Теория 2ри семестър

Теория 1ва част

Лекция 1

Уводни дефиниции

Транзитивно затваряне

Нека A е множество и $R \le A^2$ е релация в A. Рефлексивно и транзитивно затваряне R^* на R се определя(индуктивно):

- А) Ако $(a,b) \in R$, то $(a,b) \in R^*$;
- Б) Ако $a \in A$ то $(a,a) \in R^*$;
- В) Ако $(a,b) \in \mathbb{R}^*$ и $(b,c) \in \mathbb{R}^*$, то $(a,c) \in \mathbb{R}^*$.

Затваряне относно функция

Нека $F:A^n->A$ и $B\subseteq A$. Затваряне B^* на B относно функцията F се определя (индуктивно):

- A) Ako $a \in B$, to $a \in B^*$;
- Б) Ако $a_1...a_n \in B^*$ и $F(a_1...a_n) = b$, то $b \in B^*$.

Затваряне относно операции

Нека A е множество, $F_1...F_k$ са функции, F_i : $A^n_i -> A$, i=1...k, а $B \subseteq A$. Затваряне B^* на B относно операциите $F_1...F_k$ се определя (индуктивно):

- A) Aко a \in B, то a \in B*;
- Б) Ако $a_1...a_n_i \in B^*$ и $F_i(a_1...a_n_i) = b$, то $b \in B^*$.

Затваряне относно релация

Нека $R \le A^{n+1}$, A е множество и $B \subseteq A$. Затваряне B^* на B относно релацията R се определя (индуктивно):

- A) Ako $a \in B$, to $a \in B^*$;
- Б) Ако $a_1...a_n \in B^*$ и $(a_1...a_n, b) \in R$, то $b \in B^*$.

Затваряне относно релации

Нека A е множество, $R_i \le A^{(r_i+1)}$, i=1...n, и $B \subseteq A$. Затваряне B^* на B относно релациите $R_1...R_n$ се определя (индуктивно):

- A) Ako $a \in B$, to $a \in B^*$;
- Б) Ако $a_1...a_r$ і \in В* и $(a_1...a_r$ і, b) \in Rі, то b \in В*.

Азбуки, думи, езици. Операции върху думи и езициΣ

Азбука

Азбука наричаме всяко крайно множество от символи.

Примери: българската, латинската, обединение на част от българската с част от латинската, или всяко множество от букви, цифри или символи.

Дума

Нека Σ е азбука. Думата в азбуката Σ се нарича всяко изображение $w:\{1...n\} \rightarrow \Sigma$.

Вместо w(1)...w(n) ние ще записваме още $w_1...w_n$, а самата дума ще пишем $w=w_1w_2...w_n$, т.е. редицата от букви в Σ , както е стандартното разбиране за дума. Дължината на думата w се означава w0 и w1 т.е. броя на буквите в редицата w1 w2 ... w6.

Празната дума:

Има една специална дума, която наричаме празната дума и тя се означава с ϵ . ϵ : $\emptyset \to \Sigma$, т.е. дължината на ϵ е 0, т.е. $|\epsilon|=0$. Така $w:I_n\to \Sigma$ е дума, като при n=0, $I_n=0$ и |w|=0, т.е. $\epsilon=w$.

Операции върху думи

1. Конкатенация

Нека и и v са думи от азбуката Σ . Тогава конкатенацията на и и v се означава u.v и ако w=u.v то w е дума с дължина |w|=|u|+|v| и $w:I_{|u|+|v|}\to\Sigma$ като w(i)=u(i) за $1\le i\le |u|$ и w(j)=v(j-|u|) за $1\le j\le |u|+|v|$, т.е. ако $u=u_1\dots u_n$ и $v=v_1\dots v_m$, то $w=u_1\dots u_n$ $v_1\dots v_m$. Операцията е асоциативна, т.е. $(u\cdot v)\cdot w=u\cdot (v\cdot w)$, но не е комутативна в общия случай.

Проста конкатенация на думите и и у ще означаваме с иу.

Начало на дума

Казваме че думата и е начало на думата v ако съществува думата x, такава че $u \cdot x = v$.

Край на дума

Казваме че думата и е край на думата v ако съществува думата x, такава че $x \cdot u = v$.

Поддума

Казваме че думата и е поддума на v ако съществува думите x и y, такава че $x \cdot u \cdot y = v$.

2. Степенуване на думи

Нека w е дума, и n е естествено число. Ще определим индуктивно wⁿ както следва:

- 1) $\mathbf{w}^0 = \mathbf{\varepsilon}$;
- 2) $w^{n+1} = w^n \cdot w$

Иначе казано $w^n = w.w.w...w$ (п пъти).

3. Обратна дума (reversal) на дадена дума w

Означаваме с w^R и дефинираме индуктивно както следва:

- 1) |w|=0, то $w=\varepsilon$ и $w^R=\varepsilon$
- 2) |w|=n+1, $w=u\cdot a$, $a\in\Sigma$, to $w^R=a\cdot u^R$

Свойство на обратните думи при конкатенация: $(u.v)^R = v^R.u^R$

С Σ^* означаваме всички думи в азбуката Σ .

Език

Нека Σ е азбука. Език в азбуката Σ се нарича всяко множество от думи в азбуката Σ , т.е. всеки език L е подмножество на Σ^* .

Примери: Езици са Ø, Σ и Σ^* .

Буква се среща в дума

Казваме че буквата а, а $\in \Sigma$ се среща в думата w, ако а е поддума на w.

Операции върху езици

1. Теоретично-множествени операции

Тъй като всеки език е множество върху него могат да се изпълняват теоретично-множествени операции (като $U, \cap u$).

2. Конкатенация

Нека L_1 и L_2 са езици. Конкатенация на L_1 и L_2 се означава с $L_1 \cdot L_2$ и $L_1 \cdot L_2 = \{ w | w = w_1 \cdot w_2 \text{ за някои } w_1 \in L_1 \text{ и } w_2 \in L_2 \}.$

3. Степенуване

Нека L е език и n е ест. число. Тогава L^n се определя индуктивно:

- 1) $L^0 = \{\varepsilon\}$
- 2) $L^{n+1}=L^{n}.L$
- !!! $\emptyset^0 = \{\epsilon\}.$

4. Звезда на Клини за език

Нека L е произволен език L^* може да се определи по два начина:

- 1) $L^*=UL^n, n\in[0,+\infty);$
- 2) $L^*=\{w|w\in\Sigma\ и\ w=w_1...w_k\ за\ w_1,...,w_k\in L\ u\ k\in\mathbb{N}\}$ това вкл. и k=0; Така $\emptyset^*=\{\epsilon\}.$

Използваме се още и L^+ като $L^+=UL^n$, $n\in[1,+\infty)$.

!!! $\varepsilon \in L^*$ винаги но $\varepsilon \in L^+$ само ако $\varepsilon \in L$. Освен това означението Σ^* се съгласува със звездата на Клини на Σ .

Регулярни езици

Регулярен израз в (над) език

Нека Σ е азбука. Регулярен израз над (в) Σ се определя индуктивно както следва:

- 1) \emptyset и всяка буква от Σ е регулярен израз;
- 2) Ако α и β са регулярни изрази то $(\alpha$. β), $(\alpha \cup \beta)$ и α^* са регулярни изрази;

Регулярен език определен от регулярен израз (индуктивна деф.)

С помощта на регулярен израз α определяме регулярен език $L[\alpha]$.

Индуктивната дефиниция на $L[\alpha]$ с индукция относно построението на α :

1) Ако $\alpha = \emptyset$ то $L[\alpha] = \emptyset$;

- 2) Ακο $\alpha = a \in \Sigma$ το $L[\alpha] = \{a\}$;
- 3) Ако $\alpha = (\alpha_1 \alpha_2)$ то $L[\alpha] = L[\alpha_1] . L[\alpha_2];$
- 4) Ako $\alpha = (\alpha_1 \cup \alpha_2)$ to $L[\alpha] = L[\alpha_1] \cup L[\alpha_2]$;
- 5) Ακο $\alpha = \alpha_1^*$ το $L[\alpha] = (L[\alpha_1])^*$;

Регулярен език

Казваме че един език L е регулярен, ако съществува регулярен израз α , такъв че L[α]=L.

С други думи, регулярните езици се генерират (пораждат) от регулярни изрази.

Крайни детерминирани автомати

Краен детерминиран автомат (КДА)

Краен детерминиран автомат (КДА) се нарича петицата $\langle K, \Sigma, \delta, s, F \rangle$ такива че:

К- крайно множество от състояния;

Σ- основна азбука чиито думи ще разпознаваме;

s∈K, s – начални състояния;

Г⊆К, Г – множество от заключителни състояния;

 δ : Кх $\Sigma \to K$, δ - функция на преходите.

Конфигурация за КДА

Нека $M=\langle K, \Sigma, \delta, s, F \rangle$ е КДА. Конфигурация за M се нарича всяка двойка на $Kx\Sigma^*$, т.е. конфигурация е всяка двойка (q,w) където $q \in K$ и $w \in \Sigma^*$.

За конфигурация на М трябва да си мислим като състоянието q в което се намира "устройството за контрол", и за w като непрочетената част от думата. КДА са прости устройства които нямат памет и главата никога не се връща назад да прочете отново прочетената буква.

Релация между конфигурации

Нека (q,w) и (q_1,w_1) са две конфигурации за M. Казваме че конфигурацията (q,w) се преработва за една стъпка от M в конфигурацията (q_1,w_1) и пишем (q,w) $|-_{\scriptscriptstyle M}(q_1,w_1)$ т.т.к съществува а $\in \Sigma$ такова че $w=a.w_1$ и $\delta(q,a)=q_1$.

Когато стигнем до конфигурация (q, ε) значи сме прочели окончателно входа (входната дума).

 $|-_{M}^{*}$ - озн. рефлективното итранзитивното затваряна на релацията $|-_{M}^{*}$; $(q,w)|-_{M}^{*}(q_{1},w_{1})$ четем от (q,w) се извежда (q_{1},w_{1}) (за много стъпки); $(q,w)|-_{M}^{*}(q,w)$ казваме че от (q,w) се извежда (q,w) за 0 стъпки; $(q_{0},w_{0})|-_{M}...|-_{M}(q_{n},w_{n})$ казваме че от (q_{0},w_{0}) се извежда (q_{n},w_{n}) за n стъпки;

КДА приема дума

Нека $M=\langle K, \Sigma, \delta, s, F \rangle$ е КДА. Казваме че думата $w \in \Sigma^*$ се приема (разпознава) от M т.т.к. $(s,w) \mid_{-_M}^* (f,\varepsilon)$ и $f \in F$.

Недетерминирани крайни автомати

Недетерминиран краен автомат (НКА)

Недетерминиран краен автомат (НКА) се нарича петицата $M=\langle K, \Sigma, \Delta, s, F \rangle$, където:

К- крайно множество от състояния;

 Σ - основна азбука;

 $s \in K$, s — начални състояния;

Г⊆К, Г – множество от заключителни състояния;

 Δ - релация на преходите, $\Delta \subseteq Kx(\Sigma \cup \{\epsilon\})xK$. Всяка тройка $(q,u,p) \in \Delta$ се нарича правило за преход.

Конфигурация за НКА

Нека $M=(K,\Sigma,\Delta,s,F)$ е НКА. Конфигурация за M се нарича всеки елемент на $Kx\Sigma^*$.

Релация между конфигурации

Нека (q,w) и (q_1,w_1) са две конфигурации за $M=(K,\Sigma,\Delta,s,F)$. Казваме че конфигурацията (q,w) се преработва за една стъпка се извежда (q_1,w_1) с помощта на M и пишем (q,w) $|-_{M}(q_1,w_1)$ т.т.к съществува $u\in\Sigma \bigcup \{\epsilon\}$ такова че $w=u.w_1$ и $(q,u,q_1)\in\Delta$.

 $|-_{M}^{*}$ - озн. рефлективното итранзитивното затваряна на релацията $|-_{M}$;

НКА приема дума

Нека $M=(K,\Sigma,\Delta,s,F)$ е HKA. Казваме че думата $w \in \Sigma^*$ се приема (разпознава) от M т.т.к. (s,w) |- $_{M}$ * (f,ϵ) и $f \in F$.

НКА разпознава език

 $L(M)=\{w|\ w\in\Sigma^*\ u\ w\ ce\ pазпознава\ oт\ M\}.\ L(M)\ ce\ нарича\ eзик който ce\ pазпознава\ oт\ M.$

Еквивалентни автомати

Казваме че два автомата M_1 и M_2 (независимо дали са КДА или НКА) са еквивалентни т.т.к. $L(M_1)=L(M_2)$.

Теорема за еквивалентни автомати

За всеки недетерминиран краен автомат (НКА) съществува еквивалентен на него краен детерминиран автомат (КДА).

Дефиниция допълнителна за затваряне

За всяко $q \in K$ с $E(q) = \{p | (q, \epsilon) |_{-M}^* (p, \epsilon)\}$. E(q) можем да го дефинираме като затваряне на мн. $\{q\}$ относно релацията $\{(p,r) | (p, \epsilon, r) \in \Delta\}$

Помощно твърдение за дума и състояние

М- НКА; М1- КДА

За всяка дума $w \in \Sigma^*$ и за произволни състояния $p,q \in K$ е изпълнена еквивалентността: $(q,w) \mid_{-M}^* (p,\epsilon) \Leftrightarrow (E(q),w) \mid_{-M}^* (P,\epsilon)$ за някое $P, p \in P$.

Теорема

Нека $w \in \Sigma^*$. Тогава $w \in L(M) \Leftrightarrow (s,w) \mid_{-_M} (f,\varepsilon)$ за някое $f \in F \Leftrightarrow (E(s),w) \mid_{-_M} (Q,\varepsilon)$ за някое Q такова че $f \in Q \Leftrightarrow w \in L(M_1)$ защото $Q \in F_1$ т.т.к. $Q \cap F \neq \emptyset$.

Крайни автомати и регулярни езици

Затворено множество (двоични функции)

Едно множество F от двоични функции се нарича затворено, ако F=[F] т.е. суперпозицията на произволна функция от F принадлежи на F

Затворено множество относно функция

Нека $F:A^n \to A$ и $B\subseteq A$. Казваме че B е затворено относно F ако за всички $a_1...a_n$ ∈B е изпълнено че $F(a_1...a_n)$ ∈B.

Твърдение за затвореност на класа на автоматните езици

Класът на автоматните езици е затворен относно операциите:

- 1) Обединение;
- 2) Конкатенация;

- 3) Звезда на Клини;
- 4) Допълнение;
- 5) Сечение.

Теорема за регулярен език и автоматен езици

Един език е регулярен т.т.к. той е автоматен.

Лекция 3

Лема за разрастването

Нека L е регулярен език. Тогава съществува такова естествено число $n\ge 1$, че за всяка дума $w\in L$, такава че $|w|\ge n$, съществуват думи x,y и z, такива че w=x. y. z, $y\ne \epsilon$ и $|x.y|\le n$ и за всяко $i\in N$ е изпълнено че x. y^i . $z\in L$.

Релацията на еквивалентност ≈_L за даден език L

Нека L е език в азбуката Σ и $x,u \in \Sigma^*$. Казваме че x и y са еквивалентни относно L (пишем $x \approx_L y$) ако за всяка дума $z \in \Sigma^*$ е изпълнена еквивалентността: $x \cdot z \in L \Leftrightarrow y \cdot z \in L$.

Релацията \approx L е релация на еквивалентност в Σ *:

- 1) $x \approx_L x$ (рефлективност);
- 2) ако $x \approx_L y$ то $y \approx_L x$ (симетричност);
- 3) Ако х \approx_L у и у \approx_L z то за всяко s \in Σ^* е изпълнено че х.s \in L \Leftrightarrow y.s \in L \Leftrightarrow z.s \in L т.е. х \approx_L z.

Релация на еквивалентност ~м за даден автомат М

Нека $M=(K,\Sigma,\delta,s,F)$ е КДА. Казваме че думите х и у са еквивалентни относно M (пишем х \sim_M у) т.т.к. съществува състояние $q \in K$, такова че $(s, x) \mid_{-_M}^* (q, \varepsilon)$ и $(s, y) \mid_{-_M}^* (q, \varepsilon)$.

Класа на еквивалентност е $E_q = \{x | (s,x) | -_{M}^{*}(q,\epsilon)\}.$

Твърдение за еквивалентностите спрямо автомат M и автоматен език на M:L(M)

За всеки КДА $M=(K,\Sigma,\delta,s,F)$ и за произволни думи $x,y\in\Sigma$ е изпълнено ако $x\sim_M y$ то $x\approx_{L(M)} y$.

Теорема на Майхил-Нероуд

Нека L е регулярен език в Σ . Тогава съществува краен детерминиран автомат M, който разпознава L с точно толкова състояния, колкото са класовете на еквивалентност относно релацията \approx_L .

Следствие от теоремата на Майхил-Нероуд

Един език L е регулярен т.т.к. релацията на еквивалентност \approx_L има крайно много класове на еквивалентност т.е. т.т.к. \approx_L има краен индекс.

Лекция 4

Еквивалентност на състояния

Нека p,q∈К. Казваме че p и q са еквивалентни (пишем p≡q) за КДА M=(K, Σ , δ ,s,F) т.т.к за всички думи z∈ Σ * е изпълнена еквивалентността: (q,z)∈ A_M \Leftrightarrow (p,z)∈ A_M

Две състояния p и q са еквивалентни т.т.к. E_q и E_p се съдържат в един и същ клас на еквивалентност относно \sim_M

Лема за еквивалентност на състояния

За всеки две състояния p,q∈K и за всяко n≥1. p=nq т.т.к са изпълнени следните две условия:

- 1) $p \equiv_{n-1} q$;
- 2) За всички $a \in \Sigma$, $\delta(q,a) \equiv_{n-1} \delta(p,a)$.

Скорост на растеж на функции и анализ на сложността на алгоритми

Ред на функция

Нека $f:\mathbb{N} \to \mathbb{N}$. Ред на функцията f се озн. с O(f) и е множеството на всички функции $g:\mathbb{N} \to \mathbb{N}$ такива че съществува естествени числа c,d

(c,d>0) такива че за всички естествени числа n е изпълнено че $g(n) \le c.f(n) + d.$

Всъщност достатъчно е да е изпълнено за всички естествени числа от известно място нататък т.е. за n≥n₀ за някое фиксирано n₀.

Ако $g \in O(f)$ то също казваме че степента на растеж на g не надвишава степента на растежа на $f.(\text{при }M \rightarrow +\infty)$ понякога пишем още \preccurlyeq .

Ако за две функции f ,g: $\mathbb{N} \to \mathbb{N}$ е изпълнено че f \in O(g) и g \in O(f) то ще пишем f \asymp g и ще казваме че f и g са от един и същ ред (порядък) или че имат една и съща скорост на растеж. Релацията \asymp е релация на еквивалентност.

Твърдение за ред на функция

Нека f ,g: \mathbb{N} → \mathbb{N} . Тогава, \angle ако:

1)
$$\lim_{n\to+\infty} \frac{f(n)}{g(n)} = k > 0$$
, to f $\leq g$;

2)
$$\lim_{n\to +\infty} \frac{f(n)}{g(n)} = 0$$
, то f \iff g, но f \iff g и в такъв случай пишем f g.

Твърдение

За всяко j=0,1,...n след изпълнението на най-външния j-ти цикъл R^* съдържа всички двойки (a_i,a_k) такива че съществува път с ранг ρ , за $\rho \le j$.

Алгоритъма е експоненциален.

Експоненциална сложност

Един алгоритъм има експоненциална сложност ако той има ред $O(2^n)$, $O(3^n)$... $O(p^k)$ за фиксирано $p \in \mathbb{N}$.

Полиномиална сложност

Когато един алгоритъм има ред O(P) където P е полином, то казваме че алгоритъма има полинимиална сложност.

Затваряне относно релация

Нека A е множество с n елемента, $B \subseteq A$ и $R \subseteq A^{k+1}$. Затварянето B^* на B относно R се определя както следва:

1) Ako $a \in B$ to $a \in B^*$;

2) Ако $a_1...a_{\kappa} \in B^*$ и $(a_1...a_{\kappa},b) \in R$ то $b \in B^*$.

Сложността на алгоритъма е $O(n^{k+2})$.

Алгоритъма: B*:=B; while: съществува $(a_1...a_\kappa,b)$ ∈R и $a_1...a_\kappa$ ∈B*, но b \notin B*; do: добави b към B*

Сложност на изучени алгоритми (допълнително)

- 1) Построяване на съответен регулярен израз по краен автомат експоненциален ($\sigma(3^{|k|})$);
- 2) Детерминизация на недетерминиран автомат експоненциален $(\sigma(2^{|\mathbf{k}|}|\mathbf{k}|^2|\Sigma||\Delta||\mathbf{k}|^3));$
- 3) Проверка дали два крайни недетерминирани автомата са еквивалентни или не експоненциален;
- 4) Проверка дали L (α 1) = L (α 2) по дадени два регулярни израза α 1 и α 2 експоненциален.
- 5) Минимизация на краен детерминиран автомат полиномиален ((σ ($|K|^3|\Sigma|$));
- 6) Съответен краен недетерминиран автомат по регулярен израз полиномиален ($\sigma(2|\alpha|+1)$);
- 7) Проверка дали два крайни детерминирани автомата са еквивалентни или не полиномиален.

Лекция 5

Сложност на алгоритми за крайни автомати

Теорема за сложност на алгоритми

- 1) Съществува **експоненциален** алгоритъм който по даден НКА дава еквивалентен КДА;
- 2) Съществува **полиномиален** алгоритъм който по даден регулярен израз α дава НКА M такъв че L(M)=L[α];
- 3) Съществува **експоненциален** алгоритъм който по даден НКА М дава регулярен израз α такъв че $L(M)=L[\alpha]$;
- 4) Съществува <u>полиномиален</u> алгоритъм който по даден КДА дава минимален КДА еквивалентен на първия;
- 5) Съществува <u>полиномиален</u> алгоритъм който по дадени два КДА дава отговор дали са еквивалентни или не;
- 6) Съществува <u>експоненциален</u> алгоритъм който по дадени два НКА дава отговор дали са еквивалентни или не;

Изоморфни автомати

Казваме че два M_1 =(K_1 , Σ , δ_1 , s_1 , F_1) и M_2 =(K_2 , Σ , δ_2 , s_2 , F_2) са изоморфни (неразличими) ако съществува биекция $f:K_1 \longrightarrow K_2$ такава че $f(s_1)$ = s_2 $f[F_1]$ = F_2 и $f(\delta_1(q,a))$ = $\delta_1(f(q),a)$.

Крайни автомати като алгоритми

Твърдение

Ако $M=(K,\Sigma,\Delta,s,F)$ е НКА, то съществува алгоритъм който по дадена дума $w \in \Sigma^*$ проверява дали $w \in L(M)$ или не със сложност: $O(|w|.|k|^2)$.

Сложност: полиномиална $O(|\Sigma|.|w|)$

Контекстно-свободни езици

Контекстно-свободна граматика

КСГ е четворка $G=(V,\Sigma,R,S)$, където:

V е фиксирана крайна азбука от символи;

 $\Sigma \subseteq V$ – елементите на Σ се наричат терминални символи или терминали;

Нетерминали- елементите на V\Σ

R- множеството на правила $R \subseteq (V \setminus \Sigma) x V^*$

S-начален символ S \in V \setminus \Sigma.

Правило

Ако $(A,u)\in R$, то A е нетерминал, а $u\in V^*$ и правилото (A,u) ще го озн. $A\rightarrow_G u$ (правило от G).

=>_G Правило в граматика G

Нека $G=(V,\Sigma,R,S)$ е КСГ. Тогава пишем $u=>_G v$, т.т.к. $u,v\in V^*$ и съществуват $x,y\in V^*$ и $A\in V\setminus \Sigma$ и правилото $A\longrightarrow v$ ' такава че u=xAy, v=xv'y

Рефлективно и транзитивно затваряне на =>_G

 $=>_{G}^{*}$ се определя като рефлективно и транзитивно затваряне на $=>_{G}$

L(G) за контекстно-свободна граматика G

Нека $G=(V,\Sigma,R,S)$ е КСГ. Тогава с L(G) означаваме множеството $L(G)=\{w|\ w\in\Sigma^*\ u\ S=>_G^*\ w\}$ и се нарича език породен от КСГ G.

Контекстно свободен език

Един език L се нарича КСЕ т.т.к. L=L(G) за някоя КСГ $G=(V,\Sigma,R,S)$.

Извод

Всяка редица $w_0 = >_G w_1 = >_G \dots = >_G w_n$ се нарича извод в КСГ G на думата w_n от думата w_0 , а n се нарича дължина на извода.

Твърдение за КДА и КСГ

Нека М=(K, Σ , δ ,s,F) е КДА. Тогава съществува КСГ G=(V, Σ ,R,S) такава че L(M)=L(G).

Теория за 2ра част

Лекция 6

Граматични дървета

Граматично дърво

Нека $G=(V,\Sigma,R,S)$ е произволна КЦГ. Индуктивно определяме граматично дърво:

- 1) За всяко а $\in \Sigma$, а е граматично дърво с корен а и листо а (тривиално дърво);
- 2) Ако А \rightarrow є е правило е G където А \in V \setminus Σ то А \leftarrow е граматично дърво с корен А и листо є.

 $y_1...y_n$ са думи от азбуката Σ получени съответно от дърветата с корени $A_1,...A_n$ съответно и $A \! \to A_1 A_2...A_n$ е правило в

граматиката G то е граматично дърво.

Извод предхожда извод

Нека $G=(V,\Sigma,R,S)$ е КСГ и нека $D=x_1=>x_2...=>x_n$ $D'=x'_1=>x'_2...=>x'_n$ са два извода в G, където $x_i,x'_i\in V^*$ $i=1...n,\ x_1,x'_1\in V\setminus \Sigma$ и $x_n,x'_n\in \Sigma^*$. Казваме че D предхожда D' и пишем D D' ако n>2 и \prec съществува естествено число k, 1< k< n такова че са изпълнени следните S условия:

1) За всяко i, $1 \le i \le n$, $i \ne k$ имаме $x_i = x'_i$;

- 2) $x_{k-1} = x'_{k-1} = uAvBw$ където $u,v,w \in V^*$ и $A,B \in V \setminus \Sigma$;
- 3) x_k =uyvBw, където A \rightarrow у е правило от G;
- 4) x'_k =uAvzw, където B \rightarrow z е правило от G;
- 5) $x_{k+1} = x'_{k+1} = uyvzw;$

С други думи един извод предхожда друг ако в извода те са различават само по едно място и в този извод който предхожда другия по-напред заместваме нетерминала който е по-вляво.

Подобни изводи (релация на еквивалентност на изводи)

Нека D и D' са два извода на една и съща дума в граматиката G. Казваме че те са подобни ако (D, D') принадлежи на рефлексивното, симетричното и транзитивно затваряне на релацията

✓ .

Следователно релацията за подобни изрази е релация на еквивалентност.

Твърдение за граматично дърво

Нека $G=(V,\Sigma,R,S)$ е КСГ и $A\in V\setminus \Sigma$, а $w\in \Sigma^*$. Тогава следните твърдения са еквивалентни:

- 1) A=>* w;
- 2) Съществува граматично дърво с корен А и извод w.
- 3) Съществува най-ляв извод $A^L = > *w;$
- 4) Съществува най-десен извод $A^R = >*w;$

Стекови автомати

Стеков автомат

Стеков автомат се нарича шестицата $M=(K,\Sigma,\Gamma,\Delta,s,F)$, където:

К- крайна азбука от състояния;

Σ-крайна входна (основна) азбука;

Г-крайно множество от стекови символи (стекова азбука);

Г⊆К, F- множество от заключителните състояния;

s-начален символ, s∈K;

 $\Delta \subseteq (K \times (\Sigma \cup \{\epsilon\}) \times \Gamma^*) \times (K \times \Gamma^*)$ - релация на преходите като всеки елемент от Δ се нарича правило за преход от Δ (от M).

Конфигурация на стеков автомат

Конфигурация се нарича всеки елемент на $Kx\Sigma^*xF^*$. Ако $(p,x,\alpha)\in Kx\Sigma^*xF^*$ то $p\in K$, $x\in \Sigma^*$ и $\alpha\in F^*$.

Всичко това се отнася винаги за конкретен стеков автомат $M=(K,\Sigma,\Gamma,\Delta,s,F)$ като р ще си мислим като състоянието в което се намира M, x е непрочетена част от думата с която се запълва лентата от самото начало, а α е думата, с която е запълнен стека.

|-_М за стеков автомат M (едностъпково преобразувание)

Нека $M=(K,\Sigma,\Gamma,\Delta,s,F)$ е стеков автомат и (p,x,α) , $(q,y,\beta)\in Kx\Sigma^*xF^*$ т.е. те са конфигурации. Казваме че от (p,x,α) за една стъпка се извежда (q,y,β) и означаваме $(p,x,\alpha)\mid_{-M}(q,y,\beta)$ точно тогава когато съществува правило $((p,x,\alpha),(q,y,\beta))\in\Delta$, такова че x=ay, $\alpha=\lambda\eta$ и $\beta=\mu\eta$ за някое $\eta\in\Gamma^*$.

 $C \mid_{^-M}^*$ озн. рефлексивното и транзитивно затваряне на релацията $\mid_{^-M}$ в множеството на конфигурациите.

Стеков автомат разпознава дума

Казваме че стековият автомат $M=(K,\Sigma,\Gamma,\Delta,s,F)$ разпознава думата $w\in\Sigma^*$ т.т.к. (s,w,ε) $|-_M^*(p,\varepsilon,\varepsilon)$ за някое $p\in F$. Всички конфигурации от вида $(p,\varepsilon,\varepsilon)$ такива че $p\in F$ се наричат още заключителни.

М разпознава думата $w \in \Sigma^*$ т.т.к. съществува редицата от конфигурации C_0, C_1, \ldots, C_n (n>0) такава че $C_0 \mid -_M C_1 \mid -_M \ldots \mid -_M C_n$ където $C_0 = (s, w, \epsilon)$ и C_n е заключителна конфигурация.

Теорема за класът на езиците на стеков автомат

Класът на езиците, разпознавани от стеков автомат съзвпада с класър на КСЕ.

Език разпознаван от стеков автомат.

Един език L се разпознава от стеков автомат ако съществува стеков автомат M такъв че L=L(M).

Твърдение 1 за КСЕ и стеков автомат

Всеки контекстно свободен език се разпознава от стеков автомат.

Лема за най-ляв извод в G

Нека w∈Σ* и α∈((V\Σ)V*)U{ε}. Тогава s
L
=> $_G$ * wα т.т.к. (q,w,s)|- $_M$ *(q,ε,α).

 L => $_{G}$ * озн. най-ляв извод в G.

Лекция 7

Твърдение 2 за КСЕ и стеков автомат

Ако един език се разпознава от стеков автомат то този език е КСЕ.

Прост стеков автомат

Нека $M=(K,\Sigma,\Gamma,\Delta,s,F)$ е стеков автомат. Казваме че M е прост ако за всяко правило от $\Delta((q,a,\beta),(p,\gamma))$ такова че $q\neq s$ е изпълнено че $\beta\in\Gamma$ и $|\gamma|\leq 2$.

Лема за прост стеков автомат

Ако един език се разпознава от стеков автомат то той се разпознава и от прост стеков автомат.

Помощно твърдение

За произволни $p,q \in K'$ $A \in \Gamma \cup \{ \epsilon \}$ е изпълнена еквивалентността: $<q,A,p>=>_G^* x$, т.т.к. $(q,x,A)\mid_{-M}^* (p,\epsilon,\epsilon)$.

Свойства на КСЕ. Лема за разрастването за КСЕ

Твърдение за КСЕ и операциите: обединение, конкатенация и звезда на Клини.

КСЕ са затворени относно обединение, конкатенация и звезда на Клини.

Твърдение за КСЕ и регулярните езици

Сечението на КСЕ и регулярните езици е КСЕ.

Най-голям брой букви на дясната част на правило

Нека $G=(V,\Sigma,R,S)$ е КСГ. С $\Phi(G)$ ще означаваме най-големият брой букви на дясната част на правило от граматиката G.

С други думи разглеждаме всички правила от вида $A \rightarrow x$, където A е нетерминал а $x \in V^*$. Намираме максимума на дължините |x| на думите от дясната част на правилата . Това определя $\Phi(G)$.

Лема за разрастването на граматични дървета

Нека $G=(V,\Sigma,R,S)$ е КСГ. Тогава за всяка дума $w\in L(G)$ чиято дължина |w| е по-голяма от $\Phi(G)^{|v\setminus\Sigma|}$ може да се представи във вида w=uvxyz така че $vy\ne \varepsilon$ и $u.v^n.x.y^n.z\in L(G)$ за всяко естествено число n.

Лекция 8

Нека $L\subseteq \Sigma^*$, L е КСЕ. Тогава съществува ест. число n, такова че за всяка дума $w\in L$, $|w|\ge n$ съществуват думи u,v,x,y,z, такива че w=uvxyz и $|vxy|\le n$, $vy\ne \epsilon$ и за всички $i\in \mathbb{N}$ е изпълнено $uv^ixy^iz\in L$.

Твърдение за КСЕ и операциите сечение и допълнение

Множеството на КСЕ не е затворено относно операциите сечение и допълнение.

КСГ в нормална форма на Чомски

Казваме че една КСГ $G=(V,\Sigma,R,S)$ се намира в нормална форма на Чомски ако $R\subseteq(V\setminus\Sigma)xV^2$, т.е. всички правила са от вида $A\to BC$ където $A\in V\setminus\Sigma$ а $B,C\in V$.

Теорема за нормална форма на Чомски

За всяка КСГ G съществува КСГ G' в нормална форма на Чомски таквава че $L(G')=L(G)\setminus (\Sigma \cup \{\epsilon\})$.

Теорема за алгоритми за КСГ

Един стеков автомат M е еквивалентен на КСГ G, т.т.к. L(M)=L(G).

- 1) Съществува *полиномиален* алгоритъм който по дадена контексно свободна граматика дава стеков автомат еквивалентен на граматиката. $(8|G|^2)$
- 2) Съществува <u>полиномиален</u> алгоритъм който по даден стеков автомат дава КСГ еквивалентна на стековия автомат. $(O(|M|^3)$
- 3) Съществува <u>полиномиален</u> алгоритъм който по дадена КСГ G и дума x дава отговор дали $x \in L(G)$. $(O(|x|^3)$

Машина на Тюринг

Машина на Тюринг

Машина на Тюринг се нарича петицата $M=(K,\Sigma,\delta,s,H)$ където:

К- крайна азбука на състоянията;

 Σ - основна азбука, съдържаща символа \sqcup за празната клетка и символа \triangleright за ляв ограничител, но не съдържа символите \to и \leftarrow ;

s∈K, s- начално състояние (символ);

Н⊆К, Н- множество на стоп-състоянията;

δ- функция на преходите, δ :(K\H)х Σ \rightarrow Kx(Σ \cup { \rightarrow , \leftarrow }), така че следните условия:

- 1) За всички $q \in (K \setminus H)$ ако $\delta(q, \triangleright) = (p, b)$ то $b = \rightarrow$;
- 2) За всички $q \in (K \setminus H)$ и $a \in \Sigma \setminus \{ \triangleright \}$ ако $\delta(q, a) = (p, b)$ то $b \neq \triangleright$.

Конфигурация на машина на Тюринг

Конфигурация на машина на Тюринг М=(K, Σ , δ ,s,H) се нарича всеки елемент на Kx(Σ { \triangleright })*x((Σ { \triangleright })* (Σ { \triangleright ,U}) \cup { ϵ }) т.е. конфигурация е тройката (p, \triangleright u, v) такава че p \in K и думите u,v \in (Σ { \triangleright })*, като v не може да завършва с \square .

|-_М за Машина на Тюринг М

Нека $M=(K,\Sigma,\delta,s,H)$ е машина на Тюринг и да разгледаме конфигурациите $(q_1,w_1a_1u_1)$ и $(q_2,w_2a_2u_2)$ където $a_1,a_2\in\Sigma$. Тогава казваме че машината M преобразува $(q_1,w_1a_1u_1)$ в $(q_2,w_2a_2u_2)$ и пишем

 $(q_1,w_1a_1u_1)\mid_{-M} (q_2,w_2a_2u_2)$ т.т.к за някое b $\in \Sigma \cup \{\rightarrow,\leftarrow\} \delta(q_1,q_2)=(q_2,b)$ и, или:

- 1) b∈ Σ \{⊳}, w₁=w₂, u₁=u₂ и a₂=b (заместваме a₁ с b) или
- 2) b=←, w₁=w₂.a₂ и, или
 - а. $u_2 = a_1 u_1$ ако $a_1 \neq \sqcup$ или $u_1 \neq \varepsilon$, или
 - b. $u_2=\epsilon$ ако $a_1=\square$ или $u_1=\epsilon$ (преместваме главата наляво), или

- 3) b= \rightarrow , w₂=w₁.a₁ и или
 - $a. u_1 = a_2 u_2$ или
 - b. $u_1=u_2=\varepsilon$ и $a_2=U$ (преместваме главата надясно).

Рефлексивно и транзитивно затваряне на релацията |-м

Нека M е машина на Тюринг. С $|-_{M}^{*}$ озн. рефлексивно и транзитивно затваряне на релацията $|-_{M}$ между конфигурациите на M.

Базови машини на Тюринг

1. Пишат някакъв символ от азбуката и спират

Нека $a \in \Sigma \setminus \{ \triangleright \}$. С Ма озн. машината Ма=($\{ s,h \}, \Sigma, \delta, s, \{ h \}$) където за всяко $b \in \Sigma \setminus \{ \triangleright \}$, $\delta(s,b) = (h,a)$ т.е. машината замества съдържанието на клетката която чете в момента и спира. По подразбиране $\delta(s,\triangleright) = (s,\rightarrow)$

2. Машина М← и М→

 $M_{\rightarrow}=(\{s,h\},\Sigma,\delta,s,\{h\})$ където за всяко $b\in\Sigma$ $\delta(s,b)=(h,\rightarrow)$ и $M_{\leftarrow}=(\{s,h\},\Sigma,\delta,s,\{h\})$ където за всяко $b\in\Sigma\setminus\{\rhd\}$ $\delta(s,b)=(h,\leftarrow)$ и $\delta(s,\rhd)=(s,\rightarrow)$.

Операции между машини на Тюринг

1. Композиция на Машина на Тюринг

Нека M_1 =(K_1 , Σ , δ_1 , s_1 , H_1) и M_2 =(K_2 , Σ , δ_2 , s_2 , H_2) като K_1 ∩ K_2 = \emptyset . Композиция на M_1 и M_2 ще означаваме с M_1M_2 и M_1M_2 =(K_1 ∪ K_2 , Σ , δ , s_1 , H_2) като δ (q,r)= δ_1 (q,r) за q∈ K_1 \ H_1 , δ (q,r)=(s_2 ,r) за q∈ H_1 и r∈ Σ , δ (q,r)= δ_2 (q,r) за q∈ K_2 \ H_2 и r∈ Σ .

Пускаме M_1 върху тази конфигурация и ако стигнем до стопконфигурация заместваме стоп-състоянието с s_2 и пускаме получената конфигурация да се изпълни от M_2 .

2. R-машина

Машина която каквото и да прочете прави стъпка в дясно и спира.

3. L-машина

Машина която каквото и да прочете освен знака за най-ляв символ (▷) прави стъпка в ляво и спира.

Машини

1. Какво и в какво преобразува машината (Копи-машината) С на Тюринг?

 \mathcal{C} трансформира $\rhd \underline{\sqcup} \ w \ \mathsf{B} \rhd \underline{\sqcup} \ w \ \sqcup w$, за $w \in (\Sigma \setminus \{\rhd, \sqcup\})^*$

2. Какво и в какво преобразува машината (Шифт-машината) S_\to на Тюринг?

 S_{\rightarrow} трансформира $\triangleright \sqcup w$ в $\triangleright \sqcup \sqcup w$, за $w \in (\Sigma \setminus \{\triangleright, \sqcup\})^*$

- 3. Какво и в какво преобразува простата машина на Тюринг L_ \sqcup ? L_{\sqcup} трансформира $\rhd \sqcup abba \; \underline{\sqcup} \; abba$
- **4.** Какво и в какво преобразува простата машина на Тюринг R_{\bot} ? R_{\bot} трансформира $\triangleright \underline{\bot} \ abba$ в $\triangleright \bot \ abba$ $\underline{\bot}$

Лекция 10

<u>Разпознаване и изчисляване с помощта на машина на </u> <u>Тюринг</u>

Машина на Тюринг разпознаване на дума

Нека $M=(K,\Sigma,\delta,s,H)$ е машина на Тюринг където $H=\{y,n\}$. Казваме че думата $w\in (\Sigma\setminus\{\triangleright,\sqcup\})^*$ се приема от M ако $(s,\triangleright \underline{\sqcup}w)\mid_{-M}^* (y,u\underline{a}v)$ и че w се отхвърля от M ако $(s,\triangleright \underline{\sqcup}w)\mid_{-M}^* (u,u\underline{a}v)$ за всяко Σ_0 такова че $\Sigma_0\subseteq \Sigma\setminus\{\triangleright,w\}$. Σ_0 се нарича входна азбука.

Машина на Тюринг разпознава език

Нека $M = \langle K, \Sigma, \delta, s, H \rangle$ е машина на Тюринг, където $H = \{y, n\}$, и $\Sigma_0 \subseteq \Sigma \setminus \{\triangleright, \sqcup\}$, $\Sigma_0 -$ входна азбука. Казваме, че езикът $L \subseteq \Sigma_0^*$ се разпознава от M, ако за всяко $W \in \Sigma_0^*$ са изпълнени следните две условия:

- 1) Ако $w \in L$, то w се разпознава от M
- 2) Ако $w \notin L$, то w се отхвърля от M

Рекурсивен език

Един език L се нарича рекурсивен(разширим) ако съществува машина на Тюринг M, която го разширява.

М изчислява функция f

Нека $M = \langle K, \Sigma, \delta, s, H \rangle$ е машина на Тюринг и $\Sigma_0 \subseteq \Sigma \setminus \{ \triangleright, \sqcup \}$. Казваме че функцията $f: \Sigma_0^* \to \Sigma_0^*$ се изчислява с помощта на M (М изчислява f) ако за произволно $w \in \Sigma_0^*$ са изпълнени следните условия:

- 1) Ako f(w)=y 3a $y \in \Sigma_0^*$, to $(s, \triangleright \underline{\sqcup} w) \mid -M^*(h, \triangleright \underline{\sqcup} y)$;
- 2) Ако $(s, \triangleright \underline{\sqcup} w) \mid_{-M} * (h, \triangleright \underline{\sqcup} y)$ за $y \in \Sigma_0 *$, то f(w) = y.

Рекурсивни и рекурсивно наредени езици

Полурезрешен език

Нека $M = \langle K, \Sigma, \delta, s, H \rangle$ е машина на Тюринг и $\Sigma_0 \subseteq \Sigma \setminus \{ \rhd, \sqcup \}$. Казваме че М полуразрешава езика L, L $\subseteq \Sigma_0^*$, т.т.к за всяко w $\in \Sigma_0^*$ следната еквивалентност е изпълнена:

w∈L \Leftrightarrow М спира работа върху w, т.е. М(w) \searrow .

Рекурсивно номеруем език

Един език L се нарича рекурсивно номеруем(полуразрешим), т.т.к. съществува машина на Тюринг M такава че M полуразрешава L.

Твърдения за разрешимите и полуразрешимите езици

- 1) Всеки рекурсивен език е рекурсивно номеруем.
- 2) Ако L е рекурсивен език, то \overline{L} също е рекурсивен.
- 3) Съществува рекурсивно номеруем език, който не е рекурсивен.

<u>Примитивни рекурсивни функции(ПРФ). Примитивна</u> <u>рекурсивност на някои функции</u>

Суперпозиция и примитивна рекурсия

Нека $f: \mathbb{N}^k \oplus \mathbb{N}$ и $g_i: \mathbb{N}^k \oplus \mathbb{N}$ i=1,...,n .Казваме че функцията h се получава от $f,g_1,...g_n$ с помощта на операцията суперпозиция ако $h: \mathbb{N}^k \oplus \mathbb{N}$ и за всички естествени числа $x_1,...,x_n$ е изпълнено равенството $h(x_1,...,x_n)=f(g_1(x_1,...,x_k),...,g_n(x_1,...,x_k))$.

Операцията примитивна рекурсия:

Нека $f: \mathbb{N} \oplus \mathbb{N}$ и $g: \mathbb{N}^3 \oplus \mathbb{N}$. Казваме, че функцията $h: \mathbb{N}^2 \oplus \mathbb{N}$ се получава от f и g с помощта на операцията примитивна рекурсия, ако за произволни $x,y \in \mathbb{N}$ е изпълнена системата

$$\begin{cases} h(x,0) = f(x) \\ h(x,y+1) = g(x,y,h(x,y)) \end{cases}$$

Кои функции са ПРФ?

- 1) Всички основни функции O,s,I_i ⁿ, 1≤i≤n са ПРФ;
- 2) Ако $f,g_1,...g_n$ са ПРФ то и тяхната суперпозиция която стандартно ознчаваме с $h=f(g_1,...g_n)$ също е ПРФ;
- 3) Ако f,g са ПРФ то и функцията h която се получава от тях с помощта на ПР също е ПРФ.

Твърдение за ПРФ

Следните функции са ПРФ:

- 1) Всяка константа Ca(x)=a за $x \in \mathbb{N}$;
- 2) x+y
- 3) xy
- 4) x^y
- 5) P(x) $\begin{cases} x 1, & \text{ako } x > 0 \\ 0, & \text{ako } x = 0 \end{cases}$
- 6) $\Pi(x,y)=2^{x}(2y+1)-1$.

Проста схема на ПР

Нека $g:\mathbb{N}^2 \oplus \mathbb{N}$ и $a \in \mathbb{N}$. Казваме че $h:\mathbb{N} \to \mathbb{N}$ се получава от a, g с помощта на проста схема на ПР, ако h(0)=а и h(x+1)=g(K,h(x)) за $x \in \mathbb{N}$.

Лема за проста схема на ПР

Ако $g:\mathbb{N}^2 \to \mathbb{N}$ и $a \in \mathbb{N}$ е ПРФ то и функцията h която се получава от а, g с помощта на проста схема на ПР също е ПРФ.

Кодът на $\langle x_0,...,x_k \rangle$

Нека <х $_0,...,$ х $_k>$ е крайна редица от естествени числа. Кодът на <х $_0,...,$ х $_k>$ също ще озн. с $\tau(<$ х $_0,...,$ х $_k>)$ и q(<х $_0,...,$ х $_k>)=\Pi(k,\Pi_{k+1}(x_0,...,$ х $_k)).$

Изчислимост на ПРФ

Кога една машина на Тюринг изчислява една функция $F: \mathbb{N}^k \to \mathbb{N}$ на k променливи?

Нека $F: \mathbb{N}^k \to \mathbb{N}$. Казваме, че машината на Тюринг $M = \langle K, \Sigma, \delta, s, H \rangle$ изчислява F, ако за произволни естествени числа n_1 , —, n_k са изпълнени условията:

- 1) Ако $F(n_1, -, n_k) = k$, то $M(1^{n_1} \sqcup 1^{n_2} \sqcup \sqcup 1^{n_k}) \searrow M(1^{n_1} \sqcup 1^{n_2} \sqcup \sqcup 1^{n_k}) = 1^n$.
- 2) Ако $M(1^{n_1} \sqcup 1^{n_2} \sqcup \sqcup 1^{n_k}) \searrow$, то $F(n_1, -, n_k)$ е дефинирана.

Твърдение за машина на Тюринг и ПРФ

1) Всички основни ПРФ са изчислими с машина на Тюринг.

Лекция 11

- 2) Операцията суперпозиция запазва изчислимостта с помощта на машини на Тюринг.
- 3) Операцията примитивна рекурсия запазва изчислимостта с помощта на машини на Тюринг.

Теорема за ПРФ и машини на Тюринг

Всички примитивни рекурсивни функции са изчислими с помощта на машини на Тюринг.

Частично рекурсивна функция

Операцията минимизация

Нека $f: \mathbb{N}^{k+1} \to \mathbb{N}$ е частично определена функция. Казваме, че функцията $g: \mathbb{N}^k \to \mathbb{N}$ се получава от f с помощта на операцията минимизация (още μ -операция), ако за произволни $x_1, -, x_k, y \in \mathbb{N}$ е изпълнена еквивалентността:

 $g(x_1, -, x_k) = y \Leftrightarrow$ са изпълнени следните две условия:

- 1. $f(x_1, -, x_k, y) = 0$
- 2. $\forall z < y$ е дефинирана $f(x_1, -, x_k, z)$ и $f(x_1, -, x_k, z) > 0$.

Когато g се получава от f с помощта на μ -операция(минимилизазия) това се записва така:

$$g(x_1,...,x_n)=\mu y[f(x_1,...,x_n,y)=0].$$

Индуктивна дефиниция за частична рекурсивна функция(ЧРГ)

- 1) Всички основни ПРФ- O,S, I_i^n са ЧРФ;
- 2) Ако $f,g_1,...g_n$ са ЧРФ то и тяхната суперпозиция също е ЧРФ;
- 3) Ако f,g са ЧРФ то и функцията която се получава от тях с помощта на ПР също е ЧРФ.
- 4) Ако f е ЧРФ то и функцията g, която се получава от тях с помощта на μ-операция, също е ЧРФ.

Твърдение за операцията минимизация и машини на Тюринг

Операцията минимизация запазва изчислимостта с помощта на машини на Тюринг.

Теорема за ЧРФ и машини на Тюринг

Всички частично рекурсивни функции са изчислими с помощта на машини на Тюринг.

Различни разширения на машини на Тюринг

Теорема за машини на Тюринг

Всеки език който е рекурсивен, полуразрешим и всяка функция която е изчислима с различни видове споменати машини на Тюринг, е рекурсивен, полурарешим и съответно изчислима функция с помощта на стандартна машина на Тюринг.

Недетерминистична машина на Тюринг(НМТ)

Недетерминистична машина на Тюринг е петицата $M=(K,\Sigma,\Delta,s,H)$ където всичко останало без Δ е както при стандартна машина на Тюринг а вместо δ -функция на преходите при стандартна машина на Тюринг, имаме Δ която е релация на преходите $\Delta \subseteq ((K \setminus H) \times \Sigma) \times (K \times (\Sigma \cup \{\rightarrow,\leftarrow\}))$

НМТ приема дума

Нека М=(K, Σ , Δ ,s,H) е HMT. Казваме че М приема w \in (Σ \{ \triangleright , \sqcup })* т.т.к 1) (s, \triangleright $\underline{\sqcup}$ w) |-_м*(h,u \underline{a} v) за някое h \in H и u,v \in Σ *.

НМТ полуразрешава език

Нека М=(K, Σ , Δ ,s,H) е HMТ . Казваме че М полуразрешава езика L \subseteq (Σ \{ \triangleright , \sqcup })* т.т.к. за всички w \in (Σ \{ \triangleright , \sqcup })* е изпълнена еквивалентността:

w∈L ⇔ М приема w.

Полуразрешим език

Един език L се нарича полуразрешим т.т.к. съществува HMT M такава че M полуразрешава L.

НМТ разрешава език

Нека М=(K,Σ,Δ,s,H) е НМТ . Казваме че М разрешава езика L⊆(Σ { \triangleright , \sqcup })* т.т.к. H={y,u} и за всички w∈(Σ { \triangleright , \sqcup })* са изпълнени следните две условия:

- 1. Съществува ест. число п зависещо от M и w, такова че не съществува конфигурация C удовлетворяваща $(s, \triangleright \sqcup w) \mid_{-M} C$
- 2) w∈L \Leftrightarrow (s,⊳ $\underline{\sqcup}$ w) |-м* (y,u \underline{a} v) за някои u,v∈ Σ * и а∈ Σ .

Функция е изчислима с помощта на НМТ

Нека $M=(K,\Sigma,\Delta,s,H)$ е HMТ . Казваме че функцията $f:(\Sigma\setminus\{\rhd,\sqcup\})^*\to(\Sigma\setminus\{\rhd,\sqcup\})^*$ е изчислима с помощта на M, т.т.к. следните две условия са изпълнени за произволно $w\in(\Sigma\setminus\{\rhd,\sqcup\})^*$:

- 1. Съществува ест. число п зависещо от M и н, такова че не съществува конфигурация С удовлетворяваща $(s, \triangleright \sqcup w) \mid_{-M} C$
- 2. wel \Leftrightarrow (s, $\triangleright \sqcup w$) |-м* (y,uav) т.т.к ua= $\triangleright \sqcup$ и v=f(w).

Тезис на Чърг-Тюринг. Кодиране на машини на Тюринг. Универсална машина на Тюринг

Твърдение за Н

Н не е рекурсивно множество.

Твърдение за Класът на рекурсивно номеруемите множества

Класът на рекурсивно номеруемите множества не е затворен относно операцията допълнение.

<u>Допълнителни свойства на рекурсивни и рекурсивно</u> номеруеми езици.

Твърдение за рекурсивен език

Един език L е рекурсивен т.т.к. L и \overline{L} са рекурсивно нмеруеми.

Машина на Тюринг номерира език

Казваме че една машина на Тюринг номерира (извежда) езика L т.т.к. за някое фиксирано q от M L={w|($s, \triangleright \underline{\sqcup}$) |- $_M$ *(q, $\triangleright \underline{\sqcup}$ w)}.

Език е Тюринг-номеруем

Един език L е Тюринг-номеруем т.т.к. съществува машина на Тюринг която номерира L.

Твърдение за Тюринг-номеруем език

Един език L е рекурсивен т.т.к. L е Тюринг-номеруем.

М лексикографски номерира език

Нека M е машина на Тюринг. Казваме че M лексикографски номерира език L ако следни неща са в сила:

Съществува "специално" състояние q такова че когато $(q, \triangleright \underline{\sqcup} w) \mid_{-M} * (q, \triangleright \underline{\sqcup} w')$ то w' е следващия член на L след w.

Лексикографски Тюринг-номеруем език

Казваме че L Лексикографски Тюринг-номеруем език т.т.к. съществува машина на Тюринг М която лексикографски номерира език L.

Твърдение за лексикографски номеруем език

Един език L е рекурсивен т.т.к. L е лексикографски номеруем.

Лекция 13

Неразрешими проблеми за машини на Тюринг

Редукция на език към език

Нека $L_1, L_2 \in \Sigma^*$ са езици. Свеждане L_1 към L_2 се нарича рекурсивната функция $\tau: \Sigma^* \to \Sigma^*$ такава че за всяко $x \in \Sigma^*$ е изпълнена еквивалентността:

$$x \in L_1 \Leftrightarrow \tau(x) \in L_2$$

Твърдение

Ако L_1 не е рекурсивен и има редукция от L_1 към L_2 то L_2 не е рекурсивен.

Теоремата за неразрешимите проблеми на машина на Тюринг

Следните проблеми за машини на Тюринг са неразрешими:

- 1) Стоп-проблем: По дадена машина на Тюринг М и вход w дали М спира върху входа w.
- 2) **Проблем за празния вход:** По дадена машина на Тюринг М, дали М спира върху празния вход.
- 3) **Проблема за съществуването на вход:** По дадена машина на Тюринг М дали М спира върху някой вход.
- 4) **Проблема за тотална машина на Тюринг**: По дадена машина на Тюринг *М* дали *М* спира върху всеки вход.
- 5) Проблема за еквивалентния стоп: По дадени машини на Тюринг M_1 и M_2 дали M_1 и M_2 спират върху едни и същи входове
- 6) Вид на езика, който полуразпознава: По дадена машина на Тюринг *М* дали езикът, който *М* полуразпознава, е регулярен/КСЕ/рекурсивен.
- 7) **Проблем с входа на универсална машина на Тюринг:** Съществува машина на Тюринг М(фиксирана) такава че по даден вход w не е разрешимо дали М ще спре работа върху w.

Теорема за неразрешими проблеми

Следните проблеми са неразрешими:

- 1) По дадена КСГ G дали $L(G)=\Sigma^*$;
- 2) По дадени 2 КСГ G_1 и G_2 дали $L(G_1)=L(G_2)$;
- 3) По дадени 2 стекови автомата M_1 и M_2 дали $L(M_1)=L(M_2)$;
- 4) По даден стеков автомат М да се намери стеков автомат еквивалентен на М който имам най-малко състояния.

Класовете Р и NP

Полиномиално ограничена машина на Тюринг

Нека $M=(K,\Sigma,\Delta,s,H)$ е машина на Тюринг. Казваме че M е полиномиално ограничена т.т.к. съществува полином p(n) такъв че за всеки вход x не съществува конфигурация C такава че $(s,\rhd \sqcup x)|_{-M}^{p(|x|)+1} C$.

С други думи машината M върху входа x ще стигне до стопконфигурация най-много след p(|x|) стъпки

Полиномиално разширим език

Един език L се нарича полиномиално разширим ако съществува полиномиално ограничена машина на Тюринг M която разпознава L.

P

С Р озн. класът на всички езици които са полиномиално разширими:

P={L|L е полиномиални разширим}

Полиномиално ограничена НМТ

Нека $M=(K,\Sigma,\Delta,s,H)$ е НМТ. Казваме че M е полиномиално ограничена т.т.к. съществува полином p(x) такъв че за всеки вход x не съществува конфигурация C за M такава че $(s,\triangleright \sqcup x)|_{-M}^{p(|x|)+1}$ C.

NP

Класът NP се определя като класът на всички езици които се разпознават от полиномиално ограничена НМТ.

 $NP=\{L|L$ се разпознава от полиномиално ограничени $HMT\}$