1 Un peu de relativité

 \mathbf{a}

Classiquement, un photon se propageant dans le vide peut-il se désintégrer en une paire électronpositron ? Que ce passera-t-il en théorie quantique des champs (QFT) ?

b)

Quelle est la condition pour qu'un tenseur soit invariant sous transformations de Lorentz?

Soit un tenseur de rang $(m,n), m,n\in\mathbb{N}$, avec les éléments $T^{\mu_1\dots\mu_n}_{\nu_1\dots\nu_m}$, et la métrique de Minkowsky η . Soit une transformation de Lorentz Λ définit tel que

$$\eta_{\mu\nu} = \Lambda^{\alpha}_{\ \mu} \Lambda^{\beta}_{\ \nu} \eta_{\alpha\beta} \tag{1.1}$$

Pour que T soit un invariant de Lorentz, il doit satisfaire

$$T^{\mu_1 \dots \mu_n}_{\nu_1 \dots \nu_m} = \Lambda^{\mu_1}_{\alpha_1} \dots \Lambda^{\mu_n}_{\alpha_n} \Lambda^{\beta_1}_{\nu_1} \dots \Lambda^{\beta_m}_{\eta_m} T^{\alpha_1 \dots \alpha_n}_{\beta_1 \dots \beta_m}, \tag{1.2}$$

similairement à la métrique de Minkowsky.

 $\mathbf{c})$

Les tenseurs δ^{ν}_{μ} et $\epsilon^{\mu\nu\rho\sigma}$ (Levi-Civita) sont-ils invariants de Lorentz ?

Réponse 1.1. Le delta de Kronecker δ^{ν}_{μ} est un invariant de Lorentz.

Solution. On remarque que $\delta^{\nu}_{\mu} = \eta_{\mu\alpha}\eta^{\alpha\nu}$. Puisque la métrique de Minkowsky est une invariant de Lorentz (par définition), alors δ^{ν}_{μ} l'est aussi.

Réponse 1.2. Le tenseur de Levi-Civita est un invariant de Lorentz.

Solution. On applique une transformation de Lorentz sur le tenseur de Levi-Civita

$$(\epsilon')^{\mu\nu\rho\sigma} = \Lambda^{\mu}_{\ \alpha} \Lambda^{\nu}_{\ \beta} \Lambda^{\rho}_{\ \gamma} \Lambda^{\sigma}_{\ \delta} \epsilon^{\alpha\beta\gamma\delta}$$

On examine maintenant certains éléments du tenseur transformé. Je note $S_n^+ = \{\sigma \in S_n \mid \operatorname{sgn}(\sigma) = +1\}$ les permutations paires pour n indices, où $\operatorname{sgn}(\sigma)$ dénote le signe du déterminant de la matrice associé à la permutation σ . Par example, $S_3^+ = \{(1\,2\,3), (3\,1\,2), (2\,3\,1)\}$; la matrice associé à $\sigma = (3\,1\,2)$ est

$$M_{\sigma} = \begin{pmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix} .$$

Elle possède un déterminant positif, $\det(M_{\sigma})=1$, de sortes que $\operatorname{sgn}(\sigma)=+1$. L'ensemble des permutations impaires est noté S_n^- . Naturellement, $|S_n^+|=|S_n^-|=\frac{n!}{2}$. En utilisant la propriété complètement antisymétrique du tenseur de Levi-Civita

$$\epsilon^{\mu\nu\rho\sigma} = \begin{cases} +1 & \mu\nu\rho\sigma \in S_4^+ \\ -1 & \mu\nu\rho\sigma \in S_4^- \\ 0 & \text{autrement} \end{cases}$$
 (1.3)

on trouve que

$$(\epsilon')^{\mu\nu\rho\sigma} = \sum_{\alpha\beta\gamma\delta\in S_4^+} \Lambda^{\mu}{}_{\alpha}\Lambda^{\nu}{}_{\beta}\Lambda^{\rho}{}_{\gamma}\Lambda^{\sigma}{}_{\delta} - \sum_{\alpha\beta\gamma\delta\in S_4^-} \Lambda^{\mu}{}_{\alpha}\Lambda^{\nu}{}_{\beta}\Lambda^{\rho}{}_{\gamma}\Lambda^{\sigma}{}_{\delta}$$
(1.4)

Cas des indices identiques: Sous cette forme, on peut résoudre les valeurs du tenseur transformé lorsqu'au moins 2 indices sont identiques. Dans ce cas, $(\epsilon')^{\mu\nu\rho\sigma} = \epsilon^{\mu\nu\rho\sigma} = 0$. Par exemple, considérons le cas $\mu\nu\rho\sigma = 0012$, où les deux premiers indices sont identiques.

$$\begin{split} (\epsilon')^{0012} &= \sum_{\alpha\beta\gamma\delta \in S_4^+} \Lambda^0_{~\alpha} \Lambda^0_{~\beta} \Lambda^1_{~\gamma} \Lambda^2_{~\delta} - \sum_{\alpha\beta\gamma\delta \in S_4^-} \Lambda^0_{~\alpha} \Lambda^0_{~\beta} \Lambda^1_{~\gamma} \Lambda^2_{~\delta} \\ &= \dots + \Lambda^0_{~0} \Lambda^0_{~1} \Lambda^1_{~2} \Lambda^2_{~3} - \Lambda^0_{~1} \Lambda^0_{~0} \Lambda^1_{~2} \Lambda^2_{~3} - \dots \\ &= 0 \end{split}$$

En effet, pour chaque permutations $\alpha\beta\gamma\delta\in S_4^+$, on peut échanger α et β , de sortes qu'on peut toujours trouver le terme $\beta\alpha\gamma\delta\in S_4^-$ dans la somme sur les indices impaires qui annule le terme $\alpha\beta\gamma\delta$ dans la première somme. Cet argument se généralise à tout autre cas où au moins deux indices sont identiques.

Cas des indices distincts: Je poursuis la démonstration avec l'exemple $\mu\nu\rho\sigma = 1234$. Pour le résoudre, on doit démontrer que $(\epsilon')^{1234} = \det(\Lambda) = 1$. Le fait qu'une transformation de Lorentz a un déterminant unité suit du fait qu'une transformation de Lorentz doit satisfaire la condition

$$\Lambda(-v) = \Lambda(v)^{-1} \tag{1.5}$$

où v est le paramètre de la transformation (vitesse pour un boost, angle pour une rotation). Puisque $\Lambda(-v) = R(\pi)\Lambda(v)R(\pi) \implies \det(\Lambda(-v)) = \det(\Lambda(v))$, il suit que, $\det(\Lambda) = \pm 1$. Finalement, on requiert que $\Lambda(0) = 1$, la matrice identité, donc $\det(\Lambda(0)) = 1 \implies \det(\Lambda(v)) = 1$.

La formule de Leibniz pour le déterminant nous indique que

$$\det(\Lambda) = \Lambda^{1}_{\alpha} \Lambda^{2}_{\beta} \Lambda^{3}_{\gamma} \Lambda^{4}_{\delta} \epsilon^{\alpha\beta\gamma\delta} . \tag{1.6}$$

Or, le côté droit de l'égalité est précisément le résultat de la transformation de Lorentz pour l'élement 1234 du tenseur de Levi-Civita, donc $(\epsilon')^{1234} = \det(\Lambda) = 1$. Les autres cas suivent par la permutation des indices contravariant au côté droit de la formule de Leibniz. Par exemple, supposons que $\mu\nu\rho\sigma = 2143 \in S_4^+$:

$$\begin{split} (\epsilon')^{2143} &= \Lambda^2_{\ \alpha} \Lambda^1_{\ \beta} \Lambda^4_{\ \gamma} \Lambda^3_{\ \delta} \epsilon^{\alpha\beta\gamma\delta} \\ &= \Lambda^1_{\ \beta} \Lambda^2_{\ \alpha} \Lambda^3_{\ \delta} \Lambda^4_{\ \gamma} \epsilon^{\alpha\beta\gamma\delta} \\ &= \Lambda^1_{\ \beta} \Lambda^2_{\ \alpha} \Lambda^3_{\ \delta} \Lambda^4_{\ \gamma} \epsilon^{\beta\alpha\delta\gamma} \\ &= \Lambda^1_{\ \alpha} \Lambda^2_{\ \beta} \Lambda^3_{\ \gamma} \Lambda^4_{\ \delta} \epsilon^{\alpha\beta\gamma\delta} \\ &= \Lambda^1_{\ \alpha} \Lambda^2_{\ \beta} \Lambda^3_{\ \gamma} \Lambda^4_{\ \delta} \epsilon^{\alpha\beta\gamma\delta} \\ &= \det(\Lambda) = 1 \end{split}$$
 {Réarrengement des termes}
$$\{ \text{Permutation paire des indices du tenseur de Levi-Civita} \}$$

Comme l'argument est général, on a que $(\epsilon')^{\mu\nu\rho\sigma} = \epsilon^{\mu\nu\rho\sigma}$, $\forall \mu\nu\rho\sigma \in S_4^+$. L'argument pour une permutation impaire est très similaire et nous mène à conclure que

$$(\epsilon')^{\mu\nu\rho\sigma} = -\det(\Lambda) = \epsilon^{\mu\nu\rho\sigma}, \ \forall \mu\nu\rho\sigma \in S_{\perp}^{-}.$$

Donc, ayant couvert tous les cas possible, on conclut que

$$(1.7)$$

2 Invariance d'échelle

Soit un champ scalaire Klein-Gordon ϕ de masse m en d dimensions spatiales. Considérons une transformation continue

$$x' = bx (2.1)$$

$$\phi'(bx) = b^{-\Delta}\phi(x) \tag{2.2}$$

où $b, \Delta \in \mathbb{R}_{>0}$.

a)

Quelle sont les conditions pour que (2.1) soit une symétrie de la théorie? Appelons l'action de cette théorie S_{\star} . Quel est le courant de Noether associé?

b)

Soit une quantité $\mathcal{O}(x)$ qui dépend du champ et ses dérivées au point x. Posons que \mathcal{O} transforme comme ϕ sous (2.1), mais avec Δ remplacé par $\Delta\mathcal{O}$, appelé la dimension d'échelle de \mathcal{O} . Pour les conditions trouvées en a), quelle est la dimension d'échelle de la densité Lagrangienne \mathcal{L}_{\star} et de ϕ^n , où $n \in \mathbb{N}$

 \mathbf{c}

On considère le Lagrangien avec un terme d'intéraction

$$\mathcal{L}_{\text{int}} = \mathcal{L}_{\star} - \lambda \phi^{2n} \tag{2.3}$$

où $n \in \{1, 2, 3, \dots\}$. Quel doit être le signe de λ pour que la théorie soit physiquement raisonnable? Quelle est l'équation du mouvement pour cette théorie intéragissante. Quelle est la nouvelle difficulté?

d)

En $d \in \{1,2,3\}$ dimensions, quelles sont les conditions pour que la théorie intéragissante soit invariante sous une transformation d'échelle (2.1).

3 Champs de jauge

Soit l'action de Maxwell

$$S = \int d^{d+1}x \, F_{\mu\nu} F^{\mu\nu} \tag{3.1}$$

où $d \geq 1$.

a)

Démontrer que l'action est invariante sous transformations de jauge : $A_{\mu}(x) \to A_{\mu}(x) + \partial_{\mu}f(x)$, où f est une fonction scalaire suffisamment lisse.

- b)
- **c**)
- d)
- **e**)
- 4 Phonons
- **a**)
- b)
- **c**)
- 5 Quantification 101
- **a**)
- b)
- **c**)
- d)