教师:

大 连 理 工 大 学

课程名称: <u>高等数学1</u> 试卷: <u>A</u> 考试形式: <u>闭卷</u>

授课院(系): 数学科学学院 考试日期: 2018年11月29日 试卷共6页

	_		111	四	五.	六	七		总分
标准分	30	20	10	10	10	10	10		100
得 分									

得	
分	

一**、填空题** (每题 6 分,共 30 分)

- 1. 设函数y = y(x)由参数方程 $\begin{cases} x = t^2 + 2t \\ y = \ln(1+t) \end{cases}$ 确定, $\frac{dy}{dx} =$ _______,曲线 y = y(x)在x = 3处的法线与x轴交点的横坐标为_______.
- 2. $\lim_{n\to\infty} (\sqrt[6]{n^6 + n^5} \sqrt[6]{n^6 n^5}) = \underline{\qquad}, \lim_{x\to 0} x[\frac{3}{x}] = \underline{\qquad}.$
- 3. 已知函数 y = y(x) 由方程 $xe^y + y 1 = 0$ 确定,则 $dy = _______$, $y''(0) = _______.$
- 5. $\forall f(x) = x^2 \ln(2+x), \ f^{(2)}(0) = \underline{\qquad}, \ f^{(2019)}(0) = \underline{\qquad}.$

二**、单项选择题** (每题 4 分,共 20 分)

- $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$ 、设函数 $f(x) = x \tan x e^{\sin x}$,则 f(x) 是_____.
 - (A) 偶函数 (B) 无界函数 (C) 周期函数 (D) 单调函数

- 2、若 $\lim_{x\to 0} \frac{\tan x + x f(x)}{x^3} = 0$,则 $\lim_{x\to 0} \frac{1 + f(x)}{x^2} = \underline{\hspace{1cm}}$.

- (A) 0 (B) $-\frac{1}{6}$ (C) $\frac{1}{6}$ (D) $-\frac{1}{3}$
- 3、曲线 $y = \frac{1 + e^{-x^2}}{1 + e^{-x^2}}$ 有______条渐近线.

- $(A) 0 \qquad (B) 1 \qquad (C) 2 \qquad (D) 3$
- 4、设 $F(x) = \begin{cases} \frac{f(x)}{x}, & x \neq 0 \\ f(0), & x = 0 \end{cases}$,其中 f(x) 在 x = 0 处可导 $f'(0) \neq 0$,f(0) = 0,则 x = 0 是 F(x)的______.

- (A) 连续点 (B) 第一类间断点 (C) 第二类间断点 (D) 连续点或间断点不能确定
- 5、设f(x)在x=0某邻域内有二阶连续导数,且 $\lim_{x\to 0} \frac{xf''(x)}{1-\cos x} = 1$,则______.
 - (A) $f''(0) \neq 0$, 但(0, f(0))是y = f(x)的拐点
 - (B) f''(0) = 0, 且f(0)是y = f(x)的极小值
 - (C) f''(0) = 0, 且(0, f(0))是y = f(x)的拐点
 - (D) $f''(0) \neq 0$, 且f(0)是y = f(x)的极小值

$$\exists \quad (10 \, \text{分}) \, \, \vec{x} \, \lim_{x \to 0} \left[\frac{(1+x)^{\frac{1}{x}}}{e} \right]^{\frac{1}{2x}} \, .$$

四、(10 分) 求数列 $\{\sqrt[n]{n}\}$ 的最大项.

五、 $(10 \, \text{分})$ 若 f(x)在[1,2]上二阶可导, f(1)=f(2)=0, $g(x)=(x-1)^2f(x)$,证 明必存在 $\xi \in (1,2)$ 使 $g''(\xi)=0$.

六、(10分)设x>0,常数a>e,证明: $(a+x)^a < a^{a+x}$.

七、(10分)设 $f_n(x) = x^n + x^{n-1} + \dots + x$,

- 1. 证明: 对任意自然数 n>1, 方程 $f_n(x) = 1$ 在 $(\frac{1}{2},1)$ 内只有一个根;
- 2. 若 $x_n \in (\frac{1}{2}, 1)$ 是方程 $f_n(x) = 1$ 的根,求 $\lim_{n \to \infty} x_n$.