ĢEOMETRIJA NOVADA OLIMPIĀDĒS

LV.NOL.2021.10.3:

Kvadrāta ABCD, kura malas garums ir 1, malas AB viduspunkts ir E un malas BC viduspunkts ir F. Nogrieznis AF krusto ED un EC attiecīgi punktos G un H, bet FD un EC krustojas punktā I. Aprēķināt četrstūra DGHI laukumu.

LV.NOL.2021.11.3:

Divi vienādi vienādsānu trijstūri ABC un DEF (AB = AC = DE = DF un BC = EF) krustojoties veido četrstūri PQRS (skat. 5. att.), kuram var apvilkt riņka līniju. Pierādīt, ka divi no četrstūra PQRS leņķiem ir taisni.

LV.NOL.2021.12.3

Taisnstūris salikts no četriem vienības kvadrātiem. Aprēķināt iekrāsotā četrstūra (skat. 6. att.) laukumu un lenkus.

LV.NOL.2022.10.3

Divas rinķa līnijas ω_1 un ω_2 krustojas punktos X un Y. Caur punktu X novilkta taisne t, kas vēlreiz krusto rinķa līnijas ω_1 un ω_2 attiecīgi punktos A un B, caur punktu Y paralēli t novilkta taisne, kas vēlreiz krusto rinka līnijas ω_1 un ω_2 attiecīgi punktos D un C. Pierādīt, ka ABCD ir paralelograms.

LV.NOL.2022.11.3

Trapeces ABCD pamati ir AB un CD. Diagonāles AC un BD krustojas punktā E. Pierādīt, ka $S_{ABE} \cdot S_{ABCD} = S_{ABC}^2$!

LV.NOL.2022.12.3

Dots izliekts četrstūris ABCD, kuram AB=BC=CD. Četrstūra diagonāles krustojas punktā E. Pierādīt, ka leņķu BAD un ADC bisektrišu krustpunkts atrodas uz trijstūrim ADE apvilktās riņķa līnijas.

LV.NOL.2023.10.3

Šaurleņķu trijstūra ABC augstumi krustojas punktā H. Aprēķināt četrstūra ABHC laukumu, ja AH=BC=8.

LV.NOL.2023.11.3

Dots vienādsānu trijstūris ABC, kuram AB=AC un $\lhd BAC < 60^\circ$. Riņka līnija, kuras centrs ir punktā B un rādiuss BC, krusto trijstūra malas AC un AB attiecīgi punktos D un E. Aprēķināt $\frac{AD}{DC}$, ja $\frac{AE}{EB}=\frac{2}{5}$.

LV.NOL.2023.12.3

Dots vienādsānu trijstūris ABC, kuram AB = AC un $\triangleleft BAC < 60^{\circ}$. Rinķa līnija, kuras centrs ir punktā B un rādiuss BC, krusto trijstūra malas AC un AB attiecīgi punktos D (kas nesakrīt ar C) un E. Pierādīt, ka AD < 2AE.

LV.NOL.2024.10.1

Dotas divas riņka līnijas ω_1 un ω_2 , kas krustojas punktos X un Y. Taisne t_1 , kas vilkta caur X, krusto ω_1 un ω_2 attiecīgi punktos A un B (punkts X atrodas starp A un B), savukārt taisne t_2 , kas vilkta caur Y, krusto ω_1 un ω_2 attiecīgi punktos C un D (punkts Y atrodas starp C un D). Pierādīt, ka AC ir paralēla ar BD!

LV.NOL.2024.10.3

Šaurleņķu trijstūra ABC malu garumi ir AB=7 cm, AC=12 cm un BC=13 cm. Pierādīt, ka uz malas AC var atrast tādus divus iekšējus punktus P un Q, ka nogriežnu AP, AQ, BP un BQ garumi ir izsakāmi veselā skaitā centimetru!

LV.NOL.2024.11.1

No punkta A, kas atrodas ārpus riņķa līnijas ar centru O, novilktas divas pieskares, kas pieskaras riņķa līnijai punktos D un E. Uz taisnēm AD un AE atlikti attiecīgi punkti B un C tā, ka punkts D atrodas starp A un B, punkts C atrodas starp A un E un OB = OC. Pierādīt, ka punkti O, A, B un C atrodas uz vienas riņķa līnijas!

LV.NOL.2024.11.3

Taisnleņķa trijstūrī ABC ($\triangleleft ABC = 90^\circ$) uz malas BC atlikti punkti D un E tā, ka $\triangleleft BAD = \triangleleft DAE$, $\triangleleft EAC = 2\triangleleft BAD$, BD = 3, DE = 4. Aprēķināt EC garumu!

LV.NOL.2024.12.1

Šaurleņķu trijstūrī ABC novilkti augstumi AD, BE un CF, kas krustojas punktā H. Pierādīt, ka DH ir leņka EDF bisektrise!