

Innovative Algorithms for Applications on European Exascale Supercomputers

Visit our website:

Exascale-ready GW algorithms for materials interfaces

Francisco A. Delesma, Moritz Leucke, Jan Wilhelm, Dorothea Golze

Introduction Canonical *GW* Space-time *GW* $\{\psi_n,\epsilon_n\}$ $\{\psi_n,\epsilon_n\}$ $\mathcal{O}(N^4)$ 10^{5} Polarizability $\chi_0 O(N^4)$ = fit $N^{4.13}$ — 3-c integrals ($\mu\nu|P$) $O(N^3)$ Execution time [core hours] 10^4 Total - 10^3 10^2 10¹ 10^{0} 96 24 54 Number of atoms

Summary

- Scaling reduction to cubic scaling GW based on space-time method [1]
- GPU accelerated 3-center integrals [2] and polarizability [3]
- Tested for up to 426 atoms on 6144 cores
- Prefactor optimization ongoing
- ullet GPU acceleration for screened coulomb interaction W ongoing

References

- (1) M.M. Rieger et al., Comp. Phys. Comm. 1999, 117(3), 211-228.
- (2) F.A. Delesma, M. Leucke, R.L. Panadés-Barrueta, D. Golze, NIC Symposium Proceedings 2025.
- (3) F.A. Delesma, M. Leucke, P. Rinke, D. Golze, in preparation.

