MATH185, HW2

Victor Pekkari — epekkari@ucsd.edu

February 5, 2025

Problem 1

Figure 1: output for question 1

Code for problem 1:

```
setwd("/Users/victorpekkari/Desktop/comp_stats/hw2")
data <- read.csv("lightbulb.csv")
brand_a <- data$times [data$brand == "A"]
brand_b <- data$times [data$brand == "B"]
theta_hat <- median(brand_a) - median(brand_b)
cat ("Question - 1a) - - - Estimated -
                                   : ", theta_hat, "\n")
# Number of bootstrap samples
b_bias <- 200
b_{-}var \leftarrow 200
b_ci <- 1000
bootstrapped_median <- function(data_a, data_b, iterations) {
  median_diff <- numeric(iterations)</pre>
  for (i in 1:iterations) {
    resample_a <- sample(data_a, replace = TRUE)
    resample_b <- sample(data_b, replace = TRUE)
    median_diff[i] <- median(resample_a) - median(resample_b)
  }
```

```
return(median_diff)

bootstrap_diffs_bias <- bootstrapped_median(brand_a, brand_b, b_bias)
bias <- mean(bootstrap_diffs_bias) - theta_hat
cat("Question~1b)~~~Estimated~bias~of~the~estimator:", bias, "\n")

bootstrap_diffs_var <- bootstrapped_median(brand_a, brand_b, b_var)
variance <- var(bootstrap_diffs_var)
cat("Question~1c)~~~Estimated~variance~of~the~estimator:", variance, "\n")

bootstrap_diffs_ci <- bootstrapped_median(brand_a, brand_b, b_ci)
quantiles <- quantile(bootstrap_diffs_ci, probs = c(0.025, 0.975))
cat("Question~1d)~~~95%~Percentile~Bootstrap~CI:~[", quantiles[1], ",", quantile
ci_hall <- 2 * theta_hat - quantile(bootstrap_diffs_ci, probs = c(0.975, 0.025))
cat("Question~1e)~~~95%~H alls~Percentile~Bootstrap~CI:~[", ci_hall[1], ",", c
```

Problem 2

```
> source("/Users/victorpekkari/Desktop/comp_stats/hw2/q2.r", encoding = "UTF-8")
Estimated Type I error (n = m = 10): 0.054
Estimated Type I error (n = m = 50): 0.043
Estimated Power (n = m = 10): 0.267
Estimated Power (n = m = 50): 0.809
```

Figure 2: output for question 2

(a)

Comment: Choosing $\alpha = 0.05$ should mean that we have a type I error rate of 5% which we do, since we reject the null hypothesis about 5% of the time.

(b)

Comment: My type I error rate barely changed, and theoretically it shoudn't change.

(d)

Comment: The power increases significantly when the number of samples is increased. This is theoretically correct as the type II error (β) should decrease and therefore the power $(1 - \beta)$ should increase. I think it is because as the sample size increases the standard error decreases.

Code for problem 2

```
#set.seed(123) # Ensure reproducibility
perm_test \leftarrow function(x, y, b = 1000)  {
  t_{obs} \leftarrow mean(x) - mean(y) \# observed \ test \ statistic
  combined \leftarrow \mathbf{c}(\mathbf{x}, \mathbf{y})
  n \leftarrow length(x)
  t_perm <- replicate(b, {
    perm <- sample(combined) # Shuffle the combined data
    mean(perm[1:n]) - mean(perm[(n + 1):length(combined)])
  })
  p_value \leftarrow (sum(t_perm >= t_obs) + 1) / (b + 1)
  return (p_value)
estimate_type1_error <- function(n = 10, m = 10,
                                       b = 1000, alpha = 0.05, sims = 1000) {
  type1_errors <- replicate(sims, {
    x \leftarrow \mathbf{rnorm}(n)
    y \leftarrow \mathbf{rnorm}(m)
    p_val \leftarrow perm_test(x, y, b)
    return(p_val < alpha)
  })
  return (mean (type1_errors)) # Proportion of false rejections
estimate_power \leftarrow function (n = 10, m = 10,
                                b = 1000, alpha = 0.05, sims = 1000) {
  power <- replicate(sims, {</pre>
    x \leftarrow \mathbf{rnorm}(n, \mathbf{mean} = 0.5, \mathbf{sd} = 1) # Shifted mean for X
    y \leftarrow \mathbf{rnorm}(m, \mathbf{mean} = 0, \mathbf{sd} = 1) # Y remains standard normal
    p_val \leftarrow perm_test(x, y, b)
    return (p_val < alpha)
  })
  return (mean (power)) # Proportion of true rejections
type1_error_{10} \leftarrow estimate_{type1_error}(n = 10, m = 10, b = 1000, sims = 1000)
cat ("Estimated Type I error (n = m = 10):", type1_error_10, "\n")
type1_error_{50} \leftarrow estimate_{type1_error}(n = 50, m = 50, b = 1000, sims = 1000)
cat("Estimated Type I error (n = m = 50):", type1_error_50, "\n")
```

```
power_10 <- estimate_power(n = 10, m = 10, b = 1000, sims = 1000)
cat("Estimated Power (n = m = 10):", power_10, "\n")

power_50 <- estimate_power(n = 50, m = 50, b = 1000, sims = 1000)
cat("Estimated Power (n = m = 50):", power_50, "\n")</pre>
```

Problem 3

```
> source("/Users/victorpekkari/Desktop/comp_stats/hw2/q3.r",
Estimated Type I Error: 0.094
Estimated Power for a=0.8: 0.738
Estimated Power for a=1: 0.871
Estimated Power for a=1.2: 0.963
```

Figure 3: output for question 3

(a)

Comment: Yes it is very close to the theoretical 10%.

(b)

$$Y = aX + \epsilon$$

Comment: The power increases as "a" increases which is expected, since larger "a" means stronger linear correlation. The larger "a" makes it easier to distinguish the true relationship (a) from noise (ϵ) .

Code for problem 3

```
set . seed (123)

perm_test <- function(x, y, b) {
    correlation <- cor(x, y)
    permuted_corrs <- numeric(b)

for (i in 1:b) {
    y_perm <- sample(y)
    permuted_corrs[i] <- cor(x, y_perm)
}

p_value <- mean(abs(permuted_corrs) >= abs(correlation))
```

```
return (p_value)
estimate_type1_error <- function(sims, alpha) {</pre>
  type1_errors <- replicate(sims, {
    x < - rnorm(100)
    y < - rnorm(100)
    p_val \leftarrow perm_test(x, y, b = 1000)
    return(p_val < alpha)
  })
  return (mean (type1_errors))
}
estimate_power <- function(sims, alpha, a_values) {
  power_estimates <- sapply(a_values, function(a) {
    rejections <- replicate (sims, {
      x \leftarrow runif(100, 0, 1)
      epsilon \leftarrow rnorm(100)
      y \leftarrow a * x + epsilon
      p_val \leftarrow perm_test(x, y, b = 1000)
      return (p_val < alpha)
    })
    return (mean (rejections))
  })
  return(setNames(power_estimates, a_values))
}
# Run simulations
type_{I}-error \leftarrow estimate_{type1}-error(1000, 0.10)
a_{values} \leftarrow c(0.8, 1.0, 1.2)
power_results <- estimate_power(1000, 0.10, a_values)
cat(sprintf("Estimated Type I-Error: %.3f\n", type_I_error))
for (a in names(power_results)) {
  cat(sprintf("Estimated Power for a=\%s: \%3 f\n", a, power_results[[a]]))
```