Chem Notes

Amy Wilder

July 30, 2025

1 Solubility Rules for Ionic Compounds in Water

Ions	Comments
NH_4^+, Na^+, K^+, Li^+	All common salts of these ions are soluble
NO_3^-, CH_3COO^-	All common salts of these ions are soluble
CI^-,Br^-,I^-	All common salts of these ions are soluble, _except_ those of
	$Ag^{+}, Pb^{2+}, Cu^{+}, \text{ and } Hg_{2}^{+}.$
50_4^{2-}	Most are soluble $_$ except $_{_}$ those containing Ca^{2+} , Sr^{2+} , Ba^{2+} , and
	Pb^{2+} ions
OH^-	All are insoluble, _except_ those with NH ₄ ⁺ ion, Group 1A, and
	the larger members of Group 2A beginning with Ca ²⁺
$CO_3^{2-}, PO_4^{3-}, C_2O_4^{2-}$	All common salts are insoluble, _except_ those of Group 1A and
	$\mathrm{NH_4}^+$

2 Common ions and their respective charges

Ion Summary: When cations pair up with anions to form neutral ionic compounds, the word "ion" is dropped from both ion's names

Main group metals an Nonmetals: predictable charges based upon their group/column.

Name	Cation	\mathbf{Name}	Cation
Lithium ion	Li ¹⁺	Berylium ion	Be^{2+}
Sodium ion	Na^{1+}	Magnesium ion	_
Potassium ion	K^{1+}	Calcium ion	Ca^{2+}
Rubidium ion	Rb^{1+}	Strontium ion	Sr^{2+}
Cesium ion	Cs^{1+}	Barium ion	Ba^{2+}
		Aluminum ion	Al^{3+}
Name	Anion		Anion
Oxide ion	O^{2-}	Bromide ion E	Br ^{1—}
Sulfide ion	S^{2-}	Chloride ion C	
		Fluoride ion F	:1-
Nitride ion	N^{3-}	Iodine ion I^1	1—
Phosphide ion	P^{3-}		

Transition Metals (and other metals with d orbitals): The charge for many of these can vary. Therefore Roman Numerals are used in their written name to indicate the exact ion. If a transition metal is in the cmpd, then you need to look at the anion to determine the charge of the metal cation.

Name	Cation	Name		Cation
Cadmium ion	Cd^{2+}	Cobalt (II) ion	Co^{2+}
Zinc ion	Zn^{2+}	Cobalt (III) ion	Co^{3+}
Silver ion	Ag^{2+}	Iron (II)	ion	Fe^{2+}
Gold ion	Au^{2+}	Iron (III) ion	Fe^{3+}
		Chromiu	m (III) ion	Cr^{3+}
Name	Cat	ion Na	me	Cation
Name Copper (I) ion	Cat		me (II) ion	Sn^{2+}
	Cu ¹	+ Tir		
Copper (I) ion	Cu ¹ ·	+ Tir	(II) ion	Sn ²⁺ Sn ⁴⁺ Pb ²⁺
Copper (I) ion Copper (II) ion	Cu ¹ · Cu ² · n Hg ²	+ Tir + Tir + Lea	(II) ion (IV) ion	Sn ²⁺ Sn ⁴⁺

POLYATOMIC ions. These ions contain covalently bonded atoms with an overall charge. They remain together in a GROUP.

Name	Cation	Name	Anion
Ammonium ion	NH_4^{1+}	Nitrate ion	NH_4^{1-}
		Hydroxide ion	OH_4^{1-}
		Cyanide ion	CN_4^{1-}
Name	Anion	Name	Anion
Name Sulfate ion	SO ₄ ²⁻	Name Phosphate ion	Anion PO ₄ ³⁻
	1111011	1 (41110	

Strong Acids are Molecular Compounds (typically the formula starts with "H" followed by an anion).

- HCl = hydrochloric acid
- \bullet HBr = hydrobromic acid
- $\bullet \ H_2SO_4 = \mathrm{sulfuric\ acid}$
- $\bullet \ \ \mathsf{HNO}_3 = \mathrm{nitric} \ \mathrm{acid}$

More bonds require more energy to break. Shorter bonds require more energy to break (i.e. smaller atoms make stronger bonds).

3 Geometry

sp = linear, sp2 = trigonal planar, sp3 = quadragonal