Generating correlated random vectors

- Straightforward to implement KF steps in Octave
- To exercise KF code, however, also must simulate system whose state is being estimated
 - □ Produces system input/output data as input to the KF
 - □ Provides "true" state value at every point in time
- But, to simulate true system, must be able to create nonzero mean Gaussian noise with covariance $\Sigma_{\widetilde{Y}}$.
- That is, we want $Y \sim \mathcal{N}(\bar{y}, \Sigma_{\widetilde{Y}})$ but randn.m returns $X \sim \mathcal{N}(0, I)$.
 - \square How to convert X to Y?

Dr. Gregory L. Plett

Iniversity of Colorado Colorado Springs

Battery State-of-Charge (SOC) Estimation | Coming to understand the linear Kalman filter

1 of 5

3.3.2: Introducing Octave code to generate correlated random vectors

A needed transformation

- Suppose that we can find matrix A such that $A^TA = \Sigma_{\widetilde{Y}}$
- Then, we generate samples x of random vector $X \sim \mathcal{N}(0, I)$ and compute samples y of random vector $Y = \bar{y} + A^T X$
 - \square Since X is zero-mean, $\mathbb{E}[Y] = \mathbb{E}[\bar{y} + A^T X] = \bar{y}$, as desired
 - \Box The covariance of Y is

$$\mathbb{E}[(Y - \bar{y})(Y - \bar{y})^T] = \mathbb{E}[(A^T X)(A^T X)^T]$$

$$= \mathbb{E}[(A^T X)(X^T A)]$$

$$= A^T \underbrace{\mathbb{E}[XX^T]}_{I} A = \Sigma_{\widetilde{Y}},$$

also as desired

Dr. Gregory L. Plet

Iniversity of Colorado Colorado Spring

Battery State-of-Charge (SOC) Estimation | Coming to understand the linear Kalman filter

2 of

3.3.2: Introducing Octave code to generate correlated random vectors

Important matrix factorizations

- So, if we can find A such that $A^TA = \Sigma_{\widetilde{Y}}$, we can generate samples x of $X \sim \mathcal{N}(0, I)$ and compute $y = \bar{y} + A^T x$
- \blacksquare Three ways to generate A
 - \Box Cholesky factorization of $\Sigma_{\widetilde{Y}}$ computes A such that $A^TA = \Sigma_{\widetilde{Y}}$ as long as $\Sigma_{\widetilde{Y}}$ is positive definite (all eigenvalues are strictly greater than zero)
 - \Box LDL factorization of $\Sigma_{\widetilde{Y}}$ produces L,D such that $LDL^T=\Sigma_{\widetilde{Y}}$ and requires only that $\Sigma_{\widetilde{Y}}$ be positive semi definite: Can then compute $A=\sqrt{D}L^T$
 - \square LU factorization of $\Sigma_{\widetilde{Y}}$ produces L,U such that $LU=\Sigma_{\widetilde{Y}}$ and requires only that $\Sigma_{\widetilde{Y}}$ be positive semi definite: Can then compute $A=\operatorname{diag}\left(\sqrt{\operatorname{diag}(U)}\right)L^T$
- Cholesky and LU are built into Octave; all are built into MATLAB

Example Octave code

■ Suppose we wish to generate a single sample of *y* using Cholesky method:

```
ybar = [1; 2];
covar = [1, 0.5; 0.5, 1];
A = chol(covar);
x = randn([2, 1]);
y = ybar + A'*x;
```

Suppose we wish to generate 5000 samples of *y* using the LU method:

```
ybar = [1; 2];
covar = [1, 0.5; 0.5, 1];
[L,U] = lu(covar);
A = diag(sqrt(diag(U)))*L';
x = randn([2,5000]);
y = ybar(:,ones([1 5000]))+A'*x;
plot(y(1,:),y(2,:),'.');
```


Dr. Gregory L. Plett | University of Colorado Colorado Springs

Battery State-of-Charge (SOC) Estimation | Coming to understand the linear Kalman filter | 4 of 5

3.3.2: Introducing Octave code to generate correlated random vectors

Summary

- In order to test KF code via simulation, must also simulate system whose state is being estimated
- This requires ability to simulate (possibly) correlated (possibly nonzero mean) noises
- Octave natively produces samples of zero-mean uncorrelated Gaussians only
- But, can transform these to have desired mean and correlation using a matrix determined using either the Cholesky or LU matrix decompositions, both of which are built into Octave

Dr. Gregory L. Plett | University of Colorado Colorado Springs

Battery State-of-Charge (SOC) Estimation | Coming to understand the linear Kalman filter | 5 of 5