Base Integer Instructions: RV32I, RV64I, and RV128I							RV Privileged Instructions				
						Catagori			V mnemonic		
Category Name Loads Load Byte				TKV	[04,120]		Category CSR Acce				
Load Halfword			<mark>d,rs1,imm</mark> d,rs1,imm					omic Read & Set Bit		rd,csr,rsl	
Load Word				L{D Q}	rd,rs1,	imm		nic Read & Set Bit		rd,csr,rs1 rd,csr,rs1	
Load Byte Unsigned			d,rs1,imm	교(미(진)	Iu,ISI,	1111111	Aton	Atomic R/W Imm		•	
Load Half Unsigned			d,rs1,imm d,rs1,imm	L{W D}U	rd,rs1,	imm	Atomic [Read & Set Bit Imm		•	
Stores Store Byte			s1,rs2,imm	п(м р)о	Iu,ISI,	1111111		ad & Clear Bit Imm			
Store Halfword			s1,rs2,imm				Change I			IU, CSI, IRM	
Store Word			s1,132,1mm s1,rs2,imm	S{D Q}	rs1,rs2	imm	_	onment Breakpoint			
								•			
Shifts Shift Left			d,rs1,rs2	SLL{W D}	rd,rs1,			Environment Return			
Shift Left Immediate								lirect to Supervisor			
Shift Right			d,rs1,rs2	SRL{W D}	rd,rs1,			Trap to Hypervisor			
Shift Right Immediate			d,rs1,shamt	SRLI{W D}				Trap to Supervisor			
Shift Right Arithmetic			d,rs1,rs2	SRA{W D}	rd,rs1,			t Wait for Interrupt			
Shift Right Arith Imm			d,rs1,shamt	SRAI{W D}			MMU	Supervisor FENCE	SFENCE	.VM rsl	
Arithmetic ADD			d,rs1,rs2	ADD{W D}	rd,rs1,						
ADD Immediate SUBtract			d,rs1,imm	ADDI {W D}							
			d,rs1,rs2	SUB{W D}							
Load Upper Imm			d,imm			•	sed (16-	bit) Instruction			
Add Upper Imm to PC		AUIPC ro		Category	Name	Fmt		RVC		/I equivalent	
Logical XOR			d,rs1,rs2		oad Word	CL		rd',rs1',imm	1	rs1',imm*4,	
XOR Immediate	I	XORI ro	d,rs1,imm	Load	d Word SP	CI	C.LWSP	rd,imm	LW rd,	sp,imm*4	
OR	R	OR ro	d,rs1,rs2	Loa	ad Double	CL	C.LD	rd',rs1',imm	LD rd'	rs1′,imm*8,	
OR Immediate	e I	ORI ro	d,rs1,imm	Load I	Double SP	CI	C.LDSP	rd,imm	LD rd,	sp,imm*8	
AND	R	AND ro	d,rs1,rs2	L	oad Quad	CL	C.LQ	rd',rs1',imm	LQ rd'	rs1′,imm*16,	
AND Immediate	e I	ANDI ro	d,rs1,imm	Load	d Quad SP	CI	C.LQSP	rd,imm	LQ rd,	sp,imm*16	
Compare Set <	R	SLT	d,rs1,rs2	Stores St	ore Word	CS	C.SW	rs1′,rs2′,imm		',rs2',imm*4	
Set < Immediate	I		d,rs1,imm	Store	e Word SP	CSS	C.SWSP	rs2,imm	SW rs2	sp,imm*4	
Set < Unsigned	i R	SLTU ro	d,rs1,rs2	Sto	re Double	CS	C.SD	rs1′,rs2′,imm	SD rs1	',rs2',imm*8	
Set < Imm Unsigned	i I	SLTIU ro	d,rs1,imm	Store I	Double SP	CSS	C.SDSP	rs2,imm	SD rs2	sp,imm*8	
Branches Branch =	SB	BEQ rs	s1,rs2,imm	S	tore Quad	CS	C.SQ	rs1',rs2',imm	SQ rs1	',rs2',imm*16	
Branch ≠	SB	BNE rs	s1,rs2,imm	Store	Quad SP	CSS	C.SQSP	rs2,imm	SQ rs2	,sp,imm*16	
Branch <	SB		s1,rs2,imm	Arithmetic	ADD	CR	C.ADD	rd,rs1		rd,rd,rs1	
Branch ≥	SB	BGE rs	s1,rs2,imm	,	ADD Word	CR	C.ADDW	rd,rs1	ADDW	rd,rd,imm	
Branch < Unsigned	i SB	BLTU rs	s1,rs2,imm	ADD I	mmediate	CI	C.ADDI	rd,imm	ADDI	rd,rd,imm	
Branch ≥ Unsigned	i SB	BGEU rs	s1,rs2,imm	ADD V	Vord Imm	CI	C.ADDIW	rd,imm	ADDIW	rd,rd,imm	
Jump & Link J&L	UJ	JAL ro	d,imm	ADD SP	Imm * 16	CI	C.ADDI16	SP x0,imm	ADDI	sp,sp,imm*16	
Jump & Link Register		JALR ro	d,rs1,imm	ADD SF	Imm * 4	CIW	C.ADDI4S	PN rd',imm	ADDI	rd',sp,imm*4	
Synch Synch thread		FENCE		Load I	mmediate		C.LI	rd,imm	ADDI	rd,x0,imm	
Synch Instr & Data	I	FENCE.I		Load U	pper Imm		C.LUI	rd,imm	LUI	rd,imm	
System System CALL	I	SCALL			MoVe	CR	C.MV	rd,rs1	ADD	rd,rs1,x0	
System BREAK	I	SBREAK			SUB	CR	C.SUB	rd,rs1	SUB	rd,rd,rs1	
Counters ReaD CYCLE	I	RDCYCLE	rd	Shifts Shift		CI	C.SLLI	rd,imm	SLLI	rd,rd,imm	
ReaD CYCLE upper Hal	f I	RDCYCLE	H rd	Branches	Branch=0	СВ	C.BEQZ	rs1',imm	BEQ	rs1',x0,imm	
ReaD TIME		RDTIME	rd		Branch≠0	CB	C.BNEZ	rs1',imm	BNE	rs1',x0,imm	
ReaD TIME upper Hal	f I	RDTIMEH	rd	Jump	Jump	CJ	C.J	imm	JAL	x0,imm	
ReaD INSTR RETired	i I	RDINSTRE	ET rd		Register	CR	C.JR	rd,rs1	JALR	x0,rs1,0	
ReaD INSTR upper Hal	f I	RDINSTRE	ETH rd	Jump & Li	nk J&L	CJ	C.JAL	imm	JAL	ra,imm	
				Jump & Lin	k Register	CR	C.JALR	rs1	JALR	ra,rs1,0	
				System En	v. BREAK	CI	C.EBREAK		EBREAK		
				u				it (DVC) Inches			

32-bit Instruction Formats

	31	30	25	24	21	20	19	15	14	12 11	8	7	6	0	CR
R		funct7			rs2		rs1		funct3	3	r	d	opco	ode	CI
Ι			imm[1	1:0]			rs1		funct3	3	r	d	opco	ode	CSS
S	in	nm[11:5]			rs2		rs1		funct3	3	imm	[4:0]	opco	ode	CIW
SB	imm[12	imm	[10:5]		rs2		rs1		funct3	3 imr	n[4:1]	imm[11]	opco	ode	CL
U				imr	n[31:	12]					r	d	opco	ode	CS
UJ	imm[20		imm[10):1]	i	mm[11]	im	n[19	:12]		r	d	opco	ode	СВ
										•					CJ

16-DIT (RVC) INSTRUCTION FORMATS													
	15 14 13	12	11 10		7		5	4	3	2	1	0	
	func	t4	ro	rs2					op				
.	funct3	imm	r	d/rs1			j	mm	op				
۱.	funct3		imm	ı				op					
7	funct3		j	mm				rd'			op		
	funct3	im	m	rs1'		im	mm rd'					op	
Ī	funct3	im	m	rs1'							0]	p	
Ī	funct3	off	set	rs1' offset							0]	р	
	funct3			jump	targ	get					op		

RISC-V Integer Base (RV32I/64I/128I), privileged, and optional compressed extension (RVC). Registers x1-x31 and the pc are 32 bits wide in RV32I, 64 in RV64I, and 128 in RV128I (x0=0). RV64I/128I add 10 instructions for the wider formats. The RVI base of <50 classic integer RISC instructions is required. Every 16-bit RVC instruction matches an existing 32-bit RVI instruction. See risc.org.

Free & Open RISC-V Reference Card (riscv.org)

				Multiply-Divide	Instruc			
Category	Name	Fmt		ltiply-Divide)			64,128}	
Multiply	MULtiply	R	MUL	rd,rs1,rs2	MUL{W D	}	rd,rs1,rs2	
	MULtiply upper Half		MULH	rd,rs1,rs2				
	Ltiply Half Sign/Uns		MULHSU	rd,rs1,rs2				
	tiply upper Half Uns		MULHU	rd,rs1,rs2		_		
Divide	DIVide	R	DIV	rd,rs1,rs2	DIA{M D	}	rd,rs1,rs2	
D !	DIVide Unsigned		DIVU	rd,rs1,rs2	D 2014 457 D		1 1 0	
Remainde		R	REM	rd,rs1,rs2	REM{W D	•	rd,rs1,rs2	
ŀ	REMainder Unsigned	R	REMU	rd,rs1,rs2	REMU { W 1	D}	rd,rs1,rs2	
				uction Extension	n: RVA	. 51/6	C4 4203	
Category	Name	Fmt		(Atomic)	TD (D)0		64,128}	
Load	Load Reserved	R	LR.W	rd,rs1	LR.{D Q	•	rd,rs1	
Store	Store Conditional	R	SC.W	rd,rs1,rs2	SC.{D Q		rd,rs1,rs2	
Swap Add	SWAP	R R	AMOSWAP.W AMOADD.W	rd,rs1,rs2			rd,rs1,rs2	
Logical	ADD XOR		AMOXOR.W	rd,rs1,rs2 rd,rs1,rs2	AMOADD. AMOXOR.		rd,rs1,rs2 rd,rs1,rs2	
Logical	AND	R	AMOAND.W		AMOAND.		rd,rs1,rs2	
	OR	R	AMOOR.W	rd,rs1,rs2 rd,rs1,rs2				
201 (20					AMOOR. {		rd,rs1,rs2	
Min/Max	MINimum	R	AMOMIN.W	rd,rs1,rs2	AMOMIN.		rd,rs1,rs2	
	MAXimum	R	AMOMAX.W	rd,rs1,rs2	AMOMAX.		rd,rs1,rs2	
	MINimum Unsigned	R	AMOMINU.W	rd,rs1,rs2			rd,rs1,rs2	
	MAXimum Unsigned	R	AMOMAXU.W	rd,rs1,rs2			rd,rs1,rs2	
	ree Optional Fl				ns: RVF,			
Category	Name	Fmt	(() (64,128}	
Move	Move from Integer	R	FMV. {H S}.X	rd,rs1	FMV.{D		rd,rs1	
C	Move to Integer	R	FMV.X.{H S}	rd,rs1	FMV.X.		rd,rs1	
Convert	Convert from Int	R	FCVT. $\{H \mid S \mid D \mid Q\}$		FCVT. {H			
Conver	t from Int Unsigned		FCVT. $\{H \mid S \mid D \mid Q\}$.				$\{L T\}U \text{ rd,rs1}$ $\{S D Q\} \text{ rd,rs1}$	
Cam	Convert to Int	R R	FCVT.W. {H S D Q FCVT.WU. {H S D					
	vert to Int Unsigned		1		rcvi. {L	1130.{1	H S D Q rd,rs1	
Load	Load	I	FL{W,D,Q}	rd,rs1,imm	D	ADLNI		ng Convention
Store Arithmetic	Store ADD	S R	FS{W,D,Q}	rs1,rs2,imm	Register x0		ne Saver	Description Hard-wired zero
Aircinicus	SUBtract		FADD. $\{S \mid D \mid Q\}$ FSUB. $\{S \mid D \mid Q\}$	rd,rs1,rs2 rd,rs1,rs2	x0 x1	zero	Caller	Return address
	MULtiply	R	FMUL. $\{S D Q\}$	rd,rs1,rs2	x2	ra	Callee	Stack pointer
	DIVide		FDIV. {S D Q}	rd,rs1,rs2	x3	sp		Global pointer
	SQuare RooT	R		rd,rs1	x4	gp tp		Thread pointer
Mul-Add	Multiply-ADD	R	FMADD. $\{S \mid D \mid Q\}$	rd,rs1,rs2,rs3	x5-7	t0-2		Temporaries
	Multiply-SUBtract			rd,rs1,rs2,rs3	x8	s0/fp		Saved register/frame pointer
Negativ	e Multiply-SUBtract		FNMSUB. $\{S \mid D \mid Q\}$		x9	s1	Callee	Saved register
_	gative Multiply-ADD			rd,rs1,rs2,rs3		a0-1		Function arguments/return values
Sign Injec		R	FSGNJ. $\{S \mid D \mid Q\}$		x12-17	a2-7		Function arguments
	egative SiGN source	R	FSGNJN. $\{S D Q\}$		x18-27	s2-11		Saved registers
	Xor SiGN source	R	FSGNJX. $\{S D Q\}$		x28-31	t3-t6		Temporaries
Min/Max	MINimum	R	FMIN. $\{S \mid D \mid Q\}$	rd,rs1,rs2	f0-7	ft0-7		FP temporaries
	MAXimum		FMAX. $\{S \mid D \mid Q\}$	rd,rs1,rs2	f8-9	fs0-1		FP saved registers
Compare	Compare Float =		$FEQ.{S D Q}$	rd,rs1,rs2	f10-11	fa0-1		FP arguments/return values
1	Compare Float <		FLT. {S D Q}	rd,rs1,rs2	f12-17	fa2-7		FP arguments
	Compare Float ≤		FLE. {S D Q}	rd,rs1,rs2	f18-27	fs2-11		FP saved registers
Categoriza	ation Classify Type	R	FCLASS. {S D Q}		f28-31	ft8-11		FP temporaries
	tion Read Status	R	FRCSR	rd	-20 01	1 - 0 0 1 -		
	ead Rounding Mode		FRRM	rd				
'`	Read Flags		FRFLAGS	rd				
	Swap Status Reg		FSCSR	rd,rs1				
S	wap Rounding Mode		FSRM	rd,rs1				
	Swap Flags		FSFLAGS	rd,rs1				
Swan F	Rounding Mode Imm		FSRMI	rd,imm				
Swap	Swap Flags Imm		FSFLAGSI	rd,imm				
	Swap i lags Illilli		I DI TUGOT	T C I THUN	Ш			

RISC-V calling convention and five optional extensions: 10 multiply-divide instructions (RV32M); 11 optional atomic instructions (RV32A); and 25 floating-point instructions each for single-, double-, and quadruple-precision (RV32F, RV32D, RV32Q). The latter add registers f0-f31, whose width matches the widest precision, and a floating-point control and status register fcsr. Each larger address adds some instructions: 4 for RVM, 11 for RVA, and 6 each for RVF/D/Q. Using regex notation, {} means set, so L{D|Q} is both LD and LQ. See risc.org. (8/21/15 revision)