





# Cardio Disease







### introduction

Cardiovascular diseases are the leading cause of death worldwide. In this "Cardio Disease" dataset, We'll use it to build classification models and try to analyze and gather the insights of a dataset and predict the possibility of a person having Cardiovascular disease based on various parameters specified in this dataset.





The cardiovascular disease dataset is found on Kaggle.

The data consists of 70,000 patient records and 13 features.







#### Tools





















## Project Workflow



Chiacking duplicate Converting age from days to years



Feature Engineering

Drop columns (weight - height).

Add new column (bmi).

Remove outliers



Classification







## Baseline

|                      | Score train | Score Test |
|----------------------|-------------|------------|
| LogisticRegression   | 0.716       | 0.719      |
| Polynomial(degree=2) | 0.708       | 0.710      |

# Model Scores

| Classifier              | Accuracy | F score | Precision | Recall |
|-------------------------|----------|---------|-----------|--------|
| Logistic Regression     | 0.720    | 0.714   | 0.747     | 0.684  |
| K-nearest neighbors     | 0.720    | 0.710   | 0.754     | 0.671  |
| Decision Tree           | 0.726    | 0.726   | 0.743     | 0.711  |
| Random Forest           | 0.669    | 0.681   | 0.671     | 0.691  |
| Extra Trees             | 0.647    | 0.661   | 0.650     | 0.671  |
| Bernoulli Naive Bayes   | 0.519    | 0.653   | 0.517     | 0.887  |
| Gaussian Naive<br>Bayes | 0.708    | 0.688   | 0.757     | 0.631  |





#### **Decision Tree**

| Accuracy | F score | Precision | Recall |
|----------|---------|-----------|--------|
| 0.726    | 0.726   | 0.743     | 0.711  |













































## Thanks!





