O incidente do Cruzeiro Caribenho

Você recebeu uma dica anônima de que um funcionário do grupo de compras de óleos industriais esteve em um cruzeiro pelo Caribe pela terceira vez nos últimos dois anos. Como gastar além dos recursos é uma *red flag*, você inicia uma investigação.

Você solicitou uma cópia dos dados do sistema SAP. Você se concentra nos **pedidos**. Analise os dados para entender a irregularidade.

Você pode estabelecer evidências suficientes?

Configuração

Algumas inicializações para facilitar

In [1]:

```
# Permite multiplas saídas para cada célula
from IPython.core.interactiveshell import InteractiveShell
InteractiveShell.ast_node_interactivity = 'all'
# Mostrar gráficos
import matplotlib.pyplot as plt
import seaborn as sns
# Bibliotecas para manipulação dos dados
import pandas as pd
import numpy as np
# Formatar número sem decimais
pd.set_option('display.float_format', lambda x: '%.4f' % x)

# Para mostrar os gráficos dentro do notebook
%matplotlib inline
```

Usamos as seguintes bibliotecas:

- Pandas é o pacote mais importante na análise de dados.
- Numpy usada principalmente para realizar cálculos em Arrays Multidimensionais
- <u>Matplotlib</u> O Matplotlib é uma biblioteca de plotagem para a linguagem de programação Python e sua extensão de matemática numérica NumPy.
- <u>Seaborn</u> O Seaborn é uma biblioteca de visualização de dados Python baseada no matplotlib. Ele fornece uma interface de alto nível para desenhar gráficos estatísticos atraentes e informativos.

Você recebeu três tabelas do sistema SAP que contêm todas as informações da etapa pedido de compra:

- 1. As informações do cabeçalho dos pedidos são armazenadas na tabela EKKO .
- 2. Os itens dos documentos de compra são armazenados na tabela EKPO .
- 3. Os conjuntos de condições aplicáveis associadas aos pedidos de compra estão armazenados na tabela KONV.

In [2]:

```
ekko = pd.read_csv('EKKO.csv')
ekpo = pd.read_csv('EKPO.csv')
konv = pd.read_csv('KONV.csv')
```

As tabelas possuem um grande número de colunas.

Entendendo os dados

Você pode encontrar a definição de todas as colunas no sistema SAP usando o código de transação SE16 .

Vamos ver o nome das colunas das 3 tabelas:

In [3]:

ekko.columns ekpo.columns konv.columns

Out[3]:

Out[3]:

Out[3]:

```
Index(['MANDT', 'KNUMV', 'KPOSN', 'STUNR', 'ZAEHK', 'KAPPL', 'KSCHL', 'KDATU',
    'KRECH', 'KAWRT', 'KBETR', 'WAERS', 'KKURS', 'KPEIN', 'KMEIN', 'KUMZA',
    'KUMNE', 'KNTYP', 'KSTAT', 'KNPRS', 'KRUEK', 'KRELI', 'KHERK', 'KGRPE',
    'KOUPD', 'KOLNR', 'KNUMH', 'KOPOS', 'KVSL1', 'SAKN1', 'MWSK1', 'KVSL2',
    'SAKN2', 'MWSK2', 'LIFNR', 'KUNNR', 'KDIFF', 'KWERT', 'KSTEU', 'KINAK',
    'KOAID', 'ZAEKO', 'KMXAW', 'KMXWR', 'KFAKTOR', 'KDUPL', 'KFAKTOR1',
    'KZBZG', 'KSTBS', 'KONMS', 'KONWS', 'KAWRT_K', 'KWAEH', 'KWERT_K',
    'KFKIV', 'KVARC', 'KMPRS', 'PRSQU', 'VARCOND', 'STUFE', 'WEGXX',
    'KTREL', 'MDFLG', 'TXJLV', 'KBFLAG', 'KOLNR3', 'CPF_GUID', 'KAQTY'],
    dtype='object')
```

In [4]:

```
# Mostrando a quantidade de linhas e colunas dos datasets
print('A Tabela ekko contém {} linhas e {} colunas'.format(ekko.shape[0],ekko.shape[1]))
print('A Tabela ekpo contém {} linhas e {} colunas'.format(ekpo.shape[0],ekpo.shape[1]))
print('A Tabela konv contém {} linhas e {} colunas'.format(konv.shape[0],konv.shape[1]))
```

A Tabela ekko contém 567 linhas e 137 colunas A Tabela ekpo contém 522 linhas e 300 colunas A Tabela konv contém 3058 linhas e 68 colunas

A tabela EKKO

Para nossos propósitos, usaremos as seguintes colunas da tabela EKKO :

- EBELN Contém o número do pedido de compra.
- ERNAM Contém o funcionário do grupo de compras que autorizou o pedido.
- LIFNR Contém o identificador exclusivo do fornecedor que recebeu o pedido.
- KNUMV Contém o link para o conjunto de condições associadas ao pedido de compra.

A tabela EKPO

Para nossos propósitos, usaremos as seguintes colunas da tabela EKPO :

- EBELN Contém o número do pedido de compra.
- EBELP contém o identificador do item de linha.
- TXZ01 Contém uma descrição textual do material.
- MATNR Contém o identificador exclusivo do material.
- MENGE Contém a quantidade de material solicitado.
- NETPR Contém o preço líquido efetivo do material pedido.
- NETWR Contém o valor líquido efetivo do material pedido (ou seja, MENGE * NETPR).

A tabela KONV

Para nossos propósitos, usaremos as seguintes colunas da tabela KONV :

- KNUMV Contém o identificador exclusivo para o conjunto de condições.
- KPOSN Contém o identificador do item de linha

- THE CONT. CONTENT O IDENTIFICACIÓN DE INCIDAD.
- KSCHL Contém o tipo de uma condição.
 - KAWRT Contém o valor base que o sistema usa para calcular o preço da condição.
 - KBETR Contém o preço efetivo.

Os seguintes tipos de condição são relevantes para este estudo de caso:

- PBXX Preço bruto
- RB00 Descontos absolutos
- NAVM deduções fiscais
- SKTO descontos à vista relacionados às metas de pagamento
- WOTB Preço efetivo

A variável a seguir contém todos os tipos de condições relevantes.

In [5]:

```
tipo\_cond = ['NAVM', 'PBXX', 'RB00', 'SKTO', 'WOTB']
```

Limpar os dados

Reduziremos a tabela EKKO para as colunas do nosso interesse.

In [6]:

```
ekko = ekko.loc[:, ['EBELN','ERNAM','LIFNR','KNUMV']]
```


As 5 primeiras linhas da tabela ekko .

In [7]:

ekko.head()

Out[7]:

	EBELN	ERNAM	LIFNR	KNUMV
0	4500000000.0000	COCCHI	101999.0000	100000000.0000
1	4500000001.0000	GBI-085	125000.0000	1000000020.0000
2	4500000002.0000	GBI-085	125000.0000	1000000021.0000
3	4500000003.0000	GBI-085	125000.0000	1000000022.0000
4	4500000004.0000	GBIFAC-01	125000.0000	1000000023.0000

Reduziremos a tabela EKPO para as colunas do nosso interesse.

In [9]:

```
ekpo = ekpo.loc[:, ['EBELN', 'EBELP', 'TXZ01', 'MATNR', 'MENGE', 'NETPR', 'NETWR']] \\
```


As 5 primeiras linhas da tabela ekpo.

In [10]:

ekpo.head()

Out[10]:

	EBELN	EBELP	TXZ01	MATNR	MENGE	NETPR	NETWR
0	4500000000	10	Off Road Helmet	OHMT1999	19689	25.0000	1500.0000
1	4500000000	20	Road Helmet	RHMT1999	150	25.0000	3750.0000
2	4500000001	10	Brent Crude Oil	BRENTCRUDE	20193	4335.0000	87536655.0000
3	4500000002	10	Brent Crude Oil	BRENTCRUDE	20103	4360.0000	87649080.0000
4	4500000003	10	Brent Crude Oil	BRENTCRUDE	20013	4340.0000	86856420.0000

Reduziremos a tabela KONV para as colunas do nosso interesse.

In [11]:

konv = konv.loc[:, ['KNUMV','KPOSN','KSCHL','KAWRT', 'KBETR']]

As 5 primeiras linhas da tabela konv.

In [12]:

konv.head()

Out[12]:

	KNUMV	KPOSN	KSCHL	KAWRT	KBETR
0	1	10	PR00	20.0000	3000.0000
1	1	10	SKTO	6000.0000	0.0000
2	1	10	VPRS	20.0000	1400.0000
3	2	10	PR00	50.0000	3000.0000
4	2	10	SKTO	15000.0000	0.0000

Foco na *Brent) Crude Oil (Óleo cru de Brent)

Vamos filtrar as linhas dos itens que contém pedidos para a Brent Crude Oil (MATNR : BRENTCRUDE). Armazenaremos em uma variável chamada ekpo_bco .

In [13]:

ekpo_bco = ekpo[ekpo['MATNR']=='BRENTCRUDE']
ekpo_bco.head()

Out[13]:

	EBELN	EBELP	TXZ01	MATNR	MENGE	NETPR	NETWR
2	4500000001	10	Brent Crude Oil	BRENTCRUDE	20193	4335.0000	87536655.0000
3	4500000002	10	Brent Crude Oil	BRENTCRUDE	20103	4360.0000	87649080.0000
4	4500000003	10	Brent Crude Oil	BRENTCRUDE	20013	4340.0000	86856420.0000
5	4500000004	10	Brent Crude Oil	BRENTCRUDE	20154	4307.5000	83319972.5000
6	4500000005	10	Brent Crude Oil	BRENTCRUDE	19985	4277.5000	85485837.5000

Quantos pedidos foram feitos para a Brent Crude Oil?

In [14]:

print('Foram feitos {} pedidos de Brent Crude Oil'.format(len(ekpo_bco)))

Foram feitos 29 pedidos de Brent Crude Oil

O valor dos pedidos de compra da Brent Crude Oil

Qual é o valor geral de todas as ordens de compra da Brent Crude Oil?

In [15]:

print('O valor total dos pedidos foram de:\$ {:7,.2f}'.format(ekpo_bco['NETWR'].sum()))

O valor total dos pedidos foram de:\$ 2,536,790,085.00

Qual a média dos preços líquidos efetivos (NETPR)?

In [16]:

ekpo_bco['NETPR'].mean()

Out[16]:

4384.827586206897

Vamos visualizar como os preços líquidos efetivos (NETPR) de todos os pedidos de Brent Crude Oil mudam ao longo do tempo. (Assuma que a ordem dos pedidos de compra represente tempo)

In [17]:

```
plt.figure(figsize=(12,6))

sns.set(style="darkgrid")
ax = sns.lineplot(x=ekpo_bco.index, y ="NETPR",data=ekpo_bco,color="blue")
ax.set(xlabel='Ordem de Compra', ylabel='Preço Líquido Efetivo do Petróleo Brent')
plt.show()

✓
```

Out[17]:

<Figure size 864x432 with 0 Axes>

Out[17]:

[Text(0, 0.5, 'Preço Líquido Efetivo do Petróleo Brent'), Text(0.5, 0, 'Ordem de Compra')]

Reflita: Qual é a sua interpretação do preço líquido efetivo?

O volume dos pedidos de compra de petróleo Brent

Qual é o volume médio dos pedidos de petróleo brent?

In [18]:

ekpo_bco['MENGE'].mean()

Out[18]:

19977.724137931036

Mostrando a quantidade de todos os pedidos (MENGE) de petróleo Brent. (Assuma que a ordem dos pedidos de compra represente tempo).

In [19]:

```
plt.figure(figsize=(12,6))

sns.set(style="darkgrid")
ax = sns.lineplot(x=ekpo_bco.index, y ="MENGE",data=ekpo_bco,color="blue")
ax.set(xlabel='Ordem de Compra', ylabel='Volume de pedidos de Brent Crude Oil')
plt.show()
```

Out[19]:

<Figure size 864x432 with 0 Axes>

Out[19]:

[Text(0, 0.5, 'Volume de pedidos de Brent Crude Oil'), Text(0.5, 0, 'Ordem de Compra')]

Reflita: Qual é a sua interpretação do volume de pedidos?

Análise integrada de EKKO e EKPO

Vamos fazer uma left join das tabelas ekpo_bco e ekko . Armazenaremos em uma variável chamada ekko_ekpo_bco .

In [20]:

ekko_ekpo_bco = pd.merge(ekpo_bco, ekko, on='EBELN')
ekko_ekpo_bco.head()

Out[20]:

	EBELN	EBELP	TXZ01	MATNR	MENGE	NETPR	NETWR	ERNAM	LIFNR	KNUMV
0	4500000001	10	Brent Crude Oil	BRENTCRUDE	20193	4335.0000	87536655.0000	GBI-085	125000.0000	1000000020.0000
1	4500000002	10	Brent Crude Oil	BRENTCRUDE	20103	4360.0000	87649080.0000	GBI-085	125000.0000	1000000021.0000
2	4500000003	10	Brent Crude Oil	BRENTCRUDE	20013	4340.0000	86856420.0000	GBI-085	125000.0000	1000000022.0000
3	4500000004	10	Brent Crude Oil	BRENTCRUDE	20154	4307.5000	83319972.5000	GBIFAC-01	125000.0000	1000000023.0000
4	4500000005	10	Brent Crude Oil	BRENTCRUDE	19985	4277.5000	85485837.5000	GBIFAC-01	125000.0000	1000000024.0000

Quantos fornecedores (LIFNR) entregam Brent crude oil?

In [21]:

ekko_ekpo_bco['LIFNR'].unique()

Out[21]:

array([125000.])

Podemos ver que a empresa em questão só comprou Brent Crude Oil de um único fornecedor!

Quantos funcionários do grupo de compras (ERNAM) são responsáveis pelos pedidos de Brent Crude Oil?

In [22]:

```
func_unicos = ekko_ekpo_bco['ERNAM'].unique()
func_unicos
```

Out[22]:

array(['GBI-085', 'GBIFAC-01'], dtype=object)

Podemos ver que somente 2 funcionários autorizaram compras de Brent Crude Oil no período avaliado!!!!

Existem diferenças no volume médio de pedidos entre os funcionários do grupo de compras(ERNAM)?

In [23]:

```
vol_med = ekko_ekpo_bco.groupby('ERNAM')['MENGE'].mean()
vol_med
```

Out[23]:

ERNAM

GBI-085 20118.8889 GBIFAC-01 19914.2000 Name: MENGE, dtype: float64

Mostrando a evolução da quantidade de todos os pedidos (MENGE) de petróleo Brent dos 2 funcionários citados acima. (Assuma que a ordem dos pedidos de compra represente tempo).

In [24]:

Out[24]:

<Figure size 864x432 with 0 Axes>

Out[24]:

[Text(0, 0.5, 'Volume de pedidos de Brent Crude Oil'), Text(0.5, 0, 'Ordem de Compra')]

Análise das condições

Filtrar as condições para o pedidos de compra de Brent Crude Oil! Armazene o resultado em uma variável chamada konv_bco .

In [25]:

konv_bco = konv[konv['KNUMV'].isin(ekko_ekpo_bco['KNUMV'])]

Vamos ver as 5 primeiras linhas da tabela konv_bco.

In [26]:

konv_bco.head()

Out[26]:

	KNUMV	KPOSN	KSCHL	KAWRT	KBETR
52	1000000020	10	PBXX	1000.0000	4336.2400
53	1000000020	10	RB00	87561655.0000	-25000.0000
54	1000000020	10	NAVM	87536655.0000	0.0000
55	1000000020	10	SKTO	87536655.0000	0.0000
56	1000000020	10	WOTB	1000.0000	4335.0000

Qual é o tipo de condição interessante?

In [27]:

konv_bco.groupby('KSCHL')[['KSCHL']].count()

Out[27]:

KSCHL

KSCHL	
NAVM	29
PBXX	29
RB00	11
SKTO	29

29

WOTB

Interessante, somente a condição RB00 (descontos absolutos) diverge das demais.

Adicione dummies para o tipo de condição ao konv_bco. Armazenar o resultado em uma variável chamada konv_bco_d ?

Obs - Variável dummy é uma variável categórica que foi transformada em numérica, por exemplo, em uma pesquisa feita com 10 pessoas, 7 eram do sexo masculino e 3 do feminino. Como "feminino" e "masculino" são categorias de sexo, como poderíamos transformá-las em números? Uma maneira de se fazer isso é atribuir, por exemplo, o número 0 a categoria "masculino" e o número 1 a categoria "feminino".

In [28]:

konv_bco_d = konv_bco.join(konv_bco['KSCHL'].str.get_dummies())

Vamos ver as 5 primeiras linhas da tabela konv_bco_d .

In [29]:

konv_bco_d.head()

Out[29]:

	KNUMV	KPOSN	KS6HL	KAWRT	KBETR	NAVM	PBXX	RB00	SKT0	WOTB
52	1000000020	10	PBXX	1000.0000	4336.2400	0	1	0	0	0
53	1000000020	10	RB00	87561655.0000	-25000.0000	0	0	1	0	0
54	1000000020	10	NAVM	87536655.0000	0.0000	1	0	0	0	0
55	1000000020	10	SKTO	87536655.0000	0.0000	0	0	0	1	0
56	1000000020	10	WOTB	1000 0000	4335 0000	0	0	0	0	1

Vamos filtrar os conjuntos de condições que contêm o tipo de condição de interesse. Armazene o resultado em uma variável chamada rb00 (Lembre-se que o código RB00 significa descontos absolutos).

In [30]:

 $rb00 = konv_bco_d.groupby('KNUMV')['RB00'].sum().reset_index()$

In [31]:

rb00

Out[31]:

1 1000000021 2 1000000022 3 1000000023 4 1000000024 5 1000000025 6 1000000028 7 1000000030 8 1000000080 9 1000000082	1 1 1 1 0 1 0 0
2 1000000022 3 1000000023 4 1000000024 5 1000000025 6 1000000028 7 1000000030 8 1000000080 9 1000000082	1 1 0 1 0
3 1000000023 4 1000000024 5 1000000025 6 1000000028 7 1000000030 8 1000000080 9 1000000082	1 0 1 0 0
4 100000024 5 100000025 6 100000028 7 100000030 8 100000080 9 100000082	0 1 0 0
5 1000000025 6 1000000028 7 1000000030 8 1000000080 9 1000000082	1 0 0
6 100000028 7 100000030 8 100000080 9 100000082	0
7 100000030 6 8 100000080 6 9 100000082	0
8 1000000080 9 1000000082	_
9 1000000082	0
10 1000000104	0
	1
11 1000000116	1
12 1000000120	1
13 1000000125	0
14 1000000126	0
15 1000000127	0
16 1000000128	1
17 1000000138	0
18 1000000151	1
19 1000000165	0
20 1000000190	0
21 1000000191	0
22 1000000192	0
23 1000000202	0
24 1000000241	0
25 1000000245	0
26 1000000252	0
27 1000000292	1
28 1000000319	0

Vamos fazer uma *left join* e juntar o tipo de condição de interesse às outras tabelas. Vamos armazenar o resultado em uma variável chamada eek_bco .

In [32]:

$$\label{eq:constraint} \begin{split} & eek_bco = pd.merge(ekko_ekpo_bco, rb00, on=\mbox{'KNUMV'}, how=\mbox{'left'}) \\ & eek_bco \end{split}$$

Out[32]:

	EBELN	EBELP	TXZ01	MATNR	MENGE	NETPR	NETWR	ERNAM	LIFNR	KNUMV	RB00
0	4500000001	10	Brent Crude Oil	BRENTCRUDE	20193	4335.0000	87536655.0000	GBI-085	125000.0000	100000020.0000	1
1	4500000002	10	Brent Crude Oil	BRENTCRUDE	20103	4360.0000	87649080.0000	GBI-085	125000.0000	1000000021.0000	1
2	4500000003	10	Brent Crude Oil	BRENTCRUDE	20013	4340.0000	86856420.0000	GBI-085	125000.0000	1000000022.0000	1
3	4500000004	10	Brent Crude Oil	BRENTCRUDE	20154	4307.5000	83319972.5000	GBIFAC-01	125000.0000	1000000023.0000	1
4	4500000005	10	Brent Crude Oil	BRENTCRUDE	19985	4277.5000	85485837.5000	GBIFAC-01	125000.0000	1000000024.0000	0
5	4500000006	10	Brent Crude Oil	BRENTCRUDE	20003	4322.5000	86462967.5000	GBI-085	125000.0000	1000000025.0000	1
6	4500000009	10	Brent Crude Oil	BRENTCRUDE	19775	4342.5000	85872937.5000	GBIFAC-01	125000.0000	1000000028.0000	0
7	4500000011	10	Brent Crude Oil	BRENTCRUDE	19995	4332.5000	86628337.5000	GBIFAC-01	125000.0000	100000030.0000	0
8	4500000061	10	Brent Crude Oil	BRENTCRUDE	19903	4205.0000	83692115.0000	GBIFAC-01	125000.0000	1000000080.0000	0
9	4500000063	10	Brent Crude Oil	BRENTCRUDE	19938	4165.0000	83041770.0000	GBIFAC-01	125000.0000	1000000082.0000	0
10	4500000085	10	Brent Crude Oil	BRENTCRUDE	20067	4215.0000	84582405.0000	GBIFAC-01	125000.0000	1000000104.0000	1
11	4500000097	10	Brent Crude Oil	BRENTCRUDE	20228	4252.5000	86019570.0000	GBI-085	125000.0000	1000000116.0000	1
12	4500000101	10	Brent Crude Oil	BRENTCRUDE	20028	4227.5000	84668370.0000	GBI-085	125000.0000	1000000120.0000	1
13	4500000106	10	Brent Crude Oil	BRENTCRUDE	19918	4257.5000	84800885.0000	GBIFAC-01	125000.0000	1000000125.0000	0
14	4500000107	10	Brent Crude Oil	BRENTCRUDE	19810	4215.0000	83499150.0000	GBIFAC-01	125000.0000	1000000126.0000	0
15	4500000108	10	Brent Crude Oil	BRENTCRUDE	19987	4330.0000	86543710.0000	GBIFAC-01	125000.0000	1000000127.0000	0
16	4500000116	10	Brent Crude Oil	BRENTCRUDE	20184	4345.0000	87699480.0000	GBI-085	125000.0000	1000000128.0000	1
17	4500000120	10	Brent Crude Oil	BRENTCRUDE	19864	4492.5000	89239020.0000	GBIFAC-01	125000.0000	1000000138.0000	0
18	4500000133	10	Brent Crude Oil	BRENTCRUDE	20260	4572.5000	92638850.0000	GBI-085	125000.0000	1000000151.0000	1
19	4500000147	10	Brent Crude Oil	BRENTCRUDE	19856	4517.5000	89699480.0000	GBIFAC-01	125000.0000	1000000165.0000	0
20	4500000173	10	Brent Crude Oil	BRENTCRUDE	19780	4510.0000	89207800.0000	GBIFAC-01	125000.0000	1000000190.0000	0
21	4500000174	10	Brent Crude Oil	BRENTCRUDE	19916	4467.5000	88974730.0000	GBIFAC-01	125000.0000	1000000191.0000	0
22	4500000175	10	Brent Crude Oil	BRENTCRUDE	19929	4402.5000	87737422.5000	GBIFAC-01	125000.0000	1000000192.0000	0
23	4500000185	10	Brent Crude Oil	BRENTCRUDE	19815	4462.5000	88424437.5000	GBIFAC-01	125000.0000	1000000202.0000	0
24	4500000220	10	Brent Crude Oil	BRENTCRUDE	19860	4605.0000	91455300.0000	GBIFAC-01	125000.0000	1000000241.0000	0
25	4500000222	10	Brent Crude Oil	BRENTCRUDE	19960	4562.5000	91067500.0000	GBIFAC-01	125000.0000	1000000245.0000	0
26	4500000225	10	Brent Crude Oil	BRENTCRUDE	19853	4490.0000	89139970.0000	GBIFAC-01	125000.0000	1000000252.0000	0
27	4500000249	10	Brent Crude Oil	BRENTCRUDE	20058	4640.0000	93069120.0000	GBI-085	125000.0000	1000000292.0000	1
28	4500000256	10	Brent Crude Oil	BRENTCRUDE	19919	4607.5000	91776792.5000	GBIFAC-01	125000.0000	1000000319.0000	0

Qual a fraude?

O que o fraudador explora?

In [33]:

 $eek_bco[eek_bco['RB00'] == 1]['MENGE'].agg(['min', 'max'])$

Out[33]:

min 20003 max 20260

Name: MENGE, dtype: int64

In [34]:

 $eek_bco[eek_bco['RB00'] == 0]['MENGE'].agg(['min','max'])$

Out[34]:

min 19775 max 19995

Name: MENGE, dtype: int64

Quem é a pessoa de interesse?

In [35]:

eek_bco.groupby('RB00')[['MENGE', 'ERNAM']].agg({'MENGE': 'mean', 'ERNAM':'unique'})

Out[35]:

 MENGE
 ERNAM

 RB00
 [GBIFAC-01]

 1
 20117.3636
 [GBI-085, GBIFAC-01]

Qual é o dano financeiro?

In [36]:

abs((len(ekko_ekpo_bco) - len(konv_bco[konv_bco['KSCHL']=='RB00'])) *\
konv_bco[konv_bco['KSCHL']=='RB00']['KBETR'].unique()[0])

▲

Out[36]:

450000.0

Você consegue explicar a fraude?

Obviamente esse exercício visa fazer os leitores pensarem "fora da caixa". As análises aqui realizadas não esgotam outras análises mais elaboradas, e consequentemente, em uma auditoria real necessitaríamos de outras análises e documentos suportes para podermos dar um parecer sobre a real existência ou não de fraude. Venho reforçar também como a análise de dados através de métodos estatísticos e ciência de dados, aliada ao ceticismo, pensamento análitico e criatividade tende a ser uma ferramenta poderosa no auxílio da auditoria interna.