ECE 490-ST Wireless Computing

Lesson 10a :: Matching boards

Measure the boards

Measure the boards

Calibrate the VNA

Removes unintended errors

Gives "true" impedance measurement

Return Loss (Match) Before and After One-Port Calibration

Calibrate the VNA

Removes unintended errors

Gives "true" impedance measurement

Calibrate with 3 known impedances
Typically, Open, Short, Load

Location of the reference plane in a Type-N connector

Measure the boards

$$Z_{L} = 1.6 - j39.6$$

Design a matching network

Goal of matching to 50Ω

Series L, Shunt C

Use 10 nH first

Start implementing!

L moves to 2.9 + j19.5

Wanted: 4.2 + j14

L appears as 10.4 nH w/ Q=43

Try 8.2 nH!

Start Implementing!

End up at 3.3 + j5.2 – Too low!

Appears as L of 8.02 nH with Q of 24.4

Step 3 (again)

Design a matching network.

Add in a shunt 0.8 pF C next to the load (to counteract parasitics)

Now at, 2.3 + j11.5

Looks good!

Step 3 (again)

Update your matching network

(includes any "fudge factors" that you've found aleady)

Goal after final element

Step 4 Implement it!

Keep implementing changes, reading values from VNA, and moving forward.

(Or rather, backward to the generator)

Add in the last change, and

Step 4 Implement it!

Keep implementing changes, reading values from VNA, and moving forward.

(Or rather, backward to the generator)

Add in the last change, and

WAT?

Go back to step 1

Start with a new network. Forget this old one.

Based on 2 inductors.

Actually a better design

Step ???

Add in the shunt L, 10 nH

Seems a bit low. Let's reduce the inductance a hair.

Step ???

Add in the shunt L, 10 nH

Seems a bit low. Let's reduce the inductance a hair.

Step ???++

Trying 8.2 nH. Looks good, but seems to add just a bit of capicitance.

Step Alpeh

Add in the next value ...

Step Alpeh

Add in the next value ...

And claim success!!

The middle of the Smith chart is good.

How good of a match is it?

Return Loss

Magnitude of Gamma in deciBels

Low means lower magnitude of Gamma. Meaning less power is being reflected and consequently, more power is being absorbed by the load.

Step The End

Final component values are:

- A shunt 8.2 nH near the load. Then a series
 22 nH. Brings the circuit fairly close to 50Ω, our goal.
- Different from your values because ... diodes. We will cover this in a future lecture.

