

- Inspired by the COVID-19 Shelter in Place Orders and increased necessity to cook at home
- Google trends shows a dramatic surge for cooking and baking related searches coinciding with Shelter-in-Place

How can *natural language processing help individuals* embrace this need and trend?

- Use recipe text as a basis for a recipe recommender system
- Such tools like this have need and popularity: commercially developed app *Yummly*

Dissecting a Cooking Recipe

Cooking recipe: A "structured" text document with unstructured information

- Title
- Ingredient List (with quantity and measurement)
- Sequence of Instructions

Immediate NLP Tasks

- Document Classification
- Word Segmentation and Representation
- Semantics
 - Co-reference Issues
 - Semantic properties of words
 - Relationship extraction
- Text Similarity/Comparison

Ultimate Chocolate Chip Cookies

 Prep
 Total

 15 MIN
 1 HR 30 MIN

Servings 48

Ingredients

- 2 1/4 cups Gold Medal™ allpurpose flour
 - 1 teaspoon baking soda
- 1/2 teaspoon salt
 - 1 cup butter, softened
- 3/4 cup granulated sugar
- 3/4 cup packed brown sugar
- 1 egg
- 1 teaspoon vanilla
- 2 cups semisweet chocolate chips
- 1 cup coarsely chopped nuts, if desired

Steps

- 1 Heat oven to 375°F. In small bowl, mix flour, baking soda and salt; set aside.
- 2 In large bowl, beat softened butter and sugars with electric mixer on medium speed, or mix with spoon about 1 minute or until fluffy, scraping side of bowl occasionally.
- 3 Beat in egg and vanilla until smooth. Stir in flour mixture just until blended (dough will be stiff). Stir in chocolate chips and nuts.
- **4** Onto ungreased cookie sheets, drop dough by rounded tablespoonfuls 2 inches apart.
- 5 Bake 8 to 10 minutes or until light brown (centers will be soft). Cool 2 minutes; remove from cookie sheet to cooling rack. Cool completely, about 30 minutes. Store covered in airtight container.

Source: Betty Crocker

Predicting the Structure of Cooking Recipes

- Jermsurawong and Habash (2015)
- SIMMR: Simplified Ingredient Merging Map in Recipes
- Examines high-level flow of ingredients (without modeling the semantics in each individual instruction)

Text Recipe		SIMMR	
ingredients		inst9	
0	6 (2 inch thick) slices French bread	·	
1	1/4 cup ricotta cheese	inst8	
2	1/4 cup cottage cheese, whipped	inst7	
3	2 tablespoons lowfat cream cheese		
4	2 teaspoons white sugar	inst6	
5	2 teaspoons vanilla extract		
6	3 cups egg substitute		
7	1/4 cup evaporated milk		
instructions			
0	Cut a pocket in each slice of bread.	inst4 inst5	5
1	Open carefully	ing6 i	ng7
2	In a large bowl, combine the ricotta,	ing6 ing6 ing6 ing6 ing6 ing6 ing6 ing6	ing7 milk
	cottage cheese and cream cheese.	30 %	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
3	Add the sugar and flavoring extract	inst1 inst3	
	and beat until smooth.	1 1 10	
4	Spread the mixture evenly into each	inst0	
	bread pocket.	ing0	
5	Beat together the egg substitutes and milk.	french inst? inst	
6	Dip the slices of bread in the egg mixture.	bread sugar vanilla	
7	Heat a nonstick pan over medium-high heat.		
8	Coat with cooking spray.	ing1 ing2 ing3 ricotta cottage cream	
9	Cook the toast on each side for about 3		
	to 4 minutes per side until golden brown.	cheese	

Source: Jermsurawong and Habash (2015)

Recipe recommendation using Ingredient Networks

- Teng, Lin, Adamic (2012)
- Ingredient Complement Network and Ingredient Substitute Network
- Examine co-occurrences and utilize networks to capture underlying "communities" (flavor, functional equivalence, user preference)

Recipe1M+: A Dataset for Learning Cross-Modal Embeddings for Cooking Recipes and Food Images

- Marín et al. (2019)
- Develops suitable representations for each of component of a cooking recipe using bi-directional and two-stage LSTMs
- Utilizes cosine similarity to analyze quality of embeddings and rank relevant recipes

Joint embedding

We train a joint embedding composed of an encoder for each modality (ingredients, instructions and images).

Source: Marín et al. (2019)

RecipeScape: An Interactive Tool for Analyzing Cooking Instructions at Scale

- Chang et al. (2018)
- An interactive system for browsing and analyzing the hundreds of recipes of a single dish
- Developed a computational pipeline that extracts cooking processes from recipe text and calculates a
 procedural similarity between them, then subsequently clusters recipes into distinct approaches, which capture
 notable usage patterns of ingredients and cooking actions

Source: Chang et al. (2018)

Recipe 1M+ Data

- Publicly available from MIT CSAIL
- Contains 1M+ cooking recipes from popular websites
- Minimal repeated recipes based (pre-filtered by dataset creators)
- Challenges
 - Volume and size limited computing power
 - Long tailed vocabulary
 - More on this later
- Limited our analysis to baking recipes: must contain the keyboard "bake"
 - Approximately 130K observations

Full Dataset Statistics

Source: Marín (2019)

Example Data

['1 (1.5 ounce) bar milk chocolate
candy bar', '1 tablespoon milk', '1
1/2 cups plain fat-free Greek yogurt']

['Put the chocolate bar into a microwave-safe bowl and add the milk.', 'Microwave until the chocolate is soft and melted, about 30 seconds.', 'Stir Greek yogurt into the chocolate mixture until smooth.']

Recipe 1M+ Data

Learn Vector Representations of Recipes

Multiple approaches to better understand which structural components of recipes are most useful

Bag of Words

Generate feature vectors

Doc2vec

Predict next word in many contexts from recipe using both word & recipe vectors in multiclass classification

___ LSTM

Bidirectional LSTM RNN Autoencoder

BERT

Learn words by looking at forward and backward sequences simultaneously

Generate Cosine Similarity Matrices & Evaluate Quality of Embeddings

Evaluation of Quality of Embeddings:

- Review example recommended recipes
- PCA
- Cluster Analysis

Takeaways:

- Some clustering based on sweet vs savory
- PCs explain fair amount of variation in embeddings

Recommend Recipes!

Data Challenges

Difficult instructions

- "mix wet and dry ingredients"
- Long instructions
- No meaningful ingredient order
- Ambiguity of various types
 - "mix" vs "fold", "ounce" vs "oz"
- Unlabeled data
- Large corpus → long tailed vocabulary
- Long run times & limited memory leading to compromises

Recommendation Quality

- BoW does surprisingly well
- Doc2vec gives reasonable recommendations based on titles
- LSTM also does well but with somewhat more variation
- BERT is more variable than expected, especially when looking at actual recipe URLs

Results – Post Hoc Quality Evaluation using K-Means

We evaluate the **learned embeddings** and features by running **K-Means** Clustering, then

- Generate a list of most frequent words/ingredients within each of the K clusters and
- Identify unique words within each cluster

Bag of Words

Cluster 1:

{'machin', 'fast', 'abm', 'easi', 'unbleach', 'soft', 'vital', 'bagel', 'tabl', 'instant', 'activ', 'extra', 'flax', 'oregano', 'french', 'pita', 'gluten', 'italian', 'sesam', 'hot', 'rye', 'sunflow', 'basil', 'rise', 'warm', 'basic', 'fluffi', 'loaf', 'molass', 'yeast', 'yogurt', 'virgin', 'tomato', 'cornmeal', 'flake', 'skim', 'bun', 'pizza', 'rosemari', 'nonfat', 'dough', 'quick', 'beer', 'homemad'}

Cluster 2:

{'lemon', 'syrup', 'peanut', 'mix', 'cream', 'ginger', 'pie', 'blueberri', 'ice', 'biscuit', 'bar', 'cranberri', 'corn', 'granola', 'low', 'sweet', 'bacon', 'chicken', 'cayenn', 'roast', 'almond', 'mustard', 'vanilla', 'pork', 'cocoa', 'sauc', 'cooki', 'soy', 'red', 'fat', 'chip', 'pecan', 'pumpkin', 'extract', 'nut', 'appl', 'pure', 'light', 'cornstarch', 'sour', 'mapl', 'egg', 'nutmeg', 'dark'}

Doc2vec

Cluster 1:

{'machin', 'canola', 'easi', 'unbleach', 'thyme', 'plain', 'instant', 'activ', 'granola', 'flax', 'cayenn', 'sesam', 'parsley', 'sunflow', 'rye', 'honey', 'rise', 'warm', 'soy', 'yeast', 'fashion', 'yogurt', 'old', 'cornmeal', 'flake', 'pizza', 'mapl', 'dough', 'sea'}

Cluster 2:

{'clove', 'shorten', 'oatmeal', 'lemon', 'confectioners', 'mix', 'crust', 'peach', 'pie', 'blueberri', 'ice', 'biscuit', 'bar', 'low', 'pastri', 'heavi', 'beef', 'roast', 'pork', 'cocoa', 'cooki', 'molass', 'pumpkin', 'shortbread', 'appl', 'cook', 'cornstarch', 'sour', 'nutmeg'}

LSTM

Cluster 1:

{'roast', 'plain', 'cranberri', 'instant', 'pizza', 'easi', 'nut', 'granola', 'oatmeal', 'molass', 'blueberri', 'mix', 'pumpkin', 'dough', 'quick', 'bar'}

Cluster 2:

{'substitut', 'machin', 'canola', 'unsweeten', 'cornmeal', 'cocoa', 'carrot', 'soy', 'red', 'low', 'sour', 'parmesan', 'heavi', 'bacon', 'vegan', 'free'}

BERT

Cluster 1:

{'machin', 'plain', 'pork', 'cayenn', 'molass', 'mix', 'blueberri', 'sea', 'bar'}

Cluster 2:

{'cornmeal', 'flake', 'canola', 'rise', 'easi', 'soy', 'low', 'bacon', 'ice'}

Results – Post Hoc Quality Evaluation

Bag of Words

LSTM

Doc2vec

BERT

Concluding Remarks