Osnove mikroprocesorske elektronike

Marko Jankovec

Primeri A/D pretvornikov

A/D pretvorniki pri mikrokrmilnikih

Figure 1. ADC operation based on successive approximation principle

A/D pretvorniki pri mikrokrmilnikih

Figure 2. Basic schematic of SAR switched-capacitor ADC (10-bit ADC example)

A/D pretvorniki pri mikrokrmilnikih

Primerjava z ¼ Vref

MSB = 1

MSB = 0

Primerjava z ¾ Vref

Analogno ekvivalentno vezje ADCD

Figure 15. Analog signal source resistance effect

Vplivi dodatne ali parazitne zunanje kapacitivnosti

Figure 16. Analog input with R_{AIN} , C_{AIN} and C_{p}

Določanje časa vzorčenja

Figure 26. Simplified external/internal SAR ADC sampling diagram

Določanje časa vzorčenja

Figure 27. Example of SAR ADC input sampling time vs ADC resolution

1. The above results are obtained in the following conditions:

 $V_{REF+} = 2 V$ $R_{AIN} = 1 \text{ k}\Omega$ $C_{AIN}/C_{PCB} = 2 \text{ nF}$

Določanje časa vzorčenja

Table 6. Minimum ADC conversion time ($T_{SMPL} + T_{SAR}$) vs resolution and maximum error (in ADC clock cycles)

Acquisition accuracy	8 bits	10 bits	12 bits	14 bits	16 bits
± 0.5 LSB	13	14	23	24	25
± 1 LSB	7	14	15	24	25
± 2 LSB	6	14	15	24	25
± 3 LSB	6	14	15	16	25

Problem pri visokoimpedančnih virih

Figure 37. Typical voltage source connection to ADC input

Figure 38. Noise observed on ADC input pin during ADC conversions

Presluhi med vhodi (analognimi/digitalnimi)

Figure 18. Crosstalk between I/O pins

- Case 1: Digital and analog signal tracks that pass close to each other.
- 2. Case 2: Digital and analog signal tracks that cross each other on a different PCB side.

A/D pretvornik pri ATmega 328PB (ADC)

- Resolucija 10 bit
- Integralna nelinearnost 0,5 LSB
- Absolutna napaka ±2 LSB
- Čas pretvorbe 13 260 μs
- Hitrost pretvorbe do 15 000 vzorcev/s
- 6 multipleksiranih vhodov
- Senzor temperature
- Različni viri referenčne napetosti
 - Notranja referenca 1.1 V
 - Zunanji vir
 - Napajalna napetost AVcc
- Avtomatsko proženje iz različnih virov prekinitev

Viri proženja pretvorbe

		-	
ADTS2	ADTS1	ADTS0	Trigger Source
0	0	0	Free Running mode
0	0	1	Analog Comparator
0	1	0	External Interrupt Request 0
0	1	1	Timer/Counter0 Compare Match A
1	0	0	Timer/Counter0 Overflow
1	0	1	Timer/Counter1 Compare Match B
1	1	0	Timer/Counter1 Overflow
1	1	1	Timer/Counter1 Capture Event
			-

Bit	7	6	5	4	3	2	1	0	_
(0x7A)	ADEN	ADSC	ADATE	ADIF	ADIE	ADPS2	ADPS1	ADPS0	ADCSRA
Read/Write	R/W	R/W	RW	R/W	R/W	R/W	R/W	R/W	•
Initial Value	0	0	0	0	0	0	0	0	

Bit	7	6	5	4	3	2	1	0	_
(0x7B)	-	ACME	-	-	-	ADTS2	ADTS1	ADTS0	ADCSRB
Read/Write	R	R/W	R	R	R	R/W	R/W	R/W	•
Initial Value	0	0	0	0	0	0	0	0	

Čas pretvorbe

- Frekvenca med 50 in 200 kHz za maksimalno 10-bit resolucijo
- Čas pretvorbe
 - za prvo pretvorbo 25 cikov
 - S/H 14,5 ciklov
 - za vse nadaljne pretvorbe: 13-14 ciklov
 - S/H 1,5-2,5 cikla

Bit	7	6	5	4	3	2	1	0	_
(0x7A)	ADEN	ADSC	ADATE	ADIF	ADIE	ADPS2	ADPS1	ADPS0	ADCSRA
Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
Initial Value	0	0	0	0	0	0	0	0	

Rezultat pretvorbe

Merjenje proti masi

$$ADC = \frac{U_{IN}}{U_{REF}} 1024$$

Diferencialno merjenje

$$ADC = \frac{U_{INp} - U_{INn}}{U_{REF}} GAIN 512$$

Primeri A/D pretvornikov

2021/2022

Podatki ADC

33.9 ADC Characteristics

Table 33-10. ADC Characteristics

Table 50-10. ADC Characteristics								
Symbol	Parameter	Condition	Min.	Тур	Max	Units		
	Resolution		-	10	-	Bits		
Resolution TUE Absolute accuracy (Including INL, DNL, quantization error, gain and offset error)		V _{REF} = 4V, V _{CC} = 4V, clk _{ADC} = 200kHz	-	2	-	LSB		
	gain and offset error)	$V_{REF} = 4V$, $V_{CC} = 4V$, $clk_{ADC} = 1MHz$	-	4	-	LSB		
		V _{REF} = 4V, V _{CC} = 4V, clk _{ADC} = 200kHz Noise Reduction Mode	-	2	-	LSB		
		V _{REF} = 4V, V _{CC} = 4V, clk _{ADC} = 1MHz Noise Reduction Mode	-	4	-	LSB		
INL	Integral Non-Linearity	V_{REF} = 4V, V_{CC} = 4V, clk_{ADC} = 200kHz	-	0.5	-	LSB		
DNL	Differential Non-Linearity	$V_{REF} = 4V$, $V_{CC} = 4V$, $clk_{ADC} = 200kHz$	-	0.25	-	LSB		
	Gain Error	$V_{REF} = 4V$, $V_{CC} = 4V$, $clk_{ADC} = 200kHz$	-	2	-	LSB		
	Offset Error	$V_{REF} = 4V$, $V_{CC} = 4V$, $clk_{ADC} = 200kHz$	-	2	-	LSB		
	Conversion Time	Free Running Conversion	13	-	260	μs		
	Clock Frequency		50	-	1000	kHz		
AV _{CC} ⁽¹⁾	Analog Supply Voltage		V _{CC} - 0.3	-	V _{CC} + 0.3	٧		
V _{REF}	Reference Voltage		1.0	-	AV _{CC}	٧		
V _{IN}	Input Voltage		GND	-	V _{REF}	V		
	Input Bandwidth		-	38.5		kHz		
V _{INT}	Internal Voltage Reference		1.0	1.1	1.2	٧		
R _{REF}	Reference Input Resistance		-	50	-	kΩ		
R _{AIN}	Analog Input Resistance		-	100	-	ΜΩ		

Zmanjšanje šuma ADC

- ADC noise reduction mode
- Pogoji
 - omogočen ADC noise reduction način (SM2..0 = 001)
 - ročno proženje pretvorbe (ADATE = 0)
 - omogočena prekinitev ob končani pretvorbi (ADIE = 1)
- Sprožitev AD pretvorbe
 - ADC mora biti omogočen (ADEN = 1)
 - pretvorbo sproži ASM ukaz "sleep"
 - procesor gre v stanje nizke porabe (koda se ne izvaja)
 - zbudi ga prekinitev ob končani pretvorbi

Zmanjšanje šuma ADC

- Analogne povezave naj bodo čim krajše
- AVCC povezan na VCC preko LC filtra
- Uporaba ADC noise canceller načina
- Če so vhodi ADC uporabljeni hkrati kot I/O pini, jih ne preklapljati v času pretvorbe
- Onemogočitev vhodnih digitalnih ojačevalnikov I/O pinov

(0x7E)
Read/Write
Initial Value

Bit

ADC7D	ADC6D	ADC5D	ADC4D	AD
R/W	R/W	R/W	R/W	R
0	0	0	0	

ADC2D R/W

0

STM32G4 ADC

Figure 82. ADC block diagram

STM32G4 ADC (1)

Figure 82. ADC block diagram

STM32G4 ADC (2)

Osnovne lastnosti

- 12, 10, 8 in 6-bitna konverzija
- Enojni ali diferencialni vhodi
- Počasni in hitri kanali
- Zunanji in notranji kanali
- Notranja in zunanja napetostna referenca
- Nastavljiv čas vzorčenja
- Programsko in strojno proženje rpetvorbe
- Regularni in vstavljeni kanali
- Samokalibracija
- Prevzorčenje
- Načini delovanja z nizko porabo
- Analogni rotvajler (watchdog)
- Združevanje ADC

Osnovne lastnosti

Table 66. ADC characteristics(1) (2)

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V_{DDA}	Analog supply voltage	-	1.62	-	3.6	٧
	Positive	V _{DDA} ≥ 2 V	2	-	V_{DDA}	V
V _{REF+}	reference voltage	V _{DDA} < 2 V		V_{DDA}		V
V _{REF-}	Negative reference voltage	-	- V _{SSA}			٧
V _{CMIN}	Input common mode	Differential	(V _{REF+} +V _{REF-})/2 - 0.18	(V _{REF+} + V _{REF-})/2	(V _{REF+} + V _{REF-})/2 + 0.18	٧
		Range 1, single ADC operation	0.14	-	60	
		Range 2	-	-	26	
	ADC clock	Range 1, all ADCs operation, single ended mode V _{DDA} ≥ 2.7 V	0.14	-	52	
f _{ADC}	f _{ADC} frequency	Range 1, all ADCs operation, single ended mode V _{DDA} ≥ 1.62 V	0.14	-	42	MHz
		Range 1, all ADCs operation, differential mode V _{DDA} ≥ 1.62 V	0.14	-	56	

Hitrost pretvorbe

Čas vzorčenja (sample time):

000: 2.5 ADC clock cycles 001: 6.5 ADC clock cycles 010: 12.5 ADC clock cycles 011: 24.5 ADC clock cycles 100: 47.5 ADC clock cycles 101: 92.5 ADC clock cycles 110: 247.5 ADC clock cycles 111: 640.5 ADC clock cycles

Frekvenca ure AD:

$$f_{AD_{maks}} = 60 MHz \rightarrow 1 cikel = 16,6 ns$$

Čas pretvorbe

$$t_{conv} = t_{samp} + Q + 0.5$$

$$t_{conv_{min}@12-bit} = 2.5 + 12 + 0.5 = 15 \ ciklov \rightarrow 250 \ \text{ns}$$

Vzorčna frekvenca

$$f_{samp} = \frac{1}{t_{conv}}, \quad f_{samp_{maks}@12-bit} = 4 \text{ MHz}$$

Vklop/izklop ADC

Figure 92. Enabling / disabling the ADC

Rezultat pretvorbe

Rezultat (enojni vhod)

$$U_{in} = ADC \cdot \frac{U_{ref}}{2Q}$$

ADC	Uin
0x000	0
0xFFF	U_{ref}

Rezultat (diferencialni vhod)

$$U_{in} = (ADC - 2^{Q-1}) \cdot \frac{2 \cdot U_{ref}}{2^{Q-1}}$$

ADC	Uin
0x000	$-2 \cdot U_{ref}$
0x800	0
0xFFF	$2 \cdot U_{ref}$

Izbira vhodov

Figure 84. ADC1 connectivity

Izbira vhodov

2021/2022

Hitri in počasni kanali – fast and slow channels

Figure 84. ADC1 connectivity

Figure 29. Typical connection diagram using the ADC

- 1. Refer to Table 66: ADC characteristics for the values of RAIN and CADC.
- C_{parasitic} represents the capacitance of the PCB (dependent on soldering and PCB layout quality) plus the
 pad capacitance (refer to Table 54: I/O static characteristics for the value of the pad capacitance). A high
 C_{parasitic} value downgrades conversion accuracy. To remedy this, f_{ADC} should be reduced.

Page 142 gives R_{AIN} for different resolutions. 12-bit being:

Table 67. Maximum ADC RAIN (1)(2)

Resolution	Sampling cycle	Sampling time	R _{AIN} max (Ω)			
	@60 MHz	[ns]	Fast channels ⁽³⁾	Slow channels ⁽⁴⁾		
	2.5	41.67	100	N/A		
	6.5	108.33	330	100		
	12.5	208.33	680	470		
40 hit-	24.5	408.33	1500	1200		
12 bits	47.5	791.67	2200	1800		
	92.5	1541.67	4700	3900		
	247.5	4125	12000	10000		
	640.5	10675	39000	33000		

Skupine kanalov

Regularni (regular group)

- Do 16 pretvorb v skupina
- Poljuben vrstni red kanalov
- Med skeniranjem jih ne moreš spreminjat

Vstavljeni (Injected group)

- Do 4 pretvorbe
- Proženi z dogodki (events)
- Lahko se spreminjajo med skeniranjem

Načini AD pretvorbe

- Diskretni način (single conversion mode)
 - Enkrat pretvori sekvenco kanalov
 - Programsko ali zunanje proženje
- Kontiunirani način (continuous conversion mode)
 - Samo za regularne kanale
 - Po pretvorbi sekvence začne takoj od začetka
- Prekinjeni način skeniranja (discontinuous mode)
 - Za regularne ali vstavljene kanale
 - Po zunanjem proženju pretvori del sekvence kanalov (n<8)
- Dvojni način delovanja (dual mode)

Single conversion mode

Single conversion scan mode

Figure 2. ADC sequencer converting 7 channels with different configured sampling times

Single conversion continuous mode

Multichannel conversion continuous mode

Injected conversion mode

Figure 6. Injected conversion mode

Dvojni ADC

Figure 137. Dual ADC block diagram⁽¹⁾

Dual regular simultanoues mode

Dual interleaved mode

ai17608

Dual alternate trigger mode

