0.1 Simpliziale Garben

Die Beschreibung der geometrischen Realsierung als Tensorprodukt von Funktoren eröffnet uns eine Reihe weiterer geometrischer Realisierungen, die diejenige simplizialer Mengen verallgemeinern.

Zunächst stellen wir fest, dass wir in unserer Konstruktion simpliziale Mengen immer als diskrete simpliziale topologische Räume betrachtet haben, und die Diskretheit genauso gut auch fallen lassen können. Wir erhalten die geometrische Realisierung $|X| = X \otimes R$ eines simplizialen topologischen Raums $X: \Delta^{\mathrm{op}} \to \mathrm{Top.}$

Beispiel 0.1. Wir betrachten den simplizialen topologischen Raum $X:\Delta^{\mathrm{op}}\to \mathrm{Top}$, den wir aus dem (kombinatorischen) Standard-1-Simplex Δ^1 erhalten, indem wir disjunkte Vereinigungen von Punkten durch disjunkte Vereinigungen von Intervallen I=[0,1] mit von den Identitäten induzierten Abbildungen ersetzen. Offenbar ist die geometrische Realiserung das Produnkt $I\times |\Delta^1|$. Ersetzen wir X_0 wieder durch zwei Punkte 0,1 mit beliebigen Degenerationen, so erhalten wir eine zu einer Kreisscheibe verdickte Linie zwischen den beiden Punkten als Realisierung. Ersetzen wir die höheren $X_n, n\geq 2$ ebenfalls wieder durch Punkte mit beliebigen Randabbildungen, so sorgen deren Identifikationen dafür, dass die geometrische Realisierung wieder $|\Delta^1|$ wird.

Weiter verallgemeinert die Konstruktion auch auf Diagrammkategorien. Ist I eine kleine Kategorie und $X:\Delta^{\mathrm{op}}\to \mathrm{Top}^I$ ein simpliziales I-System topologischer Räume, so erhalten wir eine geometrische Realisierung $|X|=X\otimes R$ von X, wenn wir $R:\Delta\to \mathrm{Top}\to \mathrm{Top}^I$ mittels des Funktors der konstanten Darstellung auf die Diagrammkategorie fortsetzen. Insbesondere erhalten wir eine geometrische Realisierung für die Kategorie der Paare topologischer Räume mit stetiger Abbildung, d. h. die Diagrammkategorie Top^I für I die von $\{\bullet\to \bullet\}$ erzeugte Kategorie. Uns interessiert der Fall von Garben:

Satz 0.2. Sei $I = \{ \bullet \to \bullet \}$, $X : \Delta^{\mathrm{op}} \to \operatorname{Top}^I$ ein simpliziales Paar topologischer Räume mit stetiger Abbildung, für die $X_n : E_n \to Y_n$ étale ist für alle [n]. Dann ist auch die geometrische Realisierung $|X| : |E| \to |Y|$ étale.

Beweis. Die Realisierung ist die Abbildung $|E| = \coprod_n E_n \times |\Delta^n|/\sim \to |Y| = \coprod_n Y_n \times |\Delta^n|/\sim$, die von den $X_n: E_n \to Y_n$ induziert wird. Sind die $X_n: E_n \to Y_n$ étale, so ist die Abbildung auf den Koprodukten étale und es reicht zu bemerken, dass die Wirkung von $f: [n] \to [m]$ auf den Koprodukten verträglich ist nach Definition eines Funktors nach Top^I.

In die Sprache der Garben zurückübersetzt bedeutet das, dass wir eine geometrische Realisierung erklärt haben für simpliziale Garben über topologischen Räumen $X:\Delta^{\mathrm{op}}\to \mathrm{Ens}_{/\mathrm{Top}}$:

$$E_n \in \operatorname{Ens}_{/Y_n} \longrightarrow |E| \in \operatorname{Ens}_{/|Y|}.$$

Man beachte, dass Morphismen étaler Top^I den "Morphismen" in $\operatorname{Ens}_{/\operatorname{Top}}$ entsprechen, während sonst häufig mit Komorphismen gearbeitet wird.

0.1.1 Die Dualität von Nerv und Realisierung

Wir suchen Rechtsadjungierte für unsere geometrischen Realisierungen. Für die Realisierung simplizialer Mengen gelingt uns das einfach.

Satz 0.3. Der Funktor der singulären Ketten $S: \text{Top} \to s \text{ Ens}, SY = \text{Top}(R \cdot, Y):$ $[n] \mapsto \text{Top}(|\Delta^n|, Y)$ ist rechtsadjungiert zur geometrischen Realisierung $|\cdot|: s \text{ Ens} \to \text{Top}.$

Beweis. Die Rand- und Degenerationsabbildungen von SY sind für $f:[n] \to [m]$ gegeben durch Vorschalten von $|f|:|\Delta^n|\to |\Delta^m|$. Wir berechnen

mit der Definition der geometrischen Realisierung im ersten Schritt (Gl. ??), der Verträglichkeit von Hom: $C^{op} \times C \to \text{Ens}$ mit Limites im zweiten und vierten Schritt, unserer Bestimmung der n-Simplizes als Morphismenmenge (Gl. ??) im dritten Schritt und unserer Beschreibung einer simplizialen Menge als Kolimes über ihre Simplexkategorie (??) im letzten Schritt.

Während dieses Argument wieder ein sehr anschauliches ist, möchten wie wie in ?? erklärt, unser Argument mit den Begriffen und Techniken von Koenden führen, um es automatisch verallgemeinern zu können. Wir geben hier noch einmal die direkte Übersetzung obigen Beweises in die Sprache der Koenden an, und dann sofort die Verallgemeinerung.

Beweis. ([?], 3.2) Wir berechnen mit den Regeln des Koenden-Kalküls:

$$\begin{aligned} \operatorname{Top}(|X|,Y) &= \operatorname{Top}\left(\int^{[n]} X[n] \times R[n], Y\right) \\ &\xrightarrow{\sim} \int_{[n]} \operatorname{Top}\left(X[n] \times R[n], Y\right) \\ &\xrightarrow{\sim} \int_{[n]} \operatorname{Ens}\left(X[n], \operatorname{Top}(R[n], Y)\right) \\ &\xrightarrow{\sim} [\Delta^{\operatorname{op}}, \operatorname{Ens}]\left(X, \operatorname{Top}(R \cdot, Y)\right) \\ &= \operatorname{sEns}(X, SY). \end{aligned}$$

Theorem 0.4 (Allgemeine Nerv-Realisierungs-Dualität, [?], 3.2). Seien C eine V-Kategorie mit Koexponentialen und ein Funktor $R:S\to C$ gegeben. Dann gibt es eine Adjunktion $(|\cdot|,N)$

$$C \stackrel{|\cdot|}{\longleftrightarrow} [S^{\mathrm{op}}, V]$$

mit

$$|\cdot|:X\mapsto \int^s X(s)\odot R(s)$$
 und $N:Y\mapsto C(R\cdot,Y).$

Beweis. In wörtlicher Verallgemeinerung des Vorangegangenen:

$$\begin{split} C(|X|,Y) &= C\left(\int^s X(s)\odot R(s),Y\right) \\ &\xrightarrow{\sim} \int_s C\big(X(s)\odot R(s),Y\big) \\ &\xrightarrow{\sim} \int_s V\big(X(s),C(R(s),Y)\big) \\ &\xrightarrow{\sim} \sum_{??} \big[S^{\mathrm{op}},V\big]\big(X,C(R\,\cdot\,,Y)\big) \\ &= \big[S^{\mathrm{op}},V\big](X,NY). \end{split}$$

0.1.2 Die kartesisch abgeschlossene Struktur der Garben auf X

Für unsere allgemeine Dualität von Nerv und Realisierung ?? benötigen wir also eine bessere V-angereichterte Struktur auf C. Wenn wir uns auf $\mathrm{Ens}_{/\mathrm{X}}$ beschränken, erhalten wir sogar die Struktur einer kartesisch abgeschlossenen Kategorie (engl. cartesian closed category), d. h. einer Kategorie mit endlichen Produkten, für deren kartesische monoidale Struktur es ein internes Hom gibt.

Proposition 0.5. Die Kategorie Ens_{/X} ist kartesisch abgeschlossen mit Produkt

$$(F \times G)(U) = F(U) \times G(U)$$

und internem Hom

$$(F \Rightarrow G)(U) = G(U)^{F(U)}$$

.

Beweis. Das Produkt erfüllt offenbar die universelle Eigenschaft in pEns $_{/X}$ und ist eine Garbe, da Produkte mit dem Limes der Garbeneigenschaft vertauschen. Das interne Hom besteht für $U \odot X$ und $V \subset U$ offen aus verträglichen Abbildungen $F(V) \to G(V)$, mithin also aus Garbenmorphismen $F|_U \to G|_U$. Diese sind untereinander veträglich durch Einschränkung und erfüllen die Garbenbedingung, die ja gerade nach der Verklebbarkeit stetiger Abbildungen modelliert war. Für die Adjunktion $(\cdot \times G, G \Rightarrow \cdot)$ bemerken wir, dass sie nach dem Exponentialgesetz in Ens bereits für die Prägarbenkategorien gilt.