Act-3000 Théorie du risque Comparaison des risques et ordres stochastiques

Hélène Cossette, Etienne Marceau École d'Actuariat, Université Laval, Québec, Canada $8~{\rm septembre}~2022$

Résumé

Ce document contient les exercices pour le chapitre 2 du semestre A2022. La théorie est présentée au chapitre 7 dans [Cossette and Marceau, 2021].

Keywords : Mesures de risque ; Propriétés ; Ordres stochastiques ; Indices de risque ; Principes de primes.

Nom du fichier : main.tex

1 Énoncés

1.1 Exercices traditionnels

- 1. Ordre en dominance stochastique et loi Bernoulli Soit les v.a. $X_1 \sim Bern(q_1)$ et $X_2 \sim Bern(q_2)$, avec $0 < q_1 < q_2 < 1$. Démontrer que $X_1 \leq_{ds} X_2$.
- 2. Ordre en dominance stochastique, loi Bernoulli et loi Poisson Soit les v.a. $X_1 \sim Bern(q)$ et $X_2 \sim Pois(\lambda)$, avec 0 < q < 1 et $\lambda = -\ln(1-q)$. Démontrer que $X_1 \leq_{ds} X_2$.
- 3. Ordre en dominance stochastique et loi exponentielle Soit les v.a. $X_1 \sim Exp(\beta_1)$ et $X_2 \sim Exp(\beta_2)$, avec $\beta_1 > \beta_2 > 0$. Démontrer que $X_1 \leq_{ds} X_2$.
- 4. Ordre en dominance stochastique et somme de v.a. indépendantes de loi Bernoulli Soit les v.a. $I_i \sim Bern(q_i)$, i=1,2, où $0 < q_1 < q_2 < 1$, et les v.a. positives B_i , i=1,2, où $B_1 \preceq_{ds} B_2$. Toutes les v.a. sont indépendantes. On définit $X_i = I_i \times B_i$, i=1,2. Démontrer que $X_1 \preceq_{ds} X_2$.
- 5. Ordre convexe et somme de v.a. indépendantes de loi Bernoulli Soit les v.a. indépendantes $I_1 \sim Bern(q_1), I_2 \sim Bern(q_2), J_1 \sim Bern(q), J_2 \sim Bern(q),$ avec $0 < q_1 < q < q_2 < 1$ et $q = \frac{q_1 + q_2}{2}$. On définit $M = I_1 + I_2$ et $N = J_1 + J_2$. Démontrer que $M \leq_{cx} N$. Indiquer la loi de N. Commenter sur la relation d'ordre établie.
- 6. Ordre convexe et loi Pareto Soit la v.a. $X^{(\alpha,\beta)} \sim Pareto(\alpha,\beta)$ avec $\alpha \in (1,\infty)$. Démontrer que $X^{(\alpha,\beta)} \leq_{cx} X^{(\alpha',\beta')}$ quand les paramètres de leur distribution sont fixés de telle sorte que $\alpha > \alpha' > 1$ et $E[X^{(\alpha,\beta)}] = E[X^{(\alpha',\beta')}] = \mu$. Suggestion : on peut utiliser l'inégalité suivante : pour a > b > 0, $(1 + \frac{y}{a})^a > (1 + \frac{y}{b})^b$, $x \ge 0$.

1.2 Exercices informatiques

- 1. Ordre en dominance stochastique et sommes de v.a. indépendantes de loi exponentielle Soit des v.a. indépendantes $Y \sim Exp(\beta)$, $Y' \sim Exp(\beta')$ et $Z \sim Exp(\beta)$, avec $0 < \beta' < \beta$. On définit X = Y + Z et X' = Y' + Z. Utilisez les notions sur les ordres stochastiques pour démontrer que $X \leq_{ds} X'$. Pour $\beta = \frac{1}{10}$ et $\beta' = \frac{1}{20}$, développez les expressions fermées de F_X et $F_{X'}$ et calculez (via optimisation numérique en R) les valeurs de $VaR_{\kappa}(X)$ et $VaR_{\kappa}(X')$, $\kappa = 0.99$.
- 2. Ordre en dominance stochastique et sommes de v.a. indépendantes de loi exponentielle Soit les v.a. indépendantes X_1, \ldots, X_n , avec $X_i \sim Exp(\beta_i)$, $i \in \{1, \ldots, n\}$, $\beta_1 > \ldots > \beta_n > 0$ et $n \in \{2, 3, \ldots\}$. Soit les v.a. i.i.d. Y_1, \ldots, Y_n , avec $Y_i \sim Exp(\gamma)$, $i \in \{1, \ldots, n\}$. Soit les v.a. i.i.d. Z_1, \ldots, Z_n , avec $Z_i \sim Exp(\lambda)$, $i \in \{1, \ldots, n\}$. On définit les v.a. $R_n = X_1 + \cdots + X_n$, $S_n = Y_1 + \cdots + Y_n$, et $T_n = Z_1 + \cdots + Z_n$. Interprétation : les v.a. « X », « Y » et « Y » sont des risques (coûts éventuels pour des contrats d'assurance IARD) et les v.a. « R_n », « S_n » et « T_n » sont des risques globaux de trois portefeuilles.
 - (a) Identifiez les lois des v.a. R_n , T_n , et T_n .
 - (b) Fixez la valeur de $\gamma \in \beta_1, \dots, \beta_n$ et $\lambda \in \beta_1, \dots, \beta_n$ de telle sorte que les deux relations d'ordre suivantes soient satisfaites :

$$S_n \leq_{ds} R_n \leq_{ds} T_n. \tag{1}$$

Démontrez votre choix qui mène à ces deux relations d'ordre.

- (c) Hypothèses : $\beta_1 = 1/2$, $\beta_2 = 1/3$, $\beta_3 = 1/5$. Utilisez R (et ses outils d'optimisation, si nécessaire) pour calculer $VaR_{\kappa}(R_3)$, $VaR_{\kappa}(S_3)$, $VaR_{\kappa}(T_3)$, $\kappa = 0.999$. Commentez brièvement les valeurs des espérances et des VaR en s'appuyant sur le résultat en (1).
- 3. Ordre convexe et loi lognormale Soit les v.a. X_1 et X_2 , où $X_i \sim LNorm(\mu_i, \sigma_i)$ et $E[X_1] = E[X_2] = a$.
 - (a) Démontrez que $VaR_{\kappa}(X_i)=a\mathrm{e}^{-\frac{1}{2}\sigma_i^2+\sigma_i\phi^{-1}(\kappa)},\,i\in\{1,2\}.$
 - (b) Quand $0 < \sigma_1 < \sigma_2$, établissez que $X_1 \leq_{cx} X_2$.
 - (c) Hypothèses : $\sigma_1 = 0.5$, $\sigma_2 = 1$ et a = 10.
 - i. Calculez $Var(X_1)$ et $Var(X_2)$.
 - ii. Calculez la valeur c tel que $F_{X_1}(c) = F_{X_2}(c)$, $F_{X_1}(x) < F_{X_2}(x)$ pour 0 < x < c et $F_{X_1}(x) > F_{X_2}(x)$ pour x > c. Indiquez la valeur de $F_{X_1}(c)$.
 - iii. Calculez $VaR_{\kappa}(X_1)$ et $VaR_{\kappa}(X_2)$, $\kappa \in \{0.01, 0.5, 0.99\} \cup \{F_{X_1}(c)\}$.
 - iv. Calculez $TVaR_{\kappa}(X_1)$ et $TVaR_{\kappa}(X_2)$, $\kappa \in \{0.01, 0.5, 0.99\} \cup \{F_{X_1}(c)\}$.
- 4. **Risques i.i.d. de loi gamma et mutualisation** Soit un portefeuille de n risques définis par les v.a. X_1, \ldots, X_n , où $X_i \stackrel{\mathcal{D}}{=} X \sim Gamma(\alpha, \beta), i \in \{1, \ldots, n\}$ et $n \in \mathbb{N}_+$. Le risque global du portefeuille correspond aux coûts totaux (pertes totale) des n contrats et il est défini par la v.a. $S_n = X_1 + \cdots + X_n$. La part des coûts allouée par (redistribuée à) contrat est définie par la v.a. $W_n = \frac{S_n}{n}$.
 - (a) Uilisez les TLS pour identifier la loi de W_n , $n \in \mathbb{N}_+$.
 - (b) En classe, on a montré que $W_{n+1} \preceq_{cx} W_n$, $n \in \mathbb{N}_+$. En définissant $Y^{(\gamma,\eta)} \sim Gamma(\gamma,\eta)$ et sachant que $Y^{(\gamma,\eta)} \preceq_{cx} Y^{(\gamma',\eta')}$ quand $\gamma > \gamma' > 0$ avec $E[Y^{(\gamma,\eta)}] = \frac{\gamma}{\eta} = \frac{\gamma'}{\eta'} = Y^{(\gamma',\eta')}$, proposez une nouvelle approche pour établir $W_{n+1} \preceq_{cx} W_n$, $n \in \mathbb{N}_+$. À noter que cette approche est plus restreinte que l'approche plus générale présentée en classe, car la présente approche se limite uniquement à la loi gamma.
 - (c) Hypothèses : $\alpha = 0.5$, $\beta = \frac{\alpha}{10}$ et $n \in \{1, 10, 100, 1000\}$.
 - i. Calculez $E[W_n]$ et $Var(W_n)$.
 - ii. Calculez $Var(W_n)$ et $Var(W_n)$.
 - iii. Calculez $VaR_{\kappa}(W_n)$ et $VaR_{\kappa}(W_n)$, $\kappa \in \{0.01, 0.5, 0.99\}$.
 - iv. Calculez $TVaR_{\kappa}(W_n)$ et $TVaR_{\kappa}(W_n)$, $\kappa \in \{0.01, 0.5, 0.99\}$.

- 5. Quelle la loi est la plus « variable » selon l'ordre convexe? Soit les v.a. $M \sim Binom(n,q)$ et $N \sim Pois(\lambda)$, où $E[M] = nq = E[N] = \lambda = a$.
 - (a) Établissez que $M \leq_{cx} N$.
 - (b) Hypothèses : n = 10 et a = 2.
 - i. Calculez q et λ .
 - ii. Calculez Var(M) et Var(N).
 - iii. Calculez $VaR_{\kappa}(M)$ et $VaR_{\kappa}(N)$, $\kappa \in \{0.01, 0.5, 0.99\}$.
 - iv. Calculez $TVaR_{\kappa}(M)$ et $TVaR_{\kappa}(N)$, $\kappa \in \{0.01, 0.5, 0.99\}$.
- 6. Loi Poisson et ordre en dominance stochastique Soit les v.a. $M \sim Pois(\lambda)$ et $M' \sim Pois(\lambda')$.
 - (a) Sachant $0 < \lambda < \lambda'$, établissez que $M \leq_{sl} M'$. Suggestion d'une approche pour la démonstration : utilisez le lien entre la loi de Erlang et la loi de Poisson.
 - (b) Hypothèses : $\lambda = 2$ et $\lambda' = 5$. Calculez $VaR_{\kappa}(M)$ et $VaR_{\kappa}(M')$, $\kappa \in \{0.01, 0.5, 0.99\}$.

2 Solutions

2.1 Exercices traditionnels

1. Solution à l'exercice 1.1.1. L'expression de F_{X_i} est donnée par

$$F_{X_i}(x) = (1 - q_i)1_{[0,\infty)}(x) + q_i1_{[1,\infty)}(x), \ x \ge 0, \ i = 1, 2.$$

Puisque

$$0 < q_1 < q_2 < 1 \Leftrightarrow 1 > 1 - q_1 > 1 - q_2 > 0,$$

alors $F_{X_1}(x) \ge F_{X_2}(x)$, $x \ge 0$, ce qui permet de conclure que $X_1 \le_{ds} X_2$ par la définition de \le_{ds} . Suggestion : Pour aider à la compréhension via la visualisation, dessiner les courbes en escalier de $F_{X_1}(x)$ et $F_{X_2}(x)$, pour $x \in [-1, 2]$.

2. Solution à l'exercice 1.1.2. L'expression de F_X est donnée par

$$F_{X_1}(x) = (1-q)1_{[0,\infty)}(x) + q1_{[1,\infty)}(x), \ x \ge 0.$$

On observe que $F_{X_2}(0) = e^{-\lambda} = e^{-(-\ln(1-q))} = 1 - q = F_{X_1}(0)$. Puis, $F_{X_1}(x) = F_{X_2}(x)$, 0 < x < 1, et $F_{X_1}(x) = 1 \ge F_{X_2}(x)$, $x \ge 1$, ce qui permet de conclure que $X_1 \le X_2$ par la définition de $\le X_3$. Suggestion : Pour aider à la compréhension via la visualisation, dessiner les courbes en escalier de $F_{X_1}(x)$ et $F_{X_2}(x)$, pour $x \in [-1, 2]$.

3. Solution à l'exercice 1.1.3. On observe que

$$\overline{F}_{X_1}(x) = e^{-\beta_1 x} \le e^{-\beta_2 x} = \overline{F}_{X_2}(x), \ x \ge 0,$$

ce qui permet de conclure que $X_1 \leq_{ds} X_2$ par la définition de \leq_{ds} .

4. Solution à l'exercice 1.1.4. On déroule les deux inégalités suivantes :

$$\begin{aligned} \overline{F}_{X_1}(x) &= q_1 \overline{F}_{B_1}(x) \\ &\leq q_2 \overline{F}_{B_1}(x) \quad (0 < q_1 < q_2 < 1) \\ &\leq q_2 \overline{F}_{B_2}(x) \quad (B_1 \preceq_{ds} B_2) \\ &= \overline{F}_{X_2}(x), \quad x > 0. \end{aligned}$$

De la deuxième inégalité \leq et de la définition de \leq_{ds} , on conclut que $X_1 \leq_{ds} X_2$.

Suggestion : Pour aider à la compréhension via la visualisation, dessiner les courbes en escalier de $F_{X_1}(x)$ et $F_{X_2}(x)$, pour $x \in [-1, 2]$.

- 5. Solution à l'exercice 1.1.5. On procède par étape.
 - Espérances égales :

$$E[M] = E[I_1] + E[I_2] = q_1 + q_2$$
 et $E[N] = E[J_1] + E[J_2] = 2\frac{q_1 + q_2}{2} = q_1 + q_2$

$$\Rightarrow E[M] = E[N].$$

- On applique le critère de Karlin-Novikoff pour établir l'ordre stop-loss (un seul croisement des fonctions de répartition)
 - $F_M(x)$ et $F_N(x)$ sont des fonctions en escalier avec des sauts à $x \in \{0,1,2\}$.
 - $-F_M(2) = F_N(2) = 1.$
 - On doit valider que

$$F_M(0) = (1 - q_1)(1 - q_2) \le F_N(0) = (1 - q)^2$$

et

$$F_M(1) = 1 - q_1 q_2 > F_N(1) = 1 - q^2$$
.

— Dans l'énoncé, on assume $0 < q_1 < q < q_2 < 1$. Cette hypothèse implique que

$$\frac{q_1}{q} < \frac{q}{q_2} \text{ et } \frac{1 - q_2}{1 - q} < \frac{1 - q}{1 - q_1},$$

ce qui équivalent à

$$1 - q_1 q_2 > 1 - q^2$$
 et $(1 - q_1)(1 - q_2) < (1 - q)^2$.

De ces deux dernières inégalités, on confirme les inégalités souhaitées :

$$F_M(0) = (1 - q_1)(1 - q_2) < F_N(0) = (1 - q)^2$$

et

$$F_M(1) = 1 - q_1 q_2 \ge F_N(0) = 1 - q^2$$
,

ce qui permet de conclure que $M \leq_{sl} N$.

- Finalement, on établit la relation voulue : $M \leq_{sl} N$ et $E[M] = E[N] \Rightarrow M \leq_{cx} N$.
- Loi de $N: N \sim Binom(2, q)$.
- Observation : N (somme de v.a. i.i.d.) est plus dangereuse (au sens de l'ordre convexe) que M (somme de v.a. indépendantes qui n'ont pas la même distribution). La v.a. N est plus « variable » que la v.a. M. Surprenant, non?

6. Solution à l'exercice 1.1.6. On procéde par étapes pour établir la relation d'ordre convexe.

- Puisque l'on fixe les paramètres de telle sorte que $E[X^{(\alpha,\beta)}] = E[X^{(\alpha'\beta')}] = \mu$, on convient que $\lambda = \mu(\alpha 1)$ et $\lambda' = \mu(\alpha' 1)$.
- On utilise la définition pour démontrer que $\alpha > \alpha' > 1 \Rightarrow X^{(\alpha,\beta)} \leq_{sl} X^{(\alpha'\beta')}$. Quand $\alpha > \alpha' > 1$, on vise à montrer

$$\pi_{X^{(\alpha,\beta)}}(x) \le \pi_{X^{(\alpha'\beta')}}(x), \quad x \ge 0$$

$$\Leftrightarrow \mu \left(\frac{1}{1 + \frac{x}{\mu(\alpha - 1)}} \right)^{(\alpha - 1)} \le \mu \left(\frac{1}{1 + \frac{x}{\mu(\alpha' - 1)}} \right)^{(\alpha' - 1)}, \quad x \ge 0$$

$$\Leftrightarrow \left(1 + \frac{x}{\mu(\alpha - 1)}\right)^{(\alpha - 1)} \ge \left(1 + \frac{x}{\mu(\alpha' - 1)}\right)^{(\alpha' - 1)}, \quad x \ge 0.$$

En posant $y=\frac{x}{\mu}$ et l'inégalité suggérée dans l'énoncé (avec $a=(\alpha-1)$ et $b=(\alpha'-1)$), la dernière inégalité ci-dessus est validée, ce qui confirme que

$$\pi_{X^{(\alpha,\beta)}}(x) \le \pi_{X^{(\alpha'\beta')}}(x), \quad x \ge 0.$$

De là, on conclut que $\alpha > \alpha' > 1 \Rightarrow X^{(\alpha,\beta)} \leq_{sl} X^{(\alpha'\beta')}$.

— Finalement, quand $\alpha > \alpha' > 1$,

$$E[X^{(\alpha,\beta)}] = E[X^{(\alpha'\beta')}] = \mu \text{ et } X^{(\alpha,\beta)} \prec_{sl} X^{(\alpha'\beta')} \Rightarrow X^{(\alpha,\beta)} \prec_{cr} X^{(\alpha'\beta')}.$$

2.2 Exercices informatiques

- 1. Solution à l'exercice 1.2.1.
 - En utilisant le théorème de préservation de l'ordre stochastique et de la somme de v.a. indépendantes, on montre que $X \leq_{ds} X'$.
 - On observe que $X \sim Erl(2, \frac{1}{10})$ et $X' \sim ErlGen(\beta_1 = \frac{1}{10}, \beta_2 = \frac{1}{20})$, avec

$$F_X(x) = 1 - e^{-\frac{x}{10}} \left(1 + \frac{x}{10} \right), \ x \ge 0,$$

et

$$F_{X'}(x) = 1 - \frac{\beta_2}{\beta_2 - \beta_1} e^{-\frac{x}{10}} - \frac{\beta_1}{\beta_1 - \beta_2} e^{-\frac{x}{20}}, \ x \ge 0.$$

- En R, on utilise la fonction qgamma pour évaluer $VaR_{\kappa}(X)$ et la fonction optimize pour évaluer $VaR_{\kappa}(X')$, $\kappa=0.99$.
- Réponses : 66.38352 et 105.9162.

Lien github : Code R

- 2. Solution à l'exercice 1.2.2.
 - (a) Lois des trois v.a. : $R_n \sim ErlGen(\beta_1, \beta_2, \beta_3)$, $T_n \sim Erlang(n, \gamma)$, et $T_n \sim Erlang(n, \lambda)$. Les fonctions de répartition des lois Erlang et Erlang généralisée sont fournies en annexe de [Cossette and Marceau, 2021]. Voir aussi [Ross, 2014] (ouvrage de référennce pour un cours sur les processus aléatoires). La loi Elrang généralisée est aussi appelée la loi hypo-exponentielle.
 - (b) On procède par étapes :
 - On fixe $\gamma = \beta_1$. Il en suit que $Y_i \leq_{ds} X_i$, $i \in \{1, \ldots, n\}$. Ensuite, on applique le Théorème de fermeture de l'ordre \leq_{ds} sous la convolution pour conclure $S_n \leq_{ds} R_n$.
 - On fixe $\lambda = \beta_n$. Il en suit que $X_i \leq_{ds} Z_i$, $i \in \{1, \ldots, n\}$. Ensuite, on applique le Théorème de fermeture de l'ordre \leq_{ds} sous la convolution pour conclure $R_n \leq_{ds} T_n$.
 - (c) Hypothèses : $\beta_1 = 1/2, \beta_2 = 1/3, \beta_3 = 1/5.$
 - Espérance de $R_3 : E[R_3] = E[X_1] + E[X_2] + E[X_3] = 10.$
 - Espérance de $S_3 : E[S_3] = 3\beta_1 = 3 \times 2 = 6$.
 - Espérance de $T_3 : E[T_3] = 3\beta_3 = 3 \times 5 = 15$.
 - Avec la fonction R qgamma(), on obtient $VaR_{0.999}(S_3) = 22.45774$.
 - Avec la fonction R qgamma(), on obtient $VaR_{0.999}(T_3) = 56.14436$.
 - Construire une fonction R pour calculer $F_{R_n}(x)$ et utiliser la fonction optimize pour évaluer la VaR de $R_n: VaR_{0.999}(R_3) = 41.65339$.
 - Commentez brièvement ...

En établissant les deux relations d'ordre \leq_{ds} , on déduit les deux implications

$$S_n \leq_{ds} R_n \leq_{ds} T_n \Rightarrow E[S_n] \leq E[R_n] \leq E[T_n]$$

et

$$S_n \prec_{ds} R_n \prec_{ds} T_n \Rightarrow VaR_{\kappa}(S_n) < VaR_{\kappa}(R_n) < VaR_{\kappa}(R_n), \ \kappa \in (0,1),$$

ce qui confirme les résultats numériques obtenus.

Lien github: Code R

- 3. Solution à l'exercice 1.2.3.
 - (a) Étapes:

— Comme
$$E[X_i] = e^{\mu_i + \frac{1}{2}\sigma_i^2} = a$$
, alors $\mu_i = \ln(a) - \frac{1}{2}\sigma_i^2$, $i \in \{1, 2\}$.

— On déduit que

$$VaR_{\kappa}(X_{i}) = e^{\mu_{i} + \sigma_{i}\phi^{-1}(\kappa)}$$

$$= e^{\ln(a) - \frac{1}{2}\sigma_{i}^{2} + \sigma_{i}\phi^{-1}(\kappa)}$$

$$= e^{\ln(a)} e^{-\frac{1}{2}\sigma_{i}^{2} + \sigma_{i}\phi^{-1}(\kappa)}$$

$$= ae^{-\frac{1}{2}\sigma_{i}^{2} + \sigma_{i}\phi^{-1}(\kappa)}, \quad i \in \{1, 2\}.$$
(2)

— On a obtenu le résultat souhaité.

(b) Étapes:

- On cherche κ tel que $VaR_{\kappa}(X_1) = VaR_{\kappa}(X_2)$.
- On utilise la relation en (2) pour chercher κ_c tel que

$$ae^{-\frac{1}{2}\sigma_1^2 + \sigma_1\phi^{-1}(\kappa)} = ae^{-\frac{1}{2}\sigma_2^2 + \sigma_2\phi^{-1}(\kappa)}$$

$$\Leftrightarrow$$

$$-\frac{1}{2}\sigma_1^2 + \sigma_1\phi^{-1}(\kappa) = -\frac{1}{2}\sigma_2^2 + \sigma_2\phi^{-1}(\kappa)$$

$$\Leftrightarrow$$

$$\phi^{-1}(\kappa)(\sigma_2 - \sigma_1) = \frac{1}{2}(\sigma_2^2 - \sigma_1^2)$$

— Solution : On note la solution par κ_c où

$$\phi^{-1}(\kappa_c) = \frac{1}{2} \frac{\sigma_2^2 - \sigma_1^2}{\sigma_2 - \sigma_1} = \frac{1}{2} (\sigma_2 + \sigma_1).$$

— Observation no1 : le croisement de $F_{X_1}(x)$ et de $F_{X_1}(x)$ se produit à

$$x = c = Var_{\kappa_c}(X_1) = E[X_1]e^{-\frac{1}{2}\sigma_1^2 + \sigma_1\phi^{-1}(\kappa_c)} = ae^{\frac{1}{2}(\sigma_1 \times \sigma_2)}.$$

- On obtient $F_{X_1}(c) = F_{X_2}(c) = \kappa_c = \phi(\frac{1}{2}(\sigma_2 + \sigma_1)).$
- Note : bien entendu, par définition de c, $c = Var_{\kappa_c}(X_2)$ fournit la même valeur.
- Observation no 2 : on définit la fonction $\zeta(\kappa)$ par

$$\zeta(\kappa) = \frac{VaR_{\kappa}(X_1)}{VaR_{\kappa}(X_2)} = \frac{a\mathrm{e}^{-\frac{1}{2}\sigma_1^2 + \sigma_1\phi^{-1}(\kappa)}}{a\mathrm{e}^{-\frac{1}{2}\sigma_2^2 + \sigma_2\phi^{-1}(\kappa)}}.$$

Ainsi, on a

$$\begin{aligned} & \zeta(\kappa) > 1, \quad 0 < \kappa < \kappa_c \\ & \zeta(\kappa) = 1, \quad \kappa = \kappa_c \\ & \zeta(\kappa) < 1, \quad \kappa_c < \kappa < 1, \end{aligned}$$

ce qui implique

$$\begin{split} F_{X_1}(x) - F_{X_2}(x) &< 0, \quad 0 < x < c \\ F_{X_1}(x) - F_{X_2}(x) &= 0, \quad x = c \\ F_{X_1}(x) - F_{X_2}(x) &> 0, \quad x > c. \end{split}$$

- Remarque : il ne peut y avoir qu'un seul croisement, car $VaR_{\kappa(X_1)}$ et $VaR_{\kappa(X_3)}$ sont monotones croissantes en κ .
- Des observations nos 1 et 2, on déduit que $X_1 \leq_{sl} X_2$.
- Conclusion : $X_1 \leq_{sl} X_2$ et $E[X_1] = E[X_2] \Rightarrow X_1 \leq_{cx} X_2$.

κ	0.01	0.5	0.99	0.7733726
$VaR_{\kappa}(X_1)$	2.75774	8.82497	28.24055	12.84025
$VaR_{\kappa}(X_2)$	0.59229	6.06530	62.11161	12.84025

Tableau 1 – $VaR_{\kappa}(X_1)$ et $VaR_{\kappa}(X_2)$ pour l'exercice 1.2.3

Quand $0 < \sigma_1 < \sigma_2$, établissez que $X_1 \leq_{cx} X_2$.

- (c) Hypothèses : $\sigma_1 = 0.5$, $\sigma_2 = 1$ et a = 10.
 - i. Note : Avec les relation de l'annexe de [Cossette and Marceau, 2021], on déduit $Var(X_i) = a^2(e^{\sigma_i^2-1}), i \in \{1,2\}$. On obtient : 28.40254 et 171.82818
 - ii. Valeurs : c = 12.8402542 et $F_{X_1}(c) = F_{X_2}(c) = \kappa_c = 0.7733726$.
 - iii. $VaR_{\kappa}(X_1)$ et $VaR_{\kappa}(X_2)$, $\kappa \in \{0.01, 0.5, 0.99\} \cup \{F_{X_1}(c)\}$: valeurs dans le Tableau 1.
 - iv. $TVaR_{\kappa}(X_1)$ et $TVaR_{\kappa}(X_2)$, $\kappa \in \{0.01, 0.5, 0.99\} \cup \{F_{X_1}(c)\}$: valeurs dans le Tableau 2.

κ	0.01	0.5	0.99	0.7733726
$TVaR_{\kappa}(X_1)$	10.07723	13.82925	33.89894	17.70720
$TVaR_{\kappa}(X_2)$	10.09657	16.82689	92.36225	26.41810

Tableau 2 – $TVaR_{\kappa}(X_1)$ et $TVaR_{\kappa}(X_2)$ pour l'exercice 1.2.3

v. Suggestion : tracer les courbes de $F_{X_i}(x)$, $VaR_{\kappa}(X_i)$ et $TVaR_{\kappa}(X_i)$, $i \in \{1,2\}$ pour se convaincre et pour aider à la compréhension.

Lien github: Code R

- 4. Solution à l'exercice 1.2.4.
 - (a) Étapes:
 - TLS de W_n :

$$\mathcal{L}_{W_n}(t) = E[e^{-W_n t}] = E[e^{-\frac{S_n}{n}t}]$$

= $E[e^{-(X_1 + \dots + X_n)\frac{t}{n}}]$

— L'hypothèse X_1, \ldots, X_n , où $X_i \stackrel{\mathcal{D}}{=} X \sim Gamma(\alpha, \beta), i \in \{1, \ldots, n\}$ et $n \in \mathbb{N}_+$ implique

$$\mathcal{L}_{W_n}(t) = E[\mathrm{e}^{-(X_1)\frac{t}{n}}] \times \cdots E[\mathrm{e}^{-(X_n)\frac{t}{n}}] \quad \text{(indépendantes)}$$

$$= \left(E[\mathrm{e}^{-(X)\frac{t}{n}}]\right)^n \quad \text{(identiquement distribuées)}$$

$$= \left(\left(\frac{\beta}{\beta + \frac{t}{n}}\right)^{\alpha}\right)^n = \left(\frac{n\beta}{n\beta + t}\right)^{n\alpha}$$

- Puisque $\mathcal{L}_{W_n}(t) = \left(\frac{n\beta}{n\beta+t}\right)^{n\alpha}$, on déduit que $W_n \sim Gamma(n\alpha, n\beta)$ avec $E[W_n] = \frac{n\alpha}{n\beta}$, $\forall n \in \mathbb{N}_+$.
- (b) Étapes:
 - Résultat no1 : On utilise ce résultat fourni dans l'énoncé : « Soit $Y^{(\gamma,\eta)} \sim Gamma(\gamma,\eta)$. Alors $Y^{(\gamma,\eta)} \leq_{cx} Y^{(\gamma',\eta')}$ quand $\gamma > \gamma' > 0$ ».
 - Résultat no2 : À l'item précédent, on a montré que $W_n \sim Gamma(n\alpha, n\beta)$ avec $E[W_n] = \frac{n\alpha}{n\beta}, \forall n \in \mathbb{N}_+$.

— En combinant les Résultats no1 et no2, on établit que $W_{n+1} \preceq_{cx} W_n$ est valide pour $\forall n \in \mathbb{N}_+$.

- (c) Voir Lien github : Code R
- 5. Solution à l'exercice 1.2.5.
 - (a) Étapes:
 - On définit M et N comme suit :

$$M = I_1 + \dots + I_n \text{ et } N = J_1 + \dots + J_n,$$

où I_1, \ldots, I_n sont de v.a. i.i.d de loi Bernoulli (avec paramètre q) et J_1, \ldots, J_n sont de v.a. i.i.d de loi Poisson (avec paramètre $\gamma = \frac{\lambda}{n} = q$).

- Pour chaque $i \in \{1, \ldots, n\}$, on démontre (voir plus bas) que $I_i \leq_{cx} J_i$.
- Comme l'ordre convexe est fermé sous la convolution, alors il en résulte que

$$M = I_1 + \cdots + I_n \preceq_{cx} N = J_1 + \cdots + J_n$$
.

- Il reste à démontrer $I_i \leq_{cx} J_i$, $i \in \{1, \ldots, n\}$:
 - $F_{I_i}(0) = 1 q \le e^{-q} = F_{J_i}(0), i \in \{1, \dots, n\};$
 - $F_{I_i}(1) = 1 > 1 e^{-q} = F_N J_i(1), i \in \{1, \dots, n\};$
 - Avec le critère de Karlin-Novikoff, on déduit que $I_i \leq_{sl} J_i$, $i \in \{1, \ldots, n\}$;
 - $-I_i \preceq_{sl} J_i \text{ et } E[I_i] = E[J_i] \Rightarrow I_i \preceq_{cx} J_i, i \in \{1, \dots, n\}.$
- (b) Hypothèses : n = 1000 et a = 200.
 - i. $q = \frac{200}{1000}$ et $\lambda = 200$.
 - ii. Var(M) = 160 et Var(N) = 200.
 - iii. $VaR_{\kappa}(M)$ et $VaR_{\kappa}(N)$: 171, 200, 230; 168, 200, 234.
 - iv. $TVaR_{\kappa}(M)$ et $TVaR_{\kappa}(N)$: 200.3339 210.0881 234.2996; 200.3700 211.2791 238.7075

Lien github: Code R

- 6. Solution à l'exercice 1.2.6.
 - (a) Étapes :
 - Soit la suite de v.a. i.i.d. $\underline{W} = \{W_i, i \in \mathbb{N}_+\}$, où $W_i \sim Exp(\lambda), i \in \mathbb{N}_+$.
 - Soit la suite de v.a. i.i.d. $\underline{W'} = \{W'_i, i \in \mathbb{N}_+\}, \text{ où } W'_i \sim Exp(\lambda'), i \in \mathbb{N}_+.$
 - Dans [Cossette and Marceau, 2021] et [Ross, 2014], on explique

$$T_k = W_1 + \cdots + W_k \sim Erlang(k, \lambda)$$

et

$$T'_{k} = W'_{1} + \cdots + W'_{k} \sim Erlang(k, \lambda'),$$

pour $k \in \mathbb{N}_+$.

— Dans [Cossette and Marceau, 2021] et [Ross, 2014], on montre aussi

$$F_M(k) = \overline{F}_{T_{k+1}}(1)$$

 et

$$F_{M'}(k) = \overline{F}_{T'_{k+1}}(1),$$

pour $\forall k \in \mathbb{N}$.

— Comme l'ordre en dominance stochastique est fermé sous la convolution, on a

$$\overline{F}_{T_{k+1}}(1) \ge \overline{F}_{T'_{k+1}}(1)$$

pour $\forall k \in \mathbb{N}$.

— On déduit que

$$F_M(k) \ge F_{M'}(k)$$

pour $\forall k \in \mathbb{N}$, ce qui implique $M \leq_{ds} M'$.

- (b) Hypothèses : $\lambda = 2$ et $\lambda' = 5$.
 - $VaR_{\kappa}(M), \ \kappa \in \{0.01, 0.5, 0.99\} : 0, 2, 6$
 - $VaR_{\kappa}(M'), \ \kappa \in \{0.01, 0.5, 0.99\} : 1, 5, 11$

 $\operatorname{Lien\ github}: \operatorname{\underline{Code}} R$

Références

[Cossette and Marceau, 2021] Cossette, H. and Marceau, E. (2021). Mathématiques actuarielles du risque : modèles, mesures de risque et méthodes quantitatives. Monographie.

[Ross, 2014] Ross, S. M. (2014). Introduction to Probability Models. Academic press.