Arx Neliniar

Profesor indrumator: Lucian Busoniu Gherghinescu Dragos

Barsan Ilie

Gota Radu

Universitatea Tehnica
Din Cluj-Napoca
FACULTATEA DE AUTOMATICA SI
CALCULATOARE
DEPARTAMENTUL AUTOMATICA

Grupa 30135 Indici 5/16

Descrierea problemei

- Se da un set de date cu o intrare si o iesire
- Dinamica poate fi neliniara si iesirea afectata de zgomot
- Se cere
 - programarea unei functii care genereaza un model ARX neliniar de tip polinomial cu ordinele na,nb,nk,m configurabile.
 - o procedura de regresie pentru gasirea parametrilor
 - utilizarea modelului prin predictie si simulare

Structura aproximatorului

- Aproximatorul este reprezentat de doua functii numite "generatePoly"
- Atat pentru predictie cat si pentru simulare se construieste o matrice de puteri prin functia "mop"
- Aceasta matrice se parcurge cu mai multe loop-uri de tip for care construiesc termenii polinomului cerut.

```
function P = mop(grade,na,nb) %%matrice de puteri ale regresorilor

nr_elem = na+nb;

powers = unique(nchoosek(repmat(0:grade, 1, nr_elem), nr_elem), 'row');

P = powers(sum(powers, 2) <= grade, :);
```

```
for k = 1:length(d)
    for i = 1:length(P)
        a(i) = 1;
        for j=2:na+nb+1
            a(i) = a(i)*d(k,j).^(P(i,j-1));
        end
        PHI(k,i) = a(i);
    end
end
```

Predictie vs Simulare

- Pentru predictie matricea de regresori se construieste o singura data
- Se aplica algoritmul de creare a polinomului
- Se afla parametrii prin regresie si aproximarile

- Pentru simulare matricea de regresori se construieste treptat
- La fiecare pas se aplica algoritmul de creare a polinomului
- La fiecare pas se afla parametrii prin regresie si aproximarea curenta

Rezultate de reglare

MSE in functie de na,nb,nk,m Pentru simplitate na=nb,iar nk=1,m configurabil

Predictie vs Id

na+nb

0.0024	0.0031	0.0106	
2.1746e-04	9.7518e-04	0.0093	
2.8390e-05	1.7994e-04	0.0085	
1.8070e-05	5.0795e-05	0.0084	

Predictie vs Val

na±nh

	Hatilu	
0.0040	0.0029	0.0023
0.0026	8.8894e-04	2.8370e-04
0.0018	1.5154e-04	0.0022
0.0017	3.2990e-05	94.3409

Simulare vs Id

	6-00/02/00/00/00 00 10	na+nb	2007 - 120-20-20-21
	0.2544	0.0395	0.0252
D.	0.2616	NaN	NaN
grad	0.2091	0.0336	NaN
	0.2168	0.0168	NaN

Simulare vs Val

		na+nb	
	0.2279	0.0503	0.0385
rad	0.2279	0.1015	NaN
<u>g</u>	0.2386	0.0320	NaN
	0.3104	0.0225	NaN

Comparare iesiri

Probleme si avantaje ale algoritmului

• Probleme:

- Consumator de memorie
- Timp de rulare mare(aprox 47 secunde pentru na=nb=1:3,grad 1:4)

Avantaje:

- na,nb,nk,mconfigurabile
- cod compact si usor de inteles
- programulfunctioneaza

Concluzie

- In concluzie, aproximatorul functioneaza pe orice set de date de tipul intrare-iesire.
- Cele mai bune rezultate sunt la gradul 4, na=nb=2/3
- Chiar daca nk variaza
 - Cele mai bune aproximari sunt cele pe predictie
 - Simulare duce la un grad de potrivire mai mic
 - Gradul de potrivire se schimba cu maxim un procent