Tarea 1

Redes Neuronales / 2020-II

Fecha de entrega: Lunes 13 de Abril

1. Usando sklearn.datasets.make_moons genera un conjunto de datos de la siguiente forma:

In [1]: C1, C2 = $moons(random_state=123, n_samples=200, noise=0.1)$

Los puedes graficar de la siguiente manera:

In [2]: plt.scatter(C1[:,0], C1[:,1], c=C2); plt.show()

y deberían verse como se presenta a continuación

a) Implementa la regresión logística usando descenso del gradiente para clasificar C_1 y a C_2

- b) ¿Qué transformación de los datos ocupaste para poder hacer la correcta clasificación?
- 2. Calcula la derivada de la tangente hiperbólica tanh
- 3. Usando el perceptrón multicapa visto en clase clasifica a C_1 y C_2 ¿Qué parámetros ocupaste?
- 4. Con la red neuronal vista en clase que hace la clasificación multiclase usando la función softmax, realiza los siguientes ejercicios
 - a) Encuentra la mejor arquitectura para el conjunto de iris. Justifica tu respuesta de por qué es la mejor.
 - b) Usa las funciones tanh y σ en la capa intermedia. ¿Cuál funciona mejor?
 - c) Clasifica los siguientes estímulos y reporta a qué clase pertenece cada uno:
 - **5.97** 4.20 1.23 0.25
 - 6.80 5.00 1.25 1.20
 - **12.50 9.20 40.32 21.55**
 - d) ¿Te parecen correctas todas las clasificaciones? En caso de que alguna no ¿por qué? ¿cómo corregirías este error?
- 5. ¿Qué es y cómo funciona la función de activación Radial Basis Function (RBF)?