Suites

Exercice 1 On considère la suite complexe $(z_n)_{n\in\mathbb{N}}$ définie par $z_0\in\mathbb{C}$ et $z_{n+1}=\frac{z_n+|z_n|}{2}$.

- 1) Montrer que si $(z_n)_{n\in\mathbb{N}}$ converge, alors sa limite est réelle.
- 2) Montrer que $\forall n \in \mathbb{N}, z_n \in \mathbb{R} \iff z_{n+1} \in \mathbb{R}.$
- 3) Que peut-on dire de la suite $(z_n)_{n\in\mathbb{N}}$ si $z_0\in\mathbb{R}_+$? Et si $z_0\in\mathbb{R}_-$?
- **4)** On suppose dans cette question que $z_0 \notin \mathbb{R}$ et on écrit $z_0 = r_0 e^{i\alpha_0}$, avec $r_0 > 0$ et $\alpha_0 \in]-\pi,\pi[\setminus\{0\}.$
 - a) Montrer qu'il existe une suite réelle géométrique $(\alpha_n)_{n\in\mathbb{N}}$ et une suite réelle strictement positive $(r_n)_{n\in\mathbb{N}}$ telles que pour tout entier n on ait $z_n=r_n\mathrm{e}^{i\alpha_n}$. Exprimer r_{n+1} et α_{n+1} en fonction de r_n et de α_n .
 - b) Montrer que la suite $r_n \sin \alpha_n$ est aussi géométrique.
 - c) En déduire que la suite $(z_n)_{n\in\mathbb{N}}$ converge et donner sa limite (on pourra utiliser que $\lim_{x\to 0} \frac{\sin x}{x} = 1$).

Exercice 2 Pour $n \in \mathbb{N}^*$, on note $S_n = \sum_{k=1}^n \frac{1}{\sqrt{k}}$.

- 1) Montrer que $\forall n \in \mathbb{N}^*, S_n \leqslant \sqrt{n} + \sqrt{n-1}$.
- 2) Montrer que $\forall n \in \mathbb{N}^*, 2\sqrt{n+1} 2 \leqslant S_n$.
- 3) On pose pour tout $n \in \mathbb{N}^*$, $u_n = \frac{S_n}{\sqrt{n}}$. Montrer que $(u_n)_{n \in \mathbb{N}^*}$ est une suite convergente.
- 4) On pose pour tout $n \in \mathbb{N}^*$, $v_n = S_n 2\sqrt{n}$. Montrer que $(v_n)_{n \in \mathbb{N}^*}$ est une suite convergente.

Tourner la page \hookrightarrow

Exercice 3 Le but de l'exercice est l'étude des suites $(x_n)_n$ et $(y_n)_n$ définies par $0 < x_0 < y_0$ et

$$\forall n \in \mathbb{N}, \quad x_{n+1} = x_n^{\frac{2}{3}} y_n^{\frac{1}{3}} \quad \text{et} \quad y_{n+1} = x_n^{\frac{1}{3}} y_n^{\frac{2}{3}}.$$

- 1) a) Montrer par récurrence que : $\forall n \geq 0, x_n > 0$ et $y_n > 0$. On peut donc définir les suites $(u_n)_n$ et $(v_n)_n$ par : $\forall n \geq 0, u_n = \ln(x_n)$ et $v_n = \ln(y_n)$.
 - **b)** Prouver que : $\forall n \ge 0$, $u_{n+1} = \frac{2}{3}u_n + \frac{1}{3}v_n$ et $v_{n+1} = \frac{1}{3}u_n + \frac{2}{3}v_n$.
- 2) Dans cette question on considère la suite $(w_n)_n$ définie par $: \forall n \ge 0, w_n = v_n u_n$.
 - a) Prouver que $w_0 = \ln\left(\frac{y_0}{x_0}\right)$.
 - b) Montrer que (w_n) est une suite géométrique dont on précisera la raison.
 - c) En déduire l'expression de $(w_n)_n$ puis calculer sa limite.
- 3) Montrer que : $\forall n \in \mathbb{N}, u_n < v_n$.
- 4) Montrer que les suites $(u_n)_n$ et $(v_n)_n$ sont adjacentes.
- 5) a) Démontrer que $(x_n)_n$ et $(y_n)_n$ convergent et ont la même limite ℓ .
 - **b)** Prouver que $\ell > 0$.
 - c) En étudiant la suite produit $(x_n y_n)_n$, déterminer ℓ en fonction de x_0 et y_0 .