Real Business Cycles with Irreversible Investment

Global and Deep Learning Solution Methods

Simon, Pranjal

Outline

Model

Global Solution

Deep Learning Solution

Planner's Problem

$$V(k,z) = \max_{c,i} \left\{ \frac{c^{1-\sigma}}{1-\sigma} + \beta E[V(k',z')|z] \right\}$$

$$c+i = zk^{\alpha}$$

$$k' = (1-\delta)k+i$$

$$i \ge \phi I_{ss} > 0$$

$$c, k' \in [0, zk^{\alpha} + (1-\delta)k]$$

$$z' \in \{z_h, z_l\} \sim P(.|z)$$

Optimality Conditions

FOCs for (c, c', k, k', i, μ) to be optimal solutions:

- ► Euler: $c^{-\sigma} \mu = \beta E[(\alpha z' k^{\alpha 1} + (1 \delta))c'^{-\sigma} (1 \delta)\mu'|z]$
- ▶ Budget: $c + i = zk^{\alpha}$
- Multiplier: $\mu \ge 0$ (positive when binding)
- ▶ Occasionally Binding Constraint: $i \ge \phi I_{ss}$
- Slackness: $\mu(i \phi I_{ss}) = 0$

Parameters

- $\alpha = 0.36$
- $\beta = 0.99$
- $\sigma = 2.0$
- $\delta = 0.025$
- $\phi = 0.95$
- ightharpoonup Z = [0.99, 1.01]
- $P = \begin{bmatrix} 0.9 & 0.1 \\ 0.1 & 0.9 \end{bmatrix}$
- $K_{ss} = 37.9893$
- $I_{ss} = 0.9497$

Global Solution

- Find the solution for last period T.
 - $\rightarrow i = \phi I_{ss}$
 - ho $\mu > 0$
 - $k' = (1 \delta)k + \phi I_{ss}$
 - $ightharpoonup c = zk^{\alpha} \phi I_{ss}$
- ▶ Use as guess for policy $c'(k, z), \mu'(k, z)$ in period T 1.
- Solve for $c(k, z), k'(k, z), \mu(k, z)$ from:
 - $c^{-\sigma} \mu = \beta E[(\alpha z' k^{\alpha 1} + (1 \delta))c'^{-\sigma} (1 \delta)\mu'|z]$
 - $c + k' = zk^{\alpha} + (1 \delta)k$
 - $\mu(k'-(1-\delta)k-\phi I_{ss})=0$
 - $\mu \geq 0$
- ▶ Update guess for $c'(k, z), \mu'(k, z)$ and repeat steps for t = T 1, T 2, T 3... until convergence.

Multiplier: $\mu(k, z)$

Investment Function: i(k, z)

Consumption Function: c(k, z)

Deep Learning Solution Method

- ▶ Initialize functions $c(k, z; \theta)$, $h(k, z; \theta)$, $i(k, z; \theta)$ as neural networks with parameters θ .
- ▶ All are nonnegative, with $c(k, z; \theta) > 0$.
- ▶ $h(k, z; \theta) = \frac{\mu(k, z; \theta)}{c^{-\sigma}}$ is the normalized multiplier.
- Fit the solution for last period *T*:
 - \blacktriangleright $i(k,z) = \phi I_{ss}$
 - h(k,z)=1
 - $ightharpoonup c = zk^{\alpha} \phi I_{ss}$
- Use these functions to generate residuals:
 - ► $R1 = 1 h \beta E[c'^{-\sigma}(\alpha z' k^{\alpha 1} + (1 \delta) (1 \delta)h')|z]$
 - $R2 = c + k' zk^{\alpha} (1 \delta)k$
 - $R3 = h(k' (1 \delta)k \phi I_{ss})$

All-in-One Expectation Operator

- ightharpoonup Construct residuals using a grid of k of size N.
- $J(\theta) = N^{-1} \sum_{N} (R1 * R1 + R2 * R2 + R3 * R3).$
- ▶ Optimize the neural network i.e. update θ to minimize $J(\theta)$.
- Tricks that work:
 - Normalize the inputs to the neural network.
 - Bound the values of each policy function to be non-negative.
 - Normalize the multiplier.
 - Single loss function instead of optimizing different residuals separately.

Training

Investment Function: $i(k, z) - I_{min}$

Consumption Function: c(k, z)

Conclusion

- ► Global methods are stable and fast because they use extra information in the Euler equation to approximate the solution.
- The range of problems to which we can apply deep learning solution methods extends to heterogenous agents and transitional dynamics.
- ► However deep learning solution methods are not yet evolved to the point where we can trust that the solution is correct. There are many ways in which training can stall.