Estructuras Discretas INF-313

Sergio Hernández shernandez@ucm.cl

Facultad de Ciencias de la Ingeniería

Relaciones

- Cuando definimos conjuntos, dijimos que estos constan de elementos no repetidos sin orden pre-establecido.
- Al decir que estos elementos no se repiten y no están ordenados, por lo tanto implícitamente vemos que hay una relación entre los elementos.

Relaciones

- Cuando definimos conjuntos, dijimos que estos constan de elementos no repetidos sin orden pre-establecido.
- Al decir que estos elementos no se repiten y no están ordenados, por lo tanto implícitamente vemos que hay una relación entre los elementos.

Relación Binaria

Es posible definir una relación binaria ρ entre dos conjuntos A y B, mediante pares ordenados (a,b) donde $a \in A$ y $b \in B$. Entonces ρ puede ser definido como un subconjunto del producto cartesiano $A \times B$, tal que:

$$a \rho b \implies (a, b) \in \rho$$

Sea $A=\{a,b,c,d\}$ y $B=\{1,2,3,4\}$, entonces definimos la siguiente relación binaria ρ :

$$\rho \subset A \times B$$

Relaciones sobre Conjuntos

- Supongamos que tenemos una relación ρ desde un conjunto A hacia A, o sea que $\rho \subseteq A \times A$
- En ese caso se dice que ρ es una relación binaria en A.

Relaciones sobre Conjuntos

- Supongamos que tenemos una relación ρ desde un conjunto A hacia A, o sea que $\rho \subseteq A \times A$
- En ese caso se dice que ρ es una relación binaria en A.

Propiedades de las Relaciónes sobre Conjuntos

- ρ es llamada **reflexiva** si y solo si $a \rho a$ para cada elemento $a \in A$.
- ρ es llamada **simétrica** si $a \rho b$ implica que $b \rho a$. Esto quiere decir que $(a, b) \in \rho \rightarrow (b, a) \in \rho$
- ρ es llamada **transitiva** si $a \rho b$ y $b \rho c$ implica que $a \rho c$.

Sea $A = \{1, 2, 3\}$ y ρ una relación sobre A:

Sea $A = \{1, 2, 3\}$ y ρ una relación sobre A:

Qué tipo de relación es ρ ?

• reflexiva ya que $(a, a) \in \rho \quad \forall a \in A$.

Sea $A = \{1, 2, 3\}$ y ρ una relación sobre A:

- reflexiva ya que $(a, a) \in \rho \quad \forall a \in A$.
- simétrica ya que $(a,b) \in \rho \implies (b,a) \in \rho \quad \forall (a,b) \in \rho$.

Sea $A = \{1, 2, 3\}$ y ρ una relación sobre A:

- reflexiva ya que $(a, a) \in \rho \quad \forall a \in A$.
- simétrica ya que $(a,b) \in \rho \implies (b,a) \in \rho \quad \forall (a,b) \in \rho$.
- transitiva ya que $(a, b) \in \rho \land (b, c) \in \rho$, $\Longrightarrow (a, c) \in \rho$.

Sea $A = \{1, 2, 3\}$ y ρ una relación sobre A:

Sea $A = \{1, 2, 3\}$ y ρ una relación sobre A:

Qué tipo de relación es ρ ?

• no es reflexiva ya que $(1,1) \notin \rho$.

Sea $A = \{1, 2, 3\}$ y ρ una relación sobre A:

- no es reflexiva ya que $(1,1) \notin \rho$.
- simétrica ya que $(a,b) \in \rho \implies (b,a) \in \rho \quad \forall (a,b) \in \rho$.

Sea $A = \{1, 2, 3\}$ y ρ una relación sobre A:

- no es reflexiva ya que $(1,1) \notin \rho$.
- simétrica ya que $(a,b) \in \rho \implies (b,a) \in \rho \quad \forall (a,b) \in \rho$.
- no es transitiva ya que $(1,3) \in \rho \land (3,1) \in \rho \implies (1,1) \in \rho$.

Relaciones de Equivalencia

• Una relación ρ es llamada de **equivalencia** si es reflexiva, simétrica y transitiva.

Relaciones de Equivalencia

• Una relación ρ es llamada de **equivalencia** si es reflexiva, simétrica y transitiva.

Particiones

Si consideramos una partición de un conjunto S dada por:

$$S = \{S_1 \cup S_2 \cup \ldots \cup S_n\} \tag{1}$$

Definimos una relación de equivalencia ρ , tal que $s \rho t$ si y solo si $s \in S_i \implies t \in S_i$

Sea $S = \{1,2\} \cup \{3\} \cup \{4,5\}$ un conjunto y ρ una relación de equivalencia sobre S:

Sea $S = \{1,2\} \cup \{3\} \cup \{4,5\}$ un conjunto y ρ una relación de equivalencia sobre S:

Qué tipo de relación es ρ ?

• reflexiva ya que $(a, a) \in \rho \quad \forall a \in A$.

Sea $S = \{1,2\} \cup \{3\} \cup \{4,5\}$ un conjunto y ρ una relación de equivalencia sobre S:

- reflexiva ya que $(a, a) \in \rho \quad \forall a \in A$.
- simétrica ya que $(a,b) \in \rho \implies (b,a) \in \rho \quad \forall (a,b) \in \rho$.

Sea $S = \{1,2\} \cup \{3\} \cup \{4,5\}$ un conjunto y ρ una relación de equivalencia sobre S:

- reflexiva ya que $(a, a) \in \rho \quad \forall a \in A$.
- simétrica ya que $(a,b) \in \rho \implies (b,a) \in \rho \quad \forall (a,b) \in \rho$.
- transitiva ya que $(a, b) \in \rho \land (b, c) \in \rho$, $\Longrightarrow (a, c) \in \rho$.

Sea $S = \{1,2\} \cup \{3\} \cup \{4,5\}$ un conjunto y ρ una relación de equivalencia sobre S:

- reflexiva ya que $(a, a) \in \rho \quad \forall a \in A$.
- simétrica ya que $(a,b) \in \rho \implies (b,a) \in \rho \quad \forall (a,b) \in \rho$.
- transitiva ya que $(a, b) \in \rho \land (b, c) \in \rho$, $\Longrightarrow (a, c) \in \rho$.
- De equivalencia ya que $(a, b) \in \rho \implies a \in S_i \land b \in S_i$.

