?(Kritische) Analyse der Einführung von Microsoft CoPilot (ableitung für erfolgsfaktoren von KI assistenten)?

Projektarbeit 2

Studienjahrgang 2023/2024

Kurs WI23B

Fakultät Wirtschaft

Studiengang Wirtschaftsinformatik

Duale Hochschule Baden-Württemberg Villingen-Schwenningen

Bearbeiter: Jamie Dave Adler

Ausbildungsbetrieb: Karl Storz SE & Co. KG Betreuende Dozentin: Prof. Dr. Andreas Bildstein

des Prüfun	dieser Arbeit darf we gs- und Evaluations tende Genehmigung	verfahrens zugä	nglich gemacht v	

Inhaltsverzeichnis

A	DDHC	lungsverzeichnis	IV
Ta	abell	enverzeichnis	V
1	Ein	leitung	1
	1.1	Relevanz und Forschungslücke	1
	1.2	Problemstellung	1
	1.3	Zielsetzung und Beitrag der Arbeit	2
	1.4	Forschungsfragen und Hypothesen	3
	1.5	Methodisches Vorgehen und Aufbau der Arbeit	4
2	The	eoretischer Rahmen und Stand der Forschung	4
	2.1	State of the Art zu Enterprise-AI und generativen KI-Assistenten	5
	2.2	Adoptions- und Akzeptanztheorien (TAM, UTAUT)	6
	2.3	Change-Management-Modelle (Lewin, Kotter, ADKAR)	7
	2.4	Technologie- und Governance-Perspektive	8
	2.5	Integriertes Bezugsrahmenmodell (Technologie-Organisation-Mensch)	9
3	For	schungsdesign und Methodik	10
	3.1	Designwahl und Forschungslogik	10
	3.2	Datenquellen und Sampling	10
	3.3	Operationalisierung der Variablen	11
	3.4	Auswertungsverfahren	11
	3.5	Gütekriterien und ethische Aspekte	11
4	Erg	ebnisse entlang der Theoriekonstrukte	11
	4.1	Technologische Dimension (T)	11
	4.2	Organisationale Dimension (O)	12
	4.3	Menschliche Dimension (M) \dots	12
	4.4	Zwischenfazit	12

5	Diskussion		
	5.1	Theorieabgleich und Interpretation	13
	5.2	Designprinzipien und Generalisierung	13
	5.3 Implikationen für Forschung und Praxis		13
	5.4	Limitationen der Studie	13
6	6 Fazit und Ausblick 1		
	6.1	Kernaussagen	13
	6.2	Handlungsempfehlungen	14
	6.3	Ausblick auf zukünftige Forschung	14
A	A Interviewleitfaden (Auszug, T–O–M)		
В	3 Umfrageinstrument (Auszug)		15
\mathbf{C}	C Kodierleitfaden und zusätzliche Tabellen		
Li	Literaturverzeichnis		
Se	Selbstständigkeitserklärung 1		

Abbildungsverzeichnis

Tabellenverzeichnis

1 Einleitung

1.1 Relevanz und Forschungslücke

Die Einführung generativer KI in die Wissensarbeit gilt als tiefgreifende soziotechnische Transformation. Werkzeuge wie Microsoft Copilot versprechen eine signifikante Steigerung der Produktivität und Arbeitsqualität. Frühe empirische Studien untermauern diese hohen Erwartungen mit quantitativen Belegen: Nutzer berichten von einer um 29 % höheren Geschwindigkeit bei Standardaufgaben, einer täglichen Zeitersparnis von durchschnittlich 14 Minuten und einer Verbesserung der Arbeitsqualität¹.

Trotz dieses evidenten Potenzials ist die erfolgreiche Implementierung kein Selbstläufer. Die bloße Bereitstellung der Technologie führt nicht automatisch zu deren Nutzung oder zur Realisierung der versprochenen Vorteile. In der Praxis zeigt sich eine erhebliche Lücke zwischen dem technologischen Potenzial und der tatsächlichen Adoption durch die Mitarbeiter. Diese Lücke wird durch menschliche Faktoren wie mangelndes Vertrauen, hohe Aufwandserwartungen und die Komplexität der neuen Interaktionsform des "Prompting"² sowie durch organisationale Versäumnisse bei der Steuerung des Wandels und der Schaffung technischer Grundvoraussetzungen³ verursacht.

Hieraus ergibt sich eine Forschungslücke: Während die technologischen Möglichkeiten und die hohen Produktivitätserwartungen intensiv diskutiert werden, sind empirisch fundierte und modellgebundene Handlungsempfehlungen für den *Enterprise*-Kontext, die diese sozio-technischen Aspekte integriert betrachten, noch rar. Der Beitrag dieser Arbeit liegt daher in einer theoriegeleiteten, kritischen Analyse der Implementierung, die über eine chronologische Projektbeschreibung hinausgeht und stattdessen die komplexen Wechselwirkungen zwischen Technologie, Organisation und Mensch untersucht.

1.2 Problemstellung

Die Kernherausforderung bei der Einführung generativer KI-Assistenten liegt in der Orchestrierung der verschiedenen Dimensionen des Wandels. Wie lassen sich Einführungen generativer KI so gestalten, dass technologische, organisationale

¹Microsoft, What Can Copilot's Earliest Users Teach Us About AI at Work?

² "Beyond Training: How Workers Discover Value in Enterprise AI".

³Microsoft, Security for Microsoft 365 Copilot.

und **menschliche** Faktoren (T–O–M) aufeinander abgestimmt wirken und die beabsichtigten Nutzeneffekte tatsächlich materialisieren?

Diese übergreifende Problemstellung manifestiert sich in spezifischen Teilproblemen:

- Technologisch (T): Die Technologie wird oft in eine bestehende IT-Landschaft implementiert, deren "Tech Hygiene" (z. B. Datenklassifizierung, Zugriffsrechte) unzureichend ist. Dies führt nicht nur zu Sicherheitsrisiken wie Datenlecks⁴, sondern auch zu einer schlechten Nutzererfahrung durch ungenaue oder irrelevante Ergebnisse ("Garbage In, Garbage Out").
- Menschlich (M): Die Nutzer werden mit einer hohen Aufwandserwartung (Effort Expectancy) konfrontiert. Sie müssen eine neue Kompetenz, die "Prompt Literacy", entwickeln⁵, scheitern aber oft anfangs an der Komplexität, was zu Frustration und schneller Abkehr vom Werkzeug führt⁶. Gleichzeitig bestehen signifikante psychologische Barrieren wie die Angst vor Arbeitsplatzverlust oder Überwachung⁷.
- Organisational (O): Den Organisationen fehlt es häufig an einer klaren strategischen Vision⁸, einer adäquaten Governance-Struktur (z. B. einem AI Center of Excellence)⁹ und effektiven Change-Mechanismen, um die technologischen Voraussetzungen zu schaffen und die Mitarbeiter im Lernprozess zu begleiten.

Ein Scheitern der Adoption ist oft das Resultat einer Fehlausrichtung dieser drei Dimensionen.

1.3 Zielsetzung und Beitrag der Arbeit

Das primäre Ziel dieser Arbeit ist die kritische Analyse der Erfolgsfaktoren und Barrieren bei der Implementierung von Microsoft Copilot. Die Arbeit prüft und konkretisiert etablierte Modelle der Akzeptanzforschung (TAM/UTAUT)¹⁰ und des Change-Managements (Kotter)¹¹ im spezifischen Kontext generativer KI.

⁴Microsoft, Security for Microsoft 365 Copilot.

⁵ "Conceptualizing and Operationalizing Prompt Literacy for English ..."

⁶ "Beyond Training: How Workers Discover Value in Enterprise AI".

 $^{^7\}mathrm{Cyber}$ Security Intelligence, Employee Resistance To AI Adoption.

⁸Prosci, Kotter's Change Management Theory Explanation and Applications.

⁹Dataiku, Best Practices for a Successful AI Center of Excellence.

 $^{^{10}}$, Understanding higher education students' adoption of generative AI technologies: An empirical investigation using UTAUT2".

¹¹Prosci, Kotter's Change Management Theory Explanation and Applications.

Als Fallbeleg dient die Einführung von Microsoft Copilot bei der Karl Storz SE & Co. KG (KS). Diese Fallstudie wird genutzt, um die theoretischen Modelle empirisch zu fundieren und ihre Wechselwirkungen zu illustrieren. Die Arbeit liefert explizit keine chronologische Nacherzählung des Rollout-Projekts.

Der wissenschaftliche Beitrag der Arbeit besteht darin, die kritischen Interdependenzen zwischen der technologischen (T), organisationalen (O) und menschlichen (M) Dimension aufzuzeigen. Es wird analysiert, wie Defizite in einer Dimension (z. B. mangelnde "Tech Hygiene" (T)) direkt auf eine andere Dimension (z. B. reduzierte "Leistungserwartung" (M)) durchschlagen. Basierend auf dieser kritischen Analyse werden verallgemeinerbare Designprinzipien und Handlungsempfehlungen für die Praxis abgeleitet.

1.4 Forschungsfragen und Hypothesen

Zur Erreichung der Zielsetzung werden die folgenden Forschungsfragen (RQ) im Rahmen des T-O-M-Modells untersucht:

- RQ1 (Technologie): Welche technischen Voraussetzungen und welche Maßnahmen der "Tech Hygiene" (z. B. Datenklassifizierung, Zugriffsmanagement) sind notwendig, um die Adoption durch die Nutzer zu ermöglichen und Compliance-Risiken zu minimieren?
- RQ2 (Organisation): Welche Governance-Strukturen (z. B. CoE) und Change-Management-Mechanismen (z. B. Sponsoring, Champions-Programme) korrelieren mit einer höheren Nutzungsintensität und der Überwindung von Widerständen?
- RQ3 (Mensch): Wie beeinflussen die Faktoren des UTAUT-Modells insbesondere Erwartungsmanagement (PE/EE), soziales Umfeld (SI) und unterstützende Maßnahmen (FC) wie "Prompt-Literacy"-Training die Nutzungsabsicht (Behavioral Intention) und die tatsächliche Nutzung?

Basierend auf der vorab durchgeführten Recherche (siehe Kap. 2) werden folgende Hypothesen zur Überprüfung im Rahmen der Fallstudie formuliert:

• **H1 (M):** Eine hohe *Aufwandserwartung* (EE), bedingt durch eine wahrgenommene Komplexität des Promptings, korreliert negativ mit der Nutzungsabsicht, selbst wenn die *Leistungserwartung* (PE) hoch ist.

- **H2** (**T/M**): Defizite in der "Tech Hygiene" (T) führen zu unzuverlässigen KI-Ergebnissen und korrelieren daher negativ mit der *Leistungserwartung* (M) der Nutzer.
- H3 (O/M): "Sozialer Einfluss" (SI), manifestiert durch die sichtbare Nutzung durch Führungskräfte und "KI-Champions", sowie dedizierte "unterstützende Rahmenbedingungen" (FC) in Form von Trainings (Prompt Literacy) steigern die Nutzungsabsicht signifikant.

1.5 Methodisches Vorgehen und Aufbau der Arbeit

Um die Forschungsfragen zu beantworten, wird ein qualitativ dominiertes *Embedded Single-Case-Study-Design* (Fallstudie) mit Mixed-Methods-Elementen angewandt. Der Fall "Karl Storz" dient der theoriegeleiteten Erklärung und analytischen Verallgemeinerung, nicht der statistischen Populationsschätzung. Die Datenerhebung stützt sich auf die Triangulation von (1) quantitativen Nutzungs-KPIs, (2) qualitativen, leitfadengestützten Interviews mit Stakeholdern (Projektleitung, IT, Endnutzer) und (3) der Analyse von Projektdokumenten (Governance-Artefakte, Trainingsunterlagen).

Die Arbeit ist wie folgt strukturiert: Kapitel 2 legt den theoretischen Rahmen dar, indem es den Stand der Forschung zu KI-Assistenten, die Akzeptanzmodelle (UTAUT) und Change-Modelle (Kotter) sowie die technologischen Governance-Aspekte (Responsible AI) detailliert. Kapitel 3 beschreibt das Forschungsdesign, die Datenerhebung und die Auswertungsmethodik. Kapitel 4 präsentiert die Ergebnisse der Fallstudie, strukturiert entlang der drei Dimensionen des T-O-M-Frameworks. Kapitel 5 diskutiert diese Ergebnisse, gleicht sie mit der Theorie ab und leitet die generalisierbaren Designprinzipien ab, bevor Kapitel 6 die Arbeit mit einem Fazit und Handlungsempfehlungen abschließt.

2 Theoretischer Rahmen und Stand der Forschung

Dieses Kapitel legt das theoretische Fundament ("Soll-Zustand") für die nachfolgende kritische Analyse der Copilot-Einführung. Es definiert die zentralen Konzepte und Modelle, die als analytische "Messlatte" für die empirische Untersuchung in Kapitel 4 dienen. Zunächst wird der Status Quo von Enterprise-KI-Assistenten beleuchtet (Kap. 2.1). Darauf aufbauend werden die Theorien der Technologieakzeptanz (UTAUT) für die menschliche Dimension (Kap. 2.2) und die Modelle des Change Managements (Kotter) für die organisationale Dimension (Kap. 2.3) vorgestellt.

Anschließend werden die technologischen Governance-Aspekte (Kap. 2.4) detailliert. Das Kapitel schließt mit der Synthese dieser Elemente zu einem integrierten T-O-M-Bezugsrahmenmodell (Kap. 2.5).

2.1 State of the Art zu Enterprise-AI und generativen KI-Assistenten

Generative KI-Assistenten, tief integriert in die täglichen Arbeitsabläufe ("Enterprise-AI"), versprechen eine signifikante Transformation der Wissensarbeit. Im Zentrum steht das Nutzenversprechen einer messbaren Produktivitäts- und Qualitätssteigerung.

Nutzenpotenziale Frühe empirische Studien, insbesondere von Microsoft zur Einführung von Copilot, quantifizieren diesen Nutzen. Nutzer berichten von einer um 29 % höheren Geschwindigkeit bei Standardaufgaben wie Suchen, Schreiben und Zusammenfassen. Die durchschnittliche tägliche Zeitersparnis wird auf 14 Minuten beziffert, wobei 68 % der Nutzer eine Verbesserung der Arbeitsqualität und 57 % eine Steigerung der eigenen Kreativität angaben¹². Bei Entwicklern, die GitHub Copilot nutzen, wurde die Aufgabenerledigung sogar um über 55 % beschleunigt¹³. Diese datengestützte "Leistungserwartung" ist der primäre Treiber für die Investitionsbereitschaft von Unternehmen.

Risiken und Herausforderungen Dem Nutzen stehen erhebliche Risiken gegenüber. Das prominenteste technologische Risiko sind "Halluzinationen" – die Generierung faktisch falscher, aber plausibel klingender Ausgaben. Dies führt zu einem fundamentalen Mangel an Vertrauen in "Blackbox"-Modelle, deren Entscheidungsprozesse für den Nutzer nicht nachvollziehbar sind¹⁴.

Das größte *Compliance*-Risiko liegt jedoch nicht in der KI selbst, sondern im Zustand der bestehenden Datenlandschaft. In einer Umgebung mit mangelhafter "Tech Hygiene" (z. B. unklare Zugriffsrechte, übermäßige Dateifreigaben) kann ein KI-Assistent sensible Daten unbeabsichtigt exponieren und zu massiven Datenlecks (Data Leakage) führen¹⁵.

¹²Microsoft, What Can Copilot's Earliest Users Teach Us About AI at Work?

¹³ "The Impact of AI on Developer Productivity: Evidence from GitHub Copilot".

¹⁴Cyber Security Intelligence, Employee Resistance To AI Adoption.

¹⁵Microsoft, Security for Microsoft 365 Copilot.

Responsible-AI-Prinzipien Als Antwort auf diese Risiken haben sich "Responsible AI" (RAI)-Frameworks als De-facto-Standard etabliert. Ein RAI-Framework ist die Gesamtheit der Prinzipien, Richtlinien und Kontrollen, die sicherstellen, dass KI-Systeme ethisch, zuverlässig und gesetzeskonform eingesetzt werden¹⁶. Diese Frameworks basieren typischerweise auf globalen Standards (z. B. OECD AI Principles, EU AI Act) und umfassen Kernprinzipien wie Fairness (Bias-Vermeidung), Transparenz (Erklärbarkeit), Sicherheit, Datenschutz und menschliche Aufsicht¹⁷. Ein solches Framework ist die Grundvoraussetzung für die Schaffung von Vertrauen und die Einhaltung von Compliance.

2.2 Adoptions- und Akzeptanztheorien (TAM, UTAUT)

Die bloße Bereitstellung einer Technologie garantiert nicht deren Nutzung. Die Akzeptanzforschung, insbesondere die "Unified Theory of Acceptance and Use of Technology" (UTAUT), liefert ein robustes Modell zur Erklärung, warum Individuen eine Technologie annehmen oder ablehnen¹⁸. UTAUT postuliert, dass die Verhaltensabsicht (*Behavioral Intention*, BI) und die tatsächliche Nutzung primär von vier Kernkonstrukten abhängen:

Performance Expectancy (PE) – Leistungserwartung: Der Grad, zu dem eine Person glaubt, dass die Nutzung des Systems ihre Arbeitsleistung verbessert. Im Kontext von Copilot wird dies durch die in Kap. 2.1 genannten Produktivitätsversprechen (z. B. 14 Min./Tag) genährt. Die PE gilt oft als stärkster Prädiktor für die Nutzungsabsicht¹⁹.

Effort Expectancy (EE) – Aufwandserwartung: Der Grad der Leichtigkeit, der mit der Nutzung des Systems verbunden ist. Bei generativer KI ist die EE eine kritische Barriere. Die Interaktion erfordert die neue Kompetenz des "Prompt-Engineering" – die Fähigkeit, effektive Anfragen zu formulieren. Die wahrgenommene Komplexität dieser Aufgabe führt zu einer hohen kognitiven Last. Nutzerberichte zeigen, dass Frustration schnell einsetzt; Anwender geben oft schon nach wenigen erfolglosen Versuchen (ca. 15 Minuten) auf und kehren zu manuellen Methoden zurück²⁰.

¹⁶Nemko, Responsible AI Framework: Enterprise Guide to Compliance.

¹⁷Cognizant, Responsible AI Principles.

¹⁸ "Understanding higher education students' adoption of generative AI technologies: An empirical investigation using UTAUT2".

¹⁹Ebd

²⁰ "Beyond Training: How Workers Discover Value in Enterprise AI".

Social Influence (SI) – Sozialer Einfluss: Die Wahrnehmung, dass wichtige Bezugspersonen (Vorgesetzte, einflussreiche Kollegen) glauben, man solle das System nutzen. Die Forschung bestätigt die entscheidende Rolle von Führungskräften, die KI sichtbar selbst nutzen, sowie von "KI-Champions" oder "Power Usern"²¹. Diese Champions normalisieren die Nutzung, demonstrieren Anwendungsfälle und helfen, kulturellen Widerstand oder "AI Shaming" (die Wahrnehmung, KI-Nutzung sei "Betrug") zu überwinden²².

Facilitating Conditions (FC) – Unterstützende Rahmenbedingungen: Die Überzeugung, dass eine organisationale und technische Infrastruktur zur Unterstützung der Nutzung existiert. Im Kontext von Copilot ist die wichtigste FC die Befähigung zur "Prompt Literacy" (Prompt-Kompetenz). Dies ist mehr als nur "Engineering"; es ist eine ganzheitliche Fähigkeit, Prompts strategisch zu formulieren, zu bewerten und zu verfeinern²³. Mangelnde Investitionen in diese Fähigkeit führen zu einer Negativspirale: Schlechte Prompts erzeugen schlechte Ergebnisse, was die PE senkt und die EE erhöht, und letztlich zur Ablehnung des Werkzeugs führt.

Über die reine Akzeptanz hinaus muss auch der aktive *Widerstand* betrachtet werden. Dieser ist oft tief in psychologischen Faktoren verwurzelt, darunter die Angst vor Arbeitsplatzverlust, mangelndes Vertrauen (Halluzinationen), die Furcht vor Überwachung und die Bedrohung der eigenen beruflichen Identität und Autonomie²⁴²⁵.

2.3 Change-Management-Modelle (Lewin, Kotter, ADKAR)

Die Einführung von KI-Assistenten ist weniger ein Technologie-Rollout als vielmehr ein tiefgreifender kultureller Wandel. Während Modelle wie Lewin (Unfreeze, Change, Refreeze) oder ADKAR (Awareness, Desire, Knowledge, Ability, Reinforcement) den Prozess konzeptualisieren, bietet Kotters 8-Stufen-Modell einen praxisorientierten, sequenziellen Rahmen für die Führung dieses Wandels und dient daher als "Implementation Engine" für diese Arbeit²⁶.

Kotters Modell (Stufen: 1. Dringlichkeit schaffen, 2. Führungskoalition aufbauen, 3. Vision entwickeln, 4. Vision kommunizieren, 5. Hindernisse beseitigen, 6. Kurzfristige

²¹ "How to Scale GenAI in the Workplace".

 $^{^{22}\}mathrm{Ehd}$

 $^{^{23}}$ "Conceptualizing and Operationalizing Prompt Literacy for English ..."

²⁴Cyber Security Intelligence, Employee Resistance To AI Adoption.

²⁵Pandatron, Overcoming Resistance: How to Address Employee Fears About AI in the Workplace.

²⁶Prosci, Kotter's Change Management Theory Explanation and Applications.

Erfolge erzielen, 7. Beschleunigung aufrechterhalten, 8. Wandel verankern)²⁷ ist für die KI-Einführung besonders relevant:

- Stufe 3 (Vision entwickeln): Die Vision muss das "Warum" der KI-Einführung definieren und die in Kap. 2.2 genannten Ängste aktiv adressieren. Das Narrativ muss auf "Befähigung und Unterstützung" statt "Ersatz und Automatisierung" fokussieren²⁸.
- Stufe 5 (Hindernisse beseitigen): Diese Hindernisse sind nicht nur technischer Natur. Sie umfassen veraltete Prozesse (KI darf nicht auf ineffiziente Abläufe "aufgesetzt" werden), organisationale Silos und kulturellen Widerstand wie "AI Shaming"²⁹.

Kotters Modell muss im KI-Kontext spezifisch ergänzt werden. Die Stufen 5 (Hindernisse beseitigen) und 6 (Kurzfristige Erfolge) sind direkt von der Schaffung neuer Kompetenzen abhängig. Die Fähigkeit ("Ability" im ADKAR-Modell), die Technologie erfolgreich anzuwenden, ist an die in Kap. 2.2 identifizierte "Prompt Literacy" (FC) gekoppelt. Ein Change-Management-Prozess, der kein dediziertes Training für diese Kernkompetenz vorsieht, wird den Schwung verlieren, da die Mitarbeiter nicht in der Lage sind, die "kurzfristigen Erfolge" zu generieren.

2.4 Technologie- und Governance-Perspektive

Die erfolgreiche Implementierung von KI-Assistenten hängt von einem robusten technologischen und organisatorischen Rahmen ab, der über die reine Lizenzvergabe hinausgeht.

Tech Hygiene und Compliance Wie in Kap. 2.1 dargelegt, ist die "Tech Hygiene" – der Zustand der Informations-Governance (Datenqualität, Zugriffsrechte) – die Achillesferse der Enterprise-KI. Das Prinzip "Garbage In, Garbage Out" (GIGO) hat hier eine doppelte Bedeutung:

1. Sicherheit (Garbage In \rightarrow Leakage Out): Unstrukturierte, übermäßig geteilte Daten führen zu Compliance-Risiken³⁰.

²⁷Splunk, Kotter's 8 Steps for Leading Change in Organizations.

 $^{^{28},\!}$ The artificial intelligence applied to the professional world".

²⁹ "How to Scale GenAI in the Workplace".

³⁰Microsoft, Security for Microsoft 365 Copilot.

2. Akzeptanz (Garbage In → Garbage Out): Veraltete oder irrelevante Daten in der Wissensbasis führen zu ungenauen oder generischen KI-Antworten. Dies zerstört die Leistungserwartung (PE) und erhöht die Aufwandserwartung (EE) des Nutzers (siehe Kap. 2.2).

Die Vorbereitung auf Copilot ist daher primär eine Initiative zur Informations-Governance. Werkzeuge wie Microsoft Purview, die Datenklassifizierung (Data Classification), Vertraulichkeitsbezeichnungen (Sensitivity Labels) und Data Loss Prevention (DLP) ermöglichen, sind technische Voraussetzungen für einen sicheren und effektiven Betrieb³¹.

Operating Model (CoE und Champions) Um eine unkoordinierte, "wilde" Einführung zu verhindern, die zu Risiken und doppelter Aufwandsentwicklung führt, ist eine zentrale Governance-Struktur erforderlich. Als Best Practice hat sich ein "AI Center of Excellence" (CoE) etabliert, oft in einem hybriden "Hub-and-Spoke"-Modell. Der "Hub" (das CoE) setzt Standards, verwaltet die Technologie und die RAI-Prinzipien, während die "Spokes" (Geschäftsbereiche) Anwendungsfälle identifizieren und Innovation vorantreiben³². Dieses Modell balanciert zentrale Kontrolle mit geschäftlicher Agilität. Integraler Bestandteil dieses Modells sind die "KI-Champions" (Kap. 2.2), die als Multiplikatoren und First-Level-Support in den "Spokes" agieren.

KPI- und Policy-Rahmen Die Messung des Erfolgs (ROI) von generativer KI ist komplex. Ein reiner Fokus auf quantitative KPIs wie Lizenznutzung oder Zeitersparnis greift zu kurz³³. Ein umfassender Rahmen muss qualitative KPIs einbeziehen, wie die Verbesserung der Arbeitsqualität, Mitarbeiterzufriedenheit (Reduktion von Burnout) und Innovationsgeschwindigkeit. Fallstudien (z. B. Novo Nordisk) zeigen, dass die wahrgenommene Verbesserung der Arbeitsqualität oft stärker mit der Zufriedenheit korreliert als die reine Zeitersparnis³⁴.

2.5 Integriertes Bezugsrahmenmodell (Technologie-Organisation-Mensch)

Die vorangegangenen Abschnitte zeigen, dass die Einführung von KI-Assistenten nicht isoliert in einer Dimension betrachtet werden kann. Für die kritische Analyse

³¹Microsoft, Microsoft Purview data security and compliance protections for generative AI apps.

³²Dataiku, Best Practices for a Successful AI Center of Excellence.

³³Mehrotra, How to Measure the ROI of Generative AI in an Enterprise: A Playbook.

³⁴ "How to Scale GenAI in the Workplace".

in dieser Arbeit werden die Modelle zu einem integrierten T-O-M-Bezugsrahmen synthetisiert:

- T (Technologie): Diese Dimension umfasst die technische Bereitschaft. Sie wird definiert durch die Qualität der "Tech Hygiene" (Kap. 2.4), die Implementierung von Sicherheits-Tools (z. B. Purview) und die Erfüllung technischer Voraussetzungen (z. B. Update-Kanäle, Lizenzen).
- O (Organisation): Diese Dimension umfasst die strategische Steuerung. Sie wird definiert durch den Change-Prozess (Kotter, Kap. 2.3), die Governance-Struktur (z. B. CoE), das RAI-Framework und die Definition von Erfolgs-KPIs (Kap. 2.4).
- M (Mensch): Diese Dimension umfasst die individuelle Adoption. Sie wird durch die Konstrukte des UTAUT-Modells (Kap. 2.2) definiert, insbesondere durch den Konflikt zwischen Leistungserwartung (PE) und Aufwandserwartung (EE), den sozialen Einfluss (SI) und die kritische Notwendigkeit der "Prompt Literacy" als wichtigste Rahmenbedingung (FC).

Die zentrale Hypothese dieses Bezugsrahmens ist die Interdependenz der Dimensionen. Ein Versäumnis in der T-Dimension (z. B. schlechte "Tech Hygiene") führt unweigerlich zu einem Scheitern in der M-Dimension (z. B. "Garbage In, Garbage Out" zerstört die PE und EE), selbst wenn die O-Dimension (Change-Kommunikation) perfekt ausgeführt wird. Dieses T-O-M-Modell dient als analytische Linse für die Untersuchung der Fallstudie in Kapitel 4.

3 Forschungsdesign und Methodik

3.1 Designwahl und Forschungslogik

Embedded Single-Case-Study (KS) mit Mixed-Methods; Ziel ist die theoriegeleitete Erklärung (analytische Verallgemeinerung), nicht Populationsschätzung.

3.2 Datenquellen und Sampling

• Qualitativ: leitfadengestützte Interviews (Adoption/Programmleitung, Enablement/Training, IT, Endnutzer:innen).

- **Dokumente/Artefakte:** Trainings- und Meetingunterlagen, Governance-/Kommunikationsartefakte.
- Quantitativ: Nutzungs-/Lizenz-KPIs (sofern zugänglich), Feedback-Umfragen.

3.3 Operationalisierung der Variablen

UTAUT-Skalen (BI, PE, EE, SI, FC) kombiniert mit einem *Change-Intensitätsindex* (Kommunikationsfrequenz, Trainingsvolumen, Sichtbarkeit des Sponsorings); Outcome-Proxies (aktive Nutzerquote, Nutzungsfrequenz, Feature-Breite).

3.4 Auswertungsverfahren

Qualitatives thematisches Kodieren (deduktiv nach T–O–M, ergänzt um induktive Subcodes), Reliabilitätschecks; deskriptive Statistik und einfache Zusammenhangsanalysen (r/β) für Hypothesen-Sondierung.

3.5 Gütekriterien und ethische Aspekte

Triangulation, Member-Checks, Transparenz; DSGVO-konforme Anonymisierung und sichere Datenspeicherung.

4 Ergebnisse entlang der Theoriekonstrukte

4.1 Technologische Dimension (T)

Welche *Tech Hygiene*-Faktoren sind notwendig (App-Parität, Update-Kanäle, Identität/Policy)?

Case-Vignette C (KS) – Tech Hygiene Adressierte App-/Channel-Inkonsistenzen (Consumer- vs. Enterprise-App, Office-Kanal-Konsistenz) als notwendige Bedingung für verlässliche Nutzung.³⁵

³⁵Interne Meetingzusammenfassung, Copilot Adoption – Weekly Team Meeting, 16.04.2025.

4.2 Organisationale Dimension (O)

Sponsoring, Steering, Lizenz-Governance, Champions-Programm, KPI-Boards als Enabler struktureller Verankerung.

Case-Vignette D (KS) – Governance & Champions Steering-Vorbereitung und Survey-Insights (häufigste Nutzung: Chat, Outlook, Teams) dienten als Grundlage für Kommunikation, Learning und Champions.³⁶

4.3 Menschliche Dimension (M)

Erwartungsmanagement, Training, Community/Office Hours, Sprach-/Kontextaspekte (z. B. Meeting-Funktionen, Transkript-Policies).

Case-Vignette A (KS) – Training & Community Mehrsprachige Trainingsserie (EN/DE) mit Office Hours und Community-Nutzung als Beispiel für Facilitating Conditions.³⁷

Case-Vignette E (KS) – Responsible Use Pilotierung einer Meeting-Funktion (Facilitator) gekoppelt mit Transkript-Leitlinien aus Legal als *Trial-before-Scale*. 38

4.4 Zwischenfazit

Muster: $Tech\ Hygiene \to Enablement \to Habit\ Formation$ unter Governance-Dach; Störfaktoren werden über Feedback-Loops adressiert.

Case-Vignette B (KS) – Measurement & Lizenzen Aktive Nutzerzahlen und knappe Lizenzkontingente führten zu Lizenz-Review und Cleanup als Teil der Governance.³⁹

³⁶Interne Meetingzusammenfassung, Copilot Adoption – Weekly Team Meeting, 16. 04. 2025.

³⁷Interne Sessions, Onboarding / Plan & Organize / Summarize & Catch Up / Search & Analyze Create Content, März–April 2025.

³⁸Interne Meetingzusammenfassung, Copilot Adoption – Weekly Team Meeting, 28.05.2025.

³⁹Interne Projektsitzung, Copilot Adoption – Project Closure, 29.07.2025.

5 Diskussion

5.1 Theorieabgleich und Interpretation

Abgleich der Befunde mit UTAUT (Zusammenhänge BI/PE/EE/SI/FC) und Change-Logiken (Lewin/Kotter/ADKAR); Ergänzungsbedarf bei Data-/Prompt-Literacy als eigenständiger Hebel.

5.2 Designprinzipien und Generalisierung

- **DP1 Tech Readiness:** Vor dem Scale-out *Hygiene-Faktoren* schließen (App-Parität, Update-Kanal, Identity, DLP).
- **DP2 Governance & Capacity:** Lizenz-/Use-Case-Governance und eine *Adoption-* & *Learning-Fabrik* (Community, Office Hours, Champions, KPI-Boards).
- **DP3 Change Mechanisms:** Sichtbares Sponsoring, sequenzierte Pilotierung ($Trial \rightarrow Scale$), "Learning in public".
- **DP4 Measurement:** Duale Metriken ($Use \times Capability$), Feedback-Loops, Scorecards.

5.3 Implikationen für Forschung und Praxis

Skizze eines integrierten T-O-M×UTAUT×Change-Modells; Übertragbarkeit und Einbettung in Enterprise-Programme (z. B. Verzahnung mit Power Platform für wiederholbare Use-Cases).

5.4 Limitationen der Studie

Single-Case, eingeschränkter Datenzugang/Telemetrie, potenzielle Biases; Bedarf an Mehrfall- und Längsschnittstudien.

6 Fazit und Ausblick

6.1 Kernaussagen

Adoption generativer KI ist primär ein Governance- und Lernproblem – Technik ist notwendig, aber nicht hinreichend.

6.2 Handlungsempfehlungen

Kurzfristig (0–3 Monate): Rollen/Sponsoring klären, Kommunikationspaket, Pilot-Use-Cases, Sicherheits-/Policy-Check.

Mittelfristig (3–12 Monate): Skalierung, CoE/Adoption-Team, Trainingskatalog, KPI-Dashboard.

Langfristig: Kontinuierliche Verbesserung, Responsible-AI-Kontrollen.

6.3 Ausblick auf zukünftige Forschung

Hypothesenbündel für Mehrfall-Studien; Replikationen in unterschiedlichen Domänen/Regulatoriken.

A Interviewleitfaden (Auszug, T-O-M)

Technologie (T)

Welche technischen Voraussetzungen erwiesen sich als Enabler/Show-Stopper (App-Parität, Update-Kanäle, Identitäts-/Policy-Themen)?

Organisation (O)

Welche Governance-/Rollenentscheidungen (Sponsoring, Champions, KPIs) hatten spürbare Effekte?

Mensch (M)

Wie wirkten Trainings, Community und Kommunikation auf Selbstwirksamkeit und Nutzungsgewohnheiten?

B Umfrageinstrument (Auszug)

UTAUT-Items (BI, PE, EE, SI, FC; 5-Punkte-Likert) + Block *Change-Intensität* (Kommunikationsfrequenz, Trainingsstunden, Sponsoring-Sichtbarkeit) + Block *Adoption-Meetings* (Nützlichkeit, Gründe).

C Kodierleitfaden und zusätzliche Tabellen

Deduktive Hauptcodes (T–O–M), induktive Subcodes; Beispiel-Codings, Reliabilitätsübersicht (falls durchgeführt).

Literaturverzeichnis

- "Beyond Training: How Workers Discover Value in Enterprise AI". In: arXiv, 2502.13281v2 (2025). [Online; letzter Zugriff am 27.10.2025]. URL: https://arxiv.org/html/2502.13281v2.
- Cognizant. Responsible AI Principles. [Online; letzter Zugriff am 27.10.2025]. 2025. URL: https://www.cognizant.com/us/en/about-cognizant/responsible-ai.
- "Conceptualizing and Operationalizing Prompt Literacy for English …" In: *Monash University Research* (2025). [Online; letzter Zugriff am 27.10.2025]. URL: https://research.monash.edu/files/728753168/722509699-oa.pdf.
- Cyber Security Intelligence. Employee Resistance To AI Adoption. [Online; letzter Zugriff am 27.10.2025]. 2025. URL: https://www.cybersecurityintelligence.com/blog/employee-resistance-to-ai-adoption-8641.html.
- Dataiku. Best Practices for a Successful AI Center of Excellence. [Online; letzter Zugriff am 27.10.2025]. 2025. URL: https://blog.dataiku.com/best-practicesfor-center-of-excellence.
- "How to Scale GenAI in the Workplace". In: MIT Sloan Management Review (2025). [Online; letzter Zugriff am 27.10.2025]. URL: https://sloanreview.mit.edu/article/how-to-scale-genai-in-the-workplace/.
- Mehrotra, A. How to Measure the ROI of Generative AI in an Enterprise: A Playbook. [Online; letzter Zugriff am 27.10.2025]. 2025. URL: https://arvind-mehrotra.medium.com/how-to-measure-the-roi-of-generative-ai-in-an-enterprise-a-playbook-8e0f03fdd27e.
- Microsoft *Microsoft Purview data security and compliance protections for generative AI apps.* [Online; letzter Zugriff am 27.10.2025]. 2025. URL: https://learn.microsoft.com/en-us/purview/ai-microsoft-purview.
- Security for Microsoft 365 Copilot. [Online; letzter Zugriff am 27.10.2025]. 2025.
 URL: https://learn.microsoft.com/en-us/copilot/microsoft-365/microsoft-365-copilot-ai-security.
- What Can Copilot's Earliest Users Teach Us About AI at Work? [Online; letzter Zugriff am 27.10.2025]. 2025. URL: https://www.microsoft.com/en-us/worklab/work-trend-index/copilots-earliest-users-teach-us-about-generative-ai-at-work.
- Nemko. Responsible AI Framework: Enterprise Guide to Compliance. [Online; letzter Zugriff am 27.10.2025]. 2025. URL: https://digital.nemko.com/insights/responsible-ai-framework-in-business.
- Pandatron. Overcoming Resistance: How to Address Employee Fears About AI in the Workplace. [Online; letzter Zugriff am 27.10.2025]. 2025. URL: https://pandatron.

- ai/overcoming-resistance-how-to-address-employee-fears-about-ai-in-the-workplace/.
- Prosci. Kotter's Change Management Theory Explanation and Applications. [Online; letzter Zugriff am 27.10.2025]. 2025. URL: https://www.prosci.com/blog/kotters-change-management-theory.
- Splunk. Kotter's 8 Steps for Leading Change in Organizations. [Online; letzter Zugriff am 27.10.2025]. 2025. URL: https://www.splunk.com/en_us/blog/learn/kotter-8-steps-change.html.
- "The artificial intelligence applied to the professional world". In: *UPCommons* (2025). [Online; letzter Zugriff am 27.10.2025]. URL: https://upcommons.upc.edu/bitstreams/2c3313a4-f2df-49ee-9fd6-28abfb6c3708/download.
- "The Impact of AI on Developer Productivity: Evidence from GitHub Copilot". In: arXiv, 2302.06590 (2023). [Online; letzter Zugriff am 27.10.2025]. URL: https://arxiv.org/abs/2302.06590.
- "Understanding higher education students' adoption of generative AI technologies: An empirical investigation using UTAUT2". In: cedtech.net (2025). [Online; letzter Zugriff am 27.10.2025]. URL: https://www.cedtech.net/download/understanding-higher-education-students-adoption-of-generative-aitechnologies-an-empirical-16039.pdf.

Selbstständigkeitserklärung

Ich versichere hiermit, dass ich die vorliegende Arbeit mit dem Thema: Beispielhafter
Titel einer wissenschaftliche Arbeit im Nominalstil selbstständig verfasst und keine
anderen als die angegebenen Quellen und Hilfsmittel benutzt habe. Ich versichere
zudem, dass die eingereichte elektronische Fassung mit der gedruckten Fassung
übereinstimmt.

Spaichingen, den 29. Oktober 2025		
	Jamie Adler	