

Healthy vs. Unhealthy Plant Classification

AI4ALL Group 3

Introduction

Our group and our problem of choice

Data Augmentation

How we increased our training data

Hyperparameter Tuning

Choosing the optimal hyperparameters

Activation Functions

Choosing and comparing different activation functions

Table of Contents

Transfer Learning

Reapplication of knowledge of different models

Displaying Results

Visualizing the Al Model and its results

Introduction

Our Group

Group Mentor: Chuer Pan
Group Members: Ariana Devito, Kenan Erol, Maigan Lafontant,
and Luis Pabon

What Problem did we Address?

According to a UN report, the World must sustainably produce 70% more food by the middle of the century

- In an effort to mitigate this problem, our group decided to make an Al that distinguishes between healthy and unhealthy plants.
- This early detection of plant diseases can prevent plant loss; therefore, contributing to the optimization of agricultural procedures.

O2 Data Augmentation

What happens when we do not have enough Training Data?

- Inaccurate Results
- Biases
- Model is less prepared for Test Data

Data Augmentation: the solution to your problems!

- Data Augmentation grows data
- Creates new images based on the present data set
- Various techniques to make unique images

Image Flip

Horizontal Flip

More Data Augmentation Techniques

Blur

Rotation

Google Colaboratory: Limitations

- Our use of Data Augmentation for more training data
- Randomized options
- Adding new images and matching labels
- RAM and Google Colab Limitations

```
options = [0, 1, 2, 3, 4]
version = np.random.choice(options,2)
final images.append(image)
final labels.append(label)
                                                      Runtime disconnected
if 1 in version:
    #flip image vertically
   flipped image = np.flip(image, axis=0)
                                                      The connection to the runtime has timed out.
   final images.append(flipped image)
   final labels.append(label)
if 2 in version:
                                                                                     RECONNECT
    #flip image horizontally
   flipped image = np.flip(image, axis=1)
   final images.append(flipped image)
    final labels.append(label)
if 3 in version:
    #blur image
   blurred image = gaussian filter(image, sigma=0.5)
   final images.append(blurred image)
    final labels.append(label)
if 4 in version:
    #rotate image
    angle = np.random.rand() * 30
    rotated_image = rotate(image, angle, mode='nearest')
    rotated image resized = cv2.resize(np.array(rotated image), image.shape[:2])
    final images.append(rotated image resized)
    final labels.append(label)
```


Hyperparameter Tuning

Baseline Values

Number of Epochs: 4
Batch Size (BS): 16
Dimensions: 128 x 128

Depth: 3

Learning Rate: 1e-6

Test Accuracy:

73.02497029304504

Increasing Number of Epochs

Number of Epochs: $4 \rightarrow 15$

Test Accuracy: 80.7613

Number of Epochs: $15 \rightarrow 30$

Test Accuracy: 80.6636

Test Accuracy: 82.0187

Number of Epochs: $40 \rightarrow 100$

Test Accuracy: 83.44911

Overfitting

Epoch Summary

Epochs	Test Accuracy
4	73.02%
15	80.76%
30	80.66%
40	82.01%
100	83.44%

Increasing Batch Size

Number of Epochs: 4

Batch Size (BS): $16 \rightarrow 32$

Dimensions: 128 x 128

Depth: 3

Learning Rate: 1e-6

Test Accuracy: 72.7049

Number of Epochs: 4

Batch Size (BS): $32 \rightarrow 64$

Dimensions: 128 x 128

Depth: 3

Learning Rate: 1e-6

Test Accuracy: 72.7049

Increasing Batch Size (cont.)

Number of Epochs: 4

Batch Size (BS): $64 \rightarrow 128$

Dimensions: 128 x 128

Depth: 3

Learning Rate: 1e-6

Test Accuracy: 71.1961

EPOCHS = 4

BS = 256

Width=128

height=128

depth=3

INIT LR = 1e-6

EPOCHS = 4

BS = 512

width=128

height=128

depth=3

INIT_LR = 1e-6

Your session crashed after using all available RAM. If you are interested in access to high-RAM runtimes, you may want to check out Colab Pro.

View runtime logs

Batch Size Summary

Batch Size	Test Accuracy
16	73.02%
32	72.70%
64	72.70%
128	71.20%
256	ERROR
512	ERROR

Adjusting Learning Rate

Learning Rate:

1e-3

Test Accuracy: 88.5854

Learning

Rate:1e-15

Test Accuracy: 0.0

Adjusting Learning Rate (cont.)

Learning Rate: 1

Test Accuracy: 32.4093

Learning Rate: 10

Test Accuracy: 27.4358

Learning Rate Summary

Learning Rate	Test Accuracy
10	27.44%
1	32.41%
1e-3	88.59%
1e-6	73.02%
1e-15	0.0%

Observations

Number of Epochs

Increasing the number of epochs increases the accuracy because we are training the model for longer. Yet, too many epochs would lead to a divergence in optimization and overfitting.

Batch Size

Increasing the batch size increases the test accuracy and speeds up training. However, if the batch size is too large, it can have the opposite effect.

Learning Rate

Increasing the learning rate increases the accuracy and decreases the training time.

Again, when the value is either too small or too large, that accuracy will be compromised.

O4Activation Functions

Adjusting the Activation Functions

```
EPOCHS = 4
BS = 16
width=128
height=128
depth=3
INIT LR = 1e-6
model = Sequential()
inputShape = (height, width, depth)
chanDim = -1
model.add(Conv2D(64, (3, 3), padding="same", input shape=inputShape))
model.add(Activation("relu"))
model.add(MaxPooling2D(pool size=(3, 3)))
model.add(Dropout(0.25))
model.add(Flatten())
model.add(Dense(n classes))
model.add(Activation("softmax"))
```


Test Accuracy: 73.02497029304504

Adjusting the Activation Functions

```
EPOCHS = 4
BS = 16
width=128
height=128
depth=3
INIT LR = 1e-6
model = Sequential()
inputShape = (height, width, depth)
chanDim = -1
model.add(Conv2D(64, (3, 3), padding="same", input shape=inputShape))
model.add(Activation("sigmoid"))
model.add(MaxPooling2D(pool size=(3, 3)))
model.add(Dropout(0.25))
model.add(Flatten())
model.add(Dense(n classes))
model.add(Activation("softmax"))
```


Test Accuracy: 71.63206934928894

Adjusting the Activation Functions

```
EPOCHS = 4
BS = 16
width=128
height=128
depth=3
INIT LR = 1e-6
model = Sequential()
inputShape = (height, width, depth)
chanDim = -1
model.add(Conv2D(64, (3, 3), padding="same",
input_shape=inputShape))
model.add(Activation("tanh"))
model.add(MaxPooling2D(pool size=(3, 3)))
model.add(Dropout(0.25))
model.add(Flatten())
model.add(Dense(n classes))
model.add(Activation("softmax"))
```


Test Accuracy: 72.33782410621643

05

Transfer Learning

What is Transfer Learning?

Transfer Learning is a method that allows us to reuse developed models.

- This increases our accuracy
- Better performance
- We can utilize big pre-existing data pools

How did we do it?

- We loaded ResNet50 Pre-Trained Model pretrained on imagenet
- Added layers and retrained data

O6 Displaying Results

Healthy vs Unhealthy Plants: Pie Chart

All Plants

Results with Best Tuned Parameters:

BASELINE MODEL

- Combining all of the best parameters led to overfitting
- Decreasing the number of epochs solved this problem

Best Tuned Parameters (Baseline Model):

```
EPOCHS = 20

BS = 64

width=128

height=128

depth=3

INIT_LR = 1e-2
```


Transfer Learning Tuning

TRANSFER LEARNING MODEL

- Using a large learning rate with the transfer learning model led to a lower accuracy (73.11)
- High number of epochs led to overfitting
- To solve this, we used a smaller learning rate and a lower number of epochs

Best Tuned Parameters (Transfer Learning):

```
EPOCHS = 20

BS = 64
width=128
height=128
depth=3
INIT_LR = 1e-6
```


[INFO] Calculating model accuracy 104/104 [=======] - 5s 44ms/ Test Accuracy: 73.11534881591797

Results with Best Tuned Parameters:

Baseline Model

Test Accuracy: 86.6775631904602

Transfer Learning Model

Thanks!

Do you have any questions?

CREDITS: This presentation template was created by Slidesgo, including icons by Flaticon, infographics & images by Freepik and illustrations by Stories

Works Cited

Brownlee, J. (2019, September 16). *A Gentle Introduction to Transfer Learning for Deep Learning*. Machine Learning Mastery. https://machinelearningmastery.com/transfer-learning-for-deep-learning

Brownlee, J. (2020, August 18). Transfer Learning in Keras with Computer Vision Models. Machine Learning Mastery.

https://machinelearningmastery.com/how-to-use-transfer-learning-when-developing-convolutional-neural-network-models/

Jordan, J. (2020, August 29). Setting the learning rate of your neural network. Jeremy Jordan. https://www.jeremyjordan.me/nn-learning-rate/

United Nations. (n.d.). Feeding the World Sustainably. https://www.un.org/en/chronicle/article/feeding-world-sustainably.