Document made available under the Patent Cooperation Treaty (PCT)

International application number: PCT/JP05/011364

International filing date: 21 June 2005 (21.06.2005)

Document type: Certified copy of priority document

Document details: Country/Office: JP

Number: 2004-275263

Filing date: 22 September 2004 (22.09.2004)

Date of receipt at the International Bureau: 29 July 2005 (29.07.2005)

Remark: Priority document submitted or transmitted to the International Bureau in

compliance with Rule 17.1(a) or (b)

日本国特許庁 JAPAN PATENT OFFICE

別紙添付の書類に記載されている事項は下記の出願書類に記載されている事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office.

出願年月日

Date of Application: 2004年 9月22日

出 願 番 号

 Application Number:
 特願2004-275263

バリ条約による外国への出願 に用いる優先権の主張の基礎 となる出願の国コードと出願 番号

番号 JP2004-275263
The country code and number

of your priority application, to be used for filing abroad under the Paris Convention, is

出 願 人 日本精工株式会社

Applicant(s):

2005年 7月13日

特許庁長官 Commissioner, Japan Patent Office

【書類名】 特許願 【整理番号】 N 0 3 3 6 T P 2 8 【あて先】 特許庁長官殿 【発明者】 【住所又は居所】 神奈川県藤沢市鵠沼神明一丁目5番50号 日本精工株式会社内 【氏名】 柳下 真一 【発明者】 【住所又は居所】 神奈川 県藤沢市鵠沼神明一丁目5番50号 日本精工株式会社内 【氏名】 池田 正樹 【特許出願人】 【識別番号】 000004204 【氏名又は名称】 日本精工株式会社 【代理人】 【識別番号】 100079108 【弁理士】 【氏名又は名称】 稲葉 良幸 【選任した代理人】 【識別番号】 100080953 【弁理士】 【氏名又は名称】 田中 克郎 【選任した代理人】 【識別番号】 100093861 【弁理士】 【氏名又は名称】 大賀 眞司 【手数料の表示】 【予納台帳番号】 0 1 1 9 0 3 【納付金額】 16,000円 【提出物件の目録】 【物件名】 特許請求の範囲 【物件名】 明細書 【物件名】 図面 【物件名】 要約書

【包括委任状番号】 9712179

【書類名】特許請求の範囲

【請求項1】

処理装置資源と、メモリ資源と、入力装置と、インタフェースとを備えたコンピュータ 資源を用いて3次元モデルを構築する図面自動生成方法において、前記処理装置資源は、 前記メモリ資源の動作プログラムに基づいて、下記の各ステップを実行する図面自動生成 方法。

- (1)用途ごとの図枠データを格納する図枠データベースから指定の図枠を抽出するステップ
- (2)抽出した図枠上に3次元モデルデータベースから抽出した3次元モデルを投影して 2次元投影図を生成するステップ
- (3)複数の寸法線要素に関するデータを格納する寸法データベースから前記2次元投影図の形状に応じた寸法線要素を抽出して製品の属性値に従って変形するステップ
- (4)前記変形した寸法線要素と前記2次元投影図とを合成して2次元投影図を図面として出力するステップ

【請求項2】

請求項1に記載の図面自動生成方法において、前記変形した寸法線要素と前記2次元投 影図とを合成するときに、設計基準データベースから指定の公差値と注記を抽出して前記 2次元投影図の指定の位置に記載するステッ

プを有することを特徴とする図面自動生成方法。

【請求項3】

製品の属性値に関するデータを格納する属性値データベースと、製品の3次元モデルデータを格納する3次元モデルデータベースと、用途ごとの図枠データを格納する図枠データベースと、前記図枠データベースから指定の図枠を抽出し、抽出した図枠上に前記3次元モデルデータベースから抽出した3次元モデルを投影して2次元投影図を生成する投影図生成手段と、複数の寸法線要素に関するデータを格納する寸法データベースと、前記2次元投影図の形状に応じた寸法線要素を前記寸法データベースから抽出して前記製品の属性値に従って変形し、変形した寸法線要素と前記2次元投影図とを合成する合成手段と、前記合成手段の合成による2次元投影図を図面として出力する図面出力手段とを備えてなる図面自動生成システム。

【請求項4】

請求項3に記載の図面自動生成システムにおいて、前記各寸法線要素に関する公差値と注記のデータを格納する設計基準データベースを備之、前記合成手段は、前記変形した寸法線要素と前記2次元投影図とを合成するときに、前記設計基準データベースから指定の公差値と注記を抽出して前記2次元投影図の指定の位置に記載してなることを特徴とする図面自動生成システム。

【請求項5】

コンピュータに請求項3または4に記載の各手段を実行させるためのプログラム。

【請求項6】

請求項5に記載のプログラムが記載された記憶媒体。

【書類名】明細書

【発明の名称】図面自動生成システム

【技術分野】

 $[0\ 0\ 0\ 1\]$

本発明は、コンピュータを用いて機械図面を自動生成するように構成された図面自動生成システムに関する。

【背景技術】

[0002]

機械設計を行う場合、顧客との契約の取り交わしや生産工場への設計情報の伝達のために、図面としては、用途や提出先に応じて各種の形式で製図することが要求される。そこで、CADを用いて製品形状を設計し、2次元で表現される図面を作成することが行われている。例えば、2次元CADを用い、設計者が所定の図枠の中に線を引いて図面として仕上げたり、あるいは、3次元CADでモデルを作成して平面上に投影し、必要が項目を追加・記入することで図面を仕上げたりする方法が採用されている。

【発明の開示】

【発明が解決しようとする課題】

[0003]

しかし、2次元で表現する図面で立体的な製品を表現しているため、3次元CADからの投影だけでは表現できない部分の寸法を記載することができないことがある。逆に、全ての形状が実物どおりに作成されるため、図面上では省略できる部分、例えば、繰り返しバターンの部分などが全て記載されるとともに、複雑な投影図に不必要な寸法が表記されることがある。すなわち、3次元設計では、部品ごとに断面形状を定義して回転や押し出しをすることで立体を定義し、他の立体モデルとの合成や削り取りを行うことで、任意の形状を生成するようになっている。このため、3次元設計で保持している寸法要素は、2次元で表現するために必要な寸法を十分に用意できず、また、組立品の場合は、3次元で表現する部品の寄せ集めで構成されるため、不必要な寸法まで生成されてしまい、設計者が手作業で寸法を追記したり、修正したりすることが余儀なくされている。

[0004]

本発明の課題は、3次元モデルから2次元図面を生成するときに、2次元図面に必要な寸法線を自動的に記載することにある。

【課題を解決するための手段】

[0005]

前記課題を解決するために、本発明は、処理装置資源と、メモリ資源と、入力装置と、インタフェースとを備えたコンピュータ資源を用いて3次元モデルを構築する図面自動生成方法において、前記処理装置資源は、前記メモリ資源の動作プログラムに基づいて、下記の各ステップを実行する図面自動生成方法を採用したものである。

[0006]

- (1)用途ごとの図枠データを格納する図枠データベースから指定の図枠を抽出するステ ップ
- (2)抽出した図枠上に3次元モデルデータベースから抽出した3次元モデルを投影して 2次元投影図を生成するステップ
- (3)複数の寸法線要素に関するデータを格納する寸法データベースから前記2次元投影 図の形状に応じた寸法線要素を抽出して製品の属性値に従って変形するステップ
- (4)前記変形した寸法線要素と前記2次元投影図とを合成して2次元投影図を図面として出力するステップ

[0007]

前記図面自動生成方法を採用するに際しては、前記変形した寸法線要素と前記2次元投 影図とを合成するときに、設計基準データベースから指定の公差値と注記を抽出して前記 2次元投影図の指定の位置に記載するステップを付加することができる。

また、本発明は、製品の属性値に関するデータを格納する属性値データベースと、製品の

3次元モデルデータを格納する3次元モデルデータベースと、用途ごとの図枠データを格納する図枠データベースと、前記図枠データベースから指定の図枠を抽出し、抽出した図枠上に前記3次元モデルデータベースから抽出した3次元モデルを投影して2次元投影図を生成する投影図生成手段と、複数の寸法線要素に関するデータを格納する寸法データベースと、前記2次元投影図の形状に応じた寸法線要素を前記寸法データベースから抽出して前記製品の属性値に従って変形し、変形した寸法線要素と前記2次元投影図とを合成する合成手段と、前記合成手段の合成による2次元投影図を図面として出力する図面出力手段とを備えてなる図面自動生成システムを構成したものである。

[0008]

前記した手段によれば、3次元モデルを投影して2次元投影図を生成する過程で、2次元投影図の形状に応じた寸法線要素を寸法データベースから抽出して製品の属性値にしたがって変形し、変形した寸法線要素と2次元投影図とを合成して図面を出力するようにしたため、2次元図面を自動生成するときに、必要な寸法線のみを自動的に2次元図面上に記載することができ、不必要な寸法線を削除したり、必要な寸法線を追加したりする作業が不要となり、図面生成の省力化を図ることが可能になる。

[0009]

前記図面自動生成システムを構成するに際しては、以下の要素を付加することができる。前記各寸法線要素に関する公差値と注記のデータを格納する設計基準データベースを備え、前記合成手段は、前記変形した寸法線要素と前記2次元投影図とを合成するときに、前記設計基準データベースから指定の公差値と注記を抽出して前記2次元投影図の指定の位置に記載してなる。

本発明はさらに、コンピュータに既述の各手段を実行させるためのプログラム及びこのプログラムが記憶された記憶媒体に係るものである。記憶媒体としては、CD-ROM、DVD-ROMなどのメモリ手段を例示することができる。

【発明の効果】

[0010]

本発明によれば、2次元図面を自動生成するときに、必要な寸法線のみを自動的に2次元 図面上に記載することができ、図面生成の省力化を図ることが可能になる。

【発明を実施するための最良の形態】

以下、本発明の一実施形態を図面に基づいて説明する。図1は、本発明に係る図面自動生成システムの基本構成図、図2は、本発明に係る自動生成システムの一実施例を示すブロック構成図である。

$[0\ 0\ 1\ 2]$

図1および図2において、本発明に係る図面自動生成システムは、処理装置資源と、メモリ資源と、入出力装置と、インタフェースとを備えたコンピュータ資源を備えて構成されている。具体的には、入力装置として、製品仕様決定手段10を備え、メモリ資源として、3次元モデルデータベース12、属性値データベース14、寸法データベース16、図枠データベース18、設計基準データベース20を備え、処理装置資源およびインタフェースとして、自動生成手段22を備えて構成され、さらに、出力装置として、図面提示手段24を備えて構成されている。

$[0\ 0\ 1\ 3]$

製品仕様決定手段10は、例えば、3次元CADシステムを用いて構成されており、ユーザの操作に基づいたデータを基に、3次元CADシステム上で製品設計を行い、製品の実際の形状を忠実に表現し、3次元モデル化するとともに、その設計意図から、断面図などの様々な製品の平面図を抽出できるようになっている。そして、ユーザが3次元CADシステムを操作して製品モデルを作成すると、製品に必要な機能検討のための算術計算を行い、設計や生産に必要な規定を基に、その製品に固有の寸法値や属性値に関するデータを3次元モデルと連携して保持し、3次元モデルに関するデータを3次元モデルデータベース12に格納し、属性値に関するデータを属性値データベース14に互いに連携させて格

納するようになっている。用途ごとの図枠データは図枠データベース18に格納され、複数の寸法線要素に関するデータは寸法データベース16に格納され、各寸法線要素に関する公差値と注記のデータはそれぞれ設計基準データベース20に格納されている。この場合、図面に必要な断面などの図形形状はコード化された形状一覧の中から選択され、3次元モデルと同時に連携を持たせた状態で格納されている。また寸法値などのデータは3次元モデルを特定することでいつでも取り出し可能になっている。

$[0\ 0\ 1\ 4]$

図面自動生成手段24は、図3に示すように、まず、ユーザが作成する図面の使用目的から必要な図面サイズや図面形式を図枠データベース18から選択して取り出す(ステップS1)。この中には、顧客提出図面として使用する顧客指定の図枠や、生産に必要な情報を伝達するための製造図用の図枠などが、予め登録されており、図枠データベース18に格納されたデータは随時拡充登録することが可能である。

[0015]

次に、選択した図枠データ(ファイル)を土台として、この上に製品を定義する図形を、3次元モデルから投影し、所定の図面形式の位置に記載する(ステップS2)。このとき、3次元モデルと同時に格納された形状コードを基に、寸法値によってサイズを調整した寸法データを投影図上に付加する。すなわち、必要な寸法の呼び出しとその内容を記載するための処理を行う(ステップS3)。

$[0\ 0\ 1\ 6]$

例えば、図4に示すように、3次元モデルから投影される図形26と、図形26に必要な寸法線要素28とを分離して形状ごとにバターン化して保持し、複数の寸法要素26のうち必要な寸法要素を付加するために、図形26の形状に応じて寸法線要素28を製品の属性値にしたがって変形し、変形した寸法線要素28を2次元投影図上に付加することとしている。すなわち、図面自動生成手段24は、図枠データベース18から指定の図枠を抽出し、抽出した図枠上に3次元モデルデータベース12から抽出した3次元モデルを投影して2次元投影図を生成する投影図生成手段としての機能を備えているとともに、2次元投影図の形状に応じた寸法線要素28を寸法データベース16から抽出して製品の属性値にしたがって変形し、変形した寸法線要素28と2次元投影図とを合成する合成手段としての機能を備えている。

$[0\ 0\ 1\ 7\]$

次に、図面自動生成手段 24 は、設計基準データベース 20 から必要な注記を読み出し(ステップ S4)、さらに設計に応じて変化する属性値を属性値データベース 14 から抽出して流し込み(ステップ S5)、読み出した注記や属性値をそれぞれ図枠上の指定の位置に記載する(ステップ S6)。これにより、図面自動生成手段 24 は、3 次元モデルを投影して 2 次元投影図を生成し、2 次元投影図の形状に応じた寸法線要素 28 を寸法データベース 16 から抽出して製品の属性値にしたがって変形し、変形した寸法線要素 28 と 2 次元投影図とを合成し、2 次元投影図にしたがった図面を自動的に生成し、生成した図面に関するデータを図面提示手段 26 に出力するようになっている。

[0018]

図面提示手段26は、図面自動生成手段24の生成による図面を図面30としてユーザに提示したり、図面30を印刷物として出力したりすることができるようになっている。

$[0\ 0\ 1\ 9]$

次に、3次元モデルを基に2次元図面を自動生成する過程で必要な寸法線要素のみを記載するに際して、必要な寸法線のみを付加するときの作用を図5のフローチャートにしたがって説明する。まず、3次元CADシステム上で3次元モデルの設計が行われ(ステップS11)、3次元モデルが2次元投影図として投影されると、図枠上の所定の位置に必要な投影図が記載される(ステップS12)。このとき、図6(a)に示すように、正面平面の指定、断面座標の指定に関する画面が3次元CADシステムの画面上に表示され、投影開始が選択されたときに、図枠上の所定の位置に必要な投影図が順次記載される。

[0020]

次に、必要な寸法形式の選択が行われる(ステップS13)。このときは、図6(b)に示すように、3次元CADシステムの画面上には、部品形式、配置、向き、付加方法(測定位置)を選択するための寸法形式選択画面が表示される。このとき、表示された画面上の各項目に任意の情報を選択して挿入することで、必要な寸法形式が選択される。

[0021]

次に、寸法データベース16を検索し(ステップS14)、2次元投影図の形状に応じた寸法形式を読み込み(ステップS15)、読み出した寸法線と投影図とを合成し(ステップS16)、合成された図面を図枠ファイル上に配置し(ステップS17)、2次元投影図による図面のうち必要な寸法線のみを付加する。

[0022]

次に、不要な寸法線を除去するときの作用を図7のフローチャートにしたがって説明す る。まず、3次元CADシステム上で3次元モデルの設計を行い(ステップS21)、3 次元モデルを投影して2次元投影図を生成し、2次元投影図上に必要な情報を記載する(ステップS22)。この場合、3次元CADシステムの画面上には、図8(a)に示すよ うに、正面平面の指定、断面座標の指定を促す画面が表示され、投影開始が操作されると 、2次元投影図の図枠上の所定の位置に必要な投影図が記載される。次に、部品組合せ形 式の選択が行われる(ステップS23)。この場合、3次元CADシステムの画面上には 、図8(b)に示すように、部品コード(名番)、配置の各項目に任意の情報を選択して 挿入したり、向き(背面組合せ、あるいは正面組合せ)のうちいずれかを選択したりする ための画面が表示される。そして各項目が選択されたときには、寸法データベース16を 検索し(ステップS24)、3次元CADシステムの画面上には、図8(c)に示すよう に、2次元投影図に関する寸法線要素が投影図とともに表示される。次に、2次元投影図 の形状に応じた寸法線要素を製品の属性値にしたがって変形し、製品の属性値に合致した 寸法形式を読み込み(ステップS25)、不要な寸法要素を特定し(ステップS26)、 不要な寸法要素として特定された寸法要素を投影図から除去する(ステップS27)。不 要な寸法線要素が除去されたあとは、必要な寸法線要素と2次元投影図とを合成して図枠 ファイル上に配置する(ステップS28)。これにより、3次元CADシステムの画面上 には、図8(d)に示すように、2次元投影図の図枠上の所定の位置にのみ必要な寸法線 要素が記入され、不要な寸法線が除去された画面が表示される。

[0023]

このように、本実施例においては、3次元モデルを基に2次元投影図を生成し、2次元投影図と寸法線要素とを合成するときに、必要な寸法線要素のみが2次元投影図と合成されるため、図面が生成されたときに、部品ごとの不要な寸法線を削除したり、逆に、必要な寸法線を付加したりする煩雑な作業を省略することができ、図面生成の省力化に寄与することができる。

【図面の簡単な説明】

[0024]

- 【図1】本発明に係る図面自動生成システムの基本構成図である。
- 【図2】本発明に係る図面自動生成システムの一実施例を示すブロック構成図である
- 【図3】図面自動生成手段の処理方法を説明するためのフローチャートである。
- 【図4】寸法データベースの利用方法を説明するための図である。
- 【図5】必要な寸法線を付加するときの作用を説明するためのフローチャートである
- 【図6】必要な寸法線を付加するときに用いられる画面の表示例を示す図である。
- 【図7】 不要な寸法線を除去するときの処理を説明するときのフローチャートである
- 【図8】不要な寸法線を除去するときに用いられる画面の表示例を示す図である。

【符号の説明】

[0025]

- 10 製品仕様決定手段
- 12 3次元モデルデータベース
- 14 属性値データベース
- 16 寸法データベース
- 18 図枠データベース
- 20 設計基準データベース
- 22 図面自動生成手段
- 24 図面提示手段

(a)

面の指定 標の指定	
投影開始	

(b)

部品形式 配置 向き		
付加寸法	測定位置	V
	ОК	

【書類名】要約書

【要約】

【課題】 3次元モデルから2次元図面を生成するときに、2次元図面に必要な寸法線を自動的に記載すること。

【解決手段】 製品仕様決定手段10により3次元モデルが生成され、3次元モデルとその属性値が互いに連携されて保持され、図枠データベース18から指定の図枠が図面自動生成手段24によって抽出されると、抽出された図枠上に3次元モデルを投影して2次元投影図を生成し、2次元投影図の形状に応じた寸法線要素を寸法データベース16から抽出して製品の属性値にしたがって変形し、必要な寸法線要素28と2次元投影図とを図面自動生成手段26によって合成し、合成した2次元投影図を図面として図面提示手段26から図面30として出力する。

【選択図】

図 1

出願人履歴

000000420419900829新規登録

東京都品川区大崎1丁目6番3号 日本精工株式会社