Clase 05

IIC2223 / IIC2224

Prof. Cristian Riveros

Outline

Problemas algorítmicos (clase anterior)

Expresiones regulares

Algunos problemas algorítmicos sobre autómatas

1. Dado un autómata \mathcal{A} , ¿cómo determinar si \mathcal{A} es trivial? $\mathcal{L}(\mathcal{A}) = \varnothing$

2. Dado autómatas
$$\mathcal{A}$$
 y \mathcal{A}' , ¿cómo saber si \mathcal{A} y \mathcal{A}' calculan lo mismo?
$$\mathcal{L}(\mathcal{A}) = \mathcal{L}(\mathcal{A}')$$

3. Dado autómatas \mathcal{A} y \mathcal{A}' , ¿cómo saber si \mathcal{A} es más restrictivo que \mathcal{A}' ? $\mathcal{L}(\mathcal{A}) \subseteq \mathcal{L}(\mathcal{A}')$

$$\mathcal{L}(\mathcal{A}) = \emptyset$$

Problema: EMPTYNESS

Input: Un NFA $\mathcal{A} = (Q, \Sigma, \Delta, I, F)$ Output: TRUE si, y solo si, $\mathcal{L}(\mathcal{A}) = \emptyset$.

¿cuál de los autómatas cumple que $\mathcal{L}(\mathcal{A}) = \emptyset$?

¿cómo podemos determinar si existe una palabra $w \in \Sigma^*$ tal que $w \in \mathcal{L}(A)$?

(ejercicio)

$$\mathcal{L}(\mathcal{A}) \subseteq \mathcal{L}(\mathcal{A}')$$

Problema: CONTAINMENT

Input: Dos NFAs $A = (Q, \Sigma, \Delta, I, F)$ y $A' = (Q', \Sigma, \Delta', I', F')$

Output: TRUE si, y solo si, $\mathcal{L}(A) \subseteq \mathcal{L}(A')$.

¿es verdad que $\mathcal{L}(\mathcal{A}) \subseteq \mathcal{L}(\mathcal{A}')$?

¿cómo determinar si $\mathcal{L}(\mathcal{A}) \subseteq \mathcal{L}(\mathcal{A}')$?

¿cómo determinar si
$$\mathcal{L}(\mathcal{A}) \subseteq \mathcal{L}(\mathcal{A}')$$
?

Dado dos autómatas $\mathcal A$ y $\mathcal A'$, tenemos que:

$$\mathcal{L}(\mathcal{A}) \subseteq \mathcal{L}(\mathcal{A}')$$
 ssi $\mathcal{L}(\mathcal{A}) \cap \mathcal{L}(\mathcal{A}')^{C} = \emptyset$

Por lo tanto, los pasos a seguir son los siguientes:

- 1. Construir un autómata \mathcal{B} tal que $\mathcal{L}(\mathcal{B}) = \mathcal{L}(\mathcal{A}')^{C}$.
- 2. Construir un autómata \mathcal{C} tal que $\mathcal{L}(\mathcal{C}) = \mathcal{L}(\mathcal{A}) \cap \mathcal{L}(\mathcal{B})$.
- 3. Usar nuestro algoritmo de EMPTYNESS para verificar si $\mathcal{L}(\mathcal{C}) = \emptyset$.

¿cuál es el tiempo de este algoritmo?

Outline

Problemas algorítmicos (clase anterior)

Expresiones regulares

Definición (Sintaxis)

R es una expresión regular sobre Σ si R es igual a:

- 1. a para alguna letra $a \in \Sigma$.
- 2. ε
- 3. ø
- 4. $(R_1 + R_2)$ donde R_1 y R_2 son expresiones regulares.
- $5. \ (\textit{R}_1 \cdot \textit{R}_2) \qquad \qquad \text{donde } \textit{R}_1 \text{ y } \textit{R}_2 \text{ son expresiones regulares}.$
- 6. (R_1^*) donde R_1 es una expresión regular.

Denotaremos como REGEX el conjunto de todas las expresiones regulares sobre Σ

Ejemplos de expresiones regulares

- (a+b)
- $((a \cdot b) \cdot c)$
- (a*)
- $(b \cdot (a^*))$
- $((a+b)^*)$
- $((a\cdot((b\cdot a)^*))+\epsilon)$
- $((a \cdot ((b \cdot a)^*)) + \emptyset)$

Para reducir la cantidad de paréntesis, se define el orden de precedencia:

- 1. estrella $(\cdot)^*$
- 2. concatenación ·
- 3. unión +

Ejemplos

Considere el alfabeto $\Sigma = \{a, b, c\}$.

- $a \cdot b + a^* = ?$
- $(a+b)\cdot c+a = ?$

Definición (Semántica)

Para $R \in \text{Regex}$ cualquiera, se define el lenguaje $\mathcal{L}(R) \subseteq \Sigma^*$ inductivamente como:

- 1. $\mathcal{L}(a) = \{a\}$ para toda letra $a \in \Sigma$.
- 2. $\mathcal{L}(\epsilon) = \{\epsilon\}.$
- 3. $\mathcal{L}(\emptyset) = \emptyset$.
- 4. $\mathcal{L}(R_1 + R_2) = \mathcal{L}(R_1) \cup \mathcal{L}(R_2)$ donde R_1 y R_2 son expresiones regulares.

Definición (Semántica)

■ Para dos lenguajes $L_1, L_2 \subseteq \Sigma^*$, se define el **producto** de L_1 y L_2 :

$$L_1 \cdot L_2 = \left\{ w_1 \cdot w_2 \mid w_1 \in L_1 \land w_2 \in L_2 \right\}$$

¿cuál es el resultado del producto de estos lenguajes?

- ${\color{red} \bullet} \; \{ \textit{a}, \textit{ab}, \epsilon \} \; \cdot \; \{ \textit{ba}, \textit{a} \}$
- $\{a\}^* \cdot \{b\}^*$
- {a}* · Ø

Definición (Semántica)

■ Para dos lenguajes $L_1, L_2 \subseteq \Sigma^*$, se define el **producto** de L_1 y L_2 :

$$L_1 \cdot L_2 = \{ w_1 \cdot w_2 \mid w_1 \in L_1 \land w_2 \in L_2 \}$$

■ Para un lenguaje $L \subseteq \Sigma^*$ se define la **potencia** a la $n \ge 0$:

$$L^n = \left\{ w_1 \cdot w_2 \cdot \ldots \cdot w_n \mid \forall i \leq n. \ w_i \in L \right\}$$

¿cuál es el resultado de la potencia de estos lenguajes?

- $[0,1]^{32}$
- $\left(\left\{ a \right\}^* \right)^4$
- $(\{a\}^*)^0$

Definición (Semántica)

■ Para dos lenguajes $L_1, L_2 \subseteq \Sigma^*$, se define el **producto** de L_1 y L_2 :

$$L_1 \cdot L_2 = \left\{ w_1 \cdot w_2 \mid w_1 \in L_1 \land w_2 \in L_2 \right\}$$

■ Para un lenguaje $L \subseteq \Sigma^*$ se define la **potencia** a la $n \ge 0$:

$$L^n = \left\{ w_1 \cdot w_2 \cdot \ldots \cdot w_n \mid \forall i \leq n. \ w_i \in L \right\}$$

■ Para un lenguaje $L \subseteq \Sigma^*$ se define la **potencia** a la 0:

$$L^0 = \{\epsilon\}$$

Definición (Semántica)

Para una expresión regular R cualquiera, se define el lenguaje $\mathcal{L}(R) \subseteq \Sigma^*$ inductivamente como:

- 1. $\mathcal{L}(a) = \{a\}$ para toda letra $a \in \Sigma$.
- 2. $\mathcal{L}(\epsilon) = \{\epsilon\}.$
- 3. $\mathcal{L}(\emptyset) = \emptyset$.
- 4. $\mathcal{L}(R_1 + R_2) = \mathcal{L}(R_1) \cup \mathcal{L}(R_2)$ donde R_1 y R_2 son expresiones regulares.
- 5. $\mathcal{L}(R_1 \cdot R_2) = \mathcal{L}(R_1) \cdot \mathcal{L}(R_2)$ donde R_1 y R_2 son expresiones regulares.
- 6. $\mathcal{L}(R_1^*) = \bigcup_{k=0}^{\infty} \mathcal{L}(R_1)^k$ donde R_1 es una expresión regular.

¿cuál es el lenguaje definido por las siguientes REGEX ?

$$\mathcal{L}((a \cdot b) \cdot (b \cdot a)) = \{abba\}$$

$$\mathcal{L}(a \cdot (b \cdot a) + b \cdot a + (a \cdot b) \cdot a) = \{aba, ba\}$$

Simplificación de expresiones regulares

Definición

- **R**₁ es equivalente a R_2 si, y solo si, $\mathcal{L}(R_1) = \mathcal{L}(R_2)$.
- Si R_1 es equivalente a R_2 , escribiremos $R_1 \equiv R_2$.

Lema

Los operadores de unión + y producto \cdot son asociativos.

$$(R_1 + R_2) + R_3 \equiv R_1 + (R_2 + R_3)$$
$$(R_1 \cdot R_2) \cdot R_3 \equiv R_1 \cdot (R_2 \cdot R_3)$$

Demostración: ejercicio.

Más ejemplos de expresiones regulares

¿cuál es el lenguaje definido por las siguientes Regex ?

- $\mathcal{L}(a^* \cdot b \cdot a^*) = \text{todas las palabras con una sola } b.$
- $\mathcal{L}((a+b)^* \cdot b \cdot (a+b)^*) = \text{todas las palabras con una o más } b$'s.

Abreviaciones útiles para expresiones regulares

Definición

Usamos las siguientes abreviaciones de expresiones regulares:

$$R^{+} \equiv R \cdot R^{*}$$

$$R^{k} \equiv R \cdot \stackrel{k}{\dots} \cdot R$$

$$R^{?} \equiv R + \epsilon$$

$$\Sigma \equiv a_{1} + \dots + a_{n}$$

 $\mathsf{para}\ R \in \mathrm{REGEX}\ \mathsf{y}\ \Sigma = \{a_1, \dots, a_n\}.$

Más ejemplos de expresiones regulares

¿cuál es el lenguaje definido por las siguientes REGEX?

- $\mathcal{L}(\Sigma^* \cdot b \cdot \Sigma^*)$ = todas las palabras con una sola b.
- $\mathcal{L}\left(b^*\cdot(a\cdot b^*)^5\right)$ = todas las palabras con 5 a's.
- $\mathcal{L}(a^* \cdot (b+c)^?)$ = todas las palabras de a's y terminadas en b o c.
- $\mathcal{L}((a \cdot b^+)^+) = \text{todas las palabras que empiezan con } a \text{ y}$ donde cada a esta seguida de al menos una b.

Más ejemplos de expresiones regulares

Defina una Regex para los siguientes lenguajes

- 1. Todas las palabras sobre $\{a, b\}$ cuya ante-penúltima letra es una a-letra.
- 2. Todas las palabras sobre $\{a, b\}$ con una cantidad par de a-letras.
- 3. Todas las palabras sobre $\{a,b\}$ con a lo mas un par de a-letras consecutivas.

Mapa actual de nuestros modelos de computación

¿son las ExpReg equivalentes a los lenguajes regulares?

Cierre de clase

En esta clase vimos:

- 1. Problemas de Emptyness y Containment.
- 2. Sintaxis y semántica formal de expresiones regulares.
- 3. Especificación de lenguajes usando expresiones regulares.

Próxima clase: NFA con ϵ -transiciones