Gradient Boosting

TUAN NGUYEN

Bagging

Parallel

Boosting

Sequential

Gradient Boosting

Dataset

Simple prediction

Residual data

Residual model

Prediction change

$$F_1 = F_0 + \nu \cdot \gamma_1$$

In fact, gradient boosting algorithm does not simply add γ to F as it makes the model overfit to the training data. Instead, γ is scaled down by **learning rate** ν which ranges between 0 and 1

$$F_1 = \begin{cases} F_0 + \nu \cdot 6.0 & if \ x \le 49.5 \\ F_0 - \nu \cdot 5.9 & otherwise \end{cases}$$

Model prediction update

Residual update

Residual model (2)

Model prediction update

Algorithms

Gradient Boosting Algorithm

1. Initialize model with a constant value:

$$F_0(x) = argmin \sum_{i=1}^n L(y_i, \gamma)$$

2. for m = 1 to M:

2-1. Compute residuals
$$r_{im} = -\left[\frac{\partial L(y_i, F(x_i))}{\partial F(x_i)}\right]_{F(x)=F_{m-1}(x)}$$
 for $i=1,...,n$

2-2. Train regression tree with features x against r and create terminal node reasions R_{jm} for $j=1,...,J_m$

2-3. Compute
$$\gamma_{jm} = \underset{\gamma}{argmin} \sum_{x_i \in R_{jm}} L(y_i, F_{m-1}(x_i) + \gamma)$$
 for $j = 1, ..., J_m$

2-4. Update the model:

$$F_m(x) = F_{m-1}(x) + \nu \sum_{j=1}^{J_m} \gamma_{jm} 1(x \in R_{jm})$$

More...

- https://towardsdatascience.com/all-you-need-to-know-about-gradient-boosting-algorithm-part-l-regression-2520a34a502
- https://towardsdatascience.com/all-you-need-to-know-about-gradient-boosting-algorithm-part-2-classification-d3ed8f5654le