9	Ch.7 - Generating functions & their applications
\$1	Finding generating functions for sequences
Def.	A generating function is a function that can be
	used to code a sequence (and were. We get different kinds of generating functions by using different methods of coding.
	different kinds of generating functions by using
	different methods of coding.
Det.	The (standard) generating function of the sequence
	(an) new is the function f(x) defined by
	$f(x) = \sum a_n x^n = a_0 + a_1 x + a_2 x^2 + \cdots$
	provided this power serves has radius of convergence > 0.
	The exponential generating function of Inner
	18 the function fo(X) defined by
	provided this power series has radius of convergence >0,
	provided this power series has radius of convergence >0,
Ex.1	Find the standard gen. hinc. of the sequence
(.4,7)	$\langle 1 \rangle_{neN}$ (b) $\langle 2 \rangle_{neN}$ (c) $\langle \frac{21}{3n} \rangle_{neN}$
Sol (a)	$f(x) = \sum_{i} q_{i} x^{n} = 1 + 1 \cdot x + 1 \cdot x^{2} + \cdots$
-	h = 0
	$= 1 + x + x^2 + \dots = (1-x)^{\frac{1}{2}} = \frac{1}{1-x}$
(6)	$f(x) = \sum_{n=1}^{\infty} q_n x^n = 1 + 2 \cdot x + 2 \cdot x^2 + \cdots$
	m - l
	$= 1 + (2x) + (2x)^{2} + \dots = (1 - (2x))^{2} = \frac{1}{1 - 2x}$
(c)	$f(x) = \sum_{n=0}^{\infty} \frac{(-1)^n}{3^n} \cdot x^n = 1 + (-\frac{1}{3})^2 + (-\frac{1}{3})^2 \times^2 + \cdots$
	$= 1 + \frac{(-X)}{3} + \frac{(-X)^2}{3} + \dots = \frac{1}{1 - (-X/3)} = \frac{3}{3 + X}$

Ex.2 Find the sequence coded by the standard generaling functions: (a) 1 (b) 20

(1+xx) 5+x Sol(a) $\frac{1}{1+\alpha x} = \frac{1}{1-(-\alpha x)} = \frac{1}{1+(-\alpha x)} + \frac{(-\alpha x)^2 + \dots + (-\alpha x)^n + \dots}{1+(-\alpha x)^2 + \dots + (-\alpha x)^n + \dots}$ Solan is the sequence coded by that. $= \sum_{n=0}^{\infty} \frac{4 \cdot (-1)^n}{5} \cdot x^n = 4 + 4 \cdot (-1)^n x + \dots + 4 \cdot (-1)^n x^n + \dots$ i. an = coeff. of x" in the exp. of $\frac{20}{5+x} = 4 \cdot \left(\frac{1}{5}\right)^n$.

i. $\left(4 \cdot \left(\frac{-1}{5}\right)^n\right)^n$ is the sequence coded by $\frac{20}{5+x}$. Note All of aux solutions were based on the fact that the standard generating function - codes the sequence {a">neN Ex.3 Find the standard generating functions of the seg. (a) (n) new (b) (n2) new (c) (n+1) new. Sol. (a) $(1-x)^{-1} = 1 + x + x^{2} + \cdots + x^{n} + \cdots$ $d(-x)^{-1} = d(1 + x + x^{2} + \cdots + x^{n} + \cdots)$ $(-1) \cdot (-1) \cdot (-1) = 0 + 1 \cdot x + 2x + - \cdot + nx + \cdot \cdot \cdot$ $\frac{1}{1-x^{2}} = 0 + 1 + 2x + \dots + nx^{n-1} + \dots$ $\frac{1}{1-x^{2}} = 0 + x + 2x^{2} + \dots + nx^{n} + \dots$

 $(1-x)^{-k} = \sum_{k=0}^{\infty} (-1)^{n} (-1)^{n} \binom{n+k-1}{n} \cdot x^{k} = \sum_{k=0}^{\infty} \binom{n+k-1}{n} \cdot x^{k}.$ So $(1-x)^{-k}$ rodes the sequence $\binom{n+k-1}{n}_{n \in \mathbb{N}}$ In particular, if we put k=-2 & k=-3 we get $(1-x)^{-2}$ codes the seg $\langle (n+1) \rangle = \langle n+1 \rangle_{n \in \mathbb{N}}$ and $(1-x)^{-3}$ codes the seg $\langle (n+2) \rangle = \langle (n+1) \rangle_{n \in \mathbb{N}}$ Prop 1 If (an men & (bn men) are two different seguences
then the standard generating functions of (an)
and (bn men are different. Proof. Suppose (an) & (bn) have the same standard

generating function, f(x) say. Then for each new,

an = coefficient of x" in the expansion of f(x) So (an moin = (bn)new So if (an) & (bn) are different then their standard gen. func. must be different, by the contrapositive law. Note: Not every sequence will have a standard generating function. For example, consider the sequence (n!) The standard gen. function of this seq. would have to be $0! + (!!) \times + (2!) \times^2 + ... + (n!) \times^1 + ... = \sum_{i=1}^{\infty} (n!) \times^n$ But since this power has radius of convergence 0, it is pretty much useless. So (n!) new does not have a standard gen. function.

This is partly why, exponential generating functions were introduced.

```
82 Using standard gen. func. to solve recurrence equations
 Ex. 1 Find the solution of the recurrence equation
a_n - 5a_{n-1} + 6a_{n-2} = 0 \text{ for } n \ge 2 \text{ with } a_0 = 1 & q_1 = 7
 Sol. Let f(x) = the standard generating function of \{a_n\}_{n \in \mathbb{N}}.

Then f(x) = a_0 + a_1 x + a_2 x^2 + \cdots + a_n x^n + \cdots.

-5xf(x) = -5q_1 x - 5a_2 x^2 - \cdots - 5a_{n-1} x^n - \cdots
\& 6x^2 f(x) = 6a_2 x^2 + \cdots + 6a_{n-2} x^n + \cdots
           f(x) = \frac{1+2x}{(1-5x+6x^2)} = \frac{1+2x}{(1-3x)(1-2x)} = \frac{A}{1-3x} + \frac{B}{1-2x}
           1+2x = A(1-2x) + B(1-3x).

Putting x = 1/3, gives us 1+2(1/3) = A(1-2/3) + 0

1: 5/3 = A/3 \implies A = 5.

Putting x = 1/2 gives us 1+2(1/2) = 0 + B(1-3/2)

1: 2 = -B/2 \implies B = -4.
            f(x) = \frac{A}{1-3x} + \frac{B}{1-3x} = \frac{5}{1-3x} - \frac{4}{1-2x}
                         = 5 \left[ 1 + (3x) + (3x)^{2} + \cdots + (3x)^{n} + \cdots \right]
                          -4[1+(2x)+(2x)^{2}+\cdots+(2x)^{n}+\cdots]
           ". a_n = coeff, of x'' in the expansion of f(x)
= 5 \cdot (3)^n - 4 \cdot (2)^n
```

```
Ex. 2 Find the solution of the recurrence equation a_n - 2a_{n-1} - 2 = 0 for n \ge 1 with a_0 = 1.
 Sol. First observe that the standard gen. func. of (-2) new 1s (-2)/(1-x), Now let f(x) = standard generating
       function of landness. Then
      f(x) = \frac{1+x}{(1-x)(1-2x)} = \frac{A}{1-x} + \frac{B}{1-2x}
Puting x=1, gives us 1+1=A(1-2)+0

\vdots, z=-A \Rightarrow A=-2
Putting x=1/2, gives us 1+1/2 = 0 + B(1-1/2)

\therefore 3/2 = B/2 \Rightarrow B = 3.
      = 3 \left[ 1 + (2x) + (2x)^2 + \dots + (2x)^n + \dots \right]
      -2[1+x+x^2+...+x^n+...]
A_n = coefficient of x^n in the expansion of f(x)
= 3.(2)^n - 2,
```

```
Ex.3 Find the solution of the recurrence equation

an - 6.4n-1+9an-2 = 0 for 172 with 40 = 2 & 9, = 21.
     Sol. Let f(x) = the standard generating function of \langle a_n \rangle_{n \in \mathbb{N}}.

Then f(x) = q_0 + q_1 \times + q_2 \times^2 + \dots + q_n \times^n + \dots
-6 \times f(x) = -6q_0 \times -6q_1 \times^2 - \dots -6q_{n-1} \times^n - \dots
+ 9 \times^2 f(x) = -9q_0 \times^2 + \dots + 9q_{n-2} \times^n - \dots
               \frac{1}{2} \cdot (1 - 6X + 9X^2) f(x) = a_0 + (9, -69)X + (92 - 64) + 990)X^2
              + \cdots + (q_n - 6q_{n-1} + 9q_{n-2}) x^n + \cdots
(1 - 3x)^2 f(x) = 2 + (21 - 6(2)) x + 0 + 0 + \cdots = 2 + 9x
               f(x) = \frac{2+9^{2}x}{(1-3x)^{2}} = \frac{A}{1-3x} + \frac{B}{(1-3x)^{2}}

\frac{1}{2} = A(1-3x) + B

Putting x = 13, gives us 2 + 9/3 = 0 + B
\frac{1}{3} = 2 + 3 = 5
               Putting 8 = 0 gives us 2 + 0 = A(1 - 0) + B

A = 2 - B = 2 - 5 = -3
                f(x) = \frac{A}{1-3x} + \frac{B}{(1-3x)^2} = \frac{-3}{1-3x} + \frac{5}{(1-3x)^2}
                                =-3[1+(3x)+(3x)^{2}+\cdots+(3x)^{n}+\cdots]
                         +5 \left[1+2.(3x)+3.(3x)^{2}+\cdots+(n+1),(3x)^{n}+\cdots\right]
                because \frac{1}{(1-3x)^2} = \sum_{n=0}^{\infty} {\binom{n+2-1}{n}} {\binom{3x}{n}} = \sum_{n=0}^{\infty} {\binom{n+1}{n}} {\binom{3x}{n}}^n
               i. a_n = coeff, of x^n in the expansion of f(x)
= -3. (3) + 5. (n+1). (3) = (5n+2). (3) ...
```

```
Ex.4 Find the solution of the recurrence equation (n+1)q_{n+1}-2q_n=5, 3^n/(n!) for n \ge 0 with q_0=2
 Sol. Let f(x) = the generating function of (a_n)_{n \in \mathbb{N}}. Then
f'(x) = 1 \cdot a_n + 2 \cdot a_2 \times + 3 \cdot a_3 \times^2 + \dots + (n+1)a_{n+1} \times^n + \dots
-2f(x) = -2a_0 - 2a_1 \times -2 \cdot a_2 \times^2 - \dots -2a_n \times^n - \dots \cdot k
-5e^{3x} = -5(3x)^2 - 5(8x) - 5(3x)^2 - \dots -5 \cdot 3 \times^n \times^n - \dots
               f'(x) - 2f(x) - 5e^{3x} = (1.a_1 - 2.a_0 - 5.\frac{3}{0!}) + (2.a_0 - 2a_1 - 5.\frac{3}{0!})x
+ \dots + \left[ (n+1)a_{n+1} - 2a_n - 5.\frac{3}{0!} \right] x^{n} + \dots
                f'(x) - 2f(x) = 5e^{3x} & f(0) = q_0 = 2

f'(x) - 2e^{2x}f(x) = 5e^{3x}e^{2x} = 5e^{x}

f'(x) - 2e^{2x}f(x) = 5e^{3x}e^{2x} = 5e^{x}
                  (, e-2xfa) = \int 5e^x dx = 5e^x + C
               f(x) = (5e^{x} + C)e^{2x} = 5e^{3x} + Ce^{2x}

Since f(0) = 2, 2 = 5 + C \Rightarrow C = -3.
                f(x) = 5e^{3x} + Ce^{2x} = 5e^{3x} - 3e^{2x}
                   = 5\left[1 + \frac{(3x)}{1!} + \frac{(3x)^2}{2!} + \dots + \frac{(3x)^n}{n!} + \dots\right]
                                     =3[1+\frac{(2x)}{11}+\frac{(2x)^2}{21}+\dots+\frac{(2x)^n}{n!}+\dots]
             1. a_n = coeff, of x^n in the expansion of f(x)
= 5. \frac{3^n}{n!} - \frac{3 \cdot 2^n}{n!}
= [5.(3)^n - 3.(2)^n]/n!
```

	(10)
. 2x2	To get 95 we just have to look at the ways in
	To get 95 we just have to look at the ways in which we can x5.
CAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA	$(1, X, X^4)$ $(1, X^3, X^2)$ $(1, X^3, 1)$ (X, X', X')
	$(X^{T}X^{2}I)$ $(X^{T}X,I)$
	So 95 = 6 and hence our answer is 6.
EX.3	Find the number of integer solutions of
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
y managan ang ang ang ang ang ang ang ang a	and $3 \leqslant \chi_2 \leqslant 5$.
Sol.	Let an = no, of solutions of integer solutions of
	X, + X2+X3 = n with 15 X, 54, 25 X255
	and 3 < ×3 < 6. Then an = no. of 8-comb.
***************************************	of [4.a, 56,6c] with at least 1a, at least
See British to the second of t	2 b's and least 3 c's = welf, of x in the exp. of
44 Ма. Анд долу эксперата достубування, чтоть диспубляция бого честь кого	(X+X2+X3+X4)(X2+X3+X+X5)(X3+X4+X5+X6)
	no, of a's no, of b's no, of e's
***************************************	Our answer is as which is obtained by
	looking at the ways we can get. x8.
	(x', x^2, x^5) (x', x^3, x^4) (x', x^4, x^5) (x^2, x^2, x^4)
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
	Hence our answer is 6.
	v.
	Recall that the exponential generating function
	of the sequence by was defined by
	Recall that the exponential generating function of the sequence $\langle b_n \rangle_{n \in \mathbb{N}}$ was defined by $f_{\Xi}(x) = \sum_{n=0}^{\infty} b_n \cdot \frac{x^n}{n!} = b_0 + b_1 \times + \frac{b_2}{2!} \times^2 + \cdots$
والمراجعة والمسترين والمراجعة والمراجعة والمراجعة والمراجعة والمراجعة والمراجعة والمراجعة والمراجعة والمراجعة	
Ex.4	Find the exponential generating function of (1) (-2) new (b) (n!) new (c) ((-3)" n!) new
	(1) (-2) new (b) (n!) new (c) ((-3)", n!) new

 $\frac{(x', x'', x'')}{(1!, 2!, 2!)}, \frac{(x'', x'', x'')}{(2!, 1!, 2!)}, \frac{(x'', x'', x'')}{(2!, 2!, 1!)},$ $\left(\frac{X^{2}}{3!}, 1, \frac{X^{2}}{2!}\right), \left(\frac{X^{2}}{3!}, \frac{X^{2}}{1!}, \frac{X^{2}}{1!}\right), \left(\frac{X^{2}}{3!}, \frac{X^{2}}{2!}, \frac{1}{2!}\right).$ So $a_5 = coeff$, of x^5 in the expansion above $= 5! \left[\frac{1}{1! \, 2! \, 2!} + \frac{1}{2! \, 2! \, 2!} + \frac{1}{3! \, 2!} \right]$ $= 5! \left[3. \frac{1}{4} + 2. \frac{1}{12} + \frac{1}{6} \right] = 5! \left[9 + 2 + 2 \right]$ Ex.6 Find the number of 4-permutations of the multi-set [2.9, 0.6, 3.c] Sol. Let $q_n = no$, of 4 - perm. of $[2.q, \infty.b, 3.c]$ Then $q_n = coeff$, of x^{4} in the exponential exp of $(1 + x + x^{2})(1 + x + x^{2} + x^{3} + x^{4} + \cdots)(1 + x + x^{2} + x^{3})$ To get ay, look at the term with X4 $\left(\frac{1}{1!}, \frac{\chi'}{3!}, \frac{\chi^3}{3!}\right), \left(\frac{1}{2!}, \frac{\chi^2}{2!}\right), \left(\frac{\chi^3}{3!}, \frac{\chi}{1!}\right), \left(\frac{\chi}{1!}, \frac{\chi^3}{3!}\right), -\frac{\chi^3}{1!}$ $\left(\begin{array}{c} \left(\begin{array}{c} X & X \\ \end{array}, \begin{array}{c} X \\ \end{array}, \begin{array}{c} X \\ \end{array}, \begin{array}{c} X^2 \\ \end{array}, \left(\begin{array}{c} X \\ \end{array}, \begin{array}{c} X^2 \\ \end{array}, \begin{array}{c} X^2 \\ \end{array}, \begin{array}{c} X^2 \\ \end{array}, \left(\begin{array}{c} X \\ \end{array}, \begin{array}{c} X \\ \end{array}, \left(\begin{array}{c} X \\ \end{array}, \begin{array}{c} X \\ \end{array}, \left(\begin{array}{c} X \\ \end{array}, \begin{array}{c} X \\ \end{array}, \left(\begin{array}{c} X \\ \end{array}, \left(\begin{array}{c} X \\ \end{array}, \begin{array}{c} X \\ \end{array}, \left(\begin{array}{c} X \\ \end{array}, \left$ (学, 兴,), (学, 学, 1), (小, 4, 1), 1. 94 = 4! [1/3! + 2/2! + 3/1! + 1/3! + 1/1/2! + 1/2/1! +113! + 21 21 + 211111 + 2121 + 41] =4+6+4+4+12+12+4+6+12+6+2=71.

	(13)
Ch.7 84.	More applications of Generating Functions
inakada anggi aas ya gagajaranda wakina qay pakilaka didaha 1984 ya kalisha bada anggi abada a	In Chapter 2 we found the number of non-negative
nali diliki kenanyajny magajakakifa dianore ilanoh dianoh dianoh ilanoh ilanoh ilanoh ilanoh ilanoh ilanoh ila	integer solutions of the equation x,++x = n
	by finding the number of ways of arranging n
-tima digini maggayan di angar magaman digini angan gang dan principalisi digini di	by finding the number of ways of arranging n "1"'s and (k-1)"+"'s in a row. Below is another
	way of solving this problem.
30 ki Ci Sideniq qaaqa kari 30 ka Sid Al Sid Sida maasa kari Al Sid Sida maasa kari Sida Al Sida Al Sida Al Sida Sida Al Sida Sida Maasa kari Sida Sida Al Sida Sida Al Sida Sida Maasa kari Sida Sida Sida Sida Sida Sida Sida Sid	
Ex .1	Find the no. of non-negative integer solutions of the equation $X_1 + X_2 + \cdots + X_k = n$.
	the equation $X_1 + X_2 + \cdots + X_k = n$.
Sol-	No, of non-neg. integer solutions of the equation
	= no. of n comb. of $[\infty, a_1, \infty, a_2, \dots, \infty, a_k]$
FOUNDATION AND RELIGIOUS AND	= coefficient of xn in the expansion of
	$(1+x+x^2+\cdots)(1+x+x^2+\cdots) - \cdots - (1+x+x^2+\cdots)$
	no, of ais no da's no of a's
ONTO SAN SOCIAL AND STREET STREET SAN SOCIAL	= coeff. of x" in the exp. of [1/(1-x)]x
	= coeff. of x" in the exp. of [1+(-x)]-k
	= coeff. of x^n in $\sum_{i=1}^{\infty} (-k) \cdot (x)^n = \sum_{i=1}^{\infty} (n+k-i) x^n$
	= coeff. of x^n in the exp. of $[\frac{1}{(1-x)}]^k$ = coeff. of x^n in the exp. of $[1+(-x)]^{-k}$ = coeff. of x^n in $\sum_{n=0}^{\infty} (-k) \cdot (-k)^n = \sum_{n=0}^{\infty} (n+k-i) x^n$ = $\binom{n+k-1}{n} = \binom{m+k+1}{k-1}$.
Ex.2	Find the no. of non-negative integer solutions of the equation $X_1 + 2X_2 + 4X_3 = 10$
	of the equation $X_1 + 2X_2 + 4X_3 = 10$
Sol	let $y_1 = x_1$, $y_2 = 2x_2$, and $y_3 = 4x_3$. Then
	no, of non-neg, integer solutions of x1+ZX2+4X3=10
	no. of non-neg. integer solutions of x,+zx2+4x3=10 = no. of non-neg. integer solutions of y,+y2+y2=16 with y2 being even & y3 being a multiple of y
	with 42 being even & 43 being a multiple of 4
	= coeff. of x'0 in the expansion of
	= coeff. of x'^0 in the expansion of $(1+x+x^2+)(1+x^2+x^4+)(1+x^4+x^8+)$
Trada expenses Trada expenses	

 $\frac{(x^{10} \cdot 1.1)}{(x^{4} \cdot x^{2} \cdot x^{4})}, (x^{8} \cdot x^{2} \cdot 1), (x^{6} \cdot x^{4} \cdot 1), (x^{6} \cdot 1. x^{4})}{(x^{4} \cdot x^{2} \cdot x^{4})}, (x^{2} \cdot x^{8} \cdot 1), (x^{2} \cdot x^{4} \cdot x^{4}), (x^{2} \cdot 1. x^{8}), (1. x^{10} \cdot 1)}$ $(1. x^{6} \cdot x^{4}), (1. x^{2} \cdot x^{8})$ So the answer is 12. Ex3 If we have large numbers of pennies, nickels, dimes, and quarters - in how many ways can make change for 40 cents. Sol. | Answer = no. of non-neg. integer solutions of $X_1 + 5X_2 + 10X_3 + 25X_4 = 40$ = coefficient of x^{40} in the expansion of $(1+x+x^2+...)(1+x^5+x'^0+...)(1+x'+x'+...)(1+x^2+x'^0+...)$ = coeff. of x^{40} in exp. of $\frac{1}{1-x}$, $\frac{1}{1-x^5}$, $\frac{1}{1-x^{25}}$ This can be computed just as in Ex. 2 or we can use a computer program to extract the coefficient of x^{40} in the exp. of $(1-x)^{1/2}(1-x^{5})^{-1/2}(1-x^{25})^{-1/2}$. Answer = no, of inversion seq. (i,,..,is) with i, tiz+ m+is=7 = no. of non-neg. integer solutions of the equation $X_1 + X_2 + X_3 + X_4 + X_5 = 7$ with 0 ≤ x; ≤ 5-i for =1, z,...,5. = coeff, of x7 in the expansion of Value of i, value fiz val. fiz

 $(X^{4}X^{3}.1.11), (X^{4}X^{2}X.1.1), (X^{4}X^{2}X.1.1), (X^{4}XX.X.1), (X^{4}1.X^{2}X.1)$ $(x^3, x^3, x_1, x_1), (x^3, x^3, x_2, x_1), (x^3, x^2, x_2, x_1)$ (X^{3}, X, X^{2}, X, I) , $(X^{2}, X^{3}, X^{2}, I, I)$, $(X^{2}, X^{3}, X, X, X, I)$, $(X^{2}, X^{2}, X^{2}, X, I, I)$. So the answer is 14. Ex. 5 Find the number of ways to color the squares of a 1 by n chessboard with red, green, or blue if an even no. of squares must be colored red. Sol. Answer = no. of n-perm. of [o.R, o.G, o.B] with R occurring an even no, of times = coeff. of x^n in $(1+x^2+x^4+...)(1+x+x^2+...)(1+x+x^2+...)$ = coeff. of $\frac{x}{n!}$ in exp. of $\frac{e^{x} - x}{e^{x}}$, i.e., $\frac{1}{2}(e^{3x} + e^{x})$ = coeff. of $\frac{x^n}{n!}$ in $\frac{1}{2} \left(\sum_{n=0}^{\infty} \frac{3^n \cdot x^n}{n!} + \sum_{n=0}^{\infty} \frac{1}{n!} \cdot \frac{x^n}{n!} \right) = \frac{(3^n + 1)}{2}$ Find the number of ways to color the squares of a 16yn chessboard with red, green, or blue if an even no. of squares must be colored red & at least one colored blue, Sol. Answer = no. of n-perm. of [o.R, o.G, o.B] with R occurring an even no, of times & B at least once $= coeff. of \frac{x^n}{n!} in \left(1 + x^2 + x^4 + ...\right) \left(1 + x + x^2 + ...\right) \left(x + x^2 + ...\right)$ = coeff. of $\frac{x^n}{n!}$ in exp. of $\frac{e^x + e^x}{2} \cdot e^x \cdot (e^x - i)$ = coeff. of x^n in exp, of $(e^{3x} - e^{2x} + e^{x} - 1)/z$ = coeff. of x^n in $1/\frac{2}{n!} = \frac{2}{n!} = \frac{2}{n!}$ $= \begin{cases} (3^{n} - 2^{n} + 1)/2, & \text{if } n \ge 1 \\ 0, & \text{if } n = 0 \end{cases}$ END.