МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

«Национальный исследовательский ядерный университет «МИФИ»

ИНСТИТУТ ИНТЕЛЛЕКТУАЛЬНЫХ КИБЕРНЕТИЧЕСКИХ СИСТЕМ КАФЕДРА «КОМПЬЮТЕРНЫЕ СИСТЕМЫ И ТЕХНОЛОГИИ» (№12)

ОТЧЕТ на лабораторную работу №1 по дисциплине

Основы теории и применения цифровой обработки данных

Тема: Генерация дискретного сигнала.

Студент Мальцев Денис Ю	Групп а	C16-501		
	ФИО		_	
Руководител Заева Маргар ь	ита Анатольевна, к.т			
ФИО, степень, звание, должность				
Студент		Мал	Мальцев Д.Ю.	
	подпись	ΨΛι		
Руководитель		Заев	a M.A.	
	полпись			

СОДЕРЖАНИЕ

СОДЕРЖАНИЕ	2
ЗАДАНИЕ И ЦЕЛЬ	3
ИСХОДНЫЕ ДАННЫЕ	4
1 Краткая характеристика выбранных средств реализации ПЗ	5
2 Расчетная часть	6
3 Графическое представление сигнала	7
4 Графическое представление отсчётов сигнала	9
5 Определение среднего значения сигнала	10
ЗАКЛЮЧЕНИЕ	11

ЗАДАНИЕ И ЦЕЛЬ

Цель. В выбранной среде программирования (моделирования) реализовать генерацию дискретного сигнала с параметрами согласно номеру варианта.

Расчетная часть. Сигнал представляет собой гармоническую функцию (косинус) с заданными амплитудой (в В), постоянным смещением (в В), частотой (в Гц), начальной фазой (в градусах). Частота дискретизации задана в кГц. Время моделирования – 100 мс.

Необходимо вычислить количество отсчетов для моделирования, частоту сигнала в модели (с учетом частоты дискретизации), начальную фазу (в радианах).

Практическая Генерация часть. отсчетов сигнала массива (сохранение В файл В формате csv, пригодном ДЛЯ дальнейшего использования), вывод на графиках всего сигнала и укрупненно фрагмента (5-10% всех отсчетов), определение среднего значения сигнала.

-

ИСХОДНЫЕ ДАННЫЕ

Согласно варианту, были предоставлены следующие исходные данные:

Амплитуда = 0,9 В.

Смещение = -0,5 В.

Частота = 21972,65625 Гц.

Начальная фаза = 80 градусов.

Частота дискретизации = 100 кГц.

1 Краткая характеристика выбранных средств реализации ПЗ

Данная работа была выполнена на языке программирования Python. Он Обладает рядом преимуществ:

- 1. Низкий порог вхождения;
- 2. Обладает большим количеством различных библиотек для реализации всех возможных задач.

2 Расчетная часть

Была задана гармоническая функция, согласно заданным параметрам.

$$f(x) = A\cos(w * x + phase) + U_0,$$

Где:

А – Амплитуда сигнала;

 $w = 2\pi * 21972,65625 - циклическая частота сигнала;$

phase =
$$\frac{\pi * 80}{180}$$
 — начальная фаза;

 U_0 – Смещение.

3 Графическое представление сигнала

На рисунке 2.1 и 2.2 изображено графическое представление сигналов для полного количества отсчётов

Рисунок 2.1 – Полное время моделирования

Рисунок 2.2 – Дискретная часть сигнала полная

4 Графическое представление фрагментов сигнала

На рисунках 3.1 и 3.2 изображено графическое представление дискретной части сигнала для 5% отсчётов

Рисунок 2.2 – моделирование 5% отсчётов

Рисунок 3.2 – Дискретная часть сигнала для 5% отсчётов 5 Определение среднего значения сигнала

Среднее значение сигнала было найдено как сумма напряжений отсчетов, деленное на их количество. <U>=-0.5000865523263179 В.

```
av = sum(cos_vals)/len(cos_vals)
print(av)
```

-0.5000865523263179

ЗАКЛЮЧЕНИЕ

В ходе выполнения лабораторной работы в выбранной среде программирования (моделирования) реализована генерация дискретного сигнала с параметрами согласно номеру варианта.

Было написано 4 скрипта, построено 4 графика и сгенерирован файл .csv со всеми отсчетами дискретизации.

Был выполнен растёт среднего значения сигнала. Оно составило <U>= - 0.5000865523263179 B.

Подробнее с кодом и результатами можно ознакомиться на Git: https://github.com/denisko890/digit data-processing