Signals 2: Sampling & Interpolation

Danny Ruijters

2020-09-14

Philips Healthcare

Produces images

Basics

(stuff you already should know)

Dirac impulse δ

• Also known as: Dirac delta, delta function, Dirac delta function, Dirac operator

Dirac delta function $\delta(t)$

• This "unit impulse" function is defined by the conditions:

$$\delta(t) = 0, \text{ for } t \neq 0.$$

$$\delta(0) = +\infty$$

$$\int_{-\infty}^{+\infty} \delta(t)dt = 1$$

Dirac impulse δ

• Integral of the Dirac function:

$$u(t) = \begin{cases} 0 & \text{if } t < 0 \\ 1 & \text{if } t > 0 \end{cases}$$

Remark: value at t = 0 is not well defined, we adopt one by convention.

Convolution integral

$$y(t) = f(t) * h(t) = \int_{-\infty}^{\infty} f(\tau) h(t - \tau) d\tau$$

Convolution integral

$$y(t) = f(t) * h(t) = \int_{-\infty}^{\infty} f(\tau) h(t - \tau) d\tau$$

- Time and frequency domain:
 - Convolution in time domain f(t)*h(t) -> multiplication in frequency domain $F(\omega)\cdot H(\omega)$
 - Multiplication in time domain $f(t) \cdot h(t)$ -> convolution in frequency domain $F(\omega) * H(\omega)$

Convolution with the Dirac function

$$y(t) = \delta(t) * h(t) = \int_{-\infty}^{\infty} \delta(\tau) h(t - \tau) d\tau = h(t)$$

Convolution with a shifted Dirac function

$$y(t) = \delta(t - s) * h(t) = \int_{-\infty}^{\infty} \delta(\tau - s) h(t - \tau) d\tau = h(t - s)$$

Fourier Transform

$$F(\omega) = \int_{-\infty}^{\infty} f(t) e^{-i\omega t} dt$$

$$e^{-i\omega t} = \cos(\omega t) - i\sin(\omega t)$$

Inverse Fourier Transform

$$f(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} F(\omega) e^{i\omega t} d\omega$$

$$\omega = 2\pi f$$

Cosine wave

$$e^{-i\omega t} = \cos(\omega t) - i\sin(\omega t)$$

Sine wave

 $e^{-i\omega t} = \cos(\omega t) - i\sin(\omega t)$

sin(t) + 1.5 * sin(2t)

Periodic square (rect, box) function

Approximated by 6 Fourier components

Approximating by Fourier series

Square wave and saw tooth

Playground

• http://bl.ocks.org/jinroh/7524988

Fourier transform of a square

rect function, box function

$$\int_{-\infty}^{\infty} \mathrm{rect}(t) \cdot e^{-i2\pi f t} \, dt = rac{\sin(\pi f)}{\pi f} = \mathrm{sinc}(\pi f)$$

Sampling

Dirac train, pulse train

Also known as: impulse train, pulse train, Dirac comb

Fourier Transform Continuous time signals (FTC)

$$X(\omega) = \int_{-\infty}^{\infty} x(t)e^{-j\omega t}dt \quad -\infty \quad \frac{1}{2\pi} \int_{-\infty}^{\infty} X(\omega)e^{j\omega t}d\omega$$

* Let us look at an example of an FTC pair: pulse train

$$S(t) = \sum_{n = -\infty}^{\infty} \delta(t - n \cdot T) \leadsto S(\omega) = \sum_{n = -\infty}^{\infty} e^{-j\omega nT}$$

- * What will a pulse train look like in frequency domain?
- * Look at $S(\omega)$, what happens when $\omega = 0$?

*
$$S(\omega) = \sum_{n=-\infty}^{\infty} e^{-j\omega nT}$$

- * Look at $S(\omega)$, what happens when $\omega = 0$?
- * The phasor will be 1 and the sum goes to infinity

*
$$S(0) = \sum_{n=-\infty}^{\infty} e^{-j \cdot 0 \cdot nT} = \sum_{n=-\infty}^{\infty} 1$$

* Now what happens when ω is slightly larger than 0?

- * Now what happens when ω is slightly larger than 0?
- * $S(\omega) = \sum_{n=-\infty}^{\infty} (e^{-j\omega T})^n$
- * An infinite amount of phasors will rotate around the unit circle, but for each phasor there is another phasor that is shifted with exactly π
- * These phasors will cancel each other out, summing to 0

*
$$S(\omega) = \sum_{n=-\infty}^{\infty} (e^{-j\omega T})^n = 0$$
, with $0 < \omega < \frac{2\pi}{T}$

* Now what happens if $\omega = \frac{2\pi}{T}$?

- * Now what happens if $\omega = \frac{2\pi}{T}$?
- * $S\left(\frac{2\pi}{T}\right) = \sum_{n=-\infty}^{\infty} (e^{-j\frac{2\pi}{T}T})^n = \sum_{n=-\infty}^{\infty} (e^{-j2\pi})^n = \sum_{n=-\infty}^{\infty} 1 = S(0)$
- * In frequency domain, a pulse train will be a pulse train of infinitely high and infinitely narrow pulses spaced $\frac{2\pi}{T}$ apart

- * Note that in the time domain the pulses of a pulse train are a distance T apart, but in the frequency domain they are a distance $\frac{2\pi}{T}$ apart
- This means that if we lower the sample frequency, the time domain pulses will move further apart, but the frequency domain pulses move closer together

Dirac train, pulse train

Sampling

= multiplication with Dirac train

Sampling

Fourier space

Nyquist criterion: $f > 2 \cdot f_{max}$

Shannon theorem

Aliasing:

Shannon Sampling Theorem

Continuous-time signal $x_a(t)$ with frequencies no higher than f_{max} can be reconstructed exactly from its samples $x[n] = x_a(t)|_{t=n \cdot T_s}$, if samples are taken at a rate $f_s = 1/T_s$, that is greater than $2f_{max}$

Sampling rate

What happens if we change sample rate?

Sampling rate & Nyquist frequency

Sampling rate & Nyquist frequency

Playground

• http://rest-term.com/labs/html5/fft.html

"Ideal sampling"

Not so ideal for non-bandwidth limited signals

Sampling of natural signals

Not bandwidth limited signals

Aliasing, low pass filter

Without low pass

With low pass

Discrete Fourier Transform

Sampling in higher dimensions 2D, 3D

Sample rate conversion

Sample rate conversion

What happens if we change sample rate?

Prevent aliasing artifacts when down-sampling

Decimator by integer factor M:

Notes:

- Prevent aliasing by LPF in front of SRD ⇒ Decimator
- SRD is <u>not</u> LTI

Sample Rate Decrease

Sample Rate Decrease (SRD) by integer factor M (box $\downarrow M$):

$$y[n \cdot T_y] = x[n \cdot (M \cdot T_x)]$$

$$X(e^{j\theta}) = \frac{1}{T_x} \sum_{k=-\infty}^{\infty} X_a(\frac{\theta}{T_x} - k\frac{2\pi}{T_x})$$

$$Y(e^{j\theta}) = \frac{1}{T_y} \sum_{m=-\infty}^{\infty} X_a(\frac{\theta}{T_y} - r\frac{2\pi}{T_y})$$

Split last sum with $r = p + k \cdot M$ and use $T_y = M \cdot T_x$

$$Y(\mathbf{e}^{\mathbf{j}\theta}) = \frac{1}{M} \sum_{p=0}^{M-1} \left\{ \frac{1}{T_x} \sum_{k=-\infty}^{\infty} X_a \left(\frac{(\theta - p \cdot 2\pi)}{M \cdot T_x} - k \cdot \frac{2\pi}{T_x} \right) \right\} \implies$$

$$Y(\mathbf{e}^{\mathbf{j}\theta}) = \frac{1}{M} \sum_{p=0}^{M-1} X(\mathbf{e}^{\mathbf{j}(\frac{\theta}{M} - p \cdot \frac{2\pi}{M})})$$

Upsampling

Sample Rate Increase (SRI) by integer factor L

Algorithm:

- 1. Expansion: Create a sequence $x_L[n]$, comprising the original samples x[n] separated by L-1 zeros. A notation for this operation is: $x_L[n] = x[n]_{\uparrow L}$
- 2. Interpolation: Smooth out the discontinuities with a lowpass filter, which replaces the zeros.

$$y[j+nL] = \sum_{k=0}^K x[n-k] \cdot h[j+kL], \;\; j=0,1,\dots,L-1,$$

link

Ideal interpolation

Reconstruct continuous signal from samples

Multiply frequency domain by rect

$$x(t) = \left(\sum_{n=-\infty}^\infty x[n] \cdot \delta(t-nT)
ight) * \mathrm{sinc}igg(rac{t}{T}igg) = \sum_{n=-\infty}^\infty x[n] \cdot \mathrm{sinc}igg(rac{t-nT}{T}igg).$$

Digital-to-Analog Conversion

Convert samples to pulses: $x_s(t) = \sum_{n=-\infty}^{\infty} x[n]\delta(t - nT_s)$

$$\underline{\text{Ideal LPF:}} \quad H_r(\omega) = \left\{ \begin{array}{ll} T_s & |\omega| \leq \frac{\pi}{T_s} \\ 0 & |\omega| > \frac{\pi}{T_s} \end{array} \right. \quad \circ - \circ \quad h_r(t) = \frac{\sin(\frac{\pi}{T_s} \cdot t)}{\frac{\pi}{T_s} \cdot t}$$

Filter $x_s(t)$ to obtain $x_a(t)$:

$$x_a(t) = x_s(t) * h_r(t) = \left(\sum_{n=-\infty}^{\infty} x[n]\delta(t-nT_s)\right) * h_r(t)$$

$$= \sum_{n=-\infty}^{\infty} x[n] \left(\delta(t-nT_s) * h_r(t)\right) = \sum_{n=-\infty}^{\infty} x[n] \cdot h_r(t-nT_s)$$

⇒ Interpolation formula (time domain):

$$x_a(t) = \sum_{n=-\infty}^{\infty} x[n] \left(\frac{\sin(\frac{\pi}{T_s} \cdot (t - nT_s))}{\frac{\pi}{T_s} \cdot (t - nT_s)} \right)$$

Note: Refer to Shannon sampling theorem

Digital-to-Analog Conversion

Interpretation of interpolation formula (time domain):

$$x_a(t) = \sum_{n=-\infty}^{\infty} x[n] \left(\frac{\sin(\frac{\pi}{T_s} \cdot (t - nT_s))}{\frac{\pi}{T_s} \cdot (t - nT_s)} \right)$$

Nearest neighbor, Linear, and Cubic interpolation (Not LTI)

Nearest Neighbor

interpolation

Linear

interpolation

Cubic

interpolation

2D Nearest neighbor

2D Linear

2D Cubic

Nearest neighbor vs Cubic

Fast high quality interpolation

- Ideal interpolation: convolution with sinc
 - ─ □ Ideal high quality for bandwidth limited signals
 - − ⊗ Infinite support
 - − ⊗ Slow decay
- Nearest neighbor & linear interpolation
 - − [©] Simple to implement
 - ③ Hardware acceleration
 - − ⊗ Low quality, smoothing effect
- Conclusion:
 - we would like best of both worlds
 - high quality (close as possible), fast interpolation

Real world sampling

Electrocardiogram - ECG

50 Hz or 60 Hz AC power interference

How to remove the 50 or 60 Hz interference?

- Suppose we have a sampled ECG signal, sampled at e.g. 1000 Hz
- The discrete Fourier transform of the sampled signal will show the interference only around the 50 or 60 Hz mark
- A Band-stop filter can remove exactly that part

• In practice it may be preferable to smooth the edges, to prevent undesirable aliasing effects.

amplituderequencphase

$$* \quad x(t) = 3\sin(30\pi t + \frac{\pi}{3})$$

* Find y(t)

- * We look at the spectral content of x(t)
- * $x(t) = 3\sin(30\pi t + \frac{\pi}{3}) = \frac{3}{2j} \cdot e^{j\frac{\pi}{3}} \cdot e^{j30\pi t} + \frac{-3}{2j} \cdot e^{-j\frac{\pi}{3}} \cdot e^{-30j\pi t}$
- * Let us write $\alpha = \frac{3}{2j} \cdot e^{j\frac{\pi}{3}}$ amplitude and phase
- * Now $x(t) = \alpha e^{j30\pi t} + \alpha^* e^{-j30\pi t} = \alpha e^{j2\pi \cdot 15t} + \alpha^* e^{-j2\pi \cdot 15t}$
- * Now we know that the spectrum will have a delta pulse with weight α at f=15~Hz and a delta pulse with weight α^* at f=-15Hz

- * $x(t) = \alpha e^{j2\pi \cdot 15t} + \alpha^* e^{-j2\pi \cdot 15t}$
- Now we look at what happens when we convert this continuous-time signal to a discrete-time signal
- * The C/D converter runs at $f_{s1} = 20 Hz$
- * The fundamental interval will be between $-10 \ Hz$ and $10 \ Hz$
- * Now we convert frequency to relative frequency through f_{s1}
- * $\theta = \omega \cdot T_s = 2\pi \cdot 15 \cdot \frac{1}{20} = \frac{3\pi}{2}$
- Let us have a look at the spectrum again

- * We can observe that the spectral content is outside of the fundamental interval $[-\pi,\pi]$
- * When we sample, we convolve the time-domain signal with a pulse train, which causes the spectral content to repeat itself every 2π
- * So the figure below will change

- * By adding or subtracting 2π , we find the pulses inside the fundamental interval
- * We notice that the delta pulses crossed $\theta=0$, which we see as a π phase shift
- * We find our expression for x[n]:

$$x[n] = x_a(t)|_{t=n \cdot T_s} = 3\sin(\frac{\pi}{2}n - \frac{2\pi}{3})$$

* Now that we have found an expression for x[n], we will equate it to y[n] through the difference equation of the LTI system above

$$y[n] = x[n] - \frac{1}{3}x[n-2] + \frac{1}{\sqrt{3}}y[n-1]$$

* We solve this in frequency domain through the FTD:

$$Y(e^{j\theta}) = X(e^{j\theta}) - \frac{1}{3}e^{-j2\theta}X(e^{j\theta}) + \frac{1}{\sqrt{3}}e^{-j\theta}Y(e^{j\theta})$$

$$\Rightarrow Y(e^{j\theta})\left(1 - \frac{1}{\sqrt{3}}e^{-j\theta}\right) = X(e^{j\theta})(1 - \frac{1}{3}e^{-j2\theta})$$

* We will find the frequency response $H(e^{j\theta})$:

$$Y(e^{j\theta}) \left(1 - \frac{1}{\sqrt{3}} e^{-j\theta} \right) = X(e^{j\theta}) \left(1 - \frac{1}{3} e^{-j2\theta} \right)$$

$$H(e^{j\theta}) = \frac{Y(e^{j\theta})}{X(e^{j\theta})} = \frac{1 - \frac{1}{3} e^{-j2\theta}}{1 - \frac{1}{\sqrt{2}} e^{-j\theta}}$$

- We know the system is LTI, so it will not change the frequency of our signal, but only the phase and magnitude
- * Therefore, we evaluate the frequency response of our signal: $H(e^{j\theta})|_{\theta=\pi/2}$

$$\sqrt{1^2 + \left(\frac{-1}{\sqrt{3}}\right)^2} = \frac{2}{\sqrt{3}}, \ \operatorname{atan}(-\frac{1}{\sqrt{3}}/1) = -\frac{\pi}{6}, \ \Rightarrow H(e^{j\theta})|_{\theta = \pi/2} = \frac{2}{\sqrt{3}}e^{-j\frac{\pi}{6}}$$

*
$$\left| H(e^{j\theta}) \right|_{\theta = \frac{\pi}{2}} \right| = \frac{2}{\sqrt{3}}, \ \angle \left\{ H(e^{j\theta}) \right|_{\theta = \frac{\pi}{2}} \right\} = -\frac{\pi}{6}$$

* Now we know what the system does to the magnitude and phase for a frequency of $\theta=\pi/2$

* Now we apply the effects of the frequency response to find y[n]:

$$y[n] = 3 \cdot \frac{2}{\sqrt{3}} \sin(\frac{\pi}{2}n - \frac{2\pi}{3} - \frac{\pi}{6}) = \frac{6}{\sqrt{3}} \sin(\frac{\pi}{2}n - \frac{5\pi}{6})$$

- * Now we convert this discrete-time signal back to a continuous-time signal through $\omega = \theta f_{s2}$
- $y(t) = \frac{6}{\sqrt{3}}\sin(5\pi t \frac{5\pi}{6})$

Conclusions

Conclusions

- Basics: Fourier Transform, Convolution, ...
- Sampling theory
- Ideal interpolation
- Ideal upsampling
- Nearest neighbor, linear interpolation
- Generalized approximating interpolation

Acknowledgements:

This lecture content is partially based on the slides by dr. Piet Sommen, and on content taken from Wikipedia and other public sources, indicated by the hyperlinks.

