Théorie des Graphes

Plus courts chemins TPS 1A INOC theoleyre@unistra.fr

Objectif: comment calculer les plus courts chemins dans un graphe?

Dur'ee: 2 heures

Exercice 1: Algorithmes

On considère le réseau représenté ci-après.

- 1. Quels en sont les sources et les puits?
- 2. En utilisant tous les algorithmes licites vus en cours (justifier les choix), trouver le graphe des chemins minimaux (resp. maximaux) à partir de a. Ce graphe est-il équivalent à un arbre couvrant de poids minimal (resp. maximal)?
- 3. Mêmes questions en remplaçant l'arc (b,d) par l'arc (d,b) (et en conservant le même poids).
- 4. Mêmes questions en remplaçant le poids de l'arc (d, b) par -3.

Exercice 2: Graphe des plus courts chemins d'un réseau

Soit R = (S, A, l) un réseau sans circuit absorbant, $x \in S$ un sommet de R et $\pi_x : S \to \mathbb{R}$ l'application associant à tous sommet y de S la longueur L(C) du plus court chemin C de x à y s'il existe, $+\infty$ sinon. On définit le graphe partiel R' = (S, A') de (S, A) par $A' = \{(y, z) \mid L((y, z)) = \pi_x(z) - \pi_x(y)\}$.

Le but de l'exercice est de montrer que pour tout sommet $y \in S$, un plus court chemin dans R de x à y est exactement un chemin de x à y dans R'.

- 1. Soit y un sommet de R, et $C_1 = (x_i)_{i=1}^l$ un plus court chemin de x à y dans R. Montrer que pour tout $1 \le i \le l-1$, $(x_i, x_{i+1}) \in A'$.
- 2. Soit maintenant C_2 un chemin de x à y dans R'. Montrer que C_2 est un plus court chemin dans R.
- 3. Conclure.

Exercice 3: Réseau à coût constant

Soit G = (S, A, L) un réseau tel que pour tout arc $a \in A$ on a L(a) = k > 0. Proposer un algorithme (ne traitant qu'une seule fois chaque sommet et chaque arc de G) permettant de trouver la longueur du plus court chemin d'un sommet donné $x \in S$ à tout autre sommet de G.

Exercice 4: Plan de vol

Une compagnie aérienne dessert différentes villes européennes. Le tableau ci-dessous donne les durées de vol entre ces villes.

	A	В	С	D	Е
A		1h30	2h00		2h15
В	1h40				3h00
С	2h20			2h55	
D			3h20		1h05
Е	2h25	3h10		1h10	

- 1. Comment déterminer le trajet le plus rapide entre deux villes?
- 2. Comment modifier l'algorithme utilisé précédemment afin de prendre en compte la durée des escales dans les différentes villes?
- 3. Comment prendre en compte la durée des escales dans les différentes villes sans modifier l'algorithme?