I) Rappeler le principe de la statique des fluides

On s'intéresse à la troposphère, en prenant tout d'abord un modèle isotherme $(T = T_0)$.

On considère l'air comme un gaz parfait, de masse molaire M.

Calculer P(z), en introduisant une distance H.

Calculer la pression en haut du Mont Everest avec ce modèle $(H=8835\,\mathrm{m})$

À présent, on suppose une variation de température : $T(z) = T_0 + \lambda z$.

Démontrer que $P(z) = P_0(1 - \frac{\lambda}{T_0}z)^{T_0/\lambda H}$.

Vérifier que pour $z \ll H$, les deux modèles donnent une même expression affine de P.

II) On s'intéresse au chauffage d'un cylindre métallique de conductivité σ placé dans un solénoïde très long, de longueur H, de rayon R, parcouru par un courant $i=i_0\cos(\omega t)$.

Rappeler l'expression de $\vec{B}(t) = \vec{B}_m \cos(\omega t)$.

On admet qu'il y a un champ électrique dans le cylindre, dont l'expression est : $\vec{E}(M,t) = \frac{1}{2} r \omega B_m \sin(\omega t) \vec{e}_{\theta}$.

Expliquer la présence du champ électrique. Déterminer $\vec{j}_{el}(M,t)$.

Calculer la puissance totale dissipée par effet Joule dans le cylindre.

On suppose que le cylindre échange, avec l'extérieur, une puissance $P_{ext} = -hS_{lat}(T(t) - T_{ext})$ et que, à t donné, la température est uniforme dans le cylindre.

Justifier le signe – dans la puissance échangée.

Établir une équation différentielle vérifiée par T(t).

On se place en régime stationnaire : quelle condition ω doit-elle vérifier pour atteindre $T(t) = T_{fus}$, température de fusion du métal?

I) Rappeler le principe de la statique des fluides

On s'intéresse à la troposphère, en prenant tout d'abord un modèle isotherme $(T=T_0)$.

On considère l'air comme un gaz parfait, de masse molaire M.

Calculer P(z), en introduisant une distance H.

Calculer la pression en haut du Mont Everest avec ce modèle $(H=8835\,\mathrm{m})$

À présent, on suppose une variation de température : $T(z) = T_0 + \lambda z$.

Démontrer que $P(z) = P_0(1 - \frac{\lambda}{T_0}z)^{T_0/\lambda H}$.

Vérifier que pour $z \ll H$, les deux modèles donnent une même expression affine de P.

II) On s'intéresse au chauffage d'un cylindre métallique de conductivité σ placé dans un solénoïde très long, de longueur H, de rayon R, parcouru par un courant $i = i_0 \cos(\omega t)$.

Rappeler l'expression de $\vec{B}(t) = \vec{B}_m \cos(\omega t)$.

On admet qu'il y a un champ électrique dans le cylindre, dont l'expression est : $\vec{E}(M,t) = \frac{1}{2} r \omega B_m \sin(\omega t) \vec{e}_{\theta}$.

Expliquer la présence du champ électrique. Déterminer $\vec{j}_{el}(M,t)$.

Calculer la puissance totale dissipée par effet Joule dans le cylindre.

On suppose que le cylindre échange, avec l'extérieur, une puissance $P_{ext} = -hS_{lat}(T(t) - T_{ext})$ et que, à t donné, la température est uniforme dans le cylindre.

Justifier le signe – dans la puissance échangée.

Établir une équation différentielle vérifiée par T(t).

On se place en régime stationnaire : quelle condition ω doit-elle vérifier pour atteindre $T(t) = T_{fus}$, température de fusion du métal?