Sequential Convex Programming

- sequential convex programming
- alternating convex optimization
- convex-concave procedure

Methods for nonconvex optimization problems

- convex optimization methods are (roughly) always global, always fast
- for general nonconvex problems, we have to give up one
 - local optimization methods are fast, but need not find global solution (and even when they do, cannot certify it)
 - global optimization methods find global solution (and certify it),
 but are not always fast (indeed, are often slow)
- this lecture: local optimization methods that are based on solving a sequence of convex problems

Sequential convex programming (SCP)

- a local optimization method for nonconvex problems that leverages convex optimization
 - convex portions of a problem are handled 'exactly' and efficiently
- SCP is a heuristic
 - it can fail to find optimal (or even feasible) point
 - results can (and often do) depend on starting point
 (can run algorithm from many initial points and take best result)
- \bullet SCP often works well, *i.e.*, finds a feasible point with good, if not optimal, objective value

Problem

we consider nonconvex problem

minimize
$$f_0(x)$$

subject to $f_i(x) \leq 0, \quad i = 1, \dots, m$
 $h_i(x) = 0, \quad j = 1, \dots, p$

with variable $x \in \mathbf{R}^n$

- f_0 and f_i (possibly) nonconvex
- h_i (possibly) non-affine

Basic idea of SCP

- maintain estimate of solution $x^{(k)}$, and convex **trust region** $\mathcal{T}^{(k)} \subset \mathbf{R}^n$
- ullet form convex approximation \hat{f}_i of f_i over trust region $\mathcal{T}^{(k)}$
- ullet form affine approximation \hat{h}_i of h_i over trust region $\mathcal{T}^{(k)}$
- $x^{(k+1)}$ is optimal point for approximate convex problem

minimize
$$\hat{f}_0(x)$$
 subject to $\hat{f}_i(x) \leq 0, \quad i=1,\ldots,m$ $\hat{h}_i(x)=0, \quad i=1,\ldots,p$ $x \in \mathcal{T}^{(k)}$

Trust region

• typical trust region is box around current point:

$$\mathcal{T}^{(k)} = \{ x \mid |x_i - x_i^{(k)}| \le \rho_i, \ i = 1, \dots, n \}$$

• if x_i appears only in convex inequalities and affine equalities, can take $\rho_i = \infty$

Affine and convex approximations via Taylor expansions

• (affine) first order Taylor expansion:

$$\hat{f}(x) = f(x^{(k)}) + \nabla f(x^{(k)})^T (x - x^{(k)})$$

• (convex part of) second order Taylor expansion:

$$\hat{f}(x) = f(x^{(k)}) + \nabla f(x^{(k)})^T (x - x^{(k)}) + (1/2)(x - x^{(k)})^T P(x - x^{(k)})$$

$$P = \left(\nabla^2 f(x^{(k)})\right)_+$$
, PSD part of Hessian

ullet give local approximations, which don't depend on trust region radii ho_i

Particle method

• particle method:

- choose points $z_1, \ldots, z_K \in \mathcal{T}^{(k)}$ (e.g., all vertices, some vertices, grid, random, . . .)
- evaluate $y_i = f(z_i)$
- fit data (z_i, y_i) with convex (affine) function (using convex optimization)

• advantages:

- handles nondifferentiable functions, or functions for which evaluating derivatives is difficult
- gives **regional models**, which depend on current point and trust region radii ρ_i

Fitting affine or quadratic functions to data

fit convex quadratic function to data (z_i, y_i)

minimize
$$\sum_{i=1}^K \left((z_i - x^{(k)})^T P(z_i - x^{(k)}) + q^T (z_i - x^{(k)}) + r - y_i \right)^2$$
 subject to
$$P \succeq 0$$

with variables $P \in \mathbf{S}^n$, $q \in \mathbf{R}^n$, $r \in \mathbf{R}$

- can use other objectives, add other convex constraints
- no need to solve exactly
- this problem is solved for each nonconvex constraint, each SCP step

Quasi-linearization

- a cheap and simple method for affine approximation
- write h(x) as A(x)x + b(x) (many ways to do this)
- use $\hat{h}(x) = A(x^{(k)})x + b(x^{(k)})$
- example:

$$h(x) = (1/2)x^{T}Px + q^{T}x + r = ((1/2)Px + q)^{T}x + r$$

•
$$\hat{h}_{ql}(x) = ((1/2)Px^{(k)} + q)^T x + r$$

•
$$\hat{h}_{\text{tay}}(x) = (Px^{(k)} + q)^T (x - x^{(k)}) + h(x^{(k)})$$

Example

• nonconvex QP

minimize
$$f(x) = (1/2)x^TPx + q^Tx$$

subject to $||x||_{\infty} \le 1$

with P symmetric but not PSD

use approximation

$$f(x^{(k)}) + (Px^{(k)} + q)^T(x - x^{(k)}) + (1/2)(x - x^{(k)})^T P_+(x - x^{(k)})$$

- example with $x \in \mathbf{R}^{20}$
- SCP with $\rho = 0.2$, started from 10 different points

- ullet runs typically converge to points between -60 and -50
- ullet dashed line shows lower bound on optimal value pprox -66.5

Lower bound via Lagrange dual

ullet write constraints as $x_i^2 \leq 1$ and form Lagrangian

$$L(x,\lambda) = (1/2)x^T P x + q^T x + \sum_{i=1}^n \lambda_i (x_i^2 - 1)$$
$$= (1/2)x^T (P + 2\operatorname{diag}(\lambda)) x + q^T x - \mathbf{1}^T \lambda$$

•
$$g(\lambda) = -(1/2)q^T \left(P + 2\operatorname{diag}(\lambda)\right)^{-1} q - \mathbf{1}^T \lambda$$
; need $P + 2\operatorname{diag}(\lambda) > 0$

solve dual problem to get best lower bound:

maximize
$$-(1/2)q^T \left(P + 2\operatorname{diag}(\lambda)\right)^{-1} q - \mathbf{1}^T \lambda$$
 subject to $\lambda \succeq 0$, $P + 2\operatorname{diag}(\lambda) \succ 0$

Some (related) issues

- approximate convex problem can be infeasible
- how do we evaluate progress when $x^{(k)}$ isn't feasible? need to take into account
 - objective $f_0(x^{(k)})$
 - inequality constraint violations $f_i(x^{(k)})_+$
 - equality constraint violations $|h_i(x^{(k)})|$
- controlling the trust region size
 - ρ too large: approximations are poor, leading to bad choice of $x^{(k+1)}$
 - ρ too small: approximations are good, but progress is slow

Exact penalty formulation

instead of original problem, we solve unconstrained problem

minimize
$$\phi(x) = f_0(x) + \lambda \left(\sum_{i=1}^m f_i(x)_+ + \sum_{i=1}^p |h_i(x)| \right)$$

where $\lambda > 0$

- ullet for λ large enough, minimizer of ϕ is solution of original problem
- for SCP, use convex approximation

$$\hat{\phi}(x) = \hat{f}_0(x) + \lambda \left(\sum_{i=1}^m \hat{f}_i(x)_+ + \sum_{i=1}^p |\hat{h}_i(x)| \right)$$

• approximate problem always feasible

Trust region update

- ullet judge algorithm progress by decrease in ϕ , using solution \tilde{x} of approximate problem
- decrease with approximate objective: $\hat{\delta} = \phi(x^{(k)}) \hat{\phi}(\tilde{x})$ (called *predicted decrease*)
- decrease with exact objective: $\delta = \phi(x^{(k)}) \phi(\tilde{x})$
- if $\delta \geq \alpha \hat{\delta}$, $\rho^{(k+1)} = \beta^{\text{succ}} \rho^{(k)}$, $x^{(k+1)} = \tilde{x}$ $(\alpha \in (0,1), \beta^{\text{succ}} \geq 1; \text{ typical values } \alpha = 0.1, \beta^{\text{succ}} = 1.1)$
- if $\delta < \alpha \hat{\delta}$, $\rho^{(k+1)} = \beta^{\text{fail}} \rho^{(k)}$, $x^{(k+1)} = x^{(k)}$ ($\beta^{\text{fail}} \in (0,1)$; typical value $\beta^{\text{fail}} = 0.5$)
- interpretation: if actual decrease is more (less) than fraction α of predicted decrease then increase (decrease) trust region size

Nonlinear optimal control

ullet 2-link system, controlled by torques au_1 and au_2 (no gravity)

• dynamics given by $M(\theta)\ddot{\theta} + W(\theta,\dot{\theta})\dot{\theta} = \tau$, with

$$M(\theta) = \begin{bmatrix} (m_1 + m_2)l_1^2 & m_2l_1l_2(s_1s_2 + c_1c_2) \\ m_2l_1l_2(s_1s_2 + c_1c_2) & m_2l_2^2 \end{bmatrix}$$

$$W(\theta, \dot{\theta}) = \begin{bmatrix} 0 & m_2l_1l_2(s_1c_2 - c_1s_2)\dot{\theta}_2 \\ m_2l_1l_2(s_1c_2 - c_1s_2)\dot{\theta}_1 & 0 \end{bmatrix}$$

$$s_i = \sin \theta_i$$
, $c_i = \cos \theta_i$

nonlinear optimal control problem:

$$\begin{array}{ll} \text{minimize} & J = \int_0^T \|\tau(t)\|_2^2 \, dt \\ \text{subject to} & \theta(0) = \theta_{\text{init}}, \quad \dot{\theta}(0) = 0, \quad \theta(T) = \theta_{\text{final}}, \quad \dot{\theta}(T) = 0 \\ & \|\tau(t)\|_{\infty} \leq \tau_{\text{max}}, \quad 0 \leq t \leq T \end{array}$$

Discretization

- ullet discretize with time interval h=T/N
- $J \approx h \sum_{i=1}^{N} ||\tau_i||_2^2$, with $\tau_i = \tau(ih)$
- approximate derivatives as

$$\dot{\theta}(ih) \approx \frac{\theta_{i+1} - \theta_{i-1}}{2h}, \qquad \ddot{\theta}(ih) \approx \frac{\theta_{i+1} - 2\theta_i + \theta_{i-1}}{h^2}$$

• approximate dynamics as set of nonlinear equality constraints:

$$M(\theta_i) \frac{\theta_{i+1} - 2\theta_i + \theta_{i-1}}{h^2} + W\left(\theta_i, \frac{\theta_{i+1} - \theta_{i-1}}{2h}\right) \frac{\theta_{i+1} - \theta_{i-1}}{2h} = \tau_i$$

•
$$\theta_0 = \theta_1 = \theta_{\text{init}}$$
; $\theta_N = \theta_{N+1} = \theta_{\text{final}}$

discretized nonlinear optimal control problem:

minimize
$$\begin{split} h \sum_{i=1}^N \|\tau_i\|_2^2 \\ \text{subject to} \quad & \theta_0 = \theta_1 = \theta_{\text{init}}, \quad \theta_N = \theta_{N+1} = \theta_{\text{final}} \\ & \|\tau_i\|_\infty \leq \tau_{\text{max}}, \quad i = 1, \dots, N \\ & M(\theta_i) \frac{\theta_{i+1} - 2\theta_i + \theta_{i-1}}{h^2} + W\left(\theta_i, \frac{\theta_{i+1} - \theta_{i-1}}{2h}\right) \frac{\theta_{i+1} - \theta_{i-1}}{2h} = \tau_i \end{split}$$

replace equality constraints with quasilinearized versions

$$M(\theta_i^{(k)}) \frac{\theta_{i+1} - 2\theta_i + \theta_{i-1}}{h^2} + W\left(\theta_i^{(k)}, \frac{\theta_{i+1}^{(k)} - \theta_{i-1}^{(k)}}{2h}\right) \frac{\theta_{i+1} - \theta_{i-1}}{2h} = \tau_i$$

- ullet trust region: only on $heta_i$
- initialize with $\theta_i = ((i-1)/(N-1))(\theta_{\text{final}} \theta_{\text{init}})$, $i = 1, \ldots, N$

Numerical example

- $m_1 = 1$, $m_2 = 5$, $l_1 = 1$, $l_2 = 1$
- N = 40, T = 10
- $\theta_{\text{init}} = (0, -2.9), \ \theta_{\text{final}} = (3, 2.9)$
- $\tau_{\rm max} = 1.1$
- $\alpha = 0.1$, $\beta^{\text{succ}} = 1.1$, $\beta^{\text{fail}} = 0.5$, $\rho^{(1)} = 90^{\circ}$
- \bullet $\lambda = 2$

SCP progress

Convergence of ${\cal J}$ and torque residuals

Predicted and actual decreases in ϕ

Trajectory plan

'Difference of convex' programming

express problem as

minimize
$$f_0(x) - g_0(x)$$

subject to $f_i(x) - g_i(x) \le 0, \quad i = 1, \dots, m$

where f_i and g_i are convex

- $f_i g_i$ are called 'difference of convex' functions
- problem is sometimes called 'difference of convex programming'

Convex-concave procedure

• obvious convexification at $x^{(k)}$: replace f(x) - g(x) with

$$\hat{f}(x) = f(x) - g(x^{(k)}) - \nabla g(x^{(k)})^T (x - x^{(k)})$$

- since $\hat{f}(x) \ge f(x)$ for all x, no trust region is needed
 - true objective at \tilde{x} is better than convexified objective
 - true feasible set contains feasible set for convexified problem
- SCP sometimes called 'convex-concave procedure'

Example (BV §7.1)

- given samples $y_1, \ldots, y_N \in \mathbf{R}^n$ from $\mathcal{N}(0, \Sigma^{\text{true}})$
- negative log-likelihood function is

$$f(\Sigma) = \log \det \Sigma + \mathbf{Tr}(\Sigma^{-1}Y), \qquad Y = (1/N) \sum_{i=1}^{N} y_i y_i^T$$

(dropping a constant and positive scale factor)

• ML estimate of Σ , with prior knowledge $\Sigma_{ij} \geq 0$:

minimize
$$f(\Sigma) = \log \det \Sigma + \mathbf{Tr}(\Sigma^{-1}Y)$$

subject to $\Sigma_{ij} \geq 0, \quad i, j = 1, \dots, n$

with variable Σ (constraint $\Sigma \succ 0$ is implicit)

- ullet first term in f is concave; second term is convex
- linearize first term in objective to get

$$\hat{f}(\Sigma) = \log \det \Sigma^{(k)} + \mathbf{Tr}\left((\Sigma^{(k)})^{-1}(\Sigma - \Sigma^{(k)})\right) + \mathbf{Tr}(\Sigma^{-1}Y)$$

Numerical example

convergence of problem instance with n=10, $N=15\,$

Alternating convex optimization

- given nonconvex problem with variable $(x_1, \ldots, x_n) \in \mathbf{R}^n$
- $\mathcal{I}_1, \dots, \mathcal{I}_k \subset \{1, \dots, n\}$ are index subsets with $\bigcup_j \mathcal{I}_j = \{1, \dots, n\}$
- suppose problem is convex in subset of variables x_i , $i \in \mathcal{I}_j$, when x_i , $i \notin \mathcal{I}_j$ are fixed
- alternating convex optimization method: cycle through j, in each step optimizing over variables x_i , $i \in \mathcal{I}_j$
- special case: bi-convex problem
 - -x = (u, v); problem is convex in u(v) with v(u) fixed
 - alternate optimizing over u and v

Nonnegative matrix factorization

• NMF problem:

minimize
$$\|A-XY\|_F$$
 subject to $X_{ij},\ Y_{ij}\geq 0$

variables $X \in \mathbf{R}^{m \times k}$, $Y \in \mathbf{R}^{k \times n}$, data $A \in \mathbf{R}^{m \times n}$

- difficult problem, except for a few special cases (e.g., k = 1)
- ullet alternating convex optimation: solve QPs to optimize over X, then Y, then X . . .

Example

• convergence for example with $m=n=50,\,k=5$ (five starting points)

