Specific Heats of Saturated and Compressed Liquid Propane*

Robert D. Goodwin

Center for Mechanical Engineering and Process Technology National Bureau of Standards, Boulder, Colorado 80303

January 22, 1978

Experimental specific heats for saturated liquid propane, along the coexistence path, have been determined from the triple-point temperature (~ 85 K) to 289 K. Specific heats for the compressed liquid at constant molal volume have been determined along isochores at nine different densities ranging from near the triple-point liquid density to about twice the critical-point density (at pressures up to 300 bar). Comparisons with previous experimental- and/or derived-data show agreement within combined uncertainties of about three percent. Key words: Constant volume; heat capacities; liquid; propane; saturated liquid; specific heats.

List of Symbols

Subscript c refers to the critical point

 $C_o(T)$ heat capacity of the empty calorimeter, J/K

 $C_{\sigma}(T)$ — specific heat for saturated liquid, J/mol/K

 $C_v^o(T)$ specific heat in ideal gas states, J/mol/K

 $C_v(\rho, T)$ isochoric specific heat, J/mol/K

 $C_p(\rho, T)$ isobaric specific heat, J/mol/K

J the joule, 1 N-mL the liter, $10^{-3} m^3$

mol 44.09721 grams of propane (C^{12} scale)

 \bar{N} total moles of fluid in bomb plus capillary

 \bar{N}_b moles of fluid in the calorimeter (bomb)

P pressure in bars, 1 bar = $10^5 N/m^2$ (1 atm = 1.01325 bar)

Q calorimetric heat input, J

 $Q/\Delta T$ gross heat capacity (bomb + sample), J/K

R the gas constant, 8.31434 (J/mol)/K

 ρ density, mol/L

T temperature, K (1968)

 ΔT calorimeter temperature increment, K

 $V_b(T, P)$ volume of the calorimeter, cm^3

1. Introduction

In a recent report on the thermodynamic properties of propane, we indicated the desirability for more accurate data for virtually all physical and thermal properties [8]. The present specific heat measurements serve to broaden the experimental data base and to confirm the work in [8] to within combined uncertainties of about three percent in specific heat data. They serve also in comparisons utilizing an equation of state for interpolations. It is anticipated that the present measurements will be incorporated with other new properties measurements in a revision of the thermodynamic tables in [8].

Symbols and units are given in a list. Fixed-point constants, used in computations, are given in table 1. Figure 1 shows the densities, and temperature ranges of the nine experimental runs.

Table 1. Fixed-points used for propane

	Triple Point	Boiling Point	Critical Point
Temperature, K	85.47	231.0679	369.80
Pressure, bar	$1.6609 \cdot 10^{-9}$	1.01325	42.3974
Density, mol/L			
Vapor	$2.3373 \cdot 10^{-10}$	0.05479	4.96
Liquid	16.620	13.1687	4.96

2. Experimental

Apparatus, technique, and computational procedures have been fully described so often, in work on other substances, that we refer the reader to these publications, to avoid unnecessary repetition [4, 5, 6, 7, 11, 12, 14, 15, 16].

In [5], for example, we gave an accounting of sources of uncertainty. For the present work we have considered only the sources of gross uncertainties, concluding that total uncertainty in each specific heat measurement must be set at about two percent. Nearly all comparisons, reported below, fall well within this figure.

For the present work on propane we have employed the same apparatus, methods, and computational procedures described in detail by Roder in his prior work on ethane [12], except for replacing the platinum resistance thermometer.

The propane is a commercial "research grade," specified to be 99.99 percent pure, with a trace of ethane. No further analysis was made.

For computation of saturated liquid specific heats, from observations on a two-phase sample at constant volume, it is

^{*} This work was supported by the American Gas Association, Inc., 1515 Wilson Boulevard, Arlington, VA 22209.

¹ Figures in brackets indicate the literature references at the end of the paper.

Figure 1. The ρ -T loci of experimental runs.

Table 2. Heat capacity of the empty calorimeter

Run	Tav,	ΔΤ,	Power,	Time,	Heat,	Heat Cap	y., J/K,	Diff.,	Run	Tav,	Δт,	Power,	Time,	Heat,	Heat Ca	ру., Ј/К,	Diff.
no.	K	K	watt	sec	joule	Expt1.	Calcd.	%	no.	K	K	watt	sec	joule	Exptl.	Calcd.	%
701 702	90.338 82.844	2.556	.16301	606.59 605.95	98.88 98.53	38.677 40.138	38.664 40.146	.03	909	210.749 217.173	6.651	.82845 .86062	605.75 602.82	501.83 518.80	75.458 76.210	75.408 76.143	.07
101 703	83.566	3.759	.25234	604.15	152.45	40.559	40.564	01	1001	217.761	6.601		606.95	503.12	76.213	76.208	.01
102	85.555	2.972 3.580	.20591	601.68	123.89	41.685	41.692	02	1002	223.805	6.841 7.303	.87126 .92427	603.18	525.53 561.81	76.824 76.928	76.862	05
704	88.798	3.524	. 25418	602.72		43.471	43.465	.01	404	230.399	6.766	.87076	602.42	524.56	77.534	77.540	01
103	91.529	5.042	.37435	604.78	226.40	44.901	44.899	0.00	1003	231.761	7.202		606.18	559.50	77.690	77.675	-02
705	92.988	4.871	. 36651	606.73	222.37	45.650	45.643	.02	405	236.925	6.702			523.91	78.167	78.178	01
104	97.307	6.539	.51730	603.62	312.26	47.752	47.759	01	1004	238.818	7.131		605.94	559.03	78.390	78.357	. 04
706	98.526	6.230	.49924	603.32	301.20	48.344	48.334	.02	406	243.368	6.649	. 86944	602.18	523.56	78.742	78.779	05
105	103.637	6.170	.51713	604.19	312.44	50.640	50.641	0.00	1005	245.800	7.059	.92145	605.37	557.81	79.022	78.998	. 03
801	105.231	5.851	.49698	604.37	300.36	51.331	51.327	.01	407	249.749	6.588	. 86859	601.46	522.48	79.313	79.348	04
106	109.624	5.859	.51672	602.45	311.30	53.132	53.140	02	1006	252.712	7.002	.92116	605.91	558.14	79.710	79.604	.13
802	111.358	6.458	.57453	605.22	347.71	53.846	53.826	.04	408	256.060	6.547	.86835	602.43	523.12	79.902	79.888	. 02
107	115.329	5.621	.51600	602.68	310.98	55.323	55.334	02	1007	259.571	6.952	.92034	606.06	557.78	80.228	80.179	.06
803	117.650	6.186	.57406	605.50	347.60	56.189	56.177	.02	409	262.315	6.495	.86799	602.34	522.83	80.498	80.402	.12
108	120.821	5.441	•51562	604.71	311.80	57.308	57.285	. 84	1008	266.382	6.902		605.97	557.46	80.771	80.726	.06
804	123.681	5.945	.57394	603.57	346.41	58.268	58.242	. 84	410	268.499	6.464	.86746	603.34	523.37	80.967	80.891	. 09
201	127.052	5.236	.51380	604.54	310.61	59.318	59.322	01	1101	271.535	6.878		605.61	557.49	81.051	81.125	09
805	129.504	5.771	.57352	604.76	346.91	60.108	60.076	• 05	501	274.806	6.438	.86515	606.30	524.54	81.476	81.372	.13
202	132.158	5.077	. 51 31 3	602.00	308.91	60.848	60.863	03	1102	278.340	6.822		605.91	556.85	81.619	81.634	02
806	135.156	5.615	.57339	604.48	346.60	61.725	61.719	.01	502	280.917	6.366		602.10	520.42	81.748	81.823	09
203	137.118	4.955	.51256	601.46	308.35	62.232	62.259	04	1103	285.105	6.771		605.82	555.86	82.093	82.123	04
807	140.655	5.481	. 57 31 4	604.37	346.39	63.194	63.198	01	503	286.958	6.315	.86384	601.14	519.29	82.224	82.253	04
204	141.960	4.848	.51196	601.05	307.72	63.477	63.533	09	1104	291.872	6.829	.92910	606.76	563.74	82.556	82.594	05
808	146.029	5.379	.57288	606.25	347.31	64.564	64.541	.03	504	292.930	6.272		600.25	518.30	82.633	82.666	04
205	146.696	4.759	.51189	601.15	307.72	64.666	64.701	05	1105	298.640	6.788		607.05	563.25	82.979	83.049	08
206	151.345	4.680	.51149	601.59		65.744	65.779	05	5 0 5	298.868	6.244		600.99	518.59	83.052	83.064	02
901	155.708	7.479	. 82540	604.43	498.90	66.704	66.733	04	601	299.023		1.07086	605.85	648.78	82.951	83.075	15
207	155.924	4.637	.51113	605.41		66.740	66.779	06	506	304.748		.86255	601.32	518.67	83.476	83.448	.03
208 902	161.159	6.001 7.288	.67697	601.59	407.26	67.867 68.205	67.853 68.216	.02	1106	305.362		.92764	606.38	562.51 644.07	83.433	83.487	06 18
209	167.036	5.933	.67651	604.96	409.25	68.977	68.979	02	1107	312.788		1.13382	606.91	688.12	83.916	83.955	05
903	170.156	7.169	.82288	606.18	498.81	69.575	69.545	0.08	603	313.758		.88694	606.46	537.89	83.889	84.015	15
301	175.056	5.811	.67894	602.19	408.85	70.355	70.394	05	604	320.100	6.375		605.95	537.20	84.269	84.400	16
904	177.155	7.006	.82346	601.90	495.64	70.749	70.743	.01	1108	320.907		1.13317	605.79	686.46	84.477	84.449	.03
302	181.421	7.166	.85042	601.72	511.71	71.413	71.428	02	605	326.414		.88603	606.14	537.06	84.578	84.774	23
905	184.033	6.955	.82342	606.98	499.80	71.863	71.833	.04	1109	328.976		1.13242	606.02	686.27	84.969	84.923	.05
303	188.400	7.051	.84965	601.40	510.98	72.471	72.484	02	606	332.705	6.317		606.68	537.27	85.049	85.137	18
906	190.824	6.851	. 82311	606.56	499.25	72.871	72.833	. 05	1201	335.011	6.544		603.17	558.70	85.369	85.267	.12
304	195.261	6.975	.84912	603.09	512.10	73.423	73.450	04	6 07	339.007	6.274		606.58	536.95	85.578	85.491	.10
907	197.541	6.816	. 82945	606.54	503.09	73.814	73.756	.08	1202	341.557	6.533		605.75	560.64	85.821	85 . 631	.22
305	202.027	6.871	.84849	602.03	510.82	74.344	74.340	.01	608	345.347	6.228		606.32		86.115	85.838	.32
908	204.197	6.734	. 82923	606.28	502.75	74.657	74.614	.06									
401	210.602	6.700	.83869	602.26	505.11	75.385	75.390	01	NP =	88 . RMS	PCT =	. 078					

necessary to have accurate formulations of the vapor pressures, and of the saturated liquid densities. Because experimental specific heats at constant pressure are available from another source [13], comparisons with our results demand use of an equation of state. The equation of state used here [9] is a slight modification of that reported in [8], obtained by use of the new vapor pressures below the boiling point, derived at the end of that report.

3. Heat Capacity of the Empty Calorimeter

The heat capacity of the empty calorimeter must be subtracted from all observations on a sample. Data on the empty calorimeter are presented in table 2, because they indicate the precision obtained over the very long temperature range of the propane measurements. A new formulation for these data has been developed, and a "best" value has been selected for the number of terms, in the expression

$$100/C_o = \sum_{i=1}^n A_i \cdot x^{(i-1)}, \ n = 6, \tag{1}$$

where $x \equiv 100/T$, and –

$$A_1 = 0.8179 \quad 0976$$
 $A_4 = 4.5047 \quad 9912$
 $A_2 = 1.7893 \quad 2156$ $A_5 = -2.5192 \quad 8428$
 $A_3 = -3.1476 \quad 2021$ $A_6 = 0.5950 \quad 2531$

This formula yields a constant for C_o at very high temperatures, and a behavior approaching T^5 as $T \to 0$.

4. Results for Saturated Liquid

The calorimeter (T, P) loading conditions for the sample in each experimental run are presented in table 3. The density is obtained from the equation of state given in [9]. The total amount of sample, \bar{N} , includes the relatively small

amount residing in the capillary tube. The equation of state originates on the saturated liquid boundary, and is extrapolated at temperatures below 170 K where no P- ρ -T compressibility data exist. In this region the density is relatively insensitive to pressure, but derivatives of the $P(\rho,T)$ surface, used to intercompare C_v with C_p data, must become increasingly uncertain with diminishing temperature.

Results for specific heats of saturated liquid propane (C_{σ}) in experimental runs numbers 1 and 2 are presented in table 4 and in figure 2. Pressures here are the vapor pressures. The corrections in columns 10 and 11 are: A, for work done in expanding the calorimeter and in pumping fluid into the capillary tube and B, for the heat of vaporization and heat absorbed by the vapor [5]. Column 12 gives the experimental results. The "calculated" value in column 13 is from a formulation of older experimental and recently derived data in [8]. The last two columns give C_v and C_p derived from the C_{σ} data of column 12 by methods of [8] with the equation of state of [9].

In the present work we did not succeed in freezing the sample at temperatures below the reported triple point of 85.47 K, due possibly to the viscous behavior of the fluid, the small temperature difference of only 5 K below the triplepoint, and a time of no more than six hours at this temperature. Deviations in column 14 of table 4 are within our anticipated uncertainties.

The following fitting function for $C_{\sigma}(T)$ was developed for all available data $(x \equiv T/T_c)$,

$$C_{\sigma}(T) = A_1 \cdot x/(1-x)^{\epsilon} + \sum_{i=2}^{n} A_i \cdot x^{i-2}$$
 (2)

in which $\epsilon = 0.7$, and n = 5. In table 5, however, we apply it only to our results, finding—

$$A_1 = -1.77942$$
 $A_4 = -100.24355$
 $A_2 = 77.12878$ $A_5 = 135.42504$
 $A_3 = 48.01034$

Table 3. Loading conditions for the samples

D	Run T. K	D. L.	- 1/T	V 3	\overline{N} , mol	Coexistence Conditions a		
Kun I, K	P, bar	$ ho, ext{mol/L}$	V_b,cm^3	W, mol	T.K	$ ho, ext{mol/L}$		
1	294.976	11.442	11.292	73.324	0.8288	294.150	11.303	
2	254.544	15.372	12.577	73.196	0.9213	252.415	12.591	
3	214.940	16.541	13.620	73.071	0.9960	212.889	13.635	
4	187.209	18.600	14.302	72.988	1.0447	185.051	14.318	
5	155.086	20.047	15.051	72.896	1.0980	153.309	15.067	
6	125.098	19.598	15.736	72.814	1.1467	123.602	15.752	
7	99.123	19.463	16.325	72.753	1.1885	97.825	16.340	
8	275.574	14.372	11.954	73.263	0.8766	273.712	11.967	
9	236.045	10.535	13.064	73.131	0.9562	234.541	13.077	

^a For calorimeter full of liquid.

FIGURE 2. Specific heats for saturated liquid.

The rms relative deviation for our selected 76 data points is 0.13%. Because A_1 is negative, this formulation should not be extrapolated above 290 K.

In table 6, we give all available data for equation (2). These include: ID = 1, Dana [2]; ID = 2, Kemp [10]; ID = 8, Cutler [1]; and ID = 30 for data derived from C_p data of Yesavage [13] via our equation of state in [8]. The coefficients for this extended data set are —

$$A_1 = 6.63584$$
 $A_4 = -19.92150$
 $A_2 = 80.76732$ $A_5 = 51.18785$
 $A_3 = 8.27472$

The rms relative deviation for 133 selected data is 0.29 percent. In tables 5 and 6 the column "Wt." gives the least-squares weighting for that point.

5. Results for Compressed Liquid

Table 7 presents results in column 11 for the single-phase specific heats $C_v(\rho,T)$ of propane in nine experimental runs. These are shown in figure 3. The smooth curve corresponds to extrapolation to the coexistence boundary. As the derivative $(\partial P/\partial\rho)_T$ for compressed liquid is large, the estimated pressures in column 4 become increasingly uncertain with decreasing temperatures. The correction in column 10 is for work done in expanding the calorimeter. The "calculated" value in column 12 is from the specific heats C_p of Yesavage [13] via our equation of state [9] by the methods of [8].

Deviations in the last column fall within our estimate of combined uncertainties of about 3 percent. Our anticipated

FIGURE 3. Specific heats for compressed liquid.

increase of deviations at the lowest temperatures is seen at the bottom of table 7.

Table 8 serves as an extension of table 7 to give "experimental" $C_p(\rho, T)$ data computed from the $C_v(\rho, T)$ data of table 7, column 11, by means of the equation of state [9]. The "calculated" results in table 8 again are from Yesavage $C_p(\rho, T)$ data [13], interpolated by means of the equation of state [9].

6. Behavior of Reduced C_v Data

Diller has presented an examination of the behavior of available C_v data for many substances, in a search for criteria of consistency [3]. In particular, he extrapolated data to the coexistence boundary and plotted reduced specific heats $[C_v - C_v^o]/R$ vs. reduced density. Additional data for various substances subsequently were plotted in these coordinates by Younglove [16].

As a consistency test for present results on propane we present the reduced specific heats in table 9. Ideal gas specific heats C_v^0 are from the formulation in [8]. The first line for each run in table 9 gives results extrapolated to the coexistence boundary.

FIGURE 4. Reduced specific heats at coexistence.

Figure 4 shows present results. Open circles and the upper curve are for propane. The lower curve, marked A, is taken from figure 6 by Younglove [16]. It represents data for argon, krypton, oxygen, fluorine, and methane within experimental uncertainties. The points symbolized by x are for ethane, as computed but not published by Roder [12]. At a reduced density near 3.0 (run number 5), the difference of about 0.5 in $(C_v - C_v^0)/R$ between propane and curve A corresponds to 4 J/mol/K, or a difference of about 7% in the value $C_v = 59.78$ J/mol/K for propane (run number 5) in table 9. As our comparisons with Yesavage C_p data [13] are much closer than 7%, the higher values for propane in figure 4 probably are real.

The uniform increase of these residual specific heats with increasing asymmetry of molecular shape, from methane through propane, suggests hindered rotation of the asymmetric molecules in the dense (and viscous) liquid at low temperatures.

7. References

- Cutler, A. J. B., and Morrison, J. A., Trans. Faraday Soc. 61, 429 (1965).
- [2] Dana, L. I., Jenkins, A. C., Burdick, J. N., and Timm, R. C., Refrig. Eng. 12, No. 12, 387 (June 1926).
- [3] Diller, D. E., Cryogenics 11, No. 3, 186 (June 1971).
- [4] Goodwin, R. D., J. Res. Nat. Bur. Stand. (U.S.) 65C, (Eng. and Instr.), No. 4, 231–243 (Oct.-Dec. 1961).
- [5] Goodwin, R. D., and Weber, L. A., J. Res. Nat. Bur. Stand. (U.S.) 73A, (Phys. and Chem.), No. 1, 1–13 (Jan.–Feb. 1969).
- [6] Goodwin, R. D., and Weber, L. A., J. Res. Nat. Bur. Stand. (U.S.) 73A, (Phys. and Chem.), No. 1, 15–24 (Jan.-Feb. 1969).
- [7] Goodwin, R. D., and Prydz, R., J. Res. Nat. Bur. Stand. (U.S.) 74A, (Phys. and Chem.), No. 4, 499–505 (July–Aug. 1970).
- [8] Goodwin, R. D., Provisional Thermodynamic Functions of Propane, from 85 to 700 K at Pressures to 700 Bar, Nat. Bur. Stand. (U.S.), Interagency Report NBSIR 77-860 (July 1977).
- [9] Goodwin, R. D., The Nonanalytic Equation of State for Pure Fluids Applied to Propane, to be presented at Symp. on Equations of State in Engineering and Research, 176th National Meeting, American Chemical Society, Miami Beach, Florida, September 10–15, 1978.
- [10] Kemp, J. D., and Egan, C. J., J. Am. Chem. Soc. 60, No. 7, 1521 (Jul 1938).
- [11] Prydz, R., and Goodwin, R. D., J. Res. Nat. Bur. Stand. (U.S.) 74A, (Phys. and Chem.), No. 5, 661–665 (Sept.–Oct. 1970).
- [12] Roder, H. M., J. Res. Nat. Bur. Stand. (U.S.) 80A, (Phys. and Chem.), No. 5, 6, 739-759 (Sept.-Dec. 1976).
- [13] Yesavage, V. F., Katz, D. L., and Powers, J. E., J. Chem. Eng. Data 14, No. 2, 197 (Apr 1969).
- [14] Younglove, B. A., and Diller, D. E., Cryogenics 2, No. 5, 283 (Sep 1962).
- [15] Younglove, B. A., and Diller, D. E., Cryogenics 2, No. 6, 348 (Dec 1962).
- [16] Younglove, B. A., J. Res. Nat. Bur. Stand. (U.S.) 78A, (Phys. and Chem.), No. 3, 401–410 (May–June 1974).

Table 4. Experimental data for saturated liquid

						le 4. E:	xperimental								
Run	Tav,	ρ _l ,	Ρ,	N _b ,	V _b ,	ΔТ,	$Q/\Delta T$,	С,	Corr.,	J/mo1/K	., с _о , ј	/mol/K,	Diff	., c _v	Cp
no.	K	mol/L	bar	mo1	cm ³	K	J/K	J/K	. A	В	Expt1.	Calcd.	%	J/mol/K	J/mol/K
101	81.053	16.720	0.000	. 8288	72.702	.486	107.756	39.092	0.000	0.000	82.85	83.82	-1.17	58.76	82.85
102	81.756 82.677	16.704 16.683	0.000	.8288 .8288	72.703	.930	108.802	39.509	0.000	0.000	83.61	83.86	30	59.45	83.61
104	83.593	16.663	0.000	.8288	72.705 72.707	.923 .920	109.372	40.049 40.579	0.000	0.000	83.65	83.91 83.95	31 77	59.40 58.98	83.65 83.31
105	84.568	16.640	0.000	. 3238	72.708	1.039	110.624	41.136	0.000	0.000	83.84	84.00	18	59.43	83.84
106	85.598	16.617	0.000	.8288	72.710	1.033	111.290	41.716	0.000	0.000	83.95	84.05	12	59.44	83.95
107 108	86.622 86.836	16.594	0.000	. 3238	72.712	1.024	112.143	42.284	0.000	0.000	84.29	84.10	.23	59.70	84.29
109	87.856	16.589 16.566	0.000	.8288 .8288	72.713 72.715	1.030	111.863 112.699	42.402 42.959	0.000	0.000	83.81 84.15	84.11 84.16	36 02	59.20 59.45	83.81
110	88.871	16.543	0.000	.8288	72.716	1.016	113.262	43.505	0.000	0.000	84.17	84.22	05	59.38	84.17
111	89.879	16.520	0.000	. 3288	72.718	1.008	114.052	44.039	0.000	0.000	84.48	84.27	.25	59.60	84.48
112 113	91.366 93.321	16.486 16.442	0.000	.8288 .8288	72.721 72.725	1.970	114.875	44.815	0.000	0.000	8+.54	84.34	.23	59.54	84.54
114	95.750	15.387	0.000	.8288	72.730	1.950 3.708	116.033 117.236	45.811 47.011	0.000	0.000	84.73	84.45 84.57	.19	59.58 59.39	84.73
115	99.797	16.295	0.000	.8288	72.739	4.400	119.322	48.923	0.000	0.000	84.94	84.79	.18	59.30	84.94
116	104.646	16.185	0.000	.3288	72.749	5.317	121.726	51.076	0.000	0.000	85.25	85.06	.22	59.25	85.25
117 118	110.300 116.889	16.056 15.905	0.000	.8288 .8288	72.762 72.777	6.008	124.296	53.409	0.000	0.000	85.53 85.81	85.39 85.79	.17	59 .1 8	85.53
119	124.009	15.742	0.000	. 8288	72.795	7.194	127.025	55.904 58.349	0.000	001	86.20	86.25	05	59.04	85.81 86.20
120	131.003	15.582	0.000	. 3288	72.812	6.947	132.369	60.524	0.000	001	86.69	86.73	05	59.15	86.69
121	137.870	15.424	.001	. 9288	72.830	6.830	134.681	62.463	0.000	003	87.14	87.23	11	59.25	87.14
122	145.757 152.350	15.242 15.089	.002	. 8288 . 8288	72.851 72.869	6.569	137.151	64.476	0.000	007 013	87.68 83.1€	87.85 88.41	19 29	59.41 59.57	87.68
124	158.858	14.937	.008	.3288	72.888	6.524	140.980	66.004 67.389	0.000	022	85.77	89.00	25	59.83	88.16 88.77
125	165.298	14.786	.014	.8288	72.906	6.4+0	1+2.693	68.654	0.000	034	89.30	89.62	35	60.10	89.30
126	171.647	14.637	.025	.8288	72.924	6.356	144.530	69.308	0.000	051	90.11	90.27	18	60.60	90.11
127 128	179.354 185.534	14.454	.048	.8288 .3288	72.947	6.273 6.203	146.499	71.100 72.060	001 001	076 101	90.90 91.67	91.13 91.86	25 21	61.01 61.46	90.91 91.68
129	191.643	14.159	.117	. 8288	72.983	6.132	149.703	72.949	001	129	92.48	92.64	17	61.93	92.50
130	197.586	1 + • 012	.174	.8288	73.001	6.076	151.161	73.775	002	159	93.21	93.46	26	62.31	93.24
131	204.154	13.853	.258	.8288	73.021	7.001	152.785	74.608	002	192	94.13	94.39	27	62.83	94.17
132	211.041 217.354	13.681 13.510	.380 .543	.8285 .8288	73.042 73.064	6.923 6.859	154.688 156.350	75.442 76.219	003 00+	226 255	95 .3 9 96 .43	95.45 96.58	06 16	63.62 64.16	95.45 96.51
134	224.592	13.337	.754	. 3288	73.085	6.787	158.027	76.945	005	274	97.55	97.77	22	64.75	97.67
135	231.245	13.164	1.021	.8288	73.106	6.693	159.827	77.624	007	281	93.90	99.04	14	65.52	99.06
136	238.095	12.983	1.368	.8288	73.128	6.615	161.527	78.289	009	268 232	100.16	100.43	27	66.12 67.03	100.37
137 138	244.560 250.946	12.808	1.773 2.257	.8288 .8288	73.149 73.170	6.443	163.412 165.130	78.887 79.452	014	168	103.20	103.33	10 13	67.74	103.57
139	257.248	12.454	2.828	.8288	73.191	6.366	166.868	79.987	016	068	104.75	104.91	15	68.49	105.22
140	263.551	12.271	3.502	.8288	73.212	6.491	168.526	80.501	020	.075	106.27	106.59	31	69.13	106.87
141	269.931 276.292	12.082 11.887	4.300 5.224	.3288 .8288	73.234 73.255	6.499	170.427	81.002	024 028	.274 .540	108.15	108.42 110.38	25 37	70.02 70. 7 5	108.92
143	282.595	11.688	6.278	. 3288	73.277	6.377	172.202	81.483 81.944	033	.885	111.96	112.48	46	71.53	113.19
144	288.813	11.484	7.464	.8287	73.299	6.300	175.873	82.383	039	1.322	114.09	114.71	55	72.33	115.63
236	83.132	16.673	0.000	.9213	72.706	1.056	117.630	40.313	0.000	0.000	83.92	83.93	01	59.63	83.92
237 238	83.995 84.860	16.653 16.634	0.000	.9213	72.707 72.709	.678 1.057	118.126 118.728	40.809	0.000	0.000	83.92 84.04	83.97 84.01	06	59.56 59.60	83.92 84.04
239	85.723	16.614	0.000	.9213	72.711	.679	119.024	41.301 41.786	0.000	0.000	83.83	84.06	27	59.32	83.83
240	86.395	16.599	0.000	.9213	72.712	.675	119.482	42.159	0.000	0.000	83.93	84.09	20	59.35	83.93
201	86.763	16.591	0.000	.9213	72.712	2.941	120.048	42.362	0.000	0.000	84.32	84.11	.25	59.71	84.32
241 242	87 • 064 87 • 870	16.584 16.566	0.000	.9213	72.713 72.715	.670 .950	119.955 120.662	42.527 42.966	0.000	0.000	84.04	84.12	10 .20	59.40 59.63	84.04
243	88.931	16.542	0.000	. 9213	72.717	1.178	121.183	43.537	0.000	0.000	8+.28	84.22	.07	59.48	84.28
202	90.366	16.509	0.000	.9213	72.719	4.290	122.177	44.295	0.000	0.000	84.53	84.29	.28	59.62	84.53
203	95.166	16.400	0.000	.9213	72.729	5.333	124.834	46.726	0.000	0.000	84.78	84.54	.28	59.48	84.78
204	101.406	16.258 16.098	0.000	.9213	72.742 72.758	7.163 6.966	128.059 131.385	49.654 52.671	0.000	0.000	85.10 85.43	84.88 85.28	.26	59 .3 4	85.10 85.43
206	115.393	15.939	0.000	.9213	72.774	6.823	134.400	55.358	0.000	0.000	85.79	85.70	.11	59.12	85.79
207	122.132	15.785	0.000	.9213	72.790	6.683	137.126	57.728	0.000	0.000	86.18	86.12	.06	59.12	86.18
208	128.738	15.634	0.000	.9213	72.807	6.566	139.549	59.843	0.000	001	86.51	86.57	07	59.09	86.51
209	135.238	15.485 15.337	0.000	.9213	72.823	6.479	141.825	61.741	0.000	001 003	86.92 87.35	87.03 87.52	13 19	59 .1 7	86.92 87.35
211	147.902	15.192	.002	.9213	72.857	6.256	145.949	64.987	0.000	005	87.87	88.03	18	59.51	87.87
	154.093		.005	.9213			147.768		0.000	009	85.32	88.56	27	59 .6 6	88.32
	160.343		.009					67.690		013	83.97	89.14	19	60.00	88.97
214	166.378 172.363	14.761 14.620	.016 .027	.9213	72.919		151.409 153.069	60.856 69.933	0.000	020 027	89.58 90.21	89.73 90.35	16 16	60.33	89.58 90.21
216		14.480	. 044	.9213	72.943	5.914	154.638	70.926	0.000	035	50.82	91.00	20	60.93	90.83
217	184.114	14.340	.069	.9213	72.961	5.851	156.153	71.845	001	0+4	91.46	91.69	25	61.32	91.47
218	189.882	14.201	. 104	.9213	72.976	5.790	157.688	72.698	001	052	92.19	92.41	24	61.74	92.21
219	195.603	14.062 13.896	.153	.9213	72.995 73.016	5.767 7.013	159.243	73.496 74.388	001 002	059 063	93.01 93.74	93.17 94.13	17 41	62.23 62.55	93.03 93.78
221	209.358		.347		73.010	6.971	162.868	75.243	003	061	95.04	95.18	15	63.39	95.10
222	216.234	13.551	.500	.9213	73.059	6.845	164.767	76.038	003	048	96.25	96.30	05	64.11	96.33
223	222.998		.699		73.080	6.752	166.481	76.777	005	021	97.34	97.48	15	64.67	97.45
224	229.651	13.206	.951 1.266	.9213	73.101 73.122	6.626	168.233	77.464	006 007	.023 .089	98.54 93.81	98.73 100.04	19 24	65.30 65.95	98.68
226	242.764		1.652	.9213	73.143	6.534	171.848	78.723	009	.183	101.25	101.44	19	66.73	101.51
_															

Table 5. Representation of present C_{σ} data

	Table 5.	Kepresentai	ion of pres	ent C data	
Run	Wt.	T,K	J/mo1/K	Calcd.	Pent
.01	0.000	81.053	82.850	83.798	-1.1
102	1.000	81.756	33.610	83.838	2
.03	1.000	82.677	83.650	83.890	2
36	1.000	83.132	83.920	83.916	• 0
.04	0.000	83.593 83.995	83.311	83.942	7
37	1.000	84.568	83.920 83.840	83.965 83.997	0
38	1.000	84.860	84.040	84.014	1 .0
.06	1.000	85.598	83.950	84.055	1
39	1.000	85.723	83.831	84.062	2
40	1.000	86.395	83.930	84.100	2
0.7	1.000	86.622	84.291	84.113	. 2
01	1.000	86.763	84.320	84.121	. 2
.08	1.000	86.836	83.817	84.125	3
41	1.000	87.064	84.040	84.137	- • 1
09	1.000	87.856	84.150	84.182	0
42	1.000	87.870	84.330	84.183	• 1
10	1.000	88.871	84.170	84.238	0
43	1.000	88.931	84.280	84.242	. 0
11	1.000	89.879	84.480	84.295	. 2
02	1.000	90.366	84.530	84.322	• 2
12	1.000	91.366	84.540	84.378	• 1
13	1.000	93.321	84.730	84.487	• 2
03 14	1.000	95.166 95.750	84.780 84.730	84.589 84.622	• 2
15	1.000	99.797	84.940	84.848	• 1
04	1.000	101.406	85.100	84.938	• 1
16	1.000	104.646	85.250	85.121	. 1
05	1.000	108.461	85.430	85.338	. 1
17	1.000	110.300	85.530	85.444	. 1
06	1.000	115.393	85.790	85.743	. 0
18	1.000	116.889	85.810	85.832	0
07	1.000	122.132	86.180	86.151	• 0
19	1.000	124.009	86.200	86.269	0
08	1.000	128.738	86.510	36.572	0
20	1.000	131.003	86.690	86.721	0
09	1.000	135.238	86.920	87.008	1
21	1.000	137.870	87.140	87.193	0
10	1.000	141.629	87.350	87.465	- • 1
22	1.000	145.757	87.680	87.775	1
11	1.000	147.902 152.350	87.870 88.160	87.942 88.300	n
23 12	1.000	154.093	88.320	88.446	-•1 -•1
24	1.000	158.858	88.770	88.858	1
13	1.000	160.343	88.970	88.990	0
25	1.000	165.298	89.300	89.451	1
14	1.000	166.378	89.580	89.555	. 0
26	1.000	171.647	90.110	90.081	. 8
15	1.000	172.363	90.210	90.155	. 0
16	1.000	178.276	90.820	90.790	. 0
27	1.000	179.354	90.900	90.911	0
17	1.000	164.114	91.460	91.462	0
28	1.000	185.534	91.670	91.632	• 0
18	1.000	189.882	92.190	92.172	. 0
29	1.000	191.643	92.480	92.398	• 13
19	1.000	195.603	93.010	92.924	- 0
30	1.000	197.686	93.210 93.740	93.211 93.885	0 1
20 31	1.000	202.405	94.130	94.144	0
21	1.000	209.358	95.040	94.946	. 1
32	1.000	211.041	95.390	95.215	. 1
22	1.000	216.234	96.250	96.078	. 1
33	1.000	217.854	96.430	96.357	. 0
23	1.000	222.998	97.340	97.275	. 0
34	1.000	224.592	97.550	97.570	0
24	1.000	229.651	98.540	98.539	. 0
35	1.000	231.245	98.900	98.855	. 0
25	1.000	236.231	99.811	99.875	0
36	1.000	238.095	100.160	100.270	1
26	1.000	242.764	101.250	101.291	0
37	1.000	244.560	101.750	101.696	. 0
33	1.000	250.946	103.200	103.193	- 0
39	1.000	257.248	104.750	104.759	0
40	1.000	263.551 269.931	106.270	106.415	1
.41	1.000	276.292	108.150	108.184	0
43	1.000	282.595	111.960	111.975	0
44	1.000	288.813	114.090	113.970	. 1

Table 6. Representation of all $\mathbf{C}_{_{\textstyle{\bigcirc}}}$ data

Run	Wt.	Т,К	J/mol/K	Calcd.	Pcnt.	Run	Wt.	Т,К	J/mo1/K	Calcd.	Pcnt.
101	0.000	81.053	82.850	83.892	-1.24	126	1.300	171.647	96.110	90.202	10
102	1.000	01.756	83.610	03.924	37	2	1.000	172.020	89.863	90.242	+2
103	1.000	82.677	83.650	83.965	37	215	1.000	172.363	90.210	90.278	08
236	1.300	83.132	83.920	33.985	08	216	1.000	178.276	90.820	90.932	12
104	0.000	83.593	83.310	84.006	93	2	1.000	179.090	96.742	91.025	31
237	1.000	83.995	83.920	84.024	12	127	1.900	179.354	90.900	91.056	17
105	1.900	8+.568	83 . 848	84.050	25	30	1.000	180.000	91.260	91.130	•14
238	1.000	84.860 85.598	84.040	84.063 84.097	u3 17	217	1.000	184.114	91.460 91.670	91.61 7 91.790	17 13
106 239	1.000	85.723	83.950 83.830	84.103	32	128	1.000	185.933	91.662	91.835	19
240	1.000	66.395	83.93.	84.134	24	218	1.000	189.882	92.190	92.336	16
107	1.500	86.622	84.290	84.144	.17	30	1.000	190.000	92.460	92.351	.12
201	1.000	86.763	84.320	84.151	.20	129	1.000	191.643	92.480	92.563	09
108	1.000	86.836	83.810	84.154	41	2	1.000	194.283	92.792	92.912	13
241	1.000	87.064	84.040	84.165	15	219	1.000	195.603	93.016	93.091	39
109	1.000	87.856	84.150	04.201	06	130	1.000	197.686	93.210	93.377	18
242	1.000	87.870	04.330	84.202	• 15	30	1.000	200.000	93.830	93.702	• 14
110	1.000	88.871	84.176	84.249	09	2	1.300	200.940	93.839	93.836	. 30 33
243	1.000	88.931	84 • 2 £ 6 84 • 5 4 7	84.252 84.289	.33	220	1.000	202.405	93.740 94.130	94.047	18
111	1.000	89.720 89.879	84.480	84.297	.22	131	1.000 1.000	204.154 20 7. 090	94.257	94.745	52
30	1.000	90.000	84.040	84.302	31	221	1.000	209.358	95.046	95.195	6
202	1.000	92.366	84.530	84.320	. 25	30	1.000	210.000	95.356	95.196	.16
8	1.000	91.060	83.973	84.353	45	132	1.000	211.041	95.390	95.360	.03
112	1.330	91.366	84.540	84.367	.20	2	1.000	213.100	95.429	95.691	27
113	1.000	93.321	84.730	84.462	. 32	222	1.000	216.234	96.250	96.207	. 05
8	1.000	93.431	04.224	84.467	29	133	1.000	217.854	96.430	96.480	05
223	1.600	95.166	84.786	84.553	. 27	2	1.000	219.250	96.266	96.719	47
2	1.000	95.530	34.756	84.571	• 22	223	1.000	220.000 222.998	97.040 97.340	96.849 9 7. 378	04
114	1.060	95.750 95.760	84.730	84.5£2 84.582	.17 13	134	1.000	224.592	97.550	97.665	12
8	1.300	98.160	84.140	84.698	66	2	1.000	224.963	97.480	97.732	20
115	1.000	99.797	84.940	84.787	.18	224	1.000	229.651	98.540	98.610	07
30	1.000	100.000	84.860	84.798	.07	2	1.000	229.810	98.275	98.641	37
8	1.000	100.330	84.057	84.815	89	30	1.000	230.000	98.920	98.677	. 25
234	1.000	101.436	85.100	84.871	.27	135	1.000	231.245	JDE . 8E	98.918	32
2	1.300	101.960	85.091	84.900	• 2 2	225	1.350	236.231	99.810	99.914	10
8	1.000	102.570	84.726	84.933	24	136	1.000	238.095	100.160	100.303	14
116	1.000	104.646	85.250	85.044	. 24	30	1.000	240.000	100.990 99.826	100.702	.29 -1.25
8	1.000	104.703	85.J61	85.051	• 51	226	1.256	241.76u 242.764	101.250	161.299	35
205	1.000	168.461 188.500	85.430 85.426	85.254 85.256	.21	137	1.985	244.560	101.750	1.1.697	. 35
30	1.000	110.000	85.850	85.341	.60	1	0.000	246.880	96.490	102.221	-5.61
117	1.000	110.300	55.530	85.358	. 20	30	1.300	250.000	103.310	102.947	.35
2	1.006	115.160	85.863	85.641	.19	138	1.306	250.946	103.200	103.172	. 13
2.6	1.000	115.393	85.790	85.655	.16	1	0.000	252.820	100.550	103.624	-2.97
118	1.000	116.889	85.810	65.746	.08	1	0.000	255.330	100.746	104.244	-3.36
30	1.000	120.000	86.726	85.938	.91	139	1.000	257.248	104.750	164.729	.32
2	1.300	121.970	56.179	86.362	•14	33	1.000	260.000	105.890	105.444	13
207 119	1.000	122.132	86.186	86.073 86.194	.12	1 140	1.000	261.550 263.551	105.720	106.398	12
208	1.000	124.609	86.200 56.510	86.510	06	1 40	0.000	264.740	97.790	106.726	-8.37
2	1.000	128.900	86.556	86.521	. 04	1	0.000	266.443	106.270	107.203	07
30	1.060	130.030	87.420	86.557	. 95	1	0.000	269.060	107.200	107.956	7u
120	1.000	131.003	86.590	86.667	.03	141	1.000	269.931	108.150	108.211	06
259	1.566	135.238	86.920	86.970	36	30	1.000	270.000	108.770	108.232	.50
2	1.000	135.950	87.226	87.022	. 23	142	1.000	276.242	109.980	110.158	16
121	1.000	137.870	87.140	87.165	03	1	0.006	276.430	107.010	110.202	-2.95
30	1.300	140.003	38.046	07.327	. 82	1	0.000	276.783	111.446	113.314	1.02
210	1.300	141.629	87.350	87.453	12	30	1.000	280.000	111.980	111.364	• 55
2 122	1.000	142.790	87.435	87.545	13	143	1.300 J.331	282.595 287.559	111.960 107.750	112.241	25 -5.48
211	1.000	145.757 147.9°2	87.680 87.878	87.783 87.960	12 10	1 144	1.000	288.813	114.690	1.4.468	33
2	1.000	149.7+0	88.147	88.114	.04	30	1.000	290.300	115.570	114.915	.57
30	1.000	150.000	58.670	88.136	.61	1	3.360	291.590	116.896	115.524	-4.01
123	1.000	152.350	88.160	88.339	20	30	1.001	367.000	119.600	110.994	.51
212	1.000	154.093	88.320	88.492	19	30	1.000	310.300	124.223	123.774	. 36
2	1.300	156.850	88.691	88.741	06	30	1.000	320.000	129.700	129.545	.12
124	1.000	153.858	38.770	38.926	18	30	1.000	330.000	136.630	136.853	16
30	1.000	160.000	89.300	89.634	. 39	30	1.000	340.000	140.280	146.884	+1
213	1.000	160.343	88.970	89.066	11	30	1.006	350.000	162.170	162.894	44
2 125	1.000	164.390	89.361	89.458	11	3 5	1.366	360.000	199.630	199.194	.22
	1.000	165.298	89.300	89.548	28						
	1.300	166-374									
214	1.000	166.37d 170.000	89.580 90.240	89.656 90.028	08	NP -	147, RMS	PCT = .2	q		

Table 7. Experimental data for compressed liquid

Run	T _{av} ,	ρ,	Р,	\overline{N}_{b} ,	V.,	ΔΤ,	Q/ΔT,	С,	Corr.,	С, Ј/п	no1/K	Diff.
no.	av' K	mo1/L		mo1	V _b ,	K	J/K	o' J/K	J/mo1/K	Expt1.	Calcd.	%
-	296.740			.8280			145.85		-1.75	74.25	74.16	•12
	301.507						145.35		-1.75	74.20	74.10	
	307.514		75.945				147.+4		-1.79	75.28	75.94	87
	313.479						148.65		-1.82	76.27	76.96	91
	319.395						149.90		-1.85	77.31	77.99	89
	325.273			.8200	73.609	5.857	150.96	84.71	-1.88	78.14	79.03	
151	331.118	11.239	195.101	.8279	73.005	5.814	152.22	85.65	-1.91	79.22	86.68	
152	336.944	11.231	224.054	.8279	73.721	5.750	153.45	85.38	-1.94	80.26	81.13	-1.08
801	278.582	11.949	33.544	.0758	73.294	6.106	145.44	81.65	-2.35	70.78	71.51	-1.03
802	284.558	11.938	69.935	.8758	73.356	6.045	146.75	82.03	-2.09	71.75	72.40	90
	290.462			.8758	73.418	5.995	148.13	82.50	-2.12	72.82	73.31	68
	296.874						149.61		-2.16	73.98	74.33	48
	303.745						151.19		-2.20	75.23	75.46	30
	310.524						152.74		-2.24	76.47	76.60	18
	317.249						154.24		-2.28	77.67	77.77	13
868	322.550	11.873	298.351	.8757	13.151	4.008	155.49	84.50	-2.32	78.69	78.71	02
	250.127						144.21		-2.36	67.50	68.52	
	258.803						144.95		-2.38	68.14	68.88	
	262.933		76.936				146.02		-2.40	68.83	69.42	86
	268.252						148.46		-2.44 -2.48	69.77 70.50	70.15	54 55
	278.769						149.64		-2.52	71.33	71.06	yo
	283.978						150.91		-2.55	72.26	72.44	25
	289.142						152.30		-2.59	73.34	73.24	.13
			204411							10004	. 5024	
	233.172		28.490				144.06		-2.61	66.22	66.41	29
	242.633						144.57		-2.64	66.28	66.95	
	248.462						145.97		-2.69	67.18	67.63	67
	254.481						147.47		-2.74	68.15	68.38	33
	260.329			• 9553	73.433	5.992	148.90	80.24	-2.79	69.08	69.16	12
	265.728 27 0. 590						150.36 151.61		-2.84	70.11	69.89	• 31
	216.834						142.73		-2.87	70.98	70.57	.57 31
	220.658		35.254 72.870				142.73		-2.92 -2.96	64.12	64.22	86
	224.436						143.21		-3.00	64.27	64.98	
	228.190						144.90		-3.04	64.87	65.38	79
	231.931						145.89		-3.47	65.45	65.79	51
	235.624						146.90		-3.11	66.07	66.20	19
	239.291						147.87		-3.15	66.66	66.62	.05
401	188.878	14.297	40.935	1.5439	7316	3.751	140.20	72.55	-3.32	61.48	61.89	67
	192.681			1.1439					-3.37	61.84	62.18	54
	196.572								-3.41	62.23	62.48	40
404	260.428	14.262	178.490	1.3438	73.191	5.899	143.28	74.14	-3.40	62.78	62.80	04
465	204.255	14.256	223.308	1. 438	73.251	3.869	144.32	74.62	-3.51	63.27	63.13	.21
466	207.852	14.239	26592	1.0438	73.305	3.441	145.40	75.06	-3.56	63.83	63.46	.59
501	156.982	15.044	40.349	1.3971	72.928	3.807	137.04	67.00	-3.76	60.08	60.02	.09
	160.558								-3.82	69.36	60.20	.26
503	164.253	15.018	158.389	1.0971	73.354	3.592	139.41	68.40	-3.88	60.80	60.38	.68
	167.862								-3.93	61.15	60.58	. 93
505	171.318	14.992	262.630	1.0971	73.177	3.528	141.71	69.75	-3.99	61.60	60.78	1.33
601	120.+12	15.731	44.790	1.1458	72.840	2.642	132.33	59.12	-4.12	59.78	59.12	1.11
	129.830								-4.17	60.62	59.10	1.44
	131.699								-4.22	60.22	59.21	1.67
	134.418								-4.28	60.41	59.28	1.88
605	137.115	15.685	245.672	1.1+58	73 48	2.701	136.66	62.26	-4.34	60.60	59.35	2.46
	100.334								-4.32	60.49	59.14	2.23
	102.729								-4.39	60.76	59.11	2.73
	105.695								-4.45	60.00	59.08	2.91
7:4	117.444	16.284	213.892	1.1876	12.932	2.343	130.05	52.25	-4.52	60.99	59.07	3.15

Table 8. Derived experimental and calculated C_{p} , $\mathrm{J/mol/K}$

							•	
Run	C _p , J/m	101/K	Diff.,	П	Run	C _p , J/1	no1/K	Diff.,
no.	Expt1.	Calcd.	%		no.	Exptl.	Calcd.	%
145	118.54	118.45	.07	\top	906	100.91	100.69	.21
140	117.12	117.06	63		907	1.1.30	160.97	• 4 9
147	116.63	117.29	56		301	95.69	95.89	21
148	116.21	116.91	60		302	95.33	95.93	58
149	115.99	116.68	59		313	95.27	95.99	75
155	115.68	116.57	77		334	95.56	96.38	54
151	115.71	116.58	7+		315	95.00	96.19	35
152	115.81	116.66	75		316	96.19	96.32	13
831	139.57	110.30	66		337	96.51	96.48	.04
802	109.43	110.07	59		401	91.47	91.88	45
663	139.47	159.96	45		432	91.50	91.91	37
364	139.62	119.97	32		+03	91.72	91.97	27
805	109.35	110.11	21		434	92.43	92.05	03
836	110.22	110.35	12		405	92.29	92.16	.15
007	110.60	110.70	09		400	92.65	92.27	.41
608	111.32	111.34	02		501	88.58	88.53	.06
228	1.3.38	1.4.11	99		502	63.75	00.55	.18
229	133.23	104.07	81		503	08.99	08.58	• 46
230	103.47	1.4.00	57		504	09.19	85.62	.64
231	103.72	1-4.10	36		505	89.51	08.69	.92
632	103.82	104.21	38		601	86.90	86.24	.76
233	104.06	104.39	32		602	07.10	86.23	.99
234	104.44	104.62	17		613	87.24	86.24	1.15
635	1.5.11	1.4.95	. 19		634	87.38	86.25	1.30
981	99.75	99.95	19		635	87.51	86.27	1.42
902	99.23	99.96	60	1	701	86.35	84.70	1.57
903	99.59	100.04	45		732	86.35	84.69	1.92
904	75.27	120.25	23		733	06.46	84.69	2.05
935	101.35	120.43	58		704	86.61	84.69	2.22

Table 9. Reduced specific heats, $(C_v - C_v^0)$, J/mol/K

	Table 9.	Reduced sp		, v v,	J/mol/K	
Run	Т,К	ρ, mol/L	C _v	C _v	C _v -C _v	$(C_v - C_v^o)/R$
1	294.150	11.303	73.68	64.68	9.06	1.083
145	296.740	11.293	74.25	65.19	9.36	1.690
146	301.507	11.283	74.20	06.12	8.u8 7.97	.971
147 148	307.514 313.479	11.274	75 • 28 76 • 2 7	67.31 68.49	7.78	.935
149	319.395	11.257	77.31	69.67	7.64	.919
150	325.273	11.248	78.14	76.84	7.30	.878
151	331.11ĉ	11.239	79.22	72.01	7.21	. 568
152	336.944	11.231	80.26	73.17	7.09	.853
2	252.415	12.591	66.9ó	56.69	10.27	1.235
23	256.127	12.573	67.5ú	57.30	13.12	1.217
23	250.083	12.568	68.04	57.90	10.14	1.220
30	262.933	12.563	68.83	50.66	10.17	1.223
31	268.252	12.549	69.77	59.67	13.15	1.215
32	273.524	12.539	70.50	60.67	9.33	1.182
233	278.769	12.528	71.33	61.68	9.65	1.160
34	283.978 289.142	12.518	72.26 73.34	62.69 63.73	9.57 9.64	1.151 1.160
3	212.389	41.272	67 0u	+9.73	14.15	1.702
361	216.834	13.635	63.85 64.02	50.39	13.63	1.639
302	220.658	13.616	64.15	51.04	13.03	1.565
u 3	224. +36	13.596	64.27	51.69	12.58	1.514
û +	228.198	13.536	64.87	52.34	12.53	1.507
105	231.931	13.577	65.45	52.99	12.46	1.499
306	235.624	13.567	66.37	53.64	12.43	1.494
37	239.291	13.558	66.66	54.30	12.36	1.487
4	165.351	14.318	61.17	45.33	15.84	1.905
+01	188.878	14.297	61.48	45.91	15.57	1.873
0.2	192.601	14.205	61.84	46.49	15.35	1.846
0.3	196.572	14.273	62.23	47.10	15.13	1.820
U4	210.428	14.262	62.78	47.71	15.07	1.813
05	20 4. 255	14.250	63.27	48.32	14.95	1.798
-06	267.552	14.239	63.83	9€.8+	14.93	1.795
5	153.369	15.067	59.78	40.81	18.97	2.282
31	156.902	15.044	60.68	41.31	18.77	2.257
02	160.668	15.031	60.36	41.82	18.54	2.229
03	164.253 167.862	15.018 15.005	60.80 61.15	42.32 42.82	18.48	2.204
505	171.318	14.992	61.60	+3.32	18.28	2.198
6	123.602	15.752	59.52	36.73	22.79	2.742
50 i	126.412	15.731	59.75	37.13	22.65	2.725
2	129.030	15.720	60.02	37.49	22.53	2.709
603	131.699	15.708	60.22	37.86	22.36	2.689
504	134.418	15.697	60.41	38.24	22.17	2.667
05	137.115	15.685	60.60	30.61	21.99	2.645
7	97.325	10.3+0	60.20	32.79	27.40	3.296
01	100.334	16.319	60.49	33.21	27.28	3.282
762	162.729	16.337	69.76	33.59	27.17	3.268
7)3 7 	105.395	16.295	60.85 60.99	33.97	26.88 26.65	3.233
				60.71	9.20	1.107
8	273.712	11.967	69.91 70.78	61.65	9.20	1.107
301	276.562	11.949	71.75	62.80	8.95	1.676
303	284.558 290.+82	11.938	72.32	63.96	0.95	1.066
3 u 4	296.874	11.920	73.98	65.21	8.77	1.055
3.5	3.3.743	11.935	75.23	66.57	8.66	1.042
336	310.524	11.89+	76.47	67.91	8.56	1.030
27	317.249	11.832	77.67	69.24	8.43	1.013
ŭ 8	322.550	11.873	78.69	70.30	8.39	1.009
ý	234.541	13.677	65.74	53.45	12.28	1.477
901	238.172	13.359	66.22	54.10	12.12	1.458
12	242.833	13.049	06.28	54.94	11.34	1.364
903	248.402	13.036	67.18	55.95	11.23	1.350
, <u>-</u>	254.461	13.423	68.15	57.00	11.09	1.334
995	261.329	13.913	69.08	58.17	10.91	1.313
900	265.728 270.590	12.337	70.11	59.19 63.11	10.92	1.314 1.307
967			70.98			