	Cognome:N	Nome:
	Matricola:	
	Grafica Computazionale 8 aprile 2	2015 Ingegneria Informatica
1		
2	2 Scrivere la matrice di uno scalamento uniforme di parametro	2 con punto fisso (1, 1)
3	3 Calcolare il prodotto vettoriale dei vettori (0, 1, 0) e (1, 1, 0)	
	, , , , , , , , , , , , , , , , , , , ,	
4	4 Fornire la definizione e un semplice esempio della funzione pri	imitiva pyplasm MAT
5	5 Rappresentare un edificio di parcheggio come multigrafo geran piano 1,2,3, sezione A,B,C, posto 1,2,3,)	rchico (rampa 1,2,3, ascensore 1,2,3,

Cognome:	Nome:	
	Matricola:	
▲ Grafica Computazionale	8 aprile 2015	Ingegneria Informatica
6 Scrivere la matrice dello scorrimento 2D ch	ne inclini di 30 gradi le linee	orizzontali
7 Illustrare sinteticamente almeno una tecnic	ca nota di memorizzazione d	li matrici sparse
		•
8 Fornire il modello LAR del prodotto Carte	siano del triangolo standard	l per il segmento [0, 1]
9 Scrivere, in un qualunque linguaggio di pi	rogrammazione, una funzior	ne che esegua la somma di due
matrici di dimensioni compatibili		
10 Scrivere la matrice della rotazione 3D di	asse parallelo al vettore (-1	$(-1,-1)$ e angolo $\pi/2$

Cognome:	Nome:	
•)	Matricola:	
Grafica Computazionale	8 aprile 2015	Ingegneria Informatica
1 Fornire una definizione di "modello LAR" e	un esempio 3D di modello	
2 Scrivere la matrice dello scorrimento 2D che	inclini di 30 gradi la linea	orizzontali
2 Serivere la matrice deno scorrimento 25 ene	, menni di 90 gradi le mice	OTIZZOITUUT
3 Scrivere l'equazione vettoriale del piano pas	sante per i punti $(2, -3, 4)$	(1,0,5) e (-1,2,0)
4 Rappresentare un edificio di parcheggio com	ne multigrafo gerarchico (ra	ampa 1,2,3, ascensore 1,2,3,
piano 1,2,3, sezione A,B,C, posto 1,2,3,)		
5 Descrivere la struttura di una matrice di tra	aslazione 3D	

	Cognome:	Nome:	
6)	Matricola:	
	Grafica Computazionale	8 aprile 2015	Ingegneria Informatica
6 F	ornire la definizione e un semplice esempio	della funzione primitiva p	yplasm AA
7 E (1,0,	seguire il prodotto di uno scorrimento pi	ano di tangente 1/2 e che	e non muta le x , per il vettore
8 S	crivere la matrice della rotazione 3D di ass	e parallelo al vettore $(1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1$	1) e angolo π
	efinire una funzione python per memorizz unzione di trasposizione	are una matrice binaria sp	parsa come dizionario, e fornire
	Scrivere, in un qualunque linguaggio di pro ici di dimensioni compatibili	ogrammazione, una funzior	ne che esegua il prodotto di due

	Cognome:	Nome	e:
	•	Matricola:	
	O Grafica Computazionale	8 aprile 2015	Ingegneria Informatica
1	Specificare quando uno scalamento si dice d	i espansione	
2	Scrivere l'equazione vettoriale del piano pas	sante per i punti (2, -	$(3,4), (1,0,5) \in (-1,2,0)$
3	Ricavare la matrice di una rotazione piana o	di 45 gradi intorno al r	unto fisso (3,0)
	recavare la maurice di una rotazione piana e	ar 10 gradi intorno ai p	(0, 0)
4	Calcolare il prodotto scalare dei vettori (0, 2	(2x,0) e(x/2,1,0)	
5	Scrivere la matrice della rotazione 3D di ass	co parallolo al vottoro (1 1 1) ο angolo π
	Scrivere la matrice della rotazione 3D di ass	se paranelo ai vettore (1, 1, 1) e angolo n

	Cognome:	Nome:_	
	``\	Matricola:	
	Grafica Computazionale	8 aprile 2015	Ingegneria Informatica
6	Rappresentare la struttura di un mobile libr	eria come multigrafo gera	rchico
7	Fornire il modello LAR del prodotto Cartesi	ano del triangolo standar	d per il segmento [0, 1]
8	Fornire la definizione e un semplice esempio	della funzione primitiva p	pyplasm STRUCT
9	Scrivere la matrice di una rotazione 3D di a	ngolo $\pi/2$ con punto fisso	(1,1,1) e asse $(0,0,1)$
10		erarne i vertici) di tre 2-si	mplessi e scriverne le matrici FV
e l	EV		

/	me:
Matricola:	
Grafica Computazionale 8 aprile 20	15 Ingegneria Informatica
1 Ricavare la matrice di uno scalamento 3D che dimezzi le coordi	nate, e con punto fisso $(0,5,5)$
2 Scrivere la matrice di una trasformazione di scorrimento 3D chrispetto all'asse x	ne inclini di 45 gradi i piani $y = cost$
3 Scrivere la matrice della riflessione 2D rispetto all'asse y	
4 Fornire la definizione e un semplice esempio della funzione prim	itiva pyplasm MAT
5 Disegnare un oggetto geometrico 2D con parti ripetute (facc	iata di edificio, con balconi, porte e
finestre), e il corrispondente modello di multigrafo	atta di camelo, con Balcom, porte c

	A Cognome: Nome:
	Matricola:
•	Grafica Computazionale 8 aprile 2015 Ingegneria Informatica
6	Scrivere una funzione python per estrarre le $(d-1)$ -facce orientate di un d-simplesso orientato
U	Scrivere una funzione python per estratte le (a – 1)-racce orientate ur un d-simplesso orientato
7	Calcolare le coordinate baricentriche del punto $(1/2,1/2)$ rispetto al simplesso standard 2D
8	Scrivere la matrice della rotazione 3D di asse parallelo al vettore $(1,1,1)$ e angolo π
9	Fornire il modello LAR di una griglia 3×3 di quadrati di lato unitario
Э	Forme it modello LAR di una grigna 3 × 3 di quadrati di lato unitalio
10 (1	Eseguire il prodotto di uno scorrimento piano di tangente $1/2$ e che non muta le x , per il vettore $0,3)$
(+)	

	Cognome:		Nome:	
	Cognome.	Matricola:	TVOIIIC	
(Grafica Computazionale	8 aprile	2015	Ingegneria Informatica
6	Fornire la definizione e un semplice esempio			
		Î		•
7 e E	Disegnare un complesso simpliciale (e nume	erarne i vertici) di	i due 3-simp	olessi e scriverne le matrici FV
0.1	•			
8	Descrivere la struttura di una matrice di tr	aslazione 3D		
				(
9	Scrivere l'equazione vettoriale del piano pas	ssante per 1 punti	(2, -3, 4),	$(1,0,5) \in (-1,2,0)$
10	Scrivere la matrice della rotazione 3D di a	asse parallelo al v	ettore $(-1,$	$-1,-1)$ e angolo $\pi/2$

		~~	
\boldsymbol{C}	Cognome:Nome:		
\cap		Matricola:	T . T .
\mathcal{O}	Grafica Computazionale	8 aprile 2015	Ingegneria Informatica
alloggio 1	esentare la struttura di un complesso, 2,3) come multigrafo gerarchico		scala A,B,C, piano 1,2,3,
2 Descri	vere la struttura di una matrice di tra	aslazione 3D	
3 Fornir	e la definizione e un semplice esempio	della funzione primitiva py	plasm STRUCT
4 Fornir	e il modello LAR del prodotto Cartes	iano del quadrato standard	per il segmento $[0,1]$
	re una funzione python per memorizza one di trasposizione	re una matrice binaria spars	sa come array di triple e fornire

	Cognome:		Nome:	
	Cognome	Matricola:	Nome.	
	Grafica Computazionale	8 aprile	2015	Ingegneria Informatica
6	Calcolare il prodotto misto dei vettori (0, 2			0-0
U	Calculate ii prodotto inisto dei vettori (0, 2	(x, 0), (x/2, 1, 0), ((x, 2, 0)	
		1		
7	Specificare quando uno scalamento si dice o	di compressione		
	Scrivere una matrice di trasformazion	. 1:1:1	1	
8 (0,	Scrivere una matrice di trasformazion $(1,2),(0,-2,1),(2,1,-1)$ nel triangolo stand			mandi il triangolo di vertici
9	Fornire due esempi di combinazione affine d	di punti pianattir	-amanta a	li dimensione due e tre
Ü	Torme due esempi di combinazione ainne e	ar paner, rispectiv	amente	ir dimensione due e tre
10	Ricavare la matrice di una traslazione 3D	che porti il punt	o (5, 4, 3)) nel punto (0, 5, 5)
			. (-, ,-,	(-/-/-/

	Cognome:		Nome:	
		Matricola:		
	Grafica Computazionale		2015	Ingognaria Informatica
	• Granca Computazionale	8 aprile	2010	Ingegneria Informatica
1	Descrivere la struttura di una matrice di re	tazione elementa	re 3D	
2	Calcolare il prodotto vettoriale dei vettori	(1 1 0) e (0 1 1)		
_	Calcolare ii prodotto vettoriale dei vettori	(1,1,0) ((0,1,1)		
3	Disegnare un complesso simpliciale (e nume	erarne i vertici) d	li tre 2-sim	olessi e scriverne le matrici FV
e I		,	•	
4	Fornire la definizione e un semplice esempie	o della funzione p	orimitiva py	plasm INSL
5	Scrivere la trasf. piana che mandi il triango	olo standard nel t	riangolo di	vertici (O, A, B)
1				

Cognome:		Nome:_	
		Matricola:	
Grafica Comp	utazionale	8 aprile 2015	Ingegneria Informatica
6 Scrivere, in un qualunque lin matrici di dimensioni compatibili	guaggio di pro	ogrammazione, una funzio:	ne che esegua il prodotto di due
7 Calcolare le coordinate barice	ntricho dol nu	unto (1/2, 1/2) rispotto al c	eimplesse standard 2D
		(-, -, -, -, -, -, -, -, -, -, -, -, -, -	
8 Rappresentare un edificio di p	parcheggio cor	me multigrafo gerarchico (1	rampa 1,2,3, ascensore 1,2,3,
piano 1,2,3, sezione A,B,C, p			
9 Fornire il modello LAR di una	a griglia 2×2	2 × 2 di cubi di lato unitari	io
10 Scrivere la matrice di scorri	mento element	tare 2D	

	Cognome:		ome:	
,		Matricola:	 1F T	:- TC-
	Grafica Computazionale	8 aprile 20	15 Ingegi	neria Informatica
1	Fornire la definizione e un semplice esempio	della funzione prin	nitiva pyplasm DI	STR
2	Specificare quando uno scalamento si dice di	espansione		
3	Fornire una definizione di "matrice sparsa"			
4	Fornire una definizione di "modello LAR" e u	un esempio 2D di r	nodello	
5	Calcolare il prodotto vettoriale dei vettori (1	, 1, 0) e (0, 1, 1)		
		, , , , , , ,		

Cognome:	No	ome:	
\mathbf{X}	Matricola:		
O Grafica Computazionale	8 aprile 20	015 Ing	egneria Informatica
6 Descrivere la struttura di una matrice di tra	aslazione 3D		
7 Rappresentare l'indice di un libro (parti, ca	pitoli, sezioni) com	e multigrafo ge	rarchico
8 Scrivere la trasf. piana di coord. che mand	i il quadrato stand	ard costruito s	ugli assi nel quadrato di
vertici $(-2, 1.5), (-1, 1.5), (-2, .5), (-1, .5)$	•		
9 Ricavare la matrice di uno scalamento 3D c	he dimezzi le coord	linate, e con pu	nto fisso (0, 5, 5)
10 Fornire un metodo di calcolo delle $(-1,0,2),(2,3,0),(1,1,1)$	coordinate affini	del piano	passante per i punti

	Cognome:	Nome:	
()	00811011101	Matricola:	
\mathcal{J}	Grafica Computazionale		Ingegneria Informatica
1 Scrivere matrici di d	, in un qualunque linguaggio di pr imensioni compatibili	ogrammazione, una funziono	e che esegua la somma di due
2 Fornire	il modello LAR del triangolo standa	ard del piano	
3 Fornire	la definizione e un semplice esempio	o della funzione primitiva py	plasm DISTL
4 Scrivere	la matrice di uno scalamento unifo	rme di parametro 2 con pun	to fisso (1, 1)
	la trasf. piana di coord. che mano	di il cerchio unitario con cen	tro nell'origine nell'ellisse con
centro in (1	, 1) e raggi 1/2, 2		

Cognome:	Nome:	
O	Matricola:	
Grafica Computazionale	8 aprile 2015	Ingegneria Informatica
6 Scrivere la matrice della riflessione 2D rispe	tto all'asse y	
7 Eseguire il prodotto della matrice di rotazio		- il
Liseguire ii prodotto dena matrice di rotazio	me piana di angolo #/3 pe	i ii vettore (1, 2, 3)
8 Definire una funzione python per memorizza una funzione di trasposizione	re una matrice binaria spar	rsa come array di triple e fornire
9 Calcolare le coordinate baricentriche del pur	nto $(-1, 1/2, 3)$ rispetto al	simplesso standard 3D
10 Rappresentare la struttura di un mobile lil	breria come multigrafo gor	archico
10 Rappresentare la struttura di un mobile in	breria come munigraio gen	arcinco

1	Cognome:		Nome:	
	Grafica Computazionale	Matricola: 8 aprile	2015	Ingegneria Informatica
1	Fornire il modello LAR del prodotto Cartes			
•	Torme i modello Erre del prodotto Cartes	iano dei triangor	o standard	per il segmento [0, 1]
	Di			l i i l i i i i
2 e F	Disegnare un complesso simpliciale (e nume $\overline{V}V$	rarne i vertici) d	ı tre 2-sımj	plessi e scriverne le matrici FV
3	Calcolare le coordinate baricentriche del pur	nto $(1/2, 1/2)$ ris	spetto al si	mplesso standard 2D
4	Fornire la definizione e un semplice esempio	della funzione n	rimitiva pv	vnlasm DISTL
•	Tormie la delimizione è un sempree esempre	dena ranzione p	iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii	prasm DISTE
5 all	Rappresentare la struttura di un complesso oggio 1,2,3) come multigrafo gerarchico	abitativo (edific	eio 1,2,3,	scala A,B,C, piano 1,2,3,

	Cognome:	Nome:	
1		Matricola:	
1	Grafica Computazionale	8 aprile 2015	Ingegneria Informatica
	Scrivere, in un qualunque linguaggio di prog trici di dimensioni compatibili	grammazione, una funzione	e che esegua il prodotto di due
			(4.2.2)
7	Eseguire il prodotto della matrice di rotazion	ne piana di angolo $\pi/3$ per	il vettore (1, 2, 3)
8	Specificare quando uno scalamento si dice di	compressione	
9	Scrivere la trasf. piana che mandi il triangol	o standard nel triangolo d	i vertici (O, A, B)
10	Scrivere la matrice di uno scalamento unifo	orme di parametro 2 con p	unto fisso (1,1)

-1		Cognome:		Nome:	
- 1			Matricola:		
		Grafica Computazionale	8 aprile	2015	Ingegneria Informatica
1	Scrivere	la matrice della riflessione 2D rispe	etto all'asse y		
2		entare un settore di stadio come C, gradino 1,2,3, fila destra,sin			na est,ovest; curva nord,sud;
500	ооте 11,Д,	o, gradino 1,2,9, ina dostra,511.	nstra, posto 1,2,6	,,	
3		una matrice di trasformazion		e che ma	ndi il triangolo di vertici
(2,	-1, 2), (0,	(0, -2, 1), (0, 1, -1) in $(0, 0, 1), (1, 0, 1)$	1), (0, 1, 1)		
4	Fornire la	a definizione e un semplice esempio	della funzione r	orimitiva pv	plasm MAT
		1	· · · · · · ·	13	1
5	Descrive	e la struttura di una matrice di ri	flessione elementa	are 3D	

1 1	Cognome:	Nome:		
	I	Matricola:		
T T	Grafica Computazionale	8 aprile 2015	Ingegneria Informatica	
6 Fornire t	ına definizione di "modello LAR" e u	n esempio 3D di modello		
	una funzione python per memorizzar e di trasposizione	re una matrice binaria sp	arsa come dizionario, e fornire	
8 Calcolard	e il prodotto vettoriale dei vettori (1,	0,0) e (1,1,1)		
	in un qualunque linguaggio di prog mensioni compatibili	rammazione, una funzion	e che esegua la somma di due	
10 Sintetiz	zare in poche parole le differenze tra	combinazioni lineari, affi	ni, positive e convesse	

	Cognome:	Nome:	
1	2 Grafica Computazionale	Matricola:	
\perp	Grafica Computazionale	8 aprile 2015	Ingegneria Informatica
1	Fornire la definizione e un semplice esempio	della funzione primitiva p	yplasm INSR
		17. 17. ()7.5. 1.0.0	LARG : 100
	Rappresentare la struttura di un complesso ggio 1,2,3) come multigrafo gerarchico	abitativo (edificio 1,2,3,	scala A,B,C, piano 1,2,3,
	Definire una funzione python per memorizz funzione di trasposizione	zare una matrice binaria sp	parsa come dizionario, e fornire
4	Scrivere l'equazione vettoriale del piano pas	ssante per i punti $(2, -3, 4)$, (1,0,5) e (-1,2,0)
5	Calcolare il prodotto misto dei vettori (0, 2:	(x,0), (x/2,1,0), (x,2,0)	

1	Cognome:		Nome:	
	. 2 Grafica Computazionale	Matricola: 8 aprile	2015	Ingegneria Informatica
_				
6	Ricavare la matrice di una rotazione piana o	di 120 gradi intoi	rno al punto	hsso (0, 5)
7	Scrivere la matrice della riflessione 2D rispe	etto all'asse y		
8	Fornire il modello LAR di una griglia 2×2	\times 2 di cubi di la	to unitario	
9	Descrivere la struttura di una matrice di ro	tazione elementa	re 3D	
10 (0,	Scrivere una matrice di trasformazion $(1,2), (0,-2,1), (2,1,-1)$ nel triangolo stand			ndi il triangolo di vertici

	Cognome:	Nomo	
1	9 Cognome	Matricola:	
	O Grafica Computazionale	8 aprile 2015	Ingegneria Informatica
1	Fornire il modello LAR di una griglia 3×3		
_	rommo il modono Britt di una grigita o A c	, ar quadrati ar iato amitario	
2	Scrivere la matrice della rotazione 3D di as	sse parallelo al vettore (1, 1, 1	l) e angolo π
3	Fornire la definizione e un semplice esempi	o della funzione primitiva py	plasm MAT
4			1 1
	Definire una funzione python per memorizz funzione di trasposizione	are una matrice binaria spars	sa come array di triple e fornire
5	Rappresentare un settore di stadio come	multigrafo gerarchico (tribu	ına est,ovest; curva nord,sud;
sett	ore A,B,C, gradino 1,2,3, fila destra,sin	nistra; posto 1,2,3,	
l			

	Cognome:	Nome:	
	Matric		
1	Grafica Computazionale 8 :	aprile 2015 Ingegneria Inform	natica
6	Ricavare la matrice di una rotazione piana di 45 grac	di intorno al punto fisso (3,0)	
7	Eseguire il prodotto di uno scorrimento piano di tang	rente 1 e che non muta le u per il vettore	(1 2 3)
•	Eseguire in prodotto di uno scorrimento piano di tang	genee i e ene non muta le y, per n vettore	(1, 2, 3)
8	Scrivere l'equazione del segmento di retta con punti d	estremi $(2, -3, 4)$ e $(1, 0, 5)$	
9	Scrivere la matrice di scorrimento elementare 2D		
10	Descrivere la struttura di una matrice di rotazione	elementare 3D	

1	l		Cogr	nome:		No	me:		
						Matricola:			
L	<u> </u>	エ	Grafica	Computazion	nale	8 aprile 20	15	Ingegneria	Informatica
1	R	appresent	are la stru	ttura di un comp	plesso	abitativo (edificio 1	1,2,3,	scala A,B,C,	piano 1,2,3,
an	ogg	310 1,2,3)	come muit	igrafo gerarchico					
2	C	alcolare l	e coordinat	te baricentriche d	lel pu	${\text{nto } (1/2, 1/2) \text{ rispet}}$	to al sir	nplesso standar	d 2D
					P	(-/ -, -/ -/			
3	S	crivere la	trasf. pian	a che mandi il tr	iango	lo standard nel triar	ngolo di	vertici (O, A, E)	3)
4	S	pecificare	quando un	no scalamento si d	dice d	i compressione			
5	С	alcolare i	l prodotto	vettoriale dei vet	tori (1,0,0) e (1,1,1)			

		Cognome:		Nome:	
1 /		cognome	Matricola:	1101110	
	_廿	Grafica Computazionale	8 aprile	2015	Ingegneria Informatica
6	Ricavare l	la matrice di una rotazione piana			
Ü	10001010	a married ar and recallent plant	ar 10 graar mor	no ar panto	11000 (0,0)
7	C 1		1:	D. alice to alter	1 11 15 11 1
7	scrivere is petto all'as	a matrice di una trasformazione o see y	ii scorrimento 31	o che inclin	1 di 15 gradi i piani $z = cost$
<u> </u>	Forniro il	modelle I AP del prodette Certee	iono dol avadrot	o standard	nor il cogmente [0, 1]
8	rornire ii	modello LAR del prodotto Cartes	nano dei quadrat	o standard	per ii segmento [0, 1]
9	Fornire la	definizione e un semplice esempio	della funzione r	orimitiva pv	plasm LIST
J	romme ia	dennizione e un sempnee esemple	dena ranzione p	линича ру	piasiii bib'i
10	Definire	una funzione python per memoriz	zare una matric	e hinaria en	arsa come dizionario, e forniro
		di trasposizione	zare una matrici	omana sp	aroa come dizionario, e formite

		Cognome:	Nomo	
_		Cognome	Matricola:	
	CJ	Grafica Computazionale	8 aprile 2015	Ingegneria Informatica
1	Scrivere la	trasf. piana che mandi il triango		
			, and the second	
2	Rappresen	tare l'indice di un libro (parti, ca	pitoli, sezioni) come multig	grafo gerarchico
9	Comission 10		di accominante 2D aba incl	:: d: 15d: :
3 ris	spetto all'as	a matrice di una trasformazione o se \boldsymbol{y}	ii scorrimento 3D che inci	Ini di 13 gradi i piani $z = cost$
4	Fornire il	modello LAR del triangolo standa	ard del piano	
5	Disegnare	un complesso simpliciale (e nume	erarne i vertici) di tre 2-sim	uplessi e scriverne le matrici FV
	EV	un compresso simpliciale (e nume	startie i vertier) di tre 2-sin	ipiessi e seriverne le matrier i v
1				

	Cognome:	Nome:	
15	***************************************	Matricola:	
TO	Grafica Computazionale	8 aprile 2015	Ingegneria Informatica
	in un qualunque linguaggio di pr nensioni compatibili	ogrammazione, una funzion	e che esegua la somma di due
7 Specificar	e quando uno scalamento si dice d	li espansione	
8 Fornire la	definizione e un semplice esempio	o della funzione primitiva py	plasm LIST
9 Fornire (-1, 0, 2), (2,		coordinate affini del pi	ano passante per i punti
10 Calcolar	e il prodotto scalare dei vettori (0	$(0,2x,0) \in (x/2,1,0)$	

_	Cognome:	Nome:_	
	. , •	Matricola:	
L	L U Grafica Computazionale	8 aprile 2015	Ingegneria Informatica
1		convesso di punti	
2		bitativo (edificio 1,2,3,	scala A,B,C, piano 1,2,3,
all	loggio 1,2,3) come multigrafo gerarchico		
3	Descrivere la struttura di una matrice di trasla	azione 3D	
4	Fornire il modello LAR del prodotto Cartesian	no del quadrato standar	d per il segmento [0, 1]
	D : 1 16 : : : : : : : : : : : : : : : :	11 6	l CAT
5	Fornire la definizione e un semplice esempio de	ella funzione primitiva p	oyplasm CAT

4 0	Cognome:	Nome:	
16		Matricola:	
\perp U	Grafica Computazionale	8 aprile 2015	Ingegneria Informatica
<i>e</i> c:			
6 Scriv	ere la trasf. piana che mandi il triango	no standard nei triangolo d	ii vertici (O, A, B)
7 Defir	ire una funzione python per memorizza	re una matrice binaria spai	rsa come array di triple e fornire
	ione di trasposizione	•	
8 Scriv	ere la matrice di scorrimento elementa	re 2D	
9 Eseg	uire il prodotto di uno scorrimento pi	ano di tangente 1/2 e che	non muta le r per il vettore
(1,0,3)	and it producted at and positioned pr	and ar tangente 1/2 e ene	nen made ie a, per ir vedeste
10 Ric	avare la matrice di una traslazione 3D	che porti il punto $(5,4,3)$	nel punto $(0,5,5)$

	Cognome: Nome:
1	Matricola:
	Grafica Computazionale 8 aprile 2015 Ingegneria Informatica
	- Granca Computazionale 8 aprile 2013 Ingegneria imormatica
1	Fornire la definizione e un semplice esempio della funzione primitiva pyplasm DISTL
2	Rappresentare la struttura di un mobile libreria come multigrafo gerarchico
3	Fornire il modello LAR del triangolo standard del piano
4	Scrivere l'equazione del segmento di retta con punti estremi $(2, -3, 4)$ e $(1, 0, 5)$
	D.Colon of Control of
	Definire una funzione python per memorizzare una matrice binaria sparsa come dizionario, e fornire a funzione di trasposizione

1	Cognome:Nome:
	Matricola: Grafica Computazionale 8 aprile 2015 Ingegneria Informatica
6	Scrivere la matrice di una rotazione 3D di angolo $\pi/2$ con punto fisso $(1,1,1)$ e asse $(0,0,1)$
Ü	solivere in matrice in and retailore of an angelo w/2 con panto isso (1, 1, 1) e asse (0, 0, 1)
7	Eseguire il prodotto di uno scorrimento piano di tangente 1 e che non muta le y , per il vettore $(1,2,3)$
8 (0,	Scrivere una matrice di trasformazione di coordinate che mandi il triangolo di vertici $1,2),(0,-2,1),(2,1,-1)$ nel triangolo standard del piano $z=0$
9	Ricavare la matrice di uno scalamento 3D che dimezzi le coordinate, e con punto fisso $(0,5,5)$
10	Scrivere la matrice di scalamento 2D che dimezzi tutte le coordinate

1	Cognome:	Nome:	
	\times	Matricola:	
	Grafica Computazionale	8 aprile 2015	Ingegneria Informatica
1 pia	Rappresentare un edificio di parcheggio con no 1,2,3, sezione A,B,C, posto 1,2,3,)	ne multigrafo gerarchico (ra	mpa 1,2,3, ascensore 1,2,3,
2 ma	Scrivere, in un qualunque linguaggio di pr trici di dimensioni compatibili	ogrammazione, una funzior	e che esegua la somma di due
3	Scrivere la trasf. piana che mandi il triango	olo standard nel triangolo d	i vertici (O,A,B)
4	Scrivere la matrice della riflessione 2D rispe	etto all'asse y	
5	Calcolare il prodotto misto dei vettori $(0, 2$	(x,0), (x/2,1,0), (x,2,0)	_

1 0	Cognome:	Nome:	
18		Matricola:	
10	Grafica Computazionale	8 aprile 2015	Ingegneria Informatica
6 Disegnare e EV	e un complesso simpliciale (e nume	rarne i vertici) di due 3-sim	plessi e scriverne le matrici FV
7 Fornire la	. definizione e un semplice esempic	della funzione primitiva p્	yplasm DISTL
8 Fornire il	modello LAR del prodotto Cartes	iano del triangolo standard	del piano per se stesso
9 Scrivere l rispetto all'as	a matrice di una trasformazione o sse y	li scorrimento 3D che incli	ni di 15 gradi i piani $z = cost$
10 Scrivere	l'equazione del segmento di retta	con punti estremi $(2,3,4)$ e	e (-1, 2, 0)

_	Cognome:	Nome:_	
	O	Matricola:	
J	Grafica Computazionale	8 aprile 2015	Ingegneria Informatica
1	Calcolare il prodotto vettoriale dei vettori (1, 1, 0) e (0, 1, 1)	
2	Rappresentare l'indice di un libro (parti, ca	nitoli sezioni) come multi	grafo gerarchico
_	respiresentare i marce ai un indio (parti, ca	prion, sezioni) come marei,	Stato gerarenteo
3 e I	Disegnare un complesso simpliciale (e nume $\mathbb{E}V$	erarne i vertici) di tre 2-sin	nplessi e scriverne le matrici FV
4	Scrivere la matrice dello scorrimento 2D che	e inclini di 30 gradi le linee	e orizzontali
5	Fornire la definizione e un semplice esempio	della funzione primitiva p	yplasm MAT
		•	•

10	Cogr	nome:	Nome:	
19	C C	C 1	Matricola:	
10		Computazionale	8 aprile 2015	Ingegneria Informatica
6 Scrivere, matrici di dir	in un qualuı nensioni con	nque linguaggio di pro npatibili	ogrammazione, una funzio	one che esegua il prodotto di due
7 Fornire $(-1, 0, 2), (2,$	un metodo		coordinate affini del	piano passante per i punti
(-, =, -), (-,	-, -,, (-, -, -,	,		
8 Scrivere l	a trasf. pian	a che mandi il triango	olo standard nel triangolo	di vertici (O, A, B)
9 Scrivere l rispetto all'as		una trasformazione d	di scorrimento 3D che inc	elini di 30 gradi i piani $x = cost$
P				
10 Fornire	il modello L	AR del prodotto Carte	esiano del quadrato stand	ard per il segmento [0, 1]

	Cognome:		Nome:	
(6)	()	Matricola:		
_	Grafica Computazionale	8 aprile	2015	Ingegneria Informatica
1	Ricavare la matrice di una traslazione 3D	che porti il punto	(5,4,3) ne	l punto $(0,5,5)$
2	Fornire la definizione e un semplice esempi	io della funzione p	orimitiva py	plasm DISTR
3	Scrivere la trasf. piana che mandi il triang	colo etandard nol t	niangala di	vertici (O. A. P.)
3	perivere la trasi. piana che mandi li triang	olo standard her t	Trangolo di	vertici (O, A, D)
4	Descrivere la struttura di una matrice di r	iflessione elementa	are 3D	
5	Specificare quando uno scalamento si dice	di compressione		

	C	N	
Ω	Cognome:	3.5	
	Grafica Computazionale	Matricola: 8 aprile 2015	Ingegneria Informatica
			Ingegneria imormanca
6 Fornii	re il modello LAR di una griglia 3×3	di quadrati di lato unitario	
7 Esegu	ire il prodotto della matrice di rotazio	one piana di angolo $\pi/3$ per	il vettore $(1, 2, 3)$
8 Forni	re una definizione e un esempio di gus	cio convesso di punti	
9 Diseg	nare un complesso simpliciale (e nume	erarne i vertici) di tre 2-simp	elessi e scriverne le matrici FV
eEv			
	presentare un edificio di parcheggio con,3, sezione A,B,C, posto 1,2,3,)	me multigrafo gerarchico (rai	mpa 1,2,3, ascensore 1,2,3,
piano 1,2	,5, sezione A,B,C, posto 1,2,5,)		

_	Cognome:	Nome:	
()	1	Matricola:	_
\angle	Grafica Computazionale	8 aprile 2015	Ingegneria Informatica
1	Fornire la definizione e un semplice esempio	della funzione primitiva	pyplasm DISTL
		•	
2	Eseguire il prodotto di uno scorrimento pi	ano di tangente 1/2 e c	he non muta le r per il vettore
(1, 0)	(,3)	ano di tangente 1/2 e e	
3	Ricavare la matrice di uno scalamento 3D c	he dimezzi le coordinate.	e con punto fisso (0, 5, 5)
		,	1 (2)2)
4	Fornire il modello LAR di una griglia 3×3	di quadrati di lato unita	rio
		•	
5	Rappresentare un settore di stadio come i	multigrafo gerarchico (ti	ribuna est,ovest; curva nord,sud;
	ore A,B,C, gradino 1,2,3, fila destra,sin		

\mathcal{C}	Cognome:Nome:
•	Matricola:
_	Grafica Computazionale 8 aprile 2015 Ingegneria Informatica
6	Scrivere la matrice di scalamento 2D che dimezzi tutte le coordinate
7 (0,	Scrivere una matrice di trasformazione di coordinate che mandi il triangolo di vertici $1, 2), (0, -2, 1), (2, 1, -1)$ nel triangolo standard del piano $z = 0$
8	Calcolare le coordinate baricentriche del punto $(1/2,1/2)$ rispetto al simplesso standard 2D
9	Scrivere la matrice di uno scalamento uniforme di parametro 2 con punto fisso $(1,1)$
10 e E	
e i	v

	Comomo	Nome	
	Cognome:		•
		Matricola:	
_	Grafica Computazionale	8 aprile 2015	Ingegneria Informatica
1	Sintetizzare in poche parole le differenze tra o	combinazioni lineari, a	ffini, positive e convesse
2 trip	Descrivere un semplice algoritmo di trasposiz le	ione di una matrice sp	arsa memorizzata come insieme di
	Ricavare la matrice di uno scalamento 3D che		
			, e con pante nose (e, e, e)
4	Calcolare il prodotto vettoriale dei vettori (1	0,0) e (1,1,1)	
	Scrivere la trasf. piana di coord. che mandi cici $(-2, 1.5), (-1, 1.5), (-2, .5), (-1, .5)$	il quadrato standard o	costruito sugli assi nel quadrato di

\mathcal{C}	Cognome:		
	Grafica Computazionale	Matricola: 8 aprile 2015	Ingegneria Informatica
6	Rappresentare l'indice di un libro (parti, ca		
		· · · · · · · · · · · · · · · · · · ·	S 0
7	Fornire il modello LAR del prodotto Cartes	siano del triangolo standaro	l del piano per se stesso
8	Descrivere la struttura di una matrice di ro	tazione elementare 3D	
9	Fornire la definizione e un semplice esempio	o della funzione primitiva p	yplasm STRUCT
10	Specificare quando uno scalamento si dice	di compressione	

		NT.	
6	Cognome:		
/	25 Grafica Computazionale	Matricola: 8 aprile 2015	Ingegneria Informatica
_			
1	Ricavare la matrice di una rotazione piana d	i 45 gradi intorno al punt	o fisso $(3,0)$
2	Scrivere l'equazione vettoriale del piano pass	ante per i punti $(2, -3, 4)$, (1,0,5) e (-1,2,0)
3	Fornire il modello LAR del triangolo standar	d del piano	
		The second secon	
4	Diameter and the state of the s		
4 e I	Disegnare un complesso simpliciale (e numera EV	arne i vertici) di due 3-sin	ipiessi e scriverne le matrici F v
5	Scrivere la matrice della riflessione 2D rispet	to all'asse x	

		NT.	
6	Cognome:		
/	4.5	Matricola:	
	Grafica Computazionale	8 aprile 2015	Ingegneria Informatica
6	Rappresentare la struttura di un mobile lib	reria come multigrafo gera	rchico
7	Descrivere la struttura di una matrice di ro	tazione elementare 3D	
8	Fornire la definizione e un semplice esempio		oyplasm DISTL
9	Calcolare il prodotto vettoriale dei vettori (
10 ve:	Scrivere la trasf. piana di coord. che mane tici $(-2, 1.5), (-1, 1.5), (-2, .5), (-1, .5)$	di il quadrato standard cos	struito sugli assi nel quadrato di

<u> </u>	Cognome:	Nome:	
·)/	• • • • • • • • • • • • • • • • • • • •	Matricola:	
24	Grafica Computazionale	8 aprile 2015	Ingegneria Informatica
	e un oggetto geometrico 2D con corrispondente modello di multigra	parti ripetute (facciata di	
2 Fornire il	modello LAR del triangolo standa	rd del piano	
3 Eseguire	il prodotto di uno scorrimento pian	o di tangente 1 e che non r	nuta le u , per il vettore $(1, 2, 3)$
	a trasf. piana di coord. che mand	i il quadrato standard cost	ruito sugli assi nel quadrato di
vertici (-2, 1	.5), (-1, 1.5), (-2, .5), (-1, .5)		
5 Ricavare	la matrice di una traslazione 3D ch	ne porti il punto $(5,4,3)$ ne	el punto $(0,5,5)$

	Cognome:	No	ome:	
		3.5 1		
_	Grafica Computazionale	8 aprile 20		Informatica
6	Scrivere la matrice della riflessione 2D risp	etto all'asse x		
7	Fornire un metodo di calcolo delle	coordinate affini	del piano passante	per i punti
	(0,2),(2,3,0),(1,1,1)	coordinate ainin	der plane passante	per i punti
		1		
8	Descrivere la struttura di una matrice di tr	rasiazione 3D		
9	Fornire una definizione di "matrice sparsa"			
10	Fornire la definizione e un semplice esemp	oio della funzione pri	imitiva pyplasm INSL	

	Cognome:Nome:
•	Matricola: Grafica Computazionale 8 aprile 2015 Ingegneria Informatica
_	Grafica Computazionale 8 aprile 2015 Ingegneria Informatica
1 e F	Disegnare un complesso simpliciale (e numerarne i vertici) di due 3-simplessi e scriverne le matrici FV V
2	Rappresentare la struttura di un mobile libreria come multigrafo gerarchico
3	Eseguire il prodotto della matrice di rotazione piana di angolo $\pi/3$ per il vettore $(1,2,3)$
4	Scrivere la matrice di scalamento 2D che dimezzi tutte le coordinate
5	Fornire una definizione di "modello LAR" e un esempio 3D di modello

	· –	Cogr	nome:	Nome:_	
•	ノ			Matricola:	
		Grafica	Computazionale	8 aprile 2015	Ingegneria Informatica
6	Scrivere,	in un qualuı imensioni con	nque linguaggio di pro	ogrammazione, una funzion	e che esegua il prodotto di due
1116	ttrici di d	illiensioni con	трастын		
7	Scrivoro	la matrica di	una traeformazione	di scorrimonto 3D cho incl	ini di 15 gradi i piani $z = cost$
	petto all'a		una trasiormazione	ai scorrimento 3D che inci	ani di 15 gradi i piani $z = cost$
8	Fornire l	a definizione	e un semplice esempi	o della funzione primitiva p	yplasm CAT
9	Sintetizz	are in poche	parole le differenze tr	a combinazioni lineari, affii	ni positive e convesse
Ü	SHIPCOIZZ	are in poene	parote le differenze ti	a comomazioni inicari, ann	n, positive e convesse
10			na di coord. che man $(-2, .5), (-1, .5)$	di il quadrato standard cos	truito sugli assi nel quadrato di
VCI	ttici (2,	1.0),(1,1.0)	, (2, .0), (1, .0)		

	Cognome:	Nome:	
6)6	Matricola:	
_	Grafica Computazionale	8 aprile 2015	Ingegneria Informatica
1	Fornire la definizione e un semplice esempio	o della funzione primitiva p	yplasm STRUCT
2	Calcolare il prodotto misto dei vettori (0, 2:	(x,0), (x/2,1,0), (x,2,0)	
3	Illustrare sinteticamente almeno una tecnica	a nota di memorizzazione d	li matrici sparse
4	Scrivere la matrice di scorrimento elementa	re 2D	
5	Scrivere la matrice di una trasformazione d	di scorrimento 3D che incli	ini di 45 gradi i piani $y = cost$
ris	petto all'asse x		

20	Cognome:		Nome:	
')(;		Matricola:		
$\angle \mathbf{U}$	Grafica Computazionale	e 8 aprile	2015	Ingegneria Informatica
	ntare un settore di stadio come l', gradino 1,2,3, fila destra,si			a est,ovest; curva nord,sud;
	le coordinate baricentriche del p			olesso standard 2D
8 Fornire il	modello LAR di una griglia $3 \times$	3 di quadrati di la	ato unitario	
9 Ricavare	la matrice di una rotazione piana	a di 45 gradi intor	no al punto fi	sso (3,0)
	una matrice di trasformazie $-2, 1), (0, 1, -1)$ in $(0, 0, 1), (1, 0)$		te che man	di il triangolo di vertici

	Cognome:	Nom	ρ.
	7	Matricola:	
_	Grafica Computazionale	8 aprile 2015	ingegneria Informatica
1	Fornire il modello LAR di una griglia 3×3	di quadrati di lato un	itario
2	Rappresentare un edificio di parcheggio con	ne multigrafo gerarchic	to (rampa 1,2,3, ascensore 1,2,3,
pia	no 1,2,3, sezione A,B,C, posto 1,2,3,)		
3	Scrivere la matrice di una trasformazione	di scorrimento 3D che	inclini di 45 gradi i piani $y = cost$
ris	petto all'asse x		
4	Scrivere la matrice dello scorrimento 2D ch	e inclini di 30 gradi le	linee orizzontali
5	Fornire la definizione e un semplice esempio	o della funzione primiti	iva pyplasm AA

	Cognome:	Nome:	
() 7	00811011101	Matricola:	
4	Grafica Computazionale	8 aprile 2015	Ingegneria Informatica
6 Disegnare e EV	un complesso simpliciale (e nume	erarne i vertici) di tre 2-sim	plessi e scriverne le matrici FV
7 Sintetizza	re in poche parole le differenze tr	a combinazioni lineari, affin	i, positive e convesse
8 Scrivere la	a trasf. piana che mandi il triango	olo standard nel triangolo d	i vertici (O, A, B)
9 Eseguire i (1,0,3)	il prodotto di uno scorrimento p	iano di tangente 1/2 e che	non muta le x , per il vettore
	in un qualunque linguaggio di p nensioni compatibili	rogrammazione, una funzio	ne che esegua la somma di due

	Cognomo	Nome:_	
\cap	Cognome:	Matricola:	
	Crefice Computazionale		Ingagnaria Informatica
	Grafica Computazionale	8 aprile 2015	Ingegneria Informatica
	Definire una funzione python per memorizza funzione di trasposizione	re una matrice binaria spa	ırsa come array di triple e fornire
2	Scrivere l'equazione del segmento di retta c	on punti estremi $(2,3,4)$ ϵ	e (-1, 2, 0)
	9	(4, 0, 7)	
3	Ricavare la matrice di uno scalamento 3D c	he dimezzi le coordinate,	e con punto fisso $(0,5,5)$
	Rappresentare la struttura di un complesso ggio 1,2,3) come multigrafo gerarchico	o abitativo (edificio 1,2,3,.	scala A,B,C, piano 1,2,3,
5	Fornire la definizione e un semplice esempic	o della funzione primitiva	pyplasm LIST

20	Cognome:	Nome:	
()Q		Matricola:	
\angle O	Grafica Computazionale	8 aprile 2015	Ingegneria Informatica
6 Eseguire (1, 0, 3)	il prodotto di uno scorrimento pi		
7 Scrivere rispetto all'a	la matrice di una trasformazione o sse x	di scorrimento 3D che incli	ni di 45 gradi i piani $y=cost$
8 Scrivere	la trasf. 3D che mandi il tetraedro	standard nel simplesso di v	vertici (O, A, B, C)
9 Fornire il	l modello LAR di una griglia $2 imes 2$	imes 2 di cubi di lato unitario	
10 Scrivere	e la matrice dello scorrimento 2D c	he inclini di 30 gradi le line	e verticali

	Cognomo	Nomo	
6	Cognome:	Matricola:	
_	Grafica Computazionale	8 aprile 2015	Ingegneria Informatica
_			Ingegneria informatica
1	Calcolare il prodotto misto dei vettori (0, 2:	(x,0),(x/2,1,0),(x,2,0)	
2	Fornire una definizione di "modello LAR" e	e un esempio 3D di modello	
3	Descrivere la struttura di una matrice di sc	corrimento elementare 3D	
	Coning Poursaione del compante di metto e		(1.0.5)
4	Scrivere l'equazione del segmento di retta c	con punti estremi $(2, -3, 4)$ e	(1,0,5)
5	Illustrare sinteticamente almeno una tecnica	a nota di memorizzazione di	matrici sparse

20	Cognome:	Nome:	
')()		Matricola:	
	Grafica Computazionale	8 aprile 2015	Ingegneria Informatica
6 Scrivere l	a matrice dello scorrimento 2D che	e inclini di 30 gradi le linec	e orizzontali
	a trasf. piana che mandi il triango		
	e un oggetto geometrico 2D con corrispondente modello di multign		i edificio, con balconi, porte e
9 Fornire la	a definizione e un semplice esempio	o della funzione primitiva p	yplasm INSR
	, in un qualunque linguaggio di pr mensioni compatibili	ogrammazione, una funzion	ne che esegua il prodotto di due

	Cognome:Nome:	
\mathcal{L}	Matricola:	
١	Grafica Computazionale 8 aprile 2015 Ingegneria Infor	matica
	Definire una funzione python per memorizzare una matrice binaria sparsa come array di triple na funzione di trasposizione	
2	Fornire la definizione e un semplice esempio della funzione primitiva pyplasm AA	
3	Scrivere la matrice di scalamento 2D che dimezzi tutte le coordinate	
4	Fornire una definizione di "modello LAR" e un esempio 2D di modello	
5	Rappresentare la struttura di un mobile libreria come multigrafo gerarchico	

	C	N	
	Cognome:	Nome: Matricola:	
و	Orafica Computazionale	8 aprile 2015	Ingegneria Informatica
6	Scrivere la trasf. piana che mandi il triango		
U	scrivere la trasi. piana che mandi li triango	no standard her triangolo d	r vertici (O, A, B)
7	Scrivere l'equazione del segmento di retta co	on punti estromi (2, 2, 4) o	(1 2 0)
'	Scrivere i equazione dei segmento di retta di	on punti estremi $(2, 3, 4)$ e	(-1, 2, 0)
8	Ricavare la matrice di una rotazione piana	di 120 gradi intorno al pun	to fisso (0, 5)
	receivare la matrice di una rotazione piana e	ar 120 graar moorno ar pan	10 11550 (0,0)
9	Descrivere la struttura di una matrice di rif	Hessione elementare 3D	
10	Eseguire il prodotto di uno scorrimento pia	ano di tangente 1 e che non	muta le y , per il vettore $(1, 2, 3)$
		_	, , ,
1			

_	Cognome:	Nome:	
6_	2 1	Matricola:	
و	Grafica Computazionale	8 aprile 2015	Ingegneria Informatica
1	Fornire una definizione di "modello LAR" e	e un esempio 3D di modello	
_	D : 1 10::	1 11 6	1 INGD
2	Fornire la definizione e un semplice esempio	o della funzione primitiva py	plasm INSK
3	Eseguire il prodotto di uno scorrimento pi	iano di tangente $1/2$ e che	non muta le x , per il vettore
(1	. 0, 3)		
4	Specificare quando uno scalamento si dice o	di compressione	
5	Definire una funzione python per memoriza	zare una matrice hinaria en	area come dizionario, e fornire
	a funzione di trasposizione	zare una maurice binaria sp	arsa come dizionario, e formie
1			

	Commons	Nama	
91	Cognome:	Nome: Matricola:	
Γ	Grafica Computazionale	8 aprile 2015	Ingegneria Informatica
6 Calcolare	le coordinate baricentriche del pur	nto (-1,1/2,3) rispetto a.	l simplesso standard 3D
7 Descriver	e la struttura di una matrice di sco	orrimento elementare 3D	
8 Rapprese	ntare un edificio di parcheggio com	ne multigrafo gerarchico (r	ampa 1.2.3 ascensore 1.2.3
	. sezione A,B,C, posto 1,2,3,)		
	a trasf. piana di coord. che mand $.5$), $(-1, 1.5)$, $(-2, .5)$, $(-1, .5)$	i il quadrato standard cos	truito sugli assi nel quadrato di
	, in un qualunque linguaggio di pro mensioni compatibili	ogrammazione, una funzio	ne che esegua il prodotto di due

_	Cognome:Nome:
_	Matricola:
<u> </u>	Grafica Computazionale 8 aprile 2015 Ingegneria Informatica
1	Ricavare la matrice di uno scalamento 3D che dimezzi le coordinate, e con punto fisso $(0,5,5)$
	Calcalara il prodotto scalara dei vettori (0, 2x, 0) a (x/2, 1, 0)
2	Calcolare il prodotto scalare dei vettori $(0, 2x, 0)$ e $(x/2, 1, 0)$
3	Scrivere la matrice di rotazione 2D di angolo $\pi/4$
4	Scrivere la trasf. piana che mandi il triangolo standard nel triangolo di vertici (O,A,B)
5 ris	Scrivere la matrice di una trasformazione di scorrimento 3D che inclini di 45 gradi i piani $y=\cos t$ spetto all'asse x
5	Scrivere la matrice di una trasformazione di scorrimento 3D che inclini di 45 gradi i piani $y=\cos t$

	Cognome:	Nome:	
-		tricola:	
٠	Grafica Computazionale	8 aprile 2015	Ingegneria Informatica
e			
6	Sintetizzare in poche parole le differenze tra comb	mazioni inieari, annii	, positive e convesse
7	Fornire una definizione di "modello LAR" e un es	empio 2D di modello	
8	Disegnare un complesso simpliciale (e numerarne	i vertici) di due 3-sim	olessi e scriverne le matrici EV
ег	EV		
9	Rappresentare un settore di stadio come multigettore A,B,C, gradino 1,2,3, fila destra,sinistra;		na est,ovest; curva nord,sud;
SCI	gradino 1,2,5, ma descra,simstra,	posco 1,2,5,	
10	0 Fornire la definizione e un semplice esempio dell	a funzione primitiva p	yplasm STRUCT

	Cognome:	Nome:	
22	00811011101	Matricola:	
$\mathcal{O}\mathcal{O}$	Grafica Computazionale		Ingegneria Informatica
1 Scrivere la	a matrice della rotazione 3D di ass	se parallelo al vettore (1, 1,	1) e angolo π
2 Rappreser	ntare la struttura di un mobile lib	reria come multigrafo gerai	chico
3 Scrivere la rispetto all'as	a matrice di una trasformazione c se z	li scorrimento 3D che incli	ni di 30 gradi i piani $x=\cos t$
4 Fornire il	modello LAR di una griglia $3 imes 3$	di quadrati di lato unitari	o
5 Calcolare	le coordinate baricentriche del pu	nto $(-1, 1/2, 3)$ rispetto al	simplesso standard 3D

		Cognome:	1	Nome:		
	\mathbf{Q}	Cognome	Matricola:			
و	\mathbf{O}	Grafica Computazionale	8 aprile	2015	Ingegneria	Informatica
6	Fornire una	a definizione di "matrice sparsa"				
7	F	1. C	1.11. C		DICTED	
7	rornire ia (definizione e un semplice esempio	dena funzione p	гинила рург	asiii Disi k	
8	Scrivere la	matrice dello scorrimento 2D che	e inclini di 30 gra	di le linee or	izzontali	
9	Calcolare i	l prodotto vettoriale dei vettori ($(1,1,0) \in (0,1,1)$			
10	Scrivere	in un qualunque linguaggio di pr	ogrammazione 11	na funzione o	he esegua il r	rodotto di due
		ensioni compatibili	ogrammazione, a		no osogaa n p	ar dao

		3	.T	
6	Cognome:	Matricola:		
•	Grafica Computazionale	8 aprile 2	 2015	Ingegneria Informatica
			2019	Ingegneria informatica
1	Scrivere la matrice di scorrimento elementa	re 2D		
2	Ricavare la matrice di una traslazione 3D cl	he porti il punto ((5,4,3) nel	punto (0, 5, 5)
3	Fornire la definizione e un semplice esemplo	della funzione pr	rimitiva pyp	olasm MAP
4	Calcolare il prodotto misto dei vettori (0, 2	(x,0), (x/2,1,0), (x/2,1,0)	(x, 2, 0)	
5	Definire una funzione python per memorizza	re una matrice bir	naria sparsa	a come array di triple e fornire
un	a funzione di trasposizione			

	C	NT	
6	Cognome:		
•	Grafica Computazionale	Matricola:	Ingegneria Informatica
		8 aprile 2015	
6	Fornire il modello LAR di una griglia 3×3	di quadrati di lato unitario)
7	Scrivere la matrice della rotazione 3D di ass	se parallelo al vettore $(-1,$	$-1, -1$) e angolo $\pi/2$
8	Rappresentare la struttura di un mobile libr	reria come multigrafo gerar	chico
	FF		
_	Cart and Dames to a state of the Laboratory		(1.0.5) - (-1.0.0)
9	Scrivere l'equazione vettoriale del piano pas	sante per i punti $(2, -3, 4)$,	$(1,0,5) \in (-1,2,0)$
10	Scrivere la matrice di una trasformazione petto all'asse x	di scorrimento 3D che incli	ini di 45 gradi i piani $y = cost$
115	petto an asse x		

	Cognome:	Nome:
•_	Matricola: Grafica Computazionale	
و	Grafica Computazionale 8 aprile	e 2015 — Ingegneria Informatica
	1 Definire una funzione python per memorizzare una matricuna funzione di trasposizione	e binaria sparsa come dizionario, e fornire
2	2 Fornire il modello LAR del prodotto Cartesiano del quadra	ato standard per il segmento [0, 1]
_	_ Totalio ii iiodello 2110 dei prodotto cartesialo dei quadic	no standard por la sogmento (o, 1)
3	3 Eseguire il prodotto della matrice di rotazione piana di an	golo $\pi/3$ per il vettore $(1,2,3)$
4	4 Sintetizzare in poche parole le differenze tra combinazioni	lineari, affini, positive e convesse
5	5 Specificare quando uno scalamento si dice di espansione	

	Cognome:	Nome:	
-		Matricola:	
و	Grafica Computazionale	8 aprile 2015	Ingegneria Informatica
6	Fornire la definizione e un semplice esemplo	della funzione primitiva p	yplasm MAP
7	December 1 starting 1 seconds	.1	l. A D C
7	Rappresentare la struttura di un complesso oggio $1,2,3$) come multigrafo gerarchico	abitativo (edificio 1,2,3,	. scala A,B,C, plano 1,2,3,
8	Scrivere la matrice della rotazione 3D di ass	se parallelo al vettore $(-1,$	$-1,-1)$ e angolo $\pi/2$
9	Descrivere la struttura di una matrice di sc	orrimento elementare 3D	
10	Ricavare la matrice di una rotazione piana	a di 120 gradi intorno al pu	unto fisso (0, 5)
10	recevere la mavilee di una rovazione piane	a di 120 gradi intorno ai pe	1110 11550 (0,0)

	Cognome:	Nomo	
26	Cognome	Matricola:	
OO	Grafica Computazionale	8 aprile 2015	Ingegneria Informatica
1 Fornire	e il modello LAR del triangolo standa		
	G	•	
2 Scriver	e la matrice di scalamento 2D che di	mezzi tutte le coordinate	
	esentare un edificio di parcheggio com	ne multigrafo gerarchico (r	ampa 1,2,3, ascensore 1,2,3,
piano 1,2,3	3, sezione A,B,C, posto 1,2,3,)		
4 Disegna	are un complesso simpliciale (e nume	rarne i vertici) di due 3-sin	nplessi e scriverne le matrici FV
e EV			
5 Scriver	e, in un qualunque linguaggio di pro	grammazione, una funzion	o cho esegua il prodetto di due
matrici di	dimensioni compatibili	grammazione, una runzion	le che esegua ii prodotto di due

	Cognome:	Nome:_	
26	Cognome	Matricola:	
()()	Grafica Computazionale	8 aprile 2015	Ingegneria Informatica
<u> </u>			
6 Fornire la	a definizione e un semplice esempio	della funzione primitiva	pypiasm MAI
7 Scrivere l	a matrice di una trasformazione d	i scorrimento 3D che inc	dini di 30 gradi i piani $x = cost$
rispetto all'as			
9 C-11	*1 1.11	0 1 0) . (1 1 0)	
8 Calcolare	il prodotto vettoriale dei vettori (0, 1, 0) e (1, 1, 0)	
	a trasf. piana di coord. che mand	i il cerchio unitario con o	centro nell'origine nell'ellisse con
centro in (1,	1) e raggi $1/2, 2$		
10 Fornire	una definizione e un esempio di con	mbinazione convessa di p	unti
	•		

		N	
6	Cognome:		
و	Grafica Computazionale	Matricola:8 aprile 2015	Ingegneria Informatica
,			
1	Scrivere una funzione python per estrarre le	e $(d-1)$ -facce orientate di	un d-simplesso orientato
2	Scrivere la matrice di scalamento 2D che di	mezzi tutte le coordinate	
3	Calcolare le coordinate baricentriche del pu	nto $(1/2, 1/2)$ rispetto al :	simplesso standard 2D
4	Ricavare la matrice di una rotazione piana d	di 45 gradi intorno al pun	to fisso (3,0)
5 fin	Disegnare un oggetto geometrico 2D con estre), e il corrispondente modello di multigr		li edificio, con balconi, porte e

	Cognome:	Nome:	
		Matricola:	
٠	Grafica Computazionale	8 aprile 2015	Ingegneria Informatica
6	Eseguire il prodotto della matrice di rotazion	e piana di angolo $\pi/3$ pe	r il vettore (1, 2, 3)
7	Fornire una definizione di "modello LAR" e	un esempio 3D di modello	
8 (0,	Scrivere una matrice di trasformazione $1,2),(0,-2,1),(2,1,-1)$ nel triangolo standa		andi il triangolo di vertici
9	Fornire la definizione e un semplice esempio	della funzione primitiva p	yplasm DISTR
10	Descrivere la struttura di una matrice di tr	aslazione 3D	

		NT.	
\mathbf{O}	Cognome:		
.38	Grafica Computazionale	Matricola: 8 aprile 2015	Ingegneria Informatica
<u> </u>			
1 Ricavare	la matrice di una rotazione piana	di 45 gradi intorno al punt	o fisso $(3,0)$
	ntare un settore di stadio come		ouna est,ovest; curva nord,sud;
settore A,B,C	J, gradino 1,2,3, fila destra,sin	istra; posto 1,2,3,	
3 Specificar	e quando uno scalamento si dice o	li compressione	
-	•	•	
4 Eseguire	il prodotto di uno scorrimento pi	iano di tangente 1/2 e che	non muta le x. per il vettore
(1,0,3)	F A-		, F
F D.G.:			
	na funzione python per memorizza di trasposizione	are una matrice binaria spai	sa come array di triple e fornire
I .			

\sim	Cognome:	Nome:	
$\mathcal{A}\mathcal{A}$		Matricola:	
OC	Grafica Computazionale	8 aprile 2015	Ingegneria Informatica
6 Scrivere rispetto all'a	la matrice di una trasformazione di asse y	scorrimento 3D che inclin	i di 15 gradi i piani $z=\cos t$
(-1,0,2),(2	2, 3, 0), (1, 1, 1)		ano passante per i punti
8 Fornire l	la definizione e un semplice esempio	della funzione primitiva py	plasm AA
9 Fornire t	una definizione di "modello LAR" e	un esempio 3D di modello	
	e una matrice di trasformazione $-2,1),(2,1,-1)$ nel triangolo standa		ndi il triangolo di vertici

6)()	Cogr	nome:	Nome:	
•	59	Crafica	Computazionale	Matricola: 8 aprile 2015	Ingegneria Informatica
1	Sanivana in				
1 ma	trici di dime			ogrammazione, una iunzion	e che esegua il prodotto di due
2	Scrivere la	matrice de	lla rotazione 3D di as	se parallelo al vettore (1, 1	(1) e angolo π
					, ,
3	Sintetizzare	e in poche	parole le differenze tr	a combinazioni lineari, affir	ni, positive e convesse
4	Fornire la o	definizione	e un semplice esemple	o della funzione primitiva p	yplasm LIST
5	Scrivere la	matrice de	llo scorrimento 2D ch	e inclini di 30 gradi le linec	verticali
Ū	50111010 10			o monin ar oo graar to mee	Volume

20	Cognome:	Nome:	
39	M Grafica Computazionale	Matricola: 8 aprile 2015	Ingegneria Informatica
6 Sariyana l			
6 Scrivere la rispetto all'as	a matrice di una trasformazione di s sse z	scorrimento 3D che inch	$m \ di \ so \ gradi \ i \ piam \ x = cost$
7 Eseguire i	il prodotto di uno scorrimento piano	di tangente 1 e che non r	nuta le y , per il vettore $(1,2,3)$
	ntare la struttura di un complesso a) come multigrafo gerarchico	bitativo (edificio 1,2,3,	scala A,B,C, piano 1,2,3,
	,		
9 Fornire il	modelle I AP del prodette Certecier	oo dal ayadyata atandayd	por il cogmente [0, 1]
g romme n	modello LAR del prodotto Cartesian	io dei quadrato standard	per ii segmento [0, 1]
10 Fornire	una definizione di "matrice sparsa"		

	Cognome:		Nome:	
		Matricola:		
\subseteq	Crafica Computazionale	8 aprile	2015	Ingegneria Informatica
1	Descrivere la struttura di una matrice di ro	tazione elementa	re 3D	
2	Fornire la definizione e un semplice esempio	della funzione p	rimitiva py	vplasm LIST
3	Fornire una definizione e un esempio di guse	cio convesso di p	unti	
4	Scrivere la matrice di scalamento 2D che di	mezzi tutte le co	ordinate	
	Forming il modelle I AD di una amiali 2002	di anadesti di 1-	to unitori:	
5	Fornire il modello LAR di una griglia 3×3	ai quadrati di ia	to unitario	

			N.T.		
/	$1 \cap$	Cognome:		ome:	
4	L()	Crafica Commutazionale	Matricola:	015	In magnina Information
		Grafica Computazionale	8 aprile 20	010	Ingegneria Informatica
6	Fornire una	definizione di "matrice sparsa"			
7	Calcolare il	prodotto misto dei vettori (0, 2	(x,0), (x/2,1,0), (x,0)	2,0)	
		(1)	-,-,,(, , , , -,,,(,	, - ,	
	D: 1		1 1 1 1	1. ,	
8	Ricavare la	matrice di uno scalamento 3D c	he dimezzi le coord	iinate, e c	on punto fisso (0,5,5)
9	Scrivere la	trasf. piana che mandi il triango	lo standard nel tria	angolo di	vertici (O, A, B)
10	Rappreser	ntare la struttura di un compless	o abitativo (edificio	o 1,2,3,	scala A,B,C, piano 1,2,3,
alle	oggio 1,2,3)	come multigrafo gerarchico			

	Cognome:	Nome:	
/	1 1 Cognome	Matricola:	
_	Grafica Computazionale	8 aprile 2015	Ingegneria Informatica
1	Fornire il modello LAR del prodotto Cartes	iano del triangolo standaro	l del piano per se stesso
		2 0) ((2.1.0)	
2	Calcolare il prodotto scalare dei vettori (0,2	$(2x,0) \in (x/2,1,0)$	
3	Fornire la definizione e un semplice esempio	della funzione primitiva p	yplasm INSR
4	Scrivere la matrice di una trasformazione di	li scorrimento 3D che incli	ini di 45 gradi i piani $y = cost$
	petto all'asse x		T G I
5	Scrivere la matrice della riflessione 2D rispe	etto all'asse x	

		».T	
11	Cognome:		
4	0.0.0	Matricola:	
11	Grafica Computazionale	8 aprile 2015	Ingegneria Informatica
6 Scrivere	la trasf. 3D che mandi il tetraedro	standard nel simplesso di	vertici (O, A, B, C)
7 Calcolare	e le coordinate baricentriche del pu	nto (_1 1/2 3) rispetto al	simplesse standard 3D
Carcolare	e le coordinate barreentriene dei pu	110 (1, 1/2, 5) Hapetto al	simplesso standard ob
	re un semplice algoritmo di traspos	izione di una matrice spara	sa memorizzata come insieme di
triple			
0 5		11	1 1 2 2 1 1 2 2
	entare la struttura di un complesso 3) come multigrafo gerarchico	abitativo (edificio 1,2,3,	scala A,B,C, piano 1,2,3,
	e, in un qualunque linguaggio di pr	ogrammazione, una funzio	ne che esegua il prodotto di due
matrici di di	mensioni compatibili		

؍ ا	Cognome:		Nome:	
	· <i>)</i>	Matricola:		
	Grafica Computazionale	8 aprile	2015	Ingegneria Informatica
1	Rappresentare la struttura di un mobile lib	oreria come multis	grafo gerarc	
_	reappresentate la struttura di un mosne ne	rena come mann	grano gerare.	nico
_		(1 0 0) (1 1 1)		
2	Calcolare il prodotto vettoriale dei vettori	$(1,0,0) \in (1,1,1)$		
3	Descrivere la struttura di una matrice di so	calamento 3D		
4	Scrivere l'equazione del segmento di retta d	con punti estremi	(2, 3, 4) e (-1, 2, 0)
5	Fornire la definizione e un semplice esempio	o della funzione p	rimitiva py	plasm DISTL
		_		

4.0	Cognome:	Nor	ne:
19	0.0811011101	Matricola:	
42	Grafica Computazionale	8 aprile 201	5 Ingegneria Informatica
6 Scrivere l	a matrice di scorrimento elementa	re 2D	
		grammazione, una fu	inzione che esegua il prodotto di due
matrici di dii	mensioni compatibili		
8 Fornire il	modello LAR del prodotto Cartes	iano del triangolo sta	andard per il segmento [0, 1]
	a trasf. piana di coord. che mand $(.5), (-1, 1.5), (-2, .5), (-1, .5)$	i il quadrato standar	d costruito sugli assi nel quadrato di
,			
10 Fornire	una definizione di "matrice sparsa'	,	

	Cognome:	_ Nome:
	Matricola:	
4	Grafica Computazionale 8 april	
1	Eseguire il prodotto di uno scorrimento piano di tangent	se $1/2$ e che non muta le x , per il vettore
(1,	(0,3)	
2	Fornire una definizione di "matrice sparsa"	
3	Fornire il modello LAR del triangolo standard del piano	
4	Scrivere la matrice di una trasformazione di scorrimento i petto all'asse y	3D che inclini di 15 gradi i piani $z=cost$
1151	getto an asse y	
5	Rappresentare l'indice di un libro (parti, capitoli, sezioni)	come multigrafo gerarchico
•	reappresentate i indice di un into (parti, capiton, sezioni)	come mutigrato geraremeo

/	Cognome:Nome:
\angle	Matricola:
	Grafica Computazionale 8 aprile 2015 Ingegneria Informatica
6	Fornire la definizione e un semplice esempio della funzione primitiva pyplasm INSL
7	Scrivere la matrice della rotazione 3D di asse parallelo al vettore $(-1,-1,-1)$ e angolo $\pi/2$
8	Scrivere, in un qualunque linguaggio di programmazione, una funzione che esegua la somma di due
ma	atrici di dimensioni compatibili
9	Fornire due esempi di combinazione affine di punti, rispettivamente di dimensione due e tre
10	Scrivere la matrice dello scorrimento 2D che inclini di 30 gradi le linee orizzontali

/	Cognome:		
	/	Matricola:	
	Grafica Computazionale	8 aprile 2015	Ingegneria Informatica
1	Calcolare le coordinate baricentriche del pu	nto $(1/2, 1/2)$ rispetto al	simplesso standard 2D
	•	.,,,,	•
2	Scrivere la matrice di scorrimento elementari	re 2D	
3	Rappresentare l'indice di un libro (parti, ca	pitoli, sezioni) come mult	igrafo gerarchico
		2 0) ((2.1.0)	
4	Calcolare il prodotto scalare dei vettori (0, 2	(2x,0) e(x/2,1,0)	
5	Fornire la definizione e un semplice esempio	della funzione primitiva	pyplasm INSR

	Cognome:	Nome:	
		Matricola:	
<u> </u>	Grafica Computazionale	8 aprile 2015	Ingegneria Informatica
6	Scrivere la matrice di uno scalamento unifo	rme di parametro 2 con pu	nto fisso (1,1)
7	Fornire il modello LAR del prodotto Cartes	siano del triangolo standare	d per il segmento [0 1]
•	Torimo il modello Errit dei prodotto Curto.	siano dei triangolo standare	i per il segmento [0, 1]
	The state of the s	11.420	
8	Ricavare la matrice di una rotazione piana	di 120 gradi intorno al pun	ito fisso $(0,5)$
9 (0.	Scrivere una matrice di trasformazione $(1,2),(0,-2,1),(2,1,-1)$ nel triangolo stand		andi il triangolo di vertici
10	Fornire una definizione di "matrice sparsa	"	

/	Cognome:		Nome:	
$ \angle $	Grafica Computazionale	Matricola:		
_	Grafica Computazionale	8 aprile	2015	Ingegneria Informatica
1	Fornire la definizione e un semplice esempio	o della funzione p	orimitiva pyp	olasm AA
2	Descrivere la struttura di una matrice di ro	otazione elementa	re 3D	
9	Calcalana il madatta mieta dei metteni (0.2	0) (/2 1 0) ((-, 2, 0)	
3	Calcolare il prodotto misto dei vettori $(0, 2)$	(x,0),(x/2,1,0),((x, 2, 0)	
4	Scrivere la matrice della riflessione 2D rispe	etto all'asse y		
-	D : 1 : 1:	1	, 1: 1	
5	Fornire due esempi di combinazione affine d	11 punti, rispettiv	amente di d	imensione due e tre

4 —	Cognome:			Nome:	
15			Matricola:		
± 0	Grafica Computa	azionale	8 aprile	2015	Ingegneria Informatica
	tare un settore di sta gradino 1,2,3, fila				na est,ovest; curva nord,sud;
7 Scrivere, in	n un qualunque lingua	ggio di pro	grammazione, ι	ına funzione	e che esegua la somma di due
matrici di dim	ensioni compatibili				
8 Descrivere triple	un semplice algoritmo	di trasposi	zione di una ma	trice sparsa	memorizzata come insieme di
9 Fornire un	a definizione di "mode	llo LAR" e	un esempio 3D	di modello	
10 Scrivere l	a trasf. 3D che mandi	il tetraedro	standard nel si	implesso di	vertici (O, A, B, C)

	Cognome:	Nome:	
16)	Matricola:	
4	Grafica Computazionale	8 aprile 2015	Ingegneria Informatica
1 Form	nire la definizione e un semplice esempio	della funzione primitiva p	yplasm INSR
2 Dise e EV	egnare un complesso simpliciale (e nume	rarne i vertici) di due 3-sin	nplessi e scriverne le matrici FV
	vere, in un qualunque linguaggio di pro di dimensioni compatibili	ogrammazione, una funzion	ne che esegua la somma di due
4 Rap	presentare l'indice di un libro (parti, ca	pitoli, sezioni) come multig	grafo gerarchico
5 Scri	vere la matrice della rotazione 3D di ass	se parallelo al vettore $(-1,$	$-1,-1)$ e angolo $\pi/2$

	Cognome:		Nome	<u>.</u>
		Matr		
	to Grafica Computaz		aprile 2015	Ingegneria Informatica
6	Scrivere la matrice di rotazione 2D			
7	Scrivere la matrice di una rotazion	e 3D di angolo π	/2 con punto fis	sso $(1,1,1)$ e asse $(0,0,1)$
8	Fornire una definizione e un esemp	io di guscio conv	esso di punti	
	1	a gant i i	I	
9	Calcolare il prodotto vettoriale dei	vettori $(1,0,0)$	=(1,1,1)	
10	Fornire il modello LAR del prodo	tto Cartesiano d	el triangolo star	ndard per il segmento [0, 1]
			Ü	

	Cognome:	Nome:	
	17	Matricola:	
_	Grafica Computazionale	8 aprile 2015	Ingegneria Informatica
1	Fornire la definizione e un semplice esemplo	della funzione primitiva p	yplasm AA
		1	(1. 1)
2	Scrivere la matrice di uno scalamento unifor	rme di parametro 2 con pui	nto fisso (1, 1)
3	Scrivere l'equazione del segmento di retta c	on punti estremi $(2, -3, 4)$	e (1, 0, 5)
4	Scrivere la matrice di rotazione 2D di angol	ο π/4	
	Ţ.	,	
_		(1, 1) 2	
5	Scrivere una funzione python per estrarre le	e(d-1)-facce orientate di	un d-simplesso orientato

1 -	Cognome:		ne:
/ /		Matricola:	
41	Grafica Computazionale	8 aprile 201	5 Ingegneria Informatica
7 Rappr	Grafica Computazionale re la matrice di una traslazione 3D construire di una traslazione 3D constru	8 aprile 201 he porti il punto (5, 4	
8 Scrive	re la trasf. piana che mandi il triango	olo standard nel trian	zalo di vertici (O A B)
9 Calcol	are il prodotto vettoriale dei vettori ((0,1,0) e $(1,1,0)$	
10 Forni	re il modello simpliciale LAR del tri:	angolo standard estru	so (prodotto Cartesiano per [0, 1])

10	Cognome:		
$/1\times$		Matricola:	
\pm 0	Grafica Computazionale	8 aprile 2015	Ingegneria Informatica
1 Fornire	il modello LAR di una griglia 3×3	di quadrati di lato unitario)
		-	
2 Definire	una funzione python per memorizza	re una matrice binaria spar	sa come array di triple e fornire
	e di trasposizione		
3 Fornire	la definizione e un semplice esempio	della funzione primitiva p	yplasm INSR
4 Eseguire	e il prodotto di uno scorrimento pia	ano di tangente 1/2 e che	non muta le x , per il vettore
(1,0,3)			
5 Scrivere	e la matrice di uno scalamento unifor	me di parametro 2 con pui	nto fisso $(1,1)$

	Cognome:Nome:	
15	Cognome:Nome:Nome:	
40	Grafica Computazionale 8 aprile 2015 Ingegneria In	nformatica
finestre)	segnare un oggetto geometrico 2D con parti ripetute (facciata di edificio, con balce), e il corrispondente modello di multigrafo rivere la matrice della rotazione 3D di asse parallelo al vettore $(1,1,1)$ e angolo π	
8 Rica	cavare la matrice di una rotazione piana di 120 gradi intorno al punto fisso $(0,5)$	
9 Calc	lcolare le coordinate baricentriche del punto $(1/2,1/2)$ rispetto al simplesso standard $(1/2,1/2)$	2D
10 Sc1	crivere la matrice della riflessione 2D rispetto all'asse y	

	Cognome:Nome:
	Matricola:
\Box	Grafica Computazionale 8 aprile 2015 Ingegneria Informatica
1 fin	Disegnare un oggetto geometrico 2D con parti ripetute (facciata di edificio, con balconi, porte e estre), e il corrispondente modello di multigrafo
2 ma	Scrivere, in un qualunque linguaggio di programmazione, una funzione che esegua il prodotto di due trici di dimensioni compatibili
3	Scrivere la matrice di uno scalamento uniforme di parametro 2 con punto fisso (1,1)
4	Fornire la definizione e un semplice esempio della funzione primitiva pyplasm LIST
5	Scrivere la trasf. 3D che mandi il tetraedro standard nel simplesso di vertici (O, A, B, C)

	Cognome:		Nome:	
	O	Matricola:		
\Box	Grafica Computazionale	8 aprile	2015	Ingegneria Informatica
6	Scrivere la matrice dello scorrimento 2D che	e inclini di 30 gra	di le linee o	rizzontali
7	Fornire una definizione di "modello LAR" e	un esempio 2D	di modello	
8	Scrivere l'equazione vettoriale del piano pas	sante per i punti	(2, -3, 4),	(1,0,5) e $(-1,2,0)$
9	Illustrare sinteticamente almeno una tecnica	a nota di memori	zzazione di	matrici sparse
10	Calcolare il prodotto misto dei vettori (0,	(2x,0), (x/2,1,0),	(x, 2, 0)	

	_	Cognome:		Nome:		
	`	() cognomo:	Matricola:	11011101		
•)	U Grafica Computazionale	8 aprile	2015	Ingegneria	Informatica
	_				8-8	
1	(Calcolare il prodotto misto dei vettori (0, 2:	(x,0), (x/2,1,0), (x/2,1,0)	(x, 2, 0)		
2	F	Rappresentare la struttura di un mobile lib	reria come multi	grafo geraro	chico	
				3		
3	F	Fornire una definizione e un esempio di gus	cio convesso di p	unti		
4	S	Scrivere, in un qualunque linguaggio di pro	ogrammazione, u	ına funzion	e che esegua la	somma di due
ma		rici di dimensioni compatibili	,			
5	. S	Scrivere una matrice di trasformazione, (2) , $(0, -2, 1)$, $(2, 1, -1)$ nel triangolo stand	e di coordinat	e che ma = 0	ndi il triango	olo di vertici
(υ,	, +,	, -,, (-, -, -,, (-, -, -, -, -, -, -, -, -, -, -, -, -, -	a doi pieno z -	Ü		

	Cognome:		Nome:	
15()		Matricola:		
90	Grafica Computazionale	8 aprile	2015	Ingegneria Informatica
6 Scrivere la	a matrice della riflessione 2D rispe	etto all'asse x		
7 Fornire la	definizione e un semplice esempio	della funzione p	primitiva py	plasm LIST
9 Diagramana			li tua O aimam	lassi a sanissama la matrisi EV
8 Disegnare e EV	un complesso simpliciale (e nume	erarne i vertici) d	n tre 2-simp	biessi e scriverne le matrici F v
9 Fornire il	modello LAR di una griglia 2×2	\times 2 di cubi di la	to unitario	
10 Descrive	re la struttura di una matrice di s	scorrimento elem	entare 3D	

	Cognome:Nome:	
	Matricola:	
	Grafica Computazionale 8 aprile 2015 Ingegneria Information	ca
1	Fornire il modello LAR del prodotto Cartesiano del triangolo standard del piano per se stesso	
2	Fornire la definizione e un semplice esempio della funzione primitiva pyplasm LIST	
3	Scrivere la matrice della rotazione 3D di asse parallelo al vettore $(1,1,1)$ e angolo π	
4	Ricavare la matrice di una rotazione piana di 45 gradi intorno al punto fisso (3,0)	
5	Fornire una definizione e un esempio di guscio convesso di punti	

Cognome:		Nome:	
	Matricola:		
Grafica Computazionale	8 aprile	2015	Ingegneria Informatica
6 Scrivere la matrice della riflessione 2D rispe	etto all'asse x		
7 Eseguire il prodotto di uno scorrimento pi $(1,0,3)$	ano di tangente	1/2 e che	non muta le x , per il vettore
(1,0,0)			
8 Descrivere la struttura di una matrice di rif	lessione elements	re 3D	
beschivere la structura di una matrice di m	ressione ciementa	iic ob	
9 Rappresentare l'indice di un libro (parti, ca	pitoli, sezioni) co	ome multigr	rafo gerarchico
10 Descrivere un semplice algoritmo di traspi di triple	osizione di una r	natrice spa	rsa memorizzata come insieme

_	Cognome:		
	Grafica Computazionale	Matricola: 8 aprile 2015	Ingegneria Informatica
1	Scrivere la matrice di rotazione 2D di ango		1118081101111 1111011111111111
2	Fornire un metodo di calcolo delle	coordinate affini del	piano passante per i punti
(-	(1,0,2), (2,3,0), (1,1,1)		
3	Fornire il modello LAR di una griglia 2×2	\times 2 di cubi di lato unitar	rio
4	Ricavare la matrice di una rotazione piana	di 120 gradi intorno al pu	into fisso (0,5)
5	Eseguire il prodotto della matrice di rotazio	one piana di angolo $\pi/3$ p	per il vettore $(1,2,3)$

		N.T.	
	Cognome:		
(Grafica Computazionale	Matricola:	Ingegneria Informatica
		8 aprile 2015	
6 e E	Disegnare un complesso simpliciale (e numero	rarne i vertici) di tre 2-sim	plessi e scriverne le matrici FV
eъ	v		
7	Fornire la definizione e un semplice esempio	della funzione primitiva p	vplasm DISTR
•	Tormie la delimizione e un semprice esemplo	dena ranzione primitiva p	y plasiii Dis IIC
8	Scrivere la matrice di uno scalamento unifor	rme di parametro 2 con pu	nto fisso (1, 1)
9	Rappresentare l'indice di un libro (parti, cap	pitoli, sezioni) come multig	grafo gerarchico
10	Scrivere la trasf. piana che mandi il triang	olo standard nel triangolo	di vertici (O. A. B)
	**************************************		(+ , , -)

	Cognome:	Nome:	
	Matricola:		
ر		le 2015	Ingegneria Informatica
1	1 Calcolare il prodotto vettoriale dei vettori (1, 1, 0) e (0, 1	1)	
2	2 Rappresentare la struttura di un mobile libreria come mu	ltigrafo gerarc	hico
3	3 Fornire due esempi di combinazione affine di punti, rispet	tivamente di c	limensione due e tre
	A Description Instruction I was a strict I would be a 2D.		
4	4 Descrivere la struttura di una matrice di traslazione 3D		
5	5 Specificare quando uno scalamento si dice di espansione		

	Cognome:	Nome:	
5	• •	Matricola:	
U	• Grafica Computazionale	8 aprile 2015	Ingegneria Informatica
6 S	Scrivere la matrice della rotazione 3D di asse	parallelo al vettore (1, 1,	1) e angolo π
7 T		1 / 1 1 / /	1 (7
7 F	Fornire il modello simpliciale LAR del triango	olo standard estruso (proc	lotto Cartesiano per [0, 1])
	Definire una funzione python per memorizzar funzione di trasposizione	e una matrice binaria sp	arsa come dizionario, e fornire
una	runzione di trasposizione		
9 F	Ricavare la matrice di una rotazione piana di	120 gradi intorno al punt	to fisso $(0,5)$
10	Fornire la definizione e un semplice esempio	della funzione primitiva	puplaem STRUCT
10	Forme la demizione e un sempne esempio	dena funzione primitiva	pypiasiii 511t001

<u> </u>	Cognome:		
54		Matricola:	
	Grafica Computazionale	8 aprile 2015	
	una matrice di trasformazione $-2,1), (0,1,-1)$ in $(0,0,1), (1,0,1)$		mandi il triangolo di vertici
	la matrice di scalamento 2D che di		
Catcolare	re coordinate baricentriche dei pu	into (1/2, 1/2) rispetto ai	i simplesso scandard 2D
	ına funzione python per memorizza di trasposizione	re una matrice binaria sp	oarsa come array di triple e fornire
5 Fornire la	a definizione e un semplice esempio	o della funzione primitiva	pyplasm CAT

<u> </u>	Cognome:	Nome:	
54		Matricola:	
O I	Grafica Computazionale	8 aprile 2015	Ingegneria Informatica
	n un qualunque linguaggio di pro nensioni compatibili	grammazione, una funzion	e che esegua il prodotto di due
7 Scrivere la	natrice di una rotazione 3D di a	angolo $\pi/2$ con punto fisso	(1, 1, 1) e asse (0, 0, 1)
	tare un edificio di parcheggio con sezione A,B,C, posto 1,2,3,)	ne multigrafo gerarchico (ra	ampa 1,2,3, ascensore 1,2,3,
9 Calcolare	il prodotto misto dei vettori (0, 23	(x,0), (x/2,1,0), (x,2,0)	
10 Fornire i	l modello LAR del triangolo stano	dard del piano	

	Cognome:	Nome	
	Cognome:	Nome: Matricola:	
	Grafica Computazionale	8 aprile 2015	Ingegneria Informatica
1	Fornire la definizione e un semplice esemplo		
2	Calcolare il prodotto scalare dei vettori (0,	$(2x,0) \in (x/2,1,0)$	
3	Descrivere la struttura di una matrice di sca	olomonto 2D	
3	Descrivere la struttura di una matrice di sci	aramento 3D	
4	Scrivere la matrice della riflessione 2D rispe	etto all'asse y	
5	Fornire una definizione di "modello LAR" e	un esempio 2D di modello)

	Cognome:	Nome:	
55	C .	Matricola:	
$\cup \cup$	Grafica Computazionale	8 aprile 2015	Ingegneria Informatica
	in un qualunque linguaggio di pro mensioni compatibili		
	una funzione python per memorizza e di trasposizione	re una matrice binaria spars	sa come array di triple e fornire
	una matrice di trasformazione $-2,1),(2,1,-1)$ nel triangolo standi		ndi il triangolo di vertici
	entare un settore di stadio come r C, gradino 1,2,3, fila destra,sini		ma est, ovest; curva nord, sud;
10 Calcola	re le coordinate baricentriche del p	unto $(-1, 1/2, 3)$ rispetto al	simplesso standard 3D

	Cognome:Nome:
	Matricola:
	Grafica Computazionale 8 aprile 2015 Ingegneria Informatica
	Rappresentare la struttura di un complesso abitativo (edificio 1,2,3, scala A,B,C, piano 1,2,3, ggio 1,2,3) come multigrafo gerarchico
2	Specificare quando uno scalamento si dice di espansione
3	Fornire la definizione e un semplice esempio della funzione primitiva pyplasm AA
4	Fornire il modello LAR di una griglia 3×3 di quadrati di lato unitario
5	Fornire una definizione di "matrice sparsa"

	Cognome:	Nome:			
56		Matricola:			
$\mathcal{O}\mathcal{O}$	Grafica Computazionale	8 aprile 2015	Ingegneria Informatica		
6 Calcolare	il prodotto vettoriale dei vettori (0	, 1, 0) e (1, 1, 0)			
7 Scrivere,	in un qualunque linguaggio di prog	grammazione, una funzio	ne che esegua la somma di due		
	nensioni compatibili	srammazione, and ramzio	no one opogata ta pomma ar ata		
8 Scrivere l'	equazione vettoriale del piano pass	anto por i punti (2 -3 4)	(1.0.5) o (-1.2.0)		
8 Scrivere i	equazione vettoriale dei piano pass	ante per i punti $(2, -3, 4)$, (1,0,3) e (-1,2,0)		
0 g : 1		*1 1 1 1			
	a trasf. piana di coord. che mandi 5 , $(-1, 1.5)$, $(-2, .5)$, $(-1, .5)$	ii quadrato standard cos	truito sugii assi nei quadrato di		
10 December	la ettt diti di	aminanta alamantana 2D			
10 Descrive	re la struttura di una matrice di sc	orrimento elementare 3D			

Cognome:	Nome:	
57	Matricola:	
Grafica Computazionale	8 aprile 2015	Ingegneria Informatica
1 Scrivere la matrice di rotazione 2D di angol-	ο π/4	
	•	
2 Descrivere un semplice algoritmo di trasposi	izione di una matrice sparsa	a memorizzata come insieme di
triple	•	
3 Fornire il modello LAR del prodotto Cartes	iano del quadrato standard	per il segmento [0, 1]
4 Scrivere la matrice della rotazione 3D di ass	se parallelo al vettore $(-1, -1)$	$-1, -1$) e angolo $\pi/2$
5 Eseguire il prodotto di uno scorrimento pi	ano di tangente 1/2 e che	non muta le x , per il vettore
(1,0,3)		

		3.7	
	Cognome:		
\mathcal{L}		Matricola:	
	Grafica Computazionale	8 aprile 2015	Ingegneria Informatica
6 Fornire due	e esempi di combinazione affine di	i punti, rispettivamente di	i dimensione due e tre
7 D		lui f	102
	are un edificio di parcheggio com sezione A,B,C, posto 1,2,3,)	e muitigraio gerarcnico (r	ampa 1,2,3, ascensore 1,2,3,
	matrice di una trasformazione d	i scorrimento 3D che incl	ini di 15 gradi i piani $z = cost$
rispetto all'ass	e y		
9 Ricavare la	matrice di una traslazione 3D ch	ne porti il punto (5, 4, 3) n	el punto (0, 5, 5)
		F F (+, -, +)	(*, *, *)
10 Fornire la	definizione e un semplice esempi	o della funzione primitiva	pyplasm INSL

	Cognome:	Nome:_	
52		Matricola:	
	Grafica Computazionale	8 aprile 2015	Ingegneria Informatica
1 Descrives triple	re un semplice algoritmo di traspos	izione di una matrice spar	sa memorizzata come insieme di
	la trasf. piana di coord. che mand 1.5 , $(-1, 1.5)$, $(-2, .5)$, $(-1, .5)$	li il quadrato standard cos	ttruito sugli assi nel quadrato di
3 Fornire l	a definizione e un semplice esempio	o della funzione primitiva p	oyplasm LIST
4 Eseguire (1,0,3)	il prodotto di uno scorrimento pi	ano di tangente 1/2 e ch	e non muta le x , per il vettore
5 Scrivere	la matrice di scalamento 2D che di	mezzi tutte le coordinate	

			Cognome:		Nome:	
		Q	Cognome.	Matricola:		
C)(\mathcal{I}	Grafica Computaziona		2015	Ingegneria Informatica
6	Fo	rnire una	definizione di "modello LAF	R" e un esempio 2D	di modello	
7	De	escrivere l	a struttura di una matrice d	i riflessione element	are 3D	
8			un qualunque linguaggio di ensioni compatibili	programmazione, u	na funzione	che esegua il prodotto di due
IIIa	16110	er di dime	ensioni compatibili			
9	Ra	appresent	are un settore di stadio cor	ne multigrafo gerar	chico (tribu	na est,ovest; curva nord,sud;
set			gradino 1,2,3, fila destra			
10) 5	Sintatizza	re in poche parole le differen	ze tra combinazioni	lineari affin	i positive e convesse
10		JIII C CIZZA.	re in poene paroie le differen.	ze tra combinazioni	iiiicari, aiiiii	i, positive e convesse

			NT.	
-	\cap	Cognome:		
	14		Matricola:	
		Grafica Computazionale	8 aprile 2015	Ingegneria Informatica
1	Illustra	re sinteticamente almeno una tecnic	a nota di memorizzazione o	li matrici sparse
2	Ricavai	re la matrice di una rotazione piana	di 45 gradi intorno al punt	o fisso $(3,0)$
3	Forniro	il madella I AR del predette Cartes	viano del quadrato etandare	I por il cogmonto [0, 1]
3	Formre	il modello LAR del prodotto Cartes	siano dei quadrato standaro	i per il segmento [0, 1]
4	Scriver	e la matrice di scalamento 2D che di	mezzi tutte le coordinate	
5 fin		are un oggetto geometrico 2D con il corrispondente modello di multigr		i edificio, con balconi, porte e
1111	lestre), e	ii corrispondente modeno di muttigi	aio	

	Cognome: Nome:
	Matricola:
٠	Grafica Computazionale 8 aprile 2015 Ingegneria Informatica
6	Fornire due esempi di combinazione affine di punti, rispettivamente di dimensione due e tre
7	Scrivere la trasf. 3D che mandi il tetraedro standard nel simplesso di vertici (O,A,B,C)
8	Calcolare il prodotto scalare dei vettori $(0,2x,0)$ e $(x/2,1,0)$
9	Scrivere la matrice di uno scalamento uniforme di parametro 2 con punto fisso $(1,1)$
10	Fornire la definizione e un semplice esempio della funzione primitiva pyplasm MAT

		Cognome:		
	11		Matricola:	
		Grafica Computazionale	8 aprile 2015	Ingegneria Informatica
1	Forn	ire la definizione e un semplice esempio	della funzione primitiva j	pyplasm DISTL
2	Forn	ire una definizione e un esempio di com	binazione convessa di pun	nti
3 fine		gnare un oggetto geometrico 2D con p e il corrispondente modello di multigra		li edificio, con balconi, porte e
1111	00010)	o n correspondence moderne di marrigi.		
4	Scriv	ere la matrice dello scorrimento 2D che	inclini di 30 gradi le line	e verticali
			0	
5		ere, in un qualunque linguaggio di pro	grammazione, una funzion	ne che esegua il prodotto di due
ma	terici (li dimensioni compatibili		

	Cognome:	Nome:	
6		Matricola:	
U	Grafica Computazionale	8 aprile 2015	Ingegneria Informatica
	sfinire una funzione python per memorizza inzione di trasposizione	re una matrice binaria spa	rsa come array di triple e fornire
7 Ca	alcolare il prodotto vettoriale dei vettori (0, 1, 0) e (1, 1, 0)	
8 Sci	rivere la matrice della rotazione 3D di ass	se parallelo al vettore $(-1,$	$-1,-1$) e angolo $\pi/2$
9 For	rnire il modello LAR del prodotto Cartes	iano del triangolo standaro	l del piano per se stesso
10 D	Descrivere la struttura di una matrice di s	corrimento elementare 3D	