Redes de Computadores I

Prof Felipe Cunha felipe@uit.br

CAMADA FÍSICA

Camada Física

- Meios de transmissão
- Largura de banda e taxa de dados
- Unidades métricas
- Atrasos em redes de comutação de pacotes

Meios de Transmissão

- Objetivo da camada física:
 - Transportar uma sequência de bits de uma máquina para outra

- Problema a ser resolvido:
 - Codificação de bits

Meios de Transmissão

- •O tipo de meio físico a ser usado depende, dentre outros fatores de:
 - Largura de banda (bandwidth)
 - Atraso (delay) ou latência (latency) ou retardo
 - Custo
 - Facilidade de instalação e manutenção

Meios de Transmissão

- Os meios podem ser agrupados em:
 - Guiados: as ondas são guiadas através de um caminho físico (par trançado, cabo coaxial ou fibra óptica)
 - Não-guiados: as ondas se propagam sem haver um caminho físico (ondas de rádio, microondas ou infravermelho)

Largura de Banda

- A faixa de frequências transmitidas sem serem fortemente atenuadas denominase largura de banda
- •A largura de banda é uma propriedade física do meio de transmissão e, em geral, depende da construção, da espessura e do comprimento do meio
- •Limitando-se a largura de banda, limitase a taxa de dados

Taxa de Dados

 Número de bits que podem ser transmitidos por uma rede em um período de tempo

Exercícios

- 12. Queremos enviar uma sequência de imagens de tela de computador por fibra óptica. A tela tem 480x640 pixels e cada pixel tem 24 bits. Há 60 imagens de tela por segundo. Qual é a taxa de dados necessária?
- 13. Quanto tempo leva para transmitir uma mensagem de 32 KB por um canal de 10 Mbps?

MB, Mbps, KB, Kbps

- •b significa bits e B bytes
- Mega significa 2²⁰ ou 10⁶ ?
- Kilo significa 2¹⁰ ou 10³ ?
- Largura de banda
 - Está relacionada com velocidade de clock (Hz)
 - Mbps significa 10⁶ bits por segundo
- Mensagem a ser transmitida
 - Mensagens são armazenadas na memória e estas são medidas em potências de 2
 - MB significa 2²⁰ bytes

Unidades Métricas

Exp.	Explicit	Prefix	Ехр.	Explicit	Prefix
10 ⁻³	0.001	milli	10 ³	1,000	Kilo
10 ⁻⁶	0.000001	micro	10 ⁶	1,000,000	Mega
10 ⁻⁹	0.00000001	nano	10 ⁹	1,000,000,000	Giga
10 -12	0.00000000001	pico	10 ¹²	1,000,000,000,000	Tera
10 ⁻¹⁵	0.0000000000001	femto	10 ¹⁵	1,000,000,000,000,000	Peta
10 ⁻¹⁸	0.000000000000000001	atto	10 ¹⁸	1,000,000,000,000,000	Exa
10 ⁻²¹	0.0000000000000000000000001	zepto	10 ²¹	1,000,000,000,000,000,000	Zetta
10 -24	0.0000000000000000000000000000000000000	yocto	10 ²⁴	1,000,000,000,000,000,000,000	Yotta

Exercício

14. Imagine que você tenha treinado Bernie, seu cachorro São Bernardo, para carregar uma caixa de três fitas de 8 mm, em vez de um cantil de conhaque. Cada uma dessas fitas contém 7 GB. O cachorro pode viajar a seu lado, onde quer que você esteja, a 18 km/h. Para que intervalo de distância Barnie terá uma taxa de dados mais alta que uma linha de transmissão cuja taxa de dados é de 150 Mbps?

- Um pacote começa no sistema final (origem), passa por uma série de roteadores e termina sua jornada em outro sistema final (destino)
- Quando o pacote chega a um roteador, vindo do nó anterior, o roteador examina o cabeçalho do pacote para determinar o enlace de saída apropriado e, em seguida, o direciona ao enlace

- Quando um pacote viaja de um nó ao nó subsequente (sistema final ou roteador), ele sofre ao longo do caminho diferentes tipos de atrasos:
 - Atraso de processamento
 - Atraso de fila
 - Atraso de transmissão
 - Atraso de propagação

- Atraso de processamento: tempo requerido para examinar o cabeçalho do pacote e determinar para qual fila direcioná-lo
- Atraso de fila: o pacote sofre um atraso de fila enquanto espera para ser transferido no enlace

- Atraso de transmissão: um pacote é transmitido assim que todos os pacotes que chegaram antes tenham sido transmitidos (depende da velocidade de transmissão do enlace e do tamanho do pacote)
- Atraso de propagação: assim que um bit é lançado no enlace, ele precisa se propagar até o próximo roteador, o bit se propaga à velocidade de propagação do enlace (depende da velocidade de propagação e do tamanho do enlace)

Exercício

- 15. Considere dois computadores, A e B, conectados por um único enlace de taxa R bps. Suponha que esses computadores estejam separados por m metros e que a velocidade de propagação ao longo do enlace seja de s metros/segundo. O Computador A tem de enviar um pacote de L bits ao computador B.
 - a) Expresse o atraso de propagação, d_{prop} .
 - b) Determine o tempo de transmissão do pacote, d_{trans} .
 - c) Ignorando os atrasos de processamento e de fila, obtenha uma expressão para o atraso fim-a-fim.

Exercício (cont.)

- d) Suponha que o computador A comece a transmitir o pacote no instante t=0. No instante t = d_{trans} , onde estará o último bit do pacote?
- e) Suponha que d_{prop} seja maior do que d_{trans} . Onde estará o primeiro bit do pacote no instante $t = d_{trans}$?
- f) Suponha que d_{prop} seja menor do que d_{trans} . Onde estará o primeiro bit do pacote no instante $t = d_{trans}$?
- g) Suponha que s=2,5 x 10^8 m/s, L = 100 bits e R = 28 Kbps. Para qual distância d_{prop} é igual a d_{trans} ?