Time: 11:10:25 AM

#1: CaseMode := Sensitive

#2: InputMode := Word

tuition by college B and college A

#3: ta :∈ Real (0, ∞)

#4: tb : Real (0, ∞)

Time discount factor

#5: $\delta \approx \text{Real}(0, 1)$

interest rate

#6: r :∈ Real (0, ∞)

consumer ability index a

#7: a :∈ Real [0, 1]

earning wage parameters college 1 and 2 and nondegree

#8: μa :∈ Real (0, ∞)

#9: μb :∈ Real (0, ∞)

#10: µn :∈ Real (0, ∞)

prob getting a degree job

#11: $\rho :\in \text{Real } (0, 1)$

Enrollment capacity constraints

#12: ka :∈ Real (0, ∞)

#13: kb :∈ Real (0, ∞)

File: s_loan_2022_9_10.dfw Date: 9/10/2022 Time: 11:10:25 AM

*** Section 3, equation (2) expected utility U(a)

(2): enrolled in A

#14:
$$\delta \cdot (\rho \cdot \mu a \cdot a + (1 - \rho) \cdot \mu n \cdot a) - (ta - c) - \delta \cdot c \cdot (1 + r)$$

(2): enrolled in B

#15:
$$\delta \cdot (\rho \cdot \mu b \cdot a + (1 - \rho) \cdot \mu n \cdot a) - (tb - c) - \delta \cdot c \cdot (1 + r)$$

(2) not enrolled

#16: $\mu n \cdot a + \delta \cdot \mu n \cdot a$

*** Section 4: Equilibrium tuition with enrollment capacity constraints

eq (3) abar and ahat

#17:
$$\delta \cdot (\rho \cdot \mu b \cdot abar + (1 - \rho) \cdot \mu n \cdot abar) - (tb - c) - \delta \cdot c \cdot (1 + r) = \mu n \cdot abar + \delta \cdot \mu n \cdot abar$$

#18: SOLVE
$$(\delta \cdot (\rho \cdot \mu b \cdot abar + (1 - \rho) \cdot \mu n \cdot abar) - (tb - c) - \delta \cdot c \cdot (1 + r) = \mu n \cdot abar + \delta \cdot \mu n \cdot abar$$
, abar)

#19:
$$abar = \frac{c \cdot (r \cdot \delta + \delta - 1) + tb}{\delta \cdot \rho \cdot (\mu b - \mu n) - \mu n}$$

#20:
$$\delta \cdot (\rho \cdot \mu a \cdot a hat + (1 - \rho) \cdot \mu n \cdot a hat) - (ta - c) - \delta \cdot c \cdot (1 + r)$$

#21:
$$\delta \cdot (\rho \cdot \mu a \cdot a h a t + (1 - \rho) \cdot \mu n \cdot a h a t) - (ta - c) - \delta \cdot c \cdot (1 + r) = \delta \cdot (\rho \cdot \mu b \cdot a h a t + (1 - \rho) \cdot \mu n \cdot a h a t) - (tb - c) - \delta \cdot c \cdot (1 + r)$$

#22: SOLVE(
$$\delta \cdot (\rho \cdot \mu a \cdot a hat + (1 - \rho) \cdot \mu n \cdot a hat) - (ta - c) - \delta \cdot c \cdot (1 + r) = \delta \cdot (\rho \cdot \mu b \cdot a hat + (1 - \rho) \cdot \mu n \cdot a hat) - (tb - c) - \delta \cdot c \cdot (1 + r), a hat)$$

try ahat - abar =

#24:
$$\frac{\mathsf{ta} - \mathsf{tb}}{\delta \cdot \rho \cdot (\mu \mathsf{a} - \mu \mathsf{b})} - \frac{\mathsf{c} \cdot (\mathsf{r} \cdot \delta + \delta - 1) + \mathsf{tb}}{\delta \cdot \rho \cdot (\mu \mathsf{b} - \mu \mathsf{n}) - \mu \mathsf{n}}$$

#25:
$$\frac{c \cdot \delta \cdot \rho \cdot (\mu a - \mu b) \cdot (r \cdot \delta + \delta - 1) + ta \cdot (\mu n - \delta \cdot \rho \cdot (\mu b - \mu n)) + tb \cdot (\delta \cdot \rho \cdot (\mu a - \mu n) - \mu n)}{\delta \cdot \rho \cdot (\mu b - \mu a) \cdot (\delta \cdot \rho \cdot (\mu b - \mu n) - \mu n)}$$

equation (4) capacities

#26: ka = 1 - ahat

#27: kb = ahat - abar

#28:
$$ka = 1 - \frac{ta - tb}{\delta \cdot \rho \cdot (\mu a - \mu b)}$$

#29:
$$kb = \frac{ta - tb}{\delta \cdot \rho \cdot (\mu a - \mu b)} - \frac{c \cdot (r \cdot \delta + \delta - 1) + tb}{\delta \cdot \rho \cdot (\mu b - \mu n) - \mu n}$$

$$\#30: \quad \mathsf{SOLVE}\left[\left[ka = 1 - \frac{\mathsf{ta} - \mathsf{tb}}{\delta \cdot \rho \cdot (\mu \mathsf{a} - \mu \mathsf{b})}, \ kb = \frac{\mathsf{ta} - \mathsf{tb}}{\delta \cdot \rho \cdot (\mu \mathsf{a} - \mu \mathsf{b})} - \frac{\mathsf{c} \cdot (\mathsf{r} \cdot \delta + \delta - 1) + \mathsf{tb}}{\delta \cdot \rho \cdot (\mu \mathsf{b} - \mu \mathsf{n}) - \mu \mathsf{n}}\right], \ [\mathsf{ta}, \ \mathsf{tb}]\right]$$

eq (5): equilibrium ta and tb

#31:
$$[ta = -c \cdot (r \cdot \delta + \delta - 1) + ka \cdot (\mu n - \delta \cdot \rho \cdot (\mu a - \mu n)) + kb \cdot (\mu n - \delta \cdot \rho \cdot (\mu b - \mu n)) + \delta \cdot \rho \cdot (\mu a - \mu n) - \mu n \wedge tb = (ka + kb - 1) \cdot (\mu n - \delta \cdot \rho \cdot (\mu b - \mu n)) - c \cdot (r \cdot \delta + \delta - 1)]$$

#32:
$$ta - tb = ka \cdot \delta \cdot \rho \cdot (\mu b - \mu a) + \delta \cdot \rho \cdot (\mu a - \mu b)$$

#33:
$$ta - tb = (-c \cdot (r \cdot \delta + \delta - 1) + ka \cdot (\mu n - \delta \cdot \rho \cdot (\mu a - \mu n)) + kb \cdot (\mu n - \delta \cdot \rho \cdot (\mu b - \mu n)) + \delta \cdot \rho \cdot (\mu a - \mu n) - ka \cdot (\mu n - \delta \cdot \rho \cdot (\mu b - \mu n)) + ka \cdot (\mu n - \delta \cdot \rho \cdot (\mu a - \mu n)) + kb \cdot (\mu n - \delta \cdot \rho \cdot (\mu b - \mu n)) + ka \cdot (\mu n - \delta \cdot \rho \cdot (\mu a - \mu n)) + ka \cdot (\mu n - \delta \cdot \rho \cdot (\mu n - \mu n)) + ka \cdot (\mu n - \delta \cdot \rho \cdot (\mu n - \mu n)) + ka \cdot (\mu n - \delta \cdot \rho \cdot (\mu n - \mu n)) + ka \cdot (\mu n - \delta \cdot \rho \cdot (\mu n - \mu n)) + ka \cdot (\mu n - \delta \cdot \rho \cdot (\mu n - \mu n)) + ka \cdot (\mu n - \delta \cdot \rho \cdot (\mu n - \lambda \cdot \rho \cdot (\mu n - \mu n)) + ka \cdot (\mu$$

$$\mu$$
n) - ((ka + kb - 1)·(μ n - δ · ρ ·(μ b - μ n)) - c·(r · δ + δ - 1))

Result 1

#34:
$$\frac{d}{--} (ta = -c \cdot (r \cdot \delta + \delta - 1) + ka \cdot (\mu n - \delta \cdot \rho \cdot (\mu a - \mu n)) + kb \cdot (\mu n - \delta \cdot \rho \cdot (\mu b - \mu n)) + \delta \cdot \rho \cdot (\mu a - \mu n) - dc$$

μn)

#35:
$$0 < -r \cdot \delta - \delta + 1$$

#36:
$$\frac{d}{dc}$$
 (tb = (ka + kb - 1) \cdot (μ n - $\delta \cdot \rho \cdot (\mu$ b - μ n)) - $c \cdot (r \cdot \delta + \delta - 1)$)

#37:
$$0 < -r \cdot \delta - \delta + 1$$

d #38:
$$\frac{d}{dr}$$
 (ta = $-c \cdot (r \cdot \delta + \delta - 1) + ka \cdot (\mu n - \delta \cdot \rho \cdot (\mu a - \mu n)) + kb \cdot (\mu n - \delta \cdot \rho \cdot (\mu b - \mu n)) + \delta \cdot \rho \cdot (\mu a - \mu n) - dr$

μn)

#39:
$$0 > - c \cdot \delta$$

#40:
$$\frac{d}{dr} \text{ (tb = (ka + kb - 1) \cdot (\mu n - \delta \cdot \rho \cdot (\mu b - \mu n)) - c \cdot (r \cdot \delta + \delta - 1))}}{dr}$$

#41: $0 > - c \cdot \delta$

*** Section 5: Introducing loan defaults

equation (6): Utility function [modifying (2)]

File: s_loan_2022_9_10.dfw Date: 9/10/2022 Time: 11:10:25 AM

enrolled in A

#42:
$$\delta \cdot (\rho \cdot \mu a \cdot a) - (ta - c) - \delta \cdot \rho \cdot c \cdot (1 + r)$$

enrolled in B

#43:
$$\delta \cdot (\rho \cdot \mu b \cdot a) - (tb - c) - \delta \cdot \rho \cdot c \cdot (1 + r)$$

not enrolled

#44: $\mu n \cdot a + \delta \cdot \mu n \cdot a$

equation (7): abar and ahat

#45:
$$\delta \cdot (\rho \cdot \mu b \cdot abar) - (tb - c) - \delta \cdot \rho \cdot c \cdot (1 + r) = \mu n \cdot abar + \delta \cdot \mu n \cdot abar$$

#46: SOLVE(
$$\delta \cdot (\rho \cdot \mu b \cdot abar) - (tb - c) - \delta \cdot \rho \cdot c \cdot (1 + r) = \mu n \cdot abar + \delta \cdot \mu n \cdot abar$$
, abar)

#47:
$$abar = \frac{c \cdot (r \cdot \delta \cdot \rho + \delta \cdot \rho - 1) + tb}{\delta \cdot (\mu b \cdot \rho - \mu n) - \mu n}$$

#48:
$$\delta \cdot (\rho \cdot \mu a \cdot a hat) - (ta - c) - \delta \cdot \rho \cdot c \cdot (1 + r) = \delta \cdot (\rho \cdot \mu b \cdot a hat) - (tb - c) - \delta \cdot \rho \cdot c \cdot (1 + r)$$

#49: SOLVE(
$$\delta \cdot (\rho \cdot \mu a \cdot a hat) - (ta - c) - \delta \cdot \rho \cdot c \cdot (1 + r) = \delta \cdot (\rho \cdot \mu b \cdot a hat) - (tb - c) - \delta \cdot \rho \cdot c \cdot (1 + r)$$
, $a hat)$

deriving equation (8)

#51: ka = 1 - ahat

#52: kb = ahat - abar

#53:
$$ka = 1 - \frac{ta - tb}{\delta \cdot \rho \cdot (\mu a - \mu b)}$$

File: s_loan_2022_9_10.dfw Date: 9/10/2022 Time: 11:10:25 AM

#54:
$$kb = \frac{ta - tb}{\delta \cdot \rho \cdot (\mu a - \mu b)} - \frac{c \cdot (r \cdot \delta \cdot \rho + \delta \cdot \rho - 1) + tb}{\delta \cdot (\mu b \cdot \rho - \mu n) - \mu n}$$

$$\#55: \quad \mathsf{SOLVE} \Biggl[\Biggl[ka = 1 \, - \, \frac{\mathsf{ta} - \mathsf{tb}}{\delta \cdot \rho \cdot (\mu \mathsf{a} - \mu \mathsf{b})}, \quad kb = \frac{\mathsf{ta} - \mathsf{tb}}{\delta \cdot \rho \cdot (\mu \mathsf{a} - \mu \mathsf{b})} \, - \, \frac{\mathsf{c} \cdot (\mathsf{r} \cdot \delta \cdot \rho + \delta \cdot \rho - 1) \, + \, \mathsf{tb}}{\delta \cdot (\mu \mathsf{b} \cdot \rho - \mu \mathsf{n}) \, - \, \mu \mathsf{n}} \Biggr], \quad [\mathsf{ta}, \; \mathsf{tb}] \Biggr)$$

#56:
$$[ta = -c \cdot (r \cdot \delta \cdot \rho + \delta \cdot \rho - 1) + ka \cdot (\mu n - \delta \cdot (\mu a \cdot \rho - \mu n)) + kb \cdot (\mu n - \delta \cdot (\mu b \cdot \rho - \mu n)) + \delta \cdot (\mu a \cdot \rho - \mu n) - \mu n$$

$$\mu n \wedge tb = (ka + kb - 1) \cdot (\mu n - \delta \cdot (\mu b \cdot \rho - \mu n)) - c \cdot (r \cdot \delta \cdot \rho + \delta \cdot \rho - 1)]$$

Deriving (A.3) [abar and ahat under default] => not finished, not in the paper

#57:
$$abar = \frac{c \cdot \delta \cdot (r+1) \cdot (\rho-1) + (ka+kb-1) \cdot (\delta \cdot (\mu b \cdot \rho - \mu n) - \mu n)}{\mu n - \delta \cdot \rho \cdot (\mu b - \mu n)}$$

#58:
$$ahat = 1 - ka$$

ahat - abar =

#59:
$$1 - ka - \frac{c \cdot \delta \cdot (r + 1) \cdot (\rho - 1) + (ka + kb - 1) \cdot (\delta \cdot (\mu b \cdot \rho - \mu n) - \mu n)}{\mu n - \delta \cdot \rho \cdot (\mu b - \mu n)}$$

#60:
$$\frac{c \cdot \delta \cdot (r+1) \cdot (\rho-1) + ka \cdot \delta \cdot \mu n \cdot (\rho-1) + kb \cdot (\delta \cdot (\mu b \cdot \rho - \mu n) - \mu n) + \delta \cdot \mu n \cdot (1-\rho)}{\delta \cdot \rho \cdot (\mu b - \mu n) - \mu n}$$

ta - tb =

#61:
$$(-c \cdot (r \cdot \delta \cdot \rho + \delta \cdot \rho - 1) + ka \cdot (\mu n - \delta \cdot (\mu a \cdot \rho - \mu n)) + kb \cdot (\mu n - \delta \cdot (\mu b \cdot \rho - \mu n)) + \delta \cdot (\mu a \cdot \rho - \mu n) - \mu n) - ((ka + kb - 1) \cdot (\mu n - \delta \cdot (\mu b \cdot \rho - \mu n)) - c \cdot (r \cdot \delta \cdot \rho + \delta \cdot \rho - 1))$$

#62:
$$ka \cdot \delta \cdot (\mu b \cdot \rho - \mu a \cdot \rho) + \delta \cdot (\mu a \cdot \rho - \mu b \cdot \rho)$$

#63:
$$\delta \cdot \rho \cdot (ka - 1) \cdot (\mu b - \mu a)$$

Result 2:

d #64:
$$\frac{d}{dr}$$
 (ta = $-c \cdot (r \cdot \delta \cdot \rho + \delta \cdot \rho - 1) + ka \cdot (\mu n - \delta \cdot (\mu a \cdot \rho - \mu n)) + kb \cdot (\mu n - \delta \cdot (\mu b \cdot \rho - \mu n)) + δ \cdot (\mu a \cdot \rho - \mu n)$ dc

– μn)

#65:
$$0 < -r \cdot \delta \cdot \rho - \delta \cdot \rho + 1$$

#66:
$$\frac{d}{dc} \text{ (tb = (ka + kb - 1) \cdot (\mu n - \delta \cdot (\mu b \cdot \rho - \mu n)) - c \cdot (r \cdot \delta \cdot \rho + \delta \cdot \rho - 1))}}{dc}$$

#67:
$$0 < -r \cdot \delta \cdot \rho - \delta \cdot \rho + 1$$

#68: SOLVE(0 <
$$-r \cdot \delta \cdot \rho - \delta \cdot \rho + 1$$
, r)

#69:
$$r < \frac{1 - \delta \cdot \rho}{\delta \cdot \rho}$$

below I use Assumption 2(a) to show that the above < holds by Assumption 2(a).

#70:
$$\frac{1 - \delta \cdot \rho}{\delta \cdot \rho} - \frac{1 - \delta}{\delta}$$

#71:
$$\frac{1-\rho}{\delta \cdot \rho} > 0$$

d #72:
$$\frac{1}{2}$$
 (ta = $-c \cdot (r \cdot \delta \cdot \rho + \delta \cdot \rho - 1) + ka \cdot (\mu n - \delta \cdot (\mu a \cdot \rho - \mu n)) + kb \cdot (\mu n - \delta \cdot (\mu b \cdot \rho - \mu n)) + \delta \cdot (\mu a \cdot \rho - \mu n)$ dr

#73:
$$0 > - c \cdot \delta \cdot \rho$$

d
#74:
$$\frac{d}{dr}$$
 (tb = (ka + kb - 1)·(μn - δ·(μb·ρ - μn)) - c·(r·δ·ρ + δ·ρ - 1))

#75:
$$0 > - c \cdot \delta \cdot \rho$$

*** Section 6: Profit and ability maximizing colleges.

#76: ga = ta·(1 - ahat) +
$$\frac{1 - ahat}{2}$$

#77:
$$gb = tb \cdot (ahat - abar) + \frac{ahat - abar}{2}$$

#78:
$$ga = ta \cdot \left(1 - \frac{ta - tb}{\delta \cdot \rho \cdot (\mu a - \mu b)}\right) + \frac{1 - \frac{ta - tb}{\delta \cdot \rho \cdot (\mu a - \mu b)}}{2}$$

#79:
$$gb = tb \cdot \left(\frac{ta - tb}{\delta \cdot \rho \cdot (\mu a - \mu b)} - \frac{c \cdot (r \cdot \delta + \delta - 1) + tb}{\delta \cdot \rho \cdot (\mu b - \mu n) - \mu n} \right) + \frac{ta - tb}{\delta \cdot \rho \cdot (\mu a - \mu b)} - \frac{c \cdot (r \cdot \delta + \delta - 1) + tb}{\delta \cdot \rho \cdot (\mu b - \mu n) - \mu n}$$

Date: 9/10/2022

#80:
$$\frac{d}{d ta} \left(ga = ta \cdot \left(1 - \frac{ta - tb}{\delta \cdot \rho \cdot (\mu a - \mu b)} \right) + \frac{1 - \frac{ta - tb}{\delta \cdot \rho \cdot (\mu a - \mu b)}}{2} \right)$$

eq (A.3)

#81:
$$0 = \frac{4 \cdot \text{ta} - 2 \cdot \text{tb} + 2 \cdot \delta \cdot \rho \cdot (\mu b - \mu a) + 1}{2 \cdot \delta \cdot \rho \cdot (\mu b - \mu a)}$$

#82:
$$\frac{d}{d \tan d} \left(ga = \tan \left(1 - \frac{\tan - tb}{\delta \cdot \rho \cdot (\mu a - \mu b)} \right) + \frac{1 - \frac{\tan - tb}{\delta \cdot \rho \cdot (\mu a - \mu b)}}{2} \right)$$

#83:
$$0 > \frac{2}{\delta \cdot \rho \cdot (\mu b - \mu a)}$$

#84:
$$\frac{d}{d \ tb} \left(gb = tb \cdot \left(\frac{ta - tb}{\delta \cdot \rho \cdot (\mu a - \mu b)} - \frac{c \cdot (r \cdot \delta + \delta - 1) + tb}{\delta \cdot \rho \cdot (\mu b - \mu n) - \mu n} \right) + \frac{ta - tb}{\delta \cdot \rho \cdot (\mu a - \mu b)} - \frac{c \cdot (r \cdot \delta + \delta - 1) + tb}{\delta \cdot \rho \cdot (\mu b - \mu n) - \mu n} \right)$$

equation (A.4)

#85:
$$0 = \frac{2 \cdot c \cdot \delta \cdot \rho \cdot (\mu a - \mu b) \cdot (r \cdot \delta + \delta - 1) + 2 \cdot t a \cdot (\mu n - \delta \cdot \rho \cdot (\mu b - \mu n)) + (4 \cdot t b + 1) \cdot (\delta \cdot \rho \cdot (\mu a - \mu n) - \mu n)}{2 \cdot \delta \cdot \rho \cdot (\mu b - \mu a) \cdot (\delta \cdot \rho \cdot (\mu b - \mu n) - \mu n)}$$

#86:
$$\frac{d}{d \ tb} \frac{d}{d \ tb} \left(gb = tb \cdot \left(\frac{ta - tb}{\delta \cdot \rho \cdot (\mu a - \mu b)} - \frac{c \cdot (r \cdot \delta + \delta - 1) + tb}{\delta \cdot \rho \cdot (\mu b - \mu n) - \mu n} \right) +$$

$$\frac{\mathsf{ta}-\mathsf{tb}}{\delta \cdot \rho \cdot (\mathsf{\mu a}-\mathsf{\mu b})} - \frac{\mathsf{c} \cdot (\mathsf{r} \cdot \delta + \delta - 1) + \mathsf{tb}}{\delta \cdot \rho \cdot (\mathsf{\mu b}-\mathsf{\mu n}) - \mathsf{\mu n}}$$

equation (A.5)

#87:

$$0 > \frac{2 \cdot (\delta \cdot \rho \cdot (\mu a - \mu n) - \mu n)}{\delta \cdot \rho \cdot (\mu b - \mu a) \cdot (\delta \cdot \rho \cdot (\mu b - \mu n) - \mu n)}$$

by Assumption 1(c)

Equations (12), (13) and (14)

$$\begin{array}{c} 2 & 2 \\ 2 \cdot c \cdot \delta \cdot \rho \cdot (\mu a - \mu b) \cdot (r \cdot \delta + \delta - 1) & + 4 \cdot \delta \cdot \rho \cdot (\mu a - \mu b) \cdot (\mu n - \mu a) & + \delta \cdot \rho \cdot (\mu a \cdot (4 \cdot \mu n + 3) - \mu n \cdot (4 \cdot \mu b) & + \sim \\ & & 2 \cdot (3 \cdot \mu n - \delta \cdot \rho \cdot (4 \cdot \mu a - \mu b - 3 \cdot \mu n)) & \sim \end{array}$$

Date: 9/10/2022

$$\begin{array}{c} 2 & 2 \\ 4 \cdot c \cdot \delta \cdot \rho \cdot (\mu a - \mu b) \cdot (r \cdot \delta + \delta - 1) + 2 \cdot \delta \cdot \rho \cdot (\mu a - \mu b) \cdot (\mu n - \mu b) + \delta \cdot \rho \cdot (2 \cdot \mu a \cdot (\mu n + 1) + \mu b \cdot (1 - 2 \cdot k + 1) \\ & 2 \cdot (3 \cdot \mu n - \delta \cdot \rho \cdot (4 \cdot \mu a - \mu b - 3 \cdot \mu n)) \end{array}$$

Result 3:

$$\begin{array}{c} 2 & 2 \\ 2 \cdot c \cdot \delta \cdot \rho \cdot (\mu a - \mu b) \cdot (r \cdot \delta + \delta - 1) & + 4 \cdot \delta \cdot \rho \cdot (\mu a - \mu b) \cdot (\mu n - \mu a) & + \delta \cdot \rho \cdot (\mu a \cdot (4 \cdot \mu n + 3) - \mu n \cdot (4 \cdot \mu b) & + \sim \\ & & 2 \cdot (3 \cdot \mu n - \delta \cdot \rho \cdot (4 \cdot \mu a - \mu b - 3 \cdot \mu n)) & \sim \end{array}$$

#91:
$$0 < \frac{\delta \cdot \rho \cdot (\mu b - \mu a) \cdot (r \cdot \delta + \delta - 1)}{\delta \cdot \rho \cdot (4 \cdot \mu a - \mu b - 3 \cdot \mu n) - 3 \cdot \mu n}$$

#92:
$$\frac{d}{dc} \left\{ tb = \frac{d}{dc} \right\}$$

$$\begin{array}{c} 2 & 2 \\ 4 \cdot c \cdot \delta \cdot \rho \cdot (\mu a - \mu b) \cdot (r \cdot \delta + \delta - 1) + 2 \cdot \delta \cdot \rho \cdot (\mu a - \mu b) \cdot (\mu n - \mu b) + \delta \cdot \rho \cdot (2 \cdot \mu a \cdot (\mu n + 1) + \mu b \cdot (1 - 2 \cdot k + 1) \\ & 2 \cdot (3 \cdot \mu n - \delta \cdot \rho \cdot (4 \cdot \mu a - \mu b - 3 \cdot \mu n)) \end{array}$$

$$\frac{\mu n) - 3 \cdot \mu n}{}$$

#93:
$$0 = \frac{2 \cdot \delta \cdot \rho \cdot (\mu b - \mu a) \cdot (r \cdot \delta + \delta - 1)}{\delta \cdot \rho \cdot (4 \cdot \mu a - \mu b - 3 \cdot \mu n) - 3 \cdot \mu n}$$

$$\begin{array}{c} 2 & 2 \\ 2 \cdot c \cdot \delta \cdot \rho \cdot (\mu a - \mu b) \cdot (r \cdot \delta + \delta - 1) & + 4 \cdot \delta \cdot \rho \cdot (\mu a - \mu b) \cdot (\mu n - \mu a) & + \delta \cdot \rho \cdot (\mu a \cdot (4 \cdot \mu n + 3) - \mu n \cdot (4 \cdot \mu b) & + \infty \\ \hline & 2 \cdot (3 \cdot \mu n - \delta \cdot \rho \cdot (4 \cdot \mu a - \mu b - 3 \cdot \mu n)) & \sim \end{array}$$

#95:
$$\frac{c \cdot \delta \cdot \rho \cdot (\mu b - \mu a)}{\delta \cdot \rho \cdot (4 \cdot \mu a - \mu b - 3 \cdot \mu n) - 3 \cdot \mu n}$$

#96:
$$\frac{d}{dr} \left(tb = \right)$$

$$\begin{array}{c} 2 \\ 4 \cdot c \cdot \delta \cdot \rho \cdot (\mu a - \mu b) \cdot (r \cdot \delta + \delta - 1) \\ + 2 \cdot \delta \cdot \rho \cdot (\mu a - \mu b) \cdot (\mu n - \mu b) \\ + \delta \cdot \rho \cdot (2 \cdot \mu a \cdot (\mu n + 1) \\ + \mu b \cdot (1 - 2 \cdot \lambda a \cdot \mu n)) \end{array}$$

$$\frac{\mu n) - 3 \cdot \mu n) - 3 \cdot \mu n}{}$$

#97:

$$0 > \frac{2}{\delta \cdot \rho \cdot (4 \cdot \mu a - \mu b - 3 \cdot \mu n) - 3 \cdot \mu n}$$

need to show that abar < ahat

#98: abar =

+ 1) +
$$\mu b \cdot (1 - 2 \cdot \mu n) - 3 \cdot \mu n)$$
 + $3 \cdot \mu n$

ahat - abar = [hard to evaluate: use simulations]

#100:
$$\frac{2 \cdot c \cdot (r \cdot \delta + \delta - 1) + 2 \cdot \delta \cdot \rho \cdot (2 \cdot \mu a - \mu b - \mu n) - 2 \cdot \mu n - 1}{2 \cdot (\delta \cdot \rho \cdot (4 \cdot \mu a - \mu b - 3 \cdot \mu n) - 3 \cdot \mu n)}$$

$$\frac{2 \cdot \text{C} \cdot (\text{r} \cdot \delta + \delta - 1) \cdot (\delta \cdot \rho \cdot (2 \cdot \mu \text{a} + \mu \text{b} - 3 \cdot \mu \text{n}) - 3 \cdot \mu \text{n}) + 2 \cdot \delta \cdot \rho \cdot (\mu \text{a} - \mu \text{b}) \cdot (\mu \text{b} - \mu \text{n}) - \delta \cdot \rho \cdot (2 \cdot \mu \text{a} \cdot (\mu \text{n} - \mu \text{b}) \cdot (2 \cdot \mu \text{a} \cdot (\mu \text{n} - \mu \text{a}) \cdot (2 \cdot \mu \text{a} \cdot (\mu \text{n} - \mu \text{b}) \cdot (2 \cdot \mu \text{a} \cdot (\mu \text{n} - \mu \text{a}) \cdot (2 \cdot \mu \text{a} \cdot (\mu \text{n} - \mu \text{a}) \cdot (2 \cdot \mu \text{a} \cdot (\mu \text{n} - \mu \text{a}) \cdot (2 \cdot \mu \text{a}) \cdot (2 \cdot \mu \text{a} \cdot (\mu \text{n} - \mu \text{a}) \cdot (2 \cdot \mu \text{a})$$

$$+ 1) + \mu b \cdot (1 - 2 \cdot \mu n) - 3 \cdot \mu n) + 3 \cdot \mu n$$

#101:
$$\frac{(2 \cdot c \cdot (r \cdot \delta + \delta - 1) + \delta \cdot \rho \cdot (\mu n - \mu b) + \mu n - 1) \cdot (\delta \cdot \rho \cdot (\mu a - \mu n) - \mu n)}{(\mu n - \delta \cdot \rho \cdot (\mu b - \mu n)) \cdot (\delta \cdot \rho \cdot (4 \cdot \mu a - \mu b - 3 \cdot \mu n) - 3 \cdot \mu n)}$$