1

Assignment 8

Surbhi Agarwal

Abstract—This document deals with linear operators and basis of a finite dimensional vector space over a field.

1 Problem

Let $\mathbb V$ be finite dimensional vector space over the field $\mathbb F$, and let $\mathbf S$ and $\mathbf T$ be linear operators on $\mathbb V$. When do there exist ordered bases $\mathcal B$ and $\mathcal B'$ for $\mathbb V$ such that $[S]_{\mathcal B}=[T]'_{\mathcal B}$? Prove that such bases exist if and only if there is an invertible linear operator $\mathbf U$ on $\mathbb V$ such that $\mathbf T=\mathbf U\mathbf S\mathbf U^{-1}$

2 Solution

Assume $[S]_{\mathcal{B}} = [T]_{\mathcal{B}'}$	Assume $T = USU^{-1}$
Given	Given
\mathbb{V} is a finite dimensional vector space over field \mathbb{F} S and T are linear operators on \mathbb{V} \mathcal{B} and \mathcal{B}' are ordered bases for \mathbb{V} $[S]_{\mathcal{B}} = [T]_{\mathcal{B}'}$	$\mathbb V$ is a finite dimensional vector space over field $\mathbb F$ S and T are linear operators on $\mathbb V$ $\mathcal B$ and $\mathcal B'$ are ordered bases for $\mathbb V$ There is an invertible linear operator $\mathbf U$ on $\mathbb V$ such that $\mathbf T = \mathbf U \mathbf S \mathbf U^{-1}$
To prove	To prove
There is an invertible linear operator \mathbf{U} on \mathbb{V} such that $\mathbf{T} = \mathbf{U}\mathbf{S}\mathbf{U}^{-1}$	$[S]_{\mathcal{B}} = [T]_{\mathcal{B}'}$
Assumptions	Assumptions
Let U be the operator which carries \mathcal{B} to \mathcal{B}' $\mathcal{B} = \{\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_n\}$ $\mathcal{B}' = \{\mathbf{x}'_1, \mathbf{x}'_2, \dots, \mathbf{x}'_n\}$	Let U be the operator which carries \mathcal{B} to \mathcal{B}' $\mathcal{B} = \{\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_n\}$ $\mathcal{B}' = \{\mathbf{x}'_1, \mathbf{x}'_2, \dots, \mathbf{x}'_n\}$
Proof	Proof
For $\mathbf{v} \in \mathbb{V}$, expressed as a linear combination of the vectors of \mathcal{B} $\mathbf{v} = a_1 \mathbf{x}_1 + a_2 \mathbf{x}_2 + \ldots + a_n \mathbf{x}_n$ $\mathbf{w} = \mathbf{U}(\mathbf{v}) = a_1 \mathbf{x}'_1 + a_2 \mathbf{x}'_2 + \ldots + a_n \mathbf{x}'_n$	For $\mathbf{v} \in \mathbb{V}$, expressed as a linear combination of the vectors of \mathcal{B}' $\mathbf{v} = a_1 \mathbf{x}'_1 + a_2 \mathbf{x}'_2 + \ldots + a_n \mathbf{x}'_n$ $\mathbf{USU}^{-1}(\mathbf{v}) = \mathbf{T}(\mathbf{v})$
	$= \mathbf{T}(a_{1}\mathbf{x}'_{1} + a_{2}\mathbf{x}'_{2} + \dots + a_{n}\mathbf{x}'_{n})$ $= c_{1}\mathbf{x}'_{1} + c_{2}\mathbf{x}'_{2} + \dots + c_{n}\mathbf{x}'_{n}$ But we know that $\mathbf{USU}^{-1}(\mathbf{v}) = \mathbf{USU}^{-1}(a_{1}\mathbf{x}'_{1} + a_{2}\mathbf{x}'_{2} + \dots + a_{n}\mathbf{x}'_{n})$ $= \mathbf{US}(a_{1}\mathbf{x}_{1} + a_{2}\mathbf{x}_{2} + \dots + a_{n}\mathbf{x}_{n})$
$= \mathbf{U}^{-1}(c_1\mathbf{x}_1' + c_2\mathbf{x}_2' + \dots + c_n\mathbf{x}_n')$ $= c_1\mathbf{x}_1 + c_2\mathbf{x}_2 + \dots + c_n\mathbf{x}_n$ $= \mathbf{S}(\mathbf{v})$	So, S in basis \mathcal{B} has to have the same entries as T in basis \mathcal{B}' $\therefore [S]_{\mathcal{B}} = [T]_{\mathcal{B}'}$
$\implies \mathbf{U}^{-1}\mathbf{T}\mathbf{U} = \mathbf{S}$ $\implies \mathbf{T} = \mathbf{U}\mathbf{S}\mathbf{U}^{-1}$	

TABLE 0