Amendments to the Claims:

- 1. (Currently Amended). A method for calculating the similarity of at least one chemical compound to at least one chemical probe, comprising the steps of:
 - (a) utilizing at least one chemical descriptor for each of a plurality of compounds, each descriptor comprising a row of a molecule-descriptor matrix X;
 - (b) representing each compound as a column of the molecule-descriptor matrix, the entries of the molecule-descriptor matrix comprising a frequency of each descriptor for each compound;
 - (c) performing a partial singular value decomposition (SVD) of the molecule-descriptor matrix to produce resultant matrices P, Σ and Q^T , comprising:

generating the resultant matrices P, Σ and Q^T , such that molecule-descriptor matrix $X = P\Sigma Q^T$, wherein:

P is a mxr matrix, called the left singular matrix, where r is the rank of X, and its columns are eigenvectors of XX^T corresponding to nonzero eigenvalues;

Q is a $n \times r$ matrix, called the right singular matrix, whose columns are eigenvectors of $X^T X$ corresponding to the nonzero eigenvalues; and

 $\underline{\Sigma}$ is a rxr diagonal matrix whose nonzero elements, $\sigma_1, \sigma_2, ..., \sigma_r$ called singular values, are the square roots of the nonzero eigenvalues and have the property that $\sigma_1 \ge \underline{\sigma_2 \ge ... \ge \sigma_r}$;

- (d) creating a chemical probe descriptor matrix for the at least one chemical probe, the entries of the chemical probe descriptor matrix comprising a frequency of each descriptor for each chemical probe;
 - (e) using at least one of the resultant matrices to calculate calculating the similarity

Page 5 Application No. 09/546,399 Amendment Dated: September 26, 2005 Reply to Office Action mailed March 25, 2005

between the at least one chemical probe and at least one compound of the molecule descriptor matrix by:

generating a reduced dimension approximation of X of rank k, defined as $X_k = P_k \Sigma_k Q^T_k$, wherein k < r and Σ_k is an identity matrix; generating a pseudo-object, denoted as O_F , where $O_F = F^T P_k \Sigma^{-1}_k$, and where F is a molecule-descriptor vector for the at least one chemical probe; and taking a dot product of O_F with one or more columns of Q^T_k respectively corresponding to the at least one compound; and

- (f) providing an output indicating the similarity between the at least one chemical probe and the at least one compound.
- 2. (Previously Presented). The method as recited in claim 1, wherein each of the at least one chemical descriptors comprise at least one of an atom pair descriptor and a topological torsion descriptor.
 - 3 29. (Cancelled).