AMENDMENTS TO THE CLAIMS

This listing of claims will replace all prior versions and listings of claims in the application.

1. (Previously presented) A compound of Formula (WHH)

wherein

R¹ is H, C₁₋₆alkyl, C₁₋₆haloalkyl, C₁₋₆alkoxy, C₁₋₆thioalkyl, cyano, halo, C₃₋₇cycloalkyl, -C₁₋₆alkylene-C₃₋₇cycloalkyl, C₂₋₆alkenyl or C₃₋₆alkynyl; R⁸ is O-C₁₋₄alkyl, -N(CH₃)(OCH₃);

X is C;

Y is C;

X1 is N:

Y1 is N:

Y² is CH₂;

J is CH2 or a bond;

 Z^1 is CH₂ or C(O); and

Z is N-V, wherein V is phenyl, 2-pyridyl or 3-pyridyl substituted with two to three of the same or different substituents selected from the group consisting of C₁₋₄alkyl, C₁₋₄alkoxy, C₁₋₆thioalkyl, C₁₋₄haloalkyl, halogen, N(C₁-C₄alkyl)₂ and CN.

2. (Previously presented) A process for preparing a compound of Formula (WHH)

$$0 = \begin{bmatrix} R^{8} & Y^{2} - J \\ Y^{1} & Z^{1} \\ X & X^{1} \end{bmatrix}$$
 (WHH)

wherein

 R^1 is H, C_{1-6} alkyl, C_{1-6} haloalkyl, C_{1-6} alkoxy, C_{1-6} thioalkyl, cyano, halo, C_{3-7} cycloalkyl, $-C_{1-6}$ alkylene- C_{3-7} cycloalkyl, C_{2-6} alkenyl or C_{3-6} alkynyl; R^8 is $O-C_{1-4}$ alkyl, $-N(CH_3)(OCH_3)$;

X is C;

Y is C;

 X^1 is N;

Y1 is N:

Y² is CH₂;

J is CH2 or a bond;

Z1 is CH2 or C(O); and

Z is N-V, wherein V is phenyl, 2-pyridyl or 3-pyridyl substituted with two to three of the same or different substituents selected from the group consisting of C_{1-4} alkyl, C_{1-4} alkoxy, C_{1-6} thioalkyl, C_{1-4} haloalkyl, halogen, $N(C_1-C_4$ alkyl)₂ and CN;

comprising reacting a compound of Formula (UFF)

wherein

 Z, Z^1 , J and Y^2 are defined as for Formula (WHH);

with a compound of Formula (UFF')

RECEIVED
CENTRAL FAX CENTER
OCT 0 4 2006

wherein

 R^1 , R^8 , X, Y, X^1 and Y^1 are defined as for Formula (WHH); in the presence of a suitable base and polar aprotic solvent to yield a compound of Formula (VGG)

wherein

 R^1 , R^8 , X, Y, X^1 , Y^1 , Y^2 , J, Z^1 and Z are defined as for Formula (WHH); and reacting said compound of Formula (VGG) with a high-boiling point polar aprotic solvent and a suitable silver salt under suitably high temperature.

3. (Currently Amended) A compound of Formula (Z')

wherein

R¹ is H, C₁₋₆alkyl, C₁₋₆haloalkyl, C₁₋₆alkoxy, C₁₋₆thioalkyl, cyano, halo, C₃₋₇cycloalkyl, -C₁₋₆alkylene-C₃₋₇cycloalkyl, C₂₋₆alkenyl or C₃₋₆ alkynyl; R⁸ is O-C₁₋₄alkyl, -N(CH₃)(OCH₃);

X is C:

Y is C;

X1 is N:

Y1 is N;

Y² is CH or CR⁵;

33° AMIASIS COM

R⁵ is selected from the group consisting of -CN, -C₁₋₄alk(en)ylene-CN, halo, C₁₋₆alkyl, C₂₋₆alkenyl, C₃₋₆alkynyl, C₁₋₆ haloalkyl, aryl, -C₁₋₄alk(en)ylene-aryl, -C₁₋₄alk(en)ylene-heterocyclo, heterocyclo, -C₁₋₄alk(en)ylene- amino, -C₁₋₄alkylene-amino-C₁₋₄alkyl, aryl-amino, -amino-(C₁₋₆alk(en)yl)₁₋₂, -amino-aryl, -amino-heterocyclo, C₁₋₆alkoxy, -O-aryl and -O-heterocyclo;

 Z^1 is C(O); and

Z is N-V, wherein V is phenyl, 2-pyridyl or 3-pyridyl substituted with two to three of the same or different substituents selected from the group consisting of C₁₋₄alkyl, C₁₋₄alkoxy, C₁₋₆ thioalkyl, C₁₋₄haloalkyl, halogen, N(C₁-C₄alkyl)₂ and CN.

4. (Currently Amended) A process for preparing a compound of Formula (Z')

$$\begin{array}{c|c}
R^8 & Y^2 \\
\hline
O & X & X^1
\end{array}$$

$$0 \xrightarrow{\mathbb{R}^{8}} \mathbb{Z}^{1}$$

$$\mathbb{Z}^{1}$$

$$\mathbb{Z}^{1}$$

$$\mathbb{Z}^{1}$$

$$\mathbb{Z}^{1}$$

wherein

R¹ is H, C₁₋₆alkyl, C₁₋₆haloalkyl, C₁₋₆alkoxy, C₁₋₆thioalkyl, cyano, halo, C₃₋₇cycloalkyl, -C₁₋₆alkylene C₃₋₇cycloalkyl, C₂₋₆alkenyl or C₃₋₆ alkynyl; R⁸ is O-C₁₋₄alkyl, -N(CH₃)(OCH₃);

X is C;

Y is C;

 X^{l} is N;

Y1 is N:

Y² is CH or CR⁵;

R⁵ is selected from the group consisting of -CN, -C₁₋₄alk(en)ylene-CN, halo, C₁₋₆alkyl, C₂₋₆alkenyl, C₃₋₆alkynyl, C₁₋₆haloalkyl, aryl, -C₁₋₄alk(en)ylene-aryl, -C₁₋₄alk(en)ylene-heterocyclo, heterocyclo, -C₁₋₄alk(en)ylene- amino, -C₁₋₄alkylene-amino-C₁₋₄alkyl, aryl-amino, -amino-(C₁₋₆alk(en)yl)₁₋₂, -amino-aryl, -amino-heterocyclo, C₁₋₆alkoxy, -O-aryl and -O-heterocyclo;

 Z^1 is C(0); and

Z is N-V, wherein V is phenyl, 2-pyridyl or 3-pyridyl substituted with two to three of the same or different substituents selected from the group consisting of C₁₋₄alkyl, C₁₋₄alkoxy, C₁₋₆ thioalkyl, C₁₋₄haloalkyl, halogen, N(C₁-C₄alkyl)₂ and CN;

comprising reacting a compound of Formula (X')

$$Y^2$$
 X' Y' Y'

wherein

 Z, Z^1 and Y^2 are defined as for Formula (Z');

with a compound of Formula (UFF')

$$O = \begin{bmatrix} X & X^1 & X^1 & X & X^1 & X^1$$

wherein

 R^1 , R^8 , X, Y, X^1 and Y^1 are defined as for Formula (Z');

in the presence of a suitable base and polar aprotic solvent to yield a compound of Formula

$$P^{8}$$
 Y^{2}
 ZH
 Y^{2}
 P^{3}
 Y^{2}
 Y^{3}
 Y^{2}
 Y^{3}
 Y^{2}
 Y^{3}
 Y^{2}
 Y^{3}
 Y^{3}

wherein

 R^1 , R^8 , X, Y, X^1 , Y^1 , Y^2 , Z^1 and Z are defined as for Formula (Z^*); and reacting said compound of Formula (Y^*) with a high-boiling point polar aprotic solvent and a suitable silver salt under suitably high temperature.

5. (Previously Presented) A compound of Formula (AA')

$$0 = \begin{cases} X & Y^2 \\ Y & Z^1 \\ X & X^1 \end{cases}$$
 (AA')

wherein

 R^1 is H, C_{1-6} alkyl, C_{1-6} haloalkyl, C_{1-6} alkoxy, C_{1-6} thioalkyl, cyano, halo, C_{3-7} cycloalkyl, $-C_{1-6}$ alkylene- C_{3-7} cycloalkyl, C_{2-6} alkenyl or C_{3-6} alkynyl; R^8 is $O-C_{1-4}$ alkyl, $-N(CH_3)(OCH_3)$;

X is C;

Y is C:

 X^{l} is N:

Y1 is N:

Y² is CH or CR⁵:

R⁵ is selected from the group consisting of -CN, -C₁₋₄alk(en)ylene-CN, halo, C₁₋₆alkyl, C₂₋₆alkenyl, C₃₋₆alkynyl, C₁₋₆haloalkyl, aryl, -C₁₋₄alk(en)ylene-aryl, -C₁₋₄alk(en)ylene-heterocyclo, heterocyclo, -C₁₋₄alk(en)ylene- amino, -C₁₋₄alkylene-amino-C₁₋₄alkyl, aryl-

amino, -amino-(C₁₋₆ alk(en)yl)₁₋₂, -amino-aryl, -amino-heterocyclo, C₁₋₆ alkoxy, -O-aryl and -O-heterocyclo;

 Z^1 is CR^7 :

wherein R7 is chloro or bromo; and

Z is N-V, wherein V is phenyl, 2-pyridyl or 3-pyridyl substituted with two to three of the same or different substituents selected from the group consisting of C₁₋₄alkyl, C₁₋₄alkoxy, C₁₋₆thioalkyl, C₁₋₄haloalkyl, halogen, N(C₁-C₄alkyl)₂ and CN.

6. (Currently Amended) A process for preparing a compound of Formula (AA')

$$0 = \begin{bmatrix} X^{1} & Y^{2} & Z^{1} \\ Y^{1} & Z^{1} & X^{1} \end{bmatrix}$$
 (AA')

wherein

R¹ is H, C₁₋₆alkyl, C₁₋₆haloalkyl, C₁₋₆alkoxy, C₁₋₆thioalkyl, cyano, halo, C₃₋₇cycloalkyl, -C₁₋₆alkylene-C₃₋₇cycloalkyl, C₂₋₆alkenyl or C₃₋₆ alkynyl; R⁸ is O-C₁₋₄alkyl, -N(CH₃)(OCH₃);

X is C;

Y is C:

 X^{l} is N;

Y1 is N:

Y² is CH or CR⁵:

R⁵ is selected from the group consisting of -CN, -C₁₋₄alk(en)ylene-CN, halo, C₁₋₆alkyl, C₂₋₆alkenyl, C₃₋₆alkynyl, C₁₋₆haloalkyl, aryl, -C₁₋₄alk(en)ylene-aryl, -C₁₋₄alk(en)ylene-heterocyclo, heterocyclo, C₁₋₄alk(en)ylene-amino, -C₁₋₄alkylene-amino-C₁₋₄alkyl, aryl-amino, -amino-(C₁₋₆alk(en)yl)₁₋₂, -amino-aryl, -amino-heterocyclo, C₁₋₆alkoxy, -O-aryl and -O-heterocyclo;

 Z^1 is CR^7 :

wherein R7 is chloro or bromo; and

Z is N-V, wherein V is phenyl, 2-pyridyl or 3-pyridyl substituted with two to three of the same or different substituents selected from the group consisting of C_{1-4} alkyl, C_{1-4} alkoxy, C_{1-6} thioalkyl, C_{1-4} haloalkyl, halogen, $N(C_1-C_4$ alkyl)₂ and CN;

comprising reacting a compound of Formula (Z')

$$\begin{array}{c|c}
 & R^8 \\
\hline
0 & Y^1 \\
\hline
R^1 & X^1
\end{array}$$

$$\begin{array}{c|c}
 & R^8 \\
\hline
0 & Y^1 \\
\hline
X^1 & X^1
\end{array}$$

$$\begin{array}{c|c}
 & Z^1 \\
\hline
& R^1 & X^1
\end{array}$$

$$\begin{array}{c|c}
 & X^1 & X^1
\end{array}$$

wherein

 R^1 , R^8 , X, Y, X^1 , Y^2 , and Z are defined as for Formula (AA'); and Z^1 is C(O);

with phosphoryl trichloride or phosphoryl tribromide, neat or with a suitable solvent and without a base or with a suitable base.