

Mid-Term	Examinations - Sept.	2023

Programme	B.Tech - BEC, BAC, BSA		
Course/Co	de Di-tell BEC, BAC, BSA	Semester	: Fall 2023-24
ime	de : Digital Logic Design/ ECE2002	Slot	: B11+B12+B13+B14
	: 1½ hours	Max. Marks	: 50

Answer all the Questions

Q. No. Question Description	Marks
a. Determine the results for the following number conversions. i. Convert decimal 27.315 to binary. ii. Calculate the binary equivalent of 2/3 out to eight places. Then convert from binary to decimal. How close is the result to 2/3?	
b. Determine the base of the numbers in each case for the following operations to be correct: (i) $23 + 25 = 51$ (ii) $\frac{52}{2} = 12$	6+4
 Determine the solution of following using complement form: a. Add -31.5₁₀ to -93.125₁₀ using 12-bit 2's complement form. b. Subtract 27.50₁₀ from 68.75₁₀ using the 12-bit 1's complement form. c. Subtract -25₁₀ to +14₁₀ using 5-bit 2's complement form and also verify your answer Justify the reason, if the answer is incorrect. 	3+3+4
3 Given the Boolean function $F(W, X, Y, Z) = \sum m(0,1,4,6,7,8,10,14,15)$	
 a. Determine and write down the number of implecants, prime implicants (PI) and essential prime implicants (EPI). b. Using K-Map find the reduced Boolean expression of the F(W, X, Y, Z) with minimum c. Realize the final output using NAND or NOR logic, separately. 	3+3+4
Design a combinational circuit with input variables, A, B and C , and three output variables, x, y and z .	
When the binary input is 0, 1, 2, or 3, the binary output is one greater than the input. When the binary input is 4, 5, 6, or 7, the binary output is one less than the input.	10
Implement the following Boolean function with a 8:1 multiplexer: (a) $F(A, B, C, D) = \sum m(0, 2, 5, 8, 10, 14)$ (b) $F(A, B, C, D) = \sum m(2, 6, 11)$	10
$\Leftrightarrow \Leftrightarrow \Leftrightarrow$	

5