PATENT ABSTRACTS OF JAPAN

(11)Publication number:

05-196826

(43)Date of publication of application: 06.08.1993

(51)Int.Cl.

G02B 6/12

(21)Application number: 04-146845

(71)Applicant : CORNING INC

(22)Date of filing:

14.05.1992

(72)Inventor: JEAN FABRICE

MCCOURT MARTIN

(30)Priority

Priority number: 91 9106039

Priority date: 17.05.1991

Priority country: FR

(54) OPTICAL COUPLER AND ITS PRODUCING METHOD

(57)Abstract:

PURPOSE: To provide an optical coupler and its producing method, which is constituted by means of plural waveguides being substantially in the same planar relation and in which the respective waveguides permit a single coupler output to couple optically to one of 2n coupler outputs.

CONSTITUTION: A system is provided with one input and the 2n outputs and also with the plural waveguides being substantially in the same planar relation. The respective waveguides permits the input to be optically connected to one of the 2n outputs. The respective waveguides include first junction J21 having an axial line which is not in parallel with the axial line of the coupler which is connected to the two second junctions (J31 and J32) by a bending waveguide section without accompanying a singular point and consists of the plural waveguide sections for connecting n pieces of Y junction arranged along the respective waveguide passages by constituting a tree and branch arrayal. An optical inflection point along one optical waveguide between the input and an n-th junction stage is arranged in one of the n pieces of junction along the waveguide passages.

LEGAL STATUS

[Date of request for examination]

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

-111

7/25/2006

[Date of final disposal for application]

[Patent number]

[Date of registration]

- [Number of appeal against examiner's decision of rejection]
- [Date of requesting appeal against examiner's decision of rejection]
- [Date of extinction of right]

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平5-196826

(43)公開日 平成5年(1993)8月6日

(51) Int.Cl.5

識別配号

庁内整理番号

FΙ

技術表示箇所

G 0 2 B 6/12

D 7036-2K M 7036-2K

審査請求 未請求 請求項の数10(全 6 頁)

(21)出願番号

特願平4-146845

(22)出願日

平成4年(1992)5月14日

(31)優先権主張番号 9106039

(32)優先日

1991年5月17日

(33)優先権主張国

フランス (FR)

(71)出願人 390037903

コーニング インコーポレイテッド

CORNING INCORPORATE

アメリカ合衆国 ニューヨーク州 コーニ

ング (番地なし)

(72)発明者 ファブリス ジャン

フランス国、77300 フォンテーヌプロー、

リュ ボール ジョゾン 92

マルタン マックール (72)発明者

フランス国、77210 アボン、リュ ペー

パリシー 38

(74)代理人 弁理士 山元 俊仁

(54)【発明の名称】 光カプラおよびその製造方法

(57) 【要約】

【目的】 実質的に同一平面関係にある多数の導波路で 構成され、それらの導波路のそれぞれが 2º のカプラ出 カのうちの1つに単一のカプラ出力を光学的に結合する ようになされた光カプラおよびその製造方法を提供す

1つの入力と2▫の出力を有し、複数の実質 的に同一平面関係の導波路を具備し、各導波路が前記入 力を前記2°の出力の1つに光学的に結合させるように なされており、各導波路は、特異点を伴うことなしに屈 曲導波路セクションによって2つの第2ジャンクション (J31、J32) に接続されるカプラの軸線と平行でない 軸線を有する第1ジャンクションを含み、ツリー・アン ド・ブランチ配列をなして各導波路通路に沿って配置さ れたnのYジャンクションを接続する複数の導波路セク ションよりなり、前記入力と第n番目のジャンクション ・ステージとの間における任意の1つの導波路に沿った 任意の反曲点が前記導波路通路に沿ったnのジャンクシ ョンのうちの1つに配置されている。

(2)

【特許請求の範囲】

【簡求項1】1つの入力と2°の出力を有しており、かつ複数の実質的に同一平面関係の導波路を具備し、前記導波路がそれぞれ前記入力を前記2°の出力の1つに光学的に結合させるようになされており、かつ各導波路に沿ってツリー・アンド・ブランチ配列で配置されたnのYジャンクションを接続する複数の導波路セクションよりなる光力プラにおいて、

前記カプラの出口と平行でない出口を有する第 1 のジャンクション(J_{21})が特異点を伴うことなしに湾曲した 10 導波路セクションによって 2 つの第 2 ジャンクション(J_{31} 、 J_{32})に接続されており、前記入力とジャンクションの第 n 番目のステージとの間における前記導波路のうちの任意の 1 つに沿った任意の反曲点が導波路の通路に沿った n のジャンクションのうちの 1 つに存在していることを特徴とする光力プラ。

【請求項2】カプラの入力に最も接近したジャンクションの向うにおけるカプラの各ジャンクションが前記ジャンクションを通る導波路のうちの1つ上に反曲点を画定することを特徴とする請求項1のカプラ。

【簡求項3】各ジャンクションがジャンクションの3つのプランチに共通な点において第3のプランチ(3)に正接する逆方向の曲線の第1および第2の逆方向のプランチ(1)および(2)を含んでいることを特徴とする 請求項1および2のうちの1つによるカプラ。

【請求項4】前記第1 および第2のブランチ(1) および(2) が前記ジャンクションの3つのブランチに共通の接線(X_1) に関して対称であることを特徴とする請求項3のカプラ。

【請求項5】出力($S_1 \sim S_8$)において、導波路がカプ 30 ラの入力における導波路と平行であり、導波路のパターンが前記カプラの入力に最も接近したジャンクションを通る軸線(X)に関して対称であることを特徴とする請求項 $1 \sim 4$ のうちの1 つによるカプラ。

【請求項6】 導波路が単一モードであることを特徴とする請求項1~5のうちの1つによるカプラ。

【請求項7】導波路がサプストレートに集積されていることを特徴とする請求項1~6のうちの1つによるカプラ。

【請求項8】1つの入力と2°の出力を有し、それぞれ 40 前記入力を前記2°の出力のうちの1つに光学的に結合させる複数の実質的に同一平面関係の導波路を具備し、前記導波路がツリー・アンド・プランチ配列で各導波路 通路に沿って配置されたYジャンクションのnのステージを接続する複数の導波路セクションよりなる光力プラの製造方法であって、前記導波路のパターンを再生するためのマスクを形成する工程を含む前記方法において、前記マスクのデザインが、

a) 他の導波路の外部にある導波路の1つの通路と、この通路に沿ったnのジャンクションの位置を、カプラの 50

予め定められた軸線方向長さ、出力の数 2 ° 、および導 波路の予め定められた最小曲率半径よりなるグループの 少なくとも1つの制約の関数として画定し、かつ

b) カプラの他のジャンクションの位置と、これらのジャンクションを接続する導波路の部分を、前記外部の導波路の各ジャンクション(Js1、Js1、Js1)に正接する対称軸(X1、X1、X)のまわりにおけるパターンの逐次複写によって決定する工程によって発生させることを特徴とする光カプラの製造方法。

【請求項9】前記決定する工程が、導波路の出口に最も近いジャンクション(J₁₁)から前記導波路の入力に最も接近したジャンクション(J₁₁)までの前記パターンの逐次複写によって実施される請求項8の方法。

【請求項10】導波路の最小曲率の条件を考慮して、カプラの出口($S_1 \sim S_8$)に最も接近したジャンクション($J_{31} \sim J_{34}$)を接続する工程をさらに特徴とする請求項8の方法。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は光カプラに関し、さらに詳細には実質的に同一平面関係にある多数の導波路で構成され、それらの導波路のそれぞれが2°のカプラ出力のうちの1つに単一のカプラ出力を光学的に結合するようになされているものに関する。それらの導波路は各導波路通路に沿って配置されたn個のYジャンクション(Y-junctions)を接続するツリー・アンド・プランチ(tree-and-branch)配列をなした導波路セクションよりなる。本発明は上記カプラを製造する方法にも関する。

[0002]

【従来の技術】このような光カプラは公知であり、光ビームを分割するか結合するかによってビーム・スプリッタまたはコンパイナとも呼ばれている。これらのカプラは例えば600~1600nmの範囲内での多モードまたは単一モード光ファイバによる通信のような種々の用途で利用されている。

【0003】従って、このようなカプラに対しては種々の導波路パターンが提案されており、それらは、マスクによって画成されるデザインに従ってサプストレート内またはその上に導波路を形成するために、使用されるサプストレートの種類に応じて、イオン交換、沈積、拡散、エッチングあるいはエピタキシャル成長技術と組合せてマスキングおよびフォトリソグラフ法を含む種々の技術によってサプストレート内に集積され得る。

【0004】図1は例えば1×16カプラと呼ばれる1つの入力と16の出力を有するカプラを作成するために用いられているこのようなデザインの従来例を示している。このデザインはカプラの長手方向軸線Xに関して対称であるから、このカプラの導波路パターンの半分だけしか示されていない。幾何学的特徴をより明瞭にするた

めに、そこに示されたものは、軸線Xに対する平行性を 大幅に歪曲されている。

【0005】入力ジャンクションJ11で光ピームを受取かつこのピームをツリー・アンド・プランチ態様で一定間隔だけ離間された同数の出力 $S1\sim S16$ から出て来る 2° (n=4) のピームに分割するようになされたスプリッタとしてこのカプラが用いられるとすると、入力の分割を確保するためにはn個のジャンクション・ステージ(junction stages)が必要であり、それらのジャンクション・ステージはそれぞれJ11; J21等; J31、J32 10等; およびJ41、J42、J43、J44等によって形成されている。

【0006】 これらのジャンクションを結合する導波路セクションのパターンを考えると、これらのセクションがそれらのジャンクション自体内にもう1つの反曲点(inflection point)を呈するジャンクションの間におけるのと同数の繰返し反曲点を呈することが明らかとなる。これらの繰返し反曲点は各ジャンクションの対称軸をカプラの長手方向のX軸線と平行に戻すために所定のセクションに沿って必要である。このようなパターンは 20 例えばドイツ特許第25 16 975号によって公知である。

【0007】図1のパターンの所要の長手方向寸法L1 はジャンクションを接続する導波路セクションの曲率の 繰返し変化によって失われる。幾つかの理由によってこ の所要寸法を減少させることが望ましい。

【0008】一方では、問題の形式のカプラは同一の基本デザインを再生する複数のパターンによってサプストレート上にフォトリソグラフ法によって作成されるので、そのデザインの所要長手方向寸法の減少によって同 30一サプストレート表面上により多くのカプラを作成することが可能となり、それによってカプラの生産速度を高めると同時に、製造コストを安くする。

【0009】他方では、集積オプティックスによって作成されるカプラは例えば長さが数センチメートルのガラスまたはシリカの細長いパーの形をしている。これらのパーは長さが長ければ長いほど、シャッタリングを生じうる切断応力を受けやすくなる。それらの長さが短くなれば、それらの脆弱性が低下する。

【0010】カプラの所要長手方向寸法を減少させるた 40 めには、スプリンガー・ベルラーグ(Springer-Verlag) によって刊行された「インテグレーテッド・オプティックス-プロシーディングス・オブ・ザ・サード・ヨーロピアン・カンファレンス、ECIO '85,ドイツ国ベルリン、1985年5月6-8日」の第229-231頁におけるポイリン(Voirin)による「多モード光通信のためのイオン交換スター・カプラの性能」の第2図に示されているようにジャンクションをカプラの長手方向軸線と平行に維持するという考えを捨てて、導波路のデザインを横方向に変位させることを考えればよいであろ 50

う。多モード・カプラに対してのみポイリンによって提案されたデザインは全てのジャンクションにおける角点 (angularpoints)と、最後のジャンクション・ステージとカプラ出力との間の他の角点を含み、これらの角点または特異点(singularities)は遷移時に光エネルギーの約0.2dBの推定損失を生ずる。これらの損失はカプラの伝送される光信号パワーに対してだけではなく、各カプラ出力によって伝送されるパワーの均一性に対しても負の影響を及ばすことになりうる

[0011]

(3)

【本発明が解決しようとする課題】本発明は上述した従来技術のカプラの所要長手方向寸法の問題または光損失を呈しない「集積」型の光カプラを実現することを目的とする。

[0012]

【課題を解決するための手段】本発明の上記および他の目的は、1つの入力と2°の出力を有し、複数の実質的に同一平面関係の導波路を具備し、各導波路が前記入力を前記2°の出力の1つに光学的に結合させるように加速れており、各導波路は、特異点を伴うことなしに屈曲導波路セクションによって2つの第2ジャンクション(J31、J32)に接続されるカプラの軸線と平行でない軸線を有する第1ジャンクションを含み、ツリー・アンド・ブランチ配列をなして各導波路通路に沿って配置れたnのYジャンクションを接続する複数の導波路セクションよりなり、前記入力と第n番目のジャンクションよりなり、前記入力と第n番目のジャンクションよりなり、前記入力と第n番目のジャンクシッステージとの間における任意の1つの導波路に沿った任意の反曲点が前記導波路通路に沿ったnのジャンクションのうちの1つに配置されている光力プラについての下記の説明から明らかとなるであろう。

【0013】このデザイン・ルールに従えば、カプラの 長手方向の寸法が最小限に抑えられるとともに、導波路 から2°のカプラ出力に向う必要な横方向散開が確保され、かつこの散開に必要な場所、すなわちジャンクションにおいてのみ導波路反曲が生ずるようになされる。最小限、それによってあらゆる特異点を回避しかつ導波路の長さに沿った湾曲の数を最小限に抑えることによって光エネルギーの損失を軽減し、それによって湾曲したセクションの曲率半径を最大にし、それに伴って湾曲による損失の軽減を図ることが可能となる。

【0014】このようにして、本発明に従ってカプラを製造する好ましい方法によれば、カプラの入力を除く各ジャンクションがこのジャンクションを通る導波路のうちの1つだけに反曲点を画定する。各ジャンクションは3つのプランチすべてに共通な点において第3のブランチに正接する対向した曲線の第1および第2のプランチで構成されている。第1および第2のプランチはジャンクションの3つのプランチに共通な接線に対して対称であることが好ましい。

【0015】本発明によるカプラを作成するためには、

(4)

導波路のパターンを再生するマスクが形成され、そしてそれらの導波路がそのマスクを介してサプストレート中に集積される製造方法が用いられる。本発明の1つの実施例によれば、導波路の1つの通路を他の導波路の外部に画成し、かつこの通路に沿った n のジャンクションの位置を、カプラの予め定められた軸線方向の長さ、このカプラの予め定められた幅、出力の数 2 ・、および導波路の予め定められた最小曲率半径によって形成されるグループのうちの少なくとも1つの制約の関数として画定し、さらにカプラの他のジャンクションの位置とこれら 10のジャンクションを接続する導波路の部分を、各ジャンクション(J 1 1、 J 2 1、 J 1 1)に正接する対称軸(X 2、 X 1、 X)のまわりのパターンの逐次複写によって決定する。

[0016]

【実施例】図2は、例えば通信に使用できる本発明による1×16カプラの単一モード導波路のハーフ・パターンを示している。このハーフ・パターンは図1のものと同じスケールで示されており、出力S1~S8間の一定間隔、および2つのパターンの比較を可能にする長手方向20 歪係数も同一である。図1に示された従来技術のデザインと同様に、ただし前記ポイリンの文献に示されたものとは対照的に、この導波路パターンには特異点は存在していない。YジャンクションJ11~J44(図1のパターンと同一符号である)を接続する導波路セクションはそれらのジャンクション自体の外側には反曲点のない連続した湾曲を呈している。

【0017】本発明で用いられるYジャンクションを導波路パターン内のジャンクションの相互接続についてさらに完全に説明するために図4を参照する。図4についるには本発明によるカプラ製造方法の説明に関連して後でさらに詳細に説明する。図4では、本発明に従って、パターンはカプラの長手方向軸線Xと平行でない軸線X1上の少なくとも第1のジャンクションJ21を含んでおり、その第1のジャンクションは、湾曲しておりかつ特異点のない導波路の部分によって第2のジャンクションJ31およびJ32の2つに接続されている。これらのジャンクションのそれぞれを通る2つの導波路のうちの1つが反曲点を呈し、他の導波路の湾曲はこのジャンクションを通っても符号を変更しない。

【0018】このようにして、本発明で利用されたYジャンクションはそれぞれジャンクションJェ」として、3つのブランチすべてに共通な点において第3のブランチ3に正接する対向したカーブの第1および第2のブランチ1および2を具備している。ジャンクションJェ」からJェ4までの最終ステージまでは(1×8カブラの場合)、ジャンクションを接続する導波路セクションはそのジャンクション自体の外側に反曲点を含まない。従って、本発明では、反曲点の数を、導波路からの散開に必要最小限に制限する。本発明で利用される形式のジャン

クションは、前記ポイリンの文献に示された特異点を有するジャンクションで見られた損失と比較して、1つのジャンクション当り約0.1dBの損失軽減を可能にする。

【0019】上述したデザイン・ルールに従って確立された図2のデザインに戻る。このデザインでは、入力ジャンクションJ11を除き、他のジャンクションはそれらの3つのブランチに共通な接線を呈するが、この接線はカプラの長手方向軸線Xに対し平行ではないことが明らかである。軸線Xも対する接線の傾斜は一般に同一符号であり、かつこの傾斜は軸線Xに対するジャンクションからの距離とともに大となる。

【0020】図1および2のデザインを比較すると、この傾斜は図1のデザインの横方向への偏向から生ずることが明らかである。これによって異なる導波路のより接近した散開が可能となり、各導波路通路上の所定数のジャンクションに対して、これらの導波路通路の所要の長手方向寸法の減寸を図ることができる。さらに、この横方向への偏向は、2つのジャンクション間における導波路やクションの曲率半径を一般に増大させることによって導波路を「矯正する」効果(effect of "straighteningup")を有する。このことは「湾曲損失」(losses of curvature)として知られている光パワーの損失を減少させる点で有益である。

【0021】この結果、ジャンクションが図1における パターンのジャンクションによって必要とされるものよ りも小さい表面帯域として再グループ化されるととも に、図1に示された従来のカプラの軸線方向の寸法L₁ と比較して、本発明によるカプラの導波路の所要の軸線 方向寸法 L2 が相当に減寸されることになる (これらの 軸線方向の寸法はカプラの入力ジャンクション J11とこ のカプラの長手方向の軸線Xと平行な導波路出力との問 で測定される)。本発明によれば、所要長さの減寸が50 %に達することができるとともに、光「湾曲」(curvat ure) 損失が大幅に軽減される。これは所定の部品長に 対して、本発明によるカプラの導波路セクションの曲率 半径が増大したこと、および導波路通路に沿って特異点 が完全に存在していないことによる。本発明によって得 られる損失の低下は、本発明が特に適用される可能性の 高い通信 (例えば1550nmを中心としたトランスミッショ ン・ウインドウ)で利用されるような長い波長に特に感 応しやすい。

【0022】本発明によるカプラの所要の長手方向寸法を考慮して、例えば100mmの最小曲率半径を選ぶと、長さ35mmの1×16カプラを作成することが可能であり、これに対して従来技術のカプラは現在のところ60mmを超えている。さらに、本発明は、長さ25mmの1×8カプラおよび長さがわずかに17mmの1×4カプラを作成するために用いられうる。

【0023】図3は、本明細鸖の従来技術の欄に記載さ

特開平5-196826

(5)

20

7

れた技術のうちの任意の1つによってサブストレート上に集積される導波路をマスクを用いて作成するために利用される1×16カブラの実際の歪みのない導波路バターンを示している。実際には、そのマスクは多数のこのようなデザインよりなりうるものであり、これらのデザインは公知のように、サブストレート上に延展された感光物質の層をこれらすべてのデザインの集合に同時に露呈させ得るようにするために同一でありかつ隣接している。本発明によって得られる所要寸法の減寸は、上記感光物質層が露呈されうるデザインの数、ならびにこの操化のための産出容量を非常に大幅に増大させることができる。本発明によるカブラで構成されかつモノリシック装置における他の光学的機能と関連した光回路の集積密度を増大させることができる。

【0024】本発明によるカプラを作成するために利用しうるマスク・パターンに対するデザイン方法を例示の目的で説明するために図4を再度参照する。図4に示された部分的なパターンは 1×8 カプラのそれに対応しているが、下記のルールはすべての 1×2 カプラに確実に適用可能である。

【0025】所定の長手方向寸法L、および出口の数とこれらの出口の間隔に基づいて確立された横方向半寸法 Hから初めて、まず他のすべての導波路、例えばジャンクションJ11から出口S1までの導波路の外側における 導波路をトレースする。この第1の導波路のデザインは 許容可能な損失のレベルによって決る最小曲率半径をとり、かつジャンクションJ21およびJ31の位置が導波路の出口からの散開に必要として予測される。上述の制約 および本発明によって課せられる制約、すなわちジャンクションJ31~J34のステージまでジャンクションの外側に反曲点が存在しないこと、および事実上、それぞれジャンクションJ11、J21およびJ31に対する共通の接線X、X1またはX2に対して各ジャンクションの第1および第2のプランチが対称であることと一緒に、デザイン・プログラムがコンピュータにインプットされる。

【0026】デザインついての一連の試みと補正を通じて、確立された制約のすべて、およびこれらのジャンクションに対して与えられた接続条件のすべてを満足するジャンクション J21 および J31 の位置を局部化する。例えば、外部導波路通路が、ジャンクション J21 および J21間における半径 R1、ジャンクション J21 および J31間における半径 R2、ジャンクション J31 の向うにおける半径 R3 の円の弧によって形成され、これらの半径は導波路セクションに課せられた最小曲率条件に従う。ジャンクション J21 およびジャンクション J11 における接線 Xのまわりにおける一連の対称性によって、他のジャ

ンクションおよびそれらが接続する通路の位置を推論する。半径R4の円弧で出力S1に対して破線として示されているように、試行錯誤によってかつ課せられる最小曲率に基づいて、ジャンクションJ31~J34を越えて種々のカプラ出力までの通路の終端部を接続することによってパターンを終らせる。このような接続は、ジャンクションJ31を出口S1に接合する導波路の部分の場合と同様に、ジャンクションの最後のステージの向うに反曲点

が存在することを必要とする。

【0027】勿論、本発明は例示の目的で説明されかつ 図示された特定の製作方法に限定されるものではない。 従って、本発明の教示を尊重するものであるかぎりにお いて、他のデザイン・ルールを採用することができる。 従って、導波路の異なる部分がそれぞれエンド・ツー・ エンドの関係で配置されかつ異なる曲率を有する幾つか の部分で構成され得る。各ジャンクションが1つだけの 反曲を画定しかつ2つのジャンクション間に反曲が存在 しないというルールは、本発明の範囲から逸脱すること なしに、位相幾何学的理由によって局部的例外を受ける ことがありうる。本発明は単一モード・カプラを作成す るための1つの用途につて説明されたが、本発明はファ イパオプティックスによる通信で利用される多モード・ カプラに適用できることも明らかでり、かつ導波路を必 要とする他の技術にも適用できる。さらに、本発明は集 積オプティックスで作成されたカプラに限定されるもの ではなく、個別の部品で作成された、すなわち個々のフ ァイパオプティックスで作成されたカプラもその範囲内 とするものである。最後に、本発明は、例えば誘電体ス プストレート上における「マイクロストリップライン」 型のカプラの作成のようにマイクロ波周波数での用途に も適用できるものである。

【図面の簡単な説明】

【図1】従来のカプラにおける導波路の長手方向に圧縮 されたハーフ・パターンを示している。

【図2】本発明による1×16カプラの長手方向に圧縮されたハーフ・パターンを示している。

【図3】本発明による1×16カプラの実際のフル・パターンを示している。

【図4】本発明の好ましい製造方法による1×8カプラ の の導波路のためのマスク・パターンの一連のステージを 示している。

【符号の説明】

J21、J31、J32 ジャンクション

S1~S8 出力

X₂、X₁、X 対称軸

(6)

特開平5-196826

【図1】

[図2]

【図3】

