Unidad 5

Planificación y Programación de Proyectos

Planificación y Programación de Proyectos

Unidad 5

OBJETIVOS

 aplicar las herramientas de planeamiento, programación y control de tareas en el desarrollo de sistemas de información

Planificación y Programación

Unidad 5

- HABILIDADES Y COMPETENCIAS QUE DESARROLLA LA ASIGNATURA
 - [Plantea]
 - [el Proceso de Desarrollo de Software]
 - [Para planear, programar, supervisar y controlar los tiempos de un proyecto]
 - [Aplicando el método del camino crítico] / [Aplicando el estándar UML]

Datos vs Información

PLANEAMIENTO Y PROGRAMACIÓN DE PROYECTOS

Un proyecto, cualquiera sea su característica, se puede considerar como la sucesión de un conjunto de tareas interrelacionadas que deben ejecutarse en un orden determinado y con el fin de alcanzar un objetivo.

El análisis y diseño de sistemas de información involucra una serie de actividades diversas que al integrarse constituyen un proyecto informático

PLANEAMIENTO Y PROGRAMACIÓN DE PROYECTOS

Cuando se emprende la realización de un proyecto se reconoce en su desarrollo tres etapas bien diferenciadas:

El planeamiento establece qué debe hacerse y en qué secuencia.

La programación determina cuándo debe hacerse, esto es, acota en el tiempo lo planeado.

Por último, e control e encarga de verificar si se cumple con lo planeado y lo programado anteriormente

DIAGRAMA DE GANTT

- Es una de las técnicas más simples utilizadas en la administración de proyectos
- Consiste en representar las tareas por medio de barras, cuyas longitudes son proporcionales a la duración de las tareas
- Se destaca la sencillez y la facilidad de comprensión al integrar gráficamente la planificación, la programación y el progreso del proyecto.
- Permite visualizar rápidamente los elementos principales, su programación en el tiempo y, además, el progreso en cada uno de ellos.

DIAGRAMA DE GANTT – CONSTRUCCIÓN

Actividad	Duración	Precedencia
A	2	<u></u>
В	3	<u></u>)
C	1	В
D		A, C
E	2	D
F	1	Е

- El Diagrama de Gantt tiene como principal ventaja su simplicidad. Pero:
 - No permite determinar el impacto del atraso de una actividad
 - En proyectos complejos es necesaria mayor información
- Una opción (y complemento al Gantt) es el método del camino critico

Las preguntas principales en la elaboración de un proyecto son:

- ¿Cuál es el tiempo total que se requiere para terminar el proyecto?
- ¿Cuáles son las fechas programadas de inicio y de terminación para cada actividad específica?
- ¿Qué actividades son "críticas" y deben terminarse exactamente según lo programado para poder mantener el proyecto dentro del programa?
- ¿Cuánto se pueden demorar las actividades "no críticas" antes de que ocasionen demoras en el proyecto total?

Tarea	Descripción	Duración	Precedencia
0-1	A	3	-
0-2	В	2	-
0-3	C	1	-
1-2	D	2	A
2-5	F	3	В,D
3-5	G	4	C
1-4	E	1	A
5-4	Н	3	F,G
4-6	I	5	E,H
5-6	J	2	F,G
6-7	K	3	I,J

Tarea	T_{aj}	T _{ei}	T_{ij}	MT
A	3	0	3	0
В	5	0	2	3
C	4	0	1	3
D	5	3	2	0
E	11	3	1	7
\mathbf{F}	8	5	3	0
G	8	1	4	3
Н	11	8	3	0
I	16	11	5	0
J	16	8	2	6
K	19	16	3	0

Metodologías Ágiles SCRUM

UAIOnline Ultra

ÁGILES - VENTAJAS

Las metodologías ágiles de desarrollo

Están especialmente indicadas en proyectos con requisitos poco definidos o cambiantes

ÁGILES - VENTAJAS

- Capacidad de respuesta a cambios de requisitos a lo largo del desarrollo
- Entrega continua y en plazos breves de software funcional
- Trabajo conjunto entre el cliente y el equipo de desarrollo
- Importancia de la simplicidad, eliminado el trabajo innecesario
- Atención continua a la excelencia técnica y al buen diseño
- Mejora continua de los procesos y el equipo de desarrollo

TRADICIONALES VS. ÁGILES

- Entorno muy cambiante
 - Costos, riesgos
- Requisitos
- Burocracia
- Tiempo de Respuesta
- Planificación

Planificación vs. Respuesta al cambio

SCRUM - INTRODUCCIÓN

Método adaptativo de gestión de proyectos que se basa en los principios ágiles:

- Colaboración estrecha con el cliente.
- Predisposición y respuesta al cambio
- Prefiere el conocimiento tácito de las personas al explícito de los procesos
- Desarrollo incremental con entregas funcionales frecuentes
- Motivación y responsabilidad de los equipos por la autogestión, auto-organización y compromiso.
- Simplicidad. Supresión de artefactos innecesarios en la gestión del proyecto

DESARROLLO SECUENCIAL VS. SUPERPUESTO

Scrum en 100 palabras

- •Scrum es un proceso ágil que nos permite centrarnos en ofrecer el más alto valor de negocio en el menor tiempo.
- •Nos permite rápidamente y en repetidas ocasiones inspeccionar software real de trabajo (cada dos semanas o un mes).
- •El negocio fija las prioridades. Los equipos se autoorganizan a fin de determinar la mejor manera de entregar las funcionalidades de más alta prioridad.
- •Cada dos semanas o un mes, cualquiera puede ver el software real funcionando y decidir si liberarlo o seguir mejorandolo en otro sprint.

SCRUM - INTRODUCCIÓN

- Conjunto de prácticas y roles
- Posee documentos y artefactos específicos
- Equipos auto-organizados
- Gestión de la expectativa del cliente (cambios)
- Mejoras
 - Productividad
 - Calidad
 - Motivación

ESCENCIA

Product Backlog

EL MANIFESTO ÁGIL – UNA DECLARACIÓN DE VALORES

Individuos e interacciones

sobre

Procesos y herramientas

Software que funciona

sobre

Documentación exhaustiva

Colaboración con el cliente

sobre

Negociación de contratos

Responder ante el cambio

sobre

Seguimiento de un plan

Fuente: www.agilemanifesto.org

Metodología de Desarrollo de Sistemas I

ARTEFACTOS

COPYRIGHT © 2005, MOUNTAIN GOAT SOFTWARE

SPRINTS

- En Scrum los proyectos avanzan en una serie de "Sprints".
 - Análogo a las iteraciones.
- ◆ La duración típica es 2–4 semanas o a lo sumo un mes calendario.
- La duración constante conduce a un mejor ritmo.
- El producto es diseñado, codificado y testeado durante el Sprint.

Roles

- Product owner
- ScrumMaster

Team

Reuniones

- Sprint planning
- Sprint review
- Sprint retrospective
- Daily scrum meeting

Artefactos

- Product backlog
- Sprint backlog
- Burndown charts

SCRUM FRAMEWORK

PRODUCT OWNER

- Define las funcionalidades del producto
- Decide sobre las fechas y contenidos de los releases.
- Es responsable por la rentabilidad del producto (ROI).
- Prioriza funcionalidades de acuerdo al valor del mercado/negocio.
- Ajusta funcionalidades y prioridades en cada iteración si es necesario.
- Acepta o rechaza los resultados del trabajo del equipo.

EL SCRUMMASTER

- Representa a la gestión del proyecto
- Responsable de promover los valores y prácticas de Scrum
- Remueve impedimentos
- Se asegura de que el equipo es completamente funcional y productivo
- Permite la estrecha cooperación en todos los roles y funciones
- Escudo del equipo de interferencias externas

EL TEAM

- Típicamente de 5 a 9 personas
- Multi-funcional:
 - Programadores, testers, analistas, diseñadores, etc.
- Los miembros deben ser full-time
 - Puede haber excepciones (Ej.: Infraestructura, SCM, etc.)
- Los equipos son auto-organizativos
 - Idealmente, no existen títulos pero a veces se utilizan de acuerdo a la organización
- Solo puede haber cambio de miembros entre los sprints

Roles

- Product owner
- ScrumMaster
- Team

Reuniones

- Sprint planning
- Sprint review
- Sprint retrospective
- Daily scrum meeting

Arteractos

- Product backlog
- Sprint backlog
- Burndown charts

SCRUM FRAMEWORK

Metodología de Desarrollo de Sistemas I

DAILY SCRUM

- Parámetros
 - Diaria
 - Dura 15 minutos
 - Parados
- No para la solución de problemas
 - Todo el mundo está invitado
 - Sólo los miembros del equipo, ScrumMaster y Product Owner, pueden hablar
 - Ayuda a evitar otras reuniones innecesarias

TODOS RESPONDEN 3 PREGUNTAS

¿Qué hiciste ayer?

¿Qué vas a hacer hoy?

¿Hay obstáculos en tu camino?

- No es dar un status report al Scrum Master
- Se trata de compromisos delante de pares

Roles

- Product owner
- ScrumMaster
- Team

Reuniones

- Sprint planning
- Sprint review
- Sprint retrospective
- Daily scrum meeting

Artefactos

- Product backlog
- Sprint backlog
- Burndown charts

SCRUM FRAMEWORK

Metodología de Desarrollo de Sistemas I

UN SPRINT BURNDOWN CHART

EJEMPLO CONSTRUCCIÓN DE VEHÍCULO

EJEMPLO CONSTRUCCIÓN DE VEHÍCULO

Metodología de Desarrollo de Sistemas I

EJEMPLO CONSTRUCCIÓN DE VEHÍCULO

AUTO EVALUACIÓN/I

Comprendí los conceptos más importantes de la unidad 4.2 si puedo definir y dar ejemplos de:

- Planeamiento
- Programación
- Control
- Diagrama de Gantt
- Método del camino critico
- Margen total de una tarea
- Camino crítico
- Scrum

AUTO EVALUACIÓN

Comprendí los conceptos más importantes de la unidad 4.2 si:

- Sé en que casos usaría Gantt y en cuáles CPM
- Sé como complementar Gantt con CPM
- Entiendo a qué (nodo a tarea) aplico el cálculo de fecha tardía y fecha temprana y a qué el cálculo del margen total
- Qué implica, para el administrador del proyecto, que una tarea sea crítica
- Qué tipo de información me brinda el camino crítico
- Cómo vinculo la determinación del camino critico con los distintos tipos de ciclos de vida
- Comparo metodologías ágiles vs. Tradicionales

Fin de la clase

