Stitch-to-Tile

EINE GESTENSTEUERUNG ZUR AUSLÖSUNG VON BILDSCHIRMERWEITERUNG

1. Stitch, 2. Tile

- Die Stitch-to-Tile Interaktion besteht aus 2 Teilen

- Die beiden Teile stehen in einem Aktion-Reaktion Verhältnis
- Auslöser: Geste (Stitch)
- Effekt: Bildschirmerweiterung (Tile)

- Stitch-to-Tile ist eine Synchronous Gesture

Das Spontaneous Device Sharing Problem

"Das 'Spontaneous Device Sharing Problem' stellt die folgende Frage: Wie kann ein Benutzer eine zweckvolle Verbindung herstellen zwischen zwei oder mehr Zielgeräten ohne dass sie vorher gegenseitig ihre Netzwerkadressen kennen?"

(Hinkley 2004)

- Lösungen vor allem nützlich für spontane, kurze Aktionen (z.B. Bild versenden)
- Verschiedene Technologien mit jeweiligen Vor- und Nachteilen
- "Synchronous Gestures" könnten eine Lösung bieten

Synchronous Gestures

- Aktivitätsmuster, die eine neue Bedeutung annehmen wenn sie in einer bestimmten zeitlichen Abfolge geschehen
- Sensordaten werden verglichen um S.G. zu erkennen
- Können das Spontaneous Device Sharing Problem lösen:
- Eine Verbindung wird durch eine S.G. hergestellt

State of the Art: Synchronous Gestures

Stitching:

- Von Hinkley und Kollegen entwickelte S.G.
- Prototypische Umsetzung namens "Stitchmaster"
- Foto-Sharing Anwendung auf Tablet PCs
- Stylus wird von einem Bildschirm auf den nächsten geführt
- Metapher: Zusammennähen zweier Stoffteile
 - Stylus dient als Nadel
- Bildschirme als Stoffteile

Bildschirmerweiterung

- Weit verbreitet bei Desktop PCs
- Nützlich für Arbeiten die
 - 1. Viel Bildschirmfläche (z.B. Videobearbeitung)
 - Häufiges wechseln zwischen Fenstern (z.B. Programmieren)

erfordern.

- Weitgehend ungenutzt bei mobilen Endgeräten

State of the Art: Display Tiling auf mobilen Endgeräten

iPodWall:

- 20 iPods an einem Holzkasten
- App läuft auf jedem
- Zeigt Slideshow von Bildern an
- Kann ein Bild erweitert auf allen anzeigen

Tiling auf mobilen Endgeräten

- Es wurden zwei Formen der Bildschirmerweiterung für mobile Endgeräte erkannt:
 - 1. Visuelles Tiling
 - 2. Logisches Tiling

Visuelles Tiling

- Reine Erweiterung der Bildschirmfläche
- Ziel: Vergrößerte Darstellung des angezeigten Inhalts
 - Unterschied zu PCs: Größerer Inhalt ← → Mehr Inhalt

Visuelles Tiling – Anwendungen

- Videos, Foto-Slideshows etc. erscheinen größer
 - => Größere Entfernung zu Geräten möglich
 - => Größere Entfernung zwischen Zuschauern möglich
- Panorama Format profitiert besonders stark

Visuelles Tiling – Anforderungen

- Bildschirmgrößen sollten ähnlich zueinander sein
- Geräte sollten mit 0mm Abstand zueinander liegen

Visuelles Tiling – Probleme

- "Verschwendete" Bildschirmfläche bei zu unterschiedlichen Bildschirmgrößen
- Lücke zwischen den Geräten relativ zu Bildschirmflächen groß
- 2 Möglichkeiten mit der Lücke umzugehen:
 - 1. Lücke ignorieren
 - 2. Lücke miteinbeziehen

Logisches Tiling

- Ähnlichkeiten zu Second Screen
- Second Screen Apps: Begleitende Applikationen zum laufenden Fernsehprogramm
- Logisches Tiling gibt einen Teil der Hauptapp an ein Zweitgerät ab

- Unterschied zu Second Screen: Beide Geräte sind interaktionsfähig

Logisches Tiling - Anwendungen

- Ermöglicht bessere Bildschirmflächennutzung bei Applikationen mit mehreren, gleichzeitig angezeigten Funktionen

- Beispiel 1: Livestreaming App:
 - Livestream auf größerem Gerät
 - Chat auf kleinerem Gerät
- Beispiel 2: Spaceteam:
 - Asymetrisches Multiplayer Spiel
 - Ein "Kapitänsgerät"
- Mehrere "Crewgeräte"

Logisches Tiling - Anforderungen

- Jegliche Kombination von Bildschirmgrößen denkbar
- Sinnvoll: Das größte Gerät für das Anzeigen der Medien nutzen
- Geräte müssen nicht nebeneinander liegen
- Applikation muss modularisierte Anwendungslogik haben

Stitching

- Löst Bildschirmerweiterung aus
- Nutzer führt ein Symbol von einem Bildschirm auf den nächsten

- Stitch besteht aus 2 Teilen:
 - 1. Ausgehender Swipe vom Hauptgerät
 - 2. Eingehender Swipe auf Zweitgerät

Erkennung eines Stitches

- Die beiden Swipes werden verglichen
- 3 Bedingungen:
 - 1. Grundrichtung muss übereinstimmen
 - 2. Winkel darf nicht zu unterschiedlich sein
 - 3. Zeit zwischen Swipes darf nicht zu groß sein

Räumliche Orientierung der Geräte

- 0mm voneinander entfernt
- Möglichst große Überschneidung der Bildschirme
- Hauptgerät liegt außen

Konflikte mit anderen Funktionen

- Fast jede Interaktion mit Smartgeräten nutzt Touch-Events
- Risiko für Missverständnisse hoch
- Viele Applikationen nutzen Swipes vom Bildschirmrand (z.B. zum Aufrufen von Menüs)
- Mögliche Lösung: Aktivierung von Stitch-to-Tile über Share-Funktionalität
- Stitch-to-Tile Ebene liegt über der Applikationsebene

Prototyp – Gesamtablauf

Prototyp – Demo Video

Prototyp – Erkennung eines Stitches

- Vergleich von aus- und eingehendem Swipe nötig
 - => Kommunikation zwischen den Geräten nötig
- Kommunikation läuft über Services
- Services geben empfangene Daten an State Machines weiter
- Abhängig von ihrem Zustand entscheiden S.M. was mit den Daten passiert

Tiling – Bildverarbeitung

- Zur Darstellung eines Bildes auf 2 Geräten ist Bildverarbeitung nötig
- Läuft in 2 Schritten ab:
- 1. Zerschneiden des zu tilenden Bildes in 2 Teile
- 2. Separates Skalieren der Bildteile

Zerschneiden des Bildes

- Realweltliche Maße der Displays werden genutzt
- Jeweilige Bildanteile werden bestimmt
- Breite des eigenen Displays / Summe aus beiden Breiten = Eigener Prozentsatz des Bildes (x)
- Zwei Bitmaps werden aus der originalen erstellt
 - Rand des Bildes bis (x * Breite des Bildes in Pixeln)
 - (x * Breite des Bildes in Pixeln) bis anderer Rand des Bildes

Skalieren der Bilder

- Gesamte Breite der Bildschirme wird genutzt
- Skalierung nötig wegen potentiell unterschiedlichen Pixeldichten der Bildschirme
- Auf kleinerem Gerät trivial
 - Das Bildteil wird auf die gesamte Pixelanzahl des Displays skaliert
- Auf größerem Gerät nicht
- Realweltliche Höhe des Bildes muss gleich der des Display des kleineren Gerätes sein
- Formel: Eigene Pixeldichte * Höhe des kleineren Geräts = Höhe in Pixel auf größerem Gerät
- Problem: Manche Geräte geben falsche Werte an!

Zusammenfassung & Ausblick

- Valide Geste
 - Lässt sich gut implementieren aufgrund von Modularität (Aktion-Reaktion-Verhältnis)
- Anwendungsfälle für die Geste sinnvoll (Vor allem bei Logischem Tiling)
- Einige Probleme
 - Fluss der Interaktion durch Verbindungsdialog gestört
 - "Lügende" Geräte
- In Zukunft
- Verbesserung der UI (Animationen, Verständlichere Symbole)
- Unterstützung für mehr als 2 Geräte
- Für dritte Apps nutzbar machen