test2

Cuiling He

2023-02-03

In today's class we will ecplore a complete analysis using the unsupervised learning techiques covered in the last class. We will combine PCA as a preprocessing step to clustering using data that consist of measurements of cell nuclei of human breast masses.

Import the dataset

Before we can begin our analysis we first have to download and import our data correctly into our R session.

```
wisc.df <- read.csv("WisconsinCancer.csv", row.names = 1)
head(wisc.df)</pre>
```

##		diagnosis	${\tt radius_mean}$	${\tt texture_mean}$	${\tt perimeter_mean}$	area_mean	
##	842302	M	17.99	10.38	122.80	1001.0	
##	842517	M	20.57	17.77	132.90	1326.0	
##	84300903	M	19.69	21.25	130.00	1203.0	
##	84348301	M	11.42	20.38	77.58	386.1	
##	84358402	M	20.29	14.34	135.10	1297.0	
##	843786	M	12.45	15.70	82.57	477.1	
##		smoothness	s_mean compa		oncavity_mean co	oncave.poi	nts_mean
##	842302	0	.11840	0.27760	0.3001		0.14710
##	842517	0	.08474	0.07864	0.0869		0.07017
##	84300903	0	.10960	0.15990	0.1974		0.12790
##	84348301	0	. 14250	0.28390	0.2414		0.10520
##	84358402	0	.10030	0.13280	0.1980		0.10430
##	843786	0	.12780	0.17000	0.1578		0.08089
##		symmetry_r	mean fractal	_dimension_mea	an radius_se te	xture_se p	erimeter_se
##	842302	0.2	2419	0.0787	1.0950	0.9053	8.589
##	842517	0.3	1812	0.0566	0.5435	0.7339	3.398
##	84300903	0.2	2069	0.0599	99 0.7456	0.7869	4.585
##	84348301	0.2	2597	0.0974	14 0.4956	1.1560	3.445
##	84358402	0.1	1809	0.0588	33 0.7572	0.7813	5.438
##	843786	0.2	2087	0.0761	13 0.3345	0.8902	2.217
##		_	moothness_se	compactness_s	se concavity_se	concave.p	_
##	842302	153.40	0.006399	0.0490	0.05373		0.01587
##	842517	74.08	0.005225	0.0130	0.01860		0.01340
##	84300903	94.03	0.006150	0.0400	0.03832		0.02058
##	84348301	27.23	0.009110	0.0745	0.05661		0.01867
##	84358402	94.44	0.011490	0.0246	0.05688		0.01885
##	843786	27.19	0.007510	0.0334	15 0.03672		0.01137
##	symmetry_se fractal_dimension_se radius_worst texture_worst						

```
## 842302
                 0.03003
                                      0.006193
                                                       25.38
                                                                      17.33
## 842517
                 0.01389
                                      0.003532
                                                       24.99
                                                                      23.41
## 84300903
                 0.02250
                                      0.004571
                                                       23.57
                                                                      25.53
## 84348301
                 0.05963
                                      0.009208
                                                        14.91
                                                                      26.50
## 84358402
                 0.01756
                                      0.005115
                                                       22.54
                                                                      16.67
                 0.02165
                                                                      23.75
##
  843786
                                      0.005082
                                                       15.47
##
            perimeter_worst area_worst smoothness_worst compactness_worst
## 842302
                      184.60
                                  2019.0
                                                    0.1622
                                                                        0.6656
## 842517
                      158.80
                                  1956.0
                                                    0.1238
                                                                        0.1866
## 84300903
                      152.50
                                  1709.0
                                                    0.1444
                                                                        0.4245
## 84348301
                       98.87
                                   567.7
                                                    0.2098
                                                                        0.8663
## 84358402
                      152.20
                                  1575.0
                                                    0.1374
                                                                        0.2050
## 843786
                      103.40
                                   741.6
                                                    0.1791
                                                                        0.5249
##
            concavity_worst concave.points_worst symmetry_worst
## 842302
                                             0.2654
                      0.7119
                                                             0.4601
## 842517
                      0.2416
                                             0.1860
                                                             0.2750
## 84300903
                      0.4504
                                             0.2430
                                                             0.3613
## 84348301
                      0.6869
                                             0.2575
                                                             0.6638
## 84358402
                      0.4000
                                                             0.2364
                                             0.1625
## 843786
                      0.5355
                                             0.1741
                                                             0.3985
##
            fractal_dimension_worst
## 842302
                              0.11890
## 842517
                              0.08902
## 84300903
                              0.08758
## 84348301
                              0.17300
## 84358402
                              0.07678
## 843786
                              0.12440
```

Q How many smaples are in this dataset?

```
nrow(wisc.df)
```

[1] 569

Q. How many variables (columns)

```
ncol(wisc.df)
```

[1] 31

Q How many M and B samples are there?

```
wisc.df$diagnosis == "M"
```

```
TRUE
                                   TRUE
                                                     TRUE
                                                            TRUE
                                                                  TRUE
                                                                        TRUE
##
     [1]
          TRUE
                TRUE
                      TRUE
                                         TRUE
                                               TRUE
                                                                              TRUE
##
    [13]
          TRUE
                TRUE
                      TRUE
                             TRUE
                                   TRUE
                                         TRUE
                                               TRUE FALSE FALSE FALSE
                                                                        TRUE
                                                                               TRUE
##
    [25]
          TRUE
                TRUE
                      TRUE
                             TRUE
                                   TRUE
                                         TRUE
                                               TRUE
                                                      TRUE
                                                            TRUE
                                                                  TRUE
                                                                        TRUE
                                                                               TRUE
##
    [37]
          TRUE FALSE
                      TRUE
                             TRUE
                                   TRUE
                                         TRUE
                                               TRUE
                                                      TRUE
                                                            TRUE
                                                                  TRUE FALSE
                                                                               TRUE
##
    [49] FALSE FALSE FALSE FALSE
                                         TRUE
                                               TRUE FALSE
                                                            TRUE
                                                                  TRUE FALSE FALSE
    [61] FALSE FALSE
                      TRUE FALSE
                                   TRUE
                                         TRUE FALSE FALSE FALSE
                                                                        TRUE FALSE
               TRUE FALSE
                            TRUE FALSE
                                         TRUE TRUE FALSE FALSE FALSE
##
    [73]
          TRUE
                                                                        TRUE
                                                                              TRUE
```

```
[85] FALSE TRUE TRUE TRUE FALSE FALSE TRUE FALSE TRUE TRUE TRUE
   [97] FALSE FALSE FALSE TRUE TRUE FALSE FALSE FALSE TRUE FALSE FALSE
## [109] TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
                                                         TRUE TRUE
## [121] FALSE TRUE TRUE FALSE FALSE TRUE TRUE FALSE
                                                         TRUE FALSE
## [133] TRUE FALSE TRUE TRUE FALSE FALSE TRUE FALSE FALSE
                                                         TRUE FALSE FALSE
## [145] FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [157] TRUE FALSE FALSE FALSE TRUE TRUE FALSE TRUE FALSE FALSE TRUE
## [169] TRUE FALSE FALSE TRUE TRUE FALSE FALSE FALSE FALSE TRUE FALSE FALSE
## [181] TRUE
             TRUE
                  TRUE FALSE
                              TRUE FALSE
                                        TRUE FALSE FALSE FALSE
                                                              TRUE FALSE
                  TRUE FALSE
                             TRUE TRUE
## [193] FALSE
             TRUE
                                         TRUE TRUE FALSE
                                                        TRUE
                                                              TRUE
## [205] FALSE
             TRUE FALSE
                        TRUE FALSE FALSE TRUE FALSE
                                                    TRUE
                                                         TRUE
                                                              TRUE
## [217] FALSE FALSE TRUE
                        TRUE FALSE FALSE FALSE TRUE FALSE FALSE FALSE
## [229] FALSE TRUE TRUE FALSE FALSE TRUE FALSE FALSE
                                                    TRUE
                                                         TRUE FALSE TRUE
## [241] FALSE FALSE FALSE FALSE
                             TRUE FALSE FALSE FALSE FALSE
                                                              TRUE FALSE
## [253]
        TRUE
             TRUE TRUE TRUE TRUE TRUE TRUE TRUE
                                                    TRUE
                                                        TRUE
                                                               TRUE TRUE
## [265]
        TRUE
              TRUE FALSE FALSE FALSE FALSE FALSE
                                                    TRUE FALSE
                                                               TRUE FALSE
## [277] FALSE TRUE FALSE FALSE TRUE FALSE TRUE TRUE FALSE FALSE FALSE
## [289] FALSE FALSE FALSE FALSE FALSE FALSE FALSE
                                                        TRUE FALSE FALSE
## [301] TRUE FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [313] FALSE FALSE FALSE FALSE TRUE FALSE FALSE FALSE TRUE FALSE
## [325] FALSE FALSE FALSE TRUE TRUE TRUE FALSE FALSE FALSE
## [337] FALSE TRUE FALSE TRUE FALSE FALSE FALSE TRUE FALSE FALSE FALSE
## [349] FALSE FALSE FALSE TRUE TRUE TRUE FALSE FALSE FALSE FALSE FALSE
## [361] FALSE FALSE FALSE FALSE
                                   TRUE TRUE FALSE TRUE
                                                        TRUE
                                                              TRUE FALSE
## [373] TRUE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [385] FALSE TRUE FALSE FALSE TRUE FALSE TRUE
                                                        TRUE FALSE FALSE
## [397] FALSE FALSE FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE
## [409] TRUE FALSE FALSE FALSE FALSE FALSE TRUE FALSE FALSE
                                                        TRUE FALSE FALSE
## [421] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE
## [433] TRUE TRUE FALSE TRUE FALSE FALSE FALSE FALSE TRUE FALSE FALSE
## [445] TRUE FALSE TRUE FALSE FALSE TRUE FALSE TRUE FALSE FALSE FALSE FALSE
## [457] FALSE FALSE FALSE TRUE TRUE FALSE FALSE FALSE FALSE FALSE
## [469] TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [481] FALSE FALSE FALSE FALSE FALSE FALSE
                                             TRUE FALSE
                                                         TRUE FALSE FALSE
## [493] TRUE FALSE FALSE FALSE FALSE TRUE
                                              TRUE FALSE
                                                         TRUE FALSE TRUE
## [505] FALSE FALSE FALSE FALSE TRUE FALSE TRUE FALSE TRUE FALSE
## [517] TRUE TRUE FALSE FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE
## [529] FALSE FALSE FALSE FALSE TRUE FALSE TRUE TRUE FALSE FALSE FALSE
## [541] FALSE FALSE
## [553] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE TRUE
## [565] TRUE TRUE TRUE TRUE FALSE
```

table(wisc.df\$diagnosis)

```
##
## B M
## 357 212
```

Q3. How many variables/features in the data are suffixed with _mean?

```
length(grep("_mean", colnames(wisc.df)))
```

[1] 10

Q What features are "mean" values (or have "mean" in their name)?

I need to remove the first diagnosis column form my data before doing any analysis. I will store it for later as a factor.

```
wisc.data <- wisc.df[,-1]
diagnosis <- as.factor(wisc.df$diagnosis)</pre>
```

2. Principal Component Analysis

the main pca function in base r is called prcomp()

Before doing anything like PCA, It is important to check if the data need to be scaled before performing PCA. Recall two common reasons for scaling data include:

-The input variables use different units of measurement. -The input variables have significantly different variances.

Looks like we need to scale by seting scale = TRUE in our promp() function call.

```
round(apply(wisc.data, 2, sd), 2)
```

##	radius_mean	texture_mean	perimeter_mean
##	3.52	4.30	24.30
##	area_mean	${\tt smoothness_mean}$	compactness_mean
##	351.91	0.01	0.05
##	${\tt concavity_mean}$	concave.points_mean	symmetry_mean
##	0.08	0.04	0.03
##	<pre>fractal_dimension_mean</pre>	radius_se	texture_se
##	0.01	0.28	0.55
##	perimeter_se	area_se	smoothness_se
##	2.02	45.49	0.00
##	compactness_se	concavity_se	concave.points_se
##	0.02	0.03	0.01
##	symmetry_se	fractal_dimension_se	radius_worst
##	0.01	0.00	4.83
##	texture_worst	perimeter_worst	area_worst
##	6.15	33.60	569.36
##	smoothness_worst	compactness_worst	${\tt concavity_worst}$
##	0.02	0.16	0.21
##	concave.points_worst	symmetry_worst	${\tt fractal_dimension_worst}$
##	0.07	0.06	0.02

Time for PCA

```
wisc.pr <- prcomp(wisc.data, scale = TRUE)</pre>
summary(wisc.pr)
## Importance of components:
##
                             PC1
                                    PC2
                                             PC3
                                                     PC4
                                                             PC5
                                                                     PC6
                                                                              PC7
                          3.6444 2.3857 1.67867 1.40735 1.28403 1.09880 0.82172
## Standard deviation
## Proportion of Variance 0.4427 0.1897 0.09393 0.06602 0.05496 0.04025 0.02251
## Cumulative Proportion 0.4427 0.6324 0.72636 0.79239 0.84734 0.88759 0.91010
##
                              PC8
                                      PC9
                                             PC10
                                                    PC11
                                                            PC12
                                                                    PC13
                                                                            PC14
## Standard deviation
                          0.69037 0.6457 0.59219 0.5421 0.51104 0.49128 0.39624
## Proportion of Variance 0.01589 0.0139 0.01169 0.0098 0.00871 0.00805 0.00523
## Cumulative Proportion 0.92598 0.9399 0.95157 0.9614 0.97007 0.97812 0.98335
##
                             PC15
                                     PC16
                                              PC17
                                                      PC18
                                                              PC19
                                                                      PC20
## Standard deviation
                          0.30681 0.28260 0.24372 0.22939 0.22244 0.17652 0.1731
## Proportion of Variance 0.00314 0.00266 0.00198 0.00175 0.00165 0.00104 0.0010
## Cumulative Proportion 0.98649 0.98915 0.99113 0.99288 0.99453 0.99557 0.9966
                                     PC23
                                                     PC25
##
                             PC22
                                            PC24
                                                             PC26
                                                                     PC27
                                                                              PC28
## Standard deviation
                          0.16565 0.15602 0.1344 0.12442 0.09043 0.08307 0.03987
## Proportion of Variance 0.00091 0.00081 0.0006 0.00052 0.00027 0.00023 0.00005
## Cumulative Proportion 0.99749 0.99830 0.9989 0.99942 0.99969 0.99992 0.99997
##
                             PC29
                                      PC30
## Standard deviation
                          0.02736 0.01153
## Proportion of Variance 0.00002 0.00000
## Cumulative Proportion 1.00000 1.00000
attributes(wisc.pr)
## $names
## [1] "sdev"
                  "rotation" "center"
                                         "scale"
                                                    "x"
##
## $class
## [1] "prcomp"
scree plot
pr.var <- wisc.pr$sdev^2</pre>
#proportion of variance
pr.var/sum(pr.var)
   [1] 4.427203e-01 1.897118e-01 9.393163e-02 6.602135e-02 5.495768e-02
  [6] 4.024522e-02 2.250734e-02 1.588724e-02 1.389649e-02 1.168978e-02
## [11] 9.797190e-03 8.705379e-03 8.045250e-03 5.233657e-03 3.137832e-03
## [16] 2.662093e-03 1.979968e-03 1.753959e-03 1.649253e-03 1.038647e-03
## [21] 9.990965e-04 9.146468e-04 8.113613e-04 6.018336e-04 5.160424e-04
## [26] 2.725880e-04 2.300155e-04 5.297793e-05 2.496010e-05 4.434827e-06
plot(pr.var, typ = "o")
```


lets make our manin results figure from our PCA our score plot (a.k.a "PC plot"), "PC1 vs PC2 plot", etc.)

```
install.packages("ggplot2")

## Installing ggplot2 [3.4.0] ...
## OK [linked cache]
```

```
library(ggplot2)
```

```
pc <- as.data.frame(wisc.pr$x)
ggplot(pc) +
  aes(PC1, PC2, col = diagnosis) +
  geom_point() +
  theme_classic()</pre>
```


3. Hierarchical clustering

Now have a look at the tree

```
data.scaled <- scale(wisc.data)
head(apply(data.scaled, 2, sd))

## radius_mean texture_mean perimeter_mean area_mean
## 1 1 1 1
## smoothness_mean compactness_mean
## 1 1
wisc.hclust <- hclust(dist(data.scaled))
plot(wisc.hclust)
abline(h=19, col = "red", lty = 2)</pre>
```

Cluster Dendrogram

dist(data.scaled) hclust (*, "complete")

to get a cluster membership vector i will use the cutree() function and "cut into 4 or so grps or clusters.

```
grps <- cutree(wisc.hclust, h =19)
table(grps)

## grps
## 1 2 3 4
## 177 7 383 2</pre>
```

I can also use the table() to cross tabulate

```
table(diagnosis)
```

```
## diagnosis
## B M
## 357 212
```

table(grps, diagnosis)

```
## diagnosis
## grps B M
## 1 12 165
## 2 2 5
## 3 343 40
## 4 0 2
```

Clustering on PCA results

I can cluster in PC-space and use as many or as few PCs as I want. To start with I will use 3 PCs, that is I will cluster along PC1, PC2, and PC3.

```
summary(wisc.pr)
```

```
## Importance of components:
##
                             PC1
                                    PC2
                                             PC3
                                                     PC4
                                                             PC5
                                                                     PC6
                                                                              PC7
## Standard deviation
                          3.6444 2.3857 1.67867 1.40735 1.28403 1.09880 0.82172
## Proportion of Variance 0.4427 0.1897 0.09393 0.06602 0.05496 0.04025 0.02251
## Cumulative Proportion 0.4427 0.6324 0.72636 0.79239 0.84734 0.88759 0.91010
##
                              PC8
                                      PC9
                                             PC10
                                                    PC11
                                                            PC12
                                                                    PC13
## Standard deviation
                          0.69037 0.6457 0.59219 0.5421 0.51104 0.49128 0.39624
## Proportion of Variance 0.01589 0.0139 0.01169 0.0098 0.00871 0.00805 0.00523
## Cumulative Proportion 0.92598 0.9399 0.95157 0.9614 0.97007 0.97812 0.98335
##
                             PC15
                                      PC16
                                              PC17
                                                      PC18
                                                              PC19
                                                                       PC20
## Standard deviation
                          0.30681 0.28260 0.24372 0.22939 0.22244 0.17652 0.1731
## Proportion of Variance 0.00314 0.00266 0.00198 0.00175 0.00165 0.00104 0.0010
## Cumulative Proportion
                          0.98649 0.98915 0.99113 0.99288 0.99453 0.99557 0.9966
                             PC22
                                             PC24
                                                     PC25
                                                             PC26
##
                                      PC23
                                                                     PC27
## Standard deviation
                          0.16565 0.15602 0.1344 0.12442 0.09043 0.08307 0.03987
## Proportion of Variance 0.00091 0.00081 0.0006 0.00052 0.00027 0.00023 0.00005
## Cumulative Proportion 0.99749 0.99830 0.9989 0.99942 0.99969 0.99992 0.99997
##
                             PC29
                                     PC30
## Standard deviation
                          0.02736 0.01153
## Proportion of Variance 0.00002 0.00000
## Cumulative Proportion 1.00000 1.00000
pc.dist <- dist(wisc.pr$x[, 1:3])</pre>
wisc.pr.hclust <- hclust(pc.dist, method = "ward.D2")</pre>
plot(wisc.pr.hclust)
```

Cluster Dendrogram

pc.dist hclust (*, "ward.D2")

This looks much nicer than our previous clustering result. Let's find the two major clusters with the cutree() function.

```
grps <- cutree(wisc.pr.hclust, k=2)
table(grps)

## grps
## 1 2
## 203 366

table(grps, diagnosis)</pre>
## diagnosis
```

we could calculate accuracy - the proportion of smaples we got correct if we take cluster 1 to represent all M and cluster 2 to represent all B.

```
(179+333)/nrow(wisc.data)
```

```
## [1] 0.8998243
```

B M 24 179

2 333 33

grps

##

```
#url <- "new_samples.csv"</pre>
url <- "https://tinyurl.com/new-samples-CSV"</pre>
read.csv(url)
     radius_mean texture_mean perimeter_mean area_mean smoothness_mean
## 1
           8.598
                        20.98
                                       54.66
                                                  221.8
                                                                 0.1243
## 2
          14.250
                        22.15
                                       96.42
                                                  645.7
                                                                 0.1049
     compactness_mean concavity_mean concave.points_mean symmetry_mean
              0.08963
                              0.0300
                                                0.009259
## 1
## 2
              0.20080
                              0.2135
                                                 0.086530
                                                                 0.1949
     fractal_dimension_mean radius_se texture_se perimeter_se area_se
                    0.06757
                               0.3582
## 1
                                            2.067
                                                         2.493
## 2
                    0.07292
                               0.7036
                                            1.268
                                                         5.373
                                                                 60.78
##
     smoothness se compactness se concavity se concave.points se symmetry se
## 1
          0.011930
                          0.03162
                                       0.03000
                                                        0.009259
                                                                      0.03357
## 2
          0.009407
                          0.07056
                                       0.06899
                                                         0.018480
                                                                      0.01700
     fractal_dimension_se radius_worst texture_worst perimeter_worst area_worst
## 1
                 0.003048
                                 9.565
                                                27.04
                                                                62.06
                                                29.51
## 2
                 0.006113
                                17.670
                                                               119.10
                                                                           959.5
##
     smoothness_worst compactness_worst concavity_worst concave.points_worst
                                 0.1698
## 1
              0.1639
                                               0.09001
               0.1640
                                 0.6247
                                                 0.69220
                                                                      0.17850
##
     symmetry_worst fractal_dimension_worst
             0.2972
                                    0.07712
## 2
             0.2844
                                    0.11320
new <- read.csv(url)</pre>
npc <- predict(wisc.pr, newdata=new)</pre>
npc
##
              PC1
                        PC2
                                   PC3
                                               PC4
                                                         PC5
                                                                    PC6
                                                                                PC7
## [1,] 2.576616 -3.135913 1.3990492 -0.7631950 2.781648 -0.8150185 -0.3959098
## [2,] -4.754928 -3.009033 -0.1660946 -0.6052952 -1.140698 -1.2189945 0.8193031
               PC8
                         PC9
                                              PC11
                                                        PC12
                                   PC10
                                                                  PC13
                                                                           PC14
## [1,] -0.2307350 0.1029569 -0.9272861 0.3411457 0.375921 0.1610764 1.187882
## [2,] -0.3307423 0.5281896 -0.4855301 0.7173233 -1.185917 0.5893856 0.303029
##
             PC15
                        PC16
                                    PC17
                                                 PC18
                                                             PC19
                                                                        PC20
## [1,] 0.3216974 -0.1743616 -0.07875393 -0.11207028 -0.08802955 -0.2495216
## [2,] 0.1299153 0.1448061 -0.40509706 0.06565549 0.25591230 -0.4289500
##
              PC21
                         PC22
                                    PC23
                                                PC24
                                                            PC25
## [1,] 0.1228233 0.09358453 0.08347651 0.1223396 0.02124121 0.078884581
## [2,] -0.1224776 0.01732146 0.06316631 -0.2338618 -0.20755948 -0.009833238
                PC27
                            PC28
                                         PC29
## [1,] 0.220199544 -0.02946023 -0.015620933 0.005269029
## [2,] -0.001134152  0.09638361  0.002795349 -0.019015820
g <- as.factor(grps)</pre>
levels(g)
```

[1] "1" "2"

```
g <- relevel(g,2)
levels(g)

## [1] "2" "1"

plot(wisc.pr$x[,1:2], col=g)</pre>
```



```
plot(wisc.pr$x[,1:2], col = g)
points(npc[,1], npc[,2], col="blue", pch=16, cex=3)
text(npc[,1], npc[,2], c(1,2), col="white")
```



```
pc <- as.data.frame(wisc.pr$x)
ggplot(pc) +
  aes(PC1, PC2, col = grps) +
  geom_point() +
  theme_classic()</pre>
```

