Supersymmetric Models implemented in SARAH

Version 2.2

Florian Staub Institut für Theoretische Physik und Astrophysik, Würzburg florian.staub@physik.uni-wuerzburg.de

November 15, 2010

${f Abstract}$	
${\bf Abstract}$ This is an overview of all models which are part of the Mathematica package SARAH.	

Contents

1	Mir	nimal Supersymmetric Standard Model
	1.1	Superfields
		1.1.1 Vector Superfields
		1.1.2 Chiral Superfields
	1.2	Superpotential and Lagrangian
		1.2.1 Superpotential
		1.2.2 Softbreaking terms
		1.2.3 Gauge fixing terms
		Gauge fixing terms for eigenstates 'GaugeES'
		Gauge fixing terms for eigenstates 'EWSB'
		1.2.4 Fields integrated out
	1.3	Field Rotations
		1.3.1 Rotations in gauge sector for eigenstates 'EWSB'
		1.3.2 Rotations in Mass sector for eigenstates 'EWSB'
		Mass Matrices for Scalars
		Mass Matrices for Fermions
	1.4	Vacuum Expectation Values
	1.5	Tadpole Equations
	1.6	Particle content for eigenstates 'EWSB'
	1.7	Modelfile for SARAH
	1.8	Implementation in SARAH
	1.0	1.8.1 Particles for eigenstates 'GaugeES'
		1.8.2 Particles for eigenstates 'EWSB'
		1.8.3 Parameters
2	Mir	nimal Supersymmetric Standard Model without flavor violation
	2.1	Superfields
		2.1.1 Vector Superfields
		2.1.2 Chiral Superfields
	2.2	Superpotential and Lagrangian
		2.2.1 Superpotential
		2.2.2 Softbreaking terms
		2.2.3 Gauge fixing terms
		Gauge fixing terms for eigenstates 'GaugeES'
		Gauge fixing terms for eigenstates 'EWSB'
		2.2.4 Fields integrated out
	2.3	Field Rotations
	2.0	110/4 2000/2010/10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

		2.3.1	Rotations in gauge sector for eigenstates 'EWSB'	Ω
		2.3.2	Rotations in Mass sector for eigenstates 'EWSB' 3	
			Mass Matrices for Scalars	
			Mass Matrices for Fermions	
	2.4	Vacuu	m Expectation Values	5
	2.5	Tadpo	le Equations	6
	2.6	-	le content for eigenstates 'EWSB'	6
	2.7		file for SARAH	
	2.8		mentation in SARAH	
	2.0	-		
		2.8.1	0 0	
		2.8.2	Particles for eigenstates 'EWSB'	
		2.8.3	Parameters	5
	ъ .г.		1	_
3			Supersymmetric Standard Model in SCKM basis fields	
	3.1			
		3.1.1	Vector Superfields	
		3.1.2	Chiral Superfields	
	3.2	Superp	potential and Lagrangian	6
		3.2.1	Superpotential	6
		3.2.2	Softbreaking terms	7
		3.2.3	Gauge fixing terms	.7
			Gauge fixing terms for eigenstates 'GaugeES'	
			Gauge fixing terms for eigenstates 'EWSB'	
		3.2.4	Fields integrated out	
	2.2	-	8	
	3.3			
		3.3.1	Rotations in gauge sector for eigenstates 'EWSB' 4	
		3.3.2	Rotations in Mass sector for eigenstates 'EWSB'	
			Mass Matrices for Scalars	
			Mass Matrices for Fermions	
	3.4	Vacuu	m Expectation Values	2
		3.4.1	VEVs for eigenstates 'EWSB' 5	2
	3.5	Tadpo	le Equations	2
		3.5.1	Tadpole Equations for eigenstates 'SCKM'	
		3.5.2	Tadpole Equations for eigenstates 'EWSB'	
	3.6		le content for eigenstates 'EWSB'	
	3.7		file for SARAH	
	3.8	Impler	mentation in SARAH	
			Particles for eigenstates 'GaugeES'	
		3.8.2	Particles for eigenstates 'SCKM'	
		3.8.3	Particles for eigenstates 'EWSB'	0
		3.8.4	Parameters	1
4	Min		Supersymmetric Standard Model with CP violation 6	
	4.1	Superf	m fields	3
		4.1.1	Vector Superfields	3
		4.1.2	Chiral Superfields	3
	4.2		potential and Lagrangian	
		4.2.1	Superpotential	
		4.2.2	Softbreaking terms	
		1.4.4	- NOTEO DOMING COLIND	1

CONTENTS

		4.2.3	Gauge fixing terms	64
			Gauge fixing terms for eigenstates 'GaugeES'	
			Gauge fixing terms for eigenstates 'EWSB'	
		4.2.4	Fields integrated out	64
	4.3		Rotations	64
	1.0	4.3.1	Rotations in gauge sector for eigenstates 'EWSB'	64
		4.3.1	Rotations in Mass sector for eigenstates 'EWSB'	65
		4.3.2		65
			Mass Matrices for Scalars	
		T 7	Mass Matrices for Fermions	67
	4.4		m Expectation Values	69
	4.5	_	le Equations	69
	4.6		le content for eigenstates 'EWSB'	69
	4.7		file for SARAH	71
	4.8	Imple	mentation in SARAH	74
		4.8.1	Particles for eigenstates 'GaugeES'	74
		4.8.2	Particles for eigenstates 'EWSB'	76
		4.8.3	Parameters	77
5	Min	imal S	Supersymmetric Standard Model with Heavy gluino	7 8
	5.1	Superf	fields	78
		5.1.1	Vector Superfields	78
		5.1.2	Chiral Superfields	78
	5.2	Super	potential and Lagrangian	78
		5.2.1	Superpotential	78
		5.2.2	Softbreaking terms	79
		5.2.3	Gauge fixing terms	79
		3.2.3	Gauge fixing terms for eigenstates 'GaugeES'	79
			Gauge fixing terms for eigenstates 'EWSB'	79
		5.2.4	Fields integrated out	79
	5.3	-	Rotations	79
	ე.ე	5.3.1		79
			Rotations in gauge sector for eigenstates 'EWSB'	
		5.3.2	Rotations in Mass sector for eigenstates 'EWSB'	80
			Mass Matrices for Scalars	80
	J ,		Mass Matrices for Fermions	82
	5.4		m Expectation Values	
	5.5		le Equations	
			le content for eigenstates 'EWSB'	
	5.7		file for SARAH	85
	5.8	Impler	mentation in SARAH	88
		5.8.1	Particles for eigenstates 'GaugeES'	88
		5.8.2	Particles for eigenstates 'EWSB'	89
		5.8.3	Parameters	90
3	The	MSSI	M with bilinear R-parity violation	92
	6.1	Superf	${ m fields}$	92
		6.1.1	Vector Superfields	92
		6.1.2	Chiral Superfields	92
	6.2	Superi	potential and Lagrangian	92
			Superpotential	

		6.2.2	Softbreaking terms
		6.2.3	Gauge fixing terms
			Gauge fixing terms for eigenstates 'GaugeES'
			Gauge fixing terms for eigenstates 'EWSB' 93
		6.2.4	Fields integrated out
	6.3	Field :	Rotations
		6.3.1	Rotations in gauge sector for eigenstates 'EWSB'
		6.3.2	Rotations in Mass sector for eigenstates 'EWSB'
			Mass Matrices for Scalars
			Mass Matrices for Fermions
	6.4	Vacuu	m Expectation Values
	6.5	Tadpo	le Equations
	6.6	Partic	le content for eigenstates 'EWSB'
	6.7	Model	file for SARAH
	6.8	Implei	mentation in SARAH
		6.8.1	Particles for eigenstates 'GaugeES'
		6.8.2	Particles for eigenstates 'EWSB'
		6.8.3	Parameters
7	\mathbf{The}	MSSI	M with R-parity and lepton number violation 108
	7.1	Superi	m fields
		7.1.1	Vector Superfields
		7.1.2	Chiral Superfields
	7.2	Super	potential and Lagrangian
		7.2.1	Superpotential
		7.2.2	Softbreaking terms
		7.2.3	Gauge fixing terms
			Gauge fixing terms for eigenstates 'GaugeES'
			Gauge fixing terms for eigenstates 'EWSB'
		7.2.4	Fields integrated out
	7.3	Field :	Rotations
		7.3.1	Rotations in gauge sector for eigenstates 'EWSB'
		7.3.2	Rotations in Mass sector for eigenstates 'EWSB'
			Mass Matrices for Scalars
			Mass Matrices for Fermions
	7.4	Vacuu	m Expectation Values
	7.5		le Equations
	7.6	_	le content for eigenstates 'EWSB'
	7.7		file for SARAH
	7.8		mentation in SARAH
	1.0	7.8.1	Particles for eigenstates 'GaugeES'
		7.8.2	Particles for eigenstates 'EWSB'
			Parameters
		7.8.3	- 1 at attended 5 - , , , , , , , , , , , , , , , , , ,

CONTENTS

8	\mathbf{The}	MSSM with R-parity and baryon number violation	124
	8.1	Superfields	124
		8.1.1 Vector Superfields	124
		8.1.2 Chiral Superfields	124
	8.2	Superpotential and Lagrangian	124
		8.2.1 Superpotential	124
		8.2.2 Soft breaking terms	125
		8.2.3 Gauge fixing terms	125
		Gauge fixing terms for eigenstates 'GaugeES'	125
		Gauge fixing terms for eigenstates 'EWSB'	$\frac{125}{125}$
	0.0	8.2.4 Fields integrated out	125
	8.3	Field Rotations	125
		8.3.1 Rotations in gauge sector for eigenstates 'EWSB'	125
		8.3.2 Rotations in Mass sector for eigenstates 'EWSB'	126
		Mass Matrices for Scalars	126
		Mass Matrices for Fermions	129
	8.4	Vacuum Expectation Values	130
	8.5	Tadpole Equations	130
	8.6	Particle content for eigenstates 'EWSB'	130
	8.7	Modelfile for SARAH	132
	8.8	Implementation in SARAH	135
		8.8.1 Particles for eigenstates 'GaugeES'	135
		8.8.2 Particles for eigenstates 'EWSB'	137
		8.8.3 Parameters	138
9	\mathbf{The}	Next-to-Minimal Supersymmetric Standard Model	139
	9.1	Superfields	139
		9.1.1 Vector Superfields	139
		9.1.2 Chiral Superfields	139
	9.2	Superpotential and Lagrangian	139
		9.2.1 Superpotential	139
		9.2.2 Softbreaking terms	140
		9.2.3 Gauge fixing terms	140
			140
		(Jame fixing terms for eigenstates 'GamgeES'	
		Gauge fixing terms for eigenstates 'GaugeES'	
		Gauge fixing terms for eigenstates 'EWSB'	140
	0.3	Gauge fixing terms for eigenstates 'EWSB'	$\frac{140}{140}$
	9.3	Gauge fixing terms for eigenstates 'EWSB'	140 140 140
	9.3	Gauge fixing terms for eigenstates 'EWSB' 9.2.4 Fields integrated out	140 140 140 140
	9.3	Gauge fixing terms for eigenstates 'EWSB' 9.2.4 Fields integrated out	140 140 140 140 141
	9.3	Gauge fixing terms for eigenstates 'EWSB' 9.2.4 Fields integrated out	140 140 140 140 141 141
		Gauge fixing terms for eigenstates 'EWSB' 9.2.4 Fields integrated out	140 140 140 140 141 141 144
	9.4	Gauge fixing terms for eigenstates 'EWSB' 9.2.4 Fields integrated out Field Rotations 9.3.1 Rotations in gauge sector for eigenstates 'EWSB' 9.3.2 Rotations in Mass sector for eigenstates 'EWSB' Mass Matrices for Scalars Mass Matrices for Fermions Vacuum Expectation Values	140 140 140 140 141 141 144 146
	9.4 9.5	Gauge fixing terms for eigenstates 'EWSB' 9.2.4 Fields integrated out Field Rotations 9.3.1 Rotations in gauge sector for eigenstates 'EWSB' 9.3.2 Rotations in Mass sector for eigenstates 'EWSB' Mass Matrices for Scalars Mass Matrices for Fermions Vacuum Expectation Values Tadpole Equations	140 140 140 140 141 141 144 146
	9.4	Gauge fixing terms for eigenstates 'EWSB' 9.2.4 Fields integrated out Field Rotations 9.3.1 Rotations in gauge sector for eigenstates 'EWSB' 9.3.2 Rotations in Mass sector for eigenstates 'EWSB' Mass Matrices for Scalars Mass Matrices for Fermions Vacuum Expectation Values Tadpole Equations Particle content for eigenstates 'EWSB'	140 140 140 141 141 144 146 146
	9.4 9.5	Gauge fixing terms for eigenstates 'EWSB' 9.2.4 Fields integrated out Field Rotations 9.3.1 Rotations in gauge sector for eigenstates 'EWSB' 9.3.2 Rotations in Mass sector for eigenstates 'EWSB' Mass Matrices for Scalars Mass Matrices for Fermions Vacuum Expectation Values Tadpole Equations	140 140 140 140 141 141 144 146
	9.4 9.5 9.6	Gauge fixing terms for eigenstates 'EWSB' 9.2.4 Fields integrated out Field Rotations 9.3.1 Rotations in gauge sector for eigenstates 'EWSB' 9.3.2 Rotations in Mass sector for eigenstates 'EWSB' Mass Matrices for Scalars Mass Matrices for Fermions Vacuum Expectation Values Tadpole Equations Particle content for eigenstates 'EWSB'	140 140 140 141 141 144 146 146
	9.4 9.5 9.6 9.7	Gauge fixing terms for eigenstates 'EWSB' 9.2.4 Fields integrated out Field Rotations 9.3.1 Rotations in gauge sector for eigenstates 'EWSB' 9.3.2 Rotations in Mass sector for eigenstates 'EWSB' Mass Matrices for Scalars Mass Matrices for Fermions Vacuum Expectation Values Tadpole Equations Particle content for eigenstates 'EWSB' Modelfile for SARAH	140 140 140 141 141 141 146 146 146

		9.8.3 Parameters	150
10		ι	52
	10.1	Superfields	
		r	152
		<u>.</u>	152
	10.2	Superpotential and Lagrangian	152
		10.2.1 Superpotential	152
		10.2.2 Softbreaking terms	153
		10.2.3 Gauge fixing terms	153
			153
			153
		10.2.4 Fields integrated out	153
	10.3		153
	10.0		153
			154
			154
			154 157
	10.4		157
	10.4		
	10 -		158
	10.5		158
		1 1	158
		1 1	159
			159
			161
	10.8	1	161
			161
			162
		10.8.3 Particles for eigenstates 'EWSB'	164
		10.8.4 Parameters	165
11	The	Next-to-Minimal Supersymmetric Standard Model with CP violation	66
	11.1	Superfields	166
		11.1.1 Vector Superfields	166
		•	166
	11.2	•	166
		1 1 0 0	166
		11.2.2 Softbreaking terms	
			167
		0 0	167
			167
	11 9	g .	$\frac{167}{167}$
	11.3		167
			167
		Θ	168
			168
			171
		<u>.</u>	173
	11.5	Tadpole Equations	173

${\bf CONTENTS}$

	11.6	Particle content for eigenstates 'EWSB'	173
			175
			175
		±	175
		9	176
			177
		11.0.0 I diamicology	111
12	The	Next-to-Minimal Supersymmetric Standard Model with two rotations in pseudo-scalar sec-	-
	\mathbf{tor}		179
	12.1	Superfields	179
			179
		12.1.2 Chiral Superfields	179
	12.2	Superpotential and Lagrangian	180
		12.2.1 Superpotential	180
		12.2.2 Softbreaking terms	180
		12.2.3 Gauge fixing terms	180
		Gauge fixing terms for eigenstates 'GaugeES'	180
		Gauge fixing terms for eigenstates 'TEMP'	180
		Gauge fixing terms for eigenstates 'EWSB'	180
			180
	10.0	12.2.4 Fields integrated out	
	12.3	Field Rotations	181
		12.3.1 Rotations in Mass sector for eigenstates 'EWSB'	181
		Mass Matrices for Scalars	181
		Mass Matrices for Fermions	181
		Vacuum Expectation Values	181
	12.5	Tadpole Equations	181
		12.5.1 Tadpole Equations for eigenstates 'TEMP'	181
		12.5.2 Tadpole Equations for eigenstates 'EWSB'	182
	12.6	Particle content for eigenstates 'EWSB'	182
	12.7	Modelfile for SARAH	184
	12.8	Implementation in SARAH	184
		12.8.1 Particles for eigenstates 'GaugeES'	184
		12.8.2 Particles for eigenstates 'TEMP'	185
			187
		9	188
13	\mathbf{The}	near-to-Minimal Supersymmetric Standard Model	189
	13.1	Superfields	189
		13.1.1 Vector Superfields	189
		13.1.2 Chiral Superfields	189
	13.2	Superpotential and Lagrangian	189
		13.2.1 Superpotential	189
			190
		13.2.3 Gauge fixing terms	190
		Gauge fixing terms for eigenstates 'GaugeES'	190
		Gauge fixing terms for eigenstates 'EWSB'	190
		13.2.4 Fields integrated out	190
	13.3	Field Rotations	190
	10.0	13.3.1. Rotations in range sector for eigenstates ?FWSR?	190

		13.3.2 Rotations in Mass sector for eigenstates 'EWSB'	91
		Mass Matrices for Scalars	
		Mass Matrices for Fermions	
	13.4	Vacuum Expectation Values	
		Tadpole Equations	
		Particle content for eigenstates 'EWSB'	
		Modelfile for SARAH	
		Implementation in SARAH	
	10.0	13.8.1 Particles for eigenstates 'GaugeES'	
		13.8.2 Particles for eigenstates 'EWSB'	
		13.8.3 Parameters	
		19.0.9 1 arameters	J- 1
14	The	Singlet extended Minimal Supersymmetric Standard Model 20	
	14.1	Superfields	
		14.1.1 Vector Superfields	05
		14.1.2 Chiral Superfields	05
	14.2	Superpotential and Lagrangian	05
		14.2.1 Superpotential	05
		14.2.2 Softbreaking terms	06
		14.2.3 Gauge fixing terms	06
		Gauge fixing terms for eigenstates 'GaugeES'	06
		Gauge fixing terms for eigenstates 'EWSB'	06
		14.2.4 Fields integrated out	06
	14.3	Field Rotations	
		14.3.1 Rotations in gauge sector for eigenstates 'EWSB'	
		14.3.2 Rotations in Mass sector for eigenstates 'EWSB'	
		Mass Matrices for Scalars	
		Mass Matrices for Fermions	
	14 4	Vacuum Expectation Values	
		Tadpole Equations	
		Particle content for eigenstates 'EWSB'	
		Modelfile for SARAH	
		Implementation in SARAH	
	11.0	14.8.1 Particles for eigenstates 'GaugeES'	
		14.8.2 Particles for eigenstates 'EWSB'	
		14.8.3 Parameters	
		14.0.0 1 at a meters	20
15	The	U(1)-Extended Minimal Supersymmetric Standard Model 22	21
	15.1	Superfields	21
		15.1.1 Vector Superfields	21
		15.1.2 Chiral Superfields	21
	15.2	Superpotential and Lagrangian	22
		15.2.1 Superpotential	22
		15.2.2 Softbreaking terms	
		15.2.3 Gauge fixing terms	
		Gauge fixing terms for eigenstates 'GaugeES'	
		Gauge fixing terms for eigenstates 'TEMP'	
		Gauge fixing terms for eigenstates 'EWSB'	
		15.2.4 Fields integrated out	

CONTENTS

	15.3	Field Rotations	222
		15.3.1 Rotations in gauge sector for eigenstates 'EWSB'	222
		15.3.2 Rotations in Mass sector for eigenstates 'EWSB'	223
		Mass Matrices for Scalars	223
		Mass Matrices for Fermions	226
	15.4		228
			228
	15.5		228
			228
			$\frac{1}{229}$
	15.6	1 1	$\frac{-29}{229}$
		0	231
			234
	10.0	±	234
		9	236
			238
			239
		19.6.4 Parameters	239
16	The	Secluded $U(1)$ -Extended Minimal Supersymmetric Standard Model	240
10		Superfields	
	10.1	16.1.1 Vector Superfields	
		<u>.</u>	$\frac{240}{240}$
	16 2		$240 \\ 241$
	10.2		$\frac{241}{241}$
		0 0 0 0	
			241
			241
		0	241
	16.3		241
			241
		O Company of the comp	242
		Mass Matrices for Scalars	
		Mass Matrices for Fermions	247
	16.4	±	249
		16.4.1 VEVs for eigenstates 'EWSB'	249
	16.5	Tadpole Equations	249
		16.5.1 Tadpole Equations for eigenstates 'TEMP'	249
		16.5.2 Tadpole Equations for eigenstates 'EWSB'	250
	16.6		250
			252
			255
			255
			257
			259
			260

17	\mathbf{The}	$\mu\nu$ Su	persymmetric Standard Model	262
	17.1	Superf	fields	262
		17.1.1	Vector Superfields	262
			Chiral Superfields	262
	17 9		potential and Lagrangian	262
	11.2		Superpotential	262
				263
			0	
		17.2.3		263
			Gauge fixing terms for eigenstates 'GaugeES'	263
			Gauge fixing terms for eigenstates 'EWSB'	263
		17.2.4	Fields integrated out	263
	17.3	Field I	Rotations	263
		17.3.1	Rotations in gauge sector for eigenstates 'EWSB'	263
			Rotations in Mass sector for eigenstates 'EWSB'	264
			Mass Matrices for Scalars	264
			Mass Matrices for Fermions	269
	17 4	Vocum	m Expectation Values	270
			*	
		_	le Equations	271
			le content for eigenstates 'EWSB'	272
			file for SARAH	273
	17.8		mentation in SARAH	276
		17.8.1	Particles for eigenstates 'GaugeES'	276
		17.8.2	Particles for eigenstates 'EWSB'	278
		17.8.3	Parameters	279
18	Sees			280
	18.1	Superf	fields	280
		18.1.1	Vector Superfields	280
		18.1.2	Chiral Superfields	280
	18.2		potential and Lagrangian	280
			Superpotential	280
			Softbreaking terms	281
			Gauge fixing terms	281
		10.2.9	Gauge fixing terms for eigenstates 'GaugeES'	281
		1004	Gauge fixing terms for eigenstates 'EWSB'	281
		18.2.4	Fields integrated out	281
10	Soos	aw II		282
19			fields	282
	19.1			
			Vector Superfields	282
			Chiral Superfields	282
	19.2		potential and Lagrangian	283
			Superpotential	283
		19.2.2	Softbreaking terms	283
		19.2.3	Gauge fixing terms	283
			Gauge fixing terms for eigenstates 'GaugeES'	283
			Gauge fixing terms for eigenstates 'Gaugers'	
				283
		19.2.4	Gauge fixing terms for eigenstates 'EWSB' Fields integrated out	

CONTENTS

20	eesaw III	285
	0.1 Superfields	285
	20.1.1 Vector Superfields	285
	20.1.2 Chiral Superfields	285
	0.2 Superpotential and Lagrangian	286
	20.2.1 Superpotential	
	20.2.2 Softbreaking terms	286
	20.2.3 Gauge fixing terms	
	Gauge fixing terms for eigenstates 'GaugeES'	
	Gauge fixing terms for eigenstates 'EWSB'	
	20.2.4 Fields integrated out	

Chapter 1

Minimal Supersymmetric Standard Model

1.1 Superfields

1.1.1 Vector Superfields

SF	Spin $\frac{1}{2}$	Spin 1	SU(N)	Coupling	Name
\hat{B}	$\lambda_{ ilde{B}}$	B	U(1)	g_1	hypercharge
\hat{W}	$\lambda_{ ilde{W}}$	W^-	SU(2)	g_2	left
\hat{g}	$\lambda_{ ilde{g}}$	g	SU(3)	g_3	color

1.1.2 Chiral Superfields

SF	Spin 0	Spin $\frac{1}{2}$	Generations	$(U(1) \otimes \mathrm{SU}(2) \otimes \mathrm{SU}(3))$
\hat{q}	$ ilde{q}$	q	3	$(rac{1}{6}, 2, 3)$
\hat{l}	\tilde{l}	l	3	$(-rac{1}{2},2,1)$
\hat{H}_d	H_d	$ ilde{H}_d$	1	$(-rac{1}{2},2,1)$
\hat{H}_u	H_u	$ ilde{H}_u$	1	$(rac{1}{2}, oldsymbol{2}, oldsymbol{1})$
\hat{d}	$ ilde{d}_R^*$	d_R^*	3	$(rac{1}{3}, oldsymbol{1}, \overline{oldsymbol{3}})$
\hat{u}	\tilde{u}_R^*	u_R^*	3	$(-rac{2}{3},f 1,f ar 3)$
\hat{e}	\tilde{e}_R^*	e_R^*	3	(1, 1, 1)

1.2 Superpotential and Lagrangian

1.2.1 Superpotential

$$W = Y_u \,\hat{u} \,\hat{q} \,\hat{H}_u - Y_d \,\hat{d} \,\hat{q} \,\hat{H}_d - Y_e \,\hat{e} \,\hat{l} \,\hat{H}_d + \mu \,\hat{H}_u \,\hat{H}_d \tag{1.1}$$

1.2.2 Softbreaking terms

$$L_{SB,W} = -H_d^0 H_u^0 B_\mu + H_d^- H_u^+ B_\mu + H_d^0 \tilde{d}_{R,i\alpha}^* \delta_{\alpha\beta} \tilde{d}_{L,j\beta} T_{d,ij} - H_d^- \tilde{d}_{R,i\alpha}^* \delta_{\alpha\beta} \tilde{u}_{L,j\beta} T_{d,ij}$$

$$+ H_d^0 \tilde{e}_{R,i}^* \tilde{e}_{L,j} T_{e,ij} - H_d^- \tilde{e}_{R,i}^* \tilde{\nu}_{L,j} T_{e,ij} - H_u^+ \tilde{u}_{R,i\alpha}^* \delta_{\alpha\beta} \tilde{d}_{L,j\beta} T_{u,ij} + H_u^0 \tilde{u}_{R,i\alpha}^* \delta_{\alpha\beta} \tilde{u}_{L,j\beta} T_{u,ij} + \text{h.c.}$$

$$L_{SB,\phi} = - m_{H_d}^2 |H_d^0|^2 - m_{H_d}^2 |H_d^-|^2 - m_{H_d}^2 |H_u^0|^2 - m_{H_d}^2 |H_u^+|^2 - \tilde{d}_{L,i\beta}^* \delta_{\alpha\beta} m_{d,ij}^2 \tilde{d}_{L,i\alpha}$$

$$(1.2)$$

$$-\tilde{d}_{R,i\alpha}^* \delta_{\alpha\beta} m_{d,ij}^2 \tilde{d}_{R,j\beta} - \tilde{e}_{L,j}^* m_{l,ij}^2 \tilde{e}_{L,i} - \tilde{e}_{R,i}^* m_{e,ij}^2 \tilde{e}_{R,j} - \tilde{u}_{L,j\beta}^* \delta_{\alpha\beta} m_{q,ij}^2 \tilde{u}_{L,i\alpha} - \tilde{u}_{R,i\alpha}^* \delta_{\alpha\beta} m_{u,ij}^2 \tilde{u}_{R,j\beta} - \tilde{\nu}_{L,j}^* m_{l,ij}^2 \tilde{\nu}_{L,i}$$

$$(1.3)$$

$$L_{SB,\lambda} = \frac{1}{2} \left(-\lambda_{\tilde{B}}^2 M_1 - M_2 \lambda_{\tilde{W},i}^2 - M_3 \lambda_{\tilde{g},i}^2 + \text{h.c.} \right)$$
 (1.4)

1.2.3 Gauge fixing terms

Gauge fixing terms for eigenstates 'GaugeES'

$$L_{GF} = -\frac{1}{2}\partial_{\mu}g\xi_{G}^{-1} - \frac{1}{2}\partial_{\mu}W^{-}\xi_{W}^{-1}$$
(1.5)

Gauge fixing terms for eigenstates 'EWSB'

$$L_{GF} = -\frac{1}{2}\partial_{\mu}\gamma\xi_{P}^{-1} - \frac{1}{2}\partial_{\mu}g\xi_{G}^{-1} - \frac{1}{2}\xi_{Z}^{-1}\left(-A_{1}^{0}m_{Z}\xi_{Z} + \partial_{\mu}Z\right) - \xi_{W}^{-1}\left(iH_{1}^{-}m_{W^{-}}\xi_{W} + \partial_{\mu}W^{-}\right)$$

$$\tag{1.6}$$

1.2.4 Fields integrated out

None

1.3 Field Rotations

1.3.1 Rotations in gauge sector for eigenstates 'EWSB'

$$W_{1\rho}^{-} = \frac{1}{\sqrt{2}}W_{\rho}^{-} + \frac{1}{\sqrt{2}}W_{\rho}^{+} \tag{1.7}$$

$$W_{2\rho}^{-} = -i\frac{1}{\sqrt{2}}W_{\rho}^{-} + i\frac{1}{\sqrt{2}}W_{\rho}^{+} \tag{1.8}$$

$$W_{3\rho}^{-} = \cos\Theta_W Z_{\rho} + \sin\Theta_W \gamma_{\rho} \tag{1.9}$$

$$B_{\rho} = \cos\Theta_W \gamma_{\rho} - \sin\Theta_W Z_{\rho} \tag{1.10}$$

$$\lambda_{\tilde{W},1} = \frac{1}{\sqrt{2}}\tilde{W}^{-} + \frac{1}{\sqrt{2}}\tilde{W}^{+} \tag{1.11}$$

$$\lambda_{\tilde{W},2} = -i\frac{1}{\sqrt{2}}\tilde{W}^{-} + i\frac{1}{\sqrt{2}}\tilde{W}^{+} \tag{1.12}$$

$$\lambda_{\tilde{W}3} = \tilde{W}^0 \tag{1.13}$$

1.3.2 Rotations in Mass sector for eigenstates 'EWSB'

Mass Matrices for Scalars

 $\bullet \ \, \mathbf{Mass \ matrix \ for \ Down-Squarks}, \ \, \mathbf{Basis:} \ \, \left(\tilde{d}_{L,o_{1}\alpha_{1}},\tilde{d}_{R,o_{2}\alpha_{2}}\right), \left(\tilde{d}_{L,p_{1}\beta_{1}}^{*},\tilde{d}_{R,p_{2}\beta_{2}}^{*}\right)$

$$m_{\tilde{d}}^{2} = \begin{pmatrix} m_{11} & \frac{1}{\sqrt{2}} \delta_{\alpha_{1}\beta_{2}} \left(v_{d} T_{d,p_{2}o_{1}} - v_{u} \mu^{*} Y_{d,p_{2}o_{1}} \right) \\ \frac{1}{\sqrt{2}} \left(v_{d} T_{d,o_{2}p_{1}}^{*} - v_{u} \mu Y_{d,o_{2}p_{1}}^{*} \right) \delta_{\alpha_{2}\beta_{1}} & m_{22} \end{pmatrix}$$

$$(1.14)$$

$$m_{11} = \frac{1}{24} \delta_{\alpha_1 \beta_1} \left(12 \left(2m_{q,o_1 p_1}^2 + v_d^2 \sum_{a=1}^3 Y_{d,ap_1}^* Y_{d,ao_1} \right) - \left(3g_2^2 + g_1^2 \right) \left(-v_u^2 + v_d^2 \right) \delta_{o_1 p_1} \right)$$

$$(1.15)$$

$$m_{22} = \frac{1}{12} \delta_{\alpha_2 \beta_2} \left(6 \left(2m_{d, p_2 o_2}^2 + v_d^2 \sum_{a=1}^3 Y_{d, o_2 a}^* Y_{d, p_2 a} \right) + g_1^2 \left(-v_d^2 + v_u^2 \right) \delta_{o_2 p_2} \right)$$
(1.16)

This matrix is diagonalized by Z^D :

$$Z^{D} m_{\tilde{d}}^{2} Z^{D,\dagger} = m_{2,\tilde{d}}^{dia} \tag{1.17}$$

with

$$\tilde{d}_{L,i\alpha} = \sum_{t_2} Z_{ji}^{D,*} \tilde{d}_{j\alpha}, \qquad \tilde{d}_{R,i\alpha} = \sum_{t_2} Z_{ji}^{D,*} \tilde{d}_{j\alpha}$$
 (1.18)

• Mass matrix for Sneutrinos, Basis: $(\tilde{\nu}_{L,o_1}), (\tilde{\nu}_{L,p_1}^*)$

$$m_{\tilde{\nu}}^2 = \left(\frac{1}{8} \left(8m_{l,o_1p_1}^2 + \left(g_1^2 + g_2^2\right) \left(-v_u^2 + v_d^2\right) \delta_{o_1p_1}\right)\right)$$
(1.19)

This matrix is diagonalized by Z^V :

$$Z^{V} m_{\tilde{\nu}}^{2} Z^{V,\dagger} = m_{2,\tilde{\nu}}^{dia} \tag{1.20}$$

with

$$\tilde{\nu}_{L,i} = \sum_{t_2} Z_{ji}^{V,*} \tilde{\nu}_j \tag{1.21}$$

• Mass matrix for Up-Squarks, Basis: $(\tilde{u}_{L,o_1\alpha_1}, \tilde{u}_{R,o_2\alpha_2}), (\tilde{u}_{L,p_1\beta_1}^*, \tilde{u}_{R,p_2\beta_2}^*)$

$$m_{\tilde{u}}^{2} = \begin{pmatrix} m_{11} & \frac{1}{\sqrt{2}} \delta_{\alpha_{1}\beta_{2}} \left(-v_{d}\mu^{*}Y_{u,p_{2}o_{1}} + v_{u}T_{u,p_{2}o_{1}} \right) \\ \frac{1}{\sqrt{2}} \left(-v_{d}\mu Y_{u,o_{2}p_{1}}^{*} + v_{u}T_{u,o_{2}p_{1}}^{*} \right) \delta_{\alpha_{2}\beta_{1}} & m_{22} \end{pmatrix}$$

$$(1.22)$$

$$m_{11} = \frac{1}{24} \delta_{\alpha_1 \beta_1} \left(12 \left(2m_{q,o_1 p_1}^2 + v_u^2 \sum_{a=1}^3 Y_{u,ap_1}^* Y_{u,ao_1} \right) - \left(-3g_2^2 + g_1^2 \right) \left(-v_u^2 + v_d^2 \right) \delta_{o_1 p_1} \right)$$

$$(1.23)$$

$$m_{22} = \frac{1}{6} \delta_{\alpha_2 \beta_2} \left(3v_u^2 \sum_{a=1}^3 Y_{u,o_2 a}^* Y_{u,p_2 a} + 6m_{u,p_2 o_2}^2 + g_1^2 \left(-v_u^2 + v_d^2 \right) \delta_{o_2 p_2} \right)$$
(1.24)

This matrix is diagonalized by Z^U :

$$Z^{U}m_{\tilde{u}}^{2}Z^{U,\dagger} = m_{2.\tilde{u}}^{dia} \tag{1.25}$$

with

$$\tilde{u}_{L,i\alpha} = \sum_{t_2} Z_{ji}^{U,*} \tilde{u}_{j\alpha}, \qquad \tilde{u}_{R,i\alpha} = \sum_{t_2} Z_{ji}^{U,*} \tilde{u}_{j\alpha}$$
 (1.26)

• Mass matrix for Sleptons, Basis: $(\tilde{e}_{L,o_1}, \tilde{e}_{R,o_2}), (\tilde{e}_{L,p_1}^*, \tilde{e}_{R,p_2}^*)$

$$m_{\tilde{e}}^2 = \begin{pmatrix} m_{11} & \frac{1}{\sqrt{2}} \left(v_d T_{e, p_2 o_1} - v_u \mu^* Y_{e, p_2 o_1} \right) \\ \frac{1}{\sqrt{2}} \left(v_d T_{e, o_2 p_1}^* - v_u \mu Y_{e, o_2 p_1}^* \right) & m_{22} \end{pmatrix}$$

$$(1.27)$$

$$m_{11} = \frac{1}{8} \left(4v_d^2 \sum_{a=1}^3 Y_{e,ap_1}^* Y_{e,ao_1} + 8m_{l,o_1p_1}^2 + \left(-g_2^2 + g_1^2 \right) \left(-v_u^2 + v_d^2 \right) \delta_{o_1p_1} \right)$$

$$(1.28)$$

$$m_{22} = \frac{1}{4} \left(2v_d^2 \sum_{a=1}^3 Y_{e,o_2a}^* Y_{e,p_2a} + 4m_{e,p_2o_2}^2 + g_1^2 \left(-v_d^2 + v_u^2 \right) \delta_{o_2p_2} \right)$$
(1.29)

This matrix is diagonalized by Z^E :

$$Z^E m_{\tilde{e}}^2 Z^{E,\dagger} = m_{2,\tilde{e}}^{dia} \tag{1.30}$$

with

$$\tilde{e}_{L,i} = \sum_{t_2} Z_{ji}^{E,*} \tilde{e}_j, \qquad \tilde{e}_{R,i} = \sum_{t_2} Z_{ji}^{E,*} \tilde{e}_j$$
(1.31)

• Mass matrix for Higgs, Basis: $(\phi_d, \phi_u), (\phi_d, \phi_u)$

$$m_h^2 = \begin{pmatrix} \frac{1}{8} \left(8m_{H_d}^2 + 8|\mu|^2 + \left(g_1^2 + g_2^2\right) \left(3v_d^2 - v_u^2 \right) \right) & \frac{1}{4} \left(-4\Re\left(B_\mu\right) - \left(g_1^2 + g_2^2\right) v_d v_u \right) \\ \frac{1}{4} \left(-4\Re\left(B_\mu\right) - \left(g_1^2 + g_2^2\right) v_d v_u \right) & \frac{1}{8} \left(8m_{H_u}^2 + 8|\mu|^2 - \left(g_1^2 + g_2^2\right) \left(-3v_u^2 + v_d^2 \right) \right) \end{pmatrix}$$
(1.32)

This matrix is diagonalized by Z^H :

$$Z^H m_h^2 Z^{H,\dagger} = m_{2,h}^{dia} \tag{1.33}$$

with

$$\phi_d = \sum_{t_2} Z_{j1}^H h_j , \qquad \phi_u = \sum_{t_2} Z_{j2}^H h_j$$
 (1.34)

The mixing matrix can be parametrized by

$$Z^{H} = \begin{pmatrix} -\sin\alpha & \cos\alpha \\ \cos\alpha & \sin\alpha \end{pmatrix} \tag{1.35}$$

• Mass matrix for Pseudo-Scalar Higgs, Basis: $(\sigma_d, \sigma_u), (\sigma_d, \sigma_u)$

$$m_{A^0}^2 = \begin{pmatrix} \frac{1}{8} \left(8m_{H_d}^2 + 8|\mu|^2 + \left(g_1^2 + g_2^2 \right) \left(-v_u^2 + v_d^2 \right) \right) & \Re\left(B_\mu \right) \\ \Re\left(B_\mu \right) & \frac{1}{8} \left(8m_{H_u}^2 + 8|\mu|^2 - \left(g_1^2 + g_2^2 \right) \left(-v_u^2 + v_d^2 \right) \right) \end{pmatrix}$$
(1.36)

This matrix is diagonalized by Z^A :

$$Z^{A}m_{A^{0}}^{2}Z^{A,\dagger} = m_{2,A^{0}}^{dia} \tag{1.37}$$

with

$$\sigma_d = \sum_{t_2} Z_{j1}^A A_j^0, \qquad \sigma_u = \sum_{t_2} Z_{j2}^A A_j^0$$
 (1.38)

The mixing matrix can be parametrized by

$$Z^{A} = \begin{pmatrix} -\cos\beta & \sin\beta \\ \sin\beta & \cos\beta \end{pmatrix} \tag{1.39}$$

 \bullet Mass matrix for Charged Higgs, Basis: $\left(H_d^-,H_u^{+,*}\right),\left(H_d^{-,*},H_u^+\right)$

$$m_{H^{-}}^{2} = \begin{pmatrix} m_{11} & \frac{1}{4}g_{2}^{2}v_{d}v_{u} + B_{\mu} \\ \frac{1}{4}g_{2}^{2}v_{d}v_{u} + B_{\mu}^{*} & m_{22} \end{pmatrix}$$
 (1.40)

$$m_{11} = \frac{1}{8} \left(8m_{H_d}^2 + 8|\mu|^2 + g_1^2 v_d^2 - g_1^2 v_u^2 + g_2^2 v_d^2 + g_2^2 v_u^2 \right)$$
(1.41)

$$m_{22} = \frac{1}{8} \left(8m_{H_u}^2 + 8|\mu|^2 - g_1^2 v_d^2 + g_1^2 v_u^2 + g_2^2 v_d^2 + g_2^2 v_u^2 \right)$$
(1.42)

This matrix is diagonalized by Z^+ :

$$Z^{+}m_{H^{-}}^{2}Z^{+,\dagger} = m_{2,H^{-}}^{dia} \tag{1.43}$$

with

$$H_d^- = \sum_{t_2} Z_{j1}^{+,*} H_j^-, \qquad H_u^+ = \sum_{t_2} Z_{j2}^+ H_j^+$$
 (1.44)

The mixing matrix can be parametrized by

$$Z^{+} = \begin{pmatrix} -\cos\beta & \sin\beta \\ \sin\beta & \cos\beta \end{pmatrix} \tag{1.45}$$

Mass Matrices for Fermions

• Mass matrix for Neutralinos, Basis: $\left(\lambda_{\tilde{B}}, \tilde{W}^0, \tilde{H}_d^0, \tilde{H}_u^0\right), \left(\lambda_{\tilde{B}}, \tilde{W}^0, \tilde{H}_d^0, \tilde{H}_u^0\right)$

$$m_{\tilde{\chi}^0} = \begin{pmatrix} M_1 & 0 & -\frac{1}{2}g_1v_d & \frac{1}{2}g_1v_u \\ 0 & M_2 & \frac{1}{2}g_2v_d & -\frac{1}{2}g_2v_u \\ -\frac{1}{2}g_1v_d & \frac{1}{2}g_2v_d & 0 & -\mu \\ \frac{1}{2}g_1v_u & -\frac{1}{2}g_2v_u & -\mu & 0 \end{pmatrix}$$

$$(1.46)$$

This matrix is diagonalized by N

$$Nm_{\tilde{\chi}^0}N^{\dagger} = m_{\tilde{\chi}^0}^{dia} \tag{1.47}$$

with

$$\lambda_{\tilde{B}} = \sum_{t_2} N_{j1}^* \lambda_j^0, \qquad \tilde{W}^0 = \sum_{t_2} N_{j2}^* \lambda_j^0, \qquad \tilde{H}_d^0 = \sum_{t_2} N_{j3}^* \lambda_j^0$$
(1.48)

$$\tilde{H}_u^0 = \sum_{t_2} N_{j4}^* \lambda_j^0 \tag{1.49}$$

• Mass matrix for Charginos, Basis: $\left(\tilde{W}^{-}, \tilde{H}_{d}^{-}\right), \left(\tilde{W}^{+}, \tilde{H}_{u}^{+}\right)$

$$m_{\tilde{\chi}^{-}} = \begin{pmatrix} M_2 & \frac{1}{\sqrt{2}}g_2 v_u \\ \frac{1}{\sqrt{2}}g_2 v_d & \mu \end{pmatrix}$$
 (1.50)

This matrix is diagonalized by U and V

$$U^* m_{\tilde{\chi}^-} V^{\dagger} = m_{\tilde{\chi}^-}^{dia} \tag{1.51}$$

$$\tilde{W}^{-} = \sum_{t_2} U_{j1}^* \lambda_j^{-}, \qquad \tilde{H}_d^{-} = \sum_{t_2} U_{j2}^* \lambda_j^{-}$$
(1.52)

$$\tilde{W}^{-} = \sum_{t_2} U_{j1}^* \lambda_j^{-}, \qquad \tilde{H}_d^{-} = \sum_{t_2} U_{j2}^* \lambda_j^{-}$$

$$\tilde{W}^{+} = \sum_{t_2} V_{1j}^* \lambda_j^{+}, \qquad \tilde{H}_u^{+} = \sum_{t_2} V_{2j}^* \lambda_j^{+}$$

$$(1.52)$$

• Mass matrix for Leptons, Basis: $(e_{L,o_1}), (e_{R,p_1}^*)$

$$m_e = \left(\frac{1}{\sqrt{2}}v_d Y_{e,p_1 o_1}\right)$$
 (1.54)

This matrix is diagonalized by U_L^e and U_R^e

$$U_L^{e,*} m_e U_R^{e,\dagger} = m_e^{dia} (1.55)$$

with

$$e_{L,i} = \sum_{t_2} U_{L,ji}^{e,*} E_{L,j} \tag{1.56}$$

$$e_{R,i} = \sum_{t_2} U_{R,ij}^e E_{R,j}^* \tag{1.57}$$

• Mass matrix for Down-Quarks, Basis: $(d_{L,o_1\alpha_1}), \left(d_{R,p_1\beta_1}^*\right)$

$$m_d = \left(\frac{1}{\sqrt{2}}v_d \delta_{\alpha_1 \beta_1} Y_{d, p_1 o_1}\right) \tag{1.58}$$

This matrix is diagonalized by ${\cal U}_L^d$ and ${\cal U}_R^d$

$$U_L^{d,*} m_d U_R^{d,\dagger} = m_d^{dia} \tag{1.59}$$

with

$$d_{L,i\alpha} = \sum_{t_2} U_{L,ji}^{d,*} D_{L,j\alpha} \tag{1.60}$$

$$d_{R,i\alpha} = \sum_{t_2} U_{R,ij}^d D_{R,j\alpha}^*$$
 (1.61)

• Mass matrix for Up-Quarks, Basis: $(u_{L,o_1\alpha_1}), (u_{R,p_1\beta_1}^*)$

$$m_u = \left(\frac{1}{\sqrt{2}}v_u\delta_{\alpha_1\beta_1}Y_{u,p_1o_1}\right) \tag{1.62}$$

This matrix is diagonalized by U_L^u and U_R^u

$$U_L^{u,*} m_u U_R^{u,\dagger} = m_u^{dia} \tag{1.63}$$

with

$$u_{L,i\alpha} = \sum_{t} U_{L,ji}^{u,*} U_{L,j\alpha} \tag{1.64}$$

$$u_{R,i\alpha} = \sum_{t_0} U_{R,ij}^u U_{R,j\alpha}^* \tag{1.65}$$

1.4 Vacuum Expectation Values

$$H_d^0 = \frac{1}{\sqrt{2}}\phi_d + \frac{1}{\sqrt{2}}v_d + i\frac{1}{\sqrt{2}}\sigma_d \tag{1.66}$$

$$H_u^0 = \frac{1}{\sqrt{2}}\phi_u + \frac{1}{\sqrt{2}}v_u + i\frac{1}{\sqrt{2}}\sigma_u \tag{1.67}$$

1.5 Tadpole Equations

$$\frac{\partial V}{\partial v_d} = \frac{1}{8} \left(8v_d |\mu|^2 - 8v_u \Re\left(B_\mu\right) + v_d \left(8m_{H_d}^2 + g_1^2 v_d^2 - g_1^2 v_u^2 + g_2^2 v_d^2 - g_2^2 v_u^2 \right) \right) \tag{1.68}$$

$$\frac{\partial V}{\partial v_u} = \frac{1}{8} \left(-8v_d \Re \left(B_\mu \right) + 8v_u |\mu|^2 + v_u \left(8m_{H_u}^2 - g_1^2 v_d^2 + g_1^2 v_u^2 - g_2^2 v_d^2 + g_2^2 v_u^2 \right) \right) \tag{1.69}$$

1.6 Particle content for eigenstates 'EWSB'

Name	Type	complex/real	Generations	Indices
$-\tilde{d}$	Scalar	complex	6	generation, color
$ ilde{ u}$	Scalar	complex	3	generation
$ ilde{u}$	Scalar	complex	6	generation, color
\tilde{e}	Scalar	complex	6	generation
h	Scalar	$_{\mathrm{real}}$	2	${\it generation}$
A^0	Scalar	real	2	generation
H^-	Scalar	complex	2	generation
ν	Fermion	Dirac	3	generation
$ ilde{g}$	Fermion	Majorana	8	generation
$ ilde{\chi}^0$	Fermion	Majorana	4	generation
$ ilde{\chi}^-$	Fermion	Dirac	2	generation
e	Fermion	Dirac	3	generation
d	Fermion	Dirac	3	generation, color
u	Fermion	Dirac	3	generation, color
g	Vector	real	8	generation, lorentz
W^-	Vector	complex	1	lorentz
γ	Vector	real	1	lorentz
Z	Vector	real	1	lorentz
η^G	Ghost	$_{\mathrm{real}}$	8	generation
η^-	Ghost	complex	1	
η^+	Ghost	complex	1	
η^γ	Ghost	$_{\mathrm{real}}$	1	
η^Z	Ghost	$_{\mathrm{real}}$	1	

1.7 Modelfile for SARAH

```
Off[General::spell]
Print["Model file for the MSSM loaded"];
ModelNameLaTeX ="MSSM";
(*----*)
(* Particle Content*)
(*----*)
(* Gauge Superfields *)
Gauge[[1]]={B, U[1], hypercharge, g1,False};
Gauge[[2]]={WB, SU[2], left, g2,True};
Gauge[[3]]={G, SU[3], color,
                          g3,False};
(* Chiral Superfields *)
Fields[[1]] = \{\{uL, dL\}, 3, q, 1/6, 2, 3\};
Fields[[2]] = \{ \{vL, eL\}, 3, 1, -1/2, 2, 1\};
Fields[[3]] = \{\{Hd0, Hdm\}, 1, Hd, -1/2, 2, 1\};
Fields[[4]] = {{Hup, Hu0}, 1, Hu, 1/2, 2, 1};
Fields[[5]] = \{conj[dR], 3, d, 1/3, 1, -3\};
Fields[[6]] = \{conj[uR], 3, u, -2/3, 1, -3\};
Fields[[7]] = {conj[eR], 3, e, 1, 1, 1};
(*----*)
(* Superpotential *)
(*----*)
SuperPotential = \{\{1, Yu\}, \{u,q,Hu\}\}, \{\{-1,Yd\}, \{d,q,Hd\}\},
               \{\{-1, Ye\}, \{e, 1, Hd\}\}, \{\{1, \{Mu\}\}, \{Hu, Hd\}\}\};
(*----*)
(* Integrate Out or Delete Particles *)
(*----*)
IntegrateOut={};
DeleteParticles={};
```

```
(*----*)
(* DEFINITION
(*----*)
NameOfStates={GaugeES, EWSB};
(* ---- Before EWSB ---- *)
DEFINITION[GaugeES] [GaugeFixing] =
{ {Der[VWB], -1/(2 RXi[W])},
    {Der[VG], -1/(2 RXi[G]) }};
(* ---- After EWSB ---- *)
(* Gauge Sector *)
DEFINITION[EWSB] [GaugeSector] =
{{VWB,{1,{VWm,1/Sqrt[2]},{conj[VWm],1/Sqrt[2]}}},
     {2,{VWm,-\[ImaginaryI]/Sqrt[2]},{conj[VWm],\[ImaginaryI]/Sqrt[2]}},
     {3,{VP,Sin[ThetaW]},{VZ,Cos[ThetaW]}}},
{VB, {1,{VP,Cos[ThetaW]},{VZ,-Sin[ThetaW]}}},
{fWB, {1, {fWm, 1/Sqrt[2]}, {fWp, 1/Sqrt[2]}},
     {2,{fWm,-\[ImaginaryI]/Sqrt[2]},{fWp,\[ImaginaryI]/Sqrt[2]}},
     {3,{fWO,1}}}};
(* ---- VEVs ---- *)
DEFINITION[EWSB][VEVs] =
 {{SHd0, {vd, 1/Sqrt[2]}, {sigmad, \[ImaginaryI]/Sqrt[2]},{phid, \
1/Sqrt[2]}},
  {SHu0, {vu, 1/Sqrt[2]}, {sigmau, \[ImaginaryI]/Sqrt[2]}, {phiu, \
1/Sqrt[2]}}};
(* ---- Mixings ---- *)
DEFINITION[EWSB] [MatterSector] =
```

```
{{SvL}, {Sv, ZV}},
    {{SuL, SuR}, {Su, ZU}},
    {{SeL, SeR}, {Se, ZE}},
    {{phid, phiu}, {hh, ZH}},
    {{sigmad, sigmau}, {Ah, ZA}},
    {{SHdm,conj[SHup]},{Hpm,ZP}},
    {{fB, fWO, FHdO, FHuO}, {LO, ZN}},
    {{fWm, FHdm}, {fWp, FHup}}, {{Lm,UM}, {Lp,UP}}},
    {{{FeL}, {conj[FeR]}}, {{FEL, ZEL}, {FER, ZER}}},
    {{{FdL}, {conj[FdR]}}, {{FDL, ZDL}, {FDR, ZDR}}},
    {{{FuL}, {conj[FuR]}}, {{FUL, ZUL}, {FUR, ZUR}}}
      };
DEFINITION[EWSB] [Phases] =
    {fG, PhaseGlu}
   };
(*--- Gauge Fixing ---- *)
DEFINITION[EWSB] [GaugeFixing] =
 { {Der[VP],
                                                      - 1/(2 RXi[P]),
{Der[VWm]+\[ImaginaryI] Mass[VWm] RXi[W] Hpm[{1}],
                                                  - 1/(RXi[W]),
                                                  - 1/(2 RXi[Z])},
{Der[VZ] - Mass[VZ] RXi[Z] Ah[{1}],
{Der[VG],
                                                  - 1/(2 RXi[G])}};
(*-----*)
(* Dirac-Spinors *)
(*----*)
dirac[[1]] = {Fd, FDL, conj[FDR]};
dirac[[2]] = {Fe, FEL, conj[FER]};
dirac[[3]] = {Fu, FUL, conj[FUR]};
dirac[[4]] = {Fv, FvL, 0};
dirac[[5]] = {Chi, L0, conj[L0]};
dirac[[6]] = {Cha, Lm, conj[Lp]};
dirac[[7]] = \{Glu, fG, conj[fG]\};
(* Unbroken EW *)
dirac[[8]] = {Bino, fB, conj[fB]};
dirac[[9]] = {Wino, fWB, conj[fWB]};
dirac[[10]] = {HO, FHdO, conj[FHuO]};
dirac[[11]] = {HC, FHdm, conj[FHup]};
dirac[[12]] = {Fd1, FdL, 0};
dirac[[13]] = {Fd2, 0, FdR};
dirac[[14]] = {Fu1, FuL, 0};
```

1.8 Implementation in SARAH

Model directory: MSSM

1.8.1 Particles for eigenstates 'GaugeES'

• Fermions

$$\begin{split} \tilde{B} &= \begin{pmatrix} \lambda_{\tilde{B}} \\ \lambda_{\tilde{B}}^* \end{pmatrix} & \text{Bino} &= \begin{pmatrix} \text{fB} \\ \text{conj[fB]} \end{pmatrix} \\ d_{i\alpha}^1 &= \begin{pmatrix} d_{L,i\alpha} \\ 0 \end{pmatrix} & \text{Fd1[\{generation, color\}]} &= \begin{pmatrix} \text{FdL[\{generation, color\}]} \\ 0 \end{pmatrix} \\ d_{i\alpha}^2 &= \begin{pmatrix} 0 \\ d_{R,i\alpha} \end{pmatrix} & \text{Fd2[\{generation, color\}]} &= \begin{pmatrix} 0 \\ \text{FdR[\{generation, color\}]} \end{pmatrix} \\ e_i^1 &= \begin{pmatrix} e_{L,i} \\ 0 \end{pmatrix} & \text{Fe1[\{generation\}]} &= \begin{pmatrix} \text{FeL[\{generation\}]} \\ 0 \end{pmatrix} \\ e_i^2 &= \begin{pmatrix} 0 \\ e_{R,i} \end{pmatrix} & \text{Fe2[\{generation\}]} &= \begin{pmatrix} 0 \\ \text{FeR[\{generation\}]} \end{pmatrix} \\ u_{i\alpha}^1 &= \begin{pmatrix} u_{L,i\alpha} \\ 0 \end{pmatrix} & \text{Fu1[\{generation, color\}]} &= \begin{pmatrix} \text{FuL[\{generation, color\}]} \\ 0 \end{pmatrix} \\ \end{split}$$

$$\begin{vmatrix} u_{i\alpha}^2 = \begin{pmatrix} 0 \\ u_{R,i\alpha} \end{pmatrix} & \text{Fu2}[\{\text{generation, color}\}] = \begin{pmatrix} 0 \\ \text{FuR}[\{\text{generation, color}\}] \end{pmatrix}$$

$$\nu_i = \begin{pmatrix} \nu_{L,i} \\ 0 \end{pmatrix} & \text{Fv}[\{\text{generation}\}] = \begin{pmatrix} \text{FvL}[\{\text{generation}\}] \\ 0 \end{pmatrix}$$

$$\tilde{g}_i = \begin{pmatrix} \lambda_{\tilde{g},i} \\ \lambda_{\tilde{g},i}^* \end{pmatrix} & \text{Glu}[\{\text{generation}\}] = \begin{pmatrix} \text{fG}[\{\text{generation}\}] \\ \text{conj}[\text{fG}[\{\text{generation}\}]] \end{pmatrix}$$

$$\tilde{H}^0 = \begin{pmatrix} \tilde{H}_d^0 \\ \tilde{H}_u^{0,*} \end{pmatrix} & \text{HO} = \begin{pmatrix} \text{FHdO} \\ \text{conj}[\text{FHuO}] \end{pmatrix}$$

$$\tilde{H}^- = \begin{pmatrix} \tilde{H}_d^- \\ \tilde{H}_u^{+,*} \end{pmatrix} & \text{HC} = \begin{pmatrix} \text{FHdm} \\ \text{conj}[\text{FHup}] \end{pmatrix}$$

$$\tilde{W}_i = \begin{pmatrix} \lambda_{\tilde{W},i} \\ \lambda_{\tilde{W},i}^* \end{pmatrix} & \text{Wino}[\{\text{generation}\}] = \begin{pmatrix} \text{fWB}[\{\text{generation}\}] \\ \text{conj}[\text{fWB}[\{\text{generation}\}]] \end{pmatrix}$$

• Scalars

$\tilde{d}_{L,ilpha}$	<pre>SdL[{generation, color}]</pre>	$\tilde{u}_{L,i\alpha}$	<pre>SuL[{generation, color}]</pre>
$\tilde{e}_{L,i}$	SeL[{generation}]	$ ilde{ u}_{L,i}$	<pre>SvL[{generation}]</pre>
H_d^0	SHd0	H_d^-	SHdm
H_u^0	SHu0	H_u^+	SHup
$\tilde{d}_{R,i\alpha}$	<pre>SdR[{generation, color}]</pre>	$\tilde{u}_{R,i\alpha}$	<pre>SuR[{generation, color}]</pre>
$\tilde{e}_{R,i}$	SeR[{generation}]		

• Vector Bosons

B_{ρ}	VB[{lorentz}]	$W_{i\rho}^-$	<pre>VWB[{generation,</pre>	lorentz}]
$g_{i\rho}$	<pre>VG[{generation, lorentz}]</pre>			

• Ghosts

η^B	gB	gWB(gt1)	gWB[{generation}]

$$\eta_i^G$$
 gG[{generation}]

1.8.2 Particles for eigenstates 'EWSB'

• Fermions

$$\begin{split} \tilde{\chi}_i^- &= \begin{pmatrix} \lambda_i^- \\ \lambda_i^{+,*} \end{pmatrix} & \text{Cha[\{generation\}]} &= \begin{pmatrix} \text{Lm[\{generation\}]} \\ \text{conj[Lp[\{generation\}]]} \end{pmatrix} \\ \tilde{\chi}_i^0 &= \begin{pmatrix} \lambda_i^0 \\ \lambda_i^{0,*} \end{pmatrix} & \text{Chi[\{generation\}]} &= \begin{pmatrix} \text{Lo[\{generation\}]} \\ \text{conj[Lo[\{generation\}]]} \end{pmatrix} \\ d_{i\alpha} &= \begin{pmatrix} D_{L,i\alpha} \\ D_{R,i\alpha}^* \end{pmatrix} & \text{Fd[\{generation, color\}]} &= \begin{pmatrix} \text{FDL[\{generation, color\}]} \\ \text{conj[FDR[\{generation, color\}]]} \end{pmatrix} \\ e_i &= \begin{pmatrix} E_{L,i} \\ E_{R,i}^* \end{pmatrix} & \text{Fe[\{generation\}]} &= \begin{pmatrix} \text{FEL[\{generation\}]} \\ \text{conj[FER[\{generation, color\}]]} \end{pmatrix} \\ u_{i\alpha} &= \begin{pmatrix} U_{L,i\alpha} \\ U_{R,i\alpha}^* \end{pmatrix} & \text{Fu[\{generation, color\}]} &= \begin{pmatrix} \text{FUL[\{generation, color\}]} \\ \text{conj[FUR[\{generation\}]} \end{pmatrix} \end{pmatrix} \\ \nu_i &= \begin{pmatrix} \nu_{L,i} \\ 0 \end{pmatrix} & \text{Fv[\{generation\}]} &= \begin{pmatrix} \text{FvL[\{generation\}]} \\ 0 \end{pmatrix} \\ \tilde{g}_i &= \begin{pmatrix} \lambda_{\tilde{g},i} \\ \lambda_{\tilde{g},i}^* \end{pmatrix} & \text{Glu[\{generation\}]} &= \begin{pmatrix} \text{fG[\{generation\}]} \\ \text{conj[fG[\{generation\}]]} \end{pmatrix} \end{split}$$

• Scalars

$\tilde{d}_{i\alpha}$	<pre>Sd[{generation, color}]</pre>	$ ilde{ u}_i$	<pre>Sv[{generation}]</pre>
$\tilde{u}_{i\alpha}$	Su[{generation, color}]	\tilde{e}_i	Se[{generation}]
h_i	hh[{generation}]	A_i^0	Ah[{generation}]
H_i^-	${\tt Hpm[\{generation\}]}$		

• Vector Bosons

$g_{i ho}$	VG[{generation, lorentz}]	W_{ρ}^{-}	VWm[{lorentz}]
$\gamma_{ ho}$	<pre>VP[{lorentz}]</pre>	$Z_{ ho}$	VZ[{lorentz}]

\bullet Ghosts

η_i^G	gG[{generation}]	η^-	gWm
η^+	gWmC	η^{γ}	gP
η^Z	gZ		

1.8.3 Parameters

g_1	g1	g_2	g2	g_3	g3
Y_u	Yu	T_u	T[Yu]	Y_d	Yd
T_d	T[Yd]	Y_e	Ye	T_e	T[Ye]
μ	\[Mu]	B_{μ}	$B[\[Mu]]$	m_q^2	mq2
m_l^2	m12	$m_{H_d}^2$	mHd2	$m_{H_u}^2$	mHu2
m_d^2	md2	m_u^2	mu2	m_e^2	me2
M_1	MassB	M_2	$ exttt{MassWB}$	M_3	MassG
v_d	vd	v_u	vu	Θ_W	ThetaW
$\phi_{ ilde{g}}$	PhaseGlu	Z^D	ZD	Z^V	ZV
Z^U	ZU	Z^E	ZE	Z^H	ZH
Z^A	ZA	Z^+	ZP	N	ZN
U	UM	V	UP	U_L^e	ZEL
U_R^e	ZER	U_L^d	ZDL	U_R^d	ZDR
U_L^u	ZUL	U_R^u	ZUR	α	$\[Alpha]$
β	\[Beta]				

Chapter 2

Minimal Supersymmetric Standard Model without flavor violation

2.1 Superfields

2.1.1 Vector Superfields

SF	Spin $\frac{1}{2}$	Spin 1	SU(N)	Coupling	Name
\hat{B}	$\lambda_{ ilde{B}}$	B	U(1)	g_1	hypercharge
\hat{W}	$\lambda_{ ilde{W}}$	W^-	SU(2)	g_2	left
\hat{g}	$\lambda_{ ilde{g}}$	g	SU(3)	g_3	color

2.1.2 Chiral Superfields

SF	Spin 0	Spin $\frac{1}{2}$	Generations	$(U(1) \otimes \mathrm{SU}(2) \otimes \mathrm{SU}(3))$
\hat{q}	$ ilde{q}$	q	3	$(rac{1}{6},2,3)$
\hat{l}	\tilde{l}	l	3	$(-rac{1}{2},{f 2},{f 1})$
\hat{H}_d	H_d	$ ilde{H}_d$	1	$(-rac{1}{2},{f 2},{f 1})$
\hat{H}_u	H_u	\tilde{H}_u	1	$(rac{1}{2},2,1)$
\hat{d}	$ ilde{d}_R^*$	d_R^*	3	$(rac{1}{3}, oldsymbol{1}, \overline{oldsymbol{3}})$
\hat{u}	\tilde{u}_R^*	u_R^*	3	$(-rac{2}{3},1,\overline{3})$
\hat{e}	$ ilde{e}_R^*$	e_R^*	3	(1, 1, 1)

2.2 Superpotential and Lagrangian

2.2.1 Superpotential

$$W = Y_u \,\hat{u} \,\hat{q} \,\hat{H}_u - Y_d \,\hat{d} \,\hat{q} \,\hat{H}_d - Y_e \,\hat{e} \,\hat{l} \,\hat{H}_d + \mu \,\hat{H}_u \,\hat{H}_d \tag{2.1}$$

2.2.2 Softbreaking terms

$$L_{SB,W} = -H_d^0 H_u^0 B_\mu + H_d^- H_u^+ B_\mu + H_d^0 \tilde{d}_{R,i\alpha}^* \delta_{\alpha\beta} \delta_{ij} \tilde{d}_{L,j\beta} T_{d,ij} - H_d^- \tilde{d}_{R,i\alpha}^* \delta_{\alpha\beta} \delta_{ij} \tilde{u}_{L,j\beta} T_{d,ij}$$

$$+ H_d^0 \tilde{e}_{R,i}^* \delta_{ij} \tilde{e}_{L,j} T_{e,ij} - H_d^- \tilde{e}_{R,i}^* \delta_{ij} \tilde{\nu}_{L,j} T_{e,ij} - H_u^+ \tilde{u}_{R,i\alpha}^* \delta_{\alpha\beta} \delta_{ij} \tilde{d}_{L,j\beta} T_{u,ij}$$

$$+ H_u^0 \tilde{u}_{R,i\alpha}^* \delta_{\alpha\beta} \delta_{ij} \tilde{u}_{L,j\beta} T_{u,ij} + \text{h.c.}$$

$$L_{SB,\phi} = -m_{H_d}^2 |H_d^0|^2 - m_{H_d}^2 |H_d^-|^2 - m_{H_u}^2 |H_u^0|^2 - m_{H_u}^2 |H_u^+|^2 - \tilde{d}_{L,j\beta}^* \delta_{\alpha\beta} \delta_{ij} m_{q,ij}^2 \tilde{d}_{L,i\alpha}$$

$$(2.2)$$

$$-\tilde{d}_{R,i\alpha}^* \delta_{\alpha\beta} \delta_{ij} m_{d,ij}^2 \tilde{d}_{R,j\beta} - \tilde{e}_{L,j}^* \delta_{ij} m_{l,ij}^2 \tilde{e}_{L,i} - \tilde{e}_{R,i}^* \delta_{ij} m_{e,ij}^2 \tilde{e}_{R,j} - \tilde{u}_{L,j\beta}^* \delta_{\alpha\beta} \delta_{ij} m_{q,ij}^2 \tilde{u}_{L,i\alpha} - \tilde{u}_{R,i\alpha}^* \delta_{\alpha\beta} \delta_{ij} m_{u,ij}^2 \tilde{u}_{R,j\beta} - \tilde{\nu}_{L,j}^* \delta_{ij} m_{l,ij}^2 \tilde{\nu}_{L,i}$$

$$(2.3)$$

$$L_{SB,\lambda} = \frac{1}{2} \left(-\lambda_{\tilde{B}}^2 M_1 - M_2 \lambda_{\tilde{W},i}^2 - M_3 \lambda_{\tilde{g},i}^2 + \text{h.c.} \right)$$
 (2.4)

2.2.3 Gauge fixing terms

Gauge fixing terms for eigenstates 'GaugeES'

$$L_{GF} = -\frac{1}{2}\partial_{\mu}g\xi_{G}^{-1} - \frac{1}{2}\partial_{\mu}W^{-}\xi_{W}^{-1}$$
(2.5)

Gauge fixing terms for eigenstates 'EWSB'

$$L_{GF} = -\frac{1}{2}\partial_{\mu}\gamma\xi_{P}^{-1} - \frac{1}{2}\partial_{\mu}g\xi_{G}^{-1} - \frac{1}{2}\xi_{Z}^{-1}\left(-A_{1}^{0}m_{Z}\xi_{Z} + \partial_{\mu}Z\right) - \xi_{W}^{-1}\left(iH_{1}^{-}m_{W^{-}}\xi_{W} + \partial_{\mu}W^{-}\right)$$
(2.6)

2.2.4 Fields integrated out

None

2.3 Field Rotations

2.3.1 Rotations in gauge sector for eigenstates 'EWSB'

$$W_{1\rho}^{-} = \frac{1}{\sqrt{2}}W_{\rho}^{-} + \frac{1}{\sqrt{2}}W_{\rho}^{+} \tag{2.7}$$

$$W_{2\rho}^{-} = -i\frac{1}{\sqrt{2}}W_{\rho}^{-} + i\frac{1}{\sqrt{2}}W_{\rho}^{+} \tag{2.8}$$

$$W_{3\rho}^{-} = \cos\Theta_W Z_{\rho} + \sin\Theta_W \gamma_{\rho} \tag{2.9}$$

$$B_{\rho} = \cos\Theta_W \gamma_{\rho} - \sin\Theta_W Z_{\rho} \tag{2.10}$$

$$\lambda_{\tilde{W},1} = \frac{1}{\sqrt{2}}\tilde{W}^{-} + \frac{1}{\sqrt{2}}\tilde{W}^{+} \tag{2.11}$$

$$\lambda_{\tilde{W},2} = -i\frac{1}{\sqrt{2}}\tilde{W}^{-} + i\frac{1}{\sqrt{2}}\tilde{W}^{+} \tag{2.12}$$

$$\lambda_{\tilde{W},3} = \tilde{W}^0 \tag{2.13}$$

2.3.2 Rotations in Mass sector for eigenstates 'EWSB'

Mass Matrices for Scalars

 $\bullet \ \ \mathbf{Mass \ matrix \ for \ Down \ Squark}, \ \mathbf{Basis:} \ \left(\tilde{d}_{L,\alpha_1},\tilde{d}_{R,\alpha_2}\right), \left(\tilde{d}_{L,\beta_1}^*,\tilde{d}_{R,\beta_2}^*\right) \\$

$$m_{\tilde{d}}^{2} = \begin{pmatrix} m_{11} & \frac{1}{\sqrt{2}} \delta_{\alpha_{1}\beta_{2}} \left(v_{d} T_{d,11} - v_{u} \mu^{*} Y_{d,11} \right) \\ \frac{1}{\sqrt{2}} \left(v_{d} T_{d,11}^{*} - v_{u} \mu Y_{d,11}^{*} \right) \delta_{\alpha_{2}\beta_{1}} & m_{22} \end{pmatrix}$$

$$(2.14)$$

$$m_{11} = \frac{1}{24} \delta_{\alpha_1 \beta_1} \left(12v_d^2 |Y_{d,11}|^2 + 24m_{q,11}^2 - 3g_2^2 v_d^2 + 3g_2^2 v_u^2 + g_1^2 \left(-v_d^2 + v_u^2 \right) \right)$$
(2.15)

$$m_{22} = \frac{1}{12} \delta_{\alpha_2 \beta_2} \left(12m_{d,11}^2 + 6v_d^2 |Y_{d,11}|^2 + g_1^2 \left(-v_d^2 + v_u^2 \right) \right)$$
(2.16)

This matrix is diagonalized by Z^D :

$$Z^D m_{\tilde{d}}^2 Z^{D,\dagger} = m_{2,\tilde{d}}^{dia} \tag{2.17}$$

with

$$\tilde{d}_{L,\alpha} = \sum_{t_2} Z_{j1}^{D,*} \tilde{d}_{j\alpha} , \qquad \tilde{d}_{R,\alpha} = \sum_{t_2} Z_{j2}^{D,*} \tilde{d}_{j\alpha}$$
(2.18)

• Mass matrix for Up Squark, Basis: $(\tilde{u}_{L,\alpha_1}, \tilde{u}_{R,\alpha_2}), (\tilde{u}_{L,\beta_1}^*, \tilde{u}_{R,\beta_2}^*)$

$$m_{\tilde{u}}^{2} = \begin{pmatrix} m_{11} & \frac{1}{\sqrt{2}} \delta_{\alpha_{1}\beta_{2}} \left(-v_{d}\mu^{*}Y_{u,11} + v_{u}T_{u,11} \right) \\ \frac{1}{\sqrt{2}} \left(-v_{d}\mu Y_{u,11}^{*} + v_{u}T_{u,11}^{*} \right) \delta_{\alpha_{2}\beta_{1}} & m_{22} \end{pmatrix}$$

$$(2.19)$$

$$m_{11} = \frac{1}{24} \delta_{\alpha_1 \beta_1} \left(12v_u^2 |Y_{u,11}|^2 + 3\left(8m_{q,11}^2 + g_2^2 \left(-v_u^2 + v_d^2 \right) \right) + g_1^2 \left(-v_d^2 + v_u^2 \right) \right)$$
(2.20)

$$m_{22} = \frac{1}{6} \delta_{\alpha_2 \beta_2} \left(3v_u^2 |Y_{u,11}|^2 + 6m_{u,11}^2 + g_1^2 \left(-v_u^2 + v_d^2 \right) \right)$$
(2.21)

This matrix is diagonalized by Z^U :

$$Z^{U}m_{\tilde{u}}^{2}Z^{U,\dagger} = m_{2.\tilde{u}}^{dia} \tag{2.22}$$

with

$$\tilde{u}_{L,\alpha} = \sum_{t_2} Z_{j1}^{U,*} \tilde{u}_{j\alpha}, \qquad \tilde{u}_{R,\alpha} = \sum_{t_2} Z_{j2}^{U,*} \tilde{u}_{j\alpha}$$
 (2.23)

• Mass matrix for Selectron, Basis: $(\tilde{e}_L, \tilde{e}_R), (\tilde{e}_L^*, \tilde{e}_R^*)$

$$m_{\tilde{e}}^2 = \begin{pmatrix} m_{11} & \frac{1}{\sqrt{2}} \left(v_d T_{e,11} - v_u \mu^* Y_{e,11} \right) \\ \frac{1}{\sqrt{2}} \left(v_d T_{e,11}^* - v_u \mu Y_{e,11}^* \right) & m_{22} \end{pmatrix}$$

$$(2.24)$$

$$m_{11} = \frac{1}{8} \left(4v_d^2 |Y_{e,11}|^2 + 8m_{l,11}^2 + g_1^2 \left(-v_u^2 + v_d^2 \right) - g_2^2 v_d^2 + g_2^2 v_u^2 \right)$$
(2.25)

$$m_{22} = \frac{1}{4} \left(2v_d^2 |Y_{e,11}|^2 + 4m_{e,11}^2 + g_1^2 \left(-v_d^2 + v_u^2 \right) \right)$$
(2.26)

This matrix is diagonalized by Z^E :

$$Z^{E} m_{\tilde{e}}^{2} Z^{E,\dagger} = m_{2,\tilde{e}}^{dia} \tag{2.27}$$

with

$$\tilde{e}_L = \sum_{t_2} Z_{j1}^{E,*} \tilde{e}_j , \qquad \tilde{e}_R = \sum_{t_2} Z_{j2}^{E,*} \tilde{e}_j$$
 (2.28)

• Mass matrix for Smuon, Basis: $(\tilde{\mu}_L, \tilde{\mu}_R), (\tilde{\mu}_L^*, \tilde{\mu}_R^*)$

$$m_{\tilde{\mu}}^2 = \begin{pmatrix} m_{11} & \frac{1}{\sqrt{2}} \left(v_d T_{e,22} - v_u \mu^* Y_{e,22} \right) \\ \frac{1}{\sqrt{2}} \left(v_d T_{e,22}^* - v_u \mu Y_{e,22}^* \right) & m_{22} \end{pmatrix}$$

$$(2.29)$$

$$m_{11} = \frac{1}{8} \left(4v_d^2 |Y_{e,22}|^2 + 8m_{l,22}^2 + g_1^2 \left(-v_u^2 + v_d^2 \right) - g_2^2 v_d^2 + g_2^2 v_u^2 \right)$$
(2.30)

$$m_{22} = \frac{1}{4} \left(2v_d^2 |Y_{e,22}|^2 + 4m_{e,22}^2 + g_1^2 \left(-v_d^2 + v_u^2 \right) \right)$$
(2.31)

This matrix is diagonalized by Z^{μ} :

$$Z^{\mu}m_{\tilde{\mu}}^{2}Z^{\mu,\dagger} = m_{2,\tilde{\mu}}^{dia} \tag{2.32}$$

with

$$\tilde{\mu}_L = \sum_{t_2} Z_{j1}^{\mu,*} \tilde{\mu}_j , \qquad \tilde{\mu}_R = \sum_{t_2} Z_{j2}^{\mu,*} \tilde{\mu}_j$$
 (2.33)

• Mass matrix for Stau, Basis: $(\tilde{\tau}_L, \tilde{\tau}_R), (\tilde{\tau}_L^*, \tilde{\tau}_R^*)$

$$m_{\tilde{\tau}}^{2} = \begin{pmatrix} m_{11} & \frac{1}{\sqrt{2}} \left(v_{d} T_{e,33} - v_{u} \mu^{*} Y_{e,33} \right) \\ \frac{1}{\sqrt{2}} \left(v_{d} T_{e,33}^{*} - v_{u} \mu Y_{e,33}^{*} \right) & m_{22} \end{pmatrix}$$

$$(2.34)$$

$$m_{11} = \frac{1}{8} \left(4v_d^2 |Y_{e,33}|^2 + 8m_{l,33}^2 + g_1^2 \left(-v_u^2 + v_d^2 \right) - g_2^2 v_d^2 + g_2^2 v_u^2 \right)$$
(2.35)

$$m_{22} = \frac{1}{4} \left(2v_d^2 |Y_{e,33}|^2 + 4m_{e,33}^2 + g_1^2 \left(-v_d^2 + v_u^2 \right) \right)$$
(2.36)

This matrix is diagonalized by Z^{τ} :

$$Z^{\tau} m_{\tilde{\tau}}^2 Z^{\tau,\dagger} = m_{2,\tilde{\tau}}^{dia} \tag{2.37}$$

with

$$\tilde{\tau}_L = \sum_{t_2} Z_{j1}^{\tau,*} \tilde{\tau}_j , \qquad \tilde{\tau}_R = \sum_{t_2} Z_{j2}^{\tau,*} \tilde{\tau}_j$$
 (2.38)

 $\bullet \ \ \mathbf{Mass \ matrix \ for \ Strange \ Squark}, \ \mathbf{Basis:} \ \left(\tilde{s}_{L,\alpha_1},\tilde{s}_{R,\alpha_2}\right), \left(\tilde{s}_{L,\beta_1}^*,\tilde{s}_{R,\beta_2}^*\right) \\$

$$m_{\tilde{s}}^{2} = \begin{pmatrix} m_{11} & \frac{1}{\sqrt{2}} \delta_{\alpha_{1}\beta_{2}} \left(v_{d} T_{d,22} - v_{u} \mu^{*} Y_{d,22} \right) \\ \frac{1}{\sqrt{2}} \left(v_{d} T_{d,22}^{*} - v_{u} \mu Y_{d,22}^{*} \right) \delta_{\alpha_{2}\beta_{1}} & m_{22} \end{pmatrix}$$

$$(2.39)$$

$$m_{11} = \frac{1}{24} \delta_{\alpha_1 \beta_1} \left(12v_d^2 |Y_{d,22}|^2 + 24m_{q,22}^2 - 3g_2^2 v_d^2 + 3g_2^2 v_u^2 + g_1^2 \left(-v_d^2 + v_u^2 \right) \right)$$
(2.40)

$$m_{22} = \frac{1}{12} \delta_{\alpha_2 \beta_2} \left(12m_{d,22}^2 + 6v_d^2 |Y_{d,22}|^2 + g_1^2 \left(-v_d^2 + v_u^2 \right) \right)$$
(2.41)

This matrix is diagonalized by Z^S :

$$Z^{S} m_{\tilde{s}}^{2} Z^{S,\dagger} = m_{2,\tilde{s}}^{dia} \tag{2.42}$$

with

$$\tilde{s}_{L,\alpha} = \sum_{t_2} Z_{j1}^{S,*} \tilde{s}_{j\alpha}, \qquad \tilde{s}_{R,\alpha} = \sum_{t_2} Z_{j2}^{S,*} \tilde{s}_{j\alpha}$$
 (2.43)

• Mass matrix for Charmed Squark, Basis: $(\tilde{c}_{L,\alpha_1}, \tilde{c}_{R,\alpha_2}), (\tilde{c}_{L,\beta_1}^*, \tilde{c}_{R,\beta_2}^*)$

$$m_{\tilde{c}}^{2} = \begin{pmatrix} m_{11} & \frac{1}{\sqrt{2}} \delta_{\alpha_{1}\beta_{2}} \left(-v_{d}\mu^{*}Y_{u,22} + v_{u}T_{u,22} \right) \\ \frac{1}{\sqrt{2}} \left(-v_{d}\mu Y_{u,22}^{*} + v_{u}T_{u,22}^{*} \right) \delta_{\alpha_{2}\beta_{1}} & m_{22} \end{pmatrix}$$

$$(2.44)$$

$$m_{11} = \frac{1}{24} \delta_{\alpha_1 \beta_1} \left(12v_u^2 |Y_{u,22}|^2 + 3\left(8m_{q,22}^2 + g_2^2 \left(-v_u^2 + v_d^2 \right) \right) + g_1^2 \left(-v_d^2 + v_u^2 \right) \right)$$
(2.45)

$$m_{22} = \frac{1}{6} \delta_{\alpha_2 \beta_2} \left(3v_u^2 |Y_{u,22}|^2 + 6m_{u,22}^2 + g_1^2 \left(-v_u^2 + v_d^2 \right) \right)$$
(2.46)

This matrix is diagonalized by Z^C :

$$Z^C m_{\tilde{c}}^2 Z^{C,\dagger} = m_{2,\tilde{c}}^{dia} \tag{2.47}$$

with

$$\tilde{c}_{L,\alpha} = \sum_{t_2} Z_{j1}^{C,*} \tilde{c}_{j\alpha}, \qquad \tilde{c}_{R,\alpha} = \sum_{t_2} Z_{j2}^{C,*} \tilde{c}_{j\alpha}$$
 (2.48)

 $\bullet \ \, \mathbf{Mass \ matrix \ for \ Bottom \ Squark}, \ \, \mathbf{Basis:} \ \left(\tilde{b}_{L,\alpha_1},\tilde{b}_{R,\alpha_2}\right), \left(\tilde{b}_{L,\beta_1}^*,\tilde{b}_{R,\beta_2}^*\right)$

$$m_{\tilde{b}}^{2} = \begin{pmatrix} m_{11} & \frac{1}{\sqrt{2}} \delta_{\alpha_{1}\beta_{2}} \left(v_{d} T_{d,33} - v_{u} \mu^{*} Y_{d,33} \right) \\ \frac{1}{\sqrt{2}} \left(v_{d} T_{d,33}^{*} - v_{u} \mu Y_{d,33}^{*} \right) \delta_{\alpha_{2}\beta_{1}} & m_{22} \end{pmatrix}$$

$$(2.49)$$

$$m_{11} = \frac{1}{24} \delta_{\alpha_1 \beta_1} \left(12v_d^2 |Y_{d,33}|^2 + 24m_{q,33}^2 - 3g_2^2 v_d^2 + 3g_2^2 v_u^2 + g_1^2 \left(-v_d^2 + v_u^2 \right) \right)$$
(2.50)

$$m_{22} = \frac{1}{12} \delta_{\alpha_2 \beta_2} \left(12m_{d,33}^2 + 6v_d^2 |Y_{d,33}|^2 + g_1^2 \left(-v_d^2 + v_u^2 \right) \right)$$
(2.51)

This matrix is diagonalized by Z^B :

$$Z^B m_{\tilde{b}}^2 Z^{B,\dagger} = m_{2.\tilde{b}}^{dia} \tag{2.52}$$

with

$$\tilde{b}_{L,\alpha} = \sum_{t_2} Z_{j1}^{B,*} \tilde{b}_{j\alpha}, \qquad \tilde{b}_{R,\alpha} = \sum_{t_2} Z_{j2}^{B,*} \tilde{b}_{j\alpha}$$
 (2.53)

• Mass matrix for Top Squark, Basis: $(\tilde{t}_{L,\alpha_1}, \tilde{t}_{R,\alpha_2}), (\tilde{t}_{L,\beta_1}^*, \tilde{t}_{R,\beta_2}^*)$

$$m_{\tilde{t}}^{2} = \begin{pmatrix} m_{11} & \frac{1}{\sqrt{2}} \delta_{\alpha_{1}\beta_{2}} \left(-v_{d}\mu^{*}Y_{u,33} + v_{u}T_{u,33} \right) \\ \frac{1}{\sqrt{2}} \left(-v_{d}\mu Y_{u,33}^{*} + v_{u}T_{u,33}^{*} \right) \delta_{\alpha_{2}\beta_{1}} & m_{22} \end{pmatrix}$$

$$(2.54)$$

$$m_{11} = \frac{1}{24} \delta_{\alpha_1 \beta_1} \left(12v_u^2 |Y_{u,33}|^2 + 3\left(8m_{q,33}^2 + g_2^2 \left(-v_u^2 + v_d^2 \right) \right) + g_1^2 \left(-v_d^2 + v_u^2 \right) \right)$$
(2.55)

$$m_{22} = \frac{1}{6} \delta_{\alpha_2 \beta_2} \left(3v_u^2 |Y_{u,33}|^2 + 6m_{u,33}^2 + g_1^2 \left(-v_u^2 + v_d^2 \right) \right)$$
(2.56)

This matrix is diagonalized by Z^T :

$$Z^T m_{\tilde{t}}^2 Z^{T,\dagger} = m_{2,\tilde{t}}^{dia} \tag{2.57}$$

with

$$\tilde{t}_{L,\alpha} = \sum_{t_2} Z_{j1}^{T,*} \tilde{t}_{j\alpha}, \qquad \tilde{t}_{R,\alpha} = \sum_{t_2} Z_{j2}^{T,*} \tilde{t}_{j\alpha}$$
 (2.58)

• Mass matrix for Higgs, Basis: $(\phi_d, \phi_u), (\phi_d, \phi_u)$

$$m_h^2 = \begin{pmatrix} \frac{1}{8} \left(8m_{H_d}^2 + 8|\mu|^2 + \left(g_1^2 + g_2^2\right) \left(3v_d^2 - v_u^2 \right) \right) & \frac{1}{4} \left(-4\Re\left(B_\mu\right) - \left(g_1^2 + g_2^2\right) v_d v_u \right) \\ \frac{1}{4} \left(-4\Re\left(B_\mu\right) - \left(g_1^2 + g_2^2\right) v_d v_u \right) & \frac{1}{8} \left(8m_{H_u}^2 + 8|\mu|^2 - \left(g_1^2 + g_2^2\right) \left(-3v_u^2 + v_d^2 \right) \right) \end{pmatrix}$$
(2.59)

This matrix is diagonalized by Z^H :

$$Z^{H} m_h^2 Z^{H,\dagger} = m_{2,h}^{dia} \tag{2.60}$$

with

$$\phi_d = \sum_{t_2} Z_{j1}^H h_j , \qquad \phi_u = \sum_{t_2} Z_{j2}^H h_j$$
 (2.61)

The mixing matrix can be parametrized by

$$Z^{H} = \begin{pmatrix} -\sin\alpha & \cos\alpha \\ \cos\alpha & \sin\alpha \end{pmatrix} \tag{2.62}$$

• Mass matrix for Pseudo-Scalar Higgs, Basis: $(\sigma_d, \sigma_u), (\sigma_d, \sigma_u)$

$$m_{A^0}^2 = \begin{pmatrix} \frac{1}{8} \left(8m_{H_d}^2 + 8|\mu|^2 + \left(g_1^2 + g_2^2 \right) \left(-v_u^2 + v_d^2 \right) \right) & \Re\left(B_\mu \right) \\ \Re\left(B_\mu \right) & \frac{1}{8} \left(8m_{H_u}^2 + 8|\mu|^2 - \left(g_1^2 + g_2^2 \right) \left(-v_u^2 + v_d^2 \right) \right) \end{pmatrix}$$
(2.63)

This matrix is diagonalized by Z^A :

$$Z^{A}m_{A^{0}}^{2}Z^{A,\dagger} = m_{2,A^{0}}^{dia} (2.64)$$

with

$$\sigma_d = \sum_{t_2} Z_{j1}^A A_j^0, \qquad \sigma_u = \sum_{t_2} Z_{j2}^A A_j^0 \tag{2.65}$$

The mixing matrix can be parametrized by

$$Z^{A} = \begin{pmatrix} -\cos\beta & \sin\beta \\ \sin\beta & \cos\beta \end{pmatrix} \tag{2.66}$$

 \bullet Mass matrix for Charged Higgs, Basis: $\left(H_d^-,H_u^{+,*}\right),\left(H_d^{-,*},H_u^+\right)$

$$m_{H^{-}}^{2} = \begin{pmatrix} m_{11} & \frac{1}{4}g_{2}^{2}v_{d}v_{u} + B_{\mu} \\ \frac{1}{4}g_{2}^{2}v_{d}v_{u} + B_{\mu}^{*} & m_{22} \end{pmatrix}$$
 (2.67)

$$m_{11} = \frac{1}{8} \left(8m_{H_d}^2 + 8|\mu|^2 + g_1^2 v_d^2 - g_1^2 v_u^2 + g_2^2 v_d^2 + g_2^2 v_u^2 \right)$$
(2.68)

$$m_{22} = \frac{1}{8} \left(8m_{H_u}^2 + 8|\mu|^2 - g_1^2 v_d^2 + g_1^2 v_u^2 + g_2^2 v_d^2 + g_2^2 v_u^2 \right)$$
(2.69)

This matrix is diagonalized by Z^+ :

$$Z^{+}m_{H^{-}}^{2}Z^{+,\dagger} = m_{2,H^{-}}^{dia}$$
(2.70)

with

$$H_d^- = \sum_{t_2} Z_{j1}^{+,*} H_j^-, \qquad H_u^+ = \sum_{t_2} Z_{j2}^+ H_j^+$$
 (2.71)

The mixing matrix can be parametrized by

$$Z^{+} = \begin{pmatrix} -\cos\beta & \sin\beta \\ \sin\beta & \cos\beta \end{pmatrix} \tag{2.72}$$

Mass Matrices for Fermions

 $\bullet \ \ \mathbf{Mass \ matrix \ for \ Neutralinos}, \ \mathsf{Basis:} \ \left(\lambda_{\tilde{B}}, \tilde{W}^0, \tilde{H}^0_d, \tilde{H}^0_u\right), \left(\lambda_{\tilde{B}}, \tilde{W}^0, \tilde{H}^0_d, \tilde{H}^0_u\right)$

$$m_{\tilde{\chi}^0} = \begin{pmatrix} M_1 & 0 & -\frac{1}{2}g_1v_d & \frac{1}{2}g_1v_u \\ 0 & M_2 & \frac{1}{2}g_2v_d & -\frac{1}{2}g_2v_u \\ -\frac{1}{2}g_1v_d & \frac{1}{2}g_2v_d & 0 & -\mu \\ \frac{1}{2}g_1v_u & -\frac{1}{2}g_2v_u & -\mu & 0 \end{pmatrix}$$

$$(2.73)$$

This matrix is diagonalized by N:

$$Nm_{\tilde{\chi}^0}N^{\dagger} = m_{\tilde{\chi}^0}^{dia} \tag{2.74}$$

with

$$\lambda_{\tilde{B}} = \sum_{t_2} N_{j1}^* \lambda_j^0, \qquad \tilde{W}^0 = \sum_{t_2} N_{j2}^* \lambda_j^0, \qquad \tilde{H}_d^0 = \sum_{t_2} N_{j3}^* \lambda_j^0$$

$$\tilde{H}_d^0 = \sum_{t_2} N_{j3}^* \lambda_j^0$$
(2.75)

$$\tilde{H}_u^0 = \sum_{t_2} N_{j4}^* \lambda_j^0 \tag{2.76}$$

• Mass matrix for Charginos, Basis: $\left(\tilde{W}^{-}, \tilde{H}_{d}^{-}\right), \left(\tilde{W}^{+}, \tilde{H}_{u}^{+}\right)$

$$m_{\tilde{\chi}^{-}} = \begin{pmatrix} M_2 & \frac{1}{\sqrt{2}}g_2v_u \\ \frac{1}{\sqrt{2}}g_2v_d & \mu \end{pmatrix}$$
 (2.77)

This matrix is diagonalized by U and V

$$U^* m_{\tilde{\chi}^-} V^{\dagger} = m_{\tilde{\chi}^-}^{dia} \tag{2.78}$$

with

$$\tilde{W}^{-} = \sum_{t_2} U_{j1}^* \lambda_j^{-}, \qquad \tilde{H}_d^{-} = \sum_{t_2} U_{j2}^* \lambda_j^{-}$$

$$\tilde{W}^{+} = \sum_{t_3} V_{1j}^* \lambda_j^{+}, \qquad \tilde{H}_u^{+} = \sum_{t_3} V_{2j}^* \lambda_j^{+}$$

$$(2.79)$$

$$\tilde{W}^{+} = \sum_{t_0} V_{1j}^* \lambda_j^+, \qquad \tilde{H}_u^{+} = \sum_{t_0} V_{2j}^* \lambda_j^+ \tag{2.80}$$

2.4Vacuum Expectation Values

$$H_d^0 = \frac{1}{\sqrt{2}}\phi_d + \frac{1}{\sqrt{2}}v_d + i\frac{1}{\sqrt{2}}\sigma_d \tag{2.81}$$

$$H_u^0 = \frac{1}{\sqrt{2}}\phi_u + \frac{1}{\sqrt{2}}v_u + i\frac{1}{\sqrt{2}}\sigma_u \tag{2.82}$$

Tadpole Equations 2.5

$$\frac{\partial V}{\partial v_d} = \frac{1}{8} \left(8v_d |\mu|^2 - 8v_u \Re \left(B_\mu \right) + v_d \left(8m_{H_d}^2 + g_1^2 v_d^2 - g_1^2 v_u^2 + g_2^2 v_d^2 - g_2^2 v_u^2 \right) \right) \tag{2.83}$$

$$\frac{\partial V}{\partial v_d} = \frac{1}{8} \left(8v_d |\mu|^2 - 8v_u \Re\left(B_\mu\right) + v_d \left(8m_{H_d}^2 + g_1^2 v_d^2 - g_1^2 v_u^2 + g_2^2 v_d^2 - g_2^2 v_u^2 \right) \right)
\frac{\partial V}{\partial v_u} = \frac{1}{8} \left(-8v_d \Re\left(B_\mu\right) + 8v_u |\mu|^2 + v_u \left(8m_{H_u}^2 - g_1^2 v_d^2 + g_1^2 v_u^2 - g_2^2 v_d^2 + g_2^2 v_u^2 \right) \right)$$
(2.83)

Particle content for eigenstates 'EWSB'

Name	Type	complex/real	Generations	Indices
$\tilde{ u}_e$	Scalar	complex	1	
$ ilde{ u}_{\mu}$	Scalar	complex	1	
$\tilde{\nu}_{ au}$	Scalar	complex	1	
$ ilde{d}$	Scalar	complex	2	generation, color
\tilde{u}	Scalar	complex	2	generation, color
\tilde{e}	Scalar	complex	2	generation
$ ilde{\mu}$	Scalar	complex	2	generation
$ ilde{ au}$	Scalar	complex	2	generation
\tilde{s}	Scalar	complex	2	generation, color
\tilde{c}	Scalar	complex	2	generation, color
\tilde{b}	Scalar	complex	2	generation, color
\tilde{t}	Scalar	complex	2	generation, color
h	Scalar	real	2	generation
A^0	Scalar	real	2	${\it generation}$
H^-	Scalar	complex	2	${\it generation}$
\tilde{g}	Fermion	Majorana	8	generation
d	Fermion	Dirac	1	color
s	Fermion	Dirac	1	color
b	Fermion	Dirac	1	color
u	Fermion	Dirac	1	color
c	Fermion	Dirac	1	color
t	Fermion	Dirac	1	color
ν_e	Fermion	Dirac	1	
$ u_{\mu}$	Fermion	Dirac	1	
$\nu_{ au}$	Fermion	Dirac	1	
e	Fermion	Dirac	1	
m	Fermion	Dirac	1	
au	Fermion	Dirac	1	

$ ilde{\chi}^0$	Fermion	Majorana	4	generation
$ ilde{\chi}^-$	Fermion	Dirac	2	generation
g	Vector	real	8	generation, lorentz
W^-	Vector	complex	1	lorentz
γ	Vector	real	1	lorentz
Z	Vector	real	1	lorentz
η^G	Ghost	real	8	generation
η^-	Ghost	complex	1	
η^+	Ghost	complex	1	
η^γ	Ghost	real	1	
η^Z	Ghost	real	1	

2.7 Modelfile for SARAH

```
Off[General::spell]
Print["Model file for the MSSM loaded"];
ModelNameLaTeX ="MSSM";
(*----*)
(* Particle Content*)
(*----*)
(* Gauge Superfields *)
Gauge[[1]]={B, U[1], hypercharge, g1,False};
Gauge[[2]]={WB, SU[2], left, g2,True};
Gauge[[3]]={G, SU[3], color,
                          g3,False};
(* Chiral Superfields *)
Fields[[1]] = \{\{uL0, dL0\}, 3, q, 1/6, 2, 3\};
Fields[[2]] = \{\{vL0, eL0\}, 3, 1, -1/2, 2, 1\};
Fields[[3]] = \{\{Hd0, Hdm\}, 1, Hd, -1/2, 2, 1\};
Fields[[4]] = {{Hup, Hu0}, 1, Hu, 1/2, 2, 1};
Fields[[5]] = \{conj[dR0], 3, d, 1/3, 1, -3\};
Fields[[6]] = \{conj[uR0], 3, u, -2/3, 1, -3\};
Fields[[7]] = {conj[eR0], 3, e, 1, 1, 1};
(*----*)
(* Superpotential *)
(*-----*)
SuperPotential = \{\{1, Yu\}, \{u,q,Hu\}\}, \{\{-1,Yd\}, \{d,q,Hd\}\},
               \{\{-1, Ye\}, \{e, 1, Hd\}\}, \{\{1, \{Mu\}\}, \{Hu, Hd\}\}\};
(*----*)
(* Integrate Out or Delete Particles
(*----*)
IntegrateOut={};
```

```
DeleteParticles={};
(*----*)
   DEFINITION
(*-----*)
NameOfStates={GaugeES, EWSB};
(* ---- Before EWSB ---- *)
DEFINITION[GaugeES][GaugeFixing] =
{ {Der[VWB], -1/(2 RXi[W])},
    {Der[VG], -1/(2 RXi[G]) }};
(* ---- After EWSB ---- *)
(* Gauge Sector *)
DEFINITION[EWSB] [GaugeSector] =
{{VWB, {1, {VWm, 1/Sqrt[2]}, {conj[VWm], 1/Sqrt[2]}}},
     {2,{VWm,-\[ImaginaryI]/Sqrt[2]}},{conj[VWm],\[ImaginaryI]/Sqrt[2]}},
     {3,{VP,Sin[ThetaW]},{VZ,Cos[ThetaW]}}},
 {VB, {1,{VP,Cos[ThetaW]},{VZ,-Sin[ThetaW]}}},
 {fWB, {1, {fWm, 1/Sqrt[2]}, {fWp, 1/Sqrt[2]}},
     {2,\{fWm,-\lceil ImaginaryI \},\{fWp,\lceil ImaginaryI \}\}},
     {3,{fW0,1}}};
(* ---- VEVs ---- *)
DEFINITION[EWSB][VEVs] =
  {{SHdO, {vd, 1/Sqrt[2]}, {sigmad, \[ImaginaryI]/Sqrt[2]},{phid, \
1/Sqrt[2]}},
  {SHu0, {vu, 1/Sqrt[2]}, {sigmau, \[ImaginaryI]/Sqrt[2]},{phiu, \
1/Sqrt[2]}}};
(* ---- Flavors ---- *)
DEFINITION[EWSB] [Flavors] =
{{FdRO,{FdR,FsR,FbR}}},
```

```
{FdL0, {FdL, FsL, FbL}},
 {FuLO, {FuL, FcL, FtL}},
 {FuRO, {FuR, FcR, FtR}},
 {FvLO, {FveL, FvmL, FvtL}},
 {SdRO, {SdR, SsR, SbR}},
 {SdL0, {SdL, SsL, SbL}},
 {SuL0, {SuL, ScL, StL}},
 {SuRO, {SuR, ScR, StR}},
 {FeL0, {FeL, FmL, FtauL}},
 {FeRO, {FeR, FmR, FtauR}},
 {SeRO, {SeR, SmR, StauR}},
 {SeL0, {SeL, SmL, StauL}},
 {SvLO, {SveL, SvmL, SvtL}}};
(* ---- Mixings ---- *)
DEFINITION[EWSB] [MatterSector] =
     {{SdL, SdR}, {Sd, ZD}},
     {{SuL, SuR}, {Su, ZU}},
     {{SeL, SeR}, {Se, ZE}},
     {{SmL, SmR}, {Sm, ZM}},
     {{StauL, StauR}, {Stau, ZTau}},
 {{SsL, SsR}, {Ss, ZS}},
     {{ScL, ScR}, {Sc, ZC}},
 {{SbL, SbR}, {Sb, ZB}},
     {{StL, StR}, {St, ZT}},
     {{phid, phiu}, {hh, ZH}},
     {{sigmad, sigmau}, {Ah, ZA}},
     {{SHdm,conj[SHup]},{Hpm,ZP}},
     {{fB, fWO, FHdO, FHuO}, {LO, ZN}},
     {{fWm, FHdm}, {fWp, FHup}}, {{Lm,UM}, {Lp,UP}}}
       };
DEFINITION[EWSB] [Phases] =
    {fG, PhaseGlu}
   };
(*--- Gauge Fixing ---- *)
DEFINITION[EWSB] [GaugeFixing] =
                                                          - 1/(2 RXi[P])},
  { {Der[VP],
{Der[VWm]+\[ImaginaryI] Mass[VWm] RXi[W] Hpm[{1}], - 1/(RXi[W])},
{Der[VZ] - Mass[VZ] RXi[Z] Ah[{1}],
                                                      - 1/(2 RXi[Z]),
{Der[VG],
                                                      - 1/(2 RXi[G])}};
(*----*)
```

```
(* Dirac-Spinors *)
(*----*)
dirac[[1]] = {Fd, FdL, FdR};
dirac[[2]] = {Fb, FbL, FbR};
dirac[[3]] = {Fs, FsL, FsR};
dirac[[4]] = {Fc, FcL, FcR};
dirac[[5]] = {Ft, FtL, FtR};
dirac[[6]] = {Fm, FmL, FmR};
dirac[[7]] = {Ftau, FtauL, FtauR};
dirac[[8]] = {Fe, FeL, FeR};
dirac[[9]] = {Fu, FuL, FuR};
dirac[[10]] = {Fve, FveL, 0};
dirac[[11]] = {Fvm, FvmL, 0};
dirac[[12]] = {Fvt, FvtL, 0};
dirac[[13]] = {Chi, L0, conj[L0]};
dirac[[14]] = {Cha, Lm, conj[Lp]};
dirac[[15]] = {Glu, fG, conj[fG]};
dirac[[16]] = {Bino, fB, conj[fB]};
dirac[[17]] = {Wino, fWB, conj[fWB]};
dirac[[18]] = {H0, FHd0, conj[FHu0]};
dirac[[19]] = {HC, FHdm, conj[FHup]};
dirac[[20]] = {Fd1, FdL0, 0};
dirac[[21]] = {Fd2, 0, FdR0};
dirac[[22]] = {Fu1, FuL0, 0};
dirac[[23]] = {Fu2, 0, FuR0};
dirac[[24]] = {Fe1, FeL0, 0};
dirac[[25]] = {Fe2, 0, FeR0};
dirac[[26]] = {Fv, FvL0,0};
(* Automatized Output *)
(*
makeOutput = {
                  {EWSB, {TeX, FeynArts}}
```

SpectrumFile=None;

2.8 Implementation in SARAH

Model directory: MSSM/NoFV

2.8.1 Particles for eigenstates 'GaugeES'

• Fermions

$$\begin{split} \tilde{B} &= \begin{pmatrix} \lambda_{\tilde{B}} \\ \lambda_{\tilde{B}}^* \end{pmatrix} & \text{Bino} &= \begin{pmatrix} \text{fB} \\ \text{conj[fB]} \end{pmatrix} \\ d_{i\alpha}^1 &= \begin{pmatrix} d_{L,i\alpha} \\ 0 \end{pmatrix} & \text{Fd1[\{generation, color\}]} &= \begin{pmatrix} \text{FdL0[\{generation, color\}]} \\ 0 \\ d_{i\alpha}^2 &= \begin{pmatrix} 0 \\ d_{R,i\alpha} \end{pmatrix} \end{pmatrix} & \text{Fd2[\{generation, color\}]} &= \begin{pmatrix} 0 \\ \text{FdR0[\{generation, color\}]} \end{pmatrix} \\ e_i^1 &= \begin{pmatrix} e_{L,i} \\ 0 \end{pmatrix} & \text{Fe1[\{generation\}]} &= \begin{pmatrix} \text{FeL0[\{generation\}]} \\ 0 \\ e_{R,i} \end{pmatrix} \end{pmatrix} \\ e_i^2 &= \begin{pmatrix} 0 \\ e_{R,i} \end{pmatrix} & \text{Fe2[\{generation, color\}]} &= \begin{pmatrix} 0 \\ \text{FeR0[\{generation, color\}]} \end{pmatrix} \\ u_{i\alpha}^1 &= \begin{pmatrix} u_{L,i\alpha} \\ 0 \end{pmatrix} & \text{Fu1[\{generation, color\}]} &= \begin{pmatrix} \text{FuL0[\{generation, color\}]} \\ 0 \\ u_{R,i\alpha} \end{pmatrix} \end{pmatrix} \\ u_{i\alpha}^2 &= \begin{pmatrix} 0 \\ u_{R,i\alpha} \end{pmatrix} & \text{Fu2[\{generation, color\}]} &= \begin{pmatrix} 0 \\ \text{FuR0[\{generation\}]} \end{pmatrix} \\ v_i &= \begin{pmatrix} \nu_i \\ 0 \end{pmatrix} & \text{Fv[\{generation\}]} &= \begin{pmatrix} \text{FvL0[\{generation\}]} \\ 0 \end{pmatrix} \\ \tilde{g}_i &= \begin{pmatrix} \lambda_{\tilde{g},i} \\ \lambda_{\tilde{g},i}^* \end{pmatrix} & \text{Glu[\{generation\}]} &= \begin{pmatrix} \text{fG[\{generation\}]} \\ \text{conj[fG[\{generation\}]]} \end{pmatrix} \\ \tilde{H}^0 &= \begin{pmatrix} \tilde{H}_0^1 \\ \tilde{H}_0^1 \\ \tilde{H}_u^1 \end{pmatrix} & \text{HO} &= \begin{pmatrix} \text{FHdo} \\ \text{conj[FHuO]} \end{pmatrix} \\ \tilde{H}^0 &= \begin{pmatrix} \tilde{H}_0^1 \\ \tilde{H}_u^1 \end{pmatrix} & \text{HC} &= \begin{pmatrix} \text{FHdm} \\ \text{conj[FHup]} \end{pmatrix} \\ \tilde{W}_i &= \begin{pmatrix} \lambda_{\tilde{W},i} \\ \lambda_{\tilde{W},i}^* \end{pmatrix} & \text{Wino[\{generation\}]} &= \begin{pmatrix} \text{fWB[\{generation\}]} \\ \text{conj[fWB[\{generation\}]} \end{pmatrix} \end{split}$$

• Scalars

$\tilde{d}_{L,ilpha}$	SdL0[{generation, color}]	$\tilde{u}_{L,i\alpha}$	SuLO[{generation, color}]
$\tilde{e}_{L,i}$	SeL0[{generation}]	$ ilde{ u}_{L,i}$	<pre>SvL0[{generation}]</pre>
H_d^0	SHd0	H_d^-	SHdm
H_u^0	SHu0	H_u^+	SHup
$\tilde{d}_{R,i\alpha}$	<pre>SdR0[{generation, color}]</pre>	$\tilde{u}_{R,i\alpha}$	<pre>SuR0[{generation, color}]</pre>
$\tilde{e}_{R,i}$	SeRO[{generation}]		

• Vector Bosons

• Ghosts

2.8.2 Particles for eigenstates 'EWSB'

• Fermions

$$\begin{split} \tilde{\chi}_i^- &= \begin{pmatrix} \lambda_i^- \\ \lambda_i^{+,*} \end{pmatrix} & \text{Cha[\{generation\}]} &= \begin{pmatrix} \text{Lm[\{generation\}]} \\ \text{conj[Lp[\{generation\}]} \end{pmatrix} \\ \tilde{\chi}_i^0 &= \begin{pmatrix} \lambda_i^0 \\ \lambda_i^{0,*} \end{pmatrix} & \text{Chi[\{generation\}]} &= \begin{pmatrix} \text{L0[\{generation\}]} \\ \text{conj[L0[\{generation\}]} \end{pmatrix} \end{pmatrix} \\ b_\alpha &= \begin{pmatrix} b_{L,\alpha} \\ b_{R,\alpha} \end{pmatrix} & \text{Fb[\{color\}]} &= \begin{pmatrix} \text{FbL[\{color\}]} \\ \text{FbR[\{color\}]} \end{pmatrix} \\ c_\alpha &= \begin{pmatrix} c_{L,\alpha} \\ c_{R,\alpha} \end{pmatrix} & \text{Fc[\{color\}]} &= \begin{pmatrix} \text{FcL[\{color\}]} \\ \text{FcR[\{color\}]} \end{pmatrix} \\ d_\alpha &= \begin{pmatrix} d_{L,\alpha} \\ d_{R,\alpha} \end{pmatrix} & \text{Fd[\{color\}]} &= \begin{pmatrix} \text{FdL[\{color\}]} \\ \text{FdR[\{color\}]} \end{pmatrix} \end{aligned}$$

$$\begin{array}{c} e = \begin{pmatrix} e_L \\ e_R \end{pmatrix} & \text{Fe} = \begin{pmatrix} \text{FeL} \\ \text{FeR} \end{pmatrix} \\ m = \begin{pmatrix} \mu_L \\ \mu_R \end{pmatrix} & \text{Fm} = \begin{pmatrix} \text{FmL} \\ \text{FmR} \end{pmatrix} \\ s_\alpha = \begin{pmatrix} s_{L,\alpha} \\ s_{R,\alpha} \end{pmatrix} & \text{Fs}[\{\text{color}\}] = \begin{pmatrix} \text{FsL}[\{\text{color}\}] \\ \text{FsR}[\{\text{color}\}] \end{pmatrix} \\ t_\alpha = \begin{pmatrix} t_{L,\alpha} \\ t_{R,\alpha} \end{pmatrix} & \text{Ft}[\{\text{color}\}] = \begin{pmatrix} \text{FtL}[\{\text{color}\}] \\ \text{FtR}[\{\text{color}\}] \end{pmatrix} \\ \tau = \begin{pmatrix} \tau_L \\ \tau_R \end{pmatrix} & \text{Ftau} = \begin{pmatrix} \text{FtauL} \\ \text{FtauR} \end{pmatrix} \\ u_\alpha = \begin{pmatrix} u_{L,\alpha} \\ u_{R,\alpha} \end{pmatrix} & \text{Fu}[\{\text{color}\}] = \begin{pmatrix} \text{FuL}[\{\text{color}\}] \\ \text{FuR}[\{\text{color}\}] \end{pmatrix} \\ \nu_e = \begin{pmatrix} \nu_e \\ 0 \end{pmatrix} & \text{Fve} = \begin{pmatrix} \text{FveL} \\ 0 \end{pmatrix} \\ \nu_\mu = \begin{pmatrix} \nu_\mu \\ 0 \end{pmatrix} & \text{Fvm} = \begin{pmatrix} \text{FvmL} \\ 0 \end{pmatrix} \\ \nu_\tau = \begin{pmatrix} \nu_\tau \\ 0 \end{pmatrix} & \text{Fvt} = \begin{pmatrix} \text{FvtL} \\ 0 \end{pmatrix} \\ \tilde{g}_i = \begin{pmatrix} \lambda_{\tilde{g},i} \\ \lambda_{\tilde{g},i}^* \end{pmatrix} & \text{Glu}[\{\text{generation}\}] = \begin{pmatrix} \text{fG}[\{\text{generation}\}]] \\ \text{conj}[\text{fG}[\{\text{generation}\}]] \end{pmatrix}$$

• Scalars

$\tilde{ u}_e$	SveL	$ ilde{ u}_{\mu}$	SvmL
$\tilde{ u}_{ au}$	SvtL	$\tilde{d}_{i\alpha}$	<pre>Sd[{generation, color}]</pre>
$\tilde{u}_{i\alpha}$	Su[{generation, color}]	\tilde{e}_i	Se[{generation}]
$\tilde{\mu}_i$	<pre>Sm[{generation}]</pre>	$ ilde{ au}_i$	Stau[{generation}]
\tilde{s}_{ilpha}	<pre>Ss[{generation, color}]</pre>	$\tilde{c}_{i\alpha}$	<pre>Sc[{generation, color}]</pre>
\tilde{b}_{ilpha}	<pre>Sb[{generation, color}]</pre>	$\tilde{t}_{i\alpha}$	St[{generation, color}]
h_i	hh[{generation}]	A_i^0	Ah[{generation}]
H_i^-	${\tt Hpm[\{generation\}]}$		

• Vector Bosons

$g_{i ho}$	VG[{generation, lorentz}]	W_{ρ}^{-}	<pre>VWm[{lorentz}]</pre>
$\gamma_{ ho}$	<pre>VP[{lorentz}]</pre>	$Z_{ ho}$	<pre>VZ[{lorentz}]</pre>

\bullet Ghosts

η_i^G	gG[{generation}]	η^-	gWm
η^+	gWmC	η^{γ}	gP
η^Z	gZ		

2.8.3 Parameters

g_1	g1	g_2	g2	g_3	g3
Y_u	Yu	T_u	T[Yu]	Y_d	Yd
T_d	T[Yd]	Y_e	Ye	T_e	T[Ye]
μ	\[Mu]	B_{μ}	$B[\[Mu]]$	m_q^2	mq2
m_l^2	m12	$m_{H_d}^2$	mHd2	$m_{H_u}^2$	mHu2
m_d^2	md2	m_u^2	mu2	m_e^2	me2
M_1	MassB	M_2	$ exttt{MassWB}$	M_3	MassG
v_d	vd	v_u	vu	Θ_W	ThetaW
$\phi_{\tilde{g}}$	PhaseGlu	Z^D	ZD	Z^U	ZU
Z^E	ZE	Z^{μ}	ZM	$Z^{ au}$	ZTau
Z^S	ZS	Z^C	ZC	Z^B	ZB
Z^T	ZT	Z^H	ZH	Z^A	ZA
Z^+	ZP	N	ZN	U	UM
V	UP	α	$\[Alpha]$	β	\[Beta]

Chapter 3

Minimal Supersymmetric Standard Model in SCKM basis

3.1 Superfields

3.1.1 Vector Superfields

SF	Spin $\frac{1}{2}$	Spin 1	SU(N)	Coupling	Name
\hat{B}	$\lambda_{ ilde{B}}$	B	U(1)	g_1	hypercharge
\hat{W}	$\lambda_{ ilde{W}}$	W^-	SU(2)	g_2	left
\hat{g}	$\lambda_{ ilde{g}}$	g	SU(3)	g_3	color

3.1.2 Chiral Superfields

SF	Spin 0	Spin $\frac{1}{2}$	Generations	$(U(1) \otimes \mathrm{SU}(2) \otimes \mathrm{SU}(3))$
\hat{q}	Sq0	Fq0	3	$(rac{1}{6},2,3)$
\hat{l}	\tilde{l}	l	3	$(-rac{1}{2},2,1)$
\hat{H}_d	H_d	$ ilde{H}_d$	1	$(-rac{1}{2},{f 2},{f 1})$
\hat{H}_u	H_u	\tilde{H}_u	1	$(rac{1}{2}, oldsymbol{2}, oldsymbol{1})$
\hat{d}	$ ilde{d}_R^{0,*}$	d_R^*	3	$(rac{1}{3}, oldsymbol{1}, \overline{oldsymbol{3}})$
\hat{u}	$\tilde{u}_R^{0,*}$	u_R^*	3	$(-rac{2}{3},1,\overline{3})$
\hat{e}	$ ilde{e}_R^*$	e_R^*	3	(1, 1, 1)

3.2 Superpotential and Lagrangian

3.2.1 Superpotential

$$W = Y_u^0 \,\hat{q} \,\hat{H}_u \,\hat{u} - Y_d^0 \,\hat{q} \,\hat{H}_d \,\hat{d} - Y_e \,\hat{l} \,\hat{H}_d \,\hat{e} + \mu \,\hat{H}_u \,\hat{H}_d$$
(3.1)

3.2.2 Softbreaking terms

$$L_{SB,W} = -H_d^0 H_u^0 B_\mu + H_d^- H_u^+ B_\mu + H_d^0 \tilde{d}_{R,k\gamma}^{0,*} \delta_{\alpha\gamma} \tilde{d}_{L,i\alpha}^0 T_{d,ik}^0 - H_d^- \tilde{d}_{R,k\gamma}^{0,*} \delta_{\alpha\gamma} \tilde{u}_{L,i\alpha}^0 T_{d,ik}^0$$

$$+ H_d^0 \tilde{e}_{R,k}^* \tilde{e}_{L,i} T_{e,ik} - H_d^- \tilde{e}_{R,k}^* \tilde{\nu}_{L,i} T_{e,ik} - H_u^+ \tilde{u}_{R,k\gamma}^{0,*} \delta_{\alpha\gamma} \tilde{d}_{L,i\alpha}^0 T_{u,ik}^0$$

$$+ H_u^0 \tilde{u}_{R,k\gamma}^{0,*} \delta_{\alpha\gamma} \tilde{u}_{L,i\alpha}^0 T_{u,ik}^0 + \text{h.c.}$$

$$(3.2)$$

$$L_{SB,\phi} = -m_{H_d}^2 |H_d^0|^2 - m_{H_d}^2 |H_d^-|^2 - m_{H_u}^2 |H_u^0|^2 - m_{H_u}^2 |H_u^+|^2 - \tilde{d}_{L,j\beta}^{0,*} \delta_{\alpha\beta} m_{\tilde{q},ij}^{0,2} \tilde{d}_{L,i\alpha}^0$$

$$- \tilde{d}_{R,i\alpha}^{0,*} \delta_{\alpha\beta} m_{\tilde{d},ij}^{0,2} \tilde{d}_{R,j\beta}^0 - \tilde{e}_{L,j}^* m_{l,ij}^2 \tilde{e}_{L,i} - \tilde{e}_{R,i}^* m_{e,ij}^2 \tilde{e}_{R,j} - \tilde{u}_{L,j\beta}^{0,*} \delta_{\alpha\beta} m_{\tilde{q},ij}^{0,2} \tilde{u}_{L,i\alpha}^0$$

$$- \tilde{u}_{R,i\alpha}^{0,*} \delta_{\alpha\beta} m_{\tilde{u},ij}^{0,2} \tilde{u}_{R,j\beta}^0 - \tilde{\nu}_{L,j}^* m_{l,ij}^2 \tilde{\nu}_{L,i}$$

$$(3.3)$$

$$L_{SB,\lambda} = \frac{1}{2} \left(-\lambda_{\tilde{B}}^2 M_1 - M_2 \lambda_{\tilde{W},i}^2 - M_3 \lambda_{\tilde{g},i}^2 + \text{h.c.} \right)$$
 (3.4)

3.2.3 Gauge fixing terms

Gauge fixing terms for eigenstates 'GaugeES'

$$L_{GF} = -\frac{1}{2}\partial_{\mu}g\xi_{G}^{-1} - \frac{1}{2}\partial_{\mu}W^{-}\xi_{W}^{-1}$$
(3.5)

Gauge fixing terms for eigenstates 'EWSB'

$$L_{GF} = -\frac{1}{2}\partial_{\mu}\gamma\xi_{P}^{-1} - \frac{1}{2}\partial_{\mu}g\xi_{G}^{-1} - \frac{1}{2}\xi_{Z}^{-1}\left(-A_{1}^{0}m_{Z}\xi_{Z} + \partial_{\mu}Z\right) - \xi_{W}^{-1}\left(iH_{1}^{-}m_{W^{-}}\xi_{W} + \partial_{\mu}W^{-}\right)$$
(3.6)

3.2.4 Fields integrated out

None

3.3 Field Rotations

3.3.1 Rotations in gauge sector for eigenstates 'EWSB'

$$W_{1\rho}^{-} = \frac{1}{\sqrt{2}}W_{\rho}^{-} + \frac{1}{\sqrt{2}}W_{\rho}^{+} \tag{3.7}$$

$$W_{2\rho}^{-} = -i\frac{1}{\sqrt{2}}W_{\rho}^{-} + i\frac{1}{\sqrt{2}}W_{\rho}^{+} \tag{3.8}$$

$$W_{3\rho}^{-} = \cos\Theta_W Z_{\rho} + \sin\Theta_W \gamma_{\rho} \tag{3.9}$$

$$B_{\rho} = \cos\Theta_W \gamma_{\rho} - \sin\Theta_W Z_{\rho} \tag{3.10}$$

$$\lambda_{\tilde{W},1} = \frac{1}{\sqrt{2}}\tilde{W}^{-} + \frac{1}{\sqrt{2}}\tilde{W}^{+} \tag{3.11}$$

$$\lambda_{\tilde{W},2} = -i\frac{1}{\sqrt{2}}\tilde{W}^{-} + i\frac{1}{\sqrt{2}}\tilde{W}^{+} \tag{3.12}$$

$$\lambda_{\tilde{W},3} = \tilde{W}^0 \tag{3.13}$$

3.3.2 Rotations in Mass sector for eigenstates 'EWSB'

Mass Matrices for Scalars

 $\bullet \ \, \mathbf{Mass \ matrix \ for \ Down-Squarks}, \ \, \mathbf{Basis:} \ \, \left(\tilde{d}_{L,o_{1}\alpha_{1}},\tilde{d}_{R,o_{2}\alpha_{2}}\right), \left(\tilde{d}_{L,p_{1}\beta_{1}}^{*},\tilde{d}_{R,p_{2}\beta_{2}}^{*}\right)$

$$m_{\tilde{d}}^{2} = \begin{pmatrix} m_{11} & \frac{1}{\sqrt{2}} \delta_{\alpha_{1}\beta_{2}} \delta_{o_{1}p_{2}} \left(v_{d} T_{d,o_{1}o_{1}} - v_{u} \mu^{*} Y_{d,o_{1}o_{1}} \right) \\ \frac{1}{\sqrt{2}} \left(v_{d} T_{d,o_{2}o_{2}}^{*} - v_{u} \mu Y_{d,o_{2}o_{2}}^{*} \right) \delta_{\alpha_{2}\beta_{1}} \delta_{o_{2}p_{1}} & m_{22} \end{pmatrix}$$

$$(3.14)$$

$$m_{11} = \frac{1}{24} \delta_{\alpha_1 \beta_1} \delta_{o_1 p_1} \left(12 v_d^2 |Y_{d, o_1 o_1}|^2 + 24 m_{q, o_1 o_1}^2 - \left(3g_2^2 + g_1^2 \right) \left(-v_u^2 + v_d^2 \right) \right)$$

$$(3.15)$$

$$m_{22} = \frac{1}{12} \delta_{\alpha_2 \beta_2} \delta_{o_2 p_2} \left(12m_{d, o_2 o_2}^2 + 6v_d^2 |Y_{d, o_2 o_2}|^2 + g_1^2 \left(-v_d^2 + v_u^2 \right) \right)$$
(3.16)

This matrix is diagonalized by Z^D :

$$Z^D m_{\tilde{d}}^2 Z^{D,\dagger} = m_{2,\tilde{d}}^{dia} \tag{3.17}$$

with

$$\tilde{d}_{L,i\alpha} = \sum_{t_2} Z_{ji}^{D,*} \tilde{d}_{j\alpha}, \qquad \tilde{d}_{R,i\alpha} = \sum_{t_2} Z_{ji}^{D,*} \tilde{d}_{j\alpha}$$
 (3.18)

• Mass matrix for Up-Squarks, Basis: $(\tilde{u}_{L,o_1\alpha_1}, \tilde{u}_{R,o_2\alpha_2}), (\tilde{u}_{L,p_1\beta_1}^*, \tilde{u}_{R,p_2\beta_2}^*)$

$$m_{\tilde{u}}^{2} = \begin{pmatrix} m_{11} & \frac{1}{\sqrt{2}} \delta_{\alpha_{1}\beta_{2}} \delta_{o_{1}p_{2}} \left(-v_{d}\mu^{*} Y_{u,o_{1}o_{1}} + v_{u} T_{u,o_{1}o_{1}} \right) \\ \frac{1}{\sqrt{2}} \left(-v_{d}\mu Y_{u,o_{2}o_{2}}^{*} + v_{u} T_{u,o_{2}o_{2}}^{*} \right) \delta_{\alpha_{2}\beta_{1}} \delta_{o_{2}p_{1}} & m_{22} \end{pmatrix}$$
(3.19)

$$m_{11} = \frac{1}{24} \delta_{\alpha_1 \beta_1} \left(\left(12v_u^2 | Y_{u,o_1 o_1} |^2 - \left(-3g_2^2 + g_1^2 \right) \left(-v_u^2 + v_d^2 \right) \right) \delta_{o_1 p_1} + 24 \sum_{q=1}^3 V_{o_1 a}^{CKM} V_{p_1 a}^{CKM,*} m_{q,aa}^2 \right)$$
(3.20)

$$m_{22} = \frac{1}{6} \delta_{\alpha_2 \beta_2} \delta_{o_2 p_2} \left(3v_u^2 |Y_{u, o_2 o_2}|^2 + 6m_{u, o_2 o_2}^2 + g_1^2 \left(-v_u^2 + v_d^2 \right) \right)$$
(3.21)

This matrix is diagonalized by Z^U :

$$Z^{U}m_{\tilde{u}}^{2}Z^{U,\dagger} = m_{2,\tilde{u}}^{dia} \tag{3.22}$$

with

$$\tilde{u}_{L,i\alpha} = \sum_{t_2} Z_{ji}^{U,*} \tilde{u}_{j\alpha}, \qquad \tilde{u}_{R,i\alpha} = \sum_{t_2} Z_{ji}^{U,*} \tilde{u}_{j\alpha}$$
 (3.23)

• Mass matrix for Sleptons, Basis: $(\tilde{e}_{L,o_1}, \tilde{e}_{R,o_2}), (\tilde{e}^*_{L,p_1}, \tilde{e}^*_{R,p_2})$

$$m_{\tilde{e}}^2 = \begin{pmatrix} m_{11} & \frac{1}{\sqrt{2}} \left(v_d T_{e,o_1 p_2} - v_u \mu^* Y_{e,o_1 p_2} \right) \\ \frac{1}{\sqrt{2}} \left(v_d T_{e,p_1 o_2}^* - v_u \mu Y_{e,p_1 o_2}^* \right) & m_{22} \end{pmatrix}$$

$$(3.24)$$

$$m_{11} = \frac{1}{8} \left(4v_d^2 \sum_{a=1}^3 Y_{e,p_1a}^* Y_{e,o_1a} + 8m_{l,o_1p_1}^2 + \left(-g_2^2 + g_1^2 \right) \left(-v_u^2 + v_d^2 \right) \delta_{o_1p_1} \right)$$
(3.25)

$$m_{22} = \frac{1}{4} \left(2v_d^2 \sum_{a=1}^3 Y_{e,ao_2}^* Y_{e,ap_2} + 4m_{e,p_2o_2}^2 + g_1^2 \left(-v_d^2 + v_u^2 \right) \delta_{o_2p_2} \right)$$
(3.26)

This matrix is diagonalized by Z^E :

$$Z^{E} m_{\tilde{e}}^{2} Z^{E,\dagger} = m_{2.\tilde{e}}^{dia} \tag{3.27}$$

with

$$\tilde{e}_{L,i} = \sum_{t_2} Z_{ji}^{E,*} \tilde{e}_j, \qquad \tilde{e}_{R,i} = \sum_{t_2} Z_{ji}^{E,*} \tilde{e}_j$$
(3.28)

• Mass matrix for Sneutrinos, Basis: $(\tilde{\nu}_{L,o_1}), (\tilde{\nu}_{L,p_1}^*)$

$$m_{\tilde{\nu}}^2 = \left(\frac{1}{8} \left(8m_{l,o_1p_1}^2 + \left(g_1^2 + g_2^2\right) \left(-v_u^2 + v_d^2\right) \delta_{o_1p_1}\right)\right)$$
(3.29)

This matrix is diagonalized by Z^V :

$$Z^{V} m_{\tilde{\nu}}^{2} Z^{V,\dagger} = m_{2,\tilde{\nu}}^{dia} \tag{3.30}$$

with

$$\tilde{\nu}_{L,i} = \sum_{t_2} Z_{ji}^{V,*} \tilde{\nu}_j \tag{3.31}$$

• Mass matrix for Higgs, Basis: $(\phi_d, \phi_u), (\phi_d, \phi_u)$

$$m_h^2 = \begin{pmatrix} \frac{1}{8} \left(8m_{H_d}^2 + 8|\mu|^2 + \left(g_1^2 + g_2^2 \right) \left(3v_d^2 - v_u^2 \right) \right) & \frac{1}{4} \left(-4\Re\left(B_\mu \right) - \left(g_1^2 + g_2^2 \right) v_d v_u \right) \\ \frac{1}{4} \left(-4\Re\left(B_\mu \right) - \left(g_1^2 + g_2^2 \right) v_d v_u \right) & \frac{1}{8} \left(8m_{H_u}^2 + 8|\mu|^2 - \left(g_1^2 + g_2^2 \right) \left(-3v_u^2 + v_d^2 \right) \right) \end{pmatrix}$$
(3.32)

This matrix is diagonalized by Z^H :

$$Z^{H}m_{h}^{2}Z^{H,\dagger} = m_{2,h}^{dia} \tag{3.33}$$

with

$$\phi_d = \sum_{t_2} Z_{j1}^H h_j , \qquad \phi_u = \sum_{t_2} Z_{j2}^H h_j$$
 (3.34)

The mixing matrix can be parametrized by

$$Z^{H} = \begin{pmatrix} -\sin\alpha & \cos\alpha \\ \cos\alpha & \sin\alpha \end{pmatrix} \tag{3.35}$$

• Mass matrix for Pseudo-Scalar Higgs, Basis: $(\sigma_d, \sigma_u), (\sigma_d, \sigma_u)$

$$m_{A^0}^2 = \begin{pmatrix} \frac{1}{8} \left(8m_{H_d}^2 + 8|\mu|^2 + \left(g_1^2 + g_2^2 \right) \left(-v_u^2 + v_d^2 \right) \right) & \Re\left(B_\mu \right) \\ \Re\left(B_\mu \right) & \frac{1}{8} \left(8m_{H_u}^2 + 8|\mu|^2 - \left(g_1^2 + g_2^2 \right) \left(-v_u^2 + v_d^2 \right) \right) \end{pmatrix}$$
(3.36)

This matrix is diagonalized by Z^A :

$$Z^{A}m_{A^{0}}^{2}Z^{A,\dagger} = m_{2,A^{0}}^{dia} \tag{3.37}$$

with

$$\sigma_d = \sum_{t_2} Z_{j1}^A A_j^0, \qquad \sigma_u = \sum_{t_2} Z_{j2}^A A_j^0 \tag{3.38}$$

The mixing matrix can be parametrized by

$$Z^{A} = \begin{pmatrix} -\cos\beta & \sin\beta \\ \sin\beta & \cos\beta \end{pmatrix} \tag{3.39}$$

 \bullet Mass matrix for Charged Higgs, Basis: $\left(H_d^-,H_u^{+,*}\right),\left(H_d^{-,*},H_u^+\right)$

$$m_{H^{-}}^{2} = \begin{pmatrix} m_{11} & \frac{1}{4}g_{2}^{2}v_{d}v_{u} + B_{\mu} \\ \frac{1}{4}g_{2}^{2}v_{d}v_{u} + B_{\mu}^{*} & m_{22} \end{pmatrix}$$
(3.40)

$$m_{11} = \frac{1}{8} \left(8m_{H_d}^2 + 8|\mu|^2 + g_1^2 v_d^2 - g_1^2 v_u^2 + g_2^2 v_d^2 + g_2^2 v_u^2 \right)$$
(3.41)

$$m_{22} = \frac{1}{8} \left(8m_{H_u}^2 + 8|\mu|^2 - g_1^2 v_d^2 + g_1^2 v_u^2 + g_2^2 v_d^2 + g_2^2 v_u^2 \right)$$
(3.42)

This matrix is diagonalized by Z^+ :

$$Z^{+}m_{H^{-}}^{2}Z^{+,\dagger} = m_{2,H^{-}}^{dia}$$
(3.43)

with

$$H_d^- = \sum_{t_2} Z_{j1}^{+,*} H_j^-, \qquad H_u^+ = \sum_{t_2} Z_{j2}^+ H_j^+$$
 (3.44)

The mixing matrix can be parametrized by

$$Z^{+} = \begin{pmatrix} -\cos\beta & \sin\beta \\ \sin\beta & \cos\beta \end{pmatrix} \tag{3.45}$$

Mass Matrices for Fermions

• Mass matrix for Neutralinos, Basis: $\left(\lambda_{\tilde{B}}, \tilde{W}^0, \tilde{H}_d^0, \tilde{H}_u^0\right), \left(\lambda_{\tilde{B}}, \tilde{W}^0, \tilde{H}_d^0, \tilde{H}_u^0\right)$

$$m_{\tilde{\chi}^0} = \begin{pmatrix} M_1 & 0 & -\frac{1}{2}g_1v_d & \frac{1}{2}g_1v_u \\ 0 & M_2 & \frac{1}{2}g_2v_d & -\frac{1}{2}g_2v_u \\ -\frac{1}{2}g_1v_d & \frac{1}{2}g_2v_d & 0 & -\mu \\ \frac{1}{2}g_1v_u & -\frac{1}{2}g_2v_u & -\mu & 0 \end{pmatrix}$$

$$(3.46)$$

This matrix is diagonalized by N

$$Nm_{\tilde{\chi}^0}N^{\dagger} = m_{\tilde{\chi}^0}^{dia} \tag{3.47}$$

with

$$\lambda_{\tilde{B}} = \sum_{t_2} N_{j1}^* \lambda_j^0, \qquad \tilde{W}^0 = \sum_{t_2} N_{j2}^* \lambda_j^0, \qquad \tilde{H}_d^0 = \sum_{t_2} N_{j3}^* \lambda_j^0$$
(3.48)

$$\tilde{H}_u^0 = \sum_{t_2} N_{j4}^* \lambda_j^0 \tag{3.49}$$

• Mass matrix for Charginos, Basis: $\left(\tilde{W}^{-}, \tilde{H}_{d}^{-}\right), \left(\tilde{W}^{+}, \tilde{H}_{u}^{+}\right)$

$$m_{\tilde{\chi}^{-}} = \begin{pmatrix} M_2 & \frac{1}{\sqrt{2}}g_2v_u \\ \frac{1}{\sqrt{2}}g_2v_d & \mu \end{pmatrix}$$
 (3.50)

This matrix is diagonalized by U and V

$$U^* m_{\tilde{\chi}^-} V^{\dagger} = m_{\tilde{\chi}^-}^{dia} \tag{3.51}$$

 $\quad \text{with} \quad$

$$\tilde{W}^{-} = \sum_{t_2} U_{j1}^* \lambda_j^{-}, \qquad \tilde{H}_d^{-} = \sum_{t_2} U_{j2}^* \lambda_j^{-}$$

$$\tilde{W}^{+} = \sum_{t_2} V_{1j}^* \lambda_j^{+}, \qquad \tilde{H}_u^{+} = \sum_{t_2} V_{2j}^* \lambda_j^{+}$$

$$(3.52)$$

$$\tilde{W}^{+} = \sum_{t_2} V_{1j}^* \lambda_j^+, \qquad \tilde{H}_u^{+} = \sum_{t_2} V_{2j}^* \lambda_j^+ \tag{3.53}$$

• Mass matrix for Leptons, Basis: $(e_{L,o_1}), (e_{R,p_1}^*)$

$$m_e = \left(\frac{1}{\sqrt{2}}v_d Y_{e,o_1 p_1}\right) \tag{3.54}$$

This matrix is diagonalized by U_L^e and U_R^e

$$U_L^{e,*} m_e U_R^{e,\dagger} = m_e^{dia} \tag{3.55}$$

with

$$e_{L,i} = \sum_{t_2} U_{L,ji}^{e,*} E_{L,j} \tag{3.56}$$

$$e_{R,i} = \sum_{t_2} U_{R,ij}^e E_{R,j}^* \tag{3.57}$$

3.4 Vacuum Expectation Values

3.4.1 VEVs for eigenstates 'EWSB'

$$H_d^0 = \frac{1}{\sqrt{2}}\phi_d + \frac{1}{\sqrt{2}}v_d + i\frac{1}{\sqrt{2}}\sigma_d \tag{3.58}$$

$$H_u^0 = \frac{1}{\sqrt{2}}\phi_u + \frac{1}{\sqrt{2}}v_u + i\frac{1}{\sqrt{2}}\sigma_u \tag{3.59}$$

3.5 Tadpole Equations

3.5.1 Tadpole Equations for eigenstates 'SCKM'

$$\frac{\partial V}{\partial v_d} = \frac{1}{8} \left(-4v_u \left(B_\mu + B_\mu^* \right) + \left(g_1^2 + g_2^2 \right) v_d^3 + v_d \left(8m_{H_d}^2 + 8|\mu|^2 - \left(g_1^2 + g_2^2 \right) v_u^2 \right) \right) \tag{3.60}$$

$$\frac{\partial V}{\partial v_u} = \frac{1}{8} \left(-8v_d \Re \left(B_\mu \right) + v_u \left(8m_{H_u}^2 + 8|\mu|^2 - \left(g_1^2 + g_2^2 \right) \left(-v_u^2 + v_d^2 \right) \right) \right) \tag{3.61}$$

3.5.2 Tadpole Equations for eigenstates 'EWSB'

$$\frac{\partial V}{\partial v_d} = \frac{1}{8} \left(8v_d |\mu|^2 - 8v_u \Re\left(B_\mu\right) + v_d \left(8m_{H_d}^2 + g_1^2 v_d^2 - g_1^2 v_u^2 + g_2^2 v_d^2 - g_2^2 v_u^2 \right) \right) \tag{3.62}$$

$$\frac{\partial V}{\partial v_u} = \frac{1}{8} \left(-8v_d \Re \left(B_\mu \right) + 8v_u |\mu|^2 + v_u \left(8m_{H_u}^2 - g_1^2 v_d^2 + g_1^2 v_u^2 - g_2^2 v_d^2 + g_2^2 v_u^2 \right) \right) \tag{3.63}$$

3.6 Particle content for eigenstates 'EWSB'

Name	Туре	complex/real	Generations	Indices
$\frac{\tilde{d}}{\tilde{d}}$	Scalar	complex	6	generation, color
		-	-	
$ ilde{u}$	Scalar	$\operatorname{complex}$	6	generation, color
$ ilde{e}$	Scalar	$\operatorname{complex}$	6	generation
$ ilde{ u}$	Scalar	$\operatorname{complex}$	3	${\it generation}$
h	Scalar	real	2	generation
A^0	Scalar	real	2	generation
H^{-}	Scalar	complex	2	generation
ν	Fermion	Dirac	3	generation
$ ilde{g}$	Fermion	Majorana	8	generation
d	Fermion	Dirac	3	generation, color
u	Fermion	Dirac	3	generation, color
$ ilde{\chi}^0$	Fermion	Majorana	4	generation
$ ilde{\chi}^-$	Fermion	Dirac	2	generation

e	Fermion	Dirac	3	generation
g	Vector	real	8	generation, lorentz
W^-	Vector	complex	1	lorentz
γ	Vector	real	1	lorentz
Z	Vector	real	1	lorentz
η^G	Ghost	real	8	generation
η^-	Ghost	complex	1	
η^+	Ghost	complex	1	
η^γ	Ghost	real	1	
η^Z	Ghost	real	1	

3.7 Modelfile for SARAH

```
Off[General::spell]
Print["Model file for the MSSM (CKM) loaded"];
ModelNameLaTeX ="MSSM (CKM)";
(*----*)
(* Particle Content*)
(*----*)
(* Gauge Superfields *)
Gauge[[1]]={B, U[1], hypercharge, g1,False};
Gauge[[2]]={WB, SU[2], left, g2,True};
Gauge[[3]]={G, SU[3], color,
                          g3,False};
(* Chiral Superfields *)
Fields[[1]] = \{\{uL0, dL0\}, 3, q0, 1/6, 2, 3\};
Fields[[2]] = \{\{vL, eL\}, 3, 1, -1/2, 2, 1\};
Fields[[3]] = \{\{Hd0, Hdm\}, 1, Hd, -1/2, 2, 1\};
Fields[[4]] = {{Hup, Hu0}, 1, Hu, 1/2, 2, 1};
Fields[[5]] = \{conj[dR0], 3, d0, 1/3, 1, -3\};
Fields[[6]] = \{conj[uR0], 3, u0, -2/3, 1, -3\};
Fields[[7]] = {conj[eR], 3, e, 1, 1, 1};
(*----*)
(* Superpotential *)
(*-----*)
SuperPotential = \{\{1, Yu0\}, \{q0, Hu, u0\}\}, \{\{-1, Yd0\}, \{q0, Hd, d0\}\}, \}
               \{\{-1, Ye\}, \{1, Hd, e\}\}, \{\{1, Mu\}\}, \{Hu, Hd\}\}\};
(*----*)
(* Integrate Out or Delete Particles
(*----*)
IntegrateOut={};
DeleteParticles={};
```

```
DEFINITION
NameOfStates={GaugeES,SCKM, EWSB};
DEFINITION[GaugeES][GaugeFixing] =
{ {Der[VWB], -1/(2 RXi[W])},
     {Der[VG], -1/(2 RXi[G]) }};
(*--- Matter Sector ---- *)
DEFINITION[SCKM] [MatterSector] =
    {{{SdL0}, {SdL, Vd}},
     {{SuL0}, {SuL, Vu}},
     {{SdRO}, {SdR, Ud}},
     {{SuRO}, {SuR, Uu}},
     {{AdL0}, {AdL, Vd}},
     {{AuLO}, {AuL, Vu}},
     {{AdRO}, {AdR, Ud}},
     {{AuRO}, {AuR, Uu}},
     {{{FdL0}, {FdR0}}, {{FdL,Vd}, {FdR,Ud}}},
     {{{FuL0}, {FuR0}}, {{FuL,Vu}, {FuR,Uu}}}};
(*--- Gauge Sector ---- *)
DEFINITION[EWSB] [GaugeSector] =
{ {VWB, {1,{VWm,1/Sqrt[2]},{conj[VWm],1/Sqrt[2]}},
        {2,{VWm,-\[ImaginaryI]/Sqrt[2]},{conj[VWm],\[ImaginaryI]/Sqrt[2]}},
        {3,{VP, Sin[ThetaW]},{VZ, Cos[ThetaW]}}},
  {VB, {1,{VP, Cos[ThetaW]},{VZ,-Sin[ThetaW]}}},
  {fWB, {1,{fWm,1/Sqrt[2]}, {fWp,1/Sqrt[2]}},
        {2,{fWm,-\[ImaginaryI]/Sqrt[2]},{fWp,\[ImaginaryI]/Sqrt[2]}},
        {3,{fW0,1}}}
      };
(*--- VEVs ---- *)
```

```
DEFINITION[EWSB][VEVs] =
    {SHd0, {vd, 1/Sqrt[2]}, {sigmad, \[ImaginaryI]/Sqrt[2]},{phid, \
    {SHu0, {vu, 1/Sqrt[2]}, {sigmau, \[ImaginaryI]/Sqrt[2]}, {phiu, \
1/Sqrt[2]}}
(*--- Matter Sector ---- *)
DEFINITION[EWSB] [MatterSector] =
    {{SdL, SdR}, {Sd, ZD}},
    {{SuL, SuR}, {Su, ZU}},
    {{SeL, SeR}, {Se, ZE}},
    {{SvL}, {Sv, ZV}},
    {{phid, phiu}, {hh, ZH}},
    {{sigmad, sigmau}, {Ah, ZA}},
    {{SHdm,conj[SHup]},{Hpm,ZP}},
    {{fB, fWO, FHdO, FHuO}, {LO, ZN}},
    {{fWm, FHdm}, {fWp, FHup}}, {{Lm,UM}, {Lp,UP}}},
    {{{FeL}, {conj[FeR]}}, {{FEL, ZEL}, {FER, ZER}}}
      };
(*--- Gauge Fixing ---- *)
DEFINITION[EWSB] [GaugeFixing] =
                                                     - 1/(2 RXi[P])},
 { {Der[VP],
{Der[VWm]+\[ImaginaryI] Mass[VWm] RXi[W] Hpm[{1}], - 1/(RXi[W])},
{Der[VZ] - Mass[VZ] RXi[Z] Ah[{1}],
                                                 - 1/(2 RXi[Z])
{Der[VG],
                                                 - 1/(2 RXi[G])}};
DEFINITION[EWSB] [Phases] =
    {fG, PhaseGlu}
   };
(*-----*)
(* Dirac-Spinors *)
(*----*)
dirac[[1]] = {Fd, FdL, FdR};
dirac[[2]] = {Fe, FEL, conj[FER]};
dirac[[3]] = {Fu, FuL, FuR};
dirac[[4]] = {Fv, FvL, 0};
dirac[[5]] = {Chi, L0, conj[L0]};
dirac[[6]] = {Cha, Lm, conj[Lp]};
```

```
dirac[[7]] = {Glu, fG, conj[fG]};
(* Unbroken EW *)
dirac[[8]] = {Bino, fB, conj[fB]};
dirac[[9]] = {Wino, fWB, conj[fWB]};
dirac[[10]] = {HO, FHdO, conj[FHuO]};
dirac[[11]] = {HC, FHdm, conj[FHup]};
dirac[[12]] = {Fd1, FdL0, 0};
dirac[[13]] = {Fd2, 0, FdR0};
dirac[[14]] = {Fu1, FuL0, 0};
dirac[[15]] = {Fu2, 0, FuR0};
dirac[[16]] = {Fe1, FeL, 0};
dirac[[17]] = {Fe2, 0, FeR};
(* Automatized Output *)
(*
makeOutput = {
                  {EWSB, {TeX, FeynArts}}
```

3.8 Implementation in SARAH

Model directory: MSSM/CKM

SpectrumFile= None;

3.8.1 Particles for eigenstates 'GaugeES'

• Fermions

$$ilde{B} = \left(egin{array}{c} \lambda_{ ilde{B}} \\ \lambda_{ ilde{B}}^* \end{array}
ight) \hspace{1cm} ext{Bino} = \left(egin{array}{c} ext{fB} \\ ext{conj[fB]} \end{array}
ight) \\ d_{ilpha}^1 = \left(egin{array}{c} d_{L,ilpha} \\ 0 \end{array}
ight) \hspace{1cm} ext{FdlO[\{generation, color\}]} \end{array}
ight)$$

$$\begin{aligned} d_{i\alpha}^2 &= \begin{pmatrix} 0 \\ d_{R,i\alpha} \end{pmatrix} & & \text{Fd2}[\{\text{generation, color}\}] &= \begin{pmatrix} 0 \\ \text{FdR0}[\{\text{generation, color}\}] \end{pmatrix} \\ e_i^1 &= \begin{pmatrix} e_{L,i} \\ 0 \end{pmatrix} & & \text{Fe1}[\{\text{generation}\}] &= \begin{pmatrix} \text{FeL}[\{\text{generation}\}] \\ 0 \end{pmatrix} \\ e_i^2 &= \begin{pmatrix} 0 \\ e_{R,i} \end{pmatrix} & & \text{Fe2}[\{\text{generation}\}] &= \begin{pmatrix} 0 \\ \text{FeR}[\{\text{generation}\}] \end{pmatrix} \\ u_{i\alpha}^1 &= \begin{pmatrix} u_{L,i\alpha} \\ 0 \end{pmatrix} & \text{Fu1}[\{\text{generation, color}\}] &= \begin{pmatrix} \text{FuL0}[\{\text{generation, color}\}] \\ 0 \end{pmatrix} \\ u_{i\alpha}^2 &= \begin{pmatrix} 0 \\ u_{R,i\alpha} \end{pmatrix} & \text{Fu2}[\{\text{generation, color}\}] &= \begin{pmatrix} 0 \\ \text{FuR0}[\{\text{generation, color}\}] \end{pmatrix} \\ v_i &= \begin{pmatrix} v_{L,i} \\ 0 \end{pmatrix} & \text{Fv}[\{\text{generation}\}] &= \begin{pmatrix} \text{FvL}[\{\text{generation}\}] \\ 0 \end{pmatrix} \\ \tilde{g}_i &= \begin{pmatrix} \lambda_{\tilde{g},i} \\ \lambda_{\tilde{g},i}^* \end{pmatrix} & \text{Glu}[\{\text{generation}\}] &= \begin{pmatrix} \text{fG}[\{\text{generation}\}] \\ \text{conj}[\text{fG}[\{\text{generation}\}]] \end{pmatrix} \\ \tilde{H}^0 &= \begin{pmatrix} \tilde{H}_d \\ \tilde{H}_u^0 * \\ \tilde{H}_u^0 * \end{pmatrix} & \text{HC} &= \begin{pmatrix} \text{FHd0} \\ \text{conj}[\text{FHuD}] \end{pmatrix} \\ \tilde{W}_i &= \begin{pmatrix} \lambda_{\tilde{W},i} \\ \lambda_{\tilde{W},i}^* \end{pmatrix} & \text{Wino}[\{\text{generation}\}] &= \begin{pmatrix} \text{fWB}[\{\text{generation}\}] \\ \text{conj}[\text{fWB}[\{\text{generation}\}]] \end{pmatrix} \end{aligned}$$

• Scalars

$\tilde{d}_{L,i\alpha}^0$	SdL0[{generation, color}]	$\tilde{u}_{L,i\alpha}^0$	SuLO[{generation, color}]
$\tilde{e}_{L,i}$	SeL[{generation}]	$ ilde{ u}_{L,i}$	<pre>SvL[{generation}]</pre>
H_d^0	SHd0	H_d^-	SHdm
H_u^0	SHu0	H_u^+	SHup
$\tilde{d}_{R,i\alpha}^0$	<pre>SdR0[{generation, color}]</pre>	$\tilde{u}_{R,i\alpha}^0$	<pre>SuR0[{generation, color}]</pre>
$\tilde{e}_{R,i}$	SeR[{generation}]		

• Vector Bosons

B_{ρ}	VB[{lorentz}]	$W_{i\rho}^-$	<pre>VWB[{generation, lorentz}]</pre>	
$g_{i\rho}$	VG[{generation, lorentz}]			

• Ghosts

$$\eta^B$$
 gB gWB $\Big(\{\mathrm{gt1}\}\Big)$ gWB[$\{\mathrm{generation}\}\}$

3.8.2 Particles for eigenstates 'SCKM'

• Fermions

$$\begin{split} \tilde{B} &= \begin{pmatrix} \lambda_{\tilde{B}} \\ \lambda_{\tilde{B}}^* \end{pmatrix} & \text{Bino} &= \begin{pmatrix} \text{fB} \\ \text{conj}[\text{fB}] \end{pmatrix} \\ d_{i\alpha} &= \begin{pmatrix} D_{L,i\alpha} \\ D_{R,i\alpha} \end{pmatrix} & \text{Fd[\{generation, \, \text{color}\}]} &= \begin{pmatrix} \text{FdL[\{generation, \, \text{color}\}]} \\ \text{FdR[\{generation, \, \text{color}\}]} \end{pmatrix} \\ e_i^1 &= \begin{pmatrix} e_{L,i} \\ 0 \end{pmatrix} & \text{Fe1[\{generation\}]} &= \begin{pmatrix} \text{FeL[\{generation\}]} \\ 0 \end{pmatrix} \\ e_i^2 &= \begin{pmatrix} 0 \\ e_{R,i} \end{pmatrix} & \text{Fe2[\{generation\}]} &= \begin{pmatrix} 0 \\ \text{FeR[\{generation, \, \text{color}\}]} \end{pmatrix} \\ u_{i\alpha} &= \begin{pmatrix} U_{L,i\alpha} \\ U_{R,i\alpha} \end{pmatrix} & \text{Fu[\{generation, \, \text{color}\}]} &= \begin{pmatrix} \text{FuL[\{generation, \, \text{color}\}]} \\ \text{FuR[\{generation, \, \text{color}\}]} \end{pmatrix} \\ \tilde{\nu}_i &= \begin{pmatrix} \nu_{L,i} \\ 0 \end{pmatrix} & \text{Fv[\{generation\}]} &= \begin{pmatrix} \text{FvL[\{generation\}]} \\ 0 \end{pmatrix} \\ \tilde{g}_i &= \begin{pmatrix} \lambda_{\tilde{g},i} \\ \lambda_{\tilde{g},i}^* \end{pmatrix} & \text{Glu[\{generation\}]} &= \begin{pmatrix} \text{fG[\{generation\}]} \\ \text{conj[fG[\{generation\}]]} \end{pmatrix} \\ \tilde{H}^0 &= \begin{pmatrix} \tilde{H}_0^d \\ \tilde{H}_0^{0,*} \end{pmatrix} & \text{HO} &= \begin{pmatrix} \text{FHd0} \\ \text{conj[FHuO}] \end{pmatrix} \\ \tilde{H}^- &= \begin{pmatrix} \tilde{H}_0^d \\ \tilde{H}_u^{+,*} \end{pmatrix} & \text{HC} &= \begin{pmatrix} \text{FHdm} \\ \text{conj[FHup]} \end{pmatrix} \\ \tilde{V}_i &= \begin{pmatrix} \lambda_{\tilde{W},i} \\ \lambda_{\tilde{W},i}^* \end{pmatrix} & \text{Wino[\{generation\}]} &= \begin{pmatrix} \text{fWB[\{generation\}]} \\ \text{conj[fWB[\{generation\}]]} \end{pmatrix} \end{split}$$

• Scalars

$\tilde{e}_{L,i}$	SeL[{generation}]	$ ilde{ u}_{L,i}$	SvL[{generation}]
H_d^0	SHd0	H_d^-	SHdm
H_u^0	SHu0	H_u^+	SHup
$\tilde{e}_{R,i}$	SeR[{generation}]	$\tilde{d}_{L,ilpha}$	<pre>SdL[{generation, color}]</pre>
$\tilde{u}_{L,i\alpha}$	<pre>SuL[{generation, color}]</pre>	$\tilde{d}_{R,i\alpha}$	<pre>SdR[{generation, color}]</pre>
$\tilde{u}_{R,i\alpha}$	<pre>SuR[{generation, color}]</pre>		

• Vector Bosons

$B_{ ho}$	VB[{lorentz}]		<pre>VWB[{generation, lorentz}]</pre>
$g_{i ho}$	<pre>VG[{generation, lorentz}]</pre>		

• Ghosts

$$\eta^B$$
 gB $\mathrm{gWB}ig(\{\mathrm{gt1}\}ig)$ gWB[{generation}] η^G_i gG[{generation}]

3.8.3 Particles for eigenstates 'EWSB'

• Fermions

$$e_i = \begin{pmatrix} E_{L,i} \\ E_{R,i}^* \end{pmatrix} \qquad \text{Fe[\{generation\}]} = \begin{pmatrix} \text{FEL[\{generation\}]} \\ \text{conj[FER[\{generation\}]]} \end{pmatrix}$$

$$u_{i\alpha} = \begin{pmatrix} U_{L,i\alpha} \\ U_{R,i\alpha} \end{pmatrix} \qquad \text{Fu[\{generation, color\}]} = \begin{pmatrix} \text{FuL[\{generation, color\}]} \\ \text{FuR[\{generation, color\}]} \end{pmatrix}$$

$$\nu_i = \begin{pmatrix} \nu_{L,i} \\ 0 \end{pmatrix} \qquad \qquad \text{Fv[\{generation\}]} = \begin{pmatrix} \text{FvL[\{generation\}]} \\ 0 \end{pmatrix}$$

$$\tilde{g}_i = \begin{pmatrix} \lambda_{\tilde{g},i} \\ \lambda_{\tilde{g},i}^* \end{pmatrix} \qquad \qquad \text{Glu[\{generation\}]} = \begin{pmatrix} \text{fG[\{generation\}]} \\ \text{conj[fG[\{generation\}]]} \end{pmatrix}$$

• Scalars

$ ilde{d}_{ilpha}$	<pre>Sd[{generation, color}]</pre>	$\tilde{u}_{i\alpha}$	Su[{generation, color}]
\tilde{e}_i	Se[{generation}]	$ ilde{ u}_i$	<pre>Sv[{generation}]</pre>
h_i	hh[{generation}]	A_i^0	Ah[{generation}]
H_i^-	${\tt Hpm[\{generation\}]}$		

• Vector Bosons

$g_{i ho}$	VG[{generation, lorentz}]	W_{ρ}^{-}	<pre>VWm[{lorentz}]</pre>
$\gamma_{ ho}$	<pre>VP[{lorentz}]</pre>	$Z_{ ho}$	<pre>VZ[{lorentz}]</pre>

• Ghosts

η_i^G	gG[{generation}]	η^-	gWm
η^+	gWmC	η^{γ}	gP
η^Z	gZ		

3.8.4 Parameters

g_1	g1	g_2	g2	g_3	g3
Y_u^0	YuO	T_u^0	T[Yu0]	Y_d^0	Yd0
T_d^0	T[Yd0]	Y_e	Ye	T_e	T[Ye]
μ	\[Mu]	B_{μ}	$B[\[Mu]]$	$m_{ ilde{q}}^{0,2}$	mq02
m_l^2	m12	$m_{H_d}^2$	mHd2	$m_{H_u}^2$	mHu2
$m_{\tilde{d}}^{0,2}$	md02	$m_{ ilde{u}}^{0,2}$	mu02	m_e^2	me2
M_1	MassB	M_2	MassWB	M_3	MassG
V_d	Vd	V_u	Vu	U_d	Ud
U_u	Uu	v_d	vd	v_u	vu
Θ_W	ThetaW	$\phi_{ ilde{g}}$	PhaseGlu	Z^D	ZD
Z^U	ZU	Z^E	ZE	Z^V	ZV
Z^H	ZH	Z^A	ZA	Z^+	ZP
N	ZN	U	UM	V	UP
U_L^e	ZEL	U_R^e	ZER	α	\[Alpha]
β	\[Beta]	V^{CKM}	CKM	Y_u	Yu
Y_d	Yd	T_d	T[Yd]	T_u	T[Yu]
m_q^2	mq2	m_u^2	mu2	m_d^2	md2

Chapter 4

Minimal Supersymmetric Standard Model with CP violation

4.1 Superfields

4.1.1 Vector Superfields

SF	Spin $\frac{1}{2}$	Spin 1	SU(N)	Coupling	Name
\hat{B}	$\lambda_{ ilde{B}}$	B	U(1)	g_1	hypercharge
\hat{W}	$\lambda_{ ilde{W}}$	W^-	SU(2)	g_2	left
\hat{g}	$\lambda_{ ilde{g}}$	g	SU(3)	g_3	color

4.1.2 Chiral Superfields

SF	Spin 0	Spin $\frac{1}{2}$	Generations	$(U(1) \otimes \mathrm{SU}(2) \otimes \mathrm{SU}(3))$
\hat{q}	$ ilde{q}$	q	3	$(rac{1}{6}, 2, 3)$
\hat{l}	\widetilde{l}	l	3	$(-rac{1}{2},2,1)$
\hat{H}_d	H_d	$ ilde{H}_d$	1	$(-rac{1}{2},2,1)$
\hat{H}_u	H_u	\tilde{H}_u	1	$(rac{1}{2}, oldsymbol{2}, oldsymbol{1})$
\hat{d}	$ ilde{d}_R^*$	d_R^*	3	$(rac{1}{3}, oldsymbol{1}, \overline{oldsymbol{3}})$
\hat{u}	\tilde{u}_R^*	u_R^*	3	$(-rac{2}{3},1,\overline{3})$
\hat{e}	$ ilde{e}_R^*$	e_R^*	3	(1, 1, 1)

4.2 Superpotential and Lagrangian

4.2.1 Superpotential

$$W = Y_u \,\hat{u} \,\hat{q} \,\hat{H}_u - Y_d \,\hat{d} \,\hat{q} \,\hat{H}_d - Y_e \,\hat{e} \,\hat{l} \,\hat{H}_d + \mu \,\hat{H}_u \,\hat{H}_d \tag{4.1}$$

4.2.2 Softbreaking terms

$$L_{SB,W} = -H_d^0 H_u^0 B_\mu + H_d^- H_u^+ B_\mu + H_d^0 \tilde{d}_{R,i\alpha}^* \delta_{\alpha\beta} \tilde{d}_{L,j\beta} T_{d,ij} - H_d^- \tilde{d}_{R,i\alpha}^* \delta_{\alpha\beta} \tilde{u}_{L,j\beta} T_{d,ij}$$

$$+ H_d^0 \tilde{e}_{R,i}^* \tilde{e}_{L,j} T_{e,ij} - H_d^- \tilde{e}_{R,i}^* \tilde{\nu}_{L,j} T_{e,ij} - H_u^+ \tilde{u}_{R,i\alpha}^* \delta_{\alpha\beta} \tilde{d}_{L,j\beta} T_{u,ij} + H_u^0 \tilde{u}_{R,i\alpha}^* \delta_{\alpha\beta} \tilde{u}_{L,j\beta} T_{u,ij} + \text{h.c.}$$

$$(4.2)$$

$$L_{SB,\phi} = -m_{H_d}^2 |H_d^0|^2 - m_{H_d}^2 |H_d^-|^2 - m_{H_u}^2 |H_u^0|^2 - m_{H_u}^2 |H_u^+|^2 - \tilde{d}_{L,j\beta}^* \delta_{\alpha\beta} m_{q,ij}^2 \tilde{d}_{L,i\alpha} - \tilde{d}_{R,i\alpha}^* \delta_{\alpha\beta} m_{d,ij}^2 \tilde{d}_{R,j\beta} - \tilde{e}_{L,j}^* m_{l,ij}^2 \tilde{e}_{L,i} - \tilde{e}_{R,i}^* m_{e,ij}^2 \tilde{e}_{R,j} - \tilde{u}_{L,j\beta}^* \delta_{\alpha\beta} m_{q,ij}^2 \tilde{u}_{L,i\alpha} - \tilde{u}_{R,i\alpha}^* \delta_{\alpha\beta} m_{u,ij}^2 \tilde{u}_{R,j\beta} - \tilde{\nu}_{L,j}^* m_{l,ij}^2 \tilde{\nu}_{L,i}$$

$$(4.3)$$

$$L_{SB,\lambda} = \frac{1}{2} \left(-\lambda_{\tilde{B}}^2 M_1 - M_2 \lambda_{\tilde{W},i}^2 - M_3 \lambda_{\tilde{g},i}^2 + \text{h.c.} \right)$$
(4.4)

4.2.3 Gauge fixing terms

Gauge fixing terms for eigenstates 'GaugeES'

$$L_{GF} = -\frac{1}{2}\partial_{\mu}g\xi_{G}^{-1} - \frac{1}{2}\partial_{\mu}W^{-}\xi_{W}^{-1}$$
(4.5)

Gauge fixing terms for eigenstates 'EWSB'

$$L_{GF} = -\frac{1}{2}\partial_{\mu}\gamma\xi_{P}^{-1} - \frac{1}{2}\partial_{\mu}g\xi_{G}^{-1} - \frac{1}{2}\xi_{Z}^{-1}\left(-h_{1}m_{Z}\xi_{Z} + \partial_{\mu}Z\right) - \xi_{W}^{-1}\left(iH_{1}^{-}m_{W^{-}}\xi_{W} + \partial_{\mu}W^{-}\right)$$

$$(4.6)$$

4.2.4 Fields integrated out

None

4.3 Field Rotations

4.3.1 Rotations in gauge sector for eigenstates 'EWSB'

$$W_{1\rho}^{-} = \frac{1}{\sqrt{2}}W_{\rho}^{-} + \frac{1}{\sqrt{2}}W_{\rho}^{+} \tag{4.7}$$

$$W_{2\rho}^{-} = -i\frac{1}{\sqrt{2}}W_{\rho}^{-} + i\frac{1}{\sqrt{2}}W_{\rho}^{+} \tag{4.8}$$

$$W_{3\rho}^{-} = \cos\Theta_W Z_{\rho} + \sin\Theta_W \gamma_{\rho} \tag{4.9}$$

$$B_{\rho} = \cos\Theta_W \gamma_{\rho} - \sin\Theta_W Z_{\rho} \tag{4.10}$$

$$\lambda_{\tilde{W},1} = \frac{1}{\sqrt{2}}\tilde{W}^{-} + \frac{1}{\sqrt{2}}\tilde{W}^{+} \tag{4.11}$$

$$\lambda_{\tilde{W},2} = -i\frac{1}{\sqrt{2}}\tilde{W}^{-} + i\frac{1}{\sqrt{2}}\tilde{W}^{+} \tag{4.12}$$

$$\lambda_{\tilde{W}.3} = \tilde{W}^0 \tag{4.13}$$

4.3.2 Rotations in Mass sector for eigenstates 'EWSB'

Mass Matrices for Scalars

• Mass matrix for Down-Squarks, Basis: $\left(\tilde{d}_{L,o_1\alpha_1},\tilde{d}_{R,o_2\alpha_2}\right),\left(\tilde{d}_{L,p_1\beta_1}^*,\tilde{d}_{R,p_2\beta_2}^*\right)$

$$m_{\tilde{d}}^{2} = \begin{pmatrix} m_{11} & \frac{1}{\sqrt{2}} \delta_{\alpha_{1}\beta_{2}} \left(v_{d} T_{d,p_{2}o_{1}} - v_{u} \mu^{*} Y_{d,p_{2}o_{1}} \right) \\ \frac{1}{\sqrt{2}} \left(v_{d} T_{d,o_{2}p_{1}}^{*} - v_{u} \mu Y_{d,o_{2}p_{1}}^{*} \right) \delta_{\alpha_{2}\beta_{1}} & m_{22} \end{pmatrix}$$

$$(4.14)$$

$$m_{11} = \frac{1}{24} \delta_{\alpha_1 \beta_1} \left(12 \left(2m_{q, o_1 p_1}^2 + v_d^2 \sum_{a=1}^3 Y_{d, a p_1}^* Y_{d, a o_1} \right) - \left(3g_2^2 + g_1^2 \right) \left(-v_u^2 + v_d^2 \right) \delta_{o_1 p_1} \right)$$

$$(4.15)$$

$$m_{22} = \frac{1}{12} \delta_{\alpha_2 \beta_2} \left(6 \left(2m_{d, p_2 o_2}^2 + v_d^2 \sum_{a=1}^3 Y_{d, o_2 a}^* Y_{d, p_2 a} \right) + g_1^2 \left(-v_d^2 + v_u^2 \right) \delta_{o_2 p_2} \right)$$

$$(4.16)$$

This matrix is diagonalized by Z^D :

$$Z^{D} m_{\tilde{d}}^{2} Z^{D,\dagger} = m_{2,\tilde{d}}^{dia} \tag{4.17}$$

with

$$\tilde{d}_{L,i\alpha} = \sum_{t_0} Z_{ji}^{D,*} \tilde{d}_{j\alpha}, \qquad \tilde{d}_{R,i\alpha} = \sum_{t_0} Z_{ji}^{D,*} \tilde{d}_{j\alpha}$$

$$(4.18)$$

• Mass matrix for Up-Squarks, Basis: $(\tilde{u}_{L,o_1\alpha_1}, \tilde{u}_{R,o_2\alpha_2}), (\tilde{u}_{L,p_1\beta_1}^*, \tilde{u}_{R,p_2\beta_2}^*)$

$$m_{\tilde{u}}^{2} = \begin{pmatrix} m_{11} & \frac{1}{\sqrt{2}} \delta_{\alpha_{1}\beta_{2}} \left(-v_{d}\mu^{*}Y_{u,p_{2}o_{1}} + v_{u}T_{u,p_{2}o_{1}} \right) \\ \frac{1}{\sqrt{2}} \left(-v_{d}\mu Y_{u,o_{2}p_{1}}^{*} + v_{u}T_{u,o_{2}p_{1}}^{*} \right) \delta_{\alpha_{2}\beta_{1}} & m_{22} \end{pmatrix}$$

$$(4.19)$$

$$m_{11} = \frac{1}{24} \delta_{\alpha_1 \beta_1} \left(12 \left(2m_{q,o_1 p_1}^2 + v_u^2 \sum_{a=1}^3 Y_{u,ap_1}^* Y_{u,ao_1} \right) - \left(-3g_2^2 + g_1^2 \right) \left(-v_u^2 + v_d^2 \right) \delta_{o_1 p_1} \right)$$

$$(4.20)$$

$$m_{22} = \frac{1}{6} \delta_{\alpha_2 \beta_2} \left(3v_u^2 \sum_{a=1}^3 Y_{u,o_2 a}^* Y_{u,p_2 a} + 6m_{u,p_2 o_2}^2 + g_1^2 \left(-v_u^2 + v_d^2 \right) \delta_{o_2 p_2} \right)$$

$$(4.21)$$

This matrix is diagonalized by Z^U :

$$Z^{U} m_{\tilde{u}}^{2} Z^{U,\dagger} = m_{2,\tilde{u}}^{dia} \tag{4.22}$$

with

$$\tilde{u}_{L,i\alpha} = \sum_{t_2} Z_{ji}^{U,*} \tilde{u}_{j\alpha}, \qquad \tilde{u}_{R,i\alpha} = \sum_{t_2} Z_{ji}^{U,*} \tilde{u}_{j\alpha}$$
 (4.23)

• Mass matrix for Sleptons, Basis: $(\tilde{e}_{L,o_1}, \tilde{e}_{R,o_2}), (\tilde{e}_{L,p_1}^*, \tilde{e}_{R,p_2}^*)$

$$m_{\tilde{e}}^{2} = \begin{pmatrix} m_{11} & \frac{1}{\sqrt{2}} \left(v_{d} T_{e, p_{2} o_{1}} - v_{u} \mu^{*} Y_{e, p_{2} o_{1}} \right) \\ \frac{1}{\sqrt{2}} \left(v_{d} T_{e, o_{2} p_{1}}^{*} - v_{u} \mu Y_{e, o_{2} p_{1}}^{*} \right) & m_{22} \end{pmatrix}$$

$$(4.24)$$

$$m_{11} = \frac{1}{8} \left(4v_d^2 \sum_{a=1}^3 Y_{e,ap_1}^* Y_{e,ao_1} + 8m_{l,o_1p_1}^2 + \left(-g_2^2 + g_1^2 \right) \left(-v_u^2 + v_d^2 \right) \delta_{o_1p_1} \right)$$

$$(4.25)$$

$$m_{22} = \frac{1}{4} \left(2v_d^2 \sum_{a=1}^3 Y_{e,o_2a}^* Y_{e,p_2a} + 4m_{e,p_2o_2}^2 + g_1^2 \left(-v_d^2 + v_u^2 \right) \delta_{o_2p_2} \right)$$
(4.26)

This matrix is diagonalized by Z^E :

$$Z^E m_{\tilde{e}}^2 Z^{E,\dagger} = m_{2,\tilde{e}}^{dia} \tag{4.27}$$

with

$$\tilde{e}_{L,i} = \sum_{t_2} Z_{ji}^{E,*} \tilde{e}_j, \qquad \tilde{e}_{R,i} = \sum_{t_2} Z_{ji}^{E,*} \tilde{e}_j$$

$$(4.28)$$

• Mass matrix for Sneutrinos, Basis: $(\tilde{\nu}_{L,o_1}), (\tilde{\nu}_{L,p_1}^*)$

$$m_{\tilde{\nu}}^2 = \left(\frac{1}{8} \left(8m_{l,o_1p_1}^2 + \left(g_1^2 + g_2^2\right) \left(-v_u^2 + v_d^2\right) \delta_{o_1p_1}\right)\right)$$
(4.29)

This matrix is diagonalized by Z^V :

$$Z^{V} m_{\tilde{\nu}}^{2} Z^{V,\dagger} = m_{2,\tilde{\nu}}^{dia} \tag{4.30}$$

with

$$\tilde{\nu}_{L,i} = \sum_{t_2} Z_{ji}^{V,*} \tilde{\nu}_j \tag{4.31}$$

• Mass matrix for Higgs, Basis: $(\phi_d, \phi_u, \sigma_d, \sigma_u), (\phi_d, \phi_u, \sigma_d, \sigma_u)$

$$m_{h}^{2} = \begin{pmatrix} m_{11} & m_{21}^{*} & 0 & -\frac{i}{2} \left(-B_{\mu}^{*} + B_{\mu} \right) \\ m_{21} & m_{22} & -\frac{i}{2} \left(-B_{\mu}^{*} + B_{\mu} \right) & 0 \\ 0 & -\frac{i}{2} \left(-B_{\mu}^{*} + B_{\mu} \right) & m_{33} & \Re(B_{\mu}) \\ -\frac{i}{2} \left(-B_{\mu}^{*} + B_{\mu} \right) & 0 & \Re(B_{\mu}) & m_{44} \end{pmatrix}$$

$$(4.32)$$

$$m_{11} = \frac{1}{8} \left(8m_{H_d}^2 + 8|\mu|^2 + \left(g_1^2 + g_2^2 \right) \left(3v_d^2 - v_u^2 \right) \right) \tag{4.33}$$

$$m_{21} = \frac{1}{4} \left(-4\Re \left(B_{\mu} \right) - \left(g_1^2 + g_2^2 \right) v_d v_u \right) \tag{4.34}$$

$$m_{22} = \frac{1}{8} \left(8m_{H_u}^2 + 8|\mu|^2 - \left(g_1^2 + g_2^2 \right) \left(-3v_u^2 + v_d^2 \right) \right) \tag{4.35}$$

$$m_{33} = \frac{1}{8} \left(8m_{H_d}^2 + 8|\mu|^2 + \left(g_1^2 + g_2^2 \right) \left(-v_u^2 + v_d^2 \right) \right) \tag{4.36}$$

$$m_{44} = \frac{1}{8} \left(8m_{H_u}^2 + 8|\mu|^2 - \left(g_1^2 + g_2^2 \right) \left(-v_u^2 + v_d^2 \right) \right) \tag{4.37}$$

This matrix is diagonalized by Z^H :

$$Z^{H} m_{h}^{2} Z^{H,\dagger} = m_{2,h}^{dia} \tag{4.38}$$

with

$$\phi_d = \sum_{t_2} Z_{j1}^{H,*} h_j , \qquad \phi_u = \sum_{t_2} Z_{j2}^{H,*} h_j , \qquad \sigma_d = \sum_{t_2} Z_{j3}^{H,*} h_j$$
 (4.39)

$$\sigma_u = \sum_{t_2} Z_{j4}^{H,*} h_j \tag{4.40}$$

• Mass matrix for Charged Higgs, Basis: $\left(H_d^-, H_u^{+,*}\right), \left(H_d^{-,*}, H_u^+\right)$

$$m_{H^{-}}^{2} = \begin{pmatrix} m_{11} & \frac{1}{4}g_{2}^{2}v_{d}v_{u} + B_{\mu} \\ \frac{1}{4}g_{2}^{2}v_{d}v_{u} + B_{\mu}^{*} & m_{22} \end{pmatrix}$$

$$(4.41)$$

$$m_{11} = \frac{1}{8} \left(8m_{H_d}^2 + 8|\mu|^2 + g_1^2 v_d^2 - g_1^2 v_u^2 + g_2^2 v_d^2 + g_2^2 v_u^2 \right)$$

$$(4.42)$$

$$m_{22} = \frac{1}{8} \left(8m_{H_u}^2 + 8|\mu|^2 - g_1^2 v_d^2 + g_1^2 v_u^2 + g_2^2 v_d^2 + g_2^2 v_u^2 \right)$$

$$(4.43)$$

This matrix is diagonalized by Z^+ :

$$Z^{+}m_{H^{-}}^{2}Z^{+,\dagger} = m_{2,H^{-}}^{dia} \tag{4.44}$$

with

$$H_d^- = \sum_{t_2} Z_{j1}^{+,*} H_j^-, \qquad H_u^+ = \sum_{t_2} Z_{j2}^+ H_j^+$$
 (4.45)

The mixing matrix can be parametrized by

$$Z^{+} = \begin{pmatrix} -\cos\beta & \sin\beta \\ \sin\beta & \cos\beta \end{pmatrix} \tag{4.46}$$

Mass Matrices for Fermions

• Mass matrix for Neutralinos, Basis: $\left(\lambda_{\tilde{B}}, \tilde{W}^0, \tilde{H}_d^0, \tilde{H}_u^0\right), \left(\lambda_{\tilde{B}}, \tilde{W}^0, \tilde{H}_d^0, \tilde{H}_u^0\right)$

$$m_{\tilde{\chi}^0} = \begin{pmatrix} M_1 & 0 & -\frac{1}{2}g_1v_d & \frac{1}{2}g_1v_u \\ 0 & M_2 & \frac{1}{2}g_2v_d & -\frac{1}{2}g_2v_u \\ -\frac{1}{2}g_1v_d & \frac{1}{2}g_2v_d & 0 & -\mu \\ \frac{1}{2}g_1v_u & -\frac{1}{2}g_2v_u & -\mu & 0 \end{pmatrix}$$

$$(4.47)$$

This matrix is diagonalized by N:

$$Nm_{\tilde{\chi}^0}N^{\dagger} = m_{\tilde{\chi}^0}^{dia} \tag{4.48}$$

with

$$\lambda_{\tilde{B}} = \sum_{t_2} N_{j1}^* \lambda_j^0, \qquad \tilde{W}^0 = \sum_{t_2} N_{j2}^* \lambda_j^0, \qquad \tilde{H}_d^0 = \sum_{t_2} N_{j3}^* \lambda_j^0$$

$$\tilde{H}_u^0 = \sum_{t_2} N_{j4}^* \lambda_j^0$$

$$(4.49)$$

$$\tilde{H}_u^0 = \sum_{t_2} N_{j4}^* \lambda_j^0 \tag{4.50}$$

• Mass matrix for Charginos, Basis: $\left(\tilde{W}^{-}, \tilde{H}_{d}^{-}\right), \left(\tilde{W}^{+}, \tilde{H}_{u}^{+}\right)$

$$m_{\tilde{\chi}^{-}} = \begin{pmatrix} M_2 & \frac{1}{\sqrt{2}}g_2v_u \\ \frac{1}{\sqrt{2}}g_2v_d & \mu \end{pmatrix} \tag{4.51}$$

This matrix is diagonalized by U and V

$$U^* m_{\tilde{\chi}^-} V^{\dagger} = m_{\tilde{\chi}^-}^{dia} \tag{4.52}$$

with

$$\tilde{W}^{-} = \sum_{t_2} U_{j1}^* \lambda_j^{-}, \qquad \tilde{H}_d^{-} = \sum_{t_2} U_{j2}^* \lambda_j^{-}$$
(4.53)

$$\tilde{W}^{-} = \sum_{t_2} U_{j1}^* \lambda_j^{-}, \qquad \tilde{H}_d^{-} = \sum_{t_2} U_{j2}^* \lambda_j^{-}$$

$$\tilde{W}^{+} = \sum_{t_2} V_{1j}^* \lambda_j^{+}, \qquad \tilde{H}_u^{+} = \sum_{t_2} V_{2j}^* \lambda_j^{+}$$

$$(4.53)$$

• Mass matrix for Leptons, Basis: $(e_{L,o_1}), (e_{R,p_1}^*)$

$$m_e = \left(\frac{1}{\sqrt{2}}v_d Y_{e,p_1o_1}\right)$$
 (4.55)

This matrix is diagonalized by U_L^e and U_R^e

$$U_L^{e,*} m_e U_R^{e,\dagger} = m_e^{dia} \tag{4.56}$$

with

$$e_{L,i} = \sum_{t_2} U_{L,ji}^{e,*} E_{L,j} \tag{4.57}$$

$$e_{R,i} = \sum_{t_2} U_{R,ij}^e E_{R,j}^* \tag{4.58}$$

• Mass matrix for Down-Quarks, Basis: $(d_{L,o_1\alpha_1}), (d_{R,p_1\beta_1}^*)$

$$m_d = \left(\frac{1}{\sqrt{2}} v_d \delta_{\alpha_1 \beta_1} Y_{d, p_1 o_1}\right) \tag{4.59}$$

This matrix is diagonalized by ${\cal U}_L^d$ and ${\cal U}_R^d$

$$U_L^{d,*} m_d U_R^{d,\dagger} = m_d^{dia} \tag{4.60}$$

with

$$d_{L,i\alpha} = \sum_{t_2} U_{L,ji}^{d,*} D_{L,j\alpha} \tag{4.61}$$

$$d_{R,i\alpha} = \sum_{t_0} U_{R,ij}^d D_{R,j\alpha}^* \tag{4.62}$$

• Mass matrix for Up-Quarks, Basis: $(u_{L,o_1\alpha_1}), (u_{R,p_1\beta_1}^*)$

$$m_u = \left(\frac{1}{\sqrt{2}}v_u\delta_{\alpha_1\beta_1}Y_{u,p_1o_1}\right) \tag{4.63}$$

This matrix is diagonalized by U_L^u and U_R^u

$$U_L^{u,*} m_u U_R^{u,\dagger} = m_u^{dia} \tag{4.64}$$

with

$$u_{L,i\alpha} = \sum_{t_2} U_{L,ji}^{u,*} U_{L,j\alpha} \tag{4.65}$$

$$u_{R,i\alpha} = \sum_{t_2} U_{R,ij}^u U_{R,j\alpha}^*$$
 (4.66)

4.4 Vacuum Expectation Values

$$H_d^0 = \frac{1}{\sqrt{2}}\phi_d + \frac{1}{\sqrt{2}}v_d + i\frac{1}{\sqrt{2}}\sigma_d \tag{4.67}$$

$$H_u^0 = \frac{1}{\sqrt{2}}\phi_u + \frac{1}{\sqrt{2}}v_u + i\frac{1}{\sqrt{2}}\sigma_u \tag{4.68}$$

4.5 Tadpole Equations

$$\frac{\partial V}{\partial v_d} = \frac{1}{8} \left(8v_d |\mu|^2 - 8v_u \Re\left(B_\mu\right) + v_d \left(8m_{H_d}^2 + g_1^2 v_d^2 - g_1^2 v_u^2 + g_2^2 v_d^2 - g_2^2 v_u^2 \right) \right) \tag{4.69}$$

$$\frac{\partial V}{\partial v_u} = \frac{1}{8} \left(-8v_d \Re \left(B_\mu \right) + 8v_u |\mu|^2 + v_u \left(8m_{H_u}^2 - g_1^2 v_d^2 + g_1^2 v_u^2 - g_2^2 v_d^2 + g_2^2 v_u^2 \right) \right) \tag{4.70}$$

4.6 Particle content for eigenstates 'EWSB'

Name	$_{\mathrm{Type}}$	${\rm complex/real}$	${\rm Generations}$	${\rm Indices}$

$-\tilde{d}$	Scalar	complex	6	generation, color
$ ilde{u}$	Scalar	complex 6		generation, color
$ ilde{e}$	Scalar	complex	6	generation
$ ilde{ u}$	Scalar	complex	3	generation
h	Scalar	real	4	${\it generation}$
H^{-}	Scalar	complex	2	generation
ν	Fermion	Dirac	3	generation
$ ilde{g}$	Fermion	Majorana	8	generation
$ ilde{\chi}^0$	Fermion	Majorana	4	generation
$\tilde{\chi}^-$	Fermion	Dirac	2	generation
e	Fermion	Dirac	3	generation
d	Fermion	Dirac	3	generation, color
u	Fermion	Dirac	3	generation, color
\overline{g}	Vector	real	8	generation, lorentz
W^-	Vector	complex	1	lorentz
γ	Vector	real	1	lorentz
Z	Vector	real	1	lorentz
η^G	Ghost	$_{\mathrm{real}}$	8	generation
η^-	Ghost	complex	1	
η^+	Ghost	complex	1	
η^γ	Ghost	$_{\mathrm{real}}$	1	
η^Z	Ghost	$_{\mathrm{real}}$	1	

4.7 Modelfile for SARAH

```
Off[General::spell]
Print["Model file for the MSSM loaded"];
ModelNameLaTeX ="MSSM-CPV";
(*----*)
(* Particle Content*)
(*----*)
(* Gauge Superfields *)
Gauge[[1]]={B, U[1], hypercharge, g1,False};
Gauge[[2]]={WB, SU[2], left, g2,True};
Gauge[[3]]={G, SU[3], color,
                           g3,False};
(* Chiral Superfields *)
Fields[[1]] = \{\{uL, dL\}, 3, q, 1/6, 2, 3\};
Fields[[2]] = \{ \{vL, eL\}, 3, 1, -1/2, 2, 1\};
Fields[[3]] = \{\{Hd0, Hdm\}, 1, Hd, -1/2, 2, 1\};
Fields[[4]] = {{Hup, Hu0}, 1, Hu, 1/2, 2, 1};
Fields[[5]] = \{conj[dR], 3, d, 1/3, 1, -3\};
Fields[[6]] = \{conj[uR], 3, u, -2/3, 1, -3\};
Fields[[7]] = {conj[eR], 3, e, 1, 1, 1};
(*----*)
(* Superpotential *)
(*----*)
SuperPotential = \{\{1, Yu\}, \{u,q,Hu\}\}, \{\{-1,Yd\}, \{d,q,Hd\}\},
               \{\{-1, Ye\}, \{e, 1, Hd\}\}, \{\{1, \backslash [Mu]\}, \{Hu, Hd\}\}\};
(*----*)
(* Integrate Out or Delete Particles *)
(*----*)
IntegrateOut={};
DeleteParticles={};
```

```
(*----*)
(* DEFINITION
(*----*)
NameOfStates={GaugeES,EWSB};
DEFINITION[GaugeES] [GaugeFixing] =
{ {Der[VWB], -1/(2 RXi[W])},
    {Der[VG], -1/(2 RXi[G]) }};
(* Gauge Sector *)
DEFINITION[EWSB] [GaugeSector] =
{{VWB, {1, {VWm, 1/Sqrt[2]}, {conj[VWm], 1/Sqrt[2]}},
     {2,{VWm,-\[ImaginaryI]/Sqrt[2]},{conj[VWm],\[ImaginaryI]/Sqrt[2]}},
     {3,{VP,Sin[ThetaW]},{VZ,Cos[ThetaW]}}},
 {VB, {1,{VP,Cos[ThetaW]},{VZ,-Sin[ThetaW]}}},
 {fWB, {1, {fWm, 1/Sqrt[2]}, {fWp, 1/Sqrt[2]}},
     {2,{fWm,-\[ImaginaryI]/Sqrt[2]},{fWp,\[ImaginaryI]/Sqrt[2]}},
     {3,{fW0,1}}}};
(* ---- VEVs ---- *)
DEFINITION[EWSB][VEVs] =
 {{SHd0, {vd, 1/Sqrt[2]}, {sigmad, \[ImaginaryI]/Sqrt[2]},{phid, \
1/Sqrt[2]}},
   {SHu0, {vu, 1/Sqrt[2]}, {sigmau, \[ImaginaryI]/Sqrt[2]}, {phiu, \
1/Sqrt[2]}}};
(* ---- Mixings ---- *)
DEFINITION[EWSB] [MatterSector] =
    {{SdL, SdR}, {Sd, ZD}},
    {{SuL, SuR}, {Su, ZU}},
    {{SeL, SeR}, {Se, ZE}},
    {{SvL}, {Sv, ZV}},
    {{phid, phiu, sigmad, sigmau}, {hh, ZH}},
    {{SHdm,conj[SHup]},{Hpm,ZP}},
    {{fB, fWO, FHdO, FHuO}, {LO, ZN}},
    {{fWm, FHdm}, {fWp, FHup}}, {{Lm,UM}, {Lp,UP}}},
    {{{FeL}, {conj[FeR]}}, {{FEL, ZEL}, {FER, ZER}}},
```

```
{{{FdL}, {conj[FdR]}}, {{FDL, ZDL}, {FDR, ZDR}}},
    {{{FuL}, {conj[FuR]}}, {{FUL, ZUL}, {FUR, ZUR}}}
      };
(*--- Gauge Fixing ---- *)
DEFINITION[EWSB] [GaugeFixing] =
                                                  - 1/(2 RXi[P]),
 { {Der[VP],
{Der[VWm]+\[ImaginaryI] Mass[VWm] RXi[W] Hpm[{1}],
                                              - 1/(RXi[W])},
\{Der[VZ] - Mass[VZ] RXi[Z] hh[\{1\}],
                                               - 1/(2 RXi[Z]),
{Der[VG],
                                               - 1/(2 RXi[G])}};
DEFINITION[EWSB][Phases]=
   {fG, PhaseGlu}
   };
(*----*)
(* Dirac-Spinors *)
(*----*)
dirac[[1]] = {Fd, FDL, conj[FDR]};
dirac[[2]] = {Fe, FEL, conj[FER]};
dirac[[3]] = {Fu, FUL, conj[FUR]};
dirac[[4]] = {Fv, FvL, 0};
dirac[[5]] = {Chi, L0, conj[L0]};
dirac[[6]] = {Cha, Lm, conj[Lp]};
dirac[[7]] = {Glu, fG, conj[fG]};
(* Unbroken EW *)
dirac[[8]] = {Bino, fB, conj[fB]};
dirac[[9]] = {Wino, fWB, conj[fWB]};
dirac[[10]] = {HO, FHdO, conj[FHuO]};
dirac[[11]] = {HC, FHdm, conj[FHup]};
dirac[[12]] = {Fd1, FdL, 0};
dirac[[13]] = {Fd2, 0, FdR};
dirac[[14]] = {Fu1, FuL, 0};
dirac[[15]] = {Fu2, 0, FuR};
dirac[[16]] = {Fe1, FeL, 0};
dirac[[17]] = {Fe2, 0, FeR};
(*-----*)
```

SpectrumFile= None;

4.8 Implementation in SARAH

Model directory: MSSM/CPV

4.8.1 Particles for eigenstates 'GaugeES'

• Fermions

$$\begin{split} \tilde{B} &= \begin{pmatrix} \lambda_{\tilde{B}} \\ \lambda_{\tilde{B}}^* \end{pmatrix} & \text{Bino} &= \begin{pmatrix} \text{fB} \\ \text{conj}[\text{fB}] \end{pmatrix} \\ d_{i\alpha}^1 &= \begin{pmatrix} d_{L,i\alpha} \\ 0 \end{pmatrix} & \text{Fd1}[\{\text{generation, color}\}] &= \begin{pmatrix} \text{FdL}[\{\text{generation, color}\}] \\ 0 \end{pmatrix} \\ d_{i\alpha}^2 &= \begin{pmatrix} 0 \\ d_{R,i\alpha} \end{pmatrix} & \text{Fd2}[\{\text{generation, color}\}] &= \begin{pmatrix} 0 \\ \text{FdR}[\{\text{generation, color}\}] \end{pmatrix} \\ e_i^1 &= \begin{pmatrix} e_{L,i} \\ 0 \end{pmatrix} & \text{Fe1}[\{\text{generation}\}] &= \begin{pmatrix} \text{FeL}[\{\text{generation}\}] \\ 0 \end{pmatrix} \\ e_i^2 &= \begin{pmatrix} 0 \\ e_{R,i} \end{pmatrix} & \text{Fe2}[\{\text{generation, color}\}] &= \begin{pmatrix} 0 \\ \text{FeR}[\{\text{generation, color}\}] \end{pmatrix} \\ u_{i\alpha}^1 &= \begin{pmatrix} u_{L,i\alpha} \\ 0 \end{pmatrix} & \text{Fu1}[\{\text{generation, color}\}] &= \begin{pmatrix} \text{FuL}[\{\text{generation, color}\}] \\ 0 \end{pmatrix} \\ u_{i\alpha}^2 &= \begin{pmatrix} 0 \\ u_{R,i\alpha} \end{pmatrix} & \text{Fu2}[\{\text{generation, color}\}] &= \begin{pmatrix} 0 \\ \text{FuR}[\{\text{generation, color}\}] \end{pmatrix} \\ \nu_i &= \begin{pmatrix} \nu_{L,i} \\ 0 \end{pmatrix} & \text{Fv}[\{\text{generation}\}] &= \begin{pmatrix} \text{FvL}[\{\text{generation}\}] \\ 0 \end{pmatrix} \\ \tilde{g}_i &= \begin{pmatrix} \lambda_{\tilde{g},i} \\ \lambda_{\tilde{g},i}^* \end{pmatrix} & \text{Glu}[\{\text{generation}\}] &= \begin{pmatrix} \text{fG}[\{\text{generation}\}] \\ \text{conj}[\text{fG}[\{\text{generation}\}]] \end{pmatrix} \end{split}$$

$$\begin{split} \tilde{H}^0 &= \left(\begin{array}{c} \tilde{H}^0_d \\ \tilde{H}^{0,*}_u \end{array} \right) & \text{HO} = \left(\begin{array}{c} \text{FHdO} \\ \text{conj} [\text{FHuO}] \end{array} \right) \\ \tilde{H}^- &= \left(\begin{array}{c} \tilde{H}^-_d \\ \tilde{H}^+_u, * \end{array} \right) & \text{HC} = \left(\begin{array}{c} \text{FHdm} \\ \text{conj} [\text{FHup}] \end{array} \right) \\ \tilde{W}_i &= \left(\begin{array}{c} \lambda_{\tilde{W},i} \\ \lambda_{\tilde{W},i}^* \end{array} \right) & \text{Wino} [\{\text{generation}\}] = \left(\begin{array}{c} \text{fWB} [\{\text{generation}\}] \\ \text{conj} [\text{fWB} [\{\text{generation}\}]] \end{array} \right) \end{aligned}$$

• Scalars

$\tilde{d}_{L,ilpha}$	SdL[{generation, color}]	$\tilde{u}_{L,i\alpha}$	SuL[{generation, color}]
$\tilde{e}_{L,i}$	SeL[{generation}]	$ ilde{ u}_{L,i}$	<pre>SvL[{generation}]</pre>
H_d^0	SHd0	H_d^-	SHdm
H_u^0	SHu0	H_u^+	SHup
$\tilde{d}_{R,i\alpha}$	<pre>SdR[{generation, color}]</pre>	$\tilde{u}_{R,i\alpha}$	<pre>SuR[{generation, color}]</pre>
$\tilde{e}_{R,i}$	SeR[{generation}]		

• Vector Bosons

B_{ρ}	VB[{lorentz}]	$W_{i\rho}^-$	<pre>VWB[{generation, lorent</pre>	z}]
$g_{i\rho}$	<pre>VG[{generation, lorentz}]</pre>			

• Ghosts

η^B	gB	gWB(gt1)	gWB[{generation}]
η_i^G	$gG[\{generation\}]$, ,	

4.8.2 Particles for eigenstates 'EWSB'

• Fermions

$$\begin{split} &\tilde{\chi}_i^- = \begin{pmatrix} \lambda_i^- \\ \lambda_i^+, * \\ \lambda_i^+, * \end{pmatrix} & \text{Cha[\{generation\}]} = \begin{pmatrix} \text{Lm[\{generation\}]} \\ \text{conj[Lp[\{generation\}]]} \\ \end{pmatrix} \\ &\tilde{\chi}_i^0 = \begin{pmatrix} \lambda_i^0 \\ \lambda_i^0, * \\ \lambda_i^0, * \end{pmatrix} & \text{Chi[\{generation\}]} = \begin{pmatrix} \text{Lo[\{generation\}]} \\ \text{conj[Lo[\{generation\}]]} \\ \end{pmatrix} \\ &d_{i\alpha} = \begin{pmatrix} D_{L,i\alpha} \\ D_{R,i\alpha}^* \\ D_{R,i\alpha}^* \end{pmatrix} & \text{Fd[\{generation, color\}]} = \begin{pmatrix} \text{FDL[\{generation, color\}]} \\ \text{conj[FDR[\{generation\}]} \\ \text{conj[FER[\{generation\}]]} \\ \end{pmatrix} \\ &e_i = \begin{pmatrix} E_{L,i} \\ E_{R,i}^* \\ U_{R,i\alpha}^* \end{pmatrix} & \text{Fu[\{generation, color\}]} = \begin{pmatrix} \text{FUL[\{generation, color\}]} \\ \text{conj[FUR[\{generation, color\}]]} \\ \end{pmatrix} \\ &\nu_i = \begin{pmatrix} \nu_{L,i} \\ 0 \\ \end{pmatrix} & \text{Fv[\{generation\}]} = \begin{pmatrix} \text{FvL[\{generation\}]} \\ 0 \\ \end{pmatrix} \\ &\tilde{g}_i = \begin{pmatrix} \lambda_{\tilde{g},i} \\ \lambda_{\tilde{g},i}^* \end{pmatrix} & \text{Glu[\{generation\}]} = \begin{pmatrix} \text{fG[\{generation\}]} \\ \text{conj[fG[\{generation\}]]} \end{pmatrix} \end{aligned}$$

• Scalars

\tilde{d}_{ilpha}	Sd[{generation, color}]	$\tilde{u}_{i\alpha}$	Su[{generation, color}]
\tilde{e}_i	Se[{generation}]	$ ilde{ u}_i$	<pre>Sv[{generation}]</pre>
h_i	hh[{generation}]	H_i^-	<pre>Hpm[{generation}]</pre>

• Vector Bosons

$g_{i ho}$	VG[{generation, lorentz}]	W_{ρ}^{-}	VWm[{lorentz}]
$\gamma_{ ho}$	<pre>VP[{lorentz}]</pre>	$Z_{ ho}$	VZ[{lorentz}]

• Ghosts

η_i^G	gG[{generation}]	η^-	gWm
η^+	gWmC	η^{γ}	gP
η^Z	gZ		

4.8.3 Parameters

g_1	g1	g_2	g2	g_3	g3
_	•	_	Ŭ	_	•
Y_u	Yu	T_u	T[Yu]	Y_d	Yd
T_d	T[Yd]	Y_e	Ye	T_e	T[Ye]
μ	\[Mu]	B_{μ}	$B[\[Mu]]$	m_q^2	mq2
m_l^2	m12	$m_{H_d}^2$	mHd2	$m_{H_u}^2$	mHu2
m_d^2	md2	m_u^2	mu2	m_e^2	me2
M_1	MassB	M_2	$ exttt{MassWB}$	M_3	MassG
v_d	vd	v_u	vu	Θ_W	ThetaW
$\phi_{ ilde{g}}$	PhaseGlu	Z^D	ZD	Z^U	ZU
Z^E	ZE	Z^V	ZV	Z^H	ZH
Z^+	ZP	N	ZN	U	UM
V	UP	U_L^e	ZEL	U_R^e	ZER
U_L^d	ZDL	U_R^d	ZDR	U_L^u	ZUL
U_R^u	ZUR	β	\[Beta]		

Chapter 5

Minimal Supersymmetric Standard Model with Heavy gluino

5.1 Superfields

5.1.1 Vector Superfields

SF	Spin $\frac{1}{2}$	Spin 1	SU(N)	Coupling	Name
\hat{B}	$\lambda_{ ilde{B}}$	B	U(1)	g_1	hypercharge
\hat{W}	$\lambda_{ ilde{W}}$	W^-	SU(2)	g_2	left
\hat{g}	$\lambda_{ ilde{g}}$	g	SU(3)	g_3	color

5.1.2 Chiral Superfields

SF	Spin 0	Spin $\frac{1}{2}$	Generations	$(U(1) \otimes \mathrm{SU}(2) \otimes \mathrm{SU}(3))$
\hat{q}	$ ilde{q}$	q	3	$(rac{1}{6},2,3)$
\hat{l}	\tilde{l}	l	3	$(-rac{1}{2},{f 2},{f 1})$
\hat{H}_d	H_d	$ ilde{H}_d$	1	$(-rac{1}{2},{f 2},{f 1})$
\hat{H}_u	H_u	\tilde{H}_u	1	$(rac{1}{2},2,1)$
\hat{d}	$ ilde{d}_R^*$	d_R^*	3	$(rac{1}{3}, oldsymbol{1}, \overline{oldsymbol{3}})$
\hat{u}	\tilde{u}_R^*	u_R^*	3	$(-rac{2}{3},1,\overline{3})$
\hat{e}	$ ilde{e}_R^*$	e_R^*	3	(1, 1, 1)

5.2 Superpotential and Lagrangian

5.2.1 Superpotential

$$W = Y_u \,\hat{u} \,\hat{q} \,\hat{H}_u - Y_d \,\hat{d} \,\hat{q} \,\hat{H}_d - Y_e \,\hat{e} \,\hat{l} \,\hat{H}_d + \mu \,\hat{H}_u \,\hat{H}_d \tag{5.1}$$

5.2.2 Softbreaking terms

$$L_{SB,W} = -H_d^0 H_u^0 B_\mu + H_d^- H_u^+ B_\mu + H_d^0 \tilde{d}_{R,i\alpha}^* \delta_{\alpha\beta} \tilde{d}_{L,j\beta} T_{d,ij} - H_d^- \tilde{d}_{R,i\alpha}^* \delta_{\alpha\beta} \tilde{u}_{L,j\beta} T_{d,ij}$$

$$+ H_d^0 \tilde{e}_{R,i}^* \tilde{e}_{L,j} T_{e,ij} - H_d^- \tilde{e}_{R,i}^* \tilde{\nu}_{L,j} T_{e,ij} - H_u^+ \tilde{u}_{R,i\alpha}^* \delta_{\alpha\beta} \tilde{d}_{L,j\beta} T_{u,ij} + H_u^0 \tilde{u}_{R,i\alpha}^* \delta_{\alpha\beta} \tilde{u}_{L,j\beta} T_{u,ij} + \text{h.c.}$$

$$L_{SB,\phi} = -m_{H_d}^2 |H_d^0|^2 - m_{H_d}^2 |H_d^-|^2 - m_{H_u}^2 |H_u^0|^2 - m_{H_u}^2 |H_u^+|^2 - \tilde{d}_{L,j\beta}^* \delta_{\alpha\beta} m_{q,ij}^2 \tilde{d}_{L,i\alpha}$$

$$\tilde{J}_{R,i\alpha}^* \delta_{\alpha\beta} \tilde{u}_{L,i\beta} T_{u,ij} + \text{h.c.}$$

$$\tilde{J}_{R,i\alpha}^* \delta_{\alpha\beta} \tilde{u}_{L,i\beta} T_{u,ij} + \tilde{u}_$$

$$-\tilde{d}_{R,i\alpha}^* \delta_{\alpha\beta} m_{d,ij}^2 \tilde{d}_{R,j\beta} - \tilde{e}_{L,j}^* m_{l,ij}^2 \tilde{e}_{L,i} - \tilde{e}_{R,i}^* m_{e,ij}^2 \tilde{e}_{R,j} - \tilde{u}_{L,j\beta}^* \delta_{\alpha\beta} m_{q,ij}^2 \tilde{u}_{L,i\alpha} - \tilde{u}_{R,i\alpha}^* \delta_{\alpha\beta} m_{u,ij}^2 \tilde{u}_{R,j\beta} - \tilde{\nu}_{L,i}^* m_{l,ij}^2 \tilde{\nu}_{L,i}$$

$$(5.3)$$

$$L_{SB,\lambda} = \frac{1}{2} \left(-\lambda_{\tilde{B}}^2 M_1 - M_2 \lambda_{\tilde{W},i}^2 - M_3 \lambda_{\tilde{g},i}^2 + \text{h.c.} \right)$$
 (5.4)

5.2.3 Gauge fixing terms

Gauge fixing terms for eigenstates 'GaugeES'

$$L_{GF} = -\frac{1}{2}\partial_{\mu}g\xi_{G}^{-1} - \frac{1}{2}\partial_{\mu}W^{-}\xi_{W}^{-1}$$
(5.5)

Gauge fixing terms for eigenstates 'EWSB'

$$L_{GF} = -\frac{1}{2}\partial_{\mu}\gamma\xi_{P}^{-1} - \frac{1}{2}\partial_{\mu}g\xi_{G}^{-1} - \frac{1}{2}\xi_{Z}^{-1}\left(-A_{1}^{0}m_{Z}\xi_{Z} + \partial_{\mu}Z\right) - \xi_{W}^{-1}\left(iH_{1}^{-}m_{W^{-}}\xi_{W} + \partial_{\mu}W^{-}\right)$$

$$(5.6)$$

5.2.4 Fields integrated out

a) $\lambda_{\tilde{g}}$

5.3 Field Rotations

5.3.1 Rotations in gauge sector for eigenstates 'EWSB'

$$W_{1\rho}^{-} = \frac{1}{\sqrt{2}}W_{\rho}^{-} + \frac{1}{\sqrt{2}}W_{\rho}^{+} \tag{5.7}$$

$$W_{2\rho}^{-} = -i\frac{1}{\sqrt{2}}W_{\rho}^{-} + i\frac{1}{\sqrt{2}}W_{\rho}^{+} \tag{5.8}$$

$$W_{3\rho}^{-} = \cos\Theta_W Z_{\rho} + \sin\Theta_W \gamma_{\rho} \tag{5.9}$$

$$B_{\rho} = \cos\Theta_W \gamma_{\rho} - \sin\Theta_W Z_{\rho} \tag{5.10}$$

$$\lambda_{\tilde{W},1} = \frac{1}{\sqrt{2}}\tilde{W}^{-} + \frac{1}{\sqrt{2}}\tilde{W}^{+} \tag{5.11}$$

$$\lambda_{\tilde{W},2} = -i\frac{1}{\sqrt{2}}\tilde{W}^{-} + i\frac{1}{\sqrt{2}}\tilde{W}^{+} \tag{5.12}$$

$$\lambda_{\tilde{W},3} = \tilde{W}^0 \tag{5.13}$$

5.3.2 Rotations in Mass sector for eigenstates 'EWSB'

Mass Matrices for Scalars

 $\bullet \ \, \mathbf{Mass \ matrix \ for \ Down-Squarks}, \ \, \mathbf{Basis:} \ \, \left(\tilde{d}_{L,o_{1}\alpha_{1}},\tilde{d}_{R,o_{2}\alpha_{2}}\right), \left(\tilde{d}_{L,p_{1}\beta_{1}}^{*},\tilde{d}_{R,p_{2}\beta_{2}}^{*}\right)$

$$m_{\tilde{d}}^{2} = \begin{pmatrix} m_{11} & \frac{1}{\sqrt{2}} \delta_{\alpha_{1}\beta_{2}} \left(v_{d} T_{d,p_{2}o_{1}} - v_{u} \mu^{*} Y_{d,p_{2}o_{1}} \right) \\ \frac{1}{\sqrt{2}} \left(v_{d} T_{d,o_{2}p_{1}}^{*} - v_{u} \mu Y_{d,o_{2}p_{1}}^{*} \right) \delta_{\alpha_{2}\beta_{1}} & m_{22} \end{pmatrix}$$

$$(5.14)$$

$$m_{11} = \frac{1}{24} \delta_{\alpha_1 \beta_1} \left(12 \left(2m_{q, o_1 p_1}^2 + v_d^2 \sum_{a=1}^3 Y_{d, a p_1}^* Y_{d, a o_1} \right) - \left(3g_2^2 + g_1^2 \right) \left(-v_u^2 + v_d^2 \right) \delta_{o_1 p_1} \right)$$
(5.15)

$$m_{22} = \frac{1}{12} \delta_{\alpha_2 \beta_2} \left(6 \left(2m_{d, p_2 o_2}^2 + v_d^2 \sum_{a=1}^3 Y_{d, o_2 a}^* Y_{d, p_2 a} \right) + g_1^2 \left(-v_d^2 + v_u^2 \right) \delta_{o_2 p_2} \right)$$
(5.16)

This matrix is diagonalized by Z^D :

$$Z^D m_{\tilde{d}}^2 Z^{D,\dagger} = m_{2,\tilde{d}}^{dia} \tag{5.17}$$

with

$$\tilde{d}_{L,i\alpha} = \sum_{t_2} Z_{ji}^{D,*} \tilde{d}_{j\alpha}, \qquad \tilde{d}_{R,i\alpha} = \sum_{t_2} Z_{ji}^{D,*} \tilde{d}_{j\alpha}$$
 (5.18)

• Mass matrix for Up-Squarks, Basis: $(\tilde{u}_{L,o_1\alpha_1}, \tilde{u}_{R,o_2\alpha_2}), (\tilde{u}_{L,p_1\beta_1}^*, \tilde{u}_{R,p_2\beta_2}^*)$

$$m_{\tilde{u}}^{2} = \begin{pmatrix} m_{11} & \frac{1}{\sqrt{2}} \delta_{\alpha_{1}\beta_{2}} \left(-v_{d}\mu^{*}Y_{u,p_{2}o_{1}} + v_{u}T_{u,p_{2}o_{1}} \right) \\ \frac{1}{\sqrt{2}} \left(-v_{d}\mu Y_{u,o_{2}p_{1}}^{*} + v_{u}T_{u,o_{2}p_{1}}^{*} \right) \delta_{\alpha_{2}\beta_{1}} & m_{22} \end{pmatrix}$$

$$(5.19)$$

$$m_{11} = \frac{1}{24} \delta_{\alpha_1 \beta_1} \left(12 \left(2m_{q,o_1 p_1}^2 + v_u^2 \sum_{a=1}^3 Y_{u,ap_1}^* Y_{u,ao_1} \right) - \left(-3g_2^2 + g_1^2 \right) \left(-v_u^2 + v_d^2 \right) \delta_{o_1 p_1} \right)$$
(5.20)

$$m_{22} = \frac{1}{6} \delta_{\alpha_2 \beta_2} \left(3v_u^2 \sum_{a=1}^3 Y_{u,o_2 a}^* Y_{u,p_2 a} + 6m_{u,p_2 o_2}^2 + g_1^2 \left(-v_u^2 + v_d^2 \right) \delta_{o_2 p_2} \right)$$
(5.21)

This matrix is diagonalized by Z^U :

$$Z^{U} m_{\tilde{u}}^{2} Z^{U,\dagger} = m_{2,\tilde{u}}^{dia} \tag{5.22}$$

with

$$\tilde{u}_{L,i\alpha} = \sum_{t_2} Z_{ji}^{U,*} \tilde{u}_{j\alpha}, \qquad \tilde{u}_{R,i\alpha} = \sum_{t_2} Z_{ji}^{U,*} \tilde{u}_{j\alpha}$$
 (5.23)

• Mass matrix for Sleptons, Basis: $(\tilde{e}_{L,o_1}, \tilde{e}_{R,o_2}), (\tilde{e}_{L,p_1}^*, \tilde{e}_{R,p_2}^*)$

$$m_{\tilde{e}}^2 = \begin{pmatrix} m_{11} & \frac{1}{\sqrt{2}} \left(v_d T_{e, p_2 o_1} - v_u \mu^* Y_{e, p_2 o_1} \right) \\ \frac{1}{\sqrt{2}} \left(v_d T_{e, o_2 p_1}^* - v_u \mu Y_{e, o_2 p_1}^* \right) & m_{22} \end{pmatrix}$$

$$(5.24)$$

$$m_{11} = \frac{1}{8} \left(4v_d^2 \sum_{a=1}^3 Y_{e,ap_1}^* Y_{e,ao_1} + 8m_{l,o_1p_1}^2 + \left(-g_2^2 + g_1^2 \right) \left(-v_u^2 + v_d^2 \right) \delta_{o_1p_1} \right)$$
(5.25)

$$m_{22} = \frac{1}{4} \left(2v_d^2 \sum_{a=1}^3 Y_{e,o_2a}^* Y_{e,p_2a} + 4m_{e,p_2o_2}^2 + g_1^2 \left(-v_d^2 + v_u^2 \right) \delta_{o_2p_2} \right)$$
(5.26)

This matrix is diagonalized by Z^E :

$$Z^{E} m_{\tilde{e}}^{2} Z^{E,\dagger} = m_{2.\tilde{e}}^{dia} \tag{5.27}$$

with

$$\tilde{e}_{L,i} = \sum_{t_2} Z_{ji}^{E,*} \tilde{e}_j , \qquad \tilde{e}_{R,i} = \sum_{t_2} Z_{ji}^{E,*} \tilde{e}_j$$
 (5.28)

• Mass matrix for Higgs, Basis: $(\phi_d, \phi_u), (\phi_d, \phi_u)$

$$m_h^2 = \begin{pmatrix} \frac{1}{8} \left(8m_{H_d}^2 + 8|\mu|^2 + \left(g_1^2 + g_2^2\right) \left(3v_d^2 - v_u^2 \right) \right) & \frac{1}{4} \left(-4\Re\left(B_\mu\right) - \left(g_1^2 + g_2^2\right) v_d v_u \right) \\ \frac{1}{4} \left(-4\Re\left(B_\mu\right) - \left(g_1^2 + g_2^2\right) v_d v_u \right) & \frac{1}{8} \left(8m_{H_u}^2 + 8|\mu|^2 - \left(g_1^2 + g_2^2\right) \left(-3v_u^2 + v_d^2 \right) \right) \end{pmatrix}$$
(5.29)

This matrix is diagonalized by Z^H :

$$Z^{H} m_{h}^{2} Z^{H,\dagger} = m_{2,h}^{dia} \tag{5.30}$$

with

$$\phi_d = \sum_{t_2} Z_{j1}^H h_j , \qquad \phi_u = \sum_{t_2} Z_{j2}^H h_j$$
 (5.31)

The mixing matrix can be parametrized by

$$Z^{H} = \begin{pmatrix} -\sin\alpha & \cos\alpha \\ \cos\alpha & \sin\alpha \end{pmatrix} \tag{5.32}$$

• Mass matrix for Pseudo-Scalar Higgs, Basis: $(\sigma_d, \sigma_u), (\sigma_d, \sigma_u)$

$$m_{A^0}^2 = \begin{pmatrix} \frac{1}{8} \left(8m_{H_d}^2 + 8|\mu|^2 + \left(g_1^2 + g_2^2\right) \left(-v_u^2 + v_d^2 \right) \right) & \Re\left(B_\mu\right) \\ \Re\left(B_\mu\right) & \frac{1}{8} \left(8m_{H_u}^2 + 8|\mu|^2 - \left(g_1^2 + g_2^2\right) \left(-v_u^2 + v_d^2\right) \right) \end{pmatrix}$$
(5.33)

This matrix is diagonalized by Z^A :

$$Z^{A}m_{A^{0}}^{2}Z^{A,\dagger} = m_{2,A^{0}}^{dia} \tag{5.34}$$

with

$$\sigma_d = \sum_{t_2} Z_{j1}^A A_j^0, \qquad \sigma_u = \sum_{t_2} Z_{j2}^A A_j^0 \tag{5.35}$$

The mixing matrix can be parametrized by

$$Z^{A} = \begin{pmatrix} -\cos\beta & \sin\beta \\ \sin\beta & \cos\beta \end{pmatrix} \tag{5.36}$$

 \bullet Mass matrix for Charged Higgs, Basis: $\left(H_d^-,H_u^{+,*}\right),\left(H_d^{-,*},H_u^+\right)$

$$m_{H^{-}}^{2} = \begin{pmatrix} m_{11} & \frac{1}{4}g_{2}^{2}v_{d}v_{u} + B_{\mu} \\ \frac{1}{4}g_{2}^{2}v_{d}v_{u} + B_{\mu}^{*} & m_{22} \end{pmatrix}$$
 (5.37)

$$m_{11} = \frac{1}{8} \left(8m_{H_d}^2 + 8|\mu|^2 + g_1^2 v_d^2 - g_1^2 v_u^2 + g_2^2 v_d^2 + g_2^2 v_u^2 \right)$$
(5.38)

$$m_{22} = \frac{1}{8} \left(8m_{H_u}^2 + 8|\mu|^2 - g_1^2 v_d^2 + g_1^2 v_u^2 + g_2^2 v_d^2 + g_2^2 v_u^2 \right)$$
(5.39)

This matrix is diagonalized by Z^+ :

$$Z^{+}m_{H^{-}}^{2}Z^{+,\dagger} = m_{2H^{-}}^{dia} \tag{5.40}$$

with

$$H_d^- = \sum_{t_2} Z_{j1}^{+,*} H_j^-, \qquad H_u^+ = \sum_{t_2} Z_{j2}^+ H_j^+$$
 (5.41)

The mixing matrix can be parametrized by

$$Z^{+} = \begin{pmatrix} -\cos\beta & \sin\beta \\ \sin\beta & \cos\beta \end{pmatrix} \tag{5.42}$$

Mass Matrices for Fermions

 $\bullet \ \ \mathbf{Mass \ matrix \ for \ Neutralinos}, \ \mathbf{Basis:} \ \left(\lambda_{\tilde{B}}, \tilde{W}^0, \tilde{H}^0_d, \tilde{H}^0_u\right), \left(\lambda_{\tilde{B}}, \tilde{W}^0, \tilde{H}^0_d, \tilde{H}^0_u\right)$

$$m_{\tilde{\chi}^0} = \begin{pmatrix} M_1 & 0 & -\frac{1}{2}g_1v_d & \frac{1}{2}g_1v_u \\ 0 & M_2 & \frac{1}{2}g_2v_d & -\frac{1}{2}g_2v_u \\ -\frac{1}{2}g_1v_d & \frac{1}{2}g_2v_d & 0 & -\mu \\ \frac{1}{2}g_1v_u & -\frac{1}{2}g_2v_u & -\mu & 0 \end{pmatrix}$$

$$(5.43)$$

This matrix is diagonalized by N:

$$Nm_{\tilde{\chi}^0}N^{\dagger} = m_{\tilde{\chi}^0}^{dia} \tag{5.44}$$

with

$$\lambda_{\tilde{B}} = \sum_{t_2} N_{j1}^* \lambda_j^0, \qquad \tilde{W}^0 = \sum_{t_2} N_{j2}^* \lambda_j^0, \qquad \tilde{H}_d^0 = \sum_{t_2} N_{j3}^* \lambda_j^0$$
 (5.45)

$$\tilde{H}_u^0 = \sum_{t_2} N_{j4}^* \lambda_j^0 \tag{5.46}$$

• Mass matrix for Charginos, Basis: $\left(\tilde{W}^-, \tilde{H}_d^-\right), \left(\tilde{W}^+, \tilde{H}_u^+\right)$

$$m_{\tilde{\chi}^{-}} = \begin{pmatrix} M_2 & \frac{1}{\sqrt{2}}g_2v_u \\ \frac{1}{\sqrt{2}}g_2v_d & \mu \end{pmatrix}$$
 (5.47)

This matrix is diagonalized by U and V

$$U^* m_{\tilde{\chi}^-} V^{\dagger} = m_{\tilde{\chi}^-}^{dia} \tag{5.48}$$

with

$$\tilde{W}^{-} = \sum_{t_2} U_{j1}^* \lambda_j^{-}, \qquad \tilde{H}_d^{-} = \sum_{t_2} U_{j2}^* \lambda_j^{-}$$
(5.49)

$$\tilde{W}^{+} = \sum_{t_2} V_{1j}^* \lambda_j^+, \qquad \tilde{H}_u^{+} = \sum_{t_2} V_{2j}^* \lambda_j^+$$
(5.50)

5.4 Vacuum Expectation Values

$$H_d^0 = \frac{1}{\sqrt{2}}\phi_d + \frac{1}{\sqrt{2}}v_d + i\frac{1}{\sqrt{2}}\sigma_d \tag{5.51}$$

$$H_u^0 = \frac{1}{\sqrt{2}}\phi_u + \frac{1}{\sqrt{2}}v_u + i\frac{1}{\sqrt{2}}\sigma_u \tag{5.52}$$

5.5 Tadpole Equations

$$\frac{\partial V}{\partial v_d} = \frac{1}{8} \left(8v_d |\mu|^2 - 8v_u \Re\left(B_\mu\right) + v_d \left(8m_{H_d}^2 + g_1^2 v_d^2 - g_1^2 v_u^2 + g_2^2 v_d^2 - g_2^2 v_u^2 \right) \right) \tag{5.53}$$

$$\frac{\partial V}{\partial v_u} = \frac{1}{8} \left(-8v_d \Re \left(B_\mu \right) + 8v_u |\mu|^2 + v_u \left(8m_{H_u}^2 - g_1^2 v_d^2 + g_1^2 v_u^2 - g_2^2 v_d^2 + g_2^2 v_u^2 \right) \right) \tag{5.54}$$

5.6 Particle content for eigenstates 'EWSB'

Name	Type	${\rm complex/real}$	Generations	Indices
$ ilde{ u}_L$	Scalar	complex	3	generation
$ ilde{d}$	Scalar	complex	6	generation, color
\tilde{u}	Scalar	complex	6	generation, color
$ ilde{e}$	Scalar	complex	6	generation
h	Scalar	real	2	generation
A^0	Scalar	real	2	generation
H^{-}	Scalar	complex	2	generation
d	Fermion	Dirac	3	generation, color
u	Fermion	Dirac	3	generation, color
e	Fermion	Dirac	3	generation
ν	Fermion	Dirac	3	generation
d^2	Fermion	Dirac	3	generation, color
u^2	Fermion	Dirac	3	generation, color
e^2	Fermion	Dirac	3	generation
$\tilde{\chi}^0$	Fermion	Majorana	4	generation
$\tilde{\chi}^-$	Fermion	Dirac	2	generation
g	Vector	real	8	generation, lorentz
W^-	Vector	complex	1	lorentz
γ	Vector	real	1	lorentz
Z	Vector	real	1	lorentz
η^G	Ghost	$_{\mathrm{real}}$	8	generation
η^-	Ghost	complex	1	
η^+	Ghost	complex	1	
η^{γ}	Ghost	$_{\mathrm{real}}$	1	
η^Z	Ghost	$_{\mathrm{real}}$	1	

5.7 Modelfile for SARAH

```
Off[General::spell]
Print["Model file for the MSSM loaded"];
ModelNameLaTeX ="MSSM";
(*----*)
(* Particle Content*)
(*----*)
(* Gauge Superfields *)
Gauge[[1]]={B, U[1], hypercharge, g1,False};
Gauge[[2]]={WB, SU[2], left, g2,True};
Gauge[[3]]={G, SU[3], color,
                           g3,False};
(* Chiral Superfields *)
Fields[[1]] = \{\{uL, dL\}, 3, q, 1/6, 2, 3\};
Fields[[2]] = \{ \{vL, eL\}, 3, 1, -1/2, 2, 1\};
Fields[[3]] = \{\{Hd0, Hdm\}, 1, Hd, -1/2, 2, 1\};
Fields[[4]] = {{Hup, Hu0}, 1, Hu, 1/2, 2, 1};
Fields[[5]] = \{conj[dR], 3, d, 1/3, 1, -3\};
Fields[[6]] = \{conj[uR], 3, u, -2/3, 1, -3\};
Fields[[7]] = {conj[eR], 3, e, 1, 1, 1};
(*----*)
(* Superpotential *)
(*-----*)
SuperPotential = { \{\{1, Yu\}, \{u,q,Hu\}\}, \{\{-1,Yd\}, \{d,q,Hd\}\},
               \{\{-1, Ye\}, \{e, 1, Hd\}\}, \{\{1, \backslash [Mu]\}, \{Hu, Hd\}\}\};
(*----*)
(* Integrate Out or Delete Particles *)
(*----*)
IntegrateOut={fG};
DeleteParticles={};
```

```
(*----*)
(* DEFINITION
(*----*)
NameOfStates={GaugeES, EWSB};
(* ---- Before EWSB ---- *)
DEFINITION[GaugeES] [GaugeFixing] =
{ {Der[VWB], -1/(2 RXi[W])},
    {Der[VG], -1/(2 RXi[G]) }};
(* ---- After EWSB ---- *)
(* Gauge Sector *)
DEFINITION[EWSB] [GaugeSector] =
{{VWB,{1,{VWm,1/Sqrt[2]},{conj[VWm],1/Sqrt[2]}}},
     {2,{VWm,-\[ImaginaryI]/Sqrt[2]},{conj[VWm],\[ImaginaryI]/Sqrt[2]}},
     {3,{VP,Sin[ThetaW]},{VZ,Cos[ThetaW]}}},
{VB, {1,{VP,Cos[ThetaW]},{VZ,-Sin[ThetaW]}}},
{fWB, {1, {fWm, 1/Sqrt[2]}, {fWp, 1/Sqrt[2]}},
     {2,{fWm,-\[ImaginaryI]/Sqrt[2]},{fWp,\[ImaginaryI]/Sqrt[2]}},
     {3,{fW0,1}}};
(* ---- VEVs ---- *)
DEFINITION[EWSB][VEVs] =
 {{SHd0, {vd, 1/Sqrt[2]}, {sigmad, \[ImaginaryI]/Sqrt[2]},{phid, \
1/Sqrt[2]}},
  {SHu0, {vu, 1/Sqrt[2]}, {sigmau, \[ImaginaryI]/Sqrt[2]}, {phiu, \
1/Sqrt[2]}}};
(* ---- Mixings ---- *)
DEFINITION[EWSB] [MatterSector] =
   {{SdL, SdR}, {Sd, ZD}},
```

```
{{SuL, SuR}, {Su, ZU}},
    {{SeL, SeR}, {Se, ZE}},
    {{phid, phiu}, {hh, ZH}},
    {{sigmad, sigmau}, {Ah, ZA}},
    {{SHdm,conj[SHup]},{Hpm,ZP}},
    {{fB, fWO, FHdO, FHuO}, {LO, ZN}},
    {{fWm, FHdm}, {fWp, FHup}}, {{Lm,UM}, {Lp,UP}}}
      };
(*--- Gauge Fixing ---- *)
DEFINITION[EWSB][GaugeFixing] =
 { {Der[VP],
                                                  - 1/(2 RXi[P]),
{Der[VWm]+\[ImaginaryI] Mass[VWm] RXi[W] Hpm[{1}],
                                               - 1/(RXi[W]),
{Der[VZ] - Mass[VZ] RXi[Z] Ah[{1}],
                                               - 1/(2 RXi[Z])
{Der[VG],
                                               - 1/(2 RXi[G])}};
(*-----*)
(* Dirac-Spinors *)
(*-----*)
dirac[[1]] = {Fd, FdL, FdR};
dirac[[2]] = {Fe, FeL, FeR};
dirac[[3]] = {Fu, FuL, FuR};
dirac[[4]] = {Fv, FvL, 0};
dirac[[5]] = {Chi, L0, conj[L0]};
dirac[[6]] = {Cha, Lm, conj[Lp]};
dirac[[7]] = {Glu, fG, conj[fG]};
(* Unbroken EW *)
dirac[[8]] = {Bino, fB, conj[fB]};
dirac[[9]] = {Wino, fWB, conj[fWB]};
dirac[[10]] = {HO, FHdO, conj[FHuO]};
dirac[[11]] = {HC, FHdm, conj[FHup]};
dirac[[12]] = {Fd1, FdL, 0};
dirac[[13]] = {Fd2, 0, FdR};
dirac[[14]] = {Fu1, FuL, 0};
dirac[[15]] = {Fu2, 0, FuR};
dirac[[16]] = {Fe1, FeL, 0};
dirac[[17]] = {Fe2, 0, FeR};
(*-----*)
```

SpectrumFile=None;

5.8 Implementation in SARAH

Model directory: MSSM/HeavyGluino

5.8.1 Particles for eigenstates 'GaugeES'

• Fermions

$$\begin{split} \tilde{B} &= \begin{pmatrix} \lambda_{\tilde{B}} \\ \lambda_{\tilde{B}}^* \end{pmatrix} & \text{Bino} &= \begin{pmatrix} \text{fB} \\ \text{conj} \text{[fB]} \end{pmatrix} \\ d_{i\alpha} &= \begin{pmatrix} d_{L,i\alpha} \\ d_{R,i\alpha} \end{pmatrix} & \text{Fd}[\{\text{generation, color}\}] &= \begin{pmatrix} \text{FdL}[\{\text{generation, color}\}] \\ \text{FdR}[\{\text{generation, color}\}] \end{pmatrix} \\ e_i &= \begin{pmatrix} e_{L,i} \\ e_{R,i} \end{pmatrix} & \text{Fe}[\{\text{generation, color}\}] &= \begin{pmatrix} \text{FeL}[\{\text{generation}\}] \\ \text{FeR}[\{\text{generation, color}\}] \end{pmatrix} \\ u_{i\alpha} &= \begin{pmatrix} u_{L,i\alpha} \\ u_{R,i\alpha} \end{pmatrix} & \text{Fu}[\{\text{generation, color}\}] &= \begin{pmatrix} \text{FuL}[\{\text{generation, color}\}] \\ \text{FuR}[\{\text{generation, color}\}] \end{pmatrix} \\ \nu_i &= \begin{pmatrix} \text{FvL}(\{\text{gt1}\}) \\ 0 \end{pmatrix} & \text{Fv}[\{\text{generation}\}] &= \begin{pmatrix} \text{FvL}[\{\text{generation}\}] \\ 0 \end{pmatrix} \\ \tilde{H}^0 &= \begin{pmatrix} \tilde{H}_d^0 \\ \tilde{H}_u^0, * \\ \tilde{H}_u^0, * \end{pmatrix} & \text{HO} &= \begin{pmatrix} \text{FHdO} \\ \text{conj} \text{[FHuO]} \end{pmatrix} \\ \tilde{H}^C &= \begin{pmatrix} \tilde{H}_d^{\text{Im}} \\ \tilde{H}_u^{+,*} \end{pmatrix} & \text{HC} &= \begin{pmatrix} \text{FHdm} \\ \text{conj} \text{[FHup]} \end{pmatrix} \\ \tilde{V}_i &= \begin{pmatrix} \lambda_{\tilde{W},i} \\ \lambda_{\tilde{W},i}^* \end{pmatrix} & \text{Wino}[\{\text{generation}\}] &= \begin{pmatrix} \text{fWB}[\{\text{generation}\}] \\ \text{conj} \text{[fWB}[\{\text{generation}\}]] \end{pmatrix} \end{split}$$

• Scalars

$\tilde{d}_{L,i\alpha}$	<pre>SdL[{generation, color}]</pre>	$\tilde{u}_{L,i\alpha}$	SuL[{generation, color}]
$\tilde{e}_{L,i}$	SeL[{generation}]	$ ilde{ u}_{L,i}$	<pre>SvL[{generation}]</pre>
H_d^0	SHd0	H_d^-	SHdm
H_u^0	SHu0	H_u^+	SHup
$\tilde{d}_{R,i\alpha}$	<pre>SdR[{generation, color}]</pre>	$\tilde{u}_{R,i\alpha}$	<pre>SuR[{generation, color}]</pre>
$\tilde{e}_{R,i}$	SeR[{generation}]		

• Vector Bosons

$B_{ ho}$	<pre>VB[{lorentz}]</pre>	$W_{i\rho}^-$	<pre>VWB[{generation, lorentz}]</pre>
$g_{i ho}$	<pre>VG[{generation, lorentz}]</pre>		

• Ghosts

η^B	gB	gWB(gt1)	gWB[{generation}]
η_i^G	gG[{generation}]		

5.8.2 Particles for eigenstates 'EWSB'

• Fermions

$$ilde{\chi}_i^- = \left(egin{array}{c} \lambda_i^- \\ \lambda_i^+, st \\ \lambda_i^0 \end{array}
ight) \hspace{1cm} ext{Cha[\{generation\}]} = \left(egin{array}{c} ext{Lm[\{generation\}]} \\ ext{conj[Lp[\{generation\}]]} \\ ilde{\chi}_i^0 = \left(egin{array}{c} \lambda_i^0, st \\ \lambda_i^{0,st} \end{array}
ight) \hspace{1cm} ext{Chi[\{generation\}]} = \left(egin{array}{c} ext{L0[\{generation\}]]} \\ ext{conj[L0[\{generation\}]]} \\ ext{d}_{ilpha} = \left(egin{array}{c} d_{L,ilpha} \\ d_{R,ilpha} \end{array}
ight) \hspace{1cm} ext{Fd[\{generation, color\}]} = \left(egin{array}{c} ext{FdL[\{generation, color\}]} \\ ext{FdR[\{generation, color\}]} \end{array}
ight)$$

$$e_i = \begin{pmatrix} e_{L,i} \\ e_{R,i} \end{pmatrix} \qquad \text{Fe[\{generation\}]} = \begin{pmatrix} \text{FeL[\{generation\}]} \\ \text{FeR[\{generation\}]} \end{pmatrix}$$

$$u_{i\alpha} = \begin{pmatrix} u_{L,i\alpha} \\ u_{R,i\alpha} \end{pmatrix} \qquad \text{Fu[\{generation, color\}]} = \begin{pmatrix} \text{FuL[\{generation, color\}]} \\ \text{FuR[\{generation, color\}]} \end{pmatrix}$$

$$\nu_i = \begin{pmatrix} \text{FvL}(\{\text{gt1}\}) \\ 0 \end{pmatrix} \qquad \text{Fv[\{generation\}]} = \begin{pmatrix} \text{FvL[\{generation\}]} \\ 0 \end{pmatrix}$$

• Scalars

$\tilde{ u}_{L,i}$	SvL[{generation}]	$\tilde{d}_{i\alpha}$	<pre>Sd[{generation, color}]</pre>
$\tilde{u}_{i\alpha}$	Su[{generation, color}]	\tilde{e}_i	Se[{generation}]
h_i	hh[{generation}]	A_i^0	Ah[{generation}]
H_i^-	${\tt Hpm[\{generation\}]}$		

• Vector Bosons

$g_{i ho}$	<pre>VG[{generation, lorentz}]</pre>	W_{ρ}^{-}	<pre>VWm[{lorentz}]</pre>
$\gamma_{ ho}$	<pre>VP[{lorentz}]</pre>	$Z_{ ho}$	<pre>VZ[{lorentz}]</pre>

• Ghosts

η_i^G	gG[{generation}]	η^-	gWm
η^+	gWmC	η^{γ}	gP
η^Z	gZ		

5.8.3 Parameters

g_1 g1	g_2	g2	g_3	g3	
----------	-------	----	-------	----	--

Y_u	Yu	T_u	T[Yu]	Y_d	Yd
T_d	T[Yd]	Y_e	Ye	T_e	T[Ye]
μ	\[Mu]	B_{μ}	$B[\[Mu]]$	m_q^2	mq2
m_l^2	m12	$m_{H_d}^2$	mHd2	$m_{H_u}^2$	mHu2
m_d^2	md2	m_u^2	mu2	m_e^2	me2
M_1	MassB	M_2	MassWB	M_3	MassG
v_d	vd	v_u	vu	Θ_W	ThetaW
Z^D	ZD	Z^U	ZU	Z^E	ZE
Z^H	ZH	Z^A	ZA	Z^+	ZP
N	ZN	U	UM	V	UP
α	$\[Alpha \]$	β	\[Beta]		

Chapter 6

The MSSM with bilinear R-parity violation

6.1 Superfields

6.1.1 Vector Superfields

SF	Spin $\frac{1}{2}$	Spin 1	SU(N)	Coupling	Name
\hat{B}	$\lambda_{ ilde{B}}$	B	U(1)	g_1	hypercharge
\hat{W}	$\lambda_{ ilde{W}}$	W^-	SU(2)	g_2	left
\hat{g}	$\lambda_{ ilde{g}}$	g	SU(3)	g_3	color

6.1.2 Chiral Superfields

SF	Spin 0	Spin $\frac{1}{2}$	Generations	$(U(1) \otimes \mathrm{SU}(2) \otimes \mathrm{SU}(3))$
\hat{q}	$ ilde{q}$	q	3	$(rac{1}{6},2,3)$
Î	\tilde{l}	l	3	$(-rac{1}{2},2,1)$
\hat{H}_d	H_d	$ ilde{H}_d$	1	$(-rac{1}{2},2,1)$
\hat{H}_u	H_u	\tilde{H}_u	1	$(rac{1}{2},2,1)$
\hat{d}	$ ilde{d}_R^*$	d_R^*	3	$(rac{1}{3}, oldsymbol{1}, \overline{oldsymbol{3}})$
\hat{u}	\tilde{u}_R^*	u_R^*	3	$(-rac{2}{3},f 1,f \overline{3})$
\hat{e}	$ ilde{e}_R^*$	e_R^*	3	(1, 1 , 1)

6.2 Superpotential and Lagrangian

6.2.1 Superpotential

$$W = Y_u \,\hat{q} \,\hat{H}_u \,\hat{u} - Y_d \,\hat{q} \,\hat{H}_d \,\hat{d} - Y_e \,\hat{l} \,\hat{H}_d \,\hat{e} + \mu \,\hat{H}_u \,\hat{H}_d + \epsilon \,\hat{l} \,\hat{H}_u$$

$$\tag{6.1}$$

6.2.2 Softbreaking terms

$$L_{SB,W} = -H_d^0 H_u^0 B_\mu + H_d^- H_u^+ B_\mu - H_u^+ \tilde{e}_{L,i} B_{\epsilon,i} + H_u^0 \tilde{\nu}_{L,i} B_{\epsilon,i} + H_d^0 \tilde{d}_{R,k\gamma}^* \delta_{\alpha\gamma} \tilde{d}_{L,i\alpha} T_{d,ik}$$

$$-H_{d}^{-}\tilde{d}_{R,k\gamma}^{*}\delta_{\alpha\gamma}\tilde{u}_{L,i\alpha}T_{d,ik} + H_{d}^{0}\tilde{e}_{R,k}^{*}\tilde{e}_{L,i}T_{e,ik} - H_{d}^{-}\tilde{e}_{R,k}^{*}\tilde{\nu}_{L,i}T_{e,ik} - H_{u}^{+}\tilde{u}_{R,k\gamma}^{*}\delta_{\alpha\gamma}\tilde{d}_{L,i\alpha}T_{u,ik} + H_{u}^{0}\tilde{u}_{R,k\gamma}^{*}\delta_{\alpha\gamma}\tilde{u}_{L,i\alpha}T_{u,ik} + \text{h.c.}$$

$$(6.2)$$

$$L_{SB,\phi} = -m_{H_d}^2 |H_d^0|^2 - m_{H_d}^2 |H_d^-|^2 - m_{H_u}^2 |H_u^0|^2 - m_{H_u}^2 |H_u^+|^2 - \tilde{d}_{L,j\beta}^* \delta_{\alpha\beta} m_{q,ij}^2 \tilde{d}_{L,i\alpha} - \tilde{d}_{R,i\alpha}^* \delta_{\alpha\beta} m_{d,ij}^2 \tilde{d}_{R,j\beta} - \tilde{e}_{L,j}^* m_{l,ij}^2 \tilde{e}_{L,i} - \tilde{e}_{R,i}^* m_{e,ij}^2 \tilde{e}_{R,j} - \tilde{u}_{L,j\beta}^* \delta_{\alpha\beta} m_{q,ij}^2 \tilde{u}_{L,i\alpha} - \tilde{u}_{R,i\alpha}^* \delta_{\alpha\beta} m_{u,ij}^2 \tilde{u}_{R,j\beta} - \tilde{\nu}_{L,j}^* m_{l,ij}^2 \tilde{\nu}_{L,i}$$
(6.3)

$$L_{SB,\lambda} = \frac{1}{2} \left(-\lambda_{\tilde{B}}^2 M_1 - M_2 \lambda_{\tilde{W},i}^2 - M_3 \lambda_{\tilde{g},i}^2 + \text{h.c.} \right)$$
 (6.4)

6.2.3 Gauge fixing terms

Gauge fixing terms for eigenstates 'GaugeES'

$$L_{GF} = -\frac{1}{2}\partial_{\mu}g\xi_{G}^{-1} - \frac{1}{2}\partial_{\mu}W^{-}\xi_{W}^{-1}$$
(6.5)

Gauge fixing terms for eigenstates 'EWSB'

$$L_{GF} = -\frac{1}{2}\partial_{\mu}\gamma\xi_{P}^{-1} - \frac{1}{2}\partial_{\mu}g\xi_{G}^{-1} - \frac{1}{2}\xi_{Z}^{-1}\left(-A_{1}^{0}m_{Z}\xi_{Z} + \partial_{\mu}Z\right) - \xi_{W}^{-1}\left(iH_{1}^{-}m_{W^{-}}\xi_{W} + \partial_{\mu}W^{-}\right)$$

$$(6.6)$$

6.2.4 Fields integrated out

None

6.3 Field Rotations

6.3.1 Rotations in gauge sector for eigenstates 'EWSB'

$$W_{1\rho}^{-} = \frac{1}{\sqrt{2}}W_{\rho}^{-} + \frac{1}{\sqrt{2}}W_{\rho}^{+} \tag{6.7}$$

$$W_{2\rho}^{-} = -i\frac{1}{\sqrt{2}}W_{\rho}^{-} + i\frac{1}{\sqrt{2}}W_{\rho}^{+} \tag{6.8}$$

$$W_{3\rho}^{-} = \cos\Theta_W Z_{\rho} + \sin\Theta_W \gamma_{\rho} \tag{6.9}$$

$$B_{\rho} = \cos\Theta_W \gamma_{\rho} - \sin\Theta_W Z_{\rho} \tag{6.10}$$

$$\lambda_{\tilde{W},1} = \frac{1}{\sqrt{2}}\tilde{W}^{-} + \frac{1}{\sqrt{2}}\tilde{W}^{+} \tag{6.11}$$

$$\lambda_{\tilde{W},2} = -i\frac{1}{\sqrt{2}}\tilde{W}^{-} + i\frac{1}{\sqrt{2}}\tilde{W}^{+} \tag{6.12}$$

$$\lambda_{\tilde{W},3} = \tilde{W}^0 \tag{6.13}$$

6.3.2 Rotations in Mass sector for eigenstates 'EWSB'

Mass Matrices for Scalars

 $\bullet \ \, \mathbf{Mass \ matrix \ for \ Down-Squarks}, \ \, \mathbf{Basis:} \ \, \left(\tilde{d}_{L,o_{1}\alpha_{1}},\tilde{d}_{R,o_{2}\alpha_{2}}\right), \left(\tilde{d}_{L,p_{1}\beta_{1}}^{*},\tilde{d}_{R,p_{2}\beta_{2}}^{*}\right)$

$$m_{\tilde{d}}^{2} = \begin{pmatrix} m_{11} & \frac{1}{\sqrt{2}} \delta_{\alpha_{1}\beta_{2}} \left(v_{d} T_{d,o_{1}p_{2}} - v_{u} \mu^{*} Y_{d,o_{1}p_{2}} \right) \\ \frac{1}{\sqrt{2}} \left(v_{d} T_{d,p_{1}o_{2}}^{*} - v_{u} \mu Y_{d,p_{1}o_{2}}^{*} \right) \delta_{\alpha_{2}\beta_{1}} & m_{22} \end{pmatrix}$$

$$(6.14)$$

$$m_{11} = \frac{1}{24} \delta_{\alpha_1 \beta_1} \left(12 \left(2m_{q, o_1 p_1}^2 + v_d^2 \sum_{a=1}^3 Y_{d, p_1 a}^* Y_{d, o_1 a} \right) - \left(3g_2^2 + g_1^2 \right) \delta_{o_1 p_1} \left(-v_u^2 + v_d^2 + \sum_{a=1}^3 v_{L, a}^2 \right) \right)$$
(6.15)

$$m_{22} = \frac{1}{12} \delta_{\alpha_2 \beta_2} \left(6 \left(2m_{d, p_2 o_2}^2 + v_d^2 \sum_{a=1}^3 Y_{d, a o_2}^* Y_{d, a p_2} \right) - g_1^2 \delta_{o_2 p_2} \left(-v_u^2 + v_d^2 + \sum_{a=1}^3 v_{L, a}^2 \right) \right)$$
(6.16)

This matrix is diagonalized by Z^D :

$$Z^{D} m_{\tilde{d}}^{2} Z^{D,\dagger} = m_{2,\tilde{d}}^{dia} \tag{6.17}$$

with

$$\tilde{d}_{L,i\alpha} = \sum_{t_2} Z_{ji}^{D,*} \tilde{d}_{j\alpha}, \qquad \tilde{d}_{R,i\alpha} = \sum_{t_2} Z_{ji}^{D,*} \tilde{d}_{j\alpha}$$
 (6.18)

 $\bullet \ \ \mathbf{Mass \ matrix \ for \ Up-Squarks}, \ \mathbf{Basis:} \ \left(\tilde{u}_{L,o_1\alpha_1},\tilde{u}_{R,o_2\alpha_2}\right), \left(\tilde{u}_{L,p_1\beta_1}^*,\tilde{u}_{R,p_2\beta_2}^*\right) \\$

$$m_{\tilde{u}}^2 = \begin{pmatrix} m_{11} & m_{21}^* \\ m_{21} & m_{22} \end{pmatrix} \tag{6.19}$$

$$m_{11} = \frac{1}{24} \delta_{\alpha_1 \beta_1} \left(12 \left(2m_{q,o_1 p_1}^2 + v_u^2 \sum_{a=1}^3 Y_{u,p_1 a}^* Y_{u,o_1 a} \right) - \left(-3g_2^2 + g_1^2 \right) \delta_{o_1 p_1} \left(-v_u^2 + v_d^2 + \sum_{a=1}^3 v_{L,a}^2 \right) \right)$$
(6.20)

$$m_{21} = \frac{1}{\sqrt{2}} \delta_{\alpha_2 \beta_1} \left(v_u T_{u, p_1 o_2}^* + Y_{u, p_1 o_2}^* \left(-v_d \mu + \sum_{a=1}^3 v_{L, a} \epsilon_a \right) \right)$$
 (6.21)

$$m_{22} = \frac{1}{6} \delta_{\alpha_2 \beta_2} \left(3v_u^2 \sum_{a=1}^3 Y_{u,ao_2}^* Y_{u,ap_2} + 6m_{u,p_2 o_2}^2 + g_1^2 \delta_{o_2 p_2} \left(-v_u^2 + v_d^2 + \sum_{a=1}^3 v_{L,a}^2 \right) \right)$$
 (6.22)

This matrix is diagonalized by Z^U :

$$Z^{U}m_{\tilde{u}}^{2}Z^{U,\dagger} = m_{2,\tilde{u}}^{dia} \tag{6.23}$$

with

$$\tilde{u}_{L,i\alpha} = \sum_{t_2} Z_{ji}^{U,*} \tilde{u}_{j\alpha}, \qquad \tilde{u}_{R,i\alpha} = \sum_{t_2} Z_{ji}^{U,*} \tilde{u}_{j\alpha}$$
(6.24)

• Mass matrix for Higgs, Basis: $(\phi_d, \phi_u, \phi_{L,o_3}), (\phi_d, \phi_u, \phi_{L,p_3})$

$$m_h^2 = \begin{pmatrix} m_{11} & m_{21}^* & m_{31}^* \\ m_{21} & m_{22} & m_{32}^* \\ m_{31} & m_{32} & m_{33} \end{pmatrix}$$
(6.25)

$$m_{11} = \frac{1}{8} \left(3g_1^2 v_d^2 + 3g_2^2 v_d^2 + 8m_{H_d}^2 + 8|\mu|^2 + \left(g_1^2 + g_2^2 \right) \sum_{q=1}^3 v_{L,a}^2 - g_1^2 v_u^2 - g_2^2 v_u^2 \right)$$

$$(6.26)$$

$$m_{21} = \frac{1}{4} \left(-4\Re \left(B_{\mu} \right) - \left(g_1^2 + g_2^2 \right) v_d v_u \right) \tag{6.27}$$

$$m_{22} = \frac{1}{8} \left(3g_1^2 v_u^2 + 3g_2^2 v_u^2 + 8m_{H_u}^2 + 8|\mu|^2 + 8\sum_{a=1}^3 |\epsilon_a|^2 - \left(g_1^2 + g_2^2\right) \sum_{a=1}^3 v_{L,a}^2 - g_1^2 v_d^2 - g_2^2 v_d^2 \right)$$
(6.28)

$$m_{31} = \frac{1}{4} \left(-2\mu^* \epsilon_{o_3} - 2\mu \epsilon_{o_3}^* + 4\Re \left(m_{lH,o_3}^2 \right) + g_1^2 v_d \sum_{a=1}^3 v_{L,a} + g_2^2 v_d \sum_{a=1}^3 v_{L,a} \right)$$

$$(6.29)$$

$$m_{32} = -\frac{1}{4} \left(g_1^2 + g_2^2 \right) v_u \sum_{a=1}^3 v_{L,a} + \Re \left(B_{\epsilon,o_3} \right)$$
(6.30)

$$m_{33} = \frac{1}{8} \left(\left(g_1^2 + g_2^2 \right) \delta_{o_3 p_3} \left(-v_u^2 + v_d^2 + \sum_{a=1}^3 v_{L,a}^2 \right) \right)$$

$$+2\left(2\epsilon_{o_3}^*\epsilon_{p_3}+2\epsilon_{p_3}^*\epsilon_{o_3}+2m_{l,o_3p_3}^2+2m_{l,p_3o_3}^2+g_1^2\sum_{a=1}^3v_{L,a}\sum_{b=1}^3v_{L,b}+g_2^2\sum_{a=1}^3v_{L,a}\sum_{b=1}^3v_{L,b}\right)\right)$$
(6.31)

This matrix is diagonalized by Z^H :

$$Z^{H} m_{h}^{2} Z^{H,\dagger} = m_{2,h}^{dia} \tag{6.32}$$

with

$$\phi_d = \sum_{t_2} Z_{j1}^H h_j , \qquad \phi_u = \sum_{t_2} Z_{j2}^H h_j , \qquad \phi_{L,i} = \sum_{t_2} Z_{ji}^H h_j$$
 (6.33)

• Mass matrix for Pseudo-Scalar Higgs, Basis: $(\sigma_d, \sigma_u, \sigma_{L,o_3}), (\sigma_d, \sigma_u, \sigma_{L,p_3})$

$$m_{A^0}^2 = \begin{pmatrix} m_{11} & \Re(B_{\mu}) & m_{31}^* \\ \Re(B_{\mu}) & m_{22} & -\Re(B_{\epsilon,p_3}) \\ m_{31} & -\Re(B_{\epsilon,o_3}) & m_{33} \end{pmatrix}$$

$$(6.34)$$

$$m_{11} = \frac{1}{8} \left(8m_{H_d}^2 + 8|\mu|^2 + \left(g_1^2 + g_2^2 \right) \sum_{a=1}^3 v_{L,a}^2 + g_1^2 v_d^2 - g_1^2 v_u^2 + g_2^2 v_d^2 - g_2^2 v_u^2 \right)$$

$$(6.35)$$

$$m_{22} = \frac{1}{8} \left(8m_{H_u}^2 + 8|\mu|^2 + 8\sum_{a=1}^3 |\epsilon_a|^2 - \left(g_1^2 + g_2^2\right) \sum_{a=1}^3 v_{L,a}^2 - g_1^2 v_d^2 + g_1^2 v_u^2 - g_2^2 v_d^2 + g_2^2 v_u^2 \right)$$

$$(6.36)$$

$$m_{31} = \frac{1}{2} \left(2\Re \left(m_{lH,o_3}^2 \right) - \mu^* \epsilon_{o_3} - \mu \epsilon_{o_3}^* \right) \tag{6.37}$$

$$m_{33} = \frac{1}{8} \left(4 \left(\epsilon_{o_3}^* \epsilon_{p_3} + \epsilon_{p_3}^* \epsilon_{o_3} + m_{l,o_3p_3}^2 + m_{l,p_3o_3}^2 \right) + \left(g_1^2 + g_2^2 \right) \delta_{o_3p_3} \left(-v_u^2 + v_d^2 + \sum_{a=1}^3 v_{L,a}^2 \right) \right)$$
(6.38)

This matrix is diagonalized by Z^A :

$$Z^{A}m_{A^{0}}^{2}Z^{A,\dagger} = m_{2,A^{0}}^{dia} \tag{6.39}$$

with

$$\sigma_d = \sum_{t_2} Z_{j1}^A A_j^0, \qquad \sigma_u = \sum_{t_2} Z_{j2}^A A_j^0, \qquad \sigma_{L,i} = \sum_{t_2} Z_{ji}^A A_j^0$$
(6.40)

 $\bullet \ \ \text{Mass matrix for Charged Higgs}, \ \text{Basis:} \ \left(H_d^-, H_u^{+,*}, \tilde{e}_{L,o_3}, \tilde{e}_{R,o_4}\right), \left(H_d^{-,*}, H_u^+, \tilde{e}_{L,p_3}^*, \tilde{e}_{R,p_4}^*\right)$

$$m_{H^{-}}^{2} = \begin{pmatrix} m_{11} & \frac{1}{4}g_{2}^{2}v_{d}v_{u} + B_{\mu} & m_{31}^{*} & m_{41}^{*} \\ \frac{1}{4}g_{2}^{2}v_{d}v_{u} + B_{\mu}^{*} & m_{22} & m_{32}^{*} & m_{42}^{*} \\ m_{31} & m_{32} & m_{33} & m_{43}^{*} \\ m_{41} & m_{42} & m_{43} & m_{44} \end{pmatrix}$$

$$(6.41)$$

$$m_{11} = \frac{1}{8} \left(8m_{H_d}^2 + g_1^2 v_d^2 + g_2^2 v_d^2 - g_1^2 v_u^2 + g_2^2 v_u^2 + 8|\mu|^2 + \left(-g_2^2 + g_1^2 \right) \sum_{a=1}^3 v_{L,a}^2 \right)$$

$$+4\sum_{c=1}^{3}\sum_{b=1}^{3}\sum_{a=1}^{3}Y_{e,ca}^{*}Y_{e,ba}v_{L,b}v_{L,c}$$
(6.42)

$$m_{22} = \frac{1}{8} \left(8m_{H_u}^2 + 8|\mu|^2 + 8\sum_{a=1}^3 |\epsilon_a|^2 + \left(-g_1^2 + g_2^2 \right) \sum_{a=1}^3 v_{L,a}^2 - g_1^2 v_d^2 + g_1^2 v_u^2 + g_2^2 v_d^2 + g_2^2 v_u^2 \right)$$
(6.43)

$$m_{31} = \frac{1}{4} \left(-2v_d \sum_{b=1}^{3} \sum_{a=1}^{3} Y_{e,ba}^* Y_{e,o_3 a} v_{L,b} - 4\mu^* \epsilon_{o_3} + g_2^2 v_d \sum_{a=1}^{3} v_{L,a} \right) + m_{lH,o_3}^{2,*}$$

$$(6.44)$$

$$m_{32} = -B_{\epsilon,o_3} + \frac{1}{4}g_2^2 v_u \sum_{a=1}^3 v_{L,a}$$
(6.45)

$$m_{33} = \frac{1}{8} \left(2g_2^2 \sum_{a=1}^3 v_{L,a} \sum_{b=1}^3 v_{L,b} + 4v_d^2 \sum_{a=1}^3 Y_{e,p_3a}^* Y_{e,o_3a} + 8\epsilon_{p_3}^* \epsilon_{o_3} + 8m_{l,o_3p_3}^2 + \left(-g_2^2 + g_1^2 \right) \delta_{o_3p_3} \left(-v_u^2 + v_d^2 + \sum_{a=1}^3 v_{L,a}^2 \right) \right)$$

$$(6.46)$$

$$m_{41} = -\frac{1}{\sqrt{2}} \left(v_u \sum_{a=1}^3 Y_{e,ao_4}^* \epsilon_a + \sum_{a=1}^3 T_{e,ao_4}^* v_{L,a} \right)$$
(6.47)

$$m_{42} = -\frac{1}{\sqrt{2}} \left(\mu \sum_{a=1}^{3} Y_{e,ao_4}^* v_{L,a} + v_d \sum_{a=1}^{3} Y_{e,ao_4}^* \epsilon_a \right)$$
(6.48)

$$m_{43} = \frac{1}{\sqrt{2}} \left(v_d T_{e, p_3 o_4}^* - v_u \mu Y_{e, p_3 o_4}^* \right) \tag{6.49}$$

$$m_{44} = \frac{1}{4} \left(2 \left(2m_{e,p_4o_4}^2 + \sum_{a=1}^3 v_{L,a} Y_{e,ap_4} \sum_{b=1}^3 Y_{e,bo_4}^* v_{L,b} + v_d^2 \sum_{a=1}^3 Y_{e,ao_4}^* Y_{e,ap_4} \right) - g_1^2 \delta_{o_4p_4} \left(-v_u^2 + v_d^2 + \sum_{a=1}^3 v_{L,a}^2 \right) \right)$$

$$(6.50)$$

This matrix is diagonalized by Z^+ :

$$Z^{+}m_{H^{-}}^{2}Z^{+,\dagger} = m_{2,H^{-}}^{dia} \tag{6.51}$$

with

$$H_d^- = \sum_{t_2} Z_{j1}^{+,*} H_j^-, \qquad H_u^+ = \sum_{t_2} Z_{j2}^+ H_j^+, \qquad \tilde{e}_{L,i} = \sum_{t_2} Z_{ji}^{+,*} H_j^-$$
 (6.52)

$$\tilde{e}_{R,i} = \sum_{t_2} Z_{ji}^{+,*} H_j^- \tag{6.53}$$

Mass Matrices for Fermions

• Mass matrix for Neutralinos, Basis: $\left(\nu_{L,o_1},\lambda_{\tilde{B}},\tilde{W}^0,\tilde{H}_d^0,\tilde{H}_u^0\right),\left(\nu_{L,p_1},\lambda_{\tilde{B}},\tilde{W}^0,\tilde{H}_d^0,\tilde{H}_u^0\right)$

$$m_{\tilde{\chi}^{0}} = \begin{pmatrix} 0 & -\frac{1}{2}g_{1} \sum_{a=1}^{3} v_{L,a} & \frac{1}{2}g_{2} \sum_{a=1}^{3} v_{L,a} & 0 & \epsilon_{o_{1}} \\ -\frac{1}{2}g_{1} \sum_{a=1}^{3} v_{L,a} & M_{1} & 0 & -\frac{1}{2}g_{1}v_{d} & \frac{1}{2}g_{1}v_{u} \\ \frac{1}{2}g_{2} \sum_{a=1}^{3} v_{L,a} & 0 & M_{2} & \frac{1}{2}g_{2}v_{d} & -\frac{1}{2}g_{2}v_{u} \\ 0 & -\frac{1}{2}g_{1}v_{d} & \frac{1}{2}g_{2}v_{d} & 0 & -\mu \\ \epsilon_{p_{1}} & \frac{1}{2}g_{1}v_{u} & -\frac{1}{2}g_{2}v_{u} & -\mu & 0 \end{pmatrix}$$

$$(6.54)$$

This matrix is diagonalized by N:

$$Nm_{\tilde{\chi}^0}N^{\dagger} = m_{\tilde{\chi}^0}^{dia} \tag{6.55}$$

with

$$\nu_{L,i} = \sum_{t_2} N_{ji}^* \lambda_j^0, \qquad \lambda_{\tilde{B}} = \sum_{t_2} N_{j4}^* \lambda_j^0, \qquad \tilde{W}^0 = \sum_{t_2} N_{j5}^* \lambda_j^0$$
(6.56)

$$\tilde{H}_d^0 = \sum_{t_2} N_{j6}^* \lambda_j^0, \qquad \tilde{H}_u^0 = \sum_{t_2} N_{j7}^* \lambda_j^0$$
(6.57)

• Mass matrix for Charginos, Basis: $\left(e_{L,o_1}, \tilde{W}^-, \tilde{H}_d^-\right), \left(e_{R,p_1}^*, \tilde{W}^+, \tilde{H}_u^+\right)$

$$m_{\tilde{\chi}^{-}} = \begin{pmatrix} \frac{1}{\sqrt{2}} v_{d} Y_{e,o_{1}p_{1}} & \frac{1}{\sqrt{2}} g_{2} \sum_{a=1}^{3} v_{L,a} & -\epsilon_{o_{1}} \\ 0 & M_{2} & \frac{1}{\sqrt{2}} g_{2} v_{u} \\ -\frac{1}{\sqrt{2}} \sum_{a=1}^{3} v_{L,a} Y_{e,ap_{1}} & \frac{1}{\sqrt{2}} g_{2} v_{d} & \mu \end{pmatrix}$$

$$(6.58)$$

This matrix is diagonalized by U and V

$$U^* m_{\tilde{\chi}^-} V^{\dagger} = m_{\tilde{\chi}^-}^{dia} \tag{6.59}$$

with

$$e_{L,i} = \sum_{t_2} U_{ji}^* \lambda_j^-, \qquad \tilde{W}^- = \sum_{t_2} U_{j4}^* \lambda_j^-, \qquad \tilde{H}_d^- = \sum_{t_2} U_{j5}^* \lambda_j^-$$

$$(6.60)$$

$$e_{L,i} = \sum_{t_2} U_{ji}^* \lambda_j^-, \qquad \tilde{W}^- = \sum_{t_2} U_{j4}^* \lambda_j^-, \qquad \tilde{H}_d^- = \sum_{t_2} U_{j5}^* \lambda_j^-$$

$$e_{R,i} = \sum_{t_2} V_{ij} \lambda_j^{+,*}, \qquad \tilde{W}^+ = \sum_{t_2} V_{4j}^* \lambda_j^+, \qquad \tilde{H}_u^+ = \sum_{t_2} V_{5j}^* \lambda_j^+$$

$$(6.60)$$

• Mass matrix for Down-Quarks, Basis: $(d_{L,o_1\alpha_1})$, $\left(d_{R,p_1\beta_1}^*\right)$

$$m_d = \left(\frac{1}{\sqrt{2}} v_d \delta_{\alpha_1 \beta_1} Y_{d, o_1 p_1}\right) \tag{6.62}$$

This matrix is diagonalized by U_L^d and U_R^d

$$U_L^{d,*} m_d U_R^{d,\dagger} = m_d^{dia} \tag{6.63}$$

with

$$d_{L,i\alpha} = \sum_{t_0} U_{L,ji}^{d,*} D_{L,j\alpha} \tag{6.64}$$

$$d_{R,i\alpha} = \sum_{t_0} U_{R,ij}^d D_{R,j\alpha}^* \tag{6.65}$$

• Mass matrix for Up-Quarks, Basis: $(u_{L,o_1\alpha_1})$, $\left(u_{R,p_1\beta_1}^*\right)$

$$m_u = \left(\frac{1}{\sqrt{2}} v_u \delta_{\alpha_1 \beta_1} Y_{u, o_1 p_1} \right) \tag{6.66}$$

This matrix is diagonalized by U_L^u and U_R^u

$$U_L^{u,*}m_u U_R^{u,\dagger} = m_u^{dia} \tag{6.67}$$

with

$$u_{L,i\alpha} = \sum_{t_2} U_{L,ji}^{u,*} U_{L,j\alpha} \tag{6.68}$$

$$u_{R,i\alpha} = \sum_{t_2} U_{R,ij}^u U_{R,j\alpha}^*$$
 (6.69)

Vacuum Expectation Values 6.4

$$H_d^0 = \frac{1}{\sqrt{2}}\phi_d + \frac{1}{\sqrt{2}}v_d + i\frac{1}{\sqrt{2}}\sigma_d \tag{6.70}$$

$$H_u^0 = \frac{1}{\sqrt{2}}\phi_u + \frac{1}{\sqrt{2}}v_u + i\frac{1}{\sqrt{2}}\sigma_u \tag{6.71}$$

$$\tilde{\nu}_L = \frac{1}{\sqrt{2}}\phi_L + \frac{1}{\sqrt{2}}v_L + i\frac{1}{\sqrt{2}}\sigma_L \tag{6.72}$$

6.5 Tadpole Equations

$$\frac{\partial V}{\partial v_{d}} = \frac{1}{8} \left(8m_{H_{d}}^{2} v_{d} + g_{1}^{2} v_{d}^{3} + g_{2}^{2} v_{d}^{3} - g_{1}^{2} v_{d} v_{u}^{2} - g_{2}^{2} v_{d} v_{u}^{2} - 8v_{u} \Re \left(B_{\mu} \right) + 4 \sum_{a=1}^{3} m_{lH,a}^{2,*} v_{L,a} \\
- 4\mu \sum_{a=1}^{3} \epsilon_{a}^{*} v_{L,a} + 4 \sum_{a=1}^{3} m_{lH,a}^{2} v_{L,a} + g_{1}^{2} v_{d} \sum_{a=1}^{3} v_{L,a}^{2} + g_{2}^{2} v_{d} \sum_{a=1}^{3} v_{L,a}^{2} + \mu^{*} \left(-4 \sum_{a=1}^{3} v_{L,a} \epsilon_{a} + 8v_{d} \mu \right) \right) \tag{6.73}$$

$$\frac{\partial V}{\partial v_{u}} = \frac{1}{8} \left(8m_{H_{u}}^{2} v_{u} - g_{1}^{2} v_{d}^{2} v_{u} - g_{2}^{2} v_{d}^{2} v_{u} + g_{1}^{2} v_{u}^{3} + g_{2}^{2} v_{u}^{3} + 8v_{u} |\mu|^{2} - 8v_{d} \Re \left(B_{\mu} \right) \right) + 8v_{u} \sum_{a=1}^{3} |\epsilon_{a}|^{2} + 4 \sum_{a=1}^{3} B_{\epsilon,a}^{*} v_{L,a} - g_{1}^{2} v_{u} \sum_{a=1}^{3} v_{L,a}^{2} - g_{2}^{2} v_{u} \sum_{a=1}^{3} v_{L,a}^{2} + 4 \sum_{a=1}^{3} v_{L,a} B_{\epsilon,a} \right) \tag{6.74}$$

$$\frac{\partial V}{\partial v_{L}} = \frac{1}{8} \left(4v_{u} B_{\epsilon,i}^{*} + 8v_{d} \Re \left(m_{lH,i}^{2} \right) + 4 \sum_{a=1}^{3} m_{l,ia}^{2} v_{L,a} + 4 \sum_{a=1}^{3} m_{l,ai}^{2} v_{L,a} + \epsilon_{i}^{*} \left(4 \sum_{a=1}^{3} v_{L,a} \epsilon_{a} - 4v_{d} \mu \right) + g_{1}^{2} v_{d}^{2} v_{L,i} \right) + g_{2}^{2} v_{d}^{2} v_{L,i} - g_{1}^{2} v_{u}^{2} v_{L,i} - g_{2}^{2} v_{u}^{2} v_{L,i} + g_{1}^{2} \sum_{a=1}^{3} v_{L,a}^{2} v_{L,i} + g_{2}^{2} \sum_{a=1}^{3} v_{L,a}^{2} v_{L,i} - 4v_{d} \mu^{*} \epsilon_{i} + 4v_{u} B_{\epsilon,i} \right) \tag{6.75}$$

6.6 Particle content for eigenstates 'EWSB'

Name	Type	${\rm complex/real}$	Generations	Indices
$ ilde{d}$	Scalar	complex	6	generation, color
$ ilde{u}$	Scalar	complex	6	generation, color
h	Scalar	real	5	${\it generation}$
A^0	Scalar	real	5	${\it generation}$
H^-	Scalar	complex	8	generation
\tilde{g}	Fermion	Majorana	8	generation
$ ilde{\chi}^0$	Fermion	Majorana	7	generation
$\tilde{\chi}^-$	Fermion	Dirac	5	${\it generation}$
d	Fermion	Dirac	3	generation, color
u	Fermion	Dirac	3	generation, color
g	Vector	real	8	generation, lorentz
W^-	Vector	complex	1	lorentz
γ	Vector	real	1	lorentz
Z	Vector	real	1	lorentz
η^G	Ghost	real	8	${\it generation}$
η^-	Ghost	complex	1	

η^+	Ghost	complex	1	
η^γ	Ghost	$_{\mathrm{real}}$	1	
η^Z	Ghost	$_{\mathrm{real}}$	1	

6.7 Modelfile for SARAH

```
Off[General::spell]
Print["Model file for the MSSM loaded"];
ModelNameLaTeX ="MSSM-BiRpV";
(*----*)
(* Particle Content*)
(*----*)
(* Gauge Superfields *)
Gauge[[1]]={B, U[1], hypercharge, g1,False};
Gauge[[2]]={WB, SU[2], left, g2,True};
Gauge[[3]]={G, SU[3], color,
                           g3,False};
(* Chiral Superfields *)
Fields[[1]] = \{\{uL, dL\}, 3, q, 1/6, 2, 3\};
Fields[[2]] = \{ \{vL, eL\}, 3, 1, -1/2, 2, 1\};
Fields[[3]] = \{\{Hd0, Hdm\}, 1, Hd, -1/2, 2, 1\};
Fields[[4]] = {{Hup, Hu0}, 1, Hu, 1/2, 2, 1};
Fields[[5]] = \{conj[dR], 3, d, 1/3, 1, -3\};
Fields[[6]] = \{conj[uR], 3, u, -2/3, 1, -3\};
Fields[[7]] = {conj[eR], 3, e, 1, 1, 1};
(*----*)
(* Superpotential *)
(*----*)
SuperPotential = \{\{1, Yu\}, \{q, Hu, u\}\}, \{\{-1, Yd\}, \{q, Hd, d\}\},
               \{\{-1, Ye\}, \{1, Hd, e\}\}, \{\{1, \lfloor Mu\}\}, \{Hu, Hd\}\},
               {{1,\[Epsilon]},{1,Hu}}};
(*----*)
(* Integrate Out or Delete Particles *)
(*----*)
IntegrateOut={};
DeleteParticles={};
```

```
(*----*)
(* DEFINITION
(*----*)
NameOfStates={GaugeES,EWSB};
DEFINITION[GaugeES] [GaugeFixing] =
{ {Der[VWB], -1/(2 RXi[W])},
    {Der[VG], -1/(2 RXi[G]) }};
DEFINITION[GaugeES][Additional]=
{{{conj[SvL], SHdO}, {1, mHL2}},
 {{conj[SeL], SHdm}, {1, mHL2}}};
(* Gauge Sector *)
DEFINITION[EWSB] [GaugeSector] =
{{VWB, {1, {VWm, 1/Sqrt[2]}, {conj[VWm], 1/Sqrt[2]}},
     {2,{VWm,-\[ImaginaryI]/Sqrt[2]},{conj[VWm],\[ImaginaryI]/Sqrt[2]}},
     {3,{VP,Sin[ThetaW]},{VZ,Cos[ThetaW]}}},
 {VB, {1,{VP,Cos[ThetaW]},{VZ,-Sin[ThetaW]}}},
 {fWB, {1, {fWm, 1/Sqrt[2]}, {fWp, 1/Sqrt[2]}},
     {2,{fWm,-\[ImaginaryI]/Sqrt[2]},{fWp,\[ImaginaryI]/Sqrt[2]}},
     {3,{fW0,1}}};
(* ---- VEVs ---- *)
DEFINITION[EWSB][VEVs] =
    {SHd0, {vd, 1/Sqrt[2]}, {sigmad, \[ImaginaryI]/Sqrt[2]},{phid, \
1/Sqrt[2]}},
    {SHu0, {vu, 1/Sqrt[2]}, {sigmau, \[ImaginaryI]/Sqrt[2]},{phiu, \
1/Sqrt[2]}},
    {SvL, {vL, 1/Sqrt[2]}, {sigmaL, \[ImaginaryI]/Sqrt[2]},{phiL, \
1/Sqrt[2]}}
DEFINITION[EWSB][Phases]=
    {fG, PhaseGlu}
   };
DEFINITION[EWSB] [MatterSector] =
    {{SdL, SdR}, {Sd, ZD}},
```

```
{{SuL, SuR}, {Su, ZU}},
    {{phid, phiu,phiL}, {hh, ZH}},
    {{sigmad, sigmau, sigmaL}, {Ah, ZA}},
    {{SHdm,conj[SHup],SeL,SeR},{Hpm,ZP}},
    {{FvL,fB, fWO, FHdO, FHuO}, {LO, ZN}},
    {{{FeL,fWm, FHdm}, {conj[FeR],fWp, FHup}}, {{Lm,UM}, {Lp,UP}}},
    {{{FdL}, {conj[FdR]}}, {{FDL, ZDL}, {FDR, ZDR}}},
    {{{FUL}, {conj[FuR]}}, {{FUL, ZUL}, {FUR, ZUR}}}
      };
(*--- Gauge Fixing ---- *)
DEFINITION[EWSB] [GaugeFixing] =
 { {Der[VP].
                                                 - 1/(2 RXi[P]),
{Der[VWm]+\[ImaginaryI] Mass[VWm] RXi[W] Hpm[{1}],
                                              - 1/(RXi[W]),
{Der[VZ] - Mass[VZ] RXi[Z] Ah[{1}],
                                              - 1/(2 RXi[Z])
{Der[VG],
                                              - 1/(2 RXi[G])}};
(*-----*)
(* Dirac-Spinors *)
(*-----*)
dirac[[1]] = {Fd, FDL, conj[FDR]};
dirac[[2]] = {Fu, FUL, conj[FUR]};
dirac[[3]] = {Chi, L0, conj[L0]};
dirac[[4]] = {Cha, Lm, conj[Lp]};
dirac[[5]] = {Glu, fG, conj[fG]};
(* Unbroken EW *)
dirac[[6]] = {Bino, fB, conj[fB]};
dirac[[7]] = {Wino, fWB, conj[fWB]};
dirac[[8]] = {H0, FHd0, conj[FHu0]};
dirac[[9]] = {HC, FHdm, conj[FHup]};
dirac[[10]] = {Fd1, FdL, 0};
dirac[[11]] = {Fd2, 0, FdR};
dirac[[12]] = {Fu1, FuL, 0};
dirac[[13]] = {Fu2, 0, FuR};
dirac[[14]] = {Fe1, FeL, 0};
dirac[[15]] = {Fe2, 0, FeR};
dirac[[16]] = {Fv, FvL, 0};
(*----*)
(* Automatized Output *)
(*----*)
```

SpectrumFile= None;

6.8 Implementation in SARAH

Model directory: MSSM-RpV/Bi

6.8.1 Particles for eigenstates 'GaugeES'

• Fermions

$$\begin{split} \tilde{B} &= \begin{pmatrix} \lambda_{\tilde{B}} \\ \lambda_{\tilde{B}}^* \end{pmatrix} & \text{Bino} &= \begin{pmatrix} \text{fB} \\ \text{conj}[\text{fB}] \end{pmatrix} \\ d_{i\alpha}^1 &= \begin{pmatrix} d_{L,i\alpha} \\ 0 \end{pmatrix} & \text{Fd1}[\{\text{generation, color}\}] &= \begin{pmatrix} \text{FdL}[\{\text{generation, color}\}] \\ 0 \\ d_{i\alpha}^2 &= \begin{pmatrix} 0 \\ d_{R,i\alpha} \end{pmatrix} & \text{Fd2}[\{\text{generation, color}\}] &= \begin{pmatrix} 0 \\ \text{FdR}[\{\text{generation, color}\}] \end{pmatrix} \\ e_i^1 &= \begin{pmatrix} e_{L,i} \\ 0 \end{pmatrix} & \text{Fe1}[\{\text{generation}\}] &= \begin{pmatrix} \text{FeL}[\{\text{generation}\}] \\ 0 \\ e_{R,i} \end{pmatrix} \\ e_i^2 &= \begin{pmatrix} 0 \\ e_{R,i} \end{pmatrix} & \text{Fe2}[\{\text{generation, color}\}] &= \begin{pmatrix} 0 \\ \text{FeR}[\{\text{generation, color}\}] \end{pmatrix} \\ u_{i\alpha}^1 &= \begin{pmatrix} u_{L,i\alpha} \\ 0 \end{pmatrix} & \text{Fu1}[\{\text{generation, color}\}] &= \begin{pmatrix} FuL[\{\text{generation, color}\}] \\ 0 \\ u_{i\alpha} &= \begin{pmatrix} 0 \\ u_{R,i\alpha} \end{pmatrix} & \text{Fu2}[\{\text{generation, color}\}] &= \begin{pmatrix} 0 \\ \text{FuR}[\{\text{generation, color}\}] \end{pmatrix} \\ v_i &= \begin{pmatrix} v_{L,i} \\ 0 \end{pmatrix} & \text{Fv}[\{\text{generation}\}] &= \begin{pmatrix} FvL[\{\text{generation}\}] \\ 0 \end{pmatrix} \\ \tilde{g}_i &= \begin{pmatrix} \lambda_{\tilde{g},i} \\ \lambda_{\tilde{g},i}^* \end{pmatrix} & \text{Glu}[\{\text{generation}\}] &= \begin{pmatrix} fG[\{\text{generation}\}] \\ conj[fG[\{\text{generation}\}]] \end{pmatrix} \\ \tilde{H}^0 &= \begin{pmatrix} \tilde{H}^0_{d} \\ \tilde{H}^0_{u}^* \end{pmatrix} & \text{HO} &= \begin{pmatrix} FHdO \\ conj[FHuO] \end{pmatrix} \end{split}$$

• Scalars

$\tilde{d}_{L,i\alpha}$	SdL[{generation, color}]	$\tilde{u}_{L,i\alpha}$	SuL[{generation, color}]
$\tilde{e}_{L,i}$	SeL[{generation}]	$\tilde{\nu}_{L,i}$	SvL[{generation}]
H_d^0	SHd0	H_d^-	SHdm
H_u^0	SHu0	H_u^+	SHup
$\tilde{d}_{R,i\alpha}$	<pre>SdR[{generation, color}]</pre>	$\tilde{u}_{R,i\alpha}$	SuR[{generation, color}]
$\tilde{e}_{R,i}$	SeR[{generation}]		

• Vector Bosons

E	$B_{ ho}$	VB[{lorentz}]		<pre>VWB[{generation, lorentz}]</pre>
g	$_{i ho}$ V	<pre>/G[{generation, lorentz}]</pre>		

• Ghosts

η^B	gB	gWB(gt1)	gWB[{generation}]
η_i^G	gG[{generation}]		

6.8.2 Particles for eigenstates 'EWSB'

• Fermions

$$\begin{split} \tilde{\chi}_{i}^{-} &= \begin{pmatrix} \lambda_{i}^{-} \\ \lambda_{i}^{+,*} \end{pmatrix} & \text{Cha[\{generation\}]} &= \begin{pmatrix} \text{Lm[\{generation\}]} \\ \text{conj[Lp[\{generation\}]]} \end{pmatrix} \\ \tilde{\chi}_{i}^{0} &= \begin{pmatrix} \lambda_{i}^{0} \\ \lambda_{i}^{0,*} \end{pmatrix} & \text{Chi[\{generation\}]} &= \begin{pmatrix} \text{L0[\{generation\}]} \\ \text{conj[L0[\{generation\}]]} \end{pmatrix} \\ d_{i\alpha} &= \begin{pmatrix} D_{L,i\alpha} \\ D_{R,i\alpha}^{*} \end{pmatrix} & \text{Fd[\{generation, color\}]} &= \begin{pmatrix} \text{FDL[\{generation, color\}]} \\ \text{conj[FDR[\{generation, color\}]]} \end{pmatrix} \\ u_{i\alpha} &= \begin{pmatrix} U_{L,i\alpha} \\ U_{R,i\alpha}^{*} \end{pmatrix} & \text{Fu[\{generation, color\}]} &= \begin{pmatrix} \text{FUL[\{generation, color\}]} \\ \text{conj[FUR[\{generation, color\}]]} \end{pmatrix} \\ \tilde{g}_{i} &= \begin{pmatrix} \lambda_{\tilde{g},i} \\ \lambda_{\tilde{g},i}^{*} \end{pmatrix} & \text{Glu[\{generation\}]} &= \begin{pmatrix} \text{fG[\{generation\}]} \\ \text{conj[fG[\{generation\}]]} \end{pmatrix} \end{split}$$

• Scalars

\tilde{d}_{ilpha}	Sd[{generation, color}]	$\tilde{u}_{i\alpha}$	Su[{generation, color}]
h_i	hh[{generation}]	A_i^0	Ah[{generation}]
H_i^-	${\tt Hpm[\{generation\}]}$		

• Vector Bosons

$g_{i ho}$	<pre>VG[{generation, lorentz}]</pre>	W_{ρ}^{-}	VWm[{lorentz}]
$\gamma_{ ho}$	<pre>VP[{lorentz}]</pre>	$Z_{ ho}$	VZ[{lorentz}]

• Ghosts

η_i^G	gG[{generation}]	η^-	gWm
η^+	gWmC	η^{γ}	gP
η^Z	gZ		

6.8.3 Parameters

g_1	g1	g_2	g2	g_3	g3
Y_u	Yu	T_u	T[Yu]	Y_d	Yd
T_d	T[Yd]	Y_e	Ye	T_e	T[Ye]
μ	\[Mu]	B_{μ}	$B[\[Mu]]$	ϵ	\[Epsilon]
B_{ϵ}	$B[\Epsilon]]$	m_q^2	mq2	m_l^2	m12
$m_{H_d}^2$	mHd2	$m_{H_u}^2$	mHu2	m_d^2	md2
m_u^2	mu2	m_e^2	me2	M_1	MassB
M_2	$ exttt{MassWB}$	M_3	${ t MassG}$	m_{lH}^2	mHL2
v_d	vd	v_u	vu	v_L	vL
Θ_W	ThetaW	$\phi_{ ilde{g}}$	PhaseGlu	Z^D	ZD
Z^U	ZU	Z^H	ZH	Z^A	ZA
Z^+	ZP	N	ZN	U	UM
V	UP	U_L^d	ZDL	U_R^d	ZDR
U_L^u	ZUL	U_R^u	ZUR		

Chapter 7

The MSSM with R-parity and lepton number violation

7.1 Superfields

7.1.1 Vector Superfields

SF	Spin $\frac{1}{2}$	Spin 1	SU(N)	Coupling	Name
\hat{B}	$\lambda_{ ilde{B}}$	B	U(1)	g_1	hypercharge
\hat{W}	$\lambda_{ ilde{W}}$	W^-	SU(2)	g_2	left
\hat{g}	$\lambda_{ ilde{g}}$	g	SU(3)	g_3	color

7.1.2 Chiral Superfields

SF	Spin 0	Spin $\frac{1}{2}$	Generations	$(U(1) \otimes \mathrm{SU}(2) \otimes \mathrm{SU}(3))$
\hat{q}	$ ilde{q}$	q	3	$(rac{1}{6},2,3)$
\hat{l}	\tilde{l}	l	3	$(-rac{1}{2},2,1)$
\hat{H}_d	H_d	$ ilde{H}_d$	1	$(-rac{1}{2},{f 2},{f 1})$
\hat{H}_u	H_u	\tilde{H}_u	1	$(rac{1}{2}, oldsymbol{2}, oldsymbol{1})$
\hat{d}	$ ilde{d}_R^*$	d_R^*	3	$(rac{1}{3}, 1, \overline{3})$
\hat{u}	\tilde{u}_R^*	u_R^*	3	$(-\frac{2}{3},1,\overline{3})$
\hat{e}	\tilde{e}_R^*	e_R^*	3	(1, 1 , 1)

7.2 Superpotential and Lagrangian

7.2.1 Superpotential

$$W = Y_u \,\hat{q} \,\hat{H}_u \,\hat{u} - Y_d \,\hat{q} \,\hat{H}_d \,\hat{d} - Y_e \,\hat{l} \,\hat{H}_d \,\hat{e} + \mu \,\hat{H}_u \,\hat{H}_d + \epsilon \,\hat{l} \,\hat{H}_u + \frac{1}{2} \lambda_1 \,\hat{l} \,\hat{l} \,\hat{e} + \lambda_2 \,\hat{l} \,\hat{q} \,\hat{d}$$

$$(7.1)$$

7.2.2 Softbreaking terms

$$L_{SB,W} = -H_{d}^{0}H_{u}^{0}B_{\mu} + H_{d}^{-}H_{u}^{+}B_{\mu} - H_{u}^{+}\tilde{e}_{L,i}B_{\epsilon,i} + H_{u}^{0}\tilde{\nu}_{L,i}B_{\epsilon,i}$$

$$+ \frac{1}{2} \left(-\tilde{e}_{R,k}^{*}\tilde{e}_{L,i}\tilde{\nu}_{L,j}T_{\lambda_{1},ijk} + \tilde{e}_{R,k}^{*}\tilde{e}_{L,j}\tilde{\nu}_{L,i}T_{\lambda_{1},ijk} \right) - \tilde{d}_{R,k\gamma}^{*}\delta_{\beta\gamma}\tilde{e}_{L,i}\tilde{u}_{L,j\beta}T_{\lambda_{2},ijk}$$

$$+ \tilde{d}_{R,k\gamma}^{*}\delta_{\beta\gamma}\tilde{d}_{L,j\beta}\tilde{\nu}_{L,i}T_{\lambda_{2},ijk} + H_{d}^{0}\tilde{d}_{R,k\gamma}^{*}\delta_{\alpha\gamma}\tilde{d}_{L,i\alpha}T_{d,ik} - H_{d}^{-}\tilde{d}_{R,k\gamma}^{*}\delta_{\alpha\gamma}\tilde{u}_{L,i\alpha}T_{d,ik}$$

$$+ H_{d}^{0}\tilde{e}_{R,k}^{*}\tilde{e}_{L,i}T_{e,ik} - H_{d}^{-}\tilde{e}_{R,k}^{*}\tilde{\nu}_{L,i}T_{e,ik} - H_{u}^{+}\tilde{u}_{R,k\gamma}^{*}\delta_{\alpha\gamma}\tilde{d}_{L,i\alpha}T_{u,ik} + H_{u}^{0}\tilde{u}_{R,k\gamma}^{*}\delta_{\alpha\gamma}\tilde{u}_{L,i\alpha}T_{u,ik} + \text{h.c.}$$

$$L_{SB,\phi} = -m_{H_{d}}^{2}|H_{d}^{0}|^{2} - m_{H_{d}}^{2}|H_{d}^{-}|^{2} - m_{H_{u}}^{2}|H_{u}^{0}|^{2} - m_{H_{u}}^{2}|H_{u}^{+}|^{2} - \tilde{d}_{L,j\beta}^{*}\delta_{\alpha\beta}m_{q,ij}^{2}\tilde{d}_{L,i\alpha}$$

$$-\tilde{d}_{R,i\alpha}^{*}\delta_{\alpha\beta}m_{d,ij}^{2}\tilde{d}_{R,j\beta} - \tilde{e}_{L,j}^{*}m_{l,ij}^{2}\tilde{e}_{L,i} - \tilde{e}_{R,i}^{*}m_{e,ij}^{2}\tilde{e}_{R,j} - \tilde{u}_{L,j\beta}^{*}\delta_{\alpha\beta}m_{q,ij}^{2}\tilde{u}_{L,i\alpha}$$

$$-\tilde{u}_{R,i\alpha}^{*}\delta_{\alpha\beta}m_{u,ij}^{2}\tilde{u}_{R,j\beta} - \tilde{\nu}_{L,j}^{*}m_{l,ij}^{2}\tilde{\nu}_{L,i}$$

$$(7.3)$$

$$L_{SB,\lambda} = \frac{1}{2} \left(-\lambda_{\tilde{B}}^2 M_1 - M_2 \lambda_{\tilde{W},i}^2 - M_3 \lambda_{\tilde{g},i}^2 + \text{h.c.} \right)$$
 (7.4)

7.2.3 Gauge fixing terms

Gauge fixing terms for eigenstates 'GaugeES'

$$L_{GF} = -\frac{1}{2}\partial_{\mu}g\xi_{G}^{-1} - \frac{1}{2}\partial_{\mu}W^{-}\xi_{W}^{-1}$$
(7.5)

Gauge fixing terms for eigenstates 'EWSB'

$$L_{GF} = -\frac{1}{2}\partial_{\mu}\gamma\xi_{P}^{-1} - \frac{1}{2}\partial_{\mu}g\xi_{G}^{-1} - \frac{1}{2}\xi_{Z}^{-1}\left(-A_{1}^{0}m_{Z}\xi_{Z} + \partial_{\mu}Z\right) - \xi_{W}^{-1}\left(iH_{1}^{-}m_{W^{-}}\xi_{W} + \partial_{\mu}W^{-}\right)$$
(7.6)

7.2.4 Fields integrated out

None

7.3 Field Rotations

7.3.1 Rotations in gauge sector for eigenstates 'EWSB'

$$W_{1\rho}^{-} = \frac{1}{\sqrt{2}}W_{\rho}^{-} + \frac{1}{\sqrt{2}}W_{\rho}^{+} \tag{7.7}$$

$$W_{2\rho}^{-} = -i\frac{1}{\sqrt{2}}W_{\rho}^{-} + i\frac{1}{\sqrt{2}}W_{\rho}^{+} \tag{7.8}$$

$$W_{3\rho}^{-} = \cos\Theta_W Z_{\rho} + \sin\Theta_W \gamma_{\rho} \tag{7.9}$$

$$B_{\rho} = \cos\Theta_W \gamma_{\rho} - \sin\Theta_W Z_{\rho} \tag{7.10}$$

$$\lambda_{\tilde{W},1} = \frac{1}{\sqrt{2}}\tilde{W}^{-} + \frac{1}{\sqrt{2}}\tilde{W}^{+} \tag{7.11}$$

$$\lambda_{\tilde{W},2} = -i\frac{1}{\sqrt{2}}\tilde{W}^{-} + i\frac{1}{\sqrt{2}}\tilde{W}^{+} \tag{7.12}$$

$$\lambda_{\tilde{W},3} = \tilde{W}^0 \tag{7.13}$$

7.3.2 Rotations in Mass sector for eigenstates 'EWSB'

Mass Matrices for Scalars

• Mass matrix for Down-Squarks, Basis: $\left(\tilde{d}_{L,o_1\alpha_1},\tilde{d}_{R,o_2\alpha_2}\right),\left(\tilde{d}_{L,p_1\beta_1}^*,\tilde{d}_{R,p_2\beta_2}^*\right)$

$$m_{\tilde{d}}^2 = \begin{pmatrix} m_{11} & m_{21}^* \\ m_{21} & m_{22} \end{pmatrix} \tag{7.14}$$

$$m_{11} = \frac{1}{24} \delta_{\alpha_1 \beta_1} \left(-\left(3g_2^2 + g_1^2\right) \delta_{o_1 p_1} \left(-v_u^2 + v_d^2 + \sum_{a=1}^3 v_{L,a}^2 \right) + 12 \left(2m_{q,o_1 p_1}^2 + v_d^2 \sum_{a=1}^3 Y_{d,p_1 a}^* Y_{d,o_1 a} + v_d \sum_{b=1}^3 \sum_{a=1}^3 Y_{d,p_1 a}^* \lambda_{2,bo_1 a} v_{L,b} + v_d \sum_{b=1}^3 \sum_{a=1}^3 \lambda_{2,bp_1 a}^* Y_{d,o_1 a} v_{L,b} + \sum_{c=1}^3 \sum_{b=1}^3 \sum_{a=1}^3 \lambda_{2,cp_1 a}^* \lambda_{2,bo_1 a} v_{L,b} v_{L,c} \right)$$

$$(7.15)$$

$$m_{21} = \frac{1}{\sqrt{2}} \delta_{\alpha_2 \beta_1} \left(v_d T_{d, p_1 o_2}^* - v_u \mu Y_{d, p_1 o_2}^* + v_u \sum_{a=1}^3 \lambda_{2, a p_1 o_2}^* \epsilon_a + \sum_{a=1}^3 T_{\lambda, 2_{a p_1 o_2}^*} v_{L, a} \right)$$
(7.16)

$$m_{22} = \frac{1}{12} \left(6v_d \left(\sum_{a=1}^3 Y_{d,ao_2}^* \sum_{c=1}^3 \sum_{b=1}^3 \lambda_{2,cbp_2} v_{L,c} + \sum_{a=1}^3 Y_{d,ap_2} \sum_{c=1}^3 \sum_{b=1}^3 \lambda_{2,cbo_2}^* v_{L,c} \right) \right)$$

$$+\delta_{\alpha_{2}\beta_{2}}\left(6\left(2m_{d,p_{2}o_{2}}^{2}+v_{d}^{2}\sum_{a=1}^{3}Y_{d,ao_{2}}^{*}Y_{d,ap_{2}}+\sum_{c=1}^{3}\sum_{b=1}^{3}\sum_{a=1}^{3}\lambda_{2,cao_{2}}^{*}\lambda_{2,bap_{2}}v_{L,b}v_{L,c}\right)-g_{1}^{2}\delta_{o_{2}p_{2}}\left(-v_{u}^{2}+v_{d}^{2}+\sum_{a=1}^{3}v_{L,a}^{2}\right)\right)\right)$$

$$(7.17)$$

This matrix is diagonalized by Z^D :

$$Z^{D} m_{\tilde{d}}^{2} Z^{D,\dagger} = m_{2,\tilde{d}}^{dia} \tag{7.18}$$

with

$$\tilde{d}_{L,i\alpha} = \sum_{t_2} Z_{ji}^{D,*} \tilde{d}_{j\alpha}, \qquad \tilde{d}_{R,i\alpha} = \sum_{t_2} Z_{ji}^{D,*} \tilde{d}_{j\alpha}$$
 (7.19)

• Mass matrix for Up-Squarks, Basis: $(\tilde{u}_{L,o_1\alpha_1}, \tilde{u}_{R,o_2\alpha_2}), (\tilde{u}_{L,p_1\beta_1}^*, \tilde{u}_{R,p_2\beta_2}^*)$

$$m_{\tilde{u}}^2 = \begin{pmatrix} m_{11} & m_{21}^* \\ m_{21} & m_{22} \end{pmatrix} \tag{7.20}$$

$$m_{11} = \frac{1}{24} \delta_{\alpha_1 \beta_1} \left(12 \left(2m_{q, o_1 p_1}^2 + v_u^2 \sum_{a=1}^3 Y_{u, p_1 a}^* Y_{u, o_1 a} \right) - \left(-3g_2^2 + g_1^2 \right) \delta_{o_1 p_1} \left(-v_u^2 + v_d^2 + \sum_{a=1}^3 v_{L, a}^2 \right) \right)$$
(7.21)

$$m_{21} = \frac{1}{\sqrt{2}} \delta_{\alpha_2 \beta_1} \left(v_u T_{u, p_1 o_2}^* + Y_{u, p_1 o_2}^* \left(-v_d \mu + \sum_{a=1}^3 v_{L, a} \epsilon_a \right) \right)$$
 (7.22)

$$m_{22} = \frac{1}{6} \delta_{\alpha_2 \beta_2} \left(3v_u^2 \sum_{a=1}^3 Y_{u,ao_2}^* Y_{u,ap_2} + 6m_{u,p_2 o_2}^2 + g_1^2 \delta_{o_2 p_2} \left(-v_u^2 + v_d^2 + \sum_{a=1}^3 v_{L,a}^2 \right) \right)$$
(7.23)

This matrix is diagonalized by Z^U :

$$Z^{U}m_{\tilde{u}}^{2}Z^{U,\dagger} = m_{2.\tilde{u}}^{dia} \tag{7.24}$$

with

$$\tilde{u}_{L,i\alpha} = \sum_{t_2} Z_{ji}^{U,*} \tilde{u}_{j\alpha}, \qquad \tilde{u}_{R,i\alpha} = \sum_{t_2} Z_{ji}^{U,*} \tilde{u}_{j\alpha}$$
 (7.25)

• Mass matrix for Higgs, Basis: $(\phi_d, \phi_u, \phi_{L,o_3}), (\phi_d, \phi_u, \phi_{L,p_3})$

$$m_h^2 = \begin{pmatrix} m_{11} & m_{21}^* & m_{31}^* \\ m_{21} & m_{22} & m_{32}^* \\ m_{31} & m_{32} & m_{33} \end{pmatrix}$$

$$(7.26)$$

$$m_{11} = \frac{1}{8} \left(3g_1^2 v_d^2 + 3g_2^2 v_d^2 + 8m_{H_d}^2 + 8|\mu|^2 + \left(g_1^2 + g_2^2 \right) \sum_{q=1}^3 v_{L,a}^2 - g_1^2 v_u^2 - g_2^2 v_u^2 \right)$$
(7.27)

$$m_{21} = \frac{1}{4} \left(-4\Re \left(B_{\mu} \right) - \left(g_1^2 + g_2^2 \right) v_d v_u \right) \tag{7.28}$$

$$m_{22} = \frac{1}{8} \left(3g_1^2 v_u^2 + 3g_2^2 v_u^2 + 8m_{H_u}^2 + 8|\mu|^2 + 8\sum_{a=1}^3 |\epsilon_a|^2 - \left(g_1^2 + g_2^2\right) \sum_{a=1}^3 v_{L,a}^2 - g_1^2 v_d^2 - g_2^2 v_d^2 \right)$$
(7.29)

$$m_{31} = \frac{1}{4} \left(-2\mu^* \epsilon_{o_3} - 2\mu \epsilon_{o_3}^* + 4\Re \left(m_{lH,o_3}^2 \right) + g_1^2 v_d \sum_{a=1}^3 v_{L,a} + g_2^2 v_d \sum_{a=1}^3 v_{L,a} \right)$$

$$(7.30)$$

$$m_{32} = -\frac{1}{4} \left(g_1^2 + g_2^2 \right) v_u \sum_{a=1}^3 v_{L,a} + \Re \left(B_{\epsilon,o_3} \right)$$
(7.31)

$$m_{33} = \frac{1}{8} \left(\left(g_1^2 + g_2^2 \right) \delta_{o_3 p_3} \left(-v_u^2 + v_d^2 + \sum_{a=1}^3 v_{L,a}^2 \right) \right)$$

$$+2\left(2\epsilon_{o_3}^*\epsilon_{p_3}+2\epsilon_{p_3}^*\epsilon_{o_3}+2m_{l,o_3p_3}^2+2m_{l,p_3o_3}^2+g_1^2\sum_{a=1}^3v_{L,a}\sum_{b=1}^3v_{L,b}+g_2^2\sum_{a=1}^3v_{L,a}\sum_{b=1}^3v_{L,b}\right)\right)$$
(7.32)

This matrix is diagonalized by Z^H :

$$Z^{H}m_{h}^{2}Z^{H,\dagger} = m_{2,h}^{dia} \tag{7.33}$$

with

$$\phi_d = \sum_{t_2} Z_{j1}^H h_j , \qquad \phi_u = \sum_{t_2} Z_{j2}^H h_j , \qquad \phi_{L,i} = \sum_{t_2} Z_{ji}^H h_j$$
 (7.34)

• Mass matrix for Pseudo-Scalar Higgs, Basis: $(\sigma_d, \sigma_u, \sigma_{L,o_3}), (\sigma_d, \sigma_u, \sigma_{L,p_3})$

$$m_{A^0}^2 = \begin{pmatrix} m_{11} & \Re(B_{\mu}) & m_{31}^* \\ \Re(B_{\mu}) & m_{22} & -\Re(B_{\epsilon, p_3}) \\ m_{31} & -\Re(B_{\epsilon, o_3}) & m_{33} \end{pmatrix}$$

$$(7.35)$$

$$m_{11} = \frac{1}{8} \left(8m_{H_d}^2 + 8|\mu|^2 + \left(g_1^2 + g_2^2 \right) \sum_{a=1}^3 v_{L,a}^2 + g_1^2 v_d^2 - g_1^2 v_u^2 + g_2^2 v_d^2 - g_2^2 v_u^2 \right)$$

$$(7.36)$$

$$m_{22} = \frac{1}{8} \left(8m_{H_u}^2 + 8|\mu|^2 + 8\sum_{a=1}^3 |\epsilon_a|^2 - \left(g_1^2 + g_2^2\right) \sum_{a=1}^3 v_{L,a}^2 - g_1^2 v_d^2 + g_1^2 v_u^2 - g_2^2 v_d^2 + g_2^2 v_u^2 \right)$$
(7.37)

$$m_{31} = \frac{1}{2} \left(2\Re \left(m_{lH,o_3}^2 \right) - \mu^* \epsilon_{o_3} - \mu \epsilon_{o_3}^* \right) \tag{7.38}$$

$$m_{33} = \frac{1}{8} \left(4 \left(\epsilon_{o_3}^* \epsilon_{p_3} + \epsilon_{p_3}^* \epsilon_{o_3} + m_{l,o_3 p_3}^2 + m_{l,p_3 o_3}^2 \right) + \left(g_1^2 + g_2^2 \right) \delta_{o_3 p_3} \left(-v_u^2 + v_d^2 + \sum_{a=1}^3 v_{L,a}^2 \right) \right)$$
(7.39)

This matrix is diagonalized by Z^A :

$$Z^{A}m_{A^{0}}^{2}Z^{A,\dagger} = m_{2,A^{0}}^{dia} \tag{7.40}$$

with

$$\sigma_d = \sum_{t_2} Z_{j1}^A A_j^0, \qquad \sigma_u = \sum_{t_2} Z_{j2}^A A_j^0, \qquad \sigma_{L,i} = \sum_{t_2} Z_{ji}^A A_j^0$$
(7.41)

 $\bullet \ \ \mathbf{Mass \ matrix \ for \ Charged \ Higgs}, \ \mathbf{Basis:} \ \left(H_d^-, H_u^{+,*}, \tilde{e}_{L,o_3}, \tilde{e}_{R,o_4}\right), \left(H_d^{-,*}, H_u^+, \tilde{e}_{L,p_3}^*, \tilde{e}_{R,p_4}^*\right)$

$$m_{H^{-}}^{2} = \begin{pmatrix} m_{11} & \frac{1}{4}g_{2}^{2}v_{d}v_{u} + B_{\mu} & m_{31}^{*} & m_{41}^{*} \\ \frac{1}{4}g_{2}^{2}v_{d}v_{u} + B_{\mu}^{*} & m_{22} & m_{32}^{*} & m_{42}^{*} \\ m_{31} & m_{32} & m_{33} & m_{43}^{*} \\ m_{41} & m_{42} & m_{43} & m_{44} \end{pmatrix}$$

$$(7.42)$$

$$m_{11} = \frac{1}{8} \left(8m_{H_d}^2 + g_1^2 v_d^2 + g_2^2 v_d^2 - g_1^2 v_u^2 + g_2^2 v_u^2 + 8|\mu|^2 + \left(-g_2^2 + g_1^2 \right) \sum_{a=1}^3 v_{L,a}^2 + 4 \sum_{a=1}^3 \sum_{b=1}^3 \sum_{e,ca}^3 Y_{e,ca}^* Y_{e,ba} v_{L,b} v_{L,c} \right)$$

$$(7.43)$$

$$m_{22} = \frac{1}{8} \left(8m_{H_u}^2 + 8|\mu|^2 + 8\sum_{a=1}^3 |\epsilon_a|^2 + \left(-g_1^2 + g_2^2 \right) \sum_{a=1}^3 v_{L,a}^2 - g_1^2 v_d^2 + g_1^2 v_u^2 + g_2^2 v_d^2 + g_2^2 v_u^2 \right)$$
(7.44)

$$m_{31} = \frac{1}{4} \left(4m_{lH,o_3}^{2,*} + g_2^2 v_d \sum_{a=1}^3 v_{L,a} - 2v_d \sum_{b=1}^3 \sum_{a=1}^3 Y_{e,ba}^* Y_{e,o_3a} v_{L,b} + \sum_{c=1}^3 \sum_{b=1}^3 \sum_{a=1}^3 Y_{e,ca}^* \lambda_{1,o_3ba} v_{L,b} v_{L,c} \right)$$

$$-\sum_{c=1}^{3} \sum_{b=1}^{3} \sum_{a=1}^{3} Y_{e,ca}^* \lambda_{1,bo_3a} v_{L,b} v_{L,c} - 4\mu^* \epsilon_{o_3}$$

$$(7.45)$$

$$m_{32} = -B_{\epsilon,o_3} + \frac{1}{4}g_2^2 v_u \sum_{a=1}^3 v_{L,a}$$
 (7.46)

$$m_{33} = \frac{1}{8} \left(8m_{l,o_3p_3}^2 + \left(-g_2^2 + g_1^2 \right) \delta_{o_3p_3} \left(-v_u^2 + v_d^2 + \sum_{a=1}^3 v_{L,a}^2 \right) + 4v_d^2 \sum_{a=1}^3 Y_{e,p_3a}^* Y_{e,o_3a} + 2g_2^2 \sum_{a=1}^3 v_{L,a} \sum_{b=1}^3 v_{L,b} \right)$$

$$-2v_d \sum_{b=1}^3 \sum_{a=1}^3 Y_{e,p_3a}^* \lambda_{1,o_3ba} v_{L,b} + 2v_d \sum_{b=1}^3 \sum_{a=1}^3 Y_{e,p_3a}^* \lambda_{1,bo_3a} v_{L,b} - 2v_d \sum_{b=1}^3 \sum_{a=1}^3 \lambda_{1,p_3ba}^* Y_{e,o_3a} v_{L,b}$$

$$+2v_d \sum_{b=1}^3 \sum_{a=1}^3 \lambda_{1,bp_3a}^* Y_{e,o_3a} v_{L,b} + \sum_{c=1}^3 \sum_{b=1}^3 \sum_{a=1}^3 \lambda_{1,p_3ca}^* \lambda_{1,o_3ba} v_{L,b} v_{L,c} - \sum_{c=1}^3 \sum_{b=1}^3 \sum_{a=1}^3 \lambda_{1,cp_3a}^* \lambda_{1,o_3ba} v_{L,b} v_{L,c}$$

$$-\sum_{c=1}^3 \sum_{b=1}^3 \sum_{a=1}^3 \lambda_{1,p_3ca}^* \lambda_{1,bo_3a} v_{L,b} v_{L,c} + \sum_{c=1}^3 \sum_{b=1}^3 \sum_{a=1}^3 \lambda_{1,cp_3a}^* \lambda_{1,bo_3a} v_{L,b} v_{L,c} + 8\epsilon_{p_3}^* \epsilon_{o_3}$$

$$(7.47)$$

$$m_{41} = -\frac{1}{\sqrt{2}} \left(v_u \sum_{a=1}^{3} Y_{e,ao_4}^* \epsilon_a + \sum_{a=1}^{3} T_{e,ao_4}^* v_{L,a} \right)$$
(7.48)

$$m_{42} = -\frac{1}{2} \frac{1}{\sqrt{2}} \left(2\mu \sum_{a=1}^{3} Y_{e,ao_4}^* v_{L,a} + 2v_d \sum_{a=1}^{3} Y_{e,ao_4}^* \epsilon_a + \sum_{a=1}^{3} \epsilon_a \sum_{c=1}^{3} \sum_{b=1}^{3} \lambda_{1,cbo_4}^* v_{L,c} - \sum_{b=1}^{3} \sum_{a=1}^{3} \lambda_{1,abo_4}^* \epsilon_a v_{L,b} \right)$$

$$(7.49)$$

$$m_{43} = \frac{1}{2} \frac{1}{\sqrt{2}} \left(2v_d T_{e,p_3o_4}^* - 2v_u \mu Y_{e,p_3o_4}^* - \sum_{a=1}^3 T_{\lambda,1_{p_3ao_4}^*} v_{L,a} - v_u \sum_{a=1}^3 \epsilon_a \sum_{b=1}^3 \lambda_{1,p_3bo_4}^* + v_u \sum_{a=1}^3 \lambda_{1,ap_3o_4}^* \epsilon_a + \sum_{a=1}^3 T_{\lambda,1_{ap_3o_4}^*} v_{L,a} \right)$$

$$(7.50)$$

$$m_{44} = \frac{1}{8} \left(8m_{e,p_4o_4}^2 - 2g_1^2 \delta_{o_4p_4} \left(- v_u^2 + v_d^2 + \sum_{a=1}^3 v_{L,a}^2 \right) + 4v_d^2 \sum_{a=1}^3 Y_{e,ao_4}^* Y_{e,ap_4} + 4\sum_{a=1}^3 v_{L,a} Y_{e,ap_4} \sum_{b=1}^3 Y_{e,bo_4}^* v_{L,b} \right)$$

$$- 2v_d \sum_{b=1}^3 \sum_{a=1}^3 Y_{e,ao_4}^* \lambda_{1,abp_4} v_{L,b} - 2v_d \sum_{b=1}^3 \sum_{a=1}^3 \lambda_{1,abo_4}^* Y_{e,ap_4} v_{L,b} + 2v_d \sum_{a=1}^3 Y_{e,ap_4} \sum_{c=1}^3 \sum_{b=1}^3 \lambda_{1,cbo_4}^* v_{L,c}$$

$$+ 2v_d \sum_{a=1}^3 Y_{e,ao_4}^* \sum_{c=1}^3 \sum_{b=1}^3 \lambda_{1,cbp_4} v_{L,c} + \sum_{c=1}^3 \sum_{b=1}^3 \sum_{a=1}^3 \lambda_{1,aco_4}^* \lambda_{1,abp_4} v_{L,b} v_{L,c} + \sum_{c=1}^3 \sum_{b=1}^3 \sum_{a=1}^3 \lambda_{1,cao_4}^* \lambda_{1,bap_4} v_{L,b} v_{L,c}$$

$$- \sum_{a=1}^3 \sum_{b=1}^3 \lambda_{1,cbp_4} v_{L,c} \sum_{a=1}^3 \sum_{b=1}^3 \lambda_{1,ado_4}^* v_{L,d} - \sum_{a=1}^3 \sum_{b=1}^3 \lambda_{1,acp_4}^* v_{L,c} \sum_{b=1}^3 \sum_{b=1}^3 \lambda_{1,dbo_4}^* v_{L,d} \right)$$

$$(7.51)$$

This matrix is diagonalized by Z^+ :

$$Z^{+}m_{H^{-}}^{2}Z^{+,\dagger} = m_{2,H^{-}}^{dia} \tag{7.52}$$

with

$$H_d^- = \sum_{t_2} Z_{j1}^{+,*} H_j^-, \qquad H_u^+ = \sum_{t_2} Z_{j2}^+ H_j^+, \qquad \tilde{e}_{L,i} = \sum_{t_2} Z_{ji}^{+,*} H_j^-$$
 (7.53)

$$\tilde{e}_{R,i} = \sum_{t_2} Z_{ji}^{+,*} H_j^- \tag{7.54}$$

Mass Matrices for Fermions

• Mass matrix for Neutralinos, Basis: $\left(\nu_{L,o_1}, \lambda_{\tilde{B}}, \tilde{W}^0, \tilde{H}_d^0, \tilde{H}_u^0\right), \left(\nu_{L,p_1}, \lambda_{\tilde{B}}, \tilde{W}^0, \tilde{H}_d^0, \tilde{H}_u^0\right)$

$$m_{\tilde{\chi}^{0}} = \begin{pmatrix} 0 & -\frac{1}{2}g_{1} \sum_{a=1}^{3} v_{L,a} & \frac{1}{2}g_{2} \sum_{a=1}^{3} v_{L,a} & 0 & \epsilon_{o_{1}} \\ -\frac{1}{2}g_{1} \sum_{a=1}^{3} v_{L,a} & M_{1} & 0 & -\frac{1}{2}g_{1}v_{d} & \frac{1}{2}g_{1}v_{u} \\ \frac{1}{2}g_{2} \sum_{a=1}^{3} v_{L,a} & 0 & M_{2} & \frac{1}{2}g_{2}v_{d} & -\frac{1}{2}g_{2}v_{u} \\ 0 & -\frac{1}{2}g_{1}v_{d} & \frac{1}{2}g_{2}v_{d} & 0 & -\mu \\ \epsilon_{p_{1}} & \frac{1}{2}g_{1}v_{u} & -\frac{1}{2}g_{2}v_{u} & -\mu & 0 \end{pmatrix}$$

$$(7.55)$$

This matrix is diagonalized by N:

$$Nm_{\tilde{\chi}^0}N^{\dagger} = m_{\tilde{\chi}^0}^{dia} \tag{7.56}$$

with

$$\nu_{L,i} = \sum_{t_2} N_{ji}^* \lambda_j^0, \qquad \lambda_{\tilde{B}} = \sum_{t_2} N_{j4}^* \lambda_j^0, \qquad \tilde{W}^0 = \sum_{t_2} N_{j5}^* \lambda_j^0$$

$$\tilde{H}_d^0 = \sum_{t_2} N_{j6}^* \lambda_j^0, \qquad \tilde{H}_u^0 = \sum_{t_2} N_{j7}^* \lambda_j^0$$

$$(7.57)$$

$$\tilde{H}_d^0 = \sum_{t_2} N_{j6}^* \lambda_j^0, \qquad \tilde{H}_u^0 = \sum_{t_2} N_{j7}^* \lambda_j^0$$
(7.58)

• Mass matrix for Charginos, Basis: $\left(e_{L,o_1}, \tilde{W}^-, \tilde{H}_d^-\right), \left(e_{R,p_1}^*, \tilde{W}^+, \tilde{H}_u^+\right)$

$$m_{\tilde{\chi}^{-}} = \begin{pmatrix} m_{11} & \frac{1}{\sqrt{2}} g_2 \sum_{a=1}^{3} v_{L,a} & -\epsilon_{o_1} \\ 0 & M_2 & \frac{1}{\sqrt{2}} g_2 v_u \\ -\frac{1}{\sqrt{2}} \sum_{a=1}^{3} v_{L,a} Y_{e,ap_1} & \frac{1}{\sqrt{2}} g_2 v_d & \mu \end{pmatrix}$$
(7.59)

$$m_{11} = \frac{1}{2} \frac{1}{\sqrt{2}} \left(2v_d Y_{e,o_1 p_1} - \sum_{a=1}^{3} \lambda_{1,o_1 a p_1} v_{L,a} + \sum_{a=1}^{3} \lambda_{1,ao_1 p_1} v_{L,a} \right)$$

$$(7.60)$$

This matrix is diagonalized by U and V

$$U^* m_{\tilde{\chi}^-} V^{\dagger} = m_{\tilde{\chi}^-}^{dia} \tag{7.61}$$

with

$$e_{L,i} = \sum_{t_2} U_{ji}^* \lambda_j^-, \qquad \tilde{W}^- = \sum_{t_2} U_{j4}^* \lambda_j^-, \qquad \tilde{H}_d^- = \sum_{t_2} U_{j5}^* \lambda_j^-$$

$$e_{R,i} = \sum_{t_2} V_{ij} \lambda_j^{+,*}, \qquad \tilde{W}^+ = \sum_{t_2} V_{4j}^* \lambda_j^+, \qquad \tilde{H}_u^+ = \sum_{t_2} V_{5j}^* \lambda_j^+$$

$$(7.62)$$

$$e_{R,i} = \sum_{t_2} V_{ij} \lambda_j^{+,*}, \qquad \tilde{W}^+ = \sum_{t_2} V_{4j}^* \lambda_j^+, \qquad \tilde{H}_u^+ = \sum_{t_2} V_{5j}^* \lambda_j^+$$
 (7.63)

• Mass matrix for Down-Quarks, Basis: $(d_{L,o_1\alpha_1}), (d_{R,p_1\beta_1}^*)$

$$m_d = \left(\frac{1}{\sqrt{2}} \delta_{\alpha_1 \beta_1} \left(v_d Y_{d, o_1 p_1} + \sum_{a=1}^3 \lambda_{2, a o_1 p_1} v_{L, a} \right) \right)$$
 (7.64)

This matrix is diagonalized by U_L^d and U_R^d

$$U_L^{d,*} m_d U_R^{d,\dagger} = m_d^{dia} \tag{7.65}$$

with

$$d_{L,i\alpha} = \sum_{t_{\alpha}} U_{L,ji}^{d,*} D_{L,j\alpha} \tag{7.66}$$

$$d_{R,i\alpha} = \sum_{t_2} U_{R,ij}^d D_{R,j\alpha}^*$$
 (7.67)

• Mass matrix for Up-Quarks, Basis: $(u_{L,o_1\alpha_1}), (u_{R,p_1\beta_1}^*)$

$$m_u = \left(\frac{1}{\sqrt{2}} v_u \delta_{\alpha_1 \beta_1} Y_{u, o_1 p_1} \right) \tag{7.68}$$

This matrix is diagonalized by ${\cal U}^u_L$ and ${\cal U}^u_R$

$$U_L^{u,*} m_u U_R^{u,\dagger} = m_u^{dia} \tag{7.69}$$

with

$$u_{L,i\alpha} = \sum_{t_2} U_{L,ji}^{u,*} U_{L,j\alpha} \tag{7.70}$$

$$u_{R,i\alpha} = \sum_{t_2} U_{R,ij}^u U_{R,j\alpha}^*$$
 (7.71)

7.4 Vacuum Expectation Values

$$H_d^0 = \frac{1}{\sqrt{2}}\phi_d + \frac{1}{\sqrt{2}}v_d + i\frac{1}{\sqrt{2}}\sigma_d \tag{7.72}$$

$$H_u^0 = \frac{1}{\sqrt{2}}\phi_u + \frac{1}{\sqrt{2}}v_u + i\frac{1}{\sqrt{2}}\sigma_u \tag{7.73}$$

$$\tilde{\nu}_L = \frac{1}{\sqrt{2}}\phi_L + \frac{1}{\sqrt{2}}v_L + i\frac{1}{\sqrt{2}}\sigma_L \tag{7.74}$$

7.5 Tadpole Equations

$$\frac{\partial V}{\partial v_d} = \frac{1}{8} \left(8m_{H_d}^2 v_d + g_1^2 v_d^3 + g_2^2 v_d^3 - g_1^2 v_d v_u^2 - g_2^2 v_d v_u^2 - 8v_u \Re \left(B_\mu \right) + 4 \sum_{a=1}^3 m_{lH,a}^{2,*} v_{L,a} \right. \\
\left. - 4\mu \sum_{a=1}^3 \epsilon_a^* v_{L,a} + 4 \sum_{a=1}^3 m_{lH,a}^2 v_{L,a} + g_1^2 v_d \sum_{a=1}^3 v_{L,a}^2 + g_2^2 v_d \sum_{a=1}^3 v_{L,a}^2 + \mu^* \left(-4 \sum_{a=1}^3 v_{L,a} \epsilon_a + 8v_d \mu \right) \right) \\
\frac{\partial V}{\partial v_u} = \frac{1}{8} \left(8m_{H_u}^2 v_u - g_1^2 v_d^2 v_u - g_2^2 v_d^2 v_u + g_1^2 v_u^3 + g_2^2 v_u^3 + 8v_u |\mu|^2 - 8v_d \Re \left(B_\mu \right) \right)$$
(7.75)

$$+8v_{u}\sum_{a=1}^{3}|\epsilon_{a}|^{2}+4\sum_{a=1}^{3}B_{\epsilon,a}^{*}v_{L,a}-g_{1}^{2}v_{u}\sum_{a=1}^{3}v_{L,a}^{2}-g_{2}^{2}v_{u}\sum_{a=1}^{3}v_{L,a}^{2}+4\sum_{a=1}^{3}v_{L,a}B_{\epsilon,a}$$

$$\frac{\partial V}{\partial v_{L}}=\frac{1}{8}\left(4v_{u}B_{\epsilon,i}^{*}+8v_{d}\Re\left(m_{lH,i}^{2}\right)+4\sum_{a=1}^{3}m_{l,ia}^{2}v_{L,a}+4\sum_{a=1}^{3}m_{l,ai}^{2}v_{L,a}+\epsilon_{i}^{*}\left(4\sum_{a=1}^{3}v_{L,a}\epsilon_{a}-4v_{d}\mu\right)+g_{1}^{2}v_{d}^{2}v_{L,i}$$

$$+g_{2}^{2}v_{d}^{2}v_{L,i}-g_{1}^{2}v_{u}^{2}v_{L,i}-g_{2}^{2}v_{u}^{2}v_{L,i}+g_{1}^{2}\sum_{a=1}^{3}v_{L,a}^{2}v_{L,i}+g_{2}^{2}\sum_{a=1}^{3}v_{L,a}^{2}v_{L,i}-4v_{d}\mu^{*}\epsilon_{i}$$

$$+4\sum_{a=1}^{3}\epsilon_{a}^{*}v_{L,a}\epsilon_{i}+4v_{u}B_{\epsilon,i}\right)$$

$$(7.77)$$

7.6 Particle content for eigenstates 'EWSB'

Name	Туре	complex/real	Generations	Indices
$-\tilde{d}$	Scalar	complex	6	generation, color
$ ilde{u}$	Scalar	complex	6	generation, color
h	Scalar	real	5	generation
A^0	Scalar	real	5	generation
H^{-}	Scalar	complex	8	generation
\tilde{g}	Fermion	Majorana	8	generation
$ ilde{\chi}^0$	Fermion	Majorana	7	generation
$\tilde{\chi}^-$	Fermion	Dirac	5	generation
d	Fermion	Dirac	3	generation, color
u	Fermion	Dirac	3	generation, color
\overline{g}	Vector	real	8	generation, lorentz
W^-	Vector	complex	1	lorentz
γ	Vector	real	1	lorentz
Z	Vector	real	1	lorentz
η^G	Ghost	$_{\mathrm{real}}$	8	generation
η^-	Ghost	complex	1	
η^+	Ghost	complex	1	
η^γ	Ghost	$_{\mathrm{real}}$	1	
η^Z	Ghost	$_{\mathrm{real}}$	1	

7.7 Modelfile for SARAH

```
Off[General::spell]
Print["Model file for the MSSM loaded"];
ModelNameLaTeX ="MSSM-BiRpV";
(*----*)
(* Particle Content*)
(*----*)
(* Gauge Superfields *)
Gauge[[1]]={B, U[1], hypercharge, g1,False};
Gauge[[2]]={WB, SU[2], left, g2,True};
Gauge[[3]]={G, SU[3], color,
                          g3,False};
(* Chiral Superfields *)
Fields[[1]] = \{\{uL, dL\}, 3, q, 1/6, 2, 3\};
Fields[[2]] = \{ \{vL, eL\}, 3, 1, -1/2, 2, 1\};
Fields[[3]] = \{\{Hd0, Hdm\}, 1, Hd, -1/2, 2, 1\};
Fields[[4]] = {{Hup, Hu0}, 1, Hu, 1/2, 2, 1};
Fields[[5]] = \{conj[dR], 3, d, 1/3, 1, -3\};
Fields[[6]] = \{conj[uR], 3, u, -2/3, 1, -3\};
Fields[[7]] = {conj[eR], 3, e, 1, 1, 1};
(*----*)
(* Superpotential *)
(*----*)
SuperPotential = \{\{1, Yu\}, \{q, Hu, u\}\}, \{\{-1, Yd\}, \{q, Hd, d\}\},
               \{\{-1, Ye\}, \{1, Hd, e\}\}, \{\{1, \lfloor Mu\}\}, \{Hu, Hd\}\},
               {{1,L2},{1,q,d}}};
(*----*)
(* Integrate Out or Delete Particles
(*----*)
IntegrateOut={};
```

```
DeleteParticles={};
(*----*)
(* DEFINITION
(*-----*)
NameOfStates={GaugeES,EWSB};
DEFINITION[GaugeES] [GaugeFixing] =
{ {Der[VWB], -1/(2 RXi[W])},
    {Der[VG], -1/(2 RXi[G]) }};
DEFINITION[GaugeES][Additional] =
{{{conj[SvL], SHdO}, {1, mHL2}},
 {{conj[SeL], SHdm}, {1, mHL2}}};
(* Gauge Sector *)
DEFINITION[EWSB] [GaugeSector] =
{{VWB, {1, {VWm, 1/Sqrt[2]}, {conj[VWm], 1/Sqrt[2]}},
     {2,{VWm,-\[ImaginaryI]/Sqrt[2]},{conj[VWm],\[ImaginaryI]/Sqrt[2]}},
     {3,{VP,Sin[ThetaW]},{VZ,Cos[ThetaW]}}},
{VB, {1,{VP,Cos[ThetaW]},{VZ,-Sin[ThetaW]}}},
 {fWB, {1, {fWm, 1/Sqrt[2]}, {fWp, 1/Sqrt[2]}},
     {2,{fWm,-\[ImaginaryI]/Sqrt[2]},{fWp,\[ImaginaryI]/Sqrt[2]}},
     {3,{fW0,1}}};
(* ---- VEVs ---- *)
DEFINITION[EWSB][VEVs] =
    {SHd0, {vd, 1/Sqrt[2]}, {sigmad, \[ImaginaryI]/Sqrt[2]}, {phid, \
1/Sqrt[2]}},
    {SHu0, {vu, 1/Sqrt[2]}, {sigmau, \[ImaginaryI]/Sqrt[2]}, {phiu, \
1/Sqrt[2]}},
    {SvL, {vL, 1/Sqrt[2]}, {sigmaL, \[ImaginaryI]/Sqrt[2]}, {phiL, \
1/Sqrt[2]}}
DEFINITION[EWSB] [Phases] =
    {fG, PhaseGlu}
   };
DEFINITION[EWSB][MatterSector] =
```

```
{
    {{SdL, SdR}, {Sd, ZD}},
    {{SuL, SuR}, {Su, ZU}},
    {{phid, phiu,phiL}, {hh, ZH}},
    {{sigmad, sigmau, sigmaL}, {Ah, ZA}},
    {{SHdm,conj[SHup],SeL,SeR},{Hpm,ZP}},
    {{FvL,fB, fWO, FHdO, FHuO}, {LO, ZN}},
    {{{FeL,fWm, FHdm}, {conj[FeR],fWp, FHup}}, {{Lm,UM}, {Lp,UP}}},
    {{{FdL}, {conj[FdR]}}, {{FDL, ZDL}, {FDR, ZDR}}},
    {{{FuL}, {conj[FuR]}}, {{FUL, ZUL}, {FUR, ZUR}}}
      };
(*--- Gauge Fixing ---- *)
DEFINITION[EWSB][GaugeFixing] =
                                                  - 1/(2 RXi[P]),
 { {Der[VP],
{Der[VWm]+\[ImaginaryI] Mass[VWm] RXi[W] Hpm[{1}],
                                              - 1/(RXi[W])},
{Der[VZ] - Mass[VZ] RXi[Z] Ah[{1}],
                                              - 1/(2 RXi[Z]),
{Der[VG],
                                              - 1/(2 RXi[G])}};
(*----*)
(* Dirac-Spinors *)
(*----*)
dirac[[1]] = {Fd, FDL, conj[FDR]};
dirac[[2]] = {Fu, FUL, conj[FUR]};
dirac[[3]] = {Chi, L0, conj[L0]};
dirac[[4]] = {Cha, Lm, conj[Lp]};
dirac[[5]] = {Glu, fG, conj[fG]};
(* Unbroken EW *)
dirac[[6]] = {Bino, fB, conj[fB]};
dirac[[7]] = {Wino, fWB, conj[fWB]};
dirac[[8]] = {HO, FHdO, conj[FHuO]};
dirac[[9]] = {HC, FHdm, conj[FHup]};
dirac[[10]] = {Fd1, FdL, 0};
dirac[[11]] = {Fd2, 0, FdR};
dirac[[12]] = {Fu1, FuL, 0};
dirac[[13]] = {Fu2, 0, FuR};
dirac[[14]] = {Fe1, FeL, 0};
dirac[[15]] = {Fe2, 0, FeR};
dirac[[16]] = {Fv, FvL, 0};
(*----*)
(* Automatized Output *)
(*-----*)
```

SpectrumFile= None;

7.8 Implementation in SARAH

Model directory: MSSM-RpV/LnV

7.8.1 Particles for eigenstates 'GaugeES'

• Fermions

$$\begin{split} \tilde{B} &= \begin{pmatrix} \lambda_{\tilde{B}} \\ \lambda_{\tilde{B}}^* \end{pmatrix} & \text{Bino} &= \begin{pmatrix} \text{fB} \\ \text{conj} \text{[fB]} \end{pmatrix} \\ d_{i\alpha}^1 &= \begin{pmatrix} d_{L,i\alpha} \\ 0 \end{pmatrix} & \text{Fd1} \text{[\{generation, color\}]} &= \begin{pmatrix} \text{FdL} \text{[\{generation, color\}]} \\ 0 \end{pmatrix} \\ d_{i\alpha}^2 &= \begin{pmatrix} 0 \\ d_{R,i\alpha} \end{pmatrix} & \text{Fd2} \text{[\{generation, color\}]} &= \begin{pmatrix} 0 \\ \text{FdR} \text{[\{generation, color\}]} \end{pmatrix} \\ e_i^1 &= \begin{pmatrix} e_{L,i} \\ 0 \end{pmatrix} & \text{Fe1} \text{[\{generation\}]} &= \begin{pmatrix} \text{FeL} \text{[\{generation\}]} \\ 0 \end{pmatrix} \\ e_i^2 &= \begin{pmatrix} 0 \\ e_{R,i} \end{pmatrix} & \text{Fe2} \text{[\{generation\}]} &= \begin{pmatrix} 0 \\ \text{FeR} \text{[\{generation\}]} \end{pmatrix} \\ u_{i\alpha}^1 &= \begin{pmatrix} u_{L,i\alpha} \\ 0 \end{pmatrix} & \text{Fu1} \text{[\{generation, color\}]} &= \begin{pmatrix} \text{FuL} \text{[\{generation, color\}]} \\ 0 \end{pmatrix} \\ u_{i\alpha}^2 &= \begin{pmatrix} 0 \\ u_{R,i\alpha} \end{pmatrix} & \text{Fu2} \text{[\{generation, color\}]} &= \begin{pmatrix} 0 \\ \text{FuR} \text{[\{generation, color\}]} \end{pmatrix} \\ \nu_i &= \begin{pmatrix} \nu_{L,i} \\ 0 \end{pmatrix} & \text{Fv2} \text{[\{generation\}]} &= \begin{pmatrix} \text{FvL} \text{[\{generation\}]} \\ 0 \end{pmatrix} \\ \tilde{g}_i &= \begin{pmatrix} \lambda_{\tilde{g},i} \\ \lambda_{\tilde{g},i}^* \end{pmatrix} & \text{Glu} \text{[\{generation\}]} &= \begin{pmatrix} \text{fG} \text{[\{generation\}]} \\ \text{conj} \text{[fG} \text{[\{generation\}]} \end{bmatrix} \end{pmatrix} \\ \tilde{H}^0 &= \begin{pmatrix} \tilde{H}_0 \\ \tilde{H}_0^0, * \\ \tilde{H}_0^0, * \end{pmatrix} & \text{HO} &= \begin{pmatrix} \text{FHdO} \\ \text{conj} \text{[FHuO]} \end{pmatrix} \end{pmatrix} \end{split}$$

$$\begin{split} \tilde{H}^- &= \left(\begin{array}{c} \tilde{H}_d^- \\ \tilde{H}_u^{+,*} \end{array} \right) & \text{HC} = \left(\begin{array}{c} \text{FHdm} \\ \text{conj[FHup]} \end{array} \right) \\ \tilde{W}_i &= \left(\begin{array}{c} \lambda_{\tilde{W},i} \\ \lambda_{\tilde{W},i}^* \end{array} \right) & \text{Wino[\{generation\}]} = \left(\begin{array}{c} \text{fWB[\{generation\}]} \\ \text{conj[fWB[\{generation\}]]} \end{array} \right) \end{split}$$

• Scalars

$\tilde{d}_{L,i\alpha}$	SdL[{generation, color}]	$\tilde{u}_{L,i\alpha}$	SuL[{generation, color}]
$\tilde{e}_{L,i}$	SeL[{generation}]	$\tilde{\nu}_{L,i}$	SvL[{generation}]
H_d^0	SHd0	H_d^-	SHdm
H_u^0	SHu0	H_u^+	SHup
$\tilde{d}_{R,i\alpha}$	<pre>SdR[{generation, color}]</pre>	$\tilde{u}_{R,i\alpha}$	SuR[{generation, color}]
$\tilde{e}_{R,i}$	SeR[{generation}]		

• Vector Bosons

B	$\mathcal{C}_{ ho}$ VB[{lorentz}]	$W_{i\rho}^-$	<pre>VWB[{generation, lorentz}]</pre>
$\mid g_i$	VG[{generation, lorentz}]		

• Ghosts

η^B	gB	gWB(gt1)	gWB[{generation}]
η_i^G	gG[{generation}]		

7.8.2 Particles for eigenstates 'EWSB'

• Fermions

$$\begin{split} \tilde{\chi}_i^- &= \begin{pmatrix} \lambda_i^- \\ \lambda_i^{+,*} \end{pmatrix} & \text{Cha[\{generation\}]} &= \begin{pmatrix} \text{Lm[\{generation\}]} \\ \text{conj[Lp[\{generation\}]]} \end{pmatrix} \\ \tilde{\chi}_i^0 &= \begin{pmatrix} \lambda_i^0 \\ \lambda_i^{0,*} \end{pmatrix} & \text{Chi[\{generation\}]} &= \begin{pmatrix} \text{Lo[\{generation\}]} \\ \text{conj[Lo[\{generation\}]]} \end{pmatrix} \\ d_{i\alpha} &= \begin{pmatrix} D_{L,i\alpha} \\ D_{R,i\alpha}^* \end{pmatrix} & \text{Fd[\{generation, color\}]} &= \begin{pmatrix} \text{FDL[\{generation, color\}]} \\ \text{conj[FDR[\{generation, color\}]]} \end{pmatrix} \\ u_{i\alpha} &= \begin{pmatrix} U_{L,i\alpha} \\ U_{R,i\alpha}^* \end{pmatrix} & \text{Fu[\{generation, color\}]} &= \begin{pmatrix} \text{FUL[\{generation, color\}]} \\ \text{conj[FUR[\{generation, color\}]]} \end{pmatrix} \\ \tilde{g}_i &= \begin{pmatrix} \lambda_{\tilde{g},i} \\ \lambda_{\tilde{g},i}^* \end{pmatrix} & \text{Glu[\{generation\}]} &= \begin{pmatrix} \text{fG[\{generation\}]} \\ \text{conj[fG[\{generation\}]]} \end{pmatrix} \end{split}$$

• Scalars

$\tilde{d}_{i\alpha}$	Sd[{generation, color}]	$\tilde{u}_{i\alpha}$	Su[{generation, color}]
h_i	hh[{generation}]	A_i^0	Ah[{generation}]
H_i^-	<pre>Hpm[{generation}]</pre>		

• Vector Bosons

$g_{i\rho}$	<pre>VG[{generation, lorentz}]</pre>	W_{ρ}^{-}	VWm[{lorentz}]
$\gamma_{ ho}$	<pre>VP[{lorentz}]</pre>	$Z_{ ho}$	VZ[{lorentz}]

• Ghosts

η_i^G	gG[{generation}]	η^-	gWm
η^+	gWmC	η^{γ}	gP
η^Z	gZ		

7.8.3 Parameters

a.	m1	a.	<u>سی</u>	<i>a</i> -	~3
g_1	g1	g_2	g2	g_3	g3
Y_u	Yu	T_u	T[Yu]	Y_d	Yd
T_d	T[Yd]	Y_e	Ye	T_e	T[Ye]
μ	\[Mu]	B_{μ}	$B[\[Mu]]$	ϵ	$\[{\tt Epsilon}]$
B_{ϵ}	$B[\Epsilon]]$	λ_1	L1	T_{λ_1}	T[L1]
λ_2	L2	T_{λ_2}	T[L2]	m_q^2	mq2
m_l^2	m12	$m_{H_d}^2$	mHd2	$m_{H_u}^2$	mHu2
m_d^2	md2	m_u^2	mu2	m_e^2	me2
M_1	MassB	M_2	MassWB	M_3	MassG
m_{lH}^2	mHL2	v_d	vd	v_u	vu
v_L	vL	Θ_W	ThetaW	$\phi_{ ilde{g}}$	PhaseGlu
Z^D	ZD	Z^U	ZU	Z^H	ZH
Z^A	ZA	Z^+	ZP	N	ZN
U	UM	V	UP	U_L^d	ZDL
U_R^d	ZDR	U_L^u	ZUL	U_R^u	ZUR

Chapter 8

The MSSM with R-parity and baryon number violation

8.1 Superfields

8.1.1 Vector Superfields

SF	Spin $\frac{1}{2}$	Spin 1	SU(N)	Coupling	Name
\hat{B}	$\lambda_{ ilde{B}}$	B	U(1)	g_1	hypercharge
\hat{W}	$\lambda_{ ilde{W}}$	W^-	SU(2)	g_2	left
\hat{g}	$\lambda_{ ilde{g}}$	g	SU(3)	g_3	color

8.1.2 Chiral Superfields

SF	Spin 0	Spin $\frac{1}{2}$	Generations	$(U(1) \otimes \mathrm{SU}(2) \otimes \mathrm{SU}(3))$
\hat{q}	$ ilde{q}$	q	3	$(rac{1}{6},2,3)$
\hat{l}	\tilde{l}	l	3	$(-rac{1}{2},2,1)$
\hat{H}_d	H_d	$ ilde{H}_d$	1	$(-rac{1}{2},2,1)$
\hat{H}_u	H_u	\tilde{H}_u	1	$(rac{1}{2}, oldsymbol{2}, oldsymbol{1})$
\hat{d}	$ ilde{d}_R^*$	d_R^*	3	$(rac{1}{3}, oldsymbol{1}, \overline{oldsymbol{3}})$
\hat{u}	\tilde{u}_R^*	u_R^*	3	$(-rac{2}{3},1,\overline{3})$
\hat{e}	\tilde{e}_R^*	e_R^*	3	(1, 1, 1)

8.2 Superpotential and Lagrangian

8.2.1 Superpotential

$$W = Y_u \,\hat{u} \,\hat{q} \,\hat{H}_u - Y_d \,\hat{d} \,\hat{q} \,\hat{H}_d - Y_e \,\hat{e} \,\hat{l} \,\hat{H}_d + \mu \,\hat{H}_u \,\hat{H}_d + \frac{1}{2} \lambda_3 \,\hat{d} \,\hat{d} \,\hat{u} \tag{8.1}$$

8.2.2 Softbreaking terms

$$L_{SB,W} = -H_d^0 H_u^0 B_\mu + H_d^- H_u^+ B_\mu + \frac{1}{2} \tilde{d}_{R,i\alpha}^* \tilde{d}_{R,j\beta}^* \tilde{u}_{R,k\gamma}^* \epsilon^{\alpha\beta\gamma} T_{\lambda_3,ijk} + H_d^0 \tilde{d}_{R,i\alpha}^* \delta_{\alpha\beta} \tilde{d}_{L,j\beta} T_{d,ij}$$

$$-H_d^- \tilde{d}_{R,i\alpha}^* \delta_{\alpha\beta} \tilde{u}_{L,j\beta} T_{d,ij} + H_d^0 \tilde{e}_{R,i}^* \tilde{e}_{L,j} T_{e,ij} - H_d^- \tilde{e}_{R,i}^* \tilde{\nu}_{L,j} T_{e,ij} - H_u^+ \tilde{u}_{R,i\alpha}^* \delta_{\alpha\beta} \tilde{d}_{L,j\beta} T_{u,ij}$$

$$+ H_u^0 \tilde{u}_{R,i\alpha}^* \delta_{\alpha\beta} \tilde{u}_{L,j\beta} T_{u,ij} + \text{h.c.}$$

$$(8.2)$$

$$\begin{split} L_{SB,\phi} &= -\,m_{H_d}^2 |H_d^0|^2 - m_{H_d}^2 |H_d^-|^2 - m_{H_u}^2 |H_u^0|^2 - m_{H_u}^2 |H_u^+|^2 - \tilde{d}_{L,j\beta}^* \delta_{\alpha\beta} m_{q,ij}^2 \tilde{d}_{L,i\alpha} \\ &- \tilde{d}_{R,i\alpha}^* \delta_{\alpha\beta} m_{d,ij}^2 \tilde{d}_{R,j\beta} - \tilde{e}_{L,j}^* m_{l,ij}^2 \tilde{e}_{L,i} - \tilde{e}_{R,i}^* m_{e,ij}^2 \tilde{e}_{R,j} - \tilde{u}_{L,j\beta}^* \delta_{\alpha\beta} m_{q,ij}^2 \tilde{u}_{L,i\alpha} \\ &- \tilde{u}_{R,i\alpha}^* \delta_{\alpha\beta} m_{u,ij}^2 \tilde{u}_{R,j\beta} - \tilde{\nu}_{L,j}^* m_{l,ij}^2 \tilde{\nu}_{L,i} \end{split} \tag{8.3}$$

$$L_{SB,\lambda} = \frac{1}{2} \left(-\lambda_{\tilde{B}}^2 M_1 - M_2 \lambda_{\tilde{W},i}^2 - M_3 \lambda_{\tilde{g},i}^2 + \text{h.c.} \right)$$
(8.4)

8.2.3 Gauge fixing terms

Gauge fixing terms for eigenstates 'GaugeES'

$$L_{GF} = -\frac{1}{2}\partial_{\mu}g\xi_{G}^{-1} - \frac{1}{2}\partial_{\mu}W^{-}\xi_{W}^{-1}$$
(8.5)

Gauge fixing terms for eigenstates 'EWSB'

$$L_{GF} = -\frac{1}{2}\partial_{\mu}\gamma\xi_{P}^{-1} - \frac{1}{2}\partial_{\mu}g\xi_{G}^{-1} - \frac{1}{2}\xi_{Z}^{-1}\left(-A_{1}^{0}m_{Z}\xi_{Z} + \partial_{\mu}Z\right) - \xi_{W}^{-1}\left(iH_{1}^{-}m_{W^{-}}\xi_{W} + \partial_{\mu}W^{-}\right)$$

$$(8.6)$$

8.2.4 Fields integrated out

None

8.3 Field Rotations

8.3.1 Rotations in gauge sector for eigenstates 'EWSB'

$$W_{1\rho}^{-} = \frac{1}{\sqrt{2}}W_{\rho}^{-} + \frac{1}{\sqrt{2}}W_{\rho}^{+} \tag{8.7}$$

$$W_{2\rho}^{-} = -i\frac{1}{\sqrt{2}}W_{\rho}^{-} + i\frac{1}{\sqrt{2}}W_{\rho}^{+} \tag{8.8}$$

$$W_{3\rho}^{-} = \cos\Theta_W Z_{\rho} + \sin\Theta_W \gamma_{\rho} \tag{8.9}$$

$$B_{\rho} = \cos\Theta_W \gamma_{\rho} - \sin\Theta_W Z_{\rho} \tag{8.10}$$

$$\lambda_{\tilde{W},1} = \frac{1}{\sqrt{2}}\tilde{W}^{-} + \frac{1}{\sqrt{2}}\tilde{W}^{+} \tag{8.11}$$

$$\lambda_{\tilde{W},2} = -i\frac{1}{\sqrt{2}}\tilde{W}^{-} + i\frac{1}{\sqrt{2}}\tilde{W}^{+} \tag{8.12}$$

$$\lambda_{\tilde{W},3} = \tilde{W}^0 \tag{8.13}$$

8.3.2 Rotations in Mass sector for eigenstates 'EWSB'

Mass Matrices for Scalars

 $\bullet \ \, \mathbf{Mass \ matrix \ for \ Down-Squarks}, \ \, \mathbf{Basis:} \ \, \left(\tilde{d}_{L,o_{1}\alpha_{1}},\tilde{d}_{R,o_{2}\alpha_{2}}\right), \left(\tilde{d}_{L,p_{1}\beta_{1}}^{*},\tilde{d}_{R,p_{2}\beta_{2}}^{*}\right)$

$$m_{\tilde{d}}^{2} = \begin{pmatrix} m_{11} & \frac{1}{\sqrt{2}} \delta_{\alpha_{1}\beta_{2}} \left(v_{d} T_{d,p_{2}o_{1}} - v_{u} \mu^{*} Y_{d,p_{2}o_{1}} \right) \\ \frac{1}{\sqrt{2}} \left(v_{d} T_{d,o_{2}p_{1}}^{*} - v_{u} \mu Y_{d,o_{2}p_{1}}^{*} \right) \delta_{\alpha_{2}\beta_{1}} & m_{22} \end{pmatrix}$$

$$(8.14)$$

$$m_{11} = \frac{1}{24} \delta_{\alpha_1 \beta_1} \left(12 \left(2m_{q, o_1 p_1}^2 + v_d^2 \sum_{a=1}^3 Y_{d, a p_1}^* Y_{d, a o_1} \right) - \left(3g_2^2 + g_1^2 \right) \left(-v_u^2 + v_d^2 \right) \delta_{o_1 p_1} \right)$$
(8.15)

$$m_{22} = \frac{1}{12} \delta_{\alpha_2 \beta_2} \left(6 \left(2m_{d, p_2 o_2}^2 + v_d^2 \sum_{a=1}^3 Y_{d, o_2 a}^* Y_{d, p_2 a} \right) + g_1^2 \left(-v_d^2 + v_u^2 \right) \delta_{o_2 p_2} \right)$$
(8.16)

This matrix is diagonalized by Z^D :

$$Z^{D} m_{\tilde{d}}^{2} Z^{D,\dagger} = m_{2,\tilde{d}}^{dia} \tag{8.17}$$

with

$$\tilde{d}_{L,i\alpha} = \sum_{t_{\alpha}} Z_{ji}^{D,*} \tilde{d}_{j\alpha}, \qquad \tilde{d}_{R,i\alpha} = \sum_{t_{\alpha}} Z_{ji}^{D,*} \tilde{d}_{j\alpha}$$

$$(8.18)$$

• Mass matrix for Sneutrinos, Basis: $(\tilde{\nu}_{L,o_1}), (\tilde{\nu}_{L,p_1}^*)$

$$m_{\tilde{\nu}}^2 = \left(\frac{1}{8} \left(8m_{l,o_1p_1}^2 + \left(g_1^2 + g_2^2\right) \left(-v_u^2 + v_d^2\right) \delta_{o_1p_1}\right)\right)$$
(8.19)

This matrix is diagonalized by Z^V :

$$Z^{V}m_{\tilde{\nu}}^{2}Z^{V,\dagger} = m_{2.\tilde{\nu}}^{dia} \tag{8.20}$$

with

$$\tilde{\nu}_{L,i} = \sum_{t_2} Z_{ji}^{V,*} \tilde{\nu}_j \tag{8.21}$$

 $\bullet \ \ \mathbf{Mass \ matrix \ for \ Up-Squarks}, \ \mathbf{Basis:} \ \left(\tilde{u}_{L,o_1\alpha_1},\tilde{u}_{R,o_2\alpha_2}\right), \left(\tilde{u}_{L,p_1\beta_1}^*,\tilde{u}_{R,p_2\beta_2}^*\right)$

$$m_{\tilde{u}}^{2} = \begin{pmatrix} m_{11} & \frac{1}{\sqrt{2}} \delta_{\alpha_{1}\beta_{2}} \left(-v_{d}\mu^{*}Y_{u,p_{2}o_{1}} + v_{u}T_{u,p_{2}o_{1}} \right) \\ \frac{1}{\sqrt{2}} \left(-v_{d}\mu Y_{u,o_{2}p_{1}}^{*} + v_{u}T_{u,o_{2}p_{1}}^{*} \right) \delta_{\alpha_{2}\beta_{1}} & m_{22} \end{pmatrix}$$

$$(8.22)$$

$$m_{11} = \frac{1}{24} \delta_{\alpha_1 \beta_1} \left(12 \left(2m_{q, o_1 p_1}^2 + v_u^2 \sum_{a=1}^3 Y_{u, a p_1}^* Y_{u, a o_1} \right) - \left(-3g_2^2 + g_1^2 \right) \left(-v_u^2 + v_d^2 \right) \delta_{o_1 p_1} \right)$$
(8.23)

$$m_{22} = \frac{1}{6} \delta_{\alpha_2 \beta_2} \left(3v_u^2 \sum_{a=1}^3 Y_{u,o_2 a}^* Y_{u,p_2 a} + 6m_{u,p_2 o_2}^2 + g_1^2 \left(-v_u^2 + v_d^2 \right) \delta_{o_2 p_2} \right)$$

$$(8.24)$$

This matrix is diagonalized by Z^U :

$$Z^{U}m_{\tilde{u}}^{2}Z^{U,\dagger} = m_{2.\tilde{u}}^{dia} \tag{8.25}$$

with

$$\tilde{u}_{L,i\alpha} = \sum_{t_2} Z_{ji}^{U,*} \tilde{u}_{j\alpha}, \qquad \tilde{u}_{R,i\alpha} = \sum_{t_2} Z_{ji}^{U,*} \tilde{u}_{j\alpha}$$
 (8.26)

• Mass matrix for Sleptons, Basis: $(\tilde{e}_{L,o_1}, \tilde{e}_{R,o_2}), (\tilde{e}_{L,p_1}^*, \tilde{e}_{R,p_2}^*)$

$$m_{\tilde{e}}^2 = \begin{pmatrix} m_{11} & \frac{1}{\sqrt{2}} \left(v_d T_{e, p_2 o_1} - v_u \mu^* Y_{e, p_2 o_1} \right) \\ \frac{1}{\sqrt{2}} \left(v_d T_{e, o_2 p_1}^* - v_u \mu Y_{e, o_2 p_1}^* \right) & m_{22} \end{pmatrix}$$

$$(8.27)$$

$$m_{11} = \frac{1}{8} \left(4v_d^2 \sum_{a=1}^3 Y_{e,ap_1}^* Y_{e,ao_1} + 8m_{l,o_1p_1}^2 + \left(-g_2^2 + g_1^2 \right) \left(-v_u^2 + v_d^2 \right) \delta_{o_1p_1} \right)$$
(8.28)

$$m_{22} = \frac{1}{4} \left(2v_d^2 \sum_{a=1}^3 Y_{e,o_2a}^* Y_{e,p_2a} + 4m_{e,p_2o_2}^2 + g_1^2 \left(-v_d^2 + v_u^2 \right) \delta_{o_2p_2} \right)$$
(8.29)

This matrix is diagonalized by Z^E :

$$Z^E m_{\tilde{e}}^2 Z^{E,\dagger} = m_{2,\tilde{e}}^{dia} \tag{8.30}$$

with

$$\tilde{e}_{L,i} = \sum_{t_2} Z_{ji}^{E,*} \tilde{e}_j, \qquad \tilde{e}_{R,i} = \sum_{t_2} Z_{ji}^{E,*} \tilde{e}_j$$
(8.31)

• Mass matrix for Higgs, Basis: $(\phi_d, \phi_u), (\phi_d, \phi_u)$

$$m_h^2 = \begin{pmatrix} \frac{1}{8} \left(8m_{H_d}^2 + 8|\mu|^2 + \left(g_1^2 + g_2^2\right) \left(3v_d^2 - v_u^2 \right) \right) & \frac{1}{4} \left(-4\Re\left(B_\mu\right) - \left(g_1^2 + g_2^2\right) v_d v_u \right) \\ \frac{1}{4} \left(-4\Re\left(B_\mu\right) - \left(g_1^2 + g_2^2\right) v_d v_u \right) & \frac{1}{8} \left(8m_{H_u}^2 + 8|\mu|^2 - \left(g_1^2 + g_2^2\right) \left(-3v_u^2 + v_d^2 \right) \right) \end{pmatrix}$$
(8.32)

This matrix is diagonalized by Z^H :

$$Z^H m_h^2 Z^{H,\dagger} = m_{2,h}^{dia} \tag{8.33}$$

with

$$\phi_d = \sum_{t_2} Z_{j1}^H h_j , \qquad \phi_u = \sum_{t_2} Z_{j2}^H h_j$$
 (8.34)

The mixing matrix can be parametrized by

$$Z^{H} = \begin{pmatrix} -\sin\alpha & \cos\alpha \\ \cos\alpha & \sin\alpha \end{pmatrix} \tag{8.35}$$

• Mass matrix for Pseudo-Scalar Higgs, Basis: $(\sigma_d, \sigma_u), (\sigma_d, \sigma_u)$

$$m_{A^0}^2 = \begin{pmatrix} \frac{1}{8} \left(8m_{H_d}^2 + 8|\mu|^2 + \left(g_1^2 + g_2^2 \right) \left(-v_u^2 + v_d^2 \right) \right) & \Re\left(B_\mu \right) \\ \Re\left(B_\mu \right) & \frac{1}{8} \left(8m_{H_u}^2 + 8|\mu|^2 - \left(g_1^2 + g_2^2 \right) \left(-v_u^2 + v_d^2 \right) \right) \end{pmatrix}$$
(8.36)

This matrix is diagonalized by Z^A :

$$Z^{A}m_{A^{0}}^{2}Z^{A,\dagger} = m_{2,A^{0}}^{dia} \tag{8.37}$$

with

$$\sigma_d = \sum_{t_2} Z_{j1}^A A_j^0, \qquad \sigma_u = \sum_{t_2} Z_{j2}^A A_j^0$$
(8.38)

The mixing matrix can be parametrized by

$$Z^{A} = \begin{pmatrix} -\cos\beta & \sin\beta \\ \sin\beta & \cos\beta \end{pmatrix} \tag{8.39}$$

 \bullet Mass matrix for Charged Higgs, Basis: $\left(H_d^-,H_u^{+,*}\right),\left(H_d^{-,*},H_u^+\right)$

$$m_{H^{-}}^{2} = \begin{pmatrix} m_{11} & \frac{1}{4}g_{2}^{2}v_{d}v_{u} + B_{\mu} \\ \frac{1}{4}g_{2}^{2}v_{d}v_{u} + B_{\mu}^{*} & m_{22} \end{pmatrix}$$
(8.40)

$$m_{11} = \frac{1}{8} \left(8m_{H_d}^2 + 8|\mu|^2 + g_1^2 v_d^2 - g_1^2 v_u^2 + g_2^2 v_d^2 + g_2^2 v_u^2 \right)$$
(8.41)

$$m_{22} = \frac{1}{8} \left(8m_{H_u}^2 + 8|\mu|^2 - g_1^2 v_d^2 + g_1^2 v_u^2 + g_2^2 v_d^2 + g_2^2 v_u^2 \right)$$

$$(8.42)$$

This matrix is diagonalized by Z^+ :

$$Z^{+}m_{H^{-}}^{2}Z^{+,\dagger} = m_{2,H^{-}}^{dia}$$
(8.43)

with

$$H_d^- = \sum_{t_2} Z_{j1}^{+,*} H_j^-, \qquad H_u^+ = \sum_{t_2} Z_{j2}^+ H_j^+$$
 (8.44)

The mixing matrix can be parametrized by

$$Z^{+} = \begin{pmatrix} -\cos\beta & \sin\beta \\ \sin\beta & \cos\beta \end{pmatrix} \tag{8.45}$$

Mass Matrices for Fermions

• Mass matrix for Neutralinos, Basis: $\left(\lambda_{\tilde{B}}, \tilde{W}^0, \tilde{H}_d^0, \tilde{H}_u^0\right), \left(\lambda_{\tilde{B}}, \tilde{W}^0, \tilde{H}_d^0, \tilde{H}_u^0\right)$

$$m_{\tilde{\chi}^0} = \begin{pmatrix} M_1 & 0 & -\frac{1}{2}g_1v_d & \frac{1}{2}g_1v_u \\ 0 & M_2 & \frac{1}{2}g_2v_d & -\frac{1}{2}g_2v_u \\ -\frac{1}{2}g_1v_d & \frac{1}{2}g_2v_d & 0 & -\mu \\ \frac{1}{2}g_1v_u & -\frac{1}{2}g_2v_u & -\mu & 0 \end{pmatrix}$$
(8.46)

This matrix is diagonalized by N

$$Nm_{\tilde{\chi}^0}N^{\dagger} = m_{\tilde{\chi}^0}^{dia} \tag{8.47}$$

with

$$\lambda_{\tilde{B}} = \sum_{t_2} N_{j1}^* \lambda_j^0, \qquad \tilde{W}^0 = \sum_{t_2} N_{j2}^* \lambda_j^0, \qquad \tilde{H}_d^0 = \sum_{t_2} N_{j3}^* \lambda_j^0$$
(8.48)

$$\tilde{H}_u^0 = \sum_{t_2} N_{j4}^* \lambda_j^0 \tag{8.49}$$

• Mass matrix for Charginos, Basis: $\left(\tilde{W}^{-}, \tilde{H}_{d}^{-}\right), \left(\tilde{W}^{+}, \tilde{H}_{u}^{+}\right)$

$$m_{\tilde{\chi}^{-}} = \begin{pmatrix} M_2 & \frac{1}{\sqrt{2}}g_2v_u \\ \frac{1}{\sqrt{2}}g_2v_d & \mu \end{pmatrix}$$
 (8.50)

This matrix is diagonalized by U and V

$$U^* m_{\tilde{\chi}^-} V^{\dagger} = m_{\tilde{\chi}^-}^{dia} \tag{8.51}$$

 $\quad \text{with} \quad$

$$\tilde{W}^{-} = \sum_{t_2} U_{j1}^* \lambda_j^{-}, \qquad \tilde{H}_d^{-} = \sum_{t_2} U_{j2}^* \lambda_j^{-}$$
(8.52)

$$\tilde{W}^{-} = \sum_{t_2} U_{j1}^* \lambda_j^{-}, \qquad \tilde{H}_d^{-} = \sum_{t_2} U_{j2}^* \lambda_j^{-}$$

$$\tilde{W}^{+} = \sum_{t_2} V_{1j}^* \lambda_j^{+}, \qquad \tilde{H}_u^{+} = \sum_{t_2} V_{2j}^* \lambda_j^{+}$$

$$(8.52)$$

• Mass matrix for Leptons, Basis: $(e_{L,o_1}), (e_{R,p_1}^*)$

$$m_e = \left(\frac{1}{\sqrt{2}}v_d Y_{e, p_1 o_1}\right)$$
 (8.54)

This matrix is diagonalized by U_L^e and U_R^e

$$U_L^{e,*} m_e U_R^{e,\dagger} = m_e^{dia} (8.55)$$

with

$$e_{L,i} = \sum_{t_2} U_{L,ji}^{e,*} E_{L,j} \tag{8.56}$$

$$e_{R,i} = \sum_{t_2} U_{R,ij}^e E_{R,j}^* \tag{8.57}$$

• Mass matrix for Down-Quarks, Basis: $(d_{L,o_1\alpha_1}), (d_{R,p_1\beta_1}^*)$

$$m_d = \left(\frac{1}{\sqrt{2}}v_d \delta_{\alpha_1 \beta_1} Y_{d, p_1 o_1}\right) \tag{8.58}$$

This matrix is diagonalized by ${\cal U}_L^d$ and ${\cal U}_R^d$

$$U_L^{d,*} m_d U_R^{d,\dagger} = m_d^{dia} \tag{8.59}$$

with

$$d_{L,i\alpha} = \sum_{t_0} U_{L,ji}^{d,*} D_{L,j\alpha}$$
 (8.60)

$$d_{R,i\alpha} = \sum_{t_2} U_{R,ij}^d D_{R,j\alpha}^* \tag{8.61}$$

• Mass matrix for Up-Quarks, Basis: $(u_{L,o_1\alpha_1}), (u_{R,p_1\beta_1}^*)$

$$m_u = \left(\frac{1}{\sqrt{2}} v_u \delta_{\alpha_1 \beta_1} Y_{u, p_1 o_1} \right) \tag{8.62}$$

This matrix is diagonalized by U_L^u and U_R^u

$$U_L^{u,*} m_u U_R^{u,\dagger} = m_u^{dia} \tag{8.63}$$

with

$$u_{L,i\alpha} = \sum_{t} U_{L,ji}^{u,*} U_{L,j\alpha} \tag{8.64}$$

$$u_{R,i\alpha} = \sum_{t_0} U_{R,ij}^u U_{R,j\alpha}^* \tag{8.65}$$

8.4 Vacuum Expectation Values

$$H_d^0 = \frac{1}{\sqrt{2}}\phi_d + \frac{1}{\sqrt{2}}v_d + i\frac{1}{\sqrt{2}}\sigma_d \tag{8.66}$$

$$H_u^0 = \frac{1}{\sqrt{2}}\phi_u + \frac{1}{\sqrt{2}}v_u + i\frac{1}{\sqrt{2}}\sigma_u \tag{8.67}$$

8.5 Tadpole Equations

$$\frac{\partial V}{\partial v_d} = \frac{1}{8} \left(8v_d |\mu|^2 - 8v_u \Re\left(B_\mu\right) + v_d \left(8m_{H_d}^2 + g_1^2 v_d^2 - g_1^2 v_u^2 + g_2^2 v_d^2 - g_2^2 v_u^2 \right) \right) \tag{8.68}$$

$$\frac{\partial V}{\partial v_u} = \frac{1}{8} \left(-8v_d \Re \left(B_\mu \right) + 8v_u |\mu|^2 + v_u \left(8m_{H_u}^2 - g_1^2 v_d^2 + g_1^2 v_u^2 - g_2^2 v_d^2 + g_2^2 v_u^2 \right) \right) \tag{8.69}$$

8.6 Particle content for eigenstates 'EWSB'

Name	Type	complex/real	Generations	Indices
$-\tilde{d}$	Scalar	complex	6	generation, color
$ ilde{ u}$	Scalar	complex	3	generation
\tilde{u}	Scalar	complex	6	generation, color
$ ilde{e}$	Scalar	complex	6	generation
h	Scalar	real	2	${\it generation}$
A^0	Scalar	real	2	${\it generation}$
H^-	Scalar	complex	2	generation
ν	Fermion	Dirac	3	generation
$ ilde{g}$	${\bf Fermion}$	Majorana	8	${\it generation}$
$ ilde{\chi}^0$	Fermion	Majorana	4	generation
$\tilde{\chi}^-$	Fermion	Dirac	2	${\it generation}$
e	${\bf Fermion}$	Dirac	3	generation
d	${\bf Fermion}$	Dirac	3	generation, color
u	${\bf Fermion}$	Dirac	3	generation, color
\overline{g}	Vector	real	8	generation, lorentz
W^-	Vector	complex	1	lorentz
γ	Vector	real	1	lorentz
Z	Vector	real	1	lorentz
η^G	Ghost	$_{\mathrm{real}}$	8	generation
η^-	Ghost	complex	1	
η^+	Ghost	complex	1	
η^{γ}	Ghost	$_{\mathrm{real}}$	1	
η^Z	Ghost	real	1	

8.7 Modelfile for SARAH

```
Off[General::spell]
Print["Model file for the MSSM loaded"];
ModelNameLaTeX ="MSSM";
(*----*)
(* Particle Content*)
(*----*)
(* Gauge Superfields *)
Gauge[[1]]={B, U[1], hypercharge, g1,False};
Gauge[[2]]={WB, SU[2], left, g2,True};
Gauge[[3]]={G, SU[3], color,
                           g3,False};
(* Chiral Superfields *)
Fields[[1]] = \{\{uL, dL\}, 3, q, 1/6, 2, 3\};
Fields[[2]] = \{\{vL, eL\}, 3, 1, -1/2, 2, 1\};
Fields[[3]] = \{\{Hd0, Hdm\}, 1, Hd, -1/2, 2, 1\};
Fields[[4]] = {{Hup, Hu0}, 1, Hu, 1/2, 2, 1};
Fields[[5]] = \{conj[dR], 3, d, 1/3, 1, -3\};
Fields[[6]] = \{conj[uR], 3, u, -2/3, 1, -3\};
Fields[[7]] = {conj[eR], 3, e, 1, 1, 1};
(*----*)
(* Superpotential *)
(*-----*)
SuperPotential = \{\{1, Yu\}, \{u,q,Hu\}\}, \{\{-1,Yd\}, \{d,q,Hd\}\},
               \{\{-1, Ye\}, \{e, 1, Hd\}\}, \{\{1, \{Mu\}\}, \{Hu, Hd\}\},
               {{1/2, Lambda3},{d,d,u}}};
(*----*)
(* Integrate Out or Delete Particles
(*----*)
IntegrateOut={};
```

```
DeleteParticles={};
(*----*)
   DEFINITION
(*----*)
NameOfStates={GaugeES, EWSB};
(* ---- Before EWSB ---- *)
DEFINITION[GaugeES][GaugeFixing] =
{ {Der[VWB], -1/(2 RXi[W])},
    {Der[VG], -1/(2 RXi[G]) }};
(* ---- After EWSB ---- *)
(* Gauge Sector *)
DEFINITION[EWSB] [GaugeSector] =
{{VWB, {1, {VWm, 1/Sqrt[2]}, {conj[VWm], 1/Sqrt[2]}},
     {2,{VWm,-\[ImaginaryI]/Sqrt[2]},{conj[VWm],\[ImaginaryI]/Sqrt[2]}},
     {3, {VP,Sin[ThetaW]}, {VZ,Cos[ThetaW]}}},
 {VB, {1,{VP,Cos[ThetaW]},{VZ,-Sin[ThetaW]}}},
 {fWB, {1, {fWm, 1/Sqrt[2]}, {fWp, 1/Sqrt[2]}},
     {2,{fWm,-\[ImaginaryI]/Sqrt[2]},{fWp,\[ImaginaryI]/Sqrt[2]}},
     {3,{fW0,1}}};
(* ---- VEVs ---- *)
DEFINITION[EWSB][VEVs] =
 {{SHdO, {vd, 1/Sqrt[2]}, {sigmad, \[ImaginaryI]/Sqrt[2]},{phid, \
1/Sqrt[2]}},
  {SHuO, {vu, 1/Sqrt[2]}, {sigmau, \[ImaginaryI]/Sqrt[2]},{phiu, \
1/Sqrt[2]}}};
(* ---- Mixings ---- *)
DEFINITION[EWSB] [MatterSector] =
    {{SdL, SdR}, {Sd, ZD}},
{{SvL}, {Sv, ZV}},
```

```
{{SuL, SuR}, {Su, ZU}},
    {{SeL, SeR}, {Se, ZE}},
    {{phid, phiu}, {hh, ZH}},
    {{sigmad, sigmau}, {Ah, ZA}},
    {{SHdm, conj[SHup]}, {Hpm, ZP}},
    {{fB, fWO, FHdO, FHuO}, {LO, ZN}},
    {{fWm, FHdm}, {fWp, FHup}}, {{Lm,UM}, {Lp,UP}}},
    {{{FeL}, {conj[FeR]}}, {{FEL, ZEL}, {FER, ZER}}},
    {{{FdL}, {conj[FdR]}}, {{FDL, ZDL}, {FDR, ZDR}}},
    {{{FUL}, {conj[FuR]}}, {{FUL, ZUL}, {FUR, ZUR}}}
      };
DEFINITION[EWSB] [Phases] =
    {fG, PhaseGlu}
   };
(*--- Gauge Fixing ---- *)
DEFINITION[EWSB][GaugeFixing] =
                                                      - 1/(2 RXi[P]),
 { {Der[VP],
{Der[VWm]+\[ImaginaryI] Mass[VWm] RXi[W] Hpm[{1}],
                                                 - 1/(RXi[W])},
{Der[VZ] - Mass[VZ] RXi[Z] Ah[{1}],}
                                                  - 1/(2 RXi[Z]),
{Der[VG],
                                                  - 1/(2 RXi[G])}};
(*-----*)
(* Dirac-Spinors *)
(*----*)
dirac[[1]] = {Fd, FDL, conj[FDR]};
dirac[[2]] = {Fe, FEL, conj[FER]};
dirac[[3]] = {Fu, FUL, conj[FUR]};
dirac[[4]] = {Fv, FvL, 0};
dirac[[5]] = {Chi, L0, conj[L0]};
dirac[[6]] = {Cha, Lm, conj[Lp]};
dirac[[7]] = {Glu, fG, conj[fG]};
(* Unbroken EW *)
dirac[[8]] = {Bino, fB, conj[fB]};
dirac[[9]] = {Wino, fWB, conj[fWB]};
dirac[[10]] = {HO, FHdO, conj[FHuO]};
dirac[[11]] = {HC, FHdm, conj[FHup]};
dirac[[12]] = {Fd1, FdL, 0};
dirac[[13]] = {Fd2, 0, FdR};
dirac[[14]] = {Fu1, FuL, 0};
dirac[[15]] = {Fu2, 0, FuR};
```

SpectrumFile=None;

8.8 Implementation in SARAH

Model directory: MSSM-RpV/BnV

8.8.1 Particles for eigenstates 'GaugeES'

• Fermions

$$\begin{split} \tilde{B} &= \begin{pmatrix} \lambda_{\tilde{B}} \\ \lambda_{\tilde{B}}^* \end{pmatrix} & \text{Bino} &= \begin{pmatrix} \text{fB} \\ \text{conj[fB]} \end{pmatrix} \\ d_{i\alpha}^1 &= \begin{pmatrix} d_{L,i\alpha} \\ 0 \end{pmatrix} & \text{Fd1}[\{\text{generation, color}\}] &= \begin{pmatrix} \text{FdL}[\{\text{generation, color}\}] \\ 0 \end{pmatrix} \\ d_{i\alpha}^2 &= \begin{pmatrix} 0 \\ d_{R,i\alpha} \end{pmatrix} & \text{Fd2}[\{\text{generation, color}\}] &= \begin{pmatrix} 0 \\ \text{FdR}[\{\text{generation, color}\}] \end{pmatrix} \\ e_i^1 &= \begin{pmatrix} e_{L,i} \\ 0 \end{pmatrix} & \text{Fe1}[\{\text{generation}\}] &= \begin{pmatrix} \text{FeL}[\{\text{generation}\}] \\ 0 \end{pmatrix} \\ e_i^2 &= \begin{pmatrix} 0 \\ e_{R,i} \end{pmatrix} & \text{Fe2}[\{\text{generation}\}] &= \begin{pmatrix} 0 \\ \text{FeR}[\{\text{generation}\}] \end{pmatrix} \\ u_{i\alpha}^1 &= \begin{pmatrix} u_{L,i\alpha} \\ 0 \end{pmatrix} & \text{Fu1}[\{\text{generation, color}\}] &= \begin{pmatrix} \text{FuL}[\{\text{generation, color}\}] \\ 0 \end{pmatrix} \end{split}$$

$$\begin{aligned} u_{i\alpha}^2 &= \begin{pmatrix} 0 \\ u_{R,i\alpha} \end{pmatrix} & & \text{Fu2}[\{\text{generation, color}\}] &= \begin{pmatrix} 0 \\ \text{FuR}[\{\text{generation, color}\}] \end{pmatrix} \\ \nu_i &= \begin{pmatrix} \nu_{L,i} \\ 0 \end{pmatrix} & & \text{Fv}[\{\text{generation}\}] &= \begin{pmatrix} \text{FvL}[\{\text{generation}\}] \\ 0 \end{pmatrix} \\ \tilde{g}_i &= \begin{pmatrix} \lambda_{\tilde{g},i} \\ \lambda_{\tilde{g},i}^* \end{pmatrix} & & \text{Glu}[\{\text{generation}\}] &= \begin{pmatrix} \text{fG}[\{\text{generation}\}] \\ \text{conj}[\text{fG}[\{\text{generation}\}]] \end{pmatrix} \\ \tilde{H}^0 &= \begin{pmatrix} \tilde{H}_d^0 \\ \tilde{H}_u^{0,*} \end{pmatrix} & & \text{HO} &= \begin{pmatrix} \text{FHdO} \\ \text{conj}[\text{FHuO}] \end{pmatrix} \\ \tilde{H}^- &= \begin{pmatrix} \tilde{H}_d^- \\ \tilde{H}_u^{+,*} \end{pmatrix} & & \text{HC} &= \begin{pmatrix} \text{FHdm} \\ \text{conj}[\text{FHup}] \end{pmatrix} \\ \tilde{W}_i &= \begin{pmatrix} \lambda_{\tilde{W},i} \\ \lambda_{\tilde{W},i}^* \end{pmatrix} & & \text{Wino}[\{\text{generation}\}] &= \begin{pmatrix} \text{fWB}[\{\text{generation}\}]] \end{pmatrix} \\ &= \begin{pmatrix} \text{conj}[\text{fWB}[\{\text{generation}\}]] \end{pmatrix} \end{aligned}$$

• Scalars

$\tilde{d}_{L,i\alpha}$	SdL[{generation, color}]	$\tilde{u}_{L,i\alpha}$	SuL[{generation, color}]
$\tilde{e}_{L,i}$	SeL[{generation}]	$ ilde{ u}_{L,i}$	SvL[{generation}]
H_d^0	SHd0	H_d^-	SHdm
H_u^0	SHu0	H_u^+	SHup
$\tilde{d}_{R,i\alpha}$	<pre>SdR[{generation, color}]</pre>	$\tilde{u}_{R,i\alpha}$	SuR[{generation, color}]
$\tilde{e}_{R,i}$	SeR[{generation}]		

• Vector Bosons

B_{ρ}	VB[{lorentz}]	$W_{i\rho}^-$	<pre>VWB[{generation, lorentz}]</pre>	
$g_{i ho}$	<pre>VG[{generation, lorentz}]</pre>			

• Ghosts

$$\eta^B$$
 gB gWB $\left(\{ ext{gt1}\}\right)$ gWB[{generation}]

 η_i^G gG[{generation}]

8.8.2 Particles for eigenstates 'EWSB'

• Fermions

$$\begin{split} \tilde{\chi}_i^- &= \begin{pmatrix} \lambda_i^- \\ \lambda_i^{+*} \end{pmatrix} & \text{Cha[\{generation\}]} &= \begin{pmatrix} \text{Lm[\{generation\}]} \\ \text{conj[Lp[\{generation\}]]} \end{pmatrix} \\ \tilde{\chi}_i^0 &= \begin{pmatrix} \lambda_i^0 \\ \lambda_i^{0,*} \end{pmatrix} & \text{Chi[\{generation\}]} &= \begin{pmatrix} \text{L0[\{generation\}]} \\ \text{conj[L0[\{generation\}]]} \end{pmatrix} \\ d_{i\alpha} &= \begin{pmatrix} D_{L,i\alpha} \\ D_{R,i\alpha}^* \end{pmatrix} & \text{Fd[\{generation, color\}]} &= \begin{pmatrix} \text{FDL[\{generation, color\}]} \\ \text{conj[FDR[\{generation, color\}]]} \end{pmatrix} \\ e_i &= \begin{pmatrix} E_{L,i} \\ E_{R,i}^* \end{pmatrix} & \text{Fe[\{generation\}]} &= \begin{pmatrix} \text{FEL[\{generation\}]} \\ \text{conj[FER[\{generation\}]]} \end{pmatrix} \\ u_{i\alpha} &= \begin{pmatrix} U_{L,i\alpha} \\ U_{R,i\alpha}^* \end{pmatrix} & \text{Fu[\{generation, color\}]} &= \begin{pmatrix} \text{FUL[\{generation, color\}]} \\ \text{conj[FUR[\{generation\}]} \end{pmatrix} \end{pmatrix} \\ \nu_i &= \begin{pmatrix} \nu_{L,i} \\ 0 \end{pmatrix} & \text{Fv[\{generation\}]} &= \begin{pmatrix} \text{FvL[\{generation\}]} \\ 0 \end{pmatrix} \\ \tilde{g}_i &= \begin{pmatrix} \lambda_{\tilde{g},i} \\ \lambda_{\tilde{g},i}^* \end{pmatrix} & \text{Glu[\{generation\}]} &= \begin{pmatrix} \text{fG[\{generation\}]} \\ \text{conj[fG[\{generation\}]]} \end{pmatrix} \end{split}$$

• Scalars

$\tilde{d}_{i\alpha}$	<pre>Sd[{generation, color}]</pre>	$\tilde{ u}_i$	<pre>Sv[{generation}]</pre>
$\tilde{u}_{i\alpha}$	Su[{generation, color}]	\tilde{e}_i	Se[{generation}]
h_i	hh[{generation}]	A_i^0	Ah[{generation}]
H_i^-	${\tt Hpm[\{generation\}]}$		

• Vector Bosons

$g_{i ho}$	<pre>VG[{generation, lorentz}]</pre>	W_{ρ}^{-}	VWm[{lorentz}]
$\gamma_{ ho}$	<pre>VP[{lorentz}]</pre>	$Z_{ ho}$	VZ[{lorentz}]

\bullet Ghosts

η_i^G	gG[{generation}]	η^-	gWm
η^+	gWmC	η^{γ}	gP
η^Z	gZ		

8.8.3 Parameters

g_1	g1	g_2	g2	g_3	g3
Y_u	Yu	T_u	T[Yu]	Y_d	Yd
T_d	T[Yd]	Y_e	Ye	T_e	T[Ye]
μ	\[Mu]	B_{μ}	B[\[Mu]]	λ_3	Lambda3
T_{λ_3}	T[Lambda3]	m_q^2	mq2	m_l^2	ml2
$m_{H_d}^2$	mHd2	$m_{H_u}^2$	mHu2	m_d^2	md2
m_u^2	mu2	m_e^2	me2	M_1	MassB
M_2	MassWB	M_3	MassG	v_d	vd
v_u	vu	Θ_W	ThetaW	$\phi_{ ilde{g}}$	PhaseGlu
Z^D	ZD	Z^V	ZV	Z^U	ZU
Z^E	ZE	Z^H	ZH	Z^A	ZA
Z^+	ZP	N	ZN	U	UM
V	UP	U_L^e	ZEL	U_R^e	ZER
U_L^d	ZDL	U_R^d	ZDR	U_L^u	ZUL
U_R^u	ZUR	α	$\[Alpha]$	β	\[Beta]
Lambda3[1]	Lambda3[1]	Lambda3[2]	Lambda3[2]	Lambda3[3]	Lambda3[3]
T[Lambda3][1]	T[Lambda3][1]	T[Lambda3][2]	T[Lambda3][2]	T[Lambda3][3]	T[Lambda3][3]

Chapter 9

The Next-to-Minimal Supersymmetric Standard Model

9.1 Superfields

9.1.1 Vector Superfields

SF	Spin $\frac{1}{2}$	Spin 1	SU(N)	Coupling	Name
\hat{B}	$\lambda_{ ilde{B}}$	B	U(1)	g_1	hypercharge
\hat{W}	$\lambda_{ ilde{W}}$	W^-	SU(2)	g_2	left
\hat{g}	$\lambda_{ ilde{g}}$	g	SU(3)	g_3	color

9.1.2 Chiral Superfields

SF	Spin 0	Spin $\frac{1}{2}$	Generations	$(U(1) \otimes \mathrm{SU}(2) \otimes \mathrm{SU}(3))$
\hat{q}	$ ilde{q}$	q	3	$(rac{1}{6},2,3)$
l	\tilde{l}	l	3	$(-rac{1}{2},2,1)$
\hat{H}_d	H_d	$ ilde{H}_d$	1	$(-rac{1}{2},2,1)$
\hat{H}_u	H_u	$ ilde{H}_u$	1	$(rac{1}{2}, 2, 1)$
\hat{d}	$ ilde{d}_R^*$	d_R^*	3	$(rac{1}{3}, 1, \overline{3})$
\hat{u}	\tilde{u}_R^*	u_R^*	3	$(-rac{2}{3},1,\overline{3})$
\hat{e}	\tilde{e}_R^*	e_R^*	3	(1, 1 , 1)
\hat{s}	S	$ ilde{S}$	1	(0, 1, 1)

9.2 Superpotential and Lagrangian

9.2.1 Superpotential

$$W = Y_u \,\hat{q} \,\hat{H}_u \,\hat{u} - Y_d \,\hat{q} \,\hat{H}_d \,\hat{d} - Y_e \,\hat{l} \,\hat{H}_d \,\hat{e} + \lambda \,\hat{H}_u \,\hat{H}_d \,\hat{s} + \frac{1}{3} \kappa \,\hat{s} \,\hat{s} \,\hat{s}$$

$$(9.1)$$

9.2.2 Softbreaking terms

$$L_{SB,W} = +\frac{1}{3}S^{3}T_{\kappa} - H_{d}^{0}H_{u}^{0}ST_{\lambda} + H_{d}^{-}H_{u}^{+}ST_{\lambda} + H_{d}^{0}\tilde{d}_{R,k\gamma}^{*}\delta_{\alpha\gamma}\tilde{d}_{L,i\alpha}T_{d,ik} - H_{d}^{-}\tilde{d}_{R,k\gamma}^{*}\delta_{\alpha\gamma}\tilde{u}_{L,i\alpha}T_{d,ik}$$

$$+ H_{d}^{0}\tilde{e}_{R,k}^{*}\tilde{e}_{L,i}T_{e,ik} - H_{d}^{-}\tilde{e}_{R,k}^{*}\tilde{\nu}_{L,i}T_{e,ik} - H_{u}^{+}\tilde{u}_{R,k\gamma}^{*}\delta_{\alpha\gamma}\tilde{d}_{L,i\alpha}T_{u,ik} + H_{u}^{0}\tilde{u}_{R,k\gamma}^{*}\delta_{\alpha\gamma}\tilde{u}_{L,i\alpha}T_{u,ik} + \text{h.c.}$$

$$(9.2)$$

$$L_{SB,\phi} = -m_{H_{d}}^{2}|H_{d}^{0}|^{2} - m_{H_{d}}^{2}|H_{d}^{-}|^{2} - m_{H_{u}}^{2}|H_{u}^{0}|^{2} - m_{H_{u}}^{2}|H_{u}^{+}|^{2} - m_{S}^{2}|S|^{2}$$

$$-\tilde{d}_{L,j\beta}^{*}\delta_{\alpha\beta}m_{q,ij}^{2}\tilde{d}_{L,i\alpha} - \tilde{d}_{R,i\alpha}^{*}\delta_{\alpha\beta}m_{d,ij}^{2}\tilde{d}_{R,j\beta} - \tilde{e}_{L,j}^{*}m_{l,ij}^{2}\tilde{e}_{L,i} - \tilde{e}_{R,i}^{*}m_{e,ij}^{2}\tilde{e}_{R,j}$$

$$-\tilde{u}_{L,j\beta}^{*}\delta_{\alpha\beta}m_{q,ij}^{2}\tilde{u}_{L,i\alpha} - \tilde{u}_{R,i\alpha}^{*}\delta_{\alpha\beta}m_{u,ij}^{2}\tilde{u}_{R,j\beta} - \tilde{\nu}_{L,j}^{*}m_{l,ij}^{2}\tilde{\nu}_{L,i}$$

$$(9.3)$$

$$L_{SB,\lambda} = \frac{1}{2} \left(-\lambda_{\tilde{B}}^2 M_1 - M_2 \lambda_{\tilde{W},i}^2 - M_3 \lambda_{\tilde{g},i}^2 + \text{h.c.} \right)$$
(9.4)

9.2.3 Gauge fixing terms

Gauge fixing terms for eigenstates 'GaugeES'

$$L_{GF} = -\frac{1}{2}\partial_{\mu}g\xi_{G}^{-1} - \frac{1}{2}\partial_{\mu}W^{-}\xi_{W}^{-1}$$
(9.5)

Gauge fixing terms for eigenstates 'EWSB'

$$L_{GF} = -\frac{1}{2}\partial_{\mu}\gamma\xi_{P}^{-1} - \frac{1}{2}\partial_{\mu}g\xi_{G}^{-1} - \frac{1}{2}\xi_{Z}^{-1}\left(-A_{1}^{0}m_{Z}\xi_{Z} + \partial_{\mu}Z\right) - \xi_{W}^{-1}\left(iH_{1}^{-}m_{W^{-}}\xi_{W} + \partial_{\mu}W^{-}\right)$$

$$(9.6)$$

9.2.4 Fields integrated out

None

9.3 Field Rotations

9.3.1 Rotations in gauge sector for eigenstates 'EWSB'

$$W_{1\rho}^{-} = \frac{1}{\sqrt{2}}W_{\rho}^{-} + \frac{1}{\sqrt{2}}W_{\rho}^{+} \tag{9.7}$$

$$W_{2\rho}^{-} = -i\frac{1}{\sqrt{2}}W_{\rho}^{-} + i\frac{1}{\sqrt{2}}W_{\rho}^{+} \tag{9.8}$$

$$W_{3\rho}^{-} = \cos\Theta_W Z_{\rho} + \sin\Theta_W \gamma_{\rho} \tag{9.9}$$

$$B_{\rho} = \cos\Theta_W \gamma_{\rho} - \sin\Theta_W Z_{\rho} \tag{9.10}$$

$$\lambda_{\tilde{W},1} = \frac{1}{\sqrt{2}}\tilde{W}^{-} + \frac{1}{\sqrt{2}}\tilde{W}^{+} \tag{9.11}$$

$$\lambda_{\tilde{W},2} = -i\frac{1}{\sqrt{2}}\tilde{W}^{-} + i\frac{1}{\sqrt{2}}\tilde{W}^{+} \tag{9.12}$$

$$\lambda_{\tilde{W},3} = \tilde{W}^0 \tag{9.13}$$

9.3.2 Rotations in Mass sector for eigenstates 'EWSB'

Mass Matrices for Scalars

 $\bullet \ \, \mathbf{Mass \ matrix \ for \ Down-Squarks}, \ \, \mathbf{Basis:} \ \left(\tilde{d}_{L,o_1\alpha_1},\tilde{d}_{R,o_2\alpha_2}\right), \left(\tilde{d}_{L,p_1\beta_1}^*,\tilde{d}_{R,p_2\beta_2}^*\right)$

$$m_{\tilde{d}}^{2} = \begin{pmatrix} m_{11} & \frac{1}{2} \delta_{\alpha_{1}\beta_{2}} \left(\sqrt{2} v_{d} T_{d,o_{1}p_{2}} - v_{s} v_{u} \lambda^{*} Y_{d,o_{1}p_{2}} \right) \\ \frac{1}{2} \left(\sqrt{2} v_{d} T_{d,p_{1}o_{2}}^{*} - v_{s} v_{u} \lambda Y_{d,p_{1}o_{2}}^{*} \right) \delta_{\alpha_{2}\beta_{1}} & m_{22} \end{pmatrix}$$

$$(9.14)$$

$$m_{11} = \frac{1}{24} \delta_{\alpha_1 \beta_1} \left(12 \left(2m_{q, o_1 p_1}^2 + v_d^2 \sum_{a=1}^3 Y_{d, p_1 a}^* Y_{d, o_1 a} \right) - \left(3g_2^2 + g_1^2 \right) \left(-v_u^2 + v_d^2 \right) \delta_{o_1 p_1} \right)$$
(9.15)

$$m_{22} = \frac{1}{12} \delta_{\alpha_2 \beta_2} \left(6 \left(2m_{d, p_2 o_2}^2 + v_d^2 \sum_{a=1}^3 Y_{d, a o_2}^* Y_{d, a p_2} \right) + g_1^2 \left(-v_d^2 + v_u^2 \right) \delta_{o_2 p_2} \right)$$

$$(9.16)$$

This matrix is diagonalized by Z^D :

$$Z^{D} m_{\tilde{d}}^{2} Z^{D,\dagger} = m_{2,\tilde{d}}^{dia} \tag{9.17}$$

with

$$\tilde{d}_{L,i\alpha} = \sum_{t_2} Z_{ji}^{D,*} \tilde{d}_{j\alpha}, \qquad \tilde{d}_{R,i\alpha} = \sum_{t_2} Z_{ji}^{D,*} \tilde{d}_{j\alpha}$$
 (9.18)

• Mass matrix for Sneutrinos, Basis: $(\tilde{\nu}_{L,o_1}), (\tilde{\nu}_{L,p_1}^*)$

$$m_{\tilde{\nu}}^2 = \left(\frac{1}{8} \left(8m_{l,o_1p_1}^2 + \left(g_1^2 + g_2^2\right) \left(-v_u^2 + v_d^2\right) \delta_{o_1p_1}\right)\right)$$

$$(9.19)$$

This matrix is diagonalized by Z^V :

$$Z^{V} m_{\tilde{\nu}}^{2} Z^{V,\dagger} = m_{2,\tilde{\nu}}^{dia} \tag{9.20}$$

with

$$\tilde{\nu}_{L,i} = \sum_{t_2} Z_{ji}^{V,*} \tilde{\nu}_j \tag{9.21}$$

• Mass matrix for Up-Squarks, Basis: $(\tilde{u}_{L,o_1\alpha_1}, \tilde{u}_{R,o_2\alpha_2}), (\tilde{u}_{L,p_1\beta_1}^*, \tilde{u}_{R,p_2\beta_2}^*)$

$$m_{\tilde{u}}^{2} = \begin{pmatrix} m_{11} & \frac{1}{2} \delta_{\alpha_{1}\beta_{2}} \left(\sqrt{2} v_{u} T_{u,o_{1}p_{2}} - v_{d} v_{s} \lambda^{*} Y_{u,o_{1}p_{2}} \right) \\ \frac{1}{2} \left(\sqrt{2} v_{u} T_{u,p_{1}o_{2}}^{*} - v_{d} v_{s} \lambda Y_{u,p_{1}o_{2}}^{*} \right) \delta_{\alpha_{2}\beta_{1}} & m_{22} \end{pmatrix}$$
(9.22)

$$m_{11} = \frac{1}{24} \delta_{\alpha_1 \beta_1} \left(12 \left(2m_{q,o_1 p_1}^2 + v_u^2 \sum_{a=1}^3 Y_{u,p_1 a}^* Y_{u,o_1 a} \right) - \left(-3g_2^2 + g_1^2 \right) \left(-v_u^2 + v_d^2 \right) \delta_{o_1 p_1} \right)$$
(9.23)

$$m_{22} = \frac{1}{6} \delta_{\alpha_2 \beta_2} \left(3v_u^2 \sum_{a=1}^3 Y_{u,ao_2}^* Y_{u,ap_2} + 6m_{u,p_2 o_2}^2 + g_1^2 \left(-v_u^2 + v_d^2 \right) \delta_{o_2 p_2} \right)$$

$$(9.24)$$

This matrix is diagonalized by Z^U :

$$Z^{U}m_{\tilde{u}}^{2}Z^{U,\dagger} = m_{2,\tilde{u}}^{dia} \tag{9.25}$$

with

$$\tilde{u}_{L,i\alpha} = \sum_{t_2} Z_{ji}^{U,*} \tilde{u}_{j\alpha}, \qquad \tilde{u}_{R,i\alpha} = \sum_{t_2} Z_{ji}^{U,*} \tilde{u}_{j\alpha}$$
(9.26)

• Mass matrix for Sleptons, Basis: $(\tilde{e}_{L,o_1}, \tilde{e}_{R,o_2}), (\tilde{e}_{L,p_1}^*, \tilde{e}_{R,p_2}^*)$

$$m_{\tilde{e}}^2 = \begin{pmatrix} m_{11} & -\frac{1}{2}v_s v_u \lambda^* Y_{e,o_1 p_2} + \frac{1}{\sqrt{2}} v_d T_{e,o_1 p_2} \\ -\frac{1}{2}v_s v_u \lambda Y_{e,p_1 o_2}^* + \frac{1}{\sqrt{2}} v_d T_{e,p_1 o_2}^* & m_{22} \end{pmatrix}$$
(9.27)

$$m_{11} = \frac{1}{8} \left(4v_d^2 \sum_{a=1}^3 Y_{e,p_1a}^* Y_{e,o_1a} + 8m_{l,o_1p_1}^2 + \left(-g_2^2 + g_1^2 \right) \left(-v_u^2 + v_d^2 \right) \delta_{o_1p_1} \right)$$
(9.28)

$$m_{22} = \frac{1}{4} \left(2v_d^2 \sum_{a=1}^3 Y_{e,ao_2}^* Y_{e,ap_2} + 4m_{e,p_2o_2}^2 + g_1^2 \left(-v_d^2 + v_u^2 \right) \delta_{o_2p_2} \right)$$
(9.29)

This matrix is diagonalized by Z^E :

$$Z^{E} m_{\tilde{e}}^{2} Z^{E,\dagger} = m_{2,\tilde{e}}^{dia} \tag{9.30}$$

with

$$\tilde{e}_{L,i} = \sum_{t_2} Z_{ji}^{E,*} \tilde{e}_j , \qquad \tilde{e}_{R,i} = \sum_{t_2} Z_{ji}^{E,*} \tilde{e}_j$$

$$(9.31)$$

• Mass matrix for Higgs, Basis: $(\phi_d, \phi_u, \phi_s), (\phi_d, \phi_u, \phi_s)$

$$m_h^2 = \begin{pmatrix} m_{11} & m_{21}^* & m_{31}^* \\ m_{21} & m_{22} & m_{32}^* \\ m_{31} & m_{32} & m_{33} \end{pmatrix}$$
(9.32)

$$m_{11} = \frac{1}{8} \left(4 \left(v_s^2 + v_u^2 \right) |\lambda|^2 + 8m_{H_d}^2 + \left(g_1^2 + g_2^2 \right) \left(3v_d^2 - v_u^2 \right) \right)$$
(9.33)

$$m_{21} = \frac{1}{4} \left(-2\sqrt{2}v_s \Re\left(T_{\lambda}\right) + \left(4v_d v_u \lambda - v_s^2 \kappa\right) \lambda^* - g_1^2 v_d v_u - g_2^2 v_d v_u - v_s^2 \lambda \kappa^* \right)$$
(9.34)

$$m_{22} = \frac{1}{8} \left(4 \left(v_d^2 + v_s^2 \right) |\lambda|^2 + 8 m_{H_u}^2 - \left(g_1^2 + g_2^2 \right) \left(-3 v_u^2 + v_d^2 \right) \right)$$

$$(9.35)$$

$$m_{31} = \frac{1}{2} \left(\left(2v_d v_s \lambda - v_s v_u \kappa \right) \lambda^* - \sqrt{2} v_u \Re \left(T_\lambda \right) - v_s v_u \lambda \kappa^* \right)$$

$$(9.36)$$

$$m_{32} = \frac{1}{2} \left(\left(2v_s v_u \lambda - v_d v_s \kappa \right) \lambda^* - \sqrt{2} v_d \Re \left(T_\lambda \right) - v_d v_s \lambda \kappa^* \right)$$

$$(9.37)$$

$$m_{33} = \frac{1}{2} \left(2 \left(\sqrt{2} v_s \Re \left(T_\kappa \right) + m_S^2 \right) + \left(6 v_s^2 \kappa - v_d v_u \lambda \right) \kappa^* + \left(v_d^2 \lambda - v_d v_u \kappa + v_u^2 \lambda \right) \lambda^* \right)$$
(9.38)

This matrix is diagonalized by Z^H :

$$Z^{H} m_{h}^{2} Z^{H,\dagger} = m_{2,h}^{dia} \tag{9.39}$$

with

$$\phi_d = \sum_{t_2} Z_{j1}^H h_j , \qquad \phi_u = \sum_{t_2} Z_{j2}^H h_j , \qquad \phi_s = \sum_{t_2} Z_{j3}^H h_j$$
 (9.40)

• Mass matrix for Pseudo-Scalar Higgs, Basis: $(\sigma_d, \sigma_u, \sigma_s)$, $(\sigma_d, \sigma_u, \sigma_s)$

$$m_{A^0}^2 = \begin{pmatrix} m_{11} & m_{21}^* & m_{31}^* \\ m_{21} & m_{22} & m_{32}^* \\ m_{31} & m_{32} & m_{33} \end{pmatrix}$$
(9.41)

$$m_{11} = \frac{1}{8} \left(4 \left(v_s^2 + v_u^2 \right) |\lambda|^2 + 8m_{H_d}^2 + \left(g_1^2 + g_2^2 \right) \left(-v_u^2 + v_d^2 \right) \right)$$
(9.42)

$$m_{21} = \frac{1}{4} v_s \left(2\sqrt{2} \Re \left(T_\lambda \right) + v_s \kappa \lambda^* + v_s \lambda \kappa^* \right) \tag{9.43}$$

$$m_{22} = \frac{1}{8} \left(4 \left(v_d^2 + v_s^2 \right) |\lambda|^2 + 8 m_{H_u}^2 - \left(g_1^2 + g_2^2 \right) \left(-v_u^2 + v_d^2 \right) \right)$$
(9.44)

$$m_{31} = -\frac{1}{2}v_u\left(-\sqrt{2}\Re\left(T_\lambda\right) + v_s\kappa\lambda^* + v_s\lambda\kappa^*\right) \tag{9.45}$$

$$m_{32} = -\frac{1}{2}v_d\left(-\sqrt{2}\Re\left(T_\lambda\right) + v_s\kappa\lambda^* + v_s\lambda\kappa^*\right) \tag{9.46}$$

$$m_{33} = \frac{1}{2} \left(2\left(-\sqrt{2}v_s \Re\left(T_\kappa\right) + m_S^2 \right) + \left(2v_s^2 \kappa + v_d v_u \lambda \right) \kappa^* + \left(v_d^2 \lambda + v_d v_u \kappa + v_u^2 \lambda \right) \lambda^* \right)$$

$$(9.47)$$

This matrix is diagonalized by Z^A :

$$Z^{A}m_{A^{0}}^{2}Z^{A,\dagger} = m_{2,A^{0}}^{dia} \tag{9.48}$$

with

$$\sigma_d = \sum_{t_2} Z_{j1}^A A_j^0, \qquad \sigma_u = \sum_{t_2} Z_{j2}^A A_j^0, \qquad \sigma_s = \sum_{t_2} Z_{j3}^A A_j^0$$
(9.49)

 \bullet Mass matrix for Charged Higgs, Basis: $\left(H_d^-,H_u^{+,*}\right),\left(H_d^{-,*},H_u^+\right)$

$$m_{H^-}^2 = \begin{pmatrix} m_{11} & m_{21}^* \\ m_{21} & m_{22} \end{pmatrix} \tag{9.50}$$

$$m_{11} = \frac{1}{8} \left(4v_s^2 |\lambda|^2 + 8m_{H_d}^2 + g_1^2 v_d^2 - g_1^2 v_u^2 + g_2^2 v_d^2 + g_2^2 v_u^2 \right)$$

$$(9.51)$$

$$m_{21} = \frac{1}{4} \left(2\sqrt{2}v_s T_\lambda^* + 2\left(-v_d v_u \lambda + v_s^2 \kappa \right) \lambda^* + g_2^2 v_d v_u \right)$$
(9.52)

$$m_{22} = \frac{1}{8} \left(4v_s^2 |\lambda|^2 + 8m_{H_u}^2 - g_1^2 v_d^2 + g_1^2 v_u^2 + g_2^2 v_d^2 + g_2^2 v_u^2 \right)$$

$$(9.53)$$

This matrix is diagonalized by Z^+ :

$$Z^{+}m_{H^{-}}^{2}Z^{+,\dagger} = m_{2,H^{-}}^{dia} \tag{9.54}$$

with

$$H_d^- = \sum_{t_2} Z_{j1}^{+,*} H_j^-, \qquad H_u^+ = \sum_{t_2} Z_{j2}^+ H_j^+$$
 (9.55)

The mixing matrix can be parametrized by

$$Z^{+} = \begin{pmatrix} -\cos\beta & \sin\beta \\ \sin\beta & \cos\beta \end{pmatrix} \tag{9.56}$$

Mass Matrices for Fermions

• Mass matrix for Neutralinos, Basis: $\left(\lambda_{\tilde{B}}, \tilde{W}^0, \tilde{H}_d^0, \tilde{H}_u^0, \tilde{S}\right), \left(\lambda_{\tilde{B}}, \tilde{W}^0, \tilde{H}_d^0, \tilde{H}_u^0, \tilde{S}\right)$

$$m_{\tilde{\chi}^{0}} = \begin{pmatrix} M_{1} & 0 & -\frac{1}{2}g_{1}v_{d} & \frac{1}{2}g_{1}v_{u} & 0\\ 0 & M_{2} & \frac{1}{2}g_{2}v_{d} & -\frac{1}{2}g_{2}v_{u} & 0\\ -\frac{1}{2}g_{1}v_{d} & \frac{1}{2}g_{2}v_{d} & 0 & -\frac{1}{\sqrt{2}}v_{s}\lambda & -\frac{1}{\sqrt{2}}v_{u}\lambda\\ \frac{1}{2}g_{1}v_{u} & -\frac{1}{2}g_{2}v_{u} & -\frac{1}{\sqrt{2}}v_{s}\lambda & 0 & -\frac{1}{\sqrt{2}}v_{d}\lambda\\ 0 & 0 & -\frac{1}{\sqrt{2}}v_{u}\lambda & -\frac{1}{\sqrt{2}}v_{d}\lambda & \sqrt{2}v_{s}\kappa \end{pmatrix}$$

$$(9.57)$$

This matrix is diagonalized by N:

$$Nm_{\tilde{\chi}^0}N^{\dagger} = m_{\tilde{\chi}^0}^{dia} \tag{9.58}$$

with

$$\lambda_{\tilde{B}} = \sum_{t_2} N_{j1}^* \lambda_j^0, \qquad \tilde{W}^0 = \sum_{t_2} N_{j2}^* \lambda_j^0, \qquad \tilde{H}_d^0 = \sum_{t_2} N_{j3}^* \lambda_j^0$$
(9.59)

$$\tilde{H}_{u}^{0} = \sum_{t_{2}} N_{j4}^{*} \lambda_{j}^{0}, \qquad \qquad \tilde{S} = \sum_{t_{2}} N_{j5}^{*} \lambda_{j}^{0}$$

$$(9.60)$$

• Mass matrix for Charginos, Basis: $\left(\tilde{W}^-, \tilde{H}_d^-\right), \left(\tilde{W}^+, \tilde{H}_u^+\right)$

$$m_{\tilde{\chi}^-} = \begin{pmatrix} M_2 & \frac{1}{\sqrt{2}} g_2 v_u \\ \frac{1}{\sqrt{2}} g_2 v_d & \frac{1}{\sqrt{2}} v_s \lambda \end{pmatrix}$$

$$(9.61)$$

This matrix is diagonalized by U and V

$$U^* m_{\tilde{\chi}^-} V^{\dagger} = m_{\tilde{\chi}^-}^{dia} \tag{9.62}$$

with

$$\tilde{W}^{-} = \sum_{t_2} U_{j1}^* \lambda_j^{-}, \qquad \tilde{H}_d^{-} = \sum_{t_2} U_{j2}^* \lambda_j^{-}$$
(9.63)

$$\tilde{W}^{+} = \sum_{t_2} V_{1j}^* \lambda_j^+, \qquad \tilde{H}_u^{+} = \sum_{t_2} V_{2j}^* \lambda_j^+$$
(9.64)

• Mass matrix for Leptons, Basis: (e_{L,o_1}) , (e_{R,p_1}^*)

$$m_e = \left(\frac{1}{\sqrt{2}}v_d Y_{e,o_1 p_1}\right) \tag{9.65}$$

This matrix is diagonalized by U_L^e and U_R^e

$$U_L^{e,*} m_e U_R^{e,\dagger} = m_e^{dia} \tag{9.66}$$

with

$$e_{L,i} = \sum_{t_0} U_{L,ji}^{e,*} E_{L,j} \tag{9.67}$$

$$e_{R,i} = \sum_{t_2} U_{R,ij}^e E_{R,j}^* \tag{9.68}$$

• Mass matrix for Down-Quarks, Basis: $(d_{L,o_1\alpha_1}), \left(d_{R,p_1\beta_1}^*\right)$

$$m_d = \left(\frac{1}{\sqrt{2}} v_d \delta_{\alpha_1 \beta_1} Y_{d, o_1 p_1} \right) \tag{9.69}$$

This matrix is diagonalized by ${\cal U}_L^d$ and ${\cal U}_R^d$

$$U_L^{d,*} m_d U_R^{d,\dagger} = m_d^{dia} \tag{9.70}$$

with

$$d_{L,i\alpha} = \sum_{t_2} U_{L,ji}^{d,*} D_{L,j\alpha}$$
(9.71)

$$d_{R,i\alpha} = \sum_{t_0} U_{R,ij}^d D_{R,j\alpha}^* \tag{9.72}$$

• Mass matrix for Up-Quarks, Basis: $(u_{L,o_1\alpha_1}), (u_{R,p_1\beta_1}^*)$

$$m_u = \left(\frac{1}{\sqrt{2}}v_u\delta_{\alpha_1\beta_1}Y_{u,o_1p_1}\right) \tag{9.73}$$

This matrix is diagonalized by ${\cal U}^u_L$ and ${\cal U}^u_R$

$$U_L^{u,*} m_u U_R^{u,\dagger} = m_u^{dia} \tag{9.74}$$

with

$$u_{L,i\alpha} = \sum_{t_{-}} U_{L,ji}^{u,*} U_{L,j\alpha} \tag{9.75}$$

$$u_{R,i\alpha} = \sum_{t_2} U_{R,ij}^u U_{R,j\alpha}^* \tag{9.76}$$

9.4 Vacuum Expectation Values

$$H_d^0 = \frac{1}{\sqrt{2}}\phi_d + \frac{1}{\sqrt{2}}v_d + i\frac{1}{\sqrt{2}}\sigma_d \tag{9.77}$$

$$H_u^0 = \frac{1}{\sqrt{2}}\phi_u + \frac{1}{\sqrt{2}}v_u + i\frac{1}{\sqrt{2}}\sigma_u \tag{9.78}$$

$$S = \frac{1}{\sqrt{2}}\phi_s + \frac{1}{\sqrt{2}}v_s + i\frac{1}{\sqrt{2}}\sigma_s \tag{9.79}$$

9.5 Tadpole Equations

$$\frac{\partial V}{\partial v_d} = \frac{1}{8} \left(8m_{H_d}^2 v_d + g_1^2 v_d^3 + g_2^2 v_d^3 - g_1^2 v_d v_u^2 - g_2^2 v_d v_u^2 - 2v_s^2 v_u \lambda \kappa^* \right)
+ \left(4v_d v_u^2 \lambda + v_s^2 \left(-2v_u \kappa + 4v_d \lambda \right) \right) \lambda^* - 4\sqrt{2} v_s v_u \Re \left(T_\lambda \right) \right)$$
(9.80)

$$\frac{\partial V}{\partial v_u} = \frac{1}{8} \left(8m_{H_u}^2 v_u - g_1^2 v_d^2 v_u - g_2^2 v_d^2 v_u + g_1^2 v_u^3 + g_2^2 v_u^3 - 2v_d v_s^2 \lambda \kappa^* \right)
+ \left(-2v_d v_s^2 \kappa + 4v_d^2 v_u \lambda + 4v_s^2 v_u \lambda \right) \lambda^* - 4\sqrt{2} v_d v_s \Re\left(T_\lambda\right) \right)$$
(9.81)

$$\frac{\partial V}{\partial v_s} = \frac{1}{4} \left(4m_S^2 v_s + \left(-2v_d v_s v_u \lambda + 4v_s^3 \kappa \right) \kappa^* + 2v_s \left(v_d^2 \lambda - v_d v_u \kappa + v_u^2 \lambda \right) \lambda^* - \sqrt{2} v_d v_u T_\lambda^* \right)
+ 2\sqrt{2} v_s^2 \Re \left(T_\kappa \right) - \sqrt{2} v_d v_u T_\lambda \right)$$
(9.82)

9.6 Particle content for eigenstates 'EWSB'

Name	Type	complex/real	Generations	Indices
$-\tilde{d}$	Scalar	complex	6	generation, color
$ ilde{ u}$	Scalar	complex	3	generation
\tilde{u}	Scalar	complex	6	generation, color
$ ilde{e}$	Scalar	complex	6	generation
h	Scalar	real	3	generation

A^0	Scalar	real	3	generation
H^-	Scalar	complex	2	generation
$\overline{\nu}$	Fermion	Dirac	3	generation
$ ilde{g}$	Fermion	Majorana	8	generation
$ ilde{\chi}^0$	Fermion	Majorana	5	generation
$ ilde{\chi}^-$	Fermion	Dirac	2	${\it generation}$
e	Fermion	Dirac	3	generation
d	Fermion	Dirac	3	generation, color
u	Fermion	Dirac	3	generation, color
g	Vector	real	8	generation, lorentz
W^-	Vector	complex	1	lorentz
γ	Vector	real	1	lorentz
Z	Vector	real	1	lorentz
η^G	Ghost	real	8	generation
η^-	Ghost	complex	1	
η^+	Ghost	complex	1	
η^{γ}	Ghost	real	1	
η^Z	Ghost	real	1	

9.7 Modelfile for SARAH

9.8 Implementation in SARAH

Model directory: NMSSM/One_Rotation

9.8.1 Particles for eigenstates 'GaugeES'

• Fermions

$$\begin{split} \tilde{B} &= \begin{pmatrix} \lambda_{\tilde{B}} \\ \lambda_{\tilde{B}}^* \end{pmatrix} & \text{Bino} &= \begin{pmatrix} \text{fB} \\ \text{conj}[\text{fB}] \end{pmatrix} \\ d_{i\alpha}^1 &= \begin{pmatrix} d_{L,i\alpha} \\ 0 \end{pmatrix} & \text{Fd1}[\{\text{generation, color}\}] &= \begin{pmatrix} \text{FdL}[\{\text{generation, color}\}] \\ 0 \end{pmatrix} \\ d_{i\alpha}^2 &= \begin{pmatrix} 0 \\ 0 \\ d_{R,i\alpha} \end{pmatrix} & \text{Fd2}[\{\text{generation, color}\}] &= \begin{pmatrix} 0 \\ \text{FdR}[\{\text{generation, color}\}] \end{pmatrix} \\ e_i^1 &= \begin{pmatrix} e_{L,i} \\ 0 \end{pmatrix} & \text{Fe1}[\{\text{generation}\}] &= \begin{pmatrix} 0 \\ \text{FeR}[\{\text{generation}\}] \end{pmatrix} \\ e_i^2 &= \begin{pmatrix} 0 \\ e_{R,i} \end{pmatrix} & \text{Fu1}[\{\text{generation, color}\}] &= \begin{pmatrix} 0 \\ \text{FeR}[\{\text{generation, color}\}] \end{pmatrix} \\ u_{i\alpha}^1 &= \begin{pmatrix} u_{L,i\alpha} \\ 0 \end{pmatrix} & \text{Fu2}[\{\text{generation, color}\}] &= \begin{pmatrix} 0 \\ \text{FuR}[\{\text{generation, color}\}] \end{pmatrix} \\ v_i &= \begin{pmatrix} 0 \\ u_{R,i\alpha} \end{pmatrix} & \text{Fv2}[\{\text{generation, color}\}] &= \begin{pmatrix} 0 \\ \text{FvL}[\{\text{generation, color}\}] \end{pmatrix} \\ \tilde{y}_i &= \begin{pmatrix} \lambda_{\tilde{y},i} \\ \lambda_{\tilde{y},i}^* \end{pmatrix} & \text{Glu}[\{\text{generation,}\}] &= \begin{pmatrix} \text{fG}[\{\text{generation,}\}] \\ \text{conj}[\text{fG}[\{\text{generation,}\}]] \end{pmatrix} \\ \tilde{H}^0 &= \begin{pmatrix} \tilde{H}_u \\ \tilde{H}_u^{-*} \\ \tilde{H}_u^{-*} \end{pmatrix} & \text{HC} &= \begin{pmatrix} \text{FHuo} \\ \text{conj}[\text{FHdO}] \end{pmatrix} \\ \tilde{S} &= \begin{pmatrix} \tilde{S} \\ \tilde{S}^* \end{pmatrix} & \text{S} &= \begin{pmatrix} \text{FsR} \\ \text{conj}[\text{FsR}] \end{pmatrix} \\ \tilde{W}_i &= \begin{pmatrix} \lambda_{\tilde{W},i} \\ \lambda_{\tilde{W},i}^* \end{pmatrix} & \text{Wino}[\{\text{generation,}\}] &= \begin{pmatrix} \text{fWB}[\{\text{generation,}\}] \\ \text{conj}[\text{fWB}[\{\text{generation,}\}]] \end{pmatrix} \\ \end{cases} \end{split}$$

• Scalars

$\tilde{d}_{L,i\alpha}$	<pre>SdL[{generation, color}]</pre>	$\tilde{u}_{L,i\alpha}$	SuL[{generation, color}]
$\tilde{e}_{L,i}$	SeL[{generation}]	$ ilde{ u}_{L,i}$	SvL[{generation}]
H_d^0	SHd0	H_d^-	SHdm
H_u^0	SHu0	H_u^+	SHup
$\tilde{d}_{R,i\alpha}$	<pre>SdR[{generation, color}]</pre>	$\tilde{u}_{R,i\alpha}$	<pre>SuR[{generation, color}]</pre>
$\tilde{e}_{R,i}$	SeR[{generation}]	S	SsR

• Vector Bosons

$B_{ ho}$	<pre>VB[{lorentz}]</pre>	$W_{i\rho}^-$	<pre>VWB[{generation, lorentz}]</pre>	
$g_{i ho}$	VG[{generation, lorentz}]			

• Ghosts

η^B	gB	gWB(gt1)	gWB[{generation}]
η_i^G	gG[{generation}]	, ,	

9.8.2 Particles for eigenstates 'EWSB'

• Fermions

$$\begin{split} \tilde{\chi}_i^- &= \begin{pmatrix} \lambda_i^- \\ \lambda_i^{+,*} \end{pmatrix} & \text{Cha[\{generation\}]} &= \begin{pmatrix} \text{Lm[\{generation\}]} \\ \text{conj[Lp[\{generation\}]]} \end{pmatrix} \\ \tilde{\chi}_i^0 &= \begin{pmatrix} \lambda_i^0 \\ \lambda_i^{0,*} \end{pmatrix} & \text{Chi[\{generation\}]} &= \begin{pmatrix} \text{L0[\{generation\}]} \\ \text{conj[L0[\{generation\}]]} \end{pmatrix} \\ d_{i\alpha} &= \begin{pmatrix} D_{L,i\alpha} \\ D_{R,i\alpha}^* \end{pmatrix} & \text{Fd[\{generation, \, \text{color}\}]} &= \begin{pmatrix} \text{FDL[\{generation, \, \text{color}\}]} \\ \text{conj[FDR[\{generation, \, \text{color}\}]]} \end{pmatrix} \end{split}$$

$$e_i = \begin{pmatrix} E_{L,i} \\ E_{R,i}^* \end{pmatrix} \qquad \text{Fe[\{generation\}]} = \begin{pmatrix} \text{FEL[\{generation\}]} \\ \text{conj[FER[\{generation\}]]} \end{pmatrix}$$

$$u_{i\alpha} = \begin{pmatrix} U_{L,i\alpha} \\ U_{R,i\alpha}^* \end{pmatrix} \qquad \text{Fu[\{generation, color\}]} = \begin{pmatrix} \text{FUL[\{generation, color\}]} \\ \text{conj[FUR[\{generation, color\}]]} \end{pmatrix}$$

$$\nu_i = \begin{pmatrix} \nu_{L,i} \\ 0 \end{pmatrix} \qquad \qquad \text{Fv[\{generation\}]} = \begin{pmatrix} \text{FvL[\{generation\}]} \\ 0 \end{pmatrix}$$

$$\tilde{g}_i = \begin{pmatrix} \lambda_{\tilde{g},i} \\ \lambda_{\tilde{g},i}^* \end{pmatrix} \qquad \qquad \text{Glu[\{generation\}]} = \begin{pmatrix} \text{fG[\{generation\}]} \\ \text{conj[fG[\{generation\}]]} \end{pmatrix}$$

• Scalars

$\tilde{d}_{i\alpha}$	<pre>Sd[{generation, color}]</pre>	$\tilde{ u}_i$	Sv[{generation}]
$\tilde{u}_{i\alpha}$	<pre>Su[{generation, color}]</pre>	\tilde{e}_i	Se[{generation}]
h_i	hh[{generation}]	A_i^0	Ah[{generation}]
H_i^-	<pre>Hpm[{generation}]</pre>		

• Vector Bosons

$g_{i ho}$	VG[{generation, lorentz}]	W_{ρ}^{-}	VWm[{lorentz}]
$\gamma_{ ho}$	<pre>VP[{lorentz}]</pre>	$Z_{ ho}$	<pre>VZ[{lorentz}]</pre>

• Ghosts

η_i^G	$gG[\{generation\}]$	η^-	gWm
η^+	gWmC	η^{γ}	gP
η^Z	gZ		

9.8.3 Parameters

g_1	g1	g_2	g2	g_3	g3
Y_u	Yu	T_u	T[Yu]	Y_d	Yd
T_d	T[Yd]	Y_e	Ye	T_e	T[Ye]
λ	\[Lambda]	T_{λ}	T[\[Lambda]]	κ	\[Kappa]
T_{κ}	$T[\[Kappa]]$	m_q^2	mq2	m_l^2	m12
$m_{H_d}^2$	mHd2	$m_{H_u}^2$	mHu2	m_d^2	md2
m_u^2	mu2	m_e^2	me2	m_S^2	ms2
M_1	MassB	M_2	${\tt MassWB}$	M_3	MassG
v_d	vd	v_u	vu	v_s	vS
Θ_W	ThetaW	$\phi_{ ilde{g}}$	PhaseGlu	Z^D	ZD
Z^V	ZV	Z^U	ZU	Z^E	ZE
Z^H	ZH	Z^A	ZA	Z^+	ZP
N	ZN	U	UM	V	UP
U_L^e	ZEL	U_R^e	ZER	U_L^d	ZDL
U_R^d	ZDR	U_L^u	ZUL	U_R^u	ZUR
β	\[Beta]				

Chapter 10

The Next-to-Minimal Supersymmetric Standard Model in SCKM basis

10.1 Superfields

10.1.1 Vector Superfields

SF	Spin $\frac{1}{2}$	Spin 1	SU(N)	Coupling	Name
\hat{B}	$\lambda_{ ilde{B}}$	B	U(1)	g_1	hypercharge
\hat{W}	$\lambda_{ ilde{W}}$	W^-	SU(2)	g_2	left
\hat{g}	$\lambda_{ ilde{g}}$	g	SU(3)	g_3	color

10.1.2 Chiral Superfields

SF	Spin 0	Spin $\frac{1}{2}$	Generations	$(U(1) \otimes \mathrm{SU}(2) \otimes \mathrm{SU}(3))$
\hat{q}	Sq0	q^0	3	$(rac{1}{6}, 2, 3)$
\hat{l}	\tilde{l}	l	3	$(-rac{1}{2},2,1)$
\hat{H}_d	H_d	$ ilde{H}_d$	1	$(-rac{1}{2},2,1)$
\hat{H}_u	H_u	\tilde{H}_u	1	$(rac{1}{2}, oldsymbol{2}, oldsymbol{1})$
\hat{d}	$ ilde{d}_R^{0,*}$	d_R^*	3	$(rac{1}{3}, oldsymbol{1}, \overline{oldsymbol{3}})$
\hat{u}	$\tilde{u}_R^{0,*}$	u_R^*	3	$(-rac{2}{3},f 1,f \overline{3})$
\hat{e}	$ ilde{e}_R^*$	$egin{array}{c} e_R^* \ ilde{S} \end{array}$	3	(1, 1 , 1)
\hat{s}	S	\tilde{S}	1	(0, 1, 1)

10.2 Superpotential and Lagrangian

10.2.1 Superpotential

$$W = Y_u^0 \,\hat{q} \,\hat{H}_u \,\hat{u} - Y_d^0 \,\hat{q} \,\hat{H}_d \,\hat{d} - Y_e \,\hat{l} \,\hat{H}_d \,\hat{e} + \lambda \,\hat{H}_u \,\hat{H}_d \,\hat{s} + \frac{1}{3} \kappa \,\hat{s} \,\hat{s} \,\hat{s}$$

$$\tag{10.1}$$

10.2.2 Softbreaking terms

$$L_{SB,W} = +\frac{1}{3}S^{3}T_{\kappa} - H_{d}^{0}H_{u}^{0}ST_{\lambda} + H_{d}^{-}H_{u}^{+}ST_{\lambda} + H_{d}^{0}\tilde{d}_{R,k\gamma}^{0,*}\delta_{\alpha\gamma}\tilde{d}_{L,i\alpha}^{0}T_{d,ik}^{0}$$

$$- H_{d}^{-}\tilde{d}_{R,k\gamma}^{0,*}\delta_{\alpha\gamma}\tilde{u}_{L,i\alpha}^{0}T_{d,ik}^{0} + H_{d}^{0}\tilde{e}_{R,k}^{*}\tilde{e}_{L,i}T_{e,ik} - H_{d}^{-}\tilde{e}_{R,k}^{*}\tilde{\nu}_{L,i}T_{e,ik}$$

$$- H_{u}^{+}\tilde{u}_{R,k\gamma}^{0,*}\delta_{\alpha\gamma}\tilde{d}_{L,i\alpha}^{0}T_{u,ik}^{0} + H_{u}^{0}\tilde{u}_{R,k\gamma}^{0,*}\delta_{\alpha\gamma}\tilde{u}_{L,i\alpha}^{0}T_{u,ik}^{0} + \text{h.c.}$$

$$(10.2)$$

$$L_{SB,\phi} = - m_{H_{d}}^{2}|H_{d}^{0}|^{2} - m_{H_{d}}^{2}|H_{d}^{-}|^{2} - m_{H_{u}}^{2}|H_{u}^{0}|^{2} - m_{H_{u}}^{2}|H_{u}^{+}|^{2} - m_{S}^{2}|S|^{2}$$

$$- \tilde{d}_{L,j\beta}^{0,*}\delta_{\alpha\beta}m_{\tilde{q},ij}^{0,2}\tilde{d}_{L,i\alpha}^{0} - \tilde{d}_{R,i\alpha}^{0,*}\delta_{\alpha\beta}m_{\tilde{d},ij}^{0,2}\tilde{d}_{R,j\beta}^{0} - \tilde{e}_{L,j}^{*}m_{l,ij}^{2}\tilde{e}_{L,i} - \tilde{e}_{R,i}^{*}m_{e,ij}^{2}\tilde{e}_{R,j}$$

$$- \tilde{u}_{L,j\beta}^{0,*}\delta_{\alpha\beta}m_{\tilde{q},ij}^{0,2}\tilde{u}_{L,i\alpha}^{0} - \tilde{u}_{R,i\alpha}^{0,*}\delta_{\alpha\beta}m_{\tilde{u},ij}^{0,2}\tilde{u}_{R,j\beta}^{0} - \tilde{\nu}_{L,j}^{*}m_{l,ij}^{2}\tilde{\nu}_{L,i}$$

$$(10.3)$$

$$L_{SB,\lambda} = \frac{1}{2} \left(-\lambda_{\tilde{B}}^{2}M_{1} - M_{2}\lambda_{\tilde{W},i}^{2} - M_{3}\lambda_{\tilde{g},i}^{2} + \text{h.c.} \right)$$

$$(10.4)$$

10.2.3 Gauge fixing terms

Gauge fixing terms for eigenstates 'GaugeES'

$$L_{GF} = -\frac{1}{2}\partial_{\mu}g\xi_{G}^{-1} - \frac{1}{2}\partial_{\mu}W^{-}\xi_{W}^{-1}$$
(10.5)

Gauge fixing terms for eigenstates 'EWSB'

$$L_{GF} = -\frac{1}{2}\partial_{\mu}\gamma\xi_{P}^{-1} - \frac{1}{2}\partial_{\mu}g\xi_{G}^{-1} - \frac{1}{2}\xi_{Z}^{-1}\left(-A_{1}^{0}m_{Z}\xi_{Z} + \partial_{\mu}Z\right) - \xi_{W}^{-1}\left(iH_{1}^{-}m_{W^{-}}\xi_{W} + \partial_{\mu}W^{-}\right)$$

$$(10.6)$$

10.2.4 Fields integrated out

None

10.3 Field Rotations

10.3.1 Rotations in gauge sector for eigenstates 'EWSB'

$$W_{1\rho}^{-} = \frac{1}{\sqrt{2}}W_{\rho}^{-} + \frac{1}{\sqrt{2}}W_{\rho}^{+} \tag{10.7}$$

$$W_{2\rho}^{-} = -i\frac{1}{\sqrt{2}}W_{\rho}^{-} + i\frac{1}{\sqrt{2}}W_{\rho}^{+} \tag{10.8}$$

$$W_{3\rho}^{-} = \cos\Theta_W Z_{\rho} + \sin\Theta_W \gamma_{\rho} \tag{10.9}$$

$$B_{\rho} = \cos\Theta_W \gamma_{\rho} - \sin\Theta_W Z_{\rho} \tag{10.10}$$

$$\lambda_{\tilde{W},1} = \frac{1}{\sqrt{2}}\tilde{W}^{-} + \frac{1}{\sqrt{2}}\tilde{W}^{+} \tag{10.11}$$

$$\lambda_{\tilde{W},2} = -i\frac{1}{\sqrt{2}}\tilde{W}^{-} + i\frac{1}{\sqrt{2}}\tilde{W}^{+} \tag{10.12}$$

$$\lambda_{\tilde{W},3} = \tilde{W}^0 \tag{10.13}$$

10.3.2 Rotations in Mass sector for eigenstates 'EWSB'

Mass Matrices for Scalars

 $\bullet \ \, \mathbf{Mass \ matrix \ for \ Down-Squarks}, \ \, \mathbf{Basis:} \ \, \left(\tilde{d}_{L,o_{1}\alpha_{1}},\tilde{d}_{R,o_{2}\alpha_{2}}\right), \left(\tilde{d}_{L,p_{1}\beta_{1}}^{*},\tilde{d}_{R,p_{2}\beta_{2}}^{*}\right)$

$$m_{\tilde{d}}^{2} = \begin{pmatrix} m_{11} & \frac{1}{2}\delta_{\alpha_{1}\beta_{2}}\delta_{o_{1}p_{2}}\left(\sqrt{2}v_{d}T_{d,o_{1}o_{1}} - v_{s}v_{u}\lambda^{*}Y_{d,o_{1}o_{1}}\right) \\ m_{21} & m_{22} \end{pmatrix}$$

$$(10.14)$$

$$m_{11} = \frac{1}{24} \delta_{\alpha_1 \beta_1} \delta_{o_1 p_1} \left(12v_d^2 |Y_{d,o_1 o_1}|^2 + 24m_{q,o_1 o_1}^2 - \left(3g_2^2 + g_1^2 \right) \left(-v_u^2 + v_d^2 \right) \right)$$

$$(10.15)$$

$$m_{21} = \frac{1}{2} \left(\sqrt{2} v_d T_{d, o_2 o_2}^* - v_s v_u \lambda Y_{d, o_2 o_2}^* \right) \delta_{\alpha_2 \beta_1} \delta_{o_2 p_1}$$
(10.16)

$$m_{22} = \frac{1}{12} \delta_{\alpha_2 \beta_2} \delta_{o_2 p_2} \left(12 m_{d, o_2 o_2}^2 + 6 v_d^2 |Y_{d, o_2 o_2}|^2 + g_1^2 \left(-v_d^2 + v_u^2 \right) \right)$$
(10.17)

This matrix is diagonalized by Z^D :

$$Z^{D} m_{\tilde{d}}^{2} Z^{D,\dagger} = m_{2.\tilde{d}}^{dia} \tag{10.18}$$

with

$$\tilde{d}_{L,i\alpha} = \sum_{t_2} Z_{ji}^{D,*} \tilde{d}_{j\alpha}, \qquad \tilde{d}_{R,i\alpha} = \sum_{t_2} Z_{ji}^{D,*} \tilde{d}_{j\alpha}$$
 (10.19)

• Mass matrix for Sneutrinos, Basis: $(\tilde{\nu}_{L,o_1}), (\tilde{\nu}_{L,p_1}^*)$

$$m_{\tilde{\nu}}^2 = \left(\frac{1}{8} \left(8m_{l,o_1p_1}^2 + \left(g_1^2 + g_2^2\right) \left(-v_u^2 + v_d^2\right) \delta_{o_1p_1}\right)\right)$$
(10.20)

This matrix is diagonalized by \mathbb{Z}^V :

$$Z^V m_{\tilde{\nu}}^2 Z^{V,\dagger} = m_{2,\tilde{\nu}}^{dia} \tag{10.21}$$

with

$$\tilde{\nu}_{L,i} = \sum_{t_0} Z_{ji}^{V,*} \tilde{\nu}_j \tag{10.22}$$

 $\bullet \ \ \mathbf{Mass \ matrix \ for \ Up-Squarks}, \ \mathbf{Basis:} \ \left(\tilde{u}_{L,o_{1}\alpha_{1}},\tilde{u}_{R,o_{2}\alpha_{2}}\right), \left(\tilde{u}_{L,p_{1}\beta_{1}}^{*},\tilde{u}_{R,p_{2}\beta_{2}}^{*}\right) \\$

$$m_{\tilde{u}}^{2} = \begin{pmatrix} m_{11} & \frac{1}{2} \delta_{\alpha_{1}\beta_{2}} \delta_{o_{1}p_{2}} \left(\sqrt{2} v_{u} T_{u,o_{1}o_{1}} - v_{d} v_{s} \lambda^{*} Y_{u,o_{1}o_{1}} \right) \\ m_{21} & m_{22} \end{pmatrix}$$

$$(10.23)$$

$$m_{11} = \frac{1}{24} \delta_{\alpha_1 \beta_1} \left(\left(12v_u^2 |Y_{u,o_1 o_1}|^2 - \left(-3g_2^2 + g_1^2 \right) \left(-v_u^2 + v_d^2 \right) \right) \delta_{o_1 p_1} + 24 \sum_{a=1}^3 V_{o_1 a}^{CKM} V_{p_1 a}^{CKM,*} m_{q,aa}^2 \right)$$

$$(10.24)$$

$$m_{21} = \frac{1}{2} \left(\sqrt{2} v_u T_{u,o_2 o_2}^* - v_d v_s \lambda Y_{u,o_2 o_2}^* \right) \delta_{\alpha_2 \beta_1} \delta_{o_2 p_1}$$
(10.25)

$$m_{22} = \frac{1}{6} \delta_{\alpha_2 \beta_2} \delta_{o_2 p_2} \left(3v_u^2 |Y_{u, o_2 o_2}|^2 + 6m_{u, o_2 o_2}^2 + g_1^2 \left(-v_u^2 + v_d^2 \right) \right)$$
(10.26)

This matrix is diagonalized by Z^U :

$$Z^{U}m_{\tilde{u}}^{2}Z^{U,\dagger} = m_{2.\tilde{u}}^{dia} \tag{10.27}$$

with

$$\tilde{u}_{L,i\alpha} = \sum_{t_2} Z_{ji}^{U,*} \tilde{u}_{j\alpha}, \qquad \tilde{u}_{R,i\alpha} = \sum_{t_2} Z_{ji}^{U,*} \tilde{u}_{j\alpha}$$
 (10.28)

• Mass matrix for Sleptons, Basis: $(\tilde{e}_{L,o_1}, \tilde{e}_{R,o_2}), (\tilde{e}_{L,p_1}^*, \tilde{e}_{R,p_2}^*)$

$$m_{\tilde{e}}^2 = \begin{pmatrix} m_{11} & -\frac{1}{2}v_s v_u \lambda^* Y_{e,o_1 p_2} + \frac{1}{\sqrt{2}}v_d T_{e,o_1 p_2} \\ -\frac{1}{2}v_s v_u \lambda Y_{e,p_1 o_2}^* + \frac{1}{\sqrt{2}}v_d T_{e,p_1 o_2}^* & m_{22} \end{pmatrix}$$

$$(10.29)$$

$$m_{11} = \frac{1}{8} \left(4v_d^2 \sum_{a=1}^3 Y_{e,p_1 a}^* Y_{e,o_1 a} + 8m_{l,o_1 p_1}^2 + \left(-g_2^2 + g_1^2 \right) \left(-v_u^2 + v_d^2 \right) \delta_{o_1 p_1} \right)$$
(10.30)

$$m_{22} = \frac{1}{4} \left(2v_d^2 \sum_{a=1}^3 Y_{e,ao_2}^* Y_{e,ap_2} + 4m_{e,p_2o_2}^2 + g_1^2 \left(-v_d^2 + v_u^2 \right) \delta_{o_2p_2} \right)$$
(10.31)

This matrix is diagonalized by Z^E :

$$Z^{E} m_{\tilde{e}}^{2} Z^{E,\dagger} = m_{2.\tilde{e}}^{dia} \tag{10.32}$$

with

$$\tilde{e}_{L,i} = \sum_{t_2} Z_{ji}^{E,*} \tilde{e}_j , \qquad \tilde{e}_{R,i} = \sum_{t_2} Z_{ji}^{E,*} \tilde{e}_j$$
(10.33)

• Mass matrix for Higgs, Basis: $(\phi_d, \phi_u, \phi_s), (\phi_d, \phi_u, \phi_s)$

$$m_h^2 = \begin{pmatrix} m_{11} & m_{21}^* & m_{31}^* \\ m_{21} & m_{22} & m_{32}^* \\ m_{31} & m_{32} & m_{33} \end{pmatrix}$$
(10.34)

$$m_{11} = \frac{1}{8} \left(4 \left(v_s^2 + v_u^2 \right) |\lambda|^2 + 8m_{H_d}^2 + \left(g_1^2 + g_2^2 \right) \left(3v_d^2 - v_u^2 \right) \right)$$
(10.35)

$$m_{21} = \frac{1}{4} \left(-2\sqrt{2}v_s \Re\left(T_{\lambda}\right) + \left(4v_d v_u \lambda - v_s^2 \kappa\right) \lambda^* - g_1^2 v_d v_u - g_2^2 v_d v_u - v_s^2 \lambda \kappa^* \right)$$
(10.36)

$$m_{22} = \frac{1}{8} \left(4 \left(v_d^2 + v_s^2 \right) |\lambda|^2 + 8 m_{H_u}^2 - \left(g_1^2 + g_2^2 \right) \left(-3 v_u^2 + v_d^2 \right) \right)$$
(10.37)

$$m_{31} = \frac{1}{2} \left(\left(2v_d v_s \lambda - v_s v_u \kappa \right) \lambda^* - \sqrt{2} v_u \Re \left(T_\lambda \right) - v_s v_u \lambda \kappa^* \right)$$

$$(10.38)$$

$$m_{32} = \frac{1}{2} \left(\left(2v_s v_u \lambda - v_d v_s \kappa \right) \lambda^* - \sqrt{2} v_d \Re \left(T_\lambda \right) - v_d v_s \lambda \kappa^* \right)$$

$$(10.39)$$

$$m_{33} = \frac{1}{2} \left(2 \left(\sqrt{2} v_s \Re \left(T_\kappa \right) + m_S^2 \right) + \left(6 v_s^2 \kappa - v_d v_u \lambda \right) \kappa^* + \left(v_d^2 \lambda - v_d v_u \kappa + v_u^2 \lambda \right) \lambda^* \right)$$

$$(10.40)$$

This matrix is diagonalized by Z^H :

$$Z^{H}m_{h}^{2}Z^{H,\dagger} = m_{2,h}^{dia} \tag{10.41}$$

with

$$\phi_d = \sum_{t_2} Z_{j1}^H h_j , \qquad \phi_u = \sum_{t_2} Z_{j2}^H h_j , \qquad \phi_s = \sum_{t_2} Z_{j3}^H h_j$$
 (10.42)

• Mass matrix for Pseudo-Scalar Higgs, Basis: $(\sigma_d, \sigma_u, \sigma_s), (\sigma_d, \sigma_u, \sigma_s)$

$$m_{A^0}^2 = \begin{pmatrix} m_{11} & m_{21}^* & m_{31}^* \\ m_{21} & m_{22} & m_{32}^* \\ m_{31} & m_{32} & m_{33} \end{pmatrix}$$
(10.43)

$$m_{11} = \frac{1}{8} \left(4 \left(v_s^2 + v_u^2 \right) |\lambda|^2 + 8m_{H_d}^2 + \left(g_1^2 + g_2^2 \right) \left(-v_u^2 + v_d^2 \right) \right)$$
(10.44)

$$m_{21} = \frac{1}{4} v_s \left(2\sqrt{2} \Re \left(T_\lambda \right) + v_s \kappa \lambda^* + v_s \lambda \kappa^* \right) \tag{10.45}$$

$$m_{22} = \frac{1}{8} \left(4 \left(v_d^2 + v_s^2 \right) |\lambda|^2 + 8 m_{H_u}^2 - \left(g_1^2 + g_2^2 \right) \left(-v_u^2 + v_d^2 \right) \right)$$
(10.46)

$$m_{31} = -\frac{1}{2}v_u\left(-\sqrt{2}\Re\left(T_\lambda\right) + v_s\kappa\lambda^* + v_s\lambda\kappa^*\right) \tag{10.47}$$

$$m_{32} = -\frac{1}{2}v_d\left(-\sqrt{2}\Re\left(T_\lambda\right) + v_s\kappa\lambda^* + v_s\lambda\kappa^*\right) \tag{10.48}$$

$$m_{33} = \frac{1}{2} \left(2\left(-\sqrt{2}v_s \Re\left(T_\kappa\right) + m_S^2 \right) + \left(2v_s^2 \kappa + v_d v_u \lambda \right) \kappa^* + \left(v_d^2 \lambda + v_d v_u \kappa + v_u^2 \lambda \right) \lambda^* \right)$$

$$(10.49)$$

This matrix is diagonalized by Z^A :

$$Z^{A}m_{A^{0}}^{2}Z^{A,\dagger} = m_{2,A^{0}}^{dia} \tag{10.50}$$

with

$$\sigma_d = \sum_{t_2} Z_{j1}^A A_j^0, \qquad \sigma_u = \sum_{t_2} Z_{j2}^A A_j^0, \qquad \sigma_s = \sum_{t_2} Z_{j3}^A A_j^0$$
(10.51)

• Mass matrix for Charged Higgs, Basis: $\left(H_d^-, H_u^{+,*}\right), \left(H_d^{-,*}, H_u^+\right)$

$$m_{H^-}^2 = \begin{pmatrix} m_{11} & m_{21}^* \\ m_{21} & m_{22} \end{pmatrix} \tag{10.52}$$

$$m_{11} = \frac{1}{8} \left(4v_s^2 |\lambda|^2 + 8m_{H_d}^2 + g_1^2 v_d^2 - g_1^2 v_u^2 + g_2^2 v_d^2 + g_2^2 v_u^2 \right)$$
(10.53)

$$m_{21} = \frac{1}{4} \left(2\sqrt{2}v_s T_\lambda^* + 2\left(-v_d v_u \lambda + v_s^2 \kappa \right) \lambda^* + g_2^2 v_d v_u \right)$$
(10.54)

$$m_{22} = \frac{1}{8} \left(4v_s^2 |\lambda|^2 + 8m_{H_u}^2 - g_1^2 v_d^2 + g_1^2 v_u^2 + g_2^2 v_d^2 + g_2^2 v_u^2 \right)$$
(10.55)

This matrix is diagonalized by Z^+ :

$$Z^{+}m_{H^{-}}^{2}Z^{+,\dagger} = m_{2,H^{-}}^{dia} \tag{10.56}$$

with

$$H_d^- = \sum_{t_2} Z_{j1}^{+,*} H_j^-, \qquad H_u^+ = \sum_{t_2} Z_{j2}^+ H_j^+$$
 (10.57)

The mixing matrix can be parametrized by

$$Z^{+} = \begin{pmatrix} -\cos\beta & \sin\beta \\ \sin\beta & \cos\beta \end{pmatrix} \tag{10.58}$$

Mass Matrices for Fermions

• Mass matrix for Neutralinos, Basis: $\left(\lambda_{\tilde{B}}, \tilde{W}^0, \tilde{H}_d^0, \tilde{H}_u^0, \tilde{S}\right), \left(\lambda_{\tilde{B}}, \tilde{W}^0, \tilde{H}_d^0, \tilde{H}_u^0, \tilde{S}\right)$

$$m_{\tilde{\chi}^{0}} = \begin{pmatrix} M_{1} & 0 & -\frac{1}{2}g_{1}v_{d} & \frac{1}{2}g_{1}v_{u} & 0\\ 0 & M_{2} & \frac{1}{2}g_{2}v_{d} & -\frac{1}{2}g_{2}v_{u} & 0\\ -\frac{1}{2}g_{1}v_{d} & \frac{1}{2}g_{2}v_{d} & 0 & -\frac{1}{\sqrt{2}}v_{s}\lambda & -\frac{1}{\sqrt{2}}v_{u}\lambda\\ \frac{1}{2}g_{1}v_{u} & -\frac{1}{2}g_{2}v_{u} & -\frac{1}{\sqrt{2}}v_{s}\lambda & 0 & -\frac{1}{\sqrt{2}}v_{d}\lambda\\ 0 & 0 & -\frac{1}{\sqrt{2}}v_{u}\lambda & -\frac{1}{\sqrt{2}}v_{d}\lambda & \sqrt{2}v_{s}\kappa \end{pmatrix}$$

$$(10.59)$$

This matrix is diagonalized by N:

$$Nm_{\tilde{\chi}^0}N^{\dagger} = m_{\tilde{\chi}^0}^{dia} \tag{10.60}$$

with

$$\lambda_{\tilde{B}} = \sum_{t_2} N_{j1}^* \lambda_j^0, \qquad \tilde{W}^0 = \sum_{t_2} N_{j2}^* \lambda_j^0, \qquad \tilde{H}_d^0 = \sum_{t_2} N_{j3}^* \lambda_j^0$$
(10.61)

$$\tilde{H}_{u}^{0} = \sum_{t_{2}} N_{j4}^{*} \lambda_{j}^{0}, \qquad \qquad \tilde{S} = \sum_{t_{2}} N_{j5}^{*} \lambda_{j}^{0}$$
(10.62)

• Mass matrix for Charginos, Basis: $\left(\tilde{W}^{-}, \tilde{H}_{d}^{-}\right), \left(\tilde{W}^{+}, \tilde{H}_{u}^{+}\right)$

$$m_{\tilde{\chi}^-} = \begin{pmatrix} M_2 & \frac{1}{\sqrt{2}} g_2 v_u \\ \frac{1}{\sqrt{2}} g_2 v_d & \frac{1}{\sqrt{2}} v_s \lambda \end{pmatrix}$$
 (10.63)

This matrix is diagonalized by U and V

$$U^* m_{\tilde{\chi}^-} V^{\dagger} = m_{\tilde{\chi}^-}^{dia} \tag{10.64}$$

with

$$\tilde{W}^{-} = \sum_{t_{a}} U_{j1}^{*} \lambda_{j}^{-}, \qquad \tilde{H}_{d}^{-} = \sum_{t_{a}} U_{j2}^{*} \lambda_{j}^{-}$$
(10.65)

$$\tilde{W}^{-} = \sum_{t_2} U_{j1}^* \lambda_j^{-}, \qquad \tilde{H}_d^{-} = \sum_{t_2} U_{j2}^* \lambda_j^{-}$$

$$\tilde{W}^{+} = \sum_{t_2} V_{1j}^* \lambda_j^{+}, \qquad \tilde{H}_u^{+} = \sum_{t_2} V_{2j}^* \lambda_j^{+}$$

$$(10.65)$$

• Mass matrix for Leptons, Basis: $(e_{L,o_1}), (e_{R,p_1}^*)$

$$m_e = \left(\frac{1}{\sqrt{2}} v_d Y_{e,o_1 p_1}\right)$$
 (10.67)

This matrix is diagonalized by U_L^e and U_R^e

$$U_L^{e,*} m_e U_R^{e,\dagger} = m_e^{dia}$$
 (10.68)

with

$$e_{L,i} = \sum_{t_2} U_{L,ji}^{e,*} E_{L,j} \tag{10.69}$$

$$e_{R,i} = \sum_{t_2} U_{R,ij}^e E_{R,j}^* \tag{10.70}$$

10.4 Vacuum Expectation Values

VEVs for eigenstates 'EWSB' 10.4.1

$$H_d^0 = \frac{1}{\sqrt{2}}\phi_d + \frac{1}{\sqrt{2}}v_d + i\frac{1}{\sqrt{2}}\sigma_d \tag{10.71}$$

$$H_u^0 = \frac{1}{\sqrt{2}}\phi_u + \frac{1}{\sqrt{2}}v_u + i\frac{1}{\sqrt{2}}\sigma_u \tag{10.72}$$

$$S = \frac{1}{\sqrt{2}}\phi_s + \frac{1}{\sqrt{2}}v_s + i\frac{1}{\sqrt{2}}\sigma_s \tag{10.73}$$

10.5 Tadpole Equations

10.5.1Tadpole Equations for eigenstates 'SCKM'

$$\frac{\partial V}{\partial v_d} = \frac{1}{8} \left(\left(g_1^2 + g_2^2 \right) v_d^3 + v_d \left(4 \left(v_s^2 + v_u^2 \right) |\lambda|^2 + 8 m_{H_d}^2 - \left(g_1^2 + g_2^2 \right) v_u^2 \right) \\
- 2 v_s v_u \left(2 \sqrt{2} \Re \left(T_\lambda \right) + v_s \kappa \lambda^* + v_s \lambda \kappa^* \right) \right) \\
\frac{\partial V}{\partial v_u} = \frac{1}{8} \left(8 m_{H_u}^2 v_u - g_1^2 v_d^2 v_u - g_2^2 v_d^2 v_u + g_1^2 v_u^3 + g_2^2 v_u^3 - 2 v_d v_s^2 \lambda \kappa^* \right)$$
(10.74)

$$+ \left(-2v_d v_s^2 \kappa + 4v_d^2 v_u \lambda + 4v_s^2 v_u \lambda \right) \lambda^* - 4\sqrt{2} v_d v_s \Re\left(T_\lambda\right)$$

$$\frac{\partial V}{\partial v_s} = \frac{1}{4} \left(4v_s^3 |\kappa|^2 + 2v_s \left(2m_S^2 + \left(v_d^2 \lambda - v_d v_u \kappa + v_u^2 \lambda \right) \lambda^* - v_d v_u \lambda \kappa^* \right) + \sqrt{2} v_s^2 \left(T_\kappa^* + T_\kappa\right)$$

$$- \sqrt{2} v_d v_u \left(T_\lambda^* + T_\lambda\right)$$

$$(10.76)$$

10.5.2 Tadpole Equations for eigenstates 'EWSB'

$$\frac{\partial V}{\partial v_d} = \frac{1}{8} \left(8m_{H_d}^2 v_d + g_1^2 v_d^3 + g_2^2 v_d^3 - g_1^2 v_d v_u^2 - g_2^2 v_d v_u^2 - 2v_s^2 v_u \lambda \kappa^* \right) \\
+ \left(4v_d v_u^2 \lambda + v_s^2 \left(-2v_u \kappa + 4v_d \lambda \right) \right) \lambda^* - 4\sqrt{2} v_s v_u \Re \left(T_\lambda \right) \right) \\
\frac{\partial V}{\partial v_u} = \frac{1}{8} \left(8m_{H_u}^2 v_u - g_1^2 v_d^2 v_u - g_2^2 v_d^2 v_u + g_1^2 v_u^3 + g_2^2 v_u^3 - 2v_d v_s^2 \lambda \kappa^* \right) \\
+ \left(-2v_d v_s^2 \kappa + 4v_d^2 v_u \lambda + 4v_s^2 v_u \lambda \right) \lambda^* - 4\sqrt{2} v_d v_s \Re \left(T_\lambda \right) \right) \\
\frac{\partial V}{\partial v_s} = \frac{1}{4} \left(4m_S^2 v_s + \left(-2v_d v_s v_u \lambda + 4v_s^3 \kappa \right) \kappa^* + 2v_s \left(v_d^2 \lambda - v_d v_u \kappa + v_u^2 \lambda \right) \lambda^* - \sqrt{2} v_d v_u T_\lambda^* \right) \\
+ 2\sqrt{2} v_s^2 \Re \left(T_\kappa \right) - \sqrt{2} v_d v_u T_\lambda \right) \tag{10.79}$$

10.6 Particle content for eigenstates 'EWSB'

Name	Type	complex/real	Generations	Indices
$ ilde{d}$	Scalar	complex	6	generation, color
$ ilde{ u}$	Scalar	complex	3	${\it generation}$
\tilde{u}	Scalar	complex	6	generation, color
$ ilde{e}$	Scalar	complex	6	${\it generation}$
h	Scalar	real	3	${\it generation}$
A^0	Scalar	real	3	${\it generation}$
H^-	Scalar	complex	2	${\it generation}$
ν	Fermion	Dirac	3	${\it generation}$
$ ilde{g}$	Fermion	Majorana	8	${\it generation}$
d	Fermion	Dirac	3	generation, color
u	Fermion	Dirac	3	generation, color
$\tilde{\chi}^0$	Fermion	Majorana	5	${\it generation}$
$ ilde{\chi}^-$	Fermion	Dirac	2	${\it generation}$
e	Fermion	Dirac	3	${\it generation}$
g	Vector	real	8	generation, lorentz
W^-	Vector	complex	1	lorentz
γ	Vector	real	1	lorentz

Z	Vector	$_{\mathrm{real}}$	1	lorentz
η^G	Ghost	real	8	generation
η^-	Ghost	complex	1	
η^+	Ghost	complex	1	
η^γ	Ghost	$_{\mathrm{real}}$	1	
η^Z	Ghost	$_{\mathrm{real}}$	1	

10.7 Modelfile for SARAH

10.8 Implementation in SARAH

Model directory: NMSSM/CKM

10.8.1 Particles for eigenstates 'GaugeES'

• Fermions

$$\begin{split} \tilde{B} &= \begin{pmatrix} \lambda_{\tilde{B}} \\ \lambda_{\tilde{B}}^* \end{pmatrix} & \text{Bino} &= \begin{pmatrix} \text{fB} \\ \text{conj}[\text{fB}] \end{pmatrix} \\ d_{i\alpha}^1 &= \begin{pmatrix} d_{L,i\alpha} \\ 0 \end{pmatrix} & \text{Fd1}[\{\text{generation, color}\}] &= \begin{pmatrix} \text{FdL0}[\{\text{generation, color}\}] \\ 0 \end{pmatrix} \\ d_{i\alpha}^2 &= \begin{pmatrix} 0 \\ 0 \\ d_{R,i\alpha} \end{pmatrix} & \text{Fd2}[\{\text{generation, color}\}] &= \begin{pmatrix} 0 \\ \text{FdR0}[\{\text{generation, color}\}] \end{pmatrix} \\ e_i^1 &= \begin{pmatrix} e_{L,i} \\ 0 \end{pmatrix} & \text{Fe1}[\{\text{generation}\}] &= \begin{pmatrix} FeL[\{\text{generation}\}] \\ 0 \end{pmatrix} \\ e_i^2 &= \begin{pmatrix} 0 \\ e_{R,i} \end{pmatrix} & \text{Fe2}[\{\text{generation, color}\}] &= \begin{pmatrix} FuL0[\{\text{generation, color}\}] \\ 0 \end{pmatrix} \\ u_{i\alpha}^1 &= \begin{pmatrix} u_{L,i\alpha} \\ 0 \end{pmatrix} & \text{Fu1}[\{\text{generation, color}\}] &= \begin{pmatrix} FuL0[\{\text{generation, color}\}] \\ 0 \end{pmatrix} \\ u_{i\alpha}^2 &= \begin{pmatrix} 0 \\ u_{R,i\alpha} \end{pmatrix} & \text{Fv2}[\{\text{generation, color}\}] &= \begin{pmatrix} FvL[\{\text{generation, color}\}] \\ 0 \end{pmatrix} \\ \tilde{\nu}_i &= \begin{pmatrix} \nu_{L,i} \\ 0 \end{pmatrix} & \text{Fv}[\{\text{generation}\}] &= \begin{pmatrix} fc[\{\text{generation}\}] \\ conj[fG[\{\text{generation}\}]] \end{pmatrix} \\ \tilde{H}^0 &= \begin{pmatrix} \tilde{H}_0 \\ \tilde{H}_0^{i,*} \\ \tilde{H}_0^{i,*} \end{pmatrix} & \text{HO} &= \begin{pmatrix} FHd0 \\ conj[FHuO] \end{pmatrix} \\ \tilde{H}^- &= \begin{pmatrix} \tilde{H}_d \\ \tilde{H}_0^{i,*} \\ \tilde{H}_0^{i,*} \end{pmatrix} & \text{HC} &= \begin{pmatrix} FHdm \\ conj[FHup] \end{pmatrix} \\ \tilde{S} &= \begin{pmatrix} \tilde{S} \\ \tilde{S}^* \end{pmatrix} & \text{S} &= \begin{pmatrix} FSR \\ conj[FSR] \end{pmatrix} \\ \tilde{W}_i &= \begin{pmatrix} \lambda_{\tilde{W},i} \\ \lambda_{W,i}^* \end{pmatrix} & \text{Wino}[\{\text{generation}\}] &= \begin{pmatrix} fWB[\{\text{generation}\}] \\ conj[fWB[\{\text{generation}\}]] \end{pmatrix} \\ \end{split}$$

• Scalars

$\tilde{d}_{L,i\alpha}^0$	SdL0[{generation, color}]	$\tilde{u}_{L,i\alpha}^0$	SuLO[{generation, color}]
$\tilde{e}_{L,i}$	SeL[{generation}]	$ ilde{ u}_{L,i}$	<pre>SvL[{generation}]</pre>
H_d^0	SHd0	H_d^-	SHdm
H_u^0	SHu0	H_u^+	SHup
$\tilde{d}_{R,i\alpha}^0$	<pre>SdR0[{generation, color}]</pre>	$\tilde{u}_{R,i\alpha}^0$	SuRO[{generation, color}]
$\tilde{e}_{R,i}$	SeR[{generation}]	S	SsR

• Vector Bosons

$B_{ ho}$	<pre>VB[{lorentz}]</pre>	$W_{i\rho}^-$	<pre>VWB[{generation, lorentz}]</pre>	
$g_{i ho}$	VG[{generation, lorentz}]			

• Ghosts

10.8.2 Particles for eigenstates 'SCKM'

• Fermions

$$\begin{split} \tilde{B} &= \begin{pmatrix} \lambda_{\tilde{B}} \\ \lambda_{\tilde{B}}^* \end{pmatrix} & \text{Bino} &= \begin{pmatrix} \text{fB} \\ \text{conj[fB]} \end{pmatrix} \\ d_{i\alpha} &= \begin{pmatrix} D_{L,i\alpha} \\ D_{R,i\alpha} \end{pmatrix} & \text{Fd[\{generation, color\}]} &= \begin{pmatrix} \text{FdL[\{generation, color\}]} \\ \text{FdR[\{generation, color\}]} \end{pmatrix} \\ e_i^1 &= \begin{pmatrix} e_{L,i} \\ 0 \end{pmatrix} & \text{Fe1[\{generation\}]} &= \begin{pmatrix} \text{FeL[\{generation\}]} \\ 0 \end{pmatrix} \end{split}$$

$$\begin{split} e_i^2 &= \begin{pmatrix} 0 \\ e_{R,i} \end{pmatrix} & \text{Fe2[\{generation\}]} &= \begin{pmatrix} 0 \\ \text{FeR[\{generation\}]} \end{pmatrix} \\ u_{i\alpha} &= \begin{pmatrix} U_{L,i\alpha} \\ U_{R,i\alpha} \end{pmatrix} & \text{Fu[\{generation, \, \text{color}\}]} &= \begin{pmatrix} \text{FuL[\{generation, \, \text{color}\}]} \\ \text{FuR[\{generation, \, \text{color}\}]} \end{pmatrix} \\ \nu_i &= \begin{pmatrix} \nu_{L,i} \\ 0 \end{pmatrix} & \text{Fv[\{generation\}]} &= \begin{pmatrix} \text{FvL[\{generation\}]} \\ 0 \end{pmatrix} \\ \tilde{g}_i &= \begin{pmatrix} \lambda_{\tilde{g},i} \\ \lambda_{\tilde{g},i}^* \end{pmatrix} & \text{Glu[\{generation\}]} &= \begin{pmatrix} \text{fG[\{generation\}]} \\ \text{conj[fG[\{generation\}]]} \end{pmatrix} \\ \tilde{H}^0 &= \begin{pmatrix} \tilde{H}_0^0 \\ \tilde{H}_u^{0,*} \end{pmatrix} & \text{HO} &= \begin{pmatrix} \text{FHd0} \\ \text{conj[FHu0]} \end{pmatrix} \\ \tilde{H}^- &= \begin{pmatrix} \tilde{H}_d^- \\ \tilde{H}_u^{+,*} \end{pmatrix} & \text{HC} &= \begin{pmatrix} \text{FHdm} \\ \text{conj[FHup]} \end{pmatrix} \\ \tilde{S} &= \begin{pmatrix} \tilde{S} \\ \tilde{S}^* \end{pmatrix} & \text{S} &= \begin{pmatrix} \tilde{F} \\ \tilde{S}^* \end{pmatrix} \\ \tilde{W}_i &= \begin{pmatrix} \lambda_{\tilde{W},i} \\ \lambda_{\tilde{W},i}^* \end{pmatrix} & \text{Wino[\{generation\}]} &= \begin{pmatrix} \text{fWB[\{generation\}]} \\ \text{conj[fWB[\{generation\}]]} \end{pmatrix} \end{split}$$

• Scalars

$\tilde{e}_{L,i}$	SeL[{generation}]	$ ilde{ u}_{L,i}$	SvL[{generation}]
H_d^0	SHd0	H_d^-	SHdm
H_u^0	SHu0	H_u^+	SHup
$\tilde{e}_{R,i}$	SeR[{generation}]	S	SsR
$\tilde{d}_{L,i\alpha}$	<pre>SdL[{generation, color}]</pre>	$\tilde{u}_{L,i\alpha}$	SuL[{generation, color}]
$\tilde{d}_{R,i\alpha}$	<pre>SdR[{generation, color}]</pre>	$\tilde{u}_{R,i\alpha}$	SuR[{generation, color}]

• Vector Bosons

$B_{ ho}$	VB[{lorentz}]	$W_{i\rho}^-$	<pre>VWB[{generation, lorentz}]</pre>
$ q_{io} $	<pre>VG[{generation, lorentz}]</pre>		

• Ghosts

10.8.3 Particles for eigenstates 'EWSB'

• Fermions

$$\begin{split} \tilde{\chi}_i^- &= \begin{pmatrix} \lambda_i^- \\ \lambda_i^{+,*} \end{pmatrix} & \text{Cha[\{generation\}]} &= \begin{pmatrix} \text{Lm[\{generation\}]} \\ \text{conj}[\text{Lp[\{generation\}]}] \end{pmatrix} \\ \tilde{\chi}_i^0 &= \begin{pmatrix} \lambda_i^0 \\ \lambda_i^{0,*} \end{pmatrix} & \text{Chi[\{generation\}]} &= \begin{pmatrix} \text{Lo[\{generation\}]} \\ \text{conj}[\text{Lo[\{generation\}]}] \end{pmatrix} \\ d_{i\alpha} &= \begin{pmatrix} D_{L,i\alpha} \\ D_{R,i\alpha} \end{pmatrix} & \text{Fd[\{generation, \, \text{color}\}]} &= \begin{pmatrix} \text{FdL[\{generation, \, \text{color}\}]} \\ \text{FdR[\{generation, \, \text{color}\}]} \end{pmatrix} \\ e_i &= \begin{pmatrix} E_{L,i} \\ E_{R,i}^* \end{pmatrix} & \text{Fe[\{generation\}]} &= \begin{pmatrix} \text{FEL[\{generation\}]} \\ \text{conj}[\text{FER[\{generation\}]}] \end{pmatrix} \\ u_{i\alpha} &= \begin{pmatrix} U_{L,i\alpha} \\ U_{R,i\alpha} \end{pmatrix} & \text{Fu[\{generation, \, \text{color}\}]} &= \begin{pmatrix} \text{FuL[\{generation, \, \text{color}\}]} \\ \text{FuR[\{generation, \, \text{color}\}]} \end{pmatrix} \\ \nu_i &= \begin{pmatrix} \nu_{L,i} \\ 0 \end{pmatrix} & \text{Fv[\{generation\}]} &= \begin{pmatrix} \text{FvL[\{generation\}\}]} \\ 0 \end{pmatrix} \\ \tilde{g}_i &= \begin{pmatrix} \lambda_{\tilde{g},i} \\ \lambda_{\tilde{g},i}^* \end{pmatrix} & \text{Glu[\{generation\}]} &= \begin{pmatrix} \text{fG[\{generation\}]} \\ \text{conj}[\text{fG[\{generation\}\}]}] \end{pmatrix} \end{split}$$

• Scalars

$\tilde{d}_{i\alpha}$	Sd[{generation, color}]	$ ilde{ u}_i$	Sv[{generation}]
$\tilde{u}_{i\alpha}$	Su[{generation, color}]	\tilde{e}_i	Se[{generation}]
h_i	hh[{generation}]	A_i^0	Ah[{generation}]
H_i^-	<pre>Hpm[{generation}]</pre>		

• Vector Bosons

$g_{i ho}$	VG[{generation, lorentz}]	W_{ρ}^{-}	<pre>VWm[{lorentz}]</pre>
$\gamma_{ ho}$	<pre>VP[{lorentz}]</pre>	$Z_{ ho}$	<pre>VZ[{lorentz}]</pre>

\bullet Ghosts

η_i^G	gG[{generation}]	η^-	gWm
η^+	gWmC	η^{γ}	gP
η^Z	gZ		

10.8.4 Parameters

g_1	g1	g_2	g2	g_3	g3
Y_u^0	YuO	T_u^0	T[Yu0]	Y_d^0	Yd0
T_d^0	T[Yd0]	Y_e	Ye	T_e	T[Ye]
λ	\[Lambda]	T_{λ}	T[\[Lambda]]	κ	\[Kappa]
T_{κ}	$T[\[Kappa]]$	$m_{ ilde{q}}^{0,2}$	mq02	m_l^2	m12
$m_{H_d}^2$	mHd2	$m_{H_u}^2$	mHu2	$m_{\tilde{d}}^{0,2}$	md02
$m_{\tilde{u}}^{0,2}$	mu02	m_e^2	me2	m_S^2	ms2
M_1	MassB	M_2	$ exttt{MassWB}$	M_3	MassG
V_d	Vd	V_u	Vu	U_d	Ud
U_u	Uu	v_d	vd	v_u	vu
v_s	vS	Θ_W	${ t ThetaW}$	$\phi_{ ilde{g}}$	PhaseGlu
Z^D	ZD	Z^V	ZV	Z^U	ZU
Z^E	ZE	Z^H	ZH	Z^A	ZA
Z^+	ZP	N	ZN	U	UM
V	UP	U_L^e	ZEL	U_R^e	ZER
β	\[Beta]	V^{CKM}	CKM	Y_u	Yu
Y_d	Yd	T_d	T[Yd]	T_u	T[Yu]
m_q^2	mq2	m_u^2	mu2	m_d^2	md2

Chapter 11

The Next-to-Minimal Supersymmetric Standard Model with CP violation

11.1 Superfields

11.1.1 Vector Superfields

SF	Spin $\frac{1}{2}$	Spin 1	SU(N)	Coupling	Name
\hat{B}	$\lambda_{ ilde{B}}$	B	U(1)	g_1	hypercharge
\hat{W}	$\lambda_{ ilde{W}}$	W^-	SU(2)	g_2	left
\hat{g}	$\lambda_{ ilde{g}}$	g	SU(3)	g_3	color

11.1.2 Chiral Superfields

SF	Spin 0	Spin $\frac{1}{2}$	Generations	$(U(1) \otimes \mathrm{SU}(2) \otimes \mathrm{SU}(3))$
\hat{q}	$ ilde{q}$	q	3	$(rac{1}{6}, 2, 3)$
\hat{l}	\tilde{l}	l	3	$(-rac{1}{2},2,1)$
\hat{H}_d	H_d	$ ilde{H}_d$	1	$(-rac{1}{2},{f 2},{f 1})$
\hat{H}_u	H_u	\tilde{H}_u	1	$(rac{1}{2}, oldsymbol{2}, oldsymbol{1})$
\hat{d}	$ ilde{d}_R^*$	d_R^*	3	$(rac{1}{3}, oldsymbol{1}, \overline{oldsymbol{3}})$
\hat{u}	\tilde{u}_R^*	u_R^*	3	$(-rac{2}{3},1,\overline{3})$
\hat{e}	$ ilde{e}_R^*$	$e_R^* \\ \tilde{S}$	3	(1, 1 , 1)
\hat{s}	S	\tilde{S}	1	(0, 1, 1)

11.2 Superpotential and Lagrangian

11.2.1 Superpotential

$$W = Y_u \,\hat{q} \,\hat{H}_u \,\hat{u} - Y_d \,\hat{q} \,\hat{H}_d \,\hat{d} - Y_e \,\hat{l} \,\hat{H}_d \,\hat{e} + \lambda \,\hat{H}_u \,\hat{H}_d \,\hat{s} + \frac{1}{3} \kappa \,\hat{s} \,\hat{s} \,\hat{s}$$

$$\tag{11.1}$$

11.2.2 Softbreaking terms

$$L_{SB,W} = +\frac{1}{3}S^{3}T_{\kappa} - H_{d}^{0}H_{u}^{0}ST_{\lambda} + H_{d}^{-}H_{u}^{+}ST_{\lambda} + H_{d}^{0}\tilde{d}_{R,k\gamma}^{*}\delta_{\alpha\gamma}\tilde{d}_{L,i\alpha}T_{d,ik} - H_{d}^{-}\tilde{d}_{R,k\gamma}^{*}\delta_{\alpha\gamma}\tilde{u}_{L,i\alpha}T_{d,ik} + H_{d}^{0}\tilde{e}_{R,k}^{*}\tilde{e}_{L,i}T_{e,ik} - H_{d}^{-}\tilde{e}_{R,k}^{*}\tilde{\nu}_{L,i}T_{e,ik} - H_{u}^{+}\tilde{u}_{R,k\gamma}^{*}\delta_{\alpha\gamma}\tilde{d}_{L,i\alpha}T_{u,ik} + H_{u}^{0}\tilde{u}_{R,k\gamma}^{*}\delta_{\alpha\gamma}\tilde{u}_{L,i\alpha}T_{u,ik} + \text{h.c.}$$
 (11.2)
$$L_{SB,\phi} = -m_{H_{d}}^{2}|H_{d}^{0}|^{2} - m_{H_{d}}^{2}|H_{d}^{-}|^{2} - m_{H_{u}}^{2}|H_{u}^{0}|^{2} - m_{H_{u}}^{2}|H_{u}^{+}|^{2} - m_{S}^{2}|S|^{2} - \tilde{d}_{L,i\beta}^{*}\delta_{\alpha\beta}m_{q,ij}^{2}\tilde{d}_{L,i\alpha} - \tilde{d}_{R,i\alpha}^{*}\delta_{\alpha\beta}m_{d,ij}^{2}\tilde{d}_{R,j\beta} - \tilde{e}_{L,j}^{*}m_{l,ij}^{2}\tilde{e}_{L,i} - \tilde{e}_{R,i}^{*}m_{e,ij}^{2}\tilde{e}_{R,j} - \tilde{u}_{L,j\beta}^{*}\delta_{\alpha\beta}m_{q,ij}^{2}\tilde{u}_{L,i\alpha} - \tilde{u}_{R,i\alpha}^{*}\delta_{\alpha\beta}m_{u,ij}^{2}\tilde{u}_{R,j\beta} - \tilde{\nu}_{L,j}^{*}m_{l,ij}^{2}\tilde{\nu}_{L,i}$$
 (11.3)
$$L_{SB,\lambda} = \frac{1}{2} \left(-\lambda_{\tilde{B}}^{2}M_{1} - M_{2}\lambda_{\tilde{W},i}^{2} - M_{3}\lambda_{\tilde{g},i}^{2} + \text{h.c.} \right)$$

11.2.3 Gauge fixing terms

Gauge fixing terms for eigenstates 'GaugeES'

$$L_{GF} = -\frac{1}{2}\partial_{\mu}g\xi_{G}^{-1} - \frac{1}{2}\partial_{\mu}W^{-}\xi_{W}^{-1}$$
(11.5)

Gauge fixing terms for eigenstates 'EWSB'

$$L_{GF} = -\frac{1}{2}\partial_{\mu}\gamma\xi_{P}^{-1} - \frac{1}{2}\partial_{\mu}g\xi_{G}^{-1} - \frac{1}{2}\xi_{Z}^{-1}\left(-h_{1}m_{Z}\xi_{Z} + \partial_{\mu}Z\right) - \xi_{W}^{-1}\left(iH_{1}^{-}m_{W^{-}}\xi_{W} + \partial_{\mu}W^{-}\right)$$
(11.6)

11.2.4 Fields integrated out

None

11.3 Field Rotations

11.3.1 Rotations in gauge sector for eigenstates 'EWSB'

$$W_{1\rho}^{-} = \frac{1}{\sqrt{2}}W_{\rho}^{-} + \frac{1}{\sqrt{2}}W_{\rho}^{+} \tag{11.7}$$

$$W_{2\rho}^{-} = -i\frac{1}{\sqrt{2}}W_{\rho}^{-} + i\frac{1}{\sqrt{2}}W_{\rho}^{+} \tag{11.8}$$

$$W_{3\rho}^{-} = \cos\Theta_W Z_{\rho} + \sin\Theta_W \gamma_{\rho} \tag{11.9}$$

$$B_{\rho} = \cos\Theta_W \gamma_{\rho} - \sin\Theta_W Z_{\rho} \tag{11.10}$$

$$\lambda_{\tilde{W},1} = \frac{1}{\sqrt{2}}\tilde{W}^{-} + \frac{1}{\sqrt{2}}\tilde{W}^{+} \tag{11.11}$$

$$\lambda_{\tilde{W},2} = -i\frac{1}{\sqrt{2}}\tilde{W}^{-} + i\frac{1}{\sqrt{2}}\tilde{W}^{+} \tag{11.12}$$

$$\lambda_{\tilde{W},3} = \tilde{W}^0 \tag{11.13}$$

11.3.2 Rotations in Mass sector for eigenstates 'EWSB'

Mass Matrices for Scalars

 $\bullet \ \, \mathbf{Mass \ matrix \ for \ Down-Squarks}, \ \, \mathbf{Basis:} \ \, \left(\tilde{d}_{L,o_{1}\alpha_{1}},\tilde{d}_{R,o_{2}\alpha_{2}}\right), \left(\tilde{d}_{L,p_{1}\beta_{1}}^{*},\tilde{d}_{R,p_{2}\beta_{2}}^{*}\right)$

$$m_{\tilde{d}}^{2} = \begin{pmatrix} m_{11} & \frac{1}{2} \delta_{\alpha_{1}\beta_{2}} \left(\sqrt{2} v_{d} T_{d,o_{1}p_{2}} - v_{s} v_{u} \lambda^{*} Y_{d,o_{1}p_{2}} \right) \\ \frac{1}{2} \left(\sqrt{2} v_{d} T_{d,p_{1}o_{2}}^{*} - v_{s} v_{u} \lambda Y_{d,p_{1}o_{2}}^{*} \right) \delta_{\alpha_{2}\beta_{1}} & m_{22} \end{pmatrix}$$

$$(11.14)$$

$$m_{11} = \frac{1}{24} \delta_{\alpha_1 \beta_1} \left(12 \left(2m_{q, o_1 p_1}^2 + v_d^2 \sum_{a=1}^3 Y_{d, p_1 a}^* Y_{d, o_1 a} \right) - \left(3g_2^2 + g_1^2 \right) \left(-v_u^2 + v_d^2 \right) \delta_{o_1 p_1} \right)$$
(11.15)

$$m_{22} = \frac{1}{12} \delta_{\alpha_2 \beta_2} \left(6 \left(2m_{d, p_2 o_2}^2 + v_d^2 \sum_{a=1}^3 Y_{d, a o_2}^* Y_{d, a p_2} \right) + g_1^2 \left(-v_d^2 + v_u^2 \right) \delta_{o_2 p_2} \right)$$
(11.16)

This matrix is diagonalized by Z^D :

$$Z^{D} m_{\tilde{d}}^{2} Z^{D,\dagger} = m_{2,\tilde{d}}^{dia} \tag{11.17}$$

with

$$\tilde{d}_{L,i\alpha} = \sum_{t_0} Z_{ji}^{D,*} \tilde{d}_{j\alpha}, \qquad \tilde{d}_{R,i\alpha} = \sum_{t_0} Z_{ji}^{D,*} \tilde{d}_{j\alpha}$$
 (11.18)

• Mass matrix for Up-Squarks, Basis: $(\tilde{u}_{L,o_1\alpha_1}, \tilde{u}_{R,o_2\alpha_2}), (\tilde{u}_{L,p_1\beta_1}^*, \tilde{u}_{R,p_2\beta_2}^*)$

$$m_{\tilde{u}}^{2} = \begin{pmatrix} m_{11} & \frac{1}{2} \delta_{\alpha_{1}\beta_{2}} \left(\sqrt{2} v_{u} T_{u,o_{1}p_{2}} - v_{d} v_{s} \lambda^{*} Y_{u,o_{1}p_{2}} \right) \\ \frac{1}{2} \left(\sqrt{2} v_{u} T_{u,p_{1}o_{2}}^{*} - v_{d} v_{s} \lambda Y_{u,p_{1}o_{2}}^{*} \right) \delta_{\alpha_{2}\beta_{1}} & m_{22} \end{pmatrix}$$

$$(11.19)$$

$$m_{11} = \frac{1}{24} \delta_{\alpha_1 \beta_1} \left(12 \left(2m_{q,o_1 p_1}^2 + v_u^2 \sum_{a=1}^3 Y_{u,p_1 a}^* Y_{u,o_1 a} \right) - \left(-3g_2^2 + g_1^2 \right) \left(-v_u^2 + v_d^2 \right) \delta_{o_1 p_1} \right)$$
(11.20)

$$m_{22} = \frac{1}{6} \delta_{\alpha_2 \beta_2} \left(3v_u^2 \sum_{a=1}^3 Y_{u,ao_2}^* Y_{u,ap_2} + 6m_{u,p_2 o_2}^2 + g_1^2 \left(-v_u^2 + v_d^2 \right) \delta_{o_2 p_2} \right)$$
(11.21)

This matrix is diagonalized by Z^U :

$$Z^{U} m_{\tilde{u}}^{2} Z^{U,\dagger} = m_{2,\tilde{u}}^{dia} \tag{11.22}$$

$$\tilde{u}_{L,i\alpha} = \sum_{t_2} Z_{ji}^{U,*} \tilde{u}_{j\alpha}, \qquad \tilde{u}_{R,i\alpha} = \sum_{t_2} Z_{ji}^{U,*} \tilde{u}_{j\alpha}$$
 (11.23)

• Mass matrix for Sneutrinos, Basis: $(\tilde{\nu}_{L,o_1}), (\tilde{\nu}_{L,p_1}^*)$

$$m_{\tilde{\nu}}^2 = \left(\frac{1}{8} \left(8m_{l,o_1p_1}^2 + \left(g_1^2 + g_2^2\right) \left(-v_u^2 + v_d^2\right) \delta_{o_1p_1}\right)\right)$$
(11.24)

This matrix is diagonalized by Z^V :

$$Z^{V} m_{\tilde{\nu}}^{2} Z^{V,\dagger} = m_{2,\tilde{\nu}}^{dia} \tag{11.25}$$

with

$$\tilde{\nu}_{L,i} = \sum_{t_2} Z_{ji}^{V,*} \tilde{\nu}_j \tag{11.26}$$

• Mass matrix for Sleptons, Basis: $(\tilde{e}_{L,o_1}, \tilde{e}_{R,o_2}), (\tilde{e}^*_{L,p_1}, \tilde{e}^*_{R,p_2})$

$$m_{\tilde{e}}^2 = \begin{pmatrix} m_{11} & -\frac{1}{2}v_s v_u \lambda^* Y_{e,o_1 p_2} + \frac{1}{\sqrt{2}} v_d T_{e,o_1 p_2} \\ -\frac{1}{2}v_s v_u \lambda Y_{e,p_1 o_2}^* + \frac{1}{\sqrt{2}} v_d T_{e,p_1 o_2}^* & m_{22} \end{pmatrix}$$
(11.27)

$$m_{11} = \frac{1}{8} \left(4v_d^2 \sum_{a=1}^3 Y_{e,p_1a}^* Y_{e,o_1a} + 8m_{l,o_1p_1}^2 + \left(-g_2^2 + g_1^2 \right) \left(-v_u^2 + v_d^2 \right) \delta_{o_1p_1} \right)$$
(11.28)

$$m_{22} = \frac{1}{4} \left(2v_d^2 \sum_{a=1}^3 Y_{e,ao_2}^* Y_{e,ap_2} + 4m_{e,p_2o_2}^2 + g_1^2 \left(-v_d^2 + v_u^2 \right) \delta_{o_2p_2} \right)$$
(11.29)

This matrix is diagonalized by Z^E :

$$Z^E m_{\tilde{e}}^2 Z^{E,\dagger} = m_{2,\tilde{e}}^{dia} \tag{11.30}$$

with

$$\tilde{e}_{L,i} = \sum_{t_0} Z_{ji}^{E,*} \tilde{e}_j, \qquad \tilde{e}_{R,i} = \sum_{t_0} Z_{ji}^{E,*} \tilde{e}_j$$
(11.31)

• Mass matrix for Higgs, Basis: $(\phi_d, \phi_u, \phi_s, \sigma_d, \sigma_u, \sigma_s), (\phi_d, \phi_u, \phi_s, \sigma_d, \sigma_u, \sigma_s)$

$$m_h^2 = \begin{pmatrix} m_{11} & m_{21}^* & m_{31}^* & 0 & m_{51}^* & m_{61}^* \\ m_{21} & m_{22} & m_{32}^* & m_{42}^* & 0 & m_{62}^* \\ m_{31} & m_{32} & m_{33} & m_{43}^* & m_{53}^* & m_{63}^* \\ 0 & m_{42} & m_{43} & m_{44} & m_{54}^* & m_{64}^* \\ m_{51} & 0 & m_{53} & m_{54} & m_{55} & m_{65}^* \\ m_{61} & m_{62} & m_{63} & m_{64} & m_{65} & m_{66} \end{pmatrix}$$

$$(11.32)$$

$$m_{11} = \frac{1}{8} \left(4 \left(v_s^2 + v_u^2 \right) |\lambda|^2 + 8m_{H_d}^2 + \left(g_1^2 + g_2^2 \right) \left(3v_d^2 - v_u^2 \right) \right)$$
(11.33)

$$m_{21} = \frac{1}{4} \left(-2\sqrt{2}v_s \Re\left(T_{\lambda}\right) + \left(4v_d v_u \lambda - v_s^2 \kappa\right) \lambda^* - g_1^2 v_d v_u - g_2^2 v_d v_u - v_s^2 \lambda \kappa^* \right)$$
(11.34)

$$m_{22} = \frac{1}{8} \left(4 \left(v_d^2 + v_s^2 \right) |\lambda|^2 + 8 m_{H_u}^2 - \left(g_1^2 + g_2^2 \right) \left(-3 v_u^2 + v_d^2 \right) \right)$$
(11.35)

$$m_{31} = \frac{1}{2} \left(\left(2v_d v_s \lambda - v_s v_u \kappa \right) \lambda^* - \sqrt{2} v_u \Re \left(T_\lambda \right) - v_s v_u \lambda \kappa^* \right)$$

$$(11.36)$$

$$m_{32} = \frac{1}{2} \left(\left(2v_s v_u \lambda - v_d v_s \kappa \right) \lambda^* - \sqrt{2} v_d \Re \left(T_\lambda \right) - v_d v_s \lambda \kappa^* \right)$$
(11.37)

$$m_{33} = \frac{1}{2} \left(2 \left(\sqrt{2} v_s \Re \left(T_\kappa \right) + m_S^2 \right) + \left(6 v_s^2 \kappa - v_d v_u \lambda \right) \kappa^* + \left(v_d^2 \lambda - v_d v_u \kappa + v_u^2 \lambda \right) \lambda^* \right)$$

$$(11.38)$$

$$m_{42} = -\frac{i}{4}v_s\left(\sqrt{2}\left(-T_\lambda^* + T_\lambda\right) - v_s\kappa\lambda^* + v_s\lambda\kappa^*\right)$$
(11.39)

$$m_{43} = -\frac{i}{4}v_u\left(-2v_s\kappa\lambda^* + 2v_s\lambda\kappa^* + \sqrt{2}\left(-T_\lambda^* + T_\lambda\right)\right)$$
(11.40)

$$m_{44} = \frac{1}{8} \left(4 \left(v_s^2 + v_u^2 \right) |\lambda|^2 + 8 m_{H_d}^2 + \left(g_1^2 + g_2^2 \right) \left(-v_u^2 + v_d^2 \right) \right) \tag{11.41}$$

$$m_{51} = -\frac{i}{4}v_s\left(\sqrt{2}\left(-T_\lambda^* + T_\lambda\right) - v_s\kappa\lambda^* + v_s\lambda\kappa^*\right)$$
(11.42)

$$m_{53} = -\frac{i}{4}v_d\left(-2v_s\kappa\lambda^* + 2v_s\lambda\kappa^* + \sqrt{2}\left(-T_\lambda^* + T_\lambda\right)\right)$$
(11.43)

$$m_{54} = \frac{1}{4} v_s \left(2\sqrt{2}\Re \left(T_\lambda \right) + v_s \kappa \lambda^* + v_s \lambda \kappa^* \right) \tag{11.44}$$

$$m_{55} = \frac{1}{8} \left(4 \left(v_d^2 + v_s^2 \right) |\lambda|^2 + 8m_{H_u}^2 - \left(g_1^2 + g_2^2 \right) \left(-v_u^2 + v_d^2 \right) \right)$$
(11.45)

$$m_{61} = \frac{i}{4}v_u \left(-2v_s \kappa \lambda^* + 2v_s \lambda \kappa^* + \sqrt{2} \left(-T_\lambda + T_\lambda^* \right) \right)$$
(11.46)

$$m_{62} = \frac{i}{4}v_d \left(-2v_s \kappa \lambda^* + 2v_s \lambda \kappa^* + \sqrt{2} \left(-T_\lambda + T_\lambda^* \right) \right)$$
(11.47)

$$m_{63} = \frac{i}{2} \left(\sqrt{2} v_s \left(-T_\kappa^* + T_\kappa \right) - v_d v_u \kappa \lambda^* + v_d v_u \lambda \kappa^* \right)$$
(11.48)

$$m_{64} = -\frac{1}{2}v_u\left(-\sqrt{2}\Re\left(T_\lambda\right) + v_s\kappa\lambda^* + v_s\lambda\kappa^*\right) \tag{11.49}$$

$$m_{65} = -\frac{1}{2}v_d\left(-\sqrt{2}\Re\left(T_\lambda\right) + v_s\kappa\lambda^* + v_s\lambda\kappa^*\right) \tag{11.50}$$

$$m_{66} = \frac{1}{2} \left(2 \left(-\sqrt{2} v_s \Re \left(T_\kappa \right) + m_S^2 \right) + \left(2 v_s^2 \kappa + v_d v_u \lambda \right) \kappa^* + \left(v_d^2 \lambda + v_d v_u \kappa + v_u^2 \lambda \right) \lambda^* \right)$$

$$(11.51)$$

This matrix is diagonalized by Z^H :

$$Z^{H}m_{h}^{2}Z^{H,\dagger} = m_{2,h}^{dia} \tag{11.52}$$

$$\phi_d = \sum_{t_2} Z_{j1}^{H,*} h_j, \qquad \phi_u = \sum_{t_2} Z_{j2}^{H,*} h_j, \qquad \phi_s = \sum_{t_2} Z_{j3}^{H,*} h_j$$
(11.53)

$$\sigma_d = \sum_{t_2} Z_{j4}^{H,*} h_j , \qquad \sigma_u = \sum_{t_2} Z_{j5}^{H,*} h_j , \qquad \sigma_s = \sum_{t_2} Z_{j6}^{H,*} h_j$$
 (11.54)

• Mass matrix for Charged Higgs, Basis: $(H_d^-, H_u^{+,*}), (H_d^{-,*}, H_u^+)$

$$m_{H^-}^2 = \begin{pmatrix} m_{11} & m_{21}^* \\ m_{21} & m_{22} \end{pmatrix} \tag{11.55}$$

$$m_{11} = \frac{1}{8} \left(4v_s^2 |\lambda|^2 + 8m_{H_d}^2 + g_1^2 v_d^2 - g_1^2 v_u^2 + g_2^2 v_d^2 + g_2^2 v_u^2 \right)$$
(11.56)

$$m_{21} = \frac{1}{4} \left(2\sqrt{2}v_s T_\lambda^* + 2\left(-v_d v_u \lambda + v_s^2 \kappa \right) \lambda^* + g_2^2 v_d v_u \right)$$
(11.57)

$$m_{22} = \frac{1}{8} \left(4v_s^2 |\lambda|^2 + 8m_{H_u}^2 - g_1^2 v_d^2 + g_1^2 v_u^2 + g_2^2 v_d^2 + g_2^2 v_u^2 \right)$$
(11.58)

This matrix is diagonalized by Z^+ :

$$Z^{+}m_{H^{-}}^{2}Z^{+,\dagger} = m_{2,H^{-}}^{dia} \tag{11.59}$$

with

$$H_d^- = \sum_{t_2} Z_{j1}^{+,*} H_j^-, \qquad H_u^+ = \sum_{t_2} Z_{j2}^+ H_j^+$$
 (11.60)

The mixing matrix can be parametrized by

$$Z^{+} = \begin{pmatrix} -\cos\beta & \sin\beta \\ \sin\beta & \cos\beta \end{pmatrix} \tag{11.61}$$

Mass Matrices for Fermions

• Mass matrix for Neutralinos, Basis: $\left(\lambda_{\tilde{B}}, \tilde{W}^0, \tilde{H}^0_d, \tilde{H}^0_u, \tilde{S}^*\right), \left(\lambda_{\tilde{B}}, \tilde{W}^0, \tilde{H}^0_d, \tilde{H}^0_u, \tilde{S}^*\right)$

$$m_{\tilde{\chi}^0} = \begin{pmatrix} M_1 & 0 & -\frac{1}{2}g_1v_d & \frac{1}{2}g_1v_u & 0\\ 0 & M_2 & \frac{1}{2}g_2v_d & -\frac{1}{2}g_2v_u & 0\\ -\frac{1}{2}g_1v_d & \frac{1}{2}g_2v_d & 0 & -\frac{1}{\sqrt{2}}v_s\lambda & 0\\ \frac{1}{2}g_1v_u & -\frac{1}{2}g_2v_u & -\frac{1}{\sqrt{2}}v_s\lambda & 0 & 0\\ 0 & 0 & 0 & \sqrt{2}v_s\kappa^* \end{pmatrix}$$
(11.62)

This matrix is diagonalized by N:

$$Nm_{\tilde{\chi}^0}N^{\dagger} = m_{\tilde{\chi}^0}^{dia} \tag{11.63}$$

$$\lambda_{\tilde{B}} = \sum_{t_2} N_{j1}^* \lambda_j^0, \qquad \tilde{W}^0 = \sum_{t_2} N_{j2}^* \lambda_j^0, \qquad \tilde{H}_d^0 = \sum_{t_2} N_{j3}^* \lambda_j^0$$

$$\tilde{H}_u^0 = \sum_{t_2} N_{j4}^* \lambda_j^0, \qquad \tilde{S} = \sum_{t_2} N_{j5} \lambda_j^{0,*}$$
(11.64)

$$\tilde{H}_{u}^{0} = \sum_{t_{2}} N_{j4}^{*} \lambda_{j}^{0}, \qquad \qquad \tilde{S} = \sum_{t_{2}} N_{j5} \lambda_{j}^{0,*}$$
(11.65)

• Mass matrix for Charginos, Basis: $\left(\tilde{W}^{-}, \tilde{H}_{d}^{-}\right), \left(\tilde{W}^{+}, \tilde{H}_{u}^{+}\right)$

$$m_{\tilde{\chi}^{-}} = \begin{pmatrix} M_2 & \frac{1}{\sqrt{2}}g_2 v_u \\ \frac{1}{\sqrt{2}}g_2 v_d & \frac{1}{\sqrt{2}}v_s \lambda \end{pmatrix}$$
 (11.66)

This matrix is diagonalized by U and V

$$U^* m_{\tilde{\chi}^-} V^{\dagger} = m_{\tilde{\chi}^-}^{dia} \tag{11.67}$$

with

$$\tilde{W}^{-} = \sum_{t_2} U_{j1}^* \lambda_j^{-}, \qquad \tilde{H}_d^{-} = \sum_{t_2} U_{j2}^* \lambda_j^{-}$$
(11.68)

$$\tilde{W}^{+} = \sum_{t_2} V_{1j}^* \lambda_j^+, \qquad \tilde{H}_u^{+} = \sum_{t_2} V_{2j}^* \lambda_j^+$$
(11.69)

• Mass matrix for Leptons, Basis: (e_{L,o_1}) , (e_{R,p_1}^*)

$$m_e = \left(\frac{1}{\sqrt{2}}v_d Y_{e,o_1 p_1}\right)$$
 (11.70)

This matrix is diagonalized by U_L^e and U_R^e

$$U_L^{e,*} m_e U_R^{e,\dagger} = m_e^{dia} \tag{11.71}$$

with

$$e_{L,i} = \sum_{t_0} U_{L,ji}^{e,*} E_{L,j} \tag{11.72}$$

$$e_{R,i} = \sum_{t_2} U_{R,ij}^e E_{R,j}^* \tag{11.73}$$

• Mass matrix for Down-Quarks, Basis: $(d_{L,o_1\alpha_1}), (d_{R,p_1\beta_1}^*)$

$$m_d = \left(\frac{1}{\sqrt{2}}v_d \delta_{\alpha_1 \beta_1} Y_{d, o_1 p_1}\right) \tag{11.74}$$

This matrix is diagonalized by U_L^d and U_R^d

$$U_L^{d,*} m_d U_R^{d,\dagger} = m_d^{dia} \tag{11.75}$$

$$d_{L,i\alpha} = \sum_{t_2} U_{L,ji}^{d,*} D_{L,j\alpha} \tag{11.76}$$

$$d_{R,i\alpha} = \sum_{t_2} U_{R,ij}^d D_{R,j\alpha}^*$$
 (11.77)

• Mass matrix for Up-Quarks, Basis: $(u_{L,o_1\alpha_1}), (u_{R,p_1\beta_1}^*)$

$$m_u = \left(\frac{1}{\sqrt{2}}v_u\delta_{\alpha_1\beta_1}Y_{u,o_1p_1}\right) \tag{11.78}$$

This matrix is diagonalized by U_L^u and U_R^u

$$U_L^{u,*} m_u U_R^{u,\dagger} = m_u^{dia} \tag{11.79}$$

with

$$u_{L,i\alpha} = \sum_{t_0} U_{L,ji}^{u,*} U_{L,j\alpha}$$
 (11.80)

$$u_{R,i\alpha} = \sum_{t_2} U_{R,ij}^u U_{R,j\alpha}^*$$
 (11.81)

11.4 Vacuum Expectation Values

$$H_d^0 = \frac{1}{\sqrt{2}}\phi_d + \frac{1}{\sqrt{2}}v_d + i\frac{1}{\sqrt{2}}\sigma_d \tag{11.82}$$

$$H_u^0 = \frac{1}{\sqrt{2}}\phi_u + \frac{1}{\sqrt{2}}v_u + i\frac{1}{\sqrt{2}}\sigma_u \tag{11.83}$$

$$S = \frac{1}{\sqrt{2}}\phi_s + \frac{1}{\sqrt{2}}v_s + i\frac{1}{\sqrt{2}}\sigma_s \tag{11.84}$$

11.5 Tadpole Equations

$$\frac{\partial V}{\partial v_d} = \frac{1}{8} \left(8m_{H_d}^2 v_d + g_1^2 v_d^3 + g_2^2 v_d^3 - g_1^2 v_d v_u^2 - g_2^2 v_d v_u^2 - 2v_s^2 v_u \lambda \kappa^* \right)
+ \left(4v_d v_u^2 \lambda + v_s^2 \left(-2v_u \kappa + 4v_d \lambda \right) \right) \lambda^* - 4\sqrt{2} v_s v_u \Re \left(T_\lambda \right) \right)$$
(11.85)

$$\frac{\partial V}{\partial v_u} = \frac{1}{8} \Big(8 m_{H_u}^2 v_u - g_1^2 v_d^2 v_u - g_2^2 v_d^2 v_u + g_1^2 v_u^3 + g_2^2 v_u^3 - 2 v_d v_s^2 \lambda \kappa^* \Big) + \frac{\partial V}{\partial v_u} + \frac{1}{8} \left(8 m_{H_u}^2 v_u - g_1^2 v_d^2 v_u - g_2^2 v_d^2 v_u + g_1^2 v_u^3 + g_2^2 v_u^3 - 2 v_d v_s^2 \lambda \kappa^* \right) + \frac{1}{8} \left(8 m_{H_u}^2 v_u - g_1^2 v_d^2 v_u - g_2^2 v_d^2 v_u + g_1^2 v_u^3 + g_2^2 v_u^3 - 2 v_d v_s^2 \lambda \kappa^* \right) + \frac{1}{8} \left(8 m_{H_u}^2 v_u - g_1^2 v_d^2 v_u - g_2^2 v_d^2 v_u + g_1^2 v_u^3 + g_2^2 v_u^3 - 2 v_d v_s^2 \lambda \kappa^* \right)$$

$$+\left(-2v_dv_s^2\kappa + 4v_d^2v_u\lambda + 4v_s^2v_u\lambda\right)\lambda^* - 4\sqrt{2}v_dv_s\Re\left(T_\lambda\right)\right) \tag{11.86}$$

$$\frac{\partial V}{\partial v_s} = \frac{1}{4} \left(4m_S^2 v_s + \left(-2v_d v_s v_u \lambda + 4v_s^3 \kappa \right) \kappa^* + 2v_s \left(v_d^2 \lambda - v_d v_u \kappa + v_u^2 \lambda \right) \lambda^* - \sqrt{2} v_d v_u T_\lambda^* \right) \\
+ 2\sqrt{2} v_s^2 \Re \left(T_\kappa \right) - \sqrt{2} v_d v_u T_\lambda \right)$$

11.6 Particle content for eigenstates 'EWSB'

Name Type complex/real Generations Indices	Name	Type		Generations	Indices
--	------	------	--	-------------	---------

(11.87)

\tilde{d}	Scalar	complex	6	generation, color
$ ilde{u}$	Scalar	complex	6	generation, color
$\tilde{ u}$	Scalar	complex	3	generation
-				<u> </u>
\tilde{e}	Scalar	complex	6	generation
h	Scalar	real	6	${\it generation}$
H^-	Scalar	complex	2	generation
ν	Fermion	Dirac	3	generation
$ ilde{g}$	Fermion	Majorana	8	${\it generation}$
$ ilde{\chi}^0$	$\operatorname{Fermion}$	Majorana	5	generation
$\tilde{\chi}^-$	$\operatorname{Fermion}$	Dirac	2	generation
e	Fermion	Dirac	3	generation
d	Fermion	Dirac	3	generation, color
u	Fermion	Dirac	3	generation, color
g	Vector	real	8	generation, lorentz
W^-	Vector	complex	1	lorentz
γ	Vector	$_{\mathrm{real}}$	1	lorentz
Z	Vector	real	1	lorentz
η^G	Ghost	$_{\mathrm{real}}$	8	generation
η^-	Ghost	complex	1	
η^+	Ghost	complex	1	
η^{γ}	Ghost	$_{\mathrm{real}}$	1	
η^Z	Ghost	$_{\mathrm{real}}$	1	

11.7 Modelfile for SARAH

11.8 Implementation in SARAH

Model directory: NMSSM/CPV

11.8.1 Particles for eigenstates 'GaugeES'

• Fermions

$$\begin{split} \tilde{B} &= \begin{pmatrix} \lambda_B \\ \lambda_{\tilde{B}}^* \end{pmatrix} & \text{Bino} &= \begin{pmatrix} \text{fB} \\ \text{conj}[\text{fB}] \end{pmatrix} \\ d_{i\alpha}^1 &= \begin{pmatrix} d_{L,i\alpha} \\ 0 \end{pmatrix} & \text{Fd1}[\{\text{generation, color}\}] &= \begin{pmatrix} \text{FdL}[\{\text{generation, color}\}] \\ 0 \end{pmatrix} \\ d_{i\alpha}^2 &= \begin{pmatrix} 0 \\ d_{R,i\alpha} \end{pmatrix} & \text{Fd2}[\{\text{generation, color}\}] &= \begin{pmatrix} 0 \\ \text{FdR}[\{\text{generation, color}\}] \end{pmatrix} \\ e_i^1 &= \begin{pmatrix} e_{L,i} \\ 0 \end{pmatrix} & \text{Fe1}[\{\text{generation}\}] &= \begin{pmatrix} 0 \\ \text{FeR}[\{\text{generation}\}] \end{pmatrix} \\ e_i^2 &= \begin{pmatrix} 0 \\ e_{R,i} \end{pmatrix} & \text{Fe2}[\{\text{generation, color}\}] &= \begin{pmatrix} 0 \\ \text{FeR}[\{\text{generation, color}\}] \end{pmatrix} \\ u_{i\alpha}^1 &= \begin{pmatrix} u_{L,i\alpha} \\ 0 \end{pmatrix} & \text{Fu1}[\{\text{generation, color}\}] &= \begin{pmatrix} 0 \\ \text{FuR}[\{\text{generation, color}\}] \end{pmatrix} \\ u_{i\alpha}^2 &= \begin{pmatrix} 0 \\ u_{R,i\alpha} \end{pmatrix} & \text{Fu2}[\{\text{generation, color}\}] &= \begin{pmatrix} 0 \\ \text{FuR}[\{\text{generation, color}\}] \end{pmatrix} \\ \tilde{\nu}_i &= \begin{pmatrix} \nu_{L,i} \\ 0 \end{pmatrix} & \text{Fv}[\{\text{generation}\}] &= \begin{pmatrix} f_{\text{G}}[\{\text{generation}\}] \\ conj[f_{\text{G}}[\{\text{generation}\}]] \end{pmatrix} \\ \tilde{H}^0 &= \begin{pmatrix} \tilde{H}_0^1 \\ \tilde{H}_0^1 \\ \tilde{H}_0^1 \end{pmatrix} & \text{HO} &= \begin{pmatrix} FHdo \\ conj[FHuO] \end{pmatrix} \\ \tilde{H}^C &= \begin{pmatrix} \tilde{H}_0^1 \\ \tilde{H}_0^1 \\ \tilde{H}_0^1 \end{pmatrix} & \text{HC} &= \begin{pmatrix} FHdm \\ conj[FHuD] \end{pmatrix} \\ \tilde{S} &= \begin{pmatrix} \tilde{S} \\ \tilde{S}^* \end{pmatrix} & \text{S} &= \begin{pmatrix} FSR \\ conj[FSR] \end{pmatrix} \\ \tilde{W}_i &= \begin{pmatrix} \lambda_{\tilde{W},i} \\ \lambda_{\tilde{W},i}^* \end{pmatrix} & \text{Wino}[\{\text{generation}\}] &= \begin{pmatrix} fWB[\{\text{generation}\}] \\ conj[fWB[\{\text{generation}\}]] \end{pmatrix} \\ \end{array}$$

• Scalars

$\tilde{d}_{L,i\alpha}$	SdL[{generation, color}]	$\tilde{u}_{L,i\alpha}$	SuL[{generation, color}]
$\tilde{e}_{L,i}$	SeL[{generation}]	$ ilde{ u}_{L,i}$	SvL[{generation}]
H_d^0	SHd0	H_d^-	SHdm
H_u^0	SHu0	H_u^+	SHup
$\tilde{d}_{R,i\alpha}$	<pre>SdR[{generation, color}]</pre>	$\tilde{u}_{R,i\alpha}$	SuR[{generation, color}]
$\tilde{e}_{R,i}$	SeR[{generation}]	S	SsR

• Vector Bosons

B_{ρ}	VB[{lorentz}]		<pre>VWB[{generation,</pre>	lorentz}]	
$g_{i ho}$	VG[{generation, lorentz}]				

• Ghosts

11.8.2 Particles for eigenstates 'EWSB'

• Fermions

$$\begin{split} \widetilde{\chi}_i^- &= \begin{pmatrix} \lambda_i^- \\ \lambda_i^{+,*} \end{pmatrix} & \text{Cha[\{generation\}]} &= \begin{pmatrix} \text{Lm[\{generation\}]} \\ \text{conj[Lp[\{generation\}]} \end{pmatrix} \\ \widetilde{\chi}_i^0 &= \begin{pmatrix} \lambda_i^0 \\ \lambda_i^{0,*} \end{pmatrix} & \text{Chi[\{generation\}]} &= \begin{pmatrix} \text{L0[\{generation\}]} \\ \text{conj[L0[\{generation\}]} \end{pmatrix} \\ d_{i\alpha} &= \begin{pmatrix} D_{L,i\alpha} \\ D_{R,i\alpha}^* \end{pmatrix} & \text{Fd[\{generation, \, \text{color}\}]} &= \begin{pmatrix} \text{FDL[\{generation, \, \text{color}\}]} \\ \text{conj[FDR[\{generation, \, \text{color}\}]} \end{pmatrix} \end{split}$$

$$e_i = \begin{pmatrix} E_{L,i} \\ E_{R,i}^* \end{pmatrix} \qquad \text{Fe[\{generation\}]} = \begin{pmatrix} \text{FEL[\{generation\}]} \\ \text{conj[FER[\{generation\}]]} \end{pmatrix}$$

$$u_{i\alpha} = \begin{pmatrix} U_{L,i\alpha} \\ U_{R,i\alpha}^* \end{pmatrix} \qquad \text{Fu[\{generation, color\}]} = \begin{pmatrix} \text{FUL[\{generation, color\}]} \\ \text{conj[FUR[\{generation, color\}]]} \end{pmatrix}$$

$$\nu_i = \begin{pmatrix} \nu_{L,i} \\ 0 \end{pmatrix} \qquad \qquad \text{Fv[\{generation\}]} = \begin{pmatrix} \text{FvL[\{generation\}]} \\ 0 \end{pmatrix}$$

$$\tilde{g}_i = \begin{pmatrix} \lambda_{\tilde{g},i} \\ \lambda_{\tilde{g},i}^* \end{pmatrix} \qquad \qquad \text{Glu[\{generation\}]} = \begin{pmatrix} \text{fG[\{generation\}]} \\ \text{conj[fG[\{generation\}]]} \end{pmatrix}$$

• Scalars

$\tilde{d}_{i\alpha}$	Sd[{generation, color}]	$\tilde{u}_{i\alpha}$	Su[{generation, color}]
$ ilde{ u}_i$	<pre>Sv[{generation}]</pre>	\tilde{e}_i	Se[{generation}]
h_i	hh[{generation}]	H_i^-	${\tt Hpm[\{generation\}]}$

• Vector Bosons

$g_{i ho}$	VG[{generation, lorentz}]	W_{ρ}^{-}	<pre>VWm[{lorentz}]</pre>
$\gamma_{ ho}$	<pre>VP[{lorentz}]</pre>	$Z_{ ho}$	<pre>VZ[{lorentz}]</pre>

• Ghosts

η_i^G	gG[{generation}]	η^-	gWm
η^+	gWmC	η^{γ}	gP
η^Z	gZ		

11.8.3 Parameters

g_1	g1	g_2	g2	g_3	g3
_	Yu	_	T[Yu]	Y_d	Yd
Y_u	ru	T_u	ıլıuj	I_d	ra
T_d	T[Yd]	Y_e	Ye	T_e	T[Ye]
λ	\[Lambda]	T_{λ}	$T[\[Lambda]]$	κ	\[Kappa]
T_{κ}	$T[\[Kappa]]$	m_q^2	mq2	m_l^2	m12
$m_{H_d}^2$	mHd2	$m_{H_u}^2$	mHu2	m_d^2	md2
m_u^2	mu2	m_e^2	me2	m_S^2	ms2
M_1	$ exttt{MassB}$	M_2	$ exttt{MassWB}$	M_3	MassG
v_d	vd	v_u	vu	v_s	vS
Θ_W	${ t ThetaW}$	$\phi_{ ilde{g}}$	PhaseGlu	Z^D	ZD
Z^U	ZU	Z^V	ZV	Z^E	ZE
Z^H	ZH	Z^+	ZP	N	ZN
U	UM	V	UP	U_L^e	ZEL
U_R^e	ZER	U_L^d	ZDL	U_R^d	ZDR
U_L^u	ZUL	U_R^u	ZUR	β	\[Beta]

Chapter 12

The Next-to-Minimal Supersymmetric Standard Model with two rotations in pseudo-scalar sector

12.1 Superfields

12.1.1 Vector Superfields

SF	Spin $\frac{1}{2}$	Spin 1	SU(N)	Coupling	Name
\hat{B}	$\lambda_{ ilde{B}}$	B	U(1)	g_1	hypercharge
\hat{W}	$\lambda_{ ilde{W}}$	W^-	SU(2)	g_2	left
\hat{g}	$\lambda_{ ilde{g}}$	g	SU(3)	g_3	color

12.1.2 Chiral Superfields

SF	Spin 0	Spin $\frac{1}{2}$	Generations	$(U(1) \otimes \mathrm{SU}(2) \otimes \mathrm{SU}(3))$
\hat{q}	$ ilde{q}$	q	3	$(rac{1}{6},2,3)$
\hat{l}	\tilde{l}	l	3	$(-rac{1}{2},{f 2},{f 1})$
\hat{H}_d	H_d	$ ilde{H}_d$	1	$(-rac{1}{2},{f 2},{f 1})$
\hat{H}_u	H_u	\tilde{H}_u	1	$(rac{1}{2}, oldsymbol{2}, oldsymbol{1})$
\hat{d}	$ ilde{d}_R^*$	d_R^*	3	$(rac{1}{3}, oldsymbol{1}, \overline{oldsymbol{3}})$
\hat{u}	\tilde{u}_R^*	u_R^*	3	$(-rac{2}{3},oldsymbol{1},oldsymbol{\overline{3}})$
\hat{e}	$ ilde{e}_R^*$	e_R^*	3	(1, 1 , 1)
\hat{s}	S	$ ilde{S}$	1	(0, 1, 1)

12.2 Superpotential and Lagrangian

12.2.1 Superpotential

$$W = Y_u \,\hat{q} \,\hat{H}_u \,\hat{u} - Y_d \,\hat{q} \,\hat{H}_d \,\hat{d} - Y_e \,\hat{l} \,\hat{H}_d \,\hat{e} + \lambda \,\hat{H}_u \,\hat{H}_d \,\hat{s} + \frac{1}{3} \kappa \,\hat{s} \,\hat{s} \,\hat{s}$$

$$\tag{12.1}$$

12.2.2 Softbreaking terms

$$L_{SB,W} = +\frac{1}{3}S^{3}T_{\kappa} - H_{d}^{0}H_{u}^{0}ST_{\lambda} + H_{d}^{-}H_{u}^{+}ST_{\lambda} + H_{d}^{0}\tilde{d}_{R,k\gamma}^{*}\delta_{\alpha\gamma}\tilde{d}_{L,i\alpha}T_{d,ik} - H_{d}^{-}\tilde{d}_{R,k\gamma}^{*}\delta_{\alpha\gamma}\tilde{u}_{L,i\alpha}T_{d,ik}$$

$$+ H_{d}^{0}\tilde{e}_{R,k}^{*}\tilde{e}_{L,i}T_{e,ik} - H_{d}^{-}\tilde{e}_{R,k}^{*}\tilde{\nu}_{L,i}T_{e,ik} - H_{u}^{+}\tilde{u}_{R,k\gamma}^{*}\delta_{\alpha\gamma}\tilde{d}_{L,i\alpha}T_{u,ik} + H_{u}^{0}\tilde{u}_{R,k\gamma}^{*}\delta_{\alpha\gamma}\tilde{u}_{L,i\alpha}T_{u,ik} + \text{h.c.}$$

$$L_{SB,\phi} = -m_{H_{d}}^{2}|H_{d}^{0}|^{2} - m_{H_{d}}^{2}|H_{d}^{-}|^{2} - m_{H_{u}}^{2}|H_{u}^{0}|^{2} - m_{H_{u}}^{2}|H_{u}^{+}|^{2} - m_{S}^{2}|S|^{2}$$

$$-\tilde{d}_{L,j\beta}^{*}\delta_{\alpha\beta}m_{q,ij}^{2}\tilde{d}_{L,i\alpha} - \tilde{d}_{R,i\alpha}^{*}\delta_{\alpha\beta}m_{d,ij}^{2}\tilde{d}_{R,j\beta} - \tilde{e}_{L,j}^{*}m_{l,ij}^{2}\tilde{e}_{L,i} - \tilde{e}_{R,i}^{*}m_{e,ij}^{2}\tilde{e}_{R,j}$$

$$-\tilde{u}_{L,j\beta}^{*}\delta_{\alpha\beta}m_{q,ij}^{2}\tilde{u}_{L,i\alpha} - \tilde{u}_{R,i\alpha}^{*}\delta_{\alpha\beta}m_{u,ij}^{2}\tilde{u}_{R,j\beta} - \tilde{\nu}_{L,j}^{*}m_{l,ij}^{2}\tilde{\nu}_{L,i}$$

$$(12.3)$$

$$L_{SB,\lambda} = \frac{1}{2} \left(-\lambda_{\tilde{B}}^2 M_1 - M_2 \lambda_{\tilde{W},i}^2 - M_3 \lambda_{\tilde{g},i}^2 + \text{h.c.} \right)$$
 (12.4)

12.2.3 Gauge fixing terms

Gauge fixing terms for eigenstates 'GaugeES'

$$L_{GF} = -\frac{1}{2}\partial_{\mu}g\xi_{G}^{-1} - \frac{1}{2}\partial_{\mu}W^{-}\xi_{W}^{-1}$$
(12.5)

Gauge fixing terms for eigenstates 'TEMP'

$$L_{GF} = -\frac{1}{2}\partial_{\mu}\gamma\xi_{P}^{-1} - \frac{1}{2}\partial_{\mu}g\xi_{G}^{-1} - \frac{1}{2}\xi_{Z}^{-1}\left(-A_{T,1}^{0}m_{Z}\xi_{Z} + \partial_{\mu}Z\right) - \partial_{\mu}W^{-}\xi_{W}^{-1}$$
(12.6)

Gauge fixing terms for eigenstates 'EWSB'

$$L_{GF} = -\frac{1}{2}\partial_{\mu}\gamma\xi_{P}^{-1} - \frac{1}{2}\partial_{\mu}g\xi_{G}^{-1} - \frac{1}{2}\xi_{Z}^{-1}\left(-A_{1}^{0}m_{Z}\xi_{Z} + \partial_{\mu}Z\right) - \xi_{W}^{-1}\left(iH_{1}^{-}m_{W^{-}}\xi_{W} + \partial_{\mu}W^{-}\right)$$
(12.7)

12.2.4 Fields integrated out

None

12.3 Field Rotations

12.3.1 Rotations in Mass sector for eigenstates 'EWSB'

Mass Matrices for Scalars

• Mass matrix for Pseudo-Scalar Higgs, Basis: $\left(A_{T,o_1}^0,\sigma_s\right),\left(A_{T,p_1}^0,\sigma_s\right)$

$$m_{A^0}^2 = \begin{pmatrix} m_{11} & m_{21}^* \\ m_{21} & m_{22} \end{pmatrix} \tag{12.8}$$

$$\begin{split} m_{11} &= \frac{1}{8} \Big(Z_{o_{1}1}^{T} \Big(2v_{s} \Big(\sqrt{2} \Big(T_{\lambda}^{*} + T_{\lambda} \Big) + v_{s} \kappa \lambda^{*} + v_{s} \lambda \kappa^{*} \Big) Z_{p_{1}2}^{T} + \Big(4 \Big(v_{s}^{2} + v_{u}^{2} \Big) |\lambda|^{2} + 8 m_{H_{d}}^{2} + \Big(g_{1}^{2} + g_{2}^{2} \Big) \Big(- v_{u}^{2} + v_{d}^{2} \Big) \Big) Z_{p_{1}1}^{T} \Big) \\ &+ Z_{o_{1}2}^{T} \Big(2v_{s}^{2} \lambda \kappa^{*} Z_{p_{1}1}^{T} + 4 \sqrt{2} v_{s} \Re \Big(T_{\lambda} \Big) Z_{p_{1}1}^{T} + 8 m_{H_{u}}^{2} Z_{p_{1}2}^{T} - g_{1}^{2} v_{d}^{2} Z_{p_{1}2}^{T} - g_{2}^{2} v_{d}^{2} Z_{p_{1}2}^{T} + g_{1}^{2} v_{u}^{2} Z_{p_{1}2}^{T} \\ &+ g_{2}^{2} v_{u}^{2} Z_{p_{1}2}^{T} + 2 \lambda^{*} \Big(2 \Big(v_{d}^{2} + v_{s}^{2} \Big) \lambda Z_{p_{1}2}^{T} + v_{s}^{2} \kappa Z_{p_{1}1}^{T} \Big) \Big) \Big) \end{split}$$

$$(12.9)$$

$$m_{21} &= \frac{1}{4} \Big(- 2v_{s} \kappa \lambda^{*} \Big(v_{d} Z_{p_{1}2}^{T} + v_{u} Z_{p_{1}1}^{T} \Big) - 2v_{s} \lambda \kappa^{*} \Big(v_{d} Z_{p_{1}2}^{T} + v_{u} Z_{p_{1}1}^{T} \Big) + \sqrt{2} \Big(2v_{u} \Re \Big(T_{\lambda} \Big) Z_{p_{1}1}^{T} + v_{d} \Big(T_{\lambda}^{*} + T_{\lambda} \Big) Z_{p_{1}2}^{T} \Big) \Big) \end{split}$$

$$m_{22} = \frac{1}{2} \left(2 \left(-\sqrt{2} v_s \Re \left(T_\kappa \right) + m_S^2 \right) + \left(2 v_s^2 \kappa + v_d v_u \lambda \right) \kappa^* + \left(v_d^2 \lambda + v_d v_u \kappa + v_u^2 \lambda \right) \lambda^* \right)$$
(12.11)

This matrix is diagonalized by Z^A :

$$Z^{A}m_{A^{0}}^{2}Z^{A,\dagger} = m_{2A^{0}}^{dia} \tag{12.12}$$

with

$$A_{T,i}^{0} = \sum_{t_2} Z_{ji}^{A} A_j^{0}, \qquad \sigma_s = \sum_{t_2} Z_{j3}^{A} A_j^{0}$$
(12.13)

The mixing matrix can be parametrized by

$$Z^{A} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos \phi & -\sin \phi \\ 0 & \sin \phi & \cos \phi \end{pmatrix} \tag{12.14}$$

Mass Matrices for Fermions

• No Fermion Mixings

12.4 Vacuum Expectation Values

12.5 Tadpole Equations

12.5.1 Tadpole Equations for eigenstates 'TEMP'

$$\frac{\partial V}{\partial v_d} = \frac{1}{8} \Big(8 m_{H_d}^2 v_d + g_1^2 v_d^3 + g_2^2 v_d^3 - g_1^2 v_d v_u^2 - g_2^2 v_d v_u^2 - 2 v_s^2 v_u \lambda \kappa^* + g_2^2 v_d^2 v_d^2 + g_2^2 v_d^2 v_d^2 v_d^2 v_d^2 + g_2^2 v_d^2 v_d^2$$

$$+ \left(4v_{d}v_{u}^{2}\lambda + v_{s}^{2}\left(-2v_{u}\kappa + 4v_{d}\lambda\right)\right)\lambda^{*} - 4\sqrt{2}v_{s}v_{u}\Re\left(T_{\lambda}\right)$$

$$\frac{\partial V}{\partial v_{u}} = \frac{1}{8}\left(8m_{H_{u}}^{2}v_{u} - g_{1}^{2}v_{d}^{2}v_{u} - g_{2}^{2}v_{d}^{2}v_{u} + g_{1}^{2}v_{u}^{3} + g_{2}^{2}v_{u}^{3} - 2v_{d}v_{s}^{2}\lambda\kappa^{*}$$

$$+ \left(-2v_{d}v_{s}^{2}\kappa + 4v_{d}^{2}v_{u}\lambda + 4v_{s}^{2}v_{u}\lambda\right)\lambda^{*} - 4\sqrt{2}v_{d}v_{s}\Re\left(T_{\lambda}\right)$$

$$\frac{\partial V}{\partial v_{s}} = \frac{1}{4}\left(4m_{S}^{2}v_{s} + \left(-2v_{d}v_{s}v_{u}\lambda + 4v_{s}^{3}\kappa\right)\kappa^{*} + 2v_{s}\left(v_{d}^{2}\lambda - v_{d}v_{u}\kappa + v_{u}^{2}\lambda\right)\lambda^{*} - \sqrt{2}v_{d}v_{u}T_{\lambda}^{*}$$

$$+ 2\sqrt{2}v_{s}^{2}\Re\left(T_{\kappa}\right) - \sqrt{2}v_{d}v_{u}T_{\lambda}$$

$$(12.17)$$

12.5.2 Tadpole Equations for eigenstates 'EWSB'

$$\frac{\partial V}{\partial v_{d}} = \frac{1}{8} \left(8m_{H_{d}}^{2} v_{d} + g_{1}^{2} v_{d}^{3} + g_{2}^{2} v_{d}^{3} - g_{1}^{2} v_{d} v_{u}^{2} - g_{2}^{2} v_{d} v_{u}^{2} - 2v_{s}^{2} v_{u} \lambda \kappa^{*} \right) \\
+ \left(4v_{d}v_{u}^{2} \lambda + v_{s}^{2} \left(-2v_{u}\kappa + 4v_{d}\lambda \right) \right) \lambda^{*} - 4\sqrt{2}v_{s}v_{u} \Re\left(T_{\lambda}\right) \right) \\
\frac{\partial V}{\partial v_{u}} = \frac{1}{8} \left(8m_{H_{u}}^{2} v_{u} - g_{1}^{2} v_{d}^{2} v_{u} - g_{2}^{2} v_{d}^{2} v_{u} + g_{1}^{2} v_{u}^{3} + g_{2}^{2} v_{u}^{3} - 2v_{d}v_{s}^{2} \lambda \kappa^{*} \right) \\
+ \left(-2v_{d}v_{s}^{2} \kappa + 4v_{d}^{2} v_{u} \lambda + 4v_{s}^{2} v_{u} \lambda \right) \lambda^{*} - 4\sqrt{2}v_{d}v_{s} \Re\left(T_{\lambda}\right) \right) \\
\frac{\partial V}{\partial v_{s}} = \frac{1}{4} \left(4m_{S}^{2} v_{s} + \left(-2v_{d}v_{s}v_{u}\lambda + 4v_{s}^{3}\kappa \right) \kappa^{*} + 2v_{s} \left(v_{d}^{2}\lambda - v_{d}v_{u}\kappa + v_{u}^{2}\lambda \right) \lambda^{*} - \sqrt{2}v_{d}v_{u}T_{\lambda}^{*} \\
+ 2\sqrt{2}v_{s}^{2} \Re\left(T_{\kappa}\right) - \sqrt{2}v_{d}v_{u}T_{\lambda}\right) \tag{12.20}$$

12.6 Particle content for eigenstates 'EWSB'

Name	Type	${\rm complex/real}$	Generations	${\rm Indices}$
\tilde{d}	Scalar	complex	6	generation, color
\tilde{u}	Scalar	complex	6	generation, color
$ ilde{e}$	Scalar	complex	6	${\it generation}$
$\tilde{ u}$	Scalar	complex	3	generation
h	Scalar	real	3	${\it generation}$
H^{-}	Scalar	complex	2	generation
A^0	Scalar	real	3	${\it generation}$
ν	Fermion	Dirac	3	generation
$ ilde{g}$	${\bf Fermion}$	Majorana	8	${\it generation}$
$ ilde{\chi}^0$	Fermion	Majorana	5	generation
$ ilde{\chi}^-$	Fermion	Dirac	2	${\it generation}$
e	Fermion	Dirac	3	generation
d	Fermion	Dirac	3	generation, color
u	Fermion	Dirac	3	generation, color

g	Vector	real	8	generation, lorentz
W^-	Vector	complex	1	lorentz
γ	Vector	real	1	lorentz
Z	Vector	real	1	lorentz
η^G	Ghost	real	8	generation
η^-	Ghost	complex	1	
η^+	Ghost	complex	1	
η^γ	Ghost	$_{\mathrm{real}}$	1	
η^Z	Ghost	real	1	

12.7 Modelfile for SARAH

12.8 Implementation in SARAH

 ${\bf Model\ directory:\ NMSSM/Two_Rotations}$

12.8.1 Particles for eigenstates 'GaugeES'

• Fermions

$$\begin{split} \tilde{B} &= \begin{pmatrix} \lambda_{\tilde{B}} \\ \lambda_{\tilde{B}}^* \end{pmatrix} & \text{Bino} &= \begin{pmatrix} \text{fB} \\ \text{conj}[\text{fB}] \end{pmatrix} \\ d_{i\alpha}^1 &= \begin{pmatrix} d_{L,i\alpha} \\ 0 \end{pmatrix} & \text{Fd1}[\{\text{generation, color}\}] &= \begin{pmatrix} \text{FdL}[\{\text{generation, color}\}] \\ 0 \\ d_{i\alpha}^2 &= \begin{pmatrix} 0 \\ d_{R,i\alpha} \end{pmatrix} \end{pmatrix} & \text{Fd2}[\{\text{generation, color}\}] &= \begin{pmatrix} 0 \\ \text{FdR}[\{\text{generation, color}\}] \end{pmatrix} \\ e_i^1 &= \begin{pmatrix} e_{L,i} \\ 0 \end{pmatrix} & \text{Fe1}[\{\text{generation}\}] &= \begin{pmatrix} FeL[\{\text{generation}\}] \\ 0 \end{pmatrix} \\ e_i^2 &= \begin{pmatrix} 0 \\ e_{R,i} \end{pmatrix} & \text{Fe2}[\{\text{generation, color}\}] &= \begin{pmatrix} 0 \\ \text{FeR}[\{\text{generation, color}\}] \end{pmatrix} \\ u_{i\alpha}^1 &= \begin{pmatrix} u_{L,i\alpha} \\ 0 \end{pmatrix} & \text{Fu1}[\{\text{generation, color}\}] &= \begin{pmatrix} FuL[\{\text{generation, color}\}] \\ 0 \end{pmatrix} \\ u_{i\alpha}^2 &= \begin{pmatrix} 0 \\ u_{R,i\alpha} \end{pmatrix} & \text{Fu2}[\{\text{generation, color}\}] &= \begin{pmatrix} FuL[\{\text{generation, color}\}] \\ 0 \end{pmatrix} \\ v_i &= \begin{pmatrix} v_{L,i} \\ 0 \end{pmatrix} & \text{Fv}[\{\text{generation}\}] &= \begin{pmatrix} FvL[\{\text{generation}\}] \\ 0 \end{pmatrix} \\ \tilde{g}_i &= \begin{pmatrix} \lambda_{\tilde{g},i} \\ \lambda_{\tilde{g},i}^* \end{pmatrix} & \text{Glu}[\{\text{generation}\}] &= \begin{pmatrix} fG[\{\text{generation}\}] \\ \text{conj}[fG[\{\text{generation}\}]] \end{pmatrix} \\ \tilde{H}^0 &= \begin{pmatrix} \tilde{H}_0 \\ \tilde{H}_0^0, * \end{pmatrix} & \text{HO} &= \begin{pmatrix} FHd0 \\ \text{conj}[FHuO] \end{pmatrix} \\ \tilde{H}^- &= \begin{pmatrix} \tilde{H}_d \\ \tilde{H}_u^+, * \end{pmatrix} & \text{HC} &= \begin{pmatrix} FHdm \\ \text{conj}[FHuD] \end{pmatrix} \\ \tilde{S} &= \begin{pmatrix} \tilde{S} \\ \tilde{S}^* \end{pmatrix} & \text{S} &= \begin{pmatrix} FSR \\ \text{conj}[FSR] \end{pmatrix} \\ \tilde{W}_i &= \begin{pmatrix} \lambda_{\tilde{W},i} \\ \lambda_{W,i}^* \end{pmatrix} & \text{Wino}[\{\text{generation}\}] &= \begin{pmatrix} fWB[\{\text{generation}\}] \\ \text{conj}[fWB[\{\text{generation}\}]] \end{pmatrix} \\ \end{array}$$

• Scalars

$\tilde{d}_{L,i\alpha}$	SdL[{generation, color}]	$\tilde{u}_{L,i\alpha}$	SuL[{generation, color}]
$\tilde{e}_{L,i}$	SeL[{generation}]	$ ilde{ u}_{L,i}$	<pre>SvL[{generation}]</pre>
H_d^0	SHd0	H_d^-	SHdm
H_u^0	SHu0	H_u^+	SHup
$\tilde{d}_{R,i\alpha}$	<pre>SdR[{generation, color}]</pre>	$\tilde{u}_{R,i\alpha}$	<pre>SuR[{generation, color}]</pre>
$\tilde{e}_{R,i}$	SeR[{generation}]	S	SsR

• Vector Bosons

B_{ρ}	<pre>VB[{lorentz}]</pre>	$W_{i\rho}^-$	<pre>WB[{generation, lorentz}]</pre>
$g_{i\rho}$	<pre>VG[{generation, lorentz}]</pre>		

• Ghosts

η^B	gB	gWB(gt1)	gWB[{generation}]
η_i^G	gG[{generation}]	, ,	

12.8.2 Particles for eigenstates 'TEMP'

• Fermions

$$\begin{split} \tilde{\chi}_i^- &= \begin{pmatrix} \lambda_i^- \\ \lambda_i^{+,*} \end{pmatrix} & \text{Cha[\{generation\}]} &= \begin{pmatrix} \text{Lm[\{generation\}]} \\ \text{conj[Lp[\{generation\}]]} \end{pmatrix} \\ \tilde{\chi}_i^0 &= \begin{pmatrix} \lambda_i^0 \\ \lambda_i^{0,*} \end{pmatrix} & \text{Chi[\{generation\}]} &= \begin{pmatrix} \text{L0[\{generation\}]} \\ \text{conj[L0[\{generation\}]]} \end{pmatrix} \\ d_{i\alpha} &= \begin{pmatrix} D_{L,i\alpha} \\ D_{R,i\alpha}^* \end{pmatrix} & \text{Fd[\{generation, \, \text{color}\}]} &= \begin{pmatrix} \text{FDL[\{generation, \, \text{color}\}]} \\ \text{conj[FDR[\{generation, \, \text{color}\}]]} \end{pmatrix} \end{split}$$

$$e_i = \begin{pmatrix} E_{L,i} \\ E_{R,i}^* \end{pmatrix} \qquad \text{Fe[\{generation\}]} = \begin{pmatrix} \text{FEL[\{generation\}]} \\ \text{conj[FER[\{generation\}]]} \end{pmatrix}$$

$$u_{i\alpha} = \begin{pmatrix} U_{L,i\alpha} \\ U_{R,i\alpha}^* \end{pmatrix} \qquad \text{Fu[\{generation, color\}]} = \begin{pmatrix} \text{FUL[\{generation, color\}]} \\ \text{conj[FUR[\{generation, color\}]]} \end{pmatrix}$$

$$\nu_i = \begin{pmatrix} \nu_{L,i} \\ 0 \end{pmatrix} \qquad \qquad \text{Fv[\{generation\}]} = \begin{pmatrix} \text{FvL[\{generation\}]} \\ 0 \end{pmatrix}$$

$$\tilde{g}_i = \begin{pmatrix} \lambda_{\tilde{g},i} \\ \lambda_{\tilde{g},i}^* \end{pmatrix} \qquad \qquad \text{Glu[\{generation\}]} = \begin{pmatrix} \text{fG[\{generation\}]} \\ \text{conj[fG[\{generation\}]]} \end{pmatrix}$$

• Scalars

σ_s	sigmaS	$\tilde{d}_{i\alpha}$	<pre>Sd[{generation, color}]</pre>
$\tilde{u}_{i\alpha}$	Su[{generation, color}]	\tilde{e}_i	Se[{generation}]
$ ilde{ u}_i$	<pre>Sv[{generation}]</pre>	h_i	hh[{generation}]
$A_{T,i}^0$	AhT[{generation}]	H_i^-	<pre>Hpm[{generation}]</pre>

• Vector Bosons

$g_{i ho}$	VG[{generation, lorentz}]	W_{ρ}^{-}	VWm[{lorentz}]
$\gamma_{ ho}$	<pre>VP[{lorentz}]</pre>	$Z_{ ho}$	<pre>VZ[{lorentz}]</pre>

• Ghosts

η_i^G	gG[{generation}]	η^-	gWm
η^+	gWmC	η^{γ}	gP
η^Z	gZ		

12.8.3 Particles for eigenstates 'EWSB'

• Fermions

$$\begin{split} \tilde{\chi}_i^- &= \begin{pmatrix} \lambda_i^- \\ \lambda_i^{+*} \end{pmatrix} & \text{Cha[\{generation\}]} &= \begin{pmatrix} \text{Lm[\{generation\}]} \\ \text{conj[Lp[\{generation\}]]} \end{pmatrix} \\ \tilde{\chi}_i^0 &= \begin{pmatrix} \lambda_i^0 \\ \lambda_i^{0,*} \end{pmatrix} & \text{Chi[\{generation\}]} &= \begin{pmatrix} \text{Lo[\{generation\}]} \\ \text{conj[Lo[\{generation\}]]} \end{pmatrix} \\ d_{i\alpha} &= \begin{pmatrix} D_{L,i\alpha} \\ D_{R,i\alpha}^* \end{pmatrix} & \text{Fd[\{generation, color\}]} &= \begin{pmatrix} \text{FDL[\{generation, color\}]} \\ \text{conj[FDR[\{generation, color\}]]} \end{pmatrix} \\ e_i &= \begin{pmatrix} E_{L,i} \\ E_{R,i}^* \end{pmatrix} & \text{Fe[\{generation\}]} &= \begin{pmatrix} \text{FEL[\{generation\}]} \\ \text{conj[FER[\{generation\}]]} \end{pmatrix} \\ u_{i\alpha} &= \begin{pmatrix} U_{L,i\alpha} \\ U_{R,i\alpha}^* \end{pmatrix} & \text{Fu[\{generation, color\}]} &= \begin{pmatrix} \text{FUL[\{generation, color\}]} \\ \text{conj[FUR[\{generation\}]} \end{pmatrix} \end{pmatrix} \\ \nu_i &= \begin{pmatrix} \nu_{L,i} \\ 0 \end{pmatrix} & \text{Fv[\{generation\}]} &= \begin{pmatrix} \text{FvL[\{generation\}]} \\ 0 \end{pmatrix} \\ \tilde{g}_i &= \begin{pmatrix} \lambda_{\tilde{g},i} \\ \lambda_{\tilde{g},i}^* \end{pmatrix} & \text{Glu[\{generation\}]} &= \begin{pmatrix} \text{fG[\{generation\}]} \\ \text{conj[fG[\{generation\}]]} \end{pmatrix} \end{split}$$

• Scalars

$ ilde{d}_{ilpha}$	Sd[{generation, color}]	$\tilde{u}_{i\alpha}$	Su[{generation, color}]
\tilde{e}_i	Se[{generation}]	$ ilde{ u}_i$	<pre>Sv[{generation}]</pre>
h_i	hh[{generation}]	H_i^-	${\tt Hpm[\{generation\}]}$
A_i^0	Ah[{generation}]		

• Vector Bosons

$g_{i ho}$	<pre>VG[{generation, lorentz}]</pre>	W_{ρ}^{-}	<pre>VWm[{lorentz}]</pre>
γ_{ρ}	<pre>VP[{lorentz}]</pre>	$Z_{ ho}$	<pre>VZ[{lorentz}]</pre>

\bullet Ghosts

η_i^G	gG[{generation}]	η^-	gWm
η^+	gWmC	η^{γ}	gP
η^Z	gZ		

12.8.4 Parameters

g_1	g1	g_2	g2	g_3	g3
Y_u	Yu	T_u	T[Yu]	Y_d	Yd
T_d	T[Yd]	Y_e	Ye	T_e	T[Ye]
λ	\[Lambda]	T_{λ}	T[\[Lambda]]	κ	\[Kappa]
T_{κ}	T[\[Kappa]]	m_q^2	mq2	m_l^2	ml2
$m_{H_d}^2$	mHd2	$m_{H_u}^2$	mHu2	m_d^2	md2
m_u^2	mu2	m_e^2	me2	m_S^2	ms2
M_1	MassB	M_2	MassWB	M_3	MassG
v_d	vd	v_u	vu	v_s	vS
Θ_W	ThetaW	Z^D	ZD	Z^U	ZU
Z^E	ZE	Z^V	ZV	Z^H	ZH
Z^T	ZT	Z^+	ZP	N	ZN
U	UM	V	UP	U_L^e	ZEL
U_R^e	ZER	U_L^d	ZDL	U_R^d	ZDR
U_L^u	ZUL	U_R^u	ZUR	β	\[Beta]
$\phi_{ ilde{g}}$	PhaseGlu	Z^A	ZA	ϕ	\[Phi]

Chapter 13

The near-to-Minimal Supersymmetric Standard Model

13.1 Superfields

13.1.1 Vector Superfields

SF	Spin $\frac{1}{2}$	Spin 1	SU(N)	Coupling	Name
\hat{B}	$\lambda_{ ilde{B}}$	B	U(1)	g_1	hypercharge
\hat{W}	$\lambda_{ ilde{W}}$	W^-	SU(2)	g_2	left
\hat{g}	$\lambda_{ ilde{g}}$	g	SU(3)	g_3	color

13.1.2 Chiral Superfields

SF	Spin 0	Spin $\frac{1}{2}$	Generations	$(U(1) \otimes \mathrm{SU}(2) \otimes \mathrm{SU}(3))$
\hat{q}	$ ilde{q}$	q	3	$(rac{1}{6},2,3)$
l	\tilde{l}	l	3	$(-rac{1}{2},2,1)$
\hat{H}_d	H_d	$ ilde{H}_d$	1	$(-rac{1}{2},2,1)$
\hat{H}_u	H_u	\tilde{H}_u	1	$(rac{1}{2}, oldsymbol{2}, oldsymbol{1})$
\hat{d}	$ ilde{d}_R^*$	d_R^*	3	$(rac{1}{3}, 1, \overline{3})$
\hat{u}	\tilde{u}_R^*	u_R^*	3	$(-rac{2}{3},1,\overline{3})$
\hat{e}	\tilde{e}_R^*	e_R^*	3	(1, 1 , 1)
\hat{s}	S	$ ilde{S}$	1	(0, 1, 1)

13.2 Superpotential and Lagrangian

13.2.1 Superpotential

$$W = Y_u \,\hat{q} \,\hat{H}_u \,\hat{u} - Y_d \,\hat{q} \,\hat{H}_d \,\hat{d} - Y_e \,\hat{l} \,\hat{H}_d \,\hat{e} + \lambda \,\hat{H}_u \,\hat{H}_d \,\hat{s} + \xi \,\hat{s}$$
(13.1)

13.2.2 Softbreaking terms

$$L_{SB,W} = + SL_{\xi} - H_{d}^{0}H_{u}^{0}ST_{\lambda} + H_{d}^{-}H_{u}^{+}ST_{\lambda} + H_{d}^{0}\tilde{d}_{R,k\gamma}^{*}\delta_{\alpha\gamma}\tilde{d}_{L,i\alpha}T_{d,ik} - H_{d}^{-}\tilde{d}_{R,k\gamma}^{*}\delta_{\alpha\gamma}\tilde{u}_{L,i\alpha}T_{d,ik}$$

$$+ H_{d}^{0}\tilde{e}_{R,k}^{*}\tilde{e}_{L,i}T_{e,ik} - H_{d}^{-}\tilde{e}_{R,k}^{*}\tilde{\nu}_{L,i}T_{e,ik} - H_{u}^{+}\tilde{u}_{R,k\gamma}^{*}\delta_{\alpha\gamma}\tilde{d}_{L,i\alpha}T_{u,ik} + H_{u}^{0}\tilde{u}_{R,k\gamma}^{*}\delta_{\alpha\gamma}\tilde{u}_{L,i\alpha}T_{u,ik} + \text{h.c.}$$

$$L_{SB,\phi} = - m_{H_{d}}^{2}|H_{d}^{0}|^{2} - m_{H_{d}}^{2}|H_{d}^{-}|^{2} - m_{H_{u}}^{2}|H_{u}^{0}|^{2} - m_{H_{u}}^{2}|H_{u}^{+}|^{2} - m_{S}^{2}|S|^{2}$$

$$- \tilde{d}_{L,j\beta}^{*}\delta_{\alpha\beta}m_{q,ij}^{2}\tilde{d}_{L,i\alpha} - \tilde{d}_{R,i\alpha}^{*}\delta_{\alpha\beta}m_{d,ij}^{2}\tilde{d}_{R,j\beta} - \tilde{e}_{L,j}^{*}m_{l,ij}^{2}\tilde{e}_{L,i} - \tilde{e}_{R,i}^{*}m_{e,ij}^{2}\tilde{e}_{R,j}$$

$$- \tilde{u}_{L,j\beta}^{*}\delta_{\alpha\beta}m_{q,ij}^{2}\tilde{u}_{L,i\alpha} - \tilde{u}_{R,i\alpha}^{*}\delta_{\alpha\beta}m_{u,ij}^{2}\tilde{u}_{R,j\beta} - \tilde{\nu}_{L,j}^{*}m_{l,ij}^{2}\tilde{\nu}_{L,i}$$

$$(13.3)$$

$$L_{SB,\lambda} = \frac{1}{2} \left(-\lambda_{\tilde{B}}^2 M_1 - M_2 \lambda_{\tilde{W},i}^2 - M_3 \lambda_{\tilde{g},i}^2 + \text{h.c.} \right)$$
 (13.4)

13.2.3 Gauge fixing terms

Gauge fixing terms for eigenstates 'GaugeES'

$$L_{GF} = -\frac{1}{2}\partial_{\mu}g\xi_{G}^{-1} - \frac{1}{2}\partial_{\mu}W^{-}\xi_{W}^{-1}$$
(13.5)

Gauge fixing terms for eigenstates 'EWSB'

$$L_{GF} = -\frac{1}{2}\partial_{\mu}\gamma\xi_{P}^{-1} - \frac{1}{2}\partial_{\mu}g\xi_{G}^{-1} - \frac{1}{2}\xi_{Z}^{-1}\left(-A_{1}^{0}m_{Z}\xi_{Z} + \partial_{\mu}Z\right) - \xi_{W}^{-1}\left(iH_{1}^{-}m_{W^{-}}\xi_{W} + \partial_{\mu}W^{-}\right)$$

$$(13.6)$$

13.2.4 Fields integrated out

None

13.3 Field Rotations

13.3.1 Rotations in gauge sector for eigenstates 'EWSB'

$$W_{1\rho}^{-} = \frac{1}{\sqrt{2}}W_{\rho}^{-} + \frac{1}{\sqrt{2}}W_{\rho}^{+} \tag{13.7}$$

$$W_{2\rho}^{-} = -i\frac{1}{\sqrt{2}}W_{\rho}^{-} + i\frac{1}{\sqrt{2}}W_{\rho}^{+} \tag{13.8}$$

$$W_{3\rho}^{-} = \cos\Theta_W Z_{\rho} + \sin\Theta_W \gamma_{\rho} \tag{13.9}$$

$$B_{\rho} = \cos\Theta_W \gamma_{\rho} - \sin\Theta_W Z_{\rho} \tag{13.10}$$

$$\lambda_{\tilde{W},1} = \frac{1}{\sqrt{2}}\tilde{W}^{-} + \frac{1}{\sqrt{2}}\tilde{W}^{+} \tag{13.11}$$

$$\lambda_{\tilde{W},2} = -i\frac{1}{\sqrt{2}}\tilde{W}^{-} + i\frac{1}{\sqrt{2}}\tilde{W}^{+} \tag{13.12}$$

$$\lambda_{\tilde{W}.3} = \tilde{W}^0 \tag{13.13}$$

13.3.2 Rotations in Mass sector for eigenstates 'EWSB'

Mass Matrices for Scalars

• Mass matrix for Down-Squarks, Basis: $\left(\tilde{d}_{L,o_1\alpha_1},\tilde{d}_{R,o_2\alpha_2}\right),\left(\tilde{d}_{L,p_1\beta_1}^*,\tilde{d}_{R,p_2\beta_2}^*\right)$

$$m_{\tilde{d}}^{2} = \begin{pmatrix} m_{11} & \frac{1}{2} \delta_{\alpha_{1}\beta_{2}} \left(\sqrt{2} v_{d} T_{d,o_{1}p_{2}} - v_{s} v_{u} \lambda^{*} Y_{d,o_{1}p_{2}} \right) \\ \frac{1}{2} \left(\sqrt{2} v_{d} T_{d,p_{1}o_{2}}^{*} - v_{s} v_{u} \lambda Y_{d,p_{1}o_{2}}^{*} \right) \delta_{\alpha_{2}\beta_{1}} & m_{22} \end{pmatrix}$$

$$(13.14)$$

$$m_{11} = \frac{1}{24} \delta_{\alpha_1 \beta_1} \left(12 \left(2m_{q,o_1 p_1}^2 + v_d^2 \sum_{a=1}^3 Y_{d,p_1 a}^* Y_{d,o_1 a} \right) - \left(3g_2^2 + g_1^2 \right) \left(-v_u^2 + v_d^2 \right) \delta_{o_1 p_1} \right)$$
(13.15)

$$m_{22} = \frac{1}{12} \delta_{\alpha_2 \beta_2} \left(6 \left(2m_{d, p_2 o_2}^2 + v_d^2 \sum_{a=1}^3 Y_{d, a o_2}^* Y_{d, a p_2} \right) + g_1^2 \left(-v_d^2 + v_u^2 \right) \delta_{o_2 p_2} \right)$$
(13.16)

This matrix is diagonalized by Z^D :

$$Z^{D} m_{\tilde{d}}^{2} Z^{D,\dagger} = m_{2,\tilde{d}}^{dia} \tag{13.17}$$

with

$$\tilde{d}_{L,i\alpha} = \sum_{t_2} Z_{ji}^{D,*} \tilde{d}_{j\alpha}, \qquad \tilde{d}_{R,i\alpha} = \sum_{t_2} Z_{ji}^{D,*} \tilde{d}_{j\alpha}$$
 (13.18)

• Mass matrix for Sneutrinos, Basis: $(\tilde{\nu}_{L,o_1}), (\tilde{\nu}_{L,p_1}^*)$

$$m_{\tilde{\nu}}^2 = \left(\frac{1}{8} \left(8m_{l,o_1p_1}^2 + \left(g_1^2 + g_2^2\right) \left(-v_u^2 + v_d^2\right) \delta_{o_1p_1}\right)\right)$$
(13.19)

This matrix is diagonalized by Z^V :

$$Z^{V} m_{\tilde{\nu}}^{2} Z^{V,\dagger} = m_{2,\tilde{\nu}}^{dia} \tag{13.20}$$

with

$$\tilde{\nu}_{L,i} = \sum_{t_2} Z_{ji}^{V,*} \tilde{\nu}_j \tag{13.21}$$

• Mass matrix for Up-Squarks, Basis: $(\tilde{u}_{L,o_1\alpha_1}, \tilde{u}_{R,o_2\alpha_2}), (\tilde{u}_{L,p_1\beta_1}^*, \tilde{u}_{R,p_2\beta_2}^*)$

$$m_{\tilde{u}}^{2} = \begin{pmatrix} m_{11} & \frac{1}{2} \delta_{\alpha_{1}\beta_{2}} \left(\sqrt{2} v_{u} T_{u,o_{1}p_{2}} - v_{d} v_{s} \lambda^{*} Y_{u,o_{1}p_{2}} \right) \\ \frac{1}{2} \left(\sqrt{2} v_{u} T_{u,p_{1}o_{2}}^{*} - v_{d} v_{s} \lambda Y_{u,p_{1}o_{2}}^{*} \right) \delta_{\alpha_{2}\beta_{1}} & m_{22} \end{pmatrix}$$

$$(13.22)$$

$$m_{11} = \frac{1}{24} \delta_{\alpha_1 \beta_1} \left(12 \left(2m_{q, o_1 p_1}^2 + v_u^2 \sum_{a=1}^3 Y_{u, p_1 a}^* Y_{u, o_1 a} \right) - \left(-3g_2^2 + g_1^2 \right) \left(-v_u^2 + v_d^2 \right) \delta_{o_1 p_1} \right)$$
(13.23)

$$m_{22} = \frac{1}{6} \delta_{\alpha_2 \beta_2} \left(3v_u^2 \sum_{a=1}^3 Y_{u,ao_2}^* Y_{u,ap_2} + 6m_{u,p_2 o_2}^2 + g_1^2 \left(-v_u^2 + v_d^2 \right) \delta_{o_2 p_2} \right)$$
(13.24)

This matrix is diagonalized by Z^U :

$$Z^{U} m_{\tilde{u}}^{2} Z^{U,\dagger} = m_{2,\tilde{u}}^{dia} \tag{13.25}$$

with

$$\tilde{u}_{L,i\alpha} = \sum_{t_2} Z_{ji}^{U,*} \tilde{u}_{j\alpha}, \qquad \tilde{u}_{R,i\alpha} = \sum_{t_2} Z_{ji}^{U,*} \tilde{u}_{j\alpha}$$
(13.26)

• Mass matrix for Sleptons, Basis: $(\tilde{e}_{L,o_1}, \tilde{e}_{R,o_2}), (\tilde{e}_{L,p_1}^*, \tilde{e}_{R,p_2}^*)$

$$m_{\tilde{e}}^{2} = \begin{pmatrix} m_{11} & -\frac{1}{2}v_{s}v_{u}\lambda^{*}Y_{e,o_{1}p_{2}} + \frac{1}{\sqrt{2}}v_{d}T_{e,o_{1}p_{2}} \\ -\frac{1}{2}v_{s}v_{u}\lambda Y_{e,p_{1}o_{2}}^{*} + \frac{1}{\sqrt{2}}v_{d}T_{e,p_{1}o_{2}}^{*} & m_{22} \end{pmatrix}$$

$$(13.27)$$

$$m_{11} = \frac{1}{8} \left(4v_d^2 \sum_{a=1}^3 Y_{e,p_1a}^* Y_{e,o_1a} + 8m_{l,o_1p_1}^2 + \left(-g_2^2 + g_1^2 \right) \left(-v_u^2 + v_d^2 \right) \delta_{o_1p_1} \right)$$
(13.28)

$$m_{22} = \frac{1}{4} \left(2v_d^2 \sum_{q=1}^3 Y_{e,ao_2}^* Y_{e,ao_2} + 4m_{e,p_2o_2}^2 + g_1^2 \left(-v_d^2 + v_u^2 \right) \delta_{o_2p_2} \right)$$
(13.29)

This matrix is diagonalized by Z^E :

$$Z^{E}m_{\tilde{e}}^{2}Z^{E,\dagger} = m_{2.\tilde{e}}^{dia} \tag{13.30}$$

with

$$\tilde{e}_{L,i} = \sum_{t_2} Z_{ji}^{E,*} \tilde{e}_j , \qquad \tilde{e}_{R,i} = \sum_{t_2} Z_{ji}^{E,*} \tilde{e}_j$$
(13.31)

• Mass matrix for Higgs, Basis: $(\phi_d, \phi_u, \phi_s), (\phi_d, \phi_u, \phi_s)$

$$m_h^2 = \begin{pmatrix} m_{11} & m_{21}^* & -\frac{1}{\sqrt{2}}v_u\Re(T_\lambda) + v_dv_s|\lambda|^2 \\ m_{21} & m_{22} & -\frac{1}{\sqrt{2}}v_d\Re(T_\lambda) + v_sv_u|\lambda|^2 \\ -\frac{1}{\sqrt{2}}v_u\Re(T_\lambda) + v_dv_s|\lambda|^2 & -\frac{1}{\sqrt{2}}v_d\Re(T_\lambda) + v_sv_u|\lambda|^2 & \frac{1}{2}\left(2m_S^2 + \left(v_d^2 + v_u^2\right)|\lambda|^2\right) \end{pmatrix}$$
(13.32)

$$m_{11} = \frac{1}{8} \left(4 \left(v_s^2 + v_u^2 \right) |\lambda|^2 + 8 m_{H_d}^2 + \left(g_1^2 + g_2^2 \right) \left(3 v_d^2 - v_u^2 \right) \right)$$
(13.33)

$$m_{21} = \frac{1}{4} \left(-2\left(-2v_d v_u \lambda + \xi \right) \lambda^* - 2\lambda \xi^* - 2\sqrt{2}v_s \Re\left(T_\lambda\right) - g_1^2 v_d v_u - g_2^2 v_d v_u \right)$$
(13.34)

$$m_{22} = \frac{1}{8} \left(4 \left(v_d^2 + v_s^2 \right) |\lambda|^2 + 8m_{H_u}^2 - \left(g_1^2 + g_2^2 \right) \left(-3v_u^2 + v_d^2 \right) \right)$$
(13.35)

This matrix is diagonalized by Z^H :

$$Z^{H} m_{h}^{2} Z^{H,\dagger} = m_{2,h}^{dia} \tag{13.36}$$

with

$$\phi_d = \sum_{t_2} Z_{j1}^{H,*} h_j , \qquad \phi_u = \sum_{t_2} Z_{j2}^{H,*} h_j , \qquad \phi_s = \sum_{t_2} Z_{j3}^{H,*} h_j$$
 (13.37)

• Mass matrix for Pseudo-Scalar Higgs, Basis: $(\sigma_d, \sigma_u, \sigma_s), (\sigma_d, \sigma_u, \sigma_s)$

$$m_{A^0}^2 = \begin{pmatrix} m_{11} & \frac{1}{2} \left(\lambda \xi^* + \sqrt{2} v_s \Re \left(T_\lambda \right) + \xi \lambda^* \right) & \frac{1}{\sqrt{2}} v_u \Re \left(T_\lambda \right) \\ \frac{1}{2} \left(\lambda \xi^* + \sqrt{2} v_s \Re \left(T_\lambda \right) + \xi \lambda^* \right) & m_{22} & \frac{1}{\sqrt{2}} v_d \Re \left(T_\lambda \right) \\ \frac{1}{\sqrt{2}} v_u \Re \left(T_\lambda \right) & \frac{1}{\sqrt{2}} v_d \Re \left(T_\lambda \right) & \frac{1}{2} \left(2 m_S^2 + \left(v_d^2 + v_u^2 \right) |\lambda|^2 \right) \end{pmatrix}$$
(13.38)

$$m_{11} = \frac{1}{8} \left(4 \left(v_s^2 + v_u^2 \right) |\lambda|^2 + 8 m_{H_d}^2 + \left(g_1^2 + g_2^2 \right) \left(-v_u^2 + v_d^2 \right) \right)$$
(13.39)

$$m_{22} = \frac{1}{8} \left(4 \left(v_d^2 + v_s^2 \right) |\lambda|^2 + 8m_{H_u}^2 - \left(g_1^2 + g_2^2 \right) \left(-v_u^2 + v_d^2 \right) \right)$$
(13.40)

This matrix is diagonalized by Z^A :

$$Z^{A}m_{A^{0}}^{2}Z^{A,\dagger} = m_{2,A^{0}}^{dia} \tag{13.41}$$

with

$$\sigma_d = \sum_{t_2} Z_{j1}^{A,*} A_j^0, \qquad \sigma_u = \sum_{t_2} Z_{j2}^{A,*} A_j^0, \qquad \sigma_s = \sum_{t_2} Z_{j3}^{A,*} A_j^0$$
(13.42)

• Mass matrix for Charged Higgs, Basis: $\left(H_d^-, H_u^{+,*}\right), \left(H_d^{-,*}, H_u^+\right)$

$$m_{H^-}^2 = \begin{pmatrix} m_{11} & m_{21}^* \\ m_{21} & m_{22} \end{pmatrix} \tag{13.43}$$

$$m_{11} = \frac{1}{8} \left(4v_s^2 |\lambda|^2 + 8m_{H_d}^2 + g_1^2 v_d^2 - g_1^2 v_u^2 + g_2^2 v_d^2 + g_2^2 v_u^2 \right)$$
(13.44)

$$m_{21} = \frac{1}{4} \left(2\sqrt{2}v_s T_\lambda^* + \left(-2v_d v_u \lambda + 4\xi \right) \lambda^* + g_2^2 v_d v_u \right)$$
(13.45)

$$m_{22} = \frac{1}{8} \left(4v_s^2 |\lambda|^2 + 8m_{H_u}^2 - g_1^2 v_d^2 + g_1^2 v_u^2 + g_2^2 v_d^2 + g_2^2 v_u^2 \right)$$
(13.46)

This matrix is diagonalized by Z^+ :

$$Z^{+}m_{H^{-}}^{2}Z^{+,\dagger} = m_{2,H^{-}}^{dia} \tag{13.47}$$

with

$$H_d^- = \sum_{t_2} Z_{j1}^{+,*} H_j^-, \qquad H_u^+ = \sum_{t_2} Z_{j2}^+ H_j^+$$
 (13.48)

The mixing matrix can be parametrized by

$$Z^{+} = \begin{pmatrix} -\cos\beta & \sin\beta \\ \sin\beta & \cos\beta \end{pmatrix} \tag{13.49}$$

Mass Matrices for Fermions

• Mass matrix for Neutralinos, Basis: $\left(\lambda_{\tilde{B}}, \tilde{W}^0, \tilde{H}_d^0, \tilde{H}_u^0, \tilde{S}\right), \left(\lambda_{\tilde{B}}, \tilde{W}^0, \tilde{H}_d^0, \tilde{H}_u^0, \tilde{S}\right)$

$$m_{\tilde{\chi}^{0}} = \begin{pmatrix} M_{1} & 0 & -\frac{1}{2}g_{1}v_{d} & \frac{1}{2}g_{1}v_{u} & 0\\ 0 & M_{2} & \frac{1}{2}g_{2}v_{d} & -\frac{1}{2}g_{2}v_{u} & 0\\ -\frac{1}{2}g_{1}v_{d} & \frac{1}{2}g_{2}v_{d} & 0 & -\frac{1}{\sqrt{2}}v_{s}\lambda & -\frac{1}{\sqrt{2}}v_{u}\lambda\\ \frac{1}{2}g_{1}v_{u} & -\frac{1}{2}g_{2}v_{u} & -\frac{1}{\sqrt{2}}v_{s}\lambda & 0 & -\frac{1}{\sqrt{2}}v_{d}\lambda\\ 0 & 0 & -\frac{1}{\sqrt{2}}v_{u}\lambda & -\frac{1}{\sqrt{2}}v_{d}\lambda & 0 \end{pmatrix}$$

$$(13.50)$$

This matrix is diagonalized by N:

$$Nm_{\tilde{\chi}^0}N^{\dagger} = m_{\tilde{\chi}^0}^{dia} \tag{13.51}$$

with

$$\lambda_{\tilde{B}} = \sum_{t_2} N_{j1}^* \lambda_j^0, \qquad \tilde{W}^0 = \sum_{t_2} N_{j2}^* \lambda_j^0, \qquad \tilde{H}_d^0 = \sum_{t_2} N_{j3}^* \lambda_j^0$$

$$\tilde{H}_u^0 = \sum_{t_2} N_{j4}^* \lambda_j^0, \qquad \tilde{S} = \sum_{t_2} N_{j5}^* \lambda_j^0$$

$$(13.52)$$

$$\tilde{H}_{u}^{0} = \sum_{t_{2}} N_{j4}^{*} \lambda_{j}^{0}, \qquad \qquad \tilde{S} = \sum_{t_{2}} N_{j5}^{*} \lambda_{j}^{0}$$
(13.53)

• Mass matrix for Charginos, Basis: $\left(\tilde{W}^-, \tilde{H}_d^-\right), \left(\tilde{W}^+, \tilde{H}_u^+\right)$

$$m_{\tilde{\chi}^{-}} = \begin{pmatrix} M_2 & \frac{1}{\sqrt{2}}g_2v_u \\ \frac{1}{\sqrt{2}}g_2v_d & \frac{1}{\sqrt{2}}v_s\lambda \end{pmatrix}$$
 (13.54)

This matrix is diagonalized by U and V

$$U^* m_{\tilde{\chi}^-} V^{\dagger} = m_{\tilde{\chi}^-}^{dia} \tag{13.55}$$

with

$$\tilde{W}^{-} = \sum_{t_0} U_{j1}^* \lambda_j^{-}, \qquad \tilde{H}_d^{-} = \sum_{t_0} U_{j2}^* \lambda_j^{-}$$
(13.56)

$$\tilde{W}^{-} = \sum_{t_2} U_{j1}^* \lambda_j^{-}, \qquad \tilde{H}_d^{-} = \sum_{t_2} U_{j2}^* \lambda_j^{-}$$

$$\tilde{W}^{+} = \sum_{t_2} V_{1j}^* \lambda_j^{+}, \qquad \tilde{H}_u^{+} = \sum_{t_2} V_{2j}^* \lambda_j^{+}$$

$$(13.56)$$

• Mass matrix for Leptons, Basis: $(e_{L,o_1}), (e_{R,p_1}^*)$

$$m_e = \left(\frac{1}{\sqrt{2}}v_d Y_{e,o_1 p_1}\right)$$
 (13.58)

This matrix is diagonalized by U_L^e and U_R^e

$$U_L^{e,*} m_e U_R^{e,\dagger} = m_e^{dia} (13.59)$$

with

$$e_{L,i} = \sum_{t_2} U_{L,ji}^{e,*} E_{L,j} \tag{13.60}$$

$$e_{R,i} = \sum_{t_2} U_{R,ij}^e E_{R,j}^* \tag{13.61}$$

• Mass matrix for Down-Quarks, Basis: $(d_{L,o_1\alpha_1}), (d_{R,p_1\beta_1}^*)$

$$m_d = \left(\frac{1}{\sqrt{2}} v_d \delta_{\alpha_1 \beta_1} Y_{d, o_1 p_1}\right) \tag{13.62}$$

This matrix is diagonalized by ${\cal U}_L^d$ and ${\cal U}_R^d$

$$U_L^{d,*} m_d U_R^{d,\dagger} = m_d^{dia} \tag{13.63}$$

with

$$d_{L,i\alpha} = \sum_{t_{-}} U_{L,ji}^{d,*} D_{L,j\alpha}$$
 (13.64)

$$d_{R,i\alpha} = \sum_{t_0} U_{R,ij}^d D_{R,j\alpha}^*$$
 (13.65)

• Mass matrix for Up-Quarks, Basis: $(u_{L,o_1\alpha_1}), (u_{R,p_1\beta_1}^*)$

$$m_u = \left(\frac{1}{\sqrt{2}}v_u\delta_{\alpha_1\beta_1}Y_{u,o_1p_1}\right) \tag{13.66}$$

This matrix is diagonalized by U_L^u and U_R^u

$$U_L^{u,*} m_u U_R^{u,\dagger} = m_u^{dia} \tag{13.67}$$

with

$$u_{L,i\alpha} = \sum_{t_0} U_{L,ji}^{u,*} U_{L,j\alpha} \tag{13.68}$$

$$u_{R,i\alpha} = \sum_{t_2} U_{R,ij}^u U_{R,j\alpha}^* \tag{13.69}$$

13.4 Vacuum Expectation Values

$$H_d^0 = \frac{1}{\sqrt{2}}\phi_d + \frac{1}{\sqrt{2}}v_d + i\frac{1}{\sqrt{2}}\sigma_d \tag{13.70}$$

$$H_u^0 = \frac{1}{\sqrt{2}}\phi_u + \frac{1}{\sqrt{2}}v_u + i\frac{1}{\sqrt{2}}\sigma_u \tag{13.71}$$

$$S = \frac{1}{\sqrt{2}}\phi_s + \frac{1}{\sqrt{2}}v_s + i\frac{1}{\sqrt{2}}\sigma_s \tag{13.72}$$

13.5 Tadpole Equations

$$\frac{\partial V}{\partial v_{d}} = \frac{1}{8} \left(8m_{H_{d}}^{2} v_{d} + g_{1}^{2} v_{d}^{3} + g_{2}^{2} v_{d}^{3} - g_{1}^{2} v_{d} v_{u}^{2} - g_{2}^{2} v_{d} v_{u}^{2} - 4v_{u} \lambda \xi^{*} \right)
+ \left(4v_{d} \left(v_{s}^{2} + v_{u}^{2} \right) \lambda - 4\xi v_{u} \right) \lambda^{*} - 4\sqrt{2} v_{s} v_{u} \Re \left(T_{\lambda} \right) \right)
\frac{\partial V}{\partial v_{u}} = \frac{1}{8} \left(8m_{H_{u}}^{2} v_{u} - g_{1}^{2} v_{d}^{2} v_{u} - g_{2}^{2} v_{d}^{2} v_{u} + g_{1}^{2} v_{u}^{3} + g_{2}^{2} v_{u}^{3} - 4v_{d} \lambda \xi^{*} \right)
+ \left(4\left(v_{d}^{2} + v_{s}^{2} \right) v_{u} \lambda - 4\xi v_{d} \right) \lambda^{*} - 4\sqrt{2} v_{d} v_{s} \Re \left(T_{\lambda} \right) \right)
\frac{\partial V}{\partial v_{s}} = \frac{1}{4} \left(2v_{s} \left(v_{d}^{2} + v_{u}^{2} \right) |\lambda|^{2} + 4m_{S}^{2} v_{s} + 4\sqrt{2} \Re \left(L_{\xi} \right) - \sqrt{2} v_{d} v_{u} T_{\lambda} - \sqrt{2} v_{d} v_{u} T_{\lambda}^{*} \right)$$
(13.75)

13.6 Particle content for eigenstates 'EWSB'

Name	Type	complex/real	Generations	Indices
$-\tilde{d}$	Scalar	complex	6	generation, color
$ ilde{ u}$	Scalar	complex	3	generation
$ ilde{u}$	Scalar	complex	6	generation, color
$ ilde{e}$	Scalar	complex	6	${\it generation}$
h	Scalar	real	3	${\it generation}$
A^0	Scalar	real	3	${\it generation}$
H^{-}	Scalar	$\operatorname{complex}$	2	generation
$\overline{\nu}$	Fermion	Dirac	3	generation
$ ilde{g}$	${\bf Fermion}$	Majorana	8	${\it generation}$
$ ilde{\chi}^0$	${\bf Fermion}$	Majorana	5	${\it generation}$
$\tilde{\chi}^-$	Fermion	Dirac	2	${\it generation}$
e	${\bf Fermion}$	Dirac	3	${\it generation}$
d	Fermion	Dirac	3	generation, color
u	${\bf Fermion}$	Dirac	3	generation, color
\overline{g}	Vector	real	8	generation, lorentz
W^-	Vector	complex	1	lorentz
γ	Vector	real	1	lorentz
Z	Vector	real	1	lorentz
η^G	Ghost	$_{\mathrm{real}}$	8	generation
η^-	Ghost	complex	1	
η^+	Ghost	complex	1	
η^γ	Ghost	$_{\mathrm{real}}$	1	
η^Z	Ghost	$_{\mathrm{real}}$	1	

13.7 Modelfile for SARAH

```
Off[General::spell]
Print["Model file for the near-to-minimal MSSM loaded"];
ModelNameLaTeX ="near-to-minimal MSSM";
(*----*)
(* Particle Content*)
(*----*)
(* Gauge Superfields *)
Gauge[[1]]={B, U[1], hypercharge, g1,False};
Gauge[[2]]={WB, SU[2], left, g2,True};
Gauge[[3]]={G, SU[3], color,
                            g3,False};
(* Chiral Superfields *)
Fields[[1]] = \{\{uL, dL\}, 3, q, 1/6, 2, 3\};
Fields[[2]] = \{\{vL, eL\}, 3, 1, -1/2, 2, 1\};
Fields[[3]] = \{\{Hd0, Hdm\}, 1, Hd, -1/2, 2, 1\};
Fields[[4]] = {{Hup, Hu0}, 1, Hu, 1/2, 2, 1};
Fields[[5]] = \{conj[dR], 3, d, 1/3, 1, -3\};
Fields[[6]] = \{conj[uR], 3, u, -2/3, 1, -3\};
Fields[[7]] = {conj[eR], 3, e, 1, 1, 1};
Fields[[8]] = \{sR, 1, s, 0, 1, 1\};
(*----*)
(* Superpotential *)
(*-----*)
\label{eq:SuperPotential} \mbox{SuperPotential} = \{ \ \{ \{ 1, \ Yu \}, \{ q, Hu, u \} \}, \ \{ \{ -1, Yd \}, \{ q, Hd, d \} \}, \ \} \}
                \{\{-1, Ye\}, \{1, Hd, e\}\},\
                \{\{1, \{Lambda\}\}, \{Hu, Hd, s\}\},
                {{1,Tad},{s}}};
(*----*)
(* Integrate Out or Delete Particles
(*----*)
```

```
IntegrateOut={};
DeleteParticles={};
(*----*)
(* DEFINITION *)
(*-----)
NameOfStates={GaugeES, EWSB};
(* ---- Before EWSB ---- *)
DEFINITION[GaugeES] [GaugeFixing] =
{ {Der[VWB], -1/(2 RXi[W])},
    {Der[VG], -1/(2 RXi[G]) }};
(* ---- After EWSB ---- *)
DEFINITION[EWSB] [GaugeSector] =
{{VWB, {1, {VWm, 1/Sqrt[2]}, {conj[VWm], 1/Sqrt[2]}},
     {2,{VWm,-\[ImaginaryI]/Sqrt[2]},{conj[VWm],\[ImaginaryI]/Sqrt[2]}},
     {3,{VP,Sin[ThetaW]},{VZ,Cos[ThetaW]}}},
 {VB, {1,{VP,Cos[ThetaW]},{VZ,-Sin[ThetaW]}}},
 {fWB, {1, {fWm, 1/Sqrt[2]}, {fWp, 1/Sqrt[2]}},
     {2,{fWm,-\[ImaginaryI]/Sqrt[2]},{fWp,\[ImaginaryI]/Sqrt[2]}},
     {3,{fWO,1}}}};
DEFINITION[EWSB][VEVs]=
{
    {SHd0, {vd, 1/Sqrt[2]}, {sigmad, \[ImaginaryI]/Sqrt[2]}, {phid, \
1/Sqrt[2]}},
    {SHu0, {vu, 1/Sqrt[2]}, {sigmau, \[ImaginaryI]/Sqrt[2]},{phiu, \
1/Sqrt[2]}},
    {SsR, {vS, 1/Sqrt[2]}, {sigmaS, \[ImaginaryI]/Sqrt[2]}, {phiS, \
1/Sqrt[2]}}
               };
DEFINITION[EWSB] [MatterSector] =
    {{SdL, SdR}, {Sd, ZD}},
{
    {{SvL}, {Sv, ZV}},
    {{SuL, SuR}, {Su, ZU}},
```

```
{{SeL, SeR}, {Se, ZE}},
    {{phid, phiu, phiS}, {hh, ZH}},
    {{sigmad, sigmau, sigmaS}, {Ah, ZA}},
    {{SHdm,conj[SHup]},{Hpm,ZP}},
    {{fB, fWO, FHdO, FHuO,FsR}, {LO, ZN}},
    {{fWm, FHdm}, {fWp, FHup}}, {{Lm,UM}, {Lp,UP}}},
    {{{FeL}, {conj[FeR]}}, {{FEL, ZEL}, {FER, ZER}}},
    {{{FdL}, {conj[FdR]}}, {{FDL, ZDL}, {FDR, ZDR}}},
    {{{FuL}, {conj[FuR]}}, {{FUL, ZUL}, {FUR, ZUR}}}
  };
DEFINITION[EWSB] [Phases] =
    {fG, PhaseGlu}
   };
DEFINITION[EWSB] [GaugeFixing] =
 { {Der[VP],
                                                    - 1/(2 RXi[P]),
{Der[VWm]+\[ImaginaryI] Mass[VWm] RXi[W] Hpm[{1}],
                                               - 1/(RXi[W])},
{Der[VZ] - Mass[VZ] RXi[Z] Ah[{1}],
                                                - 1/(2 RXi[Z]),
{Der[VG],
                                                - 1/(2 RXi[G])}};
(*-----*)
(* Dirac-Spinors *)
(*----*)
dirac[[1]] = {Fd, FDL, conj[FDR]};
dirac[[2]] = {Fe, FEL, conj[FER]};
dirac[[3]] = {Fu, FUL, conj[FUR]};
dirac[[4]] = {Fv, FvL, 0};
dirac[[5]] = {Chi, L0, conj[L0]};
dirac[[6]] = {Cha, Lm, conj[Lp]};
dirac[[7]] = {Glu, fG, conj[fG]};
dirac[[8]] = {Bino, fB, conj[fB]};
dirac[[9]] = {Wino, fWB, conj[fWB]};
dirac[[10]] = {HO, FHuO, conj[FHdO]};
dirac[[11]] = {HC, FHup, conj[FHdm]};
dirac[[12]] = {S, FsR, conj[FsR]};
(* Unbroken EW *)
dirac[[13]] = {Fd1, FdL, 0};
dirac[[14]] = {Fd2, 0, FdR};
dirac[[15]] = {Fu1, FuL, 0};
dirac[[16]] = {Fu2, 0, FuR};
dirac[[17]] = {Fe1, FeL, 0};
dirac[[18]] = {Fe2, 0, FeR};
(*-----*)
```

13.8 Implementation in SARAH

Model directory: near-MSSM

13.8.1 Particles for eigenstates 'GaugeES'

• Fermions

$$\begin{split} \tilde{B} &= \begin{pmatrix} \lambda_{\tilde{B}} \\ \lambda_{\tilde{B}}^* \end{pmatrix} & \text{Bino} &= \begin{pmatrix} \text{fB} \\ \text{conj[fB]} \end{pmatrix} \\ d_{i\alpha}^1 &= \begin{pmatrix} d_{L,i\alpha} \\ 0 \end{pmatrix} & \text{Fd1}[\{\text{generation, color}\}] &= \begin{pmatrix} \text{FdL}[\{\text{generation, color}\}] \\ 0 \\ d_{i\alpha}^2 &= \begin{pmatrix} 0 \\ d_{R,i\alpha} \end{pmatrix} & \text{Fd2}[\{\text{generation, color}\}] &= \begin{pmatrix} 0 \\ \text{FdR}[\{\text{generation, color}\}] \end{pmatrix} \\ e_i^1 &= \begin{pmatrix} e_{L,i} \\ 0 \end{pmatrix} & \text{Fe1}[\{\text{generation}\}] &= \begin{pmatrix} \text{FeL}[\{\text{generation}\}] \\ 0 \\ e_{R,i} \end{pmatrix} \\ e_i^2 &= \begin{pmatrix} 0 \\ e_{R,i} \end{pmatrix} & \text{Fe2}[\{\text{generation, color}\}] &= \begin{pmatrix} 0 \\ \text{FeR}[\{\text{generation, color}\}] \end{pmatrix} \\ u_{i\alpha}^1 &= \begin{pmatrix} u_{L,i\alpha} \\ 0 \end{pmatrix} & \text{Fu1}[\{\text{generation, color}\}] &= \begin{pmatrix} 0 \\ \text{FuR}[\{\text{generation, color}\}] \end{pmatrix} \\ u_{i\alpha}^2 &= \begin{pmatrix} 0 \\ u_{R,i\alpha} \end{pmatrix} & \text{Fu2}[\{\text{generation, color}\}] &= \begin{pmatrix} 0 \\ \text{FuR}[\{\text{generation, color}\}] \end{pmatrix} \\ \nu_i &= \begin{pmatrix} \nu_{L,i} \\ 0 \end{pmatrix} & \text{Fv}[\{\text{generation}\}] &= \begin{pmatrix} \text{FvL}[\{\text{generation, color}\}] \end{pmatrix} \end{split}$$

$$\begin{split} \tilde{g}_i &= \begin{pmatrix} \lambda_{\tilde{g},i} \\ \lambda_{\tilde{g},i}^* \end{pmatrix} & \text{Glu[\{generation\}]} &= \begin{pmatrix} \text{fG[\{generation\}]} \\ \text{conj[fG[\{generation\}]]} \end{pmatrix} \\ \tilde{H}^0 &= \begin{pmatrix} \tilde{H}_u^0 \\ \tilde{H}_d^{0,*} \end{pmatrix} & \text{HO} &= \begin{pmatrix} \text{FHuO} \\ \text{conj[FHdO]} \end{pmatrix} \\ \tilde{H}^- &= \begin{pmatrix} \tilde{H}_u^+ \\ \tilde{H}_d^{-,*} \end{pmatrix} & \text{HC} &= \begin{pmatrix} \text{FHup} \\ \text{conj[FHdm]} \end{pmatrix} \\ \tilde{S} &= \begin{pmatrix} \tilde{S} \\ \tilde{S}^* \end{pmatrix} & \text{S} &= \begin{pmatrix} \text{FsR} \\ \text{conj[FsR]} \end{pmatrix} \\ \tilde{W}_i &= \begin{pmatrix} \lambda_{\tilde{W},i} \\ \lambda_{\tilde{W},i}^* \end{pmatrix} & \text{Wino[\{generation\}]} &= \begin{pmatrix} \text{fWB[\{generation\}]} \\ \text{conj[fWB[\{generation\}]]} \end{pmatrix} \\ \end{split}$$

• Scalars

$\tilde{d}_{L,ilpha}$	SdL[{generation, color}]	$\tilde{u}_{L,i\alpha}$	SuL[{generation, color}]
$\tilde{e}_{L,i}$	SeL[{generation}]	$ ilde{ u}_{L,i}$	<pre>SvL[{generation}]</pre>
H_d^0	SHd0	H_d^-	SHdm
H_u^0	SHu0	H_u^+	SHup
$\tilde{d}_{R,i\alpha}$	<pre>SdR[{generation, color}]</pre>	$\tilde{u}_{R,i\alpha}$	<pre>SuR[{generation, color}]</pre>
$\tilde{e}_{R,i}$	SeR[{generation}]	S	SsR

• Vector Bosons

$B_{ ho}$	<pre>VB[{lorentz}]</pre>	$W_{i\rho}^-$	<pre>VWB[{generation, lorentz}]</pre>
$g_{i ho}$	<pre>VG[{generation, lorentz}]</pre>		

• Ghosts

η^B	gB	gWB(gt1)	gWB[{generation}]
η_i^G	gG[{generation}]		

13.8.2 Particles for eigenstates 'EWSB'

• Fermions

$$\begin{split} \tilde{\chi}_i^- &= \begin{pmatrix} \lambda_i^- \\ \lambda_i^{+,*} \end{pmatrix} & \text{Cha[\{generation\}]} &= \begin{pmatrix} \text{Lm[\{generation\}]} \\ \text{conj[Lp[\{generation\}]]} \end{pmatrix} \\ \tilde{\chi}_i^0 &= \begin{pmatrix} \lambda_i^0 \\ \lambda_i^{0,*} \end{pmatrix} & \text{Chi[\{generation\}]} &= \begin{pmatrix} \text{L0[\{generation\}]} \\ \text{conj[L0[\{generation\}]]} \end{pmatrix} \\ d_{i\alpha} &= \begin{pmatrix} D_{L,i\alpha} \\ D_{R,i\alpha}^* \end{pmatrix} & \text{Fd[\{generation, color\}]} &= \begin{pmatrix} \text{FDL[\{generation, color\}]} \\ \text{conj[FDR[\{generation, color\}]]} \end{pmatrix} \\ e_i &= \begin{pmatrix} E_{L,i} \\ E_{R,i}^* \end{pmatrix} & \text{Fe[\{generation\}]} &= \begin{pmatrix} \text{FEL[\{generation\}]} \\ \text{conj[FER[\{generation\}]]} \end{pmatrix} \\ u_{i\alpha} &= \begin{pmatrix} U_{L,i\alpha} \\ U_{R,i\alpha} \\ U_{R,i\alpha}^* \end{pmatrix} & \text{Fu[\{generation, color\}]} &= \begin{pmatrix} \text{FUL[\{generation, color\}]} \\ \text{conj[FUR[\{generation\}]} \end{pmatrix} \\ \tilde{g}_i &= \begin{pmatrix} \lambda_{\tilde{g},i} \\ \lambda_{\tilde{g},i}^* \end{pmatrix} & \text{Glu[\{generation\}]} &= \begin{pmatrix} \text{fG[\{generation\}]} \\ \text{conj[fG[\{generation\}]]} \end{pmatrix} \end{split}$$

• Scalars

$\tilde{d}_{i\alpha}$	<pre>Sd[{generation, color}]</pre>	$\tilde{\nu}_i$	$Sv[{generation}]$
$\tilde{u}_{i\alpha}$	<pre>Su[{generation, color}]</pre>	\tilde{e}_i	Se[{generation}]
h_i	hh[{generation}]	A_i^0	Ah[{generation}]
H_i^-	${\tt Hpm[\{generation\}]}$		

• Vector Bosons

$g_{i\rho}$	<pre>VG[{generation, lorentz}]</pre>	W_{ρ}^{-}	VWm[{lorentz}]	
$\gamma_{ ho}$	<pre>VP[{lorentz}]</pre>	$Z_{ ho}$	VZ[{lorentz}]	

• Ghosts

η_i^G	gG[{generation}]	η^-	gWm
η^+	gWmC	η^{γ}	gP
η^Z	gZ		

13.8.3 Parameters

g_1	g1	g_2	g2	g_3	g3
Y_u	Yu	T_u	T[Yu]	Y_d	Yd
T_d	T[Yd]	Y_e	Ye	T_e	T[Ye]
λ	\[Lambda]	T_{λ}	T[\[Lambda]]	ξ	Tad
L_{ξ}	L[Tad]	m_q^2	mq2	m_l^2	m12
$m_{H_d}^2$	mHd2	$m_{H_u}^2$	mHu2	m_d^2	md2
m_u^2	mu2	m_e^2	me2	m_S^2	ms2
M_1	MassB	M_2	MassWB	M_3	${\tt MassG}$
v_d	vd	v_u	vu	v_s	vS
Θ_W	ThetaW	$\phi_{ ilde{g}}$	PhaseGlu	Z^D	ZD
Z^V	ZV	Z^U	ZU	Z^E	ZE
Z^H	ZH	Z^A	ZA	Z^+	ZP
N	ZN	U	UM	V	UP
U_L^e	ZEL	U_R^e	ZER	U_L^d	ZDL
U_R^d	ZDR	U_L^u	ZUL	U_R^u	ZUR
β	\[Beta]				

Chapter 14

The Singlet extended Minimal Supersymmetric Standard Model

14.1 Superfields

14.1.1 Vector Superfields

SF	Spin $\frac{1}{2}$	Spin 1	SU(N)	Coupling	Name
\hat{B}	$\lambda_{ ilde{B}}$	B	U(1)	g_1	hypercharge
\hat{W}	$\lambda_{ ilde{W}}$	W^-	SU(2)	g_2	left
\hat{g}	$\lambda_{ ilde{g}}$	g	SU(3)	g_3	color

14.1.2 Chiral Superfields

SF	Spin 0	Spin $\frac{1}{2}$	Generations	$(U(1) \otimes \mathrm{SU}(2) \otimes \mathrm{SU}(3))$
\hat{q}	$ ilde{q}$	q	3	$(rac{1}{6}, 2, 3)$
l	\tilde{l}	l	3	$(-rac{1}{2},2,1)$
\hat{H}_d	H_d	$ ilde{H}_d$	1	$(-rac{1}{2},2,1)$
\hat{H}_u	H_u	\tilde{H}_u	1	$(rac{1}{2}, 2, 1)$
\hat{d}	$ ilde{d}_R^*$	d_R^*	3	$(rac{1}{3}, 1, \overline{3})$
\hat{u}	\tilde{u}_R^*	u_R^*	3	$(-rac{2}{3},1,\overline{3})$
\hat{e}	\tilde{e}_R^*	e_R^*	3	(1, 1 , 1)
\hat{s}	S	$ ilde{S}$	1	(0, 1, 1)

14.2 Superpotential and Lagrangian

14.2.1 Superpotential

$$W = Y_u \, \hat{q} \, \hat{H}_u \, \hat{u} \, - Y_d \, \hat{q} \, \hat{H}_d \, \hat{d} \, - Y_e \, \hat{l} \, \hat{H}_d \, \hat{e} \, + \lambda \, \hat{H}_u \, \hat{H}_d \, \hat{s} \, + \frac{1}{3} \kappa \, \hat{s} \, \hat{s} \, \hat{s} \, + L_1 \, \hat{s} \, + \frac{1}{2} M_S \, \hat{s} \, \hat{s}$$

$$+\mu\,\hat{H}_u\,\hat{H}_d\tag{14.1}$$

14.2.2 Softbreaking terms

$$L_{SB,W} = +\frac{1}{2}S^{2}B_{S} - H_{d}^{0}H_{u}^{0}B_{\mu} + H_{d}^{-}H_{u}^{+}B_{\mu} + S\xi_{1} + \frac{1}{3}S^{3}T_{\kappa} - H_{d}^{0}H_{u}^{0}ST_{\lambda} + H_{d}^{-}H_{u}^{+}ST_{\lambda}$$

$$+ H_{d}^{0}\tilde{d}_{R,k\gamma}^{*}\delta_{\alpha\gamma}\tilde{d}_{L,i\alpha}T_{d,ik} - H_{d}^{-}\tilde{d}_{R,k\gamma}^{*}\delta_{\alpha\gamma}\tilde{u}_{L,i\alpha}T_{d,ik} + H_{d}^{0}\tilde{e}_{R,k}^{*}\tilde{e}_{L,i}T_{e,ik} - H_{d}^{-}\tilde{e}_{R,k}^{*}\tilde{\nu}_{L,i}T_{e,ik}$$

$$- H_{u}^{+}\tilde{u}_{R,k\gamma}^{*}\delta_{\alpha\gamma}\tilde{d}_{L,i\alpha}T_{u,ik} + H_{u}^{0}\tilde{u}_{R,k\gamma}^{*}\delta_{\alpha\gamma}\tilde{u}_{L,i\alpha}T_{u,ik} + \text{h.c.}$$

$$(14.2)$$

$$L_{SB,\phi} = - m_{H_{d}}^{2}|H_{d}^{0}|^{2} - m_{H_{d}}^{2}|H_{d}^{-}|^{2} - m_{H_{u}}^{2}|H_{u}^{0}|^{2} - m_{H_{u}}^{2}|H_{u}^{+}|^{2} - m_{S}^{2}|S|^{2}$$

$$- \tilde{d}_{L,j\beta}^{*}\delta_{\alpha\beta}m_{q,ij}^{2}\tilde{d}_{L,i\alpha} - \tilde{d}_{R,i\alpha}^{*}\delta_{\alpha\beta}m_{u,ij}^{2}\tilde{d}_{R,j\beta} - \tilde{e}_{L,j}^{*}m_{l,ij}^{2}\tilde{e}_{L,i} - \tilde{e}_{R,i}^{*}m_{e,ij}^{2}\tilde{e}_{R,j}$$

$$- \tilde{u}_{L,i\beta}^{*}\delta_{\alpha\beta}m_{q,ij}^{2}\tilde{u}_{L,i\alpha} - \tilde{u}_{R,i\alpha}^{*}\delta_{\alpha\beta}m_{u,ij}^{2}\tilde{u}_{R,j\beta} - \tilde{\nu}_{L,i}^{*}m_{l,ij}^{2}\tilde{\nu}_{L,i}$$

$$(14.3)$$

$$L_{SB,\lambda} = \frac{1}{2} \left(-\lambda_{\tilde{B}}^2 M_1 - M_2 \lambda_{\tilde{W},i}^2 - M_3 \lambda_{\tilde{g},i}^2 + \text{h.c.} \right)$$
(14.4)

14.2.3 Gauge fixing terms

Gauge fixing terms for eigenstates 'GaugeES'

$$L_{GF} = -\frac{1}{2}\partial_{\mu}g\xi_{G}^{-1} - \frac{1}{2}\partial_{\mu}W^{-}\xi_{W}^{-1}$$
(14.5)

Gauge fixing terms for eigenstates 'EWSB'

$$L_{GF} = -\frac{1}{2}\partial_{\mu}\gamma\xi_{P}^{-1} - \frac{1}{2}\partial_{\mu}g\xi_{G}^{-1} - \frac{1}{2}\xi_{Z}^{-1}\left(-A_{1}^{0}m_{Z}\xi_{Z} + \partial_{\mu}Z\right) - \xi_{W}^{-1}\left(iH_{1}^{-}m_{W^{-}}\xi_{W} + \partial_{\mu}W^{-}\right)$$

$$(14.6)$$

14.2.4 Fields integrated out

None

14.3 Field Rotations

14.3.1 Rotations in gauge sector for eigenstates 'EWSB'

$$W_{1\rho}^{-} = \frac{1}{\sqrt{2}}W_{\rho}^{-} + \frac{1}{\sqrt{2}}W_{\rho}^{+} \tag{14.7}$$

$$W_{2\rho}^{-} = -i\frac{1}{\sqrt{2}}W_{\rho}^{-} + i\frac{1}{\sqrt{2}}W_{\rho}^{+} \tag{14.8}$$

$$W_{3\rho}^{-} = \cos\Theta_W Z_{\rho} + \sin\Theta_W \gamma_{\rho} \tag{14.9}$$

$$B_{\rho} = \cos\Theta_W \gamma_{\rho} - \sin\Theta_W Z_{\rho} \tag{14.10}$$

$$\lambda_{\tilde{W},1} = \frac{1}{\sqrt{2}}\tilde{W}^{-} + \frac{1}{\sqrt{2}}\tilde{W}^{+} \tag{14.11}$$

$$\lambda_{\tilde{W},2} = -i\frac{1}{\sqrt{2}}\tilde{W}^{-} + i\frac{1}{\sqrt{2}}\tilde{W}^{+} \tag{14.12}$$

$$\lambda_{\tilde{W} 3} = \tilde{W}^0 \tag{14.13}$$

14.3.2 Rotations in Mass sector for eigenstates 'EWSB'

Mass Matrices for Scalars

 $\bullet \ \, \mathbf{Mass \ matrix \ for \ Down-Squarks}, \ \, \mathbf{Basis:} \ \, \left(\tilde{d}_{L,o_{1}\alpha_{1}},\tilde{d}_{R,o_{2}\alpha_{2}}\right), \left(\tilde{d}_{L,p_{1}\beta_{1}}^{*},\tilde{d}_{R,p_{2}\beta_{2}}^{*}\right)$

$$m_{\tilde{d}}^2 = \begin{pmatrix} m_{11} & m_{21}^* \\ m_{21} & m_{22} \end{pmatrix} \tag{14.14}$$

$$m_{11} = \frac{1}{24} \delta_{\alpha_1 \beta_1} \left(12 \left(2m_{q,o_1 p_1}^2 + v_d^2 \sum_{a=1}^3 Y_{d,p_1 a}^* Y_{d,o_1 a} \right) - \left(3g_2^2 + g_1^2 \right) \left(-v_u^2 + v_d^2 \right) \delta_{o_1 p_1} \right)$$

$$(14.15)$$

$$m_{21} = -\frac{1}{2} \left(-\sqrt{2} v_d T_{d,p_1 o_2}^* + v_u \left(\sqrt{2} \mu + v_s \lambda \right) Y_{d,p_1 o_2}^* \right) \delta_{\alpha_2 \beta_1}$$
(14.16)

$$m_{22} = \frac{1}{12} \delta_{\alpha_2 \beta_2} \left(6 \left(2m_{d, p_2 o_2}^2 + v_d^2 \sum_{a=1}^3 Y_{d, a o_2}^* Y_{d, a p_2} \right) + g_1^2 \left(-v_d^2 + v_u^2 \right) \delta_{o_2 p_2} \right)$$
(14.17)

This matrix is diagonalized by Z^D :

$$Z^{D} m_{\tilde{d}}^{2} Z^{D,\dagger} = m_{2,\tilde{d}}^{dia} \tag{14.18}$$

with

$$\tilde{d}_{L,i\alpha} = \sum_{t_2} Z_{ji}^{D,*} \tilde{d}_{j\alpha}, \qquad \tilde{d}_{R,i\alpha} = \sum_{t_2} Z_{ji}^{D,*} \tilde{d}_{j\alpha}$$
 (14.19)

• Mass matrix for Sneutrinos, Basis: $(\tilde{\nu}_{L,o_1}), (\tilde{\nu}_{L,p_1}^*)$

$$m_{\tilde{\nu}}^2 = \left(\frac{1}{8} \left(8m_{l,o_1p_1}^2 + \left(g_1^2 + g_2^2\right) \left(-v_u^2 + v_d^2\right) \delta_{o_1p_1}\right)\right)$$
(14.20)

This matrix is diagonalized by Z^V :

$$Z^{V} m_{\tilde{\nu}}^{2} Z^{V,\dagger} = m_{2,\tilde{\nu}}^{dia} \tag{14.21}$$

with

$$\tilde{\nu}_{L,i} = \sum_{t_2} Z_{ji}^{V,*} \tilde{\nu}_j \tag{14.22}$$

• Mass matrix for Up-Squarks, Basis: $(\tilde{u}_{L,o_1\alpha_1}, \tilde{u}_{R,o_2\alpha_2}), (\tilde{u}_{L,p_1\beta_1}^*, \tilde{u}_{R,p_2\beta_2}^*)$

$$m_{\tilde{u}}^2 = \begin{pmatrix} m_{11} & m_{21}^* \\ m_{21} & m_{22} \end{pmatrix} \tag{14.23}$$

$$m_{11} = \frac{1}{24} \delta_{\alpha_1 \beta_1} \left(12 \left(2m_{q, o_1 p_1}^2 + v_u^2 \sum_{a=1}^3 Y_{u, p_1 a}^* Y_{u, o_1 a} \right) - \left(-3g_2^2 + g_1^2 \right) \left(-v_u^2 + v_d^2 \right) \delta_{o_1 p_1} \right)$$
(14.24)

$$m_{21} = -\frac{1}{2} \left(-\sqrt{2}v_u T_{u,p_1o_2}^* + v_d \left(\sqrt{2}\mu + v_s \lambda\right) Y_{u,p_1o_2}^* \right) \delta_{\alpha_2\beta_1}$$
(14.25)

$$m_{22} = \frac{1}{6} \delta_{\alpha_2 \beta_2} \left(3v_u^2 \sum_{n=1}^3 Y_{u,ao_2}^* Y_{u,ap_2} + 6m_{u,p_2 o_2}^2 + g_1^2 \left(-v_u^2 + v_d^2 \right) \delta_{o_2 p_2} \right)$$
(14.26)

This matrix is diagonalized by Z^U :

$$Z^{U}m_{\tilde{u}}^{2}Z^{U,\dagger} = m_{2.\tilde{u}}^{dia} \tag{14.27}$$

with

$$\tilde{u}_{L,i\alpha} = \sum_{t_2} Z_{ji}^{U,*} \tilde{u}_{j\alpha}, \qquad \tilde{u}_{R,i\alpha} = \sum_{t_2} Z_{ji}^{U,*} \tilde{u}_{j\alpha}$$
(14.28)

• Mass matrix for Sleptons, Basis: $(\tilde{e}_{L,o_1}, \tilde{e}_{R,o_2}), (\tilde{e}^*_{L,p_1}, \tilde{e}^*_{R,p_2})$

$$m_{\tilde{e}}^2 = \begin{pmatrix} m_{11} & m_{21}^* \\ \frac{1}{2} \left(\sqrt{2} v_d T_{e, p_1 o_2}^* - v_u \left(\sqrt{2} \mu + v_s \lambda \right) Y_{e, p_1 o_2}^* \right) & m_{22} \end{pmatrix}$$
(14.29)

$$m_{11} = \frac{1}{8} \left(4v_d^2 \sum_{a=1}^3 Y_{e,p_1a}^* Y_{e,o_1a} + 8m_{l,o_1p_1}^2 + \left(-g_2^2 + g_1^2 \right) \left(-v_u^2 + v_d^2 \right) \delta_{o_1p_1} \right)$$
(14.30)

$$m_{22} = \frac{1}{4} \left(2v_d^2 \sum_{a=1}^3 Y_{e,ao_2}^* Y_{e,ap_2} + 4m_{e,p_2o_2}^2 + g_1^2 \left(-v_d^2 + v_u^2 \right) \delta_{o_2p_2} \right)$$
(14.31)

This matrix is diagonalized by Z^E :

$$Z^E m_{\tilde{e}}^2 Z^{E,\dagger} = m_{2,\tilde{e}}^{dia} \tag{14.32}$$

with

$$\tilde{e}_{L,i} = \sum_{t_0} Z_{ji}^{E,*} \tilde{e}_j , \qquad \tilde{e}_{R,i} = \sum_{t_0} Z_{ji}^{E,*} \tilde{e}_j$$
(14.33)

• Mass matrix for Higgs, Basis: $(\phi_d, \phi_u, \phi_s), (\phi_d, \phi_u, \phi_s)$

$$m_h^2 = \begin{pmatrix} m_{11} & m_{21}^* & m_{31}^* \\ m_{21} & m_{22} & m_{32}^* \\ m_{31} & m_{32} & m_{33} \end{pmatrix}$$
(14.34)

$$m_{11} = \frac{1}{8} \left(8m_{H_d}^2 + 3g_1^2 v_d^2 + 3g_2^2 v_d^2 - g_1^2 v_u^2 - g_2^2 v_u^2 + 4\left(\sqrt{2}v_s\mu + v_s^2\lambda + v_u^2\lambda\right)\lambda^* + 4\left(2\mu + \sqrt{2}v_s\lambda\right)\mu^* \right)$$

$$(14.35)$$

$$m_{21} = \frac{1}{4} \left(-g_1^2 v_d v_u - g_2^2 v_d v_u + 4v_d v_u |\lambda|^2 - 2\lambda L_1^* - \sqrt{2} v_s \lambda M_S^* - v_s^2 \lambda \kappa^* - 2L_1 \lambda^* - \sqrt{2} M_S v_s \lambda^* - v_s^2 \kappa \lambda^* - \sqrt{2} v_s T_\lambda^* - 4\Re \left(B_\mu \right) - \sqrt{2} v_s T_\lambda \right)$$
(14.36)

$$m_{22} = \frac{1}{8} \left(8m_{H_u}^2 - g_1^2 v_d^2 - g_2^2 v_d^2 + 3g_1^2 v_u^2 + 3g_2^2 v_u^2 + 4\left(v_d^2 \lambda + v_s\left(\sqrt{2}\mu + v_s\lambda\right)\right) \lambda^* + 4\left(2\mu + \sqrt{2}v_s\lambda\right)\mu^* \right)$$

$$(14.37)$$

$$m_{31} = \frac{1}{4} \left(4v_d v_s |\lambda|^2 - \sqrt{2} v_u \lambda M_S^* - 2v_s v_u \lambda \kappa^* - \sqrt{2} M_S v_u \lambda^* - 2v_s v_u \kappa \lambda^* + 2\sqrt{2} v_d \mu \lambda^* + 2\sqrt{2} v_d \lambda \mu^* - 2\sqrt{2} v_u \Re\left(T_\lambda\right) \right)$$

$$(14.38)$$

$$m_{32} = \frac{1}{4} \left(4v_s v_u |\lambda|^2 - \sqrt{2}v_d \lambda M_S^* - 2v_d v_s \lambda \kappa^* - \sqrt{2}M_S v_d \lambda^* - 2v_d v_s \kappa \lambda^* + 2\sqrt{2}v_u \mu \lambda^* + 2\sqrt{2}v_u \lambda \mu^* - 2\sqrt{2}v_d \Re\left(T_\lambda\right) \right)$$

$$(14.39)$$

$$m_{33} = \frac{1}{2} \left(2m_S^2 + 6v_s^2 |\kappa|^2 + v_d^2 |\lambda|^2 + v_u^2 |\lambda|^2 + 2\kappa L_1^* + \left(2M_S + 3\sqrt{2}v_s\kappa \right) M_S^* + 2L_1\kappa^* + 3\sqrt{2}M_S v_s\kappa^* - v_d v_u \kappa \lambda^* + \sqrt{2}v_s T_\kappa^* + 2\Re\left(B_S\right) + \sqrt{2}v_s T_\kappa \right)$$

$$(14.40)$$

This matrix is diagonalized by Z^H :

$$Z^{H} m_{h}^{2} Z^{H,\dagger} = m_{2,h}^{dia} \tag{14.41}$$

with

$$\phi_d = \sum_{t_2} Z_{j1}^{H,*} h_j , \qquad \phi_u = \sum_{t_2} Z_{j2}^{H,*} h_j , \qquad \phi_s = \sum_{t_2} Z_{j3}^{H,*} h_j$$
 (14.42)

• Mass matrix for Pseudo-Scalar Higgs, Basis: $(\sigma_d, \sigma_u, \sigma_s)$, $(\sigma_d, \sigma_u, \sigma_s)$

$$m_{A^0}^2 = \begin{pmatrix} m_{11} & m_{21}^* & m_{31}^* \\ m_{21} & m_{22} & m_{32}^* \\ m_{31} & m_{32} & m_{33} \end{pmatrix}$$
(14.43)

$$m_{11} = \frac{1}{8} \left(8m_{H_d}^2 + g_1^2 v_d^2 + g_2^2 v_d^2 - g_1^2 v_u^2 - g_2^2 v_u^2 + 4 \left(\sqrt{2} v_s \mu + v_s^2 \lambda + v_u^2 \lambda \right) \lambda^* + 4 \left(2\mu + \sqrt{2} v_s \lambda \right) \mu^* \right)$$

$$(14.44)$$

$$m_{21} = \frac{1}{4} \left(2L_1 \lambda^* + 2\lambda L_1^* + 4\Re \left(B_\mu \right) + \sqrt{2} M_S v_s \lambda^* + \sqrt{2} v_s \lambda M_S^* + \sqrt{2} v_s T_\lambda + \sqrt{2} v_s T_\lambda^* + v_s^2 \kappa \lambda^* + v_s^2 \lambda \kappa^* \right)$$
(14.45)

$$m_{22} = \frac{1}{8} \left(8m_{H_u}^2 - g_1^2 v_d^2 - g_2^2 v_d^2 + g_1^2 v_u^2 + g_2^2 v_u^2 + 4 \left(v_d^2 \lambda + v_s \left(\sqrt{2}\mu + v_s \lambda \right) \right) \lambda^* + 4 \left(2\mu + \sqrt{2}v_s \lambda \right) \mu^* \right)$$

$$(14.46)$$

$$m_{31} = -\frac{1}{4}v_u\left(-2\sqrt{2}\Re\left(T_\lambda\right) + 2v_s\kappa\lambda^* + 2v_s\lambda\kappa^* + \sqrt{2}\lambda M_S^* + \sqrt{2}M_S\lambda^*\right)$$

$$(14.47)$$

$$m_{32} = -\frac{1}{4}v_d\left(-2\sqrt{2}\Re\left(T_\lambda\right) + 2v_s\kappa\lambda^* + 2v_s\lambda\kappa^* + \sqrt{2}\lambda M_S^* + \sqrt{2}M_S\lambda^*\right)$$
(14.48)

$$m_{33} = \frac{1}{2} \left(2m_S^2 + 2v_s^2 |\kappa|^2 + v_d^2 |\lambda|^2 + v_u^2 |\lambda|^2 - 2\kappa L_1^* + \left(2M_S + \sqrt{2}v_s \kappa \right) M_S^* - 2L_1 \kappa^* + \sqrt{2}M_S v_s \kappa^* + v_d v_u \lambda \kappa^* + v_d v_u \kappa \lambda^* - \sqrt{2}v_s T_\kappa^* - 2\Re\left(B_S\right) - \sqrt{2}v_s T_\kappa\right)$$

$$(14.49)$$

This matrix is diagonalized by Z^A :

$$Z^{A}m_{A^{0}}^{2}Z^{A,\dagger} = m_{2,A^{0}}^{dia} \tag{14.50}$$

with

$$\sigma_d = \sum_{t_2} Z_{j1}^{A,*} A_j^0, \qquad \sigma_u = \sum_{t_2} Z_{j2}^{A,*} A_j^0, \qquad \sigma_s = \sum_{t_2} Z_{j3}^{A,*} A_j^0$$
(14.51)

• Mass matrix for Charged Higgs, Basis: $\left(H_d^-, H_u^{+,*}\right), \left(H_d^{-,*}, H_u^+\right)$

$$m_{H^{-}}^{2} = \begin{pmatrix} m_{11} & m_{21}^{*} \\ m_{21} & m_{22} \end{pmatrix}$$
 (14.52)

$$m_{11} = \frac{1}{8} \left(4 \left(2\mu + \sqrt{2}v_s \lambda \right) \mu^* + 4v_s \left(\sqrt{2}\mu + v_s \lambda \right) \lambda^* + 8m_{H_d}^2 + g_1^2 v_d^2 - g_1^2 v_u^2 + g_2^2 v_d^2 + g_2^2 v_u^2 \right)$$
(14.53)

$$m_{21} = \frac{1}{4} \left(2\left(2L_1 + \sqrt{2}M_S v_s - v_d v_u \lambda + v_s^2 \kappa\right) \lambda^* + 2\sqrt{2}v_s T_\lambda^* + 4B_\mu^* + g_2^2 v_d v_u \right)$$
(14.54)

$$m_{22} = \frac{1}{8} \left(4 \left(2\mu + \sqrt{2}v_s \lambda \right) \mu^* + 4v_s \left(\sqrt{2}\mu + v_s \lambda \right) \lambda^* + 8m_{H_u}^2 - g_1^2 v_d^2 + g_1^2 v_u^2 + g_2^2 v_d^2 + g_2^2 v_u^2 \right)$$
(14.55)

This matrix is diagonalized by Z^+ :

$$Z^{+}m_{H^{-}}^{2}Z^{+,\dagger} = m_{2,H^{-}}^{dia}$$
(14.56)

with

$$H_d^- = \sum_{t_2} Z_{j1}^{+,*} H_j^-, \qquad H_u^+ = \sum_{t_2} Z_{j2}^+ H_j^+$$
 (14.57)

The mixing matrix can be parametrized by

$$Z^{+} = \begin{pmatrix} -\cos\beta & \sin\beta \\ \sin\beta & \cos\beta \end{pmatrix} \tag{14.58}$$

Mass Matrices for Fermions

 $\bullet \ \ \mathbf{Mass \ matrix \ for \ Neutralinos}, \ \mathbf{Basis:} \ \left(\lambda_{\tilde{B}}, \tilde{W}^0, \tilde{H}_d^0, \tilde{H}_u^0, \tilde{S}\right), \left(\lambda_{\tilde{B}}, \tilde{W}^0, \tilde{H}_d^0, \tilde{H}_u^0, \tilde{S}\right)$

$$m_{\tilde{\chi}^{0}} = \begin{pmatrix} M_{1} & 0 & -\frac{1}{2}g_{1}v_{d} & \frac{1}{2}g_{1}v_{u} & 0\\ 0 & M_{2} & \frac{1}{2}g_{2}v_{d} & -\frac{1}{2}g_{2}v_{u} & 0\\ -\frac{1}{2}g_{1}v_{d} & \frac{1}{2}g_{2}v_{d} & 0 & -\frac{1}{\sqrt{2}}v_{s}\lambda - \mu & -\frac{1}{\sqrt{2}}v_{u}\lambda\\ \frac{1}{2}g_{1}v_{u} & -\frac{1}{2}g_{2}v_{u} & -\frac{1}{\sqrt{2}}v_{s}\lambda - \mu & 0 & -\frac{1}{\sqrt{2}}v_{d}\lambda\\ 0 & 0 & -\frac{1}{\sqrt{2}}v_{u}\lambda & -\frac{1}{\sqrt{2}}v_{d}\lambda & \sqrt{2}v_{s}\kappa + M_{S} \end{pmatrix}$$

$$(14.59)$$

This matrix is diagonalized by N:

$$Nm_{\tilde{\chi}^0}N^{\dagger} = m_{\tilde{\chi}^0}^{dia} \tag{14.60}$$

with

$$\lambda_{\tilde{B}} = \sum_{t_2} N_{j1}^* \lambda_j^0, \qquad \tilde{W}^0 = \sum_{t_2} N_{j2}^* \lambda_j^0, \qquad \tilde{H}_d^0 = \sum_{t_2} N_{j3}^* \lambda_j^0$$

$$\tilde{H}_u^0 = \sum_{t_2} N_{j4}^* \lambda_j^0, \qquad \tilde{S} = \sum_{t_2} N_{j5}^* \lambda_j^0$$

$$(14.61)$$

$$\tilde{H}_{u}^{0} = \sum_{t_{2}} N_{j4}^{*} \lambda_{j}^{0}, \qquad \qquad \tilde{S} = \sum_{t_{2}} N_{j5}^{*} \lambda_{j}^{0}$$
(14.62)

• Mass matrix for Charginos, Basis: $\left(\tilde{W}^{-}, \tilde{H}_{d}^{-}\right), \left(\tilde{W}^{+}, \tilde{H}_{u}^{+}\right)$

$$m_{\tilde{\chi}^{-}} = \begin{pmatrix} M_2 & \frac{1}{\sqrt{2}}g_2v_u \\ \frac{1}{\sqrt{2}}g_2v_d & \frac{1}{\sqrt{2}}v_s\lambda + \mu \end{pmatrix}$$
 (14.63)

This matrix is diagonalized by U and V

$$U^* m_{\tilde{\chi}^-} V^{\dagger} = m_{\tilde{\chi}^-}^{dia} \tag{14.64}$$

with

$$\tilde{W}^{-} = \sum_{t_2} U_{j1}^* \lambda_j^{-}, \qquad \tilde{H}_d^{-} = \sum_{t_2} U_{j2}^* \lambda_j^{-}$$
(14.65)

$$\tilde{W}^{-} = \sum_{t_2} U_{j1}^* \lambda_j^{-}, \qquad \tilde{H}_d^{-} = \sum_{t_2} U_{j2}^* \lambda_j^{-}$$

$$\tilde{W}^{+} = \sum_{t_2} V_{1j}^* \lambda_j^{+}, \qquad \tilde{H}_u^{+} = \sum_{t_2} V_{2j}^* \lambda_j^{+}$$

$$(14.66)$$

• Mass matrix for Leptons, Basis: $\left(e_{L,o_{1}}\right),\left(e_{R,p_{1}}^{*}\right)$

$$m_e = \left(\frac{1}{\sqrt{2}}v_d Y_{e,o_1 p_1}\right)$$
 (14.67)

This matrix is diagonalized by U_L^e and U_R^e

$$U_L^{e,*} m_e U_R^{e,\dagger} = m_e^{dia} \tag{14.68}$$

with

$$e_{L,i} = \sum_{t_2} U_{L,ji}^{e,*} E_{L,j} \tag{14.69}$$

$$e_{R,i} = \sum_{t_2} U_{R,ij}^e E_{R,j}^* \tag{14.70}$$

• Mass matrix for Down-Quarks, Basis: $(d_{L,o_1\alpha_1}), (d_{R,p_1\beta_1}^*)$

$$m_d = \left(\frac{1}{\sqrt{2}}v_d\delta_{\alpha_1\beta_1}Y_{d,o_1p_1}\right) \tag{14.71}$$

This matrix is diagonalized by U_L^d and U_R^d

$$U_L^{d,*} m_d U_R^{d,\dagger} = m_d^{dia} \tag{14.72}$$

with

$$d_{L,i\alpha} = \sum_{t_0} U_{L,ji}^{d,*} D_{L,j\alpha}$$
 (14.73)

$$d_{R,i\alpha} = \sum_{t_2} U_{R,ij}^d D_{R,j\alpha}^*$$
 (14.74)

• Mass matrix for Up-Quarks, Basis: $\left(u_{L,o_{1}\alpha_{1}}\right),\left(u_{R,p_{1}\beta_{1}}^{*}\right)$

$$m_u = \left(\frac{1}{\sqrt{2}}v_u\delta_{\alpha_1\beta_1}Y_{u,o_1p_1}\right) \tag{14.75}$$

This matrix is diagonalized by U_L^u and U_R^u

$$U_L^{u,*} m_u U_R^{u,\dagger} = m_u^{dia} \tag{14.76}$$

with

$$u_{L,i\alpha} = \sum_{t_2} U_{L,ji}^{u,*} U_{L,j\alpha}$$
 (14.77)

$$u_{R,i\alpha} = \sum_{t} U_{R,ij}^u U_{R,j\alpha}^* \tag{14.78}$$

14.4 Vacuum Expectation Values

$$H_d^0 = \frac{1}{\sqrt{2}}\phi_d + \frac{1}{\sqrt{2}}v_d + i\frac{1}{\sqrt{2}}\sigma_d \tag{14.79}$$

$$H_u^0 = \frac{1}{\sqrt{2}}\phi_u + \frac{1}{\sqrt{2}}v_u + i\frac{1}{\sqrt{2}}\sigma_u \tag{14.80}$$

$$S = \frac{1}{\sqrt{2}}\phi_s + \frac{1}{\sqrt{2}}v_s + i\frac{1}{\sqrt{2}}\sigma_s \tag{14.81}$$

14.5 Tadpole Equations

$$\frac{\partial V}{\partial v_d} = \frac{1}{8} \left(8m_{H_d}^2 v_d + g_1^2 v_d^3 + g_2^2 v_d^3 - g_1^2 v_d v_u^2 - g_2^2 v_d v_u^2 + 4v_d v_s^2 |\lambda|^2 + 4v_d v_u^2 |\lambda|^2 \right) \\
+ 8v_d |\mu|^2 - 4v_u \lambda L_1^* - 2\sqrt{2} v_s v_u \lambda M_S^* - 2v_s^2 v_u \lambda \kappa^* - 4L_1 v_u \lambda^* - 2\sqrt{2} M_S v_s v_u \lambda^* \\
- 2v_s^2 v_u \kappa \lambda^* + 4\sqrt{2} v_d v_s \mu \lambda^* + 4\sqrt{2} v_d v_s \lambda \mu^* - 2\sqrt{2} v_s v_u T_\lambda^* - 8v_u \Re\left(B_\mu\right) - 2\sqrt{2} v_s v_u T_\lambda\right) \\
\frac{\partial V}{\partial v_u} = \frac{1}{8} \left(8m_{H_u}^2 v_u - g_1^2 v_d^2 v_u - g_2^2 v_d^2 v_u + g_1^2 v_u^3 + g_2^2 v_u^3 + 4v_d^2 v_u |\lambda|^2 + 4v_s^2 v_u |\lambda|^2 \right) \\
+ 8v_u |\mu|^2 - 4v_d \lambda L_1^* - 2\sqrt{2} v_d v_s \lambda M_S^* - 2v_d v_s^2 \lambda \kappa^* - 4L_1 v_d \lambda^* - 2\sqrt{2} M_S v_d v_s \lambda^*$$
(14.82)

$$-2v_{d}v_{s}^{2}\kappa\lambda^{*} + 4\sqrt{2}v_{s}v_{u}\mu\lambda^{*} + 4\sqrt{2}v_{s}v_{u}\lambda\mu^{*} - 2\sqrt{2}v_{d}v_{s}T_{\lambda}^{*} - 8v_{d}\Re\left(B_{\mu}\right) - 2\sqrt{2}v_{d}v_{s}T_{\lambda}\right)$$

$$\frac{\partial V}{\partial v_{s}} = \frac{1}{4}\left(4m_{S}^{2}v_{s} + 4v_{s}^{3}|\kappa|^{2} + 2v_{d}^{2}v_{s}|\lambda|^{2} + 2v_{s}v_{u}^{2}|\lambda|^{2} + 2\left(2v_{s}\kappa + \sqrt{2}M_{S}\right)L_{1}^{*} \right)$$

$$+ \left(2\sqrt{2}L_{1} + 4M_{S}v_{s} + \sqrt{2}\left(3v_{s}^{2}\kappa - v_{d}v_{u}\lambda\right)\right)M_{S}^{*} + 4L_{1}v_{s}\kappa^{*} + 3\sqrt{2}M_{S}v_{s}^{2}\kappa^{*} - 2v_{d}v_{s}v_{u}\lambda\kappa^{*}$$

$$- \sqrt{2}M_{S}v_{d}v_{u}\lambda^{*} - 2v_{d}v_{s}v_{u}\kappa\lambda^{*} + \sqrt{2}v_{d}^{2}\mu\lambda^{*} + \sqrt{2}v_{u}^{2}\mu\lambda^{*} + \sqrt{2}v_{d}^{2}\lambda\mu^{*} + \sqrt{2}v_{u}^{2}\lambda\mu^{*}$$

$$+ 2\sqrt{2}\xi_{1}^{*} + \sqrt{2}v_{s}^{2}T_{\kappa}^{*} - \sqrt{2}v_{d}v_{u}T_{\lambda}^{*} + 2\sqrt{2}\xi_{1} + 4v_{s}\Re\left(B_{S}\right) + \sqrt{2}v_{s}^{2}T_{\kappa} - \sqrt{2}v_{d}v_{u}T_{\lambda}\right)$$

$$(14.83)$$

14.6 Particle content for eigenstates 'EWSB'

Name	Type	complex/real	Generations	${\rm Indices}$
\tilde{d}	Scalar	complex	6	generation, color
$ ilde{ u}$	Scalar	complex	3	generation
\tilde{u}	Scalar	complex	6	generation, color
\tilde{e}	Scalar	complex	6	generation
h	Scalar	real	3	generation
A^0	Scalar	real	3	generation
H^-	Scalar	complex	2	generation
ν	Fermion	Dirac	3	generation
$ ilde{g}$	Fermion	Majorana	8	generation
$ ilde{\chi}^0$	Fermion	Majorana	5	generation
$ ilde{\chi}^-$	Fermion	Dirac	2	generation
e	Fermion	Dirac	3	generation
d	Fermion	Dirac	3	generation, color
u	${\bf Fermion}$	Dirac	3	generation, color
g	Vector	real	8	generation, lorentz
W^-	Vector	complex	1	lorentz
γ	Vector	real	1	lorentz
Z	Vector	real	1	lorentz
η^G	Ghost	$_{\mathrm{real}}$	8	generation
η^-	Ghost	complex	1	
η^+	Ghost	complex	1	
η^γ	Ghost	real	1	
η^Z	Ghost	real	1	

14.7 Modelfile for SARAH

```
Off[General::spell]
Print["Model file for the SMSSM loaded"];
ModelNameLaTeX ="SMSSM";
(*----*)
(* Particle Content*)
(*----*)
(* Gauge Superfields *)
Gauge[[1]]={B, U[1], hypercharge, g1,False};
Gauge[[2]]={WB, SU[2], left, g2,True};
Gauge[[3]]={G, SU[3], color,
                              g3,False};
(* Chiral Superfields *)
Fields[[1]] = \{\{uL, dL\}, 3, q, 1/6, 2, 3\};
Fields[[2]] = \{\{vL, eL\}, 3, 1, -1/2, 2, 1\};
Fields[[3]] = \{\{Hd0, Hdm\}, 1, Hd, -1/2, 2, 1\};
Fields[[4]] = {{Hup, Hu0}, 1, Hu, 1/2, 2, 1};
Fields[[5]] = \{conj[dR], 3, d, 1/3, 1, -3\};
Fields[[6]] = \{conj[uR], 3, u, -2/3, 1, -3\};
Fields[[7]] = {conj[eR], 3, e, 1, 1, 1};
Fields[[8]] = \{sR, 1, s, 0, 1, 1\};
(*----*)
(* Superpotential *)
(*-----*)
\label{eq:SuperPotential} \mbox{SuperPotential} = \{ \ \{ \{ 1, \ Yu \}, \{ q, Hu, u \} \}, \ \{ \{ -1, Yd \}, \{ q, Hd, d \} \}, \ \} \}
                 \{\{-1, Ye\}, \{1, Hd, e\}\},\
                 \{\{1, \{Lambda\}\}, \{Hu, Hd, s\}\},
                 \{\{1/3, \{x, s, s, s\}\}, \{x, s, s, s\}\},
   \{\{1,L1\},\{s\}\},\{\{1/2,MS\},\{s,s\}\},\{\{1,\lfloor Mu]\},\{Hu,Hd\}\}\};
(*----*)
(* Integrate Out or Delete Particles
(*----*)
```

```
IntegrateOut={};
DeleteParticles={};
(*----*)
   DEFINITION
(*----*)
NameOfStates={GaugeES, EWSB};
(* ---- Before EWSB ---- *)
DEFINITION[GaugeES][GaugeFixing] =
{ {Der[VWB], -1/(2 RXi[W])},
    {Der[VG], -1/(2 RXi[G]) }};
(* ---- After EWSB ---- *)
DEFINITION[EWSB] [GaugeSector] =
{{VWB, {1, {VWm, 1/Sqrt[2]}, {conj[VWm], 1/Sqrt[2]}}},
     {2,{VWm,-\[ImaginaryI]/Sqrt[2]},{conj[VWm],\[ImaginaryI]/Sqrt[2]}},
     {3,{VP,Sin[ThetaW]},{VZ,Cos[ThetaW]}}},
 {VB, {1,{VP,Cos[ThetaW]},{VZ,-Sin[ThetaW]}}},
 {fWB, {1, {fWm, 1/Sqrt[2]}, {fWp, 1/Sqrt[2]}},
     {2,{fWm,-\[ImaginaryI]/Sqrt[2]},{fWp,\[ImaginaryI]/Sqrt[2]}},
     {3,{fW0,1}}};
DEFINITION[EWSB][VEVs]=
    {SHdO, {vd, 1/Sqrt[2]}, {sigmad, \[ImaginaryI]/Sqrt[2]}, {phid, \
1/Sqrt[2]}},
    {SHuO, {vu, 1/Sqrt[2]}, {sigmau, \[ImaginaryI]/Sqrt[2]}, {phiu, \
1/Sqrt[2]}},
    {SsR, {vS, 1/Sqrt[2]}, {sigmaS, \[ImaginaryI]/Sqrt[2]},{phiS, \
1/Sqrt[2]}}
              };
DEFINITION[EWSB] [MatterSector] =
{
    {{SdL, SdR}, {Sd, ZD}},
    {{SvL}, {Sv, ZV}},
```

```
{{SuL, SuR}, {Su, ZU}},
    {{SeL, SeR}, {Se, ZE}},
    {{phid, phiu, phiS}, {hh, ZH}},
    {{sigmad, sigmau, sigmaS}, {Ah, ZA}},
    {{SHdm,conj[SHup]},{Hpm,ZP}},
    {{fB, fWO, FHdO, FHuO,FsR}, {LO, ZN}},
    {{fWm, FHdm}, {fWp, FHup}}, {{Lm,UM}, {Lp,UP}}},
    {{{FeL}, {conj[FeR]}}, {{FEL, ZEL}, {FER, ZER}}},
    {{{FdL}, {conj[FdR]}}, {{FDL, ZDL}, {FDR, ZDR}}},
    {{{FUL}, {conj[FuR]}}, {{FUL, ZUL}, {FUR, ZUR}}}
   };
DEFINITION[EWSB] [Phases] =
   {fG, PhaseGlu}
   };
DEFINITION[EWSB] [GaugeFixing] =
                                                      - 1/(2 RXi[P]),
  { {Der[VP],
{Der[VWm]+\[ImaginaryI] Mass[VWm] RXi[W] Hpm[{1}], - 1/(RXi[W])},
{Der[VZ] - Mass[VZ] RXi[Z] Ah[{1}],
                                                  - 1/(2 RXi[Z])
{Der[VG],
                                                  - 1/(2 RXi[G])}};
(*----*)
(* Dirac-Spinors *)
(*----*)
dirac[[1]] = {Fd, FDL, conj[FDR]};
dirac[[2]] = {Fe, FEL, conj[FER]};
dirac[[3]] = {Fu, FUL, conj[FUR]};
dirac[[4]] = {Fv, FvL, 0};
dirac[[5]] = {Chi, L0, conj[L0]};
dirac[[6]] = {Cha, Lm, conj[Lp]};
dirac[[7]] = {Glu, fG, conj[fG]};
dirac[[8]] = {Bino, fB, conj[fB]};
dirac[[9]] = {Wino, fWB, conj[fWB]};
dirac[[10]] = {H0, FHu0, conj[FHd0]};
dirac[[11]] = {HC, FHup, conj[FHdm]};
dirac[[12]] = {S, FsR, conj[FsR]};
(* Unbroken EW *)
dirac[[13]] = {Fd1, FdL, 0};
dirac[[14]] = {Fd2, 0, FdR};
dirac[[15]] = {Fu1, FuL, 0};
dirac[[16]] = {Fu2, 0, FuR};
dirac[[17]] = {Fe1, FeL, 0};
dirac[[18]] = {Fe2, 0, FeR};
```

14.8 Implementation in SARAH

Model directory: SMSSM

14.8.1 Particles for eigenstates 'GaugeES'

• Fermions

$$\begin{split} \tilde{B} &= \begin{pmatrix} \lambda_{\tilde{B}} \\ \lambda_{\tilde{B}}^* \end{pmatrix} & \text{Bino} &= \begin{pmatrix} \text{fB} \\ \text{conj}[\text{fB}] \end{pmatrix} \\ d_{i\alpha}^1 &= \begin{pmatrix} d_{L,i\alpha} \\ 0 \end{pmatrix} & \text{Fd1}[\{\text{generation, color}\}] &= \begin{pmatrix} \text{FdL}[\{\text{generation, color}\}] \\ 0 \end{pmatrix} \\ d_{i\alpha}^2 &= \begin{pmatrix} 0 \\ d_{R,i\alpha} \end{pmatrix} & \text{Fd2}[\{\text{generation, color}\}] &= \begin{pmatrix} 0 \\ \text{FdR}[\{\text{generation, color}\}] \end{pmatrix} \\ e_i^1 &= \begin{pmatrix} e_{L,i} \\ 0 \end{pmatrix} & \text{Fe1}[\{\text{generation}\}] &= \begin{pmatrix} \text{FeL}[\{\text{generation}\}] \\ 0 \end{pmatrix} \\ e_i^2 &= \begin{pmatrix} 0 \\ e_{R,i} \end{pmatrix} & \text{Fe2}[\{\text{generation, color}\}] &= \begin{pmatrix} 0 \\ \text{FeR}[\{\text{generation, color}\}] \end{pmatrix} \\ u_{i\alpha}^1 &= \begin{pmatrix} u_{L,i\alpha} \\ 0 \end{pmatrix} & \text{Fu1}[\{\text{generation, color}\}] &= \begin{pmatrix} \text{FuL}[\{\text{generation, color}\}] \\ 0 \end{pmatrix} \\ u_{i\alpha}^2 &= \begin{pmatrix} 0 \\ u_{R,i\alpha} \end{pmatrix} & \text{Fu2}[\{\text{generation, color}\}] &= \begin{pmatrix} 0 \\ \text{FuR}[\{\text{generation, color}\}] \end{pmatrix} \end{split}$$

$$\begin{split} \nu_i &= \begin{pmatrix} \operatorname{FvL} \left(\{ \operatorname{gt1} \} \right) \\ 0 \end{pmatrix} \\ \tilde{g}_i &= \begin{pmatrix} \lambda_{\tilde{g},i} \\ \lambda_{\tilde{g},i}^* \end{pmatrix} \\ \tilde{H}^0 &= \begin{pmatrix} \tilde{H}_u^0 \\ \tilde{H}_d^{0*} \end{pmatrix} \\ \tilde{H}^- &= \begin{pmatrix} \tilde{H}_u^+ \\ \tilde{H}_d^{-*} \end{pmatrix} \\ \tilde{S} &= \begin{pmatrix} \tilde{S} \\ \tilde{S}^* \end{pmatrix} \\ \tilde{W}_i &= \begin{pmatrix} \lambda_{\tilde{W},i} \\ \lambda_{\tilde{W},i}^* \end{pmatrix} \end{split}$$

$$\begin{aligned} \operatorname{FvL} \left\{ \operatorname{generation} \right\} \right] &= \begin{pmatrix} \operatorname{fG} \left\{ \operatorname{generation} \right\} \right] \\ \operatorname{Conj} \left\{ \operatorname{fG} \left\{ \operatorname{generation} \right\} \right\} \\ \operatorname{HO} &= \begin{pmatrix} \operatorname{FHuO} \\ \operatorname{conj} \left[\operatorname{FHdm} \right] \end{pmatrix} \\ \operatorname{HC} &= \begin{pmatrix} \operatorname{FHup} \\ \operatorname{conj} \left[\operatorname{FHdm} \right] \end{pmatrix} \\ \operatorname{S} &= \begin{pmatrix} \tilde{S} \\ \tilde{S}^* \end{pmatrix} \end{aligned}$$

$$\tilde{W}_i &= \begin{pmatrix} \lambda_{\tilde{W},i} \\ \lambda_{\tilde{W},i}^* \end{pmatrix}$$

$$\text{Wino} \left[\left\{ \operatorname{generation} \right\} \right] &= \begin{pmatrix} \operatorname{fWB} \left\{ \operatorname{generation} \right\} \right] \\ \operatorname{conj} \left[\operatorname{fWB} \left\{ \operatorname{generation} \right\} \right] \end{aligned}$$

• Scalars

$\tilde{d}_{L,i\alpha}$	<pre>SdL[{generation, color}]</pre>	$\tilde{u}_{L,i\alpha}$	SuL[{generation, color}]
$\tilde{e}_{L,i}$	SeL[{generation}]		SvL[{generation}]
H_d^0	SHd0	H_d^-	SHdm
H_u^0	SHu0	H_u^+	SHup
$\tilde{d}_{R,i\alpha}$	<pre>SdR[{generation, color}]</pre>	$\tilde{u}_{R,i\alpha}$	SuR[{generation, color}]
$\tilde{e}_{R,i}$	SeR[{generation}]	S	SsR

• Vector Bosons

$B_{ ho}$	<pre>VB[{lorentz}]</pre>	$W_{i\rho}^-$	<pre>VWB[{generation, lorentz}]</pre>
$g_{i ho}$	<pre>VG[{generation, lorentz}]</pre>		

• Ghosts

η^B	gB	gWB(gt1)	gWB[{generation}]
η_i^G	gG[{generation}]		

14.8.2 Particles for eigenstates 'EWSB'

• Fermions

$$\begin{split} \tilde{\chi}_i^- &= \begin{pmatrix} \lambda_i^- \\ \lambda_i^+, * \end{pmatrix} & \text{Cha[\{generation\}]} &= \begin{pmatrix} \text{Lm[\{generation\}]} \\ \text{conj}[\text{Lp}[\{generation\}]] \end{pmatrix} \\ \tilde{\chi}_i^0 &= \begin{pmatrix} \lambda_i^0 \\ \lambda_i^{0,*} \end{pmatrix} & \text{Chi[\{generation\}]} &= \begin{pmatrix} \text{L0}[\{generation\}] \\ \text{conj}[\text{L0}[\{generation\}]] \end{pmatrix} \\ d_{i\alpha} &= \begin{pmatrix} D_{L,i\alpha} \\ D_{R,i\alpha}^* \end{pmatrix} & \text{Fd[\{generation, color\}]} &= \begin{pmatrix} \text{FDL[\{generation, color\}]} \\ \text{conj}[\text{FDR[\{generation, color\}]}] \end{pmatrix} \\ e_i &= \begin{pmatrix} E_{L,i} \\ E_{R,i}^* \end{pmatrix} & \text{Fe[\{generation\}]} &= \begin{pmatrix} \text{FEL[\{generation\}]} \\ \text{conj}[\text{FER[\{generation\}]}] \end{pmatrix} \\ u_{i\alpha} &= \begin{pmatrix} U_{L,i\alpha} \\ U_{R,i\alpha}^* \end{pmatrix} & \text{Fu[\{generation, color\}]} &= \begin{pmatrix} \text{FUL[\{generation, color\}]} \\ \text{conj}[\text{FUR[\{generation\}]}] \end{pmatrix} \\ \nu_i &= \begin{pmatrix} \text{FvL}(\{gt1\}) \\ 0 \end{pmatrix} & \text{Fv[\{generation\}]} &= \begin{pmatrix} \text{FvL[\{generation\}]} \\ 0 \end{pmatrix} \\ & \text{Glu[\{generation\}]} &= \begin{pmatrix} \text{fG[\{generation\}]} \\ \text{conj}[\text{fG[\{generation\}]}] \end{pmatrix} \end{split}$$

• Scalars

$ ilde{d}_{ilpha}$	<pre>Sd[{generation, color}]</pre>	$\tilde{ u}_i$	Sv[{generation}]
$\tilde{u}_{i\alpha}$	<pre>Su[{generation, color}]</pre>	\tilde{e}_i	Se[{generation}]
h_i	hh[{generation}]	A_i^0	Ah[{generation}]
H_i^-	${\tt Hpm[\{generation\}]}$		

• Vector Bosons

$g_{i ho}$	VG[{generation, lorentz}]	W_{ρ}^{-}	VWm[{lorentz}]
$\gamma_{ ho}$	<pre>VP[{lorentz}]</pre>	$Z_{ ho}$	<pre>VZ[{lorentz}]</pre>

\bullet Ghosts

η_i^G	gG[{generation}]	η^-	gWm
η^+	gWmC	η^{γ}	gP
η^Z	gZ		

14.8.3 Parameters

g_1	g1	g_2	g2	g_3	g3
Y_u	Yu	T_u	T[Yu]	Y_d	Yd
T_d	T[Yd]	Y_e	Ye	T_e	T[Ye]
λ	\[Lambda]	T_{λ}	T[\[Lambda]]	κ	\[Kappa]
T_{κ}	$T[\[Kappa]]$	L_1	L1	ξ_1	L[L1]
M_S	MS	B_S	B[MS]	μ	\[Mu]
B_{μ}	B[\[Mu]]	m_q^2	mq2	m_l^2	ml2
$m_{H_d}^2$	mHd2	$m_{H_u}^2$	mHu2	m_d^2	md2
m_u^2	mu2	m_e^2	me2	m_S^2	ms2
M_1	MassB	M_2	MassWB	M_3	MassG
v_d	vd	v_u	vu	v_s	vS
Θ_W	ThetaW	$\phi_{ ilde{g}}$	PhaseGlu	Z^D	ZD
Z^V	ZV	Z^U	ZU	Z^E	ZE
Z^H	ZH	Z^A	ZA	Z^+	ZP
N	ZN	U	UM	V	UP
U_L^e	ZEL	U_R^e	ZER	U_L^d	ZDL
U_R^d	ZDR	U_L^u	ZUL	U_R^u	ZUR
β	\[Beta]				

Chapter 15

The U(1)-Extended Minimal Supersymmetric Standard Model

15.1 Superfields

15.1.1 Vector Superfields

SF	Spin $\frac{1}{2}$	Spin 1	SU(N)	Coupling	Name
\hat{B}	$\lambda_{ ilde{B}}$	B	U(1)	g_1	hypercharge
\hat{W}	$\lambda_{ ilde{W}}$	W^-	SU(2)	g_2	left
\hat{g}	$\lambda_{ ilde{g}}$	g	SU(3)	g_3	color
\hat{U}	λ_U	U	U(1)	g_p	additional

15.1.2 Chiral Superfields

SF	Spin 0	Spin $\frac{1}{2}$	Generations	$(U(1) \otimes \mathrm{SU}(2) \otimes \mathrm{SU}(3) \otimes U(1))$
\hat{q}	$ ilde{q}$	q	3	$(rac{1}{6}, oldsymbol{2}, oldsymbol{3}, Q_q)$
\hat{l}	\tilde{l}	l	3	$(-rac{1}{2},2,1,Q_q)$
\hat{H}_d	H_d	$ ilde{H}_d$	1	$(-rac{1}{2},{f 2},{f 1},Q_{H_d})$
\hat{H}_u	H_u	$ ilde{H}_u$	1	$(rac{1}{2},2,1,Q_{H_u})$
\hat{d}	$ ilde{d}_R^*$	d_R^*	3	$(rac{1}{3}, 1, \overline{3}, Q_d)$
\hat{u}	\tilde{u}_R^*	u_R^*	3	$(-rac{2}{3},1,\overline{3},Q_u)$
\hat{e}	\tilde{e}_R^*	e_R^*	3	$(1, 1, 1, Q_e)$
\hat{s}	S	$ ilde{S}$	1	$(0, 1, 1, Q_s)$

15.2 Superpotential and Lagrangian

15.2.1 Superpotential

$$W = Y_u \,\hat{q} \,\hat{H}_u \,\hat{u} - Y_d \,\hat{q} \,\hat{H}_d \,\hat{d} - Y_e \,\hat{l} \,\hat{H}_d \,\hat{e} + \lambda \,\hat{H}_u \,\hat{H}_d \,\hat{s} \tag{15.1}$$

15.2.2 Softbreaking terms

$$L_{SB,W} = -H_d^0 H_u^0 S T_\lambda + H_d^- H_u^+ S T_\lambda + H_d^0 \tilde{d}_{R,k\gamma}^* \delta_{\alpha\gamma} \tilde{d}_{L,i\alpha} T_{d,ik} - H_d^- \tilde{d}_{R,k\gamma}^* \delta_{\alpha\gamma} \tilde{u}_{L,i\alpha} T_{d,ik}$$

$$+ H_d^0 \tilde{e}_{R,k}^* \tilde{e}_{L,i} T_{e,ik} - H_d^- \tilde{e}_{R,k}^* \tilde{\nu}_{L,i} T_{e,ik} - H_u^+ \tilde{u}_{R,k\gamma}^* \delta_{\alpha\gamma} \tilde{d}_{L,i\alpha} T_{u,ik} + H_u^0 \tilde{u}_{R,k\gamma}^* \delta_{\alpha\gamma} \tilde{u}_{L,i\alpha} T_{u,ik} + \text{h.c.}$$

$$L_{SB,\phi} = -m_{H_d}^2 |H_d^0|^2 - m_{H_d}^2 |H_d^-|^2 - m_{H_u}^2 |H_u^0|^2 - m_{H_u}^2 |H_u^+|^2 - m_S^2 |S|^2$$

$$- \tilde{d}_{L,j\beta}^* \delta_{\alpha\beta} m_{q,ij}^2 \tilde{d}_{L,i\alpha} - \tilde{d}_{R,i\alpha}^* \delta_{\alpha\beta} m_{d,ij}^2 \tilde{d}_{R,j\beta} - \tilde{e}_{L,j}^* m_{l,ij}^2 \tilde{e}_{L,i} - \tilde{e}_{R,i}^* m_{e,ij}^2 \tilde{e}_{R,j}$$

$$- \tilde{u}_{L,j\beta}^* \delta_{\alpha\beta} m_{q,ij}^2 \tilde{u}_{L,i\alpha} - \tilde{u}_{R,i\alpha}^* \delta_{\alpha\beta} m_{u,ij}^2 \tilde{u}_{R,j\beta} - \tilde{\nu}_{L,j}^* m_{l,ij}^2 \tilde{\nu}_{L,i}$$

$$(15.3)$$

$$L_{SB,\lambda} = \frac{1}{2} \left(-\lambda_{\tilde{B}}^2 M_1 - \lambda_U^2 M_Z - M_2 \lambda_{\tilde{W},i}^2 - M_3 \lambda_{\tilde{g},i}^2 + \text{h.c.} \right)$$
 (15.4)

15.2.3 Gauge fixing terms

Gauge fixing terms for eigenstates 'GaugeES'

$$L_{GF} = -\frac{1}{2}\partial_{\mu}g\xi_{G}^{-1} - \frac{1}{2}\partial_{\mu}W^{-}\xi_{W}^{-1}$$
(15.5)

Gauge fixing terms for eigenstates 'TEMP'

$$L_{GF} = -\frac{1}{2}\partial_{\mu}\gamma\xi_{P}^{-1} - \frac{1}{2}\partial_{\mu}g\xi_{G}^{-1} - \frac{1}{2}\xi_{Z}^{-1}\left(-A_{1}^{0}m_{Z}\xi_{Z} + \partial_{\mu}Z\right) - \xi_{W}^{-1}\left(iH_{1}^{-}m_{W^{-}}\xi_{W} + \partial_{\mu}W^{-}\right)$$
(15.6)

Gauge fixing terms for eigenstates 'EWSB'

$$L_{GF} = -\frac{1}{2}\partial_{\mu}\gamma\xi_{P}^{-1} - \frac{1}{2}\partial_{\mu}g\xi_{G}^{-1} - \frac{1}{2}\xi_{Z1}^{-1}\left(-A_{1}^{0}m_{Z_{1}}\xi_{Z1} + \partial_{\mu}Z_{1}\right) - \xi_{W}^{-1}\left(iH_{1}^{-}m_{W^{-}}\xi_{W} + \partial_{\mu}W^{-}\right)$$

$$(15.7)$$

15.2.4 Fields integrated out

None

15.3 Field Rotations

15.3.1 Rotations in gauge sector for eigenstates 'EWSB'

$$Z_{\rho} = \cos\Theta_Z Z_{2,\rho} + \sin\Theta_Z Z_{1,\rho} \tag{15.8}$$

$$U_{\rho} = \cos\Theta_Z Z_{1,\rho} - \sin\Theta_W Z_{2,\rho} \tag{15.9}$$

$$\lambda_{\tilde{W},1} = \frac{1}{\sqrt{2}}\tilde{W}^{-} + \frac{1}{\sqrt{2}}\tilde{W}^{+} \tag{15.10}$$

$$\lambda_{\tilde{W},2} = -i\frac{1}{\sqrt{2}}\tilde{W}^{-} + i\frac{1}{\sqrt{2}}\tilde{W}^{+} \tag{15.11}$$

$$\lambda_{\tilde{W},3} = \tilde{W}^0 \tag{15.12}$$

15.3.2 Rotations in Mass sector for eigenstates 'EWSB'

Mass Matrices for Scalars

• Mass matrix for Down-Squarks, Basis: $\left(\tilde{d}_{L,o_1\alpha_1},\tilde{d}_{R,o_2\alpha_2}\right),\left(\tilde{d}_{L,p_1\beta_1}^*,\tilde{d}_{R,p_2\beta_2}^*\right)$

$$m_{\tilde{d}}^{2} = \begin{pmatrix} m_{11} & \frac{1}{2} \delta_{\alpha_{1}\beta_{2}} \left(\sqrt{2} v_{d} T_{d,o_{1}p_{2}} - v_{s} v_{u} \lambda^{*} Y_{d,o_{1}p_{2}} \right) \\ \frac{1}{2} \left(\sqrt{2} v_{d} T_{d,p_{1}o_{2}}^{*} - v_{s} v_{u} \lambda Y_{d,p_{1}o_{2}}^{*} \right) \delta_{\alpha_{2}\beta_{1}} & m_{22} \end{pmatrix}$$

$$(15.13)$$

$$m_{11} = \frac{1}{24} \delta_{\alpha_1 \beta_1} \left(\left(3 \left(4g_p^2 Q_q \left(Q_{H_d} v_d^2 + Q_{H_u} v_u^2 + Q_s v_s^2 \right) + g_2^2 \left(-v_d^2 + v_u^2 \right) \right) + g_1^2 \left(-v_d^2 + v_u^2 \right) \right) \delta_{o_1 p_1}$$

$$+ 12 \left(2m_{q,o_1 p_1}^2 + v_d^2 \sum_{s=1}^3 Y_{d,p_1 a}^* Y_{d,o_1 a} \right) \right)$$

$$(15.14)$$

$$m_{22} = \frac{1}{12} \delta_{\alpha_2 \beta_2} \left(6 \left(2m_{d, p_2 o_2}^2 + v_d^2 \sum_{a=1}^3 Y_{d, a o_2}^* Y_{d, a p_2} \right) + \left(6g_p^2 Q_d \left(Q_{H_d} v_d^2 + Q_{H_u} v_u^2 + Q_s v_s^2 \right) + g_1^2 \left(-v_d^2 + v_u^2 \right) \right) \delta_{o_2 p_2} \right)$$

$$(15.15)$$

This matrix is diagonalized by Z^D :

$$Z^D m_{\tilde{d}}^2 Z^{D,\dagger} = m_{2,\tilde{d}}^{dia} \tag{15.16}$$

with

$$\tilde{d}_{L,i\alpha} = \sum_{t_2} Z_{ji}^{D,*} \tilde{d}_{j\alpha}, \qquad \tilde{d}_{R,i\alpha} = \sum_{t_2} Z_{ji}^{D,*} \tilde{d}_{j\alpha}$$
 (15.17)

• Mass matrix for Sneutrinos, Basis: $(\tilde{\nu}_{L,o_1}), (\tilde{\nu}_{L,p_1}^*)$

$$m_{\tilde{\nu}}^2 = \left(m_{11} \right)$$
 (15.18)

$$m_{11} = \frac{1}{8} \left(\left(4g_p^2 Q_q \left(Q_{H_d} v_d^2 + Q_{H_u} v_u^2 + Q_s v_s^2 \right) + g_1^2 \left(-v_u^2 + v_d^2 \right) + g_2^2 \left(-v_u^2 + v_d^2 \right) \right) \delta_{o_1 p_1} + 8m_{l,o_1 p_1}^2 \right)$$
(15.19)

This matrix is diagonalized by Z^V :

$$Z^{V}m_{\tilde{\nu}}^{2}Z^{V,\dagger} = m_{2,\tilde{\nu}}^{dia} \tag{15.20}$$

with

$$\tilde{\nu}_{L,i} = \sum_{t_2} Z_{ji}^{V,*} \tilde{\nu}_j \tag{15.21}$$

 $\bullet \ \ \mathbf{Mass \ matrix \ for \ Up-Squarks}, \ \mathbf{Basis:} \ \left(\tilde{u}_{L,o_1\alpha_1},\tilde{u}_{R,o_2\alpha_2}\right), \left(\tilde{u}_{L,p_1\beta_1}^*,\tilde{u}_{R,p_2\beta_2}^*\right)$

$$m_{\tilde{u}}^{2} = \begin{pmatrix} m_{11} & \frac{1}{2} \delta_{\alpha_{1}\beta_{2}} \left(\sqrt{2} v_{u} T_{u,o_{1}p_{2}} - v_{d} v_{s} \lambda^{*} Y_{u,o_{1}p_{2}} \right) \\ \frac{1}{2} \left(\sqrt{2} v_{u} T_{u,p_{1}o_{2}}^{*} - v_{d} v_{s} \lambda Y_{u,p_{1}o_{2}}^{*} \right) \delta_{\alpha_{2}\beta_{1}} & m_{22} \end{pmatrix}$$

$$(15.22)$$

$$m_{11} = \frac{1}{24} \delta_{\alpha_1 \beta_1} \left(\left(3 \left(4g_p^2 Q_q \left(Q_{H_d} v_d^2 + Q_{H_u} v_u^2 + Q_s v_s^2 \right) + g_2^2 \left(-v_u^2 + v_d^2 \right) \right) + g_1^2 \left(-v_d^2 + v_u^2 \right) \right) \delta_{o_1 p_1}$$

$$+ 12 \left(2m_{q, o_1 p_1}^2 + v_u^2 \sum_{g=1}^3 Y_{u, p_1 g}^* Y_{u, o_1 g} \right)$$

$$(15.23)$$

$$m_{22} = \frac{1}{6} \delta_{\alpha_2 \beta_2} \left(\left(3g_p^2 Q_u \left(Q_{H_d} v_d^2 + Q_{H_u} v_u^2 + Q_s v_s^2 \right) + g_1^2 \left(-v_u^2 + v_d^2 \right) \right) \delta_{o_2 p_2} + 3v_u^2 \sum_{a=1}^3 Y_{u,ao_2}^* Y_{u,ap_2} + 6m_{u,p_2 o_2}^2 \right)$$

$$(15.24)$$

This matrix is diagonalized by Z^U :

$$Z^{U}m_{\tilde{u}}^{2}Z^{U,\dagger} = m_{2.\tilde{u}}^{dia} \tag{15.25}$$

with

$$\tilde{u}_{L,i\alpha} = \sum_{t_2} Z_{ji}^{U,*} \tilde{u}_{j\alpha}, \qquad \tilde{u}_{R,i\alpha} = \sum_{t_2} Z_{ji}^{U,*} \tilde{u}_{j\alpha}$$
 (15.26)

• Mass matrix for Sleptons, Basis: $(\tilde{e}_{L,o_1}, \tilde{e}_{R,o_2}), (\tilde{e}^*_{L,p_1}, \tilde{e}^*_{R,p_2})$

$$m_{\tilde{e}}^2 = \begin{pmatrix} m_{11} & -\frac{1}{2}v_s v_u \lambda^* Y_{e,o_1 p_2} + \frac{1}{\sqrt{2}} v_d T_{e,o_1 p_2} \\ -\frac{1}{2}v_s v_u \lambda Y_{e,p_1 o_2}^* + \frac{1}{\sqrt{2}} v_d T_{e,p_1 o_2}^* & m_{22} \end{pmatrix}$$

$$(15.27)$$

$$m_{11} = \frac{1}{8} \left(\left(4g_p^2 Q_q \left(Q_{H_d} v_d^2 + Q_{H_u} v_u^2 + Q_s v_s^2 \right) + g_1^2 \left(-v_u^2 + v_d^2 \right) + g_2^2 \left(-v_d^2 + v_u^2 \right) \right) \delta_{o_1 p_1} + 8m_{l,o_1 p_1}^2$$

$$+ 4v_d^2 \sum_{a=1}^3 Y_{e,p_1 a}^* Y_{e,o_1 a} \right)$$

$$(15.28)$$

$$m_{22} = \frac{1}{4} \left(\left(2g_p^2 Q_e \left(Q_{H_d} v_d^2 + Q_{H_u} v_u^2 + Q_s v_s^2 \right) + g_1^2 \left(-v_d^2 + v_u^2 \right) \right) \delta_{o_2 p_2} + 2v_d^2 \sum_{a=1}^3 Y_{e,ao_2}^* Y_{e,ap_2} + 4m_{e,p_2 o_2}^2 \right)$$

$$(15.29)$$

This matrix is diagonalized by Z^E :

$$Z^E m_{\tilde{e}}^2 Z^{E,\dagger} = m_{2.\tilde{e}}^{dia} \tag{15.30}$$

with

$$\tilde{e}_{L,i} = \sum_{t_2} Z_{ji}^{E,*} \tilde{e}_j, \qquad \tilde{e}_{R,i} = \sum_{t_2} Z_{ji}^{E,*} \tilde{e}_j$$
(15.31)

• Mass matrix for Higgs, Basis: $(\phi_d, \phi_u, \phi_s), (\phi_d, \phi_u, \phi_s)$

$$m_h^2 = \begin{pmatrix} m_{11} & m_{21}^* & m_{31}^* \\ m_{21} & m_{22} & m_{32}^* \\ m_{31} & m_{32} & m_{33} \end{pmatrix}$$
(15.32)

$$m_{11} = \frac{1}{8} \left(8m_{H_d}^2 + 3g_1^2 v_d^2 + 3g_2^2 v_d^2 + 12g_p^2 Q_{H_d}^2 v_d^2 + 4g_p^2 Q_{H_d} Q_s v_s^2 - g_1^2 v_u^2 - g_2^2 v_u^2 + 4g_p^2 Q_{H_d} Q_{H_u} v_u^2 + 4\left(v_s^2 + v_u^2\right) |\lambda|^2 \right)$$

$$(15.33)$$

$$m_{21} = \frac{1}{4} \left(-2\sqrt{2}v_s \Re\left(T_\lambda\right) - \left(-4g_p^2 Q_{H_d} Q_{H_u} + g_1^2 + g_2^2 \right) v_d v_u \right) + v_d v_u |\lambda|^2$$
(15.34)

$$m_{22} = \frac{1}{8} \Big(8m_{H_u}^2 - g_1^2 v_d^2 - g_2^2 v_d^2 + 4g_p^2 Q_{H_d} Q_{H_u} v_d^2 + 4g_p^2 Q_{H_u} Q_s v_s^2 + 3g_1^2 v_u^2 + 3g_2^2 v_u^2 + 3g_2^2 v_u^2 + 3g_1^2 v_u^2 + 3g_2^2 v_u^2 + 3g_2^2 v_u^2 + 3g_1^2 v_u^2 + 3g_2^2 v_u^2 + 3g_1^2 v_u^2 + 3g_1^$$

$$+12g_p^2 Q_{H_u}^2 v_u^2 + 4\left(v_d^2 + v_s^2\right)|\lambda|^2\right) \tag{15.35}$$

$$m_{31} = -\frac{1}{\sqrt{2}}v_u\Re(T_\lambda) + g_p^2 Q_{H_d}Q_s v_d v_s + v_d v_s |\lambda|^2$$
(15.36)

$$m_{32} = -\frac{1}{\sqrt{2}}v_d\Re(T_\lambda) + g_p^2 Q_{H_u} Q_s v_s v_u + v_s v_u |\lambda|^2$$
(15.37)

$$m_{33} = \frac{1}{2} \left(2m_S^2 + g_p^2 Q_s \left(3Q_s v_s^2 + Q_{H_d} v_d^2 + Q_{H_u} v_u^2 \right) + \left(v_d^2 + v_u^2 \right) |\lambda|^2 \right)$$
(15.38)

This matrix is diagonalized by Z^H :

$$Z^{H} m_{h}^{2} Z^{H,\dagger} = m_{2,h}^{dia} \tag{15.39}$$

with

$$\phi_d = \sum_{t_2} Z_{j1}^{H,*} h_j , \qquad \phi_u = \sum_{t_2} Z_{j2}^{H,*} h_j , \qquad \phi_s = \sum_{t_2} Z_{j3}^{H,*} h_j$$
 (15.40)

• Mass matrix for Pseudo-Scalar Higgs, Basis: $(\sigma_d, \sigma_u, \sigma_s), (\sigma_d, \sigma_u, \sigma_s)$

$$m_{A^0}^2 = \begin{pmatrix} m_{11} & \frac{1}{\sqrt{2}} v_s \Re\left(T_\lambda\right) & \frac{1}{\sqrt{2}} v_u \Re\left(T_\lambda\right) \\ \frac{1}{\sqrt{2}} v_s \Re\left(T_\lambda\right) & m_{22} & \frac{1}{\sqrt{2}} v_d \Re\left(T_\lambda\right) \\ \frac{1}{\sqrt{2}} v_u \Re\left(T_\lambda\right) & \frac{1}{\sqrt{2}} v_d \Re\left(T_\lambda\right) & m_{33} \end{pmatrix}$$

$$(15.41)$$

$$m_{11} = \frac{1}{8} \left(8m_{H_d}^2 + g_1^2 v_d^2 + g_2^2 v_d^2 + 4g_p^2 Q_{H_d}^2 v_d^2 + 4g_p^2 Q_{H_d} Q_s v_s^2 - g_1^2 v_u^2 - g_2^2 v_u^2 + 4g_p^2 Q_{H_d} Q_{H_u} v_u^2 + 4\left(v_s^2 + v_u^2\right) |\lambda|^2 \right)$$

$$m_{22} = \frac{1}{8} \left(8m_{H_u}^2 - g_1^2 v_d^2 - g_2^2 v_d^2 + 4g_p^2 Q_{H_d} Q_{H_u} v_d^2 + 4g_p^2 Q_{H_u} Q_s v_s^2 + g_1^2 v_u^2 + g_2^2 v_u^2 \right)$$

$$(15.42)$$

$$+4g_p^2 Q_{H_u}^2 v_u^2 + 4\left(v_d^2 + v_s^2\right) |\lambda|^2$$
 (15.43)

$$m_{33} = \frac{1}{2} \left(2m_S^2 + g_p^2 Q_s \left(Q_{H_d} v_d^2 + Q_{H_u} v_u^2 + Q_s v_s^2 \right) + \left(v_d^2 + v_u^2 \right) |\lambda|^2 \right)$$
(15.44)

This matrix is diagonalized by Z^A :

$$Z^{A}m_{A^{0}}^{2}Z^{A,\dagger} = m_{2,A^{0}}^{dia} \tag{15.45}$$

with

$$\sigma_d = \sum_{t_2} Z_{j1}^{A,*} A_j^0, \qquad \sigma_u = \sum_{t_2} Z_{j2}^{A,*} A_j^0, \qquad \sigma_s = \sum_{t_2} Z_{j3}^{A,*} A_j^0$$
(15.46)

• Mass matrix for Charged Higgs, Basis: $(H_d^-, H_u^{+,*}), (H_d^{-,*}, H_u^+)$

$$m_{H^{-}}^{2} = \begin{pmatrix} m_{11} & \frac{1}{4} \left(2\sqrt{2}v_{s}T_{\lambda} - 2v_{d}v_{u}|\lambda|^{2} + g_{2}^{2}v_{d}v_{u} \right) \\ \frac{1}{4} \left(2\sqrt{2}v_{s}T_{\lambda}^{*} - 2v_{d}v_{u}|\lambda|^{2} + g_{2}^{2}v_{d}v_{u} \right) & m_{22} \end{pmatrix}$$

$$(15.47)$$

$$m_{11} = \frac{1}{8} \left(8m_{H_d}^2 + g_1^2 v_d^2 + g_2^2 v_d^2 + 4g_p^2 Q_{H_d}^2 v_d^2 + 4g_p^2 Q_{H_d} Q_s v_s^2 - g_1^2 v_u^2 + g_2^2 v_u^2 + 4g_p^2 Q_{H_d} Q_{H_u} v_u^2 + 4v_s^2 |\lambda|^2 \right)$$

$$(15.48)$$

$$m_{22} = \frac{1}{8} \left(8m_{H_u}^2 - g_1^2 v_d^2 + g_2^2 v_d^2 + 4g_p^2 Q_{H_d} Q_{H_u} v_d^2 + 4g_p^2 Q_{H_u} Q_s v_s^2 + g_1^2 v_u^2 + g_2^2 v_u^2 + 4g_p^2 Q_{H_u}^2 v_u^2 + 4v_s^2 |\lambda|^2 \right)$$

$$(15.49)$$

This matrix is diagonalized by Z^+ :

$$Z^{+}m_{H^{-}}^{2}Z^{+,\dagger} = m_{2.H^{-}}^{dia} \tag{15.50}$$

with

$$H_d^- = \sum_{t_2} Z_{j1}^{+,*} H_j^-, \qquad H_u^+ = \sum_{t_2} Z_{j2}^+ H_j^+$$
 (15.51)

The mixing matrix can be parametrized by

$$Z^{+} = \begin{pmatrix} -\cos\beta & \sin\beta \\ \sin\beta & \cos\beta \end{pmatrix} \tag{15.52}$$

Mass Matrices for Fermions

• Mass matrix for Neutralinos, Basis: $\left(\lambda_{U}, \lambda_{\tilde{B}}, \tilde{W}^{0}, \tilde{H}_{d}^{0}, \tilde{H}_{u}^{0}, \tilde{S}\right), \left(\lambda_{U}, \lambda_{\tilde{B}}, \tilde{W}^{0}, \tilde{H}_{d}^{0}, \tilde{H}_{u}^{0}, \tilde{S}\right)$

$$m_{\tilde{\chi}^{0}} = \begin{pmatrix} M_{Z} & 0 & 0 & g_{p}Q_{H_{d}}v_{d} & g_{p}Q_{H_{u}}v_{u} & g_{p}Q_{s}v_{s} \\ 0 & M_{1} & 0 & -\frac{1}{2}g_{1}v_{d} & \frac{1}{2}g_{1}v_{u} & 0 \\ 0 & 0 & M_{2} & \frac{1}{2}g_{2}v_{d} & -\frac{1}{2}g_{2}v_{u} & 0 \\ g_{p}Q_{H_{d}}v_{d} & -\frac{1}{2}g_{1}v_{d} & \frac{1}{2}g_{2}v_{d} & 0 & -\frac{1}{\sqrt{2}}v_{s}\lambda & -\frac{1}{\sqrt{2}}v_{u}\lambda \\ g_{p}Q_{H_{u}}v_{u} & \frac{1}{2}g_{1}v_{u} & -\frac{1}{2}g_{2}v_{u} & -\frac{1}{\sqrt{2}}v_{s}\lambda & 0 & -\frac{1}{\sqrt{2}}v_{d}\lambda \\ g_{p}Q_{s}v_{s} & 0 & 0 & -\frac{1}{\sqrt{2}}v_{u}\lambda & -\frac{1}{\sqrt{2}}v_{d}\lambda & 0 \end{pmatrix}$$

$$(15.53)$$

This matrix is diagonalized by N:

$$Nm_{\tilde{\chi}^0}N^{\dagger} = m_{\tilde{\chi}^0}^{dia} \tag{15.54}$$

with

$$\lambda_U = \sum_{t_i} N_{j1}^* \lambda_j^0, \qquad \lambda_{\tilde{B}} = \sum_{t_i} N_{j2}^* \lambda_j^0, \qquad \tilde{W}^0 = \sum_{t_i} N_{j3}^* \lambda_j^0$$
 (15.55)

$$\lambda_{U} = \sum_{t_{2}} N_{j1}^{*} \lambda_{j}^{0}, \qquad \lambda_{\tilde{B}} = \sum_{t_{2}} N_{j2}^{*} \lambda_{j}^{0}, \qquad \tilde{W}^{0} = \sum_{t_{2}} N_{j3}^{*} \lambda_{j}^{0}$$

$$\tilde{H}_{d}^{0} = \sum_{t_{2}} N_{j4}^{*} \lambda_{j}^{0}, \qquad \tilde{H}_{u}^{0} = \sum_{t_{2}} N_{j5}^{*} \lambda_{j}^{0}, \qquad \tilde{S} = \sum_{t_{2}} N_{j6}^{*} \lambda_{j}^{0}$$

$$(15.56)$$

• Mass matrix for Charginos, Basis: $\left(\tilde{W}^-, \tilde{H}_d^-\right), \left(\tilde{W}^+, \tilde{H}_u^+\right)$

$$m_{\tilde{\chi}^{-}} = \begin{pmatrix} M_2 & \frac{1}{\sqrt{2}}g_2v_u \\ \frac{1}{\sqrt{2}}g_2v_d & \frac{1}{\sqrt{2}}v_s\lambda \end{pmatrix}$$
 (15.57)

This matrix is diagonalized by U and V

$$U^* m_{\tilde{\chi}^-} V^{\dagger} = m_{\tilde{\chi}^-}^{dia} \tag{15.58}$$

with

$$\tilde{W}^{-} = \sum_{t_2} U_{j1}^* \lambda_j^{-}, \qquad \tilde{H}_d^{-} = \sum_{t_2} U_{j2}^* \lambda_j^{-}$$
(15.59)

$$\tilde{W}^{-} = \sum_{t_2} U_{j1}^* \lambda_j^{-}, \qquad \tilde{H}_d^{-} = \sum_{t_2} U_{j2}^* \lambda_j^{-}$$

$$\tilde{W}^{+} = \sum_{t_2} V_{1j}^* \lambda_j^{+}, \qquad \tilde{H}_u^{+} = \sum_{t_2} V_{2j}^* \lambda_j^{+}$$

$$(15.59)$$

• Mass matrix for Leptons, Basis: $(e_{L,o_1}), (e_{R,p_1}^*)$

$$m_e = \left(\frac{1}{\sqrt{2}}v_d Y_{e,o_1 p_1}\right)$$
 (15.61)

This matrix is diagonalized by U_L^e and U_R^e

$$U_L^{e,*} m_e U_R^{e,\dagger} = m_e^{dia} \tag{15.62}$$

with

$$e_{L,i} = \sum_{t_2} U_{L,ji}^{e,*} E_{L,j} \tag{15.63}$$

$$e_{R,i} = \sum_{t_2} U_{R,ij}^e E_{R,j}^* \tag{15.64}$$

• Mass matrix for Down-Quarks, Basis: $(d_{L,o_1\alpha_1}), (d_{R,p_1\beta_1}^*)$

$$m_d = \left(\frac{1}{\sqrt{2}}v_d \delta_{\alpha_1 \beta_1} Y_{d, o_1 p_1}\right) \tag{15.65}$$

This matrix is diagonalized by U_L^d and U_R^d

$$U_L^{d,*} m_d U_R^{d,\dagger} = m_d^{dia} \tag{15.66}$$

with

$$d_{L,i\alpha} = \sum_{t_0} U_{L,ji}^{d,*} D_{L,j\alpha}$$
 (15.67)

$$d_{R,i\alpha} = \sum_{t_0} U_{R,ij}^d D_{R,j\alpha}^*$$
 (15.68)

• Mass matrix for Up-Quarks, Basis: $(u_{L,o_1\alpha_1}), (u_{R,p_1\beta_1}^*)$

$$m_u = \left(\frac{1}{\sqrt{2}}v_u\delta_{\alpha_1\beta_1}Y_{u,o_1p_1}\right) \tag{15.69}$$

This matrix is diagonalized by U_L^u and U_R^u

$$U_L^{u,*}m_u U_R^{u,\dagger} = m_u^{dia} \tag{15.70}$$

with

$$u_{L,i\alpha} = \sum_{t_2} U_{L,ji}^{u,*} U_{L,j\alpha} \tag{15.71}$$

$$u_{R,i\alpha} = \sum_{t_2} U_{R,ij}^u U_{R,j\alpha}^*$$
 (15.72)

15.4 Vacuum Expectation Values

15.4.1 VEVs for eigenstates 'EWSB'

$$H_d^0 = \frac{1}{\sqrt{2}}\phi_d + \frac{1}{\sqrt{2}}v_d + i\frac{1}{\sqrt{2}}\sigma_d \tag{15.73}$$

$$H_u^0 = \frac{1}{\sqrt{2}}\phi_u + \frac{1}{\sqrt{2}}v_u + i\frac{1}{\sqrt{2}}\sigma_u \tag{15.74}$$

$$S = \frac{1}{\sqrt{2}}\phi_s + \frac{1}{\sqrt{2}}v_s + i\frac{1}{\sqrt{2}}\sigma_s \tag{15.75}$$

15.5 Tadpole Equations

15.5.1 Tadpole Equations for eigenstates 'TEMP'

$$\begin{split} \frac{\partial V}{\partial v_d} &= \frac{1}{8} \left(\left(4g_p^2 Q_{H_d}^2 + g_1^2 + g_2^2 \right) v_d^3 \right. \\ &+ v_d \left(4v_s^2 \left(g_p^2 Q_{H_d} Q_s + |\lambda|^2 \right) + 8m_{H_d}^2 - v_u^2 \left(-4g_p^2 Q_{H_d} Q_{H_u} - 4|\lambda|^2 + g_1^2 + g_2^2 \right) \right) - 2\sqrt{2} v_s v_u \left(T_\lambda^* + T_\lambda \right) \right) \end{split} \tag{15.76}$$

$$\begin{split} \frac{\partial V}{\partial v_{u}} &= \frac{1}{8} \Big(v_{u} \Big(8 m_{H_{u}}^{2} + g_{1}^{2} v_{u}^{2} + g_{2}^{2} v_{u}^{2} + 4 g_{p}^{2} Q_{H_{u}}^{2} v_{u}^{2} - v_{d}^{2} \Big(-4 g_{p}^{2} Q_{H_{d}} Q_{H_{u}} - 4 |\lambda|^{2} + g_{1}^{2} + g_{2}^{2} \Big) \\ &\quad + 4 v_{s}^{2} \Big(g_{p}^{2} Q_{H_{u}} Q_{s} + |\lambda|^{2} \Big) \Big) \\ &\quad - 4 \sqrt{2} v_{d} v_{s} \Re \Big(T_{\lambda} \Big) \Big) \\ &\quad \frac{\partial V}{\partial v_{s}} &= \frac{1}{4} \Big(2 g_{p}^{2} Q_{s}^{2} v_{s}^{3} + 2 v_{s} \Big(2 m_{S}^{2} + g_{p}^{2} Q_{s} \Big(Q_{H_{d}} v_{d}^{2} + Q_{H_{u}} v_{u}^{2} \Big) + \Big(v_{d}^{2} + v_{u}^{2} \Big) |\lambda|^{2} \Big) - \sqrt{2} v_{d} v_{u} \Big(T_{\lambda}^{*} + T_{\lambda} \Big) \Big) \end{split} \tag{15.78}$$

15.5.2 Tadpole Equations for eigenstates 'EWSB'

$$\begin{split} \frac{\partial V}{\partial v_{d}} &= \frac{1}{8} \Big(v_{d} \Big(8 m_{H_{d}}^{2} + g_{2}^{2} v_{d}^{2} + 4 g_{p}^{2} Q_{H_{d}}^{2} v_{d}^{2} + 4 g_{p}^{2} Q_{H_{d}} Q_{s} v_{s}^{2} - g_{2}^{2} v_{u}^{2} + 4 g_{p}^{2} Q_{H_{d}} Q_{H_{u}} v_{u}^{2} \\ &+ g_{1}^{2} \Big(- v_{u}^{2} + v_{d}^{2} \Big) \Big) \\ &+ 4 v_{d} \Big(v_{s}^{2} + v_{u}^{2} \Big) |\lambda|^{2} - 4 \sqrt{2} v_{s} v_{u} \Re \Big(T_{\lambda} \Big) \Big) \end{split} \tag{15.79}$$

$$\frac{\partial V}{\partial v_{u}} &= \frac{1}{8} \Big(v_{u} \Big(8 m_{H_{u}}^{2} - g_{2}^{2} v_{d}^{2} + 4 g_{p}^{2} Q_{H_{d}} Q_{H_{u}} v_{d}^{2} + 4 g_{p}^{2} Q_{H_{u}} Q_{s} v_{s}^{2} + g_{2}^{2} v_{u}^{2} + 4 g_{p}^{2} Q_{H_{u}}^{2} v_{u}^{2} \\ &+ g_{1}^{2} \Big(- v_{d}^{2} + v_{u}^{2} \Big) \Big) \\ &+ 4 \Big(v_{d}^{2} + v_{s}^{2} \Big) v_{u} |\lambda|^{2} - 4 \sqrt{2} v_{d} v_{s} \Re \Big(T_{\lambda} \Big) \Big) \end{aligned} \tag{15.80}$$

$$\frac{\partial V}{\partial v_{s}} &= \frac{1}{2} \Big(- \sqrt{2} v_{d} v_{u} \Re \Big(T_{\lambda} \Big) + v_{s} \Big(2 m_{S}^{2} + g_{p}^{2} Q_{s} \Big(Q_{H_{d}} v_{d}^{2} + Q_{H_{u}} v_{u}^{2} + Q_{s} v_{s}^{2} \Big) \Big) + v_{s} \Big(v_{d}^{2} + v_{u}^{2} \Big) |\lambda|^{2} \Big) \tag{15.81}$$

15.6 Particle content for eigenstates 'EWSB'

Name	Type	complex/real	Generations	Indices
$ ilde{d}$	Scalar	complex	6	generation, color
$ ilde{ u}$	Scalar	complex	3	generation
\tilde{u}	Scalar	complex	6	generation, color
$ ilde{e}$	Scalar	complex	6	generation
h	Scalar	real	3	generation
A^0	Scalar	real	3	generation
H^{-}	Scalar	complex	2	generation
ν	Fermion	Dirac	3	generation
$ ilde{g}$	Fermion	Majorana	8	generation
$ ilde{\chi}^0$	Fermion	Majorana	6	generation
$ ilde{\chi}^-$	Fermion	Dirac	2	generation
e	Fermion	Dirac	3	generation
d	Fermion	Dirac	3	generation, color
u	Fermion	Dirac	3	generation, color

\overline{g}	Vector	real	8	generation, lorentz
W^-	Vector	complex	1	lorentz
γ	Vector	$_{\mathrm{real}}$	1	lorentz
Z_1	Vector	$_{\mathrm{real}}$	1	lorentz
Z_2	Vector	$_{\mathrm{real}}$	1	lorentz
η^G	Ghost	$_{\mathrm{real}}$	8	${\it generation}$
η^-	Ghost	complex	1	
η^+	Ghost	complex	1	
η^{γ}	Ghost	$_{\mathrm{real}}$	1	
η^{Z_1}	Ghost	$_{\mathrm{real}}$	1	
η^{Z_2}	Ghost	real	1	

15.7 Modelfile for SARAH

```
Off[General::spell]
Print["Model file for the UMSSM loaded"];
ModelNameLaTeX ="UMSSM";
(*----*)
(* Particle Content*)
(*----*)
(* Gauge Superfields *)
Gauge[[1]]={B, U[1], hypercharge, g1,False};
Gauge[[2]]={WB, SU[2], left, g2,True};
Gauge[[3]]={G, SU[3], color,
                           g3,False};
Gauge[[4]]={U, U[1], additional, gp,False};
(* Chiral Superfields *)
Fields[[1]] = \{\{uL, dL\}, 3, q, 1/6, 2, 3, Qq\};
Fields[[2]] = \{\{vL, eL\}, 3, 1, -1/2, 2, 1, Ql\};
Fields[[3]] = {{Hd0, Hdm}, 1, Hd, -1/2, 2, 1, QHd};
Fields[[4]] = {{Hup, Hu0}, 1, Hu, 1/2, 2, 1, QHu};
Fields[[5]] = \{conj[dR], 3, d, 1/3, 1, -3, Qd\};
Fields[[6]] = \{conj[uR], 3, u, -2/3, 1, -3, Qu\};
Fields[[7]] = {conj[eR], 3, e, 1, 1, 1, Qe};
Fields[[8]] = \{sR, 1, s, 0, 1, 1, Qs\};
(*----*)
(* Superpotential *)
(*-----*)
SuperPotential = \{\{1, Yu\}, \{q, Hu, u\}\}, \{\{-1, Yd\}, \{q, Hd, d\}\},
               \{\{-1, Ye\}, \{1, Hd, e\}\},\
               \{\{1, \{Lambda\}\}, \{Hu, Hd, s\}\}\};
(*----*)
(* Integrate Out or Delete Particles *)
(*----*)
```

```
IntegrateOut={};
DeleteParticles={};
(*----*)
(* DEFINITION *)
(*-----*)
NameOfStates={GaugeES,TEMP, EWSB};
(* ---- Before EWSB ---- *)
DEFINITION[GaugeES] [GaugeFixing] =
{ {Der[VWB], -1/(2 RXi[W])},
    {Der[VG], -1/(2 RXi[G]) }};
(* ---- After EWSB ---- *)
DEFINITION[TEMP] [GaugeSector] =
{{VWB, {1, {VWm, 1/Sqrt[2]}, {conj[VWm], 1/Sqrt[2]}},
     {2,{VWm,-\[ImaginaryI]/Sqrt[2]},{conj[VWm],\[ImaginaryI]/Sqrt[2]}},
     {3,{VP,Sin[ThetaW]},{VZ,Cos[ThetaW]}}},
{VB, {1,{VP,Cos[ThetaW]},{VZ,-Sin[ThetaW]}}};
DEFINITION[EWSB] [GaugeSector] =
{{VZ, {1,{VZ1,Sin[ThetaZ]},{VZ2,Cos[ThetaZ]}}},
{VU, {1,{VZ1,Cos[ThetaZ]},{VZ2,-Sin[ThetaW]}}},
{fWB, {1, {fWm, 1/Sqrt[2]}, {fWp, 1/Sqrt[2]}},
     {2,{fWm,-\[ImaginaryI]/Sqrt[2]},{fWp,\[ImaginaryI]/Sqrt[2]}},
     {3,{fW0,1}}};
DEFINITION[EWSB][VEVs]=
    {SHdO, {vd, 1/Sqrt[2]}, {sigmad, \[ImaginaryI]/Sqrt[2]},{phid, \
{
1/Sqrt[2]}},
    {SHu0, {vu, 1/Sqrt[2]}, {sigmau, \[ImaginaryI]/Sqrt[2]}, {phiu, \
1/Sqrt[2]}},
    {SsR, {vS, 1/Sqrt[2]}, {sigmaS, \[ImaginaryI]/Sqrt[2]},{phiS, \
1/Sqrt[2]}}
               };
DEFINITION[EWSB][MatterSector] =
```

```
{{SdL, SdR}, {Sd, ZD}},
{
    {{SvL}, {Sv, ZV}},
    {{SuL, SuR}, {Su, ZU}},
    {{SeL, SeR}, {Se, ZE}},
    {{phid, phiu, phiS}, {hh, ZH}},
    {{sigmad, sigmau, sigmaS}, {Ah, ZA}},
    {{SHdm,conj[SHup]},{Hpm,ZP}},
    {{fU,fB, fWO, FHdO, FHuO,FsR}, {LO, ZN}},
    {{fWm, FHdm}, {fWp, FHup}}, {{Lm,UM}, {Lp,UP}}},
    {{{FeL}, {conj[FeR]}}, {{FEL, ZEL}, {FER, ZER}}},
    {{{FdL}, {conj[FdR]}}, {{FDL, ZDL}, {FDR, ZDR}}},
    {{{FuL}, {conj[FuR]}}, {{FUL, ZUL}, {FUR, ZUR}}}
  };
DEFINITION[EWSB] [Phases] =
   {fG, PhaseGlu}
   };
DEFINITION[TEMP] [GaugeFixing] =
 { {Der[VP],
                                               - 1/(2 RXi[P]),
{Der[VWm]+\[ImaginaryI] Mass[VWm] RXi[W] Hpm[{1}], - 1/(RXi[W])},
{Der[VZ] - Mass[VZ] RXi[Z] Ah[{1}],
                                                - 1/(2 RXi[Z]),
{Der[VG],
                                            - 1/(2 RXi[G])}
                                                              };
DEFINITION[EWSB] [GaugeFixing] =
 { {Der[VP],
                                               - 1/(2 RXi[P]),
{Der[VWm]+\[ImaginaryI] Mass[VWm] RXi[W] Hpm[{1}], - 1/(RXi[W])},
{Der[VZ1] - Mass[VZ1] RXi[Z1] Ah[{1}],
                                                   - 1/(2 RXi[Z1]),
{Der[VG],
                                            - 1/(2 RXi[G])}
                                                              };
(*----*)
(* Dirac-Spinors *)
(*----*)
dirac[[1]] = {Fd, FDL, conj[FDR]};
dirac[[2]] = {Fe, FEL, conj[FER]};
dirac[[3]] = {Fu, FUL, conj[FUR]};
dirac[[4]] = {Fv, FvL, 0};
dirac[[5]] = {Chi, L0, conj[L0]};
dirac[[6]] = {Cha, Lm, conj[Lp]};
dirac[[7]] = {Glu, fG, conj[fG]};
dirac[[8]] = {Bino, fB, conj[fB]};
dirac[[9]] = {Wino, fWB, conj[fWB]};
dirac[[10]] = {H0, FHu0, conj[FHd0]};
dirac[[11]] = {HC, FHup, conj[FHdm]};
dirac[[12]] = {S, FsR, conj[FsR]};
```

15.8 Implementation in SARAH

Model directory: UMSSM

SpectrumFile= None;

15.8.1 Particles for eigenstates 'GaugeES'

• Fermions

$$\begin{split} \tilde{B} &= \begin{pmatrix} \lambda_{\tilde{B}} \\ \lambda_{\tilde{B}}^* \end{pmatrix} & \text{Bino} &= \begin{pmatrix} \text{fB} \\ \text{conj[fB]} \end{pmatrix} \\ d_{i\alpha}^1 &= \begin{pmatrix} d_{L,i\alpha} \\ 0 \end{pmatrix} & \text{Fd1[\{generation, color\}]} &= \begin{pmatrix} \text{FdL[\{generation, color\}]} \\ 0 \end{pmatrix} \\ d_{i\alpha}^2 &= \begin{pmatrix} 0 \\ d_{R,i\alpha} \end{pmatrix} & \text{Fd2[\{generation, color\}]} &= \begin{pmatrix} 0 \\ \text{FdR[\{generation, color\}]} \end{pmatrix} \\ e_i^1 &= \begin{pmatrix} e_{L,i} \\ 0 \end{pmatrix} & \text{Fe1[\{generation\}]} &= \begin{pmatrix} \text{FeL[\{generation\}]} \\ 0 \end{pmatrix} \end{split}$$

$$\begin{split} e_i^2 &= \begin{pmatrix} 0 \\ e_{R,i} \end{pmatrix} & \text{Fe2[\{generation\}]} &= \begin{pmatrix} 0 \\ \text{FeR[\{generation\}]} \end{pmatrix} \\ \tilde{U} &= \begin{pmatrix} \lambda_U \\ \lambda_U^* \end{pmatrix} & \text{FU} &= \begin{pmatrix} \text{fU} \\ \text{conj}[\text{fU}] \end{pmatrix} \end{pmatrix} \\ u_{i\alpha}^1 &= \begin{pmatrix} u_{L,i\alpha} \\ 0 \\ 0 \end{pmatrix} & \text{Fu1[\{generation, \, \text{color}\}]} &= \begin{pmatrix} \text{FuL[\{generation, \, \text{color}\}]} \\ 0 \\ u_{i\alpha}^2 &= \begin{pmatrix} 0 \\ u_{R,i\alpha} \end{pmatrix} & \text{Fu2[\{generation, \, \text{color}\}]} &= \begin{pmatrix} 0 \\ \text{FuR[\{generation, \, \text{color}\}]} \end{pmatrix} \end{pmatrix} \\ \tilde{\nu}_i &= \begin{pmatrix} \nu_{L,i} \\ 0 \\ 0 \end{pmatrix} & \text{Fv[\{generation\}]} &= \begin{pmatrix} \text{FvL[\{generation\}]} \\ 0 \end{pmatrix} \\ \tilde{g}_i &= \begin{pmatrix} \lambda_{\tilde{g},i} \\ \lambda_{\tilde{g},i}^* \end{pmatrix} & \text{Glu[\{generation\}]} &= \begin{pmatrix} \text{fG[\{generation\}]} \\ \text{conj}[\text{fG[\{generation\}]]} \end{pmatrix} \end{pmatrix} \\ \tilde{H}^0 &= \begin{pmatrix} \tilde{H}_u^0 \\ \tilde{H}_u^{0,*} \\ \tilde{H}_d^{-*} \end{pmatrix} & \text{HO} &= \begin{pmatrix} \text{FHuO} \\ \text{conj}[\text{FHdO}] \end{pmatrix} \\ \tilde{H}^- &= \begin{pmatrix} \tilde{H}_u^+ \\ \tilde{H}_d^{-*} \end{pmatrix} & \text{HC} &= \begin{pmatrix} \text{FHup} \\ \text{conj}[\text{FSR}] \end{pmatrix} \\ \tilde{S} &= \begin{pmatrix} \tilde{S} \\ \tilde{S}^* \end{pmatrix} & \text{S} &= \begin{pmatrix} \text{FsR} \\ \text{conj}[\text{FsR}] \end{pmatrix} \\ \tilde{W}_i &= \begin{pmatrix} \lambda_{\tilde{W},i} \\ \lambda_{\tilde{W},i}^* \end{pmatrix} & \text{Wino[\{generation\}]} &= \begin{pmatrix} \text{fWB[\{generation\}]} \\ \text{conj}[\text{fWB[\{generation\}]}] \end{pmatrix} \end{split}$$

• Scalars

$\tilde{d}_{L,i\alpha}$	SdL[{generation, color}]	$\tilde{u}_{L,i\alpha}$	SuL[{generation, color}]
$\tilde{e}_{L,i}$	$_{i,i}$ SeL[{generation}]		<pre>SvL[{generation}]</pre>
H_d^0	SHd0	H_d^-	SHdm
H_u^0	SHu0	H_u^+	SHup
$\tilde{d}_{R,i\alpha}$	<pre>SdR[{generation, color}]</pre>	$\tilde{u}_{R,i\alpha}$	<pre>SuR[{generation, color}]</pre>
$\tilde{e}_{R,i}$	SeR[{generation}]	S	SsR

• Vector Bosons

$B_{ ho}$	VB[{lorentz}]	$W_{i\rho}^-$	<pre>VWB[{generation, lorentz}]</pre>
$g_{i ho}$	VG[{generation, lorentz}]	U_{ρ}	<pre>VU[{lorentz}]</pre>

• Ghosts

η^B	gB	gWB(gt1)	gWB[{generation}]
η_i^G	gG[{generation}]	gU	gU

15.8.2 Particles for eigenstates 'TEMP'

• Fermions

$$\begin{split} \tilde{B} &= \begin{pmatrix} \lambda_{\tilde{B}} \\ \lambda_{\tilde{B}}^* \end{pmatrix} & \text{Bino} &= \begin{pmatrix} \text{fB} \\ \text{conj}[\text{fB}] \end{pmatrix} \\ d_{i\alpha}^1 &= \begin{pmatrix} d_{L,i\alpha} \\ 0 \end{pmatrix} & \text{Fd1}[\{\text{generation, color}\}] &= \begin{pmatrix} \text{FdL}[\{\text{generation, color}\}] \\ 0 \\ d_{i\alpha}^2 &= \begin{pmatrix} 0 \\ d_{R,i\alpha} \end{pmatrix} & \text{Fd2}[\{\text{generation, color}\}] &= \begin{pmatrix} 0 \\ \text{FdR}[\{\text{generation, color}\}] \end{pmatrix} \\ e_i^1 &= \begin{pmatrix} e_{L,i} \\ 0 \end{pmatrix} & \text{Fe1}[\{\text{generation}\}] &= \begin{pmatrix} \text{FeL}[\{\text{generation}\}] \\ 0 \\ e_{R,i} \end{pmatrix} \\ \tilde{U} &= \begin{pmatrix} \lambda_{U} \\ \lambda_{U}^* \end{pmatrix} & \text{FU} &= \begin{pmatrix} \text{fU} \\ \text{conj}[\text{fU}] \end{pmatrix} \\ u_{i\alpha}^1 &= \begin{pmatrix} u_{L,i\alpha} \\ 0 \\ u_{R,i\alpha} \end{pmatrix} & \text{Fu1}[\{\text{generation, color}\}] &= \begin{pmatrix} \text{FuL}[\{\text{generation, color}\}] \\ 0 \\ \text{FuR}[\{\text{generation, color}\}] \end{pmatrix} \\ v_i &= \begin{pmatrix} 0 \\ u_{R,i\alpha} \end{pmatrix} & \text{Fu2}[\{\text{generation, color}\}] &= \begin{pmatrix} 0 \\ \text{FuR}[\{\text{generation, color}\}] \end{pmatrix} \\ \tilde{g}_i &= \begin{pmatrix} \lambda_{\tilde{g},i} \\ \lambda_{\tilde{g},i}^* \end{pmatrix} & \text{Glu}[\{\text{generation}\}] &= \begin{pmatrix} \text{fG}[\{\text{generation}\}] \\ \text{conj}[\text{fG}[\{\text{generation}\}]] \end{pmatrix} \end{split}$$

$$\begin{split} \tilde{H}^0 &= \left(\begin{array}{c} \tilde{H}_u^0 \\ \tilde{H}_d^{0,*} \end{array} \right) & \text{HO} = \left(\begin{array}{c} \text{FHuO} \\ \text{conj} [\text{FHdO}] \end{array} \right) \\ \tilde{H}^- &= \left(\begin{array}{c} \tilde{H}_u^+ \\ \tilde{H}_d^-,^* \end{array} \right) & \text{HC} = \left(\begin{array}{c} \text{FHup} \\ \text{conj} [\text{FHdm}] \end{array} \right) \\ \tilde{S} &= \left(\begin{array}{c} \tilde{S} \\ \tilde{S}^* \end{array} \right) & \text{S} = \left(\begin{array}{c} \text{FsR} \\ \text{conj} [\text{FsR}] \end{array} \right) \\ \tilde{W}_i &= \left(\begin{array}{c} \lambda_{\tilde{W},i} \\ \lambda_{\tilde{W},i}^* \end{array} \right) & \text{Wino} [\{\text{generation}\}] = \left(\begin{array}{c} \text{fWB} [\{\text{generation}\}] \\ \text{conj} [\text{fWB} [\{\text{generation}\}]] \end{array} \right) \end{split}$$

• Scalars

$\tilde{d}_{L,i\alpha}$	SdL[{generation, color}]	$\tilde{u}_{L,i\alpha}$	SuL[{generation, color}]
$\tilde{e}_{L,i}$	SeL[{generation}]	$ ilde{ u}_{L,i}$	<pre>SvL[{generation}]</pre>
H_d^0	SHd0	H_d^-	SHdm
H_u^0	SHu0	H_u^+	SHup
$\tilde{d}_{R,i\alpha}$	<pre>SdR[{generation, color}]</pre>	$\tilde{u}_{R,i\alpha}$	<pre>SuR[{generation, color}]</pre>
$\tilde{e}_{R,i}$	SeR[{generation}]	S	SsR

• Vector Bosons

g_i	VG[{generation, lorentz}]	U_{ρ}	<pre>VU[{lorentz}]</pre>
W	VWm[{lorentz}]	$\gamma_{ ho}$	<pre>VP[{lorentz}]</pre>
	<pre>VZ[{lorentz}]</pre>		

• Ghosts

η_i^G	gG[{generation}]	gU	gU
η^-	gWm	η^+	gWmC
η^{γ}	gP	η^Z	gZ

15.8.3 Particles for eigenstates 'EWSB'

• Fermions

$$\begin{split} \tilde{\chi}_i^- &= \begin{pmatrix} \lambda_i^- \\ \lambda_i^{+,*} \end{pmatrix} & \text{Cha[\{generation\}]} &= \begin{pmatrix} \text{Lm[\{generation\}]} \\ \text{conj[Lp[\{generation\}]]} \end{pmatrix} \\ \tilde{\chi}_i^0 &= \begin{pmatrix} \lambda_i^0 \\ \lambda_i^{0,*} \end{pmatrix} & \text{Chi[\{generation\}]} &= \begin{pmatrix} \text{Lo[\{generation\}]} \\ \text{conj[Lo[\{generation\}]]} \end{pmatrix} \\ d_{i\alpha} &= \begin{pmatrix} D_{L,i\alpha} \\ D_{R,i\alpha}^* \end{pmatrix} & \text{Fd[\{generation, color\}]} &= \begin{pmatrix} \text{FDL[\{generation, color\}]} \\ \text{conj[FDR[\{generation, color\}]]} \end{pmatrix} \\ e_i &= \begin{pmatrix} E_{L,i} \\ E_{R,i}^* \end{pmatrix} & \text{Fe[\{generation\}]} &= \begin{pmatrix} \text{FEL[\{generation\}]} \\ \text{conj[FER[\{generation, color\}]]} \end{pmatrix} \\ u_{i\alpha} &= \begin{pmatrix} U_{L,i\alpha} \\ U_{R,i\alpha}^* \end{pmatrix} & \text{Fu[\{generation, color\}]} &= \begin{pmatrix} \text{FUL[\{generation, color\}]} \\ \text{conj[FUR[\{generation\}]} \end{pmatrix} \\ \nu_i &= \begin{pmatrix} \nu_{L,i} \\ 0 \end{pmatrix} & \text{Fv[\{generation\}]} &= \begin{pmatrix} \text{FvL[\{generation\}]} \\ 0 \end{pmatrix} \\ \tilde{g}_i &= \begin{pmatrix} \lambda_{\tilde{g},i} \\ \lambda_{\tilde{g},i}^* \end{pmatrix} & \text{Glu[\{generation\}]} &= \begin{pmatrix} \text{fG[\{generation\}]} \\ \text{conj[fG[\{generation\}]]} \end{pmatrix} \\ \end{split}$$

• Scalars

$\tilde{d}_{i\alpha}$	Sd[{generation, color}]	$ ilde{ u}_i$	Sv[{generation}]
$\tilde{u}_{i\alpha}$	Su[{generation, color}]	\tilde{e}_i	Se[{generation}]
h_i	hh[{generation}]	A_i^0	Ah[{generation}]
H_i^-	${\tt Hpm[\{generation\}]}$		

• Vector Bosons

$g_{i ho}$	VG[{generation, lorentz}]	W_{ρ}^{-}	VWm[{lorentz}]
$\gamma_{ ho}$	<pre>VP[{lorentz}]</pre>	$Z_{1,\rho}$	<pre>VZ1[{lorentz}]</pre>
$Z_{2, ho}$	VZ2[{lorentz}]		

• Ghosts

η_i^G	gG[{generation}]	η^-	gWm
η^+	gWmC	η^{γ}	gP
η^{Z_1}	gZ1	η^{Z_2}	gZ2

15.8.4 Parameters

Q_q	Qq	Q_q	Ql	Q_{H_d}	QHd
Q_{H_u}	QHu	Q_d	Qd	Q_u	Qu
Q_e	Qе	Q_s	Qs	g_1	g1
g_2	g2	g_3	g3	g_p	gp
Y_u	Yu	T_u	T[Yu]	Y_d	Yd
T_d	T[Yd]	Y_e	Ye	T_e	T[Ye]
λ	\[Lambda]	T_{λ}	T[\[Lambda]]	m_q^2	mq2
m_l^2	m12	$m_{H_d}^2$	mHd2	$m_{H_u}^2$	mHu2
m_d^2	md2	m_u^2	mu2	m_e^2	me2
m_S^2	ms2	M_1	MassB	M_2	${\tt MassWB}$
M_3	MassG	M_Z	MassU	Θ_W	ThetaW
v_d	vd	v_u	vu	v_s	vS
Θ_Z	ThetaZ	$\phi_{ ilde{g}}$	PhaseGlu	Z^D	ZD
Z^V	ZV	Z^U	ZU	Z^E	ZE
Z^H	ZH	Z^A	ZA	Z^+	ZP
N	ZN	U	UM	V	UP
U_L^e	ZEL	U_R^e	ZER	U_L^d	ZDL
U_R^d	ZDR	U_L^u	ZUL	U_R^u	ZUR
β	\[Beta]				

Chapter 16

The Secluded U(1)-Extended Minimal Supersymmetric Standard Model

16.1 Superfields

16.1.1 Vector Superfields

SF	Spin $\frac{1}{2}$	Spin 1	SU(N)	Coupling	Name
\hat{B}	$\lambda_{ ilde{B}}$	B	U(1)	g_1	hypercharge
\hat{W}	$\lambda_{ ilde{W}}$	W^-	SU(2)	g_2	left
\hat{g}	$\lambda_{ ilde{g}}$	g	SU(3)	g_3	color
\hat{U}	$ ilde{U}$	U	U(1)	g_p	additional

16.1.2 Chiral Superfields

SF	Spin 0	Spin $\frac{1}{2}$	Generations	$(U(1) \otimes \mathrm{SU}(2) \otimes \mathrm{SU}(3) \otimes U(1))$
\hat{q}	\tilde{q}	q	3	$(rac{1}{6}, oldsymbol{2}, oldsymbol{3}, Q_q)$
Î	\tilde{l}	l	3	$(-rac{1}{2},2,1,Q_q)$
\hat{H}_d	H_d	$ ilde{H}_d$	1	$(-rac{1}{2},{f 2},{f 1},Q_{H_d})$
\hat{H}_u	H_u	\tilde{H}_u	1	$(rac{1}{2},2,1,Q_{H_u})$
\hat{d}	$ ilde{d}_R^*$	d_R^*	3	$(rac{1}{3}, 1, \overline{3}, Q_d)$
\hat{u}	\tilde{u}_R^*	u_R^*	3	$(-rac{2}{3},1,\overline{3},Q_u)$
\hat{e}	\tilde{e}_R^*	$egin{array}{c} e_R^* \ ilde{S} \end{array}$	3	$(1, 1, 1, Q_e)$
\hat{s}	S	\tilde{S}	1	$(0, 1, 1, Q_s)$
\hat{s}_1	S_1	\tilde{s}_1	1	$(0, 1, 1, Q_1)$
\hat{s}_2	S_2	$ ilde{s}_2$	1	$(0, 1, 1, Q_2)$
\hat{s}_3	S_3	$ ilde{s}_3$	1	$(0, 1, 1, Q_3)$

16.2 Superpotential and Lagrangian

16.2.1 Superpotential

$$W = Y_u \,\hat{q} \,\hat{H}_u \,\hat{u} - Y_d \,\hat{q} \,\hat{H}_d \,\hat{d} - Y_e \,\hat{l} \,\hat{H}_d \,\hat{e} + \lambda \,\hat{H}_u \,\hat{H}_d \,\hat{s} + \kappa \,\hat{s}_1 \,\hat{s}_2 \,\hat{s}_3 \tag{16.1}$$

16.2.2 Softbreaking terms

$$L_{SB,W} = + S_{1}S_{2}S_{3}T_{\kappa} - H_{d}^{0}H_{u}^{0}ST_{\lambda} + H_{d}^{-}H_{u}^{+}ST_{\lambda} + H_{d}^{0}\tilde{d}_{R,k\gamma}^{*}\delta_{\alpha\gamma}\tilde{d}_{L,i\alpha}T_{d,ik}$$

$$- H_{d}^{-}\tilde{d}_{R,k\gamma}^{*}\delta_{\alpha\gamma}\tilde{u}_{L,i\alpha}T_{d,ik} + H_{d}^{0}\tilde{e}_{R,k}^{*}\tilde{e}_{L,i}T_{e,ik} - H_{d}^{-}\tilde{e}_{R,k}^{*}\tilde{\nu}_{L,i}T_{e,ik} - H_{u}^{+}\tilde{u}_{R,k\gamma}^{*}\delta_{\alpha\gamma}\tilde{d}_{L,i\alpha}T_{u,ik}$$

$$+ H_{u}^{0}\tilde{u}_{R,k\gamma}^{*}\delta_{\alpha\gamma}\tilde{u}_{L,i\alpha}T_{u,ik} + \text{h.c.}$$

$$(16.2)$$

$$L_{SB,\phi} = -m_{H_{d}}^{2}|H_{d}^{0}|^{2} - m_{H_{d}}^{2}|H_{d}^{-}|^{2} - m_{H_{u}}^{2}|H_{u}^{0}|^{2} - m_{H_{u}}^{2}|H_{u}^{+}|^{2} - ms12|S_{1}|^{2} - ms22|S_{2}|^{2} - ms32|S_{3}|^{2}$$

$$- m_{S}^{2}|S|^{2} - \tilde{d}_{L,j\beta}^{*}\delta_{\alpha\beta}m_{q,ij}^{2}\tilde{d}_{L,i\alpha} - \tilde{d}_{R,i\alpha}^{*}\delta_{\alpha\beta}m_{d,ij}^{2}\tilde{d}_{R,j\beta} - \tilde{e}_{L,j}^{*}m_{l,ij}^{2}\tilde{e}_{L,i}$$

$$- \tilde{e}_{R,i}^{*}m_{e,ij}^{2}\tilde{e}_{R,j} - \tilde{u}_{L,j\beta}^{*}\delta_{\alpha\beta}m_{q,ij}^{2}\tilde{u}_{L,i\alpha} - \tilde{u}_{R,i\alpha}^{*}\delta_{\alpha\beta}m_{u,ij}^{2}\tilde{u}_{R,j\beta} - \tilde{\nu}_{L,j}^{*}m_{l,ij}^{2}\tilde{\nu}_{L,i}$$

$$(16.3)$$

$$L_{SB,\lambda} = \frac{1}{2} \left(-\lambda_{\tilde{B}}^2 M_1 - M_2 \lambda_{\tilde{W},i}^2 - M_3 \lambda_{\tilde{g},i}^2 - \tilde{U}^2 M_U + \text{h.c.} \right)$$
(16.4)

16.2.3 Gauge fixing terms

Gauge fixing terms for eigenstates 'GaugeES'

$$L_{GF} = -\frac{1}{2}\partial_{\mu}g\xi_{G}^{-1} - \frac{1}{2}\partial_{\mu}W^{-}\xi_{W}^{-1}$$
(16.5)

Gauge fixing terms for eigenstates 'TEMP'

$$L_{GF} = -\frac{1}{2}\partial_{\mu}\gamma\xi_{P}^{-1} - \frac{1}{2}\partial_{\mu}g\xi_{G}^{-1} - \frac{1}{2}\xi_{Z}^{-1}\left(-A_{1}^{0}m_{Z}\xi_{Z} + \partial_{\mu}Z\right) - \xi_{W}^{-1}\left(iH_{1}^{-}m_{W^{-}}\xi_{W} + \partial_{\mu}W^{-}\right)$$

$$(16.6)$$

Gauge fixing terms for eigenstates 'EWSB'

$$L_{GF} = -\frac{1}{2}\partial_{\mu}\gamma\xi_{P}^{-1} - \frac{1}{2}\partial_{\mu}g\xi_{G}^{-1} - \frac{1}{2}\xi_{Z1}^{-1}\left(-A_{1}^{0}m_{Z_{1}}\xi_{Z1} + \partial_{\mu}Z_{1}\right) - \xi_{W}^{-1}\left(iH_{1}^{-}m_{W^{-}}\xi_{W} + \partial_{\mu}W^{-}\right)$$

$$(16.7)$$

16.2.4 Fields integrated out

None

16.3 Field Rotations

16.3.1 Rotations in gauge sector for eigenstates 'EWSB'

$$Z_{\rho} = \cos\Theta_Z Z_{2,\rho} + \sin\Theta_Z Z_{1,\rho} \tag{16.8}$$

$$U_{\rho} = \cos\Theta_Z Z_{1,\rho} - \sin\Theta_W Z_{2,\rho} \tag{16.9}$$

$$\lambda_{\tilde{W},1} = \frac{1}{\sqrt{2}}\tilde{W}^{-} + \frac{1}{\sqrt{2}}\tilde{W}^{+} \tag{16.10}$$

$$\lambda_{\tilde{W},2} = -i\frac{1}{\sqrt{2}}\tilde{W}^{-} + i\frac{1}{\sqrt{2}}\tilde{W}^{+} \tag{16.11}$$

$$\lambda_{\tilde{W}3} = \tilde{W}^0 \tag{16.12}$$

16.3.2 Rotations in Mass sector for eigenstates 'EWSB'

Mass Matrices for Scalars

• Mass matrix for Down-Squarks, Basis: $(\tilde{d}_{L,o_1\alpha_1},\tilde{d}_{R,o_2\alpha_2}),(\tilde{d}_{L,p_1\beta_1}^*,\tilde{d}_{R,p_2\beta_2}^*)$

$$m_{\tilde{d}}^{2} = \begin{pmatrix} m_{11} & \frac{1}{2} \delta_{\alpha_{1}\beta_{2}} \left(\sqrt{2} v_{d} T_{d,o_{1}p_{2}} - v_{s} v_{u} \lambda^{*} Y_{d,o_{1}p_{2}} \right) \\ \frac{1}{2} \left(\sqrt{2} v_{d} T_{d,p_{1}o_{2}}^{*} - v_{s} v_{u} \lambda Y_{d,p_{1}o_{2}}^{*} \right) \delta_{\alpha_{2}\beta_{1}} & m_{22} \end{pmatrix}$$

$$(16.13)$$

$$m_{11} = \frac{1}{24} \delta_{\alpha_1 \beta_1} \left(\left(12g_p^2 Q_q \left(Q_1 v 1^2 + Q_2 v 2^2 + Q_3 v 3^2 + Q_{H_d} v_d^2 + Q_{H_u} v_u^2 + Q_s v_s^2 \right) - \left(3g_2^2 + g_1^2 \right) \left(-v_u^2 + v_d^2 \right) \right) \delta_{o_1 p_1} + 12 \left(2m_{q,o_1 p_1}^2 + v_d^2 \sum_{s=1}^3 Y_{d,p_1 a}^* Y_{d,o_1 a} \right) \right)$$

$$(16.14)$$

$$m_{22} = \frac{1}{12} \delta_{\alpha_2 \beta_2} \left(\left(6g_p^2 Q_d \left(Q_1 v 1^2 + Q_2 v 2^2 + Q_3 v 3^2 + Q_{H_d} v_d^2 + Q_{H_u} v_u^2 + Q_s v_s^2 \right) + g_1^2 \left(-v_d^2 + v_u^2 \right) \right) \delta_{o_2 p_2} + 6 \left(2m_{d, p_2 o_2}^2 + v_d^2 \sum_{a=1}^3 Y_{d, a o_2}^* Y_{d, a p_2} \right) \right)$$

$$(16.15)$$

This matrix is diagonalized by Z^D :

$$Z^{D} m_{\tilde{d}}^{2} Z^{D,\dagger} = m_{2.\tilde{d}}^{dia} \tag{16.16}$$

with

$$\tilde{d}_{L,i\alpha} = \sum_{t_2} Z_{ji}^{D,*} \tilde{d}_{j\alpha}, \qquad \tilde{d}_{R,i\alpha} = \sum_{t_2} Z_{ji}^{D,*} \tilde{d}_{j\alpha}$$
 (16.17)

• Mass matrix for Sneutrinos, Basis: $(\tilde{\nu}_{L,o_1}), (\tilde{\nu}_{L,p_1}^*)$

$$m_{\tilde{\nu}}^2 = \left(m_{11} \right)$$
 (16.18)

$$m_{11} = \frac{1}{8} \left(\left(4g_p^2 Q_q \left(Q_1 v 1^2 + Q_2 v 2^2 + Q_3 v 3^2 + Q_{H_d} v_d^2 + Q_{H_u} v_u^2 + Q_s v_s^2 \right) + \left(g_1^2 + g_2^2 \right) \left(-v_u^2 + v_d^2 \right) \right) \delta_{o_1 p_1} + 8m_{l, o_1 p_1}^2 \right)$$

$$(16.19)$$

This matrix is diagonalized by Z^V :

$$Z^{V} m_{\tilde{\nu}}^{2} Z^{V,\dagger} = m_{2,\tilde{\nu}}^{dia} \tag{16.20}$$

with

$$\tilde{\nu}_{L,i} = \sum_{t_2} Z_{ji}^{V,*} \tilde{\nu}_j \tag{16.21}$$

• Mass matrix for Up-Squarks, Basis: $(\tilde{u}_{L,o_1\alpha_1}, \tilde{u}_{R,o_2\alpha_2}), (\tilde{u}_{L,p_1\beta_1}^*, \tilde{u}_{R,p_2\beta_2}^*)$

$$m_{\tilde{u}}^{2} = \begin{pmatrix} m_{11} & \frac{1}{2} \delta_{\alpha_{1}\beta_{2}} \left(\sqrt{2} v_{u} T_{u,o_{1}p_{2}} - v_{d} v_{s} \lambda^{*} Y_{u,o_{1}p_{2}} \right) \\ \frac{1}{2} \left(\sqrt{2} v_{u} T_{u,p_{1}o_{2}}^{*} - v_{d} v_{s} \lambda Y_{u,p_{1}o_{2}}^{*} \right) \delta_{\alpha_{2}\beta_{1}} & m_{22} \end{pmatrix}$$

$$(16.22)$$

$$m_{11} = \frac{1}{24} \delta_{\alpha_1 \beta_1} \left(\left(12g_p^2 Q_q \left(Q_1 v 1^2 + Q_2 v 2^2 + Q_3 v 3^2 + Q_{H_d} v_d^2 + Q_{H_u} v_u^2 + Q_s v_s^2 \right) - \left(-3g_2^2 + g_1^2 \right) \left(-v_u^2 + v_d^2 \right) \right) \delta_{o_1 p_1} + 12 \left(2m_{q,o_1 p_1}^2 + v_u^2 \sum_{g=1}^3 Y_{u,p_1 g}^* Y_{u,o_1 g} \right) \right)$$

$$(16.23)$$

$$m_{22} = \frac{1}{6} \delta_{\alpha_2 \beta_2} \left(\left(3g_p^2 Q_u \left(Q_1 v 1^2 + Q_2 v 2^2 + Q_3 v 3^2 + Q_{H_d} v_d^2 + Q_{H_u} v_u^2 + Q_s v_s^2 \right) + g_1^2 \left(-v_u^2 + v_d^2 \right) \right) \delta_{o_2 p_2} + 6m_{u, p_2 o_2}^2 + 3v_u^2 \sum_{a=1}^3 Y_{u, a o_2}^* Y_{u, a p_2} \right)$$

$$(16.24)$$

This matrix is diagonalized by Z^U :

$$Z^{U}m_{\tilde{u}}^{2}Z^{U,\dagger} = m_{2,\tilde{u}}^{dia} \tag{16.25}$$

with

$$\tilde{u}_{L,i\alpha} = \sum_{t_2} Z_{ji}^{U,*} \tilde{u}_{j\alpha}, \qquad \tilde{u}_{R,i\alpha} = \sum_{t_2} Z_{ji}^{U,*} \tilde{u}_{j\alpha}$$
 (16.26)

• Mass matrix for Sleptons, Basis: $(\tilde{e}_{L,o_1}, \tilde{e}_{R,o_2}), (\tilde{e}_{L,p_1}^*, \tilde{e}_{R,p_2}^*)$

$$m_{\tilde{e}}^{2} = \begin{pmatrix} m_{11} & -\frac{1}{2}v_{s}v_{u}\lambda^{*}Y_{e,o_{1}p_{2}} + \frac{1}{\sqrt{2}}v_{d}T_{e,o_{1}p_{2}} \\ -\frac{1}{2}v_{s}v_{u}\lambda Y_{e,p_{1}o_{2}}^{*} + \frac{1}{\sqrt{2}}v_{d}T_{e,p_{1}o_{2}}^{*} & m_{22} \end{pmatrix}$$

$$(16.27)$$

$$m_{11} = \frac{1}{8} \left(\left(4g_p^2 Q_q \left(Q_1 v 1^2 + Q_2 v 2^2 + Q_3 v 3^2 + Q_{H_d} v_d^2 + Q_{H_u} v_u^2 + Q_s v_s^2 \right) + \left(-g_2^2 + g_1^2 \right) \left(-v_u^2 + v_d^2 \right) \right) \delta_{o_1 p_1} + 8m_{l,o_1 p_1}^2 + 4v_d^2 \sum_{a=1}^3 Y_{e,p_1 a}^* Y_{e,o_1 a} \right)$$

$$(16.28)$$

$$m_{22} = \frac{1}{4} \left(\left(2g_p^2 Q_e \left(Q_1 v 1^2 + Q_2 v 2^2 + Q_3 v 3^2 + Q_{H_d} v_d^2 + Q_{H_u} v_u^2 + Q_s v_s^2 \right) + g_1^2 \left(-v_d^2 + v_u^2 \right) \right) \delta_{o_2 p_2} + 4m_{e, p_2 o_2}^2 + 2v_d^2 \sum_{a=1}^3 Y_{e, ao_2}^* Y_{e, ap_2} \right)$$

$$(16.29)$$

This matrix is diagonalized by Z^E :

$$Z^E m_{\tilde{e}}^2 Z^{E,\dagger} = m_{2,\tilde{e}}^{dia} \tag{16.30}$$

with

$$\tilde{e}_{L,i} = \sum_{t_2} Z_{ji}^{E,*} \tilde{e}_j , \qquad \tilde{e}_{R,i} = \sum_{t_2} Z_{ji}^{E,*} \tilde{e}_j$$
 (16.31)

• Mass matrix for Higgs, Basis: $(\phi_d, \phi_u, \phi_s, \phi_1, \phi_2, \phi_3), (\phi_d, \phi_u, \phi_s, \phi_1, \phi_2, \phi_3)$

$$m_{h}^{2} = \begin{pmatrix} m_{11} & m_{21}^{*} & m_{31}^{*} & m_{41}^{*} & m_{51}^{*} & m_{61}^{*} \\ m_{21} & m_{22} & m_{32}^{*} & m_{42}^{*} & m_{52}^{*} & m_{62}^{*} \\ m_{31} & m_{32} & m_{33} & m_{43}^{*} & m_{53}^{*} & m_{63}^{*} \\ m_{41} & m_{42} & m_{43} & m_{44} & m_{54}^{*} & m_{64}^{*} \\ m_{51} & m_{52} & m_{53} & m_{54} & m_{55} & m_{65}^{*} \\ m_{61} & m_{62} & m_{63} & m_{64} & m_{65} & m_{66} \end{pmatrix}$$

$$(16.32)$$

$$m_{11} = \frac{1}{8} \left(8m_{H_d}^2 + 4g_p^2 Q_{H_d} Q_1 v 1^2 + 4g_p^2 Q_{H_d} Q_2 v 2^2 + 4g_p^2 Q_{H_d} Q_3 v 3^2 + 3g_1^2 v_d^2 + 3g_2^2 v_d^2 + 12g_p^2 Q_{H_d}^2 v_d^2 \right)$$

$$+ 4g_p^2 Q_{H_d} Q_s v_s^2 - g_1^2 v_u^2 - g_2^2 v_u^2 + 4g_p^2 Q_{H_d} Q_{H_u} v_u^2 + 4\left(v_s^2 + v_u^2\right) |\lambda|^2$$

$$(16.33)$$

$$m_{21} = \frac{1}{4} \left(-2\sqrt{2}v_s \Re\left(T_\lambda\right) - \left(-4g_p^2 Q_{H_d} Q_{H_u} + g_1^2 + g_2^2 \right) v_d v_u \right) + v_d v_u |\lambda|^2$$
(16.34)

$$m_{22} = \frac{1}{8} \left(8m_{H_u}^2 + 4g_p^2 Q_{H_u} Q_1 v 1^2 + 4g_p^2 Q_{H_u} Q_2 v 2^2 + 4g_p^2 Q_{H_u} Q_3 v 3^2 - g_1^2 v_d^2 - g_2^2 v_d^2 \right)$$

$$+4g_p^2Q_{H_u}V_u^2+4g_p^2Q_{H_u}Q_sV_s^2+3g_1^2V_u^2+3g_2^2V_u^2+12g_p^2Q_{H_u}^2V_u^2+4\left(V_d^2+V_s^2\right)|\lambda|^2\right)$$
(16.35)

$$m_{31} = -\frac{1}{\sqrt{2}}v_u\Re(T_\lambda) + g_p^2 Q_{H_d} Q_s v_d v_s + v_d v_s |\lambda|^2$$
(16.36)

$$m_{32} = -\frac{1}{\sqrt{2}}v_d\Re(T_\lambda) + g_p^2 Q_{H_u} Q_s v_s v_u + v_s v_u |\lambda|^2$$
(16.37)

$$m_{33} = \frac{1}{2} \left(2m_S^2 + g_p^2 Q_s \left(3Q_s v_s^2 + Q_1 v 1^2 + Q_2 v 2^2 + Q_3 v 3^2 + Q_{H_d} v_d^2 + Q_{H_u} v_u^2 \right) + \left(v_d^2 + v_u^2 \right) |\lambda|^2 \right)$$
(16.38)

$$m_{41} = g_p^2 Q_{H_d} Q_1 v 1 v_d (16.39)$$

$$m_{42} = g_p^2 Q_{H_u} Q_1 v 1 v_u \tag{16.40}$$

$$m_{43} = g_p^2 Q_s Q_1 v 1 v_s (16.41)$$

$$m_{44} = \frac{1}{2} \left(2ms12 + g_p^2 Q_1 \left(3Q_1 v 1^2 + Q_2 v 2^2 + Q_3 v 3^2 + Q_{H_d} v_d^2 + Q_{H_u} v_u^2 + Q_s v_s^2 \right) + \left(v 2^2 + v 3^2 \right) |\kappa|^2 \right)$$

$$(16.42)$$

$$m_{51} = g_p^2 Q_{H_d} Q_2 v 2v_d (16.43)$$

$$m_{52} = g_p^2 Q_{H_u} Q_2 v 2v_u (16.44)$$

$$m_{53} = g_p^2 Q_s Q_2 v 2v_s (16.45)$$

$$m_{54} = \frac{1}{\sqrt{2}} v 3\Re(T_{\kappa}) + g_p^2 Q_1 Q_2 v 1 v 2 + v 1 v 2 |\kappa|^2$$
(16.46)

$$m_{55} = \frac{1}{2} \left(2ms22 + g_p^2 Q_2 \left(3Q_2 v 2^2 + Q_1 v 1^2 + Q_3 v 3^2 + Q_{H_d} v_d^2 + Q_{H_u} v_u^2 + Q_s v_s^2 \right) + \left(v 1^2 + v 3^2 \right) |\kappa|^2 \right)$$
(16.47)

$$m_{61} = g_p^2 Q_{H_d} Q_3 v 3 v_d (16.48)$$

$$m_{62} = g_p^2 Q_{H_u} Q_3 v 3 v_u (16.49)$$

$$m_{63} = g_p^2 Q_s Q_3 v 3 v_s (16.50)$$

$$m_{64} = \frac{1}{\sqrt{2}} v 2\Re(T_{\kappa}) + g_p^2 Q_1 Q_3 v 1 v 3 + v 1 v 3 |\kappa|^2$$
(16.51)

$$m_{65} = \frac{1}{\sqrt{2}}v1\Re(T_{\kappa}) + g_p^2 Q_2 Q_3 v2v3 + v2v3|\kappa|^2$$
(16.52)

$$m_{66} = \frac{1}{2} \left(2ms32 + g_p^2 Q_3 \left(3Q_3 v 3^2 + Q_1 v 1^2 + Q_2 v 2^2 + Q_{H_d} v_d^2 + Q_{H_u} v_u^2 + Q_s v_s^2 \right) + \left(v 1^2 + v 2^2 \right) |\kappa|^2 \right)$$
(16.53)

This matrix is diagonalized by Z^H :

$$Z^{H} m_{h}^{2} Z^{H,\dagger} = m_{2,h}^{dia} \tag{16.54}$$

with

$$\phi_d = \sum_{t_2} Z_{j1}^{H,*} h_j , \qquad \phi_u = \sum_{t_2} Z_{j2}^{H,*} h_j , \qquad \phi_s = \sum_{t_2} Z_{j3}^{H,*} h_j$$
 (16.55)

$$\phi_1 = \sum_{t_2}^{t_2} Z_{j4}^{H,*} h_j, \qquad \phi_2 = \sum_{t_2}^{t_2} Z_{j5}^{H,*} h_j, \qquad \phi_3 = \sum_{t_2}^{t_2} Z_{j6}^{H,*} h_j$$
(16.56)

• Mass matrix for Pseudo-Scalar Higgs, Basis: $(\sigma_d, \sigma_u, \sigma_s, \sigma_1, \sigma_2, \sigma_3), (\sigma_d, \sigma_u, \sigma_s, \sigma_1, \sigma_2, \sigma_3)$

$$m_{A^{0}}^{2} = \begin{pmatrix} m_{11} & \frac{1}{\sqrt{2}}v_{s}\Re\left(T_{\lambda}\right) & \frac{1}{\sqrt{2}}v_{u}\Re\left(T_{\lambda}\right) & 0 & 0 & 0\\ \frac{1}{\sqrt{2}}v_{s}\Re\left(T_{\lambda}\right) & m_{22} & \frac{1}{\sqrt{2}}v_{d}\Re\left(T_{\lambda}\right) & 0 & 0 & 0\\ \frac{1}{\sqrt{2}}v_{u}\Re\left(T_{\lambda}\right) & \frac{1}{\sqrt{2}}v_{d}\Re\left(T_{\lambda}\right) & m_{33} & 0 & 0 & 0\\ 0 & 0 & 0 & m_{44} & -\frac{1}{\sqrt{2}}v_{3}\Re\left(T_{\kappa}\right) & -\frac{1}{\sqrt{2}}v_{2}\Re\left(T_{\kappa}\right)\\ 0 & 0 & 0 & -\frac{1}{\sqrt{2}}v_{3}\Re\left(T_{\kappa}\right) & m_{55} & -\frac{1}{\sqrt{2}}v_{1}\Re\left(T_{\kappa}\right)\\ 0 & 0 & 0 & -\frac{1}{\sqrt{2}}v_{2}\Re\left(T_{\kappa}\right) & -\frac{1}{\sqrt{2}}v_{1}\Re\left(T_{\kappa}\right) & m_{66} \end{pmatrix}$$

$$(16.57)$$

$$m_{11} = \frac{1}{8} \left(8m_{H_d}^2 + 4g_p^2 Q_{H_d} Q_1 v 1^2 + 4g_p^2 Q_{H_d} Q_2 v 2^2 + 4g_p^2 Q_{H_d} Q_3 v 3^2 + g_1^2 v_d^2 + g_2^2 v_d^2 + 4g_p^2 Q_{H_d}^2 v_d^2 + 4g_p^2 Q_{H_d} Q_3 v_s^2 - g_1^2 v_u^2 - g_2^2 v_u^2 + 4g_p^2 Q_{H_d} Q_{H_u} v_u^2 + 4\left(v_s^2 + v_u^2\right) |\lambda|^2 \right)$$

$$(16.58)$$

$$m_{22} = \frac{1}{8} \left(8m_{H_u}^2 + 4g_p^2 Q_{H_u} Q_1 v 1^2 + 4g_p^2 Q_{H_u} Q_2 v 2^2 + 4g_p^2 Q_{H_u} Q_3 v 3^2 - g_1^2 v_d^2 - g_2^2 v_d^2 \right)$$

$$+4g_p^2Q_{H_u}Q_{H_u}v_d^2+4g_p^2Q_{H_u}Q_sv_s^2+g_1^2v_u^2+g_2^2v_u^2+4g_p^2Q_{H_u}^2v_u^2+4\left(v_d^2+v_s^2\right)|\lambda|^2\right)$$
(16.59)

$$m_{33} = \frac{1}{2} \left(2m_S^2 + g_p^2 Q_s \left(Q_1 v 1^2 + Q_2 v 2^2 + Q_3 v 3^2 + Q_{H_d} v_d^2 + Q_{H_u} v_u^2 + Q_s v_s^2 \right) + \left(v_d^2 + v_u^2 \right) |\lambda|^2 \right)$$
(16.60)

$$m_{44} = \frac{1}{2} \left(2ms12 + g_p^2 Q_1 \left(Q_1 v 1^2 + Q_2 v 2^2 + Q_3 v 3^2 + Q_{H_d} v_d^2 + Q_{H_u} v_u^2 + Q_s v_s^2 \right) + \left(v 2^2 + v 3^2 \right) |\kappa|^2 \right)$$
(16.61)

$$m_{55} = \frac{1}{2} \Big(2ms22 + g_p^2 Q_2 \Big(Q_1 v 1^2 + Q_2 v 2^2 + Q_3 v 3^2 + Q_{H_d} v_d^2 + Q_{H_u} v_u^2 + Q_s v_s^2 \Big) + \Big(v 1^2 + v 3^2 \Big) |\kappa|^2 \Big)$$

$$(16.62)$$

$$m_{66} = \frac{1}{2} \left(2ms32 + g_p^2 Q_3 \left(Q_1 v 1^2 + Q_2 v 2^2 + Q_3 v 3^2 + Q_{H_d} v_d^2 + Q_{H_u} v_u^2 + Q_s v_s^2 \right) + \left(v 1^2 + v 2^2 \right) |\kappa|^2 \right)$$

$$(16.63)$$

This matrix is diagonalized by Z^A :

$$Z^{A}m_{A^{0}}^{2}Z^{A,\dagger} = m_{2A^{0}}^{dia} \tag{16.64}$$

with

$$\sigma_d = \sum_{t_2} Z_{j1}^{A,*} A_j^0, \qquad \sigma_u = \sum_{t_2} Z_{j2}^{A,*} A_j^0, \qquad \sigma_s = \sum_{t_2} Z_{j3}^{A,*} A_j^0$$
(16.65)

$$\sigma_1 = \sum_{t_2} Z_{j4}^{A,*} A_j^0, \qquad \sigma_2 = \sum_{t_2} Z_{j5}^{A,*} A_j^0, \qquad \sigma_3 = \sum_{t_2} Z_{j6}^{A,*} A_j^0$$
(16.66)

• Mass matrix for Charged Higgs, Basis: $\left(H_d^-, H_u^{+,*}\right), \left(H_d^{-,*}, H_u^+\right)$

$$m_{H^{-}}^{2} = \begin{pmatrix} m_{11} & \frac{1}{4} \left(2\sqrt{2}v_{s}T_{\lambda} - 2v_{d}v_{u}|\lambda|^{2} + g_{2}^{2}v_{d}v_{u} \right) \\ \frac{1}{4} \left(2\sqrt{2}v_{s}T_{\lambda}^{*} - 2v_{d}v_{u}|\lambda|^{2} + g_{2}^{2}v_{d}v_{u} \right) & m_{22} \end{pmatrix}$$

$$(16.67)$$

$$m_{11} = \frac{1}{8} \left(8m_{H_d}^2 + 4g_p^2 Q_{H_d} Q_1 v 1^2 + 4g_p^2 Q_{H_d} Q_2 v 2^2 + 4g_p^2 Q_{H_d} Q_3 v 3^2 + g_1^2 v_d^2 + g_2^2 v_d^2 + 4g_p^2 Q_{H_d}^2 v_d^2 \right)$$

$$+ 4g_p^2 Q_{H_d} Q_s v_s^2 - g_1^2 v_u^2 + g_2^2 v_u^2 + 4g_p^2 Q_{H_d} Q_{H_u} v_u^2 + 4v_s^2 |\lambda|^2$$

$$(16.68)$$

$$m_{22} = \frac{1}{8} \left(8m_{H_u}^2 + 4g_p^2 Q_{H_u} Q_1 v 1^2 + 4g_p^2 Q_{H_u} Q_2 v 2^2 + 4g_p^2 Q_{H_u} Q_3 v 3^2 - g_1^2 v_d^2 + g_2^2 v_d^2 + 4g_p^2 Q_{H_d} Q_{H_u} v_d^2 + 4g_p^2 Q_{H_u} Q_s v_s^2 + g_1^2 v_u^2 + g_2^2 v_u^2 + 4g_p^2 Q_{H_u}^2 v_u^2 + 4v_s^2 |\lambda|^2 \right)$$

$$(16.69)$$

This matrix is diagonalized by Z^+ :

$$Z^{+}m_{H^{-}}^{2}Z^{+,\dagger} = m_{2,H^{-}}^{dia}$$
(16.70)

with

$$H_d^- = \sum_{t_2} Z_{j1}^{+,*} H_j^-, \qquad H_u^+ = \sum_{t_2} Z_{j2}^+ H_j^+$$
(16.71)

The mixing matrix can be parametrized by

$$Z^{+} = \begin{pmatrix} -\cos\beta & \sin\beta \\ \sin\beta & \cos\beta \end{pmatrix} \tag{16.72}$$

Mass Matrices for Fermions

 $\bullet \ \, \mathbf{Mass \ matrix \ for \ Neutralinos}, \ \mathsf{Basis:} \ \left(\tilde{U}, \lambda_{\tilde{B}}, \tilde{W}^0, \tilde{H}_d^0, \tilde{H}_u^0, \tilde{S}, \tilde{s}_1, \tilde{s}_2, \tilde{s}_3\right), \left(\tilde{U}, \lambda_{\tilde{B}}, \tilde{W}^0, \tilde{H}_d^0, \tilde{H}_u^0, \tilde{S}, \tilde{s}_1, \tilde{s}_2, \tilde{s}_3\right) \\$

$$m_{\tilde{\chi}^0} = \begin{pmatrix} M_U & 0 & 0 & m_{41} & m_{51} & m_{61} & g_pQ_1v1 & g_pQ_2v2 & g_pQ_3v3 \\ 0 & M_1 & 0 & -\frac{1}{2}g_1v_d & \frac{1}{2}g_1v_u & 0 & 0 & 0 & 0 \\ 0 & 0 & M_2 & \frac{1}{2}g_2v_d & -\frac{1}{2}g_2v_u & 0 & 0 & 0 & 0 \\ m_{41} & -\frac{1}{2}g_1v_d & \frac{1}{2}g_2v_d & 0 & m_{54} & m_{64} & 0 & 0 & 0 \\ m_{51} & \frac{1}{2}g_1v_u & -\frac{1}{2}g_2v_u & m_{54} & 0 & m_{65} & 0 & 0 & 0 \\ m_{61} & 0 & 0 & m_{64} & m_{65} & 0 & 0 & 0 & 0 \\ g_pQ_1v1 & 0 & 0 & 0 & 0 & 0 & 0 & \frac{1}{\sqrt{2}}v3\kappa & \frac{1}{\sqrt{2}}v2\kappa \\ g_pQ_2v2 & 0 & 0 & 0 & 0 & 0 & \frac{1}{\sqrt{2}}v3\kappa & 0 & \frac{1}{\sqrt{2}}v1\kappa \\ g_pQ_3v3 & 0 & 0 & 0 & 0 & 0 & \frac{1}{\sqrt{2}}v2\kappa & \frac{1}{\sqrt{2}}v1\kappa & 0 \end{pmatrix}$$
 (16.73)

$$m_{41} = g_p Q_{H_d} v_d (16.74)$$

$$m_{51} = g_p Q_{H_u} v_u (16.75)$$

$$m_{54} = -\frac{1}{\sqrt{2}}v_s\lambda \tag{16.76}$$

$$m_{61} = g_p Q_s v_s (16.77)$$

$$m_{64} = -\frac{1}{\sqrt{2}}v_u\lambda \tag{16.78}$$

$$m_{65} = -\frac{1}{\sqrt{2}}v_d\lambda \tag{16.79}$$

This matrix is diagonalized by N:

$$Nm_{\tilde{\chi}^0}N^{\dagger} = m_{\tilde{\chi}^0}^{dia} \tag{16.80}$$

with

$$\tilde{U} = \sum_{t_2} N_{j1}^* \lambda_j^0, \qquad \lambda_{\tilde{B}} = \sum_{t_2} N_{j2}^* \lambda_j^0, \qquad \tilde{W}^0 = \sum_{t_2} N_{j3}^* \lambda_j^0$$

$$\tilde{H}_d^0 = \sum_{t_2} N_{j4}^* \lambda_j^0, \qquad \tilde{H}_u^0 = \sum_{t_2} N_{j5}^* \lambda_j^0, \qquad \tilde{S} = \sum_{t_2} N_{j6}^* \lambda_j^0$$

$$(16.81)$$

$$\tilde{H}_{d}^{0} = \sum_{t_{2}} N_{j4}^{*} \lambda_{j}^{0}, \qquad \quad \tilde{H}_{u}^{0} = \sum_{t_{2}} N_{j5}^{*} \lambda_{j}^{0}, \qquad \quad \tilde{S} = \sum_{t_{2}} N_{j6}^{*} \lambda_{j}^{0}$$

$$(16.82)$$

$$\tilde{s}_1 = \sum_{t_2} N_{j7}^* \lambda_j^0, \qquad \tilde{s}_2 = \sum_{t_2} N_{j8}^* \lambda_j^0, \qquad \tilde{s}_3 = \sum_{t_2} N_{j9}^* \lambda_j^0$$
(16.83)

• Mass matrix for Charginos, Basis: $\left(\tilde{W}^{-}, \tilde{H}_{d}^{-}\right), \left(\tilde{W}^{+}, \tilde{H}_{u}^{+}\right)$

$$m_{\tilde{\chi}^{-}} = \begin{pmatrix} M_2 & \frac{1}{\sqrt{2}} g_2 v_u \\ \frac{1}{\sqrt{2}} g_2 v_d & \frac{1}{\sqrt{2}} v_s \lambda \end{pmatrix}$$
 (16.84)

This matrix is diagonalized by U and V

$$U^* m_{\tilde{\chi}^-} V^{\dagger} = m_{\tilde{\chi}^-}^{dia} \tag{16.85}$$

with

$$\tilde{W}^{-} = \sum_{t_2} U_{j1}^* \lambda_j^{-}, \qquad \tilde{H}_d^{-} = \sum_{t_2} U_{j2}^* \lambda_j^{-}$$
(16.86)

$$\tilde{W}^{+} = \sum_{t_2} V_{1j}^* \lambda_j^+, \qquad \tilde{H}_u^{+} = \sum_{t_2} V_{2j}^* \lambda_j^+$$
(16.87)

• Mass matrix for Leptons, Basis: (e_{L,o_1}) , (e_{R,p_1}^*)

$$m_e = \left(\frac{1}{\sqrt{2}} v_d Y_{e,o_1 p_1}\right)$$
 (16.88)

This matrix is diagonalized by U_L^e and U_R^e

$$U_L^{e,*} m_e U_R^{e,\dagger} = m_e^{dia} (16.89)$$

with

$$e_{L,i} = \sum_{t_2} U_{L,ji}^{e,*} E_{L,j} \tag{16.90}$$

$$e_{R,i} = \sum_{t_0} U_{R,ij}^e E_{R,j}^* \tag{16.91}$$

• Mass matrix for Down-Quarks, Basis: $(d_{L,o_1\alpha_1}), (d_{R,p_1\beta_1}^*)$

$$m_d = \left(\frac{1}{\sqrt{2}} v_d \delta_{\alpha_1 \beta_1} Y_{d, o_1 p_1} \right) \tag{16.92}$$

This matrix is diagonalized by ${\cal U}_L^d$ and ${\cal U}_R^d$

$$U_L^{d,*} m_d U_R^{d,\dagger} = m_d^{dia} \tag{16.93}$$

with

$$d_{L,i\alpha} = \sum_{t_0} U_{L,ji}^{d,*} D_{L,j\alpha}$$
 (16.94)

$$d_{R,i\alpha} = \sum_{t_0} U_{R,ij}^d D_{R,j\alpha}^*$$
 (16.95)

• Mass matrix for Up-Quarks, Basis: $(u_{L,o_1\alpha_1}), (u_{R,p_1\beta_1}^*)$

$$m_u = \left(\frac{1}{\sqrt{2}} v_u \delta_{\alpha_1 \beta_1} Y_{u, o_1 p_1} \right) \tag{16.96}$$

This matrix is diagonalized by U_L^u and U_R^u

$$U_L^{u,*} m_u U_R^{u,\dagger} = m_u^{dia} \tag{16.97}$$

with

$$u_{L,i\alpha} = \sum_{t_0} U_{L,ji}^{u,*} U_{L,j\alpha}$$
 (16.98)

$$u_{R,i\alpha} = \sum_{t_2} U_{R,ij}^u U_{R,j\alpha}^*$$
 (16.99)

16.4 Vacuum Expectation Values

16.4.1 VEVs for eigenstates 'EWSB'

$$H_d^0 = \frac{1}{\sqrt{2}}\phi_d + \frac{1}{\sqrt{2}}v_d + i\frac{1}{\sqrt{2}}\sigma_d \tag{16.100}$$

$$H_u^0 = \frac{1}{\sqrt{2}}\phi_u + \frac{1}{\sqrt{2}}v_u + i\frac{1}{\sqrt{2}}\sigma_u \tag{16.101}$$

$$S = \frac{1}{\sqrt{2}}\phi_s + \frac{1}{\sqrt{2}}v_s + i\frac{1}{\sqrt{2}}\sigma_s \tag{16.102}$$

$$S_1 = \frac{1}{\sqrt{2}}\phi_1 + \frac{1}{\sqrt{2}}v_1 + i\frac{1}{\sqrt{2}}\sigma_1 \tag{16.103}$$

$$S_2 = \frac{1}{\sqrt{2}}\phi_2 + \frac{1}{\sqrt{2}}v^2 + i\frac{1}{\sqrt{2}}\sigma_2 \tag{16.104}$$

$$S_3 = \frac{1}{\sqrt{2}}\phi_3 + \frac{1}{\sqrt{2}}v_3 + i\frac{1}{\sqrt{2}}\sigma_3 \tag{16.105}$$

16.5 Tadpole Equations

16.5.1 Tadpole Equations for eigenstates 'TEMP'

$$\begin{split} \frac{\partial V}{\partial v_{d}} &= \frac{1}{8} \Big(\Big(4g_{p}^{2}Q_{H_{d}}^{2} + g_{1}^{2} + g_{2}^{2} \Big) v_{d}^{3} \\ &+ v_{d} \Big(8m_{H_{d}}^{2} + 4g_{p}^{2}Q_{H_{d}}Q_{1}v1^{2} + 4g_{p}^{2}Q_{H_{d}}Q_{2}v2^{2} + 4g_{p}^{2}Q_{H_{d}}Q_{3}v3^{2} + 4g_{p}^{2}Q_{H_{d}}Q_{s}v_{s}^{2} - g_{1}^{2}v_{u}^{2} \\ &- g_{2}^{2}v_{u}^{2} + 4g_{p}^{2}Q_{H_{d}}Q_{H_{u}}v_{u}^{2} + 4\Big(v_{s}^{2} + v_{u}^{2}\Big)|\lambda|^{2} \Big) \\ &- 2\sqrt{2}v_{s}v_{u}\Big(T_{\lambda}^{*} + T_{\lambda}\Big) \Big) \\ &- 2\sqrt{2}v_{s}v_{u}\Big(T_{\lambda}^{*} + T_{\lambda}\Big) \Big) \\ &+ \frac{\partial V}{\partial v_{u}} &= \frac{1}{8}\Big(v_{u}\Big(4g_{p}^{2}Q_{H_{u}}\Big(Q_{1}v1^{2} + Q_{2}v2^{2} + Q_{3}v3^{2} + Q_{H_{d}}v_{d}^{2} + Q_{H_{u}}v_{u}^{2} + Q_{s}v_{s}^{2}\Big) + 8m_{H_{u}}^{2} - \Big(g_{1}^{2} + g_{2}^{2}\Big)\Big(-v_{u}^{2} + v_{d}^{2}\Big)\Big) \\ &+ 4\Big(v_{d}^{2} + v_{s}^{2}\Big)v_{u}|\lambda|^{2} - 4\sqrt{2}v_{d}v_{s}\Re(T_{\lambda}\Big) \Big) \\ &\frac{\partial V}{\partial v_{s}} &= \frac{1}{4}\Big(2g_{p}^{2}Q_{s}^{2}v_{s}^{3} + 2v_{s}\Big(2m_{S}^{2} + g_{p}^{2}Q_{s}\Big(Q_{1}v1^{2} + Q_{2}v2^{2} + Q_{3}v3^{2} + Q_{H_{d}}v_{d}^{2} + Q_{H_{u}}v_{u}^{2}\Big) + \Big(v_{d}^{2} + v_{u}^{2}\Big)|\lambda|^{2}\Big) \\ &- \sqrt{2}v_{d}v_{u}\Big(T_{\lambda}^{*} + T_{\lambda}\Big) \Big) \end{aligned} \tag{16.108}$$

$$\frac{\partial V}{\partial v1} = \frac{1}{4} \left(2g_p^2 Q_1^2 v 1^3 + 2v 1 \left(2ms12 + g_p^2 Q_1 \left(Q_2 v 2^2 + Q_3 v 3^2 + Q_{H_d} v_d^2 + Q_{H_u} v_u^2 + Q_s v_s^2 \right) + \left(v 2^2 + v 3^2 \right) |\kappa|^2 \right) + \sqrt{2} v 2v 3 \left(T_\kappa^* \right) \left(16.109 \right)$$

$$\frac{\partial V}{\partial v2} = \frac{1}{4} \left(2g_p^2 Q_2^2 v 2^3 + 2v 2 \left(2ms22 + g_p^2 Q_2 \left(Q_1 v 1^2 + Q_3 v 3^2 + Q_{H_d} v_d^2 + Q_{H_u} v_u^2 + Q_s v_s^2 \right) + \left(v 1^2 + v 3^2 \right) |\kappa|^2 \right) + \sqrt{2} v 1v 3 \left(T_\kappa^* \right) \left(16.110 \right)$$

$$\frac{\partial V}{\partial v3} = \frac{1}{2} \left(\sqrt{2} v 1v 2\Re \left(T_\kappa \right) + \left(v 1^2 + v 2^2 \right) v 3 |\kappa|^2 + v 3 \left(2ms32 + g_p^2 Q_3 \left(Q_1 v 1^2 + Q_2 v 2^2 + Q_3 v 3^2 + Q_{H_d} v_d^2 + Q_{H_u} v_u^2 + Q_s v_s^2 \right) \right)$$

$$(16.111)$$

16.5.2 Tadpole Equations for eigenstates 'EWSB'

$$\frac{\partial V}{\partial v_d} = \frac{1}{8} \left(v_d \left(4g_p^2 Q_{H_d} \left(Q_1 v 1^2 + Q_2 v 2^2 + Q_3 v 3^2 + Q_{H_d} v_d^2 + Q_{H_u} v_u^2 + Q_s v_s^2 \right) + 8m_{H_d}^2 + \left(g_1^2 + g_2^2 \right) \left(-v_u^2 + v_d^2 \right) \right) \\
+ 4v_d \left(v_s^2 + v_u^2 \right) |\lambda|^2 - 4\sqrt{2} v_s v_u \Re \left(T_\lambda \right) \right) \tag{16.112}$$

$$\frac{\partial V}{\partial v_u} = \frac{1}{8} \left(v_u \left(4g_p^2 Q_{H_u} \left(Q_1 v 1^2 + Q_2 v 2^2 + Q_3 v 3^2 + Q_{H_d} v_d^2 + Q_{H_u} v_u^2 + Q_s v_s^2 \right) + 8m_{H_u}^2 - \left(g_1^2 + g_2^2 \right) \left(-v_u^2 + v_d^2 \right) \right) \\
+ 4 \left(v_d^2 + v_s^2 \right) v_u |\lambda|^2 - 4\sqrt{2} v_d v_s \Re \left(T_\lambda \right) \right) \tag{16.113}$$

$$\frac{\partial V}{\partial v_s} = \frac{1}{2} \left(v_s \left(2m_S^2 + g_p^2 Q_s \left(Q_1 v 1^2 + Q_2 v 2^2 + Q_3 v 3^2 + Q_{H_d} v_d^2 + Q_{H_u} v_u^2 + Q_s v_s^2 \right) \right) + v_s \left(v_d^2 + v_u^2 \right) |\lambda|^2 \\
- \sqrt{2} v_d v_u \Re \left(T_\lambda \right) \right) \tag{16.114}$$

$$\frac{\partial V}{\partial v_1} = \frac{1}{2} \left(\sqrt{2} v 2 v 3 \Re \left(T_\kappa \right) + v 1 \left(2m s 12 + g_p^2 Q_1 \left(Q_1 v 1^2 + Q_2 v 2^2 + Q_3 v 3^2 + Q_{H_d} v_d^2 + Q_{H_u} v_u^2 + Q_s v_s^2 \right) \right) + v 1 \left(v 2^2 + v 3^2 \right) |\kappa|^2 \\
\frac{\partial V}{\partial v_2} = \frac{1}{2} \left(\sqrt{2} v 1 v 3 \Re \left(T_\kappa \right) + v 2 \left(2m s 22 + g_p^2 Q_2 \left(Q_1 v 1^2 + Q_2 v 2^2 + Q_3 v 3^2 + Q_{H_d} v_d^2 + Q_{H_u} v_u^2 + Q_s v_s^2 \right) \right) + v 2 \left(v 1^2 + v 3^2 \right) |\kappa|^2 \\
\frac{\partial V}{\partial v_3} = \frac{1}{2} \left(\sqrt{2} v 1 v 2 \Re \left(T_\kappa \right) + \left(v 1^2 + v 2^2 \right) v 3 |\kappa|^2 + v 3 \left(2m s 32 + g_p^2 Q_3 \left(Q_1 v 1^2 + Q_2 v 2^2 + Q_3 v 3^2 + Q_{H_d} v_d^2 + Q_{H_u} v_u^2 + Q_s v_s^2 \right) \right) + v 2 \left(v 1^2 + v 3^2 \right) |\kappa|^2 \\
\frac{\partial V}{\partial v_3} = \frac{1}{2} \left(\sqrt{2} v 1 v 2 \Re \left(T_\kappa \right) + \left(v 1^2 + v 2^2 \right) v 3 |\kappa|^2 + v 3 \left(2m s 32 + g_p^2 Q_3 \left(Q_1 v 1^2 + Q_2 v 2^2 + Q_3 v 3^2 + Q_{H_d} v_d^2 + Q_{H_u} v_u^2 + Q_s v_s^2 \right) \right) + v 2 \left(v 1^2 + v 3^2 \right) |\kappa|^2 \\
\frac{\partial V}{\partial v_3} = \frac{1}{2} \left(\sqrt{2} v 1 v 2 \Re \left(T_\kappa \right) + \left(v 1^2 + v 2^2 \right) v 3 |\kappa|^2 + v 3 \left(2m s 32 + g_p^2 Q_3 \left(Q_1 v 1^2 + Q_2 v 2^2 + Q_3 v 3^2 + Q_{H_d} v_d^2 +$$

16.6 Particle content for eigenstates 'EWSB'

Name	Type	${\rm complex/real}$	Generations	${\rm Indices}$
$-\tilde{d}$	Scalar	complex	6	generation, color
$ ilde{ u}$	Scalar	complex	3	generation
$ ilde{u}$	Scalar	complex	6	generation, color
$ ilde{e}$	Scalar	complex	6	generation
h	Scalar	real	6	${\it generation}$
A^0	Scalar	real	6	${\it generation}$
H^-	Scalar	complex	2	generation

ν	Fermion	Dirac	3	generation
$ ilde{g}$	Fermion	Majorana	8	generation
$ ilde{\chi}^0$	Fermion	Majorana	9	generation
$ ilde{\chi}^-$	Fermion	Dirac	2	generation
e	Fermion	Dirac	3	generation
d	Fermion	Dirac	3	generation, color
u	Fermion	Dirac	3	generation, color
g	Vector	real	8	generation, lorentz
W^-	Vector	complex	1	lorentz
γ	Vector	real	1	lorentz
Z_1	Vector	real	1	lorentz
Z_2	Vector	real	1	lorentz
η^G	Ghost	$_{\mathrm{real}}$	8	generation
η^-	Ghost	complex	1	
η^+	Ghost	complex	1	
η^γ	Ghost	real	1	
η^{Z_1}	Ghost	$_{\mathrm{real}}$	1	
η^{Z_2}	Ghost	real	1	

16.7 Modelfile for SARAH

```
Off[General::spell]
Print["Model file for the secluded MSSM loaded"];
ModelNameLaTeX ="secluded MSSM";
(*----*)
(* Particle Content*)
(*----*)
(* Gauge Superfields *)
Gauge[[1]]={B, U[1], hypercharge, g1,False};
Gauge[[2]]={WB, SU[2], left, g2,True};
Gauge[[3]]={G, SU[3], color,
                              g3,False};
Gauge[[4]]={U, U[1], additional, gp,False};
(* Chiral Superfields *)
Fields[[1]] = \{\{uL, dL\}, 3, q, 1/6, 2, 3, Qq\};
Fields[[2]] = \{\{vL, eL\}, 3, 1, -1/2, 2, 1, Ql\};
Fields[[3]] = {{Hd0, Hdm}, 1, Hd, -1/2, 2, 1, QHd};
Fields[[4]] = {{Hup, Hu0}, 1, Hu, 1/2, 2, 1, QHu};
Fields[[5]] = \{conj[dR], 3, d, 1/3, 1, -3, Qd\};
Fields[[6]] = {conj[uR], 3, u, -2/3, 1, -3, Qu};
Fields[[7]] = {conj[eR], 3, e, 1, 1, 1, Qe};
Fields[[8]] = \{sR, 1, s, 0, 1, 1, Qs\};
Fields[[9]] = {S1, 1, s1, 0, 1, 1, Qs1};
Fields[[10]] = {S2, 1, s2, 0, 1, 1, Qs2};
                        0, 1, 1, Qs3};
Fields[[11]] = {S3, 1, s3,}
(*----*)
(* Superpotential *)
(*-----*)
SuperPotential = { \{\{1, Yu\}, \{q, Hu, u\}\}, \{\{-1, Yd\}, \{q, Hd, d\}\},
                \{\{-1, Ye\}, \{1, Hd, e\}\},\
                \{\{1, \{Lambda\}\}, \{Hu, Hd, s\}\},
                {{1,\[Kappa]},{s1,s2,s3}} };
```

```
(*----*)
(* Integrate Out or Delete Particles
 (*-----*)
IntegrateOut={};
DeleteParticles={};
(*----*)
(* DEFINITION *)
(*-----*)
(* DEFINITION
NameOfStates={GaugeES,TEMP, EWSB};
(* ---- Before EWSB ---- *)
DEFINITION[GaugeES] [GaugeFixing] =
{ {Der[VWB], -1/(2 RXi[W])},
            {Der[VG], -1/(2 RXi[G]) }};
(* ---- After EWSB ---- *)
DEFINITION[TEMP][GaugeSector] =
{{VWB, {1, {VWm, 1/Sqrt[2]}, {conj[VWm], 1/Sqrt[2]}}},
              {2,{VWm,-\[ImaginaryI]/Sqrt[2]}},{conj[VWm],\[ImaginaryI]/Sqrt[2]}},
              {3,{VP,Sin[ThetaW]},{VZ,Cos[ThetaW]}}},
  {VB, {1,{VP,Cos[ThetaW]},{VZ,-Sin[ThetaW]}}};
DEFINITION[EWSB] [GaugeSector] =
{{VZ, {1,{VZ1,Sin[ThetaZ]},{VZ2,Cos[ThetaZ]}}},
  {VU, {1,{VZ1,Cos[ThetaZ]},{VZ2,-Sin[ThetaW]}}},
  {fWB, {1, {fWm, 1/Sqrt[2]}, {fWp, 1/Sqrt[2]}},
              \{2, \{fWm, -\backslash [ImaginaryI] / Sqrt[2]\}, \{fWp, \backslash [ImaginaryI] / Sqrt[2]\}\},
              {3,{fW0,1}}}};
DEFINITION[EWSB][VEVs] =
{{SHdO, {vd, 1/Sqrt[2]}, {sigmad, \[ImaginaryI]/Sqrt[2]},{phid,1/Sqrt[2]}},
  {SHu0, {vu, 1/Sqrt[2]}, {sigmau, \[ImaginaryI]/Sqrt[2]}, {phiu,1/Sqrt[2]}},
  \{SsR, \{vS, 1/Sqrt[2]\}, \{sigmaS, \{maginaryI]/Sqrt[2]\}, \{phiS, 1/Sqrt[2]\}\}, \{sigmaS, \{maginaryI], \{maginaryI]
  {SS1, {v1, 1/Sqrt[2]}, {sigma1, \[ImaginaryI]/Sqrt[2]}, {phi1,1/Sqrt[2]}},
  {SS2, {v2, 1/Sqrt[2]}, {sigma2, \[ImaginaryI]/Sqrt[2]},{phi2,1/Sqrt[2]}},
  {SS3, {v3, 1/Sqrt[2]}, {sigma3, \[ImaginaryI]/Sqrt[2]}, {phi3,1/Sqrt[2]}}
                     };
```

```
DEFINITION[EWSB] [MatterSector] =
{
    {{SdL, SdR}, {Sd, ZD}},
    {{SvL}, {Sv, ZV}},
    {{SuL, SuR}, {Su, ZU}},
    {{SeL, SeR}, {Se, ZE}},
    {{phid, phiu, phiS,phi1,phi2,phi3}, {hh, ZH}},
    {{sigmad, sigmau, sigmaS, sigma1, sigma2, sigma3}, {Ah, ZA}},
    {{SHdm,conj[SHup]},{Hpm,ZP}},
    {{fU,fB, fWO, FHdO, FHuO,FsR,FS1,FS2,FS3}, {LO, ZN}},
    {{fWm, FHdm}, {fWp, FHup}}, {{Lm,UM}, {Lp,UP}}},
    {{{FEL}, {conj[FeR]}}, {{FEL, ZEL}, {FER, ZER}}},
    {{{FdL}, {conj[FdR]}}, {{FDL, ZDL}, {FDR, ZDR}}},
    {{{FuL}, {conj[FuR]}}, {{FUL, ZUL}, {FUR, ZUR}}}
  };
DEFINITION[EWSB] [Phases] =
    {fG, PhaseGlu}
   };
DEFINITION[TEMP] [GaugeFixing] =
       {Der[VP],
                                                   - 1/(2 RXi[P]),
{Der[VWm]+\[ImaginaryI] Mass[VWm] RXi[W] Hpm[{1}], - 1/(RXi[W])},
{Der[VZ] - Mass[VZ] RXi[Z] Ah[{1}],
                                                 - 1/(2 RXi[Z]),
{Der[VG],
                                            - 1/(2 RXi[G])}
DEFINITION[EWSB] [GaugeFixing] =
 { {Der[VP],
                                               - 1/(2 RXi[P]),
{Der[VWm]+\[ImaginaryI] Mass[VWm] RXi[W] Hpm[{1}], - 1/(RXi[W])},
{Der[VZ1] - Mass[VZ1] RXi[Z1] Ah[{1}],
                                                   -1/(2 RXi[Z1]),
{Der[VG],
                                            - 1/(2 RXi[G])}
(*----*)
(* Dirac-Spinors *)
(*----*)
dirac[[1]] = {Fd, FDL, conj[FDR]};
dirac[[2]] = {Fe, FEL, conj[FER]};
dirac[[3]] = {Fu, FUL, conj[FUR]};
dirac[[4]] = {Fv, FvL, 0};
dirac[[5]] = {Chi, L0, conj[L0]};
dirac[[6]] = {Cha, Lm, conj[Lp]};
dirac[[7]] = {Glu, fG, conj[fG]};
dirac[[8]] = {Bino, fB, conj[fB]};
dirac[[9]] = {Wino, fWB, conj[fWB]};
dirac[[10]] = {H0, FHu0, conj[FHd0]};
dirac[[11]] = {HC, FHup, conj[FHdm]};
```

```
dirac[[12]] = {S, FsR, conj[FsR]};
(* Unbroken EW *)
dirac[[13]] = {Fd1, FdL, 0};
dirac[[14]] = {Fd2, 0, FdR};
dirac[[15]] = {Fu1, FuL, 0};
dirac[[16]] = {Fu2, 0, FuR};
dirac[[17]] = {Fe1, FeL, 0};
dirac[[18]] = {Fe2, 0, FeR};
dirac[[19]] = {Fs1, FS1, conj[FS1]};
dirac[[20]] = {Fs2, FS2, conj[FS2]};
dirac[[21]] = {Fs3, FS3, conj[FS3]};
dirac[[22]] = {FU, fU, conj[fU]};
(* Automatized Output *)
(*
makeOutput = {
                   {EWSB, {TeX, FeynArts}}
             };
            *)
SpectrumFile= None;
```

16.8 Implementation in SARAH

Model directory: secluded-MSSM

16.8.1 Particles for eigenstates 'GaugeES'

• Fermions

$$ilde{B} = \left(egin{array}{c} \lambda_{ ilde{B}} \ \lambda_{ ilde{B}}^* \end{array}
ight) \hspace{1cm} ext{Bino} = \left(egin{array}{c} ext{fB} \ ext{conj[fB]} \end{array}
ight)$$

$$\begin{aligned} d_{i\alpha}^1 &= \begin{pmatrix} d_{L,i\alpha} \\ 0 \\ 0 \end{pmatrix} & \text{Fd1[\{generation, \, \text{color}\}]} &= \begin{pmatrix} \text{FdL[\{generation, \, \text{color}\}]} \\ 0 \\ d_{i\alpha}^2 &= \begin{pmatrix} 0 \\ d_{R,i\alpha} \\ 0 \end{pmatrix} & \text{Fd2[\{generation, \, \text{color}\}]} &= \begin{pmatrix} 0 \\ \text{FdR[\{generation, \, \text{color}\}]} \end{pmatrix} \\ e_i^1 &= \begin{pmatrix} e_{L,i} \\ 0 \\ 0 \end{pmatrix} & \text{Fe1[\{generation\}]} &= \begin{pmatrix} FeL[\{generation, \, \text{color}\}] \end{pmatrix} \\ e_i^2 &= \begin{pmatrix} 0 \\ e_{R,i} \end{pmatrix} & \text{Fe2[\{generation\}]} &= \begin{pmatrix} 0 \\ \text{FeR[\{generation\}]} \end{pmatrix} \\ \tilde{S}_1 &= \begin{pmatrix} \tilde{s}_1 \\ \tilde{s}_1^* \end{pmatrix} & \text{Fs1} &= \begin{pmatrix} \text{FS1} \\ \text{conj[FS1]} \end{pmatrix} \\ \tilde{S}_2 &= \begin{pmatrix} \tilde{s}_2 \\ \tilde{s}_2^* \end{pmatrix} & \text{Fs2} &= \begin{pmatrix} Fs2 \\ \text{conj[FS2]} \end{pmatrix} \\ \tilde{S}_3 &= \begin{pmatrix} \tilde{s}_3 \\ \tilde{s}_3^* \end{pmatrix} & \text{Fs3} &= \begin{pmatrix} Fs3 \\ \text{conj[FS3]} \end{pmatrix} \\ \text{FU} &= \begin{pmatrix} \tilde{U} \\ \tilde{U}^* \end{pmatrix} & \text{FU} &= \begin{pmatrix} fU \\ \text{conj[fU]} \end{pmatrix} \\ u_{i\alpha}^1 &= \begin{pmatrix} u_{L,i\alpha} \\ 0 \\ u_{R,i\alpha} \end{pmatrix} & \text{Fu1[\{generation, \, \text{color}\}]} &= \begin{pmatrix} FuL[\{generation, \, \text{color}\}] \\ 0 \end{pmatrix} \\ \tilde{u}_i^2 &= \begin{pmatrix} 0 \\ u_{R,i\alpha} \end{pmatrix} & \text{Fu2[\{generation, \, \text{color}\}]} &= \begin{pmatrix} FuL[\{generation\}] \\ 0 \end{pmatrix} \\ \tilde{u}_i^2 &= \begin{pmatrix} \lambda_{\tilde{u},i} \\ \lambda_{\tilde{u},i}^* \end{pmatrix} & \text{Glu[\{generation\}]} &= \begin{pmatrix} fG[\{generation\}] \\ fG[\{generation\}] \end{pmatrix} \\ \tilde{u}^0 &= \begin{pmatrix} \tilde{H}_0^0 \\ \tilde{H}_0^0 \\ \tilde{H}_0^0 \\ \tilde{H}_0^{-*} \end{pmatrix} & \text{HO} &= \begin{pmatrix} FHuD \\ FHuD \\ \text{conj}[FHdD] \end{pmatrix} \\ \tilde{u}^1 &= \begin{pmatrix} \tilde{H}_1^+ \\ \tilde{H}_0^{-*} \\ \tilde{H}_0^{-*} \end{pmatrix} & \text{HC} &= \begin{pmatrix} FsR \\ \text{conj}[FsR] \\ \text{conj}[FsR] \end{pmatrix} \\ \tilde{u}_i &= \begin{pmatrix} \tilde{S} \\ \tilde{S}^* \end{pmatrix} & \text{S} &= \begin{pmatrix} \tilde{F} \\ \tilde{S}^* \end{pmatrix} \\ \tilde{S}^1 &= \begin{pmatrix} \tilde{S} \\ \tilde{S}^* \end{pmatrix} & \text{Wino}[\{generation\}] &= \begin{pmatrix} fWE[\{generation\}] \\ \text{conj}[fWB[\{generation\}]] \end{pmatrix} \end{aligned}$$

 \bullet Scalars

$\tilde{d}_{L,ilpha}$	SdL[{generation, color}]	$\tilde{u}_{L,i\alpha}$	SuL[{generation, color}]
$\tilde{e}_{L,i}$	SeL[{generation}]	$ ilde{ u}_{L,i}$	SvL[{generation}]
H_d^0	SHd0	H_d^-	SHdm
H_u^0	SHu0	H_u^+	SHup
$\tilde{d}_{R,i\alpha}$	<pre>SdR[{generation, color}]</pre>	$\tilde{u}_{R,i\alpha}$	<pre>SuR[{generation, color}]</pre>
$\tilde{e}_{R,i}$	SeR[{generation}]	S	SsR
S_1	SS1	S_2	SS2
S_3	SS3		

• Vector Bosons

$B_{ ho}$	VB[{lorentz}]	$W_{i\rho}^-$	<pre>VWB[{generation, lorentz}]</pre>
$g_{i ho}$	<pre>VG[{generation, lorentz}]</pre>	U_{ρ}	VU[{lorentz}]

\bullet Ghosts

η^B	gB	gWB(gt1)	gWB[{generation}]
η_i^G	gG[{generation}]	gU	gU

16.8.2 Particles for eigenstates 'TEMP'

• Fermions

$$\begin{split} \tilde{B} &= \begin{pmatrix} \lambda_{\tilde{B}} \\ \lambda_{\tilde{B}}^* \end{pmatrix} & \text{Bino} &= \begin{pmatrix} \text{fB} \\ \text{conj[fB]} \end{pmatrix} \\ d_{i\alpha}^1 &= \begin{pmatrix} d_{L,i\alpha} \\ 0 \end{pmatrix} & \text{Fd1[\{generation, color\}]} &= \begin{pmatrix} \text{FdL[\{generation, color\}]} \\ 0 \end{pmatrix} \\ d_{i\alpha}^2 &= \begin{pmatrix} 0 \\ d_{R,i\alpha} \end{pmatrix} & \text{Fd2[\{generation, color\}]} &= \begin{pmatrix} 0 \\ \text{FdR[\{generation, color\}]} \end{pmatrix} \\ e_i^1 &= \begin{pmatrix} e_{L,i} \\ 0 \end{pmatrix} & \text{Fe1[\{generation\}]} &= \begin{pmatrix} \text{FeL[\{generation\}]} \\ 0 \end{pmatrix} \end{split}$$

$$\begin{array}{lll} e_i^2 = \begin{pmatrix} 0 \\ e_{R,i} \end{pmatrix} & \text{Fe2[\{generation\}]} = \begin{pmatrix} 0 \\ \text{FeR[\{generation\}]} \end{pmatrix} \\ \tilde{S}_1 = \begin{pmatrix} \tilde{s}_1 \\ \tilde{s}_1^* \end{pmatrix} & \text{Fs1} = \begin{pmatrix} \text{FS1} \\ \text{conj[FS1]} \end{pmatrix} \\ \tilde{S}_2 = \begin{pmatrix} \tilde{s}_2 \\ \tilde{s}_2^* \end{pmatrix} & \text{Fs2} = \begin{pmatrix} \text{FS2} \\ \text{conj[FS2]} \end{pmatrix} \\ \tilde{S}_3 = \begin{pmatrix} \tilde{s}_3 \\ \tilde{s}_3^* \end{pmatrix} & \text{Fs3} = \begin{pmatrix} \text{FS3} \\ \text{conj[FS3]} \end{pmatrix} \\ \text{FU} = \begin{pmatrix} \tilde{U} \\ \tilde{U}^* \end{pmatrix} & \text{FU} = \begin{pmatrix} \text{fU} \\ \text{conj[fU]} \end{pmatrix} \\ u_{i\alpha}^1 = \begin{pmatrix} u_{L,i\alpha} \\ 0 \end{pmatrix} & \text{Fu1[\{generation, \, \text{color}\}]} = \begin{pmatrix} \text{FuL[\{generation, \, \text{color}\}]} \\ 0 \end{pmatrix} \\ u_{i\alpha}^2 = \begin{pmatrix} 0 \\ u_{R,i\alpha} \end{pmatrix} & \text{Fu2[\{generation, \, \text{color}\}]} = \begin{pmatrix} \text{FuR[\{generation\}]} \\ 0 \end{pmatrix} \\ \tilde{v}_i = \begin{pmatrix} v_{L,i} \\ 0 \end{pmatrix} & \text{Fv[\{generation\}]} = \begin{pmatrix} \text{FvL[\{generation\}]} \\ 0 \end{pmatrix} \\ \tilde{g}_i = \begin{pmatrix} \lambda_{\tilde{g},i} \\ \lambda_{\tilde{g},i}^* \end{pmatrix} & \text{Glu[\{generation\}]} = \begin{pmatrix} \text{fG[\{generation\}]} \\ \text{conj[fG[\{generation\}]]} \end{pmatrix} \\ \tilde{H}^0 = \begin{pmatrix} \tilde{H}_u^0 \\ \tilde{H}_d^{-*} \end{pmatrix} & \text{HO} = \begin{pmatrix} \text{FHuo} \\ \text{conj[FHdO]} \end{pmatrix} \\ \tilde{H}^- = \begin{pmatrix} \tilde{H}_u^+ \\ \tilde{H}_d^{-*} \end{pmatrix} & \text{HC} = \begin{pmatrix} \text{FBR} \\ \text{conj[FSR]} \end{pmatrix} \\ \tilde{S} = \begin{pmatrix} \tilde{S} \\ \tilde{S}^* \end{pmatrix} & \text{Wino[\{generation\}]} = \begin{pmatrix} \text{fWB[\{generation\}]} \\ \text{conj[fWB[\{generation\}]]} \end{pmatrix} \\ \text{conj[fWB[\{generation\}]]} \end{pmatrix} \end{array}$$

• Scalars

$\tilde{d}_{L,ilpha}$	<pre>SdL[{generation, color}]</pre>	$\tilde{u}_{L,i\alpha}$	<pre>SuL[{generation, color}]</pre>
$\tilde{e}_{L,i}$	<pre>SeL[{generation}]</pre>	$ ilde{ u}_{L,i}$	<pre>SvL[{generation}]</pre>
H_d^0	SHd0	H_d^-	SHdm
H_u^0	SHu0	H_u^+	SHup
$\tilde{d}_{R,i\alpha}$	<pre>SdR[{generation, color}]</pre>	$\tilde{u}_{R,i\alpha}$	<pre>SuR[{generation, color}]</pre>
$\tilde{e}_{R,i}$	<pre>SeR[{generation}]</pre>	S	SsR

S_1	SS1	S_2	SS2	
S_3	SS3			

• Vector Bosons

$g_{i ho}$	VG[{generation, lorentz}]	U_{ρ}	<pre>VU[{lorentz}]</pre>
W_{ρ}^{-}	VWm[{lorentz}]		<pre>VP[{lorentz}]</pre>
$Z_{ ho}$	VZ[{lorentz}]		

• Ghosts

η_i^G	gG[{generation}]	gU	gU
η^-	gWm	η^+	gWmC
η^{γ}	gP	η^Z	gZ

16.8.3 Particles for eigenstates 'EWSB'

• Fermions

$$\begin{split} \tilde{\chi}_i^- &= \begin{pmatrix} \lambda_i^- \\ \lambda_i^{+,*} \end{pmatrix} & \text{Cha[\{generation\}]} &= \begin{pmatrix} \text{Lm[\{generation\}]} \\ \text{conj[Lp[\{generation\}]]} \end{pmatrix} \\ \tilde{\chi}_i^0 &= \begin{pmatrix} \lambda_i^0 \\ \lambda_i^0 * \end{pmatrix} & \text{Chi[\{generation\}]} &= \begin{pmatrix} \text{L0[\{generation\}]} \\ \text{conj[L0[\{generation\}]]} \end{pmatrix} \\ d_{i\alpha} &= \begin{pmatrix} D_{L,i\alpha} \\ D_{R,i\alpha}^* \\ D_{R,i\alpha}^* \end{pmatrix} & \text{Fd[\{generation, color\}]} &= \begin{pmatrix} \text{FDL[\{generation, color\}]} \\ \text{conj[FDR[\{generation, color\}]]} \end{pmatrix} \\ e_i &= \begin{pmatrix} E_{L,i} \\ E_{R,i}^* \\ \end{pmatrix} & \text{Fe[\{generation\}]} &= \begin{pmatrix} \text{FEL[\{generation\}]} \\ \text{conj[FER[\{generation, color\}]]} \end{pmatrix} \\ u_{i\alpha} &= \begin{pmatrix} U_{L,i\alpha} \\ U_{R,i\alpha}^* \\ \end{pmatrix} & \text{Fu[\{generation, color\}]} &= \begin{pmatrix} \text{FUL[\{generation, color\}]} \\ \text{conj[FUR[\{generation, color\}]]} \end{pmatrix} \\ \nu_i &= \begin{pmatrix} \nu_{L,i} \\ 0 \end{pmatrix} & \text{Fv[\{generation\}]} &= \begin{pmatrix} \text{FvL[\{generation\}]} \\ 0 \end{pmatrix} \end{split}$$

$$ilde{g}_i = \left(egin{array}{c} \lambda_{ ilde{g},i}^* \ \lambda_{ ilde{g},i}^* \end{array}
ight) \hspace{1cm} ext{Glu[\{generation\}]} = \left(egin{array}{c} ext{fG[\{generation\}]} \ ext{conj[fG[\{generation\}]]} \end{array}
ight)$$

• Scalars

$\tilde{d}_{i\alpha}$	<pre>Sd[{generation, color}]</pre>	$ ilde{ u}_i$	Sv[{generation}]
$\tilde{u}_{i\alpha}$	<pre>Su[{generation, color}]</pre>	\tilde{e}_i	Se[{generation}]
h_i	hh[{generation}]	A_i^0	Ah[{generation}]
H_i^-	<pre>Hpm[{generation}]</pre>		

• Vector Bosons

$g_{i ho}$	VG[{generation, lorentz}]	W_{ρ}^{-}	VWm[{lorentz}]
$\gamma_{ ho}$	<pre>VP[{lorentz}]</pre>	$Z_{1,\rho}$	VZ1[{lorentz}]
$Z_{2,\rho}$	VZ2[{lorentz}]		

• Ghosts

η_i^G	$gG[\{generation\}]$	η^-	gWm
η^+	gWmC	η^{γ}	gP
η^{Z_1}	gZ1	η^{Z_2}	gZ2

16.8.4 Parameters

Q_q	Qq	Q_q	Ql	Q_{H_d}	QHd
Q_{H_u}	QHu	Q_d	Qd	Q_u	Qu
Q_e	Qе	Q_s	Qs	Q_1	Qs1
Q_2	Qs2	Q_3	Qs3	g_1	g1

g_2	g2	g_3	g3	g_p	gp
Y_u	Yu	T_u	T[Yu]	Y_d	Yd
T_d	T[Yd]	Y_e	Ye	T_e	T[Ye]
λ	\[Lambda]	T_{λ}	T[\[Lambda]]	κ	\[Kappa]
T_{κ}	$T[\[Kappa]]$	m_q^2	mq2	m_l^2	m12
$m_{H_d}^2$	mHd2	$m_{H_u}^2$	mHu2	m_d^2	md2
m_u^2	mu2	m_e^2	me2	m_S^2	ms2
ms12	ms12	ms22	ms22	ms32	ms32
M_1	MassB	M_2	$ exttt{MassWB}$	M_3	MassG
M_U	MassU	Θ_W	${ t ThetaW}$	v_d	vd
v_u	vu	v_s	vS	v1	v1
v2	v2	v3	v3	Θ_Z	ThetaZ
$\phi_{ ilde{g}}$	PhaseGlu	Z^D	ZD	Z^V	ZV
Z^U	ZU	Z^E	ZE	Z^H	ZH
Z^A	ZA	Z^+	ZP	N	ZN
U	UM	V	UP	U_L^e	ZEL
U_R^e	ZER	U_L^d	ZDL	U_R^d	ZDR
U_L^u	ZUL	U_R^u	ZUR	β	\[Beta]

Chapter 17

The $\mu\nu$ Supersymmetric Standard Model

17.1 Superfields

17.1.1 Vector Superfields

SF	Spin $\frac{1}{2}$	Spin 1	SU(N)	Coupling	Name
\hat{B}	$\lambda_{ ilde{B}}$	B	U(1)	g_1	hypercharge
\hat{W}	$\lambda_{ ilde{W}}$	W^-	SU(2)	g_2	left
\hat{g}	$\lambda_{ ilde{g}}$	g	SU(3)	g_3	color

17.1.2 Chiral Superfields

SF	Spin 0	Spin $\frac{1}{2}$	Generations	$(U(1) \otimes \mathrm{SU}(2) \otimes \mathrm{SU}(3))$
\hat{q}	$ ilde{q}$	q	3	$(rac{1}{6}, oldsymbol{2}, oldsymbol{3})$
Î	\widetilde{l}	l	3	$(-rac{1}{2},2,1)$
\hat{H}_d	H_d	$ ilde{H}_d$	1	$(-rac{1}{2},2,1)$
\hat{H}_u	H_u	\tilde{H}_u	1	$(rac{1}{2},2,1)$
\hat{d}	$ ilde{d}_R^*$	d_R^*	3	$(rac{1}{3}, oldsymbol{1}, \overline{oldsymbol{3}})$
\hat{u}	\tilde{u}_R^*	u_R^*	3	$(-rac{2}{3},1,\overline{3})$
\hat{e}	\tilde{e}_R^*	e_R^*	3	(1, 1, 1)
$\hat{\nu}$	$ ilde{ u}_R$	ν_R	1	(0, 1 , 1)

17.2 Superpotential and Lagrangian

17.2.1 Superpotential

$$W = Y_u \,\hat{q} \,\hat{H}_u \,\hat{u} - Y_d \,\hat{q} \,\hat{H}_d \,\hat{d} - Y_e \,\hat{l} \,\hat{H}_d \,\hat{e} + Y_v \,\hat{l} \,\hat{H}_u \,\hat{\nu} + \lambda \,\hat{H}_u \,\hat{H}_d \,\hat{\nu} + \frac{1}{3} \kappa \,\hat{\nu} \,\hat{\nu} \,\hat{\nu}$$

$$(17.1)$$

17.2.2 Softbreaking terms

$$L_{SB,W} = +\frac{1}{3}\tilde{\nu}_{R}^{3}T_{\kappa} - H_{d}^{0}H_{u}^{0}\tilde{\nu}_{R}T_{\lambda} + H_{d}^{-}H_{u}^{+}\tilde{\nu}_{R}T_{\lambda} + H_{d}^{0}\tilde{d}_{R,k\gamma}^{*}\delta_{\alpha\gamma}\tilde{d}_{L,i\alpha}T_{d,ik} - H_{d}^{-}\tilde{d}_{R,k\gamma}^{*}\delta_{\alpha\gamma}\tilde{u}_{L,i\alpha}T_{d,ik} + H_{d}^{0}\tilde{e}_{R,k}^{*}\tilde{e}_{L,i}T_{e,ik} - H_{d}^{-}\tilde{e}_{R,k}^{*}\tilde{\nu}_{L,i}T_{e,ik} - H_{u}^{+}\tilde{u}_{R,k\gamma}^{*}\delta_{\alpha\gamma}\tilde{d}_{L,i\alpha}T_{u,ik} + H_{u}^{0}\tilde{u}_{R,k\gamma}^{*}\delta_{\alpha\gamma}\tilde{u}_{L,i\alpha}T_{u,ik} - H_{u}^{+}\tilde{\nu}_{R}\tilde{e}_{L,i}T_{v,i} + H_{u}^{0}\tilde{\nu}_{R}\tilde{\nu}_{L,i}T_{v,i} + \text{h.c.}$$

$$(17.2)$$

$$L_{SB,\phi} = -m_{H_{d}}^{2}|H_{d}^{0}|^{2} - m_{H_{d}}^{2}|H_{d}^{-}|^{2} - m_{H_{u}}^{2}|H_{u}^{0}|^{2} - m_{H_{u}}^{2}|H_{u}^{+}|^{2} - m_{v}^{2}|\tilde{\nu}_{R}|^{2} - \tilde{e}_{L,j}^{*}m_{l,ij}^{2}\tilde{e}_{L,i} - \tilde{e}_{R,i}^{*}m_{e,ij}^{2}\tilde{e}_{R,j} - \tilde{u}_{L,j\beta}^{*}\delta_{\alpha\beta}m_{q,ij}^{2}\tilde{u}_{L,i\alpha} - \tilde{u}_{R,i\alpha}^{*}\delta_{\alpha\beta}m_{u,ij}^{2}\tilde{u}_{R,j\beta} - \tilde{\nu}_{L,j}^{*}m_{l,ij}^{2}\tilde{\nu}_{L,i}$$

$$L_{SB,\lambda} = \frac{1}{2} \left(-\lambda_{\tilde{B}}^{2}M_{1} - M_{2}\lambda_{\tilde{W},i}^{2} - M_{3}\lambda_{\tilde{g},i}^{2} + \text{h.c.} \right)$$

$$(17.4)$$

17.2.3 Gauge fixing terms

Gauge fixing terms for eigenstates 'GaugeES'

$$L_{GF} = -\frac{1}{2}\partial_{\mu}g\xi_{G}^{-1} - \frac{1}{2}\partial_{\mu}W^{-}\xi_{W}^{-1}$$
(17.5)

Gauge fixing terms for eigenstates 'EWSB'

$$L_{GF} = -\frac{1}{2}\partial_{\mu}\gamma\xi_{P}^{-1} - \frac{1}{2}\partial_{\mu}g\xi_{G}^{-1} - \frac{1}{2}\xi_{Z}^{-1}\left(-A_{1}^{0}m_{Z}\xi_{Z} + \partial_{\mu}Z\right) - \xi_{W}^{-1}\left(iH_{1}^{-}m_{W^{-}}\xi_{W} + \partial_{\mu}W^{-}\right)$$

$$(17.6)$$

17.2.4 Fields integrated out

None

17.3 Field Rotations

17.3.1 Rotations in gauge sector for eigenstates 'EWSB'

$$W_{1\rho}^{-} = \frac{1}{\sqrt{2}}W_{\rho}^{-} + \frac{1}{\sqrt{2}}W_{\rho}^{+} \tag{17.7}$$

$$W_{2\rho}^{-} = -i\frac{1}{\sqrt{2}}W_{\rho}^{-} + i\frac{1}{\sqrt{2}}W_{\rho}^{+} \tag{17.8}$$

$$W_{3\rho}^{-} = \cos\Theta_W Z_{\rho} + \sin\Theta_W \gamma_{\rho} \tag{17.9}$$

$$B_{\rho} = \cos\Theta_W \gamma_{\rho} - \sin\Theta_W Z_{\rho} \tag{17.10}$$

$$\lambda_{\tilde{W},1} = \frac{1}{\sqrt{2}}\tilde{W}^{-} + \frac{1}{\sqrt{2}}\tilde{W}^{+} \tag{17.11}$$

$$\lambda_{\tilde{W},2} = -i\frac{1}{\sqrt{2}}\tilde{W}^{-} + i\frac{1}{\sqrt{2}}\tilde{W}^{+} \tag{17.12}$$

$$\lambda_{\tilde{W},3} = \tilde{W}^0 \tag{17.13}$$

17.3.2 Rotations in Mass sector for eigenstates 'EWSB'

Mass Matrices for Scalars

• Mass matrix for Down-Squarks, Basis: $\left(\tilde{d}_{L,o_1\alpha_1},\tilde{d}_{R,o_2\alpha_2}\right),\left(\tilde{d}_{L,p_1\beta_1}^*,\tilde{d}_{R,p_2\beta_2}^*\right)$

$$m_{\tilde{d}}^{2} = \begin{pmatrix} m_{11} & \frac{1}{2} \delta_{\alpha_{1}\beta_{2}} \left(\sqrt{2} v_{d} T_{d,o_{1}p_{2}} - v_{R} v_{u} \lambda^{*} Y_{d,o_{1}p_{2}} \right) \\ \frac{1}{2} \left(\sqrt{2} v_{d} T_{d,p_{1}o_{2}}^{*} - v_{R} v_{u} \lambda Y_{d,p_{1}o_{2}}^{*} \right) \delta_{\alpha_{2}\beta_{1}} & m_{22} \end{pmatrix}$$

$$(17.14)$$

$$m_{11} = \frac{1}{24} \delta_{\alpha_1 \beta_1} \left(12 \left(2m_{q, o_1 p_1}^2 + v_d^2 \sum_{a=1}^3 Y_{d, p_1 a}^* Y_{d, o_1 a} \right) - \left(3g_2^2 + g_1^2 \right) \delta_{o_1 p_1} \left(-v_u^2 + v_d^2 + \sum_{a=1}^3 v_{L, a}^2 \right) \right)$$
(17.15)

$$m_{22} = \frac{1}{12} \delta_{\alpha_2 \beta_2} \left(6 \left(2m_{d, p_2 o_2}^2 + v_d^2 \sum_{a=1}^3 Y_{d, a o_2}^* Y_{d, a p_2} \right) - g_1^2 \delta_{o_2 p_2} \left(-v_u^2 + v_d^2 + \sum_{a=1}^3 v_{L, a}^2 \right) \right)$$
(17.16)

This matrix is diagonalized by Z^D :

$$Z^{D}m_{\tilde{d}}^{2}Z^{D,\dagger} = m_{2,\tilde{d}}^{dia} \tag{17.17}$$

with

$$\tilde{d}_{L,i\alpha} = \sum_{t_2} Z_{ji}^{D,*} \tilde{d}_{j\alpha}, \qquad \tilde{d}_{R,i\alpha} = \sum_{t_2} Z_{ji}^{D,*} \tilde{d}_{j\alpha}$$
 (17.18)

 $\bullet \ \ \mathbf{Mass \ matrix \ for \ Up-Squarks}, \ \mathbf{Basis:} \ \left(\tilde{u}_{L,o_1\alpha_1},\tilde{u}_{R,o_2\alpha_2}\right), \left(\tilde{u}_{L,p_1\beta_1}^*,\tilde{u}_{R,p_2\beta_2}^*\right) \\$

$$m_{\tilde{u}}^2 = \begin{pmatrix} m_{11} & m_{21}^* \\ m_{21} & m_{22} \end{pmatrix} \tag{17.19}$$

$$m_{11} = \frac{1}{24} \delta_{\alpha_1 \beta_1} \left(12 \left(2m_{q, o_1 p_1}^2 + v_u^2 \sum_{a=1}^3 Y_{u, p_1 a}^* Y_{u, o_1 a} \right) - \left(-3g_2^2 + g_1^2 \right) \delta_{o_1 p_1} \left(-v_u^2 + v_d^2 + \sum_{a=1}^3 v_{L, a}^2 \right) \right)$$
(17.20)

$$m_{21} = \frac{1}{2} \delta_{\alpha_2 \beta_1} \left(\sqrt{2} v_u T_{u, p_1 o_2}^* + v_R Y_{u, p_1 o_2}^* \left(-v_d \lambda + \sum_{a=1}^3 v_{L, a} Y_{v, a} \right) \right)$$
(17.21)

$$m_{22} = \frac{1}{6} \delta_{\alpha_2 \beta_2} \left(3v_u^2 \sum_{a=1}^3 Y_{u,ao_2}^* Y_{u,ap_2} + 6m_{u,p_2 o_2}^2 + g_1^2 \delta_{o_2 p_2} \left(-v_u^2 + v_d^2 + \sum_{a=1}^3 v_{L,a}^2 \right) \right)$$
(17.22)

This matrix is diagonalized by Z^U :

$$Z^{U}m_{\tilde{u}}^{2}Z^{U,\dagger} = m_{2,\tilde{u}}^{dia} \tag{17.23}$$

with

$$\tilde{u}_{L,i\alpha} = \sum_{t_2} Z_{ji}^{U,*} \tilde{u}_{j\alpha}, \qquad \tilde{u}_{R,i\alpha} = \sum_{t_2} Z_{ji}^{U,*} \tilde{u}_{j\alpha}$$
 (17.24)

• Mass matrix for Higgs, Basis: $(\phi_d, \phi_u, \phi_R, \phi_{L,o_4}), (\phi_d, \phi_u, \phi_R, \phi_{L,p_4})$

$$m_h^2 = \begin{pmatrix} m_{11} & m_{21}^* & m_{31}^* & m_{41}^* \\ m_{21} & m_{22} & m_{32}^* & m_{42}^* \\ m_{31} & m_{32} & m_{33} & m_{43}^* \\ m_{41} & m_{42} & m_{43} & m_{44} \end{pmatrix}$$

$$(17.25)$$

$$m_{11} = \frac{1}{8} \left(3g_1^2 v_d^2 + 3g_2^2 v_d^2 + 4\left(v_R^2 + v_u^2\right) |\lambda|^2 + 8m_{H_d}^2 + \left(g_1^2 + g_2^2\right) \sum_{n=1}^3 v_{L,a}^2 - g_1^2 v_u^2 - g_2^2 v_u^2 \right)$$
(17.26)

$$m_{21} = \frac{1}{4} \left(-g_1^2 v_d v_u - g_2^2 v_d v_u - v_R^2 \lambda \kappa^* - 2\sqrt{2} v_R \Re \left(T_\lambda \right) - 2v_u \lambda \sum_{a=1}^3 Y_{v,a}^* v_{L,a} \right)$$

$$-\lambda^* \left(2v_u \sum_{a=1}^3 v_{L,a} Y_{v,a} - 4v_d v_u \lambda + v_R^2 \kappa \right)$$
 (17.27)

$$m_{22} = \frac{1}{8} \Big(8 m_{H_u}^2 - g_1^2 v_d^2 - g_2^2 v_d^2 + 3 g_1^2 v_u^2 + 3 g_2^2 v_u^2 + 4 v_R^2 \sum_{a=1}^3 |Y_{v,a}|^2 - 4 v_d \lambda \sum_{a=1}^3 Y_{v,a}^* v_{L,a} + 4 v_R^2 \sum_{a=1}^3 |Y_{v,a}|^2 + 4 v_R^2 \sum_{a=1}^3 |Y_{v,$$

$$-g_1^2 \sum_{a=1}^3 v_{L,a}^2 - g_2^2 \sum_{a=1}^3 v_{L,a}^2 + 4\lambda^* \left(\left(v_d^2 + v_R^2 \right) \lambda - v_d \sum_{a=1}^3 v_{L,a} Y_{v,a} \right) + 4 \sum_{a=1}^3 v_{L,a} Y_{v,a} \sum_{b=1}^3 Y_{v,b}^* v_{L,b} \right) \quad (17.28)$$

$$m_{31} = \frac{1}{2} \left(-\sqrt{2}v_u \Re\left(T_{\lambda}\right) - v_R \lambda^* \left(-2v_d \lambda + v_u \kappa + \sum_{a=1}^3 v_{L,a} Y_{v,a} \right) - v_R \lambda \sum_{a=1}^3 Y_{v,a}^* v_{L,a} - v_R v_u \lambda \kappa^* \right)$$
(17.29)

$$m_{32} = \frac{1}{4} \Big(\Big(-2v_d v_R \kappa + 4v_R v_u \lambda \Big) \lambda^* - 2\sqrt{2} v_d \Re \Big(T_\lambda \Big) + 4v_R v_u \sum_{a=1}^3 |Y_{v,a}|^2 + 2v_R \kappa \sum_{a=1}^3 Y_{v,a}^* v_{L,a} + \sqrt{2} \sum_{a=1}^3 T_{v,a}^* v_{L,a} + \sqrt{2$$

$$+2v_R\kappa^* \left(-v_d\lambda + \sum_{a=1}^3 v_{L,a}Y_{v,a}\right) + \sqrt{2}\sum_{a=1}^3 v_{L,a}T_{v,a}\right)$$
(17.30)

$$m_{33} = \frac{1}{2} \left(2m_v^2 + 2\sqrt{2}v_R \Re\left(T_\kappa\right) + v_u^2 \sum_{a=1}^3 |Y_{v,a}|^2 + v_u \kappa \sum_{a=1}^3 Y_{v,a}^* v_{L,a} - v_d \lambda \sum_{a=1}^3 Y_{v,a}^* v_{L,a} \right)$$

$$+ \lambda^* \left(v_d^2 \lambda - v_d \sum_{a=1}^3 v_{L,a} Y_{v,a} - v_d v_u \kappa + v_u^2 \lambda \right) + \kappa^* \left(6 v_R^2 \kappa - v_d v_u \lambda + v_u \sum_{a=1}^3 v_{L,a} Y_{v,a} \right)$$

$$+\sum_{a=1}^{3} v_{L,a} Y_{v,a} \sum_{b=1}^{3} Y_{v,b}^{*} v_{L,b}$$

$$(17.31)$$

$$m_{41} = \frac{1}{4} \left(\left(g_1^2 + g_2^2 \right) v_d \sum_{q=1}^3 v_{L,a} - \left(v_R^2 + v_u^2 \right) \lambda^* Y_{v,o_4} - \left(v_R^2 + v_u^2 \right) \lambda Y_{v,o_4}^* \right)$$
(17.32)

$$m_{42} = \frac{1}{4} \left(2\sqrt{2}v_R \Re\left(T_{v,o_4}\right) - g_1^2 v_u \sum_{a=1}^3 v_{L,a} - g_2^2 v_u \sum_{a=1}^3 v_{L,a} + Y_{v,o_4}^* \left(-2v_d v_u \lambda + 2v_u \sum_{a=1}^3 v_{L,a} Y_{v,a} + v_R^2 \kappa \right) \right)$$

$$+ v_R^2 \kappa^* Y_{v,o_4} - 2v_d v_u \lambda^* Y_{v,o_4} + 2v_u \sum_{a=1}^3 Y_{v,a}^* v_{L,a} Y_{v,o_4}$$
(17.33)

$$m_{43} = \frac{1}{2} \left(\sqrt{2} v_u \Re \left(T_{v,o_4} \right) + v_R \left(-v_d \lambda^* + v_u \kappa^* + \sum_{a=1}^3 Y_{v,a}^* v_{L,a} \right) Y_{v,o_4} + v_R Y_{v,o_4}^* \left(-v_d \lambda + v_u \kappa + \sum_{a=1}^3 v_{L,a} Y_{v,a} \right) \right)$$

$$m_{44} = \frac{1}{8} \left(\left(g_1^2 + g_2^2 \right) \delta_{o_4 p_4} \left(-v_u^2 + v_d^2 + \sum_{a=1}^3 v_{L,a}^2 \right) \right)$$

$$+ 2 \left(2 m_{l,o_4 p_4}^2 + 2 m_{l,p_4 o_4}^2 + g_1^2 \sum_{a=1}^3 v_{L,a} \sum_{b=1}^3 v_{L,b} + g_2^2 \sum_{a=1}^3 v_{L,b} + v_R^2 Y_{v,p_4}^* Y_{v,o_4} + v_u^2 Y_{v,p_4}^* Y_{v,o_4} \right)$$

$$+ v_R^2 Y_{v,o_4}^* Y_{v,p_4} + v_u^2 Y_{v,o_4}^* Y_{v,p_4} \right)$$

$$(17.35)$$

This matrix is diagonalized by Z^H :

$$Z^H m_h^2 Z^{H,\dagger} = m_{2,h}^{dia}$$
 (17.36)

with

$$\phi_d = \sum_{t_2} Z_{j1}^H h_j , \qquad \phi_u = \sum_{t_2} Z_{j2}^H h_j , \qquad \phi_R = \sum_{t_2} Z_{j3}^H h_j$$
 (17.37)

$$\phi_{L,i} = \sum_{t_2} Z_{ji}^H h_j \tag{17.38}$$

• Mass matrix for Pseudo-Scalar Higgs, Basis: $(\sigma_d, \sigma_u, \sigma_R, \sigma_{L,o_4}), (\sigma_d, \sigma_u, \sigma_R, \sigma_{L,p_4})$

$$m_{A^0}^2 = \begin{pmatrix} m_{11} & m_{21}^* & m_{31}^* & m_{41}^* \\ m_{21} & m_{22} & m_{32}^* & m_{42}^* \\ m_{31} & m_{32} & m_{33} & m_{43}^* \\ m_{41} & m_{42} & m_{43} & m_{44} \end{pmatrix}$$

$$(17.39)$$

$$m_{11} = \frac{1}{8} \left(4 \left(v_R^2 + v_u^2 \right) |\lambda|^2 + 8m_{H_d}^2 + \left(g_1^2 + g_2^2 \right) \sum_{a=1}^3 v_{L,a}^2 + g_1^2 v_d^2 - g_1^2 v_u^2 + g_2^2 v_d^2 - g_2^2 v_u^2 \right)$$
(17.40)

$$m_{21} = \frac{1}{4} v_R \left(2\sqrt{2} \Re \left(T_\lambda \right) + v_R \kappa \lambda^* + v_R \lambda \kappa^* \right) \tag{17.41}$$

$$m_{22} = \frac{1}{8} \left(8m_{H_u}^2 - g_1^2 v_d^2 - g_2^2 v_d^2 + g_1^2 v_u^2 + g_2^2 v_u^2 + 4v_R^2 \sum_{a=1}^3 |Y_{v,a}|^2 - 4v_d \lambda \sum_{a=1}^3 Y_{v,a}^* v_{L,a} \right)$$

$$-g_1^2 \sum_{a=1}^3 v_{L,a}^2 - g_2^2 \sum_{a=1}^3 v_{L,a}^2 + 4\lambda^* \left(\left(v_d^2 + v_R^2 \right) \lambda - v_d \sum_{a=1}^3 v_{L,a} Y_{v,a} \right) + 4 \sum_{a=1}^3 v_{L,a} Y_{v,a} \sum_{b=1}^3 Y_{v,b}^* v_{L,b} \right)$$
(17.42)

$$m_{31} = -\frac{1}{2}v_u\left(-\sqrt{2}\Re\left(T_\lambda\right) + v_R\kappa\lambda^* + v_R\lambda\kappa^*\right) \tag{17.43}$$

$$m_{32} = \frac{1}{4} \left(-2v_d v_R \kappa \lambda^* + 2\sqrt{2} v_d \Re \left(T_\lambda \right) + 2v_R \kappa \sum_{a=1}^3 Y_{v,a}^* v_{L,a} - \sqrt{2} \sum_{a=1}^3 T_{v,a}^* v_{L,a} + 2v_R \kappa^* \left(-v_d \lambda + \sum_{a=1}^3 v_{L,a} Y_{v,a} \right) \right)$$

$$-\sqrt{2}\sum_{a=1}^{3}v_{L,a}T_{v,a}$$
(17.44)

$$m_{33} = \frac{1}{2} \left(2m_v^2 - 2\sqrt{2}v_R \Re\left(T_\kappa\right) + v_u^2 \sum_{a=1}^3 |Y_{v,a}|^2 - v_u \kappa \sum_{a=1}^3 Y_{v,a}^* v_{L,a} - v_d \lambda \sum_{a=1}^3 Y_{v,a}^* v_{L,a} \right)$$

$$+ \lambda^* \left(v_d^2 \lambda - v_d \sum_{a=1}^3 v_{L,a} Y_{v,a} + v_d v_u \kappa + v_u^2 \lambda \right) + \kappa^* \left(2 v_R^2 \kappa + v_d v_u \lambda - v_u \sum_{a=1}^3 v_{L,a} Y_{v,a} \right)$$

$$+\sum_{a=1}^{3} v_{L,a} Y_{v,a} \sum_{b=1}^{3} Y_{v,b}^{*} v_{L,b}$$

$$(17.45)$$

$$m_{41} = -\frac{1}{4} \left(v_R^2 + v_u^2 \right) \left(\lambda^* Y_{v,o_4} + \lambda Y_{v,o_4}^* \right) \tag{17.46}$$

$$m_{42} = -\frac{1}{4}v_R \left(2\sqrt{2}\Re\left(T_{v,o_4}\right) + v_R \kappa^* Y_{v,o_4} + v_R \kappa Y_{v,o_4}^*\right)$$
(17.47)

$$m_{43} = \frac{1}{2}v_u \left(-\sqrt{2}\Re\left(T_{v,o_4}\right) + v_R \kappa^* Y_{v,o_4} + v_R \kappa Y_{v,o_4}^* \right)$$
(17.48)

$$m_{44} = \frac{1}{8} \left(2 \left(2m_{l,o_4p_4}^2 + 2m_{l,p_4o_4}^2 + \left(v_R^2 + v_u^2 \right) \left(Y_{v,o_4}^* Y_{v,p_4} + Y_{v,p_4}^* Y_{v,o_4} \right) \right) + \left(g_1^2 + g_2^2 \right) \delta_{o_4p_4} \left(-v_u^2 + v_d^2 + \sum_{a=1}^3 v_{L,a}^2 \right) \right)$$

$$(17.49)$$

This matrix is diagonalized by Z^A :

$$Z^{A}m_{A^{0}}^{2}Z^{A,\dagger} = m_{2,A^{0}}^{dia} \tag{17.50}$$

with

$$\sigma_d = \sum_{t_2} Z_{j1}^A A_j^0, \qquad \sigma_u = \sum_{t_2} Z_{j2}^A A_j^0, \qquad \sigma_R = \sum_{t_2} Z_{j3}^A A_j^0$$
(17.51)

$$\sigma_{L,i} = \sum_{t_2} Z_{ji}^A A_j^0 \tag{17.52}$$

 $\bullet \ \ \mathbf{Mass \ matrix \ for \ Charged \ Higgs}, \ \mathbf{Basis:} \ \left(H_d^-, H_u^{+,*}, \tilde{e}_{L,o_3}, \tilde{e}_{R,o_4}\right), \left(H_d^{-,*}, H_u^+, \tilde{e}_{L,p_3}^*, \tilde{e}_{R,p_4}^*\right)$

$$m_{H^{-}}^{2} = \begin{pmatrix} m_{11} & m_{21}^{*} & m_{31}^{*} & m_{41}^{*} \\ m_{21} & m_{22} & m_{32}^{*} & m_{42}^{*} \\ m_{31} & m_{32} & m_{33} & m_{43}^{*} \\ m_{41} & m_{42} & m_{43} & m_{44} \end{pmatrix}$$

$$(17.53)$$

$$m_{11} = \frac{1}{8} \left(8m_{H_d}^2 + g_1^2 v_d^2 + g_2^2 v_d^2 - g_1^2 v_u^2 + g_2^2 v_u^2 + 4v_R^2 |\lambda|^2 + \left(-g_2^2 + g_1^2 \right) \sum_{a=1}^3 v_{L,a}^2 \right)$$

$$+ 4 \sum_{c=1}^3 \sum_{b=1}^3 \sum_{a=1}^3 Y_{e,ca}^* Y_{e,ba} v_{L,b} v_{L,c}$$

$$(17.54)$$

$$m_{21} = \frac{1}{4} \left(2\lambda^* \left(-v_d v_u \lambda + v_R^2 \kappa + v_u \sum_{a=1}^3 v_{L,a} Y_{v,a} \right) + 2\sqrt{2} v_R T_\lambda^* + g_2^2 v_d v_u \right)$$
(17.55)

$$m_{22} = \frac{1}{8} \left(8m_{H_u}^2 - g_1^2 v_d^2 + g_2^2 v_d^2 + g_1^2 v_u^2 + g_2^2 v_u^2 + 4v_R^2 |\lambda|^2 + 4v_R^2 \sum_{a=1}^3 |Y_{v,a}|^2 \right)$$

$$+\left(-g_1^2+g_2^2\right)\sum_{a=1}^3 v_{L,a}^2$$
(17.56)

$$m_{31} = \frac{1}{4} \left(-2 \left(v_d \sum_{b=1}^{3} \sum_{a=1}^{3} Y_{e,ba}^* Y_{e,o_3a} v_{L,b} + v_R^2 \lambda^* Y_{v,o_3} \right) + g_2^2 v_d \sum_{a=1}^{3} v_{L,a} \right)$$
(17.57)

$$m_{32} = \frac{1}{4} \left(-2 \left(\sqrt{2} v_R T_{v,o_3} - v_d v_u \lambda^* Y_{v,o_3} + v_R^2 \kappa^* Y_{v,o_3} + v_u \sum_{a=1}^3 Y_{v,a}^* v_{L,a} Y_{v,o_3} \right) + g_2^2 v_u \sum_{a=1}^3 v_{L,a} \right)$$
(17.58)

$$m_{33} = \frac{1}{8} \left(8m_{l,o_3p_3}^2 + \left(-g_2^2 + g_1^2 \right) \delta_{o_3p_3} \left(-v_u^2 + v_d^2 + \sum_{a=1}^3 v_{L,a}^2 \right) + 4v_d^2 \sum_{a=1}^3 Y_{e,p_3a}^* Y_{e,o_3a} + 2g_2^2 \sum_{a=1}^3 v_{L,a} \sum_{b=1}^3 v_{L,b} \right)$$

$$+4v_R^2Y_{v,p_3}^*Y_{v,o_3}$$
 (17.59)

$$m_{41} = -\frac{1}{2}v_R v_u \sum_{a=1}^3 Y_{e,ao_4}^* Y_{v,a} - \frac{1}{\sqrt{2}} \sum_{a=1}^3 T_{e,ao_4}^* v_{L,a}$$
(17.60)

$$m_{42} = -\frac{1}{2}v_R \left(\lambda \sum_{e=1}^3 Y_{e,ao_4}^* v_{L,a} + v_d \sum_{e=1}^3 Y_{e,ao_4}^* Y_{v,a}\right)$$
(17.61)

$$m_{43} = -\frac{1}{2}v_R v_u \lambda Y_{e,p_3 o_4}^* + \frac{1}{\sqrt{2}}v_d T_{e,p_3 o_4}^*$$
(17.62)

$$m_{44} = \frac{1}{4} \left(2 \left(2m_{e,p_4o_4}^2 + \sum_{a=1}^3 v_{L,a} Y_{e,ap_4} \sum_{b=1}^3 Y_{e,bo_4}^* v_{L,b} + v_d^2 \sum_{a=1}^3 Y_{e,ao_4}^* Y_{e,ap_4} \right) - g_1^2 \delta_{o_4p_4} \left(-v_u^2 + v_d^2 + \sum_{a=1}^3 v_{L,a}^2 \right) \right)$$

$$(17.63)$$

This matrix is diagonalized by Z^+ :

$$Z^{+}m_{H^{-}}^{2}Z^{+,\dagger} = m_{2H^{-}}^{dia} \tag{17.64}$$

with

$$H_d^- = \sum_{t_2} Z_{j1}^{+,*} H_j^-, \qquad H_u^+ = \sum_{t_2} Z_{j2}^+ H_j^+, \qquad \tilde{e}_{L,i} = \sum_{t_2} Z_{ji}^{+,*} H_j^-$$
 (17.65)

$$\tilde{e}_{R,i} = \sum_{t_2} Z_{ji}^{+,*} H_j^- \tag{17.66}$$

Mass Matrices for Fermions

 $\bullet \ \ \mathbf{Mass \ matrix \ for \ Neutralinos}, \ \mathsf{Basis:} \ \left(\lambda_{\tilde{B}}, \tilde{W}^0, \tilde{H}^0_d, \tilde{H}^0_u, \nu_R, \nu_{L,o_6}\right), \left(\lambda_{\tilde{B}}, \tilde{W}^0, \tilde{H}^0_d, \tilde{H}^0_u, \nu_R, \nu_{L,p_6}\right)$

$$m_{\tilde{\chi}^{0}} = \begin{pmatrix} M_{1} & 0 & -\frac{1}{2}g_{1}v_{d} & \frac{1}{2}g_{1}v_{u} & 0 & -\frac{1}{2}g_{1}\sum_{a=1}^{3}v_{L,a} \\ 0 & M_{2} & \frac{1}{2}g_{2}v_{d} & -\frac{1}{2}g_{2}v_{u} & 0 & \frac{1}{2}g_{2}\sum_{a=1}^{3}v_{L,a} \\ -\frac{1}{2}g_{1}v_{d} & \frac{1}{2}g_{2}v_{d} & 0 & -\frac{1}{\sqrt{2}}v_{R}\lambda & -\frac{1}{\sqrt{2}}v_{u}\lambda & 0 \\ \frac{1}{2}g_{1}v_{u} & -\frac{1}{2}g_{2}v_{u} & -\frac{1}{\sqrt{2}}v_{R}\lambda & 0 & m_{54} & \frac{1}{\sqrt{2}}v_{R}Y_{v,p_{6}} \\ 0 & 0 & -\frac{1}{\sqrt{2}}v_{u}\lambda & m_{54} & \sqrt{2}v_{R}\kappa & \frac{1}{\sqrt{2}}v_{u}Y_{v,p_{6}} \\ -\frac{1}{2}g_{1}\sum_{a=1}^{3}v_{L,a} & \frac{1}{2}g_{2}\sum_{a=1}^{3}v_{L,a} & 0 & \frac{1}{\sqrt{2}}v_{R}Y_{v,o_{6}} & \frac{1}{\sqrt{2}}v_{u}Y_{v,o_{6}} & 0 \end{pmatrix}$$
 (17.67)

$$m_{54} = \frac{1}{\sqrt{2}} \left(-v_d \lambda + \sum_{a=1}^3 v_{L,a} Y_{v,a} \right)$$
 (17.68)

This matrix is diagonalized by N:

$$Nm_{\tilde{\chi}^0}N^{\dagger} = m_{\tilde{\chi}^0}^{dia} \tag{17.69}$$

with

$$\lambda_{\tilde{B}} = \sum_{t_2} N_{j1}^* \lambda_j^0, \qquad \tilde{W}^0 = \sum_{t_2} N_{j2}^* \lambda_j^0, \qquad \tilde{H}_d^0 = \sum_{t_2} N_{j3}^* \lambda_j^0$$

$$\tilde{H}_u^0 = \sum_{t_2} N_{j4}^* \lambda_j^0, \qquad \nu_R = \sum_{t_2} N_{j5}^* \lambda_j^0, \qquad \nu_{L,i} = \sum_{t_2} N_{ji}^* \lambda_j^0$$

$$(17.70)$$

$$\tilde{H}_{u}^{0} = \sum_{t_{2}} N_{j4}^{*} \lambda_{j}^{0}, \qquad \nu_{R} = \sum_{t_{2}} N_{j5}^{*} \lambda_{j}^{0}, \qquad \nu_{L,i} = \sum_{t_{2}} N_{ji}^{*} \lambda_{j}^{0}$$
(17.71)

• Mass matrix for Charginos, Basis: $\left(\tilde{W}^-, \tilde{H}_d^-, e_{L,o_3}\right), \left(\tilde{W}^+, \tilde{H}_u^+, e_{R,p_3}^*\right)$

$$m_{\tilde{\chi}^{-}} = \begin{pmatrix} M_2 & \frac{1}{\sqrt{2}} g_2 v_u & 0\\ \frac{1}{\sqrt{2}} g_2 v_d & \frac{1}{\sqrt{2}} v_R \lambda & -\frac{1}{\sqrt{2}} \sum_{a=1}^3 v_{L,a} Y_{e,ap_3}\\ \frac{1}{\sqrt{2}} g_2 \sum_{a=1}^3 v_{L,a} & -\frac{1}{\sqrt{2}} v_R Y_{v,o_3} & \frac{1}{\sqrt{2}} v_d Y_{e,o_3 p_3} \end{pmatrix}$$

$$(17.72)$$

This matrix is diagonalized by U and V

$$U^* m_{\tilde{\chi}^-} V^{\dagger} = m_{\tilde{\chi}^-}^{dia} \tag{17.73}$$

with

$$\tilde{W}^{-} = \sum_{t_2} U_{j1}^* \lambda_j^{-}, \qquad \tilde{H}_d^{-} = \sum_{t_2} U_{j2}^* \lambda_j^{-}, \qquad e_{L,i} = \sum_{t_2} U_{ji}^* \lambda_j^{-}$$

$$\tilde{W}^{+} = \sum_{t_3} V_{1j}^* \lambda_j^{+}, \qquad \tilde{H}_u^{+} = \sum_{t_3} V_{2j}^* \lambda_j^{+}, \qquad e_{R,i} = \sum_{t_3} V_{ij} \lambda_j^{+,*}$$
(17.74)

$$\tilde{W}^{+} = \sum_{t_2} V_{1j}^* \lambda_j^+, \qquad \tilde{H}_u^{+} = \sum_{t_2} V_{2j}^* \lambda_j^+, \qquad e_{R,i} = \sum_{t_2} V_{ij} \lambda_j^{+,*}$$
(17.75)

• Mass matrix for Down-Quarks, Basis: $(d_{L,o_1\alpha_1}), (d_{R,p_1\beta_1}^*)$

$$m_d = \left(\frac{1}{\sqrt{2}} v_d \delta_{\alpha_1 \beta_1} Y_{d, o_1 p_1}\right) \tag{17.76}$$

This matrix is diagonalized by ${\cal U}_L^d$ and ${\cal U}_R^d$

$$U_L^{d,*} m_d U_R^{d,\dagger} = m_d^{dia} \tag{17.77}$$

with

$$d_{L,i\alpha} = \sum_{t_{-}} U_{L,ji}^{d,*} D_{L,j\alpha}$$
 (17.78)

$$d_{R,i\alpha} = \sum_{t} U_{R,ij}^d D_{R,j\alpha}^* \tag{17.79}$$

• Mass matrix for Up-Quarks, Basis: $(u_{L,o_1\alpha_1}), (u_{R,p_1\beta_1}^*)$

$$m_u = \left(\frac{1}{\sqrt{2}} v_u \delta_{\alpha_1 \beta_1} Y_{u, o_1 p_1} \right) \tag{17.80}$$

This matrix is diagonalized by U_L^u and U_R^u

$$U_L^{u,*}m_u U_R^{u,\dagger} = m_u^{dia} \tag{17.81}$$

with

$$u_{L,i\alpha} = \sum_{t_2} U_{L,ji}^{u,*} U_{L,j\alpha}$$
 (17.82)

$$u_{R,i\alpha} = \sum_{t_2} U_{R,ij}^u U_{R,j\alpha}^*$$
 (17.83)

17.4 Vacuum Expectation Values

$$H_d^0 = \frac{1}{\sqrt{2}}\phi_d + \frac{1}{\sqrt{2}}v_d + i\frac{1}{\sqrt{2}}\sigma_d \tag{17.84}$$

$$H_u^0 = \frac{1}{\sqrt{2}}\phi_u + \frac{1}{\sqrt{2}}v_u + i\frac{1}{\sqrt{2}}\sigma_u \tag{17.85}$$

$$\tilde{\nu}_L = \frac{1}{\sqrt{2}}\phi_L + \frac{1}{\sqrt{2}}v_L + i\frac{1}{\sqrt{2}}\sigma_L \tag{17.86}$$

$$\tilde{\nu}_R = \frac{1}{\sqrt{2}}\phi_R + \frac{1}{\sqrt{2}}v_R + i\frac{1}{\sqrt{2}}\sigma_R \tag{17.87}$$

17.5 Tadpole Equations

$$\begin{split} \frac{\partial V}{\partial v_d} &= \frac{1}{8} \left(8 m_{H_d}^2 v_d + g_1^2 v_d^3 + g_2^2 v_d^3 - g_1^2 v_d v_u^2 - g_1^2 v_t v_u^2 - 2 v_t^2 v_u \lambda \kappa^* - 4 \sqrt{2} v_t v_t \Re \left(T_\lambda \right) \right. \\ &- 2 v_t^2 \lambda \sum_{a=1}^3 Y_{v,a}^* v_{L,a} - 2 v_u^2 \lambda \sum_{a=1}^3 Y_{v,a}^* v_{L,a} + g_1^2 v_d \sum_{a=1}^3 v_{L,a}^2 + g_2^2 v_d \sum_{a=1}^3 v_{L,a}^2 \right. \\ &- 2 \lambda^* \left(- 2 v_d v_u^2 \lambda + v_t^2 \left(- 2 v_d \lambda + v_u \kappa \right) + \left(v_t^2 + v_u^2 \right) \sum_{a=1}^3 v_{L,a}^2 + g_2^2 v_d \sum_{a=1}^3 v_{L,a}^2 \right. \right) \end{split}$$

$$(17.88)$$

$$\frac{\partial V}{\partial v_u} &= \frac{1}{8} \left(8 m_{H_u}^2 v_u - g_1^2 v_d^2 v_u - g_2^2 v_d^2 v_u + g_1^2 v_u^3 + g_2^2 v_u^3 - 4 \sqrt{2} v_d v_t \Re \left(T_\lambda \right) \right. \\ &+ 4 v_t^2 v_a \sum_{a=1}^3 |Y_{v,a}|^2 + 2 v_t^2 \kappa \sum_{a=1}^3 Y_{v,a}^* v_{L,a} - 4 v_d v_u \lambda \sum_{a=1}^3 Y_{v,a}^* v_{L,a} + 2 \sqrt{2} v_t \sum_{a=1}^3 T_{v,a}^* v_{L,a} \\ &- g_1^2 v_u \sum_{a=1}^3 v_{L,a}^2 - g_2^2 v_u \sum_{a=1}^3 v_{L,a}^2 + 2 v_t^2 \kappa^* \left(- v_d \lambda + \sum_{a=1}^3 v_{L,a} Y_{v,a} \right) \\ &+ \lambda^* \left(- 2 v_d v_t^2 \kappa + 4 v_d^2 v_u \lambda - 4 v_d v_u \sum_{a=1}^3 v_{L,a} Y_{v,a} + 4 v_t^2 v_u \lambda \right) + 2 \sqrt{2} v_t \sum_{a=1}^3 v_{L,a} T_{v,a} \\ &+ 4 v_u \sum_{a=1}^3 v_{L,a} Y_{v,a} \sum_{b=1}^3 Y_{v,b}^* v_{L,b} \right) \end{split}$$

$$(17.89)$$

$$\frac{\partial V}{\partial v_L} &= \frac{1}{8} \left(4 \sqrt{2} v_R v_u \Re \left(T_{v,i} \right) + 4 \sum_{a=1}^3 m_{L,a}^2 v_{L,a} + 4 \sum_{a=1}^3 m_{L,a}^2 v_{L,a} \\ &+ 2 Y_{v,i}^* \left(- v_d v_u^2 \lambda + v_t^2 \left(- v_d \lambda + v_u \kappa \right) + \left(v_t^2 + v_u^2 \right) \sum_{a=1}^3 v_{L,a} Y_{v,a} \right) + g_1^2 v_d^2 v_{L,i} + g_2^2 v_d^2 v_{L,i} \\ &- g_1^2 v_u^2 v_{L,i} + g_2^2 v_u^2 v_{L,i} + g_1^2 \sum_{a=1}^3 v_{L,a}^2 v_{L,i} + g_2^2 \sum_{a=1}^3 v_{L,a} Y_{v,i} + 2 v_u^2 v_u^2 v_u^2 + v_{v,i} \right. \\ &- 2 v_d v_t^2 \lambda^2 Y_{v,i} - 2 v_d v_u^2 \lambda^2 Y_{v,i} + 2 v_t^2 \sum_{a=1}^3 Y_{v,a}^2 v_{L,a} Y_{v,i} + 2 v_u^2 \sum_{a=1}^3 Y_{v,a}^* v_{L,a} Y_{v,i} \right)$$

$$\left. - 2 v_d v_t \lambda \sum_{a=1}^3 Y_{v,a}^* v_{L,a} + \sqrt{2} v_t^2 \Re \left(T_\kappa \right) + 2 v_t v_u^2 \sum_{a=1}^3 Y_{v,a}^* v_{L,a} Y_{v,i} \right) \right. \\ \left. - 2 v_d v_t \lambda \sum_{a=1}^3 Y_{v,a}^* v_{L,a} + \sqrt{2} v_t^2 \Re \left(T_\kappa \right) + \sqrt{2} v_u \sum_{a=1}^3 v_{L,a} T_{v,a} + 2 v_t \sum_{a=1}^3 Y_{v,a} v_{L,a} \right. \\ \left. - 2 v_d v_t \lambda \sum_{a=1}^3 V_{u,a} \lambda v_{L,a} + v_u \sum_{a=1}^3 v_{L,$$

17.6 Particle content for eigenstates 'EWSB'

Name	Type	complex/real	Generations	Indices
$-\tilde{d}$	Scalar	complex	6	generation, color
$ ilde{u}$	Scalar	complex	6	generation, color
h	Scalar	real	6	generation
A^0	Scalar	real	6	generation
H^-	Scalar	complex	8	generation
\tilde{g}	Fermion	Majorana	8	generation
$ ilde{\chi}^0$	Fermion	Majorana	8	generation
$ ilde{\chi}^-$	Fermion	Dirac	5	generation
d	Fermion	Dirac	3	generation, color
u	Fermion	Dirac	3	generation, color
g	Vector	real	8	generation, lorentz
W^-	Vector	complex	1	lorentz
γ	Vector	real	1	lorentz
Z	Vector	real	1	lorentz
η^G	Ghost	$_{\mathrm{real}}$	8	generation
η^-	Ghost	complex	1	
η^+	Ghost	complex	1	
η^{γ}	Ghost	$_{\mathrm{real}}$	1	
η^Z	Ghost	real	1	

17.7 Modelfile for SARAH

```
(* ::Package:: *)
Off[General::spell]
Print["Model file for the munuMSSM loaded"];
ModelNameLaTeX ="$\\mu\\nu$SSM";
(*----*)
(* Particle Content*)
(*----*)
(* Gauge Superfields *)
Gauge[[1]]={B, U[1], hypercharge, g1,False};
Gauge[[2]]={WB, SU[2], left, g2,True};
Gauge[[3]]={G, SU[3], color,
                             g3,False};
(* Chiral Superfields *)
Fields[[1]] = \{\{uL, dL\}, 3, q, 1/6, 2, 3\};
Fields[[2]] = \{ \{vL, eL\}, 3, 1, -1/2, 2, 1\};
Fields[[3]] = \{\{Hd0, Hdm\}, 1, Hd, -1/2, 2, 1\};
Fields[[4]] = {{Hup, Hu0}, 1, Hu, 1/2, 2, 1};
Fields[[5]] = \{conj[dR], 3, d, 1/3, 1, -3\};
Fields[[6]] = \{\text{conj}[uR], 3, u, -2/3, 1, -3\};
Fields[[7]] = {conj[eR], 3, e, 1, 1, 1};
Fields[[8]] = \{vR, 1, v, 0, 1, 1\};
(*----*)
(* Superpotential *)
SuperPotential = \{\{1, Yu\}, \{q, Hu, u\}\}, \{\{-1, Yd\}, \{q, Hd, d\}\},
                \{\{-1, Ye\}, \{1, Hd, e\}\}, \{\{1, Yv\}, \{1, Hu, v\}\},\
                {{1,\[Lambda]},{Hu,Hd,v}},
                \{\{1/3, \{v,v,v,v\}\}\};
```

```
(*----*)
(* Integrate Out or Delete Particles
(*----*)
IntegrateOut={};
DeleteParticles={};
(*----*)
(*----*)
NameOfStates={GaugeES, EWSB};
(* ---- Before EWSB ---- *)
DEFINITION[GaugeES] [GaugeFixing] =
{ {Der[VWB], -1/(2 RXi[W])},
    {Der[VG], -1/(2 RXi[G]) }};
(* Gauge Sector *)
DEFINITION[EWSB] [GaugeSector] =
{ {VWB, {1,{VWm,1/Sqrt[2]},{conj[VWm],1/Sqrt[2]}},
      {2,{VWm,-I/Sqrt[2]},{conj[VWm],I/Sqrt[2]}},
      {3,{VP, Sin[ThetaW]},{VZ, Cos[ThetaW]}}},
 {VB, {1,{VP, Cos[ThetaW]},{VZ,-Sin[ThetaW]}}},
 {fWB, {1,{fWm,1/Sqrt[2]}, {fWp,1/Sqrt[2]}},
      {2,{fWm,-I/Sqrt[2]},{fWp,I/Sqrt[2]}},
                                                                   \
      {3,{fW0,1}}}
     };
(* ---- VEVs ---- *)
DEFINITION[EWSB][VEVs] =
    {SHd0, {vd, 1/Sqrt[2]}, {sigmad, I/Sqrt[2]}, {phid, \
1/Sqrt[2]}},
    {SHu0, {vu, 1/Sqrt[2]}, {sigmau, I/Sqrt[2]}, {phiu, \
1/Sqrt[2]}},
     {SvL, {vL, 1/Sqrt[2]}, {sigmaL, I/Sqrt[2]}, {phiL, \
1/Sqrt[2]}},
     {SvR, {vR, 1/Sqrt[2]}, {sigmaR, I/Sqrt[2]}, {phiR, \
1/Sqrt[2]}} };
```

```
(* ---- Mixings ---- *)
DEFINITION[EWSB] [MatterSector] =
    {{SdL, SdR}, {Sd, ZD}},
    {{SuL, SuR}, {Su, ZU}},
    {{phid, phiu, phiR, phiL}, {hh, ZH}},
    {{sigmad, sigmau, sigmaR, sigmaL}, {Ah, ZA}},
    {{SHdm,conj[SHup], SeL, SeR},{Hpm,ZP}},
    {{fB, fWO, FHdO, FHuO, FvR, FvL}, {LO, ZN}},
    {{fWm, FHdm, FeL}, {fWp, FHup, conj[FeR]}}, {{Lm,UM}, {Lp,UP}}},
    {{{FdL}, {conj[FdR]}}, {{FDL, ZDL}, {FDR, ZDR}}},
    {{{FUL}, {conj[FUR]}}, {{FUL, ZUL}, {FUR, ZUR}}}
      };
(*--- Gauge Fixing ---- *)
DEFINITION[EWSB][GaugeFixing] =
 { {Der[VP],
                                                      - 1/(2 RXi[P]),
{Der[VWm]+\[ImaginaryI] Mass[VWm] RXi[W] Hpm[{1}],
                                                 - 1/(RXi[W])},
\{Der[VZ] - Mass[VZ] RXi[Z] Ah[\{1\}],
                                                  - 1/(2 RXi[Z]),
{Der[VG],
                                                  - 1/(2 RXi[G])}};
DEFINITION[EWSB][Phases]=
    {fG, PhaseGlu}
   };
(*-----*)
(* Dirac-Spinors *)
(*----*)
dirac[[1]] = {Fd, FDL, conj[FDR]};
dirac[[2]] = {Fu, FUL, conj[FUR]};
dirac[[3]] = {Chi, L0, conj[L0]};
dirac[[4]] = {Cha, Lm, conj[Lp]};
dirac[[5]] = {Glu, fG, conj[fG]};
(* Unbroken EW *)
dirac[[6]] = {Bino, fB, conj[fB]};
dirac[[7]] = {Wino, fWB, conj[fWB]};
dirac[[8]] = {H0, FHd0, conj[FHu0]};
dirac[[9]] = {HC, FHdm, conj[FHup]};
dirac[[10]] = {Fd1, FdL, 0};
```

ReadSpectrum=None;

17.8 Implementation in SARAH

Model directory: munuSSM

17.8.1 Particles for eigenstates 'GaugeES'

• Fermions

$$\begin{split} \tilde{B} &= \begin{pmatrix} \lambda_{\tilde{B}} \\ \lambda_{\tilde{B}}^* \end{pmatrix} & \text{Bino} &= \begin{pmatrix} \text{fB} \\ \text{conj[fB]} \end{pmatrix} \\ d_{i\alpha}^1 &= \begin{pmatrix} d_{L,i\alpha} \\ 0 \end{pmatrix} & \text{Fd1[\{generation, color\}]} &= \begin{pmatrix} \text{FdL[\{generation, color\}]} \\ 0 \end{pmatrix} \\ d_{i\alpha}^2 &= \begin{pmatrix} 0 \\ d_{R,i\alpha} \end{pmatrix} & \text{Fd2[\{generation, color\}]} &= \begin{pmatrix} 0 \\ \text{FdR[\{generation, color\}]} \end{pmatrix} \\ e_i^1 &= \begin{pmatrix} e_{L,i} \\ 0 \end{pmatrix} & \text{Fe1[\{generation\}]} &= \begin{pmatrix} \text{FeL[\{generation\}]} \\ 0 \end{pmatrix} \\ e_i^2 &= \begin{pmatrix} 0 \\ e_{R,i} \end{pmatrix} & \text{Fe2[\{generation\}]} &= \begin{pmatrix} 0 \\ \text{FeR[\{generation\}]} \end{pmatrix} \\ u_{i\alpha}^1 &= \begin{pmatrix} u_{L,i\alpha} \\ 0 \end{pmatrix} & \text{Fu1[\{generation, color\}]} &= \begin{pmatrix} \text{FuL[\{generation, color\}]} \\ 0 \end{pmatrix} \\ \end{split}$$

$$\begin{aligned} u_{i\alpha}^2 &= \begin{pmatrix} 0 \\ u_{R,i\alpha} \end{pmatrix} & & \text{Fu2[\{generation, \, \text{color}\}]} &= \begin{pmatrix} 0 \\ & \text{FuR[\{generation, \, \text{color}\}]} \end{pmatrix} \\ & & \text{Fv1}\big(\{\text{gt1}\}\big) = \begin{pmatrix} \nu_{L,i} \\ 0 \end{pmatrix} & & \text{Fv1[\{generation\}]} &= \begin{pmatrix} \text{FvL[\{generation\}]} \\ 0 \end{pmatrix} \\ & & \text{Fv2} &= \begin{pmatrix} 0 \\ & \nu_{R} \end{pmatrix} \\ & & \tilde{g}_{i} &= \begin{pmatrix} \lambda_{\tilde{g},i} \\ \lambda_{\tilde{g},i}^* \end{pmatrix} & & \text{Glu[\{generation\}]} &= \begin{pmatrix} \text{fG[\{generation\}]} \\ \text{conj[fG[\{generation\}]]} \end{pmatrix} \\ & & \tilde{H}^0 &= \begin{pmatrix} \tilde{H}_{d}^0 \\ \tilde{H}_{u}^{0,*} \end{pmatrix} & & \text{HO} &= \begin{pmatrix} \text{FHd0} \\ \text{conj[FHu0]} \end{pmatrix} \\ & & \tilde{H}^- &= \begin{pmatrix} \tilde{H}_{d}^- \\ \tilde{H}_{u}^{+,*} \end{pmatrix} & & \text{HC} &= \begin{pmatrix} \text{FHdm} \\ \text{conj[FHup]} \end{pmatrix} \\ & & \tilde{W}_{i} &= \begin{pmatrix} \lambda_{\tilde{W},i} \\ \lambda_{\tilde{W},i}^* \end{pmatrix} & & \text{Wino[\{generation\}]} &= \begin{pmatrix} \text{fWB[\{generation\}]} \\ \text{conj[fWB[\{generation\}]]} \end{pmatrix} \end{aligned}$$

• Scalars

$\tilde{d}_{L,i\alpha}$	<pre>SdL[{generation, color}]</pre>	$\tilde{u}_{L,i\alpha}$	SuL[{generation, color}]
$\tilde{e}_{L,i}$	SeL[{generation}]	$ ilde{ u}_{L,i}$	<pre>SvL[{generation}]</pre>
H_d^0	SHd0	H_d^-	SHdm
H_u^0	SHu0	H_u^+	SHup
$\tilde{d}_{R,i\alpha}$	<pre>SdR[{generation, color}]</pre>	$\tilde{u}_{R,i\alpha}$	<pre>SuR[{generation, color}]</pre>
$\tilde{e}_{R,i}$	SeR[{generation}]	$ ilde{ u}_R$	SvR

• Vector Bosons

B_{ρ}	VB[{lorentz}]	$W_{i\rho}^-$	<pre>VWB[{generation,</pre>	lorentz}]
$g_{i\rho}$	<pre>VG[{generation, lorentz}]</pre>			

• Ghosts

η^B	gB	gWB(gt1)	gWB[{generation}]
η_i^G	$gG[\{generation\}]$		

17.8.2 Particles for eigenstates 'EWSB'

• Fermions

$$\begin{split} \tilde{\chi}_{i}^{-} &= \begin{pmatrix} \lambda_{i}^{-} \\ \lambda_{i}^{+,*} \end{pmatrix} & \text{Cha[\{generation\}]} &= \begin{pmatrix} \text{Lm[\{generation\}]} \\ \text{conj[Lp[\{generation\}]]} \end{pmatrix} \\ \tilde{\chi}_{i}^{0} &= \begin{pmatrix} \lambda_{i}^{0} \\ \lambda_{i}^{0,*} \end{pmatrix} & \text{Chi[\{generation\}]} &= \begin{pmatrix} \text{L0[\{generation\}]} \\ \text{conj[L0[\{generation\}]]} \end{pmatrix} \\ d_{i\alpha} &= \begin{pmatrix} D_{L,i\alpha} \\ D_{R,i\alpha}^{*} \end{pmatrix} & \text{Fd[\{generation, color\}]} &= \begin{pmatrix} \text{FDL[\{generation, color\}]} \\ \text{conj[FDR[\{generation, color\}]]} \end{pmatrix} \\ u_{i\alpha} &= \begin{pmatrix} U_{L,i\alpha} \\ U_{R,i\alpha}^{*} \end{pmatrix} & \text{Fu[\{generation, color\}]} &= \begin{pmatrix} \text{FUL[\{generation, color\}]} \\ \text{conj[FUR[\{generation, color\}]]} \end{pmatrix} \\ \tilde{g}_{i} &= \begin{pmatrix} \lambda_{\tilde{g},i} \\ \lambda_{\tilde{g},i}^{*} \end{pmatrix} & \text{Glu[\{generation\}]} &= \begin{pmatrix} \text{fG[\{generation\}]} \\ \text{conj[fG[\{generation\}]]} \end{pmatrix} \end{split}$$

• Scalars

$\tilde{d}_{i\alpha}$	<pre>Sd[{generation, color}]</pre>	$\tilde{u}_{i\alpha}$	Su[{generation, color}]
h_i	hh[{generation}]		Ah[{generation}]
H_i^-	<pre>Hpm[{generation}]</pre>		

• Vector Bosons

$g_{i ho}$	VG[{generation, lorentz}]	W_{ρ}^{-}	VWm[{lorentz}]
$\gamma_{ ho}$	<pre>VP[{lorentz}]</pre>	$Z_{ ho}$	VZ[{lorentz}]

\bullet Ghosts

η_i^G	gG[{generation}]	η^-	gWm
η^+	gWmC	η^{γ}	gP
η^Z	gZ		

17.8.3 Parameters

g_1	g1	g_2	g2	g_3	g3
Y_u	Yu	T_u	T[Yu]	Y_d	Yd
T_d	T[Yd]	Y_e	Ye	T_e	T[Ye]
Y_v	Yv	T_v	T[Yv]	λ	\[Lambda]
T_{λ}	T[\[Lambda]]	κ	$\[Kappa]$	T_{κ}	T[\[Kappa]]
m_q^2	mq2	m_l^2	m12	$m_{H_d}^2$	mHd2
$m_{H_u}^2$	mHu2	m_d^2	md2	m_u^2	mu2
m_e^2	me2	m_v^2	mv2	M_1	MassB
M_2	MassWB	M_3	MassG	v_d	vd
v_u	vu	v_L	νL	v_R	vR
Θ_W	${ t ThetaW}$	$\phi_{ ilde{g}}$	PhaseGlu	Z^D	ZD
Z^U	ZU	Z^H	ZH	Z^A	ZA
Z^+	ZP	N	ZN	U	UM
V	UP	U_L^d	ZDL	U_R^d	ZDR
U_L^u	ZUL	U_R^u	ZUR		

Chapter 18

Seesaw I

18.1 Superfields

18.1.1 Vector Superfields

SF	Spin $\frac{1}{2}$	Spin 1	SU(N)	Coupling	Name
\hat{B}	$\lambda_{ ilde{B}}$	B	U(1)	g_1	hypercharge
\hat{W}	$\lambda_{ ilde{W}}$	W^-	SU(2)	g_2	left
\hat{g}	$\lambda_{ ilde{g}}$	g	SU(3)	g_3	color

18.1.2 Chiral Superfields

SF	Spin 0	Spin $\frac{1}{2}$	Generations	$(U(1) \otimes \mathrm{SU}(2) \otimes \mathrm{SU}(3))$
\hat{q}	$ ilde{q}$	q	3	$(rac{1}{6}, 2, 3)$
Î	\tilde{l}	l	3	$(-rac{1}{2},2,1)$
\hat{H}_d	H_d	$ ilde{H}_d$	1	$(-rac{1}{2},2,1)$
\hat{H}_u	H_u	$ ilde{H}_u$	1	$(rac{1}{2}, 2, 1)$
\hat{d}	$ ilde{d}_R^*$	d_R^*	3	$(rac{1}{3}, oldsymbol{1}, \overline{oldsymbol{3}})$
\hat{u}	\tilde{u}_R^*	u_R^*	3	$(-rac{2}{3},1,\overline{3})$
\hat{e}	\tilde{e}_R^*	e_R^*	3	(1, 1 , 1)
$\hat{\nu}$	$ ilde{ u}_R$	ν_R	3	(0, 1, 1)

18.2 Superpotential and Lagrangian

18.2.1 Superpotential

$$W = Y_u \,\hat{u} \,\hat{q} \,\hat{H}_u - Y_d \,\hat{d} \,\hat{q} \,\hat{H}_d - Y_e \,\hat{e} \,\hat{l} \,\hat{H}_d + \mu \,\hat{H}_u \,\hat{H}_d + Y_v \,\hat{\nu} \,\hat{l} \,\hat{H}_u + \frac{1}{2} M_v \,\hat{\nu} \,\hat{\nu}$$

$$(18.1)$$

18.2.2 Softbreaking terms

$$L_{SB,W} = -H_{d}^{0}H_{u}^{0}B_{\mu} + H_{d}^{-}H_{u}^{+}B_{\mu} + \frac{1}{2}\tilde{\nu}_{R,i}\tilde{\nu}_{R,j}B_{v,ij} + H_{d}^{0}\tilde{d}_{R,i\alpha}^{*}\delta_{\alpha\beta}\tilde{d}_{L,j\beta}T_{d,ij} - H_{d}^{-}\tilde{d}_{R,i\alpha}^{*}\delta_{\alpha\beta}\tilde{u}_{L,j\beta}T_{d,ij} + H_{d}^{0}\tilde{e}_{R,i}^{*}\tilde{e}_{L,j}T_{e,ij} - H_{d}^{-}\tilde{e}_{R,i}^{*}\tilde{\nu}_{L,j}T_{e,ij} - H_{u}^{+}\tilde{u}_{R,i\alpha}^{*}\delta_{\alpha\beta}\tilde{d}_{L,j\beta}T_{u,ij} + H_{u}^{0}\tilde{u}_{R,i\alpha}^{*}\delta_{\alpha\beta}\tilde{u}_{L,j\beta}T_{u,ij} - H_{u}^{+}\tilde{e}_{L,j}\tilde{\nu}_{R,i}T_{v,ij} + H_{u}^{0}\tilde{\nu}_{L,j}\tilde{\nu}_{R,i}T_{v,ij} + h.c.$$

$$(18.2)$$

$$L_{SB,\phi} = -m_{H_{d}}^{2}|H_{d}^{0}|^{2} - m_{H_{d}}^{2}|H_{d}^{-}|^{2} - m_{H_{u}}^{2}|H_{u}^{0}|^{2} - m_{H_{u}}^{2}|H_{u}^{+}|^{2} - \tilde{d}_{L,j\beta}^{*}\delta_{\alpha\beta}m_{q,ij}^{2}\tilde{d}_{L,i\alpha} - \tilde{d}_{R,i\alpha}^{*}\delta_{\alpha\beta}m_{d,ij}^{2}\tilde{d}_{R,j\beta} - \tilde{e}_{L,j}^{*}m_{l,ij}^{2}\tilde{e}_{L,i} - \tilde{e}_{R,i}^{*}m_{e,ij}^{2}\tilde{e}_{R,j} - \tilde{u}_{L,j\beta}^{*}\delta_{\alpha\beta}m_{q,ij}^{2}\tilde{u}_{L,i\alpha} - \tilde{u}_{R,i\alpha}^{*}\delta_{\alpha\beta}m_{u,ij}^{2}\tilde{u}_{R,j\beta} - \tilde{\nu}_{L,j}^{*}m_{l,ij}^{2}\tilde{\nu}_{L,i} - \tilde{\nu}_{R,j}^{*}m_{v,ij}^{2}\tilde{\nu}_{R,i}$$

$$L_{SB,\lambda} = \frac{1}{2} \left(-\lambda_{\tilde{B}}^{2}M_{1} - M_{2}\lambda_{\tilde{W},i}^{2} - M_{3}\lambda_{\tilde{g},i}^{2} + h.c. \right)$$

$$(18.4)$$

18.2.3 Gauge fixing terms

Gauge fixing terms for eigenstates 'GaugeES'

$$L_{GF} = -\frac{1}{2}\partial_{\mu}g\xi_{G}^{-1} - \frac{1}{2}\partial_{\mu}W^{-}\xi_{W}^{-1}$$
(18.5)

Gauge fixing terms for eigenstates 'EWSB'

$$L_{GF} = -\frac{1}{2}\partial_{\mu}\gamma\xi_{P}^{-1} - \frac{1}{2}\partial_{\mu}g\xi_{G}^{-1} - \frac{1}{2}\xi_{Z}^{-1}\left(-A_{1}^{0}m_{Z}\xi_{Z} + \partial_{\mu}Z\right) - \xi_{W}^{-1}\left(iH_{1}^{-}m_{W^{-}}\xi_{W} + \partial_{\mu}W^{-}\right)$$
(18.6)

18.2.4 Fields integrated out

a) $\hat{\nu}$

Chapter 19

Seesaw II

19.1 Superfields

19.1.1 Vector Superfields

SF	Spin $\frac{1}{2}$	Spin 1	SU(N)	Coupling	Name
\hat{B}	$\lambda_{ ilde{B}}$	B	U(1)	g_1	hypercharge
\hat{W}	$\lambda_{ ilde{W}}$	W^-	SU(2)	g_2	left
\hat{g}	$\lambda_{ ilde{g}}$	g	SU(3)	g_3	color

19.1.2 Chiral Superfields

SF	Spin 0	Spin $\frac{1}{2}$	Generations	$(U(1) \otimes \mathrm{SU}(2) \otimes \mathrm{SU}(3))$
\hat{q}	$ ilde{q} \ ilde{l}$	q	3	$(rac{1}{6},2,3)$
\hat{l}	\tilde{l}	l	3	$(-rac{1}{2},2,1)$
\hat{H}_d	H_d	$ ilde{H}_d$	1	$(-rac{1}{2},2,1)$
\hat{H}_u	H_u	$ ilde{H}_u$	1	$(rac{1}{2}, oldsymbol{2}, oldsymbol{1})$
\hat{d}	$ ilde{d}_R^*$	d_R^*	3	$(rac{1}{3}, 1, \overline{3})$
\hat{u}	\tilde{u}_R^*	u_R^*	3	$(-rac{2}{3},1,\overline{3})$
\hat{e}	$egin{array}{ccc} ilde{e}_R^* & & & \ ilde{T} & & & \ ilde{ar{T}} & & & & \ ilde{ar{T}} & & & & \ ilde{T} & & \ ilde$	e_R^*	3	(1, 1 , 1)
\hat{T}	\tilde{T}	T	1	(1, 3, 1)
$\hat{ar{T}}$		$ar{T}$	1	(-1, 3, 1)
$\hat{\hat{S}}$ $\hat{ar{S}}$	$egin{array}{c} ilde{S} \ ilde{ar{S}}^* \end{array}$	S	1	$(-\frac{2}{3}, 1, 6)$
		$ar{S}^*$	1	$(rac{2}{3},f 1,f \overline{6})$
\hat{Z}	$ ilde{ar{Z}} \ ilde{ar{ar{Z}}}$	Z	1	$(rac{1}{6}, 2, 3)$
$\hat{ar{Z}}$	$ ilde{ar{Z}}$	$ar{Z}$	1	$(-rac{1}{6},2,\overline{3})$

19.2 Superpotential and Lagrangian

19.2.1 Superpotential

$$W = Y_u \,\hat{u}\,\hat{q}\,\hat{H}_u - Y_d \,\hat{d}\,\hat{q}\,\hat{H}_d - Y_e \,\hat{e}\,\hat{l}\,\hat{H}_d + \mu\,\hat{H}_u\,\hat{H}_d + \frac{1}{\sqrt{2}}Y_t\,\hat{l}\,\hat{T}\,\hat{l} + \frac{1}{\sqrt{2}}Y_s\,\hat{d}\,\hat{S}\,\hat{d} + Y_z\,\hat{d}\,\hat{Z}\,\hat{l}$$
$$+ \frac{1}{\sqrt{2}}\lambda_1\,\hat{H}_d\,\hat{T}\,\hat{H}_d + \frac{1}{\sqrt{2}}\lambda_2\,\hat{H}_u\,\hat{T}\,\hat{H}_u + M_T\,\hat{T}\,\hat{T} + M_Z\,\hat{Z}\,\hat{Z} + M_S\,\hat{S}\,\hat{S}$$
(19.1)

19.2.2 Softbreaking terms

$$\begin{split} L_{SB,W} &= + \tilde{T}^0 \tilde{T}^{--} B_T + \tilde{T}^- \tilde{T}^+ B_T + \tilde{T}^0 \tilde{T}^{++} B_T - H_d^0 H_u^0 B_\mu + H_d^- H_u^+ B_\mu + B_S \tilde{\tilde{S}}_{\text{ect2b}}^* \delta_{\text{act2b}} \delta_{\text{cct1b}} \tilde{S}_{\text{act1b}} \\ &- B_Z \delta_{\alpha\beta} \tilde{Z}_{1,\beta} \tilde{Z}_{2,\alpha} + B_Z \delta_{\alpha\beta} \tilde{Z}_{1,\alpha} \tilde{Z}_{2,\beta} \\ &+ \frac{1}{\sqrt{2}} \left(-\frac{1}{\sqrt{2}} H_u^{0,2} \tilde{T}^{++} T_{\lambda_1} + \frac{1}{\sqrt{2}} H_d^{-2} \tilde{T}^{++} T_{\lambda_1} - H_d^0 H_d^- \tilde{T}^0 T_{\lambda_1} - H_d^0 H_d^- \tilde{T}^{++} T_{\lambda_1} \right) \\ &+ \frac{1}{\sqrt{2}} \left(\frac{1}{\sqrt{2}} H_u^{0,2} \tilde{T}^{--} T_{\lambda_2} - \frac{1}{\sqrt{2}} H_u^{+,2} \tilde{T}^{--} T_{\lambda_2} - H_u^0 H_u^+ \tilde{T}^0 T_{\lambda_2} - H_u^0 H_u^+ \tilde{T}^{--} T_{\lambda_2} \right) \\ &+ H_0^0 d_{R,i\alpha}^* \delta_{\alpha\beta} \tilde{d}_{L,j\beta} T_{d,ij} - H_d^- \tilde{d}_{R,i\alpha}^* \delta_{\alpha\beta} \tilde{u}_{L,j\beta} T_{d,ij} + H_0^0 \tilde{e}_{R,i}^* \tilde{e}_{L,j} T_{e,ij} - H_d^- \tilde{e}_{R,i}^* \tilde{\nu}_{L,j} T_{e,ij} \\ &+ \frac{1}{\sqrt{2}} \tilde{d}_{R,i\alpha}^* \tilde{d}_{R,k\gamma}^* \delta_{\alpha\beta} \delta_{\text{ct2b}\gamma} \tilde{S}_{\text{ct2b}} T_{S,ik} \\ &+ \frac{1}{\sqrt{2}} \left(\frac{1}{\sqrt{2}} \tilde{T}^+ \tilde{e}_{L,i} \tilde{e}_{L,k} T_{t,ik} - \frac{1}{\sqrt{2}} \tilde{T}^+ \tilde{\nu}_{L,i} \tilde{\nu}_{L,k} T_{t,ik} - \tilde{T}^0 \tilde{e}_{L,i} \tilde{\nu}_{L,k} T_{t,ik} - \tilde{T}^{++} \tilde{e}_{L,k} \tilde{\nu}_{L,i} T_{t,ik} \right) \\ &- H_u^+ \tilde{u}_{R,i\alpha}^* \delta_{\alpha\beta} \tilde{d}_{L,j\beta} T_{u,ij} + H_u^0 \tilde{u}_{R,i\alpha}^* \delta_{\alpha\beta} \tilde{u}_{L,j\beta} T_{u,ij} + \tilde{d}_{R,i\alpha}^* \delta_{\alpha\beta} \tilde{e}_{L,k} \tilde{Z}_{1,\beta} T_{z,ik} \\ &- \tilde{d}_{R,i\alpha}^* \delta_{\alpha\beta} \tilde{\nu}_{L,k} \tilde{Z}_{2,\beta} T_{z,ik} + h.c. \end{cases} \tag{19.2} \\ L_{SB,\phi} &= - m_{H_d}^2 |H_d^0|^2 - m_{H_d}^2 |H_d^-|^2 - m_{H_u}^2 |H_u^0|^2 - m_{H_u}^2 |H_u^+|^2 - m_t^2 |\tilde{T}^0|^2 - m_t^2 |\tilde{T}^0|^2 \\ &- m_t^2 |\tilde{T}^-|^2 - m_t^2 |\tilde{T}^--|^2 - m_t^2 |\tilde{T}^+|^2 - m_t^2 |\tilde{T}^++|^2 - \tilde{d}_{L,j\beta}^* \delta_{\alpha\beta} m_{q,ij}^2 \tilde{d}_{L,i\alpha} \\ &- \tilde{d}_{R,i\alpha}^* \delta_{\alpha\beta} m_{d,ij}^* \tilde{d}_{R,j\beta} - \tilde{e}_{L,j}^* m_{l,ij}^* \tilde{e}_{L,i} - \tilde{e}_{R,i}^* m_{e,ij}^2 \tilde{e}_{R,j} - m_z^2 \tilde{S}_{\beta ct2b}^* \delta_{\alpha\beta} \tilde{\delta}_{ct1bct2b} \tilde{S}_{\alpha ct1b} \\ &- m_s^2 \tilde{S}_{\alpha ct1b}^* \delta_{\alpha\beta} \tilde{d}_{ct1bct2b} \tilde{S}_{\beta ct2b} - \tilde{u}_{L,j\beta}^* \delta_{\alpha\beta} m_{q,ij}^2 \tilde{u}_{L,i\alpha} - \tilde{u}_z^* \tilde{Z}_{2,\beta}^* \delta_{\alpha\beta} \tilde{Z}_{2,\alpha} - m_z^2 \tilde{Z}_{2,\beta}^* \delta_{\alpha\beta} \tilde{Z}_{$$

19.2.3 Gauge fixing terms

Gauge fixing terms for eigenstates 'GaugeES'

$$L_{GF} = -\frac{1}{2}\partial_{\mu}g\xi_{G}^{-1} - \frac{1}{2}\partial_{\mu}W^{-}\xi_{W}^{-1}$$
(19.5)

Gauge fixing terms for eigenstates 'EWSB'

$$L_{GF} = -\frac{1}{2}\partial_{\mu}\gamma\xi_{P}^{-1} - \frac{1}{2}\partial_{\mu}g\xi_{G}^{-1} - \frac{1}{2}\xi_{Z}^{-1}\left(-A_{1}^{0}m_{Z}\xi_{Z} + \partial_{\mu}Z\right) - \xi_{W}^{-1}\left(iH_{1}^{-}m_{W^{-}}\xi_{W} + \partial_{\mu}W^{-}\right)$$

$$(19.6)$$

$19.2.4 \quad {\bf Fields \ integrated \ out}$

- a) \hat{T}
- $\mathbf{b)} \ \ \hat{\bar{T}}$
- c) \hat{S}
- d) $\hat{\bar{S}}$
- e) \hat{Z}
- f) $\hat{ar{Z}}$

Chapter 20

Seesaw III

20.1 Superfields

20.1.1 Vector Superfields

SF	Spin $\frac{1}{2}$	Spin 1	SU(N)	Coupling	Name
\hat{B}	$\lambda_{ ilde{B}}$	B	U(1)	g_1	hypercharge
\hat{W}	$\lambda_{ ilde{W}}$	W^-	SU(2)	g_2	left
\hat{g}	$\lambda_{ ilde{g}}$	g	SU(3)	g_3	color

${\bf 20.1.2}\quad {\bf Chiral\ Superfields}$

SF	Spin 0	Spin $\frac{1}{2}$	Generations	$(U(1) \otimes \mathrm{SU}(2) \otimes \mathrm{SU}(3))$
\hat{q}	\tilde{q}	q	3	$(rac{1}{6},2,3)$
\hat{l}	\tilde{l}	l	3	$(-rac{1}{2},2,1)$
\hat{H}_d	H_d	$ ilde{H}_d$	1	$(-rac{1}{2},{f 2},{f 1})$
\hat{H}_u	H_u	\tilde{H}_u	1	$(rac{1}{2},2,1)$
\hat{d}	$ ilde{d}_R^*$	d_R^*	3	$(rac{1}{3}, oldsymbol{1}, oldsymbol{\overline{3}})$
\hat{u}	\tilde{u}_R^*	u_R^*	3	$(-rac{2}{3},1,\overline{3})$
\hat{e}	$ ilde{e}_R^*$	e_R^*	3	(1, 1 , 1)
\hat{W}_M	\tilde{W}_M	W_{M}	3	(0, 3, 1)
\hat{G}_{M}	$ ilde{G}_M$	G_M	3	(0, 1, 8)
\hat{B}_{M}	$ ilde{B}_M$	B_M	3	(0, 1, 1)
\hat{X}_{M}	\tilde{X}_M	X_M	3	$(rac{5}{6},2,\overline{3})$
$\hat{ar{X}}_M$	$ ilde{ ilde{X}}_M$	\bar{X}_M	3	$(-rac{5}{6},{f 2},{f 3})$

20.2 Superpotential and Lagrangian

20.2.1 Superpotential

$$W = Y_u \,\hat{u} \,\hat{q} \,\hat{H}_u - Y_d \,\hat{d} \,\hat{q} \,\hat{H}_d - Y_e \,\hat{e} \,\hat{l} \,\hat{H}_d + \mu \,\hat{H}_u \,\hat{H}_d + \sqrt{\frac{3}{10}} Y_b \,\hat{H}_u \,\hat{B}_M \,\hat{l} + Y_w \,\hat{H}_u \,\hat{W}_M \,\hat{l} + Y_x \,\hat{H}_u \,\hat{X}_M \,\hat{d}$$
$$+ M_X \,\hat{X}_M \,\hat{X}_M + \frac{1}{2} M_W \,\hat{W}_M \,\hat{W}_M + \frac{1}{2} M_G \,\hat{G}_M \,\hat{G}_M + \frac{1}{2} M_B \,\hat{B}_M \,\hat{B}_M + MNuL \,\hat{l} \,\hat{H}_u \,\hat{l} \,\hat{H}_u$$
(20.1)

20.2.2 Softbreaking terms

$$L_{SB,W} = -H_{d}^{0}H_{u}^{0}B_{\mu} + H_{d}^{-}H_{u}^{+}B_{\mu} + \frac{1}{2}\tilde{B}_{M,i}\tilde{B}_{M,j}B_{B,ij} + \frac{1}{2}\delta_{\alpha ct2b}\delta_{ct1b\beta}\tilde{G}_{M,i\alpha ct1b}\tilde{G}_{M,j\beta ct2b}B_{G,ij}$$

$$+ \frac{1}{2}\left(\tilde{W}_{M,i}^{0}\tilde{W}_{M,j}^{0}B_{W,ij} + \tilde{W}_{M,i}^{-}\tilde{W}_{M,j}^{+}B_{W,ij} + \tilde{W}_{M,j}^{-}\tilde{W}_{M,i}^{+}B_{W,ij}\right) + \delta_{\alpha\beta}\tilde{X}_{M,i\beta}^{d}\tilde{X}_{M,i\alpha}^{u}B_{X,ij}$$

$$- \delta_{\alpha\beta}\tilde{X}_{M,i\alpha}^{d}\tilde{X}_{M,i\beta}^{u}B_{X,ij} + \sqrt{\frac{3}{10}}\left(-H_{u}^{0}\tilde{B}_{M,j}\tilde{\nu}_{L,k}T_{b,jk} + H_{u}^{+}\tilde{e}_{L,k}\tilde{B}_{M,j}T_{b,jk}\right) + H_{d}^{0}\tilde{d}_{R,i\alpha}^{*}\delta_{\alpha\beta}\tilde{d}_{L,j\beta}T_{d,ij}$$

$$- H_{d}^{-}\tilde{d}_{R,i\alpha}^{*}\delta_{\alpha\beta}\tilde{u}_{L,j\beta}T_{d,ij} + H_{d}^{0}\tilde{e}_{R,i}^{*}\tilde{e}_{L,j}T_{e,ij} - H_{d}^{-}\tilde{e}_{R,i}^{*}\tilde{\nu}_{L,j}T_{e,ij} - H_{u}^{+}\tilde{u}_{R,i\alpha}^{*}\delta_{\alpha\beta}\tilde{d}_{L,j\beta}T_{u,ij}$$

$$+ H_{u}^{0}\tilde{u}_{R,i\alpha}^{*}\delta_{\alpha\beta}\tilde{u}_{L,j\beta}T_{u,ij} + \frac{1}{\sqrt{2}}H_{u}^{+}\tilde{e}_{L,k}\tilde{W}_{M,j}^{0}T_{w,jk} - H_{u}^{0}\tilde{e}_{L,k}\tilde{W}_{M,j}^{+}T_{w,jk} - \frac{1}{\sqrt{2}}H_{u}^{0}\tilde{W}_{M,j}^{0}\tilde{\nu}_{L,k}T_{w,jk}$$

$$+ H_{u}^{+}\tilde{w}_{M,i}^{*}\tilde{\nu}_{L,k}T_{w,jk} + H_{u}^{+}\tilde{d}_{R,k\gamma}^{*}\delta_{\beta\gamma}\tilde{X}_{M,j\beta}^{*}T_{x,jk} - H_{u}^{0}\tilde{e}_{R,k\gamma}^{*}\delta_{\beta\gamma}\tilde{X}_{M,ij\beta}^{*}T_{x,jk} + h.c. \qquad (20.2)$$

$$L_{SB,\phi} = -m_{H_{d}}^{2}|H_{d}^{0}|^{2} - m_{H_{d}}^{2}|H_{d}^{-}|^{2} - m_{H_{u}}^{2}|H_{u}^{0}|^{2} - m_{H_{u}}^{2}|H_{u}^{+}|^{2} - \tilde{d}_{L,j\beta}^{*}\delta_{\alpha\beta}m_{q,ij}^{*}\tilde{d}_{L,i\alpha}$$

$$-\tilde{d}_{R,i\alpha}^{*}\delta_{\alpha\beta}m_{d,ij}^{*}\tilde{d}_{R,j\beta} - \tilde{e}_{L,j}^{*}m_{l,ij}^{*}\tilde{e}_{L,i} - \tilde{e}_{R,i}^{*}m_{e,ij}^{*}\tilde{e}_{R,j} - \tilde{B}_{M,j}^{*}m_{B,ij}^{*}\tilde{B}_{M,i}$$

$$- conj\left(\mathrm{SHG}\left\{\{\mathrm{gt2},\mathrm{ct2},\mathrm{ct2b}\right\}\right)\right)\delta_{\alpha\beta}\delta_{ct1bct2b}m_{G,ij}^{2}\tilde{G}_{M,i\alphact1b} - \tilde{W}_{M,j}^{0}\tilde{w}_{M,i}^{*} - \tilde{W}_{M,j}^{*}\tilde{w}_{M,i}^{*} - \tilde{W}_{M,j}^{*}\tilde{w}_{M,i}^{*}$$

$$-\tilde{X}_{M,j\beta}^{*}\delta_{\alpha\beta}m_{X,ij}^{2}\tilde{X}_{M,i\alpha}^{*} - \tilde{X}_{M,j\beta}^{*}\delta_{\alpha\beta}m_{X,ij}^{2}\tilde{X}_{M,i\alpha}^{*} - \tilde{X}_{M,j\beta}^{*}\delta_{\alpha\beta}m_{X,ij}^{2}\tilde{X}_{M,i\alpha}^{*} - \tilde{W}_{M,j}^{*}\tilde{w}_{M,i}^{*}\tilde{w}_{M,i}^{*}\tilde{w}_{M,i}^{*}\tilde{w}_{M,i}^{*}\tilde{w}_{M,i}^{*}\tilde{w}_{M,i}^{*}\tilde{w}_{M,i}^{*}\tilde{w}_{M,i}^{*}\tilde{w}_{M,i}^{*}\tilde{w}_{M,i}^{*}\tilde{w}_{M,i}^{*}\tilde{w}_{M,i}^{*}\tilde{w}_{M,i}^{*}\tilde{w}_{M,i}^{*}\tilde{w}_{M,i}^{*}\tilde{w}_{M,i}^{*$$

20.2.3 Gauge fixing terms

Gauge fixing terms for eigenstates 'GaugeES'

$$L_{GF} = -\frac{1}{2}\partial_{\mu}g\xi_{G}^{-1} - \frac{1}{2}\partial_{\mu}W^{-}\xi_{W}^{-1}$$
(20.5)

Gauge fixing terms for eigenstates 'EWSB'

$$L_{GF} = -\frac{1}{2}\partial_{\mu}\gamma\xi_{P}^{-1} - \frac{1}{2}\partial_{\mu}g\xi_{G}^{-1} - \frac{1}{2}\xi_{Z}^{-1}\left(-A_{1}^{0}m_{Z}\xi_{Z} + \partial_{\mu}Z\right) - \xi_{W}^{-1}\left(iH_{1}^{-}m_{W^{-}}\xi_{W} + \partial_{\mu}W^{-}\right)$$
(20.6)

20.2.4 Fields integrated out

- a) \hat{W}_M
- b) \hat{G}_M
- c) \hat{B}_M
- d) \hat{X}_M
- e) $\hat{ar{X}}_{M}$