

ASIGNATURA:

ESTADÍSTICA

ING. ALEXANDRA ELIZABETH ESCOBAR MENDEZ CARLOS ANDRES CARRASCO NOVOA

MANUAL DE EXEL

Sangolquí - Ecuador, 1 julio del 2025

Introducción

Este documento explica el uso de Microsoft Excel para llevar a cabo análisis estadísticos basados en una encuesta aplicada a estudiantes de la Universidad ESPE, enfocada en el uso de plataformas de idiomas en el entorno universitario. En él se desarrollan distintos conceptos estadísticos importantes, junto con las fórmulas requeridas y la manera de aplicarlas dentro de Excel.

1.- Tamaño de muestra

Para determinar el tamaño de muestra apropiado para la encuesta, es fundamental tener en cuenta el nivel de confianza y el margen de error aceptable.

$$n = \frac{Z^2 \cdot p \cdot q \cdot N}{e^2 \cdot (N-1) + Z^2 \cdot p \cdot q}$$

- **n** = tamaño de muestra necesario (lo que queremos calcular).
- \mathbf{Z} = valor Z que corresponde al nivel de confianza deseado. Por ejemplo:
 - o 1.96 para 95% de confianza
 - o 2.58 para 99% de confianza
- **p** = proporción esperada de éxito (por ejemplo, 0.5 si no se tiene información previa).
- q = 1 p (proporción complementaria).
- N = tamaño de la población total.
- e = margen de error tolerado (por ejemplo, 0.05 si se quiere un error del 5%).

01	20	19	80	37	80	55	50	73	100	91	80	109	50	127	70	145	10
02	80	20	69	38	80	56	50	74	100	92	80	110	30	128	80	146	80
03	25	21	50	39	40	57	60	75	70	93	70	111	40	129	50	147	80
04	87	22	50	40	60	58	50	76	90	94	87	112	65	130	87	148	1
05	80	23	65	41	0	59	20	77	85	95	80	113	50	131	65	149	50
06	70	24	8	42	100	60	0	78	65	96	75	114	65	132	60	150	50
07	90	25	45	43	80	61	87	79	70	97	52	115	70	133	90	151	30
08	85	26	80,5	44	30	62	67	80	75	98	75	116	100	134	50	152	90
09	80	27	85	45	75	63	70	81	75	99	38	117	60	135	80	153	35
10	60	28	75	46	80	64	75	82	50	100	70	118	70	136	95	154	90
11	60	29	50	47	88	65	75	83	60	101	85	119	50	137	45		
12	1	30	80	48	1	66	80	84	10	102	75	120	60	138	70		
13	101	31	90	49	80	67	80	85	89	103	70	121	90	139	90		
14	79	32	90	50	99	68	90	86	1	104	86	122	75	140	0		
15	75	33	75	51	50	69	70	87	78	105	50	123	100	141	90		
16	70	34	85	52	60	70	75	88	30	106	50	124	80	142	98		
17	85	35	70	53	60	71	70	89	45	107	75	125	10	143	100		
18	80	36	85	54	50	72	80	90	30	108	70	126	75	144	87		

2.- Muestreo por calculadora

ara elegir una muestra aleatoria de estudiantes en Excel, se puede utilizar la generación de números aleatorios y luego organizar los datos según esos valores.

Procedimiento

- 1. **Tener la lista completa:** Asegúrate de contar con el listado de todos los estudiantes que participaron en la encuesta.
- 2. **Crear números aleatorios:** En una nueva columna, ingresa la fórmula =RAND() para asignar un valor aleatorio a cada estudiante.

- 3. **Ordenar los registros:** Ordena la tabla utilizando la columna con los números aleatorios.
- 4. **Elegir la muestra:** Toma los primeros *n* estudiantes de la lista ordenada como tu muestra seleccionada.

Metodo de la	a calculadora
076	70
101	75
072	100
115	100
003	87
146	80
149	50
126	70
034	70
059	0
040	0
044	75
124	10
076	85
096	52
047	1
108	50
121	75
001	80
017	80
093	87
046	88
057	50
007	85
081	50
095	75
127	80
091	80

3.-Muestreo por tabla

El muestreo utilizando tablas aleatorias consiste en emplear conjuntos de números generados al azar para escoger a los integrantes de la muestra.

Procedimiento

- 1. **Generar números aleatorios:** Puedes usar una tabla de números aleatorios ya existente o crear una directamente en Excel mediante la fórmula =RAND().
- 2. **Elegir la muestra:** Utiliza los valores aleatorios obtenidos para seleccionar estudiantes desde la lista original.

Tal	ola
027	75
081	50
093	87
008	80
083	10
066	80
096	52
144	10
029	80
017	80
149	50
147	1
137	70
089	30
047	1
148	50
133	50
037	80
118	50
065	80
118	50
059	0
102	70
020	50
118	50
141	98
088	45
055	50

4.- Muestreo sistemático

El muestreo sistemático consiste en seleccionar a cada estudiante número k de una lista previamente organizada.

- 1. **Organiza la lista:** Asegúrate de que la lista de estudiantes esté debidamente ordenada.
- 2. Calcular el intervalo (k): Utiliza la fórmula, donde N es el número total de estudiantes y n es el tamaño deseado de la muestra.

$$k = \frac{N}{n}$$

3. Elegir los estudiantes: Comienza desde un punto aleatorio y selecciona a cada estudiante que esté en la posición k, 2k, 3k, y así sucesivamente.

MS	
005	70
010	60
015	70
020	50
025	80,5
030	90
035	85
040	0
045	80
050	50
055	50
060	87
065	80
070	70
075	90
080	75
085	1
090	80
095	75
100	85
105	50
110	40
115	100
120	90
125	75
130	65
135	95
140	90

5.- Grupos

Se debe realizar una regla de 3 para poder definir el tamaña de cada uno de los grupos, no se debe pasar del tamaño de muestre general

Sofware		TICs	5		Mecatronica	
154	28	154	28	154		28
40	07	80	15	34		06

A la tabla grande hacer las particiones de los 3 grupos

00	20	18	80	36	80	14	50	32	100	50	80	68	50	06	70	24	10
01	80	19	69	37	80	15	50	33	100	51	80	69	30	07	80	25	80
02	25	20	50	38	40	16	60	34	70	52	70	70	40	08	50	26	80
03	87	21	50	39	60	17	50	35	90	53	87	71	65	09	87	27	1
04	80	22	65	00	0	18	20	36	85	54	80	72	50	10	65	28	50
05	70	23	8	01	100	19	0	37	65	55	75	73	65	11	60	29	50
06	90	24	45	02	80	20	87	38	70	56	52	74	70	12	90	30	30
07	85	25	80,5	03	30	21	67	39	75	57	75	75	100	13	50	31	90
08	80	26	85	04	75	22	70	40	75	58	38	76	60	14	80	32	35
09	60	27	75	05	80	23	75	41	50	59	70	77	70	15	95	33	90
10	60	28	50	06	88	24	75	42	60	60	85	78	50	16	45		
11	1	29	80	07	1	25	80	43	10	61	75	79	60	17	70		
12	100	30	90	08	80	26	80	44	89	62	70	00	90	18	90		
13	79	31	90	09	99	27	90	45	1	63	86	01	75	19	0		
14	75	32	75	10	50	28	70	46	78	64	50	02	100	20	90		
15	70	33	85	11	60	29	75	47	30	65	50	03	80	21	98		
16	85	34	70	12	60	30	70	48	45	66	75	04	10	22	100		
17	80	35	85	13	50	31	80	49	30	67	70	05	75	23	87		

6.- Prueba de hipótesis muestra grande

Para analizar hipótesis relacionadas con el uso de plataformas de idiomas en muestras grandes, se puede aplicar la prueba Z.

$$Z = rac{ar{x} - \mu}{\sigma / \sqrt{n}}$$

Donde:

- x es la media muestral
- μ es la media poblacional
- σ es la desviación estándar poblacional
- n es el tamaño de la muestra

Poner en Axel

$$=(A1 - A2) / (A3 / SQRT(A4))$$

7.- Prueba de hipótesis muestra pequeña

Cuando se trabaja con muestras pequeñas y se desea evaluar hipótesis relacionadas con el uso de plataformas de idiomas, es recomendable aplicar la prueba t de estudiantes.

$$t=rac{ar{x}-\mu}{s/\sqrt{n}}$$

Donde:

- x es la media de la muestra
- μ es la media poblacional
- s es la desviación estándar muestral
- n es el tamaño de la muestra

Poner en Axel

$$=(A1 - A2) / (A3 / SQRT(A4))$$

8.- Prueba de hipótesis proporciones

Para comprobar hipótesis relacionadas con las proporciones de estudiantes que utilizan distintas plataformas de idiomas, se puede aplicar la prueba de proporciones.

$$z=rac{\hat{p}-\pi}{\sqrt{rac{\pi(1-\pi)}{n}}}$$

Donde:

- p: proporción observada en la muestra.
- π: proporción esperada o hipotética en la población (parecida a p0p_0p0 en otras notaciones).
- n: tamaño de la muestra.
- **z:** valor del estadístico Z para comparar con la tabla de distribución normal estándar.

Poner en Axel

$$=(A1 - A2) / SQRT((A2 * (1 - A2)) / A3)$$

9.- Prueba de hipótesis para dos muestras grandes

Esta prueba se utiliza para comparar las medias de **dos poblaciones** cuando los tamaños de muestra son grandes y se conocen o se estiman las desviaciones estándar.

$$z=rac{ar{x}_1-ar{x}_2}{\sqrt{rac{s_1^2}{n_1}+rac{s_2^2}{n_2}}}$$

Donde:

- x1, x2: medias muestrales de los dos grupos
- $2\sigma 1, \sigma 2$: desviaciones estándar poblacionales (o estimadas)

• n1,n2: tamaños de las muestras

Poner en Axel

$$=(A1 - A2) / SQRT((A3^2 / A5) + (A4^2 / A6))$$

10.- Prueba de hipótesis para dos muestras pequeñas

Se utiliza para comparar las medias de dos grupos cuando las muestras son pequeñas y no se conoce la desviación estándar poblacional. Se asume que las poblaciones son normales y con varianzas iguales (en la versión más común).

$$t=rac{ar{x}_1-ar{x}_2}{s_p\cdot\sqrt{rac{1}{n_1}+rac{1}{n_2}}}$$

Donde:

• x^-1,x^-2 : medias de los dos grupos

• **n1,n2:** tamaños de las dos muestras

• Sp: desviación estándar combinada o pooled

Poner en Axel

$$=(A1 - A2) / (B1 * SQRT(1/A5 + 1/A6))$$

$$s_p = \sqrt{rac{(n_1-1)s_1^2 + (n_2-1)s_2^2}{n_1 + n_2 - 2}}$$

Donde:

• s1 y s2: desviaciones estándar de los grupos 1 y 2

• **n1 y n2:** tamaños de las muestras 1 y 2

•

Poner en Axel

$$=$$
SQRT((((A5-1)*(A3^2)) + ((A6-1)*(A4^2))) / (A5 + A6 - 2))

11.- Prueba de hipótesis para dos proporciones

Esta prueba se utiliza para comparar las proporciones de dos grupos independientes y determinar si hay una diferencia significativa entre ellas.

$$Z = rac{\hat{p}_1 - \hat{p}_2}{\sqrt{p(1-p)\left(rac{1}{n_1} + rac{1}{n_2}
ight)}}$$

Donde:

• p^1: proporción muestral del grupo 1

• p^2: proporción muestral del grupo 2

• n1,n2: tamaños de las muestras

• p: proporción combinada

Poner en Axel

$$=(B1 - B2) / SQRT(B3*(1 - B3)*(1/A2 + 1/A4))$$

$$p=\frac{x_1+x_2}{n_1+n_2}$$

Donde:

x1 y x2: número de éxitos (por ejemplo, estudiantes que usan cierta plataforma)

Poner en Axel

$$=B3 = (A1 + A3) / (A2 + A4)$$

n1 =	40 x1 =	34	01 =	0,85	pc =	0,7
n2 =	80 x2 =	50	02 =	0,625		
a						
1)	$H_0:\pi_1=\pi_2$ $H_1:\pi_1 eq \pi_2$					
	$H_1:\pi_1 eq\pi_2$					
2)	0,01 0,49					
		2,58				
3)	$Z = rac{\hat{p}_1 - \hat{p}_2}{\sqrt{p(1-p)\left(rac{1}{n_1} + rac{1}{n_2} ight)}}$	Z=	2,53546276	4	5 -2 -15 -1 -45	0 65 5 55 2
	$\sqrt{p(1-p)\left(rac{1}{n_1}+rac{1}{n_2} ight)}$					
4	Ho se acepta si -2,58 <=	z <= 2,58				
5	Ho se acepta, el promed	dio de sofware n	o es diferente a	l de TICs		

Conclusiones

El análisis estadístico del consumo de plataformas de idiomas entre los estudiantes de la Universidad ESPE reveló patrones claros en sus hábitos y preferencias digitales, lo que resalta la importancia de emplear métodos de muestreo combinados para garantizar una mayor representatividad y reducir el sesgo en futuros estudios. Esto permite obtener resultados más confiables que sirvan como base para decisiones institucionales.