MATH 27000 (Basic Complex Variables) Notes

Steven Labalme

March 24, 2024

Weeks

1	???		1
	1.1	Holomorphic Functions	1
	1.2	Chapter I: Analysis in the Complex Plane	6
$\mathbf{R}_{\mathbf{c}}$	efere	nces	8

List of Figures

1.1	The complex pla	ane	 	 	 			 	 					 	

Week 1

???

3/19:

1.1 Holomorphic Functions

• We begin by reviewing some properties of the **complex numbers**.

• Complex numbers: The field of elements z = x + iy where $x, y \in \mathbb{R}$ and $i^2 = -1$. Denoted by \mathbb{C} .

Figure 1.1: The complex plane.

- Can be visualized as a two-dimensional plane with the number z corresponding to the point (x, y).
- Real part: The number x. Denoted by $\operatorname{Re} z$.
- Imaginary part: The number y. Denoted by Im z.
- Complex conjugate (of z): The complex number defined as follows. Denoted by \bar{z} . Given by

$$\bar{z} := x - iy$$

- Now recall the definition of a real function that is **differentiable** at a point $x_0 \in \mathbb{R}$.
 - $-f'(x_0)(x-x_0)$ is the "best linear approximation" of f near x_0 , where $f'(x_0)$ is also defined below.
- **Differentiable** $(f: \mathbb{R} \to \mathbb{R} \text{ at } x_0)$: A function f for which the following limit exists. Constraint

$$\lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} =: f'(x_0)$$

- We now build up to defining a notion of complex differentiability.
 - Observe that the constraint above is equivalent to the constraint

$$f(x) = f(x_0) + \underbrace{[f'(x_0) + e(x)]}_{\Delta(x)}(x - x_0)$$

where $e(x) \to 0$ as $x \to x_0$.

- Note that we are defining a new function $\Delta(x)$ above, with the property that $\Delta(x_0) = f'(x_0)$.

• Holomorphic (f at z_0): A function $f: \mathbb{C} \to \mathbb{C}$ for which the following limit exists. Also known as \mathbb{C} -differentiable. Constraints

$$\lim_{z \to z_0} \frac{f(z) - f(z_0)}{z - z_0} =: f'(z_0) \qquad \iff \qquad f(z) = f(z_0) + \Delta(z)(z - z_0)$$

where Δ is continuous at z_0 and $\Delta(z_0) = f'(z_0)$.

- Is this the true definition of "holomorphic" / " \mathbb{C} -differentiable" function, or is this just a naïve first pass??
- Properties of holomorphic functions: Let $U \subset \mathbb{C}$ be open.
 - 1. The holomorphic functions on U form a ring $\mathcal{O}(U)$.
 - Equivalently, the \mathbb{C} -differentiation operator is \mathbb{C} -linear.
 - Equivalently, if f, g are holomorphic, then f + g and fg are holomorphic, too.
 - Equivalently (and most simply), we have the sum rule and the product rule (and the quotient rule if the function in the denominator is nonzero).
 - 2. We have the chain rule.
 - 3. Holomorphic implies continuous.
- Examples: Polynomials, rational functions p(z)/q(z) (away from their **poles**).
- Noney^[1]: Consider the function $f: \mathbb{C} \to \mathbb{C}$ defined by

$$z\mapsto \bar{z}$$

- TPS^[2]: Why?
- Notice that

$$f(0) = 0 f(t) = t f(it) = -it$$

- Thus,

$$\Delta(t) = 1 \qquad \qquad \Delta(it) = -1$$

for all t.

- But this means that Δ can't be continuous!
- Yet f is clearly \mathbb{R} -differentiable! What gives?!
- Note that viewing f as a mapping of $\mathbb{R}^2 \to \mathbb{R}^2$ we have

$$Df = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

- The above example suggests that our definition of complex differentiability may have been to naïve, so we'll do some further investigations now.
- Observe that $\mathbb{C} \cong \mathbb{R}^2$ as \mathbb{R} -vector spaces.
- **Differentiable** $(f : \mathbb{R}^2 \to \mathbb{R}^2 \text{ at } x_0)$: A function f for which there exists an \mathbb{R} -linear map $A : \mathbb{R}^2 \to \mathbb{R}^2$ satisfying the following constraint. Constraint

$$\lim_{h \to 0} \frac{\|f(x_0 + h) - f(x_0) - Ah\|}{\|h\|} = 0$$

- We also denote A by Df.

¹What does "Noney" mean??

²What does "TPS" mean??

• Example: Consider the function $f: \mathbb{C} \to \mathbb{R}$ defined by

$$x + iy \mapsto x$$

- Differentiable with total derivative

$$Df = \begin{pmatrix} 1 & 0 \end{pmatrix}$$

- Observation: While $\mathbb{C} \cong \mathbb{R}^2$ as \mathbb{R} -vector spaces, as a \mathbb{C} -vector space, there is additional structure.
 - In particular, all "vectors" should commute with the "multiplication by i" map $J: \mathbb{C} \to \mathbb{C}$ defined by any one of the following three maps.

$$z \mapsto z$$
 $x + iy \mapsto xi - y$
$$\begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$$

- Exercise: In (Re, Im) coordinates, write down the matrix for "multiply by w" for any $w \in \mathbb{C}$.
 - Let w = a + bi and let v = x + iy. Then

$$wv = (a+bi)(x+iy) = ax - by + i(bx + ay)$$
$$= \begin{pmatrix} ax - by \\ bx + ay \end{pmatrix} = \underbrace{\begin{pmatrix} a & -b \\ b & a \end{pmatrix}}_{W} \begin{pmatrix} x \\ y \end{pmatrix}$$

- The matrix W above is the desired result.
- TPS: Is $f: \mathbb{C} \to \mathbb{C}$ defined as follows a complex linear map? Why not?

$$x + iy \mapsto \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = (x + y) + iy$$

- Among other properties, a complex linear map should satisfy

$$if(x+iy) = f[i(x+iy)]$$

for the scalar $i \in \mathbb{C}$.

- However, we have that

$$if(x+iy) = i[(x+y)+iy] = -y+i(x+y) \neq (x-y)+ix = f(-y+ix) = f[i(x+iy)]$$

• What about the following map?

$$A = \begin{pmatrix} 1 & 2 \\ -2 & 1 \end{pmatrix}$$

- A complex linear map should satisfy

$$A(v+w) = Av + Aw \qquad \qquad \lambda Av = A(\lambda v)$$

for all $v, w, \lambda \in \mathbb{C}$.

- Let $v, w \in \mathbb{C}$ be arbitrary. Then

$$\begin{split} A(v+w) &= \begin{pmatrix} 1 & 2 \\ -2 & 1 \end{pmatrix} \begin{bmatrix} \begin{pmatrix} v_1 \\ v_2 \end{pmatrix} + \begin{pmatrix} w_1 \\ w_2 \end{pmatrix} \end{bmatrix} = \begin{pmatrix} (v_1+w_1) + 2(v_2+w_2) \\ -2(v_1+w_1) + (v_2+w_2) \end{pmatrix} \\ &= \begin{pmatrix} 1 & 2 \\ -2 & 1 \end{pmatrix} \begin{pmatrix} v_1 \\ v_2 \end{pmatrix} + \begin{pmatrix} 1 & 2 \\ -2 & 1 \end{pmatrix} \begin{pmatrix} w_1 \\ w_2 \end{pmatrix} = Av + Aw \end{split}$$

- Let $v, \lambda \in \mathbb{C}$. Then

$$\begin{split} \lambda A v &= (\lambda_1 + i\lambda_2) \cdot [(v_1 + 2v_2) + i(-2v_1 + v_2)] \\ &= [\lambda_1(v_1 + 2v_2) - \lambda_2(-2v_1 + v_2)] + i[\lambda_2(v_1 + 2v_2) + \lambda_1(-2v_1 + v_2)] \\ &= [(\lambda_1 v_1 - \lambda_2 v_2) + 2(\lambda_2 v_1 + \lambda_1 v_2)] + i[-2(\lambda_1 v_1 - \lambda_2 v_2) + (\lambda_2 v_1 + \lambda_1 v_2)] \\ &= A[(\lambda_1 v_1 - \lambda_2 v_2) + i(\lambda_2 v_1 + \lambda_1 v_2)] \\ &= A(\lambda v) \end{split}$$

- Therefore, since A satisfies the two properties, it is complex linear.
- \bullet Conclusion: To reiterate from the above, A must commute with J to be complex linear.
- Implication: Every \mathbb{C} -linear map of \mathbb{C} is just multiplication by a complex number.
 - This is a special case of the following more general result, which holds for any field K.

$$\operatorname{Hom}_K(K,K) \cong K$$

- Now let's revisit differentiability.
- It turns out that a condition for \mathbb{C} -differentiability equivalent to the definition of "holomorphic" given above is that there exists a \mathbb{C} -linear map $A:\mathbb{C}\to\mathbb{C}$ such that

$$\lim_{h \to 0} \frac{\|f(x_0 + h) - f(x_0) - Ah\|}{\|h\|} = 0$$

- From the above discussion, we know that this A is just multiplication by some $w \in \mathbb{C}$.
- All of the values in the above norms are complex numbers, so another equivalent condition is

$$\lim_{z \to z_0} \frac{|f(z) - f(z_0) - w \cdot (z - z_0)|}{|z - z_0|} = 0$$

- This condition is wholly mathematically equivalent to our holomorphic definition,

$$\lim_{z \to z_0} \frac{f(z) - f(z_0)}{z - z_0} = w$$

- So when is an \mathbb{R} -differentiable function actually holomorphic?
 - Let $f: \mathbb{R}^2 \to \mathbb{R}^2$ map $(x, y) \mapsto (q, h)$.
 - Let

$$A = Df = \begin{pmatrix} g_x & g_y \\ h_x & h_y \end{pmatrix}$$

where the subscript notation views g, for instance, as g(x,y) and denotes the partial derivative of g with respect to x.

- Let J (the "multiply by i") function be defined as above.
- Then the "commute with i" condition is equivalent to

$$J^{-1}AJ = A$$

- Expanding the product on the left above in terms of g_x, g_y, h_x, h_y , we obtain

$$\begin{pmatrix} h_y & -h_x \\ -g_y & g_x \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \begin{pmatrix} g_x & g_y \\ h_x & h_y \end{pmatrix} \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} = \begin{pmatrix} g_x & g_y \\ h_x & h_y \end{pmatrix}$$

- This condition is equivalent to A satisfying the Cauchy-Riemann equations.

• Cauchy-Riemann equations: The following two equations, which identify when a complex function is holomorphic. Also known as CR equations. Given by

$$g_x = h_y$$
$$g_y = -h_x$$

• These equations are satisfied when A is of the form

$$A = \begin{pmatrix} a & -b \\ b & a \end{pmatrix}$$

- So at this point, we can differentiate f with respect to z. But what if we want to differentiate it with respect to x and y (of z = x + iy)?
 - We will need the following change of basis.
 - Since z = x + iy and $\bar{z} = x iy$, we have

$$2x = z + \bar{z}$$
 $2iy = z - \bar{z}$ $x = \frac{1}{2}(z + \bar{z})$ $y = -\frac{i}{2}(z - \bar{z})$

■ This tells us that

$$\frac{\partial x}{\partial z} = \frac{1}{2} \qquad \qquad \frac{\partial y}{\partial z} = -\frac{i}{2}$$

- We can now invoke the multivariable chain rule and simplify the resultant expression.

$$\frac{\partial f}{\partial z} = \frac{\partial f}{\partial x} \frac{\partial x}{\partial z} + \frac{\partial f}{\partial y} \frac{\partial y}{\partial z} = \frac{1}{2} (f_x - i f_y)$$

- Note that once again, the subscript notation " f_x " means $\partial f/\partial x$.
- Note that we can also similarly work out that

$$\frac{\partial f}{\partial \bar{z}} = \frac{1}{2}(f_x + if_y)$$

■ Observe in particular that

$$f_x = g_x + ih_x f_y = g_y + ih_y$$

■ Thus, the CR equations $(g_x = h_y \text{ and } g_y = -h_x)$ being satisfied is equivalent to

$$\frac{\partial f}{\partial \bar{z}} = \frac{1}{2}(f_x + if_y) = \frac{1}{2}[(g_x + ih_x) + i(g_y + ih_y)] = 0$$

■ Note that $\partial f/\partial \bar{z}$ is not actually a derivative since f depends on z, not \bar{z} . Rather, we use " $\partial f/\partial \bar{z}$ " to denote the following operator applied to f.

$$\frac{\partial}{\partial \bar{z}} := \frac{1}{2} \left(\frac{\partial}{\partial x} + i \frac{\partial}{\partial y} \right)$$

• Theorem: The \mathbb{R} -differentiable function $f: U \to \mathbb{C}$ is holomorphic iff $\partial f/\partial \bar{z} = 0$. Moreover, if it is, then

$$f'(z_0) = \left. \frac{\partial f}{\partial z} \right|_{z_0}$$

1.2 Chapter I: Analysis in the Complex Plane

From Fischer and Lieb (2012).

- The preface only contains comments and instructions for an instructor planning to use this textbook for a course.
- The chapter begins with two paragraphs.
 - The first discusses topic covered in the chapter.
 - The second gives some historical background on these topics.

Section I.0: Notations and Basic Concepts

- Goal: Reiew the fundamental topological and analytical concepts of real analysis.
- Defines the complex numbers, complex plane, and complex conjugate.
- Absolute value (of z): The Euclidean distance of z from zero. Also known as modulus. Denoted by |z|. Given by

$$|z| := \sqrt{x^2 + y^2}$$

- Imaginary unit. Denoted by i.
- Relating the modulus and complex conjugate.

$$|z| = \sqrt{z\bar{z}}$$

• Open disk (of radius ε and center z_0): The set defined as follows. Also known as ε -neighborhood (of z_0). Denoted by $D_{\varepsilon}(z_0)$, $U_{\varepsilon}(z_0)$. Given by

$$D_{\varepsilon}(z_0) = U_{\varepsilon}(z_0) := \{ z \in \mathbb{C} : |z - z_0| < \varepsilon \}$$

• Unit disk: The set defined as follows. Denoted by D. Given by

$$\mathbb{D} := D_1(0)$$

• Unit circle: The set defined as follows. Denoted by S. Given by

$$\mathbb{S} := \{ z \in \mathbb{C} : |z| = \varepsilon \}$$

• Upper half plane: The set defined as follows. Denoted by **H**. Given by

$$\mathbb{H} := \{ z \in \mathbb{C} : \operatorname{Im} z > 0 \}$$

• \mathbb{C}^* : The set defined as follows. Given by

$$\mathbb{C}^* := \mathbb{C} \setminus \{0\}$$

- 3/21: Neighborhood (of z_0): A set U which contains an ε -neighborhood.
 - Open (set): A set that is a neighborhood of each of its points.
 - Closed (set): A complement of an open set.
 - Interior (of M): The largest open set contained in M. Denoted by \mathbf{M} .
 - Closure (of M): The smallest closed set containing M. Denoted by \overline{M} .

• Topological boundary (of M): The set defined as follows. Also known as boundary. Denoted by ∂M . Given by

$$\partial M := \overline{M} \setminus \mathring{M}$$

- Relatively open (set in M): The intersection of an open set U with an arbitrary set M. Also known as open (set in M).
- Relatively closed (set in M): The intersection of a closed set U with an arbitrary set M. Also known as open (set in M).

References

Fischer, W., & Lieb, I. (2012). A course in complex analysis: From basic results to advanced topics (J. Cannizzo, Trans.). Vieweg+Teubner Verlag.