# IntelliFraud: Bank Account Fraud Detection using Machine Learning



# Nukta Bhatia | Emir Talundzic | Piyush Shivrain **CSE 6242 Data & Visual Analytics** Fall 2023



### Objectives

#### Motivation

- Build a tool that detects fraudulent bank accounts opened through pnline applications in a consumer bank.
  Fraudulant account costs sustained by the bank as tracing back
- individuals is difficult, time consuming & expensive. Fraud accounts is class imbalance

#### **Current Practice**

- Transactional Monitoring
- Rule Based systems Behavioral Analysis
- Anomaly Detection
- Standard Machine Learning (ML) techniques

- Create a graph network to detect fraud tarnsaction flow
   Enable bank analysts to visualize trends and patterns in bank
- applications data
- Enable analysts to input application parameters
  Use ensemble methods like voting and stacking classifiers,
- comparing with LightGBM, XGBoost & AdaBoost Allow analysts to to compare & select ML models
- Provide insights into performance metrics to aid informed model

#### Dataset

- Bank Account Fraud Dataset Suite (NeurIPS2022) [Kaggle]
- 6 synthetic Variants
- Realistic, robust test bed based on a present-day, real-world dataset for fraud detection
- Each dataset has distinct controlled types of bias Extremely low prevalence of positive (fraud) class
- Privacy techniques (noise addition), feature encoding added

- Base: Samped to represent original dataset
- Variant I: Higher groupsize disparity than base Variant II: Higher prevalence disparity than base
- Variant III: Better separability for one of the groups Variant IV: Higher prevalence disparity in train



Fraud vs Non-Fraud Count (All Variants)

# Sampling Methods

## **Imbalanced Datasets**

- Employed 1:1, 1:2, and 1:3 random sampling To emphasize learning from the minority class
  - Models

# LGBM Classifier

Employs bossting to efficiently train decision trees, optimizing for speed and accuracy
AdaBoost Classifier

Combines weak learners to create a robust model, assigning more weight to misclassified instances for improved accuracy

XGB Classifier Enhances predictive performance by sequentially refining weak learners and minimizing errors

# **Voting Classifier**

Integrates predictions from multiple algorithms to make collective decisions, enhancing model accuracy through

## voting mechanism

Stacking Classifier
Integrates diverse model predictions by training a meta model, leveraging the strengths of individual models for improved overall performance



of Voting & Stacking Classifier:

# Ashish Puri | Jagannath Banerjee | Peter Kovari

# **Feature Selection**

- Variance Threshold
  - Removes low variance feature [device\_fraud\_count]
- Pearson's Correlation Matrix

Remove highly correlated features [velocity\_4w]

#### Random Forest Classifier

Using Feature Importance, picks the most important features (housing\_status; device\_os; credit\_risk\_score; has\_other\_cards; current\_address\_months\_count; keep\_alive\_session; prev\_address\_months\_count; phone\_home\_valid; proposed\_credit\_limit; income; name\_email\_similarity)





## Implementation

- Dataset Partition:
   80% Train; Stratified 5-Fold Cross Validation; 20% Test
- Tournament-style Procedure # Stage 1: Graph network visualization to see fraudulent
- transaction flow through various subsystems

  Stage 2: Train variants of the models using sampling strategies
- # Stage 3: Analyze and provide best performing model

AUC-ROC & F1 Score due to imbalanced dataset

# Results: Stage 1



### Results: Stage 2

#### Model Comparison for this Dataset on Test Set

| Sample Class       |                    | 5 Fold CV |           |                |             |          |          |
|--------------------|--------------------|-----------|-----------|----------------|-------------|----------|----------|
| (Fraud: Non-Fraud) | Classifier         | Score     | Precision | Recall (Fraud) | ROC_AUC_Scr | Accuracy | F1 Score |
| 1:01               | XGBClassifier      | 0.783     | 0.786     | 0.785          | 0.784       | 0.784    | 0.789    |
| 1:01               | AdaBoostClassifier | 0.785     | 0.792     | 0.776          | 0.785       | 0.784    | 0.784    |
| 1:01               | LGBMClassifier     | 0.782     | 0.782     | 0.783          | 0.781       | 0.781    | 0.78     |
| 1:01               | VotingClassifier   | 0.787     | 0.789     | 0.784          | 0.785       | 0.785    | 0.78     |
| 1:01               | StackingClassifier | 0.787     | 0.789     | 0.784          | 0.785       | 0.785    | 0.78     |
| 1:02               | XGBClassifier      | 0.797     | 0.722     | 0.649          | 0.763       | 0.801    | 0.684    |
| 1:02               | AdaBoostClassifier | 0.797     | 0.744     | 0.622          | 0.758       | 0.804    | 0.678    |
| 1:02               | LGBMClassifier     | 0.794     | 0.741     | 0.613          | 0.753       | 0.801    | 0.67     |
| 1:02               | VotingClassifier   | 0.799     | 0.733     | 0.636          | 0.761       | 0.803    | 0.68     |
| 1:02               | StackingClassifier | 0.799     | 0.732     | 0.637          | 0.761       | 0.803    | 0.683    |
| 1:03               | XGBClassifier      | 0.82      | 0.685     | 0.542          | 0.73        | 0.825    | 0.60     |
| 1:03               | AdaBoostClassifier | 0.819     | 0.718     | 0.515          | 0.724       | 0.83     | 0.0      |
| 1:03               | LGBMClassifier     | 0.816     | 0.723     | 0.496          | 0.717       | 0.828    | 0.58     |
| 1:03               | VotingClassifier   | 0.821     | 0.71      | 0.527          | 0.728       | 0.829    | 0.60     |
| 1:03               | StackingClassifier | 0.821     | 0.708     | 0.532          | 0.73        | 0.83     | 0.60     |

# Results: Stage 3

#### Best Model Performance for this Dataset on Test Set



User Interface

# Conclusion

- Voting and Stacking Classifiers performed slightly better than LightGBM,
- XGBoost & AdaBoost on this dataset The network graph helps analyze fraud transaction flow
- The EDA page provides the bank analysts to visualize trends and partterns in bank applications data
  Bank analysts can compare and select the ML Models based on the
- performance parameters

# **Future Work**

- Connect the IntelliFraud application to real dataset and test the performance of voting & stacking classifiers against that of LightGBM, XGBoost & AdaBoost Extend SHAP explainability features by adding LIME(Local Interpretable
- Model-Agnostic Explanations) allowing users to compare the features
- Provide a feedback loop to aid model improvement
- Thank you to the CSE 6242 Data Analytics and Visualization Prof Polo, and