Matrix theory - Assignment 11

Shreeprasad Bhat AI20MTECH14011

Abstract—This document illustrates isomorphism properties of linear transformations

Download latex-tikz from

https://github.com/shreeprasadbhat/matrix-theory/blob/master/assignment11/

1 Problem

Let V and W be finite-dimensional vector spaces over the field F and let U be an isomorphism of V and W. Prove that $T \to UTU^{-1}$ is an isomorphism of L(V, V) onto L(W, W).

2 Definitions

linear transformation	Let V and W be vector spaces over field F . A linear transformation V into W is a function T from V into W such that $T(c\alpha + \beta) = c(T\alpha) + T\beta$ for all α and β in V and all scalars in c in F .
isomorphism	If V and W are vector spaces over the field F , any $one-one$ linear transformation $T:V\to W$ is called isormorphism of V onto W
one-one	A linear transformation $T: \mathbb{R}^n \to \mathbb{R}^m$ is said to be one-one if for every $\mathbf{b} \in \mathbb{R}^m$, $\mathbf{AX} = \mathbf{b}$ has atmost one solution in \mathbb{R}^n .
	Equivalently, if $T(\mathbf{u}) = T(\mathbf{v})$, then $u = v$.
	By definition, all <i>invertible</i> transformations are one-one
invertible	A linear transformation $T: V \to W$ is invertible if there exists another linear transformation $U: W \to V$ such that UT is the <i>identity</i> transformation on V and TU is the identity transformation on W . T is invertible if and only if T is $one - one$ and $onto$

Given,

$$\mathcal{T}(T): T \to UTU^{-1} \tag{3.0.1}$$

where U is isomorphism of V onto W and,

$$\mathcal{T}: L(V, V) \to L(W, W) \tag{3.0.2}$$

We have to prove \mathcal{T} is isomorphism of L(V, V) onto L(W, W). i.e it is same as proving \mathcal{T} is invertible, because isomorphim \implies one – one \implies invertible by definition.

Consider inverse transformation of (3.0.1)

$$S: L(W, W) \to L(V, V) \tag{3.0.3}$$

$$S: S \to U^{-1}SU \tag{3.0.4}$$

where $U^{-1}SU$ is a composition of 3 linear transformations

$$V \xrightarrow{U} W \xrightarrow{S} W \xrightarrow{U^{-1}} V$$
 (3.0.5)

Now consider $S(UTU^{-1})$,

$$S(UTU^{-1}) = U^{-1}(UTU^{-1})U = T$$
 (3.0.6)

Similarly consider $\mathcal{T}(U^{-1}SU)$,

$$\mathcal{T}(U^{-1}SU) = U(U^{-1}SU)U^{-1} = S \tag{3.0.7}$$

From (3.0.6) and (3.0.7)

$$TS = I$$
 and $ST = I$ (3.0.8)

From (3.0.8) we can say \mathcal{T} is invertible since we have found an inverse \mathcal{S} .

Hence \mathcal{T} is one-one implies \mathcal{T} isomorphism of V onto W.

4 Example

Let

$$U = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} \tag{4.0.1}$$

here U is an isomorphism from \mathbb{R}^{2*2} to \mathbb{R}^{2*2} since inverse of U exists and

$$U^{-1} = \begin{pmatrix} -2 & -\frac{3}{2} \\ -1 & -\frac{1}{2} \end{pmatrix} \tag{4.0.2}$$

Consider

$$T = \begin{pmatrix} -1 & 2\\ 3 & 1 \end{pmatrix} \in \mathbb{R}^{2 \times 2} \tag{4.0.3}$$

Now

$$UTU^{-1} = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} \begin{pmatrix} -1 & 2 \\ 3 & 1 \end{pmatrix} \begin{pmatrix} -2 & -1 \\ -\frac{3}{2} & -\frac{1}{2} \end{pmatrix}$$
(4.0.4)

$$= \begin{pmatrix} -16 & -7 \\ -33 & -14 \end{pmatrix} \in \mathbb{R}^{2 \times 2} \tag{4.0.5}$$

1

Also inverse exists for T

$$S = T^{-1} = \begin{pmatrix} -\frac{1}{2} & \frac{2}{7} \\ \frac{3}{7} & \frac{7}{7} \end{pmatrix}$$
 (4.0.6)

Since T inverse exists $\mathcal{T}(T) = UTU^{-1}$ is an isomorphism from $\mathbb{R}^{2\times 2}$ onto $\mathbb{R}^{2\times 2}$.