Unidad 3: BBDD relacionales

BBDD01, Sesión 8:

Álgebra relacional

Cálculo relacional

INDICE

- Algebra relacional
- Algebra relacional extendida
- Modificación de la base de datos
- oVistas
- o Cálculo relacional de tuplas
- oCálculo relacional de dominios.

Referencias: Silberschatz 4^a Ed. pp 53-82

Lenguajes de consulta

 ○Lenguaje de consulta ⇒ usuario solicita información de la base de datos

ODos tipos:

- Procedimentales ⇒ usuario especifica las operaciones a realizar
 - Algebra relacional
- No procedimentales ⇒ usuario describe "lo que necesita", no el modo de conseguirlo.
 - Cálculo relacional de tuplas y el de dominios
- o Lenguaje también incluye componentes para modificación de la base de datos.

Algebra relacional

- Lenguaje consulta procedimental r(R)
- o El resultado de cualquier operación (monaria o binaria) es una nueva relación → operaciones cerradas → se pueden componer
- o Seis operadores básicos
 - Selección
 - Proyección
 - Unión
 - Diferencia de conjuntos
 - Producto Cartesiano
 - Renombrado

.

Operación selección

- \circ Notación: $\sigma_p(r)$
- op se llama predicado de la selección
- oSe define como:

$$\sigma_p(\mathbf{r}) = \{t \mid t \in r \ y \ p(t)\}$$

Donde p es una expresión lógica= Términos lógicos conectados por \land (and), \lor (or), \neg (not) Cada término es:

$$\leftarrow$$
atributo \rightarrow op \leftarrow atributo \rightarrow o \leftarrow constante \rightarrow donde op es: =, \neq , \rightarrow , \geq . \leftarrow . \leq

- oComparación implicando a un valor nulo ⇒ falsa
- o Ejemplo:

Operación selección

 Ejemplo: Información sobre prestamos de la sucursal de Navacerrada

prestamo

número-préstamo	nombre-sucursal	importe
P-11	Collado Mediano	900
P-14	Centro	1.500
P-15	Navacerrada	1.500
P-16	Navacerrada	1.300
P-17	Centro	1.000
P-23	Moralzarzal	2.000
P-93	Becerril	500

σ nombre_sucursal="Navacerrada"(prestamo)

número-préstamo	nombre-sucursal	importe
P-15	Navacerrada	1.500
P-16	Navacerrada	1.300

Operación proyección

- o Notación: $\prod_{A1, A2, ..., Ak} (r)$ donde A_1 , A_2 son atributos y r es la relación
- o El resultado es una relación de k columnas eliminando de R las que no están en la lista
- o Las filas duplicadas se eliminan. Son conjuntos
- o Ejemplo: Importe de cada uno de los préstamos

prestamo

número-préstamo	nombre-sucursal	importe
P-11	Collado Mediano	900
P-14	Centro	1.500
P-15	Navacerrada	1.500
P-16	Navacerrada	1.300
P-17	Centro	1.000
P-23	Moralzarzal	2.000
P-93	Becerril	500

 $\Pi_{\text{numero_prestamo,importe}}$ (prestamo)

número-préstamo	importe
P-11	900
P-14	1.500
P-15	1.500
P-16	1.300
P-17	1.000
P-23	2.000
P-93	500

Composición de operaciones relacionales

- o Resultado de una operación relacional es otra relación
- o→Se pueden componer expresiones
- o Ejemplo:
 - Encontrar los clientes que viven en Peguerinos

$$I_{
m hombre_cliente}$$
 ($\sigma_{
m cludad_cliente="Peguerinos"}$ (c liente))

Operación unión

- o Notación: r∪s
- o Se define como:

$$r \cup s = \{t \mid t \in r \text{ o } t \in s\}$$

- o Para r∪s sea válida → rys compatibles:
 - 1. r, s debe tener el mismo número de atributos
 - 2. El dominio de los atributos debe de ser compatible
- No hay valores duplicados

Ejemplo: Nombre de todos los clientes, ya sea que tengan un préstamo o una cuenta

 $\Pi_{\text{nombre cliente}}$ (prestatario) $\cup \Pi_{\text{nombre cliente}}$ (impositor)

Operación unión

o Ejemplo:: Nombre de todos los clientes, ya sea que tengan un préstamo o una cuenta

prestatario

número préstamo
P-16
P-93
P-15
P-14
P-17
P-11
P-23
P-17

impositor

nombre cliente	número cuenta
Abril	C-102
Gómez	C-101
González	C-201
González	C-217
López	C-222
Rupérez	C-215
Santos	C-305

 $\Pi_{\text{nombre_cliente}}$ (prestatario) () $\Pi_{\text{nombre_cliente}}$ (impositor)

Operación diferencia de conjunt 2

1 2

5

6

o Notación r − s

o Definido como: $r - s = \{t \mid t \in r \ y \ t \notin s\}$

Las relaciones deben de ser compatibles

 Ejemplo: Clientes que tienen un préstamo pero no una cuenta impositor prestatario

nombre cliente	número cuenta
Abril	C-102
Gómez	C-101
González	C-201
González	C-217
López	C-222
Rupérez	C-215
Santos	C-305

	nombre cliente	número préstamo
	Fernández	P-16
	Gómez	P-93
	Gómez	P-15
	López	P-14
	Pérez	P-17
П	Santos	P-11
- Π_{nc}	Sotoca	P-23
	Valdivieso	P-17

- o Notación r x s
- •Se define como:

$$rxs = \{tq \mid t \in r y q \in s\}$$

- Argumentos de producto cartesiano
- oSi r tiene a atributos y s tiene b atributos → r x s tiene a+b con nombre, el de los atributos originales
- o Ejemplo:
 - r = prestatario x prestamo
 - (prestatario.nombre-cliente, prestatario.númeropréstamo,préstamo.nombre-sucursal, préstamo.número-préstamo, préstamo.importe)
 - Si no hay ambigüedad > simplificar: (nombre-cliente, prestatario.número-préstamo, nombre-sucursal, préstamo.númeropréstamo, importe)
- oSi hay n₁ tuplas en r y n₂ tuplas en s, el resultado es n₁*n₂ tuplas.

nombre-cliente	prestatario.número-préstamo	préstamo.número-préstamo	nombre-sucursal	importe
Santos	P-17	P-11	Collado Mediano	900
Santos	P-17	P-14	Centro	1.500
Santos	P-17	P-15	Navacerrada	1.500
Santos	P-17	P-16	Navacerrada	1.300
Santos	P-17	P-17	Centro	1.000
Santos	P-17	P-23	Moralzarzal	2.000
Santos	P-17	P-93	Becerril	500
Gómez	P-23	P-11	Collado Mediano	900
Gómez	P-23	P-14	Centro	1.500
Gómez	P-23	P-15	Navacerrada	1.500
Gómez	P-23	P-16	Navacerrada	1.300
Gómez	P-23	P-17	Centro	1.000
Gómez	P-23	P-23	Moralzarzal	2.000
Gómez	P-23	P-93	Becerril	500
López	P-15	P-11	Collado Mediano	900
López	P-15	P-14	Centro	1.500
López	P-15	P-15	Navacerrada	1.500
López	P-15	P-16	Navacerrada	1.300
López	P-15	P-17	Centro	1.000
López	P-15	P-23	Moralzarzal	2.000
López	P-15	P-93	Becerril	500
Valdivieso	P-17	P-11	Collado Mediano	900
Valdivieso	P-17	P-14	Centro	1.500
Valdivieso	P-17	P-15	Navacerrada	1.500
Valdivieso	P-17	P-16	Navacerrada	1.300
Valdivieso	P-17	P-17	Centro	1.000
Valdivieso	P-17	P-23	Moralzarzal	2.000
Valdivieso	P-17	P-93	Becerril	500
Fernández	P-16	P-11	Collado Mediano	900
Fernández	P-16	P-14	Centro	1.500
Fernández	P-16	P-15	Navacerrada	1.500
Fernández	P-16	P-16	Navacerrada	1.300
Fernández	P-16	P-17	Centro	1.000
Fernández	P-16	P-23	Moralzarzal	2.000
Fernández	P-16	P-93	Becerril	500

- o Ejemplo: Averiguar los nombres de todos los clientes con un préstamo en Navacerrada.
 - 1º producto cartesiano

$$\sigma_{\text{nombre-sucursal} = \text{``Navacerrada''}}(prestatario \times pr\'{e}stamo)$$

- 2º -Seleccionar solo los de "Navacerrada"

nombre-cliente	prestatario.número-préstamo	préstamo.número-préstamo	nombre-sucursal	importe
Santos	P-17	P-15	Navacerrada	1.500
Santos	P-17	P-16	Navacerrada	1.300
Gómez	P-23	P-15	Navacerrada	1.500
Gómez	P-23	P-16	Navacerrada	1.300
López	P-15	P-15	Navacerrada	1.500
López	P-15	P-16	Navacerrada	1.300
Sotoca	P-14	P-15	Navacerrada	1.500
Sotoca	P-14	P-16	Navacerrada	1.300
Pérez	P-93	P-15	Navacerrada	1.500
Pérez	P-93	P-16	Navacerrada	1.300
Gómez	P-11	P-15	Navacerrada	1.500
Gómez	P-11	P-16	Navacerrada	1.300
Valdivieso	P-17	P-15	Navacerrada	1.500
Valdivieso	P-17	P-16	Navacerrada	1.300
Fernández	P-16	P-15	Navacerrada	1.500
Fernández	P-16	P-16	Navacerrada	1.300

– 3° - Eliminar tuplas que no corresponden al mismo préstamo

```
\sigma_{prestatario.n\'umero-pr\'estamo} = pr\'estamo.n\'umero-pr\'estamo 
 (<math>\sigma_{nombre-sucursal} = \text{``Navacestada''} (prestatario \times pr\'estamo))
```

– 4° - Proyección para eliminar los atributos no necesarios

```
\Pi_{nombre-cliente} (\sigma_{prestatario.n\'umero-pr\'estamo} = pr\'estamo.n\'umero-pr\'estamo (\sigma_{nombre-sucursal} = \text{``Navaceitada''}) (prestatario \times pr\'estamo)))
```

nombre-cliente

Férnandez López

Operación renombrado

- o Permite poner nombres a los resultados de las expresiones del álgebra relacional
- o Permite referir a una relación por más de un nombre Ejemplo:

$$\rho_{x}(E)$$
 o $X \leftarrow E(esto es asignación)$

Devuelve resultado de la expresión E bajo el nombre X

Si la expresión E tiene n atributos, entonces

$$\rho_{X \text{ [A1, A2, ..., An]}}(E)$$
 o $X(A1,A2,An) \leftarrow E$

Devuelve el resultado de la expresión E bajo el nombre X y con los atributos renombrados como A1, A2,, An.

Operación renombrado

o Ejemplo: Buscar el máximo saldo de cuenta del banco

impositor

número-cuenta	nombre-sucursal	saldo
C-101	Centro	500
C-215	Becerril	700
C-102	Navacerrada	400
C-305	Collado Mediano	350
C-201	Galapagar	900
C-222	Moralzarzal	700
C-217	Galapagar	750

- 1º - Calcular una relación inte

- 2º - Realizar la diferencia entre la proyeccion del saldo de las cuentas y esta relación intermedia

- 3º Renombrar

e no son el máximo.

Operación renombrado

– 1º - Calcular una relación intermedia que contiene todos los saldos que no son el máximo. Aplicar renombrado a cuenta y construir la relación intermedia

- 2º - Calcular el máximo

- 3° Renombrar ρ_{maximo saldo (máximo)} (

$$\Pi_{cuenta.saldo} \left(\sigma_{cuenta.saldo < d.saldo} \left(cuenta \times \rho_d \left(cuenta \right) \right) \right)$$

$$\Pi_{saldo}$$
 (cuenta) – $\Pi_{cuenta.saldo}$ ($\sigma_{cuenta.saldo} < \sigma_{cuenta.saldo}$ (cuenta × ρ_d (cuenta)))

$$\Pi_{saldo}$$
 (cuenta) – $\Pi_{cuenta.saldo}$ ($\sigma_{cuenta.saldo} < \sigma_{cuenta.saldo}$ (cuenta × ρ_d (cuenta)))

Expresiones del algebra relacional

oSi E₁ y E₂ son expresiones del álgebra relacional, las siguientes son también expresiones del álgebra relacional

$$-E_1 \cup E_2$$

$$-E_1 - E_2$$

$$-E_1 \times E_2$$

- $-\sigma_p$ (E₁), P un predicado sobre atributos de E₁
- $-\prod_{s}(E_1)$, S es una lista de atributos de E_1
- $-\rho_{x}$ (E₁), x es el nuevo nombre para el resultado E₁

Operaciones adicionales

No dan más potencia, pero simplifican las expresiones

- oIntersección de conjuntos
- oReunión natural
- División
- oAsignación.

Se pueden expresar en función de las anteriores

Operación intersección

- oNotación: r∩s
- oDefinido como:
- or \cap s = { t | t \in ryt \in s }

- or y s han de ser compatibles (para la unión):
 - -r, s tienen el mismo número de atributos
 - -Los atributos de r y s tienen el mismo dominio
- \circ Advertid: $r \cap s = r (r s)$

Operación intersección

□Ejemplo: Nombre de clientes que tienen préstamos y cuentas

prestatario

nombre cliente	número préstamo
Fernández	P-16
Gómez	P-93
Gómez	P-15
López	P-14
Pérez	P-17
Santos	P-11
Sotoca	P-23
Valdivieso	P-17

impositor

nombre cliente	número cuenta
Abril	C-102
Gómez	C-101
González	C-201
González	C-217
López	C-222
Rupérez	C-215
Santos	C-305

 $\Pi_{nombre\text{-}cliente}$ (prestatario) $\cap \Pi_{nombre\text{-}cliente}$ (impositor)

nombre-cliente Gómez Pérez Santos

Operación reunión natural

M

- Notación: r ⋈ s
- oSean r y s relaciones con esquema R y S respectivamente Entonces, r ⇒s es una relación en el esquema R ∪ S obtenida como:
 - Considerar tuplas t_r de r y t_s de s.
 - Si $\,t_{r}\,y\,t_{s}$ tienen el mismo valor en cada uno de los atributos de R \cap S, añadir una tupla t $\,$ al resultado donde
 - t tiene el mismo valor que t_r en r
 - t tiene el mismo valor que t_S en s
- o Ejemplo:

$$R = (A, B, C, D)$$

$$S = (E, B, D)$$

- Esquema resultante = (A, B, C, D, E)
- r s se define como:

$$\prod_{r.A, r.B, r.C, r.D, s.E} (\sigma_{r.B=s.B} \wedge_{r.D=s.D} (r \times s))$$

Operación reunión natural

 \bowtie

o Definición formal: dos relaciones r(R) y s(S), $r \bowtie s$ es una relación del esquema R U S definida por:

$$r \bowtie s = \prod_{R \cup S} (\sigma_{r.A_1 = s.A_1 \land r.A_2 = s.A_2 \land \dots \land r.A_n = s.A_n} (r \times s)$$

donde
$$R \cap S = \{A_1, A_2, ..., A_n\}$$

oEs asociativa:

(cliente \bowtie cuenta) \bowtie impositor cliente \bowtie (cuenta \bowtie impositor)

$$\circ Si R \cap S = \emptyset \Rightarrow r \bowtie s = r \times s$$

Operación reunión natural

M

o Ejemplo: Información de todos los préstamos, especificando el nombre del cliente.

prestatario

nombre cliente	número préstamo
Fernández	P-16
Gómez	P-93
Gómez	P-15
López	P-14
Pérez	P-17
Santos	P-11
Sotoca	P-23
Valdivieso	P-17

prestamo

número-préstamo	importe
P-11	900
P-14	1.500
P-15	1.500
P-16	1.300
P-17	1.000
P-23	2.000
P-93	500

 $\Pi_{nombre\text{-}cliente, n\'umero\text{-}pr\'estamo, importe}$ (prestatario \bowtie pr\'estamo)

nombre-cliente	número-préstamo	importe
Fernández	P-16	1.300
Gómez	P-23	2.000
Gómez	P-11	900
López	P-15	1.500
Pérez	P-93	500
Santos	P-17	1.000
Sotoca	P-14	1.500
Valdivieso	P-17	1.000

Operación reunión zeta

 \bowtie

- \square Notación: $r \bowtie s$
- o Combina selección y producto cartesiano en una operación.

$$\Box r \bowtie s = \sigma (r \times s)$$

$$\Box \theta \qquad \Box \theta$$

$$r \div s$$

- oVálida para las consultas que tienen "para todos".
- Sea r y s relaciones en esquemas R and S respectivamente cuando
 - $-R = (A_1, ..., A_m, B_1, ..., B_n)$
 - $-S = (B_1, ..., B_n)$

El resultado de $r \div s$ es una relación del esquema $R - S = (A_1, ..., A_m)$ Una tupla t está en $r \div s$ si se cumple:

- $-t_r[S]=t_s[S]$
- $-t_r[R-S]=t$
- Se puede definir en términos del álgebra relacional

$$r \div s = \prod_{R-S} (r) - \prod_{R-S} ((\prod_{R-S} (r) \times s) - (r))$$

$r \div s$

o Ejemplo: los clientes que tengan abierta una cuenta en todas las sucursales ubicadas en Arganzuela

sucursal

nombre de la sucursal	ciudad de la sucursal	activos
Galapagar	Arganzuela	7.500
Centro	Arganzuela	9.000.000
Becerril	Aluche	2.000
Segovia	Cerceda	3.700.000
Navacerrada	Aluche	1.700.000
Navas de la Asunción	Alcalá de Henares	1.500
Moralzarzal	La Granja	2.500
Collado Mediano	Aluche	8.000.000

$$r_1 = \Pi_{nombre-sucursal} \left(\sigma_{ciudad-sucursal} = {}_{*Arganzuela} \left(sucursal \right) \right)$$

2) Sucursal de los clientes que tienen cuenta

imposito

nombre cliente	número cuenta
Abril	C-102
Gómez	C-101
González	C-201
González	C-217
López	C-222
Rupérez	C-215
Santos	C-305

cuenta

número-cuenta	nombre-sucursal	saldo
C-101	Centro	500
C-215	Becerril	700
C-102	Navacerrada	400
C-305	Collado Mediano	350
C-201	Galapagar	900
C-222	Moralzarzal	700
C-217	Galapagar	750

 $r_2 = \Pi_{nombre\text{-}cliente, nombre\text{-}sucursal}(impositor \bowtie cuenta)$

nombre-cliente	nombre-sucursal
Abril	Collado Mediano
Gómez	Becerril
González	Centro
González	Galapagar
López	Navacerrada
Rupérez	Moralzarzal
Santos	Galapagar
Valdivieso	Navacerrada
	I

3) todos los clientes que tengan abierta una cuenta en todas las sucursales ubicadas en Arganzuela

nombre-cliente	nombre-sucursal
Abril	Collado Mediano
Gómez	Becerril
González	Centro
González	Galapagar
López	Navacerrada
Rupérez	Moralzarzal
Santos	Galapagar
Valdivieso	Navacerrada

nombre-sucursal
Centro
Galapagar

$$\Pi_{nombre\text{-}cliente, nombre\text{-}sucursal}(impositor \bowtie cuenta) \\ \div \Pi_{nombre\text{-}sucursal}(\sigma_{ciudad\text{-}sucursal\text{ = } \text{``Arganzuela}\text{``}}(sucursal)) \\ \text{El re} \qquad \qquad \text{cliente}$$

Operación de asignación

- Operación de asignación (←) una manera conveniente de expresar consultas complejas
 - Escribir consulta como un programa secuencial consistiendo de
 - Una serie de asignaciones
 - Seguidos por una expresión cuyo valor se muestra como un resultado de una consulta
 - Asignación se debe de realizar a una variable temporal
- o Ejemplo: escribir r ÷ s como

temp1
$$\leftarrow \Pi_{R-S}$$
 (r)
temp2 $\leftarrow \Pi_{R-S}$ ((temp1 x s) $-\Pi_{R-S,S}$ (r))
result = temp1 $-$ temp2

 El resultado de la derecha de ← se asigna a la variable relación temporal de la izquierda.

Operaciones del algebra relacional extendida

ONuevas operaciones que dan más potencia al algebra relacional:

- -Proyección generalizada
- -Funciones agregadas
- -Reunión externa

Proyección generalizada

 Extiende la operación de proyección permitiendo funciones aritméticas en la lista de proyección

$$\prod_{\mathsf{F1},\mathsf{F2},\ldots,\mathsf{Fn}}(\mathsf{E})$$

- E expresión del álgebra relacional
- \circ Cada F_1 , F_2 , ..., F_n son expresiones aritméticas que involucran constantes y atributos en el esquema de E
- o Ejemplo:

Informacion credito

nombre-cliente	límite	saldo-crédito
Gómez	2.000	400
López	1.500	1.500
Pérez	2.000	1.750
Santos	6.000	700

Inombre-cliente, limite - salgo-cregito - - - - - - ible (información_credito)

nombre-cliente	crédito-disponible
Gómez	1.600
López	0
Pérez	250
Santos	5.300

Funciones agregadas y operaciones

o Función agregada toma un conjunto de valores y devuelve uno sólo.

avg: valor medio min: valor mínimo max: valor máximo sum: suma de valores count: número de valores

o Operación agregada en el álgebra relacional

- E es una expresión
- $-G_1, G_2 ..., G_n$ lista de atributos en los cuales se agrupa (puede ser vacío)
- Cada F_i es una función agregada
- cada A_i es un nombre de atributo

Funciones agregadas y operaciones

o Ejemplo:

rabajo-por-horas

nombre-empleado	nombre-sucursal	sueldo
González	Centro	1.500
Díaz	Centro	1.300
Jiménez	Centro	2.500
Catalán	Leganés	1.600
Cana	Leganés	1.500
Cascallar	Navacerrada	5.300
Fernández	Navacerrada	1.500
Ribera	Navacerrada	1.300

o Resultado: una tupla de valor 16.50 $G_{\text{sum}(\text{sueldo})}(\text{trabajo-por-horas})$

Funciones agregadas y operaciones

o Borrar los valores duplicados antes de aplicar la función de agregación ⇒ distinct

$$\mathcal{G}_{count\text{-}distinct(nombre-}sucursal)}(trabajo\text{-}por\text{-}horas)$$

- o Resultado: una tupla de valor 3
- Realizar grupos por nombre_sucursal

nombre-empleado	nombre-sucursal	sueldo
González	Centro	1.500
Díaz	Centro	1.300
Jiménez	Centro	2.500
Catalán	Leganés	1.600
Cana	Leganés	1.500
Cascallar	Navacerrada	5.300
Fernández	Navacerrada	1.500
Ribera	Navacerrada	1.300

 $nombre-sucursal G_{sum(sueldo)}$ (trabajo-por-horas)

nombre-sucursal	suma de sueldos
Centro	5.300
Leganés	3.100
Navacerrada	8.100

Funciones agregadas

- o Resultado de agregación no tiene nombre
 - Se puede usar la operación de renombramiento
 - Se puede permitir el renombramiento de una función agregada

nombre-sucursal $G_{sum}(sueldo)$ as suma-sueldo, max(sueldo) as sueldo-máximo (trabajo-por-horas)

nombre-sucursal	suma-sueldo	sueldo-máximo
Centro	5.300	2.500
Leganés	3.100	1.600
Navacerrada	8.100	5.300

Reunión externa

- OUna extensión de la operación de reunión que evita la pérdida de información
- oRealiza la reunión y añade las tuplas de una relación que no coincide con el atributo de la reunión
- oUsa valores nulos (null):
 - null significa valor desconocido o que no existe
 - todas las comparaciones en que interviene null son false por definición
- oPor la izquierda, por la derecha y completa

Reunión externa

o Ejemplo

empleado

nombre-empleado	calle	ciudad
Segura	Tebeo	La Loma
Domínguez	Viaducto	Villaconejos
Gómez	Bailén	Alcorcón
Valdivieso	Fuencarral	Móstoles

trabajo-a-tiempo-completo

nombre-empleado	nombre-sucursal	sueldo
Segura	Majadahonda	1.500
Domínguez	Majadahonda	1.300
Barea	Fuenlabrada	5.300
Valdivieso	Fuenlabrada	1.500

oRernión empleado ⋈ trabajo-a-tiempo-completo

nombre-empleado	calle	ciudad	nombre-sucursal	sueldo
Segura	Tebeo	La Loma	Majadahonda	1.500
Domínguez	Viaducto	Villaconejos	Majadahonda	1.300
Valdivieso	Fuencarral	Móstoles	Fuenlabrada	1.500

(™) empleado ™ trabajo-a-tiempo-completo

oR e

nombre-empleado	calle	ciudad	nombre-sucursal	sueldo
Segura	Tebeo	La Loma	Majadahonda	1.500
Domínguez	Viaducto	Villaconejos	Majadahonda	1.300
Valdivieso	Fuencarral	Móstoles	Fuenlabrada	1.500
Gómez	Bailén	Alcorcón	nulo	nulo
Barea	nulo	nulo	Fuenlabrada	5.300

Reunión externa

oReunión externa por la izquierda: (⋈)

empleado <u>trabajo-a-tiempo-completo</u>

nombre-empleado	calle	ciudad
Segura	Tebeo	La Loma
Domínguez	Viaducto	Villaconejos
Gómez	Bailén	Alcorcón
Valdivieso	Fuencarral	Móstoles

nombre-empleado	nombre-sucursal	sueldo
Segura	Majadahonda	1.500
Domínguez	Majadahonda	1.300
Barea	Fuenlabrada	5.300
Valdivieso	Fuenlabrada	1.500

empleado ≥ trabajo-a-tiempo-completo

nombre-empleado	calle	ciudad	nombre-sucursal	sueldo
Segura	Tebeo	La Loma	Majadahonda	1.500
Domínguez	Viaducto	Villaconejos	Majadahonda	1.300
Valdivieso	Fuencarral	Móstoles	Fuenlabrada	1.500
Gómez	Bailén	Alcorcón	<i>nulo</i>	nulo

(⋈)

o Reunión externa por la derecha empleado ⊯ trabajo-a-tiempo-completo

nombre-empleado	calle	ciudad	nombre-sucursal	sueldo
Segura	Tebeo	La Loma	Majadahonda	1.500
Domínguez	Viaducto	Villaconejos	Majadahonda	1.300
Valdivieso	Fuencarral	Móstoles	Fuenlabrada	1.500
Barea	nulo	nulo	Fuenlabrada	5.300

Valores nulos

- Es posible tener valores nulos en ciertas tuplas para ciertos atributos
- onull significa valor desconocido o que no existe
- o El resultado de una expresión aritmética que conlleva null es null.
- oLas funciones agregadas ignoran esos valores
- o Para eliminación de duplicados y agrupamiento, null se trata como otro valor y dos nulos son el mismo valor.

Valores nulos

- o Comparaciones con valor nulo devuelven nulo
- Operadores OR, AND, NOT null = unknown:

```
- OR: (unknown or true) = true,
(unknown or false) = unknown
(unknown or unknown) = unknown
```

- NOT: (not unknown) = unknown
- En SQL "P is unknown" puede ser true si P es unknown
- $\circ\sigma_{p}(E)$ si p es falso o unknown no añade la tupla
- o Reunión como la selección
- o Proyección como otro valor
- oUnión,Intersección,Diferencia como otro valor

Valores nulos

- Proyección generalizada
 - Tuplas duplicadas con valores nulos como en la proyección
 - En operaciones agregadas ⇒ se borran los nulos antes de la agregación
- o Reunión externa
 - Como las operaciones de reunión.
 - Excepto con las tuplas que no aparecen en el resultado
 - Se añaden con nulos dependiendo si es: izquierda, derecha o total.

Borrado, Inserción y Modificación

o Borrado se expresa en el álgebra relacional como:

$$r \leftarrow r - E$$

donde r es la relación y E una expresión Sólo se pueden borrar tuplas enteras. No valores de atributos Ejemplo:

o Inserción:

$$impositor \leftarrow impositor - \sigma_{nombre-cliente}$$
 $= \text{«Gómez»} (impositor)$

Ejemplo:

cuenta
$$\leftarrow$$
 cuenta \cup {(C-973, «Navacerrada», 1200)}
impositor \leftarrow impositor \cup {(«Gómez», C-973)}

Borrado, Inserción y Modificación

$$r_1 \leftarrow (\sigma_{nombre-sucursal = \text{«NavaceITada»}}(prestatario \bowtie préstamo))$$
 $r_2 \leftarrow \Pi_{nombre-sucursal, número-préstamo}(r_1)$
 $cuenta \leftarrow cuenta \cup (r_2 \times \{(200)\})$
 $impositor \leftarrow impositor \cup \Pi_{nombre-cliente, número-préstamo}(r_1)$

o Modificación:

$$r \leftarrow \Pi_{F_1, F_2, \dots, F_n}(r)$$

donde F_i son expresiones que involucran constantes y atributos de r

Para varias tuplas de r:

$$r \leftarrow \Pi_{F_1, F_2, \dots, F_n} (\sigma_P(r)) \cup (r - \sigma_P(r))$$

Ejemplo: $cuenta \leftarrow \Pi_{nombre-sucursal, número-cuenta, saldo, saldo * 1.05}(cuenta)$

cuenta
$$\leftarrow \Pi_{NS, NC, saldo * 1.06} (\sigma_{saldo > 10000} (cuenta)) \cup$$

cuenta $\leftarrow \Pi_{NS, NC, saldo * 1.05} (\sigma_{saldo \le 10000} (cuenta))$

- o Hasta ahora se ha operado en el nivel lógico (relaciones)
- En algunos casos no es deseable que todos los usuarios vean todo el modelo lógico de la base de datos
- oVista: relación que no forma parte del modelo conceptual pero que se hace visible al usuario como una relación virtual

create view v **as** ←Expresión de consulta→

donde ←Expresión de consulta→ es cualquier expresión de consulta legal del álgebra relacional.

```
create view todos-los-clientes as \Pi_{nombre-sucursal, \ nombre-cliente} \ (impositor \bowtie cuenta) \\ \cup \ \Pi_{nombre-sucursal, \ nombre-cliente} \ (prestatario \bowtie préstamo)
```


oUna vez creada, se puede utilizar

```
\Pi_{nombre\text{-}cliente} (\sigma_{nombre\text{-}sucursal} = \text{«Navacerrada»} (todos\text{-}los\text{-}clientes))
```

- oNo se guarda el resultado
- oSe guarda la definición de la vista
- oAlgunos SBGD permiten guardar el resultado ⇒ vistas materializadas/mantenimiento de vistas/instantanea/snapshot
- \circ Actualizaciones sobre vistas \Rightarrow sobre las relaciones reales

```
create view préstamo-sucursal as \Pi_{nombre-sucursal, número-préstamo} (préstamo) préstamo-sucursal ← préstamo-sucursal ← U(P-37, Navacerrada)
```

Se puede permitir, pero la tupla sería:(P-37,Navacerrada,null)
 No se puede permitir

Otro problema:

```
create view información-crédito as \Pi_{nombre\text{-}cliente, importe}(prestatario \bowtie préstamo)
```

```
información-crédito \leftarrow información-crédito \cup \{(«González», 1900)\}
```

- o Habría que insertar: (González, nulo) y (nulo, nulo, 1900)
- No se consigue la tupla deseada (González,1900)
- o Generalmente no se permite actualización sobre vistas
- Se puede definir vistas sobre otras vistas, pero sin recursividad

```
create view todos-los-clientes as \Pi_{nombre-sucursal, \ nombre-cliente} \ (impositor \bowtie cuenta) \\ \cup \ \Pi_{nombre-sucursal, \ nombre-cliente} \ (prestatario \bowtie préstamo)  create view cliente-navacerrada as \Pi_{nombre-cliente} \ (\sigma_{nombre-sucursal = \text{«NavaceIIada»}}  (todos-los-clientes))
```


oProcedimiento expansión de vistas

```
\sigma_{nombre\text{-}cliente = \text{``Martin''}}(cliente\text{-}navacerrada)
```

$$\sigma_{nombre\text{-}cliente} = \text{``Martin''} (\Pi_{nombre\text{-}cliente} (\sigma_{nombre\text{-}sucursal} = \text{``Navaceitada''} (todos\text{-}los\text{-}clientes)))$$

```
\sigma_{nombre\text{-}cliente} = \text{``Martı´ın''} (\Pi_{nombre\text{-}cliente} (\sigma_{nombre\text{-}sucursal} = \text{``Navace}_{\Pi ada''} (\Pi_{nombre\text{-}sucursal, nombre\text{-}cliente} (impositor \bowtie cuenta) \cup \Pi_{nombre\text{-}sucursal, nombre\text{-}cliente} (prestatario \bowtie préstamo))))
```

o Lenguaje de consultas no procedimental

$$\{t \mid P(t)\}$$

- oTodas las tuplas t que cumplen el predicado P
- ot[A], valor de la tupla en el atributo A
- ot∈r, tupla t contenida en la relación r
- o Ejemplo:

$$\{t \mid t \in pr\'{e}stamo \land t[importe] > 1200\}$$

 \circ Constructor $\exists \Rightarrow \exists t \in r(Q(t))$

 $\{t \mid \exists \ s \in pr\'estamo \ (t[n\'umero-pr\'estamo] = s[n\'umero-pr\'estamo] \land s[importe] > 1200)\}$

oLa tupla t tiene solo el atributo numero_prestamo

- Consultas con dos relaciones
 - Operador ∧ (y) Préstamos de Navacerrada

```
\{t \mid \exists \ s \in prestatario \ (t[número-préstamo] = s[número-préstamo] \land \exists \ u \in préstamo \ (u[número-préstamo] = s[número-préstamo] \land u[nombre-sucursal] = «Navacerrada»))\}
```

- Operador ∨ (o): Nombre de todos los clientes (impositores y prestatario (tombre-cliente)
{t | ∃ s ∈ prestatario (t[nombre-cliente]) |
= s[nombre-cliente] | v ∃ u ∈ impositor (t[nombre-cliente]) |

- Operador \neg (no). Nombro do los clientes que no tienen préstamos $\{t \mid \exists u \in impositor \ (t[nombre-cliente]) \land \neg \exists s \in prestatario \ (t[nombre-cliente] = s[nombre-cliente])\}$

- Consultas con dos relaciones.
 - Operador \Rightarrow , P \Rightarrow Q equivale a \neg (P) ∨ Q
 - Constructor ∀

$$\forall t \in r(Q(t))$$

- ODeterminar todos los clientes que tienen una cuenta en todas las sucursales de Arganzuela.
- oReformulado, determinar los clientes tales que no existe una sucursal en Arganzuela, en la cual no tengan cuenta

```
\{t \mid \exists \ r \in cliente \ (r[nombre-cliente] \ = t[nombre-cliente] \land (\forall \ u \in sucursal \ (u[ciudad-sucursal] = «Arganzuela» ⇒ <math>\exists \ s \in impositor \ (t[nombre-cliente] = s[nombre-cliente] \land \exists \ w \ \in cuenta \ (w[número-cuenta] = s[número-cuenta] \ \land \ w[nombre-sucursal] = u[nombre-sucursal]))))\}
```


Definiciones

$$\{t \mid P(t)\}$$

- P es una fórmula

 $t \in pr\acute{e}stamo \land \exists s \in cliente (t[nombre-sucursal] = s[nombre-sucursal])$

- t es una variable libre
- s es una variable ligada (con ∃ ó ∀)
- Las fórmulas se construyen con átomos:
 - s∈ r
 - s[x] op u[y] , donde op es operador comparación.
 - s[x] op cte , donde cte es un valor del dominios de x
- Fórmulas con formulas son fórmulas: $P_1 \wedge P_2$

Seguridad de las expresiones

 Las expresiones del cáculo relacional pueden generar expresiones infinitas

$$\{t \mid \neg (t \in pr\acute{e}stamo)\}\$$

- Infinitas tuplas que no están en préstamo ⇒ dominio de la fórmula , dom(P)
- dom(P) $\Rightarrow dom(t \in pr\acute{e}stamo \land t[importe] > 1200)$ P hace referencia

- dom(¬ (t ∈ préstamo)), conjunto de todos los valores que aparecen en préstamo
- {t | P(t)} es segura, si todos los valores que aparecen en el resultado pertenecen a dom(P)

Cálculo relacional de dominios

- OUtiliza variables dominio ⇒ los valores del dominio de los atributos
- oRelacionado con el cálculo relacional de tuplas

$$\{\langle x_1, x_2, ..., x_n \rangle \mid P(x_1, x_2, ..., x_n)\}$$

- $ox_1, x_2, ..., x_n$ son variable dominio y P una fórmula
- o Ejemplos:

$$\{ < p, s, i > | < p, s, i > \in pr\'{e}stamo \land i > 1200 \}$$

$$\{ | \exists s, i (< p, s, i > \in préstamo \land i > 1200) \}$$

Cálculo relacional de dominios

```
\{ \langle n, c \rangle | \exists l \ (\langle n, p \rangle \in prestatario \land \exists s \ (\langle p, s, i \rangle \in préstamo \land s = \text{«Navacerrada»}) \}
\{ \langle n \rangle | \exists p \ (\langle n, p \rangle \in prestatario \land \exists s, i \ (\langle p, s, i \rangle \in préstamo \land s = \text{«Navacerrada»}) \}
\forall \exists c \ (\langle n, c \rangle \in impositor \land \exists s, i \ (\langle c, s, i \rangle \in cuenta \land s = \text{«Navacerrada»}) \}
\{ \langle c, s, i \rangle \in cuenta \land s = \text{«Navacerrada»}) \}
\{ \langle c, s, i \rangle \in cuenta \land s \in \text{«Navacerrada»} \}
\{ \langle c, s, i \rangle \in cuenta \land s \in \text{«Arganzuela»} \Rightarrow \exists a, b \ (\langle x, a, b \rangle \in cuenta \land (\langle c, a \rangle \in impositor)) \}
```

Cálculo relacional de dominios

oSeguridad de las expresiones:

- Todos los valores que aparecen en las tuplas de la expresión son valores de dom(P).
- 2. Para cada subfórmula «existe» de la forma $\exists x$ $(P_1(x))$, la subfórmula es cierta si y sólo si hay un valor x en $dom(P_1)$ tal que $P_1(x)$ es verdadero.
- 3. Para cada subfórmula «para todo» de la forma $\forall x (P_1(x))$, la subfórmula es verdadera si y sólo si $P_1(x)$ es verdadero para todos los valores x de $dom(P_1)$.