f''(x) > 0. Точки перегиба суть те ее точки, при переходе через которые f''(x) меняет знак.

Из этой теоремы мы путем рассуждений, аналогичных приведенным раньше рассуждениям [58], получаем правило нахождения точек перегиба кривой: чтобы найти точки перегиба кривой, надо определить те значения x, при которых f''(x) обращается в нуль или не существует, и исследовать изменение знака f''(x) при переходе через эти значения x, пользуясь следующей таблицей:

	точка перегиба		нет точки перегиба	
f''(x)	+-	-+		++
	вогн. вып.	вып. вогн.	выпукл.	вогн.

Наиболее естественное представление об искривлении кривой мы получим, если будем следить за ихменением угла α , составляемого касательной с осью OX при движении по кривой. Из двух дуг одинаковой дании Δ с та дуга будет более искриваема.

наковой длины Δs та дуга будет более искривлена, для которой касательная повернется на больший угол, т.е. для которой приращение $\Delta \alpha$ будет больше. Эти соображения приводят нас к понятию о средней кривизне Δs и о кривизне в данной точке: средней кривизной дуги Δs называется абсолютная величина отношения угла $\Delta \alpha$ между

Рис. 77.

касательными в концах этой дуги к длине Δs дуги. Предел этого отношения при стремлении Δs к нулю называется кривизной кривой в данной точке (рис. 77).

Таким образом, для кривизны ${\cal C}$ мы получаем выражение:

$$C = \left| \frac{d\alpha}{dS} \right|$$
.

Ho tg α есть первая производная y', т.е.

$$\alpha = \operatorname{arctg} y',$$

откуда, дифференцируя по x сложную функцию $\operatorname{arctg} y'$:

$$d\alpha = \frac{y''}{1 + y'^2} dx.$$

Как мы только что показали

$$ds = \pm \sqrt{1 + y'^2} dx.$$

Деля $d\alpha$ на ds, получим окончательно выражение для кривизны

$$C = \pm \frac{y''}{(1+y'^2)^{3/2}}. (5)$$