Lista 4 de Teoria da Computação - 2021.01 (COS700/MAB703)

Data de entrega: 11/07/2021

Observação. A resolução de cada questão deve ser iniciada em uma nova folha de papel. Além disso, antes do início de cada questão, deve-se incluir o número da questão e o nome completo do aluno.

1. Descreva o diagrama de composição de máquinas de Turing que aceitem as seguintes linguagens:

(i)
$$\{w \in \{0,1\}^* : |w| \text{ é par}\}\$$
 (ii) $\{a^n b^n c^m : m \ge n\}.$

2. Dizemos que uma máquina de Turing $M = (\Sigma_0, \Sigma, Q, q, F, \delta)$ computa uma função $f : \Sigma_0^* \to \Sigma_0^*$ se para qualquer $w \in \Sigma_0^*$ temos que, quando M é iniciada com w escrito na fita imediatamente à direita de \triangleright e com o cabeçote na primeira célula à direita de \triangleright , a execução chega a um estado de parada com apenas f(w) escrito na fita, imediatamente à direita de \triangleright .

Se identificarmos \mathbb{N} com o conjunto $\{0,1\}^*$ usando a representação usual de cada natural em base binária, isso nos dá uma definição de funções computáveis do tipo $f: \mathbb{N} \to \mathbb{N}$ (para este caso, assuma que $f(\varepsilon) = \varepsilon$).

Construa máquinas de Turing que computem as funções $f_1, f_2 : \mathbb{N} \to \mathbb{N}$ e $g : \{0, 1\}^* \to \{0, 1\}^*$, definidas como segue:

(i)
$$\forall n \in \mathbb{N}, f_1(n) = n + 1$$
 (ii) $\forall n \in \mathbb{N}, f_2(n) = n \mod 2$ (iii) $\forall w \in \{0, 1\}^*, g(w) = w^r$.

- **3.** Construa uma máquina que decida a linguagem $L = \{a^n b^n c^n : n \ge 0\}$.
- 4. Um autômato com duas pilhas é análogo a um autômato de pilha, exceto por possuir duas pilhas e ter função de transição dada da seguinte forma:

$$\Delta: Q \times (\Sigma \cup \{\epsilon\}) \times (\Gamma \cup \{\epsilon\}) \times (\Gamma \cup \{\epsilon\}) \to \mathcal{P}_f(Q \times \Gamma^* \times \Gamma^*),$$

isto é, as transições dependem dos símbolos presentes no topo das duas pilhas e produzem ações independentes em cada uma das pilhas. Mostre que máquinas de Turing e autômatos com duas pilhas são equivalentes, ou seja, uma máquina de Turing pode ser simulada através de um autômato com duas pilhas, e vice-versa.

- 5. Seja Σ um alfabeto e $L \subseteq \Sigma^*$ uma linguagem em Σ . Mostre que se L e $\Sigma^* \setminus L$ são ambas recursivamente enumeráveis, então L é recursiva.
- 6. Sejam L_1 e L_2 linguagens recursivas aceitas por máquinas de Turing \mathcal{M}_1 e \mathcal{M}_2 , respectivamente. Mostre como construir uma máquina de Turing \mathcal{M} que aceite a linguagem $L_1 \cup L_2$.