Nama: Farkhan

NPM: 20081010060

Kelas: B

LATIHAN SOAL

JAWABAN:

- 1. Temukan turunan tingkat pertama dan kedua dari fungsi-fungsi ini:
 - 1) $y = -x^2 + 3$

Turunan pertama = $y' = 2 \cdot (-1)x^{2-1} + 0 = -2x$

Turunan kedua = $y'' = 1 \cdot (-2)x^{1-1} = -2$

2) $y = x^2 + x + 8$

Turunan pertama = $y' = 2 \cdot 1 \cdot x^{2-1} + 1 \cdot 1 \cdot x^{1-1} + 0 = 2x + 1$

Turunan kedua = $y'' = 1 \cdot 2 \cdot x^{1-1} + 0 = 2$

3) $s = 5t^3 - 3t^5$

Turunan pertama = $s' = 3 \cdot 5 \cdot t^{3-1} - 5 \cdot 3 \cdot t^{5-1} = 15t^2 - 15t^4$

Turunan kedua = $s'' = 2 \cdot 15 \cdot t^{2-1} - 4 \cdot 15 \cdot t^{4-1} = 30t - 60t^3$

4) $w = 3z^7 - 7z^3 + 21z^2$

Turunan pertama = $w' = 7 \cdot 3 \cdot z^{7-1} - 3 \cdot 7 \cdot z^{3-1} + 2 \cdot 21 \cdot z^{2-1} = 21z^6 - 21z^2 + 21z^2$

Turunan kedua = $w'' = 6 \cdot 21 \cdot z^{6-1} - 2 \cdot 21 \cdot z^{2-1} + 1 \cdot 24 \cdot z^{1-1} = 126z^5 - 42z + 120z^6 + 120z^6$

2. Temukan turunan dari fungsi-fungsi trigonometri ini:

1)
$$y = -10x + 3\cos x$$

$$y' = 1 \cdot (-10) \cdot x^{1-1} + 3 \cdot (-\sin x) = -10 + (-3\sin x)$$

2)
$$y = \frac{3}{x} + 5 \sin x$$

$$y' = -1 \cdot 3 \cdot x^{-1-1} + 5 \cdot \cos x = -\frac{3}{x^2} + 5 \cos x$$

3) $y = x^2 \cos x$

y' =
$$2 \cdot 1 \cdot x^{2-1} \cos x + x^2(-\sin x)$$

y' = $2x \cos x - x^2 \sin x$

 $4) \quad y = \sqrt{x} \sec x + 3$

$$y = x^{\frac{1}{2}} \sec x + 3$$

 $y' = \frac{1}{2} \cdot 1 \cdot x^{\frac{1}{2} - 1} \sec x + x^{\frac{1}{2}} \sec x \tan x + 0$

 $y' = \frac{1}{2\sqrt{x}} \sec x + \sqrt{x} \sec x \tan x$

3. Jika y = f(u) dan u = g(x), temukan dy/dx terhadap f'(g(x))g'(x):

1)
$$y = 6u - 9$$
 $u = \left(\frac{1}{2}\right)x^4$
 $y' = 6 \cdot 4 \cdot \frac{1}{2} \cdot x^{4-3} + 0 = 12x^3$

2)
$$y = \sin u$$
 $u = 3x + 1$
 $y' = \cos u \cdot 1 \cdot 3 \cdot x^{1-1} + 0$
 $y' = \cos u \cdot 3 = 3\cos(3x + 1)$

3)
$$y = \sqrt{u}$$
 $u = \sin x$
 $y' = \frac{1}{2\sqrt{u}}\cos x$
 $y' = \frac{1}{2\sqrt{\sin x}}\cos x = \frac{\cos x}{2\sqrt{\sin x}}$