Técnicas de reducción de consumo

Niveles de abstracción de un diseño

- Sistema
- Algoritmos
- Arquitectura
- Diseño del circuito
- Tecnología de fabricación

Circuit-Level Techiques

- Dynamic-power optimization
 - Multiple supply voltages
 - Transistor sizing
 - Technology mapping
- Static-power optimization
 - Multiple thresholds
 - Transistor stacking

Source: Rabaey, Jan. Low power design essentials. Springer Science & Business Media, 2009.

Reducing Active Energy

$$E_{\text{active}} \sim \alpha \cdot C_{\text{L}} \cdot V_{\text{swing}} \cdot V_{\text{DD}}$$

$$P_{\text{active}} \sim \alpha \cdot C_{\text{L}} \cdot V_{\text{swing}} \cdot V_{\text{DD}} \cdot f$$

- Reducing voltages
 - Lowering the supply voltage (VDD) at the expense of clock speed
 - Lowering the logic swing (Vswing)
- Reducing transistor sizes (CL)
 - Slows down logic
- Reducing activity (α)
 - Reducing switching activity through transformations
 - Reducing glitching by balancing logic

Multiple Supply Voltages

- Block-level supply assignment
 - Higher-throughput/lower-latency functions are implemented in higher VDD
 - Slower functions are implemented with lower VDD
 - This leads to so-called voltage islands with separate supply grids
 - Level conversion performed at block boundaries
- Multiple supplies inside a block
 - Non-critical paths moved to lower supply voltage
 - Level conversion within the block
 - Physical design challenging

Multiple Supply Voltages

- Two supply voltages per block are optimal
- Optimal ratio between the supply voltages is 0.7
- Level conversion is performed on the voltage boundary, using a level-converting flip-flop (LCFF)
- An option is to use an asynchronous level converter
 - More sensitive to coupling and supply noise

Practical Transistor Sizing

- Continuous sizing of transistors only an option in custom design
- In ASIC design flows, options set by available library
- Discrete sizing options made possible in standard-cell design methodology by providing multiple options for the same cell
 - Leads to larger libraries (> 800 cells)
 - Easily integrated into technology mapping

Technology Mapping

Example: four-input AND

- (a) Implemented using four-input NAND + INV
- (b) Implemented using two-input NAND + two-input NOR

Library 1: Library 2: High-Speed Low-Power

Gate type	Area (cell unit)	Input cap. (fF)	Average delay (ps)	Average delay (ps)
INV	3	1.8	7.0 + 3.8 <i>C</i> _L	12.0 + 6.0 <i>C</i> _L
NAND2	4	2.0	10.3 + 5.3 <i>C</i> _L	16.3 + 8.8 <i>C</i> _L
NAND4	5	2.0	13.6 + 5.8 <i>C</i> _L	22.7 + 10.2 <i>C</i> _L
NOR2	3	2.2	10.7 + 5.4 <i>C</i> _L	16.7 + 8.9 <i>C</i> _L

(delay formula: C_L in fF)

(numbers calibrated for 90 nm)

Technology Mapping

four-input AND	(a) NAND4 + INV	(b) NAND2 + NOR2	
Area	8	11	
HS: Delay (ps)	31.0 + 3.8 <i>C</i> _L	32.7 + 5.4 <i>C</i> _L	
LP: Delay (ps)	53.1 + 6.0 <i>C</i> _L	52.4 + 8.9 <i>C</i> _L	
Sw Energy (fF)	0.1 + 0.06 <i>C</i> _L	$0.83 + 0.06C_{L}$	

Area

Four-input more compact than two-input (two gates vs three gates)

Timing

- Both implementations are two-stage realizations
- Second-stage INV (a) is better driver than NOR2 (b)
- For more complex blocks, simpler gates will show better performance

Energy

- Internal switching increases energy in the two-input case
- Low-power library has worse delay, but lower leakage (see later)

Gate-Level Trade-offs for Power

- Technology mapping
 - Gate selection
 - Sizing
 - Pin assignment
- Logical Optimizations
 - Factoring
 - Restructuring
 - Buffer insertion/deletion
 - Don't care optimization

Logic Restructuring

Logic restructuring to minimize spurious transitions

Buffer insertion for path balancing

Algebraic Transformations Factoring

Idea: Modify network to reduce capacitance

$$p_a = 0.1; p_b = 0.5; p_c = 0.5$$

Caveat: This may increase activity!