工科数学分析(上)期末试题(A卷)

座号	班级	学号	姓名

(试卷共6页,十个大题, 解答题必须有过程, 试卷后面空白纸撕下做草稿纸, 试卷不得拆散,)

题号	_	1]	11]	四	五	六	七	八	九	+	总分
得分											
签名											

得分	

[得分] 一、填空(每小题4分,共20分)
1.
$$\lim_{x \to +\infty} (x + e^x)^{\frac{1}{x}} =$$
______.

- 2. 函数 y = y(x) 由方程 $\ln(x^2 + y) = x^3 y + \sin x$ 所确定,则 $dy|_{x=0} =$ ______.
- 3. 已 知 两 曲 线 y = f(x)与 $y = \int_0^{\arctan x} e^{-t^2} dt$ 在点 (0,0) 处切线相同. 该切线方程为
- 4. 若 F(x)是 f(x)的一个原函数,则 $\int_{x}^{1} f(\ln ax) dx = \underline{\qquad}$.
- 5. 微分方程 $(y^2 + 1)dx = y(y 2x)dy$ 的通解为______

二、计算题(每小题5分,共20分)

2. 设函数 $f(x) = \frac{x}{a + e^{bx}}$ 在 $(-\infty, +\infty)$ 内连续,且 $\lim_{x \to -\infty} f(x) = 0$. 则 a,b取值需要满足什么条件.

$$4. \ \ \ \, \mathop{\mathbb{R}}\int_0^{\frac{\pi}{2}} \frac{\sin^n x}{\sin^n x + \cos^n x} \mathrm{d}x.$$

得分

三、(8分)讨论函数 $g(x) = \begin{cases} x^{\alpha} \sin \frac{1}{x} & x > 0 \\ e^{x} - x - 1 & x \le 0 \end{cases}$ 在 x = 0处

的连续性和可导性 $(\alpha \neq 0)$.

得分

四、(6分)设函数 f(x)在区间 $[a, +\infty)$ 内连续,f(a) < 0,且当x > a时,f'(x) > l > 0, 其中l为常数,判断在区间 $\left(a, a + \frac{|f(a)|}{l}\right)$ 内方程 f(x) = 0的实根个数. 得分 $\Xi_{\bullet}(8) \mathcal{U} \begin{cases} x = \cot t \\ y = \frac{u(t)}{\sin t}, \text{函数} y = y(x) 满足 (1+x^2)^2 y'' = y, 求 \frac{d^2 u}{dt^2}. \end{cases}$

得分	

七、(8分)设曲线 $y = x^2 - 2x$ ($1 \le x \le 3$), y = 0, x = 1, x = 3围成一平面图形 D.

- (1) 求平面图形 D的面积;
- (2) 求平面图形 D 绕 y 轴旋转所得旋转体的体积.

得分

八、(8分) 设一容器是由曲线 $y = x^2 (0 \le x \le 2)$ 绕 y 轴旋转一周形成,y 轴垂直地面,现以 $2m^3$ / min 的速率向容器

中注水,水的密度为 ρ ,重力单位为g,

- (1) 求容器中水高为1m时,水面上升速率.
- (2) 容器中注满水后,全部把水抽出至少需要做多少功.

得分

九、(8分)已知函数 f(x)满足方程 f''(x) + f'(x) - 2f(x) = 0及 $f''(x) + f(x) = 2e^x$.

- (1)求f(x)的表达式.
- (2)求曲线 $y = f(x^2) \int_0^x f(-t^2) dt$ 的拐点.

得分

十、(8分)设函数 f(x)在区间[-2,2]上二阶可导,且 $|f(x)| \le 1$,又 $f^2(0) + [f'(0)]^2 = 3$,

- (1)证明在区间(-2,0)内至少存在一点 ξ , 使 $|f'(\xi)| \le 1$.
- (2)证明在区间(-2,2)内至少存在一点 η , 使 $f(\eta) + f''(\eta) = 0$.