תורת החישוביות (343632) – בוחן אמצע אביב תשפ"א

23.5.2021

מרצה: פרופ' איל קושלביץ (אחראי).

מתרגלים: נטע דפני (אחראית), דור קצלניק, עידו רפאל, קיארה מיוחס, ויקטור קולובוב.

הנחיות:

- הבחינה היא עם חומר סגור.
- משך הבחינה שעתיים. בבחינה יש 4 שאלות. השתדלו לא להתעכב יתר על המידה על סעיף מסוים, כדי לצבור את מרב הנקודות בזמן העומד לרשותכם.
 - לשימושכם מצורף למחברת זו דף עזר (בעמוד האחרון).
 - אפשר להשתמש בעט או בעפרון בתנאי שהכתב נראה היטב בסריקת התשובות.
- בשאלות בהן יש לתאר מכונת טיורינג, ניתן להסתפק בתיאור מילולי משכנע של אופן פעולת המכונה, ואין צורך להגדיר פונקציית מעברים.
- מותר להשתמש בכל טענה שהוכחה בהרצאה, בתרגול או בתרגיל בית, בתנאי שמצטטים אותה באופן מדויק, אלא אם נדרשתם במפורש להוכיחה.

בהצלחה!

(שאלה מההרצאה) (בי נק') פפות שאינן ב־m RE שפות שאינן בי

15. בצורה לשירה (ללא הסתמכות על שום שפה אחרת) כי $\overline{L_D} \notin \mathrm{RE}$ נק') הבהרה: יש לחזור על ההוכחה הישירה שהוצגה בהרצאה ולנמק את כל המעברים.

(2 נקי) את נכונותה. בקצרה את הציגו והוכיחו ל $\overline{L_D} \leq \overline{L_u}$ (בצורה מפורשת) .2

2 שפות ופונקציות (שאלת ת"ב) (30 נק')

בהינתן שפה $f(L)=\{f(x):x\in L\}$ נגדיר $f:\{0,1\}^* o\{0,1\}^*$ הוכיחו/הפריכו: $L\subseteq\{0,1\}^*$ הוכיחו/הפריכו: $f(L)=\{f(x):x\in L\}$ נגדיר ופונקציה מלאה $f:\{0,1\}^*$ מלאה (0.1 נקי). בהינתן שפה $f:\{0,1\}^*$ נגדיר ופונקציה מלאה (1.2 נקי).

נק') ניתנת לחישוב $f \in \mathbb{R}$ ניתנת לחישוב $f \in \mathbb{R}$ ניתנת נ $L \in \mathbb{R}$.2

נק') ניתנת לחישוב $f \in \mathrm{RE} \leftarrow L \in \mathrm{RE}$.3 ניתנת לחישוב $f \in \mathrm{RE}$.3

3 (שאלה מהתרגול) (20 נק') 1 וריאציה על משפט רייס

 $L_S
otin RE$ אם מפיות, אז הוכיחו את המכילה אל תכונה אז תכונה אם אם הוכיחו את הוריאציה הבאה על משפט רייס: אם אם $S \subseteq \mathrm{RE}$

4 סיווג שפות (שאלת ת"ב) (30 נק")

לאורך השאלה כל המכונות עליהן מדובר הן מכונות אי דטרמיניסטיות.

. תשובתכם את הבאות ב־RE והאם היא ב-RE הוכיחו את הבאות קבעו האם היא לכל

הערה: בשאלה זו, כאשר מראים אי שייכות של שפה ל־m RE או m RE, ניתן להסתפק בהגדרה מפורשת של רדוקציה מבלי להוכיח את תקפות הרדוקציה ושאר התנאים הנדרשים מרדוקציה.

(נק') 10) $L_1=\{\langle M
angle \mid 10$ מ"ט א"ד וקיים מסלול חישוב של M על הקלט ϵ בו M לא עוברת את מספר M .1

(נקי) נקי) גון איים מסלול חישוב של M על הקלט בו M מבקרת באותה קונפיגורציה פעמיים M נקי מסלול חישוב של M אוד M

דף עזר

אוסף שפות (כולן מעל א"ב $\{0,1\}$) והסווג שלהן:

- $HP = \{(\langle M \rangle, x) | M \text{ halts on } x\}.$
- $L_D = \{ \langle M \rangle | M \text{ accepts } \langle M \rangle \}.$
- $L_u = \{(\langle M \rangle, x) | M \text{ accepts } x\}.$
- $L_{\Sigma^*} = \{ \langle M \rangle | L(M) = \Sigma^* \}.$
- $L_{\varepsilon} = \{ \langle M \rangle | \varepsilon \in L(M) \}.$
- $L_{\emptyset} = \{ \langle M \rangle | L(M) = \emptyset \}.$
- $L_{>3} = \{ \langle M \rangle \, | \, |L(M)| \ge 3 \}.$
- $L_{\leq 3} = \{ \langle M \rangle \, | \, |L(M)| \leq 3 \}.$
- $L_{=3} = \{ \langle M \rangle \, | \, |L(M)| = 3 \}.$
- $L_{EQ} = \{ (\langle M_1 \rangle, \langle M_2 \rangle) | L(M_1) = L(M_2) \}.$

x את אם פר קלט ε פותבת שעל קלט $\Gamma=\{0,1,\flat\}$ שעל מכונת טיורינג בעלת את מספר המצבים המינימלי של מספר המצבים המינימלי אינה ניתנת לחישוב.