Nor Grate: Sor Snverter (NOT) * Of is high when b

$$A \longrightarrow Y = \overline{A + S}$$

* The ordput of NOR Grate is inversion of OR Grate

MuthTable

A	B	A+B	A+B
→ O	0	0	1
0	1	1	0
1	0	1	0
1	1	1	Ó
. .	1		

Associative Law

* NOR Grade does Not follow

Low of associativity

ATB +C & B+C +A

* NAND & NOR # Associative

3 input NUR Gate

Ly 3 1/p OR Grate + 1 Inverter

A
$$A+B+C$$
 $V=A+B+C$
 $V=A+B+C$
 $V=A+B+C$
 $V=A+B+C$

		Truth Table		
A	ß	C	A+B+C	Y= A+B+C
\bigcirc	0	0	Ŏ	1
O	0	1	1	6
0	1	0	1	0
0	1	1	1	O
1	0	O	1	0
1	٥	1	1	0
1	1	0	1	0
1	1	P	1	Ó

Enabled & Disabled NoR

X Olp is dependent on Ilp

Ly Enabled NOR Grode

Ly Y=AZ ACT like an inverter

floating 9/1 NoR Grate

* The off in stable at 0'. There is to dependency of olf on input

Disable NOR Grate

$$A=0$$
, $Y=\overline{0+0}=\overline{0}=1$ $Y=\overline{A}$
 $A=1$, $Y=\overline{1+1}=1=0$

Los Act like an Inverter (not)

Properties of Non Gale: Ato = \overline{A} At = $\overline{1} = 0$ At \overline{A} At \overline{A}

XOR (rade:

Ly Ex-OR (Exclusive OR)

* Also Called on Inequility Detector

Ly Olp=1, When both Inputs are unequal

Olp=0, When both Inputs are equal

B

Y= AB + AB

XOR Symbol -> A + B

XOR

A	B	Y= A (+) B
0	0	0
۲٥	1	1
LI	٥	1
1	1	0

$$\gamma = A \overline{B} + \overline{A} B = A \cdot \overline{B} + \overline{A} \cdot B$$

Commutative law: A(+) B = B(+) A Associative Law: $(A \oplus B) \oplus C = A \oplus (B \oplus C)$ they in the same all for the cold of the same present in input Y=A (F) B(F)C 0 0 to Even no. of l's are present at input 0 0

$$A \oplus O = A$$

$$A = A, \quad B = O$$

$$Y = AB + AB = A \cdot O + A \cdot O$$

$$= A \cdot I + A \cdot O$$

$$= A$$

$$A = \overline{A}$$

$$A = 1, R = 1$$

$$Y = A \overline{C} + \overline{A} R = A \cdot \overline{1} + \overline{A} \cdot \underline{1}$$

$$A = A \cdot \overline{A} + \overline{A} \cdot \underline{1}$$

$$A = A \cdot \overline{A} + \overline{A} \cdot \underline{1}$$

$$A = A \cdot \overline{A} + \overline{A} \cdot \underline{1}$$

$$A = A \cdot \overline{A} + \overline{A} \cdot \underline{1}$$

$$3\rangle A \oplus A = 0$$

$$A \oplus \overline{A} = 1$$

$$A=0$$
, $\overline{A}=1$. $O\bigoplus L=1$
 $A=1$, $\overline{A}=0$, $L\bigoplus O=1$

$$5) H A \oplus B = C$$

then,
$$A \oplus C = B$$

 $B \oplus C = A$

La Ex-NOR (Exclusive NOR) - Equility Detector Ly when both inputs are equal then olp- high

A OB = AB + AB

Logical Expression

Truth Table

A B	Y= A OB
0 0	1
0 1	0
10	٥
1 1	1

Y= AB+ AB = A·B + A·B

- a) Commutative Law:
- A B = B A
- Associative Law:

 (A O B) OC = A O (B OC)

Properties of XNOR Grade:

A
$$O O = \overline{A}$$
 $A = A$, $B = O$
 $A = A = A$, $B = A = A$
 $A = A = A$

A
$$01 = A$$

$$A = A, B = 1$$

$$A = A + AB \Rightarrow A \cdot 1 + A \cdot 1$$

$$A \cdot 1 + A \cdot 0 = A \cdot 1 = A$$

d) A O A = 0 Both HP are unequal let y= A OBOC Li 3 input xnoR Grate is same as 3 input xor operation * for multiple inputs, xor searches for odd number of 1's But XNOR gate dearcher for even number of 0's * for odd number of Input Lodd number of 1's will be same as even no. of Zenses

 $\times NOK = \times OR$

* for Even number of Input,

XNOR = XOR