КОНТРОЛЬНІ РОБОТИ З МАТЕМАТИКИ. 10 КЛАС. ПРОФІЛЬНИЙ РІВЕНЬ

Н. С. Біла, м. Славута, Хмельницька обл.

АЛГЕБРА ТА ПОЧАТКИ АНАЛІЗУ

Числові множини.

Числові функції, їхні властивості

Варіант 1

1. (0,5 бала) Яке з наведених чисел раціональне?

A	Б	В	Γ	Д
$\sqrt{2}$	π	$\sqrt{8,1}$	$\sqrt{0,25}$	$\sqrt{1,1}$

2. (*0,5 бала*) Функція задана графіком. Укажіть область визначення цієї функції.

A	Б	В	Γ	Д
[-2;4)	[-5;3)	[-2;4]	[-5;3]	(-2;4]

3. (0,5 бала) Знайдіть область значень функції $f(x) = x^2 - 6$.

A	Б	В	Γ	Д
[6;+∞)	(6;+∞)	(-∞;-6]	$[-6;+\infty)$	(0;+∞)

4. (0,5 бала) Укажіть рисунок, на якому зображено графік парної функції.

5. (За кожну відповідність 0,5 бала) Установіть відповідність між геометричним перетворенням графіка функції $y = \sqrt{x}$ (1-4) та функцією, одержаною в результаті цього перетворення (А-Д).

1	Графік функції $y = \sqrt{x}$ паралельно перенесли вздовж осі Ox на дві одиниці ліворуч	A	$y = \sqrt{x-2}$
2	Графік функції $y = \sqrt{x}$ паралельно перенесли вздовж осі Oy на дві одиниці вниз	Б	$y = \sqrt{x} - 2$
3	Графік функції $y = \sqrt{x}$ стиснули до осі Ox у два рази	В	$y = \frac{1}{2}\sqrt{x}$
4	Графік функції $y = \sqrt{x}$ стиснули до осі Oy у два рази	Г	$y = \sqrt{x+2}$
		Д	$y = \sqrt{2x}$

- **6.** (1 бал) Розташуйте в порядку зростання числа: $\sqrt{10}$; 3; $\sqrt{8.9}$; 3,(3).
- 7. (1 бал) Задано функцію

$$f(x) = \begin{cases} -2x+3, \text{ якщо } x \le -2, \\ x^2 - x, \text{ якщо } -2 < x < 3, \\ 4, \text{ якщо } x \ge 3. \end{cases}$$

Знайдіть f(-2)+f(5).

8. (2 бали) Знайдіть область визначення $\mathrm{функці} \ y = \sqrt{4x - x^2} + \frac{7}{\sqrt{x - 2}} \,.$

9. (2 бали) Користуючись графіком функції y = f(x), поданим на рисунку, установіть найважливіші її властивості. При яких значеннях a рівняння f(x) = a має рівно два корені?

10. (2 бали) Побудуйте графік функції $y = \frac{x^2 - 5x + 6}{|x - 2|}.$ Знайдіть область значень функції.

Варіант 2

1. (0,5 бала) Серед заданих чисел укажіть натуральне число.

A	Б	В	Γ	Д
0	$\sqrt{25}$	$-\sqrt{8,1}$	$\frac{2}{2}$	π
			3	

2. (0,5 бала) Функція задана графіком. Укажіть область визначення цієї функції.

A	Б	В	Γ	Д
(-4;2)	(-3;5)	[-4;2]	[-3;5]	(-3;5]

3. (0,5 бала) Знайдіть область значень функції $y = \sqrt{x} + 2$.

A		Б	В	Γ	Д
[0;+∞) (0;	+∞)	(-∞;0]	$[2;+\infty)$	$(2;+\infty)$

4. (0,5 бала) Укажіть рисунок, на якому зображено графік непарної функції.

5. (За кожну відповідність 0,5 бала) Установіть відповідність між геометричним перетворенням графіка функції y = |x| (1-4) та функцією, одержаною в результаті цього перетворення (А-Д).

1	Графік функції $y = x $ паралельно перенесли вздовж осі Ox на три одиниці праворуч	A	y = x + 3
2	Графік функції $y = x $ паралельно перенесли вздовж осі Oy на три одиниці вгору	Б	y=3 x
3	Γ рафік функції $y= x $ розтягнули від осі Ox у три рази	В	$y = \left \frac{1}{3} x \right $
4	Графік функції $y = x $ розтягнули від осі Oy у три рази	Г	y = x+3
		Д	y = x-3

- **6.** (1 бал) Розташуйте в порядку спадання числа: $\sqrt{17}$; 4; $\sqrt{11,4}$; 4,(3).
- 7. (1 бал) Задано функцію

$$f(x) = \begin{cases} -2, \text{ якщо } x \le 0, \\ 4x^2 + 2x - 1, \text{ якщо } 0 < x < 4, \\ 1 - x, \text{ якщо } x \ge 4. \end{cases}$$

Знайдіть f(-9)+f(8).

- **8.** (2 бали) Знайдіть область визначення $\text{функції} \ \ y = \sqrt{56 x x^2} + \frac{3}{x^2 49}.$
- **9.** (2 бали) Користуючись графіком функції y = f(x), поданим на рисунку, установіть найважливіші її властивості. При яких

значеннях a рівняння f(x)=a має рівно три корені?

10. (2 бали) Побудуйте графік функції $y = \frac{x^2 - x - 2}{|x + 1|}.$ Знайдіть область значень функції.

Рівняння та нерівності

Варіант 1

1. (0,5 бала) Розв'яжіть нерівність $\frac{5-x}{x+2} > 0$.

A	Б	В	Γ	Д
$(-\infty;5)$	(-2;5]	(-2;5)	$(5;+\infty)$	$(-\infty;-2) \cup (5;+\infty)$

2. (0,5 бала) Розв'яжіть рівняння $\frac{x+2}{x+2} = 1$.

A	Б	В	Г	Д
Рівняння	-2	$(-\infty;2) \cup (2;+\infty)$	$(-\infty;-2) \cup (-2;+\infty)$	1
не має		,	,	
коренів				

3. (0,5 бала) Розв'яжіть нерівність $\frac{5}{x} \le 1$.

A	Б	В	Γ	Д
$(-\infty;0)$	(-2;5]	(-∞;5]	$[5;+\infty)$	$(-\infty;0) \cup [5;+\infty)$

A	Б	В	Г	Д
(-2;1]	(-2;1)	$(-\infty;-2) \cup [1;+\infty)$	$\bigl(-\infty; 1\bigr) \cup \bigl[2; +\infty\bigr)$	(-∞;1]

5. (*За кожну відповідність 0,5 бала*) Установіть відповідність між рівнянням (1–4) та множиною його коренів (А–Д).

1	2x-3 =1	A	$\frac{7}{3}$
2	$\frac{2x^2-4x}{x-2}=0$	Б	0
3	$\frac{2x-3}{3} = \frac{x+1}{6}$	В	Рівняння не має розв'язків
4	$x^2 - x + 2 = 0$	Γ	0; 2
		Д	1; 2

- **6.** (1 бал) При якому значенні a рівняння 3x = 7 ax і |x+5| = 3 x рівносильні?
- 7. (1 бал) Знайдіть суму натуральних розв'язків нерівності $\frac{x^2(x-1)^3(x+2)}{x-3} \le 0$.
- **8.** (2 бали) Розв'яжіть рівняння |x-3|-|x-1|=1.
- 9. (2 бали) Розв'яжіть нерівність

$$(x^2-9)\sqrt{x^2+x-2} \ge 0.$$

10. (2 бали) При яких значеннях параметра a має єдиний розв'язок рівняння $\frac{x^2 - (2a+2)x + 6a - 3}{\sqrt{2 + x - x^2}} = 0?$

Варіант 2

1. (0,5 бала) Розв'яжіть нерівність $\frac{5+x}{x-2} > 0$.

A	Б	В	Γ	Д
$(-\infty;-5)$	(-5;2]	(-5;2)	(2;+∞)	$(-\infty;-5) \cup (2;+\infty)$

2. (0,5 бала) Розв'яжіть рівняння $\frac{x-3}{x-3} = 1$.

A	Б	В	Г	Д
Рівняння не	1	$(-\infty;-3) \cup (-3;+\infty)$	(-∞;3)∪(3;+∞)	3
має коренів		,	,	

3. (0,5 бала) Розв'яжіть нерівність $\frac{3}{x} \ge 1$.

A	Б	В	Γ	Д
$(-\infty;0)$	(0;3]	(-∞;3]	$[3;+\infty)$	$(-\infty;0) \cup [3;+\infty)$

A	Б	В	Γ	Д
[-1;2)	(-2;1)	$(-\infty;-2)\cup[1;+\infty)$	$(-\infty;-1] \cup (2;+\infty)$	(-∞;-1]

5. (За кожну відповідність 0,5 бала) Установіть відповідність між рівнянням (1-4) та множиною його коренів (A-Д).

1	2x-5 =4	A	$-\frac{5}{3}$
2	$\frac{x^2-4x+3}{x-1}=0$	Б	0,5; 4,5
3	$\frac{x-3}{8} = \frac{2x+1}{4}$	В	Рівняння не має розв'язків
4	$x^2 - 2x + 9 = 0$	Γ	3
		Д	1; 3

- **6.** (1 бал) При якому значенні a рівняння ax = 7 5x і |x + 7| = x 1 рівносильні?
- 7. (1 бал) Знайдіть найбільший цілий розв'язок нерівності $\frac{\left(x+3\right)^3\left(x-1\right)^2\left(x+7\right)}{x^2-6x+9}\!\leq\!0\,.$
- **8.** (2 бали) Розв'яжіть рівняння |x+3|+|x-1|=4.
- 9. (2 бали) Розв'яжіть нерівність $(x^2-2x)\sqrt{3x^2-10x+3} \ge 0.$
- **10.** (2 бали) При яких значеннях параметра a має єдиний розв'язок рівняння

$$\frac{x^2 - 2ax + a^2 - 1}{\sqrt{x^2 - 1}} = 0?$$

Многочлени. Дії над многочленами *Варіант 1*

1. (0,5 бала) Знайдіть остачу від ділення многочлена $P(x) = 3x^2 - 2x + 1$ на многочлен Q(x) = x + 1.

A	Б	В	Γ	Д
1	2	3	6	5

2. (0,5 бала) Остача від ділення многочлена $P(x) = x^3 - x^2 + ax + 3$ на Q(x) = x - 2 дорівнює 9. Знайдіть a.

A	Б	В	Γ	Д
7	-2	-1	5	1

3. (0,5 бала) На який многочлен ділиться напіло многочлен $x^3 + 8$?

A	Б	В	Γ	Д
<i>x</i> + 8	x+2	x-2	x+1	x-3

4. (0,5 бала) Розкладіть многочлен

$$x^3 + 2x^2 - x - 2$$

на множники.

A	Б
(x-1)(x+2)(x-2)	(x-1)(x+1)(x-2)
В	Γ
(x-1)(x+1)(x+2)	(x-1)(x+2)(x-3)

5. (За кожну відповідність 0,5 бала) Установіть відповідність між часткою многочлена P(x) і многочлена Q(x) = x - 2 (1-4) та остачею (А-Д).

1	$P(x) = x^2 - 3x - 1$	A	4
2	$P(x) = x^2 - 5x + 1$	Б	-4
3	$P(x) = 4x^2 - 3x + 2$	В	12
4	$P(x) = x^3 - 3x^2$	Г	-5
		Д	-3

- **6.** (1 бал) Поділіть з остачею многочлен $x^4 5x^3 6x^2 + x + 1$ на многочлен $x^2 + x + 2$.
- **7.** (1 бал) Побудуйте графік рівняння $y = \sqrt{1 x^2}$.
- **8.** (2 бали) Зобразіть на координатній площині фігуру, що задається нерівністю $|x|+|y| \le 4$, і обчисліть її площу.
- **9.** (2 бали) Методом математичної індукції доведіть, що при всіх цілих невід'ємних n вираз $4^n + 15n 1$ ділиться на 9.
- 10. (2 бали) Розв'яжіть рівняння

$$x^3 + 5x^2 + 3x - 9 = 0$$
.

Варіант 2

1. (0,5 бала) Знайдіть остачу від ділення многочлена $P(x) = 3x^3 + x^2 + 1$ на многочлен Q(x) = x + 2.

A	Б	В	Γ	Д
1	-12	3	-19	5

2. (0,5 бала) Остача від ділення многочлена $P(x) = x^3 - ax^2 + 2x - 1$ на Q(x) = x - 1 дорівнює -3. Знайдіть a.

A	Б	В	Γ	Д
7	-2	-1	5	1

3. (0,5 бала) На який многочлен ділиться націло многочлен $x^3 - 8$?

A	Б	В	Γ	Д
x+8	x+2	x-2	x+1	x-3

4. (0,5 бала) Розкладіть многочлен $x^3 - x^2 - 4x + 4$ на множники.

A	Б
(x-1)(x+2)(x-2)	(x-1)(x+1)(x-2)
В	Γ
(x-1)(x+1)(x+2)	(x-1)(x+2)(x-3)

5. (За кожну відповідність 0,5 бала) Установіть відповідність між часткою многочлена P(x) на многочлен Q(x) = x + 1 (1-4) та остачею (А-Д).

1	$P(x) = x^2 - 3x + 2$	A	5
2	$P(x) = x^2 - 3x + 1$	Б	9
3	$P(x) = 4x^2 - 3x + 2$	В	-6
4	$P(x) = 2x^3 - 3x^2 - 1$	Г	6
		Д	-3

- 6. (1 бал) Поділіть з остачею многочлен $x^6 - x + 1$ на многочлен $x^3 - x^2 + 1$.
- **7.** (1 бал) Побудуйте графік рівняння $y = \sqrt{4 x^2}$.
- 8. (2 бали) Зобразіть на координатній площині фігуру, що задається нерівністю $|x|+|y|\leq 3$, і обчисліть її площу.
- 9. (2 бали) Методом математичної індукції доведіть, що при всіх цілих невід'ємних n вираз $10^{n} - 9n - 1$ ділиться на 81.
- 10. (2 бали) Розв'яжіть рівняння

$$x^3 - x^2 - 14x + 24 = 0.$$

Корінь n-го степеня та його властивості Варіант 1

1. (0,5 бала) Який із виразів не має змісту?

A	Б	В	Γ	Д
$\sqrt[5]{25}$	$\sqrt[6]{-25}$	$\sqrt[4]{35}$	$-\sqrt[4]{48}$	₹√-37

2. (0,5 бала) Спростіть вираз $\sqrt[3]{m^{15}}$.

A	Б	В	Γ	Д
$\sqrt{m^9}$	$\sqrt[3]{m^5}$	$\sqrt{m^3}$	$\sqrt{m^5}$	$\sqrt[5]{m^3}$

3. (0,5 бала) Скоротіть дріб $\frac{\sqrt{x}-16}{\sqrt{x}-4}$.

A	Б	В	Γ	Д
$\sqrt{x}+4$	$\sqrt[4]{x}-4$	$\sqrt[4]{x}+4$	$\sqrt{x}-4$	Інша
				відповідь

4. (0,5 бала) Звільніться від ірраціональності в знаменнику дробу $\frac{6}{\sqrt[3]{\alpha}}$.

A	Б	В	Γ	Д
$3\sqrt[3]{9}$	$3\sqrt[3]{3}$	$2\sqrt[3]{9}$	$2\sqrt[3]{3}$	$4\sqrt[3]{9}$

5. (За кожну відповідність 0,5 бала) Установіть відповідність між виразом (1-4) та його числовим значенням (А-Д).

1	$3 \cdot \sqrt{1\frac{4}{9}} \cdot \sqrt{1\frac{3}{13}} + \sqrt{\left(-4\right)^4}$	A	10
2	$\sqrt[4]{\left(2-\sqrt{5}\right)^4} + \sqrt[3]{\left(3-\sqrt{5}\right)^3}$	Б	0
3	$\sqrt[3]{-216} + 2\sqrt[3]{27}$	В	8
4	$\frac{\sqrt[3]{2000}}{\sqrt[3]{2}}$	Γ	20
		Д	1

6. (1 бал) Спростіть вираз

$$\left(\frac{\sqrt{a}}{\sqrt{b}+\sqrt{a}}-\frac{\sqrt{a}-\sqrt{b}}{\sqrt{a}}\right):\frac{\sqrt{b}}{\sqrt{a}}.$$

- **7.** (1 бал) Розв'яжіть рівняння $\sqrt{3-2x} = x$.
- 8. (2 бали) Розв'яжіть рівняння $\sqrt{8-x} - \sqrt{1+x} = 3$

9. (2 бали) Розв'яжіть рівняння

$$\sqrt[5]{\frac{5-x}{x+3}} + \sqrt[5]{\frac{x+3}{5-x}} = 2.$$

10. (2 бали) Розв'яжіть нерівність

$$\sqrt{x^2-x-2} \ge 4-x.$$

Варіант 2

1. (0,5 бала) Який із виразів не має змісту?

A	Б	В	Γ	Д
$\sqrt[7]{-7}$	$\sqrt[6]{6}$	$-\sqrt[4]{12}$	∛ 0	∜−16

2. (0,5 бала) Спростіть вираз $\frac{b\sqrt[3]{b}}{\sqrt{\sqrt[3]{b}}}$

A	Б	В	Γ	Д
$b\sqrt[6]{b}$	$\sqrt[6]{b^5}$	$\sqrt[4]{b^3}$	$\sqrt[3]{b^2}$	$\sqrt[6]{b}$

3. (0,5 бала) Скоротіть дріб $\frac{\sqrt[4]{m}-3}{\sqrt{m}-9}$.

A	Б	В	Γ	Д
4/ 0	1	4/	1	Інша
$\sqrt[4]{m-3}$	$\sqrt[4]{m+3}$	$\sqrt[4]{m+3}$	$\sqrt[4]{m}-3$	відповідь

4. (0,5 бала) Звільніться від ірраціональності в знаменнику дробу $\frac{8}{\sqrt[3]{16}}$.

A	Б	В	Γ	Д
$2\sqrt[3]{4}$	$4\sqrt[3]{2}$	$\frac{\sqrt[3]{16}}{2}$	$2\sqrt[3]{2}$	8∛2

5. (За кожну відповідність 0,5 бала) Установіть відповідність між виразом (1-4) та його числовим значенням (А-Д).

1	$x^2 + 6x + 9$ при $x = \sqrt{7} - 3$.	A	$\frac{1}{5}$
2	$\frac{3\cdot\sqrt[3]{\frac{8}{27}}+\sqrt{0,25}}{0,5}$	Б	5
3	$4\sqrt[3]{8} + 5\sqrt[5]{-32}$	В	7
4	$\sqrt[4]{\left(1-\sqrt{7}\right)^4} + \sqrt[3]{\left(2-\sqrt{7}\right)^3}$	Γ	-2
		Д	1

6. (1 бал) Спростіть вираз

$$\left(\frac{\sqrt[4]{a}+4}{\sqrt[4]{a}-4}+\frac{\sqrt[4]{a}-4}{\sqrt[4]{a}+4}\right):\frac{4\sqrt{a}+64}{16-\sqrt{a}}.$$

- **7.** (1 бал) Розв'яжіть рівняння $\sqrt{6-5x} = x$.
- **8.** (2 бали) Розв'яжіть рівняння $\sqrt{x+6} \sqrt{7-x} = 1$.
- 9. (2 бали) Розв'яжіть рівняння

$$\sqrt[3]{\frac{3x+1}{x-1}} + \sqrt[3]{\frac{x-1}{3x+1}} = 2.$$

10. (2 бали) Розв'яжіть нерівність

$$\sqrt{x^2-x-2} \le x-1.$$

Степінь із раціональним показником *Варіант 1*

1. (0,5 бала) Який із виразів не має змісту?

A	Б	В	Γ	Д
$27^{\frac{1}{3}}$	0_3	$\left(-9\right)^{-2}$	$(-3)^{-\frac{1}{3}}$	$\left(-rac{2}{3} ight)^{\!-6}$

2. (*0,5 бала*) Подайте у вигляді степеня вираз $\frac{b\sqrt[3]{b}}{\sqrt[3]{2}}$.

A	Б	В	Γ	Д
$b^{\frac{5}{6}}$	$b^{\frac{7}{6}}$	$b^{\frac{4}{3}}$	$b^{rac{2}{3}}$	$b^{rac{1}{6}}$

2. (*0,5 бала*) Подайте у вигляді степеня з дробовим показником $\sqrt[3]{\sqrt{m^{15}}}$

A	Б	В	Γ	Д
$m^{\frac{2}{3}}$	$m^{\frac{15}{3}}$	$m^{rac{5}{2}}$	$m^{rac{2}{5}}$	m

3. (0,5 бала) Знайдіть значення виразу $\frac{x^{\frac{3}{3}}}{x^{\frac{5}{3}}}$ якщо x = 2.

A	Б	В	Γ	Д
4	64	$2^{-\frac{1}{5}}$	2	Інша відповідь

4. (0,5 бала) Скоротіть дріб $\frac{x^{\frac{1}{2}}-9}{x^{\frac{1}{4}}-3}$.

A	Б	В	Γ	Д
$x^{\frac{1}{4}} + 3$	$x^{\frac{1}{2}} + 3$	$\frac{1}{x^{\frac{1}{4}}+3}$	$\frac{1}{x^{\frac{1}{2}}+3}$	$\frac{1}{x^{\frac{1}{4}}-3}$

5. (За кожну відповідність 0,5 бала) Установіть відповідність між виразом (1-4) та його числовим значенням (A-Д).

1	$9^{4m} \cdot 9^{-2m}$ при $m = \frac{1}{4}$.	A	4
2	$8^{\frac{1}{3}} + 49^{\frac{1}{2}}$	Б	0,5
3	$\left(\frac{8^{\frac{1}{2}}}{4^{\frac{1}{4}}}\right)^{-1}$	В	3
4	$2^{1,3} \cdot 2^{-0,7} \cdot 2^{1,4}$	Γ	9
		Д	2

- 6. (1 бал) Знайдіть функцію, обернену до функції $y = \frac{1}{5x+1}$.
- 7. (1 бал) Побудуйте схематично графік функції: 1) $u = -x^5$; 2) $u = x^{\frac{1}{5}}$.
- 8. (2 бали) Спростіть вираз

$$\frac{2y^{-\frac{1}{3}}}{y^{\frac{2}{3}}-3y^{-\frac{1}{3}}}-\frac{y^{\frac{2}{3}}}{y^{\frac{5}{3}}-y^{\frac{2}{3}}}-\frac{x+1}{x^2-4x+3}.$$

- 9. (2 бали) Розв'яжіть рівняння $2x^{0.5} - x^{0.25} - 1 = 0$
- **10.** (2 бали) Обчисліть: $\left(\frac{8^{\frac{1}{2}} \cdot 9^{\frac{1}{3}}}{2^{\frac{5}{3}} \cdot 2^{\frac{1}{2}}}\right)^2 \cdot \left(\frac{10^{\frac{2}{5}} \cdot 10^{-\frac{1}{2}}}{10^{-0.1}}\right)^4$.

Варіант 2

1. (0,5 бала) Який із виразів не має змісту?

A	Б	В	Γ	Д
$8^{-\frac{1}{3}}$	$\left(-5\right)^2$	$(-1)^{\frac{1}{3}}$	$0^{\frac{3}{4}}$	$4^{\frac{1}{3}}$

2. (0,5 бала) Подайте у вигляді степеня з дробовим показником $\sqrt[3]{\sqrt{m^{15}}}$.

A	Б	В	Γ	Д
$m^{\frac{2}{3}}$	$m^{\frac{15}{3}}$	$m^{rac{5}{2}}$	$m^{rac{2}{5}}$	m

3. (0,5 бала) Знайдіть значення виразу якщо a=2.

A	Б	В	Γ	Д
$\frac{1}{4}$	8	4	$\frac{1}{8}$	-8

4. (0,5 бала) Скоротіть дріб $\frac{m^{\frac{1}{2}}-25}{\frac{1}{2}}$.

A	Б	В	Г	Л
$m^{\frac{1}{2}}-5$	$m^{\frac{1}{4}}-5$	$m^{\frac{1}{2}} + 5$	$m^{\frac{1}{4}}+5$	Інша відповідь

5. (За кожну відповідність 0,5 бала) Установіть відповідність між виразом (1-4) та його числовим значенням (А-Д).

1	$7^{4m} \cdot 7^{-8m}$ при $m = \frac{1}{4}$.	A	$\frac{1}{9}$
2	$oxed{27^{rac{1}{3}}\!-\!25^{rac{1}{2}}}$	Б	7
3	$\left(\frac{27^{\frac{1}{2}}}{9^{\frac{1}{4}}}\right)^{-2}$	В	$\frac{1}{7}$
4	$7^{2,3} \cdot 7^{-2,1} \cdot 7^{1,8}$	Γ	-2
		Д	49

- 6. (1 бал) Знайдіть функцію, обернену до функції $y = \frac{2}{3r+1}$.
- 7. (1 бал) Побудуйте схематично графік функції: 1) $y = x^4$; 2) $y = -x^{\frac{1}{4}}$.
- 8. (2 бали) Спростіть вираз

$$\frac{x-1}{x^{\frac{3}{4}}+x^{\frac{1}{2}}} \cdot \frac{x^{\frac{1}{2}}+x^{\frac{1}{4}}}{x^{\frac{1}{2}}+1} \cdot x^{\frac{1}{4}}+1.$$

9. (2 бали) Розв'яжіть рівняння

$$3x^{0.5} - x^{0.25} - 2 = 0.$$

10. (2 бали) Обчисліть: $\left(\frac{4^{0,7} \cdot 2^{-0,4}}{2^{-1} \cdot 6^{-1} \cdot 3^{-1}}\right)^{\frac{3}{4}} \cdot \left(\frac{25^{0,3} \cdot 5^{1,4}}{2^{\frac{1}{4}} \cdot 2^{-2,5}}\right)^{\frac{1}{2}}$.

Тригонометричні функції

Варіант 1

1. (0,5 бала) Градусна міра кута в $\frac{3\pi}{4}$ радіан дорівнює...

· · · =				
A	Б	В	Γ	Д
150°	145°	135°	210°	215°

2. (0,5 бала) Точка тригонометричного кола з абсцисою -1 відповідає числу...

A	Б	В	Γ	Д
π	$rac{\pi}{2}$	$\frac{3\pi}{2}$	2π	$\frac{3\pi}{4}$

5. (0,5 бала) Знайдіть множину значень функції $y = \sin x - 2$.

A	Б	В	Γ	Д
[-1;1]	[-2;0]	[-3;-1]	[-3;0]	[-2;1]

4. (0,5 бала) Яке число є періодом функції $y = \operatorname{tg} \frac{x}{2}$?

A	Б	В	Γ	Д
π	$\frac{\pi}{2}$	$\frac{3\pi}{2}$	2π	$\frac{\pi}{4}$

5. (За кожну відповідність 0,5 бала) Установіть відповідність між тригонометричним виразом (1-4) та його значенням (A-Д).

1	$\cos \pi$	A	0
2	$\sin(-270^\circ)$	Б	1
3	$\cos \frac{7\pi}{3}$	В	0,5
4	$\sin 690^{\circ}$	Γ	-1
		Д	-0.5

- **6.** (1 бал) Визначте знак виразу $\sin 157^{\circ}\cos 219^{\circ}$.
- 7. (1 бали) Знайдіть значення виразу $3 \operatorname{tg} \left(-\frac{\pi}{3}\right) \cdot \operatorname{ctg} \frac{\pi}{6} + \sin \left(-\frac{\pi}{2}\right) + 2 \cos \left(-\frac{\pi}{4}\right).$
- **8.** (2 бали) Знайдіть область допустимих значень виразу $\frac{1}{2-\sin 2\alpha}$.
- **9.** (2 бали) Побудуйте графік функції $f(x) = 3\sin 2x$. Укажіть її проміжки зростання і спадання.
- **10.** (2 бали) При яких значеннях a можлива рівність $\sin x = 4a 3$?

Варіант 2

1. (0,5 бала) Радіанна міра кута в 270° дорівнює...

A	Б	В	Γ	Д
π	$\frac{\pi}{2}$	$\frac{3\pi}{2}$	$\frac{4\pi}{3}$	$\frac{3\pi}{4}$

2. (0,5 бала) Число 2π відповідає точці тригонометричного кола з ординатою...

A	Б	В	Γ	Д
0	1	-1	2	$\frac{\sqrt{2}}{2}$

3. (0,5 бала) Знайдіть множину значень функції $y = \cos x + 3$.

A	Б	В	Γ	Д
[-1;1]	[-2;0]	[-3;-1]	[-3;0]	[2;4]

4. (0,5 бала) Яке число є періодом функції $y = \cos 4x$?

A	Б	В	Γ	Д
π	$\frac{\pi}{2}$	8π	2π	$\frac{\pi}{4}$

5. (За кожну відповідність 0,5 бала) Установіть відповідність між тригонометричним виразом (1-4) і його значенням (A-Д).

1	$\cos \frac{3\pi}{2}$	A	0
2	$\cos(-720^\circ)$	Б	0,5
3	$\sin \frac{11\pi}{6}$	В	-0,5
4	$\sin 750^{\circ}$	Γ	1
	_	Д	-1

- **6.** (1 бал) Визначте знак виразу $\sin \frac{8\pi}{7} \cos \frac{\pi}{9}$
- 7. (1 бал) Знайдіть значення виразу $4\cos 30^{\circ} \cdot \sin(-60^{\circ}) + \cos(-90^{\circ}) tg(-45^{\circ})$.
- **8.** (2 бали) Знайдіть область допустимих значень виразу $\frac{1}{3+\sin 2\alpha}$.
- **9.** (2 бали) Побудуйте графік функції $f(x) = 3\cos\frac{x}{2}$. Укажіть її проміжки зростання і спадання.
- **10.** (2 бали) При яких значеннях a можлива рівність $\cos x = 2a + 1$?

Тригонометричні перетворення

Варіант 1

1. (0,5 бала) Спростіть вираз $tg \alpha \cos \alpha$.

A	Б	В	Γ	Д
$\sin \alpha$	$\cos \alpha$	$\frac{1}{\cos \alpha}$	$\frac{1}{\sin \alpha}$	1

2. (0,5 бала) Обчисліть $\sin \alpha$, якщо $\cos \alpha = -\frac{3}{5}$

$$i \ \pi < \alpha < \frac{3\pi}{2}.$$

A	Б	В	Γ	Д
_1	1	4	4	3
$\frac{-\overline{2}}{2}$	$\overline{2}$	$-\frac{-}{5}$	$\overline{5}$	$\frac{-}{5}$

 $3. \, (\textit{0,5 бала}) \,\, \Pi$ еретворіть на добуток $\cos 40^{\circ} + \cos 10^{\circ}.$

A	Б	В
$2\sin 25^{\circ}\cos 15^{\circ}$	$2\cos 40^{\circ}\cos 10^{\circ}$	$2\cos 25^{\circ} \sin 15^{\circ}$
Γ	Д	
$2\sin 25^{\circ} \sin 15^{\circ}$	$2\cos25^{\circ}\cos15^{\circ}$	

4. (0,5 бала) Обчисліть: $\cos\left(\frac{\pi}{2} + \frac{\pi}{3}\right)$.

A	Б	В	Γ	Д
1	$-\frac{1}{2}$	$rac{1}{2}$	$-rac{\sqrt{3}}{2}$	$\frac{\sqrt{3}}{2}$

5. (За кожну відповідність 0,5 бала) Установіть відповідність між виразом (1-4) та його значенням (A-Д).

1	$\cos 13^{\circ} \cos 32^{\circ} - \sin 13^{\circ} \sin 32^{\circ}$	A	$\frac{\sqrt{3}}{2}$
2	$\cos^2 15^\circ - \sin^2 15^\circ$	Б	0
3	$\cos^2 \alpha tg^2 \alpha + \sin^2 \alpha ctg^2 \alpha$	В	-1
4	$\sin \alpha + \sin \beta$ при $\alpha - \beta = 180^{\circ}$	Γ	1
		Д	$\frac{\sqrt{2}}{2}$

- **6.** (1 бал) Спростіть вираз $\frac{\sin 2\alpha}{2\sin \alpha}$.
- 7. (1 бал) Спростіть вираз $\frac{\sin^2 \alpha 1}{\cos^2 \alpha 1} + \operatorname{tg} \alpha \operatorname{ctg} \alpha$.
- 8. (2 бали) Задано: $\cos \alpha = 0.8$; $\frac{3\pi}{2} < \alpha < 2\pi$. Обчисліть: $\cos \left(\frac{\pi}{3} \alpha\right)$.
- 9. (2 бали) Спростіть і обчисліть:

$$\left(\frac{1}{\sin\alpha} - \frac{1}{\sin 3\alpha}\right) \cdot \left(\sin\alpha + \sin 5\alpha\right) - 2$$

якщо $\alpha = 15^{\circ}$.

10. (2 бали) Відомо, що $\sin \alpha + \cos \alpha = a$. Обчисліть: $\sin^3 \alpha + \cos^3 \alpha$.

Варіант 2

1. (0,5 бала) Спростіть вираз $\frac{1-\cos^2\alpha}{\sin^2\alpha}$.

A	Б	В	Γ	Д
-1	0	1	$tg^2\alpha$	$ctg^2\alpha$

2. (0,5 бала) Обчисліть $\cos \alpha$, якщо $\sin \alpha = \frac{24}{25}$

i
$$\frac{\pi}{2} < \alpha < \pi$$
.

A	Б	В	Γ	Д
7	7	4	4	3
$-{25}$	$\overline{25}$	$-\frac{-}{5}$	$\frac{\overline{5}}{5}$	$\frac{\overline{5}}{5}$

3. (*0,5 бала*) Перетворіть на добуток $\sin 100^{\circ} - \sin 40^{\circ}$.

A	Б	В
$2\sin 140^{\circ}\cos 60^{\circ}$	$2\sin70^{\circ}\cos30^{\circ}$	$2\cos 140^{\circ}\sin 60^{\circ}$
Γ	Д	
$2\cos70^{\circ}\sin30^{\circ}$	$2\cos70^{\circ}\cos30^{\circ}$	

4. (0,5 бала) Обчисліть: $\sin\left(\pi + \frac{\pi}{3}\right)$.

A	Б	В	Γ	Д
1	_1_	1	$\sqrt{3}$	$\sqrt{3}$
	2	2		$\frac{}{2}$

5. (За кожну відповідність 0,5 бала) Установіть відповідність між виразом (1-4) та його значенням (A-Д).

1	$1+\sin^2\alpha+\cos^2\alpha$	A	$\frac{1}{4}$
2	$2\sin75^{\circ}\cos75^{\circ}$	Б	0
3	$sin126^{\circ}cos36^{\circ}-cos126^{\circ}sin36^{\circ}$	В	1
4	$\cos \alpha + \cos \beta$ при $\alpha + \beta = 180^{\circ}$	Γ	2
		Д	1
			2

- 6. (1 бал) Спростіть вираз $\frac{\sin 4\alpha}{2\cos 2\alpha}$.
- 7. (1 бал) Спростіть вираз $\frac{1-\cos^2\alpha}{\sin^2\alpha-1}$ $\operatorname{tg} \alpha \operatorname{ctg} \alpha$.
- 8. (2 бали) Задано: $\sin \alpha = -\frac{12}{13}; \quad \frac{3\pi}{2} < \alpha < 2\pi$. Обчисліть: $\sin \left(\frac{\pi}{4} \alpha\right)$.
- 9. (2 бали) Спростіть і обчисліть:

$$\left(\frac{\sin\alpha}{\cos2\alpha} + \frac{\cos\alpha}{\sin2\alpha}\right) \cdot \frac{\left(\sin\alpha + \sin7\alpha\right)}{\cos\alpha},$$

якщо $\alpha = 20^{\circ}$.

10. (2 бали) Відомо, що $\sin \alpha + \cos \alpha = a$. Обчисліть: $\sin^4 \alpha + \cos^4 \alpha$.

МАТЕМАТИКА В ШКОЛАХ УКРАЇНИ

Тригонометричні рівняння

Варіант 1

1. (0,5 бала) Знайдіть у градусах корінь рівняння $tg x - \sqrt{3} = 0$, що належить інтервалу (0°;90°).

A	Б	В	Γ	Д
60°	0°	45°	80°	30°

2. (0,5 бала) Розв'яжіть рівняння $\cos 3x = -\frac{1}{2}$.

A	Б	В
$\left(-1\right)^n\frac{2\pi}{9}+\frac{\pi n}{3},$	$\left(-1\right)^n\frac{2\pi}{3}+\frac{2\pi n}{3},$	$\pm\frac{2\pi}{9}\!+\!\frac{2\pi n}{3},$
$n \in \mathbb{Z}$	$n \in \mathbb{Z}$	$n \in \mathbb{Z}$
Γ	Д	
$\pm \frac{2\pi}{3} + \frac{2\pi n}{3},$	$\pm \frac{2\pi}{3} + 2\pi n$	
$n \in \mathbb{Z}$	$n \in \mathbb{Z}$	

3. (0,5 бала) Розв'яжіть рівняння $\sin x = 3$.

A	Б		
$\arcsin 3 + \pi n, n \in \mathbb{Z}$	$\left(-1\right)^{n}3+\pi n, n\in\mathbb{Z}$		
В	Γ	Д	
$\left(-1\right)^n \arcsin 3 + \pi n, n \in \mathbb{Z}$	$\frac{1}{3}$	Коренів немає	

4. (0,5 бала) Обчисліть значення виразу

$$\sin\left(\arctan\frac{\sqrt{3}}{3}\right)$$
.

A	Б	В	Γ	Д
1	_1_	$\sqrt{3}$	$\sqrt{3}$	$\sqrt{3}$
$\overline{2}$	$-\frac{-}{2}$	${2}$	$-{2}$	3

5. (За кожну відповідність 0,5 бала) Установіть відповідність між рівнянням (1–4) та його розв'язками (А–Д).

1	$\cos x = 0$	A	$-\frac{\pi}{4} + \pi n, n \in \mathbb{Z}$
2	$\cos x = \frac{1}{2}$	Б	$\frac{\pi}{2} + \pi n, n \in \mathbb{Z}$
3	tg x = -1		$\pi + 2\pi n, n \in \mathbb{Z}$
4	$\sin x = -1$	Г	$-\frac{\pi}{2} + 2\pi n, n \in \mathbb{Z}$
		Д	$\boxed{\pm\frac{\pi}{3}+2\pi n, n\in\mathbb{Z}}$

- **6.** (1 бал) Розв'яжіть рівняння $2\cos 2x + 1 = 0$.
- **7.** (1 бал) Розв'яжіть рівняння $tg\left(\frac{x}{2} \frac{\pi}{3}\right) = 1$.
- **8.** (2 бали) Розв'яжіть рівняння $2\sin^2 x \sin x \cos x = \cos^2 x$.
- 9. (2 бали) Розв'яжіть рівняння

$$\frac{\sin 3x - \sin x}{1 + \cos x} = 0.$$

10. (2 бали) Розв'яжіть рівняння $\sqrt{-3\cos x} = \sqrt{2}\sin x$.

Варіант 2

1. (0,5 бала) Знайдіть у градусах корінь рівняння ctgx-1=0, що належить інтервалу $(0^{\circ};90^{\circ})$.

A	Б	В	Γ	Д
60°	0°	45°	80°	30°

2. (0,5 бала) Розв'яжіть рівняння $\sin x = -\frac{1}{2}$

A	Б	В
$\left(-1\right)^n\frac{\pi}{6}+\frac{\pi n}{6},$	$\left(-1\right)^{n+1}\frac{\pi}{6}+\pi n,$	$\pm\frac{2\pi}{9}\!+\!\frac{2\pi n}{3},$
$n \in \mathbb{Z}$	$n \in \mathbb{Z}$	$n \in \mathbb{Z}$
Г	Д	
$\pm \frac{\pi}{6} + \frac{2\pi n}{3}$,	$\pm \frac{\pi}{6} + 2\pi n$,	
$n \in \mathbb{Z}$	$n \in \mathbb{Z}$	

3. (0,5 бала) Розв'яжіть рівняння $tg\frac{x}{3}=2$.

A	Б			
$arctg6 + \pi n, n \in$	\mathbb{Z}	$3\operatorname{arctg} 2 + 3\pi n, n \in \mathbb{Z}$		
В	Γ		Д	
$3 \operatorname{arctg} 2 + \pi n, n \in \mathbb{Z}$	$arctg6 + 3\pi n, n \in \mathbb{Z}$		Коренів	
	`	-		немає

4. (0,5 бала) Обчисліть значення виразу

$$\cos\left(\arcsin\frac{\sqrt{3}}{2}\right).$$

A	Б	В	Γ	Д
$\frac{1}{2}$	$-\frac{1}{2}$	$\frac{\sqrt{3}}{2}$	0	1

5. (За кожну відповідність 0,5 бала) Установіть відповідність між рівнянням (1-4) та його розв'язками (A-Д).

1	$\sin x = -1$	A	$\frac{\pi}{2} + \pi n, n \in \mathbb{Z}$
2	$\cos x = 0$	Б	$\left[\left(-1\right)^n \frac{\pi}{6} + \pi n, n \in \mathbb{Z} \right]$
3	$tg x = \sqrt{3}$	В	$\frac{\pi}{3} + \pi n, n \in \mathbb{Z}$
4	$\sin x = \frac{1}{2}$	Γ	$-\frac{\pi}{2}+2\pi n, n\in\mathbb{Z}$
		Д	$arctg6+3\pi n, n \in \mathbb{Z}$

- **6.** (1 бал) Розв'яжіть рівняння $2\sin 3x 1 = 0$.
- **7.** (1 бал) Розв'яжіть рівняння ${\rm ctg}\left(x+\frac{\pi}{4}\right) = \sqrt{3}$.
- 8. (2 бали) Розв'яжіть рівняння $3\sin^2 x + \sin x \cos x = 2\cos^2 x$.
- 9. (2 бали) Розв'яжіть рівняння $\frac{\cos 3x + \cos x}{1 \sin x} = 0.$
- **10.** (2 бали) Розв'яжіть рівняння $\sqrt{1-\cos x} = \sin x$.

Тригонометричні нерівності. Системи тригонометричних рівнянь

Варіант 1

1. (0,5 бала) Серед наведених нерівностей виберіть ту, яка не має розв'язків.

A	Б	В	Γ	Д
$\cos x < -\frac{5}{7}$	$\sin x \ge 0,6$	$\operatorname{tg} x < -5$	$arctg x \ge 2$	$arctgx \le 2$

2. (0,5 бала) Укажіть нерівність, множиною розв'язків якої є проміжок $(-\infty; +\infty)$.

A	Б	В	Γ	Д
$\cos x \le -5$	$\sin x \le 3$	ctgx < -5	$tg x \ge 2$	$\cos x \ge 3$

3. (0,5 бала) Укажіть нерівність, розв'язком якої є число 0.

A	Б	В	Γ	Д
$\cos x < -\frac{1}{2}$	$ \sin x > \frac{1}{2}$	$ tg x \le -\frac{\sqrt{3}}{3} $	$\operatorname{tg} x > -1$	$\sin x \le -\frac{\sqrt{3}}{2}$

4. (0,5 бала) Укажіть проміжок, який містить хоча б один розв'язок нерівності tg x < 0.

A	Б	В	Γ	Д
$\left(\frac{\pi}{3};\frac{\pi}{2}\right)$	$\left(0;\frac{\pi}{6}\right)$	$\left(-\pi; -\frac{3\pi}{4}\right)$	$\left(\frac{\pi}{2}; \frac{4\pi}{4}\right)$	$\left(-\frac{3\pi}{4}; -\frac{\pi}{2}\right)$

5. (За кожну відповідність 0,5 бала) Установіть відповідність між нерівністю (1-4) та проміжком (А-Д), який повністю міститься в множині розв'язків цієї нерівності.

1	$\sin x < \frac{1}{2}$	A	$\left(-\frac{\pi}{3};\frac{\pi}{3}\right)$
2	$\sin x > \frac{1}{2}$	Б	$\left(\frac{\pi}{3}; \frac{5\pi}{3}\right)$
3	$\cos x > \frac{1}{2}$	В	$\left(\frac{\pi}{6}; \frac{5\pi}{6}\right)$
4	$\cos x < \frac{1}{2}$	Γ	$\left(\frac{5\pi}{6};\frac{13\pi}{6}\right)$
		Д	$\left(-\frac{\pi}{6};\frac{7\pi}{6}\right)$

- **6.** (1 бал) Розв'яжіть нерівність $\cos x \le \frac{\sqrt{2}}{2}$.
- **7.** (1 бал) Розв'яжіть нерівність $tg 6x > -\sqrt{3}$.
- 8. (2 бали) Розв'яжіть нерівність

$$\sin\left(\frac{3}{4}x + \frac{\pi}{9}\right) \ge \frac{\sqrt{3}}{2}.$$

У відповідь запишіть найменший додатний цілий розв'язок нерівності.

9. (2 бали) Розв'яжіть систему рівнянь

$$\begin{cases} x + y = \frac{\pi}{3}, \\ \sin x + \sin y = 1. \end{cases}$$

10. (2 бали) При яких значеннях параметра a нерівність $\cos^2 x - (2a-1)\cos x + a^2 - a > 0$ виконується при всіх дійсних значеннях x?

Варіант 2

1. (0,5 бала) Серед наведених нерівностей виберіть ту, яка має розв'язки.

A	Б	В	Γ	Д
$\cos x < -1$	$\sin x \ge 3,6$	$\sin x > 1$	$\arcsin x \le -\pi$	$tg x \le 2$

2. (0,5 бала) Укажіть нерівність, множиною розв'язків якої є проміжок $(-\infty; +\infty)$.

A	Б	В	Γ	Д
$\cos x > 3$	$\sin x > 3$	$c \operatorname{tg} x < 3$	tg x < -3	$\cos x > -3$

3. (0,5 бала) Укажіть нерівність, розв'язком якої є число $\frac{\pi}{2}$.

A	Б	В	Γ	Д
$\cos x > \frac{1}{2}$	$\sin x > \frac{1}{2}$	$\sin x \le \frac{\sqrt{3}}{2}$	$tg x > \frac{1}{2}$	$\cos x > 0$

4. (0,5 бала) Укажіть проміжок, який містить хоча б один розв'язок нерівності $\operatorname{ctg} x > 0$.

A	Б	В	Γ	Д
$\left(\frac{\pi}{2}; \frac{3\pi}{4}\right)$	$\left(-\frac{\pi}{4};0\right)$	$\left(\frac{3\pi}{4};\pi\right)$	$\left(-\frac{\pi}{2};-\frac{\pi}{4}\right)$	$\left(-\frac{3\pi}{4}; -\frac{\pi}{2}\right)$

5. (За кожну відповідність 0,5 бала) Установіть відповідність між нерівністю (1-4) та проміжком (А-Д), який повністю міститься у множині розв'язків цієї нерівності.

1	$\sin x < \frac{\sqrt{2}}{2}$	A	$\left(-\frac{\pi}{4}; \frac{3\pi}{4}\right)$
2	$\left \sin x > \frac{\sqrt{2}}{2}\right $	Б	$\left(\frac{\pi}{4};\frac{3\pi}{4}\right)$
3	$\cos x > \frac{\sqrt{2}}{2}$	В	$\left(\frac{\pi}{4}; \frac{7\pi}{4}\right)$
4	$\cos x < \frac{\sqrt{2}}{2}$	Γ	$\left(-\frac{\pi}{4};\frac{\pi}{4}\right)$
		Д	$\left(\frac{3\pi}{4};\frac{9\pi}{4}\right)$

- **6.** (1 бал) Розв'яжіть нерівність $\sin x > \frac{\sqrt{3}}{2}$.
- **7.** (2 бали) Розв'яжіть нерівність $tg 4x \le -1$.
- 8. (2 бали) Розв'яжіть нерівність

$$\cos\left(\frac{1}{2}x + \frac{\pi}{4}\right) \le -\frac{\sqrt{2}}{2}.$$

У відповідь запишіть кількість цілих розв'язків нерівності на проміжку $[0;10\pi]$.

9. (2 бали) Розв'яжіть систему рівнянь

$$\begin{cases} x + y = \frac{\pi}{2}, \\ \sin x \sin y = \frac{1}{2}. \end{cases}$$

10. (2 бали) При яких значеннях параметра a нерівність $\sin^2 x - (2a+1)\sin x + a^2 + a > 0$ виконується при всіх дійсних значеннях x?

Похідна

Варіант 1

1. (0,5 бала) Знайдіть похідну функції $f(x) = \frac{2}{x^3}$.

A	Б	В	Γ	Д
$f'(x) = \frac{2}{3x^2}$	$f'(x) = 6x^2$	$f'(x) = \frac{6}{x^2}$	$f'(x) = -\frac{6}{x^4}$	$f'(x) = \frac{6}{x^4}$

2. (0,5 бала) Знайдіть похідну функції $f(x) = \sin x + \cos x$.

A	Б
$f'(x) = \sin x + \cos x$	$f'(x) = \cos x - \sin x$
В	Γ
$f'(x) = \sin x - \cos x$	$f'(x) = -\cos x - \sin x$
Д	
$f'(x) = \sin x \cos x$	

3. (0,5 бала) Знайдіть значення похідної функції $y = x + \sqrt{x}$ у точці $x_0 = 4$.

A	Б	В	Γ	Д
1,25	1,5	4,25	4,5	3

4. (0,5 бала) Знайдіть кут, який утворює з додатним напрямом осі Ox дотична до графіка функції $y = \frac{1}{5}x^5$ у точці $x_0 = -1$.

A	Б	В	Γ	Д
30°	45°	150°	120°	135°

5. (*За кожну відповідність 0,5 бала*) Установіть відповідність між функцією (1–4) та її похідною (А–Д).

1	$y = 3\sin x$	A	$y' = 3\cos x$
2	$y = x \sin 3$	Б	$y' = 3\sin^2 x$
3	$y = \sin^3 x$	В	$y' = 3\sin^2 x \cos x$
4	$y = \sin x^3$	Γ	$y' = \sin 3$
		Д	$y' = 3x^2 \cos x^3$

6. (1 бал) Точка рухається за законом $S(t) = 2t^2 - 3t + 1$ (час t вимірюється в секундах, переміщення S — у метрах). Через який час від початку руху ця точка зупиниться?

- 7. (1 бал) Знайдіть похідну функції $f(x) = \frac{x^2 + 1}{x} \text{ у точці } x_0 = 3.$
- **8.** (2 бали) Обчисліть площу трикутника, утвореного осями координат і дотичною до графіка функції $f(x) = \frac{x+2}{x-1}$ у точці з абсцисою $x_0 = 2$.
- **9.** (2 бали) Знайдіть похідну функції $f(x) = (3x-1) \cdot \sqrt{2x-2}$ у точці $x_0 = 3$.
- **10.** (2 бали) Знайдіть, у якій точці графіка функції $f(x) = \sqrt{2x-1}$ дотична нахилена до осі абсцис під кутом $\alpha = \frac{\pi}{4}$.

Варіант 2

1. (0,5 бала) Знайдіть похідну функції $f(x) = \frac{5}{x^6}$

A	Б	В
$f'(x) = \frac{5}{6x^5}$	$f'(x) = 30x^5$	$f'(x) = -\frac{30}{x^7}$
Γ	Д	
$f'(x) = -\frac{5}{6x^5}$	$f'(x) = \frac{30}{x^7}$	

2. (0,5 бала) Знайдіть похідну функції $f(x) = \lg x + \cos x$.

A	Б
$f'(x) = \frac{1}{\cos^2 x} + \sin x$	$f'(x) = \frac{1}{\cos^2 x} - \sin x$
В	Γ
$f'(x) = -\frac{1}{\cos^2 x} + \sin x$	$f'(x) = \frac{1}{\sin^2 x} - \sin x$
Д	
$f'(x) = -\frac{1}{\sin^2 x} - \sin x$	

3. (0,5 бала) Знайдіть значення похідної функції $y = 2x + \frac{1}{x}$ у точці $x_0 = 2$.

		••			
A	Б	В	Γ	Д	
1,75	2,25	4,5	4,25	1,5	

4. (0,5 бала) Знайдіть кут, який утворює з додатним напрямком осі Ox дотична до графіка функції $y = \frac{1}{14}x^{14}$ у точці $x_0 = -1$.

A	Б	В	Γ	Д
30°	45°	120°	135°	150°

5. (За кожну відповідність 0,5 бала) Установіть відповідність між функцією (1–4) та її похідною (А–Д).

1	$y = 5\cos x$	A	$-5\sin x$
2	$y = x \cos 5$	Б	$-5x^4\sin x^5$
3	$y = \cos^5 x$	В	$-5\cos^4 x \sin x$
4	$y = \cos x^5$	Γ	$\cos 5$
		Д	$\cos 5 - x \sin 5$

6. (1 бал) Точка рухається за законом

$$S(t) = 3t^2 - 5t + 8$$

(час t вимірюється в секундах, переміщення S — у метрах). Через який час від початку руху ця точка зупиниться?

- 7. (1 бал) Знайдіть похідну функції $f(x) = \frac{x^2 2}{x} \text{ у точці } x_0 = 2.$
- **8.** (2 бали) Обчисліть площу трикутника, утвореного осями координат і дотичною до графіка функції $f(x) = \sqrt{2x^2 4}$ у точці з абсцисою $x_0 = 2$.
- 9. (2 бали) Знайдіть похідну функції

$$f(x) = (2x-3) \cdot \sqrt{3x-2}$$

у точці $x_0 = 1$.

10. (2 бали) Знайдіть, у якій точці графіка функції $f(x) = x\sqrt{3} - \frac{x^3}{3}$ дотична нахилена до осі абсцис під кутом $\alpha = \frac{\pi}{3}$.

Застосування похідної

Варіант 1

1. $(0.5 \ бала)$ Тіло рухається за законом $S(t) = \frac{2}{3}t^3 - t^2 + t$ (час t вимірюється в секундах, шлях S — у метрах). Знайдіть швидкість через 2 секунди після початку руху.

A	Б	В	Γ	Д
4	1	5	7	3

2. (0,5 бала) Знайдіть проміжки спадання функції $f(x) = x^2 - 4x + 3$.

A	Б	В	Γ	Д
$(-\infty;1]\cup [3;+\infty)$	[1;3]	[2;+∞)	[(-∞;2]	Ø

3. (0,5 бала) Знайдіть критичні точки функції $f(x) = x^3 - 3x$.

A	Б	В	Γ	Д
0	1	-1; 1	7	Не існує

4. (0,5 бала) Відомо, що похідна функції y = f(x) на проміжку [2;5] дорівнює -2x. Тоді функція f(x) на цьому проміжку...

A	Б	В	Γ	Д
не спадає	не зростає	спадає	зростає	Неможливо
				визначити

5. (За кожну відповідність 0,5 бала) Установіть відповідність між функцією (1-4) і тангенсом кута, який утворює дотична, проведена до графіка функції в точці з абсцисою x=0 з додатним напрямком осі Ox (A-Д).

1	$y = 2\sin x$	A	6
2	$y = 8\cos 2x$	Б	4
3	$y = 2 \operatorname{tg} \frac{x}{2}$	В	2
4	$y = 4x + x^3$	Γ	0
		Д	1

- **6.** (1 бал) Знайдіть проміжки зростання і спадання функції $f(x) = 3x + \sin 3x$.
- **7.** (1 бал) Знайдіть проміжки зростання функції $f(x) = x^3 x^2 x + 8$.
- **8.** (2 бали) Знайдіть екстремуми функції $f(x) = \frac{x^2 3x}{x + 1}.$
- **9.** (2 бали) Знайдіть найбільше та найменше значення функції $f(x) = -x^3 + 3x|x-3|$ на відрізку [0;4].
- **10.** (2 бали) При яких значеннях параметра a функція $f(x) = x^3 ax^2 + 3ax + 1$ зростає на всій числовій прямій?

Варіант 2

1. (0,5 бала) Тіло рухається за законом $S(t) = 2 + 20t - 5t^2$ (час t вимірюється в секундах, шлях S — у метрах). Знайдіть швидкість через 1 секунду після початку руху.

A	Б	В	Γ	Д
12	30	10	7	3

2. (0,5 бала) Знайдіть проміжки зростання функції $f(x) = 3x^2 - 6x + 7$.

A	Б	В	Γ	Д
(-∞;2]	[1;3]	[1;+∞)	(-∞;1]	(-∞;+∞)

3. (0,5 бала) Знайдіть критичні точки функції $f(x) = 12x - x^3$.

A	Б	В	Γ	Д
2	-2	-2; 2	4	Не існує

4. (0,5 бала) Відомо, що похідна функції y = f(x) на проміжку [-5;-1]дорівнює 2x. Тоді функція f(x) на цьому проміжку...

A	Б	В	Γ	Д
не спадає	не зростає	спадає	зростає	Неможливо
				визначити

5. (За кожну відповідність 0,5 бала) Установіть відповідність між функцією (1-4) і тангенсом кута, який утворює дотична, проведена до графіка функції в точці з абсцисою x = 0 з додатним напрямком осі Ox (A-Д).

1	$y = 4\sin 4x$	Α	3
2	$y = \cos x$	Б	4
3	$y = 6 \operatorname{tg} \frac{x}{2}$	В	1
4	$y = x - x^2$	Γ	0
		Д	16

- **6.** (1 бал) Знайдіть проміжки зростання і спадання функції $f(x) = \cos 3x 5x$.
- **7.** (1 бал) Знайдіть проміжки спадання функції $f(x) = 4x^3 x^4$.
- **8.** (2 бали) Знайдіть екстремуми функції $f(x) = \frac{x+1}{r^2+3}.$
- **9.** (2 бали) Знайдіть найменше значення функції $f(x) = x^2 + |2x+1|$ на відрізку [-1;0].

10. (2 бали) При яких значеннях параметра a функція $f(x) = x^3 + ax^2 - 2ax + 3$ зростає на всій числовій прямій?

Застосування похідної до розв'язування задач Варіант 1

1. (0,5 бала) Знайдіть другу похідну функції $f(x) = x^3 - 4x^2 + 3$.

A	Б	В	Γ	Д
$6x^2-8x+3$	6	6x - 8	$3x^2-8x$	$3x^2-8x+3$

2. (0,5 бала) Знайдіть прискорення тіла, яке рухається за законом $S(t) = t^2 - 4t + 3$ (S вимірюється у метрах, t — у секундах).

A	Б	В	Γ	Д
8	2	4	3	5

3. (0,5 бала) Знайдіть абсциси точок перегину функції $f(x) = x^3 - 3x$.

A	Б	В	Γ	Д
0	1	-1; 1	7	Не існує

4. (0,5 бала) Відомо, що друга похідна функції y = f(x) на проміжку [2;5] дорівнює 2x. Тоді функція f(x) на цьому проміжку...

A	Б	В	Γ	Д
опукла	опукла	спадає	стала	Неможливо
вгору	вниз			визначити

5. (За кожну відповідність 0,5 бала) Установіть відповідність між властивістю функції (1-4) і твердженням $(A-\Pi)$.

	(1 1) 1 120PA	(
1	Функція на проміжку	A	Друга похідна
	опукла вгору		додатна
2	Функція на проміжку спадає	Б	Друга похідна дорівнює нулю
3	Функція в точці має перегин	В	Друга похідна від'ємна
4	Функція має горизонтальну асимптоту	Г	$\lim_{x\to\infty}f(x)=b$
		Д	Перша похідна від'ємна

- **6.** (1 бал) Знайдіть проміжки опуклості функції $f(x) = x^3 x^2 x + 8$.
- **7.** (2 бали) Знайдіть асимптоти графіка функції $f(x) = \frac{x^2 3x}{x + 1}$.

- **8.** (2 бали) Розкладіть число 6 на два невід'ємних доданки так, щоб добуток їх квадратів був найбільшим.
- **9.** (3 бали) Дослідіть функцію і побудуйте її графік $f(x) = 2x^3 + 3x^2 12x$. Знайдіть кількість коренів рівняння $2x^3 + 3x^2 12x = a$, де $a \in \mathbb{R}$, залежно від значень параметра a.

Варіант 2

1. (0,5 бала) Знайдіть другу похідну функції $f(x) = 3x^3 - 6x^2 + 7x$.

A	Б	В	Γ	Д
$9x^2 - 12x + 7$	27	6x-8	18x - 12	$3x^2-6x+7$

2. (0,5 бала) Знайдіть прискорення тіла, яке рухається за законом $S(t) = 2 + 20t + 5t^2$ (S вимірюється у метрах, t — у секундах).

A	Б	В	Γ	Д
12	30	10	7	3

3. (0,5 бала) Знайдіть абсциси точок перегину функції $f(x) = 12x - x^3$.

A	Б	В	Γ	Д
12	-2	-2; 2	4	0

4. (0,5 бала) Відомо, що друга похідна функції y = f(x) на проміжку $\begin{bmatrix} -5; -1 \end{bmatrix}$ дорівнює 2x. Тоді функція f(x) на цьому проміжку...

A	Б	В	Γ	Д
опукла	опукла	спадає	стала	Неможливо
вниз	вгору			визначити

5. (За кожну відповідність 0,5 бала) Установіть відповідність між властивістю функції (1-4) і твердженням (A-Д).

1	Функція на проміжку	A	Друга похідна
	опукла вниз		додатна
2	Функція на проміжку	Б	Друга похідна
	зростає		дорівнює нулю
3	Функція в точці має перегин	В	Друга похідна від'ємна
	-		
4	Функція має горизон-	Γ	$\lim_{x\to\infty}f(x)=b$
	тальну асимптоту		x→∞ ' /
		Д	Перша похідна
			додатна

6. (1 бал) Знайдіть проміжки опуклості функції $f(x) = 4x^3 - x^4$.

- 7. (2 бали) Знайдіть асимптоти графіка функції $f(x) = \frac{x^2 + 1}{x + 3}$.
- **8.** (2 бали) З усіх прямокутників, що мають периметр 20 см, знайдіть той, у якого діагональ найменша.
- **9.** (3 бали) Дослідіть функцію і побудуйте її графік $f(x)=3x^4-4x^3-12x^2$. Знайдіть кількість коренів рівняння $3x^4-4x^3-12x^2=a$, де $a \in \mathbb{R}$, залежно від значень параметра a.

Підсумкова робота

Варіант 1

1. (0,5 бала) Спростіть вираз $\sin 4\alpha \cos \alpha - \cos 4\alpha \sin \alpha$.

A	Б	В	Γ	Д
$\sin 3\alpha$	$\cos 3\alpha$	$\sin 5\alpha$	$\sin 4\alpha$	$\cos 5\alpha$

2. (0,5 бала) Який із виразів не має змісту?

A	Б	В	В Г	
$0^{-\frac{1}{2}}$	$\left(-25\right)^4$	$0^{\frac{1}{3}}$	$9^{-\frac{1}{4}}$	$(-1)^{\frac{1}{3}}$

3. (0,5 бала) Чому дорівнює значення функції $f(x) = \sqrt[3]{x-1}$ у точці $x_0 = 9$?

A	Б	В	Γ	Д	
1	2	3	4	-2	

4. (0,5 бала) Розв'яжіть рівняння $\sin x = 3$.

A	Б		
$\arcsin 3 + \pi n, n \in \mathbb{Z}$	$(-1)^n \cdot 3 + \pi n, n \in \mathbb{Z}$		
В	Γ	Д	
$\left(-1\right)^n \arcsin 3 + \pi n, n \in \mathbb{Z}$	$\frac{1}{3}$	Коренів немає	

5. (За кожну відповідність 0,5 бала) Установіть відповідність між виразом (1-4) та його значенням (A-Д).

1	Значення похідної функції $y=x+\sqrt{x}$ у точці $x_0=4$	A	$\frac{\sqrt{3}}{2}$
2	$\sin\left(\operatorname{arctg}rac{\sqrt{3}}{3} ight)$	Б	3
3	$\sqrt[4]{9-\sqrt{65}} \cdot \sqrt[4]{9+\sqrt{65}}$	В	1,25
4	$\cos^2 15^\circ - \sin^2 15^\circ$	Γ	2
		Д	$\frac{1}{2}$

- **6.** (1 бал) Розв'яжіть рівняння |2-x|=2x-10.
- **7.** (1 бал) Розв'яжіть нерівність $x-1 > \frac{4x}{3-x}$.
- **8.** (2 бали) Розв'яжіть рівняння $\cos x \cos 3x = 0$.
- **9.** (2 бали) Розв'яжіть нерівність $(x-4)\sqrt{x^2-x-2} \ge 0$.
- **10.** (2 бали) Знайдіть найбільше та найменше значення функції $f(x) = x^3 2x|x-2|$ на проміжку [0;3].

Варіант 2

1. (0,5 бала) Спростіть вираз $\cos 6\alpha \cos \alpha - \sin 6\alpha \sin \alpha$.

A	Б	В Г		Д
$\sin 5\alpha$ $\cos 5\alpha$		$\sin 6\alpha$	$\sin 7\alpha$	$\cos 7\alpha$

2. (0,5 бала) Який із виразів не має змісту?

A	Б	В	Γ	Д	
$\sqrt[6]{64}$	∜100	∛−111	% −48	$-\sqrt[6]{25}$	

3. (0,5 бала) Чому дорівнює значення функції $f(x) = \sqrt[4]{x+1}$ у точці $x_0 = 15$?

A	Б	В	Γ	Д
15	2	3	4	-2

4. (0,5 бала) Розв'яжіть рівняння $tg\frac{x}{3} = 2$.

A		Б			
$arctg6 + \pi n, n \in$	\mathbb{Z}	$3\operatorname{arctg} 2 + 3\pi n, n \in \mathbb{Z}$			
В		Γ		Д	
$3 \operatorname{arctg} 2 + \pi n, n \in \mathbb{Z}$	arct	$g6+3\pi n$,	$n \in \mathbb{Z}$	Коренів	
				немає	

5. (За кожну відповідність 0,5 бала) Установіть відповідність між виразом (1-4) і його значенням (A-Д).

1	$tg\left(arccos \frac{\sqrt{3}}{2}\right)$	A	$\frac{\sqrt{3}}{3}$
2	Значення похідної функції $y = 2x + \frac{1}{x} \ \text{у точці} \ x_0 = 2$	Б	0
3	$\sqrt{2^2 - \sqrt[6]{(-8)^2}}$	В	1,75
4	$2\sin75^{\circ}\cos75^{\circ}$	Γ	2,25
		Д	1

- **6.** (1 бал) Розв'яжіть рівняння |2x-3|=x.
- **7.** (1 бал) Розв'яжіть нерівність $\frac{2}{x+3} > \frac{1}{x-1}$.
- **8.** (2 бали) Розв'яжіть рівняння $\sin 2x + \sin 6x = 0$.
- 9. (2 бали) Розв'яжіть нерівність

$$(x-1)\sqrt{x^2+2x-8} \ge 0.$$

10. (2 бали) Знайдіть найбільше та найменше значення функції $f(x) = -x^3 + 3x|x-3|$ на проміжку [0;4].

ЛІТЕРАТУРА

- 1. *Державний* стандарт базової і повної загальної середньої освіти.
- 2. *Навчальна* програма з математики для учнів 10–11 класів загальноосвітніх навчальних закладів. Профільний рівень.
- 3. *Мерзляк* А. Г. Алгебра і початки аналізу : підруч. для 10 кл. загальноосвіт. навч. закладів : проф. рівень / А. Г. Мерзляк, Д. А. Номіров-

- ський, В. Б. Полонський, М. С. Якір. Х. : Гімназія, 2012.
- 4. Hелін Є. П. Алгебра і початки аналізу : підруч. для 10 кл. загальноосвіт. навч. закладів : проф.. рівень / Є. П. Нелін. Х. : Гімназія, 2010.
- Галицкий М. Л. и др. Углубленное изучение курса алгебры и математического анализа: Метод. рекомендации и дидакт. материалы: Пособие для учителя / М. Л. Галицкий, М. М. Мошкович, С. И. Шварцбурд. 2-е изд., дораб. М.: Просвещение, 1990.
- 6. Захарийченко Ю. А., Школьный А. В., Захарийченко Л. И., Школьная Е. В. Полный курс математики в тестах. Х.: Издательство «Ранок», 2013.
- 7. *Крамор* В. С. Повторяем и систематизируем школьный курс алгебры и начал анализа. М.: Просвещение, 1990.
- 8. Сборник задач по математике для поступающих во втузы / В. К. Егерев, Б. А. Кордемский, В. В. Зайцев и др. / Под ред. М. И. Сканави.— М.: Высшая школа, 1988.

Завжди корисна інформація в сучасному форматі!

Запрошуємо вас долучися до нашої сторінки у соціальній мережі Facebook!

Ми ретельно підбираємо цікавий та корисний контент, який стане в пригоді у вашій професійній діяльності. І ці зусилля не даремні: лише за останній рік наша сторінка у Фейсбуці виросла більше, ніж удвічі: **з 7 058 до 15 102** учасників!

На сторінці зручно стежити за виходом новинок видавництва, акціями та розпродажами. І саме там ми регулярно розігруємо призи— це ваш шанс отримати корисну літературу абсолютно безкоштовно!

Також у червні цього року ми створили окрему сторінку для Інтернет-марафону www.facebook.com/InternetMarafon, щоб вам було зручніше стежити за освітніми вебінарами для вчителів. Наразі з нами вже 1845 учасників групи, які першими дізнаються про найголовніші освітні події України! Тож приєднуйтеся до нас, запрошуйте колег та обговорюйте новини разом з ними!

Щоб не пропустити важливі новини, приєднуйтеся до нас у Facebook!

Сторінка видавничої групи «Основа: www.facebook.com/OsnovaVG Сторінка Інтернет-марафону: www.facebook.com/InternetMarafon

