098311 Optimization 1 Spring 2018 HW 5

Chen Tessler 305052680 Orr Krupnik 302629027

May 17, 2018

Problem 1. Prove the following theorem:

Theorem.

- 1. Let $C_1, ..., C_k \subseteq \mathbb{R}^n$ be convex sets, and let $\mu_1, ..., \mu_k \in \mathbb{R}$. Then the set $\mu_1 C_1 + ... + \mu_k C_k$ is convex.
- 2. Let $C_i \in \mathbb{R}^{k_i}$, i = 1, ..., m be convex sets. Then the Gaussian product

$$C_1 \times C_2 \times ... \times C_m = \{(x_1, ..., x_m) : x_i \in C_i, i = 1, ..., m\}$$

is convex.

- 3. Let $M \subseteq \mathbb{R}^n$ be a convex set, and let $A \in \mathbb{R}^{m \times n}$. Then the set $A(M) = \{Ax : x \in M\}$ is convex.
- 4. Let $D \subseteq \mathbb{R}^m$ be convex, and let $A \in \mathbb{R}^{m \times n}$. Then the set

$$A^{-1}(D) = \{x \in \mathbb{R}^n : Ax \in D\}$$

is convex.

Solution

- 1. We shall prove by induction. Let us assume $C_1, C_2 \subseteq \mathbb{R}^n$ are convex sets and $\mu_1, \mu_2 \in \mathbb{R}$.
 - (*) Let x, y be two points contained in the set $\bar{C} = \mu_1 C_1 + \mu_2 C_2$:

$$x = \mu_1 x_1 + \mu_2 x_2 y = \mu_1 y_1 + \mu_2 y_2$$

where x_1, y_1 and x_2, y_2 are points contained in C_1, C_2 respectively.

$$z = \lambda x + (1 - \lambda)y = \mu_1 \lambda x_1 + \mu_2 \lambda x_2 + \mu_1 (1 - \lambda)y_1 + \mu_2 (1 - \lambda)y_2$$

= $\mu_1 (\lambda x_1 + (1 - \lambda)y_1) + \mu_2 (\lambda x_2 + (1 - \lambda)y_2)$
= $\mu_1 z_1 + \mu_2 z_2$

where $\lambda \in [0, 1]$. We have shown that $\forall x, y, \mu_1, \mu_2, \lambda$, the point z is a linear combination of two points z_1 and z_2 which are contained in C_1 and C_2 respectively. And as such $z \in \overline{C}$.

(**) We now assume that for some n > 2 the set $\hat{C} = \eta_1 C_1 + ... + \eta_n C_n$ is convex $\forall \eta_i \in \mathbb{R}$. Observe the set $\bar{C} = \gamma_1 \hat{C} + \gamma_2 C_{n+1}$. This set is convex as shown in (*). In addition, notice that we can write \bar{C} in the following way:

$$\bar{C} = \gamma_1 \hat{C} + \gamma_2 C_{n+1} = \gamma_1 (\eta_1 C_1 + \dots + \eta_n C_n) + \gamma_2 C_{n+1} = \lambda_1 C_1 + \dots + \lambda_n C_n + \lambda_{n+1} C_{n+1}$$

where $\lambda_i = \eta_i \gamma_1 \ \forall i \leq n, \ \lambda_{n+1} = \gamma_2.$

2. Consider two vectors in the Gaussian product of $C_i \in \mathbb{R}^{k_i}$, i = 1, ..., m: $x = (x_1, ..., x_m), x_i \in C_i$ and $y = (y_1, ..., y_m), y_i \in C_i$. Then, for any $\lambda \in [0, 1]$ we have:

$$\lambda x + (1 - \lambda)y = (\lambda x_1, ..., \lambda x_m) + ((1 - \lambda)y_1, ..., (1 - \lambda)y_m) =$$

$$= (\lambda x_1 + (1 - \lambda)y_1, ..., \lambda x_m + (1 - \lambda)y_m) \triangleq (z_1, ..., z_m)$$

Since each of the sets C_i is in itself convex, we have $z_i \in C_i \forall i$ and therefore the resulting vector z is also in the Gaussian product of all C_i , and the Gaussian product is convex.

3. Observe two vectors $x, y \in M$. We denote $z = \lambda x + (1 - \lambda y) \in M$ for $\lambda \in [0, 1]$ by the definition of a convex set.

$$Az = A(\lambda x + (1 - \lambda y)) = \lambda Ax + (1 - \lambda)Ay$$

As for any point $z \in M$, Az is shown to be a linear combination of two points Ax, $Ay \in A(M)$ then by definition A(M) is convex.

4. Let $x, y \in A^{-1}(D)$. Let $\lambda \in [0, 1]$ and $z = \lambda x + (1 - \lambda)y$.

$$Az = A(\lambda x + (1 - \lambda)y) = \lambda Ax + (1 - \lambda)Ay$$

as $Ax, Ay \in D$ then $Az \in D$ as a linear combination of two points in D (for D is convex). Hence by definition, $z \in A^{-1}(D)$ and as such, by definition, $A^{-1}(D)$ is convex.

Problem 2. Let $a, b \in \mathbb{R}^n$, $(a \neq b)$. For what values of μ is the following set convex?

$$S_{\mu} = \{x \in \mathbb{R}^n : ||x - a|| \le \mu ||x - b||\}$$

Solution

A set is convex if for any $s_1, s_2 \in S_{\mu}$ and $\lambda \in [0, 1], s_{\lambda} = \lambda s_1 + (1 - \lambda)s_2 \in S_{\mu}$.

(I) Initially, we show that for $\mu > 1$ the set is non-convex: For any $\mu > 1$, we define $y = \frac{b - \lambda a}{1 - \lambda}$. We now have for $\lambda = \frac{1}{\mu} < 1$:

$$||y - a|| = ||\frac{b - \lambda a}{1 - \lambda} - a|| = \frac{1}{\lambda} ||\frac{\lambda (b - \lambda a)}{1 - \lambda} - \lambda a|| = \mu ||\frac{\lambda b - \lambda a}{1 - \lambda}||$$

$$= \mu ||\frac{\lambda b - \lambda a + (1 - \lambda)b - (1 - \lambda)b}{1 - \lambda}|| = \mu ||\frac{b - \lambda a}{1 - \lambda} - b|| = \mu ||y - b||$$

The consequence of the above equality is $y \in S_{\mu}$. Notice that the point a by definition is also in the set S_{μ} . However, $b \notin S_{\mu} \ \forall \mu$ as ||b-b|| = 0 and as $a \neq b : ||a-b|| > 0$. We have found two points in S_{μ} : a, y and a third point $b \notin S_{\mu}$ where $b = (1 - \lambda)y + \lambda a$. Hence by definition S_{μ} is non-convex for any $\mu > 1$.

(II) Consider the scenario where $\mu = 1$. Due to symmetry, we assume that: $a = (1, 0, ..., 0)^T$, $b = (-1, 0, ..., 0)^T$. As for any two points a, b this can be reached through scaling, rotation and shift of the axis - operations which do not change the relative distance between points.

We denote the i-th index of the vector x by x_i . Notice that for any vector x such that $-1 < x_1 < 0$

$$||x - a||^2 = \sum_{i=1}^n (x_i - a_i)^2 = (x_1 - a_1)^2 + \sum_{i=2}^n (x_i - a_i)^2$$
$$> (x_1 - b_1)^2 + \sum_{i=2}^n (x_i - a_i)^2 = ||x - b||^2 \Rightarrow x \notin S_\mu$$

additionally, for $x_1 < -1$

$$||x - a||^2 = \sum_{i=1}^n (x_i - a_i)^2 = (x_1 - a_1)^2 + \sum_{i=2}^n (x_i - a_i)^2 = (x_1 - b_1)^2 + (a_1 - b_1)^2 + \sum_{i=2}^n (x_i - a_i)^2$$

$$> (x_1 - b_1)^2 + \sum_{i=2}^n (x_i - a_i)^2 = (x_1 - b_1)^2 + \sum_{i=2}^n (x_i - b_i)^2 = ||x - b||^2 \Rightarrow x \notin S_{\mu}$$

However, for any x such that x > 1

$$||x - a||^2 = \sum_{i=1}^n (x_i - a_i)^2 = (x_1 - a_1)^2 + \sum_{i=2}^n (x_i - a_i)^2 < (a_1 - b_1)^2 + (x_1 - a_1)^2 + \sum_{i=2}^n (x_i - a_i)^2$$
$$= (x_1 - b_1)^2 + \sum_{i=2}^n (x_i - a_i)^2 = \sum_{i=1}^n (x_i - a_i)^2 = ||x - b||^2 \Rightarrow x \in S_\mu$$

We have shown that for $\mu = 1$, any point which resides on the right half-space defined by $\{x \in \mathbb{R}^n : x_1 > 0\}$ is contained in the set S_{μ} . As the half-space is by definition convex and any point outside of the half-space is not in S_{μ} we conclude that for $\mu = 1$ the set S_{μ} is convex.

(III) We now show that $\forall 0 \leq \mu < 1$ the set S_{μ} is indeed convex.

Let us look at the set S_{μ} . The set is defined by the inequality:

$$||x - a|| \le \mu ||x - b||$$

$$||x - a||^2 \le \mu^2 ||x - b||^2$$

$$||x - a||^2 - \mu^2 ||x - b||^2 \le 0$$

$$x^T x - 2x^T a + a^T a - \mu^2 x^T x + 2\mu^2 x^T b - \mu^2 b^T b \le 0$$

$$x^T [(1 - \mu^2)x - 2a + 2\mu^2 b] \le \mu^2 b^T b - a^T a$$

$$(*)(1 - \mu^2)x^T \left[x - 2\frac{a - \mu^2 b}{1 - \mu^2} \right] \le \mu^2 b^T b - a^T a$$

$$x^T \left[x - 2\frac{a - \mu^2 b}{1 - \mu^2} \right] \le \frac{\mu^2 b^T b - a^T a}{1 - \mu^2}$$

$$x^T (x - x_0) - x^T x_0 + x_0^T x_0 - x_0^T x_0 \le \frac{\mu^2 b^T b - a^T a}{1 - \mu^2}$$

$$(x - x_0)^T (x - x_0) = ||x - x_0||^2 \le \underbrace{\frac{\mu^2 b^T b - a^T a}{1 - \mu^2}}_{B^2}$$

Where (*) is true since $\mu < 1$ and $x^T x = ||x||^2 > 0$. Notice the following regarding R^2 :

$$R^{2} = \frac{\mu^{2}b^{T}b - a^{T}a}{1 - \mu^{2}} + x_{0}^{T}x_{0} = \frac{(1 - \mu^{2})(\mu^{2}b^{T}b - a^{T}a) + a^{T}a + \mu^{4}b^{T}b - 2\mu^{2}a^{T}b}{(1 - \mu^{2})^{2}}$$

$$= \frac{\mu^{2}b^{T}b - a^{T}a - \mu^{4}b^{T}b + \mu^{2}a^{T}a + a^{T}a + \mu^{4}b^{T}b - 2\mu^{2}a^{T}b}{(1 - \mu^{2})^{2}}$$

$$= \frac{\mu^{2}b^{T}b + \mu^{2}a^{T}a - 2\mu^{2}a^{T}b}{(1 - \mu^{2})^{2}} = \frac{\mu^{2}}{(1 - \mu^{2})^{2}}||a - b|| > 0$$

Hence, we have shown that all $S_{\mu} = B(x_0, R)$, a ball centered at x_0 with radius R. A ball is convex and as such by definition for $\mu < 1$ the set S_{μ} is convex.

Note the special case where $\mu = 0$: we receive a ball of radius 0, which is a point in \mathbb{R}^n and therefore convex (by definition).

(IV) A final case we should consider is $\mu < 0$. In this case, since norms are non-negative, we have $S_{\mu} = \emptyset$. The empty set is trivially convex.

Following the above (I), (II), (III) and (IV) we conclude that the set S_{μ} is convex for all $\mu \leq 1$.

Problem 3. Show that the conic hull of the set

$$S = \{(x_1, x_2) : (x_1 - 1)^2 + x_2^2 = 1\}$$

is the set:

$$\{(x_1, x_2) : x_1 > 0\} \bigcup \{(0, 0)\}$$

Solution The conic hull of a set S is the set comprising of all conic combinations of vectors in S. Therefore, to show the required result, we show that for any vector $z = (z_1, z_2) : z_1 > 0$ we can represent it as a conic combination of vectors in S. Specifically, we shall show that for every such z, we can represent it as $(z_1, z_2) = (\eta x_1, \eta x_2)$ such that $(x_1, x_2) \in S$. We have:

$$(x_1 - 1)^2 + x_2^2 = 1 \iff \left(\frac{z_1}{\eta} - 1\right)^2 + \frac{z_2^2}{\eta^2} = 1 \iff \frac{z_1^2}{\eta^2} - 2\frac{z_1}{\eta} + 1 + \frac{z_2^2}{\eta^2} = 1$$
$$\iff z_1^2 - 2\eta z_1 + z_2^2 = 0 \iff \eta = \frac{z_1^2 + z_2^2}{2z_1}$$

Therefore, as long as $z_1 > 0$, there exists some $\eta \in \mathbb{R}_+$ such that z is a conic combination of some vector in x. Additionally, since for any $\eta \geq 0$ we have $z_1 \geq 0$, no conic combination of vectors in S would create a vector in which $z_1 \leq 0$.

Finally, the point (0,0) is also included in the cone(S) since it is in S (and also, $\eta = 0$ for some other point in S would give the same result).

Problem 4. Let S be a nonempty set in \mathbb{R}^n and let $\bar{x} \in S$. Consider the set $C_{\bar{x}} = \{y : y = \lambda(x - \bar{x}), \lambda \geq 0, x \in S\}$.

- a Show that $C_{\bar{x}}$ is a cone and interpret it geometrically.
- b Show that $C_{\bar{x}}$ is convex if S is convex.
- c Suppose that S is closed. Is it necessarily true that $C_{\bar{x}}$ is closed? If not, under what conditions would it be closed?

Solution

a The set $C_{\bar{x}}$ satisfies the cone property, and is therefore a cone:

$$\forall y \in C_{\bar{x}}, \forall \mu \ge 0 : \mu y = \mu \lambda (x - \bar{x}) \triangleq \eta (x - \bar{x}) \in C_{\bar{x}} \Leftarrow \eta \ge 0$$

Geometrically, $C_{\bar{x}}$ is the cone created by the set S shifted around \bar{x} , or to be exact, the conic hull of the set S shifted around \bar{x} .

b For $C_{\bar{x}}$ to be convex, we have seen in the lecture that it is enough to show $y+z\in C_{\bar{x}}$ for any $y,z\in C_{\bar{x}}$ (since we have already shown that $C_{\bar{x}}$ is a cone).

$$y + z = \lambda_y (x_y - \bar{x}) + \lambda_z (x_z - \bar{x}) = \lambda_y x_y + \lambda_z x_z - (\lambda_y + \lambda_z) \bar{x} =$$

$$= (\lambda_y + \lambda_z) \left[\frac{\lambda_y}{\lambda_y + \lambda_z} x_y + \frac{\lambda_z}{\lambda_y + \lambda_z} x_z - \bar{x} \right] (*)$$

We now define $\eta = \frac{\lambda_y}{\lambda_y + \lambda_z}$. Note $\eta \in [0, 1]$, and therefore, if S is convex, we have $x_* \triangleq \frac{\lambda_y}{\lambda_y + \lambda_z} x_y + \frac{\lambda_z}{\lambda_y + \lambda_z} x_z = \eta x_y + (1 - \eta) x_z \in S$. Now, we can continue from (*):

$$(*) = (\lambda_y + \lambda_z)(x_* - \bar{x}) \in C_{\bar{x}}$$

denoting $\mu = \lambda_y + \lambda_z \ge 0$, and since $x_* \in S$, we have by definition that $y + z \in C_{\bar{x}}$.

c $C_{\bar{x}}$ is not necessarily closed if S is closed. For instance, consider $S = \{(x_1, x_2) : x_1^2 + x_2^2 = 1\}$ (which is a closed set), with $\bar{x} = (1,0)$. The set $C_{\bar{x}}$ is then the conic hull of the set from question 3, therefore, as we've shown, it is $\{(x_1, x_2) : x_1 > 0\} \bigcup \{(0,0)\}$, which is not closed (since it does not include the x_2 axis).

Requirements for $C_{\bar{x}}$ to be closed: Note that when $\bar{x} \notin \overline{S}$ (the closure of S) then $C_{\bar{x}}$ spans the entire space and as such is closed. However, when $\bar{x} \in \overline{S}$, the set is closed iff the tangent to the set S at \bar{x} does not exist or it exists but has points that are also inside the set S.

Problem 5. Let $C \subseteq \mathbb{R}^n$ be a solution set of a quadratic inequality.

$$C = \{x \in \mathbb{R}^n : x^T A x + b^T x + c \le 0\}$$

with $A \in \mathbb{R}^{n \times n}$, $b \in \mathbb{R}^n$ and $c \in \mathbb{R}$. Show that the intersection of C and the hyperplane defined by $g^T x + h = 0$ (where $g \neq 0$) is convex if $A + \lambda g g^T \succeq 0$ for some $\lambda \in \mathbb{R}$.

Solution First, we present a lemma:

Lemma A. set C is convex iff its intersection with any arbitrary line $\hat{x}+tv, t \in \mathbb{R}$ is convex.

Proof. (*) Consider the set C and an arbitrary line $f(x,y) = x + \eta y$, where x is a constant point, y defines the direction and $\eta \in \mathbb{R}$. Following the definition of a convex set, for any two points a, b residing on the line f(x, y) which are contained inside the set C, the point $p = \lambda a + (1 - \lambda)b$ is also contained in the set (for $\lambda \in [0, 1]$). This holds for any point x, and direction y.

(**) Note that the set of lines defined by $F = \{f(x, y), \forall x \in C, y \in \mathbb{R}^n, \eta\}$ spans all possible lines intersecting with the set C. If the intersection of f with C defines a convex sub-set $\forall f \in F$ then by definition we conclude that C is convex.

(***) Additionally, if C is convex, any two points $a, b \in C$ have $p = \lambda a + (1 - \lambda)b \in C$ for all $\lambda \in [0, 1]$. All three points (a, b, p) are also on some line $f \in F$, and therefore are also on the intersection of this line with C, making the intersection convex as well.

Let us define the set $H = \{x : g^Tx + h = 0\}$. Following our lemma, we note that if the intersection of all arbitrary lines $x + \eta y$ (where $x \in H \cap C$ and $x + \eta y \in H$) with C results in a convex sub-set then the set C is itself convex.

We begin by selecting some arbitrary line and then show for the private case in which $x \in H \cap C$:

$$(x + \eta y)^{T} A(x + \eta y) + b^{T} (x + \eta y) + c \le 0$$

$$\iff x^{T} A x + \eta x^{T} A y + \eta y^{T} A x + \eta^{2} y^{T} A y + b^{T} x + \eta b^{T} y + c \le 0$$

$$\iff y^{T} A y \eta^{2} + (x^{T} A y + y^{T} A x + b^{T} y) \eta + x^{T} A x + b^{T} x + c \le 0(*)$$

The resulting inequality (*), together with the requirement $g^T(x+\eta y)+h=0$ is an alternate definition of the set $C\cap H$. The set defined by (*) is a one dimensional quadratic function

in η , and is therefore convex if $y^T A y \geq 0$.

WLOG, we can select x to be in the intersection $C \cap H$, meaning: $g^T x + h = 0$. Therefore, the requirement $g^T(x + \eta y) + h = 0$ gives us $g^T y = 0$.

Now, since we know $A + \lambda gg^T \succeq 0$, we have $y^T(A + \lambda gg^T)y \geq 0$ for any $y \in \mathbb{R}^n$. For our y, however, we have $g^Ty = 0$, and therefore:

$$y^{T}Ay + \lambda y^{T}gg^{T}y \ge 0$$
$$y^{T}Ay + \lambda (g^{T}y)^{T}g^{T}y \ge 0$$
$$y^{T}Ay \ge 0$$

And therefore the set is convex.

Problem 6.

- 1. Show that the extreme points of $\Delta_n = \{x : \sum_{i=1}^n x_i = 1, x_i \geq 0\}$ are given by $\{e_1, ..., e_n\}$.
- 2. Prove that the extreme points of $\{x: ||x||_{\infty} \leq 1\}$ are given by $\{-1,1\}^n$.
- 3. For each of the following sets specify the corresponding extreme points (no need to provide a formal proof):

(a)
$$\left\{ x \in \mathbb{R}^2 : x_1^2 + x_2^2 \le 1, \max_{i=1,2} |x_i| \le \frac{1}{\sqrt{2}+1} \right\}$$

(b)
$$\{(x_1, x_2) : 64x_1^2 + 36x_2^2 + 96x_1x_2 - 32x_1 - 24x_2 + 4 \le 0, x_1 \ge 0, x_2 \ge 0\}$$

(c)
$$\left\{ x \in \mathbb{R}^4 : \begin{pmatrix} 1 & 6 & -1 & 0 \\ 3 & 0 & 0 & -1 \end{pmatrix} x = \begin{pmatrix} 9 \\ 2 \end{pmatrix}, x \ge 0 \right\}$$

Solution

- 1. Let us define $A = (1, ..., 1) \in \mathbb{R}^{1 \times n}$, and $b = 1 \in \mathbb{R}^1$. Then, the set Δ_n can be defined as $\Delta_n = \{x : Ax = b, x_i \geq 1\}$. Now, since all the colums of A are linearly dependant, the only basic feasible solutions \bar{x} are ones for which only one element of \bar{x} is non-zero. The requirement that $\sum_{i=1}^n x_i = 1$ dictates that this single non-zero element is 1. Therefore, all the bfs's of the problem defined by the set are exactly $\{e_1, ..., e_n\}$. As we have seen in lecture 6 slide 31, for this type of set \bar{x} is a bfs if and only if it is an extreme points, and therefore all of the extreme points of Δ_n are $\{e_1, ..., e_n\}$.
- 2. First, we shall prove that a point in the set but not in $\{-1,1\}^n$ cannot be an extreme point. Let us assume such an extreme point x exists, then at least one element $|x_i| < 1$, meaning $-1 < x_i < 1$. Consider two vectors: $x' = (x_1, ..., x_{i-1}, 1, x_{i+1}, ..., x_n \text{ and } x'' = (x_1, ..., x_{i-1}, -1, x_{i+1}, ..., x_n)$. We can represent our vector as $x = \frac{x_i+1}{2}x' + (1-\frac{x_i+1}{2})x''$. Since $0 < \frac{x_i+1}{2} < 1$, our point x cannot be an extreme point. Now, let us verify that a point in $\{-1,1\}^n$ is indeed an extreme point. Let us look at a point $y \in \{-1,1\}^n$. Assuming y is not an extreme point, there exist some $y' \neq y''$

in the set and $\lambda \in (0,1)$ such that $y = \lambda y' + (1-\lambda)y''$. Then, for some element y_i we have $y_i' \neq y_i''$, and then:

$$\pm 1 = y_i = \lambda y_i' + (1 - \lambda)y_i''$$

$$1 = |y_i| = |\lambda y_i' + (1 - \lambda)y_i''| \le \lambda |y_i'| + (1 - \lambda)|y_i''| \stackrel{(*)}{\le} \max\{|y_i'|, |y_i''|\} \le 1$$

The inequality (*) arises since $y'_i \neq y''_i$ and $\lambda \in (0,1)$, and therefore we get a contradiction (1 < 1), and y must be an extreme point.

Finally, (i) we have shown that any point $x \in \{x : ||x||_{\infty} \le 1\}$ in which one or more indices satisfy $|x_i| < 1$ is an interior point of the set $\{x : ||x||_{\infty} \le 1\}$. Additionally, we have shown (ii) that any point x in which all indices $x_i = \pm 1$, is in-fact an extreme point. Combining (i) and (ii) we conclude that $x = \{-1, 1\}^n$ is the set of extreme points.

3. (a) Note that when $|x_1| = |x_2| = \frac{1}{\sqrt{2}+1}$ then:

$$x_1^2 + x_2^2 = \frac{2}{(\sqrt{2} + 1)^2} = \frac{2}{2 + 2\sqrt{2} + 1} = \frac{2}{3 + 2\sqrt{2}} < 1$$

Hence the extreme points of the set are:

$$\left(-\frac{1}{\sqrt{2}+1},-\frac{1}{\sqrt{2}+1}\right),\left(-\frac{1}{\sqrt{2}+1},\frac{1}{\sqrt{2}+1}\right),\left(\frac{1}{\sqrt{2}+1},\frac{1}{\sqrt{2}+1}\right),\left(\frac{1}{\sqrt{2}+1},-\frac{1}{\sqrt{2}+1}\right)$$

(b) Note that:

$$64x_1^2 + 36x_2^2 + 96x_1x_2 - 32x_1 - 24x_2 + 4 \le 0$$

$$\Rightarrow (8x_1 + 6x_2 - 2)^2 \le 0$$

The above is non-negative and as such the set is defined by the points which satisfy $8x_1 + 6x_2 - 2 = 0$, $x_1, x_2 \ge 0$. For $x_1 = 0$ we have that $x_2 = \frac{2}{6} = \frac{1}{3}$ and for $x_2 = 0$ we have that $x_1 = \frac{2}{8} = \frac{1}{4}$ and these are the extreme points $(0, \frac{1}{4}), (\frac{1}{3}, 0)$.

(c)
$$\left\{ x \in \mathbb{R}^4 : \left(\begin{array}{ccc} 1 & 6 & -1 & 0 \\ 3 & 0 & 0 & -1 \end{array} \right) x = \left(\begin{array}{c} 9 \\ 2 \end{array} \right), x \ge 0 \right\}$$

we have the following equations:

$$x_1 + 6x_2 - x_3 = 9$$
$$3x_1 - x_4 = 2$$
$$x_i \ge 0 \ \forall i$$

Note that $x_1 \neq 0$. We know that BFSs are extreme points, hence the following solutions satisfy the requirements of a BFS:

$$x_2 = x_3 = 0$$
, $x_1 = 9$, $x_4 = 25$
 $x_3 = x_4 = 0$, $x_1 = \frac{2}{3}$, $x_2 = \frac{25}{18}$

any other solution is not a BFS (as any combination of more than 2 columns is linearly dependent), and as such the two solutions above are the extreme points of the set.