Regression Analysis Model Selection

Nicoleta Serban, Ph.D.

Professor

Stewart School of Industrial and Systems Engineering

Model Search

About This Lesson

Bias-Variance Tradeoff

- Variable Selection: Bias vs. Variance
 - Many covariates
 - Low bias, high variance
 - Few covariates
 - · High bias, low variance
 - Too few covariates
 - High bias, high variance
- Prediction Risk: Measure of the Bias-

Variance Tradeoff

$$R(S) = \frac{1}{n} \sum_{i=1}^{n} E(\widehat{Y}_{i}(S) - Y_{i}^{*})^{2}$$

with $\hat{Y}_i(S)$ the fitted response for submodel S and Y_i^* the future observation

Given an estimate of the prediction risk for a submodel S, choose the submodel with the smallest prediction risk.

→ How to search over all submodels?

Georgia Tech

Model Search

- If p is the number of predicting variables, there are 2^p possible submodels
 - If p is small
 - Fit all submodels
 - If p is large
 - Search using heuristics/greedy search
- Stepwise Regression
 - Forward
 - · Start with no predictors, add one at a time
 - Backward
 - · Start with all predictors, drop one at a time
 - Forward-Backward
 - Add and drop one variable at a time iteratively

Georgia Tech

Model Search

- Stepwise regression is a greedy algorithm. It does not guarantee to find the model with the best score.
- Forward stepwise regression is preferable to backward stepwise regression.
- Forward stepwise regression does not necessarily select the same model as the one selected using backward stepwise regression.

Georgia Tech

Forward Stepwise Regression

- 1. Select criterion for model selection (e.g., AIC)
- 2. Establish minimum model, and compute its criterion value, \mathcal{C}_0
- 3. Fit p marginal regressions for p predictors, V_j $(j=1,\cdots,p)$, that are not in minimum model
 - C_j is the criterion value for the model that includes the *j*-th predictor, V_j
 - If possible, select predictor $P_1 = V_k$ whose inclusion yields the <u>smallest</u> criterion value where $C_k < C_0$
 - If P₁ exists, add it to the minimum model and continue; otherwise, stop
- 4. Fit p-1 regressions, and use the same method to test if another predictor should be added
 - Regressions will now be based on models with the previous predictors, including P_1 , and with each V_i additionally included one at a time, for $j=1,\cdots,(k-1),(k+1),\cdots,p$
 - If possible, select predictor P₂ = V_I whose inclusion yields the <u>smallest</u> criterion value where C_I < C_k
 - ullet C_l is based on the current regressions; C_k is based on the regressions from the previous step
 - If P₂ exists, add it to the model and continue; otherwise, stop
- Continue adding predictors one at a time until the criterion does not improve

Backward Stepwise Regression

- Select criterion for model selection (e.g., AIC)
- Establish the minimum model and the predictors that must be included
- 3. Fit full model with p additional predictors not in the minimum model, V_j $(j=1,\cdots,p)$, and compute its criterion value, C_F
- 4. Fit p regressions, removing one predictor, V_i $(j = 1, \dots, p)$, each time
 - C_i is the criterion value for the model that excludes the j-th predictor, V_i
 - If possible, select predictor P₁ = V_k whose removal yields the <u>smallest</u> criterion value where C_k ≤ C_F
 - If P₁ exists, remove it from the full model and continue; otherwise, stop
- 5. Fit p-1 regressions, and use the same method to test if another predictor should be removed
 - Regressions will now be based on models with the previous predictors, excluding P₁, and with each remaining V_j removed one at a time, for j = 1, ···, (k 1), (k + 1), ···, p
 - If possible, select $P_2 = V_l$ whose removal yields the <u>smallest</u> criterion value where $C_l \le C_k$
 - C_l is based on the current regressions; C_k is based on the regressions from the previous step
 - If P2 exists, remove it from the model and continue; otherwise, stop
- 6. Continue discarding predictors one at a time until the criterion does not improve

Forward vs Backward Stepwise Regression

Backward stepwise regression:

- Cannot be performed if there are more predictors than the sample size (p > n)
- Is more computationally expensive than forward stepwise regression
- Will select larger models if p is large

