Topološke grupe

Benjamin Benčina

Fakulteta za matematiko in fiziko

26. november 2018

DEFINICIJA: Neprazna množica G z binarno operacijo * je grupa, če:

- → je množica G zaprta za (binarno) operacijo *,
- → je operacija * asociativna v množici G,
- ightharpoonup obstaja tak element $e \in G$, da za vsak element $x \in G$ velja enakost

$$x * e = e * x = x$$
,

ightharpoonup za vsak element $x \in G$ obstaja element $y \in G$, da velja enakost

$$x*y=y*x=e.$$

Označimo: (G, *) ali včasih samo G.

<u>DEFINICIJA:</u> Topologija na neprazni množici X je družina $\tau \subseteq 2^X$ z lastnostmi:

- $> X \in \tau, \emptyset \in \tau,$
- $ightharpoonup U \in \tau \text{ in } V \in \tau \implies U \cap V \in \tau$
- $ightharpoonup \{U_{\lambda}\}_{\lambda\in\Lambda}\subseteq\tau\implies\bigcup_{\lambda\in\Lambda}U_{\lambda}\in\tau.$

2/14

DEFINICIJA: Topološka grupa je grupa (G, *) s topologijo τ , glede na katero sta strukturni operaciji zvezni.

Strukturni operaciji:

- ightharpoonup Množenje: $\mu: G \times G \to G$, $(x,y) \mapsto xy$.
- ightharpoonup Invertiranje: $\iota: G \to G$, $x \mapsto x^{-1}$.

PRIMERI

> poljubna grupa z diskretno ali trivialno topologijo,

PRIMERI

- > poljubna grupa z diskretno ali trivialno topologijo,
- ightharpoonup aditivna grupa realnih števil z običajno topologijo $au_{
 m e}$,

PRIMERI

- > poljubna grupa z diskretno ali trivialno topologijo,
- ightharpoonup aditivna grupa realnih števil z običajno topologijo au_e ,
- ightharpoonup enotska krožnica v \mathbb{R}^n s podedovanim množenjem in relativno topologijo,

Primeri

- > poljubna grupa z diskretno ali trivialno topologijo,
- ightharpoonup aditivna grupa realnih števil z običajno topologijo au_e ,
- ightharpoonup enotska krožnica v \mathbb{R}^n s podedovanim množenjem in relativno topologijo,
- ightharpoonup grupa linarnih izomorfizmov $\mathbb{GL}(n,\mathbb{R})$ z matričnim množenjem, gledana kot podprostor n^2 -razsežnega Evklidskega prostora

Motivacija

> Zanimive so same po sebi,

Motivacija

- > Zanimive so same po sebi,
- > uporabne so v harmonični analizi (Fourierjeve vrste, integrali...),

MOTIVACIJA

- > Zanimive so same po sebi,
- > uporabne so v harmonični analizi (Fourierjeve vrste, integrali...),
- > pojavijo se v teoriji Liejevih grup,

Motivacija

- > Zanimive so same po sebi,
- > uporabne so v harmonični analizi (Fourierjeve vrste, integrali...),
- > pojavijo se v teoriji Liejevih grup,
- > povezane so z nekaterimi proglemi v fiziki itd.

KVOCIENTNI PROSTORI

DEFINICIJA: Naj bo G topološka grupa in H njena podgrupa. Kot podprostor H prostora G z relativno topologijo je H topološka grupa.

KVOCIENTNI PROSTORI

DEFINICIJA: Naj bo G topološka grupa in H njena podgrupa. Kot podprostor H prostora G z relativno topologijo je H topološka grupa.

DEFINICIJA: Naj bo G topološka grupa in H njena podgrupa. Naj bo φ naravni homomorfizem $x \mapsto xH$. Definiramo topologijo $\tau(G/H)$ na G/H tako: $\{xH|x \in X\}$ je v G/H odprta natanko tedaj, ko je $\varphi^{-1}(\{xH|x \in X\})$ odprta v G.

KVOCIENTNI PROSTORI

DEFINICIJA: Naj bo G topološka grupa in H njena podgrupa. Kot podprostor H prostora G z relativno topologijo je H topološka grupa.

DEFINICIJA: Naj bo G topološka grupa in H njena podgrupa. Naj bo φ naravni homomorfizem $x \mapsto xH$. Definiramo topologijo $\tau(G/H)$ na G/H tako: $\{xH|x \in X\}$ je v G/H odprta natanko tedaj, ko je $\varphi^{-1}(\{xH|x \in X\})$ odprta v G.

IZREK: Naj bo G topološka grupa in N njena podgrupa edinka. Grupa G/N z zgoraj definirano topologijo je topološka grupa.

Izreki o izomorfizmih

IZREK: Naj bosta G in H grupi ter $\varphi: G \to H$ homomorfizem. Tedaj $G/Ker(\varphi) \cong Im(\varphi)$.

Če je φ še surjektiven, potem $G/Ker(\varphi) \cong H$.

IZREK: Naj bo G grupa, H njena podgrupa in N njena podgrupa edinka. Tedaj $(HN)/N \cong H/(H \cap N)$.

IZREK: Naj bo G grupa, N in K njeni podgrupi edinki in naj velja $N \subseteq K \subseteq G$. Tedaj $(G/N)/(K/N) \cong G/K$.

IZREKI O IZOMORFIZMIH NA KVOCIENTNIH PROSTORIH

IZREK: Naj bosta G in H topološki grupi in $f: G \to H$ zvezen homomorfizem in kvocientna preslikava (surjektiven in V odprta v $H \iff f^{-1}(V)$ odprta v G). Tedaj $G/Ker(f) \cong H$.

IZREK: Naj bo G topološka grupa, N njena podgrupa edinka in H njena podgrupa. Denimo, da je N zaprta v G, H lokalno kompaktna in unija največ števno mnogo kompaktnih podprostorov $(\sigma$ -kompaktna) in HN tudi lokalno kompaktna. Tedaj $(HN)/N \cong H/(H \cap N)$.

IZREK: Naj bo G topološka grupa, N in K njeni podgrupi edinki in naj velja $N \subseteq K \subseteq G$. Tedaj $(G/N)/(K/N) \cong G/K$.

26. NOVEMBER 2018

Metrizabilnost

DEFINICIJA: Metrika na množici X je nenegativna funkcija $d: X \times X \to [0, \infty)$, ki zadošča pogojem:

$$> d(x,y) \ge 0,$$

$$> d(x,y) = 0 \iff x = y,$$

$$> d(x,y) = d(y,x),$$

$$> d(x,z) \le d(x,y) + d(y,z).$$

Metrizabilnost

DEFINICIJA: Metrika na množici X je nenegativna funkcija $d: X \times X \to [0, \infty)$, ki zadošča pogojem:

$$> d(x,y) \ge 0,$$

$$> d(x,y) = 0 \iff x = y,$$

$$> d(x,y) = d(y,x),$$

$$> d(x,z) \le d(x,y) + d(y,z).$$

DEFINICIJA: Pseudo-metrika na množici X je nenegativna funkcija $d: X \times X \to [0, \infty)$, ki zadošča pogojem:

$$> d(x,y) \ge 0,$$

$$> d(x,x) = 0$$
,

$$> d(x, y) = d(y, x),$$

$$> d(x,z) \le d(x,y) + d(y,z).$$

Metrizabilnost

<u>IZREK:</u> Naj bo $\{U_k\}_{k=1}^{\infty}$ družina simetričnih okolic enote e topološke grupe G z lastnostjo $U_{k+1}^2 \subset U_k$ za vsak $k \in \mathbb{N}$. Potem obstaja taka levoinvariantna pseudo-metrika σ , da velja:

- $ightharpoonup \sigma$ je enakomerno zvezna na levi uniformni strukturi na $G \times G$,
- $ightharpoonup \sigma(x,y) = 0 \iff y^{-1}x \in \bigcap_{k=1}^{\infty} U_k$,
- $> \sigma(x,y) \le 2^{-k+2}$, če je $y^{-1}x \in U_k$,
- $> 2^{-k} \le \sigma(x, y)$, če $y^{-1}x \notin U_k$.

Če poleg tega velja še, da $xU_kx^{-1}=U_k$ za vse $x\in G$ in $k\in\mathbb{N}$, je σ tudi desnoinvariantna in velja:

 $> \sigma(x^{-1}, y^{-1}) = \sigma(x, y)$ za vsaka $x, y \in G$.

METRIZABILNOST

IZREK: Topološka grupa $G \in T_0$ je metrizabilna natanko tedaj, ko obstaja števna, odprta baza okolic za enoto e. V tem primeru lahko za metriko vzamemo kar levoinvariantno pseudo-metriko iz prejšnjega izreka.

$$> T_0, T_1, T_2, T_3, T_4,$$

 $> T_0, T_1, T_2, T_3, T_4,$

DEFINICIJA: Naj bo X topološki prostor in $A, B \subset X$ njegovi disjunktni podmnožici. *Urisonova funkcija* za množici A in B je zvezna funkcija $\varphi: X \to [0,1]$, za katero velja $\varphi|_A \equiv 0$ in $\varphi|_B \equiv 1$.

$$> T_0, T_1, T_2, T_3, T_4,$$

DEFINICIJA: Naj bo X topološki prostor in $A, B \subset X$ njegovi disjunktni podmnožici. *Urisonova funkcija* za množici A in B je zvezna funkcija $\varphi: X \to [0,1]$, za katero velja $\varphi|_A \equiv 0$ in $\varphi|_B \equiv 1$.

DEFINICIJA: Topološki prostor X zadošča separacijskemu aksiomu $T_{3\frac{1}{2}}$ natanko tedaj, ko za vsako zaprto podmnožico $A\subset X$ in vsako točko $y\notin A$ obstaja Urisonova funkcija.

Če $X \in T_1$ in $X \in T_{3\frac{1}{2}}$, rečemo, da je X *povsem regularen* topološki prostor.

$$ightharpoonup$$
 Vemo: $X \in T_2 \implies X \in T_1 \implies X \in T_0$.

ightharpoonup Vemo: $X \in T_2 \implies X \in T_1 \implies X \in T_0$.

IZREK: Naj bo G topološka grupa, $a \in G$ in $F \subset G$ zaprta podmnožica, ki ne vsebuje a. Naj bo $G \in T_0$. Tedaj za F in a obstaja Urisonova funkcija in $G \in T_{3\frac{1}{5}}$.

ightharpoonup Vemo: $X \in T_2 \implies X \in T_1 \implies X \in T_0$.

IZREK: Naj bo G topološka grupa, $a \in G$ in $F \subset G$ zaprta podmnožica, ki ne vsebuje a. Naj bo $G \in T_0$. Tedaj za F in a obstaja Urisonova funkcija in $G \in T_{3\frac{1}{2}}$.

Z drugimi besedami, T_0 zadošča za povsem regularnost.

ightharpoonup Vemo: $X \in T_2 \implies X \in T_1 \implies X \in T_0$.

IZREK: Naj bo G topološka grupa, $a \in G$ in $F \subset G$ zaprta podmnožica, ki ne vsebuje a. Naj bo $G \in T_0$. Tedaj za F in a obstaja Urisonova funkcija in $G \in T_{3\frac{1}{2}}$.

Z drugimi besedami, T_0 zadošča za povsem regularnost.

Nas topološko grupna struktura lahko pripelje še dlje (do T_4)?

pokazati, da na kvocientnih topoloških grupah veljajo analogni izreki o izomorfizmih (homeomorfizmih);

- pokazati, da na kvocientnih topoloških grupah veljajo analogni izreki o izomorfizmih (homeomorfizmih);
- > karakterizirati metrizabilnost na topoloških grupah;

- pokazati, da na kvocientnih topoloških grupah veljajo analogni izreki o izomorfizmih (homeomorfizmih);
- > karakterizirati metrizabilnost na topoloških grupah;
- > študirati separacijske aksiome na topoloških grupah in dokazati, da lahko iz T_0 pridemo do $T_{3\frac{1}{5}}$;

- pokazati, da na kvocientnih topoloških grupah veljajo analogni izreki o izomorfizmih (homeomorfizmih);
- > karakterizirati metrizabilnost na topoloških grupah;
- > študirati separacijske aksiome na topoloških grupah in dokazati, da lahko iz T_0 pridemo do $T_{3\frac{1}{3}}$;
- ightharpoonup najti protiprimer za $T_0 \implies T_4$;

- pokazati, da na kvocientnih topoloških grupah veljajo analogni izreki o izomorfizmih (homeomorfizmih);
- > karakterizirati metrizabilnost na topoloških grupah;
- \gg študirati separacijske aksiome na topoloških grupah in dokazati, da lahko iz T_0 pridemo do $T_{3\frac{1}{5}}$;
- ightharpoonup najti protiprimer za $T_0 \implies T_4$;
- študirati separacijske aksiome in metrizabilnost na kvocientnih topoloških grupah (izreki tipa "2 od 3").