

Hypergraphs and Information Fusion for Term Representation Enrichment. Applications to Named Entity Recognition and Word Sense Disambiguation

Ph.D. Thesis Defense

Pavel Soriano-Morales Supervised by Sabine Loudcher and Julien Ah-Pine February 7th, 2018

Why it is useful to us to understand text?

How do we extract meaning from text?

We use **Natural Language Processing** (NLP), a field of computer science interested on making computers extract useful information from text

Feature Representation and Knowledge Discovery

How do we represent text for the machine to understand?

What techniques do we use to discover meaning from text?

Representing Text

Three common ways to represent text

Representing Text

- $\boldsymbol{\cdot}$ Three common ways to represent text
 - Lexical

Representing Text

- Three common ways to represent text
 - Lexical
 - Syntactic

- Three common ways to represent text
 - Lexical
 - Syntactic
 - Constituency Tree

- $\boldsymbol{\cdot}$ Three common ways to represent text
 - Lexical
 - Syntactic
 - · Constituency Tree
 - Dependency Tree

- Three common ways to represent text
 - Lexical
 - Syntactic
 - · Constituency Tree
 - Dependency Tree
- Working Example

- Three common ways to represent text
 - Lexical
 - Syntactic
 - · Constituency Tree
 - · Dependency Tree
- Working Example

The report contains copies of the minutes of these meetings

- Three common ways to represent text
 - Lexical
 - Syntactic
 - · Constituency Tree
 - Dependency Tree
- Working Example

The report contains copies of the minutes of these meetings

- Three common ways to represent text
 - Lexical
 - Syntactic
 - · Constituency Tree
 - Dependency Tree
- Working Example

The report contains copies of the minutes of these meetings

- Three common ways to represent text
 - Lexical
 - Syntactic
 - · Constituency Tree
 - · Dependency Tree
- Working Example

The report contains copies of the minutes of these meetings

Text Representation Models

- Words and features can be represented by means of graph-based models matrices
- Or directly with (sparse) matrices

Leveraging the Network Structure

We can find communities of similar words according to their meaning

Text Representation Models

- Words and features can be represented by means of graph-based models matrices
- Or directly with (sparse) matrices

Leveraging the Network Structure

We can find communities of similar words according to their meaning

Main Challenges and Contributions

1. What type of model can we employ to represent a corpus using heterogeneous features?

- 1. What type of model can we employ to represent a corpus using heterogeneous features?
 - Hypergraph linguistic model to hold different types of linguistic information

- 1. What type of model can we employ to represent a corpus using heterogeneous features?
 - Hypergraph linguistic model to hold different types of linguistic information
- 2. How can we combine these features while dealing with feature sparsity?

- 1. What type of model can we employ to represent a corpus using heterogeneous features?
 - Hypergraph linguistic model to hold different types of linguistic information
- 2. How can we combine these features while dealing with feature sparsity?
 - Multimedia fusion techniques to combine and densify representation spaces

- 1. What type of model can we employ to represent a corpus using heterogeneous features?
 - Hypergraph linguistic model to hold different types of linguistic information
- 2. How can we combine these features while dealing with feature sparsity?
 - Multimedia fusion techniques to combine and densify representation spaces
- 3. How can we find and employ communities existing within the language networks?

- 1. What type of model can we employ to represent a corpus using heterogeneous features?
 - Hypergraph linguistic model to hold different types of linguistic information
- 2. How can we combine these features while dealing with feature sparsity?
 - Multimedia fusion techniques to combine and densify representation spaces
- 3. How can we find and employ communities existing within the language networks?
 - An alternative network-based algorithm to discover semantically related words within a text

Work Overview

Contributions in Detail

Hypergraph Linguistic Model

How do we represent textual data?

- How do we represent textual data?
 - Network Models [MTFo4]

- How do we represent textual data?
 - · Network Models [MTF04]
 - Vector Space Models [MS+99]

- How do we represent textual data?
 - · Network Models [MTF04]
 - Vector Space Models [MS+99]
- We choose network models

- How do we represent textual data?
 - Network Models [MTFo4]
 - Vector Space Models [MS+99]
- · We choose network models
 - Used in a large quantity of NLP tasks [MR11]

- How do we represent textual data?
 - Network Models [MTFo4]
 - Vector Space Models [MS+99]
- We choose network models
 - Used in a large quantity of NLP tasks [MR11]
 - Graphs structures can give us a clearer view into the relations of words within a text [CM09]

- How do we represent textual data?
 - · Network Models [MTFo4]
 - Vector Space Models [MS+99]
- We choose network models
 - Used in a large quantity of NLP tasks [MR11]
 - Graphs structures can give us a clearer view into the relations of words within a text [CM09]
 - Ultimately graphs are transformed to a vectorial representation through the adjacency/incidence matrices

Hypergraph Linguistic Model Classic Language Networks

The report contains copies of the minutes of these meetings

Classic Language Networks

The report contains copies of the minutes of these meetings

Lexical Networks

Sentence Level

The report contains copies of the minutes of these meetings

Syntactic Networks

Dependency Tree

Classic Language Networks

The report contains copies of the minutes of these meetings

Syntactic Networks

Constituency Tree

The report contains copies of the minutes of these meetings

Semantic Networks

Hypergraph Linguistic Model Limitations and Proposition

Limitations of existing representations

Hypergraph Linguistic Model

Limitations and Proposition

- · Limitations of existing representations
 - Language networks generally employ a single type of textual information

- Limitations of existing representations
 - Language networks generally employ a single type of textual information
 - The edges of the network may relate maximum two words at each time

- · Limitations of existing representations
 - Language networks generally employ a single type of textual information
 - The edges of the network may relate maximum two words at each time
- Proposition

Limitations of existing representations

- Language networks generally employ a single type of textual information
- The edges of the network may relate maximum two words at each time

Proposition

 Represent together linguistic co-occurrences through a hypergraph model

· Limitations of existing representations

- Language networks generally employ a single type of textual information
- The edges of the network may relate maximum two words at each time

Proposition

- Represent together linguistic co-occurrences through a hypergraph model
 - Link together three different types of networks, using lexical and syntactic data

Limitations of existing representations

- Language networks generally employ a single type of textual information
- The edges of the network may relate maximum two words at each time

Proposition

- Represent together linguistic co-occurrences through a hypergraph model
 - Link together three different types of networks, using lexical and syntactic data
 - Get a semantic overview at three different levels: short range (with dependency functions), medium range (phrase constituency membership), and long range (lexical co-occurrence)

Lexical Networks Sentence Level

Syntactic Networks

Constituency Tree

meetings

copies

NP2

minutes

contains

Syntactic Networks

Dependency Tree

Syntactic Networks Constituency Tree meetings copies NP, minutes contains

Lexical Networks Sentence Level report copies meetings

contains

Contributions in Detail

Combining Features and Dealing with Sparsity

Combining Features and Dealing with Sparsity Multimedia Fusion Techniques

Definition

Combining Features and Dealing with Sparsity Multimedia Fusion Techniques

· Definition

 Set of techniques used in multimedia analysis tasks to integrate multiple media [Atr+10; ABL10]

- Set of techniques used in multimedia analysis tasks to integrate multiple media [Atr+10; ABL10]
- The goal is to obtain rich insights about the data being treated

- Set of techniques used in multimedia analysis tasks to integrate multiple media [Atr+10; ABL10]
- The goal is to obtain rich insights about the data being treated
- We adapt these techniques to our use case: textual information

- Set of techniques used in multimedia analysis tasks to integrate multiple media [Atr+10; ABL10]
- The goal is to obtain rich insights about the data being treated
- We adapt these techniques to our use case: textual information

Main fusion operators:

- Set of techniques used in multimedia analysis tasks to integrate multiple media [Atr+10; ABL10]
- The goal is to obtain rich insights about the data being treated
- We adapt these techniques to our use case: textual information

Main fusion operators:

• Early Fusion $E_{\alpha}(\cdot)$,

- Set of techniques used in multimedia analysis tasks to integrate multiple media [Atr+10; ABL10]
- The goal is to obtain rich insights about the data being treated
- We adapt these techniques to our use case: textual information

Main fusion operators:

- Early Fusion $E_{\alpha}(\cdot)$,
- Late Fusion $L_{\beta}(\cdot)$,

- Set of techniques used in multimedia analysis tasks to integrate multiple media [Atr+10; ABL10]
- The goal is to obtain rich insights about the data being treated
- We adapt these techniques to our use case: textual information

· Main fusion operators:

- Early Fusion $E_{\alpha}(\cdot)$,
- Late Fusion $L_{\beta}(\cdot)$,
- Cross Fusion $X_{\gamma}(\cdot), X_{F}(\cdot)$

Early and Late Fusion

Early and Late Fusion

Cross Fusion

- We distinguish three levels of fusion operators
 - First Degree
 - E(M^L, M^S), L(S^S, M^L)
 - Cross Feature Fusion: X_F(S^S, M^L)
 - Cross Similarity Fusion: X_S(S^S, S^L)
 - · Second Degree
 - Cross Feature Early Fusion: $X_F(S^T, E(M^L, M^S))$
 - Late Cross Feature Fusion: $L(M^T, X_F(S^T, M^T))$
 - · Higher Degree
 - Triple Early Double Late Cross Feature Fusion:
 E(M_L, E(E(M_T, L(M^T, X_F(S^T, M^T))), L(M^L, X_F(S^S, M^L))))

Combining Features and Dealing with Sparsity **Hybrid Fusion**

$$E(M_L, E(E(M^T, L(M^T, X_F(S^T, M^T))), L(M^L, X_F(S^S, M^L))))$$

Combining Features and Dealing with Sparsity **Hybrid Fusion**

$$E(M_L, E(E(M^T, L(M^T, X_F(S^T, M^T))), L(M^L, X_F(S^S, M^L))))$$

$$E(M_L, E(E(M^T, L(M^T, X_F(S^T, M^T))), L(M^L, X_F(S^S, M^L))))$$

 $L(M^L, X_c(S^S, M^L))$

$$E(M_L, E(E(M^T, L(M^T, X_F(S^T, M^T))), L(M^L, X_F(S^S, M^L))))$$

 $L(M^T, X_r(S^T, M^T)))$

$$E(M_{L}, E(E(M^{T}, \underline{L(M^{T}, X_{F}(S^{T}, M^{T})))}, \underline{L(M^{L}, X_{F}(S^{S}, M^{L}))))$$

 $E(M^T, L(M^T, X_{\epsilon}(S^T, M^T)))$

$$E(M_L, E(E(M^T, L(M^T, X_F(S^T, M^T))), L(M^L, X_F(S^S, M^L))))$$

$$\mathsf{E}(\mathsf{M}_\mathsf{L}^\mathsf{T},\,\mathsf{E}(\mathsf{E}(\mathsf{M}^\mathsf{T},\,\mathsf{L}(\mathsf{M}^\mathsf{T}\,,\,\mathsf{X}_\mathsf{F}(\mathsf{S}^\mathsf{T},\,\mathsf{M}^\mathsf{T}))),\,\mathsf{L}(\mathsf{M}^\mathsf{L}\,,\,\mathsf{X}_\mathsf{F}(\mathsf{S}^\mathsf{S}\,,\,\mathsf{M}^\mathsf{L}))))$$

$$\begin{array}{c} \overset{w_{_{1}}}{\underset{w_{_{2}}}{\text{w}_{_{3}}}} \left(\begin{array}{c} \boldsymbol{M}^{T} \end{array} \right) \boldsymbol{\Pi} & \overset{w_{_{1}}}{\underset{w_{_{3}}}{\text{w}_{_{2}}}} \left(\begin{array}{c} \boldsymbol{E}(\boldsymbol{E}(\boldsymbol{M}^{T}, \boldsymbol{L}(\boldsymbol{M}^{T}, \boldsymbol{X}_{_{F}}(\boldsymbol{S}^{T}, \boldsymbol{M}^{T}))), \, \boldsymbol{L}(\boldsymbol{M}^{L}, \boldsymbol{X}_{_{F}}(\boldsymbol{S}^{S}, \boldsymbol{M}^{L})))) \end{array} \right) & = \\ & \overset{w_{_{1}}}{\underset{w_{_{2}}}{\text{w}_{_{3}}}} \left(\begin{array}{c} \boldsymbol{E}(\boldsymbol{M}_{_{L}}, \boldsymbol{E}(\boldsymbol{E}(\boldsymbol{M}^{T}, \boldsymbol{L}(\boldsymbol{M}^{T}, \boldsymbol{X}_{_{F}}(\boldsymbol{S}^{T}, \boldsymbol{M}^{T}))), \, \boldsymbol{L}(\boldsymbol{M}^{L}, \boldsymbol{X}_{_{F}}(\boldsymbol{S}^{S}, \boldsymbol{M}^{L})))) \end{array} \right) \\ & = \\ & \overset{w_{_{1}}}{\underset{w_{_{2}}}{\text{w}_{_{3}}}} \left(\begin{array}{c} \boldsymbol{E}(\boldsymbol{M}_{_{L}}, \boldsymbol{E}(\boldsymbol{E}(\boldsymbol{M}^{T}, \boldsymbol{L}(\boldsymbol{M}^{T}, \boldsymbol{X}_{_{F}}(\boldsymbol{S}^{T}, \boldsymbol{M}^{T}))), \, \boldsymbol{L}(\boldsymbol{M}^{L}, \boldsymbol{X}_{_{F}}(\boldsymbol{S}^{S}, \boldsymbol{M}^{L})))) \end{array} \right)$$

Contributions in Detail

Finding Communities in the Network

Finding Communities in the Network
Finding Senses in the Network

Finding Senses in the Network

Language networks tend to be scale-free

Finding Communities in the Network

Finding Senses in the Network

- Language networks tend to be scale-free
 - There are certain nodes (hubs) that are very well connected forming communities within the network

Finding Senses in the Network

- Language networks tend to be scale-free
 - There are certain nodes (hubs) that are very well connected forming communities within the network
- Seminal approaches

- Language networks tend to be scale-free
 - There are certain nodes (hubs) that are very well connected forming communities within the network
- Seminal approaches
 - Hyperlex [Vó4]

- Language networks tend to be scale-free
 - There are certain nodes (hubs) that are very well connected forming communities within the network
- Seminal approaches
 - Hyperlex [Vó4]
 - University of York (UoY) [KM07]

- Language networks tend to be scale-free
 - There are certain nodes (hubs) that are very well connected forming communities within the network
- Seminal approaches
 - Hyperlex [Vó4]
 - University of York (UoY) [KMo7]
- Limitations of existing approaches

- Language networks tend to be scale-free
 - There are certain nodes (hubs) that are very well connected forming communities within the network
- Seminal approaches
 - Hyperlex [Vó4]
 - University of York (UoY) [KMo7]
- · Limitations of existing approaches
 - Single typed networks

- Language networks tend to be scale-free
 - There are certain nodes (hubs) that are very well connected forming communities within the network
- Seminal approaches
 - Hyperlex [Vó4]
 - University of York (UoY) [KMo7]
- · Limitations of existing approaches
 - · Single typed networks
 - Large number of parameters

- Language networks tend to be scale-free
 - There are certain nodes (hubs) that are very well connected forming communities within the network
- Seminal approaches
 - Hyperlex [Vó4]
 - University of York (UoY) [KMo7]
- · Limitations of existing approaches
 - · Single typed networks
 - · Large number of parameters
- Proposition

- Language networks tend to be scale-free
 - There are certain nodes (hubs) that are very well connected forming communities within the network
- Seminal approaches
 - Hyperlex [Vó4]
 - University of York (UoY) [KMo7]
- · Limitations of existing approaches
 - · Single typed networks
 - · Large number of parameters
- Proposition
 - Be able to exploit different types of linguistic information (lexical or syntactic co-occurrence)

Language networks tend to be scale-free

 There are certain nodes (hubs) that are very well connected forming communities within the network

Seminal approaches

- Hyperlex [Vó4]
- University of York (UoY) [KMo7]

· Limitations of existing approaches

- · Single typed networks
- Large number of parameters

Proposition

- Be able to exploit different types of linguistic information (lexical or syntactic co-occurrence)
- Keep the number of parameters low and allow for their automatic adjusting according to the network's nature

Finding Communities in the Network Proposed Method

Applications to NLP

Hypergraph Model Instantiation

Apply our proposed linguistic model to a real world corpus

- Apply our proposed linguistic model to a real world corpus
 - Use the English Wikipedia as input and generate a textual structure following the proposed network model

- Apply our proposed linguistic model to a real world corpus
 - Use the English Wikipedia as input and generate a textual structure following the proposed network model
- We provide two resources

- Apply our proposed linguistic model to a real world corpus
 - Use the English Wikipedia as input and generate a textual structure following the proposed network model
- We provide two resources
 - A syntactically annotated English Wikipedia corpus (SAEWD)

- Apply our proposed linguistic model to a real world corpus
 - Use the English Wikipedia as input and generate a textual structure following the proposed network model
- We provide two resources
 - A syntactically annotated English Wikipedia corpus (SAEWD)
 - An Wikipedia-based enriched hypergraph linguistic model

- Apply our proposed linguistic model to a real world corpus
 - Use the English Wikipedia as input and generate a textual structure following the proposed network model
- We provide two resources
 - A syntactically annotated English Wikipedia corpus (SAEWD)
 - An Wikipedia-based enriched hypergraph linguistic model
- Steps performed

- Apply our proposed linguistic model to a real world corpus
 - Use the English Wikipedia as input and generate a textual structure following the proposed network model
- We provide two resources
 - A syntactically annotated English Wikipedia corpus (SAEWD)
 - An Wikipedia-based enriched hypergraph linguistic model
- Steps performed

Hypergraph Model Instantiation **SAEWD:** Parsed sample

FILENAME wiki_oo.parsed

token	lemma	POS	constituency	head	dependency
%%#PAGE Anarchism					
:	:	:	:	:	:
%%#SEN 25 9					
A	a	DT	NP_22,S_97	3	det
great	great	JJ	NP_22,S_97	3	amod
brigand	brigand	NN	NP_22,S_97	4	nsubj
becomes	become	VBZ	VP_44,S_97	0	root
a	a	DT	NP_18,NP_20,VP_44,S_97	6	det
ruler	ruler	NN	NP_18,NP_20,VP_44,S_97	4	xcomp
of	of	IN	PP_57,NP_20,VP_44,S_97	9	case
a	a	DT	NP_18,PP_57,NP_20,VP_44,S_97	9	det
Nation	nation	NN	NP_18,PP_57,NP_20,VP_44,S_97	6	nmod

Hypergraph Incidence Matrix

		COI	NSTITUEN	Т	DEPEN	DENCY	SENTENCE
		NP ₁ DT:NN	NP ₂ NP:PP:PP	NP₃ NNS	nsubj contains	dobj contains	S ₁
	report	1			1		1
NN	copies		1	1		1	1
ININ	minutes		1				1
	meetings		1				1
VВ	contains						1

Wikipedia Feature Enriched Space

	Lexical Features (5.49%) M ¹	Syntactic Features (4.97%) M ^s	Early Fusion (5.23%) $E(M^{L}, M^{S})$	<i>X_F</i> Fusion (16.75%) <i>X_F</i> (<i>S</i> ^s , <i>M</i> ^L)	<i>X_F</i> Fusion (13.45%) <i>X_F</i> (<i>S</i> ^L , <i>M</i> ^S)
priest	priests	monk	sailor	vassal	sailor
	nun	regent	regent	regent	fluent
	canton	aedile	nuclei	nun	dean
	sailor	seer	nun	sailor	nuclei
	burial	meek	relic	monk	chorus

Applications to NLP

Solving Named Entity Recognition

Solving Named Entity Recognition Introduction

NER Objective

Solving Named Entity Recognition Introduction

NER Objective

 The goal is to automatically discover mentions that belong to a well-defined semantic category.

 The goal is to automatically discover mentions that belong to a well-defined semantic category.

Classic entities types

 The goal is to automatically discover mentions that belong to a well-defined semantic category.

Classic entities types

· Location (LOC)

 The goal is to automatically discover mentions that belong to a well-defined semantic category.

Classic entities types

- Location (LOC)
- Organization (ORG)

 The goal is to automatically discover mentions that belong to a well-defined semantic category.

- Location (LOC)
- Organization (ORG)
- Person (PER)

 The goal is to automatically discover mentions that belong to a well-defined semantic category.

- Location (LOC)
- Organization (ORG)
- Person (PER)
- Miscellaneous (MISC)

 The goal is to automatically discover mentions that belong to a well-defined semantic category.

- Location (LOC)
- · Organization (ORG)
- Person (PER)
- Miscellaneous (MISC)
- None (O)

 The goal is to automatically discover mentions that belong to a well-defined semantic category.

- Location (LOC)
- · Organization (ORG)
- Person (PER)
- Miscellaneous (MISC)
- None (O)
- Our goal

 The goal is to automatically discover mentions that belong to a well-defined semantic category.

Classic entities types

- Location (LOC)
- · Organization (ORG)
- Person (PER)
- Miscellaneous (MISC)
- None (O)

Our goal

 We assess the effectiveness of the classic fusion methods and propose new hybrid combinations

Lexical Space (L)

Word		Features
	Australian	word:Australian, word+1:scientist, word+2:discovers
	scientist	word-1:Australian, word:scientist, word+1:discovers, word+2:star
	discovers	word-2:Australian, word-1:scientist, , word+2:telescope
	star	word-2:scientist, word-1:discovers, word:star,, word+2:telescope
	with	word-2:discovers, word-1:star, word:with, word+1:telescope
	telescope	word-2:star, word-1:with, word:telescope

Syntactic Space (S)

Word	Contexts
Australian	scientist/NN/amod_inv
scientist	Australian/JJ/amod, discovers/VBZ/nsubj_inv
discovers	scientist/NN/nsubj, star/NN/dobj, telescope/NN/nmod:with
star	discovers/VBZ/dobj_inv
telescope	discovers/VBZ/nmod:with_inv

Standard Features Space (T)

- · Each word
- · Whether it is capitalized
- Prefix and suffix (of each word their surroundings)
- Part of Speech tag

Solving Named Entity Recognition Experimental Protocol

Preprocessing

Solving Named Entity Recognition Experimental Protocol

- $\cdot \ \textbf{Preprocessing}$
 - Normalize numbers

Solving Named Entity Recognition **Experimental Protocol**

- Preprocessing
 - · Normalize numbers
- Test Corpora

- Preprocessing
 - · Normalize numbers
- Test Corpora
 - CoNLL-2003 (CONLL) [SM03]: Train: 219,554 lines. Test: 50,350

- Preprocessing
 - · Normalize numbers
- Test Corpora
 - CoNLL-2003 (CONLL) [SM03]: Train: 219,554 lines. Test: 50,350
 - Wikiner (WNER) [NMCo9]: No Train/Test split. 3.5 million words.
 Evaluated in a 5-fold CV

- Preprocessing
 - · Normalize numbers
- Test Corpora
 - CoNLL-2003 (CONLL) [SM03]: Train: 219,554 lines. Test: 50,350
 - Wikiner (WNER) [NMCo9]: No Train/Test split. 3.5 million words.
 Evaluated in a 5-fold CV
 - Wikigold (WGLD) [Bal+09]: No Train/Test split. 41,011 words.
 Evaluated in a 5-fold CV

- Preprocessing
 - · Normalize numbers
- Test Corpora
 - CoNLL-2003 (CONLL) [SM03]: Train: 219,554 lines. Test: 50,350
 - Wikiner (WNER) [NMCo9]: No Train/Test split. 3.5 million words.
 Evaluated in a 5-fold CV
 - Wikigold (WGLD) [Bal+09]: No Train/Test split. 41,011 words.
 Evaluated in a 5-fold CV
- Annotation Scheme

- Preprocessing
 - Normalize numbers
- Test Corpora
 - CoNLL-2003 (CONLL) [SM03]: Train: 219,554 lines. Test: 50,350
 - Wikiner (WNER) [NMCo9]: No Train/Test split. 3.5 million words.
 Evaluated in a 5-fold CV
 - Wikigold (WGLD) [Bal+09]: No Train/Test split. 41,011 words.
 Evaluated in a 5-fold CV
- Annotation Scheme
 - Beginning, Inside, Outside

- Preprocessing
 - · Normalize numbers
- Test Corpora
 - CoNLL-2003 (CONLL) [SM03]: Train: 219,554 lines. Test: 50,350
 - Wikiner (WNER) [NMCo9]: No Train/Test split. 3.5 million words.
 Evaluated in a 5-fold CV
 - Wikigold (WGLD) [Bal+09]: No Train/Test split. 41,011 words.
 Evaluated in a 5-fold CV
- Annotation Scheme
 - · Beginning, Inside, Outside
- Learning Algorithm

- Preprocessing
 - · Normalize numbers
- Test Corpora
 - CoNLL-2003 (CONLL) [SM03]: Train: 219,554 lines. Test: 50,350
 - Wikiner (WNER) [NMCo9]: No Train/Test split. 3.5 million words.
 Evaluated in a 5-fold CV
 - Wikigold (WGLD) [Bal+09]: No Train/Test split. 41,011 words.
 Evaluated in a 5-fold CV
- Annotation Scheme
 - · Beginning, Inside, Outside
- Learning Algorithm
 - Structured Perceptron [Colo2]

- Preprocessing
 - · Normalize numbers
- Test Corpora
 - CoNLL-2003 (CONLL) [SM03]: Train: 219,554 lines. Test: 50,350
 - Wikiner (WNER) [NMCo9]: No Train/Test split. 3.5 million words.
 Evaluated in a 5-fold CV
 - Wikigold (WGLD) [Bal+09]: No Train/Test split. 41,011 words.
 Evaluated in a 5-fold CV
- · Annotation Scheme
 - · Beginning, Inside, Outside
- Learning Algorithm
 - Structured Perceptron [Colo2]
- Evaluation Metrics

- Preprocessing
 - Normalize numbers
- Test Corpora
 - CoNLL-2003 (CONLL) [SM03]: Train: 219,554 lines. Test: 50,350
 - Wikiner (WNER) [NMCo9]: No Train/Test split. 3.5 million words.
 Evaluated in a 5-fold CV
 - Wikigold (WGLD) [Bal+09]: No Train/Test split. 41,011 words.
 Evaluated in a 5-fold CV
- · Annotation Scheme
 - · Beginning, Inside, Outside
- Learning Algorithm
 - Structured Perceptron [Colo2]
- Evaluation Metrics
 - Precision, Recall, F-measure

A	В		Early	Fusion (EF
		CONLL	WNER	WGLD
M^L	M^{s}	72.01	70.59	59.38
M^L	M^{T}	78.13	79.78	61.96
Ms	$M^{\scriptscriptstyle T}$	77.70	78.10	60.93
M^L	$E(M^S,M^T)$	78.90	80.04	63.20
			Late	Fusion (LF
		CONLL	WNER	WGLD
S^L	S^s	61.65	58.79	44.29
S^L	S^T	55.64	67.70	48.00
Ss	S^T	50.21	58.41	49.81

Solving Named Entity Recognition

Evaluation

A	В		Early	Fusion (EF)
		CONLL	WNER	WGLD
M^L	M^s	72.01	70.59	59.38
M^L	M^{T}	78.13	79.78	61.96
Ms	M^{T}	77.70	78.10	60.93
M^L	$E(M^S, M^T)$	78.90	80.04	63.20

Late Fusion	(LF)
-------------	------

	CONLL	WNER	WGLD
S^L S^S	61.65	58.79	44.29
$S^L - S^T$	55.64	67.70	48.00
S^s S^T	50.21	58.41	49.81

	Cross reature	rusion (AFF)
	CONLL WNER	WGLD
$S^L M^T$	49.90 70.27	62.69

47.27

Conser England Estations (V. E)

48.53

52.89 62.21 50.15 Cross Similarity Fusion (X_SF)

51.38

	CONLL	WNER	WGLD
$S^L = S^T$	27.75	59.12	38.35
s b**	36.87	40.92	39.62
S^T $b_{x_S^F}^*$	41.89	52.03	39.92

$$\begin{array}{l} b_{X_FF}^* \in \{M^{\scriptscriptstyle L}, M^{\scriptscriptstyle T}\} \\ b_{X_SF}^* \in \{S^{\scriptscriptstyle L}, S^{\scriptscriptstyle S}\} \end{array}$$

Evaluation

$$E(M_L, E(E(M^T, L(M^T, X_F(S^T, M^T))), L(M^L, X_F(S^S, M^L))))$$

Evaluation

$$E(M_{L}, E(E(M^{T}, L(M^{T}, X_{F}(S^{T}, M^{T}))), L(M^{L}, X_{F}(S^{S}, M^{L}))))$$

Triple Early Double Late Cross Feature Fusion (EEEL X_FLX_F)

		CONLL	WNER	WGLD
$M^{\scriptscriptstyle L}$	$\boldsymbol{\hat{b}_{\text{eeelx}_{\text{f}}\text{lx}_{\text{f}}}}$	65.01	78.02	62.34
$M_{\alpha=0.95}^{L}$	$\boldsymbol{\hat{b}_{\text{eeelx}_{\text{f}}\text{Lx}_{\text{f}}}}$	79.67	81.79	67.05
EF Basel	ine	78.90	80.04	63.20

Solving Named Entity Recognition Analyzing the Best Fusion Operator

 Understand how the evolution towards and enriched space helps the model take the correct decision

30/50

- Understand how the evolution towards and enriched space helps the model take the correct decision
 - Decompose the large fusion operator into 4 separate representations

- Understand how the evolution towards and enriched space helps the model take the correct decision
 - Decompose the large fusion operator into 4 separate representations
 - Train a model with each individual operator (4 models: M₁, M₂, M₃, M₄)

- Understand how the evolution towards and enriched space helps the model take the correct decision
 - Decompose the large fusion operator into 4 separate representations
 - Train a model with each individual operator (4 models: M₁, M₂, M₃, M₄)
 - Investigate how the features added at each step help the model predict the correct class

- Understand how the evolution towards and enriched space helps the model take the correct decision
 - Decompose the large fusion operator into 4 separate representations
 - Train a model with each individual operator (4 models: M_1 , M_2 , M_3 , M_4)
 - Investigate how the features added at each step help the model predict the correct class

We focus on the word *Kory*, and its performance from model M_1 to M_2

We focus on the word *Green*, and its performance from model M_3 to M_4

Applications to NLP

Solving Word Sense Induction and Disambiguation

Solving Word Sense Induction and Disambiguation Introduction

WSI/WSD Objective

· WSI/WSD Objective

 The goal is to determine a set of possible senses to a given word according to its possible contexts (WSI). Then, assigning a correct sense to a particular instance of said word

· WSI/WSD Objective

 The goal is to determine a set of possible senses to a given word according to its possible contexts (WSI). Then, assigning a correct sense to a particular instance of said word

· Our goal

· WSI/WSD Objective

 The goal is to determine a set of possible senses to a given word according to its possible contexts (WSI). Then, assigning a correct sense to a particular instance of said word

· Our goal

 Again, to assess the effectiveness of the fusion enriched spaces and to evaluate the pertinence of our community discovering algorithm

- Preprocessing
 - Remove very frequent and very infrequent words
- Test Corpora
 - Semeval 2007 [SM03]: Train: 219,554 lines. Test: 50,350
- Clustering Algorithm
 - Spectral Clustering [SMoo]
 - · Proposed Community Algorithm
- Evaluation Metrics
 - Supervised Recall
 - · Unsupervised F-measure
 - · Proposed: H-measure

$$H\text{-measure} = \frac{1}{2} \left(2 * \frac{SR * UF}{SR + UF} + \frac{\delta}{\delta + |\text{\#cl} - \delta|} \right)$$

 δ is the average true number of senses of the words in a test corpus

Spectral Clustering Evaluation

Cross Feature C	ross Simi	larity Fu	sion (X	X _S F)	
$X_F(X_S(S^L, S^s), M^L)$	78.40	80.40	76.10	3.11	
$X_F(X_S(S^L, S^s), M^s)$	78.90	81.80	75.60	3.16	
Ear	ly Cross F	eature F	usion (l	EX _F F)	
$E(M^L, X_F(S^L, M^L))$	79.20	82.40	75.70	3.57	2F
$E(M^s, X_F(S^L, M^L))$	78.30	80.50	75.80	1.95	
La	te Cross F	eature F	usion (l	LX _F F)	
$L(M^s, X_F(S^t, M^s))$	78.60	81.10	75.80	4.22	
$L(M^L, X_F(S^L, M^L))$	79.50	82.80	75.70	3.96	
Early Late	Cross Fe	ature Fu	sion (El	LX _F F)	
$E(M^L, L(M^s, X_F(S^L, M^s)))$	78.50	81.40	75.40	4.26	HF
$E(M^L, L(M^L, X_F(S^L, M^L)))$	79.50	82.70	75.90	3.99	
Baseline MFS	78.70	80.90	76.20	1.00	

Figure 1: Supervised Recall

Spectral Clustering Evaluation

Cross Feature C	Cross Simi	larity Fu	sion (X	FX _S F)	
$X_F(X_S(S^L, S^S), M^L)$	78.40	80.40	76.10	3.11	
$X_F(X_S(S^L, S^s), M^s)$	78.90	81.80	75.60	3.16	
Eas	rly Cross F	eature F	usion (l	EX _F F)	
$E(M^L, X_F(S^L, M^L))$	79.20	82.40	75.70	3.57	2F
$E(M^s, X_F(S^L, M^L))$	78.30	80.50	75.80	1.95	
Li	ite Cross F	eature F	usion (l	LX _F F)	
$L(M^s, X_F(S^L, M^s))$	78.60	81.10	75.80	4.22	
$L(M^L, X_F(S^L, M^L))$	79.50	82.80	75.70	3.96	
Early Lat	e Cross Fe	ature Fu	sion (El	LX _F F)	
$E(M^L, L(M^s, X_F(S^L, M^s)))$	78.50	81.40	75.40	4.26	HF
$E(M^L, L(M^L, X_F(S^L, M^L)))$	79.50	82.70	75.90	3.99	
Baseline MFS	78.70	80.90	76.20	1.00	

Figure 1: Supervised Recall

	Fusion (EF)		
	71.11 4.46	74.00	$E(M^L, M^s)$
	ısion (X _F F)	Cross Fea	
	72.50 3.63	76.20	$X_F(S^L, M^L)$
τF	73.90 3.08	74.60	$X_F(S^L, M^S)$
11	76.90 1.08	78.90	$X_F(S^s, M^L)$
	70.00 2.72	73.70	$X_F(S^s, M^s)$
	ısion (X _S F)	Cross Simila	
	76.80 1.01	78.90	$X_S(S^s, S^L)$
	76.80 1.33	78.70	$X_S(S^L, S^S)$

Figure 2: Unsupervised F-measure

Spectral Clustering Evaluation

Proposed Algorithm Evaluation

		Earl	y Fusior	(EF)	
$E(M^{L}, M^{S})$	78.80	81.00	76.40	2.43	
	Cross	Feature	Fusion	(X _F F)	
$X_F(S^L, M^L)$	78.70	80.90	76.20	3.11	
$X_F(S^L, M^S)$	78.50	81.10	75.60	1.92	1F
$X_F(S^s, M^L)$	79.10	81.60	76.40	1.73	11
$X_F(S^s, M^s)$	78.60	80.90	76.00	1.81	
	Cross Sin	milarity	Fusion	(X_SF)	
$X_S(S^s, S^L)$	78.60	80.80	76.20	1.44	
$X_S(S^L, S^s)$	78.70	80.90	76.20	1.10	

Figure 4: Supervised Recall

Proposed Algorithm Evaluation

		Earl	y Fusior	(EF)	
$E(M^{L}, M^{S})$	78.80	81.00	76.40	2.43	
	Cross	Feature	Fusion	(X_FF)	
$X_F(S^L, M^L)$	78.70	80.90	76.20	3.11	
$X_F(S^L, M^S)$	78.50	81.10	75.60	1.92	1F
$X_F(S^s, M^L)$	79.10	81.60	76.40	1.73	11
$X_F(S^s, M^s)$	78.60	80.90	76.00	1.81	
	Cross Sin	milarity	Fusion	(X_SF)	
$X_S(S^s, S^L)$	78.60	80.80	76.20	1.44	
$X_S(S^L, S^s)$	78.70	80.90	76.20	1.10	

Figure 4: Supervised Recall

	usion (EF)	E	
	73.10 2.43	76.90 8	$E(M^L, M^S)$
	usion (X _F F)	Cross Featu	
	74.20 3.11	71.00 6	$K_F(S^L, M^L)$
ıF	75.50 1.92	77.70 7	$K_F(S^L, M^s)$
11	74.90 1.73	75.20 7	$K_F(S^s, M^L)$
	74.30 1.81	77.60 8	$K_F(S^s, M^s)$
	ısion (X _S F)	Cross Similar	
	76.50 1.44	74.10 7	$K_{S}(S^{s},S^{L})$
	76.80 1.10	78.30 7	(s(SL,SS)

Figure 5: Unsupervised F-measure

Proposed Algorithm Evaluation

Figure 6: Proposed H-measure

Conclusions

Conclusions Insights From our Contributions

Hypergraph Linguistic Model

Conclusions

Insights From our Contributions

- Hypergraph Linguistic Model
 - Considering heterogeneous features to link words together at once using a hypergraph structure

- Hypergraph Linguistic Model
 - Considering heterogeneous features to link words together at once using a hypergraph structure
 - Yields a multi-layered representation of text

- Hypergraph Linguistic Model
 - Considering heterogeneous features to link words together at once using a hypergraph structure
 - Yields a multi-layered representation of text
- Combining Features and Dealing with Sparsity

- Hypergraph Linguistic Model
 - Considering heterogeneous features to link words together at once using a hypergraph structure
 - Yields a multi-layered representation of text
- Combining Features and Dealing with Sparsity
 - Using fusion operators

- Hypergraph Linguistic Model
 - Considering heterogeneous features to link words together at once using a hypergraph structure
 - Yields a multi-layered representation of text
- Combining Features and Dealing with Sparsity
 - · Using fusion operators
 - Intuitive way to leverage the different points of view of each heterogeneous feature while increasing the density of the representation

- Hypergraph Linguistic Model
 - Considering heterogeneous features to link words together at once using a hypergraph structure
 - Yields a multi-layered representation of text
- Combining Features and Dealing with Sparsity
 - Using fusion operators
 - Intuitive way to leverage the different points of view of each heterogeneous feature while increasing the density of the representation
- Applications to NLP

- Hypergraph Linguistic Model
 - Considering heterogeneous features to link words together at once using a hypergraph structure
 - Yields a multi-layered representation of text
- Combining Features and Dealing with Sparsity
 - · Using fusion operators
 - Intuitive way to leverage the different points of view of each heterogeneous feature while increasing the density of the representation
- Applications to NLP
 - Solving NER and WSI/WSD with fusion enriched representations and our community-driven algorithm

Hypergraph Linguistic Model

- Considering heterogeneous features to link words together at once using a hypergraph structure
 - Yields a multi-layered representation of text

Combining Features and Dealing with Sparsity

- · Using fusion operators
 - Intuitive way to leverage the different points of view of each heterogeneous feature while increasing the density of the representation

Applications to NLP

- Solving NER and WSI/WSD with fusion enriched representations and our community-driven algorithm
 - Enriched features are indeed useful compared to using single independent features

Hypergraph Linguistic Model

- Considering heterogeneous features to link words together at once using a hypergraph structure
 - · Yields a multi-layered representation of text

Combining Features and Dealing with Sparsity

- · Using fusion operators
 - Intuitive way to leverage the different points of view of each heterogeneous feature while increasing the density of the representation

Applications to NLP

- Solving NER and WSI/WSD with fusion enriched representations and our community-driven algorithm
 - Enriched features are indeed useful compared to using single independent features
 - A high degree combination of fusion operators are the ones that yield the improvements

Hypergraph Linguistic Model

- Considering heterogeneous features to link words together at once using a hypergraph structure
 - Yields a multi-layered representation of text

Combining Features and Dealing with Sparsity

- Using fusion operators
 - Intuitive way to leverage the different points of view of each heterogeneous feature while increasing the density of the representation

Applications to NLP

- Solving NER and WSI/WSD with fusion enriched representations and our community-driven algorithm
 - Enriched features are indeed useful compared to using single independent features
 - A high degree combination of fusion operators are the ones that yield the improvements
 - The community finding algorithm improves over similar algorithms while being simpler and allows for heterogeneous features

Hypergraph Linguistic Model

- Considering heterogeneous features to link words together at once using a hypergraph structure
 - Yields a multi-layered representation of text

Combining Features and Dealing with Sparsity

- Using fusion operators
 - Intuitive way to leverage the different points of view of each heterogeneous feature while increasing the density of the representation

Applications to NLP

- Solving NER and WSI/WSD with fusion enriched representations and our community-driven algorithm
 - Enriched features are indeed useful compared to using single independent features
 - A high degree combination of fusion operators are the ones that yield the improvements
 - The community finding algorithm improves over similar algorithms while being simpler and allows for heterogeneous features
 - The Wikipedia-based instantiation serves as a NLP system starting

Future Work

Conclusions

Hypergraph Linguistic Model

Conclusions

Future Work

- Hypergraph Linguistic Model
 - Implementing a dataframe-like structure allowing for queries and exploration of large corpora using the proposed model

Hypergraph Linguistic Model

- Implementing a dataframe-like structure allowing for queries and exploration of large corpora using the proposed model
- Combining Features and Dealing with Sparsity

Future Work

- Hypergraph Linguistic Model
 - Implementing a dataframe-like structure allowing for queries and exploration of large corpora using the proposed model
- Combining Features and Dealing with Sparsity
 - Finding a more principled way to determine what type of context with what type of fusion operation according to the task at hand

Future Work

- Hypergraph Linguistic Model
 - Implementing a dataframe-like structure allowing for queries and exploration of large corpora using the proposed model
- Combining Features and Dealing with Sparsity
 - Finding a more principled way to determine what type of context with what type of fusion operation according to the task at hand
 - Exploring with other modal features

· Hypergraph Linguistic Model

 Implementing a dataframe-like structure allowing for queries and exploration of large corpora using the proposed model

Combining Features and Dealing with Sparsity

- Finding a more principled way to determine what type of context with what type of fusion operation according to the task at hand
- Exploring with other modal features
- Applications to NLP

Future Work

- Hypergraph Linguistic Model
 - Implementing a dataframe-like structure allowing for queries and exploration of large corpora using the proposed model
- Combining Features and Dealing with Sparsity
 - Finding a more principled way to determine what type of context with what type of fusion operation according to the task at hand
 - Exploring with other modal features
- Applications to NLP
 - Using the large Wikipedia-based network as a background corpus to further enrich domain-specific corpora

Future Work

Hypergraph Linguistic Model

 Implementing a dataframe-like structure allowing for queries and exploration of large corpora using the proposed model

Combining Features and Dealing with Sparsity

- Finding a more principled way to determine what type of context with what type of fusion operation according to the task at hand
- Exploring with other modal features

Applications to NLP

- Using the large Wikipedia-based network as a background corpus to further enrich domain-specific corpora
- Test more feature weighting schemes, validate findings on more datasets

Publications Produced by Our Research

- Edmundo-Pavel Soriano-Morales, Julien Ah-Pine, Sabine Loudcher:
 Fusion Techniques for Named Entity Recognition and Word Sense
 Induction and Disambiguation. DS 2017
- Edmundo-Pavel Soriano-Morales, Julien Ah-Pine, Sabine Loudcher:
 Using a Heterogeneous Linguistic Network for Word Sense Induction and Disambiguation. CICLING 2016
- Edmundo-Pavel Soriano-Morales, Julien Ah-Pine, Sabine Loudcher:
 Hypergraph Modelization of a Syntactically Annotated English
 Wikipedia Dump. LREC 2016
- Adrien Guille, Edmundo-Pavel Soriano-Morales, Ciprian-Octavian Truica: Topic modeling and hypergraph mining to analyze the EGC conference history. EGC 2016
- Adrien Guille, Edmundo-Pavel Soriano-Morales: TOM: A library for topic modeling and browsing. EGC 2016:

Publications Produced by Our Research

- Julien Ah-Pine, Edmundo-Pavel Soriano-Morales: A Study of Synthetic Oversampling for Twitter Imbalanced Sentiment Analysis.
 DMNLP@PKDD/ECML 2016
- Sabine Loudcher, Wararat Jakawat, Edmundo-Pavel Soriano-Morales, Cécile Favre: Combining OLAP and information networks for bibliographic data analysis: a survey. Scientometrics 103(2)

Thank you for your attention

References

Christopher D Manning, Hinrich Schütze, et al. Foundations of statistical natural language processing. Vol. 999. MIT Press, 1999.

Jianbo Shi and Jitendra Malik. "Normalized Cuts and Image Segmentation". In: *IEEE Trans. Pattern Anal. Mach. Intell.* 22.8 (Aug. 2000), pp. 888–905. ISSN: 0162-8828. DOI: 10.1109/34.868688. URL: http://dx.doi.org/10.1109/34.868688.

References II

Michael Collins. "Discriminative Training Methods for Hidden Markov Models: Theory and Experiments with Perceptron Algorithms". In: Proceedings of the ACL-02 Conference on Empirical Methods in Natural Language Processing - Volume 10. EMNLP '02. Stroudsburg, PA, USA: Association for Computational Linguistics, 2002, pp. 1–8. DOI: 10.3115/1118693.1118694.

Erik F. Tjong Kim Sang and Fien De Meulder. "Introduction to the CoNLL-2003 Shared Task: Language-Independent Named Entity Recognition". In: *CoNLL*. ACL, 2003, pp. 142–147.

References III

Rada Mihalcea, Paul Tarau, and Elizabeth Figa. "PageRank on Semantic Networks, with Application to Word Sense Disambiguation". In: Proceedings of the 20th International Conference on Computational Linguistics. COLING '04. Geneva, Switzerland: Association for Computational Linguistics, 2004. DOI: 10.3115/1220355.1220517.

Jean Véronis. "HyperLex: lexical cartography for information retrieval". In: Computer Speech & Language 18.3 (2004), pp. 223 –252. ISSN: 0885-2308. DOI: 10.1016/j.csl.2004.05.002.

References IV

Ioannis P. Klapaftis and Suresh Manandhar. "UOY: A Hypergraph Model for Word Sense Induction & Disambiguation". In: *Proceedings of the 4th International Workshop on Semantic Evaluations*. SemEval '07. Prague, Czech Republic: Association for Computational Linguistics, 2007, pp. 414–417.

Ioannis P. Klapaftis and Suresh Manandhar. "Word Sense Induction Using Graphs of Collocations". In: *Proceedings of the 2008 Conference on ECAI 2008: 18th European Conference on Artificial Intelligence*. Amsterdam, The Netherlands, The Netherlands: IOS Press, 2008, pp. 298–302. ISBN: 978-1-58603-891-5.

Conclusions References V

Dominic Balasuriya et al. "Named Entity Recognition in Wikipedia". In: Proceedings of the 2009 Workshop on The People's Web Meets NLP: Collaboratively Constructed Semantic Resources. People's Web '09. Suntec, Singapore: Association for Computational Linguistics, 2009, pp. 10–18. ISBN: 978-1-932432-55-8. URL: http://dl.acm.org/citation.cfm?id=1699765.1699767.

Monojit Choudhury and Animesh Mukherjee. "The Structure and Dynamics of Linguistic Networks". English. In: *Dynamics On and Of Complex Networks*. Ed. by Niloy Ganguly, Andreas Deutsch, and Animesh Mukherjee. Modeling and Simulation in Science, Engineering and Technology. Birkhäuser Boston, 2009, pp. 145–166. ISBN: 978-0-8176-4750-6. DOI: 10.1007/978-0-8176-4751-3_9.

References VI

Joel Nothman, Tara Murphy, and James R. Curran. "Analysing Wikipedia and Gold-standard Corpora for NER Training". In: Proceedings of the 12th Conference of the European Chapter of the Association for Computational Linguistics. EACL '09. Athens, Greece: Association for Computational Linguistics, 2009, pp. 612–620.

Yong-Yeol Ahn, James P Bagrow, and Sune Lehmann. "Link communities reveal multiscale complexity in networks". In: *Nature* 466.7307 (2010), pp. 761–764.

Pradeep K. Atrey et al. "Multimodal fusion for multimedia analysis: a survey". In: *Multimedia Syst.* 16.6 (2010), pp. 345–379.

References VII

Rada F. Mihalcea and Dragomir R. Radev. *Graph-based Natural Language Processing and Information Retrieval*. 1st. New York, NY, USA: Cambridge University Press, 2011. ISBN: 0521896134, 9780521896139.