Implicit vs. explicit ODE

Fredrik Magnusson¹ Karl Berntorp² Christan & Claus?

¹Department of Automatic Control Lund University, Sweden

²Mitsubishi Electric Research Laboratories Cambridge, MA

October 15, 2015

Last time:

- Compared simulation results for implicit DAE and explicit ODE with IDA and Radau5
- Implicit DAE formulation needs 10-20 times more steps
- Suppressing algebraic variables behaves very similarly to explicit ODE
- Pacejka Magic Formula (algebraic equation) stiff
- Surprisingly large relative errors with ODE formulation

This time:

- Revisit the error comparisons
- Discuss how all of this affects optimization

Partial DAE

- Last time considered eliminating all algebraics except the 4 nominal forces (Magic formula)
- I tested this as well, and call it DAE par.

Simulation results

Radau5 tolerance chosen to get reference solution, the rest to get similar accuracy

Setup	tol	Time [s]	Steps [1000]	Evals [1000]
Radau5 DAE	1e-12	69	17	640
IDA DAE	1e-6	59	26	930
IDA DAE sup. alg.	1e-8	2.8	2.9	42
IDA DAE par.	1e-6	6.3	8	102
IDA ODE	1e-8	0.9	3.4	15

Radau5 DAE

Final Run Statistics: ---

```
Number of steps : 16701

Number of function evaluations : 231074

Number of Jacobian evaluations : 12338

Number of function eval. due to Jacobian eval. : 407154

Number of error test failures : 1040

Number of LU decompositions : 21266
```

Solver options:

Solver : Radau5 (implicit)
Tolerances (absolute) : [1.00000000e-12]

Tolerances (relative) : 1e-12

IDA DAE

Final Run Statistics: ---

Number of steps : 26361

Number of function evaluations : 67823

Number of Jacobian evaluations : 25991

Number of function eval. due to Jacobian eval. : 857703

Number of error test failures : 12046

Number of nonlinear iterations : 67823

Number of nonlinear convergence failures : 0

Solver options:

Solver : IDA (BDF)

Maximal order : 5

Suppressed algebr. variables : False Tolerances (absolute) : 1e-06 Tolerances (relative) : 1e-06

IDA DAE sup. alg.

Final Run Statistics: ---

```
Number of steps : 2923
Number of function evaluations : 7072
Number of Jacobian evaluations : 1065
Number of function eval. due to Jacobian eval. : 35145
Number of error test failures : 424
Number of nonlinear iterations : 7072
Number of nonlinear convergence failures : 0
```

Solver options:

Solver : IDA (BDF)

Maximal order : 5
Suppressed algebr. variables : True
Tolerances (absolute) : 1e-08
Tolerances (relative) : 1e-08

IDA DAE par.

Final Run Statistics: ---

```
Number of steps : 8489

Number of function evaluations : 18467

Number of Jacobian evaluations : 5952

Number of function eval. due to Jacobian eval. : 83328

Number of error test failures : 2867

Number of nonlinear iterations : 18467

Number of nonlinear convergence failures : 0
```

Solver options:

Solver : IDA (BDF)
Maximal order : 5
Suppressed algebr. variables : False
Tolerances (absolute) : 1e-06
Tolerances (relative) : 1e-06

IDA ODE

Final Run Statistics: ---

```
Number of steps : 3428

Number of function evaluations : 5524

Number of Jacobian evaluations : 919

Number of function eval. due to Jacobian eval. : 9190

Number of error test failures : 477

Number of nonlinear iterations : 5524

Number of nonlinear convergence failures : 0
```

Solver options:

Solver : IDA (BDF)
Maximal order : 5

Suppressed algebr. variables : False Tolerances (absolute) : 1e-08 Tolerances (relative) : 1e-08

- Reference solution v from Radau5 with ATOL=RTOL=1e-12
- Compare with the various IDA solutions \hat{v} , all with AT0L=RT0L=1e-6
- Compute relative error as function of time for each variable kind:

$$e_v(t) = \left| \left| \frac{v(t) - \hat{v}(t)}{v(t) + \epsilon_{\mathsf{mach}}} \right| \right|_{\infty}, \quad \forall v \in \{\dot{x}, x, y\}$$

Variable kind errors

Variable kind errors

Can we conclude that ODE formulation is superior for simulation?

Commutativity

- Last time: Does BLT and fixed-step collocation commute?
- Consider single integration step of

$$\begin{aligned} \dot{x} &= f(x, y, u) \\ y &= g(x, u), \end{aligned} \tag{1}$$

and

$$\dot{x} = f(x, g(x, u), u) \tag{2}$$

Commutativity

Explicit DAE:

$$\dot{x}_k = f(x_k, y_k, u_k),\tag{3a}$$

$$y_k = g(x_k, u_k), (3b)$$

$$\dot{x}_k = \frac{1}{h} \cdot \sum_{n=0}^{n_c} \alpha_{n,k} x_n,\tag{3c}$$

$$\forall k \in [1..n_c] \tag{3d}$$

Explicit ODE:

$$\dot{x}_k = f(x_k, g(x_k, u_k), u_k), \tag{4a}$$

$$\dot{x}_k = \frac{1}{h} \cdot \sum_{n=0}^{n_c} \alpha_{n,k} x_n,\tag{4b}$$

$$\forall k \in [1..n_c] \tag{4c}$$

Clearly commutative?

Dynamic optimization

minimize
$$\phi(t_0,t_f,\boldsymbol{z}_T,\boldsymbol{p}) + \int_{t_0}^{t_f} L(t,\boldsymbol{z}(t),\boldsymbol{z}_T,\boldsymbol{p}) \,\mathrm{d}t \qquad (5a)$$
 with respect to
$$\boldsymbol{x}: [t_0,t_f] \to \mathbb{R}^{n_x}, \quad \boldsymbol{y}: [t_0,t_f] \to \mathbb{R}^{n_y}, \quad \boldsymbol{u}: [t_0,t_f] \to \mathbb{R}^{n_u}$$
 subject to
$$\boldsymbol{F}(t,\boldsymbol{z}(t),\boldsymbol{p}) = \boldsymbol{0}, \qquad \boldsymbol{F}_0(t_0,\boldsymbol{z}(t_0),\boldsymbol{p}) = \boldsymbol{0} \qquad (5b)$$

$$\boldsymbol{z}_L \leq \boldsymbol{z}(t) \leq \boldsymbol{z}_U, \qquad \boldsymbol{p}_L \leq \boldsymbol{p} \leq \boldsymbol{p}_U \qquad (5c)$$

$$\boldsymbol{g}_e(t_0,t_f,t,\boldsymbol{z}(t),\boldsymbol{z}_T,\boldsymbol{p}) = \boldsymbol{0}, \quad \boldsymbol{g}_i(t_0,t_f,t,\boldsymbol{z}(t),\boldsymbol{z}_T,\boldsymbol{p}) \leq \boldsymbol{0} \qquad (5d)$$

$$\boldsymbol{G}_e(t_0,t_f,\boldsymbol{z}_T,\boldsymbol{p}) = \boldsymbol{0}, \qquad \boldsymbol{G}_i(t_0,t_f,\boldsymbol{z}_T,\boldsymbol{p}) \leq \boldsymbol{0} \qquad (5e)$$

$$\forall t \in [t_0,t_f]$$