Past paper

1. HKDSE Math M2 Sample Paper Q9

Let $\overrightarrow{OA} = 4\mathbf{i} + 3\mathbf{j}$, $\overrightarrow{OB} = 3\mathbf{j} + \mathbf{k}$ and $\overrightarrow{OC} = 3\mathbf{i} + \mathbf{j} + 5\mathbf{k}$. Figure 2 shows the parallelepiped $\overrightarrow{OADBECFG}$ formed by \overrightarrow{OA} , \overrightarrow{OB} and \overrightarrow{OC} .

- (a) Find the area of the parallelogram *OADB*.
- (b) Find the volume of the parallelepiped *OADBECFG*.
- (c) If C' is a point different from C such that the volume of the parallelepiped formed by \overrightarrow{OA} , \overrightarrow{OB} and $\overrightarrow{OC'}$ is the same as that of OADBECFG, find a possible vector of $\overrightarrow{OC'}$.

(6 marks)

2. HKDSE Math M2 Sample Paper Q14

In Figure 3, $\triangle ABC$ is an acute-angled triangle, where O and H are the circumcentre and orthocentre respectively. Let $\overrightarrow{OA} = \mathbf{a}$, $\overrightarrow{OB} = \mathbf{b}$, $\overrightarrow{OC} = \mathbf{c}$ and $\overrightarrow{OH} = \mathbf{h}$.

(a) Show that

$$({\bf h} - {\bf a}) / / ({\bf b} + {\bf c}).$$

(3 marks)

- (b) Let $\mathbf{h} \mathbf{a} = t(\mathbf{b} + \mathbf{c})$, where t is a non-zero constant. Show that
 - (i) $t(\mathbf{b} + \mathbf{c}) + \mathbf{a} \mathbf{b} = s(\mathbf{c} + \mathbf{a})$ for some scalar s,
 - (ii) $(t-1)(\mathbf{b}-\mathbf{a})\cdot(\mathbf{c}-\mathbf{a})=0.$

(5 marks)

(c) Express \mathbf{h} in terms of \mathbf{a} , \mathbf{b} and \mathbf{c} . (2 marks)

3. HKDSE Math M2 Practice Paper Q12

Let $\overrightarrow{OA} = \mathbf{i}$, $\overrightarrow{OB} = \mathbf{j}$ and $\overrightarrow{OC} = \mathbf{i} + \mathbf{j} + \mathbf{k}$ (see Figure 2). Let M and N be points on the straight lines AB and OC respectively such that AM : MB = a : (1 - a) and ON : NC = b : (1 - b), where 0 < a < 1 and 0 < b < 1. Suppose that MN is perpendicular to both AB and OC.

(a) (i) Show that

$$\overrightarrow{MN} = (a+b-1)\mathbf{i} + (b-a)\mathbf{j} + b\mathbf{k}.$$

- (ii) Find the values of a and b.
- (iii) Find the shortest distance between straight lines AB and OC.

(8 marks)

- (b) (i) Find $\overrightarrow{AB} \times \overrightarrow{AC}$.
 - (ii) Let G be the projection of O on the plane ABC, find the coordinates of the intersecting point of the two straight lines OG and MN.
 - (5 marks)

4. HKDSE Math M2 2012 Q7

Figure 3 shows a parallelepiped OADBECFG. Let $\overrightarrow{OA} = 6\mathbf{i} + 2\mathbf{j} - \mathbf{k}$, $\overrightarrow{OB} = 2\mathbf{i} + \mathbf{j}$ and $\overrightarrow{OC} = 5\mathbf{i} - \mathbf{j} + 2\mathbf{k}$.

- (a) Find the area of the parallelogram OADB.
- (b) Find the distance between point C and the plane OADB.

(5 marks)

5. HKDSE Math M2 2012 Q12

Figure 6 shows an acute angled scalene triangle \overrightarrow{ABC} , where \overrightarrow{D} is the mid-point of \overrightarrow{AB} , \overrightarrow{G} is the centroid and \overrightarrow{O} is the circumcentre. Let $\overrightarrow{OA} = \mathbf{a}$, $\overrightarrow{OB} = \mathbf{b}$ and $\overrightarrow{OC} = \mathbf{c}$.

- (a) Express \overrightarrow{AG} in terms of **a**, **b** and **c**. (3 marks)
- (b) It is given that E is a point on AB such that CE is an altitude. Extend OG to meet CE at F.
 - (i) Prove that $\triangle DOG \sim \triangle CFG$. Hence find FG : GO.
 - (ii) Show that $\overrightarrow{AF} = \mathbf{b} + \mathbf{c}$. Hence prove that F is the orthocentre of $\triangle ABC$.

(9 marks)

6. HKDSE Math M2 2013 Q10

Let $\overrightarrow{OA} = 2\mathbf{i}$ and $\overrightarrow{OB} = \mathbf{i} + 2\mathbf{j}$. M is the mid-point of OA and N lies on AB such that BN: NA = k : 1. BM intersects ON at P (see Figure 2).

- (a) Express \overrightarrow{ON} in terms of k.
- (b) If A, N, P and M are concyclic, find the value of k.

(5 marks)

7. HKDSE Math M2 2013 Q14

Figure 5 shows a fixed tetrahedron \overrightarrow{OABC} with $\angle AOB = \angle BOC = \angle COA = 90^{\circ}$. P is a variable point such that $\overrightarrow{AP} \cdot \overrightarrow{BP} + \overrightarrow{BP} \cdot \overrightarrow{CP} + \overrightarrow{CP} \cdot \overrightarrow{AP} = 0$. Let D be the fixed point such that $\overrightarrow{OD} = \overrightarrow{OA} + \overrightarrow{OB} + \overrightarrow{OC}$. Let $\overrightarrow{OA} = \mathbf{a}$, $\overrightarrow{OB} = \mathbf{b}$, $\overrightarrow{OC} = \mathbf{c}$, $\overrightarrow{OP} = \mathbf{p}$ and $\overrightarrow{OD} = \mathbf{d}$.

- (a) (i) Show that $\overrightarrow{AP} \cdot \overrightarrow{BP} = \mathbf{p} \cdot \mathbf{p} (\mathbf{a} + \mathbf{b}) \cdot \mathbf{p}$.
 - (ii) Using (a)(i), show that $\mathbf{p} \cdot \mathbf{p} = 2\mathbf{p} \cdot \mathbf{d}$.
 - (iii) Show that $|\mathbf{p} \mathbf{d}| = |\mathbf{d}|$. Hence show that P lies on the sphere centred at D with fixed radius.

(8 marks)

- (b) (i) Alice claims that O lies on the sphere mentioned in (a)(iii). Do you agree? Explain your answer.
 - (ii) Suppose P_1 , P_2 and P_3 are three distinct points on the sphere in (a)(iii) such that $\overrightarrow{DP_1} \times \overrightarrow{DP_2} = \overrightarrow{DP_2} \times \overrightarrow{DP_3}$. Alice claims that the radius of the circle passing through P_1 , P_2 and P_3 is OD.

Do you agree? Explain your answer.

(4 marks)

8. HKDSE Math M2 2014 Q8

Let $\overrightarrow{OP} = -\mathbf{i} + 2\mathbf{j} + 2\mathbf{k}$, $\overrightarrow{OQ} = \mathbf{i} - \mathbf{j} + 2\mathbf{k}$ and $\overrightarrow{OR} = 2\mathbf{i} - 3\mathbf{j} + 6\mathbf{k}$.

(a) Find $\overrightarrow{OP} \times \overrightarrow{OQ}$.

Hence find the volume of tetrahedron OPQR.

(b) Find the acute angle between the plane OPQ and the line OR, correct to the nearest 0.1° .

(8 marks)

9. HKDSE Math M2 2014 Q11

In Figure 4, C and D are points on OB and OA respectively such that AD : DO = OC : CB = t : 1 - t, where 0 < t < 1. BD and AC intersect at E such that AE : EC = m : 1 and BE : ED = n : 1, where m and n are positive. Let $\overrightarrow{OA} = \mathbf{a}$ and $\overrightarrow{OB} = \mathbf{b}$.

- (a) (i) By considering $\triangle OAC$, express \overrightarrow{OE} in terms of m, t, \mathbf{a} and \mathbf{b} .
 - (ii) By considering $\triangle OBD$, express \overrightarrow{OE} in terms of n, t, \mathbf{a} and \mathbf{b} .
 - (iii) Show that $m = \frac{t}{(1-t)^2}$ and $n = \frac{1-t}{t^2}$.
 - (iv) Chris claims that

"if m = n, then E is the centroid of $\triangle OAB$."

Do you agree? Explain your answer.

(9 marks)

(b) It is given that OA = 1 and OB = 2. Francis claims that

"if AC is perpendicular to OB, then BD is always perpendicular to OA."

Do you agree? Explain your answer.

(4 marks)

10. HKDSE Math M2 2015 Q10

OAB is a triangle. P is the mid-point of OA. Q is a point lying on AB such that AQ : QB = 1 : 2 while R is a point lying on OB such that OR : RB = 3 : 1. PR and OQ intersect at C.

- (a) (i) Let t be a constant such that PC : CR = t : (1 t). By expressing \overrightarrow{OQ} in terms of \overrightarrow{OA} and \overrightarrow{OB} , find the value of t.
 - (ii) Find CQ: OQ.

(7 marks)

(b) Suppose that $\overrightarrow{OA} = 20\mathbf{i} - 6\mathbf{j} - 12\mathbf{k}$, $\overrightarrow{OB} = 16\mathbf{i} - 16\mathbf{j}$ and $\overrightarrow{OD} = \mathbf{i} + 3\mathbf{j} - 6\mathbf{k}$, where O is the origin. Find

- (i) the area of $\triangle OAB$,
- (ii) the volume of tetrahedron ABCD.

(5 marks)

11. HKDSE Math M2 2016 Q12

Let $\overrightarrow{OA} = 2\mathbf{j} + 2\mathbf{k}$, $\overrightarrow{OB} = 4\mathbf{i} + \mathbf{j} + \mathbf{k}$ and $\overrightarrow{OP} = \mathbf{i} + t\mathbf{j}$, where t is a constant and O is the origin. It is given that P is equidistant from A and B.

- (a) Find t. (3 marks)
- (b) Let $\overrightarrow{OC} = 2\mathbf{i} \mathbf{j} + 4\mathbf{k}$ and $\overrightarrow{OD} = 3\mathbf{i} + 2\mathbf{j} + 5\mathbf{k}$. Denote the plane which contains A, B and C by Π .
 - (i) Find a unit vector which is perpendicular to Π .
 - (ii) Find the angle between CD and Π .
 - (iii) It is given that E is a point lying on Π such that \overrightarrow{DE} is perpendicular to Π . Let F be a point such that $\overrightarrow{PF} = \overrightarrow{PA} + \overrightarrow{PB} + \overrightarrow{PC}$. Describe the geometric relationship between D, E and F. Explain your answer.

(10 marks)

12. HKDSE Math M2 2017 Q3

P is a point lying on AB such that AP : PB = 3 : 2. Let $\overrightarrow{OA} = \mathbf{a}$ and $\overrightarrow{OB} = \mathbf{b}$, where O is the origin.

- (a) Express \overrightarrow{OP} in therms of **a** and **b**.
- (b) It is given that $|\mathbf{a}| = 45$, $|\mathbf{b}| = 20$ and $\cos \angle AOB = \frac{1}{4}$. Find
 - (i) $\mathbf{a} \cdot \mathbf{b}$,
 - (ii) $|\overrightarrow{OP}|$.

(5 marks)

13. **HKDSE Math M2 2017 Q10**

ABC is a triangle. D is the mid-point of AC. E is a point lying on BC such that BE : EC = 1 : r. AB produced and DE produced meet at the point F. It is given that DE : EF = 1 : 10. Let $\overrightarrow{OA} = 2\mathbf{i} + 3\mathbf{j} - 2\mathbf{k}$, $\overrightarrow{OB} = 4\mathbf{i} + 4\mathbf{j} - \mathbf{k}$, $\overrightarrow{OC} = 8\mathbf{i} - 3\mathbf{j} - 2\mathbf{k}$, where O is the origin.

- (a) By expressing \overrightarrow{AE} and \overrightarrow{AF} in terms of r, find r. (4 marks)
- (b) (i) Find $\overrightarrow{AD} \cdot \overrightarrow{DE}$.
 - (ii) Are B,D,C and F concyclic? Explain your answer.

(5 marks)

(c) Let $\overrightarrow{OP} = 3\mathbf{i} + 10\mathbf{j} - 4\mathbf{k}$. Denote the circumcentre of $\triangle BCF$ by Q. Find the volume of the tetrahedron ABPQ.

(3 marks)

14. HKDSE Math M2 2018 Q12

The position vectors of the points A, B, C and D are $4\mathbf{i} - 3\mathbf{j} + \mathbf{k}$, $-\mathbf{i} + 3\mathbf{j} - 3\mathbf{k}$, $7\mathbf{i} - \mathbf{j} + 5\mathbf{k}$ and $3\mathbf{i} - 2\mathbf{j} - 5\mathbf{k}$ respectively. Denote the plane which contains A, B and C by Π . Let E be the projection of D on Π .

- (a) Find
 - (i) $\overrightarrow{AB} \times \overrightarrow{AC}$,
 - (ii) the volume of the tetrahedron ABCD,
 - (iii) \overrightarrow{DE} .
 - (5 marks)
- (b) Let F be a point lying on BC such that DF is perpendicular to BC.
 - (i) Find \overrightarrow{DF} .
 - (ii) Is \overrightarrow{BC} perpendicular to \overrightarrow{EF} ? Explain your answer.
 - (5 marks)
- (c) Find the angle between $\triangle BCD$ and Π .
 - (3 marks)

15. HKDSE Math M2 2019 Q12

Let $\overrightarrow{OA} = \mathbf{i} - 4\mathbf{j} + 2\mathbf{k}$, $\overrightarrow{OB} = -5\mathbf{i} - 4\mathbf{j} + 8\mathbf{k}$ and $\overrightarrow{OC} = -5\mathbf{i} - 12\mathbf{j} + t\mathbf{k}$, where O is the origin and t is a constant. It is given that $|\overrightarrow{AC}| = |\overrightarrow{BC}|$.

(a) Find t.

(3 marks)

(b) Find $\overrightarrow{AB} \times \overrightarrow{AC}$.

(2 marks)

(c) Find the volume of the pyramid OABC.

(2 marks)

- (d) Denote the plane which contains A, B and C by Π . It is given that P, Q and R are points lying on Π such that $\overrightarrow{OP} = p\mathbf{i}$, $\overrightarrow{OQ} = q\mathbf{j}$ and $\overrightarrow{OQ} = r\mathbf{k}$. Let D be the projection of O on Π .
 - (i) Prove that $pqr \neq 0$.
 - (ii) Find \overrightarrow{OD} .
 - (ii) Let E be a point such that $\overrightarrow{OE} = \frac{1}{p}\mathbf{i} + \frac{1}{q}\mathbf{j} + \frac{1}{r}\mathbf{k}$. Describe the geometric relationship between D, E and O. Explain your answer.

(6 marks)

16. HKDSE Math M2 2020 Q12

Let $\overrightarrow{OP} = \mathbf{i} + \mathbf{j} + 4\mathbf{k}$ and $\overrightarrow{OQ} = 5\mathbf{i} - 7\mathbf{j} - 4\mathbf{k}$, where O is the origin.

R is a point lying on PQ such that PR: RQ = 1:3.

(a) Find $\overrightarrow{OP} \times \overrightarrow{OR}$.

(2 marks)

- (b) Define $\overrightarrow{OS} = \overrightarrow{OP} + \overrightarrow{OR}$. Find the area of the quadrilateral OPSR. (2 marks)
- (c) Let N be a point such that $\overrightarrow{ON} = \lambda(\overrightarrow{OP} \times \overrightarrow{OR})$, where λ is a real number.
 - (i) Is \overrightarrow{NR} perpendicular to \overrightarrow{PQ} ? Explain your answer.
 - (ii) Let μ be a real number such that \overrightarrow{NQ} is parallel to $11\mathbf{i} + \mu\mathbf{j} 10\mathbf{k}$.
 - (1) Find λ and μ .
 - (2) Denote the angle between $\triangle OPQ$ and $\triangle NPQ$ by θ . Find $\tan \theta$.

(8 marks)

17. HKDSE Math M2 2021 Q12

The position vectors of the points A, B, C and D are $t\mathbf{i}+14\mathbf{j}+s\mathbf{k}$, $12\mathbf{i}-s\mathbf{j}-2\mathbf{k}$, $(s+2)\mathbf{i}-16\mathbf{j}+10\mathbf{k}$ and $-t\mathbf{i}+(s+2)\mathbf{j}+14\mathbf{k}$ respectively, where s, $t \in \mathbb{R}$. Suppose that \overrightarrow{AB} is parallel to $5\mathbf{i}-4\mathbf{j}-2\mathbf{k}$. Denote the plane which contains A, B and C by Π .

- (a) Find
 - (i) s and t,

- (ii) the area of $\triangle ABC$,
- (iii) the volume of the tetrahedron ABCD,
- (iv) the shortest distance from D to Π .
- (9 marks)
- (b) Let E be the projection of D on Π . Is E the circumcentre of $\triangle ABC$? Explain your answer. (4 marks)

18. HKDSE Math M2 2022 Q12

Consider $\triangle ABC$. Denote the origin by O.

- (a) Let D be a point lying on BC such that AD is the angle bisector of $\angle BAC$. Define BC = a, AC = b and AB = c.
 - (i) Using the fact that BD:DC=c:b, prove that

$$\overrightarrow{AD} = -\overrightarrow{OA} + \frac{b}{b+c}\overrightarrow{OB} + \frac{c}{b+c}\overrightarrow{OC}.$$

(ii) Let E be a point lying on AC such that BE is the angle bisector of $\angle ABC$. Define

$$\overrightarrow{OJ} = \frac{a}{a+b+c}\overrightarrow{OA} + \frac{b}{a+b+c}\overrightarrow{OB} + \frac{c}{a+b+c}\overrightarrow{OC}.$$

Prove that J lies on AD. Hence, deduce that AD and BE intersect at J.

(7 marks)

- (b) Suppose that $\overrightarrow{OA} = 35\mathbf{i} + 9\mathbf{j} + \mathbf{k}$, $\overrightarrow{OB} = 40\mathbf{i} 3\mathbf{j} + \mathbf{k}$ and $\overrightarrow{OC} = -3\mathbf{j} + \mathbf{k}$. Let I be the incentre of $\triangle ABC$.
 - (i) Find \overrightarrow{OI} .
 - (ii) By considering $\overrightarrow{AI} \times \overrightarrow{AB}$, find the radius of the inscribed circle of $\triangle ABC$.
 - (5 marks)

19. HKDSE Math M2 2023 Q10

Let O be the origin. The position vectors of P and Q are $-2\mathbf{i} - \mathbf{k}$ and $2\mathbf{i} - \mathbf{j} + \mathbf{k}$ respectively. Denote the circle passing through O, P and Q by C. Let R be a point lying on PQ such that OR is perpendicular to OQ.

- (a) By considering the ratio of PR to RQ, find \overrightarrow{OR} . (3 marks)
- (b) OR produced meets C at another point S. Find \overrightarrow{OS} . (3 marks)
- (c) Let Π be the plane which contains C.
 - (i) Find a non-zero vector which is perpendicular to $\Pi.$
 - (ii) Let G be the center of C. Denote the projection of point A(-6, -22, 2) on Π by B. Describe the geometric relationship between O, B and G. Explain your answer.

(6 marks)