Visually Lossless Compression of Chest X-ray Images

Mohammad Bagher Sharifi Ali Naseri Esfahani Erfan Moeini

Overview

- Introduction: prior work & project overview
- Method: noise analysis & compression approach
- **Results**: dataset, experiments, outcomes

Introduction

Related Work

A Fast Method of Visually Lossless Compression of Dental Images

- Dental images
- Visually-lossless
- Compression efficiency

Goal

Determine optimal Quantization Step (QS)

- Ensure visually-lossless output
- Maximize compression ratio without harm

Framework

- Noise analysis and modeling
- Coder comparison using perceptual metrics
- QS selection strategy
- Clinical verification

Our Work

- Implement article's compression
- Reproduce experiments
- Test on chest X-rays

Method

Methodology

• This work applies the ADCT algorithm to compress images

 Because ADCT adapts compression to image content, it provides better fidelity than non-adaptive methods such as JPEG2000

• This work aims to select the optimal input hyperparameter for the ADCT algorithm

ADCT Algorithm

based on DCT with adaptive partitioning

• driven by Quantization Step (QS) as a key input parameter

context-based statistical modeling and arithmetic coding of DCT data

choosing QS balances compression ratio and diagnostic quality

Analysis of Noise Properties in Dental Images

 Noise variance is estimated as a combination of additive, multiplicative, and Poisson-like components

$$\hat{\sigma}_{eq}^2 = \hat{\sigma}_a^2 + \hat{\sigma}_\mu^2 I^2 + kI$$

Invisibility Condition of Compression Noise in Images

• For compression distortion to be invisible, it must be much smaller than the image noise

$$\sigma_{distortion}^2 \le \frac{\sigma_{noise}^2}{10}$$
 (1)

$$PSNR = 10 \log_{10}(\frac{MAX^2}{MSE^2}) \tag{2}$$

Methodology Overview

Goal: Efficient compression of dental images with high diagnostic quality

Idea: Select the optimal Quantization Step (QS) based on image noise

Workflow:

- 1. Noise analysis of input image
- 2. Define target PSNR from noise level
- 3. Apply ADCT with optimal QS
- 4. Evaluate quality with metrics

Result

Experiments

- Datasets: panoramic dental images and chest images in two resolutions
- Metrics: FSIM, PSNR HVS M
- Experiments:
 - Validate paper results on a new dental dataset
 - Find QS for chest X-ray Images
 - o Analyze QS in higher resolution

Table 1. Datasets Details

Туре	Imaging	Number Of Images
Panoramic Dental [1]	X-Ray 512	48
Chest [2]	X-Ray 512	145
Chest [2]	X-Ray 1024	107

ADCT vs JPEG2000

- Encode and decode Images with different QS values
- Encoding using jpeg2000
- Significant improvement compared to jpeg2000

Fig1. Sample of panoramic dental image

Fig2. adct and jpeg2000 quality on dental image₁₆

Find QS

- Encode and decode images for QS in the range (6, 42)
- Find QS values where
 - o FSIM > 0.99
 - o Psnr hvsm > 40db
- Charts
 - Red line shows the threshold
 - Blue line indicates the best QS for each metric
- QS=16 works well for all sample images

Fig3. Adct on panoramic dental dataset

Best QS for Chest X-ray 512

- QS = 14 performs well in psnr-hvs-m
- QS = 6 performs well in fsim
- The average CR is around 10
- Results are not always normal

Fig4. image with low fsim

Fig5. Adct on chest X-ray 512 dataset 18

Best QS for Chest X-ray 1024

- QS = 12 also performs well in psnr-hvs-m
- QS = 6 does not perform well in fsim
- A single good QS value could not be found for all scenarios

Fig6. Adct on chest X-ray 1024 dataset 19

Clinical Verification

- Chest X-ray 512 compress with QS=6
- Image shuffling and doctor evaluation
- Better in Ideal images

Table 2. results of doctor evaluation

Compression Status	Total Images	Unusable %	Weak %	Sufficient %	Ideal %
Compressed	27	0	22	33	45
Uncompressed	23	4	22	35	39

Conclusion

- Introduction: Main paper overview
- Method: Relation between noise and qs, Explain Adct
- Results: Check paper results and Find QS for chest images

Any Question?

References

- 1. Mooney, P. (2018). Chest X-Ray Images (Pneumonia) [Data set]. Kaggle. Retrieved August 19, 2025, from https://www.kaggle.com/datasets/paultimothymooney/chest-xray-pneumonia
- 2. Vipul Arya, K. (n.d.). A Collection of Dental X-Ray Images for Analysis [Data set]. Kaggle. Retrieved August 19, 2025, from https://www.kaggle.com/datasets/kvipularya/a-collection-of-dental-x-ray-images-for-analysis
- 3. Krivenko, S., Lukin, V., Krylova, O., Kryvenko, L., & Egiazarian, K. (2021). A Fast Method of Visually Lossless Compression of Dental Images. *Applied Sciences*, 11(1), Article 135. https://doi.org/10.3390/app11010135
- 4. Abramova, V., Krivenko, S., Lukin, V., & Krylova, O. (2020). Analysis of noise properties in dental images. In *2020 IEEE 40th International Conference on Electronics and Nanotechnology (ELNANO)* (pp. 511–515). IEEE. https://doi.org/10.1109/ELNANO50318.2020.9088819
- 5. Ponomarenko, N., Lukin, V., Egiazarian, K., & Astola, J. (2008). ADCTC: Advanced DCT-Based Image Coder. In *Proceedings of the 2008 International Workshop on Local and Non-Local Approximation in Image Processing (LNLA 2008)* (pp. 511–515). IEEE. https://doi.org/10.1109/ELNANO50318.2008.4522211

AppendiX

Datasets

Table 1. Datasets Details

Туре	Imaging	Resolution	Number Of Images	Sample
Panoramic Dental	X-Ray	512 * 512	48	35
Chest	X-Ray	512 * 512	145	26
Chest	X-Ray	1024 * 1024	107	70