SC201 Lecture 10

$$W = \begin{bmatrix} W_1 \\ W_2 \\ \vdots \\ W_{nf} \end{bmatrix}_{n \times 1} \qquad X = \begin{bmatrix} X_{11} & X_{21} & & X_{m1} \\ X_{12} & X_{22} & & X_{m2} \\ \vdots & \vdots & & \vdots \\ X_{1n} & X_{2n} & & X_{m3} \end{bmatrix}_{n \times m} \qquad Y = [y_1, y_2 \dots y_m]_{1 \times m}$$

$$W.T =$$

Fowardprop

$$K = W.T.dot(X) + b$$

$$H = 1/(1+np.exp(-k))$$

$$L = -(Y*np.log(H)+(1-Y)*np.log(1-H))$$

$$J = \frac{1}{m} * np.sum(L)$$

Backprop
$$W = W - \alpha \frac{dJ}{dW}$$
 $b = b - \alpha \frac{dJ}{db}$

$$\frac{dJ}{dW} =$$

$$\frac{dJ}{dH} =$$

$$\frac{dH}{dK} =$$

$$\frac{dK}{dW} =$$

titanic_batch_gradient_descent.py

def main():

classifier = h.fit(X,Y)

____ = W.T.dot(X)+b

predictions = _____

acc = _____

num_acc = ____(acc)

def batch_gradient_descent():

print('Acc:', num acc/m)

n, m = X.shape

w = ____

b = ____

for epoch in range(NUM_epochs):

$$K = W.T.dot(X)+b$$

$$H = 1/(1+np.exp(-k))$$

$$L = -(Y*np.log(H)+(1-Y)*np.log(1-H))$$

$$J = \frac{1}{m}*np.sum(L)$$
Fowardprop

if epoch% 1000 == 0:

W = W - alpha * dJ_dW W = W - ALPHA * ($(\frac{1}{m})$ * np.sum(X.dot((H-Y).T), axis=1, keepdims = True)) # b = b - alpha * dJ_db b = b - ALPHA * ($(\frac{1}{m})$ * np.sum(H-Y))

return W, b

<SGD> Stochastic Gradient Descent

- Update weights on _____
- Easy to _____
- ____updates
- W = ____

< MBGD > Mini-Batch Gradient Descent

- Update weights on _____
- W = ____

<BGD> Batch Gradient Descent

- Update weights on _____
- Never Overfit
- _____updates
- W = ____

 X_{11} X_{12} W_1 X_{13} W_2 X_{14} W_3 X_{14} W_4 X_{15} W_5 X_{16} W_6

stanCode

Activation Functions

• In order to create ________,

we need _____ such that NN can learn

____ in data!

① Sigmoid

gradient at high/low values

(2) tanh

③ ReLU

No small gradient

<Fowardprop>

 \mathbf{f}_1

 \mathbf{f}_2

 \mathbf{f}_3

 \mathbf{f}_4