STOCHASTIK

Skript

Kim Thuong Ngo

April 23, 2018

CONTENTS

1 VORWORT

1.1 STOCHASTIK

Beschreibungen von zufälligen Vorgängen, z.B.:

- Münzwurf, Lotto, Würfel, ...
- Regentropfen, Katastrophen, radioaktiver Zerfall, ...
- Warteschlangen
- Zinsenentwicklung, Aktienkurse, ...
- Abstimmungen, Wahlergebnisse
- Wetter
- Vererbung, Mutation

Experimente

- zufällige Vorgänge nennt man Experiment
- das Ergebnis beschreibt den Ausgang des Experiments
- ein Ereignis ist eine Menge von Ergebnissen, der wir einer Wahrscheinlichkeit zuordnen können

<u>Aufbau</u>

- Modellbildung (stochastisches Modell) Ziel ist die Beschreibung von Experimenten
- Wahrscheinlichkeitstheorie Methoden und Werkzeuge für die Untersuchung von stochastischen Modellen
- Statistik Justierung und Überprüfung eines Modells anhand von Daten

1.2 ABKÜRZUNGEN

W': Wahrscheinlichkeiten

2 GRUNDBEGRIFFE

2.1 Wahrscheinlichkeitstheorie

DEFINITION 1.1 Es sei $\Omega \neq \emptyset$ eine Menge, der Grundraum. Eine Familie $F \subseteq P(\Omega)$ von Teilmengen heißt σ -Algebra, wenn gilt:

- leere Menge Ø liegt in F
- aus $A \epsilon F$ folgt $\Omega \setminus A \epsilon F$
- für $A_1, A_2, ... \epsilon F$ gilt $A_1 \cup A_2 \cup ... \epsilon F$

Eine Abbildung $\mu: F \to [0,\infty]$ heißt Maß auf (Ω, F) , wenn gilt:

- $\mu(\varnothing) = 0$
- σ -Additivität: Ist $A_1, A_2, A_3, ...$ eine Folge von paarweisen disjunkten Elementen in F, dann gilt $\mu(A_1 \cup A_2 \cup ...) = \mu(A_1) + \mu(A_2) + ...$

Das Tripel (Ω, F, μ) heißt Maßraum.

BEMERKUNG 1.2 Ist Ω eine beliebige Menge, dann ist $\zeta: P(\Omega) \to [0,\infty]$ mit $\zeta(A) = |A|$ ein Maß, welches Zählmaß heißt.

BEMERKUNG 1.3 Die Begriffe Länge, Fläche, Volumen sind Maße auf geeigneten σ -Algebra von $\mathbb{R}, \mathbb{R}^2, \mathbb{R}^3$ definiert. Diese σ -Algebra enthalten alle Intervalle achsenparallele Rechtecke, achsenparallele Quader. Allgemein ist das d-dimensionale Volumen von geeigneten Teilmengen des \mathbb{R}^d ein Maß, welches d-dimensionales Lebesgue-Maß heißt.

DEFINITION 1.4 Ist P eine Maß auf (Ω, F) mit $P(\Omega) = 1$, so heißt P ein Wahrscheinlichkeitsmaß und das Tripel (Ω, F, P) Wahrscheinlichkeitsraum. In diesem Fall heißen die Elemente der σ -Algebra Ereignisse.

Interpretation: Es sei (Ω, F, P) ein Wahrscheinlichkeitsraum. Dann ist P(A) die Wahrscheinlichkeit, dass das Ergebnis des Experiments im Ereignis $A\epsilon F$ liegt.

1.5 Es seien Ω , Z zwei Mengen. Es sei F eine σ -Algebra über Ω und z eine σ -Algebra über Z. Eine Abbildung $X:\Omega\to Z$ heißt Zufallsvariable, wenn $X^{-1}(B)=w\varepsilon\Omega:X(w)\varepsilon B\varepsilon F\forall B\varepsilon z$ gilt. In diesem Fall nennen wir Z den Zustandsraum von X und sagen, dass X von (Ω,F) nach (Z,z) abbildet, kurz $X:(\Omega,F)\to(Z,z)$.

BEISPIEL Münzwurf

- $p\epsilon[0,1], q=1-p$
- $\Omega = Zahl, Kopf = 0, 1$
- $F = P(\Omega) = \emptyset, 0, 1, \Omega$
- $P(\emptyset) = 0, P(0) = q, P(1) = 0, P(\Omega) = 1$

Für $p = \frac{1}{2}$ ist das Modell ein fairer Münzwurf. zweifacher Münzwurf

- $p\epsilon[0,1], q = 1 p$
- $P((0,0)) = q^2, P((0,1)) = P((1,0)) = pq, P((1,1)) = p^2$
- für $A \subseteq \Omega$: $P(A) = \sum_{w \in A} P(w)$

Die Größe $X: \Omega \to 0, 1, 2$ mit X(w) = "Anzahl der 1er in w" ist eine Zufallsvariable mit Werten in Z=0,1,2(z=P(Z))

NOTIZEN 16.04.18 $P(x) = x \epsilon \Omega$

W', dass das Ergebnis des zufälligen Experiments gleich x ist, sofern $x \in F$, also ein Ereignis ist.

W' maß $P: F \rightarrow [0,1]$ mit

- $P(\emptyset) = 0$
- $P(\Omega) = 1$
- $P(A_1 \cup A_2 \cup ...) = P(A_1) + P(A_2) + ...$

für Folgen $A_1, A_2, ... \varepsilon F$ von paarweisen disjunkten Ereignissen.

Beispiel: zweifacher Münzwurf

$$\Omega = 0, 1^2 = 0, 1x0, 1 = (0, 0), (0, 1), (1, 0), (1, 1)$$

 $F = P(\Omega) = \emptyset, (0,0), (0,1), ..., (0,0), (0,1), ..., \Omega \Rightarrow 16$ Elemente

z.B.
$$P((0,0),(0,1)) = P((0,0)) + P((0,1)) = q^2 + pq = q(q+p) = q(1-p+p) = q$$

Anzahl der 1er:

 $X: \Omega \to 0, 1, 2 \text{ mit}$

- X(0,0) = 0
- X(0,1) = X(1,0) = 1
- X(1,1) = 2

ODER:
$$X(w_1, w_2) = w_1 + w_2$$

z.B. $P(X^{-1}(1)) = P((0, 1), (1, 0)) = 2pq$

2.2 STATISTIK

DEFINITION 1.6 Ein statistisches Modell wird durch eine Menge Ω mit σ -Algebra F, sowie einer Familie von Wahrscheinlichkeitsmaßen Q auf (Ω,F) beschrieben. In der parametrischen Statistik wird die Familie Q durch einen Index (Parameter) θ einer Indexmenge (Parametermenge) Θ beschrieben: $Q=P_{\theta}:\theta\varepsilon\Theta$.

DEFINITION 1.7 Eine Stichprobe ist eine Zufallsvariable X (oder ein zufälliger Vektor $(X_1,...,X_n)$ oder eine zufällige Folge $X_1,X_2,...$) von (Ω,F) in den Stichprobenraum (Z,z). Ein Element x (oder ein Vektor $(x_1,...,x_n)$ oder eine Folge $x_1,x_2,...$) aus dem Stichprobenraum Z heißt Realisation oder Beobachtung. Ist die Stichprobe ein Vektor, so nennen wir dessen Länge den Stichprobenumfang.

BEISPIEL Münzwurf

- $\Theta = [0, 1]$
- $\Omega = 0, 1, F = P(\Omega)$
- $\operatorname{für} \theta \epsilon \Theta : P_{\theta}(\emptyset) = 0, P_{\theta}(0) = 1 \theta, P_{\theta}(1) = \theta, P_{\theta}(\Omega) = 1$
- Stichprobe: $X : \Omega \to 0, 1 \text{ mit } X(w) = w$

DEFINITION 1.8 Es sei $Q = P_{\theta} : \theta \in \Theta$ ein statistisches Modell und es sei X (oder $X_1, ..., X_n$) eine Stichprobe im Stichprobenraum (Z, z). Ein statistisches Verfahren ist eine Abbildung vom Stichprobenraum Z (oder von Z^n) ist eine Antwortmenge A.

- Ist die Antwortmenge A gleich Θ (oder $g(\Theta)$, wobei g eine Funktion ist), so sagen wir, das Verfahren ist ein Schätzer
- Ist die Antwortmenge A gleich *ja*, *nein* (oder 1, 0), so sprechen wir von einem Hypothesentest
- Ist die Antwortmenge eine Familie von Intervallen, dass sprechen wir von einem Verfahren zur Berechnung von Konfidenzintervallen