27/01/2018 HackerRank

Points: 373.91 Rank: 16576

Dashboard > Data Structures > Trees > Is This a Binary Search Tree?

Is This a Binary Search Tree? ■

For the purposes of this challenge, we define a binary tree to be a binary search tree with the following ordering requirements:

- The *data* value of every node in a node's left subtree is *less than* the data value of that node.
- The data value of every node in a node's right subtree is greater than the data value of that node.

Given the root node of a binary tree, can you determine if it's also a binary search tree?

Complete the function in your editor below, which has **1** parameter: a pointer to the root of a binary tree. It must return a *boolean* denoting whether or not the binary tree is a binary search tree. You may have to write one or more helper functions to complete this challenge.

Input Format

You are not responsible for reading any input from stdin. Hidden code stubs will assemble a binary tree and pass its root node to your function as an argument.

Constraints

• $0 \le data \le 10^4$

Output Format

You are not responsible for printing any output to stdout. Your function must return *true* if the tree is a binary search tree; otherwise, it must return *false*. Hidden code stubs will print this result as a *Yes* or *No* answer on a new line.

Sample Input

Sample Output

No

27/01/2018 HackerRank

f ⊌ in

```
Current Buffer (saved locally, editable) & 49
                                                                                            Python 3
                                                                                                                              *
 1 """ Node is defined as
 2 ▼ class node:
 3 ▼
     def __init__(self, data):
 4
          self.data = data
 5
          self.left = None
 6
          self.right = None
 7
 8 ▼ def check(root,minvalue,maxvalue):
         if root==None:
 9 ₹
10
            return True
         if root.data>minvalue and root.data<maxvalue and check(root.left,minvalue,root.data) and
    check(root.right,root.data,maxvalue):
12
            return True
13 ▼
         else:
14
             return False
15 ▼ def check_binary_search_tree_(root):
        return check(root,-1,100000)
16
                                                                                                                   Line: 14 Col: 21
<u>♣ Upload Code as File</u> Test against custom input
                                                                                                         Run Code
                                                                                                                      Submit Code
```

Testcase 0 ✓

Congratulations, you passed the sample test case.

Click the Submit Code button to run your code against all the test cases.

Input (stdin)

2
1 2 3 4 5 6 7

Your Output (stdout)

Yes

Expected Output

Yes

27/01/2018 HackerRank

Contest Calendar | Blog | Scoring | Environment | FAQ | About Us | Support | Careers | Terms Of Service | Privacy Policy | Request a Feature