INTRODUÇÃO À SIMULAÇÃO

Considerações Iniciais

Uma simulação é a imitação, durante determinado intervalo de tempo, da operação de um sistema ou de um processo do mundo real. A simulação envolve a geração de uma história artificial do sistema, e a partir desta, é possível compreender o "funcionamento" do sistema real.

O comportamento do sistema é estudado pelo desenvolvimento de um Modelo de Simulação.

Este modelo normalmente toma a forma de um conjunto de premissas relacionadas a operação do sistema. Estas premissas são expressas através de relações matemáticas, lógicas e simbólicas entre as entidades, ou objetos de interesse, do sistema. Uma vez construído e validado, um modelo pode ser usado para investigar uma grande quantidade de questões do tipo "e se..." sobre o sistema real. Alterações no sistema podem ser inicialmente simuladas para se prever as consequências no mundo real.

A Simulação também pode ser usada para estudar sistemas no estágio de projeto, ou seja antes do sistema ser construído. Assim, a Simulação pode usada tanto como uma ferramenta de análise para prever o efeito de mudanças em sistemas já existentes, quanto como uma ferramenta para prever a performance de novos sistemas sobre as mais variadas circunstâncias.

Vantagens e Desvantagens da Simulação

As vantagens principais da simulação são:

- Novas políticas, procedimentos operacionais, regras de negócio, fluxos de informação, etc..., podem ser estudadas sem se alterar o mundo real.
- Novos equipamentos, layouts, sistemas de transporte, etc..., podem ser testados sem se comprometer recursos na sua aquisição.
- Hipóteses sobre como e porque certos fenômenos ocorrem podem ser testados visando verificar sua praticabilidade.
- O tempo pode ser comprimido ou expandido permitindo acelerar ou retardar o fenômeno sob investigação.
- Pode-se entender melhor sob a interação das variáveis do sistema. Pode-se entender
 melhor a participação das variáveis na performance do sistema.

- Um modelo de simulação pode ajudar a entender como um sistema funciona como um todo, em relação a como se pensa que o sistema opera individualmente.
- Questões do tipo "e se..." podem ser respondidas. Isto é extremamente útil na fase de design de um projeto.

As desvantagens a serem consideradas são:

- A construção de Modelos de Simulação requer treinamento especial. É uma arte que é aprendida com tempo e experiência. Além disto se 2 modelos são construídos por 2 profissionais competentes, eles terão semelhanças, mas será altamente improvável que sejam iguais.
- Os resultados de uma Simulação podem ser difíceis de interpretar. Como a maioria das saídas de uma simulação são variáveis aleatórias (elas estão normalmente baseadas em entradas aleatórias), é difícil determinar se uma observação é o resultado do relacionamento entre as variáveis do sistema ou consequência da própria aleatoriedade.
- A construção e análise de Modelos de Simulação pode consumir muito tempo e, como consequência, muito dinheiro. Economizar por sua vez pode levar a modelos incompletos.
- A Simulação é usada em muitos casos onde uma solução analítica é possível. A simulação não dá resultados exatos.

Áreas de aplicação

Existem inúmeras áreas de aplicação da simulação. A seguir estão listadas algumas das mais importantes:

- Simulação das operações de uma companhia aérea para testar alterações em seus procedimentos operacionais.
- Simulação da passagem do tráfego em um cruzamento muito grande, onde novos sinais estão para ser instalados.
- Simulação de operações de manutenção para determinar o tamanho ótimo de equipes de reparo.
- Simulação de uma siderúrgica para avaliar alterações nos seus procedimentos operacionais.

- Simulação da economia de um setor de um país para prever o efeito de mudanças econômicas.
- Simulação de batalhas militares visando avaliar o desempenho de armas estratégicas.
- Simulação de sistemas de distribuição e controle de estoque, para melhorar o funcionamento destes sistemas.
- Simulação de uma empresa como um todo para avaliar o impacto de grandes mudanças ou como treinamento para seus executivos. (Business Games)
- Simulação de sistemas de comunicações para determinar o que é necessário para fornecer um determinado nível de serviço.
- Simulação de uma barragem em um determinado rio para avaliar os problemas advindos com a sua construção.
- Simulação de uma linha de produção em determinada indústria, para avaliar efeitos de mudanças previstas no processo produtivo.

Componentes de um Sistema

Um Sistema é definido como um grupo de objetos que estão juntos em alguma interação ou interdependência, objetivando a realização de algum objetivo.

Um exemplo poderia ser um sistema de produção de automóveis. As máquinas, componentes, peças e trabalhadores operam em conjunto, em uma linha de montagem, visando a produção de veículos de qualidade.

De forma a entender e analisar um sistema, alguns termos precisam ser definidos:

- Uma Entidade é um objeto de interesse no sistema.
- Um Atributo é uma propriedade de uma entidade.
- Uma Atividade é algo que, para ser realizado, consome uma certa quantidade de tempo.
- O Estado do sistema é definido como sendo como a coleção de variáveis necessárias para descrever o sistema em um dado instante.
- Um Evento é definido como a ocorrência instantânea que pode mudar o estado do sistema.

O termo *endógeno* é usado para descrever atividades e eventos ocorrendo dentro do sistema e *exógeno* é usado para descrever atividades e eventos que ocorrem fora do sistema.

A tabela a seguir mostra alguns exemplos para os termos definidos acima:

sistema	entidade	atributo	atividade	evento	variáveis de estado
banco	clientes	saldo CC depositar chegar		chegar à agência	nº de clientes esperando
produção	máquinas	taxa quebra	consertar	quebrar	máquinas paradas
comunicação	mensagens	tamanho	transmitir chegar ao de:		mensagens esperando
universidade	alunos	CR	matricular	cancelar matrícula	nº de alunos matriculados

Etapas de um projeto de simulação

As etapas básicas de um projeto de simulação são:

Formulação do problema.

Cada projeto deve começar com a definição do problema a ser resolvido. É importante que a definição esteja clara para todos que participam do projeto.

Determinação dos objetivos e planejamento global do projeto.

O objetivo indica as questões que devem ser respondidas pela simulação. Neste ponto deve ser considerado se a simulação é a metodologia apropriada para o problema. Nesta fase devese fazer também uma estimativa do tamanho da equipe envolvida, custo, tempo, etc...

Construção do Modelo.

A construção de um modelo de um sistema é provavelmente mais arte que ciência. Embora não seja possível fornecer um conjunto de instruções que possibilitem construir à cada vez modelos apropriados. A arte de modelar é melhorada se conseguimos extrair as partes essenciais de um problema, selecionar e modificar as considerações básicas que caracterizam o sistema e então enriquecer e elaborar o modelo até a aproximação de resultados úteis. Assim é melhor começar com um modelo simples e ir aumentando sua complexidade. Entretanto a complexidade do modelo não necessita exceder o necessário para acompanhar os propósitos para qual o modelo foi construído. Não é necessário se ter uma relação de um para um entre o modelo e o sistema real. Somente a essência do sistema real é necessária. É indispensável envolver o usuário na construção do modelo. Isto faz com que a qualidade do modelo resultante fique melhor e aumenta a confiança do usuário na sua futura aplicação. Somente exercícios e a prática ajudam na construção de modelos melhores.

Coleta de dados.

Há uma interação constante entre a construção de um modelo e a coleta dos dados de entrada necessários. Geralmente quanto mais complexo o modelo, mais dados são necessários. Como a coleta de dados toma um tempo muito grande do tempo total de um projeto de simulação, é necessário começar esta coleta o mais cedo possível.

Codificação.

Como a maioria dos sistemas do mundo real resulta em modelos com um grande número de informações e de cálculos, o modelo deve ser programado em uma linguagem de programação adequada.

Testes.

Após a codificação dos programas é necessário testá-los para possíveis erros de programação. Deve-se preparar um conjunto de dados com a finalidade exclusiva de se testar os programas.

Validação.

Nesta fase se verifica se o modelo é uma representação precisa do sistema que se quer modelar. É nesta fase que se faz a chamada calibração do modelo, ou seja, são feitos ajustes até que os resultados garantam que o modelo é uma boa representação do problema.

Produção.

Nesta etapa o modelo é colocado em produção e os dados obtidos são analisados. A produção pode envolver a execução, várias vezes, do modelo, variando-se os dados e os parâmetros de entrada.

Avaliação global dos resultados.

Nesta fase avalia-se se os resultados obtidos estão condizentes com os esperados. Caso sejam encontradas discrepâncias podemos ter que voltar à etapa de construção do modelo.

Documentação e implementação.

É fundamental, como em qualquer projeto, que a simulação seja documentada de forma clara e concisa. Os resultados obtidos também devem ser documentados e arquivados. A implantação, se o usuário participou do processo, tende a ser bem mais simples do que nos casos em que o usuário não teve uma participação ativa.

Exemplo de modelo de simulação

Para entender como funciona uma simulação, vamos ver o exemplo da "Quebra de Rolamentos".

Uma máquina industrial tem 3 rolamentos diferentes que quebram de tempos em tempos. A probabilidade da vida útil (em horas de operação) de um rolamento está dada na tabela abaixo:

Vida do Rolamento (horas)	Probabilidade
1.000	0.10
1.100	0.13
1.200	0.25
1.300	0.13
1.400	0.09
1.500	0.12
1.600	0.02
1.700	0.06
1.800	0.05
1.900	0.05

Quando um rolamento quebra, a máquina para e um mecânico é chamado para instalar um novo rolamento no lugar do que quebrou. O tempo que o mecânico demora para chegar ao rolamento quebrado também é uma variável aleatória, com a distribuição dada na tabela abaixo:

Tempo de espera (minutos)	Probabilidade
5	0.60
10	0.30
15	0.10

Cada minuto que a máquina fica parada custa \$5 e o custo do mecânico é de \$1 por minuto trabalhado substituindo rolamento. O mecânico demora 20 minutos para trocar 1 rolamento, 30 minutos para trocar 2 e 40 minutos para trocar os 3. Cada rolamento novo custa \$20. Alguém sugeriu que ao quebrar um dos rolamentos, se fizesse logo a troca dos 3. Deseja-se avaliar a situação do ponto de vista econômico.

Solução:

Tem-se que comparar o custo da alternativa atual e da alternativa proposta. É preciso estabelecer um horizonte de tempo para fazer esta comparação. Considerando que a menor vida útil de um rolamento é 1.000 horas (mais de 1 mês), estabelece-se um horizonte de 20.000 horas (um pouco mais de 2 anos) para fazer a comparação.

Como a vida útil dos rolamentos e a espera pelo mecânico são variáveis aleatórias que seguem as distribuições vistas anteriormente, tem-se que relacionar àquelas distribuições com uma tabela de números aleatórios. Assim sendo, considera-se que é possível ter um gerador de números aleatórios capaz de gerar qualquer inteiro entre 0 e 99, ou seja, 100 números. Assim, atribui-se a cada duração de vida útil uma faixa destes números que me garanta que a distribuição probabilística seja mantida.

Como a 1ª vida útil (1.000 horas) tem 10% de probabilidade de ocorrer, atribui-se a esta duração a faixa de 0 a 9 inclusive, ou seja, 10 números (10% dos 100 números). Para a 2ª duração provável (1.100 horas), com 13% de probabilidade de ocorrência, atribui-se a faixa de 10 a 22 inclusive, ou seja, 13 números. E assim, continua-se para as demais durações prováveis dos rolamentos como pode ser visto na tabela a seguir, ressaltando que a probabilidade acumulada dá o limite das faixas escolhidas.

vida do rolamento (horas)	probabilidade	probabilidade acumulada	nº aleatório atribuído
1.000	0.10	0.10	0-9
1.100	0.13	0.23	10 – 22
1.200	0.25	0.48	23 – 47
1.300	0.13	0.61	48 – 60
1.400	0.09	0.70	61 – 69
1.500	0.12	0.82	70 – 81
1.600	0.02	0.84	82 – 83
1.700	0.06	0.90	84 – 89
1.800	0.05	0.95	90 – 94
1.900	0.05	1.00	95 – 99

Tabela semelhante pode ser construída para a espera pela chegada do mecânico.

tempo de espera (minutos)	probabilidade	probabilidade acumulada	nº aleatório atribuído
5	0.60	0.60	0 – 59
10	0.30	0.90	60 – 89

15 0.10	1.00	90 – 99
---------	------	---------

Com os dados das tabelas acima, é possível executar a simulação, que apresentou os seguintes resultados para o rolamento 1:

		rolamento 1		mecânico		
sequência	nº aleatório	vida (horas)	vida (horas) vida acumulada (horas)		espera (minutos)	
1	62	1.400	1.400	61	10	
2	85	1.700	3.100	10	5	
3	89	1.700	4.800	46	5	
4	24	1.200	6.000	28	5	
5	99 1.900		7.900 55		5	
6	27 1.200 9.100		9.100	64	10	
7	89	1.700	10.800	63	10	
8	12	1.100	11.900	75	10	
9	2	1.00	12.900	54	5	
10	34	1.200	14.100	67	10	
11	7	1.000	15.100	90	15	
12	75	1.500	16.600	14	5	
13	22	1.100	17.700	80	10	
14	97	1.900	19.600	84	10	
15	37 1.200		20.800	9	5	
				espera total	120	

É possível observar na planilha que para cada sequência, ou seja, rolamento novo, é gerado um número aleatório que indica qual a vida útil daquele rolamento. Tendo quebrado, após esta vida útil, o mecânico é chamado e um 2º número aleatório é gerado para definir o tempo de espera até a troca deste rolamento. Quando a vida acumulada ultrapassa 20.000 horas, ou seja, a duração da simulação, a execução do processo é interrompida.

Processos semelhantes foram executados para os outros 2 rolamentos.

		rolamento 2			mecânico		
sequência	nº aleatório	vida (horas)	vida acumulada (horas)	nº aleatório	espera (minutos)		

1	89	1.700	1.700	58	5		
2	47	1.200	2.900	88	10		
3	60	1.300	4.200	20	5		
4	3	1.000	5.200	98	15		
5	40	1.200	6.400	26	5		
6	64	1.400	7.800	97	15		
7	9	1.000	8.800	41	5		
8	30	1.200	10.000	79	10		
9	32	1.200	11.200	0	5		
10	8	1.000	12.200	3	5		
11	94	1.800	14.000	58	5		
12	66	1.400	15.400	84	10		
13	53	1.300	16.700	61	10		
14	17	1.100	17.800	43	5		
15	72	1.500	19.300	15	5		
16	0	1.000	20.300	97	15		
	espera total						

		rolamento 3		mecă	ânico	
sequência	nº aleatório	vida (horas)	vida acumulada (horas)	nº aleatório	espera (minutos)	
1	49	1.300	1.300	44	5	
2	26	1.200	2.500	45	5	
3	2	1.000	3.500	72	10	
4	83	1.600	5.100	87	10	
5	21	1.100	6.200	19	5	
6	20	1.100	7.300	81	10	
7	60	1.300	8.600	56	5	
8	34	1.200	9.800	74	10	
9	63	1.400	9.800	93	15	
10	69	1.400	11.200	36	5	
11	44	1.200	13.800	71	10	
12	76	1.500	15.300	97	15	
13	55	1.300	16.600	59	5	
14	85	1.700	18.300	81	10	
15	21	1.100	19.400	21	5	
16	5	1.000	20.400	1	5	
				espera total	130	

Com os dados obtidos na simulação, é possível calcular o custo da situação atual:

- Custo dos rolamentos = $(15 + 16 + 16) \times $20 = 940
- Custo da máquina parada esperando pelo mecânico = $(120 + 130 + 130) \times $5 = 1.900

- Custo da máquina parada trocando rolamento = $(15 + 16 + 16) \times 20 \times $5 = 4.700
- Custo do mecânico = $(15 + 16 + 16) \times 20 \times $1 = 940
- Custo Total = 940 + 1.900 + 4.700 + 940 = \$8.480

A simulação da situação proposta apresentou os seguintes resultados:

	rolam	ento 1	rolam	ento 2	rolam	ento 3	12	vida	esp	era
sequência	n.a.	vida (hs)	n.a.	vida (hs)	n.a.	vida (hs)	1ª quebra	acumulada	n.a.	(min)
1	96	1.900	2	1.000	34	1.200	1.000	1.000	21	5
2	70	1.500	7	1.000	47	1.200	1.000	2.000	36	5
3	96	1.900	46	1.200	49	1.300	1.200	3.200	21	5
4	48	1.300	17	1.100	42	1.200	1.100	4.300	7	5
5	32	1.200	93	1.800	20	1.100	1.100	5.400	58	5
6	36	1.200	94	1.800	98	1.900	1.200	6.600	83	10
7	41	1.200	17	1.100	53	1.300	1.100	7.700	14	5
8	71	1.500	2	1.000	20	1.100	1.000	8.700	75	10
9	4	1.000	22	1.100	86	1.700	1.000	9.700	5	5
10	69	1.400	21	1.100	0	1.000	1.000	10.700	65	10
11	13	1.100	89	1.700	58	1.300	1.100	11.800	15	5
12	36	1.200	12	1.100	66	1.400	1.100	12.900	12	5
13	75	1.500	57	1.300	29	1.200	1.200	14.100	32	5
14	76	1.500	78	1.500	95	1.900	1.500	15.600	2	5
15	71	1.500	5	1.000	86	1.700	1.000	16.600	31	5
16	98	1.900	43	1.200	22	1.100	1.100	17.700	51	5
17	98	1.900	47	1.200	60	1.300	1.200	18.900	20	5
18	68	1.400	61	1.400	57	1.300	1.300	20.200	35	5
										105

Feita a simulação da situação proposta, é possível calcular os custos:

- Custo dos rolamentos = $(18 \times 3) \times $20 = 1.080
- Custo da máquina parada esperando pelo mecânico = 105 × \$5 = \$525
- Custo da máquina parada trocando rolamento = $18 \times 40 \times $5 = 3.600
- Custo do mecânico = $18 \times 40 \times $1 = 720
- Custo Total =1.080+ 525 + 3.600 + 720 = \$5.925

Assim a simulação mostrou que a situação proposta é bem melhor em termos financeiros.