

UJAR TECH SOLUTION

NAME: Rithik varma

INTERN ID: UTS1103

TASK 6

Capturing Network Traffic Using Wireshark:

Using **Wireshark** to capture and analyze **live network traffic** on a local machine. Apply protocol filters to study different types of traffic (HTTP, DNS, TCP, UDP, ICMP) and observe packet structures. This demonstrates how cybersecurity professionals investigate **real-time communication** and detect anomalies.

PRACTICAL DESCRIPTION

Problem:- To monitor and analyze live network traffic using Wireshark, understand packet structures, protocols, and identify potential security patterns or issues in the captured data.

Key Concepts of Network:-

Network → A group of two or more devices connected together to share resources (data, files, internet, etc.).

• Types of Networks:

- LAN (Local Area Network) small area (home, office).
- ∘ WAN (Wide Area Network) large area (internet).
- MAN (Metropolitan Area Network) city-wide networks.

Protocol → in networking is a set of **rules and standards** that define how data is transmitted, received, and understood between devices on a network.

- Types of Protocolss:
- $HTTP \rightarrow Web \ communication \ (uses \ TCP).$
- **DNS** \rightarrow Resolves names to IP addresses.
- $TCP \rightarrow Reliable$, ordered communication (web, email, file transfers).
- $UDP \rightarrow Fast$, lightweight, used for streaming and gaming.
- $ICMP \rightarrow Used for testing and error reporting (ping, traceroute).$

Real-World Examples:

1. **Banking Application** – Detecting if sensitive login credentials are transmitted in plaintext.

- 2. **Corporate Network** Monitoring for suspicious ICMP floods that could signal a DoS attack.
- 3. **Healthcare System** Ensuring medical records are encrypted during transmission to maintain confidentiality.

Objective:

To gain hands-on experience in capturing and analyzing network packets, understand how different protocols function, and identify patterns that could indicate security risks.

Practical of packet capture Using Kali Linux:

o Running wireshark in root terminal.

```
File Actions Edit View Help

(root@Rithik)-[/]

# wireshark

Warning: program compiled against libxml 212 using older 209

** (wireshark:35304) 06:40:13.453066 [Capture MESSAGE] -- Capture Start ...

** (wireshark:35304) 06:40:13.542977 [Capture MESSAGE] -- Capture started

** (wireshark:35304) 06:40:13.543011 [Capture MESSAGE] -- File: "/tmp/wireshark_eth0TTZXB3.pcapng"

** (wireshark:35304) 06:42:48.669095 [Capture MESSAGE] -- Capture Stop ...

** (wireshark:35304) 06:42:48.704260 [Capture MESSAGE] -- Capture stopped.
```

Visit websites (e.g., http://example.com)

o Use ping google.com or download a file to generate traffic.

```
😽 🔲 🛅 🍃 🍏 🖭 🗸 🗎 2 3 4 |
 File Actions Edit View Help
                  thik)-[/home/rithik]
     ping google.com -c 4
curl http://example.com
PING google.com (142.250.207.174) 56(84) bytes of data.
64 bytes from pnbomb-bl-in-f14.1e100.net (142.250.207.174): icmp_seq=1 ttl=128 time=151 ms 64 bytes from pnbomb-bl-in-f14.1e100.net (142.250.207.174): icmp_seq=2 ttl=128 time=62.0 ms 64 bytes from pnbomb-bl-in-f14.1e100.net (142.250.207.174): icmp_seq=3 ttl=128 time=30.4 ms 64 bytes from pnbomb-bl-in-f14.1e100.net (142.250.207.174): icmp_seq=4 ttl=128 time=31.0 ms
 — google.com ping statistics -
4 packets transmitted, 4 received, 0% packet loss, time 4193ms rtt min/avg/max/mdev = 30.426/68.500/150.609/49.099 ms
<!doctype html>
<html>
<head>
      <title>Example Domain</title>
      <meta charset="utf-8" />
     <meta charset= utr-o />
<meta http-equiv="Content-type" content="text/html; charset=utf-8" />
<meta name="viewport" content="width=device-width, initial-scale=1" />
<style type="text/css">
      body {
           background-color: #f0f0f2;
           margin: 0;
            padding: 0;
            font-family: -apple-system, system-ui, BlinkMacSystemFont, "Segoe UI", "Open Sans", "Helvetica Neue", F
      div {
           width: 600px;
           margin: 5em auto;
           padding: 2em;
            background-color: #fdfdff;
            border-radius: 0.5em;
            box-shadow: 2px 3px 7px 2px rgba(0,0,0,0.02);
      a:link, a:visited {
color: #38488f;
            text-decoration: none;
      @media (max-width: 700px) {
           div {
                 margin: 0 auto;
                 width: auto;
```

Applied (UDP) filtered on wireshark

Applied (TCP) filtered on wireshark

o Applied (ICMP) filtered on wireshark

Applied (DNS) filtered on wireshark

Applied (HTTP) filtered on wireshark

Capture the packet on wireshark of name(task6_capture).

Results :-

Protocol Observation		Security Insight		
НТТР	Requests to example.com showed GET and response packets.	HTTP is unencrypted \rightarrow sensitive data could be exposed.		
DNS	Queries for google.com resolved to multiple IPs.	DNS traffic is visible; could be spoofed if not secured (DNSSEC recommended).		
ТСР	3-way handshake observed when connecting to websites.	Helps confirm secure session establishment.		
UDP	Found DNS responses over UDP port 53.	Lightweight but lacks reliability or encryption.		
ICMP	Echo requests/replies from ping google.com.	Can be abused in DoS attacks.		

Conclusion:-

Capturing traffic with **Wireshark** provided insights into how different protocols operate on a network. The exercise highlighted that:

- **Confidentiality** can be compromised if unencrypted protocols like HTTP are used.
- Integrity may be at risk if attackers manipulate DNS or TCP streams.
- Availability can be threatened by ICMP floods or TCP SYN attacks.

This hands-on task demonstrates why monitoring traffic is essential for maintaining the **CIA Triad** and securing real-world systems.