

Probabilistic analyses of a spatial vehicule equipment bay

Study in partnership with CNES

Antoine Dumas

5 June 2020

Contexte : projet CNES Callisto

- © Callisto Dimensionnement d'un lanceur réutilisable
 - Etude de la case à équipements

VEB: Vehicule Equipement Bay

Contexte : projet CNES Callisto

Etude de dimensionnement de la case à équipements

- Objectif : application de la méthodologie incertitude afin de minimiser la masse de la case à équipements
 - Analyse de sensibilité (Morris et Sobol)
 - Analyse de fiabilité
 - Analyse de sensibilité fiabiliste
 - Optimisation sous contraintes de fiabilité (pas encore réalisée)

Contexte: projet CNES Callisto

Implémentation numérique

- Code EF Nastran fourni par le CNES
 - Analyse statique et en flambage
 - Temps de calcul unitaire ~ 5 min
 - Variables d'entrée aléatoires : 47 au total
 - > 20 épaisseurs
 - Module d'Young
 - ➤ 26 valeurs de chargement
 - Variables de sorties : 5 x 10 cas de charge
 - 2 contraintes, Flux, Déplacement, Valeur propre (flambage)

OpenTURNS, otmorris, otwrapy, Numpy, Pandas

Callisto: chargement

10 cas de charge

Plusieurs types d'efforts

Résultats : contraintes / flambage

Contrainte maximale

Loadcase	Element	MAX_Stress VM_Z1	Element	MAX_Stress VM_Z2	
150303	5300258	323.9043	5300428	355.431	

Valeur propre minimale

Loadcase	Node	MINEigenvalue
150303	5310259	2.034

Résultats : flux I/F supérieur et déplacement

Phimeca Engineering

Flux I/F Maximal

Loadcase	Element	MAX_IF-Flux	Element	MIN_IF-Flux
150303	5008122	17.32	5008043	-66.49

Déplacement maximal

Loadcase	Node	MAX_Displacement
150303	5350096	3.76

Couplage du code EF

Couplage avec Python et OpenTURNS

- Le couplage s'effectue en 3 parties
- Création du fichier d'entrée à partir d'un fichier modèle : ot.coupling_tools.replace
 - 2 fichiers « modèles » créés à partir des vrais fichiers
 - Les variables d'entrée sont repérées à l'aide d'une balise (ici entre les #)

```
SHMNAME PROP
                      5702"PSHELL 5702" 4
SHWCOLOR PROP
PSHELL
                5000#Actuator Outer Doubler# 5000
         5702
                                                                   0.0
$-----1$-----2$-----3$-----4$------5$-------0$------7$------8$------9
$PSHELL
        PTD
               MID1
                           MID2 12I/T**3 MID3
                                                      NSM
 ----1$-----7$-----8$-----9
SHMNAME PROP
                      5712"PSHELL 5712" 4
SHWCOLOR PROP
                      5/12
               5000#Actuator Inner Doubler# 5000
PSHELL
         5712
                                                                   \Theta.\Theta
$-----7$----8$----9
$PSHELL
        PID
               MTD1
                           MID2 12I/T**3 MID3
                                              TS/T
                                                      NSM
$-----1$-----7$-----8$-----9
SHMNAME PROP
$HWCOLOR PROP
                5000#Upper Fins Cyl b# 35000
PSHELL
         5312
                                                5000
                                                              0.0
```


Les cartes Nastran accepte 8 caractères par défauts

```
'{:0.3f}'
'{:0.2f}'
'{:0.2f}'
```


Couplage du code EF

- Couplage avec Python et OpenTURNS
 - Le couplage s'effectue en 3 parties
 - 2. Exécution de Nastran : ot.coupling_tools.execute
 - nastran GLA150_SOL_200_May_19_Min_Tech_1.dat ifpstar=no scr=yes memory=200MW buffsize=16385

- Lecture des résultats dans le fichier de sortie gla150_sol_200_may_19_min_tech_1.f06
 - Utilisation d'un script python + ot.coupling_tools.get
- + utilisation du module otwrapy
 - Gestion d'un dossier de travail temporaire
 - Parallélisation

Analyse de Morris

Analyse de Morris pour réduire la dimension

- Utilisation du module otmorris
- Permet d'identifier les variables influentes
 - Effet linéaire sans interactions
 - Effet non linéaire ou avec interactions
- Principe
 - Répétitions (trajectoire) de plans d'expériences un-à-la-fois sur une grille découpée en un nombre de niveaux prédéfinis
 - Calcul statistique (moyenne, écart-type) des effets élémentaires

 $nb_{niveaux} = 4$

 $nb_{niveaux} = 6$

Analyse de Morris

Application à Callisto

- 6 niveaux et 15 trajectoires : 720 évaluations
- Un maximum de 15 paramètres sont sélectionnés par sortie
- En cumulé : 28 variables sont influentes sur au moins 1 sortie
- Comportement des sorties :
 - monotone et linéaire
 - monotone et non linéaire

	MAX_Stress_VM_Z1_1	MAX_Stress_VM_Z2_1	MAX_IF_Flux_1
0	Actuator_Outer_Doubler	Actuator_Outer_Doubler	Actuator_Outer_Doubler
1	Actuator_Inner_Doubler	Upper_Fins_Cyl_b	Actuator_Inner_Doubler
2	Upper_Fins_Cyl_b	Upper_Fins_Cyl_d	Upper_Fins_Cyl_b
3	Upper_Fins_Cyl_d	F_FINS_N3_1	F_FINS_N3_1
4	F_FINS_N3_1	M_FINS_N1	M_FINS_N1
5	M_FINS_N1		M_FINS_N3_1
6	M_FINS_N3_1		

Construction d'un métamodèle

Utilisation du chaos polynomial

- Construction d'un chaos polynomial spécifique par sortie
 - Sélection des paramètres d'entrée influents
 - Construction d'un chaos creux avec sélection automatique du meilleur chaos parmi les degrés 1, 2 ou 3 via le critère du Q2 analytique
 - Agrégation de tous les chaos pour manipuler une seul fonction
 - Élargissement du domaine de définition des variables aléatoires

R2 (test) et Q2 minimale de 0,8 sur les 50 sorties la majorité > 0,9

composed_model_collection[i] = ot.ComposedFunction(chaos_model_collection[i], transformation_model_collection[i])
self.full_metamodel = ot.AggregatedFunction(composed_model_collection)
self.full_metamodel.setOutputDescription(output_sample.getDescription())

Analyse de sensibilité globale

Indices de Sobol issus du chaos polynomial

- Indices définis uniquement en fonction des entrées influentes selon l'analyse de Morris
- Permet une optimisation « manuelle »
 - Diminuer les épaisseurs non influentes

	MAX_Stress_VM_Z1_1		MAX_Stres	AX_Stress_VM_Z2_1		_Flux_1	MAX_Displacement_1	
	First order	Total order	First order	Total order	First order	Total order	First order	Total order
Input variable								
Inertia_Box_Web							0	0
Inertia_Box_Tray_a								
Lower_Cylinder_5							0	0
Upper_Fins_Cyl_a								
Upper_Cyl_RCS_a								
Actuator_Outer_Doubler	0.155	0.158	0	0	0.246	0.246	0.01	0.01
Actuator_Inner_Doubler	0.215	0.218			0.015	0.015		
Upper_Fins_Cyl_b	0.009	0.011	0.297	0.299	0.004	0.004	0.178	0.18
Upper_Cyl_c							0.014	0.014
Inertia_Box_Tray_b								
Inertie_Box_Tray_c								
Upper_Cyl_RCS_b								
Upper_Fins_Cyl_d	0.001	0.001	0.175	0.177			0.021	0.022

Analyse de fiabilité système

Analyse pour le cas de charge 1

- Événement système (valeurs seuils fictives)
 - Max_Stress_VM_Z1 > 4.2e8 U
 - Max_Stress_VM_Z2 > 4.56e8 U
 - Max_IF_Flux > 8.3e5 U
 - Max_Displacement > 2.8e-3 U
 - Min_EigenValue < 1.55
- Possible directement avec OpenTURNS depuis 1.14

UnionEvent

class UnionEvent(*args) ¶

Event defined as the union of several events.

An occurrence of one single event E_i yields the occurrence of the system event (series system):

$$E_{sys} = \bigcup_{i=1}^{N} E_i$$

Analyse de fiabilité système

Utilisation du chaos polynomial « étendu »

- Estimation de la probabilité système
 - simulation de Monte Carlo
 - FORM + tirages d'importance centré sur tous les points P*
- Estimation des probabilités unitaires
 - Permet de déterminer quel événement est le plus prépondérant

Exemple avec 2 événements

15

Tirages d'importance à partir d'une mixture

JU OT - 5/06/2020 - Antoine Dumas

Analyse de sensibilité fiabiliste

Facteurs d'importance

Obtenus à partir de la simulation de Monte Carlo

$\overline{\mathbf{Q}}$ Indice PLI (Perturbation Law Indices)

- Lois initiales gaussiennes
 - Modification de la moyenne : $\pm \delta \times \sigma$
- Permet de voir l'évolution de la probabilité si on modifie la moyenne des lois initiales

PI IMean

GNF + 95% CI

Inertia Box Web + 95% CI Inertia Box Tray a + 95% CI Lower Cylinder 5 + 95% Cl

Upper Fins Cyl a + 95% Cl

 Upper Cyl RCS a + 95% Cl Actuator Outer Doubler + 95% CI Actuator Inner Doubler + 95% CI

Upper Fins Cyl b + 95% Cl

Inertie Box Tray c + 95% CI

 Upper CvI RCS b + 95% CI Upper Fins Cyl d + 95% Cl

Young Modulus + 95% Cl

 F NOSE N1 + 95% CI F FINS N2 2 + 95% CI F FINS N3 1 + 95% CI

 F FINS N3 2 + 95% CI F FINS_N3_3 + 95% CI

 M FINS N1 + 95% CI M FINS N2 4 + 95% CI M FINS N3 1 + 95% CI M FINS N3 2 + 95% CI

GRAV N1 2 + 95% CI

— GRAV N2 1 + 95% CI

 Upper Cyl c + 95% Cl Inertia Box Tray b + 95% CI

Conclusion et suite

- Application de la méthodologie incertitude
 - Possible entièrement avec OpenTURNS
- Suite
 - Evaluation de la probabilité système pour tous les cas de charges
 - Méthode identique ?
 - Méthode adaptative telle que AK-Sys ?
 - Minimisation du poids sous contraintes de fiabilité
 - Choisir les paramètres de conception à optimiser
 - Utilisation des librairies d'optimisation intégrées à OpenTURNS

