Healthy Habits and Inequality

Dante Amengual* Jesús Bueren° Josep Pijoan-Mas[□]

*CEMFI

°EUI

CEMFI, CEPR

Alex's Working Group, November 2023

Introduction

- In recent decades, there has been an increase in in both income and health inequalities across education groups
- Two important facts:
 - a) Strong association between economic and health inequality
 Kitagawa and Hauser (1973); Pijoan-Mas and Rios-Rull (2014); Chetty et al (2016)
 - b) Growing educational gradients of health inequality
 Preston and Elo (1995); Meara et al. (2009); Montez et al (2011); Case and Deaton (2015)
 - → Reasons not well-understood
- We aim to study to which extent differences in lifestyles across education groups and time can account for these facts
 - Differences in lifestyles are an important driver of health outcomes
 Li et al (2018); Zaninotto, Head, Steptoe (2020)
 - More educated individuals tend to adopt healthier habits
 Lantz et al. (1998); Martikainen et al. (2013)

Objectives

- 1 Understand the joint determination of education and lifesyle
 - → Why is there an education gradient of lifestyles?

Quantify the effect of increased economic inequality on the increase in the educational gradient of health outcomes

What we do: Model

- We build an heterogeneous agents model featuring two different stages
 - Early life individuals heterogeneous in their willingness to study and preferences for engaging in detrimental health behaviors (smoking, exercising, etc.) invest:
 - Education: affects their future income
 - Lifestyle: drives health transitions and survival
 - Working/retirement age: individuals solve a standard life-cycle model with idiosyncratic labor income and health risks

(conditional on given education and lifestyle)

What we do: Model

- Complementarities between education and lifestyle investments
 - An extra year of life is more valuable with higher consumption possibilities
 - The benefit in health transitions of investing in protective health behavior differs across education groups
 - Early life determinants of education and lifestyle may be correlated
- The model allows us to identify to which extent an increase in the education premiums could lead to deterioration of health outcomes for lower-educated individuals because:
 - 1 Direct effect: a decline in their economic prospects.
 - 2 Selection: as a more negatively selected pool of individuals chooses to remain lower-educated.

What we do: Model

Numbers

- Calibrate the model:
 - Define lifestyles: we propose a novel methodology to reduce the dimensionality of the health behavior data by identifying patterns in lifestyle behavior
 - Match savings decisions by education and lifestyles of individuals born in 1930's to calibrate parameters in the working/retirement phase
 - Match the joint distribution of education and lifestyles choices for different cohorts to calibrate parameters in the early life phase.
- Main results:
 - → Education gradient of lifestyles. Both the income and health advantages of college education are equally important
 - → Increase in LE gradient .
 - The increases in income inequality between the cohorts born in 1930s and 1970s explains around 78%
 - Worse behavior of high-school dropouts mostly explained by selection

Literature on health and economic inequality

- Models with exogenous health
 Hosseini et al. (2021); De Nardi et al. (2023)
 - → We model endogenous health
- Models with endogenous monetary health investments
 Fonseca et al. (2023); Hong et al.(2023)
 - → We focus on health-related behaviour
- Models with endogenous health behaviour investments
 Cole et al. (2019); Mahler and Yum (2023); Margaris and Wallenius (2023)
 - → We focus on once-and-for-all choices of lifestyles and education
 - → Identification of lifestyles on health based on differences in health dynamics and mortality.
- → We study how long-run changes in economic inequality shape changes in health inequality

The Model

Two different stages

- Early life
 - Choice of education and lifestyle
- 2 Life cycle
 - Working age: standard life-cycle incomplete-markets model of consumption with health and labor market risks
 - b) Retirement: as before, but without labor market risks

Stage 1: Early life

Set up

- Teenager/parents make once-and-for-all simultaneous choices of
 - education e ∈ {HSD, HSG, CG}
 - lifestyle y ∈ {DET, PRO}
- $\bullet \ \ \text{They solve} \quad \max_{\mathrm{e},\mathrm{y}} \left\{ V_0^{\mathrm{eyc}} \tau_{\mathrm{ec}} \tau_{\mathrm{yc}} \right\}$
 - Value V_0^{eyc} of starting stage 2 with type (e, y, c)
 - Cost $\tau_{\rm ec}$ of education e for cohort c:

$$\tau_{\mathrm{HSD,c}} = 0$$
 | $\tau_{\mathrm{HSG,c}} = \mu_{\mathrm{HSG}} + \epsilon_{\mathrm{HSG,c}}$ | $\tau_{\mathrm{CG,c}} = \mu_{\mathrm{CG}} + \epsilon_{\mathrm{CG,c}}$

– Cost τ_{yc} of lifestyle y for cohort c:

$$\tau_{\text{DET,c}} = 0$$
 | $\tau_{\text{PRO,c}} = \mu_{\text{PRO}} + \epsilon_{\text{PRO,c}}$

- Where μ_e , μ_v are average costs of actions e and y
- Where $\epsilon_{\rm e.c.}$, $\epsilon_{\rm v.c}$ are (jointly distributed) idiosyncratic costs of actions e and y

Shocks

• Let $(\epsilon_{PRO,c}, \epsilon_{HSG,c}, \epsilon_{CG,c})$ be joint normally distributed:

$$\begin{bmatrix} \epsilon_{\text{PRO,c}} \\ \epsilon_{\text{HSG,c}} \\ \epsilon_{\text{CG,c}} \end{bmatrix} \sim N \begin{pmatrix} \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} \sigma_{\text{PRO}}^2 & \sigma_{\text{PRO,HSG,c}} & \sigma_{\text{PRO,CG,c}} \\ & \sigma_{\text{HSG}}^2 & \sigma_{\text{CG,HSG}} \\ & & \sigma_{\text{CG}}^2 \end{bmatrix} \end{pmatrix}$$

where

$$\begin{array}{lll} \sigma_{\rm PRO,e,c} & = & \rho_{\rm PRO,e}^{\rm c} \sigma_{\rm PRO} \sigma_{\rm e} \\ \sigma_{\rm CG,HSG} & = & \rho_{\rm CG,HSG} \sigma_{\rm CG} \sigma_{\rm HSG} \end{array}$$

- $\rho_{\text{PRO,e}}^{\text{c}}$ captures complementarities in education and health investments beyond the ones incorporated in the 2nd stage of the model (genes, parents, friends, neighborhood, etc.)
- $\rho_{\rm CG,HSG}$ captures complementarities in the different education choices
- Note that only $ho_{\mathrm{PRO,e}}^{\mathsf{c}}$ is cohort-specific

Stage 2: Life cycle

State variables

- Working agents are heterogeneous with respect to:
 - Types
 - Education e ∈ {HSD, HSG, CG}
 - Lifestyle $y \in \{DET, PRO\}$
 - Cohort $c \in \{1930, 1970\}$
 - 2 Exogeneous and deterministic state
 - Age $t \in \{25, 27, 29, ...\}$
 - 3 Exogeneous and stochastic states
 - Health status $h_t \in \{h_a, h_b\}$
 - Employment status $l_t \in \{0, 1\}$
 - Shock to earnings $\zeta_t \in \mathbb{R}$
 - 4 Endogenous state
 - Cash-on-hand $x_t \in [\underline{x}, \infty)$

Ingredients

- Health dynamics $s_t^{\text{ey}}(h)$ and $\Gamma_t^{\text{ey}}(h'|h)$ as estimated before
 - Survival and health transition are not cohort-specific
- Medical expenses $m_t^{\rm e}(\xi,h)$
- Employment status $l_t^{\mathbf{e}}(l_{-1}, \varepsilon, h)$ depends on
 - Education e and age t
 - Previous period employment l_{-1} and shock arepsilon
 - Health h
- Labor earnings $w_t^{\mathsf{ec}}(\zeta,\epsilon,h)$ depend on
 - Education e, cohort c, and age t
 - Persistent and transitory stochastic component ζ and ϵ
 - Health h
- Education costs $\bar{\tau}_t^{\text{ec}}$ paid over 8 first years of working life
- Progressive tax system T() and minimum income floor \underline{x}

Worker's problem

• Worker's problem can be written as:

$$\begin{split} V_t^{\mathsf{eyc}}(h,l,\zeta,x) &= \max_{c,k'} \left\{ u(c) + \beta s_t^{\mathsf{ey}}(h) \sum_{h'} \Gamma_t^{\mathsf{ey}}\left(h'|h\right) \, \mathbb{E}\left[V_{t+1}^{\mathsf{eyc}}(h',l',\xi',\zeta',x')\right] \right. \\ &\left. + \beta^{T-t} \left(1 - s_t^{\mathsf{ey}}(h)\right) v(k') \right\} \end{split}$$

s.t.

$$k' = x - c$$

$$\tilde{x}' = (1 + r)k' + T\left[l_{t+1}^{e}(l, \varepsilon', h')w_{t+1}^{ec}(\zeta', \epsilon', h')\right] - m_{t+1}^{e}(\xi', h') - \bar{\tau}_{t+1}^{ec}$$

$$x' = \min\left\{\tilde{x}', \underline{x}\right\}$$

$$l' = l_{t+1}^{e}(h', l, \varepsilon')$$

Flow utility:
$$u(c) = \frac{c^{1-\sigma}}{1-\sigma} + b$$

Bequest motive: $v(k) = \theta_1 \frac{(k+\theta_2)^{1-\sigma}}{1-\sigma}$

Calibration

- 1 Define lifestyles and associated health dynamics
 - Exploit patterns in health behavior, health status, and survival.
- 2 Working retirement phase:
- 2.a/ External: parameters related to demographics, taxes, social security, and the stochastic processes for earnings and for health dynamics
 - This includes cohort-specific wages $w_t^{\rm ec}\left(\zeta,h,\epsilon\right)$ and education costs $ar{ au}_t^{\rm ec}$
- 2.b/ Internal: SMM to calibrate remaining parameters
 - Median wealth across age (by education and lifestyles) for the 1930s cohort
 - Value of statistical life
- Searly life: calibrate cost of education and lifestyles and variance/covariance of taste shocks
 - Joint distribution of education and lifestyles choices across cohorts

Data

- The HRS and PSID provide an unbalanced panel of individuals i = 1, ..., N followed for t = 1, ..., T periods
- Standard demographic information: gender (g), education (e), age (a_t)
- Wide array of information on health status and health behavior
 - Health state (h_t) : self-reported health (good/bad) + death
 - Health behavior (z_{mt}) :
 - 1 Preventive cancer tests (mammography / prostate check)
 - 2 Cholesterol test
 - 6 Flu shot
 - 4 Heavy drinking (2+ drinks on the day they drink)
 - 5 Smoking
 - 6 Exercise

Latent variables

- We want to incorporate heterogeneity in lifestyles into a structural model.
- In principle, we could have define a lifestyle for each possible combination of the observed health behavior variables : 2^6 lifestyles.
- Instead, we are going to assume that observed health behavior (z_{mt}) is the result of some latent time-invariant factor (y)
 - The latent factor is represented by a few discrete groups $y \in \{y_1, y_2, ...\}$.
- We interpret the latent factor (y) as the <u>lifestyle</u>
 - Allocate individuals to lifestyles
 - Measure the importance of lifestyles on health dynamics

Mixture model

• We jointly estimate health dynamics and lifestyles using a mixture model:

$$\begin{split} p(\boldsymbol{z}, \boldsymbol{h}|c, s, e, a, h_0) &= \sum_{y \in Y} p(\boldsymbol{z}, \boldsymbol{h}|c, s, e, a, h_0, y) p(y|c, s, e, a, h_0) \\ &= \sum_{y \in Y} p(\boldsymbol{z}|\boldsymbol{h}, a, h_0, y) p(\boldsymbol{h}|s, e, a, h_0, y) p(y|c, s, e, a, h_0) \end{split}$$

 By estimating types and transition jointly, we find the types that better represent both the observed behaviour and the health transitions (vs. k-means clustering on habits and then transitions)

Econometric Model

1. Healthy Habits

- We model the probability of individual i of reporting the m'th behaviour $(z_{mt} = 1)$ at time t as a probit model.
 - There is a latent variable (z_{mt}^*) that depends on type (y), age (a_t) , health (h_t) , and an idiosyncratic shock (ϵ_t)

$$z_{mt}^* = \gamma_{0,m,y} + \gamma_{1,m,y} a_t + \gamma_{2,m,y} a_t^2 + \gamma_{3,m,y} h_t + \epsilon_t, \quad \epsilon_t \sim N(0,1)$$

Then,

$$\mathsf{Prob}\left(z_{mt} = 1\right) = \mathsf{Prob}\left(z_{mt}^* > 0\right) = \underbrace{\alpha_m(y, a_t, h_t)}_{\alpha_{mt}}$$

 Considering independence of health behaviour given type, the probability of observing a sequence of health behaviours z for an individual across time, is assumed to be given by:

$$p(\boldsymbol{z}|\boldsymbol{h},y) = \prod_{t=1}^{T} \prod_{m=1}^{M} \alpha_{mt}^{z_{mt}} (1 - \alpha_{mt})^{1-z_{mt}}$$

Econometric Model

2. Health Dynamics

- We model the probability of reporting some health
 h' ∈ {Good, Bad, Dead} next period as a multinomial probit model
 - There are latent variables $(h_{h,h'}^*)$ that depend on gender (g), education (e), type (y), health (h), age (a), and an idiosyncratic shock $(\epsilon_{h'})$

$$h_{h,h'}^* = f(a, s, e, y; \boldsymbol{\beta}_{h,h'}) + \epsilon_{h'}$$

with.

$$f(a, g, e, y; \beta_{h'}) = \beta_{0,y,e,g,h,h'} + \beta_{1,y,e,g,h,h'}a$$

Econometric Model

3. Weights

 The mixture weights at the initial age (age 25 are modeled as a multinomial probit model:

$$\begin{split} y_1^* = & \lambda_{0,s,e,c}^1 + \lambda_{1,s,e}^1 b h + \epsilon_1 \\ \vdots \\ y_Y^* = & \lambda_{0,s,e,c}^Y + \lambda_{1,s,e}^Y b h + \epsilon_Y, \end{split}$$

We compute weights for future ages using the health transition model:

$$p(y, h_t|s, e, c) = \sum_{h_{t-1}} p(h_t|h_{t-1}, y, s, e) p(y, h_{t-1}|s, e, c)$$

Figure 1: Probability of reporting health behaviors by lifestyle

Table 1: LE at age 50 across education and lifestyles: males born in 1950s

	Dropouts		High-school		College		College-Dropout	
	Share	LE	Share	LE	Share	LE	Δ LE	ΔLE
All	100.0	25.5	100.0	28.0	100.0	32.3	6.8	4.3
Protective	54.3	29.0	69.1	30.3	88.3	33.4	4.4	
Detrimental	45.7	21.4	30.9	23.0	11.8	24.5	3.1	
Δ	8.6	7.6	38.2	7.2	76.5	8.9	1.4	

- More educated individuals tend to adopt healthier lifestyles.
 - The fraction of males with harmful lifestyle is 4 times bigger among high-school dropouts than among college graduates.
- If dropout males had the same lifestyles as college males, their life expectancy would increase by 2.5 extra years.
 - This corresponds to 37% of the observed difference in life-expectancy.

Figure 2: Probability of lifestyle at age 50 across cohorts. Males.

- Differences in lifestyles across education groups have increased.
 - The share of dropouts holding a detrimental lifestyle has increased from 40% for those born in 1930 to 57% for those born in 1970.
 - The share of college graduates holding a detrimental lifestyle has decreased from 14% for those born in 1930 to 8.4% for those born in 1990.
- This divergence in lifestyles across education groups has led to an increase in the life expectancy gradient.
 - From 6.2 years in 1950 to 8.0 years in 1970.
 - The importance of the differences in lifestyles to explain the life expectancy gradient has increased from 31% to 46% for those born in 1930 and 1970, respectively.

Calibration

External parameters

- Labor income (PSID):
 - Extensive margin:

$$\begin{split} l_t^*(\mathbf{e}, l_{t-1}, \varepsilon_t, h_t) &= f_t(\mathbf{e}, l_{t-1}, h_t) + \varepsilon_t, \quad \varepsilon_t \sim N(0, 1) \\ l_t^e(l_{t-1}, \varepsilon_t, h_t) &= 1 \text{ if } l_t^*() > 0 \end{split}$$

- Intensive margin:

$$w_t^{\text{ec}}(\zeta_t, \epsilon_t, h_t) = \omega_t^{\text{ec}}(h_t) + \zeta_t + \epsilon_t, \quad \epsilon_t \sim N(0, \sigma_\epsilon^2)$$
$$\zeta_t = \rho_\zeta \zeta_{t-1} + \nu_t, \qquad \qquad \nu_t \sim N(0, \sigma_\nu^2)$$

Medical expenses (HRS):

$$m_t^{\text{e}}(\xi_t, h_t) = \lambda_t^{\text{e}}(h_t) + \xi_t, \quad \xi_t \sim N(0, \sigma_{\xi}^2)$$

Estimation

Externally estimated parameters

Figure 3: College premium and tuition fees across cohorts

Source: PSID; Autor (2014); Donovan and Amerington (2019)

Internal Parameters

- The model is able to replicate
 - Higher wealth accumulation for the more educated
 - Higher wealth accumulation for the protective (conditional on education)

Parameter values

Parameter	Description	Value
\underline{x}	income floor	16.05
$ heta_1$	bequest motive: marginal utility	9.57
$ heta_2$	bequest motive: non-homoteticity	130.36
b	value of life	0.66

Internal parameters

Model Fit

Figure 4: Wealth distribution: model vs data

Calibration

- Match the joint distribution of e and y in each cohort c
 - → A total of 10 parameters and 10 statistics
- Identification
 - $-\mu_e$, μ_v drive the average share of e and y over time
 - $\sigma_{\rm e}^2$, $\sigma_{\rm y}^2$ drive <u>changes</u> in e and y over cohorts c as $V_0^{\rm eyc}$ changes (due to changes in wages and tuition fees)
 - $\rho^{c}_{\mbox{\tiny PRO},e}$ residually matches the joint distribution of e and y in each cohort c

Calibration

Parameters

Parameter	Value	Parameter	Value	Parameter	Value
$\mu_{ ext{PRO}}$	11.3	$ ho_{ ext{ iny PRO,HS}}^{1930}$	0.02	$ ho_{ ext{ iny PRO,COL}}^{1930}$	0.01
$\mu_{ ext{ iny HSG}}$	8.9	$ ho_{\scriptscriptstyle \mathrm{PRO},\mathrm{HS}}^{1970}$	0.02	$ ho_{\scriptscriptstyle ext{PRO,COL}}^{1970}$	0.13
$\mu_{ ext{cg}}$	35.7				
$\sigma_{ ext{PRO}}$	10.6				
$\sigma_{ ext{HSG}}$	1.6				
$\sigma_{ m CG}$	14.6				

Calibration

Fit: marginal distributions

Figure 5: Marginal distributions: Education and Health Behavior

Calibration

Fit: conditional distributions

Figure 6: Conditional distribution of Detrimental Behavior by Education

Two questions

• Why do individuals with higher education opt for more protective health behaviors?

2 To what extent the rise in earnings inequality has led to increased health inequalities?

Question 1: Education gradient of lifestyle and LE

Mechanisms

- Our model incorporates various mechanisms through which the incentive to adopt a given health behavior varies across educational choices:
 - **1** Income gradient: $w_t^{\text{ec}}(\zeta, \epsilon, h)$ Higher expected income for the more educated motivates healthier behavior as the value of life increases
 - 2 Complementarity of health investments: $\Gamma_t^{\rm ey}\left(h'|h\right)$ Gains in life expectancy due to health behavior are more favorable for those with college education
 - Early life complementarities: ρ^c_{PRO,e}

 Costs of better lifestyles may be related to costs of education (genes, parents, friends, neighborhood)

Results cohort 1930s: summary

- The better income and health transitions of the more educated
 - Are key for education choices: make CG
 - Do not change much the marginal distribution of health behaviour
 - Narrow down the education gradients of health behavior
- Early life complementarities
 - Play no quantitatively relevant role

Results cohort 1930s: figures

Figure 7: Education and Health Behavior

Results cohort 1930s: table

	$\Pr(y = \text{PRO} e)$				
Born in 1930	$e = \mathrm{HSD}$	e = CG	ΔLE		
Benchmark	42.6	13.7	6.4		
$ ho_{ ext{PRO},e}^c$ = 0	42.1	14.6	6.3		
$w_t^{ ext{CG}}$ = $w_t^{ ext{HSD}}$	34.9	15.7	5.7		
$\Gamma_t^{ ext{CG}}\left(h' h ight)$ = $\Gamma_t^{ ext{HSD}}\left(h' h ight)$	36.6	18.4	1.4		

Question 2: Changes over time

Mechanisms

- 1 Increase in the education wage premium
 - a) Increases (decreases) the fraction of e = CG (e = HSD) individuals
 - b) Effect on Pr[y = PRO | e] and LE(e)
 - Direct: return on health investments increases more for the more educated,

$$\Delta_{\mathsf{c}}\left(V_{0}^{\mathrm{CG,PRO},\mathsf{c}}-V_{0}^{\mathrm{CG,DET},\mathsf{c}}\right) > \Delta_{\mathsf{c}}\left(V_{0}^{\mathrm{HSD,PRO},\mathsf{c}}-V_{0}^{\mathrm{HSD,DET},\mathsf{c}}\right)$$

- \rightarrow This increases the education gradient in Pr[y = PRO | e] and LE(e)
- Selection: worse pool of individuals (in terms of ϵ_{PRO}) within CG and HSD
 - \rightarrow Ex ante ambiguous effect on education gradient in Pr[y = PRO | e] and LE(e)
- 2 Increase in college enrollment fees
 - Reversed patterns
- 3 Increase in the correlation of initial conditions
 - Changes patterns of selection

Results: summary

- Increase in the education wage premium accounts for most of the action
 - Direct effect: key for the increase in PRO individuals and LE among CG
 - Selection effect: key for the fall in PRO individuals and LE among HSD
 (life prospects of HSD did not fall as much to justify fall in PRO)
- Absent financial frictions, the increase in tuition has very small traction
- 1/4th of the increase in the gradients accounted for the increase in the initial correlation between education and lifestyle shocks

Three mechanisms

	CG	HSD	$\Delta_{ ext{cg,HSD}}$	explained
$\Delta Pr\left(e\right)$	16.1	-28.7	44.8	
$\Delta \Pr(y = \text{PRO} e)$	4.8	-18.3	23.0	
$\Delta LE(e)$	0.4	-1.4	1.8	

Three mechanisms

.1 -28.7	44.8	
.1 -29.1	45.2	101%
.8 -18.3	3 23.0	
.6 -15.3	17.0	74%
.4 -1.4	1.8	
.1 -1.2	2 1.3	74%
	.8 -18.3 .6 -15.3	.8 -18.3 23.0 .6 -15.3 17.0

Three mechanisms

	CG	HSD	$\Delta_{ ext{CG}, ext{HSD}}$	explained
$\Delta Pr(e)$	16.1	-28.7	44.8	
Wage increase	16.1	-29.1	45.2	101%
Tuition increase	-0.2	0.1	-0.3	-1%
$\Delta \Pr(y = \text{PRO} e)$	4.8	-18.3	23.0	
Wage increase	1.6	-15.3	17.0	74%
Tuition increase	0.2	-0.3	0.4	2%
$\Delta LE(e)$	0.4	-1.4	1.8	
Wage increase	0.1	-1.2	1.3	74%
Tuition increase	0.0	-0.0	0.0	2%

	CG	HSD	$\Delta_{\rm CG, HSD}$	explained
$\Delta Pr(e)$	16.1	-28.7	44.8	
Wage increase	16.1	-29.1	45.2	101%
Tuition increase	-0.2	0.1	-0.3	-1%
Change initial conditions	0.2	0.0	0.2	1%
$\Delta \Pr(y = \text{PRO} \mathbf{e})$	4.8	-18.3	23.0	
Wage increase	1.6	-15.3	17.0	74%
Tuition increase	0.2	-0.3	0.4	2%
Change initial conditions	4.4	-1.6	6.0	26%
$\Delta LE(e)$	0.4	-1.4	1.8	
Wage increase	0.1	-1.2	1.3	74%
Tuition increase	0.0	-0.0	0.0	2%
Change initial conditions	0.4	-0.1	0.5	26%

	CG	HSD	$\Delta_{ ext{cg,HSD}}$	explained
$\Delta Pr(e)$	16.1	-28.7	44.8	
$\Delta \Pr(y = \text{PRO} \mathbf{e})$	4.8	-18.3	23.0	
$\Delta LE(e)$	0.4	-1.4	1.8	

	CG	HSD	$\Delta_{\rm CG, HSD}$	explained
$\Delta Pr(e)$	16.1	-28.7	44.8	
Wage increase	16.1	-29.1	45.2	101%
$\Delta \Pr(y = \text{PRO} e)$	4.8	-18.3	23.0	
Wage increase	1.6	-15.3	17.0	74%
$\Delta LE(e)$	0.4	-1.4	1.8	
Wage increase	0.1	-1.2	1.3	74%

	CG	HSD	$\Delta_{ ext{cg,HSD}}$	explained
$\Delta Pr(e)$	16.1	-28.7	44.8	
Wage increase	16.1	-29.1	45.2	101%
$\Delta \Pr(y = \text{PRO} \mathbf{e})$	4.8	-18.3	23.0	
Wage increase Direct effect	1.6 2.0	-15.3 -1.5	17.0 3.4	74% 20%
$\Delta LE(e)$	0.4	-1.4	1.8	
Wage increase Direct effect	0.1 0.2	-1.2 -0.1	1.3 0.3	74% 20%

	$^{\mathrm{CG}}$	HSD	$\Delta_{\scriptscriptstyle \mathrm{CG}, \scriptscriptstyle \mathrm{HSD}}$	explained
$\Delta Pr\left(e\right)$	16.1	-28.7	44.8	
Wage increase	16.1	-29.1	45.2	101%
$\Delta \Pr(y = \text{PRO} \mathbf{e})$	4.8	-18.3	23.0	
Wage increase Direct effect Selection effect	1.6 2.0 -0.4	-15.3 -1.5 -13.8	17.0 3.4 13.6	74% 20% 54%
$\Delta LE(e)$	0.4	-1.4	1.8	
Wage increase Direct effect Selection effect	0.1 0.2 -0.1	-1.2 -0.1 -1.1	1.3 0.3 1.0	74% 20% 54%

1930s

1930s

1930s to 1970s: direct effect

1930s to 1970s: selection effect

Conclusions

- We develop a econometric model that allows us to incorporate lifestyles into an HA model to analyze complementarities in education and health investments
- Differences in lifestyles across education groups can account for around 1/3 of the LE gradient
- Both income differences and larger health advantages for college individuals drive differences in lifestyles across education groups.
- Our model implies that increases in wage inequality are tightly linked to increases in health inequality.
- Changes in selection account for 3/4 of the decline in lifestyle choices made by the high-school dropouts.