

SUPERVISED LEARNING TOPIC: INTRODUCTION TO CLASSIFICATION & KNN ALGORITHM

By
Prof. Dr. Sourav Saha

SUPERVISED LEARNING

SUPERVISED LEARNING

Example: House Prices

House Price in \$1000s (y)	Square Feet (x)
245	1400
312	1600
279	1700
308	1875
199	1100
219	1550
405	2350
324	2450
319	1425
255	1700

Estimated Regression Equation:

house price = 98.25 + 0.1098 (sq.ft.)

Predict the price for a house with 2000 square feet

PREDICTIVE MODELS (SUPERVISED)

* CLASSIFICATION

Core: Predict the value of a category or class

- ✓ <u>Problems that can be solved</u>: Prediction of win/loss, fraudulent transactions, etc.
- <u>Examples</u>: k-Nearest Neighbor (kNN), Decision Tree, Naïve Bayes, SVM, ANN etc.

* REGRESSION

Core: Predict numerical values of the target

- ✓ <u>Problems that can be solved</u>: Prediction of revenue growth, rainfall amount, etc.,
- <u>Examples</u>: Simple Linear Regression, Multiple Regression, Logistic Regression etc.

SUPERVISED LEARNING - CLASSIFICATION

Test Data

Intel

Name	Aptitude	Communication	class
Josh	5	4.5	? —

OVERALL PROCESS

DATA SPLITTING - SIMPLE HOLDOUT METHOD

Model Performance

K-FOLD CROSS-VALIDATION— OVERALL APPROACH

K-FOLD CROSS-VALIDATION— DETAILED APPROACH

EVALUATING A MODEL (BINARY CLASSIFICATION)

For both TP and TN, predicted outcome matches actual outcome. Hence, they are correct classifications.

Election Outcome Prediction Model:

Two Classes - win, loss

- True Positive (TP) –
 Predicted win, Actual win
 : Truly Classified
- True Negative (TN) –
 Predicted loss, Actual loss
 : Truly Classified
- False Positive (FP) –
 Predicted win, Actual loss
 :: Falsely Classified
- False Negative (FN) –
 Predicted loss, Actual win
 :: Falsely Classified

EVALUATING A MODEL (CLASSIFICATION)

Predicted Outcome

		Actual
	Actual Win	Loss
Predicted Win	85	4
Predicted Loss	2	9

Model accuracy =
$$\frac{\text{TP+TN}}{\text{TP+FP+FN+TN}} = \frac{85+9}{85+4+2+9} = \frac{94}{100} = 94\%$$

Precision =
$$\frac{\text{TP}}{\text{TP+FP}} = \frac{85}{85+4} = \frac{85}{89} = 95.5\%$$

Recall =
$$\frac{TP}{TP+FN} = \frac{85}{85+2} = \frac{85}{87} = 97.7\%$$

F-measure =
$$\frac{2 \text{ X precision X recall}}{\text{precision + recall}} = \frac{2 \text{ X 0.955 X 0.977}}{0.955 + 0.977} = \frac{1.866}{1.932} = 96.6\%$$

Sensitivity =
$$\frac{\text{TP}}{\text{TP+FN}} = \frac{85}{85+2} = \frac{85}{87} = 97.7\%$$
 Specificity = $\frac{\text{TN}}{\text{TN+FP}} = \frac{9}{9+4} = \frac{9}{13} = 69.2\%$

EVALUATING A MODEL (BINARY CLASSIFICATION)

Predicted Category

Actual	
Category	,

	c ₁ (+) Covid+	<i>C</i> ₂ (−) Covid-
<i>C</i> ₁ (+) Covid+	True Positive 85	False Negative
<i>C</i> ₂ (−) Covid-	False Positive 4	True Negative 9

Model accuracy =
$$\frac{\text{TP+TN}}{\text{TP+FP+FN+TN}} = \frac{85+9}{85+4+2+9} = \frac{94}{100} = 94\%$$

Precision =
$$\frac{\text{TP}}{\text{TP+FP}} = \frac{85}{85+4} = \frac{85}{89} = 95.5\%$$

Recall =
$$\frac{TP}{TP+FN} = \frac{85}{85+2} = \frac{85}{87} = 97.7\%$$

F-measure =
$$\frac{2 \text{ X precision X recall}}{\text{precision + recall}} = \frac{2 \text{ X 0.955 X 0.977}}{0.955 + 0.977} = \frac{1.866}{1.932} = 96.6\%$$

Sensitivity =
$$\frac{TP}{TP+FN} = \frac{85}{85+2} = \frac{85}{87} = 97.7\%$$

Sensitivity =
$$\frac{\text{TP}}{\text{TP+FN}} = \frac{85}{85+2} = \frac{85}{87} = 97.7\%$$
 Specificity = $\frac{\text{TN}}{\text{TN+FP}} = \frac{9}{9+4} = \frac{9}{13} = 69.2\%$

CONFUSION MATRIX – MULTI-CLASS CLASSIFICATION

Predicted Actual	Classified Dog (38)	Classified Cat (51)	Classified Rabbit (44)
Actual Dog (42)	TP(Dog)	12 FN(Dog)	FN(Dog)
Actual Cat (53)	FP(Dog) FN(Cat)	29 TP(Cat)	13 FN(Cat)
Actual Rabbit (38)	FP(Dog) FN(Rabbit)	10 FN(Rabbit)	24 TP(Rabbit)

Precision	Recall	F1-Score
23/(23+11+4) = $23/38$ = 0.60	23/(23+12+7) = $23/42$ = 0.53	0.56
29/(12+29+10) = 29/51 = 0.56	29/(11+29+13) = 29/53 = 0.54	0.54
24/(7+13+24) = 24/44 = 0.54	24/(4+10+24) = $24/38$ = 0.63	0.58
AVG = 0.56	AVG = 0.56	AVG = 0.56

PRECISION = TP/(TP + FP), RECALL = TP/(TP+FN),

F1 = (2*PRECESION*RECALL)/(PRECESION + RECALL)

ACCURACY = TP/Total = (23+29+24)/(42+53+38) = 0.57 = 57%

EVALUATING A MODEL (CLASSIFICATION)

		predicted	dicondition	
	total population	prediction positive	prediction negative	Sensitivity
true	condition positive	True Positive (TP)	False Negative (FN) (Type II error)	Recall = $\frac{\sum TP}{\sum \text{condition positive}}$
condition	condition negative	False Positive (FP) (Type I error)	True Negative (TN)	Specificity = ΣTN / Σcondition negative
	Accuracy = $\frac{\sum TP + \sum TN}{\sum total population}$	$\frac{\Sigma \text{ TP}}{\Sigma \text{prediction positive}}$		F1 Score = $ \frac{2}{\frac{1}{\text{Recall}} + \frac{1}{\text{Precision}}} $

CLASSIFICATION EXAMPLE

CLASSIFICATION EXAMPLE

CLASSIFICATION EXAMPLE

Features

	Α	В	C	D 👍	E	F
1	Id	SepalLengthCm	SepalWidthCm	PetalLengthCm	PetalWidthCm	Species
2	1	5.1	3.5	1.4	0.2	Iris-setosa
3	2	4.9	3	1.4	0.2	Iris-setosa
4	3	4.7	3.2	1.3	0.2	Iris-setosa
5	4	4.6	3.1	1.5	0.2	Iris-setosa
6	5	5	3.6	1.4	0.2	Iris-setosa

Class
Labels

Id	SepalLengthCm	SepalWidthCm	PetalLengthCm	PetalWidthCm	Species
52	6.4	3.2	4.5	1.5	Iris-versicolor
53	6.9	3.1	4.9	1.5	Iris-versicolor
54	5.5	2.3	4	1.3	Iris-versicolor
55	6.5	2.8	4.6	1.5	Iris-versicolor
56	5.7	2.8	4.5	1.3	Iris-versicolor

·s	
ginica	
ginica	
ginica	
ginica	
ainies.	

Id	SepalLengthCm	SepalWidthCm	PetalLengthCm	PetalWidthCm	Species
146	6.7	3	5.2	2.3	Iris-virginica
147	6.3	2.5	5	1.9	Iris-virginica
148	6.5	3	5.2	2	Iris-virginica
149	6.2	3.4	5.4	2.3	Iris-virginica
150	5.9	3	5.1	1.8	Iris-virginica

CLASSIFICATION EXAMPLESICS

CLASSIFICATION CHALLENGE!!!

SepalLengthCm	SepalWidthCm	PetalLengthCm	PetalWidthCm	Species
6.3	2.8	5.1	1.5	??????????

PREDICTION OF SPECIES!!!

ACTION FLOW

OVERVIEW OF ACTION FLOW

- DATA PREPROCESSING: FEATURE EXTRACTION, DATA NORMALIZATION
- SPLITTING DATASET INTO TRAINING SET AND TESTING SET
- TRAINING THE MODEL: MACHINE LEARNING ALGORITHM
- TESTING THE MODEL: PERFOMANCE ASSESSMENT
- PREDICTING

LET'S CONSIDER THE INPUT DATA ...

Name	Aptitude	Communication	Class
Karuna	2	5	Speaker
Bhuvna	2	6	Speaker
Gaurav	7	6	Leader
Parul	7	2.5	Intel
Dinesh	8	6	Leader
Jani	4	7	Speaker
Bobby	5	3	Intel
Parimal	3	5.5	Speaker
Govind	8	3	Intel
Susant	6	5.5	Leader
Gouri	6	4	Intel
Bharat	6	7	Leader
Ravi	6	2	Intel
Pradeep	9	7	Leader
Josh	5	4. 5	Intel

DATA HOLDOUT

	Name	Aptitude	Communication	Class
	Karuna	2	5	Speaker
	Bhuvna	2	6	Speaker
	Gaurav	7	6	Leader
	Parul	7	2.5	Intel
	Dinesh	8	6	Leader
	Jani	4	7	Speaker
Training data 🚤	Bobby	5	3	Intel
3	Parimal	3	5.5	Speaker
	Govind	8	3	Intel
	Susant	6	5.5	Leader
	Gouri	6	4	Intel
	Bharat	6	7	Leader
	Ravi	6	2	Intel
	Pradeep	9	7	Leader
Test data ———	Josh	5	4.5	Intel

LET'S SEE HOW THE TRAINING DATA IS GROUPED...

		Communica	
Name	Aptitude	tion	Class
Karuna	2	5	Speaker
Bhuvna	2	6	Speaker
Gaurav	7	6	Leader
Parul	7	2.5	Intel
Dinesh	8	6	Leader
Jani	4	7	Speaker
Bobby	5	3	Intel
Parimal	3	5.5	Speaker
Govind	8	3	Intel
Susant	6	5.5	Leader
Gouri	6	4	Intel
Bharat	6	7	Leader
Ravi	6	2	Intel
Pradeep	9	7	Leader

SAY WE DON'T KNOW WHICH CLASS THE TEST DATA BELONGS TO ...

		Cammannia	
Name	Aptitude	Communica tion	Class
Ivaille	Aptitude	tion	
Karuna	2	5	Speaker
Bhuvna	2	6	Speaker
Gaurav	7	6	Leader
Parul	7	2.5	Intel
Dinesh	8	6	Leader
Jani	4	7	Speaker
Bobby	5	3	Intel
Parimal	3	5.5	Speaker
Govind	8	3	Intel
Susant	6	5.5	Leader
Gouri	6	4	Intel
Bharat	6	7	Leader
Ravi	6	2	Intel
Pradeep	9	7	Leader
Josh	5	4.5	???

NEAREST NEIGHBOUR EXAMPLE

Item	sweetness	crunchy
grape	High (3)	Low (1)
nuts	Low (1)	High (3)
Green bean	Medium (2)	Low (1)
tomato	Medium (2)	Low (1)

how sweet the food tastes

NEAREST NEIGHBOUR EXAMPLE

Item	sweetness	crunchy
grape	High (3)	Low (1)
nuts	Low (1)	High (3)
Green bean	Medium (2)	Low (1)
tomato	Medium (2)	Low (1)

KNN CLASSIFIER BASICS

Your task is to classify a new data point labelled with 'X' into "Blue" class or "Red" class. The coordinate values of the data point are x=45 and y=50.

The KNN algorithm starts by calculating the distance of point X from all the points.

It then finds the k=3 nearest points with least distance to point X.

The final step of the KNN algorithm is to assign X to the class to which majority of the three nearest points belong. From the figure, we can see that the two of the three nearest points belong to the class "Red" while one belongs to the class "Blue". Therefore X will be classified as "Red".

K NEAREST NEIGHBOR: STEP BY STEP

	Height	Weight	T Shirt	
1	(in cms)	(in kgs)	Size	
2	158	58	M	C 1 1 1 1 1 1 1 1
3	158	59	M	Suppose we have height, weight and
4	158	63	М	T-shirt size of some customers
5	160	59	M	1-Silli t Size of Some Customers
6	160	60	M	
7	163	60	M	
8	163	61	М	we need to predict the T-shirt size of
9	160	64	L	a new customer given only height and
10	163	64	L	
11	165	61	L	weight information we have.
12	165	62	L	
13	165	65	L	
14	168	62	L	Data including height, weight and T-
15	168	63	L	
16	168	66	L	shirt size information is shown here
17	170	63	L	
18	170	64	L	
19	170	68	L	
20				
21	161	61		

K NEAREST NEIGHBOR: STEP BY STEP

Step 1: Calculate Similarity based on distance function

Euclidean:

$$d(x, y) = \sqrt{\sum_{i=1}^{m} (x_i - y_i)^2}$$

Manhattan / city - block:

$$d(x, y) = \sum_{i=1}^{m} |x_i - y_i|$$

The idea to use distance measure is to find the distance (similarity) between new sample and training cases and then find the k-closest customers to new customer in terms of height and weight.

New customer named 'Monica' has height 161cm and weight 61kg. Euclidean distance between first data in the table and the given data for Monica is SQRT((161-158)^2+(61-58)^2)

Similarly, we need to calculate distance of all the training cases with new case and rank them in terms of distance from the new case.

K NEAREST NEIGHBOR: STEP BY STEP

Step 2 : Find K-Nearest Neighbors; Let K = 5

9	f_x	=SQRT((\$A\$21-A	5)^2+(\$B\$2	1-B6)^2)
⊿	Α			D	Ε	
1	Height (in cms)	Weight (in kgs)	T Shirt Size	Distance		
2	158	58	M	4.2		
3	158	59	M	3.6		
4	158	63	M	3.6		
5	160	59	M	2.2	3	
6	160	60	M	1.4	1	
7	163	60	M	2.2	3	
8	163	61	M	2.0	2	
9	160	64	L	3.2	5	
10	163	64	L	3.6		
11	165	61	L	4.0		
12	165	62	L	4.1		
13	165	65	L	5.7		
14	168	62	L	7.1		
15	168	63	L	7.3		
16	168	66	L	8.6		
17	170	63	L	9.2		
18	170	64	L	9.5		
19	170	68	L	11.4		
20						
21	161	61				

The algorithm searches for the 5 customers closest to Monica, i.e. most similar to Monica in terms of attributes, and see what categories those 5 customers were in. If 4 of them had 'Medium T shirt sizes' and 1 had 'Large T shirt size' then your best guess for Monica is 'Medium T shirt. See the calculation shown in the snapshot

KNN-GRAPHICAL ILLUSTRATION

Medium T-shirt size' is shown in blue color and 'Large T-shirt size' is shown in orange color. New customer information is exhibited in yellow circle. Four blue highlighted data points and one orange highlighted data point are close to yellow circle. So the prediction for the new case is blue highlighted data point which is Medium T-shirt size.

KNN-CLASSIFICATION EXAMPLE

Name	Aptitude	Communication	Class	Distance	k=1	k=2	k=3
Karuna	2	5	Speaker	3.041			
Bhuvna	2	6	Speaker	3.354			
Parimal	3	5.5	Speaker	2.236			
Jani	4	7	Speaker	2.693			
Bobby	5	3	Intel	1.500			1.500
Ravi	6	2	Intel	2.693			
Gouri	6	4	Intel	1.118	1.118	1.118	1.118
Parul	7	2.5	Intel	2.828			
Govind	8	3	Intel	3.354			
Susant	6	5.5	Leader	1.414		1.414	1.414
Bharat	6	7	Leader	2.693			
Gaurav	7	6	Leader	2.500			
Dinesh	8	6	Leader	3.354			
Pradeep	9	7	Leader	4.717			
Josh	5	4.5	???				

CAN KNN BE USED FOR REGRESSION?

Yes, K-nearest neighbor can be used for regression. In other words, K-nearest neighbor algorithm can be applied when dependent or target variable is continuous. In this case, the predicted value is the average of the values of its k nearest neighbors.

Name	Aptitude	Communication	Score	Distance	k=1	k=2	k=3
Karuna	2	5	11	3.041			
Bhuvna	2	6	13	3.354			
Parimal	3	5.5	16	2.236			
Jani	4	7	- 29	2.693			
Bobby	5	3	144	1.500			1.500
Ravi	6	2	11	2.693			
Gouri	6	4	23	1.118	1.118	1.118	1.118
Parul	7	2.5	13	2.828			
Govind	8	3	.23	3.354			
Susant	6	5.5	1, 29	1.414		1.414	1.414
Bharat	6	7	43	2.693			
Gaurav	7	6	41	2.500			
Dinesh	8	6	47 [3.354			
Pradeep	9	7	62	4.717			
Josh	5	4.5	???		23	26	22

KNN-ALGORITHM

- Step 1. Load the data
- Step 2. Initialize K to your chosen number of neighbors
- Step 3. For each example in the data
- Step 3.1 Calculate the distance between the query example and the current example from the data.
- Step 3.2 Add the distance and the index of the example to an ordered collection
- Step 4. Sort the ordered collection of distances and indices from smallest to largest (in ascending order) by the distances
- Step 5. Pick the first K entries from the sorted collection
- Step 6. Get the labels of the selected K entries
- Step 7. If regression, return the mean of the K labels
- Step 8. If classification, return the mode of the K labels

STANDARDIZATION

When independent variables in training data are measured in different units, it is important to standardize variables before calculating distance. For example, if one variable is based on height in cms, and the other is based on weight in kgs then height will influence more on the distance calculation. In order to make them comparable we need to standardize

$$Xs = rac{X - mean}{s.d.}$$
 $Xs = rac{X - mean}{max - min}$
 $Xs = rac{X - min}{max - min}$

	Α	В	С	D	Е
1	Height (in cms)	Weight (in kgs)	T Shirt Size	Distance	
2	-1.39	-1.64	M	1.3	
3	-1.39	-1.27	M	1.0	
4	-1.39	0.25	M	1.0	
5	-0.92	-1.27	M	0.8	4
6	-0.92	-0.89	M	0.4	1
7	-0.23	-0.89	M	0.6	3
8	-0.23	-0.51	M	0.5	2
9	-0.92	0.63	L	1.2	
10	-0.23	0.63	L	1.2	
11	0.23	-0.51	L	0.9	5
12	0.23	-0.13	L	1.0	
13	0.23	1.01	L	1.8	
14	0.92	-0.13	L	1.7	
15	0.92	0.25	L	1.8	
16	0.92	1.39	L	2.5	
17	1.39	0.25	L	2.2	
18	1.39	0.63	L	2.4	
19	1.39	2.15	L	3.4	
20					
21	-0.7	-0.5			

CLASSIFICATION EXAMPLE: REVISITED

CLASSIFICATION EXAMPLE: REVISITED

CLASSIFICATION EXAMPLE: REVISITED

Features

	Α	В	C	D 👍	E	F
1	Id	SepalLengthCm	SepalWidthCm	PetalLengthCm	PetalWidthCm	Species
2	1	5.1	3.5	1.4	0.2	Iris-setosa
3	2	4.9	3	1.4	0.2	Iris-setosa
4	3	4.7	3.2	1.3	0.2	Iris-setosa
5	4	4.6	3.1	1.5	0.2	Iris-setosa
6	5	5	3.6	1.4	0.2	Iris-setosa

Class
Labels

Id	SepalLengthCm	SepalWidthCm	PetalLengthCm	PetalWidthCm	Species
52	6.4	3.2	4.5	1.5	Iris-versicolor
53	6.9	3.1	4.9	1.5	Iris-versicolor
54	5.5	2.3	4	1.3	Iris-versicolor
55	6.5	2.8	4.6	1.5	Iris-versicolor
56	5.7	2.8	4.5	1.3	Iris-versicolor

Id	SepalLengthCm	SepalWidthCm	PetalLengthCm	PetalWidthCm	Species
146	6.7	3	5.2	2.3	Iris-virginica
147	6.3	2.5	5	1.9	Iris-virginica
148	6.5	3	5.2	2	Iris-virginica
149	6.2	3.4	5.4	2.3	Iris-virginica
150	5.9	3	5.1	1.8	Iris-virginica

CLASSIFICATION EXAMPLE: REVISITED

CLASSIFICATION CHALLENGE!!!

SepalLengthCm	SepalWidthCm	PetalLengthCm	PetalWidthCm	Species
6.3	2.8	5.1	1.5	??????????
				,

PREDICTION OF SPECIES!!!

DATA SPLITTING INTO TRAINING & TESTING SET: HOLDOUT METHOD

```
# Importing Libraries
import pandas as pd

# Importing the Dataset
dataset = pd.read_csv("./data/iris.csv")
print(dataset.head())

# Preprocessing
X = dataset.iloc[:, 1:5]
y = dataset.iloc[:, 5]

# Train Test Split
from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.20)
```

PREPROCESSING: STANDARDIZATION IMPLEMENTATION

```
# Feature Scaling
from sklearn.preprocessing import StandardScaler
scaler = StandardScaler()
scaler.fit(X_train)

X_train = scaler.transform(X_train)
X_test = scaler.transform(X_test)
```

IMPLEMENTATION: MODEL TRAINING

```
# Training
from sklearn.neighbors import KNeighborsClassifier
classifier = KNeighborsClassifier(n_neighbors = 5)
classifier.fit(X_train, y_train)
```

PERFORMANCE ASSESSMENT

```
# Predictions
y_pred = classifier.predict(X_test)

# Evaluating the Algorithm
from sklearn.metrics import classification_report, confusion_matrix
print(confusion_matrix(y_test, y_pred))
print(classification_report(y_test, y_pred))
```

CLASSIFIER'S PERFORMANCE ASSESSMENT

Iris-setosa Iris-versicolor Iris-virginica

Iris-setosa	[9	0	0]
Iris-versicolor		5	2]
Iris-virginica	=	1	13]]

Confusion Matrix

	precision	recall	f1-score	support
Iris-setosa	1.00	1.00	1.00	9
Iris-versicolor	0.83	0.71	0.77	7
Iris-virginica	0.87	0.93	0.90	14
avg / total	0.90	0.90	0.90	30

SAVING MODEL OFFLINE

```
import pickle
# Model persistence
output_model_file = 'Knnmodel.pkl'

# Save the model
with open(output_model_file, 'wb') as f:
    pickle.dump(classifier, f)
```

VALUE OF K???

```
import numpy as np
# Comparing Error Rate with the K Value
error = []
# Calculating error for K values between 1 and 40
for i in range(1, 10):
    knn = KNeighborsClassifier(n neighbors = i)
    knn.fit(X_train, y_train)
    pred_i = knn.predict(X_test)
    print(pred i != y test)
     print(np.mean(pred i != y test))
    error.append(np.mean(pred i != y test))
import matplotlib.pyplot as plt
plt.plot(range(1, 10), error,
         color='red', linestyle='dashed',
         marker='o', markerfacecolor='blue',
         markersize=10)
plt.title('Error Rate K Value')
plt.xlabel('K Value')
plt.ylabel('Mean Error')
plt.show()
```


Low k-value is sensitive to outliers and a higher K-value is more resilient to outliers as it considers more voters to decide prediction.

CLASSIFICATION PREDICTION

```
1 import pickle
 2 # Model persistence
 3 output_model_file = 'Knnmodel.pkl'
 5 # Load the model
 6 with open(output_model_file, 'rb') as f:
       knn = pickle.load(f)
 9 # New Feature Set
10 import numpy as np
11 X = np.array([[ 4.8, 3.0, 1.4, 0.3], [7, 3.2, 4.7,
                                                               1.4]])
12 print(X)
13
14 # Feature pre-processing by standardization
15 from sklearn.preprocessing import StandardScaler
16 scaler = StandardScaler()
17 scaler.fit(X)
18 X = scaler.transform(X)
19
20 # Making Predictions
21 predictions = knn.predict(X)
22 print(predictions)
```

OUTPUT

```
[[ 4.8 3. 1.4 0.3]
[ 7. 3.2 4.7 1.4]]
['Iris-setosa' 'Iris-virginica']
```


PROS AND CONS OF KNN

Lazy learning algorithm – KNN is a lazy learning algorithm because it does not have a specialized training phase and uses all the data for training while classification.

Non-parametric learning algorithm – KNN is also a non-parametric learning algorithm because it doesn't assume anything about the underlying data.

Pros

- It is very simple algorithm to understand and interpret.
- It is very useful for nonlinear data because there is no assumption about data in this algorithm.
- It is a versatile algorithm as we can use it for classification as well as regression.
- It has relatively high accuracy but there are much better supervised learning models than KNN. It is fairly easy to add new data to algorithm.

Cons

- It is computationally a bit expensive algorithm because it compares with all the training data.
- High memory storage required as compared to other supervised learning algorithms.
- Hard to work with categorical features.
- It is very sensitive to the scale of data as well as irrelevant features.

