

STAT 453: Introduction to Deep Learning and Generative Models

Ben Lengerich

Lecture 15: A Linear Intro to Generative Models

October 27, 2025

Reading: See course homepage

Midterm Exam

Max: 107 (x2) Median: 82 Mean: 81.5

Midterm Exam in Context

Canvas: put your midterm exam in context

Use Canvas's grades tool to calculate your potential overall grade.

Course Schedule / Calendar

Week	Lecture Dates	Topic	Assignments		
	Module 1: Introduction and Foundations				
1 9/3 Course Introduction					
2	9/8, 9/10	A Brief History of DL, Statistics / linear algebra / calculus review	HW1		
3	9/15, 9/17	Single-layer networks Parameter Optimization and Gradient Descent			
4	9/22, 9/24	Automatic differentiation with PyTorch, Cluster and cloud computing resources	HW 2		
		Module 2: Neural Networks			
5	9/29, 10/1	Multinomial logistic regression, Multi-layer perceptrons and backpropagation			
6	10/6, 10/8	Regularization Normalization / Initialization	HW 3		
7	10/13, 10/15	Optimization, Learning Rates CNNs	Project Proposal		
8	10/20, 10/22	Review, Midterm Exam	In-class Exam		

Week	Lecture Dates	Topic	Assignments		
	Module 3: Intro to Generative Models				
9	9 10/27, 10/29 A Linear Intro to Generative Models, Factor Analysis, Autoencoders, VAEs				
10	11/3, 11/5	Generative Adversarial Networks, Diffusion Models	Project Midway Report		
		Module 4: Large Language Models			
11	11/10, 11/12	Sequence Learning with RNNs Attention, Transformers	HW4		
12	11/17, 11/19	GPT Architectures, Unsupervised Training of LLMs			
13	11/24, 11/26	Supervised Fine-tuning of LLMs, Prompts and In-context learning	HW5		
14	12/1, 12/3	Foundation models, alignment, explainability Open directions in LLM research			
15	12/8, 12/10	Project Presentations	Project Final Report		
16	12/17	Final Exam	Final Exam		

Your Feedback

Please fill out our anonymous <u>Google Form</u>

Generative Models

Where we're going: Deep Generative Models

Where we're going: Deep Generative Models

NVIDIA is now valued at >\$4.5T

A Linear Intro to Generative Models

Generative and Discriminative Models

• Generative:

• Models the joint distribution P(X, Y).

• Discriminative:

• Models the <u>conditional</u> distribution P(Y|X).

Two paths to P(Y|X)

• Discriminative:

• Generative:

• Learn P(X|Y), P(Y)

Two paths to classification

• Discriminative:

• Generative:

Example Discriminative Model: Logistic Regression

Discriminative:

Observe X, Y Learn P(Y|X)

- Parameterize:
 - $P(Y = 1|X) = \sigma(\theta^T X)$, where $\sigma(z) = \frac{1}{1+e^{-z}}$ is the sigmoid function.
 - P(Y = 0|X) = 1 P(Y = 1|X)
 - Recall: Why this parameterization?

$$\log \frac{P(Y = 1|X)}{P(Y = 0|X)} = \log \frac{\sigma(\theta^T X)}{1 - \sigma(\theta^T X)}$$

$$= \log \frac{\frac{1}{1 + e^{-\theta^T X}}}{1 - \frac{1}{1 + e^{-\theta^T X}}} = \log \frac{\frac{1}{1 + e^{-\theta^T X}}}{\frac{(1 + e^{-\theta^T X}) - 1}{1 + e^{-\theta^T X}}} = \log \frac{\frac{1}{1 + e^{-\theta^T X}}}{\frac{e^{-\theta^T X}}{1 + e^{-\theta^T X}}}$$

$$= \log \frac{1}{e^{-\theta^T X}} = \log e^{\theta^T X} = \theta^T X$$

Example Discriminative Model: Logistic Regression

Discriminative:

Observe X, Y Learn P(Y|X)

- Parameterize:
 - $P(Y = 1|X) = \sigma(\theta^T X)$, where $\sigma(z) = \frac{1}{1+e^{-z}}$ is the sigmoid function.
 - P(Y = 0|X) = 1 P(Y = 1|X)
- Estimate $\hat{\theta}$ from observations:
 - $\hat{\theta} = \operatorname{argmax}_{\theta} \prod_{i} P(Y_{i}|X_{i}; \theta)$ = $\operatorname{argmax}_{\theta} \sum_{i} [Y_{i} \log \sigma(\theta^{T}X_{i}) + (1 - Y_{i}) \log(1 - \sigma(\theta^{T}X_{i}))]$
- Calculate $P(Y = 1|X) = \sigma(\theta^T X)$

Example Generative Model: Naïve Bayes

• Parameterize:

- Assume $P(X|Y) = \prod_{j=1}^d P(X_j|Y)$,
- $P(X_j|Y) = N(\mu_{jk}, \sigma_{jk}^2)$

Conditional independences of features X | Y

$$P(Y = k) = \frac{\text{# of samples with } Y = k}{\text{Total samples}}$$

Frequency of labels

Example Generative Model: Naïve Bayes

- Parameterize:
 - Assume $P(X|Y) = \prod_{j=1}^d P(X_j|Y)$,

$$P(Y = k) = \frac{\text{# of samples with } Y = k}{\text{Total samples}}$$

- Estimate:
 - $\hat{\mu}$, $\hat{\sigma} = \operatorname{argmax}_{\mu,\sigma} P(X|Y)$
- Calculate $P(Y = 1|X) = \frac{\prod_{j=1}^{d} P(X_j|Y = 1)P(Y=1)}{P(X)}$

Summary

• Discriminative:

• Generative:

• Learn P(X|Y), P(Y)

What about MAP / Regularization?

Logistic Regression:

Observe X, Y

- Parameterize:
 - $P(Y = 1|X) = \sigma(\theta^T X)$, where $\sigma(z) = \frac{1}{1 + e^{-z}}$ is the sigmoid function.
 - P(Y = 0|X) = 1 P(Y = 1|X)
- Estimate $\hat{\theta}$ from observations:
 - $\hat{\theta} = \operatorname{argmax}_{\theta} \prod_{i} P(Y_{i}|X_{i};\theta) P(\theta)$ = $\operatorname{argmax}_{\theta} \sum_{i} [Y_{i} \log \sigma(\theta^{T}X_{i}) + (1 - Y_{i}) \log(1 - \sigma(\theta^{T}X_{i}))] - R(\theta)$
- Calculate P(Y|X)

Discriminative vs Generative Models

• Discriminative models optimize the conditional likelihood:

$$\widehat{\theta_{disc}} = \operatorname{argmax}_{\theta} P(Y|X;\theta)$$

Generative models optimize the joint likelihood:

$$\widehat{\theta_{gen}} = \operatorname{argmax}_{\theta} P(X, Y; \theta)$$

Are these the same optimization?

Discriminative vs Generative Models

• Discriminative models optimize the conditional likelihood:

$$\widehat{\theta_{disc}} = \operatorname{argmax}_{\theta} P(Y|X;\theta) = \operatorname{argmax}_{\theta} \frac{P(X|Y;\theta)P(Y;\theta)}{P(X;\theta)}$$

Generative models optimize the joint likelihood:

$$\widehat{\theta_{gen}} = \operatorname{argmax}_{\theta} P(X, Y; \theta) = \operatorname{argmax}_{\theta} P(X|Y; \theta) P(Y; \theta)$$

Are these the same optimization?

Same optimization when $P(X; \theta)$ is invariant to θ

Logistic Regression vs Naïve Bayes

Logistic Regression	Naïve Bayes
Discriminative	Generative
Defines $P(Y X;\theta)$	Defines $P(X,Y;\theta)$
Estimates $\widehat{\theta_{lr}} = \operatorname{argmax}_{\theta} P(Y X;\theta)$	Estimates $\widehat{\theta_{nb}} = \operatorname{argmax}_{\theta} P(X, Y, \theta)$
Lower asymptotic error on classification	Higher asymptotic error on classification
Slower convergence in terms of samples	Faster convergence in terms of samples

Discriminative vs Generative: A Proposition

• "While discriminative learning has lower asymptotic error, a generative classifier may also approach its (higher) asymptotic error much faster."

Discriminative vs Generative: A Proposition

- "While discriminative learning has lower asymptotic error, a generative classifier may also approach its (higher) asymptotic error much faster."
- Underlying assumption of this statement:
 - Generative models of the form $P(X,Y,\theta)$ make more simplifying assumptions than do discriminative models of the form $P(Y|X,\theta)$.
 - Not always true
 - "So far there is no theoretically correct, general criterion for choosing between the discriminative and the generative approaches to classification of an observation \mathbf{x} into a class y; the choice depends on the relative confidence we have in the correctness of the specification of either $p(y|\mathbf{x})$ or $p(\mathbf{x}, y)$ for the data."

Xue & Tittering 2008

Modern Deep Generative Models (DGMs)

- Goal: Generative models of the form $P(X,Y,\theta)$ without strong simplifying assumptions.
- Hidden structure z that explains high-dim. x
- Fundamental challenge: We never observe z
- This makes two core computations difficult:
 - Marginal likelihood: $p_{\theta}(x) = \int p_{\theta}(x, z) dz$
 - Posterior inference: $p_{\theta}(z \mid x) \propto p_{\theta}(x \mid z)p(z)$
- Each type of DGM makes a tradeoff

Coming up...

	Week	Lecture Dates	Торіс
			Module 3: Intro to Generative Models
	9	10/27, 10/29	A Linear Intro to Generative Models, Factor Analysis, Autoencoders, VAEs
z)			Generative Adversarial Networks, Diffusion Models
			Module 4: Large Language Models
eı	٢	7	Sequence Learning with RNNs Attention, Transformers
		Probability distribution of the data	GPT Architectures, Unsupervised Training of LLMs
	13	11/24, 11/26	Supervised Fine-tuning of LLMs, Prompts and In-context learning
	14	12/1, 12/3	Foundation models, alignment, explainability Open directions in LLM research
	15	12/8, 12/10	Project Presentations
	16	12/17	Final Exam

Topic

Coming up...

Week

Lecture Dates

12/17

16

Final Exam

	Τ	
Week	Lecture Dates	Торіс
		Module 3: Intro to Generative Models
9	10/27, 10/29	A Linear Intro to Generative Models, Factor Analysis, Autoencoders, VAEs
	3, 11/5	Generative Adversarial Networks, Diffusion Models
	Z	Module 4: Large Language Models
	0, 11/12	Sequence Learning with RNNs Attention, Transformers
12	11/17, 11/19	GPT Architectures, Unsupervised Training of LLMs
13	11/24, 11/26	Supervised Fine-tuning of LLMs, Prompts and In-context learning
14	12/1, 12/3	Foundation models, alignment, explainability Open directions in LLM research
15	12/8, 12/10	Project Presentations
16	12/17	Final Exam

Coming up...

Week	Lecture Dates	Торіс	
	Module 3: Intro to Generative Models		
9	10/27, 10/29	A Linear Intro to Generative Models, Factor Analysis, Autoencoders, VAEs	
10	11/3, 11/5	Generative Adversarial Networks, Diffusion Models	
		Module 4: Large Language Models	
11	11/10, 11/12	Sequence Learning with RNNs Attention, Transformers	
12	11/17, 11/19	GPT Architectures, Unsupervised Training of LLMs	
13	11/24, 11/26	Supervised Fine-tuning of LLMs, Prompts and In-context learning	
14	12/1, 12/3	Foundation models, alignment, explainability Open directions in LLM research	
15	12/8, 12/10	Project Presentations	
16	12/17	Final Exam	

Figure 1: The Transformer - model architecture.

Week	Lecture Dates	Topic	
	Module 3: Intro to Generative Models		
9	10/27, 10/29	A Linear Intro to Generative Models, Factor Analysis, Autoencoders, VAEs	
10	11/3, 11/5	Generative Adversarial Networks, Diffusion Models	
		Module 4: Large Language Models	
11	11/10, 11/12	Sequence Learning with RNNs Attention, Transformers	
12	11/17, 11/19	GPT Architectures, Unsupervised Training of LLMs	
13	11/24, 11/26	Supervised Fine-tuning of LLMs, Prompts and In-context learning	
14	12/1, 12/3	Foundation models, alignment, explainability Open directions in LLM research	
15	12/8, 12/10	Project Presentations	
16	12/17	Final Exam	

Week	Lecture Dates	Торіс
		Module 3: Intro to Generative Models
9	10/27, 10/29	A Linear Intro to Generative Models, Factor Analysis, Autoencoders, VAEs
	11/3, 11/5	Generative Adversarial Networks,

Diffusion Models

Sequence Learning with RNNs

11/10, 11/12

Module 4: Large Language Models

GPT = Probabilistic Model + Transformer Decoder

	+		Attention, Transformers
		11/17, 11/19	GPT Architectures, Unsupervised Training of LLMs
1	3	11/24, 11/26	Supervised Fine-tuning of LLMs, Prompts and In-context learning
1	4	12/1, 12/3	Foundation models, alignment, explainability Open directions in LLM research
1	.5	12/8, 12/10	Project Presentations
1	6	12/17	Final Exam

Coming up...

https://cameronrwolfe.substack.com/p/understanding-and-using-supervised

Week	Lecture Dates	Торіс		
	Module 3: Intro to Generative Models			
9	10/27, 10/29	A Linear Intro to Generative Models, Factor Analysis, Autoencoders, VAEs		
10	11/3, 11/5	Generative Adversarial Networks, Diffusion Models		
		Module 4: Large Language Models		
11	11/10, 11/12	Sequence Learning with RNNs Attention, Transformers		
12	11/ <u>1</u> 7, 11/19	GPT Architectures, Unsupervised Training of LLMs		
13	11/24, 11/26	Supervised Fine-tuning of LLMs, Prompts and In-context learning		
14	12/1, 12/3	Foundation models, alignment, explainability Open directions in LLM research		
15	12/8, 12/10	Project Presentations		
16	12/17	Final Exam		

Task-specific

labelled data

Labelled data required is significantly lower

Source: AIML.com Research

 $\odot \odot$

Pretrained

Language Model

(Transformer model)

Eg: GPT, BERT

Questions?

