

Interpolasi

Metode Numerik

Zulhaydar Fairozal Akbar zfakbar@pens.ac.id 2017

TOPIK

- O Pengenalan Interpolasi
- O Jenis Interpolasi
- O Interpolasi Linier
- O Interpolasi Kuadrat
- O Intepolasi Lagrange
- O Interpolasi Newton

Pengenalan

- O Teknik mencari harga suatu fungsi pada suatu titik diantara 2 titik yang nilai fungsi pada ke-2 titik tersebut sudah diketahui.
- O Cara menentukan harga fungsi f dititik $x^* \in [x_0, x_n]$ dengan menggunakan informasi dari seluruh atau sebagian titik-titik yang diketahui $(x_0, x_1, ..., x_n)$

Х	x ₀	X ₁	X ₂	 X _n
f(x)	f(x ₀)	f(x ₁)	f(x ₂)	 f(x _n)

Interpolasi vs Ekstrapolasi

O Ekstrapolasi : prediksi terhadap titik-titik yang akan muncul dimana adanya perluasan data di luar data yg tersedia.

Jenis Interpolasi

- OInterpolasi Linier
- OInterpolasi Kuadrat
- OInterpolasi Lagrange
- OInterpolasi Newton

O Ide dasar: pada saat data dalam bentuk tabel tidak begitu bervariasi, sehingga memungkinkan untuk dilakukan pendekatan dengan menggunakan sebuah garis lurus di antara dua titik yang berdekatan.

- O Menentukan titik titik antara dari 2 buah titik dengan menggunakan garis lurus.
- O Persamaan garis lurus yang melalui 2 titik $P_1(x_1,y_1)$ dan $P_2(x_2,y_2)$ dapat dituliskan dengan :

$$\frac{y - y_1}{y_2 - y_1} = \frac{x - x_1}{x_2 - x_1}$$

O Persamaan Interpolasi Linier:

$$y = \frac{y_2 - y_1}{x_2 - x_1} (x - x_1) + y_1$$

Contoh Interpolasi Linier (1)

O Diketahui data sebagai berikut:

_											
Х	-3	-2	-1	0	1	2	3	4	5	6	7
У	9	4	1	0	1	4	9	16	25	36	49

Tentukan harga
$$y$$
 pada $x = 6.5$?

$$x = 6.5$$
 terletak antara $x = 6$ dan $x = 7$

$$y = \frac{y_2 - y_1}{x_2 - x_1} (x - x_1) + y_1$$

$$y = \frac{49 - 36}{7 - 6}(6.5 - 6) + 36 =$$
 42.5

Contoh Interpolasi (1)

- O Alternatif 2:
- O x = 6.5 terletak di antara x = 1 & x = 7

$$y = \frac{y_2 - y_1}{x_2 - x_1} (x - x_1) + y_1$$

$$y = \frac{49 - 1}{7 - 1}(6.5 - 1) + 1$$

$$y = \frac{48}{6}(48) + 1$$

$$y = 45$$

Contoh Interpolasi (1)

Х	-3	-2	-1	0	1	2	3	4	5	6	7
у	9	4	1	0	1	4	9	16	25	36	49

- O Bandingkan hasil kedua jawaban tersebut .
- O Mana yang mendekati jawaban yang sesungguhnya ?
- O Jika kita lihat persamaan fungsi sumbu y, $f(x) = x^2$, maka untuk harga x = 6.5 di dapat $y = (6.5)^2 = 42.25$
- O Kesalahan mutlak (E) = |42.5 42.25| = 0.25

Contoh Interpolasi (1)

O Kesalahan mutlak (E), untuk:

$$y = 42.5 \rightarrow |42.5 - 42.25| = 0.25 = 25\%$$

O Sedangkan untuk:

$$y = 45 \rightarrow |45 - 42.25| = 3.25 = 325\%$$

Contoh Interpolasi (2)

O Jarak yang dibutuhkan sebuah kendaran untuk berhenti adalah fungsi kecepatan. Data percobaan berikut ini menunjukkan hubungan antara kecepatan dan jarak yang dibutuhkan untuk menghentikan kendaraan.

Kecepatan (mil/jam)	10	20	30	40	50	60	70
Jarak henti (feet)	12	21	46	65	90	111	148

O Perkiraan jarak hentik yang dibutuhkan bagi sebuah kendaraan yang melaju dengan kecepatan 45 mil/jam.

Contoh Interpolasi (2)

O Maka untuk mencari nilai x = 45,

$$y = \frac{y_2 - y_1}{x_2 - x_1} (x - x_1) + y_1$$

$$y = \frac{90 - 65}{50 - 40} (45 - 40) + 65$$

$$y = \frac{25}{10}(5) + 65$$

$$y = 12.5 + 65$$

$$y = 12.5 + 65 =$$
77. 5 *feet*

- O Algoritma Interpolasi Linier:
 - 1. Tentukan dua titik P_1 dan P_2 dengan koordinatnya masing-masing (x_1, y_1) dan (x_2, y_2) .
 - 2. Tentukan nilai *x* dari titik yang akan dicari.
 - 3. Hitung nilai y dengan:
 - 4. Tampilkan nilai titik yang baru Q(x, y)

$$y = \frac{y_2 - y_1}{x_2 - x_1} (x - x_1) + y_1$$

- O Pendekatan interpolasi dengan derajat 1, pada kenyataannya sama dengan mendekati suatu harga tertentu melalui garis lurus.
- O Untuk memperbaiki kondisi tersebut dilakukan sebuah interpolasi dengan membuat garis yang menghubungkan titik yaitu melalui orde 2, orde 3, orde 4, dst, yang sering juga disebut interpolasi kuadratik, kubik, dst.

- O Interpolasi orde 2 sering disebut sebagai interpolasi kuadratik, memerlukan 3 titik data.
- O Bentuk polinomial orde ini adalah:

$$f(x) = ax^2 + bx + c$$

O Titik – titik data (x_0, y_0) , (x_1, y_1) , (x_2, y_2)

$$y_0 = a_0 + a_1 x_0 + a_2 x_0^2$$

$$y_1 = a_0 + a_1 x_1 + a_2 x_1^2$$

$$y_2 = a_0 + a_1 x_1 + a_2 x_2^2$$

- O Hitung a_0 , a_1 , dan a_2 dari sistem persamaan tersebut dengan metode eliminasi Gauss
- O Hitung dengan rumus interpolasi kuadratik:

$$y = y_1 \frac{(x - x_2)(x - x_3)}{(x_1 - x_2)(x_1 - x_3)} + y_2 \frac{(x - x_1)(x - x_3)}{(x_2 - x_1)(x_2 - x_3)} + y_3 \frac{(x - x_1)(x - x_2)}{(x_3 - x_1)(x_3 - x_2)}$$

Contoh Soal Interpolasi Kuadrat (1)

O Diberikan titik $\ln(8.0) = 2.0794$, $\ln(9.0) = 2.1972$, dan $\ln(9.5) = 2.2513$. Tentukan nilai $\ln(9.2)$ dengan interpolasi kuadratik.

Diketahui : $x_0 = 8.0$, $y_0 = 2.0794$, $x_1 = 9.0$, $y_1 = 2.1972$, $x_2 = 9.5$, $y_2 = 2.2513$

Ditanya : Nilai ln(9.2) = ?

Sistem persamaan yang terbentuk adalah:

$$a_0 + 8.0 \ a_1 + 64.0 \ a_2 = 2.0794$$

$$a_0 + 9.0 \ a_1 + 81.0 \ a_2 = 2.1972$$

$$a_0 + 9.5 a_1 + 90.25 a_2 = 2.2513$$

Contoh Soal Interpolasi Kuadrat (1)

O Perhitungan secara manual, diselesaikan dengan metode eliminasi Gauss:

$$\begin{array}{l} a_0 + 8.0 \ a_1 + 64.0 \ a_2 = 2.0794 \\ a_0 + 9.0 \ a_1 + 81.0 \ a_2 = 2.1972 \\ a_0 + 9.5 \ a_1 + 90.25 \ a_2 = 2.2513 \end{array} \quad \begin{pmatrix} 1 & 8 & 64 & 2.0794 \\ 1 & 9 & 81 & 2.1972 \\ 1 & 9.5 & 90.25 & 2.2513 \end{pmatrix} \quad \begin{array}{l} R21(-1) \ \begin{pmatrix} 1 & 8 & 64 & 2.0794 \\ 0 & 1 & 17 & 0.1178 \\ 0 & 1.5 & 26.25 & 0.1719 \end{pmatrix}$$

$$\begin{array}{c} R12(-8) \\ R32(-1.5) \end{array} \begin{pmatrix} 1 & 0 & -72 & 1.137 \\ 0 & 1 & 17 & 0.1178 \\ 0 & 0 & 0.75 & -0.0048 \end{pmatrix} \qquad R31(\frac{1}{0.75}) \begin{pmatrix} 1 & 0 & -72 & 1.137 \\ 0 & 1 & 17 & 0.1178 \\ 0 & 0 & 1 & -0.0064 \end{pmatrix} \qquad \begin{array}{c} R13(72) \\ R23(-17) \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 & 0.6762 \\ 0 & 1 & 0 & 0.2266 \\ 0 & 0 & 1 & -0.0064 \end{pmatrix}$$

Menggunakan metode Eliminasi gauss menghasilkan

$$a_0 = 0.6762$$
, $a_1 = 0.2266$, $a_2 = -0.0064$.

Polinom kuadratnya adalah:
$$p_2(x) = a_0 + a_1 x + a_2 x^2$$

$$p_2(9.2) = 0.6762 + 0.2266.(9.2) + -0.0064.(9.2)^2$$

$$p_2(9.2) = 2.2192$$

Contoh Soal Interpolasi Kuadrat (1)

O Perhitungan menggunakan rumus interpolasi kuadratik:

$$y = y_1 \frac{(x - x_2)(x - x_3)}{(x_1 - x_2)(x_1 - x_3)} + y_2 \frac{(x - x_1)(x - x_3)}{(x_2 - x_1)(x_2 - x_3)} + y_3 \frac{(x - x_1)(x - x_2)}{(x_3 - x_1)(x_3 - x_2)}$$

Diketahui : $x_1 = 8.0$, $y_1 = 2.0794$, $x_2 = 9.0$, $y_2 = 2.1972$, $x_3 = 9.5$, $y_3 = 2.2513$ x = 9.2, y = 9.2

$$y = 2.0794 \frac{(9.2 - 9)(9.2 - 9.5)}{(8 - 9)(8 - 9.5)} + 2.1972 \frac{(9.2 - 8)(9.2 - 9.5)}{(9 - 8)(9 - 9.5)} + 2.2513 \frac{(9.2 - 8)(9.2 - 9)}{(9.5 - 8)(9.5 - 9)}$$

y = -0.0831 + 1.581984 + 0.720416

= 2.2193

- O Algoritma Interpolasi Kuadrat:
 - 1. Tentukan tiga titik $P_1(x_1, y_1)$, $P_2(x_2, y_2)$ da $P_3(x_3, y_3)$.
 - 2. Tentukan nilai *x* dari titik yang akan dicari.
 - 3. Hitung nilai y dengan rumus interpolasi kuadratik :

$$y = y_1 \frac{(x - x_2)(x - x_3)}{(x_1 - x_2)(x_1 - x_3)} + y_2 \frac{(x - x_1)(x - x_3)}{(x_2 - x_1)(x_2 - x_3)} + y_3 \frac{(x - x_1)(x - x_2)}{(x_3 - x_1)(x_3 - x_2)}$$

4. Tampilkan nilai *x* dan *y*

Soal Interpolasi Linier

O Perkiraan atau prediksi jumlah penduduk Gunungsari pada tahun 2005 berdasarkan data tabulasi berikut:

Tahun	2000	2010		
Jumlah Penduduk	179.300	203.200		

Soal Interpolasi Kuadrat

O Dalam suatu eksperimen fisika pergerakan sebuah benda padat berbentuk parabola. Dengan data sebagai berikut :

t (detik)	Y(m)
5	2.01
6.5	2.443
8	2.897

O Dengan menggunakan interpolasi kuadratik perkirakan ketinggian bola pada saat t=7 detik.

Jawaban

Dipunyai: $x_0 = 2000$, $x_1 = 2010$, $y_0 = 179.300$, $y_1 = 203.200$.

Ditanya: Prediksi jumlah penduduk gunungsari pada tahun 2005.

$$p_1(x) = y_0 + \frac{(y_1 - y_0)(x - x_0)}{x_1 - x_0}$$

Misalkan x = 2005

$$p_1(2005) = 179.300 + \frac{(203.200 - 179.300)(2005 - 2000)}{2010 - 2000}$$

$$p_1(2005) = 191.250$$

Jadi, diperkirakan jumlah penduduk gunungsari pada tahun 2005 adalah 191.250 orang.

Jawaban

O Sistem persamaan lanjar yang terbentuk adalah:

$$a_0 + 5.0 a_1 + 25.00 a_2 = 2.01$$

 $a_0 + 6.5 a_1 + 42.25 a_2 = 2.443$
 $a_0 + 8.0 a_1 + 64.00 a_2 = 2.897$

Penyelesaian sistem persamaan dengan menggunakan metode eliminasi Gauss

$$\begin{bmatrix} 1 & 5 & 25 & 2,01 \\ 1 & 6,5 & 42,25 & 2,443 \\ 1 & 8 & 64 & 2,897 \end{bmatrix} R2, R1(-1) \begin{bmatrix} 1 & 5 & 25 & 2,01 \\ 0 & 1,5 & 17,25 & 0,443 \\ 0 & 3 & 39 & 0,887 \end{bmatrix} R2 \left(\frac{1}{1,5}\right)$$

$$\begin{bmatrix} 1 & 5 & 25 & 2,01 \\ 0 & 1 & 11,5 & 0,28867 \\ 0 & 3 & 39 & 0,887 \end{bmatrix} R1, R2(-5) \begin{bmatrix} 1 & 0 & -32,5 & 0,56667 \\ 0 & 1 & 11,5 & 0,28867 \\ 1 & 0 & 4,5 & 0,021 \end{bmatrix} R3\left(\frac{1}{4,5}\right)$$

Jawaban

$$\begin{bmatrix} 1 & 0 & -32,5 & 0,56667 \\ 0 & 1 & 11,5 & 0,28867 \\ 1 & 0 & 1 & 0,00467 \end{bmatrix} R1, R3(32,5) \begin{bmatrix} 1 & 0 & 0 & 0,71733 \\ 0 & 1 & 0 & 0,235 \\ 1 & 0 & 1 & 0,00467 \end{bmatrix}$$

Diperoleh : $a_0 = 0.71733$, $a_1 = 0.235$, $a_2 = 0.00467$

Sehingga Polinom Kuadratnya adalah:

$$p_2(x) = 0.71733 + 0.235x + 0.00467x^2$$

Sehingga $p_2(7) = 2,588$

Jadi,diprediksi, pada t = 7 detik tinggi bola 2,588 m.

Interpolasi Lain

- O Secara umum, penentuan polinomial dengan cara tersebut kurang disukai, karena mempunyai kemungkinan yang jelek terutama untuk derajat polinomial yang semakin tinggi.
- O Terdapat beberapa metode polinom interpolasi:
 - Polinom Lagrange
 - Polinom Newton

Interpolasi Lain

- O Secara umum, penentuan polinomial dengan cara tersebut kurang disukai, karena mempunyai kemungkinan yang jelek terutama untuk derajat polinomial yang semakin tinggi.
- O Terdapat beberapa metode polinom interpolasi :
 - Polinom Lagrange
 - Polinom Newton

- O Polinom berderajat satu: $p_1(x) = y_0 + \frac{(y_1 y_0)(x x_0)}{x_1 x_0}$
- O Dapat diatur kembali sedemikian rupa sehingga menjadi:

$$p_1\left(x\right)=\ y_0\,\frac{(x-x_1)}{x_0-x_1}+y_1\,\frac{(x-x_0)}{x_1-x_0}$$
 Atau dapat dinyatakan dalam bentuk (*)
$$p_1\left(x\right)=\ a_0L_0(x)+a_1L_1(x)$$

O Dimana:

$$a_0 = y_0 a_1 = y_1$$

$$L_0(x) = \frac{(x - x_1)}{x_0 - x_1} L_1(x) = \frac{(x - x_0)}{x_1 - x_0}$$

O Persamaan * dinamakan Polinom Lagrange derajat 1.

O Pendekatan orde ke-1.

$$f_1(x) = L_0(x)f(x_0) + L_1(x)f(x_1)$$

$$L_0(x) = \frac{x - x_1}{x_0 - x_1}$$
 $L_1(x) = \frac{x - x_0}{x_1 - x_0}$

$$f_1(x) = \frac{x - x_1}{x_0 - x_1} f(x_0) + \frac{x - x_0}{x_1 - x_0} f(x_1)$$

O Pendekatan orde ke-2.

$$f_2(x) = L_0(x)f(x_0) + L_1(x)f(x_1) + L_2(x)f(x_2)$$

$$L_{0}(x) = \left(\frac{x - x_{1}}{x_{0} - x_{1}}\right) \left(\frac{x - x_{2}}{x_{0} - x_{2}}\right) \quad L_{1}(x) = \left(\frac{x - x_{0}}{x_{1} - x_{0}}\right) \left(\frac{x - x_{2}}{x_{1} - x_{2}}\right) \quad L_{2}(x) = \left(\frac{x - x_{0}}{x_{2} - x_{0}}\right) \left(\frac{x - x_{1}}{x_{2} - x_{1}}\right) \quad L_{1}(x) = \left(\frac{x - x_{0}}{x_{1} - x_{2}}\right) \quad L_{2}(x) = \left(\frac{x - x_{0}}{x_{2} - x_{0}}\right) \left(\frac{x - x_{1}}{x_{2} - x_{1}}\right) \quad L_{2}(x) = \left(\frac{x - x_{0}}{x_{2} - x_{0}}\right) \left(\frac{x - x_{1}}{x_{2} - x_{1}}\right) \quad L_{2}(x) = \left(\frac{x - x_{0}}{x_{2} - x_{0}}\right) \left(\frac{x - x_{1}}{x_{2} - x_{1}}\right) \quad L_{2}(x) = \left(\frac{x - x_{0}}{x_{2} - x_{0}}\right) \left(\frac{x - x_{1}}{x_{2} - x_{1}}\right) \quad L_{2}(x) = \left(\frac{x - x_{0}}{x_{2} - x_{0}}\right) \left(\frac{x - x_{1}}{x_{2} - x_{1}}\right) \quad L_{2}(x) = \left(\frac{x - x_{0}}{x_{2} - x_{0}}\right) \left(\frac{x - x_{1}}{x_{2} - x_{1}}\right) \quad L_{2}(x) = \left(\frac{x - x_{0}}{x_{2} - x_{0}}\right) \left(\frac{x - x_{1}}{x_{2} - x_{1}}\right) \quad L_{2}(x) = \left(\frac{x - x_{0}}{x_{2} - x_{0}}\right) \left(\frac{x - x_{1}}{x_{2} - x_{1}}\right) \quad L_{2}(x) = \left(\frac{x - x_{0}}{x_{2} - x_{0}}\right) \left(\frac{x - x_{1}}{x_{2} - x_{1}}\right) \quad L_{2}(x) = \left(\frac{x - x_{0}}{x_{2} - x_{0}}\right) \left(\frac{x - x_{1}}{x_{2} - x_{1}}\right) \quad L_{2}(x) = \left(\frac{x - x_{0}}{x_{2} - x_{0}}\right) \left(\frac{x - x_{1}}{x_{2} - x_{1}}\right) \quad L_{2}(x) = \left(\frac{x - x_{0}}{x_{2} - x_{0}}\right) \left(\frac{x - x_{1}}{x_{2} - x_{1}}\right) \quad L_{2}(x) = \left(\frac{x - x_{0}}{x_{2} - x_{0}}\right) \left(\frac{x - x_{1}}{x_{2} - x_{1}}\right) \quad L_{2}(x) = \left(\frac{x - x_{0}}{x_{2} - x_{1}}\right) \quad L_{2}(x) = \left(\frac{x - x_{0}}{x_{2} - x_{1}}\right) \quad L_{2}(x) = \left(\frac{x - x_{0}}{x_{2} - x_{0}}\right) \left(\frac{x - x_{1}}{x_{2} - x_{1}}\right) \quad L_{2}(x) = \left(\frac{x - x_{0}}{x_{2} - x_{1}}\right) \quad L_{2}(x) = \left(\frac{$$

$$f_2(x) = \left(\frac{x - x_1}{x_0 - x_1}\right) \left(\frac{x - x_2}{x_0 - x_2}\right) f(x_0) + \left(\frac{x - x_0}{x_1 - x_0}\right) \left(\frac{x - x_2}{x_1 - x_2}\right) f(x_1) + \left(\frac{x - x_0}{x_2 - x_0}\right) \left(\frac{x - x_1}{x_2 - x_1}\right) f(x_2)$$

O Pendekatan orde ke-3.

$$f_3(x) = L_0(x)f(x_0) + L_1(x)f(x_1) + L_2(x)f(x_2) + L_3(x)f(x_3)$$

$$f_3(x) = \left(\frac{x - x_1}{x_0 - x_1}\right) \left(\frac{x - x_2}{x_0 - x_2}\right) \left(\frac{x - x_3}{x_0 - x_3}\right) f(x_0) + \left(\frac{x - x_0}{x_1 - x_0}\right) \left(\frac{x - x_2}{x_1 - x_2}\right) \left(\frac{x - x_3}{x_1 - x_3}\right) f(x_1) + \frac{x_1 - x_2}{x_1 - x_2} \left(\frac{x - x_3}{x_1 - x_3}\right) f(x_2) + \frac{x_2 - x_3}{x_1 - x_2} \left(\frac{x - x_3}{x_1 - x_3}\right) f(x_2) + \frac{x_2 - x_3}{x_1 - x_2} \left(\frac{x - x_3}{x_1 - x_3}\right) f(x_2) + \frac{x_2 - x_3}{x_1 - x_2} \left(\frac{x - x_3}{x_1 - x_3}\right) f(x_2) + \frac{x_2 - x_3}{x_1 - x_3} \left(\frac{x - x_3}{x_1 - x_3}\right) f(x_2) + \frac{x_2 - x_3}{x_1 - x_3} \left(\frac{x - x_3}{x_1 - x_3}\right) f(x_2) + \frac{x_2 - x_3}{x_1 - x_3} \left(\frac{x - x_3}{x_1 - x_3}\right) f(x_2) + \frac{x_2 - x_3}{x_1 - x_3} \left(\frac{x - x_3}{x_1 - x_3}\right) f(x_3) + \frac{x_2 - x_3}{x_1 - x_3} \left(\frac{x - x_3}{x_1 - x_3}\right) f(x_3) + \frac{x_2 - x_3}{x_1 - x_3} \left(\frac{x - x_3}{x_1 - x_3}\right) f(x_3) + \frac{x_2 - x_3}{x_1 - x_3} \left(\frac{x - x_3}{x_1 - x_3}\right) f(x_3) + \frac{x_3 - x_3}{x_1 - x_3} \left(\frac{x - x_3}{x_1 - x_3}\right) f(x_3) + \frac{x_3 - x_3}{x_1 - x_3} \left(\frac{x - x_3}{x_1 - x_3}\right) f(x_3) + \frac{x_3 - x_3}{x_1 - x_3} \left(\frac{x - x_3}{x_1 - x_3}\right) f(x_3) + \frac{x_3 - x_3}{x_1 - x_3} \left(\frac{x - x_3}{x_1 - x_3}\right) f(x_3) + \frac{x_3 - x_3}{x_1 - x_3} \left(\frac{x - x_3}{x_1 - x_3}\right) f(x_3) + \frac{x_3 - x_3}{x_1 - x_3} \left(\frac{x - x_3}{x_1 - x_3}\right) f(x_3) + \frac{x_3 - x_3}{x_1 - x_3} \left(\frac{x - x_3}{x_1 - x_3}\right) f(x_3) + \frac{x_3 - x_3}{x_1 - x_3} \left(\frac{x - x_3}{x_1 - x_3}\right) f(x_3) + \frac{x_3 - x_3}{x_1 - x_3} \left(\frac{x - x_3}{x_1 - x_3}\right) f(x_3) + \frac{x_3 - x_3}{x_1 - x_3} \left(\frac{x - x_3}{x_1 - x_3}\right) f(x_3) + \frac{x_3 - x_3}{x_1 - x_3} \left(\frac{x - x_3}{x_1 - x_3}\right) f(x_3) + \frac{x_3 - x_3}{x_1 - x_3} \left(\frac{x - x_3}{x_1 - x_3}\right) f(x_3) + \frac{x_3 - x_3}{x_1 - x_3} \left(\frac{x - x_3}{x_1 - x_3}\right) f(x_3) + \frac{x_3 - x_3}{x_1 - x_3} \left(\frac{x - x_3}{x_1 - x_3}\right) f(x_3) + \frac{x_3 - x_3}{x_1 - x_3} \left(\frac{x - x_3}{x_1 - x_3}\right) f(x_3) + \frac{x_3 - x_3}{x_1 - x_3} \left(\frac{x - x_3}{x_1 - x_3}\right) f(x_3) + \frac{x_3 - x_3}{x_1 - x_3} \left(\frac{x - x_3}{x_1 - x_3}\right) f(x_3) + \frac{x_3 - x_3}{x_1 - x_3} \left(\frac{x - x_3}{x_1 - x_3}\right) f(x_3) + \frac{x_3 - x_3}{x_1 - x_3} \left(\frac{x - x_3}{x_1 - x_3}\right) f(x_3) + \frac{x_3 - x_3}{x_1 - x_3} \left(\frac{x - x_3}{x_1 - x_3}\right) f(x_3) + \frac{x_3 - x_3}{x_1 - x_3} \left(\frac{x -$$

$$\left(\frac{x-x_0}{x_2-x_0}\right)\left(\frac{x-x_1}{x_2-x_1}\right)\left(\frac{x-x_3}{x_2-x_3}\right)f(x_2) + \left(\frac{x-x_0}{x_3-x_0}\right)\left(\frac{x-x_1}{x_3-x_1}\right)\left(\frac{x-x_2}{x_3-x_2}\right)f(x_3)$$

- O Algoritma Interpolasi Lagrange:
 - 1. Tentukan jumlah titik (N) yang diketahui.
 - 2. Memasukkan titik-titik yang diketahui $P_i = (x_i, y_i)$ untuk i = 1, 2, 3, ..., N
 - 3. Tentukan *x* dari titik yang dicari.
 - 4. Hitung nilai y dari titik yang dicari dengan formulasi interpolasi lagrange.

$$y = \sum_{i=1}^{N} y_i \prod_{j \neq i} \frac{(x - x_j)}{(x_i - x_j)}$$

5. Tampilkan nilai (x, y)

Contoh Interpolasi Lagrange

O Berapa nilai distribusi t pada $\alpha = 4\%$?

$$\alpha = 2.5\% \rightarrow x_0 = 2.5 \rightarrow f(x_0) = 2.571$$
 $\alpha = 5\% \rightarrow x_1 = 5 \rightarrow f(x_1) = 2.015$
 $\alpha = 10\% \rightarrow x_2 = 10 \rightarrow f(x_2) = 1.476$

Contoh Interpolasi Lagrange

O Pendekatan orde ke-1

$$f_1(x) = L_0(x)f(x_0) + L_1(x)f(x_1)$$

$$f_1(x) = \frac{x - x_1}{x_0 - x_1} f(x_0) + \frac{x - x_0}{x_1 - x_0} f(x_1)$$

$$f_1(x) = \frac{4-5}{2.5-5}2.571 + \frac{4-2.5}{5-2.5}2.015$$

$$f_1(x) = 2.237$$

$$x_0 = 2.5 \rightarrow f(x_0) = 2.571$$
 $x = 4 \rightarrow f(x) = ?$
 $x_1 = 5 \rightarrow f(x_1) = 2.015$
 $x_2 = 10 \rightarrow f(x_2) = 1.476$

Contoh Interpolasi Lagrange

O Pendekatan orde ke-2

$$f_2(x) = L_0(x)f(x_0) + L_1(x)f(x_1) + L_2(x)f(x_2)$$

$$x_0 = 2.5 \rightarrow f(x_0) = 2.571$$
 $x = 4 \rightarrow f(x) = ?$

$$x_1 = 5 \rightarrow f(x_1) = 2.015$$

$$x_2 = 10 \rightarrow f(x_2) = 1.476$$

$$x = 4 \to f(x) = ?$$

$$f_2(x) = \left(\frac{4-5}{2.5-5}\right) \left(\frac{4-10}{2.5-10}\right) 2.571 + \left(\frac{4-2.5}{5-2.5}\right) \left(\frac{4-10}{5-10}\right) 2.015 + \left(\frac{4-2.5}{10-2.5}\right) \left(\frac{4-5}{10-5}\right) 1.476$$

$$f_2(x) = 2.214$$

- O Polinom Lagrange kurang disukai dalam praktek:
 - Jumlah komputasi yang dibutuhkan untuk satu kali interpolasi adalah besar. Interpolasi untuk nilai x yang lain memerlukan jumlah komputasi yang sama karena tidak ada bagian komputasi sebelumnya yang dapat digunakan.
 - Bila jumlah titik data meningkat atau menurun, hasil komputasi sebelumnya tidak dapat digunakan. Karena tidak ada hubungannya antara pada $p_{n-1}(x)$ dan $p_n(x)$ polinom Lagrange.
- Polinom Newton bisa mengatasi hal ini, dimana polinom yang dibentuk sebelumnya dapat digunakan untuk membentuk polinom derajat yang lebih tinggi.

- O Persamaan Polinom Linier $p_1(x) = y_0 + \frac{y_1 y_0}{x_2 x_0}(x x_0)$
- O Bentuk pers. Ini dapat ditulis : $p_1(x) = a_0 + a_1(x x_0)$
- O Yang dalam hal ini $a_0 = y_0 = f(x_0)$ (1)
- O Dan $a_1 = \frac{y_1 y_0}{x_x x_0} = \frac{f(x_1) f(x_0)}{x_x x_0}$ (2)
- O Persamaan ini merupakan bentuk selisih terbagi (divided-difference)

$$a_1 = f[x_1, x_0]$$

O Polinom Kuadratik

$$p_2(x) = a_0 + a_1(x - x_0) + a_2(x - x_0)(x - x_1)$$
$$p_2(x) = p_1(x) + a_2(x - x_0)(x - x_1)$$

O Jadi tahapan pembentukan polinom Newton:

$$p_{1}(x) = p_{0}(x) + a_{1}(x - x_{0})$$

$$p_{1}(x) = a_{0} + a_{1}(x - x_{0})$$

$$p_{2}(x) = p_{1}(x) + a_{2}(x - x_{0})(x - x_{1})$$

$$p_{2}(x) = a_{0} + a_{1}(x - x_{0}) + a_{2}(x - x_{0})(x - x_{1})$$

$$p_{3}(x) = p_{2}(x) + a_{3}(x - x_{0})(x - x_{1})(x - x_{2})$$

$$p_{3}(x) = a_{0} + a_{1}(x - x_{0}) + a_{2}(x - x_{0})(x - x_{1}) + a_{3}(x - x_{0})(x - x_{1})(x - x_{2})$$

O Nilai konstanta $a_0, a_1, a_2, ..., a_n$, merupakan nilai selisih terbagi (ST), dengan nilai

$$a_0 = f(x_0)$$

$$a_1 = f[x_1, x_0]$$

$$a_2 = f[x_2, x_1, x_0]$$

$$a_n = f[x_n, x_{n-1}, ..., x_1, x_0]$$

Yang dalam hal ini

$$f[x_{i}, x_{j}] = \frac{f(x_{i}) - f(x_{j})}{x_{i} - x_{j}}$$

$$f[x_{i}, x_{j}, x_{k}] = \frac{f(x_{i}, x_{j}) - f(x_{j}, x_{k})}{x_{i} - x_{k}}$$

$$f[x_{n}, x_{n-1}, ..., x_{1}, x_{0}] = \frac{f(x_{n}, x_{n-1}, ..., x_{1}) - f(x_{n-1}, x_{n-2}, ..., x_{1}, x_{0})}{x_{n} - x_{0}}$$

Tabel Selisih Terbagi

i	xi	$y_i = f(x_i)$	ST-1	ST-2	ST-3
0	x_0	$f[x_0]$	$f[x_1,x_0]$	$f[x_2,x_1,x_0]$	$f[x_3, x_2, x_1, x_0]$
1	X ₁	f[x ₁]	$f[x_2,x_1]$	$f[x_3, x_2, x_1]$	
2	X ₂	$f[x_2]$	f[x ₃ ,x ₂]		
3	X 3	f[x ₃]			

$$p_n(x) = f(x_0) + f[x_1, x_0](x - x_0) + f[x_2, x_1, x_0](x - x_0)(x - x_1) + f[x_n, x_{n-1}, \dots, x_1, x_0](x - x_0)(x - x_1)(x - x_{n-1})$$

Bentuklah polinom Newton derajat satu, dua, tiga dan empat yang menghampiri $f(x)=\cos(x)$ dalam range [0,4] dan antar titik adalah 1.0. Lalu taksirlah f(x) dengan x=2.5 dengan Polinom Newton derajat 3.

i	X _i	$y_i = f(x_i)$	ST-1	ST-2	ST-3	ST-4
x ₀	0	1	-0.4597	-0.2484	0.1466	-0.0147
X ₁	1	0.5403	-0.9564	0.1913	0.0880	
x ₂	2	-0.4161	-0.5739	0.4551		
X ₃	3	-0.99	0.3363			
X ₄	4	-0.6536				

Cara menghitung nilai selisih terbagi pada tabel:

$$f[x_1, x_0] = \frac{f(x_1) - f(x_0)}{(x_1 - x_0)} = \frac{0.5403 - 1}{1 - 0} = -0.4597$$

$$f[x_2, x_1] = \frac{f(x_2) - f(x_1)}{(x_2 - x_1)} = \frac{-0.4161 - 0.5493}{2 - 1} = -0.9564$$

$$f[x_2, x_1, x_0] = \frac{f(x_2, x_1) - f(x_1, x_0)}{x_2 - x_0} = \frac{-0.9564 - (-0.4597)}{2 - 0} = -0.2484$$

Maka polinom newton derajat 1, 2, dan 3 dengan $x_0 = 0$ sebagai titik pertama :

$$\begin{aligned} \cos(x) &\approx p_1(x) = 1 - 0.4597(x - 0) \\ \cos(x) &\approx p_2(x) = 1 - 0.4597(x - 0) - 0.2484(x - 0)(x - 1) \\ \cos(x) &\approx p_3(x) = 1 - 0.4597(x - 0) - 0.2484(x - 0)(x - 1) + 0.1466(x - 0)(x - 1)(x - 2) \\ \cos(x) &\approx p_4(x) = 1 - 0.4597(x - 0) - 0.2484(x - 0)(x - 1) + 0.1466(x - 0)(x - 1)(x - 2) - 0.0147(x - 0)(x - 1)(x - 2)(x - 3) \end{aligned}$$

• Nilai fungsi di x=2.5 dengan polinom derajat 3 adalah :

$$\cos(2.5) \approx p_3(2.5) = 1.0 - 0.4597(2.5 - 0) - 0.2484(2.5 - 0)(2.5 - 1) + 0.1466(2.5 - 0)(2.5 - 1)(2.5 - 2)$$
$$= -0.8056$$

Nilai eksak f(2.5) adalah

$$f(2.5) = \cos(2.5) = -0.8011$$

Jadi solusi hampiran mempunyai error :

$$-0.8011 - (-0.8056) = 0.0045$$

Soal Interpolasi Newton

- O Diberikan pasangan nilai $x_0=1$, $f(x_0)=0$; $x_1=4$, $f(x_1)=1.3862944$; $x_2=6$, $f(x_2)=1.7917595$; $x_3=5$, $f(x_3)=1.6094379$.
- Buat tabel beda terbagi dari data tersebut
- Gunakan tabel beda terbagi diatas dalam menerapkan rumus interpolasi beda terbagi newton dengan x=2.

Soal Interpolasi Lagrange

O Dicari nilai In(2) dengan metode interpolasi polinomial Lagrange order satu dan dua berdasar data In(1)=0 dan data In(6)=1.7917595. Hitung juga nilai tersebut berdasar data In(1) dan data In(4)=1.3862944. Untuk membandingkan hasil yang diperoleh, hitung pula besar error (nilai eksak In(2) = 0.6931471)

Praktikum Lagrange

- O Cari nilai x = 0.5; x = 0.7; x = 0.9; x = 1, dengan polinom derajat 3.
- O Hitung nilai error dari masing-masing x.

X	Υ
0	1
0.4	0.921061
0.8	0.696707
1.2	0.362358

$$f(x) = \cos x$$

Praktikum Newton

- O Fungsi Awal : $f(x) = \cos(x) + x$
- O Bentuklah polinom Newton derajat satu, dua, tiga, empat dan lima yang menghampiri $f(x) = \cos(x) + x$ dalam range [-5,-2.5] dan antar titik adalah 0.5. Lalu buat grafik

polinom newton masing-masing derajat.

