Apellido: Nombre: Carrera:

(1) Sea \mathbb{k} un cuerpo y sea $A \in M_n(\mathbb{k})$.

- (a) (5 pts.) Dar la definición del determinante de A.
- (b) (5 pts.) Dar la definición de autovalor y autovector de A.
- (c) (5 pts.) Dar la definición de χ_A del polinomio característico de A.
- (d) (5 pts.) Demostrar que $\lambda \in \mathbb{k}$ es raíz de χ_A si y sólo si λ es un autovalor de A.
- (2) Sean $P = (1,0,3) \in \mathbb{R}^3$ y Π el plano en \mathbb{R}^3 con ecuación implícita x + 2y 4z = 3.
 - (a) (5 pts.) Dar una descripción paramétrica del plano Π .
 - (b) (5 pts.) Sea L perpendicular a Π que pasa por P. Dar la descripción paramétrica de L.
 - (c) (5 pts.) Hallar una recta L' contenida en Π tal que $L \cap L' \neq \emptyset$ y $(1,1,0) \in L'$.
- (3) Sea $V = M_2(\mathbb{R})$ el espacio vectorial de matrices 2×2 con coeficientes reales. Consideremos los siguientes subespacios vectoriales de V:

$$U_1 = \left\{ A \in V : A \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} A \right\} \quad U_2 = \left\langle \begin{pmatrix} 1 & -1 \\ 2 & 1 \end{pmatrix}, \begin{pmatrix} 2 & 1 \\ -2 & 2 \end{pmatrix} \right\rangle.$$

- (a) (5 pts.) Dar una base y la dimension de U_1 y U_2 .
- (b) (5 pts.) Calcular dim $(U_1 \cap U_2)$.
- (c) (5 pts.) Decidir si existe una transformación lineal $T:V\to V$ que sea isomorfismo tal que $T(U_1)=U_2$.
- (4) Sean $A \in M_3(\mathbb{R})$ la siguiente matriz:

$$A = \begin{pmatrix} 3 & 1 & 9 \\ 0 & -\sqrt{7} & 12 \\ 0 & 0 & 18 \end{pmatrix}$$

- (a) (5 pts.) Decidir si existe una matriz $C \in M_3(\mathbb{R})$ tal que $C^2 = A$.
- (b) (5 pts.) Decidir si existe una matriz $D \in M_3(\mathbb{C})$ con $\chi_D(x) \in \mathbb{R}[x]$ tal que $D^2 = A$.
- (5) Sea $T: \mathbb{R}^4 \to \mathbb{R}^4$ la transformación lineal definida por

$$T(x, y, z, w) = (x - y, 2x + y, -x + 3z - 27w, 7x - w).$$

- (a) (10 pts.) Calcular los autovalores reales de T.
- (b) (10 pts.) Calcular los autoespacios de los autovalores calculados en el punto anterior.
- (c) (5 pts.) Decidir si T es diagonalizable.

- (6) Sea V un \Bbbk -espacio vectorial de dimensión finita y sea $T:V\to V$ una transformacion lineal. Supongamos que existe una base ordenada $\mathcal B$ de V tal que $([T]_{\mathcal B})^2=0$.
 - (a) (5 pts.) Demostrar que $([T]_{\mathcal{D}})^2 = 0$ para cualquier base ordenada \mathcal{D} de V.
 - (b) (5 pts.) Demostrar que $Im(T) \neq V$.
- (7) (5 pts.) Determinar si existe una matriz $A \in M_2(\mathbb{R})$ que satisfaga la igualdad $A^2 5A 6I = 0$.

1(a)	1(b)	1(c)	1(d)	2(a)	2(b)	2(c)	3(a)

3(b)	3(c)	4(a)	4(b)	5(a)	5(b)	5(c)	6(a)

6(b)	7	Total	Nota