Figure 1A

1B

The state of the s

SUBSTITUTE SHEET (RULE 26)

1C

1D

Ion #1: Mass 187

Ion #2: Mass 299

Ion #3: Mass 270 (characteristic rearrangement ion)

Ion #4: Mass 185 (desaturated analog of Ion #1)

Ion #5: Mass 298 (elongated analog of Ion #3)

Ion #6: Mass 327 (elongated analog of ion

Figure 2

SUBSTITUTE SHEET (RULE 26)

Handle of the first transfer of the first tr

Figure 3

SUBSTITUTE SHEET (RULE 26)

Mass spectrum of peak 10 from figure 3B

4B

then the state of the state of

Mass spectrum of peak 11 from figure 3B

H H H H

The state of the s

Mass spectrum of peak 12 from figure 3B

4D Mass spectrum of peak 13 from figure 3B

=	1
7	•
	-
2	•
*	2
ř	2
=	trees.
2.	1
≄.) Carre
z :	È
ã	
# 17 # 17	Š
Ē.;	1
=	=
4 P	
¥.,	4

10	20	30	40	50	60
TATTGGCACC	GGCGGCACCA	TTECAACAAT	GGATCCCTAG	AAAAAGATGA	AGTCTTTGTC
70	80	90	100	110	120
CCACCTAAGA	AAGCTGCAGT	CANATGGTAT	GTCAAATACC	TCAACAACCC	TCTTGGACGC
130	140	150	160	170	180
ATTCTGGTGT	TAACAGTTCA	GTTTATCCTC	GGGTGGCCTT	TGTATCTAGC	CTTTAATGTA
190	200	210	220	230	240
TCAGGTAGAC	CTTATGATGG	TTTCGCTTCA	CATTTCTTCC	CTCATGCACC	TATCTTTAAG
250	260	270	280	290	300
GACCGTGAAC	GTCTCCAGAT	ATACATCTCA	GATGCTGGTA	TTCTAGCTGT	CTGTTATGGT
310	320	330	340	350	360
CTTTACCGTT	ACGCTGCTTC	ACAAGGATTG	ACTGCTATGA	TCTGCGTCTA	CGGAGTACCG
370	380	390	400	410	420
CTTTTGATAG	TGAACTTTTT	CCTTGTCTTG	GTCACTTTCT	TGCAGCACAC	TCATCCTTCA
430	440	÷50	460	470	480
TTACCTCACT	ATGATTCAAC	CGAGTGGGAA	TGGATTAGAG	GAGCTTTGGT	TACGGTAGAC
490	500	510	520	530	540
AGAGACTATG	GAATCTTGAA	CAAGGTGTTT	CACAACATAA	CAGACACCCA	CGTAGCACAC
550)				
CAC					

Figure 5

the state of the s

10	20	30	40	50	60
TATAGGCACC	GGAGGCACCA	TTCCAACACA	GGATCCCTCG	AAAGAGATGA	AGTATTTGTC
70	80	90	100	110	120
CCAAAGCAGA	AATCCGCAAT	CAAGTGGTAC	GGCGAATACC	TCAACAACCC	TCCTGGTCGC
130	140	150	160	170	180
ATCATGATGT	TAACTGTCCA	GTTCGTCCTC	GGATGGCCCT	TGTACTTAGC	CTTCAACGTT
190	200	210	220	230	240
TCTGGCAGAC	CCTACAATGG	TTTCGCTTCC	CATTTCTTCC	CCAATGCTCC	TATCTACAAC
250	260	270	280	290	300
GACCGTGAAC	GCCTCCAGAT	TTACATCTCT	GATGCTGGTA	TTCTAGCCGT	CTGTTATGGT
310	320	330	340	350	360
CTTTACCGTT	ACGCTGTTGC	ACAAGGACTA	GCCTCAATGA	TCTGTCTAAA	CGGAGTTCCG
370	380	390	400	410	420
CTTCTGATAG	TTAACTTTTT	CCTCGTCTTG	ATCACTTACT	TACAACACAC	TCACCCTGCG
430	440	450	460	470	480
TTGCCTCACT	ATGATTCATC	AGAGTGGGAT	TGGCTTAGAG	GAGCTTTAGC	TACTGTAGAC
490	500	510	520	530	540
AGAGACTATG	GAATCTTGAA	CAAGGTGTTC	CATAACATCA	CAGACACCCA	CGTCGCACAC
550					
CACT					

Figure 6

FIG.7

10/15

TA	GAA	GCT	TTA	TAA	GAA	377	ÄGT	777	CTC	TGG	TGA	CAG	AGA	TAA	TNT	47
GTC	AAT	TGG	TAG	TGA	CAG	TTG	AAG	CAA	CAG	GAA	CAA	CAA	GGA	TGG	TTG	95
GTG	NTG	ATG	CTG	÷TG	TGG	-GA	TGT	STT	ATT	CAT	CA÷	ATA	CTA	TAA	ACT	143
ACA	ATT	CTT	GTT	GCT	GCC	TAC	TTC	TCC	TAT	TTC	СТС	CGC	CAC	CCA	TTT	191
TGG	ACC	CAC	GAN	ССТ	TCC	÷TT	TAA	ACC	CTC	TCT	CGT	GCT	TTA	CAC	CAG	239
AAG	AGA	AGC	CAA	GAG	AGA	GAG	AGA	GAG	AAT	GTT	CTG	AGG	ATC	TTA	GTC	287
TTC	TTC	ATC	GTT	ATT	SAA	GTA	AGT	TTT	TTT	TGA	CCA	CTC	ATA	TCT	AAA	335
ATC	TAG	TAC	ATG	CAA	TAG	ATT	TAA	GAC	TGT	TCC	TTC	111	TGA	TAT	TTT	383
CAG	СТТ	стт	GAA	TTĆ	AAG		Gly GGT									10 431
Pro CCC	Ser TCT	Ser TCC	Lys AAG	Lys AAA	Ser TCA	G Nu GAA	Thr	Glu GAA	Ala	Leu CTA	Lys AAA	Arg CGT	Gly GGA	Pro CCA	Cys TGT	26 479
				Phe TTC												. 42 527
				Arg CGC												58 575
				val GTT												74 623
				Glr CAG												90 671
Trp TG(Val ATD	Cys	G G T	n Gly A GG(Cys	Val GT0	Leu TTA	Thr ACC	Gly GGT	Ile ATC	Trp	Val GTC	Ile ATT	G1 y GGC	His CAT	106 719
G N	L Cys	GI3	y Hi: T CA	s His	s Ala T GCA	Phe TT(e Ser C AGT	Asp GAC	Tyr TAT	Glr CAA	Trp TGG	Val GTA	Asp GAT	Asp GAC	Thr	122 767
Va GT	G GG	y Pho	e Il	e Pho	e His C CAT	See	r Phe C TTC	Lei CT1	Let CT(Val GT(Pro	Tyr TAC	Phe	Ser TCC	Trp	138 815
Ly.	s Ty	r Se C AG	r Hi T CA	s Ar	g Arg	g Hi: T CA	s His C CAT	Ser TC(ASI	ASI C AAT	n Gly F GG/	y Ser A TC1	r Leu	GAC	Lys G AAA	154 863
As GA	p G1 T GA	u Va A GT	1 Ph C TI	e Va T GT	1 Pro	o Pr A CC	o Lys G AAC	s Ly:	s Ala	A A R	B Va'	l Lys	s Trp A TG(Ty:	- Val	170 911
Ly AA	s Ty A TA	r Le C CT	u As C AA	n As C AA	n Pr C CC	o Le T CT	u Gly	y Ar	g II.	e Le	u Va G GT	l Le	u Thi	r Va A GT	Gln CAG	186 959

Figure 8A
SUBSTITUTE SHEET (RULE 26)

PCT/US97/02187

Phe Ile Leu Gly Trp Pro Leu Tyr Leu Ala Phe Asn Val Ser Gly Arg 202 TTT ATC CTC GGG TGG CCT TTG TAT CTA GCC TTT AAT GTA TCA GGT AGA 1007 Pro Tyr Asp Gly Phe Ala Ser His Phe Phe Pro His Ala Pro Ile Phe 218 CCT TAT GAT GGT TIC GCT TCA CAT TTC TTC CCT CAT GCA CCT ATC TTT 1055 Lys Asp Arg Glu Arg Leu Gln Ile Tyr Ile Ser Asp Ala Gly Ile Leu 234 AAA GAC CGA GAA CGC CTC CAG ATA TAC ATC TCA GAT GCT GGT ATT CTA 1103 Ala Val Cys Tyr Gly Leu Tyr Arg Tyr Ala Ala Ser Gln Gly Leu Thr 250 GCT GTC TGT TAT GGT CTT TAC CGT TAC GCT GCT TCA CAA GGA TTG ACT 1151 Ala Met Ile Cys Val Tyr Gly Val Pro Leu Leu Ile Val Asn Phe Phe 266 GCT ATG ATC TGC GTC TAT GGA GTA CCG CTT TTG ATA GTG AAC TTT TTC 1199 Leu Val Leu Val Thr Phe Leu Gln His Thr His Pro Ser Leu Pro His 282 CTT GTC TTG GTA ACT TTC TTG CAG CAC ACT CAT CCT TCG TTA CCT CAT 1247 Tyr Asp Ser Thr Glu Trp Glu Trp Ile Arg Gly Ala Leu Val Thr Val 298 TAT GAT TCA ACC GAG TGG GAA TGG ATT AGA GGA GCT TTG GTT ACG GTA 1295 Asp Arg Asp Tyr Gly Ile Leu Asn Lys Val Phe His Asn Ile Thr Asp 314 GAC AGA GAC TAT GGA ATA TTG AAC AAG GTG TTC CAT AAC ATA ACA GAC 1343 330 Thr His Val Ala His His Leu Phe Ala Thr Ile Pro His Tyr Asn Ala ACA CAT GTG GCT CAT CAT CTC TTT GCA ACT ATA CCG CAT TAT AAC GCA 1391 Met Glu Ala Thr Glu Ala Ile Lys Pro Ile Leu Gly Asp Tyr Tyr His 346 ATG GAA GCT ACA GAG GCG ATA AAG CCA ATA CTT GGT GAT TAC TAC CAC 1439 Phe Asp Gly Thr Pro Trp Tyr Val. Ala Met Tyr Arg Glu Ala Lys Glu 362 TTC GAT GGA ACA CCG TGG TAT GTG GCC ATG TAT AGG GAA.GCA AAG GAG 1487 Cys Leu Tyr Val Glu Pro Asp Thr Glu Arg Gly Lys Lys Gly Val Tyr 378 TGT CTC TAT GTA GAA CCG GAT ACG GAA CGT GGG AAG AAA GGT GTC TAC 1535 384 Tyr Tyr Asn Asn Lys Leu TAT TAC AAC AAT AAG TTA TGA GGC TGA TAG GGC GAG AGA AGT GCA ATT 1583 ATC AAT CTT CAT TTC CAT GTT TTA GGT GTC TTG TTT AAG AAG CTA TGC 1631 TIT GTT TCA ATA ATC TCA GAG TCC ATN TAG TTG TGT TCT GGT GCA TTT 1679 TGC CTA GTT ATG TGG TGT CGG AAG TTA GTG TTC AAA CTG CTT CCT GCT 1727 GTG CTG CCC AGT GAA GAA CAA GTT TAC GTG TTT AAA ATA CTC GGA ACG 1775 AAT TGA CCA CAA NAT ATC CAA AAC CGG CTA TCC GAA TTC CAT ATC CGA 1823 AAA CCG GAT ATC CAA ATT TCC AGA GTA CTT AG 1855

Figure 8B

SUBSTITUTE SHEET (RULE 26)

WO 97/30582

12/15

		10	20	30	40	50	
LFFAH12	1	MGAGGRIM					50
FAH12		MGGGGRMSTV					50
ATFAD2	-	MGAGGRMP	VPTSSKKS				50
BNFAD2		MGAGGRMQ	VSPPSKKS	ETDNIKRY	PCETPPFTVG	ELKKAIPPHC	50
GMFAD2-1		MGLA-KETTM					50
GMFAD2-2		MGAGGR					50
ZMFAD2		MGAGGRMTEK					50
RCFAD2	ī						50
	•	60	70	80	90	100	
LFFAH12	51	FKRSIPRSFS	YLLTDITLYS	CFYYVATNYF	SLLPQPLSTY	LAWPLYMYCO	100
FAH12	51	FERSFYRSFS	YVAYDVCLSF	LFYSIATNFF	PYISSPLS-Y	VAWLVYWLFO	100
ATFAD2	51	FKRSIPRSFS	YLISDIIIAS	CFYYVATNYF	SLLPQPLS-Y	LAWPLYWACO	100
BNFAD2	51	FKRSIPRSFS	HLIWDIIIAS	CFYYVATTYF	PLLPNPLS-Y	FAWPLYWACO	100
GMFAD2-1		FORSLLTSFS					100
GMFAD2-2		FORSVLRSFS					100
ZMFAD2		FERSVLKSFS					100
RCFAD2	51		<i></i>				100
		. 110	120	130	140	150	
LFFAH12	101	GCVLTGIWVI	GHECGHHAFS	DYQWVDDTVG	FIFHSFLLVP	YFSWKYSHRR	150
FAH12	101	GCILTGLWVI	GHECGHHAFS	EYOLADDIVG	LIVHSALLVP	YFSWKYSHRR	150
ATFAD2	101	GCVLTGIWVI	AHECGHHAFS	DYOWLDDTYG	LIFHSFLLVP	YFSWKYSHRR	150
BNFAD2	101	GCYLTGVWVI	AHECGHAAFS	DYQWLDDTVG	LIFHSFLLVP	YFSWKYSHRR	150
GMFAD2-1	101	GCLLTGVWVI	AHECGHHAFS	KYOWYDDYYG	LTLHSTLLVP	YFSWKISHRR	150
GMFAD2-2	101	GCILTGVWVI	AHECGHHAFS	DYQLLDDIVG	LILHSALLVP	YFSWKYSHRR	150
ZMFAD2	101	G	AFS	DYSLLDDVVG	: LVLHSSLMVF	YFSWKYSHRR	150
RCFAD2	101	WVM	AHDCGHHAFS	DYQLLDDYYG	LILHSCLLVF	YFSWKHSHRR	150
		160	170				
LFFAH12	151	HHSNNGSLER	CDEVFVPPKKA	AVKWYVKYL-	NNPLGRILV	. TVQFILGWPL	200
FAH12	151	HHSNIGSLER	R DEVFVPKSKS	KISWYSKYS-	NNPPGRVLTI	. AATLLLGWPL	200
ATFAD2	151	HHSNTGSLER	R DEVFVPKQKS	AIKWYGKYL-	· NNPLGRIMMI	. TVQFVLGWPL	200
BNFAD2	151	HHSNTGSLE	R DEVFVPR-RS	GTSSGTAST	- STTFGRTVMI	. TVQFTLGWPL	200
GMFAD2-1	151	HHSNTGSLDI	R DEVFVPKPKS	KVAWFSKYL.	· NNPLGRAVSI	LVTLTIGWPM	200
GMFAD2-2	151	HHSNTGSLE	R DEVFVPKQKS	CIKWYSKYŁ	- NNPPGRVLT	LAVTLTLGWPL	200
ZMFAD2	151	HHSNTGSLE	R DEVFVPKKKE	ALPWYTPYV'	Y NNPVGRVVH	I VVOLTLGWPL	200
RCFAD2	151	HHSNTGSLE		S SIRWYSKYL	- NNPPGRIMT	I AVTLSLGWPL	200
		21					
LFFAH12	201	LYLAFNVSGR	P YDG-FASHFF	F PHAPIFKOR	E RLQIYISDA	G ILAVCYGLYR	250
FAH12	203	LYLAFNVSGR	P YDR-FACHY() PYGPIFSER	E RLOIYIADL	G IFATTFVLYO	250
ATFAD2	20	1 YLAFNYSGR	P YDG-FACHF	F PNAPIYNDR	E RLQIYLSDA	G ILAVCFGLYR	250
BNFAD2	20	I YLAFNVSGR	P YDGGFACHFI	H PNAPIYNOR	E RLOIYISDA	G ILAVCYGLLP	250
GMFAD2-1	20	1 YLAFNVSGR	P YDS-FASHYI	H PYAPIYSNR	E RLLIYVSDV	A LFSVTYSLYR	250
GMFAD2-2	2 20	1 YLALNVSGR	P YDR-FACHY	D PYGPIYSOR	E RLQIYISDA	G VLAVVYGLFR	250
ZMFAD2	20	1 YLATNASGR	P YPR-FACHF	D PYGPIYNOR	E RAQIFVSDA	G VVAVAFGLYK	250
RCFAD2	20	1 YLAFNVSGR	P YOR-FACHY	D PYGPIYNDR	E RIEIFISDA	G VLAVTFGLYO	250

Figure 9A

WO 97/30582

13/15

			260	270	280	290	300	
	LFFAH12	251	YAASOGLTAM	ICVYGVPLLI	VNFFLVLVTF	LOHTHPSLPH	YDSTEWEWIR	300
	FAH12	251	ATMAKGLAWV	MRIYGVPLLI	VNCFLVHITY	LOHTHPAIPR	YGSSEWDWLR	300
		251	YAAAOGMASM	ICLYGVPLLI	VNAFLVLITY	LOHTHPSLPH	YDSSEWDWLR	300
	BNFAD2	251	YAAVQGVASM	VCFLRVPLLI	VNGFLVLITY	LOHTHPSLPH	YDSSEWDWLR	300
	GMFAD2-1	251	VATLKGLVWL	LCVYGVPLLI	VNGFLVTITY	LOHTHFALPH	YDSSEWDWLK	300
	GMFAD2-2	251	LAMAKGLAWV	VCVYGVPLLV	VNGFLVLITF	LOHTHPALPH	YTSSEWDWLR	300
	ZMFAD2	251	LAAAFGVWWV	VRVYAVPLLI	VNAWLVLITY	LOHTHPSLPH	YOSSEWDWLR	300
	RCFAD2	251	LAIAKGLAWV	VCVYGVPLLV	VNSFLVLITF	LOHTHPALPH	YDSSEWDWLR	300
÷ e								
the second			310	320	330	340	350	
1.	LFFAH12	301	GALVTVDRDY	O 7 C		ATIPHYNAME		350
<u> </u>	FAH12			GVLNKVFHNI				350
= .b `	ATFAD2	301	GALATYDRDY	GILNKVFHNI	TOTHVAHHLF	STMPHYNAME	ATKAIKPILG	350
2	BNFAD2	301	GALATVORDY	GILNOGFHNI	TOTHEAHHLF	STMPHYHAME	ATKAIKPILG	350
7 11	GMFAD2-1	301	GALATMORDY	GILNKVFHHI	TOTHVAHHLF	STMPHYHAME	ATNAIKPILG	350
P),}	GMFAD2-2		GALATVORDY	GILNKVFHNI	TOTHVAHHLF	STHPHYHAME	ATKAIKPILG	350
Bring.	ZMFAD2	301	GALATMORDY	GILNRVFHNI	TOTHVAHHLF	STMPHYHAME	ATKAIRPILG	
ä	RCFAD2	301	GALATYDRDY	GILNKVFHNI				350
£.,}			360	370				
and the second	LFFAH12	351	DYYHFDGTPW	I YVAMYREAKE	CLYVEPDTER	GKKGVYYYNN	K-L	400
1) 1)	FAH12	351	EYYRYDGTPR	YKALWREAKE	CLFVEPDEGA	PTOGVFWYRN	KY	400
	ATFAD2	351	DYYQFDGTPV	YVAMYREAKE	CIYVEPDREG	DKKGVYWYNN	K-L	400
7[] 2[=	BNFAD2		EYYOFOGTPY	V VKAMWREAKE	CIYVEPDROG	EKKGVFWYNN	KL*	400
11	GMFAD2-1		EYYQFDDTPI	YKALWREARE	CLYVEPDEGT	SEKGVYWYRN	KY	400
th#	GMFAD2-2		. EYYRFDETPI	VKAMWREARE	CIYVEPDOST	ESKGVFWYNN	KL*	400
	ZMFAD2	351	DYYHEDPTP	/ AKATWREAGE	CIAAEbE	DRKGVFWYNK	. Kt*	400

Figure 9B

14/15

GECORI Hindill

3.6 -

1.8 -

1.5 - 🛰

FIG.10

11 . I

The Person of th

āub

the state of the spirit spirit spirit spirit spirits s

Plasmid name: pSLJ44026 Plasmid size: 25.70 kb

Constructed by: Jonathon Jones Construction date: 1992

Comments/References: Transgenic Research 1,285-297 (1992)

Figure 11