

Figure

Figure 2



Figure 3



Figure 4



Figure 5

「乳腺素腫乳を飼」 - contribute Application became a probability 世紀 北京 1 cm - cm -

#### GST-XD4

### GST-XD4(V323A,1338A)



Figure 6

[7-32P] ATP



1338A 1338S

[7-32P] N<sup>6</sup>-cyclopentyl ATP



1338A 1338S

[7-32P] ATP



1338A 1338G

 $[\gamma^{32}P]$  N<sup>6</sup>-cyclopentyl ATP



1338A 1338G

Figure 7

· 推荐建建设建长 (1947) 建建设设施 (1948) (1948)



Figure 8

# A. Damnacanthal

B. PP1

图1911年中 115mm - 801 - 8 485 - 3 集 44 **期度1 期** 4 基 年 5

# A. N-4 Acyl Analogues

# C. In vitro Inhibition Data

|                                    |            | $IC_{50}(\mu M)$        |                 |
|------------------------------------|------------|-------------------------|-----------------|
| R'=                                | WT fyn     | WT src                  | I338G src       |
| H<br>cyclobutoyl                   | 0.08       | 35<br>>>400             | <1<br>12        |
| cyclopentoyl                       | 400        | >>400                   | 5               |
| cyclohexoyl<br>benzoyl<br>2-furoyl | 50<br>>400 | >>400<br>>>400<br>>>400 | 20<br>50<br>150 |

Figure 10



Figure 11

 $IC_{50}$  ( $\mu M$ )

|   | Molecule                               | WT XD4 | [338G<br>:XD4 | WT Fyn | T339G<br>Fyn | WT Abl | T120A<br>Abl |
|---|----------------------------------------|--------|---------------|--------|--------------|--------|--------------|
| a | 1) (1)                                 | 35     | 0.13          | 0.05   |              |        | < 0</th      |
| b | 384                                    |        | 200           | >300   |              |        |              |
| c | )\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ |        | 300           | ₹300   |              |        |              |
| d | 2X4                                    |        | >300          | >300   |              |        |              |
| e | 28°                                    | >300   | 75            | >300   | 100          |        | >10          |
| f | 084                                    | >300   | 250           | >300   | 26           |        | >10          |
| g | St.                                    | >300   | 85            | >300   | 63           |        | >10          |
| h | 087 084                                |        |               |        |              |        |              |
| j | 0<br>0<br>7<br>7<br>7                  |        |               |        |              |        |              |

Figure 12A

compare great

| j | O<br>T<br>T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |      |        | •           | 1    |     |     |
|---|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|--------|-------------|------|-----|-----|
| k | 38.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |      |        |             |      |     |     |
| 1 | 34.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | >300 | 12     | 6.5         | 5    |     |     |
| m | 287                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | >300 | 19     | 80          | 9    |     |     |
| n | 2000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | >300 | 20     | 50          | 5    |     |     |
| 0 | 3,50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | >300 | 150    | 15          | 19   |     |     |
| p | 186                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | >300 | 10     | 30 <b>0</b> | i 1  |     | (10 |
| q | 486                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | >300 | 10     | 300         | 6    |     | (10 |
| r | Ara                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |      | 1.2    |             |      |     | <10 |
| S | A STATE OF THE STA |      | 0.63   |             |      |     |     |
| t | 58°                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |      | (0.411 |             |      |     | 1.8 |
| u | **************************************                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | >300 | 0.43   | 300         | 0.83 | 300 | 110 |

Figure 12B

|    |                   |     |       |      |   | • |     |
|----|-------------------|-----|-------|------|---|---|-----|
| v  | 3.30              |     | ·     | ,    |   |   |     |
| W  |                   |     |       |      | ` |   |     |
| X  | 2.XX              |     |       |      |   |   | >:0 |
| у  | 19.C              | 100 | (0.05 | 0.1  |   |   |     |
| z  | 24°               |     | >100  | >300 |   |   |     |
| aa | 7.00              |     |       | 2    |   |   |     |
| bb | 180<br>180<br>180 |     |       | 7    |   |   |     |
| cc |                   |     |       |      |   |   | •   |
| dd | 36 36             |     |       |      |   |   |     |
| ee | 2,C               |     |       |      |   |   |     |

Figure 12C

| _  |         |       |       |            |   | <del></del> | <del></del> - |
|----|---------|-------|-------|------------|---|-------------|---------------|
| ff | J       |       |       | <b>b</b> - | , |             |               |
| gg | 2.7     |       |       |            |   |             |               |
| hh | 2,2     |       |       |            |   |             |               |
| ii |         |       |       |            |   |             |               |
| jj | 35      |       |       | 1          |   |             |               |
| kk | 0,2     |       |       |            |   |             |               |
| 11 | 300     |       |       |            |   |             |               |
| mn |         |       |       |            |   |             |               |
| n  | n Cin   | >1000 | 0.510 | 0.4        |   | <<6.5       |               |
| 0  | 0 0 0 0 | >300  | >10   | >300       |   |             |               |

Figure 12D

| _  |            |      |     |        |   |   |
|----|------------|------|-----|--------|---|---|
| pp | 0000       | >300 | >10 | >300   |   |   |
| qq | 5/2°C      | >300 | >10 | · >300 |   |   |
| rr | C 8 C      | >300 | >10 | >300   |   |   |
| SS | 080<br>{80 | >300 | >10 | ≫00    | ÷ |   |
| tt | 080        | >300 | >10 | >300   |   |   |
| uu | OBS        | >300 | >10 | >300   |   |   |
| vv | 380        | >300 | >10 | >300   |   |   |
| ww | 0000       | >300 | >10 | >300   |   |   |
| xx | 30080      | >300 | >10 | >300   |   |   |
|    |            |      |     |        |   | 1 |
|    |            |      |     |        |   |   |

Figure 12E

| уу          |      |      |     | •     | • |  |
|-------------|------|------|-----|-------|---|--|
| zz          | う谷の  | <10  | 2.5 | ,<<10 |   |  |
| aaa         | 030  | >300 | >10 | `>300 |   |  |
| bbb         | 0.8% | >300 | >10 | >300  |   |  |
| ccc         | OBS  | >300 | >10 | >300  |   |  |
| ddd         | 080  | >300 | >10 | >300  |   |  |
| e <b>ee</b> | 0480 | >300 | >10 | >300  |   |  |
| fff         | 080  | >300 | >10 | >300  |   |  |

Figure 12F





Figure 14



Figure 15

a separate meneral formation of the first field of



Figure 16



Figure 17

Figure 18



Ł

Figure 19



Figure 20

n na kalang tekki kapp (Nickos Faires jan 1

- 4. 4 000 MBH 1483 B



Figure 21

a. 1464 **(M**29 | 146 | 15 | 15 |



Figure 23

a management of the second

Figure 24

## A All S. cerevisiae genes (6,200)







| Unreg   |              | S     |                   | PHO3    | -21.5        | M/G1    |      |
|---------|--------------|-------|-------------------|---------|--------------|---------|------|
| AMI1    | -3           | HTB2  | -4.6              | PHO5    | -10.6        | AGA2    | -6.5 |
| BARI    | ·5.1         | MET14 | -29               | PRYI    |              |         |      |
|         |              |       |                   |         | -3.2         | EC1.5   | ->83 |
| PUT4    | -3.2         | C0/44 |                   | RPI1    | -2.7         | FAA3    | ٦.7  |
| SLIN4   | . 41         | G2/M  |                   | SOLI    | -3.8         | GYPE    | ٠Z.â |
| YBR677C | -2.6         | ALK1  | -3.5              | SKN1    | -2.5         | IAHZ    | -3.4 |
| YEROS7W | · 3.5        | ATF2  | - <del>5</del> .1 | STE2    | ·2. <b>5</b> | ICS4    | 4.7  |
| _       |              | BNS1  | +3.7              | STES    | -5.8         | MCM3    | ·2.5 |
| G1      |              | CDC20 | -4,1              | SUR7    | .2.5         | PCLS    | 4.9  |
| CTS1    | -28.4        | CDCS  | -3                | 5W15    | -3.1         | PIRI    | -3.7 |
| GPH1    | -2.9         | CLB2  | -4.1              | UTHI    | -2.5         | PTS1    | -3.5 |
| MFA1    | -3.2         | OBF2  | -2.6              | WSC4    | -6.9         | SPII    | -2.6 |
| PRY3    | -2.7         | FAR1  | -20.4             | YDR033W | -13.6        | YGP1    | -3.5 |
| RME1    | -3.1         | HST3  | -4.1              | YILISBW | -3.1         | YNLO46W | -57  |
| RPC10   | <b>-41.2</b> | MFAZ  | 4.9               | YJL051W | 4            | YNR067C | -194 |
| SCW11   | -16.4        | MYOI  | •3                | YLR254C | 4.2          | YORGGUW | -3.7 |
| YER124C | -9.8         | PHO11 | -4.9              | YML119W | -4.1         | YOR264W | -4.7 |
| YHR218W | -3           | PHQ12 | -5.9              | YNLOSEC | -3.1         | YPL158C | -16  |
|         |              |       |                   | YRQ2    | -7.8         |         | -    |

S/G2

2 5

### C Increases - 120 min (38)



| Unreg |            |           |      | G1      |     |
|-------|------------|-----------|------|---------|-----|
| BIOS  | 2.6        | WESORAY   | 4,5  | CLNZ    | 3.3 |
| DIC1  | 2.5        | YBR241C   | 3.7  | CSIZ    | 3.2 |
| ERRT  | 2.5        | YCR059C   | 2.5  | PCLI    | 4.7 |
| GSC3  | 2.5<br>3:2 | YELO70W   | 3    | PRYZ    | 3   |
| GUTZ  | 3.9        | YFL061W   | 3.2  | SRO4    | 2.9 |
| HEMIS | 2.8        | YGLOSIW   | 2.8  | YLL012W | 2.6 |
| MALS  | 4,1        | YGL179C   | 3.5  | YLR324W | 4   |
| MRP20 | 2.7        | YHR214W-A | 2.8  | YNLJOOW | 2.5 |
| NG#1  | 3.5        | YIL169C   | 20.1 | YPS4    | 3.4 |
| PES4  | 3.1        | YLR042C   | 6.1  |         |     |
| SKM1  | 2.7        | YMR103C   | 2.7  |         |     |
| SPO11 | 5.9        | YMR107W   | 3.5  |         |     |
| THI13 | 2.6        | YOR343C   | 3.3  |         |     |
| TH121 | 2,5        | YPL280W   | 3.1  |         |     |
|       |            |           |      |         |     |

### D Genomic trends



Figure 25

| ~ | i |
|---|---|
| • | J |

| Specificity Cellular Function | oncogenic transformation | lymphocyte activation | F-actin binding, transcription | Thr long-term potentiation, memory Thr mammalian cell cycle progression Thr S. cerevisiae cell cycle progression Thr S. cerevisiae mating |
|-------------------------------|--------------------------|-----------------------|--------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|
| Spec                          | T,                       | Ţ                     | Τχ                             | Ser/Thr<br>Ser/Thr<br>Ser/Thr<br>Ser/Thr                                                                                                  |
| Kinase Family                 | Src                      | Src                   | Abi                            | calcium/calmodulin dependent "Ser/Thr<br>cyclin dependent Ser/Thr<br>cyclin dependent Ser/Thr<br>mitogen-activated Ser/Thr                |
| Protein Kinase Kinase Family  | v-Src                    | c-Fyn                 | c-Abl                          | CAMK II<br>CDK2<br>CDC28<br>Fus3                                                                                                          |

338

|  | • |  |
|--|---|--|
|  |   |  |
|  |   |  |
|  |   |  |

ف

| v-Src   | (318) | (318) RHEKLVQLYAMVSEEPIYIVIEYMSKGSLLDFLKGEMGKY       |
|---------|-------|------------------------------------------------------|
| Fyn     | (319  | (319) KHDKLVQLYAVVSEEPIYIVTEYMNKGSLLDFLKDGEGRA       |
| Abl     | (294  | (294) KHPNLVQLLGVCTREPPFYIITEFMTYGNLLDYLRECNRQE      |
| CamK II | (89)  | Camk II (68) KHPNIVRLHDSISEEGHHYLIFDLVTGGELFEDIVAREY |
| cdk2    | (88)  | (59) NHPNIVKLLDVIHTENKLYLVFEFLHQDLKKFMDASALTG,       |
| Cdc28   | (99)  | (66) KDDNIVRLYDIVHSDAHKLYLVFEFLDLDLKRYMEGIPKDQP      |
| Fus3    | (67)  | (67) KHENIITIFNIQRPDSFENFNEVYIIQELMQTDLHRVISTQM      |



Figure 28