chapter 3

Chenxi Gu 2017311017

May 8, 2018

1 3.1

	I	I_z	S	В	L	T	С	P	J	J_3
S	Y	Y	Y	Y	Y	N	Y	Y	Y	Y
EM	N	Y	Y	Y	Y	N	Y	Y	Y	Y
W	N	N	N	Y	Y	N	N	N	Y	Y

2 3.4

• $\pi^- + p \to \pi^0 + n$: strong interaction

• $\pi^+ \to \mu^+ + \nu_\mu$: weak interaction

• $\pi^+ \to \mu^+ + \bar{\nu}_{\mu}$: violate L_{μ} conservation law

• $\pi^0 \to \gamma + \gamma$: electromagnetic interaction

• $\pi^0 \to \gamma + \gamma + \gamma$: violate charge conjugation.

• $e^+e^- \to \gamma$: violate momentum and energy conservation law

• $p(uud) + \bar{p}(\bar{u}\bar{u}\bar{d}) \to \Lambda(uds) + \Lambda(uds)$: violate B and S

• $p(uud) + p(uud) \rightarrow \Sigma^{+}(uus) + \pi^{+}(u\bar{d})$: violate B and S

• $n \to p + e^-$: violate L_e and J and J_3 conservation law

• $n \to p + \pi^-$: violate energy conservation law

3 3.5

• $\mu^+ \to e^+ + \gamma$: violate L_e and L_μ conservation law

• $e^- \rightarrow \nu_e + \gamma$: violate charge conservation

• $p + p \to \Sigma^+ + K^+$: violate B

- $p + p \rightarrow p + \Sigma^{+} + K^{-}$: violate charge conservation and S
- $p \to e^+ + \nu_e$: violate baryon conservation
- $p + p \rightarrow \Lambda + \Sigma^{+}$: violate charge and S conservation
- $p + n \to \Lambda + \Sigma^+$: violate S conservation
- $p + n \to \Xi^0(uss) + p$: violate S conservation
- $p \to n + e^+ + \nu_e$: violate energy conservation
- $n \to p + e^- + \nu_e$: violate L_e conservation

- $n \to p + e^-$: violate L_e conservation
- $n \to \pi^+ + e^-$: violate L_e conservation
- $n \to p + \pi^-$: violate energy conservation
- $n \to p + \gamma$: violate charge conservation

5 3.7

- $\pi^- + p \to K^- + p$: forbidden by S conservation
- $\pi^- + p \to K^+ + \Sigma^-$: allowed
- $K^- + p \to K^+ + \pi^- + \Xi^0$: allowed
- $K^+ + p \to K^- + \pi^- + \Xi^0$: forbidden by charge and S conservation

- $p \to n + e^+$: violate L_e and energy conservation
- $\mu^+ \to \nu_\mu + e^+$: violate L_e and L_μ conservation
- $e^+ + e^- \rightarrow \nu_\mu + \bar{\nu}_\mu$: allowed
- $\nu_{\mu} + p \rightarrow \mu^{+} + n$: violate L_{μ} conservation
- $\nu_{\mu} + n \rightarrow \mu^{-} + p$: allowed
- $\nu_{\mu} + n \rightarrow e^{-} + p$: violate L_{μ} and L_{e} conservation
- $e^+ + n \to p + \nu_e$: violate L_e conservation
- $e^- + p \rightarrow n + \nu_e$: allowed

$$\pi^{+}p = \left| \frac{3}{2}, +\frac{3}{2} \right\rangle$$

$$\pi^{-}p = \sqrt{\frac{1}{3}} \left| \frac{3}{2}, -\frac{1}{2} \right\rangle - \sqrt{\frac{2}{3}} \left| \frac{1}{2}, -\frac{1}{2} \right\rangle$$

$$K^{0}\Sigma^{0} = \sqrt{\frac{2}{3}} \left| \frac{3}{2}, -\frac{1}{2} \right\rangle + \sqrt{\frac{1}{3}} \left| \frac{1}{2}, -\frac{1}{2} \right\rangle$$

$$K^{+}\Sigma^{-} = \sqrt{\frac{1}{3}} \left| \frac{3}{2}, -\frac{1}{2} \right\rangle - \sqrt{\frac{2}{3}} \left| \frac{1}{2}, -\frac{1}{2} \right\rangle$$

$$K^{+}\Sigma^{+} = \left| \frac{3}{2}, +\frac{3}{2} \right\rangle$$
(1)

With a proportionality constant N equal for all we obtain

$$\sigma(\pi^{-}p \to K^{0}\Sigma^{0}) = N \left| \frac{\sqrt{2}}{3} A_{3/2} - \frac{\sqrt{2}}{3} A_{1/2} \right|^{2}$$

$$\sigma(\pi^{-}p \to K^{+}\Sigma^{-}) = N \left| \frac{1}{3} A_{3/2} + \frac{2}{3} A_{1/2} \right|^{2}$$

$$\sigma(\pi^{+}p \to K^{+}\Sigma^{+}) = N \left| A_{3/2} \right|^{2}$$
(2)

they proceed only through the $I = \frac{3}{2}$ channel:

$$\sigma(\pi^{-}p \to K^{0}\Sigma^{0}) : \sigma(\pi^{-}p \to K^{+}\Sigma^{-}) : \sigma(\pi^{+}p \to K^{+}\Sigma^{+}) = 2 : 1 : 9$$
 (3)

8 3.10

Using the result in 3.9.

$$\sigma(\pi^{-}p \to K^{0}\Sigma^{0}) : \sigma(\pi^{-}p \to K^{+}\Sigma^{-}) : \sigma(\pi^{+}p \to K^{+}\Sigma^{+})$$

$$= \left| \frac{\sqrt{2}}{3} A_{3/2} - \frac{\sqrt{2}}{3} A_{1/2} \right|^{2} : \left| \frac{1}{3} A_{3/2} + \frac{2}{3} A_{1/2} \right|^{2} : \left| A_{3/2} \right|^{2}$$
(4)

$$\pi^{-}p = \sqrt{\frac{1}{3}} \left| \frac{3}{2}, -\frac{1}{2} \right\rangle - \sqrt{\frac{2}{3}} \left| \frac{1}{2}, -\frac{1}{2} \right\rangle$$

$$\pi^{+}n = \sqrt{\frac{1}{3}} \left| \frac{3}{2}, +\frac{1}{2} \right\rangle - \sqrt{\frac{2}{3}} \left| \frac{1}{2}, +\frac{1}{2} \right\rangle$$

$$\Lambda K^{0} = \left| \frac{1}{2}, -\frac{1}{2} \right\rangle$$

$$\Lambda K^{+} = \left| \frac{1}{2}, +\frac{1}{2} \right\rangle$$
(5)

With a proportionality constant N equal for all we obtain

$$\sigma(\pi^{-}p \to \Lambda K^{0}) = N \left| \sqrt{\frac{2}{3}} A_{1/2} \right|^{2}$$

$$\sigma(\pi^{+}n \to \Lambda K^{+}) = N \left| \sqrt{\frac{2}{3}} A_{1/2} \right|^{2}$$
(6)

So the ratio of cross-sections is 1:1

10 3.12

Same analysis as 3.9

$$\sigma(p+d \to {}^{3}\text{He} + \pi^{0}) : \sigma(p+d \to {}^{3}\text{H} + \pi^{+}) = 1 : 2$$
 (7)

11 3.13

Same analysis as 3.9

$$\frac{\sigma(pp \to d\pi^+)}{\sigma(pn \to d\pi^0)} = 2 \tag{8}$$

12 3.14

$$\frac{\sigma(K^{-} + {}^{4}\text{He} \to \Sigma^{0} + {}^{3}\text{H})}{\sigma(K^{-} + {}^{4}\text{He} \to \Sigma^{-} + {}^{3}\text{He})} = 2$$
 (9)

$$K^{-}p = \sqrt{\frac{1}{2}} |1,0\rangle - \sqrt{\frac{1}{2}} |0,0\rangle$$
 (10)

$$\pi^{+}\Sigma^{-} = \sqrt{\frac{1}{6}} |2,0\rangle + \sqrt{\frac{1}{2}} |1,0\rangle + \sqrt{\frac{1}{3}} |0,0\rangle$$
 (11)

$$\pi^{0}\Sigma^{0} = \sqrt{\frac{2}{3}} |2,0\rangle - \sqrt{\frac{1}{3}} |0,0\rangle \tag{12}$$

$$\pi^{-}\Sigma^{+} = \sqrt{\frac{1}{6}} |2,0\rangle - \sqrt{\frac{1}{2}} |1,0\rangle + \sqrt{\frac{1}{3}} |0,0\rangle$$
 (13)

$$\sigma(K^{-}p \to \pi^{+}\Sigma^{-}) : \sigma(K^{-}p \to \pi^{0}\Sigma^{0}) : \sigma(K^{-}p \to \pi^{-}\Sigma^{+})$$

$$\begin{vmatrix} 1 & \sqrt{1} & |^{2} & |1 & |^{2} & |1 & |^{2} \end{vmatrix}$$

Using the result of 3.11:

$$\sigma(\pi^- p \to \pi^- p) = N \left| \frac{1}{3} A_{3/2} + \frac{2}{3} A_{1/2} \right|^2 \tag{15}$$

And the spin for $\pi^0 n$ system.

$$\pi^{0} n = \sqrt{\frac{2}{3}} \left| \frac{3}{2}, -\frac{1}{2} \right\rangle + \sqrt{\frac{1}{3}} \left| \frac{1}{2}, -\frac{1}{2} \right\rangle$$

$$\sigma(\pi^{-} p \to \pi^{0} n) = N \left| \frac{\sqrt{2}}{3} A_{3/2} - \frac{\sqrt{2}}{3} A_{1/2} \right|^{2}$$
(16)

So

$$\frac{\sigma(\pi^- p \to \pi^- p)}{\sigma(\pi^- p \to \pi^0 n)} = \frac{\left|\frac{1}{3}A_{3/2} + \frac{2}{3}A_{1/2}\right|^2}{\left|\frac{\sqrt{2}}{3}A_{3/2} - \frac{\sqrt{2}}{3}A_{1/2}\right|^2}$$
(17)

15 3.17

(a) For the S wave : $P_{\pi^-d} = -1$, the nn system orbital momentum is 1. And the nn system wave function must be antisymmetric. Since the spatial part is antisymmetric, the spin function is symmetric. We can get S=1

(b) For the P wave : $P_{\pi^- d} = +1$, the nn system orbital momentum is 0 or 2. The total spin is 0.

16 3.18

(1)
$$C = (-1)^{l+s} (18)$$

(3)For the ortho-positronium minimum number photon is 3,para-positronium minimum number photons are 2.

$17 \quad 3.19$

(1)
$$C(\bar{p}p)=(-1)^{l+s}=C(n\pi^0)=+1 \eqno(20)$$
 So the state are $^0S_1,^3P_0,^3P_1,^3P_2,^1D_2$

(2) $P(2\pi^0)$ must be symmetric the L is oven, for the $2\pi^0$ system J=L is oven. We also know $P(\bar{p}p)=(-1)^{L+1}$, L is odd. 3P_2 and 3P_0 satisfy the condition.

Because the I=0 is symmetric, $P(\pi^+\pi^-)=(-1)^l$ l is even. For I=1 is antisymmetric, l is odd.

19 3.21

We know $\bar{p}p$ system P and C:

$$P(\bar{p}p) = (-1)^{l+1}$$

$$C(\bar{p}p) = (-1)^{l+s}$$
(21)

(a)S wave we can get:

$$P(\pi^{+}\pi^{-}) = +1$$

 $C(\pi^{+}\pi^{-}) = +1$ (22)
 $J_{\pi^{+}\pi^{-}} = 0$

So only 3P_0 is allowed. (b) Follow the analysis in (a). $^3S_1, ^3D_1$ are allowed. (c) 3P_2 is allowed.

20 3.22

- $\pi^+ p \to D^+ p$: is allowed.
- $\pi^+ p \to D^- \Lambda_c \pi^+ \pi^+$: is allowed.
- $\pi^+ p \to D^+ \Lambda_c$: is allowed.
- $\pi^+ p \to D^- \Lambda_c$: is not allowed.

- $\pi^- p \to D^0 \Lambda_b$: is allowed.
- $\pi^- p \to B^0 \Lambda_b$: is allowed.
- $\pi^- p \to B^+ \Lambda_b \pi^-$: is allowed.
- $\pi^- p \to B^- \Lambda_b \pi^+$: is allowed.
- $\pi^- p \to B^- B^+$: is not allowed.

(a)If
$$I = \frac{3}{2}$$

$$\frac{\sigma(\Delta^0 \to p\pi^-)}{\sigma(\Delta^0 \to n\pi^0)} = 1:2 \tag{23}$$

(b) If
$$I = \frac{1}{2}$$

$$\frac{\sigma(\Delta^0 \to p\pi^-)}{\sigma(\Delta^0 \to n\pi^0)} = 2:1 \tag{24}$$

23 3.27

- $\mu^- \to e^- + \gamma$: forbidden by L_e and L_μ conservation.
- $\pi^+ \to \mu^+ + \nu_\mu + \bar{\nu}_\mu$: forbidden by L_μ conservation.
- $\Sigma^0 \to \Lambda + \gamma$: allowed.
- $\eta \to \gamma + \gamma + \gamma$: forbidden by C conservation.
- $\gamma + p \rightarrow \pi^0 + p$: is allowed.
- $p \to \pi^0 + e^+$: forbidden by L_e conservation.
- $\pi^- \to \mu^- + \gamma$: forbidden by L_μ conservation.

24 3.28

- $\pi^- + p \rightarrow \Sigma^0 + K^0$
- $e^+ + n \rightarrow p + \bar{\nu}_e$
- $\bullet \ \Xi^0 \to \Lambda + \bar K^0$

25 3.29

We consider the I_z :

$$1 + \frac{1}{2} = \frac{1}{2} + \frac{1}{2} + I_{z_{\equiv 0}} \tag{25}$$

So $I_{z_{\Xi^0}} = \frac{1}{2}$.

Second, $\pi^+ p = \left| \frac{3}{2}, \frac{3}{2} \right\rangle$ and $K^+ K^+ = |1, 1\rangle$. The I_{Ξ^0} could be $\frac{1}{2}, \frac{3}{2}, \frac{5}{2}$.