Autocorrelation and Stationarity

Week 10 - Day 03

Summary

Time series = time + values

Same time interval

(weeks, days, seconds)

UNIVARIATE TIME SERIES

WERY LIMITED (developed in the 70')

What's the lesson about?

Autocorrelation + Stationarity

Properties of a TS

Used during EDA and modelling

Autocorrelation

Example

lake levels (meters) x 50 years

How can you easily

predict the next value?

Next value = previous value!

Is the current measure related to

previous measure?

Is the current value related to

previous previous values?

Autocorrelation!

Shift -> correlation

Shift shift -> correlation

Shift shift -> correlation

Shift ... shift -> correlation

df['measure'].autocorr(lag=1)

plot acf(ts)

(statsmodels)

Confidence bars!

Useful to choose

the parameters of our models

Part of the EDA

"Cool, there is a correlation with the previous

3 weeks and with the 52nd week (seasonality)!"

Characteristic of a TS

_

characteristics of a TS don't change with time

characteristics of a TS

don't change with time

are time-invariant

same mean + same variance

same mean + same variance

Stationarity = "no trends"!

Stationary Time Series

Non-stationary Time Series

Augmented Dickey-Fuller (ADF) test

Really important to check!

(many models requires stationarity)

Stationarity -> no dependence on time -> nice statistical properties

How to treat non-stationary TSs

We need to get stationarity!

We have a statistical test!

(with p-value)

Differencing

Remove seasonality

Log

etc.

Differencing

Current val = current val - previous val

Increase/decrease wrt previous value

Time	Original	Diff
w1	10	NA
w2	12	→ 2
w3	7	-5
w4	9	2
w5	15 —	6

Diff Original measure measure -1 date date

Non stationary

Stationary

Summary

- Autocorrelation = correlation + lag/shift
- Autocorrelation plot (statmodels)
- Useful for EDA and to choose parameters

- Stationarity = time invariant characteristics
- Stationarity = often needed for modelling
- No Stationarity → transformations (diff)
- Statistical test (p-value)