Introduction à la fouille de données

 $\begin{array}{c} M.~Ledmi \\ m_ledmi@esi.dz \end{array}$

Département d'Informatique Khenchela

2020/2021

Plan

- Les règles d'association
 - Rappel
 - Quelques Notation
 - Définition
 - Algorithme A-Priori

Vous êtes ici

- 1 Les règles d'association
 - Rappel
 - Quelques Notation
 - Définition
 - Algorithme A-Priori

La fouille de règles d'association se rapporte à la découverte des relations entre les attributs d'un ensemble de données appelé souvent ensemble des transactions.

- Une transaction est l'ensemble des articles achetés ensemble par les clients.
- Une règle est normalement exprimée sous la forme $A \Rightarrow B$, où A et B sont des ensembles d'attributs de l'ensemble de données. Cela implique que les transactions qui contiennent A contiennent B avec une grande probabilité.
- La règle peut s'écrire sous une autre forme :

SI < certaines conditions satisfaites > ALORS < prédire les valeurs pour certains autres attributs > ,

La fouille de règles d'association se rapporte à la découverte des relations entre les attributs d'un ensemble de données appelé souvent ensemble des transactions.

- Une transaction est l'ensemble des articles achetés ensemble par les clients.
- Une règle est normalement exprimée sous la forme $A \Rightarrow B$, où A et B sont des ensembles d'attributs de l'ensemble de données. Cela implique que les transactions qui contiennent A contiennent B avec une grande probabilité.
- La règle peut s'écrire sous une autre forme :

SI < certaines conditions satisfaites > ALORS < prédire les valeurs pour certains autres attributs > ,

La fouille de règles d'association se rapporte à la découverte des relations entre les attributs d'un ensemble de données appelé souvent ensemble des transactions.

- Une transaction est l'ensemble des articles achetés ensemble par les clients.
- Une règle est normalement exprimée sous la forme $A \Rightarrow B$, où A et B sont des ensembles d'attributs de l'ensemble de données. Cela implique que les transactions qui contiennent A contiennent B avec une grande probabilité.
- La règle peut s'écrire sous une autre forme :

 ${
m SI} < certaines \ conditions \ satisfaites > {
m ALORS} < pr\'{e}dire \ les \ valeurs \ pour \ certains \ autres \ attributs >,$

Une règle d'association $A \Rightarrow B$ peut être identifié lorsque le support et la confiance de la règle sont largement supérieurs aux seuils respectifs.

- Le support de la règle d'association est le rapport entre le nombre de transactions contenant à la fois A et B sur le nombre total de transactions dans la base de données.
- La confiance de la règle d'association est la proportion du nombre de transactions contenant à la fois A et B sur le nombre total de transactions contenant A.

Une règle d'association $A \Rightarrow B$ peut être identifié lorsque le support et la confiance de la règle sont largement supérieurs aux seuils respectifs.

- Le support de la règle d'association est le rapport entre le nombre de transactions contenant à la fois A et B sur le nombre total de transactions dans la base de données.
- La confiance de la règle d'association est la proportion du nombre de transactions contenant à la fois A et B sur le nombre total de transactions contenant A.

Par exemple, la règle :

$$Age(X, 20..29) \land revenu(X, 40000..49000) \Rightarrow achète(X, "Ordinatur portable")$$
 (support 2%, confiance 60%)

signifie que :

- 2% des clients sont âgés de 20 à 29 ans ayant un revenu compris entre 40.000 et 49.000 et ont achetés un ordinateur portable.
- Il y a une probabilité de 60% qu'un client dans cet intervalle d'âge et de revenu va acheter un ordinateur portable.

Par exemple, la règle :

$$Age(X, 20..29) \land revenu(X, 40000..49000) \Rightarrow achète(X, "Ordinatur portable")$$
 (support 2%, confiance 60%)

signifie que:

- 2% des clients sont âgés de 20 à 29 ans ayant un revenu compris entre 40.000 et 49.000 et ont achetés un ordinateur portable.
- Il y a une probabilité de 60% qu'un client dans cet intervalle d'âge et de revenu va acheter un ordinateur portable.

Quelques Notation

- On dispose de N données x_i , chacune décrites par P attributs $x_{i,j}$ dénote la valeur de l'attribut a_i de la donnée x_i .
- Dans de nombreuses applications, chaque attribut correspond à un *item* et la valeur de cet attribut dans une donnée particulière indique sa quantitée dans cette donnée.
- Un cas particulier est celui où les attributs sont à valeur binaire et indiquent la présence ou l'absence d'un item.

Quelques Notation

- On dispose de N données x_i , chacune décrites par P attributs $x_{i,j}$ dénote la valeur de l'attribut a_j de la donnée x_i .
- Dans de nombreuses applications, chaque attribut correspond à un *item* et la valeur de cet attribut dans une donnée particulière indique sa quantitée dans cette donnée.
- Un cas particulier est celui où les attributs sont à valeur binaire et indiquent la présence ou l'absence d'un item.

Quelques Notation

- On dispose de N données x_i , chacune décrites par P attributs $x_{i,j}$ dénote la valeur de l'attribut a_j de la donnée x_i .
- Dans de nombreuses applications, chaque attribut correspond à un *item* et la valeur de cet attribut dans une donnée particulière indique sa quantitée dans cette donnée.
- Un cas particulier est celui où les attributs sont à valeur binaire et indiquent la présence ou l'absence d'un item.

PDéfinition

Une règle d'association est de la forme :

$$(a_i = v_i, a_j = v_j, \dots, a_m = v_m) \Rightarrow (a_\alpha = v_\alpha, a_\beta = v_\beta, \dots)$$

Ce qui s'interprête par : si les attributs a_i, a_j, \ldots, a_m ont une certaine valeur, alors l'attribut a_{α} prend généralement une certaine valeur v_{α} , a_{β} une certaine valeur v_{β} ,

8 Définition

Une règle d'association est de la forme :

$$(a_i = v_i, a_j = v_j, \dots, a_m = v_m) \Rightarrow (a_\alpha = v_\alpha, a_\beta = v_\beta, \dots)$$

Ce qui s'interprête par : si les attributs a_i, a_j, \ldots, a_m ont une certaine valeur, alors l'attribut a_{α} prend généralement une certaine valeur v_{α} , a_{β} une certaine valeur v_{β} ,

- La difficulté consiste notamment à trouver des règles qui soient significatives et non seulement le résultat du hasard.
- Les valeurs de N et P sont généralement très grandes ($N = 10^6$ et $P = 10^5$ par exemple).

® Définition

Une règle d'association est de la forme :

$$(a_i = v_i, a_j = v_j, \dots, a_m = v_m) \Rightarrow (a_\alpha = v_\alpha, a_\beta = v_\beta, \dots)$$

Ce qui s'interprête par : si les attributs a_i, a_j, \ldots, a_m ont une certaine valeur, alors l'attribut a_α prend généralement une certaine valeur v_α , a_β une certaine valeur v_β, \ldots

- La difficulté consiste notamment à trouver des règles qui soient significatives et non seulement le résultat du hasard.
- Les valeurs de N et P sont généralement très grandes ($N = 10^6$ et $P = 10^5$ par exemple).

- On s'intéresse au cas où les attributs prennent une valeur binaire, indiquant donc la présence ou l'absence d'un item.
- On présente une approche qui s'appuie sur la notion d'ensemble d'items fréquents (EIF), c'est-à-dire, des items qui sont souvent présents ensemble dans une même donnée.
- Aprés avoir détecté ces EIF, on génère ensuite des régles d'association.

- On s'intéresse au cas où les attributs prennent une valeur binaire, indiquant donc la présence ou l'absence d'un item.
- On présente une approche qui s'appuie sur la notion d'ensemble d'items fréquents (EIF), c'est-à-dire, des items qui sont souvent présents ensemble dans une même donnée.
- Aprés avoir détecté ces EIF, on génère ensuite des régles d'association.

- On s'intéresse au cas où les attributs prennent une valeur binaire, indiquant donc la présence ou l'absence d'un item.
- On présente une approche qui s'appuie sur la notion d'ensemble d'items fréquents (EIF), c'est-à-dire, des items qui sont souvent présents ensemble dans une même donnée.
- Aprés avoir détecté ces EIF, on génère ensuite des régles d'association.

Dans ce qui suit, on part des individus suivants :

	Item A	Item B	Item C	Item D
Individu 1	X	X		
Individu 2	X		X	
Individu 3		X		
Individu 4	X		X	X
Individu 5		X		

Le tableau de co-occurences est un tableau indiquant pour chaque paire d'items le nombre de co-occurences dans l'ensemble des individus :

	Item A	Item B	Item C	Item D
Item A	3	1	2	1
Item B	1	3	0	0
Item C	2	0	2	1
Item D	1	0	1	1

8 Support

On définit le **support** d'un ensemble d'items comme la fréquence d'apparition simultanée des items figurant dans l'ensemble.

• $support(A, B) = \frac{1}{5}$ car A et B n'apparaissent simultanément que dans l'individu 1 ;

• $support(A, C) = \frac{2}{5}$ car A et C apparaissent simultanément dans les

Support

On définit le **support** d'un ensemble d'items comme la fréquence d'apparition simultanée des items figurant dans l'ensemble.

- $support(A, B) = \frac{1}{5}$ car A et B n'apparaissent simultanément que dans l'individu 1;
- $support(A, C) = \frac{2}{5}$ car A et C apparaissent simultanément dans les individus 2 et 4.

8 Support

On définit le **support** d'un ensemble d'items comme la fréquence d'apparition simultanée des items figurant dans l'ensemble.

- $support(A, B) = \frac{1}{5}$ car A et B n'apparaissent simultanément que dans l'individu 1;
- $support(A, C) = \frac{2}{5}$ car A et C apparaissent simultanément dans les individus 2 et 4.

Resemble d'items fréquents

On dit qu'un ensemble d'items est un ensemble d'items fréquents si le support de cet ensemble d'items est supérieur à un certain seuil (> 1% par exemple).

Proposition:

Si S est un ensemble d'items fréquents, alors tout sous-ensemble de S est également un ensemble d'items fréquents.
Un ensemble d'items fréquents S est maximal si tout sur-ensemble de S n'est pas un EIF.

Resemble d'items fréquents

On dit qu'un ensemble d'items est un ensemble d'items fréquents si le support de cet ensemble d'items est supérieur à un certain seuil (> 1% par exemple).

⊘Proposition:

ullet Si S est un ensemble d'items fréquents, alors tout sous-ensemble de S est également un ensemble d'items fréquents.

 \circ Un ensemble d'items fréquents S est maximal si tout sur-ensemble de S n'est pas un $\mathbf{EIF}.$

Resemble d'items fréquents

On dit qu'un ensemble d'items est un ensemble d'items fréquents si le support de cet ensemble d'items est supérieur à un certain seuil (> 1% par exemple).

⊘Proposition:

- ullet Si S est un ensemble d'items fréquents, alors tout sous-ensemble de S est également un ensemble d'items fréquents.
- Un ensemble d'items fréquents S est maximal si tout sur-ensemble de S n'est pas un **EIF**.

La confiance d'une règle si condition alors conclusion est le rapport :

nombre de données où les items de la condition et de la conclusion apparaissent simultanément

8 Confiance

La confiance d'une règle si condition alors conclusion est le rapport :

nombre de données où les items de la condition et de la conclusion apparaissent simultanément

- $confiance(A \Rightarrow B) = \frac{1}{3}$ car A et B apparaissent simultanément dans 1 individu et A apparaît dans 3 individus,
- $confiance(A \Rightarrow C) = \frac{2}{3}$ ar A et C apparaissent simultanément dans 2 individu et A apparaît dans 3 individus.

Confiance

La confiance d'une règle si condition alors conclusion est le rapport :

nombre de données où les items de la condition et de la conclusion apparaissent simultanément

- $confiance(A \Rightarrow B) = \frac{1}{3}$ car A et B apparaissent simultanément dans 1 individu et A apparaît dans 3 individus,
- $confiance(A \Rightarrow C) = \frac{2}{3}$ ar A et C apparaissent simultanément dans 2 individu et A apparaît dans 3 individus.

8 Confiance

La confiance d'une règle si condition alors conclusion est le rapport :

nombre de données où les items de la condition et de la conclusion apparaissent simultanément

- On définit un seuil de confiance comme la valeur minimale que la confiance doit avoir pour que l'apparition simultanée des items considérés ne puisse pas être simplement due au hasard.
- On ne s'intéresse qu'aux règles ayant une confiance maximale.

8 Confiance

La confiance d'une règle si condition alors conclusion est le rapport :

nombre de données où les items de la condition et de la conclusion apparaissent simultanément

- On définit un seuil de confiance comme la valeur minimale que la confiance doit avoir pour que l'apparition simultanée des items considérés ne puisse pas être simplement due au hasard.
- On ne s'intéresse qu'aux règles ayant une confiance maximale.

La confiance d'une règle \boldsymbol{si} condition \boldsymbol{alors} conclusion est le rapport :

nombre de données où les items de la condition et de la conclusion apparaissent simultanément

nombre de données où les items de la condition apparaissent simultanément

\bigcirc Proposition :

Si la règle si a et b alors c et d à une confiance supérieure à un seuil fixé, alors les deux règles :

- si a et b et d alors c
- si a et b et c alors d ont une confiance supérieure à ce même seuil.

- On va maintenant présenter un algorithme qui détermine les règles d'association présentes dans un jeu de données, pour un seuil de support et un seuil de confiance fixés.
- Cet algorithme fonctionne en deux phases :

- On va maintenant présenter un algorithme qui détermine les règles d'association présentes dans un jeu de données, pour un seuil de support et un seuil de confiance fixés.
- Cet algorithme fonctionne en deux phases :
 - Tout d'abord on recherche les ensembles d'items fréquents (EIF):
 - Ensuite, on utilise ces **EIF** pour déterminer les règles d'association dont la confiance est supérieure au seuil fixé.

- On va maintenant présenter un algorithme qui détermine les règles d'association présentes dans un jeu de données, pour un seuil de support et un seuil de confiance fixés.
- Cet algorithme fonctionne en deux phases :
 - Tout d'abord on recherche les ensembles d'items fréquents (EIF);
 - Ensuite, on utilise ces EIF pour déterminer les règles d'association dont la confiance est supérieure au seuil fixé.

- On va maintenant présenter un algorithme qui détermine les règles d'association présentes dans un jeu de données, pour un seuil de support et un seuil de confiance fixés.
- Cet algorithme fonctionne en deux phases :
 - Tout d'abord on recherche les ensembles d'items fréquents (EIF);
 - Ensuite, on utilise ces **EIF** pour déterminer les règles d'association dont la confiance est supérieure au seuil fixé.

Algorithme **A-Priori**

```
Entrées : ensemble d'exemples D,un support seuil min_sup Sorties : EIF disponibles L

1 L_1 \leftarrow 1-itemsets fréquents;

2 k \leftarrow 2;

3 tant que \ L_{k-1} \neq \emptyset faire

4 C_k = apriori\_gen(L_{k-1});

5 pour \ chaque \ t \in D \ faire

6 C_t = subset(C_k, t);

7 pour \ chaque \ candidat \ c \in C_t \ faire

8 C_t = count + coun
```


Algorithme **A-Priori**

```
Entrées: ensemble d'exemples D, un support seuil min sup
   Sorties: EIF disponibles L
 1 :
 2 Fonction apriori qen(L_{k-1}:k-1 itemsets fréquents)
      pour chaque itemset l_1 \in L_{k-1} faire
          pour chaque itemset l_2 \in L_{k-1} faire
 4
             si
              (l_1[1] = l_2[1]) \wedge \ldots \wedge (l_1[k-2] = l_2[k-2]) \wedge (l_1[k-1] < l_2[k-1])
              alors
                 c = l_1 \bowtie l_2:
 6
                 si has\_infrequent\_subset(c, L_{k-1}) alors
                    supprimer c;
                 sinon
                    ajouter c \ a \ C_k;
10
      retourner C_k;
11
```


Algorithme **A-Priori**

```
Entrées : ensemble d'exemples D,un support seuil min_sup

Sorties : EIF disponibles L

1 :

2 Fonction has\_infrequent\_subset(c : k-itemset \ candidat, L_{k-1} : k-1 \ itemsets \ fréquents)

3 | pour chaque (k-1)- subset \ s \in c faire

4 | si \ s \notin L_{k-1} alors

5 | _ retourner Vrai;

6 | retourner Faux;
```


- si a et b alors c
- si a et c alors b
- si a alors b et c
- si b et c alors a
- si b alors a et c
- si c alors a et b

- si a et b alors c
- si a et c alors b
- si a alors b et c
- si b et c alors a
- si b alors a et c
- si c alors a et b

- si a et b alors c
- si a et c alors b
- si a alors b et c
- si b et c alors a
- si b alors a et c
- si c alors a et b

- si a et b alors c
- si a et c alors b
- si a alors b et c
- si b et c alors a
- si b alors a et c
- si c alors a et b

- si a et b alors c
- si a et c alors b
- si a alors b et c
- si b et c alors a
- si b alors a et c
- si c alors a et b

- si a et b alors c
- si a et c alors b
- si a alors b et c
- si b et c alors a
- si b alors a et c
- si c alors a et b

- En effet, il est tout à fait envisageable de tester toutes les règles candidates dont la conclusion ne contient qu'un seul item.
- Ensuite, on va appliquer la proposition précédente sur la confiance :

- En effet, il est tout à fait envisageable de tester toutes les règles candidates dont la conclusion ne contient qu'un seul item.
- Ensuite, on va appliquer la proposition précédente sur la confiance :
 - Supposons que $L4 = \{(a, b, c, d)\}$
 - Supposons que la confiance des règles : si a et b et c alors d et si a et b et d alors c soit supérieure au seuil.
 - Dans ce cas, on peut affirmer que la confiance de la règle si a et b alors c et d est également supérieure au seuil.

- En effet, il est tout à fait envisageable de tester toutes les règles candidates dont la conclusion ne contient qu'un seul item.
- Ensuite, on va appliquer la proposition précédente sur la confiance :
 - Supposons que $L4 = \{(a, b, c, d)\}.$
 - Supposons que la confiance des règles : si a et b et c alors d et si a et b et d alors c soit supérieure au seuil.
 - Dans ce cas, on peut affirmer que la confiance de la règle si a et b alors c et d est également supérieure au seuil.

- En effet, il est tout à fait envisageable de tester toutes les règles candidates dont la conclusion ne contient qu'un seul item.
- Ensuite, on va appliquer la proposition précédente sur la confiance :
 - Supposons que $L4 = \{(a, b, c, d)\}.$
 - Supposons que la confiance des règles : si a et b et c alors d et si a et b et d alors c soit supérieure au seuil.
 - Dans ce cas, on peut affirmer que la confiance de la règle si a et b alors c et d est également supérieure au seuil.

- En effet, il est tout à fait envisageable de tester toutes les règles candidates dont la conclusion ne contient qu'un seul item.
- Ensuite, on va appliquer la proposition précédente sur la confiance :
 - Supposons que $L4 = \{(a, b, c, d)\}.$
 - Supposons que la confiance des règles : si a et b et c alors d et si a et b et d alors c soit supérieure au seuil.
 - Dans ce cas, on peut affirmer que la confiance de la règle si a et b alors c et d est également supérieure au seuil.

- Determiner les règles ayant un seul item en conclusion et dont la confiance est supérieure au seuil.
- Engendrer les règles ayant deux items en conclusion dont la confiance est supérieure au seuil.
- Itérer vers les règles ayant 3 items en conclusion, puis 4, ... etc.

- Determiner les règles ayant un seul item en conclusion et dont la confiance est supérieure au seuil.
- Engendrer les règles ayant deux items en conclusion dont la confiance est supérieure au seuil.
- Itérer vers les règles ayant 3 items en conclusion, puis 4, ... etc.

- Determiner les règles ayant un seul item en conclusion et dont la confiance est supérieure au seuil.
- Engendrer les règles ayant deux items en conclusion dont la confiance est supérieure au seuil.
- Itérer vers les règles ayant 3 items en conclusion, puis 4, ... etc.

Sur l'exemple vu plus haut, on prend un support minimal de 2. On a :

•
$$C_1 = \{A, B, C, D\}$$

•
$$L_1 = \{A, B, C\}$$

•
$$C_2 = \{(A, B), (A, C), (B, C)\}$$

•
$$L_2 = \{(A,C)\}$$

•
$$C_3 = \emptyset$$

Les règles suivantes sont examinées :

- si A et B alors C
- si A et C alors E
- si B et C alors A

Sur l'exemple vu plus haut, on prend un support minimal de 2. On a :

•
$$C_1 = \{A, B, C, D\}$$

•
$$L_1 = \{A, B, C\}$$

•
$$C_2 = \{(A, B), (A, C), (B, C)\}$$

•
$$L_2 = \{(A, C)\}$$

•
$$C_3 = \emptyset$$

Les règles suivantes sont examinées :

- si A et B alors C
- si A et C alors B
- si B et C alors A

Sur l'exemple vu plus haut, on prend un support minimal de 2. On a :

•
$$C_1 = \{A, B, C, D\}$$

•
$$L_1 = \{A, B, C\}$$

•
$$C_2 = \{(A, B), (A, C), (B, C)\}$$

•
$$L_2 = \{(A, C)\}$$

•
$$C_3 = \emptyset$$

Les règles suivantes sont examinées :

- si A et B alors C
 - si A et C alors E
- si B et C alors A

Sur l'exemple vu plus haut, on prend un support minimal de 2. On a :

•
$$C_1 = \{A, B, C, D\}$$

•
$$L_1 = \{A, B, C\}$$

•
$$C_2 = \{(A, B), (A, C), (B, C)\}$$

•
$$L_2 = \{(A,C)\}$$

•
$$C_3 = \emptyset$$

Les règles suivantes sont examinées :

- si A et B alors C
- si A et C alors B
- si B et C alors A

Sur l'exemple vu plus haut, on prend un support minimal de 2. On a :

- $C_1 = \{A, B, C, D\}$
- $L_1 = \{A, B, C\}$
- $C_2 = \{(A, B), (A, C), (B, C)\}$
- $L_2 = \{(A, C)\}$
- \bullet $C_3 = \emptyset$

Les règles suivantes sont examinées :

- si A et B alors C
- si A et C alors E
- si B et C alors A

Sur l'exemple vu plus haut, on prend un support minimal de 2. On a :

- $C_1 = \{A, B, C, D\}$
- $L_1 = \{A, B, C\}$
- $C_2 = \{(A, B), (A, C), (B, C)\}$
- $L_2 = \{(A, C)\}$
- \bullet $C_3 = \emptyset$

Les règles suivantes sont examinées :

- si A et B alors C
- si A et C alors E
- si B et C alors A

Sur l'exemple vu plus haut, on prend un support minimal de 2. On a :

- $C_1 = \{A, B, C, D\}$
- $L_1 = \{A, B, C\}$
- $C_2 = \{(A, B), (A, C), (B, C)\}$
- $L_2 = \{(A, C)\}$
- \bullet $C_3 = \emptyset$

Les règles suivantes sont examinées :

- si A et B alors C
- si A et C alors B
- si B et C alors A

Sur l'exemple vu plus haut, on prend un support minimal de 2. On a :

- $C_1 = \{A, B, C, D\}$
- $L_1 = \{A, B, C\}$
- $C_2 = \{(A, B), (A, C), (B, C)\}$
- $L_2 = \{(A, C)\}$
- \bullet $C_3 = \emptyset$

Les règles suivantes sont examinées :

- si A et B alors C
- si A et C alors B
- si B et C alors A

