Interi negativi, numeri reali (rappresentazione macchina)

Liceo G.B. Brocchi - Bassano del Grappa (VI) Liceo Scientifico - opzione scienze applicate Giovanni Mazzocchin

Interi con segno

- Finora abbiamo interpretato le stringhe di bit contenute nei registri e nelle celle di memoria soltanto come numeri interi positivi:
 - ad esempio, la sequenza di bit 1100, finora, ha sempre rappresentato il numero decimale 12
- Ovviamente, vorremmo scrivere programmi che siano in grado di lavorare anche sugli interi negativi, sui reali, sui caratteri, sulle stringhe di caratteri, etc...
- Dobbiamo studiare dei metodi per rappresentare tutti questi oggetti della realtà diversi dagli interi positivi, ma sempre tramite sequenze di 1 e 0, perché internamente <u>un calcolatore digitale non conosce</u> <u>niente altro oltre ai bit</u>. Non possiamo scrivere cose come *virgole* e segni meno in memoria...

Codifica con segno e modulo (sign-magnitude)

- Nella rappresentazione con segno e modulo, il bit più a sinistra (più significativo - MSB - Most Significant Bit) rappresenta il segno del numero, in questo modo:
 - 0 per il +
 - 1 per il –
 - i bit rimanenti rappresentano il modulo (valore assoluto) del numero
- Bisogna stabilire a priori quanti bit si utilizzano per la codifica
- Ipotizziamo di voler rappresentare un range di numeri interi con segno utilizzando 4 bit

Codifica con segno e modulo

abbiamo utilizzato 4 bit per rappresentare un range di interi relativi con segno e modulo

ovviamente, le disposizioni sono sempre $16 (2^4)$, ma se prima le utilizzavamo per rappresentare soltanto i numeri interi positivi nell'intervallo [0 - 15], ora le usiamo per rappresentare i numeri relativi nell'intervallo [-7 - +7]

prima di questa lezione, 1111 significava 15, mentre con questa rappresentazione significa -7

decimal	binary – sign-magnitude
+7	0 1 1 1
+6	0 1 1 0
+5	0 1 0 1
+4	0 1 0 0
+3	0 0 1 1
+2	0 0 1 0
+1	0 0 0 1
+0	0 0 0 0
-0	1 0 0 0
-1	1 0 0 1
-2	1 0 1 0
-3	1 0 1 1
-4	1 1 0 0
-5	1 1 0 1
-6	1 1 1 0
-7	1 1 1 1

Codifica con segno e modulo

NB: lo 0 è rappresentato 2 volte, come +0 e come -0. Non è utile rappresentare 2 volte lo 0, che non è né negativo, né positivo

questa rappresentazione è molto scomoda per una macchina, che deve valutare molto spesso se il risultato di un'operazione è 0

decimal	binary – sign-magnitude
+7	0 1 1 1
+6	0 1 1 0
+5	0 1 0 1
+4	0 1 0 0
+3	0 0 1 1
+2	0 0 1 0
+1	0 0 0 1
+0	0 0 0 0
-0	1 0 0 0
-1	1 0 0 1
-2	1 0 1 0
-3	1 0 1 1
-4	1 1 0 0
-5	1 1 0 1
-6	1 1 1 0
-7	1 1 1 1

Codifica con segno e modulo

con n bit, la rappresentazione con segno e modulo degli interi relativi codifica l'intervallo: $[-2^{n-1} + 1, 2^{n-1} - 1]$

in questo esempio: [-7, +7]

decimal	binary – sign-magnitude
+7	0 1 1 1
+6	0 1 1 0
+5	0 1 0 1
+4	0 1 0 0
+3	0 0 1 1
+2	0 0 1 0
+1	0 0 0 1
+0	0 0 0 0
-0	1 0 0 0
-1	1 0 0 1
-2	1 0 1 0
-3	1 0 1 1
-4	1 1 0 0
-5	1 1 0 1
-6	1 1 1 0
-7	1 1 1 1

• La <u>complementazione</u> è una tecnica utilizzata per codificare intervalli di interi relativi

- Esplicitiamo il concetto in base 10:
 - il complemento a 9 di una cifra decimale x è la cifra y t.c. x + y = 9

digit	9's-complement
0	9
1	8
2	7
3	6
4	5
5	4
6	3
7	2
8	1
9	0

• La complementazione a 9 in base 10 è analoga alla complementazione a 1 in base 2

digit	1's-complement
0	1
1	0

- Per calcolare il complemento a 9 di un numero decimale, si complementa a 9 ciascuna delle sue cifre
- Per calcolare il complemento a 1 di un numero binario, si complementa a 1 ciascuna delle sue cifre
- La somma tra un numero decimale e il suo complemento a 9 dà come risultato...
- La somma tra un numero binario e il suo complemento a 1 dà come risultato...

- Complemento a 2: per calcolare il complemento a 2 di un numero binario, si calcola il suo complemento a 1, e gli si aggiunge 1 (ignorando l'eventuale overflow)
- Esempi:
 - $twos_complement(101011) = 010100 + 1 = 010101$
 - $twos_complement(1111111) = 0000000 + 1 = 0000001$

• Il complemento a 2 in binario è analogo al complemento a 10 in decimale

- La somma tra un numero decimale e il suo complemento a 10 dà come risultato...
- La somma tra un numero binario e il suo complemento a 2 dà come risultato...

- Procedura per calcolare velocemente il complemento a 2:
 - partire dalla cifra più a destra e mantenere le cifre inalterate fino a che non si incontra il primo 1, compreso. Dopodiché, invertire tutte le cifre seguenti (verso sinistra)
- Applicare la procedura su:
 - 10100111
 - 1110001001
 - 0000000

• Il complemento a 2 è molto utilizzato nei calcolatori elettronici digitali per rappresentare i numeri negativi

Codifica in complemento a 2:
la rappresentazione degli interi positivi è identica a quella in segno e modulo. Per rappresentare un intero negativo, si complementa a 2 il corrispondente intero positivo

- **Esempio**: rappresentare -6_{dec} in complemento a 2 su 4 bit:
 - rappresentare 6_{dec} : 0110_{bin}
 - il complemento a 2 di 0110 è 1010
 - quindi, la rappresentazione del numero richiesto in complemento a 2 è 1010
 - **NB**: come per la rappresentazione sign-magnitude, il MSB indica il segno

decimal	binary – two's complement
+7	0 1 1 1
+6	0 1 1 0
+5	0 1 0 1
+4	0 1 0 0
+3	0 0 1 1
+2	0 0 1 0
+1	0 0 0 1
0	0 0 0 0
-1	1 1 1 1
-2	1 1 1 0
-3	1 1 0 1
-4	1 1 0 0
-5	1 0 1 1
-6	1 0 1 0
-7	1 0 0 1
-8	1 0 0 0

ora abbiamo solo una rappresentazione dello 0

notare che l'intero più piccolo rappresentabile in complemento a 2, con 4 bit, è -8:

abbiamo quindi utilizzato la disposizione che prima rappresentava -0 per rappresentare un numero negativo in più

Metodo dei complementi

• Il metodo dei complementi è una tecnica utilizzata per semplificare le operazioni aritmetiche nei calcolatori elettronici digitali (e un tempo nelle calcolatrici meccaniche)

Numeri macchina

- Ipotizziamo di dover rappresentare il numero 12367.7891
- Possiamo rappresentarlo in notazione esponenziale in base 10, nel seguente modo:
 - $1.2367789E + 04 = 1.2367789 \cdot 10^4$
- Consideriamo ora il numero 0.00000526. Possiamo rappresentarlo in notazione esponenziale in base 10, nel seguente modo:
 - 5.26E 06
- Consideriamo ora il numero 526000000. Possiamo rappresentarlo in notazione esponenziale in base 10, nel seguente modo:
 - 5.26E + 08
- <u>Questa notazione permette di rappresentare il maggior numero di cifre significative (cifre che forniscono l'informazione rilevante sul numero) in uno spazio di memoria limitato</u>

Numeri macchina

- I numeri reali, all'interno di una macchina elettronica digitale (computer/calcolatrice), sono rappresentati utilizzando una quantità limitata di locazioni di memoria
- L'aritmetica di un computer, quindi, è necessariamente diversa dall'aritmetica insegnata nei corsi di Matematica, questo perché in Matematica i numeri reali sono infiniti e hanno un ordinamento continuo, mentre i numeri di un determinato elaboratore elettronico costituiscono un insieme finito e hanno un ordinamento discreto
- Un computer non potrà mai rappresentare esattamente numeri irrazionali come $\sqrt{2}$ e $\sqrt{3}$. Dovrà perciò approssimarli (per arrotondamento o per troncamento)

Numeri macchina

- Rappresentazione in <u>virgola fissa</u>: questa rappresentazione prevede che la locazione che memorizza il numero sia suddivisa in <u>bit di segno</u>, <u>bit della parte intera</u>, <u>bit della parte frazionaria</u>
- Immaginiamo di avere a disposizione 4 bit per la parte intera e 3 bit per la parte decimale:
 - +101.101 è rappresentabile. Conversione in decimale:
 - $2^2 + 2^0 + 2^{-1} + 2^{-3} = 5.625$
 - 100.100001 non è rappresentabile

Rappresentazione in virgola mobile

- Rappresentazione in <u>virgola mobile</u> (*floating-point*):
 - in un sistema di numerazione in base $m{b}$, qualunque numero $m{n}$ si può esprimere nella forma:

$$n = m \cdot b^e$$

- dove:
 - *m*: mantissa
 - e: esponente
- La notazione in cui la parte intera della mantissa è 0, e la cifra più significativa del numero da rappresentare si trova subito a destra della virgola, viene detta forma normalizzata (i.e. notazione scientifica)
- La virgola è mobile perché può essere spostata di un numero arbitrario di posizioni, scalando l'esponente di conseguenza

• Esempi:

- $3.14 = 0.314 \cdot 10$
- $1941 = 0.1941 \cdot 10^4$
- Da cosa dipende il segno dell'esponente?
- L'intervallo di numeri rappresentabili dipende dal numero di bit riservati all'esponente, mentre la precisione dipende dal numero di bit riservati alla mantissa
- NB: i numeri in floating-point non costituiscono un continuo come i numeri reali

- IEEE 754 single precision: tipo float del C (32 bit)
- IEEE 754 double precision: tipo double del C (64 bit)
 - 1 bit per il segno
 - 11 bit per l'esponente (characteristic)
 - 52 bit per la mantissa
 - non serve rappresentare la base, dato che è sempre 2
- IEEE: Institute of Electrical and Electronics Engineers

- Aprire una shell Python e lanciare i seguenti comandi:
 - import math
 - math.sqrt(3) * math.sqrt(3)
 - $\bullet 0.3 0.2$
 - $\bullet 0.3 0.2 == 0.1 0.0$
 - math.sqrt(2) * math.sqrt(2)
 - 2 ** 4 == math.sqrt(2) ** 8
 - 2 ** 3 == math.sqrt(2) ** 6

• Eseguire questo programma Python e commentarne il comportamento:

```
x = 1.0
step = 0.2
while x != 2.0:
    x += step
```

IEEE 754 double precision – 64 bit

- 0: sign bit
- 10000000011: characteristic's bits
- per convertirlo in decimale esiste una formula, che non vedremo