Определение 1. Принцип математической индукции — это аксиома, которая заключается в следующем. Пусть имеется последовательность утверждений $A_1, A_2, \ldots, A_n, \ldots$, про которую известно, что выполнены условия:

- 1. (база индукции) утверждение A_1 истинно;
- 2. (индуктивный переход) из истинности утверждения A_k следует истинность утверждения A_{k+1} . Тогда все утверждения A_n истинны.

Замечание 1. Зачастую оказывается удобным считать базой индукции не A_1 , а утверждение с какимнибудь бо́льшим номером A_l . В этом случае рассуждение будет выглядеть так:

- 1. утверждение A_l истинно;
- 2. из того, что $k \geqslant l$ и утверждение A_k истинно, следует истинность утверждения A_{k+1} .

Тогда для любого $n \geqslant l$ утверждение A_n истинно.

Задача 1. Докажите, что части, на которые n прямых делят плоскость, можно раскрасить в два цвета, так чтобы соседние части (имеющие общий отрезок или луч) были окрашены в разные цвета.

Задача 2. В компании из k человек ($k \ge 4$) у каждого появилась новость, известная лишь ему одному. За один телефонный разговор двое сообщают друг другу все известные им новости. Докажите, что за 2k-4 разговора все они могут узнать все новости.

Задача 3. Известно, что $a_1 = 1$ и $a_{n+1} = 2a_n + 1$ при $n \geqslant 1$. Найдите a_n .

Задача 4. Докажите: модуль суммы любого числа слагаемых не больше суммы модулей слагаемых.

Задача 5. Верна ли теорема: «Если треугольник разбит отрезками на треугольники, то хотя бы один из треугольников разбиения не остроугольный»? Вот её доказательство (нет ли в нём ошибки?):

- «1. Если треугольник разбит отрезком на два треугольника, то один из них не остроугольный (ясно).
- 2. Пусть имеется треугольник, как-то разбитый на n треугольников. Проведём ещё один отрезок, разбив один из маленьких треугольников на два. Получим разбиение на n+1 треугольник, причём один из двух новых треугольников будет не остроугольный.

По индукции теорема доказана.»

Задача 6. Докажите неравенство Бернулли: $(1+a)^n \geqslant 1 + na$ при $a \geqslant -1$.

Задача 7. Докажите, что **a)** $2^n > n$; **6)** $2^n > n^2$ при $n \ge 4$; **b)** $n! > 2^n$ при n > 3;

Задача 8. На какое максимальное число частей могут разбить плоскость n прямых?

Задача 9*. На какое максимальное число частей могут разбить пространство n плоскостей?

Задача 10. Докажите, что $2^{5n-2} + 5^{n-1} \cdot 3^{n+1}$ делится на 17 при любом натуральном n.

Задача 11. Докажите для любого натурального n неравенство: $1 + \frac{1}{2^2} + \frac{1}{3^2} + \dots + \frac{1}{n^2} \leqslant 2 - \frac{1}{n}$.

Задача 12. На кольцевой автотрассе стоят несколько машин. Известно, что общего количества бензина во всех стоящих автомобилях достаточно для того, чтобы заправленная этим бензином машина смогла объехать всю трассу и вернуться на прежнее место. Докажите, что хотя бы один из автомобилей, стоящих на дороге, может объехать все кольцо, забирая по пути бензин у остальных машин.

1	2	3	4	5	6	7 a	7 6	7 B	8	9	10	11	12

Определение 2. *Принцип наименьшего элемента* гласит: «всякое непустое подмножество множества натуральных чисел содержит наименьшее число».

Определение 3. Обобщённый принцип математической индукции заключается в следующем. Пусть имеется последовательность утверждений $A_1, A_2, \ldots, A_n, \ldots$ Предположим, дополнительно известно, что выполнены условия:

- 1. утверждение A_1 истинно;
- 2. из истинности утверждения A_k для всех k таких, что $k \leq m$, следует истинность утверждения A_{m+1} . Тогда все утверждения A_n истинны.

Задача 13*. Докажите, что принцип математической индукции и принцип наименьшего элемента эквивалентны.

Задача 14*. Докажите, что принцип математической индукции и обобщённый принцип математической индукции эквивалентны друг другу.

Задача 15. Докажите, что уравнение $n^2 = 2m^2$ не имеет решений в натуральных числах.

Задача 16. Докажите, что любое натуральное число можно представить как сумму нескольких разных степеней двойки (возможно, включая и нулевую).

Задача 17. Число $x + \frac{1}{x}$ — целое. Докажите, что $x^n + \frac{1}{x^n}$ — тоже целое при любом натуральном n.

Задача 18. Докажите, что для любого натурального n > 3 число n! можно разложить на два множителя, отношение которых будет не меньше 2/3 и не больше 3/2.

Задача 19. (*Ханойские башни*) Есть детская пирамида с n кольцами и два пустых стержня той же высоты. Разрешается перекладывать верхнее кольцо с одного стержня на другой, но нельзя класть большее кольцо на меньшее. Докажите, что **a)** можно переложить все кольца на один из пустых стержней; **б)** можно сделать это за $2^n - 1$ перекладываний; **в)** меньшим числом перекладываний не обойтись.

Задача 20. k воров хотят поделить добычу. Каждый уверен, что он поделил бы добычу на равные части, но остальные ему не верят. Как действовать ворам, чтобы после раздела каждый был уверен, что у него не менее $\frac{1}{k}$ части добычи? Разберите случаи, когда: **a)** k=2; **б)*** k=3; **в)*** k-1 любое.

Задача 21*. При каких n гири весом $1, 2, \ldots, n$ кг можно разложить на три равные по весу кучи?

Задача 22*. При каких n можно соединить каждые два из данных n сел односторонним маршрутом так, чтобы из любого села в любое другое можно было доехать не более чем с одной пересадкой?

Задача 23*. Двое играют в игру, исход которой не зависит от случая. Игроки ходят по очереди, причём по правилам игра продолжается не более n ходов. Ничьих не бывает. Докажите, что у одного из игроков есть выигрышная стратегия.

13	14	15	16	17	18	19 a	19 б	19 B	20 a	20 6	20 B	21	22	23