电路原理课程作业 Homework of Circuit Theory

丁毅

中国科学院大学,北京 100049

Yi Ding

University of Chinese Academy of Sciences, Beijing 100049, China

2024.8 - 2025.1

序言

本文为笔者本科时的"电路原理"课程作业(Homework of Circuit Theory, 2024.9-2025.1)。由于个人学识浅陋,认识有限,文中难免有不妥甚至错误之处,望读者不吝指正,在此感谢。

我的邮箱是 dingyi233@mails.ucas.ac.cn。

目录

序		I
目录		I
1	2024.8.27 - 2024.9.2	1
2	基础知识	4
3	这里是第二章	5
参:	参考文献	
附	附录 A	

Homework 1: 2024.8.27 - 2024.9.2

1.1 习题集 1-2

- (a) 短路,因此 $U=0, I=\frac{U_S}{R_i}$
- (b) 开路,因此 $U=U_s,\ I=0$
- (c) 构成回路,因此 $U = \frac{U_S R}{R + R_i}$, $I = \frac{U_S}{R + R_i}$

(b)开路

(c) 接负载 R

1.2 习题集 1-9

- (a) $\varphi_a 3 \text{ V} + 2 \text{ V} = \varphi_b \Longrightarrow U_{ab} = 1 \text{ V}$
- (b) $I = 1 \text{ A}, 3 IR = -4 \Longrightarrow R = 7 \Omega$
- (c) $-3 + U_S = 1 \Longrightarrow U_S = 4 \text{ V}$
- (d) $R = 2 \Omega$, $-IR + 2 = 3 \Longrightarrow I = -0.5 A$

1.3 习题集 1-10

- (a) 记参考点 a 的电势 $\varphi_a=0$,则 $\varphi_c=2$ V, $\varphi_b=-2$ V,因此 $U_{ab}=2$ V
- (b) 记参考点 d 的电势 $\varphi_d=\varphi_b=0$,则 $\varphi_c=6$ V, $\varphi_a=-2$ V,因此 $U_{ab}=-2$ V

1.4 习题集 1-15

- (a) $I = -\frac{U}{R} + 4 A = -2 A$
- (b) $U = 12 \text{ V} + 3 \Omega \times 4 \text{ A} = 0$
- (c) I = 8 A 6 A = 2 A, $U = 12 \text{ V} + 3 \times 8 \text{ V} = 36 \text{ V}$
- (d) 取点 d 为参考点,则 $\varphi_d = \varphi_c = 0$, $\varphi_b = \varphi_a = 9$ V,于是 $U_1 = 9 + 2 \times 3 = 15$ V, $U_2 = 9 + 2 \times 2 = 13$ V,I = 2 (9 3) = -4 A

1.5 习题集 1-29

取点 a 为参考点 $\varphi_a=0$,可得 $\varphi_b=100U_1-80$,于是在结点 a 有电流:

$$I_S + \frac{100U_1 - 80}{5} = 2$$

 0.2Ω 电阻处又有 $U_1 = 0.2I_S$,联立解得 $I_S = 3.6 \text{ A}, U_1 = 7.2 \text{ V}$ 。

1.6 习题集 1-30

这里要注意左二元器件是受控电流源,因此 0.5U 是指电流大小而非电压。 I_1 处可列出方程:

$$\frac{U}{2} + 12 - \frac{U}{3} = 0.5U \Longrightarrow U = 36 \text{ V} \Longrightarrow P = UI = 432 \text{ W}$$

1.7 讲义题 1-6

 α 指什么? 讲义中似乎没有找到 α 。

1.8 讲义题 1-7

充放电倍率 C 的含义:

C (充放电倍率)表示电池充放电时电流相对电池容量的大小数值, $C=\frac{e^{10}R_{\Xi}}{500}$ 例如,1 C 电流充电表示电池需要 1 小时充满,5 C 充电表示电池需要 0.2 小时充满。放电也是类似的,一个 10 Ah 的电池以 2 C 放电,表示以 20 A 的电流放电 0.5 h。

若倍率上升,总时间就会下降,若倍率下降,总时间就会上升。通俗来讲,*C*代表了电池的爆发力大小,高倍率的动力电池瞬间放电电流大,特别适合大电流放电产品使用,如航模。

涓流充电:

涓流充电是指在电池接近完全充满电后,采用非常小的电流进行充电,以弥补电池自放电造成的容量 损失。理论倍率 C 约为最大倍率 C_{max} 的 $\frac{1}{100}$ 至 $\frac{1}{1000}$,但由于倍率太小,常常根本无法充电,一个比较好的 方法是脉冲式充电,例如以 $\frac{C_{max}}{100}$ 充电 6 s,然后停止充电 54 s。

快速充电:

快速充电至少要求1C,现阶段的快速充电多在1.5C至2C之间。

1.9 讲义题 1-8 (Multisim 仿真)

Homework 2: 基础知识

2.1 第一章第一节

向后加权隐式格式:

将向前差分与向后差分加权组合起来,得到:

$$\frac{u_j^k - u_j^{k-1}}{h_t} = a\theta \frac{u_{j+1}^k - 2u_j^k + u_{j-1}^k}{h_x^2} + a(1-\theta) \frac{u_{j+1}^{k-1} - 2u_j^{k-1} + u_{j-1}^{k-1}}{h_x^2}$$
(2.1)

其中 $\theta \in [0,1]$ 为权重,其截断误差 $R = a\left(\frac{1}{2} - \theta\right)h_t\left[\frac{\partial^3 u}{\partial x^2 \partial t}\right]_j^k + O(h_t^2 + h_x^2)$,因此当 $\theta = \frac{1}{2}$ 时,方程具有 $O(h_t^2 + h_x^2)$ 精度,称为 Crank-Nicolson 格式(CN 格式)。

公式 2.1 的增长因子及稳定性条件为:

$$G(h_t, \sigma) = \frac{1 - 4(1 - \theta)ar\sin^2\frac{\sigma h}{2}}{1 + 4\theta ar\sin^2\frac{\sigma h}{2}}, \begin{cases} r \leqslant \frac{1}{2a(1 - 2\theta)}, & \theta \in [0, \frac{1}{2}) \\ \text{£$\Re μ} \& \text{E}, & \theta \in [\frac{1}{2}, 1] \end{cases}$$
(2.2)

Theorem.1 (这是一个 Line Theorem): 你好你好你好

Theorem. 2 (这是一个 Block Theorem):

你好你好你好

表格:

表 2.1: 符号含义与约定

符号	符号含义	单位
符号1	含义1	单位 1
符号 2	含义 2	单位 2
符号3	含义3	单位3
符号 4	含义 4	单位 4

Homework 3: 这里是第二章

Latex Table Editor 示例:

±	2 1	— <i>I</i> T.	1 == 16
衣	3.1:	示例	表格

x	hello	123.456
x	hello	123.456
	Continu	ied on next

Continued on next

page

表 3.1: 示 例 表 格 (Continued)

	(C0.	nunueu)
x	hello	123.456
\boldsymbol{x}	hello	123.456
x	hello	123.456
x	hello	123.456
\boldsymbol{x}	hello	123.456
x	hello	123.456
\boldsymbol{x}	hello	123.456
x	hello	123.456
\boldsymbol{x}	hello	123.456
\boldsymbol{x}	hello	123.456

Create Latex Tables Online 示例:

表 3.2: Create Latex Tables Online 示例

表头	表头	表头
x	hello	123.456

Table 3.2: continued from previous page

表头	表头	表头
\overline{x}	hello	123.456
x	hello	123.456

附录 A

A.1 支撑材料列表

这里插入一张图片(类似思维导图那种)

A.2 这里是我的第二节附录

```
% MATLAB code here
1
2
    x = 0:0.1:2*pi;
    y = sin(x);
    plot(x, y);
    xlabel('x');
6
    ylabel('sin(x)');
7
    title ('Sine Function');
    % ... (MATLAB code here, 最好是插入文件)
    % MATLAB code here
9
    x = 0:0.1:2*pi;
11
    y = \sin(x);
    plot(x, y);
13
    xlabel('x');
14
    ylabel('sin(x)');
15
    title ('Sine Function');
    % ... (MATLAB code here, 最好是插入文件)
16
17
    % MATLAB code here
    x = 0:0.1:2*pi;
19
    y = \sin(x);
    plot(x, y);
21
    xlabel('x');
22
    ylabel('sin(x)');
23
    title ('Sine Function');
    % ... (MATLAB code here, 最好是插入文件)
25
    % MATLAB code here
    x = 0:0.1:2*pi;
27
    y = sin(x);
    plot(x, y);
29
    xlabel('x');
30
    ylabel('sin(x)');
31
    title ('Sine Function');
    % ... (MATLAB code here, 最好是插入文件)
32
33
    % MATLAB code here
    x = 0:0.1:2*pi;
35
    y = sin(x);
36
    plot(x, y);
37
    xlabel('x');
    ylabel('sin(x)');
38
    title ('Sine Function');
```

```
40
    % ... (MATLAB code here, 最好是插入文件)
    % MATLAB code here
41
    x = 0:0.1:2*pi;
42
43
    y = sin(x);
44
    plot(x, y);
    xlabel('x');
45
    ylabel('sin(x)');
46
    title ('Sine Function');
47
    % ... (MATLAB code here, 最好是插入文件)% ... (MATLAB code here, 最好是插入文件)% ...
48
       (MATLAB code here, 最好是插入文件)% ... (MATLAB code here, 最好是插入文件)% ... (
       MATLAB code here, 最好是插入文件)A
    % MATLAB code here
49
50
    x = 0:0.1:2*pi;
51
    y = \sin(x);
    plot(x, y);
52
53
    xlabel('x');
    ylabel('sin(x)');
54
55
    title ('Sine Function');
    % ... (MATLAB code here, 最好是插入文件)
56
```

A.3 这里是我的第三节附录

你好你好你好你好你好你好