Exercise 3.4. Let V a finite vector space with $\dim V > 1$, show that $S = \{ T \text{ is singular } | T \in \mathcal{L}(V) \} \text{ is } \mathbf{NOT} \text{ a subspace of } \mathcal{L}(V).$

Proof. If S is a subspace of $\mathcal{L}(V)$, then it is an ideal of $\mathcal{L}(V)$ since for any $A \in S$ and $B \in \mathcal{L}(V)$, AB and BA are singular, therefore $AB, BA \in S$. However, we know the only two ideals of $\mathcal{L}(V)$ is $\{0\}$ and $\mathcal{L}(V)$, none of them is S.

Exercise 3.11. Let V finite vector space, and $S, T \in \mathcal{L}(V)$, show that

ST is invertible \iff S and T are invertible

Proof.

• (\Rightarrow) Suppose STW = WST = I, then S(TW) = (TW)S = I since $\dim V = \dim V$, therefore $S^{-1} = TW$, also (WS)T = T(WS) = I since $\dim V = \dim V$, therefore $T^{-1} = WS$.

• (⇐) Trivial.

Exercise 3.12. Let V finite vector space, and $S, T, U \in \mathcal{L}(V)$ such that STU = I, Show that $T^{-1} = US$.

Proof. Since STU = I we know U is invertible (since STU is invertible), then $ST = U^{-1}$. Since U^{-1} is invertible, we know S and T are invertible therefore $T = S^{-1}U^{-1}$ and $T^{-1} = US$.

Exercise 3.13. Show that the conclusion of previous exercise can be false if V is not finite.

Proof. Let $S(x_0, x_1, ...) = (x_1, ...)$ the backward-shift mapping and $U(x_0, x_1, ...) = (0, x_0, x_1, ...)$ the forward-shift mapping and T = I the identity mapping.

We have SU = I and $US \neq I$, T is clearly invertible with $T^{-1} = I$, but we know $US \neq I$, so $T^{-1} = US \neq I$.

In fact, this also disprove the infinite version of 3.11 since SU is invertible but neither S nor U is invertible.

Exercise 3.17. Let V a finite vector space, $S \in \mathcal{L}(V)$, define $A \in \mathcal{L}(\mathcal{L}(V))$ by A(T) = ST, show that:

1. dim null $\mathcal{A} = (\dim V)(\dim \operatorname{null} S)$

2. dim range $\mathcal{A} = (\dim V)(\dim \operatorname{range} S)$

Proof. Since $A \in \mathcal{L}(\mathcal{L}(V))$, we know dim $\mathcal{L}(V) = \dim \text{null } A + \dim \text{range } A$, also, dim $\mathcal{L}(V) = (\dim V)^2$ and dim $V = \dim \text{null } S + \dim \text{range } S$. Therefore we have dim null $A + \dim \text{range } A = (\dim V)(\dim \text{null } S + \dim \text{range } S)$, which means we only need to prove one of (1) and (2).

We will show that $\dim \operatorname{null} \mathcal{A} = (\dim V)(\dim \operatorname{null} S)$. We found that $\dim \mathcal{L}(V, \operatorname{null} S) = (\dim V)(\dim \operatorname{null} S)$, so it would be nice if $\operatorname{null} \mathcal{A} = \mathcal{L}(V, \operatorname{null} S)$. For any $T \in \operatorname{null} \mathcal{A}$, we have ST = 0, which means range $T \subseteq \operatorname{null} S$, therefore $T \in \mathcal{L}(V, \operatorname{null} S)$. For any $T \in \mathcal{L}(V, \operatorname{null} S)$, we have ST = 0 since range $T \subseteq \operatorname{null} S$, so $T \in \operatorname{null} \mathcal{A}$, therefore $\operatorname{null} \mathcal{A} = \mathcal{L}(V, \operatorname{null} S)$, thus $\dim \operatorname{null} A = (\dim V)(\dim \operatorname{null} S)$.

Exercise 3.18. Show that V and $\mathcal{L}(F, V)$ are isomorphic.

Proof. This can be proven by dim $V = \dim \mathcal{L}(F, V) = 1(\dim V)$, but we can find $\varphi(v) = x \mapsto xv$ an isomorphism. For any $T \in \mathcal{L}(F, V)$, T is determined by T(1).