4. PRISILNO TITRANJE. REZONANCIJA. SLAGANJE TITRANJA

4.1. PRISILNO TITRANJE

Kad vanjska sila djeluje na sustav koji titra i nadoknađuje energiju izgubljenu zbog trenja, tada govorimo o PRISILNOM TITRANJU.

SLIKA: PRISILNO TITRANJE – HENČ-BARTOLIĆ, KULIŠIĆ – SL. 1.30. STR. 48

Dok ploča miruje, sustav titra kao prigušeni oscilator. Kad se ploča okreće kutnom brzinom ω , kraj poluge spojen s oscilatorom titra istom kružnom frekvencijom ω i na oscilator djeluje vanjska periodička sila: $F_{\nu} = F_0 \sin \omega t$

Neka je vlastita frekvencija sustava $\omega_0 = \sqrt{\frac{k}{m}}$.

Kad je frekvencija ω vanjskog oscilatora manja od vlastite frekvencije ω_0 , sustav titra, ali su amplitude male: $\omega < \omega_0$

Kad se približava ω_0 , amplitude postaju sve veće: $\omega \rightarrow \omega_0$

Kad se javi rezonancija, amplitude su maksimalne: $\omega = \omega_0$

Daljnjim povećanjem ω , amplitude se ponovo smanjuju: $\omega > \omega_0$

Jednadžba gibanja za prisilni harmonički oscilator:

$$m\frac{d^2s}{dt^2} = -ks - b\frac{ds}{dt} + F_0 \sin \omega t$$

- harmonička sila F = -ks
- sila trenja: $F_{tr} = -bv = -b\frac{ds}{dt}$
- vanjska periodička sila: $F_v = F_0 \sin \omega t$

Uz
$$\frac{b}{m} = 2\delta$$
 faktor prigušenja $\omega_0^2 = \frac{k}{m}$ $A_0 = \frac{F_0}{m}$ slijedi: $\frac{d^2s}{dt^2} + 2\delta\frac{ds}{dt} + \omega_0^2 s = A_0 \sin \omega t$

Pretpostavljamo rješenje oblika: $s(t) = A(\omega)\sin(\omega t - \varphi)$

Ovdje je: $A(\omega)$ - amplituda

 φ - kašnjenje u fazi iza titranja vanjskog oscilatora

$$s(t) = A(\omega)\sin(\omega t - \varphi)$$

$$\frac{ds}{dt} = A(\omega)\omega\cos(\omega t - \varphi)$$

$$\frac{d^2s}{dt^2} = -A(\omega)\omega^2\sin(\omega t - \varphi)$$

$$-A(\omega)\omega^{2}\sin(\omega t - \varphi) + 2\delta A(\omega)\omega\cos(\omega t - \varphi) - \omega_{0}^{2}A(\omega)\sin(\omega t - \varphi) = A_{0}\sin(\omega t - \varphi) = A_{0}\sin(\omega t - \varphi)$$

$$(\omega_0^2 - \omega^2)\sin(\omega t - \varphi) + 2\delta\omega\cos(\omega t - \varphi) = \frac{A_0}{A(\omega)}\sin\omega t$$

$$(\omega_0^2 - \omega^2)\sin(\omega t - \varphi) + 2\delta\omega\sin(\omega t - \varphi + \frac{\pi}{2}) = \frac{A_0}{A(\omega)}\sin\omega t$$

$$(\omega_0^2 - \omega^2)\sin(\omega t - \varphi) + 2\delta\omega\sin(\omega t - \varphi + \frac{\pi}{2})$$
 su dva međusobno okomita titranja amplituda $(\omega_0^2 - \omega^2)$ i $2\delta\omega$.

S desne strane imamo titranje amplitude $\frac{A_0}{A(\omega)}$ dobiveno zbrajanjem ova dva titranja.

Jednadžba u svakom trenutku mora biti ispunjena pa se za određivanje $A(\omega)$ služimo fazorskim prikazom titranja.

SLIKA: UZ IZRAČUNAVANJE AMPLITUDE PRISILNOG TITRANJA – HENČ-BARTOLIĆ, KULIŠIĆ – SL. 1.31. STR. 49

Nacrtali smo odgovarajuće rotirajuće vektore.

Iz pravokutnog trokuta OPP₁ slijedi:

$$\left(\frac{A_0}{A(\omega)}\right)^2 = \left(\omega_0^2 - \omega^2\right)^2 + \left(2\delta\omega\right)^2 / \sqrt{1}$$

$$\frac{A_0}{A(\omega)} = \sqrt{\left(\omega_0^2 - \omega^2\right)^2 + \left(2\delta\omega\right)^2} \Rightarrow A(\omega) = \frac{A_0}{\sqrt{\left(\omega_0^2 - \omega^2\right)^2 + \left(2\delta\omega\right)^2}}$$

$$tg\varphi = \frac{2\delta\omega}{\omega_0^2 - \omega^2} \qquad A(\omega) = \frac{A_0}{\omega_0^2 \sqrt{\left(1 - \frac{\omega^2}{\omega_0^2}\right)^2 + \left(\frac{2\delta\omega}{\omega_0}\right)^2}}$$

Vidimo da amplituda $A(\omega)$ ovisi o omjeru ω/ω_0 i faktoru prigušenja δ .

 $A(\omega)$ je maksimalna pri rezonantnoj frekvenciji ω_r , koja se određuje izračunavanjem maksimuma fje $A(\omega)$:

$$\frac{d}{d\omega} \left[(\omega_0^2 - \omega^2)^2 + 4\delta^2 \omega^2 \right]^{1/2} = \frac{1}{2} \left[(\omega_0^2 - \omega^2)^2 + (2\delta\omega)^2 \right]^{-1/2} \cdot \left(2(\omega_0^2 - \omega^2) \cdot (-2\omega) + 4\delta^2 \cdot 2\omega \right) = 0$$

$$\left(2(\omega_0^2 - \omega^2) \cdot (-2\omega) + 4\delta^2 \cdot 2\omega \right) = 0$$

$$\left(-(\omega_0^2 - \omega^2) + 2\delta^2 \right) = 0$$

$$\omega^2 = \omega_0^2 - 2\delta^2$$

$$\omega_r = \sqrt{\omega_0^2 - 2\delta^2}$$
rezonantna frekvencija

 ω_r je malo manje ω_0 , a razlika je manja što je prigušenje δ manje.

U graničnom slučaju bez trenja $\omega_r = \omega_0$.

SLIKA: AMPLITUDA PRI PRISILNOM TITRANJU U OVISNOSTI O FREKVENCIJI I PRIGUŠENJU – HENČ-BARTOLIĆ, KULIŠIĆ – SL. 1.32. STR. 50

Ovisnost amplitude $A(\omega)$ o omjeru ω/ω_0 i prigušenju:

- prigušenje utječe na rezonanciju
- kad nema trenja (1), amplituda $A(\omega)$ pri rezonanciji $\omega = \omega_0$ je beskonačno velika toga nema u prirodi (nema titranja bez gubitaka) rezonantna amplituda je uvijek konačna.
- što je prigušenje veće, Q-faktor je manji rezonantna amplituda je manja, a rezonantna frekvencija ω_r se razlikuje od vlastite frekvencije ω_0 .

Brzina prisilnog oscilatora je derivacija elongacije: $v(t) = \frac{ds(t)}{dt} = \frac{d}{dt} [A(\omega)\sin(\omega t - \varphi)]$

Kašnjenje u fazi (fazni pomak) je: $tg\varphi = \frac{2\delta\omega}{{\omega_0}^2 - \omega^2}$

SLIKA: FAZNI POMAK PRI PRISILNOM TITRANJU – HENČ-BARTOLIĆ, KULIŠIĆ – SL. 1.33. STR. 51

Za $\omega << \omega_0$ fazni pomak $\varphi = 0 \Rightarrow$ oba titranja su u fazi.

Za $\omega = \omega_0$ sustav kasni za vanjskim oscilatorom za $\frac{T}{4}$, a fazni pomak $\varphi = \frac{\pi}{2}$.

Za $\omega >> \omega_0$ fazni pomak $\varphi = \pi$.

Vratimo se na jednadžbu gibanja prisilnog oscilatora: $\frac{d^2s}{dt^2} + 2\delta \frac{ds}{dt} + \omega_0^2 s = A_0 \sin \omega t \quad (*)$

To je nehomogena diferencijalna jednadžba drugog reda s konstantnim koeficijentima.

Opće rješenje dobijemo tako da općem rješenjem s_1 pripadajuće homogene jednadžbe $(\frac{d^2s}{dt^2} + 2\delta\frac{ds}{dt} + \omega_0^2 s = 0)$ pribrojimo posebno rješenje s_2 nehomogene jednadžbe (*):

$$s_1(t) = Ae^{-\delta t}\sin(\omega_p t + \varphi_o)$$

$$\omega_p = \sqrt{\omega_0^2 - \delta^2}$$

$$s_2(t) = A(\omega)\sin(\omega t - \varphi)$$

$$s(t) = s_1(t) + s_2(t) = A_1 e^{-\delta} \sin(\omega_p t + \varphi_o) + A(\omega) \sin(\omega t - \varphi)$$

Kod prisilnog titranja sustav počne titrati vlastitom frekvencijom $\omega_p = \omega_0$ i pri tome nastoji slijediti titranje vanjskog oscilatora.

Rezultantno titranje je superpozicija tih dvaju titranja.

Nakon određenog vremena vlastito titranje zbog prigušenja iščezne i sustav titra frekvencijom vanjskog oscilatora bez obzira na početne uvjete i vlastitu frekvenciju.

Znači, prvi dio rješenja:
$$s_1(t) = Ae^{-\delta} \sin(\omega_p t + \varphi_o)$$
 zbog $e^{-\delta}$ iščezava.

Ostaje samo rješenje:
$$s_2(t) = A(\omega)\sin(\omega t - \varphi)$$

koje se zove STACIONARNO RJEŠENJE JEDNADŽBE PRISILNOG OSCILATORA.