Lecture 3: Linear Regression as Function Fitting

STAT 471

Case study: Advertising data features (Xi, Xi, Xi) advertising data Low do TV radio

TV radio newspaper sales <db1> <db1> <dbl> <dbl> 69.2 22.1 1 230. 37.8 2 44.5 39.3 45.1 10.4 17.2 45.9 69.3 9.3 4 152. 41.3 58.5 18.5 5 181. 10.8 58.4 12.9 7.2 8.7 48.9 75 57.5 32.8 23.5 11.8 8 120. 19.6 11.6 13.2 8.6 2.1 4.8 2.6 21.2 10.6 200. # ... with 190 more rows

How do TV, radio, and newspaper ad spending impact sales?

Data from 200 ad markets available.

The linear model

sales
$$\approx \beta_0 + \beta_1 \times TV + \beta_2 \times radio + \beta_3 \times newspaper$$

Today, we will learn how to:

- Fit a linear model from training data $finding \beta_0, \beta_1, \beta_2, \beta_3$
- Assess the quality of the fit
- Interpret the coefficients

Simple linear regression

$$\forall$$
 \times sales $\approx \beta_0 + \beta_1 \times \mathsf{TV}$

 $\frac{1}{3}$ $\frac{1}$

$$RSS = \sum_{i} (\gamma_i - \hat{\gamma}_i)^2$$

Find those Bois, that minimize the RSS.

Quality of fit

Quality of fit (examples)

High R^2

Multiple linear regression

Coefficient interpretation

sales $\approx \beta_0 + \beta_1 \times TV + \beta_2 \times radio + \beta_3 \times newspaper$

		Coefficient
	Intercept	2.939
	TV	0.046
correlation	radio	0.189
College, -	newspaper	-0.001

r B3 is the effect of new spaper when controlling for TU & radio.

sales $\approx \beta_0 + \beta_1 \times \text{newspaper}$

	Coefficient	
Intercept	12.351	
newspaper	0.055	6

Association is not causation.

As you increase newspaper by \$1000, you sell 55 more units.

Categorical features

Suppose we have another feature, sponsoring an event.

This feature is binary; the company either sponsors an event or not.

Categorical features

Suppose the company instead wants to choose which event to sponsor: a football game, basketball game, or başeball game.