
Sequence Listing was accepted.

If you need help call the Patent Electronic Business Center at (866) 217-9197 (toll free).

Reviewer: markspencer

Timestamp: [year=2010; month=4; day=6; hr=11; min=59; sec=32; ms=737;]

Validated By CRFValidator v 1.0.3

Application No: 10826919 Version No: 2.0

Input Set:

Output Set:

Started: 2010-03-26 12:39:55.091 **Finished:** 2010-03-26 12:40:03.409

Elapsed: 0 hr(s) 0 min(s) 8 sec(s) 318 ms

Total Warnings: 101

No. of SeqIDs Defined: 105

Actual SeqID Count: 105

Total Errors:

Error code		Error Description	n								
W	213	Artificial o	r	Unknown	found	in	<213>	in	SEQ	ID	(3)
W	213	Artificial o	r	Unknown	found	in	<213>	in	SEQ	ID	(4)
W	213	Artificial o	r	Unknown	found	in	<213>	in	SEQ	ID	(5)
W	213	Artificial o	r	Unknown	found	in	<213>	in	SEQ	ID	(6)
W	213	Artificial o	r	Unknown	found	in	<213>	in	SEQ	ID	(7)
W	213	Artificial o	r	Unknown	found	in	<213>	in	SEQ	ID	(8)
W	213	Artificial o	r	Unknown	found	in	<213>	in	SEQ	ID	(9)
W	213	Artificial o	r	Unknown	found	in	<213>	in	SEQ	ID	(10)
W	213	Artificial o	r	Unknown	found	in	<213>	in	SEQ	ID	(11)
W	213	Artificial o	r	Unknown	found	in	<213>	in	SEQ	ID	(12)
W	213	Artificial o	r	Unknown	found	in	<213>	in	SEQ	ID	(13)
W	213	Artificial o	r	Unknown	found	in	<213>	in	SEQ	ID	(14)
W	213	Artificial o	r	Unknown	found	in	<213>	in	SEQ	ID	(15)
W	213	Artificial o	r	Unknown	found	in	<213>	in	SEQ	ID	(16)
W	213	Artificial o	r	Unknown	found	in	<213>	in	SEQ	ID	(17)
W	213	Artificial o	r	Unknown	found	in	<213>	in	SEQ	ID	(18)
W	213	Artificial o	r	Unknown	found	in	<213>	in	SEQ	ID	(19)
W	213	Artificial o	r	Unknown	found	in	<213>	in	SEQ	ID	(20)
W	213	Artificial o	r	Unknown	found	in	<213>	in	SEQ	ID	(21)
W	213	Artificial o	r	Unknown	found	in	<213>	in	SEQ	ID	(22)

Input Set:

Output Set:

Started: 2010-03-26 12:39:55.091 **Finished:** 2010-03-26 12:40:03.409

Elapsed: 0 hr(s) 0 min(s) 8 sec(s) 318 ms

Total Warnings: 101
Total Errors: 0

No. of SeqIDs Defined: 105

Actual SeqID Count: 105

Error code Error Description

This error has occured more than 20 times, will not be displayed

SEQUENCE LISTING

<110>	The Scripps Research Institute Deiters , Alexander Cropp, T. Ashton Chin, Jason W. Anderson, J. Christopher Schultz, Peter G.									
<120>	Unnatural Reactive Amino Acid Genetic Code Additions									
<130>	54-000250US									
	10826919 2004-04-16									
<160>	105									
<170>	PatentIn version 3.5									
<212>	1 1275 DNA Escherichia coli									
<400>		60								
	agca gtaacttgat taaacaattg caagagcggg ggctggtagc ccaggtgacg									
gacgag	gaag egttageaga gegaetggeg caaggeeega tegegeteta ttgeggette	120								
gatccta	accg ctgacagctt gcatttgggg catcttgttc cattgttatg cctgaaacgc	180								
ttccago	cagg cgggccacaa gccggttgcg ctggtaggcg gcgcgacggg tctgattggc	240								
gacccga	agct tcaaagctgc cgagcgtaag ctgaacaccg aagaaactgt tcaggagtgg	300								
gtggaca	aaaa teegtaagea ggttgeeeeg tteetegatt tegaetgtgg agaaaaetet	360								
gctatco	gegg egaacaacta tgaetggtte ggeaatatga atgtgetgae etteetgege	420								
gatatto	ggca aacacttctc cgttaaccag atgatcaaca aagaagcggt taagcagcgt	480								
ctcaaco	egtg aagateaggg gatttegtte actgagtttt eetacaaeet gttgeagggt	540								
tatgact	ttcg cctgtctgaa caaacagtac ggtgtggtgc tgcaaattgg tggttctgac	600								
cagtggg	ggta acatcacttc tggtatcgac ctgacccgtc gtctgcatca gaatcaggtg	660								
tttggc	ctga ccgttccgct gatcactaaa gcagatggca ccaaatttgg taaaactgaa	720								
ggcggc	gcag tetggttgga teegaagaaa accageeegt acaaatteta eeagttetgg	780								
atcaaca	actg cggatgccga cgtttaccgc ttcctgaagt tcttcacctt tatgagcatt	840								

gaagagatca acgccctgga agaagaagat aaaaacagcg gtaaagcacc gcgcgcccag

900

tatgtactgg	cggagcaggt	gactcgtctg	gttcacggtg	aagaaggttt	acaggcggca	960
aaacgtatta	ccgaatgcct	gttcagcggt	tctttgagtg	cgctgagtga	agcggacttc	1020
gaacagctgg	cgcaggacgg	cgtaccgatg	gttgagatgg	aaaagggcgc	agacctgatg	1080
caggcactgg	tcgattctga	actgcaacct	tcccgtggtc	aggcacgtaa	aactatcgcc	1140
tccaatgcca	tcaccattaa	cggtgaaaaa	cagtccgatc	ctgaatactt	ctttaaagaa	1200
gaagatcgtc	tgtttggtcg	ttttacctta	ctgcgtcgcg	gtaaaaagaa	ttactgtctg	1260
atttgctgga	aataa					1275

<210> 2

<211> 424

<212> PRT

<213> Escherichia coli

<400> 2

Met Ala Ser Ser Asn Leu Ile Lys Gln Leu Gln Glu Arg Gly Leu Val 1 5 10 15

Ala Gln Val Thr Asp Glu Glu Ala Leu Ala Glu Arg Leu Ala Gln Gly
20 25 30

Pro Ile Ala Leu Tyr Cys Gly Phe Asp Pro Thr Ala Asp Ser Leu His $35 \hspace{1.5cm} 40 \hspace{1.5cm} 45 \hspace{1.5cm}$

Leu Gly His Leu Val Pro Leu Leu Cys Leu Lys Arg Phe Gln Gln Ala 50 60

Gly His Lys Pro Val Ala Leu Val Gly Gly Ala Thr Gly Leu Ile Gly 65 70 75 80

Asp Pro Ser Phe Lys Ala Ala Glu Arg Lys Leu Asn Thr Glu Glu Thr 85 90 95

Val Gln Glu Trp Val Asp Lys Ile Arg Lys Gln Val Ala Pro Phe Leu 100 105 110

Asp Phe Asp Cys Gly Glu Asn Ser Ala Ile Ala Ala Asn Asn Tyr Asp 115 120 125

Trp Phe Gly Asn Met Asn Val Leu Thr Phe Leu Arg Asp Ile Gly Lys 130 135 140

His 145	Phe	Ser	Val	Asn	Gln 150	Met	Ile	Asn	Lys	Glu 155	Ala	Val	Lys	Gln	Arg 160
Leu	Asn	Arg	Glu	Asp 165	Gln	Gly	Ile	Ser	Phe 170	Thr	Glu	Phe	Ser	Tyr 175	Asn
Leu	Leu	Gln	Gly 180	Tyr	Asp	Phe	Ala	Cys 185	Leu	Asn	Lys	Gln	Tyr 190	Gly	Val
Val	Leu	Gln 195	Ile	Gly	Gly	Ser	Asp 200	Gln	Trp	Gly	Asn	Ile 205	Thr	Ser	Gly
Ile	Asp 210	Leu	Thr	Arg	Arg	Leu 215	His	Gln	Asn	Gln	Val 220	Phe	Gly	Leu	Thr
Val 225	Pro	Leu	Ile	Thr	Lys 230	Ala	Asp	Gly	Thr	Lys 235	Phe	Gly	Lys	Thr	Glu 240
Gly	Gly	Ala	Val	Trp 245	Leu	Asp	Pro	Lys	Lys 250	Thr	Ser	Pro	Tyr	Lys 255	Phe
Tyr	Gln	Phe	Trp 260	Ile	Asn	Thr	Ala	Asp 265	Ala	Asp	Val	Tyr	Arg 270	Phe	Leu
Lys	Phe	Phe 275	Thr	Phe	Met	Ser	Ile 280	Glu	Glu	Ile	Asn	Ala 285	Leu	Glu	Glu
Glu	Asp 290	Lys	Asn	Ser	Gly	Lys 295	Ala	Pro	Arg	Ala	Gln 300	Tyr	Val	Leu	Ala
Glu 305	Gln	Val	Thr	Arg	Leu 310	Val	His	Gly	Glu	Glu 315	Gly	Leu	Gln	Ala	Ala 320
Lys	Arg	Ile	Thr	Glu 325	Cys	Leu	Phe	Ser	Gly 330	Ser	Leu	Ser	Ala	Leu 335	Ser
Glu	Ala	Asp	Phe 340	Glu	Gln	Leu	Ala	Gln 345	Asp	Gly	Val	Pro	Met 350	Val	Glu
Met	Glu	Lys 355	Gly	Ala	Asp	Leu	Met 360	Gln	Ala	Leu	Val	Asp 365	Ser	Glu	Leu

Gln Pro Ser Arg Gly Gln Ala Arg Lys Thr Ile Ala Ser Asn Ala Ile 370 375 380

Thr Ile Asn Gly Glu Lys Gln Ser Asp Pro Glu Tyr Phe Phe Lys Glu 385 390 395 400

Glu Asp Arg Leu Phe Gly Arg Phe Thr Leu Leu Arg Arg Gly Lys Lys 405 410 415

Asn Tyr Cys Leu Ile Cys Trp Lys 420

<210> 3

<211> 1275

<212> DNA

<213> Artificial Sequence

<220>

<223> artificial synthetase

<400> 3

atggcaagca gtaacttgat taaacaattg caagagcggg ggctggtagc ccaggtgacg 60 gacgaggaag cgttagcaga gcgactggcg caaggcccga tcgcactcgt gtgtggcttc 120 gatcctaccg ctgacagctt gcatttgggg catcttgttc cattgttatg cctgaaacgc 180 ttccagcagg cgggccacaa gccggttgcg ctggtaggcg gcgcgacggg tctgattggc 240 gacccgagct tcaaagctgc cgagcgtaag ctgaacaccg aagaaactgt tcaggagtgg 300 gtggacaaaa teegtaagea ggttgeeeeg tteetegatt tegaetgtgg agaaaaetet 360 gctatcgcgg ccaataatta tgactggttc ggcaatatga atgtgctgac cttcctgcgc 420 gatattggca aacacttctc cgttaaccag atgatcaaca aagaagcggt taagcagcgt 480 ctcaaccgtg aagatcaggg gatttcgttc actgagtttt cctacaacct gctgcagggt 540 tatagtatgg cctgtttgaa caaacagtac ggtgtggtgc tgcaaattgg tggttctgac 600 cagtggggta acatcacttc tggtatcgac ctgacccgtc gtctgcatca gaatcaggtg tttggcctga ccgttccgct gatcactaaa gcagatggca ccaaatttgg taaaactgaa 720 ggcggcgcag tctggttgga tccgaagaaa accagcccgt acaaattcta ccagttctgg 780 atcaacactg cggatgccga cgtttaccgc ttcctgaagt tcttcacctt tatgagcatt 900 gaagagatca acgccctgga agaagaagat aaaaacagcg gtaaagcacc gcgcgcccag 960 tatgtactgg cggagcaggt gactcgtctg gttcacggtg aagaaggttt acaggcggca

aaacgtatta	ccgaatgcct	gttcagcggt	tctttgagtg	cgctgagtga	agcggacttc	1020
gaacagctgg	cgcaggacgg	cgtaccgatg	gttgagatgg	aaaagggcgc	agacctgatg	1080
caggcactgg	tcgattctga	actgcaacct	tecegtggte	aggcacgtaa	aactatcgcc	1140
tccaatgcca	tcaccattaa	cggtgaaaaa	cagtccgatc	ctgaatactt	ctttaaagaa	1200
gaagatcgtc	tgtttggtcg	ttttacctta	ctgcgtcgcg	gtaaaaagaa	ttactgtctg	1260
atttgctgga	aataa					1275

<210> 4

<211> 1275

<212> DNA

<213> Artificial Sequence

<220>

<223> artificial synthetase

<400> 4

60 atggcaagca gtaacttgat taaacaattg caagagcggg ggctggtagc ccaggtgacg 120 gacgaggaag cgttagcaga gcgactggcg caaggcccga tcgcactcac ttgtggcttc gatectaceg etgacagett geatttgggg catettgtte cattgttatg eetgaaaege 180 ttccagcagg cgggccacaa gccggttgcg ctggtaggcg gcgcgacggg tctgattggc 240 300 gacccgagct tcaaagctgc cgagcgtaag ctgaacaccg aagaaactgt tcaggagtgg 360 gtggacaaaa tccgtaagca ggttgccccg ttcctcgatt tcgactgtgg agaaaactct 420 gctatcgcgg ccaataatta tgactggttc agcaatatga atgtgctgac cttcctgcgc gatattggca aacacttctc cgttaaccag atgatcaaca aagaagcggt taagcagcgt 480 540 ctcaaccgtg aagatcaggg gatttcgttc actgagtttt cctacaacct gctgcagggt tatacgtatg cctgtctgaa caaacagtac ggtgtggtgc tgcaaattgg tggttctgac 600 660 cagtggggta acatcacttc tggtatcgac ctgacccgtc gtctgcatca gaatcaggtg tttggcctga ccgttccgct gatcactaaa gcagatggca ccaaatttgg taaaactgaa 720 780 ggcggcgcag tctggttgga tccgaagaaa accagcccgt acaaattcta ccagttctgg 840 atcaacactg cggatgccga cgtttaccgc ttcctgaagt tcttcacctt tatgagcatt 900 gaagagatca acgccctgga agaagaagat aaaaacagcg gtaaagcacc gcgcgcccag tatgtactgg cggagcaggt gactcgtctg gttcacggtg aagaaggttt acaggcggca 960 aaacgtatta ccgaatgcct gttcagcggt tctttgagtg cgctgagtga agcggacttc 1020 1080 gaacagctgg cgcaggacgg cgtaccgatg gttgagatgg aaaagggcgc agacctgatg

caggcactgg	tcgattctga	actgcaacct	tcccgtggtc	aggcacgtaa	aactatcgcc	1140
tccaatgcca	tcaccattaa	cggtgaaaaa	cagtccgatc	ctgaatactt	ctttaaagaa	1200
gaagatcgtc	tgtttggtcg	ttttacctta	ctgcgtcgcg	gtaaaaagaa	ttactgtctg	1260
atttgctgga	aataa					1275

<210> 5

<211> 1275

<212> DNA

<213> Artificial Sequence

<220>

<223> artificial synthetase

<400> 5

(100)						
atggcaagca	gtaacttgat	taaacaattg	caagagcggg	ggctggtagc	ccaggtgacg	60
gacgaggaag	cgttagcaga	gcgactggcg	caaggcccga	tcgcactcgt	gtgtggcttc	120
gatcctaccg	ctgacagctt	gcatttgggg	catcttgttc	cattgttatg	cctgaaacgc	180
ttccagcagg	cgggccacaa	gccggttgcg	ctggtaggcg	gcgcgacggg	tctgattggc	240
gacccgagct	tcaaagctgc	cgagcgtaag	ctgaacaccg	aagaaactgt	tcaggagtgg	300
gtggacaaaa	tccgtaagca	ggttgccccg	ttcctcgatt	tcgactgtgg	agaaaactct	360
gctatcgcgg	ccaataatta	tgactggttc	ggcaatatga	atgtgctgac	cttcctgcgc	420
gatattggca	aacacttctc	cgttaaccag	atgatcaaca	aagaagcggt	taagcagcgt	480
ctcaaccgtg	aagatcaggg	gatttcgttc	actgagtttt	cctacaacct	gctgcagggt	540
tatagtatgg	cctgtttgaa	caaacagtac	ggtgtggtgc	tgcaaattgg	tggttctgac	600
cagtggggta	acatcacttc	tggtatcgac	ctgacccgtc	gtctgcatca	gaatcaggtg	660
tttggcctga	ccgttccgct	gatcactaaa	gcagatggca	ccaaatttgg	taaaactgaa	720
ggcggcgcag	tctggttgga	tccgaagaaa	accagcccgt	acaaattcta	ccagttctgg	780
atcaacactg	cggatgccga	cgtttaccgc	ttcctgaagt	tcttcacctt	tatgagcatt	840
gaagagatca	acgccctgga	agaagaagat	aaaaacagcg	gtaaagcacc	gcgcgcccag	900
tatgtactgg	cggagcaggt	gactcgtctg	gttcacggtg	aagaaggttt	acaggcggca	960
aaacgtatta	ccgaatgcct	gttcagcggt	tctttgagtg	cgctgagtga	agcggacttc	1020
gaacagctgg	cgcaggacgg	cgtaccgatg	gttgagatgg	aaaagggcgc	agacctgatg	1080
caggcactgg	tcgattctga	actgcaacct	tcccgtggtc	aggcacgtaa	aactatcgcc	1140

tccaat	gcca tcaccattaa cggtgaaaaa cagtccgatc ctgaatactt ctttaaagaa	1200						
gaagat	cgtc tgtttggtcg ttttacctta ctgcgtcgcg gtaaaaagaa ttactgtctg	1260						
atttgctgga aataa 127								
<210>	6							
<211>	1275							
<212>	DNA							
<213>	Artificial Sequence							

<220>

<223> artificial synthetase

<400> 6

<400/ 0						
atggcaagca	gtaacttgat	taaacaattg	caagagcggg	ggctggtagc	ccaggtgacg	60
gacgaggaag	cgttagcaga	gcgactggcg	caaggcccga	tcgcactcgt	gtgtggcttc	120
gatcctaccg	ctgacagctt	gcatttgggg	catcttgttc	cattgttatg	cctgaaacgc	180
ttccagcagg	cgggccacaa	gccggttgcg	ctggtaggcg	gcgcgacggg	tctgattggc	240
gacccgagct	tcaaagctgc	cgagcgtaag	ctgaacaccg	aagaaactgt	tcaggagtgg	300
gtggacaaaa	tccgtaagca	ggttgccccg	ttcctcgatt	tcgactgtgg	agaaaactct	360
gctatcgcgg	ccaataatta	tgactggttc	ggcaatatga	atgtgctgac	cttcctgcgc	420
gatattggca	aacacttctc	cgttaaccag	atgatcaaca	aagaagcggt	taagcagcgt	480
ctcaaccgtg	aagatcaggg	gatttcgttc	actgagtttt	cctacaacct	gctgcagggt	540
tatagtatgg	cctgtttgaa	caaacagtac	ggtgtggtgc	tgcaaattgg	tggttctgac	600
cagtggggta	acatcacttc	tggtatcgac	ctgacccgtc	gtctgcatca	gaatcaggtg	660
tttggcctga	ccgttccgct	gatcactaaa	gcagatggca	ccaaatttgg	taaaactgaa	720
ggcggcgcag	tctggttgga	tccgaagaaa	accagcccgt	acaaattcta	ccagttctgg	780
atcaacactg	cggatgccga	cgtttaccgc	ttcctgaagt	tcttcacctt	tatgagcatt	840
gaagagatca	acgccctgga	agaagaagat	aaaaacagcg	gtaaagcacc	gcgcgcccag	900
tatgtactgg	cggagcaggt	gactcgtctg	gttcacggtg	aagaaggttt	acaggcggca	960
aaacgtatta	ccgaatgcct	gttcagcggt	tctttgagtg	cgctgagtga	agcggacttc	1020
gaacagctgg	cgcaggacgg	cgtaccgatg	gttgagatgg	aaaagggcgc	agacctgatg	1080
caggcactgg	tcgattctga	actgcaacct	tcccgtggtc	aggcacgtaa	aactatcgcc	1140
tccaatgcca	tcaccattaa	cggtgaaaaa	cagtccgatc	ctgaatactt	ctttaaagaa	1200
gaagatcgtc	tgtttggtcg	ttttacctta	ctgcgtcgcg	gtaaaaagaa	ttactgtctg	1260

atttgctgga aataa 1275

<210> 7 <211> 1275 <212> DNA

<213> Artificial Sequence

<220>

<223> artificial synthetase

<400> 7

atggcaagca gtaacttgat taaacaattg caagagcggg ggctggtagc ccaggtgacg 60 gacgaggaag cgttagcaga gcgactggcg caaggcccga tcgcactcac gtgtggcttc 120 180 gatectaceg etgacagett geatttgggg catettgtte cattgttatg cetgaaaege ttccagcagg cgggccacaa gccggttgcg ctggtaggcg gcgcgacggg tctgattggc 240 gacccgagct tcaaagctgc cgagcgtaag ctgaacaccg aagaaactgt tcaggagtgg 300 gtggacaaaa tccgtaagca ggttgccccg ttcctcgatt tcgactgtgg agaaaactct 360 gctatcgcgg ccaataatta tgactggttc ggcaatatga atgtgctgac cttcctgcgc 420 480 gatattggca aacacttctc cgttaaccag atgatcaaca aagaagcggt taagcagcgt ctcaaccgtg aagatcaggg gatttcgttc actgagtttt cctacagcct gctgcagggt 540 tatacgatgg cctgtctgaa caaacagtac ggtgtggtgc tgcaaattgg tggttctgac 600 cagtggggta acatcacttc tggtatcgac ctgacccgtc gtctgcatca gaatcaggtg 660 tttggcctga ccgttccgct gatcactaaa gcagatggca ccaaatttgg taaaactgaa 720 780 ggcggcgcag tctggttgga tccgaagaaa accagcccgt acaaattcta ccagttctgg atcaacactg cggatgccga cgtttaccgc ttcctgaagt tcttcacctt tatgagcatt 840 gaagagatca acgccctgga agaagaagat aaaaacagcg gtaaagcacc gcgcgcccag 900 960 tatgtactgg cggagcaggt gactcgtctg gttcacggtg aagaaggttt acaggcggca aaacgtatta ccgaatgcct gttcagcggt tctttgagtg cgctgagtga agcggacttc 1020 gaacagctgg cgcaggacgg cgtaccgatg gttgagatgg aaaagggcgc agacctgatg 1080 caggcactgg tcgattctga actgcaacct tcccgtggtc aggcacgtaa aactatcgcc 1140 1200 tccaatgcca tcaccattaa cggtgaaaaa cagtccgatc ctgaatactt ctttaaagaa gaagatcgtc tgtttggtcg ttttacctta ctgcgtcgcg gtaaaaagaa ttactgtctg 1260 1275 atttgctgga aataa

```
<210> 8
<211> 540
<212> DNA
<213> Artificial Sequence
<220>
<223> artificial synthetase
<400> 8
cgggggctgg tagcccaggt gacggacgag gaagcgttag cagagcgact ggcgcaaggc
                                                                        60
                                                                       120
ccgatcgcac tcacttgtgg cttcgatcct accgctgaca gcttgcattt ggggcatctt
                                                                       180
gttccattgt tatgcctgaa acgcttccag caggcgggcc acaagccggt tgcgctggta
                                                                       240
ggcggcgcga cgggtctgat tggcgacccg agcttcaaag ctgccgagcg taagctgaac
accgaagaaa ctgttcagga gtgggtggac aaaatccgta agcaggttgc cccgttcctc
                                                                       300
gatttcgact gtggagaaaa ctctgctatc gcggccaata attatgactg gttcagcaat
                                                                       360
                                                                       420
atgaatgtgc tgaccttcct gcgcgatatt ggcaaacact tctccgttaa ccagatgatc
aacaaagaag cggttaagca gcgtctcaac cgtgaagatc aggggatttc gttcactgag
                                                                       480
ttttcctaca acctgctgca gggttatacg tatgcctgtc tgaacaaaca gtacggtgtg
                                                                       540
<210> 9
<211> 540
<212> DNA
<213> Artificial Sequence
<220>
<223> artificial synthetase
<400>
                                                                        60
cgggggctgg taccccaggt gacggacgag gaagcgttag cagagcgact ggcgcaaggc
ccgatcgcac tcacttgtgg cttcgatcct accgctgaca gcttgcattt ggggcatctt
                                                                       180
gttccattgt tatgcctgaa acgcttccag caggcgggcc acaagccggt tgcgctggta
ggcggcgcga cgggtctgat tggcgacccg agcttcaaag ctgccgagcg taagctgaac
                                                                       240
                                                                       300
accgaagaaa ctgttcagga gtgggtggac aaaatccgta agcaggttgc cccgttcctc
                                                                       360
gatttcgact gtggagaaaa ctctgctatc gcggccaata attatgactg gttcagcaat
atgaatgtgc tgaccttcct gcgcgatatt ggcaaacact tctccgttaa ccagatgatc
                                                                       420
aacaaagaag cggttaagca gcgtctcaac cgtgaagatc aggggatttc gttcactgag
                                                                       480
ttttcctaca acctgctgca gggttatacg tatgcctgtc tgaacaaaca gtacggtgtg
                                                                       540
```

```
<210> 10
<211> 540
<212> DNA
<213> Artificial Sequence
<220>
<223> artificial synthetase
<400> 10
cgggggctgg tagcccaggt gacggacgag gaagcgttag cagagcgact ggcgcaaggc
                                                                        60
                                                                       120
ccgatcgcac tcacttgtgg cttcgatcct accgctgaca gcttgcattt ggggcatctt
                                                                       180
gttccattgt tatgcctgaa acgcttccag caggcgggcc acaagccggt tgcgctggta
ggcggcgcga cgggtctgat tggcgacccg agcttcaaag ctgccgagcg taagctgaac
                                                                       240
                                                                       300
accgaagaaa ctgttcagga gtgggtggac aaaatccgta agcaggttgc cccgttcctc
gatttcgact gtggagaaaa ctctgctatc gcggccaata attatgactg gttcagcaat
                                                                       360
atgaatgtgc tgaccttcct gcgcgatatt ggcaaacact tctccgttaa ccagatgatc
                                                                       420
aacaaagaag cggttaagca gcgtctcaac cgtgaagatc aggggatttc gttcactgag
                                                                       480
ttttcctaca acctgctgca gggttatacg tatgcctgtc tgaacaaaca gtacggtgtg
                                                                       540
<210> 11
<211> 540
<212> DNA
<213> Artificial Sequence
<220>
<223> artificial synthetase
<400> 11
cgggggctgg tagcccaggt gacggacgag gaagcgttag cagagcgact ggcgcaaggc
                                                                        60
ccgatcgcac tcacttgtgg cttcgatcct accgctgaca gcttgcattt ggggcatctt
                                                                       120
gttccattgt tatgcctgaa acgcttccag caggcgggcc acaagccgg
```