

ЛЕКЦИЯ 4. ВЫДЕЛЕНИЕ КОНТУРОВ

Обработка аудиовизуальной информации Бакалавры, 6 семестр. Магистры, 9 семестр

План лекции

- □ Выделение контуров
 - □ Алгоритмы прослеживания (для бинарных)
 - □ Градиентные методы (для полутоновых)
- □ Кодирование контуров
 - □ Сегментация контурных линий
 - Цепной код Фримена
 - Дескрипторы Фурье
- □ Методы обработки и распознавания контурных изображений.
- □ Метод концевых точек

Морфологическое выделение контуров

- Выполняется эрозия изображения (сжатие объекта)
- □ Строится разностное изображение и инвертируется, если надо

Выделение контуров на основе градиента функции яркости

Производные функций, градиент изображения Операторы Робертса, Прюитт, Собеля, Шарра, Круна Операторы Кэнни, Ротуэлла, Айверсона

Операция свёртки

Матрица весов элементов окна с относительными значениями координат:

Элементы изображения в окне того же размера:

 Отклик фильтра в точке (x, y) — сумма произведений коэффициента w на значение яркости пикселя:

$$egin{array}{lll} w_{-1,-1} & w_{0,-1} & w_{1,-1} \\ w_{-1,0} & w_{0,0} & w_{1,0} \\ w_{-1,1} & w_{0,1} & w_{1,1} \end{array}$$

$f_{-1,-1}$	$f_{0,-1}$	$f_{1,-1}$
$f_{-1,0}$	$f_{0,0}$	$f_{1,0}$
f _{-1, 1}	$f_{0,1}$	$f_{1,1}$

$$R = w_{-1,-1}f_{-1,-1} + w_{-1,0}f_{-1,0} + w_{-1,1}f_{-1,1} + w_{-1,0}f_{-1,0} + w_{0,0}f_{0,0} + w_{1,0}f_{1,0} + w_{-1,1}f_{-1,1} + w_{0,1}f_{0,1} + w_{1,1}f_{1,1}$$

Производные двумерной функции

- Первая производная функции яркости определяется как разность значений соседних элементов: $\frac{\partial f}{\partial x} = f(x+1) f(x)$
- Вычисление первой производной цифрового изображения основано на различных дискретных приближениях двумерного градиента.
- □ По определению, градиент изображения *f(x, y)* в точке *(x, y)* это вектор частных производных:

$$\nabla f = \left(G_x, G_y\right) = \left(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}\right)$$

Направление вектора градиента совпадает с направлением максимальной скорости изменения функции f в точке (x, y)

Градиент функции

□ **Модуль** вектора градиента равен значению максимальной скорости изменения функции f в точке (x, y), причем максимум достигается в направлении вектора ∇f .

$$\nabla f = |\nabla f| = \sqrt{G_x^2 + G_y^2} = \sqrt{\left(\frac{\partial f}{\partial x}\right)^2 + \left(\frac{\partial f}{\partial y}\right)^2}$$

- Направление вектора градиента в точке (х, у) перпендикулярно направлению контура в этой точке.
- □ Угол $\alpha(x,y)$ между направлением вектора ∇f в точке (x,y) и осью x:

$$\alpha(x, y) = arctg\left(\frac{G_y}{G_x}\right)$$

 Формулы расчёта частных производных для каждой точки в разных методах определяются по-разному.

Вычисление градиента функции яркости

□ Градиент в точке (x, y):

$$abla f = \sqrt{G_x^2 + G_y^2}$$
 или приближенно $abla f pprox \left| G_x \right| + \left| G_y \right|$

 \square Решающее правило с порогом T для получения контурного изображения:

$$f(x, y) = \begin{cases} 255, & \nabla f > T? \\ 0, & otherwise \end{cases}$$

 В качестве порога можно выбрать какую-либо константу, например, 1/12 от максимального значения градиента, или рассчитать по критерию Отсу.

Визуализация градиентов

□ Нормализованные градиенты по осям в диапазоне [0..255]:

$$G_{x}^{norm} = 255 \frac{G_{x} - \min_{(x,y)} G_{x}}{\max_{(x,y)} G_{x} - \min_{(x,y)} G_{x}} \qquad G_{y}^{norm} = 255 \frac{G_{y} - \min_{(x,y)} G_{y}}{\max_{(x,y)} G_{y} - \min_{(x,y)} G_{y}}$$

□ Нормализованная матрица со значениями в диапазоне [0..255]:

$$\nabla f^{norm} = \frac{255}{\max_{(x,y)} \nabla f} \nabla f$$

□ Инвертированная матрица в диапазоне [0..255] :

$$\nabla f^{inv} = 255 - \nabla f^{norm}$$

Оператор Робертса

- Рассмотрим окно 3х3 для каждого элемента (хотя достаточно и 2х2):
- □ Частные производные в центральной точке в матричном виде (ядра оператора):

$$G_{x} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \qquad G_{y} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & 1 & 0 \end{bmatrix}$$

$$G_{y} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & 1 & 0 \end{bmatrix}$$

Частные производные в скалярном виде:

$$G_{x} = i - e = f_{x+1,y+1} - f_{x,y}$$

$$G_{y} = h - f = f_{x,y+1} - f_{x+1,y}$$

$f_{x-1,y-1}$	$f_{x,y-1}$	$f_{x+1,y-1}$
$f_{x-1,y}$	$f_{x,y}$	$f_{x+1,y}$
$f_{x-1,y+1}$	$f_{x,y+1}$	$f_{x+1,y+1}$

Примеры работы оператора Робертса

Примеры работы оператора Робертса

Оператор Собеля

Ядра оператора Собеля:

$$G_{x} = \begin{bmatrix} -1 & 0 & +1 \\ -2 & 0 & +2 \\ -1 & 0 & +1 \end{bmatrix} * I = \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix} * [-1 & 0 & +1] * I$$

$$G_{y} = \begin{bmatrix} +1 & +2 & +1 \\ 0 & 0 & 0 \\ -1 & -2 & -1 \end{bmatrix} * I = \begin{bmatrix} +1 \\ 0 \\ -1 \end{bmatrix} * \begin{bmatrix} 1 & 2 & 1 \end{bmatrix} * I$$

а	b	С
d	e	f
g	h	i

$f_{x-1,y-1}$	$f_{x,y-1}$	$f_{x+1,y-1}$
$f_{x-1,y}$	$f_{x,y}$	$f_{x+1,y}$
$f_{x-1,y+1}$	$f_{x,y+1}$	$f_{x+1,y+1}$

□ В скалярном виде:

$$G_{x} = c + 2f + i - (a + 2d + g) = f_{x+1,y-1} + 2f_{x+1,y} + f_{x+1,y+1} - (f_{x-1,y-1} + 2f_{x-1,y} + f_{x-1,y+1})$$

$$G_{y} = a + 2b + c - (g + 2h + i) = f_{x-1,y-1} + 2f_{x,y-1} + f_{x+1,y-1} - (f_{x-1,y+1} + 2f_{x,y+1} + f_{x+1,y+1})$$

Примеры работы оператора Собеля

Примеры работы оператора Собеля

Примеры работы оператора Собеля

Оператор Прюитт

Ядра оператора Прюитт:

$$G_{x} = \begin{bmatrix} +1 & 0 & -1 \\ +1 & 0 & -1 \\ +1 & 0 & -1 \end{bmatrix} * I = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} * [+1 & 0 & -1] * I$$

$$G_{y} = \begin{bmatrix} +1 & +1 & +1 \\ 0 & 0 & 0 \\ -1 & -1 & -1 \end{bmatrix} * I = \begin{bmatrix} +1 \\ 0 \\ -1 \end{bmatrix} * \begin{bmatrix} 1 & 1 & 1 \end{bmatrix} * I$$

□ В скалярном виде:

a	b	С
d	e	f
g	h	i

$f_{x-1,y-1}$	$f_{x,y-1}$	$f_{x+1,y-1}$
$f_{x-1,y}$	$f_{x,y}$	$f_{x+1,y}$
$f_{x-1,y+1}$	$f_{x,y+1}$	$f_{x+1,y+1}$

$$G_{x} = a + d + g - c - f - i = (a + d + g) - (c + f + i) = (f_{x-1,y-1} + f_{x-1,y} + f_{x-1,y-1}) - (f_{x+1,y-1} + f_{x+1,y} + f_{x+1,y+1})$$

$$G_{y} = a + b + c - g - h - i = (a + b + c) - (g + h + i) = (f_{x-1,y-1} + f_{x,y-1} + f_{x+1,y-1}) - (f_{x-1,y+1} + f_{x,y+1} + f_{x+1,y+1})$$

при сто тронцко введенской цркви э вх топограф вх бі день з на памать етыхх мученка агапім василій великаги з того же лета з мід нашеги іс касемій великаги з бухівніка кесарін каппадокінскій василій великаги з того же лета з мід марта нашеги іс касемій великаги з того же лета з мід марта на пра з на памать ніже во стыхх оща нашеги іс касемій великаги з того же лета з мід марта василій великаги з того же лета з мід марта в при в того же п

Оригинал

THE CAPTAR AMAGEN OF STATE OF CONTROL OF THE CAPTAR OF THE CAPTAR CAPTAR

THE COMPANDA TO STATE OF THE CANADA SATURATED TO THE REAL OF THE PROPERTY OF T

G

THE CORPORATE CARACTER STATE OF THE CARACTER

γ

Оператор Прюитт 5х5

Маски оператора:

$$G_{x} = \begin{bmatrix} +1 & 0 & 0 & 0 & -1 \\ +1 & 0 & 0 & 0 & -1 \\ +1 & 0 & 0 & 0 & -1 \\ +1 & 0 & 0 & 0 & -1 \\ +1 & 0 & 0 & 0 & -1 \end{bmatrix} * I$$

Оператор Шарра (Scharr)

Ядра оператора Шарра:

$$G_{x} = \begin{bmatrix} 3 & 10 & 3 \\ 0 & 0 & 0 \\ -3 & -10 & -3 \end{bmatrix} * I = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix} * [+3 & +10 & -3] * I$$

$$G_{y} = \begin{bmatrix} 3 & 0 & -3 \\ 10 & 0 & -10 \\ 3 & 0 & -3 \end{bmatrix} * I = \begin{bmatrix} 3 \\ 10 \\ 3 \end{bmatrix} * [+1 & 0 & -1] * I$$

□ В скалярном виде:

a	b	С
d	e	f
g	h	i

$f_{x-1,y-1}$	$f_{x,y-1}$	$f_{x+1,y-1}$
$f_{x-1,y}$	$f_{x,y}$	$f_{x+1,y}$
$f_{x-1,y+1}$	$f_{x,y+1}$	$f_{x+1,y+1}$

$$G_{x} = (3a+10b+3c) - (3g+10h+3i) = (3f_{x-1,y-1}+10f_{x,y-1}+3f_{x+1,y-1}) - (3f_{x-1,y+1}+10f_{x,y+1}+3f_{x+1,y+1})$$

$$G_{y} = (3a+10d+3g) - (3c+10f+3i) = (3f_{x-1,y-1}+10f_{x-1,y}+3f_{x-1,y-1}) - (3f_{x+1,y-1}+10f_{x+1,y}+3f_{x+1,y+1})$$

Примеры работы оператора Шарра

Примеры работы оператора Шарра

Примеры работы оператора Шарра

Оператор Круна (Kroon)

Ядра оператора Круна:

$$G_{x} = \begin{bmatrix} 17 & 61 & 17 \\ 0 & 0 & 0 \\ -17 & -61 & -17 \end{bmatrix} * I$$

$$G_{y} = \begin{bmatrix} 17 & 0 & -17 \\ 61 & 0 & -61 \\ 17 & 0 & -17 \end{bmatrix} * I$$

a	b	С
d	e	f
g	h	i

$f_{x-1,y-1}$	$f_{x,y-1}$	$f_{x+1,y-1}$
$f_{x-1,y}$	$f_{x,y}$	$f_{x+1,y}$
$f_{x-1,y+1}$	$f_{x,y+1}$	$f_{x+1,y+1}$

□ В скалярном виде:

$$G_{x} = (17a + 61b + 17c) - (17g + 61h + 17i) = (17f_{x-1,y-1} + 61f_{x,y-1} + 17f_{x+1,y-1}) - (17f_{x-1,y+1} + 61f_{x,y+1} + 17f_{x+1,y+1})$$

$$G_{y} = (17a + 61d + 17g) - (17c + 61f + 17i) = (17f_{x-1,y-1} + 61f_{x-1,y} + 17f_{x-1,y-1}) - (17f_{x+1,y-1} + 61f_{x+1,y} + 17f_{x+1,y+1})$$

Примеры работы оператора Круна

Примеры работы оператора Круна

Примеры работы оператора Круна

Оператор Кайяли (Kayyali)

Ядра оператора Кайяли:

$$G_{x} = \begin{bmatrix} +6 & 0 & -6 \\ 0 & 0 & 0 \\ -6 & 0 & +6 \end{bmatrix} * I$$

$$G_{y} = \begin{bmatrix} -6 & 0 & 6 \\ 0 & 0 & 0 \\ 6 & 0 & -6 \end{bmatrix} * I$$

□ В скалярном виде:

$$G_{x} = 6(a+i-c-g) = 6(f_{x-1,y-1} + f_{x+1,y+1} - f_{x+1,y-1} - f_{x-1,y+1})$$

$$G_{y} = 6(c+g-a-i) = 6(f_{x+1,y-1} + f_{x-1,y+1} - f_{x-1,y-1} - f_{x+1,y+1})$$

a	b	С
d	e	f
g	h	i

$f_{x-1,y-1}$	$f_{x,y-1}$	$f_{x+1,y-1}$
$f_{x-1,y}$	$f_{x,y}$	$f_{x+1,y}$
$f_{x-1,y+1}$	$f_{x,y+1}$	$f_{x+1,y+1}$

Примеры работы оператора Кайяли

Примеры работы оператора Кайяли

Примеры работы оператора Кайяли

Шрек. Найди 10 отличий

Звездолёт. Найди 10 отличий

Оригинал

Паровая машина. Найди 10 отличий

Оригинал

Крун

Робертс

Шарр

Прюитт

Собель

Матрица направлений градиентов

- Матрица направлений градиента может быть визуализирована в оттенках серого.
 - □ Область значений матрицы:

$$\alpha = arctg\left(\frac{G_{y}}{G_{x}}\right) \in \left[-\frac{\pi}{2}, +\frac{\pi}{2}\right] \approx \left[-1.57, +1.57\right]$$

□ Нормированная матрица направлений градиента:

Визуализация матрицы направлений градиента

Оператор Кэнни (Canny)

- Известен как оптимальный детектор края, оператор обнаружения границ, детектор границ.
- □ Критерии оптимальности:
 - □ Низкий уровень ошибок
 - Высокая локализованность краевых точек
 - Одна граница одно обнаружение

Основные этапы алгоритма

- □ **Шаг 0.** Перед применением детектора обычно преобразуют изображение в оттенки серого, чтобы уменьшить вычислительные затраты.
- Шаг 1. Сглаживание изображения, чтобы устранить шум.
- Шаг 2. Поиск градиентов, чтобы подсветить области с высокими пространственными производными.
- Шаг 3. Подавление немаксимумов. Проход по этим областям с подавлением всех пикселей, которые не в максимуме.
- Шаг 4. Удаление слабых границ.
- □ **Шаг 5.** Подавление краёв, не связанных с сильными границами.

Шаг 1. Сглаживание

 Для размытия используется фильтр, хорошо приближенный к первой производной гауссианы. σ= 1.4:

$$B = \frac{1}{159} \begin{bmatrix} 2 & 4 & 5 & 4 & 2 \\ 4 & 9 & 12 & 9 & 4 \\ 5 & 12 & 15 & 12 & 5 \\ 4 & 9 & 12 & 9 & 4 \\ 2 & 4 & 5 & 4 & 2 \end{bmatrix} * A$$

 Чем больше ширина маски Гаусса, тем меньше чувствительность детектора к шуму и тем больше локализация ошибки в обнаружении краев.

Шаг 2. Поиск градиентов

- □ Для вычисления градиента используется оператор Собеля.
- □ Границы отмечаются там, где градиент изображения приобретает максимальное значение.
- Они могут иметь различное направление, поэтому алгоритм Кэнни использует четыре фильтра для обнаружения горизонтальных, вертикальных и диагональных ребер в размытом изображении.

$$G = \sqrt{G_x^2 + G_y^2}$$

$$\theta = arctg\left(\frac{G_{y}}{G_{x}}\right)$$

 Угол направления вектора градиента округляется до ближайшего из четырёх значений: 0, 45, 90, 135.

Шаг 3. Подавление немаксимумов

- Только локальные максимумы отмечаются как границы.
- □ Не максимальные точки, лежащие рядом с границей, удаляются.
- Используется информация о направлении границы для того, чтобы удалять точки именно рядом с границей и не разрывать саму границу вблизи локальных максимумов градиента.

Шаг 4. Двухпороговая фильтрация слабых границ (гистерезис)

- Потенциальные границы определяются двумя порогами. Решающее правило:
 - Если G < minVal, то граница отбрасывается (точно не контур).
 - Если G > maxVal, то граница точно контур (сильная граница).
 - Если minVal < G < maxVal, то по ситуации:</p>
 - если граница связана с признанным контуром (выше maxT), то она тоже считается контуром;
 - если не связана, то отбрасывается.
- □ Таким образом, слабые границы удаляются.
- Гистерезис используется, чтобы отследить оставшиеся пиксели, которые не были подавлены.

Шаг 5. Трассировка области неоднозначности

- Итоговые границы определяются путём подавления всех краёв, не связанных с определенными (сильными) границами.
- □ После того как известны направления краев, применяем немаксимальное подавление. Оно используется для отслеживания вдоль края в направлении края и подавления любых значений пикселей (устанавливая их равным 0), которые не считаются краем. Это даст тонкую линию в результирующем изображении.

Пример работы оператора Кэнни

Оригинал → Фильтр Гаусса → Оператор Кэнни

Пример работы оператор Кэнни

при сто тронцко введенской цркви > ви тупограф Единовърцеви > ви лъто ш сотворент мира + 3 у 3 шржтва же по плоти бта слова зашча > індикт. ка по плоти объекзанім гда бел на празднество вя касилім великати з архівпкпа кесарін каппадокінскім совершенаже бысть э того же лита э мца марта тимона и ромила э и иже сх инми в сх кинг

than e.g. aboutted rretteneron aliere > ez armolby Elmorfoler» ex afro morrobala vida 4313. Mortora era roca exampa vida 4313. TA ON THE SOUTH OF THE STANDARD AND CONTROL OF THE STANDARD OF RAGRAJA GENHRALM > 46% Elikur izeradan izerutatorinerif ... edremarre ryllas delo ese villa valla valla THE ET LINE D HARIANA TA TELIZ ATANTA.

O POMINA D A NAMET STANT

Пример работы оператор Кэнни

По Евклиду

По Манхеттену

Оператор Ротуэлла (Rothwell)

- Похож на оператор Кэнни с той разницей,
 что:
 - используется истончение краёв вместо подавления немаксимумов;
 - порога вместо гистерезиса (двойного порога).

Оператор Айверсона (Iverson)

- Основным преимуществом является значительное уменьшение количества ошибочно положительных откликов (распознавания несуществующих границ)
- Позволяет четко разделять между собой три вида границ:
 - Края (step-edges).
 - □ Светлые линии (positive contrast lines).
 - Темные линии (negative contrast lines).

Прослеживание контуров

Алгоритм Жука Морфологические преобразования Алгоритм на основе градиента Поиск особых точек

Прослеживание контуров

- Результатом выполнения процедуры прослеживания является дискретное представление контуров, при котором каждый контур определяется множеством точек, из которых он состоит.
- □ Для упрощения вычисления направления края весь диапазон возможных значений 0°...360° разбивается на 4 (реже 8) «компасных» направлений (секторов). Каждое направление отличается от соседнего на 90° (45°).
- □ При этом поиск точек, принадлежащих одному контуру, следует проводить среди точек соседних секторов, имеющих расхождения значений градиентов меньше заданного порога.

Прослеживание контуров (II)

- Алгоритмы прослеживания контуров (edge following) можно разделить на несколько групп:
 - методы, использующие информацию о значении и направлении градиента в каждой точке;
 - методы, использующие динамическое программирование для решения задачи прослеживания контура;
 - методы поиска оптимального пути в графе. Каждая краевая точка представляется вершиной графа.

Алгоритм жука

- "Жук" начинает движение с белой области по направлению к черной. Как только он попадает на черный элемент, он поворачивает налево и переходит к следующему элементу.
 - **Если** этот элемент *белый*,
 - **то** жук поворачивает *направо*,
 - **иначе** жук поворачивает *налево*.
- Процедура повторяется до тех пор, пока жук не вернется в исходную точку.
- Набор точек перехода с черного на белое и с белого на черное и описывают границу объекта.

Кодирование контуров

Код Фримена Дескрипторы Фурье

Цепной код Фримена

- Цепные коды применяются для представления границы в виде последовательности отрезков прямых линий определённой длины и направления.
- В основе этого представления лежит 4- или 8-связная решётка.
- Длина каждого отрезка определяется разрешением решётки, а направления задаются выбранным кодом.
- Для представления всех направлений в 4-связной решётке достаточно 2-х бит, а для 8-связной решётки цепного кода требуется 3 бита.
- Оригинальная статья: http://ieeexplore.ieee.org/document/5219197/
- http://robocraft.ru/blog/computervision/640.html

Пример цепного кода

□ Достоинства:

- □ компактность
- □ Недостатки:
 - зависимость от начальной точки кодирования.
 - не обладает свойством инвариантности к вращению.
 - неустойчивость к зашумлению. Локальные изменения контура могут привести к различным результатам кодирования.

Дескрипторы Фурье

- □ ДПФ (Discrete Fourier Transform, DFT)
 - прямое
 - обратное (InvDFT)
- Быстрое преобразование Фурье (FFT) позволяет за O(n*log(n)) рассчитывать DFT и InvDFT.
- Кодирование контура дескрипторами
 - □ Преобразование координат контура в комплексные числа и ДПФ этих чисел
 - Выбор числа дескрипторов (N) и отбрасывание высокочастотной части спектра
- □ ДПФ также применяется при сжатии в MP3, JPEG

Описание контура разным числом дескрипторов Фурье

Прослеживание контура

Прослеживание контуров на основе градиентов

- Предполагается, что точки, принадлежащие одному контуру, должны иметь близкие значения модуля и направления вектора градиента.
- Рассматривается окрестность точки (i, j) размером М×М (обычно используют окрестность 3×3), и в каждой точке (k, l) окрестности проверяются непревышение предельных значений:
 - $|G_{i,j} G_{k,l}| \leq \Delta G,$
 - - (i, j) центральная точка окрестности;
 - G модуль градиента;
 - α направление градиента в точке;
 - ΔG предельное значение расхождения модулей градиента в т. ⟨i, j⟩ и ⟨k, l⟩;
 - Δα предельное значение расхождения направлений векторов градиента в точках (i,j) и (k,l).
- Если в т. (k, l) выполняются описанные выше условия, то считается, что пара точек принадлежит одному контуру.

Анализ особых точек контура

- □ В качестве характерных признаков можно использовать число и положения особых точек контура:
 - точки максимального перегиба,
 - □ локальные экстремумы функции кривизны,
 - 🗖 концевые точки,
 - □ точки ветвления.
- Наиболее простым и быстрым (но не лучшим) способом является поиск точек максимального перегиба при помощи итеративного алгоритма подбора концевых точек.

Сегментация контуров методом концевых точек

- На первом этапе работы алгоритма концевые точки А и В некоторого контура соединяются прямой линией. Для всех оставшихся точек вычисляются расстояния до прямой АВ (а).
- □ Точка, имеющая наибольшее отклонение от прямой АВ, берется в качестве дополнительного узла. При этом кривая заменяется двумя отрезками АС и СВ (б).
- Процедура продолжается до тех пор, пока максимальное значение отклонения точек меньше заданного порога (в).
- Точность аппроксимации прямыми линиями определяется величиной порога.

Поиск точек ветвления

- Наличие точек ветвления свидетельствует о сложной геометрической структуре объекта, существенно затрудняет формальное описание и сам процесс распознавания объектов.
- Выделение точек ветвления позволяет значительно упростить структуру объекта путем разбиения контура на множество кривых.

Функция кривизны K(x,y)

- Одним из важнейших параметров, характеризующих контур, является его кривизна.
- Кривизна обладает свойствами инвариантности к сдвигу, повороту и вычисляется по формуле

$$K(x,y) = \frac{f_x' f_y'' - f_y' f_x''}{\sqrt{\left(f_x'^2 + f_y'^2\right)^3}}$$

- □ где
 - f'_{x} , f'_{y} первые производные по х и у соответственно;
 - $f''_{x'}$, f''_{y} вторые производные по х и у;

Функция кривизны K(l)

- Контур можно представить в виде одномерной функции от длины дуги.
- □ Длину дуги дискретного контура в точке P(j) = ⟨x_j, y_j⟩ можно аппроксимировать следующим образом:

$$l = \sum_{i=1}^{j-1} \sqrt{(x_i - x_{i+1})^2 + (y_i - y_{i+1})^2}$$

- □ Представление кривой подразумевает отсутствие на контурах точек соединений и ветвлений, в противном случае контур не может быть представлен в виде одномерной функции.
- Данное ограничение требует введения дополнительных процедур обработки и анализа полученного контура:
 - □ поиск на контурах точек ветвления;
 - разделения сложных структур на составляющие.

Пример функции кривизны K(l)

Поиск локальных экстремумов функции кривизны

- □ Выполнить кусочно-полиномиальную аппроксимацию контура;
- □ Построить функцию кривизны;
- □ Найти все локальные экстремумы кривизны.

Функция перегиба

Экстремумы соответствуют максимальным перегибам контуров

Что почитать

- □ Гонсалес Р., Вудс Р. Цифровая обработка изображений. Издание 3-е, исправленное и дополненное. Москва: Техносфера, 2012. 1104 с.
- Анисимов Б.В. Распознавание и цифровая обработка изображений. М.: Высш. школа, 1983. 295 с.
- □ Дуда Р., Харт П. Распознавание образов и анализ сцен. Перевод с английского Г. Г. Вайнштейна и А. М. Васьковского, под редакцией В. Л. Стефанюка, Издательство «МИР», Москва 1976. 509 с.
- 🗖 Введение в контурный анализ и его приложения к обработке изображений и сигналов / Под ред. Я.А. Фурмана. М., 2002.
- E. Kawalec-Latała "Edge detection on images of pseudoimpedance section supported by context and adaptive transformation model images" in Studia Geotechnica et Mechanica, Vol. XXXVI, No. 1, 2014
- Canny J. «A computational approach to edge detection» in IEEE Transactions on pattern analysis and machine intelligence, Vol. PAMI-8, No. 6, November 1986. pp 679–698.
- C. A. Rothwell, J. L. Mundy, W. Hoffman, V.D. Nguyen «Driving Vision by Topology» in IEEE International symposium on computer vision '1995.
- J. M. S. Prewitt, "Object enhancement and extraction," in Picture Processing and Psychopictorics. New York: Academic, 1970, pp. 75-149.
- Deriche R: "Using Canny's criteria to derive a recursive implemented optimal edge detector" in International Journal of Computer Vision 1987,1(2): 167-187.
- Bergholm F: "Edge focusing" in IEEE Transactions on Pattern Analysis and Machine Intelligence 1995,9(6):726-741.
- Lacroix V: The primary raster: a multiresolution image description. Proceedings 10th International Conference on Pattern Recognition 1990, 1: 903-907.
- Schunck BG: Edge detection with Gaussian filters at multiple scales. Proceedings IEEE Computer Society Workshop on Computer Vision 1987, 208-210.

Что почитать

- Irwin Sobel History and Definition of the so-called "Sobel Operator", more appropriately named the Sobel-Feldman Operator February 2, 2014
- □ Оператор Кэнни:
 - http://www.limsi.fr/Individu/vezien/PAPIERS_ACS/canny1986.pdf
 - http://suraj.lums.edu.pk/~cs436a02/CannyImplementation.htm
 - https://en.wikipedia.org/wiki/Edge_detection
 - Комментарий к алгоритму выделения контуров Канни https://habrahabr.ru/post/114766/
 - https://ru.wikipedia.org/wiki/%D0%9E%D0%BF%D0%B5%D1%80%D0%B0%D1%82%D0%BE%D 1%80 %D0%9A%D1%8D%D0%BD%D0%BD%D0%B8
 - Билл Грин, Алгоритм выделения контуров CANNY http://masters.donntu.org/2010/fknt/chudovskaja/library/article4.htm
- □ Rothwell et al Driving Vision by Topology http://www.robots.ox.ac.uk/~vgg/publications/1995/Rothwell95b/rothwell95b.pdf
- Iverson LA, Zucker SW: Logical/linear operators for image curves. IEEE Trans Pattern Anal Mach Intell 1995,17(10):982-996.
 - http://www.ai.sri.com/~leei/pami95/paper.html