23) CIRCULOS DE MOHR Y LAND. - La obtención de la posición de los ejes principales y el valor de los momentos principales de inercia, conocidos los momentos de 2º orden de un sistema dado respecto a 2 ejes normales baricéntricos, puede efectuarse gráficamente mediante las construcciones de los círculos de Mohr y Land.

Estas construcciones interpretan gráficamente las fórmulas obtenidas en párrafo 19 y permiten además obtener los valores de los momentos de 2º orden respecto a un par de ejes baricéntricos normales cualesquiera.

a) Circulo de Mohr. - Sea un sistema de masas m, y un par de ejes baricéntricos normales x, y, respecto al cual conocemos los valores Izz Iyy Izy.

FIG. 31

A partir de 0 sobre el eje de mayor momento de inercia (suponemos sea el eje x) llevamos en una determinada escala de momentos de 2º orden, adoptada al efecto, los valores

$$\overline{OA} = I_{vv}$$
 \mathbf{y} $\overline{OB} = I_{ex}$

A partir de A, normalmente a x-x, llevamos el valor $\overline{AM} = I_{xy}$ hacia + y si es positivo y a partir de B, $\overline{BN} = -I_{xy}$ (sentido con-

Uniendo M con N obtenemos C, centro del círculo de Mohr de diámetro MN que dibujamos.

Para un nuevo par de ejes x_1x_1 y_1y_1 , trazando por M paralelas a los mismos, se demuestra (1) que

$$\overline{OP'} = I_{x_1x_1}$$

$$\overline{OQ'} = I_{y_1y_1}$$

$$\overline{PP'} = -\overline{QQ'} = I_{\kappa_1y_1}$$

en la escala de momentos de 2º orden adoptada.

Ejes principales de inercia, xo, yo. — Los obtenemos uniendo M con W y V y trazando por $O \equiv G$ paralelas a las rectas así determinadas.

En efecto, para esa posición tenemos que se cumple la condición de máximo o mínimo: momento centrífugo nulo.

Tenemos

$$\overline{OW} \times \text{escala} = I_{x_0 x_0} = I_{\text{máx.}}$$

$$\overline{OV} \times \text{escala} = I_{v_0 v_0} = I_{\text{min.}}$$

b) Circulo de Land (2). — Para un caso análogo al anterior. A partir de $0 \equiv G$ y sobre el eje x en este caso (la construcción puede efectuarse igualmente sobre el eje y) llevamos el valor I_{xx} en una cierta escala de momentos de 2º orden adoptada al efecto y a continuación el I_{yy} trazando luego el círculo de diámetro $I_{xx}+I_{yy}$. Normalmente por K llevamos el valor I_{xy} con su signo dirigido al semieje de signo contrario.

⁽¹⁾ Ver nuestro Curso Medio de Estática Gráfica (pág. 217). (2) Nota: Para más detalles y demostraciones véase nuestro Curso Medio de Estática Gráfica (pág. 220 y siguientes).

Denominamos a M punto principal de Land. Para un nuevo par de ejes x_1y_1 , tenemos, trazando el diámetro E_F

 $\overline{FH} = I_{x_1x_1}$ $\overline{HE} = I_{y_1y_1}$ En la escala de momentos de 2º orden adoptada.

Ejes y momentos principales de inercia. — Trazamos el diámetro CM. Obtenemos R y S sobre la circumferencia y la dirección de los ejes principales, rectas $OR = y_0 y_0$ $OS = x_0 x_0$.

$$\overline{RM} \times \operatorname{escala} = I_{x_0 x_0} = I_{\text{max}}$$

$$\overline{MS} imes ext{escala} = I_{\nu_0 \nu_0} = I_{\text{mfn.}}$$

Como se observa, en la construcción efectuada resulta $I_{r,y} = 0$.

24) RADIO DE GIRO