Introduction to Ada

HIGH PERFORMANCE RESEARCH COMPUTING TEXAS A&M UNIVERSITY

Spring 2021

Usage Policies (Be a good compute citizen)

- It is illegal to share computer passwords and accounts by state law and university regulation
- It is prohibited to use Ada in any manner that violates the United States export control laws and regulations, EAR & ITAR
- Abide by the expressed or implied restrictions in using commercial software
 - almost all bioinformatics software on Ada is open source

https://hprc.tamu.edu/policies

HPC Diagram

Ada Compute nodes on HPRC clusters are not connected to the internet

Ada Clusters Specs

Compute Nodes	860	cores per node	CPU speed
Total Cores	17,500	-	-
64GB memory nodes	811	20 cores per node	2.50 GHz
256 GB memory nodes	26	20 cores per node	2.50 GHz
1TB memory nodes*	11	40 cores per node	2.27 GHz
2TB memory nodes*	4	40 cores per node	2.27 GHz
login nodes	8	20 cores per node	2.50 GHz
Job Scheduler	LSF	-	-
File System	4 PB raw	-	-
Production Date	Sep 2014	-	-

^{*} use large memory nodes only for large memory jobs

https://hprc.tamu.edu/resources

Accessing Ada

- SSH command is required for accessing Ada / Terra:
 - On campus: ssh NetID@ada.tamu.edu
 - Off campus:
 - Set up and start VPN (Virtual Private Network): http://u.tamu.edu/VPnetwork
 - Then: ssh NetID@ada.tamu.edu
 - SSH programs for Windows:
 - MobaXTerm (preferred, includes SSH and X11)
- Access through https://portal.hprc.tamu.edu (Menu "Clusters" => "Ada Shell Access")
- Ada has 8 login nodes. Check the bash prompt to see which you log into.
 - [NetID@ada1 ~]\$
- Login sessions that are idle for 60 minutes will be closed automatically
- Processes run longer than 60 minutes on login nodes will be killed automatically.
- Do not use more than 8 cores on the login nodes!
- Do not use the sudo command. Contact us for assistance installing software.

ĀM

File Transfers with Ada

Simple File Transfers:

- scp: command line (Linux, MacOS)
- rsync: command line (Linux, MacOS); can resume transfer
- MobaXterm: GUI (Windows)
- WinSCP: GUI (Windows)
- Portal: https://portal.hprc.tamu.edu
- Bulk data transfers (large files):
 - Use fast transfer nodes
 - data transfer processes will not timeout at 60 minutes
 - ssh ada-ftn1.tamu.edu OR ssh ada-ftn2.tamu.edu
 - Globus Connect (https://hprc.tamu.edu/wiki/SW:GlobusConnect)
 - GridFTP

File Systems and User Directories

Directory	Environment Variable	Space Limit	File Limit	Intended Use
/home/\$USER	\$HOME	10 GB	10,000	Small to modest amounts of processing.
/scratch/user/\$USER	\$SCRATCH	1 TB	250,000	Temporary storage of large files for on-going computations. Not intended to be a long-term storage area.
/tiered/user/\$USER	\$ARCHIVE	10 TB	50,000	Intended to hold valuable data files that are not frequently used

- \$HOME and \$SCRATCH directories are not shared between Ada and Terra clusters.
- View usage and quota limits using the command: showquota
- Quota and file limit increases will only be considered for scratch and tiered directories
- Request a group directory for sharing files.
- Do not share your home, scratch, tiered directories.

https://hprc.tamu.edu/wiki/Ada:Filesystems_and_Files

https://hprc.tamu.edu

Software

- See the Software wiki page for instructions and examples
 - https://hprc.tamu.edu/wiki/SW
 - https://hprc.tamu.edu/software/ada
 - https://hprc.tamu.edu/wiki/Bioinformatics
- License-restricted software
 - Contact license owner for approval
- Contact us for software installation help/request
 - User can install software in their \$SCRATCH dir
 - Do not run the "sudo" command when installing software

Computing Environment

- Paths:
 - \$PATH: for commands (eg. /bin:/usr/bin:/usr/local/sbin:/usr/sbin:/home/netid/bin)
 - \$LD_LIBRARY_PATH: for libraries
 - See your \$PATH variable with the command
- There is a lot of software, many versions, and many paths to manage How do you manage all these software versions?
- The solution (Imod) which uses the command: module
- Almost all software, application, library, etc. is available as a module.
 - Module names have the format:

```
software_name / version toolchain [Python-version]
TopHat/2.1.1-intel-2017A-Python-2.7.12
```

https://hprc.tamu.edu/wikiAda:Computing Environment#Modules

Application Modules

- Installed applications are available as modules which are available to all users
 - (except for restricted modules)
- It's a good habit to purge unused modules before loading new modules.
- It is highly recommended to load a specific software version instead of the defaults
- Avoid loading modules in your ~/.bashrc

```
# list all available modules (sometimes it is very slow)
# space bar down, page up/down, q to quit
# / for case sensitive search (similar to a UNIX man page)

module spider boost
# case insensitive search for modules with 'boost' in name

# search module descriptions for keyword 'graphics'
# some graphics modules may be missed if
# keyword is not found in description (case insensitive)
```

https://hprc.tamu.edu/wiki/Ada:Computing Environment#Modules

Module Loading Exercise

```
# list all loaded modules
    module list
                                     # search for available module names matching trinity
    module spider trinity
                                     # not case sensitive unless an exact match is found
3.
    module load Trinity/2.5.1-GCCcore-6.3.0-Perl-5.24.0
                                                             # load specific module version
                                                             # type Trinity/2.5 then hit tab key
                                                             # or copy and paste
                                     # list all loaded modules
4.
    module list
5.
                                     # remove all loaded modules
    module purge
```

Modules and Toolchains

- Load modules with the same toolchains in your job scripts
- The 2018b and GCCcore-7.3.0 toolchain versions are recommended

```
• GCCcore/7.3.0 and (intel/2018b or iomkl/2018b or foss/2018b)
```

- Avoid loading modules in your .bashrc and .bash_profile files
- Avoid mixing toolchains if loading multiple modules in the same job script

```
module load HISAT2/2.0.4-foss-2016b
module load TopHat/2.1.1-intel-2017A-Python-2.7.12
module load Cufflinks/2.2.1-intel-2015B
```

Same rule applies to compilers and libraries.

The GCCcore Toolchain

 To minimize the number of software builds, the GCCcore7.3.0 toolchain modules can be loaded alone or with any one of the following 2018b toolchains

```
o intel/2018b
```

- o iomkl/2018b
- o foss/2018b
- Example of loading a GCCcore-7.3.0 module with a 2018b module

```
module load BEDTools/2.29.0-GCCcore-7.3.0 module load AdapterRemoval/2.2.2-foss-2018b
```

See list of compatible toolchains

toolchains

Consumable Computing Resources

- Resources specified in a job file:
 - Processor cores
 - Memory
 - Wall time
 - GPU
- Service Unit (SU) defined as one CPU core usage for one hour
 - Use "myproject" to see your balance

myproject

```
List of YourNetID's Project Accounts

| Account | FY | Default | Allocation | Used & Pending SUs | Balance | PI |
|1228000223136 | 2020 | N | 10000.00 | 0.00 | 10000.00 | Doe, John |
|1428000243716 | 2020 | Y | 5000.00 | -71.06 | 4928.94 | Doe, Jane |
```

https://hprc.tamu.edu/wiki/HPRC:AMS:Service Unit

Ada: Examples of SUs charged based on Job Cores, Time and Memory Requested

A Service Unit (SU) on Ada is equivalent to one core or 2500 MB memory usage for one hour.

	Number of Cores	MB of memory per core	Total Memory (GB)	Hours	SUs charged
1.	1	2500	2.5	1	1
2.	1	2600	2.6	1	2
3.	1	50000	50	1	20
4.	20	2500	50	1	20
5.	20	2700	54	1	20

⁻ SUs are charged at job submit time and the job's unused SUs are reimbursed if job finishes early

https://hprc.tamu.edu/wiki/HPRC:AMS:Service_Unit

Historical HPRC Cluster Usage

hprc.tamu.edu

Batch Computing on HPRC Clusters

On-campus:

Batch Job Scripts

Sample Job Script Structure

```
# NECESSARY JOB SPECIFICATIONS
#BSUB -L /bin/bash
#BSUB -J ExampleJob
#BSUB -W 24:00
#BSUB -n 1
#BSUB -R "span[ptile=1]"
#BSUB -R "rusage [mem=2500] "
                                           These parameters describe your job to
#BSUB -M 2500
                                           the job scheduler
#BSUB -o stdout.%J
#BSUB -e stderr.%J
# OPTIONAL JOB SPECIFICATIONS
#BSUB -P 123456
#BSUB -u email address
#BSUB -B -N
                                                 This is single line comment and not run as part of the script
# load required module(s)
                                                 Load the required module(s) first
module load Python/3.5.2-intel-2017A ←
./my program.py →
                                                 This is a command that is executed by the job
```

See the HPRC Wiki on how to request all cores and all memory on a compute node

```
1.1 Configuring
1.1.1 Should I use one core or multiple cores?
1.1.2 How do I request all the cores and all the memory on a single compute node?
1.1.2.1 Ada
1.1.2.1.1 For a 64 GB memory Ada compute node
1.1.2.1.2 For a 256 GB memory Ada compute node
1.1.2.1.3 For a 1 TB memory Ada compute node
1.1.2.1.4 For a 2 TB memory Ada compute node
```

- Use all cores if the software you are using supports multi-core unless the software recommends fewer cores
- Use all cores if you are using all the memory even if the software only supports running on a single core

https://hprc.tamu.edu/wiki/Bioinformatics:FAQ

Example Batch Job Scripts

https://hprc.tamu.edu/wiki/Ada:Batch Processing LSF#Job File Examples

Ada Job File (Serial Example)


```
# NECESSARY JOB SPECIFICATIONS
#BSUB -L /bin/bash
                                 # Uses bash to initialize the job's execution environment.
#BSUB -J ExampleJob1
                                 # Set the job name to "ExampleJob1"
#BSUB -W 24:00
                                 # Set the wall clock limit to 24hr
#BSUB -n 1
                                 # Request 1 core
                                                                                     SUs = ?
#BSUB -R "span[ptile=1]"
                                 # Request 1 core per node.
#BSUB -R "rusage [mem=2500] "
                                 # Request 2500MB per process (CPU) for the job
#BSUB -M 2500
                                 # Set the per process enforceable memory limit to 2500MB.
#BSUB -o stdout.%J
                                 # Send stdout to "stdout.[jobID]"
                                 # Send stderr to "stderr.[jobID]"
#BSUB -e stderr.%J
# OPTIONAL JOB SPECIFICATIONS
#BSUB -P 123456
                                # Set billing account to 123456
#BSUB -u email address # Send all emails to email address
                                # Send email on job begin (-B) and end (-N)
#BSUB -B -N
# load required module(s)
module load Python/3.5.2-intel-2017A
# run your program
./my_program.py
```

Ada Job File (multi core, single node)


```
# NECESSARY JOB SPECIFICATIONS
#BSUB -L /bin/bash
                               # Use bashto initialize the job's execution environment.
#BSUB -J ExampleJob2
                               # Set the job name to "ExampleJob2"
#BSUB -W 24:00
                               # Set the wall clock limit to 24hr and 0min
#BSUB -n 20
                               # Request 20 cores total for the job
                                                                                    SUs = ?
#BSUB -R "span[ptile=20]"
                               # Request 20 cores per node.
#BSUB -R "rusage [mem=2700]"
                               # Request 2700MB per process (CPU) for the job
#BSUB -M 2700
                               # Set the per process enforceable memory limit to 2700MB.
#BSUB -o stdout.%J
                               # Send stdout to "stdout.[jobID]"
#BSUB -e stderr.%J
                               # Send stderr to "stderr.[jobID]"
# OPTIONAL JOB SPECIFICATIONS
#BSUB -P 123456 # Set billing account to 123456 #find your account with "myproject"
#BSUB -u email address # Send all emails to email address
#BSUB -B -N
                              # Send email on job begin (-B) and end (-N)
# load required module(s)
module load intel/2017A
# run your program
./my multicore program
```

Ada Job File (multi core, multi node)


```
# NECESSARY JOB SPECIFICATIONS
#BSUB -J ExampleJob3
                                # Set the job name to "ExampleJob3"
#BSUB -L /bin/bash
                                # Use bash to initialize the job's execution environment.
                                # Set the wall clock limit to 24hr
#BSUB -W 24:00
#BSUB -n 40
                                # Request 40 cores total for the job
                                                                                       SUs = ?
                                # Request 20 cores per node.
#BSUB -R "span[ptile=20]"
#BSUB -R "rusage[mem=2500]"
                                # Request 2500MB per process (CPU) for the job
#BSUB -M 2500
                                # Set the per process enforceable memory limit to 2500MB.
#BSUB -o stdout.%J
                                # Send stdout to "stdout.[jobID]"
                                # Send stderr to "stderr.[jobID]"
#BSUB -e stderr.%J
# OPTIONAL JOB SPECIFICATIONS
#BSUB -P 123456
                              # Set billing account to 123456 #find your account with " myproject"
#BSUB -u email address
                              # Send all emails to email address
#BSUB -B -N
                              # Send email on job begin (-B) and end (-N)
# load required module(s)
module load intel/2017A
# run your program
./my multicore multinode program
```

Job Submission and Tracking

LSF command	Description
bsub < jobfile.sh	Submit jobfile.sh to batch system
<pre>bjobs -u user_name bjobs -l job_id</pre>	List jobs for username List job details including Max Memory used
bkill job_id	Kill a job
bhist -l job_id	Show information for a job (can be when job is running or recently finished)
lnu -1 -j job_id	Show resource usage for a job

https://hprc.tamu.edu/wiki/HPRC:Batch_Translation

Submitting Your Job and Check Job Status

```
Submit job
```

```
bsub < run_trimmomatic.sh</pre>
```

```
Verifying job submission parameters... Verifying project account...
```

Account to charge: 082792010838

Balance (SUs): 4871.5983

SUs to charge: 24.000

Job <2470599> is submitted to default queue <sn_short>.

Check status

more detailed; shows Max Memory:

bjobs -1 2470599

(dash lower case 1 as in *list*)

26

bjobs

JOBIDSTATUSERQUEUEJOB_NAMENEXEC_HOSTSLOTSRUN_TIMETIME_LEFT2470599RUNmynetidsn_shorttrimmo10second(s)23:59 L

Debug job failures

Debug job failures using the stdout and stderr files

The stdout file was created by this parameter in your job script file. %J = jobid #BSUB -o stdout.%J

```
TERM_MEMLIMIT: job killed after reaching LSF memory usage limit.

Exited with signal termination: Killed.

Resource usage summary:

CPU time:

Max Memory:

Average Memory:

Delta Requested Memory:

Delta Memory:

Max Processes:

Max Threads:

1.42 sec.

2500 MB

2000.50 MB

2500.00 MB

0.00 MB
```

Make the necessary adjustments to BSUB parameters in your job script and resubmit the job

Job ran out of

requested memory

Check your Service Unit (SU) Balance

List the SU Balance of your Account(s)

```
myproject
```

```
List of YourNetID's Project Accounts
                     Default | Allocation | Used & Pending SUs |
                                                          Balance
  Account
1228000223136 2019
                                10000.00
                                                   0.00
                                                           10000.00 Doe, John
                  Y |
                                           -71.06 | 4928.94 | Doe, Jane
1428000243716
            2019
                                5000.00
1258000247058
                      N
                                 5000.00
                                           -0.91
                                                            4999.09 Doe, Jane
             2019
```

- To specify a project ID to charge in the job file
 - #BSUB -P Account#
- Run "myproject -d Account#" to change default project account
- Run "myproject -h" to see more options

https://hprc.tamu.edu/wiki/HPRC:AMS:Service_Unit https://hprc.tamu.edu/wiki/HPRC:AMS:UI

https://hprc.tamu.edu

Job submission issue: insufficient SUs

What to do if you need more SUs

- Wait for your currently running jobs to finish to get reimbursed for unused runtime
- Ask your PI to transfer SUs to your account

https://hprc.tamu.edu/wiki/HPRC:AMS:Service_Unit https://hprc.tamu.edu/wiki/HPRC:AMS:UI

Job Environment Variables

Ada:

- \$LSB_JOBID = job id
- \$SCRATCH = /scratch/user/NetID
- \$TMPDIR = /work/\$LSB_JOBID.tmpdir
 - \$TMPDIR is local to each assigned compute node for the job and is about 750 GB
 - Use of \$TMPDIR is recommended for jobs that use many small temporary files
 - Do not use \$TMPDIR for software that has checkpoints to restart where it left off

https://hprc.tamu.edu/wiki/Ada:Batch_Processing_LSF#Environment_Variables https://hprc.tamu.edu/wiki/Terra:Batch#Environment_Variables

Common Job Problems

- Control characters (^M) in job files or data files edited with Windows editor
 - remove the ^M characters with: dos2unix my_job_file
- Did not load the required module(s)
- Insufficient walltime specified in #BSUB -W
- Insufficient memory specified in #BSUB -M and -R "rusage [mem=xxx]"
- Running OpenMP jobs across multiple compute nodes
- Insufficient SU: See your SU balance: myproject
- Insufficient disk or file quotas: check quota with showquota
- Using GUI-based software without setting up X11 forwarding
 - Enable X11 forwarding at login ssh -x netid@ada.tamu.edu
 - Or use VNC app in HPRC portal

https://hprc.tamu.edu/wiki/HPRC:CommonProblems

CRLF Line Terminators

Windows editors such as Notepad will add hidden Carriage Return Line Feed (CRLF) characters that will cause problems with many applications

```
file dos_text.txt # use file co
```

use file command to check

```
dos_text.txt: ASCII English text, with CRLF line terminators
```

```
cat -v dos text.txt
```

use cat command to see CRLF characters

```
dos2unix dos_text.txt
file dos text.txt
```

use dos2unix command to correct

dos_text.txt: ASCII English text

HPRC Portal

The HPRC portal allows users to do the following

- Browse files on the Ada (Curie) filesystem
- Access the ada, terra or curie UNIX command line
 - o no SUs charged
- Launch jobs
 - SUs charged
- Compose job scripts
- Launch interactive GUI apps (SUs charged)
 - Ada
 - IGV
 - MATLAB
 - VNC
 - Galaxy
 - Jupyter Notebook
 - RStudio
 - Terra
- Monitor and stop running jobs and interactive sessions

HPRC Cluster Usage Notes

- Ada and Terra filesystems are not the same so you have to copy files from Ada to Terra to use Terra
- Ada uses LSF (#BUSB) scheduler and Terra uses Slurm (#SBATCH) scheduler.
 - The new cluster (fall 2020) will use the Slurm scheduler
- SUs do not transfer across clusters.
- Not all software on Ada is also available on Terra.
 - Request installation if you need a software package installed or version updated.
 - Some software is installed in a Conda environment and not as a specific module

```
module load Anaconda/3-5.0.0.1 conda env list
```

- Can test software on the login nodes but do not use more than 8 cores
 - processes get automatically killed on login node when they reach 60 minutes
 - o login session gets automatically disconnected when idle for 60 minutes
- Transfer large data between Ada and Terra using the login nodes
 - o transfer large data between HPRC clusters and sites off campus using the fast transfer nodes
- Carefully read the stdout and stderr files for completed and failed jobs
 - most causes of failed jobs can be found in the log files
- Search the wiki and look at the FAQ pages for a solution before sending a helpdesk request
 - https://hprc.tamu.edu/wiki/HPRC:CommonProblems
 - https://hprc.tamu.edu/wiki/Bioinformatics:FAQ

Need Help?

- First check the FAQ https://hprc.tamu.edu/wiki/HPRC:CommonProblems
 - Ada User Guide https://hprc.tamu.edu/wiki/Ada
 - Exercises https://hprc.tamu.edu/wiki/Ada:Exercises
 - Terra User Guide https://hprc.tamu.edu/wiki/Terra
 - Exercises https://hprc.tamu.edu/wiki/Terra:Exercises
- Email your questions to help@hprc.tamu.edu. (Managed by a ticketing system)
- Help us, help you -- we need more info
 - Which Cluster
 - UserID/NetID (UIN is not needed!)
 - Job id(s) if any
 - Location of your jobfile, input/output files
 - Application used if any
 - Module(s) loaded if any
 - Error messages
 - Steps you have taken, so we can reproduce the problem
- Or visit us @ 114A Henderson Hall
 - Making an appointment is recommended.

https://hprc.tamu.edu

Thank you.

Any question?