Wydział	Imie i nazwisko		Rok	Grupa	Zespół
	1. Paweł Szewo	zuk			
WFiIS	2. Ihnatsi Yermakovich		II	03	03
PRACOWNIA	Temat	Nr ćwiczenia			
FIZYCZNA					
WFiIS AGH	Opracowanie d	00			
Data wykonania	Data oddania	Zwrot do popr.	Data oddania	Data zaliczenia	OCENA
04.03.2022	07.03.2022	07.03.2022	14.03.2022		

1 Cel ćwiczenia

Celem ćwiczenia było zaznajomienie sie z typowymi metodami opracowania danych pomiarowych przy wykorzystaniu wyników pomiarów dla wahadła prostego.

2 Wstep teoretyczny

2.1 Wahadło proste (matematyczne)

Wahadłem prostym nazywamy wyidealizowany model ciała o masie punktowej zawieszony na nieważkiej, nierozciagliwej nici. Jeżeli ciało zostanie wyprowadzone ze stanu równowagi, to pod wpływem siły cieżkości zaczyna oscylować wokół położenia równowagi z pewnym okresem, który ilościowo zbadamy poniżej. W próżni moglibyśmy odchylić ciało o dowolny kat, ale w warunkach rzeczywistych ważne jest, aby kat był około trzech stopni ($\alpha \leq 3^{\circ}$). Teraz podamy wzór na okres drgań wahadła matematycznego:

$$T = 2\pi \sqrt{\frac{l}{g}}$$

Skad w oczywisty sposób potrafimy wyprowadzić wzór na przyśpieszenie ziemskie q:

$$g = 4\pi^2 \frac{l}{T^2}$$

2.2 Niepewność pomiarowa

Niepewność pomiaru możemy określić jako parametr zwiazany z wartościami (seria) pomiaru danej wielkości fizycznej w stałych warunkach. Niepewność jest konsekwencja niedokładnie wykonanego pomiaru, co kumuluje w sobie błedy zwiazane z niedoskonałościa używanych urzadzeń i pomyłkami obserwatora. Ale niewatpliwie niepewność pomiaru jest integralna cześcia każdego eksperymentu. W tym momencie spróbujemy przybliżyć rodzaje niepewności.

Z niepewnościa typu A mamy do czynienia gdyż wyniki poszczególnych pomiarów tej samej wielkości różnia sie. Jeżeli błedy pomiarowe sa losowe, tym rozkładem jest rozkład normalny. Stad dla obliczenia niepewności typu A stosuje sie wzór na przybliżenie nieobciażonego estymatora odchylenia standardowego średniej:

$$u = \sqrt{\frac{\sum_{i=1}^{n} (x_i - \overline{x})^2}{n(n-1)}}$$

O niepewności typu B możemy mówić przy używaniu nieidealnych urzadzeń pomiarowych. Niech q bedzie najmniejszym przedziałem pomiaru wykorzystanego urzadzenia, wówczas niepewność wyniesie:

$$u = \frac{q}{\sqrt{3}}$$

Musimy też wspomnieć o propagacji błedu. Jest to statystyczne zjawisko wystepujace w operacjach dokonywanych na wartościach obarczonych błedem, np. błedem pomiaru. Niech bedzie dana fukcja f taka, że: $\mathbb{R}^n \to \mathbb{R}$ $f(x_0, x_1, x_2...x_n)$, gdzie każda zmienna x_i jest niezależna od pozostałych i jest obdarzona błedem pomiaru, wówczas bład u można obliczyć nastepujaco:

$$u_c = \sqrt{\left(\frac{\partial f}{\partial x_0} u_{x_0}\right)^2 + \ldots + \left(\frac{\partial f}{\partial x_n} u_{x_n}\right)^2}$$

Niepewnościa rozszerzona nazywamy $U_p = k_p u_c(y)$, gdzie k_p to współczynnik rozszerzenia, wartość którego najcześciej sie przyjmuje w przedziale od 2 do 3. Dla rozkładu normalnego błedów pomiaru $k_p = 2$ oznacza poziom ufności około 95%, a dla $k_p = 3$ oznacza poziom ufności ponad 99%.

3 Przyrzady pomiarowe

- Wahadło proste
- Linijka
- Stoper

Rysunek 1: Rysunek wahadła prostego

4 Przebieg ćwiczenia

4.1 Pomiar okresu drgań przy ustalonej długości nici

Wykonaliśmy 8 pomiarów, za każdym razem mierzac k = 20 okresów wahadła.

4.2 Pomiar zależności okresu drgań od długości nici

Wykonaliśmy 6 pomiarów, za każdym razem mierzac k=20 okresów wahadła oraz przy każdym pomiarze stopniowo skracaliśmy jego długość od 634mm do 479mm.

5 Wyniki

5.1 Pomiar okresu drgań przy ustalonej długości nici

Długość wahadła: l = 630mm = 0,63(m)

Niepewność pomiaru: u(l) = 0,577mm = 0,000577(m)

Lp.	liczba okresów k	czas t dla k okresów[s]	jeden okres T[s]
1	20	31,56	1,5780
2	20	31,82	1,5910
3	20	31,69	1,5845
4	20	31,62	1,5810
5	20	31,82	1,5910
6	20	31,59	1,5795
7	20	31,81	1,5905
8	20	31,72	1,5860

5.2 Pomiar zależności okresu drgań od długości nici

Lp.	1 [mm]	k	t[s]	T[s]	$T^2[s^2]$
1	634	20	31,09	1,5545	2,4165
2	599	20	30,22	1,5110	2,2831
3	568	20	29,40	1,4700	2,1609
4	536	20	28,65	1,4325	2,0521
5	506	20	27,72	1,3860	1,9210
6	479	20	26,25	1,3125	1,7227

6 Opracowanie wyników

6.1 Pomiar okresu drgań przy ustalonej długości nici

- 1) Żaden ze zmierzonych wyników pomiarów okresów nie zawiera błedów dyskwalifikujacych go z opracowania wyników miedzy okresami nie zaobserwowano drastycznie dużych różnic.
- 2) Najpierw obliczymy średni okres drgań:

$$\overline{T} = \frac{1}{n} \sum_{i=1}^{n} T_i = 1,5852 (s)$$

3

Teraz możemy uzyskać wartość niepewności typu A korzystajac z rodziału 2.2:

$$u_{\overline{T}} = \sqrt{\frac{\sum_{i=1}^{n} (x_i - \overline{x})^2}{n(n-1)}} = 0,001882574(s)$$

3) Niepewność pomiaru długości wahadła możemy określić jako:

$$u_l = \frac{1 \times 10^{-3}}{\sqrt{3}} = 0,00057735 (m)$$

4) Obliczymy wartość przyśpieszenia ziemskiego g:

$$\overline{g} = 4\pi^2 \frac{l}{\overline{T}^2} = 9,897651518 \ \left(m/s^2\right)$$

5) Oszacujemy niepewność złożona $u_c(g)$ nastepujaco:

$$\begin{split} u_c\left(g\right) &= \sqrt{\left(-8\pi^2 \frac{l}{\overline{T}^3} u_{\overline{T}}\right)^2 + \left(4\pi^2 \frac{1}{\overline{T}^2} u_l\right)^2} = \\ &= \sqrt{\left(-8\pi^2 \frac{0,63}{1,5852^2} 0,00188\right)^2 + \left(4\pi^2 \frac{1}{1,5852^2} 0,00058\right)^2} = 0,025 \left(m/s^2\right) \end{split}$$

6) Obliczymy wartość niepewnośći rozszerzonej ${\cal U}_g$ przyjawsz
y $k_p=3$:

$$U_q = 2u_c(q) = 0.075(m/s^2)$$

7) Otrzymana wartość g nie jest zgodna z wartościa tabelaryczna dla Krakowa $g=9,811m/s^2,$ natomiast jest bardzo blizko tej wartości, bo:

$$|g - g_0| = |9,89765 - 9,81100| = 0.08665 (m/s^2)$$

$$|g - g_0| > U_g$$

6.2 Pomiar zależności okresu drgań od długości nici

Rysunek 2: Wykres zależności $\mathrm{T}(\mathit{l})$

Wykres regresji liniowej wraz z wartościami a oraz u(a) otrzymaliśmy za pomoca funkcji plot w programie MATLAB.

$$a = 4,276 \left(\frac{s}{m^2}\right), \quad u_a = 0,072 \left(\frac{s}{m^2}\right)$$

Rysunek 3: Wykres zależności $\mathrm{T}^2(l)$

Wykorzystujac te dane ponownie policzyliśmy przyśpieszenie ziemskie:

$$g = \frac{4\pi^2}{a} = 9,232 \left(\frac{m}{s^2}\right)$$

Oraz niepewność złożona:

$$u_{c}\left(g\right) = \sqrt{\left(\frac{4\pi^{2}}{a^{2}}u_{a}\right)^{2}} = 0,15545\left(\frac{m}{s^{2}}\right)$$

Niepewność rozszerzona wyliczona dla k=3 wyniosła $U_g=0,46637(m/s^2)$. Stad obliczone przyspieszenie ziemskie ma wartość:

$$g = 9.232 \pm 0,46637 \left(\frac{m}{s^2}\right)$$

Co nie jest zgodne z wartościa tabelaryczna g_0 :

$$|g - g_0| = |9,232 - 9,811| = 0.579 (m/s^2)$$

$$|g - g_0| > U_g$$

7 Wnioski

- Dla danej długości wahadła obliczyliśmy okres drgań dla wahadła prostego. Na podstawie tych obliczeń byliśmy w stanie wyprowadzić wartość przyspieszenia ziemskiego $g=9,897\pm0,075$ m/s^2 . Przyśpieszenie, które udało nam sie osiagnać na podstawie wyników doświadczenia nie mieści sie w obliczonej niepewności w porównaniu do faktycznej wartości przyśpieszenia ziemskiego w Krakowie ($g=9,811m/s^2$), co może być spowodowane niedokładnościa pomiarów. Prawdopodobnie osiagalna była wieksza dokładność, gdyby nie czynnik ludzki w postaci opóźnienia we właczeniu stopera oraz nieidealne zmierzenie długości wahadła.
- Badajac zależność kwadratu okresu od długości wahadła oraz wykres wyznaczyliśmy przyspieszenie ziemskie $g=9,232\pm0,466~m/s^2$. Wyliczone w ten sposób przyspieszenie ziemskie też mieści sie w niepewności pomiarowej.
- Najwiekszy wpływ na niedokładności podczas pomiarów miały czynniki ludzkie, czyli:
 - 1. Zbyt duży kat wychylenia cieżarka.
 - 2. Opóźnienie przy właczaniu i wyłaczaniu stopera.
 - 3. Rozmiary wahadła długość wahadła oraz rozmiar nakretki.