facebook

fastText

a library for efficient text classification and word representation

Piotr Bojanowski

November 23th, 2016

Collaborators

Edouard Grave

Armand Joulin

Piotr Bojanowski

Tomáš Mikolov

Scientific context

Representing words as vectors

[Mikolov et al. 2013]

Distributed Representations of Words and Phrases and their Compositionality Efficient Estimation of Word Representations in Vector Space

- Several drawbacks:
 - No sentence representations

Taking the average pre-trained word vector is popular But does not work very well...

Not exploiting morphology

Words with same radicals don't share parameters

disastrous / disaster

mangera / mangerai

• Bleeding simple and fast -> widely used

Goal of the library

- Unified framework for
 - 1. Text representation
 - 2. Text classification
- Core of the library: given a set of indices —> predict an index
- cbow, skip-gram and bow text classification are instances of this model

Two main applications

Text classification

fenomeno inter is an italian sports magazine entirely dedicated to the football club football club internazionale milano . it is released on a monthly basis . it features articles posters and photos of inter players including both the first team players and the youth system kids as well as club employees . it also feature anecdotes and famous episodes from the club 's history .

Written Work

• Word representation (with character-level features)

Background knowledge

The skip-gram and cbow models of word2vec

The cbow and skipgram models

[Mikolov et al. 2013]

The skip-gram model

Model probability of a context word given a word

feature for word w: x_w classifier for word c: v_c

$$p(c|w) = \frac{e^{x_w^{\top} v_c}}{\sum_{k=1}^{K} e^{x_w^{\top} v_k}}$$

• Word vectors $x_w \in \mathbb{R}^d$

Background: the skip-gram model

• Minimize a negative log likelihood:

a stream of words:
$$(w_1, \ldots, w_t, \ldots, w_T)$$

$$\min_{x,v} \ -\sum_{t=1}^{T} \sum_{c \in \mathcal{C}_t} \log \frac{e^{x_{w_t}^\top v_c}}{\sum_{k=1}^{K} e^{x_{w_t}^\top v_k}} \text{ Computationally intensive!}$$

• The above sum hides co-occurrence counts

Approximations to the loss

- Replace the multiclass loss by a set of binary logistic losses
- Negative sampling

$$\log(1 + e^{-x_{w_t}^{\top} v_c}) + \sum_{n \in \mathcal{N}_c} \log(1 + e^{x_{w_t}^{\top} v_n})$$

Hierarchical softmax

class c represented by set of codes y_{ck} Huffman tree to generate codes frequent classes: short codes

$$\sum_{k \in \mathcal{K}_c} \log(1 + e^{y_{ck} \ x_{w_t}^\top v_k})$$

The cbow model

• Model probability of a word given a context

feature for context C: h_C classifier for word w: v_w

$$p(w|\mathcal{C}) = \frac{e^{h_{\mathcal{C}}^{\top} v_w}}{\sum_{k=1}^{K} e^{h_{\mathcal{C}}^{\top} v_k}}$$

Continuous Bag Of Words

$$h_{\mathcal{C}} = \sum_{c \in \mathcal{C}} x_c$$

fasttext

- Both models are instances of a broader set of models
- Different input and output dictionaries
- Common core but different pooling strategies
- Efficient and modular C++ implementation
- Allows easy building of extensions by writing own pooling

Bag of Tricks for Efficient Text Classification

Fast text classification

• BoW model on text classification and tag prediction

Starsmith (born Finlay Dow-Smith 8 July 1988 Bromley England) is a British songwriter producer remixer and DJ. He studied a classical music degree at the University of Surrey majoring in performance on saxophone. He has already received acclaim for the remixes he has created for Lady Gaga Robyn Timbaland Katy Perry Little Boots Passion Pit Paloma Faith Marina and the Diamonds and Frankmusik amongst many others.

Rikkavesi is a medium-sized lake in eastern Finland. At approximately 63 square kilometres (24 sq mi) it is the 66th largest lake in Finland. Rikkavesi is situated in the municipalities of Kaavi Outokumpu and Tuusniemi.Rikkavesi is 101 metres (331 ft) above the sea level. Kaavinjärvi and Rikkavesi are connected by the Kaavinkoski Canal. Ohtaans strait flows from Rikkavesi to Juojärvi.

- A very strong (and fast) baseline, often on-par with SOTA approaches
- Ease of use is at the core of the library
 - ./fasttext supervised -input data/dbpedia.train -output data/dbpedia
 - ./fasttext test data/dbpedia.bin data/dbpedia.test

Model

• Model probability of a label given a paragraph

feature for paragraph \mathcal{P} : $h_{\mathcal{P}}$ classifier for label l: v_l

$$p(l|\mathcal{P}) = rac{e^{h_{\mathcal{P}}^{ op}v_l}}{\sum_{k=1}^{K} e^{h_{\mathcal{P}}^{ op}v_k}}$$

• Paragraph feature

$$h_{\mathcal{P}} = \sum_{w \in \mathcal{P}} x_w$$

- Word vectors are latent and not useful per se
- If scarce supervised data, use pre-trained word vectors

n-grams

• Possible to add higher-order features

I could listen to every track every minute of every day.

Avoid building n-gram dictionary

1-gram dictionary

Sentiment analysis - performance

Model	AG	Sogou	DBP	Yelp P.	Yelp F.	Yah. A.	Amz. F.	Amz. P.
BoW (Zhang et al., 2015)	88.8	92.9	96.6	92.2	58.0	68.9	54.6	90.4
ngrams (Zhang et al., 2015)	92.0	97.1	98.6	95.6	56.3	68.5	54.3	92.0
ngrams TFIDF (Zhang et al., 2015)	92.4	97.2	98.7	95.4	54.8	68.5	52.4	91.5
char-CNN (Zhang and LeCun, 2015)	87.2	95.1	98.3	94.7	62.0	71.2	59.5	94.5
char-CRNN (Xiao and Cho, 2016)	91.4	95.2	98.6	94.5	61.8	71.7	59.2	94.1
VDCNN (Conneau et al., 2016)	91.3	96.8	98.7	95.7	64.7	73.4	63.0	95.7
fastText, h = 10	91.5	93.9	98.1	93.8	60.4	72.0	55.8	91.2
fastText, h = 10, bigram	92.5	96.8	98.6	95.7	63.9	72.3	60.2	94.6

Table 1: Test accuracy [%] on sentiment datasets. FastText has been run with the same parameters for all the datasets. It has 10 hidden units and we evaluate it with and without bigrams. For char-CNN, we show the best reported numbers without data augmentation.

Sentiment analysis - runtime

	Zhang and LeCun (2015)		Con	neau et al. (2	fastText	
	small char-CNN	big char-CNN	depth=9	depth=17	depth=29	h = 10, bigram
AG	1h	3h	24m	37m	51m	1s
Sogou	-	-	25m	41m	56m	7s
DBpedia	2h	5h	27m	44m	1h	2s
Yelp P.	-	-	28m	43m	1h09	3s
Yelp F.	-	-	29m	45m	1h12	4s
Yah. A.	8h	1d	1h	1h33	2h	5s
Amz. F.	2d	5d	2h45	4h20	7h	9 _S
Amz. P.	2d	5d	2h45	4h25	7h	10s

Table 2: Training time for a single epoch on sentiment analysis datasets compared to char-CNN and VDCNN.

Tag prediction

- Using Flickr Data
- Given an image caption
- Predict the most likely tag
- Sample outputs:

Input	Prediction
taiyoucon 2011 digitals: individuals digital photos from the anime convention taiyoucon 2011 in mesa, arizona. if you know the model and/or the character, please comment.	#cosplay
2012 twin cities pride 2012 twin cities pride parade	#minneapolis
beagle enjoys the snowfall	#snow

Model	prec@1	Runnin	Running time		
Model	precei	Train	Test		
Freq. baseline	2.2	-	-		
Tagspace, $h = 50$	30.1	3h8	6h		
Tagspace, $h = 200$	35.6	5h32	15h		
fastText, h = 50	31.2	6m40	48s		
fastText, $h = 50$, bigram	36.7	7m47	50s		
fastText, h = 200	41.1	10m34	1m29		
fastText, h = 200, bigran	n 46.1	13m38	1m37		

Table 5: Prec@1 on the test set for tag prediction on YFCC100M. We also report the training time and test time. Test time is reported for a single thread, while training uses 20 threads for both models.

Enriching Word Vectors with Sub-word Information

Exploiting sub-word information

- Represent words as sum of its character n-grams
 - We add special positional characters:
 - All ending n-grams have special meaning

^mangerai\$

• Grammatical variations still share most of n-grams

	Singular	Plural	Polish
Nominative	uniwersytet	uniwersytety	187
Genetive	uniwersytetu	uniwersytetów	Oeclension .
Dative	uniwersytetowi	uniwersytetom	(eg)
Accusative	uniwersytet	uniwersytety	186
Instrumental	uniwersytetem	uniwersytetami	
Locative	uniwersytecie	uniwersytetach	•
Vocative	uniwersytecie	uniwersytety	

Compound nouns are easy to model

Tisch

Tennis

Tischtennis

Model

• As in skip-gram: model probability of a context word given a word

classifier for word
$$c$$
: v_c
$$p(c|w) = \frac{e^{h_w^\top v_c}}{\sum_{k=1}^K e^{h_w^\top v_k}}$$

• Feature of a word computed using n-grams:

$$h_w = \sum_{g \in w} x_g$$
 $\max_{\substack{\mathsf{man \, ang} \\ \mathsf{nge \, ger \, rai \, nger}}}^{\mathsf{man \, ang}} + \max_{\substack{\mathsf{man \, gerai} \\ \mathsf{nge \, ger \, rai \, nger}}}^{\mathsf{man \, ang}}$ Word itself

• As for the previous model, use hashing for n-grams

OOV words

Possible to build vectors for unseen words!

$$h_w = \sum_{g \in w} x_g$$
 man ang erai gera gera man ang gera nge ger rai nger Mord itself

• Evaluated in our experiments vs. word2vec

Word similarity

- Given pairs of words
- Human judgement of similarity
- Similarity given vectors

$$s(w_1, w_2) = \frac{x_{w_1}^\top x_{w_2}}{\|x_{w_1}\|_2 \|x_{w_2}\|_2}$$

- Spearman's rank correlation
- Works well for rare words and morphologically rich languages!

		sg	cbow	ours*	ours
AR	WS353	51	52	54	55
	Gur350	61	62	64	70
DE	Gur65	78	78	81	81
	ZG222	35	38	41	44
En	RW	43	43	46	47
En	WS353	72	73	71	71
Es	WS353	57	58	58	59
FR	RG65	70	69	75	75
Ro	WS353	48	52	51	54
RU	НЈ	59	60	60	66

Word analogies

• Given triplets of words:

Paris \mapsto France / Warsaw \mapsto ?

- Predict the analogy
- Evaluated using accuracy
- Works well for syntactic analogies
- Does not degrade semantic much

		sg	cbow	ours
Cs	Semantic	25.7	27.6	27.5
	Syntactic	52.8	55.0	77.8
DE	Semantic	66.5	66.8	62.3
	Syntactic	44.5	45.0	56.4
En	Semantic	78.5	78.2	77.8
	Syntactic	70.1	69.9	74.9
IT	Semantic	52.3	54.7	52.3
	Syntactic	51.5	51.8	62.7

Comparison to state-of-the-art methods

	DE		En	En		FR
	Gur350	ZG222	WS353	RW	WS353	RG65
Luong et al. (2013)	-	-	64	34	-	-
Qiu et al. (2014)	-	-	65	33	-	-
Soricut and Och (2015)	64	22	71	42	47	67
Ours	73	43	73	48	54	69
Botha and Blunsom (2014)	56	25	39	30	28	45
Ours	66	34	54	41	49	52

Qualitative results

query	tiling	tech-rich	english-born	micromanaging	eateries	dendritic
ours	tile flooring	tech-dominated tech-heavy	british-born polish-born	micromanage micromanaged	restaurants eaterie	dendrite dendrites
skipgram	bookcases built-ins	technology-heavy .ixic	most-capped ex-scotland	defang internalise	restaurants delis	epithelial p53

Table 6: Nearest neighbors of rare words using our representations and skipgram. These hand picked examples are for illustration.

Conclusion

fasttext is open source

- Available on Github
 - After 4 months:
 - > 5500 stars!
 - 1.3k members FB group
- Featured in "popular" press
- C++ code
- Bash scripts as examples
- Very simple usage
- Several OS projects
 Python wrapper
 Docker files

Questions

facebook