IDS implementation

IDS 的概念轉變成 N 皇后的棋盤,配合圖 1,代表:

Depth=1 時,嘗試在第0個 column的 0~(N-1) row 放置皇后。

如果沒有 optimal solution 則 Depth+1;

Depth=2 時,嘗試在第 0,1 個 column 的 0~(N-1) row 放置皇后。

如果沒有 optimal solution 則 Depth+1;

...

Depth=N 時,嘗試在第 0,1,...,N-1 個 column 的 0~(N-1) row 放置皇后。 找到 optimal solution, IDS 結束;

```
bool Graph::IDS(int row=0) {
    for (int i = 0; i <= MAX_DEPTH; i++) {
        cout << "Depth: " << i << endl;
        if (DLS(i,row) == true)
            return true;
    }
    return false;
}</pre>
```

左圖 2 代表 Depth 遞增的方程式。

若該 Depth no optimal solution,則
Depth 遞增,直到找到 optimal solution
為止。

(圖 2)

```
bool Graph::DLS(int limit,int row) {
   if (limit==0 && find_a_sol())
      return true;

if (limit <= 0)
      return false;

for (int col = 0; col < N; col++) {
      if(queens_attack_num(row,col)==0){
            board[row][col] = 1;
            solution[row] = col;
            if(DLS(limit-1,row+1)){
                 return true;
            }
            board[row][col] = 0;
            solution[row] = NOT_FOUND;
      }
}
return false;
}</pre>
```

左圖 3 代表從 Depth=0 往下 DFS 到 Depth limit 的深度為止。

每加深一層,代表已在上一層 col 放置 皇后。

每相同深度層都會 BFS,嘗試在同個 col 上的每個 row 放上皇后,試著尋找 optimal solution。

(圖 3)

HC implementation

以下是我的 HC pseudocode:

- 1. 隨機產生初始棋盤(initial_state)
- 2. 以初始棋盤(initial_state)為 HC 的出發點,令當前棋盤(current_state) = 初始 棋盤(initial_state)
- 3. 產生當前棋盤(current state)的 neighbor
- 4. 比較 neighbor 和 current_state 的 queen_attack_nums:

 If (neighbor 的 queen_attack_nums < current_state 的 queen_attack_nums):

 current_state

else:

do nothing

5. 重複 step3、4 直到 max iterations / 找到 optimal solution

```
for(int i=0;i<n;i++){
    initial_state.push_back(i);
}

int swap_times=100;
for (int i=0;i<swap_times;i++) {
    int x = rand() % N;
    int y = rand() % N;
    std::swap(initial_state[x], initial_state[y]);
}</pre>
```

左圖 4 的 Initail_state 代表 n*n 大小的棋盤。

HC 能否得出 optimal solution 的關鍵在於"初始點"。

我的初始點是隨機產生的,會隨機 swap 皇后位置 10 次。

(圖 4) 產生初始棋盤

```
vector<int> generate_random_neighbor(vector<int>& state){
   int src = rand()%N;
   int des = rand()%N;

   vector<int> copy_state(state);
   std::swap(copy_state[src],copy_state[des]);

   return copy_state;
}
```

左圖 5 是產生 neighbor 的方式。

方式是隨機挑選 current_state 的 兩個皇后互相交換位置。

(圖 5) 產生 neighbor

Parameter: max_iterations

因為 HC 產生初始點、產生 neighbor 充滿了隨機性,且 solution 受到 initial_state 非常大的影響,HC 很容易卡在 Local optimal solution。稍後的數據研究也發現 max_iterations 調的在大, solution 也很難往最佳解邁進。

GA implementation

Initial population 隨機產生 5 個 N*N 的 state。 排列方式被隨機打亂。

Fitness:

對於 GA for N 皇后的 fitness,我會計算當前 N*N board 的 queen_attack_nums: queen_attack_nums 越少,代表接近 optimal solution,fitness 高。 queen attack nums 越多,代表遠離 optimal solution,fitness 低。

Retain Elite:

留下菁英的方式非常簡單 -> 尋找當前群體(population)中 fitness 最高的 state。 產生新族群時,我會從舊族群中選出 fitness 最高的兩個 state,這兩個 state 是 新族群最初的兩個 state。

Selection:

Selection 有隨機也有競爭。

我會從族群中隨機挑選 x 個 state,從這 x 個 state 裡面挑出最優秀的當作 parent,準備生小孩。

Crossover:

我的 crossover 的切割點在正中間。(總是如此)

child 的基因 = father 前半的基因 + mother 後半的基因 ->

新棋盤 = father 的左半邊 + mother 的右半邊。

Mutation:

隨機挑選基因的兩個位置做 swap -> 隨機挑選棋盤的兩個 col 做 swap。

數據

IDS

Run time 跟 board size 相關。

IDS 總是能到 optimal solution,亦即 8-Queen 和 50-Queen 都能得到#attack 為 0 的解。但是 50-Queen 用 IDS 解需要非常久的時間,本人等了 4 小時左右 Depth 還在第 6 層,離第 50 層非常遙遠,因此數據紀錄用 too large 表示。

IDS							
	8-Queen	50-Queen					
#attack	time(second)	#attack time(second)					
0	0.006	?	too large				

(圖 6) IDS 8-Queen、50-Queen 數據

HC

HC 的執行時間主要和 max iterations 掛勾,效能則不掛勾。

iteration	on 1000					
8-Queen	Hill Climbing(HC)					
Record	#attack	time(second)				
1	3	0.092				
2	5	0.095				
3	3	0.096				
4	2	0.089				
5	3	0.104				
6	3	0.097				
7	0	0.085				
8	1	0.093				
9	3	0.096				
10	3	0.093				
11	3	0.088				
12	1	0.091				
13	5	0.092				
14	3	0.118				
15	3	0.101				
16	3	0.114				
17	3	0.099				
18	5	0.102				
19	2	0.087				
20	4	0.102				
21	3	0.105				
22	5	0.12				
23	3	0.096				
24	1	0.099				
25	4	0.09				
26	3	0.094				
27	1	0.092				
28	1	0.094				
29	2	0.094				
30	6	0.095				
average	2.9 0.0971					
SR	1/30					

50-Queen	Hill Climbing(HC)							
iteration		10		100		1000	10000	
Record	#attack	time(second)	#attack	time(second)	#attack	time(second)	#attack	time(second
1	28	0.150	31	0.030	34	0.029194832	25	0.243947983
2	24	0.036	33	0.023	30	0.025125742	25	0.21744012
3	39	0.036	27	0.032	26	0.037302732	29	0.17646813
4	25	0.028	29	0.014	34	0.026805401	27	0.24218392
5	27	0.036	33	0.097	24	0.041974545	32	0.22052764
6	26	0.037	26	0.052	31	0.038707018	34	0.18900656
7	27	0.051	28	0.051	30	0.048197985	21	0.19124674
8	37	0.048	36	0.037	24	0.036665201	24	0.18660688
9	32	0.037	28	0.037	21	0.029037237	30	0.18901538
10	36	0.036	26	0.033	29	0.029085636	28	0.18941521
11	44	0.034	31	0.028	20	0.032001495	30	0.18917727
12	37	0.036	33	0.016	43	0.030119658	35	0.25697302
13	25	0.035	32	0.024	23	0.025493383	32	0.20877504
14	31	0.034	25	0.038	25	0.025701284	34	0.23061823
15	28	0.046	27	0.024	30	0.035196781	28	0.27652430
16	28	0.036	30	0.024	26	0.027062416	29	0.18152523
17	27	0.038	31	0.059	30	0.030210733	28	0.18553066
18	24	0.020	28	0.046	30	0.029413939	23	0.18788647
19	30	0.050	27	0.026	34	0.031496048	34	0.25031781
20	39	0.035	17	0.026	24	0.03700304	21	0.20591044
21	35	0.041	22	0.040	31	0.030159473	29	0.20112586
22	37	0.035	26	0.045	35	0.038102865	31	0.19145941
23	21	0.053	33	0.036	29	0.034116268	32	0.23856234
24	33	0.039	28	0.050	33	0.098756075	37	0.41229009
25	30	0.014	25	0.047	28	0.027146101	28	0.18431711
26	28	0.045	21	0.055	27	0.027065516	27	0.17966580
27	23	0.042	30	0.038	34	0.030841112	30	0.21605610
28	24	0.078	26	0.032	28	0.031824827	24	0.19353008
29	29	0.016	29	0.028	31	0.034694672	26	0.28568577
30	39	0.015	31	0.026	28	0.03030014	26	0.19910740
average	30.433	0.041	28.300	0.037	29.067	0.034	28.633	0.217

(圖 7) HC 8-Queen

(圖 8) HC 50-Queen

圖 7 可以看到 8-Queen 的 HC 解 average #attack 是 2.9, SR 為 1/30, 成功率很低。

圖 8 可以看到 50-Queen 的 HC 解,各種 max_iteration 的 average #attack 和 SR。

For SR: 可以看到 max_iteration 提高對於 SR 沒有顯著增加,是因為 HC 作為 local search,非常吃 initial_state 的資訊,當 initial_state 落點不好,HC 容易卡在 Local optimal solution。這邊棋盤為 50*50,很難有好的初始落點,因此攻擊數都很高。

For average #attack: Average #attack 約在 28~30。與 SR 同裡,當 initial_state 落點不好,HC 容易卡在 Local optimal,平均攻擊數不因為 max_iteration 遞增而改變。

我的 GA 有三個參數:
max_generation = 族群最大世代
size_of_population = 族人最多數目
mutation_probability = 基因變異機率
分別代表底下欄位的 generation、population、mutation。
Average Run time 跟 max_generation、size_of_population 相關。

generation	1000				
population	50				
mutation	10%				
8-Queen	Genetic Algorithm(GA				
Record	#attack	time(second)			
1	0	0.397			
2	0	0.431			
3	0	0.438			
4	0	0.569			
5	0	0.474			
6	1	0.431			
7	0	0.368			
8	0	0.892			
9	0 0.53				
10	1	0.43			
11	0	0.352			
12	1	0.483			
13	0	0.655			
14	3	0.537			
15	0	0.53			
16	0	0.487			
17	0	0.38			
18	0	0.474			
19	1	0.408			
20	0	0.49			
21	0	0.463			
22	0	0.403			
23	0	0.497			
24	1	0.487			
25	0	0.499			
26	0	0.582			
27	0	0.499			
28	0	0.475			
29	0	0.684			
30	1 0.5				
average	0.3	0.495			
SR	21/30				

50-Queen	Genetic Algorithm(GA)								
generation		10	100		1000		10000		
population		50		50		50		50	
mutation		10%		10%	10%		10%		
Record	#attack	time(second)	#attack	time(second)	#attack	time(second)	#attack	time(second)	
1	35	0.036	6	0.214	3	1.568	0	14.325	
2	40	0.059	9	0.239	4	1.474	4	14.101	
3	33	0.058	6	0.228	4	2.338	1	13.963	
4	28	0.095	4	0.206	3	2.050	1	14.144	
5	26	0.062	8	0.284	1	1.669	4	14.863	
6	21	0.093	9	0.233	3	1.515	3	14.464	
7	25	0.085	7	0.294	2	1.474	1	14.088	
8	22	0.034	7	0.252	3	1.467	4	13.968	
9	19	0.072	6	0.210	1	1.462	3	13.722	
10	32	0.033	9	0.215	4	1.439	4	14.108	
11	36	0.030	9	0.234	2	1.440	3	13.684	
12	27	0.040	10	0.206	0	1.583	5	14.004	
13	29	0.046	7	0.208	2	1.398	4	14.290	
14	30	0.045	6	0.255	4	1.468	4	13.821	
15	37	0.045	7	0.209	1	1.611	1	13.143	
16	27	0.062	7	0.230	1	1.536	4	13.050	
17	25	0.042	5	0.208	0	1.488	6	16.319	
18	25	0.044	4	0.222	4	1.461	4	17.143	
19	22	0.034	7	0.226	2	1.539	1	13.996	
20	35	0.039	9	0.207	5	1.461	4	14.199	
21	32	0.074	4	0.203	0	1.527	3	13.203	
22	22	0.030	5	0.210	4	1.467	3	14.050	
23	22	0.084	11	0.412	0	1.454	5	13.865	
24	29	0.126	9	0.471	1	1.479	6	14.026	
25	30	0.070	3	0.376	3	1.471	3	13.031	
26	48	0.033	7	0.250	3	1.533	3	14.238	
27	32	0.036	6	0.213	0	1.422	2	13.299	
28	28	0.059	7	0.240	3	1.482	8	15.328	
29	39	0.042	7	0.320	2	1.422	5	14.319	
30	20	0.043	7	0.229	2	1.412	4	15.526	
average	29.200	0.055	6.933	0.250	2.233	1.537	3.433	14.209	
SR		0.000 0.000		0.000	0.167		0.033		

(圖 9) GA 8-Queen

(圖 10) GA 50-Queen。Generation 遞增

圖 9 可以看到 8-Queen 的 GA 解 average #attack 是 0.3, SR 為 21/30, generation=1000、population=50、mutation=10%,效果比 HC 好很多。

圖 10 可以看到 50-Queen 的 GA 解,且 generation 遞增(多世代)。 For SR: 這次數據沒得出 optimal solution,但有多個#attack=1 的數據,我認為只 是跑 30 次還不夠多,次數拉高一定會有#attack=0 出現。 For average #attack: 可以看到 generation 提高對於 SR 有不錯的進步。我的分析是每次產生 new generation 時,會從上世代挑出兩個最佳基因當作初始基因,因此當世代數拉高時,好的基因都會被保留,且被挑出的兩個最佳基因會越變越好。但在 generation=10000 時 average #attack 提高,我推測是 selection 時選到不好的 parent 交配,影響了群體的表現。

	Constitution (CA)								
50-Queen	Genetic Algorithm(GA)								
generation	10		10		10		10		
population	10		100		1000		10000		
mutation		10%		10%	10%		10%		
Record	#attack	time(second)	#attack	time(second)	#attack	time(second)	#attack	time(second)	
1	162	0.033	13	0.054805756	10	0.379762888	7	4.006943226	
2	190	0.048	23	0.092349768	10	0.386160612	8	3.554322958	
3	155	0.023	25	0.101688147	14	0.539426088	10	3.166448116	
4	158	0.046	24	0.097766161	8	0.372961283	8	3.457111597	
5	190	0.013	20	0.104404688	13	0.381053448	7	3.672307968	
6	152	0.040	14	0.082841873	9	0.322854996	6	3.435698271	
7	157	0.038	23	0.099436283	13	1.121277094	7	3.351773739	
8	204	0.041	18	0.107525587	7	0.454102039	5	3.235574484	
9	199	0.032	18	0.113605738	11	0.484360218	7	3.726983547	
10	170	0.040	15	0.048428535	11	0.674549341	7	3.116618156	
11	160	0.040	13	0.119575262	10	0.952589512	7	3.180073261	
12	175	0.021	19	0.072383404	6	0.538106918	11	3.059312344	
13	156	0.037	28	0.099668026	12	0.39756608	7	3.02353406	
14	175	0.014	21	0.0751369	7	0.415460348	4	3.01774621	
15	130	0.048	21	0.122510195	7	0.546302557	10	2.999605179	
16	185	0.021	23	0.053402901	12	0.669145346	8	3.159022808	
17	131	0.020	19	0.159623146	13	0.622535706	7	3.042049408	
18	191	0.044	18	0.089529753	11	0.438628674	6	2.995072603	
19	116	0.039	21	0.142059803	11	0.654447079	6	3.074400663	
20	228	0.041	18	0.046545506	13	0.479051828	10	3.056968212	
21	158	0.015	22	0.065428734	12	0.50528121	10	3.053391218	
22	120	0.014	16	0.09189415	15	0.438655376	11	3.246603966	
23	186	0.028	16	0.164579391	10	0.494062662	8	3.049911261	
24	146	0.043	20	0.151112318	10	0.441095114	8	3.127658844	
25	202	0.038	16	0.128031969	10	0.421112299	7	3.026942492	
26	142	0.046	17	0.100792408	12	0.373751163	7	3.118513584	
27	196	0.039	17	0.154033899	11	0.501826763	8	3.294769526	
28	168	0.039	21	0.15050149	11	0.477242947	6	3.038766146	
29	176	0.038	21	0.124586344	9	0.618960619	12	3.183728933	
30	130	0.038	14	0.10750103	10	0.252965689	9	3.181350708	
average	166.933	0.034	19.133	0.104	10.600	0.512	7.800	3.222	
SR		0.000		0.000		0.000		0.000	

(圖 11) GA 50-Queen。population 遞增

圖 10 可以看到 50-Queen 的 GA 解,且 population 遞增(多族人)。 可以看到 average #attack 越來越小,但 SR 仍為 0。

圖 10 與圖 11 比較下來,我得出的資訊是:

- Population 固定、Generation 遞增,即使 population 比較少,但容易留下更好的基因,average #attack 更低。
- Population 遞增、Generation 固定,基因也在進步,但我的 selectiong 是隨機挑人,在從中挑最好的,也會挑到不好的基因,因此這邊的 average #attack 沒有圖 10 的數據漂亮。