Homework No. 1 - Introduction & Growth of Functions

Neha Goud Baddam 11519516

Q1. [10 points] Give asymptotic upper and lower bounds for T(n) in each of the following recurrences. Assume that T(n) is constant for $n \le 3$. Make your bounds as tight as possible, and justify your answers. (Hint: You can use the best matching case of Master Method to determine the tight bounds of Θ notation)

- (a) $T(n) = 2T(n/3) + n \lg n$
- (b) T(n) = 3T(n/5) + lg2 n
- (c) T(n) = 7T(n/2) + n 3
- (d) $T(n) = T(\sqrt{n}) + \Theta(\lg \lg n)$
- (e) T(n) = 10T(n/3) + 17n 1.2

$$T(n) = a T(\frac{n}{b}) + \theta (n^k \log^p n)$$

Master's Theorem

Here, $a \ge 1$, $b \ge 1$, $k \ge 0$ and p is a real number

<u>Case-01:</u>

If $a > b^k$, then $T(n) = \theta (n^{log_b a})$

Case-02:

If $a = b^k$ and

- If p < -1, then $T(n) = \theta (n^{log_b a})$
- If p = -1, then $T(n) = \theta$ ($n^{log}b^a$. log^2n)
- If p > -1, then $T(n) = \theta (n^{log_b a}.log^{p+1}n)$

Case-03:

If $a < b^k$ and

- If p < 0, then $T(n) = O(n^k)$
- If $p \ge 0$, then $T(n) = \theta (n^k \log^p n)$

Homework No. 1 - Introduction & Growth of Functions

Neha Goud Baddam 11519516

a)
$$T(n) = 2 T(n/3) + n \lg n (a < b^{x})$$
 $a \ge 2, b \ge 3, k \ge 1, p \ge 1$
 $As p \ge 0, h \ge 0, k \ge 1, p \ge 1$
 $As p \ge 0, h \ge 0$

Homework No. 1 - Introduction & Growth of Functions

Neha Goud Baddam 11519516

Q2. [5 points] By using the substitution method, show that the solution of the recurrence T(n) = T(n-1) + n is O(n 2). (Exercise 4.3-1)

2. Assume
$$T(1) = O(1)$$

Guers $O(n^2)$, Assume $T(n) \le Cn^2$, Kan

Prove $T(n) \le Cn^2$
 $T(n) = T(n-1) + n \le cn^2$
 $\le C(n-1)^2 + n = Cn^2 - 2cn + C + n$
 $\le Cn^2 + (1-2c)n + C$
 $Cn^2 \ge Cn^2 + (1-2c)n + C$

It holds for $C > \frac{1}{2}$

Homework No. 1 - Introduction & Growth of Functions

Neha Goud Baddam 11519516

Q3. [5 points] Use a recursion tree to determine a good asymptotic upper bound on the recurrence $T(n) = T(n/2) + n\ 2$. You can use the substitution method to verify your answer. (Exercise 4.4-2)

Homework No. 1 - Introduction & Growth of Functions

Neha Goud Baddam 11519516

Homework No. 1 - Introduction & Growth of Functions

Neha Goud Baddam 11519516

Q4. [5 points] Use Strassen's algorithm to compute the matrix product and show your work. (Exercise 4.2-1)

```
(13 (68
```

75) 42)

Output from the PA1 code:

```
Enter matrix size for matrix A and matrix B: 2
Enter numbers in the first matrix A, one after the other: 1
Enter numbers in the first matrix A, one after the other: 3
Enter numbers in the first matrix A, one after the other: 7
Enter numbers in the first matrix A, one after the other: 5
Enter numbers in the second matrix B, one after the other: 6
Enter numbers in the second matrix B, one after the other: 8
Enter numbers in the second matrix B, one after the other: 4
Enter numbers in the second matrix B, one after the other: 2
Below is the matrix_A [[1. 3.]
 [7. 5.]]
Below is the matrix_B [[6. 8.]
[4. 2.]]
Strassens Matrix multiplication result for above matrix_A and matrix_B is :
[[18 14]
 [62 66]]
```

Validation:

Homework No. 1 - Introduction & Growth of Functions

Neha Goud Baddam 11519516

A =
$$\begin{bmatrix} 1 & 3 \\ 7 & 5 \end{bmatrix}$$

B = $\begin{bmatrix} 6 & 8 \\ 4 & 2 \end{bmatrix}$

All = 1

Al2 = 3

B12 = 8

A21 = 7

A22 = 5

B21 = 4

B22 = 2

Suma:

S₁ = B12 - B22 = 8-2 = 6

S₂ = A11 - A12 = 1+3 = 4

S₃ = A21 + A22 = 7+5 = 12

S₄ = B21 - B11 = 4-6 = 2-2

S₅ = A1 + A22 = 1+5 = 6

S₆ = B1 + B22 = 6+2 = 8

S₇ = A12 - A22 = 3-5 = -2

S₈ = B21 + B22 = 4+2 = 6

S₉ = A1 - A21 = 1-7 = -6

S₁₀ = B1 + B12 = 6+8 = 14

Result matrix: C₁₁ = P₅ + P₄ = P₂ + P₆ = 18

C₂₂ = P₁ + P₂ = 6+8 = 14

C₂₁ = P₃ + P₄ = 72 - 10 = 62

C₂₂ = P₅ + P₇ - P₃ - P₄ = 48+6-72+84 = 66

C = $\begin{bmatrix} 18 & 14 \\ 62 & 66 \end{bmatrix}$