Naive Bayes Classifier

Bayes' Theorem

Bayes' Theorem is a fundamental concept in probability theory and statistics that describes the likelihood of an event based on prior knowledge of conditions related to the event. It provides a way to update the probability of a hypothesis (event) given new evidence.

The formula for Bayes' Theorem is:

```
P(A|B) = [P(B|A) * P(A)] / P(B)
Where:
```

- P(A|B) is the **posterior probability**: the probability of event A occurring given that B is true.
- P(B|A) is the **likelihood**: the probability of event B occurring given that A is
- P(A) is the **prior probability**: the initial probability of event A before considering B.
- P(B) is the **evidence**: the probability of event B.

Naive Bayes Classifier

The **Naive Bayes classifier** is a probabilistic machine learning model based on Bayes' Theorem. It's called "naive" because it assumes that the features are conditionally independent of each other given the class label, which rarely holds in real-life situations. Despite this naive assumption, Naive Bayes works surprisingly well in many complex real-world tasks, especially in text classification, spam filtering, and sentiment analysis.

Bayes' Theorem in Naive Bayes Classification

In a classification problem, Bayes' Theorem is used to compute the probability of a given class C given a set of features X = (x1, x2, ..., xn):

$$P(C|X) = [P(X|C) * P(C)] / P(X)$$

Since P(X) is the same for all classes and does not affect the classification, we focus on maximizing the numerator:

$$P(C|X) \propto P(C) * P(X|C)$$

Now, under the Naive assumption (i.e., all features are conditionally independent):

$$P(X|C) = P(x1|C) * P(x2|C) * ... * P(xn|C)$$

Thus, the classifier predicts the class that maximizes:

$$P(C) * P(x1|C) * P(x2|C) * ... * P(xn|C)$$

Steps in Naive Bayes Classification:

- 1. Calculate Prior Probabilities (P(C)): This is the proportion of each class in the training dataset.
- 2. Calculate Likelihood (P(xi|C)): This is the likelihood of each feature given each class.
- 3. **Predict Class**: For a new example, calculate the posterior probability for each class, then predict the class with the highest probability.

Assumptions of Naive Bayes

- 1. **Conditional Independence**: The key assumption is that the features are independent of each other given the class label. This is often not true in practice, but Naive Bayes performs well despite this limitation.
- 2. Feature Contribution: All features contribute equally to the outcome.

Types of Naive Bayes Classifiers

1. Gaussian Naive Bayes:

- Assumes that the continuous values associated with each feature follow a Gaussian (normal) distribution.
- Used for continuous data.
- **Example**: Predicting if a person will purchase a product based on age and salary.

Formula:

```
P(x|C) = (1 / sqrt(2 * \pi * \sigma^2)) * exp(-(x - \mu)^2 / (2 * \sigma^2))
```

Where μ is the mean and σ is the standard deviation of the feature.

2. Multinomial Naive Bayes:

- Used for discrete features like word counts in text classification (e.g., spam detection, sentiment analysis).
- **Example**: Classifying an email as spam or not spam based on the frequency of certain words.

3. Bernoulli Naive Bayes:

- Used for binary or boolean features.
- Assumes that features are binary (e.g., presence or absence of a word).
- **Example**: Sentiment analysis with binary word presence (whether a word appears in the document or not).

Example of Naive Bayes Classifier

Let's consider a **spam classification** example using a **Multinomial Naive Bayes classifier**. Assume you have a dataset with emails labeled as either "spam" or "not spam" and a set of words that appear in these emails.

1. Prior Probability (P(C)):

- Suppose 30% of the emails in the dataset are labeled as "spam" and 70% as "not spam".
- P(spam) = 0.30
- P(not spam) = 0.70

2. Likelihood (P(X|C)):

- Assume you have two words: "buy" and "free". The likelihood of these words given the class is calculated from the training data.
- P(buy|spam) = 0.4, P(free|spam) = 0.8
- P(buy|not spam) = 0.1, P(free|not spam) = 0.05

3. Prediction:

- Given a new email containing the words "buy" and "free", we calculate the posterior probabilities:
 - P(spam|buy, free) ∝ P(spam) * P(buy|spam) *
 P(free|spam)
 - P(not spam|buy, free) ∝ P(not spam) * P(buy|not spam)
 * P(free|not spam)

After calculating both probabilities, the class with the higher probability will be the predicted label for the email.

Advantages of Naive Bayes

- Fast and Efficient: It is computationally efficient and works well with large datasets.
- Performs Well with Small Data: It doesn't require large training datasets to perform well.
- **Performs Well with High-Dimensional Data**: Particularly useful for text classification tasks, which often involve many features (words).

Disadvantages of Naive Bayes

- Independence Assumption: The assumption that features are conditionally independent is often unrealistic in many practical scenarios. While Naive Bayes performs well despite this, it can be suboptimal when features are highly correlated.
- Zero Frequency Problem: If a categorical feature in the test data has a value
 that was not observed in the training data, the model assigns zero probability to
 that event. This issue is typically handled by techniques like Laplace
 Smoothing.

Conclusion

Naive Bayes is an efficient, interpretable, and widely used classification algorithm, particularly for text classification tasks. Its simplicity, coupled with surprisingly good performance despite its naive assumptions, makes it a powerful tool in many situations.

Docs: https://scikit-learn.org/stable/modules/naive_bayes.html

Import of all the required libraries

```
In [1]: import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
```

Create a dataframe

```
In [2]: dataframe = pd.read_csv("./diabetes.csv")
    dataframe.head()
```

Out[2]:		Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin	ВМІ	DiabetesPed
	0	6	148	72	35	0	33.6	
	1	1	85	66	29	0	26.6	
	2	8	183	64	0	0	23.3	
	3	1	89	66	23	94	28.1	
	4	0	137	40	35	168	43.1	

```
In [3]: dataframe.columns
```

```
In [4]: dataframe.dtypes
```

```
Out[4]: Pregnancies
                                        int64
         Glucose
                                        int64
                                        int64
         BloodPressure
         SkinThickness
                                        int64
         Insulin
                                        int64
         BMI
                                      float64
         DiabetesPedigreeFunction
                                      float64
         Age
                                        int64
         Outcome
                                        int64
         dtype: object
```

Missing values in a given dataset

```
In [5]: dataframe.isnull().sum()
```

Out[5]:	Pregnancies	0
	Glucose	0
	BloodPressure	0
	SkinThickness	0
	Insulin	0
	BMI	0
	DiabetesPedigreeFunction	0
	Age	0
	Outcome	0
	dtype: int64	

In [6]: dataframe.head(20)

Out[6]:		Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin	ВМІ	DiabetesPe
	0	6	148	72	35	0	33.6	

0	6	148	72	35	0	33.6	
1	1	85	66	29	0	26.6	
2	8	183	64	0	0	23.3	
3	1	89	66	23	94	28.1	
4	0	137	40	35	168	43.1	
5	5	116	74	0	0	25.6	
6	3	78	50	32	88	31.0	
7	10	115	0	0	0	35.3	
8	2	197	70	45	543	30.5	
9	8	125	96	0	0	0.0	
10	4	110	92	0	0	37.6	
11	10	168	74	0	0	38.0	
12	10	139	80	0	0	27.1	
13	1	189	60	23	846	30.1	
14	5	166	72	19	175	25.8	
15	7	100	0	0	0	30.0	
16	0	118	84	47	230	45.8	
17	7	107	74	0	0	29.6	
18	1	103	30	38	83	43.3	
19	1	115	70	30	96	34.6	

- Data Imputation of 0's in every feature
- Size of the data

In [7]: dataframe.shape

Out[7]: (768, 9)

- Target Column: Outcome[0,1] (Binary Classification Task)
- As the target column is available in the dataset, supervised machine learning algorithm.
- Records: 768

Correlation Coefficient

In [8]: dataframe.corr()

0 1	$\Gamma \cap I$	
11111	1 9 1	-
17111	-101	-

	Pregnancies	Glucose	BloodPressure	SkinThickness	
Pregnancies	1.000000	0.129459	0.141282	-0.081672	-1
Glucose	0.129459	1.000000	0.152590	0.057328	
BloodPressure	0.141282	0.152590	1.000000	0.207371	(
SkinThickness	-0.081672	0.057328	0.207371	1.000000	(
Insulin	-0.073535	0.331357	0.088933	0.436783	
ВМІ	0.017683	0.221071	0.281805	0.392573	
DiabetesPedigreeFunction	-0.033523	0.137337	0.041265	0.183928	
Age	0.544341	0.263514	0.239528	-0.113970	-
Outcome	0.221898	0.466581	0.065068	0.074752	

```
In [9]: plt.figure(figsize=(15,15))
    ax = sns.heatmap(dataframe.corr(), annot=True)
    plt.savefig('correlation-coefficient.jpg')
    plt.show()
```


Descriptive Statistics of the given data

In [10]: dataframe.describe()

Out[10]:

		Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin	
cou	ınt	768.000000	768.000000	768.000000	768.000000	768.000000	768.0
me	an	3.845052	120.894531	69.105469	20.536458	79.799479	31.9
s	td	3.369578	31.972618	19.355807	15.952218	115.244002	7.8
m	nin	0.000000	0.000000	0.000000	0.000000	0.000000	0.0
25	5%	1.000000	99.000000	62.000000	0.000000	0.000000	27.3
50	%	3.000000	117.000000	72.000000	23.000000	30.500000	32.0
75	%	6.000000	140.250000	80.000000	32.000000	127.250000	36.6
m	ах	17.000000	199.000000	122.000000	99.000000	846.000000	67.1

Data Imputation

In [11]: # Pregnancies -> Median sns.distplot(dataframe.Pregnancies)

/var/folders/8h/zprf7hjs319_78816p34b90c0000gn/T/ipykernel_96515/325720374 0.py:2: UserWarning:

`distplot` is a deprecated function and will be removed in seaborn v0.14.

Please adapt your code to use either `displot` (a figure-level function wi th

similar flexibility) or `histplot` (an axes-level function for histogram
s).

For a guide to updating your code to use the new functions, please see https://gist.github.com/mwaskom/de44147ed2974457ad6372750bbe5751

sns.distplot(dataframe.Pregnancies)

Out[11]: <Axes: xlabel='Pregnancies', ylabel='Density'>

In [12]: ## BP -> Mean
sns.distplot(dataframe.BloodPressure)

/var/folders/8h/zprf7hjs319_78816p34b90c0000gn/T/ipykernel_96515/89164806 8.py:2: UserWarning:

`distplot` is a deprecated function and will be removed in seaborn v0.14.

Please adapt your code to use either `displot` (a figure-level function wi th

similar flexibility) or `histplot` (an axes-level function for histogram
s).

For a guide to updating your code to use the new functions, please see https://gist.github.com/mwaskom/de44147ed2974457ad6372750bbe5751

sns.distplot(dataframe.BloodPressure)

Out[12]: <Axes: xlabel='BloodPressure', ylabel='Density'>

In [13]: # Insulin -> Median
sns.distplot(dataframe.Insulin)

/var/folders/8h/zprf7hjs319_78816p34b90c0000gn/T/ipykernel_96515/257615224 7.py:2: UserWarning:

`distplot` is a deprecated function and will be removed in seaborn v0.14.

Please adapt your code to use either `displot` (a figure-level function wi th

similar flexibility) or `histplot` (an axes-level function for histogram
s).

For a guide to updating your code to use the new functions, please see https://gist.github.com/mwaskom/de44147ed2974457ad6372750bbe5751

sns.distplot(dataframe.Insulin)

Out[13]: <Axes: xlabel='Insulin', ylabel='Density'>


```
In [14]: dataframe.columns
```

In [15]: ## Insuline -> Right skewed distribution
dataframe['Insulin'] = dataframe['Insulin'].replace(0, dataframe['Insulin'])

In [16]: sns.distplot(dataframe.Glucose)

/var/folders/8h/zprf7hjs319_78816p34b90c0000gn/T/ipykernel_96515/223043267 7.py:1: UserWarning:

`distplot` is a deprecated function and will be removed in seaborn v0.14.0.

Please adapt your code to use either `displot` (a figure-level function with

similar flexibility) or `histplot` (an axes-level function for histogram
s).

For a guide to updating your code to use the new functions, please see https://gist.github.com/mwaskom/de44147ed2974457ad6372750bbe5751

sns.distplot(dataframe.Glucose)

Out[16]: <Axes: xlabel='Glucose', ylabel='Density'>

In [17]: sns.distplot(dataframe.BMI)

/var/folders/8h/zprf7hjs319_78816p34b90c0000gn/T/ipykernel_96515/252098079 3.py:1: UserWarning:

`distplot` is a deprecated function and will be removed in seaborn v0.14.

Please adapt your code to use either `displot` (a figure-level function wi th

similar flexibility) or `histplot` (an axes-level function for histogram
s).

For a guide to updating your code to use the new functions, please see https://gist.github.com/mwaskom/de44147ed2974457ad6372750bbe5751

sns.distplot(dataframe.BMI)

Out[17]: <Axes: xlabel='BMI', ylabel='Density'>

In [18]: sns.distplot(dataframe.SkinThickness)

/var/folders/8h/zprf7hjs319_78816p34b90c0000gn/T/ipykernel_96515/386125304 5.py:1: UserWarning:

`distplot` is a deprecated function and will be removed in seaborn v0.14.

Please adapt your code to use either `displot` (a figure-level function wi th

similar flexibility) or `histplot` (an axes-level function for histogram
s).

For a guide to updating your code to use the new functions, please see https://gist.github.com/mwaskom/de44147ed2974457ad6372750bbe5751

sns.distplot(dataframe.SkinThickness)

Out[18]: <Axes: xlabel='SkinThickness', ylabel='Density'>

In [19]: sns.distplot(dataframe.DiabetesPedigreeFunction)

/var/folders/8h/zprf7hjs319_78816p34b90c0000gn/T/ipykernel_96515/264275873 4.py:1: UserWarning:

`distplot` is a deprecated function and will be removed in seaborn v0.14.

Please adapt your code to use either `displot` (a figure-level function wi th

similar flexibility) or `histplot` (an axes-level function for histogram
s).

For a guide to updating your code to use the new functions, please see https://gist.github.com/mwaskom/de44147ed2974457ad6372750bbe5751

sns.distplot(dataframe.DiabetesPedigreeFunction)

Out[19]: <Axes: xlabel='DiabetesPedigreeFunction', ylabel='Density'>

In [20]: sns.distplot(dataframe.Age)

/var/folders/8h/zprf7hjs319_78816p34b90c0000gn/T/ipykernel_96515/269143098 7.py:1: UserWarning:

`distplot` is a deprecated function and will be removed in seaborn v0.14.

Please adapt your code to use either `displot` (a figure-level function wi th

similar flexibility) or `histplot` (an axes-level function for histogram
s).

For a guide to updating your code to use the new functions, please see https://gist.github.com/mwaskom/de44147ed2974457ad6372750bbe5751

sns.distplot(dataframe.Age)

Out[20]: <Axes: xlabel='Age', ylabel='Density'>

In [21]: dataframe['Pregnancies'] = dataframe['Pregnancies'].replace(0, dataframe[
 dataframe['Glucose'] = dataframe['Glucose'].replace(0, dataframe['Glucose
 dataframe['BloodPressure'] = dataframe['BloodPressure'].replace(0, datafr
 dataframe['SkinThickness'] = dataframe['SkinThickness'].replace(0, datafr
 dataframe['BMI'] = dataframe['BMI'].replace(0, dataframe['BMI'].mean())
 dataframe['DiabetesPedigreeFunction'] = dataframe['DiabetesPedigreeFuncti
 dataframe['Age'] = dataframe['Age'].replace(0, dataframe['Age'].median())

In [22]: dataframe.head(20)

Out[22]:

	Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin	ВМІ	Diabe
0	6	148.0	72.000000	35	30.5	33.600000	
1	1	85.0	66.000000	29	30.5	26.600000	
2	8	183.0	64.000000	23	30.5	23.300000	
3	1	89.0	66.000000	23	94.0	28.100000	
4	3	137.0	40.000000	35	168.0	43.100000	
5	5	116.0	74.000000	23	30.5	25.600000	
6	3	78.0	50.000000	32	88.0	31.000000	
7	10	115.0	69.105469	23	30.5	35.300000	
8	2	197.0	70.000000	45	543.0	30.500000	
9	8	125.0	96.000000	23	30.5	31.992578	
10	4	110.0	92.000000	23	30.5	37.600000	
11	10	168.0	74.000000	23	30.5	38.000000	
12	10	139.0	80.000000	23	30.5	27.100000	
13	1	189.0	60.000000	23	846.0	30.100000	
14	5	166.0	72.000000	19	175.0	25.800000	
15	7	100.0	69.105469	23	30.5	30.000000	
16	3	118.0	84.000000	47	230.0	45.800000	
17	7	107.0	74.000000	23	30.5	29.600000	
18	1	103.0	30.000000	38	83.0	43.300000	
19	1	115.0	70.000000	30	96.0	34.600000	

- Descriptive Statistics and it's significance
- Correlation Coefficient and it's significance
- Types of Distribution and it's significance
- Median is more robuts to outliers and why
- Data Imputation via Mean and Median(Numeric Data) => Symmetric -> Mean and Skewed -> Median, Categorical Data => Mode

```
In [23]: ## X -> input features y -> target value
X = dataframe.drop(columns='Outcome', axis=1)
y = dataframe['Outcome']
```

Outlier Detection -> Box Plot

```
In [24]: fig, ax = plt.subplots(figsize = (15, 15))
sns.boxplot(data = X, ax=ax)
plt.savefig('boxPlot.jpg')
```



```
In [25]: X.shape
Out[25]: (768, 8)
In [26]: y.shape
Out[26]: (768,)
In [27]: cols = ['Pregnancies', 'Glucose', 'BloodPressure', 'SkinThickness', 'Insu
         for col in cols:
             Q1 = X[col].quantile(0.25)
             Q3 = X[col].quantile(0.75)
             IQR = Q3 - Q1
             lower_bound = Q1 - 1.5 * IQR
             upper_bound = Q3 + 1.5 * IQR
             mask = (X[col] >= lower_bound) & (X[col] <= upper_bound)
In [28]: X_outlier_detection = X[mask]
         y_outlier_detection = y[mask]
In [29]: X_outlier_detection.shape
Out[29]: (759, 8)
```

```
In [30]: y outlier detection shape
Out[30]: (759,)
         Standardization
         Standard Normal Form -> Mean = 0 and standard deviation = 1
In [31]: from sklearn.preprocessing import StandardScaler
         scaler = StandardScaler()
         X_scaled = scaler.fit_transform(X_outlier_detection)
In [32]: X_scaled
Out[32]: array([[ 0.57322173, 0.87008298, -0.01698412, ..., 0.16090077,
                   0.46879263, 1.54828125],
                 [-1.0797999, -1.20656984, -0.51093456, ..., -0.85816238,
                  -0.36177415, -0.16252742],
                 [ 1.23443039, 2.02377899, -0.6755847 , ..., -1.33857787,
                   0.60421113, -0.07248486],
                 . . . ,
                 [0.2426174, -0.01991109, -0.01698412, ..., -0.91639456,
                  -0.68075995, -0.25256998],
                 [-1.0797999, 0.14490263, -1.00488499, ..., -0.3486308,
                 -0.36779275, 1.27815356],
                 [-1.0797999, -0.9428679, -0.18163427, ..., -0.30495667,
                  -0.47010895, -0.88286791]])
In [33]: fig, ax = plt.subplots(figsize = (15, 15))
         sns.boxplot(data = X_scaled, ax=ax)
         plt.savefig('boxPlot.jpg')
```


Out[37]:

Insuli	SkinThickness	BloodPressure	Glucose	Pregnancies	
7.590000e+0:	7.590000e+02	7.590000e+02	7.590000e+02	7.590000e+02	count
-4.329724e 1	-1.509552e-16	-3.042508e-17	-3.978665e-17	1.029772e-16	mean
1.000659e+00	1.000659e+00	1.000659e+00	1.000659e+00	1.000659e+00	std
-7.684941e 0	-2.200901e+00	-3.968588e+00	-2.558042e+00	-1.079800e+00	min
-6.126688e 0	-4.729631e-01	-6.755847e-01	-7.286101e-01	-7.491956e-01	25%
-5.607270e 0	-4.729631e-01	-1.698412e-02	-1.517621e-01	-4.185912e-01	50%
3.222827e-0	4.990017e-01	6.416165e-01	6.063810e-01	5.732217e-01	75%
7.088876e+00	7.734740e+00	4.099270e+00	2.551183e+00	4.209869e+00	max

- Approach 2 of quantiles to remove the outliers
- Handling of imbalanced data

```
In [38]: fig, ax = plt.subplots(figsize = (15, 15))
sns.boxplot(data = X_scaled, ax=ax)
plt.savefig('boxPlot.jpg')
```


In [39]: y_outlier_detection.shape

Out[39]: (759,)

In [40]: y_outlier_detection.value_counts()

Out[40]: Outcome

0 493 1 266

Name: count, dtype: int64

Concluding:

- Detection of the outliers
- Normalization via StandardScaler Form & Why it is important(reduce the biasness in the model)

Approach 2: Quantiles

In [41]: X_scaled.reset_index(drop=True, inplace=True)
 y_outlier_detection.reset_index(drop=True, inplace=True)

```
In [42]: q = X_scaled['Insulin'].quantile(.95)
          mask = X_scaled['Insulin'] < q</pre>
          dataNew = X_scaled[mask]
          y_outlier_detection = y_outlier_detection[mask]
In [43]: dataNew.shape
Out[43]: (721, 8)
In [44]: y_outlier_detection.shape
Out[44]: (721,)
In [45]: fig, ax = plt.subplots(figsize = (15, 15))
          sns.boxplot(data = dataNew, ax=ax)
          plt.savefig('boxPlot.jpg')
             Pregnancies
                                           SkinThickness
                        Glucose
                                 BloodPressure
                                                       Insulin
                                                                       DiabetesPedigreeFunction
```

Model Training

Splitting of data into training and testing

```
In [46]: from sklearn.model_selection import train_test_split
```

```
X_train, X_test, y_train, y_test = train_test_split(dataNew, y_outlier_de
In [47]: X_train.shape
Out [47]: (483, 8)
In [48]: X_test.shape
Out[48]: (238, 8)
         Data Imbalancing

    Oversampling: Minority Class and increase that number to the majority class

           • Undersampling: Majority class and decrease that number to the minority class

    SMOTE: Synthetic data and increase the number of samples to the majority

             class
In [49]: y_train.value_counts()
Out[49]: Outcome
               318
          1
               165
          Name: count, dtype: int64
         SMOTE Technique
In [50]: from imblearn.over_sampling import SMOTE
         smote = SMOTE(random_state=42)
         X_train_resampled, y_train_resampled = smote.fit_resample(X_train, y_trai
         # Check resampled class distribution
         print("\nResampled class distribution:")
         print(pd.Series(y_train_resampled).value_counts())
        Resampled class distribution:
        Outcome
             318
        1
             318
        Name: count, dtype: int64
In [51]: from sklearn.linear_model import LogisticRegression
          classification = LogisticRegression()
         classification.fit(X_train_resampled, y_train_resampled)
Out[51]:
              LogisticRegression
         LogisticRegression()
         Model Predictions
In [52]: y_predictions = classification.predict(X_test)
         print(y_predictions)
```

Model Evaluation

```
In [53]: from sklearn.metrics import accuracy_score
accuracy_score(y_test, y_predictions)
```

Out[53]: 0.7478991596638656

Healthcare: Recall is very important metric

```
In [54]: from sklearn.metrics import classification_report
   target_names = ['Non-Diabetic', 'Diabetic']
   print(classification_report(y_test, y_predictions, target_names=target_names)
```

	precision	recall	T1-score	support
Non-Diabetic	0.85	0.76	0.80	159
MOII-DIADELIC	0.03	0.70	0.00	139
Diabetic	0.60	0.72	0.66	79
accuracy			0.75	238
macro avg	0.72	0.74	0.73	238
weighted avg	0.76	0.75	0.75	238

```
In [55]: import pickle
pickle.dump(classification, open("classification_model.pkl", "wb"))
```

```
In [56]: classification_model = pickle.load(open("classification_model.pkl", "rb")
    classification_model.predict(X_test)
```

Model Training: KNNClassifier Model

```
In [57]: from sklearn.neighbors import KNeighborsClassifier, KNeighborsRegressor
    from sklearn.metrics import classification_report, confusion_matrix
    knn = KNeighborsClassifier()
```

```
In [58]: knn.fit(X_train_resampled, y_train_resampled)
```

```
Out[58]: ▼ KNeighborsClassifier □ ②
KNeighborsClassifier()
```

Model Prediction

```
In [59]: y_prediction_knn = knn.predict(X_test)
         y_prediction_knn
Out[59]: array([0, 1, 0, 0, 0, 1, 0, 1, 1, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1,
                0, 0, 1, 0, 1, 0, 0, 1, 0, 1, 1, 1, 0, 1, 0, 0, 1, 0, 1, 0,
                0, 0, 1, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 1, 1, 0,
                1, 1, 1, 1, 1, 0, 1, 0, 1, 0, 1, 1, 0, 1, 1, 0, 0, 1, 0, 0, 1, 0,
                1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1,
                                                                0, 0, 1, 1, 0,
                 1, 0, 0, 1, 1, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0,
                                                                 0, 0, 0, 0, 1,
                1, 1, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 1,
                0, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 0, 1, 0, 0, 1, 0, 0, 0, 1,
                1, 1, 1, 1, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 1, 1, 0, 1, 1,
                0, 1, 0, 1, 0, 1, 1, 0, 0, 1, 0, 0, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1,
                0, 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 1, 1])
         print("Confusion Matrix")
In [60]:
         print(confusion_matrix(y_test, y_prediction_knn))
        Confusion Matrix
        [[103 56]
         [ 19 60]]
In [61]: print("Classification Report")
         print(classification_report(y_test, y_prediction_knn))
        Classification Report
```

	precision	recall	f1-score	support
0	0.84 0.52	0.65 0.76	0.73 0.62	159 79
accuracy macro avg weighted avg	0.68 0.74	0.70 0.68	0.68 0.67 0.69	238 238 238

Data Modeling: Implementation of Naive Bayes Classifier

```
In [63]: y_predict_gaussian_naive_bayes = model_gaussian_naive_bayes.predict(X_tes
print(y_predict_gaussian_naive_bayes)
```

```
In [64]: print("Confusion Matrix")
   print(confusion_matrix(y_test, y_predict_gaussian_naive_bayes))
```

Confusion Matrix [[119 40] [27 52]]

In [65]: print("Classification Report")
print(classification_report(y_test, y_predict_gaussian_naive_bayes))

Classification Report

	precision	recall	f1-score	support
0	0.82 0.57	0.75 0.66	0.78 0.61	159 79
accuracy macro avg weighted avg	0.69 0.73	0.70 0.72	0.72 0.69 0.72	238 238 238

In [66]: accuracy_score(y_test, y_predict_gaussian_naive_bayes)

Out[66]: 0.7184873949579832