

SÍLABO TEORÍA GENERAL DE SISTEMAS

ÁREA CURRICULAR: GESTIÓN

CICLO: VI SEMESTRE ACADÉMICO: 2017-I

I. CÓDIGO DEL CURSO : 09008806040

II. CRÉDITOS : 04

III.REQUISITOS : 09009005040 Ingeniería Administrativa

IV.CONDICIÓN DEL CURSO : Obligatorio

V. SUMILLA

El curso es de naturaleza de formación especializada; orientado a que el alumno comprenda y aplique los fundamentos de la teoría general de sistemas, a través de la adquisición del pensamiento sistémico aplicable a la generación y desarrollo de los sistemas, de las tecnologías de información y de las comunicaciones, así como a la valorización de su importancia e influencia dentro del marco de la ingeniería de computación, sistemas y campos afines.

Unidades: Fundamentos de la Teoría General de Sistemas y aplicación – Organización: complejidad y equilibrio - Metodología de los sistemas blandos – Trabajo de Aplicación de la Metodología de los Sistemas Blandos.

VI. FUENTES DE CONSULTA

Bibliográficas

- Van, J. (2007) Teoría General de Sistemas. 3ra Edición México: Editorial Trillas.
- · Ackoff, R. (2005) El Paradigma de Ackoff, una administración sistémica, 2a.edición, México: Editorial Limusa, John Wiley y Sons.
- Laudon, K. & Laudon, J. (2008). Sistemas de información gerencial, Administración de la Empresa Digital. 10ma Edición. México: Editorial Pearson Prentice Hall.
- · Escorsa P. & Valls, J. (2005). Tecnología e Innovación en la Empresa. 2da Edición. Madrid: Editorial Alfaomega.
- Hespanha, J. (2001). Linear Systems Theory, annotated edition, USA: Publisher Princeton University Press.
- Skyttner, L. (2006). General Systems Theory: Problems, Perspectives, Practice, 2 edition, USA:
 Publisher World Scientific Publishing Company.

Electrónicas:

- Tesis y Monografías. Sistemas Abiertos Alejados del Equilibrio. http://www.tdr.cesca.es/TESIS_UB/AVAILABLE/TDX-0116102-114349/INTROD.pdfhttp://www.tdr.cesca.es/TESIS_UB/AVAILABLE/TDX-0116102-114349/INTROD.pdf
 114349/INTROD.pdf
- Amador P. Teoría General de Sistemas 1ª edición. <a href="http://www.elprisma.com/apuntes/administracion_de_empresas/teoriageneraldesistemahttp://www.elprisma.com/apuntes/administracion_de_empresas/teoriageneraldesistemahttp://www.elprisma.com/apuntes/administracion_de_empresas/teoriageneraldesistemahttp://www.elprisma.com/apuntes/administracion_de_empresas/teoriageneraldesistemahttp://www.elprisma.com/apuntes/administracion_de_empresas/teoriageneraldesistemahttp://www.elprisma.com/apuntes/administracion_de_empresas/teoriageneraldesistemahttp://www.elprisma.com/apuntes/administracion_de_empresas/teoriageneraldesistemahttp://www.elprisma.com/apuntes/administracion_de_empresas/teoriageneraldesistemahttp://www.elprisma.com/apuntes/administracion_de_empresas/teoriageneraldesistemahttp://www.elprisma.com/apuntes/administracion_de_empresas/teoriageneraldesistemahttp://www.elprisma.com/apuntes/administracion_de_empresas/teoriageneraldesistemahttp://www.elprisma.com/apuntes/administracion_de_empresas/teoriageneraldesistemahttp://www.elprisma.com/apuntes/administracion_de_empresas/teoriageneraldesistemahttp://www.elprisma.com/apuntes/administracion_de_empresas/teoriageneraldesistemahttp://www.elprisma.com/apuntes/administracion_de_empresas/teoriageneraldesistemahttp://www.elprisma.com/apuntes/administracion_de_empresas/teoriageneraldesistemahttp://www.elprisma.com/apuntes/administracion_de_empresas/teoriageneraldesistemahttp://www.elprisma.com/apuntes/administracion_de_empresas/teoriageneraldesistemahttp://www.elprisma.com/apuntes/administracion_de_empresas/teoriageneraldesistemahttp://www.elprisma.com/apuntes/administracion_de_empresas/teoriageneraldesistemahttp://www.elprisma.com/apuntes/administracion_de_empresas/teoriageneraldesistemahttp://www.elprisma.com/apuntes/administracion_de_empresas/teoriageneraldesistemahttp://www.elprisma.com/apuntes/administracion_de_empresas/teoriageneraldesistemahttp://www.elprisma.com/apuntes/administracion_empresas/teoriageneraldesistemahttp://www.elprisma.com/apuntes/ad

VII. UNIDADES DE APRENDIZAJE

UNIDAD I. FUNDAMENTOS DE LA TEORÍA GENERAL DE SISTEMAS Y APLICACIÓN

OBJETIVOS DE APRENDIZAJE:

- Aplicar los principios y definiciones básicas de la teoría general de sistemas.
- Clasificar sistemas y propiedades en el mundo real.
- Utilizar la dinámica y simulación de sistemas.
- Aplicar los fundamentos de Cultura, Clima, Cambio y Desarrollo Organizacional

PRIMERA SEMANA

Primera sesión

Introducción panorámica de la Teoría de sistemas y Teoría General de Sistemas. Sistemas. Teorías. Modelos. Propiedades de los sistemas.

Segunda sesión

Evaluación: Prueba de entrada. Aplicación. Clasificación de Sistemas. El principio de la Segunda Ley de la Termodinámica. Entropía.

SEGUNDA SEMANA

Primera sesión

El pensamiento de Sistemas. Enfoques. Teorías, Aplicaciones. Jerarquía de la Complejidad. Taxonomía.

Segunda sesión

Tipología de sistemas según el principio de K. Boulding.

TERCERA SEMANA

Primera sesión

Dinámica de sistemas. Estructuras. Bucles de Realimentación. Sistema complejo. Estructura y comportamiento.

Segunda sesión

Diagramas y Construcción. Análisis y Explotación de Modelos. Modelos de sistemas. Procesos del modelado. Evaluación: Primer control.

CUARTA SEMANA

Primera sesión

Simulación del modelo. Análisis y aplicación de sensibilidad.

Segunda sesión

Organización como Sistema. Enfoque. Complejidad. Evaluación: Segundo control.

QUINTA SEMANA

Primera sesión

Cultura Organizacional. Clima y Cambio Organizacional.

Segunda sesión

Niveles de administración. Organigramas. Tecnología y Desarrollo Organizacional Evaluación. Tercer Control.

UNIDAD II. ORGANIZACIÓN: COMPLEJIDAD Y EQUILIBRIO

OBJETIVOS DE APRENDIZAJE:

- Aplicar los fundamentos de complejidad y equilibrio en la organización.
- Aplicar la Gestión la Incertidumbre y de Información.

SEXTA SEMANA

Primera sesión

Organización y los sistemas dinámicos.

Presentación del primer trabajo grupal.

Segunda sesión

La Organización como Sistema en Equilibrio y No-Equilibrio. La Organización Autorreferencial o Autopoiética.

SÉPTIMA SEMANA

Primera sesión

La Organización Compleja. Equilibrio en la Organización.

Segunda sesión

El Cambio Grupal como la amplificación de las fluctuaciones.

OCTAVA SEMANA

Examen Parcial.

NOVENA SEMANA

Primera sesión

Cambio organizacional: la adaptación y auto-organización. Aportes dentro del comportamiento Organizativo.

Segunda sesión

Estructura y gestión organizativa. sistemas auto-organizativos.

Presentación del primer avance del trabajo final.

DÉCIMA SEMANA

Primera sesión

Gestión Compleja de las organizaciones. Gestión de la Incertidumbre.

Segunda sesión

Gestión de la Información. Apoyo de Fuerzas Contrapuestas dentro de la organización y utilización del conflicto positivo.

UNDÉCIMA SEMANA

Primera sesión

Rol de la información en el control de gestión

Segunda sesión

Sistemas de control de gestión. Estructura y funcionamiento. Indicadores y Centros de Responsabilidad.

UNIDAD III. METODOLOGIA DE LOS SISTEMAS BLANDOS: MSB

OBJETIVOS DE APRENDIZAJE:

• Aplicar la MSB en el estudio de los problemas del mundo real.

DUODÉCIMA SEMANA

Primera sesión

Introducción a la Metodología sistémica. Métodos. Técnicas. Herramientas.

Segunda sesión

La problemología como actitud sistémica

DECIMOTERCERA SEMANA

Primera sesión

Metodología para solucionar sistemas blandos

Segunda sesión

El método sistémico integrado. Tecnología de los sistemas. Investigación hombre-máquina. Marco Conceptual de Klir. Taxonomía de Sistemas.

DECIMOCUARTA SEMANA

Primera sesión

El resolvedor de Problemas en los Sistemas Generales

Metodología de los sistemas Blandos (MSB). Problemas duros y problemas blandos.

Segunda sesión

Metodología de los sistemas Duros. Enfoques de Hall y Jenking.

MSB. Etapas. Variantes de la MSB. Enfoques y perspectiva.

El modelo sistémico según el principio P. Checkland.

DECIMOQUINTA SEMANA

Primera sesión

Sustentación de trabajos finales.

Segunda sesión

Sustentación de trabajos finales.

DECIMOSEXTA SEMANA

Examen Final

DECIMOSÉPTIMA SEMANA

Entrega de promedios finales y acta del curso.

VIII. CONTRIBUCIÓN DEL CURSO AL COMPONENTE PROFESIONAL

a. Matemática y Ciencias Básicas
b. Tópicos de Ingeniería
c. Educación General
0

IX.PROCEDIMIENTOS DIDÁCTICOS

- Método Expositivo Interactivo. Comprende la exposición del docente y la interacción con el estudiante.
- Método de Discusión Guiada. Conducción del grupo para abordar situaciones y llegar a conclusiones y recomendaciones.
- **Método de Demostración Ejecución.** Se utiliza para ejecutar, demostrar, practicar y retroalimentar lo expuesto.

X. MEDIOS Y MATERIALES

- Equipos: Computadora, ecran y proyector multimedia.
- Materiales: Manual Universitario, material docente, guía de teoría, guía de práctica y textos base (ver fuentes de información).

XI. EVALUACIÓN

El promedio final de la asignatura se obtiene con la fórmula siguiente:

PF = (2*PE + EP + EF) / 4 PE = ((P1 + P2 + P3 + P4 - MN) / 3 + W1) / 2

Donde: Donde:

PF = Promedio final **P1...P4** = Práctica Calificada

EP = Examen parcial **W1** = Trabajo 1 **EF** = Examen final **MN** = Menor Nota

PE = Promedio de evaluaciones

XII. APORTE DEL CURSO AL LOGRO DE RESULTADOS

El aporte del curso al logro de los Resultados del Estudiante (Student Outcomes) en la formación del graduado en Ingeniería de Computación y Sistemas, se establece en la tabla siguiente:

K = clave **R** = relacionado **Recuadro vacío** = no aplica

a.	Habilidad para aplicar conocimientos de computación y matemáticas apropiadas para los				
	resultados del estudiante y las disciplinas enseñadas.				
b.	Habilidad para analizar un problema e identificar y definir los requerimientos apropiados para su solución.	R			
C.	Habilidad para diseñar, implementar y evaluar un sistema basado en computadoras, procesos, componentes o programa que satisfagan las necesidades requeridas.				
d.	Habilidad para trabajar con efectividad en equipos para lograr una meta común.				
e.	Comprensión de los aspectos y las responsabilidades profesional, ética, legal, de				

	seguridad y social.	
f.	Habilidad para comunicarse con efectividad con un rango de audiencias.	R
g.	Habilidad para analizar el impacto local y global de la computación en los individuos, organizaciones y la sociedad.	K
h.	Reconocer la necesidad y tener la habilidad para comprometerse a un continuo desarrollo profesional.	R
i.	Habilidad para usar técnicas, destrezas, y herramientas modernas necesarias para la práctica de la computación.	
j	Comprensión de los procesos que soportan la entrega y la administración de los sistemas de información dentro de un entorno específico de aplicación.	

XIII. HORAS, SESIONES, DURACIÓN

Teoría	Práctica	Laboratorio
4	0	0

- a) Horas de clase:
 b) Sesiones por semana: Dos sesiones.
 c) Duración: 4 horas académicas de 45 minutos.

XIV. PROFESOR DEL CURSO

Ing. Becerra Pacherres, Augusto

Ing. Sussy Bayona Ore

XV. FECHA

La Molina, marzo del 2017.