ПРИЛОЖЕНИЯ НА РЕКУРЕНТНИТЕ УРАВНЕНИЯ

І. Приложения в комбинаториката

Задача 1. Колко n-цифрени цели положителни числа съдържат в десетичния си запис четен брой тройки (включително нито една)?

Решение: Нека a_n е броят на n-цифрените цели положителни числа, чийто десетичен запис съдържа четен брой тройки. Според цифрата на единиците тези числа са два вида.

Първи случай: цифрата на единиците не е тройка. За тази цифра има девет възможности — 0, 1, 2, 4, 5, 6, 7, 8, 9. Следователно числото, образувано от останалите n-1 цифри, съдържа четен брой тройки. За него има a_{n-1} възможности. Всяка от тези a_{n-1} възможности се комплектува с всяка от деветте възможности за последната цифра. От правилото за умножение следва, че броят на n-цифрените числа от първия вид е равен на $9\,a_{n-1}$.

Втори случай: цифрата на единиците е тройка. Следователно числото, образувано от останалите n-1 цифри, съдържа нечетен брой тройки. Броят на тези числа е равен на броя на всички числа с n-1 цифри минус броя на тези, които съдържат четен брой тройки, т.е. $\left(10^{n-1}-10^{n-2}\right)-a_{n-1}$. Умаляемото $10^{n-1}-10^{n-2}$ е броят на всички (n-1)-цифрени числа: от $100\dots000$ до $999\dots999$. n-1 пъти

Няма други възможности за цифрата на единиците. Прилагаме правилото за събиране:

$$a_n = 9 a_{n-1} + (10^{n-1} - 10^{n-2}) - a_{n-1}.$$

След преработка формулата приема вида

$$a_n = 8 a_{n-1} + 0.09 \cdot 10^n$$
.

Това е линейно-рекурентно уравнение. Съответното му характеристично уравнение е

$$\lambda^n = 8\lambda^{n-1},$$

чийто единствен ненулев корен е $\lambda=8$. От свободния член идва още един корен: 10. Тогава

$$a_n = C_1 \cdot 10^n + C_2 \cdot 8^n.$$

Едноцифрените цели положителни числа с четен брой тройки са тези, които не съдържат тройка в десетичния си запис. Те са осем на брой $(1,\ 2,\ 4,\ 5,\ 6,\ 7,\ 8,\ 9),$ следователно $a_1=8.$ От рекурентното уравнение намираме

$$a_2 = 8 \, a_1 \, + \, 0,09 \, . \, 10^2 \, = \, 8 \, . \, 8 \, + \, 9 \, = \, 73.$$

Във формулата с неопределените коефициенти заместваме n=1 и n=2:

Тази система има единствено решение:

$$C_1 \, = \, \frac{9}{20} \ , \ C_2 \, = \, \frac{7}{16} \, \cdot \,$$

Следователно $a_n = \frac{9 \cdot 10^{n-1} + 7 \cdot 8^{n-1}}{2}$ е броят на n-цифрените числа с четен брой тройки.

Задача 2. В турнир, провеждан по системата на елиминациите, участват n състезатели. В началото на турнира се тегли жребий за реда на провеждане на срещите. Ако a_n е броят на различните изходи от тегленето на жребия, намерете a_n като функция на n.

Например $a_1=1,\;$ защото при един играч има само един начин за протичане на турнира: не се провеждат никакви срещи, а единственият претендент става шампион.

При двама играчи също има само един начин за провеждане на турнира (т.е. $a_2=1$): двамата играят един срещу друг и победителят става шампион.

При трима играчи има три начина за провеждане на турнира (т.е. $a_3=3$): $\left\{ \left\{ \, x \,,\, y \, \right\} \,,\, z \, \right\} \,,\, \left\{ \, \left\{ \, y \,,\, z \, \right\} \,,\, x \, \right\} \,,\, \left\{ \, \left\{ \, z \,,\, x \, \right\} \,,\, y \, \right\} \right.$ Например записът $\left\{ \, \left\{ \, x \,,\, y \, \right\} \,,\, z \, \right\}$ означава, че първо x и y играят един срещу друг, после победителят играе със z. Записът $\left\{ \, \left\{ \, y \,,\, x \, \right\} \,,\, z \, \right\}$ има същия смисъл като $\left\{ \, \left\{ \, x \,,\, y \, \right\} \,,\, z \, \right\}$.

При четирима играчи има петнайсет начина за провеждане на турнира (т.е. $a_4=15$):

$$\left\{ \left\{ \left\{ \left\{ x , y \right\} , z \right\} , t \right\} \right. , \left\{ \left\{ \left\{ \left\{ x , y \right\} , t \right\} , z \right\} \right. , \left\{ \left\{ \left\{ \left\{ x , z \right\} , y \right\} , t \right\} , \left\{ \left\{ \left\{ \left\{ x , z \right\} , z \right\} \right. , \left\{ \left\{ \left\{ \left\{ x , t \right\} , z \right\} \right. , z \right\} \right. \right\} \right. \right.$$

$$\left\{ \left\{ \left\{ \left\{ y , z \right\} , x \right\} , t \right\} \right. , \left\{ \left\{ \left\{ \left\{ y , z \right\} , t \right\} , x \right\} \right. , \left\{ \left\{ \left\{ \left\{ y , t \right\} , x \right\} , z \right\} \right. \right.$$

$$\left\{ \left\{ \left\{ \left\{ x , y \right\} , \left\{ z , t \right\} \right. \right\} \right. , \left\{ \left\{ \left\{ \left\{ z , t \right\} , x \right\} , y \right\} \right. , \left\{ \left\{ \left\{ \left\{ z , t \right\} , y \right\} , z \right\} \right. \right.$$

$$\left\{ \left\{ \left\{ \left\{ x , y \right\} , \left\{ z , t \right\} \right. \right\} \right. , \left\{ \left\{ \left\{ x , z \right\} , \left\{ \left\{ y , t \right\} \right\} \right. \right\} \right.$$

Получава се редицата 1 , 1 , 3 , 15 ... Търси се формула за общия член.

Решение: За n-1 играчи има общо a_{n-1} варианта. Да изберем по произволен начин един от тези варианти. По колко начина можем да добавим n-ти играч към избрания вариант?

В избрания вариант има n-1 "реални" играчи — участниците в турнира. За да остане един шампион, трябва да бъдат елиминирани n-2 играчи, т.е. трябва да бъдат проведени n-2 игри. Оттук получаваме още n-2 "играчи стойности" — победителите в игрите (разбира се, те са някои от "реалните" играчи). Това прави общо (n-1)+(n-2)=2n-3 места, на които може да бъде добавен новият, n-тият играч: той може да играе с някой от старите n-1 играчи, преди последният да е играл изобщо (дотук има n-1 възможности), или може да играе с победителя от някоя от всичките n-2 срещи (това са още n-2 възможности).

 Π р u м e p : Нека n=4. От всеки вариант за трима играчи, да кажем $\left\{\left\{x\;,\;y\;\right\},\;z\right\}$, се получават 2n-3=5 варианта за четирима играчи, защото новият, четвъртият играч t може да бъде вмъкнат на пет различни места:

- Играчът t може да играе с x, y или z, преди те да са играли с другиго. Това дава три нови варианта: $\left\{ \left\{ \left\{ x, t \right\}, y \right\}, z \right\}, \left\{ \left\{ x, \left\{ y, t \right\} \right\}, z \right\}, \left\{ \left\{ x, y \right\}, \left\{ z, t \right\} \right\}.$
- Играчът t може да играе с победителя от някоя от двете игри, което дава още два нови варианта: $\left\{ \; \left\{ \; \left\{ \; x \; , \; y \; \right\} \; , \; z \; \right\} \; , \; \left\{ \; \left\{ \; \left\{ \; x \; , \; y \; \right\} \; , \; z \; \right\} \; , \; t \; \right\} \; .$

Обратно, всеки от новите варианти се поражда от единствен стар вариант, а именно от стария вариант, който се получава, като изключим новия играч.

 Π p u m e p : Heka n=4 и новият играч e t. В този случай вариантът за четирима играчи $\left\{ \; \left\{ \; \left\{ \; x \; , \; y \; \right\} \; , \; z \; \right\} \right.$ се получава единствено от варианта за трима играчи $\; \left\{ \; \left\{ \; x \; , \; y \; \right\} \; , \; z \; \right\} .$

Доказахме, че всеки вариант за n-1 играчи поражда 2n-3 варианта за n играчи, а всеки вариант за n играчи се поражда от единствен вариант за n-1 играчи. Следователно $a_n=(2n-3)\,a_{n-1}\,$ за всяко естествено n>1. Развиваме полученото рекурентно уравнение:

$$\begin{split} a_n &= (2n-3)\,a_{n-1} = (2n-3)(2n-5)\,a_{n-2} = (2n-3)(2n-5)(2n-7)\,a_{n-3} = \\ &= (2n-3)(2n-5)(2n-7)\,\ldots\,a_4 = (2n-3)(2n-5)(2n-7)\,\ldots\,5\,.\,a_3 = \\ &= (2n-3)(2n-5)(2n-7)\,\ldots\,5\,.\,3\,.\,a_2 = (2n-3)(2n-5)(2n-7)\,\ldots\,5\,.\,3\,.\,1. \end{split}$$

Значи, $a_n=1.3.5.7\dots(2n-3)$ е произведението на първите n-1 нечетни числа. (При n=1 произведението съдържа нула множителя, т.е. то е празно, а празното произведение се приема за равно на единица, т.е. $a_1=1$.) Формулата може да се запише и по още един, еквивалентен начин. За целта умножаваме и делим с четните числа 2, 4, 6, 8, \dots , 2n-2:

$$a_n \ = \ \frac{1 \cdot 2 \cdot 3 \cdot 4 \ \dots \ (2n-3) \cdot (2n-2)}{2 \cdot 4 \cdot 6 \cdot 8 \ \dots \ (2n-2)} \ = \ \frac{(2n-2)!}{(2 \cdot 1) \cdot (2 \cdot 2) \cdot (2 \cdot 3) \ \dots \ (2 \cdot (n-1))} \ , \quad \text{t.e.}$$

$$a_n \ = \ \frac{(2n-2)!}{(n-1)! \ 2^{n-1}} \cdot$$

$$\mathbf{Otrobop:} \quad a_n \ = \ 1 \cdot 3 \cdot 5 \cdot 7 \ \dots \ (2n-3) \ = \ \frac{(2n-2)!}{(n-1)! \ 2^{n-1}} \cdot$$

Задача 3. По колко начина числата $1, 2, 3, \ldots, n$ могат да се наредят в редица така, че всеки член (без първия) да се различава с единица от някое от числата вляво от него?

Решение: Нека a_n е броят на редиците със свойството от условието на задачата. При n=1 има една такава редица: (1). При n=2 има две редици: (1, 2) и (2, 1). При n=3 има четири редици: (1, 2, 3), (2, 1, 3), (3, 2, 1) и (2, 3, 1).

Тези данни навеждат на мисълта, че $a_n = 2^{n-1}$. Ще докажем това предположение.

Нека L е първият (най-левият) член на редицата. Ако $L \neq 1$, то числото 2 се намира някъде вляво от 1. Ако $L \neq 2$, то числото 3 се намира някъде вляво от 2. И тъй нататък, докато стигнем до числото L, което е първият член на редицата.

Аналогично, ако $L \neq n$, то числото n-1 се намира някъде вляво от n. Ако $L \neq n-1$, то числото n-2 се намира някъде вляво от n-1. И тъй нататък, докато стигнем до числото L.

Значи всяко от числата $2,\ 3,\ 4,\ \dots\ ,\ n-3,\ n-2,\ n-1$ се намира вляво от 1 или от n. Следователно последното (най-дясното) число в редицата е или 1, или n.

Ако последното число е n, то останалите n-1 позиции могат да бъдат заети от числата $1,\ 2,\ 3,\ \dots\ ,\ n-1$ по a_{n-1} начина, като се спазва изискването от условието.

Ако последното число е 1, то останалите n-1 позиции могат да бъдат заети от числата 2, 3, 4, ..., n също по a_{n-1} начина, защото, ако извадим единица от всички тях, ще дойдем до предишния случай (изваждането на едно и също число от всички елементи на подредицата не променя техните разлики, значи не нарушава изискванията на задачата).

Следователно $a_n = a_{n-1} + a_{n-1}$, тоест $a_n = 2a_{n-1}$. Оттук по индукция следва, че $a_n = 2^{n-1}$.

Задача 4. Нека т. O е центърът на правилния шестоъгълник ABCDEF със страна 1. Освен страните на шестоъгълника са начертани още и отсечките, свързващи т. O с всеки от върховете. Така се получават общо дванайсет отсечки с дължина 1. Пресметнете броя на маршрутите с дължина n, всеки от които започва и завършва в т. O.

Решение: Ще използваме обозначенията от упътването.

Нека a_n е броят на маршрутите с дължина n, които започват и завършват в т. O. Ако първото ребро на такъв маршрут е OA, то останалите n-1 ребра образуват маршрут с дължина n-1 от т. A до т. O; броят на тези маршрути е равен на b_{n-1} . Ако първото ребро е OB, то останалите n-1 ребра образуват маршрут с дължина n-1 от т. B до т. O; поради симетрията между върховете на шестоъгълника броят на тези маршрути също е равен на b_{n-1} . Аналогично разсъждение важи за върховете C, D, E и F. От правилото за събиране следва, че $a_n=6b_{n-1}$.

По същия начин намираме формула за b_n — броя на маршрутите с дължина n, които започват в т. A и завършват в т. O. Ако първото ребро на такъв маршрут е AO, то другите n-1 ребра образуват маршрут с дължина n-1 от т. O до т. O; броят на тези маршрути е равен на a_{n-1} . Ако първото ребро е AB, то другите n-1 ребра образуват маршрут с дължина n-1 от т. B до т. O; поради симетрията между върховете на шестоъгълника броят на тези маршрути е равен на b_{n-1} . Ако първото ребро е AF, то останалите n-1 ребра образуват маршрут с дължина n-1 от т. F до т. O; поради симетрията броят на тези маршрути също е b_{n-1} . От правилото за събиране получаваме уравнението $b_n = a_{n-1} + 2b_{n-1}$.

Двете рекурентни уравнения образуват система:

$$\left| \begin{array}{l} a_{\,n} \, = \, 6b_{\,n-1} \\ b_{\,n} \, = \, a_{\,n-1} \, + \, 2b_{\,n-1} \; . \end{array} \right|$$

От първото уравнение изразяваме $b_{n-1}=\frac{1}{6}\,a_n$, следователно $b_n=\frac{1}{6}\,a_{n+1}$. Заместваме във второто уравнение и получаваме рекурентна зависимост, съдържаща само членовете на редицата, която ни интересува: $\frac{1}{6}\,a_{n+1}=a_{n-1}+\frac{2}{6}\,a_n$, тоест $a_{n+1}=2a_n+6a_{n-1}$. Характеристичното уравнение $\lambda^2=2\lambda+6$ има корени $\lambda_{1,2}=1\pm\sqrt{7}$. Следователно $a_n=C_1$. $\left(1+\sqrt{7}\right)^n+C_2$. $\left(1-\sqrt{7}\right)^n$.

Чрез непосредствено преброяване намираме $a_1=0,\ a_2=6.$ Заместваме n с 1 и с 2 във формулата с неопределените коефициенти и получаваме система от две линейни уравнения:

$$\left| \begin{array}{c} C_1 \cdot \left(1 + \sqrt{7}\,\right) \ + C_2 \cdot \left(1 - \sqrt{7}\,\right) \ = \ 0 \\ \\ C_1 \cdot \left(1 + \sqrt{7}\,\right)^2 + C_2 \cdot \left(1 - \sqrt{7}\,\right)^2 \ = \ 6. \end{array} \right|$$

Оттук намираме следните стойности на коефициентите: $C_1=\frac{7-\sqrt{7}}{14}$, $C_2=\frac{7+\sqrt{7}}{14}$. Ето защо $a_n=\frac{7-\sqrt{7}}{14}$. $\left(1+\sqrt{7}\right)^n+\frac{7+\sqrt{7}}{14}$. $\left(1-\sqrt{7}\right)^n$, което може да се запише и по следния начин: $a_n=\frac{\left(7-\sqrt{7}\right)$. $\left(1+\sqrt{7}\right)^n+\left(7+\sqrt{7}\right)$. $\left(1-\sqrt{7}\right)^n$.

II. Приложения в други видове задачи

Задача 1. Разглеждаме следната функция, програмирана на езика Си:

```
unsigned int f(unsigned int n)
{
   unsigned int a = 4;
   for (unsigned int k = 1; k <= n; k++)
        a = 3 * a + 2;
   return a;
}</pre>
```

Намерете явна формула за върнатата стойност f(n).

Решение: Да означим с a_k стойността на променливата a след k-тата итерация на цикъла (a_0 е началната стойност). Трасираме програмния код и получаваме първите няколко стойности:

k	0	1	2	3	4	5	6
a _k	4	14	44	134	404	1214	3644

Както се вижда от инструкцията в тялото на цикъла, тази редица удовлетворява нехомогенното линейно-рекурентно уравнение $a_k=3a_{k-1}+2$. С помощта на характеристично уравнение намираме $a_k=C_1$. З $^k+C_2$. От $a_0=4$ и $a_1=14$ се получава системата

$$\begin{vmatrix} C_1 + C_2 &= 4 \\ 3C_1 + C_2 &= 14 \end{vmatrix}$$

с единствено решение $\ C_1 \ = \ 5 \, , \ C_2 \ = \ -1 . \ \$ Затова $\ \mathbf{a_k} \ = \ 5 \, . \, 3^{\mathbf{k}} - \ 1 \,$ за всяко цяло $\ \mathbf{k} \ \geq \ 0 .$

От условието за край на цикъла се вижда, че функцията f връща следната стойност: $\mathbf{f(n)} \ = \ \mathbf{a_n} \ = \ 5 \ . \ 3^{^{\mathbf{n}}} - \ 1.$

Забележка: Разсъждения като проведените по-горе се използват често за оптимизиране на алгоритми. Формулата $f(n) = 5 \cdot 3^n - 1$ представлява алгоритъм за изчисляване на f(n), който връща същата стойност като първоначалния алгоритъм, но по-бързо (с по-малък брой аритметични операции). Степенуването в последната формула може да се извърши посредством последователно повдигане на квадрат, което дава брой на операциите от порядъка на $\log n$, докато първоначалният алгоритъм изразходва време от порядъка на n.

Задача 2. Пресметнете детерминантата

$$D_n = \begin{vmatrix} 7 & 6 & 0 & \dots & 0 & 0 \\ 2 & 7 & 6 & \dots & 0 & 0 \\ 0 & 2 & 7 & \dots & 0 & 0 \\ \dots & \dots & \dots & \dots & \dots & \dots \\ 0 & 0 & 0 & \dots & 7 & 6 \\ 0 & 0 & 0 & \dots & 2 & 7 \end{vmatrix}.$$

Решение: Развиваме детерминантата по първия стълб:

$$D_n = 7 \cdot \begin{bmatrix} 7 & 6 & \dots & 0 & 0 \\ 2 & 7 & \dots & 0 & 0 \\ \dots & \dots & \dots & \dots \\ 0 & 0 & \dots & 7 & 6 \\ 0 & 0 & \dots & 2 & 7 \end{bmatrix} - 2 \cdot \begin{bmatrix} 6 & 0 & \dots & 0 & 0 \\ 2 & 7 & \dots & 0 & 0 \\ \dots & \dots & \dots & \dots \\ 0 & 0 & \dots & 7 & 6 \\ 0 & 0 & \dots & 2 & 7 \end{bmatrix}.$$

Детерминантата в първото събираемо е със същия строеж като D_n , но има един ред и един стълб по-малко, т.е. тя е D_{n-1} . Колкото до детерминантата във второто събираемо, тя може отново да бъде развита по ред или стълб. Удобно е да я развием по първия ред, тъй като той съдържа най-много нули:

$$\begin{vmatrix} 6 & 0 & \dots & 0 & 0 \\ 2 & 7 & \dots & 0 & 0 \\ \dots & \dots & \dots & \dots & \dots \\ 0 & 0 & \dots & 7 & 6 \\ 0 & 0 & \dots & 2 & 7 \end{vmatrix} = 6 \cdot \begin{vmatrix} 7 & \dots & 0 & 0 \\ \dots & \dots & \dots & \dots \\ 0 & \dots & 7 & 6 \\ 0 & \dots & 2 & 7 \end{vmatrix} = 6 \cdot D_{n-2}.$$

Получихме линейно-рекурентно уравнение без свободен член:

$$D_n = 7.D_{n-1} - 12.D_{n-2}$$
, $n = 3, 4, 5, ...$

Съответното му характеристично уравнение е $\lambda^n = 7\lambda^{n-1} - 12\lambda^{n-2}$. Делим на $\lambda^{n-2} \neq 0$ и получаваме квадратно уравнение: $\lambda^2 = 7\lambda - 12$, т.е. $\lambda^2 - 7\lambda + 12 = 0$, чиито корени са $\lambda_1 = 3$ и $\lambda_2 = 4$. Следователно $D_n = C_1 \cdot 3^n + C_2 \cdot 4^n$.

За намирането на C_1 и C_2 са нужни две уравнения, т.е. трябва да

пресметнем
$$D_1$$
 и D_2 . Очевидно $D_1 = 7$, $D_2 = \begin{vmatrix} 7 & 6 \\ 2 & 7 \end{vmatrix} = 37$.

Заместваме във формулата за общия член:

Заместваме
$$n=1$$
: $D_1=C_1$. 3^1+C_2 . $4^1=3C_1+4C_2=7$.

Заместваме
$$n=2$$
: $D_2=C_1$. 3^2+C_2 . $4^2=9C_1+16C_2=37$.

Решаваме системата

$$3C_1 + 4C_2 = 7$$
$$9C_1 + 16C_2 = 37$$

и намираме $C_1 = -3$, $C_2 = 4$. Остава само да заместим намерените стойности във формулата за общия член. Отг. $D_n = 4^{n+1} - 3^{n+1}$.

Задача 3. Докажете, че числото $\left(4+\sqrt{7}\right)^{2015}+\left(4-\sqrt{7}\right)^{2015}$ е цяло, и намерете цифрата на единиците му.

Упътване: Представете това число като член на редица, зададена рекурентно.

Решение: Разглеждаме редицата $a_n = \left(4+\sqrt{7}\right)^n + \left(4-\sqrt{7}\right)^n$, $n \ge 0$. Първите два члена са $a_0 = 2$ и $a_1 = 8$. Чрез формулите на Виет съставяме квадратно уравнение с корени $4\pm\sqrt{7}$, а именно: $\lambda^2 - 8\lambda + 9 = 0$, т.е. $\lambda^2 = 8\lambda - 9$. То е характеристично за рекурентното уравнение $a_{n+2} = 8a_{n+1} - 9a_n$. От това уравнение и от началните условия по индукция следва, че всички членове на редицата (включително a_{2015}) са цели числа.

Нека b_n е последната цифра в десетичния запис на числото a_n . Тогава b_n е цяло число от 0 до 9 включително, като $b_0=2,\ b_1=8,\ b_{n+2}\equiv 8b_{n+1}-9b_n\pmod{10}$ за $\forall n\geq 0$. Ясно е, че редицата $\begin{pmatrix} b_n \end{pmatrix}$ ще бъде периодична, стига два от нейните членове да се повторят в същия ред. Това непременно ще се случи, тъй като за наредените двойки от десетични цифри има краен брой различни възможности (точно 100). Следователно редицата $\begin{pmatrix} b_n \end{pmatrix}$ е периодична и периодът ѝ не надвхърля 100. Конкретната дължина на периода се намира чрез опитване. $b_n:\ \mathbf{2},\ \mathbf{8},\ 6,\ 6,\ 4,\ 8,\ 8,\ 2,\ 4,\ 4,\ 6,\ 2,\ \mathbf{2},\ \mathbf{8}$...

Понеже $b_0=b_{12}=2$ и $b_1=b_{13}=8$, то редицата $\left(b_n\right)$ има период 12. Тъй като 2015:12=167 и остатък 11, то търсената цифра е $b_{2015}=b_{11}=2$.

Задача 4. Докажете, че уравнението $11x^2 - 7y^2 = 71$ притежава безброй много решения в цели положителни числа.

Решение: Налучкваме решението $x_0=3, \quad y_0=2.$ Определяме две редици (x_n) и (y_n) : $x_0=3, \quad y_0=2, \quad x_{n+1}=351x_n+280y_n\,, \quad y_{n+1}=440x_n+351y_n$ за всяко цяло $n\geq 0.$ Първите членове на редиците са цели положителни числа. Следващите членове се получават чрез събиране и умножение с 280, 351 и 440, затова и те са цели положителни числа. Ето защо $x_{n+1}>x_n$ и $y_{n+1}>y_n$, т.е. двете редици са строго растящи. Оттук можем да направим извода, че наредените двойки $(x_n\,,\,y_n)$ са две по две различни, следователно са безброй много. Всички те са решения на уравнението $11x^2-7y^2=71$, тоест то има безброй много решения.

И тъй, искаме да докажем, че $11\left(x_n\right)^2-7\left(y_n\right)^2=71\,$ за всяко цяло неотрицателно число n. За целта ще използваме математическа индукция.

База: n=0. Проверяваме: $11\left(x_0\right)^2-7\left(y_0\right)^2=11$. 3^2-7 . $2^2=99-28=71$.

Индуктивна стъпка: Да предположим, че $11\left(x_n\right)^2-7\left(y_n\right)^2=71$ за някое цяло $n\geq 0$. Ще докажем, че $11\left(x_{n+1}\right)^2-7\left(y_{n+1}\right)^2=71$. Наистина,

$$\begin{aligned} &11\left(x_{n+1}\right)^2-7\left(y_{n+1}\right)^2=\ 11\left(351x_n+280y_n\right)^2-7\left(440x_n+351y_n\right)^2=\\ &=\left(1355211\left(x_n\right)^2+2162160\,x_n\,y_n+862400\left(y_n\right)^2\right)-\left(1355200\left(x_n\right)^2+2162160\,x_n\,y_n+862407\left(y_n\right)^2\right)\\ &=11\left(x_n\right)^2-7\left(y_n\right)^2=\ 71. \ \ \text{В последното равенство използвахме индуктивното предположение.} \end{aligned}$$

Как се сетихме да разгледаме тези редици? Идеята за редица от решения изисква хрумване. Че двете редици се задават тъкмо с линейно-рекурентни уравнения, може да се налучка. Във всеки случай това е най-естественото предположение: отначало търсим просто решение; ако не успеем да намерим такова, чак тогава се насочваме към търсене на по-сложно решение. Неправдоподобно е обаче да налучкаме и коефициентите на двете рекурентни уравнения. Коефициентите се намират като решения на подходяща система.

Нека

$$x_{n+1} = \, ax_n + \, by_n \,, \quad y_{n+1} = \, cx_n + \, dy_n \quad$$
 за всяко цяло $\, n \geq 0.$

Тогава

$$11(x_{n+1})^{2} - 7(y_{n+1})^{2} = 11(ax_{n} + by_{n})^{2} - 7(cx_{n} + dy_{n})^{2} =$$

$$= (11a^{2}(x_{n})^{2} + 22abx_{n}y_{n} + 11b^{2}(y_{n})^{2}) - (7c^{2}(x_{n})^{2} + 14cdx_{n}y_{n} + 7d^{2}(y_{n})^{2}) =$$

$$= (11a^{2} - 7c^{2})(x_{n})^{2} + (22ab - 14cd)x_{n}y_{n} + (11b^{2} - 7d^{2})(y_{n})^{2}.$$

Искаме да бъде изпълнено равенството

$$11(x_{n+1})^{2} - 7(y_{n+1})^{2} = 11(x_{n})^{2} - 7(y_{n})^{2},$$

за да можем да заключим по индукция, че всички тези изрази са равни на 71. За тази цел е нужно коефициентите пред съответните степени да бъдат равни. Тоест неизвестните a, b, c и d трябва да бъдат цели положителни числа и да удовлетворяват системата

$$\begin{vmatrix} 11a^2 - 7c^2 &= 11\\ 11b^2 - 7d^2 &= -7\\ 22ab - 14cd &= 0 \end{vmatrix} \iff \begin{vmatrix} a^2 &= 1 + \frac{7c^2}{11}\\ 7d^2 - 11b^2 &= 7\\ 11ab &= 7cd. \end{vmatrix}$$

Не е нужно да намерим всички решения на тази система. Достатъчно е едно решение.

От първото уравнение следва, че c се дели на 11. Опитваме с малки числа: 11, 22, 33 и т.н. При c=11 получаваме $a^2=78$, което няма решение в цели числа: 78 не е точен квадрат. Чак при c=440 получаваме $a^2=123201$, откъдето намираме цяло положително решение: a=351. (Търсенето можем да извършим с компютърна програма или с електронна таблица.)

Заместваме намерените стойности на a и c в третото уравнение и то приема вида

$$11.351b = 7.440d \iff 351b = 280d.$$

Тъй като числата 351 и 280 са взаимно прости, то b се дели на 280, а d се дели на 351, тоест

$$b = 280k, d = 351k$$

за някое цяло положително число k. Заместваме във второто уравнение на последната система:

$$7.351^2 k^2 - 11.280^2 k^2 = 7 \iff 7k^2 = 7 \iff k^2 = 1.$$

откъдето намираме положителното целочислено решение k=1, b=280, d=351.

Ако за неизвестното k не се беше получила цяла положителна стойност, щяхме да се върнем на първата стъпка и да опитаме с по-голяма стойност на c, докато открием подходяща.

С аналитични преобразувания и опитване намерихме целочислени положителни стойности на неизвестните коефициенти: $a=351,\ b=280,\ c=440,\ d=351.$ Те бяха използвани в доказателството от предишната страница.

Задача 5. Намерете всички функции $f:\mathbb{N}\to\mathbb{N},$ удовлетворяващи функционалното уравнение

$$f(f(x)) = 21x - 4f(x).$$

Решение: Избираме произволно число $a_0 \in \mathbb{N}$ и разглеждаме следната безкрайна редица:

$$a_0$$
 , $a_1 = f\left(a_0\right)$, $a_2 = f\left(f\left(a_0\right)\right)$, ... , $a_n = \underbrace{f\left(f\left(\ldots\left(f\left(a_0\right)\right)\ldots\right)\right)}_{n \text{ prod}}$, ...

Във функционалното уравнение

$$f(f(x)) = 21x - 4f(x)$$

заместваме $x = a_n$:

$$f(f(a_n)) = 21 a_n - 4f(a_n).$$

Преработваме новото уравнение:

$$f(a_{n+1}) = 21 a_n - 4 a_{n+1},$$

$$a_{n+2} = 21 a_n - 4 a_{n+1}.$$

На полученото линейно-рекурентно уравнение съответства следното характеристично уравнение:

$$\lambda^{n+2} = 21 \lambda^n - 4 \lambda^{n+1}.$$

Тъй като търсим само ненулевите корени, делим на λ^n :

$$\lambda^2 + 4\lambda - 21 = 0.$$

Корените на това квадратно уравнение са $\lambda_1 = 3$ и $\lambda_2 = -7$. Следователно

$$a_n = C_1 \cdot 3^n + C_2 \cdot (-7)^n.$$

Понеже функцията $f:\mathbb{N}\to\mathbb{N}$ приема само цели неотрицателни стойности, то следва, че a_n е цяло неотрицателно число за всяко цяло $n\geq 1$. Тъй като |-7|>|3|, то за всички достатъчно големи n знакът на числото a_n съвпада със знака на събираемото C_2 . $(-7)^n$, при условие че $C_2\neq 0$. Строгото доказателство следва от представянето

$$a_n = C_2 \cdot (-7)^n \cdot \left(1 + \frac{C_1}{C_2} \cdot \left(-\frac{3}{7}\right)^n\right).$$

Тъй като $\left|-\frac{3}{7}\right|<1,\;$ то $\left(-\frac{3}{7}\right)^n\to 0$ при $n\to\infty,\;$ изразът в големите скоби клони към 1 и $a_n\;\approx\;C_2\;.\;\left(-7\right)^n\;$ за всички достатъчно големи n.

Следователно, ако $C_2>0$, то $a_n<0$ за всички достатъчно големи нечетни n; а пък ако $C_2<0$, то $a_n<0$ за всички достатъчно големи четни n. И в двата случая се стига до противоречие с това, че всички a_n са неотрицателни.

Остава само една възможност: $C_2 = 0$. Тогава

$$a_n = C_1 \cdot 3^n.$$

При n=0 намираме $C_1=a_0$. При n=1 следва $a_1=3\,C_1$, т.е. $f\left(a_0\right)=3\,a_0$. Понеже a_0 е произволно число от $\mathbb N$, то f(x)=3x за всяко $x\in\mathbb N$. Проверката показва, че тази функция наистина е решение на функционалното уравнение. Проверката е задължителна, тъй като рекурентното уравнение е следствие от функционалното (двете уравнения не са равносилни).

Отговор: $f(x) = 3x, \forall x \in \mathbb{N}.$