PH108: Electricity & Magnetism

Weekly Quiz 1 - Mercator Charts and Flat Maps 24 January, 2018

Answer

 $\cos(\Lambda)$ $\left[\frac{1}{2} \text{ mark}\right]$

 $\Lambda \to 90^{\circ} - \Lambda \text{ or } \Lambda \to \Lambda - 90^{\circ}$ [\frac{1}{2} \text{mark}]

Solution

Let radius of Earth be R.

Arc length, $s = r\theta$.

Here, distance at latitude $\Lambda = r\Delta\Phi$, where r is radius of latitude Λ

Thus the distance becomes $R \cos(\Lambda) \Delta \Phi$.

distance at equator = R $\Delta \Phi \Longrightarrow \mathrm{ratio} = \cos(\Lambda)$

Now, mapping the poles will be an issue.

Hint 1: switch from current front view to top view, and repeat the same process.

Hint 2: $\sin(\Lambda)$ instead of cos...

both are in effect, redefining Λ by 90°, keeping in mind the factor should be positive.