4.4 Gas Laws

- A closed container containing gas has:
 - > Fixed number of molecules
 - Constant mass
- The gas behaviour is dependant on three variables:
 - > Pressure
 - > Volume
 - > Temperature

Note: For all gas law equations, the temperature involved must be absolute, i.e. in Kelvin

$$T = \theta + 273$$

where T = temperature [Kelvin]

 θ = temperature [°C]

4.4.1 Boyle's Law

For a gas of fixed mass, the **pressure** is inversely proportional to its **volume** if the temperature is constant.

$$PV = k$$

$$P_1V_1 = P_2V_2$$

where P = pressure of the gas [Pa]

 $V = \text{volume of the gas } [\text{m}^3]$

Examples of typical Boyle's Law questions: Capillary tube with a mercury column trapping some air in it. Given that the atmospheric pressure is 76 cm Hg, to calculate the pressure of the air in the tube:

Pressure of the gas = (76+h) cm Hg

Pressure of the gas = (76-h) cm Hg

Pressure of the gas = 76 cm Hg