Examen 2 - Operaciones matemáticas básicas

Solución: Diferenciación e integración numérica

M. en C. Gustavo Contreras Mayén

9 de octubre de 2014

Diferenciación numérica

Diferenciación numérica

2 Integración

Diferenciación numérica

2 Integración

Usando una aproximación por diferencias finitas de orden $O(h^2)$, calcula f'(2.36) y f''(2.36), a partir de los datos:

X	2.36	2.37	2.38	2.39
f(x)	0.85866	0.86289	0.86710	0.87129

Usando una aproximación por diferencias finitas de orden $O(h^2)$, calcula f'(2.36) y f''(2.36), a partir de los datos:

X	2.36	2.37	2.38	2.39
f(x)	0.85866	0.86289	0.86710	0.87129

$$f'(2.36) = 0.424$$

Usando una aproximación por diferencias finitas de orden $O(h^2)$, calcula f'(2.36) y f''(2.36), a partir de los datos:

Х	2.36	2.37	2.38	2.39
f(x)	0.85866	0.86289	0.86710	0.87129

$$f'(2.36) = 0.424$$

$$f''(2.36) = -0.2000$$

Dados los siguientes datos

x	0.84	0.92	1.00	1.08	1.16
f(x)	0.431711	0.398519	0.367879	0.339596	0.312486

Calcula f''(1) con la mayor precisión posible.

Dados los siguientes datos

x	0.84	0.92	1.00	1.08	1.16
f(x)	0.431711	0.398519	0.367879	0.339596	0.312486

Calcula f''(1) con la mayor precisión posible. f''(1) = 0.2265

La palanca AB de longitud $R=90~\rm mm$ está girando con velocidad angular constante $d\theta/dt=5000~\rm rev/min.$

La posición del pistón C como se muestra, varía con el ángulo θ

$$x = R\left(\cos\theta + \sqrt{2.5^2 - \sin^2\theta}\right)$$

Escribe un programa en python que calcule mediante diferenciación numérica la aceleración del pistón en $\theta=0^\circ,5^\circ,10^\circ,\dots,180^\circ$.

Solución

Hay que plantear la ecuación a resolver, ya que tenemos una función compuesta, es decir, en términos de x, de θ y de t, es decir:

$$\dot{x} = \frac{dx}{d\theta} \frac{d\theta}{dt}$$

entonces, para conocer la aceleración del pistón, derivamos nuevamente esta expresión

$$\ddot{x} = \frac{d}{dt} \left[\frac{dx}{d\theta} \frac{d\theta}{dt} \right]$$

$$= \frac{d^2 \theta}{dt^2} \left(\frac{dx}{d\theta} \right) + \frac{d\theta}{dt} \left(\frac{d}{dt} \frac{dx}{d\theta} \right) = \frac{d\theta}{dt} \left[\frac{d^2 x}{d\theta^2} \frac{d\theta}{dt} \right]$$

$$= \left(\frac{d\theta}{dt} \right)^2 \frac{d^2 x}{d\theta^2}$$

Como ya conocemos la expresión que nos relaciona la velocidad angular con la segunda derivada, procedemos a generar pares de datos (θ,x) que usaremos para nuestra rutina de segunda deriva, para obtener los valores de \ddot{x} en los ángulos, debiendo ser mostrados en una tabla y posteriormente graficados.

θ	x	\ddot{x}
0°	315.000	-264.124
5°	314.521	-262.396
:	:	:
175°	135.206	113.660
180°	135.000	113.368

Gráficas

Gráficas

Las estaciones de radar A y B están separadas por una distancia a=500 m; rastrean el avión C registrando los ángulos α y β en intervalos de un segundo.

Figura: Estaciones de radar y el avión.

Si hay tres lecturas sucesivas

t(s)	9	10	11
α	54.80°	54.06°	53.34°
β	65.59°	64.59°	63.62°

Calcula la velocidad v del avión y el ángulo de subida γ en t=10 segundos. Las coordenadas del avión las tomamos de

$$x = a \frac{\tan \beta}{\tan \beta - \tan \alpha}$$
 $y = a \frac{\tan \alpha \tan \beta}{\tan \beta - \tan \alpha}$

Lo que podemos hacer es calcular v_x y v_y en t=10 segundos, para luego obtener la velocidad

$$v = \sqrt{v_x^2 + v_y^2}$$

el ángulo de subida γ resulta de

$$\arctan\left(\frac{v_y}{v_y}\right)$$

así pues, tenemos que

$$v = 50.099 \text{ m/s}$$

$$\gamma = 15.14^{\circ}$$

Obtén la aproximación por diferencias centrales de f''(x) de orden $O(h^4)$ aplicando la extrapolación de Richardson a la aproximación por diferencias centrales de orden $O(h^2)$

Conocemos f''(x) por medio de la aproximación por diferencias centrales de orden $O(h^2)$

$$f''(x) = \frac{f(x+h) - 2f(x) + f(x-h)}{h^2} + O(h^2)$$

De la extrapolación de Richardson con $h_2 = h_1/2$ tenemos el resultado

$$G = \frac{2^p g\left(\frac{h_1}{2}\right) - g(h_1)}{2^p - 1}$$

Haciendo p=2 y con el desarrollo de G, tenemos que la aproximación por diferencias centrales de f''(x) de orden $O(h^4$ con la extrapolación de Richardson, resulta ser

$$G = \frac{1}{3h} \left[16f\left(x + \frac{h_1}{2}\right) - f(x + h_1) - 30f(x) + f(x - h_1) + 16f\left(x - \frac{h_1}{2}\right) \right]$$

Obtén la primera aproximación por diferencias centrales para $f^4(x)$ a partir de la serie de Taylor.

A partir del desarrollo en series de Taylor, tenemos que

$$f(x+h) = f(x) + hf'(x) + \frac{h^2}{2!}f''(x) + \frac{h^3}{3!}f'''(x) + \frac{h^4}{4!}f^4(x) + \dots$$

$$f(x-h) = f(x) - hf'(x) + \frac{h^2}{2!}f''(x) - \frac{h^3}{3!}f'''(x) + \frac{h^4}{4!}f^4(x) - \dots$$

$$f(x+2h) = f(x) + 2hf'(x) + \frac{(2h)^2}{2!}f''(x) + \frac{(2h)^3}{3!}f'''(x) + \frac{(2h)^4}{4!}f^4(x) + \dots$$

$$f(x-2h) = f(x) - 2hf'(x) + \frac{(2h)^2}{2!}f''(x) - \frac{(2h)^3}{3!}f'''(x) + \frac{(2h)^4}{4!}f^4(x) - \dots$$

Haciendo el álgebra correspondiente, tenemos que

La expresión para la primera aproximación por diferencias centrales para $f^4(x)$ es

$$f^{4}(x) = \frac{1}{h^{4}} \left[f(2x+2h) - 4f(x+h) + 6f(x) + 4f(x-h) + f(x-2h) \right]$$

Diferenciación numérica

2 Integración

Usa la regla del trapecio recursiva para evaluar

$$\int_0^{\frac{\pi}{4}} \ln(1+\tan(x))dx$$

Explica tus resultados.

Resultados

Usando diferentes valores para k

k	Integral	error
1	0.272198261	0.00000
5	0.272198261	0.00000
10	0.272198261	0.00000
15	0.272198261	0.00000
20	0.272198261	0.00000

La siguiente tabla indica la potencia P propocionada por las ruedas de un carro como función de la velocidad v. Si la masa del carro es m=2000 kg, calcula el tiempo Δt necesario para que el carro acelere de $1~{\rm m/s}$ a $6~{\rm m/s}$. Usa la regla del trapecio para integrar.

Tip:

$$\Delta t = m \int_{1s}^{6s} \left(\frac{v}{P}\right) dv$$

que se puede obtener de la ley de Newton F=m/(dv/dt) y por la definición de potencia, P=Fv.

Tip:

$$\Delta t = m \int_{1s}^{6s} \left(\frac{v}{P}\right) dv$$

que se puede obtener de la ley de Newton F=m/(dv/dt) y por la definición de potencia, P=Fv.

El tiempo necesario para aumentar la velocidad es de: 1.6658 segundos

La siguiente tabla proporciona el empuje F del arco como función del desplazamiento x. Si la cuerda tiene un desplazamiento de 0.5 m, calcula la velocidad de una flecha de 0.075 kg, cuando sale del arco. Tip: la energía cinética de la flecha es igual al trabajo hecho al estirar la cuerda, que es:

$$m\frac{v^2}{2} = \int_0^{0.5m} F dx$$

Tabla de datos

x (m)	0.00	0.05	0.10	0.15	0.20	0.25
F(N)	0	37	71	104	134	161

x (m)					
F(N)	185	207	225	239	250

Usando la regla extendida del trapecio y ajustando el valor del peso de la flecha, resulta que la velocidad de la flecha es: $44.54~\mathrm{m/s}$

El período de un péndulo de longitud L es $au=4\sqrt{\frac{L}{g}}h(\theta_0)$, donde g es la aceleración debida a la gravedad, θ_0 , representa la amplitud angular y

$$h(\theta_0) = \int_0^{\frac{\pi}{2}} \frac{d\theta}{\sqrt{1 - \sin^2\left(\frac{\theta_0}{2}\right)\sin^2\theta}}$$

Calcular $h(15^\circ)$, $h(30^\circ)$ y $h(45^\circ)$; compara esos valores con $h(0^\circ)=\frac{\pi}{2}$ (la aproximación usada para pequeñas amplitudes)

Resultados

θ	$h(\theta)$	error
15°	1.57755	4.30058e - 03
30°	1.59814	1.74088e - 02
45°	1.63359	3.99733e - 02