NAME: David Kirby MAXIMUM POINTS: 100

ECE 322L: Electronics-II (Spring 2020, University of New Mexico)

FINAL EXAMINATION

INSTRUCTIONS:

- Write your name on the top left corner
- Write your answers on separate sheets of paper
- Specify the question id (e.g., Q1) on the separate sheets of paper that you are using to provide your answers

Each question is worth 4 points. In order to receive full credit, you will have to concisely justify your answers.

- Q1. Consider a forward-biased Si diode with $I_D=1$ mA. Next, I_D is increased to 10 mA. Circle the true statement below.
- (a) The diffusion capacitance C_d decreases and junction capacitance C_j increases.
- (b) The diffusion capacitance C_d increases and junction capacitance C_i decreases.
- (c) Only the diffusion capacitance C_d increases.
- (d) Only the junction capacitance C_j increases.
- Q2. (True/False) BJTs and MOSFETs are two electrically symmetrical devices, i.e. one can, in principle interchange the drain (collector) and the source (emitter) terminals without affecting device behavior.
- Q3. Which capacitor yields the dominant upper corner frequency in the circuit below? Circuit parameters are r_{π} =2.5 K Ω , r_{o} =100 K Ω , g_{m} =40 mS, and C_{L} = C_{F} =1 nF?

- Q4. Would you select a large or a small BJT to amplify a high frequency signal?
- Q5. What is the frequency response of the amplifier below?
- (a) High-pass
- (b) Low-pass
- (c) Band-pass.

Q6. (True/False) The diffusion capacitance of a pn junction is negligible when the junction is reverse-biased.

Q7. Write down one phrase/sentence that describes the purpose of the diodes and constant current source in the amplifier below.

Q8. Any damage to a power transistor is prevented if the _____ lays ____ the SOA.

- Q9. The output stage of a voltage amplifier
- (a) is typically a source/emitter follower.
- (b) often includes a power transistor
- (c) has low output resistance
- (d) All of the above.

Q10. A BJT has rated power of 115 W at T_{case} =25° C and maximum allowable junction temperature $T_{j,max}$ = 200° C. The transistor is dissipating 5 W at an ambient temperature T_A =25° C. As it is required to operate the BJT at 60° C, a heat sink is needed. Which heat sink would you select?

- (a) One with a $\theta_{case-sink}$ =1° C/W and a $\theta_{sink-ambient}$ =4° C/W
- (b) One with a $\theta_{case-sink}$ =4° C/W and a $\theta_{sink-ambient}$ =10° C/W
- (c) $\theta_{case-sink}=1^{\circ}$ C/W and a $\theta_{sink-ambient}=1^{\circ}$ C/W
- (d) More information is needed to appropriately select a heat sink.
- Q11. (True/False) The maximum safe power dissipation in a device is directly proportional to the temperature difference between the device and the ambient.
- Q12. (True/False) Inserting a bypass capacitor in a common emitter amplifier circuit will decrease the upper corner frequency of the amplifier.
- Q13. Name one amplifier configuration whose performance is not limited by the Miller effect.
- Q14. Assume you are process engineer with the assigned task to reduce the Miller effect in a MOSFET. What is your strategy?
- Q15. In an npn BJT, C_{μ} _____at increasing V_{CE} .
- Q16. Sketch the frequency response of the amplifier below.

- Q17. (True/False) For a MOSFET in saturation Cgs=Cgd.
- Q18. Assume your output signal suffers from cut-off clipping. Would you move your Q point up or down the ac load line, in order to avoid this distortion?

- Q19. Why is a class A amplifier so inefficient?
- Q20. Sketch the collector current of a pnp in a class AB push-pull-stage.
- Q21. In a npn operating in saturation mode C_{μ} is a _____ capacitance.
- Q22. Sketch and label the voltage-transfer-characteristic of the stage below for values of the $v_{CEn} > V_{CE,sat}$ and the $v_{ECp} > V_{EC,sat}$.

- Q23. (True/False) A Darlington pair can be implemented using MOSFETs to obtain a very high current gain at midband.
- Q24. (True/False) At increasing ambient temperature the SOA of a transistor remains unchanged.
- Q25. (True/False) Using a BJT with a large-area B-C junction will reduce the Miller effect in a CE amplifier.

Q1. (c) Only the diffusion capacitance C_d increases.

 C_d is directly proportional to the forward current. Also, junction capacitance is typical of reverse-biased diodes, not forward, as C_j is a voltage-dependent capacitance.

Q2. False

While MOSFETs are electrically symmetrical devices, BJTs are <u>not</u> symmetrical; interchanging the collector and the emitter makes the BJT leave the forward active mode and operate in reverse mode instead.

Q3. C_F yields the dominant upper corner frequency.

Since both capacitors are the same value, we can look at the resistances on the output and the input. r_0 is larger than r_{π} and will result in a smaller f_H , making it the dominant upper corner frequency.

- Q4. Small BJT
- Q5. (a) High-pass

The coupling capacitor produces a high-pass response.

Q6. True

Diffusion capacitance is directly proportional to the forward current and is therefore negligible when in reverse bias.

- Q7. The diodes and constant current source are meant to eliminate crossover distortion and provide small quiescent bias to the output transistors.
- Q8. load line / within
- Q9. (d) All of the above.

Voltage amplifiers characteristically have low output resistance, this is also one of the benefits of using an emitter follower.

Q10. (b) One with a $\theta_{case-sink}=4\frac{^{\circ}C}{W}$ and a $\theta_{sink-ambient}=10\frac{^{\circ}C}{W}$

Since the ambient temperature is 25°C, we would need to dissipate an additional 35°C to meet the operating temperature requirements. This cannot be met by the other options.

Q11. True

$$P_{D,max} = \frac{T_{j,max} - T_{amb}}{\theta}$$

Q12. False

Bypass capacitors affect the lower corner frequency of the amplifier, not upper corner.

- Q13. Common-base configuration is not affected by the Miller effect because there is no capacitor between the input and the output. The base is grounded and acts as a shield to the collector.
- Q14. Reduce the capacitance between input and output which can be achieved by reducing the area of the junction. We could implement a cascode configuration which would use a commonbase to limit the Miller effect.

Q15. is more parasitic

Q16. Frequency response of C-S

Q17. False $C_{gs} \approx C_{gd}$ for non-saturation region.

Q18. For cutoff clipping, you would move the Q point up the ac load line (see figure below).

Q19. Class A amplifiers are inefficient because the load applied is not just resistive but also has an inductive or capacitive element. As a result, power is supplied to the load during only half a period while during the other half of the period the load supplies power to the biasing network.

Q20. Sketch of collector current

Q21. Reverse-biased junction

Q22. VTC for Class B amplifier

- Q23. False
 Darlington pairs use BJTs, not MOSFETs.
- Q24. True SOA is based on $I_{C,max}$, $V_{CE(sus)}$ and P_T , these already take into account ambient temperature.
- Q25. False

 Larger area would result in greater parasitic capacitance.

