Face Recognition in the wild

Tiecheng Su
Department of Electrical and Computer Engineering
University of Rochester
tsu5@ur.rochester.edu

Machine vision, 2016

Dataset

Labeled Faces in the Wild(LFW)dataset

- large-scale:13K images, 5.7K people
- high variability in appearance
- data pruning: only choose person has more than 10 images, ends up with 127 people
- collected using Viola-Jones face detector
- split into training set and test with ratio 8:2

Objective

Face descriptor for recognition

- dense sampling
- relevant face parts learnt automatically
- compact and discriminative

pipeline: dense SIFT \rightarrow Fisher vector encoding \rightarrow linear SVM

Dense Features

face image \rightarrow set of local features

Dense SIFT

- dense scale-space grid:
 2 pix step, 5 scales
- 24 × 24 patch size
- SIFT
- 64-D PCA-SIFT
- augmented with (x,y):66-D

Face Fisher Vector

set of local features → high-dim Fisher vector

Fisher Vector(FV)encoding

- describes a set of local features in a single vector
- diagonal-covariance GMM as a codebook
 - appearance:SIFT
 - location:(x,y)
- Initializing a GMM model with K-means before running EM

Face Fisher Vector

set of local features → high-dim Fisher vector

• Feature FV-feature space location statistics $1^{\text{st}} \text{ order stats(k-th Gaussian):} \Phi_k^1 \sim \alpha_k(\frac{\mathsf{x}_p - \mu_k}{\delta_k})$ $2^{\text{nd}} \text{ order stats(k-th Gaussian):} \Phi_k^2 \sim \alpha_k(\frac{\mathsf{x}_p - \mu_k}{\delta_k^2} - 1)$

$$\phi = [\Phi_1^{(1)}, \Phi_1^{(2)}, ..., \Phi_K^{(1)}, \Phi_K^{(2)}]$$

FV dimensionality: $66 \times 2 \times 256 = 33792$ (for a mixture of 256 Gaussians)

Distance Learning

high-dim FV o low-dim face descriptor

• Large-margin distance constraints: $y_{ij}(b - d_W^2(\Phi_i, \Phi_j)) > 1$ $y_{ij} = 1$ if (i,j) is the same person, Φ_i, Φ_j -FV

Karen Simonyan, Omkar M. Parkhi, Andrea Vedaldi, Andrew Zisserman. Fisher Vector Faces in the Wild

Projection Learning

Low-rank Mahalanobis distance:

$$d_W^2(\Phi_i,\Phi_j) = \|W\Phi_i - W\Phi_j\|_2^2 = (\Phi_i - \Phi_j)^\mathsf{T} W^\mathsf{T} W (\Phi_i - \Phi_j)$$

- Large-margin objective: $\underset{W,b}{\operatorname{argmin}} \sum_{i,j} \max[1-y_{ij}(b-\Phi_i-\Phi_j)^\mathsf{T} W^\mathsf{T} W(\Phi_i-\Phi_j),0]$
 - regularization by $W \in R^{p \times d}$, $p \ll d$
 - stochastic gradient descent
 - initialized by PCA-whitening

pros

- Models dependencies between FV elements
- Explicit dimensionality reduction

cons

Non-convex

Results

SIFT	GMM	Desc.	Distance Function	accuracy,%
density	Size	Dim.		
2 pix	256	33792	diag. metric	79.1
2 pix	256	128	low-rank Mah. metric	83.7

Matched Class

Summary

- Fisher Vector Face(FVF) representation
 - dense SIFT(no need for sophisticated landmark detectors)
 - Fisher vector
 - discriminative dimensionality reduction
- Future works
 - multi-feature image representations