Blatt04

Toma-Stefan Cezar (Matr. 7678219), Elham Amini (Matr. 7606587) November 2022

Neue Abgabegruppen!

Inhaltsverzeichnis

1	Aufgabe 1	oe 1 il A															2												
	1.1 Teil A	1																 											2
	1.2 Teil B	3																 											2
2	Aufgabe 2	2																											2
	2.1 Teil A	1																 											2
	2.2 Teil B	3																 											2
3	Aufgabe 3	3																											3
	Aufgabe 3 3.1 Teil B	3																 											3
	3.2 Teil C	7																 											3

1 Aufgabe 1

1.1 Teil A

Ja die Folge $(a_n)_{n\geq 1}$ ist beschränkt, da sie aus zwei weiteren Folgen besteht welche beide beschränkt sind. $(-1)^n$ ist beschränkt da es sich um eine Alternierende Folge handelt, welche die Kriterien $\forall (a_n)_{n\geq 1} \exists S: a_n < S \text{ (mit } S > 1) \text{ und } \forall (a_n)_{n\geq 1} \exists D: a_n \leq D \text{ (mit } D > 1) \text{ erfüllt. Bei } \left(\frac{1}{2}\right)^n \text{ handelt}$ es sich um eine geometrische Folge z^n , wobei z < 1, somit ist die Folge konvergent, woraus folgt das diese auch beschränkt ist.

1.2 Teil B

Nein die Folge $(x_n)_{n\in\mathbb{N}}$ konvergiert nicht, da der obere Teil $(-3)^n$ alternierend ist und sich somit kein Grenzwert bestimmen lässt, außerdem ist der untere Teil $3^n - \pi$ nicht begrenzt und divergiert somit nach $+\infty$, daher ist die gesamte Folge x_n nicht Konvergent.

2 Aufgabe 2

2.1 Teil A

Der Term $-3n^4$ hat in der Folge $\frac{6-10n^2-3n^4}{7n^3+2n^2+n+4}$ den höchsten Exponenten und wächst daher am schnellsten, somit kann der Rest für den Limes ignoriert werden. $-3n^4$ ist monoton fallend, da die Ungleichung

$$-3n^{4} > -3(n+1)^{4}$$

$$-3n^{4} + 3(n+1)^{4} > 0$$

$$-3n^{4} + 3(n^{4} + 4n^{3} + 6n^{2} + 4n + 1) > 0$$

$$-3n^{4} + 3n^{4} + 12n^{3} + 18n^{2} + 12n + 1 > 0$$

$$12n^{3} + 18n^{2} + 12n + 1 > 0$$

für alle $n \ge 0$ gilt. Da es sich bei $-3n^4$ um einen negativen ganzrationalen Term mit ausschließlich geraden Exponenten handelt, ist dieser nur nach oben beschränkt. Somit divergiert die Folge nach $-\infty$, da sie monoton fallend und nicht (nach unten) beschränkt ist.

$$\lim_{n\to\infty} -3n^4 \, \textbf{Divergiert}$$

Somit ist auch die Folge $\frac{6-10n^2-3n^4}{7n^3+2n^2+n+4}$ divergent.

$$\lim_{n\to\infty}\frac{6-10n^2-3n^4}{7n^3+2n^2+n+4}\,\mathbf{Divergiert}$$

2.2 Teil B

$$x_n = \frac{3 \cdot (2^n + 6^n) + 1}{3^n + 6^n}$$

$$= \frac{3 \cdot 2^n + 3 \cdot 6^n + 1}{3^n + 6^n}$$

$$= \frac{6^n (\frac{3}{3^n} + 3 + \frac{1}{6^n})}{6^n (\frac{1}{2^n} + 1)}$$

$$= \frac{\frac{3}{3^n} + 3 + \frac{1}{6^n}}{\frac{1}{2^n} + 1}$$

Die Folge $a_n = x^n$ mit $x \in \mathbb{R}, x > 0$ ist nicht beschränkt und monoton steigend, somit divergiert diese nach $+\infty$, daraus folgt das der Kehrwert verschwindend klein wird.

$$\lim_{n \to \infty} \frac{\frac{3}{3^n} + 3 + \frac{1}{6^n}}{\frac{1}{2n} + 1} = \frac{3}{1} = 3$$

2

Da die Folge $x_n = \frac{3 \cdot (2^n + 6^n) + 1}{3^n + 6^n}$ einen Grenzwert hat, ist sie auch Konvergent.

3 Aufgabe 3

3.1 Teil B

$$\lim_{n \to \infty} \sqrt{n^2 + 2022} - n$$

$$\iff \lim_{n \to \infty} (\sqrt{n^2 + 2022} - n) \cdot \frac{\sqrt{n^2 + 2022} + n}{\sqrt{n^2 + 2022} + n}$$

$$\iff \lim_{n \to \infty} \frac{n^2 + 2022 - n^2}{\sqrt{n^2 + 2022} + n}$$

$$\iff \lim_{n \to \infty} \frac{2022}{\sqrt{n^2 + 2022} + n} = 0$$

Da der untere Teil schneller als der obere Teil (Konstante) wächst, konvergiert die Folge mit dem Grenzwert 0.

3.2 Teil C

$$\lim_{n \to \infty} (\sqrt{n^4 + 3n^2} - \sqrt{n^4 - 81})$$

$$\iff \lim_{n \to \infty} (\sqrt{n^4 + 3n^2} - \sqrt{n^4 - 81}) \cdot \frac{\sqrt{n^4 + 3n^2} + \sqrt{n^4 - 81}}{\sqrt{n^4 + 3n^2} + \sqrt{n^4 - 81}}$$

$$\iff \lim_{n \to \infty} \frac{n^4 + 3n^2 - n^4 - 81}{\sqrt{n^4 + 3n^2} + \sqrt{n^4 - 81}}$$

$$\iff \lim_{n \to \infty} \frac{3n^2 - 81}{\sqrt{n^4 + 3n^2} + \sqrt{n^4 - 81}}$$

$$\iff \lim_{n \to \infty} \frac{n^2(3 - \frac{81}{n^2})}{n^2\sqrt{1 + \frac{3}{n^2}} + n^2\sqrt{1 - \frac{81}{n^4}}}$$

$$\iff \lim_{n \to \infty} \frac{n^2(3 - \frac{81}{n^2})}{n^2\left(\sqrt{1 + \frac{3}{n^2}} + \sqrt{1 - \frac{81}{n^4}}\right)}$$

Da mit $\lim_{n\to\infty}$ die Brüche $\frac{3}{n^2}\to 0,\;\frac{81}{n^2}\to 0$ und $\frac{81}{n^4}\to 0$:

$$\iff \lim_{n \to \infty} \frac{n^2(3)}{n^2(\sqrt{1} + \sqrt{1})}$$

$$\iff \lim_{n \to \infty} \frac{3n^2}{1+1} = \frac{3}{2}$$