<u>ЗАДАЧА 6.</u> Для заданной выборки: Зубарева Наталия БПИ195

1)построите вариационный ряд выборки;

Вариант 10

 пользуясь формулой Стерджесса, определите количество интервалов разбиения выборки;

 постройте таблицу статистического ряда, в первой строке которой указаны интервалы разбиения, а во второй-частоты попадания элементов выборки в соответствующие интер-

- 4) постройте гистограмму;
- 5)найдите реализации точечных оценок математического ожидания и дисперсии;

6) на основе анализа результатов наблюдений выдвинете гипотезу о виде закона распределения наблюдаемой случайной величины.

Результаты измерения стойкости резца из T15K6 при скорости резания 0,33 м/с и подаче 0,12 мм/об, мин.

162	143	170	162	163	151	164	161	163	165	159	163	170	166	168
155	164	165	174	159	165	170	158	159	160	158	160	162	166	163
164	165	165	158	158	160	163	164	170	169	170	172	170	165	158
164	171	176	170	158	165	160	164	167	170	161	160	165	165	158
170	168	168	160	164	158	160	162	156	170	163	160	163	168	162
165	163	163	165	158	168	164	171	166	160	160	162	164	155	169
165	165	165	165	166	164	164	150	165	170	175	160	165	166	162
168	164	164	170	164	167	160	168	158	170	165				

Выборка состоит из n = 116 элементов.

Дискретный вариационный ряд:

Χ	количество						
143	1	159	3	165	18	171	2
150	1	160	13	166	4	172	1
151	1	161	2	167	2	174	1
155	2	162	7	168	7	175	1
156	1	163	9	169	2	176	1
158	10	164	14	170	13		

По формуле Стерджесса разбиваем выборку на I = 1 + [3.32 * lg(n)] = 1 + [3.32 * lg(116)]= 1 + 6 = 7 интервалов

Xmin = 143 Xmax = 176 h = (Xmax - Xmin)/l = (176 - 143)/7 ~= 4.714 - шаг Частота попадания в і-ый интервал рі = пі/n, где пі - число элементов выборки в і-ом интервале. Таблица статистического ряда:

laciora pi	17110 = 0.009	2/110 = 0.017	5/110 *= 0.020	20/110 *= 0.241
	•	2/116 ~= 0.017		28/116 ~= 0.241
Интервал	[[143: 147.714]	[147.714: 152.428)	[152.428; 157.142)	l [157.142: 161.856)

Интервал [161.856; 166.57) [166.57; 171.284) [171.284; 175.998 ~ 176] Частота рії 52/116 ~= 0.448 26/116 ~= 0.224 4/116 ~= 0.034

Гистограмму будем строить на основе статистического ряда как прямоугольники высоты $\overline{p}i/hi$, где i - номер интервала, $\overline{p}i$ - частота попадания в него, hi = h - шаг (так площадь каждого прямоугольника будет равна $\overline{p}i$ и гистограмма будет реализовывать плотность)

[147.714; 152.428) [152.428; 157.142)

[157.142; 161.856)

[143; 147.714)

Интервал

Высота pi/h 0.002

<u>'</u>	<u> </u>			
Интервал Высота pi/h	[161.856; 166.57] 0.095	[166.57; 171.284) 0.048	[171.284; 175.998 ·	- 176]
fn(x) 0.095				
0.051 — — 0.048 — —				
0.01 0.007 0.006 0.004 0.002 	152.428	167.142	171.284	→×

Реализации точечных оценок матожиданиия m и дисперсии d вычисляются как:

$$\overline{m} = 1/n * \sum_{i=1}^{n} (xi) = 1/116 * 18997 = 163.7672414 ~= 163.767$$

На основании проведённых наблюдений и по внешнему виду гистограммы можно предположить, что измеряемая величина подчиняется закону Гауссовского распределения с параметрами, приближенными к полученным точечным оценкам матожидания и дисперсии, то есть ~ N(163.767, 25.2).