

Instituto Federal de Educação, Ciência e Tecnologia de Santa Catarina Departamento Acadêmico de Eletrônica

 ${\bf Microcontroladores}~{\bf I}$

Revisão Aula 01

Nome: _	I	Oata:
(a)	oresse os seguintes números em potências de 2. 256 64K	
(c) (d)	32M 512 4G	
(a)(b)(c)(d)	presse as seguintes potências de 2 em termos de K, M, G. 2^{14} 2^{16} 2^{24} 2^{32} 2^{20}	
(a)(b)(c)(d)(e)	verta os seguintes números binários para a base 10. 010000B 11111B 011101B 1111111B 10111111B	
(hex (a) (b) (c) (d) (e)	everta os seguintes números na base 10 (decimal) para a base decimal). 10 32 40 64 156 244	oase 2 (binário) e base 16

5.	Converta os seguintes números hexadecimais inteiros não sinalizados (base 16) para decima
	(base 10) e binário (base 2).

- (a) 1Ch
- (b) 7ABCDh
- (c) 1234h
- (d) 1FD53h
- (e) 9D23Ah
- (f) 0A1B2Ch
- 6. Codifique os seguintes números negativos para a representação em complemento de 2 no formato binário e hexadecimal utilizando números de 8 e 16 bits.
 - (a) -12
 - (b) -68
 - (c) -128
- 7. Determine quantas localizações (endereços) podem ser acessados e o limite dos endereços (endereço inicial e final) em hexadecimal com barramentos de:
 - (a) 12 bits
 - (b) 22 bits
- 8. Um certo sistema tem um tamanho de memória de 32K palavras. Qual a largura do barramento de endereço desse sistema?