Professor: Ekaterina Kostina Tutor: Philipp Elja Müller

Aufgabe 1

a) $a_n = n^2, b_n = \frac{1}{n}$

b)
$$a_n = n^2, b_n = -\frac{1}{n}$$

c)
$$a_n = n, b_n = \frac{1}{n^2}$$

d)
$$a_n = n, b_n = \frac{1}{n}$$

e)
$$a_n = n, b_n = (-1)^n \cdot \frac{1}{n}$$

Aufgabe 2

(a) A) Offensichtlich ist $2^{-m_0} > 2^{-m_1}$ für $m_0 < m_1$ $(m_0, m_1 \in \mathbb{N})$ und zudem $n_0^{-1} > n_1^{-1}$ für $n_0 < n_1$ $(n_0, n_1 \in \mathbb{N})$. Daher wird $2^{-m} + n^{-1}$ maximal, wenn m und n minimal werden. Da $m, n \in \mathbb{N}$ ist dies der Fall für m = n = 1. Dann ist $2^{-m} + n^{-1} = 2^{-1} + 1^{-1} = \frac{1}{2} + 1 = \frac{3}{2}$. Folglich ist max $A = \frac{3}{2} = \sup A$. Zudem ist aus der Vorlesung bekannt, dass $\lim_{n \to \infty} \frac{1}{n} = 0$. Ferner ist $0 < \frac{1}{2^m} < \frac{1}{m} \forall m \in \mathbb{N}$. Daraus folgt sofort, dass $\lim_{m \to \infty} 2^{-m} = 0$. Mit Lemma 2.5 erhalten wir schließlich $\lim_{n,m \to \infty} 2^{-m} + n^{-1} = 0$. Allerdings ist $2^{-m} + n^{-1} > 0 \forall n, m \in \mathbb{N}$. Daher ist 0 eine untere Schranke für A. Gäbe es nun eine größere untere Schranke s von a, so gilt nach Definition der Konvergenz: $\forall s \in \mathbb{R} : \exists n, m \in \mathbb{N} : 2^{-m} + n^{-1} < s$, was im Widerspruch dazu steht, dass s eine untere Schranke sein soll. Also ist inf a = 0. Da $0 \notin A$ besitzt $a \in \mathbb{N}$ kein Minimum.

B)

$$B = \{x \in \mathbb{R} | x^2 - 10x \le 24\}$$

$$\iff B = \{x \in \mathbb{R} | x^2 - 10 - 24 \le 0\}$$

$$\iff B = \{x \in \mathbb{R} | (x - 12)(x + 2) < 0\}$$

Ist einer der beiden Faktoren ≤ 0 , so muss der andere ≥ 0 sein, damit das Produkt ≤ 0 ist.

Fall 1: $(x-12) \le 0 \implies x \le 12$. Außerdem muss $(x+2) \ge 0$ sein, also $x \ge -2$. Alle x mit $-2 \le x \le 12$ erfüllen also die Ungleichung.

Fall 2: $(x-12) > 0 \implies x > 12$. Außerdem muss $(x+2) \le 0$ sein, also $x \le -2$. x > 12 und $x \le -2$ widersprechen sich allerdings.

Insgesamt erhalten wir

$$B = \{x \in \mathbb{R} | -2 < x < 12\} = [-2, 12]$$

Es gilt also min $B = -2 = \inf B$ und max $B = 12 = \sup B$.

(b) (i) Sei $\alpha = \sup A$ und $\beta = \sup B$. Dann ist $\forall a \in A : a \leq \alpha$ und $\forall b \in B : b \leq \beta$. In der Summe ist also $\forall a + b \in A + B : a + b \leq \alpha + \beta$. Sei $\epsilon > 0$. Da α und β jeweils die kleinste obere Schranke darstellen, gilt $\forall \gamma \in \mathbb{R}$ mit $\gamma = \alpha - \frac{\epsilon}{2} : \exists a \in A : a > \gamma$ und analog $\forall \delta \in \mathbb{R}$ mit $\delta = \beta - \frac{\epsilon}{2} : \exists b \in B : b > \delta$. Sei nun $\xi = \alpha + \beta - \epsilon$. Dann $\exists a \in A : a > \alpha - \frac{\epsilon}{2}, \exists b \in B : b > \beta - \frac{\epsilon}{2}$ und somit $\exists a + b \in A + B : a + b > \alpha + \beta - \frac{\epsilon}{2} - \frac{\epsilon}{2} = \alpha + \beta - \epsilon$. Also ist $\alpha + \beta$ bereits die kleinste obere Schranke: $\sup A + B = \sup A + \sup B$.

(ii) Sei $A = \{-1\}$ und $B = \{1, -1\}$. Dann ist $A \cdot B = \{-1 \cdot 1, -1 \cdot -1\} = \{-1, 1\}$. Damit erhalten wir inf $A \cdot B = -1$. Allerdings ist inf $A = \inf B = -1$ und somit inf $A \cdot \inf B = -1 \cdot -1 = 1 \neq -1$. Die Aussage ist also falsch.

Aufgabe 3

Sei $A = \{x \in \mathbb{R} | \exists m \in M : x \leq m\}$ und $B = \mathbb{R} \setminus A$. Dann ist nach Konstruktion $A \cup B = \mathbb{R}$ und $A \cap B = \emptyset$.

Ferner gilt

$$B = \{x \in \mathbb{R} | x \notin A\}$$

$$\iff B = \{x \in \mathbb{R} | \neg (\exists m \in M : b \le m)\}$$

$$\iff B = \{x \in \mathbb{R} | \forall m \in M : b > m\}\}$$

Da $\forall a \in A : \exists m : m \geq a$ folgt aus dieser Aussage $\forall b \in B : \forall a \in A : b > a$. Nach (i) existiert also ein $c \in \mathbb{R}$, sodass $a \leq c \leq b$ für alle $a \in A$ und $b \in B$. Offensichtlich ist c eine obere Schranke von a. Behauptung: $c = \sup A$.

Beweis:

Fallunterscheidung:

- 1) $A = (-\infty, c]$. Dann ist $c = \max A = \sup A$.
- 2) $A = (-\infty, c)$. Sei nun S eine obere Schranke von A. Dann ist $S \ge a \forall a \in A$. Da A kein größtes Element enthält, ist also sofort $S > a \forall a \in A$. Daher ist also für jede Schranke S von A $S \in B$. Es gilt: $c \le b \forall b \in B$. Daher ist c die kleinste obere Schranke von A, $c = \sup A$. Wir wissen außerdem, dass $M \subset A$ und $m \ge a \forall a \in A$. Daher ist $\sup M = \sup A$.

Zunächst ist c eine obere Schranke für A und damit auch für M. Da $\forall a \in A : c \geq a$ ist $c \in B$. Da allerdings $\forall b \in B : c \leq b$ ist b das kleinste Element von B und folglich die kleinste obere Schranke von M, sup M = c.

Aufgabe 4

Lemma 1. Enthält eine Cauchy-Folge $(a_n)_{n\in\mathbb{N}}$ eine konvergente Teilfolge $(a_{n_k})_{n\in\mathbb{N},k\in\tilde{\mathbb{N}}}$ mit $\lim_{k\to\infty}a_{n_k}=a$, so ist die Cauchy-Folge konvergent mit $\lim_{n\to\infty}a_n=a$.

Beweis. Aus $\lim_{k\to\infty} a_{n_k} = a$ folgt sofort:

$$\forall \frac{\epsilon}{2} > 0 : \exists k_0 \in \mathbb{N} : \forall n_k \text{ mit } k \ge k_0 : |a_{n_k} - a| < \frac{\epsilon}{2}$$

Da $(a_n)_{n\in\mathbb{N}}$ eine Cauchy-Folge ist, gilt außerdem:

$$\forall \frac{\epsilon}{2} > 0 : \exists n_{\epsilon} \in \mathbb{N} : \forall n, m \ge n_{\epsilon} : |a_n - a_m| < \frac{\epsilon}{2}$$

Sei nun $n_0 = \max(n_{k_0}, n_{\epsilon})$. Dann ist

$$\forall \epsilon > 0: \forall n, n_k > n_0: |a_n - a| = |a_n - a_{n_k} + a_{n_k} - a| \le |a_n - a_{n_k}| + |a_{n_k} - a| < \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon$$
 Also ist $\lim_{n \to \infty} a_n = a$.

Wenn jede beschränkte Folge in \mathbb{R} eine konvergente Teilfolge besitzt, so besitzt insbesondere jede Cauchy-Folge in \mathbb{R} eine konvergente Teilfolge (da alle Cauchy-Folgen beschränkt sind). Mit unserem Lemma erhalten wir, dass jede Cauchy-Folge in \mathbb{R} konvergiert. Das wiederum impliziert die Vollständigkeit von \mathbb{R} .

Aufgabe 5