Chapitre 2 : Second degré

Premières Spécialité Mathématiques

1 Définition

Définition 1. Une fonction polynomiale du second degré est une fonction f définie sur les réels qui à tout nombre x associe un réel f(x) de la forme :

$$ax^2 + bx + c$$

où a, b et c sont des réels avec $a \neq 0$.

Remarque. L'hypothèse $a \neq 0$ est essentielle, sinon la fonction est polynomiale de degré au plus 1.

L'objectif de ce chapitre est d'étudier les fonctions polynomiales du second degré : l'allure de leur courbe représentative, leur extremum, leurs racines...

2 Allure du graphique

On trace la courbe représentative de deux fonctions polynomiales du second degré : une avec a>0 et une avec a<0.

Définition 2. Soit f une fonction polynomiale de degré 2. Sa courbe représentative est appelée une **parabole**.

Proposition 1. Soit f une fonction polynomiale de degré 2. telle que $f(x) = ax^2 + bx + c$. Alors:

- Si a > 0, il existe une valeur de x, notée x_m telle que f est décroissante sur $]-\infty; x_m]$ et croissante sur $[x_m; +\infty[$
- Si a < 0, il existe une valeur de x, notée x_M telle que f est croissante sur $]-\infty; x_M]$ et décroissante sur $[x_M; +\infty[$

Remarque.

- Dans le cas a > 0, les « branches de la paraboles sont tournées vers le haut ». Dans le cas contraire (a < 0), elles sont « tournées vers le bas ».
- Dans le cas a > 0, f admet un unique minimum, et ce minimum est atteint en x_m . Dans le cas contraire (a < 0), f admet un maximum, et ce maximum est atteint en x_M .

3 Recherche de l'extremum

3.1 Forme canonique

$lpha$ et eta tel que $f(x) = a(x-lpha)^2 + eta$									
Remarque. Dans ce cas, $\alpha = \frac{-b}{2a}$ et $\beta = f(\alpha)$.									
Exemple. Soit l'expression polynomiale du second degré $-x^2 + 2x - 5$. Déterminer sa forme canonique.									
Méthode 1 Par identification :									
Méthode 2 En utilisant les « presque » identités remarquables :									
<u>. </u>									

3.2 Extremum

Proposition 3. Soit une fonction polynomiale du second degré $f: x \mapsto ax^2 + bx + c$. On suppose que $f(x) = a(x-\alpha)^2 + \beta$ pour tout x réel. Alors, f admet un extremum qu'il atteint en α et ayant pour valeur β .

Remarque. Comme dit précédemment, si a>0, alors f admet un minimum qu'il attent en $\alpha=\frac{-b}{2a}$. Sinon, si a<0, alors f admet un maximum qu'il atteint en $\alpha=\frac{-b}{2a}$. Dans les deux cas, cet extremum vaut $\beta=f(\alpha)$.

Exemple. Soit la fonction polynomiale $g: x \mapsto 4x^2 + 32x - 5$.

- a) Cette fonction admet-elle un minimum ou un maximum?
- b) En quelle valeur cet extremum est-il atteint?
- c) Que vaut cet extremum?

Proposition 4. Soit $f: x \mapsto ax^2 + bx + c$ une fonction polynomiale du second degré. On suppose que $f(x) = a(x - \alpha)^2 + \beta$. Alors la courbe représentative C_f est une parabole admettant comme axe de symétrie la droite $x = \alpha$.

Exemple. Soit $f: x \mapsto x^2 - 2x + 1$. Alors f admet un minimum (car a > 0) atteint on $\alpha = -\frac{b}{2a} = -\frac{-2}{2} = 1$. Alors C_f admet la droite x = 1 comme axe de symétrie.

4 Racines

4.1 Définition

Définition 3. Soit f une fonction. On appelle **racine** de la fonction f un nombre r tel que f(r) = 0.

Exemple. Vérifier que $r_1 = 1$ et $r_2 = -3$ sont deux racines de la fonction $f: x \mapsto 2x^2 + 4x - 6$.

 $\textbf{Proposition 5. }\textit{Soit } f: ax^2 + bx + c \textit{ une fonction polynomiale du second degr\'e. Alors, seuls trois cas sont \`a considérer: }$

- a) f n'admet aucune racine réelle, c'est-à-dire que pour tout réel x, on a $f(x) \neq 0$.
- b) f admet une unique racine notée r. Dans ce cas, f peut être factorisée en $f(x) = a(x-r)^2$ pour tout x.
- c) f admet deux racines, notées r_1 et r_2 . Dans ce cas, f peut être factorisée en $f(x) = a(x r_1)(x r_2)$ pour tout x.

Exemple. Soient trois fonctions polynomiales du second degré f, g et h, dont les courbes C_f , C_g et C_h sont représentées ci-après. Combien de racines ont chacune de ces fonctions?

4.2 Signe

Proposition 6. Soit $f: x \mapsto ax^2 + bx + c$ une fonction polynomiale du second degré. Alors :

- a) Si f n'admet pas de racine, alors f est du même signe que a sur \mathbb{R} .
- b) Si f admet une unique racine r, alors f est du même signe que a sur $]-\infty; r[$ et sur $]r; +\infty[$.
- c) Si f admet deux racines distinctes $r_1 < r_2$, alors f est du même signe que a sur $]-\infty; r_1[$ et sur $]r_2; +\infty[$, et est du signe opposé à a sur $]r_1; r_2[$

Remarque. *Une phrase pour retenir cette proposition :*

Une fonction polynomiale du second degré est du même signe que a à **l'extérieur** de ses racines, et est de signe opposé à a à **l'intérieur** de ses racines.

Exemple. En reprenant l'exemple précédent, donner le tableau de signes des fonctions f, g et h.

4.3 Calcul des racines

4.3.1 En identifiant une racine évidente

Soit $f(x) = -x^2 + 6x$ pour $x \in \mathbb{R}$. Alors, l'équation f(x) = 0 admet deux solutions évidentes : 0 et 6. Comme f est une fonction polynomiale du second degré, alors on sait que ce sont les seules solutions réelles possibles.

4.3.2 En utilisant une identité remarquable

Soit $f(x) = 2x^2 - 128$ pour $x \in \mathbb{R}$. Alors, la troisième identité remarquable nous donne un factorisation de f(x) = 2(x-8)(x+8). Donc les deux racines distinctes de la fonction polynomiale du second degré f sont 8 et -8.

4.3.3 Avec le produit et la somme des racines

Proposition 7. Soit $f: x \mapsto ax^2 + bx + c$ une fonction polynomiale du second degré. Si r_1 et r_2 sont les deux racines (possiblement confondues) de f, alors

$$r_1 + r_2 = \frac{-b}{a} \qquad r_1 \times r_2 = \frac{c}{a}$$

Exemple. Soit $f(x) = x^2 + x - 20$. On remarque que 4 est une racine de f. En déduire une autre racine de f, puis une factorisation de f.

4.3.4 Avec le discriminant

Définition 4. Soit $f: x \mapsto ax^2 + bx + c$ une fonction polynomiale du second degré. Alors on appelle **discriminant** de f, noté Δ , la quantité

$$\Delta = b^2 - 4ac$$

Théorème 1. Soit $f: x \mapsto ax^2 + bx + c$ une fonction polynomiale de second degré, et Δ son discriminant. Alors :

- a) Si $\Delta < 0$, alors f n'admet pas de racine réelle.
- b) Si $\Delta = 0$, alors f admet une unique racine réelle r, telle que

$$r = -\frac{b}{2a}$$

c) Si $\Delta > 0$, alors f admet deux racines réelles distinctes $r_1 < r_2$, telles que

$$r_1 = \frac{-b - \sqrt{\Delta}}{2a}$$
 $r_2 = \frac{-b + \sqrt{\Delta}}{2a}$

Démonstration										

