

24AIM112- Mathematics for intelligent system 2 24AIM111 - Introduction to data structure and algorithms

Quantum encryption scheme based on taylor series and Fourier transform

Team members:

M Devadharshini CB.AI.U4AIM24126

B Amirthavarshini CB.AI.U4AIM24154

S Nithin CB.AI.U4AIM24133

G harisudharsan CB.Al.U4AlM24113

INTRODUCTION

- Data which include the privacy of the individual needs to be secured.
- different ways of encrypting the data one such method is homomorphic encryption
- allows the computation on the encrypted data different scheme has been developed to encrypt and decrypt
- our proposal of the scheme is based on QFT and taylor series based on encryption scheme

HOMORPHIC ENCRYPTION

- It enables computation on encrypted data without decryption.
- Supports privacy-preserving machine learning.

Types:

- 1. Partially Homomorphic Encryption (PHE)
- 2. Somewhat Homomorphic Encryption (SHE)
- 3. Fully Homomorphic Encryption (FHE)

Our project aims to develop a quantum homomorphic encryption scheme

Development of Quantum Homomorphic Encryption Scheme

- It lets us process data while it's still encrypted, so privacy is never lost
- Our idea combines math and quantum computing:
- Taylor Series creates a secret signal that acts like a lock
- Quantum gates are used to safely hide and later unlock the data
- Quantum Fourier Transform (QFT) changes the data's form so no one can understand it without the key
- Convert data to quantum form using Ry gate
- Add secret signal using Rx gate
- Apply QFT and Rz gate for encryption

QUANTUM FOURIER TRANSFORM

- Quantum version of Discrete Fourier Transform (DFT).
- Efficiently transforms quantum states into frequency domain.
- It is important in quantum cryptography and Shor's Algorithm.
- Here we used in this scheme to change the data's domain before encryption.

TAYLOR SERIES

Approximates complex functions using a polynomial expansion.

• In our project, it is used to generate a signal known only to the private key holder.

• It acts as a secret mathematical layer during encryption.

It helps to ensure uniqueness and reversibility of the
encryption process.

Proposed Scheme

Proposed scheme
Encode the classical data to quantum state
Apply QFT
phase shift using Quantum Gates
addition of a secret signal
Measurement of the output by the probability of the states

Quantum Gates

- Quantum gates manipulate qubits (quantum bits), similar to logic gates in classical computers. is used to change the qubit's state
- They rotate or shift the state of a qubit, unlike classical gates which only flip between 0 and 1. quantum gates can work on superposition (both 0 and 1 at the same time)

In our scheme:

Ry gate encodes classical data into quantum form

Rx gate adds a secret signal (from Taylor Series)

Rz gate applies public key encryption (phase shift)

These gates make the encryption secure and reversible.

Applications

- Federated Learning Machine learning approach where multiple devices collaboratively train and share the model without the exchange of the raw data.
- Privacy preserving Machine Learning(PPML) This technique enables model training and inference while protecting sensitive data.

OUTPUT

RESULT

QUANTUM STATE	DECRYPTED RESULT	ENCRYPTED RESULT
00	277	246
01	251	255
10	236	246

CONCLUSION

- Our project presents a novel quantum encryption approach by integrating a key-based system with the mathematical strength of Taylor Series, Fourier Transform, and quantum mechanics.
- The proposed scheme lays a strong foundation for implementing quantum homomorphic encryption, enabling secure computation on encrypted quantum data and unlocking the full potential of homomorphic encryption in the quantum era

THANKYOU