Sequencing data processing in modern computers

Mauricio Carneiro

carneiro@broadinstitute.org

Group Lead, Computational Technology Development Broad Institute of MIT and Harvard

Genomics Platform in 2013

50 HiSeqs

10 MiSeqs

2 NextSeqs **14** HiSeq X

6.5
Pb of data

427 projects

180 people **2.1** Tb/day

Genomics Platform in 2013

44,130 exomes

2,484 exome express

2,247 genomes

2,247 assemblies

8,189 RNA

9,788 16S

47,764 arrays

228 cell lines

Terabases of Data Produced by Year

GATK is both a toolkit and a programming framework, enabling NGS analysis by scientists worldwide

Extensive online documentation & user support forum serving >10K users worldwide

Workshop series educates local and worldwide audiences

Completed:

- Dec 4-5 2012, Boston
- July 9-10 2013, Boston
- July 22-23 2013, Israel
- Oct 21-22 2013, Boston

Planned:

- March 3-5 2014, Thailand
- Oct 18-29 2014, San Diego

iTunes U Collections

Format

- Lecture series (general audience)
- Hands-on sessions (for beginners)

Portfolio of workshop modules

- GATK Best Practices for Variant Calling
- Building Analysis Pipelines with Queue
- Third-party Tools:
 - GenomeSTRiP
 - O XHMM

Tutorial materials, slide decks and videos all available online through the GATK website, YouTube and iTunesU

- High levels of satisfaction reported by users in polls
- Detailed feedback helps improve further iterations

BroadE: Overview of GATK & best practices

by broadinstitute • 1 week ago • 1 view

Copyright Broad Institute, 2013. All rights reserved. The presentations below were filmed during the 2013 GATK Workshop, part of ...

We have defined the best practices for sequencing data processing

To fully understand **one** genome we need tens of thousands of genomes

Rare Variant **Association Study** (RVAS)

Common Variant **Association Study** (CVAS)

Technical challenge all samples must be jointly called

The ideal database for RVAS and CVAS studies would be a complete matrix

Joint calling is an important step in Variant Discovery

The reference model enables incremental calling

by separating discovery from joint analysis, we can now jointly call any arbitrary number of samples

Variant calling is a large-scale bayesian modeling problem

Understanding the Haplotype Caller

1. Active region traversal identifies the regions that need to be reassembled

2. **Local de-novo assembly** builds the most likely haplotypes for evaluation

3. Pair-Hmm evaluation of all reads against all haplotypes (scales exponentially)

4. **Genotyping** using the exact model

Pair-HMM is the biggest culprit for the low performance of the Haplotype Caller

Stage	Time	Runtime %
Assembly	2,598s	13%
Pair-HMM	14,225s	70%
Traversal + Genotyping	3,379s	17%

NA12878 80xWGS performance on a single core

chr20 time: 5.6h

whole genome: 7.6 days

Heterogeneous compute speeds up variant calling significantly

Technology	Hardware	Runtime	Improvement
GPU	NVidia Tesla K40	70	154x
GPU	NVidia GeForce GTX Titan	80	135x
GPU	NVidia GeForce GTX 480	190	56x
GPU	NVidia GeForce GTX 680	274	40x
GPU	NVidia GeForce GTX 670	288	38x
AVX	Intel Xeon 1-core	309	35x
FPGA	Convey Computers HC2	834	13x
_	C++ (baseline)	1,267	9x
-	Java (gatk 2.8)	10,800	_

This is the work of many...

the team

collaborators

Menachem Fromer Paolo Narvaez Diego Nehab

Broad colleagues

Heng Li Daniel MacArthur **Timothy Fennel** Steven McCarrol Mark Daly Sheila Fisher Stacey Gabriel David Altshuler