생산운영관리-2주차

② 생성자	때 재환 김
∷ 태그	엔지니어링

의사 결정 분석 개요

의사 결정 분석은 불확실한 상황에서 정량적 기법을 활용하여 의사 결정을 지원하는 방법입니다. 이는 수학적 모델과 통계 기법을 통해 운영 관리자들의 의사 결정 과정을 보조합니다.

확률과 의사 결정

- 자연 상태 (States of Nature): 미래에 발생 가능한 사건들
- 확률을 사용하는 의사 결정: 미래 상태에 확률 부여가 가능한 경우
- 확률 없는 의사 결정: 미래 상태에 확률 부여가 불가능한 경우

페이오프 테이블

	States Of Nature	
Decision	а	b
1	Payoff 1a	Payoff 1b
2	Payoff 2a	Payoff 2b

페이오프 테이블은 다양한 자연 상태에서 여러 결정의 결과를 체계적으로 정리하고 설명하는 도구입니다. 여기서 의사 결정의 결과를 '페이오프'라고 합니다.

확률 없는 의사 결정 방법

- 맥시맥스 (Maximax)
- 맥시민 (Maximin)
- 미니맥스 후회 (Minimax Regret)
- 후르비츠 기준 (Hurwicz Criterion)

• 동일 가능성 (Equal Likelihood, Laplace)

Southern Textile Company 의사 결정 분석

	STATES OF NATURE	
	Good Foreign	Poor Foreign
DECISION	Competitive Conditions	Competitive Conditions
Expand	\$ 800,000	\$ 500,000
Maintain status quo	1,300,000	-150,000
Sell now	320,000	320,000

^{© 2014} John Wiley & Sons, Inc. - Russell and Taylor 8e

상황 설명

Southern Textile Company는 두 가지 시장 조건(자연 상태)과 세 가지 의사 결정 옵션을 고려하고 있습니다:

- 시장 조건:
 - Good Foreign Competitive Conditions: 유리한 해외 경쟁 환경
 - Poor Foreign Competitive Conditions: 불리한 해외 경쟁 환경
- 의사 결정 옵션:
 - 。 **Expand (확장)**: \$800,000 (유리한 환경), \$500,000 (불리한 환경)
 - Maintain Status Quo (현상 유지): \$1,300,000 (유리한 환경), -\$150,000 (불리한 환경)
 - Sell Now (즉시 매각): \$320,000 (모든 환경)

Maximax 접근법

	STATES OF NATURE	
	Good Foreign Poor Foreign	
DECISION	Competitive Conditions	Competitive Conditions
Expand	\$ 800,000	\$ 500,000
Maintain status quo	1,300,000	-150,000
Sell now	320,000	320,000

Expand: \$800,000

Status quo: 1,300,000 ← Maximum

Sell: 320,000

Decision: Maintain status quo

© 2014 John Wiley & Sons, Inc. - Russell and Taylor 8e

• 전략: 가장 낙관적인 결과를 선택합니다.

• 계산:

Expand: \$800,000

• Maintain Status Quo: \$1,300,000

o Sell Now: \$320,000

• 결정: Maintain Status Quo 선택 (\$1,300,000)

Maximin 접근법

	STATES OF NATURE	
	Good Foreign	Poor Foreign
DECISION	Competitive Conditions	Competitive Conditions
Expand	\$ 800,000	\$ 500,000
Maintain status quo	1,300,000	-150,000
Sell now	320,000	320,000

Expand: \$500,000 ← Maximum

Status quo: -150,000 Sell: 320,000

ell: 320,000 Decision: Expand

© 2014 John Wiley & Sons, Inc. - Russell and Taylor 8e

• 전략: 최악의 시나리오 중 최선의 결과를 선택합니다.

• 계산:

Expand: \$500,000

o Maintain Status Quo: -\$150,000

Sell Now: \$320,000

• 결정: Expand 선택 (\$500,000)

Minimax Regret 접근법

States of Nature		
Good Foreign		Poor Foreign
Competitive Conditions	Co	mpetitive Conditions
\$1,300,000 - 800,000 = 50	0.000 \$50	0,000 - 500,000 = 0
1,300,000 - 1,300,000 = 0		,000 - (-150,000)= 650,000
1,300,000 - 320,000 = 980		,000 - 320,000= 180,000
Expand:	\$500,000	← Minimum
Status quo:	650,000	(William Gill
Sell:	980,000	
		Decision: Expand

© 2014 John Wiley & Sons, Inc. - Russell and Taylor 8e

• 전략: 최대 후회를 최소화하는 결정을 선택합니다.

• 계산:

。 유리한 환경:

■ Expand 후회: \$500,000

■ Status Quo 후회: \$0

■ Sell 후회: \$980,000

。 불리한 환경:

■ Expand 후회: \$0

■ Status Quo 후회: \$650,000

■ Sell 후회: \$180,000

• **결정**: Expand 선택 (최대 후회 \$500,000)

Hurwicz Solution

	STATES OF NATURE	
	Good Foreign	Poor Foreign
DECISION	Competitive Conditions	Competitive Conditions
Expand	\$ 800,000	\$ 500,000
Maintain status quo	1,300,000	-150,000
Sell now	320,000	320,000

$$\alpha = 0.3$$
 1 - $\alpha = 0.7$

Expand: $\$800,000(0.3) + 500,000(0.7) = \$590,000 \leftarrow Maximum$

Status quo: 1,300,000(0.3) -150,000(0.7) = 285,000

Sell: 320,000(0.3) + 320,000(0.7) = 320,000

Decision: Expand

© 2014 John Wiley & Sons, Inc. - Russell and Taylor 8e

Hurwicz 기준

은 의사 결정 시 낙관 계수(α)를 사용합니다. 이는 낙관적 전망과 비관적 전망의 가중 평균으로 결정을 내리는 방법입니다.

• **낙관 계수 (α)**: 0.3

• 비관 계수 (1 - α): 0.7

계산

• **Expand**: $$800,000 \times 0.3 + $500,000 \times 0.7 = $590,000$

• Maintain Status Quo: $$1,300,000 \times 0.3 + (-$150,000) \times 0.7 = $285,000$

• **Sell Now**: $$320,000 \times 0.3 + $320,000 \times 0.7 = $320,000$

결정

: Expand 선택 (\$590,000)

Equal Likelihood Solution

	STATES OF NATURE	
	Good Foreign Poor Foreign	
DECISION	Competitive Conditions	Competitive Conditions
Expand	\$ 800,000	\$ 500,000
Maintain status quo	1,300,000	-150,000
Sell now	320,000	320,000

Two states of nature each weighted 0.50

Expand: $\$800,000(0.5) + 500,000(0.5) = \$650,000 \leftarrow Maximum$

Status quo: 1,300,000(0.5) -150,000(0.5) = 575,000

Sell: 320,000(0.5) + 320,000(0.5) = 320,000

Decision: Expand

© 2014 John Wiley & Sons, Inc. - Russell and Taylor 8e

Equal Likelihood 방법

은 각 자연 상태에 동일한 가중치를 부여하여 결정을 내립니다.

가중치: 0.5

계산

• Expand: $$800,000 \times 0.5 + $500,000 \times 0.5 = $650,000$

• Maintain Status Quo: $$1,300,000 \times 0.5 + (-$150,000) \times 0.5 = $575,000$

• **Sell Now**: $$320,000 \times 0.5 + $320,000 \times 0.5 = $320,000$

결정

: Expand 선택 (\$650,000)

확률을 사용한 의사 결정

	STATES OF NATURE	
	Good Foreign Poor Foreign	
DECISION	Competitive Conditions	Competitive Conditions
Expand	\$ 800,000	\$ 500,000
Maintain status quo	1,300,000	-150,000
Sell now	320,000	320,000

p(good) = 0.70 p(poor) = 0.30

EV(expand): \$800,000(0.7) + 500,000(0.3) = \$710,000

EV(status quo): $1,300,000(0.7)-150,000(0.3) = 865,000 \leftarrow Maximum$

EV(sell): 320,000(0.7) + 320,000(0.3) = 320,000

Decision: Status quo

© 2014 John Wiley & Sons, Inc. - Russell and Taylor 8e

확률을 사용한 의사 결정은 각 자연 상태에 확률을 할당하고 기대값을 계산하여 결정을 내립 니다.

• 유리한 조건 확률 (p(good)): 0.70

• 불리한 조건 확률 (p(poor)): 0.30

기대값 계산

• Expand: $$800,000 \times 0.7 + $500,000 \times 0.3 = $710,000$

• Maintain Status Quo: $\$1,300,000 \times 0.7 + (-\$150,000) \times 0.3 = \$865,000$

• **Sell Now**: \$320,000 × 0.7 + \$320,000 × 0.3 = \$320,000

결정

: Maintain Status Quo 선택 (\$865,000)

Expected Value of Perfect Information (EVPI)

EVPI 정의

- **완전한 정보의 최대 가치**: 의사 결정자에게 제공되는 완전한 정보의 최대 가치입니다.
- 지불 가능한 최대 금액: 더 나은 결정을 내리기 위해 완전한 정보를 얻는 데 지불할 수 있는 최대 금액입니다.

EVPI 계산

1. 좋은 조건 (70% 확률)

• **결정**: 현상 유지

• 페이오프: \$1,300,000

2. 나쁜 조건 (30% 확률)

• **결정**: 확장

• 페이오프: \$500,000

3. 완전한 정보가 주어진 경우의 기대값

• 계산: \$1,300,000 × 0.70 + \$500,000 × 0.30 = \$1,060,000

4. 완전한 정보 없는 기대값

• 이전 결정에 따른 기대값: \$865,000 (현상 유지)

5. **EVPI 계산**

• EVPI = \$1,060,000 - \$865,000 = \$195,000

데이터 마이닝과 의사 결정

© 2014 John Wiley & Sons, Inc. - Russell and Taylor 8e

머신러닝의 역할

• 예측 및 예측 분석: 미래 트렌드와 결과를 예측합니다.

- X-Y 관계 분석: 변수 간 관계를 분석합니다.
- 지도 학습 vs 비지도 학습: 데이터 학습 방법을 선택합니다.
- 적용 사례: 주식 가격 예측, 추천 시스템 등 다양한 분야에 적용됩니다.

AI 기반 의사 결정

마케팅 의사 결정

- 고객 요구에 맞춘 제품 조정
- 고객 행동 추적 (사용자 프로파일링)

비즈니스 프로세스 자동화

• 제조, 회계, 인적 자원 관리 자동화

여론 분석 및 가격 전략

• 데이터 획득이 핵심 요소입니다.

데이터 마이닝의 세 가지 주요 요소

- 1. 기술 (Technology)
 - 플랫폼과 하드웨어: 데이터 마이닝의 기술적 기반을 제공합니다. 이는 데이터 처리 와 분석을 가능케 하는 핵심 요소입니다.
- 2. 인적 자원 (Human Resources)
 - **데이터 과학자 및 수학자**: 데이터 마이닝 수행과 분석에 필요한 전문가들입니다. 이들은 복잡한 데이터를 해석하고 의미 있는 통찰을 도출합니다.
- 3. 자원 (Resources)
 - **데이터**: 분석의 핵심 요소로, 다양한 출처에서 수집됩니다. 데이터의 품질과 양은 분석 결과에 지대한 영향을 미칩니다.

4차 산업혁명과 데이터

- 1. 1차 산업혁명 (1784년)
 - 증기, 수력, 기계식 생산 장비의 도입으로 시작되었습니다.
- 2. 2차 산업혁명 (1870년)
 - 노동 분업, 전기, 대량 생산이 특징입니다.
- 3. **3차 산업혁명 (1969년)**

• 컴퓨터, 전자 제품, 인터넷의 발전으로 이루어졌습니다.

4. 4차 산업혁명

• 인간과 기계 간 경계가 허물어지는 시기입니다. 이는 인공지능과 사물인터넷(IoT) 의 발전으로 가능해졌습니다.

데이터 관련 M&A 사례

1. 아마존 & 홀푸드

- 아마존은 전자상거래와 클라우드 컴퓨팅의 선두주자이며, 홀푸드는 유기농 식품 시 장에서 강력한 오프라인 기반을 보유하고 있습니다.
- 2017년 8월 28일, 137억 달러 규모의 거래가 완료되었습니다.
- 아마존의 오프라인 진출 목적은 고객 경험 강화와 유통 채널 확장입니다.

2. 인텔 & 모빌아이

- 인텔은 반도체 및 기술 솔루션 분야의 리더이며, 모빌아이는 자율주행 기술 전문 기업입니다.
- 이 인수합병은 자율주행차 시장에서의 경쟁력 강화를 위한 전략적 움직임입니다.

Amazon Go

© Wikipedia.org

기술 특징

- 자동화 매장: 줄 서기와 계산대가 없는 시스템
- 기술 사용: 컴퓨터 비전, 딥러닝 알고리즘, 센서 융합 기술로 여러 고객의 행동을 추적
- 개점 일정: 2016년 12월 직원 대상 공개, 2018년 1월 일반 대중 공개
- 매장 수: 2020년 기준 미국 내 27개 매장 운영

데이터와 아마존

How to Use Customer Behavior Data to Drive Revenue (Like Amazon, Netflix & Google)

© pointillist,com

고객 행동 데이터 활용

• 아마존, 넷플릭스, 구글과 같은 기업들은 고객 행동 데이터를 수집하여 맞춤형 서비스와 제품 추천을 통해 수익을 창출합니다. 이러한 데이터 활용은 기업이 고객 경험을 향상시키고 매출을 증대하는 데 핵심적인 역할을 합니다.

Amazon Go와 오프라인 데이터

© medium.com

오프라인 데이터 수집

• 홀푸드 매장: 오프라인 고객 데이터를 수집할 수 있는 플랫폼 제공

• 데이터 가치: 데이터의 가치는 가격 프리미엄의 근거가 됩니다.

Amazon & Whole Foods 인수

인수 세부 사항

- 인텔과 모빌아이:
 - 。 인텔: 세계 최대 반도체 칩 제조업체
 - 모빌아이: 카메라 기반 인식 기술 솔루션 연구 및 개발 기업
- 거래 세부 사항:
 - 。 완료일: 2017년 8월 28일
 - 거래 규모: 153억 달러
 - ∘ 가격 프리미엄: 33%

Question

What makes this so much price premium reasonable?

자율주행차의 빅데이터

© intellias.com

데이터 수집

• 카메라: 초당 20-40KB

• 레이더: 초당 10-100KB

• 소나: 초당 10-100KB

• **GPS**: 초당 50KB

• **라이더**: 초당 10-70KB

자율주행차는 하루에 약 4,000GB의 데이터를 생성합니다. 이 데이터는 차량의 다양한 센서에서 수집되며, 주행 중 실시간으로 처리됩니다.

자율주행차의 머신러닝

© Machine Learning in Adversarial Settings, IEEE Security & Privacy 2016

기술 활용

- 컴퓨터 비전: 도로와 주변 환경을 인식합니다.
- 딥러닝 알고리즘: 차량의 의사 결정을 지원합니다.
- 신경망 구조: 입력층, 은닉층, 출력층으로 구성되어 있으며, 다양한 도로 상황을 학습합니다.