Pattern Recognition (CS-669)

Assignment 1

Bayes Classifier

Suryavanshi Virendrasingh (B16037)
Abhishek Pal (B15203)
Nemani Sri Hari (B15224)
Group - 13
September 16, 2018

Table of Contents

5 Conclusion

1	Objective	3
2	Procedure	4
3	Formulae/Definition of Terms	4
4	Observations	6
	4.1 Case 1 - $\Sigma = \sigma^2 I$	6
	4.1.1 Linear Data	6
	4.1.2 Non-Linear Data	10
	4.1.3 Real World Data	11
	4.1.4 Inference	15
	4.2 Case 2 - $\Sigma_i = \Sigma$	16
	4.2.1 Linear Data	16
	4.2.2 Non-Linear Data	20
	4.2.3 Real World Data	21
	4.2.4 Inference	25
	4.3 Case 3 - Σ_i is a diagonal matrix	26
	4.3.1 Linear Data	26
	4.3.2 Non-Linear Data	30
	4.3.3 Real World Data	31
	4.3.4 Inference	35
	4.4 Case 4 - Σ_i is Unique	36
	4.4.1 Linear Data	36
	4.4.2 Non-Linear Data	40
	4.4.3 Real World Data	41
	4.4.4 Inference	45

45

1 Objective

- 1. To build a Bayes Classifier and classify the following datasets -
 - 2D Dataset 1 (Artificial)
 - Linearly Separable Dataset
 - Non Linearly Separable Dataset
 - 2D Dataset 2 (Real World)
- 2. Plot Decision Region for all pairs of classes.
- 3. Contour Region Plots for all pairs of classes.
- 4. Calculate Accuracy, Precision, mean recall, F-measure and Confusion Matrix.

2 Procedure

- 1.) Data for each class is partitioned into 75% for training and 25% for testing.
- 2.) The data set for each class is assumed to come from Gaussian distribution.
- 3.) In Case-1 ($\Sigma = \sigma^2 I$), mean of the covariance matrix for each class was calculated and it's off-diagonal terms were assumed to be 0 for further calculations.
- 4.) In Case-2 ($\Sigma_i = \Sigma$ for every class), mean of the covariance matrix for each class was calculated for further calculations.
- 5.) In Case-3 (Σ_i is a diagonal matrix), the covariance matrix for each class was different and it's off-diagonal terms were assumed to be 0 for further calculations.
- 6.) In Case-4 (Σ_i is unique), no assumptions were made for further calculations.

- 7.) Based on assumptions, the discriminant function $(g_i(x))$ was calculated for each class and decision region and Contour was plotted.
- 8.) The remaining 25% data was tested for each case and analysis was made.

3 Formulae/Definition of Terms

Confusion Matrix is defined as the matrix of the actual class vs predicted class.

Confusion Matrix

	Actual C1	Actual C2	Actual C3
Predicted C1	Actual C1 & Predicted C1	Actual C2 & Predicted C1	Actual C3 & Predicted C1
Predicted C2	Actual C1 & Predicted C2	Actual C2 & Predicted C2	Actual C3 & Predicted C2
Predicted C3	Actual C1 & Predicted C3	Actual C2 & Predicted C3	Actual C3 & Predicted C3

Classification Accuracy = (Number of samples correctly classified/Total number of samples)*100 = ((TP+TN)/(TP+TN+FP+FN)) * 100

Precision for one class = Number of true and predicted class 1 cases/Number of predicted class 1 cases = TP/(TP +FP)

Mean precision = (precision 1+precision 2+ precision 3)/3

Recall for one class = number of true and predicted class 1 cases/Number of true class 1 cases = TP/(TP+FN)

Mean recall = (recall 1+recall 2+recall 3)/3

F-measure for one class = (precision * recall)/((precision + recall)/2)

Mean F-measure = (F-measure 1+F-measure 2+ F-measure 3)/3

4 Observations

4.1 Case 1 - $\Sigma = \sigma^2 I$

4.1.1 Linear Data

Figure 1: Class1 vs Class2

Figure 3: Class1 vs Class3

Figure 2: Class2 vs Class3

Figure 4: Class1 vs Class2 vs Class3

Figure 5 : Class1 vs Class2 vs Class3

Confusion Matrix						
Actual/ Predicted	Class 1	Class 2				
Class 1	125	0				
Class 2	0	125				

<u>Analysis</u>		
	Class 1	Class 2
Precision	1.000	1.000
Recall	1.000	1.000
F-measure	1.000	1.000

Table 1 : Class1 vs Class2

Confusion Matrix					
Actual/ Predicted	Class 2	Class 3			
Class 2	125	0			
Class 3	0	125			

<u>Analysis</u>		
	Class 2	Class 3
Precision	1.000	1.000
Recall	1.000	1.000
F-measure	1.000	1.000

Table 2 : Class2 vs Class3

Accuracy = 99.60%

Confusion Matrix				
Actual/ Predicted	Class 1	Class 3		
Class 1	124	1		
Class 3	0	125		

<u>Analysis</u>				
	Class 1	Class 3		
Precision	1.000	99.206		
Recall	0.992	1.000		
F-measure	0.995	0.996		

Table 3: Class1 vs Class3

Accuracy = 99.73%

Confusion Matrix					
Actual / Predi cted	Class 1	Class 2	Class 3		
Class 1	124	0	1		
Class 2	0	125	0		
Class 3	0	0	125		

<u>Analysis</u>				
Class 1 Class 2			Class 3	
Precision	1.000	1.000	0.992	
Recall	0.992	1.000	1.000	
F-measure	0.995	1.000	0.996	

Table 4 : Class1 vs Class2 vs Class3

4.1.2 Non-Linear Data

Class 1 vs Class 2

Figure 6 : Class1 vs Class2

Figure 7 : Class1 vs Class2

Accuracy = 55.67%

Confusion Matrix					
Actual/ Predicte d	Class 1	Class 2			
Class 1	188	138			
Class 2	151	175			

<u>Analysis</u>				
	Class 1	Class 2		
Precision	0.554	0.559		
Recall	0.576	0.536		
F-measure	0.565	0.547		

Table 5: Class1 vs Class2

4.1.2 Real World Data

2500

Figure 8 : Class1 vs Class2

1000

500

Figure 9: Class2 vs Class3

2000 -1500 -1000 -500 -0 500 1000 1500 2000 2500

Figure 10: Class1 vs Class3

Figure 11: Class1 vs Class2 vs Class3

1500

2000

2500

Figure 12 : Class1 vs Class2 vs Class3

Confusion Matrix				
Actual/ Predicted	Class 1	Class 2		
Class 1	622	0		
Class 2	0	597		

<u>Analysis</u>			
	Class 1	Class 2	
Precision	1.000	1.000	
Recall	1.000	1.000	
F-measure	1.000	1.000	

Table 6: Class1 vs Class2

Accuracy = 86.92%

Confusion Matrix				
Actual/ Predicted	Class 2	Class 3		
Class 2	557	40		
Class 3	113	460		

<u>Analysis</u>			
	Class 2	Class 3	
Precision	0.831	0.920	
Recall	0.932	0.802	
F-measure	0.879	0.857	

Table 7: Class2 vs Class3

Confusion Matrix			
Actual/ Predicted	Class 1 Class 3		
Class 1	622	0	
Class 3	3	570	

<u>Analysis</u>			
	Class 1 Class 3		
Precision	99.520	1.000	
Recall	1.000	99.476	
F-measure	99.759	99.737	

Table 8 : Class1 vs Class3

Accuracy = 99.832%

	Confusion	Matrix			<u>Analysis</u>		
Actual /	Class 1	Class 2	Class 3		Class 1	Class 2	Class 3
Predic ted				Precisio n	0.995	0.831	0.919
Class 1	622	0	0	Recall	1	0.932	0.797
Class 2	0	557	40	F-measu re	0.997	0.879	0.854
Class 3	3	113	457				

Table 9 : Class1 vs Class2 vs Class3

4.1.4 Inference

- 1. In this case we assume that our features are statistically independent which is why we consider all the classes have same covariance matrix which is diagonal.
- 2. We get the covariance matrix by taking average of all the diagonal elements of all classes. $\Sigma_i = \sigma^2 I$
- 3. This method works best when the data is linearly separable.
- 4. The decision boundary formed will be perpendicular to the line joining the means and will pass through the point on the line joining the mean. The point of intersection will be nearer to the class with more prior. In our case here as the prior is equal the decision boundary passes through the midpoint of means.
- 5. This can be inferred from the first and third case where data is almost linearly separable the accuracy is 100% and in the second case where data is not linearly separable the accuracy is 55.7%.

4.2 Case 2 - $\Sigma_i = \Sigma$

4.2.1 Linear Data

15

-25

-10

dass3

30

dass1 10 5 0 -5 -10 -15 -20

10

15

20

Figure 14: Class1 vs Class3

Figure 15: Class1 vs Class2 vs Class3

Figure 16 : Class1 vs Class2 vs Class3

Confusion Matrix			
Actual/ Predicted	Class 1 Class 2		
Class 1	125	0	
Class 2	0	125	

	Class 1	Class 2
Precision	1.000	1.000
Recall	1.000	1.000
F-measure	1.000	1.000

Table 10 : Class1 vs Class2

Confusion Matrix				
Actual/ Predicted	Class 2 Class 3			
Class 2	125	0		
Class 3	0	125		

<u>Analysis</u>			
	Class 2 Class 3		
Precision	1.000	1.000	
Recall	1.000	1.000	
F-measure	1.000	1.000	

Table 11: Class2 vs Class

Accuracy = 99.60%

Confusion Matrix			
Actual/ Predicted	Class 1 Class 3		
Class 1	124	1	
Class 3	0	125	

<u>Analysis</u>			
	Class 1 Class 3		
Precision	1.000	0.992	
Recall	0.992	1.000	
F-measure	0.995	0.996	

Table 12: Class1 vs Class3

Accuracy = 99.73%

Confusion Matrix			
Actual / Predic ted	Class 1	Class 2	Class 3
Class 1	124	0	1
Class 2	0	125	0
Class 3	0	0	125

<u>Analysis</u>			
	Class 1	Class 2	Class 3
Precisio n	1.000	1.000	0.992
Recall	0.992	1.000	1.000
F-measu re	0.995	1.000	0.996

Table 13: Class1 vs Class2 vs Class3

4.2.2 Non-Linear Data

Figure 17: Class1 vs Class2

Figure 18: Class1 vs Class2

Accuracy = 55.67%

Confusion Matrix				
Actual/ Predicte d	Class 1	Class 2		
Class 1	188	138		
Class 2	151	175		

<u>Analysis</u>		
	Class 1	Class 2
Precision	0.554	0.559
Recall	0.576	0.536
F-measure	0.565	0.547

Table 14: Class1 vs Class2

4.2.3 Real World Data

Figure 19: Class1 vs Class2

Figure 20: Class2 vs Class3

Figure 21: Class1 vs Class3

Figure 22: Class1 vs Class2 vs Class3

Figure 23 : Class1 vs Class2 vs Class3

Confusion Matrix			
Actual/ Predicted	Class 1	Class 2	
Class 1	622	0	
Class 2	0	597	

Analysis Class 1 Class 2		
Precision	1.000	1.000
Recall	1.000	1.000
F-measure	1.000	1.000

Table 15: Class1 vs Class2

Accuracy = 88.37%

Confusion Matrix			
Class 2	Class 3		
572	25		
111	462		
	Class 2 572		

<u>Analysis</u>			
	Class 2 Class 3		
Precision	0.837	0.948	
Recall	0.958	0.806	
F-measure	0.893	0.871	

Table 16: Class2 vs Class3

Accuracy = 99.74%

Confusion Matrix				
Actual/ Predicte d	Class 1	Class 3		
Class 1	622	0		
Class 3	3	570		

Class 1 Class 3			
Precision	0.995	1.000	
Recall	1.000	0.994	
F-measure	0.997	0.997	

Table 17: Class1 vs Class3

Accuracy = 99.83%

Confusion Matrix			
Actual/ Predict ed	Class 1	Class 2	Class 3
Class 1	622	0	0
Class 2	0	572	25
Class 3	3	111	459

<u>Analysis</u>			
	Class 1	Class 2	Class 3
Precisio n	0.995	0.837	0.948
Recall	1.000	0.958	0.801
F-measu re	0.997	0.893	0.868

Table 18: Class1 vs Class2 vs Class3

4.2.4 Inference

- 1. In this case we consider all the classes have same covariance matrix which is arbitrary but not diagonal.
- 2. We get the covariance matrix by taking average of all the covariance matrix elements of all classes. Σ = summation of covariance matrices/total no of classes.
- 3. This method works best when the data is linearly separable.
- 4. The decision boundary formed will not be perpendicular but inclined to the line joining the means (angle basing on the inverse of covariance matrix) and will pass through the point on the line joining the mean. The point of intersection will be nearer to the class

with more prior. In our case here as the prior is equal the decision boundary passes through the midpoint of means.

5. This can be inferred from the first and third case where data is almost linearly separable the accuracy is 100% and in the second case where data is not linearly separable the accuracy is 55.7% which are almost similar to the case 1.

4.3 Case 3 – Σ_i is a diagonal matrix

4.3.1 Linear Data

Figure 24 : Class1 vs Class2

Figure 25 : Class2 vs Class3

Figure 26 : Class1 vs Class3

Figure 27: Class1 vs Class2 vs Class3

Figure 28 : Class1 vs Class2 vs Class3

Confusion Matrix			
Actual/ Predicted	Class 1	Class 2	
Class 1	125	0	
Class 2	0	125	

<u>Analysis</u>		
	Class 1 Class 2	
Precision	1.000	1.000
Recall	1.000	1.000
F-measure	1.000	1.000

Table 19: Class1 vs Class2

Confusion Matrix			
Actual/ Predicte d	Class 2	Class 3	
Class 2	125	0	
Class 3	0	125	

<u>Analysis</u>		
	Class 2 Class 3	
Precision	1.000	1.000
Recall	1.000	1.000
F-measure	1.000	1.000

Table 20 : Class2 vs Class3

Confusion Matrix			
Actual/ Predicte d	Class 1	Class 3	
Class 1	125	0	
Class 3	0	125	

<u>Analysis</u>			
	Class 1 Class 3		
Precision	1.000	1.000	
Recall	1.000	1.000	
F-measure	1.000	1.000	

Table 21 : Class2 vs Class3

Confusion Matrix			
Actual / Predic ted	Class 1	Class 2	Class 3
Class 1	125	0	0
Class 2	0	125	0
Class 3	0	0	125

<u>Analysis</u>			
	Class 1	Class 2	Class 3
Precision	1.000	1.000	1.000
Recall	1.000	1.000	1.000
F-measure	1.000	1.000	1.000

Table 22: Class1 vs Class2 vs Class3

4.3.2 Non-Linear Data

Figure 29 : Class1 vs Class2

Figure 30 : Class1 vs Class2

Accuracy = 55.21%

Confusion Matrix			
Actual/ Predicte d	Class 1	Class 2	
Class 1	180	146	
Class 2	144	182	

	Class 1 Class 2	
Precision	0.555	0.554
Recall	0.552	0.558
F-measure	0.553	0.556

Table 23: Class1 vs Class2

4.3.3 Real World Data

Figure 31: Class1 vs Class2

Figure 32: Class2 vs Class3

2500 -2000 -1500 -1000 -500 -0 500 1000 1500 2000 2500

Figure 33: Class1 vs Class3

Figure 34: Class1 vs Class2 vs Class3

dass3 dass2

2500

2000

Figure 35 : Class1 vs Class2 vs Class3

Accuracy = 99.83%

Confusion Matrix			
Actual/ Predicte d	Class 1	Class 2	
Class 1	622	0	
Class 2	0	572	

<u>Analysis</u>			
	Class 1 Class 2		
Precision	0.995	0.837	
Recall	1.000	0.958	
F-measure	0.997	0.893	

Table 24 : Class1 vs Class2

Accuracy = 88.37%

Confusion Matrix			
Actual/ Predicte d	Class 2	Class 3	
Class 2	572	25	
Class 3	111	462	

<u>Analysis</u>			
	Class 2 Class 3		
Precision	0.837	0.948	
Recall	0.958	0.806	
F-measure	0.893	0.871	

Table 25: Class2 vs Class3

Accuracy = 99.74%

Confusion Matrix			
Actual/ Predicte d	Class 1	Class 3	
Class 1	622	0	
Class 3	3	570	

<u>Analysis</u>			
	Class Class 3		
Precision	0.995	1.000	
Recall	1.000	0.994	
F-measure	0.997	0.997	

Table 26 : Class1 vs Class3

Accuracy = 99.83%

Confusion Matrix			
Actual/ Predict ed	Class 1	Class 2	Class 3
Class 1	622	0	0
Class 2	0	572	25
Class 3	3	111	459

<u>Analysis</u>			
	Class 1	Class 2	Class 3
Precisio n	0.998	0.924	0.922
Recall	1.000	0.958	0.801
F-measu re	0.997	0.893	0.868

Table 27: Class1 vs Class2 vs Class3

4.3.4 Inference

- In this case we assume that our features are statistically independent which is why we consider all the classes matrices which are diagonal but are different for different classes.
- 2. We get the covariance matrix by making non diagonal elements of original covariance matrices zero for all classes.
- 3. This method works well for both linearly and nonlinearly separable data.
- 4. The decision boundary formed will be a curve of degree two whose shape can be predicted by observing the covariance matrices, that is the decision boundary curve will

have concave surface towards the class having maximum variance in that direction and convex towards the other one.

5. This can be inferred from the first and third case where data is almost linearly separable the accuracy is 100% and in the second case where data is not linearly separable the accuracy is 55.21%.

4.4 Case 4 - Σ_i is Unique

4.4.1 Linear Data

Figure 36: Class1 vs Class2

Figure 37: Class2 vs Class3

Figure 38 : Class1 vs Class3

Figure 39: Class1 vs Class2 vs Class3

Figure 40 : Class1 vs Class2 vs Class3

Accuracy = 99.83%

Confusion Matrix			
Actual/ Predicted	Class 1	Class 2	
Class 1	622	0	
Class 2	0	572	

<u>Analysis</u>			
	Class 1 Class 2		
Precision	0.995	0.837	
Recall	1.000	0.958	
F-measure	0.997	0.893	

Table 28 : Class1 vs Class2

Confusion Matrix			
Actual/ Predicte d	Class 2	Class 3	
Class 2	125	0	
Class 3	0	125	

<u>Analysis</u>			
	Class 2 Class 3		
Precision	1.000	1.000	
Recall	1.000	1.000	
F-measure	1.000	1.000	

Table 29 : Class2 vs Class3

Confusion Matrix			
Actual/ Predicte d	Class 1	Class 3	
Class 1	125	0	
Class 3	0	125	

<u>Analysis</u>			
	Class 1 Class 3		
Precision	1.000	1.000	
Recall	1.000	1.000	
F-measure	1.000	1.000	

Table 30 : Class1 vs Class3

Confusion Matrix				
Actua I/ Predi cted	Clas s 1	Clas s 2	Clas s 3	
Clas s 1	125	0	0	
Clas s 2	0	125	0	
Clas s 3	0	0	125	

<u>Analysis</u>				
	Class 1	Class 2	Class 3	
Precision	1.000	1.000	1.000	
Recall	1.000	1.000	1.000	
F-measure	1.000	1.000	1.000	

Table 31: Class1 vs Class2 vs Class3

4.4.2 Non-Linear Data

Figure 41 : Class1 vs Class2

Figure 42 : Class1 vs Class2

Accuracy = 55.52%

Confusion Matrix				
Actual/ Class 1 Class 2 Predicted				
Class 1	181	145		
Class 2	145	181		

	<u>Analysis</u>			
	Class 1 Class 2			
	0.555	0.555		
Precision	0.555	0.555		
Recall	0.555	0.555		
INGCAII	0.000	0.000		
F-measure	0.555	0.555		

Table 32: Class1 vs Class2

4.4.3 Real World Data

2500

Figure 43: Class1 vs Class2

Figure 44: Class2 vs Class3

2000 -1500 -1000 -500 - dass3 dass1

1000

500

Figure 45 : Class1 vs Class3

1500

2000

2500

Figure 46: Class1 vs Class2 vs Class3

Figure 47 : Class1 vs Class2 vs Class3

Confusion Matrix				
Actual/ Class 1 Class 2 Predicted				
Class 1	622	0		
Class 2	0	597		

	Class 2 1		
Precision	1.000	1.000	
Recall	1.000	1.000	
F-measure	1.000	1.000	

Table 33 : Class1 vs Class2

Accuracy = 89.14%

Confusion Matrix				
Actual/ Predicte d	Class 2	Class 3		
Class 2	558	39		
Class 3	88	485		

	<u>Analysis</u>		
	Class 2 Class 3		
Precision	0.863	0.925	
Recall	0.934	.846	
F-measure	0.897	0.884	

Table 34 : Class2 vs Class3

Accuracy = 99.74%

Confusion Matrix				
Actual/ Predicte d	Class 1	Class 3		
Class 1	621	1		
Class 3	2	571		

	Class 1 Class 3		
Precision	0.996	0.998	
Recall	0.998	0.996	
F-measure	0.997	0.997	

Table 35 : Class1 vs Class3

Accuracy = 99.83%

Confusion Matrix				
Actua I/ Predi cted	Class 1	Class 2	Class 3	
Class 1	621	0	1	
Class 2	0	558	39	
Class 3	2	88	483	

<u>Analysis</u>			
	Class 1	Class 2	Class 3
Precision	0.996	0.863	0.923
Recall	0.998	0.934	0.842
F-measure	0.997	0.897	0.881

Table 36: Class1 vs Class2 vs Class3

4.4.4 Inference

- 1. In this case we consider original covariance matrices of all different classes.
- 2. This method works well for both linearly and nonlinearly separable data.
- 3. The decision boundary formed will be a curve of degree two whose shape can be predicted by observing the covariance matrices, that is the decision boundary curve will have concave surface towards the class having maximum variance in that direction and convex towards the other one.
- 4. This can be inferred from the first and third case where data is almost linearly separable the accuracy is 100% and in the second case where data is not linearly separable the accuracy is 55.52%.

5 Observations

- 1. From the covariance matrix we can observe that the anti diagonal elements indicate the distribution of data (i.e the orientation of the data can be inferred). If the covariance matrix has negative anti diagonal elements it indicates that it has more data distributed in 2nd and 4th quadrant when mean taken as origin and similarly for positive case it means more data points are in 1st and 3rd quadrants. This can be observed from data points in figure 5. This can also be observed from spiral data whose data starts in 2nd and 4th quadrants with respect to their mean and ends in 2nd and fourth quadrants from which we can say their anti diagonal elements of covariance matrix should be negative which is same as observed.
- 2. Due to the prior of the classes the position of decision boundary of the class will be influenced.
- 3. It can be observed from the covariance matrix of the spiral which has almost same diagonal elements with anti diagonal elements close to zero which indicates almost symmetric distribution like circular.

5 Conclusion

- Bayes classifier works well for the linearly separable data which can be observed from first three classes of data. It also does well in the real world data where the data is not overlapping.
- 2. But it fails in the non linearly separable case with accuracy as low as 55%. This can be observed from classes that data points are arranged in concentric spirals where the data is non linearly separable.
- Bayes classifier can give the decision boundary of degree two at the maximum. As the spiral data requires higher degree boundary curve it gives very poor accuracy in bayes classifier.