Range Sum Query Done

A005	Time Limit: 1.5 s		Memory Limit: 128 MB		Date Created: 2021-04-25	By: Hui Pak Nam Jeffrey
Submit	Edit	Solution	Submissions			

Background

Have you ever seen this question?

Source: Hong Kong Mathematics Olympiad 1988-89 Heat Event (Group) Question 3

It is known that $1^2+2^2+\cdots+n^2=\frac{n(n+1)(2n+1)}{6}$ for all positive integers n. Find the value of $21^2+22^2+\cdots+30^2$

Observation:

The given formula starts with 1^2 but the expression starts with 21^2 . What can you do?

- Possible Method 1: Ignore the given formula and add numbers in succession.
- Possible Method 2: Find the general formula (in terms of n) for $21^2 + 22^2 + \cdots + n^2$ for all integers $n \ge 21$?
- Possible Method 3: Put some numbers into the given formula to find the desired value. How?

Solution: (using method 3)

$$21^{2} + 22^{2} + \dots + 30^{2} = (1^{2} + 2^{2} + \dots + 30^{2}) - (1^{2} + 2^{2} + \dots + 20^{2})$$

$$= \frac{30(30 + 1)(2(30) + 1)}{6} - \frac{20(20 + 1)(2(20) + 1)}{6}$$

$$= 9455 - 2870$$

$$= 6585$$

Property

For any integers i and j with $i \leq j$,

$$A_i + A_{i+1} + \cdots + A_i = (A_1 + A_2 + \cdots + A_i) - (A_1 + A_2 + \cdots + A_{i-1})$$

Task Description

You are given N integers, they are A_1 , A_2 , ..., A_N .

You have to answer Q independent queries.

For each query, output the sum of all integers between the L^{th} and the R^{th} elements (inclusive) with $L \leq R$.

Input Specification

The first line of the input contains exactly 2 positive integers N and Q.

The next line contains exactly N integers — A_1 , A_2 , ..., A_N .

The next Q lines contain queries. The i^{th} query is given as two integers L_i and R_i .

Output Specification

The output contains exactly ${\cal Q}$ lines.

The $i^{ ext{th}}$ line contains the answer to the $i^{ ext{th}}$ query, i.e. $A_{L_i} + A_{L_i+1} + \cdots + A_{R_i}$.

Sample Tests

Input

6 4 1 4 9 16 25 36 1 6

2 4

4 5

6 6

Output

91 29

41

36

Explanation:

There are 4 queries in total.

- ullet The 1st query: $A_1 + A_2 + \cdots + A_6 = 1 + 4 + 9 + 16 + 25 + 36 = 91$.
- ullet The 2nd query: $A_2 + A_3 + A_4 = 4 + 9 + 16 = 29$.
- ullet The 3rd query: $A_4 + A_5 = 16 + 25 = 41$.
- The 4th query: $A_6 = 36$.

Constraints

There are 5 test cases in this task.

For all test cases:

- $1 \le N, Q \le 20000$
- $-100000 \le A_i \le 100000$
- $1 \le L_i \le R_i \le N$

For 20% of the test cases: (Test case #1)

ullet $L_i=R_i$ for all Q queries

For another 40% of the test cases: (Test case #2 \sim #3)

 $\bullet \ 1 \leq N \times Q \leq 200000$

Hints: Prefix Sum Array

You may construct a <u>prefix sum</u> array first. The i^{th} element of the prefix sum array is defined by $A_1 + A_2 + \cdots + A_i$.