Tema 5: Seguridad en redes

Bibliografía:

[Kurose11] Secciones 1.6, 8.1, 8.2 (excepto la introducción) y 8.2.1

- Entender los fundamentos de seguridad en un sistema de redes de computadores
 - La criptografía y sus aplicaciones más allá de la confidencialidad
 - Integridad de los mensajes
 - Autenticación
- Seguridad en la práctica: sockets seguros

- 1. Seguridad en las comunicaciones
- 2. Principios de criptografía
 - i. Criptografía de clave simétrica
 - ii. Criptografía de clave pública
- 3. Integridad de los mensajes
 - i. Funciones hash
 - ii. Código de autenticación (MAC)
 - iii. Firma digital
 - iv. Certificación y distribución de claves
- 4. Autentificación de terminal
- 5. Conexiones TCP seguras: SSL

- Propiedades deseables en una comunicación segura
 - Confidencialidad: el contenido del mensaje disponible únicamente para el emisor y el receptor
 - Solución: mediante cifrado
 - El emisor cifra el mensaje
 - El receptor descifra el mensaje
 - Autentificación: emisor y receptor quieren confirmar la identidad de la otra parte
 - Solución: mediante técnicas criptográficas

- Integridad del mensaje: contenido del mensaje inalterado durante la transmisión (accidental o intencionadamente)
 - Solución: técnicas adicionales al control de errores empleado en los niveles de transporte y enlace de datos
- Disponibilidad: recursos de la red disponibles en cualquier momento (ataques de denegación de servicio)
 - Solución: ???????
- Control de acceso: recursos de la red disponibles sólo para los usuarios legítimos
 - Solución: restricción en el control de acceso con mecanismos de autentificación, cortafuegos, etc.

- Alicia y Bob pueden ser:
 - 2 routers que quieren intercambiar sus tablas de encaminamiento
 - Un cliente y un servidor que quieren establecer una conexión de transporte segura:
 - Transacciones bancarias on-line
 - Comercio electrónico
 - •

Intruso pasivo

 Puede escuchar y recoger información que circula por la red: contraseñas, información sobre tarjetas de crédito, etc.

Intruso activo

Puede eliminar mensajes y/o añadir otros nuevos

- 1. Seguridad en las comunicaciones
- 2. Principios de criptografía
 - i. Criptografía de clave simétrica
 - ii. Criptografía de clave pública
- 3. Integridad de los mensajes
- 4. Autenticación del punto terminal
- 5. Conexiones TCP seguras: SSL

- Criptografía: ciencia y arte de modificar los datos para que sólo puedan ser conocidos por su emisor y el receptor deseado
 - Datos modificados → cifrado
 - Texto sin modificar → texto nativo o texto en claro

Para cifrar o descifrar se requiere un algoritmo y una o más claves (K_A, K_B)

 $m=K_B(K_A(m))$

Cifrados de sustitución

Cifrado monoalfabético

Texto plano: abcdefghijklmnopqrstuvwxyz

Texto cifrado: mnbvcxzasdfghjklpoiuytrewq

Ejemplo: Texto en claro: hola bob.alice

Texto cifrado: akgm nkn. mgsbc

- ¿K?
- Caso particular: cifrado de César
 - Sustitución cíclica de las letras del alfabeto
 - ¿K?

Cifrado Monoalfabético

- Cifrado de César.
 - Texto claro
 - Cifrado K=11
- a b c d e f g h i j k l m n o p q r s t u v x y z l m n o p q r s t u v x y z a b c d e f g h i j k
- "Hola clase" → "Saxl nxlep"

Cifrado Polialfabético

- Texto claro
- Cifrado K=11
- Cifrado K=4
- a b c d e f g h i j k l m n o p q r s t u v x y z

 I m n o p q r s t u v x y z

 d e f g h i j k l m n o p q r s t u v x y z a b c d e f g h i j k

 d e f g h i j k l m n o p q r s t u v x y z a b c
- Ejemplo C₁C₁C₂C₁C₂C₂: "Hola clase" → "Saol fxlvp"

- Ataque de sólo texto cifrado
 - Dos aproximaciones:
 - Búsqueda a través de todo el espacio de claves
 - Análisis estadístico

- Ataque de texto en claro conocido
 - En un cifrado monoalfabético pueden identificarse partes de palabras repetidas
- Ataque de texto en claro seleccionado

- Al emplear criptografía
 - El algoritmo suele ser conocido, incluso un estándar
 - Sólo las claves son secretas
- Criptografía de clave simétrica
 - Sólo una clave
- Criptografía de clave pública
 - Dos claves
- Funciones hash criptográficas
 - Sin claves, ¿?

- 1. Seguridad en las comunicaciones
- 2. Principios de criptografía
 - i. Criptografía de clave simétrica
 - ii. Criptografía de clave pública
- 3. Integridad de los mensajes
- 4. Autentificación de terminal
- 5. Conexiones TCP seguras: SSL

Cifrado de clave simétrica o secreta

- Bob y Alicia comparten la misma clave K_s
- Problema: ¿cómo se puede transmitir la clave de forma segura?

Bloque específico

Equivalencia bloque claro ↔ bloque cifrado

Claro	Cifrado	Claro	Cifrado
000	110	100	011
001	111	101	010
010	101	110	000
011	100	111	001

¿Cuál sería el cifrado para 010110001111?

- Inviable para bloques grandes
 - Para bloques de 64 bits sería necesaria una tabla con 2⁶⁴ entradas
 - Se emplean funciones que simulan una permutación aleatoria

Función prototipo

Bucle de n ciclos

- Las sustituciones y/o el barajado dependen de una clave.
- DES (Data Encryption Standard)
 - Bloques 64 bits, clave 56 bits.
- 3DES
 - Clave 168 bits (3x56), se usa como 3 claves de 56 bits
- AES (Advanced Encryption Standard)
 - Bloques 128 bits, claves de 128,
 192 y 256 bits.

- Evitar la repetición de bloques
 - Ejemplo: "GET " ó "HTTP/1.1"
- CBC (Cipher Block Chaining)
 - El emisor genera un IV (vector de inicialización) aleatorio y lo envía al receptor (en claro).
 - En vez de cifrar el primer bloque, antes aplica la XOR con el IV :
 - c(1)=K_s(m(1) XOR IV)
 - Para cada bloque posterior, aplica a los datos la XOR con el anterior bloque cifrado antes de cifrarlo:
 - $c(i)=K_s(m(i) XOR c(i-1))$

- Vector de inicialización (VI), c(o)
 - No necesita ser secreto
 - Se cambia en cada sesión, aunque el texto se repita el cifrado será distinto

Permite:

- Conseguir confidencialidad en los mensajes que se transmiten
- Garantizar la integridad de los mensajes
- Realizar autentificación

Problema:

 Distribución de una clave común al emisor y al receptor a través de un canal inseguro

Solución:

Criptografía de clave pública

- 1. Seguridad en las comunicaciones
- 2. Principios de criptografía
 - i. Criptografía de clave simétrica
 - ii. Criptografía de clave pública
- 3. Integridad de los mensajes
- 4. Autentificación de terminal
- 5. Conexiones TCP seguras: SSL

- Criptografía asimétrica
- Dos claves distintas
 - Pública: disponible para todo el mundo (K_{pub})
 - Privada: la conoce sólo su dueño (K_{priv})
- Cifrado: m' = K_{pub}(m)
- Descifrado: m=K_{priv}(K_{pub}(m))

- Algunos de los algoritmos presentan una interesante propiedad:
 - $K_{pubB}(K_{privB}(m)) = m = K_{privB}(K_{pubB}(m))$
- Cifrar con K_{privB} permite conseguir autentificación y no-repudiación de mensajes
 - Firmas digitales (se verán más adelante)

- Mucho más moderna que la criptografía simétrica
 - Primera publicación Diffie-Hellman, 1976
- ... y mucho más costosa computacionalmente
 - Algoritmos basados en asimetrías de problemas matemáticos complejos:
 - RSA: aritmética modular de números primos
 - El Gamal: problema del logaritmo discreto
 - •
 - Se utiliza en muchos casos para transmitir claves de sesión secretas entre dos sistemas
 - También para conseguir autenticación y no repudio de mensajes (firmas digitales)

- p y q son primos muy grandes ($p \cdot q$ del orden de 1024 bits).
- Sea $n = p \cdot q$ y $z = (p-1) \cdot (q-1)$
- Se elige e tal que no tiene ningún múltiplo común con z.
- Se elige d tal que $e \cdot d$ mod z = 1.
- Clave pública = (n, e); Clave privada (n, d)
- Cifrado del mensaje m: $c = m^e \mod n$
- Descifrado del mensaje: c^d mod $n = m^{e \cdot d}$ mod n =
- $= m^{(e \cdot d \mod z)} \mod n = m^1 \mod n = m$
- Para romper el cifrado, hay que averiguar p y q factorizando n.

- El cálculo de este cifrado es muy costoso computacionalmente, por lo que se limita a pequeños bloques de datos:
 - Intercambio de claves secretas
 - Autenticación de terminales
 - Firmas digitales

- 1. Seguridad en las comunicaciones
- 2. Principios de criptografía
 - i. Criptografía de clave simétrica
 - ii. Criptografía de clave pública
- 3. Integridad de los mensajes
 - i. Funciones hash
 - ii. Código de autenticación (MAC)
 - iii. Firma digital
 - iv. Certificación y distribución de claves
- 4. Autenticación del punto terminal
- 5. Conexiones TCP seguras: SSL

- Integridad: Garantizar que el mensaje no se ha modificado en tránsito, accidental o intencionadamente
- Autenticación: Verificar que el origen del mensaje es realmente quién dice ser
- Existen dos tipos de soluciones, basadas en clave secreta o basadas en clave pública

- Cifrar todo el mensaje puede resultar costoso (cálculo y almacenamiento)
- Solución eficiente: cifrar un bloque de bits pequeño obtenido a partir del documento (resumen del mensaje), mediante una función (función hash, H)
 - Ha de combinarse con otras funciones criptográficas para garantizar la integridad

Propiedades de H(m)

- Salida de longitud fija
- Fácil de calcular (computacionalmente)
- Irreversible
- No se pueden encontrar (computacionalmente) dos mensajes distintos que den el mismo resultado
- Idea similar al checksum o a los CRC
- Ejemplos: MD5 (128 bits), SHA-1 (160)

- Se basa en la existencia de una clave secreta común s. → Problema de difusión de la clave
- Se genera un MAC (Message Authentication Code) que se añade al mensaje
- El receptor evalúa el MAC
- Ejemplo: HMAC:
 - El emisor genera un MAC como el Hash (MD5 o SHA-1)
 del mensaje y de la clave, y lo añade al mensaje.
- Empleado por OSPF (difusión de tablas de encaminamiento.

- Basadas en clave pública → Muy costoso.
- Permiten demostrar
 - Quién generó la información
 - Impiden la repudiación del mensaje
 - Que la información no se ha modificado

- Para aligerar el coste computacional:
 - Se aplica una función hash y se obtiene un resumen del mensaje
 - El resumen se cifra con la clave privada del emisor
- Es el procedimiento más frecuente de firma digital

 ¿Cómo estar seguros de que una clave pública es la correcta?

- Sirven para resolver el problema de administrar las claves públicas y para que la identidad del dueño no pueda ser falsificada
 - La identidad del usuario es asegurada por un tercero: la autoridad certificadora (AC)
- Partes:
 - Una clave pública
 - La identidad de un implicado
 - La autoridad certificadora

Certificados digitales (II)

DE VALÈNCIA

Certificados de un navegador

© EBC&AMBP

- 1. Seguridad en las comunicaciones
- 2. Principios de criptografía
 - i. Criptografía de clave simétrica
 - ii. Criptografía de clave pública
- 3. Integridad de los mensajes
- 4. Autentificación de terminal
- 5. Conexiones TCP seguras: SSL

A14

- ¿Cómo es posible saber que el otro extremo es quién afirma ser?
 - Ataques por reproducción
 - Ataques por interposición
- Reproducción:
 - Enviar copia de mensajes válidos anteriores
 - Solución: números distintivos

Números distintivos

- R se genera aleatoriamente para cada conexión.
- El MAC se genera como Hash del mensaje, la clave secreta y R

- ¿Suplantación?

 → Ataques de interposición
 - Certificados digitales.

- 1. Seguridad en las comunicaciones
- 2. Principios de criptografía
 - i. Criptografía de clave simétrica
 - ii. Criptografía de clave pública
- 3. Integridad de los mensajes
- 4. Autentificación de terminal
- 5. Conexiones TCP seguras: SSL

A15

Secure Sockets Layer (SSL)

- Protocolo de seguridad ampliamente utilizado
 - Soportado por la mayoría de los navegadores y lectores de correo
- Diseñado originalmente por Netscape (1993)
- Versión actual 3.0
- Muy parecido a TLS (*Transport Layer Security*),
 RFC 5246

- Agrega confidencialidad, integridad y autenticación a TCP
 - Con clases y librerías para trabajar en C y en Java de forma similar al API de los sockets
 - Se definen puertos estándar diferentes de los habituales

- Fase de acuerdo
 - Autentificación de C y S mediante certificados
 - Deducción de las claves: a partir de un secreto compartido generan un conjunto de claves de sesión
- Transferencia de datos
 - Divididos en registros
- Cierre de la conexión
 - De forma segura
 - ¿Por qué es necesario si ya existe un cierre a nivel de TCP?

Fase de acuerdo

- Establecimiento de la conexión TCP
- El cliente envía su número distintivo y sus cifrados permitidos.
- El servidor envía su número distintivo y selecciona de entre ellos:
 - Un cifrado simétrico, uno de clave pública y un algoritmo MAC
- El servidor envía su certificado
- El cliente selecciona la clave pre-maestra PMS y la envía cifrada al servidor.

Deducción de claves

- A partir de la PMS se obtiene la clave maestra (MS) en cada extremo
- La MS genera cuatro claves distintas:
 - Dos claves de cifrado E_c y E_s
 - Dos claves de MAC M_c y M_s
 - En caso de CBC, dos IV
- El cliente envía un MAC de todos los mensajes de acuerdo.
- El servidor envía un MAC de todos los mensajes de acuerdo.

Registros SSL

Los datos se fragmentan en registros

- El MAC se calcula sobre los 4 campos anteriores, la clave MAC M y un número de secuencia que se incrementa en cada registro
- El campo tipo permite cerrar la conexión de forma segura.
 - Aunque va sin cifrar, está cubierto por el MAC.

