SEDIMENTATIONDINGS

 $\begin{array}{c} {\rm Niklas\ Thorsson} \\ {\rm Simon\ Schmidt} \end{array}$

WS2020/2021

Inhalt

1. Introduction	5
A. Model	5
B. Algorithm	5
C. Parameters	5
D. Evaluation	5
D.1. Order Parameter	5
D.2. Sedimentation Column Height	5
2. Scale	7
3. Aspect Ratio	9
4. Size of Domain	11
5. Medium	13
6. Potentials	15
Bibliography	17

1. Introduction

We mainly follow [2] to simulate the simulation of rod particles in a two dimensional domain.

A. Model

We simulate the sedimentation of rectangular rods in a quadratic domain $[0,s] \times [0,s]$. We first deposit N rods rectangular rods with thickness $d=\hat{d}s$ and length $l=\hat{l}s$ for some $\hat{d},\hat{s}\in(0,1)$ [1]

- B. Algorithm
- C. PARAMETERS
- D. EVALUATION
- D.1 Order Parameter
- D.2 Sedimentation Column Height

2. Scale

3. ASPECT RATIO

4. Size of Domain

5. Medium

6. Potentials

BIBLIOGRAPHY

- [1] A. C. Alessandro Patti, Brownian dynamics and dynamic Monte Carlo simulations of isotropic and liquid crystal phases of anisotropic colloidal particles: A comparative study, Physical Review (2012).
- [2] N. I. Lebovka et al., Sedimentation of a suspension of rods: Monte Carlo simulation of a continuous two-dimensional problem, Physical Review (2019).