

الامتحات الوطنى الموحد لنيل شهادة البكالوريا

الدورة العادية 2006

ملة الإنجاز: أربع ساعات

مادة الرياضيات

مسلك العلوم الرياضية أ و ب

المعامل 10

استعمال الحاسبة الغير القابلة للبرمجة مسموح به

التمرين الأول: (4,5) نذكر أن : $(\mathcal{M}_2(\mathbb{R}),+,\times)$ حلقة واحدية .

: التكن G مجموعة المصفوفات من $\mathscr{M}_2(\mathbb{R})$ التكن على الشكل (I)

$$M_{(a,b)} = \begin{pmatrix} 1 & 0 \\ a & b \end{pmatrix}$$
; $(a,b) \in \mathbb{R} \times \mathbb{R}^*$

 $(\mathcal{M}_2(\mathbb{R}), \times)$: بين أن G جزء مستقر من (1) بين أن G

بین أن (G, \times) زمرة ، هل هی تبادلیة ؟ (G, \times)

. (G, \times) من G حيث \mathcal{H} نبين أن \mathcal{H} زمرة جزئية للزمرة $M_{(a,b)}$ من $M_{(a,b)}$ من \mathcal{H} نكن \mathcal{H} مجموعة المصفوفات $M_{(a,b)}$ من \mathcal{H} عن \mathcal{H} نكن \mathcal{H}

 $a \in \mathbb{R}$, $A = \begin{pmatrix} 1 & 0 \\ a & 1 \end{pmatrix}$: عنصرا من G عنصرا من A عنصرا من G نیکن A

. $(\forall n \in \mathbb{N}^*): A^{n+1} = A^n \times A$ و $A^2 = A \times A$ و $A^1 = A$

 $(n\epsilon\mathbb{N}^*)$: محيث a بدلالة a و a

: المعرف بما يلي $\mathbb{R} \times \mathbb{R}^*$ قانون التركيب الداخلي \mathbb{R} المعرف بما يلي

 $(a,b) \mathsf{T}(x,y) = (a+bx,by) : \forall (x,y); (a,b) \in \mathbb{R} \times \mathbb{R}^*$

 $orall (a,b) \in \mathbb{R} imes \mathbb{R}^* : \varphi ig(M_{(a,b)} ig) = (a,b) \ ig)$ يكن φ التطبيق المعرف من G نحو G بما يلي :

 $(\mathbb{R} \times \mathbb{R}^*,\mathsf{T})$ نحو (G,\times) نحو ثناکل تقابلی من (G,\times) نحو (G,\times

. $(\mathbb{R} \times \mathbb{R}^*,\mathsf{T})$: استنتج بنية المجموعة (2) استنتج بنية المجموعة

 $n \geq 2$ و $n \in \mathbb{N}$ و $a \in \mathbb{R}$ عيث $a \in \mathbb{R}$ و $a \in \mathbb{R}$

$(E): x^2(x+y) = y^2(x-y)^2$: المعادلة $\mathbb{N}^* imes \mathbb{N}^*$ نعتبر في

(E) ليكن (x,y) حلا للمعادلة $\widehat{1}$

التمرين الثاني : (2,5 ن <u>)</u>

. y = bd و x = ad و $d = x \wedge y$

. $b^2(a-b)^2 = (a+b)a^2$ نحقق أن 0.25

. b=1 استنتج أن \bigcirc 0,75

. (a+1) يقسم (a-1) و $a \neq 1$ يقسم (a-1)

a = 3 أو a = 3 .

. (E) المعادلة $\mathbb{N}^* \times \mathbb{N}^*$ المعادلة (E)

رمضان 2012 - الصفحة : 69 الصفحة : 69

 $(\forall z \in \mathbb{C}): P(z) = z^2 - (2+6i)z$ نضع الثالث $(0,0): P(z) = z^2 - (2+6i)z$

- ذات M ذات ، نعتبر (\mathcal{H}) مجموعة النقط (\mathcal{H}) معلم متعامد ممنظم متعامد ممنظم عدد (\mathcal{H}) معدد (\mathcal{H}) معدد (\mathcal{H}) عدد تخيليا صرفا .
 - . (\mathcal{H}) بين أن $x^2 y^2 2x + 6y = 0$ معادلة ديكارتية للمجموعة $x^2 y^2 2x + 6y = 0$
 - . $(\mathcal{O}, \overrightarrow{e_1}, \overrightarrow{e_2})$ يين أن (\mathcal{H}) هذلول و حدد مركزه و رأسيه و معادلتي مقاربيه في (\mathcal{H}) يين أن رائي و عدد مركزه و رأسيه و درسيم و رأسيه و درسيم و
- - . $(\mathcal{O}, \overrightarrow{e_1}, \overrightarrow{e_2})$ في المعلم (\mathcal{H}) أنشىء (\mathcal{H})
 - P(z) = 4 6i : المعادلة (على 1) حل في المعادلة (على المعادلة)
- $\beta = Arctan(\frac{1}{239})$ و $\alpha = Arctan(\frac{1}{5})$ و $\omega = 239 i$ و v = 1 + i و u = 1 + 5i
 - . $u^4 imes v = 4\omega$: تحقق أن ن $v = 4\omega$ ن
 - . ω عمدة العدد العقدي u و حدد بدلالة عمدة العدد العقدي α عمدة العدد العقدي ω
 - $4Arctan\left(\frac{1}{5}\right) Arctan\left(\frac{1}{239}\right) = \frac{\pi}{4}$: ن استنتج أن : ن 0,50

 $n \geq 3$ بحيث $n \in \mathbb{N}$ بحيث $n \geq n$ بحيث $n \geq n$ بحيث الرابع الأولى في هذا الجزء

 $g_n(x) = nx + 2 \ln x$: بعتبر g_n الدالة العددية المعرفة على \mathbb{R}_+^* بما يلي g_n

- . g_n ضع جدول تغیرات الدالة $\underline{0,50}$
- . $(\forall x \in \mathbb{R}_+^*)$, $\sqrt{x} > \ln x$: بين أن (2)
- $\frac{1}{n} < \alpha_n < \frac{1}{\sqrt{n}}$: و أن \mathbb{R}_+^* في α_n نقبل حلا وحيدا $g_n(x) = 0$ تقبل حلا وحيدا $g_n(x) = 0$
 - $\lim_{n \to +\infty} \alpha_n$: استنتج \bigcirc 0,25

<u>الجزء الثان</u>ي

- - المحصل عليها . f أدرس قابلية اشتقاق الدالة f على اليمين في النقطة O ثم أول هندسيا النتيجة المحصل عليها .
 - النتيجة هندسيا يا $\lim_{x \to +\infty} f(x)$ أحسب $\widehat{2}$
 - (*) : $(\forall x \in]0, +\infty[)$; $f'(x) = \left(\frac{1-3x}{3x}\right) f(x)$: $(\dot{})$ يين أَن $(\dot{})$ يين أَن $(\dot{})$
 - f ضع جدول تغیرات الداله f فضع جدول تغیرات الداله f
 - $f\left(\frac{1}{3}\right) \approx 0.5$: نأخذ (\mathscr{C}) نأخذ (\mathscr{C}) ناخذ

/3\ أحوية من افتراح الأستاذيدر الدين الفاتحي - الصفحة :

$$I = \left[\frac{1}{3}; 1\right]$$
 نضع (II)

$$f(I) = I$$
 : بين أن (1) (1) بين أن (1) (2) (3)

$$(\forall x \in I)$$
 , $|f'(x)| \leq \frac{2}{3}$: بين أن باستعمال العلاقة (*) بين أن باستعمال العلاقة (*)

حيث
$$lpha_3$$
 هو حل المعادلة : $g_3(x)=0$ الذي ثم تعريفه في الجزء الأول.

$$u_0=rac{1}{3}$$
 و $(orall n\epsilon \mathbb{N})$; $u_{n+1}=f(u_n)$: ينكن $(u_n)_{n\geq 0}$ المتتالية المعرفة بما يلي $(u_n)_{n\geq 0}$

$$(\forall n \in \mathbb{N})$$
 ; $u_n \in I$: بين أن (\mathfrak{f}) 0.25

$$(\forall n \in \mathbb{N})$$
 ; $|u_{n+1} - \alpha_3| = \frac{2}{3}|u_n - \alpha_3|$: بين أن \bigcirc 0.25

$$(\forall n \in \mathbb{N})$$
 ; $|u_n - \alpha_3| = \left(\frac{2}{3}\right)^{n+1}$: ن استنتج أن ن 0.25

بين أن المتتالية
$$(u_n)_{n\geq 0}$$
 متقاربة محددا نهايتها .

$$F(x) = \int_{x}^{8x} f(t)dt$$
: بما يلي: $[0,+\infty[$ على الدالة العددية المعرفة على الدالة العددية العددية العددية المعرفة على الدالة العددية ال

.
$$[0,+\infty[$$
 على المن أن F قابلة للإشتقاق على $(1,+\infty[$

$$(\forall x \in \mathbb{R}^*)$$
 , $0 \le F(x) \le 2f(x)(1 - e^{-7x})$: ن (ز) بين أن (ر) 0.50

$$\lim_{x \to +\infty} F(x)$$
 : استنتج ن 0,25

$$F$$
 ضع جدول تغيرات الدالة F ضع جدول تغيرات الدالة

لأجوية من اقتراح الأستاذ بدر الدين الفاتحي -

-(1)(I) **■**

$$G \subset \mathscr{M}_2(\mathbb{R})$$
 : في البداية نلاحظ أن

$$G$$
 نیکن $M_{(c,d)}$ و $M_{(a,b)}$ عنصرین من

$$b \neq 0$$
 و $d \neq 0$

$$M_{(a,b)} imes M_{(c,d)} = \begin{pmatrix} 1 & 0 \\ a & b \end{pmatrix} \begin{pmatrix} 1 & 0 \\ c & d \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ a+bc & bd \end{pmatrix}$$
 و منه :

$$bd \neq 0$$
 و $d \neq 0$ فإن $b \neq 0$

$$(a+bc;bd)\in\mathbb{R} imes\mathbb{R}^*$$
 : و منه

$$M_{(a+bc,bd)} \in G$$
 يعني :

$$(\mathcal{M}_2(\mathbb{R}), \times)$$
 و بالتالي G جزء مستقر من

 (G, \times) لدينا \times تجميعي في

 $(\mathcal{M}_2(\mathbb{R}), \times)$ لأن جزء مستقر من الزمرة

 $\mathscr{M}_2(\mathbb{R})$ و لدينا كذلك $I=egin{pmatrix} 1 & 0 \ 0 & 1 \end{pmatrix}$ هو العنصر المحايد لـ imes في

 $(I=M_{(0,1)})$ و بما أن $I\in G$ فإن I هو نفسه العنصر المحايد لـ imes في

$$M_{(a,b)}$$
 عنصرا من $M_{(a,b)}$

imes تقبل مماثلا (أو مقلوبا) في G بالنسبة لـ $M_{(a,b)}$

 $det(M_{(a,b)}) \neq 0$: إذا وفقط إذا كان

$$det(M_{(a,b)}) = \begin{vmatrix} 1 & 0 \\ a & b \end{vmatrix} = b - 0 = b$$
 : ليبنا

 $b \neq 0$: فإن $M_{(a,b)} \in G$: و بما أن

$$det(M_{(a,b)}) \neq 0$$
 : و منه

 $\mathscr{M}_{2}(\mathbb{R})$ الخن $M_{(a,b)}$: إذن

و نُذَكِّرُ بالعلاقة المهمة التالية:

$$A^{-1} = \begin{pmatrix} a & b \\ c & d \end{pmatrix}^{-1} = \frac{1}{detA} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}$$

$$M_{(a,b)}^{-1} = \begin{pmatrix} 1 & 0 \\ a & b \end{pmatrix}^{-1} = \frac{1}{det M_{(a,b)}} \begin{pmatrix} b & 0 \\ -a & 1 \end{pmatrix}$$
 : \dot{b}

$$= \frac{1}{b} \begin{pmatrix} b & 0 \\ -a & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ -\frac{a}{b} & \frac{1}{b} \end{pmatrix} = M_{\left(\frac{-a}{b}, \frac{1}{b}\right)}$$

$$(-a \quad 1) = \left(\frac{a}{b} \quad \frac{1}{b}\right) = M\left(\frac{-a}{b}, \frac{1}{b}\right)$$

 $\frac{1}{b} \neq 0$: فإن $b \neq 0$

 $M_{(a,b)}^{-1} \in G$: أي $M_{(a,b)} \in G$: ومنه

imesإذن : كل مصفوفة $M_{(a,b)}$ من G تقبل مماثلا في $M_{(a,b)}$ بالنسبة ل

G نختار المصفوفتين $\mathrm{M}_{(1,1)}$ و $\mathrm{M}_{(2,2)}$ من M لكي نبين أن

$$M_{(1,1)} imes M_{(2,2)} = \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix} imes \begin{pmatrix} 1 & 0 \\ 2 & 2 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 3 & 2 \end{pmatrix}$$
 : لينا

$$M_{(2,2)}\times M_{(1,1)}=\begin{pmatrix}1&0\\2&2\end{pmatrix}\times\begin{pmatrix}1&0\\1&1\end{pmatrix}=\begin{pmatrix}1&0\\4&2\end{pmatrix}\quad \ \ \, \label{eq:mass}$$

$$M_{(1,1)} \times M_{(2,2)} \neq M_{(2,2)} \times M_{(1,1)}$$
 : نلاحظ أن

G يس تبادليا في \times إذن

خلاصة: (G, \times) زمرة غير تبادلية.

·(3)(I) ■

. ليكن a و b عددين حقيقيين

$$\mathcal{H} = \left\{ M_{(a,b)} \in G \quad / \quad b > 0 \right\}$$
 : لينا

$$I=M_{(0,1)}\in G$$
 لدينا حسب ما سبق

$$M_{(0,1)} \in \mathcal{H}$$
 و بما أن $0 > 1$ فإن

$$G$$
 و منه \mathcal{H} جزء غير فارغ من

$$\mathcal{H}$$
 ایکن $M_{(c,d)}$ و $M_{(a,b)}$ عنصرین من

لدينا حسب ما سبق:

$$M_{(a,b)} \times M_{(c,d)}^{-1} = M_{(a,b)} \times M_{\left(\frac{-c}{d}, \frac{1}{d}\right)} = \begin{pmatrix} 1 & 0 \\ a & b \end{pmatrix} \begin{pmatrix} \frac{1}{-c} & 0 \\ \frac{-c}{d} & \frac{1}{d} \end{pmatrix}$$
$$= \begin{pmatrix} 1 & 0 \\ \left(a - \frac{bc}{d}\right) & \frac{b}{d} \end{pmatrix}$$

$$rac{b}{d}>0$$
 : فإن $d>0$ و $d>0$

$$M_{(a,b)}\times M_{(c,d)}^{-1}=\begin{pmatrix}1&0\\\left(a-\frac{bc}{d}\right)&\frac{b}{d}\end{pmatrix}=M_{\left(\left(a-\frac{bc}{d}\right);\frac{b}{d}\right)}\in\mathcal{H}$$

و بالتالي نستنتج أن (\mathcal{H}, \times) زمرة جزئية للزمرة (\mathcal{G}, \times) .

) رمضان 2012

أجوبة الدورة العادية 2006 من إعداد الأستاذ بدر الدين الفاتحي: (

لبكن a و d عددين حقيقيين

$$(*)$$
 $M_{(a,1)} \times M_{(b,1)} = M_{(a+b;1)}$: لينا

إذن باستعمال العلاقة (*) نحصل على :

$$M_{(a_1,1)} imes M_{(a_2,1)} imes \cdots imes M_{(a_n,1)} = M_{\left((\sum_{1}^{n} a_i),1\right)}$$
 $M_{(a,1)} imes M_{(a,1)} imes \cdots imes M_{(a,1)} = M_{(na,1)}$: و منه $(\forall n \in \mathbb{N}) \; ; \; \left(M_{(a,1)}\right)^n = M_{(na,1)}$: يعني $A^n = \begin{pmatrix} 1 & 0 \\ na & 1 \end{pmatrix}$: يعني

و إن لم تكن هذه الطريقة مقنعة بما فيه الكفاية فعليك بالترجع:

-(1)(II) **■**

و لدينا كذلك :

 $M_{(c,d)}$ و $M_{(a,b)}$ مصفوفتین من $M_{(a,b)}$

$$M_{(a,b)} imes M_{(c,d)} = M_{(a+bc,bd)}$$
 : لدينا

$$\varphiig(M_{(a,b)} \times M_{(c,d)}ig) = \varphiig(M_{(a+bc,bd)}ig) = (a+bc,bd)$$
 و منه :

$$arphiig(M_{(a,b)} imes M_{(c,d)}ig)=arphiig(M_{(a,b)}ig)$$
 ד $arphiig(M_{(c,d)}ig)$. $(\mathbb{R} imes\mathbb{R}^*,\mathsf{T})$ نحو $(G, imes)$ نحو

 $\mathbb{R} \times \mathbb{R}^*$ اعنصرا من (c,d)

$$\varphiig(M_{(x,y)}ig)=(c,d)$$
 : نحل المعادلة

$$(x,y)=(c,d)$$
 : التي تُكافئ

$$y = d$$
 و منه : $x = c$

إذن المعادلة :
$$(c,d)=(G,\chi,y)$$
 تقبل حلا وحيدا في G و هو المصفوفة $M_{(c,d)}$.

$$(\mathbb{R} \times \mathbb{R}^*,T)$$
 نحو (G,\times) نقابل من G : و منه

.
$$(\mathbb{R} \times \mathbb{R}^*, \mathsf{I})$$
 نحو (G, \times) نقابلي من خلاصة :

(2)(II) **■**

 $(\mathbb{R} \times \mathbb{R}^*, \mathsf{I})$ نحو (G, \times) نقابلی من φ تشاکل تقابلی من

و نعلم أن التشاكل التقابلي يحافظ على بنية الزمرة .

 φ انطلاقا من بنية (G, \times) عن طريق التطبيق انطلاقا من بنية $(\mathbb{R} \times \mathbb{R}^*, \mathsf{I})$

بما أن (G, \times) زمرة غير تبادلية عنصرها المحايد بالقانون \times هو المصفوفة $M_{(0,1)}$ و أن كل مصفوفة $M_{(a,b)}$ من G تقبل مماثلة . imes في G بالقانون $M_{\left(rac{-a}{h},rac{1}{h}
ight)}$

نرمرة غير تبادلية عنصرها المحايد بالقانون آ $(\mathbb{R} \times \mathbb{R}^*, \mathbb{I})$ هو $\varphi(M_{(0,1)})$ و أن كل زوج (c,d) من $\mathbb{R} imes \mathbb{R}^*$ يقبل مماثلا . کی القانون G فی $\left(\frac{-c}{d},\frac{1}{d}\right)$

إذن : $(\mathbb{R} \times \mathbb{R}^*, \mathsf{I})$ زمرة غير تبادلية عنصرها المحايد (0,1) .و $\left(\frac{-c}{d}, \frac{1}{d}\right)$ کل عنصر (c, d) یقبل مماثلا و هو

(3)(II) **■**

 تعریف التطبیق φ باستعمال الأدوات التالية :< $\left(M_{(a,1)}\right)^n = M_{(na,1)}$

مو مماثل (c,d) بالنسبة لـ $\left(\frac{-c}{d},\frac{1}{d}\right)$

(a,1) $\mathsf{T}\cdots\mathsf{T}(a,1)=(-\mathsf{n}a,1)$: نبر هن بکل بساطة علی أن

$$\begin{split} \left[(a,1) \ \mathsf{T} \ (a,1) \ \mathsf{T} \cdots \mathsf{T} \ (a,1) \right]' & \longrightarrow \\ & = \left[\varphi \big(M_{(a,1)} \big) \ \mathsf{T} \varphi \big(M_{(a,1)} \big) \ \mathsf{T} \cdots \mathsf{T} \varphi \big(M_{(a,1)} \big) \right]' \\ & = \left[\varphi \big(M_{(a,1)} \times M_{(a,1)} \times \cdots \times M_{(a,1)} \big) \right]' \\ & = \left[\varphi \big(M_{(a,1)} \big)^n \big) \right]' \\ & = \left[\varphi \big(M_{(na,1)} \big) \right]' \\ & = \left(\frac{-na}{1} ; \frac{1}{1} \right) \\ & = (-na; 1) \end{split}$$

(হ)(1) ■

<u>لتمرين الثاني: (2,5 ن)</u> ■(1)(1)

(E) حل للمعادلة (x,y) : لدينا

$$x^2(x+y) = y^2(x-y)^2$$
 : يعني

$$(ad)^2(ad+bd) = (bd)^2(ad-bd)^2$$
 : يعني

$$a^2d^3(a+b) = b^2d^3(a-b)^2d$$
 : يعني

$$d^3 \neq 0$$
 نختزل بالعدد d^3 لأن العدد

$$a^2(a+b) = db^2(a-b)^2$$
 : نحصل على

■ (1) ب للإجابة على هذا السؤ ال نحتاج إلى أربع أدوات:

$$\left[a \wedge b = 1 \implies a^m \wedge b^n = 1 \; ; \; \forall (m,n) \in \mathbb{N}^2
ight]$$
 الأداة الأولى:

$$\left\{ egin{array}{ll} a/bc & \Rightarrow a/b \ a \wedge c = 1 \end{array}
ight.
ight.$$

$$\boxed{a \land b = d \iff \exists (m, n) \in \mathbb{Z}^2 ; ma + nb = d}$$

$$\left\{ egin{array}{l} a \ / \ b \\ a \ / \ c \end{array}
ight.
ight.
ightarrow orall (m,n) \in \mathbb{Z} \; \; ; \; a/(mb+nc)
ight.$$

(E) ننطلق من كون
$$(x, y)$$
حل للمعادلة
$$d = x \wedge y :$$
 لدينا

$$\exists (u,v) \in \mathbb{Z}^2 \; ; \; xu+yv=d \; :$$
 إذن حسب (Bezout) إذن حسب $adu+bdv=d \; :$ و منه

$$au + bv = 1$$
: نختزل بالعدد الغير المنعدم d نحصل على :

$$a \wedge b = 1$$
 : العكسية (Bezout) و منه حسب

$$(\star)$$
 $\left[a^2 \wedge b = 1\right]$: إذن حسب الأداة الأولى

(ن الزوج
$$(x,y)$$
 حل للمعادلة (E) فإنه حسب السؤال بما أن الزوج

$$db^2(a-b)^2 = (a+b)a^2$$

$$k \in \mathbb{Z}$$
 : حيث $k = bd(a - b)^2$:

$$b/(a+b)a^2$$
 : و منه $(a+b)a^2 = kb$: إذن

و بما أن :
$$a^2 \wedge b = 1$$
 حسب النتيجة (*) فإنه $b / (a + b)$: (Gauss) حسب

و نعلم أن
$$(-b)$$
 إذن حسب الأداة الرابعة : $(1)(b/a)$ يعنى : $(b/(a+b-b))$

$$(2)$$
 $a \wedge b = 1$: و نعلم حسب ما سبق أن $b = 1$: من (1) و (2) نستنتج أن

a=1: نفترض أن

. y=d و x=d الاننb=1 و لاينا

$$d^2(d+d)=d^2(d-d)^2$$
 : فإن (E) فإن (x,y) حل للمعادلة

$$d=x \wedge y
eq 0$$
 يعني : $d=0$ و هذا تناقض لأن $d=0$

.
$$a \neq 1$$
 : و بالتالي

$$a - (a - 1) = 1$$
 : لدينا

$$(\exists u, v \in \mathbb{Z})$$
; $au + (a-1)v = 1$: إذن

$$v=-1$$
 و في هذه الحالة لدينا : $u=1$

$$a \wedge (a-1) = 1$$
 : (Bezout) و منه حسب

$$(**)$$
 $a^2 \wedge (a-1) = 1$: أن حسب الأداة الأولى نستنتج أن

لدينا من جهة أخرى
$$b=1$$
 إذن حسب السؤال b

$$(a+1)a^2 = d(a-1)^2$$

$$k \in \mathbb{Z}$$
: نضع $k = d(a-1)$: نضع

$$(a-1)/(a+1)a^2$$
 : و منه $(a+1)a^2=k(a-1)$: إذن

$$(a-1)/(a+1)$$
 : (Gauss) من العلاقة (**) نستنتج حسب

■ (1)(د) -

$$\boxed{a \equiv -1[a-1]}$$
: يعني $(a-1)/(a+1)$

و نعلم أن
$$((a-1)/(a-1))$$
 لأن $(a-1)/(a-1)$: و نعلم

$$2\equiv 0[a-1]$$
 : يعني $1\equiv -1[a-1]$: إذن

$$(a-1)/2$$
 : e ais

القواسم الصحيحة الطبيعية لـ 2 هي: 1 و 2

$$a-1=2$$
 أو $a-1=1$

$$a = 3$$
 أو $a = 2$

و نبر هن بكل بساطة على أنه:

. (E) فإن (x, y) يحقق المعادلة a = 2

. (E) فإن عند (x,y) يحقق كذلك المعادلة (x,y) فإن a=3

أجوية الدورة العادية 2006 من إعداد الأستاذ بدر الدين الفاتحي : () رمضان 2012 الصفحة : 74

$$\iff \frac{(x-1)^2}{(2\sqrt{2})^2} - \frac{(y-3)^2}{(2\sqrt{2})^2} = -1$$

و $B(1;3+2\sqrt{2})$ و رأساه هما C(1,0) و النقطة (\mathcal{H}) و و النقطة (\mathcal{H}) و رأساه هما و مقارباه هما المستقيمان (Δ') و (Δ') المعرفين بما يلي : $ar{B}(1;3-2\sqrt{2})$

$$(\Delta'): y-3=1-x$$
 $(\Delta): y-3=x-1$

$$(\Delta): y-3=x-1$$

$$(\Delta'): y = 4 - x$$
 و $(\Delta): y = x + 2$: يعني

 (\mathcal{H}) يحقق معادلة المجموعة ((0,0)) الزوج

$$\mathcal{O}\epsilon(\mathcal{H})$$
 : لأن $0^2-0^2-2\times0+6\times0=0$ إذن

نعلم أن معادلة المماس (T_{O}) للهذلول (\mathcal{H}) في النقطة O تكتب على الشكل :

$$(T_{\mathcal{O}}): xx_0 - yy_0 = (x + x_0) - 3(y + y_0)$$

$$y_0 = 0$$
 و $x_0 = 0$ حيث

$$T_{\mathcal{O}}$$
: $x-3y=0$: و منه

·(4)(I) ■

لنحل المعادلة (E)

(a,b) = (2,1) : إذا كان : إذا كان

$$(x,y) = (2d,d)$$
 : إذن

$$(E)$$
: $(2d)^2(2d+d) = d^2d^2$: e $(2d)^2(2d+d) = d^2d^2$

$$d=12$$
 : أي $(4d^2)(3d)=d^4$: يعني

$$(x,y) = (24,12)$$
 : و بالتالي

$$(a,b) = (3,1)$$
 : إذا كان (a,b) الحالة الثانية

$$(x,y) = (3d,d)$$
 : إذن

$$(E)$$
: $(3d)^2(3d+d) = d^2(2d)^2$: e a

$$d=9$$
 : أي $36d^3=4d^4$: يعني

$$(x,y) = (27,9)$$
: $(x,y) = (27,9)$

خلاصة : الزوجان (24,12) و (27,9) هما حلا المعادلة (E)

التمرين الثالث: (5,0)

z=x+iy نضع : z=x+iy و M

بحیث : x و y عددین حقیقیین

$$\Leftrightarrow$$
 $P(z) = (x + iy)^2 - (2 + 6i)(x + iy)$

$$\Leftrightarrow$$
 $P(z) = x^2 - y^2 + 2ixy - (2x + 2iy + 6ix - 6y)$

$$\Leftrightarrow P(z) = x^2 - y^2 + 2ixy - 2x - 2iy - 6ix + 6y$$

$$\Leftrightarrow$$
 $P(z) = (x^2 - y^2 - 2x + 6y) + i(2xy - 2y - 6x)$

و لدينا P(z) عدد تخيلي صرف.

$$\Re e(P(z)) = 0$$
 : اذن

$$x^2 - y^2 - 2x + 6y = 0 :$$
يعني

و منه : $x^2 - y^2 - 2x + 6y = 0$ هي معادلة ديكارتية مميزة للنقط M(z) عددا تخيليا.

-(2)(1)

في المعلم $(\mathcal{O}, \overrightarrow{e_1}, \overrightarrow{e_2})$ المجموعة (\mathcal{H}) تتميز بالمعادلة:

$$(x^{2} - y^{2} - 2x + 6y) = 0$$

$$\Leftrightarrow (x^{2} - 2x) - (y^{2} - 6y) = 0$$

$$\Leftrightarrow (x^{2} - 2x + 1) - (y^{2} - 6y + 9) = -8$$

أجوبة الدورة العادية 2006 من إعداد الأستاذ بدر الدين الفاتحى: (الصفحة: 75) رمضان 2012

$$\Leftrightarrow \qquad u = \frac{\sin(\alpha) + i\cos(\alpha)}{\sin(\alpha)}$$

$$\iff u = \left(\frac{1}{\sin(\alpha)}\right) \left(\cos\left(\frac{\pi}{2} - \alpha\right) + i\sin\left(\frac{\pi}{2} - \alpha\right)\right)$$

$$\iff u = \left(\frac{1}{\sin(\alpha)}\right) e^{i\left(\frac{\pi}{2} - \alpha\right)}$$

$$sin(\alpha) \approx 0.19 \neq 0$$
 : لدينا

$$arg(u) \equiv \left(\frac{\pi}{2} - \alpha\right)[2\pi]$$
 : إذن

$$\beta = Arctan\left(\frac{1}{239}\right)$$
 : بنفس الطريقة لدينا

$$\Leftrightarrow 239 = \frac{\cos(\beta)}{\sin(\beta)}$$

$$\Leftrightarrow 239 - i = \frac{\cos(\beta)}{\sin(\beta)} - i$$

$$\iff \quad \omega = \frac{\cos(\beta) - i\sin(\beta)}{\sin(\beta)}$$

$$\Leftrightarrow \omega = \left(\frac{1}{\sin(\beta)}\right) \left(\cos(-\beta) + i\sin(-\beta)\right)$$

$$\iff \quad \omega = \left(\frac{1}{\sin(\beta)}\right)e^{-\beta i}$$

$$\iff arg(\omega) = -\beta[2\pi]$$

 $(1+i) = \sqrt{2} \left(\frac{\sqrt{2}}{2} + i \frac{\sqrt{2}}{2} \right) = \sqrt{2} e^{i\frac{\pi}{4}}$ أشير في البداية إلى أن أن

$$\Rightarrow arg(v) = arg(1+i) \equiv \frac{\pi}{4}[2\pi]$$

$$u^4 imes v = \omega$$
 (السؤال السؤال و لدينا حسب السؤال

$$\Rightarrow arg(u^4 \times v) \equiv arg(\omega)[2\pi]$$

$$\Rightarrow \ 4arg(u) + arg(v) \equiv arg(\omega)[2\pi]$$

$$\Rightarrow 4\left(\frac{\pi}{2} - \alpha\right) + \frac{\pi}{4} \equiv -\beta[2\pi]$$

$$\Rightarrow 4\alpha - \beta \equiv \frac{\pi}{4} [2\pi]$$

P(z) = 4 - 6i : المعادلة (لنحل في)

$$\Leftrightarrow z^2 - (2+6i)z + (6i-4) = 0$$

$$\Delta = (2+6i)^2 - 4(6i-4)$$
 : لاينا $\Delta = (4i)^2$

$$z_1 = \frac{(2+6i)+4i}{2} = 1+5i$$
 : $(2+6i)+4i$

$$z_2 = \frac{(2+6i)-4i}{2} = 1+i$$

 $\omega = 239 - i$ و v = 1 + i و u = 1 + 5

الدينا حسب مثلث (Pascal) دينا حسب مثلث

1 1

1 2 1

1 3 3 1

 $u^4 = (1+5i)^4 = 1^4 + 4(5i) + 6(5i)^2 + 4(5i)^3 + (5i)^4$

$$\Leftrightarrow u^4 = 1 + 20i - 150 - 500i + 625$$

$$\Leftrightarrow \quad u^4 = 476 - 480i$$

$$\Leftrightarrow u^4 \times v = (476 - 480i)(1+i)$$

$$\iff \quad u^4 \times v = 476 + 476i - 480i + 480$$

$$\Leftrightarrow u^4 \times v = 956 - 4i$$

$$\Leftrightarrow \quad u^4 \times v = 4(239 - i)$$

$$\iff \boxed{u^4 \times v = 4\omega}$$

 $\alpha = Arctan\left(\frac{1}{5}\right)$: لدينا

$$\Leftrightarrow tan(\alpha) = \frac{1}{5} \Leftrightarrow 5 = \frac{cos(\alpha)}{sin(\alpha)}$$

$$\iff 5i = \frac{\cos(\alpha)}{\sin(\alpha)}i \iff 1 + 5i = \frac{\cos(\alpha)}{\sin(\alpha)}i + 1$$

) رمضان 2012 الصفحة: 76

من إعداد الأستاذ بدر الدين الفاتحى: (

أجوبة الدورة العادية 2006

$$(\forall x \in \mathbb{R}_+^*)$$
 ; $h(x) = \sqrt{x} - lnx$: فضع

$$h'(x) = \left(x^{\frac{1}{2}} - lnx\right)'$$

$$\Leftrightarrow h'(x) = \frac{1}{2}x^{-\frac{1}{2}} - \frac{1}{2}$$

$$\Leftrightarrow h'(x) = \frac{1}{2\sqrt{x}} - \frac{1}{x}$$

$$\Leftrightarrow h'(x) = \frac{\sqrt{x}}{2x} - \frac{2}{2x}$$

$$\Leftrightarrow h'(x) = \frac{\sqrt{x} - 2}{2x}$$

$$\Leftrightarrow$$
 $h'(x) = \frac{x-4}{2x(\sqrt{x}+2)}$

$$(\forall x \in \mathbb{R}_+^*)$$
 ; $\frac{1}{2x(\sqrt{x}+2)} > 0$: و لدينا

$$(x-4)$$
 أذن إشارة $h'(x)$ متعلقة بإشارة

$$\lim_{x\to 0^+} h(x) = +\infty : \text{ i.i.}$$

$$\lim_{x \to +\infty} h(x) = +\infty \qquad : \mathfrak{g}$$

x	0	4		+∞
h'(x)	_	ф	+	
h	+∞			→ +∞
		2 - ln4		

 \mathbb{R}_+^* انطلاقا من هذا الجدول نلاحظ أن (2-ln4) أن الجدول نلاحظ المائة ال

$$(\forall x>0)$$
 ; $h(x)>2-ln4$: يعني أن

 $2 - ln4 \approx 0.6 > 0$: لاينا

 $\forall x > 0$; h(x) > 0 : إذن

$$\forall x > 0 \; ; \; \sqrt{x} > lnx$$
 : و منه

را g_n دالة متصلة و تزايدية قطعا على $g_n+\infty$.

$$g_n(]0,+\infty[)$$
 نحو $]0,+\infty[$ من $]0,+\infty[$ إذن g_n

$$g_n(]0,+\infty[)=\lim_{x\to 0^+}g_n(x);\lim_{x\to +\infty}g_n(x)[$$
 ي لدينا ي $=]-\infty;+\infty[=\mathbb{R}$

$$\iff$$
 $(\exists k \in \mathbb{Z})$; $4\alpha - \beta = \frac{\pi}{4} + 2k\pi$

نستعين بالآلة الحاسبة و نضبط وحدة قياس الزوايا على الراديان .

$$\beta pprox 0,004 \, rad$$
 و $lpha pprox 0,2 \, rad$: لدينا

$$0 < \beta < 1$$
 و نلاحظ أن : $\alpha < 1$ و نلاحظ أن

$$-1 < 4\alpha - \beta < 4$$
 : و من هذین التأطیرین نحصل علی

$$-1 < \frac{\pi}{4} + 2k\pi < 4$$
 : أي

$$-0.3 < k < 0.5$$
 : و منه

$$k=0$$
 : إذن

$$4\alpha - \beta = \frac{\pi}{4}$$
 : و بالتالي

$$4Arctan\left(\frac{1}{5}\right) - Arctan\left(\frac{1}{239}\right) = \frac{\pi}{4}$$

التمرين الرابع: (9.0 ن)

<u>1</u>) ■

$$(\forall x \in \mathbb{R}_+^*)$$
 ; $g_n(x) = nx + 2lnx$: لدينا

دالة قابلة للإشتقاق على \mathbb{R}_+^* لأنها مجموع دالتين قابلتين للإشتقاق على \mathbb{R}_+^* و x o 2 ln x .

$$g'_n(x) = n + \frac{2}{x} = \frac{nx+2}{x} > 0$$
 : و لدينا

 \mathbb{R}_+^* دالة تزايدية قطعا على g_n إذن

$$\lim_{x \to 0^+} g_n(x) = -\infty$$
 و لاينا و $\lim_{x \to +\infty} g_n(x) = +\infty$: و لاينا

$$\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} x^{\frac{1}{3}} e^{-x} = \lim_{x \to +\infty} \left(\frac{x^{\frac{1}{3}}}{e^x} \right)$$

$$= \lim_{x \to +\infty} \left(\frac{1}{\left(\frac{e^x}{x} \right)} \right) \times \left(\frac{1}{x^{\frac{2}{3}}} \right)$$

$$= \left(\frac{1}{+\infty} \right) \times \left(\frac{1}{+\infty} \right) = 0$$

إذن (\mathcal{C}) يقبل مقاربا أفقيا بجوار $\infty +$ و هو محور الأفاصيل.

_(j)(3)(I)■

(i)(3)(I) ■

. \mathbb{R}_+^* منصرا من x

$$f(x) = x^{\frac{1}{3}}e^{-x}$$
 : لدينا

$$f'(x) = \frac{1}{3}x^{\frac{-2}{3}}e^{-x} - e^{-x}x^{\frac{1}{3}}$$

$$\Leftrightarrow f'(x) = \left(x^{\frac{1}{3}}e^{-x}\right)\left(\frac{1}{3}x^{-1} - 1\right)$$

$$\Leftrightarrow f'(x) = \left(x^{\frac{1}{3}}e^{-x}\right)\left(\frac{1}{3x} - 1\right)$$

$$\Leftrightarrow f'(x) = \left(x^{\frac{1}{3}}e^{-x}\right)\left(\frac{1 - 3x}{3x}\right)$$

$$\Leftrightarrow f'(x) = \left(\frac{1 - 3x}{3x}\right)f(x)$$

 $f'(x) = \left(\frac{1-3x}{3x}\right)f(x)$: لاينا

 $(orall x \epsilon \mathbb{R})$; $e^{-x} > 0$: نما أن

$$(\forall x > 0)$$
 ; $x^{\frac{1}{3}} = e^{\frac{1}{3}lnx} > 0$ $\exists x > 0$

(1-3x) فإن إشارة f'(x) متعلقة ب

f'(x) = 0 : فإن $x = \frac{1}{3}$ إذا كان

f'(x) < 0 : فإن $x > \frac{1}{2}$ إذا كان

f'(x) > 0 : فإن $x < \frac{1}{3}$ إذا كان

$$\lim_{x\to 0^+} f(x) = 0$$
 و لدينا : $\lim_{x\to +\infty} f(x) = 0$

x	$\frac{1}{3}$ $+\infty$
f'(x)	+ φ -
f	$f\left(\frac{1}{3}\right)$

 $(\forall n \in \mathbb{N})$; $\left|\frac{1}{n}; \frac{1}{\sqrt{n}}\right| \subset \mathbb{R}_+^*$: من جهة أخرى لدينا

 $g_n\left(\frac{1}{n}\right) = 1 - 2ln(n)$: ف لدينا كذلك :

 $1-2ln(n) \leq 1-2ln3$: نستنتج أن $n \geq 3$ علما أن

1 - 2ln(n) < 0 : إذن $1 - 2ln3 \approx -1,2$

$$(1)$$
 $g_n\left(\frac{1}{n}\right) < 0$: و منه

و لدينا كذلك : _

$$g_n\left(\frac{1}{\sqrt{n}}\right) = n\left(\frac{1}{\sqrt{n}}\right) + 2\ln\left(\frac{1}{\sqrt{n}}\right) = \sqrt{n} + \ln\left(\frac{1}{n}\right)$$

$$= \sqrt{n} - \ln(n)$$

 $\sqrt{n}>ln(n)$ (2) بما أن n>0 فإنه حسب السؤال

$$(2)$$
 $g_n\left(rac{1}{\sqrt{n}}
ight)>0$ و منه : $\sqrt{n}-ln(n)>0$ يعني

$$g_n\left(\frac{1}{\sqrt{n}}\right) \times g_n\left(\frac{1}{n}\right) < 0$$
 : نستنتج أن (2) و (1) من

نتوفر الأن على جميع الشروط اللازمة لتطبيق مبرهنة القيم الوسيطية.

$$\exists !\, lpha_n \epsilon \, \Big] rac{1}{n}; rac{1}{\sqrt{n}} \Big[\quad / \quad g_n(lpha_n) = 0 \quad :$$
اِذَن

و منه : المعادلة $g_n(x)=0$ قبل حلا وحيدا $g_n(x)$

 $\begin{cases} \frac{1}{n} < \alpha_n < \frac{1}{\sqrt{n}} \\ \lim_{n \to +\infty} \left(\frac{1}{n}\right) = \lim_{n \to +\infty} \left(\frac{1}{\sqrt{n}}\right) = 0 \end{cases} :$ لدينا

$$\lim_{n\to+\infty}(\alpha_n)=0\ :\ \dot{\psi}$$
اذن

بجزء النائي

-(1)(I) **■**

$$\lim_{x \to 0^{+}} \frac{f(x) - f(0)}{x - 0} = \lim_{x \to 0^{+}} \left(\frac{\sqrt[3]{x}e^{-x}}{x}\right) :$$
ادينا
$$= \lim_{x \to 0^{+}} \left(\frac{1}{x^{\frac{2}{3}}e^{x}}\right) = \frac{1}{0^{+}} = +\infty$$

إذن f غير قابلة للإشتقاق على اليمين في الصفر.

نستنتج أن (ك) يقبل مماسا رأسي موجها نحو الأعلى في الصفر

أجوية الدورة العادية 2006 من إعداد الأستاذ بدر الدين الفاتحي : (أصفحة : 78

$$x \geq \frac{1}{3}$$
 : اينا $x \in \left[\frac{1}{3}; 1\right]$: لدينا

$$5x > 1$$
 يعني : $x > \frac{1}{5}$

$$3x + 2x > 1$$
 يعني :

$$2x > 1 - 3x$$
 يعني :

$$x \le 1$$
 : أي $x \in \left[\frac{1}{3}; 1\right]$: ولدينا

$$1 - 3x + 2x \ge 0$$
 : يعني $1 - x \ge 0$

$$1-3x \ge -2x$$
 : يعني

$$(**) \boxed{\frac{1-3x}{x} \ge -2} \quad :$$
يعني :

$$-2 \le \frac{1-3x}{x} < 2$$
 : من (*) و (**) نستنتج أن

$$(2)\left(\left|\frac{1-3x}{x}\right| \le 2\right) \quad : \varphi^{\dagger}$$

$$f'(x) = \left(\frac{1 - 3x}{3x}\right) f(x) \qquad :$$
لدينا

$$\iff f'(x) = \frac{1}{3} \left(\frac{1 - 3x}{x} \right) f(x)$$

$$\Rightarrow |f'(x)| = \frac{1}{3} \left| \frac{1 - 3x}{x} \right| |f(x)|$$

$$\left|\frac{1-3x}{x}\right| \le 2 \quad \text{o} \quad |f(x)| < 1 \quad \text{: (2)}$$
 من (1) و (2) نجد

$$\left| |f'(x)| \le \frac{2}{3} \right|$$
 : و منه

–(₹)(1)(II)**=**

ليكن χ عددا حقيقيا موجبا قطعا

$$\sqrt[3]{x}e^{-x}=x$$
 يعني $f(x)=x$: لدينا

$$xe^{-3x} = x^3$$
 : اذن

$$e^{-3x}=x^2$$
 : ختزل بالعدد الغير المنعدم x نحصل على

-3x = 2lnx: ندخل الدالة ln على هاتين الكميتين الموجبتين نحصل على الدالة

(j)(1)(II)

$$I = \left[\frac{1}{3}; 1\right]$$
 : لدينا

$$y \in f(I)$$
 : ليكن

$$(\exists x \in I)$$
 ; $f(x) = y$: هذا يعني أن

$$I$$
 دينا : $1 \le x \le 1$ و f دالة تناقصية على

$$f\left(\frac{1}{3}\right) \ge f(x) \ge f(1)$$
 : إذن

$$0.5 \ge y \ge 0.36$$
 : أي

$$1 > 0.5 \ge y > 0.36 \ge \frac{1}{3}$$
 : و منه

$$1 \ge y \ge \frac{1}{3}$$
 : إذن

$$y \in I$$
 : e ais

$$y \in f(I) \implies y \in I$$
 : حصلنا إذن على الإستلزام التالي : حصلنا

$$f(I) \subset I$$
 : و بالتالي

-(•)(II)■

$$(\forall x > 0)$$
 : $f'(x) = \left(\frac{1 - 3x}{3x}\right) f(x)$: لينا

$$x \geq \frac{1}{3}$$
: إذن $I = \left[\frac{1}{3}; 1\right]$ ليكن x عنصرا من

$$\left[\frac{1}{3};+\infty\right[$$
 و منه : $f(x)\leq f\left(\frac{1}{3}\right)$ و منه : $f(x)$ لأن و تناقصية على المجال

$$f(x) \le 0.5 < 1$$
 : يعني

$$f(x) < 1$$
:

$$(1)$$
 $|f(x)| < 1 : اذن$

أجوبة الدورة العادية 2006 من إعداد الأستاذ بدر الدين الفاتحي : () رمضان 2012 الصفحة : 79

$$|f(u_n) - f(\alpha_3)| \le \frac{2}{3}|u_n - \alpha_3|$$
 :: يعني

$$(\forall n \in \mathbb{N})$$
 ; $|u_{n+1} - \alpha_3| \le \frac{2}{3} |u_n - \alpha_3|$; إذْن

_(<u>হ</u>)(II)∎

ليكن n عددا صحيحا طبيعيا.

لدينا حسب السؤال

$$|u_n - \alpha_3| \le \frac{2}{3} |u_{n-1} - \alpha_3|$$

$$\le \left(\frac{2}{3}\right) \left(\frac{2}{3}\right) |u_{n-2} - \alpha_3|$$

$$\le \left(\frac{2}{3}\right) \left(\frac{2}{3}\right) \left(\frac{2}{3}\right) |u_{n-3} - \alpha_3|$$

$$\vdots \qquad \vdots$$

$$\le \left(\frac{2}{3}\right)^n |u_{n-n} - \alpha_3|$$

$$(*) \boxed{ (\forall n \in \mathbb{N}) \; ; \; |u_n - \alpha_3| \leq \left(\frac{2}{3}\right)^n |u_0 - \alpha_3| } \quad : \dot{\psi}$$

$$\frac{1}{3} \leq \alpha_3 \leq 1 \quad : \dot{u}$$

$$|\frac{1}{3} - \alpha_3| \leq \frac{2}{3} \quad : \dot{\theta}$$

$$|\frac{1}{3} - \alpha_3| \leq \frac{2}{3} \quad : \dot{\theta}$$

$$|u_0 - \alpha_3| \leq \frac{2}{3} \quad : \dot{u}$$

$$|u_0 - \alpha_3| \leq \frac{2}{3} \quad : \dot{u}$$

: نضر طرفي هذه المتفاوتة في العدد الموجب $\left(\frac{2}{3}\right)^n$ نحصل على العدد الموجب $\left(\frac{2}{3}\right)^n$ ا $|u_0-\alpha_3| \leq \left(\frac{2}{3}\right)^{n+1}$

 $(\forall n \in \mathbb{N})$; $|u_n - \alpha_3| \leq \left(\frac{2}{3}\right)^n |u_0 - \alpha_3|$ و نعلم أن (*) : طسب (*)

$$(orall n \in \mathbb{N}) \; ; \; |u_n - lpha_3| \leq \left(rac{2}{3}
ight)^{n+1}$$
 و بالنالي : و بالنالي

الصفحة: 80

$$g_3(x) = 0$$
 : و منه $3x + 2lnx = 0$

$$g_n(x)=0$$
 و نعلم حسب السؤال (3) من الجزء الأول أن المعادلة $\frac{1}{n} بحيث \mathbb{R}_+^* بحيث تقبل حلا وحيدا$

$$\frac{1}{3} < \alpha_3 < \frac{1}{\sqrt{3}}$$
 : بحیث $x = \alpha_3$: إذن

_(j)(2)(II)ı

ليكن n عددا صحيحا طبيعيا.

 $(\forall n \epsilon \mathbb{N})$; $u_n \epsilon I$: نبر هن بالترجع على أن

$$u_0=rac{1}{3}\;\epsilon\;\left[rac{1}{3};1
ight]=I$$
 . لدينا $n=0$ من أجل $u_0\;\epsilon\;I$

$$(\forall n \epsilon \mathbb{N})$$
 ; $u_n \epsilon I$: نفترض أن

.
$$I$$
 متصلة على المجال f

$$u_n \in I \implies f(u_n) \in f(I)$$
 : فإن

$$(i)$$
 و نعلم أن $I:I$ و ذلك حسب السؤال $f(I)$

$$f(u_n) \in f(I) \subset I$$
 : إذن

$$u_{n+1} \in I$$
 : و منه

$$(orall n \epsilon \mathbb{N}) \; ; \; u_n \; \epsilon \; I \; | \; :$$
 و بالتالي

–(•)(2)(II)**■**

لیکن n عددا صحیحا طبیعیا.

$$(orall n \epsilon \mathbb{N})$$
 ; $u_n \epsilon I$: لدينا

$$rac{1}{3} : (ح لدينا كذلك حسب نتيجة السؤال (2) و لدينا كذلك النجاء المؤلل (2) و الدينا كذلك المؤلل المؤلل (2)$$

$$[u_n; lpha_3] \subset I$$
 : من (2) و (2) من (1) من (1) و بما أن (2) دالة متصلة و قابلة للإشتقاق على (2)

فإن
$$f$$
 دالة متصلة و قابلة للإشتقاق على : $[u_n; \alpha_3]$ كذلك و منه : حسب مبر هنة التزايدات المنتهية :

$$\exists c \in]u_n, \alpha_3[; \frac{f(u_n) - f(\alpha_3)}{u_n - \alpha_3} = f'(c)$$

$$|f(u_n) - f(\alpha_3)| \le |f'(c)| \times |u_n - \alpha_3|$$
 و منه :

$$(\mathbf{\psi})$$
 حسب السؤال ($\forall x \in I) \; ; \; |f'(x)| \leq \frac{2}{3} \; : و بما أن$

$$\forall \epsilon n \mathbb{N}$$
 ; $|f'(c)||u_n - \alpha_3| \leq \frac{2}{3}|u_n - \alpha_3|$: فإن

أجوبة الدورة العادية 2006 من إعداد الأستاذ بدر الدين الفاتحى: (مضان

-(•)(1)(III)■

 \mathbb{R}_+^* ليكن χ عنصرا من

$$F(x) = h(8x) - h(x)$$
 : لدينا

$$F'(x) = 8h'(8x) - h'(x)$$
 : إذن

$$\Leftrightarrow F'(x) = 8\sqrt[3]{8x} e^{-8x} - \sqrt[3]{x} e^{-x}$$

$$\iff F'(x) = 8\left(8^{\frac{1}{3}}\right)\left(x^{\frac{1}{3}}\right)(e^{-x})(e^{-7x}) - \left(x^{\frac{1}{3}}\right)e^{-x}$$

$$\iff$$
 $F'(x) = (16e^{-7x} - 1)f(x)$

$$\forall x \in [0, +\infty[; f(x) \ge 0]$$
 و بما أن

 $(16e^{-7x}-1)$ فإن إشارة $F^{'}(x)$ متعلقة فقط بإشارة

$$F^{'}(x) = 0$$
 : فإن $x = \frac{ln16}{7}$

$$F^{'}(x) < 0$$
 : فإن $x > \frac{ln16}{7}$: إذا كان

$$F^{'}(x)>0$$
 : فإن $x<\frac{ln16}{7}$

$$\left[rac{ln16}{7},+\infty
ight[$$
 و تناقصية على $\left[0,rac{ln16}{7}
ight]$ و تناقصية F دالمة تزايدية على F

-(j)(2)(III)∎

 $x \leq t \leq 8x$: ليكن x و t عددين حقيقيين موجبين بحيث

 $[0, +\infty[$ على : $]\infty+$

. f دالة موجبة كذلك لأنها تكامل لدالة موجبة

$$(1)\left[F(x) \geq 0 \right] : 0$$
و منه

 $t^{\frac{1}{3}} \leq (8x)^{\frac{1}{3}}$: ننطلق من الكتابة $t \leq 8x$

 e^{-t} نضرب طرفي المتفاوتة الأخيرة في العدد الموجب و الغير المنعدم

 $e^{-t} t^{\frac{1}{3}} \le e^{-t} (8x)^{\frac{1}{3}}$: نحصل على

بإدخال التكامل على طرفي هذه المتفاوتة نحصل على:

$$\int_{r}^{8x} e^{-t} t^{\frac{1}{3}} dt \le \int_{r}^{8x} e^{-t} (8x)^{\frac{1}{3}} dt$$

 $(\forall n \in \mathbb{N})$; $|u_n - \alpha_3| \leq \left(\frac{2}{3}\right)^{n+1}$: لينا

$$(\forall n \in \mathbb{N}) \; ; \; -\left(\frac{2}{3}\right)^{n+1} + \alpha_3 \leq u_n \leq \left(\frac{2}{3}\right)^{n+1} + \alpha_3 \; : \; \dot{\psi}$$
 إذن

بما أن : $\left(\frac{2}{3}\right)^{n+1}$ متتالية هندسية أساسها محصور بين 1 و $\left(\frac{2}{3}\right)^{n+1}$

$$\lim_{n \to \infty} \left(\frac{2}{3}\right)^{n+1} = 0$$

$$\lim_{n \to \infty} \left(-\left(\frac{2}{3}\right)^{n+1} + \alpha_3 \right) = \alpha_3 \quad \text{:} \quad \text{(a)}$$

$$\lim_{n \to \infty} \left(\left(\frac{2}{3} \right)^{n+1} + \alpha_3 \right) = \alpha_3 \qquad 9$$

 $\lim_{n \to \infty} u_n = lpha_3$: و بالتالي حسب مصاديق تقارب المتتاليات

$-(\mathfrak{j})(1)(III)$

 $[0,+\infty[$ لدينا f دالة متصلة على

. \mathbb{R}_+^* متصلة على المجال [0,x] كيفما كان f : إذن

و منه f تقبل دالة أصلية h على المجال f .

 $h^{'}(x)=f(x)$: بحيث المِشتقاق على الميت على الميت الميت

$$F(x) = \int_{x}^{8x} f(t) dt : و لدينا و$$

$$= \int_{x}^{0} f(t) dt + \int_{0}^{8x} f(t) dt$$

$$= \int_{0}^{8x} f(t) dt - \int_{0}^{x} f(t) dt$$

$$= h(8x) - h(0) - h(x) + h(0)$$

$$= h(8x) - h(x)$$

8x > 0 : يعني x > 0 لدينا

 $[0,+\infty[$: قابلة للإشتقاق على الله $x \to h(8x)$ و منه

 $[0, +\infty[$ على : $[0, +\infty[$

و بالتالي : F قابلة للإشتقاق على $+\infty$ لأنها مجموع دالتين قابلتين للإشتقاق على $+\infty$

$$\Leftrightarrow F(x) \le (8x)^{\frac{1}{3}} \int_{x}^{8x} e^{-t} dt$$

$$\Leftrightarrow F(x) \le 2x^{\frac{1}{3}} [-e^{-t}]_{x}^{8x}$$

$$\Leftrightarrow F(x) \le 2x^{\frac{1}{3}}(-e^{-8x} + e^{-x})$$

$$\Leftrightarrow F(x) \le 2x^{\frac{1}{3}}e^{-x}(1 - e^{-7x})$$

$$\Leftrightarrow \boxed{F(x) \le 2f(x)(1 - e^{-7x})} (2)$$

من (1) و (2) نستنتج أن :

$$(\forall x \ge 0) \; ; \; 0 \le F(x) \le 2f(x)(1 - e^{-7x})$$

-(+)(2(III) **■**

$$0 \leq F(x) \leq 2f(x)(1-e^{-7x})$$
 : ننطلق من التأطير

$$(Evidente)$$
 $\lim_{x \to +\infty} 0 = 0$: لدينا

$$\lim_{x \to +\infty} f(x) = 0$$
 و لدينا حسب جدول تغيرات f

$$\lim_{x \to +\infty} 2f(x)(1 - e^{-7x}) = 2 \times 0 \times (1 - 0) = 0$$
 ; إذن

$$\lim_{x \to +\infty} F(x) = 0 \quad : \dot{\mathfrak{g}}$$

-©(2)(III) **■**

نلخص النتائج التي تم التوصل إليها بخصوص الدالة F في الجدول التالي:

= و الحمد لله رب العاملين ■

أجوبة الدورة العادية 2006 من إعداد الأستاذ بدر الدين الفاتحي : () رمضان 2012 الصفحة : 82