Statistical Data Analysis, Lecture 6

dr. Dennis Dobler

Vrije Universiteit Amsterdam

International Women's Day + 2, 2021

Topics in this course

- Summarizing data
- Exploring distributions
- Oensity estimation
- Bootstrap methods
- Nonparametric tests
- Analysis of categorical data
- Multiple linear regression

Chapter 5: The bootstrap

Contents of Chapter 5:

- Simulation
- 2 Bootstrap estimators for a distribution
 - parametric bootstrap
 - empirical bootstrap
- Bootstrap confidence intervals
- Bootstrap tests

bootstrap confidence intervals

Idea

Set-up: parameter θ unknown, estimator $T \sim Q_P$ (Q_P unknown).

Accuracy of T:

- bias(*T*)
- var(T) or sd(T)
- confidence interval C for θ : $P(C \ni \theta) = 1 \alpha$
- ...

Confidence interval C based on Q_P . Use bootstrap approximation $\tilde{Q}_{\tilde{P}}!$

More precisely: " T_n , \tilde{P}_n "

T estimates $\theta \Rightarrow T - \theta \sim G$ concentrated around 0.

$$P(G^{-1}(\alpha) \le T - \theta \le G^{-1}(1 - \alpha)) \ge 1 - 2\alpha$$

$$\Leftrightarrow$$
 $P(T-G^{-1}(1-\alpha) \le \theta \le T-G^{-1}(\alpha)) \ge 1-2\alpha.$

$$\Rightarrow$$
 $[T-G^{-1}(1-\alpha), T-G^{-1}(\alpha)]$ is $(1-2\alpha)$ confidence interval for θ .

Density

Q_P: distribution of T_n

G: distribution of $T_n - \theta$

Q_P and realisation of T_n

realised conf.int. for $\boldsymbol{\theta}$

Density

Density

The bootstrap confidence interval (1)

In confidence interval $[T - G^{-1}(1 - \alpha), T - G^{-1}(\alpha)]$ unknown:

- G, i.e. the distribution of $T \theta$,
- Q_P , i.e. the distribution of T,
- \bullet θ , the parameter of interest.

Hence, estimate G

by empirical distribution of $Z_i^* = T_i^* - T$, i = 1, ..., B.

 T_1^*, \dots, T_B^* bootstrap realizations (empirical or parametric).

$$G^{-1}(\alpha)$$
 by $Z^*_{([\alpha B])}$.
 $G^{-1}(1-\alpha)$ by $Z^*_{([(1-\alpha)B])}$.

R: quantile

The bootstrap confidence interval (2)

Instead of
$$[T-G^{-1}(1-\alpha), T-G^{-1}(\alpha)]$$
 (unknown)
Use $[T-Z^*_{([(1-\alpha)B])}, T-Z^*_{([\alpha B])}]$ (known!)
 $=[2T-T^*_{([(1-\alpha)B])}, 2T-T^*_{([\alpha B])}]$
because $Z^*_i = T^*_i - T$.

FYI: Reliability of a confidence interval

Problem Actual coverage probability only $\approx 1 - \alpha...$

Question Which approach is most trustworthy?

Approach Simulate actual coverage probability of confidence interval:

Pick θ & estimator T_n of θ .

Do e.g. K = 10000 times:

- generate $x_1, \ldots, x_n \sim P_{\theta}$,
- ② derive $T_n(x_1,\ldots,x_n)$, generate T_1^*,\ldots,T_B^* ,
- construct confidence interval C,
- \bullet is $\theta \in C$?

Coverage probability \approx relative frequency of " $\theta \in C$ ".

bootstrap tests
•0000000

Bootstrap test

Situation $X_1, \ldots, X_n \overset{i.i.d.}{\sim} P$ (unknown) Aim: goodness-of-fit hypothesis testing

 $H_0: P \in \mathcal{P}_0$ versus $H_1: P \notin \mathcal{P}_0$

 \mathcal{P}_0 collection of distributions.

Test statistic $T \sim Q_P$.

Problem: Q_P unknown for all $P \in \mathcal{P}_0$!

Idea: Bootstrap! Estimate Q_P by $\tilde{Q}_{\tilde{P}}$.

Example (1)

Histogram of x

Data $X_1, \ldots, X_n \overset{\text{i.i.d.}}{\sim} P$ (unknown). Test hypotheses

 $H_0: X_1, \ldots, X_n \sim \operatorname{Exp}(\lambda)$ for some $\lambda > 0$

 $H_1: X_1, \dots, X_n$ are not exponentially distributed

Possible test statistic: $T = \frac{median(X)}{mean(X)} \sim Q_P$

Simulate T under H_0 , because $Q_{Exp(\lambda)}$ unknown.

Example (2)

 $Q_{E \times p(\lambda)}$ independent of λ !

 \Rightarrow T is "nonparametric".

Simulate $Q_{E \times p(1)}$ via (parametric) bootstrap: B times

- generate $X_1^*, \ldots, X_n^* \overset{i.i.d.}{\sim} Exp(1)$,
- compute $T^* = median(X_1^*, \dots, X_n^*)/mean(X_1^*, \dots, X_n^*)$.

Remark calling this "bootstrap" is actually inappropriate!

Example (3)

two-sided H_0 not rejected

Another example (1)

Remember how not to use Kolmogorov-Smirnov test for composite

$$H_0: X_1, \ldots, X_n \sim N(\mu, \sigma^2)$$
 for some μ and σ^2

> ks.test(x,pnorm,mean(x),sd(x))

R-command "tests" simple $H_0: X_1, \ldots, X_n \sim N(\overline{X}, S_X^2)$.

blue: distribution of original KS-statistic D_n

 $\begin{array}{ll} \textbf{red} \colon \mbox{ distribution of } \\ \mbox{ modified KS-statistic } \tilde{D}_n \end{array}$

Another example (2)

 \tilde{D}_n : sensible test statistic... but p-value

> ks.test(x,pnorm,mean(x),sd(x))\$p.val

is wrong; calculated from blue distribution of D_n .

Bootstrap to simulate red distribution of \tilde{D}_n !

Nonparametric? (see the syllabus and the assignment)

Bootstrap: Warnings

Warning Bootstrap can fail!

- parametric bootstrap & outliers in sample & sensitive parameter estimator \Rightarrow bad bootstrap approximation.
- empirical bootstrap & extreme order statistics: distribution of $X_{(1)} = \min(X_1, \dots, X_n)$ or $X_{(n)} = \max(X_1, \dots, X_n)$.
- Heavy-tailed data distribution (Example 4.6 in syllabus: Cauchy distribution.)

to finish

To summarize

Today we discussed

- Simulation
- Bootstrap estimators for a distribution
 - parametric bootstrap
 - empirical bootstrap
- Bootstrap confidence intervals
- Bootstrap tests

Next week Exam preparation