Name

Date Period

Worksheet 1.2—Properties of Limits

Show all work. Unless stated otherwise, no calculator permitted.

Short Answer

1. Given that $\lim_{x \to a} f(x) = -3$, $\lim_{x \to a} g(x) = 0$, $\lim_{x \to a} h(x) = 8$, for some constant a, find the limits that exist. If the limit does not exist, explain why.

(a)
$$\lim_{x \to a} \left[f(x) + h(x) \right] =$$
 (b) $\lim_{x \to a} \left[f(x) \right]^2 =$ (c) $\lim_{x \to a} \sqrt[3]{h(x)} =$ (d) $\lim_{x \to a} \frac{1}{f(x)} =$

(b)
$$\lim_{x \to a} [f(x)]^2 =$$

(c)
$$\lim_{x \to a} \sqrt[3]{h(x)} =$$

(d)
$$\lim_{x \to a} \frac{1}{f(x)} =$$

(e)
$$\lim_{x \to a} \frac{f(x)}{h(x)} =$$

(f)
$$\lim_{x \to a} \frac{g(x)}{f(x)} =$$

(g)
$$\lim_{x \to a} \frac{f(x)}{g(x)} =$$

(f)
$$\lim_{x \to a} \frac{g(x)}{f(x)} =$$
 (g) $\lim_{x \to a} \frac{f(x)}{g(x)} =$ (h) $\lim_{x \to a} \frac{2f(x)}{h(x) - f(x)} =$

2. The graphs of f and g are given below. Use them to evaluate each limit, if it exists. If the limit does not exist, explain why.

(a)
$$\lim_{x \to 2} \left[f(x) + g(x) \right] =$$

(a)
$$\lim_{x \to 2} \left[f(x) + g(x) \right] =$$
 (b) $\lim_{x \to 1} \left[2f(x) - 3g(x) \right] =$ (c) $\lim_{x \to 0} \left[f(x)g(x) \right] =$

(c)
$$\lim_{x\to 0} \left[f(x)g(x) \right] =$$

(d)
$$\lim_{x \to -1} \frac{f(x)}{g(x)} =$$

(e)
$$\lim_{x \to 2} x^3 f(x) =$$

(f)
$$\lim_{x \to 1^{-}} f(g(x)) =$$

3. The graphs of the functions f(x) = x, g(x) = -x, and $h(x) = x \cos\left(\frac{50\pi}{x}\right)$ on the interval $-1 \le x \le 1$ are given at right.

Use the Squeeze Theorem to find $\lim_{x\to 0} x\cos\left(\frac{50\pi}{x}\right)$. Justify.

4. If $1 \le f(x) \le x^2 + 2x + 2$ for all x, find $\lim_{x \to -1} f(x)$. Justify.

5. If $-3\cos(\pi x) \le f(x) \le x^3 + 2$, evaluate $\lim_{x \to 1} f(x)$. Justify

Multiple Choice

- 6. Suppose $2 \le f(x) \le (1-x)^2 + 2$ for all $x \ne 1$ and that f(1) is undefined. What is $\lim_{x \to 1} f(x)$?
 - (A) 3
- (B) 2
- (C) 4
- (D) $\frac{5}{2}$
- (E) 1

Use the graphs of the function f(x) and g(x) shown above to answer questions 7-9.

- - (A) 1
- (B) -1
- (C) 2
- (D) -2
- (E) DNE

- _____ 8. $\lim_{x \to -3^{-}} f(g(x)) =$ (A) 0
- (B) -1
- (C) 2
- (D) 1
- (E) DNE

- _____9. $g(1) + \lim_{x \to -1^+} x \cdot f(x) =$
- (B) -1
- (C) 2
- (D) 1
- (E) DNE