Examen de Topología I

2° curso del Grado en Ingeniería Informática y Matemáticas

29 de Noviembre de 2018

Ejercicio 1. (4 puntos) Sea X un conjunto y A, B subconjuntos distintos de X cumpliendo $A \subset B$, $A \neq \emptyset$ and $B \neq X$. Se considera $\mathcal{T} \subset \mathcal{P}(X)$ definida por

$$\mathcal{T} = \{ O \subset X \mid O \subset A \} \cup \{ \hat{O} \subset X \mid B \subset \hat{O} \}.$$

- (1) Probar que \mathcal{T} es una topología en X:
- (2) Describir los cerrados de (X, \mathcal{T}) .

Dificil

- Dar una base de entornos de un punto arbitrario $x \in X$. (Indicación. Considerar los tres casos posibles: $x \in A$, $x \in B A$ y $x \in X B$)
- (4) Calcular el interior, la adherencia y la frontera de los subconjuntos A, B A y B.
- (5) Describir la topología inducida en los subconjuntos $A \cup (X B)$ y B A.

 \times Ejercicio 2. (3 puntos) En el conjunto de los naturales $\mathbb N$ se define, para cada natural n, el siguiente subconjunto de $\mathbb N$

$$O(n) = \{ m \in \mathbb{N} \mid m \text{ es divisor de } n \}.$$

- N Probar que $\mathcal{B} = \{O(n) \mid n \in \mathbb{N}\}$ define una topología $\mathcal{T}(\mathcal{B})$ en \mathbb{N} de la cual \mathcal{B} es una base.
- * (2) Calcular el interior, la adherencia y la frontera de los subconjuntos $\{1\}$ y $\{n\}$, con 1 < n.
- \rightarrow (3) Probar que una aplicación $f: \mathbb{N} \rightarrow \mathbb{N}$ es continua si y sólo si f cumple la siguiente propiedad:

"si m es divisor de n, entonces f(m) es divisor de f(n), $m, n \in \mathbb{N}$ ".

Ejercicio 3. (3 puntos) Sea X el subconjunto de \mathbb{R}^3 definido por

$$X = \{(x, y, z) \in \mathbb{R}^3 \mid x^2 + y^2 - z^2 = -1\}.$$

Se consideran los subconjuntos X^+ y X^- de X definidos por

$$X^+ = \{(x, y, z) \in X \mid z > 0\}$$
 $X^- = \{(x, y, z) \in X \mid z < 0\}.$

- (1) Probar que X, X^+ y X^- son subconjuntos cerrados de $(\mathbb{R}^3, \mathcal{T}_u)$. ¿Son subconjuntos abiertos?
- (2) Si representamos también por \mathcal{T}_u la topología inducida en X por la usual de \mathbb{R}^3 , probar que X^+ y X^- son subconjuntos abiertos y cerrados de (X, \mathcal{T}_u) .
- (3) Probar que X^+ y X^- , dotados de las topologías inducidas por la usual, son homeomorfos. ¿Podrías construir un homeomorfismo entre dichos espacios y algún espacio conocido?

4 Î. π = π

Examen de Topología I

2º curso del Grado en Ingeniería Informática y Matemáticas

11 de Enero de 2019

Ejercicio 1. (3 puntos) En \mathbb{R}^2 se considera la familia de subconjuntos

$$\mathcal{T} = \{\mathbb{R}^2, \emptyset\} \cup \{O_k \mid k \in \mathbb{R}\},\$$

siendo $O_k = \{(x, y) \in \mathbb{R}^2 \mid x > k\}.$

(1) Probar que $\mathcal T$ es una topología en $\mathbb R^2$ y compararla con la topología usual de $\mathbb R^2$.

(2) Estudiar la topología inducida por $\mathcal T$ en los subconjuntos $\mathbb R \times \{0\}$ y $\{0\} \times \mathbb R$. Es $\mathcal T$ la topología producto en \mathbb{R}^2 de conocidas topologías en \mathbb{R} ?

(3) Calcular el interior, la adherencia y la frontera en $(\mathbb{R}^2, \mathcal{T})$ de los subconjuntos

$$A = \{(0,0)\}, \quad B = \{(x,y) \in \mathbb{R}^2 \mid x > 0, y = 1\}.$$

- (4) Sea (X, \mathcal{T}') cualquier espacio topológico y $f, g: X \to \mathbb{R}$ aplicaciones con $f: (X, \mathcal{T}') \to (\mathbb{R}, \mathcal{T}_n)$ continua. Probar que la aplicación $F:(X,\mathcal{T}')\to (\mathbb{R}^2,\mathcal{T})$ dada por $F(x)=(f(x),g(x)), \forall x\in X,$
- (5) Estudiar si $(\mathbb{R}^2, \mathcal{T})$ es Hausdorff, compacto, conexo o arco-conexo.

L'Ejercicio 2. (3 puntos) Sea $C = \{(x, y, z) \in \mathbb{R}^3 \mid x^2 + y^2 = 1, -1 \le z \le 1\}$ el cilindro dotado de su topología usual \mathcal{T}_u . Se define en C la relación R dada por

$$(x, y, z)R(x', y', z')$$
 si $(x, y, z) = (x', y', z')$ o $z = z' = 1$ o $z = z' = -1$.

- Probar que R es una relación de equivalencia en C y que la proyección $p:(C,\mathcal{T}_u) \to (C/R,\mathcal{T}_u/R)$ es cerrada.
- (2) Probar que $(C/R, \mathcal{T}_u/R)$ es homeomorfo a la esfera $(\mathbb{S}^2, \mathcal{T}_u)$.

Ejercicio 3. (4 puntos) Sea (X,\mathcal{T}) un espacio topológico y ∞ un punto no perteneciente a X. En el conjunto $X^* = X \cup \{\infty\}$ se define

$$\mathcal{T}^* = \mathcal{T} \cup \{O^* \subset X^* \mid X^* - O^* \text{ es un subconjunto cerrado y compacto de } X\}.$$

N) Probar que \mathcal{T}^* es una topología en X^* y que (X,\mathcal{T}) es un subespacio topológico de (X^*,\mathcal{T}^*) .

(2) Probar que (X^*, \mathcal{T}^*) es un espacio compacto.

Probar que si (X, \mathcal{T}) es compacto, entonces $\{\infty\}$ es una componente conexa de (X^*, \mathcal{T}^*) .

(4) Probar que si (X, \mathcal{T}) es conexo y no compacto, entonces (X^*, \mathcal{T}^*) es conexo.

(5) Si $(X, \mathcal{T}) = (\mathbb{R}, \mathcal{T}_u)$, isabría identificar topológicamente (X^*, \mathcal{T}^*) ?

Indicación: Probar que $\infty \in O^*$ y por tanto $X^* - O^* = X - O^*$

X Ejercicio 4. (3 puntos) Probar las siguientes afirmaciones:

- (1) Si $f:(\mathbb{S}^n,\mathcal{T}_u)\to(\mathbb{R},\mathcal{T}_u)$ es una aplicación continua, entonces existe un punto $p\in\mathbb{S}^n$ cumpliendo f(-p) = f(p).
- (2) Si $f:([a,b],\mathcal{T}_u)\to([a,b],\mathcal{T}_u)$ es una aplicación continua, existe un $t\in[a,b]$ cumpliendo f(t)=t.
- (3) Todo polinomio P(x) con coeficientes reales y de grado impar tiene una raiz real.

Los alumnos con toda la asignatura deben de realizar los ejercicios 1), 2) y 3). Los alumnos con el segundo parcial deben de realizar los ejercicios 2), 3) y 4).

den parte parte

Dem F continua (=> f continua g continua

•) $g:(X,T') \longrightarrow (R,T_T)$ continua. (Porque Rega a la trivial) $f:(X',T) \longrightarrow (R,T_K)$ continua

•) $f:(X',T) \longrightarrow (R,T_K)$ continua

Topologia

@ IR2

T = {R2, \$30 {OK: KEIR}, OK = {(x,y) = 122; x> K}

1) ¿Topologia?

 \bullet) $i \emptyset, \mathbb{R}^2 \in \mathbb{T}$? $\emptyset \in \mathbb{C}$, $\mathbb{R}^2 \in \mathbb{C}$.

>¿{Ox: λ∈ Λ} c T => (U,Ox) ∈ T?

 $\bigcup_{\lambda \in \Lambda} O_{K_{\lambda}} = O_{\kappa} \quad \text{donde} \quad \alpha = \min \{ K_{\lambda} : \lambda \in \Lambda \}$

·) ¿ (0i : i e (1,..., n} c T => n Oi e T?

·)¿Tuct?¿Ictu?

Veamos que T c Tu. Para ello, enpresenos los abientos básicos de T como abiertos de Tu., esto es,

 $O_{\mathbf{K}} = \bigcup_{(\mathbf{x},\mathbf{y})\in\mathbb{R}} B((\mathbf{x},\mathbf{y}),d(\mathbf{x},\mathbf{K}))$, and $T \in \mathcal{T}u$

Ahora veamos que tu & T.

Pero esto No puede occurrist ya que si fueran iguales predicionos generar un homeomorfismo entre ambas, y esto no puede sex así ya que (R^2, τ_u) es Hausdorff muentras que (R^2, τ) No es Hausdorff, como veremos posteriormente.

2)
$$T|_{R\times \{0\}} = \{O \cap (R \times \{0\}) : O \in T\}$$

 $= \{O_{K} \cap (R \times \{0\}) : K \in R\}$
 $= \{(K, \infty) \times \{0\} : M \in R\} = T_{K}$
 $T|_{\{0\}\times R} = \{O \cap (\{0\}\times R) : O \in T\}$
 $= \{O_{K} \cap (\{0\}\times R) : M \in R\}$
 $= \{\emptyset\} \cup \{\{0\}\times R\} = T_{T}$

Dado Tixtz,

$$\beta_{T_1 \times T_2} = \{O_n \times O_2 : O_n \in T_n, O_2 \in T_2\}$$
, por tanto,

$$= \{(k, \infty) \times \mathbb{R} : (k, \infty) \in \mathbb{T} \times \mathbb{R} \} = \{0_k : k \in \mathbb{R}\}$$

$$\mathbb{R} \in \mathbb{T} \times \mathbb{R}$$

$$0 \neq \emptyset, \mathbb{R}^2\}$$

Porc fauto $T = T_K \times T_T$

3) $(\mathbb{R}^2, \mathcal{T})$

$$A = \{(0,0)\}$$
, $A = [0]$ ya que No existe ninguin absents de la topología T que esté incluido en A .

 $\overline{A} = \mathbb{R}^2 - 0$ Veamos que esto es así.

·) $\forall x \in \mathbb{R}^2 - \theta_o$, $\forall u \in \mathcal{U}^x$, $u \cap A \neq \emptyset$. Si calcularnos proeviamente que $B^{x} = \{0_{x-\epsilon}\}$, podemos ver que VUEUx, OxecU, En este caso, como xe 12²-00, +ueux, (0,0)}c Ox-e cU => Anu≠ø. 0) Yx4R2-80, ∃UEUx: U∩ A=Ø

Si $x \notin \mathbb{R}^2 - \theta_0 = x \in \theta_0$, to mando $U = \{0 \times \epsilon\}$, existe siempre un ero que verifica: U NA=Ø.

e) Ahora realises que es where $A = \mathbb{R}^2$ Si puere disconexo, $A = \mathbb{R} = \mathbb{R}^2$ A $A = \mathbb{R} = \mathbb{R}^2$ A $A = \mathbb{R} = \mathbb{R}^2$, $A = \mathbb{R}$

(2)
$$C = \{(x,y,z) \in \mathbb{R}^3 : x^2 + y^2 = 1, -1 \le z \le 1\}$$

 $(x,y,z) \in \mathbb{R}(x,y',z') < = x = x' = 1$
 $z = z' = 1$

· Simétrica

· Reflexiva

· Transitiva.

• Transitiva.

$$\begin{cases}
|x_{1}y_{1}|^{2} = (x_{1}y_{1})^{2}| = (x_{1}y$$

- ·) Para probar que es cerrada solo diremos que va de un espacio compacto como es el cilindro acotado a un espació Hausdorff, que como venemos GR es homeomorfo a 5º.
- 2) para porobar esto, vamos a buscar una identificación f, probaremos que R=Rf y esto nos diras por un teorema de la teoria que 7 un homeomorfosmo f entre estos espaciós. Se expone a continuación.

(C,
$$Tula$$
) \Rightarrow (S², $Tuls^2$)

P

 \hat{j} & fidentificación $j = j$ homomorfism

(C/R, $TulR$)

Sea
$$f: (C, Tu) \longrightarrow (S^2, Tu)$$

 $f(x_1y_1, z) = (\lambda x_1 \lambda y_1, z)$
 $(\lambda x_1)^2 + (\lambda y_1)^2 + z^2 = 1 \implies \lambda^2 (x^2 + y^2) + z^2 = 1$
 $\lambda = \sqrt{1 - z^2}, ASC:$

$$f: (C, Tu) \longrightarrow (S^2, Tu)$$

$$f(x_1y_1, z) = (x_1\sqrt{1 - z^2}, y_1\sqrt{1 - z^2}, z)$$

- e) Trivialmente es sobre.
- e) Es cerrada porque va de compacto a Hausdorff e) Es continua porque lo es en cada variable.

$$\frac{R=) Rf}{(x,y,t)=(x',y',t')} = \begin{cases} (x,y,t)=(x',y',t') = f(x',y',t') \\ = f(x',y',t') = f(x',y',t') \end{cases}$$

$$= f(x,y,t) = f(x',y',t') = f(x',y',t') = f(x',y',t')$$

$$= f(x,y,t) = f(x',y',t') = f(x',y',t')$$

$$= f(x,y,t) = f(x',y',t') = f(x',y',t')$$

$$= f(x,y,t) = f(x',y',t')$$

$$= f(x,y,t) = f(x',y',t')$$

$$= f(x,y,t) = f(x',y',t')$$

$$= f(x,y,t) = f(x',y',t')$$

$$= f(x,y',t') = f(x',y',t')$$

$$= f(x',y',t') = f(x',y',t')$$

$$= f(x$$

$$(x,y,z) Rf(x',y',z') = f(x,y,z) = f(x',y',z') - f(x,y,z) = f(x',y',z') = f(x',y',z')$$

$$f(x,y,z) = f(x',y',z') = \begin{cases} (x,y,z) = (x',y',z') \\ (0,0,1) = (0,0,1) \end{cases}$$

$$f(x,y,z) = f(x',y',z') = \begin{cases} (0,0,1) \\ (0,0,1) = (0,0,1) \end{cases}$$

Así vomos que (C. Tu) es homeomorfo a (52, Tu)

(3) (X, T) esp. top. $\{\omega\} \notin X$, X*= X ∪ {∞} T*= T U (0* CX*: X*-0* arado de 8 }

1) ¿T* es topológia?

·) (X*, Ø E C*? ØET => ØET*

X*C X*: X*-X* = \$ compado de X => X*&T*

·) {O*,: \(\alpha \) \(\tau \)

X* - U O'x jamado? => \((X*-Oxx) i anado compacto

pero salemos que la intersección arbitraria de cercados es avada, y la intersección de cerrados y compactos es (I = 0 kg) cerrado y compato compacta. For touto

=> U O'K, E T*

·) if O": i ∈ {1,...,n}} c T* => () O*ki e T* ?

 $X^* - \bigcap_{i=1}^{n} O_{ki}^* = \bigcup_{i=1}^{n} (X^* - O_{ki}^*)$ icerrado y compacto?

sabemos que la union numerable de cerrados es cerrada y la ivrion de compactos y arrados numerable es compacta.

Así, $U(8^*-0^*_{ki})$ es arrada $\Longrightarrow \bigcap_{i=1}^{n} 0^*_{ki} \in \mathbb{T}^*$.

Para proban que
$$(X,T)$$
 sub top de (X^*,T^*)

debemos comprobar que $T^*|_{X} = T$

$$T^*|_{X} = \{0^* \cap X : 0^* \in T^*\} \cup T|_{X}$$

$$= \{0^* \cap X : X^* - 0^* \text{ corr } y \text{ comp de } X\} \cup T$$

$$= \{0^* \cap X : X - 0^* \text{ arr } y \text{ comp de } X\} \cup T$$

$$= \{0^* \in T : X - 0^* \text{ corr } y \text{ comp de } X\} \cup T$$

$$= \{0^* \in T : X - 0^* \text{ corr } y \text{ comp de } X\} \cup T$$

$$= \{0^* \in T : X - 0^* \text{ corr } y \text{ comp de } X\} \cup T$$

$$= \{0^* \in T : X - 0^* \text{ compacto } de X\} \cup T$$

$$= T \text{ perque } \{0^* \in T : X - 0^* \text{ compacto } de X\} \subset T$$

3)
$$(X,T)$$
 compacto => $\{\infty\}$ Comp. conexa. (X^{r},T^{*})
·) Es conexo por ser puntual.

i)
$$\{\infty\}\in \{\mathbb{C}^* = \mathbb{Z}^* : \mathbb{Z}^* - \{\infty\}\in \mathbb{C}^*\}$$
 $X \in \mathbb{Z}^* : \mathbb{Z}^* - (\mathbb{Z}^* - \{\infty\}) \text{ correcompacto de } X.$
 $\mathbb{Z}^* - \mathbb{Z} = \{\infty\} \text{ compacto.}$

es avrado porque su complementario es abierto.

2) (*, T*) compacto. Sea $\{0\}$: $\lambda \in A$ } reculsimients pradicitos de (X^{+}, T^{+}) $X^* = \bigcup_{\lambda \in \Lambda} O_{\lambda} \ni \infty$ $\exists \lambda_0 \in \Lambda : \infty \in \mathcal{O}_{\lambda_0} \implies \mathcal{O}_{\lambda_0} \text{ (pertenear al regular conjunto)}$ es cernado y compacto de (I,T) c(I*,T*) => Z== 0/2 es cour comp de (X+, T+) => X*_Ox. = U Ox . $= 7 \exists \lambda_1, \dots, \lambda_n : \bigcup_{i=1}^n O_{\lambda_i} \supset X^* - O_{\lambda_0} = 7 | X^* = O_{\lambda_0} \cup (\bigcup_{i=1}^n O_{\lambda_i})$ => (X*, T*) corexo. 4) (XI) Conexo No compacto supongamos que (X*, T*) No es conexo. Entonas debe ser disconero. JO1, 02 € T*: 01 ≠02 ≠Ø. On 102 = \$ 01 002 = \$ Sipongamos sin pérdide de generalisded que: $\phi \in O_1$, $\infty \notin O_2 = > O_2 \in T$ *- 01 coor. comp. Come X conexo, $O_2 = X$ 02 cers. O1 = {0} X^*-O_1 cert.comp = X^*-G_0 cert.comp = X cert.comp. Contradicción porque & No compacto.

4)
$$(X,T')$$
, $f,g: X \rightarrow \mathbb{R}$
 $f:(X,T') \rightarrow (\mathbb{R},T_{W})$ continua
 $F:(X,T') \rightarrow (\mathbb{R}^{2},T)$
 $f(x) = (f(x),g(x))$ $\forall x \in X$ i continua?

F:
$$(X,T') \rightarrow (R^2,T)$$
 continua (T) $f: (X,T') \rightarrow (R,T_0)$

P continua pri hipotesis

Como Tx CTu, y & continua

 (T) continua

 (T) continua

 (T) continua

 (T) continua

 (T) continua

Examen de Topología I

2º curso del Grado en Ingeniería Informática y Matemáticas

1 de Febrero de 2019

Ejercicio 1. (3 puntos)· Sea (X, \mathcal{T}) un espacio topológico e $Y \subset X$ un subconjunto propio, esto es $Y \neq \emptyset$ e $Y \neq X$. Se considera en X la familia de subconjuntos \mathcal{T}^Y definida por

$$\mathcal{T}^Y = \{O \cup O' \,|\, O \in \mathcal{T} \, \mathbf{y} \, O' \subset Y\}.$$

(1) Probar que \mathcal{T}^Y es una topología en X y compararla con \mathcal{T} .

Probar que la topología inducida por \mathcal{T}^Y en Y es la topología discreta y que las topologías inducidas por \mathcal{T}^Y y \mathcal{T} en X-Y son iguales.

(3) Calcular el interior, la adherencia y la frontera de Y y X-Y con la topología \mathcal{T}^Y .

(4) Probar que si (X, \mathcal{T}) es Hausdorff, entonces (X, \mathcal{T}^Y) no es conexo.

Ejercicio 2. (3 puntos) En $([0,1], \mathcal{T}_u)$ se define la relación R por

$$tRt'$$
 si $t = t'$ o $t, t' \in \{0, 1/2, 1\}.$

(N) Probar que R es una relación de equivalencia en [0,1] y que la proyección $p:([0,1],\mathcal{T})\to ([0,1]/R,\mathcal{T}/R)$ es cerrada pero no abierta.

Probar que ([0,1]/R, \mathcal{T}_u/R) es homeomorfo al subespacio topológico X de (\mathbb{R}^2 , \mathcal{T}_u) dado por $X = \{(x,y) \in \mathbb{R}^2 \mid x^2 + y^2 = 1\} \cup \{(x,y) \in \mathbb{R}^2 \mid (x-2)^2 + y^2 = 1\}.$

Ejercicio 3. (4 puntos)

(1) Calcular las componentes conexas de $(\mathbb{Q}, \mathcal{T}_u)$.

(2) Sea (X, \mathcal{T}) un espacio topológico que tiene un punto x con $\mathcal{U}^x = \{X\}$. Probar que (X, \mathcal{T}) es conexo y compacto.

(3) Estudiar la compacidad de $X = \{(x, y, z) \in \mathbb{R}^3 \mid \cos x = \cos y = \cos z\}$ dotado de la topología inducida de $(\mathbb{R}^3, \mathcal{T}_u)$.

(4) Estudiar la compacidad de los subconjuntos de $(\mathbb{N}, \mathcal{T})$, siendo una base de la topología \mathcal{T} la familia $\{O(n), n \in \mathbb{N}\}$, con $O(n) = \{m \in \mathbb{N} \mid m \text{ es divisor de } n\}$.

(5) Probar que si $A \subset \mathbb{N}$ no es un subconjunto conexo de $(\mathbb{N}, \mathcal{T})$, entonces existen naturales $n, m \in A$ tal que $mcd(n, m) \notin A$. Usar este resultado para dar ejemplos de subconjuntos conexos de $(\mathbb{N}, \mathcal{T})$.

Prueba Tema 1. Topología I Doble grado en Informática y Matemáticas 7 de noviembre de 2019

1.— Sea $\mathbb R$ el conjunto de los números reales, y $K \subset \mathbb R$ el subconjunto:

$$K:=\{1/n:n\in\mathbb{N}\}.$$

Consideramos la familia $\mathcal{B} \subset P(\mathbb{R})$ dada por:

$$\mathcal{B} := \{(a, b) : a, b \in \mathbb{R}, a < b\} \cup \{(a, b) \setminus K : a, b \in \mathbb{R}, a < b\}.$$

 λ ¿Es \mathcal{B} base de una topología en \mathbb{R} ?

2. Sea T_K la topología generada por \mathcal{B} . Probar que T_K es estrictamente más fina que la topología usual T_u de \mathbb{R} $(T_u \subset T_K)$, pero $T_u \neq T_K$.

 \mathfrak{F} ¿Es (\mathbb{R}, T_K) un espacio Hausdorff?

lack Calcular la clausura de (0,1) en (\mathbb{R},T_K) .

 ${\bf X}$ Dar un ejemplo de una sucesión convergente con la topología usual T_u que no converge con la topología T_K .

$$A$$
 KCR, $K = \{\frac{1}{n}, n \in \mathbb{N}\}$

$$B = \{(a_1b): a_1b \in \mathbb{R}, a < b\} \cup \{(a_1b)\} K: a_1b \in \mathbb{R}, a < b\}$$

- 1) Base.
 - ·) IR = U (-n,n), ya que (-n,n) & B, theN.
 - ·) BA, B2 EB, XE BA NB2 => 7 BSEB: XEB3 CBA NB2
 - ⇒ Si B1 = (a_1,b_1) , $B_2 = (a_2,b_2)$, $X \in B_1 \cap B_2$, $JB_3 = B_1 \cap B_2 = (c,d)$ tq $c = \max\{a_1,a_2\}$ y $d = \min\{b_1,b_2\}$.
 - \rightarrow Si $B_A = (a_A, b_A), B_2 = (a_2, b_2) \setminus K, x \in B_A \cap B_2,$
 - $3B_3 = B_1 \cap B_2 = (c,d) \setminus K$, $c = \max\{a_1, a_2\} \ y$ $d = \min\{b_2, b_1\}$
 - ⇒ Si B₁ = $(a.b_1) \setminus K$, $B_2 = (a_2, b_2) \setminus K$, $x \in B_1 \cap B_2$ $\exists B_3 = B_1 \cap B_2 = Cc, d) \setminus K$ c= max $\{a_1, a_2\}$, $d = \{min\{b_1, b_2\}\}$
- 2) TucTK Bu = {(a,b): acb} cB Sea UETu, 7 {Bi}ieI, tq U = UBi Bi & Bu cB cTk VieI => U&Tk. Tu = Tk | Sea U = (-1,1) \ K & B => N & Tk. Pero U & Tu | porque O & U no es inserior.

3) ¿R, Tr Hausdorff?

Sea $x \neq y$, $x,y \in \mathbb{R}$, como (\mathbb{R}, T_u) Hausdorff, $\overline{\mathbf{T}}$: $U, V \in T_u$, $t_q \times cU$, $y \in V$: $U \cap V = \emptyset$.

Como $T_u \subset T_R = > U$, $V \in T_R$ $U \cap V = \emptyset$ $= > (\mathbb{R}, T_R)$ Haudorff

4) Clausura de (0,1) en (R,TK)

Como [0,1] cenado en Tx por ser cenado en Tu (Tuc Tx => $C_{Tx} \subset C_{Tx}$) => $(0,1) \subset [0,1]$ Veamos que $0,1 \in (0,1)$

pana todo $x \in \mathbb{R}$, $B^{\times} = \{B \in B : x \in B\}$ base entorchos de x en T_{K} . $A \in (0,1) \in U \in B^{1} = \emptyset$ U = (a,b), $a < 1 < b = \emptyset$ $(0,1) \cap (a,b) = \{max \neq 0, a \neq 1\} \neq \emptyset$ $O \in (0,1) \in U \in B^{0} = \emptyset$ U = (a,b) $a < 0 < b = \emptyset$ $U \cap (0,1) = \{0, \min\{1,b\}\} \setminus X \neq \emptyset$ $U \cap (0,1) = \{0, \min\{1,b\}\} \setminus X \neq \emptyset$

5) La sucesión (n) new converge à 0 en Tu. Veamos
que No converge à ninjún punto con Tk.

No puede converger à propue en Tk porque (-1,1)/K
es entoreno de 0 y No contrene à ningún pto de la sucesión.

Prueba Tema 2. Topología I Doble grado en ingeniería informática y matemáticas 5 de diciembre de 2019

1.— Sean $X \subset \mathbb{R}^2$ el conjunto:

$$X = \{(x,y) \in \mathbb{R}^2 : y = 0\} \cup \{(x,y) \in \mathbb{R}^2 : y = 1\},$$

y T la topología en X inducida por la topología usual de \mathbb{R}^2 . Definimos una relación de equivalencia R en X de modo que las clases de equivalencia son:

$$[(x,y)] = \begin{cases} \{(x,0),(x,1)\}, & x \in (-\infty,-1) \cup [1,+\infty), \\ \{(x,y)\}, & x \in [-1,1). \end{cases}$$

1. ¿Es (X/R, T/R) un espacio Hausdorff?

2. ¿Es la proyección $p:(X,T)\to (X/R,T/R)$ una aplicación abierta?

3. ¿Es la proyección $p:(X,T)\to (X/R,T/R)$ una aplicación cerrada?

•

1)
$$x = \{(x,y) \in \mathbb{R}^2: y = 6, y \cup \{(x,y) \in \mathbb{R}^2: y = 1\}$$

 $T = Tu|_{X}$
 $y = 0$
 $y = 0$
 $y = 0$

$$\left[\frac{1}{(x,y)} \right] = \left\{ \frac{1}{(x,y)}, \frac{1}{(x,y)} \right\} \times \left\{ \frac{1}{(x,y)}, \frac{1}{(x,y)} \right\} \times \left\{ \frac{1}{(x,y)}, \frac{1}{(x,y)} \right\}$$

1) ¿Hausdorff (X/R, T/R)?

Hamdorff 5: ∀x,y ∈ X/R, ∃U∈Ux, V∈ Ux: U∩V=Ø Sea p: (X,T) → (X/R,T/R)

Tomernos p((-1,0)) y p((-1,1)), son distintos como

nos dice la ral eq.

Tomerros corro enterno de (-1,0), $\hat{V} = ((-1-\epsilon,0), (-1+\epsilon,0))$... (-1,1), $\hat{V} = ((-1-\epsilon,1), (-1+\epsilon,1))$

Entoner $P(\hat{\mathbf{u}}) = \mathbf{u} \in \mathcal{U}^{(H,0)}$, $P(\hat{\mathbf{v}}) = \mathbf{v} \in \mathcal{U}^{(H,0)}$

Así, UNV \$ 0 : independiente mente del valor €>0

que tomernos. => \$\frac{7}{4} U C U P((-1,0))}, VC U P((-1,1)) tal que UNV= \$\frac{9}{2}\$

No es Haussdorff

2) è $P: (X,T) \longrightarrow (X/R, T/R)$ abienta? Decimos que p abreita (=) p(ô) = O E T/R, YÔET Pero debemos rener en cuenta que en la topología coaente, se recifica que DET/R (=) P1(0) ET Buscamos pres un conjunto! Le tal que P + (p(u)) #T Tomeros $U = (0,2) \times \{0\}$ p(U) = ((0,2) x (04) U ([1,2) x (14) ≠T => p No es objetta T 3) $P(X,T) \rightarrow (X/R, T/R)$ counada?

3) i $p: (X,T) \longrightarrow (X/R,T/R)$ counada? Buscamos $U \in T$ tal que $p'(p(U)) \notin e_T$ Seà $U = ([-2,0] \times (0Y))$ $p(U) = ([-2,0] \times (0Y) \cup ([-2,-4) \times (1Y) \notin T)$

=> p No es anado.

Primer parcial. Topología I Doble grado en Informática y Matemáticas 13 de diciembre de 2019

1.— Se define en \mathbb{R} la familia de subconjuntos

$$\mathcal{B} = \{[a,b]: a < b, a \in \mathbb{Q}, b \not \in \mathbb{Q}\}$$

1. Probar que \mathcal{B} es base de una topología T en \mathbb{R} .

2. Calcular el interior del intervalo [a, b], con a < b arbitrarios. 2. Calcular la clausura del intervalo (a, b), con a < b arbitrarios.

2.— Consideramos el conjunto $X = \mathbb{R} \times \mathbb{N}$ dotado de la topología producto $T_u \times T_D$, donde T_u es la topología usual de \mathbb{R} y T_D es la topología discreta en \mathbb{N} . Consideramos en X la relación de equivalencia:

$$(x,n) \sim (x',n') \Leftrightarrow x = x' < 0.$$

Sea $p: X \to X/\sim$ la aplicación proyección.

 Λ . Discutir si p es cerrada o abierta.

2. Calcular la frontera del conjunto $p((-\infty,0)\times\{1\})$.

3.— Razonar si son verdaderas o falsas las siguientes afirmaciones:

1. Si $A \subset X$ es un conjunto abierto, entonces $int(\partial A) = \emptyset$.

2. Si X es un conjunto finito y T es una topología Hausdorff en X, entonces T es la topología discreta.

Si X es un conjunto finito y T es una topología en X tal que $T=C_T$, entonces T es la topología discreta.

Examen final. Topología I Doble grado en ingeniería informática y matemáticas 10 de enero de 2020

X – Probar que la familia de subconjuntos de \mathbb{R} :

 $T = \{\emptyset, \mathbb{R}\} \cup \{(a, +\infty) : a \in \mathbb{R}\}$

bare autornos (cada punto)
humeralse.

AN-II

es una topología en R.

1. Demostrar que no es Hausdorff.

 \mathbb{Z} . Razonar si T verifica los axiomas de numerabilidad AN-I y AN-II.

3. Calcular el interior y la clausura de $(-\infty,0)$ y $[0,+\infty)$ en (\mathbb{R},T) .

Z.— Demostrar que el producto de dos espacios topológicos compactos es un espacio compacto. Incluir la demostración del lema del tubo.

X— Sea X un conjunto no vacío y $A \subset X$ un subconjunto no vacío distinto de X. Se considera en X la topología:

$$T_A = \{U \subset X : A \subset U\} \cup \{\emptyset\}.$$

Describir todos los subconjuntos conexos de (X, T_A) .

X— Se considera el espacio \mathbb{R} con la topología de los complementos finitos T_{cf} . Describir todos los subconjuntos compactos de (\mathbb{R}, T_{cf}) .

Segundo parcial: 2,3 y 4 Toda la asignatura: 1,2 y 3

Todas las preguntas tienen el mismo valor

.