Equivalencias lógicas

Álgebra Superior 1, 2025-4

Profesor: Luis Jesús Trucio Cuevas. Ayudante: Hugo Víctor García Martínez.

Estas no son notas como tal, la intensión es tener a la mano algunas equivalencias e implicaciones lógicas.

1. Estructurales

La conjunción y la disyunción son conmutativas:

La conjunción y la disyunción son asociativas:

La conjunción y la disyunción son idempotentes:

 $\alpha \wedge \alpha \equiv \alpha$

 $\alpha \lor \alpha \equiv \alpha.$

La conjunción y la disyunción son absorbentes:

La conjunción y la disyunción son distributivas:

Denotemos con T a una tautología y con \bot a una contradicción. Así, T es neutro para la conjunción y \bot es neutro para la disyunción:

 $\alpha \wedge T \equiv \alpha$

 $\alpha \lor \bot \equiv \alpha.$

2. Lógica clásica

Leyes de De Morgan:

Doble negación:

 $\neg \neg \alpha \equiv \alpha.$

Complementos:

• (tercero excluido) $T \equiv \alpha \vee \neg \alpha$

 $\bot \equiv \alpha \land \neg \alpha.$

Álgebra Superior I Intersemestral 2025-4

3. Conjuntos mínimos de conectivos

Con las siguientes equivalencias es posible expresar cualquier proposición lógica con sólo conectivos \lor y \neg :

¿Puedes escribir las equivalencias necesarias para escribir toda proposición con sólo \land y \neg (o con sólo \lor y \neg)?

4. Métodos de demostración

- Contrapuesta: $\alpha \to \beta \equiv \neg \beta \to \neg \alpha$.
- Contradicción: $\alpha \to \beta \equiv (\alpha \land \neg \beta) \to \bot$.
- Dem de una negación: $\neg \alpha \equiv \alpha \rightarrow \bot$.
- Dem de una conjunción: $\alpha \to (\beta \land \gamma) \equiv (\alpha \to \beta) \land (\alpha \to \gamma)$.
- Dem de una disyunción: $\alpha \to (\beta \lor \gamma) \equiv (\alpha \land \neg \beta \to \gamma)$.
- Dem de un condicional: $(\alpha \to (\beta \to \gamma)) \equiv (\alpha \land \beta) \to \gamma$.
- Dem de una bicondicional: $(\alpha \leftrightarrow \beta) \equiv (\alpha \to \beta) \land (\beta \to \alpha)$.
- Dem por casos: $(\alpha \lor \beta) \to \gamma \equiv (\alpha \to \gamma) \land (\beta \to \gamma)$.