Gradient, Divergence, and Curl

1 Gradient

We define the **gradient** of a scalar-valued differentiable function (that is, a scalar field) $f: X \subset \mathbb{R}^n \to \mathbb{R}$ to be the vector field $\nabla f: X \to \mathbb{R}^n$ defined by

$$\nabla f(\mathbf{a}) = (f_{x_1}(\mathbf{a}), ..., f_{x_n}(\mathbf{a}))$$

for all $\mathbf{a} \in X$.

We can think of ∇ as taking the scalar field f to the vector field ∇f . Something that maps functions to functions is often called an *operator* (this word doesn't have a universal mathematical definition). So ∇ is an operator, called the del operator.

Symbolically, we can write

$$\nabla = \mathbf{e}_1 \frac{\partial}{\partial x_1} + \dots + \mathbf{e}_n \frac{\partial}{\partial x_n}.$$

You should think of this as meaningless but helpful notation. The notation means that the result of "plugging in" f into the operator ∇ is the function

$$\nabla f = \mathbf{e}_1 \frac{\partial}{\partial x_1} f + \dots + \mathbf{e}_n \frac{\partial}{\partial x_n} f.$$

Confusingly, some authors refer to the gradient of f as a vector. This would be like calling the derivative of a function a number. The derivative of a function f is a function f'. The function f' takes a number a in the domain of f and spits out the number f'(a). In the same way, the gradient of f is a vector field ∇f . It takes a vector \mathbf{a} in the domain of f and spits out the vector $(\nabla f)(\mathbf{a})$.

2 Divergence

Let $\mathbf{F}: X \subset \mathbb{R}^n \to \mathbb{R}^n$ be a differentiable vector field. Then the **divergence** of \mathbf{F} , denoted div \mathbf{F} , is the scalar field

$$\operatorname{div} F = \frac{\partial F_1}{\partial x_1} + \dots + \frac{\partial F_n}{\partial x_n},$$

where $F_1, ..., F_n$ are the component functions of \mathbf{F} .

Sometimes the divergence of \mathbf{F} is expressed as $\nabla \cdot \mathbf{F}$. This is another meaningless but useful notation. The dot product is defined for vectors. If we think of $\frac{\partial}{\partial x_i} F_i$ as a "product" then we get the "dot product" of

$$\nabla = \mathbf{e}_1 \frac{\partial}{\partial x_1} + \dots + \mathbf{e}_n \frac{\partial}{\partial x_n}$$

and

$$\mathbf{F} = F_1 \mathbf{e}_1 + \dots + F_n \mathbf{e}_n$$

to be

$$\nabla \cdot \mathbf{F} = \frac{\partial F_1}{\partial x_1} + \dots + \frac{\partial F_n}{\partial x_n}.$$

3 Curl

The curl is only defined on vector fields in \mathbb{R}^3 . Let $\mathbf{F} \colon X \subset \mathbb{R}^3 \to \mathbb{R}^3$ be a differentiable vector field on \mathbb{R}^3 . The **curl** of \mathbf{F} , denoted curl \mathbf{F} or $\nabla \times \mathbf{F}$, is the vector field

$$\left(\frac{\partial F_3}{\partial y} - \frac{\partial F_2}{\partial z}\right)\mathbf{i} + \left(\frac{\partial F_1}{\partial z} - \frac{\partial F_3}{\partial x}\right)\mathbf{j} + \left(\frac{\partial F_2}{\partial x} - \frac{\partial F_1}{\partial y}\right)\mathbf{k}.$$

It turns out that this vector field, in a very vague sense, measures how much the vector field **F** curls.

The curl can be remembered by using the symbolic determinant

$$\begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ F_1 & F_2 & F_3 \end{vmatrix}$$

Again, if we pretend that $\frac{\partial F_3}{\partial y}$ **i**, say, means the "product" of $\frac{\partial}{\partial y}$, F_3 , and **i**, then the curl of **F** would be the determinant above.

The two statements below relate the concepts of curl, gradient, and divergence. They can be proven easily by a direct computation.

Theorem 1. Let $f: X \subset \mathbb{R}^3 \to \mathbb{R}$ be of class C^2 . Then $\operatorname{curl}(\operatorname{grad} f) = \mathbf{0}$.

Theorem 2. Let $\mathbf{F}: X \subset \mathbb{R}^3 \to \mathbb{R}^3$ be a vector field of class C^2 . Then $\operatorname{div}(\operatorname{curl} \mathbf{F}) = 0$.

Notice that the equality of mixed partials is essential to the proof.