PRAKTIKUM SISTEM OPERASI MENGENAL CARA 'DEBUGGING' PROGRAM BOOTSTRAP-LOADER

Penyusun:

Nama : Della Fitria Lestari

NIM : L200219268

Kelas : E

Mata Kuliah : Praktikum Sistem Operasi

Program Studi : Informatika

PROGRAM STUDI TEKNIK INFORMATIKA FAKULTAS KOMUNIKASI DAN INFORMATIKA UNIVERSITAS MUHAMMADIYAH SURAKARTA

Tugas

- 1. Tabel pemetaan memori pada PC:
 - Real mode address space (< 1 MiB)

start	end	size	description	type	
	Real mode address space (the first MiB)				
0x00000000	0x000003FF	1 KiB	Real Mode IVT (Interrupt Vector Table)	unusable in real mode	
0x00000400	0x000004FF	256 bytes	BDA (BIOS data area)	unusable in real mode	
0x00000500	0x00007BFF	almost 30 KiB	Conventional memory	usable memory 640 KiB RAM ("Low mem	(40 K;D D AM ("I")
0x00007C00	0x00007DFF	512 bytes	Your OS BootSector		040 KIB RAM (Low memory)
0x00007E00	0x0007FFFF	480.5 KiB	Conventional memory		
0x00080000	0x0009FFFF	128 KiB	EBDA (Extended BIOS Data Area)	partially used by the EBDA	
0x000A0000	0x000BFFFF	128 KiB	Video display memory	hardware mapped	
0x000C0000	0x000C7FFF	32 KiB (typically)	Video BIOS	204 V:D Ct / D 1	
0x000C8000	0x000EFFFF	160 KiB (typically)	BIOS Expansions	ROM and hardware mapped / Shadow RAM	384 KiB System / Reserved ("Upper Memory")
0x000F0000	0x000FFFFF	64 KiB	Motherboard BIOS		

- BIOS Data Area (BDA)

address (size)	description
0x0400 (4 words)	IO ports for COM1-COM4 serial (each address is 1 word, zero if none)
0x0408 (3 words)	IO ports for LPT1-LPT3 parallel (each address is 1 word, zero if none)
0x040E (word)	EBDA base address >> 4 (usually!)
0x0410 (word)	packed bit flags for detected hardware
0x0413 (word)	Number of kilobytes before EBDA / unusable memory
0x0417 (word)	keyboard state flags
0x041E (32 bytes)	keyboard buffer
0x0449 (byte)	Display Mode
0x044A (word)	number of columns in text mode
0x0463 (2 bytes, taken	base IO port for video
as a word)	
0x046C (word)	# of IRQ0 timer ticks since boot
0x0475 (byte)	# of hard disk drives detected
0x0480 (word)	keyboard buffer start
0x0482 (word)	keyboard buffer end
0x0497 (byte)	last keyboard LED/Shift key state

- Extended Memory (> 1 MiB)

start	end	size	region/exception	description
High Memory				
0x00100000	0x00EFFFFF	0x00E00000 (14 MiB)	RAM free for use (if it exists)	Extended memory 1, 2
0x00F00000	0x00FFFFFF	0x00100000 (1 MiB)	Possible memory mapped hardware	ISA Memory Hole 15-16MB ³
0x01000000	???????	???????? (whatever exists)	RAM free for use	More Extended memory 1
0xC0000000 (sometimes, depends on motherboard and devices)	0xFFFFFFFF	0x40000000 (1 GiB)	various (typically reserved for memory mapped devices)	Memory mapped PCI devices, PnP NVRAM?, IO APIC/s, local APIC/s, BIOS,
0x000000010000000 0 (possible memory above 4 GiB)	??????????????????????????????????????	????????????????????????????? (whatever exists)	RAM free for use (PAE/64bit)	More Extended memory 1
??????????????	??????????????????????????????????????	??????????????????????????????????????	Possible memory mapped hardware	Potentially usable for memory

	mapped PCI
	devices in modern
	hardware (but
	typically not, due to
	backward
	compatibility)

- Ringkasan Direct Mapping

Item	Keterangan
Panjang alamat	(s + W) bits
Jumlah unit yang dialamati	2s + W words or bytes
Ukuran bloks sama dengan ukuran Line	2W words or bytes
Jumlah blok memori utama	2s + w/2W = 2s
Jumlah line di chace	M = 2r
Besarnya tag	(s - r) bits

- Ringkasan Associative Mapping

Item	Keterangan
Panjang alamat	(s + W) bits
Jumlah unit yang dialamati	2s + W words or bytes
Ukuran bloks sama dengan ukuran Line	2W words or bytes
Jumlah blok memori utama	2s + w/2W = 2s
Jumlah line di chace	Undetermined
Besarnya tag	S bits

- Ringkasan Set Associative Mapping

Item	Keterangan
Panjang alamat	(s + W) bits
Jumlah unit yang dialamati	2s + W words or bytes
Ukuran bloks sama dengan ukuran Line	2W words or bytes
Jumlah blok memori utama	2s + w/2W = 2s
Jumlah line di chace	Undetermined
Jumlah line dalam set	k
Jumlah set	V = 2d
Jumlah line di chace	Kv = k*2d
Besarnya tag	(s-d)bits

2. Perbedaan antara mode kerja 'Real-Mode' dan mode kerja 'Protect-Mode' pada PC IBM Compatible:

Real-Mode

- Merupakan suatu modus dengan prosesor Intel x86 yang berjalan seakan dirinya adalah sebuah prosesor Intel 8085 atau Intel 8088, walaupun ia merupakan prosesor Intel 80286 atau lebih tinggi. Karena itu, modus ini disebut juga sebagai modus 8086 (8086 Mode).
- Prosesor hanya bisa mengeksekusi instruksi 16-bit saja dengan menggunakan register internal yang berukuran 16-bit, serta hanya dapat mengakses hanya 1024 KB dari memori karena hanya menggunakan 20-bit jalur bus alamat. Semua program DOS berjalan pada modus ini.
- Menggunakan BIOS subroutines dan juga dengan OS subroutines.

• Protected-Mode

- Merupakan sebuah modus di mana terdapat proteksi ruang alamat memori yang ditawarkan oleh mikroprosesor untuk digunakan oleh sistem operasi.
- Modus ini datang dengan mikroprosesor Intel 80286 atau yang lebih tinggi. Karena memiliki proteksi ruang alamat memori, maka dalam modus ini sistem operasi dapat melakukan multitasking.
- Hanya menggunakan BIOS OS subroutines.

Langkah Kerja

1. Masuk ke CMD kemudian lanjutkan dengan 'CD OS', 'setpath' dan 'cd LAB/LAB3'

```
Command Prompt
Microsoft Windows [Version 10.0.22000.978]
(c) Microsoft Corporation. All rights reserved.
C:\Users\ASUS>cd\
C:\os
C:\os>setpath
C:\Os>Path=C:\Os\Dev-Cpp\bin;C:\Os\Bochs-2.3.5;c:\Os\Perl;C:\Windows;C:\Windows\System32
C:\Os>cd lab
C:\Os>LAB>cd lab3
C:\Os\LAB\LAB3>
```

2. Mengetik 'type s.bat'

```
C:\OS\LAB\LAB3>_

C:\OS\LAB\LAB3>_
```

3. Mulai melakukan 'debugging' dengan memasukkan perintah 'S'

4. Melihat isi register CS dan IP dengan perintah 'r'

```
Bochs for Windows - Console
C:\OS\LAB\LAB3>..\..\bochs-2.3.5\bochsdbg -q -f
00000000000[APIC?] local apic in initializing
                               Bochs x86 Emulator 2.3.5
                Build from CVS snapshot, on September 16, 2007
                        reading configuration from bochsrc.bxrc installing win32 module as the Bochs GUI using log file bochs.log
00000000000i[
Next at t=0
(0) [0xfffffff0] f000:fff0 (unk. ctxt): jmp far f000:e05b
                                                                                          ; ea5be000f0
<books:1> r
rax: 0x00000000:00000000 rcx: 0x00000000:00000000
rdx: 0x00000000:00000f20 rbx: 0x00000000:00000000
rsp: 0x00000000:00000000 rbp: 0x00000000:00000000
rsi: 0x00000000:00000000 rdi: 0x00000000:00000000
r8 : 0x00000000:00000000 r9 : 0x00000000:00000000
r10: 0x00000000:00000000 r11: 0x00000000:00000000
r12: 0x00000000:00000000 r13: 0x00000000:00000000
r14: 0x00000000:00000000 r15: 0x00000000:00000000
rip: 0x00000000:0000fff0
eflags 0x00000002
IOPL=0 id vip vif ac vm rf nt of df if tf sf zf af pf cf
<books:2>
```

5. PC mengeksekusi perintah tersebut, dengan perintah 's' dan dilanjutkan 'r'

6. Mengetahui tahapan detail yang dilakukan PC dengan menjalankan perintah 's' secara berulang,

7. Kemudian memasukkan break point dengan memasukkan perintah 'vb 0:0x7C00' dan memasukkan perintah 'c'

8. Menjalankan PC langkah demi langkah (debugging) dengan perintah 's'

9. Menghentikan proses debugging dengan perintah 'q' dan mulai dari awal dengan ketik 's' serta buat break point dengan perintah 'vb 0x0100:0x0000' kemudian selanjutnya mengetikkan perintah 'c'

10. Meneruskan langkah PC simulator minimal sebanyak 10x, ketik 's'<ENTER> kemudian step berikutnya dilakukan dengan menekan tombol <ENTER> secara langsung.

