Computer Graphics *Lecture 4x > Iransformations: -1) Iranslation: we want to move the point (α, y) to then: $\rightarrow x = x + tx$ \rightarrow y' = y + ty2) Scaling: Scaling value equals 2, then we multiply its height by 2 and its width by 2. then: - X = X X Sx \rightarrow y' = y x By 3) Rotation: we want to rotate triangle ABC by angle 9. In \triangle ABC: \rightarrow GS $\phi = \frac{\chi}{Y}$ \rightarrow $\chi = Y \cos \phi$ \rightarrow Sin $\phi = \frac{\chi}{Y}$ \rightarrow $\chi = Y \sin \phi$ In A ADE: X= (Gs (O+ Ø)= YGs & Gs & - Ysin & Sin & x - y= rsin(θ, φ)= rsinθ as φ+ roso sin φ : 1650 = 2, 18in 0 = 4 then: > 2 = 2688 - 4 sin 9 -> 1 = 25ind + y Coso

The previous operations are so difficult in Graphics, so we will use "Homogeneous matrix/system" To make all transformations by one method. > For all transformations: 2 y' = ** Translation matrix: [1 0 ta] Scaling matrix: [Sx 0 0] 0 8y 0 0 0 1] Rotation matrix: Case _Sine * Scaling Relative to reference/pivot/fixed point: To get the equation of Scaling relative to reference point, we remove a and y from the original scaling equation and put $(\alpha_- \alpha_p)$ and $(y_- y_p)$ instead of them then add the reference point to the equation. > Suppose that (24, 1/2) is the reference point. " 1 = 14 + Sx (x-24) = 24 (1-Sx) + Sx x , y'= Jp + 8y (y-Jp) = J= (1-8y) + Sy y

* Rotation Relative to reference point:

* Reflection:

relative to
$$\alpha$$
 axis: $\alpha = \alpha$, $y' = -y$ relative to y axis: $\alpha = -\alpha$, $y' = y$

-2-direction shearing:
$$x'=x$$
, $y'=y$, $y'=y$, $x'=x$, $y'=y$, $x'=x$, $y'=y$, $x'=x$,

Shearing matrix:
$$Shx = \begin{bmatrix} 1 & Shx & 0 \end{bmatrix}, Shy = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}$$

$$\begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

* Iranslation Inverse: Scaling Inverse: Notation Inverse: [Gs0 Sing o] Sing Cost o

«H»