C. (OSEIS (yula)	Desktop\расчеты_Lavart_маз	ут фас чет_эптальний. птеах
ить << C:\Users\yura\	Desktop\расчеты_Lavart_маз	рут\котлоагрегат.mcdx
$t_{yx} := 336.915$	Задаемся температурой уходящих газов	
$t_e := 20$	Задаемся температурой холодного воздуха подаваемого в котельный агрегат	
считываем энта	альпию уходящих га	азов и воздуха
$I_{yx} \coloneqq I_{\varepsilon} \left(t_{yx} \right) = 8.0$	09 • 10 ³	
$I_{xe} \coloneqq I_v \left(t_e \right) = 29.5$	532	
$q_2 \coloneqq \frac{(I_{yx} - \alpha_e \cdot I_{xe})}{Q_H}$	$) \cdot 100 = 23.649$	Рассчитаем потери теплоты с уходящими газ
$q_3 \coloneqq 0.7$		Принимаем потери с химическим недожогом равным нулю
$q_5 \coloneqq 1.7$		Принимаем потери тепла от наружного охлаждения (через изоляцию)
$\eta_{\delta p} \coloneqq 100 - q_2 - q_3$	$q_3 - q_5 = 73.951$	Рассчитаем КПД котлоагрегата брутто
$\varphi_m \coloneqq 1 - \frac{q_5}{\eta_{\delta p} - q_5} = 0.976$		Рассчитаем коэффициент сохранения тепла
$B_{mon,ruga} := \frac{G_{goobs}}{}$	$ \frac{\cdot 4.19 \cdot (t_1 - t_2)}{Q_{H} \cdot \frac{\eta_{\delta p}}{100}} = 0.226 $	Рассчитаем расход топлива в секунду (кг/с)
	100	