I/O Avoiding Algorithms

Introduction

- 1. Given a machine with a two-level memory hierarchy, what does an efficient algorithm look like?
 - I/O: Transfers of data between slow and fast memory
 - Assuming these transfers are the dominant cost, how do we minimize them?
 - How to argue lower bounds on I/O

A Sense of Scale

- 1. Lower-bound on the number of slow-fast memory transfers for a comparison-based sort:
 - Q(n;Z,L) = Omega(n/L log(n/L)/log(Z/L))
- 2. Given:
 - Volume of data to sort: 1 PiB (2⁵⁰ bytes)
 - Record (item) size: 256 bytes
 - Fast memory size: $64 \text{ GiB} = 2^36 \text{ bytes}$
 - Memory transfer size: $32 \text{ KiB} = 2^15 \text{ bytes}$
- 3. Calculate the following numbers of transfer operations in units of trillions of operations (Tops)
 - $n = 2^50 / 2^8 = 2^42$ records
 - $Z = 2^{36/2}8 = 2^28$ records
 - $L = 2^{15/2}8 = 2^7$ records

Complexity	Number of Transfers	Speedup vs $nlog(n)/log(2)$
	185	1.00
$n\log(n/L)/\log(2)$	154	1.20
n	4.40	42.0
$(n/L)\log(n/L)/\log(2)$	1.20	154
$(n/L)\log(n/Z)/\log(2)$	0.481	672
$(n/L)\log(n/Z)/\log(Z/L)$	0.0573	3530

External Memory Mergesort

- Logically divide the input into chunks no greater than Z so that a single chunk fits in fast memory
 n/(f * Z) where f = [0, 1)
- 2. Read a chunk of the input from the slow memory into fast memory, producing a (sorted) run
- 3. Write the run back to slow memory
- 4. Repeat until all n/(f * Z) chunks are sorted runs
- 5. Merge the n/(f * Z) runs into a single run

Partitioned Sorting Step Analysis

- 1. Phase 1:
 - Partition input in n/fZ chunks
 - for each chunk i to n/fZ do
 - Read chunk i
 - Sort it into a (sorted) run
 - Write run i
- 2. Assumptions:
 - L | f * Z and f * Z | n
 - Comparison sort is optimal
- 3. What is the algorithmic complexity of each step in phase 1?
 - Read chunk i: fZ/L * n/FZ = n/L transfers
 - Sort it into a (sorted) run: f * Z * log(fZ) * (n/(f * Z)) = nlog(Z) comparisons

• Write run i: fZ/L * n/FZ = n/L transfers

External Memory Mergesort Quiz

- 1. At each level k, run size is s * 2 ^ k
 - m is number of sorted runs
 - s is number of elements in each run
 - n = m * s
- 2. Phase 2:
 - Real L-sized blocks of A and B (Ahat and Bhat)
 - while any unmerged items in A and B do
 - Merge Ahat, Bhat -> Chat as possible
 - if Ahat or Bhat empty then read more
 - If Chat full then flush to slow memory
 - Flush any unmerged elements in A or B
- 3. Algorithmic analysis
 - Transfers: $2^{(k-1)/L} + 2^{(k-1)/L} + 2^{(k)/L} = 2^{(k+1)s/L}$
 - Comparisons: $O(s * 2^k)$
 - Number of pairs merged at level $k = n / (s * s^k)$
 - Number of levels = log2(n/s)
- 4. Totals:
 - Transfers: O(2n/L * log2(n/s))
 - Comparisons: O(n * log2(n/s))

Slow A memory B 2^{k-1}s C= menge (A, B) 2^ks Read L-sized blocks of A, B \(\hat{A}, \hat{B} \) While any inmenged items in A \(\hat{B} \) Merge \(\hat{A}, \hat{B} \rightarrow \hat{C} \) Merge \(\hat{A}, \hat{B} \rightarrow \hat{C} \) Merge \(\hat{A}, \hat{B} \rightarrow \hat{C} \) Thush any inmenged in A or B

Two-way External Memory Merging

What's Wrong with 2 Way Merging?

- 1. Phase 1:
 - Partition input into n/Z chunks
 - Sort each chunk, producting n/Z runs of size Z each

- 2. Phase 2:
 - Merge all runs
- 3. In terms of n, Z, and L, determine aymptotic costs:
 - Comparisons: O(nlog(n))
 - Transfers: O(n/L * log(n/Z))
- 4. What's wrong with naive two-way merging algorithm?
 - Two-way merge doesn't utilize all of the fast memory Z
 - Can be off by a factor of 10x to 100x on modern hardware

of transfers in external memory margesort with 2-way marging:
$$Q(n;Z,L) = O\left(\frac{n}{L}\log_2\frac{n}{Z}\right) = O\left(\frac{n}{L}\cdot\left[\log_2\frac{n}{L} - \log_2\frac{Z}{L}\right]\right)$$
Lower bound:
$$Q(n;Z,L) = \Omega\left(\frac{n}{L}\log_2\frac{n}{L}\right) = \Omega\left(\frac{n}{L}\log_2\frac{n}{L}\right)$$
Remaining factor of potential improvement:
$$O\left(\log_2\frac{Z}{L}\cdot\left[1 - \frac{\log_2\frac{Z}{L}}{\log_2\frac{Z}{L}}\right]\right)$$

Optimal Lower-Bound for Merge Sort

Multiway Merging

- 1. Instead of merging two blocks at a time, merge all k blocks at once with an additional buffer k+1 for the output
 - Read L blocks of each of k runs into fast memory
 - At each point, pick the next smallest value
 - If an input buffer is empty, refill it
 - If the output buffer is full, write it to slow memory
- 2. How do we choose the next smallest efficiently?
 - Linear scan (small k)
 - Priority queue (min-heap)
 - Build: O(k)
 - Extract min: O(logK)
 - Insert: O(logK)
- 3. Cost of 1 k-way merge:
 - Transfers: 2 * k * s / L
 - Comparisons: O(k + k * s * logK)

Cost of Multiway Merge

- 1. What is the total cost of multiway merging?
 - Assume k = O(Z/L) < Z/L
 - Maximum number of levels l in a merge tree is $O(\log(n/L)/\log(Z/L))$

- This makes intuitive sense because we're merging chunks of Z/L instead of chunks of 2, which changes the base of the log
- Additionally, we have to merge n/L total chunks
- 2. Total number of comparisons: O(nlog(n))
- 3. Total number of transfers: O(n/L * log(n/L)/log(Z/L))

A Lower Bound on External Memory Sorting

- 1. Merge sort with multiway merge complexity is as good as we can hope for from an asymptotic perspective
- 2. There are two approximations involved:
 - Stirling's approximation: $log(x!) \sim xlog(x)$
 - $\log(a \text{ choose b}) \sim b * \log(a/b)$

How Many Transfers in Binary Search

- 1. How many transfers does binary search do?
 - Assumptions:
 - L | n
 - A is aligned
 - n, L, Z are powers of 2
- 2. $Q(n;Z,L) = \log(n/L)$
 - If n > L, Q = 1 + Q(n/Z; Z, L)
 - If $n \le L$, Q = 1
 - Using the Master Theorem, $Q(n;Z,L) = O(\log(n/L))$

Lower Bounds for Search

- 1. Size of index i = floor(log(n)) + 1 bits = O(log(n)) bits
- 2. Let x(L) = maximum number of bits "learned" per L-sized read
- 3. $Q(n;Z,L) = O(\log(n) / x(L))$
- 4. What is an asymptotic upper bound on x(L)?
 - O(log(L))
- 5. Lower bound: $O(\log(n)/\log(L))$
 - Approximately $\log(L)$ speedup compared to naive binary search

I/O Efficient Data Structures

- 1. Using which of these can search attain the I/O lower bound?
 - Ordered doubly-linked list (false)
 - Binary search tree (false)
 - Red-black tree (false)
 - Skip list (false)
 - B-tree (true)
- 2. B-tree can be made I/O optimal only if the correct branching factor B is chosen
 - B should be equal to L
 - B must be specific to the machine

Conclusion

- 1. Optimizing transfers requires making memory accesses contiguous and exploit fast memory capacity to the greatest extent possible
- 2. Our model assumes that data movement dominates, but this may not be true
 - Computational intensity and machine balance