Consider a money system consisting of n coins. Each coin has a positive integer value. Your task is to calculate the number of distinct *ordered* ways you can produce a money sum x using the available coins.

For example, if the coins are $\{2,3,5\}$ and the desired sum is 9, there are 3 ways:

- 2+2+5
- 3 + 3 + 3
- 2+2+2+3

Input

The first input line has two integers n and x: the number of coins and the desired sum of money.

The second line has n distinct integers c_1, c_2, \ldots, c_n : the value of each coin.

Output

Print one integer: the number of ways modulo $10^9 + 7$.

So making it more bormal

dpi[i] he the number of distinct ordered mays to produce a sum i using the color (CD --- , C[i].

Now $dp_i[ij] = dp_{i-1}[ij] + dp_{i}[ij-c[ij]]$ $\forall i \neq c[ij]$ See in this for $i \neq 0$ \exists $dp_{i}[ij] = di_{i-1}[ij]$ $\forall i' < c[ij]$ $dp_{i}[ij] = dp_{i}[ij] =$

And their's it that's your solution.