CS340 -> Assignment Sharoika Problem 1) Breadth first will start at the tree root, return all nodes on that level before moving on to the next level. > 2,3,6,4,5, @ **© ©** Queue is a FiFo structure that will -> eeft child use the push (add) and pop (remove) operations -> Righ Child Algorithm level Order (root): Node If root is null if the root is none there is no tree for us to level order. return creating a temporary queue. Queue queue add the root to the queve. tmp push root while "queue" is not empty & while the quove is not empty take the node from the front of Node trop = queve front the queweor owners left most rode output it out and then pop it Output the value of tmp top the queue (removes tmp) if there is a left child add it to a I) if left node of trop exists Push left node onto queve of there is a right child add it If the right node of trop exists 2) Push right node onto quee" Queve: 128369 1045 78 11 Example: 10 Output: 128369 *we will stop here notice the noder ore queuing in level order, and the queen get earger compared to output

N is the number of nodes, with this algorithm for a level troversal we never have to visit a node more then once because we are working our way down the tree. Therefore at most we Visit N nodes meuning this algorith is O(N), to add onto this we are always moving from left to right and down, we never move up.

Maksim

Problem	n 4)						
(a) The will the	worst happ while	case rulen who	noning the	me wou corray heeh al	ld be is all l entre	0(N) to be	his ecove

c) every step a[o] is fliped, every second step a[i] is flipped every fourth step a[2] is flipped,

Therefore if we have N operation alo] will flip N/2 times, also will flip N/2 times,

Let
$$k$$
 $i=0$ $i=1$ $k-1$ $i=2$ $i=3$ $i=$

Now we divide by cost of N grention 2N/19=2

running time

O(1)