舆情挖掘算法简述

李润东 2016/5/21

在这次构建基于丁香园论坛标题信息及点击量的舆情挖掘系统中,我主要负责舆情挖掘算法的设计和实施。现对整个算法的框架和技术细节进行一个简要的说明。

一、 算法的执行框架

二、各部分技术原理

1. 输入数据格式

输入数据为爬虫从丁香园论坛得到的论坛帖子信息,包括:帖子标题 (title)、链接 (URL)、发帖日期 (time) 和当前点击量 (CTR)。为下文描述方便考虑,将每一条记录记为

 $X_i = \{title_i, URL_i, time_i, CTR_i\}$

其中,i 表示帖子记录的索引 (index)。数据采用 UTF-8 编码。

2. 事件周期划分

按照新闻热点生命周期普遍为 14 天的原则,对所有输入的 X_i 按照 $time_i$ 进行分类,将其归入不同的热点周期 Per_j 中,其中 j 表示该热点周期的索引。在新闻热点生命周期(记为 hot_{const} ,默认值为 14)可自定义的情况下,对于某一 X_i ,其所属热点周期 j 的计算方式可表示为:

$$j_{begin} = (time_i - time_0) - (hot_{const} - 1)$$

 $j_{end} = time_i - time_0$
 $X_i[Per] = [j_{begin} \ to \ j_{end}]$

其中, $time_0$ 表示所有发帖记录中最早的一天,并记最大热点周期编号为 J 。可以看到,每个帖子可能属于多个热点周期,而每个热点周期内又可能有不同的关键词。

3. 各周期数据聚类

为确定每个热点周期内都发生了那些事情,我们需要对每个热点周期内的所有标题做聚类处理。然而,聚类是一种数值方法,为完成聚类,我们需要把热点周期 $j \in [0,J]$ 中的各 X_i 根据其 $title_i$,将其映射到向量空间 $U_i^k = \{u_1,u_2,...,u_k\}$ 中。具体方法如下:

For $j \in [0 : J]$:

/* 将属于热点 j 的所有标题文字连在一起进行分词,得到热点 j 下的词汇表 */ Token List = [].join($title_i$.split() **For** i \in j.index)

For i ∈ j.index: /* 循环热点 j 下的所有发帖记录 */

 $X_i[oneHot] = [token\ in\ title_i.split()\ For\ token\ in\ Token_List]$ /* 根据 title $_i$ 中是否包含 $Token_List$ 中的词汇,对每一个帖子题目进行独热码编码 */ /* 开始进行聚类处理 */

.....

可以看到,上文中的 K=length(Token_List)。对于每一不同的热点 j,由于其包含的帖子题 目不一样,故其向量空间 U_j^k 也不一样。在不同的 U_j^k 中,即使是相同的 $title_i$ 也会得到不同的独热码映射,最终会把每一条发帖记录映射为类似 <0,1,1,0,...> 这样的形式。之后就可以进行聚类处理了。

考虑到 U_j^k 维度较高,这里我们使用了 Mini-Batch K-Means 聚类算法。该算法与传统的 K-Means 算法近似,输入聚类数目 k ,并将热点 j 下的发帖记录 X_i 划分至不重叠的聚类 $C_l, l \in [1, k]$ 中;对于 $X_i \in C_l$,通过不断迭代 C_l 的中心点 μ_i ,使得目标函数 $\sum_{X_i \in C_l} \min(\|X_i[one_{hot}] - \mu_i\|^2)$

最小。由于 ||·|| 算符中所有运算数均已编码为独热码形式,故直接使用欧氏距离表示 ||·||。

Mini-Batch K-Means 算法比 K-Means 算法收敛速度快很多,原因是在算法启动时,除了随机挑选 μ_i ,还随机选取 b 个点,分别作为离其最近的 μ_i 的 mini-batch;在迭代 μ_i 时,各 μ_i 从其 mini-batch 中选取下一个点作为新的 μ_i ,比起从 C_l 中迭代下一个中心点,这样无疑大大减少了候选点的数量,而且结果和 K-Means 几乎没有区别。该算法的具体实现细节可参考 [Sculley, 2010]。

4. 各聚类关键词抽取

在对各热点周期内的帖子标题聚类结束后,可以在 j 个热点周期下,各得出 k 个聚类。下面,我们只要提取出每个聚类的关键词,就可方便地进行结果展示了。这里我们将每个聚类下的所有帖子标题连接起来,再使用 TF-IDF (词频-逆文档频率)评估该字符串中的每个单词,从中抽取出 3 个关键词(关键词数目可以由用户指定)。

关于 TF-IDF 的计算方法如下: 对于聚类 k 中所有标题连成的文档 d_k ,将其做分词处理后,对于每一个单词 t_i ,TF-IDF(d_k , t_i) 的计算可表示为

$$\mathrm{TF} - \mathrm{IDF}(d_k, t_j) = \mathrm{TF}(d_k, t_j) \cdot \log \frac{N}{n_j}$$

其中 $TF(d_k,t_j)$ 表示单词 t_j 在文档 d_k 中出现的词频,N 为本次计算中文档的个数(此处 N=j*k), n_j 表示包含单词 t_j 的文档个数。TF-IDF 的直觉解释是:在一篇文档中频繁出现(TF 很大)但很少出现在其他文档中的单词,与该文档主题相关的可能性很大。[Ricci, et al. 2015]

5. 各关键词热点标题抽取

这部分就非常简单了,直接在每个事件中的每个关键词下,点击量最高的前 3 个(这里也可以自定义)帖子标记出来就行。

三、 各部分实现方式

算法整体使用 Python 编程实现。由于算法各个子部分的各自算法都已经相当成熟,故在实现过程中大量使用了现有的软件包。具体如下:

- 分词: jieba.lcut
- Mini-Batch K-Means 聚类: sklearn.cluster.MiniBatchKMeans
- TF-IDF 关键词抽取: jieba.analyse.extract tags

其他边角处理,例如数据预处理、结果封装,则直接自己编程完成。上层的框架由曾智师同学负责实现,我不太清楚具体细节。

四、关于进一步改进

下面的改进目标是,实现各个热点周期内是否的确有热点事件发生的判断(正在实现),标题权重化处理(正在实现),分词时近义词同义词的处理,以及标题语义化处理。

五、 参考文献

- [1]. Sculley D. Web-scale k-means clustering[C]//Proceedings of the 19th international conference on World wide web. ACM, 2010: 1177-1178.
- [2]. F. Ricci, et al. Recommender Systems Handbook. Springer. 2015: 56.