Lecture 3: Nearest Neighbors I

1/13/2020

Lecturer: Kanat Tangwongsan Scribe: Kriangsak THUIPRAKHON

1 Example: Depth of Treap

the previous lecture, we have proven that the height of a treap to be fairly balanced with the expected depth of $\log_2 n$. Here is another derivation of the height of a treap using chernoff hoeffding bounds.

Let $A_{i,j}$ be an indicator random variable where,

$$A_{i,j} = \begin{cases} 1 & \text{if } j \text{ is an ancestor of } i \\ 0 & \text{otherwise} \end{cases}$$

Note that for a fix i, all $A_{i,j}$'s are independent, meaning Chernoff-Hoeffding bounds apply. In this case, the depth of the treap is,

$$\operatorname{depth}(X_i) = \sum_{j=1}^n A_{1,j}$$

$$= 1 + \sum_{j=1}^{i-1} A_{i,j} + \sum_{j=i+1}^n A_{i,j}$$

In the previous lecture, it was shown that the height of a treap is about $\log_2 n$ with high probability. This mean we want to bound something in the following form Claim:

$$Pr[\text{Depth} \le k \ln n] = 1 - \underbrace{Pr[\text{Depth} > k \ln n]}_* \ge 1 - \frac{1}{n^{\alpha}}$$

where the term $\frac{1}{n^{\alpha}}$ is the error probability mentioned in the previous lecture. The goal now is to bound * using union bound.

$$\Pr[\, \operatorname{Depth} > k \ln n \,] \leq \Pr[\, \operatorname{left} > \frac{k}{2} \ln n \,] + \Pr[\, \operatorname{right} > \frac{k}{2} \ln n \,]$$

Applying the powerful Chernoff-Hoeffding bounds, we then have

$$\begin{split} Pr\big[\text{ left} > (1+\frac{k}{2}-1)\ln n \,\big] &\leq \exp\{-\frac{(\frac{k}{2}-1)^2}{3} \times \underbrace{2\ln n}_* \big\} \\ &\leq \frac{1}{n^\alpha} \quad \text{where } \alpha = \frac{(\frac{k}{2}-1)^2}{3} \end{split}$$

Note that * is bounded by the deepest height of a treap. The same taken to the second term, we will have

$$\mathbb{P}[\operatorname{depth} \le k \ln n] \ge 1 - \frac{1}{n^{\alpha}}$$

2 The Power of Grid

In this last bit of the lecture, we will explore the a simple idea whereby the space is sub-divided into grid cells. By doing so, it turns out to be extremely powerful.

2.1 Closest Pair in 2D

Given the input as a set P of n points in 2D, and the goal is to compute the closest pair of points. There are a few ways to solve such a problem. One may try to go about writing two for-loops but of course the algorithm delivers with $O(n^2)$. Another approach to this problem is to solve it using divide and conquer yeilding O(nlogn). However, there is a faster, and simpler, algorithm that delivers the closest pair in O(n), with allowance of additional operations.

2.2 Verification

let CP(Q) denote the distance between the closest pair of points of Q, where Q is a set of points. if someone claims CP(Q) is r. How do we verify this quickly? We can in fact do this in linear time:

- Build a grid of size r by r
- Dump all the points into the cells by bucketing/hashing. In fact, $\mathbf{Q}(\mathbf{x},\mathbf{y})$ goes to the coordinate (|x/r|,|y/r|).
- If any cell has more than 9 points, CP(Q) < r. Note that if the cell is sub-divided into a 3-by-3 sub-cells, Pigeon hole says one of them has at least two points, but then this sub-cell's diameter is strictly less than r
- For each operation, we will look at at most 81 points. That is, we will be looking at the neighboring 8 points for all sub-cells containing at most 9 points.

• Hence, linear time!

2.3 A Closest Pair Algorithm

- 1. Permute the given input set **P** of points randomly, say $\mathbf{P} = \langle p_1, p_2, ..., p_n \rangle$ is a permutation of the given input.
- 2. start with $r_2 = ||p_1 p_2||_2$. In this case, the above grid will be sub-divided into an r-by-r grid where $r = r_2$
- 3. $\forall i \in \{3, 4, 5, ..., n\}, p_i$ will be added. When added, there algorithm shall perform:
 - Check whether p_i forms a new closest pair. This requires the checking of p_i to its original and other 8 neighboring cells, all of which contain at most 9 points.
 - If p_i becomes the new closest pair, rebuild the grid using the new closest pair distance.
 - Continue with this grid otherwise.

Let X be the indicator random variable,

$$X_i = \begin{cases} 1 & \text{if } p_i \text{ forms a new closest pair} \\ 0 & \text{otherwise} \end{cases}$$

The total cost is then given by the resurrance,

$$T(n) = O(1) + \sum_{i=3}^{n} (O(1) + X_i \cdot i)$$

Claim: $\mathbb{P}[X_i = 1] \leq \frac{2}{i}$, where p_i is randomly drawn from the permuted input. The probability of a point randomly drawn forms the new closest pair is given by two cases:

- The closest pair is unique and they are x-y. Then either one of them will be picked as p_i with 2/i probability.
- ullet The closest pair is not unique, then the probability that p_i becomes the **new** closest pair is 0.

Hence, the expected running time is then,

$$\mathbb{E}[T(n)] \le O(1) + n + \underbrace{\sum_{i=3}^{n} [X_i \cdot i]}_{2/i}$$

$$= O(n) + \sum_{i=3}^{n} [\frac{2}{i} \cdot i]$$

$$= O(n)$$