Problemas Tema4

Sistemas de Ficheros

Problemas FAT

- 1. Sea dispositivo de almacenamiento externo de 128MB de capacidad que se formatea en FAT12 con el tamaño mínimo de cluster.
 - ¿cuál es el tamaño de cada FAT?
 - ¿cuál sería el tamaño de los bloques (clusters)?
- Calcula el tamaño de la FAT (en MB) para un sistema FAT32 en un disco de 128 GB y tamaño de cluster 32 KB.
- 3. Determina el tamaño mínimo de cluster de un disco de 256 MB (con sectores de 512 Bytes) para:
 - FAT32, FAT16 y FAT12

Problemas Indexados (Inodos)

- 1. Sea un sistema basado en inodos con 10 punteros directos a bloques de datos, 1 puntero indirecto, 1 puntero doble-indirecto y 1 puntero triple-indirecto. El tamaño de bloque es de 2KB y el tamaño de los punteros a bloque es de 32 bits.
 - Suponiendo que el inodo correspondiente a un determinado fichero está cargado en memoria principal, ¿Cuántos accesos a disco serían necesarios para acceder al Byte 50000 de dicho fichero?
 - ¿cuál sería el tamaño de fichero máximo teórico soportado por este sistema?

Problemas FAT

- Sea dispositivo de almacenamiento externo de 128MB de capacidad que se formatea en FAT12 con el tamaño mínimo de cluster.
 - ¿cuál es el tamaño de cada FAT? $2^{12} * 12$ bits = $2^{12} * 2^2 * 3$ bits = $3 * 2^{11}$ * 2^3 bits = $6 * 2^{10}$ B = 6KB
 - ¿cuál sería el tamaño de los bloques 128 MB / 2^{12} = 2^{27} / 2^{12} B = 2^{15} B = 32 KB
- 2. Calcula el tamaño de la FAT (en MB) para un sistema FAT32 en un disco de 128 GB y tamaño de cluster 32 KB.
 - 128 GB / 32 KB/clus = 2^{37} / 2^{15} clus = 2^{22} clus \Rightarrow 2^{22} punt * 32 bits = 2^{22} * 2^{2} B = 2^{24} B = 16 MB
- 3. Determina el tamaño mínimo de cluster de un disco de 256 MB (con sectores de 512 Bytes) para:
 - FAT32: 256 MB / $2^{32} = 2^{28} / 2^{32}$ B < 1 sector \rightarrow 512 B
 - FAT16: 256 MB / $2^{16} = 2^{28} / 2^{16} B = 2^{12} B = 4 KB$
 - FAT12: 256 MB / $2^{12} = 2^{28} / 2^{12} B = 2^{16} B = 64 KB$

Problemas Indexados (Inodos)

- 1. Sea un sistema basado en inodos con 10 punteros directos a bloques de datos, 1 puntero indirecto, 1 puntero doble-indirecto y 1 puntero triple-indirecto. El tamaño de bloque es de 2KB y el tamaño de los punteros a bloque es de 32 bits.
 - Suponiendo que el inodo correspondiente a un determinado fichero está cargado en memoria principal, ¿Cuántos accesos a disco serían necesarios para acceder al Byte 50000 de dicho fichero?
 - Rango con punteros directos = 10 punt. * 2 KB = 20 KB = [0..20479]
 Bytes
 - Rango con punteros indirectos de 1 nivel = 1 puntero a un bloque de punteros → 2 KB / 4B/punt. = 2¹¹/2² punt. = 2⁹ punt → 512 punteros * Bloques de 2 KB = 1 MB → [20480..1069056] Bytes. El byte 50000 está en este rango → 2 accesos (1 para bloque punteros + 1 bloque datos)

Problemas Indexados (Inodos)

- ¿cuál sería el tamaño de fichero máximo teórico soportado por este sistema?
 - Punteros directos = $10 \rightarrow 10$ Bloques $\rightarrow 10*2$ KB = 20 KB
 - Punt. Ind. 1 nivel = 1 punt. → 1 Bloque de punteros → Bloque de 2 KB / 4B por puntero = 2¹¹/2² punt. = 2⁹ punt → 512 punteros = 512 bloques = 512*2 KB = 1 MB
 - Punt. Ind. 2 niveles = 1 punt. → 1 Bloque → 512 punteros a bloques de punteros → 512*512 punt. a bloques de datos → 512*512*2 KB = 512 MB
 - Punt. Ind. 3 niveles = 1 punt. → 1 Bloque → 512 punteros a bloques de punteros a bloques de punteros → 512*512*512 punt. a bloques de datos → 512*512*512*2 KB = 256 GB
 - Tamaño máximo fichero = 20 KB + 1 MB + 512 MB + 256 GB = 256.5009 GB