國立雲林科技大學資訊管理系 機器學習

專案作業二

PREDICT MANGO QUALITY AND OBJECT RECOGNITION WITH CONVOLUTIONAL NEURAL NETWORK

以卷積神經網路預測芒果品質以及物件識別

M10723047 黄靖媛

M10923012 陳羿欣

M10923021 吳青芬

M10923023 張凱淇

指導教授:許中川

2021 年 05 月

摘要

本研究使用愛文芒果資料集和 CIFAR-10 資料集,利用卷積神經網路(Convolutional Neural Network,CNN)模型來建構圖像分類器,並使用 ResNet50 作為本實驗之預訓練模型。愛文芒果資料集主要進行預測芒果的品質等級,希望透過分類器作果篩自動化以提升篩選芒果的效率,且須達到一定的準確率;CIFAR-10 資料集主要進行 10 種的物件類別預測。在本研究中分類預測模型利用 Precision、Recall 及 F1-score 來每一類別之判別績效,經由評估指標計算顯示,以 ResNet50 作為預訓練模型所架設之分類器能在愛文芒果資料集和 CIFAR-10 資料集的分類任務以及物件辨識獲得良好的績效。

關鍵字:卷積神經網路、圖像分類、ResNet50、物件辨識

一、緒論

1.1 動機

台灣芒果在近年來出口銷量逐年增加,成了我國外銷出口經濟最高的生鮮水果之一,愛文芒果採收後依品質篩選,分為上等、普通、瑕疵 三種等級,然而愛文芒果的品質若依靠人工篩選,除了農村人口流失導致人力短缺,篩選芒果(簡稱篩果)流程也因保鮮期壓縮地極短,導致篩果階段約有 10%的誤差,其篩果處理有待改善的是採收後處理技術。影像辨識技術可利用於芒果的瑕疵檢測,因此本研究使用愛文芒果資料集,利用卷積神經網路(CNN)模型來進行芒果品質的分級。

在第二個資料集 CIFAR-10 中包含 10 個不同類別的圖片,分別代表飛機, 汽車、鳥類、貓、鹿、狗、青蛙、馬、輪船和卡車,而每個類別皆有 6,000 張 32×32 像素的彩色圖像。藉由此資料集,本研究欲利用 CNN 模型架構來識別圖 片中之物件。

1.2 目的

本研究進行兩項類別預測任務,一為芒果品質分級預測,利用 Kaiming He, Xiangyu Zhang, Shaoqing Ren & Jian Sun (2016)所提出的 ResNet50 架構來建構辨識模型,以提高篩果的效率及準確率,進而彌補人力短缺所造成的問題。二為 CIFAR-10 物件識別,也是利用 ResNet50 架構來建構辨識模型,將資料集中 test data 的所有圖片進行識別分類。兩項任務皆使用 Precision、Recall 及 F1 指標來評估模型的預測結果。

二、方法

2.1 實作方法說明

本研究實驗資料集包括愛文芒果資料集、CIFAR-10 資料集,首先將影像進行前置處理,其包括影像正規化、類別編碼、資料增強以及資料分割,即為將訓練資料分成訓練資料(train data)以及驗證資料(validation data)。兩資料集皆使用 ResNet50 來進行影像特徵的擷取,再對影像辨識模型使用 Precision、Recall 及 F1 等指標對模型進行優劣評估,最後在預測測試資料(test data)之類別,得出識別準確率。

2.2 程式執行方法說明

本研究利用 Anaconda3 的 Jupyter notebook 環境來進行開發,使用 OpenCV 和 numpy 等套件對愛文芒果資料集和 CIFAR-10 資料集進行影像的前處理,利用 keras 建立辨識模型,並對資料進行預測,再將模型建立時所記錄的每個 epoch 以及訓練後的 loss 和 accuracy 畫出檢視學習歷程,判斷是否正常後再使用 Precision,Recall 及 F1 等指標對模型進行優劣評估。

三、實驗

3.1 資料集

本研究使用愛文芒果資料集以及 CIFAR-10 資料集兩種資料集作為實驗資料,以下為兩種資料集前處理之前圖像規格與說明。

3.1.1 愛文芒果資料集

愛文芒果資料集中有3種類別,分別為A、B、C,如表1,A代表上等的芒果,B代表普通的芒果,C代表瑕疵的芒果,共有6130張訓練資料及250張測試資料,而每張圖片皆為大小不同的彩色影像(RGB)。

原始資料筆數:6130測試資料筆數:250

● 類別數量:3

● 類別種類:A(上等)、B(普通)、C(瑕疵)

表 1

愛文芒果資料集部分資料內容

影像					
檔名	00002.jpg	00003.jpg	00004.jpg	00005.jpg	00007.jpg
類別	С	С	В	A	A

3.1.2 CIFAR-10 資料集

CIFAR-10 資料集中有 10 種類別,分別為 Airplane、Automobile、Bird、Cat、Deer、Dog、Frog、Horse、Ship、Truck,如表 2,而每種類別分為 5000 張訓練資料及 1000 張測試資料,每張圖片皆為 32×32 像素的彩色影像(RGB)。

原始資料筆數:50000測試資料筆數:10,000

● 類別數量:10

● 類別標籤:Airplane、Automobile、Bird、Cat、Deer、Dog、Frog、Horse、Ship、Truck。

表 2 CIFAR-10 資料集部分資料內容

影像	***	3		W	
檔名	aero- plane_s_0000 04.png	ambu- lance_s_0001 01.png	accen- tor_s_000014 .png	al- ley_cat_s_00 0009.png	alces_al- ces_s_000001 .png
類別	Airplane	Automobile	Bird	Cat	Deer
影像			1	4	- CO
檔名	blen- heim_span- iel_s_000006. png	alytes_obstet- ri- cans_s_00000 6.png	ameri- can_sad- dle_horse_s_ 000001.png	aban- doned_ship_s _000004.png	aerial_lad- der_truck_s_ 000001.png
類 別	Dog	Frog	Horse	Ship	Truck

3.2 前置處理

3.2.1 愛文芒果資料集

圖 1 愛文芒果資料集-前置處理流程圖

- 影像正規化:將每張影像的像素值正規化至 0 到 255 的灰階值。
- 類別編碼:將每種類別編號。
- 資料增強:將影像重新縮放、旋轉、水平翻轉或垂直翻轉等動作來製作成新的影像,以彌補資料量的不足。
- 資料分割:將資料之類別與欲用來訓練之資料分割,以8:2比例分割成4905 筆訓練資料以及1225筆驗證資料。

3.2.2 CIFAR-10 資料集

圖 2 CIFAR-10 資料集-前置處理流程圖

- 影像正規化:將每張影像的像素值正規化至 0 到 255 的灰階值。
- 類別編碼:將每種類別編號。
- 資料分割: 將資料之類別與欲用來訓練之資料分割,以8:2比例分割成40000 筆訓練資料以及10000筆驗證資料。

3.3 實驗設計

本研究在實驗設計進行兩種模型實驗測試,一為淺層 CNN,二為 ResNet50;淺層 CNN 採用 5 層 Convolution layers,目的是為了將圖像大特徵轉變成小特徵,並用 Maxpooling 保留重要特徵,每次進行卷積時,為了防止整體數值分布偏右或偏左,因此在卷積作業後使用 Batch Normalization 以保持數值原本之分布,最後使用 softmax 輸出每一類的機率取最大之當作預測結果,在愛文芒果資料集之準確率為 0.73,在 CIFAR-10 資料集之準確率為 0.75,經實驗證實 ResNet50 相對於淺層 CNN 來說,較能獲得較高之準確率,因此本研究主要以 ResNet50 作為主要之實驗模型,以下為愛文芒果資料集與 CIFAR-10 資料集的實驗流程步驟:

圖 3實驗流程圖

3.3.1 愛文芒果資料集

在愛文芒果資料集中,預訓練模型使用 ResNet50 架構,在模型中使用 Dropout,參數設置為 0.3,使模型在訓練時去除不必要之特徵以及防止模型 overfitting; Batch size 之設置會影響模型優化程度以及收斂速度,由於本資料集之訓練資料筆數經由資料分割後為 4905 筆,因此 Batch size 參數設置為 8;若模型訓練在 10 回合 Loss 尚未降低,則提前結束訓練(early stopping),在模型之 Input shape 設定為 224×224×3,Weights 為 imagenet,而在 ResNet 後接上分類器之網路層的 Activation function 為 Relu,最後輸出層使用 softmax。

1. 模型建構:設定模型初始參數

Epoch: 1000Batch Size: 8

Activation: Relu, softmax

Loss: categorical crossentropy

Optimizer : AdamMetrics : accuracy

2. 訓練模型:將資料匯入模型中並進行訓練

3. 計算指標:使用 Precision, Recall 及 F1 指標做為模型評估指標

4. 輸出預測績效結果。

愛文芒果資料集品質分類模型架構表

表 3

Layer (type)	Output Shape	Param #		
flatten_2(Flatten)	(None,100352)	0		
dense_4(Dense)	(None,4096)	411045888		
dense_5(Dense)	(None,2048)	8390656		
dropout_2(Dropout)	(None,2048)	0		
dense_6(Dense)	(None,1024)	2098176		
dense_7(Dense) (None,3) 3075				
Total params: 445,125,507				
Trainable params: 445,072,387				
Non-trainable params: 53,120				

3.3.2 CIFAR-10 資料集

在CIFAR-10資料集中,預訓練模型使用 ResNet50 架構。在模型設置 Dropout,使模型在訓練時去除不必要之特徵以及防止模型 overfitting;參數設置為 0.3,Batch size 之設置會影響模型優化程度以及收斂速度,由於本資料集之訓練資料筆數經由資料分割後為 40000 筆,因此 Batch size 參數設置為 16;若模型訓練在 10 回合 Loss 尚未降低,則提前結束訓練(early stopping),在本實驗中模型之 Input shape 設定為 224×224×3,Weights 為 imagenet,而在 ResNet 後接上之網路層的 Activation function 為 Relu,最後輸出層使用 softmax。

- 1. 設定模型初始
- Epochs: 1000
- Batch size: 16
- Activation : Relu, Softmax
- Loss: Categorical crossentropy
- Optimizer : Adam
- Metrics : Accuracy
- 2. 将資料匯入模型中並進行訓練
- 3. 使用 Precision, Recall 及 F1 指標做為模型評估指標。
- 4. 輸出預測績效結果

表 4 CIFAR-10 資料集物件識別模型架構表

Layer(type)	Output Shape	Param #		
flatten_2(Flatten)	(None,100352)	0		
dense_4(Dense)	(None,4096)	411045888		
dense_5(Dense)	(None,2048)	8390656		
dropout_2(Dropout)	(None,2048)	0		
dense_6(Dense)	(None,1024)	2098176		
dense_7(Dense) (None,10) 10		10250		
Total params:445,132,682				
Trainable params:445,079,562				
Non-trainable params:53,120				

3.4 實驗結果

3.4.1 愛文芒果資料集

表 5

分類模型預測績效表

	訓練資料績效	驗證資料績效	測試資料績效
Accuracy	0.848	0.796	0.808
Loss	0.369	0.474	

圖 4品質分類模型訓練績效

表 6

分類模型評估表

類別	Precision	Recall	F1-Score
A	0.84	0.82	0.83
В	0.78	0.74	0.76
С	0.81	0.89	0.84

3.4.2 CIFAR-10 資料集

表 7

分類模型預測績效表

	訓練資料績效	驗證資料績效	測試資料績效
Accuracy	0.993	0.919	0.939
Loss	0.019	0.325	

圖 5 物件識別模型訓練績效

表 8 分類模型評估表

類別	Precision	Recall	F1-Score
airplane	0.94	0.94	0.94
automobile	0.97	0.97	0.97
bird	0.94	0.92	0.93
cat	0.89	0.85	0.87
deer	0.92	0.95	0.94
dog	0.91	0.86	0.88
frog	0.95	0.97	0.96
horse	0.95	0.97	0.96
ship	0.96	0.98	0.97
truck	0.96	0.96	0.96

四、結論

在本研究中使用愛文芒果資料集與 CIFAR-10 資料集,作為分類預測之實驗資料集,並利用 ResNet50 作為預訓練模型,再分別建構分類器模型,以達到分類預測之任務。在愛文芒果資料集中,進行芒果分級的預測任務,希望能透過 CNN 模型判別出芒果的品質,該資料集包含了上等貨、普通、瑕疵三種不同品質的芒果圖像,在該實驗中預測正確之數量為 202 張,錯誤張數為 48 張,準確率高達 81%,透過表 5 與表 6 綜合評估,該分類器可用於芒果果篩任務判別大部分的芒果品質。

在 CIFAR-10 資料集中,包括了 10 種不同類別之物件,在該物件識別任務中預測正確數量為 9386 張,錯誤張數為 614 張,準確率高達 93.86%,透過表 7 與表 8 綜合評估,該分類器可預測出大部分圖像中之物件。

參考文獻

英文文獻

He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image recognition. In *Proceedings of the IEEE conference on computer vision and pattern recognition* (pp.770-778).