CS 5683: Algorithms & Methods for Big Data Analytics

Recommender Systems: Latent Factor Models

Arunkumar Bagavathi

Department of Computer Science

Oklahoma State university

The Netflix Prize

Training data

- 100 million ratings, 480,000 users, 17,770 movies
- 6 years of data: 2000-2005

Test data

- Last few ratings of each user (2.8 million)
- Evaluation criterion: Root Mean Square Error (RMSE) =

$$\frac{1}{|R|} \sqrt{\sum_{(i,x) \in R} (\hat{r}_{xi} - r_{xi})^2}$$

■ Netflix's system RMSE: 0.9514

Competition

- **2,700+ teams**
- **\$1 million** prize for 10% improvement on Netflix

Netflix Utility Matrix & Evaluation

BellKor Recommender System

- The winner of the Netflix Challenge!
- Multi-scale modeling of the data: Combine a refined, top level, "regional" modeling data, with local view:
 - Global:
 - Overall deviations of users/movies
 - Factorization:
 - Addressing "regional" effects
 - Collaborative filtering:
 - Extract local patterns

Modeling Local & Global Effects

• In practice we get better estimates if we model deviations:

$$r_{xi} = b_{xi} + \frac{\sum_{j \in N(i;x)} s_{ij} \cdot (r_{xj} - b_{xj})}{\sum_{j \in N(i;x)} s_{ij}}$$

baseline estimate for r_{xi}

$$b_{xi} = \mu + b_x + b_i$$

 μ = overall mean rating b_x = rating deviation of user x= $(avg. rating of user x) - \mu$ b_i = $(avg. rating of movie i) - \mu$

Problems/Issues:

- 1) Similarity measures are "arbitrary"
- 2) Pairwise similarities neglect interdependencies among users
- **3)** Taking a weighted average can be restricting

Solution: Instead of s_{ij} use w_{ij} that we estimate directly from data

Performance of Various Methods

Global average: 1.1296

User average: 1.0651

Movie average: 1.0533

Netflix: 0.9514

Basic Collaborative filtering: 0.94

Grand Prize: 0.8563

Idea: Interpolation Weights w_{ij}

Use a weighted sum rather than weighted avg.:

$$\widehat{r_{xi}} = b_{xi} + \sum_{j \in N(i;x)} w_{ij} (r_{xj} - b_{xj})$$

A few notes:

- N(i; x) ... set of movies rated by user x that are similar to movie i
- w_{ij} is the interpolation weight (some real number)
 - We allow: $\sum_{i \in N(i,x)} w_{ij} \neq 1$
- w_{ij} models interaction between pairs of movies (it does not depend on user x)

Idea: Interpolation Weights w_{ij}

$$\bullet \widehat{r_{xi}} = b_{xi} + \sum_{j \in N(i,x)} w_{ij} (r_{xj} - b_{xj})$$

- How to set w_{ij} ?
 - Remember, error metric is: $\sqrt{\frac{1}{\tilde{R}}} \sum_{(i,x) \in \tilde{R}} (\hat{r}_{xi} r_{xi})^2$ or equivalently **SSE:** $\sum_{(i,x) \in R} (\hat{r}_{xi} r_{xi})^2$
 - Find w_{ii} that minimize SSE on training data!
 - Models relationships between item *i* and its neighbors *j*
 - \mathbf{w}_{ij} can be **learned/estimated** based on \mathbf{x} and all other users that rated \mathbf{i}

Why is this a good idea?

Recommendations via Optimization

- Goal: Make good recommendations
 - Quantify goodness using RMSE:
 Lower RMSE ⇒ better recommendations
 - Want to make good recommendations on items that user has not yet seen. Can't really do this!

Let's set build a system such that it works well
 on known (user, item) ratings
 And hope the system will also predict well the unknown ratings

Recommendations via Optimization

- Idea: Let's set values w such that they work well on known (user, item) ratings
- How to find such values w?
- Idea: Define an objective function and solve the optimization problem
- Find w_{ij} that minimize SSE on training data!

$$J(w) = \sum_{x,i} \left(\left[b_{xi} + \sum_{j \in N(i;x)} w_{ij} (r_{xj} - b_{xj}) \right] - r_{xi} \right)^{2}$$
Predicted rating

True rating

■ Think of **w** as a vector of numbers

Detour: Minimizing a Function

- A simple way to minimize a function f(x):
 - lacktriangle Compute a derivative ∇f
 - Start at some point y and evaluate $\nabla f(y)$
 - Make a step in the reverse direction of the gradient: $y = y \nabla f(y)$
 - Repeat until converged

Interpolation Weights

$$J(w) = \sum_{x} \left(\left[b_{xi} + \sum_{j \in N(i;x)} w_{ij} (r_{xj} - b_{xj}) \right] - r_{xi} \right)^{2}$$

- We have the optimization problem, now what?
- Gradient decent:
 - Iterate until convergence: $w \leftarrow w \eta \nabla_w J$

 η ... learning rate

• where $\nabla_w J$ is the gradient (derivative evaluated on data):

$$\nabla_{w}J = \left[\frac{\partial J(w)}{\partial w_{ij}}\right] = 2\sum_{x,i} \left(\left[b_{xi} + \sum_{j \in N(i;x)} w_{ij}(r_{xj} - b_{xj})\right] - r_{xi}\right)(r_{xj} - b_{xj})$$

$$\text{for } j \in \{N(i;x), \forall i, \forall x\}$$

$$\text{else } \frac{\partial J(w)}{\partial w_{ij}} = \mathbf{0}$$

• Note: We fix movie i, go over all r_{xi} , for every movie $j \in N(i; x)$, we compute $\frac{\partial J(w)}{\partial w_{ii}}$ while $|w_{new} - w_{old}| > \varepsilon$:

$$w_{old} = w_{new}$$
 $w_{new} = w_{old} - \eta \cdot \nabla w_{old}$

Interpolation Weights

- So far: $\widehat{r_{xi}} = b_{xi} + \sum_{j \in N(i;x)} w_{ij} (r_{xj} b_{xj})$
 - Weights w_{ij} derived based on their role; no use of an arbitrary similarity measure $(w_{ij} \neq s_{ii})$
 - Explicitly account for interrelationships among the neighboring movies

- Next: Latent factor model
 - Extract "regional" correlations

Performance of Various Methods

Global average: 1.1296

User average: 1.0651

Movie average: 1.0533

Netflix: 0.9514

Basic Collaborative filtering: 0.94

CF+Biases+learned weights: 0.91

Grand Prize: 0.8563

Latent Factor Models

SVD: $A = U \Sigma V^T$

■ "SVD" on Netflix data: $\mathbf{R} \approx \mathbf{Q} \cdot \mathbf{P}^T$

- For now let's assume we can approximate the rating matrix R as a product of "thin" $Q \cdot P^T$
 - R has missing entries but let's ignore that for now!
 - Basically, we will want the reconstruction error to be small on known ratings and we don't care about the values on the missing ones

Latent Factor Models (e.g., SVD)

Ratings as Products of Factors

■ How to estimate the missing rating of user x for item i?

Ratings as Products of Factors

■ How to estimate the missing rating of user x for item i?

Ratings as Products of Factors

■ How to estimate the missing rating of user x for item i?

Latent Factor Models

Latent Factor Models

Recap: SVD

Remember SVD:

- A: Input data matrix
- U: Left singular vecs
- V: Right singular vecs
- Σ: Singular values

So in our case:

"SVD" on Netflix data: $R \approx Q \cdot P^T$

$$A = R$$
, $Q = U$, $P^{T} = \sum V^{T}$

$$\hat{r}_{xi} = q_i \cdot p_x$$

SVD: Good Stuff

We already know that SVD gives minimum reconstruction error (Sum of Squared Errors):

$$\min_{U,V,\Sigma} \sum_{ij \in A} \left(A_{ij} - \left[U \Sigma V^{\mathrm{T}} \right]_{ij} \right)^{2}$$

- Note two things:
 - **SSE** and **RMSE** are monotonically related:
 - $RMSE = \frac{1}{c}\sqrt{SSE}$ Great news: SVD is minimizing RMSE!
 - Complication: The sum in SVD error term is over all entries (no-rating in interpreted as zero-rating).

But our *R* has missing entries!

SVD: Good Stuff

						use	rs					_
1.1	2	.3	.5	-2	5	.8	4	.3	1.4	2.4	9	d
8	.7	.5	1.4	.3	-1	1.4	2.9	7	1.2	1	1.3	lc
2.1	4	.6	1.7	2.4	.9	3	.4	.8	.7	6	.1	S
							DT					-

- SVD isn't defined when entries are missing!
- Use specialized methods to find P, Q

$$\min_{P,Q} \sum_{(i,x)\in R} (r_{xi} - q_i \cdot p_x)^2 \qquad \hat{r}_{xi} = q_i \cdot p_x$$

- Note:
 - We don't require cols of P, Q to be orthogonal/unit length
 - P, Q map users/movies to a latent space
 - The most popular model among Netflix contestants

Back to Our Problem

- Want to minimize SSE for unseen test data
- Idea: Minimize SSE on training data
 - Want large **k** (# of factors) to capture all the signals
 - But, **SSE** on test data begins to rise for k > 2

- This is a classical example of overfitting:
 - With too much freedom (too many free parameters) the model starts fitting noise
 - That is it fits too well the training data and thus not generalizing well to unseen test data

Dealing with Missing Entries

■ To solve overfitting we introduce regularization:

- Allow rich model where there are sufficient data
- Shrink aggressively where data are scarce

$$\min_{P,Q} \sum_{training} (r_{xi} - q_i p_x)^2 + \left[\lambda_1 \sum_{x} \|p_x\|^2 + \lambda_2 \sum_{i} \|q_i\|^2 \right]$$
"error"
"length"

 $\lambda_1, \lambda_2 \dots$ user set regularization parameters

Note: We do not care about the "raw" value of the objective function, but we care in P,Q that achieve the minimum of the objective

Gradient Descent

■ Want to find matrices P and Q:

$$\min_{P,Q} \sum_{training} (r_{xi} - q_i p_x)^2 + \left[\lambda_1 \sum_{x} ||p_x||^2 + \lambda_2 \sum_{i} ||q_i||^2 \right]$$

- Gradient decent:
 - Initialize P and Q (using SVD, pretend missing ratings are 0)
 - Do gradient descent:
 - $P \leftarrow P \eta \cdot \nabla P$
 - $Q \leftarrow Q \eta \cdot \nabla Q$
 - where ∇Q is gradient/derivative of matrix Q: $\nabla Q = [\nabla q_{if}]$ and $\nabla q_{if} = \sum_{x,i} -2(r_{xi} q_i p_x)p_{xf} + 2\lambda_2 q_{if}$
 - Here q_{if} is entry f of row q_i of matrix Q
 - Observation: Computing gradients is slow!

How to compute gradient of a matrix?

Compute gradient of every element independently!

Stochastic Gradient Descent

- Gradient Descent (GD) vs. Stochastic GD

• Observation:
$$\nabla Q = [\nabla q_{if}]$$
 where
$$\nabla q_{if} = \sum_{x,i} -2(r_{xi} - q_{if}p_{xf})p_{xf} + 2\lambda q_{if} = \sum_{x,i} \nabla Q(r_{xi})$$

- Here q_{if} is entry f of row q_i of matrix Q
- $\bullet Q = Q \Box Q = Q \eta \left[\sum_{x,i} \nabla Q(r_{xi}) \right]$
- Idea: Instead of evaluating gradient over all ratings evaluate it for each individual rating and make a step
- GD: $\mathbf{Q} \leftarrow \mathbf{Q} \eta \left[\sum_{r_{xi}} \nabla \mathbf{Q}(r_{xi}) \right]$
- SGD: $Q \leftarrow Q \mu \nabla Q(r_{xi})$
 - Faster convergence!
 - Need more steps but each step is computed much faster

GD Vs. SGD

Convergence of GD vs. SGD

Iteration/step

GD improves the value of the objective function at every step.

SGD improves the value but in a "noisy" way.

GD takes fewer steps to converge but each step takes much longer to compute.

In practice, **SGD** is much faster!

Stochastic Gradient Descent

Stochastic gradient decent:

- Initialize **P** and **Q** (using SVD, pretend missing ratings are 0)
- Then iterate over the ratings (multiple times if necessary) and update factors:
- For each r_{xi} :

```
• \varepsilon_{xi} = 2(r_{xi} - q_i \cdot p_x) (derivative of the "error")

• q_i \leftarrow q_i + \mu_1 (\varepsilon_{xi} p_x - \lambda_2 q_i) (update equation)

• p_x \leftarrow p_x + \mu_2 (\varepsilon_{xi} q_i - \lambda_1 p_x) (update equation)
```

2 for loops:

- For until convergence:
 - For each r_{xi}
 - Compute gradient, do a "step"

Performance of Various Methods

Global average: 1.1296

User average: 1.0651

Movie average: 1.0533

Netflix: 0.9514

Basic Collaborative filtering: 0.94

CF+Biases+learned weights: 0.91

Latent Factors: 0.90

Grand Prize: 0.8563

Modeling Biases and Interactions

user bias

movie bias

user-movie interaction

Baseline predictor

- Separates users and movies
- Benefits from insights into user's behavior
- Among the main practical contributions of the competition

User-Movie interaction

- Characterizes the matching between users and movies
- Attracts most research in the field
- Benefits from algorithmic and mathematical innovations
- μ = overall mean rating
- b_x = bias of user x b_i = bias of movie i

Baseline Predictor

We have expectations on the rating by user x of movie i, even without estimating x's attitude towards movies like i

- Rating scale of user x
- Values of other ratings user gave recently (day-specific mood, anchoring, multi-user accounts)

- (Recent) popularity of movie i
- Selection bias; related to number of ratings user gave on the same day ("frequency")

Putting All Together

$$r_{xi} = \mu + b_x + b_i + q_i \cdot p_x$$

Overall

Bias for Bias for Movie interaction

mean rating user x movie i

Example:

- Mean rating: μ = 3.7
- You are a critical reviewer: your ratings are 1 star lower than the mean: $b_x = -1$
- Star Wars gets a mean rating of 0.5 higher than average movie: $b_i = +0.5$
- Predicted rating for you on Star Wars:

$$= 3.7 - 1 + 0.5 = 3.2$$

Fitting the New Model

Solve:

$$\min_{Q,P} \sum_{(x,i)\in R} (r_{xi} - (\mu + b_x + b_i + q_i p_x))^2$$

$$+ \left(\lambda_{1} \sum_{i} \|q_{i}\|^{2} + \lambda_{2} \sum_{x} \|p_{x}\|^{2} + \lambda_{3} \sum_{x} \|b_{x}\|^{2} + \lambda_{4} \sum_{i} \|b_{i}\|^{2} \right)$$
regularization

 λ is selected via gridsearch on a validation set

- Stochastic gradient decent to find parameters
 - Note: Both biases b_x , b_i as well as interactions q_i , p_x are treated as parameters (we estimate them)

Performance of Various Methods

Global average: 1.1296

User average: 1.0651

Movie average: 1.0533

Netflix: 0.9514

Basic Collaborative filtering: 0.94

CF+Biases+learned weights: 0.91

Latent Factors: 0.90

Latent Factors + Biases: 0.89

Grand Prize: 0.8563

Temporal Biases of Users

Sudden rise in the average movie rating

- Improvements in Netflix
- GUI improvements
- Meaning of rating changed

Movie age

- Users prefer new movies without any reasons
- Older movies are just inherently better than newer ones

-0.22500 0.15 -0.05

0.15

Y. Koren, Collaborative filtering with temporal dynamics, KDD '09

Temporal Biases & Factors

Original model:

$$r_{xi} = \mu + b_x + b_i + q_i \cdot p_x$$

Add time dependence to biases:

$$r_{xi} = \mu + b_x(t) + b_i(t) + q_i \cdot p_x$$

- Make parameters b_x and b_i to depend on time
- (1) Parameterize time-dependence by linear trends
 - (2) Each bin corresponds to 10 consecutive weeks

$$b_i(t) = b_i + b_{i,\operatorname{Bin}(t)}$$

- Add temporal dependence to factors
 - $p_x(t)$... user preference vector on day t

Performance of Various Methods

Global average: 1.1296

User average: 1.0651

Movie average: 1.0533

Netflix: 0.9514

Basic Collaborative filtering: 0.94

CF+Biases+learned weights: 0.91

Latent Factors: 0.90

Latent Factors + Biases: 0.89

Latent Factors + Biases + Time: 0.876

Still no prize!
Getting desperate.

Try a "kitchen sink" approach!

Grand Prize: 0.8563

The big picture

Solution of BellKor's Pragmatic Chaos

The Last 30 Days

Ensemble team formed

- Group of other teams on leaderboard forms a new team
- Relies on combining their models
- Quickly also get a qualifying score over 10%

BellKor

- Continue to get small improvements in their scores
- Realize that they are in direct competition with Ensemble

Strategy

- Both teams carefully monitoring the leaderboard
- Only sure way to check for improvement is to submit a set of predictions
 - This alerts the other team of your latest score

24 Hours from the Deadline

Submissions limited to 1 a day

Only 1 final submission could be made in the last 24h

24 hours before deadline...

 BellKor team member in Austria notices (by chance) that Ensemble posts a score that is slightly better than BellKor's

Frantic last 24 hours for both teams

- Much computer time on final optimization
- Carefully calibrated to end about an hour before deadline

Final submissions

- BellKor submits a little early (on purpose), 40 mins before deadline
- Ensemble submits their final entry 20 mins later
-and everyone waits....

NETFLIX

Netflix Prize

Home

Rules

Leaderboard

Update

<u>Progress Prize 2007</u> - RMSE = 0.8723 - Winning Team: KorBell

Download

Leaderboard

Showing Test Score. Click here to show quiz score

Display top 20 ‡ leaders.

Rank	Team Name	Best Test Score	% Improvement	Best Submit Time
Grand Prize - RMSE = 0.8567 - Winning Team: BellKor's Pragmatic Change				
1	BellKor's Pragmatic Chaos	0.8567	10.06	2009-07-26 18:18:28
2	The Ensemble	0.8567	10.06	2009-07-26 18:38:22
3	Grand Prize Team	0.0582	9.00	0::::
4	Opera Solutions and Vandelay United	0.8588	9.84	2009-07-10 01:12:31
5	Vandelay Industries!	0.8591	9.81	2009-07-10 00:32:20
6	PragmaticTheory	0.8594	9.77	2009-06-24 12:06:56
7	BellKor in BigChaos	0.8601	9.70	2009-05-13 08:14:09
8	Dace_	0.8612	9.59	2009-07-24 17:18:43
9	Feeds2	0.8622	9.48	2009-07-12 13:11:51
10	<u>BigChaos</u>	0.8623	9.47	2009-04-07 12:33:59
11	Opera Solutions	0.8623	9.47	2009-07-24 00:34:07
12	BellKor	0.8624	9.46	2009-07-26 17:19:11
Progress Prize 2008 - RMSE = 0.8627 - Winning Team: BellKor in BigChaos				
13	xiangliang	0.8642	9.27	2009-07-15 14:53:22
14	Gravity	0.8643	9.26	2009-04-22 18:31:32
15	Ces	0.8651	9.18	2009-06-21 19:24:53
16	Invisible Ideas	0.8653	9.15	2009-07-15 15:53:04
17	Just a guy in a garage	0.8662	9.06	2009-05-24 10:02:54
18	J Dennis Su	0.8666	9.02	2009-03-07 17:16:17
19	Craig Carmichael	0.8666	9.02	2009-07-25 16:00:54
20	acmehill	0.8668	9.00	2009-03-21 16:20:50

Questions???

Acknowledgements

Most of this lecture slides are obtained from the Mining Massive

Datasets course: http://www.mmds.org/

Further reading:

- Y. Koren, Collaborative filtering with temporal dynamics, KDD '09
- http://www2.research.att.com/~volinsky/netflix/bpc.html
- http://www.the-ensemble.com/