Optimal Theory and Method

程春杰 杭州电子科技大学 自动化学院 科技馆512

Email: cjzhai@hdu.edu.cn

目录

- 线性规划中的对偶理论(难点、重点)
- 对偶单纯形法(重点)
- 灵敏度分析

目录

- 线性规划中的对偶理论(难点、重点)
- 对偶单纯形法(重点)
- 灵敏度分析

■ 对偶单纯形法

- ▶对偶单纯形法比前面单纯形法的好在哪
- >什么是对偶可行的基本解
- > 对偶单纯形法的基本思想
- > 对偶单纯形法的计算步骤
- ▶如何求一个初始对偶可行的基本解

■ 对偶单纯形法

▶对偶单纯形法比单纯形法好在哪?

考虑线性规划问题

min
$$cx$$
s.t. $Ax = b$,
 $x \ge 0$.

前面用单纯形法求解问题,往往需要引进人工变量,通过解一阶段问题求初始基本可行解。

对偶单纯形法:利用对偶性质给出一种不需引进人工变量的求解方法。

■对偶单纯形法

▶对偶可行的基本解

min *cx*

s.t.
$$Ax = b$$
,

 $x \geq 0$.

定义 4.2.1

设 $\mathbf{x}^{(0)}$ 是(4.2.1)式的一个基本解,它对应的基矩阵为 \mathbf{B} , 记作 $\mathbf{w} = \mathbf{c}_{\mathbf{B}} \mathbf{B}^{-1}$,若 \mathbf{w} 是(4.2.1)式的对偶问题的可行解,即 对所有 \mathbf{j} ,成立 $\mathbf{w} \mathbf{p}_{\mathbf{j}} - \mathbf{c}_{\mathbf{j}} \leq 0$,则称 $\mathbf{x}^{(0)}$ 为原问题的对偶可行的基本解.

- (1)对偶可行的基本解不一定是原问题的可行解。
- (2)当对偶可行的基本解是原问题的<mark>可行解</mark>时,由于判别数均小于或等于零,因此它就是原问题的最优解

■ 对偶单纯形法

> 对偶单纯形法的基本思想

min *cx*

s.t.
$$Ax = b$$
,

 $x \geq 0$.

对偶单纯形法的基本思想: 从原问题的一个对偶可行的基本解出发,求改进的对偶可行的基本解,当得到的对偶可行的基本解是原问题的可行解时,就达到最优解

对偶单纯形法:

原问题的对偶可行基本解,已经满足判别数全部小于或等于0,但是该解不全大于或等于0,要改进这个对偶可行基本解,使它可行。

单纯形法:

原问题的基本解已经可行,但不满足判别数全部小于或等于0,我们要改进这个基本解,使它满足判别数全部小于或等于0。

■ 对偶单纯形法

▶对偶单纯形法的基本思想

min *cx*

s.t. Ax = b,

 $x \ge 0$

求改进的对偶可行的基本解的过程,也是选择离基变量和进基变量,进行主元消去的过程。

与前面介绍的单纯形法的差别在于: 在单纯形法的迭代过程中,始终保持右端列(目标函数值除外)非负,即保持原问题的可行性;而在对偶单纯形法中,要保持所有判别数(对于极小化问题),即保持对偶可行性。

对偶单纯形法在每次迭代中不要求右端列各分量均非负, 正因如此,也就不需要引进人工变量.。

■ 对偶单纯形法

>对偶单纯形法的基本思想

min cx

s.t. Ax = b,

$$x \geq 0$$
.

	\boldsymbol{x}_1	•••	x_{j}	•••	\boldsymbol{x}_k	•••	\mathcal{X}_n	
$\boldsymbol{x}_{\boldsymbol{B}_{\!\scriptscriptstyle 1}}$	y ₁₁ :	•••	y_{1j}		y_{1k}	•••	y_{1n} :	$egin{array}{c} \overline{m{b}}_1 \ dots \ \end{array}$
:	:				÷		÷	:
X_{B_r}	y_{r_1}	•••	${\cal Y}_{rj}$	•••	\mathcal{Y}_{rk}	•••	${\cal Y}_{rn}$:	$egin{array}{c} ar{m{b}}_r \ dots \end{array}$
			:		÷		÷	:
X_{B_m}	y_{m1}	•••	\mathcal{Y}_{mj}	•••	\mathcal{Y}_{mk}	•••	\mathcal{Y}_{mn}	\overline{b}_m
	z_1-c_1			•••	$z_k - c_k$	****	$z_n - c_n$	$c_{_{ m B}}ar{b}$

表中判别数 z_i — c_i \leq 0, j=1, ..., n

①如果右端列 $\bar{\boldsymbol{b}} = (\bar{b}_1, \dots, \bar{b}_r, \dots, \bar{b}_m)^T \geq \boldsymbol{0}$,则现行基本解是最优基本可行解.

■ 对偶单纯形法

▶对偶单纯形法的基本思想

min *cx*

s.t. Ax = b,

 $x \geq 0$.

② 如果 \bar{b} $\geqslant 0$,则现行的基本解 $x_B = \bar{b}$, $x_N = 0$ 是对偶可行的基本解 ,但不是原问题的可行解 .

需确定<mark>离基变量和进基变量</mark>,求改进的对偶可行的基本解.

先选择离基变量

选择取负值的基变量作为离基变量.如果 $\bar{b}_r < 0$,则取 x_B ,为离基变量

■ 对偶单纯形法

▶对偶单纯形法的基本思想

min cx

s.t.
$$Ax = b$$
,

$$x \geq 0$$
.

再确定进基变量

为保持对偶可行性,需用 r 行的负元去除相应的判别数, 从中选择最小比值,

$$\frac{z_k - c_k}{y_{rk}} = \min_{j} \left\{ \frac{z_j - c_j}{y_{rj}} \mid y_{rj} < 0 \right\} > 0$$

则 x_k 作为进基变量.

以 y_{rk} 为主元进行主元消去,实现基的转换,得 到新的对偶可行的基本解

■ 对偶单纯形法

> 对偶单纯形法的基本思想

min *cx*

s.t.
$$Ax = b$$
,

 $x \geq 0$.

为什么上述转换能够改进对偶可行的基本解.

主要有以下三点:

- (1)由于主元消去前 y_{rk} 与 \bar{b}_r 同为负数,因此主元消去后右端列第 r 个分量变成正数. 这有利于基本解向着满足可行性的方向转化.
- (2)主元消去后仍然保持对偶可行性,即所有判别数均小于或等于零(对极小化问题).

主元消去运算之后,判别数

$$(z_{j}-c_{j})'=(z_{j}-c_{j})-\frac{z_{k}-c_{k}}{y_{rk}}y_{rj},$$

$$\frac{z_{k}-c_{k}}{y_{rk}}\geqslant 0$$

■ 对偶单纯形法

> 对偶单纯形法的基本思想

如果
$$y_{ij} \ge 0$$
, $(z_j - c_j)' \le z_j - c_j \le 0$.

s.t.
$$Ax = b$$
,

$$x \geq 0$$
.

如果
$$y_{rj} < 0$$
, $\frac{z_k - c_k}{y_{rk}} \leqslant \frac{z_j - c_j}{y_{rj}}$

$$z_j - c_j \leqslant \frac{z_k - c_k}{y_{rk}} y_{rj} \qquad \frac{z_k - c_k}{y_{rk}} \geqslant 0$$

$$(z_j-c_j)'=(z_j-c_j)-\frac{z_k-c_k}{y_{rk}}y_{rj}\leqslant 0$$

因此,主元消去后,所有判别数均小于或等于零(对极小化问题).

- 对偶单纯形法
- > 对偶单纯形法的基本思想

s.t.
$$Ax = b$$
,

$$x \geq 0$$
.

(3)主元消去运算后,对偶问题的目标函数值增大(至少不减小).

主元消去前后,目标函数值之间的关系是

$$(\mathbf{c}_{\mathsf{B}}\overline{\mathbf{b}})'=\mathbf{c}_{\mathsf{B}}\overline{\mathbf{b}}-\frac{z_{k}-c_{k}}{y_{rk}}\overline{b}_{r},$$

即对偶问题的目标函数值在迭代过程中单调增(非减)

对偶问题的可行解越来越接近最优解

原问题的对偶可行的基本解,将向着满足可行性的方向转化,从而接近原问题的最优解

■ 对偶单纯形法

> 对偶单纯形法的基本思想

min cx

s.t.
$$Ax = b$$
,

$$x \geq 0$$
.

25	\boldsymbol{x}_1	• • •	$x_{j}^{}$	•••	\boldsymbol{x}_k	•••	\boldsymbol{x}_n	
$\boldsymbol{x}_{\boldsymbol{B_{1}}}$	y_{11}	•••	y_{1j}	•••	y_{1k}	•••	y_{1n}	$\overline{m{b}}_1$
÷	:		÷		÷		:	÷
X_{B}	v .		V		ν,		v	- h
\cdot	<i>J r</i> 1		₹rj		yrk		y _{rn}	.
:	:		:		:		:	:
\mathcal{X}_{B_m}	y_{m1}	•••	${\cal Y}_{mj}$	•••	\mathcal{Y}_{mk}	•••	\mathcal{Y}_{mn}	$\overline{m{b}}_{m}$
	$z_1 - c_1$	•••	$z_j - c_j$	•••	$z_k - c_k$	•••	$z_n - c_n$	$c_{_{ m B}} \overline{b}$

表中判别数 z_j — $c_j \leq 0, j=1, ..., n$

当 $\bar{b}_r < 0$ 时,r 行无负元,因此不能确定下标 k

原问题中的变量取任何非负值时都不能满足第 r 个方程,因此无可行解

■ 对偶单纯形法

▶对偶单纯形法的计算步骤

min cx

s.t. Ax = b,

 $x \geq 0$.

对偶单纯形法的计算步骤如下:

- (1)给定一个初始对偶可行的基本解,设相应的基为 B.
- (2) 若 $\bar{b}=B^{-1}b \ge 0$,则停止计算,现行对偶可行的基本解就是最优解.否则,令 $\bar{b}_r = \min_i \{\bar{b}_i\} < 0$.
- (3) 若对所有 $j,y_n \ge 0$,则停止计算,原问题无可行解.

否则,令
$$\frac{z_k-c_k}{y_{rk}}=\min_j\left(\frac{z_j-c_j}{y_{rj}}\middle|y_{rj}<0\right)$$
.

(4) 以 y_{rk} 为主元进行主元消去,返回步骤(2).

min

cx

s.t. Ax = b,

 $x \geq 0$.

■ 对偶单纯形法

▶对偶单纯形法的计算步骤

用对偶单纯形法解下列问题:

min
$$12x_1 + 8x_2 + 16x_3 + 12x_4$$
,
s.t. $2x_1 + x_2 + 4x_3 \geqslant 2$,
 $2x_1 + 2x_2 + 4x_4 \geqslant 3$,
 $x_j \geqslant 0$, $j = 1, \dots, 4$.

解 松弛变量 x5,x6化成标准形式

min
$$12x_1 + 8x_2 + 16x_3 + 12x_4$$
,
s.t. $2x_1 + x_2 + 4x_3 - x_5 = 2$,
 $2x_1 + 2x_2 + 4x_4 - x_6 = 3$,
 $x_j \ge 0$, $j = 1, \dots, 6$.

■ 对偶单纯形法

> 对偶单纯形法的计算步骤

s.t.
$$Ax = b$$
,

$$x \geq 0$$
.

min
$$12x_1 + 8x_2 + 16x_3 + 12x_4$$
,
s.t. $2x_1 + x_2 + 4x_3 - x_5 = 2$,
 $2x_1 + 2x_2 + 4x_4 - x_6 = 3$,
 $x_j \ge 0$, $j = 1, \dots, 6$.

为得到一个对偶可行的基本解,把每个约束方程 两端乘以(-1)

	$\underline{}$ x_1	x_2	x_3	x_4	x_5	x_6	
x_5	-2	-1	-4	Ö	1	0	-2
x_6	-2	-2	0	_4	0	1.	-3
	-12	-8	-16	-12	0	0	0

■ 对偶单纯形法

▶对偶单纯形法的计算步骤

s.t.
$$Ax = b$$
,

$$x \geq 0$$
.

$$\overline{b}_2 = \min\{-2, -3\} = -3$$
 第2行为主行

$$\frac{z_4-c_4}{y_{24}}=\min\left\{\frac{-12}{-2}, \frac{-8}{-2}, \frac{-12}{-4}\right\}=\frac{-12}{-4}$$
第4列为主列

■ 对偶单纯形法

> 对偶单纯形法的计算步骤

min cx

s.t. Ax = b,

$$x \geq 0$$
.

$$\frac{z_3-c_2}{y_{12}}=\min\left\{\frac{-6}{-2}, \frac{-2}{-1}, \frac{-16}{-4}\right\}=\frac{-2}{-1}$$

	x_1	x_2	x_3	x_4	x_5	x_6	
x_2	2	1	4	0	-1	0	2
x_4	$\left[-\frac{1}{2}\right]$	0	-2	1	$\frac{1}{2}$	$-\frac{1}{4}$	$-\frac{1}{4}$
	-2	0	-8	0	-2	-3	13

■ 对偶单纯形法

> 对偶单纯形法的计算步骤

•	
mın	CV
mın	CA

s.t.
$$Ax = b$$
,

$$x \geq 0$$
.

最优解:

$$(x_1, x_2, x_3, x_4) = \left(\frac{1}{2}, 1, 0, 0\right)$$

$$f_{\min}$$
=14

还可得到对偶问题的最优解:

$$(\omega_1, \omega_2)=(4, 2)$$

■ 对偶单纯形法

〉初始对偶可行的基本解

s.t.
$$x_B + \sum_{j \in R} y_j x_j = \overline{b}$$
, $x \geqslant 0$,

再增加一个变量 水和一个约束条件

$$\sum_{j\in R} x_j + x_{n+1} = M,$$

M 是充分大的正数.得到线性规划的一个扩充问题

s.t.
$$x_B + \sum_{j \in R} y_j x_j = \bar{b}$$
,
 $\sum_{j \in R} x_j + x_{n+1} = M$,

$$x_j \ge 0$$
, $j = 1, \dots, n+1$.

以系数矩阵的前 m列和第 n+1 列组成的 m+1 阶单位矩阵为基

对偶单纯形法

▶初始对偶可行的基本解

可以得到扩充问题的基本解

$$\mathbf{x}_{\widetilde{\mathbf{B}}} = \begin{bmatrix} \mathbf{x}_{\mathbf{B}} \\ \mathbf{x}_{n+1} \end{bmatrix} = \begin{bmatrix} \overline{\mathbf{b}} \\ M \end{bmatrix}, \quad x_{j} \geqslant 0, \quad j = 1, \dots, n+1.$$

$$x_j = 0$$
, $j \in R$.

这个基本解不一定是对偶可行的

$$\Leftrightarrow z_k - c_k = \max\{z_j - c_j\},\,$$

以 $\tilde{\mathbf{y}}_k$ 的第m+1个分量 $\tilde{\mathbf{y}}_{m+1,k}$ 为主元,进行主元消去运算,

把第 k 列化为单位向量,这时得到一个对偶可行的基本解

s.t.
$$x_B + \sum_{j \in R} y_j x_j = \overline{b},$$

$$\sum_{j \in R} x_j + x_{n+1} = M,$$

$$x_j \geqslant 0$$
, $j = 1, \dots, n+1$.

■ 对偶单纯形法

▶初始对偶可行的基本解

min cx

s.t.
$$x_B + \sum_{j \in R} y_j x_j = \bar{b}$$
,

主元消去运算前后判别数之间的关系是

$$\sum_{j\in R} x_j + x_{n+1} = M,$$

$$(z_j - c_j)' = (z_j - c_j) - \frac{z_k - c_k}{\tilde{y}_{m+1,k}} \tilde{y}_{m+1,j},$$

当
$$j \in R \cup \{n+1\}$$
时 $, \tilde{y}_{m+1,j} = 1$,

$$(z_j - c_j)' = (z_j - c_j) - (z_k - c_k) \leq 0.$$

当
$$j \notin R \cup \{n+1\}$$
时, $z_j - c_j = 0$, $\widetilde{y}_{m+1,j} = 0$

$$(z_j-c_j)'=0,$$

主元消去后,在新基下的判别数均非正,因此所得到的 基本解是<mark>对偶可行的</mark>

■ 对偶单纯形法

▶初始对偶可行的基本解

min cx

s.t.
$$x_B + \sum_{j \in R} y_j x_j = \bar{b}$$
,

用对偶单纯形方法求解扩充的线性规划 仅有下列两种可能的情形:

$$x_i \ge 0$$
, $j = 1, \dots, n+1$.

 $\sum_{j\in P} x_j + x_{n+1} = M,$

(1)扩充问题没有可行解.这时,原来的问题也没有可行解. 如若不然,设原来问题的一个可行解

$$\mathbf{x}^{(0)} = (x_1^{(0)}, \dots, x_n^{(0)})$$

那么
$$\tilde{\boldsymbol{x}}^{(0)} = (x_1^{(0)}, \dots, x_n^{(0)}, M - \sum_{j \in R} x_j^{(0)})$$

是扩充问题(4.2.10)的可行解,这是矛盾的.

■ 对偶单纯形法

▶初始对偶可行的基本解

min cx

s.t.
$$x_B + \sum_{j \in R} y_j x_j = \bar{b}$$
,

用对偶单纯形方法求解扩充的线性规划 仅有下列两种可能的情形:

$$x_i \ge 0$$
, $j = 1, \dots, n+1$.

 $\sum_{j\in R} x_j + x_{n+1} = M,$

(2)得到扩充问题的最优解

$$\tilde{\mathbf{x}}^{(0)} = (x_1^{(0)}, \dots, x_n^{(0)}, x_{n+1}^{(0)}),$$

这时, $\mathbf{x}^{(0)} = (\mathbf{x}_1^{(0)}, \dots, \mathbf{x}_n^{(0)})$ 是原来问题的可行解.

如果扩充问题的目标函数最优值与M无关,

则
$$\mathbf{x}^{(0)} = (x_1^{(0)}, \dots, x_n^{(0)})$$
也是原来问题的最优解.

若有可行解
$$\mathbf{x}^{(1)} = (\mathbf{x}_{1}^{(1)}, \dots, \mathbf{x}_{n}^{(1)}), \text{使 } f(\mathbf{x}^{(1)}) < f(\mathbf{x}^{(0)}),$$
那么 $\tilde{\mathbf{x}}^{(1)} = (\mathbf{x}_{1}^{(1)}, \dots, \mathbf{x}_{n}^{(1)}, M - \sum_{i \in R} \mathbf{x}_{i}^{(1)})$
 $f(\tilde{\mathbf{x}}^{(1)}) < f(\tilde{\mathbf{x}}^{(0)}), \text{与假设矛盾}.$

min

cx

s.t. $x_B + \sum_{j \in B} y_j x_j = \bar{b}$,

 $\sum_{j\in R} x_j + x_{n+1} = M,$

 $x_i \ge 0$, $j = 1, \dots, n+1$.

■ 对偶单纯形法

▶初始对偶可行的基本解

用对偶单纯形方法解下列问题:

$$\min -2x_1 + x_2$$

s.t.
$$x_1 + x_2 + x_3 \ge 4$$
,
 $x_1 + 2x_2 + 2x_3 \le 6$,

$$x_1, x_2, x_3 \ge 0$$
.

解 引进松弛变量 x_4 , x_5 , 化成标准形式:

$$\min \quad -2x_1+x_2$$

s.t.
$$x_1 + x_2 + x_3 - x_4 = 4$$
, $\# \& (-1)$
 $x_1 + 2x_2 + 2x_3 + x_5 = 6$,
 $x_j \ge 0$, $j = 1, \dots, 5$.

增加约束条件 $x_1 + x_2 + x_3 + x_6 = M$.

min

s.t. $\mathbf{x}_B + \sum_{i \in B} \mathbf{y}_i x_i = \overline{\mathbf{b}},$

 $\sum_{j\in R} x_j + x_{n+1} = M,$

 $x_i \ge 0$, $j = 1, \dots, n+1$.

■ 对偶单纯形法

▶初始对偶可行的基本解

解扩充问题

$$\min \quad -2x_1+x_2$$

s.t.
$$-x_1 - x_2 - x_3 + x_4 = -4$$
,

$$x_1 + 2x_2 + 2x_3 + x_5 = 6$$
,

$$x_1 + x_2 + x_3 + x_6 = M$$
,

$$x_j \ge 0$$
, $j = 1, \dots, 6$.

	x_1	x_2	x_3	x_4	x_5	x_6	
x_4	-1	-1	-1	1	0	0	-4
x_5	1	2	2	0	1	0	6
x_6	1	1	1	0	0	1	М
	2	-1	0	0	0	0	0

由于
$$z_1 - c_1 = \max\{z_j - c_j\}$$
,因此以 $\tilde{y}_{31} = 1$ 为主元

■ 对偶单纯形法

▶初始对偶可行的基本解

解

	x_1	x_2	x_3	x_4	x_5	x_6	
x_4	0	0	0	1	0	1	M-4
x_5	0	1	1	0	1	$\overline{-1}$	6-M M
x_1	1	1	1	0	0	1	М
ÿ:	0	-3	-2	0	0	-2	_2M

已经得到扩充问题的一个对偶可行的基本解。下面用对偶单纯形法求解此问题

	x_1	x_2	x_3	x_4	x_5	x_6	
x_4	0	0	0	1	0	1	M-4
x_5	0	1	1	0	1	$\overline{-1}$	6-M M
x_1	1	1	1	0	0	1	М
9:	0	-3	-2	0	0	-2	-2M

■ 对偶单纯形法

▶初始对偶可行的基本解

解 经迭代,得最优单纯形表

1	x_1	x_2	x_3	x_4	x_5	x_6	40000000
x_4	0	1	1	1	1	0	2
x_6	0	-1	-1	0	-1	1	M-6
x_1	1	2	2	0	1	0	6
	0	-5	-4	0	-2	0	-12

b≥0: 对偶可行的基本解也是可行解

f与M无关: 为最优解

原问题的最优解 $(x_1,x_2,x_3)=(6,0,0)$

目标函数最优值一12

■作业

P163, P164:

1(2), 4, 7(2)