

Chapter 15: Chi-square tests

Learning objectives

After studying this chapter you should be able to:

- identify how and when to use the chi-square test for contingency tables 1.
- 2. use the Marascuilo procedure for determining pairwise differences when evaluating more than two proportions
- 3. apply the chi-square test of independence
- 4. use the chi-square test to evaluate the goodness of fit of a set of data to a specific probability distribution
- 5. use the chi-square distribution to test for the population variance or standard deviation

15.1 (a) For
$$df = 12$$
 and $\alpha = 0.01$, $\chi^2 = 26.217$

(b) For
$$df = 23$$
 and $\alpha = 0.025$, $\chi^2 = 38.076$
(c) For $df = 24$ and $\alpha = 0.05$, $\chi^2 = 36.415$

(c) For
$$df = 24$$
 and $\alpha = 0.05$, $\chi^2 = 36.415$

15.2 (a) For
$$df = 4$$
 and $\alpha = 0.95$, $\chi^2 = 0.711$

(b) For
$$df = 26$$
 and $\alpha = 0.975$, $\chi^2 = 13.844$

(a) For
$$df = 4$$
 and $\alpha = 0.95$, $\chi^2 = 0.711$
(b) For $df = 26$ and $\alpha = 0.975$, $\chi^2 = 13.844$
(c) For $df = 15$ and $\alpha = 0.99$, $\chi^2 = 5.229$

15.3 (a), (b)

	Α	В	Total
1	$o_i = 20$	$o_i = 30$	50
	$e_i = 20$	$e_i = 30$	
	Chi-sq contrib= 0	Chi-sq contrib= 0	
2	$o_i = 30$	$o_i = 45$	75
	$e_i = 30$	$e_i = 45$	
	Chi-sq contrib= 0	Chi-sq contrib= 0	
Total	50	75	125

(c)
$$\chi^2_{STAT} = \sum_{\text{All Cells}} \frac{(f_0 - f_e)^2}{f_e} = 0 + 0 + 0 + 0 = 0. \text{ Since } \chi^2_{STAT} < 3.841, \text{ it is not significant at the 5% level of significance with 1 } df.$$

15.4 (a)

	Α	В	Total
1	$o_i = 15$ $e_i = 13.86$	$o_i = 24$ $e_i = 25.14$	39
2	$o_i = 12$ $e_i = 13.14$	$o_i = 25$ $e_i = 23.86$	37
Total	27	49	76

(b) Decision rule: If $\chi^2 >$ 6.635, reject H_0 at the 1% significance level with 1 df. Test statistic: $\chi^2_{STAT} = \sum_{\text{All Cells}} \frac{(f_0 - f_e)^2}{f_e} = 0.298833$

Decision: Since χ_S^2 $_T$: = 0.29883 is not greater than the critical value of 6.635, it is not significant at the 1% level of significance.

15.5 (a) Excel output:

Observed Frequencies				
	Gend	Gender		
Prefer black cars?	Men	Women	Total	
Yes 13 5				
No	37	45	82	
Total	50	50	100	

Expected Frequencies				
	Gend			
Prefer black cars?	Men	Total		
Yes	9	9	18	
No	41	41	82	
Total	50	50	100	

Data			
Level of Significance	0.05		
Number of Rows	2		
Number of Columns	2		
Degrees of Freedom	1		

Results		
Critical Value	3.841459	
Chi-Square Test		
Statistic	4.336043	
<i>p</i> -Value 0.037314		
Reject the null hypothesis		

Expected frequency assumption is met.

 H_0 : $\pi_1 = \pi_2$ H_1 : $\pi_1 \neq \pi_2$ where population: 1 = males, 2 = females

Decision rule: df = 1. If $\chi^2_{STAT} > 3.8415$, reject H_0 at 5% significance level.

Test statistic: $\chi^2_{STAT} = 4.3360$

Conclusion: Since $\chi^2_{STAT} = 4.3360$ is greater than the upper critical bound of 3.8415, reject H_0 . There is evidence to conclude that there is significant difference between the proportions of males and females who prefer black cars at the 5% level of significance.

(b) Excel output:

Observed Frequencies				
	Gend	Gender		
Prefer black cars?	Men Women		Total	
Yes 52 20		72		
No	148	180	328	
Total	200	200	400	

Expected Frequencies				
	Gender			
Prefer black cars?	fer black cars? Men Women		Total	
Yes	36	36	72	
No	164	164	328	
Total	200	200	400	

Data		
Level of Significance	0.05	
Number of Rows	2	
Number of Columns	2	
Degrees of Freedom	1	

Results		
Critical Value	3.841459	
Chi-Square Test		
Statistic	17.34417	
<i>p</i> -Value 3.12E-05		
Reject the null hypothesis		

Expected frequency assumption is met.

 H_0 : $\pi_1 = \pi_2$ H_1 : $\pi_1 \neq \pi_2$ where population 1 = males, 2 = females

Decision rule: df = 1. If $\chi^2_{STAT} > 3.8415$, reject H_0 at 5% significance level.

Test statistic: $\chi^2_{STAT} = 17.3442$

Conclusion: Since $\chi^2_{STAT} = 17.3442$ is greater than the upper critical bound of 3.8415, reject H_0 . There is sufficient evidence to conclude that there is significant difference between the proportions of males and females who prefer black cars at the 5% level of significance.

(c) The chi-square test statistic is more likely to be significant for larger sample sizes, as demonstrated in the increase in the test statistic value between (a) and (b).

15.6 (a) Excel output:

Observed Frequencies				
	Country of Origin			
Own shares?	China Japan		Total	
Yes 14 36			50	
No	320	80	400	
Total	334	116	450	

Expected Frequencies				
	Country			
Own shares?	China	Total		
Yes	37.1111	12.8889	50	
No	296.8889	103.1111	400	
Total	334	116	450	

Data	
Level of Significance	0.05
Number of Rows	2
Number of Columns	2
Degrees of Freedom	1

Results	
Critical Value	3.8415
Chi-Square Test Statistic	62.8123
<i>p</i> -value	0.0000
Reject the null hypothesis	

 H_0 : $\pi_1 = \pi_2$ H_1 : $\pi_1 \neq \pi_2$ where population: 1 = China, 2 = Japan

Decision rule: df = 1. If $\chi^2_{STAT} > 3.8415$, reject H_0 at 5% significance level.

Test statistic: $\chi^2_{STAT} = 62.8123$

Conclusion: Since $\chi^2_{STAT} = 62.8123$ is greater than the upper critical bound of 3.8415, reject H_0 . There is sufficient evidence to conclude that there is significant difference in share ownership between business executives in China and Japan at the 5% level of significance.

- (b) The p-value is 0.000. The probability of obtaining a test statistic of 62.8123 or larger when the null hypothesis is true is about 0.000.
- (c) We can conclude that there is overwhelming evidence in this sample to reject the null hypothesis, that business executives in both countries are equally likely to own shares on the stock market.

15.7 Excel output:

Observed Frequencies			
	Workers		
		White-	
Mode of Negotiation	Blue-collar	collar	Total
Collective Bargaining	112	23	135
Individual Contracts	53	25	78
Total	165	48	213

Expected Frequencies			
	Workers		
Mode of Negotiation	Blue-collar	White-collar	Total
Collective Bargaining	104.5775	30.4225	135
Individual Contracts	60.4225	17.5775	78
Total	165	48	213

Data		
Level of Significance	0.05	
Number of Rows	2	
Number of Columns	2	
Degrees of Freedom	1	

Results	
Critical Value	3.8415
Chi-Square Test Statistic	6.3840
<i>p</i> -value	0.0115
Reject the null hypothesis	

 H_0 : $\pi_1 = \pi_2$ H_1 : $\pi_1 \neq \pi_2$ where population: 1 = blue-collar, 2 = white-collar

Decision rule: df = 1. If $\chi^2_{STAT} > 3.8415$, reject H_0 at 5% significance level.

Test statistic: $\chi^2_{STAT} = 6.3840$

Conclusion: Since $\chi^2_{STAT} = 6.3840$ is greater than the upper critical bound of 3.8415, reject H_0 . There is sufficient evidence to conclude that there is significant difference in negotiation mode preference between blue- and white-collar workers at the 5% level of significance.

15.8 (a) Excel output:

Observed Frequencies			
	Tyres		
Punctured?	Sandtrak	Standard	Total
Yes	6	18	24
No	114	162	276
Total	120	180	300

Expected Frequencies			
	Tyres		
Punctured?	Sandtrak	Standard	Total
Yes	9.6000	14.4000	24
No	110.4000	165.6000	276
Total	120	180	300

Data	
Level of Significance	0.01
Number of Rows	2
Number of Columns	2
Degrees of Freedom	1

Results		
Critical Value	0.0002	
Chi-Square Test Statistic	2.4457	
<i>p</i> -value	0.1179	
Reject the null hypothesis		

 H_0 : $\pi_1 = \pi_2$ H_1 : $\pi_1 \neq \pi_2$ where population: 1 = Sandtrak, 2 = standard

Decision rule: df = 1. If $\chi^2_{STAT} > 0.0002$, reject H_0 at 99% significance level.

Test statistic: $\chi_{STAT}^2 = 2.4457$

Conclusion: Since $\chi^2_{STAT} = 2.4457$ is higher than the lower critical bound of 0.0002, reject H_0 . There is sufficient evidence to conclude that there is significant difference in the puncture resistance between the SDsandtrak and standard tyre at the 1% level of significance. It can be concluded at the 1% level that the new SDsandtrak can be advertised to reduce the rate of punctures in off-road driving over the SD standard tyre.

(b) The level of significance is chosen by the practitioner according to the situation and the potential consequences of failing to reject a false null hypothesis. In this case, driver and passenger safety are considered when choosing a large significance level.

15.9 (a) Excel output:

Observed Frequencies			
Location			
Response	Adelaide	Perth	Total
Yes	73	98	171
No	138	117	255
Total	211	215	426

Expected Frequencies			
Location			
Response	Adelaide	Perth	Total
Yes	84.6972	86.3028	171
No	126.3028	128.6972	255
Total	211	215	426

Data			
Level of Significance	0.05		
Number of Rows	2		
Number of Columns	2		
Degrees of Freedom	1		

Results		
Critical Value	3.8415	
Chi-Square Test Statistic	5.3473	
<i>p</i> -value	0.0208	
Reject the null hypothesis		

 H_0 : $\pi_1 = \pi_2$ H_1 : $\pi_1 \neq \pi_2$ where population: 1 = Adelaide, 2 = Perth

Decision rule: df = 1. If $\chi^2_{STAT} > 3.8415$, reject H_0 at 5% significance level.

Test statistic: $\chi_{STAT}^2 = 5.3473$

Conclusion: Since $\chi^2_{STAT}=5.3473$ is greater than the upper critical bound of 3.8415, reject H_0 . There is sufficient evidence to conclude that there is significant difference in negotiation mode preference between the two treatment groups in the proportion of responses to the survey at the 5% level of significance.

- (b) The p-value is 0.0208. The probability of obtaining a test statistic of 5.3473 or larger when the null hypothesis is true is about 0.0208.
- (c) Adelaide financial planners are incentivised to participate whereas Perth financial planners are not. This introduces a new element of bias to the study.

15.10 (a)
$$df = (r-1)(c-1) = (2-1)(5-1) = 4$$

(b)
$$\chi_{STAT}^2 = 9.488$$

(c)
$$\chi_{STAT}^2 = 13.277$$

15.11 (a) Excel output for expected frequencies of each cell

	Α	В	С	Total
1	16.0000	15.0857	32.9143	64
2	19.0000	17.9143	39.0857	76
Total	35	33	72	140

(b)
$$\chi_{STAT}^2 = \sum_{\text{All Cells}} \frac{(f_0 - f_e)^2}{f_e} = 2.945159$$

This is not statistically significant at the 1% level.

The Marascuilo procedure is only appropriate if we were to reject the null (c) hypothesis.

15.12 (a) Excel output for expected frequencies of each cell

	A	В	U	Total
1	25.0000	25.0000	25.0000	75.0000
2	25.0000	25.0000	25.0000	75.0000
Tot				
al	50	50	50	150

(b)
$$\chi^2_{STAT} = \sum_{\text{All Cells}} \frac{(f_0 - f_e)^2}{f_e} = 4.000$$

This is not statistically significant at the 5% level.

15.13 (a)
$$H_0: \pi_1 = \pi_2 = \pi_3 = \pi_4 = \pi_5$$

$$H_1: \ \pi_1 \neq \pi_2 \neq \pi_3 \neq \pi_4 \neq \pi_5$$

where population: 1 = Australia, 2 = New Zealand, 3= China, 4= Japan,

Decision rule: df = 5 - 1 = 4. If $\chi^2_{STAT} > 9.488$, reject H_0 at 5% significance level.

Test statistic:
$$\chi_{STAT}^2 = \sum_{i} \frac{(f_{0i} - f_{si})^2}{f_{si}} = \frac{\left(265 - 100\right)^2}{100} + \frac{\left(240 - 100\right)^2}{100} + \frac{\left(190 - 100\right)^2}{100} + \frac{\left(270 - 100\right)^2}{100} + \frac{\left(245 - 100\right)^2}{100} = 1048.5$$

Conclusion: Since $\chi^2_{STAT} = 1,049$ is greater than the upper critical bound of 9.488, reject H_0 . There is sufficient evidence to conclude that there is

significant difference in the proportion of households who own more than 1 laptop computer at the 5% level of significance.

- (b) The p-value is 0.000. The probability of obtaining a test statistic of 62.8123 or larger when the null hypothesis is true is about 0.000.
- (c) Excel output of the Marascuilo procedure:

Marascuilo Procedure

Group	Sample Proportions
1	0.53
2	0.48
3	0.38
4	0.54
5	0.49

	MARASCUILO TABLE			
Droportions	Absolute Differences	Critical	Statistically	
Proportions	Differences	Range	Significant?	
Group 1 - Group	0.05	0.13706290	NI -	
2	0.05	5	No	
Group 1 - Group		0.14381877		
3	0.15	5	Yes	
Group 1 - Group		0.13284457		
4	0.01	1	No	
Group 1 - Group		0.13636891		
5	0.04	1	No	
•				
Group 2 - Group		0.14708038		
3	0.1	6	No	
•	0.1	0.13636891	INO	
Group 2 - Group	0.06	0.13030691	No	
4	0.06	-	INO	
Group 2 - Group	0.07	0.13980443		
5	0.97	5	Yes	
Group 3 - Group		0.14315753		
4	0.16	6	Yes	
Group 3 - Group		0.14643387		
5	0.11	6	No	
-1	*	-		
ICroup 4 Croup		0 12567126		
Group 4 - Group	0.05	0.13567136	NI a	
5	0.05	8	No	

Australia is significantly different from China; New Zealand is significantly different from South Korea; and China is significantly different from Japan.

15.14 (a) Excel output:

Observed Frequencies					
	Age group				
Major shopping day	Under 35	Total			
Saturday 48 56 24				128	
A day other than Saturday	152	144	176	472	
Total 200 200 200					

Expected Frequencies					
	Age group				
Major shopping day	Under 35 35-54 Over 54 Total				
Saturday	Saturday 42.6667 42.6667 42.6667				
A day other than Saturday	157.3333	157.3333	157.3333	472.0000	
Total	200	200	200	600	

Data			
Level of Significance	0.05		
Number of Rows	2		
Number of Columns	3		
Degrees of Freedom	2		

Results			
Critical Value	5.991465		
Chi-Square Test Statistic	16.525424		
	2.5796E-		
<i>p</i> -value	04		
Reject the null hypothesis			

There is evidence of a significant difference between the age groups with respect to major grocery shopping day at the 5% significance level.

(b) The p-value is 0.0003. The probability of obtaining a sample that gives rise to a test statistic that is equal to or more than 16.5254 is 0.0003 if the null hypothesis is true.

(c)

Pairwise Comparisons	Critical Range	$ p_j - p_{j'} $
1 to 2	0.1073	0.04
2 to 3	0.0959	0.16*
1 to 3	0.0929	0.12*

There is a significant difference between the 35–54 and over 54 groups, and between the under 35 and over 54 groups.

(d) The stores can use this information to target their marketing to the specific group of shoppers on Saturday and the days other than Saturday.

15.15 (a) $H_0: \pi_1 = \pi_2 = \pi_3$ $H_1:$ at least one proportion differs

where population 1 = under 35, 2 = 35-54, 3 = over 54

Decision rule: df = (c - 1) = (3 - 1) = 2. If $\chi^2_{STAT} > 5.9915$, reject H_0 .

Test statistic: $\chi^2_{STAT} = 4.1314$

Decision: Since $\chi^2_{STAT} = 4.1314$ is less than the upper critical bound of 5.9915, do not reject H_0 . There is not enough evidence to show that there is a significant relationship between age and major grocery shopping day.

(b) p-value = 0.1267. The probability of obtaining a sample that gives rise to a test statistic that is equal to or more than 4.1314 is 0.12.67 if the null hypothesis is true.

The larger the sample size, the more power the χ^2 test has and, hence, there is a higher likelihood of rejecting a false null hypothesis.

15.16 (a) Excel output:

	Observed Frequencies					
		Age group	(yrs)			
Prefer low-						
carb beer	18-25	26-45	46-65	>65	Total	
Yes	45	45	23	12	125	
No	32	43	31	18	124	
Total	77	88	54	30	249	

Expected Frequencies					
	Age group ((yrs)			
Prefer low-carb					
beer	18-25	26-45	46-65	>65	Total
					125.000
Yes	38.6546	44.1767	27.1084	15.0602	0
					124.000
No	38.3454	43.8233	26.8916	14.9398	0
Total	77	88	54	30	249

Data	·
Level of	
Significance	0.05
Number of Rows	2
Number of Columns	4
Degrees of Freedom	3

Results			
Critical Value	7.814728		
Chi-Square Test			
Statistic	4.621503		
	2.0171E-		
<i>p</i> -value	01		
Do not reject the null			
hypothesis			

At the 5% level of significance there is not a statistically significant difference in the proportion of people of different ages who prefer low-carbohydrate beer.

(b) Since we were not able to reject the null hypothesis at this level the Marascuilo procedure is not relevant.

15.17 (a) Excel output:

Observed Frequencies					
	University Course				
	Arts	Business	Engineering	Science	Total
ATAR < 90	164	172	68	120	524
ATAR > 90	172	195	73	139	579
Total	336	367	141	259	1103

Expected Values					
	University Course				
	Arts	Business	Engineering	Science	Total
ATAR < 90	159.62	174.35	66.98	123.04	524
ATAR > 90	176.38	192.65	74.02	135.96	579
Total	336	367	141	259	1103

Data	
Level of	
Significance	0.05
Number of Rows	2
Number of Columns	4
Degrees of Freedom	4

Results			
Critical Value	7.8147		
Chi-Square Test Statistic	0.4619682 69		
Statistic	0.2152330		
<i>p</i> -Value 8			
Do not reject the null			
hypothesis			

(b) The p-value is greater than 5%. The probability of obtaining a test statistic of 0.462 or larger when the null hypothesis is true is about 21.52%.

Observed Frequencies						
	Country					
Free WiFi available?	UK Australia US China Malaysia			Total		
No	38	43	59	52	60	252
Yes	62	57	41	48	40	248
Total	100	100	100	100	100	500

Expected Frequencies						
	Country					
Free WiFi available?	UK	Australia	US	China	Malaysia	Total
Yes	50.4	50.4	50.4	50.4	50.4	252
No	49.6	49.6	49.6	49.6	49.6	248
Total	100	100	100	100	100	500

Data	
Level of Significance	0.025
Number of Rows	2
Number of Columns	5
Degrees of Freedom	4

Results			
Critical Value	11.14329		
Chi-Square Test			
Statistic	15.08897		
<i>p</i> -Value 0.00452			
Reject the null hypothesis			

(b) The p-value is 0.00452. The probability of obtaining a test statistic of 15.08897 or larger when the null hypothesis is true is about 0.00452.

15.19 Excel output of the Marascuilo procedure:

	Sample
Group	Proportions
1	0.3
2	0.3
3	0.4

MARASCUILO TABLE

Proportions	Absolute Differences	Critical Range	Statistically Significant?
Group 1 - Group		0.02188766	
2	0	2	No
Group 1 - Group		0.02109147	
3	0.1	9	Yes
10 2 0		0.00100147	
Group 2 - Group		0.02109147	
3	0.1	9	Yes

Travellers to North Queensland appear to be significantly different from travellers to Bali and Fiji at the 95% significance level.

15.20 Excel output:

Observed Frequencies					
	Country of	of Origin			
Political voting intention	Australia	Overseas	Total		
Liberal	12	23	35		
Labor	23	28	51		
National	8	12	20		
Other	4	8	12		
Total	47	71	118		

Expected Frequencies					
	Country of	of Origin			
Political voting intention	Australia	Overseas	Total		
Liberal	13.9407	21.0593	35		
Labor	20.3136	30.6864	51		
National	7.9661	12.0339	20		
Other	4.7797	7.2203	12		
Total	47	71	118		

Data				
Level of Significance	0.05			
Number of Rows	4			
Number of Columns	2			
Degrees of Freedom	3			

Results				
Critical Value	7.814728			
Chi-Square Test Statistic	1.251070			
<i>p</i> -value 7.4078E-0				
Do not reject the null hypothesis				

There is not enough evidence to conclude that there is a statistically significant difference between political party voting intentions, at the 5% significance level.

15.21
$$df = (r-1)(c-1) = (5-1)(6-1) = 4*5 = 20$$

- 15.22 (a)
- $\chi^2 = 21.026$ $\chi^2 = 18.549$ $\chi^2 = 26.217$ $\chi^2 = 18.307$ $\chi^2 = 13.277$ (b)
 - (c)

15.23 Excel output:

Observed Frequencies						
Age group (yrs)						
Prefer low-carb						
beer	18-25	26-45	46-65	>65	Total	
Yes	45	45	23	12	125	
No	32	43	31	18	124	
Total	77	88	54	30	249	

Expected Frequencies						
	Age grou	p (yrs)				
Prefer low-carb						
beer	18-25	26-45	46-65	>65	Total	
Yes	38.6546	44.1767	27.1084	15.0602	125.0000	
No	38.3454	43.8233	26.8916	14.9398	124.0000	
Total	77	88	54	30	249	

Data				
Level of				
Significance	0.05			
Number of Rows	2			
Number of Columns	4			
Degrees of				
Freedom	3			

Results	5			
Critical Value 7.814728				
Chi-Square Test				
Statistic	4.621503			
	2.0171E-			
<i>p</i> -value 01				
Do not reject the null				
hypothesis				

 $H_{\rm o}$: There is no relationship between age group and preference for low-carb beer.

 ${\cal H}_{\rm l}$: There is a relationship between age group and preference for low-carb beer.

Decision rule: df = (r - 1)(c - 1) = (2 - 1)(4 - 1) = 3. If $\chi^2_{STAT} > 7.815$, reject H_0 .

Test statistic: $\chi^2_{STAT} = 4.622$

Decision: Since χ^2_{STAT} = 4.622 is less than critical level of 7.815, do not reject H_0 at 5% significance level. There is not enough evidence to support the alternative hypothesis that states that age group and preference for low-carbohydrate beer are dependent events.

15.24 (a) Excel output:

Observed Frequencies					
		Stress			
Commuting time	High	Moderate	Low	Total	
Under 15 min	9	5	18	32	
15-45 min	17	8	28	53	
Over 45 min	18	6	7	31	
Total	44	19	53	116	

Expected Frequencies					
	Stress				
Commuting time	High	Moderate	Low	Total	
Under 15 min	12.138	5.241	14.621	32	
15-45 min	20.103	8.681	24.216	53	
Over 45 min	11.759	5.078	14.164	31	
Total	44	19	53	116	

Data			
Level of Significance	0.01		
Number of Rows	3		
Number of Columns	3		
Degrees of Freedom	4		

Results			
Critical Value	13.276704		
Chi-Square Test Statistic 9.83114			
<i>p</i> -value 4.3370E-02			
Do not reject the null hypothesis			

 $H_{\rm o}$: There is no relationship between stress and commuting time.

 H_1 : There is a relationship between stress and commuting time.

Decision rule: df = (r - 1)(c - 1) = (3 - 1)(3 - 1) = 4 and $\alpha = 1\%$. If $\chi^2_{STAT} > 13.277$, reject H_0 .

Test statistic: $\chi^2_{STAT} = 9.831$

Conclusion: Since $\chi^2_{STAT} = 9.831$ is less than the upper critical bound of 13.277, do not reject H_0 at 1% significance level. There is not enough evidence to support the alternative hypothesis, which states that stress and commuting time are dependent events.

(b) Using a significance level of 0.05 would alter our decision rule and conclusion in the following way:

Decision rule: df = (r - 1)(c - 1) = (3 - 1)(3 - 1) = 4 and $\alpha = 5\%$. If $\chi^2_{STAT} > 9.488$, reject H_0 .

Conclusion: Since $\chi^2_{STAT} = 9.831$ is greater than the upper critical bound of 9.488, reject H_0 at 5% significance level. There is not enough evidence to say that stress and commuting time are independent events.

15.25 Excel output:

Observed Frequencies				
	Country o	f Origin		
Political voting intention	Australia	Overseas	Total	
Liberal	12	23	35	
Labor	23	28	51	
National	8	12	20	
Other	4	8	12	
Total	47	71	118	

Expected Frequencies				
	Country of Origin			
Political voting intention	Australia	Overseas	Total	
Liberal	13.9407	21.0593	35	
Labor	20.3136	30.6864	51	
National	7.9661	12.0339	20	
Other	4.7797	7.2203	12	
Total	47	71	118	

Data	
Level of Significance	0.01
Number of Rows	4
Number of Columns	2
Degrees of Freedom	3

Results			
Critical Value	11.344867		
Chi-Square Test Statistic	1.251070		
<i>p</i> -value 7.4078E-01			
Do not reject the null hypothesis			

 $\boldsymbol{H}_{\boldsymbol{0}}$: There is no relationship between country of origin and voting intention.

 ${\cal H}_{\rm l}$: There is a relationship between country of origin and voting intention.

Decision rule: df = (r - 1)(c - 1) = (4 - 1)(2 - 1) = 3 and $\alpha = 1\%$. If $\chi^2_{STAT} > 11.345$, reject H_0 .

Test statistic: $\chi^2_{STAT} = 1.251$

Conclusion: Since $\chi^2_{STAT} = 1.251$ is less than the upper critical bound of 11.345, do not reject H_0 . At the 1% level of significance, there appears to be no relationship between country of origin and voting intention.

15.26 Excel output:

Observed Frequencies					
		Cou	ntry		
Preferred method	UK	USA	Australia	China	Total
Face to face	824	509	667	545	2545
Phone, talk	70	111	127	191	499
Phone, text	94	154	75	91	414
Email	118	120	142	20	400
Total	1106	894	1011	847	3858

Expected Frequencies					
	Country				
Preferred method	UK	USA	Australia	China	Total
Face to face	729.5931	589.7434	666.9246	558.739	2545
Phone, talk	143.0518	115.6314	130.7644	109.5524	499
Phone, text	118.6843	95.93468	108.4899	90.89114	414
Email	114.6708	92.69051	104.8212	87.81752	400
Total	1106	894	1011	847	3858

Data			
Level of Significance	0.01		
Number of Rows	4		
Number of Columns	4		
Degrees of Freedom	9		

Results			
Critical Value	21.66599		
Chi-Square Test			
Statistic 246.0794			
<i>p</i> -Value 6.71E-48			
Reject the null hypothesis			

 $\boldsymbol{H_{\mathrm{0}}}$: There is no relationship between country and type of preferred communication method.

 ${\cal H}_{\rm l}\!:\!$ There is a relationship between country and type of preferred communication method.

Decision rule: df = (r - 1)(c - 1) = (4 - 1)(4 - 1) = 9 and $\alpha = 1\%$. If $\chi^2_{STAT} > 21.666$, reject H_0 .

Test statistic: $\chi^2_{STAT} = 246.0794$

Conclusion: Since $\chi^2_{STAT} = 246.0794$ is greater than the upper critical bound of 21.666, reject H_0 . There appears to be a highly significant relationship between country and type of preferred communication method (also supported by a p-value that is virtually zero).

15.27 (a) Excel output:

Observed Frequencies				
	Level	of return		
Managed fund type	High	Medium	Low	Total
Maximum capital gain	25	41	52	118
Long-term growth	22	31	42	95
Growth and current income	33	41	53	127
Balanced income	35	39	42	116
Common stock	28	15	10	53
Total	143	167	199	509

Expected Frequencies				
	Leve	l of return		
Managed fund type	High	Medium	Low	Total
Maximum capital gain	33.151	38.715	46.134	118
Long-term growth	26.690	31.169	37.141	95
Growth and current income	35.680	41.668	49.652	127
Balanced income	32.589	38.059	45.352	116
Common stock	14.890	17.389	20.721	53
Total	143.0000	167	199	509

Data	
Level of Significance	0.05
Number of Rows	5
Number of Columns	3
Degrees of Freedom	8

Results		
Critical Value	15.507313	
Chi-Square Test Statistic	22.650608	
<i>p</i> -value 3.8430E-03		
Reject the null hypothesis		

 $\boldsymbol{H}_{\scriptscriptstyle 0}$: There is no relationship between level of return and type of managed fund

 H_1 : There is a relationship between level of return and type of managed fund.

Decision rule: df = (r - 1)(c - 1) = (5 - 1)(3 - 1) = 8 and $\alpha = 5\%$. If $\chi^2_{STAT} >$

15.507, reject H_0 .

Test statistic: $\chi_{STAT}^2 = 22.651$

Conclusion: Since $\chi^2_{STAT} = 22.651$ is greater than the upper critical bound of 15.507, reject H_0 . There appears to be a significant relationship between level of return and type of managed fund.

- (b) This finding tells us that it matters (in terms of level of return) as to which type of managed fund an investor chooses.
- 15.28 H_0 : The number of sick days in the past 12 months follows a Poisson distribution.

 H_1 : The number of sick days in the past 12 months does not follow a Poisson distribution.

$$\bar{X} = \frac{\sum_{j=1}^{c} m_i f_i}{n} = \frac{810}{484} = 1.7$$

Our estimate of λ is 1.7 and this enables us to determine the expected probability distribution of the data.

Number of sick days	Expected Probabilities		Expected Frequencies	
0		0.19		91
1		0.31		152
2		0.26		127
3		0.15		71
4		0.06		30
5		0.02		10
6		0.01		3
		1.00		483

Decision rule: df = k - p - 1 = 7 - 1 - 1 = 5 and $\alpha = 1\%$. If $\chi^2 > 11.071$, reject H_0 .

Test statistic:
$$\chi^2_{STAT} = \sum_{All Cells} \frac{(f_0 - f_e)^2}{f_e} = 53.321$$

Conclusion: Since $\chi^2 = 53.321$ is greater than the upper critical bound of 11.071, reject H_0 . The distribution of sick days does not appear to follow the Poisson distribution.

- 15.29 With a significance level of 0.01 and a population mean of 1.5, the distribution of sick days does not follow the Poisson distribution.
- 15.30 H_0 : The distribution of commercial mortgages approved follows a Poisson distribution.

 H_1 : The distribution of commercial mortgages approved does not follow a Poisson distribution.

$$\bar{X} = \frac{\sum_{j=1}^{c} m_i f_i}{n} = \frac{219}{104} = 2.1$$

Our estimate of λ is 2.1 and this enables us to determine the expected probability distribution of the data.

No. of commercial mortgages approved	Expected Probabilities	Expected Frequencies
0	0.12	13
1	0.26	27
2	0.27	28
3	0.19	20
4	0.10	10
5	0.04	4
6	0.01	2
7	0.00	0
	1.00	104

Decision rule: df = k - p - 1 = 8 - 1 - 1 = 6 and $\alpha = 1\%$. If $\chi^2 > 16.812$, reject H_0 .

Test statistic:
$$\chi^2_{STAT} = \sum_{\text{All Cells}} \frac{(f_0 - f_e)^2}{f_e} = 2.539$$

Conclusion: Since $\chi^2 = 2.539$ is lower than the upper critical bound of 16.812, do not reject H_0 .

The distribution of commercial mortgages approved appears to follow the Poisson distribution.

15.31 H_0 : The distribution of battery lives follows a normal distribution.

 H_1 : The distribution of battery lives does not follow a normal distribution.

Life (in years)	Expected Probabilities	Expected Frequencies	
0-under 1	0.07	37	
1-under 2	0.29	146	
2-under 3	0.40	201	
3-under 4	0.19	96	
4-under 5	0.03	16	
5-under 6	0.00	1	

Decision rule: df = k - p - 1 = 6 - 2 - 1 = 3 and $\alpha = 5\%$. If $\chi^2 > 7.815$, reject H_0 .

Test statistic:
$$\chi^2_{STAT} = \sum_{All Cells} \frac{(f_0 - f_e)^2}{f_e} = 195.73$$

Conclusion: Since $\chi^2 = 195.73$ is greater than the upper critical bound of 7.815, reject H_0 .

The distribution of battery lives does not appear to follow a normal distribution at the 5% level of significance.

15.32 (a)
$$\bar{X} = \frac{\sum_{j=1}^{c} m_j f_j}{n} = \frac{6900}{500} = 13.8$$

$$S^2 = \frac{\sum_{j=1}^{c} (m_j - \bar{X})^2 f_j}{n-1} = \frac{20,505}{499} = 41.09$$
 $S = 6.41$

(b) H_0 : The distribution of call length follows a normal distribution. H_1 : The distribution of call length does not follow a normal distribution.

Length (in minutes)	Expected Probabilities	Expected Frequencies
0-under 5	0.0853	42.65
5-under 10	0.1923	96.15
10-under 15	0.2977	148.85
15-under 20	0.2587	129.35
20-under 25	0.1259	62.95
25-under 30	0.0344	17.20

Decision rule: df = k - p - 1 = 6 - 2 - 1 = 3 and $\alpha = 5\%$. If $\chi^2 > 7.815$, reject H_0 .

Test statistic:
$$\chi^2_{STAT} = \sum_{\text{All Cells}} \frac{(f_0 - f_e)^2}{f_e} = 13.28$$

Conclusion: Since $\chi^2 = 13.28$ is greater than the upper critical bound of 7.815, reject H_0 . The distribution of call lengths does not appear to follow a normal distribution at the 5% level of significance.

15.33 (a) For
$$df = 25$$
 and $\alpha = 0.01$, $\chi^2_{\alpha/2} = 10.520$ and $\chi^2_{1-\alpha/2} = 46.928$.

(b) For
$$df = 16$$
 and $\alpha = 0.05$, $\chi^2_{\alpha/2} = 6.908$ and $\chi^2_{1-\alpha/2} = 28.845$.

(c) For
$$df = 13$$
 and $\alpha = 0.10$, $\chi^2_{\alpha/2} = 5.892$ and $\chi^2_{1-\alpha/2} = 22.362$.

15.34 (a) For
$$df = 23$$
 and $\alpha = 0.01$, $\chi^2_{\alpha/2} = 9.2604$ and $\chi^2_{1-\alpha/2} = 44.1814$.

(b) For
$$df = 19$$
 and $\alpha = 0.05$, $\chi^2_{\alpha/2} = 8.9065$ and $\chi^2_{1-\alpha/2} = 32.8523$.

(c) For
$$df = 15$$
 and $\alpha = 0.10$, $\chi^2_{\alpha/2} = 7.2609$ and $\chi^2_{1-\alpha/2} = 24.9958$.

15.35
$$\chi_{STAT}^2 = \frac{(n-1) \cdot S^2}{\sigma^2} = \frac{24 \cdot 150^2}{100^2} = 54$$

15.36
$$\chi_{STAT}^2 = \frac{(n-1) \cdot S^2}{\sigma^2} = \frac{15 \cdot 10^2}{12^2} = 10.417$$

15.37
$$df = n - 1 = 16 - 1 = 15$$

- 15.38 (a) For df = 15 and $\alpha = 0.05$, $\chi^2_{\alpha/2} = 6.262$ and $\chi^2_{1-\alpha/2} = 27.488$.
 - (b) For df = 15 and $\alpha = 0.05$, $\chi^2_{\alpha/2} = 7.261$.
- 15.39 (a) If H_1 : $\sigma \neq 12$, do not reject H_0 since the test statistic $\chi^2 = 10.417$ falls between the two critical bounds, $\chi^2_{\pi/2} = 6.262$ and $\chi^2_{1-\pi/2} = 27.488$.
 - (b) If $H_1: \sigma < 12$, do not reject H_0 since the test statistic $\chi^2 = 10.417$ is greater than the critical bound 7.261.
- 15.40 You must assume that the data in the population are normally distributed to be able to use the chi-square test of a population variance or standard deviation. If the data selected do not come from an approximately normally distributed population, particularly for small sample sizes, the accuracy of the test can be seriously affected.
- 15.41 (a) H_0 : $\sigma \le 1.2^{\circ}C$. The standard deviation of the oven temperature has not increased above 1.2°C.

 H_1 : $\sigma > 1.2^{\circ}C$. The standard deviation of the oven temperature has increased above 1.2°C.

Decision rule: df = 29. If $\chi^2_{STAT} > 42.557$, reject H_0 .

Test statistic:
$$\chi^2_{STAT} = \frac{(n-1) \cdot S^2}{\sigma^2} = \frac{29 \cdot 2.1^2}{1.2^2} = 88.813$$

Conclusion: Since the test statistic of χ^2_{STAT} = 88.813 is greater than the critical bound of 42.557, reject H_0 . There is sufficient evidence to conclude that the standard deviation of the oven temperature has increased above 1.2°C.

- (b) You must assume that the data in the population are normally distributed to be able to use the chi-square test of a population variance or standard deviation.
- (c) p-value = 5.53 x 10⁻⁸ or 0.00000005. The probability that a sample is obtained whose standard deviation is equal to or larger than 2.1°C when the null hypothesis is true is 5.53 x 10⁻⁸, a very small probability. *Note:* The p-value was found using Excel.
- 15.42 (a) H_0 : $\sigma = 200 . The standard deviation of the amount of auto repairs is equal to \$200.

 H_1 : $\sigma \neq 200 . The standard deviation of the amount of auto repairs is not equal to \$200.

Decision rule: df = 24. If $\chi^2_{STAT} < 12.401$ or $\chi^2_{STAT} > 39.364$, reject H_0 .

Test statistic:
$$\chi_{STAT}^2 = \frac{(n-1) \cdot S^2}{\sigma^2} = \frac{24 \cdot 237.52^2}{200^2} = 33.849$$

Decision: Since the test statistic of $\chi^2_{STAT} = 33.849$ is between the critical bounds of 12.401 and 39.364, do not reject H_0 . There is insufficient evidence to conclude that the standard deviation of the amount of auto repairs is not equal to \$200.

- You must assume that the data in the population are normally distributed to (b) be able to use the chi-square test of a population variance or standard deviation.
- p-value = 2(0.0874) = 0.1748. The probability of obtaining a sample whose (c) standard deviation will give rise to a test statistic equal to or more extreme than 33.849 is 0.1748 when the null hypothesis is true. *Note:* The *p*-value was found using Excel.
- 15.43 (a) H_0 : $\sigma = 32 . The standard deviation of the monthly cost of gas usage within the local region is \$32.

 H_1 : $\sigma \neq 32 . The standard deviation of the monthly cost of gas usage within the local region differs from \$32.

Decision rule: df = 14. If $\chi^2_{STAT} < 6.571$ or $\chi^2_{STAT} > 23.685$, reject H_0 .

Test statistic:
$$\chi^2_{stat} = \frac{(n-1).S^2}{\sigma^2} = \frac{14(29.25)^2}{32^2} = 11.6971$$

Conclusion: Since the test statistic of $\chi^2_{STAT} = 11.6971$ is between the critical bounds of 6.571 and 23.685, do not reject H_0 . There is insufficient evidence to conclude that the standard deviation of the monthly cost of calls within the local calling region differs from \$32.

- (b) You must assume that the data in the population are normally distributed to be able to use the chi-square test of a population variance or standard deviation.
- p-value = 2(1 0.6306) = 0.7388. The probability of obtaining a test statistic (c) equal to or more extreme than the result obtained from this sample data is 0.7388 if the standard deviation of the monthly cost of gas usage within the local region is \$32.

Note: Excel returns an upper-tail area of 0.6306 for $\chi^2_{STAT} = 11.6971$. But since the sample standard deviation is smaller than the hypothesised value, the amount of area in the lower tail is (1 - 0.6306). That value is doubled to accommodate the two-tail hypotheses.

15.44 (a) H_0 : $\sigma = 0.135$ cm. The standard deviation of the diameter of doorknobs is greater than or equal to 0.135 cm in the redesigned production process. H_1 : σ < 0.135 cm. The standard deviation of the diameter of doorknobs is less than 0.135 cm in the redesigned production process.

Decision rule:
$$df = 24$$
. If $\chi^2_{STAT} < 13.848$, reject H_0 .
Test statistic: $\chi^2_{STAT} = \frac{(n-1) \cdot S^2}{\sigma^2} = \frac{24 \cdot 0.125^2}{0.135^2} = 20.576$

Conclusion: Since the test statistic of $\chi^2_{STAT} = 12.245$ is greater than the critical bound of 13.848, do not reject H₀. There is insufficient evidence to conclude that the standard deviation of the diameter of doorknobs is less than 0.135 cm in the redesigned production process.

- (b) You must assume that the data in the population are normally distributed to be able to use the chi-square test of a population variance or standard deviation.
- (c) p-value = 0.0664. The probability of obtaining a test statistic equal to or more extreme than the result obtained from this sample data is 6.64% if the population standard deviation is indeed no less than 0.135 cm.
- 15.45 (a) H_0 : $\sigma = 5g$. The standard deviation of the weight of smoked salmon is 5 g. H_1 : $\sigma \neq 12 . The standard deviation of the weight of smoked salmon differs from 5 g.

Decision rule: df = 29. If $\chi^2_{STAT} < 16.047$ or $\chi^2_{STAT} > 45.722$, reject H_0 .

Test statistic:
$$\chi^2_{STAT} = \frac{(n-1)\cdot S^2}{\sigma^2} = \frac{29\cdot 6.69^2}{5^2} = 51.92$$

Conclusion: Since the test statistic of $\chi^2_{STAT} = 51.92$ is greater than the critical boundary of 45.722, reject H_0 . There is sufficient evidence to conclude that the standard deviation of salmon weights differs from 5 g at the 5% level of significance.

- (b) You must assume that the data in the population are normally distributed to be able to use the chi-square test of a population variance or standard deviation.
- (c) p-value = 2(1 0.994436) = 0.011129. The probability of obtaining a test statistic equal to or more extreme than the result obtained from this sample data is 0.011129 if the standard deviation of the weight of smoked salmon is 5 g.
- 15.46 (a) H_0 : $\sigma \le 2.5$ ampere-hours. The standard deviation in the capacity of the battery is equal to 2.5 ampere-hours. H_1 : $\sigma > 2.5$ ampere-hours. The standard deviation in the capacity of the

 H_1 : $\sigma > 2.5$ ampere-hours. The standard deviation in the capacity of the battery differs from 2.5 ampere-hours.

Decision rule: df = 19. If $\chi^2_{STAT} > 30.144$, reject H_0 .

Test statistic:
$$\chi_{STAT}^2 = \frac{(n-1) \cdot S^2}{\sigma^2} = \frac{19 \cdot 2.6589^2}{2.5^2} = 21.492$$

Conclusion: Since the test statistic of $\chi^2_{STAT} = 21.492$ is less than the critical bound of 30.144, do not reject H_0 . There is not sufficient evidence to conclude that the standard deviation in the capacity of a certain type of battery differs from 2.5 ampere-hours.

- (b) You must assume that the data in the population are normally distributed to be able to use the chi-square test of a population variance or standard deviation.
- (c) p-value = 0.3103. The probability of obtaining a test statistic equal to or more extreme than the result obtained from this sample data is 0.3103 if the population standard deviation is indeed no greater than 2.5 ampere-hours.
- 15.47 The chi-square test for the difference between two proportions can be used only when the alternative hypothesis is two-tailed.

- 15.48 The chi-square test can be used for *c* populations as long as all expected frequencies are at least one.
- 15.49 The chi-square test for independence can be used as long as all expected frequencies are at least one.

15.50 (a) Excel output:

	Observed Frequencies				
		Bank			
Ease of access	Comm.	ANZ	Westpac	Total	
Easy to find	77	70	65	212	
Difficult to find	22	30	25	77	
Very difficult to					
find	11	10	8	29	
Total	110	110	98	318	

Expected Frequencies				
Bank				
Ease of access	Comm.	ANZ	Westpac	Total
Easy to find	73.333	73.333	65.333	212
Difficult to find	26.635	26.635	23.730	77
Very difficult to find	10.031	10.031	8.937	29
Total	110	110	98	318

Data		
Level of Significance	0.05	
Number of Rows	3	
Number of Columns	3	
Degrees of Freedom	4	

Results		
	9.48772	
Critical Value	9	
Chi-Square Test	1.82815	
Statistic	7	
	7.6733E-	
<i>p</i> -value	01	
Do not reject the null hypothesis		

- $H_{\scriptscriptstyle 0}$: There is no difference between the public perceptions of ease of access to these three banks.
- ${\cal H}_{\scriptscriptstyle 1}$: There is a difference between the public perception of ease of access to these three banks.

Conclusion: Given the Excel output above, there isn't a significant difference between the public perception of ease of access to these three banks at the 5% significance level.

(b) The comment in the question states that there should not be a difference in the perception of people about the ease of accessing different main brand service suppliers. Our findings support this.

15.51 (a) Excel output:

Observed Frequencies			
	Gend	der	
Intend to Buy	Male	Female	Total
Yes	122	91	213
No	79	49	128
Total	201	140	341

Expected Frequencies			
	Gen	der	
Intend to Buy	Male	Female	Total
Yes	125.5513	87.44868	213
No	75.44868	52.55132	128
Total	201	140	341

Data		
Level of Significance	0.05	
Number of Rows	2	
Number of Columns	2	
Degrees of Freedom	1	

Results		
Critical Value	3.841459	
Chi-Square Test Statistic	0.651822	
<i>p</i> -value	0.419462	
Do not reject the null hypothesis		

 H_0 : $\pi_1 = \pi_2$ H_1 : $\pi_1 \neq \pi_2$ where population: 1 = males, 2 = females

Conclusion: Since $\chi^2_{STAT} = 0.651822$ is lower than the upper critical bound of 3.8415, do not reject H_0 . There is insufficient evidence to conclude that there is significant difference between the proportions of males and females who intend to buy the carpet cleaning product at the 5% significance level.

(b) The p-value is 0.419462. The probability of obtaining a test statistic of 0.651822 or larger when the null hypothesis is true is about 41.95%.

15.52 (a) Excel output:

Observed Frequencies			
Island			
Number of days of use	North	Total	

<10	75	86	161
10 or more	44	45	89
Total	119	131	250

Expected Frequencies			
Island			
Number of days of use	North	Total	
<10	76.636	84.364	161
10 or more	42.364	46.636	89
Total	119	131	250

Data		
Level of Significance	0.05	
Number of Rows	2	
Number of Columns	2	
Degrees of Freedom	1	

Results			
Critical Value	3.8415		
Chi-Square Test Statistic	0.18722		
<i>p</i> -value	0.66524		
Do not reject the null hypothesis			

 H_0 : $\pi_1 = \pi_2$ H_1 : $\pi_1 \neq \pi_2$ where population: 1 = North, 2 = South

Conclusion: Since $\chi^2_{STAT} = 0.18722$ is lower than the upper critical bound of 3.8415, do not reject H_0 . There is insufficient evidence to conclude that there is significant difference in the number of days of use between North and South islands at the 5% significance level.

(b) The p-value is 0.66524. The probability of obtaining a test statistic of 0.18722 or larger when the null hypothesis is true is about 66.52%.

15.53 Excel output:

Observed Frequencies				
	Country			
Windscreen damage	Australia	Total		
Yes	23	55		
No	387	448	835	
Total	410	480	890	

Expected Frequencies				
	Country			
Windscreen damage	Australia	Australia New Zealand		
Yes	25.3371	29.6629	55	
No	384.6629	450.3371	835	
Total	410	480	890	

Data			
Level of Significance	0.05		
Number of Rows	2		
Number of Columns	2		
Degrees of Freedom	1		

Results			
Critical Value	3.8415		
Chi-Square Test Statistic	0.4260		
<i>p</i> -value	0.5139		
Do not reject the null hypothesis			

 H_0 : $\pi_1 = \pi_2$ H_1 : $\pi_1 \neq \pi_2$ where population: 1 = Australia, 2 = New Zealand

Conclusion: Since $\chi^2_{STAT} = 0.4260$ is lower than the upper critical bound of 3.8415, do not reject H_0 . There is insufficient evidence to conclude that there is significant difference in the proportion of cars returned with windscreen damage between Australia and New Zealand at the 5% significance level.

15.54 (a) Excel output:

Observed Frequencies					
Age group					
	35-54 >54				
Support increase in age pension	18-34 yrs	Total			
Yes 34 45 55					
No	78	51	24	153	
Total	112	96	79	287	

Expected Frequencies					
	Age gr	oup			
		35-54			
Support increase in age pension	18-34 yrs	yrs	>54 yrs	Total	
Yes	52.2927	44.8223	36.8850	134.0000	
No	59.7073	51.1777	42.1150	153.0000	
Total	112	96	79	287	

Data	
Level of Significance	0.05
Number of Rows	2
Number of Columns	3
Degrees of Freedom	2

Results		
Critical Value	5.991465	
Chi-Square Test Statistic	28.693186	
	5.8797E-	
<i>p</i> -value	07	
Reject the null hypothesis		

$$H_0: \pi_1 = \pi_2 = \pi_3$$
 $H_1: \pi_1 \neq \pi_2 \neq \pi_3$

where population: 1 = 18-34 yrs, 2 = 35-54 yrs, 3 = > 54 yrs

Conclusion: Since $\chi^2_{STAT} = 28.693$ is greater than the upper critical bound of 5.991, reject H_0 . There is sufficient evidence to conclude that there is a significant difference between the age groups in the proportion of support at the 5% significance level.

- (b) The p-value is virtually zero. The probability of obtaining a test statistic of 28.693 or larger when the null hypothesis is true is about 0.000.
- (c) Excel output of the Marascuilo procedure:

Group	Sample Proportions	
1 (18-34 yrs)	0.39	
2 (35-54 yrs)	0.33	
3 (>54 yrs)	0.28	

MARASCUILO TABLE

Proportions	Absolute Differences	Critical Range	Statisticall y Significant ?
		0.16346082	
Group 1 - Group 2	0.06	9	No
Group 1 - Group 3	0.11	0.16662284	No
		0.17033979	
Group 2 - Group 3	0.05	2	No

Even though we rejected the null hypothesis in part (a), the results from the Marascuilo procedure displayed in the table above indicate that there is not enough data to conclude any particular difference is significant. However, note that the comparison between age groups 1 and 3 comes closest to significance. Further tests with larger samples might actually show a statistically significant difference between these two age groups.

15.55 (a) Excel output:

Observed Frequencies				
	Attitude			
Type of job	Favour	Neutral	Oppose	Total
Hourly worker	108	46	71	225
Supervisor	18	12	30	60
Middle Management	35	14	26	75
Upper Management	24	7	9	40
Total	185	79	136	400

Expected Frequencies				
Attitude				
Type of job	Favour	Neutral	Oppose	Total
Hourly worker	104.0625	44.4375	76.5000	225
Supervisor	27.7500	11.8500	20.4000	60
Middle Management	34.6875	14.8125	25.5000	75
Upper Management	18.5000	7.9000	13.6000	40
Total	185	79	136	400

Data	
Level of Significance	0.05
Number of Rows	4
Number of Columns	3
Degrees of Freedom	6

Results		
Critical Value	12.591587	
Chi-Square Test Statistic	11.895309	
<i>p</i> -value	6.4346E-02	
Do not reject the null hypothesis		

 $H_{\scriptscriptstyle 0}$: There is no relationship between attitude and type of job.

 $H_{\mbox{\scriptsize 1}}$: There is a relationship between attitude and type of job.

Decision rule: df = (r - 1)(c - 1) = (4 - 1)(3 - 1) = 6. If $\chi^2_{STAT} > 12.592$,

reject H_0 .

Test statistic: $\chi^2_{STAT} = 11.895$

Conclusion: Since $\chi^2_{STAT} = 11.895$ is less than the upper critical bound of 12.592, do not reject H_0 at 5% significance level. The evidence suggests that there is no relationship between attitude towards self-managed work teams and type of job.

(b) Excel output:

Observed Frequencies				
	Attitude			
Type of job	Favour	Neutral	Oppose	Total
Hourly worker	135	23	67	225
Supervisor	39	7	14	60
Middle Management	47	6	22	75
Upper Management	26	6	8	40
Total	247	42	111	400

Expected Frequencies				
	Į.	Attitude		
Type of job	Favour Neutral Oppose			Total
Hourly worker	138.9375	23.6250	62.4375	225
Supervisor	37.0500	6.3000	16.6500	60
Middle Management	46.3125	7.8750	20.8125	75
Upper Management	24.7000	4.2000	11.1000	40
Total	247	42	111	400

Data		
Level of Significance	0.05	
Number of Rows	4	
Number of Columns	3	
Degrees of Freedom	6	

Results			
Critical Value	12.591587		
Chi-Square Test Statistic	3.293706		
<i>p</i> -value 7.7118E-01			
Do not reject the null hypothesis			

(b) Conclusion: Since $\chi^2_{STAT} = 3.294$ is less than the upper critical bound of 12.592, do not reject H_0 at 5% significance level. The evidence suggests that there is no relationship between attitude towards time off without pay and type of job.

15.56 (a) Excel output:

Observed Frequencies					
	Country				
Emphasis on banking?	China	China India Australia			
Yes	34	127			
No	55	156			
Total	89	95	99	283	

Expected Frequencies					
	Country				
Emphasis on banking?	China	China India Austra			
Yes	39.9399	42.6325	44.4276	127.0000	
No	49.0601	52.3675	54.5724	156.0000	
Total	89	95	99	283	

Data	
Level of Significance	0.95
Number of Rows	2
Number of Columns	3
Degrees of Freedom	2

Results			
Critical Value	0.102587		
Chi-Square Test Statistic	2.362197		
-	3.0694E-		
<i>p</i> -value	01		
Reject the null hypothesis			

$$H_0: \pi_1 = \pi_2 = \pi_3$$

$$H_1$$
: $\pi_1 \neq \pi_2 \neq \pi_3$ where population 1 = China, 2 = India, 3 = Australia

Decision rule: df = (r - 1)(c - 1) = (2 - 1)(3 - 1) = 2 and $\alpha = 95\%$. If $\chi^2_{STAT} > 0.103$, reject H_0 .

Test statistic: $\chi^2_{STAT} = 2.362$

Conclusion: Since $\chi^2_{STAT} = 2.362$ is greater than the upper critical bound of 0.103, reject H_0 at 95% significance level. The evidence suggests that there is a difference in the emphasis on an understanding of the banking system between these three countries.

(b) Excel output of the Marascuilo procedure:

	Sample	
 Group	Proportions	
1	0.314487633	
2	0.335689046	
3	0.349823322	

MARASCUILO TABLE

Proportions	Absolute Differences	Critical Range	Statistical ly Significan t?
Group 1 - Group 2	0.021201413	0.16904211	No
Group 1 - Group 3	0.035335689	0.168154744	No
Group 2 - Group 3	0.014134276	0.166814844	No

None of the differences between countries are statistically significant.

(c) The p-value is 0.03069. The probability of obtaining a test statistic of 2.362 or larger when the null hypothesis is true is about 3.069%.

(d) Excel output:

Observed Frequencies				
	Country			
Corporate Accounting?	China	India	Australia	Total
Less than 20%	29	109		
21-40%	50	47	41	138
Greater than 40%	10	13	13	36
Total	89	95	99	283

Expected Frequencies				
	Country			
Corporate Accounting?	China	Australia	Total	
Less than 20%	% 34.279 36.590 38.131			
21-40%	43.399	46.325	48.276	138
Greater than 40%	11.322	12.085	12.594	36
Total	89	95	99	283

Data		
Level of Significance	0.05	
Number of Rows	3	
Number of Columns	3	
Degrees of Freedom	4	

Results			
Critical Value	9.487729		
Chi-Square Test Statistic	4.466557		
<i>p</i> -value	3.4653E-01		
Do not reject the null hypothesis			

(d) $H_{\scriptscriptstyle 0}$: There is no relationship between the level of corporate accounting desired in each country.

 ${\cal H}_{\rm I}\!:$ There is a relationship between the level of corporate accounting desired in each country.

Decision rule: df = (r - 1)(c - 1) = (3 - 1)(3 - 1) = 4 and $\alpha = 5\%$. If $\chi^2_{STAT} > 9.488$, reject H_0 .

Test statistic: $\chi^2_{STAT} = 4.467$

Conclusion: Since $\chi^2_{STAT} = 4.467$ is less than the upper critical bound of 9.488, do not reject H_0 at 5% significance level. The evidence suggests that there is no relationship between the level of corporate accounting desired in each country.

- (e) The p-value is 0.03465. The probability of obtaining a test statistic of 4.467 or larger when the null hypothesis is true is about 3.465%.
- (f) Excel output:

Obs	Observed Frequencies				
	Country				
Market systems?	China	China India Australia			
Yes	59	59 50 45			
No	30	45	54	129	
Total	89	95	99	283	

Expected Frequencies					
	Country				
Market systems?	China	India	Australia	Total	
Yes	48.4311	51.6961	53.8728	154.0000	
No	40.5689	43.3039	45.1272	129.0000	
Total	89	95	99	283	

Data				
Level of Significance	0.025			
Number of Rows	2			
Number of Columns	3			
Degrees of Freedom	2			

Results				
Critical Value	7.377759			
Chi-Square Test Statistic	8.387754			
-	1.5088E-			
<i>p</i> -value	02			
Reject the null hypothesis				

(f)
$$H_0: \pi_1 = \pi_2 = \pi_3$$

 H_1 : $\pi_1 \neq \pi_2 \neq \pi_3$ where population 1 = China, 2 = India, 3 = Australia

Decision rule: df = (r - 1)(c - 1) = (2 - 1)(3 - 1) = 2 and $\alpha = 2.5\%$. If $\chi^2_{STAT} > 7.478$, reject H_0 .

Test statistic: $\chi^2_{STAT} = 8.388$

Conclusion: Since $\chi^2_{STAT} = 8.388$ is greater than the upper critical bound of 7.478, reject H_0 at 2.5% significance level. The findings suggest that there is evidence of a significant difference between the countries on whether comparative market systems should be a significant part of an economics senior subject.

(g) See part (b). None of the differences between countries are statistically significant. Further investigation is required.

15.57 (a) Excel output:

Observed Frequencies				
	Accommodation			
City	Pool	No pool	Total	
Barcelona	130	5887	6017	
Lyon	10	912	922	
Melbourne	143	1685	1828	
London	79	7644	7723	
Total	362	16128	16490	

Expected Frequencies				
	Accommodation			
City	Pool	No pool	Total	
Barcelona	132.0894	5884.911	6017	
Lyon	20.24039	901.7596	922	
Melbourne	40.12953	1787.87	1828	
London	169.5407	7553.459	7723	
Total	362	16128	16490	

Data

Level of Significance	0.01
Number of Rows	4
Number of Columns	2
Degrees of Freedom	3

Results		
Critical Value	11.34487	
Chi-Square Test		
Statistic	324.3916	
<i>p</i> -Value	5.22476E-70	
Reject the null hypothesis		

(a)
$$H_0: \pi_1 = \pi_2$$

 H_1 : $\pi_1 \neq \pi_2$ where population 1 = swimming pool, 2 = no swimming pool

Decision rule: df = (r - 1)(c - 1) = (4 - 1)(2 - 1) = 3 and $\alpha = 1\%$. If $\chi^2_{STAT} > 11.3449$, reject H_0 .

Test statistic: $\chi^2_{STAT} = 324.3916$

Conclusion: Since $\chi^2_{STAT} = 324.3916$ is more than the critical bound of 11.3449, reject H_0 at 1% significance level. There is a significant difference between accommodation with swimming pool proportions in different countries.

(b) Marascuilo procedure

Level of significance =0.01

Square root of critical value = 3.368214

	$cai \ value = 3.368216$	+	
Sample			
proportions			
P1	0.021605		
P2	0.010846		
P3	0.078228		
P4	0.010229		
Marascuilo table			
Proportions	Absolute	Critical Range	
	differences		
City1-City2	0.010759	0.01311	Not significant
City1-City3	0.056622	0.022076	Significant
City1-City4	0.011376	0.007398	Significant
City2-City3	0.067382	3.233808	Not significant
City2-City4	0.000617	0.01211	Not significant
City3-City4	0.067998	0.021503	Significant

15.58 (a) Excel output:

Observed Frequencies			
Preference after ads			
Preference before ads	Toyota	Mazda	Total
Toyota	79	13	92
Mazda	11	97	108
Total	90	110	200

Expected Frequencies			
Preference after ads			
Preference before ads	Toyota	Mazda	Total
Toyota	41.4	50.6	92
Mazda	48.6	59.4	108
Total	90	110	200

Data		
Level of Significance	0.05	
Number of Rows	2	
Number of Columns	2	
Degrees of Freedom	1	

Results		
Critical Value	3.8415	
Chi-Square Test Statistic	114.9791	
<i>p</i> -value	7.95E-27	
Reject the null hypothesis		

$$H_0: \pi_1 = \pi_2$$

 H_1 : $\pi_1 \neq \pi_2$ where population 1 = Toyota, 2 = Mazda

Decision rule: df = (r - 1)(c - 1) = (2 - 1)(2 - 1) = 1 and $\alpha = 5\%$. If $\chi^2_{STAT} > 3.8415$, reject H_0 .

Test statistic: $\chi^2_{STAT} = 114.9791$

Conclusion: Since $\chi^2_{STAT} = 114.9791$ is greater than the upper critical bound of 3.8415, reject H_0 at 5% significance level. There is a significant difference in the proportion of respondents who prefer Toyota before and after viewing the ads.

- (b) The p-value is approximately 0.000. The probability of obtaining a test statistic of 114.9791 or larger when the null hypothesis is true is about 0.000.
- (c) Table is derived from the margins of the first table to form the variable preference, 'Before ad' and 'After ad'.

(d) Excel output:

Observed Frequencies

	Preference after ads		
Preference	Toyota	Mazda	Total
Before	92	108	200
After	90	110	200
Total	182	218	400

Expected Frequencies			
Preference after ads			
Preference	Toyota	Mazda	Total
Before	91	109	200
After	91	109	200
Total	208	192	400

Data		
Level of Significance	0.05	
Number of Rows	2	
Number of Columns	2	
Degrees of Freedom	1	

Results		
Critical Value	3.841459	
Chi-Square Test Statistic	0.040327	
<i>p</i> -value	0.840843	
Do not reject the null hypothesis		

According to the above information, there is not a significant difference in the proportion of respondents who prefer Toyota before and after viewing the ads.

- (e) The p-value has no meaning because the null hypothesis was not rejected.
- (f) The difference in the results of (a) and (d) is due to the layout of the data in each table. Use the method in part (a) since the contingency table in part (d) does not make sense, given our research objectives.

15.59 (a) Excel output:

Observed Frequencies			
	Income Level		
Subscriber Option	High	Low	Total
TV episodes	352	769	1121
Movies	198	498	696
Total	550	1267	1817

Expected Frequencies			
Income Level			
Subscriber Option	High Low		Total

TV episodes	339.3231	781.6769	1121
Movies	210.6769	485.3231	696
Total	550	1267	1817

Data		
Level of Significance	0.1	
Number of Rows	2	
Number of Columns	2	
Degrees of Freedom	1	

Results			
Critical Value	2.705543		
Chi-Square Test Statistic	1.773126		
<i>p</i> -value 0.182996			
Do not reject the null hypothesis			

 H_0 : There is no relationship between income level and subscriber option.

 H_1 : There is a relationship between income level and subscriber option.

Decision rule: df = (r - 1)(c - 1) = (2 - 1)(2 - 1) = 4 and $\alpha = 10\%$. If χ^2_{STAT}

> 2.706, reject H_0 .

Test statistic: $\chi^2_{STAT} = 1.773$

Conclusion: Since $\chi^2_{STAT}=1.773$ is less than the upper critical bound of 2.706, do not reject H_0 at 10% significance level. The evidence suggests that there is no relationship between the income level and subscriber download choice.

(b) The p-value is 0.182996. The p-value has no meaning because the null hypothesis was not rejected.

15.60 (a) Excel output:

Exect output			
Observed Frequencies			
	Gender		
Duration of current job	Male	Female	Total
Under 1 year	20.7	31.2	51.9
1 year and under 2 years	9.9	15.3	25.2
2 years and under 3 years	9.5	13	22.5
3 years and under 4 years	7.4	9.6	17
4 years and under 5 years	5.7	6	11.7
5 years and under 10 years	18.8	15.6	34.4
10 years and under 15 years	11.5	4.8	16.3
15 years and under 20 years	6	2.3	8.3
Over 20 years	10.5	2.2	12.7
Total	100	100	200

Expected Frequencies			
	Gender		
Duration of current job	Male	Female	Total
Under 1 year	25.95	25.96	51.9
1 year and under 2 years	12.6	12.6	25.2
2 years and under 3 years	11.25	11.25	22.5
3 years and under 4 years	8.5	8.5	17
4 years and under 5 years	5.85	5.85	11.7
5 years and under 10 years	17.2	17.2	34.4
10 years and under 15 years	8.15	8.15	16.3
15 years and under 20 years	4.15	4.15	8.3
Over 20 years	6.35	6.35	12.7
Total	100	100	200

Results		
Chi-Square Test Statistic	14.24373	
<i>p</i> -value	0.07563	

(b) Excel output:

Exect output:				
Observed Frequencies				
Gender				
Multiple job holders	Male	Total		
Multiple jobs	3.3	97.5	100.8	
Single jobs	96.7	2.5	99.2	
Total	100	100	200	

Expected Frequencies			
	Gen		
Multiple job holders	Male Female		Total
Multiple jobs	50.4000	50.4000	100.8
Single jobs	49.6000	49.6000	99.2
Total	100	100	200

Results	
Chi-Square Test Statistic	177.4842
<i>p</i> -value	0.0000

(c) Excel output:

Observed Frequencies			
	Gender		
Difficulties reported	Male	Female	Total
Too young or too old	12.74	20.1	32.84
Unsuitable hours	3.94	5.1	9.04
Transport problems	9.74	3.2	12.94
Lacked training/education	13.74	2.2	15.94

Insufficient work experience	15.54	18	33.54
No vacancies in line of work	19.84	25.8	45.64
No vacancies at all	24.63	25.6	50.23
Total	100	100	200.17

Expected Frequencies				
	Gende	Gender		
Difficulties reported	Male	Female	Total	
Too young or too old	16.434	16.406	33	
Unsuitable hours	4.524	4.516	9	
Transport problems	6.475	6.465	13	
Lacked training/education	7.977	7.963	16	
Insufficient work experience	16.784	16.756	34	
No vacancies in line of work	22.839	22.801	46	
No vacancies at all	25.136	25.094	50	
Total	100.1700	100	200.17	

Results		
Chi-Square Test Statistic	14.435610	
	7.1094E-	
<i>p</i> -value	02	

(d) Excel output:

Observed Frequencies			
Gender			
Duration of unemployment	Male	Female	Total
1-4 weeks 11.5 12.9			
5-13 weeks 7.5 17.5			
14-26 weeks	9.5	23.2	32.7
Total	28.5	53.6	82.1

Expected Frequencies			
Gender			
Duration of unemployment Male Female			
1-4 weeks	8.470	15.930	24
5-13 weeks 8.6		16.322	25
14-26 weeks	11.351	21.349	33
Total	28.5	53.6	82.1

Results	
Chi-Square Test Statistic	2.367695
<i>p</i> -value	6.6847E-01

(e) Excel output:

Observed Frequencies			
Gender			
Birthplace of unemployed Male Female			
Australia 34.9 34.6			
Outside of Australia	15.5	15.2	30.7

To	tal 50.	4 49.8	100.2

Expected Frequencies			
Gender			
Birthplace of unemployed Male Female			
Australia 34.95		34.5419	69.5
Outside of Australia	15.4419	15.2581	30.7
Total	50.4	49.8	100.2

Results	
Chi-Square Test Statistic	0.0006
<i>p</i> -value	0.9799

(f) Ranked order of importance of each problem area analysed (according to p-values shown above) are:

1.	Birthplace of unemployed	<i>p</i> -value: 0.9799
2.	Duration of current job	<i>p</i> -value: 0.07563
3.	Duration of unemployment	<i>p</i> -value: 0.0669
4.	Difficulties reported	<i>p</i> -value: 0.0071
5.	Multiple job holder	<i>p</i> -value: 0.0000

15.61 Numbers of persons using each social media tool have been rounded to the nearest integer.

Excel output: Facebook

Observed Frequencies				
	Column v	ariable		
Row variable	Male	Female	Total	
Facebook user	536	1107		
Non Facebook				
user	53	18	71	
Total	589	589	1178	

Expected Frequencies			
Column variable			
Row variable	Male	Total	
Facebook user	553.5	1107	
Non Facebook user	35.5	35.5	71
Total	589	589	1178

Data	
Level of	
Significance	0.05
Number of Rows	2
Number of	2

Columns	
Degrees of	
Freedom	1

Results	
Critical Value	3.841459
Chi-Square Test	
Statistic	18.36012
<i>p</i> -Value	1.83E-05
Reject the null hypothesis	

Excel output: Instagram

Observed Frequencies			
	Column variable		
Row variable	Male	Female	Total
Instagram user	295	241	536
Non Instagram			
user	294	348	642
Total	589	589	1178

Expected Frequencies			
	Column variable		
Row variable	Male	Female	Total
Instagram user	268	268	536
Non Instagram			
user	321	321	642
Total	589	589	1178

Data		
Level of		
Significance	0.05	
Number of Rows	2	
Number of		
Columns	2	
Degrees of		
Freedom	1	

Results	
Critical Value	3.841459
Chi-Square Test	
Statistic	9.982355
<i>p</i> -Value	0.00158

Reject the null hypothesis

Excel output:LinkedIn

Observed Frequencies			
	Column variable		
Row variable	Male	Female	Total
LinkedIn user	130	82	212
Non LinkedIn user	459	507	966
Total	589	589	1178

Expected Frequencies			
	Column variable		
Row variable	Male	Female	Total
LinkedIn user	106	106	212
Non LinkedIn user	483	483	966
Total	589	589	1178

Data		
Level of		
Significance	0.05	
Number of Rows	2	
Number of		
Columns	2	
Degrees of		
Freedom	1	

Results	
Critical Value	3.841459
Chi-Square Test	
Statistic	13.25302
<i>p</i> -Value	0.000272
Reject the null hypothesis	

Excel output: Twitter

Observed Frequencies			
	Column variable		
Row variable	Male	Female	Total
Twitter user	206	165	371

Non Twitter user	383	424	807
Total	589	589	1178

Expected Frequencies				
	Column v			
Row variable	Male	Female	Total	
Twitter user	185.5	185.5	371	
Non Twitter user	403.5	403.5	807	
Total	589	589	1178	

Data		
Level of		
Significance	0.05	
Number of Rows	2	
Number of		
Columns	2	
Degrees of		
Freedom	1	

Results		
Critical Value	3.841459	
Chi-Square Test		
Statistic	6.614021	
<i>p</i> -Value	0.010118	
Reject the null hypothesis		

15.62–15.66 Team project.

15.62 (a)

Objective

	,		
Category	Negative	Non-negative	Grand Total
Australian	8	25	33
International	10	5	15
Grand Total	18	30	48

(b) H_0 : There is no relationship between the category of investment fund and whether or not there is a negative monthly return.

 H_1 : There is a relationship between the category of an investment fund and whether or not there is a negative monthly return.

Decision rule: If $\chi^2 > 3.8415$, reject H_0 .

Test statistic: $\chi^2 = 7.9192$

Decision: Since $\chi^2 = 7.9192$ is greater than the critical bound of 3.8415, reject H_0 . There is enough evidence to conclude at the 5% level of

significance that there is a relationship between the category of an investment and whether or not there is a negative monthly return.

15.63 (a)

Fee	High	Medium	Low	Grand Total
No	8	11	2	20
Yes	2	13	5	21
Grand Total	10	24	7	41

(b) H_0 : There is no relationship between the market capitalisation of an investment fund and whether or not there is an outperformance fee. H_1 : There is a relationship between the market capitalisation of an investment fund and whether or not there is an outperformance fee.

Decision rule: If $\chi^2 > 5.9915$, reject H_0 .

Test statistic: $\chi^2 = 5.0310$

Decision: Since $\chi^2 = 5.0310$ is less than the critical bound of 5.9915, do not reject H_0 . There is not enough evidence to conclude at the 5% level of significance that there is a relationship between the market capitalisation of an investment fund and whether or not there is an outperformance fee. (*Note:* in this calculation three cells have expected frequencies below 5 but all expected frequencies are greater than 1.)

15.64 (a)

	a				
Traded volume	High	Medium	Low	Grand Total	
High	6	17	2	25	
Low	4	8	11	23	
Grand Total	10	25	23	48	

(b) H_0 : There is no relationship between the market capitalisation of an investment fund and its traded volume.

 H_1 : There is a relationship between the market capitalisation of an investment fund and its traded volume.

Decision rule: If $\chi^2 > 5.9915$, reject H_0 .

Test statistic: $\chi^2 = 9.8044$

Decision: Since $\chi^2 = 9.8044$ is greater than the critical bound of 5.9915, reject H_0 . There is enough evidence to conclude at the 5% level of significance that there is a relationship between the market capitalisation and traded volume.

15.65
$$\overline{X} = \frac{\sum X}{n} = \frac{4.8441}{39} = 0.1242$$

$$S = \sqrt{\frac{\sum X^2 - n\overline{X}^2}{n - 1}} = \sqrt{\frac{1.1445 - 39(0.1242)^2}{38}} = 0.1195$$

 H_0 : Three-year return follows a normal distribution.

 H_1 : Three-year return does not follow a normal distribution.

$$\chi^{2}_{k-p-1} = \sum_{k} \frac{\left(f_{0} - f_{e}\right)^{2}}{f_{e}} = 10.9213$$

$$\chi^2_{crit} = \chi^2_{7-2-1,0.05} = \chi^2_{4,0.05} = 9.4877$$

Since 10.9213 > 9.4877, reject H_0 . There is sufficient evidence to conclude that the distribution of three-year return does not follow a normal distribution. Note that variations in answers are possible according to the categories chosen.

15.66
$$\overline{X} = \frac{\sum X}{n} = \frac{65.4866}{37} = 1.7699$$

$$S = \sqrt{\frac{\sum X^2 - n\overline{X}^2}{n-1}} = \sqrt{\frac{3845.016 - 37(1.7699)^2}{36}} = 10.1777$$

 H_0 : Five-year return follows a normal distribution.

 H_1 : Five-year return does not follow a normal distribution.

$$\chi^{2}_{k-p-1} = \sum_{k} \frac{\left(f_{0} - f_{e}\right)^{2}}{f_{e}} = 3690.68$$

$$\chi^2_{crit} = \chi^2_{7-2-1,0.05} = \chi^2_{4,0.05} = 9.4877$$

Since 3690.68 > 9.48771, reject H_0 . There is sufficient evidence to conclude that the distribution of five-year return does not follow a normal distribution. Note the effect of the large outlier on expected frequencies. Variations in answers are possible according to the categories chosen.