

departamento de eletrónica, telecomunicações e informática

Curso 8309 - Mestrado Integrado em Engenharia Eletrónica e Telecomunicações

Disciplina 41489 - Sistemas de Instrumentação Eletrónica

Ano letivo 2021/2022

Relatório

Projeto 2: Thermal Process Control

Autores:

93092 Carlos Valente92949 Gonçalo Urbano

Turma P2 Grupo 7

Data 28/05/22

Docente Pedro Fonseca

Resumo: Pretendemos com este relatório documentar as etapas percorridas na implementação de um

controlador de temperatura, apresentando os processos e erros na implementação do circuito

elétrico.

Introdução

Neste relatório, pretendemos documentar as etapas percorridas ao desenvolver o projeto 2: "Thermal Process Control" para a cadeira de Sistemas de Instrumentação Eletrónica.

Entre essas etapas, estão o desenvolvimento e montagem de um circuito elétrico onde é implementado um termopar para a leitura da temperatura de um elemento de aquecimento.

Será desenvolvido o software do microcontrolador, usando o MPLAB IDE, que fará a leitura das tensões produzidas por este circuito, produzirá um sinal conforme a entrada e mostrará os valores da temperatura ao utilizador.

Descrição do problema e objetivos

O objetivo deste projeto é ler e controlar a temperatura de um elemento de aquecimento utilizando um microcontrolador, PIC32MX795F512L [0], acompanhado de um circuito elétrico.

A partir de uma conexão UART entre o microcontrolador e o terminal, o utilizador escolhe inicialmente uma temperatura compreendida entre os 40°C e os 100°C com um passo de 1°C ou decide interromper a execução do sistema quando introduz 0°C. O utilizador em seguida observa no terminal a temperatura exata no momento, a temperatura máxima detetada desde o início do programa e a temperatura ambiente, todas com uma resolução de 1°C.

Figura 1- Diagrama de Blocos

A temperatura do componente resistivo será efetuada através do termopar do tipo K [1], que gera uma tensão conforme a temperatura a que está exposto, no nosso caso, uma tensão entre 0 mV e 4.096 mV para uma variação de temperatura entre os 0°C e os 100°C, respetivamente.

Visto que um termopar é formado sempre que existe uma junção entre dois metais diferentes, teremos uma termopar "parasita" entre os metais que formam o termopar (Nickel-Chromium e Nickel-Aluminum [1]) com os metais dos fios conectores (cobre). Teremos assim de fazer compensação de junção fria por software a partir de um termístor para fazer a leitura da temperatura ambiente.

O termístor NTCLE100E3331 [2] é um sensor de temperatura de coeficiente negativo ou NTC (Negative Temperature Coefficient) onde a sua resistividade varia inversamente proporcional à temperatura, neste caso, irá variar entre os 188.2Ω e os 608Ω para uma variação de temperatura entre os 40° C e os 10° C, respetivamente.

Teremos estes dois sensores acoplados a circuitos de acondicionamento de forma a ter tensões a variarem entre os 0 V e os 3.3V nas entradas ADC (Analog-Digital Converter) do microcontrolador de modo a maximizar a gama de leitura para as temperaturas.

Teremos ainda um conversor, LD1117 [4], que irá transformar os 5 V da fonte de alimentação em 3.3V necessários para alimentar os componentes eletrónicos utilizados, nomeadamente, os componentes de ganho.

De modo a obter a temperatura real do elemento resistivo, especificamente uma resistência de potência (Power Resistor) de 22Ω com potência máxima de 10W, somamos ambas as temperaturas obtendo assim a temperatura exata desta resistência e, consoante a distância entre esta temperatura atual e a pretendida, um controlador PI (Proporcional-Integral) irá alterar o duty cycle do sinal PWM (Pulse-Width Modulation).

O PWM está ligado à porta (Gate) do transístor VN2222 [3] que efetua a conversão entre valores de baixa tensão fornecidos pela PIC32 [0, 3.3] V para valores de tensão e corrente suficientes para o aquecimento da resistência [14, 0] V, respetivamente.

Projeto e conceção

Desenvolvemos primeiramente um diagrama de princípio (figura 2) baseado no diagrama de blocos previamente apresentado.

Figura 2 - Diagrama de Princípio

Teremos o termopar ligado a um divisor resistivo de $\frac{1}{2}$ para garantir que o sinal está centrado na gama de alimentação (1.65 V), e ligado a um bloco de ganho composto por um amplificador de instrumentação, AD623 [5], um amplificar cujo ganho é definido com apenas uma resistência que está isolada das entradas tendo assim bastante fiabilidade nos resultados obtidos, e ligado a um amplificador operacional, MCP6022 [6], a servir de amplificador de diferença.

Observou-se anteriormente que a tensão máxima produzida pelo termopar, nas condições do problema apresentado, é de 4.096 mV e que a tensão máxima pretendida à entrada da ADC fosse 3.3 V. Com estes parâmetros, o ganho necessário seria de $\frac{3.3}{4.096\times10^{-3}}$ = 806, um valor que poderia ser teoricamente obtido com o amplificador de instrumentação, contudo com um ganho tão elevado, os amplificadores internos iriam saturar e não iriam aparecer os resultados pretendidos. Utilizando a ferramenta de construção de amplificadores de instrumentação da Analog Devices [7], verificamos que o circuito poderia ser implementado com um ganho de 100, isto é, com $R_G = \frac{100\times10^3}{G-1} = 1.01 \ k\Omega$, utilizando no circuito uma resistência de 1 k Ω .

Ficamos assim com a gama [0,0.4096] V, ficando a necessitar de um ganho de $\frac{3.3}{0.4096}$ = 8.06 que será proporcionado pelo MCP6022. Na necessidade de algum offset no acondicionamento do sinal (no circuito utilizado não seria necessário pois foi considerado a temperatura a partir dos 0 °C para o termopar e portanto ligado à massa, 0 V), implementou-se um amplificador diferença tendo em conta o ganho pretendido $\frac{R_2}{R_1}$ = 8.06, obtendo assim um valor para as resistências de R_2 = 82 $k\Omega$ e R_1 = 10 $k\Omega$ (fixando R_1 podemos obter o valor de R_2). Com o valor destas resistências, teremos um ganho teórico de 8.2, tendo realizado testes sobre a tensão obtida à saída em relação à entrada para confirmar o valor do ganho. Ficamos assim com a gama pretendida, dos 0 V aos 3.3 V para a entrada ADC0 do microcontrolador (RB0, pin analógico A0).

Para compensar o restante ganho não proporcionado pelo amplificador de instrumentação, utilizou-se um amplificador operacional rail-to-rail para permitir que o sinal à entrada da ADC fosse no máximo a tensão de alimentação, para que não houvesse limites em relação à excursão do sinal.

Para o circuito do termístor, visto que este tem uma resistência diferente para diferentes temperaturas, teremos de converter a variação em resistividade em uma variação em tensão. Esta conversão pode ser efetuada utilizando um divisor resistivo, obtendo assim o sinal de saída que é dado por $V_{OThermistor} = \frac{R_3}{R_3 + R_T} \times V_{CC}$, com R_T o valor da resistência do termístor, V_{CC} uma tensão de alimentação, neste caso, 5V, e R_3 a resistência que deve ser colocada para fazer o divisor resistivo. O valor de R_3 foi calculado aplicando o método dos três pontos, no qual recorre a 3 pares de valores temperatura-resistência, segundo o datasheets do termístor em questão. Utilizando uma gama de temperaturas para o termístor de [10, 40] °C, sabemos que $R_T^{10^9C} = 608 \,\Omega$, $R_T^{25^9C} = 330 \,\Omega$ e $R_T^{40^9C} = 188.2 \,\Omega$, obtendo assim:

$$R_{3} = \frac{R_{T}^{25^{\circ}C} \left(R_{T}^{10^{\circ}C} + R_{T}^{40^{\circ}C} \right) - 2R_{T}^{10^{\circ}C} R_{T}^{40^{\circ}C}}{R_{T}^{10^{\circ}C} + R_{T}^{40^{\circ}C} - 2R_{T}^{25^{\circ}C}} = 248.86 \,\Omega$$

De modo a obter uma maior exatidão possível do valor calculado, foram utilizadas duas resistências em série, uma de 220 Ω e outra de 27 Ω para um total de 247 Ω .

Com R_3 calculado, conseguimos a gama de tensão de saída do divisor resistivo, [1.45, 2.85] V, verificando a necessidade de fazer um offset de tensão antes de aplicar o ganho, de modo a maximizar a gama de tensão a entrar na ADC. Este offset pode ser obtido a partir do sinal 3.3 V produzido a partir do LD1117, utilizando novamente um divisor resistivo, ficando assim com $V_{O_{Reference}} = \frac{R_7}{R_6 + R_7} \times V_{O_{LD1117}} = 1.45 \, V$, no qual obtemos $R_6 = 33 \, k\Omega$ e $R_7 = 27 \, k\Omega$ (novamente fixando uma resistência de modo a obter o valor da outra).

Tendo o valor de offset, teve-se agora de calcular o ganho e as resistências para o amplificar operacional recorrendo à equação $\frac{R_5}{R_4} \times (2.85 - 1.45) = 3.3 \Rightarrow \frac{R_5}{R_4} = 2.36$ e obtendo $R_5 = 100 \, k\Omega$ e $R_4 = 41 \, k\Omega$.

A resistência a utilizar em R_4 será composta por duas resistências em paralelo de 82 $k\Omega$, o ganho teórico dado pelo valor destas resistências será de 2.44, no qual foram feitos testes a mostrar a resposta da tensão de saída em função da entrada e teremos assim a gama [0, 3.3] V para a entrada ADC1 (RB1, pin analógico A1).

A saída PWM (RD1, pin digital D5) irá efetuar o aquecimento da resistência de potência utilizando 2 inversores em paralelo para que o tempo de comutação/transição fosse mais rápida. Assim, a saída apresentará sempre o valor do primeiro inversor que efetue a comutação.

No microcontrolador, teremos a leitura dos dois sensores de temperatura, aplicando as equações obtidas entre a temperatura e a tensão de entrada na ADC, efetuada a um ritmo lento, 10 Hz, pois a variação de temperatura não é instantânea. Além disto, teremos um controlador PI onde calcula o erro, diferença entre a temperatura lida e a pretendida, e posteriormente efetua a alteração do duty-cycle do sinal PWM.

Resultados

A partir do datasheet do termopar, selecionamos todos os valores que o termopar gera entre as temperaturas entre os 0 °C e os 130 °C e fizemos o gráfico 1 que relaciona a temperatura em função da tensão gerada pelo termopar. Tendo estes valores, multiplicamos pelo ganho do AD623, 100, e pelo ganho do MCP6022, 8.2, e fazendo uma regressão linear obtemos o gráfico 2 que relaciona a temperatura lida pelo termopar com a tensão de entrada na ADC.

Relatório 2

Gráfico 1 - Tensão produzida pelo termopar para cada valor de temperatura.

Gráfico 2 - Tensão na entrada da ADC0 para cada valor de temperatura.

Do mesmo modo que o termopar, selecionamos o valor da resistência do termístor entre os 10 °C e os 40 °C fornecidos pelo datasheets obtendo o gráfico 3. O gráfico 4 é obtido tendo as abcissas (xx) como o inverso da temperatura, $\frac{1}{\pi}$, e as ordenadas (yy) como o logaritmo natural da resistividade do termístor, ln(R).

Gráfico 3 - Resistividade do termístor para diferentes valores da temperatura

Gráfico 4 - Linearização da resistividade do termístor

Com os valores de tensão à saída do divisor resistivo que inclui o termístor, podemos subtrair a tensão de offset introduzida no circuito, 1.45, e multiplicar pelo ganho de 2.44 obtendo o gráfico.

Gráfico 5 - Tensão na entrada da ADC1 para cada valor de temperatura

Através dos gráficos 2 e 5 temos as equações que relacionam a temperatura de cada sensor em função da tensão lida na porta analógica do microcontrolador:

$$T_{Thermocouple} = 30.359 \times V_{ADC0} + 0.6212$$

 $T_{Thermistor} = 8.8 \times V_{ADC1} + 10.01$

Para verificar o bom funcionamento dos ganhos produzidos pelo MCP6022, fizemos testes medindo as saídas do circuito e as tensões de entrada, utilizando um multímetro com incerteza ± 0.01 V, adquirindo as tabelas 1 e 2, no qual apresentam o ganho para o termopar e para o termístor.

$V_{in}(V)$	$V_{out}(V)$				
0.14	1.18				
0.20	1.67				
0.28	2.31				
0.37	3.00				
0.41	3.31				
Ganho médio: 8.24					

$V_{in}(V)$	$V_{out}(V)$			
0.71	1.41			
1.12	2.23			
1.45	2.88			
1.71	3.40			
Ganho médio: 1.99				

Tabela 1- Tensões do Termopar

Tabela 2- Tensões do Termístor

Após termos visto o bom funcionamento do circuito, foi feito um teste onde foram guardados os valores da temperatura lida, do sinal de controlo e da temperatura pretendida (setpoint). Cada amostra foi tirada a cada 4 segundos e foi aumentando o valor da temperatura pretendida a cada 2 minutos, e no final desligado o sistema, deixando arrefecer a resistência e obtendo o gráfico 6.

Gráfico 6 - Variação da temperatura com o tempo

Análise dos Resultados

No gráfico 1, observamos uma reta linear na resposta da tensão produzida pelo termopar para cada temperatura entre os 0 °C e os 130 °C. O mesmo pode ser dito ao visualizar o gráfico 2, observou-se que o resultado era praticamente uma função linear, não necessitando de aplicar nenhuma linearização e podendo utilizar a equação da regressão linear efetuada diretamente para o cálculo da temperatura.

Por outro lado, o gráfico 3 não apresenta uma reta linear para a sua resistividade em função temperatura, sendo necessário fazer a sua linearização, sendo as abcissas $\frac{1}{X}$ e as ordenas ln(Y), visível no gráfico 4. Esta linearização não foi a ideal, como proposta nas aulas teóricas, pois a reta obtida não representa uma reta linear, contudo, ao traçar o gráfico 5, observamos a linearidade pretendida para relacionar a temperatura com a tensão de entrada, onde se retirou a equação partindo novamente da regressão linear.

Nas tabelas 1 e 2, verificamos os ganhos reais obtidos pelo nosso circuito, podendo afirmar que o ganho para o termopar está muito próximo do esperado (8.24-8.2=0.04) porem o mesmo não se pode dizer para o ganho do termístor visto que está longe do espectável (2.44-1.99=0.45).

Em relação ao amplificador de instrumentação, AD623, não foi possível testar o componente isoladamente pois os valores das tensões necessárias à entrada eram muito baixos para um ganho de 100. Além de ser difícil de gerar e medir tensões tão pequenas, ainda temos o ruido introduzido no sistema, fazendo com que as leituras não fossem exatas e fidedignas.

No gráfico 6, é possível analisar o funcionamento do programa, onde se observa que ao aumentar o valor da temperatura desejada, o sinal de controlo aumenta quase de imediato e o valor lido da temperatura, embora lento, aumenta e estabiliza onde se deseja. Também é possível reparar que ao diminuir o valor de temperatura desejado, o sinal de controlo diminui quase no mesmo instante e a temperatura lida começa a diminuir lentamente.

Conclusões

Verificamos que os valores obtidos pelo termopar, seja a temperatura lida como a tensão lida à entrada da ADC, eram semelhantes aos valores esperados. Em relação ao amplificador de instrumentação, apesar de não termos consegui efetuar testes, verificamos que os valores à saída do amplificador (dividindo pelo ganho usado, 100) correspondia aos valores fornecidos pelo datasheet.

O mesmo não se pode concluir dos valores do termístor, como o ganho obtido no circuito era substancialmente inferior ao esperado, a gama de valores seria menor que os [0, 3.3] V inicialmente previsto, significando que para uma mesma tensão produzida pelo divisor resistivo do termístor, a temperatura obtida nesta gama será maior, visto que esta tensão estará mais próxima do limite máximo. Um fator que poderá ter introduzido tal erro é o facto de as resistências a usar não serem exatamente iguais, significando que o amplificador diferencial apresentará uma fórmula diferente de ganho e apesar de inicialmente termos pensado que não haveria problemas, rapidamente verificamos temperaturas erradas e altas a serem detetadas. Felizmente, como todo o processamento foi efetuado através de um microcontrolador, este erro foi ajustado, passando a observar o seu bom funcionamento.

Observando o gráfico 6 poderíamos concluir que o ganho do controlador PI seria baixo pois não verificamos nenhum overshoot e vemos a demora do circuito a aproximar-se do valor esperado. Apesar disto, é normal esta demora por haver limitações na quantidade de corrente (636 mA) e tensão (14 V) e por não haver variações de temperatura abruptas na natureza, e podemos concluir, em geral, o bom funcionamento do sistema de aquecimento da resistência.

Referências

[0] Digilent (2018, June 19). Max 32^{TM} Board Reference Manual.

https://elearning.ua.pt/pluginfile.php/963675/mod_resource/content/1/chipkit-max32 rm.pdf

[1] Reference Tables N.I.S.T. Monograph 175 Revised to ITS-90.

https://elearning.ua.pt/pluginfile.php/3919498/mod_resource/content/0/Type_K_Thermocouple_Reference_Table.pdf

[2] Vishay (2021, March 15). NTC Thermistors, Radial Leaded, Standard Precision.

https://www.vishay.com/docs/29049/ntcle100.pdf

[3] Supertex Inc (2013). N-Channel Enhancement-Mode Vertical DMOS FET.

https://datasheet.octopart.com/VN2222LL-G-Microchip-datasheet-41308852.pdf

[4] ST (2006, December). Low drop fixed and adjustable positive voltage regulators

https://elearning.ua.pt/pluginfile.php/962607/mod_resource/content/2/praticas/datasheets-genericos/LD1117.pdf

[5] Analog Devices Inc (2020). Single and Dual-Supply, Rail-to-Rail, Low Cost Instrumentation Amplifier.

https://elearning.ua.pt/pluginfile.php/3922558/mod_resource/content/1/AD623.pdf

[6] Microchip Technology Inc (2019). Rail-to-Rail Input/Output, 10 MHz Op Amps.

https://elearning.ua.pt/pluginfile.php/962610/mod_resource/content/2/praticas/datasheets-genericos/MCP6020X.pdf

[7] Analog Devices. Instrumentation Amplifier Diamond Plot Tool.

https://tools.analog.com/en/diamond/#pr=AD623

Anexos

Figura 3- Diagrama Elétrico

Figura 4- Flowchart

°C	0	1	2	3	4	5	6	7	8	9	10	°C
												240
240	9.747	9.788	9.828	9.869	9.909	9.950	9.991	10.031	10.072		10.153	240
230	9.343	9.383	9.423	9.464	9.504	9.545	9.585	9.626	9.666	9.707	9.747	230
220	8.940	8.980	9.020	9.061	9.101	9.141	9.181	9.222	9.262	9.302	9.343	220
210	8.539	8.579	8.619	8.659	8.699	8.739	8.779	8.819	8.860	8.900	8.940	210
200	8.138	8.178	8.218	8.258	8.298	8.338	8.378	8.418	8.458	8.499	8.539	200
190	7.739	7.779	7.819	7.859	7.899	7.939	7.979	8.019	8.059	8.099	8.138	190
180	7.340	7.380	7.420	7.460	7.500	7.540	7.579	7.619	7.659	7.699	7.739	180
170	6.941	6.981	7.021	7.060	7.100	7.140	7.180	7.220	7.260	7.300	7.340	170
160	6.540	6.580	6.620	6.660	6.701	6.741	6.781	6.821	6.861	6.901	6.941	160
150	6.138	6.179	6.219	6.259	6.299	6.339	6.380	6.420	6.460	6.500	6.540	150
140	5.735	5.775	5.815	5.856	5.896	5.937	5.977	6.017	6.058	6.098	6.138	140
130	5.328	5.369	5.410	5.450	5.491	5.532	5.572	5.613	5.653	5.694	5.735	130
120	4.920	4.961	5.002	5.043	5.084	5.124	5.165	5.206	5.247	5.288	5.328	120
110	4.509	4.550	4.591	4.633	4.674	4.715	4.756	4.797	4.838	4.879	4.920	110
100	4.096	4.138	4.179	4.220	4.262	4.303	4.344	4.385	4.427	4.468	4.509	100
90	3.682	3.723	3.765	3.806	3.848	3.889	3.931	3.972	4.013	4.055	4.096	90
80	3.267	3.308	3.350	3.391	3.433	3.474	3.516	3.557	3.599	3.640	3.682	80
70	2.851	2.893	2.934	2.976	3.017	3.059	3.100	3.142	3.184	3.225	3.267	70
60	2.436	2.478	2.519	2.561	2.602	2.644	2.685	2.727	2.768	2.810	2.851	60
50	2.023	2.064	2.106	2.147	2.188	2.230	2.271	2.312	2.354	2.395	2.436	50
40	1.612	1.653	1.694	1.735	1.776	1.817	1.858	1.899	1.941	1.982	2.023	40
30	1.203	1.244	1.285	1.326	1.366	1.407	1.448	1.489	1.530	1.571	1.612	30
20	0.798	0.838	0.879	0.919	0.960	1.000	1.041	1.081	1.122	1.163	1.203	20
10	0.397	0.437	0.477	0.517	0.557	0.597	0.637	0.677	0.718	0.758	0.798	10
0	0.000	0.039	0.079	0.119	0.158	0.198	0.238	0.277	0.317	0.357	0.397	0

Tabela 3- Tabela de tensões para uma dada temperatura (Datasheet do Termopar)

Relatório 2

T _{OPER}	PART NUMBER NTCLE100E3101*** P _T (Ω)	PART NUMBER NTCLE100E3151***	PART NUMBER NTCLE100E3221***	PART NUMBER NTCLE100E3331***	PART NUMBER NTCLE100E3471***	PART NUMBER NTCLE100E3681***	TCR (%/K)	AR/R DUE TO Btol. (%)
		R _T (12)	R _τ (Ω)	R _T ((2)	R _T (52)	R _τ (Ω)		
-40	2193	3289	4824	7236	10 305	14 910	-5.75	4,99
-35	1652	2478	3635	5452	7766	11 235	-5.57	4,51
-30	1256	1884	2763	4144	4144 5902 854		-5.40	4,05
-25	962.5	1444	2117	3176	4524	6545	-5.24	3.61
-20	743.6	1115	1636	2454	3495	5057	-5.08	3,19
-15	579.0	868.5	1274	1911	2721	3937	-4.93	2.78
-10	454.2	681.2	999.1	1499	2135	3088	-4.78	2.38
-5	358.8	538.2	789.4	1184	1686	2440	-4.64	2.01
0	285.4	428.2	628.0	942.0	1342	1941	-4.51	1,64
5	228.6	342.9	502.9	754.4	1074	1554	-4.38	1.29
10	184.2	276.4	405.3	608.0	866.0	1253	-4.25	0.95
15	149.4	224.1	328.7	493.1	702.2	1016	-4.13	0.62
20	121.9	182.8	268.2	402.2	572.9	828.8	-4.01	0.31
25	100.0	150.0	220.0	330.0	470.0	680,0	-3.90	0.00
30	82.49	123.7	181.5	272.2	387.7	561.0	-3.80	0.30
35	68.41	102.6	150.5	225.8	321.5	465.2	-3.69	0.58
40	57.02	85.54	125.5	188.2	268.0	387.8	-3.59	0.86
45	47.77	71.65	105.1	157.6	224.5	324.8	-3.50	1.13
50	40.20	60.30	88.44	132.7	188.9	273.3	-3.40	1,39
55	33.98	50.98	74.76	112.1	159.7	231.1	-3.31	1.64
60	28.86	43.28	63.48	95.23	135.6	196.2	-3.23	1.88

Tabela 1- Tabela das resistências para uma dada temperatura (Datasheet Termístor)