MIT2020029

Ours > 1)

×	14	×-×	4-7	$(x-\overline{x})^2$	(Y-Y)2
2006	18	-2	-16-4	+	32.8
2007	25	-1	-9.4	1	9.4
2008	35	. 0	0.6	0	0
2009	43	1	8.6	1	8.6
2010	51	2	16.6	4	33.2
			+	1/10	(18)

Abo =
$$\overline{X} = 2008$$
, $\overline{y} = 34.4$
Also $y = 6x + 9$
 $6 = (y - \overline{y})^2 = (x - \overline{x})^2 = (x -$

$$9 = \hat{y} - 65c = 34.4 - (8.4 * 2008)$$

$$= -16832.8$$

(9) line of regression - 2

8 alus =
$$y = 8.4 \times 2013 - 16832.8$$

$$= 76.4$$

(2)

Our > 5)

ANDE

1 Single link clusturing - 8 In this clustering the similarity of this most

similar members. The single-link merge Criterion is local. We pay attention. Bolely to the area where 2 dusters come desist to each other.

@ Complete-link dustring-s the similarity of 2 dustres is the similarity of thin most un-similar members.

Solution -8

	IA	13	_	D	-
\triangle	0	1	2	2	3
B		0	2	4	3
\subset	1015	02/6	0	1	5
D				0	3
E	3 = 4				0

Aug link-8

Distanse b/o A and B=1 is minimum we cluster A and B @ C1.

We need to opdate the distance using the Following Formular

dA+dB 2

		CI(A,B)	C	D	E	(B)
(CI(A,B)	0	2	3	3	(3)
	C		0		5	
= 1	D	10 8 10 1	NO A	0	3	
	E	(A. A)13)	5/10004	a time	6	34.
					13	

Distanse C-D is minimum (1) Hense 2nd duster will be (C,D).

	CI(A/B)	C2((,D)	(Figure)
CI(AB)	0	2.5	3
C2(C,D)		0	4
E			0

Distance b/w dusters @ and @ = [2.5] which is minimum. Hence, we menge

	Ci(A,B,G,D)	NOF
Cr(A,B,GD)	0	3.5
E		0

Finally, we make a with E to form 1 complete clusters.

(dendogram

Distanse 6/w A and B is minimum =1. Hence we make cluster CI(A,B)

Uldate distance	(1)	C1(A,13) C1-D	E
as	CR(A,13)	0 2 4	3
max(d1, d2)	(a. \$ 183	(MA)100 1	5
2	D'	6, 10, 10	3
	E		0

Distance (Da) c and D is minimum (=1). Hence two make another duster C2(GD).

	CI(A,B)	(C2(C,D)	E
CI(A,B)	0,0	4	3
-C2(40)		0	5
8-8' E			0
		3	

Diotance b/20 G and E) is minimum. Hence We dustern them together.

	(CI(AB,E)	C2(C,D)
CI (A,B,E)	0	max (4,5)=5
c2(CID		0

finally, we merge dusture

and co form

the final dusture

C=(A,B,E,G,D)

