

MIS 64036: Business Analytics

Lecture I

Rouzbeh Razavi, PhD

Let's Get Introduced & Break Some Ice!

KENT STATE.

Agenda

- Introduction to the Course
- Definition and History of Data Analytics
- Success Stories and Business Examples
- Data Analytics Lifecycle
- R Programming

Agenda

- Introduction to the Course
- Definition and History of Data Analytics
- Success Stories and Business Examples
- Data Analytics Lifecycle
- R Programming

Topics Covered

Course Timeline

Date	Topic Description
28 August	Introduction to Big Data and Business Analytics
4 September	Labor Day: No Class
11 September	Role of data analytics in strategic management (cont.)
18 September	Descriptive Analytics: key statistics and distribution
25 September	Descriptive Analytics (cont.) + Intro to data visualization
2 October	Preparing data for modelling
9 October	Predictive/Prescriptive Analytics: Segmentation
16 October	Predictive/Prescriptive Analytics: Recommendation Systems
•	

Course Timeline II

Date	Topic Description
23 October	Predictive/Prescriptive Analytics: Classification
30 October	Predictive/Prescriptive Analytics: Regression
6 November	Predictive/Prescriptive Analytics: Time Series and Simulations
13 November	Data Visualization to Communicate Information
20 November	Formulating and solving business problems using analytics
27 November	Operationalizing analytical models
4 December	Wrap up, review / presentations

Assessment

Agenda

- Introduction to the Course
- Definition and History of Data Analytics
- Success Stories and Business Examples
- R Programming
- Data Analytics Lifecycle

What is Data Analytics? Few Definitions.

- Data analytics refers to qualitative and quantitative techniques and processes used to enhance productivity and business gain using data.
- Data analytics is the pursuit of extracting meaning from raw data using specialized computer systems. These systems transform, organize, and model the data to draw conclusions and identify patterns.
- Data analytics is an examination of data made to gain a better understanding of the data itself and the organization that produced it.

History of Data Analytics

1935

Ronald Fisher

Design of Experiment

. . .

1939

Edward Deming

Quality Control

Peter Luhn

A Bussiness Intelligence System

1977

John W. Tukey

Exploratory Data Analysis

Howard Dresner

Bussiness Intelegence

Tom M. Mitchell

Machine Learning

History of Data Analytics

What Has Changed Now? Computing Cost

Global Compute Cost Trends

*Source: KPBC report 2013

What Has Changed Now? Computing Capability

What Has Changed Now? Storage Cost

...Storage Costs Declining = 38% Annually, 1992-2013...

*Source: KPBC report 2013

What Has Changed Now? Available Data Volume

What Has Changed Now? Available Data Volume

What Has Changed Now? New Algorithms

What Has Changed Now? Algorithms' Performance

Example: Word Error Rate in Automatic Speech Recognition (ASR)

Agenda

- Introduction to the Course
- Definition and History of Data Analytics
- Success Stories and Business Examples
- Data Analytics Lifecycle
- R Programming

Data Analytics: Use Cases in Banking

Data Analytics: Mastercard Story

Data Analytics: More Examples

Agenda

- Introduction to the Course
- Definition and History of Data Analytics
- Success Stories and Business Examples
- Data Analytics Lifecycle
- R Programming

Key Roles in Data Analytics Projects

Project Sponsor: Responsible for the genesis of the project, provides impetus for the project and usually provides funding as well.

Business User/Analyst: Has a deep understanding of the business domain and is likely to use the end result of the project once implemented.

Data Engineer: Deep technical skills to work with databases and can assist providing access to right data sources.

Data Analytics Lifecycle: Overview

Data Analytics Lifecycle: Discovery

Data Analytics Lifecycle: Discovery

- Understand and formulate the business problem
- Articulate the pain points as clearly as possible so you can make sure to address them
- Define and formalize the scope of the project
- Identify the kinds of data you will need to solve the problem
- Determine the resources that you may need during the project (Infrastructure, Software, Data access, Business experts, etc.)

Data Analytics Lifecycle: Data Preparation

Data Analytics Lifecycle: Data Preparation

"By failing to prepare, you are preparing to fail."

Benjamin Franklin

- Of all of the phases, the step of data preparation is generally the most iterative and time intensive.
- Prepare an analytic sandbox, in which you can work for the duration of the project.
- Extract data from different platforms into your analytics sandbox. You should be collecting all kinds of data that is available.
- Clean the data and apply relevant transformation

Data Analytics Lifecycle: Analytic Sandbox

Data Analytics Lifecycle: Data Quality is Key!

Data Analytics Lifecycle: Model Planning

Data Analytics Lifecycle: Model Planning

KENT STATE.

Model Planning: Variable Generation/Selection

- What is it? Generate new variables by modifying/combining existing variables, as needed, and then select a subset of relevant variables for model building.
- Why Variable Selection/Filtering?
 - Improved model building process and computation speed
 - Improved model's explainability
 - Cost considerations (e.g. may need to pay for external data sources)
 - Legal and policy considerations (e.g. using demographic information for credit scoring)
 - Improved model accuracy (in some cases)

Model Planning: Variable Selection

Data Analytics Lifecycle: Data Selection!

"You can't keep adjusting the data to prove that you would be the best Valentine's date for Scarlett Johansson."

KENT STATE

Model Planning: Model Selection

- What it is? There exist a large number of analytics algorithm. Choosing the right algorithm for the given problem is key.
- What to Consider?
 - Feasibility of applying the algorithm
 - Accuracy of the algorithm
 - Explainability of the algorithm
 - Computational complexity of the algorithm
- Recommendation
 - Always start with simpler algorithms (e.g. linear models)

Model Planning: Model Selection

Model Planning: Model Selection

Data Analytics Lifecycle: Model Building

Data Analytics Lifecycle: Model Building

- Implement the model using the appropriate programming language/tool (R, Python, SAS, SPPS, etc.)
- Fine tune the models to optimize the results
- Construct a list of key variables (variable importance scores)
- Assess the validity of the model and its results
- Record the results, and logic of the model

Data Analytics Lifecycle: Communication

Data Analytics Lifecycle: Communicating Results

- Clearly articulate the methodology at an appropriate technical level according to the audience
- Interpret results
- Explain key findings
- Quantify business value
- Make recommendations for future work or improvements to existing processes

Data Analytics Lifecycle: Communicating Results

Data Analytics Lifecycle: Operation

Data Analytics Lifecycle: Operationalize the model

- Deliver technical documentation of the model and data
- Provide consultancy and support for best way to operationalize the model
- Define test cases and assure correct procedures are followed for operationalizing the model
- Define the processes to retain and update the models.

KENT STATE.

Agenda

- Introduction to the Course
- Definition and History of Data Analytics
- Success Stories and Business Examples
- Data Analytics Lifecycle
- R Programming

R Programming

- Will use R throughout this course.
- R is an open source programming language and software environment for statistical computing and graphics that is supported by the R Foundation for Statistical Computing.
- The R language is rich, powerful and widely used among statisticians and data miners for developing statistical software and data analysis.

R or Python?

R: Easy Programming Language But Still ...

R: Where to Start?

- Instructions to install R and R Studio:
- https://www.andrewheiss.com/blog/2012/04/17/install-r-rstudio-rcommander-windows-osx/ (Windows and Mac) or
- https://medium.com/@GalarnykMichael/install-r-and-rstudio-onwindows-5f503f708027 (Windows Only)
- Few tips and commands to get you started http://web.cs.ucla.edu/~gulzar/rstudio/basic-tutorial.html
- I have uploaded three mini-guides to R on the course website under Course Material > Learning R
- Make sure you have R and R Studio installed on your laptops for the next lecture.

What We Have Covered Today

- Introduction to the Course
- Definition and History of Data Analytics
- Success Stories and Business Examples
- Data Analytics Lifecycle
- R Programming

THE REAL PROPERTY. No. of London