Abstract Interpretation and its Applications

Yulei Sui

School of Computer Science and Engineering University of New South Wales, Australia

Today's class

Abstract Execution on Pointer-Free SVFIR

- For simplicity, let's first consider abstract execution on a pointer-free language.
- This means there are no operations for memory allocation (like p = alloco) or for indirect memory accesses (such as p = *q or *p = q).
- Here are the pointer-free SVFSTMTs and their C-like forms:

SVFSTMT	C-Like form
CONSSTMT	$\ell: p = c$
COPYSTMT	$\ell: \mathtt{p} = \mathtt{q}$
BINARYSTMT	$\ell: \mathbf{r} = \mathbf{p} \otimes \mathbf{q}$
РніЅтмт	$\ell: \texttt{r} = \texttt{phi}(\texttt{p}_1, \texttt{p}_2, \dots, \texttt{p}_n)$
SEQUENCE	$\ell_1; \ell_2$
BRANCHSTMT	ℓ_1 : if($x < c$) then ℓ_2 else ℓ_3

Abstract Execution Rules on Pointer-Free SVFIR

Let's use the *Interval* abstract domain to update σ based on the following rules for different SVFSTMT:

SVFSTMT	C-Like form	Abstract Execution Rule
CONSSTMT	$\mid \ell : p = c$	$\mid \; \sigma_{\underline{\ell}}(\mathtt{p}) := [\mathtt{c},\mathtt{c}]$
СоруЅтмт	$\mid \ell : p = q$	$\mid \ \sigma_{\underline{\ell}}(\mathtt{p}) := \sigma_{\overline{\ell}}(\mathtt{q})$
BINARYSTMT	$\mid \; \ell : \mathtt{r} = \mathtt{p} \otimes \mathtt{q}$	$\mid \ \sigma_{\underline{\ell}}(r) := \sigma_{\overline{\ell}}(ho) \hat{\otimes} \sigma_{\overline{\ell}}(q)$
РніЅтмт	$\big \ \ell: \mathtt{r} = \mathtt{phi}(\mathtt{p}_1,\mathtt{p}_2,\ldots,\mathtt{p}_n)$	$\mid \ \sigma_{\underline{\ell}}(r) := \bigsqcup_{i=1}^n \sigma_{\overline{\ell}}(p_i)$
SEQUENCE	$ \ell_1;\ell_2 $	$\mid \forall v \in \mathcal{V}, \sigma_{\overline{\ell_2}}(v) \sqsupseteq \sigma_{\underline{\ell_1}}(v)$
BRANCHSTMT	$\ell_1: if(x < c) then \ell_2 else \ell_3$	$\begin{array}{c c} \sigma_{\overline{\ell_2}}(x) := \sigma_{\underline{\ell_1}}(x) \sqcap [-\infty, c-1], \text{ if } \sigma_{\underline{\ell_1}}(x) \sqcap [-\infty, c-1] \neq \bot \\ \sigma_{\overline{\ell_3}}(x) := \sigma_{\underline{\ell_1}}(x) \sqcap [c, +\infty], \text{ if } \sigma_{\underline{\ell_1}}(x) \sqcap [c, +\infty] \neq \bot \end{array}$

An Example: Abstract Execution on BINARYSTMT

SVFSTMT	C-Like form	Abstract Execution Rule
BINARYSTMT	$\ell: \mathtt{r} = \mathtt{p} \otimes \mathtt{q}$	$\sigma_{\underline{\ell}}(r) := \sigma_{\overline{\ell}}(p) \hat{\otimes} \sigma_{\overline{\ell}}(q)$

 SVFIR in the presence of pointers contain pointer-related statements including ADDRSTMT, GEPSTMT, LOADSTMT and STORESTMT.

SVFSTMT	C-Like form
CONSSTMT	$\ell: p = c$
COPYSTMT	$\ell: \mathtt{p} = \mathtt{q}$
BINARYSTMT	$\ell: \mathtt{r} = \mathtt{p} \otimes \mathtt{q}$
РніЅтмт	$\ell: \mathtt{r} = \mathtt{phi}(\mathtt{p_1},\mathtt{p_2},\ldots,\mathtt{p_n})$
SEQUENCE	$\ell_1; \ell_2$
BRANCHSTMT	ℓ_1 : if($x < c$) then ℓ_2 else ℓ_3
A DDR S TMT	$\ell: \mathtt{p} = \mathtt{alloc}$
GEPSTMT	$\ell:\mathtt{p}=\mathtt{\&}(\mathtt{q} o\mathtt{i})$ or $\mathtt{p}=\mathtt{\&}\mathtt{q}[\mathtt{i}]$
LOADSTMT	$\ell: p = *q$
STORESTMT	$\ell: *p = q$

An Example

Let's try analyzing this kind of SVFIR using the same way as we did for pointer-free SVFIR based on a single interval domain.

An Example

Let's try analyzing this kind of SVFIR using the same way as we did for pointer-free SVFIR based on a single interval domain.

An Example

Let's try analyzing this kind of SVFIR using the same way as we did for pointer-free SVFIR based on a single interval domain.

X Using intervals to represent discrete memory address value is imprecise.

We require a combination of memory address and interval domains to precisely and efficiently perform abstract execution on SVFIR in the presence of pointers.

Abstract Execution over Memory Address and Interval Domains

Interval and Memory Address Domains

Interval abstraction (Interval domain) for scalar variables.

Abstract Execution over Memory Address and Interval Domains

Interval and Memory Address Domains

Discrete values (*MemAddress* domain) for memory addresses.

• The abstract trace for memory address and interval domains is defined as:

Not	ation	Domain	Implementation
Abstract trace σ		$\mathbb{L} \times \mathcal{V} \rightarrow \textit{Interval} \times \textit{MemAddress}$	preAbstractTrace, postAbstractTrace
Abstract state σ_L		$\mathcal{V} \rightarrow \textit{Interval} \times \textit{MemAddress}$	AbstractState.varToAbsVal
Abstract value $\int \sigma_L(\mu)$)	$\mathit{Interval} \times \mathit{MemAddress}$	AbstractValue

The abstract trace for memory address and interval domains is defined as:

l No	otation	Domain	Implementation
Abstract trace $\mid \sigma$		$\mathbb{L} \times \mathcal{V} \rightarrow \textit{Interval} \times \textit{MemAddress} ~ \big $	preAbstractTrace, postAbstractTrace
Abstract state $ \sigma_L $		$\mathcal{V} o \textit{Interval} imes \textit{MemAddress}$	AbstractState.varToAbsVal
Abstract value $\mid \sigma_L \mid$	(p)	Interval × MemAddress	AbstractValue

Interval is used for tracking the interval value of scalar variables.

• The abstract trace for memory address and interval domains is defined as:

l No	otation	Domain	Implementation
Abstract trace $\mid \sigma$		$\mathbb{L} \times \mathcal{V} \rightarrow \textit{Interval} \times \textit{MemAddress} ~ \big $	preAbstractTrace, postAbstractTrace
Abstract state $ \sigma_L $		$\mathcal{V} o \textit{Interval} imes \textit{MemAddress}$	AbstractState.varToAbsVal
Abstract value $\mid \sigma_L \mid$	(p)	Interval × MemAddress	AbstractValue

- Interval is used for tracking the interval value of scalar variables.
- MemAddress is used for tracking the memory addresses of memory address variables.

Cross-Domain Interaction

• During abstract execution, the memory address domain and the interval domain interact with each other.

- During abstract execution, the memory address domain and the interval domain interact with each other.
- To track the value to value correlation at each program point, we define: $\delta \in \mathbb{L} \times \textit{MemAddress} \rightarrow \textit{Interval} \times \textit{MemAddress}$.

- During abstract execution, the memory address domain and the interval domain interact with each other.
- To track the value to value correlation at each program point, we define: $\delta \in \mathbb{L} \times \textit{MemAddress} \rightarrow \textit{Interval} \times \textit{MemAddress}$.
- For top-level variables, we still use $\sigma \in \mathbb{L} \times \mathcal{P} \to \mathit{Interval} \times \mathit{MemAddress}$ to track the memory addresses or interval values of these variables.

- During abstract execution, the memory address domain and the interval domain interact with each other.
- To track the value to value correlation at each program point, we define: $\delta \in \mathbb{L} \times \textit{MemAddress} \rightarrow \textit{Interval} \times \textit{MemAddress}$.
- For top-level variables, we still use $\sigma \in \mathbb{L} \times \mathcal{P} \to \mathit{Interval} \times \mathit{MemAddress}$ to track the memory addresses or interval values of these variables.

	Notation	Domain	Implementation
Abstract trace	σ	$\mathbb{L} \times \mathcal{P} \rightarrow \textit{Interval} \times \textit{MemAddress}$	preAbstractTrace.postAbstractTrace
δ		$\mathbb{L} \times \textit{MemAddress} \rightarrow \textit{Interval} \times \textit{MemAddress}$	
Abstract state	σ_L	$\mathcal{P} o$ Interval $ imes$ MemAddress	AbstractState.varToAbsVal
δ_L		MemAddress ightarrow Interval imes MemAddress	AbstractState.locToAbsVal
Abstract value	$\sigma_L(p)$	Interval × MemAddress	AbstractValue
	$\delta_L(o)$		

Now let's use the *Interval* \times *MemAddress* abstract domain to update σ and δ based on the following rules for different SVFSTMT:

SVFSTMT	C-Like form	Abstract Execution Rule
CONSSTMT	$\ell: \mathtt{p} = \mathtt{c}$	$\mid \; \sigma_{\underline{\ell}}(\mathtt{p}) := \langle [\mathtt{c},\mathtt{c}], op angle angle$
COPYSTMT	$\ell: \mathtt{p} = \mathtt{q}$	$\mid \ \sigma_{\underline{\ell}}(\mathtt{p}) := \sigma_{\overline{\ell}}(\mathtt{q})$
BINARYSTMT	$\ell: \mathtt{r} = \mathtt{p} \otimes \mathtt{q}$	$\mid \ \sigma_{\underline{\ell}}(r) := \sigma_{\overline{\ell}}(p) \hat{\otimes} \sigma_{\overline{\ell}}(q)$
РніЅтмт	$\ell: \mathtt{r} = \mathtt{phi}(\mathtt{p_1}, \mathtt{p_2}, \ldots, \mathtt{p_n})$	$\mid \ \sigma_{\underline{\ell}}(r) := \bigsqcup_{i=1}^n \sigma_{\overline{\ell}}(p_i)$
BRANCHSTMT	$\ell_1:$ if($x < c$) then ℓ_2 else ℓ_3	$ \begin{vmatrix} \sigma_{\overline{\ell_2}}(x) := \sigma_{\underline{\ell_1}}(x) \sqcap [-\infty, c-1], & \text{if } \sigma_{\ell_1}(x) \sqcap [-\infty, c-1] \neq \bot \\ \sigma_{\overline{\ell_3}}(x) := \sigma_{\underline{\ell_1}}(x) \sqcap [c, +\infty], & \text{if } \sigma_{\underline{\ell_1}}(x) \sqcap [c, +\infty] \neq \bot \end{vmatrix} $
SEQUENCE	$\ell_1;\ell_2$	$\left \begin{array}{c} \delta_{\overline{\ell_2}} \sqsupseteq \delta_{\underline{\ell_1}}, \sigma_{\overline{\ell_2}} \sqsupseteq \sigma_{\underline{\ell_1}} \end{array}\right $
ADDRSTMT	$\ell: p = \mathtt{alloc}_{o_i}$	$\mid \sigma_{\underline{\ell}}(\mathtt{p}) := \langle \top, \{o_i\} \rangle$
GEPSTMT	$\ell: \mathtt{p} = \&(\mathtt{q} \to \mathtt{i}) \ \ or \ \mathtt{p} = \&\mathtt{q}[\mathtt{i}]$	$\left \begin{array}{c} \sigma_{\underline{\ell}}(\mathbf{p}) := \bigsqcup_{\mathbf{o} \in \gamma(\sigma_{\overline{\ell}}(\mathbf{q}))} \bigsqcup_{j \in \gamma(\sigma_{\overline{\ell}}(\mathbf{i}))} \langle \top, \{\mathbf{o.fld}_j\} \rangle \end{array} \right.$
LOADSTMT	$\ell: p = *q$	$\sigma_{\underline{\ell}}(\mathbf{p}) := \bigsqcup_{o \in \{o \mid (o \mapsto .) \in \delta_{\overline{\ell}}\}} \delta_{\overline{\ell}}(o)$
STORESTMT	$\ell:*p=q$	$\big \ \ \delta_{\underline{\ell}} := (\{ o \mapsto \sigma_{\overline{\ell}}(\mathtt{q}) o \in \gamma(\sigma_{\overline{\ell}}(\mathtt{p})) \} \sqcup \delta_{\overline{\ell}})$

Implementation of Abstract State and Abstract Trace

- For a program point L, the abstract state AS is an instance of the class named AbstractState, consisting of:
 - $varToAbsVal : \sigma_L \in \mathcal{P} \rightarrow Interval \times MemAddress$
 - $locToAbsVal : \delta_L \in MemAddress \rightarrow Interval \times MemAddress$
- The abstract trace is divided into two maps, preAbstractTrace and postAbstractTrace, which record the abstract states before and after each control flow point respectively.
 - For example, for a control flow node ℓ , $preAbstractTrace(\ell)$ includes $\sigma_{\overline{\ell}}$ and $\delta_{\overline{\ell}}$, and $postAbstractTrace(\ell)$ represents σ_{ℓ} and δ_{ℓ} .

An Example: Abstract Execution on ConsSTMT

SVFSTMT	C-Like form	Abstract Execution Rule
CONSSTMT	$\ell: \mathtt{p} = \mathtt{c}$	$\mid \sigma_{\underline{\ell}}(\mathtt{p}) := \langle [\mathtt{c},\mathtt{c}], \top angle$

Algorithm 1: Abstract Execution Rule for CONSSTMT

1 $postAbstractTrace[\ell][\ell.lhs] := AbstractValue([c, c])$

An Example: Abstract Execution on COPYSTMT

SVFSTMT	C-Like form	Abstract Execution Rule
СОРҮЅТМТ	ℓ : $p = q$	$\sigma_{\underline{\ell}}(\mathtt{p}) := \sigma_{\overline{\ell}}(\mathtt{q})$

Algorithm 2: Abstract Execution Rule for COPYSTMT

1 $postAbstractTrace[\ell][\ell.lhs] := preAbstractTrace[\ell][\ell.rhs]$

An Example: Abstract Execution on BINARYSTMT

SVFSTMT	C-Like form	Abstract Execution Rule
BINARYSTMT	$\mid \ell : \mathtt{r} = \mathtt{p} \otimes \mathtt{q} \mid$	$\sigma_{\underline{\ell}}(r) := \sigma_{\overline{\ell}}(p) \hat{\otimes} \sigma_{\overline{\ell}}(q)$

Algorithm 3: Abstract Execution Rule for BINARYSTMT

 $\ \ \, \text{$1$ postAbstractTrace}[\ell][\ell.res] := \textit{preAbstractTrace}[\ell][\ell.op1] \hat{\otimes} \textit{preAbstractTrace}[\ell][\ell.op2]$

An Example: Abstract Execution on PHISTMT

SVFSTMT	C-Like form	Abstract Execution Rule
РніЅтмт	$\ \ \ \ \ell : \texttt{r} = \texttt{phi}(\texttt{p}_1, \texttt{p}_2, \ldots, \texttt{p}_n)$	$\sigma_{\underline{\ell}}(r) := \bigsqcup_{i=1}^n \sigma_{\overline{\ell}}(p_i)$

Algorithm 4: Abstract Execution Rule for PHISTMT

- ı rhsVal := UnknownAbsVal
- $_{2}\ \, \textbf{for}\,\, op \in \ell.ops\, \textbf{do}$
- $rhsVal.join_with(preAbstractTrace[\ell][op])$
- 4 $postAbstractTrace[\ell][\ell.res] := rhsVal$

An Example: Abstract Execution on BRANCHSTMT

SVFSTMT	C-Like form	Abstract Execution Rule
BRANCHSTMT	$\ell_1: if(x < c) then \ell_2 else \ell_3$	$\begin{array}{c} \sigma_{\overline{\ell_2}}(x) := \sigma_{\underline{\ell_1}}(x) \sqcap [-\infty, c-1], \text{ if } \sigma_{\underline{\ell_1}}(x) \sqcap [-\infty, c-1] \neq \perp \\ \sigma_{\overline{\ell_3}}(x) := \sigma_{\underline{\ell_1}}(x) \sqcap [c, +\infty], \text{ if } \sigma_{\underline{\ell_1}}(x) \sqcap [c, +\infty] \neq \perp \end{array}$

Algorithm 5: Abstract Execution Rule for BRANCHSTMT

- 1 $trueCond := postAbstractTrace[\ell_1][x] \sqcap AbstractValue([-\infty, c-1])$
- 2 if ¬trueCond.is_bottom() then
- $preAbstractTrace[\ell_2][x] := postAbstractTrace[\ell_1][x] \sqcap AbstractValue([-\infty, c-1])$
- 4 $falseCond := postAbstractTrace[\ell_1][x] \sqcap AbstractValue([c, +\infty])$
- if ¬falseCond.is_bottom() then
- $preAbstractTrace[\ell_3][x] := postAbstractTrace[\ell_1][x] \sqcap AbstractValue([c, +\infty])$

An Example: Abstract Execution on Sequence

SVFSTMT	C-Like form	Abstract Execution Rule
SEQUENCE	$\ell_1; \ell_2$	$\delta_{\overline{\ell_2}} \supseteq \delta_{\underline{\ell_1}}, \sigma_{\overline{\ell_2}} \supseteq \sigma_{\underline{\ell_1}}$

Algorithm 6: Abstract Execution Rule for SEQUENCE

- 1 for $\ell' \in predecessors(\ell)$ do
- $preAbstractTrace[\ell].joinWith(postAbstractTrace[\ell'])$

An Example: Abstract Execution on ADDRSTMT

SVFSTMT	C-Like form	Abstract Execution Rule
ADDRSTMT	$\ell: p = \mathtt{alloc}_{o_\mathtt{i}} \ \big $	$\sigma_{\underline{\ell}}(\mathtt{p}) := \langle \top, \{o_i\} \rangle$

Algorithm 7: Abstract Execution Rule for ADDRSTMT

1 $postAbstractTrace[\ell][\ell.lhs] := AbstractValue(\{o_i\})$

An Example: Abstract Execution on GEPSTMT

SVFSTMT C-Like form	Abstract Execution Rule
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	$ \mid \sigma_{\underline{\ell}}(\mathtt{p}) := \bigsqcup_{\mathtt{o} \in \gamma(\sigma_{\overline{\ell}}(\mathtt{q}))} \bigsqcup_{j \in \gamma(\sigma_{\overline{\ell}}(\mathtt{i}))} \langle \top, \{\mathtt{o.fld}_j\} \rangle $

Algorithm 8: Abstract Execution Rule for GEPSTMT

- 1 gepAbsVal := UnknownAbsVal
- 2 offsetAbsVal := $preAbstractTrace[\ell][\ell.offset]$
- 3 for $idx \in [offsetAbsVal.lb(), offsetAbsVal.ub()]$ do
- gepAbsVal.join_with(getGepObjAddress(ℓ.base, idx))
- ${\tt 5} \;\; \textit{postAbstractTrace}[\ell][\ell.\textit{res}] := \textit{gepAbsVal}$

An Example: Abstract Execution on LOADSTMT

SVFSTMT	C-Like form	Abstract Execution Rule
LOADSTMT	$\ell:p=*q$	$\sigma_{\underline{\ell}}(p) := \bigsqcup_{o \in \{o \mid (o \mapsto \underline{\cdot}) \in \delta_{\overline{\ell}}\}} \delta_{\overline{\ell}}(o)$

Algorithm 9: Abstract Execution Rule for LOADSTMT

- 1 rhsVal := UnknownAbsVal
- ${\it 2 tmpAS} := \textit{preAbstractTrace}[\ell]$
- ${\mathfrak s}$ for ${\it addr} \in {\it tmpAS}[\ell.{\it rhs}]$ do
- $\texttt{5} \;\; \textit{postAbstractTrace}[\ell][\ell.\textit{lhs}] := \textit{rhsVal}$

An Example: Abstract Execution on STORESTMT

SVFSTMT	C-Like form	Abstract Execution Rule
STORESTMT	$\ell:*p=q$	$\delta_{\underline{\ell}} := (\{o \mapsto \sigma_{\overline{\ell}}(\mathtt{q}) o \in \gamma(\sigma_{\overline{\ell}}(\mathtt{p}))\} \sqcup \delta_{\overline{\ell}})$

Algorithm 10: Abstract Execution Rule for STORESTMT

- 1 tmpAS := preAbstractTrace[ℓ]
- $\mathbf{2} \ \ \textbf{for} \ \textit{addr} \in \textit{tmpAS}[\ell.\textit{lhs}] \ \textbf{do}$
- $\textbf{4} \; \textit{postAbstractTrace}[\ell] := \textit{tmpAS}$