Microsoft Rice Disease Classification ASSAZZIN SOLUTION

Environment:

- 1. Colab Pro +
- 2. GPU Used: A100 for 2 models and V100 for 1 model

How to Run My Solution:

- 3. Run: MicrosoftRice_Solution_SwinBase_V2_384.ipynb
- 4. Run: MicrosoftRice_Solution_SwinLarge_V2_256.ipynb
- 5. Run: MicrosoftRice_Solution_SwinLarge384.ipynb
- 6. Run: MicrosoftRice_Solution_Blend.ipynb

My Solution Summary:

- After 1 week of explorations, i understand that:
 - \circ images are small , so random cropping with image size 448 or 384 will not be usefull
 - based on the last hint, i used 2 resizing configs, one to resize images and one for cropping (for example 224 cropping and 384 resize)
 - o using heavy augmentations:
 - o color augmentations such like equalize Clahe, hue staturation, and color jitter
 - blur augmentationss
 - o brightness augmentations
 - o flip augmentations
 - o rotations/translations
 - I used some training optimization tricks, so i can train large models with large images
 - o transformers outperform all (swin large is really amazing in this competition)

Things I didn't manage to experiment:

 \circ I was lazy to implement such costum augmentation called random vertical cropping , as i find that 75% of targets are in the middle of image , so i can crop with taking 100% of height , but taking 60% of width , like this model will not be confused . I'm sure this will improve my work