Mathematics I (BSM 101)

Manju Subedi

Gandaki University Bachelor in Information Technology(BIT) BSM 101

man ju subedi. 061@gmail.com

February 17, 2023

Indefinite Intergrals

Common Integrals

- $\int \sec x \tan x dx = \sec x + C$
- $\int \csc x \cot x dx = -\csc x + C$
- $\int \sec x dx = \ln|\sec x + \tan x| + C$

Definite Integrals

The Fundamental Theorem of Calculus:

If the function f(x) is continuous on the interval $a \le x \le b$, then

$$\int_{a}^{b} f(x)dx = F(b) - F(a)$$

where F(x) is any antiderivative of f(x) on $a \le x \le b$.

FIGURE 5.3 The region under the curve y = f(x) over the interval $a \le x \le b$.

Rules for Definite Integrals

Let f and g be any functions continuous on $a \leq x \leq b$. Then,

- Constant multiple rule: $\int_a^b kf(x)dx = k \int_a^b f(x)dx$ for constant k
- Sum rule: $\int_a^b [f(x) + g(x)]dx = \int_a^b f(x)dx + \int_a^b g(x)dx$
- Difference rule: $\int_a^b [f(x) g(x)] dx = \int_a^b f(x) dx \int_a^b g(x) dx$

- Subdivision rule: $\int_a^b f(x)dx = \int_a^c f(x)dx + \int_c^b f(x)dx$

Example

1. Use the fundamental theorem of calculus to find the area of the region under the line y = 2x + 1 over the interval $1 \le x \le 3$.

Solution

Since f(x) = 2x + 1 satisfies $f(x) \ge 0$ on the interval $1 \le x \le 3$, the area is given by the definite integral

$$A = \int_1^3 (2x+1)dx$$

. Since an antiderivative of f(x) = 2x + 1 is $F(x) = x^2 + x$, the fundamental theorem of calculus tells us that

$$A = \int_{1}^{3} (2x+1)dx = x^{2} + x|_{1}^{3}$$
$$= [(3)^{2} + (3)] - [(1)^{2} + (1)] = 10$$

Example

2. Evaluate $\int_1^4 \left(\frac{1}{x} - x^2\right) dx$

Solution

An antiderivative of $f(x) = \frac{1}{x} - x^2$ is $F(x) = \ln|x| - \frac{1}{3}x^3$, so we have

$$\int_{1}^{4} \left(\frac{1}{x} - x^{2}\right) dx = \left(\ln|x| - \frac{1}{3}x^{3}\right)\Big|_{1}^{4}$$

$$= \left[\ln 4 - \frac{1}{3}(4)^{3}\right] - \left[\ln 1 - \frac{1}{3}(1)^{3}\right]$$

$$= \ln 4 - 21 \approx -19.6137$$

Evaluate $\int_0^1 8x (x^2 + 1)^3 dx$

Solution: The integrand is a product in which one factor 8x is a constant multiple of the derivative of an expression $x^2 + 1$ that appears in the other factor. This suggests that you let $u = x^2 + 1$. Then du = 2xdx, and so

$$\int 8x (x^2 + 1)^3 dx = \int 4u^3 du = u^4$$

The limits of integration, 0 and 1, refer to the variable x and not to u. You can, therefore, proceed in one of two ways. Either you can rewrite the antiderivative in terms of x, or you can find the values of u that correspond to x=0 and x=1. If you choose the first alternative, you find that

$$\int 8x (x^2 + 1)^3 dx = u^4 = (x^2 + 1)^4$$

and so
$$\int_0^1 8x (x^2 + 1)^3 dx = (x^2 + 1)^4 \Big|_0^1 = 16 - 1 = 15$$

Example Continue

If you choose the second alternative, use the fact that $u = x^2 + 1$ to conclude that u = 1 when x = 0 and u = 2 when x = 1. Hence,

$$\int_0^1 8x \left(x^2 + 1\right)^3 dx = \int_1^2 4u^3 du = \left|u^4\right|^2 = 16 - 1 = 15$$

Classwork

1. Evaluate $\int_{1/4}^{2} \left(\frac{\ln x}{x}\right) dx$.

KEEP CALM AND DON'T HESITATE TO ASK QUESTIONS

The Improper Integral

If f(x) is continuous for $x \geq a$, then

$$\int_{a}^{+\infty} f(x)dx = \lim_{N \to +\infty} \int_{a}^{N} f(x)dx$$

If the limit exists, the improper integral is said to converge to the value of the limit. If the limit does not exist, the improper integral diverges.

Example 1: Evaluate the improper integral

$$\int_{1}^{+\infty} \frac{1}{x^2} dx$$

Solution: First compute the integral from 1 to N and then let N approach infinity.

$$\int_1^{+\infty} \frac{1}{x^2} dx = \lim_{N \to +\infty} \int_1^N \frac{1}{x^2} dx = \lim_{N \to +\infty} \left(-\left. \frac{1}{x} \right|_1^N \right) = \lim_{N \to +\infty} \left(-\frac{1}{N} + 1 \right)$$

Thank You