Analyse pour quatre temps significatifs

Situation	Analyse	Schéma équivalent	V _A	V _B
Avant t ₁			0	0
à t ₁	On applique la superposition d'un signal AC (dû au saut) et d'un signal DC qui correspond aux tensions à l'équilibre établies avant le saut (<i>0 dans ce cas</i>) AC correspond à un saut +V _{CC} La capacité pour le saut se comporte comme un court-circuit	+V _{cc} R	V_{A-AC} $V_{CC} \frac{R}{R+2R} = \frac{V_{CC}}{3}$ + V_{A-DC} 0	$\mathbf{V}_{\text{B-AC}}$ $\mathbf{V}_{\text{cc}} \frac{\mathbf{R}}{\mathbf{R+2R}} = \frac{\mathbf{V}_{\text{cc}}}{3}$ + $\mathbf{V}_{\text{B-DC}}$ 0
à t ₂	La capacité est un circuit ouvert et le circuit est à l'équilibre. Les rapports résistifs donnent les tensions aux différents points	2R A +V _{cc} B R Schéma DC	V _{A-DC} V _{CC}	V _{B-DC} 0
à t ₃	On applique la superposition d'un signal AC (dû au saut) et d'un signal DC qui correspond aux tensions à l'équilibre établies avant le saut (<i>tensions obtenues en t2</i>) AC correspond à un saut -V _{CC} La capacité pour un saut se comporte comme un court-circuit	-V _{cc}	\mathbf{V}_{A-AC} $-\mathbf{V}_{CC} \frac{R}{R+2R} = -\frac{\mathbf{V}_{CC}}{3}$ + \mathbf{V}_{A-DC} \mathbf{V}_{CC}	$V_{B-AC} -V_{CC} \frac{R}{R+2R} = -\frac{V_{CC}}{3}$ + V_{B-DC}
à t ₄	La capacité est un circuit ouvert et le circuit est à l'équilibre. Les rapports résistifs donnent les tensions aux différents points	2R A B R Schéma DC	V _{A-DC} 0	V _{B-DC} 0