

Model Development Phase Template

Date	14 June 2025
Team ID	SWTID1749618778
Project Title	Rising Waters: A Machine Learning Approach To Flood Prediction
Maximum Marks	4 Marks

Initial Model Training Code, Model Validation and Evaluation Report

The initial model training code will be showcased in the future through a screenshot. The model validation and evaluation report will include classification reports, accuracy, and confusion matrices for multiple models, presented through respective screenshots.

Initial Model Training Code:

```
# importing and building the Decision Tree model
dtree = tree.DecisionTreeClassifier()
dtree.fit(X_train_scaled,y_train)

p_1=dtree.predict(X_train_scaled)
print("Training accuracy through the decision tree method is:", accuracy_score(y_train, p_1))
p1 = dtree.predict(X_test_scaled)
print("The accuracy through the decision tree method is:", accuracy_score(y_test, p1))
```

```
# importing and building the Random Forest model
Rf = ensemble.RandomForestClassifier()
Rf.fit(X_train_scaled,y_train)
p_2=dtree.predict(X_train_scaled)
print("Training accuracy through the random forest method is:", accuracy_score(y_train, p_2))
p2 = Rf.predict(X_test_scaled)
print("The accuracy through the random forest method is:",accuracy_score(y_test, p2))
```

```
# importing and building the Knn model
knn = neighbors.KNeighborsClassifier()
knn.fit(X_train_scaled,y_train)
p_3=knn.predict(X_train_scaled)
print("Training accuracy through the Knn method is:",accuracy_score(y_train, p_3))
p3 = knn.predict(X_test_scaled)
print("The accuracy through the random forest method is:",accuracy_score(y_test, p3))
```



```
# importing and building the Xgb model
xgb = xgboost.XGBClassifier()
xgb.fit(X_train_scaled,y_train)
p_4=xgb.predict(X_train_scaled)
print("Training accuracy through the Xgb method is:",accuracy_score(y_train, p_3))
p4 = xgb.predict(X_test_scaled)
print("The accuracy through the Xgb method is:",accuracy_score(y_test, p3))
```

Model Validation and Evaluation Report:

Model	Classifi	cation R	Accuracy	Confusion Matrix		
Decision Tree	1.00	(y_test,p1	0 20 0 3 0 23 0 23	100%	[[20 [0	0] 3]]
Random Forest	rification_replaced in the state of the stat		 support 20 3 23 23 23 23	100%	[[20 [0	0] 3]]
KNN	rification_repression_matrix() precision 0.91 1.00 0.95 0.92		support 20 3 23 23 23 23	91.3%	[[20 [2	_

<pre>print(classification_report(y_test,p4)) print(confusion_matrix(y_test,p4))</pre>							
	precision	recall	f1-score	support		1120	0.1
0	1.00	1.00 1.00	1.00	20	91 3%		
1	1.00	1.00	1.00	3	71.570	[0	3]]
accuracy			1.00	23		LO	211
macro avg	1.00	1.00	1.00	23			
eighted avg	1.00	1.00	1.00	23			
E	0 1 accuracy macro avg	1 1.00 accuracy macro avg 1.00	0 1.00 1.00 1 1.00 1.00 accuracy macro avg 1.00 1.00	0 1.00 1.00 1.00 1 1.00 1.00 1.00 accuracy 1.00 1.00 1.00	0 1.00 1.00 1.00 20 1.00 1.00 3 accuracy	0 1.00 1.00 20 3 91.3% accuracy 1.00 1.00 23 macro avg 1.00 1.00 23	0 1.00 1.00 20 1.00 3 91.3% accuracy macro avg 1.00 1.00 23 23