EBU6503 Control Theory

Lab 1: Matlab Familiarisation

- 1. Run Matlab and open Help, Matlab Help
- 2. Select Control System Toolbox
- 3. Getting Started
- 4. Building Models

Linear models

Linear Model Representations

SISO Example, DC Motor, Example Transfer Function

Continuous SISO Models

Create as $sys_tf=tf(1.5,[1 14 40.02])$

5. Analysing Models

LTI Viewer

Examples: Time and Frequency

In the Command window, "load Itiexamples"

Ltiview

File Import

Step Response

Displaying Response Characteristics

Changing Plot Type

6. Designing Compensators

SISO Design Tool

Opening the SISO Design Tool

Importing Models into SISO Design Tool

How to Create Own Model: (refer to Help, Running Matlab

Functions, Running Functions and Entering Variables)

7. Help

Control System Toolbox

Creating and Manipulating Models

Iti Models

Creating Iti Models

TF Models

In Command Window: Type TF Model, e.g. sys_lab1=tf(10,[1 2 6]) Saves in Workspace

REPORT:

- 1. For each of the investigations in the above introduction, obtain a variety of plots and note the system characteristics (such as step response, frequency response, root locus, etc).
- 2. Use Root Locus Technique to investigate the system whose open-loop transfer function is

$$G(s)H(s) = \frac{K(s+2)}{s(s+1)(s+3)(s+4)}$$

Attempt to design a Controller such that the Closed-Loop system behaviour has a minimum damped frequency of oscillation of 2.5 rad/sec AND a maximum peak overshoot of 20%. Comment on your results.