Subject: Mathematics

Duration: Two Hours

Maximum Marks :100

Instructions

- 1. This question paper contains all objective questions divided into three categories.
- 2. Category-I: Comprises of Q.1 to Q.60 carrying one mark each, for which only one option is correct.
 - Category-II: Comprises of Q.61 to Q.75 carrying two marks each, for which only one option is correct.
 - Category-III: Comprises of Q.76 to Q.80 carrying two marks each, for which one or more than one options may be correct.
- 3. For questions in Category-I or Category-II, incorrect answers will carry NEGATIVE marks. For Category-I, 1/3 mark will be deducted for each wrong answer. For Category-II, 2/3 mark will be deducted for each wrong answer.
- 4. Category-III questions will not carry any negative mark. Against the number of correct options indicated, a maximum of two marks will be awarded on pro rata basis. However, marking of any wrong option will lead to award of zero mark against the question irrespective of the number of correct options indicated.
- 5. Questions must be answered on OMR sheet by darkening the appropriate bubble (marked A, B, C, D) against the question number on the respective left hand columns.
- 6. All OMR will be processed by electronic means. Hence, invalidation of Answer Sheet due to folding or putting stray marks on it or any damage to the Answer Sheet as well as incomplete/incorrect filling of the Answer Sheet will be the sole responsibility of the candidate.
- 7. Answers without any response will be awarded zero mark. For Category-I or Category-II, more than one response will be treated as incorrect answer and negative marks will be awarded for the same.
- 8. Write your roll number, name and question booklet number only at the specified locations of the OMR.
- 9. Use only Black/Blue Ball Point Pen to mark the answers by complete filling up of the respective bubbles.
- 10. Mobile phones, Calculators, Slide Rules, Log Tables and Electronic Watches with facilities of Calculator, Charts, Graph sheets or any other form of Tables are NOT allowed in the examination hall. Possession of such devices during the examinations shall lead to cancellation of the paper besides seizing of the same.
- 11. Mark the answers only in the space provided. Please do not make any stray mark on the OMR.
- 12. Rough work must be done on the question paper itself. Additional blank pages are given at the end of the question paper for rough work.
- 13. This question paper contains 32 printed pages including pages for rough work. Please check all pages and report, if there is any discrepancy.
- 14. Hand over the OMR to the Invigilator before leaving the Examination Hall.

Space for Rough Work

M1 2/32

δ

Q.1 to Q.60 carry one mark each, for which only one option is correct. Any wrong answer will lead to deduction of 1/3 mark.

1.	The number of solution	on(s) of the equation $\sqrt{2}$	$\sqrt{x+1} - \sqrt{x-1} = \sqrt{4x}$	$\frac{1}{c-1}$ is/are
	(A) 2	(B) O	(C) 3	(D) 1
	$\sqrt{x+1} - \sqrt{x-1} = \sqrt{x-1}$	$\sqrt{4x-1}$ সমীকরণটির সমা	ধানের সংখ্যা হল	
	(A) 2	(B) O	(C) 3	(D) 1
2.	The value of $ z ^2 + z $	$ z-3 ^2 + z-i ^2$ is min	nimum when z equals	
	(A) $2 - \frac{2}{3}i$	(B) $45 + 3 i$	(C) $1 + \frac{i}{3}$	(D) $1 - \frac{i}{3}$
	$ z ^2 + z - 3 ^2 + z -$	$-i ^2$ লঘিষ্ঠ হবে যখন z -এ	থর মান	
	(A) $2 - \frac{2}{3}i$	(B) 45 + 3 i	(C) $1 + \frac{i}{3}$	(D) $1 - \frac{i}{3}$
3.	If $f(x) = \begin{cases} 2x^2 + 1, \\ 4x^3 - 1, \end{cases}$	$ x \le 1 \\ x > 1 $, then $ \int_0^2 f(x) $	dx is	
	(A) 47/3	(B) 50/3	(C) 1/3	(D) 47/2
	यिन $f(x) = \begin{cases} 2x^2 + 1, \\ 4x^3 - 1, \end{cases}$	$x \le 1$, তা হলে $\int_0^2 f$	f(x)dx হল	
	(A) 47/3	(B) 50/3	(C) 1/3	(D) 47/2
1.	$\text{if } \lim_{x \to 0} \frac{2a\sin x - \sin 2x}{\tan^3 x}$	$\frac{dx}{dx}$ exists and is equal to	o 1, then the value of a	is
	(A) 2	(B) 1	(C) 0	(D) -1
	যদি $\lim_{x\to 0} \frac{2a\sin x - \sin x}{tan^3x}$	1.2x -এর মানের অস্তিত্ব থারে	কে এবং 1 হয়, তাহলে a -র	মান হবে
	(A) 2	(B) 1	(C) 0	(D) -1

5. The solution of the equation

 $\log_{101} \log_7 (\sqrt{x+7} + \sqrt{x}) = 0$ is

 $\{A\}$ 3

(B) 7

(C) 9

(D) 49

 $\log_{101} \log_7 (\sqrt{x+7} + \sqrt{x}) = 0$ সমীকরণটির সমাধান হল

(A)3

(B) 7

(C)9

(D) 49

6. The integrating factor of the differential equation

 $(1+x^2)\frac{dy}{dx} + y = e^{tan^{-1}x}$ is

- (A) $tan^{-1}x$
- (B) 1+ x^2
- (C) $e^{tan^{-1}x}$
- (D) $\log_e(1+x^2)$

 $(1+x^2)\frac{dy}{dx}+y=e^{tan^{-1}x}$ এই অন্তরকল সমীকরণটির সমাকল গুণক(integrating factor) হল

- (A) $tan^{-1}x$
- (B) 1+ x^2
- (C) $e^{tan^{-1}x}$
- (D) $\log_{\mathrm{e}}(1+x^2)$
- 7. If $\sqrt{y} = \cos^{-1} x$, then it satisfies the differential equation $(1 x^2) \frac{d^2 y}{dx^2} x \frac{dy}{dx} = c$, where c is equal to
 - (A) 0

(B) 3

- (C) 1
- (D) 2

যদি $\sqrt{y}=\cos^{-1}x$ হয়, তা হলে এটি $(1-x^2)\frac{d^2y}{dx^2}-x\frac{dy}{dx}=c$ অন্তরকল সমীকরণকে সিদ্ধ করে, যেখানে c এর মান হল

(A) 0

(B) 3

- (C) 1
- (D) 2
- 8. The number of digits in 20^{301} (given $log_{10}2 = 0.3010$) is
 - (A) 602
- (B) 301
- (C)392
- (D) 391

 20^{301} সংখ্যাটির অঙ্ক সংখ্যা(প্রদত্ত $log_{10}2=0.3010)$ হল

- (A) 602
- (B) 301
- (C) 392
- (D) 391

9.	The area of the region bounded by the curves $y = x^2$ and $x = y^2$ is			
	(A) 1/3	(B) 1/2	(C) 1/4	(D) 3
	$y = x^2$ এবং $x = y^2$ বৰ	ক্ররেখাদ্বয় দ্বারা সীমাবদ্ধ শে	চত্রটির ক্ষেত্রফল হল	
	(A) 1/3	(B) 1/2	(C) 1/4	(D) 3
10.	Let \mathbb{R} be the set of all set $f^{-1}([1,6])$ is	I real numbers and f : ${\mathbb F}$	$\mathbb{R} \to \mathbb{R}$ be given by $f(x)$	$) = 3x^2 + 1.$ Then the
	$(A)\left\{-\sqrt{\frac{5}{3}},0,\sqrt{\frac{5}{3}}\right\}$	(B) $\left[-\sqrt{\frac{5}{3}},\sqrt{\frac{5}{3}}\right]$	(C) $\left[-\sqrt{\frac{1}{3}}, \sqrt{\frac{1}{3}}\right]$	$\{D\}\left(-\sqrt{\frac{5}{3}},\sqrt{\frac{5}{3}}\right)$
	ধরা যাক ℝ বাস্তব সংখ সেটটি হল	্যার সেট এবং $f\colon \mathbb{R} o \mathbb{R}$	যেখানে $f(x) = 3x^2 +$	1। তা হলে $f^{-1}([1,6])$
	(A) $\left\{-\sqrt{\frac{5}{3}}, 0, \sqrt{\frac{5}{3}}\right\}$	(B) $\left[-\sqrt{\frac{5}{3}}, \sqrt{\frac{5}{3}}\right]$	(C) $\left[-\sqrt{\frac{1}{3}}, \sqrt{\frac{1}{3}}\right]$	$(D)\left(-\sqrt{\frac{5}{3}},\sqrt{\frac{5}{3}}\right)$
11.	The value of $\tan \frac{\pi}{5} + 2$	$2\tan\frac{2\pi}{5} + 4\cot\frac{4\pi}{5}$ is		·
	(A) $\cot \frac{\pi}{5}$	(B) $\cot \frac{2\pi}{5}$	(C) $\cot \frac{4\pi}{5}$	(D) $\cot \frac{3\pi}{5}$
	$\tan\frac{\pi}{s} + 2\tan\frac{2\pi}{s} + 4\cos\frac{2\pi}{s}$	ot ^{4π} -এর মান হল		
	(A) $\cot \frac{\pi}{5}$	(B) $\cot \frac{2\pi}{5}$	(C) $\cot \frac{4\pi}{5}$	(D) $\cot \frac{3\pi}{5}$
12.	2. Let $f(x)$ be a differentiable function in [2, 7]. If $f(2) = 3$ and $f'(x) \le 5$ for all x in (2, 7) then the maximum possible value of $f(x)$ at $x = 7$ is			$0 \le 5$ for all x in (2, 7),
	(A) 7	(B) 15	(C) 28	(D) 14
			যোগ্য অপেক্ষক। যদি (2, লে $x=7$ বিন্দুতে $f(x)$	
	(A) 7	(B) 15	(C) 28	(D) 14
δ	M1 5/32			

13.	Let the number of elements of the sets A and B be p and q respectively. Then the number of relations from the set A to the set B is			
	(A) 2^{p+q}	(B) 2 ^{pq}	(C) p + q	(D) pq
	ধরা যাক, A এবং B সে সম্বন্ধের সংখ্যা হবে	ট্বয়ের উপাদানের সংখ্যা	যথাক্রমে p এবং q। তাহ	লে A সেট থেকে B সেটে
	(A) 2^{p+q}	(B) 2 ^{pq}	(C) p + q	(D) pq
14.	In a \triangle ABC , $\tan A$ and	I tan B are the roots of	$pq(x^2+1)=r^2x. \text{ Th}$	en △ <i>ABC</i> is
	(A) a right angled triar (C) an obtuse angled t	_	(B) an acute angled tr (D) an equilateral tria	_
	ABC একটি ত্রিভুজ। pa একটি	$q(x^2+1)=r^2x$, সমীকর	রণের $ an A$ এবং $ an B$ ্	দূটি বীজ। তা হলে ABC
	(A) সমকোণী ত্রিভুজ (C) স্থূলকোণী ত্রিভুজ		(B) সৃক্ষকোণী ত্রিভুজ (D) সমবাহু ত্রিভুজ	
15.	If $y = 4x + 3$ is paral the normal parallel to		e parabola $y^2 = 12 x$,	then its distance from
	(A) $\frac{213}{\sqrt{17}}$	(B) $\frac{219}{\sqrt{17}}$	(C) $\frac{211}{\sqrt{17}}$	(D) $\frac{210}{\sqrt{17}}$
	যদি $y=4x+3$ সরলবেখাটি $y^2=12x$ অধিবৃত্তের কোন স্পর্শকের সমান্তরাল হয়, তা হলে ঐ সরবিরখার সমান্তরাল অভিলম্ব থেকে প্রদত্ত সরলরেখার দূরত্ব হল			
	(A) $\frac{213}{\sqrt{17}}$	(B) $\frac{219}{\sqrt{17}}$	(C) $\frac{211}{\sqrt{17}}$	(D) $\frac{210}{\sqrt{17}}$
16.	Let the equation of an ellipse be $\frac{x^2}{144} + \frac{y^2}{25} = 1$. Then the radius of the circle with certain $(0, \sqrt{2})$ and passing through the foci of the ellipse is		the circle with centre	
	(A) 9	(B) 7	(C) 11	(D) 5
	ধরা যাক $rac{x^2}{144}+rac{y^2}{25}=1$ একটি উপবৃত্তের সমীকরণ। তা হলে যে বৃত্তের কেন্দ্র $(0,\sqrt{2})$ এবং যে বৃত্তটি ওই উপবৃত্তের নাভিদ্বয়গামী, তার ব্যাসার্ধ হল			
	(A) 9	(B) 7	(C) 11	(D) 5

- The straight lines x + y = 0, 5x + y = 4 and x + 5y = 4 form 17.
 - (A) an isosceles triangle
 - (B) an equilateral triangle
 - (C) a scalene triangle
 - (D) a right angled triangle

x+y=0, 5x+y=4 এবং x+5y=4 সরলরেখাগুলি দ্বারা আবদ্ধ ক্ষেত্রটি হল

- (A) সমদ্বিবাহু ত্রিভুজ
- (B) সমবাহু ত্রিভূজ
- (C) বিষমবাহু ত্রিভুজ
- (D) সমকোণী ত্রিভুজ
- 18. If $\sin^{-1}\left(\frac{x}{13}\right) + cosec^{-1}\left(\frac{13}{12}\right) = \frac{\pi}{2}$, then the value of x is
 - (A)5

(B) 4

- (C) 12
- (D) 11

যদি $\sin^{-1}\left(\frac{x}{13}\right) + \csc^{-1}\left(\frac{13}{12}\right) = \frac{\pi}{2}$ হয়, তবে x -এর মান হবে

(A) 5

(B) 4

- (C) 12
- (D) 11
- The values of λ for which the curve $(7x + 5)^2 + (7y + 3)^2 = \lambda^2(4x + 3y 24)^2$ 19. represents a parabola is
 - (A) $\pm \frac{6}{5}$

- (B) $\pm \frac{7}{5}$ (C) $\pm \frac{1}{5}$ (D) $\pm \frac{2}{5}$

 λ -র যে মানের জন্য $(7x+5)^2+(7y+3)^2=\lambda^2(4x+3y-24)^2$ বক্ররেখাটি অধিবৃত্ত হবে, তা হল

- (A) $\pm \frac{6}{5}$ (B) $\pm \frac{7}{5}$ (C) $\pm \frac{1}{5}$ (D) $\pm \frac{2}{5}$

20.	Let $f(x) = x + 1/2$. Then the number of real values of x for which the three unequaterms $f(x)$, $f(2x)$, $f(4x)$ are in H.P. is				
	(A) 1	(B) O	(C) 3	(D) 2	
	ধরা যাক $f(x)=x+1/2$ । তা হলে x -এর যতগুলি বাস্তব মানের জন্য $f(x),f(2x),f(4x)$ হরাত্মক প্রগতি $($ H.P $)$ তে থাকবে, তা হল				
	(A) 1	(B) 0	(C) 3	(D) 2	
21. Let $f(x) = 2x^2 + 5x + 1$. If we write $f(x)$ as $f(x) = a(x+1)(x-2) + b(x-2)(x-1) + c(x-1)(x+1)$ for real numbers a, b, c , then					
(A) there are infinite number of choices for a,b,c (B) only one choice for a but infinite number of choices for b and c (C) exactly one choice for each of a,b,c (D) more than one but finite number of choices for a,b,c					
	ধরা যাক $f(x)=2x^2+5x+1$ । বাস্তব সংখ্যা a,b,c -র জন্য $f(x)=a(x+1)(x-2)+b(x-2)(x-1)+c(x-1)(x+1)$ হলে				
	(A) a,b,c -র অসীম সংখ্যক মান সম্ভব (B) a -র কেবলমাত্র একটি মান এবং b,c -র অসীম সংখ্যক মান সম্ভব (C) a,b,c -র প্রত্যেকের কেবলমাত্র একটি করে মান সম্ভব (D) a,b,c -র প্রত্যেকের একাধিক কিন্তু সসীম সংখ্যক মান সম্ভব				
22.	2. If α, β are the roots of $ax^2 + bx + c = 0$ ($a \ne 0$) and $\alpha + h$, $\beta + h$ are the roots $px^2 + qx + r = 0$ ($p \ne 0$) then the ratio of the squares of their discriminants is				
	(A) $a^2: p^2$	(B) a: p ²	(C) $a^2: p$	(D) a: 2p	
	যদি $ax^2 + bx + c$ $px^2 + qx + r = 0$ (p নিরুপকদ্বয়ের বর্গের অনুগ	≠ 0) সমীণকরণের ^হ	করণের বীজগুলি বীজগুলি $lpha+h,\ eta+h$	lpha,eta হয় এবং হয়, তা হলে তাদের	

(C) a^2 : p

(B) $a: p^2$

(A) $a^2: p^2$

(D) a: 2p

23. Let p,q be real numbers . If α is the root of $x^2+3p^2x+5q^2=0$, β is a root of $x^2 + 9p^2x + 15q^2 = 0$ and $0 < \alpha < \beta$, then the equation $x^2 + 6p^2x + 10q^2 = 0$ has a root y that always satisfies

(A)
$$\gamma = \alpha/4 + \beta$$
 (B) $\beta < \gamma$ (C) $\gamma = \alpha/2 + \beta$ (D) $\alpha < \gamma < \beta$

(B)
$$\beta < \gamma$$

(C)
$$\gamma = \alpha/2 + \beta$$

(D)
$$\alpha < \gamma < \beta$$

ধরা যাক, p,q দুটি বাস্তব সংখ্যা। যদি $x^2+3p^2x+5q^2=0$ সমীকরণের একটি বীজ lpha এবং $x^2+9p^2x+15q^2=0$ সমীকরণের একটি বীজ eta হয় (0<lpha<eta), তা হলে $x^2+6p^2x+10q^2=0$ সমীকরণের একটি বীজ γ যে শর্তটিকে সর্বদা সিদ্ধ করে তা হল

(A)
$$\gamma = \alpha/4 + \beta$$

(B)
$$\beta < \gamma$$

(A)
$$\gamma = \alpha/4 + \beta$$
 (B) $\beta < \gamma$ (C) $\gamma = \alpha/2 + \beta$ (D) $\alpha < \gamma < \beta$

(D)
$$\alpha < \gamma < \beta$$

24. The equation of the common tangent with positive slope to the parabola $y^2 = 8\sqrt{3} x$ and the hyperbola $4x^2 - y^2 = 4$ is

(A)
$$y = \sqrt{6} x + \sqrt{2}$$

(B)
$$v = \sqrt{6} x - \sqrt{2}$$

(C)
$$v = \sqrt{3} x + \sqrt{2}$$

(D)
$$y = \sqrt{3} x - \sqrt{2}$$

 $y^2 = 8\sqrt{3}x$ অধিবৃত্তের $4x^2 - y^2 = 4$ পরাবৃত্তের ধনাত্ত্বক নতিবিশিষ্ট সাধারণ স্পর্শকের সমীকরণ হল

(A)
$$y = \sqrt{6} x + \sqrt{2}$$

(B)
$$y = \sqrt{6} x - \sqrt{2}$$

(C)
$$y = \sqrt{3} x + \sqrt{2}$$

(D)
$$y = \sqrt{3} x - \sqrt{2}$$

The point on the parabola $y^2 = 64 x$ which is nearest to the line 4x + 3y + 35 = 0 has 25. coordinates

(A)
$$(9, -24)$$

(C)
$$(4, -16)$$

(C)
$$(4, -16)$$
 (D) $(-9, -24)$

 $y^2=64\ x$ অধিবৃত্তের উপর অবস্থিত 4x+3y+35=0 সরলরেখার সর্বাপেক্ষা কাছের বিন্দুর স্থানাঙ্ক হল

(A)
$$(9, -24)$$

(C)
$$(4, -16)$$

(C)
$$(4,-16)$$
 (D) $(-9,-24)$

- 26. Let z_1, z_2 be two fixed complex numbers in the Argand plane and z be an arbitrary point satisfying $|z z_1| + |z z_2| = 2|z_1 z_2|$. Then the locus of z will be
 - (A) an ellipse
 - (B) a straight line joining z_1 and z_2
 - (C) a parabola
 - (D) a bisector of the line segment joining z_1 and z_2

ধরা যাক আরগ্যাণ্ড(Argand) তলের উপর অবস্থিত z_1,z_2 দুটি নির্দিষ্ট জটিল সংখ্যা এবং z যে কোন একটি বিন্দু যা $|z-z_1|+|z-z_2|=2|z_1-z_2|$ সমীকরণটিকে সিদ্ধ করে। তা হলে z বিন্দুর সঞ্চার পথ হবে

- (A) একটি উপবৃত্ত
- (B) z_1 এবং z_2 সংযোগকারী একটি সরলরেখা
- (C) একটি অধিবৃত্ত
- (D) z_1 এবং z_2 সংযোগকারী সরলরেখার একটি সমদ্বিখণ্ডক
- 27. The function $f(x) = \frac{\tan\left\{\pi\left[x \frac{\pi}{2}\right]\right\}}{2 + \left[x\right]^2}$, where [x] denotes the greatest integer $\le x$, is
 - (A) continuous for all values of x
 - (B) discontinuous at $x = \frac{\pi}{2}$
 - (C) not differentiable for some values of \boldsymbol{x}
 - (D) discontinuous at x = -2

$$f(x)=rac{ an\left\{\pi\left[x-rac{\pi}{2}
ight]
ight\}}{2+\left[x
ight]^2}$$
 অপেক্ষকটি, যেখানে $[x]$ গরিষ্ঠ অখন্ড সংখ্যা $\leq x$ নির্দেশ করে

- (A) x-এর সমস্ত মানের জন্য সন্তত
- (B) $x=\frac{\pi}{2}$ বিন্দুতে অসম্ভত
- (C) x-এর কিছু মানের জন্য অন্তরকলনযোগ্য নয়
- (D) x = -2 বিন্দুতে অসম্ভত

The function $f(x) = a \sin|x| + be^{|x|}$ is differentiable at x = 0 when

(A) 3a + b = 0 (B) 3a - b = 0 (C) a + b = 0 (D) a - b = 0

 $f(x)=a\sin|x|+be^{|x|}$ অপেক্ষকটি x=0 বিন্দুতে অন্তরকলনযোগ্য হবে যখন

(A) 3a + b = 0 (B) 3a - b = 0 (C) a + b = 0 (D) a - b = 0

29. If the coefficient of x^8 in $\left(ax^2 + \frac{1}{bx}\right)^{13}$ is equal to the coefficient of x^{-8} in $\left(ax - \frac{1}{bx^2}\right)^{13}$ then a and b will satisfy the relation

(A) ab + 1 = 0 (B) ab = 1

(C) a = 1 - b (D) a + b = -1

যদি $\left(ax^2+\frac{1}{hx}\right)^{13}$ -এর বিস্তারে x^8 -এর সহগ এবং $\left(ax-\frac{1}{hx^2}\right)^{13}$ -এর বিস্তারে x^{-8} -এর সহগ সমান হয়, তা হলে a এবং b যে সম্পর্কটি সিদ্ধ করে তা হল

(A) ab + 1 = 0 (B) ab = 1 (C) a = 1 - b (D) a + b = -1

30. If $I = \int_0^2 e^{x^4} (x - \alpha) dx = 0$, then α lies in the interval

(A)(0,2)

(B) (-1,0)

(C) (2,3) (D) (-2,-1)

যদি $I=\int_0^2 e^{x^4}(x-\alpha)dx=0$, তা হলে α -এর মান যে অন্তরে থাকে তা হল

(A)(0,2)

(B) (-1,0)

(C)(2,3)

(D) (-2, -1)

31. The solution of the differential equation $y \frac{dy}{dx} = x \left[\frac{y^2}{x^2} + \frac{\varphi(\frac{y^2}{x^2})}{\varphi'(\frac{y^2}{x^2})} \right]$ is (where c is a constant)

(A)
$$\varphi\left(\frac{y^2}{x^2}\right) = cx$$

(B)
$$x \varphi\left(\frac{y^2}{x^2}\right) = c$$

(C)
$$\varphi\left(\frac{y^2}{x^2}\right) = cx^2$$

(D)
$$x^2 \varphi\left(\frac{y^2}{x^2}\right) = c$$

 $y\frac{dy}{dx} = x\left[\frac{y^2}{x^2} + \frac{\varphi\left(\frac{y^2}{x^2}\right)}{\varphi_I\left(\frac{y^2}{x^2}\right)}\right]$ এই অন্তরকল সমীকরণের সমাধান (c একটি ধ্রুবক) হল

(A)
$$\varphi\left(\frac{y^2}{x^2}\right) = cx$$

(B)
$$x \varphi\left(\frac{y^2}{x^2}\right) = c$$

(C)
$$\varphi\left(\frac{y^2}{r^2}\right) = cx^2$$

(D)
$$x^2 \varphi\left(\frac{y^2}{x^2}\right) = c$$

32. Suppose that the equation $f(x) = x^2 + bx + c = 0$ has two distinct real roots α and β . The angle between the tangent to the curve y = f(x) at the point $\left(\frac{\alpha+\beta}{2}, f\left(\frac{\alpha+\beta}{2}\right)\right)$ and the positive direction of the x- axis is

$$(C) 60^{\circ}$$

ধরা যাক $f(x)=x^2+bx+c=0$ সমীকরণটির দুটি পৃথক বাস্তব বীজ α , β । y=f(x) বক্রবেখাটির $\left(\frac{\alpha+\beta}{2},f\left(\frac{\alpha+\beta}{2}\right)\right)$ বিন্দুতে স্পর্শক ও ধনাত্মক x-অক্ষের মধ্যে কোণের পরিমাপ

$$(D) 90^{\circ}$$

- 33. The function $f(x) = x^2 + bx + c$, where b and c real constants, describes
 - (A) one-to-one mapping

- (B) onto mapping
- (C) not one-to-one but onto mapping
- (D) neither one-to-one nor onto mapping

 $f(x) = x^2 + bx + c$ অপেক্ষটি(function), যেখানে b এবং c বাস্তব ধ্রুবক

- (A) একটি একৈক চিত্রণ(one-to-one mapping) নির্দেশ করে
- (B) একটি উপরিচিত্রণ(onto mapping) নির্দেশ করে
- (C) একৈক চিত্রণ নয় কিন্তু উপরিচিত্রন(not one-to-one but onto mapping) নির্দেশ করে
- (D) একৈক চিত্রণ বা উপরিচিত্রণ কোনটাই (neither one-to-one nor onto mapping) নির্দেশ করে না

- 34. Let $n \ge 2$ be an integer, $A = \begin{pmatrix} \cos(2\pi/n) & \sin(2\pi/n) & 0 \\ -\sin(2\pi/n) & \cos(2\pi/n) & 0 \\ 0 & 0 & 1 \end{pmatrix}$ and I is the identity matrix of order 3. Then
 - (A) $A^n = I$ and $A^{n-1} \neq I$
 - (B) $A^m \neq I$ for any positive integer m
 - (C) A is not invertible
 - (D) $A^m = 0$ for a positive integer m
 - $n \geq 2$ একটি পূর্ণসংখ্যা(integer), A= $\begin{pmatrix} \cos(2\pi/n) & \sin(2\pi/n) & 0 \\ -\sin(2\pi/n) & \cos(2\pi/n) & 0 \\ 0 & 0 & 1 \end{pmatrix}$ এবং I হল 3×3 একসম ম্যাট্রিক্স(identity matrix)। তা হলে
 - (A) $A^n = I$ এবং $A^{n-1} \neq I$
 - (B) m ধনাত্মক পূর্ণসংখ্যা হলে $A^m \neq I$
 - (C) A বিপরীতকরণযোগ্য (invertible) ম্যাট্রিক্স নয়
 - (D) কোন একটি ধনাত্মক পূর্ণসংখ্যা m এর জন্য $A^m=0$
- Ram is visiting a friend. Ram knows that his friend has 2 children and 1 of them is a boy. 35. Assuming that a child is equally likely to be a boy or a girl, then the probability that the other child is a girl, is
 - (A) 1/2
- (B) 1/3
- (C) 2/3
- (D) 7/10

রাম এক বন্ধুর বাড়ি যাবে। রাম জানে যে তার বন্ধুর দুই সন্তান এবং তাদের মধ্যে একজন অন্তত ছেলে। যদি ধরে নেওয়া হয় যে ছেলে অথবা মেয়ে জন্মানোর সম্ভাবনা সমান, তা হলে বন্ধুটির অন্য সন্তানটি মেয়ে হওয়ার সম্ভাবনা হল

- (A) 1/2
- (B) 1/3
- (C) 2/3
- (D) 7/10
- The value of the sum $("C_1)^2 + ("C_2)^2 + ("C_3)^2 + \cdots + ("C_n)^2$ is
 - (A) $\binom{2n}{n}^2$ (B) $\binom{2n}{n}$ (C) $\binom{2n}{n} \binom{n}{n} + 1$ (D) $\binom{2n}{n} \binom{n}{n} 1$

$$\left(\ ^{n}\ \mathrm{C}_{1} \right)^{2} + \left(\ ^{n}\ \mathrm{C}_{2} \right)^{2} + \left(\ ^{n}\ \mathrm{C}_{3} \right)^{2} + \cdots + \left(\ ^{n}\ \mathrm{C}_{n} \right)^{2}$$
-এর মান হল

- (A) $\binom{2n}{n}\binom{n}{n}^2$ (B) $\binom{2n}{n}\binom{n}{n}$ (C) $\binom{2n}{n}\binom{n}{n}+1$ (D) $\binom{2n}{n}\binom{n}{n}-1$

- 37. The remainder obtained when $1! + 2! + 3! + \cdots + 11!$ is divided by 12 is
 - (A)9

(B) 8

(C)7

- (D) 6
- 1! + 2! + 3! + ... + 11! -কে 12 দিয়ে ভাগ করলে ভাগশেষ হবে
- (A) 9

(B) 8

(C) 7

- (D) 6
- Out of 7 consonants and 4 vowels, the number of words (not necessarily meaningful) that 38. can be made, each consisting of 3 consonants and 2 vowels, is
 - (A) 24800
- (B) 25100
- (C) 25200
- (D) 25400
- 7 টি কন্সোন্যান্ট(consonant) এবং 4 টি ভাওয়েল(vowel) এর থেকে 3 টি কন্সোন্যান্ট (consonant) ও 2 টি ভাওয়েল(vowel) ব্যবহার করে যতগুলি শব্দ(অর্থপূর্ণ না হলেও চলবে) তৈরি করা যায়, তার সংখ্যা হল
- (A) 24800
- (B) 25100
- (C) 25200
- (D) 25400

- 39. Let $S = \frac{2}{1} {}^{n}C_{0} + \frac{2^{2}}{2} {}^{n}C_{1} + \frac{2^{3}}{3} {}^{n}C_{2} + ... + \frac{2^{n+1}}{n+1} {}^{n}C_{n}$. Then S equals
 - (A) $\frac{2^{n+1}-1}{n+1}$
- (B) $\frac{3^{n+1}-1}{n+1}$ (C) $\frac{3^{n}-1}{n}$
- (D) $\frac{2^{n}-1}{n}$
- ধরা যাক $S=rac{2}{1}$ " $C_0+rac{2^2}{2}$ " $C_1+rac{2^3}{3}$ " $C_2+...+rac{2^{n+1}}{n+1}$ " C_n । তা হলে S -এর মান হল
- (A) $\frac{2^{n+1}-1}{n+1}$ (B) $\frac{3^{n+1}-1}{n+1}$ (C) $\frac{3^{n}-1}{n}$
- (D) $\frac{2^{n}-1}{n}$

40. Let $\mathbb R$ be the set of all real numbers and $f\colon [-1,1] \to \mathbb R$ be defined by

$$f(x) = \begin{cases} x \sin\frac{1}{x}, & x \neq 0 \\ 0, & x = 0 \end{cases}.$$

Then

- (A) f satisfies the conditions of Rolle's theorem on [-1,1]
- (B) f satisfies the conditions of Lagrange's Mean Value Theorem on [-1,1]
- (C) f satisfies the conditions of Rolle's theorem on [0,1]
- (D) f satisfies the conditions of Lagrange's Mean Value Theorem on $\, [0,1] \,$

 $\mathbb R$ সমস্ত বাস্তব সংখ্যার সেট এবং $f\colon [-1,1] o \mathbb R$ একটি অপেক্ষক যার সংজ্ঞা হল

$$f(x) = \begin{cases} x \sin\frac{1}{x}, & x \neq 0 \\ 0, & x = 0 \end{cases}$$

সে ক্ষেত্রে

- (A) [-1,1] অন্তরালে f রোল-এর উপপাদ্য(Rolle's theorem)-এর শর্তগুলি সিদ্ধ করে
- (B) [-1,1] অন্তরালে f ল্যাগরাঞ্জের মধ্যমান উপপাদ্য(Lagrange's Mean Value Theorem) -এর শর্তগুলি সিদ্ধ করে
- (C) [0,1] অন্তরালে f রোল-এর উপপাদ্য(Rolle's theorem)-এর শর্তগুলি সিদ্ধ করে
- (D) [0,1] অন্তরালে f ল্যাগরাঞ্জের মধ্যমান উপপাদ্য(Lagrange's Mean Value Theorem)-এর শর্তগুলি সিদ্ধ করে
- 41. If a, b and c are positive numbers in a G.P., then the roots of the quadratic equation $(\log_e a) \ x^2 (2\log_e b) \ x + (\log_e c) = 0$ are

(A)
$$-1$$
 and $\frac{\log_e c}{\log_e a}$

(B) 1 and
$$-\frac{\log_e c}{\log_e a}$$

(C) 1 and
$$\log_a c$$

(D)
$$-1$$
 and $\log_c a$

 $a,\ b,\ c$ যদি গুণোত্তর প্রগতিভূক্ত হয়, তা হলে $(\log_e a)\ x^2-(2\log_e b)\ x+(\log_e c)=0$ দ্বিঘাত সমীকরণটির বীজগুলি হল

(A)
$$-1$$
 এবং $\frac{\log_e c}{\log_e a}$

(B) 1 এবং
$$-\frac{\log_e c}{\log_e a}$$

(C) 1 এবং
$$\log_a c$$

(D)
$$-1$$
 এবং $\log_c a$

42.	. There is a group of 265 persons who like either singing or dancing or painting. In this group 200 like singing, 110 like dancing and 55 like painting. If 60 persons like both singing and dancing, 30 like both singing and painting and 10 like all three activities, then the number of persons who like only dancing and painting is					
	(A) 10	(B) 20	(C) 30	(D) 40		
	110 জন নাচ পছন্দ কৰে	র, 55 জন আঁকা পছন্দ ক করে আর 10 জন তিনটি	কি পছশ্দ করে। এই দলে : চরে। যদি 60 জন গান এবং কলাই পছন্দ করে, তা হবে	200 জন গান পছন্দ করে, ং নাচ পছন্দ করে, 30 জন ব শুধুমাত্র নাচ এবং আঁকা		
	(A) 10	(B) 20	(C) 30	(D) 40		
43.	The range of the fund	$attion y = 3\sin\left(\sqrt{\frac{\pi^2}{16}} - \frac{1}{16}\right)$	(x^2) is			
	(A) $[0, \sqrt{3/2}]$	(B) [0, 1]	(C) $[0, 3/\sqrt{2}]$	(D) [0,∞)		
	$y=3\sin\left(\sqrt{rac{\pi^2}{16}-x^2} ight)$ অপেক্ষকটির প্রসার $({ m range})$ হল					
	(A) $[0, \sqrt{3/2}]$	(B) [O, 1]	(C) $[0, 3/\sqrt{2}]$	(D) [0,∞)		
44.	The value of $\lim_{x\to 0} \frac{\int_0^{x^2} c}{x}$	$\frac{\cos(t^2) dt}{\sin x}$ is				
	(A) 1	(B) -1	(C) 2	(D) log _e 2		
	$\lim_{x \to 0} \frac{\int_0^{x^2} \cos(t^2) dt}{x \sin x} - 4\overline{3}$	र्मान				
	(A) 1	(B) -1	(C) 2	(D) log _e 2		
45.	Let $f(x)$ be a differentiable function and $f'(4) = 5$. Then $\lim_{x \to 2} \frac{f(4) - f(x^2)}{x - 2}$ equals					
	(A) 0	(B) 5	(C) 20	(D) -20		
	f(x) একটি অন্তরকলন	যাগ্য অপেক্ষক এবং $f'(4)$	$= 5 + \odot i \ \text{ for } \lim_{x \to 2} \frac{f(4)}{x}$	- <u>f(x²)</u> -2 -এর মান হবে		
	(A) 0	(B) 5	(C) 20	(D) -20		

The sum of the series 46.

$$\sum_{n=1}^{\infty} \sin\left(\frac{n! \ \pi}{720}\right)$$

is

(A)
$$\sin\left(\frac{\pi}{180}\right) + \sin\left(\frac{\pi}{360}\right) + \sin\left(\frac{\pi}{540}\right)$$

(B)
$$\sin\left(\frac{\pi}{6}\right) + \sin\left(\frac{\pi}{30}\right) + \sin\left(\frac{\pi}{120}\right) + \sin\left(\frac{\pi}{360}\right)$$

(C)
$$\sin\left(\frac{\pi}{6}\right) + \sin\left(\frac{\pi}{30}\right) + \sin\left(\frac{\pi}{120}\right) + \sin\left(\frac{\pi}{360}\right) + \sin\left(\frac{\pi}{720}\right)$$

(D)
$$\sin\left(\frac{\pi}{180}\right) + \sin\left(\frac{\pi}{360}\right)$$

$$\displaystyle\sum_{n=1}^{\infty}\sin\left(rac{n!}{720}
ight)$$
এই অসীম শ্রেণীটির যোগফল হল

(A)
$$\sin\left(\frac{\pi}{180}\right) + \sin\left(\frac{\pi}{360}\right) + \sin\left(\frac{\pi}{540}\right)$$

(B)
$$\sin\left(\frac{\pi}{6}\right) + \sin\left(\frac{\pi}{30}\right) + \sin\left(\frac{\pi}{120}\right) + \sin\left(\frac{\pi}{360}\right)$$

(C)
$$\sin\left(\frac{\pi}{6}\right) + \sin\left(\frac{\pi}{30}\right) + \sin\left(\frac{\pi}{120}\right) + \sin\left(\frac{\pi}{360}\right) + \sin\left(\frac{\pi}{720}\right)$$

(D)
$$\sin\left(\frac{\pi}{180}\right) + \sin\left(\frac{\pi}{360}\right)$$

- Let I denote the 3×3 identity matrix and P be a matrix obtained by rearranging the 47. columns of I. Then
 - (A) there are six distinct choices for P and det(P) = 1
 - (B) there are six distinct choices for P and $det(P) = \pm 1$
 - (C) there are more than one choices for P and some of them are not invertible
 - (D) there are more than one choices for P and $P^{-1} = I$ in each choice

I যদি 3×3 একসম দ্যাট্রিক্স(identity matrix) হয় এবং P দ্যাট্রিক্স যদি I-এর স্তম্ভগুলির(columns)কোন একটি বিন্যাস(rearrangement/permutation)-এর ফলে সৃষ্ট হয় তাহলে

- (A) P-এর 6 টি ভিন্নরূপ সম্ভব এবং $\det(P)=1$
- (B) P-এর 6 টি ভিন্নরূপ সম্ভব এবং $\det(P)=\pm 1$
- (C) P-এর একাধিক রূপ সম্ভব এবং এদের মধ্যে কয়েকটি বিপরীতকরণযোগ্য (invertible) নয়
- (D) P-এর একাধিক রূপ সম্ভব এবং প্রত্যেক ক্ষেত্রে $P^{-1}=I$

- 48. The coefficient of x^3 in the infinite series expansion of $\frac{2}{(1-x)(2-x)}$ for |x| < 1, is
 - (A) -1/16
- (B) 15/8
- (C) 1/8
- (D) 15/16

যদি |x|<1 হয়, তবে $\frac{2}{(1-x)(2-x)}$ এর অসীম শ্রেণীর প্রকাশে x^3 -এর সহগ হবে

- (A) -1/16
- (B) 15/8
- (C) 1/8
- (D) 15/16
- 49. For every real number x, let $f(x) = \frac{x}{1!} + \frac{3}{2!}x^2 + \frac{7}{3!}x^3 + \frac{15}{4!}x^4 + \cdots$. Then the equation f(x) = 0 has
 - (A) no real solution
 - (B) exactly one real solution
 - (C) exactly two real solutions
 - (D) infinite number of real solutions

প্রত্যেক বাস্তব সংখ্যা x –এর জন্য $f(x)=\frac{x}{1!}+\frac{3}{2!}x^2+\frac{7}{3!}x^3+\frac{15}{4!}x^4+\cdots$ হলে f(x)=0 সমীকরণটির

- (A) কোন বাস্তব সমাধান(real solution)নেই
- (B) একটি এবং কেবলমাত্র একটি বাস্তব সমাধান আছে
- (C) দুটি এবং কেবলমাত্র দুটি বাস্তব সমাধান আছে
- (D) অসীম সংখ্যক বাস্তব সমাধান আছে
- 50. Let *S* denote the sum of the infinite series $1 + \frac{8}{2!} + \frac{21}{3!} + \frac{40}{4!} + \frac{65}{5!} + \cdots$. Then
 - (A) S < 8
- (B) S > 12
- (C) 8 < S < 12
- (D) S = 8

 $1 + \frac{8}{2!} + \frac{21}{3!} + \frac{40}{4!} + \frac{65}{5!} + \cdots$ এই অসীম শ্রেণীটির যোগফল S হলে

- (A) S < 8
- (B) S > 12
- (C) 8 < S < 12
- (D) S = 8

	$\lim_{n \to \infty} \frac{[n\sqrt{2}]}{n}$ is equal to				
	(A) 0	(B) 2	(C) √2	(D) 1	
	x যদি বাস্তব সংখ্যা হয়, $[x]$ হল বৃহত্তম পূর্ণসংখ্যা $(ext{greatest integer})$ যা x অপেক্ষা ছোট বা তার সমান। $\lim_{n o \infty} rac{[n\sqrt{2}]}{n}$ -এব মান হল				
	(A) 0	(B) 2	(C) √2	(D) 1	
52.	Suppose that $f(x)$ is a differentiable function such that $f'(x)$ is continuous, $f'(0) = 1$ and $f''(0)$ does not exist. Let $g(x) = xf'(x)$. Then				
	(A) $g'(0)$ does not exi (C) $g'(0) = 1$	st	(B) $g'(0) = 0$ (D) $g'(0) = 2$		
	ধরা যাক $f(x)$ এমন একটি অন্তরকলনযোগ্য (differentiable) অপেক্ষক(function) যে $f'(x)$ অপেক্ষকটি সন্তত $($ continuous $),$ $f'(0)=1$ এবং $f''(0)$ -র অস্তিত্ব নেই। $g(x)=xf'(x)$ হলে				
	(A) $g'(0)$ -র অস্তিত্ব নেই (C) $g'(0)=1$		(B) $g'(0) = 0$ (D) $g'(0) = 2$		
53.	Let z_1 be a fixed point on the circle of radius 1 centered at the origin in the Argand plane and $z_1 \neq \pm 1$. Consider an equilateral triangle inscribed in the circle with z_1 , z_2 , z_3 as the vertices taken in the counter clockwise direction. Then $z_1z_2z_3$ is equal to				
	(A) z_1^2	(B) z_1^3	(C) z_1^4	(D) Z ₁	
	ধরা যাক z_1 আরগ্যাণ্ড তলে $({ m Argand\ plane})$ একটি একক ব্যাসার্ধের বৃত্তের উপর অবস্থিত একটি স্থির বিন্দু যে বৃত্তের কেন্দ্র মূলবিন্দুতে এবং $z_1 eq \pm 1$ । উপর্যুক্ত বৃত্তের উপর ঘড়ির কাঁটার বিপরীতক্রমে অবস্থিত তিনটি বিন্দু z_1 , z_2 , z_3 একটি সমবাহু ত্রিভূজ গঠন করে। তা হলে $z_1z_2z_3$ -র মান হল				
	(A) z_1^2	(B) z_1^3	(C) z_1^4	(D) Z ₁	

M1 19/32

δ

51. Let [x] denote the greatest integer less than or equal to x for any real number x. Then

- 54. Suppose that z_1, z_2, z_3 are three vertices of an equilateral triangle in the Argand plane. Let $\alpha = \frac{1}{2}(\sqrt{3}+i)$ and β be a non-zero complex number. The points $\alpha z_1 + \beta$, $\alpha z_2 + \beta$, $\alpha z_3 + \beta$ will be
 - (A) the vertices of an equilateral triangle
 - (B) the vertices of an isosceles triangle
 - (C) collinear
 - (D) the vertices of a scalene triangle

ধরা যাক z_1,z_2,z_3 আরগ্যাণ্ড তলে(Argand plane) একটি সমবাহু ত্রিভুজের(equilateral triangle) তিনটি শীর্ষবিন্দু। যদি $\alpha=\frac{1}{2}(\sqrt{3}+i)$ এবং $\beta\neq 0$ একটি জটিল সংখ্যা হয়; সে ক্ষেত্রে $\alpha z_1+\beta$, $\alpha z_2+\beta$, $\alpha z_3+\beta$

- (A) একটি সমবাহু ত্রিভুজের তিনটি শীর্ষবিন্দু
- (B) একটি সমদ্বিবাহু(isosceles) ত্রিভুজের তিনটি শীর্ষবিন্দু
- (C) সমরেখ
- (D) একটি বিষমবাহু(scalene) ত্রিভুজের তিনটি শীর্ষবিন্দু
- 55. The curve $y = (\cos x + y)^{1/2}$ satisfies the differential equation

(A)
$$(2y-1)\frac{d^2y}{dx^2} + 2\left(\frac{dy}{dx}\right)^2 + \cos x = 0$$

(B)
$$\frac{d^2y}{dx^2} - 2y\left(\frac{dy}{dx}\right)^2 + \cos x = 0$$

(C)
$$(2y-1)\frac{d^2y}{dx^2} - 2\left(\frac{dy}{dx}\right)^2 + \cos x = 0$$

(D)
$$(2y-1)\frac{d^2y}{dx^2} - \left(\frac{dy}{dx}\right)^2 + \cos x = 0$$

 $y = (\cos x + y)^{-1/2}$ বক্রারেখাটি যে অন্তরকল সমীকরণটিকে সিদ্ধ করে সেটি হল

(A)
$$(2y-1)\frac{d^2y}{dx^2} + 2\left(\frac{dy}{dx}\right)^2 + \cos x = 0$$

(B)
$$\frac{d^2y}{dx^2} - 2y\left(\frac{dy}{dx}\right)^2 + \cos x = 0$$

(C)
$$(2y-1)\frac{d^2y}{dx^2} - 2\left(\frac{dy}{dx}\right)^2 + \cos x = 0$$

(D)
$$(2y-1)\frac{d^2y}{dx^2} - \left(\frac{dy}{dx}\right)^2 + \cos x = 0$$

	represent vertices of				
	(A) a square (C) a rhombus		(B) an equilateral triar (D) a rectangle	ngle	
	আরগ্যাণ্ড তলে (Argand plane) $1+z+z^3+z^4=0$ (z একটি জটিল সংখ্যা) সমীকরণের পৃথক বীজগুলি যে ক্ষেত্রের শীর্ষবিন্দু নির্দেশ করে, তা হল				
	(A) একটি বর্গক্ষেত্র (C) একটি রম্বস(rhombu	s)	(B) একটি সমবাহু ত্রিভুজ (D) একটি আয়তক্ষেত্র		
57.	7. In a $\triangle ABC$, α , b , c are the sides of the triangle opposite to the angles A , B , respectively. Then the value of $a^3\sin(B-C)+b^3\sin(C-A)+c^3\sin(A-B)$ is equal to				
	(A) 0	(B) 1	(C) 3	(D) 2	
	ABC ত্রিভুজের A , B , C কোণগুলির বিপরীত বাহুগুলি যথাক্রমে a , b , c । তা হলে $a^3 \sin(B-C)+b^3 \sin(C-A)+c^3 \sin(A-B)$ -র মান হবে				
	(A) 0	(B) 1	(C) 3	(D) 2	
58.	Let α, β be the roots of $x^2-x-1=0$ and $S_n=\alpha^n+\beta^n$, for all integers $n\geq 1$. Then for every integer $n\geq 2$,			integers $n \ge 1$. Then	
	(A) $S_n + S_{n-1} = S_{n+1}$ (C) $S_{n-1} = S_{n+1}$		(B) $S_n - S_{n-1} = S_{n+1}$ (D) $S_n + S_{n-1} = 2S_{n+1}$	-1	
	ধরা যাক $x^2-x-1=0$ সমীকরণের বীজগুলি $lpha,eta$ এবং সমস্ত অখণ্ড সংখ্যা $n\geq 1$ -এর জন $S_n=lpha^n+eta^n$ ৷ তা হলে অখণ্ড সংখ্যা $n\geq 2$ -এর সকল মানের জন্য			সংখ্যা $n \geq 1$ -এর জন্য	
	(A) $S_n + S_{n-1} = S_{n+1}$ (C) $S_{n-1} = S_{n+1}$		(B) $S_n - S_{n-1} = S_{n+1}$ (D) $S_n + S_{n-1} = 2S_{n+1}$		

56. In the Argand plane , the distinct roots of $1+z+z^3+z^4=0$ (z is a complex number)

59. A fair six-faced die is rolled 12 times. The probability that each face turns up twice is equal to

(A)
$$\frac{12!}{6!6! \, 6^{12}}$$

(B)
$$\frac{2^{12}}{2^6 6^{12}}$$

(C)
$$\frac{12!}{2^6 6^{12}}$$

(D)
$$\frac{12!}{6^2 6^{12}}$$

একটি পক্ষপাতশূন্য লুডোর ছক্কাকে 12 বার খেলা হল। তা হলে প্রত্যেকটি তল 2 বার করে দেখা যাওঁয়ার সম্ভাবনা হল

(A)
$$\frac{12!}{6!6! 6^{12}}$$

(B)
$$\frac{2^{12}}{2^6 6^{12}}$$

(C)
$$\frac{12!}{2^6 6^{12}}$$

(D)
$$\frac{12!}{6^2 6^{12}}$$

60. If α , β are the roots of the quadratic equation $x^2 + px + q = 0$, then the values of $\alpha^3 + \beta^3$ and $\alpha^4 + \alpha^2\beta^2 + \beta^4$ are respectively

(A)
$$3pq - p^3$$
 and $p^4 - 3p^2q + 3q^2$

(B)
$$-p(3q-p^2)$$
 and $(p^2-q)(p^2+3q)$

(C)
$$pq - 4$$
 and $p^4 - q^4$

(D)
$$3pq - p^3$$
 and $(p^2 - q)(p^2 - 3q)$

 $x^2+px+q=0$ দ্বিঘাত সমীকরণের বীজগুলি যদি α এবং β হয়, তা হলে $\alpha^3+\beta^3$ এবং $\alpha^4+\alpha^2\beta^2+\beta^4$ –এর মানগুলি যথাক্রমে হল

(A)
$$3pq - p^3$$
 এবং $p^4 - 3p^2q + 3q^2$

(B) –
$$p(3q-p^2)$$
 এবং $(p^2-q)(p^2+3q)$

(C)
$$pq - 4$$
 এবং $p^4 - q^4$

(D)
$$3pq - p^3$$
 এবং $(p^2 - q)(p^2 - 3q)$

Category - II

Q.61 to Q.75 carry two marks each, for which only one option is correct. Any wrong answer will lead to deduction of 2/3 mark.

61. The solution of the differential equation

$$\frac{dy}{dx} + \frac{y}{x \log_e x} = \frac{1}{x}$$

under the condition y = 1 when x = e is

(A)
$$2y = \log_e x + \frac{1}{\log_e x}$$

(B)
$$y = \log_e x + \frac{2}{\log_e x}$$

(C)
$$y \log_e x = \log_e x + 1$$

(D)
$$y = \log_e x + e$$

$$\frac{dy}{dx} + \frac{y}{x \log_e x} = \frac{1}{x}$$
 জন্তরকল সমীকরণটির সমাধান, $y = 1$ যখন $x = e$ শর্তাধীনে হল

(A)
$$2y = \log_e x + \frac{1}{\log_e x}$$

(B)
$$y = \log_e x + \frac{2}{\log_e x}$$

(C)
$$y \log_e x = \log_e x + 1$$

(D)
$$y = \log_e x + e$$

- 62. Let $f(x) = \max\{x + |x|, x [x]\}$, where [x] denotes the greatest integer $\leq x$. Then the value of $\int_{-3}^{3} f(x) dx$ is
 - (A) 0

- (B) 51/2
- (C) 21/2
- (D) 1

ধরা যাক $f(x)=\max\{x+|x|,x-[x]\}$, যেখানে [x] গরিষ্ঠ অখণ্ড সংখ্যা যার মান x-এর চেয়ে ছোট বা সমান । তা হলে $\int_{-3}^3 f(x) dx$ এর মান হল

(A) 0

- (B) 51/2
- (C) 21/2
- (D) 1

- 63. Let $X_n = \left\{z = x + iy : |z|^2 \le \frac{1}{n}\right\}$ for all integers $n \ge 1$. Then $\bigcap_{n=1}^{\infty} X_n$ is
 - (A) a singleton set
 - (B) not a finite set
 - (C) an empty set
 - (D) a finite set with more than one elements
 - $n\geq 1$ পূর্ণসংখ্যার জন্য $X_n=\left\{z=x+iy:\;|z|^2\leq rac{1}{n}
 ight\}$ হলে $\bigcap_{n=1}^\infty X_n$
 - (A) সেট-এ উপাদানের(element) সংখ্যা এক
 - (B) সেটটি একটি সসীম সেট নয়
 - (C) সেটটি শুন্য সেট
 - (D) সেট-এ উপাদানের সংখ্যা সসীম কিন্তু একাধিক
- Applying Lagrange's Mean Value Theorem for a suitable function f(x) in [0, h], we have $f(h) = f(0) + hf'(\theta h), \ 0 < \theta < 1$. Then for $f(x) = \cos x$, the value of

- İS
- (A) 1 (B) 0
- (C) 1/2
- (D) 1/3
- [0, h] অন্তরালে উপযুক্ত অপেক্ষক f(x)-এর উপর ল্যাগরাঞ্জের(Lagrange's) মধ্যম মান উপপাদ্য প্রয়োগ করে পাই $f(h)=f(0)+hf'(\theta h),\ 0<\theta<1$ । তা হলে $f(x)=\cos x$ -এর জন্য $\lim_{h\to 0^+}\theta$

-র মান হল

(A) 1

(B) 0

- (C) 1/2
- (D) 1/3
- The equation of hyperbola whose coordinates of the foci are $(\pm 8,0)$ and the length of 65. latus rectum is 24 units, is
 - (A) $3x^2 y^2 = 48$ (C) $x^2 3y^2 = 48$

(B) $4x^2 - y^2 = 48$ (D) $x^2 - 4y^2 = 48$

যে পরাবৃত্তের নাভিদ্বয়ের স্থানাঙ্ক $(\pm 8,0)$ এবং নাভিলন্ধের দৈর্ঘ্য 24 একক, তার সমীকরণ হল

(A) $3x^2 - y^2 = 48$

(C) $x^2 - 3y^2 = 48$

(B) $4x^2 - y^2 = 48$ (D) $x^2 - 4y^2 = 48$

- 66. A student answers a multiple choice question with 5 alternatives, of which exactly one is correct. The probability that he knows the correct answer is p, 0 . If he does notknow the correct answer, he randomly ticks one answer. Given that he has answered the question correctly, the probability that he did not tick the answer randomly, is
 - (A) $\frac{3p}{4n+3}$
- (B) $\frac{5p}{3p+2}$
- (C) $\frac{5p}{4n+1}$
- (D) $\frac{4p}{3p+1}$

একটি প্রশ্নের পাঁচটি সম্ভাব্য উত্তর আছে, যার একটি সঠিক। একটি ছাত্রের প্রশুটির সঠিক উত্তর জানার সম্ভাবনা হল $p,\ 0 । সে যদি সঠিক উত্তরটি না জানে, তা হলে সে যদৃচ্ছভাবে একটি উত্তরে$ টিকচিহ্ন দেবে। দেখা গেল যে ছাত্রটির প্রদত্ত উত্তর সঠিক। সে ক্ষেত্রে সে যে সঠিক উত্তর জেনে টিকচিহ্ন দিয়েছে, সেই ঘটনার সম্ভাবনা হল

- (A) $\frac{3p}{4p+3}$
- (B) $\frac{5p}{3p+2}$ (C) $\frac{5p}{4p+1}$ (D) $\frac{4p}{3p+1}$

67.
$$\cos \frac{2\pi}{7} + \cos \frac{4\pi}{7} + \cos \frac{6\pi}{7}$$

(A) is equal to zero

(B) lies between 0 and 3

(C) is a negative number

(D) lies between 3 and 6

$$\cos\frac{2\pi}{7} + \cos\frac{4\pi}{7} + \cos\frac{6\pi}{7}$$
 - এর মান

(A) 0

(B) 0 ও 3 এর মধ্যে থাকবে

(C) একটি ঋণাত্মক সংখ্যা

(D) 3 ও 6 এর মধ্যে থাকবে

68. Suppose $M = \int_0^{\pi/2} \frac{\cos x}{x+2} dx$, $N = \int_0^{\pi/4} \frac{\sin x \cos x}{(x+1)^2} dx$. Then the value of (M-N) equals

- (A) $\frac{3}{\pi + 2}$

- (B) $\frac{2}{\pi-4}$ (C) $\frac{4}{\pi-2}$ (D) $\frac{2}{\pi+4}$

ধরা যাক $M=\int_0^{\pi/2} \frac{\cos x}{x+2} \ dx$, $N=\int_0^{\pi/4} \frac{\sin x \ \cos x}{(x+1)^2} \ dx$ । তা হলে (M-N) -এর মান হবে

- (A) $\frac{3}{\pi + 2}$
- (B) $\frac{2}{\pi 4}$
- (C) $\frac{4}{\pi-2}$
- (D) $\frac{2}{\pi + 4}$

- 69. For any two real numbers θ and φ , we define $\theta R \varphi$ if and only if $sec^2\theta tan^2\varphi = 1$. The relation R is
 - (A) reflexive but not transitive
 - (B) symmetric but not reflexive
 - (C) both reflexive and symmetric but not transitive
 - (D) an equivalence relation

যে কোন দুটি বাস্তব সংখ্যা θ এবং φ -এর জন্য, ধরা যাক $\theta R \varphi$ যদি এবং কেবলমাত্র যদি $\sec^2 \theta - \tan^2 \varphi = 1$ হয়। তা হলে R সম্বন্ধটি (relation)

- (A) স্বসম(reflexive) কিন্তু সংক্রমণ(transitive) নয়
- (B) প্রতিসম(symmetric) কিন্তু স্বসম(reflexive) নয়
- (C) স্বসম(reflexive) এবং প্রতিসম(symmetric) কিন্তু সংক্রমণ(transitive) নয়
- (D) একটি সমতুল্যতা(equivalence)
- 70. The minimum value of $2^{\sin x} + 2^{\cos x}$ is
 - (A) $2^{1-1/\sqrt{2}}$
- (B) $2^{1+1/\sqrt{2}}$
- (C) $2^{\sqrt{2}}$
- (D) 2

 $2^{\sin x} + 2^{\cos x}$ অপেক্ষকটির লঘিষ্ঠ মান হল

- (A) $2^{1-1/\sqrt{2}}$
- (B) $2^{1+1/\sqrt{2}}$
- (C) $2^{\sqrt{2}}$
- (D) 2
- 71. We define a binary relation \sim on the set of all 3×3 real matrices as $A \sim B$ if and only if there exist invertible matrices P and Q such that $B = PAQ^{-1}$. The binary relation \sim is
 - (A) neither reflexive nor symmetric
 - (B) reflexive and symmetric but not transitive
 - (C) symmetric and transitive but not reflexive
 - (D) an equivalence relation

সকল 3×3 বাস্তব ম্যাট্রিক্স -এর $(3 \times 3 \text{ real matrices})$ সেটের উপর একটি সম্বন্ধ (relation) নিম্ন রূপ:

A \sim B হবে যদি এবং কেবলমাত্র যদি দুটি বিপরীতকরণ যোগ্য (Invertible) ম্যাট্রিক্স P,Q পাওয়া যায় যাদের জন্য B=PA Q^{-1} সিদ্ধ হয়। সম্বন্ধ (relation) \sim টি হল

- (A) স্বসম(reflexive) বা প্রতিসম(symmetric) কোনটাই নয়
- (৪) স্থসম(reflexive) এবং প্রতিসম(symmetric) কিন্তু সংক্রমণ(transitive) নয়
- (C) প্রতিসম(symmetric) এবং সংক্রেমণ(transitive) কিন্তু স্বসম(reflexive) নয়
- (D) একটি সমতুল্যতা(equivalence relation)

72. Let α, β denote the cube roots of unity other than 1 and $\alpha \neq \beta$. Let

$$s = \sum_{n=0}^{302} (-1)^n \left(\frac{\alpha}{\beta}\right)^n.$$

Then the value of s is

(A) either -2ω or $-2\omega^2$

(B) either -2ω or $2\omega^2$

(C) either 2ω or $-2\omega^2$

(D) either 2ω or $2\omega^2$

 α, β হল 1-এর দুটি পৃথক ঘনমূল যারা কেউই 1 নয়।

$$s = \sum_{n=0}^{302} (-1)^n \left(\frac{\alpha}{\beta}\right)^n$$

হলে s-এর মান হল

(A) $-2\omega \operatorname{d} = -2\omega^2$

(B) -2ω বা $2\omega^2$

(C) $2\omega \text{ at } -2\omega^2$

- (D) 2ω at $2\omega^2$
- 73. Let t_n denote the *n*th term of the infinite series $\frac{1}{1!} + \frac{10}{2!} + \frac{21}{3!} + \frac{34}{4!} + \frac{49}{5!} + \cdots$ Then $\lim_{n\to\infty} t_n$ is
 - (A) e
- (B) 0

- (C) e^2
- (D) 1

 $\frac{1}{1!}+\frac{10}{2!}+\frac{21}{3!}+\frac{34}{4!}+\frac{49}{5!}+\cdots$ এই অসীম শ্রেণীটির n-তম পদ t_n হলে, $\frac{lim}{n\to\infty}$ t_n হবে

- (A) e
- (B) 0

- (C) e^2
- (D) 1
- 74. A particle starting from a point A and moving with a positive constant acceleration along a straight line reaches another point B in time T. Suppose that the initial velocity of the particle is u > 0 and P is the midpoint of the line AB. If the velocity of the particle at point P is v_1 and if the velocity at time $\frac{T}{2}$ is v_2 , then
 - (A) $v_1 = v_2$
- (B) $v_1 > v_2$ (C) $v_1 < v_2$
- (D) $v_1 = \frac{1}{2}v_2$

একটি কণা AB সরলরেখা বরাবর ধনাত্মক প্রবত্বরণে (positive constant acceleration) A বিন্দু খেকে B বিন্দুতে যায় T সময়ে। ধরা যাক কণাটির প্রারম্ভিক গতিবেগ u>0 এবং AB সরলরেখার মধ্যবিন্দু P। কণাটির গতিবেগ P বিন্দুতে v_1 এবং $\frac{r}{2}$ সময়ে v_2 হলে

- (A) $v_1 = v_2$
- (B) $v_1 > v_2$
- (C) $v_1 < v_2$
- (D) $v_1 = \frac{1}{2}v_2$

75. A poker hand consists of 5 cards drawn at random from a well-shuffled pack of 52 cards. Then the probability that a poker hand consists of a pair and a triple of equal face values (for example, 2 sevens and 3 kings or 2 aces and 3 queens, etc.) is

(A) $\frac{6}{4165}$

(B) $\frac{23}{4165}$

(C) $\frac{1797}{4165}$

(D) $\frac{1}{4165}$

52 টি তাসের একটি ভালভাবে মিগ্রিত প্যাকেট থেকে 5 টি তাস যদৃচ্ছভাবে তুললে পাওয়া যায় 'পোকার' খেলার একটি হাত। একটি পোকার খেলার হাতে তিনটি তাসের তলের মান সমান এবং বাকি দুটি তাসের তলের মানও সমান (যেমন 2 টি সাত আর 3 টি সাহেব অথবা 2 টি টেক্কা আর 3 টি বিবি), এই ঘটনার সম্ভাবনা হল

(A) $\frac{6}{4165}$

(B) $\frac{23}{4165}$

(C) $\frac{1797}{4165}$

(D) $\frac{1}{4165}$

Category - III

Q.76 to Q.80 carry two marks each, for which one or more than one options may be correct. Marking of correct options will lead to a maximum mark of two on pro rata basis. There will be no negative marking for these questions. However, any marking of wrong option will lead to award of zero mark against the respective question – irrespective of the number of correct options marked.

76. If u(x) and v(x) are two independent solutions of the differential equation

$$\frac{d^2y}{dx^2} + b\frac{dy}{dx} + cy = 0,$$

then additional solution(s) of the given differential equation is(are)

(A) y = 5 u(x) + 8 v(x)

- (B) $y = c_1\{u(x) v(x)\} + c_2 \ v(x)$, c_1 and c_2 are arbitrary constants
- (C) $y=c_1~u(x)~v(x)~+c_2~u(x)/v(x)$, $c_1~{\rm and}~c_2~{\rm are~arbitrary~constants}$
- (D) y = u(x) v(x)

যদি $\frac{d^2y}{dx^2}+b\frac{dy}{dx}+cy=0$ অন্তরকল সমীকরণটির দুটি স্বাধীন সমাধান u(x) এবং v(x) হয়, তা হলে প্রদত্ত অন্তরকল সমীকরণটির এ ছাড়াও সমাধান হবে

(A) y = 5 u(x) + 8 v(x)

- (B) $y=c_1\{u(x)-v(x)\}\ +c_2\ v(x)$, c_1 এবং c_2 যে কোন শ্রুবক
- (C) $y = c_1 u(x) v(x) + c_2 u(x)/v(x)$, c_1 এবং c_2 যে কোন ধ্রুবক
- (D) y = u(x) v(x)

77. The angle of intersection between the curves $y = [|\sin x| + |\cos x|]$ and $x^2 + y^2 = 10$, where [x] denotes the greatest integer $\le x$, is

(A)
$$tan^{-1} 3$$

(B)
$$tan^{-1}(-3)$$

(C)
$$\tan^{-1} \sqrt{3}$$

(D)
$$\tan^{-1}(1/\sqrt{3})$$

 $y = [|\sin x| + |\cos x|]$ এবং $x^2 + y^2 = 10$ বক্ররেখাদ্বয়ের ছেদ বিন্দুতে কোণের পরিমাপ হল(যেখানে [x] হল গরিষ্ঠ অখন্ড সংখ্যা যার মান x-এর চেয়ে ছোট বা সমান)

(A)
$$tan^{-1} 3$$

(B)
$$tan^{-1}(-3)$$

(C)
$$\tan^{-1} \sqrt{3}$$

(D)
$$\tan^{-1}(1/\sqrt{3})$$

78. Let
$$f(x) = \begin{cases} \int_0^x |1-t| \ dt, & x > 1 \\ x - \frac{1}{2}, & x \le 1 \end{cases}$$
.

Then

- (A) f(x) is continuous at x = 1
- (B) f(x) is not continuous at x = 1
- (C) f(x) is differentiable at x = 1
- (D) f(x) is not differentiable at x = 1

ধরা যাক
$$f(x) = \begin{cases} \int_0^x |1-t| \ dt, & x > 1 \\ x - \frac{1}{2}, & x \le 1 \end{cases}$$
 । তা হলে

- (A) f(x) অপেক্ষকটি x=1 বিন্দুতে সন্তত
- (B) f(x) অপেক্ষকটি x=1 বিন্দুতে সন্তত নয়
- (C) f(x) অপেক্ষকটি x=1 বিন্দুতে অন্তরকলনযোগ্য
- (D) f(x) অপেক্ষকটি x=1 বিন্দুতে অন্তরকলনযোগ্য নয়

79. If the circle $x^2 + y^2 + 2gx + 2fy + c = 0$ cuts the three circles $x^2 + y^2 - 5 = 0$, $x^2 + y^2 - 8x - 6y + 10 = 0$ and $x^2 + y^2 - 4x + 2y - 2 = 0$ at the extremities of their diameters, then

(A)
$$c = -5$$

(B)
$$fg = 147/25$$

(C)
$$g + 2f = c + 2$$

(D)
$$4f = 3g$$

ধরা যাক $x^2+y^2+2gx+2fy+c=0$ বৃত্তটি $x^2+y^2-5=0$, $x^2+y^2-8x-6y+10=0$ এবং $x^2+y^2-4x+2y-2=0$ বৃত্ত তিনটিকে তাদের ব্যাসার্ধের প্রান্তবিন্দৃতে ছেদ করে। তা হলে

(A)
$$c = -5$$

(B)
$$fg = 147/25$$

(C)
$$g + 2f = c + 2$$

(D)
$$4f = 3g$$

80. For two events A and B, let P(A) = 0.7 and P(B) = 0.6. The necessarily false statement(s) is/are

(A)
$$P(A \cap B) = 0.35$$

(B)
$$P(A \cap B) = 0.45$$

(c)
$$P(A \cap B) = 0.65$$

(D)
$$P(A \cap B) = 0.28$$

দুটি ঘটনা A ও B ঘটার সম্ভাবনা যথাক্রমে P(A)=0.7 এবং P(B)=0.6। তা হলে অবশ্যই দিথ্যা উক্তি(গুলি) হল

(A)
$$P(A \cap B) = 0.35$$

(B)
$$P(A \cap B) = 0.45$$

(C)
$$P(A \cap B) = 0.65$$

(D)
$$P(A \cap B) = 0.28$$

END OF THE QUESTION PAPER

Space for Rough Work

δ

N=S

M-2014

Subject: Mathematics

Duration: Two Hours Maximum Marks: 100

নির্দেশাবলী

- 1. সমস্ত প্রশুই বস্তুধর্মী (objective)।
- 2. প্রশ্নমালাটিতে তিন প্রকারের(Category) প্রশ্ন আছে।
 - প্রকার I: প্রশ্ন 1 থেকে প্রঃ 60 প্রতিটি প্রশ্নে 1 নম্বর আছে এবং এই প্রশ্নগুলির মাত্র একটি করে উত্তর সঠিক
 - প্রকার II : প্রঃ 61 থেকে প্রঃ 75 প্রতিটি প্রশ্নে 2 নম্বর আছে এবং এই প্রশ্নগুলির মাত্র একটি করে উত্তর সঠিক
 - প্রকার III : প্রঃ 76 থেকে প্রঃ 80 প্রতিটি প্রশ্নে 2 নম্বর আছে এবং এই প্রশ্নগুলির একাধিক উত্তর সঠিক হতে পারে
- 3. প্রকার । এবং প্রকার ।। -তে ভুল উত্তরের জন্য নম্বর কাটা যাবে। প্রকার । -এর প্রতিটি ভুল উত্তরের জন্য 1/3 নম্বর বাদ যাবে এবং প্রকার ॥ -এর প্রতিটি ভুল উত্তরের জন্য 2/3 নম্বর বাদ যাবে।
- 4. প্রকার III -তে ভুল উত্তরের জন্য নম্বর কাটা যাবেনা। সঠিক উত্তরসমূহের জন্য আনুপাতিক হারে সর্বাধিক 2 নম্বর দেওয়া হবে। কিন্তু কোন প্রশ্নে ভুল উত্তর দিলে যতোগুলি সঠিক উত্তরই করা হোক না কেন, ওই প্রশ্নে প্রাপ্ত নম্বর হবে শূন্য।
- 5. OMR পত্রে প্রতিটি প্রশ্নের নম্বরের ডানপাশে A, B, C, D চিহ্নিত ক্ষেত্রগুলিকে গাঢ় করে ওই প্রশ্নের উত্তর দিতে হবে।
- 6. প্রতিটি OMR উত্তরপত্র যন্ত্রে পাঠ করা হবে। যদি উত্তরপত্র ভাঁজ করা হয় বা তাতে অপ্রয়োজনীয় দাগ দেওয়া হয় অথবা সেটি অসম্পূর্ণ/অযথার্থ ভাবে লেখা হয় তবে উত্তরপত্র বাতিল করা হবে। সে জন্য একমাত্র পরিক্ষার্থীই দায়ী থাকবে।
- 7. কোন প্রশ্নের উত্তর না দিলে ওই প্রশ্নে শূন্য নম্বর দেওয়া হবে। প্রকার I বা II -তে কোন প্রশ্নের একাধিক উত্তর ভুল উত্তর বলে গণ্য হবে এবং নিয়মানুসারে পরিক্ষার্থীর নম্বর কাটা হবে।
- 8. শুধুমাত্র OMR পত্রের নির্দিষ্ট স্থানে নিজের ক্রমিক সংখ্যা(roll number), নাম এবং প্রশ্নপত্রের সংখ্যা(question booklet number) লিখবে।
- 9. উত্তর নির্দেশ করতে শুধুমাত্র কালো/নীল বল পয়েশ্ট কলম দিয়ে চিহ্নিত ক্ষেত্রকে সম্পূর্ণভাবে ভরাট করবে।
- 10. মোবাইল ফোন, ক্যালকুলেটর, স্লাইডরুল, লগটেব্ল্, গণনাক্ষম ইলেকট্রনিক ঘড়ি, রেখাচিত্র, গ্রাফ বা কোন ধরণের তালিকা পরীক্ষা কক্ষে আনা যাবে না। আনলে সেটি বাজেয়াপ্ত হবে এবং পরীক্ষার্থীর ওই পরীক্ষা বাতিল করা হবে।
- 11. উত্তর কখনোই যথাস্থানে ভিন্ন অন্য কোথাও দেবে না।
- 12. প্রশ্নপত্রের শেষে রাফ কাজ করার জন্য ফাঁকা জায়গা দেওয়া আছে। অন্য কোন কাগজ এই কাজে ব্যবহার করবে না।
- 13. এই প্রশ্নপত্রটিতে মোট 32 টি পাতা আছে। পাতার সংখ্যায় কোন গরমিল আছে কি না দেখে নেবে।
- 14. পরীক্ষাকক্ষ ছাভার আগে OMR পত্র অবশ্যই পরিদর্শককে দিয়ে যাবে।