How PS II cracks water

When dark-adapted chloroplasts

Conclusions:

♣ There must be 4 distinct states that absorb a photon: S_0 to $S_{3(=)}$

number of e removed);

- **♣** in the fifth state, S₄, O₂ is released;
- ♣ each O₂ molecule is produced by a single photosystem

At the heart of the action: A Mn(II/III/IV/V) containing oxygen-evolving complex (OEC):

The OEC is oxidized, one electron at a time, until two bound H₂O are linked to form an O₂

03/28/22

H⁺ and Electron Transport in Photosynthesis

1.) PS II in summary: 2.) Re-oxidation of plastoquinone by the

3.) The next e⁻ carrier: cytochrome b₆f complex: A Q cycle **Plastocyanine (PC)**

reductase

translocating ATP synthase

Cu(II) has a high E^{0} = 0.37V (normal: 0.16V) due to strained tetrahedral (Cu(I)-like!) ligand sphere

Photosystem I of Plants

PS I uses light to elevate e⁻ further to reduce ferredoxin (Fe-S cluster protein)

- forms trimers;
- ♣ one trimer of the plant photosystem I contains ~200 chlorophyll a (Chl a) molecules;
- also contains "special pair" of
 Chl a = P700;
- * evolutionarily distinct from PS II and bacterial photoreaction center of purple photosynthetic bacteria

The Final Steps: Making NADPH and ATP

Light Harvesting, Segregation, Regulation

- > LHC-II:
- most abundant protein in chloroplast membranes;
- 26kD subunit, forms trimers;
- binds 7 Chl a + 6 Chl b (= half the chlorophyll in the biosphere),
- 2 carotenoids;
- ♣ also prevents e⁻ transfer to O₂

- ➤ PS II and PS I are physically separated between stacked grana and unstacked lamellae, respectively:
- otherwise energy transfer from PS II (P680) to PS I (P700);
- ♣ allows regulation: under high illumination, PS II absorbs more light than PS I \Rightarrow QH₂ dominates \Rightarrow activates kinase to phosphorylate LHC, which moves to unstacked region to bind to PS I, sensitizing it; under low illumination, the opposite happens

> Light-harvesting complexes

(LHCs) act as antennae to transfer photon energy to a reaction center in 10⁻¹⁰ s with 90% efficiency

