潜在变量模型

——潜在剖面分析 (Latent Profile Analysis, LPA)

报告人: 黄颖诗

什么是潜在变量?

• 外显变量:可直接测量

• e.g.题目

• 潜在变量:无法直接测量

• e.g.智力

潜在变量模型

	连续型潜变量	类别型潜变量
连续型指标	因素分析	潜在剖面分析
类别型指标	潜在特质分析 或项目反应理论	潜在类别分析

Collins, L. M., & Lanza, S. T. (2010). Latent Class Analysis and Latent Transition Analysis. Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences.

潜在剖面分析

- 分析模式
- 数学模型
- 分析过程

24 Vb			题目		
被试	1	2	3	•••	i
1	X ₁₁	X ₁₂	X ₁₃	• • •	X_{1i}
2	X_{21}	X_{22}	X_{23}	•••	X_{2i}
3	X_{31}	X_{32}	X_{33}	• • •	X_{3i}
•••	•••	•••	•••	• • •	•••
p	X_{p1}	X_{p2}	X_{p3}	•••	X_{pi}

	x_1	x_2	x_3	x_4	x_5	$P_{y}(Y)$
y_1	p_{11}	p_{21}	p_{31}	p_{41}	p_{51}	Σp_{i1}
y_2	p_{12}	p_{22}	p_{32}	p_{42}	p_{52}	Σp_{i2}
<i>y</i> ₃	p_{13}	p_{23}	p_{33}	p_{43}	p ₅₃	Σp_{i3}
y_4	p_{14}	p_{24}	p_{34}	p_{44}	<i>p</i> ₅₄	Σp_{i4}
y_5	p_{15}	p_{25}	p_{35}	p_{45}	<i>p</i> ₅₅	Σp_{i5}
$P_{\chi}(X)$	Σp_{1j}	Σp_{2j}	Σp_{3j}	Σp_{4j}	Σp_{5j}	1

- 联合概率 (分布)
- 边缘概率 (分布)
- 条件概率 (分布)

		Г	1	ı			→ xy 的联合概率 $P(X=x_i, Y=y_i)$
	x_1	x_2	x_3	x_4	x_5	$P_y(Y)$	多个条件且 所有条件同时成立
y_1	p_{11}	p_{21}	p_{31}	p_{41}	p_{51}	Σp_{i1}	
y_2	p_{12}	p_{22}	p_{32}	p_{42}	p_{52}	Σp_{i2}	
y_3	p_{13}	p_{23}	p_{33}	p_{43}	p_{53}	Σp_{i3}	\mathbf{Y} 的边缘概率 $\mathbf{P}(Y=y_j)$
y_4	p_{14}	p_{24}	p_{34}	p_{44}	p ₅₄	Σp_{i4}	$P(X=x_i) \mathbf{x} P(Y=y_j),$
y_5	p_{15}	p_{25}	p_{35}	p_{45}	p_{55}	Σp_{i5}	仅与单个随机变量有关
$P_{\chi}(X)$	Σp_{1i}	Σp_{2i}	Σp_{3i}	Σp_{4i}	Σp_{5i}	1	X 的边缘概率 $P(X=x_i)$
	J			- J			Λ_{i}

 $orall x \in X, P(X=x) = \sum_{y} P(X=x,Y=y) \qquad p(x) = \int p(x,y) dy$

• 条件概率 (分布)

条件概率表示在条件 $X = x_i$ 成立的情况

下,
$$Y = y_j$$
的概率, 记作 $P(Y = y_j | X = x_i)$

或 $P(y_j|x_i)$ 。

$$p(Y = y_j | X = x_i) = \frac{p(X = x_i, Y = y_j)}{p(X = x_i)}$$

• 贝叶斯后验概率

$$p(Y = y_j | X = x_i) = \frac{p(X = x_i, Y = y_j)}{p(X = x_i)}$$

先验概率: 知道原因推结果

后验概率: 根据结果推原因

$$p(Y|X) = \frac{p(XY)}{p(X)}$$
 $p(XY) = p(Y|X)p(X)$ $p(XY) = p(YX), p(YX) = p(X|Y)p(Y),$

$$p(Y|X) = \frac{p(X|Y)p(Y)}{p(X)}$$

潜在剖面分析——数学模型

• 若X与Y两个变量独立无关,则:

$$P_{ij} = P_i^{x} P_j^{y}$$

- X与Y关联的实质:
 - 变量X与Y的关联能够被一个潜在类别变量解释。

潜在剖面分析——数学模型

- 概率参数化
 - 潜在类别概率 π_t^c (方差贡献率) P(C=t) 被试属于潜在类别t 的概率,相当于各个潜在类别的类别大小(Class size),数值越大的类别具有越重要的地位。
 - 条件概率 $\pi_{it}^{Xc}\pi_{jt}^{Yc}$ (因子负荷) P(X=i|C=t); P(Y=j|C=t) 在被试属于潜在类别t 的条件下,随机抽取一个人,在外显变量上作答的概率,数值越大说明潜在变量对该外显变量影响越强。

$$\sum_{i} \pi_{it}^{\bar{x}C} = \sum_{i} \pi_{jt}^{\bar{y}C} = 1$$

潜在剖面分析——数学模型

基本公式:

属于类别 t 的被试在Y上的

• 假设为连续分布,总模型服从多元正态分布:

$$f(M) = \sum_{C=1}^{T \downarrow} p(C) f(M|\mu_C, \Sigma_C)$$

m个外显变量向量的联合概率密度,C指潜在变量,t指潜在类别数,每个潜 在类别有自己的均值向量 μ_c 和协方差矩阵 $\sum_{c,r} p(C)$ 指属于某类别的先验概率。

- 模型选择——确定潜变量水平数(有多少个潜在类别变量)↓
- 模型解释——对各类别进行归纳和命名 ↓
- 个体归类——对每位被试进行分类

• 模型选择

零模型 假设外显变量之间完全独立,即潜在类别数为1

逐渐增加潜在类别数目

在参数限定的基础上运用极大似然法对各模型进行估计, 反复进行假设模型与观察数据之间的检验

最佳模型 比较各模型的适配结果,直至找到最佳模型为止

- 三大类拟合指数
 - 信息评价准则: 越低越好

赤池信息准则(AIC)、贝叶斯信息准则(BIC),以及它们的修正版,如AIC3(赤池信息准则 3)、CAIC、SABIC

• 似然比检验: 假设增加类别前更匹配数据(p < 0.05)

LMR, aLMR

• 分类不确定性: 越接近1越好

熵值(Entropy)

• 模型选择

AIC	BIC	Entropy
7063.259	7105.274	
6508.669	6596.201	0.928
6157.773	6290.821	0.942
6014.392	6192.956	0.934
5973.560	6197.641	0.888
	7063.259 6508.669 6157.773 6014.392	7063.259 7105.274 6508.669 6596.201 6157.773 6290.821 6014.392 6192.956

LCA

- 模型解释
 - 右图为感知用户体验分类, 根据三类别模型中各个题目 的得分均值,得分均值从高 到低,可将三种类别依次命 名为高感知组,较高感知组, 和低感知组。

- 个体归类
 - 在一定的概率模型之下

(model-based) , 利用概

率的估计与比较进行分类。

作答模式 (XY)	Class1	Class2	Class3
11	0.001	0.343	0.013
12	0.042	0.001	0.050
•••	•••	•••	•••
55	0.057	0.016	0.008

P(属于类别1|作答模式为11) = 0.001/(0.001+0.343+0.013) = 0.003

P(属于类别2|作答模式为11) = 0.343/(0.001+0.343+0.013) = 0.961

P(属于类别3|作答模式为11) = 0.013/(0.001+0.343+0.013) = 0.036

Thank you for your attention!

2019-03-02