Министерство образования и науки Российской Федерации Федеральное государственное образовательное учреждение высшего образования

«Национальный исследовательский университет «МЭИ» Институт ИВТ Кафедра МКМ

КУРСОВАЯ РАБОТА

по дисциплине «Численные методы» на тему:

«Решение интегральных уравнений методом квадратур»

Группа: А-05-19

Выполнила: Гусамова Камила Линаровна Проверила: Амосова Ольга Алексеевна

Оглавление

1. Задача	3
1. 1. Постановка задачи	
1.2. Исходные данные	3
2. Теория	
2.1. Уравнение Фредгольма второго рода	
2.2. Метод квадратур	
2.3. Единственность решения	
2.4. Связь невязки и погрешности	
2.5. Метод наименьших квадратов	
2.6. Формула левых прямоугольников	
2.7. Метод минимальных поправок	
3. Алгоритм	
3.1. Основные функции	
3.2. Метод и проверка решения	
4. Тестовые примеры	
4.1. Тестовый пример 1	
4.2. Тестовый пример 2	
5. Решение задачи	
6. Вывод	
Список литературы	
Листинг программы	

1. Задача

1. 1. Постановка задачи

Найти решение интегрального уравнения:

$$u(x) - \lambda \int_{a}^{b} K(x,t)u(t)dt = f(x), x \in [a,b]$$

методом квадратур для каждого значения λ из указанного отрезка [α , β]. При каждом значении λ построить график найденного решения и вычислить площадь полученной криволинейной трапеции. Определить, при каком значении λ , площадь трапеции максимальна.

1.2. Исходные данные

Ядро	Отрезки	Метод	Квадратурные	Решение	
	[a, b]	аппроксимац	формулы	СЛАУ	
	[α, β]	ии функции			
		f(x)			
1	[0,3]	Метод	Метод левых	Метод	
$1 + e^{ x-t }$	[1,2]	наименьших	прямоугольников	минимальных	
		квадратов в		поправок	
		классе			
		полиномов			
		второй			
		степени			

Функция f(x)

0	0.3	0.6	0.9	1.2	1.5	1.8	2.1	2.4	2.7	3
8	7.482	7.098	6.813	6.602	6.446	6.331	6.245	6.128	6.124	5.82

2. Теория

2.1. Уравнение Фредгольма второго рода

Уравнения, в которых искомая функция входит под знак интеграла, принято называть интегральными уравнениями.

Уравнение

$$u(x) - \lambda \int_{a}^{b} K(x,t)u(t)dt = f(x), x \in [a,b]$$
 (1)

называется уравнением Фредгольма второго рода.

Функции K(x,t) (ядро интегрального уравнения) и f(x) (правая часть интегрального уравнения) считаются заданными. λ – числовой параметр.

Под решением интегрального уравнения понимается функция u(x) , подстановка которой в уравнение обращает его в тождество.

2.2. Метод квадратур

Одним из наиболее простых и распространенных методов решения интегрального уравнения Фредгольма второго рода является *метод квадратур*, основанный на аппроксимации значений интегрального оператора с использованием одной из квадратурных формул.

Пусть за основу взята квадратурная формула

$$\int_{a}^{b} g(t)dt \approx \sum_{j=0}^{N} c_{j}g(x_{j})$$
 (2)

с узлами x_j (где $a \le x_0 < x_1 < \ldots < x_N \le b$) и весами $c_j > 0$.

Используя формулу (2) с g(t) = K(x,t)u(t) для приближенного вычисления значения интегрального оператора, имеем

$$\int_{a}^{b} K(x,t)u(t)dt \approx \sum_{j=0}^{N} c_{j}K(x,x_{j})u(x_{j})$$

и от уравнения (1) мы приходим к приближенному равенству

$$u(x) = \lambda \sum_{j=0}^{N} c_{j}K(x, x_{j})u(x_{j}) + f(x), x \in [a, b]$$

Функцию u^N, удовлетворяющую уравнению

$$u^{N}(x) = \lambda \sum_{i=0}^{N} c_{i}K(x, x_{i})u^{N}(x_{i}) + f(x), x \in [a, b]$$
(3)

примем за приближенное решение уравнения (1).

Если уравнение (3) имеет решение, то его можно найти следующим образом. Подставляя в (3) значения $x = x_i$ для i = 0, ..., N, приходим к системе линейных алгебраических уравнений

$$u_i = \lambda \sum_{j=0}^{N} c_j K_{ij} u_j + f_i, i = 0, ..., N$$
 (4)

относительно вектора неизвестных $u_N = (u_0, u_1, \dots, u_N)^T$, где $u_j = u^N(x_j)$. Здесь и ниже используются обозначения $K_{ij} = (x_i, x_j)$ и $f_i = f(x_i)$.

Обратим внимание на то, что решение уравнения (3) однозначно определяется своими значениями $u_j = u^N(x_j)$ в узлах x_j , $0 \le j \le N$. Поэтому уравнение (3) однозначно разрешимо тогда и только тогда, когда однозначно разрешима система (4).

Если ввести матрицу B_N с элементами $b_{ij}=\lambda c_j K_{ij}$, $0\leq i,j\leq N$ и вектор $f_N=(f_0,f_1,\ldots,f_N)^T$, то систему (4) можно записать в матричном виде:

$$u_{N} = B_{N}u_{N} + f_{N} \tag{5}$$

Эту же систему можно записать в виде

$$A_N u_N = f_N \tag{6}$$

где $A_N = E_N - B_N$, а E_N – единичная матрица.

2.3. Единственность решения

Пусть ядро К удовлетворяет условию

$$||K|| = \sqrt{\iint\limits_a^b |K(x,t)|^2 dx dt} < 1$$

Тогда при любой правой части f интегральное уравнение имеет единственное решение, причем справедлива оценка

$$\|\mathbf{u}\| \le \mathsf{C}_2\|\mathbf{f}\| \tag{7}$$

с постоянной $C_2 = \frac{1}{1 - ||K||}$.

2.4. Связь невязки и погрешности

Введем интегральный оператор к:

$$\kappa u(x) = \int_{a}^{b} K(x, t)u(t)ds$$

Запишем интегральное уравнение (1) в виде

$$u = \kappa u + f, \tag{8}$$

Пусть и — точное решение интегрального уравнения (8), а $\tilde{\mathbf{u}}$ — некоторое приближенное решение того же уравнения. Определим невязку

$$r[\tilde{\mathbf{u}}] = \tilde{\mathbf{u}} - \kappa \tilde{\mathbf{u}} - \mathbf{f},\tag{9}$$

отвечающую этому приближенному решению.

Заметим, что точному решению и отвечает нулевая невязка:

$$r[u] = u - \kappa u - f = 0 \tag{10}$$

Вычитая из равенства (9) равенство (8), убеждаемся в том, что погрешность $u - \tilde{u}$ является решением уравнения того же, вида что и (7), но с невязкой $r[\tilde{u}]$ в роли правой части f:

$$u - \tilde{u} \equiv \kappa(u - \tilde{u}) + r[\tilde{u}]$$

Если справедливо неравенство (7), то погрешность $\mathbf{u} - \tilde{\mathbf{u}}$ можно оценить через невязку следующим образом:

$$\|\mathbf{u} - \tilde{\mathbf{u}}\| \le C_2 \|\mathbf{r}[\tilde{\mathbf{u}}]\| \tag{11}$$

Таким образом, если невязка, отвечающая приближенному решению $\tilde{\mathfrak{u}}$, достаточно мала, то малой будет и погрешность $\mathfrak{u}-\tilde{\mathfrak{u}}$.

2.5. Метод наименьших квадратов

Требуется найти многочлен $P_m = a_0 + a_1 x + a_2 x^2 + \ldots + a_m x^m = \sum_{j=0}^m a_j x^j$ заданной степени m такой, чтобы величина среднеквадратичного отклонения

$$\sigma(P_m, f) = \sqrt{\frac{1}{n+1} \sum_{i=0}^{n} (P_m(x_i) - f_i)^2}$$

была минимальной.

Запишем нормальную систему метода наименьших квадратов:

$$\sum_{j=0}^{m} a_j \sum_{i=0}^{n} x_i^{k+j} = \sum_{i=0}^{n} f_i x_i^k, k = 0, 1, \dots, m$$

Перепишем систему в более удобном для практического использования виде:

$$\begin{cases} s_0 a_0 + s_1 a_1 + s_2 a_2 + \dots + s_m a_m = b_0 \\ s_1 a_0 + s_2 a_1 + s_3 a_2 + \dots + s_{m+1} a_m = b_1 \\ & \dots \\ s_m a_0 + s_{m+1} a_1 + s_{m+2} a_2 + \dots + s_{2m} a_m = b_m \end{cases}$$

где
$$s_k = \sum_{i=0}^n x_i^k$$
 , $b_k = \sum_{i=0}^n b_i x_i^k$.

2.6. Формула левых прямоугольников

Элементарная формула

$$I_i = \int_{x_{i-1}}^{x_i} f(x) dx \approx f_{i-1} h$$

Составная формула

$$I = \int_{a}^{b} f(x)dx \approx f_{0}h + f_{0}h + \dots + f_{n-1}h = h\sum_{i=1}^{n} f_{i-1}$$

2.7. Метод минимальных поправок

Неявный итерационный метод

$$x^{(k+1)} = x^{(k)} + \tau_{k+1} w^{(k)}, Bw^{(k)} = b - Ax^{(k)}, k = 0,1,...$$

называется *методом минимальных поправок*. В этом методе итерационные параметры вычисляются по формуле

$$\tau_{k+1} = \frac{\left(Aw^{(k)}, w^{(k)}\right)}{\left(B^{-1}Aw^{(k)}, Aw^{(k)}\right)}, k = 0, 1, \dots,$$

а очередное значение поправки по формуле

$$w^{(k+1)} = w^{(k)} - \tau_{k+1} B^{-1} A w^{(k)}$$

3. Алгоритм

3.1. Основные функции

Перейдем к реализации алгоритма и решению поставленной задачи.

Подключим необходимые библиотеки:

```
import numpy as np
from scipy import integrate
import matplotlib.pyplot as plt
```

Напишем функции для аппроксимации методом наименьших квадратов, получения коэффициентов формулы левых прямоугольников и решения СЛАУ методом минимальных поправок:

```
#функция, возвращающая коэффициенты многочлена МНК
def LeastSquaresCoefs(x, y, m):
    a = np.zeros((m + 1, m + 1))
    b = np.zeros(m + 1)
    s = np.zeros(2 * m + 1)
    for i in range(len(x)):
        buffer = y[i]
        for j in range(m + 1):
                b[j] += buffer
                buffer *= x[i]
        buffer = 1
        for j in range(2 * m + 1):
            s[j] += buffer
            buffer *= x[i]
    for i in range(m + 1):
        for j in range(m + 1):
            a[i, j] = s[i + j]
    return np.linalg.solve(a, b)
#функция, возвращающая значение многочлена МНК в точке
def LeastSquares(coef, x0):
    m = len(coef) - 1
    polynom = coef[m]
```

```
for j in range(m):
    polynom = polynom * x0 + coef[m - j - 1]
return polynom
```

```
#коэффициенты формулы левых прямоугольников
def LeftRiemannSum(j):
   if j == n - 1:
      return 0
   else:
      return h
```

```
#метод минимальных поправок
def Solve(A, b, eps):
    n = A.shape[0]
    B = np.zeros((n, n))
    for i in range(A.shape[0]):
        B[i][i] = A[i][i]
    x = np.zeros(n)
    fl = True
    while fl:
        r = A @ x - b
        w = np.linalg.inv(B) @ r
        v = np.linalg.inv(B) @ A @ w
        t = np.dot((A @ w), w) / np.dot(v, (A @ w))
        x prev = x
        x = np.linalg.inv(B) @ (B @ x - t * r)
        fl = np.linalg.norm(x - x prev) > eps
    return x
```

3.2. Метод и проверка решения

Теперь напишем функцию решения интегрального уравнения:

```
#норма ядра -- используется для проверки единственности решения и нахождения связи невязки и погрешности def KNorm(a, b, K):
    return np.sqrt(integrate.dblquad(lambda x, t: np.abs(K(x, t)) ** 2, a, b, lambda x: a, lambda x: b)[0])

#Евклидова норма вектора def EuclideanNorm(x):
    s = 0
    n = x.shape[0]
    for i in range(n):
        s += x[i] ** 2
    return np.sqrt(s)
```

```
def IntegralEquation(K, a, b, h, param = 1, f = None):
    #составляем матрицы для СЛАУ
    n = int((b - a) / h) + 1
    x = np.linspace(a, b, n)
    #задаем матрицу В
    B = np.zeros((n, n))
    for i in range(n):
        for j in range(n):
            B[i][j] = param * LeftRiemannSum(j) * K(x[i], x[j])
    E = np.eye(len(B))
    #вычисляем матрицу А
    A = E - B
    #задаем данные для правой части системы
    x data = np.array([0, 0.3, 0.6, 0.9, 1.2, 1.5, 1.8, 2.1, 2.4, 2.7,
3])
    y_{data} = np.array([8, 7.482, 7.098, 6.813, 6.602, 6.446, 6.331,
6.245, 6.128, 6.134, 5.82
    #составляем вектор правой части:
    #если f != None, то F -- функция, заданная аналитически
    F = np.zeros(n)
    for i in range(n):
        if f is None:
            F[i] = LeastSquares(LeastSquaresCoefs(x data, y data, 2),
x[i])
        else:
            F[i] = f(x[i])
    #решаем СЛАУ методом минимальных поправок с заданной точностью
    u = Solve(A, F, eps)
    #вычисляем норму ядра
    k \text{ norm} = KNorm(a, b, K)
    #вычисляем коэффициент С2
    C2 = 1 / (1 - k_norm)
    #задаем вектор невязки, интеграл будем вычислять, используя формулу
левых прямоугольников
    r = np.zeros(n)
    for i in range(n):
        r[i] = u[i] - F[i] - param * sum([LeftRiemannSum(j) * K(x[i],
x[j]) * u[j] for j in range(n)])
    #вычислим Евклидову норму для полученного вектора невязки
    res = C2 * EuclideanNorm(r)
    return u, res
```

4. Тестовые примеры

4.1. Тестовый пример 1

$$u(x) - \frac{1}{2} \int_{0}^{1} x s u(t) dt = \frac{5}{6} x$$

Решим уравнение методом последовательных приближений:

Если в уравнении числовой параметр λ удовлетворяет условию

$$|\lambda| \le \frac{1}{B}, B^2 = \iint_a^b |K(x,t)|^2 dx dt,$$

то уравнение имеет единственное решение. В этом случае оно может быть найдено методом последовательных приближений.

Выбирая произвольным образом нулевое приближение $u_0(x)$, можно построить последовательность функций $\{u_n(x)\}$ с помощью рекуррентной формулы

$$u_n(x) = f(x) + \lambda \int_a^b K(x, t) u_{n-1}(t) dt$$

Функции $u_n(x)$ (n=1,2,...) рассматриваются как приближения к искомому решению уравнения. Данная последовательность $\{u_n(x)\}$ сходится равномерно на [a,b] к точному решению, т.е. $u(x) = \lim_{n\to\infty} u_n(x)$.

В качестве нулевого приближения возьмем свободный член f(x) данного уравнения, т.е. $u_0(x) = f(x) = \frac{5}{6}x$.

Строим последовательность функций $\{u_n(x)\}$:

$$u_1(x) = \frac{5}{6}x + \frac{1}{2} \int_0^1 xt \frac{5}{6}t dt = \frac{5}{6}x + \frac{5}{36}x = \frac{35}{36}x = \frac{5}{6}x \left(1 + \frac{1}{6}\right)$$

$$u_2(x) = \frac{5}{6}x + \frac{1}{2} \int_0^1 xt \frac{35}{36}t dt = \frac{5}{6}x + \frac{35}{216}x = \frac{215}{216}x = \frac{5}{6}x \left(1 + \frac{1}{6} + \frac{1}{36}\right)$$

$$u_3(x) = \frac{5}{6}x + \frac{1}{2}\int_0^1 xt \frac{215}{216}t dt = \frac{5}{6}x + \frac{215}{1296}x = \frac{215}{216}x$$
$$= \frac{5}{6}x \left(1 + \frac{1}{6} + \frac{1}{36} + \frac{1}{216}\right)$$

. . .

$$u_n(x) = \frac{5}{6}x\left(1 + \frac{1}{6} + \frac{1}{6^2} + \frac{1}{6^3} + \dots + \frac{1}{6^n}\right) = \frac{5}{6}x\sum_{k=0}^n \frac{1}{6^k}$$

Отсюда точное решение u(x) определяется как предел

$$u(x) = \lim_{n \to \infty} \frac{5}{6} x \sum_{k=0}^{n} \frac{1}{6^k} = \frac{5}{6} x \frac{6}{5} = x$$

Найдем численное решение тестового примера 1, используя написанные функции. Построим графики решений и абсолютной погрешности, вычислим площади полученных криволинейных трапеций.

```
#тестовый пример 1
a = 0
b = 1
h = 0.01
n = int((b - a) / h) + 1
param = 0.5
eps = 1e-6

def Solution1(x): #точное решение
return x
def K1(x, t): #ядро
return x * t
def f1(x): #правая часть
return (5 / 6) * x

x_data = np.linspace(a, b, n)
y_data, r_data = IntegralEquation(K1, a, b, h, param, f1)
```

Тестовый пример 1

Рис. 1. График решений тестового примера 1

Рис. 2. График абсолютной погрешности приближенного решения тестового примера 1

4.2. Тестовый пример 2

$$u(x) - \frac{1}{2} \int_{0}^{1} u(t)dt = \sin(\pi x)$$

Решим уравнение методом последовательных приближений:

В качестве нулевого приближения возьмем свободный член f(x) данного уравнения, т.е. $u_0(x) = f(x) = sin(\pi x)$.

Строим последовательность функций $\{u_n(x)\}$:

$$u_1(x) = \sin \pi x + \frac{1}{2} \int_0^1 \sin(\pi t) dt = \sin(\pi x) + \frac{1}{\pi}$$

$$u_2(x) = \sin \pi x + \frac{1}{2} \int_0^1 \left(\sin(\pi t) + \frac{1}{\pi} \right) dt = \sin(\pi x) + \frac{1}{\pi} + \frac{1}{2\pi}$$

$$u_3(x) = \sin \pi x + \frac{1}{2} \int_0^1 \left(\sin(\pi x) + \frac{1}{\pi} + \frac{1}{2\pi} \right) dt = \sin(\pi x) + \frac{1}{\pi} + \frac{1}{2\pi} + \frac{1}{4\pi}$$

$$u_n(x) = \sin(\pi x) + \frac{1}{\pi} + \frac{1}{2\pi} + \frac{1}{4\pi} + \dots + \frac{1}{2^{n-1}\pi} = \sin(\pi x) + \frac{1}{\pi} \sum_{k=0}^{n-1} \frac{1}{2^k}$$

Отсюда точное решение u(x) определяется как предел

$$u(x) = \lim_{n \to \infty} \left(\sin(\pi x) + \frac{1}{\pi} \sum_{k=0}^{n-1} \frac{1}{2^k} \right) = \sin(\pi x) + \frac{2}{\pi}$$

Найдем численное решение тестового примера 2, используя написанные функции. Построим графики решений и абсолютной погрешности, вычислим площади полученных криволинейных трапеций.

```
#тестовый пример 2

a = 0

b = 1

h = 0.01

n = int((b - a) / h) + 1

param = 0.5

eps = 1e-6

def Solution2(x): #точное решение
    return np.sin(np.math.pi * x) + 2 / (np.math.pi)
```

```
def K2(x, t): #ядро
return 1
def f2(x): #правая часть
return np.sin(np.math.pi * x)

x_data = np.linspace(a, b, n)
y_data, r_data = IntegralEquation(K2, a, b, h, param, f2)
```


Рис. 3. График решений тестового примера 1

Рис. 4. График абсолютной погрешности приближенного решения тестового примера 1

Графики решений обоих тестовых примеров совпадают и накладываются друг на друга, площади трапеций примерно одинаковы. Абсолютные погрешности малы. Это свидетельствует о верной работе алгоритма – можно перейти к численному решению поставленной задачи.

5. Решение задачи

Теперь решим исходную задачу

$$u(x) - \lambda \int_{0}^{3} \frac{1}{1 + e^{|x - t|}} u(t) dt = f(x), x \in [0, 3], \lambda \in [1, 2]$$

Функция f(x)

0	0.3	0.6	0.9	1.2	1.5	1.8	2.1	2.4	2.7	3
8	7.482	7.098	6.813	6.602	6.446	6.331	6.245	6.128	6.124	5.82

```
#исходные данные
a = 0
b = 3
h = 0.01
n = int((b - a) / h) + 1
eps = 1e-6
alpha = 1
beta = 2

def K(x, t): #ядро
return 1 / (1 + np.exp(abs(x - t)))

x_data = np.linspace(a, b, n)
y_data, r_data = IntegralEquation(K, a, b, h)

print("Оценка погрешности: ||u - u*|| <=", r_data)
Оценка погрешности: ||u - u*|| <= 4.4088042281908743e-07
```

Исходная задача ($\lambda = 1$)

Рис. 5. График решения задачи при $\lambda = 1$

Оценка погрешности численного решения задачи при $\lambda = 1$:

$$\|\mathbf{u} - \tilde{\mathbf{u}}\| \le 4.4088 \cdot 10^{-7}$$

Можно сделать вывод о том, что погрешность численного решения мала.

Решим задачу при разных значениях λ

```
params = np.linspace(alpha, beta, 6) #1 1.2 1.4 1.6 1.8 2
for i in range(params.shape[0]):
    for j in range(params.shape[1]):
        y_data, r_data = IntegralEquation(K, a, b, h, params[i][j])

print(i, ",", j, "Оценка погрешности: ||u - u*|| <= ", r_data)

0, 0 Оценка погрешности: ||u - u*|| <= 4.4088042281908743e-07

0, 1 Оценка погрешности: ||u - u*|| <= 38.621656241177085

1, 0 Оценка погрешности: ||u - u*|| <= 4.8685081457552765e-05

1, 1 Оценка погрешности: ||u - u*|| <= 1.7189690566186077e-05

2, 0 Оценка погрешности: ||u - u*|| <= 5.150020853684956e-05

2, 1 Оценка погрешности: ||u - u*|| <= 0.000863423832123382
```


Рис. 6. Графики решений задачи при разных значениях λ Оценка погрешности численного решения задачи при разных значениях λ:

$$\begin{split} \lambda &= 1 \colon \| u - \tilde{u} \| \le 4.4088 \cdot 10^{-7} \\ \lambda &= 1.2 \colon \| u - \tilde{u} \| \le 38.6217 \\ \lambda &= 1.4 \colon \| u - \tilde{u} \| \le 4.8685 \cdot 10^{-5} \\ \lambda &= 1.6 \colon \| u - \tilde{u} \| \le 1.7190 \cdot 10^{-5} \\ \lambda &= 1.8 \colon \| u - \tilde{u} \| \le 5.1500 \cdot 10^{-5} \\ \lambda &= 2 \colon \| u - \tilde{u} \| \le 0.0008634 \end{split}$$

Площадь трапеции максимальна при значении $\lambda = 1$.

6. Вывод

Используемые методы и корректно построенный алгоритм позволили решить задачу с хорошей точностью, о чем свидетельствует оценка погрешностей полученных численный решений, а также проведенные вычислительные эксперименты.

Список литературы

- 1. Амосова О.А. Лекции по численным методам. М., 2020-2021.
- 2. Амосов А.А. Вычислительные методы [Текст]: Учебное пособие / А.А. Амосов, Ю.А. Дубинский, Н.В. Копченова Изд. 2-е, стер. М.: Лань, 2014.
- 3. Попов В.А. Сборник задач по интегральным уравнениям. Казань, 2006.

Листинг программы

```
import numpy as np
from scipy import integrate
import matplotlib.pyplot as plt
#функция, возвращающая коэффициенты многочлена МНК
def LeastSquaresCoefs(x, y, m):
    a = np.zeros((m + 1, m + 1))
    b = np.zeros(m + 1)
    s = np.zeros(2 * m + 1)
    for i in range(len(x)):
        buffer = y[i]
        for j in range(m + 1):
                b[j] += buffer
                buffer *= x[i]
        buffer = 1
        for j in range(2 * m + 1):
            s[j] += buffer
            buffer *= x[i]
    for i in range(m + 1):
        for j in range(m + 1):
            a[i, j] = s[i + j]
    return np.linalg.solve(a, b)
#функция, возвращающая значение многочлена МНК в точке
def LeastSquares(coef, x0):
    m = len(coef) - 1
    polynom = coef[m]
    for j in range(m):
        polynom = polynom * x0 + coef[m - j - 1]
    return polynom
#метод минимальных поправок
def Solve(A, b, eps):
    n = A.shape[0]
    B = np.zeros((n, n))
    for i in range(n):
```

```
B[i][i] = A[i][i]
    x = np.zeros(n)
    fl = True
    while fl:
        r = A @ x - b
        w = np.linalg.inv(B) @ r
        v = np.linalg.inv(B) @ A @ w
        t = np.dot((A @ w), w) / np.dot(v, (A @ w))
        x prev = x
        x = np.linalg.inv(B) @ (B @ x - t * r)
        fl = np.linalg.norm(x - x_prev) > eps
    return x
#коэффициенты формулы левых прямоугольников
def LeftRiemannSum(j):
    if j == n - 1:
        return 0
    else:
        return h
#норма ядра -- используется для проверки единственности решения и
нахождения
#связи невязки и погрешности
def KNorm(a, b, K):
    return np.sqrt(integrate.dblquad(lambda x, t: np.abs(K(x, t)) ** 2, a,
b, lambda x: a, lambda x: b)[0])
#Евклидова норма вектора
def EuclideanNorm(x):
    s = 0
    n = x.shape[0]
    for i in range(n):
        s += x[i] ** 2
    return np.sqrt(s)
#решение интегрального уравнения Фредгольма второго рода
def IntegralEquation(K, a, b, h, param = 1, f = None):
    #составляем матрицы для СЛАУ
    n = int((b - a) / h) + 1
    x = np.linspace(a, b, n)
    #задаем матрицу В
    B = np.zeros((n, n))
    for i in range(n):
        for j in range(n):
            B[i][j] = param * LeftRiemannSum(j) * K(x[i], x[j])
    E = np.eye(len(B))
    #вычисляем матрицу А
```

```
A = E - B
           #задаем данные для правой части системы
           x_{data} = np.array([0, 0.3, 0.6, 0.9, 1.2, 1.5, 1.8, 2.1, 2.4, 2.7, 3])
           y_{data} = np.array([8, 7.482, 7.098, 6.813, 6.602, 6.446, 6.331, 6.245,
6.128, 6.134, 5.82])
           #составляем вектор правой части:
           #если f != None, то F -- функция, заданная аналитически
           F = np.zeros(n)
           for i in range(n):
                      if f is None:
                                 F[i] = LeastSquares(LeastSquaresCoefs(x data, y data, 2),
x[i])
                      else:
                                 F[i] = f(x[i])
           #решаем СЛАУ методом минимальных поправок с заданной точностью
           u = Solve(A, F, eps)
           #u = np.linalg.solve(A, F)
           #вычисляем норму ядра
           k_norm = KNorm(a, b, K)
           #вычисляем коэффициент С2
           C2 = 1 / (1 - k norm)
           #задаем вектор невязки, интеграл будем вычислять, используя формулу
           #левых прямоугольников
           r = np.zeros(n)
           for i in range(n):
                      r[i] = u[i] - F[i] - param * sum([LeftRiemannSum(j) * K(x[i], musical fields)]) | The sum of the 
x[j]) * u[j] for j in range(n)])
           #вычислим Евклидову норму для полученного вектора невязки
           res = C2 * EuclideanNorm(r)
   return u, res
   #тестовый пример 1
   a = 0
   b = 1
   h = 0.01
   n = int((b - a) / h) + 1
   param = 0.5
   eps = 1e-6
   def Solution1(x): #точное решение
               return x
   def K1(x, t): #ядро
               return x * t
   def f1(x): #правая часть
```

```
return (5 / 6) * x
 x_data = np.linspace(a, b, n)
 y data, r data = IntegralEquation(K1, a, b, h, param, f1)
 fig, axs = plt.subplots(1, 1, figsize=(10,5))
 axs.plot(x data, Solution1(x data), color='teal', label=f'Точное
решение. Площадь = \{np.trapz(Solution1(x_data), x_data):.6f\}'\}
 axs.plot(x_data, y_data, color='coral', label=f'Решение методом
квадратур. Площадь = {np.trapz(y_data, x_data):.6f}')
 plt.suptitle('Тестовый пример 1', y=0.94)
 plt.legend()
 plt.grid()
 fig, axs = plt.subplots(1, 1, figsize=(10,5))
 axs.plot(x_data, np.abs(Solution1(x_data) - y_data), color='plum')
 plt.suptitle('Абсолютная погрешность', y=0.94)
 plt.grid()
 #тестовый пример 2
 a = 0
 b = 1
 h = 0.01
 n = int((b - a) / h) + 1
 param = 0.5
 eps = 1e-6
 def Solution2(x): #точное решение
     return np.sin(np.math.pi * x) + 2 / (np.math.pi)
 def K2(x, t): #ядро
     return 1
 def f2(x): #правая часть
     return np.sin(np.math.pi * x)
 x data = np.linspace(a, b, n)
 y_data, r_data = IntegralEquation(K2, a, b, h, param, f2)
 fig, axs = plt.subplots(1, 1, figsize=(10,5))
 axs.plot(x_data, Solution2(x_data), color='teal', label=f'Точное
решение. Площадь = \{np.trapz(Solution2(x_data), x_data):.6f\}'\}
 axs.plot(x_data, y_data, color='coral', label=f'Решение методом
квадратур. Площадь = {np.trapz(y data, x data):.6f}')
 plt.suptitle('Тестовый пример 2', y=0.94)
 plt.legend()
 plt.grid()
 fig, axs = plt.subplots(1, 1, figsize=(10,5))
 axs.plot(x_data, np.abs(Solution2(x_data) - y_data), color='plum')
 plt.suptitle('Абсолютная погрешность', y=0.94)
 plt.grid()
```

```
#исходные данные
 a = 0
 b = 3
 h = 0.01
 n = int((b - a) / h) + 1
 eps = 1e-6
 alpha = 1
 beta = 2
 def K(x, t): #ядро
     return 1 / (1 + np.exp(abs(x - t)))
 x data = np.linspace(a, b, n)
 y data, r data = IntegralEquation(K, a, b, h)
 fig, axs = plt.subplots(1, 1, figsize=(10,5))
 area = np.trapz(y_data, x_data)
 axs.plot(x_data, y_data, color='olive', label=f'Решение методом
квадратур. Площадь = \{np.trapz(y data, x data):.6f\}'\}
 plt.suptitle('Исходная задача (\lambda = 1)', y=0.98)
 plt.legend()
 plt.grid()
 print("Оценка погрешности: ||u - u*|| <=", r data)
 params = np.linspace(alpha, beta, 6) #1 1.2 1.4 1.6 1.8 2
 colors = ('teal', 'coral', 'plum', 'olive', 'salmon', 'royalblue',
'pink', 'grey', 'darkorchid', 'turquoise')
 params = np.reshape(params, (-1, 2))
 colors = np.reshape(colors, (-1, 2))
 areas = []
 fig, axs = plt.subplots(3, 2, figsize=(15,10))
 for i in range(params.shape[0]):
     for j in range(params.shape[1]):
         y_data, r_data = IntegralEquation(K, a, b, h, params[i][j])
         areas.append(np.trapz(y_data, x_data))
         axs[i][j].plot(x_data, y_data, color=colors[i][j],
label=f'Площадь = {areas[-1]:.4f}')
         axs[i][j].set\_title(f'Παραμέτρ λ = {params[i][i]}')
         axs[i][j].legend()
         axs[i][j].grid()
         print(i, ",", j, "Оценка погрешности: ||u - u*|| <=", r data)
 plt.suptitle('Графики решений при различных значениях \lambda', y=0.91)
```