Title

code - courseName

Christian Oppegård Moen

dd-mm-yyyy

Contents

$\mathrm{GARCH}(\mathrm{p,q})$	2
Tests	4
Real data (HOW YOU FIT IT AND VIEW IT)	6
A Small test to see what type of data we want. Can delete	10
Model selection	12
Forecasting	16
Fit models without one year	17
Run all with forecast	19
library(viridis)	

GARCH(p,q)

Definitions for notational purposes:

- $\mathcal{R}_1 = (r_1, ..., r_{max(p,q)})$
- $\mathcal{R}_2 = (r_t, ..., r_{t+max(p,q)})$
- $\alpha = (\alpha_0, ..., \alpha_n)$
- $\beta = (\beta_1, ..., \beta_q)$
- $\mathbf{r}_{tp} = (1, r_{t-1}, ..., r_{t-p})^{\top}$
- $\sigma_{tq}^2 = (\sigma_{t-1}^2, ..., \sigma_{t-q}^p)^\top$

GARCH(p, q) is given by

$$r_t = \sigma_t \epsilon_t, \tag{1}$$

$$\sigma_t^2 = \alpha_0 + \sum_{j=1}^p \alpha_j r_{t-j}^2 + \sum_{j=1}^q \beta_j \sigma_{t-j}^2.$$
 (2)

$$\sigma_t^2 = \alpha r_{tp}^2 + \beta \sigma_{tq}^2. \tag{3}$$

We know that $r_t | \mathcal{R}_2 \sim \mathcal{N}(0, \sigma_t^2)$

The log likelihood $l(\alpha, \beta | \mathcal{R}_1) \propto -\ln L(\alpha, \beta | \mathcal{R}_1)$ is given by

$$l(\boldsymbol{\alpha}, \boldsymbol{\beta}|\mathcal{R}_1) = \sum_{t=m+1}^n \ln(\sigma_t^2) + \frac{r_t^2}{\sigma_t^2}$$
(4)

In the following chunk we implement the so called critical function.

```
garchLL = function(params, r, p = 1, q = 0) {
                   n = length(r)
                   m = max(p, q)
                   alpha = exp(params[1:(p + 1)])
                   if (q == 0) {
                                      beta = 0
                   } else {
                                       beta = exp(params[-(1:(p + 1))])
                   }
                   # initialize variance and set first m values
                   sigma_sq = numeric(n)
                   sigma_sq[1:m] = t(alpha) %*% c(1, r[p:1]^2) # should they be zero?
                    \# sigma_sq[1:m] = 0 \# says so above eq. (5.52)
                   # Iteratively compute each variance
                   for (t in (m + 1):n) {
                                       sigma_sq[t] = sum(alpha * c(1, r[(t - 1):(t - p)]^2)) + sum(beta * sigma_sq[(t - p)]
                                                           1):(t - q)])
```

```
}
ll = sum(log(sigma_sq) + r^2/sigma_sq)
return(ll)
}
```

The variance σ_t^2 can be estimated by one-step-ahead forecasting given by

$$\hat{\sigma}_t^2 = \hat{\alpha} r_{tp}^2 + \hat{\beta} \hat{\sigma}_{tq}^2 \tag{5}$$

```
sigmaForecast = function(mod) {
    n = mod n
    m = mod\$m
    p = mod p
    r = mod r
    alpha = mod\$estim[1:(p + 1)]
    if (mod\$q == 0)
        {
            beta = 0
            q = 1
        } # If ARCH(p) model
 else {
        beta = mod\$estim[-(1:(p + 1))]
        q = mod q
    }
    sf = numeric(n) # sigma squared forecasts
    \# sf[1:p] = sum(alpha*c(1,r[p:1]^2)) sf[1:q] = 0 sf[1:m] =
    \# alpha[1]/(1-sum(c(alpha, beta))) \# GPT
    sf[1:m] = sum(alpha * c(1, r[1:p]^2)) # used in sim test
    for (t in (m + 1):n) {
        sf[t] = sum(alpha * c(1, r[(t - 1):(t - p)]^2)) + sum(beta * sf[(t - 1):(t - p)]^2))
            q)])
    }
    return(sf)
}
# TODO: make garch function
Garch = function(r, p = 1, q = 0, init = c(0.1, 0.1)) {
    n = length(r)
    alpha = init[1:(p + 1)]
    if (q == 0)
            beta = 0
            q = 1
        } # If ARCH(p) model
 else {
        beta = init[-(1:(p + 1))]
        q = q
    }
```

Tests

```
testModel = function(mod) {
              n = mod n
              m = mod\$m
              p = mod p
              alpha = mod$paramSim[1:(p + 1)]
              if (mod\$q == 0) {
                            beta = 0
                            q = 1
              } else {
                            beta = mod paramSim[-(1:(p + 1))]
                            q = mod q
              }
              r = numeric(n)
              r[1:m] = rnorm(m)
              sigma_sq = numeric(n)
              sigma_sq[1:m] = sum(alpha * c(1, r[1:p]^2))
              \# sigma_sq[1:m] = alpha[1]/(1-sum(c(alpha, beta))) \# GPT
               # browser()
              for (t in (m + 1):n) {
                             sigma_sq[t] = sum(alpha * c(1, r[(t - 1):(t - p)]^2)) + sum(beta * sigma_sq[(t - p)]^2)) + sigma_sq[(t - p)]^2)) + sigma_sq[(t - p)]^2) + 
                                           1):(t - q)])
                            r[t] = rnorm(1, sd = sqrt(sigma_sq[t]))
              }
               # browser() estimation
              estim = exp(optim(par = log(mod$init), fn = garchLL, r = r, p = p, q = q, method = "BFGS")$par)
              comparison = (rbind(real = mod$paramSim, estim = estim, init = mod$init))
              return(list(r = r, estim = estim, comparison = comparison))
}
```

```
set.seed(420)
arch1 = list(p = 1, q = 0, m = 1, n = 10000, init = rep(0.1, 2), paramSim = c(0.01, arch1 = 1)
    0.2))
testResult = testModel(arch1)
testResult$comparison
##
                [,1]
                          [,2]
## real 0.010000000 0.2000000
## estim 0.009775681 0.1997736
## init 0.10000000 0.1000000
# qqnorm(testResult$r) plot(testResult$r)
set.seed(420)
garch12 = list(p = 1, q = 2, m = 2, n = 10000, init = rep(0.1, 4), paramSim = c(0.01, 4)
    0.2, 0.1, 0.5))
testResult = testModel(garch12)
garch12$estim = testResult$estim
round(testResult$comparison, 3)
         [,1] [,2] [,3] [,4]
## real 0.01 0.20 0.100 0.500
## estim 0.01 0.21 0.112 0.464
## init 0.10 0.10 0.100 0.100
garch12$r = testResult$r
garch12$sigmaForecast = sigmaForecast(garch12)
plot(garch12$r, type = "1")
lines(garch12$sigmaForecast, col = "cyan")
```


Real data (HOW YOU FIT IT AND VIEW IT)

```
df <- read.csv("projectdata.csv", header = T, sep = ";", dec = ",", stringsAsFactors = FALSE)

# qqnorm(r) plot(r, type = 'l')

# make data to fit
fit = lm(Inflation ~ Unemployed + Consumption + InterestRate, data = df)
r = df$Inflation - fit$fitted.values
d = diff(df$Inflation)
par(mfrow = c(2, 1))
# inflation - regression
garch12regr = Garch(r, p = 1, q = 2, init = rep(0.1, 1 + 2 + 1))
modResults(garch12regr, main = "garch(1,2) on regression")

# diff inflation
garch12 = Garch(d, p = 1, q = 2, init = rep(0.1, 1 + 2 + 1))
modResults(garch12, "garch(1,2) on diff")</pre>
```

garch(1,2) on regression

garch(1,2) on diff


```
par(mfrow = c(1, 1))

par(mfrow = c(3, 2))
```

```
arch1regr = Garch(r, p = 1, q = 0, init = rep(0.1, 2))
modResults(arch1regr, main = "arch(1) on inflation - regression")

arch1d = Garch(d, p = 1, q = 0, init = rep(0.1, 2))
modResults(arch1d, main = "arch(1) on diff(inflation)")

arch2regr = Garch(r, p = 2, q = 0, init = rep(0.1, 3))
modResults(arch2regr, main = "arch(2) on inflation - regression")

arch2d = Garch(d, p = 2, q = 0, init = rep(0.1, 3))
```

```
modResults(arch2d, "arch(2) on diff(inflation)")
arch10regr = Garch(r, p = 10, q = 0, init = rep(0.1, 11))
modResults(arch10regr, main = "arch(10) on inflation - regression")
arch10d = Garch(d, p = 10, q = 0, init = rep(0.1, 11))
modResults(arch10d, "arch(10) on diff(inflation)")
```


par(mfrow = c(1, 1))

```
list(arch1regr = arch1regr$estim, arch1d = arch1d$estim, arch2regr = arch2regr$estim,
   arch2d = arch2d$estim, arch10regr = arch10regr$estim, arch10d = arch10d$estim)
## $arch1regr
## [1] 2.172051e-01 2.631814e-05
##
## $arch1d
## [1] 0.2681048 0.3845943
## $arch2regr
## [1] 2.040528e-01 2.842043e-05 5.669071e-02
##
## $arch2d
## [1] 2.673872e-01 3.877460e-01 9.556793e-05
##
## $arch10regr
## [1] 6.607910e-02 1.507028e-06 7.553767e-02 4.280618e-05 1.562249e-01
## [6] 3.652726e-01 2.839493e-07 8.483807e-02 2.002727e-06 6.598773e-07
## [11] 1.301979e-01
##
## $arch10d
## [1] 1.143832e-01 4.845580e-01 5.315562e-08 2.358752e-08 5.056129e-02
## [6] 6.419528e-02 5.766002e-08 2.064997e-01 3.922694e-09 4.332273e-13
## [11] 4.898945e-08
models = list(arch1regr = arch1regr, arch1d = arch1d, arch2regr = arch2regr, arch2d = arch2d,
    arch10regr = arch10regr, arch10d = arch10d, garch12regr = garch12regr, garch12 = garch12)
```

Make more models

A Small test to see what type of data we want. Can delete

```
nt = 10000
xt = 1.1 + sin(seq(1, 6 * 2 * pi, length.out = nt))/5
rt = rnorm(nt, sd = xt)
par(mfrow = c(1, 1))
plot(rt, type = "l")
lines(xt, col = "cyan")
```


qqnorm(rt)
qqline(rt)

Normal Q-Q Plot

Model selection

```
logLike = function(mod, m = 1) {
    i = (m + 1):(mod\$n) # can burn m first values
    11 = sum(-0.5 * (log(mod$sigmaForecast[i]) + mod$r[i]^2/mod$sigmaForecast[i]))
    return(11)
}
aic = function(mod, m = 1) {
    return(2 * (mod$p + mod$q) - 2 * logLike(mod, m))
}
loglikes = numeric(length(models))
aics = numeric(length(models))
loglikesM = numeric(length(models))
aicsM = numeric(length(models))
for (i in 1:length(models)) {
    loglikes[i] = logLike(models[[i]])
    aics[i] = aic(models[[i]])
    loglikesM[i] = logLike(models[[i]], models[[i]]$m)
```

```
aicsM[i] = aic(models[[i]], models[[i]]$m)
   print(sum(models[[i]]$r^2/models[[i]]$sigmaForecast))
}
## [1] 178.9952
## [1] 178
## [1] 178.9979
## [1] 177.9857
## [1] 184.6648
## [1] 177.6991
## [1] 178.8455
## [1] 177.9982
modSel = cbind(ll = loglikes, llM = loglikesM, aic = aics, aicM = aicsM)
rownames(modSel) = names(models)
modSel
##
                      11
                                11M
                                          aic
                                                   aicM
## arch1regr
              46.4575718 46.4575718 -88.91514 -88.91514
              -4.4729068 -4.4729068 12.94581 12.94581
## arch1d
## arch2regr 47.2728846 46.6138710 -88.54577 -87.22774
## arch2d
              -4.4763785 -5.0084038 14.95276 16.01681
## arch10regr 53.9399839 49.2894127 -85.87997 -76.57883
              -0.6363949 -0.4641352 23.27279 22.92827
## arch10d
## garch12regr 47.3758710 46.4187290 -88.75174 -86.83746
## garch12
              -4.4729649 -5.0043698 14.94593 16.00874
plot(arch1d$r^2, type = "1")
lines(arch1d$sigmaForecast, col = "cyan")
```


sum(arch1d\$r^2/arch1d\$sigmaForecast)

[1] 178

length(arch1d\$sigmaForecast)

[1] 178

```
fgarch = fGarch::garchFit(~garch(1, 0), data = d, trace = F)
fit = fGarch::volatility(fgarch)
fit - arch1d$sigmaForecast
```

```
##
     [1]
          0.35440169
                       0.24922689
                                   0.24183423
                                                0.24856248
                                                             0.23595246
                                                                          0.19512649
##
          0.23595246
     [7]
                       0.17418245
                                    0.19512649
                                                0.23050035
                                                             0.23906245
                                                                          0.17418245
##
    [13]
          0.24540461
                       0.24526913
                                   0.24367574
                                                0.24367574
                                                             0.24526913
                                                                          0.05947873
##
    [19]
          0.07930232
                       0.22231636
                                    0.24526913
                                                0.24540461
                                                             0.23947362
                                                                          0.24856248
                                                             0.24922689
##
    [25]
          0.24540461
                       0.23947362
                                   0.24922689
                                                0.24183423
                                                                          0.24711361
##
          0.24922689
                       0.14832394
                                   0.24856248
                                                0.24540461
                                                             0.23595246 -0.13538916
    [37] -0.75405448
                       0.21458181
                                                                          0.24856248
##
                                   0.24540461
                                                0.24367574
                                                             0.23595246
##
    [43]
          0.21063996
                       0.24183423
                                    0.24526913
                                                0.24367574
                                                             0.24711361
                                                                          0.24711361
    [49]
##
          0.24183423
                       0.23595246
                                   0.24839407
                                                0.24540461
                                                             0.24711361
                                                                          0.24711361
##
    [55]
          0.24711361
                       0.19479056
                                   0.24839407
                                                0.24856248
                                                             0.24711361
                                                                          0.24711361
    [61]
          0.23947362
                       0.23595246
                                   0.24540461
                                                0.24711361
                                                             0.24839407
                                                                          0.24856248
##
```

```
[67] 0.23947362 0.22231636 0.23906245 0.24711361 0.24711361 0.24711361
## [73] 0.14832394 0.23906245 0.22231636 0.21458181 0.24711361 0.24922689
## [79] 0.23595246 -0.01472241 0.05947873 0.24856248 0.24839407
                                                                 0.22904623
0.24711361
   [91] 0.24367574 0.19479056 0.24526913 -0.01472241
                                                     0.21458181
                                                                 0.05947873
## [97] 0.11680841 0.23906245 0.24540461 0.24540461 0.24183423 0.23595246
## [103] 0.24526913 -0.01472241 0.10268116 0.19512649 0.23050035 0.24856248
## [109] 0.11680841 0.21458181 0.23947362 0.24711361
                                                     0.23595246 0.10268116
## [115] 0.23595246 0.14832394 0.17022817 0.23050035 0.24540461
                                                                 0.24856248
## [121] 0.11680841 0.22904623 0.24922689 0.22904623 0.23595246 0.24839407
## [127] 0.23947362 0.17418245 0.23906245 0.24367574
                                                     0.17418245 -0.18058596
## [133] 0.14832394 0.24711361 0.24183423 0.22904623
                                                     0.24711361 0.24540461
## [139] 0.24856248 -0.01472241 0.17022817 0.24367574
                                                     0.24367574 0.24922689
## [145] 0.03553300 0.10268116 0.24183423 0.24711361
                                                      0.24526913 0.24367574
## [151] 0.24540461 -0.07164645 0.22904623 0.24922689
                                                      0.24183423
                                                                 0.24526913
## [157] 0.19479056 0.24922689
                               0.24183423
                                          0.24839407
                                                      0.24839407
                                                                 0.21063996
## [163] 0.24526913 0.23050035 0.24856248 0.24711361
                                                      0.24856248
                                                                 0.24367574
## [169] 0.23050035 0.24922689 0.24183423 0.24922689
                                                      0.24839407
                                                                 0.11680841
## [175] 0.10268116 0.14832394 0.24526913 0.24711361
## attr(,"type")
## [1] "sigma"
sum(d^2/fit^2)
## [1] 178.8808
fGarch::summary(fGarch::garchFit(~garch(1, 0), data = d, trace = F))$show[18]
##
## Title:
   GARCH Modelling
##
  fGarch::garchFit(formula = ~garch(1, 0), data = d, trace = F)
##
## Mean and Variance Equation:
  data ~ garch(1, 0)
## <environment: 0x000002715f53dfc0>
##
   [data = d]
##
## Conditional Distribution:
##
  norm
##
## Coefficient(s):
##
                       alpha1
        mu
               omega
## 0.022472 0.263492 0.395732
##
## Std. Errors:
##
  based on Hessian
##
## Error Analysis:
          Estimate Std. Error t value Pr(>|t|)
## mu
           0.02247
                      0.03790
                                0.593
                                        0.5533
```

```
## omega
           0.26349
                      0.04388
                                6.005 1.91e-09 ***
## alpha1
           0.39573
                      0.15060
                                2.628 0.0086 **
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
## Log Likelihood:
## -167.3975
               normalized: -0.9404351
##
## Description:
## Fri Nov 17 16:47:39 2023 by user: kikka
##
##
## Standardised Residuals Tests:
##
                                  Statistic
                                                 p-Value
## Jarque-Bera Test R Chi^2
                                  11.2181424 3.664471e-03
## Shapiro-Wilk Test R W
                                  0.9680396 4.171312e-04
## Ljung-Box Test
                  R Q(10)
                                  60.2226812 3.289101e-09
## Ljung-Box Test
                     R
                          Q(15) 118.9905101 0.000000e+00
## Ljung-Box Test
                          Q(20) 148.4393392 0.000000e+00
                     R
                     R^2 Q(10)
## Ljung-Box Test
                                 15.5022697 1.147947e-01
## Ljung-Box Test
                                  28.0330311 2.136318e-02
                     R^2 Q(15)
## Ljung-Box Test
                     R^2 Q(20)
                                  31.2118334 5.245529e-02
## LM Arch Test
                          TR^2
                                  23.7586298 2.193391e-02
## Information Criterion Statistics:
       AIC
               BIC
                        SIC
## 1.914578 1.968204 1.914022 1.936325
## [1] "0.022472 0.263492 0.395732 "
arch1d$estim
```

[1] 0.2681048 0.3845943

Forecasting

```
forecast = function(mod, n) {
    m = mod$m
    p = mod$p
    r = mod$r
    nTot = mod$n + n

alpha = mod$estim[1:(p + 1)]
    if (mod$q == 0)
        {
            beta = 0
            q = 1
        } # If ARCH(p) model

else {
        beta = mod$estim[-(1:(p + 1))]
```

```
q = mod$q
}

rf = r
length(rf) = nTot
sf = mod$sigmaForecast
length(sf) = nTot
for (t in mod$n:(nTot)) {
    sf[t + 1] = sum(alpha * c(1, rf[(t + 1 - 1):(t + 1 - p)]^2)) + sum(beta *
        sf[(t + 1 - 1):(t + 1 - q)])
    rf[t + 1] = rnorm(1, sd = sqrt(sf[t + 1]))
}
return(rf)
}
```

Fit models without one year

```
# make data to fit
without = 12
dTot = diff(df$Inflation)
nTot = length(dTot)
d = diff(dTot[1:(nTot - without)])

garch12 = Garch(d, p = 1, q = 2, init = rep(0.1, 1 + 2 + 1))
modResults(garch12, "garch(1,2) on diff")
```

garch(1,2) on diff


```
garch12$w = without
garch12$forecast = forecast(garch12, garch12$w)
modResults(garch12)
```


Run all with forecast

```
set.seed(420)
without = 12
dTot = diff(df$Inflation)
nTot = length(dTot)
```

```
d = diff(dTot[1:(nTot - without)])
arch1df = Garch(d, p = 1, q = 0, init = rep(0.1, 2))
arch2df = Garch(d, p = 2, q = 0, init = rep(0.1, 3))
arch10df = Garch(d, p = 10, q = 0, init = rep(0.1, 11))
modelsf = list(arch1df = arch1df, arch2df = arch2df, arch10df = arch10df)
modelsf$arch1df$w = 12
modelsf$arch1df$w
```

[1] 12

```
# for (mod in modelsf){
for (i in 1:length(modelsf)) {
    # browser()
    w = 12
    modelsf[[i]]$w = w
    # mod$w = w
    modelsf[[i]]$forecast = forecast(modelsf[[i]], w)
}
back = 50
plot((nTot - back):nTot, dTot[(nTot - back):nTot], type = "l", xlab = "Month", ylab = "Volatility [%]",
    cex.main = 0.8, cex.axis = 0.8, cex.lab = 0.8)
plotForecast(modelsf)
```


pdf ## 2