



# Risk Assessment in IoT Case Study: Collaborative Robots System

**AUTHORS**: Salim Chehida, Abdelhakim Baouya, Miquel Cantero, Paul-Emmanuel Brun, and Guillemette Massot

Presented by Salim Chehida (University of Grenoble Alpes) at:

ECLIPSE SAM IOT VIRTUAL CONFERENCE, SEPTEMBER 17-18, 2020









**STATE OF THE ART** 



**APPROACH** 



**CASE STUDY** 



**IDENTIFICATION OF ASSETS** 



IDENTIFICATION OF THREATS AND VULNERABILITIES



SPECIFICATION OF SECURITY OBJECTIVES AND REQUIREMENTS



**CONCLUSION** 

#### INTRODUCTION Lot of devices (Actuators, Sensors, etc.) **Vulnerabilities** IoT **Systems** Lot of communication **Attacks Technologies** (NFC, Wi-Fi, LoRa, etc.) **Identify the most** critical threats **Security Risk Assessment Our objective** Methodology **Provide the required** Mitigate the risks and build a measures to avoid secure IoT systems threats

#### STATE OF THE ART (SECURITY STANDARDS)



# **Common Standards**

ISO/IEC 27002, ISO/IEC 27005, AS/NZS 4360, BS7799 (ISO17799), NIST SP 800-30, NIST SP 800-82, IEEE 1686.

# **IoT Security Standards**

- -- <u>ITU-T</u> (Y.2060, Y.2063, Y.2066, Y.2067, Y.2068, Y.2075,etc).
- <u>ISO/IEC 30128</u>: covers IoT security related to sensor network application interface.
- <u>ETSI TS103645</u>: gives security practices for consumer devices connected to the Internet.

# ISO/IEC 27002

- International standard that gives general guidance on the commonly accepted goals structured around 36 security objectives and 133 controls.



#### STATE OF THE ART (RISK ASSESSMENT METHODS)



- **EBIOS** is used for the assessment and treatment of risks associated with an Information System.
- **CRAMM** is a qualitative risk assessment methodology.
- **AURUM** methodology that supports the NIST SP 800-30 standard.
- **CORAS** allows risk assessment, documentation of intermediate results, and presentation of conclusions.
- **MEHARI** aims to provide a risk management model compliant to ISO-27005.
- **OCTAVE** allows to define a risk-based strategic assessment and planning technique for system security.
- <u>IT-Grundschutz</u> provides methods, processes, procedures, and measures to establish a system for information security management.

Generic, and they do not consider the complexity and the dynamic of IoT systems



#### **APPROACH**



Identify the assets considering the IoT domain model

Extract relevant objectives for the system from ISO-27002



Specify threats on the assets based on common threats database from EBIOS

Build security requirements that implement the security objectives



#### CASE STUDY (SERVICE ROBOTICS SYSTEM)



- A fleet of robots installed in a warehouse to support the movement of loads.
- Robots are expected to empty continuously an "unload area".
- Each robot picks item and places it in a specific storage area following some predefined rules.





#### **IDENTIFICATION OF ASSETS**



- <u>An asset</u> is "any tangible or intangible thing or characteristic that has value to an organization". [ISO-27001]

#### **IoT Domain Model** PE Thing PE Device VΕ 0..\* Actuator Sensor ADA PDA 0..\*



## IDENTIFICATION OF ASSETS (EXAMPLES)

| 9 | • | • |
|---|---|---|
|   | / |   |

| Asset ID | Asset Description                           |  |  |  |  |
|----------|---------------------------------------------|--|--|--|--|
| A1       | Mobile Robot: Embedded Computer             |  |  |  |  |
| A2       | Mobile Robot: Motion Control (motor driver) |  |  |  |  |
| А3       | Mobile Robot: Sensor 1, RGBD Camera         |  |  |  |  |
| A4       | Mobile Robot: Sensor 2, Lidar               |  |  |  |  |
| A5       | Mobile Robot: Sensor 3, Odometry            |  |  |  |  |
| A6       | Mobile Robot: Lift Mechanism                |  |  |  |  |
| A7       | Mobile Robot: Battery (LiFePo)              |  |  |  |  |
| A8       | Mobile Robot: Network (Card)                |  |  |  |  |
| A9       | System: User Computer                       |  |  |  |  |
| A10      | System: Network (Router and infrastructure) |  |  |  |  |
| A11      | System: Mission Command (Outwards)          |  |  |  |  |
| A12      | System: Robot State (Inwards)               |  |  |  |  |
| A13      | Door PLC                                    |  |  |  |  |
| A14      | PLC WiFi Gateway                            |  |  |  |  |
| A15      | PLC: Opening order (Inwards)                |  |  |  |  |
| A16      | Operator HMI                                |  |  |  |  |



#### **IDENTIFICATION OF THREATS AND VULNERABILITIES**



<u>Threat</u> is "a potential cause of an unwanted incident, which may result in harm to a system or organization". [ISO-27001]

<u>Vulnerability</u> is "weakness that is related to the organizations' assets, which sometimes could cause an unexpected incident". [ISO-27001]

#### **EBIOS Threats Database**

- Physical damage: T-1010 to T-1050.
- Natural events : T-2010 to T-2050.
- Loss of essential services: T-3010 to T-3030.
- Disturbance due to radiation : T-4010 to T-4030.
- o Compromise of information: T-5010 to T-5110.
- Technical failures: T-6010 to T-6050.
- Unauthorized actions: T-7010 to T-7050.
- Compromise of functions :T-8010 to T-8050.



## IDENTIFICATION OF THREATS AND VULNERABILITIES (EXAMPLES) 🕒 🔸



| ID     | Threats Description             | A1 | A2 | A3 | A4 | A5 | A6 | A7 | A8 | A9 | A10 | A11 | A12 | A13 | A14 | A15 | A16 |
|--------|---------------------------------|----|----|----|----|----|----|----|----|----|-----|-----|-----|-----|-----|-----|-----|
| T-1010 | Fire                            | X  | X  | X  | X  | X  | X  | X  | X  | X  | X   |     |     | X   | X   |     |     |
| T-1020 | Water damage                    | X  | X  | X  | X  | X  | X  | X  | X  | X  | X   |     |     | X   | X   |     |     |
| T-1030 | Pollution                       | X  | X  | X  | X  | X  | X  | X  | X  | X  | X   |     |     | X   | X   |     |     |
| T-1040 | Major Accident                  | X  | X  | X  | X  | X  | X  | X  | X  | X  | X   |     |     | X   | X   |     |     |
| T-1050 | Destruction of equip-           | X  | X  | X  | X  | X  | X  | X  | X  | X  | X   |     |     | X   | X   |     |     |
|        | ment or media                   |    |    |    |    |    |    |    |    |    |     |     |     |     |     |     |     |
| T-2010 | Climatic                        | X  | X  | X  | X  | X  | X  | X  | X  | X  | X   |     |     | X   | X   |     |     |
|        | Phenomenon                      |    |    |    |    |    |    |    |    |    |     |     |     |     |     |     |     |
| T-2020 | Seismic                         | X  | X  | X  | X  | X  | X  | X  | X  | X  | X   |     |     | X   | X   |     |     |
|        | Phenomenon                      |    |    |    |    |    |    |    |    |    |     |     |     |     |     |     |     |
| T-2030 | Volcanic                        | X  | X  | X  | X  | X  | X  | X  | X  | X  | X   |     |     | X   | X   |     |     |
|        | Phenomenon                      |    |    |    |    |    |    |    |    |    |     |     |     |     |     |     |     |
| T-2040 | Meteorological Phe-<br>nomenon  | X  | X  | X  | X  | X  | X  | X  | X  | X  | X   |     |     | X   | X   |     |     |
| T-2050 | Flood                           | X  | X  | X  | X  | X  | X  | X  | X  | X  | X   |     |     | X   | X   |     |     |
| T-3010 | Failure of air-<br>conditioning | X  | X  |    |    |    |    |    |    | X  |     |     |     | X   |     |     |     |
| T-3020 | Loss of power sup-              | X  | X  | X  | X  | X  | X  | X  | X  | X  | X   |     |     | X   | X   |     |     |
|        | ply                             |    |    |    |    |    |    |    |    |    |     |     |     |     |     |     |     |
| T-3030 | Failure of                      | X  |    |    |    |    |    |    | X  |    | X   | X   | X   |     | X   | X   | X   |
|        | telecommunication               |    |    |    |    |    |    |    |    |    |     |     |     |     |     |     |     |
|        | equipment                       |    |    |    |    |    |    |    |    |    |     |     |     |     |     |     |     |
| T-4010 | Electromagnetic ra-             |    |    |    |    |    |    |    | X  |    | X   | X   | X   |     | X   | X   | X   |
|        | diation                         |    |    |    |    |    |    |    |    |    |     |     |     |     |     |     |     |
| T-4020 | thermal radiation               | X  | X  | X  | X  | X  | X  | X  | X  | X  | X   |     |     | X   | X   |     |     |
| T-4030 | Electromagnetic pulses          | X  | X  | X  | X  | X  | X  | X  | X  | X  | X   |     |     | X   | X   |     |     |
| T-5010 | Interception of                 |    |    |    |    |    |    |    |    |    | X   | X   | X   |     | X   | X   | X   |
|        | compromising                    |    |    |    |    |    |    |    |    |    |     |     |     |     |     |     |     |
|        | interference signals            |    |    |    |    |    |    |    |    |    |     |     |     |     |     |     |     |
| T-5020 | remote spying                   |    |    | X  |    |    |    |    |    |    |     |     |     |     |     |     | X   |
| T-5030 | eavesdropping                   | X  |    |    |    |    |    |    | X  |    | X   | X   | X   |     | X   | X   |     |
| T-5040 | Theft of media or               |    |    |    |    |    |    |    |    |    |     |     |     | X   | X   |     |     |
|        | documents                       |    |    |    |    |    |    |    |    |    |     |     |     |     |     |     |     |
| T-5050 | Theft of Equipment              | X  | X  | X  | X  | X  | X  | X  | X  | X  | X   |     |     | X   | X   |     |     |
| T-5060 | Retrieval or recycled           |    |    |    |    |    |    |    |    |    |     |     |     |     |     |     | X   |
|        | or discarded media              |    |    |    |    |    |    |    |    |    |     |     |     |     |     |     |     |

#### **SPECIFICATION OF SECURITY OBJECTIVES**



- Extract security objectives needed to protect the system assets against the identified threats from ISO-27002 generic list.
- Map each security objective with the threat list.

| ID    | Security Objective                   | Security Objective Description                                                                                                | Threats          |
|-------|--------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|------------------|
| O1010 | Protection Against Malicious<br>Code | Prevent and detect the allocation of any malicious code, as well as connections of any unprivileged user to the robot network | T-50xx           |
| O1020 | Backup                               | The data from the initial robot setup and the robot firmware require regular backup                                           | T-10XX<br>T-20XX |
|       |                                      |                                                                                                                               | T-5030           |
|       |                                      |                                                                                                                               | T-5090           |
| O1030 | Network Security                     | Protect the information and communication in network from a                                                                   | T-7010           |
|       | Management                           | client to robot. Sending REST Command once authenticated in                                                                   |                  |
|       |                                      | the same network can modify the operations                                                                                    | T-7040           |
| O1040 | Evahance of information              | Secure the interaction between the plotform and robot quotem                                                                  | T-5070           |
| 01040 | Exchange of information              | Secure the interaction between the platform and robot system                                                                  | T-5080           |
|       |                                      |                                                                                                                               | T-5030           |
|       |                                      |                                                                                                                               | T-5040           |
| O1050 | Monitoring                           | Logs and robot system state shall be secured to prevent a bad                                                                 | T-60xx           |
|       |                                      | usage (i.e. a door opened)                                                                                                    | T-70xx           |
|       |                                      |                                                                                                                               | T-80xx           |



## SPECIFICATION OF SECURITY REQUIREMENTS



- Define security requirements needed to ensure each security objective.

| Objective ID                               | Requirement ID | Requirements Description                                                                                           |  |  |  |  |
|--------------------------------------------|----------------|--------------------------------------------------------------------------------------------------------------------|--|--|--|--|
|                                            | R-1010-0010    | REST API must detect malformed commands                                                                            |  |  |  |  |
| O-1010 R-1010-0020 R-1010-0030 R-1010-0040 |                | Access to the REST API must be authenticated                                                                       |  |  |  |  |
|                                            |                | Robot firewall should block all the connection except SSH                                                          |  |  |  |  |
|                                            |                | SSH connection should be restricted to unprivileged users                                                          |  |  |  |  |
| O-1020                                     | R-1020-0010    | Robot firmware should be stored in a non-erasable memory                                                           |  |  |  |  |
| O-1030                                     | R-1030-0010    | Network access must require authentication                                                                         |  |  |  |  |
| 0-1030                                     | R-1030-0020    | Network communication from a client with a robot must be authenticated and encrypted                               |  |  |  |  |
| O-1040                                     | R-1040-0010    | Communication from platform to robot must be authenticated and encrypted (e.g: using protocol like TLS1.2 minimum) |  |  |  |  |
| O-1050                                     | R-1050-0010    | Access to log information must be limited to authorized person only                                                |  |  |  |  |



#### **CONCLUSION**



#### **Advantage of our method:**

- Considers IoT domain model to identify all system assets.
- Follows security standards to define security requirements of IoT systems.
- Iterative approach that responds to the need for evolution.

#### **Applications**:

- Collaborative Robots System
- Water Management Infrastructure





**SALIM CHEHIDA** 

RESEARCHER, UNIVERSITY OF GRENOBLE ALPES

Salim.Chehida@univ-grenoble-alpes.fr