Introduction to Machine Learning

Course Syllabus

Days	What You Will Learn	Topics
Day 0	Getting started	Machine Learning, Classifications of ML problems (Supervised,
		Reinforcement and Unsupervised) with examples
Day 1	Tools for Machine	Python, Conda, JupyterLab, Python libraries for ML(SciPy, NumPy,
	Learning	Matplotlib, Pandas), Data visualization, Linear Algebra for ML
Day 2	Linear regression	Cost function, Model and hypotheses representation, Gradient
		Descent, Feature scaling and Mean normalization
Day 3	Logistic regression	Classification and decision boundary, Sigmoid function, Multiclass
		classification, Bias and Variance, Regularization
Day 4	More Supervised	Linear Discriminant Analysis, K-Nearest Neighbors, Decision Trees
	Algorithms	
Day 5	Performance	Learning curves, Training/Test/Cross Validation sets, Error Metrics
	measurement	(Precision, Recall, F1 Score), Confusion matrix, K-fold improvement
Day 6	Support Vector	Large Margin classifiers, Kernels (Gaussian and Linear), SVM software
	Machines	packages
Day 7	Unsupervised Learning	K-means clustering, Dimensionality reduction and Principal
	Algorithms	Component Analysis
Day 8	Anomaly Detection	Density estimation, Gaussian distribution, Multivariate Gaussian
		distribution
Day 9	Recommender systems	Content-based recommendations, Collaborative filtering, Predicting
		content ratings
Day 10	Hands on project	Applied Machine Learning
Day 11	What to do next?	Advice for applying Machine Learning, Deep Learning and Neural
		Networks, Project ideas and future plans