

Fully Connected Layer

32x32x3 image -> stretch to 3072 x 1

Dot product & filter size

A closer look at spatial dimensions:

7

7x7 input (spatially) assume 3x3 filter

A closer look at spatial dimensions:

7

7x7 input (spatially) assume 3x3 filter

A closer look at spatial dimensions:

7

7x7 input (spatially) assume 3x3 filter

A closer look at spatial dimensions:

7

7x7 input (spatially) assume 3x3 filter

A closer look at spatial dimensions:

7

7x7 input (spatially) assume 3x3 filter

=> 5x5 output

A closer look at spatial dimensions:

7x7 input (spatially) assume 3x3 filter applied with stride 2

A closer look at spatial dimensions:

7x7 input (spatially) assume 3x3 filter applied with stride 2

A closer look at spatial dimensions:

7x7 input (spatially)
assume 3x3 filter
applied with stride 2
=> 3x3 output!

N

	H		
F			

Output size:

(N - F) / stride + 1

e.g. N = 7, F = 3:

stride
$$1 \Rightarrow (7 - 3)/1 + 1 = 5$$

stride
$$2 \Rightarrow (7 - 3)/2 + 1 = 3$$

stride
$$3 \Rightarrow (7 - 3)/3 + 1 = 2.33 : \$$

Convolution Layer computation

Convolution Layer computation

Convolution Layer computation

For example, if we had 6 5x5 filters, we'll get 6 separate activation maps:

We stack these up to get a "new image" of size 28x28x6!

Convolution Network

Preview: ConvNet is a sequence of Convolution Layers, interspersed with activation functions

Convolution Network

Zero padding

Zero padding

0	0	0	0	0	0		
0							
0							
0					2		
0							

- Activation map size 조절
- 이 후 연산은 동일

Input volume: 32x32x3

10 5x5 filters with stride 1, pad 2

Output volume size: ?

Input volume: 32x32x3

10 5x5 filters with stride 1, pad 2

Output volume size:

$$(32+2*2-5)/1+1 = 32$$
 spatially, so

32x32x10

Zero padding으로 인해 w, h 의size가 동일

Input volume: 32x32x3

10 5x5 filters with stride 1, pad 2

Number of parameters in this layer?

=> 76*10 = **760**

Input volume: 32x32x3

10 5x5 filters with stride 1, pad 2

Number of parameters in this layer? each filter has 5*5*3 + 1 = 76 params

(+1 for bias)

Pooling layer

Max pooling

Single depth slice

 1
 1
 2
 4

 5
 6
 7
 8

 3
 2
 1
 0

max pool with 2x2 filters and stride 2

6	8
3	4

Average pooling

2	3	1	9
4	7	3	5
8	2	2	2
1	3	4	5

4	4.5
3.25	3.25

CS231n: http://cs231n.stanford.edu/syllabus.html

