Codici di correzione di errore

Codici di correzione di errore

- I computer possono, occasionalmente, commettere degli errori: errori, al fine di rilevare e correggere l'eventuale errore si possono aggiungere dei bit extra alla parola.
- Una **parola di codice** (o **codeword**) con n-bit è una parola che contiene **m** bit per i dati e **r** per il controllo dell'errore (n=m+r).
- La **distanza di Hamming** tra due parole di codice è data dal numero di differenze tra bit corrispondenti. Per il calcolo è sufficiente sommare il risultato dell'EXOR bit-a-bit delle due parole.

Codice di Hamming

Ricordiamo che

Dimensione della parola	Bit di correzione	Posizioni individuate	Bit totali m+r	Spreco
m=4	r=3	$2^r \ge 4+r$	7	3/4
m=8	r=4	$2^r \ge 8+r$	12	4/8
m=16	r=5	2 ^r ≥16+r	21	5/16

• Quindi con r bit possiamo indiduare la posizione nella parola (m+r)

Codice di Hamming: 4 bit dati e 3 di controllo

• Ricordando che per comporre i numeri da 1 a 7 utilizziamo le potenze di due:

				4	2	1
_	7 = 4 + 2	2 + 1	7	1	1	1
_	6 = 4 + 2	2	6	1	1	
_	5 = 4 +	1	5	1		1
_	4 = 4		4	1		
_	3 = 2	2 + 1	3		1	1
_	2 = 2	2	2		1	
_	1 =	1	1			1

Codice di Hamming: 4 bit dati e 3 di controllo

- Il valore 1 lo utilizziamo per comporre i numeri 1, 3, 5, 7
- Il valore 2 lo utilizziamo per comporre i numeri 2, 3, 6, 7
- Il valore 4 lo utilizziamo per comporre i numeri 4, 5, 6, 7
- Quindi potremmo utilizzare tre bit per indicare tutte le possibili combinazioni dei numeri componibili di una parola con 7 cifre...

Codice di Hamming: 4 bit dati e 3 di controllo

- Se A rappresenta il valore 1 controlla le posizioni 1, 3, 5, 7
- Se B rappresenta il valore 2 controlla le posizioni 2, 3, 6, 7
- Se C rappresenta il valore 4 controlla le posizioni 4, 5, 6, 7

Esercizio

- Supponendo di disporre della parola binaria 1011 (d₃d₂d₁d₀).
- Trovare i bit del codice di correzione di Hamming
- Suggerimento
- Utilizzare questo schema per compilare le possibili intersezioni:

Soluzione

• Partendo dalla parola binaria parola binaria 1011 (d₃d₂d₁d₀), scrivere il valore che corrisponde nelle intersezioni:

Calcolo dei bit di controllo

• Calcolare A, B e C in modo tale che il numero di 1 all'interno del cerchio sia pari:

• Calcolare A, B e C in modo tale che il numero di 1 all'interno del cerchio sia pari:

 Calcolare A, B e C in modo tale che il numero di 1 all'interno del cerchio sia pari:

• Calcolare A, B e C in modo tale che il numero di 1 all'interno del cerchio sia pari:

 Calcolare A, B e C in modo tale che il numero di 1 all'interno del cerchio sia pari:

- Supponiamo che, a seguito di un errore di trasferimento, si modifichi il bit d₂
- Possiamo rilevarlo e recuperarlo grazie ai bit di controllo

Calcoliamo inizialmente i bit di parità

A questo punto confrontiamoli con i vecchi valori

Notiamo che A e C sono cambiati

 I cerchi A e C hanno una parità errata rispetto a prima, l'unico indice in comune solo tra A e C è 5 cioè il bit dati d₂

Algoritmo per codice di Hamming con 4 bit dati

• È possibile calcolare i bit di controllo attraverso il calcolo matriciale, facendo attenzione di esprimere i valori della matrice risultante in binario

$$\begin{bmatrix} 1 & 1 & 0 & 1 \\ 1 & 0 & 1 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 1 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \times \begin{bmatrix} d_3 \\ d_2 \\ d_1 \\ d_0 \end{bmatrix} = \begin{bmatrix} d_3 + d_2 + d_0 \\ d_3 + d_1 + d_0 \\ d_3 \\ d_1 + d_2 + d_0 \\ d_2 \\ d_1 \\ d_0 \end{bmatrix} \stackrel{A}{=} P$$

Algoritmo per codice di Hamming con 4 bit dati

 A questo se non ci sono errori nel vettore P, il risultato del prodotto con la seguente matrice, espresso in base due, è un vettore con tutti valori zero:

in caso contrario in C troviamo l'indicazione della posizione errata