KELOMPOK 6 PRAKTIKUM

MONITORING SUHU DAN KELEMBABAN MENGGUNAKAN SIMULATOR ESP8266 DAN SENSOR DHT11

Disusun Guna Memenuhi Tugas Ulangan Tengah Semester

Mata Kuliah: Sistem Berbasis Internet of Thinks

Dosen Pengampu: Solichudin, S.Pd, M.T.

Disusun Oleh:

Jesika Natalia 2208096002 Kurniawan Putra Mukhlisin 2208096008 M. Nabil Al-Hamamy 2208096035

PROGRAM STUDI TEKNOLOGI INFORMASI
FAKULTAS SAINS DAN TEKNOLOGI
UNIVERSITAS ISLAM NEGERI WALISONGO
SEMARANG
2025/2026

A. Tujuan Percobaan

- 1. Menggunakan sensor DHT11 untuk membaca suhu dan kelembapan.
- 2. Menghubungkan dan mengonfigurasi ESP8266 untuk mengirim data sensor.
- 3. Membuat sistem monitoring suhu dan kelembapan berbasis IoT secara sederhana.

B. Desain Circuit

C. Kode API KEY

Private View	Public View	Channel Settings	Sharing	API Keys
Write API Key				
Key	LHKKQXXUIP2CEOMC			
	Generate N	lew Write API Key		

D. Keterangan Komponen

- Keterangan Pin

No.	Node MCU	DHT11
1.	3V3	+
2.	D5	OUT
3.	GND	-

- Keterangan LCD

No.	NODE MCU	LCD
1.	3V3	VCC
2.	GND	GND

3.	D1	SCL
4.	D2	SDA

E. Instalasi

Langkah	Apa yang di-install	Cara cepat di Arduino IDE 1.8.19	Catatan penting	
1	ESP8266 Board Core	Tools → Board → Boards Manager → cari	Pilih nanti board "NodeMCU 1.0 (ESP-12E Module)" supaya alias	
		"esp8266" \rightarrow Install versi terbaru ($\geq 3.1.x$).	pin D0-D8 tersedia.	
2	Adafruit Unified Sensor	Sketch → Include Library → Manage	Dibutuhkan oleh banyak sensor termasuk DHT.	
	(dependency umum)	Libraries → ketik "Adafruit Unified	Dibutuhkan oleh banyak sensor termasuk DFT.	
3	DHT sensor library (by	Library Manager → "DHT sensor library" →	Versi 1.4.5+ stabil.	
. .	Adafruit) Install.		versi 1.4.5+ stabii.	
4	ThingSpeak (by		Versi 2.2.x mendukung ESP8266.	
	MathWorks)	Library Manager \rightarrow "ThingSpeak" \rightarrow Install.		
5	LiquidCrystal I2C (fork	Library Manager → "LiquidCrystal I2C" →	Fork ini cross-platform, menghindari warning "avr only".	
3	T-HH atau johnrickman)	pilih by T-HH atau johnrickman → Install.	Fork in cross-platform, menginidan warning avi only .	
6	(Opsional) I2CScanner	File → Examples → "Wire" → i2c scanner	Memastikan alamat LCD (biasanya 0x27 / 0x3F).	
	contoh	File 7 Examples 7 Wife 7 12C_scallie	iviemastikan alamat LCD (biasanya 0x27 / 0x3F).	
7	Restart Arduino IDE	Tutup & buka lagi setelah semua library	Mem-refresh index library.	
		ter-install.		
8	Set Board & Pin	Tools \rightarrow Board \rightarrow NodeMCU 1.0 (ESP-12E) .	Alias D5 valid di board NodeMCU; jika tetap "Generic", pakai 1	
		Dalam kode: #define DHTPIN		
9	Verify / Upload	Klik √ (Verify) → panah (Upload).	Kompilasi harus lolos tanna "No sush filo" & tanna arror nin	
"	verity / Opioad	Klik v (verily) – panan (Upload).	Kompilasi harus lolos tanpa "No such file" & tanpa error pin.	

F. Coding

```
//
     PRAKTIKUM IOT MONITORING SUHU DAN KELEMBAPAN
    TEKNOLOGI INFORMASI - FAKULTAS SAINS DAN TEKNOLOGI //
                    UIN WALLISONGO SEMARANG
                                                                     //
//
//
// KELOMPOK: 6
// ANGGOTA:
//
      1. Jesika Natalia
//
      2. Kurniawan Putra Mukhlisin
      3. M. Nabil Al-Hamamy //
//
//
                           // Library untuk sensor DHT11
#include <DHT.h>
                                // Library untuk koneksi WiFi menggunakan ESP8266
#include <ESP8266WiFi.h>
#include <ThingSpeak.h>
                               // Library untuk berkomunikasi dengan ThingSpeak
#include <Wire.h>
                           // Library I2C untuk komunikasi dengan LCD
#include <LiquidCrystal_I2C.h>
                                // Library untuk mengendalikan LCD dengan I2C
// GANTI SESUAI DENGAN JARINGAN WIFI
const char* ssid = "Aaa kasian aa"; // Ganti dengan SSID WiFi Anda const char* password = "hehehehe"; // Ganti dengan password WiFi Anda
// DHT sensor
#define DHTPIN 14 // GPIO14 = D5 pada NodeMCU
DHT dht(DHTPIN, DHT11);
                                 // Inisialisasi sensor DHT11 pada pin D5
// ThingSpeak
unsigned long myChannelNumber = 2930089; // Ganti dengan Channel ID ThingSpeak Anda
const char* myWriteAPIKey = "LHKKQXXUIP2CEOMC"; // Ganti dengan API Key ThingSpeak
Anda
WiFiClient client; // Client WiFi untuk menghubungkan ke ThingSpeak
// Inisialisasi LCD 16x2 dengan I2C (alamat default 0x27)
LiquidCrystal_I2C lcd(0x27, 16, 2); // Alamat default 0x27, sesuaikan jika perlu
```

```
void setup() {
Serial.begin(9600); // Mulai komunikasi serial pada baud rate 9600
delay(10);
 // Inisialisasi DHT sensor
dht.begin(); // Mulai sensor DHT11 untuk membaca suhu dan kelembapan
 // Inisialisasi LCD
lcd.init();
             // Menggunakan init() untuk inisialisasi LCD
lcd.backlight(); // Mengaktifkan lampu latar LCD
 // Menampilkan pesan pembuka pada LCD
lcd.clear();
lcd.setCursor(0, 0);
lcd.print("MONITORING SUHU");
lcd.setCursor(0, 1);
lcd.print("DAN KELEMBAPAN");
delay(3000);
lcd.clear();
lcd.setCursor(0, 0);
lcd.print("KELOMPOK 6");
lcd.setCursor(0, 1);
lcd.print("IOT SK");
delay(2000);
lcd.clear();
lcd.setCursor(0, 0);
lcd.print("JESIKA, KURNIAWAN");
lcd.setCursor(0, 1);
lcd.print("dan NABIL");
delay(2000);
lcd.clear();
lcd.setCursor(0, 0);
lcd.print("Prodi TI");
lcd.setCursor(0, 1);
lcd.print("UIN Walisongo");
delay(2000);
 // Koneksi ke WiFi
 WiFi.begin(ssid, password); // Koneksi ke jaringan WiFi
Serial.println();
Serial.println("Menghubungkan ke WiFi...");
 // Menampilkan pesan di LCD saat menghubungkan ke WiFi
lcd.clear();
lcd.setCursor(0, 0);
lcd.print("Menghubungkan");
lcd.setCursor(0, 1);
lcd.print("ke Wifi.....");
while (WiFi.status() != WL_CONNECTED) { // Tunggu hingga WiFi terhubung
 delay(500);
 Serial.print(".");
// Jika WiFi terhubung, tampilkan pesan di LCD
```

```
if (WiFi.status() == WL_CONNECTED) {
 lcd.clear();
 lcd.setCursor(0, 0);
 lcd.print("WiFi Terhubung");
 lcd.setCursor(0, 1);
 lcd.print(WiFi.localIP()); // Tampilkan IP lokal setelah terhubung
 Serial.println("");
 Serial.println("WiFi Terhubung");
 delay(3000); // Menunggu beberapa detik untuk melihat status
 // Jika gagal terhubung ke WiFi, tampilkan pesan di LCD
 else {
 lcd.clear();
 lcd.setCursor(0, 0);
 lcd.print("Gagal Terhubung");
 lcd.setCursor(0, 1);
 lcd.print("Ke WiFi");
 delay(2000);
 // Inisialisasi ThingSpeak
ThingSpeak.begin(client); // Inisialisasi ThingSpeak dengan client WiFi
}
void loop() {
// Membaca suhu dan kelembapan dari sensor DHT11
float kelembapan = dht.readHumidity(); // Membaca kelembapan
float suhu = dht.readTemperature(); // Membaca suhu
 // Mengecek apakah pembacaan sensor berhasil
if (isnan(kelembapan) || isnan(suhu)) { // Jika pembacaan gagal
 Serial.println("Sensor DHT Error dan Tidak Terdeteksi!");
 return;
// Menampilkan data suhu dan kelembapan di serial monitor
Serial.print("Suhu: ");
Serial.print(suhu);
Serial.print(" °C Kelembapan: ");
Serial.print(kelembapan);
Serial.println(" %");
 // Menampilkan suhu dan kelembapan di LCD
lcd.clear(); // Membersihkan layar LCD
lcd.setCursor(0, 0); // Set cursor pada baris pertama
lcd.print("Suhu: ");
lcd.print(suhu);
lcd.print(" *C");
lcd.setCursor(0, 1); // Set cursor pada baris kedua
lcd.print("Humidity: ");
lcd.print(kelembapan);
lcd.print("%");
 // Mengirim data ke ThingSpeak
 ThingSpeak.setField(1, suhu); // Field 1 untuk suhu
ThingSpeak.setField(2, kelembapan); // Field 2 untuk kelembapan
```

```
// Kirim data ke ThingSpeak
int responseCode = ThingSpeak.writeFields(myChannelNumber, myWriteAPIKey); // Kirim
data ke ThingSpeak

if (responseCode == 200) { // Cek apakah pengiriman berhasil
    Serial.println("Berhasil Kirim Data ke ThingSpeak!");
} else { // Jika gagal, tampilkan response code
    Serial.println("Data Gagal Terkirim ke ThingSpeak. Response code: " + String(responseCode));
}

// Menunggu 20 detik sebelum mengirim data berikutnya
delay(20000); // Delay 20 detik
}
```

G. Hasil Uji Coba

- Tampilan di Lcd

- Tampilan Serial Monitor

```
Menghubungkan ke WiFi...
......
WiFi Terhubung
Suhu: 29.80 °C Kelembapan: 87.00 %
Berhasil Kirim Data ke ThingSpeak!
Suhu: 28.90 °C Kelembapan: 87.00 %
Berhasil Kirim Data ke ThingSpeak!
Suhu: 28.90 °C Kelembapan: 87.00 %
Berhasil Kirim Data ke ThingSpeak!
Suhu: 28.90 °C Kelembapan: 87.00 %
Berhasil Kirim Data ke ThingSpeak!
Suhu: 28.90 °C Kelembapan: 87.00 %
Berhasil Kirim Data ke ThingSpeak!
Suhu: 28.90 °C Kelembapan: 87.00 %
Berhasil Kirim Data ke ThingSpeak!
Suhu: 28.90 °C Kelembapan: 86.00 %
Berhasil Kirim Data ke ThingSpeak!
```

- Table Monitoring

H. Kesimpulan

Praktikum ini berhasil membuktikan bahwa sistem monitoring suhu dan kelembapan menggunakan **ESP8266 dan sensor DHT11** dapat berfungsi secara efektif. Sensor DHT11 mampu membaca suhu dan kelembapan secara akurat, yang kemudian ditampilkan secara real-time melalui **LCD 16x2** dan dikirim secara berkala ke platform **ThingSpeak** melalui koneksi WiFi.

Melalui implementasi ini, mahasiswa memperoleh pemahaman mendalam mengenai integrasi perangkat keras dan lunak dalam sistem **Internet of Things (IoT)**, mencakup pengolahan data sensor, komunikasi nirkabel, serta pemantauan lingkungan secara jarak jauh dan realtime.