CM146, Fall 2019

Problem Set 4: Learning Theory, Boosting, Multi-class Classification

Due December 8, 2019, 11:59pm

Name: Yongqian Li Student 11 #: 014997466 Submission instructions

- Submit your solutions electronically on the course Gradescope site as PDF files.
- If you plan to typeset your solutions, please use the LaTeX solution template. If you must submit scanned handwritten solutions, please use a black pen on blank white paper and a high-quality scanner app.

(a). Iterate in Strain, for each data point in the mexamples If its label $y_{ni}=1$, the hypothesis is the hx: If none of the life after iterations no $y_i=1$ is found, the hypothesis is h. The training error of this algorithm is always 0 since the prediction is consistent with the Strain.

(b) The hypothesis A Smin) is always consistent with Strain, and it makes at most I mistake in D since many h* Eltsingleton is either h or has only one $x \in \mathbb{Z} X$ s.t. $h^*(x) = 1$, and mistakes are only made when $A(S_{train})$ is h^- with $h^* \neq h^-$ (Otherwise we would have predicted h^* correctly). Loss is either our N. If the true h* is hx*, we will make mistakes only if 1 x* does not appear in \$ Strain. (- PCloss >0) = (1-1)m -: P(loss > 0) > P(loss > 2) : If o > P(loss > 0), then o > P(loss > 2) When loss > ϵ , loss = $\forall \Rightarrow \forall > \epsilon$: $(1-\forall)^m < (1-\epsilon)^m$: let 0> (1-2)m> (1-7)m> Pcloss> 2),

i. If $m \ge \frac{\log t}{\epsilon}$, $\sigma \ge (1-\epsilon)^m > (1-t)^m$ i. Loss is either 0 or t ... $P(loss > \epsilon) = P(loss > 0) = (1-t)^m$ i. $\sigma \ge (1-\epsilon)^m > P(loss > \epsilon)$ i. when $m \ge \frac{\log t}{\epsilon}$, $\sigma \ge P(l_{QM}(A(\zeta_{min})) > \epsilon)$

\$2.00 per

		Hypothesis 1 (1st iteration)				Hypothesis 2 (2nd iteration)			
i	Label	D_0	$f_1 \equiv$	$f_2 \equiv$	$h_1 \equiv$	D_1	$f_1 \equiv$	$f_2 \equiv$	$h_2 \equiv$
			[x > 2]	[y > 6]	[1/2]		$[x> \frac{q}{4}]$	$[y> \downarrow]$	[471]
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)
1	_	0.1	_	+	_	0.0625		_	
2	_	0.1	1	-	1	0.0625		_	_
3	+	01	+	+	+	17.0625	_	_	_
4	_	0.1	_	^		0.0625		_	
5	_	0.1	~	+	-	00625	_	+	+
6	_	0.1	+	+	+	0.25	-	1	_
7	+	0.1	+	+	+	0.0629	+	-	
8	_	0.1	-		_	0.0629	_	-	-
9	+	0.1	-	+	-	0.25	-	+	+
10	+	0.1	+	+	+	2.0625	_	_	

Table 1: Table for Boosting results

4 Multi-class classification [60 pts]

Consider a multi-class classification problem with k class labels $\{1, 2, \dots k\}$. Assume that we are given m examples, labeled with one of the k class labels. Assume, for simplicity, that we have m/k examples of each type.

Assume that you have a learning algorithm L that can be used to learn Boolean functions. (E.g., think about L as the Perceptron algorithm). We would like to explore several ways to develop learning algorithms for the multi-class classification problem.

There are two schemes to use the algorithm L on the given data set, and produce a multi-class classification:

- One vs. All: For every label $i \in [1, k]$, a classifier is learned over the following data set: the examples labeled with the label i are considered "positive", and examples labeled with any other class $j \in [1, k], j \neq i$ are considered "negative".
- All vs. All: For every pair of labels (i,j), a classifier is learned over the following data set: the examples labeled with one class $i \in [1,k]$ are considered "positive", and those labeled with the other class $j \in [1,k], j \neq i$ are considered "negative".

(1). Tournament: stort with any pair of labels, compare with any Wax and Waxi the winner (with larger WTXi) compare with another label; continue with winners until to the final winner is found (2). Majority: compare each pair of labels <a,b>, the larger one of Waxi and Wox; indicates the winner. Then choose the label which wins more often than any other label. meds to be separable from the others, which is a strong assumptions Each comparation of the vs. All involves a charge with it, examples and ensobles class with & 1 m examples, so they be muy be very untalunced. IV. The computational complexity for one vs. \$\land{All} is km => Ock \mathbb{m}; that of All is k(k+1) in > O(k) m). dis the dimension of each example. ib) - I would choose to vs. All because it is more efficient and only need to store k classifiers instead of $\frac{k(k-1)}{2}$ It is also easier to implement, and performs as good as $\frac{k(k-1)}{2}$ It is also easier to implement, and performs as good as $\frac{k(k-1)}{2}$ Vs. All in this case.

(c) the transfer of each perform calculates the dassifier in $\frac{k(k+1)}{2}$. One vs. All: $\frac{k(k+1)}{2}$ $\frac{k(k+1)}{$ Since it needs KNi, 75) between each pair (d). One VS. All: The Dock of Ckd m²) . All vs. All is more efficient. (e). One vs. All: $k \cdot O(d^2m) \Rightarrow O(kd^2m)$ All V_5 . All: $\frac{k(k+1)}{2} \cdot O(d^{\frac{2m}{k}}) \Rightarrow O(kd^2m)$. They are the same efficient. If). Counting: for each example, test all $\frac{k(k-1)}{2}$ classifiers $\frac{k(k-1)}{2} \cdot d \Rightarrow O(k^2d)$ Knockmout: for each example, eliminate / classifier at each step until the winner is found. (k-1) = steps. $(k-1) \cdot d \Rightarrow O(kd)$