ECEN 611 Homework 3: Winding Factor and Inductance

Shuxuan Chen | 132006082 | Fall 2024

Last updated: Sep 29

Table of Contents

Problem 1: Winding Factor	
Full Pitch, Concentrated Two-Pole Winding	2
Counting Function	2
(Figure) Counting Function	2
Winding Function	3
(Figure) Counting Function and Winding Function	3
Centralized Winding Function	4
Winding Function in Fourier Series	5
Nch: My Result	5
Nch: Textbook Result	
Full Pitch, Uniformly Distributed 2-Pole Winding	6
Counting Function	6
Winding Function	8
Centralized Winding Function	8
(Figure) Counting Function and Winding Function	8
Nh: My Result	
Nh: Textbook Result	
Fractional Pitch, Uniformly Distributed Two-Pole Winding	9
Winding Function	
(Figure) Winding Function	
Nh: My Result	11
Nh: Textbook Result	11
(Figure) Validation of Fourier Series through Reconstruction	12
Problem 2: Magnetizing Inductance	12
Winding Function	
(Figure) Winding Function	13
Magnetizing Inductance	14
My Result	14
Textbook Result	14
Problem 3: Mutual Inductance	
Winding Function of Sinusoidally Distributed P-Pole Winding	
Winding Function of (Full Pitch) Uniformly Distributed P-Pole Winding	
(Figure) Winding Functions of Interest	
Mutual Inductance	
My Result	17
Textbook Result	17
Problem 4	18
Parameters	18
Winding Functions	19
*Inductances	19
Composite Airgap MMF	19
Current	20

Problem 1: Winding Factor

Verify the harmonic winding factor for the fractional pitch, uniformly distributed winding.

Symbol	Description
Nc(φ*) (c might stand for 'concentrated')	winding function for concentrated winding expressed in Fourier series
Nch	coefficients of each term in $Nc(\phi^*)$ (h = 1, 2, 3,, n) of concentrated winding function
Nh (without c compared to above)	coefficients of each term of fractional/short pitch winding
kh	Nh/Nch

```
T = 2*pi;
NT = 1;  % number of turns
```

Full Pitch, Concentrated Two-Pole Winding

Counting Function

countingFun =

$$\begin{cases} 0 & \text{if } \phi \in \left[0, \frac{\pi}{3}\right) \\ -1 & \text{if } \phi \in \left[\frac{\pi}{3}, \frac{4\pi}{3}\right) \\ 0 & \text{if } \phi \in \left[\frac{4\pi}{3}, 2\pi\right] \end{cases}$$

(Figure) Counting Function

```
fplot(countingFun, [0 2*pi])
ylim([-2 2])
grid
```



```
countingFun_avg = 1/T * int(countingFun, phi, [0 T]);
```

Winding Function

(Figure) Counting Function and Winding Function

```
figure
fplot(countingFun, [0 2*pi], "DisplayName", "Counting Function")
hold on
fplot(windingFun, [-2*pi 2*pi], ...
    "LineWidth", 1.2, ...
    "DisplayName", "Winding Function (\phi)")
hold off
ylim([-2 2])
legend
grid
```


Centralized Winding Function

```
shiftAngle = T/4 - pi/3; % How to relate 4 to the number of poles?
windingFun_star = subs(windingFun, phi, phi - shiftAngle);

figure
fplot(windingFun_star, [0 2*pi], "LineWidth", 1.2, "DisplayName", "Winding Function
(\phi*)")
hold on
fplot(windingFun, [0 2*pi], "DisplayName", "Winding Function (\phi)")
ylim([-2 2])
grid
legend
% Customize x-tick labels to show degrees with increments of 30 degrees
xticks([0 pi/6 pi/3 pi/2 2*pi/3 5*pi/6 pi 7*pi/6 4*pi/3 3*pi/2 5*pi/3 11*pi/6
2*pi]);
xticklabels({'0°', '30°', '60°', '90°', '120°', '150°', '180°', '210°', '240°',
'270°', '300°', '330°', '360°'});
```


Winding Function in Fourier Series

```
a0 = 1.819e-12
```

```
a = vpa( (2/T)*int(windingFun_star*cos(h*phi), phi, 0, T) );
b = vpa( (2/T)*int(windingFun_star*sin(h*phi), phi, 0, T) )
```

```
b = (0 \ 0 \ 0 \ 0 \ 0 \ 0)
```

Nch: My Result

```
Nch = a
```

```
Nch = (0.6366 \ 0 \ -0.2122 \ 0 \ 0.1273 \ 0 \ -0.09095)
```

$$N_{ch} = (-1)^{\frac{h-1}{2}} \left(\frac{2N_t}{h\pi}\right)$$
 for $h = 1,3,5,7...$ (1.28)

$$N_{ch} = 0$$
 for $h=2,4,6,...$ (1.29)

Nch: Textbook Result

```
Nch_ref = real( (-1).^((h-1)/2).*(2*NT./(h*pi)) )

Nch_ref = 1×7
0.6366     0 -0.2122     0     0.1273     0 -0.0909
```

Full Pitch, Uniformly Distributed 2-Pole Winding

Winding Type	Winding Function	Harmonic Winding Factor k_h (h odd)
e) Full Pitch Uniformly Distributed	$N/2$ $-N/2$ \uparrow	$\frac{\sin\left(\frac{h\beta}{2}\right)}{\frac{h\beta}{2}}$

Counting Function

```
% windingFun_star syms beta N_t windingDensity = N_t/beta windingDensity =  \frac{N_t}{\beta}  countingFun = piecewise( ... phi >= 0 & phi < beta, windingDensity * phi, ... % for 0 \le \phi \le \beta phi >= beta & phi < pi, N_t, ... phi >= pi & phi < pi + beta, -windingDensity*(phi-pi) + N_t, ... phi >= pi & phi <= 2*pi, 0 ...
```

countingFun =

)

```
\begin{cases} \frac{N_t \phi}{\beta} & \text{if } \phi < \beta \land 0 \le \phi \\ N_t & \text{if } \phi < \pi \land \beta \le \phi \\ N_t - \frac{N_t (\phi - \pi)}{\beta} & \text{if } \pi \le \phi \land \phi < \beta + \pi \\ 0 & \text{if } \phi \le 2 \pi \land \beta + \pi \le \phi \end{cases}
```

```
countingFun = subs(countingFun, [beta N_t], [pi/3 1]);

figure
fplot(countingFun, [0 2*pi])
title("Counting Function (0-2\pi)")
ylim([-1 2])
grid
% Customize x-tick labels to show degrees with increments of 30 degrees
xticks([0 pi/6 pi/3 pi/2 2*pi/3 5*pi/6 pi 7*pi/6 4*pi/3 3*pi/2 5*pi/3 11*pi/6
2*pi]);
xticklabels({'0°', '30°', '60°', '90°', '120°', '150°', '180°', '210°', '240°',
'270°', '300°', '330°', '360°'});
```



```
% countingFun = piecewise( ...
%     phi >= 0 & phi <= T, countingFun, ...
%     phi > T, subs(countingFun, phi, phi-T) ... % I'm a genius!!
% )
% figure
```

```
% fplot(countingFun, [0 4*pi])
% title("Counting Function Extended (0-4\pi)")
% ylim([-1 2])
% grid

% Customize x-tick labels to show degrees with increments of 30 degrees
% xticks([0 pi/6 pi/3 pi/2 2*pi/3 5*pi/6 pi 7*pi/6 4*pi/3 3*pi/2 5*pi/3 11*pi/6
2*pi]);
% xticklabels({'0°', '30°', '60°', '90°', '120°', '150°', '180°', '210°', '240°', '270°', '300°', '330°', '360°'});
```

```
countingFun_avg = 1/T * int(countingFun, phi, [0 T]);
```

Winding Function

Centralized Winding Function

```
windingFun_star = subs(windingFun, phi, phi+pi/2+beta/2); % need to generalize this
shift angle
windingFun_star = subs(windingFun_star, beta, pi/3);
```

(Figure) Counting Function and Winding Function

```
figure
fplot(countingFun, [0 2*pi], "DisplayName", "Counting Function")
hold on
fplot(windingFun, [0 2*pi], "DisplayName", "Winding Function")
fplot(windingFun_star, [0 2*pi], "LineWidth", 1.2, "DisplayName", "Widning Function
(Shifted)")
hold off
ylim([-1 2])
legend
grid

% Customize x-tick labels to show degrees with increments of 30 degrees
xticks([0 pi/6 pi/3 pi/2 2*pi/3 5*pi/6 pi 7*pi/6 4*pi/3 3*pi/2 5*pi/3 11*pi/6
2*pi]);
xticklabels({'0°', '30°', '60°', '90°', '120°', '150°', '180°', '210°', '240°',
'270°', '300°', '330°', '360°'});
```


Nh: My Result

Nh = $(0.6079 \ 0 \ -0.1351 \ 0 \ 0.02432 \ 0 \ 0.01241)$

Nh: Textbook Result

 $Nh_ref = (0.6079 \ 0 \ -0.1351 \ 0 \ 0.02432 \ 0 \ 0.01241)$

Fractional Pitch, Uniformly Distributed Two-Pole Winding

Winding Function

```
syms epsilon
windingFun_star = piecewise( ...
   phi >= 0
                              & phi < epsilon/2, 0, ...
   phi >= epsilon/2
                              & phi < epsilon/2 + beta/2, N_t/beta*(phi-
epsilon/2), ...
   phi >= pi - epsilon/2 - beta/2 & phi < pi - epsilon/2, -N_t/beta*(phi-(pi-
epsilon/2)), ...
   phi >= pi - epsilon/2 & phi < pi, 0 ...
);
% windingFun_star = subs(windingFun_star, [N_t beta epsilon], [NT pi/6 pi/12]);
% figure
% fplot(windingFun_star, [0 2*pi])
% ylim([-1 1])
% grid
windingFun_star = piecewise( ...
   phi >= 0 & phi <= T/2, windingFun_star, ...
   phi > T/2 & phi <= T, -subs(windingFun_star, phi, phi-pi) ... % I'm a genius!!</pre>
);
```

(Figure) Winding Function

```
figure
fplot(subs(windingFun_star, [N_t beta epsilon], [NT pi/6 pi/12]), [0 2*pi]);
ylim([-1 1])
grid
```


Nh: My Result

```
windingFun_star = subs(windingFun_star, [N_t beta epsilon], [NT pi/6 pi/12]);
Nh = vpa( (2/T)*int(windingFun_star*sin(h*phi), phi, 0, T) )
```

Nh = $(0.6132 \ 0 \ 0.1462 \ 0 \ 0.03065 \ 0 \ -0.02038)$

windingFun_star_rec = sum(Nh.*sin(h.*phi));

Nh: Textbook Result

```
Nh_ref = sin(h*beta/4)./(h*beta/4) .* cos(h*(beta/4+epsilon/2)); % <-- What's its
reference?
Nh_ref = vpa( subs(Nh_ref.*Nch_ref, [beta epsilon], [pi/6 pi/12]) )</pre>
```

(Figure) Validation of Fourier Series through Reconstruction

```
figure
fplot(windingFun_star, [0 2*pi], "DisplayName", "Original Winding Function")
hold on
fplot(windingFun_star_rec, [0 2*pi], "DisplayName", "My Reconstructed Winding
Function")
fplot(sum(Nh_ref.*cos(h.*phi)), [0 2*pi], "DisplayName", "Reference Reconstructed
Winding Function")
hold off
ylim([-1 1])
grid
legend
```


Problem 2: Magnetizing Inductance

Calculate the magnetizing inductance of the above winding (fractional pitch, uniformly distributed 2-pole winding).

Textbook pg. 31

Winding Function

```
syms epsilon P
windingFun_star = piecewise( ...
   phi >= 0
                            & phi < epsilon/2, 0, ...
                            & phi < epsilon/2 + beta/2, (N_t/P)/(beta/
   phi >= epsilon/2
2)*(phi-epsilon/2), ...
   phi \Rightarrow pi - epsilon/2 - beta/2 & phi < pi - epsilon/2, -(N_t/P)/(beta/2)*(phi-
(pi-epsilon/2)), ...
   );
windingFun_star = piecewise( ...
   phi >= 0 & phi <= T/2, windingFun_star, ...
   phi > T/2 & phi <= T, -subs(windingFun_star, phi, phi-pi) ...</pre>
);
```

(Figure) Winding Function

```
syms mu_o r l g

windingFun_star = subs( windingFun_star, [beta epsilon], [pi/6 pi/12] );

figure
fplot(subs(windingFun_star, [N_t P], [1 2]), [0 2*pi], ...
    "DisplayName", "Fractional Pitch Uniformly Distributed Winding")
hold off
ylim([-1 1])
grid
legend
```


Magnetizing Inductance

My Result

$$\frac{29 \pi N_t^2 l \mu_o r}{18 P^2 g}$$

Winding Type	Winding Function	Magnetizing Inductance
d) Fractional pitch uniformly distributed	N_f/P $\pi/2$ $3\pi/2$ $-N_f/P$ ε	$\mu_o \frac{rl}{g} (2\pi) \left(\frac{N_t}{P}\right)^2 \left(1 - \frac{2\beta}{3\pi} - \frac{\varepsilon}{\pi}\right)$

Textbook Result

LAA_ref =

$$\frac{29\,\pi\,N_t^{\,2}\,l\,\mu_o\,r}{18\,P^2\,g}$$

Problem 3: Mutual Inductance

Verify the mutual inductance between a (full pitch) uniformly distributed and a sinusoidally distributed winding each with P poles.

Winding Function of Sinusoidally Distributed P-Pole Winding

```
% syms phi syms N_sin windingFun_sin = N_sin/P * sin(P/2*phi) windingFun_sin = \frac{N_{sin} sin(\frac{P \phi}{2})}{P}
```

Winding Function of (Full Pitch) Uniformly Distributed P-Pole Winding

```
intv = T/(2*P);
slope = (N_t/P)/intv;
t = 4*intv;
windingFun_fp_uni = piecewise( ...
    phi >= 0
                   & phi < intv, slope * (phi), ...
    phi >= intv & phi < 3*intv, -slope * (phi-intv) + N_t/P, ...
    phi >= 3*intv & phi < t, slope * (phi-3*intv) - N t/P ...
);
windingFun_fp_uni_ext = piecewise( ...
    phi >= 0 & phi < t, windingFun fp uni, ...
    phi >= t, subs(windingFun_fp_uni, phi, phi-t), ...
    phi >= 2*t, subs(windingFun_fp_uni, phi, phi-2*t) ...
);
figure
for numberOfPoles = 2:2:6
    % Substitute P directly in the symbolic expression
    fplot(subs(windingFun fp uni ext, [N t P], [1 numberOfPoles]), [0 2*pi], ...
    'DisplayName', sprintf('P = %d', numberOfPoles)) % Use sprintf to format
DisplayName
    hold on
end
ylim([-1 1])
```

hold off grid legend

(Figure) Winding Functions of Interest

```
figure
fplot(subs(windingFun_sin, [N_sin P], [1 2]), [0 2*pi], ...
    "DisplayName", "Sinusoidally Distributed Winding")
hold on
fplot(subs(windingFun_fp_uni_ext, [N_t P], [1 2]), [0 2*pi], ...
    "DisplayName", "Fractional Pitch Uniformly Distributed Winding")
hold off
ylim([-1 1])
grid
legend
```


Mutual Inductance

My Result

$$L_{AB} = \frac{\mu_0 r l}{g} \left(\frac{P}{2}\right) \int_0^{2\pi} N_A(\phi_e) N_B(\phi_e) d\phi_e$$
 (1.85)

Warning: Unable to check whether the integrand exists everywhere on the integration interval.

```
L_uniform_sin = simplify(L_uniform_sin)
```

```
L\_uniform\_sin = \frac{8 N_{sin} N_t l \mu_o r}{P^2 g \pi}
```

Textbook Result

1	Winding Types	Winding Functions	Mutual Inductance
---	---------------	-------------------	-------------------

d) Uniformly distributed and sinusoidally distributed windings

$$L_{AB} = \frac{\mu_o r l}{g} \left(\frac{N_A N_B}{P^2} \right) \left(\frac{8}{\pi} \right) \cos \theta_r$$

```
syms theta_r L_uniform_sin_ref = (mu_o*r*1/g) * (N_t*N_sin/P^2) * (8/(sym(1)*pi)) * subs(cos(theta_r), theta_r, 0) L_uniform_sin_ref = \frac{8 N_{sin} N_t l \mu_o r}{P^2 g \pi}
```

Problem 4

A **uniform air-gap** machine has an axial length of 1m, a rotor radius of 0.5 m, and a gap length of 0.50 cm. The rotor and the stator are each wound with a sinusoidally distributed 4-pole winding with 50 turns per pole. If the rotor and stator coil axes are aligned and the two windings connected in series, how much current should be passed through the windings to produce a peak air-gap flux density of 0.8 weber/m2?

Parameters

- sinusoidally distributed 4-pole winding
- uniform air-gap
- rotor and stator coil axes are aligned => theta r = 0, cos(theta r) = 1
- two windings connected in series (, respectively?)
- Do I need to calculate magnetizing and mutual inductance?

```
uo = 4*pi*1e-7 % H/m

uo = 1.2566e-06

% magnetic flux density : T = Wb/m^2 = N/(A·m)
% permeability : H/m N/A^2
% magnetic field strength: A/m
H_PEAK = B_PEAK / uo % A/m = N/(A·m)/(N/A^2)
```

```
H PEAK = 6.3662e + 05
```

```
syms N A m \\ N/(A*m)/(N/A^2)
ans = \frac{A}{m}
MMF_{PEAK} = H_{PEAK*GAP}
```

 $\mathsf{MMF}_\mathsf{PEAK} = 3.1831e + 03$

Winding Functions

```
% Stator % winding function stator_windingFun_sin = subs( windingFun_sin, [N_sin P], [N_TURN_TOTAL N_POLE] ) stator_windingFun_sin = 50\sin(2\phi) % Rotor winding function rotor_windingFun_sin = stator_windingFun_sin;
```

*Inductances

```
% magnetizing inductance
stator_Lm = mu_o*r*1/g * (N_POLE/2) * int( stator_windingFun_sin^2, phi, [0 2*pi] );
stator_Lm = vpa( subs(stator_Lm, [1 mu_o r g], [LENGTH uo RADIUS GAP]) ) % H

stator_Lm = 1.974

rotor_Lm = stator_Lm

rotor_Lm = 1.974

% stator-rotor mutual inductance
```

```
% stator-rotor mutual inductance
L_stator_rotor = mu_o*r*1/g * (N_POLE/2) *
int( stator_windingFun_sin*rotor_windingFun_sin, phi, [0 2*pi] );
L_stator_rotor = vpa( subs(L_stator_rotor, [1 mu_o r g], [LENGTH uo RADIUS GAP]) )
% H
```

 $L_stator_rotor = 1.974$

Composite Airgap MMF

```
syms I
stator_MMF = stator_windingFun_sin * I;
rotor_MMF = rotor_windingFun_sin * I;
composite_MMF = stator_MMF + rotor_MMF
```

```
composite_MMF = 100 \operatorname{I} \sin(2 \phi)
```

Find the location where MMF reaches its peak value

```
[peak_phi, peak_MMF] = fminbnd(@(phi) -sin(2*phi), 0, 2*pi); % Find the minimum of
the negative function
peak_MMF = -peak_MMF % Get the maximum value
```

```
peak MMF = 1.0000
```

% MATLAB does not have an fmaxbnd function because finding a maximum is simply a variant of finding a minimum, which is already handled by the function fminbnd. % To find the maximum, you can negate the function and use fminbnd to minimize the negated function.

Find peak MMF (symbolic)

```
total_MMF_peak = vpa( subs(composite_MMF, phi, peak_phi) )
```

```
{\tt total\_MMF\_peak = 100.0\,I}
```

Current

```
current = solve(total_MMF_peak==MMF_PEAK) % A
```

current = 31.83