Chapitre 2 : Suites arithmético-géométriques

Exercice d'introduction

Le 1er janvier 2012, on a placé 5 000 euros à intérêts composés au taux annuel de 4 %. (Cela signifie que les intérêts ajoutés au capital chaque nouvelle année sont égaux à 4% du capital de l'année précédente).

Chaque premier janvier, on place 200 euros supplémentaires sur ce compte.

On note $C_0 = 5000$ le capital disponible au premier janvier de l'année 2012 et C_n le capital disponible au 1er janvier de lannée 2012 + n.

- 1) Calculer les valeurs exactes de C_1 et C_2 .
- **2)** Justifier que pour tout entier n, $C_{n+1} = 1$, $04C_n + 200$.
- 3) Justifier que la suite (C_n) n'est ni arithmétique, ni géométrique.
- **4)** Pour tout entier n, on pose $v_n = C_n + 5000$.
- (a) Calculer v_0 .
- **(b)** Montrer que (v_n) est une suite géométrique.
- (c) En déduire l'expression de v_n en fonction de n puis de C_n en fonction de n.
 - 5) Calculer le capital disponible à la fin de l'année 2020 arrondie à l'euro près.
- **6)** Quel nombre minimal d'années devra-t-on attendre pour que le capital disponible dépasse 10 000 euros ?

Déterminer la limite d'une suite

Exercice 1

Soient (u_n) et (v_n) les suites définies sur \mathbb{N} par $u_{n+1} = 0$, $8u_n + 24$ et $v_n = 2 \times 0$, $4^n + 10$.

- (a) Sur la calculatrice, représenter graphiquement la suite (u_n) puis conjecturer la limite de cette suite.
- (b) Sur la calculatrice, représenter graphiquement la suite (v_n) puis conjecturer la limite de cette suite.

Exercice 2

Déterminer la limite des suites suivantes.

- (a) u_n définie par $u_n = 2n 1$
- **(b)** v_n définie par $v_n = -n^3 + 5$
- (c) w_n définie par $w_n = \frac{-2}{7 + \sqrt{n}}$
- **(d)** z_n définie par $z_n = -3 + \frac{3}{n-1}$

Exercice 3

Choisir la ou les bonnes réponses.

- **1.** La suite (u_n) définie par $u_n = n^2 + n$ a pour limite :
- **b** -∞. **c** 0. **d** 2.

- **2.** La suite (u_n) définie par $u_n = \frac{1}{5 + \sqrt{n}}$ a pour limite :
- **a** +∞.
- $b-\infty$. C 0. $d-\frac{1}{5}$.

- **3.** La suite (u_n) définie par $u_n = -n + \frac{1}{n}$ a pour limite : **2)** En déduire la limite de la suite (v_n) .

- $\mathbf{b} \infty$. $\mathbf{c} 0$. $\mathbf{d} \frac{1}{2}$.

Exercice 4

Déterminer la limite des suites suivantes.

- (a) u_n définie par $u_n = 7 3n$
- **(b)** v_n définie par $v_n = 9 \frac{2}{n+1}$
- (c) w_n définie par $w_n = \left(n + \frac{1}{n}\right) \times \left(\frac{1}{n^4} - 5\right)$
- (d) z_n définie par $z_n = \frac{3+n}{2+a^{-n}}$

Exercice 5

Déterminer la limite des suites suivantes.

- (a) u_n définie par $u_n = \left(-5 + \frac{1}{n}\right)^2$
- **(b)** v_n définie par $v_n = \frac{1}{1 2n^2}$
- (c) w_n définie par $w_n = \frac{-6}{2 + e^{-n}}$ (d) z_n définie par $z_n = (e^n + 1)(-3 + e^{-n})$

Exercice 6

Déterminer la limite des suites (u_n) et (v_n) .

- **1)** Pour tout $n \in \mathbb{N}$, $u_n \ge n^2$.
- **2)** Pour tout $n \in \mathbb{N}$, $v_n \leq -e^n$.

Exercice 7

Soit (u_n) la suite définie pour tout $n \in \mathbb{N}$ par $u_n = \sqrt{3n+1}$.

- **1)** Montrer que pour tout $n \in \mathbb{N}$, $u_n > \sqrt{n}$.
- 2) En déduire la limite de la suite (u_n) .

Exercice 8

Soit (v_n) la suite définie pour tout $n \in \mathbb{N}$ $par v_n = -n - sin(n).$

- **1)** Montrer que pour tout $n \in \mathbb{N}$, $v_n \leq -n+1$.

Exercice 9

Soit (w_n) la suite définie pour tout $n \in \mathbb{N}^*$ par $2 - \frac{1}{n} \le w_n \le 2 + \frac{4}{n+1}$.

Déterminer la limite de la suite (w_n) en utilisant le théorème des gendarmes.

Exercice 10

Soit (z_n) la suite définie pour tout $n \in \mathbb{N}^*$ $par z_n = -5 + \frac{cos(n)}{n^2}.$

Déterminer la limite de la suite (z_n) en utilisant le théorème des gendarmes.

Exercice 11

Soit (u_n) la suite définie pour tout $n \in \mathbb{N}^*$ par $u_n = 4 + \frac{(-1)^n}{\sqrt{n}}$

Déterminer la limite de la suite (u_n) .

Exercice 12

Les affirmations suivantes sont-elles vraies ou fausses.

- 1. La suite géométrique de raison 10 et de premier terme – 1 a pour limite $+\infty$. 2. La suite géométrique de raison 2 et de premier terme 1 a pour limite $+\infty$.
- 3. La suite géométrique de raison $\frac{1}{2}$ et de premier terme 2 a pour limite 2.2
- 4. La suite géométrique de raison 0,25 et de premier terme – 1 a pour limite 0.

Exercice 17

Exercice 15

Exercice 16

Soit (u_n) la suite géométrique de raison $\frac{1}{3}$ et de premier terme $u_0 = 9$. 1) Exprimer la somme suivante en fonction

Soit (u_n) une suite telle que pour tout

Soit (a_n) la suite définie par $a_0 = -1$ et

Déterminer la limite de la suite (u_n) .

entier naturel n, $0 \le 2 + u_n \le 0$, 3^n .

pour tout $n \in \mathbb{N}$, $a_{n+1} = a_n + 0$, $5a_n$. 1) Déterminer la nature de la suite (a_n) . **2)** Déterminer la limite de la suite (a_n) .

de $n: S_n = u_0 + u_1 + u_2 + ... + u_n$

2) Déterminer la limite de la somme S_n guand n tend vers $+\infty$.

Exercice 13

Déterminer la limite des suites suivantes.

- (a) u_n définie par $u_n = 4 3^n$
- **(b)** v_n définie par $v_n = -2 \times 0, 5^n$
- (c) w_n définie par $w_n = 4 \times \left(1 + \frac{5}{100}\right)^n$
- (d) z_n définie par $z_n = 5\sqrt{2}^n$

Exercice 14

En 2015, on estime à 3 200 le nombre de tigres sauvages dans le monde. On peut craindre que ce nombre continue dans les années à venir à diminuer de 3 % par an.

Pour tout entier naturel n, on note T_n le nombre de tigres sauvages en lan 2015 + n selon ce modèle.

- 1) Déterminer lexpression de T_{n+1} en fonction de T_n , pour tout entier naturel n.
- **2)** Quelle est la nature de la suite (T_n) ? En déduire lexpression de T_n en fonction de *n* pour tout entier naturel *n*.
- **3)** Quelle est la limite de T_n quand n tend vers $+\infty$?
- **4)** Que peut-on en conclure?

Exercice 18

Soit (v_n) la suite géométrique de raison $\frac{1}{2}$ et de premier terme $v_0 = -10$. On note S_n la somme des n premiers termes

de la suite (v_n) .

- 1) Donner l'expressions de S_n en fonction de *n*.
- 2) Déterminer la limite de la somme S_n quand *n* tend vers $+\infty$.

Exercice 19

Soit (w_n) la suite géométrique de raison $\frac{1}{4}$ et de premier terme $v_0 = 4$.

Ön note S_n la somme des n premiers termes de la suite (w_n) .

- 1) Donner l'expressions de S_n en fonction de *n*.
- Déterminer la limite de la somme S_n quand *n* tend vers $+\infty$.