructures (Equipment Deck)

$$M_{\text{max}} = \frac{1}{8} w \ell^2 = \frac{1}{8} x 760 x (29)^2 x \frac{12}{1000} = 958.74 11 k$$

$$S = \frac{958.74}{22} = 43.6$$
 in 3

$$O_{\pm} = \frac{9 \pm 8.74}{89.1} = 10.8$$
 Ksi

O.K.

> 958.74"

Sheet 2 . 14 of ____

By C. Cherin client U.S. MANY _ subject Misscellaneous Structures Date 7-2- ZG Job No. 27-771-98 _ calculation Superstructures (Equipment Dack)

ADDITION OF DECK SPACE FOR SOLAR PANTEL

Design Live Loads on Deck = 150 PSF.

Design Live Loads on Stairs = 100 PSF (AISC)

Sheet 2:12 of ____

By C. Chern client U.S. NAVY _ subject Miscellaneous Structures _ Date 7-2-76 Job No. 27-77L-98 _ calculation Superstructures (Equipment Deck)

Design Live Loads on Deck = 150 PSF

Design Live Loads on Stairs = 100 PSF (AISC)

Sheet 2-1601____

By C. Chevil client U.S. NAUY _ subject Miscellaneous Structures _ Date 7-2-76 Job No. 27-771-98 _ calculation Superstructures (Equipment Deck) 8-9-76 (updated)

Check W 21 x 73 Beam

Tributary Area
$$\frac{1}{2} \times 29' \times (\frac{1}{3} \times 25') = 120.83$$
 50.FT $\frac{1}{2} (24' + 29') \times 5' = 132.50$ 50.FT $\frac{1}{2} (353.33) \times 38.FT$

Uniform Loads:

$$4^{"}$$
e $10.2 \times 253.33 = 2,584.0 #$
L.L. $150 \times 253.33 = 38,000.0 #$
 $40,584.0 #$

Beam Wt:

$$W21x73$$
 $29x73$ = 2,117 #

 $W8x24$ $24x(7+7)$ = 336 #

 $W6x15.5$ $15.5x(6.5+5+3.5+2)x3=791$ #

 $W6x15.5$ $15.5x4x10$ = 620 #

 $3,864$ #

Sheet 2.17of ____

By C. Chern client I. S. NAUX _ subject 1 1250 largous Structures _ _____ Date 7-2-76 Job No. 27-771-98 _ calculation Superstructures (Equipment Deck)

$$M_{\text{Max}} = \frac{1}{8} \times \left(\frac{1.533}{1000}\right) \times 29^2 \times 12 = 1,933.9 \text{ "K}$$

$$C_{t} = \frac{1.933.9}{151} = 12.8 \text{ ksi} < 22 \text{ ksi}$$

$$\mathcal{E}_{c} = \frac{5 \times 1.533 \times 29^{4} \times 12^{3}}{384 \times 30,000 \times 1600} = 0.51^{"} < 0.967^{"}$$

AISC
$$S_{max} = \frac{l}{360} = \frac{29 \times 12}{360} = 0.967$$
"

Sheet 2-18 of ___

Check W 8x24@18-0" Span

4" e

L.L.

$$150 \times 84 = 12,600$$

13,562 #

Beam Wt:

$$W 8x24 24x 18 = 432$$

$$\overline{W}$$
 6×15.5 15.5×4×5 = 310 # 742#

$$w = 795 \% ft$$
 $w = 795 \% ft$
 $w = 795 \% ft$

$$W = 795 \text{ ft}$$

$$W = \frac{1}{8} \times \frac{795}{1000} \times 18^{2} \times 12 = 386^{"K}$$

$$W 8x24$$
 $S_x = 20.8^{in^3}$; $I_x = 82.5^{in^4}$

$$(J_t)_{\text{max}} = \frac{386}{20.8} = 18.6 \text{ ksi} < 22 \text{ ksi}$$

$$S_c = \frac{5 \times .795 \times 18^{\circ} \times 12^{3}}{384 \times 39,000 \times 82.5} = 0.759^{\circ\prime\prime}$$

Alsc
$$\frac{l}{360} = \frac{18 \times 12}{360} = 0.6" < 0.759" N.G.$$

Sheet 2:12 of ____

By C. Chern com U.S. NAVY __ subject Miscellaneous Structures Date 7-2-76 Job No. 27-771-98 calculation Superstructures (Equipment Deck)

Try W10x29

$$(G_{t})_{max} = \frac{386}{30.8} = 12.5 \text{ Ksi}$$

$$\delta_{c} = \frac{5 \times .795 \times 18^{4} \times 12^{3}}{384 \times 30,000 \times 158} = 0.396" < 0.5"$$
o.K.

Sheet 2.20of ____

Section O-O

6

Sheet 2:21 of ____

By C. Chern client U.S. NAVY _ subject Miscellaneous Structures Date 7=2= ZE Job No. 27=77/=98_ calculation Superstructures (Equipmost Deck)

Check 856" 0x. 322" WT

$$L = 13' - 9"$$

$$n = \frac{KL}{r} = \frac{1 \times 13.75 \times 12}{2.94} = 56$$

$$f_a = \frac{10.1}{8.4} = 1.2$$
 ksi <= 5

Sheet 2.22 of ____

By C. Chern client U. S. NAUX _ subject Miscellancous Structures :

Date 7 = 1 = 16 Job No. 27 - 771 = 9B calculation Superstructures (Stairways)

2.5 STAIRWAYS

Design Live Loads on Deck = 150 PST

Design Live Loads on Stair = 100 PST (AISC)

OV 1000 LBS Min.

(USAS AGA-1-1968)

Sheet 2:2301 _ _ _

By C. Chern client U.S. NAVY _ subject Miscellaneous Structures _ ____ Date 7=1-76 Job No. 27= 771=9B _ calculation Superstructures (Stairways)

2- [12 @ 2-6" Back-to-Back

Say 2- $E12 \times 20.7$ $S_x = 21.5$ in

L.L. =
$$100 \times 2.5 \times \frac{12.5}{\sqrt{9^2 + 12.5^2}}$$

L.L. = 203 Plf

Each Channel L.L. = 102 PLF

D.L. = 2 ([12x20.7)

Say W = 130 PIF

$$M_{\text{max}} = \left(\frac{130}{1000}\right) \times \frac{15.4^2 \times 12}{8}$$

= 46.25 "K

$$(J_b)_{\text{max}} = \frac{M}{S} = \frac{46.25}{21.5} = 2.15$$
 KSÚ

0. K.

$$M = \frac{PL}{4} = \frac{1 \times 15.4 \times 12}{4}$$

Sheet 2:24of _ _ _

By C. Chern client U.S. UNVY _ subject Misce Uaneous Structures _ Date 7=1=76_ Job No. 27=771-98 _ calculation Superestructures (Stairmays)

Loads from stains

(100x2.5) x 6.25+(22+10) x7.7

= 1563 + 246 +

= 1809#

Equivalent uniform load on W 8x24

 $w_1 = \frac{1809}{5} = 362 \text{ PIf}$

Uniform load from 100 PSF

W2 = 100x 2 = 200 PSF

Total uniform loads

w=w+wz=562 Plf

$$M_{\text{max}} = \frac{wl^2}{2} = \frac{.562 \times 5^2 \times 12}{2} = 84.3^{1-1}$$

W8x24 \$ = 20.8 in³

$$(O_b)_{\text{max}} = \frac{84.3}{20.8} = 4.05 \text{ ksú}$$

0. K.

Sheet 2.220t ____

By C. Cherry client U.S. NAVY _ subject Miscellaneous Structures _ Date 7-1-76 Job No. 27-77L-98 _ calculation Superstructures (stairways)

Design Live Loads on Deck = 150 PSF

Design Live Loads on Stairs = 100 PSF (AISC)

OV 1000 LBS Min. (USAS A64-1-1968)

Sheet 2.26 of ____

By C. Cherry client U.S. NAVY _ subject Miscellaneous Struttures _ Date 7=1=76 Job No. 27-771-9B _ calculation Superstructures (Stairways)

WIBX50

Additional loads due to stairway reactions

Wa = 562x5 + 100x2x5 = 3.810#

Moment due to Wa

 $M_{\alpha} = \frac{W_{\alpha}L}{4} = \frac{3.81\times29\times12}{4} = 331.5$ "K

Total moment

M = 958.7 + 331.5 = 1,290.2 "K <2,136"

W18x50 Sx = 89.1 in3

(AISC Allowable)

 $\left(\widehat{C}_{b}\right)_{wax} = \frac{1296.2}{89.1} = 14.48$ ksi

2 K

Total Loads = 22+3.81 = 25.81 < 49 K O.K (AISC Allowable)

By _We __ Client 15 No x _ _ subject Miscellaneous Structures _ _ Date _ P2:12:16 Job No. 21:171: 98 _ _ Calculation _ Superstructure _ _ _ _

ELEVATION WAVE FORCE AVERAGE

81'+28.5'= 109.5' × 110' - 943 PSF

100 - 605 || 736.2 PSF

81'+12.75'= 93.75' - 524 ||

90 - 476 ||

THINKY: L = 272#/X (7x2+3) A G.G ACTING A P BOXD AT 136PAN

OTALL TEXTS = 136 1/25 = 9.2 1/2

OIL = 59.2 SAT GO PUT

LIL = 150 RF x 1.25 - = 107.5 RF SAY 20 PUT.

EALACTER LOSD FROM HANDLAND = 123×7 = 861 # M=0.71 x8 + 0.34 x15 = 3.87 1K 7.01 x 12 1.62 m3

> TOUS MUL 2.375" X 0.375 BALASTER'S 4/5x=11:37

Sheet 2.29 of ____

By WS __ Client U.S. HEVY _ _ Subject Miscellaneous _ Structures _ _ _ Date _ B. 10-76 Job No. 27-71-98 _ _ Calculation _ _ Superstructure _ _ _

LANDING T

BI +28.5 = 109.5 × 110 1

MAK, WAVE POPCE AT ELEY 110 AROVE MUD LINE = 918/57

SECTION PROPERTIES

=3.00H Ax Ix 5x ct.
65/4x0.500 9.021 13.43 13.12 52.11 1.
42/4x0.337 1.407 9.613 1-272 14.98 1.
1.9/4x0.145 0.799 0.310 0.320 2.72 1.

LANDING ECAM - interior by

W=WL+WDL=5 x F50 6F+ (1.26 x 5+32.7 1/3)= 820 1/1

1/2 0.82 (4.25) 2/8 = 1.85

Fp= 1.85 x 12/21.67 1.03 m3 & 13.72

WAVE LANDING ON 96 bm.

M= 0.942 (1/2)(5) 2/8 + - 1.820(5) 2/8 = 3.01

M= 0.912 (7/2)(5)2/B+ -20(5)2/B= 3.0|
Sp= 3.0|x12/(21.6x1.53) = 1.20

[68/0x0,50 bm2 onk]

KHEE RENEED PSF+186)+7'(92.71+2.12,2)] = 1841* $f_1 = \frac{124}{4.407m^2} = 118 pai | \frac{1}{12} | \frac{10.60 + 12}{12.407} = 18.7$ $f_2 = \frac{1184}{4.407m^2} = 118 pai | \frac{1}{12} | \frac{10.60 + 12}{12.407} = 18.7$ $f_3 = \frac{418}{1340} = 0.02 < 0.15 : f_4 = 18.44$ $f_6 = \frac{10.943}{12.60} (\frac{1.5}{12})(0)^2/8 \left[\frac{12}{4.272} \right] = \frac{1.49}{21.60} = 0.208$ $f_6 = \frac{10.943}{21.60} (\frac{1.5}{12})(0)^2/8 \left[\frac{12}{4.272} \right] = \frac{1.49}{21.60} = 0.208$

19/Fi+ FD/FD= 0.02 +0.205= 0.228 < 1.0:01k.

HANLRAIL

W= 948 * (.Fx(2/12)= 158 M=0.158(5)2/8= 0.49414 Sp. 0.414x 12/21.6= 0.214 < 0.316 1:0 1.9 \$x 0.145 HANDPAIL 01-

BALASTER

M=0,58x5'(3'+1,5')=3,551K Gp=2,550x12(21.6x1.33)=1.48 m³ LISE 278" \$x.575 XIHIMUM W/6x=1.637

Sheet 2,30 of _ _ _ _

By _WS _ _ Client_DS_Have _ _ Subject_Miscellancous_Structures_____
Date_8.11.74 Job No. 27-721-98 _ _ Calculation _ Superstructure _ _ _

SECTION PROPERTIES

EET 1011 Ax wt. Ix 5x Fx Iy Sy Fy E 12x 25 7.35 144 24.1 443 447 1.80 0.780 1.9" 9x.143 0.799 2.72*, 0.810 0.826 24x24x444 1.19 4.19 0.702 0.394 0.491 F3

LALDINGS

DEAD LOADS: STRIKEFT = 23 PLF

HANDRAIL = 2 "

TIENES = 10 "/87

LIVE LOAD: IEDROF XI.25" = 108 "

TOTAL LOAD = 225 PLF

CREST	OFFSHORE,	INC.		Sheet <u>2:31</u> of
By _ 4/2_ Date B.1	Client U, S.H TC _ Job No. 27-	Subject_ Subject_ Calculatio	Missellaneus n _ Superst	
	STAIR VAT	2		
	HANDRAIL	Wave = 1000 = x (72) M = 0.167 (6) = /8 Sp = 0.752 1 x 12/(2	= 167 PLF 14 = 0.752 14 1.0x1.33) = 0.	314 m² < 0.294 o.duf
				•
,	BALASTEP'S	P=.16/1/xco'=1.0 M=1.0'x3'+1.0 Sp=4.5x12/21.6	メルベン ~ サギン	i cu ³
		USC 273,16x0.	3:75	
	STRINGE.	WE 225 1 = 10	non th (
	hx = Mx = 4	2,225 (29)2 x 12	11.17 <21	6 i.o.ls
		was fire the whil		
G	7	I = 7.35 m2 (30)	= 1654 m	Sy= 15-110
· · · · · · · · · · · · · · · · · · ·	2'-6"	fory = 1/4 = 1.00	$(29)^2 \times 12 =$	11.47 bi < 21.6x1.33
	deck	defléction sale	= 4300 = 297	12/200 - 0.96 × 1.0"
	A = 5(1	0.225 (2.7 x/.77)	: . e. & (! \	1.0" 2.0, 6,

| L|2 x 25 0, 2,

Sheet 2.32 of _ _ _ _

By _ KM__ Client_U.S. Next _ _ Subject_ Miscellaneous_Structures _ ___
Date_ &:11700 Job No. _27:771-98 _ Calculation _ _ Superstructure _ _ _ _ _

SECTION Ax Ix 5x wt. 54 E 12×25 7,35 144 24.1 25 W12×27 7.95 204 54.2 42'4×377 4.407 9.643 4:272 14.93*7

1000HG = 784 PSF

W= WL + WDING BEAM

W= WL + WDING = 5'x150"5, F+ (120x5P7) = 814 %,

M=0.814(4)²/8 = 1.628 12

FT=1.628 x12 (21.6 = 0.70 fm³ < 34.2 1.0.).

PM SUPPORTING ETAIRS ESTRINGER

W= 12.00 ne = 814/2 = 407 fm

Rept = 0.275 fm x 29/2 = 3.26 fm

PHOF = 1.01 x 27/2 = 14.5 fm

M=0.407(4)²/2 + 3.26 x4 + 3.26 x1.5 = 21.2 fm

f= P = 145 fm

1.32 mm

F= M = 21.2 1 k x12 - 11.8 km

KL/f: 2 x 4 x12 / √20/4.95 = 19 = Fq = 20.06

fu + fo = 1.92 mill = 0.03 & 1.0 inck,

Fa fb = 2060 21.0

My 0.784 (5)28 = 2.451k $M_{x} = (2x.160 + 2x.7.36 + 25)(5)28 = 1.06$ $M_{y} = \frac{2.451k}{1.00 + 12} = 15.64$ $M_{y} = \frac{1.00 \times 12}{24.1} = 0.53$ $M_{y} = \frac{1.00 \times 12}{24.1} = 0.53$

Sheet 2:33 of _ _ _ _

By W. __ Client () & 1/2 _ _ _ Subject Missellaneous Structures _ _ _ _ Date = 11.70 _ Job No. _ 27.771-98 _ _ Calculation _ Superstructure _ _ _ _

EDION PROFESTION

SECTION Ax Ix 5x 5y wf.

E 12x25 7.35 144 24. | 1.00

1.9" 4x.145 0.779 0.510 0.324 2.72*/

STAIR STRINGER

WEST = 225 PCF (= stair + 2)

M = 0,225 (18)2/8 = 9.11 18

SR: 9.11 x 12/216 = 5.00 < 241

WAND FORCE = 537 FOF
THE STAIR STRINGERS & 4'S & TREADS PORKTRUSS e/S, 110 m3 (sec#2)

M = 0.537 (18) 1/6 = 21.75 lb

For = 21.75 x 12/10 = 2.37 Fri < 21.6:0, c.

HANCIPALLS & BALASTEPS
NEGLECT BY INSPECTIFIL

....

Sheet 2:34 of ____

By _____ Client_0.5.11.27____ Subject_ Missellaneous Structures _____
Date__ 5.12.10 Job No. 21-17-28___ calculation __ Superstructure_____

VERT PAD FR. STAIR = $R = 0.225 \times 18/2 = 2.025 \text{ HDR}$ HDR "" "(some, = $R_1 = 0.537 \times 18/2 = 4.833 \times 18/2 = 4.833 \times 18/2 = 4.833 \times 18/2 = 19.50$ KL/ $R = 2 \times 5 \times 12 / 152 = 79 = 15.47$ $R = \frac{P}{A} = \frac{4.833 \times 12}{15.42} = 0.28 \times 11.$ $R = \frac{P}{A} = \frac{4.833 \times 12}{15.42} = 0.866 \text{ hu}$ $R = \frac{11.30 \times 12}{15.47} = 0.866 = 0.34 \times 1.00 \times 10.6$ HOTE: HO WAVE OH LANDING ITSELT

INT. FUFLIM

W= 800 1 K=0,35 (4) 2/8 = 0.7 1K fb=0.7 x 12 = 0.40 kg < 21.6 kg :.0.k.

HEGEOT ET INGTECTION

CREST	OFFSHORE,	INC.
	- · · · · · · · · · · · · · · · · · · ·	

Sheet 2:35_ of _ _ _ _

By = MA ___ Client_DSL NAME __ Subject Miscellaneous Structures _____

Date 5:12:700 Job No. 27-2711-98 _ Calculation _ Superstructure _____

STAIR #4 PLAN

SECTION PROPERTIES

SECTION	A	\$	5x	r _x	Su	4
[10x13.3	4.49	67.4	-	8.87		0.713
WB x 24	7.04	82.4	20.8	3.42	5.41	1.41
W 12x27	7.95	204	34.2	5.07	5.63	1.52

LOSEILIO

NOTE NO WAVE LOAD WILL OCCUP ON THIS STAIR DEAD LOAD = ACTUAL
LIVE LOAD = 150 POP

CREST OFFSHORE, INC. Sheet 2:36 of _ _ _ By _ MS _ Client _ 1 _ _ Subject _ Miscellaneous Structures _ _ Date 2-13.70 Job No. 27-771-98 _ _ Calculation _ _ Superstructure _ _ STAIR 74 HANDRAUS- HELLECT BY INSPECTION STRINGERS_ W== W=+WLL = 1.25 x10 +15.3 + 1.25x150 = 215#7 M= 0,215(20)2/3- 10.61K A= 10.3×12/13.5= 9,50 K21,60 in.k, WIND = 25PSF M = 0.025 (20)2/3 = 125 G = 1,25 × 12/1.16 = 12.93 COTAIRS PORMS TRUES & WIND WILL BE INSIGNIFICANT) Sy or twee = 100 m3 1 = 1.25, x 12/100 - 0.15 < 21.6 check deflection ALCG - 4300 - 20412/3600 - 0.67 Auchel: 5(0,225)(20)41728 = 0.414 < 0.67 334 x 29 x 07.4 LOVER LAHDING PLOSO FROM STRINGERS - 10 × 215# = 2150 N= (5,0+2,5)(2.15+)+(2'x170+1)(5)2/2 - 20.3151K to = 20.375 12 = 11.75 km & 21.6 1.00/c. check deflection sall = 1/200 = 5x12/200 - 0.17"

UPPER LANDING

BY INSPECTION IF UBX24 WORKS FOR WIVER LANDING W 12x27 WILL BE OIK FOR OPPER LANDING

Acetia (= (2x.17)(5)4x1.728 + 2.15(5)8x1.728 + 2.15(2.5)(3x5-7.5)1.725

= 0.019 + 0.065 +.020 = 0.104 2017

8x29x 82,4 3x29x 82,4 Gx29x82.4

· · · /c .

Sheet 2.37of ____

By C. Chern client U.S. NAUY __ subject Missellaneous Structures _____
Date Z-14-Z6 Job No. 27- 271-98 _ calculation Superstructures _____

2.6 DEAD WEIGHT OF SUPERSTRUCTURE

HEMBER SIZE	MEMBER LENGTH	No. REQUIRED	TOTAL LENGTH	UNIT	TOTAL WEIGHT
[N, × 1N.	1-1		FŢ	LBS/FT	LBS
42"\$ x 1.0" WT	5.0	3	15.0	473.39	7,100.9
30"\$x1.0"WT	50.5	3	151.5	309.73	46,924.1
42" px 30" px 1 "WT Cone	3.0	3	9.0	391.56	3,524.0
14"0x.5"WT	32.65	3	97.95	72.09	7,061.2
1234" \$x.5" WT	29.0	3	87.0	65.42	5,691.5
					70,301.7
EQUIPMENT DECK					
W 18×50	29.0	2	58.0	50.0	2,900.0
W21×73	29.0	1	29.0	13.0	2,117.0
W 10 x 2.9	38.0	1	3 <i>8.0</i>	29.0	1, 102.0
W8x24	14.5	3	43.5	24.0	1,044.0
w 8x24	5.0	2	10.0	24.0	240.0
w 8 x 24	4.0	1	4.0	:4	96.0
w 6×16*	8.0	7	56.0	16	896.0
J.	1	1	i	i	1

Sheet 2:38 of _ _ By C. Cherit Client U.S. NAUX _ subject Miscellaneous Structures _ _____
Date J=14-16 Job No. 27-771-98 _ calculation Superstructures _ ____

MEMBER SIZE	MEMBER LENGTH	NO. REQUIRED	TOTAL LENGTH	UNIT WEIGHT	TOTAL WEIGHT
1N.x N.	FT		FT	LBS/FT	LBS
W 6x16*	4.0	2	8.0	16.0	128.0
W 6x 16* (2.9+5.8+8.7+11.6)	29.0	4	116.0	16.0	1,856.0
'4" R	362.5 ⁰	l	362.5	10,2	3,697.5
1/4" A	188.0°	1	188.0	10.2	1,917.6
8%"中X.322"WT	13.8	2	27.6	28.55	787,2
					16,781.3
UPPER DECK					
W18x50	29.0	3	87.0	50.0	4,350.0
W 8 x 24	14.5	3	43.5	24.0	1,044.0
W6x16*	7. 25	4	29.0	16.0	464.0
4"×%" FB	37.5	4	150.0	5.1	765.0
4"re	362.5°	1	362.5	10.2	3,697.5
32" 0 x 1" Th. Cap.	5. 6 ⁰	3	16.8	40.8	685.4
				-	11,005.9
					98,088.9

Sheet 2,39 of ____

By C. Chern client U.S. NAVY _ subject Miscellaneous Structures _ Date J=14-76 Job No. 27-771-98 _ calculation Superstructures _ ___

		·			
MEMBER SIZE	MEMBER LENGTH	No. REQUIKED	TOTAL LENGTH	UNIT WEIGHT	TOTAL WEIGHT
1N.×1N.	FT		FT	LBS/FT	LBS
STAIRS #1					
E 12×25	25.22	2	50.44	25.0	1,261.0
Treads		25		25.0ea.	625.0
¼"×4" ₱	25.22	2	50.44	3.40	171.5
1.9" PX. 145" WT	25.22	4	100.88	2.72	274.4
n	11.0	6	66.0	2.72	179.5
11	8. 25	8	66.0	2.72	179.5
n	3.0	4	12,0	2.72	3 z. 6
222x22x14	30.0	1	3 <i>0.</i> 0	4.10	123.0
[10x20	10.5	}	10.5	20.0	210.0
4	4.25	3	12,75	"	255-0
"	6.0	3	18.0	"	360.0
Grating	26.2 SO.FT	1		9.04	236.8
1.9" \$ x .145" WT	10.5	2	21.0	2.72	57.2
"	3.5	4	14.0	"	38.1
EL.(+) 12'-94" TO EL.(+) 29'-1"					4,003.6

Sheet 2.40 of ____

By C. Chern client U.S. NAUY _ subject Miscellaneous Structures _ Date 7-16-76 Job No. 27-771-98 _ calculation Superstructures _ _ _ _

MEMBER SIZE	MEMBER LENGTH	No. REQUIRED	TOTAL LENGTH	UNIT	TOTAL WEIGHT
	FT		FT	LBS/FT	្រទ
STAIRS #2					
□ 12×25	36.25	2	72.5	25.0	1,812.5
Treads		34		25.0 ea	850.0
4"x4" &	36.25	2	72.5	3,4	246.5
1.9"4X.145"WT	36.25	4	145.0	2.72	394.4
′′	3.5	12	42.0	"	114.2
<2±x2±x≠	40.0	1	40.0	4.10	164.0
[10x20	10.5	1	10.5	20.0	210.0
"	4.25	3	12,75	20.0	255.0
11	6.0	3	18.0	20	360.0
Grating	26.2 SQ.FT	(9.04	736.8
1.9"4x.145"WT	10.5	2	21.0	2.72	57.2
1,	3.5	4	14.0	//	38.
		1		_	4,738.7
EL.(+)29'-1" +0 EL.(+)50'-10"					

Sheet 2.4 1 of _ _ _

By C. Chern client U.S. NAUY __ subject Miscellaneous Structures ____ Date 7=16-76 Job No. 27-771=98 _ calculation Superstructures _ ____

MEMBER SIZE	MEMBER LENGTH	NO. REQUIRED	TOTAL LENGTH	UNIT WEIGHT	TOTAL WEIGHT
	FT		FT	LOS/FT	LBS
STAIRS #3					;
C12x 25	5.0	2	10,0	25.0	250.0
L12 x 25	15.3	2	30.6	"	765.0
Treads		15	:	25.0	375.0
4"x4" te	20.3	2	40.6	3.4	138.0
Groting	12.5 SO.FT	١		9.04	113.0
4"×4" re	14.2	1	14.2	3.4	48.3
Grooting	20.0	١		9.04	180.8
1.9"\$x.145"WT	20.3	4	81.2	2.72	220.9
ρ	3.5	10	35.0	"	95.2
"	29.0	1	29.0	"	78.9
EL.(+)50'-10"					2,265.1
EL.(+) 60'-0"					,
STAIRS # 4 SAME AS STAIRS # 3					2,265.1
TOTAL STAIRS					13,272.5 LBS

Sheet 2.42 of _

By C. Chern client U.S. NAVY __ subject Miscellaneous Structures_ Date 7-16-76 Job No. 27-771-98 _ calculation Superstructures ____.

MEMBER SIZE	Member Length	No. REQUIRED	TOTAL LENGTH	UNIT WEIGHT	TOTAL WELGHT
	FT		FT	LBS/FT	LBS
HAND RAILS ON DECKS					
UPPER DECK 1.9" \$ X.145" WT	29.0	6.	174.0	2.72	473.3
4	3.5	27	94.5	"	257.0
EQUIPMENTDECK 1.9"PX.145"WT		4	116.0	2.72	315.5
"	38.0	2	96.0	y	216.1
//	3.5	29	101.5	"	276.1
					1,538.0
kick Plates					
14" x 4" Æ	29.0	3	87.0	3.4	z95.8
'4"×4" 电	29.0	2	58.0	3.4	197.2
η	38.0	1	38.0	"	129.2
					622.2
1				•	2,160.2

Sheet 2.43 of ____

By C. Chern client U.S. NAUY __ subject Miscellancous Structures ____ Date 7=16-76 Job No. 27-771-98 _ calculation Superstructures ____

SUMMARY

Supersture LEG & Tubular Braces	70, 302	LBS
EQUIPMENT DECK	16,78	LBS
UPPER DECK	11,006	LBS
STAIRS	13,273	LBS
HAND RAILS (DECKS)	2,160	LBS
	113,522	LBS

113.5 kips (563 TONS)

* W6x16 changed to W6x15.5

Sheet 2:44 of ___

By C. Chern client U.S. NAVY _ subject Miscellaneous Structures _____ Date 7=15=76Job No. 27-77L-98 _ calculation Superstructures _ ____

2.7 PAINT AREA

MEMBER SIZE	MEMBER LENGTH	Surface AREA	No. REQUIRED	TOTAL AREA	Notes
	(C.+c.)				
	FT	SQ.FT		SQ.FT	
420x1"WT	5.0	55.0	3	165.0	JKT LEG
30"0x 1"WT	50.5	396.6	3	1,189.8	. "
42"Φx30"Φxl\u (Cone)	3.0	28.3	3	84.8	<i>11</i>
14"Φx.5"ωτ	32.65	119.7	3	359.0	Verti. Braces
124" 0x.5 WT	29.0	96.8	3	290.4	Horiz, Braces
				2,089.0	
W 18x50	29.0	246.5	2	493.0	Equipment
W21×73	29.0	287.6	1	287.6	Deck "
W10x29	38.0	101.3	1	101.3	"
w 8x24	14.5	35.0	3	105.0	b1
W 8x24	5.0	12.1	2	24.2	u
w 8 x 24	4.0	9.7	1	9.7	н
w 6 x 1 6*	8.0	13.7	7	95.7	"

Sheet 2.45 of ____

By C. Cherry client U.S. NAVY _ subject Miscella Leaus Structures _ _____
Date J-15-76 Job No. 27-771-98 _ calculation Superstructures _ _ ____

MEMBER SIZE	MEMBER LENGTH (C. to C.)	Surface Area	No Reguired	TOTAL AREA	Notes
.,1	FT	SQ. FT		SQ.FT	
W 6x16*	4.0	6.8	2	13.6	Equipment Deck
W 6 x 16* (2.9+5.8+8.7+11.6)	29.0	49.5	4	198.0	"
14" R		362.5	2	725.0	"
14" PE		188.0	2	376.0	"
8% 4x.322 WT	13.8	31.2	Z	62.4	",
	!			2,491.5	
WIRX50	29.0	123.3	3	369.9	Upper Deck
W 8 x 2 4	14.5	35.0	3	105.0	"
W 6x16	7.25	12.4	4	49.6	u
4"x %" FB	37.5	25.0	4	100.0	11
¼" ₱		362.5	2	725.0	u
				1,349.5	

Bheet 246 of ____

By C. Chon client 18, MAN _ subject 11 is collected and 21 is a subject 11 is a su

MEMBER SIZE	MEMBER LENGTH (C. TO C.)	Surface Area	NO. REQUIRED	TOTAL AREA	Notes
	FT	50.FT		SA. FT	
C12x 25	25.22	151.3	Z	302.6	STAIRS #1
Treads		4.1	25	102.5	
本"x 4" 电	25.22	16.8	2	33.6	
1.9"0x.145m	25.22	12,5	4	50.0	
"	11.0	5,5	6	33.0	
4	8.25	4.1	8	32.8	
"	3.0	1.5	4.	6.0	
<22×22×1/4	30.0	26.0	1	25.0	
[10×20	10.5	27.1		27.1	
,,	4.25	11.0	3	33.0	
1,	6.0	15.5	3	46.5	
Grating	26.239 FT	52.4	1	52.4	
1.95 x.145 m	10.5	5. 2	2	10.4	
,,	3 5	1.7	4	6 . 3,	
				761.7	1
•		1		1	

Sheet 2.47of _ _ _ By C. Chern client U.S. NAVY _ subject Miscellaneous Structures _ Date 7-16-76 Job No. 27-771-98 _ calculation Super Structures _ _ _

Member Size	MEMBER LENGTH	Surface Area	No. Keguired	TOTAL AREA	Notes
	(C. TO C.)				
	FT	SQ. FT		SQ.FT	
C12x25	36.25	108.8	2	217.6	STAIRS #2
Treads		4.1	34	139.4	•
4"×4" PL	36.25	24.2	2	48.4	
1.9"4x.145"WT	36.25	18.0	4	72.0	
"	3,5	1.74	12	20.9	
L2=x2=x=	40.0	16.7	1	16.7	
C10 x20	10.5	27.1	1	27.1	
//	4.25	11.0	3	33.0	·
"	6.0	15.5	3	46.5	
Grating	26.2 SO.FT	52.4		52.4	
1.9"本x.145%不	10.5	5,2	2	10.4	
"	3.5	1.7	4	6.8	
				691.2	

OFFSHORE, INC. **CREST**

Sheet 2.48 of _ By C. Chern client U.S. NAVY _ subject Miscellaneous Structures
Date 7-16-76 Job No. 27-77L-98 _ calculation Superstructures _ _ _

MEMBER SIZE	Member Length	SURFACE AREA	No. Required	TOTAL AKEA	NOTES
	(C. TO C.)				
	FT	SQ.FT		sa.ft	
E 12x25	5.0	15.0	2	30.0	STAIRS #3
L 12×25	15.3	45.9	. 2	91.8	
Treads		4.1	15	61.5	
妆"×4" R	20.3	13.1	2	27.0	
Grating	12.5 SQ.FT	25.0	1	25.0	
4"x 4" te	14.2	9.5	(9.5	
Grating	20.0 SQ. FT	40.0	Į	40.0	
1.9" \$ x . 145" WT	20.3	10.1	4	40.4	
"	3.5	1.74	10	17.4	
"	29.0	14A		14.4	
				357.0	
				357.0	STAIRS #4
				2,166.9	TOTAL STAIRS

Sheet 2:49 of ____

By C. Chern client U.S. NAUX _ subject Miscellaneous Structures _ _ Date 7-16-76 Job No. 27-771-9B _ calculation Superstructures _ _ _

MEMBER SIZE	MEMBER LENGTH (C. TO C.)	SURFACE AREA	No. REQUIRED	TOTAL ARGA	Notes
	FT	SQ.FT		50.FT	
	_				Hand Rails on Decks
1.9" x.145" WT	29.0	14.4	6.	86,4	Upper Deck
"	3.5	1.74	27	47.0	
¼"×4" ₱	29.0	19.3	3	58.0	
1.9"4x.145"WT	29.0	14.4	4	57.6	Equipment Ded
"	38.0	18-9	2	37.8	·
1,	3.5	1.74	29	50.5	
4"×4" Æ	29.0	19.3	2	38.6	·
"	3 8. O	25.3	1	25.3	
		·		401.2	
367					

CREST	OFFSHORE,	INC.
-------	-----------	------

By C. Charre client U. S. Marry Subject Miscollaneous Educations

Bate 7-16-76 Job No. 27-7-71- 98 - Calculation Superstructures

SUMMARY

SUPERETRUCTURE LEGE TUBULAR BRACES	2,089 B.FT
EQUIPMENT DECK	2,492 50.FT
Upper Duck	1,350 SOFT
STAIRS	2,167 SQ.FT
HANDRAILS & KICK PLATER (DECKS)	401 saft
	8,499 डब्स
	(8,500 Sa.FT)

*TW 6x16 was changed to THE 6x15.5

Sheet 2.5/_ of ____

By V. Talbot Client U.S. Naky _ Subject Muscellaneous Structures _ ____
Date 8-16-76 Job No. 27-771-98 Calculation _ Superstructure _ _ _

Lifting Eyes - Superstructure

Weight of Superstructure = 120 k

Assume entire weight is at one lift eye.

Assume impact factor of Z.O.

Assume total applied load of 240 can

be acting completely vertical or completely 280 240 × 240 ×

horizontal.
Assume sling 0 = 60°.

Check Shear in Pin:

Use 3.25" Diameter Pin -

$$\frac{P}{A} = \frac{280^{k}}{2 (\pi 1.625^{2})} = 16.9 \text{ ksi}$$

Check Bearing on Plate

$$P = 280^{k} = 26.5 \text{ ks}$$
 $Ot (3.25)(3.25)$

26.5 < 32.4

Sheet 2.52 of _ _ _

By V. Talbot client U.S. Nary _ subject Miscellaneous Structures _ ___

Date 8-16-76 Job No. 27-771-98 _ calculation _ Superstructure _ _ _

Check Pin Shearing Through Plates

$$A = 4[(5-1.75) \times 1.0] + 2[(6-1.75) \times 1.25]$$

$$A = 13.0 + 10.6 = 23.6 \text{ /n}^2$$

11. 9 < 19.2

Sheet 2.53 of ____

By V. Talbat_ Client_U.S. Navy ___ subject Miscellaneous Structures ____
Date 8:16.76 Job No. 27-771-98 __ Calculation _ Superstructure ____

* Tension Through Lift Eye

A = 4[3.25 x 1.0] + 2[4.25 x 1.25] = 23.6 in2

ft = 280k = 11.9 ksi 23.6 m²

Ft = 0.6 (36 ksi) x1.33 = 28.7 ksi

11.9 < 28.7

Check Weld of Cheek Plates

 $\frac{A_{R}}{A_{Total}} = \frac{1.0}{3.25} = 0.31$

. {:

Pshear = 0.31 x 280 = 86.8 k

Circumference = TT (10) = 31,4"

 $\frac{P}{C} = \frac{86.8}{31.4} = \frac{2.8 \, \text{K/m}}{31.4}$

 $\omega = \frac{2.8}{11.2} = 0.25 m$

Use 3," fillet weld on cheek plates.

Sheet 2.54 of ____

By .V. Talbot Client U.S. Navy _ Subject Miscellaneous Structures _ _____

Date 8-16-76 Job No. 21-771-98 _ Calculation _ Superstructure _ _ ___

Check Plate Weld to Column

Force due to Moment,

$$5\omega = \frac{d^2}{3} = \frac{900}{3} = 300 \text{ m}^2$$

$$f_m = M = 2040 \text{ in - k} = 3.4 \text{ k/in}$$

25w 2(300)

Force due to Shear,

$$f_s = P = 280^* = 2.3 = 1/10$$
 $Aw 120 in$

Total Force on Weld,

$$f = (f_m^2 + f_5^2)^{1/2} = (3.4 + 2.3^2)^{1/2} = 4.1 \text{ K/in}$$

$$\omega = \frac{4.1}{11.2} = 0.37 \text{ in.}$$

Use 1" fillet weld for lug plate to column

SECTION 3 BOAT LANDING

3.1 INTRODUCTION

いい。自動されたからなどの自動化やれなら自動としてどうなど自己

The boat landing structural framing presented herein is designed to fit each of the four platform structures.

Component details, boat bumpers, grating and stairs associated with the boat landing are not included in this section.

Structural steel weights and the surface area to be painted are provided however.

CREST OFFSHORE, INC.	Sheet 3.02 of 15
By C. Chern Client U.S. NAVY	Subject Miscelleneaus Structures
ngto 7=15=76Job No.27-771=98_	Subject Miscellaneaus Structures

3.2 ELEVATIONS, PLANS AND SECTIONS

Sheet 3.03 of 15__

By C. Chern client U.S. NAUY __ subject Miscellaneous Structure _____ Date 6-16-76 Job No. 27-771-98 _ calculation Boot Landing _____

Sheet 3.04 of 15__

By C. Chern client U.S. NAVY __ subject Miscellaneous Structures __ Date 6-17-76 Job No. 27-771-98 _ calculation Boat Landing _ ____

SCALE 1/8=1-0"

 $-\frac{1}{2}$

By C. Chern client U.S. NAVY __ subject Miscellaneous Structures __ Date 6=16-76 Job No. 27-721-98 _ calculation Boat Landing _____

Sheet 3.08_ of 15__

SECTION

(

Sheet 3.02 of 15__

By C. Chern client LLS. NAVX _ subject Miscellaneous Structures _ _____ Date 6=17-76 Job No. 27-771-98 _ calculation Boat Landing _ _ _ _ _

Sheet 3:10 of 15__

By C. Chern client U.S. NAUY __ subject Miscellaneous Structures _____
Date 6-1 Z-76 Job No. 27-771-98 _ calculation Boat Landing _____

Check Member Strength

(1) 690" \$ x.432" filled with concrete

Assume no composite action between steel wall and concrete fillip.

$$I_x = 40.50/in^4$$
; $S_x = 12.23in^3$

$$M = \frac{PL}{4}$$
 $M = \sigma S_x$

¿L/se 0 = 22 ksi M= 22x/2.23 = 269./ "

$$P = \frac{4M}{L} = \frac{4x22,42}{9} = 10 \text{ kips}$$

Consider impact factor of 2.0

$$P = \frac{10}{2} = 5 \text{ kips}$$

** 6 % p fenders are able to resist a minimum of 5 kips impact force.

Sheet 3: 11 of 15___

By C. Chern_ client U.S. NAUY __ subject Miscellaneous Structures ______ Date 6-17-76 Job No. 27-77L-98 _ calculation Boat Landing _ _ _ _ _

(2) Frame at EL.(+) 6'-0"

Moment of Inertia =
$$ZAd^2 + ZI_0^2$$

 $856''\Phi x.5''WT$ $A = 12.76 D''$; $I_0 = 105.74$ in $A = 12.76 \times 24^2 + 105.74$]
 $A = 14.911$ in $A = 14.911$ in $A = 14.911$ in $A = 14.911$ in $A = 16.81$ (= 5×16.81 = 5×16.81

= 1.21 Ksi < 22 ksi

Sheet 3.12 of 15__

By C. Chern client U.S. NAUY __ subject Miscellaneous Structures _____ Date 6-17-76 Job No. 27-771-98 _ calculation Boat Landing _____

(3) Vertical Load Resistance at Jacket Leg Connections

Total Dead Weight = 22 kips

Live Load = 4 kips

26 kips

Shear at each connection = $\frac{26}{6} = 4.33$ kips

Full penetration field welds on 836"x.5" wt pipe effective shear area $= 12.76 \, \square"$

$$\gamma = \frac{4.33}{12.76} = 0.34 \text{ ksi}$$

Sheet 3:13 of 15__

By C. Chern client U.S. NAUY __ subject Miscellaneous Structures _______
Date 6=12=26 Job No. 27-771-98 _ calculation Beat Landing ______

3.3 DEAD WEIGHT OF BOAT LANDING

		 			
MEMBER SIZE	MEMBER LENGTH	No. REQUIRED	TOTAL LENGTH	LINIT WEIGHT	TOTAL WEIGHT
1N. X 1N.	PT		FT	LBS/FT	LBS
5L.(+) 8'-11" 8% 4x.5"WT	9.75 4.00	1	9.75 4.00 13.75	43.39	423.1 173.6 596.7
6 % φx .432 ωτ	9.50 2.50 4.00 5.84	/ / 3 2	9,50 2,50 12.00 11.68 35.68	28.57	271.4 71.4 342.8 333.7
EL.(+) 6'-0" 8%" \$\psi x .5" WT	21.5 4.0 3.5 1.5	2 2 2 2	43.0 8.0 7.0 3.0 61.0	43.39	1,865.8 347.1 303.7 130.2 2,646.8
6% 4x.432 wm	4.0 5.84	6 4	24.0 23.36 47.36	28.57	685.7 667.4 1,353.1
<u>FL.(-) 3'-0"</u> 8%"中x.5"WT	21.5	2 2 2	43.0 8.0 7.0 58.0	43.39	1,865.8 347.1 303.7 2,516.6

Sheet 3-14 of 15__

By C. Chern Client U.S. NAVY subject Miscellaneous Structures

Date 6-17-76 Job No. 27-771-98 calculation Boat Landing

				 	
MEMBER SIZE	MEMBER LENGTH	NO. REQUIRED	TOTAL LENGTH	UNIT WEIGHT	TOTAL WEIGHT
1N. X I N.	FT		FT	LBS/FT	LBS
658" 4 x. 432" WT		5	20.0	28.57	571.4
028 4 7.42 W	6.4	4	25.6		731.4
	0.4	,	45.6		1.302.8
	,		7 3.0		1,150,0,0
Verticals					
1234"px.843"WT	15.67	2	31.34	107.32	3,363.4
11274 4x.845 WI	5.0	2	10.0	107.72	l
	9.0	2	41.34		4,436.6
			41.54		4,450.0
6%"0x.432"NT	13.0	1	52.0	28.57	2,660.8
1 -		4			
Filled W Conc.	10.0	4	40.0	22.60 (51.17)	2,046.8
			92.0		4,707.6
656" \$X.432"WT	9.0	3	27.0	2 2 2 7	771.4
6784X,432WI	3.0	2	6.0	28.57	_
	13.45	2			171.4
	15.45	_	26.9 59.9		768.5
	1		ラタ・ラ		1.711.3
4±" \$\pi_x.337 WT	7.21	2	21.63	14.98	324,0
42 4 x . 33 / WI	5.0	3	5.00	14.70	74.9
	7.0	,			398.9
			26.63		57.0 - 7
0 1					
Grating	80 SQ.FT			10.4 7/4	930 0
	803			10.4 /11	832.0
					21,521.7#
					Say 22,000#

Sheet 2:15 of 15__

By C. Chern client U.S. NAVY _ subject Miccella wrows Structures _ Date J-16-76 Job No. 27-771-98 _ calculation Bock Landing _ _ _ _

3.4 PAINT AREA

MEMBER Size	MEMBER LEASTH	SURFACTE AKEA	No. REQUIRED	TOTAL AKEA	Notes
	FT	SQ.FT		SA.FT	
88°4x.5"WT	13.75			31.0	EL.(+) 8'-11"
6%" \$\psi x . 432\nT	35.68			61.9	
8% 4x.5 WT	61.0			137.7	EL.(+)6'-0"
658"Фх. 432" шт	47.36			82.1	
8% 4x.5 WT	58.0			131.0	EL.(-) 3-0"
6% px. 432 WT	45.6			79.1	
1234" \$ x.843" WT	41.34			138.0	Verticals
6% 4x. 432"NT	151.9			263.5	
42"4x.337"	26.63			31.4	
Grading		80.0		160.0	
				1.115.7	TOTAL

Sheet 3.16 of ____

By SECULO Client J. S. MAYL Subject MISCELLANEOUS STRUCTURE.

Date 2-2-26 Job No. 27-221-28 Calculation _ BOAT FENDER ANALYSIS

3.5 Boot Fenders STIFFNESS ANALYNESS

$$k = \frac{h}{\ell} = \frac{55.06}{234.0} = 0.24$$

$$N = k + l = 1.24$$

$$\mathcal{L} = \mathbb{R} = \frac{3P0}{8} = 8775.0$$

$$G_{r} = G_{s} = \frac{Pl}{2} = 11700.0$$

$$M_{A} = \frac{-M_{0}}{2} = -1183.9^{"K}$$

$$H_A = H_C = \frac{3MA}{h} = 64.51^{\prime\prime\prime}$$

Sheet 3.17 of ____

BY A TROY Client 12 S. NAYY Subject MISCELLANEOUS STRUCTURE

Date 9:2: 4 Job No. 62: 271-28 Calculation BOAT FENDER ANALY

BEAM STRESS CHECK

MAX. MONENT = Mc = 3203.59" $\Box = \frac{M}{S} = \frac{3203.59}{168.3} = 19.03^{ESI} < 21.6 \text{ of}$ $F_b = 0.6F_b = 0.6(36) = 21.6^{ESI}$

CONCLUSION

18" X 0.75" WALL WITH A STRESS OF 19.03" SIS GOOD AND WILL WITH STAND 100" IMPACT LOAD APPLIED AT THE MID POINT OF THE FENDER.

SECTION 4 EQUIPMENT SUPPORT DETAILS

4.1 <u>INTRODUCTION</u>

Support details for antenna post and solar panel framing are presented in this section.

Sheet 4.02 of 14__

By ESP __ Client Cl. S. Novy _ Subject Misce Claneous Structures ____

Date 6-1-76 Job No. 27-771-98 _ Calculation _ Antenna Post _ ____

Bit to brace

3" below top &

3" above bottom of

End of Pipe - Cap

ands of pipe w/ 4" Pe

Sheet 4:03 of 14__

By ESP __ Client U.S. Navy _ _ Subject Miscellaneous Structures ____ Date 6 : 1 = 76 Job No. _ 27-771-98 _ Calculation _ Antenna Post _ _ _ _

Sheet 4:04 of 14__

By ____ client U.S. NAVY _ subject Miscellaneous Structures ___ Date 7-15-26 Job No. 27-771-98_ calculation Antenna Post _ _ _ __

Sheet 4:05 of 14__

By C. Chern client U.S. NAUX __ subject Miscellaneous Structures ____ Date 7=21-76 Job No. 27-771-98 _ calculation Solax Panel Supports Details _

4.3 SOLAR PANEL SUPPORT DETAILS

Sheet 4:0601 14__

By C. Cherk Client U.S. NAVY __ subject Miscellaneous Structures _____ Date 7-21-76 Job No. 27-771-98 _ calculation Salar Panel Support Details _

Wind Forces

Ref.: Page 9.24, Report No. 27-771-92

APPENDIX C. THREE PILE CONCEPT

CALCULATIONS

F=0.00256 Cs A CH V30

F = force in lbs

V30 = velocity @ EL.4)30' = 150 knots = 173 mph

Cs = 1.5 for flat surfaces

= 1.0 for cylindrical surfaces

A = projected area of surface (SQ. FT)

CH = height coefficient = (H/30)2/7

Let 9 = 0.00 Z 56 Cs C4 V302

 $q = 0.00256 \times 1.5 \times (173)^2 = 115 \text{ Psf}$

@ EL(+) 64'-6"

(60+ \frac{1}{2} x 10.4 coo30° = 64.5')

 $C_s = \left(\frac{64.5}{30}\right)^{2/7} = 1.244$

 $g_{64.5} = 115 \times 1.244 = 143 \text{ Psf}$

Sheet 4.0 Zof 14__

By C. Chern client U.S. NAVY __ subject Miscellaneous 5 trustwees ____ Date 7=21-76 Job No. 27-771-98 _ calculation Solar Penel Support Details _

Sheet 4:08 of 14__

By C. Chern Client U.S. NAUY _ subject Miscellaneous Structures _ ____
Date 7-22-76 Job No. 27-77L-98 _ calculation Solar Panel Support Details _

Projected Area $A = 11.5 \times (10.5 \cos 30^{\circ})$ = 104.6 sq. FT

Total Wind Force $F = 143 \times 104.6$ = 14,958 Lbs

Assuming that solar panel framings are flexible so that a uniformly distributed wind load may be transfered to the panel supports.

Ref. to wind area shown in Pg. 4.09 $A = \frac{1}{2} \times 9.5 \times (5.5 \cos 30^{\circ}) = 22.65 \text{ a. FT}$ Wind Force = $143 \times 22.6 = 3.232$ Lbs

Triangular load at peak $3.232 = \frac{1}{2} w \times 9.5$ w = 680 #/ft

AISC 2-198

Case #3

W = 3,23,2 #

Sheet 4:09 of 14__

By C. Chern client U.S. NAUY _ subject Miscellaneous Structures _____ Date 7-22-76 Job No. 27-771-98 _ calculation Salar Panel Support Details

Sheet 4:10 of 14___

By C. Chern client U.S. NAUX ___ subject Miscellaneous Structures ____ Date 7-22-76 Job No. 27-771-98 _ calculation Salax Panel Support Details _

$$R = V = \frac{W}{Z} = 1,616$$

$$M_{max} = \frac{Wl}{6}$$

$$= \frac{3.232 \times .9.5}{6} \times \left(\frac{12}{1000}\right)$$

$$\Delta_{\text{max}} = \frac{Wl^3}{60EI}$$
(center)

$$S_x = 2.24$$
 in 3

$$l_x = 7.37 in^4$$

$$G_b = \frac{M}{S_v} = \frac{61.4}{2.24} = 27.4$$
 Ksi

Sheet 4:11_ of 14__

$$\Delta_{\text{max}} = \frac{3.232 \times (9.5 \times 12)^3}{60 \times 30,000 \times 7.37} = 0.36$$

Ref. to Wind area shown in Pg. 4.12

$$A = \frac{1}{2}(10.5 + 5.25) \times 2.2 + \frac{1}{2}(10.5 + 5.25) \times 2.6$$

Total Wind Force = 143x 37.8 x cos30°

$$10 = 446 */4t$$

$$10.5^{2} \times 1000$$

$$= 73.8 "K$$

Try $45 \times 3 \times \frac{1}{2}$ $5 \times = 2.91 \text{ in}^3$; $L = 9.45 \text{ in}^4$

$$O_b = \frac{73.8}{2.91} = 25.4$$
 ksi <29. 3 ksi o.k.

$$\Delta_{\text{max}} = \frac{5 \times 14^4}{384 \text{ EI}} = \frac{5 \times .446 \times (10.5)^4 \times (12)^3}{384 \times 30000 \times 9.45} = 0.43''$$

Sheet 4:12 of 14__

By C. Chern Client U.S. NAYX _ subject Miscellaneous Structures _ ___ Date 7-22-76 Job No. 27-771-98 _ calculation Salax Panel Support Details _

Sheet 4:13 of 14__

By C. Chern_ client U.S. NAVY __ subject Miscellaneous Structures ____ Date 7-22-76 Job No. 27-771-98 _ calculation Solar Panel Support Details

$$\Xi M_{A}=0$$
 $14,958 \times (4.5-2.8) = (R_{co} \times 5 \text{ sin 31}^{\circ}) \times 2$
 $R_{co} = \frac{14,958 \times 1.7}{2 \times 7.575} = 4,938 \# (Comp.)$

$$4\frac{1}{2}$$
 " $\phi x.337$ " WT $A = 4.41$ 50./N.
$$f_a = \frac{4.938}{4.41} = 1.12. \text{ Ksi}$$

$$F_{\alpha} = 18.40 \text{ K/s}i$$

$$\frac{f_{\alpha}}{F_{\alpha}} = \frac{1.12}{18.40} = 0.06$$

Sheet 4:14-of 14__

By C. Chern Client U.S. NAVY __ subject Miscellaneous Structures _____ Date 7-22-76 Job No. 27-72/-98 _ calculation Salar Panel Support Details

EMc=0 14,958 x 4.5 = 2 x (RAB x 5 Sin 31°)

 $R_{AB} = \frac{14,958 \times 4.5}{2 \times 2.575} = 13,070 \# (Tens.)$

 $4\frac{1}{2}$ " $\phi x.337$ " WT $f_a = \frac{13.07}{4.41} = 2.96 \text{ ksi} < 22 \text{ ksi} \text{ ok}$

Joint A (Assuming DA carrys no force)

 $R_{AC} \cdot \sqrt{z} = R_{AB}$ $R_{AC} = 13.07 \times NZ = 18.48 \text{ kips (Comp.)}$

 $4\frac{1}{2}$ "\$ x.337" WT $f_a = \frac{18.48}{4.41} = 4.19 \text{ Ksi}$ < 22 Ksi o. K.

-ILMED 4-86