

SEQUENCE LISTING

<110> Schrier, Peter I. Aarnoudse, Corlien A. Heider, Karl-Heinz Wiener, Christoph Klade <120> Camel, an Alternative Translation Product of the Tumor Antigen Lage-1 <130> 0652.2200000 <140> 09/807,512 <141> 2002-04-08 <150> PCT/EP99/07832 <151> 1999-10-15 <150> EP 98119583.7 <151> 1998-10-16 <160> 34 <170> PatentIn Ver. 2.1 <210> 1 <211> 679 <212> DNA <213> Homo sapiens <220> <221> 3'UTR <222> (340)..(679) <220> <221> 5'UTR <222> (1)..(9) <220> <221> CDS <222> (10)..(339) <400> 1 CGACGGCC ATG CTG ATG GCC CAG GAG GCC CTG GCA TTC CTG ATG GCC 48 Met Leu Met Ala Gln Glu Ala Leu Ala Phe Leu Met Ala 5 CAG GGG GCA ATG CTG GCG GCC CAG GAG AGG CGG GTG CCA CGG GCG GCA 96 Gln Gly Ala Met Leu Ala Ala Gln Glu Arg Arg Val Pro Arg Ala Ala

GAG GTC CCC GGG GCG CAG GGG CAA GGG CCT CGG GGC CGA GAG GAG

Glu Val Pro Gly Ala Gln Gly Gln Gly Pro Arg Gly Arg Glu Glu

GCG CCC CGC GGG GTC CGC ATG GCG GTG CCG CTT CTG CGC AGG ATG GAA Ala Pro Arg Gly Val Arg Met Ala Val Pro Leu Leu Arg Arg Met Glu 50 55 60	192
GGT GCC CCT GCG GGG CCA GGA GGC CGG ACA GCC GCC TGC TTC AGT TGC Gly Ala Pro Ala Gly Pro Gly Gly Arg Thr Ala Ala Cys Phe Ser Cys 65 70 75	240
ACA TCA CGA TGC CTT TCT CGT CGC CCA TGG AAG CGG AGC TGG TCC GCA Thr Ser Arg Cys Leu Ser Arg Arg Pro Trp Lys Arg Ser Trp Ser Ala 80 85 90	288
GGA TCC TGT CCC GGG ATG CCG CAC CTC TCC CCC GAC CAG GGG CGG TTC Gly Ser Cys Pro Gly Met Pro His Leu Ser Pro Asp Gln Gly Arg Phe 95 100 105	336
TGA AGGACTTCAC CGTGTCCGGC AACCTACTGT TTATCCGACT GACTGCTGCA	389
GACCACCGCC AACTGCAGCT CTCCATCAGC TCCTGTCTCC AGCAGCTTTC CCTGTTGATG	449
TGGATCACGC AGTGCTTTCT GCCCGTGTTT TTGGCTCAGG CTCCCTCAGG GCAGAGGCGC	509
TAAGCCCAGC CTGGCGCCCC TTCCTAGGTC ATGCCTCCTC CCCTAGGGAA TGGTCCCAGC	569
ACGAGTGGCC AGTTCATTGT GGGGGCCTGA TTGTTTGTCG CTGGAGGAGG ACGGCTTACA	629
TGTTTGTTTC TGTAGAAAAT AAAGCTGAGC TACGAAAAAA AAAAAAAAAA	679

<210> 2

.

<211> 109

<212> PRT

<213> Homo sapiens

<400> 2

Met Leu Met Ala Gln Glu Ala Leu Ala Phe Leu Met Ala Gln Gly Ala 1 5 10 15

Met Leu Ala Ala Gln Glu Arg Arg Val Pro Arg Ala Ala Glu Val Pro 20 25 30

Gly Ala Gln Gly Gln Gln Pro Arg Gly Arg Glu Glu Ala Pro Arg 35 40 45

Gly Val Arg Met Ala Val Pro Leu Leu Arg Arg Met Glu Gly Ala Pro 50 55 60

Ala Gly Pro Gly Gly Arg Thr Ala Ala Cys Phe Ser Cys Thr Ser Arg
65 70 75 80

Cys Leu Ser Arg Arg Pro Trp Lys Arg Ser Trp Ser Ala Gly Ser Cys $85 \hspace{1cm} 90 \hspace{1cm} 95 \, ,$

Pro Gly Met Pro His Leu Ser Pro Asp Gln Gly Arg Phe 100 105

```
<210> 3
<211> 767
<212> DNA
<213> Homo sapiens
<220>
<221> CDS
<222> (54)..(596)
<220>
<221> 3'UTR
<222> (597)..(767)
<220>
<221> 5'UTR
<222> (1)..(53)
<400> 3
ATCCTCGTGG GCCCTGACCT TCTCTCTGAG AGCCGGGCAG AGGCTCCGGA GCC ATG
                                                                        56
                                                            Met
CAG GCC GAA GGC CAG GGC ACA GGG GGT TCG ACG GGC GAT GCT GAT GGC
                                                                       104
Gln Ala Glu Gly Gln Gly Thr Gly Gly Ser Thr Gly Asp Ala Asp Gly
                                 10
CCA GGA GGC CCT GGC ATT CCT GAT GGC CCA GGG GGC AAT GCT GGC GGC
                                                                       152
Pro Gly Gly Pro Gly Ile Pro Asp Gly Pro Gly Gly Asn Ala Gly Gly
                             25
CCA GGA GAG GCG GGT GCC ACG GGC GGC AGA GGT CCC CGG GGC GCA GGG
                                                                       200
Pro Gly Glu Ala Gly Ala Thr Gly Gly Arg Gly Pro Arg Gly Ala Gly
                         40
GCA GCA AGG GCC TCG GGG CCG AGA GGA GGC GCC CCG CGG GGT CCG CAT
                                                                       248
Ala Ala Arg Ala Ser Gly Pro Arg Gly Gly Ala Pro Arg Gly Pro His
GGC GGT GCC GCT TCT GCG CAG GAT GGA AGG TGC CCC TGC GGG GCC AGG
                                                                       296
Gly Gly Ala Ala Ser Ala Gln Asp Gly Arg Cys Pro Cys Gly Ala Arg
                 70
AGG CCG GAC AGC CGC CTG CTT CAG TTG CAC ATC ACG ATG CCT TTC TCG
                                                                       344
Arg Pro Asp Ser Arg Leu Leu Gln Leu His Ile Thr Met Pro Phe Ser
             85
                                 90
TCG CCC ATG GAA GCG GAG CTG GTC CGC AGG ATC CTG TCC CGG GAT GCC
                                                                       392
Ser Pro Met Glu Ala Glu Leu Val Arg Arg Ile Leu Ser Arg Asp Ala
        100
                            105
GCA CCT CTC CCC CGA CCA GGG GCG GTT CTG AAG GAC TTC ACC GTG TCC
                                                                       440
Ala Pro Leu Pro Arg Pro Gly Ala Val Leu Lys Asp Phe Thr Val Ser
                        120
                                             125
    115
GGC AAC CTA CTG TTT ATC CGA CTG ACT GCT GCA GAC CAC CGC CAA CTG
                                                                        488
Gly Asn Leu Leu Phe Ile Arg Leu Thr Ala Ala Asp His Arg Gln Leu
130
                    135
CAG CTC TCC ATC AGC TCC TGT CTC CAG CAG CTT TCC CTG TTG ATG TGG
                                                                       536
```

	••		•						- 4 -						
Gln	Leu	Ser	Ile	Ser 150	Ser	Cys	Leu	Gln	Gln 155	Leu	Ser	Leu	Leu	Met 160	Trp
	ACG Thr														GGG Gly
	AGG Arg		TAA	GCCC	CAGCO	CTG (GCGC	CCCT	rc ci	TAGGT	CATO	GCI	rccto	CCC	`
TAG	GGAA:	rgg 1	rccc	AGCAC	CG AC	TGG	CCAG	r TC	ATTGI	rggg	GGCC	CTGAT	rtg 1	TTG	ICGCTG
GAG	GAGG	ACG (GCTT <i>F</i>	CATO	T T	rgtt:	rctg:	r aga	'AAA	AAA	GCTC	BAGCT	rac (SAAA	AAAAA
AAA	AAAA	AAA A	Ą												
<21 <21 <21	0 > 4 1 > 10 2 > P1 3 > Ho	RT	sapie	ens											
	Gln	Ala	Glu	Glv	Gln	Glv	Thr	Gly	Gly	Ser	Thr	Gly	.Asp	Ala	Asp
1				5		-		•	10			-	_	15	_
1									10						
	Pro	Gly	Gly 20		Gly	Ile	Pro	Asp 25		Pro	Gly	Gly	Asn 30		Gly
Gly	Pro		20	Pro				25	Gly				30	Ala	Gly
Gly	Pro	Gly 35	20 Glu	Pro Ala	Gly	Ala	Thr 40	25 Gly	Gly	Arg	Gly	Pro 45	30 Arg	Ala Gly	Ala
Gly Gly	Pro Pro Ala 50 Gly	Gly 35 Ala	20 Glu Arg	Pro Ala Ala	Gly Ser	Ala Gly 55	Thr 40 Pro	25 Gly Arg	Gly Gly Gly	Arg Gly	Gly Ala 60	Pro 45 Pro	30 Arg Arg	Ala Gly Gly	Ala Pro
Gly Gly His	Pro Pro Ala 50 Gly	Gly 35 Ala Gly	20 Glu Arg Ala	Pro Ala Ala	Gly Ser Ser 70	Ala Gly 55 Ala	Thr 40 Pro	25 Gly Arg Asp	Gly Gly Gly	Arg Gly Arg 75	Gly Ala 60 Cys	Pro 45 Pro	30 Arg Arg Cys	Ala Gly Gly	Ala Pro Ala 80
Gly Gly His 65	Pro Pro Ala 50 Gly	Gly 35 Ala Gly	20 Glu Arg Ala Asp	Pro Ala Ala Ala Ser 85	Gly Ser Ser 70 Arg	Ala Gly 55 Ala Leu	Thr 40 Pro Gln Leu	25 Gly Arg Asp	Gly Gly Gly Leu 90	Arg Gly Arg 75 His	Gly Ala 60 Cys	Pro 45 Pro Pro	30 Arg Arg Cys	Ala Gly Gly Gly Pro	Ala Pro Ala 80 Phe
Gly Gly His 65 Arg	Pro Pro Ala 50 Gly Arg	Gly 35 Ala Gly Pro	20 Glu Arg Ala Asp Met	Pro Ala Ala Ala Ser 85 Glu	Gly Ser Ser 70 Arg	Ala Gly 55 Ala Leu Glu	Thr 40 Pro Gln Leu	25 Gly Arg Asp Gln Val 105 Ala	Gly Gly Gly Leu 90 Arg	Arg Gly Arg 75 His	Gly Ala 60 Cys Ile	Pro 45 Pro Pro Thr	Arg Arg Cys Met Ser 110 Phe	Ala Gly Gly Pro 95 Arg	Ala Pro Ala 80 Phe Asp
Gly Gly His 65 Arg	Pro Ala 50 Gly Arg	Gly 35 Ala Gly Pro Pro 115 Asn	20 Glu Arg Ala Asp Met 100 Leu	Pro Ala Ala Ala Ser 85 Glu Pro	Gly Ser 70 Arg Ala Arg	Ala Gly 55 Ala Leu Glu	Thr 40 Pro Gln Leu Gly 120	25 Gly Arg Asp Gln Val 105 Ala	Gly Gly Gly Leu 90 Arg	Arg Gly Arg 75 His Arg	Gly Ala 60 Cys Ile Ile	Pro 45 Pro Pro Thr Leu Asp 125	Arg Arg Cys Met Ser 110 Phe	Ala Gly Gly Pro 95 Arg	Ala Pro Ala 80 Phe Asp
Gly Gly His 65 Arg Ser Ala	Pro Ala 50 Gly Arg Ser Ala Gly 130	Gly 35 Ala Gly Pro Pro 115 Asn	20 Glu Arg Ala Asp Met 100 Leu Leu	Pro Ala Ala Ala Ser 85 Glu Pro Leu	Gly Ser 70 Arg Ala Arg	Ala Gly 55 Ala Leu Glu Pro Ile 135 Ser	Thr 40 Pro Gln Leu Gly 120 Arg	25 Gly Arg Asp Gln Val 105 Ala Leu	Gly Gly Gly Leu 90 Arg Val	Arg Gly Arg 75 His Arg Leu Ala	Gly Ala 60 Cys Ile Ile Lys Ala 140	Pro 45 Pro Pro Thr Leu Asp 125 Asp	Arg Arg Cys Met Ser 110 Phe	Ala Gly Gly Pro 95 Arg Thr	Ala Pro Ala 80 Phe Asp Val Gln
Gly Gly His 65 Arg Ser Ala Ser Leu 145	Pro Pro Ala 50 Gly Arg Ser Ala Gly 130	Gly 35 Ala Gly Pro Pro 115 Asn	20 Glu Arg Ala Asp Met 100 Leu Leu Ser	Pro Ala Ala Ala Ser 85 Glu Pro Leu Ile	Ser Ser 70 Arg Ala Arg Phe Ser 150	Ala Gly 55 Ala Leu Glu Pro Ile 135 Ser	Thr 40 Pro Gln Leu Gly 120 Arg	25 Gly Arg Asp Gln Val 105 Ala Leu Leu	Gly Gly Gly Leu 90 Arg Val Thr	Arg Gly Arg 75 His Arg Leu Ala Gln 155	Gly Ala 60 Cys Ile Lys Ala 140 Leu	Pro 45 Pro Thr Leu Asp 125 Asp	Arg Arg Cys Met Ser 110 Phe His	Ala Gly Gly Pro 95 Arg Thr Arg	Ala Pro Ala 80 Phe Asp Val Gln Met 160 Ser

```
<210> 5
<211> 993
<212> DNA
<213> Homo sapiens
<220>
<221> 5'UTR
<222> (1)..(55)
<220>
<221> CDS
<222> (56) .. (688)
<220>
<221> 3'UTR
<222> (689)..(993)
<400> 5
GCATCCTCGT GGGCCCTGAC CTTCTCTCTG AGAGCCGGGC AGAGGCTCCG GAGCC ATG
                                                                        58
                                                              Met
CAG GCC GAA GGC CAG GGC ACA GGG GGT TCG ACG GGC GAT GCT GAT GGC
                                                                       106
Gln Ala Glu Gly Gln Gly Thr Gly Gly Ser Thr Gly Asp Ala Asp Gly
                                 10
CCA GGA GGC CCT GGC ATT CCT GAT GGC CCA GGG GGC AAT GCT GGC GGC
                                                                       154
Pro Gly Gly Pro Gly Ile Pro Asp Gly Pro Gly Gly Asn Ala Gly Gly
         20
                             25
CCA GGA GAG GCG GGT GCC ACG GGC GGC AGA GGT CCC CGG GGC GCA GGG
                                                                       202
Pro Gly Glu Ala Gly Ala Thr Gly Gly Arg Gly Pro Arg Gly Ala Gly
                         40
GCA GCA AGG GCC TCG GGG CCG AGA GGA GGC GCC CCG CGG GGT CCG CAT
                                                                       250
Ala Ala Arg Ala Ser Gly Pro Arg Gly Gly Ala Pro Arg Gly Pro His
GGC GGT GCC GCT TCT GCG CAG GAT GGA AGG TGC CCC TGC GGG GCC AGG
                                                                        298
Gly Gly Ala Ala Ser Ala Gln Asp Gly Arg Cys Pro Cys Gly Ala Arg
                 70
AGG CCG GAC AGC CGC CTG CTT CAG TTG CAC ATC ACG ATG CCT TTC TCG
                                                                        346
Arg Pro Asp Ser Arg Leu Leu Gln Leu His Ile Thr Met Pro Phe Ser
                                                      95
             85
TCG CCC ATG GAA GCG GAG CTG GTC CGC AGG ATC CTG TCC CGG GAT GCC
                                                                        394
Ser Pro Met Glu Ala Glu Leu Val Arg Arg Ile Leu Ser Arg Asp Ala
        100
                            105
GCA CCT CTC CCC CGA CCA GGG GCG GTT CTG AAG GAC TTC ACC GTG TCC
                                                                        442
Ala Pro Leu Pro Arg Pro Gly Ala Val Leu Lys Asp Phe Thr Val Ser
                        120
    115
                                                                        490
GGC AAC CTA CTG TTT ATG TCA GTT CGG GAC CAG GAC AGG GAA GGC GCT
Gly Asn Leu Leu Phe Met Ser Val Arg Asp Gln Asp Arg Glu Gly Ala
```

130	135	.40 145
		GGA TCC GCC TCC CCG GAG 538 Sly Ser Ala Ser Pro Glu 160
		AAA CAC AAG GTC TCA GAA 586 Jys His Lys Val Ser Glu 175
		CCC GAG GGA GCC CAG GGA 634 Pro Glu Gly Ala Gln Gly 190
		ATG TTC TCT GCC CCT CAC 682 Met Phe Ser Ala Pro His 205
ATT TAG CCGACTGACT Ile 210	GCTGCAGACC ACCGCCAACT	GCAGCTCTCC ATCAGCTCCT 738
GTCTCCAGCA GCTTTCCC	tg ttgatgtgga tcacgcàc	TTG CTTTCTGCCC GTGTTTTTGG 798
CTCAGGCTCC CTCAGGGC	AG AGGCGCTAAG CCCAGCCT	TGG CGCCCCTTCC TAGGTCATGC 858
CTCCTCCCCT AGGGAATG	GT CCCAGCACGA GTGGCCAC	GTT CATTGTGGGG GCCTGATTGT 918
TTGTCGCTGG AGGAGGAC	GG CTTACATGTT TGTTTCTC	TA GAAAATAAAG CTGAGCTACG 978
TIGICOCIOG AGGAGGAC		
АААААААААА		993
<pre><210> 6 <211> 210 <212> PRT</pre>		
<pre><210> 6 <211> 210 <212> PRT <213> Homo sapiens</pre>		
<pre></pre>	Gln Gly Thr Gly Gly S	
<pre><210> 6 <211> 210 <212> PRT <213> Homo sapiens <400> 6 Met Gln Ala Glu Gly 1</pre>	10	993 Ser Thr Gly Asp Ala Asp
AAAAAAAAAA AAAAA <210 > 6 <211 > 210 <212 > PRT <213 > Homo sapiens <400 > 6 Met Gln Ala Glu Gly 1 5 Gly Pro Gly Gly Pro 20	Gly Ile Pro Asp Gly I 25	993 Ser Thr Gly Asp Ala Asp 15 Pro Gly Gly Asn Ala Gly
AAAAAAAAAA AAAAA <210 > 6 <211 > 210 <212 > PRT <213 > Homo sapiens <400 > 6 Met Gln Ala Glu Gly 1 5 Gly Pro Gly Gly Pro 20 Gly Pro Gly Glu Ala 35	Gly Ile Pro Asp Gly I 25 Gly Ala Thr Gly Gly A	993 Ser Thr Gly Asp Ala Asp 15 Pro Gly Gly Asn Ala Gly 30 Arg Gly Pro Arg Gly Ala
AAAAAAAAAA AAAAA <210 > 6 <211 > 210 <212 > PRT <213 > Homo sapiens <400 > 6 Met Gln Ala Glu Gly 1	Gly Ile Pro Asp Gly I 25 Gly Ala Thr Gly Gly A 40 Ser Gly Pro Arg Gly C 55	Ser Thr Gly Asp Ala Asp 15 Pro Gly Gly Asn Ala Gly 30 Arg Gly Pro Arg Gly Ala 45 Gly Ala Pro Arg Gly Pro

Ser Ser Pro Met Glu Ala Glu Leu Val Arg Arg Ile Leu Ser Arg Asp

110

105

100

Ala Ala Pro Leu Pro Arg Pro Gly Ala Val Leu Lys Asp Phe Thr Val Ser Gly Asn Leu Leu Phe Met Ser Val Arg Asp Gln Asp Arg Glu Gly 135 Ala Gly Arg Met Arg Val Val Gly Trp Gly Leu Gly Ser Ala Ser Pro Glu Gly Gln Lys Ala Arg Asp Leu Arg Thr Pro Lys His Lys Val Ser 170 Glu Gln Arg Pro Gly Thr Pro Gly Pro Pro Pro Glu Gly Ala Gln Gly Asp Gly Cys Arg Gly Val Ala Phe Asn Val Met Phe Ser Ala Pro 200 His Ile 210 <210> 7 <211> 752 <212> DNA <213> Homo sapiens <220> <221> 5'UTR <222> (1)..(53) <220> <221> CDS <222> (54)..(596) <220> <221> 3'UTR <222> (597)..(752) <400> 7 ATCCTCGTGG GCCCTGACCT TCTCTCTGAG AGCCGGGCAG AGGCTCCGGA GCC ATG 56 Met 1 CAG GCC GAA GGC CGG GGC ACA GGG GGT TCG ACG GGC GAT GCT GAT GGC 104 Gln Ala Glu Gly Arg Gly Thr Gly Gly Ser Thr Gly Asp Ala Asp Gly CCA GGA GGC CCT GGC ATT CCT GAT GGC CCA GGG GGC AAT GCT GGC GGC 152 Pro Gly Gly Pro Gly Ile Pro Asp Gly Pro Gly Gly Asn Ala Gly Gly 25 CCA GGA GAG GCG GGT GCC ACG GGC GGC AGA GGT CCC CGG GGC GCA GGG 200 Pro Gly Glu Ala Gly Ala Thr Gly Gly Arg Gly Pro Arg Gly Ala Gly

					GGG Gly 55											248
					GGG Gly											296
					CTG Leu											344
					GAG Glu											392
					CCA Pro											440
					ATC Ile 135											488
					TCC Ser											536
					CTG Leu											584
_	AGG Arg		TAA	GCC	CAGC	CTG (GCGC	CCT'	rc c	ragg:	rcat(G CC	rccto	CCCC		636
TAG	GGAA'	TGG '	TCCC	AGCA	CG A	GTGG	CCAG	r TC	ATTG:	rggg	GGC	CTGA'	TTG 7	rttg:	TCGCTG	696
GAG	GAGG	ACG (GCTT	ACAT	GT T	rgtt'	rctg'	r AG	AAAA'	ГААА	ACT	GAGC'	rac (GAAA	AA	752
<21:	0 > 8 1 > 18 2 > Pl 3 > He	RT	sapi	ens												
<40	8 <0															
Met 1	Gln	Ala	Glu	Gly 5	Arg	Gly	Thr	Gly	Gly 10	Ser	Thr	Gly	Asp	Ala 15	Asp	
Gly	Pro	Gly	Gly 20	Pro	Gly	Ile	Pro	Asp 25	Gly	Pro	Gly	Gly	Asn 30	Ala	Gly	
Gly	Pro	Gly 35	Glu	Ala	Gly	Ala	Thr 40	Gly	Gly	Arg	Gly	Pro 45	Arg	Gly	Ala	
Gly	Ala 50	Ala	Arg	Ala	Ser	Gly 55	Pro	Gly	Gly	Gly	Ala 60		Arg	Gly	Pro	

His Gly Gly Ala Ala Ser Gly Leu Asn Gly Cys Cys Arg Cys Gly Ala

65		•			70					75					80	
Arg	Gly	Pro	Glu	Ser 85	Arg	Leu	Leu	Glu	Phe 90	Tyr	Leu	Ala	Met	Pro 95	Phe	
Ala	Thr	Pro	Met 100	Glu	Ala	Glu	Leu	Ala 105	Arg	Arg	Ser	Leu	Ala 110	Gln	,Asp	
Ala	Pro	Pro 115	Leu	Pro	Val	Pro	Gly 120	Val	Leu	Leu	Lys	Glu 125	Phe	Thr	Val	
Ser	Gly 130	Asn	Ile	Leu	Thr	Ile 135	Arg	Leu	Thr	Ala	Ala 140	Asp	His	Arg	Gln	
Leu 145	Gln	Leu	Ser	Ile	Ser 150	Ser	Cys	Leu	Gln	Gln 155	Leu	Ser	Leu	Leu	Met 160	
Trp	Ile	Thr	Gln	Cys 165	Phe	Leu	Pro	Val	Phe 170	Leu	Ala	Gln	Pro	Pro 175	Ser	
Gly	Gln	Arg	Arg 180													
<213 <213	0> 9 1> 75 2> DN 3> Ho	ΑI	sapie	ens											·	
	0> 1> 5 2> (3		(93)													
	0> 1> CI 2> (. (27	0)												
	0> 1> 3 2> (2		(7	52)												
<40	0> 9															
ATC	CTCG	rgg (GCCC'	TGAC	CT T	CTCT	CTGA	G AG	CCGG	GCAG	AGG	CTCC	GGA	GCCA'	TGCAGG	60
CCG	AAGG	CCG	GGGC.	ACAG	GG G(GTTC(GACG(G GC	Me				a Gl		G GCC u Ala	114
														GAG Glu	AGG Arg	162
															GGG Gly	210
											Arg				CGG Arg 55	258

CTT CAG GGC Leu Gln Gly		GCTG CAGATO	GCGGG GCCAGO	GGGGC CGGAG <i>I</i>	AGCCG	310
CCTGCTTGAG '	TTCTACCTCG	CCATGCCTTT	CGCGACACCC	ATGGAAGCAG	AGCTGGCCCG	370
CAGGAGCCTG (GCCCAGGATG	CCCCACCGCT	TCCCGTGCCA	GGGGTGCTTC	TGAAGGAGTT	430
CACTGTGTCC (GGCAACATAC	TGACTATCCG	ACTGACTGCT	GCAGACCACC	GCCAACTGCA	490
GCTCTCCATC	AGCTCCTGTC	TCCAGCAGCT	TTCCCTGTTG	ATGTGGATCA	CGCAGTGCTT	550
TCTGCCCGTG '	TTTTTGGCTC	AGCCTCCCTC	AGGGCAGAGG	CGCTAAGCCC	AGCCTGGCGC	610
CCCTTCCTAG	GTCATGCCTC	CTCCCCTAGG	GAATGGTCCC	AGCACGAGTG	GCCAGTTCAT	670
TGTGGGGGCC	TGATTGTTTG	TCGCTGGAGG	AGGACGGCTT	ACATGTTTGT	TTCTGTAGAA	730
AATAAAACTG .	AGCTACGAAA	AA				752

<210> 10

<211> 58

<212> PRT

<213> Homo sapiens

<400> 10

Met Leu Met Ala Gln Glu Ala Leu Ala Phe Leu Met Ala Gln Gly Ala 1 5 10 15

Met Leu Ala Ala Gln Glu Arg Arg Val Pro Arg Ala Ala Glu Val Pro 20 25 30

Gly Ala Gln Gln Gln Gln Pro Arg Gly Arg Glu Glu Ala Pro Arg
35 40 45

Gly Val Arg Met Ala Ala Arg Leu Gln Gly 50 55

<210> 11

<211> 11

<212> PRT

<213> Homo sapiens

<400> 11

Met Leu Met Ala Gln Glu Ala Leu Ala Phe Leu 1 5 10

<210> 12

<211> 10

<212> PRT

<213> Homo sapiens

<400> 12	
Leu Met Ala Gln Glu Ala Leu Ala Phe Leu 1 5 10	
<210> 13 <211> 21 <212> DNA <213> Kunstliche Sequenz	
<220> <223> Beschreibung der kunstlichen Sequenz: Primer	
<400> 13	
GGTGACACTA TAGAAGGTAC G	21
<210> 14	
<211> 20 <212> DNA	
<213> Kunstliche Sequenz	
<220>	
<223> Beschreibung der kunstlichen Sequenz: Primer	
<400> 14	
TGATGTGCAA CTGAAGCAGG	20
	20
<210> 15 <211> 21	20
<210> 15 <211> 21 <212> DNA	20
<210> 15 <211> 21	20
<210> 15 <211> 21 <212> DNA <213> Kunstliche Sequenz <220>	20
<210> 15 <211> 21 <212> DNA <213> Kunstliche Sequenz	20
<210> 15 <211> 21 <212> DNA <213> Kunstliche Sequenz <220>	20
<210> 15 <211> 21 <212> DNA <213> Kunstliche Sequenz <220> <223> Beschreibung der kunstlichen Sequenz: Primer	20
<210> 15 <211> 21 <212> DNA <213> Kunstliche Sequenz <220> <223> Beschreibung der kunstlichen Sequenz: Primer <400> 15	
<210> 15 <211> 21 <212> DNA <213> Kunstliche Sequenz <220> <223> Beschreibung der kunstlichen Sequenz: Primer <400> 15	
<210> 15 <211> 21 <212> DNA <213> Kunstliche Sequenz <220> <223> Beschreibung der kunstlichen Sequenz: Primer <400> 15 GCACTGCGTG ATCCACATCA A	
<210> 15 <211> 21 <212> DNA <213> Kunstliche Sequenz <220> <223> Beschreibung der kunstlichen Sequenz: Primer <400> 15 GCACTGCGTG ATCCACATCA A <210> 16 <211> 21	
<210> 15 <211> 21 <212> DNA <213> Kunstliche Sequenz <220> <223> Beschreibung der kunstlichen Sequenz: Primer <400> 15 GCACTGCGTG ATCCACATCA A <210> 16 <211> 21 <212> DNA	
<210> 15 <211> 21 <212> DNA <213> Kunstliche Sequenz <220> <223> Beschreibung der kunstlichen Sequenz: Primer <400> 15 GCACTGCGTG ATCCACATCA A <210> 16 <211> 21 <212> DNA <213> Kunstliche Sequenz	
<210> 15 <211> 21 <212> DNA <213> Kunstliche Sequenz <220> <223> Beschreibung der kunstlichen Sequenz: Primer <400> 15 GCACTGCGTG ATCCACATCA A <210> 16 <211> 21 <212> DNA <213> Kunstliche Sequenz <220>	
<210> 15 <211> 21 <212> DNA <213> Kunstliche Sequenz <220> <223> Beschreibung der kunstlichen Sequenz: Primer <400> 15 GCACTGCGTG ATCCACATCA A <210> 16 <211> 21 <212> DNA <213> Kunstliche Sequenz	

CGACTCACTA TAGGGAGAGA G

```
<210> 17
<211> 25
<212> DNA
<213> Kunstliche Sequenz
<223> Beschreibung der kunstlichen Sequenz: Primer
<400> 17
GCACATCACG ATGCCTTTCT CGTCG
                                                              25
<210> 18
<211> 32
<212> DNA
<213> Kunstliche Sequenz
<223> Beschreibung der kunstlichen Sequenz: Primer
<400> 18
                                                             32
CACACAAAGC TTGGCTTAGC GCCTCTGCCC TG
<210> 19
<211> 30
<212> DNA
<213> Kunstliche Sequenz
<223> Beschreibung der kunstlichen Sequenz: Primer
<400> 19
CACACAGGAT CCATGGATGC TGCAGATGCG
                                                               30
<210> 20
<211> 29
<212> DNA
<213> Kunstliche Sequenz
<223> Beschreibung der kunstlichen Sequenz: Primer
<400> 20
                                                                 29
GAAGAACATA TGCTGATGGC CCAGGAGGC
<210> 21
<211> 28
<212> DNA
<213> Kunstliche Sequenz
```

```
<223> Beschreibung der kunstlichen Sequenz: Primer
<400> 21
                                                               28
TTAAAGATCT CAGAACCGCC CCTGGTCG
<210> 22
<211> 25
<212> DNA
<213> Kunstliche Sequenz
<223> Beschreibung der kunstlichen Sequenz: Primer
<400> 22
ttactcgaga tgctgatggc ccagg
                                                              25
<210> 23
<211> 26
<212> DNA
<213> Kunstliche Sequenz
<223> Beschreibung der kunstlichen Sequenz: Primer
<400> 23
                                                            26
aaggtacctt gaaccgcccc tggtcg
<210> 24
<211> 9
<212> PRT
<213> Homo sapiens
<400> 24
Phe Leu Met Ala Gln Gly Ala Met Leu
                5
 1
<210> 25
<211> 10
<212> PRT
<213> Homo sapiens
<400> 25
Ala Met Leu Ala Ala Gln Glu Arg Arg Val
```

```
<210> 26
<211> 9
<212> PRT
<213> Homo sapiens
<400> 26
Met Leu Ala Ala Gln Glu Arg Arg Val
<210> 27
<211> 10
<212> PRT
<213> Homo sapiens
<400> 27
Tyr Tyr Met Asn Gly Thr Met Ser Gln Val
            / 5
<210> 28
<211> 9
<212> PRT
<213> Homo sapiens
<400> 28
Glu Val Asp Pro Ile Gly His Leu Tyr
 1 5
<210> 29
<211> 9
<212> PRT
<213> Homo sapiens
<400> 29
His Leu Ser Pro Asp Gln Gly Arg Phe
               5
<210> 30
<211> 9
<212> PRT
<213> Homo sapiens
<400> 30
Leu Met Ala Gln Glu Ala Leu Ala Phe
1 5
<210> 31
<211> 9
<212> PRT
```

```
<213> Homo sapiens
<400> 31
Arg Met Ala Val Pro Leu Leu Arg Arg
1 5
<210> 32
<211> 11
<212> PRT
<213> Homo sapiens
<400> 32
Met Leu Met Ala Gln Glu Ala Leu Ala Phe Leu
<210> 33
<211> 9
<212> PRT
<213> Homo sapiens
<400> 33
Met Ala Gln Glu Ala Leu Ala Phe Leu
1 5
<210> 34
<211> 9
<212> PRT
<213> Homo sapiens
```

Met Leu Met Ala Gln Glu Ala Leu Ala

<400> 34