Sri Akash Kadali

8417 48th Ave, College Park, MD, 20740

Availability: June 1st, 2026

240-726-9356 | kadali18@umd.edu | https://www.linkedin.com/in/sri-akash-kadali/ | https://github.com/Akash-Kadali

EDUCATION

University of Maryland, College Park, United States

Master of Science in Applied Machine Learning

August 2024 - May 2026

CGPA: 3.55/4

CGPA: 8.78/10

• Relevant Coursework: Machine Learning, Deep Learning, Software Engineering

Indian Institute of Information Technology, Vadodara, India

Bachelor of Technology in Computer Science and Engineering

December 2020- June 2024

• Relevant Coursework: Performance Analysis, Algorithms, GPU Programming

SKILLS

Programming: Python

Deep Learning Techniques: Deep Learning, PyTorch, TensorRT, Generative AI, Tensor Parallelism, Machine Learning Frame-

works

Deployment Tools: CUDA, Performance Analysis, Algorithms, NVIDIA SDKs, HuggingFace, TRT-LLM, TRT Model

Optimizer, GPU, Inference, Automated Deployment Solutions, Model Sharding

Software Development Skills: Sequence Parallelism, Efficient Attention Kernels, KV-Caching, Problem Solving, Debugging, Soft-

ware Design, Data Structures, CUTLASS, Triton, GPU Architecture, End-to-End Performance,

Model Optimization, English (professional)

EXPERIENCE

Machine Learning Intern O

May 2023 – December 2023

Indian Institute of Technology, Indore

Indore, India

- Leveraged supervised contrastive learning to enhance feature representation, resulting in an 8% increase in classification accuracy on the IHSate and IHC datasets, optimizing model performance.
- Designed and implemented a DeBERTa-based architecture using attention mechanisms for implicit hate speech detection, achieving a 5% improvement in F1-score, enhancing inference efficiency.
- Developed emotion synthesis pipelines incorporating sentiment features, contributing to a 6% boost in model precision, aligning with generative AI model optimization.

Machine Learning Intern Q

January 2024 - June 2024

National Institute of Technology, Jaipur

Jaipur, India

- Engineered Cascaded Deformable Transformer Layers (CDTL) to optimize AI workflows, improving feature dependency modeling by 20% for enhanced inference efficiency.
- Developed classification pipelines for breast tumor analysis, achieving a 15% reduction in misclassification rates, supporting accurate clinical decision-making in medical imaging.
- Designed and deployed MaxViT-based models for histopathological image classification, achieving a 92% classification accuracy on large-scale medical datasets, enhancing model performance.

Machine Learning Intern (7)

July 2024 – December 2024

Indian Institute of Technology, Indore

Remote, USA

- Engineered a graph-based framework for user-level feature modeling, enhancing contextual embeddings and improving model interpretability.
- Implemented automated inference solutions using TensorRT and TRT-LLM, optimizing deployment efficiency and reducing latency by 30%.
- Collaborated on model optimization strategies, achieving a 10% increase in inference speed across various generative AI applications, including diffusion models.

Machine Learning Engineer

May 2025 – August 2025

 $Ayar\ Labs$

Santa Clara, CA

- Developed and deployed high-performance inference solutions using YOLOv8 and Transformer ensembles, achieving 99% accuracy and 96% recall on critical defect classification tasks.
- Engineered a serverless GPU deployment with FastAPI endpoints for automated inference, optimizing cold-start and concurrency for enhanced model performance.
- Analyzed and profiled model performance, implementing techniques like focal loss and class weighting to improve minority class precision and recall in imbalanced datasets, contributing to automated deployment solutions.

Achievements and Leadership

Published "CaDT-Net: Cascaded Deformable Transformer for Breast Cancer" at ICONIP 2024, achieving 92% accuracy in image classification using Neural Networks.