

Design, reliability evaluation, and hardening of vision-oriented hardware accelerators

Supervisor.

Author:

Prof. SONZA REORDA MATTEO

Oguz Sensoz

Co-supervisors:

Dr. GUERRERO BALAGUERA JUAN DAVID

Dr. RODRIGUEZ CONDIA JOSIE ESTEBAN

Electronics Engineering

1. Introduction

2. Stereo Vision Core

Outline

3. Reliability Assessment Approach

4. Experimental Results

5. Conclusion and Future Work

1. Introduction

• Stereo vision technique

• The applications: ADAS, industrial automation, drones...

1. Introduction - Reliability

- Hardware can fail.
- The faults can compromise the reliability of safety-critical systems.

Goal of the thesis

Analysis of the stereo vision accelerator under permanent and transient fault models using simulation and emulation-based strategies.

1. Introduction

2. Stereo Vision Core

Outline

3. Reliability Assessment Approach

4. Experimental Results

5. Conclusion and Future Work

2. Stereo Matching Core

• The architecture of the stereo vision accelerator based on census transform.

2. Census Transform

• Nine kernel configurations, three window sizes: 5x5, 7x7, and 9x9.

1. Introduction

2. Stereo Vision Core

Outline

3. Reliability Assessment Approach

4. Experimental Results

5. Conclusion and Future Work

3. Reliability Assessment - Approaches

Simulation-based

- Questa simulator
 - Stuck at fault with commands
 - RTL fault injection

Emulation-based

- Verilator for the fault injection
 - Open Source
 - Verilog Compatibility
 - High-Speed Simulation
- Hyper-FPGA
 - FPGA and CPU
 - High-Performance Computing

3.1. Simulation-based Strategy

- Fault injection environment by using Questa simulator.
- The Python script for the statistics calculation.
- The metrics: Accuracy, PSNR, and SNR.

3.2. Emulation-based Strategy

• The strategy to implement the accelerator in the FPGA.

3.2. Emulation-based Strategy: Hardware

- The selected component for the fault injection: Comparator module
- The fault list length is 2394.

3.2. Emulation-based Strategy: Gate-level conversion

- Yosys can translate between different hardware description languages.
- Advantage of using gate-level netlist.


```
module mux2x1 (
    input wire a,
    input wire b,
    input wire sel,
    output wire y
);

wire sel_n, and_a, and_b;

not (sel_n, sel);
    and (and_a, a, sel_n);
    and (and_b, b, sel);
    or (y, and_a, and_b);

endmodule
```


3.2. Emulation-based Strategy: Saboteur Injection

• Python script: inserting the logic, creating a report

- Saboteur
 - Stuck-at-fault, bit flip
 - Combinational logic

- Single Event Upset (SEU)
 - Transient fault
 - Sequential logic

3.2. Emulation-based Strategy: FPGA Prototyping

- The accelerator with saboteurs
- The controller establishes a handshake protocol.
- The stream data interface is for image transfer.

3.2. Emulation-based Strategy: FI Campaign

- Designer can select:
 - Target bit/s,
 - Fault type,
 - Image.

The designer can perform post-processing.

1. Introduction

2. Stereo Vision Core

Outline

3. Reliability Assessment Approach

4. Experimental Results

5. Conclusion and Future Work

4. Experimental Results

 Middelbury stereo dataset: Tsukuba, Venus, and Cones.

 Fault-free & faulty simulation results for the Venus image.

Faulty simulations based on:

- Uniform configuration
- 7x7 window size

Tsukuba

Venus

Cones

4.1. Fault-free Simulation Results

4.1. Fault-free Simulation Results

Comparison between uniform and 1-point designs.

Uniform, 5x5 84.57%

Uniform, 7x7 97.03%

Uniform, 9x9 97.61%

1-point, 5x5 57.56%

1-point, 7x7 57.40%

1-point, 9x9

4.2. Faulty Simulation: Accuracy

The average accuracy, for each bit position across all 63 components under SA faults.

4.2. Faulty Simulation: PSNR

The average PSNR, for each bit positions across all 63 components under SA faults.

4.2. Faulty Simulation: SNR

• The average SNR, for each bit positions across all 63 components under SA faults.

4.2. Faulty Simulation: Through the components

- The average of the 19 bits, including SA0 and SA1, for each of the 63 components.
- The components 4, 8, 19, 30, and 41.

4.2. Faulty Simulation: The worst-case example

• Golden values for the design were:

• Accuracy: 97.03%

• PSNR: 25.59 dB

• SNR: 15.08 dB

Accuracy: 90.04% PSNR: 20.64 dB SNR: 10.13 dB

Bit-15 Accuracy: 95.63% PSNR: 22.73 dB SNR: 12.22 dB

Accuracy: 81.89% PSNR: 19.03 dB SNR: 8.52 dB

Accuracy: 45.56% PSNR: 16.10 dB SNR: 5.59 dB

4.3. Simulation Times

• Emulation-based strategy (the Verilator) is more time-efficient.

• The elapsed time depends on the image size.

	Fault-free	Faulty
Simulation-based	~ 6-8 min for 1 design	650 faults => 50-70 hours
Emulation-based (the Verilator)	~ 10-20 sec for 1 design	2394 faults => 4-6 hours

1. Introduction

2. Stereo Vision Core

Outline

3. Reliability Assessment Approach

4. Experimental Results

5. Conclusion and Future Work

5.1. Conclusion

 In this project, we aimed to measure the reliability of the stereo vision accelerator under permanent faults.

· We developed two strategies and worked on their implementation.

• The bit positions that consistently fall below the average accuracy have always been the most significant bits, with an average drop of 38.04%.

5.2. Future Work

 The target FPGA is the hyper-FPGA cluster from ICTP MLAB.

 The accelerator integration: the ComBlock.

• The stream data interface.

Thank you

April 2025

