

planetmath.org

Math for the people, by the people.

examples of primitive groups that are not doubly transitive

 ${\bf Canonical\ name} \quad {\bf Examples Of Primitive Groups That Are Not Doubly Transitive}$

Date of creation 2013-03-22 17:22:37 Last modified on 2013-03-22 17:22:37

Owner rm50 (10146)Last modified by rm50 (10146)

Numerical id 7

Author rm50 (10146) Entry type Example Classification msc 20B15 The group \mathcal{D}_{2n} , $n \geq 3$, the dihedral group of order 2n, is the symmetry group of the regular n-gon. (Note that we use the more common notation \mathcal{D}_{2n} for this group rather than \mathcal{D}_n).

 \mathcal{D}_{2n} is clearly not doubly transitive for $n \geq 4$, since it preserves "adjacency" in the vertices. Thus, for example, clearly no element of \mathcal{D}_{2n} can take (1,2) to (1,3). $(\mathcal{D}_{2\cdot 3} = \mathcal{D}_6$, the symmetry group of the triangle, is, however, doubly transitive).

We show that for p prime, \mathcal{D}_{2p} is primitive. To prove this, we need only verify that any block containing two distinct elements is the entire set of vertices. Number the vertices consecutively $\{0, \ldots, p-1\}$, and let r be the element of \mathcal{D}_{2n} that takes each vertex into its successor \pmod{p} . Now, suppose a block contains two distinct elements a, b; assume wlog that $b \neq 0$. Iteratively apply r^{b-a} to these elements to get

$$\begin{array}{ccc}
a & b \\
b & 2b - a \\
2b - a & 3b - a
\end{array}$$

Since blocks are either equal or disjoint, we see that the block in question contains a, b, and nb - a for each n. But $a \neq b$, so nb - a runs through all http://planetmath.org/ResidueSystemsresidues (mod p) and thus the block contains each vertex. Thus D_{2p} is primitive.

For nonprime n, \mathcal{D}_{2n} is not primitive. In this case, if d is a divisor of n, then the set of vertices that are multiples of d form a block.