B.Sc (HONS) IN CSE PART-I, SECOND SEMESTER EXAMINATION, 2018 [According to the New Syllabus]

CSE-510208

Examination Code: 5612

(Digital System Design)

Time—4 hours

Full marks-80

[N.B.—The figures in the right margin indicate full marks. Answer any four questions.]

			Marks
1.	(a)	Describe the organization of a digital computer with figure.	6
To .	<i>(b)</i>	Define parity bit. Why it is significant for transmission of digital signals?	4
• &• 	(c)	Using 2's compliment system subtract 5 from 9.	4
	(d)	Define the following terms with examples: (i) ASCII Code (ii) BCD Code (iii) Excess-3 Code	6
12.	(d)	Prove the universality of NAND gate.	4
	<i>(b)</i>	Design a logic circuit with inputs P , Q and R so that output S is HIGH whenever P is O or whenever $Q = R = 1$.	6
	(c)	Explain how a de-multiplexer can be used as a decoder.	4
	(A)	Define:	. 6
		(ii) Setup time (iii) Propagation delay	
3.	(a)	Describe the basic DRAM cell with read, write and refresh operation.	5
	(b)	Explain the differences between SRAM and DRAM.	5
ar at 1	(c)	Describe a basic PROM storage cell.	5
	(d)	What is shift register? Explain 4 bit shift register with waveform.	5
	74717 Y	[Please turi	over

-			Aarks
A .	(a)	What is LCD? Explain BCD to 7 segment decoder.	, 6
	(b)	Draw and explain a complete 4 bit parallel adder with register.	18.17
	(p)	Design and construct a full adder circuit. Explain its operation with truth table.	7
\$.	(a)	State and prove the De-Morgan theorem with the help of truth table for three variables.	4
5	(b)	What is Decoder? Explain 3 to 8 line Decoder with truth table and circuit diagram.	6
• व्य	(c)	Minimize the following function and realize using NAND gate only:	6
d		$f = \sum m(1, 3, 5, 8, 9, 11, 15) + d(10, 13)$	
*	(d)		4
6.	(a)	What is race-around condition? Explain how it can be eliminated.	5
7	<i>(b)</i>	Perform the following flip-flop conversions:	4
		(i) S-R Flip Flop into D Flip Flop	
	٠.,	(ii) J-K Flip Flop into T Flip Flop	-
4	(c)	Describe the operation of a successive approximation ADC. What are the main advantages of this type of ADC?	6
	(d)	What are the differences between combinational and sequential logic circuits?	5
1	The second	c). Explain how a de-minimplexer can be negligible and ecocleric.	

৩২০এক্স

Some finic

nodstog

E pagation Jelay

Lie will be will a partie of the best

What is sign register. Explain

Describe the basic DRAM coll with read; water

Explain the differences between SRAM and DR

[According to the New Syllabus]

CSE-510210

Examination Code: 5612

(Discrete Mathematics)

Time-3 hours

Full marks-80

[N.B.—The figures in the right margin indicate full marks. Answer any four questions.]

Marks

- 1. (d) Define Cardinality of set, Infinite set and Power set. What is 3+2=5 the power set of the set {1, 2, 3}?
 - (b) Let $A_i = \{i, i+1, i+2, \dots \}$. Then $\bigcup_{i=1}^n = ?$ and $\bigcap_{i=1}^n = ?$
 - (c) Let A and B be two sets of integers and $f: A \rightarrow B$ be a function that represents f(x) = 4x + 7. Is f injective or subjective?
 - (d) Compute the following sum: $S = \sum_{k=50}^{100} K^2$.
- 2. (a) What is predicate and quantifiers? If Q(x, y) denotes the statement 'x = y + 3'. What are the truth values of the propositions Q(1, 2) and Q(3, 0)?
 - What is the complement of a set? Let A, B and C be sets, show that $\overline{A \cup (B \cap C)} = (\overline{C} \cup \overline{B}) \cap \overline{A}$.
 - (c) What is duality? Find the duals of x(y+0) and $x \cdot 1 + (y+z)$.
 - (d) Show different types of correspondences of function by figure:
 - (i) One-to-one, not onto
 - (ii) Onto, not one-to-one
 - (iii) One-to-one, and onto
 - (iv) Neither one-to-one not onto
 - (v) Not a function

[Please turn over

Miller partial pricerure.

产级优美强的,从内外,仍

		1
din . 40	HEARTHART TO THE RECEIVED TO THE TRANSPORT OF THE CANONING	lar
3. <i>(a)</i>	What is mathematical induction? Using mathematical	
	induction, prove that the sum of the first n odd positive	1
	integers is n^2 .	
· (b)	Give an indirect proof of the theorem "If $3n + 2$ is odd, then n	
4.	is odd." $11.3n + 2.18 \text{ odd, then } n$	
(c)	Define sum rule and product rule. How many bit strings of length eight either start with a 1 bit or end with the two bits 00?	
(d)	State pigeonhole principle. What is the minimum number of	
4	students required in a discrete mathematics class to be sure	
	that at least six will receive the same grade, if there are five	
Light of the state of the sta	possible grades, A, B, C, D and F?	
A. (9)	What is relation? Write down the properties of relation.	
(b)	Consider the following relations on the set of integers:	
	$R_1 = \{(a, b) \mid a \le b\}$	
f	$R_2 = \{(a, b) \mid a > b\}$	
	$R_3 = \{(a, b) \mid a = b \text{ or } a = -b\}$	
1	$R_4 = \{(a, b) \mid a = b\}$	
	$R_5 = \{(a, b) \mid a = b + 1\}$	•
, 1	$R_6 = \{(a, b) \mid a + b \le 3\}$ for each solve $b = a + b = a$ and $b = a + b = a$	
	Which of these relations contain each of the pairs (1, 1), (1, 2),	
	2, 1), $(1, -1)$ and $(2, 2)$?	

Define partial ordering. Construct a Hasse diagram for $(\{1, 2, 3, 4\}, \leq).$ Draw the directed graph for the relation: $R = \{(1, 1), (1, 3), (2, 1), (2, 3), (2, 4), (3, 1), (3, 2), 4, 1)\}.$

- Marks (a) Define multigraph and pseudograph. Is K_4 planar graph or not? 2+3=5
 - (b) Is the graph shown in figure below bipartite? Justify your answer.

(c) Represent the graph shown in the following figure with an 5 incidence matrix.

- (d) Define chromatic number. What is the chromatic number of $K_{3, 4}$ and K_{5} ?
- .6. (a) Define Boolean expression and Boolean function.
 - (b) Prove the absorption law x(x + t) = x using the other identities 5 of Boolean algebra.
 - (c) Construct a Full Adder circuit using Half Adder circuits.
 - Simply the Boolean function $F = \overline{ABC} + \overline{BCD} + \overline{ABCD} + A\overline{BC} \text{ using } K\text{-map.}$

৩২০এক্স

[According to the New Syllabus]

CSE-510211

Examination Code: 5612

(Linear Algebra)

Time—3 hours

Full marks-80

[N.B.—The figures in the right margin indicate full marks. Answer any four questions.]

Marks

- 1. (d) Define: Singular matrix, Nilpotent matrix and Hermitian matrix. 2×3=6
 - If A and B are non-singular matrices, then prove that, $(AB)^{-1}$ $= B^{-1}A^{-1}$. Also prove that, $(A^{-1})^{-1} = A$ and $(A^{-1})^t = (A^t)^{-1}$.
 - (c) Define rank of matrix. Find the rank of the following matrix: 2+5=7

$$A = \begin{bmatrix} 1 & 2 & 0 & -1 \\ 2 & 6 & -3 & -3 \\ 3 & 10 & -6 & -5 \end{bmatrix}$$

- 2. (a) Define inverse matrix. If $A = \begin{bmatrix} 1 & -1 & 1 \\ 2 & -1 & 0 \\ 1 & 0 & 0 \end{bmatrix}$ then find $A^{-1} + 2A^{t}$. 2 + 8 = 10
 - (b) Show that, $\begin{vmatrix} -1 & b & c & d \\ a & -1 & c & d \\ a & b & -1 & d \\ a & b & c & -1 \end{vmatrix}$

$$= (a+1)(b+1)(c+1)(d+1)\left[1 - \frac{a}{a+1} - \frac{b}{b+1} - \frac{c}{c+1} - \frac{d}{d+1}\right].$$

Solve the following system of linear equations with the help of matrix: x + 2y + z = 2

$$2x - y + 2z = -1$$

n

O

$$3x - 4y - 3z = -16$$

3x - y - 4z = 0

- Solve the system of linear equations: 2x + y - 2z = 10 3x + 2y + 2z = 1
 - 5x + 4y + 3z = 4(ii) Find the non-trivial solution for the system of linear equations: x + 2y 3z = 0 2x + 5y + 2z = 0

[Please turn over

(b) Determine the values of λ such that the following system of linear equations in unknowns x, y and z has (i) a unique solution (ii) no solution (iii) more than one solution:

$$x + y + \lambda z = 1$$

$$x + \lambda y + z = \lambda$$

$$\lambda x + y + z = \lambda^{2}$$

(c) Show that,
$$\begin{vmatrix} a+b+c & a+b & a & a \\ a+b & a+b+c & a & a \\ a & a & a+b+c & a+b \\ a & a & a+b+c \end{vmatrix}$$

$$= c^{2} (4a+2b+c) (2b+c).$$

- (d) Define norm of a vector. Consider $P(3, \lambda 2)$ and Q(5, 3, 4) in \mathbb{R}^3 . Find the value of λ so that, \overrightarrow{PQ} is orthogonal to the vector (4, -3, 2).
- 5. (a) Define linear transformation. Let U and V be two vector 2+5=7 spaces over the field F and T_1 and T_2 be linear transformations from U into V then prove that, $T_1 + T_2$ is a linear transformation.
 - (b) If S and T be the linear transformation S, $T : \mathbb{R} \longrightarrow \mathbb{R}^3$ defined by S(x, y, z) = (y, z, x) and T(x, y, z) = (x + y + z, 0, 0) then find (i) (TS) (1, 0, 1), (ii) (ST) (1, 0, 1) (iii) (S + T) (1, 0, 1). (iv) (S T) (1, 0, 1).
 - (c) Show that the mapping $T: \mathbb{R}^2 \longrightarrow \mathbb{R}^3$ defined by $T(x_1, x_2)$ 5 = $(x_1 + x_2, x_1 x_2, x_1)$ is linear.
- Define eigen values and eigen vectors. State and prove 2+6=8

 Cayley-Hamilton theorem.

Find the eigen values and the corresponding eigen vectors of the matrix
$$A = \begin{bmatrix} 3 & 1 & 1 \\ 2 & 4 & 2 \\ 1 & 1 & 3 \end{bmatrix}$$
.

Also verify the Cayley-Hamilton theorem for the matrix A.

[According to the New Syllabus]

CSE-510212

Examination Code: 5612 (Statistics and Probability)

Time—3 hours
Full marks—80

[N.B.—The figures in the right margin indicate full marks. Answer any four questions.]

	questions. J	Marks							
1.	(a) Define statistics. Discuss the characteristics of statistics.	4.							
	What are the differences between primary data and secondary data?	4							
	(c) What is variable? Describe various kinds of variable with example.	6							
	(d) Define scale of measurement. Discuss the various type of scale of measurement.	6							
2/.	What is frequency distribution? Discuss the different steps of construction of a frequency distribution.	5							
	(b) The daily wages (Taka) of 50 workers are given below:	10							
	160 88 168 264 139 68 129 101 149 119								
	132 1.03 210 96 104 127 146 89 97 170								
	120 187 123 136 108 118 94 149 93 175								
	131 191 102 148 163 172 93 104 132 135	A.							
4	125 195 105 144 187 92 131 136 142 128								
	Construct a continuous frequency distribution with suitable size of class interval.								
	(ii) Draw a histogram and find mode from histogram.								
	(c) Discuss the different measures of central tendency.	5							
8.	(a) Define median and mode with uses.	5							
. / .	(b) Prove that for two non-zero positive values $AM \ge GM \ge HM$.	. 5							
(c) Calculate Arithmetic mean, Geometric mean and Harmonic mean from the following frequency distribution:									
	Daily sales (Thousand Tk.) 20-30 30-40 40-50 50-60 60-70 70-80								
	Number of shops 4 7 16 12 6 5								

		**								2.7
. (a)	What is skey	vness') Desc	cribe	the di	fferen	t frea	iency	curves	M
AT THE	based on ske			€1 ji (the di	1101011	i noqe			Tinz
(b)	Distinguish dispersion.	betwe	en al	bsolut	e and	l rela	tive 1	neasu	res of	
(c)	If the obtained then prove the					it of 20	0) are 8	8, 7, 6,	3, 12,	
(d)	Calculate the information:		· • • • • • • • • • • • • • • • • • • •		- 6	from	n the	follo	owing	
	Daily Income (in Tk.)	50	60	70	80	90	100	110	120	Vi.
	Number of workers	10	12	. 14	16	20	8	4	2	
	Also develop	a box	plot.	7	de	:/ 1		73.	T. T.	
(a) (b)	What is scat correlation wi	th the	help o	of scat	ter dia	gram.				
	- 1 and 1.									
· (c)	Calculate Ari natural numbe	15.								
(d)	Calculate the data giving rai in a musical co	iks aw	varaea	ition o	oeffic wo juc	ient f Iges to	or the	follov articip	wing pants	
. H	Rank by Judge	e I	3 5	4	8	9 7	1	2 6	10	
	Rank by Judge	II	4 6	3	9 1	0 7	2	1 5	8	
(d)	Distinguish bet	ween	correl	ation	and re	egress		171		
<i>(b)</i>	If the standard regression equa Calculate (i) th coefficient (iii)	l deviations a e ave	ation re 12x rage	of va - 15 value	riable v + 99	x is = 0, 60	6 and	$7\nu = 32$	21	
	Observe the fol			•	n :					
	1 1000	-	i s vi	die.	1-1-	F	Boys	* /		
	M MUSELY				Intell		T-	intellig	gent	
J		SI	cilled	. i. e.	4(Ø 1,	30	3	
	Father	Un	skilled	1	7(54	·	

Do these figures support the hypothesis that skilled fathers have intelligent boys?

[According to the New Syllabus]

CSE-510213

Examination Code: 5612

(History of the Emergence of Independent Bangladesh)

Time—3 hours

Full marks-80

[N.B.—The figures in the right margin indicate full marks. Answer any four questions.]

	questions.j	
		Marks
1: (a)	What is two nation theory?	2
	[দ্বিজাতি তত্ত্ব কী?]	b :
(6)	Write down in short the origin of the name of Bangla.	6
	[বাংলা নামের উৎপত্তি সম্পর্কে সংক্ষেপে লিখ।]	
(e)	What was the main theme of the Lahore Resolution?	6
	[লাহোর প্রস্তাবের মূল প্রতিপাদ্য বিষয় কী ছিল?]	
(d)	Why the Six-point demand is called the 'Magnacarta' of the Banaglees?	6
E Web top	[ছয়-দফা কর্মসূচিকে কেন বাঙালির 'ম্যাগনাকার্টা' বলা হয়?]	
2. B	Describe the role of media at home and abroad in the war of liberation.	4
4	[মুক্তিযুদ্ধে দেশি-বিদেশি প্রচার মাধ্যমের ভূমিকা বর্ণনা কর।]	
(6)	Explain the contribution of India in the liberation war of Bangladesh.	6
	[বাংলাদেশের মুক্তিযুদ্ধে ভারতের অবদান ব্যাখ্যা কর।]	
(c)	Discuss the characteristics of the Constitution of 1972.	4
	[১৯৭২ সালে সংবিধানের বৈশিষ্ট্যসমূহ বর্ণনা কর।]	
(45)	Discuss the steps taken by the Bangabandhu Government to reconstruct the war ravaged country.	6
	[যুদ্ধবিধ্বন্ত দেশ পুনর্গঠনে বঙ্গবন্ধু সরকারের পদক্ষেপসমূহ আলোচনা কর।]	
	[Please tu	rn over

What is Basu-Suhrawardi Treaty?

বসু-সোহরাওয়াদী চুক্তি কী?

Marks $4 \times 5 = 20$ Write short notes on any five of the following: (a) Cultural syncretism and religious tolerance (b) Agortola Conspiracy Case Genocide Bengali Nationalism Military Rule Declaration of Independence by Bangabandhu 11-points movement of the students [যে কোনো পাঁচটি বিষয়ে টীকা লিখ: শংস্কৃতির সমন্বয়বাদিতা ও ধর্মীয় সহনশীলতা আগরতলা ষড়যন্ত্র মামলা গণহত্যা বাঙালী জাতীয়তাবাদ সামরিক শাসন

৩২০এক্স

2

বঙ্গবন্ধুর স্বাধীনতা ঘোষণা

ছাত্রদের ১১-দফা আন্দোলন