이진 탐색

- 01 이진 탐색 이론
- 02 이진 탐색 예시 문제 풀이

신 제 용

01 이진 탐색 이론

넓은 범위를 빠르게 탐색하는 이진 탐색 알고리즘을 배웁니다.

학습 키워드 – 이진 탐색, Binary search, O(logN)

탐색 알고리즘 (Search algorithms)

- 자료구조에서 원하는 조건에 맞는 자료를 찾는 것
- 선형 자료구조의 경우, 크게 세 가지 알고리즘이 있다.
 - 정렬되지 않은 자료 → 선형 탐색
 - 정렬된 자료 → 이진 탐색
 - 해싱된 자료 → 해시 탐색

선형 탐색 (Linear search)

- 순차 탐색(Sequential search)라고도 부르며, 가장 단순한 탐색 방법
- 순서대로 하나씩 비교하기 때문에 O(N)의 시간복잡도를 가진다.

이진 탐색 (Binary search)

- 이분 탐색이라고도 부르며, 정렬된 자료의 탐색에 최적화된 알고리즘
- 탐색 범위를 절반씩 줄여가기 때문에 시간복잡도는 O(logN)이다.

이진 탐색 과정

• 정렬된 배열에서 30을 찾아가는 과정

02 이진 탐색 예시 문제 풀이

다음 챕터에서는 이진 탐색을 구현해 보고, 문제에 응용하는 방법을 학습합니다.

02 이진 탐색 예시 문제 풀이

이진 탐색은 개념은 간단하지만, 문제에 적용되었을 때 난이도가 있는 편입니다. 예시 문제를 통해 이진 탐색이 필요한 예를 알아봅니다.

학습 키워드 – 이진 탐색, 구현

Problem1

문제 설명

이진 탐색을 두가지 방법으로 구현하시오.

- 반복문 구조
- 재귀 호출 구조

입력 리스트 arr 은 정렬되어 있으며, 이진 탐색의 목표는 arr 에서 target 을 찾아, 그 인덱스를 출력하는 것이다.

만약 target 이 arr 에 속하지 않으면 -1 을 출력한다.

매개변수 형식

arr = [10, 20, 40, 50, 60, 70]

target = 40

반환값 형식

Problem2

문제 설명

민수는 택배 운송 기사로, 하루에 한번씩 차량을 가득 채워서 운반을 한다.

리스트 weights 에는 보유한 택배 상품의 무게가 각각 기록되어 있다.

delivery 는 택배 상품을 모두 배송해야 하는 납기까지 남은 일 수이다.

delivery 이내에 모든 택배 상품을 배송하려면 필요한 차량의 최소 적재량을 구하시오.

단, 택배 상품은 순서대로 배송해야 한다.

매개변수 형식

weights = [3, 2, 2, 4, 1, 4]

delivery = 3

반환값 형식

6

Problem3

문제 설명

체육관에 농구공을 1개씩 담을 수 있는 통이 일렬로 배치되어 있다.

통의 위치는 정수 배열 buckets 로 주어지며, 농구공 총 m 개를 통 안에 넣으려고 한다.

i 번째 통에 들어있는 농구공과 j 번째 통에 들어있는 농구공 사이의 거리는 |buckets[j] - buckets[i]| 라고 하자.

이 때, 농구공 사이의 거리 중 가장 가까운 거리가 최대가 되도록 배치하려고 한다.

위 조건에 맞게 배치했을 때 농구공 사이의 최소 거리를 구하시오.

입력 예시

buckets = $\{1, 2, 3, 4, 7\}$

m = 3

출력 예시

3

