

CMT107 Visual Computing Assignment Project Exam Help

https://tutorcs.com Edge Detection

WeChat: cstutorcs

Xianfang Sun, Jing Wu

School of Computer Science and Informatics Cardiff University

Overview

- Origin of Edges
- Characterising Edges
- Derivatives with Convolution
 - Finite Difference Filter Assignment Project Exam Help
 - Image Gradient
- Canny Edge Detector

https://tutorcs.com

WeChat: cstutorcs

Edge Detection

- Goal: identify sudden changes (discontinuities) in an image
 - Intuitively, most semantic and shape information from the image can be encoded in the edges
 - More compact than pixessignment Project Exam Help
- Ideal: artist's line drawing (but artists are also nttps://tutorcs.com using object-level knowledge)

WeChat: cstutorcs

Origin of Edges

• Edges are caused by a variety of factors

Characterising Edges

An edge is a place of rapid change in the image intensity function

Derivatives with Convolution

• For 2D function f(x, y), the partial derivative is:

$$\frac{\partial f(x,y)}{\partial x} = \lim_{\varepsilon \to 0} \frac{f(x+\varepsilon,y) - f(x,y)}{\varepsilon}$$

• For discrete data, we can approximate using finite differences:

$$\frac{\partial f(x,y)}{\partial x \text{WeChat: cstutorcs}} - \frac{\partial f(x,y)}{\partial x \text{WeChat: cstutorcs}}$$

• To implement the above as convolution, what would be the associated filter?

Partial Derivatives of an image

Intensity normalized to [0,255]

ignment Project Exam Help ∂x (or 1 -1) https://tutorcs.com

WeChat: cstutorcs

$$\frac{\partial f(x,y)}{\partial y} \quad \begin{array}{c|c} -1 \\ \hline 1 \end{array} \text{ (or } \begin{array}{c} 1 \\ \hline -1 \end{array}$$

Can you tell which shows changes with respect to x?

Finite Difference Filters

Other approximations of derivative filters:

Prewitt:
$$M_{\chi} = \begin{bmatrix} -1 & 0 & 1 \\ -1 & 0 & 1 \end{bmatrix}$$
, $M_{y} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$
Assignment Project Exam Help -1

Sobel:
$$M_{\chi} = \frac{1}{2} \left(\frac{1}{2} \right) \left(\frac{$$

Roberts:
$$M_{\chi} = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}$$
 , $M_{y} = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$

Image Gradient

• The gradient of an image: $\nabla f = (\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y})$

$$\nabla f = \begin{bmatrix} \frac{\partial f}{\partial x}, 0 \end{bmatrix}$$

$$Assignment_f Project Exam Help$$

The gradient points in the differior of the gradient points in the

• The gradient direction is given by \mathfrak{S} : \mathfrak{S} \mathfrak{S}

The gradient magnitude defines the edge strength: $\|\nabla f\| = \sqrt{\left(\frac{\partial f}{\partial x}\right)^2 + \left(\frac{\partial f}{\partial y}\right)^2}$

Effects of Noise

 Consider a single row or column of the image, and plot the intensity as a function of position

Where is the edge?

Effects of Noise

• Solution: smooth first

To find edges, look for peaks in $\frac{\partial}{\partial x} f * g$

Derivative Theorem of Convolution

• Differentiation is convolution, and convolution is associative:

$$\frac{\partial}{\partial x}(f * g) = f * \frac{\partial}{\partial x}g$$

This saves us one operation

Derivative of Gaussian filter

- Which finds horizontal / vertical edges?
- Are these filters separable?

Scale of Gaussian Derivative Filter

• Smoothed derivative removes noise, but blurs edge. Also find edges at different "scales".

Review: Smoothing vs. Derivative Filters

Smoothing filters

- Gaussian: removes "high-frequency" components; "low-pass" filter
- Can the values of a smoothing filter be negative?
- What should the values sum to?
 - One: constant regionssaigenmote affecte jeby Exerittelelp

https://tutorcs.com

WeChat: cstutorcs

Derivative filters

- Derivatives of Gaussian
- Can the values of a derivative filter be negative?
- What should the values sum to?
 - Zero: no response in constant regions
- High absolute value at points of high contrast

Original image

Norm of the gradient

How to turn these thick regions of the gradient into curves?

Thresholding

Non-maximum Suppression

- Check if pixel is local maximum along gradient direction. Select single max across width of the edge
 - Requires checking interpolated pixels p and r

Problem: pixels along this edge didn't survive the thresholding

Thinning (non-maximum suppression)

Hysteresis Thresholding

Use a high threshold to start edge curves,
 and a low threshold to continue them

Assignment Project Exam Help

https://tutorcs.com
WeChat: cstutorcs

Hysteresis Thresholding

httporigintoircagem

high threshold (strong edges)

low threshold (weak edges)

hysteresis threshold

Summary of Canny Edge Detector

- 1. Filter image with derivative of Gaussian
- 2. Find magnitude and orientation of gradient
- 3. Non-maximum suppression:
 - Thin wide "ridges" down to one-pixel width Help
- 4. Linking and thresholding (hysteresis):
 - Define two thresholds: low and high
 - Use the high threshold to continue them

J. Canny, <u>A Computational Approach To Edge Detection</u>, IEEE Trans. Pattern Analysis and Machine Intelligence, 8:679-714, 1986.

Summary

- What is edge detection?
- Describe different origin of edges.
- How to characterise edges?
- How to calculate image gradient using Brewittin oppole or Roberts filters?
- Describe the steps of Canny edge detector. https://tutorcs.com

WeChat: cstutorcs