Chapters 4 → Chemical Reactions

Water

- Able to dissolve substances (numerous exceptions)
- H_2O has 105° angles between H_2
- OH bonds are covalent in nature
- Electrons are shared
- Oxygen has greater attraction for electrons

Polarity

- Water is polar
- Polar molecules have unequal distribution of charge
- Reason water is the solvent

Hydration

- Positive ends of H_2O are attached to negatively charged ions
- Salt splits when dissolved in water
 - Breaks into cations and anions

Solubility

- Varies on...
 - Attraction with ions
 - Attraction for water ions
- Polar and ionic substances are more soluble compared to nonpolar substances
- Ethanol is soluble in water

Eletrical Conductivity

- Ability to conduct current in water
 - Electrolyte
- Solvent
 - Doing the dissolving
- Solute
 - o Being dissolved

SOLUBLE	INSOLUBLE
SOLUBLE	INSOLUBLE

NO ₃	<i>OH</i> ⁻
$C_3H_3O_2^-$	S ²⁻
ClO ₃	CO ₃ ²⁻
ClO ₄	CrO ₄ ²⁻
Group 1 ions with NH_4^+	PO ₄ ³⁻
SO_4^{2+} without Ca^{2+} Ba^{2+} Sr^{2+} Pb^{2+} Hg_2^{2+}	$Br^- I^- Cl^-$ without $Ag^+ Pb^{2+} \ Hg_2^{2+}$

Electrolytes

- Strong electrolytes
 - Efficent conductors
 - o Completly ionize in water
 - Examples
 - Strong acids and strong bases
 - Soluble salts
- Weak electrolytes
 - Not as efficient; small current conductors
 - o Small ionization in water
 - Examples
 - Weak acids and weak bases
- Nonelectrolytes
 - o Do *not* conduct currents
 - Examples
 - Table sugar
 - Ethanol

Molarity (M)

- Concentration
- Unit
 - \circ M
 - \circ mol / L
 - \blacksquare $mol \cdot L^{-1}$

- Formula
 - $\circ \quad Molarity = \frac{moles\ of\ solute}{liters\ of\ solution}$
 - $\circ \quad M = \frac{mo!}{L}$

Standard Solution

• Solution whose concentration is accurately known

Dilution

- Proccess of adding water to a stock solution
- Moles of solute before dilution is equal to moles of solute after dilution
 - $M_1V_1 = M_2V_2$

Types of Solutions

- Precipitate
 - Insoluble solid that forms at the bottom of a reaction/solution
- Acid-base
- Oxidation

Equations

- Formula
 - Describes overall reaction
- Complete ionic
 - o All reactants and products
 - Strong electrolytes only as represented by ions
- Net ionic
 - Solution components that undergo no change
 - No spectator ions
- Spectator ions
 - o lons that do not provide much or any change