# 2. Groups

• Some images are taken from this lecture visual group theory

# 2.1 Groups

#### Definition

Let G be a set with the  $\cdot$  operation. Then  $(G, \cdot)$  is a group  $\iff$ 

1. 
$$a,b\in G\Rightarrow ab\in G$$
 - closure

2. 
$$a,b,c\in G\Rightarrow (ab)c=a(bc)$$
 - Assiociativity

3. 
$$\exists \ e \in G \ s.t \ ae = ea = e, \ \forall \ a \in G$$
 - Identity

4. 
$$\forall~a\in G~\exists a'\in G~s.t.~aa'=a'a=e$$
 - Inverses

If  $a,b\in G\Rightarrow ab=ba$  we call G an abelian group

# Examples:

| Group          | Operation                   | Identity                                       | Form of<br>Element                                               | Inverse                                                                                                          | Abelian |
|----------------|-----------------------------|------------------------------------------------|------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|---------|
| Z              | Addition                    | 0                                              | k                                                                | -k                                                                                                               | Yes     |
| $Q^+$          | Multiplication              | 1                                              | m/n, $m, n > 0$                                                  | n/m                                                                                                              | Yes     |
| $Z_n$          | Addition mod n              | 0                                              | k                                                                | n-k                                                                                                              | Yes     |
| R*             | Multiplication              | 1                                              | X                                                                | 1/ <i>x</i>                                                                                                      | Yes     |
| C*             | Multiplication              | 1                                              | a + bi                                                           | $\frac{1}{a^2 + b^2}a - \frac{1}{a^2 - b^2}bi$                                                                   | Yes     |
| GL(2, F)       | Matrix<br>multiplication    | $\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ | $\begin{bmatrix} a & b \\ c & d \end{bmatrix},$ $ad - bc \neq 0$ | $\begin{bmatrix} \frac{d}{ad - bc} & \frac{-b}{ad - bc} \\ \frac{-c}{ad - bc} & \frac{a}{ad - bc} \end{bmatrix}$ | No      |
| U(n)           | Multiplication mod <i>n</i> | 1                                              | k,                                                               | Solution to $kx \mod n = 1$                                                                                      | Yes     |
| $\mathbb{R}^n$ | Componentwise addition      | (0, 0,, 0)                                     |                                                                  | $(-a_1, -a_2,, -a_n)$                                                                                            | Yes     |
| SL(2, F)       | Matrix<br>multiplication    | $\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ | $\begin{bmatrix} a & b \\ c & d \end{bmatrix},$ $ad - bc = 1$    | $\begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$                                                                 | No      |
| $D_n$          | Composition                 | $R_0$                                          | $R_{\alpha}, L$                                                  | $R_{360-\alpha}, L$                                                                                              | No      |

• Photo from Contemporary abstract algebra

## **Propreties**

- 1. The identity  $\boldsymbol{e}$  is unique
- 2. The inverse of an element a is unique and  $(a^{-1})^{-1}=a$
- 3.  $(ab)^{-1} = b^{-1}a^{-1}$
- 4. The **trivial group** is formed only by the identity element --  $\{1\}$

**Notation** - sometimes the identity  $e \in G$  will be denoted with  $1_G$ 

# 2.2 Mappings

# Example

•  $f: \mathbb{R} \to \mathbb{R}; \ f(x) = x^2 \iff x \mapsto x^2$ 

Definitions

- · injectivity, bijectivity, surjectivity wiki these
- · identity mapping, Inverse, composites wiki these

#### Left multiplication is a bijection

Let G be a group and fix g. Then the map G o G with  $x \mapsto gx$  is a **bijection** 

**Example**: Let  $G=(\mathbb{Z}/5\mathbb{Z})^*$  and pick g=2

$$1 \stackrel{\times 2}{\mapsto} 2 \bmod 5$$

$$2\stackrel{ imes 2}{\mapsto} 4 \bmod 5$$

$$3\stackrel{\times 2}{\mapsto} 1 \bmod 5$$

$$4\stackrel{\times 2}{\mapsto} 3 \bmod 5$$

#### **Permutations**

P(S) is a **group** with the composition as law

# 2.3 Homomorphisms

## **Definition -- homomorphisms**

Let G,H be groups. A **homomorphism** is a map  $f:G\to H$  with the following property:

$$f(xy) = f(x)f(y) \ \forall x,y \in G$$

· Homomorphisms preserve structure

#### **Examples**

1.  $x \mapsto e^x$  is a homomorphism from the multiplicative to the additive group

2. 
$$\phi: \mathbb{Z} \to \mathbb{Z}/100\mathbb{Z}, \ \phi(x) = x \mod 100$$

Proprieties of a homomorphism f:G o H

1. Let  $1_G, 1_H$  be the unit elements  $\Rightarrow f(1_G) = 1_H$  Proof:

$$f(1_G) = f(1_G 1_G) = f(1_G) f(1_G)|_{f(1_G)^{-1}} \iff 1_H = f(1_G)$$

2. Let  $x \in G \Rightarrow f(x^{-1}) = f(x)^{-1}$  Proof:

$$1_H = f(1_G) = f(xx^{-1}) = f(x)f(x^{-1})_{\cdot f(x)^{-1}} \iff f(x)^{-1} = f(x^{-1})$$

3. Let  $f:G \to G'$  be a group homomorphism and let  $g:G' \to G''$  be a group homomorphism  $\Rightarrow g \circ f$  is a group homomorphism from G to G''

# Consider the statement: $\mathbb{Z}_3 < D_3$ . Here is a visual:



The group  $D_3$  contains a size-3 cyclic subgroup  $\langle r \rangle$ , which is identical to  $\mathbb{Z}_3$  in structure only. None of the elements of  $\mathbb{Z}_3$  (namely 0, 1, 2) are actually in  $D_3$ .

When we say  $\mathbb{Z}_3 < D_3$ , we really mean that the structure of  $\mathbb{Z}_3$  shows up in  $D_3$ .

In particular, there is a bijective correspondence between the elements in  $\mathbb{Z}_3$  and those in the subgroup  $\langle r \rangle$  in  $D_3$ . Furthermore, the *relationship* between the corresponding nodes is the same.

#### **Preimages**

#### Preimage

If f:G o H is a homomorphism and  $h \in Im(f) < H$  the prelamge of h is the set

$$f^{-1}(h) = \{g \in G : f(g) = h\}$$



## **Property**

· All preimages have the same structure

## Kernel of a homomorphism

#### **Definition -- kernel**

The kernel of f:G o H is represented by all  $g\in G$  with  $f(g)=1_H$ 

$$\ker f = \{g \in G \ : \ f(g) = 1_H\}$$

#### **Examples of kernels**

1. Let 
$$f: \mathbb{Z} \to \mathbb{Z}/100\mathbb{Z}, \ f(x) = x \bmod 100$$
  $\ker f = 100\mathbb{Z} = \{..., -200, -100, 0, 100, 200, ...\}$ 
2. Let  $f: \mathbb{Z} \to \mathbb{Z}, \ f(x) = 10x$   $\ker f = \{0\}$  -- trivial
3. Let  $f: G \to H, \ f(g) = 1_H$   $\ker f = G$  -- all of  $G$  represents the kernel

#### **Proprieties**

• if  $\ker(f) = 1_G$  then f is injective

Proof:

Let 
$$x,y\in G$$
 and  $f(x)=f(y)$   $1_H=f(x)f(y)^{-1}=f(xy^{-1})\Rightarrow xy^{-1}=1_G\Rightarrow x=y$ 

#### **Definition -- Embedding**

An injective homomorphism is called an embedding

# Isomorphism

#### **Definition -- Isomorphism**

Let  $f:G\to H$  be a group homomorphism f is an  $\mathbf{isomorphism}\iff\exists g:H\to G$  s.t  $f\circ g$  and  $g\circ f$  are the identity mappings f is an  $\mathbf{isomorphism}$  if f is a bijection and a homomorphism

**Example**: Consider  $\mathbb Z$  and  $10\mathbb Z$  with the map  $f:\mathbb Z \to 10\mathbb Z$  with  $\phi(x)=10x$ 

- f is a bijection
- f(x+y) = 10(x+y) = 10x + 10y = f(x) + f(y)

#### Theorem

If  $\ker(f) = e$  then f is an isomorphism with the image f(G)

Proof

f is always surjective into its image and we proved above it's injective

#### 2.4 Cosets

• written -- page 71 -- good example -- follow along with this, it's explained better

#### **Definition -- cosets**

Let G be a group and H be a subgroup. The **set** of all elements ax with  $x \in H$  is called a **coset** of H in G

• Denoted by aH





- video -- short explanation
- video -- socratica explanation
- video -- visual group theory explanation

#### **Proprieties**

Let H < G and  $a,b \in G$ 

- Two cosets of the same subgroup either are equal or have no element in common
- ullet |H|=|aH|=|bH| same number of elements
- $a \in aH$
- $aH = H \iff a \in H$
- $aH = bH \iff a \in bH$
- $aH = Ha \iff H = aHa^{-1}$
- $aH < G \iff a \in H$



# Note

• The coset is **not** necesarily a group

# **Normal subgroup**

• https://en.wikipedia.org/wiki/Normal\_subgroup

https://math.stackexchange.com/questions/1014535/is-there-any-intuitive-understanding-of-normal-subgroup/1014791

#### **Definition -- normal subgroup**

A subgroup H of a group G is called a **normal subgroup** of G if  $aH=Ha\ \forall a\in G$ 

#### **Definition -- conjugate**

Let  $a \in G$ 

The set  $aHa^{-1}=\{aha^{-1}|h\in H\}$  is called the conjugate of H by a

Test to see if H is normal

• H is a normal subgroup of  $G \iff aHa^-1 \subseteq H \forall a \in G$ 

#### Note

- for an element  $h \in H$ , ah is not necessarily equal to ha.
- · The idea is that the cosets are equal.

Intuition

· Looks the same over all perspectives

# 2.5 Cyclic groups

## **Definition -- cyclic subgroup**

A group G is cyclic if  $\exists a \in G \ s.t. \ G = \{a^n \ : \ n \in \mathbb{Z}\}$ 

Notation:  $G = \langle a \rangle$ 

#### Theorem

Let a be an element of order n and k a positive int

$$\langle a^k 
angle = \langle a^{\gcd(n,k)} 
angle$$
 and  $|a^k| = n/\gcd(n,k)$ 

Proof

- Let  $d = \gcd(n, k), k = dr$
- Since  $a^k = (a^d)^r \Rightarrow \langle a^k \rangle \subseteq \langle a^d \rangle$  (1)
- By  $\gcd \Rightarrow \exists s,t \in \mathbb{Z} \ s.t. \ d=ns+kt \Rightarrow a^d=a^{ns+kt}=a^{ns}a^{kt}=e(a^{kt})=(a^k)^t \in \langle a^k \rangle \Rightarrow \langle a^d \rangle \subseteq \langle a^k \rangle \ (2)$
- By (1) and (2) we proved the theorem

#### Theorem - Lagrange

Let  $G = \langle a \rangle$  -- a cyclic subgroup

The order of any subgroup H of G divides the order of G

# Theorem - Isomorphisms between cyclic groups

Any 2 cyclic groups of order d are isomorphic.

If a is a generator of G then there is a unique isomorphism  $f:\mathbb{Z}/d\mathbb{Z} o G$  s.t. f(1)=a

## Note

· All groups of prime order are cyclic

# 2.6 Direct product

# **External**

#### **Definition -- External product**

Let  $G_1, ..., G_n$  a finite collection of groups

The **external direct product** is the set of all n-tuples for which the ith component is an element of  $G_i$  with the operation componentwise

Notation  $G_1 \oplus G_2 \oplus ... \oplus G_n = \{(g_1,...g_n) | g_i \in G_i\}$ 

## Example

•  $\mathbb{Z}/2\mathbb{Z} \oplus \mathbb{Z}/3\mathbb{Z} = \{(0,0), (0,1), (0,2), (1,0), (1,1), (1,2)\}$ 

- Note that  $\mathbb{Z}/2\mathbb{Z} \oplus \mathbb{Z}/3\mathbb{Z} \sim \mathbb{Z}/6\mathbb{Z}$ 

#### Theorem -- order of an element in the external direct product

$$|(g_1,g_2,...,g_n)=lcm(|g_1|,|g_2|,...,|g_n|)$$

where lcm = least common multiple

#### Theorem -- isomorphism

Let 
$$m=n_1n_2...n_k$$
. Then  $\mathbb{Z}_m$  is isomorphic to  $\mathbb{Z}/n_1\mathbb{Z}\oplus\mathbb{Z}/n_2\mathbb{Z}\oplus...\oplus\mathbb{Z}/n_k\mathbb{Z}\iff\gcd(n_i,n_j)=1$  for  $i
eq j$ 

#### Theorem - direct product is cyclic?

$$G \oplus H$$
 is cyclic  $\iff \gcd(|G|, |H|) = 1$ 

#### **Application - Binary strings**

• An n-bit string can be an element of  $\mathbb{Z}/2\mathbb{Z}\oplus\mathbb{Z}/2\mathbb{Z}\oplus...\oplus\mathbb{Z}/2\mathbb{Z}$  - n times

#### Internal

# **Definition -- Internal subgroup**

Let 
$$H, K < G$$

Then G=H imes K if H,K are normal subgroups and G=HK and  $H\cap K=\{e\}$ 

# 2.7 Finite ableian groups

#### **Torsion element**

An element  $a \in A$  is said to be a **torsion element** if it has finite period

The subset of all torsion elements of A is a **subgroup** of A and is called the **torsion subgroup** 

#### Proprerty

- a has period m
- b has period n
- ullet  $\Rightarrow$   $a\pm b$  has period dividing mn

# Theorem

The group A is the direct sum of its subgroups A(p) for all primes p dividing n

# **Fundamental Theorem of Finite Abelian Groups**

Every finite Abelian group is a direct product of cyclic groups of prime power order

Moreover the number of terms and the orders of the cyclic groups are uniquely determiend by the group

Every abelian cyclic group  $G pprox \mathbb{Z}/p_1^{n_1}\mathbb{Z} \oplus \mathbb{Z}/p_2^{n_2}\mathbb{Z} \oplus \cdots \oplus \mathbb{Z}/p_k^{n_k}\mathbb{Z}$ 

## Note

ullet  $p_i$  aren't necessarily distinct primes

#### Existenc eof subgroups of abelian groups

• If m divides |G| then G has a subgroups of order m