Optimization - Existence

Let us consider the optimization problem

zir

Find 3. = inf [G 2(t). 2(t) dt

3 EH2 ((0,111), R")

under the constraint

h_Z_ (|det(3(t)|3(t)|Tk+2|Tk+2)dt)fk + ho Z_ (|det(3(t)|3(t)|Tk|Tu)dt |fk+3 k = N3 J

To simplify, notation, let us denote by V the set of functions in $H^{4}_{\#}(J,R^{4})$, which satisfies the constraint.

1) T.s.: V + 0.

Recall that Idet Ag (AhAg) op = I willing,
where $w := (w_n)_n$ and $u := (u_n)_n$ are the
transformed Fourier coefficients of $u^T 3$, fince
any $w \in iR^n$ can be written as the
hum of two simple bivectors, it is
always possible to find such Fourier coefficients.

 $d = \inf_{z \in V} \int_{z} G\dot{z}(t) \cdot \dot{z}(t) dt$

exists, and we can find a jequence (3m), CV such that

G(3n) to d, n - + x.

3) Note that G is a norm on \$\frac{1}{4}(J,R^4).

Indeed, by Poincaré's inequality, there exists

four constant C>0 man that

 $\forall 3 \in \mathbb{H}^{2}_{\#}(3,\mathbb{R}^{n}) : \|3\|_{L^{2}} \leq C \|3\|_{L^{2}}.$ If we denote \mathcal{H}_{-} the smallest eigenvalue, one readily finds that

Hence, we have in particular for nHence, we have in particular for nSufficiently large that

 $\|\beta\|^2_{H^{\frac{1}{2}}} \qquad \underline{L2}\left(\frac{1+c^2}{76}\right) \alpha$

4) fince (3n) CV is bounded, there exists a weakly convergent subsequence $3n_k$ $\rightarrow 3\infty$ in $4^2_{\#}$

Q: Why is V closed under weak convergence?

5) fince G is a norm and thus awar semi-continuous with respect to weak convergence, it follows that which $\alpha = G(300) =$

4) Par équivalence des nous 13/1/42 et 1/3/1/2,

4) (The equivalence of the H²-norm and the equivalence implies that 12-norm of the derivative implies that 3m — L² 3m.) By the Rollich-Kondrachen Theorem, we have 3m → 300 for at boast a subsequence.

We wed the Theorem:

 $\frac{Thur}{U_{N}}: U_{N} \xrightarrow{L^{2}} U_{\infty} \longrightarrow \int U_{N}U_{N} \xrightarrow{N \to \infty} \int U_{N}U_{\infty}.$

Proof. (Un) n C L² bounded due to weak convergence.

un vn - un vo = un (vn - vn) + (un - un/vn)

=> | [| unon - va va] | = | un| 2 | vn - va | 2

bounded 00

to [(un -up) vn]