

SEGUNDO SEMESTRE LETIVO DE 2012 PROVA P1 OFICIAL

Escola	EACH	TURM	Α	
Curso	Sistemas de Informação			Nota do aluno na
Disciplina	Sistemas Operacionais - ACH2044	Data da Prova	18/01/12	PROVA
Professor	Clodoaldo Aparecido de Moraes Lir	na		
Aluno				
No. USP				

QUES	TÃO 01 Valo	da Questão: 1,0						
Relaci	one a segunda colun	de acordo com a primeira.						
Atençã	Atenção: Um item relacionado incorretamente anula um item relacionado corretamente.							
(a)	Inibição de Interrupção	(c) Solução de hardware em ambiente de múltiplos processadores						
(b)	Variáveis de Travamento	 (a) Processos maliciosos podem apoderar-se da CPU não permitindo que o Sistema Operacional retome o controle da CPU. 	ıe					
(c)	Instrução TSL	(f) É uma unidade básica de sincronização de alto nível						
(d)	Sleep/Wake up	 (b) Utiliza uma variável compartilhada, mas pode conduzir à condição o disputa. 	le					
(e)	Semáforos	 (d) Pode conduzir à existência de um estado onde os processo encontram-se bloqueados, situação denominada de deadlock (pero de sinal). 						
(f)	Monitores	 É um mecanismo de sincronização inter-processos composto da operações DOWN e UP. 	as					
(g)	Caixa Posta	 (j) Permite que se execute uma ação após ter recebido um canal o comunicação, mas antes de deixar o outro processo continuar. 	le					
(i)	Porto	 (g) São filas de mensagens não associadas, a princípio, com nenhul processo. 	m					
(j)	Rendez-vous Estendido	 A comunicação entre processos locais ou remotos, em um sistem estruturado com portos, será feita pela execução de primitiva síncronas (ou assíncronas) do tipo envia e recebe. Possui dono, qu será o processo que o criar 	as					

QUEST	ÃO 02 Valor da Questão: 1,0									
Ordene	Ordene (1 a 11) as atividades que (o nível mais baixo do) SO faz quando ocorre uma interrupção:									
(7)	O ponteiro da pilha é alterado, para que aponte para uma pilha temporária, usada pelo tratador do									
(')	processo (assembly)									
(4)	O novo PC é carregado do vetor de interrupções									
(9)	Terminado o procedimento, o escalonador é chamado para decidir qual o próximo processo a executar									
(1)	O controle (hardware) termina a execução da instrução atual									
(8)	O procedimento para tratar desse tipo de interrupção é chamado (linguagem de alto nivel)									
(3)	Há o desvio para o endereço especificado no vetor de interrupção apropriado									
(6)	Remove a informação da pilha do controle (colocada pela interrupção)									
(10)	O controle volta ao código assembly (restaura registradores e o mapa da memória do processo)									
(2)	O program counter, program status word e outros registradores são empilhados (no controle)									
(11)	Roda o novo processo									
(5)	Procedimento em assembly salva os registradores (no BCP)									

SEGUNDO SEMESTRE LETIVO DE 2012 PROVA P1 OFICIAL

QUESTÃO 03 Valor da Questão: 2,0
Cinco processos A, B, C, D, E chegam em um centro de computação ao mesmo tempo. Eles têm tempos de execução estimados de 10, 8, 6, 12 e 4. Suas prioridades, definidas externamente, são 2, 4, 5, 3 e 1, com 5 sendo a mais alta.
a) (1,6) Assuma que somente o processo B tenha um surto de CPU a cada 2 e que a E/S tenha duração de 4. Apresente o escalonamento destes processos considerando os seguintes algoritmos
(0,4) Round Robin
(0,4) Prioridade (preemptivo)
(0,4) First-come, First-served (na ordem 6, 10, 8, 12, 4)
(0,4) Shortest Remaining Time Next
b) (0,4) Ignore o tempo gasto com a troca de processos. Determine o tempo médio de execução completa (turnaround time) desses processos para cada um dos algoritmos acima.

SEGUNDO SEMESTRE LETIVO DE 2012 PROVA P1 OFICIAL

QUESTÃO 04 Valor da Questão: 1,5

Um sistema de tempo real tem quatro eventos periódicos com períodos de 3, 4, 6 e 10 ms cada. Suponha que os quatro eventos requeiram 1, 1, 2 e 1 ms de tempo de CPU, respectivamente. Ilustre o escalonamento dos processos segundo (durante 20 ms)

- a) (0,75) Rate Monotonic Scheduling
- b) (0,75) Earliest Deadline First

D											D										D
С							С						С						С		
В					В				В				В				В				В
Α				Α			Α			Α			Α			Α			Α		
	Α	В	O	Α	В	O	Α	C	В	Α	С		Α	В	С	Α	В	С	Α	О	В
0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21

Cada item errado -0.075 Não parou em 10 - 0,30

D											D										D
С							С						С						С		
В					В				В				В				В				В
Α				Α			Α			Α			Α			Α			Α		
	Α	В	С	Α	С	В	Α	D	В	Α	С	С	Α	В	С	Α	С	В	D	С	
	Α	В	С	С	Α	В	Α	D	В	Α	С	С	Α	В	С	С	Α	В	D	Α	
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21

Cada item 0.0375

SEGUNDO SEMESTRE LETIVO DE 2012 PROVA P1 OFICIAL

QUESTÃO 05 Valor da Questão: 1,0

Os veículos que chegam do norte e do sul devem atravessar uma ponte que possui somente uma pista (figura a seguir). Deste modo, num dado momento somente podem cruzar um ou mais veículos vindos do mesmo sentido. Escreva um algoritmo, utilizando o esqueleto de código abaixo, para os veículos vindos do norte e do sul, representando como eles atravessam a ponte. Utilize as primitivas SLEEP e WAKEUP. Explicite também se existe alguma possibilidade de falha decorrente da sincronização ter sido feita usando essas primitivas.


```
Programa Principal
Início {
Executa Concorrente (T1,T2);
T1: Código Carros Dir Norte
                                                T2: Código Carros Dir Sul
Início {
                                                   Início {
    Viaja_Dir_Norte/Ponte();
                                                      Viaja Dir Sul/Ponte();
    Atravessa_Ponte();
                                                      Atravessa Ponte();
    Viaja_Ponte/Dir_Norte();
                                                      Viaja_Ponte/Dir_Sul( )
}
1.
                                    Programa Principal
                                    Variável Compartilhada:
                                                                 Passa;
                                    Início {
                                           Passa = 0;
                                           Executa Concorrente(T1,T2);
                                    }
T1: Código Carros_do_Norte
                                                   T2: Código Carros_do_Sul
Início {
                                                   Início {
  Viaja_Dir_Norte/ponte();
                                                     Viaja_Dir_Sul/Ponte();
  Se (Passa < 0) então
                                                     Se (Passa > 0) então
    SLEEP;
                                                        SLEEP;
                                                     Senão
   Senão
     Passa = Passa + 1;
                                                        Passa = Passa - 1;
  Atravessa_ponte();
                                                     Atravessa_Ponte();
   Passa = Passa - 1;
                                                       Passa = Passa + 1;
  Se ( Passa == 0) então
                                                       Se ( Passa == 0) então
    WAKEUP;
                                                         WAKEUP;
```


SEGUNDO SEMESTRE LETIVO DE 2012 PROVA P1 OFICIAL

Viaja_Ponte/Dir_Norte ();	Viaja_Ponte/Dir_Sul () ;
}	}

Apesar desta solução não implicar em Espera Ocupada, ela tem o problema de que a disputa apenas se transferiu da região crítica (atravessar a ponte) para a variável Passa. Assim:

- a) Se um processo for interrompido imediatamente após ler o valor da variável Passa (== 0) e antes de alterá-la, pode-se permitir que um carro do sul e outro do norte entrem juntos na ponte.
- b) Se um processo for interrompido imediatamente após ler o valor da variável Passa (== 1 ou == -1) e antes de dormir, pode-se perder o WAKEUP feito pelo outro processo, deixando um carro do sul ou um carro do norte dormindo por um tempo indeterminado.

QUESTÃO 07 Valor da Questão: 1.0

A partir do diagrama completo de transição de estados para processos em UNIX (ver figura abaixo), apresente uma possível sequencia de estados referente ao seguinte histórico de um processo: o processo foi criado e iniciou a execução de instruções comuns (toda instrução que não corresponde a uma chamada de sistema), sem deixar a CPU até a ocorrência de uma requisição de E/S, a qual demanda um tempo 'longo' para ser atendida. Uma vez atendida esta requisição, o processo voltou imediatamente a executar instruções comuns, até liberar a CPU para um outro processo. Ao ganhar a CPU novamente, o processo prosseguiu executando instruções comuns até o seu término.

Nota: é necessário associar as transições presentes na seqüência de estados a cada evento listado no histórico.

SEGUNDO SEMESTRE LETIVO DE 2012 PROVA P1 OFICIAL

O processo foi criado	$8 \rightarrow 3$
Iniciou a execução	$3 \rightarrow 2 \rightarrow 1$
Requisitou E/S	$1 \rightarrow 2 \rightarrow 4$
Atendida a requisição	$4 \rightarrow 3$
Voltou a executar	$3 \rightarrow 2 \rightarrow 1$
Liberou a CPU	$1 \rightarrow 2 \rightarrow 7$
Ganhou a CPU	7 o 1
Executou até o fim	$1 \rightarrow 2 \rightarrow 9$

Cada item 0,125 7-1 = -0.1 Cada sem justificativa = 0.05

QUESTÃO 08	Valor da Questão:	1.5

Considere o problema dos leitores/escritores, onde existem processos que lêem o valor das variáveis compartilhadas, chamados leitores e processos que escrevem na região compartilhada, chamados escritores. Os leitores podem ler de modo concorrente, enquanto os escritores só podem executar em exclusão mútua. O seguinte código resolve o problema dos leitores/escritores, desde

SEGUNDO SEMESTRE LETIVO DE 2012 PROVA P1 OFICIAL

que sejam colocados adequadamente os semáforos. Nesta implementação, foi feita a suposição de que, enquanto houver um leitor acessando a base de dados, o escritor é suspenso. Havendo pelo menos um leitor ativo, leitores subsequentes serão admitidos e o escritor permanecerá suspenso até que nenhum leitor esteja presente.

```
typedef int semaphore;
semaphore mutex = 1; /* Controla o acesso a rc
semaphore db = 1;
                  /* Controla o acesso a base de dados
int rc = 0;
                    /*Número de processos lendo ou querendo ler
void leitor (void)
{
      while (TRUE) {
             ___a) down(&mutex)____
             rc++; /* Um leitor a mais agora
             if (rc ==1) __c) down(&db)_____
             _b) up(&mutex)_____;
             read_data_base(); /* Acessa os dados
             a) down(&mutex)____;
             rc--; /* Um leitor a menos agora
             if (rc = 0)_d up(\&db)_
             _b) up(&mutex)_____;
             use data(); /*Região não critica
      }
void escritor (void)
{
      while (TRUE) {
             prepare data(); /* Região não critica
             _c) down(&db)_____;
             write data base(); /* Atualiza os dados
             _d) up(&db)_____:
      }
Considerando a) down(&mutex), b) up(&mutex), c) down(&db), d) up(&db) preencha
adequadamente os 8 espaços no programa acima com a opção adequada.
```

QUESTÃO 09 Valor da Questão: 1,5

Como serão alocados os processos de 89K, 407K, 126K e 455K (nesta ordem) para os algoritmos (a) First-fit, (b) Best-fit e (c) Worst-fit (d) Next Fit? Considere as partições de memória de 100K, 500K, 200K, 300K e 600K (nesta ordem). Explique qual algoritmo utiliza mais eficientemente a memória.

SEGUNDO SEMESTRE LETIVO DE 2012 PROVA P1 OFICIAL

	First	Best	Worst	Next
100 K	89 K	89 K	100 K	89 K
	11 K	11 K		11 K
500 K		407 K	126K	219 K
	407 K	93 K	374 K	407 K
	93 K			93 K
200 K	126 K	126 K		126 K
	74 K	74 K		74 K
300 K				
600 K	455 K	455 K	89 K	455 K
	145 K	145 K	407 K	145 K
			104 K	

0,25 cada

Item 0,05

Worst - Falha na alocação de 455 K

b) First, Best, Next - mesmo desempenho Next - mais rápido para este problemas 0,2