VYČÍSLITELNOST A SLOŽITOST

Kurz: Datové struktury a algoritmy

Lektor: Doc. Ing. Radim Burget, Ph.D.

Autor: Doc. Ing. Radim Burget, Ph.D.

Motivace

 Jak vedení obhájit, že řešení stále nedosahuje parametrů, kterých by si představovali?

Možné odpovědi:

A: Nevím, možná nahrazení mne někým zkušenějším pomůže.

B: Tento problém nelze vyřešit. (je sice mnohdy pravda, velmi obtížné prokázat)

 C: Spadá to do skupiny problémů, které jsou srovnatelné s jinými a které ani vědci za posledních X let nedokázali vyřešit.

Cíl přednášky

- 1. Teorie vyčíslitelnosti
 - Jak vypadá výpočetní model současných výpočetních systémů
 - Deterministický konečný automat, Nedeterministický konečný automat, Zásobníkový automat, Turingův stroj + jeho varianty
 - Existují i nevyčíslitelné problémy
- Teorie složitosti jak posuzovat algoritmy?
 - Absolutní
 - Asymptotická složitost
 - Třídy složitosti P, NP, NP-těžké
 - Problém ekvivalence P vs. NP. jeden z top desítky největších problémů matematiky současnosti

Teoretická informatika

- Informace reprezentovat & zpřístupnit (vyhledat, dopočítat)
- Říká, co nemá smysl algoritmicky řešit
- Kde jsou hranice spočítatelnosti
- Jak se dostat na hranici spočítatelnosti.

Úvod – Motivace

- Pole 16 x 16 s 256 políčky, Eternity II (hra v prodeji v knihkupectví)
- Úkolem uspořádat políčka tak, aby na sebe navazovala, prodejce slibuje za vyřešení zajímavou finanční odměnu (\$2 mil.)

S pomocí znalostí z tohoto kurzu:

- 12x8 vyřešíte za cca 2 minut (a získáte nápovědu políčka)
- 12x12 vyřešíte za cca 1,5 hod (a získali nápovědu dalšího políčka)
- 16x16 za pár dnů máme vyhráno? viz konec přednášky…

Zdroj: www.eternityii.com

Úvod

- Proč je důležité znát teorii vyčíslitelnosti
 - Existují problémy, kterými netřeba ztrácet čas nelze je vyřešit

- Proč je důležité znát teorii složitosti
 - Volba optimálních datových struktur
 - Optimální výkon
 - Možnost výpočtu v přijatelném čase
 - Volba jazyka (C, C++, JAVA, C#, ...) má téměř vždy výrazně nižší dopad na výkon aplikace nežli volba datových struktur

Kde hraje složitost významnou roli

- Směrovací tabulky L3 přepínačů (až 10x rychlejší)
- Návrh analogových obvodů
- Obrazové zpracování
- Data-mining
- Zpracování hlasu
- Zpracování zvuku
- Dolování znalostí z textu
- Systémy řízení báze dat
- Návrh procesorů
- Analýzy finančních trhů
- Předpověď počasí
- Simulace biologických systémů

Volba datových struktur

- Datové struktury a algoritmy jsou základem pro veškeré programovací jazyky
 - Volba datových typů: T[], LinkedList<T>, List<T>, Stack<T>,
 Queue<T>, Map<K,T>, HashSet<T>, TreeMap<K,T> a TreeSet<T>
 má výrazný dopad na výkonnost aplikace
 - o řády vyšší než volba programovacího prostředí

Vyčíslitelnost

Teorie vyčíslitelnosti

- je vědní obor na pomezí matematiky a informatiky
- zkoumá otázky algoritmické řešitelnosti problémů (ne z pohledu času, ale zdali vůbec)
- hranice využití algoritmicky pracujících postupů
- Vyčíslitelnost je zkoumána pomocí teoretických výpočetních modelů, např.:
 - Deterministický konečný automat
 - Nedeterministický konečný automat
 - Zásobníkový automat
 - Turingův stroj
 - ... mnoho dalších

Vyčíslitelnost

Mají všechny stroje stejnou vyjadřovací sílu?

NE!

- Základní členění:
 - Deterministický konečný automat
 - Nedeterministický konečný automat
 - Deterministický zásobníkový automat
 - Nedeterministický zásobníkový automat
 - Turingův stroj + varianty

a mnoho dalších ...

Deterministický konečný automat (DFA)

Vstupní páska

Deterministic Finite Automaton (DFA)

Pro každý stav je zde přechod pro každý symbol v abecedě

Počáteční konfigurace

Počáteční stav

Čtení vstupního řetězce vstupní pásky

Přijímá řetězec

Případ zamítnutí

Příklad – nepřijímá řetězec

a b a

Vstup dokončen

Další případ zamítnutí

$$L = \{abba\}$$

Pro přijetí řetězce:

Veškeré znaky vstupní pásky byly přečteny Automat skončil ve stavu, který je konečným stavem

Pro nepřijetí řetězce:

Veškeré znaky vstupní pásky byly přečteny Automat skončil ve stavu, který **není** konečným stavem

Další příklad

 $L = \{\Delta, ab, abba\}$

Další případ

Vstupní řetězec

vstup dokončen

A rejection case

Vstupní řetězec

Vstup dokončen

Jazyk přijat:

$$L = \{a^n b : n \ge 0\}$$

Další příklad

Abeceda:

Přijímaný jazyk:

SUDÝ POČET JDNIČEK =
$$\{x: x \in \Sigma^* \text{ a délka je sudá}\}$$

= $\{\Delta, 11, 1111, 111111, ...\}$

Formální definice

Deterministický konečný automat (DFA)

$$M = (Q, \Sigma, \delta, q_0, F)$$

: množina vnitřních stavů

 Σ : vstupní abeceda $\Delta
ot\in\Sigma$

S: přechodová funkce

 $q_{
m O}$: počáteční stav

 ${\it F}$: množina konečných stavů

Množina stavů Q

Příklad:

$$Q = \{q_{0}, q_{1}, q_{2}, q_{3}, q_{4}, q_{5}\}$$

$$a, b$$

$$a, b$$

$$a + q_{5}$$

$$a, b$$

$$a + q_{1} + b + q_{2} + d_{3} + d_{4}$$

Vstupní abeceda Σ

. $\Delta
otin \Sigma$:vstupní abeceda nikdy neobsahuje prázdný znak Δ

Příklad $\Sigma = \{a,b\}$ a,b

Počáteční stav q_0

Příklad

Množina konečných stavů $F \subseteq Q$

Příklad

•

Přechodová funkce
$$\delta: Q \times \Sigma \rightarrow Q$$

$$\delta(q,x)=q'$$

Vyjadřuje výsledek přechodu ze stavu $m{q}$, kde na pásce je symbol $m{\chi}$

Příklad

$$\delta(q_0, a) = q_1$$

$$\delta(q_0,b) = q_5$$

$$\delta(q_2,b)=q_3$$

Nedeterministický konečný automat

• Vše jako deterministický, jen přechodová funkce je definována jako: $\delta: Q \times \Sigma \to 2^Q$

$$\delta(q,x)=q'$$

Vyjadřuje výsledek přechodu ze stavu $m{q}$, kde na pásce je symbol $m{\chi}$

Zatímco v předchozím případě existovala vždy nejvýše jedna možnost, Nedeterministický automat umožňuje více variant

Příklad

- Inicializace ve stavu 1
- Konečný stav: 4 (tučný okraj)
- Rozhoduje, zdali přijímá či nepřijímá vstupní řetězec :
 - Př. 1: aabaaaba
 - Př. 2: aaaaaaab

 Ne-deterministický = na základě konkrétního vstupu může nastat více než jedna možnost pokračování

b

Deterministický vs. nedeterministický

- Jak rozumět pojmu "nedeterministický":
 - je teoretický výpočetní model, který má schopnost ve všech variantách nalézt jedno správné řešení
 - Schopnost vytvářet nekonečné množství paralelních procesů

Deterministický zásobníkový automat (PDA)

- Q: konečná množina stavů
- Σ: konečná množina vstupních symbolů
- Γ: konečná zásobníková abeceda
- δ: přechodová funkce, kde:
 - q_i je stav z množiny Q.
 - a je symbol z množiny Σ nebo $a = \varepsilon$ (the empty string).
 - τ_m ja zásobníkový symbol, $\tau_m \in \Gamma$. $P = (Q, \Sigma, \Gamma, \delta(q_i, a, \tau_m) \rightarrow \{(q_k, \tau_n), ...\}, q_0, \tau_0, F)$
 - a výstup je konečná množina dvojic:
 - q_k nový stav.
 - τ_n symbol, který nahrazuje symbol τ_m na vrcholu zásobníku.
 - Pokud $\tau_n = \Delta$, potom poslední symbol je ze zásobníku odstraněn
- q_0 : počáteční stav.
- $τ_0$: Původní stav zásobníku, PDA obsahuje na počátku pouze tento symbol (\$).
- F: Množina konečných stavů.

Přechodová funkce

- · Vše velmi podobné deterministickému kon. automatu
- Navíc ještě zásobník a pozměněná přechodová funkce

zásobník

 $\Delta \dots$ prázdný symbol

zásobník

vstup

Zásobník (prázdný)

$$a, \Delta \rightarrow a$$

$$b, a \rightarrow \Delta$$

Zásobník

$$a, \Delta \rightarrow a \qquad b, a \rightarrow \Delta$$

$$-q_0 \xrightarrow{\Delta, \Delta \rightarrow \Delta} q_1 \xrightarrow{b, a \rightarrow \Delta} q_2 \xrightarrow{\Delta, \$ \rightarrow \$} q_3$$

Zásobník

$$a, \Delta \rightarrow a \qquad b, a \rightarrow \Delta$$

$$\downarrow q_0 \qquad \Delta, \Delta \rightarrow \Delta \qquad q_1 \qquad b, a \rightarrow \Delta \qquad \Delta, \$ \rightarrow \$ \qquad q_3$$

Čas 7

vstup

$$a, \Delta \rightarrow a \qquad b, a \rightarrow \Delta$$

$$-q_0 \xrightarrow{\Delta, \Delta \rightarrow \Delta} q_1 \xrightarrow{b, a \rightarrow \Delta} q_2 \xrightarrow{\Delta, \$ \rightarrow \$} q_3$$

Čas 8

vstup

Zásobník

$$a, \Delta \rightarrow a \qquad b, a \rightarrow \Delta$$

$$p^{\text{rijimá}}$$

$$q_0 \xrightarrow{\Delta, \Delta \rightarrow \Delta} q_1 \xrightarrow{b, a \rightarrow \Delta} q_2 \xrightarrow{\Delta, \$ \rightarrow \$} q_3$$

Odmítnutí řetězce

• Pokud automat odstraní poslední symbol τ_o ze zásobníku, potom se zastaví

- Zásobníkový automat přijímá vstupní řetězec pokud:
 - Vyprázdní zásobník, přečte veškeré vstupy vstupní pásky a skončí v konečném stavu (*existuje více variant)

Turingův stroj

- Vědní obor Vyčíslitelnost
 - Zkoumá zdali lze spočítat (vyčíslit)
 - Nezkoumá jak dlouho (tím se zabývá vědní obor spočítatelnosti)
- Turingův stroj matematický model výpočetního stroje
 - Vznikl za účelem zkoumání vyčíslitelnosti co lze a co nelze (nemá cenu se pokoušet) řešit
 - Jednoduchý princip nehledat v tom nic složitého
 - Několik základních operací
 - Vychází z teorie automatů (deterministický konečný automat, nedeterministický konečný automat, zásobníkový automat)
 - Pojem "Turingovsky úplný" vyjadřovací síla je ekvivalentní Turingově stroji

Turingův stroj

Operace čtení hlavy, zápis na pozici hlavy, provádění příkazů

Pro posun hlavy navíc dva speciální symboly: R (doprava), L (doleva)

Turingův stroj – definice

• Turingův stroj T je definován jako uspořádaná 6-ice $T=(Q, \Sigma, \Gamma, \delta, q_0, q_F)$, kde

$$M = (Q, \Sigma, \Gamma, \delta, q_0, q_E) \tag{9}$$

- Q reprezentuje konečnou množinu vnitřních stavů,
- Σ je konečná množina páskové abecedy, nazývaná vstupní abeceda. Δ (prázdný symbol) není součástí Σ (je ale možné Δ do množiny explicitně vložit)
- Γ je konečná množina vnitřních symbolů. Je to tzv. pásková abeceda a platí pro ni Γ ⊂ Σ,
 Δ ∈ Γ
- δ je parciální funkce a popisuje chování Turingova stroje, jinak řečeno program. V tomto
 případě nelze měnit program za běhu počítače, tak jak jsme zvyklí z dnešních výpočetních
 strojů. Je nazývána přechodová funkce a definována je jako

$$\delta: (Q \setminus \{q_E\}) \times \Gamma \to Q \times (\Gamma \cup \{L, R\}) \tag{10}$$

Kde $\{L, R\} \notin \Gamma$, a L je symbol pro přesun hlavy o jednu pozici doleva a R je symbol pro přesun hlavy o jednu pozici vpravo.

- q₀ je počáteční stav q₀ ∈ Q a
- q_E je konečný stav q_E ∈ Q.

Turingův stroj – příklad

$$\begin{split} Q &= \{q_1,q_2\} \\ \Sigma &= \{X,Y,\Delta\} \\ \Gamma &= \{F,X,Y,\Delta\} \\ \delta &: \{q_1Y \rightarrow q_1R,q_1X \rightarrow qF\} \\ q_0 &= \{q_1\} \\ q_F &= \{q_2\} \end{split}$$

- 1) Přijímá Y
- 2) Dle programu δ se ze stavu q_1 a aktuálním symbolu na pásce Y dostává opět do stavu q_1 a posouvá hlavu vpravo (R)
- 3) Dle programu δ se ze stavu q_1 a aktuálním symbolu X na hlavě dostává do stavu q_2 a na hlavu zapisuje symbol F

Turingův stroj – varianty

- Turingový stroj nelze měnit program
- Univerzální Turingový stroj (lze jeho program přepsat = klasické PC, smartphone)

Nedeterministický

$$\delta: (Q \setminus \{q_F\}) \times \Gamma \to Q \times 2^{(\Gamma \cup \{L,R\})} \tag{11}$$

- Nedeterministický nebyl doposud sestrojen
- Případné sestrojení by mělo za následek konec veškeré dnes používané asymetrické kryptografie
- Neví se, zdali to vůbec je možné (tzv. problém P vs. NP)

Turingův stroj – varianty

- Paralelní z pohledu vyčíslitelnosti je ekvivalentní s běžným (přináší jen vyšší výkon)
 - Lze jej simulovat pomocí klasického TS
- Kvantový Turingův stroj
 - Založený na superpozici stavů
 - Dokáže řešit "exponenciální explozi" a převést ji na problém se složitostí v polynomiálním čase
 - Ne všechny problémy lze takto řešit

Church-Turingova teze

- Hypotéza o povaze a výpočetní síle mechanických strojů
- Church-Turingova teze říká, že každý algoritmus [1] může být vykonán Turingovým strojem.
- Existuje-li tedy rozhodovací problém, pro jehož řešení neexistuje program například v jazyce JAVA, potom je tento problém algoritmicky neřešitelný a naopak.

Nevyčíslitelné problémy

- Zavedení pojmu:
- Rozhodovací problém
 - Vstup programu jeho kódování můžeme interpretovat jako celé číslo (možná velmi veliké)
 - Řešení výstup programu, můžeme kódovat 1=ano, 0=ne
 - Rozhodovací problém je potom funkce f: N → {0, 1}, na základě vstupního čísla odpovídá ANO, či NE na základě konkrétního vstupu.
- Př.: Je vstupní přirozené číslo liché?

Vstup: n∈N	1	2	3	4	5	6	7	8	9
Výstup: f(n)	1	0	1	0	1	0	1	0	1

Nevyčíslitelné problémy – pokračování

Příklady algoritmů řešící předchozí příklad:

```
int jeLiche1(int n) {
          return n%2;
}

int jeLiche2(int n) {
          for(; n > 1; i-=2):
          return n;
}
```

Důkaz nevyčíslitelného problému - diagonalizace

Nevyčíslitelné problémy – pokračování

Označme P jako množinu všech rozhodovacích problémů

Tzn. patří sem i jeLiche1() a jeLiche2()

Algoritmy\\Vstup	1	2	3		k	
P ₁	P ₁ (1)	P ₁ (2)	P ₁ (3)		P ₁ (k)	
P ₂	P ₂ (1)	P ₂ (2)	P ₃ (3)		P ₁ (k)	
jeLiche1()	1	0	1		jeLiche1(k)	
	•••		•••	•••	•••	
jeLiche2()	1	0	1		jeLiche2(k)	
				•••	•••	•••
P _n	P _n (1)	P _n (2)	P _n (3)	•••	$P_n(k)$	•••

Nevyčíslitelné problémy – důkaz diagonalizací

 Dejme tomu, že bychom nyní chtěli program, který má na výstupu opačnou hodnotu daného algoritmu, tedy:

$$D(i) = 0$$
 je-li $P_i(i) == 1;$
= 1 je-li $P_i(i) == 0;$

(Tj. postupovalo by diagonálně v předchozí tabulce)

- Jestliže množina P obsahuje všechny algoritmy, s D se liší minimálně v jednom řádku
- Což je spor (Důkaz pomocí diagonalizace)

Nevyčíslitelné problémy - pokračování

 Existují problémy algoritmicky neřešitelné (nerozhodnutelné).

- Problém zastavení Turingova stroje:
 - Sestrojte program, který rozhodne, zdali libovolný program (vstup programu) poběží navždy bez zastavení či nikoli.

NELZE SESTROJIT

Složitost algoritmů

Lze vše algoritmizovatelné spočítat? (kryptografie)

Analýza algoritmů

- Proč analyzovat algoritmy?
- Umožňuje odhadovat rychlost daného kódu před jeho spuštěním (& vzájemně srovnávat)
 - Předpovídání zdrojů, které algoritmus potřebuje:
 - Výpočetní čas (vytížení CPU)
 - Paměťový prostor (spotřeba RAM)
 - Spotřeba šířky pásma pro komunikaci (síť)
 - · Čas běhu algoritmu je:
 - Celkový počet provedených elementárních operací (kroky stroje)
 - Ekvivalentní pojmu složitost algoritmu

Algoritmická složitost

- Co měřit?
 - Prostor (Paměť)
 - Čas
 - Počet kroků
 - Počet konkrétních operací
 - Počet operací disku
 - Počet paketů sítě
 - Asymptotická složitost

Asymptotická časová složitost

- Nejhorší případ notace O (Omikron, big-O)
 - Horní hranice složitosti pro vstupní data dané délky
 - Nejčastěji používaný
- Průměrný případ notace Θ (Theta)
 - Odhaduje nejpravděpodobnější dobu trvání algoritmu
- Nejlepší případ Ω (Omega)
 - Spodní hranice běhu času

Asymptotická časová složitost – příklad

- Sekvenční hledání prvku v seznamu velikosti n
 - Nejhorší případ:
 - n srovnání
 - Nejlepší případ:
 - 1 porovnání
 - Průměrný případ:
 - n/2 porovnání
- Algoritmus běží v lineárním čase
- Lineární počet operací
 Jaká je paměťová složitost?

Casová složitost

- Složitost algoritmu je hrubý odhad počtu kroků, které daný algoritmus musí provést na základě délky vstupních dat
 - Měřeno skrze asymptotickou notaci
 - O(g) kde g je funkce závislá na délce vstupních dat
 - Příklady:
 - Lineární složitost O(n) všechny prvky jsou zpracované jednou (či k*n, kde k je konstanta)
 - Kvadratická složitost $O(n^2)$ každý z prvků je zpracovaný maximálně n^2 krát

Asymptotická notace: Definice

- Asymptotická horní hranice
 - O-notace (Big O notace)
- Pro danou funkci g(n), značíme O(g(n)) množinou funkcí,
 které jsou odlišné od funkce g(n) od konstanty

```
O(g(n)) = \{f(n): zde existuje kladná konstanta c a n<sub>0</sub> pro které platí <math>f(n) \leftarrow c*g(n) pro všechny n >= n_0\}
```

- Příklady:
 - $3 * n^2 + n/2 + 12 \in O(n^2)$
 - $4*n*log_2(3*n+1) + 2*n-1 \in O(n*log n)$

Asymptotická složitost

Složitost	Notace	Popis
Konstantní	O(1)	Konstantní počet operací, nezávislý na velikosti vstupních dat, např. n = 1 000 000 → 1-2 operací
Logaritmická	O(log n)	Počet operací odpovídá $\log_2(n)$, kde n je velikost vstupních dat, např. $n = 1 000 000$ $000 \rightarrow 30$ operací
Lineární	O(n)	Počet operací je závislé lineárně na vstupních datech, např. $n = 10\ 000 \rightarrow 5\ 000$ operací

Asymptotická složitost (2)

Složitost	Notace	Popis
Kvadratická	O(n²)	Počet operací odpovídá kvadrátu velikosti vstupních dat, např. n ≡ 500 → 250 000 operací
Kubická	O(n³)	Počet operací je závislý kubicky na velikosti vstupních dat, např. <i>n</i> = 200 → 8 000 000 operací
Exponenciální	O(2 ⁿ), O(k ⁿ), O(n!)	Exponenciální počet operací, rychle roste, např. n = 20 → 1 048 576 operací

Asymptotická složitost

n*log(n) ... kvazi lineární

Časová složitost a rychlost

Složitost	10	20	50	100	1 000	10 000	100 000
O(1)	<1s	<1s	<1s	<1s	<1s	<1s	< 1 s
O(log(n))	<1s	<1s	<1s	<1s	<1s	<1s	< 1 s
O(n)	<1s	<1s	<1s	<1s	<1s	<1s	< 1 s
O(n*log(n))	<1s	<1s	<1s	<1s	<1s	<1s	< 1 s
O(n²)	<1s	<1s	<1s	<1s	<1s	2 s	3-4 min
O(n³)	<1s	<1s	<1s	<1s	20 s	5 hod	231 dnů
O(2 ⁿ)	<1s	<1s	260 dnů	Dlouho	Dlouho	Dlouho	Dlouho
O(n!)	<1s	Dlouho	Dlouho	Dlouho	Dlouho	Dlouho	Dlouho
O(n ⁿ)	3-4 min	Dlouho	Dlouho	Dlouho	Dlouho	Dlouho	Dlouho

Časová a paměťová složitost

- Složitost může být vyjádřena jako rovnice o několika proměnných, např.:
 - Algoritmus vyplňující matici o rozměrech n * m přirozenými čísly 1, 2, ... poběží v O(n*m)
 - DFS průchod grafem s n vrcholy a m hranami poběží v O(n + m)
- Paměťové nároky by měly být také brány v potaz a mnohdy jsou velice důležité:
 - Čas běhu O(n), paměťové nároky O(n²)
 - $n = 50\ 000 \rightarrow OutOfMemoryException$

Polynomiální algoritmy

 Polynomiální-čas algoritmu je takový alg., jehož nejhorší časovou složitost lze shora ohraničit polynomiální funkcí:

$$W(n) \in O(p(n))$$

- Příklad nejhoršího případu časové složitosti
 - Polynomiální-čas: log n, 2n, 3n³ + 4n, 2 * n log n, n^k
 - Ne-polynomiální-čas: 2ⁿ, 3ⁿ, nⁿ, n!
- Ne-polynomiální algoritmy pro vyšší hodnoty n jsou nepoužitelné (kryptografie)

Analýza složitosti algoritmů

Příklady

Příklady složitosti

- Běží v lineárním čase O(n) kde n je délka pole
- Počet kroků je ~ n

```
int FindMaxElement(int[] array)
    int max = array[0];
    for (int i=0; i<array.length; i++)</pre>
        if (array[i] > max)
            max = array[i];
    return max;
```

Příklady složitosti

- Běží v lineárním čase O(1)
- Počet kroků je ~ 1 000 0000 000, který tentokrát nijak nesouvisí se vstupem array

```
int FindMaxElement(int[] array)
    int max = array[0];
    for (int i=0; i< 1 000 000 000; i++)
        if (array[i] > max)
            max = array[i];
    return max;
```

Příklady složitosti (2)

- Běží v kubickém čase O(n³)
- Počet kroků je ~ n³

```
decimal Sum3(int n)
{
    decimal sum = 0;
    for (int a=0; a<n; a++)
        for (int b=0; b<n; b++)
        for (int c=0; c<n; c++)
            sum += a*b*c;
    return sum;
}</pre>
```

Příklady složitosti (2)

- Běží v kvadratickém čase O(n²)
- Počet kroků je ~ n²

Příklady složitosti (2)

- Běží v lineárním čase O(2n), cyklus není vnořený
- Počet kroků je ~ 2n

```
decimal Sum3(int n, int m)
{
    decimal sum = 0;
    for (int a=0; a<n; a++)
        sum += a;
    }
    for (int b=0; b<m; b++)
        sum += b;
    return sum;
}</pre>
```

Příklady složitosti (3)

- Běží v kvadratickém čase O(n*m)
- Počet kroků je ~ n*m

```
long SumMN(int n, int m)
{
    long sum = 0;
    for (int x=0; x<n; x++)
        for (int y=0; y<m; y++)
            sum += x*y;
    return sum;
}</pre>
```

Příklady složitosti (4)

- Běží v kvadratickém čase O(n*m)
- Počet kroků je: $\sim n^*m + \min(m, n)^*n$

Příklady složitosti (5)

- Běží v exponenciálním čase O(2ⁿ)
- Počet kroků je: ~ 2ⁿ

```
decimal Calculation(int n)
{
    decimal result = 0;
    for (int i = 0; i < (1<<n); i++)
        result += i;
    return result;
}</pre>
```

Příklady složitosti (6)

- Běží v lineárním čase O(n)
- Počet kroků je: ~ n

```
decimal Factorial(int n)
{
    if (n==0)
       return 1;
    else
       return n * Factorial(n-1);
}
```

Příklady složitosti (7)

- Běží v exponenciálním čase O(2ⁿ)
- Počet kroků je ~ Fib(n+1), kde Fib(k) je k-té
 Fibonačiho číslo

```
decimal Fibonacci(int n)
{
    if (n == 0)
        return 1;
    else if (n == 1)
        return 1;
    else
        return Fibonacci(n-1) + Fibonacci(n-2);
}
```

Srovnávání datových struktur

Příklady

Efektivita datových struktur

Datová struktura	Přidat	Vyhledat	Smazat	Vybrat dle indexu
Pole (T[])	O(n)	O(n)	O(n)	O(1)
Seznam (LinkedList <t>)</t>	O(1)	O(n)	O(n)	O(n)
Pole proměnlivé délky (ArrayList <t>, Vector<t>)</t></t>	O(1)	O(n)	O(n)	O(1)
Zásobník (Stack <t>)</t>	O(1)	-	O(1)	-
Fronta (Queue <t>)</t>	O(1)	-	O(1)	-

Pozn.: Souvislosti vám budou jasnější při probírání jednotlivých ADT.

Výběr datové struktury

- Pole (T[])
 - Použít, jestliže je potřeba konstantní počet prvků a ty jsou zpracovávány dle indexu
- Pole s proměnlivou délkou (List<T>)
 - · Použít, jsou-li prvky zpracovávány dle konkrétního indexu
- Lineární seznamy (LinkedList<T>)
 - Použít, když mají být prvky přidávány z obou stran lineárního seznamu (konec i začátek)
 - Jinak použijte array list (List<T>)

Výběr datové struktury (2)

- Zásobník (Stack<T>)
 - Použít pro implementaci LIFO (last-in-first-out) chování
 - List<T> může být také použito (ekvivalentní)
- Fronta (Queue<T>)
 - Použít pro implementaci FIFO (first-in-first-out) chování
 - LinkedList<T> může být také použito (ekvivalentní)
- Slovník založený na Hash tabulkách (HashMap<K,T>)
 - Použít, když je zapotřebí rychle přidávat a vyhledávat dvojici klíč--hodnota
 - Prvky jsou v hash tabulce v libovolném pořadí ("náhodném")

Výběr datové struktury (3)

- Slovník založený na vyhledávacích stromech (SortedDictionary<K,T>)
 - Použít, když je zapotřebí rychle přidávat a vyhledávat dvojici klíčhodnota a seřazeny dle klíče
- Množina založená na hash tabulce (HashSet<T>)
 - Použít pro reprezentaci množiny (unikátní hodnota se v množině může vyskytnout max 1x), to add and check belonging to the set fast
 - Prvky jsou v libovolném pořadí
- Množina založená na vyhledávacích stromech (SortedSet<T>)
 - Pro reprezentaci množiny unikátních hodnot seřazených prvků dle klíče
 - Mírně pomalejší, nežli HashSet<T>

Třídy složitosti P, NP, NP-úplné, NP-těžké

- vyjadřují jak náročný výpočet je nezbytný, abychom problém vyřešili z pohledu výpočetního modelu TS
- Rozdělení:
 - Třída P
 - je možné je provést v polynomiálním čase na deterministickém TS
 - (schůdné algoritmy)
 - Třída NP
 - je možné je provést v polynomiálním čase na nedeterministickém TS
 - (neschůdné algoritmy)
 - Jejich součástí jsou i všechny algoritmy z P
 - Třída NP-úplné
 - ty nejtěžší úlohy z NP
 - podmnožina NP
 - Třída NP-těžké
 - přinejmenším tak těžké, jako nejtěžší z NP (nemusí být vykonatelné pomocí TS)

Souvislosti – P vs. NP

- NP úplné
 - Současně NP a současně NP-těžké
- Problém ekvivalence P vs. NP jeden z největších problémů současnosti v oblasti složitosti a matematiky vůbec

Není známa odpověď!!

Ekvivalence P vs. NP

- Jak dokázat? Stačí sestrojit, převést jediný algoritmus z třídy NP-úplný do třídy P
- Velké důsledky na kryptografii
- Pravděpodobně P ≠ NP

 Clayův matematický ústav zařadil tuto otázku vztahu P vs. NP mezi 7 největších matematických problémů současnosti - každá z těchto úloh je přitom oceněna milionem dolarů. "Tržní" cena rozhodnutí problému P/NP je zřejmě mnohem vyšší.

Složitost – příklad z předchozí přednášky

 Před nedávnem byla na trh uvedena hra, kde autoři za její vyřešení slibují 2 mil dolarů* (viz obrázek níže).

Jaká je složitost tohoto problému? Má cenu se tím

zabývat?

Zdroj: physicsandcake.wordpress.com

* nekupovat, jsou to vyhozené peníze ©

Složitost – příklad z předchozí přednášky

- 4x rohové políčko (nelze rotovat, jen přeskládat)
- 56x krajní políčko (nelze rotovat, jen přeskládat)
- 196x vnitřní políčko (každé může být natočeno do 4 směrů)

Je mi jedno, jak je celé hrací pole natočeno

Složitost

 $2,186 \cdot 10^{559}$

- Zrnko písku ... 7.8 x 10¹⁹ atomů
- Planeta Země … 10⁵⁰
- Slunce 1.19 x 10⁵⁷
- Sluneční soustava 1.19 x 10⁵⁷
- Vesmír 1.2 x 10⁷⁹ (naše galaxie cca 100 mld. hvězd, existuje cca 2 biliony galaxií)

I kdyby každý atom obsahoval další vesmír, jsme "pouze" na cca 1.44 x 10¹⁵⁸

Je vyloučeno, že je tento problém neřešitelný? Ne! ...ale "hrubou silou" a s použitím stávajících automatů to nepůjde. Otázkou také je, kolik % řešení je správných.

- Vyčíslitelnost (= je to řešitelné?)
- Turingův stroj = matematický model počítače
 - Nejvyšší známá vyjadřovací síla z pohledu vyčíslitelnosti (ne spočítatelnosti – čas z pohledu vyčíslit. nehraje roli)
 - Všechny počítače jak je známe dnes
 - Běžná věc univerzální varianta odpovídá každému PC, smartphone atp. (klasický TS nemůže měnit program)
 - Není jisté, že pracuje na stejných základech jako lidský mozek
- Existují i problémy nevyčíslitelné
 - Důkaz diagonalizace
 - Problém zastavení TS, ...

- Turingův stroj
 - Deterministický
 - Univerzální
 - Paralelní
 - Kvantový
 - Nedeterministický (nebyl doposud sestrojen)
 - Pojem "Turingovsky úplný" jeho vyjadřovací síla je ekvivalentní Turingově stroji

- Složitost (=spočitatelnost = za jak dlouho)
- Absolutní (přesný vzorec)
- Asymptotická
 - Průměrná, <u>nejhorší</u> (big-O), nejlepší
 - logaritmická, lineární, n log n, kvadratická, kubická, exponenciální, faktoriální, atp.
 - Nejčastěji používaná je nejhorší: např.: O(n²)
 - Různé datové struktury mají různou efektivitu na různé operace

- Třídy složitosti
 - P běh na Turingově stroji v polynomiálním čase
 - NP běh na Turingově stroji v nepolynomiálním čase
 - NP-těžké nejtěžší třída problémů ze skupiny NP (n!)
- Třídy složitosti
 - Kryptografie založena na složitosti (NP-těžké) nespočítatelnosti (s výjimkou Vernamovy šifry – vojenství)

Děkuji za pozornost