

Rapport final

Étude sur l'état de santé des sols agricoles du Québec Sévérité de l'érosion des sols évaluée à l'aide du ¹³⁷Cs

Réalisé par : Claude BERNARD, Ph. D., chercheur associé, Institut de recherche et

de développement en agroenvironnement

Responsable du projet : Marc-Olivier GASSER, agr. Ph. D, chercheur, Institut de recherche et

de développement en agroenvironnement

Date: Septembre 2022 Projet IRDA # 810 100

Les résultats, opinions et recommandations exprimés dans ce rapport émanent des auteurs et n'engagent aucunement le ministère de l'Agriculture, des Pêcheries et de l'Alimentation.

L'Institut de recherche et de développement en agroenvironnement (IRDA) a été constitué en mars 1998 par quatre fondateurs, soit le ministère de l'Agriculture, des Pêcheries et de l'Alimentation (MAPAQ), l'Union des producteurs agricoles (UPA), le ministère de l'Environnement et de la lutte contre les changements climatiques (MELCC) et le ministère de l'Économie, de l'Innovation (MEI).

L'Institut est une corporation de recherche à but non lucratif, qui travaille chaque année sur une centaine de projets de recherche en collaboration avec de nombreux partenaires du milieu agricole et du domaine de la recherche.

Notre mission

L'IRDA a pour mission de soutenir le développement d'une agriculture durable au Québec en favorisant le recours à l'innovation et aux partenariats.

Consulter le www.irda.qc.ca pour en connaître davantage sur l'Institut et ses activités.

Partenaires

Ce projet a été réalisé grâce à un soutien financier dans le cadre de l'Accord Canada-Québec de mise en œuvre du Partenariat canadien pour l'agriculture

Ce rapport doit être cité de la manière suivante :

Bernard, C. 2022. Étude sur l'état de santé des sols agricoles du Québec - Sévérité de l'érosion des sols évaluée à l'aide du ¹³⁷Cs. 37 pages.

i

RÉSUMÉ

Dans le cadre de l'Étude sur l'état de santé des sols agricoles du Québec (EESSAQ) réalisée de 2017 à 2019, des mesures de redistribution spatiale du ¹³⁷Cs ont été utilisées pour quantifier les mouvements de sol en cours depuis quelque 60 ans. L'exercice a pu être complété pour 419 des 425 champs échantillonnés au cours de cette étude.

Des pertes de sol moyenne et médiane de 6,1 et 5,5 t ha⁻¹ an⁻¹ ont ainsi été estimées. Une perte nette moyenne de 8,3 t ha⁻¹ an⁻¹ pour 340 champs (81 %) et une redéposition nette moyenne de 3,5 t ha⁻¹ an⁻¹ pour les 79 autres champs (19%) ont été mesurées. La perte de sol considérée comme acceptable au Canada, soit 6 t ha⁻¹ an⁻¹, a été atteinte ou dépassée dans 46,5 % des champs étudiés.

On doit prendre en considération que les mesures de ¹³⁷Cs rendent compte de tous les mouvements de sol, soit l'érosion hydrique, éolienne et mécanique.

Des taux d'érosion moyenne statistiquement différents selon le matériau parental ont été notés. Les tills et les sols à texture légère présentant les plus fortes pertes de sol. Il en a été de même pour les pentes plus inclinées.

Les taux d'érosion moyenne les plus faibles pour la plaine du lac Saint-Jean et les plus élevés pour les collines des Appalaches occidentales ont été mesurés. Peu de régions se sont démarquées statistiquement, malgré des taux moyens variables.

La dispersion des données et le faible inventaire de champs n'ont pas permis de distinguer franchement les 25 groupes de sol, à quelques exceptions près.

Les champs et les points d'échantillonnage ayant été géoréférencés, il serait possible de refaire l'exercice dans une dizaine d'années, afin de mesurer la progression des processus érosifs pendant cet intervalle de temps.

TABLE DES MATIÈRES

RÉ	SUMÉ	1
TΑ	BLE DES MATIÈRES	2
1.	INTRODUCTION	3
2.	ÉROSION HYDRIQUE DES SOLS	4
	2.1 L'érosion hydrique comme processus de dégradation des sols	4
	2.2 Ampleur de l'érosion hydrique au Québec	
3.		7
	3.1 Utilisation du ¹³⁷ Cs	7
	3.2 Estimation de l'érosion à partir des mesures de ¹³⁷ Cs	
	3.3 Séries de sol étudiées	9
4.	RÉSULTATS ET DISCUSSION	. 12
	4.1 Résultats généraux	. 12
	4.2 Sites témoins vs cultivés	. 13
	4.3 Facteurs influençant les mouvements de sol mesurés	. 15
	4.3.1 Matériau parental	. 15
	4.3.2 Topographie	. 15
	4.3.3 Autres facteurs	
	4.3.4 Sols organiques	
	4.3.5 Regroupement des résultats	. 19
5.	CONCLUSIONS	
6.	RÉFÉRENCES	. 24
ΑN	INEXE. MESURE DE ¹³⁷ CS ET ESTIMATION DE L'ÉROSION DU SOL POUR LES SITE	S
	ÉTUDIÉS	. 27

1. INTRODUCTION

Les sols agricoles, tels que nous les connaissons aujourd'hui, ont mis plus de 10 000 ans à se former. À ce titre, ils doivent être considérés comme une ressource non renouvelable. Les sols à bon potentiel agricole constituent de plus une ressource rare au Québec, ne couvrant que 2,36 Mha ou 1,8 % du territoire (Lajoie, 1975). La disparition de ces sols sous l'effet de la pression urbaine, ou la perte de leur potentiel agricole à la suite de l'un ou l'autre des divers processus de dégradation, contribue donc à réduire de façon permanente ce mince capital naturel.

En plus de réduire la productivité des sols affectés, l'érosion hydrique contribue à l'émission de gaz à effet de serre et à l'entraînement de quantités importantes de polluants (matières en suspension, nutriments, pesticides, etc.) vers les eaux de surface réceptrices (FAO, 2019). Les impacts de l'érosion hydrique sont donc à la fois de nature agronomique (impacts à la ferme) et environnementale (impacts hors-ferme).

Pour ces raisons, l'évaluation de l'état d'érosion des sols agricoles a été intégrée dans l'Étude sur l'état de santé des sols agricoles du Québec (EESSAQ), dont le ministère de l'Agriculture, des Pêcheries et de l'Alimentation du Québec a confié le mandat de réalisation à l'IRDA.

Cette évaluation a été réalisée en comparant l'inventaire des sols étudiés en césium-137 (¹³⁷Cs) au niveau résiduel des retombées historiques de ce radioisotope. Cette approche permet d'estimer l'érosion totale subie par les sols agricoles depuis 1963, année du pic de retombées de ¹³⁷Cs.

2. ÉROSION HYDRIQUE DES SOLS

2.1 L'érosion hydrique comme processus de dégradation des sols

L'érosion hydrique des sols constitue un processus naturel qui contribue à former les paysages (érosion à l'échelle géologique). L'érosion devient un problème lorsque le taux d'enlèvement du sol excède de beaucoup sa capacité naturelle de régénération. On parle alors d'érosion anthropique ou accélérée.

À l'échelle du champ, l'érosion hydrique des sols est la résultante de trois processus complémentaires et interreliés :

- arrachement de particules de la masse de sol par les gouttes de pluie et les eaux de ruissellement;
- transport des particules arrachées par l'eau de ruissellement;
- redéposition d'une partie des particules transportées.

Sous l'impact des gouttes de pluie, plusieurs dizaines, voire quelques centaines de tonnes de matériel peuvent être arrachées à l'hectare. Seule une fraction de ce matériel sera effectivement transportée, en raison de la limitation de la capacité de transport du ruissellement superficiel. Par la suite, une fraction du matériel transporté se redéposera à la faveur d'obstacles physiques ou topographiques au ruissellement qui en réduisent la vélocité et la capacité de transport. Ce n'est donc qu'une fraction du sol initialement mobilisé qui sera finalement exportée hors des champs. Cet enchaînement fait de l'érosion un processus très sélectif. En effet, de nombreuses études ont démontré que le sol érodé se démarque du sol d'où il origine par un fort accroissement de sa teneur en fractions fines, en matière organique et en nutriments, ainsi que par une réduction significative de sa teneur en fractions sableuses (Bernard *et al.*, 1992; Kenimer *et al.*, 1987; Sinukaban, 1981). Cette sélectivité se traduit par un appauvrissement graduel du sol et par des charges polluantes dans les cours d'eau proportionnellement plus importantes que la perte de matériel en soi.

Divers facteurs influencent le risque d'érosion hydrique (Blanco et Lal, 2010; Wischmeier et Smith, 1978) :

- la hauteur et l'intensité des précipitations;
- la topographie (longueur, inclinaison et complexité de la pente);
- l'érodabilité intrinsèque du sol (influencée notamment par la teneur en matière organique, la granulométrie, la stabilité structurale);
- les cultures et les pratiques culturales associées;
- le recours à des pratiques de conservation.

Si certains de ces facteurs (caractéristiques des pluies, texture du sol et topographie) échappent à l'action humaine, d'autres sont fortement tributaires de celles-ci, notamment le choix des systèmes agricoles (rotations et pratiques culturales associées). Il importe également de mentionner que l'érosion du sol peut aussi être exacerbée par d'autres dégradations du sol. Ainsi,

la perte de matière organique et la dégradation de la structure du sol contribuent directement à accroître l'érodabilité de celui-ci (Blanco et Lal, 2010).

Le taux de formation naturelle du sol varie selon divers facteurs : nature du substrat, agressivité du climat, etc. Suite à la revue de 188 études, Montgomery (2007) rapporte un taux de formation du sol médian et moyen de 0,017 et 0,036 mm an⁻¹ respectivement. Considérant qu'un mm correspond à environ 12 t ha⁻¹, les taux de formation rapportés par Montgomery correspondent à environ 0,20 et 0,43 t ha⁻¹ an⁻¹ respectivement.

Certains auteurs ont proposé des limites d'érosion acceptable tenant compte du taux de formation de celui-ci. Ainsi, Verheijen *et al.* (2009) ont suggéré une perte maximale de 0,3 à 1,4 t ha⁻¹ an⁻¹ pour l'Europe, alors que Bui *et al.* (2011) avançaient une valeur de 0,20 t ha⁻¹ an⁻¹ pour l'Australie.

Aux USA, il est recommandé de ne pas excéder une perte de sol variant de 5 à 12 t ha⁻¹ an⁻¹ (Schertz, 1983). Au Canada, pour la plupart des sols, la suggestion est de 6 t ha⁻¹ an⁻¹ (Wall *et al.*, 2002).

2.2 Ampleur de l'érosion hydrique au Québec

L'importance de l'érosion hydrique au Québec a fait l'objet de quelques études. Dubé et Mailloux (1969) et Dubé (1975) rapportent les résultats des premières mesures effectuées à Cap-aux-Corbeaux (loam sablo-graveleux Charlevoix) et à Saint-Cœur-de-Marie (loam Taillon). La perte annuelle de sol variait de quelques kg ha⁻¹ sous prairie à 6 et plus de 28 t ha⁻¹ sous céréales et sol nu respectivement. De 3 à 69% de la perte de sol annuelle est survenue lors de la fonte de neige et du ruissellement printanier. Ces deux stations de mesures étaient cependant sises sur des pentes de fortes inclinaisons, avec 15% dans Charlevoix et 18% au Lac-Saint-Jean.

Kirby (1985) a mesuré, sous pluie naturelle et sur sol nu, l'érosion de parcelles situées sur quatre sites de la ferme expérimentale du Campus Macdonald à Sainte-Anne-de-Bellevue, de l'université McGill. La texture des sols variait de loam sableux à argile et l'inclinaison de la pente, de 1,2 à 26%. La période de mesure s'étendait de septembre 1983 à août 1985. La perte totale de sol a varié de 1,6 à 46,5 t ha⁻¹. La fraction nivale (due à la fonte de neige) de ces pertes a varié de 10,1 à 88,9%.

Pesant *et al.* (1987) ont pour leur part mesuré les pertes par érosion d'un loam sableux Coaticook, à la station expérimentale d'Agriculture et Agroalimentaire Canada (AAC) de Sherbrooke. Les parcelles expérimentales, présentant une pente de 9 %, étaient cultivées en maïs-ensilage sous travail conventionnel ou semis direct. La perte de sol cumulée pendant les saisons de croissance 1974, 1975 et 1976 s'est établie à 50,7 t ha⁻¹ pour les parcelles sous travail conventionnel et à 3,9 pour celles en semis direct.

Pour sa part, Michaud (1987) a mesuré, sous pluie simulée, les pertes de sol de six sites situés sur la ferme expérimentale du Campus Macdonald de l'université McGill, dont quatre étaient les mêmes que ceux étudiés par Kirby (1985). Deux sites additionnels étaient situés à la station d'AAC à Sherbrooke. La texture du sol et la pente des sites présentaient les mêmes variations que pour l'étude de Kirby (1985). Les simulations ont été faites sur sol nu, les parcelles présentant un état de surface typique d'un lit de semence. Les pertes de sol cumulées sur quatre pluies consécutives ont varié entre 2.7 et 37.8 t ha⁻¹.

Toujours à la station d'AAC à Sherbrooke, l'érosion sur sol nu et sous pluie simulée a été mesurée pour un loam limoneux Coaticook et un loam graveleux Magog. Les deux sols présentaient une pente de 9 % (Bernard *et al.*, 1992). La perte totale moyenne de sol, après six pluies simulées, a été de 8,9 t ha⁻¹ pour le loam limoneux et de 16,5 t ha⁻¹ pour le loam graveleux.

Dans le cadre d'une étude portant sur la mesure de l'érodabilité de 12 séries de sol communément retrouvées dans les Cantons de l'Est, Salehi *et al.* (1993) ont mesuré les pertes de sol en parcelles de 15 m² et présentant des pentes entre 4% et 14%. Les pertes cumulées après deux pluies simulées ont varié de 0,7 à 23,5 t ha⁻¹.

Ces études ont été conduites sur des parcelles n'excédant pas une vingtaine de m² de superficie. Les pertes ainsi mesurées intègrent les deux premières phases de l'érosion, telles que présentées précédemment. À l'échelle d'un champ, diverses occasions de redéposition d'une partie de la charge érodées se présentent : adoucissement de la pente, présence d'obstacles au ruissellement, etc. La mesure de l'érosion à l'échelle du champ se traduit donc généralement par des pertes de sol moins importantes.

Utilisant le ¹³⁷Cs comme indicateur des mouvements de sol, Bernard et Laverdière (1992) ont estimé la perte de sol de 63 champs de l'Île d'Orléans. L'érosion a varié selon l'inclinaison de la pente et le type d'occupation du sol. La perte de sol moyenne était donc de 3,6, 6,7 et 7,8 t ha⁻¹ an⁻¹ pour des pentes de 0-2, 2-5 et 5-9 % respectivement. Les champs à vocation laitière présentaient une perte moyenne de sol de 2,8 t ha⁻¹ an⁻¹ et ceux à vocation horticole de 11,6 t ha⁻¹ an⁻¹.

Avec le même marqueur, Mabit et *al.* (2007) ont mesuré les pertes de sol de champs présentant des textures et des topographie variées, dans le cadre d'une étude du bassin de la rivière Boyer. Ils ont ainsi estimé des taux de perte nette de sol variant entre 2,7 et 6,9 t ha⁻¹ an⁻¹. Ils ont aussi pu identifier les secteurs du bassin versant contribuant vraisemblablement le plus aux charges de sédiments dans la rivière. Ces sédiments sont considérés comme responsables de l'ensablement de la frayère d'éperlan arc-en-ciel occupant les derniers kilomètres du lit de la rivière.

Ces études démontrent que l'intensité de l'érosion hydrique au Québec peut approcher et dans plusieurs circonstances excéder les valeurs maximales recommandées. Il n'existe cependant pas d'inventaire de l'état d'érosion des sols agricoles du Québec. Lors de l'Enquête sur les problèmes de dégradation des sols agricoles du Québec, réalisée à la fin des années 1980 (Tabi *et al.*, 1990), l'érosion des sols n'a pas été mesurée. On a plutôt estimé l'ampleur du phénomène en considérant comme érodées les superficies dites en monoculture de plantes annuelles sur sols en pente et peu perméables. On a alors conclu que l'érosion hydrique concernait 10% des superficies en monoculture.

3. MESURE DE L'ÉROSION DANS LE CADRE DE L'EESSAQ

3.1 Utilisation du ¹³⁷Cs

Les mesures d'érosion en parcelles, sous pluie naturelle ou simulée, constituent un exercice exigeant en ressources humaines, matérielles et monétaires. Cette approche a donc été écartée dans le cadre de l'EESSAQ. Il a plutôt été convenu de quantifier l'ampleur de ce processus de façon indirecte, par la mesure de la redistribution spatiale du ¹³⁷Cs.

Le ¹³⁷Cs est un radioisotope d'origine anthropique, introduit initialement dans l'environnement à la fin des années 1950 avec l'intensification des essais atomiques en haute atmosphère. Les retombées ont culminé en 1963 pour diminuer rapidement par la suite, avec l'entrée en vigueur d'un traité bannissant les essais atmosphériques. Les sols de la planète ont ainsi été marqués, de façon pratiquement ponctuelle dans le temps (Bernard, 2019).

Plusieurs facteurs font du ¹³⁷Cs un intéressant marqueur des mouvements de sol : marquage universel et ponctuel dans le temps, forte rétention des retombées par les sols, redistribution dans l'environnement presqu'exclusivement par les mouvements de sol (Ritchie et McHenry, 1990; Fulajtar *et al.*, 2017).

De façon simplifiée, la mesure indirecte de l'érosion par le ¹³⁷Cs s'effectue en comparant l'inventaire (Bq m⁻²) en isotope d'un site cultivé à l'inventaire qu'on devrait y retrouver en absence de mouvement de sol. Des modèles permettent de traduire ces variations d'inventaire en termes d'érosion ou de re déposition, selon que l'inventaire du site est inférieur ou supérieur aux retombées (Walling *et al.*, 2014).

Cette approche a été utilisée pour des inventaires nationaux de l'importance de l'érosion en Australie-Occidentale (Loughran *et al.*, 2000) ainsi qu'en Angleterre et au Pays de Galles (Walling et Zhang, 2010).

La mesure de la redistribution spatiale du ¹³⁷Cs rend compte de l'ensemble des mouvements de sol, peu importe l'élément moteur de ces mouvements. La mesure intègre donc aussi bien l'érosion hydrique qu'éolienne ou encore mécanique, en cours depuis 1963. L'effet de déplacements importants de sol n'ayant rien à voir avec l'érosion (ex : reprofilage des sols) sont aussi intégrés dans les mesures de ¹³⁷Cs. Ces aspects sont donc à prendre en compte dans l'interprétation des résultats. Le recours à cette approche pour l'EESSAQ est décrit en détail dans Bernard (2019).

3.2 Estimation de l'érosion à partir des mesures de ¹³⁷Cs

Pour chacun des champs (sites) retenus, le protocole de l'EESSAQ prévoyait l'échantillonnage du sol à quatre points de prélèvement, espacés d'environ 80 m. Cette approche aurait imposé la détermination de la teneur en ¹³⁷Cs de plus de 1700 échantillons de sol. Comme l'IRDA ne dispose que d'un détecteur gamma, il devenait impossible de procéder de la sorte. Il a donc été convenu de constituer un échantillon composite en combinant les quatre échantillons prélevés. Cette approche permet tout de même d'évaluer le mouvement net de sol dans chacun des champs.

Les prélèvements ont été réalisés en utilisant un tube d'acier de 5,032 cm de diamètre. Le tube était enfoncé à une profondeur de 55 cm, afin d'échantillonner tout le profil de ¹³⁷Cs, en tenant compte de l'enfouissement potentiel des retombées par des travaux mécaniques (planage...). Nous avions ainsi l'assurance d'établir adéquatement l'activité spécifique du sol en ¹³⁷Cs (Bq m⁻²) qui sert à l'évaluation de l'intensité des mouvements de sol.

Le niveau résiduel des retombées de ¹³⁷Cs, qui sert de point de comparaison avec les sites cultivés, n'a pas été estimé à partir d'échantillonnages de sites témoins. D'une part, il a été difficile, pour certaines séries de sol, de trouver des sites témoins répondant aux exigences du protocole de l'EESSAQ. De plus, si les témoins retenus convenaient pour l'ensemble des analyses prévues à l'EESSAQ, un examen des résultats pour les premiers 135 champs pour lesquels les mesures de ¹³⁷Cs étaient complétées (dont 42 sites témoins) a clairement établi qu'il n'en était pas de même pour les mesures d'érosion à l'aide du ¹³⁷Cs (Bernard, 2020).

L'importance des retombées de ¹³⁷Cs a donc été établie à partir d'une relation liant de façon très étroite les retombées avec le niveau des précipitations annuelles totales. Cette relation a été établie à partir de données publiées pour différentes localisations en Amérique du Nord présentant des précipitations annuelles totales variant de 350 à 1250 mm (Bernard *et al.*, 1998). La relation s'énonce ainsi :

137
Cs = 1,707 * Pr (R² = 0,985) (1)

où ¹³⁷Cs : valeur résiduelle des retombées de ¹³⁷Cs (Bq m⁻²), ajustées au 01-01-2019 Pr : précipitation annuelle moyenne totale (mm an⁻¹)

Comme les coordonnées géographiques de chacun des quatre points d'échantillonnage d'un même site étaient enregistrées, la position géographique du centroïde de ces points a été déterminée. Cette position a permis de situer le centroïde dans un pixel de 2 km de côté, pour lequel les précipitations annuelles moyennes sont disponibles pour la période 1955-1990 (Ressources naturelles Canada, 2020). Les retombées de ¹³⁷Cs ont été estimées en utilisant ces données de précipitations et l'équation 1.

Le calcul du mouvement net de sol pour les champs étudiés a été fait en utilisant la formule suivante :

$$M = -C_1 * R^{-1} * (1 - (N_s / N_o)^{1/n})$$
 (2)

où $M = mouvement de sol (t ha^{-1} an^{-1}), ajusté au 01-01-2019$

CI = poids de la couche de labour (t ha⁻¹)

R = coefficient d'enrichissement du sol érodé/déposé en ¹³⁷Cs : 3 en sol minéral, 2 en sol organique

N_s = activité spécifique du sol en ¹³⁷Cs (Bq m⁻²) telle que mesurée au champ

N_o = valeur résiduelle des retombées de ¹³⁷Cs (Bq m⁻²), dérivée de l'équation 1

n = nombre d'années entre 2019 et le pic de retombées (1963) : 56

Cette équation correspond au *Mass Balance Model 1* de Walling *et al.* (2014). Bien que les auteurs aient proposé des modèles plus complexes, celui utilisé pour l'EESSAQ est adapté aux conditions expérimentales et aux contraintes logistiques inhérentes au cadre de l'étude.

La mesure de la masse volumique et de l'épaisseur des horizons A_p1 et A_p2 a permis le calcul de la masse de la couche de labour. La teneur du sol en 137 Cs (Bq kg⁻¹), le poids total de l'échantillon composite de sol (kg) et la superficie totale couverte par l'échantillonneur (m²) ont servi à calculer l'inventaire moyen de 137 Cs des champs étudiés (Bq m⁻²). Cette dernière valeur correspond à la variable N_s de l'équation 2.

3.3 Séries de sol étudiées

Dans le cadre d'EESSAQ, 71 séries de sol ont été étudiées. Vingt-cinq groupes de séries de sol ont été constitués de façon à couvrir les régions pédologiques et les divers types de matériau parental rencontrés sur le territoire québécois. La figure 1 illustre la localisation des sites échantillonnés tandis que le tableau 1 présente la distribution géographique des séries de sol.

Figure 1. Localisation des 425 sites échantillonnés pour l'EESSAQ.

À l'échelle du Québec, ces séries couvrent une superficie totale de 2,76 Mha. Sans surprise, les sols de la Plaine de Montréal occupent 28% de cette superficie, suivis des sols des Collines des Appalaches orientales (15%) et de ceux des Hautes terrasses du Saint-Laurent et du Bas plateau de Compton, avec 14% chacun.

Tableau 1. Séries de sol retenues pour l'EESSAQ.

Région pédologique	Matériau parental	Groupe	Séries de sol
A1- Plaine de Montréal	Argileux	1	Sainte-Rosalie, Saint-Urbain
		2	Chambly, Dalhousie, Kierkoski
		3	Providence, Rideau, Saint-Blaise, Saint-Laurent
	Loameux	4	Baudette, Sainte-Barbe, Saint- Hyacinthe, Lévrard
		5	Chaloupe, Saint-Aimé
	Sableux à squelettiques	6	Aston, Saint-Damase
		7	Achigan, Joseph, Valère
		14	Uplands
	Glaciaires (tills)	8	Boucherville, Sainte-Brigide
	Organiques	9	Nobel, Saint-Dominique, Verchères
A2- Plaine littorale et Îles du	Argileux	10	De l'Anse, Kamouraska, La Pocatière, Saint-Pascal
Saint-Laurent	Sableux à squelettiques	11	Saint-André, Saint-Nicolas, Orléans
A3- Plaine du lac Saint-Jean	Argileux	12	Hébertville, Normandin
	Loameux	13	Alma, Taillon
A4- Hautes-terrasses du Saint-Laurent	Loameux	5	Le Bras, Des Saults
	Sableux à squelettiques	14	Saint-Jude
		15	Beaurivage, Morin
	Glaciaires (tills)	8	Bedford, Raimbault
		16	Mawcook
		17	Shefford
B1- Monts Sutton	Glaciaires (tills)	17	Blandford
B2- Collines des Appalaches	Glaciaires (tills)	16	Norbertville, Sainte-Marie, Woodbridge
orientales		18	Chapais, Leeds
	Sableux à squelettiques	19	Danby, Saint-Bruno
B3- Collines des Appalaches	Glaciaires (tills)	20	Magog
occidentales		21	Ascot
B4- Bas plateau de Compton	Glaciaires (tills)	20	Calais, Dufferin
		21	Greensboro, Sherbrooke
B6- Monts Notre-Dame	Glaciaires (tills)	22	Amqui, Quisibis
B7- Bas plateaux de la baie des Chaleurs	Glaciaires (tills)	22	Comis
C1- Hautes-terres des	Loameux	23	Bouchette, Montcerf
Laurentides	Glaciaires (tills)	18	Charlevoix
D1- Plaine de l'Abitibi	Argileux	24	Guérin, Palmarolle, Roquemaure
DI- Flaille de l'Abillibi	Loameux	25	Baby, Duhamel

Les sols formés sur un matériau parental d'origine glaciaire comptent pour près de 50% de la superficie couverte par les séries étudiées. Les sols argileux et sableux à squelettiques occupent chacun un peu plus de 21% de cette superficie. Les sols loameux et les sols organiques représentent 8% et 0,1% de la superficie restante.

4. RÉSULTATS ET DISCUSSION

4.1 Résultats généraux

En raison de quelques données manquantes, la mesure d'érosion à l'aide du ¹³⁷Cs a pu être faite pour 419 des 425 champs échantillonnés. L'annexe 1 rapporte pour ces 419 champs les résultats de comptage de ¹³⁷Cs, les calculs de mouvements de sol résultants et les divers descriptifs des champs considérés dans l'analyse des résultats relatifs à la mesure de l'érosion. Le tableau 2 rapporte les résultats globaux pour ces champs.

Tableau 2. Retombées, inventaires de ¹³⁷Cs et mouvements nets de sol des 419 champs étudiés.

	Nombre de champs	Retombées de ¹³⁷ Cs	Inventaire de ¹³⁷ Cs	Mouvement net de sol
	(n)	(Bq m ⁻²)	(Bq m ⁻²)	(t ha ⁻¹ an ⁻¹)
Moyenne	419	1670	1265	-6,1
Médiane	419	1656	1211	-5,5
Écart-type	419	148	471	+8,0
Minimum	419	1332	195	-45,5
Maximum	419	2049	3133	+13,2
Moyenne < 0	340	1677	1102	-8,3
Moyenne > 0	79	1638	1963	+3,5

La valeur résiduelle (en 2019) des retombées de ¹³⁷Cs sur les sites étudiés, estimée à l'aide de la relation 1, a varié de 1332 à 2049 Bq m⁻², avec une moyenne de 1670 Bq m⁻² et une valeur médiane de 1656 Bq m⁻². Les inventaires résiduels de ¹³⁷Cs, tels que mesurés au champ, se situent en moyenne à 1265 Bq m⁻², variant entre 195 et 3133 Bq m⁻². Les mouvements nets de sol correspondant aux différences entre les retombées et les inventaires résiduels de ¹³⁷Cs varient d'un minimum de -45,5 t ha⁻¹ an⁻¹ (perte de sol) à un maximum de 13,2 t ha⁻¹ an⁻¹ (redéposition). Le mouvement net moyen de sol pour les 419 champs est de -6,1 t ha⁻¹ an⁻¹ et la valeur médiane est de -5,5 t ha⁻¹ an⁻¹.

Les bilans de ¹³⁷Cs suggèrent que 340 (81 %) des champs étudiés ont subi une perte nette de sol, avec une moyenne de -8,3 t ha⁻¹ an⁻¹. À l'inverse, on conclut à une redéposition nette moyenne de 3,5 t ha⁻¹ an⁻¹ pour 79 des champs (19 %).

La perte de sol considérée comme acceptable au Canada est de 6 t ha⁻¹ an⁻¹ (Wall *et al.*, 2002). La figure 2 illustre la fréquence cumulée des divers taux de mouvement de sol mesurés dans cette étude. Il est à noter que 46,5 % des champs affichent une perte nette de sol inférieure (perte plus importante) au seuil de 6 t ha⁻¹ an⁻¹.

Figure 2. Distribution de fréquence des taux de mouvements de sol mesurés.

Certains facteurs pourraient expliquer les valeurs extrêmes d'inventaire de ¹³⁷Cs mesurées. Outre l'effet d'une érosion très sévère, de très faibles inventaires pourraient être le résultat d'un échantillonnage n'ayant pas réussi à capter la totalité de l'inventaire de ¹³⁷Cs, malgré la profondeur normale d'échantillonnage de 55 cm. Cette situation pourrait résulter aussi de mouvements de sol étrangers au processus d'érosion (travaux de nivellement, enfouissement de fossés...) qui auraient soit enfoui, soit déplacé plus loin, le sol de surface contenant les retombées de ¹³⁷Cs. Inversement, de tels travaux pourraient avoir conduit à des zones d'accumulation de sol artificiellement déplacé, résultant dans un inventaire anormalement élevé de ¹³⁷Cs et menant à la conclusion d'une accumulation nette de sol.

4.2 Sites témoins vs cultivés

Lors de l'étude de résultats partiels (Bernard, 2019), il avait été noté que les sites dits témoins ne se démarquaient pas des sites cultivés pour ce qui est du mouvement net de sol révélé par la mesure de ¹³⁷Cs. L'analyse des 419 champs mène à une conclusion similaire.

Le tableau 3 ventile les mouvements de sol pour les sites témoins et cultivés. Bien que le taux moyen d'érosion soit un peu plus élevé pour les sites cultivés, les valeurs minimales et maximales ne diffèrent que très peu. Pour les sites témoins, 79 % des champs ont subi une perte nette de sol, et 21 % une accumulation nette. Les proportions sont de 82 % et 18% respectivement pour les sites cultivés.

Il en va de même de la distribution de fréquence des classes de mouvements de sol (figure 3). La distribution est très similaire pour les deux types de sites, si ce n'est que les sites cultivés présentent une fréquence un peu moindre des taux de redéposition et une fréquence un peu plus élevée des taux d'érosion.

Tableau 3. Mouvements de sol pour les sites témoins et cultivés.

	Témoins		Cultivés		
	Nombre Mouvement de net de sol champs		Nombre de champs	Mouvement net de sol	
	(n)	(n) (t ha ⁻¹ an ⁻¹)		(t ha ⁻¹ an ⁻¹)	
Moyenne	134	-5,3	285	-6,4	
Écart-type	134	+8,7	285	+7,6	
Minimum	134	-45,5	285	-41,5	
Maximum	134	+12,0	285	+13,2	
Moyenne < 0	106	-7,8	234	-8,5	
Moyenne > 0	28	+4,1	51	+3,2	

Figure 3. Distribution de fréquence des classes de mouvement de sol pour les sites témoins et cultivés.

Cette distribution de fréquence diffère considérablement de celle rapportée par Bernard et Laverdière (1992) pour l'Île d'Orléans et celle de Walling et Zhang (2010) pour l'Angleterre et le Pays de Galles.

Ces résultats confirment que les critères de sélection des sites témoins ne convenaient pas pour les mesures de ¹³⁷Cs, alors qu'ils étaient appropriés pour les autres paramètres mesurés dans le cadre de l'EESSAQ. La principale explication est que les mesures de ¹³⁷Cs portent sur près de

60 ans (pic de retombées en 1963) alors que les critères de sélection portaient sur l'usage des sols dans les 5 années précédant l'échantillonnage. Divers processus liés à l'érosion ont pu jouer sur ces sites entre 1963 et 2018, année du début d'échantillonnage pour l'EESSAQ.

4.3 Facteurs influençant les mouvements de sol mesurés

4.3.1 Matériau parental

Le type de matériau parental exerce une influence certaine sur les mouvements de sol mesurés, tel que le démontre la figure 4.

Figure 4. Taux moyens de mouvement de sol selon le matériau parental.

Les séries développées sur matériau glaciaire ont subi les plus fortes pertes de sol, avec -7,8 t ha⁻¹ an⁻¹, suivies des sols à texture légère (-7,1 t ha⁻¹ an⁻¹) puis des sols argileux (-6,1 t ha⁻¹ an⁻¹). Les sols loameux et les sols organiques se démarquent avec une perte moyenne de sol de -3,6 et 3,1 t ha⁻¹ an⁻¹ respectivement. Il convient cependant de mentionner l'effectif réduit de la classe organique, avec 17 sites pour lesquels l'analyse de ¹³⁷Cs a pu être complétée.

4.3.2 Topographie

Les résultats de la figure 4 peuvent intégrer un effet de topographie, les sols à texture légère se retrouvant sur divers types de pente, alors que les sols à texture lourde et les sols organiques se situent à l'horizontal et présentent des pentes près de 0 %. La figure 5 suggère une augmentation de la perte de sol avec l'inclinaison de la pente, calculée pour le centroïde des champs à partir d'un modèle numérique d'altitude du ministère de l'Énergie et des Ressources naturelles du Québec (MERN, 2022) à l'échelle du 1/20 000. Cet effet n'est cependant pas statistiquement significatif, en raison de la variabilité des résultats.

Les mouvements de sol estimés ont été comparés avec les variables descriptives suivantes de la forme de la pente, calculées de la même façon que l'inclinaison de la pente :

- convergence : variant de -100 (convergence du ruissellement vers le centroïde du champ) à +100 (divergence);
- courbure du plan : courbure de la surface perpendiculaire à la pente; une valeur positive indique une convexité (écoulement divergent) et une valeur négative, une concavité;
- courbure du profil : courbure de la surface dans le sens de la pente; une valeur positive indique une concavité et une valeur négative, une convexité;
- LS : indice de pente de l'équation universelle de pertes de sol (Wischmeier et Smith, 1978).

Figure 5. Variation des mouvements de sol avec l'inclinaison de la pente.

Le tableau 4 présente les coefficients de corrélation obtenus entre les mouvements de sol estimés et ces variables topographiques. Seule la courbure du profil a présenté une faible corrélation de -0,11, suggérant qu'une pente concave provoque une redéposition de sol. On observe par ailleurs de bonnes corrélations entre les variables topographiques, ce qui était attendu.

Tableau 4. Corrélations linéaires entre les mouvements de sol et certains paramètres topographiques.

	Mouv. sol (t ha ⁻¹ an ⁻¹)	Convergence	Courbure du plan	Courbure du profil	LS
Mouv. sol (t ha ⁻¹ an ⁻¹)	1				
Convergence	0,01	1			
Courbure du plan	-0,06	0,61	1		
Courbure du profil	-0,11	0,35	0,46	1	
LS	-0,01	-0,44	-0,46	-0,19	1

4.3.3 Autres facteurs

Les mouvements de sol estimés ont été comparés avec diverses variables pouvant à priori avoir une influence sur l'intensité de ces mouvements. Les paramètres considérés sont :

- la pluviométrie annuelle moyenne (mm an⁻¹);
- le Soil Tillage Intensity Rating (STIR) tel que décrit par le NRCS (2008);
- le groupe hydrologique, en attribuant une valeur de 1, 4, 7 et 10 aux groupes A, B, C et D respectivement;
- la classe de drainage, en attribuant une valeur de 5, 8, 11, 14, 17 et 20 aux classes Rapide, Bon, Moyennement bon, Imparfait, Mauvais et Très mauvais respectivement;
- le facteur granulométrique de l'indice d'érodabilité des sols de Wischmeier *et al.* (1971) qui s'exprime ainsi : M = (% limon + % sable très fin) * (100 % argile);
- la position sur la pente, variant de -5 pour une position de crête (risque élevé) à +3 (risque faible) pour un sol plat ou horizontal;
- le diamètre moyen pondéré (mm) des agrégats stables à l'eau dans l'horizon Ap;
- diverses fractions granulométriques et le taux de matière organique.

Le tableau 5 rapporte les coefficients de corrélation simple entre ces divers facteurs. La variable mouvement de sol est corrélée négativement avec les précipitations annuelles, indiquant que des précipitations plus élevées produisent une perte de sol (mouvement négatif) plus importante. La corrélation est positive entre le taux de mouvement de sol et le taux de matière organique, suggérant qu'une plus forte teneur en matière organique est associée à des pertes de sol plus faibles.

Tableau 5a. Corrélations linéaires entre les mouvements de sol et divers paramètres.

	Mouv. sol (t ha ⁻¹ an ⁻¹)	Précipitations (mm an ⁻¹)	STIR	Groupe hydrologique	Classe de drainage	М
Mouv. sol (t ha ⁻¹ an ⁻¹)	1					
Précipitations (mm an ⁻¹)	-0,16	1				
STIR	0,03	-0,19	1			
Groupe hydrologique	0,07	-0,40	0,13	1		
Classe de drainage	0,09	-0,43	0,27	0,60	1	
M	0,04	0,15	-0,09	0,12	0,01	1
DMP (mm)	-0,03	-0,20	-0,34	0,29	0,36	-0,24
Sable tfin (%)	0,03	-0,04	-0,09	0,12	0,07	0,57
Sable tot (%)	-0,09	0,52	0,00	-0,34	-0,45	0,01
Limon tot (%)	0,09	-0,18	-0,03	0,25	0,26	0,67
Argile tot (%)	0,04	-0,53	0,02	0,25	0,38	-0,56
Mat. org. (%)	0,16	-0,06	-0,32	0,09	-0,07	-0,12

Tableau 5b. Corrélations linéaires entre les mouvements de sol et divers paramètres.

	DMP (mm)	Sable t fin (%)	Sable tot (%)	Limon tot (%)	Argile tot (%)	Mat. org. (%)
Mouv. de sol (t ha ⁻¹ an ⁻¹)						
Précipitations (mm an ⁻¹) STIR						
Groupe hydrologique						
Classe de drainage						
M						
Risque mouv. sol						
DMP (mm)	1					
Sable tfin (%)	-0,18	1				
Sable tot (%)	-0,53	0,26	1			
Limon tot (%)	0,13	-0,05	-0,65	1		
Argile tot (%)	0,59	-0,39	-0,79	0,05	1	
Mat. org. (%)	0,21	-0,09	-0,29	0,07	0,32	1

On constate également une corrélation négative entre le STIR d'une part et le DMP des agrégats stables à l'eau et le taux de matière organique d'autre part. Cela suggère qu'un travail plus intensif est associé à moins de matière organique et un diamètre réduit des agrégats stables à l'eau. Logiquement, le groupe hydrologique et la classe de drainage sont corrélés négativement avec la teneur en sable et positivement avec les fractions fines (limon et argile) et le DMP. Le paramètre M, qui est une première estimation du coefficient d'érodabilité des sols, augmente avec les taux de sable très fin et de limon et diminue avec la teneur en argile. Le DMP est corrélé négativement avec la teneur en sable et positivement avec la teneur en argile.

4.3.4 Sols organiques

Les sols organiques présentent un cas particulier. Ces sols évoluent rapidement à la suite de leur mise en culture. Le drainage en améliore l'aération, ce qui accélère la minéralisation de la matière organique qui se traduit par une perte de matériel, sous forme de CO₂ sans impliquer pour autant quelque forme d'érosion. La minéralisation, combinée au travail du sol, provoque un tassement du sol. Les producteurs agricoles exploitant ces sols suspectent des taux d'érosion élevés, notamment en raison de la légèreté du matériel et son peu de cohésion lorsque sec.

Cependant, comme indiqué à la figure 3, les sols organiques sont ceux pour lesquels on a estimé les plus faibles taux d'érosion. Le tableau 6 présente les résultats pour ces sols de façon plus détaillée.

Le taux annuel de mouvement de sol a varié d'une perte de -11,1 t ha-1 à une déposition de 7,2 t ha-1, pour une moyenne globale de -3,6 t ha-1 et une médiane de -3,9 t ha-1. Les 15 champs pour lesquels on a conclu à une érosion nette affichent une perte moyenne de -4,7 t ha-1 an-1. Pour deux champs, l'inventaire de 137Cs est supérieur à la valeur résiduelle des retombées, ce qui suggère une re déposition nette de sol de 4,9 t ha-1 an-1. Cette situation est peut-être le résultat d'apports externes de matériel pour niveler la surface des champs, remblayer des fossés, etc.

Tableau 6. Retombées, inventaires de ¹³⁷Cs et mouvements nets de sol des 17 champs sur sol organique.

	Retombées de ¹³⁷ Cs	Inventaire de ¹³⁷ Cs	Nombre de champs	Mouvement net de sol
	(Bq m ⁻²)	(Bq m ⁻²)	(n)	(t ha ⁻¹ an ⁻¹)
Moyenne	1599	1152	17	-3,6
Médiane	1560	969	17	-3,9
Écart-type	86	724	17	+4,5
Minimum	1508	281	17	-11,1
Maximum	1761	3057	17	+7,2
Moyenne < 0			15	-4,7
Moyenne > 0			2	+4,9

Dans une étude portant sur 22 champs organiques situés dans la même région que les champs de l'EESSAQ, Gloutney (2022) rapporte des taux annuels d'érosion nette variant de 0,4 à 8,8 t ha⁻¹, pour une moyenne de 2,9 t ha⁻¹, donc similaires à ceux présentés ici.

Par ailleurs, ces valeurs apparaissent faibles si on considère le suivi de la perte de matériel organique entre 1987 et 2014 par Esselami *et al.* (2014). Ceux-ci rapportent, pour sept champs situés dans la même région que ceux de la présente étude, une perte de matériel de 9 à 118 cm, ce qui correspond à une perte annuelle de 0,3 à 4,4 cm. En considérant une masse volumique apparente de 0,25 g cm⁻³, ces pertes d'épaisseur se traduisent par une perte de matériel de 8,2 à 109,2 t ha⁻¹ an⁻¹. Des chercheurs ont suggéré que la perte d'épaisseur de matériel s'expliquerait à 50% par l'oxydation microbienne et le tassement et à 50% par l'érosion, tant hydrique qu'éolienne. La part de l'érosion dans les résultats d'Esselami *et al.* (2014) serait alors de 4,1 à 54,6 t ha⁻¹ an⁻¹. Les résultats de l'EESSAQ et ceux de Gloutney (2022) se situent donc au bas de la fourchette de valeurs suggérées par Esselami *et al.* (2014). Ces dernières ne portent cependant que sur sept champs.

Face à cette disparité, Gloutney (2022) suggère que la relation reliant les pertes de ¹³⁷Cs et celles de sol pourrait être d'une nature différente de celle validée pour les sols minéraux. Il propose certaines explications qui demanderaient cependant à être validées en condition expérimentale, dans le cadre d'un projet spécifique.

4.3.5 Regroupement des résultats

Les sols échantillonnés étaient répartis dans 12 régions pédologiques. Le tableau 7 présente le nombre de champs et le taux moyen de mouvement de sol pour chacune de ces régions pédologiques.

Les comparaisons doivent être prises avec circonspection, certains groupes ayant peu d'observations. Les champs de la plaine du lac Saint-Jean et ceux de la plaine de l'Abitibi présentent les taux les plus faibles. Les pentes peu inclinées et l'utilisation modérée du sol sur la période de 60 ans couverte par les mesures de ¹³⁷Cs expliquent probablement en partie ces résultats. Les sols de la plaine de Montréal présentent eux aussi de faibles pentes. Les

mouvements de sol plus importants qu'on y trouve est probablement le résultat d'une utilisation plus intensive (cultures et pratiques culturales associées) que dans les deux groupes précédents. Les sols sur les reliefs et sur matériau parental léger (Appalaches, Monts Notre-Dame, plateau de Compton) présentent les plus forts taux d'érosion, en accord avec les résultats présentés aux figures 4 et 5.

Tableau 7. Taux moyen de mouvement de sol par région pédologique.

	Région pédologique	Champs	Mouvement moyen de sol
Code	Nom	(n)	(t ha ⁻¹ an ⁻¹)
A1	Plaine de Montréal	153	-5,6 abc
A2	Plaine littorale et Îles du Saint-Laurent	42	-8,2 abc
А3	Plaine du lac Saint-Jean	24	-1,4 d
A4	Hautes-terrasses du Saint-Laurent	54	-5,9 abc
B1	Monts Sutton	6	-5,2 abcd
B2	Collines des Appalaches orientales	42	-8,4 a
B3	Collines des Appalaches occidentales	9	-9,0 abc
B4	Bas plateau de Compton	24	-9,6 ab
B6	Monts Notre-Dame	12	-8,0 abc
B7	Bas plateaux de la baie des Chaleurs	6	-5,1 bc
C1	Hautes-terres des Laurentides	17	-4,3 bcd
D1	Plaine de l'Abitibi	30	-3,9 cd

Les sols étudiés pour l'EESSAQ formaient 25 groupes, sur la base du matériau parental et de la région pédologique où on les retrouve (voir tableau 1). Le tableau 8 présente le taux moyen de perte de sol pour chacun de ces 25 groupes de sol.

Le faible échantillonnage et la variabilité des résultats rendent difficile une séparation statistique des groupes. Les groupes 11 et 20 affichent les plus forts taux d'érosion. Les sols de ces deux groupes présentent des matériaux parentaux légers et sont dans des régions avec des pentes plus inclinées. Ces deux groupes, avec les groupes 21 et 22 se distinguent statistiquement des groupes 12 et 13. Les groupes 4, 5, 13 et 25 ont les taux d'érosion les plus faibles sans se distinguer statistiquement. Ils se situent en milieu de plaine et présentent une texture loameuse. Ce résultat est lui aussi à mettre en relation avec ceux des figures 4 et 5. Le groupe 12 (sols argileux de la plaine du lac Saint-Jean) présente la perte moyenne de sol la plus basse d'un point de vue statistique.

Tableau 8. Perte moyenne de sol par groupe de sol.

Groupe	Matériau parental	Champs	Perte moyenne de sol
	-	(n)	(t ha ⁻¹ an ⁻¹)
1	Argileux	12	-11,5 abc
2	Argileux	18	-7,0 abc
3	Argileux	23	-7,1 abc
4	Loameux	24	-3,5 abc
5	Loameux	23	-2,8 abc
6	Sableux à squelettique	13	-4,3 abc
7	Sableux à squelettique	17	-5,9 abc
8	Glaciaire (tills)	24	-8,3 abc
9	Organiques	17	-3,6 abc
10	Argileux	24	-5,7 abc
11	Sableux à squelettique	18	-11,6 a
12	Argileux	12	-1,0 c
13	Loameux	12	-1,8 bc
14	Sableux à squelettique	12	-7,5 abc
15	Sableux à squelettique	12	-4,9 abc
16	Glaciaire (tills)	24	-8,1 ab
17	Glaciaire (tills)	12	-5,8 abc
18	Glaciaire (tills)	17	-5,5 abc
19	Sableux à squelettique	12	-7,2 abc
20	Glaciaire (tills)	17	-10,1 a
21	Glaciaire (tills)	16	-8,7 a
22	Glaciaire (tills)	18	-7,0 a
23	Loameux	12	-4,3 abc
24	Argileux	18	-4,3 abc
25	Loameux	12	-3,2 abc

5. CONCLUSIONS

La mesure de variation d'inventaire de ¹³⁷Cs des sols a été utilisée pour estimer l'importance des mouvements de sols des champs étudiés dans le cadre de l'EESSAQ.

Ces mesures suggèrent un mouvement net variant de -45,5 à 13,2 t ha⁻¹ an⁻¹. Les moyennes et médianes sont de -6,1 et -5,5 t ha⁻¹ an⁻¹ respectivement. Selon leur teneur du sol en ¹³⁷Cs, 83 % des champs montrent une perte nette de sol et 17 % une re déposition nette. La perte maximale de sol suggérée pour la Canada (6 t ha⁻¹ an⁻¹) est dépassée pour 195 champs, soit 46,5 % des champs étudiés.

Il importe de rappeler ici que les mesures de ¹³⁷Cs rendent compte de tous les mouvements de sol en cours depuis le début des années 1960, peu importe la nature de l'agent causal. Les travaux mécanisés intenses imposés à nos sols pendant plusieurs décennies ont pu influencer certains résultats de cette étude.

La texture du sol a influencé les pertes de sol, celles-ci décroissant pour les sols dérivés de tills, ceux à texture légère, à texture lourde et enfin les sols organiques et loameux. Les sols à texture légère et ceux dérivés de tills glaciaires présentent les plus forts taux d'érosion et une perte moyenne supérieure à la limite de 6 t ha⁻¹ an⁻¹. La perte de sol a également augmenté avec l'inclinaison de la pente, bien que la différence ne soit pas statistiquement significative.

De faibles corrélations linéaires ont été notées entre les mouvements de sol et la courbure du profil au centroïde des champs, l'importance des précipitations annuelles moyennes et la teneur du sol en matière organique. Pour les sols minéraux, aucune corrélation avec les fractions granulométriques n'a été observée, alors qu'elles sont pourtant stables dans le temps.

Les taux d'érosion estimés pour les sols organiques semblent à priori plus faibles qu'initialement anticipés. La nécessité de revoir la nature de la relation entre les pertes de ¹³⁷Cs et celles de sol organique se pose ici. Cet exercice mériterait d'être mené dans le cadre d'un projet spécifique.

L'impossibilité de mieux discriminer les mesures de mouvement de sol avec divers facteurs pouvant à priori influencer ces mouvements s'explique possiblement par l'approche retenue dans le cadre de l'EESSAQ. Des contraintes logistiques et budgétaires ont fait que les analyses de ¹³⁷Cs ont porté sur un échantillon de sol composite, résultant du mélange des quatre échantillons prélevés dans chaque champ. Il est possible qu'une sensibilité ait été perdue, les potentielles variables explicatives pouvant varier significativement d'un point d'échantillonnage à l'autre à l'intérieur d'un même champ. Pour de futures études utilisant cette approche, il serait préférable de procéder en échantillonnant les champs sur plusieurs points disposés de façon à couvrir les éléments topographiques des champs (sommet, concavités/convexités, bas de pente) et en analysant chacun de ces points séparément. Il serait alors possible d'utiliser un modèle d'interprétation des variations d'inventaire plus sophistiqué et de tirer plus d'information de ces mesures.

Un rééchantillonnage des champs étudiés dans le cadre de l'EESSAQ pourrait être envisagé dans un intervalle d'environ 10 ans. Comme tous les points d'échantillonnage ont été géoréférencés, il serait aisé de les retrouver et de les intégrer au patron d'échantillonnage décrit plus haut. Cet intervalle de temps est approprié pour rendre compte de l'évolution de l'état

d'érosion des sols avec le ¹³⁷Cs. Il permet aussi de documenter les pratiques agricoles pratiquées (rotations, travail du sol, etc.) entre les deux échantillonnages.

Enfin, le pic de retombées de ¹³⁷Cs est survenu en 1963, soit une soixante d'années ou l'équivalent de presque deux demi-vies de ce radioisotope. Conséquemment, même en absence d'érosion ou de redéposition, l'inventaire de nos sols en ¹³⁷Cs a diminué de 75 %, ce qui en rend la quantification plus longue. Il serait donc pertinent de suivre les développements en cours sur l'utilisation d'autres radioisotopes, tels que le ²¹⁰Pb_{ex} et le ²³⁹⁺²⁴⁰Pu en vue de futures études sur l'érosion utilisant cette approche isotopique (Mabit *et al.*, 2014; Alewell *et al.*, 2017).

6. RÉFÉRENCES

- Alewell, C., Pitois, A., Meusberger, K., Kettener, M., Mabit, L. 2017. ²³⁹⁺²⁴⁰Pu from contaminant to soil erosion tracer: where do we stand? Earth-Science Reviews, 172:107-123. https://doi.org/10.1016/j.earscirev.2017.07.009.
- Bernard, C. 2020. Mesure des mouvements de sol à l'aide du ¹³⁷Cs dans le cadre de l'Étude sur l'état de santé des sols agricoles du Québec Premiers résultats. Institut de recherche et de développement en agroenvironnement Inc. (IRDA). 15 p.
- Bernard, C. 2019. Mesure des mouvements de sol à l'aide du Césium-137 (¹³⁷Cs) Utilisation dans le cadre de l'étude sur l'état de santé des sols agricoles du Québec. Institut de recherche et de développement en agroenvironnement Inc. (IRDA). 19 p.
- Bernard, C., Mabit, L., Laverdière, M.R., Wicherek, S. 1998. Césium-137 et érosion des sols. Cahiers Agric., 7:179-186. https://revues.cirad.fr/index.php/cahiers-agricultures/article/view/30084.
- Bernard, C., Laverdière, M.R. 1992. Spatial redistribution of Cs-137 and soil erosion on Orléans Island, Québec. Can. J. Soil Sci., 72:543-554. https://doi.org/10.4141/cjss92-045.
- Bernard, C., Laverdière, M.R., Pesant, A.R. 1992. Variabilité de la relation entre les pertes de césium et de sol par érosion hydrique. Geoderma, 52:265-277. https://doi.org/10.1016/0016-7061(92)90041-5.
- Blanco, H., Lal, R. 2010. Principles of soil conservation and management. Springer. 617 p.
- Bui, E., Hancock, G., Wilkinson, S. 2011. Tolerable hillslope soil erosion rates in Australia: Linking science and policy. Agriculture, Ecosystems and Environment, 144: 136-149. https://doi.org/10.1016/j.agee.2011.07.022.
- Dubé, A. 1975. L'eau et l'érosion des sols. Ressources, 6:8-15.
- Dubé, A., Mailloux, A. 1969. La mesure de l'érosion à Cap-aux-Corbeaux. Agriculture, 26:32-36.
- Esselami, D., Boudache, M., Grenon, L. 2014. L'évolution des terres noires et le problème de la compaction. Prisme Consortium. Présentation donnée aux journées horticoles. 32 pages. https://www.mapaq.gouv.qc.ca/SiteCollectionDocuments/Regions/Monteregie-Ouest/Journees_horticoles_2014/4_decembre/Terres_noires/9h05_b_JH2014_profil_compaction_DEssalami.pdf. Consulté en ligne le 11 avril 2020.
- FAO. 2019. Soil erosion: the greatest challenge to sustainable soil management. Rome. 100 pp.
- Fulajtar, E., Mabit, L., Renschler, C.S., Lee Zhi Yi, A. 2017. Use of ¹³⁷Cs for soil erosion assessment. Food and Agriculture Organization of the United Nations (FAO) / International Atomic Energy Agency (IAEA), Rome, Italy. 64 p.
- Gloutney, A. 2022. Quantification de l'érosion des sols organiques de l'Ouest de la Montérégie en production horticole par dosage du radioisotope césium-137. Mémoire de maîtrise. Département des sols et de génie agroalimentaire, Faculté des sciences de l'agriculture et de l'alimentation, Université Laval. 82 p.

- Kenimer, A.L., Mostaghimi, S., Young, R.W., Dillaha, T. A., Shanholtz, V.O. 1987. Effects of residue cover on pesticide losses from conventional and no-tillage systems. Trans. ASAE, 30:953-959. doi: 10.13031/2013.30505.
- Kirby, P.C. 1985. The seasonal variation of soil erosion and soil erodibility in Southwestern Quebec. M.Sc Thesis, McGill University. 116 p.
- Lajoie, P.G. 1975. Les terres agricoles du Québec méridional: distribution, étendue et qualité. Agriculture Canada, Publ. No. 1556. 62 p.
- Loughran, R.J., Elliott, G.L., MacFarlane, D.J. 2000. A national reconnaissance survey of soil erosion in Western Australia. University of Newcastle (Australia). 264 p.
- Mabit, L., Dercon, G., Benmansour, M., Walling, D.E. 2014. Use of ¹³⁷Cs, ²¹⁰Pb_{ex} and ⁷Be for documenting soil redistribution: the future. Pages 203-208 dans: Guidelines for using fallout radionuclides to assess erosion and effectiveness of soil conservation strategies. IAEA-TECDOC-1741. Vienna.
- Mabit, L., Bernard, C., Laverdière, M.R. 2007. Assessment of erosion in the Boyer River watershed (Canada) using a GIS oriented sampling strategy and ¹³⁷Cs measurements. Catena, 71:242-249. https://doi.org/10.1016/j.catena.2006.02.011.
- Michaud, A.R. 1987. Soil erodibility indices for Southern Quebec soils derived under variable intensity rainfall simulation. M.Sc Thesis, McGill University. 131 p.
- MERN. 2022. Modèle numérique d'altitude à l'échelle de 1 :20 000. https://www.donneesquebec.ca/recherche/dataset/modeles-numeriques-d-altitude-a-lechelle-de-1-20-000/resource/3f66b962-28c8-4872-9c88-9492e042a55b. Ministère de l'Énergie et des Ressources naturelles du Québec. Consulté le 11 avril 2022.
- Montgomery, D.R. 2007. Soil erosion and agricultural sustainability. Proc. Nat. Acad. Sci., 104:13268-13272. https://doi.org/10.1073/pnas.0611508104.
- NRCS. 2008. Soil tillage intensity rating (STIR). U.S. Department of Agriculture, Natural Resources Conservation Service. https://www.nrcs.usda.gov/Internet/FSE_DOCUMENTS/stelprdb1119754.pdf. Consulté le 11 février 2022.
- Pesant, A.R., Dionne, J.L., Genest, J. 1987. Soil and nutrient losses in surface runoff from conventional and no-till corn systems. Can. J. Soil Sci., 67:835-843. https://doi.org/10.4141/cjss87-080.
- Ressources naturelles Canada. 2020. https://scf.rncan.gc.ca/projets/3/9?lang=fr_CA. Consulté le 15 janvier 2020.
- Ritchie, J.C., McHenry, J.R. 1990. Application of radioactive fallout cesium-137 for measuring soil erosion and sediment accumulation rates and patterns: a review. J. Environ. Qual., 19:215-233. https://doi.org/10.2134/jeq1990.00472425001900020006x.
- Salehi, F., Pesant, A.R., Bérard, A., Lagacé, R. 1993. Preliminary estimates of the erodibility of ten Quebec Eastern Townships soil series. Can. Agric. Eng., 35:157-164. https://library.csbescgab.ca/docs/journal/35/35_3_157_ocr.pdf.

- Schertz, D.L. 1983. The basis for soil loss tolerances. J. Soil Water Conserv., 38:10-14.
- Sinukaban, N. 1981. Erosion selectivity as affected by tillage-planting systems. Ph. D. Thesis. Univ. of Wisconsin-Madison. 107 p.
- Tabi, M., Tardif, L., Carrier, D., Laflamme, G., Rompré, M. 1990. Inventaire des problèmes de dégradation des sols agricoles du Québec Rapport synthèse. Ministère de l'Agriculture, des Pêcheries et de l'Alimentation du Québec. 65 p.
- Verheijen, F. G. A., Jones, R. J. A., Rickson, R. J., Smith, C. J. 2009. Tolerable versus actual soil erosion rates in Europe. Earth-Science Reviews, 94:23-38. https://doi.org/10.1016/j.earscirev.2009.02.003.
- Wall, G.J., Coote, D.R., Pringle, E.A., Shelton, I.J. (eds). 2002. RUSLEFAC-Revised universal soil loss equation for application in Canada: A handbook for estimating soil loss from water erosion in Canada. Res. Branch, AAFC. Ottawa. Contribution 02-92. 117 p.
- Walling, D.E., Zhang, Y., He, Q. 2014. Conversion models and related software. Pages 125-148 dans: Guidelines for using fallout radionuclides to assess erosion and effectiveness of soil conservation strategies. IAEA-TECDOC-1741. Vienna.
- Walling, D.E., Zhang, Y. 2010. A national assessment of soil erosion based on Caesium-137 measurements. Pages 89-97 dans: Global Change Challenges for Soil Management (M. Zlatic ed.). Advances in GeoEcology Volume 41.
- Wischmeier, W.H., Johnson, C.B., Cross, B.V. 1971. Soil erodibility nomograph for farmland and construction sites. J. Soil Water Cons., 26:189-193.
- Wischmeier, W.H., Smith, D.D. 1978. Predicting rainfall erosion losses A guide to conservation planning. U.S. Department of Agriculture, Agriculture Handbook No. 537. 60 p.

ANNEXE. MESURE DE ¹³⁷Cs ET ESTIMATION DE L'ÉROSION DU SOL POUR LES SITES ÉTUDIÉS

Série	Site	Type de site	Retombées de ¹³⁷ Cs (Bq m ⁻²)	Inventaire de ¹³⁷ Cs (Bq m ⁻²)	Mouvement de sol (t ha ⁻¹ an ⁻¹)
Achigan	17AHG05	cultivé	1600	1129	-7,3
Achigan	17AHG10	cultivé	1594	813	-19,4
Achigan	17AHG15	cultivé	1595	1772	+1,8
Achigan	17AHG17	cultivé	1594	1034	-11,3
Achigan	17AHG25	témoin	1594	1649	+0,6
Alma	17ALM02	cultivé	1568	1244	-4,4
Alma	17ALM03	cultivé	1586	1401	-2,7
Alma	17ALM06	cultivé	1600	1439	-1,7
Alma	17ALM08	cultivé	1564	1890	+2,8
Alma	17ALM13	témoin	1600	1861	+2,7
Alma	17ALM14	témoin	1405	762	-6,9
Amqui	17AMQ02	cultivé	1777	932	-8,3
Amqui	17AMQ03	cultivé	1656	412	-16,5
Amqui	17AMQ04	cultivé	1662	712	-12,0
Amqui	17AMQ07	cultivé	1697	748	-12,3
Amqui	17AMQ13	cultivé	1702	808	-9,8
Amqui	17AMQ14	témoin	1698	1024	-7,1
Ascot	18ASC01	cultivé	1862	1203	-5,6
Ascot	18ASC05	cultivé	1894	1043	-10,8
Ascot	18ASC07	cultivé	1780	762	-13,5
Ascot	18ASC08	cultivé	1823	1358	-4,0
Aston	17AST06	cultivé	1638	1670	+0,5
Aston	17AST08	cultivé	1653	1207	-5,6
Aston	17AST09	cultivé	1665	1938	+3,6
Aston	17AST15	cultivé	1682	1150	-8,5
Aston	17AST22	témoin	1636	1135	-5,7
Aston	18AST34	témoin	1630	1344	-1,9
Baby	18BAB01	cultivé	1461	1208	-3,4
Baby	18BAB03	cultivé	1363	1467	+1,6
Baby	18BAB06	témoin	1455	1266	-2,1
Baby	18BAB20	cultivé	1407	871	-9,8
Baby	18BAB23	témoin	1441	1797	3,2
Baby	18BAB25	cultivé	1470	955	-7,3
Beaudette	17BET02	cultivé	1497	1623	+2,1
Beaudette	17BET03	cultivé	1484	1679	+3,0
Beaudette	17BET07	cultivé	1583	1976	+6,0
Beaudette	17BET11	cultivé	1620	1195	-8,7
Beaudette	17BET14	témoin	1583	880	-16,0

Série	Site	Type de site	Retombées de ¹³⁷ Cs	Inventaire de ¹³⁷ Cs	Mouvement de sol
			(Bq m ⁻²)	(Bq m ⁻²)	(t ha ⁻¹ an ⁻¹)
Beaudette	18BET18	témoin	1578	1543	-0,6
Beaurivage	17BVG01	cultivé	1842	2389	+7,5
Beaurivage	17BVG02	cultivé	1839	943	-12,0
Beaurivage	17BVG03	cultivé	1839	1515	-3,8
Beaurivage	17BVG07	cultivé	1836	1860	+0,3
Beaurivage	17BVG15	témoin	1844	1591	-3,3
Beaurivage	17BVG16	témoin	1861	1347	-4,7
Bedford	18BDF01	cultivé	1676	1059	-11,1
Bedford	18BDF03	témoin	1678	848	-10,6
Bedford	18BDF05	cultivé	1644	1089	-8,6
Bedford	18BDF07	cultivé	1644	536	-31,1
Bedford	18BDF12	cultivé	1662	1092	-10,7
Bedford	18BDF19	témoin	1680	1746	+0,6
Blandford	18BLF06	témoin	1848	1268	-6,4
Blandford	18BLF12	cultivé	1933	1365	-6,3
Blandford	18BLF27	cultivé	2030	1019	-8,9
Blandford	18BLF30	témoin	1801	1895	+0,8
Blandford	18BLF35	cultivé	1801	1393	-3,4
Blandford	18BLF60	cultivé	1771	1230	-7,0
Boucherville	18BCL02	cultivé	1646	1008	-10,2
Boucherville	18BCL03	témoin	1606	1355	-2,9
Boucherville	18BCL04	cultivé	1606	1190	-10,2
Boucherville	18BCL11	cultivé	1632	1661	+0,5
Boucherville	18BCL12	témoin	1632	1599	-0,3
Boucherville	18BCL13	cultivé	1582	1402	-3,2
Bouchette	18BCT06	cultivé	1662	934	-6,6
Bouchette	18BCT07	témoin	1664	756	-7,4
Bouchette	18BCT10	cultivé	1642	1669	+0,2
Bouchette	18BCT11	cultivé	1632	1973	+3,1
Bouchette	18BCT13	témoin	1720	1430	-2,0
Bouchette	18BCT14	cultivé	1720	1399	-2,5
Calais	18CIS04	cultivé	1857	1138	-11,1
Calais	18CIS05	témoin	1894	1112	-9,9
Calais	18CIS11	cultivé	1650	1751	+1,2
Calais	18CIS12	cultivé	1650	498	-31,8
Calais	18CIS14	cultivé	1626	1125	-8,6
Calais	18CIS15	témoin	1626	1234	-4,8
Chaloupe	17COP01	cultivé	1576	2060	+4,8
Chaloupe	17COP09	témoin	1778	2058	+3,3
Chaloupe	17COP10	cultivé	1770	1998	+2,8
Chaloupe	17COP13	cultivé	1785	2795	+9,2

Série	Site	Type de	Retombées	Inventaire	Mouvement
		site	de ¹³⁷ Cs (Bq m ⁻²)	de ¹³⁷ Cs (Bq m ⁻²)	de sol (t ha ⁻¹ an ⁻¹)
			(bq iii)	(bq iii)	(tila all)
Chaloupe	17COP14	cultivé	1682	2011	+3,4
Chaloupe	17COP16	témoin	1579	1441	-1,9
Chambly	18CHY07	cultivé	1637	1563	-1,5
Chambly	18CHY08	témoin	1666	928	-13,6
Chambly	18CHY09	cultivé	1547	1058	-7,9
Chambly	18CHY10	cultivé	1570	1243	-6,4
Chambly	18CHY12	cultivé	1679	1708	+0,4
Chambly	18CHY15	témoin	1640	432	-27,6
Chapais	18CHP01	témoin	1710	465	-8,9
Chapais	18CHP04	cultivé	1884	1180	-6,5
Chapais	18CHP08	cultivé	1959	1756	-1,5
Chapais	18CHP14	cultivé	1726	1029	-5,9
Chapais	18CHP16	cultivé	1683	707	-8,9
Chapais	18CHP22	témoin	1976	1094	-7,7
Charlevoix	18CVX03	témoin	2021	694	-12,0
Charlevoix	18CVX05	cultivé	2014	1900	-0,8
Charlevoix	18CVX08	cultivé	1764	1391	-2,4
Charlevoix	18CVX13	cultivé	1764	1393	-2,3
Charlevoix	18CVX15	cultivé	2024	1535	-4,3
Comis	17COM01	témoin	1728	1067	-5,3
Comis	17COM02	témoin	1738	1211	-3,6
Comis	17COM05	cultivé	1757	1137	-6,2
Comis	17COM10	cultivé	1763	1361	-2,7
Comis	17COM11	cultivé	1782	999	-7,2
Comis	17COM12	cultivé	1771	1172	-5,6
Dalhousie	18DHU02	cultivé	1446	917	-9,8
Dalhousie	18DHU08	cultivé	1633	1718	+1,3
Dalhousie	18DHU11	cultivé	1563	965	-9,1
Dalhousie	18DHU12	témoin	1563	1155	-7,1
Dalhousie	19DHU18	cultivé	1342	946	-6,3
Dalhousie	18DHU20	témoin	1454	1475	+0,3
Danby	17DBY02	cultivé	1880	1108	-8,9
Danby	17DBY09	cultivé	1873	731	-15,4
Danby	17DBY12	témoin	1873	1037	-7,6
Danby	17DBY14	cultivé	1779	1522	-2,6
Danby	17DBY17	cultivé	1729	1425	-3,3
Danby	17DBY18	témoin	1729	1587	-1,3
De l'Anse	18DLS01	cultivé	1519	1661	+1,4
De l'Anse	18DLS04	cultivé	1496	990	-6,5
De l'Anse	18DLS06	témoin	1509	195	-20,9
De l'Anse	18DLS10	cultivé	1494	1664	+2,0

Série	Site	Type de	Retombées	Inventaire	Mouvement
		site	de ¹³⁷ Cs	de ¹³⁷ Cs	de sol (t ha ⁻¹ an ⁻¹)
			(Bq m ⁻²)	(Bq m ⁻²)	(t iia aii)
De l'Anse	18DLS11	témoin	1494	1514	+0,3
De l'Anse	18DLS15	cultivé	1509	889	-7,0
Des Saults	18DSU03	cultivé	1828	1421	-6,0
Des Saults	18DSU06	cultivé	1626	927	-14,7
Des Saults	18DSU08	cultivé	1577	1099	-7,4
Des Saults	18DSU09	témoin	1656	1843	+2,5
Des Saults	18DSU21	cultivé	1625	616	-23,1
Des Saults	18DSU22	témoin	1658	1883	+2,8
Dufferin	18DFF01	cultivé	1805	676	-21,0
Dufferin	18DFF03	témoin	1796	1867	+0,5
Dufferin	18DFF05	cultivé	1793	1425	-4,3
Dufferin	18DFF08	cultivé	1768	1383	-7,2
Dufferin	18DFF11	cultivé	1868	722	-15,4
Dufferin	18DFF12	témoin	1883	561	-13,0
Duhamel	18DUA07	cultivé	1435	985	-6,6
Duhamel	18DUA10	cultivé	1443	1397	-0,6
Duhamel	18DUA21	cultivé	1395	1118	-4,3
Duhamel	18DUA22	cultivé	1472	1128	-5,2
Duhamel	18DUA23	témoin	1441	1291	-2,1
Duhamel	18DUA25	témoin	1441	1291	-2,2
Greensboro	18GEB02	cultivé	1808	1076	-10,2
Greensboro	18GEB04	cultivé	1787	913	-18,2
Greensboro	18GEB08	cultivé	1826	1598	-2,6
Greensboro	18GEB14	cultivé	1764	1449	-3,7
Greensboro	18GEB30	témoin	1808	1370	-4,6
Greensboro	18GEB31	témoin	1787	1342	-7,0
Guérin	18GUR05	cultivé	1389	798	-10,0
Guérin	18GUR06	cultivé	1349	1393	+0,5
Guérin	18GUR07	cultivé	1378	1060	-4,0
Guérin	18GUR10	cultivé	1413	959	-7,5
Guérin	18GUR20	témoin	1403	1661	+3,4
Guérin	18GUR22	témoin	1398	1077	-3,5
Hébertville	17HBV01	cultivé	1581	1623	+0,4
Hébertville	17HBV05	cultivé	1575	1134	-5,1
Hébertville	17HBV07	cultivé	1544	1157	-4,4
Hébertville	17HBV12	cultivé	1526	1172	-4,8
Hébertville	17HBV13	témoin	1534	1863	+2,2
Hébertville	17HBV14	témoin	1523	1456	-0,6
Joseph	17JSH06	cultivé	1664	1392	-3,7
Joseph	17JSH07	témoin	1664	2667	+8,3
Joseph	17JSH09	cultivé	1608	1180	-6,7

Série	Site	Type de	Retombées	Inventaire	Mouvement
		site	de ¹³⁷ Cs (Bq m ⁻²)	de ¹³⁷ Cs (Bq m ⁻²)	de sol (t ha ⁻¹ an ⁻¹)
			(bq iii)	(bq iii)	(tila all)
Joseph	17JSH12	cultivé	1583	1633	+0,7
Joseph	17JSH19	cultivé	1642	1328	-4,5
Joseph	17JSH21	témoin	1761	1518	-2,2
Kamouraska	18KRK03	cultivé	1839	1993	+1,5
Kamouraska	18KRK04	cultivé	1832	1467	-3,7
Kamouraska	18KRK06	témoin	1728	3133	+12,0
Kamouraska	18KRK10	cultivé	1737	1648	-0,9
Kamouraska	18KRK12	témoin	1527	1563	+0,5
Kamouraska	18KRK13	cultivé	1549	905	-9,8
Kieroski	18KRY03	cultivé	1595	1552	-0,8
Kieroski	18KRY04	cultivé	1598	1604	+0,1
Kieroski	18KRY11	cultivé	1647	1051	-13,8
Kierkoski	17KRY15	cultivé	1679	1179	-10,8
Kierkoski	18KRY16	témoin	1685	1242	-8,7
Kierkoski	18KRY17	témoin	1595	1364	-5,1
La Pocatière	18LPC03	cultivé	1805	316	-41,5
La Pocatière	18LPC05	cultivé	1711	1827	+1,3
La Pocatière	18LPC06	cultivé	1756	1351	-4,2
La Pocatière	18LPC08	témoin	1633	1189	-4,8
La Pocatière	18LPC17	témoin	1832	584	-17,3
La Pocatière	18LPC30	cultivé	1828	1067	-10,6
Le Bras	19LBS04	cultivé	1840	1219	-13,8
Le Bras	19LBS11	cultivé	1847	1320	-9,7
Le Bras	19LBS12	témoin	1841	1337	-5,2
Le Bras	19LBS14	cultivé	1844	2072	+2,3
Le Bras	19LBS16	cultivé	1843	1875	+0,4
Le Bras	19LBS28	témoin	1860	1691	-1,7
Leeds	18LED01	cultivé	1819	1178	-5,6
Leeds	18LED07	cultivé	1850	1213	-7,2
Leeds	18LED09	témoin	1862	1307	-4,6
Leeds	18LED11	cultivé	1867	947	-9,0
Leeds	18LED14	cultivé	1853	2223	+2,7
Leeds	18LED16	témoin	1850	979	-8,6
Lévrard	18LVD01	cultivé	1593	1379	-4,2
Lévrard	18LVD03	cultivé	1588	1336	-4,0
Lévrard	18LVD07	cultivé	1844	1729	-1,2
Lévrard	18LVD09	témoin	1779	2637	+11,6
Lévrard	18LVD23	cultivé	1682	2114	+5,8
Lévrard	18LVD60	témoin	1678	1609	-1,1
Magog	18MGO01	cultivé	1940	1102	-9,1
Magog	18MGO08	cultivé	1883	2082	+1,5

Série	Site	Type de	Retombées	Inventaire	Mouvement
		site	de ¹³⁷ Cs (Bq m ⁻²)	de ¹³⁷ Cs (Bq m ⁻²)	de sol (t ha ⁻¹ an ⁻¹)
			(Bq III)	(D q III)	(tila all)
Magog	18MGO10	cultivé	1804	763	-16,4
Magog	18MGO16	témoin	1743	575	-15,9
Magog	18MGO18	cultivé	1743	1060	-6,8
Mawcook	18MWO02	cultivé	1849	965	-14,0
Mawcook	18MWO03	cultivé	1849	2849	+6,0
Mawcook	18MWO07	cultivé	1856	1887	+0,4
Mawcook	18MWO08	témoin	1856	1277	-5,8
Mawcook	18MWO13	cultivé	1855	2896	+10,3
Mawcook	18MWO21	témoin	1891	2363	+5,0
Montcerf	18MTF03	cultivé	1717	1644	-0,6
Montcerf	18MTF04	témoin	1717	1169	-3,5
Montcerf	18MTF05	cultivé	1543	990	-7,4
Montcerf	18MTF08	cultivé	1611	614	-13,9
Montcerf	18MTF10	témoin	1606	1348	-2,0
Montcerf	18MTF12	cultivé	1588	987	-8,5
Morin	17MOI02	cultivé	2049	1691	-4,1
Morin	17MOI04	cultivé	1669	1118	-9,9
Morin	17MOI11	cultivé	1886	1362	-7,6
Morin	17MOI12	cultivé	1950	1476	-5,1
Morin	17MOI15	témoin	1950	1494	-4,2
Morin	17MOI16	témoin	2004	928	-12,2
Nobel	18NBL04	témoin	1761	473	-6,9
Nobel	18NBL05	cultivé	1749	281	-11,1
Nobel	18NBL07	cultivé	1550	371	-9,3
Nobel	18NBL08	cultivé	1522	1218	-2,3
Nobel	18NBL10	cultivé	1523	758	-6,5
Norberville	18NBV06	cultivé	1815	1239	-7,9
Norberville	18NBV08	témoin	1784	1303	-5,1
Norberville	18NBV09	cultivé	1821	892	-11,7
Norberville	18NBV10	cultivé	1821	1040	-12,4
Norberville	18NBV11	cultivé	1818	1314	-5,5
Norberville	18NBV14	témoin	1818	618	-14,8
Normandin	17NMD01	cultivé	1379	1057	-4,2
Normandin	17NMD04	cultivé	1494	1943	+4,2
Normandin	17NMD06	cultivé	1389	1279	-1,4
Normandin	17NMD07	cultivé	1394	827	-8,4
Normandin	17NMD11	témoin	1526	1769	+2,5
Normandin	17NMD13	témoin	1386	2181	+7,9
Orléans	19ORS03	cultivé	1782	1233	-10,3
Orléans	19ORS04	cultivé	1828	1555	-4,8
Orléans	19ORS05	témoin	1904	960	-11,9

Série	Site	Type de	Retombées	Inventaire	Mouvement
		site	de ¹³⁷ Cs	de ¹³⁷ Cs	de sol
			(Bq m ⁻²)	(Bq m ⁻²)	(t ha ⁻¹ an ⁻¹)
Orléans	19ORS08	cultivé	1878	1345	-6,5
Orléans	19ORS09	témoin	1878	727	-15,5
Orléans	19ORS15	cultivé	1845	408	-17,5
Palmarolle	18PML02	cultivé	1423	597	-14,7
Palmarolle	18PML03	cultivé	1354	725	-7,9
Palmarolle	18PML05	cultivé	1343	861	-6,5
Palmarolle	18PML06	témoin	1344	799	-5,5
Palmarolle	18PML07	cultivé	1344	1486	+1,2
Palmarolle	18PML22	témoin	1397	1043	-2,6
Providence	18PVD03	cultivé	1605	1657	+0,9
Providence	18PVD04	cultivé	1605	1119	-11,6
Providence	18PVD17	cultivé	1616	1339	-5,5
Providence	18PVD19	témoin	1609	1030	-8,6
Providence	18PVD20	témoin	1630	2254	+10,1
Providence	18PVD23	cultivé	1618	1627	+0,2
Quisibis	17QSB05	cultivé	1670	1077	-5,7
Quisibis	17QSB06	cultivé	1646	977	-5,1
Quisibis	17QSB11	cultivé	1664	831	-6,8
Quisibis	17QSB14	cultivé	1721	751	-8,1
Quisibis	17QSB15	témoin	1696	1510	-1,5
Quisibis	17QSB16	témoin	1681	1333	-2,7
Raimbault	18RMB01	cultivé	1714	780	-22,2
Raimbault	18RMB02	cultivé	1713	1633	-1,2
Raimbault	18RMB03	cultivé	1754	2406	+13,2
Raimbault	18RMB13	cultivé	1644	1266	-6,9
Raimbault	18RMB16	témoin	1614	1267	-6,0
Raimbault	18RMB17	témoin	1715	2181	+7,3
Rideau	18RDU01	cultivé	1574	1316	-3,9
Rideau	18RDU07	cultivé	1569	1474	-1,3
Rideau	18RDU10	cultivé	1593	2264	+8,6
Rideau	18RDU17	cultivé	1571	929	-10,8
Rideau	18RDU20	témoin	1571	1181	-5,5
Roquemaure	18ROQ01	cultivé	1380	788	-8,3
Roquemaure	18ROQ02	cultivé	1423	1171	-3,0
Roquemaure	18ROQ04	cultivé	1332	879	-2,5
Roquemaure	18ROQ20	témoin	1354	1855	+5,2
Roquemaure	18ROQ21	cultivé	1405	1137	-3,7
Roquemaure	18ROQ23	témoin	1428	705	-8,2
Saint-Aimé	17SIT03	cultivé	1612	1210	-6,6
Saint-Aimé	17SIT08	cultivé	1637	1350	-6,5
Saint-Aimé	17SIT11	cultivé	1638	1903	+4,6

Série	Site	Type de	Retombées	Inventaire	Mouvement
		site	de ¹³⁷ Cs (Bq m ⁻²)	de ¹³⁷ Cs (Bq m ⁻²)	de sol (t ha ⁻¹ an ⁻¹)
			(=4)	(=4)	(* ,
Saint-Aimé	17SIT12	cultivé	1603	1304	-5,0
Saint-Aimé	17SIT14	témoin	1640	1723	+1,6
Saint-André	17SDR01	cultivé	1612	1156	-6,1
Saint-André	17SDR11	cultivé	1502	1017	-7,7
Saint-André	17SDR15	cultivé	1558	1087	-6,3
Saint-André	17SDR16	témoin	1579	1136	-5,2
Saint-André	17SDR17	cultivé	1596	1268	-4,1
Saint-André	17SDR20	témoin	1545	1105	-5,3
Saint-Blaise	18SAB10	cultivé	1574	508	-39,7
Saint-Blaise	18SAB14	cultivé	1566	1322	-5,6
Saint-Blaise	18SAB15	cultivé	1530	394	-35,3
Saint-Blaise	18SAB19	cultivé	1632	1233	-6,0
Saint-Blaise	18SAB22	témoin	1630	927	-17,0
Saint-Blaise	18SAB25	témoin	1632	734	-9,3
Saint-Bruno	17SIB01	témoin	1821	1249	-5,0
Saint-Bruno	17SIB04	cultivé	1863	949	-10,9
Saint-Bruno	17SIB05	cultivé	1797	1405	-3,0
Saint-Bruno	17SIB10	cultivé	1771	1055	-6,5
Saint-Bruno	17SIB11	témoin	1606	711	-15,0
Saint-Bruno	17SIB15	cultivé	1583	1081	-6,3
Saint-Damase	17SDM01	cultivé	1643	1669	+0,3
Saint-Damase	17SDM02	cultivé	1643	1211	-8,5
Saint-Damase	17SDM03	cultivé	1664	1678	+0,2
Saint-Damase	17SDM05	témoin	1662	1438	-2,8
Saint-Damase	17SDM06	cultivé	1660	1023	-10,4
Saint-Damase	17SDM19	témoin	1623	845	-12,8
Saint-Damase	17SDM22	témoin	1636	1277	-4,1
Saint-Dominique	18SDE01	cultivé	1560	696	-6,6
Saint-Dominique	18SDE13	cultivé	1541	931	-3,9
Saint-Dominique	18SDE17	cultivé	1694	2355	+2,7
Saint-Dominique	18SDE19	témoin	1694	653	-5,7
Saint-Dominique	18SDE61	témoin	1663	1616	-0,2
Saint-Dominique	18SDE70	cultivé	1663	1659	0,0
Sainte-Barbe	17SBR01	cultivé	1495	795	-12,7
Sainte-Barbe	17SBR02	cultivé	1495	1240	-3,4
Sainte-Barbe	17SBR03	témoin	1493	1008	-8,4
Sainte-Barbe	17SBR04	cultivé	1497	1059	-6,6
Sainte-Barbe	17SBR13	cultivé	1497	1246	-3,4
Sainte-Barbe	17SBR14	témoin	1495	845	-10,3
Sainte-Brigide	18SEG02	témoin	1672	201	-41,1
Sainte-Brigide	18SEG04	cultivé	1655	908	-17,1

Série	Site	Type de	Retombées	Inventaire	Mouvement
		site	de ¹³⁷ Cs	de ¹³⁷ Cs	de sol
			(Bq m ⁻²)	(Bq m ⁻²)	(t ha ⁻¹ an ⁻¹)
Sainte-Brigide	18SEG08	cultivé	1695	712	-26,9
Sainte-Brigide	18SEG12	cultivé	1640	2487	+12,5
Sainte-Brigide	18SEG13	cultivé	1642	1169	-9,7
Sainte-Brigide	18SEG15	témoin	1666	1347	-4,3
Sainte-Marie	18STE01	cultivé	1835	730	-19,8
Sainte-Marie	18STE03	cultivé	1939	814	-16,4
Sainte-Marie	18STE04	témoin	1793	845	-10,0
Sainte-Marie	18STE05	cultivé	1793	918	-12,4
Sainte-Marie	18STE10	cultivé	1869	970	-10,2
Sainte-Marie	18STE25	témoin	1869	1053	-6,1
Sainte-Rosalie	18SSL10	témoin	1607	689	-16,9
Sainte-Rosalie	18SSL11	cultivé	1607	516	-24,4
Sainte-Rosalie	18SSL12	cultivé	1672	890	-13,5
Sainte-Rosalie	18SSL21	témoin	1604	336	-42,1
Sainte-Rosalie	18SSL24	cultivé	1669	1271	-5,5
Sainte-Rosalie	18SSL27	cultivé	1643	1582	-1,1
Saint-Hyacinthe	17SYT05	cultivé	1685	1070	-12,0
Saint-Hyacinthe	17SYT11	cultivé	1678	1286	-6,8
Saint-Hyacinthe	17SYT14	cultivé	1644	1036	-13,6
Saint-Hyacinthe	17SYT16	témoin	1653	1636	-0,3
Saint-Hyacinthe	17SYT17	cultivé	1662	1268	-5,4
Saint-Hyacinthe	17SYT18	témoin	1680	2392	+7,0
Saint-Jude	17SJU01	cultivé	1633	1067	-9,2
Saint-Jude	17SJU02	témoin	1630	2067	+4,5
Saint-Jude	17SJU06	cultivé	1856	569	-28,3
Saint-Jude	17SJU09	cultivé	1586	1240	-5,4
Saint-Jude	17SJU11	cultivé	1746	808	-19,2
Saint-Jude	17SJU22	témoin	1652	1371	-3,9
Saint-Laurent	18SIE03	témoin	1575	1315	-4,1
Saint-Laurent	18SIE07	cultivé	1573	2081	+9,7
Saint-Laurent	18SIE08	cultivé	1578	1416	-3,1
Saint-Laurent	18SIE12	cultivé	1576	963	-12,2
Saint-Laurent	18SIE30	témoin	1573	900	-9,0
Saint-Laurent	19SIE43	cultivé	1578	1387	-3,4
Saint-Nicolas	17SCS01	cultivé	1898	659	-29,8
Saint-Nicolas	17SCS02	témoin	1862	1211	-9,9
Saint-Nicolas	17SCS03	cultivé	1874	1048	-14,1
Saint-Nicolas	17SCS06	cultivé	1881	1247	-8,2
Saint-Nicolas	17SCS07	témoin	1881	258	-45,5
Saint-Nicolas	17SCS15	cultivé	1842	1806	-0,5
Saint-Pascal	18SSC01	cultivé	1530	859	-13,2

Série	Site	Type de	Retombées	Inventaire	Mouvement
		site	de ¹³⁷ Cs (Bq m ⁻²)	de ¹³⁷ Cs (Bq m ⁻²)	de sol (t ha ⁻¹ an ⁻¹)
			(1)	(1 /	,
Saint-Pascal	18SSC05	témoin	1493	1153	-3,2
Saint-Pascal	18SSC08	témoin	1530	1463	-0,8
Saint-Pascal	18SSC10	cultivé	1500	1456	-0,4
Saint-Pascal	18SSC11	cultivé	1500	1046	-9,3
Saint-Pascal	18SSC35	cultivé	1493	1477	-0,3
Saint-Urbain	18SUB01	cultivé	1599	1115	-9,7
Saint-Urbain	18SUB06	cultivé	1622	1333	-5,4
Saint-Urbain	18SUB08	cultivé	1670	950	-14,2
Saint-Urbain	18SUB10	témoin	1624	1826	+3,3
Saint-Urbain	18SUB13	cultivé	1651	1662	+0,2
Saint-Urbain	18SUB15	témoin	1662	1100	-8,8
Shefford	18SHF02	cultivé	1729	1228	-8,4
Shefford	18SHF04	cultivé	1811	1535	-4,2
Shefford	18SHF07	cultivé	1855	1523	-3,2
Shefford	18SHF16	témoin	1794	1079	-10,1
Shefford	18SHF21	témoin	1771	838	-11,4
Shefford	18SHF22	cultivé	1816	1754	-0,8
Sherbrooke	18SBO02	témoin	1809	1749	-0,7
Sherbrooke	18SBO03	cultivé	1809	1113	-12,4
Sherbrooke	18SBO06	cultivé	1788	816	-16,5
Sherbrooke	18SBO11	cultivé	1788	1029	-10,1
Sherbrooke	18SBO15	cultivé	1853	1416	-4,9
Sherbrooke	18SBO17	témoin	1853	536	-14,9
Taillon	17TLL02	cultivé	1586	2130	+5,7
Taillon	17TLL09	cultivé	1539	1287	-3,0
Taillon	17TLL10	témoin	1544	1200	-2,8
Taillon	17TLL15	cultivé	1404	1160	-2,3
Taillon	17TLL16	témoin	1405	1302	-1,0
Taillon	17TLL17	cultivé	1576	946	-8,5
Uplands	19UPD01	cultivé	1647	822	-10,9
Uplands	19UPD02	cultivé	1622	1013	-7,9
Uplands	19UPD04	témoin	1624	988	-5,6
Uplands	19UPD08	cultivé	1596	1277	-3,8
Uplands	19UPD20	cultivé	1610	1442	-4,4
Uplands	19UPD21	témoin	1622	1933	+4,2
Valère	19VAR01	cultivé	1683	781	-14,8
Valère	19VAR03	témoin	1683	918	-9,6
Valère	19VAR05	cultivé	1679	1645	-0,5
Valère	19VAR11	témoin	1725	1476	-3,4
Valère	19VAR20	cultivé	1824	751	-15,0
Valère	19VAR25	cultivé	1683	1017	-13,1

Série	Site	Type de site	Retombées de ¹³⁷ Cs (Bq m ⁻²)	Inventaire de ¹³⁷ Cs (Bq m ⁻²)	Mouvement de sol (t ha ⁻¹ an ⁻¹)
Verchères	18VER06	cultivé	1585	1106	-3,6
Verchères	18VER08	témoin	1585	1565	-0,1
Verchères	18VER11	cultivé	1508	3057	+7,2
Verchères	18VER13	cultivé	1532	1080	-4,0
Verchères	18VER18	cultivé	1511	798	-7,1
Verchères	18VER62	témoin	1544	969	-3,5
Woodbridge	18WOI01	cultivé	1831	1014	-8,3
Woodbridge	18WOI02	cultivé	1831	1045	-8,8
Woodbridge	18WOI05	cultivé	1875	905	-13,4
Woodbridge	18WOI16	témoin	1831	440	-20,0
Woodbridge	18WOI60	témoin	1871	1531	-4,1
Woodbridge	19WOI04	cultivé	1940	1062	-9,9