Facial Emotion Recognition in Real-Time

By Amira (DSI-28) 7 Jul 2022

Table of Contents

Why?

- Problem Statement

FER2013 DatasetEDA Insights

What?

• Model Workflow

How?

- Model Evaluation

So what?

- **Next Steps**

O1 Context & Problem

Rising Interest in/Potential of Emotion AI for Law Enforcement

Hype Cycle for Public Safety and Law Enforcement 2021

Source: Gartner (July 2021)

In a wider context ...

Emotion AI Technology Opportunity Prism

Source: Gartner 741689_C

Why Emotion AI for Law Enforcement?

Human
Interaction is
Our Core Domain

Digital Interaction is the Present & Future

Keeping Pace with Digital Innovation

Focus on Detecting Emotions Through Facial Expression

Components of Emotion Al

Proposed Solution

- Test data architectures of pre-trained Convolutional Neural Network models
 - Baseline model: Custom CNN model
 - Pre-trained models: ResNet-50, MobileNetV2, VGG16, VGGFace
- Evaluation Criteria:
 - Accuracy scores on unseen data
 - F1-scores of each emotion class on unseen data

02 Data & Insights

FER-2013 Dataset

- ~ 28k labelled images in train set and ~3.5k in test set
- Posed and unposed headshots in grayscale 48 x 48 pixels
- 7 emotion classes: angry, disgust, fear, happy, neutral, sad, surprise
- Created using Google image search of each emotion and synonyms of the emotions
- Well-explored dataset in the data science community

Class Imbalance Especially with Happy and Disgust

Our Dataset is Not Perfect

Occlusions

Lighting Variations

Unrealistic

Angle Variations

Mis-labelling?

Failed to account for age, gender or cultural differences?

Average Images Distinguish Key Facial Features for Each Emotion

Contrast Images Further Isolate Key Facial Features to Differentiate Emotions

Happy v Angry

Happy v Fear

Happy v Sad

Happy v Surprise

Happy v Neutral

Happy v Disgust

03 Model Workflow & **Evaluation**

Structure of Convolutional Neural Network

Source: https://towardsdatascience.com/a-comprehensive-guide-to-convolutional-neural-networks-the-eli5-way-3bd2b1164a53

Baseline Model

- 4 Convolution w Max-Pooling Layers
- 2 Fully Connected Layers

Layer (type)	Output Shape	Param #
conv_layer_1 (Conv2D)	(None, 46, 46, 128)	3584
batch_normalization (BatchN ormalization)	(None, 46, 46, 128)	512
pool_layer_1 (MaxPooling2D)	(None, 23, 23, 128)	0
dropout (Dropout)	(None, 23, 23, 128)	0
conv_layer_2 (Conv2D)	(None, 21, 21, 256)	295168
batch_normalization_1 (BatchNormalization)	(None, 21, 21, 256)	1024
pool_layer_2 (MaxPooling2D)	(None, 10, 10, 256)	0
dropout_1 (Dropout)	(None, 10, 10, 256)	0
conv_layer_3 (Conv2D)	(None, 8, 8, 512)	1180160
<pre>batch_normalization_2 (Batc hNormalization)</pre>	(None, 8, 8, 512)	2048
pool_layer_3 (MaxPooling2D)	(None, 4, 4, 512)	0
dropout_2 (Dropout)	(None, 4, 4, 512)	0
conv_layer_4 (Conv2D)	(None, 2, 2, 512)	2359808
batch_normalization_3 (BatchNormalization)	(None, 2, 2, 512)	2048
pool_layer_4 (MaxPooling2D)	(None, 1, 1, 512)	0
dropout_3 (Dropout)	(None, 1, 1, 512)	0
flatten (Flatten)	(None, 512)	0
dense (Dense)	(None, 512)	262656
dropout_4 (Dropout)	(None, 512)	0
dense_1 (Dense)	(None, 256)	131328
dropout_5 (Dropout)	(None, 256)	0
dense_2 (Dense)	(None, 5)	1285

Total params: 4,239,621 Trainable params: 4,236,805 Non-trainable params: 2,816

If you know how to ride a bicycle, it will be easier to learn to ride a bike

4 Pre-Trained Architectures

- ResNet-50
- MobileNetV2
- VGG16
- VGGFace

Model Evaluation

Our model is very good at classifying happy, but tend to confuse angry, fear and sadness

Comparison of F1-Scores

	VGGFace	MobileNetV2	VGG16	ResNet-50
angry	0.67	0.57	0.54	0.52
fear	0.56	0.40	0.51	0.47
happy	0.92	0.89	0.87	0.82
sad	0.67	0.62	0.61	0.56
surprise	0.83	0.77	0.78	0.77

Actual Label: Sad

Predictions

VGGFace	Sad
VG166	Нарру
MobileNetV2	Angry
ResNet-50	Angry

Actual Label: Angry

Predictions

VGGFace	Angry
VG166	Angry
MobileNetV2	Sad
ResNet-50	Sad

Actual Label: Surprise

Predictions

VGGFace	Fear
VG166	Fear
MobileNetV2	Surprise
ResNet-50	Surprise

Demo: Model Deployment Using OpenCV

04 Conclusion & Next Steps

Conclusion

Quality of labelled data matters (a lot!)

Cultural differences & bias matter too

Tech adoption will be <u>extra tough</u> for a traditional sector

Next Steps

- 1. To explore emotion recognition with facial landmark detection using Computer Vision libraries e.g. dlib
- Possibly, combining with Paul Ekman's theory on micro expressions

2. To acquire 'culturally relevant' datasets and re-run modelling steps

3. To explore prospects of emotion detection using audio and text analysis too

Thank you

CREDITS: This presentation template was created by **Slidesgo**, including icons by **Flaticon**, and infographics & images by **Freepik**