ECON 4360: Empirical Finance

Prices, Payoffs, and Notation

Sherry Forbes

University of Virginia

Theory Lecture #04

What are we doing today?

- Using the SDF Methodology
 - Prices, Payoffs, and Notation
- A Basic Pricing Example (MATLAB) with the SDF Methodology.

Basic Pricing Equation

- Recall that last time, we set up a basic problem that derived the central asset pricing equation from the consumption-based model.
 - (We wanted to find the **price** of the asset that set the first order condition to zero.)
- Our basic pricing equation was

$$p_{t} = E_{t} \left[\beta \frac{u'\left(c_{t+1}\right)}{u'\left(c_{t}\right)} x_{t+1} \right]$$

that implied, in equilibrium, the decrease in utility from buying a share of the asset today has to just equal the increase in expected discounted utility that results from having one more share tomorrow.

• We then wrote the pricing equation

$$p_{t} = E_{t} \left[\beta \frac{u'\left(c_{t+1}\right)}{u'\left(c_{t}\right)} x_{t+1} \right]$$

• We then wrote the pricing equation

$$p_{t} = E_{t} \left[\beta \frac{u'\left(c_{t+1}\right)}{u'\left(c_{t}\right)} x_{t+1} \right]$$

as

$$p_t = E_t \left[m_{t+1} x_{t+1} \right]$$

• We then wrote the pricing equation

$$p_{t} = E_{t} \left[\beta \frac{u'\left(c_{t+1}\right)}{u'\left(c_{t}\right)} x_{t+1} \right]$$

as

$$p_t = E_t \left[m_{t+1} x_{t+1} \right]$$

by defining

$$m_{t+1} = \beta \frac{u'\left(c_{t+1}\right)}{u'\left(c_{t}\right)}$$

• We then wrote the pricing equation

$$p_{t} = E_{t} \left[\beta \frac{u'\left(c_{t+1}\right)}{u'\left(c_{t}\right)} x_{t+1} \right]$$

as

$$p_t = E_t \left[m_{t+1} x_{t+1} \right]$$

by defining

$$m_{t+1} = \beta rac{u'\left(c_{t+1}
ight)}{u'\left(c_{t}
ight)}$$

• The variable m_{t+1} is a random variable, called the SDF, that maps future payoffs into today's price.

 Recall that last time we did a nonstochastic example to illustrate the basic intuition.

- Recall that last time we did a nonstochastic example to illustrate the basic intuition.
 - If the first-order condition is not met, an investor can increase his utility by purchasing of an asset that allow him to shift / smooth consumption across time

- Recall that last time we did a nonstochastic example to illustrate the basic intuition.
 - If the first-order condition is not met, an investor can increase his utility by purchasing of an asset that allow him to shift / smooth consumption across time
- Today, we're going to do a stochastic example that illustrates in a simple way - how the equation

$$p = E(mx)$$

shows that all correction for risk can be captured by a single random variable put inside the expectation.

- Recall that last time we did a nonstochastic example to illustrate the basic intuition.
 - If the first-order condition is not met, an investor can increase his utility by purchasing of an asset that allow him to shift / smooth consumption across time
- Today, we're going to do a stochastic example that illustrates in a simple way - how the equation

$$p = E(mx)$$

shows that all correction for risk can be captured by a single random variable put inside the expectation.

• Unlike β in a model like the CAPM, the stochastic discount factor m is the **same** for **all** assets...

Example One

- Suppose investor preferences are $u\left(c\right)=\frac{c^{1-\gamma}}{1-\gamma}$ with $\gamma=2$ and $\beta=0.99$.
- There are three possible states of nature next period: good, average, and bad.
- The investor consumes 7 units of the consumption good today.
- Given the possible payoffs of the security (x^A) in the table that follows, we're going to figure out the price the investor would pay for the security today.

• First, what is the **expected payoff** of the security?

State	Prob	Future C	Payoff
s	π_{t+1}^s	c_{t+1}	x_{t+1}^A
Good	0.3	12	20
Average	0.4	9	15
Bad	0.3	6	10

Expected Payoffs

• Expected Payoffs are found by simply calculating the expectation of a random variable... In this case, the random variable is x^A .

Expected Payoffs

- Expected Payoffs are found by simply calculating the expectation of a random variable... In this case, the random variable is x^A .
- In our case,

$$E_{t}(x_{t+1}) = \sum_{s} \pi_{t+1}^{s} x_{t+1}^{A}$$

$$= (0.3)(20) + (0.4)(15) + (0.3)(10)$$

$$= 15$$

 Next, how do we start figuring out the price the investor would pay for the security today?

Prob	Future C	Payoff
π_{t+1}^{s}	c_{t+1}	x_{t+1}^A
0.3	12	20
0.4	9	15
0.3	6	10
	π_{t+1}^{s} 0.3 0.4	$ \pi_{t+1}^{s} c_{t+1} $ 0.3 12 0.4 9

 Next, how do we start figuring out the price the investor would pay for the security today?

State	Prob	Future C	Payoff
S	π_{t+1}^s	c_{t+1}	x_{t+1}^A
Good	0.3	12	20
Average	0.4	9	15
Bad	0.3	6	10

Do you think an investor would pay more or less than \$15 for it? Why?

Recall our basic pricing equation,

$$p_{t} = E_{t} \left[m_{t+1} x_{t+1} \right] = E_{t} \left[\beta \frac{u' \left(c_{t+1} \right)}{u' \left(c_{t} \right)} x_{t+1} \right]$$

 In order to figure out the price, we really just have another expectation to calculate. Given the information in the table, do we have enough information to figure it out?

State	Prob	Future C	Payoff
S	π^{s}_{t+1}	c_{t+1}	x_{t+1}^A
Good	0.3	12	20
Average	0.4	9	15
Bad	0.3	6	10

ullet From $p_t = E_t \left[eta rac{u'(c_{t+1})}{u'(c_t)} x_{t+1}
ight]$, we just need to calculate

$$p_t = \sum_s \pi^s_{t+1} m^s_{t+1} x^s_{t+1}$$

with

$$m_{t+1}^{s} = \beta \frac{u'\left(c_{t+1}\right)}{u'\left(c_{t}\right)}$$

• Let's see if we can do this in MATLAB...

• Answer: The price of asset A is

$$\sum_{s} \pi^{s} m_{t+1}^{s} x_{t+1}^{s} = 9.66$$

State	Prob	Fut C	Payoff A	Marg Util	SDF
S	p_{t+1}^s	c_{t+1}	$x_{t+1}^{\mathcal{A}}$	$u'\left(c_{t+1} ight)$	m_{t+1}
Good	0.3	12	20	0.007	0.337
Ave	0.4	9	15	0.012	0.599
Bad	0.3	6	10	0.028	1.348

Example Two: Asset B

- Assume again that we have the same investor as in Example One
 - He has the same preferences, consumption today, and faces the same three states of nature as before.
- Now, however, he can only invest in another asset, Asset B...

Example Two: Asset B

- First, what is the **expected payoff** of the security?
- And what is its **price**?

State	Prob	Future C	Payoff
5	π_{t+1}^s	c_{t+1}	x_{t+1}^B
Good	0.3	12	10
Average	0.4	9	15
Bad	0.3	6	20

Example Two: Asset B

• Answer: The price of asset B is

$$\sum_{s} \pi^{s} m_{t+1}^{s} x_{t+1}^{s} = 12.69$$

State	Prob	Fut C Payoff B		Marg Util	SDF
S	p_{t+1}^s	c_{t+1}	x_{t+1}^B	$u'\left(c_{t+1} ight)$	m_{t+1}
Good	0.3	12	10	0.007	0.337
Ave	0.4	9	15	0.012	0.599
Bad	0.3	6	20	0.028	1.348

What's the Difference between A and B?

• Why, though the expected payoffs are identical, does asset B sell for a higher price than asset A?

S	π_{t+1}^s	c_{t+1}	x_{t+1}^A	x_{t+1}^B	$u'\left(c_{t+1}\right)$	m_{t+1}	$\pi(\mathit{mx}^A)$	$\pi(mx^B)$
Good	0.3				0.007			1.011
Ave	0.4	9	15	15	0.012	0.599	3.593	3.593
Bad	0.3	6	10	20	0.028	1.348	4.043	8.085

What's the Difference between A and B?

- Why, though the expected payoffs are identical, does asset B sell for a higher price than asset A?
 - Because it covaries negatively with consumption it pays off well when you are feeling poorly.

s	π^{s}_{t+1}	c_{t+1}	x_{t+1}^A	x_{t+1}^B	$u'\left(c_{t+1}\right)$	m_{t+1}	$\pi(\mathit{mx}^{A})$	$\pi(\mathit{mx}^{\mathit{B}})$
Good	0.3	12	20	10	0.007	0.337	2.021	1.011
Ave	0.4	9	15	15	0.012	0.599	3.593	3.593
Bad	0.3	6	10	20	0.028	1.348	4.043	8.085

What's the Difference between A and B?

- Why, though the expected payoffs are identical, does asset B sell for a higher price than asset A?
 - Because it covaries negatively with consumption it pays off well when you are feeling poorly.

s	π^s_{t+1}	c_{t+1}	x_{t+1}^A	x_{t+1}^B	$u'\left(c_{t+1}\right)$	m_{t+1}	$\pi(\mathit{mx}^{A})$	$\pi(\mathit{mx}^B)$
Good	0.3	12	20	10	0.007	0.337	2.021	1.011
Ave	0.4	9	15	15	0.012	0.599	3.593	3.593
Bad	0.3	6	10	20	0.028	1.348	4.043	8.085

• Can you see from this example how m_{t+1} is a random variable that discounts payoffs to prices?

- What about modeling future expectations?
- This model uses expectations of the future to set prices today.

- What about modeling future expectations?
- This model uses expectations of the future to set prices today.
 - Is this useful if we can't observe future consumption?

- What about modeling future expectations?
- This model uses expectations of the future to set prices today.
 - Is this useful if we can't observe future consumption?
- We can observe consumption historically and test the model if it correctly explains the relationship between consumption and prices.

- What about modeling future expectations?
- This model uses expectations of the future to set prices today.
 - Is this useful if we can't observe future consumption?
- We can observe consumption historically and test the model if it correctly explains the relationship between consumption and prices.
 - Often the "market" for example, the return on the S&P 500 is used as a proxy for consumption.

- What about modeling future expectations?
- This model uses expectations of the future to set prices today.
 - Is this useful if we can't observe future consumption?
- We can observe consumption historically and test the model if it correctly explains the relationship between consumption and prices.
 - Often the "market" for example, the return on the S&P 500 is used as a proxy for consumption.
 - (This gives us a model like the CAPM.)

Prices, Payoffs and Notation

- You may be thinking that an asset with price p_t and payoff x_{t+1} is a very restrictive security, but actually this notation is very general...
 - We can easily accommodate many different asset pricing equations with this notation

Stocks

- We can easily use this notation to describe stocks.
 - Think about what the "payoff" is for owning a stock...
 - How would you describe this in a today-tomorrow sense?

Stocks

The payoff tomorrow is the price you get plus its dividends,

$$x_{t+1} = p_{t+1} + d_{t+1}$$

so for a stock we can write

$$p_{t} = E_{t} [m_{t+1}x_{t+1}]$$

$$= E_{t} [m_{t+1} (p_{t+1} + d_{t+1})]$$

Returns

• If an asset's price is 100 and it pays off 106 in a year's time, then what is its gross return R_{t+1} ?

Returns

• If an asset's price is 100 and it pays off 106 in a year's time, then what is its gross return R_{t+1} ?

• Answer: $R_{t+1} = 1.06$

• If an asset's price is 100 and it pays off 106 in a year's time, then what is its gross return R_{t+1} ?

• Answer: $R_{t+1} = 1.06$

• How do we get gross returns?

- If an asset's price is 100 and it pays off 106 in a year's time, then what is its gross return R_{t+1} ?
 - Answer: $R_{t+1} = 1.06$
- How do we get gross returns?
 - ullet We just divide the payoff x_{t+1} by the price p_t

$$R_{t+1} = \frac{x_{t+1}}{p_t}$$

- If an asset's price is 100 and it pays off 106 in a year's time, then what is its gross return R_{t+1} ?
 - Answer: $R_{t+1} = 1.06$
- How do we get gross returns?
 - We just divide the payoff x_{t+1} by the price p_t

$$R_{t+1} = \frac{x_{t+1}}{p_t}$$

 We often talk and work in terms of returns, since the gross return is what tells us what our dollar payoff is for each dollar invested.

- Since a gross return is the dollar payoff per dollar invested,
 - You can think of a return as a payoff with a price of one.
 - Then we can write

$$1 = E_t \left(m_{t+1} R_{t+1} \right)$$

simply by re-writing the fundamental asset pricing equation $p_t = E_t (m_{t+1} x_{t+1})$

 Note how the SDF discounts gross returns to their price; which, by definition, is 1.

Notes about Returns

- Note that
 - Capital letters denote gross returns
 - Lowercase letters denote net returns r = R 1
 - The return can also be defined in continuous compounding terms as $r = \ln(R)$
 - In our example, the net return r is r = R 1 = 0.06, or 6%
- Returns are "nice" and useful in empirical work because they are "stationary" over time in the sense that they don't have trends and you can meaningfully take averages

Price-Dividend Ratio

- We use returns a lot in empirical work, but often we would prefer a stationary variable that lets us think in terms of prices...
- ullet Return to our definition of the payoff for a stock, $x_{t+1}=p_{t+1}+d_{t+1}$
- First, write the asset pricing equation as

$$p_t = E_t \left[m_{t+1} (p_{t+1} + d_{t+1}) \right]$$

 If we divide by today's dividend, we get the present value of the price/dividend ratio...

Price-Dividend Ratio

Next, dividing by today's dividend

$$\begin{array}{lcl} \frac{p_t}{d_t} & = & \frac{E_t \left[m_{t+1} (p_{t+1} + d_{t+1}) \right]}{d_t} \\ \\ \frac{p_t}{d_t} & = & E_t \left[m_{t+1} \left(\frac{p_{t+1}}{d_{t+1}} \frac{d_{t+1}}{d_t} + \frac{d_{t+1}}{d_t} \right) \right] \\ \\ \frac{p_t}{d_t} & = & E_t \left[m_{t+1} \left(\frac{p_{t+1}}{d_{t+1}} + 1 \right) \left(\frac{d_{t+1}}{d_t} \right) \right] \end{array}$$

- This gets us back to thinking about asset prices, but we are still looking at stationary variables
 - The price is p_t/d_t
 - The payoff is $x_{t+1} = \left(1 + rac{p_{t+1}}{d_{t+1}}\right) rac{d_{t+1}}{d_t}$

Excess Returns

- What is an "excess return"?
 - Generally speaking, it is the difference between two returns
 - Also called a "zero-cost" portfolio...
- It is often common to study equity strategies where you sell short one stock/portfolio and invest the proceeds in another to generate an "excess" return
- Think about this... You can borrow a dollar today at R^f and invest it in an asset with return R.
 - ullet You pay no money out of pocket today, but you get the payoff $R-R^f$
 - This is a payoff with zero price.

Example: Excess Returns

Example: Excess Returns

- Consider a strategy of borrowing \$100 to buy a share of Apple stock for \$100. This costs you \$0 today (its price is zero) since you put none of your own money into the investment.
 - But the payoff is not zero! You could make or lose money on the investment.
 - The payoff of such a long-short strategy with price today of zero is an "excess return" where $R^e_{t+1}=R^a_{t+1}-R^f$

- You can see that you don't have to just borrow at the risk-free rate this can be done with any two assets, say $R_{t+1}^e = R_{t+1}^a R_{t+1}^b$
 - This strategy is equivalent to "going long" stock A and "going short" stock B
- Notes on "shorting" a stock:

- You can see that you don't have to just borrow at the risk-free rate this can be done with any two assets, say $R^e_{t+1} = R^a_{t+1} R^b_{t+1}$
 - This strategy is equivalent to "going long" stock A and "going short" stock B
- Notes on "shorting" a stock:
 - Going short is the practice of selling assets that have been borrowed from a third party, with the intention to buying identical assets back at a later date to return to that third party.

- You can see that you don't have to just borrow at the risk-free rate this can be done with any two assets, say $R^e_{t+1} = R^a_{t+1} R^b_{t+1}$
 - This strategy is equivalent to "going long" stock A and "going short" stock B
- Notes on "shorting" a stock:
 - Going short is the practice of selling assets that have been borrowed from a third party, with the intention to buying identical assets back at a later date to return to that third party.
 - A short seller hopes to profit from a decline in the asset's price, since the seller will pay less to buy the assets back than it received for earlier selling them.

 You can see that - mathematically - short selling is equivalent to buying a negative amount of an asset

$$1 = E_{t}(m_{t+1}R_{t+1}^{a})$$

$$-1 = -E_{t}(m_{t+1}R_{t+1}^{b})$$

So our asset pricing equation for excess returns becomes

$$0 = E_t \left(m_{t+1} \left(R_{t+1}^a - R_{t+1}^b \right) \right) = E_t \left(m_{t+1} R_{t+1}^e \right)$$

Why Excess Returns?

• Why might excess returns be a useful thing to look at?

Why Excess Returns?

- Why might excess returns be a useful thing to look at?
 - You can always borrow at R^f , so the interesting thing is the return you get **over and above** the risk-free rate.

Why Excess Returns?

- Why might excess returns be a useful thing to look at?
 - You can always borrow at R^f , so the interesting thing is the return you get **over and above** the risk-free rate.
 - Interest rate variation has little to do with our understanding of risk-premia, so we want to look at interest rates and risk premia separately

Managed Portfolios

- A managed portfolio is simply one where the weight on each asset varies through time.
- Let z_t be the amount (in dollars) of an asset owned at time t. I.e., the "price" of such an asset is the amount invested (in dollars).
- Then the payoff is $z_t R_{t+1}$ or

$$z_{t} = E_{t} \left[m_{t+1} \left(z_{t} R_{t+1} \right) \right]$$

• Example: a value-oriented timing strategy might make investments proportional to p_t/d_t ratios, investing less when prices are high relative to dividends such that

$$z_t = a - b \left(\frac{p_t}{d_t}\right)$$

Bonds

• What is a risk-free bond?

Bonds

- What is a risk-free bond?
 - Essentially, it is a claim to a \$1 unit payoff in every possible state.

Bonds

- What is a risk-free bond?
 - Essentially, it is a claim to a \$1 unit payoff in every possible state.
- Using our key equation, the price of a bond is given by

$$p_t = E_t \left[m_{t+1} 1 \right]$$

If we go back to the same setup we used in our earlier example,

S	π^s_{t+1}	 m_{t+1}
Good	0.3	 0.337
Ave	0.4	 0.599
Bad	0.3	 1.348

• What is the expected payoff of a risk-free bond?

If we go back to the same setup we used in our earlier example,

S	π^s_{t+1}	 m_{t+1}
Good	0.3	 0.337
Ave	0.4	 0.599
Bad	0.3	 1.348

- What is the expected payoff of a risk-free bond?
 - $\sum_{s} \pi^{s} x_{t+1}^{s} = \1

If we go back to the same setup we used in our earlier example,

S	π^s_{t+1}	 m_{t+1}
Good	0.3	 0.337
Ave	0.4	 0.599
Bad	0.3	 1.348

- What is the expected payoff of a risk-free bond?
 - $\bullet \ \sum_s \pi^s x_{t+1}^s = \1
- What is its price?

If we go back to the same setup we used in our earlier example,

π^s_{t+1}		m_{t+1}
0.3		0.337
0.4		0.599
0.3		1.348
	0.3 0.4	0.3 0.4

• What is the expected payoff of a risk-free bond?

•
$$\sum_{s} \pi^{s} x_{t+1}^{s} = \$1$$

• What is its price?

•
$$p_t = \sum_{t=0}^{\infty} \pi^s m_{t+1} x_{t+1}^s = (0.3)(0.337) + (0.4)(0.599) + (0.3)(1.348) = $0.75$$

If we go back to the same setup we used in our earlier example,

S	π^s_{t+1}	 m_{t+1}
Good	0.3	 0.337
Ave	0.4	 0.599
Bad	0.3	 1.348

• What is the expected payoff of a risk-free bond?

•
$$\sum_{s} \pi^{s} x_{t+1}^{s} = \$1$$

• What is its price?

•
$$p_t = \sum_{t=0}^{\infty} \pi^s m_{t+1} x_{t+1}^s = (0.3)(0.337) + (0.4)(0.599) + (0.3)(1.348) = $0.75$$

• What is its return?

If we go back to the same setup we used in our earlier example,

π^s_{t+1}		m_{t+1}
0.3		0.337
0.4		0.599
0.3		1.348
	0.3 0.4	0.3 0.4

• What is the expected payoff of a risk-free bond?

•
$$\sum_{s} \pi^{s} x_{t+1}^{s} = \$1$$

• What is its price?

•
$$p_t = \sum_{t=0}^{\infty} \pi^s m_{t+1} x_{t+1}^s = (0.3)(0.337) + (0.4)(0.599) + (0.3)(1.348) = $0.75$$

• What is its return?

•
$$R_{t+1} = 1/p_t = 1/0.75 = 1.34$$
, or 34 percent

End of Today's Lecture.

• That's all for today. Today's material corresponds to parts of Chapter 1 in Cochrane (2005).