Universidad de la República Facultad de Ingeniería - IMERL

Geometría y Álgebra Lineal 2 Segundo Semestre 2021

PRÁCTICO 11: FORMAS CUADRÁTICAS.

EJERCICIO 1. Sea Q una forma cuadrática en \mathbb{R}^n y A en $\mathcal{M}_n(\mathbb{R})$ simétrica su matriz asociada. Recordemos que $A = PDP^t$ con D diagonal y P ortogonal y que

$$Q(x) = x^t A x = (P^t x)^t D(P^t x).$$

- A. Probar que Q es definida positiva (negativa) \Leftrightarrow todos los valores propios de A son positivos (negativos).
- B. Probar que Q es semidefinida positiva (negativa) \Leftrightarrow todos los valores propios de A son no negativos (no positivos) y existe algún valor propio nulo.
- C. Probar que Q es indefinida \Leftrightarrow existe algún valor propio de A negativo y existe algún valor propio de A positivo.

EJERCICIO 2. Sea Q una forma cuadrática en \mathbb{R}^2 y A en $\mathcal{M}_2(\mathbb{R})$ simétrica la matriz asociada.

- A. a) Probar que Q es definida positiva $\Leftrightarrow \det(A) > 0$ y tr(A) > 0.
 - b) Probar que Q es definida negativa $\Leftrightarrow \det(A) > 0$ y tr(A) < 0.
 - c) Probar que Q es semidefinida positiva $\Leftrightarrow \det(A) = 0$ y $tr(A) \ge 0$.
 - d) Probar que Q es semidefinida negativa $\Leftrightarrow \det(A) = 0$ y $tr(A) \leq 0.$
 - e) Probar que Q es indefinida $\Leftrightarrow \det(A) < 0$
- B. Clasificar las siguientes formas cuadráticas:
 - a) $Q(x,y) = x^2 xy + y^2$
 - b) $Q(x,y) = \alpha x^2 2xy + y^2$ discutiendo según α en \mathbb{R} .

Ejercicio 3. Para cada una de las siguientes matrices simétricas A,

- A. Hallar una matriz <u>ortogonal</u> P tal que P^tAP sea diagonal.
- B. Clasificar la forma cuadrática cuya matriz asociada es A.

3. Clasificar la forma cuadrática
(i)
$$A = \begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix}$$
(ii) $A = \begin{pmatrix} 3 & 4 \\ 4 & -3 \end{pmatrix}$
(iii) $A = \begin{pmatrix} 7 & -2 & 1 \\ -2 & 10 & -2 \\ 1 & -2 & 7 \end{pmatrix}$
(iv) $A = \begin{pmatrix} 1 & -1 & 0 & 0 \\ -1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 2 \end{pmatrix}$

EJERCICIO 4. Clasificar las siguientes formas cuadráticas

- A. $Q: \mathbb{R}^3 \to \mathbb{R}$ tal que $Q(x, y, z) = 6x^2 + 5y^2 + 7z^2 4xy + 4xz$.
- B. $Q: \mathbb{R}^4 \to \mathbb{R}$ tal que $Q(x_1, x_2, x_3, x_4) = 7x_1^2 + 10x_2^2 + 7x_3^2 + x_4^2 4x_1x_2 + 2x_1x_3 4x_2x_3$.

EJERCICIO 5. Clasificar la forma cuadrática $Q: \mathbb{R}^6 \to \mathbb{R}$ tal que su matriz simétrica asociada es

$$A = \left(\begin{array}{cccccc} 7 & 1 & 1 & 1 & -1 & 2 \\ 1 & 9 & 2 & 1 & 0 & 2 \\ 1 & 2 & 6 & 1 & -1 & 0 \\ 1 & 1 & 1 & 6 & 1 & 1 \\ -1 & 0 & -1 & 1 & 7 & 2 \\ 2 & 2 & 0 & 1 & 2 & 9 \end{array}\right).$$

Sugerencia: Aplicar el Teorema de Gershgorin.

EJERCICIO 6. Sea Q es una forma cuadrática en \mathbb{R}^n cuya matriz asociada es A.

- A. Probar que si Q es no indefinida entonces $S = \{x \in \mathbb{R}^n : Q(x) = 0\} = \ker(A)$.
- B. Probar con un ejemplo que el resultado anterior es falso para Q indefinida.
- C. Hallar el signo del polinomio p donde

$$p(x, y, z) = 5x^2 + 2y^2 + 2z^2 + 4yz.$$