超大规模集成电路基础 Fundamental of VLSI

第四章 导线

导线的寄生参数

- 电阻, 电容, 电感
- 导线的寄生参数对电路特性的影响
 - 使传播延时增加,或者说相应于性能下降
 - 影响能耗和功率分布
 - 引起额外的噪声源,从而影响电路的可靠性

导线的寄生参数

导线的寄生参数

只考虑电容的模型

- 导线寄生参数分析方法
 - 如果导线电阻很大,或者外加信号上升和下降时间很长,那么电感的影响可以忽略
 - 当导线很短,导线截面很大或者互联材料的电阻率 很低时可采用只含电容的模型
 - 当互联导线间距很大,或者导线只在很短距离内靠近在一起的时候,导线相互间的电容可以被忽略, 所有的寄生电容可以模拟成接地电容

• 互连线平板电容模型

$$c_{int} = \frac{\mathcal{E}_{di}}{t_{di}} WL$$

• 边缘场电容模型

$$c_{wire} = c_{pp} + c_{fringe} = \frac{w \mathcal{E}_{di}}{t_{di}} + \frac{2\pi \mathcal{E}_{di}}{\log(2t_{di}/H + 1)}$$

互联电容与 Wlt_{di} 的关系

多层互联结构中导线间的电容耦合

互连电容和设计规则间的关系

	场氧	有源区	多晶	Al1	Al2	Al3	Al4
多晶	88						
	54						
Al1 第1层铝	30	41	57				
	40	47	54				
Al2 第2层铝	13	15	17	36			
	25	27	29	45			
Al3 第3层铝	8.9	9.4	10	15	41		
	18	19	20	27	49		
Al4 第4层铝	6.5	6.8	7	8.9	15	35	
	14	15	1.5	18	27	45	
Al5 第5层铝	5.2	5.4	5.4	6.6	9.1	14	38
	12	12	12	14	19	27	52

典型0.25umCMOS工艺导线的平面电容和边缘电容(黑色行部分)

• 导线的电阻正比于它的长度L而反比于它的截面积A

薄层电阻单位 Ω/□

- 减少导线电阻
 - 有选择的缩小工艺尺寸
 - 采用优质互联材料

- 理想导线
 - 无寄生参数
 - 电压传输瞬间完成
 - 各段电压均相同
 - 不对电路产生任何影响

- 集总模型
 - 分布rc模型比较复杂,并且不存在收敛解。分布rc线的特性可以用简单的RC网络来近似的模拟
 - 在研究复杂的晶体管-导线电路的瞬态特性时一个通常的 做法是把该电路简化成一个RC网络

• Elmore延时

延伸路径电阻:

$$R_{ik} = \sum R_j \Rightarrow (R_j \in [path(s \to i) \cap path(s \to k)])$$

节点i处的Elmore延时:
$$au_{Di} = \sum_{k=1}^{N} C_k R_{ik}$$

$$\tau_{Di} = R_1 C_1 + R_1 C_2 + (R_1 + R_3) C_3 + (R_1 + R_3) C_4 + (R_1 + R_3 + R_i) C_i$$

• RC链的Elmore延时

$$\tau_{DN} = \sum_{i=1}^{N} C_{i} \sum_{j=1}^{N} R_{j} = \sum_{i=1}^{N} C_{i} R_{ii}$$

$$\tau_{DN} = \left(\frac{L}{N}\right)^{2} (rc + 2rc + \dots + Nrc) = (rcL^{2}) \frac{N(N+1)}{2N^{2}} = RC \frac{N+1}{2N}$$

如果N值很大,上式可简化为
$$au_{DN} = \frac{RC}{2} = \frac{rcL^2}{2}$$

• 分布rc线

分布rc线模型

$$\mathbf{V}_{\text{in}} \stackrel{(r, c, L)}{\longleftarrow} \mathbf{V}_{\text{out}}$$

分布rc线的电路符号

$$c\Delta L \frac{\partial V_{i}}{\partial t} = \frac{\left(V_{i+1} - V_{i}\right) + \left(V_{i-1} - V_{i}\right)}{r\Delta L}$$

扩散方程
$$rc \frac{\partial V}{\partial t} = \frac{\partial^{2} V}{\partial x^{2}}$$

分布RC导线的阶跃响应与时间及位置的关系

电压范围	集总RC网络	分布RC网络	
0→50% (t _p)	0.69 RC	0.38 RC	
0 → 63 % (7)	RC	0.5 RC	
$10\% \rightarrow 90\% \ (t_r)$	2.2 RC	0.9 RC	

集总与分布RC网络的阶跃响应

- 互联网络分析
 - RC延时只有在 t_{pRC} 近似或超过驱动门的 t_{pgate} 时才予以考虑

$$L_{crit} = \sqrt{\frac{t_{pgate}}{0.38rc}}$$

• RC延时只是在导线输入信号的上升(下降)时间小于导线的上升(下降)时间RC时才予以考虑

$$t_{rise} < RC$$

考虑驱动门内阻的RC网络延时

$$\tau_{D} = R_{s}C_{w} + \frac{R_{w}C_{w}}{2} = R_{s}C_{w} + \frac{r_{w}c_{w}L^{2}}{2}$$

$$t_{p} = 0.69R_{s}C_{w} + 0.38R_{w}C_{w}$$

传输线

• 传输线模型

$$\frac{\partial v}{\partial x} = -ri - l\frac{\partial i}{\partial t}$$

$$\frac{\partial i}{\partial x} = -gv - c\frac{\partial v}{\partial t}$$
假设g=0
$$\frac{\partial^2 v}{\partial x^2} = -rc\frac{\partial v}{\partial t} - lc\frac{\partial^2 v}{\partial t^2}$$

传输线

- 无损传输线
 - 电阻忽略不计 r=0

理想波动方程
$$\frac{\partial^2 v}{\partial x^2} = lc \frac{\partial^2 v}{\partial t^2} = \frac{1}{v^2} \frac{\partial^2 v}{\partial t^2}$$
 电磁波传输速度 $v = \frac{1}{\sqrt{lc}}$ 传播延时 $t_p = \sqrt{lc}$ 充电电容所需电流 $i = \frac{dq}{dt} = c \frac{dx}{dt} v = cvv = \sqrt{\frac{c}{l}}v$

互连线串扰

• 串扰: 相邻信号线与电路节点之间耦合引起的干扰

$$\Delta V_{Y} = \frac{C_{XY}}{C_{Y} + C_{XY}} \Delta V_{X}$$

互连线串扰

- 克服串扰的方法
 - 避免浮空节点
 - 保护敏感节点

- 加大信号的上升和下降时间(但可能会增加功耗)
- 使用差分信号
- 减少两条线间的电容
- 在信号线之间使用屏蔽线(但增加了电容负载)
- 适当增加屏蔽层

