Chapter 1

An Introduction to PyTorch

1.1 A Fun Example

Efficient machine learning processes data in batches, and our model will expect a batch of data. We use PyTorch's unsqueeze() function to add a dimension to our tensor and create a batch of size 1. The use of model.to(device) and batch.to(device) sends our model and input data to the GPU if available, and executing model(batch.to(device)) runs our classifier.

Chapter 2

Tensors

2.1 Creating Tensors

Use torch.arange() when the step size is known. Use torch.linspace() when the number of elements is known. You can use torch.tensor() to create tensors from array-like structures such as lists, NumPy arrays, tuples, and sets. To convert existing tensors to NumPy arrays and lists, use the torch.numpy() and torch.tolist() functions, respectively.

2.1.1 Data Types

To reduce space complexity, you may sometimes want to reuse memory and overwrite tensor values using in-place operations. To perform in-place operations, append the underscore ($_{-}$) postfix to the function name. For example, the function y.add_(x) adds x to y, but the results will be stored in y.

2.1.2 Creating Tensors from Random Samples

Table: Random sampling functions

2.1.3 Creating Tensors Like Other Tensors

You may want to create and initialize a tensor that has similar properties to another tensor, including the dtype, device, and layout properties to facilitate calculations. Many of the tensor creation operations have a similarity function that allows you to easily do this. The similarity functions will have the postfix _like. For example, torch.empty_like(tensor_a) will create an empty tensor with the dtype, device, and layout properties of tensor_a. Some examples of similarity functions include empty_like(), zeros_like(), full_like(), rand_like(), and rand_int_like().

2.2 Tensor Operations

Table 2.1: Tensor creation functions	
Description	
Creates a tensor from an existing data structure	
Creates a tensor from uninitialized elements based	
on the random state of values in memory	
Creates a tensor with all elements initialized to 0.0	
Creates a tensor with all elements initialized to 1.0	
Creates a 1D tensor of values over a range with a common step value	
common step value	
Creates a 1D tensor of linearly spaced points be-	
tween the start and end	
Creates a 1D tensor of logarithmically spaced	
points between the start and end	
Creates a 2D tensor with ones on the diagonal and	
zeros everywhere else	
Creates a tensor filled with fill_value	
Loads a tangen from a socialized piolic fit-	
Loads a tensor from a serialized pickle file Saves a tensor to a serialized pickle file	