Exercício de Laboratório

Delineamento e Análise de Experimentos

Questão 1

Em um experimento químico a pureza do resultado é determinada pela temperatura e pela pressão. Os dados do experimento em suas variáveis naturais são apresentados a seguir:

Temperature (ξ_1)	Pressure Ratio (ξ ₂)	Purity
-225	1.1	82.8
-225	1.3	83.5
-215	1.1	84.7
-215	1.3	85.0
-220	1.2	84.1
-220	1.2	84.5
-220	1.2	83.9
-220	1.2	84.3

Figure 1: Tabela Exercicio 11.1

- Considerando os dados do experimento verifique a existência de curvatura na superfície resposta. Apresente os passos para a realização do teste e o p-valor observado.
- Caso não exista sinal de curvatura determine o caminho de maior subida. Considerando um passo Δ de 5 graus na temperatura, quais devem ser os próximos 3 pontos a serem avaliados no experimento? Apresente os pontos na escala natural dos dados.

Questão 2

Considere um experimento do tipo 2⁴ sem replicação conforme os dados na tabela:

- Seja UEC a variável resposta do experimento, determine quais fatores são significativos.
- Apresente um modelo final de regressão considerando os termos significativos do modelo
- Faça uma análise de resíduos do modelo final apresentando os testes realizados e as conclusões.

■ TABLE P6.5
The 2⁴ Experiment for Problem 6.22

Standard Order	Run Order	Laser Power	Pulse Frequency	Cell Size	Writing Speed	UEC
8	1	1.00	1.00	1.00	-1.00	0.8
10	2	1.00	-1.00	-1.00	1.00	0.81
12	3	1.00	1.00	-1.00	1.00	0.79
9	4	-1.00	-1.00	-1.00	1.00	0.6
7	5	-1.00	1.00	1.00	-1.00	0.65
15	6	-1.00	1.00	1.00	1.00	0.55
2	7	1.00	-1.00	-1.00	-1.00	0.98
6	8	1.00	-1.00	1.00	-1.00	0.67
16	9	1.00	1.00	1.00	1.00	0.69
13	10	-1.00	-1.00	1.00	1.00	0.56
5	11	-1.00	-1.00	1.00	-1.00	0.63
14	12	1.00	-1.00	1.00	1.00	0.65
1	13	-1.00	-1.00	-1.00	-1.00	0.75
3	14	-1.00	1.00	-1.00	-1.00	0.72
4	15	1.00	1.00	-1.00	-1.00	0.98
11	16	-1.00	1.00	-1.00	1.00	0.63

Figure 2: Tabela Exercicio $6.22\,$