

Project: Activation Shaping for Domain Adaptation

A.A. 2023/2024

Leonardo lurada

Setting and Motivations

"Art Painting"
Visual Domain

"Photo" **Visual Domain**

"Art Painting"

Visual Domain

 $\mathcal{X}_s
eq \mathcal{X}_t$

"Photo"

Visual Domain

"Art Painting"

Visual Domain

$$\mathcal{X}_s
eq \mathcal{X}_t$$

$$\mathcal{Y}_s = \mathcal{Y}_t$$

"Photo"
Visual Domain

In <u>Unsupervised Domain Adaptation</u> (UDA)

"Art Painting" Visual Domain

Source Domain (s)
Training Set (Labeled)

 $\mathcal{X}_s
eq \mathcal{X}_t$

$$\mathcal{Y}_s = \mathcal{Y}_t$$

"Photo"
Visual Domain

Target Domain (t)

- Training Set (<u>Unlabeled</u>)
- Test Set

Full Activation Map

Full Activation Map

Sparse Activation Map

Same Accuracy!

1. Do <u>Content-specific</u> and <u>Style-specific</u> Paths exist within a network?

Same Accuracy!

Sparse Activation Map

1. Do <u>Content-specific</u> and <u>Style-specific</u> Paths exist within a network?

2. Can we discard Style-specific Paths to improve Generalization?

Activation Shaping for UDA

Project Tasks & Structure

Activation Shaping Module (ASM)

Activation Shaping Module (ASM)

Try multiple configurations

2. ASM - Random Maps Ablation

2. ASM - Random Maps Ablation

3. ASM - Unsupervised Domain Adaptation

[Ext.1] - Domain Generalization

- Training Set (<u>Labeled</u>)

Target Domain

- Test Set

[Ext.1] - Domain Generalization

