

Machine Learning

Lecture 4: Probabilistic Inference

Prof. Dr. Aleksandar Bojchevski

23.04.24

Outline

Maximum likelihood estimation

Bayesian inference

Maximum a posteriori estimation

Fully Bayesian

Posterior predictive distribution

We flip the same coin 10 times:

Probability that the next coin flip is \bigcirc ?

We flip the same coin 10 times:

Probability that the next coin flip is \bigcirc ?

30% seems reasonable, but why?

30% seems reasonable, but why?

Every flip is random. So every sequence of flips is random – it has some probability to be observed.

30% seems reasonable, but why?

Every flip is random. So every sequence of flips is random – it has some probability to be observed.

For the *i*-th coin flip we write $p_i(F_i = \mathbf{T}) = \theta_i$.

3

30% seems reasonable, but why?

Every flip is random. So every sequence of flips is random – it has some probability to be observed.

For the *i*-th coin flip we write $p_i(F_i = \bigcirc) = \theta_i$.

To denote that the probability distribution depends on θ_i , we write

$$p_i(F_i = \mathbf{T} \mid \theta_i) = \operatorname{Ber}(F_i = \mathbf{T} \mid \theta_i) = \theta_i$$

i.e. $F_i \sim \text{Ber}(\theta_i)$.

Note the i in the index! We are trying to reason about θ_{11} .

3

All the randomness of a sequence of flips is governed (modeled) by the parameters $\theta_1, \ldots, \theta_{10}$:

$$p(\mathbf{H}\mathbf{T}\mathbf{H}\mathbf{H}\mathbf{T}\mathbf{H}\mathbf{H}\mathbf{H}\mathbf{T}\mathbf{H} \mid \theta_1, \theta_2, \dots, \theta_{10})$$

What do we know about $\theta_1, \dots, \theta_{10}$? Can we infer something about θ_{11} ? At first sight, there is no connection.

Find θ_i 's such that the $p(\mathbf{H} \mathbf{T} \mathbf{H} \mathbf{H} \mathbf{T} \mathbf{H} \mathbf{H} \mathbf{T} \mathbf{H} | \theta_1, \theta_2, \dots, \theta_{10})$ is as high as possible. This is a very important principle:

Maximum likelihood: maximize the likelihood of our observations.

We need to model $p(\mathbf{H}\mathbf{T}\mathbf{H}\mathbf{H}\mathbf{T}\mathbf{H}\mathbf{H}\mathbf{T}\mathbf{H}) \mid \theta_1, \theta_2, \dots, \theta_{10}$.

First assumption: The coin flips do not affect each other – **independence**.

$$p(\mathbf{H} \mathbf{T} \mathbf{H} \mathbf{H} \mathbf{T} \mathbf{H} \mathbf{H} \mathbf{T} \mathbf{H}) \mid \theta_1, \theta_2, \dots, \theta_{10})$$

$$= p_1(F_1 = \mathbf{H} \mid \theta_1) \cdot p_2(F_2 = \mathbf{H} \mid \theta_2) \cdot \dots \cdot p_{10}(F_{10} = \mathbf{H} \mid \theta_{10})$$

$$= \prod_{i=1}^{10} p_i(F_i = f_i \mid \theta_i)$$

Notice the i in p_i , θ_i ! This indicates that the coin flip at time 1 is different from the one at time 2, time 3, But the coin does not change.

5

Second assumption: The flips are qualitatively the same – identical distribution.

$$\prod_{i=1}^{10} p_i(F_i = f_i \mid \theta_i) = \prod_{i=1}^{10} p(F_i = f_i \mid \theta)$$

In total: The 10 flips are independent and identically distributed (i.i.d.).

Remember θ_{11} ? With the i.i.d. assumption we can link it to $\theta_1, \ldots, \theta_{10}$.

Now we can write down the probability of our sequence with respect to θ :

$$\prod_{i=1}^{10} p(F_i = f_i \mid \theta) = (1 - \theta)\theta(1 - \theta)(1 - \theta)\theta(1 - \theta)(1 - \theta)(1 - \theta)\theta(1 - \theta)$$
$$= \theta^3(1 - \theta)^7$$

Under our model assumptions (i.i.d.): $p(\underbrace{\mathbf{HTHHTHHHTH}}_{\text{observed data, }\mathcal{D}} \mid \theta) = \theta^3 (1-\theta)^7$

Under our model assumptions (i.i.d.):
$$p(\underbrace{\mathbf{H}\mathbf{T}\mathbf{H}\mathbf{H}\mathbf{T}\mathbf{H}\mathbf{H}\mathbf{T}\mathbf{H}}_{\text{observed data, }\mathcal{D}} \mid \theta) = \theta^3(1-\theta)^7$$

This can be interpreted as a function $f(\theta) := p(\mathcal{D} \mid \theta)$. We want to find the maxima of this function (maximum likelihood).

Our goal: $\theta_{\text{MLE}} = \arg \max_{\theta \in [0,1]} f(\theta)$.

Very important: the likelihood function is not a probability distribution over θ since $\int p(\mathcal{D} \mid \theta) d\theta \neq 1$ in general.

7

How do we maximize the likelihood function?

Take the derivative $\frac{df}{d\theta}$, set it to 0, and solve for θ . Check these *critical points* by checking the second derivative.

This is possible, but even for our simple $f(\theta)$ the math is rather ugly.

Can we simplify the problem? Monotonic functions preserve critical points!

$$\underset{\theta \in [0,1]}{\arg\max} f(\theta) = \underset{\theta \in [0,1]}{\arg\max} \ \log f(\theta)$$

Maximum Likelihood Estimation (MLE)

Can we generalize this to *any* coin sequence?

Maximum Likelihood Estimation (MLE)

Can we generalize this to *any* coin sequence? We get (derivation in the exercises):

$$\theta_{\mathrm{MLE}} = \frac{|T|}{|T| + |H|}$$

where |T|, |H| denote number of \bigcirc , \bigcirc , respectively.

Remember we wanted to find the probability the next coin flip is 🕡

$$F_{11} \sim \mathrm{Ber}(\theta_{\mathrm{MLE}})$$

$$p(F_{11} = \bigcirc | \theta_{\text{MLE}}) = \text{Ber}(F_{11} = \bigcirc | \theta_{\text{MLE}}) = \theta_{\text{MLE}} = \frac{|T|}{|T| + |H|}$$

This justifies 30% as a reasonable answer to our initial question.

Problem solved?!

MLE for a different sequence

Just for fun, a totally different sequence (same coin!):

MLE for a different sequence

Just for fun, a totally different sequence (same coin!):

 $heta_{
m MLE}=0$. But even a fair coin (heta=0.5) has 25% chance of showing this result!

The MLE solution seems counter-intuitive. Why?

MLE for a different sequence

Just for fun, a totally different sequence (same coin!):

 $heta_{
m MLE}=0$. But even a fair coin (heta=0.5) has 25% chance of showing this result!

The MLE solution seems counter-intuitive. Why?

We have prior beliefs: "Coins usually don't land heads all the time".

How can we

- represent such beliefs mathematically?
- incorporate them into our model?

Outline

Maximum likelihood estimation

Bayesian inference

Maximum a posteriori estimation

Fully Bayesian

Posterior predictive distribution

How can we represent our beliefs about θ mathematically?

Bayesian interpretation: the **prior distribution** $p(\theta)$ reflects our subjective beliefs about θ , **before** we observe any data.

How can we represent our beliefs about θ mathematically?

Bayesian interpretation: the **prior distribution** $p(\theta)$ reflects our subjective beliefs about θ , **before** we observe any data.

How do we choose $p(\theta)$? The only constraints are:

- 1. It must not depend on the data
- 2. $p(\theta) \ge 0$ for all θ
- 3. $\int p(\theta) d\theta = 1$

Properties 2 and 3 have to hold on the support (i.e., feasible values) of θ . In our setting, only values $\theta \in [0,1]$ make sense.

This leaves room for (possibly subjective) model choices!

Some possible choices for the prior on $\boldsymbol{\theta}$

Bayes formula

Tells us how to update our beliefs about heta after observing the data $\mathcal D$

$$p(\theta \mid \mathcal{D}) = \frac{p(\mathcal{D} \mid \theta) \cdot p(\theta)}{p(\mathcal{D})}$$

Here, $p(\theta \mid \mathcal{D})$ is the **posterior** distribution.

It encodes our beliefs in the value of θ after observing data.

The posterior depends on the following terms:

- $p(\mathcal{D} \mid \theta)$ is the **likelihood**.
- $p(\theta)$ is the **prior** that encodes our beliefs before observing the data.
- p(D) is the **evidence** that acts as a normalizing constant that ensures that the posterior distribution integrates to 1.

Bayes formula

$$p(\theta \mid \mathcal{D}) = \frac{p(\mathcal{D} \mid \theta) \cdot p(\theta)}{p(\mathcal{D})}$$

posterior ∝ likelihood · prior

We usually specify our model via the likelihood $p(\mathcal{D} \mid \theta)$ and the prior $p(\theta)$.

We can obtain the evidence using the sum rule of probability

$$p(\mathcal{D}) = \int p(\mathcal{D}, \theta) d\theta = \int p(\mathcal{D} \mid \theta) p(\theta) d\theta$$

The Bayes formula tells us how to update our beliefs given data

Observing more data increases our confidence

What happens if $p(\theta) = 0$ for some particular θ ?

What happens if $p(\theta) = 0$ for some particular θ ?

Recall:

What happens if $p(\theta) = 0$ for some particular θ ?

Recall:

Posterior will always be zero for that particular θ regardless of the likelihood/data.

Outline

Maximum likelihood estimation

Bayesian inference

Maximum a posteriori estimation

Fully Bayesiar

Posterior predictive distribution

Back to the coin flips

How do we estimate θ from the data?

In MLE, we were asking the wrong question:

$$\theta_{\text{MLE}} = \underset{\theta}{\operatorname{arg\,max}} \ p(\mathcal{D} \mid \theta)$$

MLE ignores our prior beliefs and performs poorly if little data is available.

Back to the coin flips

How do we estimate θ from the data?

In MLE, we were asking the wrong question:

$$\theta_{\text{MLE}} = \underset{\theta}{\operatorname{arg\,max}} \ p(\mathcal{D} \mid \theta)$$

MLE ignores our prior beliefs and performs poorly if little data is available.

Actually, we should care about the posterior distribution $p(\theta \mid \mathcal{D})$.

What if we instead maximize the posterior probability?

$$\theta_{\text{MAP}} = \underset{\theta}{\operatorname{arg\,max}} \ p(\theta \mid \mathcal{D})$$

This approach is called maximum a posteriori (MAP) estimation.

Maximum a posterior estimation

$$\theta_{\text{MAP}} = \underset{\theta}{\operatorname{arg max}} \ p(\theta \mid \mathcal{D})$$
$$= \underset{\theta}{\operatorname{arg max}} \ \frac{p(\mathcal{D} \mid \theta)p(\theta)}{p(\mathcal{D})}$$

We can ignore $\frac{1}{p(\mathcal{D})}$ since it's a (positive) constant independent of θ

$$\theta_{\text{MAP}} = \underset{\theta}{\operatorname{arg\,max}} \ p(\mathcal{D} \mid \theta) p(\theta)$$

We already know the likelihood $p(\mathcal{D} \mid \theta)$, how do we choose the prior $p(\theta)$?

Choosing the prior

Often, we choose the prior to make subsequent calculations easier.

We choose Beta distribution for reasons that will become clear later.

Beta
$$(\theta \mid a, b) = \frac{\Gamma(a+b)}{\Gamma(a)\Gamma(b)} \theta^{a-1} (1-\theta)^{b-1}, \quad \theta \in [0, 1]$$

where

- a>0, b>0 are the distribution parameters,
- $\Gamma(n)=(n-1)!$ for $n\in\mathbb{N}$ is the gamma function.

The PDF of the Beta for different choices of a and b

Putting everything together

$$p(\theta \mid \mathcal{D}) = \frac{p(\mathcal{D} \mid \theta) \cdot p(\theta)}{p(\mathcal{D})} \propto p(\mathcal{D} \mid \theta) \cdot p(\theta)$$

because $p(\mathcal{D})$ is constant w.r.t. θ .

Putting everything together

$$p(\theta \mid \mathcal{D}) = \frac{p(\mathcal{D} \mid \theta) \cdot p(\theta)}{p(\mathcal{D})} \propto p(\mathcal{D} \mid \theta) \cdot p(\theta)$$

because $p(\mathcal{D})$ is constant w.r.t. θ .

We know

$$p(\mathcal{D} \mid \theta) = \theta^{|T|} (1 - \theta)^{|H|},$$

$$p(\theta) \equiv p(\theta \mid a, b) = \frac{\Gamma(a + b)}{\Gamma(a)\Gamma(b)} \theta^{a-1} (1 - \theta)^{b-1}.$$

So we get:

$$p(\theta \mid \mathcal{D}) \propto \theta^{|T|} (1 - \theta)^{|H|} \cdot \frac{\Gamma(a+b)}{\Gamma(a)\Gamma(b)} \theta^{a-1} (1 - \theta)^{b-1}$$
$$\propto \theta^{|T|+a-1} (1 - \theta)^{|H|+b-1}.$$

We are looking for

$$\theta_{\text{MAP}} = \underset{\theta}{\text{arg max}} p(\theta \mid \mathcal{D})$$
$$= \underset{\theta}{\text{arg max}} \theta^{|T|+a-1} (1-\theta)^{|H|+b-1}$$

As before, the problem becomes much easier if we consider the logarithm

$$\theta_{\text{MAP}} = \underset{\theta}{\operatorname{arg max}} \log p(\theta \mid \mathcal{D})$$

$$= \underset{\theta}{\operatorname{arg max}} (|T| + a - 1) \log \theta + (|H| + b - 1) \log(1 - \theta)$$

With some algebra we obtain

$$\theta_{\text{MAP}} = \frac{|T| + a - 1}{|H| + |T| + a + b - 2}$$

Outline

Maximum likelihood estimation

Bayesian inference

Maximum a posteriori estimation

Fully Bayesian

Posterior predictive distribution

Estimating the posterior distribution

What we have so far

$$\theta_{\text{MAP}} = \arg\max_{\theta} p(\theta \mid \mathcal{D})$$

The most probable value of θ under the posterior distribution.

Is this the best we can do?

- How certain are we in our estimate?
- What is the probability that θ lies in some interval?

For this, we need to consider the **entire posterior** distribution $p(\theta \mid \mathcal{D})$, not just its mode θ_{MAP} .

Unnormalized posterior

We know the posterior up to a normalizing constant (slide 24)

$$p(\theta \mid \mathcal{D}) \propto \theta^{|T|+a-1} (1-\theta)^{|H|+b-1}$$
.

Finding the true posterior $p(\theta \mid \mathcal{D})$ boils down to finding the normalization constant, such that the distribution integrates to 1.

Unnormalized posterior

We know the posterior up to a normalizing constant (slide 24)

$$p(\theta \mid \mathcal{D}) \propto \theta^{|T|+a-1} (1-\theta)^{|H|+b-1}$$
.

Finding the true posterior $p(\theta \mid \mathcal{D})$ boils down to finding the normalization constant, such that the distribution integrates to 1.

Option 1: Brute-force calculation $\int_0^1 \theta^{|T|+a-1} (1-\theta)^{|H|+b-1} d\theta$. This is tedious, difficult and boring. Any alternatives?

Option 2: Pattern matching. The unnormalized posterior $\theta^{|T|+a-1}(1-\theta)^{|H|+b-1}$ looks similar to the PDF of the Beta distribution

Beta
$$(\theta \mid \alpha, \beta) = \frac{\Gamma(\alpha + \beta)}{\Gamma(\alpha)\Gamma(\beta)} \theta^{\alpha - 1} (1 - \theta)^{\beta - 1}$$

Can we use this fact?

Normalized posterior

The unnormalized posterior

$$p(\theta \mid \mathcal{D}) \propto \theta^{|T|+a-1} (1-\theta)^{|H|+b-1}$$

The Beta distribution

Beta
$$(\theta \mid \alpha, \beta) = \frac{\Gamma(\alpha + \beta)}{\Gamma(\alpha)\Gamma(\beta)} \theta^{\alpha - 1} (1 - \theta)^{\beta - 1}$$

Normalized posterior

The unnormalized posterior

$$p(\theta \mid \mathcal{D}) \propto \theta^{|T|+a-1} (1-\theta)^{|H|+b-1}$$

The Beta distribution

Beta
$$(\theta \mid \alpha, \beta) = \frac{\Gamma(\alpha + \beta)}{\Gamma(\alpha)\Gamma(\beta)} \theta^{\alpha - 1} (1 - \theta)^{\beta - 1}$$

Thus, we can conclude that the appropriate normalizing constant is

$$\frac{\Gamma(|T|+a+|H|+b)}{\Gamma(|T|+a)\Gamma(|H|+b)}$$

and the posterior is a Beta distribution

$$p(\theta \mid \mathcal{D}) = \text{Beta}(\theta \mid a + |T|, b + |H|)$$

Remember this when solving integrals involving known (up to a constant) pdfs.

Conjugate priors

We started with the following prior distribution

$$p(\theta) = \text{Beta}(\theta \mid a, b)$$

And obtained the following posterior

$$p(\theta \mid \mathcal{D}) = \text{Beta}(\theta \mid a + |T|, b + |H|)$$

Was this just a lucky coincidence?

Conjugate priors

We started with the following prior distribution

$$p(\theta) = \text{Beta}(\theta \mid a, b)$$

And obtained the following posterior

$$p(\theta \mid \mathcal{D}) = \text{Beta}(\theta \mid a + |T|, b + |H|)$$

Was this just a lucky coincidence?

No, this is an instance of a more general principle. Beta distribution is a **conjugate prior** for the Bernoulli likelihood.

If a prior is conjugate for the given likelihood, then the posterior will be of the same family as the prior.

Conjugate priors

We started with the following prior distribution

$$p(\theta) = \text{Beta}(\theta \mid a, b)$$

And obtained the following posterior

$$p(\theta \mid \mathcal{D}) = \text{Beta}(\theta \mid a + |T|, b + |H|)$$

Was this just a lucky coincidence?

No, this is an instance of a more general principle. Beta distribution is a **conjugate prior** for the Bernoulli likelihood.

If a prior is conjugate for the given likelihood, then the posterior will be of the same family as the prior.

In our case, we can interpret the parameters a, b of the prior as the number of tails and heads that we saw in the past.

Advantages of the fully Bayesian approach

We have an entire distribution! Not just a point estimate.

We can answer questions such as:

- What is the expected value of θ under $p(\theta \mid \mathcal{D})$?
- What is the variance of $p(\theta \mid \mathcal{D})$?
- Find a credible interval $[\theta_1, \theta_2]$, such that $\Pr(\theta \in [\theta_1, \theta_2] \mid \mathcal{D}) = 95\%^1$.

¹Not to be confused with frequentist confidence intervals (see Lecture 5).

Three approaches for parameter estimation

Maximum likelihood estimation (MLE)

- Goal: Optimization problem $\max_{\theta} \log p(\mathcal{D} \mid \theta)$
- Result: Point estimate $heta_{
 m MLE}$
- Coin example: $heta_{ ext{MLE}} = rac{|T|}{|T| + |H|}$

Maximum a posteriori (MAP) estimation

- Goal: Optimization problem $\max_{\theta} \log p(\theta \mid \mathcal{D})$
- Result: Point estimate $heta_{ ext{MAP}}$
- Coin example: $heta_{ ext{MAP}} = rac{|T|+a-1}{|T|+|H|+a+b-2}$

Estimating the posterior distribution

- Goal: Find the normalizing constant $p(\mathcal{D})$
- Result: Full distribution $p(\theta \mid \mathcal{D})$
- Coin example: $p(\theta \mid \mathcal{D}) = \text{Beta}(\theta \mid a + |T|, b + |H|)$

The three approaches are closely connected

The posterior distribution is

$$p(\theta \mid \mathcal{D}) = \text{Beta}(\theta \mid a + |T|, b + |H|).$$

Recall that the mode of $\operatorname{Beta}(\alpha,\beta)$ is $\frac{\alpha-1}{\alpha+\beta-2}$, for $\alpha,\beta>1$.

We see that the MAP solution is the mode of the posterior distribution

$$\theta_{\text{MAP}} = \frac{|T| + a - 1}{|H| + |T| + a + b - 2}$$

If we choose a uniform prior (i.e. a=b=1) we obtain the MLE solution

$$\theta_{\text{MLE}} = \frac{|T| + 1 - 1}{|H| + |T| + 1 + 1 - 2} = \frac{|T|}{|H| + |T|}$$

All these nice formulas are a consequence of choosing a conjugate prior. Had we chosen a non-conjugate prior, $p(\theta \mid \mathcal{D})$ and θ_{MAP} might not have a closed form.

Posterior for different number of observations

We had $p(\theta \mid \mathcal{D}) = \text{Beta}(\theta \mid a + |T|, b + |H|)$.

Visualize the posterior (for the prior a = b = 1):

$$|T|=1, |H|=4 \qquad |T|=10, |H|=40$$

With more data the posterior becomes more peaky – we are more certain about our estimate of θ

Alternative view: a frequentist perspective

For MLE we had $heta_{\mathrm{MLE}} = \frac{|T|}{|T| + |H|}$

Clearly, we get the same result for |T|=1, |H|=4 and |T|=10, |H|=40. Which one is *better*? Why?

Alternative view: a frequentist perspective

For MLE we had $heta_{\mathrm{MLE}} = \frac{|T|}{|T| + |H|}$

Clearly, we get the same result for |T|=1, |H|=4 and |T|=10, |H|=40. Which one is *better*? Why?

How many flips? Hoeffding's Inequality for a sampling complexity bound:

$$p(|\theta_{\text{MLE}} - \theta| \ge \varepsilon) \le 2e^{-2N\varepsilon^2} \le \delta,$$

where N = |T| + |H|.

For example, I want to know θ , within $\epsilon=0.1$ error, with probability at least $1-\delta=0.99$. We have:

$$N \ge \frac{\ln(2/\delta)}{2\epsilon^2} \to N \approx 265$$

Outline

Maximum likelihood estimation

Bayesian inference

Maximum a posteriori estimation

Fully Bayesian

Posterior predictive distribution

To predict the next coin flip

For MLE:

- 1. Estimate $\theta_{\mathrm{MLE}} = \frac{|T|}{|H| + |T|}$ from the data.
- 2. The probability that the next flip lands tails is

$$p(F_{11} = \bigcirc \mid \theta_{\text{MLE}}) = \text{Ber}(F_{11} = \bigcirc \mid \theta_{\text{MLE}}) = \theta_{\text{MLE}}$$

Similarly, for MAP:

- 1. Estimate $heta_{\mathrm{MAP}} = \frac{|T| + a 1}{|H| + |T| + a + b 2}$ from the data.
- 2. The probability that the next flip lands tails is

$$p(F_{11} = \mathbf{T} \mid \theta_{MAP}) = Ber(F_{11} = \mathbf{T} \mid \theta_{MAP}) = \theta_{MAP}$$

What if we have the entire posterior?

We have estimated the posterior distribution $p(\theta \mid \mathcal{D}, a, b)$ of the parameter θ .

Now, we want to compute the probability that the next coin flip is \bigcirc , given observations \mathcal{D} and prior belief a, b:

$$p(F = \boxed{1} \mid \mathcal{D}, a, b)$$

This distribution is called the **posterior predictive** distribution.

This is **different** from the posterior over the parameters $p(\theta \mid \mathcal{D}, a, b)$!

Posterior predictive distribution

For simplicity, denote the outcome of the next flip as $f \in \{0, 1\}$.

$$p(F = f \mid \mathcal{D}, a, b) = p(f \mid \mathcal{D}, a, b)$$

We already know the posterior over the parameters $p(\theta \mid \mathcal{D}, a, b)$.

Posterior predictive distribution

For simplicity, denote the outcome of the next flip as $f \in \{0,1\}$.

$$p(F = f \mid \mathcal{D}, a, b) = p(f \mid \mathcal{D}, a, b)$$

We already know the posterior over the parameters $p(\theta \mid \mathcal{D}, a, b)$.

Using the sum rule of probability

$$p(f \mid \mathcal{D}, a, b) = \int_{0}^{1} p(f, \theta \mid \mathcal{D}, a, b) d\theta$$
$$= \int_{0}^{1} p(f \mid \theta, \mathcal{D}, a, b) p(\theta \mid \mathcal{D}, a, b) d\theta$$
$$= \int_{0}^{1} p(f \mid \theta) p(\theta \mid \mathcal{D}, a, b) d\theta$$

The last equality follows from the conditional independence assumption: "If we know θ , the next flip f is independent of the previous flips \mathcal{D} ."

Fully Bayesian analysis

Recall that
$$p(f \mid \theta) = \operatorname{Ber}(f \mid \theta) = \theta^f (1 - \theta)^{1-f}$$
 and $p(\theta \mid \mathcal{D}, a, b) = \frac{\Gamma(|T| + a + |H| + b)}{\Gamma(|T| + a)\Gamma(|H| + b)} \theta^{|T| + a - 1} (1 - \theta)^{|H| + b - 1}.$

Substituting these expressions and doing some (boring) algebra we get

$$p(f \mid \mathcal{D}, a, b) = \int_0^1 p(f \mid \theta) p(\theta \mid \mathcal{D}, a, b) d\theta$$
$$= \frac{(|T| + a)^f (|H| + b)^{(1-f)}}{|T| + a + |H| + b}$$

Fully Bayesian analysis

Recall that
$$p(f \mid \theta) = \operatorname{Ber}(f \mid \theta) = \theta^f (1 - \theta)^{1-f}$$
 and $p(\theta \mid \mathcal{D}, a, b) = \frac{\Gamma(|T| + a + |H| + b)}{\Gamma(|T| + a)\Gamma(|H| + b)} \theta^{|T| + a - 1} (1 - \theta)^{|H| + b - 1}.$

Substituting these expressions and doing some (boring) algebra we get

$$p(f \mid \mathcal{D}, a, b) = \int_0^1 p(f \mid \theta) p(\theta \mid \mathcal{D}, a, b) d\theta$$
$$= \frac{(|T| + a)^f (|H| + b)^{(1-f)}}{|T| + a + |H| + b}$$

$$= \operatorname{Ber}\left(f \left| \frac{|T| + a}{|T| + a + |H| + b}\right)\right|$$

Note that the posterior predictive distribution doesn't contain θ — we have marginalized it out!

Prediction using different approaches

- MLE: $p(F = \mathbf{T} \mid \theta_{\text{MLE}}) = \text{Ber}\left(F = \mathbf{T} \mid \frac{|T|}{|T| + |H|}\right)$
- MAP: $p(F = \bigcirc \mid \theta_{\text{MAP}}) = \text{Ber}\left(F = \bigcirc \mid \frac{|T| + a 1}{|T| + a + |H| + b 2}\right)$
- Fully Bayesian: $p(F = \textcircled{1} \mid \mathcal{D}) = \mathrm{Ber}\left(F = \textcircled{1} \mid \frac{|T| + a}{|T| + a + |H| + b}\right)$

Prediction using different approaches

- MLE:
$$p(F = \mathbf{T} \mid \theta_{\text{MLE}}) = \text{Ber}\left(F = \mathbf{T} \mid \frac{|T|}{|T| + |H|}\right)$$

- MAP:
$$p(F = \bigcirc \mid \theta_{\text{MAP}}) = \text{Ber}\left(F = \bigcirc \mid \frac{\mid T\mid +a-1}{\mid T\mid +a+\mid H\mid +b-2}\right)$$

- Fully Bayesian:
$$p(F=\P) \mid \mathcal{D}) = \mathrm{Ber}\left(F=\P) \mid \frac{|T|+a}{|T|+a+|H|+b}\right)$$

Given the prior a=b=5 and the counts |T|=4, |H|=8

$$p_{\text{MLE}} = \frac{4}{12} \approx 0.33$$
 $p_{\text{MAP}} = \frac{8}{20} = 0.40$ $p_{\text{FB}} = \frac{9}{22} \approx 0.41$

Prediction using different approaches

- MLE:
$$p(F = \bigcirc \mid \theta_{\mathrm{MLE}}) = \mathrm{Ber}\left(F = \bigcirc \mid \frac{|T|}{|T| + |H|}\right)$$

- MAP:
$$p(F = \bigcirc \mid \theta_{\text{MAP}}) = \text{Ber}\left(F = \bigcirc \mid \frac{|T| + a - 1}{|T| + a + |H| + b - 2}\right)$$

- Fully Bayesian:
$$p(F = \mathbf{T} \mid \mathcal{D}) = \mathrm{Ber}\left(F = \mathbf{T} \mid \frac{|T| + a}{|T| + a + |H| + b}\right)$$

Given the prior a=b=5 and the counts |T|=4, |H|=8

$$p_{\text{MLE}} = \frac{4}{12} \approx 0.33$$
 $p_{\text{MAP}} = \frac{8}{20} = 0.40$ $p_{\text{FB}} = \frac{9}{22} \approx 0.41$

How about if we have |T| = 304, |H| = 306?

$$p_{\rm MLE} = \frac{304}{610} \approx 0.50$$
 $p_{\rm MAP} = \frac{308}{618} \approx 0.50$ $p_{\rm FB} = \frac{309}{620} \approx 0.50$

As we observe lots of data, the differences in predictions become less noticeable.

Summary

Three approaches to parameter estimation:

- Maximum likelihood: ignores prior information.
- Maximum a posteriori: finds the mode of the posterior.
- Fully Bayesian analysis: uses the entire posterior.

Posterior \propto Likelihood \cdot Prior.

The i.i.d. assumption.

Monotonic transforms for optimization.

Solving integrals by reverse-engineering densities (conjugate prior).

Reading material

Main reading

- "Machine Learning: A Probabilistic Perspective" by Murphy [ch. 3.1 - 3.3]

Extra reading

- "Probabilistic Machine Learning: An Introduction" by Murphy [ch. 4.2, 4.6]

Slides based on an older version by S. Gunnemann, themeselves based on a version by M. Sölch.