Clustering & cell annotation

Claudio Novella-Rausell
Department of Human
Genetics, LUMC

How can we identify cell populations?

Outline

- Introduction to clustering
 - Hierarchical clustering
 - *k*-Means clustering
 - Graph-based clustering
- scRNA-seq clustering
- Annotating clusters
- Cluster validation
- Challenges & outlook

Outline

- Introduction to clustering
 - Hierarchical clustering
 - k-Means clustering
 - Graph-based clustering
- scRNA-seq clustering
- Annotating clusters
- Cluster validation
- Challenges & outlook

Clustering

What defines a good clustering?

Clustering

Structure when:

- 1. Samples within cluster resemble each other (small within variance, $\sigma_W(i)$)
- 2. Clusters deviate from each other (large between variance, σ_B)

Group samples such that:

$$\min \left(\frac{\sum_{\text{Volusters}} \sigma_W(i)}{\sigma_B} \right) \rightarrow \sigma_{\text{W}} \text{: small 8}$$

$$\sigma_{\text{B}} \text{: large}$$

Many dustering approaches

Find most similar objects (cells) and group them

Dendrogram

These are: objects 4 and 2 Again, find most similar objects (cells or clusters) and group them

Dendrogram

These are: objects 5 and 8
Repeat finding most similar objects (cells or clusters) and group them

Dendrogram

Join object 3 and cluster 1 Repeat process

Join object 3 and cluster 1 Repeat process

Join object 1 and cluster 2 Repeat process

Dendrogram

Join object 6 and cluster 2 Repeat process

Dendrogram

Join cluster 1 and cluster 2 All in one cluster: FINISHED!

Dendrogram

Need to know:

- Similarity between objects
- Similarity between clusters

Similarity between objects

Similarity between objects

Euclidean distance

$$\sqrt{(\sum ((x_i - x_j)^2))}$$

Pearson correlation

$$1 - \rho_{ij}$$

Mixed Pearson correlation

$$1-|\rho_{ij}|$$

Similarity between clusters

Single linkage Complete linkage Average linkage Closest objects
Furthest objects
Average similarity

Similarity between clusters

Which cluster to merge with the red cluster when using complete linkage?

Similarity between clusters

Which cluster to merge with the red cluster when using single linkage?

- Single linkage → long and "loose" clusters
- Complete linkage → compact clusters

Overview

complete linkage single linkage

- Hierarchical clustering
 - Choice of distance measure
 - Choice of linkage type
- Distance measure
 - Euclidean
 - Correlation
- Linkage
 - Single
 - Average
 - Complete
- Number of clusters
 - Predefined or based on a cut-off in the dendrogram
 - Validate clustering!

Choose randomly *k* prototypes

Assign objects to the closest prototype

Blue area: cluster 1

White area: cluster 2

Calculate new cluster prototypes
By averaging objects

Re-assign objects to the closest prototype

Blue area: cluster 1

White area: cluster 2

Re-calculate new cluster prototypes

Re-assign objects to the closest prototype If no objects change cluster, then finished

Establish clusters

Overview

• *k*-Means

- Fixed number of clusters(need to know a priori)
- · Choice of distance measure
- Prototype choice

Distancemeasure

- Euclidean: Round clusters
- Mahalanobis: Elongated clusters
- Prototype choice
 - Point
 - Line etc.
- Number of clusters
 - Predefinedby k
 - Validate clustering!

- k-NN graph: connect every node to its k-nearest neighbors
- Find densely connected components (communities)

- Maximize modularity score
 - Dense connections between nodes within clusters
 - Sparse connections between nodes in different clusters

Observed edges in cluster c

Expected edges in cluster c

$$H = \frac{1}{2mn} \sum_{\alpha} (ee_{\alpha} - \gamma \sqrt{\frac{KK^2}{2mn}})$$

mm= eccentrici iii tttee eegggggt

 $KK_c = \sum_{m \in cc} eeeeeeggeeee(ii)$

 $\gamma \gamma = ggenerattiini$

Louvain algorithm

Two steps

- 1. Local moving of nodes: move node *ii* to community of neighbor *jj*, if this increases *HI*
- 2. Aggregate nodes

Louvain algorithm

Two steps

- 1. Local moving of nodes: move node *ii* to community of neighbor *jj*, if this increases *HI*
- 2. Aggregate nodes

Iterate until no more changes

Louvain algorithm

- During the 'moving step', nodes can become internally disconnected
- Nodes 1-6 still locally optimal assigned

Leiden algorithm

Solution: add refinement step

Leiden algorithm

Solution: add refinement step

Overview

- Graph-based clustering
 - Number of neighbors when constructing the graph
 - Resolution parameters
- Resolution
 - High → less clusters
 - Low → more clusters
- Number of clusters
 - Determined using resolution parameter
 - Validate clustering!

Outline

- Introduction to clustering
 - Hierarchical clustering
 - k-Means clustering
 - Graph-based clustering
- scRNA-seq clustering
- Annotating clusters
- Cluster validation
- Challenges & outlook

>300 scRNA-seq clustering methodsavailable

scRNA-seq clustering methods

Name	Year	Method type	Strengths	Limitations	
scanpy ⁴	2018	PCA + graph-based	Very scalable	May not be accurate for small data sets	
Seurat (latest) ³	2016				
$PhenoGraph^{32}\\$	2015				
SC3 (REF. ²²)	2017	PCA+k-means	High accuracy through consensus, provides estimation of \boldsymbol{k}	High complexity, not scalable	
SIMLR ²⁴	2017	Data-driven dimensionality reduction $+k$ -means	Concurrent training of the distance metric improves sensitivity in noisy data sets	Adjusting the distance metric to make cells fit the clusters may artificially inflate quality measures	
CIDR ²⁵	2017	PCA + hierarchical	Implicitly imputes dropouts when calculating distances		
GiniClust ⁷⁵	2016	DBSCAN	Sensitive to rare cell types	Not effective for the detection of large clusters	
pcaReduce ²⁷	2016	PCA+k-means+hierarchical	Provides hierarchy of solutions	Very stochastic, does not provide a stable result	
Tasic et al. ²⁸	2016	PCA + hierarchical	Cross validation used to perform fuzzy clustering	High complexity, no software package available	
TSCAN ⁴¹	2016	PCA+Gaussian mixture model	Combines clustering and pseudotime analysis	Assumes clusters follow multivariate normal distribution	
mpath ⁴⁵	2016	Hierarchical	Combines clustering and pseudotime analysis	Uses empirically defined thresholds and a priori knowledge	
BackSPIN ²⁶	2015	Biclustering (hierarchical)	Multiple rounds of feature selection improve clustering resolution	Tends to over-partition the data	
RaceID ²³ , RaceID2 (REF. ¹¹⁵), RaceID3	2015	k-Means	Detects rare cell types, provides estimation of \boldsymbol{k}	Performs poorly when there are no rare cell types	
SINCERA ⁵	2015	Hierarchical	Method is intuitively easy to understand	Simple hierarchical clustering is used, may not be appropriate for very noisy data	
SNN-Cliq ⁸⁰	2015	Graph-based	Provides estimation of k	High complexity, not scalable	

Howtocompare different cluster labels?

Adjusted Rand Index (ARI)

Measure of the similarity between two data clusterings

Given a set S of ii elements, and two groupings or partitions of these elements $X = \{XX_1, XX_2, ..., X_r\}$, $Y = \{Y_1, Y_2, ..., Y_r\}$

X Y	Y_1	Y_2	• • •	Y_s	sums
X_1	n_{11}	n_{12}		n_{1s}	a_1
X_2	$\mid n_{21} \mid$	n_{22}	• • •	n_{2s}	a_2
÷	•	•	٠	:	:
X_r	$\mid n_{r1} \mid$	n_{r2}		n_{rs}	a_r
sums	b_1	b_2		b_s	

$$ARI = \frac{\sum_{ij} \binom{n_{ij}}{2} - \left[\sum_{i} \binom{a_{i}}{2} \sum_{j} \binom{b_{j}}{2}\right] / \binom{n}{2}}{\frac{1}{2} \left[\sum_{i} \binom{a_{i}}{2} + \sum_{j} \binom{b_{j}}{2}\right] - \left[\sum_{i} \binom{a_{i}}{2} \sum_{j} \binom{b_{j}}{2}\right] / \binom{n}{2}}$$
 Max index Expected index

Benchmarking scRNA-seq clustering methods

Standard clustering approach

- Select highly variable genes (~1000-5000 genes)
- 2. Reduce dimensions using PCA (~30-50 dimensions)
- 3. Construct kNN graph (~15-20 neighbors)
- 4. Louvain/Leiden community detection

Outline

- Introduction to clustering
 - Hierarchical clustering
 - *k*-Means clustering
 - Graph-based clustering
- scRNA-seq clustering
- Annotating clusters
- Cluster validation
- Challenges & outlook

From clusters to annotations

Gene expression overlay

Alternatively: heatmaps & dot plots

Interactive visualization is important

- Interactive tools: Cytosplore, Loupe, cellxgene, ...
- Iterative visualization: Seurat, scanpy,...

Where do we get these marker genes?

Ideally: from a single cell atlas from a relevant organism, organ and disease context

- "Expert knowledge"
- Literature
- Other scRNA-seq data
- Marker databases: PanglaoDB, CellMarker,...

Challenges:

- Few well-known markers
- Some well-known markers may not be as specific as expected

What if I don't have that many markers

- Identify "novel" markers by computing differential expression between a cluster and all other cells or between pairs of clusters
- Manually research differentially expressed genes to find functional information that may help identify the cell type

Complicating factors

- 1. Clusters that express markers of more than one cell type
 - Doublets?
 - Likely small, higher-than-average genes and UMIs per cell
 - Doublet detection tools: Scrublet, DoubletFinder, scds

2. Ambient RNA

- RNA derived from one or more cell types that are sensitive to tissue dissociation
- Markers of the contaminating cell types may be spread to all other cell clusters
- Ambient RNA correction tools: SoupX, CellBlender

Watch out not to remove rare "interesting" cells!

Annotation verification

- Using independent data (e.g. fluorescence in situ hybridization)
- 2. Multi-modal single-cell data
 - SNVs & CNVs
 - TCR/BCR
 - scRNA-seq+scATAC (mRNA + accessibility)
 - CITE-seq (surface proteins + mRNA)

Nomenclature

How should we name cells?

Summary

- Start by identifying major well-known cell types (clearly defined, discrete cell clusters)
- Split the data into broad subsets (e.g., immune, endothelial and tumor) and analyze each separately
- Cell subtypes or poorly defined clusters are challenging
- Manual annotations heavily rely on marker genes and expert knowledge

Outline

- Introduction to clustering
 - Hierarchical clustering
 - *k*-Means clustering
 - Graph-based clustering
- scRNA-seq clustering
- Annotating clusters
- Cluster validation
- Challenges & outlook

Clustering issubjective!

- Principle choices
 - Similarity measure
 - Algorithm
- Different choice leads to different results
 - Subjectivity becomes reality
- Cluster process
 - Validate, interpret (generate hypothesis), repeat steps

Cluster criteria

- Silhouette score
 - Goal: optimize cohesion within a cluster and separation between clusters
 - Seek: clustering that maximizes SI

Silhouette score

1. Mean distance between \ddot{u} and all other points in cluster C_i

$$g(ii) = \frac{1}{|Ci| - 1}$$
 $ee(ii, jj)$

2. Mean nearest cluster distance of ii

$$\mathcal{U}(i) = \min_{kk \neq ii} \frac{1}{|\mathcal{C}_{ik}|} \, \stackrel{\bullet}{ee(ii,j)}$$

3. Silhouette score for *ii jj∈cckk*

$$\mathscr{E}(\ddot{u}) = \frac{\mathscr{B}(\ddot{u}) - \mathscr{G}(\ddot{u})}{\max\{\mathscr{G}(\ddot{u}), \mathscr{B}(\ddot{u})\}}$$

4. Total silhouette score

$$SSS = \frac{1}{N} \sum ee(ii)$$

Bootstrapping

- How confident can you be that the clusters you see are real?
 - Take a random set of cells
 - Cluster
 - Compare to original clustering
 - Estimate support for clustering

Always check QC data

 Are your clusters mainly related to batches, qc-measures (especially detected genes)?

Example: annotating human

brain cells

72,621 cells 32,991 genes 127 clusters

Iterative clustering approach

Split cells in classes:

- Non-neuronal cells
- Excitatory neurons
- Inhibitory neurons

Example: annotating human brain cells

Outline

- Introduction to clustering
 - Hierarchical clustering
 - k-Means clustering
 - Graph-based clustering
- scRNA-seq clustering
- Annotating clusters
- Cluster validation
- Challenges & outlook

Challenges

- Subjectivity: what is a cell type?
 - Different parameters yield different results
 - Validation is important
- Scalability: number of cells has grown from ~10² to ~10⁶
 - Computational efficiency
 - Visual exploration, crowding problem

Downside of clustering

Time consuming

Not reproducible

Subjective

Lots of single-cell data is available nowadays!

Can we use that to annotate our cells?

Supervised approach

Annotated cells (e.g. atlas)

Memory CD8 T

Naive CD4 T

Naive CD4 T

Naive CD8 T

Supervised approach

Supervised approach

Clustering practical

- Hierarchical clustering: distances and linkage methods
- k-Means
- Graph-based clustering

Annotating clusters

Resources

- Kiselev et al. "Challenges in unsupervised clustering of single- cell RNA- seq data" https://doi.org/10.1038/s41576-018-0088-9
- Duò et al. "A systematic performance evaluation of clustering methods for single-cell RNA-seq data" https://doi.org/10.12688/f1000research.15666.2
- Orchestrating Single-Cell Analysis with Bioconductor https://osca.bioconductor.org/
- Hemberg single cell course: Analysis of single cell RNA-seq data https://scrnaseq-course.cog.sanger.ac.uk/website/index.html
- Slides Åsa Björklund (NBIS, SciLifeLab)

 https://sithub.com/NBIS.voden/vorkeben.coBNA.com/tree/recetor//

https://github.com/NBISweden/workshop-scRNAseq/tree/master/slides2019

 Tutorial: guidelines for annotating single-cell transcriptomic maps using automated and manual methods

https://doi.org/10.1038/s41596-021-00534-0