Predicting population growth

Mons Even Oppedal

Abstract

This project looks at the population growth from the world indicators dataset. In the project I try to fit a regression model using some relevant (and irrelevant?) indicators.

Motivation

The development of demographics are very relevant for most countries when deciding policy.

I would like to find out if certain development indicators can predict a country's rate of population growth across several countries.

Dataset(s)

I used the world development indicators dataset that we already explored.

Data Preparation and Cleaning

The first issue was to choose relevant indicators. The dataset contains more than 1000 indicators.

I needed an easy way to scan all the indicators to find some relevant and perhaps

also some irrelevant indicators.

I began with these:

I did not expect that they all would be relevant

Research Question(s)

How well will a model predict the population growth of a country by using the indicators that I've chosen?

Methods

What methods did you use to analyze the data and why are they appropriate? Be sure to adequately, but briefly, describe your methods.

I used a visual display to show how population growth differs in the world.

Then i used a linear regression model to train and test the models.

Findings Visual display of growth:

1960 Scale annual growth %. Mean is 2,3 %

2011 Scale annual growth %. Mean is 1,3 %

We can easily see that high growth is centered in Africa and the Middle-East, and that the population growth on average is lower in 2011 than in 1960

Findings

I am trying to make a model that can predict population growth. Population growth is a number so I will use a regression model.

In order to use the model from the course I needed to transform the data from a «tall» to a «flat» dataset.

From a «tall» dataset where the indicators are stacked like this:

	CountryName	IndicatorName	Year	Value
14	Arab World	Fertility rate, total (births per woman)	1960	6.924027
22	Arab World	Life expectancy at birth, total (years)	1960	46.847059
79	Arab World	Urban population (% of total)	1960	31.285384
93	Caribbean small states	Fertility rate, total (births per woman)	1960	5.520103
95	Caribbean small states	GDP per capita (current US\$)	1960	457.464712
103	Caribbean small states	Life expectancy at birth, total (years)	1960	62.271795
156	Caribbean small states	Urban population (% of total)	1960	31.597490
182	Central Europe and the Baltics	Fertility rate, total (births per woman)	1960	2.498618
188	Central Europe and the Baltics	Life expectancy at birth, total (years)	1960	67.823762
227	Central Europe and the Baltics	Urban population (% of total)	1960	44.507921
237	East Asia & Pacific (all income levels)	CO2 emissions (kg per 2005 US\$ of GDP)	1960	1.183270
259	East Asia & Pacific (all income levels)	Fertility rate, total (births per woman)	1960	5.396794
264	East Asia & Pacific (all income levels)	GDP per capita (current US\$)	1960	146.814138
282	East Asia & Pacific (all income levels)	Life expectancy at birth, total (years)	1960	48.298317
349	East Asia & Pacific (all income levels)	Urban population (% of total)	1960	22.471132

To a «flat» dataset like this:

CountryName	Year	CO2 emissions (kg per 2005 US\$ of GDP)	Fertility rate, total (births per woman)	GDP per capita (current US\$)	Income share held by highest 10%	Life expectancy at birth, total (years)	Long-term unemployment (% of total unemployment)	Military expenditure (% of GDP)	Physicians (per 1,000 people)	Population growth (annual %)	Rail lines (total route- km)	Rural population growth (annual %)	Urban population (% of total)
Afghanistan	1960	NaN	7.45	59.787681	NaN	32.328512	NaN	NaN	0.034844	1.813677	NaN	1.511229	8.221
Afghanistan	1961	NaN	7.45	59.890037	NaN	32.777439	NaN	NaN	NaN	1.874003	NaN	1.560800	8.508
Afghanistan	1962	NaN	7.45	58.505995	NaN	33.219902	NaN	NaN	NaN	1.932414	NaN	1.607275	8.805
Afghanistan	1963	NaN	7.45	78.802587	NaN	33.657878	NaN	NaN	NaN	1.989785	NaN	1.654771	9.110
Afghanistan	1964	NaN	7.45	82.231395	NaN	34.092878	NaN	NaN	NaN	2.046675	NaN	1.698401	9.426
													þ.

Missing values.

I was not lucky with my chosen indicators.

There were 13442 observations of population growth, and I found that six of the indicators didn't have sufficient observations to be of use. I there fore dropped theese.

I ended up with a dataframe with 9560 rows and 8 coulumns

Correlation

None of the indicators showed much correlation with the population growth so you will not get a good prediction if you use only one of the chosen indicators.

eaned.corr()							
	Year	Fertility rate, total (births per woman)	GDP per capita (current US\$)	Life expectancy at birth, total (years)	Population growth (annual %)	Rural population growth (annual %)	Urban population (% of total)
Year	1.000000	-0.456907	0.333742	0.413737	-0.211552	-0.056852	0.223303
Fertility rate, total (births per woman)	-0.456907	1.000000	-0.460377	-0.860470	0.628376	0.306615	-0.662347
GDP per capita (current US\$)	0.333742	-0.460377	1.000000	0.520003	-0.147486	-0.122496	0.471849
Life expectancy at birth, total (years)	0.413737	-0.860470	0.520003	1.000000	-0.409827	-0.252995	0.737912
Population growth (annual %)	-0.211552	0.628376	-0.147486	-0.409827	1.000000	0.339017	-0.245712
Rural population growth (annual %)	-0.056852	0.306615	-0.122496	-0.252995	0.339017	1.000000	-0.294378
Urban population (% of total)	0.223303	-0.662347	0.471849	0.737912	-0.245712	-0.294378	1.000000

Training and testing the model

I use the sci-kit-learn model to train the model using the remaining five indicators. I have Fixed the random state so that the results can be reproduced: Looking at the prediction and test-values we can see that the model does a decent job of predicting the values, but is totally off for others, ex. Row 2 (0.56 and 1.41)

Test first 10 observations:

print(y_test[:10])					
	Population growth	(annual %)			
4934	-	2.143048			
3506		0.564524			
11074		2.288147			
7613		2.602004			
12666		3.149467			
4982		0.016584			
10381		2.048656			
6640		1.485625			
3350		0.695364			
9809		2.742993			

Preditcted first 10 observations

	<pre>prediction =pd.DataFrame(y_prediction[:10]) print(prediction)</pre>					
	0					
0	2.130396					
1	1.407573					
2	1.817043					
3	1.762222					
4	3.313012					
5	0.127240					
6	2.655554					
7	1.534491					
8	0.719263					
9	2.769466					

Root Mean SquareError

Looking at the Root mean squareerror (RMSE) we find that the error is 0,91. Given that the standard deviation is 1,36, this means that the RMSE is quite close to the standard deviation. The model does not fit the data very well.

By using a Decision Tree Regressor at depht 10 I was able to reduce the RMSE to 0,53. While this is better, the model is still not very satisfactory.

Limitations

The biggest limitation for the project, was missing values. This severely limited the analysis and I was forced to drop many of my chosen indicators. Given time and effort this could have been explored further.

Conclusions

The model clearly had some limitations for predicting the population growth. This comes as no surprise. The most obvious reason is that I did not include anything about rate of deaths.

I did however find that while the model is not perfect, it still did a decent job of predictiong population growth. I belive that (given more time) I would be able to predict population growth based on many of the indicators.

Acknowledgements

I did not have any formal or informal input.

References

If applicable, report any references you used in your work. For example, you may have used a research paper from X to help guide your analysis. You should cite that work here. If you did all the work on your own, please state this.