1. Gauss - Jacobi's Method and Gauss - Seidel Method

Problem 1.1. Solve the system of equations by Gauss -Jacobi's method and Gauss- Seidel method,

Given
$$3x + 20y - z = -18 \atop 2x - 3y + 20z = 25 \atop 20x + y - 2z = 17$$

Ans: We can rewrite (F) as

$$20 \times 4 - 2 = 17 - 0$$
 $3 \times 420 = -2 = -18 - 2 = 4$
 $2 \times -3 = -3 = 25 = 3$

on (1); 1201>111+1-21

on @; [20] > 131 + 1-11

on 3); 120/>121+1-31

.. Desatisfies the dragonal dominance condition.

(2) =>
$$y = \frac{1}{20} (-18 - 3x + z)$$

Gauss - Jacobi's Method.

Let $\chi^{(0)} = y^{(0)} = Z^{(0)} = 0$. be the initial approx. Sol^M.

2

$$\chi^{(1)} = \frac{1}{20} (17 - y^{(0)} + 2z^{(0)}) = 0.85$$

$$y^{(1)} = \frac{1}{20} (-18 - 3\chi^{(0)} + z^{(0)}) = 70.9$$

$$z^{(1)} = \frac{1}{20} (25 - 2\chi^{(0)} + 3y^{(0)}) = 1.25$$

$$\frac{1}{20} = \frac{1}{20} \left(17 - y^{(1)} + 2z^{(1)} \right) = 1.020$$

$$y^{(2)} = \frac{1}{20} \left(-18 - 3z^{(1)} + z^{(1)} \right) = 0.965$$

$$z^{(2)} = \frac{1}{20} \left(25 - 2z^{(1)} + 3y^{(1)} \right) = 1.03$$

The ration
$$|\widehat{II}|$$
: $\chi^{(3)}_{=\frac{1}{20}} (17 - y^{(2)}_{+2} + 2z^{(2)}_{-2}) = 1.00125$

$$y^{(3)}_{=\frac{1}{20}} (-18 - 3x^{(2)}_{+20} + z^{(2)}_{-20}) = 1.0015$$

$$z^{(3)}_{=\frac{1}{20}} (25 - 2x^{(2)}_{+20} + 3y^{(2)}_{-20}) = 1.00325$$

Theration
$$V_{\chi^{(4)}} = \frac{1}{20} (17 - y^{(3)} + 2 z^{(3)}) = 1.0004$$

$$y^{(4)} = \frac{1}{20} \left(-18 - 3x^{(3)} + z^{(3)} \right) = 1.000025$$

$$z^{(4)} = \frac{1}{20} \left(25 - 2x^{(3)} + 3y^{(3)} \right) = 0.99934$$

Theration
$$V := \chi^{(5)} = \frac{1}{20} (17 - y^{(4)} + 2x^{(4)}) = 0.99996625$$

contd.. $y^{(5)} = \frac{1}{20} (-18 - 3x^{(4)} + x^{(4)}) = -1.0000775$
 $z^{(5)} = \frac{1}{20} (25 - 2x^{(4)} + 3y^{(4)}) = 0.99995625$

Iteration VI:

$$\chi^{(6)} = \frac{1}{20} (17 - y^{(5)} + 2z^{(5)}) = 0.99999995$$

$$y^{(6)} = \frac{1}{20} (-18 - 3z^{(5)} + z^{(5)}) = 0.99999997125$$

$$z^{(6)} = \frac{1}{20} (25 - 2z^{(5)} + 3y^{(5)}) = 1.000022125$$

From Iterations (5) and (6) the values of x_i , y_i and z_i are same upto three decimal places.

approx. Solⁿ is $x = 0.99999995 \approx 1.999$ $y = -0.9999997 \approx -1$ $z = 1.000022 \approx 1$ = 1.000

Gauss-Seidal Method.

Let $y^{(0)} = z^{(0)} = 0$. Then

contd..
$$\chi^{(1)} = \frac{1}{20} \left(17 - y^{(0)} + 2Z^{(0)} \right) = 0.85$$

$$\chi^{(1)} = \frac{1}{20} \left(-18 - 3\chi^{(1)} + Z^{(0)} \right) = 1.0275$$

$$Z^{(1)} = \frac{1}{20} \left(25 - 2\chi^{(1)} + 3y^{(1)} \right) = 1.010875$$

Tteration 11

$$\chi^{(2)} = \frac{1}{20} (17 - y^{(1)} + 2z^{(1)}) = 1.0024625$$

$$y^{(2)} = \frac{1}{20} (-18 - 3\chi^{(2)} + z^{(1)}) = 0.9998256$$

$$Z^{(2)} = \frac{1}{20} (25 - 2x^{(2)} + 3y^{(2)}) = 0.9997799$$

Iteration 11

$$\chi^{(3)} = \frac{1}{20} \left(17 - y^{(2)} + 2z^{(2)} \right) = 0.99996927$$

$$y^{(3)} = \frac{1}{20} \left(-18 - 3x^{(3)} + z^{(2)} \right) = 1.0000662$$

$$(3) \qquad (3) \qquad (3) \qquad (3) \qquad (4) \qquad (4)$$

$$Z^{(3)} = \frac{1}{20} \left(25 - 2\chi^{(3)} + 3y^{(3)} \right) = 0.99991007$$
Theratroniu: $\chi^{(4)} = 0.9999913; y^{(4)} = 1.0000032$

 $Z^{(4)} = 1.000000039$

.: From Heratom 3 and 4 the values

of x, y, z are same upto three decimal places. : approx. soln in x = 0.999921

Problem 1.2. Solve the system of equations

Given 1.2. Solve the system of equations
$$\begin{cases} 5x - y + z = 10 \\ 2x + 4y = 12 \\ x + y + 5z = -1 \end{cases}$$

by (g) Gauss -Jacobi's method (Correct to two decimal places) (b) Gauss- Seidal method (Correct to three decimal places)

-> Carryout 4 iterations.

Ans: System (*) Satisfies diagonal dominance condition.

$$\begin{array}{c}
(x) \Rightarrow x = \frac{1}{5} (10 + y - z) \\
y = \frac{1}{4} (12 - \lambda x)
\end{array}$$

$$z = \frac{1}{5} (-1 - x - y)$$

Gauss Jacobi method.

Let x(0) = y(0) = Z(0) = 0 be initial approximation.

Theration
$$T := \chi^{(1)} = \frac{1}{5} (10 + y^{(0)} - z^{(0)}) = 2$$

$$y_{1}^{(1)} = \frac{1}{4} (12 - 2\chi^{(0)}) = 3$$

$$z_{1}^{(1)} = \frac{1}{5} (-1 - \chi^{(0)} - y^{(0)}) = 0.2$$

The ration
$$1$$
: $x^{(2)} = \frac{1}{5} (10 + y'') - z''') = 2.64$

 $Z^{(2)} = \frac{1}{5}(-1 - \chi^{(1)} - y^{(1)}) = -1.2$ Theration III:... $Z^{(2)} = \frac{1}{5}(-1 - \chi^{(1)} - y^{(1)}) = -1.2$

$$\frac{1}{\chi^{(3)}} = \frac{1}{5} \left(10 + y^{(2)} - Z^{(2)} \right) = 2.64$$

$$y^{(3)} = \frac{1}{4} \left(12 - 2\chi^{(2)} \right) = 1.68$$

$$Z^{(3)} = \frac{1}{5} \left(-1 - \chi^{(2)} - y^{(2)} \right) = -1.128$$

Tteration iv

$$\chi^{(4)} = \frac{1}{5} \left(10 + y^{(3)} - Z^{(3)} \right) = 2.5616$$

$$\chi^{(4)} = \frac{1}{4} \left(12 - 2\chi^{(3)} \right) = 1.68$$

$$Z^{(4)} = \frac{1}{5} \left(-1 - \chi^{(3)} - y^{(3)} \right) = 1.064$$

$$Z^{(4)} = \frac{1}{5} \left(-1 - \chi^{(3)} - y^{(3)} \right) = 1.064$$

After 4 Herations the approx.

soin correct to two decimal places

are, x = 2.56, y = 1.68, z = -1.06

6 Jauss - Seidal Method.

Let $y^{(0)} = z^{(0)} = 0$ be the unitial approx.

Iteration I:

contd..
$$\chi^{(l)} = \frac{1}{5} (10 + y^{(l)} - z^{(0)}) = 2$$

$$y^{(l)} = \frac{1}{4} (12 - 2\chi^{(l)}) = 2$$

$$z^{(l)} = \frac{1}{5} (-1 - y^{(l)} - \chi^{(l)}) = -1$$

Iteration II

$$\chi^{(2)} = \frac{1}{5} \left(10 + y^{(1)} - z^{(1)} \right) = 2 \cdot b$$

$$y^{(2)} = \frac{1}{4} \left(12 - 2\chi^{(2)} \right) = 1.7$$

$$z^{(2)} = \frac{1}{5} \left(-1 - y^{(2)} - \chi^{(2)} \right) = -1.0b$$

Theration iii $\chi^{(3)} = \frac{1}{5} (10 + y^{(2)} - z^{(2)}) = 2.552$ $y^{(3)} = \frac{1}{4} (12 - 2\chi^{(3)}) = 1.724$ $z^{(3)} = \frac{1}{5} (-1 - y^{(3)} - \chi^{(3)}) = -1.0552$

Iteration is $\chi^{(4)} = \frac{1}{5}(10 + y^{(3)} - \chi^{(3)}) = 2.55584$ $y^{(4)} = \frac{1}{4}(12 - 2\chi^{(4)}) = +1.72208$ $\chi^{(4)} = \frac{1}{5}(-1 - y^{(4)} - \chi^{(4)}) = -1.055584$

After 4 iterations the approx soln correct to 3 decimal places are, x = 2.556 y = 1.722; z=1.056

Problem 1.3. Solve the system of equations

2x + y + 6z = 98x + 3y + 2z = 13x + 5y + z = 7

by Gauss- Seidal method (Correct to 3 decimal Places)

Ans: x = 1.625

y = 1.075

Problem 1.4. Solve the system of equations

$$10x - 2y - z - w = 5$$

$$-2x + 10y - z - w = 15$$

$$-x - y + 10z - 2w = 27$$

$$-x - y - 2z + 10w = -9$$

 $by\ Gauss-\ Seidal\ method$

Ans:-
$$\chi = 1.2167$$

 $y = 2.05$
 $z = 3.0333$
 $w = 0.0333$

$$\overline{tg}$$
: $\overline{a} = 21/43 j = {2 \choose 3} = (2,3)$

2. Eigen values and eigen vectors

Consider a matrix
$$A = \begin{pmatrix} 1 & 0 \\ 2 & 4 \end{pmatrix}$$
. Let $e_1 = (1, 0)$ and $e_2 = (0, 1)$ be two 2-dimensional vectors

$$A \ell_1 = \begin{pmatrix} 1 & 0 \\ 2 & 4 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \begin{pmatrix} 1 \\ 2 \end{pmatrix} = \begin{pmatrix} 1, 2 \end{pmatrix} \neq \text{any multiple of } \ell_1$$

$$A \ell_2 = \begin{pmatrix} 1 & 0 \\ 2 & 4 \end{pmatrix} \begin{pmatrix} 0 \\ 1 \end{pmatrix} = \begin{pmatrix} 0 \\ 4 \end{pmatrix} = \begin{pmatrix} 0, 4 \\ 4 \end{pmatrix} = \begin{pmatrix} 4 \\ 4 \end{pmatrix} = \begin{pmatrix}$$

Graphical interpretation:

$$Ae_2=(0,4)=4\overset{Y}{e_2}$$
 $(1,2)Ae_1$ $e_2(0,1)$ $e_1(1,0)$ X

Let A be a square matrix then the eigen vectors of A are the non zero vectors X, that after being multiplied by the matrix A, the two vectors X and AX remain parallel.

i.e., X and $\stackrel{\frown}{A}X$ are parallel then we can write $AX=\lambda X$ for some scalar λ .

Example 2.1. Consider the matrices,
$$A = \begin{pmatrix} 1 & -2 \\ 1 & 4 \end{pmatrix}$$

For
$$X = \begin{pmatrix} -2 \\ 1 \end{pmatrix}$$

then
$$AX = \begin{pmatrix} 1 & -2 \\ 1 & 4 \end{pmatrix} \begin{pmatrix} -2 \\ 1 \end{pmatrix}$$

$$= \begin{pmatrix} -4 \\ 2 \end{pmatrix} = 2 \begin{pmatrix} -2 \\ 1 \end{pmatrix} = 2 \times X$$

Q; X and AX are parellel

..
$$X = \begin{pmatrix} -2 \\ 1 \end{pmatrix}$$
 is the eigen vector of A

and the respective eigen nature is 2.

Graphical interpretation:

Example 2.2. Consider the matrix $B = \begin{pmatrix} 0 & 1 \\ -2 & -3 \end{pmatrix}$.

For
$$\mathbf{N} = \begin{pmatrix} 1 \\ -2 \end{pmatrix}$$

$$\mathbf{B}V = \begin{pmatrix} 0 & 1 \\ -2 & -3 \end{pmatrix} \begin{pmatrix} 1 \\ -2 \end{pmatrix} = \begin{pmatrix} -2 \\ +4 \end{pmatrix} = -2 \begin{pmatrix} 1 \\ -2 \end{pmatrix}$$

$$= -2 \sqrt{4}$$

ie; V and BV are 11el

i. V is the eigen vector for B

and the respective eigen value is

-2.

Now, we can give a formal mathematical description of this idea,

Definition 2.3. Given a square matrix A, let us consider the problem of finding numbers λ (real or complex) and non zero vectors (column matrix) X such that $AX = \lambda X$. This problem is called **eigen value problem.** The numbers λ are called **eigen values** of the matrix A, and the non zero vectors X are called the **eigen vectors** corresponding to the eigen value λ .

- Then $(A \lambda I)_{n \times n}$, is called. then $(A - \lambda I)_{n \times n}$, is called. the Characteristic matrix. $\rightarrow |A - \lambda I| = 0$, is called the characteristic eqn of A.
- $\rightarrow |A-\lambda I| = 0$, is a eqⁿ of degree 'n' in'\(\lambda'\).
- -> Roots of the equation IA-7II:0 is called the eigen values of A.
- -> Let $\lambda_1, \lambda_2, -... \lambda_n$ be the eigen values of A.
- \rightarrow Find a non zero vector X $\partial: AX = \lambda_i X$ where $i = 1, 2 \cdots n$

Finding eigen values

Let A be a square matrix then the eiggen vector of A is a non-zero vector X such that $AX = \lambda X$ for some scalar λ .
i.e.,

$$AX = \lambda X$$
$$AX - \lambda X = 0$$
$$(A - \lambda I)X = 0$$

The matrix $A - \lambda I$ is called the **characteristic matrix** and the equation $|A - \lambda I| = 0$ is called the **characteristic equation** of A.

The values of λ which satisfies the characteristic equation $|A - \lambda I| = 0$ of A are called the **eigen values or characteristic roots or latent roots** of A.

Corresponding to each eigen value λ the non zero vector X satisfies $AX = \lambda X$ is called the eigen vector of λ .

$$\begin{array}{ll}
\dot{u}; & Ax = \lambda_i(Tx) & \text{for } i = 1,2,\dots n \\
\Rightarrow & Ax - (\lambda_i T)x = 0 & A_{0xn} \\
\Rightarrow & Ax - (\lambda_i T)x' = 0 & X_{nxi} = \begin{pmatrix} \lambda_i \\ \lambda_i \\ \lambda_n \end{pmatrix}$$

Properties of eigen values::

Let A be an $n \times n$ matrix. Assume that A has n distinct eigen values say, $\lambda_1, \lambda_2, ..., \lambda_n$ then

• the eigen values of A^T are $\lambda_1, \lambda_2, ..., \lambda_n$ • the eigen values of A^{-1} (if it exists) are $\frac{1}{\lambda_1}, \frac{1}{\lambda_2}, ..., \frac{1}{\lambda_n}$ • the eigen values of the matrix $A - \alpha I$ are $\lambda_1 - \alpha, \lambda_2 - \alpha, ..., \lambda_n - \alpha$ • for any non negative integer k, the eigen values of A^k are $\lambda_1^k, \lambda_2^k, ..., \lambda_n^k$