ANALIZA MATEMATYCZNA 2.3A

dr Joanna Jureczko

Politechnika Wrocławska Wydział Elektroniki Katedra Telekomunikacji i Teleinformatyki Niniejsza prezentacja stanowi jedynie skrypt do wykładu.

Wykład będzie wzbogacony o dodatkowe informacje, tj. dowody

wybranych twierdzeń przykłady, wskazówki do zadań itp. Dodatkowe informacje dotyczące programu znajdują się w

Karcie Przedmiotu.

WYKŁAD 6

Transformacja pochodnej. Zastosowanie transformacji Laplace'a do rozwiązywania równań różniczkowych zwyczajnych

i układów równań różniczkowych.

Jeśli
$$f''(t), f'(t), f(t)$$
 są oryginałami, to
$$I[f'(t)] = sI[f(t)] -$$

$$L[f'(t)] = sL[f(t)] -$$

$$L[f'(t)] = sL[f(t)] -$$

 $f^{(n-1)}(0^+) = \lim_{t \to 0^+} f^{(n-1)}(t).$

$$L[f'(t)] = sL[f(t)] -$$

$$L[f'(t)] = sL[f(t)] - i$$

gdzie $f(0^+) = \lim_{t\to 0^+} f(t), f'(0^+) = \lim_{t\to 0^+} f'(t), ...,$

 $L[f'(t)] = sL[f(t)] - f(0^+)$

esii
$$I''(t), I'(t), I(t)$$
 są oryginałami, to

 $L[f''(t)] = s^2 L[f(t)] - sf(0^+) - f'(0^+),$ $L[f'''(t)] = s^3 L[f(t)] - s^2 f(0^+) - sf'(0^+) - f''(0^+)$ $L[f^{(n)}(t)] = s^n L[f(t)] - s^{n-1} f(0^+) - \dots - s f^{(n-2)}(0^+) - f^{(n-1)}(0^+),$

Jeśli
$$L[f(t)] = F(s)$$
, to

L[(-t)f(t)] = F'(s)

 $L[(-1)^n t^n f(t)] = F^{(n)}(s).$

Całkowanie oryginału Całkowanie obrazu

gdzie $\int_{s}^{\infty} = \lim_{Be(p) \to \infty} \int_{s}^{p}$.

$$L[\int_0^t f(u)du] = \frac{1}{s}L(f) = \frac{F(s)}{s}$$

 $L[\frac{f(t)}{t}] = \int_{s}^{\infty} F(s) ds,$

Jeśli funkcja f(t) jest oryginałem, to

Jeśli funkcja $\frac{f(t)}{t}$ jest oryginałem oraz L[f(t)] = F(s), to