

The error function obeys the mirror symmetry:

```
>>> from sympy import conjugate
>>> conjugate(erf2(x, y))
erf2(conjugate(x), conjugate(y))
```

Differentiation with respect to x, y is supported:

```
>>> from sympy import diff
>>> diff(erf2(x, y), x)
-2*exp(-x**2)/sqrt(pi)
>>> diff(erf2(x, y), y)
2*exp(-y**2)/sqrt(pi)
```

See also:

erf (page 471)

Gaussian error function.

erfc (page 473)

Complementary error function.

erfi (page 474)

Imaginary error function.

erfinv (page 477)

Inverse error function.

erfcinv (page 478)

Inverse Complementary error function.

erf2inv (page 479)

Inverse two-argument error function.

References

[R352]

class sympy.functions.special.error_functions.erfinv(z)

Inverse Error Function. The erfinv function is defined as:

$$\operatorname{erf}(x) = y \implies \operatorname{erfinv}(y) = x$$

Examples

```
>>> from sympy import erfinv
>>> from sympy.abc import x
```

Several special values are known:

```
>>> erfinv(0)
0
>>> erfinv(1)
00
```

Differentiation with respect to x is supported:

```
>>> from sympy import diff
>>> diff(erfinv(x), x)
sqrt(pi)*exp(erfinv(x)**2)/2
```

We can numerically evaluate the inverse error function to arbitrary precision on [-1, 1]:

```
>>> erfinv(0.2).evalf(30)
0.179143454621291692285822705344
```

See also:

erf (page 471)

Gaussian error function.

erfc (page 473)

Complementary error function.

erfi (page 474)

Imaginary error function.

erf2 (page 476)

Two-argument error function.

erfcinv (page 478)

Inverse Complementary error function.

erf2inv (page 479)

Inverse two-argument error function.

References

[R353], [R354]

inverse(argindex=1)

Returns the inverse of this function.

class sympy.functions.special.error functions.erfcinv(z)

Inverse Complementary Error Function. The erfcinv function is defined as:

$$\operatorname{erfc}(x) = y \implies \operatorname{erfcinv}(y) = x$$

Examples

```
>>> from sympy import erfcinv
>>> from sympy.abc import x
```

Several special values are known:

```
>>> erfcinv(1)
0
>>> erfcinv(0)
00
```


Differentiation with respect to x is supported:

```
>>> from sympy import diff
>>> diff(erfcinv(x), x)
-sqrt(pi)*exp(erfcinv(x)**2)/2
```

See also:

erf (page 471)

Gaussian error function.

erfc (page 473)

Complementary error function.

erfi (page 474)

Imaginary error function.

erf2 (page 476)

Two-argument error function.

erfinv (page 477)

Inverse error function.

erf2inv (page 479)

Inverse two-argument error function.

References

```
[R355], [R356]
```

inverse(argindex=1)

Returns the inverse of this function.

class sympy.functions.special.error_functions.**erf2inv**(x, y)

Two-argument Inverse error function. The erf2inv function is defined as:

$$\operatorname{erf2}(x, w) = y \Rightarrow \operatorname{erf2inv}(x, y) = w$$

Examples

```
>>> from sympy import erf2inv, oo
>>> from sympy.abc import x, y
```

Several special values are known:

```
>>> erf2inv(0, 0)
0
>>> erf2inv(1, 0)
1
>>> erf2inv(0, 1)
00
>>> erf2inv(0, y)
erfinv(y)
>>> erf2inv(oo, y)
erfcinv(-y)
```

Differentiation with respect to x and y is supported:

```
>>> from sympy import diff
>>> diff(erf2inv(x, y), x)
exp(-x**2 + erf2inv(x, y)**2)
>>> diff(erf2inv(x, y), y)
sqrt(pi)*exp(erf2inv(x, y)**2)/2
```

See also:

erf (page 471)

Gaussian error function.

erfc (page 473)

Complementary error function.

erfi (page 474)

Imaginary error function.

erf2 (page 476)

Two-argument error function.

erfinv (page 477)

Inverse error function.

erfcinv (page 478)

Inverse complementary error function.

References

[R357]

class sympy.functions.special.error_functions.FresnelIntegral(z)

Base class for the Fresnel integrals.

 ${\bf class} \ {\bf sympy.functions.special.error_functions.fresnels}(z)$

Fresnel integral S.

Explanation

This function is defined by

$$\mathsf{S}(z) = \int_0^z \sin\frac{\pi}{2} t^2 \mathsf{d}t.$$

It is an entire function.

Examples

```
>>> from sympy import I, oo, fresnels
>>> from sympy.abc import z
```

Several special values are known:

```
>>> fresnels(0)
0
>>> fresnels(oo)
1/2
>>> fresnels(-oo)
-1/2
>>> fresnels(I*oo)
-I/2
>>> fresnels(-I*oo)
I/2
```

In general one can pull out factors of -1 and i from the argument:

```
>>> fresnels(-z)
-fresnels(z)
>>> fresnels(I*z)
-I*fresnels(z)
```

The Fresnel S integral obeys the mirror symmetry $S(z) = S(\bar{z})$:

```
>>> from sympy import conjugate
>>> conjugate(fresnels(z))
fresnels(conjugate(z))
```

Differentiation with respect to z is supported:

```
>>> from sympy import diff
>>> diff(fresnels(z), z)
sin(pi*z**2/2)
```

Defining the Fresnel functions via an integral:

```
>>> from sympy import integrate, pi, sin, expand_func
>>> integrate(sin(pi*z**2/2), z)
3*fresnels(z)*gamma(3/4)/(4*gamma(7/4))
>>> expand_func(integrate(sin(pi*z**2/2), z))
fresnels(z)
```

We can numerically evaluate the Fresnel integral to arbitrary precision on the whole complex plane:

```
>>> fresnels(2).evalf(30)
0.343415678363698242195300815958
```

```
>>> fresnels(-2*I).evalf(30)
0.343415678363698242195300815958*I
```

See also:

fresnelc (page 482)

Fresnel cosine integral.

References

```
[R358], [R359], [R360], [R361], [R362]
class sympy.functions.special.error_functions.fresnelc(z)
    Fresnel integral C.
```

Explanation

This function is defined by

$$C(z) = \int_0^z \cos \frac{\pi}{2} t^2 dt.$$

It is an entire function.

Examples

```
>>> from sympy import I, oo, fresnelc
>>> from sympy.abc import z
```

Several special values are known:

```
>>> fresnelc(0)
0
>>> fresnelc(oo)
1/2
>>> fresnelc(-oo)
-1/2
>>> fresnelc(I*oo)
I/2
>>> fresnelc(-I*oo)
-I/2
```

In general one can pull out factors of -1 and i from the argument:

```
>>> fresnelc(-z)
-fresnelc(z)
>>> fresnelc(I*z)
I*fresnelc(z)
```

The Fresnel C integral obeys the mirror symmetry $\overline{C(z)} = C(\overline{z})$:

```
>>> from sympy import conjugate
>>> conjugate(fresnelc(z))
fresnelc(conjugate(z))
```

Differentiation with respect to z is supported:


```
>>> from sympy import diff
>>> diff(fresnelc(z), z)
cos(pi*z**2/2)
```

Defining the Fresnel functions via an integral:

```
>>> from sympy import integrate, pi, cos, expand_func
>>> integrate(cos(pi*z**2/2), z)
fresnelc(z)*gamma(1/4)/(4*gamma(5/4))
>>> expand_func(integrate(cos(pi*z**2/2), z))
fresnelc(z)
```

We can numerically evaluate the Fresnel integral to arbitrary precision on the whole complex plane:

```
>>> fresnelc(2).evalf(30)
0.488253406075340754500223503357
```

```
>>> fresnelc(-2*I).evalf(30)
-0.488253406075340754500223503357*I
```

See also:

fresnels (page 480)

Fresnel sine integral.

References

[R363], [R364], [R365], [R366], [R367]

Exponential, Logarithmic and Trigonometric Integrals

class sympy.functions.special.error_functions.Ei(z) The classical exponential integral.

Explanation

For use in SymPy, this function is defined as

$$\mathrm{Ei}(x) = \sum_{n=1}^{\infty} \frac{x^n}{n \, n!} + \log(x) + \gamma,$$

where γ is the Euler-Mascheroni constant.

If x is a polar number, this defines an analytic function on the Riemann surface of the logarithm. Otherwise this defines an analytic function in the cut plane $\mathbb{C} \setminus (-\infty, 0]$.

Background

The name exponential integral comes from the following statement:

$$\mathrm{Ei}(x) = \int_{-\infty}^{x} \frac{e^t}{t} \mathrm{d}t$$

If the integral is interpreted as a Cauchy principal value, this statement holds for x > 0 and $\mathrm{Ei}(x)$ as defined above.

Examples

```
>>> from sympy import Ei, polar_lift, exp_polar, I, pi
>>> from sympy.abc import x
```

```
>>> Ei(-1)
Ei(-1)
```

This yields a real value:

```
>>> Ei(-1).n(chop=True)
-0.219383934395520
```

On the other hand the analytic continuation is not real:

```
>>> Ei(polar_lift(-1)).n(chop=True)
-0.21938393439552 + 3.14159265358979*I
```

The exponential integral has a logarithmic branch point at the origin:

```
>>> Ei(x*exp_polar(2*I*pi))
Ei(x) + 2*I*pi
```

Differentiation is supported:

```
>>> Ei(x).diff(x)
exp(x)/x
```

The exponential integral is related to many other special functions. For example:

```
>>> from sympy import expint, Shi
>>> Ei(x).rewrite(expint)
-expint(1, x*exp_polar(I*pi)) - I*pi
>>> Ei(x).rewrite(Shi)
Chi(x) + Shi(x)
```

See also:

expint (page 485)

Generalised exponential integral.

E1 (page 487)

Special case of the generalised exponential integral.

li (page 487)

Logarithmic integral.

Li (page 489)

Offset logarithmic integral.

Si (page 491)

Sine integral.

Ci (page 492)

Cosine integral.

Shi (page 494)

Hyperbolic sine integral.

Chi (page 495)

Hyperbolic cosine integral.

uppergamma (page 466)

Upper incomplete gamma function.

References

[R368], [R369], [R370]

class sympy.functions.special.error_functions.**expint**(nu, z) Generalized exponential integral.

Explanation

This function is defined as

$$E_{\nu}(z) = z^{\nu-1}\Gamma(1-\nu, z),$$

where $\Gamma(1-\nu,z)$ is the upper incomplete gamma function (uppergamma).

Hence for z with positive real part we have

$$\mathsf{E}_{\nu}(z) = \int_{1}^{\infty} \frac{e^{-zt}}{t^{\nu}} \mathsf{d}t,$$

which explains the name.

The representation as an incomplete gamma function provides an analytic continuation for $E_{\nu}(z)$. If ν is a non-positive integer, the exponential integral is thus an unbranched function of z, otherwise there is a branch point at the origin. Refer to the incomplete gamma function documentation for details of the branching behavior.

Examples

```
>>> from sympy import expint, S
>>> from sympy.abc import nu, z
```

Differentiation is supported. Differentiation with respect to z further explains the name: for integral orders, the exponential integral is an iterated integral of the exponential function.

```
>>> expint(nu, z).diff(z)
-expint(nu - 1, z)
```

Differentiation with respect to ν has no classical expression:

```
>>> expint(nu, z).diff(nu)
-z**(nu - 1)*meijerg(((), (1, 1)), ((0, 0, 1 - nu), ()), z)
```

At non-postive integer orders, the exponential integral reduces to the exponential function:

```
>>> expint(0, z)
exp(-z)/z
>>> expint(-1, z)
exp(-z)/z + exp(-z)/z**2
```

At half-integers it reduces to error functions:

```
>>> expint(S(1)/2, z)
sqrt(pi)*erfc(sqrt(z))/sqrt(z)
```

At positive integer orders it can be rewritten in terms of exponentials and expint(1, z). Use expand_func() to do this:

```
>>> from sympy import expand_func
>>> expand_func(expint(5, z))
z**4*expint(1, z)/24 + (-z**3 + z**2 - 2*z + 6)*exp(-z)/24
```

The generalised exponential integral is essentially equivalent to the incomplete gamma function:

```
>>> from sympy import uppergamma
>>> expint(nu, z).rewrite(uppergamma)
z**(nu - 1)*uppergamma(1 - nu, z)
```

As such it is branched at the origin:

```
>>> from sympy import exp_polar, pi, I
>>> expint(4, z*exp_polar(2*pi*I))
I*pi*z**3/3 + expint(4, z)
>>> expint(nu, z*exp_polar(2*pi*I))
z**(nu - 1)*(exp(2*I*pi*nu) - 1)*gamma(1 - nu) + expint(nu, z)
```

See also:

Ei (page 483)

Another related function called exponential integral.

E1 (page 487)

The classical case, returns expint(1, z).

li (page 487)

Logarithmic integral.

Li (page 489)

Offset logarithmic integral.

Si (page 491)

Sine integral.

Ci (page 492)

Cosine integral.


```
Shi (page 494)
```

Hyperbolic sine integral.

Chi (page 495)

Hyperbolic cosine integral.

uppergamma (page 466)

References

```
[R371], [R372], [R373]
```

sympy.functions.special.error_functions. $\mathbf{E1}(z)$

Classical case of the generalized exponential integral.

Explanation

This is equivalent to expint (1, z).

Examples

```
>>> from sympy import E1
>>> E1(0)
expint(1, 0)
```

```
>>> E1(5)
expint(1, 5)
```

See also:

Ei (page 483)

Exponential integral.

expint (page 485)

Generalised exponential integral.

li (page 487)

Logarithmic integral.

Li (page 489)

Offset logarithmic integral.

Si (page 491)

Sine integral.

Ci (page 492)

Cosine integral.

Shi (page 494)

Hyperbolic sine integral.

Chi (page 495)

Hyperbolic cosine integral.

class sympy.functions.special.error_functions.li(z) The classical logarithmic integral.

Explanation

For use in SymPy, this function is defined as

$$\mathrm{li}(x) = \int_0^x \frac{1}{\log(t)} \mathrm{d}t \,.$$

Examples

```
>>> from sympy import I, oo, li
>>> from sympy.abc import z
```

Several special values are known:

```
>>> li(0)
0
>>> li(1)
-00
>>> li(00)
00
```

Differentiation with respect to z is supported:

```
>>> from sympy import diff
>>> diff(li(z), z)
1/log(z)
```

Defining the li function via an integral: >> from sympy import integrate >>> integrate(li(z)) z*li(z) - Ei(2*log(z))

```
>>> integrate(li(z),z)
z*li(z) - Ei(2*log(z))
```

The logarithmic integral can also be defined in terms of Ei:

```
>>> from sympy import Ei
>>> li(z).rewrite(Ei)
Ei(log(z))
>>> diff(li(z).rewrite(Ei), z)
1/log(z)
```

We can numerically evaluate the logarithmic integral to arbitrary precision on the whole complex plane (except the singular points):

```
>>> li(2).evalf(30)
1.04516378011749278484458888919
```

```
>>> li(2*I).evalf(30)
1.0652795784357498247001125598 + 3.08346052231061726610939702133*I
```


We can even compute Soldner's constant by the help of mpmath:

```
>>> from mpmath import findroot
>>> findroot(li, 2)
1.45136923488338
```

Further transformations include rewriting li in terms of the trigonometric integrals Si, Ci, Shi and Chi:

See also:

Li (page 489)

Offset logarithmic integral.

Ei (page 483)

Exponential integral.

expint (page 485)

Generalised exponential integral.

E1 (page 487)

Special case of the generalised exponential integral.

Si (page 491)

Sine integral.

Ci (page 492)

Cosine integral.

Shi (page 494)

Hyperbolic sine integral.

Chi (page 495)

Hyperbolic cosine integral.

References

```
[R374], [R375], [R376], [R377]
```

class sympy.functions.special.error_functions.Li(z)

The offset logarithmic integral.

Explanation

For use in SymPy, this function is defined as

$$\operatorname{Li}(x) = \operatorname{li}(x) - \operatorname{li}(2)$$

Examples

```
>>> from sympy import Li
>>> from sympy.abc import z
```

The following special value is known:

```
>>> Li(2)
0
```

Differentiation with respect to *z* is supported:

```
>>> from sympy import diff
>>> diff(Li(z), z)
1/log(z)
```

The shifted logarithmic integral can be written in terms of li(z):

```
>>> from sympy import li
>>> Li(z).rewrite(li)
li(z) - li(2)
```

We can numerically evaluate the logarithmic integral to arbitrary precision on the whole complex plane (except the singular points):

```
>>> Li(2).evalf(30)
```

```
>>> Li(4).evalf(30)
1.92242131492155809316615998938
```

See also:

li (page 487)

Logarithmic integral.

Ei (page 483)

Exponential integral.

expint (page 485)

Generalised exponential integral.

E1 (page 487)

Special case of the generalised exponential integral.

Si (page 491)

Sine integral.

Ci (page 492)

Cosine integral.

Shi (page 494)

Hyperbolic sine integral.

Chi (page 495)

Hyperbolic cosine integral.

References

```
[R378], [R379], [R380]
```

class sympy.functions.special.error_functions.Si(z) Sine integral.

Explanation

This function is defined by

$$\operatorname{Si}(z) = \int_0^z \frac{\sin t}{t} \mathrm{d}t.$$

It is an entire function.

Examples

```
>>> from sympy import Si
>>> from sympy.abc import z
```

The sine integral is an antiderivative of sin(z)/z:

```
>>> Si(z).diff(z)
sin(z)/z
```

It is unbranched:

```
>>> from sympy import exp_polar, I, pi
>>> Si(z*exp_polar(2*I*pi))
Si(z)
```

Sine integral behaves much like ordinary sine under multiplication by I:

```
>>> Si(I*z)
I*Shi(z)
>>> Si(-z)
-Si(z)
```

It can also be expressed in terms of exponential integrals, but beware that the latter is branched:

```
>>> from sympy import expint
>>> Si(z).rewrite(expint)
-I*(-expint(1, z*exp_polar(-I*pi/2))/2 +
        expint(1, z*exp_polar(I*pi/2))/2) + pi/2
```

It can be rewritten in the form of sinc function (by definition):

```
>>> from sympy import sinc
>>> Si(z).rewrite(sinc)
Integral(sinc(t), (t, 0, z))
```

See also:

Ci (page 492)

Cosine integral.

Shi (page 494)

Hyperbolic sine integral.

Chi (page 495)

Hyperbolic cosine integral.

Ei (page 483)

Exponential integral.

expint (page 485)

Generalised exponential integral.

sinc (page 394)

unnormalized sinc function

E1 (page 487)

Special case of the generalised exponential integral.

li (page 487)

Logarithmic integral.

Li (page 489)

Offset logarithmic integral.

References

[R381]

class sympy.functions.special.error_functions.Ci(z) Cosine integral.

Explanation

This function is defined for positive x by

$$\operatorname{Ci}(x) = \gamma + \log x + \int_0^x \frac{\cos t - 1}{t} dt = -\int_x^\infty \frac{\cos t}{t} dt,$$

where γ is the Euler-Mascheroni constant.

We have

$$Ci(z) = -\frac{E_1(e^{i\pi/2}z) + E_1(e^{-i\pi/2}z)}{2}$$

which holds for all polar z and thus provides an analytic continuation to the Riemann surface of the logarithm.

The formula also holds as stated for $z \in \mathbb{C}$ with $\Re(z) > 0$. By lifting to the principal branch, we obtain an analytic function on the cut complex plane.

Examples

```
>>> from sympy import Ci
>>> from sympy.abc import z
```

The cosine integral is a primitive of $\cos(z)/z$:

```
>>> Ci(z).diff(z)
cos(z)/z
```

It has a logarithmic branch point at the origin:

```
>>> from sympy import exp_polar, I, pi
>>> Ci(z*exp_polar(2*I*pi))
Ci(z) + 2*I*pi
```

The cosine integral behaves somewhat like ordinary cos under multiplication by *i*:

```
>>> from sympy import polar_lift
>>> Ci(polar_lift(I)*z)
Chi(z) + I*pi/2
>>> Ci(polar_lift(-1)*z)
Ci(z) + I*pi
```

It can also be expressed in terms of exponential integrals:

```
>>> from sympy import expint
>>> Ci(z).rewrite(expint)
-expint(1, z*exp_polar(-I*pi/2))/2 - expint(1, z*exp_polar(I*pi/2))/2
```

See also:

Si (page 491)

Sine integral.

Shi (page 494)

Hyperbolic sine integral.

Chi (page 495)

Hyperbolic cosine integral.

Ei (page 483)

Exponential integral.

expint (page 485)

Generalised exponential integral.

E1 (page 487)

Special case of the generalised exponential integral.

li (page 487)

Logarithmic integral.

Li (page 489)

Offset logarithmic integral.

References

[R382]

class sympy.functions.special.error_functions. $\mathbf{Shi}(z)$ Sinh integral.

Explanation

This function is defined by

$$\mathrm{Shi}(z) = \int_0^z \frac{\sinh t}{t} \mathrm{d}t.$$

It is an entire function.

Examples

```
>>> from sympy import Shi
>>> from sympy.abc import z
```

The Sinh integral is a primitive of sinh(z)/z:

```
>>> Shi(z).diff(z)
sinh(z)/z
```

It is unbranched:

```
>>> from sympy import exp_polar, I, pi
>>> Shi(z*exp_polar(2*I*pi))
Shi(z)
```

The sinh integral behaves much like ordinary sinh under multiplication by *i*:

```
>>> Shi(I*z)
I*Si(z)
>>> Shi(-z)
-Shi(z)
```

It can also be expressed in terms of exponential integrals, but beware that the latter is branched:

```
>>> from sympy import expint
>>> Shi(z).rewrite(expint)
expint(1, z)/2 - expint(1, z*exp_polar(I*pi))/2 - I*pi/2
```

See also:

Si (page 491) Sine integral.

Ci (page 492)

Cosine integral.

Chi (page 495)

Hyperbolic cosine integral.

Ei (page 483)

Exponential integral.

expint (page 485)

Generalised exponential integral.

E1 (page 487)

Special case of the generalised exponential integral.

li (page 487)

Logarithmic integral.

Li (page 489)

Offset logarithmic integral.

References

[R383]

class sympy.functions.special.error_functions.Chi(z) Cosh integral.

Explanation

This function is defined for positive *x* by

$$\operatorname{Chi}(x) = \gamma + \log x + \int_0^x \frac{\cosh t - 1}{t} dt,$$

where γ is the Euler-Mascheroni constant.

We have

$$\mathrm{Chi}(z) = \mathrm{Ci}\left(e^{i\pi/2}z\right) - i\frac{\pi}{2},$$

which holds for all polar z and thus provides an analytic continuation to the Riemann surface of the logarithm. By lifting to the principal branch we obtain an analytic function on the cut complex plane.

Examples

The cosh integral is a primitive of $\cosh(z)/z$:

```
>>> Chi(z).diff(z)
cosh(z)/z
```

It has a logarithmic branch point at the origin:

```
>>> from sympy import exp_polar, I, pi
>>> Chi(z*exp_polar(2*I*pi))
Chi(z) + 2*I*pi
```

The cosh integral behaves somewhat like ordinary cosh under multiplication by i:

```
>>> from sympy import polar_lift
>>> Chi(polar_lift(I)*z)
Ci(z) + I*pi/2
>>> Chi(polar_lift(-1)*z)
Chi(z) + I*pi
```

It can also be expressed in terms of exponential integrals:

```
>>> from sympy import expint
>>> Chi(z).rewrite(expint)
-expint(1, z)/2 - expint(1, z*exp_polar(I*pi))/2 - I*pi/2
```

See also:

Si (page 491)

Sine integral.

Ci (page 492)

Cosine integral.

Shi (page 494)

Hyperbolic sine integral.

Ei (page 483)

Exponential integral.

expint (page 485)

Generalised exponential integral.

E1 (page 487)

Special case of the generalised exponential integral.

li (page 487)

Logarithmic integral.

Li (page 489)

Offset logarithmic integral.

References

[R384]

Bessel Type Functions

class sympy.functions.special.bessel.BesselBase(nu, z)

Abstract base class for Bessel-type functions.

This class is meant to reduce code duplication. All Bessel-type functions can 1) be differentiated, with the derivatives expressed in terms of similar functions, and 2) be rewritten in terms of other Bessel-type functions.

Here, Bessel-type functions are assumed to have one complex parameter.

To use this base class, define class attributes $_a$ and $_b$ such that $2*F_n' = -_a*F_{n+1} + b*F_{n-1}$.

property argument

The argument of the Bessel-type function.

property order

The order of the Bessel-type function.

class sympy.functions.special.bessel.besselj(nu, z)

Bessel function of the first kind.

Explanation

The Bessel J function of order ν is defined to be the function satisfying Bessel's differential equation

$$z^{2} \frac{d^{2}w}{dz^{2}} + z \frac{dw}{dz} + (z^{2} - \nu^{2})w = 0,$$

with Laurent expansion

$$J_{\nu}(z) = z^{\nu} \left(\frac{1}{\Gamma(\nu+1)2^{\nu}} + O(z^2) \right),$$

if ν is not a negative integer. If $\nu = -n \in \mathbb{Z}_{\leq 0}$ is a negative integer, then the definition is

$$J_{-n}(z) = (-1)^n J_n(z).$$

Examples

Create a Bessel function object:

```
>>> from sympy import besselj, jn
>>> from sympy.abc import z, n
>>> b = besselj(n, z)
```

Differentiate it:

```
>>> b.diff(z)
besselj(n - 1, z)/2 - besselj(n + 1, z)/2
```

Rewrite in terms of spherical Bessel functions:

```
>>> b.rewrite(jn)
sqrt(2)*sqrt(z)*jn(n - 1/2, z)/sqrt(pi)
```

Access the parameter and argument:

```
>>> b.order
n
>>> b.argument
z
```

See also:

bessely (page 498), besseli (page 499), besselk (page 499)

References

```
[R385], [R386], [R387], [R388]
```

class sympy.functions.special.bessel.bessely(nu, z)
Bessel function of the second kind.

Explanation

The Bessel Y function of order ν is defined as

$$Y_{\nu}(z) = \lim_{\mu \to \nu} \frac{J_{\mu}(z)\cos(\pi\mu) - J_{-\mu}(z)}{\sin(\pi\mu)},$$

where $J_{\mu}(z)$ is the Bessel function of the first kind.

It is a solution to Bessel's equation, and linearly independent from J_{ν} .

Examples

```
>>> from sympy import bessely, yn
>>> from sympy.abc import z, n
>>> b = bessely(n, z)
>>> b.diff(z)
bessely(n - 1, z)/2 - bessely(n + 1, z)/2
>>> b.rewrite(yn)
sqrt(2)*sqrt(z)*yn(n - 1/2, z)/sqrt(pi)
```

See also:

besselj (page 497), besseli (page 499), besselk (page 499)

References

[R389]

class sympy.functions.special.bessel.besseli(nu, z) Modified Bessel function of the first kind.

Explanation

The Bessel *I* function is a solution to the modified Bessel equation

$$z^{2} \frac{d^{2}w}{dz^{2}} + z \frac{dw}{dz} + (z^{2} + \nu^{2})^{2}w = 0.$$

It can be defined as

$$I_{\nu}(z) = i^{-\nu} J_{\nu}(iz),$$

where $J_{\nu}(z)$ is the Bessel function of the first kind.

Examples

```
>>> from sympy import besseli
>>> from sympy.abc import z, n
>>> besseli(n, z).diff(z)
besseli(n - 1, z)/2 + besseli(n + 1, z)/2
```

See also:

besselj (page 497), bessely (page 498), besselk (page 499)

References

[R390]

class sympy.functions.special.bessel.besselk(nu, z) Modified Bessel function of the second kind.

Explanation

The Bessel K function of order ν is defined as

$$K_{\nu}(z) = \lim_{\mu \rightarrow \nu} \frac{\pi}{2} \frac{I_{-\mu}(z) - I_{\mu}(z)}{\sin(\pi \mu)}, \label{eq:Knu}$$

where $I_{\mu}(z)$ is the modified Bessel function of the first kind.

It is a solution of the modified Bessel equation, and linearly independent from Y_{ν} .

Examples

```
>>> from sympy import besselk
>>> from sympy.abc import z, n
>>> besselk(n, z).diff(z)
-besselk(n - 1, z)/2 - besselk(n + 1, z)/2
```

See also:

besselj (page 497), besseli (page 499), bessely (page 498)

References

[R391]

class sympy.functions.special.bessel.hankel1(nu, z)
Hankel function of the first kind.

Explanation

This function is defined as

$$H_{\nu}^{(1)} = J_{\nu}(z) + iY_{\nu}(z),$$

where $J_{\nu}(z)$ is the Bessel function of the first kind, and $Y_{\nu}(z)$ is the Bessel function of the second kind.

It is a solution to Bessel's equation.

Examples

```
>>> from sympy import hankel1
>>> from sympy.abc import z, n
>>> hankel1(n, z).diff(z)
hankel1(n - 1, z)/2 - hankel1(n + 1, z)/2
```

See also:

hankel2 (page 500), besselj (page 497), bessely (page 498)

References

[R392]

class sympy.functions.special.bessel.hankel2(nu, z)
Hankel function of the second kind.

Explanation

This function is defined as

$$H_{\nu}^{(2)} = J_{\nu}(z) - iY_{\nu}(z),$$

where $J_{\nu}(z)$ is the Bessel function of the first kind, and $Y_{\nu}(z)$ is the Bessel function of the second kind.

It is a solution to Bessel's equation, and linearly independent from $H_{\nu}^{(1)}$.

Examples

```
>>> from sympy import hankel2
>>> from sympy.abc import z, n
>>> hankel2(n, z).diff(z)
hankel2(n - 1, z)/2 - hankel2(n + 1, z)/2
```

See also:

hankel1 (page 500), besselj (page 497), bessely (page 498)

References

[R393]

class sympy.functions.special.bessel.jn(nu, z) Spherical Bessel function of the first kind.

Explanation

This function is a solution to the spherical Bessel equation

$$z^{2} \frac{d^{2}w}{dz^{2}} + 2z \frac{dw}{dz} + (z^{2} - \nu(\nu + 1))w = 0.$$

It can be defined as

$$j_{\nu}(z) = \sqrt{\frac{\pi}{2z}} J_{\nu + \frac{1}{2}}(z),$$

where $J_{\nu}(z)$ is the Bessel function of the first kind.

The spherical Bessel functions of integral order are calculated using the formula:

$$j_n(z) = f_n(z)\sin z + (-1)^{n+1}f_{-n-1}(z)\cos z,$$

where the coefficients $f_n(z)$ are available as sympy.polys.orthopolys. spherical_bessel_fn() (page 2441).

Examples

```
>>> from sympy import Symbol, jn, sin, cos, expand_func, bessely, bessely
>>> z = Symbol("z")
>>> nu = Symbol("nu", integer=True)
>>> print(expand_func(jn(0, z)))
sin(z)/z
>>> expand_func(jn(1, z)) == sin(z)/z**2 - cos(z)/z
True
>>> expand_func(jn(3, z))
(-6/z**2 + 15/z**4)*sin(z) + (1/z - 15/z**3)*cos(z)
>>> jn(nu, z).rewrite(besselj)
sqrt(2)*sqrt(pi)*sqrt(1/z)*besselj(nu + 1/2, z)/2
>>> jn(nu, z).rewrite(bessely)
(-1)**nu*sqrt(2)*sqrt(pi)*sqrt(1/z)*bessely(-nu - 1/2, z)/2
>>> jn(2, 5.2+0.3j).evalf(20)
0.099419756723640344491 - 0.054525080242173562897*I
```

See also:

besselj (page 497), bessely (page 498), besselk (page 499), yn (page 502)

References

[R394]

class sympy.functions.special.bessel.yn(nu, z) Spherical Bessel function of the second kind.

Explanation

This function is another solution to the spherical Bessel equation, and linearly independent from j_n . It can be defined as

$$y_{\nu}(z) = \sqrt{\frac{\pi}{2z}} Y_{\nu + \frac{1}{2}}(z),$$

where $Y_{\nu}(z)$ is the Bessel function of the second kind.

For integral orders n, y_n is calculated using the formula:

$$y_n(z) = (-1)^{n+1} j_{-n-1}(z)$$

Examples

```
>>> from sympy import Symbol, yn, sin, cos, expand_func, bessely
>>> z = Symbol("z")
>>> nu = Symbol("nu", integer=True)
>>> print(expand_func(yn(0, z)))
-cos(z)/z
>>> expand_func(yn(1, z)) == -cos(z)/z**2-sin(z)/z
```

(continues on next page)

(continued from previous page)

```
True
>>> yn(nu, z).rewrite(besselj)
(-1)**(nu + 1)*sqrt(2)*sqrt(pi)*sqrt(1/z)*besselj(-nu - 1/2, z)/2
>>> yn(nu, z).rewrite(bessely)
sqrt(2)*sqrt(pi)*sqrt(1/z)*bessely(nu + 1/2, z)/2
>>> yn(2, 5.2+0.3j).evalf(20)
0.18525034196069722536 + 0.014895573969924817587*I
```

See also:

```
besselj (page 497), bessely (page 498), besselk (page 499), jn (page 501)
```

References

```
[R395]
```

sympy.functions.special.bessel. $jn_zeros(n, k, method='sympy', dps=15)$ Zeros of the spherical Bessel function of the first kind.

Parameters

n : integer
 order of Bessel function

k: integer number of zeros to return

Explanation

This returns an array of zeros of jn up to the k-th zero.

- method = "sympy": uses mpmath.besseljzero
- method = "scipy": uses the SciPy's sph_jn and newton to find all roots, which is faster than computing the zeros using a general numerical solver, but it requires SciPy and only works with low precision floating point numbers. (The function used with method="sympy" is a recent addition to mpmath; before that a general solver was used.)

Examples

```
>>> from sympy import jn_zeros
>>> jn_zeros(2, 4, dps=5)
[5.7635, 9.095, 12.323, 15.515]
```

See also:

```
jn (page 501), yn (page 502), besselj (page 497), besselk (page 499), bessely
(page 498)
```

class sympy.functions.special.bessel.marcumq(m, a, b)

The Marcum Q-function.

Explanation

The Marcum Q-function is defined by the meromorphic continuation of

$$Q_m(a,b) = a^{-m+1} \int_b^\infty x^m e^{-\frac{a^2}{2} - \frac{x^2}{2}} I_{m-1}(ax) \ dx$$

Examples

```
>>> from sympy import marcumq
>>> from sympy.abc import m, a, b
>>> marcumq(m, a, b)
marcumq(m, a, b)
```

Special values:

```
>>> marcumq(m, 0, b)
uppergamma(m, b**2/2)/gamma(m)
>>> marcumq(0, 0, 0)
0
>>> marcumq(0, a, 0)
1 - exp(-a**2/2)
>>> marcumq(1, a, a)
1/2 + exp(-a**2)*besseli(0, a**2)/2
>>> marcumq(2, a, a)
1/2 + exp(-a**2)*besseli(0, a**2)/2 + exp(-a**2)*besseli(1, a**2)
```

Differentiation with respect to a and b is supported:

```
>>> from sympy import diff
>>> diff(marcumq(m, a, b), a)
a*(-marcumq(m, a, b) + marcumq(m + 1, a, b))
>>> diff(marcumq(m, a, b), b)
-a**(1 - m)*b**m*exp(-a**2/2 - b**2/2)*besseli(m - 1, a*b)
```

References

[R396], [R397]

Airy Functions

```
class sympy.functions.special.bessel.AiryBase(*args)
```

Abstract base class for Airy functions.

This class is meant to reduce code duplication.

```
class sympy.functions.special.bessel.airyai(arg)
```

The Airy function Ai of the first kind.

Explanation

The Airy function Ai(z) is defined to be the function satisfying Airy's differential equation

$$\frac{\mathrm{d}^2 w(z)}{\mathrm{d}z^2} - zw(z) = 0.$$

Equivalently, for real z

$$\operatorname{Ai}(z) := \frac{1}{\pi} \int_0^\infty \cos\left(\frac{t^3}{3} + zt\right) dt.$$

Examples

Create an Airy function object:

```
>>> from sympy import airyai
>>> from sympy.abc import z
```

```
>>> airyai(z)
airyai(z)
```

Several special values are known:

```
>>> airyai(0)
3**(1/3)/(3*gamma(2/3))
>>> from sympy import oo
>>> airyai(oo)
0
>>> airyai(-oo)
```

The Airy function obeys the mirror symmetry:

```
>>> from sympy import conjugate
>>> conjugate(airyai(z))
airyai(conjugate(z))
```

Differentiation with respect to \boldsymbol{z} is supported:

```
>>> from sympy import diff
>>> diff(airyai(z), z)
airyaiprime(z)
>>> diff(airyai(z), z, 2)
z*airyai(z)
```

Series expansion is also supported:

```
>>> from sympy import series
>>> series(airyai(z), z, 0, 3)
3**(5/6)*gamma(1/3)/(6*pi) - 3**(1/6)*z*gamma(2/3)/(2*pi) + 0(z**3)
```

We can numerically evaluate the Airy function to arbitrary precision on the whole complex plane:

```
>>> airyai(-2).evalf(50)
0.22740742820168557599192443603787379946077222541710
```

Rewrite Ai(z) in terms of hypergeometric functions:

```
>>> from sympy import hyper
>>> airyai(z).rewrite(hyper)
-3**(2/3)*z*hyper((), (4/3,), z**3/9)/(3*gamma(1/3)) + 3**(1/3)*hyper((),
(2/3,), z**3/9)/(3*gamma(2/3))
```

See also:

airybi (page 506)

Airy function of the second kind.

airyaiprime (page 508)

Derivative of the Airy function of the first kind.

airybiprime (page 509)

Derivative of the Airy function of the second kind.

References

```
[R398], [R399], [R400], [R401]
```

class sympy.functions.special.bessel.airybi(arg)

The Airy function Bi of the second kind.

Explanation

The Airy function Bi(z) is defined to be the function satisfying Airy's differential equation

$$\frac{\mathrm{d}^2 w(z)}{\mathrm{d}z^2} - zw(z) = 0.$$

Equivalently, for real z

$$\mathrm{Bi}(z) := rac{1}{\pi} \int_0^\infty \exp\left(-rac{t^3}{3} + zt
ight) + \sin\left(rac{t^3}{3} + zt
ight) \mathrm{d}t.$$

Examples

Create an Airy function object:

```
>>> from sympy import airybi
>>> from sympy.abc import z
```

```
>>> airybi(z)
airybi(z)
```

Several special values are known:


```
>>> airybi(0)
3**(5/6)/(3*gamma(2/3))
>>> from sympy import oo
>>> airybi(oo)
00
>>> airybi(-oo)
0
```

The Airy function obeys the mirror symmetry:

```
>>> from sympy import conjugate
>>> conjugate(airybi(z))
airybi(conjugate(z))
```

Differentiation with respect to z is supported:

```
>>> from sympy import diff
>>> diff(airybi(z), z)
airybiprime(z)
>>> diff(airybi(z), z, 2)
z*airybi(z)
```

Series expansion is also supported:

```
>>> from sympy import series
>>> series(airybi(z), z, 0, 3)
3**(1/3)*gamma(1/3)/(2*pi) + 3**(2/3)*z*gamma(2/3)/(2*pi) + 0(z**3)
```

We can numerically evaluate the Airy function to arbitrary precision on the whole complex plane:

```
>>> airybi(-2).evalf(50)
-0.41230258795639848808323405461146104203453483447240
```

Rewrite Bi(z) in terms of hypergeometric functions:

See also:

```
airyai (page 504)
```

Airy function of the first kind.

airyaiprime (page 508)

Derivative of the Airy function of the first kind.

airybiprime (page 509)

Derivative of the Airy function of the second kind.

References

```
[R402], [R403], [R404], [R405]
```

class sympy.functions.special.bessel.airyaiprime(arg)

The derivative Ai' of the Airy function of the first kind.

Explanation

The Airy function Ai'(z) is defined to be the function

$$\operatorname{Ai}'(z) := \frac{\operatorname{d}\operatorname{Ai}(z)}{\operatorname{d}z}.$$

Examples

Create an Airy function object:

```
>>> from sympy import airyaiprime
>>> from sympy.abc import z
```

```
>>> airyaiprime(z)
airyaiprime(z)
```

Several special values are known:

```
>>> airyaiprime(0)
-3**(2/3)/(3*gamma(1/3))
>>> from sympy import oo
>>> airyaiprime(oo)
0
```

The Airy function obeys the mirror symmetry:

```
>>> from sympy import conjugate
>>> conjugate(airyaiprime(z))
airyaiprime(conjugate(z))
```

Differentiation with respect to z is supported:

```
>>> from sympy import diff
>>> diff(airyaiprime(z), z)
z*airyai(z)
>>> diff(airyaiprime(z), z, 2)
z*airyaiprime(z) + airyai(z)
```

Series expansion is also supported:

```
>>> from sympy import series
>>> series(airyaiprime(z), z, 0, 3)
-3**(2/3)/(3*gamma(1/3)) + 3**(1/3)*z**2/(6*gamma(2/3)) + 0(z**3)
```


We can numerically evaluate the Airy function to arbitrary precision on the whole complex plane:

```
>>> airyaiprime(-2).evalf(50)
0.61825902074169104140626429133247528291577794512415
```

Rewrite $\operatorname{Ai}'(z)$ in terms of hypergeometric functions:

See also:

```
airyai (page 504)
```

Airy function of the first kind.

airybi (page 506)

Airy function of the second kind.

Derivative of the Airy function of the second kind.

References

```
[R406], [R407], [R408], [R409]
```

class sympy.functions.special.bessel.airybiprime(ara)

The derivative Bi' of the Airy function of the first kind.

Explanation

The Airy function Bi'(z) is defined to be the function

$$\mathrm{Bi}'(z) := \frac{\mathrm{d}\,\mathrm{Bi}(z)}{\mathrm{d}z}.$$

Examples

Create an Airy function object:

```
>>> from sympy import airybiprime
>>> from sympy.abc import z
```

```
>>> airybiprime(z)
airybiprime(z)
```

Several special values are known:

```
>>> airybiprime(0)
3**(1/6)/gamma(1/3)
>>> from sympy import oo
>>> airybiprime(oo)
oo
>>> airybiprime(-oo)
0
```

The Airy function obeys the mirror symmetry:

```
>>> from sympy import conjugate
>>> conjugate(airybiprime(z))
airybiprime(conjugate(z))
```

Differentiation with respect to z is supported:

```
>>> from sympy import diff
>>> diff(airybiprime(z), z)
z*airybi(z)
>>> diff(airybiprime(z), z, 2)
z*airybiprime(z) + airybi(z)
```

Series expansion is also supported:

```
>>> from sympy import series
>>> series(airybiprime(z), z, 0, 3)
3**(1/6)/gamma(1/3) + 3**(5/6)*z**2/(6*gamma(2/3)) + 0(z**3)
```

We can numerically evaluate the Airy function to arbitrary precision on the whole complex plane:

```
>>> airybiprime(-2).evalf(50)
0.27879516692116952268509756941098324140300059345163
```

Rewrite Bi'(z) in terms of hypergeometric functions:

```
>>> from sympy import hyper
>>> airybiprime(z).rewrite(hyper)
3**(5/6)*z**2*hyper((), (5/3,), z**3/9)/(6*gamma(2/3)) + 3**(1/

-6)*hyper((), (1/3,), z**3/9)/gamma(1/3)
```

See also:

```
airyai (page 504)
```

Airy function of the first kind.

airybi (page 506)

Airy function of the second kind.

airyaiprime (page 508)

Derivative of the Airy function of the first kind.

References

```
[R410], [R411], [R412], [R413]
```

B-Splines

```
sympy.functions.special.bsplines.bspline_basis(d, knots, n, x)

The n-th B-spline at x of degree d with knots.
```

Parameters

 \mathbf{d} : integer

degree of bspline

knots: list of integer values

list of knots points of bspline

 $\mathbf{n}:$ integer

n-th B-spline

x: symbol

Explanation

B-Splines are piecewise polynomials of degree d. They are defined on a set of knots, which is a sequence of integers or floats.

Examples

The 0th degree splines have a value of 1 on a single interval:

```
>>> from sympy import bspline_basis
>>> from sympy.abc import x
>>> d = 0
>>> knots = tuple(range(5))
>>> bspline_basis(d, knots, 0, x)
Piecewise((1, (x >= 0) & (x <= 1)), (0, True))</pre>
```

For a given (d, knots) there are len(knots)-d-1 B-splines defined, that are indexed by n (starting at 0).

Here is an example of a cubic B-spline:

By repeating knot points, you can introduce discontinuities in the B-splines and their derivatives:

```
>>> d = 1
>>> knots = (0, 0, 2, 3, 4)
>>> bspline_basis(d, knots, 0, x)
Piecewise((1 - x/2, (x >= 0) & (x <= 2)), (0, True))
```

It is quite time consuming to construct and evaluate B-splines. If you need to evaluate a B-spline many times, it is best to lambdify them first:

```
>>> from sympy import lambdify
>>> d = 3
>>> knots = tuple(range(10))
>>> b0 = bspline_basis(d, knots, 0, x)
>>> f = lambdify(x, b0)
>>> y = f(0.5)
```

See also:

bspline_basis_set (page 512)

References

[R414]

sympy.functions.special.bsplines.**bspline_basis_set**(d, knots, x)Return the len(knots)-d-1 B-splines at x of degree d with knots.

Parameters

d: integer

degree of bspline

knots: list of integers

list of knots points of bspline

x : symbol

Explanation

This function returns a list of piecewise polynomials that are the len(knots)-d-1 B-splines of degree d for the given knots. This function calls $bspline_basis(d, knots, n, x)$ for different values of n.

Examples

See also:

```
bspline_basis (page 511)
```

sympy.functions.special.bsplines.interpolating_spline(d, x, X, Y)

Return spline of degree *d*, passing through the given *X* and *Y* values.

Parameters

d: integer

Degree of Bspline strictly greater than equal to one

 \mathbf{x} : symbol

X: list of strictly increasing integer values

list of X coordinates through which the spline passes

Y: list of strictly increasing integer values

list of Y coordinates through which the spline passes

Explanation

This function returns a piecewise function such that each part is a polynomial of degree not greater than d. The value of d must be 1 or greater and the values of X must be strictly increasing.

Examples

(continues on next page)

(continued from previous page

```
Piecewise((7*x**3/117 + 7*x**2/117 - 131*x/117 + 2, (x >= -2) & (x <= -1)),

(10*x**3/117 - 2*x**2/117 - 122*x/117 + 77/39, (x >= 1) & (x <= -4)))
```

See also:

bspline_basis_set (page 512), interpolating_poly (page 2438)

Riemann Zeta and Related Functions

class sympy.functions.special.zeta_functions.zeta(z, a=None)
Hurwitz zeta function (or Riemann zeta function).

Explanation

For Re(a) > 0 and Re(s) > 1, this function is defined as

$$\zeta(s,a) = \sum_{n=0}^{\infty} \frac{1}{(n+a)^s},$$

where the standard choice of argument for n+a is used. For fixed a with $\operatorname{Re}(a)>0$ the Hurwitz zeta function admits a meromorphic continuation to all of $\mathbb C$, it is an unbranched function with a simple pole at s=1.

Analytic continuation to other a is possible under some circumstances, but this is not typically done.

The Hurwitz zeta function is a special case of the Lerch transcendent:

$$\zeta(s,a) = \Phi(1,s,a).$$

This formula defines an analytic continuation for all possible values of s and a (also Re(a) < 0), see the documentation of lerchphi (page 517) for a description of the branching behavior.

If no value is passed for a, by this function assumes a default value of a=1, yielding the Riemann zeta function.

Examples

For a=1 the Hurwitz zeta function reduces to the famous Riemann zeta function:

$$\zeta(s,1) = \zeta(s) = \sum_{n=1}^{\infty} \frac{1}{n^s}.$$

```
>>> from sympy import zeta
>>> from sympy.abc import s
>>> zeta(s, 1)
zeta(s)
>>> zeta(s)
zeta(s)
```


The Riemann zeta function can also be expressed using the Dirichlet eta function:

```
>>> from sympy import dirichlet_eta
>>> zeta(s).rewrite(dirichlet_eta)
dirichlet_eta(s)/(1 - 2**(1 - s))
```

The Riemann zeta function at positive even integer and negative odd integer values is related to the Bernoulli numbers:

```
>>> zeta(2)
pi**2/6
>>> zeta(4)
pi**4/90
>>> zeta(-1)
-1/12
```

The specific formulae are:

$$\zeta(2n) = (-1)^{n+1} \frac{B_{2n}(2\pi)^{2n}}{2(2n)!}$$
$$\zeta(-n) = -\frac{B_{n+1}}{n+1}$$

At negative even integers the Riemann zeta function is zero:

```
>>> zeta(-4)
0
```

No closed-form expressions are known at positive odd integers, but numerical evaluation is possible:

```
>>> zeta(3).n()
1.20205690315959
```

The derivative of $\zeta(s,a)$ with respect to a can be computed:

```
>>> from sympy.abc import a
>>> zeta(s, a).diff(a)
-s*zeta(s + 1, a)
```

However the derivative with respect to s has no useful closed form expression:

```
>>> zeta(s, a).diff(s)
Derivative(zeta(s, a), s)
```

The Hurwitz zeta function can be expressed in terms of the Lerch transcendent, *lerchphi* (page 517):

```
>>> from sympy import lerchphi
>>> zeta(s, a).rewrite(lerchphi)
lerchphi(1, s, a)
```

See also:

dirichlet_eta (page 516), lerchphi (page 517), polylog (page 516)

References

[R415], [R416]

class sympy.functions.special.zeta_functions.dirichlet_eta(s)
 Dirichlet eta function.

Explanation

For Re(s) > 0, this function is defined as

$$\eta(s) = \sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n^s}.$$

It admits a unique analytic continuation to all of \mathbb{C} . It is an entire, unbranched function.

Examples

The Dirichlet eta function is closely related to the Riemann zeta function:

```
>>> from sympy import dirichlet_eta, zeta
>>> from sympy.abc import s
>>> dirichlet_eta(s).rewrite(zeta)
(1 - 2**(1 - s))*zeta(s)
```

See also:

zeta (page 514)

References

[R417]

class sympy.functions.special.zeta_functions.polylog(s,z) Polylogarithm function.

Explanation

For |z| < 1 and $s \in \mathbb{C}$, the polylogarithm is defined by

$$\operatorname{Li}_{s}(z) = \sum_{n=1}^{\infty} \frac{z^{n}}{n^{s}},$$

where the standard branch of the argument is used for n. It admits an analytic continuation which is branched at z=1 (notably not on the sheet of initial definition), z=0 and $z=\infty$.

The name polylogarithm comes from the fact that for s=1, the polylogarithm is related to the ordinary logarithm (see examples), and that

$$\operatorname{Li}_{s+1}(z) = \int_0^z \frac{\operatorname{Li}_s(t)}{t} dt.$$