Εκφώνηση

Δίδονται:

- Ισοδύναμο πάχος πλάκας για τον υπολογισμό της μάζας του ορόφου: 30cm (περιλαμβάνει όλα τα δομικά μέλη που αντιστοιχούν στον όροφο)
- Φορτίο επιστρώσεων: $g_{\epsilon\pi}$ =1kN/m²
- Κινητό φορτίο: q=5kN/m² (με ψ₂=0,3).
- Λοιπές μάζες: 60t (ομοιόμορφη κατανομή στην κάτοψη).
- Ύψος ορόφου: h=3m.
- Σεισμική επιτάχυνση ορόφου: 0.2g
- Σκυρόδεμα C20/25

Ζητούνται:

- Να σχολιασθεί η καταλληλότητα του δομικού συστήματος ως προς την σεισμική του συμπεριφορά.
- Να υπολογισθούν οι θέσεις του Κέντρου Μάζας (Κ.Μ.) και του Κέντρου Δυσκαμψίας (Κ.Δ.).
- Να ελεγχθεί εάν ο φορέας είναι εύστρεπτος κατά ΕΚ8-1.
- Να υπολογισθεί η εκκεντρότητα του Κ.Μ. ως προς το Κ.Δ. και να ελεγχθεί το σχετικό κριτήριο Κανονικότητας σε κάτοψη του ΕΚ8-1.
- Να υπολογισθεί η μετακίνηση του ορόφου (οριζόντιες μεταθέσεις και στροφή) για σεισμό Εχ και σεισμό Εχ.

Επίλυση

(συντεταγμένες κ.β.)

Προβλήματα του δομικού συστήματος:

- <u>Ισχυρές δοκοί ασθενή υποστυλώματα:</u> Οι διατομές των δοκών είναι πολύ πιο ισχυρές απ' τις διατομές των υπ/ματων, με εξαίρεση το C8. Οι πλαστικές αρθρώσεις θ' αναπτυχθούν στα υπ/ματα και θα δημιουργηθεί «μαλακός όροφος» (εκτός και εάν τα υπ/ματα είναι πολύ πιο ισχυρά οπλισμένα απ' τις δοκούς).
- <u>Έμμεσες στηρίξεις:</u> Η δοκός B3 έχει έμμεση στήριξη στην B9 και η B7 στην B4. Αποτέλεσμα είναι να μην δημιουργούνται κανονικά, συνεχή πλαίσια.
- <u>Έκκεντρες στηρίξεις:</u> Οι δοκοί Β5 και Β6 συνδέονται έκκεντρα στο υποστ/μα C8, επιβαρύνοντας τον συγκεκριμένο κόμβο. Τα πλαίσια C7-B5-C8 και C8-B6-C9 δεν είναι συνεπίπεδα, και η πλαισιακή τους λειτουργία δεν είναι πλήρως αποτελεσματική.
- Ασυνέχειες πλαισίων: Όπως περιγράφηκε ήδη, υπάρχουν πολλά πλαίσια που δεν είναι συνεχή. Πράγματι, μόνο ένα πλαίσιο είναι εντελώς συνεχές // στον άξονα Χ (C1-B1-C2-B2-C3) και 2 // στον άξονα Υ (C1-B11-C4-B12-C7 και C2-B9-C5-B10-C8).
- Στρεπτική συμπεριφορά: Εξετάζεται παρακάτω. Η έκκεντρη τοποθέτηση του ενός και μοναδικού δύσκαμπτου υπ/ματος ενδέχεται να δημιουργήσει αυξημένη στρεπτική απόκριση.

Για ομοιόμορφη κατανομή των μαζών σε κάτοψη, εάν ονομάσουμε α_m τη συνολική μάζα ανά m^2 κάτοψης, τότε μία επιφάνεια A_i έχει μάζα:

 $m_i = \alpha_m A_i$

Συστημα συντεταγμέν	<i>ν</i> ων ΧΟΥ με το 0 στην κά	τω αριστερή γωνία της κά	τοψης						
Υπολογισμός κέντρου	μάζας (Κ.Μ.)								
Τμήματα κάτοψης	διάσταση lx (m)	διάσταση ly (m)	εμβαδόν Ai (m2)	κ.β., Xi (m)	κ.β., Yi (m)	Ai*Xi	Ai*Yi	Απόσταση κ.β. της mi από Κ.Μ., Li (m)	πολική ροπή αδράνειας, Ιρί/am
A1	9,825	10,25	100,70625	4,9125	5,625	494,7194531	566,4726563	0,10005319	1692,815438
A2	3,25	0,5	1,625	1,625	0,25	2,640625	0,40625	6,200604018	63,94136427
			K.M. (Xcm,Ycm):	4,860295151	5,539646064			Ακτίνα αδράνειας, ls (m):	4,143350586
	Μέτρ	_ ο ελαστικότητας σκυροδ	έματος C20/25, E (MPa):	30000					

$$X_{\text{CM}} = \frac{\sum (X_i \cdot m_i)}{\sum (m_i)} = \frac{\sum (X_i \cdot \alpha_m A_i)}{\sum (\alpha_m A_i)} = \frac{\sum (X_i \cdot A_i)}{\sum (A_i)} \qquad O\muoi\omega\varsigma: Y_{\text{CM}} = \frac{\sum (Y_i \cdot A_i)}{\sum (A_i)} \qquad l_s = \sqrt{\frac{\sum (I_{pi})}{\sum (m_i)}} \rightarrow l_s = \sqrt{\frac{\sum (I_{pi})}{\sum (A_i)}}$$

$$L_{\rm i} = \sqrt{(X_{CM} - X_i)^2 + (Y_{CM} - Y_i)^2}$$

$$I_{pi}=m_i[(I_x^2+I_y^2)/12+L_i^2]$$
 ($\acute{o}\pi o \upsilon \ m_i=\alpha_m A_i$) $I=b_{y,i}b_{x,i}^3/12$ $I=b_{x,i}b_{y,i}^3/12$

ιλογισμός κέντρ	ου δυσκαμψίας (Κ.Δ.)								
Υποστ/μα ή	Διάσταση διατομής //	Διάσταση διατομής //		*	Ky,i=12EI/h ³				
τοίχωμα	στον X, bx,i (m)	στον Y, by,i (m)	Ύψος υπ/τος, hi (m)	Kx,i=12EI/h³ (kN/m)	(kN/m)	κ.β., Xi (m)	κ.β., Yi (m)	Xi*Ky,i	Yi*Kx,i
C1	0,25	0,25	3	4340,277778	4340,277778	0,125	10,625	542,5347222	46115,45139
C2	0,25	0,25	3	4340,277778	4340,277778	3,125	10,625	13563,36806	46115,45139
C3	0,25	0,25	3	4340,277778	4340,277778	8,125	10,625	35264,75694	46115,45139
C4	0,25	0,25	3	4340,277778	4340,277778	0,125	5,125	542,5347222	22243,92361
C5	0,25	0,25	3	4340,277778	4340,277778	3,125	4,625	13563,36806	20073,78472
C6	0,25	0,25	3	4340,277778	4340,277778	9,125	4,625	39605,03472	20073,78472
C7	0,25	0,25	3	4340,277778	4340,277778	0,125	0,125	542,5347222	542,5347222
C8	0,25	0,75	3	13020,83333	117187,5	3,125	0,375	366210,9375	4882,8125
C9	0,25	0,25	3	4340,277778	4340,277778	9,125	0,625	39605,03472	2712,673611
			sum:	47743,05556	151909,7222		K.Δ., Ct (Xct,Yct):	3,353571429	4,375
							εκκεντρότητες (exo, eyo):	1,506723722	1,164646064

$$X_{CT} = \frac{\sum (X_i \cdot K_{yi})}{\sum (K_{yi})} \qquad Y_{CT} = \frac{\sum (Y_i \cdot K_{xi})}{\sum (K_{xi})}$$

$$e_{xo} = X_{CM} - X_{CT}$$
, $e_{yo} = Y_{CM} - Y_{CT}$

τημα συντεταγμ	ιένων xCty, όπου Ct το κέν	τρο δυσκαμψίας				
Υποστ/μα ή			Kx,i=12EI/h ³ (kN/m)	Ky,i=12EI/h ³ (kN/m)		
τοίχωμα	κ . β ., $x_i = X_i - X_{CT}$ (m)	κ . β ., $\gamma_i = Y_I - Y_{CT}$ (m)	(από πριν)	(από πριν)	xi^2*Ky,i	yi^2*Kx,i
C1	-3,228571429	6,25	4340,277778	4340,277778	45241,63832	169542,1007
C2	-0,228571429	6,25	4340,277778	4340,277778	226,7573696	169542,1007
C3	4,771428571	6,25	4340,277778	4340,277778	98813,06689	169542,1007
C4	-3,228571429	0,75	4340,277778	4340,277778	45241,63832	2441,40625
C5	-0,228571429	0,25	4340,277778	4340,277778	226,7573696	271,2673611
C6	5,771428571	0,25	4340,277778	4340,277778	144571,9955	271,2673611
C7	-3,228571429	-4,25	4340,277778	4340,277778	45241,63832	78396,26736
C8	-0,228571429	-4	13020,83333	117187,5	6122,44898	208333,3333
C9	5,771428571	-3,75	4340,277778	4340,277778	144571,9955	61035,15625
				Δυστρει	þία, Kθ (kNm/rad):	1389632,937
				Ακτίνα δ	ουστρεψίας, rx (m):	3,0245256
				Ακτίνα δ	υστρεψίας, ry (m):	5,39504342

$$K_{\theta} = \Sigma (K_{xi} \cdot y_i^2 + K_{yi} \cdot x_i^2 + K_{zi})$$

$$r_x = \sqrt{\frac{K_\theta}{\sum (K_{yi})}}$$
 $r_y = \sqrt{\frac{K_\theta}{\sum (K_{xi})}}$

Ακτίνα αδράνειας,	Ακτίνα δυστρεψίας, rx	Ακτίνα δυστρεψίας, ry				
Is (m):	(m):	(m):	έλεγχος rx≥ls	έλεγχος ry≥ls	έλεγχος 0.3rx≥exo	έλεγχος 0.3ry≥eyo
4,143350586	3,0245256	5,39504342	not ok	ok	not ok	ok

Το κτίριο είναι επομένως εύστρεπτο και μη-κανονικό σε κάτοψη.

Ισοδύναμο πάχος	Φορτίο επιστρώσεων	Ίδιο βάρος, g	ωφέλιμο φορτίο,	p=g+ψ2*q
πλάκας (m)	(kN/m2)	(kN/m2)	ψ2*q (kN/m2)	(kN/m2)
0,3	1	8,5	1,5	10

 $Mάζα O.Σ.: pxΣ(A_i)/g = 10x102.33/10 = 102.33 tons$, Λοιπές μάζες: 60 tons, Συνολική μάζα (με ομοιόμορφη κατανομή): m = 162.33 tons

σεισμική φόρτιση	Ολική μάζα (t)	Σεισμική επιτάχυνση εφαρμογής στη θέση της μάζας // X (a _{gx} /g)	Σεισμική επιτάχυνση εφαρμογής στη θέση της μάζας // Υ (a _{gy} /g)	Οριζόντια σεισμική δύναμη, Η _x =ma _{gx} (kN)		Ενεργός δυσκαμψία (50% της αρηγμάτωτης) 0.5xΣ(Kx,i) (kN/m)	Ενεργός δυσκαμψία (50% της αρηγμάτωτης) 0.5xΣ(Ky,i) (kN/m)
Ex	162,33125	0,2	0	324,6625	0	23871,52778	75954,86111
Еу	162,33125	0	0,2	0	324,6625	23871,52778	75954,86111

σεισμική φόρτιση	Μετατόπιση διαφράγματος // στον Χ, δχο (mm)	Μετατόπιση διαφράγματος // στον Υ, δγο (mm)	Ενεργός Δυστρεψία, 0.5xKθ (kNm/rad):	Ροπή σεισμού ως προς το Κ.Δ., Μ _{ст} (kNm)	Στροφή διαφράγματος, θz (rad)
Ex	13,60040727	0	694816,4683	-378,1169026	-0,000544197
Еу	0	4,274413714	694816,4683	489,1766904	0,000704037

$$\delta_{xo} = H_x/\Sigma(K_{xi})$$
, $\delta_{yo} = H_y/\Sigma(K_{yi})$, $M_{CT} = -H_x e_{yo} + H_y e_{xo}$, $\theta_z = M_{CT}/K_{\theta}$

Οι παραπάνω μετακινήσεις είναι ελαστικές. Εάν οι σεισμικές δυνάμεις έχουν προκύψει για συντελεστή σεισμικής συμπεριφοράς q, τότε σύμφωνα με τον κανόνα των ίσων μετακινήσεων οι σεισμικές μετακινήσεις θα είναι:

 $\delta_{xo}' = q^* \delta_{xo}$

 $\delta_{yo}' = q^* \delta_{yo}$

 $\theta_z' = q^*\theta_z$

Για παράδειγμα εάν είναι q=3, θα προκύψει:

 $\delta_{xo}' = 40.8 mm$

 $\delta_{yo}' = 12.8$ mm

 θ_z ' = -0.00163rad για Ex

 θ_z ' = 0.0021rad για Ey