

Pattern Recognition (PR)

Prof. Dr.-Ing. Andreas Maier Pattern Recognition Lab (CS 5), Friedrich-Alexander-Universität Erlangen-Nürnberg Winter Term 2020/21

This is a printable version of the slides of the lecture

Pattern Recognition (PR)

Winter term 2020/21 Friedrich-Alexander University of Erlangen-Nuremberg.

These slides are are release under Creative Commons License Attribution CC BY 4.0.

Please feel free to reuse any of the figures and slides, as long as you keep a reference to the source of these slides at https://lme.tf.fau.de/teaching/acknowledging the authors Niemann, Hornegger, Hahn, Steidl, Nöth, Seitz, Rodriguez, Das and Maier.

Erlangen, January 8, 2021 Prof. Dr.-Ing. Andreas Maier

Kernels

Motivation

Linear decision boundaries in its current form have serious limitations:

- too simple to provide good decision boundaries
- non-linearly separable data cannot be classified
- noisy data cause problems
- formulation deals with vectorial data only

Possible solution:

 Map data into a higher dimensional feature space using a non-linear feature transform, then use a linear classifier.

Dual Representation

The SVM decision boundary can be rewritten in dual form:

$$f(\mathbf{x}) = \boldsymbol{\alpha}^T \mathbf{x} + \alpha_0 = \sum_i \lambda_i y_i \mathbf{x}_i^T \mathbf{x} + \alpha_0$$

where we have used the identity:

$$\alpha = \sum_{i} \lambda_{i} y_{i} \mathbf{x}_{i}$$
.

The Lagrange dual problem is given by the optimization problem:

maximize
$$-\frac{1}{2}\sum_{i}\sum_{j}\lambda_{i}\lambda_{j}y_{i}y_{j}\cdot\boldsymbol{x}_{i}^{T}\boldsymbol{x}_{j}+\sum_{i}\lambda_{i}$$
 subject to
$$\boldsymbol{\lambda}\succeq0,\quad\sum_{i}\lambda_{i}\,y_{i}=0$$

Conclusion: feature vectors \mathbf{x}_i , \mathbf{x}_j , and \mathbf{x} only appear in inner products, both in the learning and the classification phase.

© 2005-2020 Hornegger, Hahn, Steidl, Nöth, Maier | Pattern Recognition Lab | Lecture Pattern Recognition

Winter Term 2020/21

Inner Product and the Perceptron

The decision boundary that we get for the perceptron can also be written in terms of inner products:

$$F(\mathbf{x}) = \left(\sum_{i \in \mathscr{E}} y_i \cdot \mathbf{x}_i\right)^T \mathbf{x} + \sum_{i \in \mathscr{E}} y_i$$
$$= \sum_{i \in \mathscr{E}} y_i \cdot \langle \mathbf{x}_i, \mathbf{x} \rangle + \sum_{i \in \mathscr{E}} y_i$$

Feature Transforms

We select a feature transform $\phi: \mathbb{R}^d \to \mathbb{R}^D$, $D \geq d$, such that the resulting features $\phi(\mathbf{x}_i)$, $i = 1, 2, \dots, m$, are linearly separable.

Fig.: Application of the feature transform $\phi(\mathbf{x}) = (x_1^2, x_2^2)^T$.

© 2005–2020 Hornegger, Hahn, Steidl, Nöth, Maier | Pattern Recognition Lab | Lecture Pattern Recognition

Winter Term 2020/21

Feature Transforms (cont.)

Second Example: data is not centered

Transformed Feature Space (3D)

Fig.: Application of the feature transform $\phi(\mathbf{x}) = (x_1^2, x_2^2, x_2)^T$.

© 2005-2020 Hornegger, Hahn, Steidl, Nöth, Maier | Pattern Recognition Lab | Lecture Pattern Recognition

Winter Term 2020/21

Feature Transforms (cont.)

Example

Assume the decision boundary is given by the quadratic function

$$f(\mathbf{x}) = a_0 + a_1 x_1^2 + a_2 x_2^2 + a_3 x_1 x_2 + a_4 x_1 + a_5 x_2.$$

Obviously this is not a linear decision boundary.

By the following mapping, we get features that have a linear decision boundary:

$$\phi(\mathbf{x}) = \begin{pmatrix} x_1^2 \\ x_2^2 \\ x_1 \cdot x_2 \\ x_1 \\ x_2 \end{pmatrix}$$

© 2005-2020 Hornegger, Hahn, Steidl, Nöth, Maier | Pattern Recognition Lab | Lecture Pattern Recognition

Winter Term 2020/21

Feature Transforms (cont.)

Consider distances in the transformed feature space:

$$\begin{aligned} \|\phi(\mathbf{x}) - \phi(\mathbf{x}')\|_2^2 &= \langle (\phi(\mathbf{x}) - \phi(\mathbf{x}')), (\phi(\mathbf{x}) - \phi(\mathbf{x}')) \rangle \\ &= \langle \phi(\mathbf{x}), \phi(\mathbf{x}) \rangle - 2 \langle \phi(\mathbf{x}), \phi(\mathbf{x}') \rangle + \langle \phi(\mathbf{x}'), \phi(\mathbf{x}') \rangle \end{aligned}$$

Conclusion: Distances can be computed by just evaluating inner products.

Feature Transforms (cont.)

These feature transforms can be easily incorporated into SVMs:

Decision boundary:

$$f(\mathbf{x}) = \sum_{i} \lambda_{i} \cdot y_{i} \cdot \langle \phi(\mathbf{x}_{i}), \phi(\mathbf{x}) \rangle + \alpha_{0}$$

The Lagrange dual problem is given by the optimization problem:

maximize
$$-\frac{1}{2}\sum_{i}\sum_{j}\lambda_{i}\lambda_{j}y_{i}y_{j}\cdot\langle\phi(\textbf{\textit{x}}_{i}),\phi(\textbf{\textit{x}}_{j})\rangle+\sum_{i}\lambda_{i}$$

subject to
$$\lambda \succeq 0, \quad \sum_i \lambda_i \, y_i = 0$$

© 2005-2020 Hornegger, Hahn, Steidl, Nöth, Maier | Pattern Recognition Lab | Lecture Pattern Recognition

Winter Term 2020/21

10

Kernel Functions

Definition

A kernel function $k: \mathscr{X} \times \mathscr{X} \to \mathbb{R}$ is a symmetric function that maps a pair of features to a real number. For a kernel function the following property holds:

$$k(\mathbf{x}, \mathbf{x}') = \langle \phi(\mathbf{x}), \phi(\mathbf{x}') \rangle$$

for any feature mapping ϕ .

Note:

Usually the evaluation of the kernel function is much easier than the computation of transformed features followed by the inner product.

Kernel Functions (cont.)

Definition

For a given set of feature vectors $\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_m$, we define the

$$K = [K_{i,j}]_{i,j=1,2,...,m}$$
, where $K_{i,j} = \langle \phi(\mathbf{x}_i), \phi(\mathbf{x}_j) \rangle$.

Note:

The entries of the matrix are similarity measures for transformed feature pairs.

© 2005-2020 Hornegger, Hahn, Steidl, Nöth, Maier | Pattern Recognition Lab | Lecture Pattern Recognition

Winter Term 2020/21

12

Kernel Functions (cont.)

Lemma

The kernel matrix is positive semidefinite.

Proof: We need to show $\forall x : x^T K x \ge 0$:

$$\mathbf{x}^{T}\mathbf{K}\mathbf{x} = \sum_{i,j=1}^{m} x_{i}x_{j}K_{i,j} = \sum_{i,j=1}^{m} x_{i}x_{j} \langle \phi(\mathbf{x}_{i}), \phi(\mathbf{x}_{j}) \rangle$$

$$= \sum_{i,j=1}^{m} \langle x_{i}\phi(\mathbf{x}_{i}), x_{j}\phi(\mathbf{x}_{j}) \rangle$$

$$= \left\langle \sum_{i=1}^{m} x_{i}\phi(\mathbf{x}_{i}), \sum_{j=1}^{m} x_{j}\phi(\mathbf{x}_{j}) \right\rangle = \left\| \sum_{i=1}^{m} x_{i}\phi(\mathbf{x}_{i}) \right\|_{2}^{2} \geq 0$$

Kernel Functions (cont.)

Typical kernel functions:

• Linear: $k(\mathbf{x}, \mathbf{x}') = \langle \mathbf{x}, \mathbf{x}' \rangle$

• Polynomial: $k(\mathbf{x}, \mathbf{x}') = (\langle \mathbf{x}, \mathbf{x}' \rangle + 1)^d$

• Laplacian radial basis function: $k(\pmb{x}, \pmb{x}') = e^{-\frac{\|\pmb{x} - \pmb{x}'\|_1}{\sigma^2}}$

• Gaussian radial basis function: $k(\mathbf{x}, \mathbf{x}') = e^{-\frac{\|\mathbf{x} - \mathbf{x}'\|_2^2}{\sigma^2}}$

• Sigmoid kernel: $k(\mathbf{x}, \mathbf{x}') = \tanh(\alpha \langle \mathbf{x}, \mathbf{x}' \rangle + \beta)$

Question:

Can we compute for any kernel function $k(\mathbf{x}, \mathbf{x}')$ a feature mapping ϕ such that the kernel function can be written as an inner product?

© 2005-2020 Hornegger, Hahn, Steidl, Nöth, Maier | Pattern Recognition Lab | Lecture Pattern Recognition

Winter Term 2020/21

Kernel Functions (cont.)

Theorem (Mercer's Theorem)

For any symmetric function $k: \mathscr{X} \times \mathscr{X} \to \mathbb{R}$ that is square integrable on its domain and which satisfies

$$\int_{\mathscr{X}\times\mathscr{X}} f(\boldsymbol{x}) f(\boldsymbol{x}') k(\boldsymbol{x}, \boldsymbol{x}') d\boldsymbol{x} d\boldsymbol{x}' \geq 0$$

for all square integrable functions f, there exist transforms $\phi_i: \mathscr{X} \to \mathbb{R}$ and $\lambda_i \geq 0$ such that:

$$k(\boldsymbol{x}, \boldsymbol{x}') = \sum_{i} \lambda_{i} \, \phi_{i}(\boldsymbol{x}) \, \phi_{i}(\boldsymbol{x}')$$

for all \mathbf{x} and \mathbf{x}' .

Kernel Functions (cont.)

The Kernel Trick

In *any* algorithm that is formulated in terms of a positive semidefinite kernel k, we can derive an alternative algorithm by replacing the kernel function k by another positive semidefinite kernel k'.

Kernel SVMs with Soft Margins

Linear kernel $\langle \mathbf{x}, \mathbf{x}' \rangle$:

- the complexity parameter C controls the number of support vectors and
- · hence the width of the margin and
- the orientation of the decision boundary

Kernel SVMs with Soft Margins (cont.)

Polynomial kernel $\langle \boldsymbol{x}, \boldsymbol{x}' \rangle^2$:

© 2005–2020 Hornegger, Hahn, Steidl, Nöth, Maier | Pattern Recognition Lab | Lecture Pattern Recognition | Winter Term 2020/21

18

Kernel SVMs with Soft Margins (cont.)

Gaussian RBF kernel $e^{-0.1 \cdot \langle x, x' \rangle^2}$:

Fig.: C = 10: 18 support vectors, 3 misclassifications

Next Time in Pattern Recogni

Kernel PCA

PCA revisited

- Let $\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_m \in \mathbb{R}^d$ be the feature vectors with zero mean.
- Compute the scatter matrix (covariance matrix):

$$\Sigma = \frac{1}{m} \sum_{i=1}^{m} \mathbf{x}_i \mathbf{x}_i^T \in \mathbb{R}^{d \times d}$$

• Compute the eigenvectors and eigenvalues:

$$oldsymbol{\Sigma} oldsymbol{e}_{i} = \lambda_{i} oldsymbol{e}_{i}$$

- Sort eigenvectors with decreasing eigenvalues.
- Subsequent projection of features to the eigenvectors.

Kernel PCA (cont.)

Facts from linear algebra:

- The eigenvectors \mathbf{e}_i span the same space as the feature vectors.
- Each eigenvector e_i can be written as a linear combination of feature vectors:

$$m{e}_i = \sum_k lpha_{i,k} m{x}_k$$

© 2005-2020 Hornegger, Hahn, Steidl, Nöth, Maier | Pattern Recognition Lab | Lecture Pattern Recognition

Winter Term 2020/21

22

Kernel PCA (cont.)

The eigenvector/-value problem for the PCA computation can now be rewritten:

$$\Sigma e_i = \lambda_i e_i$$

$$\left(\frac{1}{m}\sum_{j=1}^{m}\boldsymbol{x}_{j}\boldsymbol{x}_{j}^{T}\right)\cdot\sum_{k}\alpha_{i,k}\boldsymbol{x}_{k} = \lambda_{i}\sum_{k}\alpha_{i,k}\boldsymbol{x}_{k}$$

$$\sum_{j,k} \alpha_{i,k} \mathbf{x}_j \mathbf{x}_j^T \mathbf{x}_k = m \cdot \lambda_i \sum_k \alpha_{i,k} \mathbf{x}_k$$

Kernel PCA (cont.)

• The following equations have to be fulfilled for all projections on x_l for all indices l:

$$\sum_{i,k} \alpha_{i,k} \mathbf{x}_i^T \mathbf{x}_j \mathbf{x}_j^T \mathbf{x}_k = m \cdot \lambda_i \sum_k \alpha_{i,k} \mathbf{x}_i^T \mathbf{x}_k$$

- Wow now all feature vectors show up in terms of inner products and the kernel trick can be applied, if *transformed* features $\phi(x)$ have zero mean.
- For any kernel k(x, x'), we get the key equation for Kernel PCA:

$$\sum_{j,k} \alpha_{i,k} \cdot k(\mathbf{x}_l, \mathbf{x}_j) \cdot k(\mathbf{x}_j, \mathbf{x}_k) = m \cdot \lambda_i \cdot \sum_k \alpha_{i,k} \cdot k(\mathbf{x}_l, \mathbf{x}_k)$$

© 2005-2020 Hornegger, Hahn, Steidl, Nöth, Maier | Pattern Recognition Lab | Lecture Pattern Recognition

Winter Term 2020/21

Kernel PCA (cont.)

This can be written in matrix notation using the symmetric, positive semi-definite kernel matrix $\mathbf{K} \in \mathbb{R}^{m \times m}$ and the vector $\boldsymbol{\alpha}_i = (\alpha_{i,1}, \alpha_{i,2}, \dots, \alpha_{i,m})^T$:

$$K^2 \alpha_i = m \cdot \lambda_i K \alpha_i$$

 $K(K\alpha_i) = m \cdot \lambda_i (K\alpha_i)$

This is equivalent to

$$K(K\alpha_i - m \cdot \lambda_i \alpha_i) = 0$$

- $K\alpha_i$ is an eigenvector of K
- α_i is an eigenvector of K

Kernel PCA (cont.)

The coefficient vector α_i for the principal components can be computed by solving the eigenvalue/-vector problem for i:

$$K\alpha_i = m\lambda_i \ \alpha_i$$

Note:

- Kernel PCA (and thus the classical PCA as well) can be computed by solving an eigenvector/-value problem for an $(m \times m)$ -matrix, where *m* is the cardinality of the training feature set.
- The principal components cannot be computed easily, because only the kernel is known, but not $\phi(x)$.
- However, the projection c of the transformed feature vector $\phi(x)$ on principal component $e_i = \sum_k \alpha_{i,k} \phi(\mathbf{x}_k)$ is easily computed by:

$$c = \phi(\mathbf{x})^T \mathbf{e}_i = \sum_k \alpha_{i,k} \phi(\mathbf{x})^T \phi(\mathbf{x}_k) = \sum_k \alpha_{i,k} k(\mathbf{x}, \mathbf{x}_k)$$

© 2005-2020 Hornegger, Hahn, Steidl, Nöth, Maier | Pattern Recognition Lab | Lecture Pattern Recognition

Winter Term 2020/21

Kernel PCA (cont.)

It is assumed that the transformed features have zero mean:

$$\frac{1}{m}\sum_{k=1}^m\phi(\mathbf{x}_k)=0.$$

This can be enforced by the normalization step:

$$\tilde{\phi}(\mathbf{x}_i) = \phi(\mathbf{x}_i) - \frac{1}{m} \sum_{k=1}^m \phi(\mathbf{x}_k)$$

Kernel PCA

Implication for the components of the centered kernel matrix \tilde{K} :

$$\tilde{K}_{i,j} = \tilde{\phi}(\mathbf{x}_i)^T \tilde{\phi}(\mathbf{x}_j)
= \left(\phi(\mathbf{x}_i) - \frac{1}{m} \sum_{k=1}^m \phi(\mathbf{x}_k)\right)^T \left(\phi(\mathbf{x}_j) - \frac{1}{m} \sum_{k=1}^m \phi(\mathbf{x}_k)\right)
= \phi(\mathbf{x}_i)^T \phi(\mathbf{x}_j) - \frac{1}{m} \sum_{k=1}^m \phi(\mathbf{x}_i)^T \phi(\mathbf{x}_k) - \frac{1}{m} \sum_{k=1}^m \phi(\mathbf{x}_k)^T \phi(\mathbf{x}_j) +
+ \frac{1}{m^2} \sum_{k,l=1}^m \phi(\mathbf{x}_k)^T \phi(\mathbf{x}_l)
= K_{i,j} - \frac{1}{m} \sum_{k=1}^m K_{i,k} - \frac{1}{m} \sum_{k=1}^m K_{k,j} + \frac{1}{m^2} \sum_{k,l=1}^m K_{k,l}$$

© 2005-2020 Hornegger, Hahn, Steidl, Nöth, Maier | Pattern Recognition Lab | Lecture Pattern Recognition

Winter Term 2020/21

Kernel PCA (cont.)

Example: classical vs. kernel PCA

Consider m = 50 images with 1024^2 pixels. The pixels define 1024^2 -dimensional feature vectors:

$$extbf{\emph{x}}_1, extbf{\emph{x}}_2,\ldots, extbf{\emph{x}}_{50} \in \mathbb{R}^{2^{20}}$$

The kernel PCA using the linear kernel

$$k(\mathbf{x}_i, \mathbf{x}_i) = \mathbf{x}_i^T \mathbf{x}_i$$

requires the eigenvalue/-vector decomposition of the (50×50) kernel matrix.

The classical PCA requires the eigenvalue/-vector decomposition of a ($2^{20} \times 2^{20}$) matrix.

Kernels for Feature Sequences

Example: string kernels

- In speech recognition we do not have feature vectors but sequences of feature vectors.
- In order to use kernel methods we need a kernel for time series.

© 2005–2020 Hornegger, Hahn, Steidl, Nöth, Maier | Pattern Recognition Lab | Lecture Pattern Recognition

Winter Term 2020/21

Kernels for Feature Sequences (cont.)

Example: string kernels (cont.)

- Feature vectors are considered in $\mathbb{R}^d = \mathscr{X}$.
- Sequences of feature vectors are elements of \mathscr{X}^* .
- Problem: How to define a kernel over the sequence space \mathscr{X}^* ?

Implications:

- PCA on feature sequences COOL!
- SVM for feature sequences EVEN COOLER!

Kernels for Feature Sequences (cont.)

Example: string kernels (cont.)

Comparison of sequences via dynamic time warping (DTW):

Given the feature sequences $(p, q \in \{1, 2, \dots\})$:

$$\langle \mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_p \rangle \in \mathscr{X}^*$$

 $\langle \mathbf{y}_1, \mathbf{y}_2, \dots, \mathbf{y}_q \rangle \in \mathscr{X}^*$

© 2005-2020 Hornegger, Hahn, Steidl, Nöth, Maier | Pattern Recognition Lab | Lecture Pattern Recognition

Winter Term 2020/21

Kernels for Feature Sequences (cont.)

Example: string kernels (cont.)

Distance is computed by DTW:

$$D(\langle \mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_p \rangle, \langle \mathbf{y}_1, \mathbf{y}_2, \dots, \mathbf{y}_q \rangle) = \frac{1}{\rho} \sum_{k=1}^{\rho} \|\mathbf{x}_{\nu(k)} - \mathbf{y}_{w(k)}\|_2$$

where v, w define the mapping of indices to indices.

The DTW kernel can be defined as:

$$k(\boldsymbol{x},\boldsymbol{y}) = e^{-D(\langle \boldsymbol{x}_1,\boldsymbol{x}_2,...,\boldsymbol{x}_p \rangle,\langle \boldsymbol{y}_1,\boldsymbol{y}_2,...,\boldsymbol{y}_q \rangle)}$$

Fisher Kernels

Now we design kernels building on probability density functions $p(x; \theta)$.

• Fisher score:

$$J_{\theta}(\mathbf{x}) = -\frac{\partial}{\partial \theta} \log p(\mathbf{x}; \theta)$$

Fisher information matrix:

$$I(\mathbf{x}) = E_{\mathbf{x}}[J_{\theta}(\mathbf{x})J_{\theta}^{T}(\mathbf{x})]$$

Note:

The Fisher information matrix is the curvature of the Kullback-Leibler divergence.

© 2005–2020 Hornegger, Hahn, Steidl, Nöth, Maier | Pattern Recognition Lab | Lecture Pattern Recognition

Winter Term 2020/21

34

Fisher Kernels (cont.)

The Fisher kernel can be defined in two different ways:

$$k(\mathbf{x}, \mathbf{x}') = \mathbf{J}_{\boldsymbol{\theta}}^{\mathsf{T}}(\mathbf{x})\mathbf{J}_{\boldsymbol{\theta}}(\mathbf{x}')$$

or

$$k(\mathbf{x}, \mathbf{x}') = \mathbf{J}_{\boldsymbol{\theta}}^{T}(\mathbf{x})\mathbf{I}^{-1}(\mathbf{x})\mathbf{J}_{\boldsymbol{\theta}}(\mathbf{x}')$$

Fisher Kernels (cont.)

Application: learning from partially labeled data

- Some classification approaches require huge collections of data (e.g. for text or speech recognition).
- Labeling of the data can be time-consuming and costly.
- If the data can be modeled with a small number of well separated components (with each component corresponding to a distinct category), little labeled data would suffice to assign a proper label to each of them.
- A machine learning approach that makes use of only partially labeled data usually achieves much better classification performance than using only the labeled data alone.
- Fisher kernels describe a generative model that can be used in a discriminative approach (e.g. SVM).

© 2005-2020 Hornegger, Hahn, Steidl, Nöth, Maier | Pattern Recognition Lab | Lecture Pattern Recognition

Winter Term 2020/21

Lessons Learned

- Limitations of linear decision boundaries
- Non-linear feature transforms
- Kernel function and kernel matrix
- Kernel trick
- Probabilities and kernels

Next Time in Pattern Recogni

Further Readings

- Bernhard Schölkopf, Alexander J. Smola: Learning with Kernels, The MIT Press, Cambridge, 2003.
- Vladimir N. Vapnik: The Nature of Statistical Learning Theory, Information Science and Statistics, Springer, Heidelberg, 2000.
- John Shawe-Taylor, Nello Cristianini: Kernel Methods for Pattern Analysis, Cambridge University Press, Cambridge, 2004

Comprehensive Questions

- What are the properties of kernel functions?
- What is the kernel matrix?
- What is the kernel trick?
- How can we use kernels for string comparison?

© 2005–2020 Hornegger, Hahn, Steidl, Nöth, Maier | Pattern Recognition Lab | Lecture Pattern Recognition

Winter Term 2020/21

40