Generalizations of Roth's criteria for solvability of matrix equations

Tetiana Klymchuk

tetiana.klymchuk@upc.edu
http://www.upc.edu/

May 1, 2017

Bibliography Preliminaries

Generalizations of Roth's criteria for solvability of matrix equations

Tetiana Klymchuk
Universitat Politècnica de Catalunya

XXV CEDYA / XV CMA June 26–30, 2017

Semilinear mappings

Introduction

Bibliography Preliminaries A mapping ${\mathcal A}$ from a complex vector space V to a complex vector space V is semilinear if

$$\mathcal{A}(u+u') = \mathcal{A}u + \mathcal{A}u', \qquad \mathcal{A}(\alpha u) = \overline{\alpha}\mathcal{A}u$$

for all $u, u' \in U$ and $\alpha \in \mathbb{C}$.

We write

- $\blacksquare \mathcal{A}: U \longrightarrow V$ if \mathcal{A} is a linear mapping, and
- $\blacksquare \mathcal{A}: U \dashrightarrow V$ if \mathcal{A} is a semilinear mapping.

Cycles of linear and semilinear mappings

ntroduction

Main result Bibliography Preliminaries We give a canonical form of matrices of a cycle of linear and semilinear mappings

$$V_1 \underbrace{\stackrel{\mathcal{A}_1}{\smile} V_2 \stackrel{\mathcal{A}_2}{\smile} \dots \stackrel{\mathcal{A}_{t-2}}{\smile} V_{t-1} \stackrel{\mathcal{A}_{t-1}}{\smile} V_t}_{\mathcal{A}_t}$$

in which each line is

- \blacksquare a full arrow \longrightarrow , \longleftarrow , or
- a dashed arrow -->, ←--.

My talk is based on:

Main result
Bibliography
Preliminaries

■ T. Klimchuk, D. Kovalenko, T. Rybalkina, V.V. Sergeichuk, Tame systems of linear and semilinear mappings), Contemp. Math. 658 (2016) 103-114.

D. Duarte de Oliveira, V. Futorny, T. Klimchuk, D. Kovalenko, V.V. Sergeichuk, Cycles of linear and semilinear mappings), Linear Algebra Appl. 438 (2013) 3442-3453.

D. Duarte de Oliveira, R.A. Horn, T. Klimchuk, V.V. Sergeichuk, Remarks on the classification of a pair of commuting semilinear operators, Linear Algebra Appl. 436 (2012) 3362-3372.

Empty matrices

ntroduction

Bibliography Preliminaries

- $\forall n = 0, 1, 2, ...$ $\exists !$ matrices of sizes $0 \times n$ and $n \times 0$, which correspond to linear mappings $\mathbb{C}^n \to 0$ and $0 \to \mathbb{C}^n$.
- They are denoted by 0_{0n} and 0_{n0} and are considered as zero matrices
- For every $p \times q$ matrix M_{pq} :

$$\boldsymbol{M_{pq}} \oplus \boldsymbol{0_{n0}} = \begin{bmatrix} \boldsymbol{M_{pq}} & \boldsymbol{0} \\ \boldsymbol{0} & \boldsymbol{0_{n0}} \end{bmatrix} = \begin{bmatrix} \boldsymbol{M_{pq}} & \boldsymbol{0_{p0}} \\ \boldsymbol{0_{nq}} & \boldsymbol{0_{n0}} \end{bmatrix} = \begin{bmatrix} \boldsymbol{M_{pq}} \\ \boldsymbol{0_{nq}} \end{bmatrix}$$

$$M_{pq} \oplus 0_{0n} = \begin{bmatrix} M_{pq} & 0 \\ 0 & 0_{0n} \end{bmatrix} = \begin{bmatrix} M_{pq} & 0_{pn} \\ 0_{0q} & 0_{0n} \end{bmatrix} = \begin{bmatrix} M_{pq} & 0_{pn} \end{bmatrix}$$

Sooooo baaad without empty matrices

ntroduction

Main result Bibliography Preliminaries $\forall A \exists \text{ nonsingular } R, S \colon RAS = \begin{bmatrix} I & 0 \\ 0 & 0 \end{bmatrix}$ Observation

 Each matrix is equivalent to a direct sum of indecomposable matrices of the form

$$[1], [10], [100], \ldots, \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, \ldots$$

■ This direct sum is not uniquely determined:

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ \hline 0 & 0 & 0 \end{bmatrix} = \begin{bmatrix} 10 & 0 \\ \hline 0 & 0 & 0 \end{bmatrix} = \begin{bmatrix} 10 & 0 \\ \hline 0 & 0 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ \hline 0 & 0 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ \hline 0 & 0 & 0 \end{bmatrix}$$

Goood with empty matrices

ntroduction

Bibliography Preliminaries

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 0 \end{bmatrix} \oplus \begin{bmatrix} 0 \end{bmatrix} = \begin{bmatrix} 1 \end{bmatrix} \oplus 0_{01} \oplus 0_{01} \oplus 0_{10}$$
$$= \begin{bmatrix} 1 \end{bmatrix} \oplus \begin{bmatrix} 0 & 0 \end{bmatrix} = \begin{bmatrix} 1 \end{bmatrix} \oplus 0_{01} \oplus 0_{01} \oplus 0_{10}$$

A la Jordan Theorem

- Each matrix is equivalent to a direct sum of indecomposable matrices of the form [1], 0₀₁, 0₁₀.
- This direct sum is uniquely determined, up to permutation of summands.

