

* Vascular flutter" in patient with arkinosclerosis, plague in
* Vascular flutter" in patient with arteriosclerois, plaque in arteries obstructing blood flow
constant of the field
$\rightarrow V \longrightarrow V \rightarrow V$
s protestion in disputes
restriction in diameter
V incorporate la como De Air i carallante
v increases because Q = Av is constant
Police was to to 1/1 to 10 h
P decreases due to Venturi effect
orkery walls collapse congretely
20 10
v zero, flow skops
Pincreases again
arkery open again
* Aneurysin: weaker spot in artery - wall balloom outward
, ,
TA
v decreases -> Pincreases -> can cause already extended
v decreases → Pincreases → can cause already extended artery wall to rupture
U T

* Power in fluid flow: if P+ pgh + 1 pv2 is energy/volume
then energy volume = energy = power volume time time
G(P+pgh+1pv2)Q = Power
Example: how much power does the heart need to supply the blood flow? Q = 83 cm ³ / $\Delta P = 110$ mm Hg
Example: how much power does the heart need to supply the blood flow? $Q = 83 \text{ cm}^3/5$ $AP = 110 \text{ mm Hg}$ $v = 30 \text{ cm/s} $ a casos heart $h = 5 \text{ cm}$ $GPQ = (110 \text{ mm Hg}) \left(\frac{10^5 Pa}{760 \text{ mm Hg}}\right) \left(\frac{33 \times 10^{-6} \text{ m}^3/5}{5}\right) = 1.2 \text{ W}$
G(1902)Q = [(1050 kg/m3)(0.3 m/s)2(83 x 10-6 m3/)=0.004 W
Co (ggh)Q = (1050 kg/m3)(9.8 m/s2)(0.05 m)(83 x 10-6 m3/s) = 0.04 W
Co total power of 1.244W, most of the power goes & increasing the pressure
,

-> F = P.A = (3. 2 × 10.5 Pa)(1 × 10-4 pm²) = 32 N