```
In [1]:
         import pandas as pd
         import matplotlib.pyplot as plt
         import seaborn as sns
         import numpy as np
In [2]:
         df = pd.read_csv('Titanic-Dataset.csv')
In [3]:
         df.head()
Out[3]:
                                                                               Ticket
             Passengerld Survived Pclass
                                                     Sex Age SibSp Parch
                                            Name
                                                                                        Fare Ca
                                           Braund,
          0
                               0
                                                    male 22.0
                      1
                                      3
                                         Mr. Owen
                                                                   1
                                                                         0 A/5 21171
                                                                                       7.2500
                                            Harris
                                          Cumings,
                                         Mrs. John
                                           Bradley
                      2
                               1
                                                   female 38.0
                                                                            PC 17599 71.2833
                                          (Florence
                                            Briggs
                                              Th...
                                         Heikkinen,
                                                                            STON/O2.
          2
                                                                                       7.9250
                                             Miss.
                                                   female 26.0
                                                                             3101282
                                             Laina
                                           Futrelle,
                                              Mrs.
                                           Jacques
          3
                               1
                                                   female 35.0
                                                                              113803 53.1000
                                            Heath
                                          (Lily May
                                             Peel)
                                          Allen, Mr.
                      5
                               0
                                           William
                                                    male 35.0
                                                                              373450
                                                                                       8.0500
                                            Henry
In [4]:
         df.info()
         <class 'pandas.core.frame.DataFrame'>
         RangeIndex: 891 entries, 0 to 890
         Data columns (total 12 columns):
                             Non-Null Count Dtype
          #
              Column
          0
                                               int64
              PassengerId
                             891 non-null
          1
              Survived
                             891 non-null
                                               int64
          2
              Pclass
                             891 non-null
                                               int64
          3
                             891 non-null
                                               object
              Name
          4
                             891 non-null
              Sex
                                               object
          5
                             714 non-null
                                               float64
              Age
          6
              SibSp
                             891 non-null
                                               int64
          7
              Parch
                             891 non-null
                                               int64
          8
              Ticket
                             891 non-null
                                               object
          9
              Fare
                             891 non-null
                                               float64
          10
              Cabin
                             204 non-null
                                               object
          11 Embarked
                             889 non-null
                                               object
         dtypes: float64(2), int64(5), object(5)
         memory usage: 83.7+ KB
In [5]:
         df.isnull().sum()
Out[5]: PassengerId
                            0
         Survived
                            0
         Pclass
                            0
                            0
         Name
```

0

```
In [5]: df.isnull().sum()
Out[5]: PassengerId
                          0
        Survived
                          0
        Pclass
                          0
        Name
                          a
        Sex
                          0
        Age
                        177
        SibSp
                          0
        Parch
                          0
        Ticket
                          0
        Fare
                          0
        Cabin
                        687
        Embarked
                          2
        dtype: int64
In [6]: df = df.drop(['Cabin'],axis = 1)
```

Dropped Cabin since out of 891 values it has 687 null values

```
In [7]: df['Age'] = df['Age'].fillna(df['Age'].median())
```

Filled all null values in age with its median

```
In [8]: df = df.dropna()
In [9]: df.info()
        <class 'pandas.core.frame.DataFrame'>
        Int64Index: 889 entries, 0 to 890
       Data columns (total 11 columns):
        # Column
                       Non-Null Count Dtype
        ---
            -----
                         -----
            PassengerId 889 non-null
        0
                                        int64
        1
            Survived
                        889 non-null
                                        int64
            Pclass
                         889 non-null
                                        int64
        3
                                       object
            Name
                        889 non-null
                                      object
float64
        4
            Sex
                        889 non-null
        5
                        889 non-null
            Age
                        889 non-null
                                        int64
            SibSp
            Parch
                        889 non-null
                                        int64
                        889 non-null
                                        object
            Ticket
                         889 non-null
            Fare
                                        float64
        10 Embarked
                        889 non-null
                                        obiect
        dtypes: float64(2), int64(5), object(4)
        memory usage: 83.3+ KB
```

Dropped rows with embarked as null since there are only two rows

```
In [10]: df.head()
```

Dropped rows with embarked as null since there are only two rows

In [10]: df.head()

Out[10]:

	Passengerld	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Er
0	1	0	3	Braund, Mr. Owen Harris	male	22.0	1	0	A/5 21171	7.2500	
1	2	1	1	Cumings, Mrs. John Bradley (Florence Briggs Th	female	38.0	1	0	PC 17599	71.2833	
2	3	1	3	Heikkinen, Miss. Laina	female	26.0	0	0	STON/O2. 3101282	7.9250	
3	4	1	1	Futrelle, Mrs. Jacques Heath (Lily May Peel)	female	35.0	1	0	113803	53.1000	
4	5	0	3	Allen, Mr. William Henry	male	35.0	0	0	373450	8.0500	

In [11]: sns.catplot(data = df,y ='Fare',x = 'Pclass',hue = 'Survived')

Out[11]: <seaborn.axisgrid.FacetGrid at 0x20f5e4a6f10>

In [12]: sns.catplot(data = df,y ='Sex',x = 'Pclass',hue = 'Survived',kind='swarm')

C:\Users\chinm\anaconda3\lib\site-packages\seaborn\categorical.py:1296: User Warning: 87.0% of the points cannot be placed; you may want to decrease the size of the markers or use stripplot.

warnings.warn(msg, UserWarning)

C:\Users\chinm\anaconda3\lib\site-packages\seaborn\categorical.py:1296: User

In [12]: sns.catplot(data = df,y ='Sex',x = 'Pclass',hue = 'Survived',kind='swarm')

C:\Users\chinm\anaconda3\lib\site-packages\seaborn\categorical.py:1296: User Warning: 87.0% of the points cannot be placed; you may want to decrease the size of the markers or use stripplot.

warnings.warn(msg, UserWarning)

C:\Users\chinm\anaconda3\lib\site-packages\seaborn\categorical.py:1296: User Warning: 76.0% of the points cannot be placed; you may want to decrease the size of the markers or use stripplot.

warnings.warn(msg, UserWarning)

Out[12]: <seaborn.axisgrid.FacetGrid at 0x20f5fddaeb0>

In [13]: sns.catplot(data = df, y='Fare', hue = 'Sex', x = 'Survived', palette='coolwarm')

Out[13]: <seaborn.axisgrid.FacetGrid at 0x20f5ff4ca00>

In [14]: sns.distplot(x = df.sort_values(by=['Age']).Age)

C:\Users\chinm\anaconda3\lib\site-packages\seaborn\distributions.py:2557: Fu tureWarning: `distplot` is a deprecated function and will be removed in a fu ture version. Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for histograms).

```
In [14]: | sns.distplot(x = df.sort_values(by=['Age']).Age)
```

C:\Users\chinm\anaconda3\lib\site-packages\seaborn\distributions.py:2557: Fu tureWarning: `distplot` is a deprecated function and will be removed in a fu ture version. Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for histograms).

warnings.warn(msg, FutureWarning)

Out[14]: <AxesSubplot:ylabel='Density'>

In [15]: sns.catplot(x = 'Embarked', y = 'Fare', hue = 'Survived', data = df, palette =

Out[15]: <seaborn.axisgrid.FacetGrid at 0x20f5ff52b80>


```
In [16]: plt.figure(figsize = (10,10))
sns.scatterplot(data = df, y = 'Age', x = np.arange(len(df['Age'])), hue = 'Suplt.show()
```



```
In [17]: plt.figure(figsize = (10,10))
sns.heatmap(df.corr(),annot = True,cmap='rocket')
```

Out[17]: <AxesSubplot:>

```
In [17]: plt.figure(figsize = (10,10))
sns.heatmap(df.corr(),annot = True,cmap='rocket')
```

Out[17]: <AxesSubplot:>


```
In [21]: sns.boxplot(data = df, y='Fare')
```

Out[21]: <AxesSubplot:ylabel='Fare'>


```
In [22]: sns.boxplot(data = df, y='Age')
```

Out[22]: <AxesSubplot:ylabel='Age'>


```
In [22]: sns.boxplot(data = df, y='Age')
Out[22]: <AxesSubplot:ylabel='Age'>

80
70
60
50
40
```

The diamond shaped points symbolizes an outlier the fare column has many outliers

In [28]: x

U	u	τ	L	2	ŏ	J	:

	Survived	Pclass	Sex	Age	SibSp	Parch	Fare	Embarked	
0	0	3	male	22.0	1	0	7.2500	S	
1	1	1	female	38.0	1	0	71.2833	С	

```
In [28]: x
```

Out[28]:

	Survived	Pclass	Sex	Age	SibSp	Parch	Fare	Embarked
0	0	3	male	22.0	1	0	7.2500	S
1	1	1	female	38.0	1	0	71.2833	С
2	1	3	female	26.0	0	0	7.9250	S
3	1	1	female	35.0	1	0	53.1000	S
4	0	3	male	35.0	0	0	8.0500	S
886	0	2	male	27.0	0	0	13.0000	S
887	1	1	female	19.0	0	0	30.0000	S
888	0	3	female	28.0	1	2	23.4500	S
889	1	1	male	26.0	0	0	30.0000	С
890	0	3	male	32.0	0	0	7.7500	Q

889 rows × 8 columns

```
In [29]: from sklearn.preprocessing import LabelEncoder
```

```
In [30]: le = LabelEncoder()
```

In [33]: x.head()

Out[33]:

	Survived	Pclass	Sex	Age	SibSp	Parch	Fare	Embarked
0	0	3	1	22.0	1	0	7.2500	2
1	1	1	0	38.0	1	0	71.2833	0
2	1	3	0	26.0	0	0	7.9250	2
3	1	1	0	35.0	1	0	53.1000	2
4	0	3	1	35.0	0	0	8.0500	2

```
In [34]: from sklearn.preprocessing import MinMaxScaler
```

```
In [36]: ms = MinMaxScaler()
```

In [37]: x.columns

In [38]: x_scaled = pd.DataFrame(ms.fit_transform(x),columns=['Survived', 'Pclass', 'Se
In [39]: x_scaledEmbad(\dd'])

Out[39]:

	Survived	Pclass	Sex	Age	SibSp	Parch	Fare	Embarked	
0	0.0	1.0	1.0	0.271174	0.125	0.0	0.014151	1.0	
1	1.0	0.0	0.0	0.472229	0.125	0.0	0.139136	0.0	

```
Assignment 3 Titanic - Jupyter Notebook
In [38]: | x_scaled = pd.DataFrame(ms.fit_transform(x),columns=['Survived', 'Pclass', 'Set
In [39]: x_scaledEmbad()d'])
Out[39]:
             Survived Pclass Sex
                                      Age SibSp Parch
                                                           Fare Embarked
           0
                  0.0
                         1.0
                             1.0 0.271174
                                           0.125
                                                   0.0 0.014151
                                                                      1.0
           1
                  1.0
                         0.0
                             0.0 0.472229 0.125
                                                   0.0 0.139136
                                                                      0.0
           2
                  1.0
                             0.0 0.321438 0.000
                                                   0.0 0.015469
                         1.0
                                                                      1.0
           3
                  1.0
                         0.0
                             0.0 0.434531 0.125
                                                   0.0 0.103644
                                                                      1.0
                  0.0
                         1.0
                             1.0 0.434531 0.000
                                                   0.0 0.015713
                                                                      1.0
In [40]: from sklearn.model_selection import train_test_split
In [41]: y = x_scaled.Survived
In [42]: y.head()
Out[42]: 0
               0.0
               1.0
          1
               1.0
          2
          3
               1.0
          4
               0.0
          Name: Survived, dtype: float64
In [45]: x_train,x_test,y_train,y_test = train_test_split(x_scaled,y,test_size= 0.3,rar
In [51]: x_train.shape,y_train.shape,x_test.shape,y_test.shape
Out[51]: ((622, 7), (622,), (267, 7), (267,))
```