Міністерство освіти і науки України Національний технічний університет України «Київський політехнічний

інститут імені Ігоря Сікорського" Факультет інформатики та обчислювальної техніки

Кафедра інформатики та програмної інженерії

Звіт

з лабораторної роботи № 3 з дисципліни «Алгоритми та структури даних-1. Основи алгоритмізації»

«Дослідження ітераційних циклічних алгоритмів»

Варіант 26

Виконав студент: ІП-15 Поліщук Валерій Олександрович (шифр, прізвище, ім'я, по батькові)

(прізвище, ім'я, по батькові)

Київ 2021

Лабораторна робота №3

Дослідження ітераційних циклічних алгоритмів Варіант 26

Мета — дослідити подання операторів повторення дій та набути практичних навичок їх використання під час складання циклічних програмних специфікацій.

Постановка задачі

Задано значення а, обчислити
$$\sqrt[5]{a}$$
 за формулою : $x_{n+1} = \frac{4}{5}x_n + \frac{a}{5x_n^4}$,

з точністю є = 10^-4, вважаючи, що
$$x_0 = \begin{cases} min(2a, 0.95), & a \leq 1 \\ a/5, & 1 < a < 25 \\ a/25, & \text{iнакшe} \end{cases}$$

Математична модель

Змінна	Тип	Ім'я	Призначення
Значення а	Дійсне, >0	а	Вхідні дані
Початкове значення х	Дійсне, >0	x0	Проміжні дані
Значення хп	Дійсне, >0	xn	Проміжні дані
Значення xnplus1, результат	Дійсне, >0	xnplus1	Вихідні дані

abs() – модуль виразу, min() – мінімальне значення з 2 вказаних , pow(x,y) – піднесення х до степеню у

Розв'язання

Програмні специфікації запишемо у псевдокоді та графічній формі у вигляді блок-схеми.

Крок 1. Визначимо основні дії.

Крок 2. Деталізуємо процес знаходження х0.

Крок 3. Деталізуємо процес знаходження xnplus1, що задовольняє точність 10^-4.

Псевдокод

Крок 1

початок

введення а

обчислення х0

знаходження xnplus1

виведення xnplus1

кінець

```
Крок 2
```

початок

введення а

якщо a <= 1

то

x0 = min(2a, 0.95)

інакше

якщо 1 < a && a < 25

TO

x0 = a/5

інакше

x0 = a/25

все якщо

все якщо

знаходження xnplus1

виведення xnplus1

кінець

```
Крок 3
```

кінець

```
початок
  введення а
  якщо a <= 1
     TO
       x0 = min(2a, 0.95);
     інакше
       якщо 1 < a && a < 25
          TO
             x0 = a/5
          інакше
            x0 = a/25
       все якщо
  все якщо
  xnplus1 = x0
  повторити
     xn = xnplus1
     xnplus1 = (4 * xn) / 5 + a / (5 * pow(xn, 4))
     xn = xnplus1
  поки abs(xn - xnplus1) >= 0.0001
  все повторити
  виведення xnplus1
```

Блок-схема

Випробування алгоритму

Блок	Дія (цикл 1)	Дія (цикл 2)	Дія (цикл 3)
	Початок		
1	a= 0.9		
2	x0 = 0.95		
3	xnplus1 = 0.95		
4	xn = 0.95	xn = 0.981	xn = 0.979
5	xnplus1 = 0.981	xnplus1 = 0.979	xnplus1 = 0.97905
6	true	true	false
			Виведення xnplus1
			Кінець

Висновки

Я дослідив подання операторів повторення дій та набутв практичних навичок їх використання під час складання циклічних програмних специфікацій.