

Narayani Vedam

Advisors:

Dr. Shankar P Bhattacharyya, Dr. Reza Langari

10/13/2015

OUTLINE

Objectives Introduction ☐ Conventional Cruise Control System Human Driving Behavior Prevalent Approaches Preliminaries □ Vehicle Model ☐ Road Grade Proposed Method **□** Model Objective Function Control Algorithm ☐ Simulation Results Summary

OBJECTIVES

- > Design a speed control system that can:
 - Track a set-speed along flat roads
 - Mimic human driving behavior along varying terrains
- Ensure optimality of regulatory actions w.r.t (either or all),
 - Fuel consumption,
 - Brake usage &
 - Acceleration.

OBJECTIVES

- ➤ In a typical approach:
 - Fixed-weight objective function is used
 - Pre-processing algorithms are needed
 - To ensure speed tracking
 - Fuel savings of 2.5% over 127km
- ➤ In this approach:
 - Varying-weight objective function is used
 - No need for pre-processing algorithms
 - 0.48%(downhill) and 0.44%(uphill) fuel savings over 2.5km

OUTLINE

- □ Objectives
 □ Introduction
 □ Conventional Cruise Control System
 □ Human Driving Behavior
 □ Prevalent Approaches
 □ Preliminaries
 □ Vehicle Model
 □ Road Grade
- Proposed Method
 Model
 - Objective Function
 - Control Algorithm
 - ☐ Simulation Results
- Summary

Conventional Speed Control

Aim Maintain a user-set vehicle speed

Means Controllers - PI, LQR, Fuzzy, ..., etc.

Actuators Accelerator, Brakes

Sensors Wheel Speed Sensor

Advantages On flat roads:

Robust tracking of set-speed

Reduce driver fatigue

Fuel efficient

Conventional Speed Control

Figure 1: Block Diagram Of A Typical Conventional Speed Control System

Conventional Speed Control

Disadvantages

- > Oblivious to impending gradients
 - Lot of energy is used up while going up a hill
 - Lot of energy is wasted while going down a hill
- > Unaware of curves along a route
 - Set speed may not be safe along curvatures
 - Necessitates manual intervention
- > Always tries to maintain the highest possible gear

Human Driving Behavior

- > Preview Utilization
- > Accelerate before and during an uphill
- > Decelerate before a downhill
- > Coast during descent
- > Right choice of gear

Unfamiliar route, novice driver, bad driving practices?

Prevalent Approaches

1. Heuristic Algorithm¹

- a. Road section is divided based on the terrain uphill, downhill and flat
- b. Intuitive rules mapping inputs to the outputs are generated
- c. Computationally less intense
- d. Generation of rule base is tedious

Prevalent Approaches

2. Model Predictive Control Scheme

- a. Constrained optimization with gradient descent algorithm²
 - Local minimum
 - ii. Optimal velocity trajectory
 - iii. Linear controller with gain scheduling
- b. Discrete Dynamic Programming³
 - i. Fixed objective function
 - ii. State-space & Input-space are discretized
 - iii. Pre-processing algorithm is needed

OUTLINE

- ObjectivesIntroduction
 - Conventional Cruise Control System
 - Human Driving Behavior
 - Prevalent Approaches
- Preliminaries
 - ☐ Vehicle Model
 - ☐ Road Grade
- Proposed Method
 - Model
 - Objective Function
 - Control Algorithm
 - ☐ Simulation Results
- Summary

Figure 3: A Typical Automotive Power-train⁴

Engine

Clutch

$$T_f = \eta_f i_f T_t$$

T	_	T_{a}
$\boldsymbol{\iota}_w$	_	1 f

Parameter	Description
T	Torque Output (<i>N-m</i>)
P	Accelerator Pedal
G	Gear Position
N	Engine Speed (RPM)
a, b, c	Empirical Constants
i	Conversion Ratio
η	Efficiency (%)

$$F_d = \frac{1}{2}\rho c_d A v^2$$

Rolling	
Resistance	

$$F_r = mgc_r cos(\alpha)$$

$$F_g = mgsin(\alpha)$$

Parameter	Description
С	Friction Coefficient
m	Mass (kg)
A	Frontal Area (sq. m)
ν	Velocity (<i>m/s</i>)
g	Acceleration due to gravity (m/s^2)
ρ	Density of air (kg/m^3)
α	Road Grade (rads)

$$F_{total} = F_d + F_r + F_g$$

Tractive Force at the wheels

Parameter	Description
F	Tractive Force (kN)
J	Inertia (kg/m^2)
r_w	Wheel Radius (m)

$$T_w = F_w r_w$$

$$F_w = F_e - F_{total}$$

$$\dot{v} = \frac{r_w}{J_w + mr_w^2 + \eta_t i_t^2 \eta_f i_f^2 J_e} (\eta_t i_t \eta_f i_f T_e(N, P, G) - BF_B - 0.5\rho c_d r_w A v^2 - mgr_w \sqrt{1 + c_r^2} sin(\alpha + \arctan(c_r)))$$

Road Grade (α)

$$\alpha(rads) = \frac{Vertical\ Projection}{Horizontal\ Projection}$$

Figure 4: Pictorial Representation Of Road Grade

OUTLINE

- Objectives
- **■** Introduction
 - Conventional Cruise Control System
 - Human Driving Behavior
 - Prevalent Approaches
- Preliminaries
 - □ Vehicle Model
 - ☐ Road Grade
- Proposed Method
 - Model
 - Objective Function
 - Control Algorithm
 - Simulation Results
- Summary

Overview

- 1. Discretize the vehicle model
 - a. Define States, Inputs & Outputs
 - b. Define Constraints
- 2. Formulate an objective function
 - a. Adaptively vary the weights
- 3. Implement a MPC scheme with discrete dynamic programming
 - a. Apply the first instance of the control action
 - b. Measure the output
 - c. Recompute the control action

Model

$$v_{k+1} = v_k + \frac{h}{v_k} f_1(v_k, u_k, \alpha_k), \ k = 0, 1, 2, \dots, N-1$$

$$u_k = \begin{bmatrix} P_k \\ B_k \end{bmatrix}, \ k = 0, 1, 2, \dots, N - 1$$

$$y_k = \begin{bmatrix} v_k \\ m_{f,k} \end{bmatrix}, \ k = 0, 1, 2, \dots, N-1$$

Constraints:
$$(v_{ref} - 5) \le v_k \le (v_{ref} + 5)$$

$$0 \le P_k \le 1$$

$$0 \le B_k \le 1$$

Objective Function

Cost Criteria:

 B_k , Brake usage

 $m_{f,k}$, Fuel usage

 $|v_k - v_{k+1}|$, Acceleration

 $|v_{ref} - v_k|$, Deviation in velocity

Objective Function:

$$\beta_k = L_1(\alpha_k) m_{f,k} + L_2(\alpha_k) |v_{ref} - v_k| + L_3(\alpha_k) |v_k - v_{k+1}| + L_4(\alpha_k) B_k$$

 $L_1(\alpha_k)$, $L_2(\alpha_k)$, $L_3(\alpha_k)$ & $L_4(\alpha_k)$ are terrain dependent penalties.

Terrain Dependent Objectives

- > Flat Stretch (F):
 - Track Set-Speed
- ➤ Uphill (U):
 - Accelerate Before Ascent
 - Accelerate Upon Ascent
 - Reduced Speed Drop
- > Downhill (D):
 - Decelerate Before Descent
 - Coast during descent
 - Minimal Brake Usage
 - Fuel Efficient

Gain	F	U	D
L_1	Low	Low	High
L_2	High	Low	Low
L_3	High	High	High
L_4	Low	Nil	High

Discrete Dynamic Programming

- 1. At k = N, $J_N(v_N(i)) = \beta_N(v_N(i)) = 0$
- 2. Take a step backward, k = N-1,

$$J_k(v_k(i)) = \min_{v_{k+1}(j)} \{ J_{k+1}(v_{k+1}(j)) + \beta_k^{i,j} \}$$

3. If k>1, repeat step 2

Figure 5: N-step Dynamic Programming Problem

Model Predictive Control

Simulation

- > Controllers (Julia):
 - PI Controller
 - Optimal Controller with fixed-weights
 - Optimal Controller with varying-weights
- > Scenarios:
 - Uphill
 - Downhill

Artificial road sections of length 2500m with 500m of varying grade (uphill/downhill)

Simulation Parameters

Parameter	Description	Value
h	Step length	50m
N	No. Of Steps	30
v_{ref}	Reference Velocity	85 km/h
v_{min}	Lower Bound	80 km/h
v_{max}	Upper Bound	90 km/h
α	Road Grade	±3%

PI Vs Varying-Weights (Uphill)

Gain	Uphill	Value
L_1	Low	1
L_2	Low	2
L_3	High	15
L_4	Nil	0

Desired Behavior	Observed Behavior
Accelerate Before Ascent	
Accelerate During Ascent	
Fuel Consumption	•
Minimal Speed Drop	•
Time	•

$$\Delta_{fuel}(\%) = \frac{m_{f,VW} - m_{f,PI}}{m_{f,PI}} \times 100$$
 = - 0.44%

Varying-Weights Vs Fixed-Weights (Uphill)

Gain	FW	VW	Value
L_1	2	Low	1
L_2	5	Low	2
L_3	15	High	15
L_4	100	Nil	0

Desired Behavior	Observed Behavior
Accelerate Before Ascent	
Accelerate During Ascent	•
Fuel Consumption	
Minimal Speed Drop	
Time	•

$$\Delta_{fuel}(\%) = \frac{m_{f,VW} - m_{f,PI}}{m_{f,PI}} \times 100 = 1.79\%$$

Varying-Weights Vs PI (Downhill)

Gain	VW	Value
L_1	High	2.5
L_2	Low	1
L_3	High	15
L_4	High	100

Desired Behavior	Observed Behavior	
Decelerate Before Descent		
Coasting During Descent	•	
Fuel Consumption	•	
Minimal Usage Of Brakes		
Time	000	

$$\Delta_{fuel}(\%) = \frac{m_{f,VW} - m_{f,PI}}{m_{f,PI}} \times 100 = -0.48\%$$

Varying-Weights Vs Fixed-Weights (Downhill)

Gain	FW	VW	Value
L_1	2	High	2.5
L_2	5	Low	1
L_3	15	High	15
L_4	100	High	100

Desired Behavior	Observed Behavior
Decelerate Before Descent	•
Coasting During Descent	•
Fuel Consumption	<u>•</u>
Minimal Usage Of Brakes	•
Time	•

$$\Delta_{fuel}(\%) = \frac{m_{f,VW} - m_{f,PI}}{m_{f,PI}} \times 100 = 1\%$$

OUTLINE

- ObjectivesIntroductionConventional
 - Conventional Cruise Control System
 - Human Driving Behavior
 - Prevalent Approaches
- Preliminaries
 - ☐ Vehicle Model
 - ☐ Road Grade
- Proposed Method
 - Model
 - Objective Function
 - Control Algorithm
 - ☐ Simulation Results
- Summary

Summary

Terrain	Objective	Conventional Control	FW Control	VW Control	
Flat Stretch	Speed Tracking	Good	Poor	Good	
Uphill	Speed Drop	High	>VW	Minimal	
	Fuel	>FW/VW	<pi td="" vw<=""><td><pi< td=""></pi<></td></pi>	<pi< td=""></pi<>	
	Time	High	>VW	Low	
Downhill	Speed Increase	High	Low	Low	
	Brake Use	High	Low	Low	
	Fuel	>FW/VW	<pi &="" td="" vw<=""><td><pi< td=""></pi<></td></pi>	<pi< td=""></pi<>	
	Time	Low	>PI/VW	<fw &="">PI</fw>	

Varying-Weights Control is simpler since it needs no pre-processing algorithm!

Thank you!

Acknowledgement

- Advisory Committee:
 - Dr. Aniruddha Datta
 - Dr. Ben Zoghi
 - Dr. Reza Langari
 - Dr. Shankar P Bhattacharyya
 - Dr. Xingyong Song

