Programmazione 1 - Modulo C

Introduzione alla programmazione in Java

Marco Beccuti

Università degli Studi di Torino Dipartimento di Informatica

Settembre 2020

In queste slides

- Primi utilizzi dell'istruzione di assegnamento con modello della memoria;
- Primo esempio di programma Java, con compilazione ed esecuzione.
 Creazione di un sorgente java;

Struttura (semplificata) di un calcolatore

Struttura (semplificata) di un calcolatore

Memoria principale

- viene anche indicata con il termine: RAM (Random Access Memory);
- Fornisce la capacità di memorizzare le Informazioni (lettura o scrittura)
- La memoria principale è volatile
- Le componenti elementari sono aggregate tra di loro e formano delle strutture complesse dette PAROLE o CELLE di memoria.

Memoria principale

Ogni dato o istruzione e' una sequenza di bit!!

- Permette di effettuare tutte le operazioni che riguardano il sistema e di modificarne lo stato;
- Può effettuare solo semplici operazioni:
 - operazioni aritmetiche e booleane;
 - operazioni di salto condizionato;
 - accesso in lettura scrittura della memoria;

•

É composta da:

- registri: speciali locazioni di memoria interne alla CPU, molto veloci, a cui può accedere molto piú rapidamente che alla memoria. I registri sono di due tipi:
 - ▶ i registri speciali utilizzati per scopi particolari (es. program counter, Registro Istruzione, . . .);
 - ▶ i registri di uso generale
- un'unità di controllo: legge dalla memoria le istruzioni, se occorre legge anche i dati per l'istruzione letta, esegue l'istruzione e memorizza il risultato se c'é, scrivendolo in memoria o in un registro della CPU.
- un'unità aritmetica e logica (l'acronimo ALU) che si occupa di eseguire le operazioni logiche e aritmetiche.

- Intel 4040 é stato rilasciato sul mercato nel 1974 come successore dell'Intel 4004;
- Lo sviluppo dell'Intel 4040 é stato proposto da Federico Faggin che ne ha formulato l'architettura;
- Circa 70.000 operazioni al secondo

- Core i7;
- 14nanom= $14 * 10^{-9}$ metri;
- Circa 1 miliardo di transistor
- Circa 32 miliardi di operazioni al secondo.

Struttura (semplificata) di un calcolatore

Struttura (semplificata) di un calcolatore

Il ciclo fetch-decode-execute

Struttura (semplificata) di un programma

- Prima di essere utilizzata in un programma, una variabile deve essere dichiarata;
- una dichiarazione di variabile può seguire, nel testo del programma, delle istruzioni.

- É un linguaggio di programmazione ad alto livello, orientato agli oggetti e a tipizzazione statica
- progettato per essere il piú possibile indipendente dalla piattaforma hardware di esecuzione (tramite compilazione in bytecode prima e interpretazione poi da parte di una Java Virtual Machine - JVM)
- é il **bytecode** ad essere portabile: possiamo compilare una applicazione Java su Windows ed eseguirla su un S.O. Linux.

- bytecode é un linguaggio intermedio tra il linguaggio di programmazione ad alto livello e il linguaggio macchina;
- É così chiamato perché spesso le operazioni hanno un codice che occupa un solo byte.

```
Byte Offset
i = j + k;
                   ILOADi //i=i+k
                                              0x15 0x02
if (i == 3)
                   ILOAD k
                                              0x15 0x03
  k = 0:
                   IADD
                                              0x60
                   ISTORE i
else
                                              0x36 0x01
                   ILOAD i // if (i < 3)
  j = j - 1;
                                             0x15 0x01
                   BIPUSH 3
                                          9 0x10 0x03
                   IF_ICMPEQ L1
                                         11 0x9F 0x00 0x0D
                   ILOAD j // j = j - 1
                                         14 0x15 0x02
                   BIPUSH 1
                                         16
                                              0x10 0x01
            10
                   ISUB
                                         18
                                              0x64
                   ISTORE i
            11
                                         19
                                              0x36 0x02
            12
                   GOTO L2
                                              0xA7 0x00 0x07
                                         21
            13 L1: BIPUSH 0
                               // k = 0
                                         24
                                              0x10 0x00
                   ISTORE k
            14
                                         26
                                               0x36 0x03
            15 L2:
```

https://en.wikipedia.org/wiki/Java_bytecode_instruction_listings

- La JVM specifica per un S.O ed un'architettura hardware é implementata dal Java Runtime Environment (JRE);
- Java Development Kit (JDK) include la JRE, ma fornisce inoltre un insieme di software per sviluppare le applicazioni basate su Java;
- JDK é necessaria per sviluppare nuove applicazioni Java: contiene il compilatore Java

Dove scaricare JDK:

https://www.oracle.com/java/technologies/javase-downloads.html

• Le informazioni sull'installazione per i vari sistemi operati sono reperibili nella stessa spagina.

Text editor

- Esisto diversi text editor che posso essere usati per scrivere un programma Java
- In linux potete usare TextEditor, Code::Blocks, ...
- In Windows potere usare Notepad++ (scaricabile gratuitamente da: https://notepad-plus-plus.org/)
- In MacOS potete usare Sublime Text, ...

Ambienti di sviluppo integrati (IDE)

- Esistono software che, in fase di programmazione, supportano i programmatori nello sviluppo e debugging del codice sorgente di un programma;
- NetBean IDE (scaricabile gratuitamente da: https://netbeans.org/)
- Eclipse IDE (scaricabile gratuitamente da: https://www.eclipse.org/downloads/

Struttura (semplificata) di un programma

```
class Saluto {
    public static void main (String[] args){
        System.out.println ("Ciao.");
     }
}
```

- Questo programma é il contenuto di un file di testo chiamato Saluto.java;
- Si puo' compilare con il comando:

```
javac Saluto.java
```

- Dalla compilazione si ottiene il file bytecode Saluto.class
- Può essere eseguito con il comando:

java Saluto

Dichiarazioni di variabili: sintassi

• Le variabili sono dichiarate assieme al loro tipo, per esempio:

```
int n;
int i,j; equivalente a int i; int j;
float pi;
```

 Dal punto di vista sintattico, le variabili sono identificatori, sequenze di caratteri alfanumerici che non iniziano con una cifra.

Alcuni tipi primitivi	Valori
boolean	true, false
char	caratteri UNICODE
int	interi 32 bit
float	numeri in virgola mobile, 32 bit
double	numeri in virgola mobile, 64 bit

Dichiarazioni di variabili: semantica

```
class Esempio {
  public static void main (String[] args){
    int n;
    double pi;
... }
}
```


Dichiarazioni di variabili: semantica

- Al momento della dichiarazione. ad una variabile viene associata una cella di memoria (o un gruppo di celle);
- I tipi primitivi permettono al compilatore di calcolare quante celle di memoria allocare ad una variabile;
- Il valore di una variabile dichiarata ma non esplicitamente inizializzata deve essere considerato indefinito

Morale: non usare variabili senza dichiararle ed inizializzarle.

Variabile

- Una variabile è caratterizzata da:
 - un nome (che è un identificatore);
 - una dimensione (determinata dal tipo con il quale è stata dichiarata);
 - ▶ un valore (del tipo della variabile).

Variabile

- Su una variabile sono disponibili le seguenti operazioni:
 - dichiarazione introduce un nome ed un tipo (e, di conseguenza, una dimensione) per la variabile;
 - scrittura associa un valore alla variabile;
 - un lettura recupera il valore della variabile.

Istruzione di assegnamento

• Formato generale:

```
\langle variabile \rangle = \langle espressione \rangle; dove \langle espressione \rangle ha lo stesso tipo di \langle variabile \rangle
```

- Esecuzione di un'istruzione di assegnamento x = E
 - \triangleright si valuta l'espressione E; se la valutazione termina si ottiene un valore v;
 - il valore v viene scritto nella cella di memoria (eventualmente più di una) associata alla variabile x al momento della sua dichiarazione.
- Osservazione:
 - ► Sulla sinistra di un assegnamento, una variabile indica una cella di memoria;
 - sulla destra di un assegnamento, una variabile rappresenta il valore scritto (al momento della valutazione) nella cella associata.

Espressioni di tipo primitivo

- Espressioni di tipo numerico
 se E, E' sono espressioni di tipo int, anche:
 - ightharpoonup E + E' (somma)
 - \triangleright E * E' (prodotto)
 - ► *E/E'* (divisione)
 - ► E%E′ (resto della divisione)

sono espressioni di tipo int.

Espressioni di tipo primitivo

- Espressioni di tipo boolean
 se E, E' sono espressioni di tipo int, allora:
 - ► E == E'
 - \triangleright E > E'
 - ► E < E'
 - E! = E'
 - ► *E* <= *E'*
 - ► *E* >= *E*′

sono espressioni di tipo boolean.

ullet Le espressioni booleane possono essere composte in and (&&) o in or (||)

Tavole di verita

Operatore not (!)

Tavole di verita

Operatore AND (&&)

Р	Q	P AND Q
1	1	1
1	0	0
0	1	0
0	0	0

Tavole di verita

Operatore OR (||)

Р	Q	P OR Q
1	1	1
1	0	1
0	1	1
0	0	0

Semantica delle istruzioni di assegnamento: esempio

Per eseguire l'istruzione

$$x = (-3 + 5) * 4;$$

avendo dichiarato int x:

```
(1) Valutare l'espressione (-3 + 5) * 4:
valutare l'espressione -3 + 5
valutare l'espressione -3,
valutare l'espressione 3, ottenendo valore 3
ottenendo valore -3
valutare l'espressione 5, ottenendo valore 5
ottenendo valore 2
valutare l'espressione 4, ottenendo valore 4
ottenendo valore 8
```

(2) scrivere il valore 8 nella cella di memoria associata a \boldsymbol{x} al momento della sua dichiarazione.

Semantica delle istruzioni di assegnamento: esempio

Per valutare l'espressione

$$x = (-3 + 5) * 4;$$

avendo dichiarato int x:

- (1) Valutare l'espressione (-3 + 5) * 4:
 valutare l'espressione -3 + 5
 valutare l'espressione -3,
 valutare l'espressione 3, ottenendo valore 3
 ottenendo valore -3
 valutare l'espressione 5, ottenendo valore 5
 ottenendo valore 2
 valutare l'espressione 4, ottenendo valore 4
 ottenendo valore 8
- (2) scrivere il valore 8 nella cella di memoria associata a x al momento della sua dichiarazione.

Semantica delle istruzioni di assegnamento: esempio

$$\begin{array}{c}
3 \to 3 \\
\hline
-3 \to -3 & 5 \to 5 \\
\hline
(-3 + 5) \to 2 & 4 \to 4 \\
\hline
(-3 + 5) * 4 \to 8
\end{array}$$

Dichiarazione di variabili con inizializzazione

La dichiarazione

```
int x = E;
```

dichiara la variabile x associandole il valore dell'espressione E.

• É un'abbreviazione di

```
int x; x = E;
```