Structures algébriques

I Lois de composition interne

Définition. Soit E un ensemble. Une loi de composition interne sur E est une application $*: E \times E \longrightarrow E$.

Remarques. 1. Pour $(x,y) \in E \times E$, l'élément *(x,y) de E sera noté x * y.

2. Dans ce cours nous utiliserons l'abréviation "l.c.i." pour "loi de composition interne".

Définition. Soit E un ensemble et * une loi de composition interne sur E.

- (i) On dit que * est <u>associative</u> lorsque : $\forall (x, y, z) \in E^3$, (x * y) * z = x * (y * z).
- (ii) On dit que * est commutative lorsque : $\forall (x,y) \in E^2, x * y = y * x.$
- (iii) On dit d'un élément $e \in E$ qu'il est un <u>élément neutre</u> (ou un <u>neutre</u>) pour * lorsque : $\forall x \in E, x*e = e*x = x$.

Remarque. Si * est une l.c.i. associative sur E et $(x, y, z) \in E^3$ on notera x * y * z l'élément (x * y) * z = x * (y * z).

Proposition (Unicité du neutre). Si E admet un élément neutre pour * alors il est unique.

Démonstration. Supposons que E admet des neutres e, e' pour * et montrons que e = e'. Comme e est neutre alors e' * e = e. Comme e' est neutre alors e' * e = e. D'où e' = e.

Définition. Soit E un ensemble et * une l.c.i. sur E admettant un neutre e. On dit d'un élément $x \in E$ qu'il est inversible lorsqu'il existe $x' \in E$ tel que x * x' = x' * x = e. On dit alors que x' est un inverse (ou un symétrique) de x pour la loi *.

Proposition (Unicité de l'inverse). Soit E un ensemble et * une loi de composition interne sur E. On suppose :

- * associative
- * admet un élément neutre e

Alors tout élément de E admet au plus un inverse.

Démonstration. Soit $x \in E$ admettant un inverse x', il s'agit de montrer que celui-ci est unique. Soit alors x'' un inverse de x, montrons que x'' = x'. On a :

$$\left\{ \begin{array}{l} (x'*x)*x'' = e*x'' = x'' \\ x'*(x*x'') = x'*e = x' \end{array} \right.$$

Mais par associativité de * on a aussi (x'*x)*x'' = x'*(x*x'') d'où x'' = x'.

Remarques. 1. Si $x \in E$ est inversible, on notera généralement x^{-1} son inverse pour *. Seule exception : lorsque * est une loi d'addition notée +, le symétrique d'un élément x est appelé son opposé et est noté -x.

- 2. L'élément neutre est toujours inversible et $e^{-1} = e$ puisque e * e = e.
- 3. Soit E un ensemble muni d'une l.c.i. * associative ayant un neutre e. Alors pour tout élément inversible x de E on a :

$$(x^{-1})^{-1} = x$$

En effet, x est bien l'inverse de x^{-1} puisque $x^{-1} * x = x * x^{-1} = e$.

Définition. Soit E un ensemble et *, \bullet deux lois de composition interne sur E. On dit que * est distributive sur \bullet lorsque :

$$\forall (x, y, z) \in E^3, \left\{ \begin{array}{l} x * (y \bullet z) = (x * y) \bullet (x * z) \\ (y \bullet z) * x = (y * x) \bullet (z * x) \end{array} \right.$$

Exemples. 1. Les l.c.i. + et \times sont associatives et commutatives sur $\mathbb{N}, \mathbb{Z}, \mathbb{Q}, \mathbb{R}$ et \mathbb{C} . Elles admettent également des neutres (respectivement 0 et 1). La loi \times est distributive sur la loi + car on a toujours :

$$\begin{cases} x \times (y+z) = (x \times y) + (x \times z) \\ (y+z) \times x = (y \times x) + (z \times x) \end{cases}$$

2. Soit E un ensemble. On dispose des l.c.i. suivantes sur $\mathcal{P}(E)$:

Toutes ces l.c.i. sont commutatives, associatives et admettent un neutre (respectivement E, \emptyset, \emptyset). Les lois \cap et \cup admettent toutes deux leur neutre pour seul élément inversible. Tout élément $A \in \mathcal{P}(E)$ est inversible pour Δ d'inverse lui-même. Les lois \cup et Δ se distribuent sur \cap .

- 3. Soit E un ensemble. La loi \circ de composition des applications est une l.c.i. associative sur E^E . Elle admet un élément neutre Id_E et les éléments de E^E inversibles pour \circ sont les applications bijectives de E vers E.
- 4. Soit E, F des ensembles. Si F est muni d'une l.c.i. *, alors pour toutes fonctions $f, g : E \longrightarrow F$ on note f * g la fonction définie par :

$$\forall x \in E, \ (f * g)(x) = f(x) * g(x)$$

Cela définit naturellement une l.c.i. $(f,g) \longmapsto f * g$ sur F^E , que l'on note toujours * mais qu'il conviendra de distinguer de *: $F \times F \longrightarrow F$ qui est une l.c.i. sur F. Bien qu'elles soient notées de la même façon, c'est le contexte qui permet de savoir si l'on parle de * en tant que l.c.i. sur F ou sur F^E . Les propriétés de * en tant que l.c.i. sur F se transmettent à * en tant que l.c.i. sur F (commutativité, associativité, existence d'un neutre). De même, si * est distributive sur une autre l.c.i. • sur F, alors les l.c.i. induites sur F^E conservent cette propriété.

Définition. Soit E un ensemble, * une l.c.i. sur E et $F \subset E$. On dit que F est stable par * lorsque :

$$\forall (x,y) \in F^2, x * y \in F$$

Remarque. Si F est une partie de E stable par * alors * définit naturellement une l.c.i. $(x,y) \longmapsto x * y$ sur F, que l'on note encore *. Comme toujours, c'est le contexte qui permet de déterminer si l'on parle de * en tant que l.c.i. sur E ou sur F.

Exemples. 1. E et \emptyset sont toujours des parties de E stables par *.

- 2. $\mathbb{N}, \mathbb{Z}, \mathbb{Q}, \mathbb{R}$ sont des parties de \mathbb{C} stables par \times et par +.
- 3. \mathbb{U}_n et \mathbb{U} sont des parties de \mathbb{C} stables par \times mais pas par +.
- 4. Dans $\mathcal{P}(E)$, les parties de la forme $\{A\}$ avec $A \in \mathcal{P}(E)$ sont toutes stables par \cap et \cup . La seule d'entre elles qui est stable par Δ est $\{\emptyset\}$. De façon générale, les plus petites parties non vides stables par Δ sont les parties de la forme $\{A, \emptyset\}$ où $A \in \mathcal{P}(E)$.

II Structure de groupe

1 Groupes

Définition. Soit G un ensemble et * une loi de composition interne sur G. On dit que * est une <u>loi de groupe</u> sur G (ou que (G, *) est un groupe) lorsque :

- (i) * est associative
- (ii) * admet un élément neutre
- (iii) tout élément de G est inversible pour *.

Si de plus * est commutative on dira que G est un groupe commutatif.

Exemples. 1. $(\mathbb{N},+)$ n'est pas un groupe car 1 n'admet pas de symétrique dans \mathbb{N} $(-1 \notin \mathbb{N})$.

- 2. $(\mathbb{Z},+),(\mathbb{Q},+),(\mathbb{R},+),(\mathbb{C},+)$ sont des groupes.
- 3. (\mathbb{Q}^*, \times) , (\mathbb{R}^*, \times) , (\mathbb{C}^*, \times) sont des groupes.
- 4. (\mathbb{N}^*, \times) et (\mathbb{Z}^*, \times) ne sont pas des groupes car 2 n'y admet pas d'inverse.
- 5. $(\mathbb{Q}, \times), (\mathbb{R}, \times), (\mathbb{C}, \times)$ ne sont pas des groupes car 0 n'y admet pas d'inverse.
- 6. (\mathbb{U}, \times) est un groupe (où $\mathbb{U} = \{z \in \mathbb{C} \mid |z| = 1\}$).
- 7. $(\mathfrak{S}(E), \circ)$ est un groupe (où E est un ensemble non vide et $\mathfrak{S}(E) = \{f \in E^E \mid f \text{ bijective}\}$). Il est appelé le groupe des permutations de E.
- 8. $(\mathcal{P}(E), \Delta)$ est un groupe.

Remarques. 1. Lorsque la loi de composition de G est une multiplication, i.e. notée \times (ou \cdot), on dit que (G, \times) (ou (G, \cdot)) est un groupe multiplicatif. Dans un groupe multiplicatif, le symétrique d'un élément x est appelé "inverse de x" et est noté x^{-1} . On notera également $x^n = \underbrace{x \times \cdots \times x}_{n \text{ fois}}$ pour tout $x \in G$ et $n \in \mathbb{N}$ ainsi que

 $x^n = (x^{-1})^{-n}$ si $n \in \mathbb{Z}$ est négatif. Enfin, si x, y sont des éléments de G on note souvent xy au lieu de $x \times y$.

- 2. Lorsque la loi de composition de G est une addition, i.e. notée +, on dit que (G,+) est un groupe additif. Dans un groupe additif, le symétrique d'un élément x est appelé "opposé de x" et est noté -x. On notera également $nx = \underbrace{x + \cdots + x}_{n \text{ fois}}$ pour tout $x \in G$ et $n \in \mathbb{N}$ ainsi que nx = (-n)(-x) si $n \in \mathbb{Z}$ est négatif.
- 3. En notation additive on notera également x-y l'élément x+(-y).
- 4. Les groupes commutatifs sont parfois appelés groupes abéliens, en pratique quand ce sont des groupes additifs.

Proposition. Soit (G, *) un groupe. Alors :

$$\forall (x,y) \in G^2, (x*y)^{-1} = y^{-1} * x^{-1}$$

Démonstration. Soit $(x,y) \in G^2$, on vérifie que $y^{-1} * x^{-1}$ est l'inverse de x * y. On a :

$$(x*y)*(y^{-1}*x^{-1}) = x*y*y^{-1}*x^{-1} = x*e*x^{-1} = x*x^{-1} = e$$

$$(y^{-1}*x^{-1})*(x*y) = y^{-1}*x^{-1}*x*y = y^{-1}*e*y = y^{-1}*y = e$$

Ce qui prouve que $y^{-1} * x^{-1}$ est bien l'inverse de x * y. Autrement dit : $(x * y)^{-1} = y^{-1} * x^{-1}$.

2 Sous-groupes

Définition. Soit (G,*) un groupe et $H \subset G$. On dit que H est un sous-groupe de G lorsque :

- (i) $H \neq \emptyset$
- (ii) H est stable par *
- (iii) H est stable par passage à l'inverse : $\forall x \in H, x^{-1} \in H$.

Remarques. 1. La condition $H \neq \emptyset$ peut se remplacer par $e \in H$.

En effet, si $e \in H$ alors H est non vide et réciproquement si H est non vide alors il existe $x \in H$ puis en utilisant la stabilité de H par * et par passage à l'inverse $x * x^{-1} \in H$, i.e. $e \in H$.

2. Si H est un sous-groupe de (G,*) alors * induit une application $\tilde{*}$: $\begin{align*}{l} H\times H\longrightarrow H \\ (x,y)\longmapsto x*y \end{align*}$ qui fait de $(H,\tilde{*})$ un groupe. En pratique on dira abusivement que (H,*) est un groupe.

Exemples. 1. Si (G, *) est un groupe de neutre e, alors G et $\{e\}$ sont des sous-groupes de (G, *). On les appelle les sous-groupes triviaux des (G, *).

- 2. $(\mathbb{Z},+)$ est un sous-groupe de $(\mathbb{Q},+)$ qui est un sous-groupe de $(\mathbb{R},+)$ qui est lui-même un sous-groupe de $(\mathbb{C},+)$.
- 3. Pour tout $n \in \mathbb{N}$, l'ensemble $n\mathbb{Z} = \{nk \mid k \in \mathbb{Z}\}$ des multiples de n est un sous-groupe de (Z, +).
- 4. (\mathbb{Q}^*, \times) est un sous-groupe de (\mathbb{R}^*, \times) qui est un sous-groupe de (\mathbb{C}^*, \times) .
- 5. (\mathbb{U}_n, \times) est un sous-groupe de (\mathbb{U}, \times) qui est un sous-groupe de (\mathbb{C}^*, \times) .
- 6. L'ensemble des fonctions affines non constantes sur \mathbb{R} est un sous-groupe de $(\mathfrak{S}(\mathbb{R}), \circ)$ (idem si l'on remplace \mathbb{R} par \mathbb{C} ou \mathbb{Q}).

Proposition. Soit (G,*) un groupe et $H \subset G$ non vide. Alors H est un sous-groupe de G si et seulement si :

$$\forall (x,y) \in H^2, \ x * y^{-1} \in H$$

Démonstration. Supposons d'abord que H est une sous-groupe de G. Soit $(x,y) \in H^2$. Comme H est stable par passage à l'inverse alors $y^{-1} \in H$ puis par stabilité de H par * on obtient $x * y^{-1} \in H$.

Réciproquement, supposons que $\forall (x,y) \in H^2$, $x*y^{-1} \in H$. Comme $H \neq \emptyset$ il existe $x_0 \in H$. Alors $x_0*x_0^{-1} \in H$ i.e. $e \in H$. On en déduit alors $\forall x \in H$, $x^{-1} = e*x^{-1} \in H$ ce qui prouve que H est stable par passage à l'inverse. On en déduit ensuite que si $(x,y) \in H^2$, comme $y^{-1} \in H$ alors d'après ce qu'on a supposé $x*(y^{-1})^{-1} \in H$ i.e. $x*y \in H$. Ce qui prouve que H est stable par * et ainsi que H est un sous-groupe de G.

Proposition. Soit (G, *) un groupe et $(H_i)_{i \in I}$ une famille de sous-groupes de G. Alors $\bigcap_{i \in I} H_i$ est un sous-groupe de G.

Démonstration. On utilise la proposition précédente.

- (i) $e \in \bigcap_{i \in I} H_i$ car $\forall i \in I, e \in H_i$.
- (ii) Soit $(x,y) \in \left(\bigcap_{i \in I} H_i\right)^2$. Alors pour tout $i \in I$ on a $x * y^{-1} \in H_i$ (car H_i sous-groupe de G), i.e. $x * y^{-1} \in \bigcap_{i \in I} H_i$.

3 Sous-groupes engendrés par une partie

Définition. Soit (G, *) un groupe et $A \subset G$. On appelle sous-groupe de G engendré par A l'ensemble $\bigcap_{\substack{H \text{ sg de } G \\ A \subset H}} H$.

Remarque. Le sous-groupe engendré par une partie A de E sera noté $\langle A \rangle$. On a toujours $\langle \varnothing \rangle = \{e\}$ et $\langle G \rangle = G$.

Proposition. Soit (G, *) un groupe et $A \subset G$ non vide.

- (i) $\langle A \rangle$ est le plus petit sous-groupe de G (au sens de l'inclusion) contenant A.
- (ii) $\langle A \rangle$ est l'ensemble des mots formés d'éléments de $A \cup \{x^{-1} \mid x \in A\}$.

Remarque. Ce qu'on appelle ici un mot formé d'éléments d'une partie E de G est un $x_1 * \cdots * x_n$ où x_1, \ldots, x_n sont des éléments de E. Cette expression prend particulièrement son sens en notation multiplicative, où $x_1 * \cdots * x_n$ est noté $x_1 \cdots x_n$.

Démonstration. (i) Tout d'abord $\langle A \rangle$ est un sous-groupe de G en tant qu'intersection de sous-groupes de G (d'après la proposition précédente). De plus $\langle A \rangle$ contient A en tant qu'intersection d'ensembles contenant A. Ainsi $\langle A \rangle$ est un sous-groupe de G contenant A, reste à vérifier que c'est le plus petit.

Soit H un sous-groupe de G contenant A. Alors par définition de $\langle A \rangle$ on a $H \subset \langle A \rangle$ (c'est une intersection entre H et d'éventuels autres sous-groupes de G).

Ceci prouve que $\langle A \rangle$ est bien le plus petit sous-groupe de G contenant A.

(ii) Notons $A^{-1} = \{a^{-1} \mid a \in A\}$ et $\tilde{A} = \{x_1 * \cdots * x_n \mid n \in \mathbb{N}^* \text{ et } (x_1, \dots, x_n) \in (A \cup A^{-1})^n\}$ l'ensemble des mots formés d'éléments de $A \cup A^{-1}$.

On doit montrer que $\tilde{A} = \langle A \rangle$. D'après (i) cela revient à montrer que \tilde{A} est le plus petit sous-groupe de G contenant A.

Tout d'abord on a bien $A \subset \tilde{A}$ car si $x \in A$ alors $x \in \tilde{A}$ (x est clairement un mot d'une lettre de $A \cup A^{-1}$). Vérifions maintenant que \tilde{A} est un sous-groupe de G.

Soit $(x,y) \in \tilde{A}$, il existe donc $n,m \in \mathbb{N}^*$ et $x_1,\ldots,x_n,y_1,\ldots,y_m \in A \cup A^{-1}$ tels que $x=x_1*\cdots*x_n$ et $y=y_1*\cdots*y_m$. Alors:

$$x * y = x_1 * \cdots * x_n * y_1 * \cdots * y_m \in \tilde{A}$$

car c'est aussi un mot formé d'éléments de $A \cup A^{-1}$. Comme $\tilde{A} \neq \emptyset$ (car contient $A \neq \emptyset$) alors \tilde{A} est un sous-groupe de G.

On a montré que \tilde{A} est un sous-groupe de G contenant A, reste à vérifier que c'est le plus petit.

Soit H un sous-groupe de G contenant A. Comme H est stable par passage à l'inverse alors $A^{-1} \subset H$ d'où $A \cup A^{-1} \subset H$. Comme H est stable par * alors les mots formés d'éléments de $A \cup A^{-1}$ sont aussi dans H i.e. $\tilde{A} \subset H$.

Ceci prouve que \tilde{A} est le plus petit sous-groupe de G contenant A, i.e. d'après (i) que $\tilde{A} = \langle A \rangle$.

Remarque. Dans le cas où $A = \{a\}$ est un singleton, on dira que $\langle A \rangle$ est le sous-groupe de G engendré par a et on notera $\langle A \rangle = \langle a \rangle$. Lorsque $\langle a \rangle$ est fini, son cardinal est appelé l'<u>ordre</u> de a. Les groupes G de la forme $G = \langle a \rangle$ pour un $a \in G$ sont appelés groupes monogènes. Si un groupe monogène est fini, on dit que c'est un groupe cyclique.

Exemples. 1. \mathbb{Z} est le sous-groupe de $(\mathbb{C}, +)$ engendré par 1 (ou -1).

- 2. $n\mathbb{Z}$ est le sous-groupe de $(\mathbb{Z}, +)$ engendré par n (ou -n).
- 3. \mathbb{Q}^* est le sous-groupe de (\mathbb{C}^*, \times) engendré par \mathbb{Z}^* .
- 4. \mathbb{U}_n est le sous-groupe de (\mathbb{U}, \times) engendré par $e^{i\frac{2\pi}{n}}$.
- 5. Le sous-groupe de $(\mathcal{P}(E), \Delta)$ engendré par les singletons est $\mathcal{P}(E)$ lui-même.

4 Groupes produit

Définition. Soit $(G_1, *_{G_1})$ et $(G_2, *_{G_2})$ deux groupes de neutres respectifs e_1 et e_2 . On définit une loi de composition interne * sur $G_1 \times G_2$ par :

$$\forall ((x_1, x_2), (y_1, y_2)) \in (G_1 \times G_2)^2, (x_1, x_2) * (y_1, y_2) = (x_1 *_{G_1} y_1, x_2 *_{G_2} y_2)$$

Remarque. Lorsqu'on sait que x_1 et y_1 sont des éléments de G_1 on notera abusivement $x_1 * y_1$ au lieu de $x_1 *_{G_1} y_1$.

Proposition. $(G_1 \times G_2, *)$ forme un groupe dont le neutre est (e_1, e_2) .

Démonstration. (i) * est associative car si $((x_1, x_2), (y_1, y_2), (z_1, z_2)) \in (G_1 \times G_2)^3$ alors :

$$\begin{split} \left((x_1, x_2) * (y_1, y_2) \right) * (z_1 * z_2) &= (x_1 * y_1, x_2 * y_2) * (z_1, z_2) \\ &= \left((x_1 * y_1) * z_1 \right), (x_2 * y_2) * z_2) \\ &= \left(x_1 * (y_1 * z_1), x_2 * (y_2 * z_2) \right) \quad \text{par associativit\'e de } *_{G_1} \text{ et } *_{G_2} \\ &= (x_1, x_2) * (y_1 * z_1, y_2 * z_2) \\ &= (x_1, x_2) * \left((y_1, y_2) * (z_1, z_2) \right) \end{split}$$

(ii) * admet bien pour neutre (e_1, e_2) pour tout $(x_1, x_2) \in G_1 \times G_2$ on a :

$$(x_1, x_2) * (e_1, e_2) = (x_1 * e_1, x_2 * e_2) = (x_1, x_2)$$

 $(e_1, e_2) * (x_1, x_2) = (e_1 * x_1, e_2 * x_2) = (x_1, x_2)$

(iii) Tout élément (x_1, x_2) de $G_1 \times G_2$ admet un inverse pour *, c'est (x_1^{-1}, x_2^{-1}) :

$$(x_1, x_2) * (x_1^{-1}, x_2^{-1}) = (x_1 * x_1^{-1}, x_2 * x_2^{-1}) = (e_1, e_2)$$
$$(x_1^{-1}, x_2^{-1}) * (x_1, x_2) = (x_1^{-1} * x_1, x_2^{-1} * x_2) = (e_1, e_2)$$

Remarques. 1. Si G_1 et G_2 sont des groupes commutatifs alors $G_1 \times G_2$ aussi.

- 2. On peut étendre cette définition et cette propriété à un produit cartésien de n groupes avec $n \in \mathbb{N}^*$.
- 3. Lorsqu'il n'y a pas d'ambiguïté, on se contentera de noter abusivement * au lieu de $*_{G_1}$ ou $*_{G_2}$.

5 Morphismes de groupes

Définition. Soit $(G, *_G)$ et $(H, *_H)$ deux groupes. On dit d'une application $f: G \longrightarrow H$ que c'est un morphisme de groupes de $(G, *_G)$ vers $(H, *_H)$ lorsque :

$$\forall (x, x') \in G^2, f(x * x') = f(x) * f(x')$$

Remarque. Comme indiqué dans la remarque précédente, f(x * x') = f(x) * f(x') est une notation abusive mais non ambiguë pour $f(x *_G x') = f(x) *_H f(x')$.

Proposition. Soit $f: G \longrightarrow H$ un morphisme de groupes. Alors :

- (i) $f(e_G) = e_H$
- (ii) $\forall x \in G, f(x^{-1}) = f(x)^{-1}.$

Démonstration. (i) $f(e_G) * f(e_G) = f(e_G * e_G) = f(e_G)$ donc en composant par $f(e_G)^{-1}$ on obtient $f(e_G) = e_H$.

(ii) Soit $x \in G$, on vérifie que $f(x^{-1})$ est l'inverse de f(x):

$$f(x) * f(x^{-1}) = f(x * x^{-1}) = f(e_G) = e_H$$

$$f(x^{-1}) * f(x) = f(x^{-1} * x) = f(e_G) = e_H$$

D'où $f(x^{-1}) = f(x)^{-1}$.

Remarque. Dans le même esprit que la remarque précédente :

- lorsqu'il n'y a pas d'ambiguïté on se contentera de noter f(e) = e au lieu de $f(e_G) = e_H$;
- ici x^{-1} représente l'inverse de x pour la loi $*_G$ et $f(x)^{-1}$ représente l'inverse de f(x) pour la loi $*_H$.

Exemples. 1. L'application $z \mapsto |z|$ est un morphisme de groupes de (\mathbb{C}^*, \times) vers (\mathbb{R}^*, \times) .

2. L'application $\theta \mapsto \theta^{i\theta}$ est un morphisme de groupes de $(\mathbb{R}, +)$ vers (\mathbb{U}, \times) .

Définition. Si f est un morphisme de groupes bijectif, on dit que f est un isomorphisme de groupes. S'il existe un isomorphisme de $(G, *_G)$ vers $(H, *_H)$ on dira qu'ils sont isomorphisme. Si f est un isomorphisme d'un groupe G vers lui-même, on dit que f est un automorphisme de groupes.

Exemples. 1. L'application $x \mapsto e^x$ est un isomorphisme de groupes de $(\mathbb{R}, +)$ vers (\mathbb{R}_+^*, \times) .

- 2. L'application $x \mapsto \mathbb{R} \atop x \longmapsto \ln(x)$ est un isomorphisme de groupes de (\mathbb{R}_+^*, \times) vers $(\mathbb{R}, +)$.
- 3. En notant $\mathbb{Z}/n\mathbb{Z}$ l'ensemble des entiers modulo n (où $n \in \mathbb{N}^*$ fixé) l'application $k \mapsto e^{\frac{2ik\pi}{n}}$ est un isomorphisme de groupes de $(\mathbb{Z}/n\mathbb{Z}, +)$ vers (\mathbb{U}_n, \times) .

Proposition. Si f est un isomorphisme de groupes alors f^{-1} aussi.

Démonstration. Soit $f:G\longrightarrow H$ un isomorphisme de groupes. Soit $(y,y')\in G^2$. Comme f est un morphisme de groupes alors :

$$f(f^{-1}(y) * f^{-1}(y')) = f(f^{-1}(y)) * f(f^{-1}(y')) = y * y'$$

En appliquant f^{-1} on obtient :

$$f^{-1}(y) * f^{-1}(y') = f^{-1}(y * y')$$

Ceci prouve que f^{-1} est également un morphisme de groupes. Comme par ailleurs f^{-1} est bijectif alors c'est bien un isomoprhisme de groupes.

Exemples. 1. Si G est un groupe l'application identité $\operatorname{Id}_G: \begin{array}{c} G \longrightarrow G \\ x \longmapsto x \end{array}$ est un automorphisme de G.

- 2. Si G est un groupe commutatif l'application inverse $G \longrightarrow G \atop x \longmapsto x^{-1}$ est un automorphisme de G.
- 3. Si (G,*) est un groupe et $g \in G$ l'application $\iota_g : G \longrightarrow G \atop x \longmapsto g * x * g^{-1}$ est un automorphisme. Les ι_g sont appelés les automorphismes intérieurs de G.

Remarque. Si G est un groupe, alors en notant $\operatorname{Aut}(G)$ l'ensemble des automorphismes de G et $\operatorname{Int}(G)$ l'ensemble des automorphismes intérieurs de G on a l'inclusion de sous-groupes :

$$\operatorname{Int}(G) \subset \operatorname{Aut}(G) \subset \mathfrak{S}(G)$$

Proposition. Les images directe et réciproque d'un sous-groupe par un morphisme sont des sous-groupes.

Démonstration. Soient $(G, *_G), (H, *_H)$ des groupes et $f: G \longrightarrow H$ un morphisme de groupes.

- Soit G' un sous-groupe de G, par définition $f(G') \subset H$. Vérifions que f(G') est un sous-groupe de H.
 - (i) $e_H = f(e_G) \in f(G)$ car $e_G \in G'$ car G' sous-groupe de G.
 - (ii) Soit $(y_1, y_2) \in f(G)^2$. Il existe $(x_1, x_2) \in G^2$ tel que $y_1 = f(x_1)$ et $y_2 = f(x_2)$. Alors:

$$y_1 * y_2^{-1} = f(x_1) * f(x_2)^{-1} = f(x_1) * f(x_2^{-1}) = f(x_1 * x_2^{-1}) \in f(G')$$

car $x_1 * x_2^{-1} \in G'$ puisque x_1 et x_2 appartiennent à G' sous-groupe de G.

Ce qui prouve que f(G') est un sous-groupe de H.

- Soit H' un sous-groupe de H, par définition $f^{-1}(H') \subset G$. Vérifions que $f^{-1}(H')$ est un sous-groupe de G.
 - (i) $e_G \in f^{-1}(H')$ car $f(e_G) = e_H \in H'$ car H' sous-groupe de H.
 - (ii) Soit $(x_1, x_2) \in f^{-1}(H')^2$. Alors $f(x_1) \in H'$ et $f(x_2) \in H'$. Comme f est un morphisme on a :

$$f(x_1 * x_2) = f(x_1) * f(x_2)$$

qui appartient donc à H' car H' sous-groupe de H. Ainsi $f(x_1 * x_2) \in H'$ i.e. $x_1 * x_2 \in f^{-1}(H')$. Ce qui prouve que $f^{-1}(H')$ est un sous-groupe de G.

Définition. Soit $f: G \longrightarrow H$ un morphisme de groupes. On pose :

- Im $f = \{y \in H \mid \exists x \in G : y = f(x)\}$ que l'on appelle image de f
- Ker $f = \{x \in G \mid f(x) = e_H\}$ que l'on appelle noyau de f.

Remarque. — Im f = f(G) est l'image directe de G par l'application f.

— Ker $f = f^{-1}(\{e_H\})$ est l'image réciproque de $\{e_H\}$ par f.

Proposition. Im f est un sous-groupe de H et Ker f est un sous-groupe de G.

Démonstration. C'est une conséquence directe de la proposition précédente.

Proposition. Soit $f: G \longrightarrow H$ un morphisme de groupes.

- (i) f surjectif \iff Im f = H.
- (ii) f injectif \iff Ker $f = \{e_G\}$.

Démonstration. (i) Puisque Im f = f(G) c'est simplement la définition de la surjectivité de l'application f.

(ii) \implies : Supposons que f est un morphisme injectif. Comme Ker f est un sous-groupe de G on sait déjà que $\{e_G\} \subset \operatorname{Ker} f$. Reste à vérifier que Ker $f \subset \{e_G\}$.

Soit $x \in \text{Ker } f$. On a alors $f(x) = e_H = f(e_G)$. Par injectivité de f on en déduit que $x = e_G$ i.e. $x \in \{e_G\}$. D'où Ker $f \subset \{e_G\}$, ce qui donne Ker $f = e_G$.

 \leftarrow : Supposons que fest un morphisme tel que Ker $f = \{e_G\}$.

Soit $(x, x') \in G^2$ tel que f(x) = f(x'). Alors $f(x^{-1} * x') = f(x)^{-1} f(x') = f(x)^{-1} f(x) = e$ i.e. $x^{-1} * x' \in \text{Ker } f$. Comme Ker $f = \{e_G\}$ alors $x^{-1} * x' = e_G$ i.e. x' = x.

D'où l'injectivité de f.

Proposition. Si deux groupes sont isomorphes, leurs sous-groupes sont en correspondance bijective.

Démonstration. Soient $(G, *_G), (H, *_H)$ des groupes et $f : G \longrightarrow H$ un isomorphisme de groupes. Notons $\mathcal{S}(G)$ l'ensemble des sous-groupes de G et $\mathcal{S}(H)$ l'ensemble des sous-groupes de H. Comme f est bijective on sait déjà que :

$$\varphi: \begin{array}{ll} \mathcal{P}(G) \longrightarrow \mathcal{P}(H) \\ G' \longmapsto f(G') \end{array} \text{ est une bijection de réciproque } \varphi^{-1}: \begin{array}{ll} \mathcal{P}(H) \longrightarrow \mathcal{P}(G) \\ H' \longmapsto f^{-1}(H') \end{array}$$

Reste à vérifier que φ réalise une bijection de S(G) vers S(H).

D'après une proposition précédente on sait déjà que $\forall G' \in \mathcal{S}(G), \varphi(G) \in \mathcal{S}(H)$ et $\forall H' \in \mathcal{S}(H), \varphi^{-1}(H') \in \mathcal{S}(G)$. Autrement dit φ induit bien une fonction de $\mathcal{S}(G)$ vers $\mathcal{S}(H)$ et φ^{-1} induit aussi une fonction de $\mathcal{S}(H)$ vers $\mathcal{S}(G)$. De plus φ^{-1} étant la bijection réciproque de φ on a :

$$\forall G' \in \mathcal{S}(G), (\varphi \circ \varphi^{-1})(G') = G'$$
$$\forall H' \in \mathcal{S}(H), (\varphi^{-1} \circ \varphi)(H') = H'$$

Ce qui prouve que :

$$\begin{array}{ll} \mathcal{S}(G) \longrightarrow \mathcal{S}(H) \\ G' \longmapsto \varphi(G') \end{array} \ \text{est bijective de réciproque} \ \begin{array}{ll} \mathcal{S}(H) \longrightarrow \mathcal{S}(H) \\ H' \longmapsto \varphi^{-1}(H') \end{array}$$

Remarque. Il n'existe malheureusement pas de réciproque à ce résultat.

III Structures d'anneau et de corps

1 Anneaux

Définition. Un anneau (ou anneau unitaire) est un ensemble A muni de deux l.c.i. + et \times telles que :

- (i) (A, +) est un groupe abélien (son neutre est noté 0)
- (ii) × est associative et admet un neutre noté 1
- (iii) × est distributive sur +

Si de plus \times est commutative on dira que $(A, +, \times)$ est un <u>anneau commutatif</u>.

Remarque. Par commodité on notera ab l'élément $a \times b$ de A si $a, b \in A$.

Exemples. 1. \mathbb{Z} , \mathbb{Q} , \mathbb{R} , \mathbb{C} sont des anneaux commutatifs.

- 2. $(\mathcal{M}_n(\mathbb{K}), +, \times)$ est un anneau non commutatif.
- 3. $(\mathcal{P}(E), \Delta, \cap)$ est un anneau commutatif.

Proposition. Si A est un anneau alors :

$$\forall x \in A, 0_A x = x 0_A = 0_A$$

 $D\acute{e}monstration$. Par distributivité de \times sur + on a :

$$\forall x \in A, \left\{ \begin{array}{l} x0_A = x(1_A - 1_A) = x1_a - x1_a = x - x = 0_A \\ 0_A x = (1_A - 1_A)x = 1_A x - 1_A x = x - x = 0_A \end{array} \right.$$

Proposition. Soit A un anneau. Alors pour tout $(a,b) \in A^2$ et tout $n \in \mathbb{N}^*$:

(i)
$$a^n - b^n = (a - b) \sum_{k=0}^{n-1} a^k b^{n-1-k}$$
 (ii) si a et b commutent $(a + b)^n = \sum_{k=0}^n \binom{n}{k} a^k b^{n-k}$

Démonstration. (i) On développe le terme de gauche et un télescopage apparaît :

$$(a-b)\sum_{k=0}^{n-1}a^kb^{n-1-k} = a\sum_{k=0}^{n-1}a^kb^{n-1-k} - b\sum_{k=0}^{n-1}a^kb^{n-1-k} = \sum_{k=0}^{n-1}\left(a^{k+1}b^{n-(k+1)} - a^kb^{n-k}\right)$$
$$= a^nb^{n-n} - a^0b^{n-0} = a^n - b^n$$

(ii) Démonstration habituelle du binôme de Newton (par récurrence ou dénombrement).

2 Groupe des inversibles

Définition. L'ensemble des éléments inversibles pour la loi \times d'un anneau A est noté A^{\times} .

Proposition. (A^{\times}, \times) est un groupe.

Démonstration. On remarque d'abord que \times induit bien une l.c.i. sur A^{\times} i.e. que A^{\times} est stable par \times . Ce qui provient du fait que le produit de deux inversibles est un inversible. Ainsi, \times induit une l.c.i. associative de neutre $1 \in A^{\times}$ et par définition de A^{\times} tous ses éléments sont inversibles pour la loi \times . Autrement dit, (A^{\times}, \times) est un groupe.

Exemples. 1. Le groupe des inversibles de \mathbb{Z} est $\{-1,1\}$, isomorphe à $(\mathbb{Z}/2\mathbb{Z},+)$.

2. Pour tout $\mathbb{K} \in {\mathbb{Q}, \mathbb{R}, \mathbb{C}}$ on a $\mathbb{K}^{\times} = \mathbb{K} \setminus {0}$.

3 Anneaux intègres, corps

Définition. Soit $(A, +, \times)$ un anneau.

- Un élément $a \in A$ non nul est un <u>diviseur de 0</u> lorsqu'il existe $b \in A$ non nul tel que ab = 0 ou ba = 0.
- Un anneau intègre est un anneau commutatif n'ayant pas de diviseur de 0.
- Un corps est un anneau intègre vérifiant $A^{\times} = A \setminus \{0\}$.

Exemples. 1. $\mathbb{Q}, \mathbb{R}, \mathbb{C}, \mathbb{Z}/p\mathbb{Z}$ (p premier) sont des corps.

2. $\mathbb{Z}, \mathcal{M}_n(\mathbb{K}), \mathcal{P}(E), \mathbb{Z}/n\mathbb{Z}$ (n non premier) ne sont pas des corps.

4 Sous-anneaux

Définition. Soit $(A, +, \times)$ un anneau. Un sous-anneau de A est une partie B de A vérifiant :

- (i) B est un sous-groupe de (A, +)
- (ii) $1_A \in B$
- (iii) B est stable par \times .

Exemples. 1. L'unique sous-anneau de \mathbb{Z} est \mathbb{Z} lui-même.

- 2. On a l'inclusion de sous-anneaux : $\mathbb{Z} \subset \mathbb{Q} \subset \mathbb{R} \subset \mathbb{C}$.
- 3. L'unique sous-anneau de $\mathbb{Z}/n\mathbb{Z}$ est $\mathbb{Z}/n\mathbb{Z}$ lui-même $(n \in \mathbb{N}^*$ quelconque).
- 4. Si l'on note $\mathcal{D}_n(\mathbb{K})$ l'ensemble des matrices diagonales à coefficients dans \mathbb{K} et $\mathcal{T}_n(\mathbb{K})$ l'ensemble des matrices triangulaires supérieures à coefficients dans \mathbb{K} , on a l'inclusion de sous-anneaux $\mathcal{D}_n(\mathbb{K}) \subset \mathcal{T}_n(\mathbb{K}) \subset \mathcal{M}_n(\mathbb{K})$.

5 Morphismes d'anneaux

Définition. Soit A et A' deux anneaux. On dit d'une application $f:A\longrightarrow A'$ que c'est un morphisme d'anneaux lorsque:

- (i) $\forall (a,b) \in A^2$, f(a+b) = f(a) + f(b)
- (ii) $\forall (a,b) \in A^2$, f(ab) = f(a)f(b)
- (iii) $f(1_A) = 1_{A'}$.

Remarque. Un morphisme d'anneaux est en particulier un morphisme de groupes.

Exemples. 1. L'unique morphisme d'anneaux de \mathbb{Z} vers \mathbb{Z} est $\mathrm{Id}_{\mathbb{Z}}$.

- 2. L'unique morphisme d'anneaux de $\mathbb{Z}/n\mathbb{Z}$ vers $\mathbb{Z}/n\mathbb{Z}$ est $\mathrm{Id}_{\mathbb{Z}/n\mathbb{Z}}$.
- 3. L'unique morphisme d'anneaux de \mathbb{Q} vers \mathbb{Q} est $\mathrm{Id}_{\mathbb{Q}}$.

Définition. Un morphisme d'anneaux bijectif est appelé un <u>isomorphisme d'anneaux</u>. Un isomorphisme d'un anneau vers lui-même est appelé un automorphisme d'anneaux.

Proposition. Si f est un isomorphisme d'anneaux alors f^{-1} aussi.

 $D\acute{e}monstration$. On a déjà montré que f^{-1} est un morphisme de groupes, reste à montrer que f^{-1} vérifie les points (ii) et (iii) de la définition précédente. Soit $a',b'\in A'$. Comme f est un morphisme d'anneaux alors :

$$\begin{cases} f(f^{-1}(a')f^{-1}(b')) = f(f^{-1}(a'))f(f^{-1}(b')) = a'b' \\ 1_{A'} = f(1_A) \end{cases}$$

En appliquant f^{-1} on obtient alors :

$$\begin{cases} f^{-1}(a')f^{-1}(b') = f^{-1}(a'b') \\ f^{-1}(1_{A'}) = 1_A \end{cases}$$

Ce qui prouve bien que f^{-1} vérifie les points (ii) et (iii) de la définition précédente.

Exemples. 1. Si A est un anneau, l'application Id_A est un automorphisme.

- 2. L'application $z \longmapsto \overline{z}$ est une automorphisme d'anneaux.
- 3. L'anneau $(\mathcal{P}(E), \Delta, \cap)$ est isomorphe à l'anneau $(\{0,1\}^E, *, \times)$ où * est une l.c.i. définie sur $\{0,1\}^E$ par :

$$\forall f, g \in \{0, 1\}^E, f * g = f + g - 2fg$$