

Question 1. Montrer que A doit faire appel à l'oracle d'ordre zéro au moins $\Omega(L/\varepsilon)$ fois. Indice: Considérer la fonction nulle, et construire une fonction $g \in \mathcal{F}_L$ valant zéro en tous les points en lesquels l'oracle d'ordre zéro est appelé pour la fonction nulle, dont le minimum est le plus petit possible.

Réponse 1.

Tout d'abord, notons que pour $f \in \mathcal{F}_L$ le problème d'optimisation $\min_{[0,1]} f$ est bien définie car on optimise une fonction continue 1 sur un compat.

Appliquons comme indiqué l'algorithme \mathcal{A} à la fonction nulle sur [0;1] notée f. Soient $x_1 \leq x_2 \ldots \leq x_n$ la suite de points de [0;1] utilisés lors des appels à l'oracle d'ordre zéro. Posons $x_0 = 0$ et $x_{n+1} = 1$ et introduisons:

$$\alpha := \max_{0 \le i \le n} |x_{i+1} - x_i|, \quad k := \underset{0 \le i \le n}{\arg \max} |x_{i+1} - x_i| \quad \text{et} \quad \widetilde{x} := \frac{x_{i+1} + x_i}{2}$$

Soit $g : [0;1] \mapsto \mathbb{R}$, la fonction continue et affine par morceaux de pente -L et L sur $[x_k; \widetilde{x}]$ et $[\widetilde{x}; x_{k+1}]$ respectivement.

$$g(x) = \longrightarrow \min\{o, L(|x - \widetilde{x}| - |x_k - \widetilde{x}|)\}$$

Question 2. En déduire la complexité optimale sur \mathcal{F}_L , en fonction de L et ε , pour les algorithmes ne faisant appel qu'à l'oracle d'ordre zéro.

Réponse 2.

