4、基变换

- 若初始基可行解X⁽⁰⁾不是最优解及不能判别无界时, 需要找一个新的基可行解。
- 具体做法是:
 - 从原可行解基中换一个列向量(当然要保证线性独立),
 得到一个新的可行基, 称为基变换。为了换基, 先要确定换入变量, 再确定换出变量, 让它们相应的系数列向量进行对换, 就得到一个新的基可行解。

(1). 换入变量的确定

- 由(16)式可知,当某些 $\sigma_j > 0$ 时,若 x_j 增大,则目标函数值还可以增大。 这时需要将某个非基变量 x_i 换到基变量中去(称为换入变量)。
- 若有两个以上的 $\sigma_j > 0$,那么选哪个非基变量作为换入变量呢?为了使目标函数值增加得快,从直观上看应选 $\sigma_i > 0$ 中的较大者,即若

$$\max_{j} (\sigma_{j} > 0) = \sigma_{k}$$

则应选择x_k为换入变量。

也可以任选或按最小足码选。

(2).换出变量的确定

• 设 P_1 , P_2 , ..., P_m 是一组线性独立的向量组,它们对应的基可行解是 $X^{(0)}$, 将它代入约束方程组(11)得到

$$\sum_{i=1}^{m} x_i^{(0)} P_i = b \tag{17}$$

- 其他的向量 $P_{m+1}, P_{m+2}, ..., P_{m+t}, ..., P_n$ 都可以用 $P_1, P_2, ..., P_m$ 线性表示。
- 若确定非基变量 P_{m+t} 为换入变量,必然可以找到一组不全为0的数(i=1,2,...,m)使得

$$P_{m+t} = \sum_{i=1}^{m} \beta_{i,m+t} P_i \quad \vec{x} \quad P_{m+t} - \sum_{i=1}^{m} \beta_{i,m+t} P_i = 0 \quad (18)$$

• 在(18)式两边同乘一个正数 θ ,然后将它加到(17)式上,得

到
$$\sum_{i=1}^{m} x_i^{(0)} P_i + \theta \left(P_{m+t} - \sum_{i=1}^{m} \beta_{i,m+t} P_i \right) = b$$
 或
$$\sum_{i=1}^{m} \left(x_i^{(0)} - \theta \beta_{i,m+t} \right) P_i + \theta P_{m+t} = b$$
 (19)

当θ取适当值时,就能得到满足约束条件的一个可行解(即非零分量的数目不大于 m 个)。

就应使 $(x_i^{(0)} - \theta \beta_{i,m+t})$, $i = 1,2,\dots,m$.中的某一个为零,

并保证其余的分量为非负。

这个要求可以用以下的办法达到:

比较各比值 $(x_i^{(0)} - \theta \beta_{i,m+t})$, $i = 1, 2, \dots, m$ 。

又因为 θ 必须是正数,所以只选择 $\frac{x_i^{(0)}}{\beta_{i,m+t}}$ $(i=1,2,\cdots,m)$ $(\beta_{i,m+t}>0)$

中比值最小的等于θ。

• 以上描述用数学式表示为:

$$\theta = \min_{i} \left(\frac{x_{i}^{(0)}}{\beta_{i,m+t}} \middle| \beta_{i,m+t} > 0 \right) = \frac{x_{l}^{(0)}}{\beta_{l,m+t}}$$

这时 χ1 为换出变量。按最小比值确定 θ值,

称为最小比值规则。将
$$\theta = \frac{x_l^{(0)}}{\beta_{l,m+t}}$$
代入 X 中,

便得到新的基可行解。

$$\sum_{i=1}^{m} x_{i}^{(0)} P_{i} + \theta \left(P_{m+t} - \sum_{i=1}^{m} \beta_{i,m+t} P_{i} \right) = b \quad \text{D}$$

$$\sum_{i=1}^{m} \left(x_{i}^{(0)} - \theta \beta_{i,m+t} \right) P_{i} + \theta P_{m+t} = b \quad (19)$$

• 新的基可行解为

$$X^{(1)} = \left(x_1^{(0)} - \frac{x_l^{(0)}}{\beta_{l,m+t}} \cdot \beta_{1,m+t}, \dots, 0, \dots, \right)$$

$$x_m^{(0)} - \frac{x_l^{(0)}}{\beta_{l,m+t}} \cdot \beta_{m,m+t}, \dots, 0, \frac{x_l^{(0)}}{\beta_{l,m+t}}, \dots, 0,$$

$$\uparrow$$

第 $m+t$ 个分量

• 由此得到由X(0)转换到X(1)的各分量的转换公式

$$x_{i}^{(1)} = \begin{cases} x_{i}^{(0)} - \frac{x_{l}^{(0)}}{\beta_{l,m+t}} \cdot \beta_{i,m+t} & i \neq m+t \\ \frac{x_{l}^{(0)}}{\beta_{l,m+t}} & i = m+t \end{cases}$$

$$\beta_{i,m+t} = 0, i = m+1, m+2, \dots, n$$

• 现在的问题是,这个新解 $X^{(1)}$ 的m个非零分量对应的列向量是否线性独立?

• 事实上,因为 $X^{(0)}$ 的第l个分量对应于 $X^{(1)}$ 的相应分量是零,即

$$x_l^{(0)} - \theta \, \beta_{l,m+t} = 0$$

其中 $x_l^{(0)}$, θ 均不为零,根据 θ 规则(最小比值),

 $\beta_{I,m+t} \neq 0$ 。 $x^{(1)}$ 中的 m 个非零分量对应的 m 个列向量是 $P_{J}(j=1,2,\cdots,m,j\neq I)$ 和 P_{m+t} 。 若这组向量不是线性独立,则一定可以找到不全为零的数 α_{J} ,使下式成立:

$$P_{m+t} = \sum_{j=1}^{m} a_j P_j, \quad j \neq l$$
 (20)

又因

$$P_{m+t} = \sum_{j=1}^{m} \beta_{j,m+t} P_{j}, \qquad (21)$$

将 (21) 式减 (20) 式得到 $\sum_{j=1}^{m} (\beta_{j,m+t} - a_j) P_j + \beta_{l,m+t} P_l = 0$

•由于上式中至少有 $\beta_{l,m+t}\neq 0$,所以上式表明 P_1 , P_2 ,…, P_m 是线性相关,这与假设相矛盾。

- 由此可见, $X^{(1)}$ 的m个非零分量对应的列向量 $P_{j}(j=1,2,...,m,j\neq l)$ 与 P_{m+t} 是线性独立的,即经过基变换得到的解是基可行解。
- 实际上,从一个基可行解到另一个基可行解的变换,就是 进行一次基变换。从几何意义上讲,就是从可行域的一个 顶点转向另一个顶点。

四、单纯形法的计算步骤

- 1. 单纯型表
- 2. 计算步骤

2. 计算步骤

• (1) 按数学模型确定初始可行基和初始基可行解。

• (2) 计算各非基变量 x_i 的检验数, $\sigma_j = c_j - \sum c_i a_{ij}$, 检查检验数, 若所有检验数

$$\sigma_j = c_j - \sum_{i=1}^m c_i a_{ij},$$

$$\sigma_j \leq 0, j = 1, 2, \dots n$$

则已得到最优解,可停止计算。否则转入下一 步。

- (3) 在 $\sigma_j > 0$, j=m+1,...,n中,若有某个 σ_k 对应 x_k 的系数列向量 $P_k \le 0$,则此问题是无界,停止计算。否则,转入下一步。
- (4) 根据 $\max(\sigma_j > 0) = \sigma_k$,确定 x_k 为换入变量,按 θ 规则计算

$$\theta = \min\left(\frac{b_i}{a_{ik}} \middle| a_{ik} > 0\right) = \frac{b_l}{a_{lk}}$$

可确定x₁为换出变量,转入下一步。

(5) 以 a_{lk} 为主元素进行迭代(即用高斯消去法或称为旋转运算),把 x_k 所对应的列向量

$$P_{k} = \begin{pmatrix} a_{1k} \\ a_{2k} \\ \vdots \\ a_{lk} \\ \vdots \\ a_{mk} \end{pmatrix} \qquad \text{变换} \Rightarrow \begin{pmatrix} 0 \\ 0 \\ \vdots \\ 1 \\ \vdots \\ 0 \end{pmatrix} \leftarrow 第l行$$

重复(2)~(5), 直到终止。

1. 单纯型表

- 为了便于理解计算关系,现设计一种计算表,称为单纯形表,其功能与增广矩阵相似。
- 将线性规划(目标函数与约束条件)改写成*n*+1个变量, *m*+1个方程的方程组。

$$x_{1} + a_{1m+1}x_{m+1} + \dots + a_{1n}x_{n} = b_{1}$$

$$x_{2} + a_{2m+1}x_{m+1} + \dots + a_{2n}x_{n} = b_{2}$$

$$\vdots$$

$$x_{m} + a_{mm+1}x_{m+1} + \dots + a_{mn}x_{n} = b_{m}$$

$$-z + c_{1}x_{1} + \dots + c_{m}x_{m} + c_{m+1}x_{m+1} + \dots + c_{n}x_{n} = 0$$

• 为了便于迭代运算,可将上述方程组写成增广矩阵形式

• 若将z看作不参与基变换的基变量,它与 $x_1,x_2,...,x_m$ 的系数构成一个基,这时可采用行初等变换将 $c_1,c_2,...,c_m$ 变换为零,使其对应的系数矩阵为单位矩阵。得到

根据上述增广矩阵设计初始单纯形表。

	$c_j \rightarrow$		c_1	• • •	C_{m}	C_{m+1}	• • •	C_n	$ heta_{i}$
$C_{\scriptscriptstyle B}$	$X_{\scriptscriptstyle B}$	b	x_1	•••	\mathcal{X}_{m}	\mathcal{X}_{m+1}	• • •	\mathcal{X}_n	O_i
c_1	x_1	b_1	1	• • •	0	$a_{1,m+1}$	• • •	a_{1n}	$ heta_{\!\scriptscriptstyle 1}$
c_2	x_2	b_2	0	• • •	0	$a_{2,m+1}$		a_{2n}	$ heta_2$
•	•	•	•		•	:		: :	•
C_{m}	\mathcal{X}_{m}	$b_{\scriptscriptstyle m}$	0	•••	1	$a_{m,m+1}$	•••	$a_{\scriptscriptstyle mn}$	$ heta_{\scriptscriptstyle m}$
	— Z	$-\sum_{i=1}^{m}c_{i}b_{i}$	0	•••	0	$c_{m+1} - \sum_{i=1}^{m} c_i a_{i,m+1}$	•••	$C_n - \sum_{i=1}^m c_i a_{in}$	

$$\max z = 2x_1 + 3x_2 + 0x_3 + 0x_4 + 0x_5$$

$$x_1 + 2x_2 + x_3 = 8$$
 $4x_1 + x_4 = 16$
 $4x_2 + x_5 = 12$
 $x_j \ge 0$ $j = 1, 2, \dots, 5$

目标函数中各变量的价值系数。

	Cj→	\	2	3	0	0	0	
Св	X_{B}	b	X 1	X 2	X 3	X 4	X 5	θ
0	X 3	8	1	2	1	0	0	8/2=4
0	X 4	16	4	0	0	1	0	_
0	X 5	12	0	[4]	0	0	1	12/4=3
Z		0	2	3	0	0	0	

基变量

2.由它确定为换出变量

3.确定主元素

1.由它确定为换入变量

	C_{j}		2	3	0	0	0		
Св	X_{B}	b	X ₁	\mathbf{X}_2	\mathbf{X}_3	X_4	\mathbf{X}_{5}	θ	
0	X ₃	2	[1]	0	1	0	-1/2	2 •	—— 换出变量
0	X_4	16	4	0	0	1	0	4	
3	\mathbf{X}_2	3	0	1	0	0	1/4	_	
-z	Z	-9	2	0	0	0	-3/4		
,	‡	, 免人变			主	元素			•

	C_{j}		2	3	0	0	0	
C_{B}	X_{B}	b	\mathbf{X}_1	\mathbf{X}_2	X_3	X_4	X_5	θ
2	\mathbf{X}_1	2	1	0	1	0	-1/2	_
0	X_4	8	0	0	-4	1	[2]	4 🕶
3	\mathbf{X}_2	3	0	1	0	0	1/4	12
${\mathrm{Z}}$		-13	0	0	-2	0	1/4	

换出变量

换人变量

主元素

	Cj→		2	3	0	0	0	
		Г.,						θ
Св	X_{B}	b	\mathbf{X}_1	\mathbf{X}_2	X_3	X_4	X_5	
2	X_1	4	1	0	0	1/4	0	
0	X_5	4	0	0	-2	1/2	1	
3	\mathbf{X}_2	2	0	1	1/2	-1/8	0	
-z		-14	0	0	-3/2	-1/8	0	

最后一行的所有检验数都已为负或零,这表示目标函数值已不可能再增大,于是得到最优解 $X^* = X^{(3)} = (4,2,0,0,4)^T$ 目标函数的最大值 $z^* = 14$

• 五、单纯形法的进一步讨论

- 5.1 人工变量法
- 5.2 退化
- 5.3 检验数的几种表示形式

人工变量法

- 1. 大M法
- 2. 两阶段法

设线性规划问题的约束条件 $\sum_{j=1}^{n} P_j x_j = b$

其中没有可作为初始基的单位矩阵,则分别给每一个约束方程加入人工变量 $x_{n+1},...,x_{n+m}$,得到

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n + x_{n+1} &= b_1 \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n &+ x_{n+2} &= b_2 \\ & \dots & \\ a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n &+ x_{n+m} = b_m \\ x_1, \dots, x_n \ge 0; & x_{m+1}, \dots, x_{n+m} \ge 0 \end{cases}$$

- 以 $x_{n+1},..., x_{n+m}$ 为基变量,并可得到一个 $m \times m$ 单位矩阵。令非基变量 $x_1,...,x_n$ 为零,便可得到一个初始基可行解 $X^{(0)} = (0,0,...,0,b_1,b_2,...,b_m)^{\mathrm{T}}$
- 因为人工变量是后加入到原约束条件中的虚拟变量,要求经过基的变换将它们从基变量中逐个替换出来。
- 基变量中不再含有非零的人工变量,这表示原问题有解。
- 若在最终表中当所有 $c_j z_j \le 0$,而在其中还有某个非零人工变量, 这表示原问题无可行解。
- 以下讨论如何解含有人工变量的线性规划问题。

1. 大M法

· 例 现有线性规划问题,试用大M法求解。

$$\min z = -3x_1 + x_2 + x_3$$

$$\begin{cases} x_1 - 2x_2 + x_3 \le 11 \\ -4x_1 + x_2 + 2x_3 \ge 3 \\ -2x_1 + x_3 = 1 \\ x_1, x_2, x_3 \ge 0 \end{cases}$$

• **解** 在上述问题的约束条件中加入松弛变量 x_4 ,剩余变量 x_5 ,得到

$$\min z = -3x_1 + x_2 + x_3 + 0x_4 + 0x_5$$

$$\begin{cases}
x_1 - 2x_2 + x_3 + x_4 & = 11 \\
-4x_1 + x_2 + 2x_3 & -x_5 & = 3 \\
-2x_1 & +x_3 & = 1 \\
x_1, x_2, x_3, x_4, x_5 \ge 0
\end{cases}$$

• 在上述问题的约束条件中加入人工变量 x_6,x_7 ,得到

$$\min z = -3x_1 + x_2 + x_3 + 0x_4 + 0x_5 + Mx_6 + Mx_7$$

$$\begin{cases} x_1 - 2x_2 + x_3 + x_4 & = 11 \\ -4x_1 + x_2 + 2x_3 & -x_5 + x_6 & = 3 \\ -2x_1 & +x_3 & +x_7 = 1 \\ x_1, x_2, x_3, x_4, x_5, x_6, x_7 \ge 0 \end{cases}$$

这里M是一个任意大的正数。

• 因本例的目标函数是要求min,所以用所有 $c_j - z_j \ge 0$ 来判别目标函数是否实现了最小化.

c_{j}	→		-3	1	1	0	0	M	M	
C_{B}	X_{B}	ь	\mathbf{x}_1	\mathbf{x}_2	X 3	X4	X5	X ₆	X 7	θ_{i}
0	X4	11	1	-2	1	1	0	0	0	
M	x ₆	3	-4	1	2	0	-1	1	0	
M	X 7	1	-2	0	1	0	0	0	1	
		0	-3	1	1	0	0	M	M	

c_{j}	→		-3	1	1	0	0	M	M	
C_{B}	X_{B}	ь	X ₁	X ₂	X3	X ₄	X ₅	X ₆	X ₇	θ_{i}
0	X4	11	1	-2	1	1	0	0	0	11
M	X ₆	3	-4	1	2	0	-1	1	0	3/2
M	X 7	1	-2	0	[1]	0	0	0	1	1
		-4M	-3+6M	1-M	1-3M	0	M	0	0	

c_{j}	→		-3	1	1	0	0	M	M	θί
C_{B}	X_{B}	b	\mathbf{x}_1	\mathbf{x}_2	X3	X ₄	X ₅	X ₆	X ₇	
0	X4	10	3	-2	0	1	0	0	-1	
M	\mathbf{x}_6	1	0	[1]	0	0	-1	1	-2	1
1	\mathbf{x}_3	1	-2	0	1	0	0	0	1	
		-1-M	-1	1-M	0	0	M	0	3M-1	
0	X4	12	[3]	0	0	1	-2	2	-5	4
1	\mathbf{x}_2	1	0	1	0	0	-1	1	-2	
1	X 3	1	-2	0	1	0	0	0	1	
		-2	-1	0	0	0	1	M-1	M+1	
-3	\mathbf{x}_1	4	1	0	0	1/3	-2/3	2/3	-5/3	
1	\mathbf{x}_2	1	0	1	0	0	-1	1	-2	
1	X 3	9	0	0	1	2/3	-4/3	4/3	-7/3	
		2	0	0	0	1/3	1/3	M-1/3	M-2/3	

• 从上表的最终计算结果可看出,已得到最优解:

 $x_1=4, x_2=1, x_3=9$, $x_4=x_5=x_6=x_7=0$;目标函数z=-2。

2. 两阶段法

第一阶段:不考虑原问题是否存在基可行解;给原线性规划问题加入人工变量,并构造仅含人工变量的目标函数和要求实现最小化。

目标函数 $\min \omega = x_{n+1} + \dots + x_{n+m} + 0x_1 + 0x_2 + \dots + 0x_n$

约束条件
$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n + x_{n+1} &= b_1 \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n &+ x_{n+2} &= b_2 \\ \dots & \dots & \dots & \dots \\ a_{n+1}x_1 + a_{n+2}x_2 + \dots + a_{n+2}x_n &+ x_{n+2} &= b_2 \end{cases}$$

 $\begin{vmatrix} a_{m1}x_1 + a_{m2}x_2 + \dots + a_mx_n & + x_{n+m} = b_m \\ x_1, x_2, \dots, x_n, x_{n+1}, \dots, x_{n+m} \ge 0 \end{vmatrix}$

• 第一阶段求解

- 用单纯形法求解上述模型。若得到的最优值w=0,说明原问题存在基可行解,可以进行第二段计算。否则原问题无可行解,应停止计算。

• 第二阶段求解

从第一阶段计算得到的最终表中除去人工变量,将目标函数行的系数,换为原问题的目标函数系数,作为第二阶段计算的初始表。

• 例 试用两阶段法求解如下线性规划问题:

目标函数
$$\min z = -3x_1 + x_2 + x_3$$

$$\begin{cases} x_1 - 2x_2 + x_3 \le 11 \\ -4x_1 + x_2 + 2x_3 \ge 3 \\ -2x_1 + x_3 = 1 \\ x_1, x_2, x_3 \ge 0 \end{cases}$$

解: 先在上述线性规划问题的约束方程中加入人工变量, 给出第一阶段的数学模型为:

目标函数 $\min \omega = x_6 + x_7$

约束条件
$$\begin{cases} x_1 - 2x_2 + x_3 + x_4 &= 11 \\ -4x_1 + x_2 + 2x_3 & -x_5 + x_6 &= 3 \\ -2x_1 & +x_3 & +x_7 = 1 \\ x_1, x_2, x_3, x_4, x_5, x_6, x_7 \ge 0 \end{cases}$$

c _j -	→		0	0	0	0	0	1	1	
$C_{\rm B}$	X_{B}	b	X ₁	X ₂	X ₃	X ₄	X ₅	X ₆	X 7	θ_{i}
0	X4	11	1	-2	1	1	0	0	0	11
1	\mathbf{x}_6	3	-4	1	2	0	-1	1	0	3/2
1	\mathbf{x}_7	1	-2	0	[1]	0	0	0	1	1
		-4(<mark>0</mark>)	6(<mark>0</mark>)	-1(<mark>0</mark>)	-3(<mark>0</mark>)	0(0)	1(<mark>0</mark>)	0(1)	0(1)	
0	X4	10	3	-2	0	1	0	0	-1	-
1	x ₆	1	0	[1]	0	0	-1	1	-2	1
0	X 3	1	-2	0	1	0	0	0	1	-
		-1	0	-1	0	0	1	0	3	
0	X ₄	12	3	0	0	1	-2	2	-5	
(0)	\mathbf{x}_2	1	0	1	0	0	-1	1	-2	
	X ₃	1	-2	0	1	0	0	0	1_	
	<	0	0	0	0	0	0	1	1	

- 第一阶段用单纯形法求解,求得的结果是w=0,最优解是 $x_1=0,x_2=1,x_3=1,x_4=12,x_5=x_6=x_7=0$
- 因为人工变量 $x_6 = x_7 = 0$,所以(0, 1, 1, 12, 0)^T是原线性规划问题的基可行解。

将第一阶段的最终表中的人工变量删除,填入原问题的目标函数系数,进行第二阶段计算:

	c _j →		-3	1	1	0	0	θί
C_{B}	X_{B}	Ъ	\mathbf{x}_1	\mathbf{x}_2	X 3	X4	X 5	
0	X ₄	12	[3]	0	0	1	-2	4
1	\mathbf{x}_2	1	0	1	0	0	-1	-
1	X ₃	1	-2	0	1	0	0	-
		-2(<mark>0</mark>)	-1(-3)	0(1)	0(1)	0(0)	1(<mark>0</mark>)	
-3	\mathbf{x}_1	4	1	0	0	1/3	-2/3	
1	\mathbf{x}_2	1	0	1	0	0	-1	
1	X3	9	0	0	1	2/3	-4/3	
		2	0	0	0	1/3	1/3	

• 从而得到最优解: $x_1=4,x_2=1,x_3=9$, 目标函数值 z=-2

注1: 退化

- 在单纯形法计算中用θ规则确定换出变量时,有时存在两个以上相同的最小比值,这样在下一次迭代中就有一个或几个基变量等于零,这就出现了退化解。
- 这时换出变量x_l=0,迭代后目标函数值不变。这时不同基表示为同一顶点。有人构造了一个特例,当出现退化时,进行多次迭代,而基从B₁,B₂,...又返回到B₁,即出现计算过程的循环,便永远达不到最优解。

- 尽管实际计算过程中循环现象极少出现,但还是有可能发生的。如何解决这问题?先后有人提出了"摄动法", "字典序法"。
- 1974年由勃兰特(Bland)提出一种简便的规则,简称勃兰特规则:
 - (1) 选取 $c_j z_j > 0$ 中下标最小的非基变量 x_k 为换入变量,即 $k = \min(j \mid c_i z_j > 0)$
 - (2) 当按θ规则计算存在两个和两个以上最小比值时,选取下标最小的基变量为换出变量。
 - 按勃兰特规则计算时,一定能避免出现循环。

注2: 检验数的几种表示形式

- 设 $x_1, x_2, ..., x_m$ 为约束方程的基变量, $x_i = b_i \sum_{j=m+1}^n a_{ij} x_j$, i = 1, 2, ..., m
 - 将它们代入目标函数后,可有两种表达形式

(1)
$$z = \sum_{i=1}^{m} c_i b_i + \sum_{j=m+1}^{n} (c_j - \sum_{i=1}^{m} c_i a_{ij}) x_j$$
$$= z_0 + \sum_{j=m+1}^{n} (c_j - z_j) x_j$$

(2)
$$z = \sum_{i=1}^{m} c_i b_i - \sum_{j=m+1}^{n} (\sum_{i=1}^{m} c_i a_{ij} - c_j) x_j$$
$$= z_0 - \sum_{j=m+1}^{n} (z_j - c_j) x_j$$

标准型 检验数	max z=CX AX=b, X≥0	min z=CX AX=b,X≥0	
$C_{j}^{-}Z_{j}$ $Z_{j}^{-}C_{j}$	<0 ≥0	≥0 ≤0	

5.4 单纯形法小结

• (1) 根据实际问题给出数学模型,列出初始单纯形表。进行标准化,见下表。分别以每个约束条件中的松弛变量或人工变量为基变量,列出初始单纯形表。

变量	x _j ≥0 x _j ≤0 x _j 无约束	不需要处理 令 x',=-x, x',≥0 令 x,=x',-x'', x', x'',≥0
约束条件	b≥0 b<0 ≥ = ≤	不需要处理 约束条件两端同乘-1 加松弛变量 加人工变量 减去剩余(松弛)变量,加人工变量
目标函数	max z min z 加入变量的系数 松弛变量 人工变量	不需要处理 令 z'=-z, 求 max z' 0 -M

六、应用举例

- 一般讲,一个经济、管理问题凡满足以下条件时,才能建立线性规划模型。
 - (1)要求解问题的目标函数能用数值指标来表示,且为线性函数;
 - (2) 存在着多种方案及有关数据;
 - (3)要求达到的目标是在一定约束条件下实现的,这些约束条件可用线性等式或不等式来描述。

• 例 (配料问题)某工厂要用三种原材料C、P、H混合调配出三种不同规格的产品A、B、D。已知产品的规格要求,产品单价,每天能供应的原材料数量及原材料单价列于下表。该厂应如何安排生产,使利润收入为最大?

产品名称	规 格 要 求	单价(元/kg)
A	原材料 C 不少于 50% 原材料 P 不超过 25%	50
В	原材料 C 不少于 25% 原材料 P 不超过 50%	35
D	不限	25

原材料名称	每天最多供应量(kg)	单价/(元/kg)
С	100	65
Р	100	25
Н	60	35

• **解**: 如以 A_C 表示产品A中C的成分, A_P 表示产品A中P的成分,依次类推。

$$A_C \ge \frac{1}{2}A, \quad A_P \le \frac{1}{4}A, \quad B_C \ge \frac{1}{4}B, \quad B_P \le \frac{1}{2}B$$
 (1)
 $A_C + A_P + A_H = A; \quad B_C + B_P + B_H = B$ (2)

• 将(2)逐个代入(1)并整理得到

$$\begin{split} & -\frac{1}{2}A_C + \frac{1}{2}A_P + \frac{1}{2}A_H \le 0 \\ & -\frac{1}{4}A_C + \frac{3}{4}A_P - \frac{1}{4}A_H \le 0 \\ & -\frac{3}{4}B_C + \frac{1}{4}B_P + \frac{1}{4}B_H \le 0 \\ & -\frac{1}{2}B_C + \frac{1}{4}B_P - \frac{1}{2}B_H \le 0 \end{split}$$

• 根据原材料供应数量的限额。加入到产品A、B、D的原材料C总量每天不超过100kg,P的总量不超过100kg,H总量不超过60kg。

$$A_{C} + B_{C} + D_{C} \leq 100$$

$$A_{P} + B_{P} + D_{P} \leq 100$$

$$A_{H} + B_{H} + D_{H} \leq 60$$

❖ 在约束条件中共有9个变量,为计算和叙述方便,分别用*x*₁,...,*x*₉ 表示。令

$$x_1 = A_c, x_2 = A_p, x_3 = A_H,$$

 $x_4 = B_C, x_5 = B_P, x_6 = B_H,$
 $x_7 = D_C, x_8 = D_P, x_9 = D_H.$

o max z=50(
$$x_1+x_2+x_3$$
)+35($x_4+x_5+x_6$)+25($x_7+x_8+x_9$)
-65($x_1+x_4+x_7$) - 25($x_2+x_5+x_8$) - 35($x_3+x_6+x_9$)
=-15 $x_1+25x_2+15x_3-30x_4+10x_5-40x_7-10x_9$

$$\begin{cases} -\frac{1}{2}x_{1} + \frac{1}{2}x_{2} + \frac{1}{2}x_{3} & \leq 0 \\ -\frac{1}{4}x_{1} + \frac{3}{4}x_{2} - \frac{1}{4}x_{3} & \leq 0 \end{cases}$$

$$\begin{cases} -\frac{3}{4}x_{4} + \frac{1}{4}x_{5} + \frac{1}{4}x_{6} & \leq 0 \\ -\frac{1}{2}x_{4} + \frac{1}{2}x_{5} - \frac{1}{2}x_{6} & \leq 0 \\ x_{1} & + x_{4} & + x_{7} & \leq 100 \\ x_{2} & + x_{5} & + x_{8} & \leq 100 \\ x_{3} & + x_{6} & + x_{9} \leq 60 \end{cases}$$

 $x_1, \dots, x_9 \ge 0$

• 为了得到初始解,在约束条件中加入松弛变量x₁₀~x₁₆, 得到数学模型:

目标函数
$$\max z = -15x_1 + 25x_2 + 15x_3 - 30x_4 + 10x_5 - 40x_7 - 10x_9 + 0(x_{10} + x_{11} + x_{12} + x_{13} + x_{14} + x_{15} + x_{16})$$

约束条件

$$\begin{cases} -\frac{1}{2}x_{1} + \frac{1}{2}x_{2} + \frac{1}{2}x_{3} & + x_{10} & = 0 \\ -\frac{1}{4}x_{1} + \frac{3}{4}x_{2} - \frac{1}{4}x_{3} & + x_{11} & = 0 \\ & -\frac{3}{4}x_{4} + \frac{1}{4}x_{5} + \frac{1}{4}x_{6} & + x_{12} & = 0 \\ & -\frac{1}{2}x_{4} + \frac{1}{2}x_{5} - \frac{1}{2}x_{6} & + x_{13} & = 0 \\ x_{1} & + x_{4} & + x_{7} & + x_{14} & = 100 \\ x_{2} & + x_{5} & + x_{8} & + x_{15} & = 100 \\ & x_{3} & + x_{6} & + x_{9} & + x_{16} = 60 \end{cases}$$

- 最优解
 - 用单纯形法计算, 经过四次迭代, 得最优解为:

$$x_1 = 100, x_2 = 50, x_3 = 50$$

- 这表示: 需要用原料C为100kg, P为50kg, H为50kg, 构成产品A。
- 即每天只生产产品A为200kg,分别需要用原料C为100kg,P为50kg,H为50kg。
- 从最终计算表中得到,总利润是z=500元/天。

- 例 连续投资问题:某部门在今后五年内考虑给下列项目投资,已知:
- 项目A,从第一年到第四年每年年初需要投资,并于次年末回收本利 115%;
- 项目B,第三年初需要投资,到第五年末能回收本利125%,但规定最大投资额不超过4万元;
- 项目C,第二年初需要投资,到第五年末能回收本利140%,但规定最大投资额不超过3万元;
- 项目D,五年内每年初可购买公债,于当年末归还,并加利息6%。
- 该部门现有资金10万元,问它应如何确定给这些项目每年的投资额, 使到第五年末拥有的资金的本利总额为最大?

解: (1) 确定决策变量

以x_{iA},x_{iB},x_{iC},x_{iD}(i=1,2,...,5)分别表示第i年年初给项目A,B,C,D的投资额,它们都是待定的未知变量。根据给定的条件,将变量列于下表中。

项目	第一年	第二 年	第三 年	第四 年	第五 年
	年	年	年	年	年
A	X_{1A}	$\mathbf{X}_{2\mathrm{A}}$	$\mathbf{X}_{3\mathrm{A}}$	X_{4A}	/
В	/	/	$\mathbf{X}_{3\mathrm{B}}$	/	/
С	/	$\mathbf{X}_{2\mathrm{C}}$	/	/	/
D	X_{1D}	\mathbf{X}_{2D}	X_{3D}	$X_{ m 4D}$	X_{5D}

(2) 投资额应等于手中拥有的资金额

由于项目D每年都可以投资,并且当年末即能回收本息。 所以该部门每年应把资金全部投出去,手中不应当有剩余 的呆滞资金。

- 第 一 年 : 该 部 门 年 初 拥 有 100000 元 , 所 以 有 $x_{1A} + x_{1D} = 100000$
- 第二年: 因第一年给项目A的投资要到第二年末才能回收。所以该部门在第二年初拥有资金额仅为项目D在第一年回收的本息 \mathbf{x}_{1D} (1+6%)。于是第二年的投资分配是 \mathbf{x}_{2A} + \mathbf{x}_{2C} + \mathbf{x}_{2D} =1.06 \mathbf{x}_{1D}

- 第三年初的资金额是从项目A第一年投资及项目D第二年投资中回收的本利总和: $x_{1A}(1+15\%)$ 及 $x_{2D}(1+6\%)$ 。于是第三年的资金分配为

$$x_{3A} + x_{3B} + x_{3D} = 1.15x_{1A} + 1.06x_{2D}$$

- 第四年: $x_{4A} + x_{4D} = 1.15x_{2A} + 1.06x_{3D}$
- 第五年: x_{5D} =1.15 x_{3A} +1.06 x_{4D}

此外,由于对项目B、C的投资有限额的规定,即:

$$x_{3B} \le 40000$$

$$x_{2C} \le 30000$$

(3) 目标函数

问题是要求在第五年末该部门手中拥有的资金额达到最大,

与五年末资金有关的变量是: x_{4A} , x_{3B} , x_{2C} , x_{5D}

因此这个目标函数可表示为:

 $\max z = 1.15x_{4A} + 1.40x_{2C} + 1.25x_{3B} + 1.06x_{5D}$