

# Soal

- Dengan menggunakan pengali lagrange, cari jarak minimum dari titik asal (0,0,0) ke garis yang merupakan perpotongan dua bidang x+y+z=8 dan 2x-y+3z=28.
- Cari luas permukaan yang berada pada bola dengan persamaan  $x^2+y^2+z^2=a^2$  dan di dalam silinder  $x^2+y^2=b^2$  di mana  $0< b \le a$ .
- 3 Perhatikan gambar berikut.



Bangun tersebut dibatasi oleh x=0, x=1, z=0, z=1, dan bidang 2x+y+2z=6. Cari volumenya dengan urutan integrasi berikut.

- (a) dy dx dz.
- (b) dz dy dx.

Dengan menggunakan pengali lagrange, cari jarak minimum dari titik asal (0,0,0) ke garis yang merupakan perpotongan dua bidang x+y+z=8 dan 2x-y+3z=28.

### Solusi:

Perhatikan bahwa jarak titik (x,y,z) di garis dengan (0,0,0) adalah  $\sqrt{x^2+y^2+z^2}$ . Hal ini ekuivalen dengan mencari nilai minimum  $f(x,y,z)=x^2+y^2+z^2$ . Tentu titik tersebut juga harus memenuhi x+y+z=8 dan 2x-y+3z=28 yang merupakan fungsi kendala, tulis  $\varphi(x,y,z)=x+y+z-8$  dan  $\tau(x,y,z)=2x-y+3z-28$ . Tinjau  $\nabla f=\lambda\nabla\varphi+\mu\nabla\tau$ , dengan

$$\langle f_x, f_y, f_z \rangle = \lambda \langle \varphi_x, \varphi_y, \varphi_z \rangle + \mu \langle \tau_x, \tau_y, \tau_z \rangle$$
$$\langle 2x, 2y, 2z \rangle = \lambda \langle 1, 1, 1 \rangle + \mu \langle 2, -1, 3 \rangle = \langle \lambda + 2\mu, \lambda - \mu, \lambda + 3\mu \rangle.$$

Diperoleh  $2x = \lambda + 2\mu, 2y = \lambda - \mu$ , dan  $2z = \lambda + 3\mu$  yang berarti  $x = \frac{\lambda}{2} + \mu, y = \frac{\lambda - \mu}{2}$ , dan  $z = \frac{\lambda + 3\mu}{2}$ . Substitusikan ke x + y + z = 8, maka

$$8 = x + y + z = \frac{\lambda}{2} + \mu + \frac{\lambda - \mu}{2} + \frac{\lambda + 3\mu}{2} = \frac{3\lambda}{2} + 2\mu \implies 3\lambda + 4\mu = 16.$$

Substitusikan ke 2x - y + 3z = 28, maka

$$28 = 2x - y + 3z = \lambda + 2\mu - \frac{\lambda - \mu}{2} + \frac{3\lambda + 9\mu}{2} = 2\lambda + 7\mu.$$

Eliminasi persamaan  $3\lambda + 4\mu = 16$  dan  $2\lambda + 7\mu = 28$  sehingga diperoleh  $\lambda = 0$  dan  $\mu = 4$ . Dari sini diperoleh x = 4, y = -2, dan z = 6 sehingga  $x^2 + y^2 + z^2 = 56 \implies \sqrt{x^2 + y^2 + z^2} = \sqrt{56} = 2\sqrt{14}$ . Cek untuk titik lain pada garis, misalnya  $\left(1, -\frac{5}{4}, \frac{33}{4}\right)$  yang mana  $\sqrt{x^2 + y^2 + z^2} = \sqrt{1 + \frac{5^2}{4^2} + \frac{33^2}{4^2}} = \frac{\sqrt{1130}}{4} > 2\sqrt{14}$ . Jadi, jarak yang diminta adalah  $2\sqrt{14}$ .

Komentar. Sebenarnya tidak perlu kata "minimum" dalam konteks jarak titik dengan garis.

Cari luas permukaan yang berada pada bola dengan persamaan  $x^2 + y^2 + z^2 = a^2$  dan di dalam silinder  $x^2 + y^2 = b^2$  di mana  $0 < b \le a$ .

#### Solusi:

Perhatikan bahwa  $x^2+y^2+z^2=a^2\iff z^2=a^2-x^2-y^2$  dan diperoleh  $z=\pm\sqrt{a^2-x^2-y^2}$ . Perhatikan bahwa luas permukaan  $z=\sqrt{a^2-x^2-y^2}$  di dalam silinder akan sama dengan luas permukaan  $z=-\sqrt{a^2-x^2-y^2}$  di dalam silinder tersebut. Jadi, cukup hitung luas permukaan  $z=\sqrt{a^2-x^2-y^2}$  lalu dikalikan dengan 2. Tulis  $f(x,y)=\sqrt{a^2-x^2-y^2}$ , maka

$$f_x = \frac{-2x}{2\sqrt{a^2 - x^2 - y^2}} = -\frac{x}{\sqrt{a^2 - x^2 - y^2}}$$
 dan  $f_y = \frac{-2y}{2\sqrt{a^2 - x^2 - y^2}} = -\frac{y}{\sqrt{a^2 - x^2 - y^2}}$ .

Diperoleh

$$f_x^2 + f_y^2 + 1 = \frac{x^2}{a^2 - x^2 - y^2} + \frac{y^2}{a^2 - x^2 + y^2} + 1 = \frac{x^2 + y^2 + a^2 - x^2 - y^2}{a^2 - x^2 - y^2} = \frac{a^2}{a^2 - x^2 - y^2}.$$

Misalkan

$$P = \iint_{S} \sqrt{f_x^2 + f_y^2 + 1} \, dA = \iint_{S} \frac{a}{\sqrt{a^2 - x^2 - y^2}} \, dA,$$

maka luas permukaan yang diminta adalah 2P. Akan ditentukan dengan mengkonversi ke integral polar. Proyeksikan hasil irisan permukaan  $x^2+y^2+z^2=a^2$  dan  $x^2+y^2=b^2$ , maka akan membentuk lingkaran dengan persamaan  $x^2+y^2=b^2$ . Oleh karena itu, batas integral yang diperoleh  $0 \le r \le b$  dan  $0 \le \theta \le 2\pi$ . Jadi,

$$P = \iint_{S} \frac{a}{\sqrt{a^2 - x^2 - y^2}} \, dA = \int_{0}^{2\pi} \int_{0}^{b} \frac{ar}{\sqrt{a^2 - r^2}} \, dr \, d\theta = a \int_{0}^{2\pi} \int_{0}^{b} \frac{r}{\sqrt{a^2 - r^2}} \, dr \, d\theta.$$

Akan ditentukan  $\int \frac{r}{\sqrt{a^2-r^2}} \ dr$ . Misalkan  $p=a^2-r^2$ , maka  $dp=-2r \ dr$ . Maka

$$\int \frac{r}{\sqrt{a^2 - r^2}} \, \mathrm{d}r = \int \frac{r}{\sqrt{p}} \cdot \frac{\mathrm{d}p}{-2r} = -\frac{1}{2} \int \frac{1}{\sqrt{p}} \, \mathrm{d}p = -\frac{1}{2} \cdot 2\sqrt{p} = -\sqrt{p} = -\sqrt{a^2 - r^2}.$$

Didapatkan

$$P = a \int_{0}^{2\pi} \left[ -\sqrt{a^2 - r^2} \right]_{0}^{b} d\theta = a \int_{0}^{2\pi} \left( -\sqrt{a^2 - b^2} + a \right) d\theta = 2a\pi \left( a - \sqrt{a^2 - b^2} \right).$$

Jadi, luas permukaan yang diminta adalah  $2P = \boxed{4a\pi \left(a - \sqrt{a^2 - b^2}\right)}$ .

Jika  $z=xy+x\phi\left(\frac{y}{x}\right)$ , maka tunjukkan  $x\frac{\partial z}{\partial x}+y\frac{\partial z}{\partial y}=xy+z.$ 

## Solusi:

Tinjau

$$\begin{split} \frac{\partial z}{\partial x} &= \frac{\partial}{\partial x} \left( xy + x\phi \left( \frac{y}{x} \right) \right) \\ &= \frac{\partial}{\partial x} (xy) + \frac{\partial}{\partial x} \left( x\phi \left( \frac{y}{x} \right) \right) \\ &= y + \frac{\partial}{\partial x} (x) \cdot \phi \left( \frac{y}{x} \right) + x \cdot \frac{\partial}{\partial x} \phi \left( \frac{y}{x} \right) \\ &= y + \partial \left( \frac{y}{x} \right) + x \cdot \frac{\partial \phi \left( \frac{y}{x} \right)}{\partial \frac{y}{x}} \cdot \frac{\partial \frac{y}{x}}{\partial x} \\ &= y + \phi \left( \frac{y}{x} \right) + x \cdot \phi' \left( \frac{y}{x} \right) \cdot \left( -\frac{y}{x^2} \right) \\ x \frac{\partial z}{\partial x} &= xy + x\phi \left( \frac{y}{x} \right) - y\phi' \left( \frac{y}{x} \right). \end{split}$$

Selain itu,

$$\begin{split} \frac{\partial z}{\partial y} &= \frac{\partial}{\partial y} \left( xy + x\phi \left( \frac{y}{x} \right) \right) \\ &= \frac{\partial}{\partial y} (xy) + \frac{\partial}{\partial y} \left( x\phi \left( \frac{y}{x} \right) \right) \\ &= x + x \cdot \frac{\partial}{\partial y} \phi \left( \frac{y}{x} \right) \\ &= x + x \cdot \frac{\partial}{\partial y} \phi \left( \frac{y}{x} \right) \\ &= x + x \cdot \frac{\partial}{\partial y} \phi \left( \frac{y}{x} \right) \cdot \frac{\partial}{\partial y} \\ &= x + x \cdot \phi' \left( \frac{y}{x} \right) \cdot \frac{1}{x} \\ y \frac{\partial z}{\partial y} &= xy + y\phi' \left( \frac{y}{x} \right). \end{split}$$

Diperoleh

$$x\frac{\partial z}{\partial x} + y\frac{\partial z}{\partial y} = xy + x\phi\left(\frac{y}{x}\right) - y\phi'\left(\frac{y}{x}\right) + xy + y\phi; \left(\frac{y}{x}\right) = xy + \left(xy + x\phi\left(\frac{y}{x}\right)\right) = xy + z$$

seperti yang ingin dibuktikan.

Perhatikan gambar berikut.



Bangun tersebut dibatasi oleh x=0, x=1, z=0, z=1, dan bidang 2x+y+2z=6. Cari volumenya dengan urutan integrasi berikut.

- (a) dy dx dz.
- (b) dz dy dx.

## Solusi:

(a) Tulis y=6-2x-2z. Dengan meninjau searah sumbu-y, arah tersebut pertama kali menembus bidang y=0 dan dilanjutkan dengan bidang y=6-2x-2z. Jadi,  $0 \le y \le 6-2x-2z$ . Proyeksikan terhadap bidang-xz, hasil proyeksinya adalah bidang y=0 (daerah biru). Pada proyeksi ini, dengan meninjau searah sumbu-z, diperoleh batasnya dari z=0 hingga z=1 (yakni  $0 \le z \le 1$ ). Jadi,  $0 \le x \le 1$ . Tinjau batas untuk z, yakni  $0 \le z \le 1$ .



Jadi, volume yang diminta adalah

$$Q = \iiint_{S} dV = \int_{0}^{1} \int_{0}^{1} \int_{0}^{6-2x-2z} dy \, dx \, dz.$$

Tinjau 
$$\int_{0}^{6-2x-2z} \mathrm{d}y = [y]_{0}^{6-2x-2z} = (6-2x-2z) - 0 = 6-2x-2z.$$
 Diperoleh

$$Q = \int_{0}^{1} \int_{0}^{1} (6 - 2x - 2z) \, dx \, dz$$

$$= \int_{0}^{1} \left[ 6x - x^{2} - 2xz \right]_{0}^{1} \, dz$$

$$= \int_{0}^{1} \left[ 6 - 1 - 2z - (0 - 0 - 0) \right] \, dz$$

$$= \int_{0}^{1} (5 - 2z) \, dz$$

$$= \left[ 5z - z^{2} \right]_{0}^{1}$$

$$= (5 - 1) - (0 - 0)$$

$$= 4.$$

Jadi, volumenya adalah 4.

(b) Untuk urutan dz dy dx perlu mempartisi bidang yang akan dihitung. Partisi bangun tersebut dengan bidang ABCD berwarna biru, dengan AB dan CD masing-masing tegak lurus bidang-xy.



Misalkan volume bidang tersebut adalah Q, dan

$$Q_1 = \iiint_{S_1} \mathrm{d}V \quad \mathrm{dan} \quad Q_2 = \iiint_{S_2} \mathrm{d}V \implies Q = Q_1 + Q_2.$$

Akan ditentukan batas-batas integral pada  $Q_1$  dalam urutan dz dy dx. Dalam searah sumbu-z, arah pertama kali menembus bidang z=0 dan dilanjutkan dengan z=1. Jadi,  $0 \le 1 \le z$ . Untuk menentukan batas searah sumbu-y, akan ditentukan terlebih dahulu persamaan bidang berwarna biru. Perhatikan bahwa titik A=(0,q,1) karena terletak pada bidang-yz. Karena terletak pada bidang 2x+y+2z=6, maka memenuhi  $2\cdot 0+q+2\cdot 1=6\iff q=4$ . Jadi, A=(0,4,1). Begitu juga titik D=(1,r,1) karena terletak pada bidang x=1 dan z=1. Karena juga terletak pada bidang 2x+y+2z=6, maka  $2\cdot 1+y+2\cdot 1=6\iff y=2$ , jadi D=(1,2,1). Karena AB tegak lurus bidang-xy, maka B=(0,4,0). Perhatikan bahwa persamaan bidang yang melalui (0,4,1), (1,2,1), (0,4,0) adalah  $2x+y=4\iff y=4-2x$ . Proyeksikan bidang tersebut ke bidang-xy dan hasil proyeksinya sebagaimana bidang berwarna hijau. Dengan meninjau searah sumbu-y pada proyeksi, diperoleh batas untuk y dimulai dari y=0 hingga y=4-2x. Jadi,  $0\le y\le 4-2x$ . Sedangkan, untuk batas nilai x yang diberikan adalah  $0\le x\le 1$ . Jadi,

$$Q_1 = \iiint_{S_1} dV = \int_0^1 \int_0^{4-2x} \int_0^1 dz dy dx.$$

Tinjau  $\int_{0}^{1} dz = [z]_{0}^{1} = 1 - 0 = 1$ . Diperoleh

$$Q_1 = \int_0^1 \int_0^{4-2x} 1 \, dy \, dx = \int_0^1 [y]_0^{4-2x} \, dx = \int_0^1 (4-2x) \, dx = \left[4x - x^2\right]_0^1 = (4-1) - (0-0) = 3.$$

Akan ditentukan batas-batas integral pada  $Q_2$ . Untuk searah sumbu-z pertama kali menembus bidang z=0 dan dilanjutkan dengan  $z=\frac{6-2x-y}{2}=3-x-\frac{y}{2}$ . Jadi,

 $0 \le z \le 3-x-\frac{y}{2}$ . Proyeksikan bidang 2x+y=4 dan 2x+y+2z=6 ke bidang-xy sebagaimana daerah berwarna kuning. Dengan meninjau searah sumbu-y, diperoleh batas y dimulai dari y=4-2x hingga y=6-2x (batas kanannya merupakan kasus z=0 dari persamaan bidang 2x+y+2z=6). Jadi,  $4-2x \le y \le 6-2x$ . Sedangkan, untuk batas x adalah  $0 \le x \le 1$ . Jadi,

$$Q_2 = \iiint_{S_2} dV = \int_0^1 \int_{4-2x}^{6-2x} \int_0^{3-x-\frac{y}{2}} dz \, dy \, dx.$$

Tinjau 
$$\int\limits_0^{3-x-\frac{y}{2}}\mathrm{d}z=\left[z\right]_0^{3-x-\frac{y}{2}}=3-x-\frac{y}{2}-0=3-x-\frac{y}{2}.$$
 Didapatkan

$$Q_{2} = \int_{0}^{1} \int_{4-2x}^{6-2x} \left(3 - x - \frac{y}{2}\right) dy dx$$

$$= \int_{0}^{1} \left[3y - xy - \frac{y^{2}}{4}\right]_{4-2x}^{6-2x} dx$$

$$= \int_{0}^{1} 1 dx$$

$$= [x]_{0}^{1}$$

$$= 1$$

Jadi, volume yang diminta adalah  $Q = Q_1 + Q_2 = 3 + 1 = \boxed{4}$ .