Software libre para el procesamiento de datos de viento utilizados en la generación de energía eólica: Diseño y desarrollo de una herramienta computacional

Renzo García

Universidad Nacional del Comahue

Directora: MSc. Adair Martins Co-Directora: Mg. Lidia López

Noviembre de 2013

Contenido

- Motivación
- Objetivos
- 3 Tratamiento Estadísticos de los Datos del Viento
- Desarrollo de la Herramienta "VientOnline"
- 5 Validación de la Herramienta "VientOnline"
- 6 Conclusiones

Sección Actual

- Motivación
- Objetivos
- 3 Tratamiento Estadísticos de los Datos del Viento
- Desarrollo de la Herramienta "VientOnline"
- 5 Validación de la Herramienta "VientOnline"
- 6 Conclusiones

- No produce contaminantes ambientales, promoviendo un futuro energético limpio
- Es una de las energías renovables con mayor potencial de desarrollo por su viabilidad técnica y económica
- La potencia eólica instalada en 2011 es de aproximadamente 237 GW
 Representa un incremento del 152 % con respecto al 2007 ¹
- En Argentina, la potencia instalada es de aproximadamente 142 MW y se espera que supere los 820 MW en el transcurso de esta década ¹

- No produce contaminantes ambientales, promoviendo un futuro energético limpio
- Es una de las energías renovables con mayor potencial de desarrollo por su viabilidad técnica y económica
- \bullet La potencia eólica instalada en 2011 es de aproximadamente 237 GW. Representa un incremento del 152 % con respecto al 2007 1
- En Argentina, la potencia instalada es de aproximadamente 142 MW y se espera que supere los 820 MW en el transcurso de esta década ¹

- No produce contaminantes ambientales, promoviendo un futuro energético limpio
- Es una de las energías renovables con mayor potencial de desarrollo por su viabilidad técnica y económica
- \bullet La potencia eólica instalada en 2011 es de aproximadamente 237 GW. Representa un incremento del 152 % con respecto al 2007 1
- En Argentina, la potencia instalada es de aproximadamente 142 MW y se espera que supere los 820 MW en el transcurso de esta década ¹

- No produce contaminantes ambientales, promoviendo un futuro energético limpio
- Es una de las energías renovables con mayor potencial de desarrollo por su viabilidad técnica y económica
- \bullet La potencia eólica instalada en 2011 es de aproximadamente 237 GW. Representa un incremento del 152 % con respecto al 2007 1
- En Argentina, la potencia instalada es de aproximadamente 142 MW y se espera que supere los 820 MW en el transcurso de esta década ¹

- No produce contaminantes ambientales, promoviendo un futuro energético limpio
- Es una de las energías renovables con mayor potencial de desarrollo por su viabilidad técnica y económica
- La potencia eólica instalada en 2011 es de aproximadamente 237 GW.
 Representa un incremento del 152 % con respecto al 2007 ¹
- En Argentina, la potencia instalada es de aproximadamente 142 MW y se espera que supere los 820 MW en el transcurso de esta década ¹

Potencia Eólica Instalada en La Argentina

- Existen varios programas de tratamiento numérico y estadístico de los parámetros del viento
 - Alto Costo
 - Licencias para su uso
 - Llaves físicas, código de acceso y restricción del número de usuarios

- Existen varios programas de tratamiento numérico y estadístico de los parámetros del viento
 - Alto Costo
 - Licencias para su uso
 - Llaves físicas, código de acceso y restricción del número de usuarios

- Existen varios programas de tratamiento numérico y estadístico de los parámetros del viento
 - Alto Costo
 - Licencias para su uso
 - Llaves físicas, código de acceso y restricción del número de usuarios

- Existen varios programas de tratamiento numérico y estadístico de los parámetros del viento
 - Alto Costo
 - Licencias para su uso
 - Llaves físicas, código de acceso y restricción del número de usuarios

Sección Actual

- Motivación
- Objetivos
- Tratamiento Estadísticos de los Datos del Viento
- 4 Desarrollo de la Herramienta "VientOnline"
- 5 Validación de la Herramienta "VientOnline"
- 6 Conclusiones

Objetivo General

Desarrollo de una Herramienta Computacional

Diseño e implementación de una Herramienta Computacional, basada en Software Libre, para el procesamiento de datos de viento para su aplicación en la evaluación de la generación de energía eólica.

- Identificación de software existente para el tratamiento de datos de viento, selección de una o más herramientas apropiadas
- Análisis de los parámetros característicos (velocidad media, diaria, mensual, anual), para su tratamiento estadístico a través de gráficos representativos
 - Histograma de Velocidad
 - Rosa de los Vientos
 - Perfiles Diurno, Mensual y Vertical
- Integración de las herramientas computacionales, de software libre, a ser utilizadas en el diseño y desarrollo de la herramienta propuesta.
- Diseño, implementación y validación de la herramienta en base a un caso de estudio

- Identificación de software existente para el tratamiento de datos de viento, selección de una o más herramientas apropiadas
- Análisis de los parámetros característicos (velocidad media, diaria, mensual, anual), para su tratamiento estadístico a través de gráficos representativos
 - Histograma de Velocidad
 - Rosa de los Vientos
 - Perfiles Diurno, Mensual y Vertical
- Integración de las herramientas computacionales, de software libre, a ser utilizadas en el diseño y desarrollo de la herramienta propuesta.
- Diseño, implementación y validación de la herramienta en base a un caso de estudio

- Identificación de software existente para el tratamiento de datos de viento, selección de una o más herramientas apropiadas
- Análisis de los parámetros característicos (velocidad media, diaria, mensual, anual), para su tratamiento estadístico a través de gráficos representativos
 - Histograma de Velocidad
 - Rosa de los Vientos
 - Perfiles Diurno, Mensual y Vertical
- Integración de las herramientas computacionales, de software libre, a ser utilizadas en el diseño y desarrollo de la herramienta propuesta.
- Diseño, implementación y validación de la herramienta en base a un caso de estudio

- Identificación de software existente para el tratamiento de datos de viento, selección de una o más herramientas apropiadas
- Análisis de los parámetros característicos (velocidad media, diaria, mensual, anual), para su tratamiento estadístico a través de gráficos representativos
 - Histograma de Velocidad
 - Rosa de los Vientos
 - Perfiles Diurno, Mensual y Vertical
- Integración de las herramientas computacionales, de software libre, a ser utilizadas en el diseño y desarrollo de la herramienta propuesta.
- Diseño, implementación y validación de la herramienta en base a un caso de estudio

- Identificación de software existente para el tratamiento de datos de viento, selección de una o más herramientas apropiadas
- Análisis de los parámetros característicos (velocidad media, diaria, mensual, anual), para su tratamiento estadístico a través de gráficos representativos
 - Histograma de Velocidad
 - Rosa de los Vientos
 - Perfiles Diurno, Mensual y Vertical
- Integración de las herramientas computacionales, de software libre, a ser utilizadas en el diseño y desarrollo de la herramienta propuesta.
- Diseño, implementación y validación de la herramienta en base a un caso de estudio

- Identificación de software existente para el tratamiento de datos de viento, selección de una o más herramientas apropiadas
- Análisis de los parámetros característicos (velocidad media, diaria, mensual, anual), para su tratamiento estadístico a través de gráficos representativos
 - Histograma de Velocidad
 - Rosa de los Vientos
 - Perfiles Diurno. Mensual v Vertical
- Integración de las herramientas computacionales, de software libre, a ser utilizadas en el diseño y desarrollo de la herramienta propuesta.
- Diseño, implementación y validación de la herramienta en base a un caso de estudio

- Identificación de software existente para el tratamiento de datos de viento, selección de una o más herramientas apropiadas
- Análisis de los parámetros característicos (velocidad media, diaria, mensual, anual), para su tratamiento estadístico a través de gráficos representativos
 - Histograma de Velocidad
 - Rosa de los Vientos
 - Perfiles Diurno, Mensual y Vertical
- Integración de las herramientas computacionales, de software libre, a ser utilizadas en el diseño y desarrollo de la herramienta propuesta.
- Diseño, implementación y validación de la herramienta en base a un caso de estudio

Sección Actual

- Motivación
- Objetivos
- 3 Tratamiento Estadísticos de los Datos del Viento
- 4 Desarrollo de la Herramienta "VientOnline"
- 5 Validación de la Herramienta "VientOnline"
- 6 Conclusiones

El conocimiento estadístico preciso del régimen del viento es el elemento más importante en la especificación de un proyecto para el aprovechamiento de la energía eólica.

Fundamentos:

- La energía eólica es la energía cuyo origen proviene del movimiento de masa de aire (el viento)
- Una forma de aprovechar el viento es mediante aerogeneradores
- La potencia debido a la energía cinética del viento se puede expresar por la ecuación

 $P = \frac{1}{2}\rho AV^3$

El conocimiento estadístico preciso del régimen del viento es el elemento más importante en la especificación de un proyecto para el aprovechamiento de la energía eólica.

Fundamentos:

- La energía eólica es la energía cuyo origen proviene del movimiento del masa de aire (el viento)
- Una forma de aprovechar el viento es mediante aerogeneradores
- La potencia debido a la energía cinética del viento se puede expresamento por la ecuación

 $P = \frac{1}{2}\rho AV^3$

El conocimiento estadístico preciso del régimen del viento es el elemento más importante en la especificación de un proyecto para el aprovechamiento de la energía eólica.

Fundamentos:

- La energía eólica es la energía cuyo origen proviene del movimiento de masa de aire (el viento)
- Una forma de aprovechar el viento es mediante aerogeneradores
- La potencia debido a la energía cinética del viento se puede expresar por la ecuación

 $P = \frac{1}{2}\rho AV^3$

El conocimiento estadístico preciso del régimen del viento es el elemento más importante en la especificación de un proyecto para el aprovechamiento de la energía eólica.

Fundamentos:

- La energía eólica es la energía cuyo origen proviene del movimiento de masa de aire (el viento)
- Una forma de aprovechar el viento es mediante aerogeneradores
- La potencia debido a la energía cinética del viento se puede expresar por la ecuación

$$P = \frac{1}{2}\rho A V^3$$

El conocimiento estadístico preciso del régimen del viento es el elemento más importante en la especificación de un proyecto para el aprovechamiento de la energía eólica.

Fundamentos:

- La energía eólica es la energía cuyo origen proviene del movimiento de masa de aire (el viento)
- Una forma de aprovechar el viento es mediante aerogeneradores
- La potencia debido a la energía cinética del viento se puede expresar por la ecuación

$$P = \frac{1}{2}\rho AV^3$$

El conocimiento estadístico preciso del régimen del viento es el elemento más importante en la especificación de un proyecto para el aprovechamiento de la energía eólica.

Fundamentos:

- La energía eólica es la energía cuyo origen proviene del movimiento de masa de aire (el viento)
- Una forma de aprovechar el viento es mediante aerogeneradores
- La potencia debido a la energía cinética del viento se puede expresar por la ecuación

$$P = \frac{1}{2}\rho AV^3$$

donde:

 ρ : Densidad del viento

A: Área por donde pasa el viento

V: Velocidad del viento

El conocimiento estadístico preciso del régimen del viento es el elemento más importante en la especificación de un proyecto para el aprovechamiento de la energía eólica.

Fundamentos:

- La energía eólica es la energía cuyo origen proviene del movimiento de masa de aire (el viento)
- Una forma de aprovechar el viento es mediante aerogeneradores
- La potencia debido a la energía cinética del viento se puede expresar por la ecuación

$$P = \frac{1}{2}\rho AV^3$$

donde:

 ρ : Densidad del viento

A: Área por donde pasa el viento

V: Velocidad del viento

Consideraciones

El viento no siempre se mantiene constante en dirección y valor de magnitud, es más bien una variable aleatoria.

Diagrama Distribución Weibull

Cálculos utilizados en el tratamiento estadístico de los datos del viento para la construcción de los gráficos representativos.

- Perfil Temporario \Longrightarrow Promedio Horario v Promedio Mensual
- Rosa de los Vientos
- Perfil Vertical del Viento Cortante
 - » Función de Potencia $\Longrightarrow y(z)=y_1$
- Histograma de la Frecuencia Relativa

Cálculos utilizados en el tratamiento estadístico de los datos del viento para la construcción de los gráficos representativos.

- Perfil Temporario ⇒ Promedio Horario y Promedio Mensual
- Rosa de los Vientos
- Perfil Vertical del Viento Cortante
 - * Europia de Patencia \Rightarrow $u(z) = u \cdot \left(\frac{z}{z}\right)$
- Histograma de la Frecuencia Relativa

Noviembre de 2013

Cálculos utilizados en el tratamiento estadístico de los datos del viento para la construcción de los gráficos representativos.

- Perfil Temporario ⇒ Promedio Horario y Promedio Mensual
- Rosa de los Vientos
- Perfil Vertical del Viento Cortante
 - * Europia de Patencia \Rightarrow $u(z) = u \cdot \left(\frac{z}{z}\right)$
- Histograma de la Frecuencia Relativa

Noviembre de 2013

Cálculos utilizados en el tratamiento estadístico de los datos del viento para la construcción de los gráficos representativos.

- Perfil Temporario ⇒ Promedio Horario y Promedio Mensual
- Rosa de los Vientos
- Perfil Vertical del Viento Cortante

Histograma de la Frecuencia Relativa

Cálculos utilizados en el tratamiento estadístico de los datos del viento para la construcción de los gráficos representativos.

- Perfil Temporario ⇒ Promedio Horario y Promedio Mensual
- Rosa de los Vientos
- Perfil Vertical del Viento Cortante
 - Función Logarítmica $\Longrightarrow u(z) = \frac{1}{2}$
 - Función de Potencia $\Longrightarrow u(z)=u_1$ (
- Histograma de la Frecuencia Relativa

Cálculos utilizados en el tratamiento estadístico de los datos del viento para la construcción de los gráficos representativos.

- Perfil Temporario ⇒ Promedio Horario y Promedio Mensual
- Rosa de los Vientos
- Perfil Vertical del Viento Cortante
 - Función Logarítmica $\Longrightarrow u(z) = \frac{u^*}{k} \ln \left(\frac{z}{z_0}\right)^p$ • Función de Potencia $\Longrightarrow u(z) = u_I \left(\frac{z}{z_I}\right)^p$
- Histograma de la Frecuencia Relativa

Cálculos utilizados en el tratamiento estadístico de los datos del viento para la construcción de los gráficos representativos.

- Perfil Temporario ⇒ Promedio Horario y Promedio Mensual
- Rosa de los Vientos
- Perfil Vertical del Viento Cortante
 - Función Logarítmica $\Longrightarrow u(z) = \frac{u^*}{k} \ln \left(\frac{z}{z_0}\right)^p$ • Función de Potencia $\Longrightarrow u(z) = u_1 \left(\frac{z}{z_1}\right)^p$
- Histograma de la Frecuencia Relativa

Cálculos utilizados en el tratamiento estadístico de los datos del viento para la construcción de los gráficos representativos.

- Perfil Temporario ⇒ Promedio Horario y Promedio Mensual
- Rosa de los Vientos
- Perfil Vertical del Viento Cortante
 - Función Logarítmica $\Longrightarrow u(z) = \frac{u^*}{k} \ln \left(\frac{z}{z_0}\right)$
 - Función de Potencia $\Longrightarrow u(z) = u_1 \left(\frac{z}{z_1}\right)^{\rho}$
- Histograma de la Frecuencia Relativa

Cálculos utilizados en el tratamiento estadístico de los datos del viento para la construcción de los gráficos representativos.

- Perfil Temporario ⇒ Promedio Horario y Promedio Mensual
- Rosa de los Vientos
- Perfil Vertical del Viento Cortante
 - Función Logarítmica $\Longrightarrow u(z) = \frac{u^*}{k} \ln \left(\frac{z}{z_0}\right)$
 - Función de Potencia $\Longrightarrow u(z) = u_1 \left(\frac{z}{z_1}\right)^{p}$
- Histograma de la Frecuencia Relativa

 Ajuste numérico de la distribución de probabilidad de la velocidad media del viento por Mínimos Cuadrados.

$$\implies$$
 Weibull \implies $F(v) = 1 - \exp\left[-\left(\frac{v}{c}\right)^{k}\right]$

donde

c, es el factor de escala.

k, es el factor forma y

v. la variable aleatoria de velocidad del viento

Transformación
$$\longrightarrow \ln(-\ln(1-F(v))) = -k\ln(c) + k\ln(v)$$

 $Y = aX + b$

donde:

$$X = \ln(v)$$

$$Y = \ln[-\ln(1 - F(v))]$$

$$a = k$$

$$b = -k \ln(c)$$

 Ajuste numérico de la distribución de probabilidad de la velocidad media del viento por Mínimos Cuadrados.

$$\implies$$
 Weibull \implies $F(v) = 1 - \exp\left[-\left(\frac{v}{c}\right)^{k}\right]$

donde

c, es el factor de escala.

k, es el factor forma y

v. la variable aleatoria de velocidad del viento

Transformación
$$\longrightarrow \ln(-\ln(1-F(v))) = -k\ln(c) + k\ln(v)$$

 $Y = aX + b$

donde:

$$X = \ln(v)$$

$$Y = \ln[-\ln(1 - F(v))]$$

$$a = k$$

$$b = -k \ln(c)$$

 Ajuste numérico de la distribución de probabilidad de la velocidad media del viento por Mínimos Cuadrados.

$$\implies$$
 Weibull \implies $F(v) = 1 - \exp\left[-\left(\frac{v}{c}\right)^k\right]$

Transformación
$$\longrightarrow \ln(-\ln(1-F(v))) = -k\ln(c) + k\ln(v)$$

 $Y = aX + b$

$$X = \ln(v)$$

$$Y = \ln[-\ln(1 - F(v))]$$

$$a = k$$

$$b = -k\ln(c)$$

 Ajuste numérico de la distribución de probabilidad de la velocidad media del viento por Mínimos Cuadrados.

$$\implies$$
 Weibull \implies $F(v) = 1 - \exp\left[-\left(\frac{v}{c}\right)^k\right]$

donde:

c, es el factor de escala,

k, es el factor forma y

v, la variable aleatoria de velocidad del viento.

Transformación
$$\longrightarrow \ln(-\ln(1-F(v))) = -k\ln(c) + k\ln(v)$$

 $Y = aX + b$

donde:

$$X = \ln(v)$$

$$Y = \ln[-\ln(1 - F(v))]$$

$$a = k$$

$$b = -k \ln(c)$$

 Ajuste numérico de la distribución de probabilidad de la velocidad media del viento por Mínimos Cuadrados.

$$\implies$$
 Weibull \implies $F(v) = 1 - \exp\left[-\left(\frac{v}{c}\right)^k\right]$

donde:

c, es el factor de escala,

k, es el factor forma y

v, la variable aleatoria de velocidad del viento.

Transformación
$$\longrightarrow$$
 $\ln(-\ln(1-F(v))) = -k\ln(c) + k\ln(v)$
 $Y = aX + b$

$$X = \ln(v)$$

$$Y = \ln[-\ln(1 - F(v))]$$

$$a = k$$

$$b = -k\ln(c)$$

 Ajuste numérico de la distribución de probabilidad de la velocidad media del viento por Mínimos Cuadrados.

$$\implies$$
 Weibull \implies $F(v) = 1 - \exp\left[-\left(\frac{v}{c}\right)^k\right]$

donde:

c, es el factor de escala,

k, es el factor forma y

v, la variable aleatoria de velocidad del viento.

Transformación
$$\longrightarrow \ln(-\ln(1 - F(v))) = -k \ln(c) + k \ln(v)$$

 $Y = aX + b$

donde:

$$X = \ln(v)$$

$$Y = \ln[-\ln(1 - F(v))]$$

$$a = k$$

$$b = -k \ln(c)$$

 Ajuste numérico de la distribución de probabilidad de la velocidad media del viento por Mínimos Cuadrados.

$$\implies$$
 Weibull \implies $F(v) = 1 - \exp\left[-\left(\frac{v}{c}\right)^k\right]$

donde:

c, es el factor de escala,

k, es el factor forma y

v, la variable aleatoria de velocidad del viento.

Transformación
$$\longrightarrow \ln(-\ln(1 - F(v))) = -k \ln(c) + k \ln(v)$$

 $Y = aX + b$

donde:

$$X = \ln(v)$$

$$Y = \ln[-\ln(1 - F(v))]$$

$$a = k$$

$$b = -k \ln(c)$$

Sección Actual

- Motivación
- Objetivos
- 3 Tratamiento Estadísticos de los Datos del Viento
- 4 Desarrollo de la Herramienta "VientOnline"
- 5 Validación de la Herramienta "VientOnline"
- 6 Conclusiones

Software de Análisis de Datos Eólicos

Aplicaciones Evaluadas:

- WindRose
- MINT
- WRPLOT View
- Windographer

Comparación

SOFTWARE	Ventajas	Desventajas	Versión de Prueba Disponible
			•
WINDROSE	Utilizado por empresas e insti-	* Se necesita usar MS-Office	30 días de uso
	tuciones académicas para cál-	* No se puede instalar en ver-	
	culos estadísticos especializa-	sión de 64 bits	
	dos de datos de viento		
MINT	Muy utilizado para análisis de	* Se necesita usar MS Office	20 días de uso
	datos eólicos profesionales	* No es simple de usar	
		* No se puede utilizar con	
		datos propios	
WRPLOT VIEW	* Visualiza en forma fácil y	* No realiza los demás gráfi-	La licencia es por 1 año. Al
	rápida la rosa de los vientos en	cos de interés para el análisis	expirar se puede registrar nue-
	Google Earth	de energía eólica	vamente.
	* Es totalmente gratuito	* Problemas de lectura en el	
		número de fecha y hora	
		* Solicita datos separados de	
		la columna (mes y día)	
WINDOGRAPHER	* Se puede instalar tanto en		15 días de uso
	plataformas Windows como		
	Linux		
	* Muy intuitivo y fácil de u-		
	sar		
	* No se necesita modificar los		
	archivos de la base de datos		
	* 60% de descuento en una li-		
	cencia para uso académico.		

Ingeniería Inversa

La ingeniería inversa es el proceso de descubrir los principios tecnológicos de un dispositivo, objeto o sistema, a través del análisis de su estructura, función y operación.

- Análisis Estático
- Análisis Dinámico

Ingeniería Inversa

La ingeniería inversa es el proceso de descubrir los principios tecnológicos de un dispositivo, objeto o sistema, a través del análisis de su estructura, función y operación.

- Análisis Estático
- Análisis Dinámico

- Comunicación
 - » Requerimientos Funcionales
- Planificación
- Modelado
- Amultectura
 - a Madela de Datas
 - a modero de Dalca
 - Discourse de Casa de Casa
 - Diagranias de Secuencias
- Construcción

Comunicación

- Requerimientos Funcionales
- Planificación
- Modelado
 - Arquitectura
 - Modelo de Datos
 - Modelo de Diagrama de Clases
 - Diagramas de Secuencias
- Construcción

- Comunicación
 - Requerimientos Funcionales
- Planificación
- Modelado
 - Arguitectura
 - Modelo de Datos
 - Modelo de Diagrama de Clases
 - Diagramas de Secuencias
- Construcción

- Comunicación
 - Requerimientos Funcionales
- Planificación
- Modelado
 - Arquitectura
 - Modelo de Datos
 - Modelo de Diagrama de Clases
 - Diagramas de Secuencias
- Construcción

- Comunicación
 - Requerimientos Funcionales
- Planificación
- Modelado
 - Arquitectura
 - Modelo de Datos
 - Modelo de Diagrama de Clases
 - Diagramas de Secuencias
- Construcción

- Comunicación
 - Requerimientos Funcionales
- Planificación
- Modelado
 - Arquitectura
 - Modelo de Datos
 - Modelo de Diagrama de Clases
 - Diagramas de Secuencias
- Construcción

- Comunicación
 - Requerimientos Funcionales
- Planificación
- Modelado
 - Arquitectura
 - Modelo de Datos
 - Modelo de Diagrama de Clases
 - Diagramas de Secuencias
- Construcción

- Comunicación
 - Requerimientos Funcionales
- Planificación
- Modelado
 - Arquitectura
 - Modelo de Datos
 - Modelo de Diagrama de Clases
 - Diagramas de Secuencias
- Construcción

- Comunicación
 - Requerimientos Funcionales
- Planificación
- Modelado
 - Arquitectura
 - Modelo de Datos
 - Modelo de Diagrama de Clases
 - Diagramas de Secuencias
- Construcción

- Comunicación
 - Requerimientos Funcionales
- Planificación
- Modelado
 - Arquitectura
 - Modelo de Datos
 - Modelo de Diagrama de Clases
 - Diagramas de Secuencias
- Construcción

Arquitectura de "VientOnline"

Modelo de Datos de "VientOnline"

Diagrama de Clases

Diagrama de Secuencias

Diagrama de Secuencias Llamada a Gráficos

Recursos Computacionales Utilizados en el Desarrollo de "VientOnline":

Base de Datos

- NiySQL Workbench
- Entorno de Desarrollo (IDE)
- v zwipov
- Acceso a Base de Datos
 - Hibernate
- Lenguaje de Programación

- Base de Datos
 - MySQL
 - Emma
 - MySQL Workbench
- Entorno de Desarrollo (IDE)
 - Eclipse
- Acceso a Base de Datos
 - Hibernate
- Lenguaje de Programación
 - Java

- Base de Datos
 - MySQL
 - Emma
 - MySQL Workbench
- Entorno de Desarrollo (IDE)
 - Eclipse
- Acceso a Base de Datos
 - Hibernate
- Lenguaje de Programación
 - Java

- Base de Datos
 - MySQL
 - Emma
 - MySQL Workbench
- Entorno de Desarrollo (IDE)
 - Eclipse
- Acceso a Base de Datos
 - Hibernate
- Lenguaje de Programación
 - Java

- Base de Datos
 - MySQL
 - Emma
 - MySQL Workbench
- Entorno de Desarrollo (IDE)
 - Eclipse
- Acceso a Base de Datos
 - Hibernate
- Lenguaje de Programación
 - Java

- Base de Datos
 - MySQL
 - Emma
 - MySQL Workbench
- Entorno de Desarrollo (IDE)
 - Eclipse
- Acceso a Base de Datos
 - Hibernate
- Lenguaje de Programación
 - Java

- Base de Datos
 - MySQL
 - Emma
 - MySQL Workbench
- Entorno de Desarrollo (IDE)
 - Eclipse
- Acceso a Base de Datos
 - Hibernate
- Lenguaje de Programación
 - Java

- Base de Datos
 - MySQL
 - Emma
 - MySQL Workbench
- Entorno de Desarrollo (IDE)
 - Eclipse
- Acceso a Base de Datos
 - Hibernate
- Lenguaje de Programación
 - Java

- Base de Datos
 - MySQL
 - Emma
 - MySQL Workbench
- Entorno de Desarrollo (IDE)
 - Eclipse
- Acceso a Base de Datos
 - Hibernate
- Lenguaje de Programación
 - Java

- Base de Datos
 - MySQL
 - Emma
 - MySQL Workbench
- Entorno de Desarrollo (IDE)
 - Eclipse
- Acceso a Base de Datos
 - Hibernate
- Lenguaje de Programación
 - Java

- Base de Datos
 - MySQL
 - Emma
 - MySQL Workbench
- Entorno de Desarrollo (IDE)
 - Eclipse
- Acceso a Base de Datos
 - Hibernate
- Lenguaje de Programación
 - Java

Recursos Utilizados en el Desarrollo:

- Framework de Desarrollo
 - Smart GW/T
- Graticos
 - GWT Visualizations
 - o Chartsay

Recursos Utilizados en el Desarrollo:

- Framework de Desarrollo
 - GWT
 - Smart GWT
- Gráficos
 - GWT Visualizations
 - Charts4j

Recursos Utilizados en el Desarrollo:

- Framework de Desarrollo
 - GWT
 - Smart GWT
- Gráficos
 - GWT Visualizations
 - Charts4j

Recursos Utilizados en el Desarrollo:

- Framework de Desarrollo
 - GWT
 - Smart GWT
- Gráficos
 - GWT Visualizations
 - Charts4i

Recursos Utilizados en el Desarrollo:

- Framework de Desarrollo
 - GWT
 - Smart GWT
- Gráficos
 - GWT Visualizations
 - Charts4j

Recursos Utilizados en el Desarrollo:

- Framework de Desarrollo
 - GWT
 - Smart GWT
- Gráficos
 - GWT Visualizations
 - Charts4j

Recursos Utilizados en el Desarrollo:

- Framework de Desarrollo
 - GWT
 - Smart GWT
- Gráficos
 - GWT Visualizations
 - Charts4j

Recursos Utilizados en el Desarrollo:

- Framework de Desarrollo
 - GWT
 - Smart GWT
- Gráficos
 - GWT Visualizations
 - Charts4j

Recursos Utilizados en el Desarrollo:

- Framework de Desarrollo
 - GWT
 - Smart GWT
- Gráficos
 - GWT Visualizations
 - Charts4j

Interface "VientOnline"

Sección Actual

- Motivación
- Objetivos
- 3 Tratamiento Estadísticos de los Datos del Viento
- 4 Desarrollo de la Herramienta "VientOnline"
- 5 Validación de la Herramienta "VientOnline"
- 6 Conclusiones

Validación

Testing:

- Testing de caja Blanca
- Testing de caja Negra

Comparaciór

Software "VientOnline" Vs. Software Windographer

Validación

Testing:

- Testing de caja Blanca
- Testing de caja Negra

Comparación

Software "VientOnline" Vs. Software Windographer

Caso de Estudio Analizado

Datos Utilizados para Validación

Fecha	Hora	Temp	Hume-	Presión	Temp	Temp	Vel	Dir	Temp	Desvío	Vel	Dir
		prom	dad	(hPa)	max	min	prom	prom	prom	alt 1	max	max
		(°C)	(%)		(°C)	(°C)	alt1	alt1 (°)	alt1	(m/s)	alt1	alt1 (°)
							(m/s)		(°C)		(m/s)	
14/05/08	15:12:12	19,7	44	976	19,9	19,4	1,5	277	22,7	1,2	3,9	277
14/05/08	15:22:12	19,9	44	975	19,9	19,8	1,5	276	22,5	1,2	4	293
14/05/08	15:32:12	20	41	975	20,1	19,9	1,9	266	22,8	1	4,5	253
14/05/08	15:42:12	20	41	975	20,1	19,9	0,7	264	23,4	0,9	3,2	278
14/05/08	15:52:12	20	40	975	20	19,9	0,4	233	22,9	0,8	2,9	236
14/05/08	16:02:12	20	40	975	20,1	19,9	0,5	260	22,9	0,8	2,5	253
14/05/08	16:12:12	20	41	975	20	19,9	0,3	284	23,3	0,7	2,2	284
14/05/08	16:22:12	20,1	42	975	20,2	20	0,8	292	24,4	1,2	5,3	258
14/05/08	16:32:12	20,2	41	975	20,3	20,2	1	293	25,6	1,2	5,4	288

Temp	Vel	Dir	Temp	Vel	Dir	Temp	Desvío	Vel	Dir	Temp	Vel	Dir	Temp
max	min	min	min	prom	prom	prom	alt2	max	max	max	min	min	min
alt1	alt1	alt1	alt1	alt2	alt2	alt2	(m/s)	alt2	alt2	alt2	alt2	alt2	alt2
(°C)	(m/s)	(°)	(°C)	(m/s)	(°)	(°C)		(m/s)	(°)	(°C)	(m/s)	(°)	(°C)
22,9	0	251	22,4	2,1	280	22,3	1	4,2	267	22,5	0	230	22
22,6	0	279	22,4	2	279	22	1,1	4,2	280	22,2	0	319	21,9
23,3	0	233	22,5	2,3	268	22,4	0,8	4,3	255	22,8	0	259	21,9
23,6	0	295	23,1	1,1	264	22,8	1	3,5	264	23,2	0	286	22,5
23,3	0	239	22,6	0,7	233	22,5	0,9	3	233	22,8	0	261	22,1
23,1	0	231	22,6	1	262	22,6	0,9	2,7	252	22,9	0	226	22,1
24,1	0	285	22,9	0,6	285	23,1	0,8	2,5	292	23,9	0	272	22,8
24,8	0	275	24,1	2	299	24,1	1,1	4,9	283	24,5	0	305	23,9
26,1	0	258	24,8	1,8	298	25,2	1,1	5,2	280	25,6	0	255	24,5
													- 0

Gráficos

- Función Logarítmica
- Función de Potencia
- Perfil Temporario por Mes
- Perfil Temporario por Hora
- Rosa de los Vientos ←
- ullet Histograma de la Frecuencia Relativa \leftarrow
- Función Weibull ←

Validación de la Rosa de los Vientos

Rosa de los Vientos

Windographer

"VientOnline"

Validación de la Rosa de los Vientos

Rosa de los Vientos

	Windographer	VientOnline	
Orientación Punto Medio(°)	Frequency (%)	Frecuencia (%)	Error Relativo %
0°	2,7473	2,7473	0,000%
15°	2,0452	2,0452	0,000%
30°	1,9231	1,9231	0,000%
45°	2,1978	2,1978	0,000%
60°	3,5104	3,5104	0,000%
75°	4,4567	4,4567	0,000%
90°	8,5470	8,5470	0,000%
105°	6,2271	6,2271	0,000%
120°	7,0513	7,0513	0,000%
135°	1,9536	1,9536	0,000%
150°	0,4884	0,4884	0,000%
165°	0,7937	0,7937	0,000%
180°	0,8547	0,8547	0,000%
195°	1,0073	1,0073	0,000%
210°	0,7021	0,7021	0,000 %
225°	1,4652	1,4652	0,000%
240°	3,7241	3,7241	0,000%
255°	7,3260	7,3260	0,000%
270°	14,4689	14,4689	0,000%
285°	7,4481	7,4481	0,000 %
300°	3,3272	3,3272	0,000%
315°	1,3431	1,3431	0,000%
330°	1,1905	1,1905	0,000%
345°	1,4347	1,4347	0,000%

Validación del Histograma de la Frecuencia Relativa

Histograma y Función Weibull

Validación del Histograma de la Frecuencia Relativa

Histograma y Función Weibull

Sección Actual

- Motivación
- Objetivos
- 3 Tratamiento Estadísticos de los Datos del Viento
- 4 Desarrollo de la Herramienta "VientOnline"
- 5 Validación de la Herramienta "VientOnline"
- **6** Conclusiones

Objetivos Alcanzados:

Diseño e implementación de una herramienta Computacional, basada en Software Libre, para el procesamiento de datos de viento para su aplicación en la evaluación de la generación de energía eólica.

Noviembre de 2013

- Selección de un software para el tratamiento de datos de viento e ingeniería inversa de la herramienta
- Análisis de los parámetros característicos del régimen del viento y su posterior tratamiento estadístico a través de gráficos para la aplicación en modelos de energía eólica
 - Ajuste de la distribución de la velocidad media con la función. Weibull « Rosa de los Vientos.
 Perfil de Velocidad.
 - I-unción Logaritmica y de Potencia
- Integración de las herramientas de software libre utilizadas en el desarrollo de la herramienta "VientOnline"
- Diseño, implementación y validación de la herramienta en base a un caso de estudio

- Selección de un software para el tratamiento de datos de viento e ingeniería inversa de la herramienta
- Análisis de los parámetros característicos del régimen del viento y su posterior tratamiento estadístico a través de gráficos para la aplicación en modelos de energía eólica
 - Ajuste de la distribución de la velocidad media con la función Weibulión
 - Rosa de los Vientos
 - Perfil de Velocidad
 - Función Logarítmica y de Potencia
- Integración de las herramientas de software libre utilizadas en el desarrollo de la herramienta "VientOnline"
- Diseño, implementación y validación de la herramienta en base a un caso de estudio

- Selección de un software para el tratamiento de datos de viento e ingeniería inversa de la herramienta
- Análisis de los parámetros característicos del régimen del viento y su posterior tratamiento estadístico a través de gráficos para la aplicación en modelos de energía eólica
 - Ajuste de la distribución de la velocidad media con la función Weibull
 - Rosa de los Vientos
 - Perfil de Velocidad
 - Función Logarítmica y de Potencia
- Integración de las herramientas de software libre utilizadas en el desarrollo de la herramienta "VientOnline"
- Diseño, implementación y validación de la herramienta en base a un caso de estudio

- Selección de un software para el tratamiento de datos de viento e ingeniería
- Análisis de los parámetros característicos del régimen del viento y su posterior tratamiento estadístico a través de gráficos para la aplicación en modelos de energía eólica
 - Ajuste de la distribución de la velocidad media con la función Weibull
 - Rosa de los Vientos
 - Perfil de Velocidad
 - Función Logarítmica y de Potencia
- Integración de las herramientas de software libre utilizadas en el desarrollo
- Diseño, implementación y validación de la herramienta en base a un caso de

- Selección de un software para el tratamiento de datos de viento e ingeniería inversa de la herramienta
- Análisis de los parámetros característicos del régimen del viento y su posterior tratamiento estadístico a través de gráficos para la aplicación en modelos de energía eólica
 - Ajuste de la distribución de la velocidad media con la función Weibull
 - Rosa de los Vientos
 - Perfil de Velocidad
 - Función Logarítmica y de Potencia
- Integración de las herramientas de software libre utilizadas en el desarrollo de la herramienta "VientOnline"
- Diseño, implementación y validación de la herramienta en base a un caso de estudio

- Selección de un software para el tratamiento de datos de viento e ingeniería inversa de la herramienta
- Análisis de los parámetros característicos del régimen del viento y su posterior tratamiento estadístico a través de gráficos para la aplicación en modelos de energía eólica
 - Ajuste de la distribución de la velocidad media con la función Weibull
 - Rosa de los Vientos
 - Perfil de Velocidad
 - Función Logarítmica y de Potencia
- Integración de las herramientas de software libre utilizadas en el desarrollo de la herramienta "VientOnline"
- Diseño, implementación y validación de la herramienta en base a un caso de estudio

- Selección de un software para el tratamiento de datos de viento e ingeniería inversa de la herramienta
- Análisis de los parámetros característicos del régimen del viento y su posterior tratamiento estadístico a través de gráficos para la aplicación en modelos de energía eólica
 - Ajuste de la distribución de la velocidad media con la función Weibull
 - Rosa de los Vientos
 - Perfil de Velocidad
 - Función Logarítmica y de Potencia
- Integración de las herramientas de software libre utilizadas en el desarrollo de la herramienta "VientOnline"
- Diseño, implementación y validación de la herramienta en base a un caso de estudio

- Selección de un software para el tratamiento de datos de viento e ingeniería inversa de la herramienta
- Análisis de los parámetros característicos del régimen del viento y su posterior tratamiento estadístico a través de gráficos para la aplicación en modelos de energía eólica
 - Ajuste de la distribución de la velocidad media con la función Weibul
 - Rosa de los Vientos
 - Perfil de Velocidad
 - Función Logarítmica y de Potencia
- Integración de las herramientas de software libre utilizadas en el desarrollo de la herramienta "VientOnline"
- Diseño, implementación y validación de la herramienta en base a un caso de estudio

- Selección de un software para el tratamiento de datos de viento e ingeniería inversa de la herramienta
- Análisis de los parámetros característicos del régimen del viento y su posterior tratamiento estadístico a través de gráficos para la aplicación en modelos de energía eólica
 - Ajuste de la distribución de la velocidad media con la función Weibului
 - Rosa de los Vientos
 - Perfil de Velocidad
 - Función Logarítmica y de Potencia
- Integración de las herramientas de software libre utilizadas en el desarrollo de la herramienta "VientOnline"
- Diseño, implementación y validación de la herramienta en base a un caso de estudio

Conclusión Final

La herramienta desarrollada "VientOnline", basada en software libre, será utilizada con fines académicos. Fomentando el trabajo colaborativo e interdisciplinario entre la universidad y el medio.

Trabajos Futuros

- Estimación de la producción de energía eléctrica
- Simulación del comportamiento de distintas máquinas eólicas en una determinada área
- Evaluación de la influencia de las condiciones topográficas locales en el régimen del viento

Noviembre de 2013

FIN

iiiMUCHAS GRACIAS!!!

