GTI Übungsblatt 5

Tutor: Marko Schmellenkamp

ID: MS1

Übung: Mi16-18

Max Springenberg, 177792

5.1

5.1.1

$$\begin{split} S &\rightarrow \epsilon | S' \\ S' &\rightarrow D | H \\ D &\rightarrow a D' b b \\ D' &\rightarrow a D' b b | \epsilon \\ H &\rightarrow a a H' b \\ H' &\rightarrow a a H' b | \epsilon \end{split}$$

5.1.2

$$\begin{split} S &\rightarrow \epsilon | V \\ V &\rightarrow str | num | true | false | null | A | O \\ O &\rightarrow \{\} | \{V_o\} \\ V_o &\rightarrow str : V | V_o, V_o \\ A &\rightarrow [] | [V_a] \\ V_a &\rightarrow V | V_a, V_a \end{split}$$

5.2

5.2.1

Die Menge V_e ergibt sich zu:

 $V_e = \{C, D, S, A, B\}$

Nicht erzeugende Variablen sind: ${\cal E}$

E und Alle Regeln, die E enthalten werden aus der Grammatik G_0 entfernt.

Der Erreichbarkeitsgraph, der erzeugenden Variablen ergibt sich zu:

nicht erreichbare Variablen sind: A

Daraus ergibt sich die Grammatik G_0^\prime mit:

 $S \to Bb|Da$

 $B \rightarrow bBD|Bb|C$

 $C \to c|D|B$

 $D \rightarrow a$

5.2.2

CNF 2:

 $S \to BBW_b|W_bW_c$

 $A \to B|AW_a|W_c$

 $B \to BABAW_a|BW_b|C$

 $C \to W_c|A|B$

CNF 3:

 $S \to BS_1|W_bW_c$

 $S_1 \to BW_b$

 $A \to B|AW_a|W_c$

 $B \to BB_1|BW_b|C$

 $B_1 \to AB_2$

 $B_2 \to BB_3$

 $B_3 \to AW_a$

 $C \to W_c|A|B$

 $W_a \to a$

 $W_b \to b$

 $W_c \to c$

5.2.3

CNF4: $V' = \{C, B, A\}$

 $S \to W_b A |W_b| B W_c |W_c|$

 $A \to B|AW_a|W_a|W_c$

 $B \to BW_a|W_a|BW_b|W_b|C$

 $C \to W_c |A|B$

 $W_a \to a$

 $W_b \to b$

 $W_c \to c$

CNF5:

 $U = \{(A, B), (A, W_a), (A, W_c), (A, W_b), (A, C)\}$

 $(B, W_a), (B, W_b), (B, C), (B, W_c), (B, A)$

 $,(C,W_c),(C,A),(C,W_a),(C,B),(C,W_b)$

 $S \to W_b A |b| B W_c |c|$

 $A \rightarrow BW_a|a|BW_b|b|c|A|AW_a$

 $B \to BW_a|a|BW_b|b|c|AW_a$

 $W_a \to a$

 $W_b \to b$

 $W_c \to c$

5.3

5.3.1

gegeben:

Grammatik ${\cal G}$ mit:

 $S \to aSbb|abb$

Sprache L mit:

 $\bar{L} = \{a^n b^m | n, m \in \mathbb{N} \land m \ge 2n\}$

z.z.:
$$\forall w \in L(G) : w = a^n b^m, n, m \in \mathbb{N}, m \ge 2n$$

Wir führen eine Induktion über die Wortlänge n=|w| mit der Menge der Wortlängen von L(G):

$$N_L = \{3n | n \in \mathbb{N}\}$$

Aussage:

$$\forall k \in N_L : w = a^n b^m, w \in L(G), |w| = n :, (n, m \in \mathbb{N}, m \ge 2n)$$

I.A.

k = 3, da abb kleinstes Element der Sprache L(G) ist

 $\nexists w \in L(G): w \not\equiv abb \wedge |w| = 3$, da $S \Rightarrow^G abb$ die Einzige Ableitung für Wörter der Länge 3 ist.

Für w = abb:

$$\#_a(w) = 1, \#_b(w) = 2$$

$$2 = 2 * 1$$

damit gilt auch $2 \ge 2 * 1$

Dadurch wurde gezeigt, dass die Aussage für k=3 gilt.

I.V.

Die Aussage gelte für $k' \in N_L$ beliebig, aber fest.

I.S.

$$k = k' + 3$$

 ${\it definiert\ seien:}$

$$w_k$$
, mit: $|w| = k, w_k \in L(G)$
 $w_{k'}$, mit: $|w| = k', w_{k'} \in L(G)$

```
nach der Ableitungsregel von S gilt:
```

$$w_k = aw_{k'}bb$$

$$\#_b(w_{k'}) \ge 2 * \#_a(w_{k'})$$

Daraus folgt:

$$\#_a(w_k) = 1 + \#_a(w_{k'}) \le 2 * (1 + \#_a(w_{k'})) = 2 + 2 * \#_a(w_{k'}) \stackrel{I.V.}{\le} 2 + \#_b(w_{k'}) = \#_b(w_k)$$

Damit wurde die Aussage für beliebige $k \in N_L$ gezeigt.

5.3.2

Annahme $L \subseteq L(G)$:

Daraus würde folgen:

 $\forall w \in L : w \in L(G)$

$$\begin{split} w &\stackrel{\text{def}}{=} abbb \\ w &\in L, w \not\in L(G) \not\downarrow \end{split}$$

w ist nicht in L(G), da L(G) keine Wörter der Länge 4 enthält.

Damit gilt die Aussage nicht.