

Spatio-temporal Multi-view 3D Reconstruction with Generalized Connectivity Constraints

Martin Oswald, Jan Stühmer and Daniel Cremers

Overview

Spatio-temporal Multi-view Reconstruction Oswald and Cremers, ICCV'13, 4DMOD Workshop

Review of Connectivity Constraints for Segmentation Stühmer, Schröder, Cremers, ICCV'13

Generalized Connectivity Constraints for Multi-View Reconstruction Oswald, Stühmer, Cremers

input

no connectivity

with connectivity

generalized connectivity

Overview

Spatio-temporal Multi-view Reconstruction Oswald and Cremers, ICCV'13, 4DMOD Workshop

Review of Connectivity Constraints for Segmentation Stühmer, Schröder, Cremers, ICCV'13

no connectivity

generalized connectivity

Spatio-temporal Multi-view Reconstruction

Input:

• images $\{I_i(t)\}_{i=1}^N$

• calibration $\{\pi_i\}_{i=1}^N$

• silhouettes $\{S_i(t)\}_{i=1}^N$

Output:

space-time surface

(mesh)

Visual hull

$$\mathcal{VH}(t) = \bigcap_{i=1}^{N} \pi_i^{-1}(S_i(t))$$

Baumgart, Stanford'74; Laurentini et al. TPAMI'94, LNCS'03

Applications

- Free Viewpoint TV
- Markerless Motion Capture
- Motion Analysis for Sports
- Special Effects for Moviese.g. "Bullet Time" Effect from "The Matrix"

The making of:

Related Work

3D Reconstruction

$$\min_{u} \int_{V} \rho \left| \nabla u \right| dx + \lambda \int_{V} f u \, dx$$

weighted TV + data term

Kolev et al. IJCV'09

$$u: V \mapsto \{0,1\}$$

Interior/exterior labeling

Pros

- topology changes are easily handled
- global optimization
- natural regularization in 3D space rather than in the image domain
- desirable interpolation/extrapolation behavior for redundant/missing data

Cons

- slow: runtimes of hours
- memory intensive: volume resolution limits reconstruction accuracy
- data terms are not well suited for sparse camera setups

Why 4D Reconstruction?

Guillemaut, Hilton, 3DIMPVT'12

Noisy Input Images → **Noisy 3D Models**

Spatio-Temporal Multi-view Reconstruction

$$\min_{u} \int_{V \times T} (\rho \left| \nabla_{x} u \right| + g_{t} \left| \nabla_{t} u \right|) dx dt + \lambda \int_{V \times T} fu \, dx dt$$
 spatial temporal regularization term data term

sliding window optimization (for fixed window size |T|)

Photoconsistency

$$\min_{u} \int_{V \times T} (\rho |\nabla_x u| + g_t |\nabla_t u|) dx dt + \lambda \int_{V \times T} fu \, dx dt$$

voting scheme by Hernández et al. CVIU'04:

$$C_i(x,d) = \sum_{j \in \mathcal{C}' \setminus i} w_i^j(x) \cdot \text{NCC}\Big(\pi_i\big(r_i(x,d)\big), \pi_j\big(r_i(x,d)\big)\Big)$$

$$\rho(x,t) = \exp\left[-\mu \sum_{i \in \mathcal{C}'} \underbrace{\delta\left(d_i^{\max} = \operatorname{depth}_i(x)\right) \cdot \bar{C}_i(x, d_i^{\max})}_{\text{VOTE}_i(x)}\right]$$

1 of 20 images

Kolev et al.

$$\rho: V \times T \mapsto [0,1]$$

 $\rho=0$ perfect photometric match

 $\rho = 1$ no photometric match

$$d_i^{\max} = \arg\max_d C_i(\boldsymbol{x}, d)$$

Proposed Data Term

$$\min_{u} \int_{V \times T} (\rho |\nabla_x u| + g_t |\nabla_t u|) dx dt + \lambda \int_{V \times T} \mathbf{f} u dx dt$$

$$f: V \times T \mapsto \mathbb{R}$$

f < 0 favor interior labeling

f=0 neutral – no preference

f>0 favor exterior labeling

$$P_i(x \in S) = 1 - \frac{1}{Z} \exp \left[-\eta \cdot \text{VOTE}_i(x) \right]$$

$$P_i(x \in int(S)) = \prod_{j=1}^{N} \prod_{\substack{depth_i(x) < d \le d_i^{\max}}} \left[1 - P_j(r_i(x, d) \in S) \right]$$

$$P(x \in int(S)) = \prod_{i=1}^{N} P_i(x \in int(S))$$

$$f(x,t) = -\ln\left(\frac{1 - P(x \in int(S))}{P(x \in int(S))}\right)$$

Proposed Data Term

Photoconsistency and Data Term

$$\min_{u} \int_{V \times T} (\rho |\nabla_x u| + g_t |\nabla_t u|) dx dt + \lambda \int_{V \times T} f u \, dx dt$$

input

photoconsistency $\rho: V \times T \mapsto [0,1]$

data term $f: V \times T \mapsto \mathbb{R}$

1 of 20 images

Kolev et al.

proposed

Kolev et al.

proposed

Photoconsistency and Data Term

input

Jancosek and Pajdla, CVPR'11

PMVS + Poisson Furukawa et al. PAMI'10

Kolev et al. IJCV'09

proposed

Photoconsistency and Data Term

$$\min_{u} \int_{V \times T} (\rho |\nabla_x u| + g_t |\nabla_t u|) dx dt + \lambda \int_{V \times T} f u \, dx dt$$

Reconstruction Result

$$\min_{u} \int_{V \times T} (\rho |\nabla_x u| + g_t |\nabla_t u|) dx dt + \lambda \int_{V \times T} fu \, dx dt$$

Temporal Regularization

$$\min_{u} \int_{V \times T} (\rho |\nabla_{x} u| + \mathbf{g}_{t} |\nabla_{t} u|) dx dt + \lambda \int_{V \times T} f u \, dx dt$$

$$g_t = \text{const}$$
 doesn't work well with motion

$$g_t(x,t) = \exp(-a|\nabla_t f(x,t)|)$$

Temporal Regularization

different window sizes |T| (a=1)

$$g_t(x,t) = \exp(-a|\nabla_t f(x,t)|)$$

Temporal Regularization

different smoothness values a (|T|=3)

$$g_t(x,t) = \exp(-a|\nabla_t f(x,t)|)$$

Method Comparison

- Jancosek and Pajdla, CVPR'11
- Furukawa et al. PAMI'10: PMVS + Poisson Surface reconstruction
- baseline (|T|=1, temp. indepentend)
- \bigcirc baseline (|T|=1, temp. indepentend) + temp. Gaussian filtering (|T|=3)
- proposed (|T|=3)

Method Comparison

Method Comparison

proposed |T|=3

Overview

Spatio-temporal Multi-view Reconstruction Oswald and Cremers, ICCV'13, 4DMOD Workshop

Review of Connectivity Constraints for Segmentation Stühmer, Schröder, Cremers, ICCV'13

 Generalized Connectivity Constraints for Multi-View Reconstruction Oswald, Stühmer, Cremers

Connectivity Constraints - Motivation

Connectivity Constraints - Motivation

Image Segmentation

$$f: \Omega \subset \mathbb{R}^2 \mapsto \mathbb{R} \qquad u: \Omega \mapsto \{0, 1\}$$

f < 0 favor interior labeling

f=0 neutral – no preference

f>0 favor exterior labeling

$$\min_{u} \int_{\Omega} |\nabla u| \, dx + \lambda \int_{\Omega} f u \, dx$$

Image Segmentation

$$f: \Omega \subset \mathbb{R}^2 \mapsto \mathbb{R}$$
 $u: \Omega \mapsto \{0, 1\}$

$$\min_{u} \int_{\Omega} |\nabla u| \, dx + \lambda \int_{\Omega} f u \, dx$$

 $\mathrm{s.t.}$

$$\forall x, x' \in \Omega_{u=1} : \exists C_x^{x'} \subset \Omega_{u=1}$$

Theorem (Vicente et al. 2008): **This problem is NP hard.**

Image Segmentation

$$f: \Omega \subset \mathbb{R}^2 \to \mathbb{R}$$
 $u: \Omega \mapsto \{0, 1\}$

shortest geodesic path wrt. f

$$\min_{C_x^{x'}} \ \ell(C_x^{x'})$$

$$\ell(C_x^{x'}) = \int_0^1 f^+(C_x^{x'}(r)) dr$$

$$\min_{u} \int_{\Omega} |\nabla u| \, dx + \lambda \int_{\Omega} fu \, dx$$

$$\forall x, x' \in \Omega_{u=1} : \exists C_x^{x'} \subset \Omega_{u=1}$$

Image Segmentation

$$f: \Omega \subset \mathbb{R}^2 \mapsto \mathbb{R}$$
 $u: \Omega \mapsto \{0, 1\}$

$$\mathcal{G}_s = (\mathcal{V}, \mathcal{E}) \quad s \in \Omega$$

$$\min_{u} \int_{\Omega} |\nabla u| \, dx + \lambda \int_{\Omega} f u \, dx$$

$$\nabla_e u \le 0 \quad \forall e \in \mathcal{E}$$

Image Segmentation

$$f: \Omega \subset \mathbb{R}^2 \mapsto \mathbb{R}$$
 $u: \Omega \mapsto \{0, 1\}$
 $\mathcal{G}_s = (\mathcal{V}, \mathcal{E})$ $s \in \Omega$

$$\min_{u} \int_{\Omega} |\nabla u| \, dx + \lambda \int_{\Omega} f u \, dx$$

$$\nabla_e u \le 0 \quad \forall e \in \mathcal{E}$$

Image Segmentation

$$f: \Omega \subset \mathbb{R}^2 \mapsto \mathbb{R}$$
 $u: \Omega \mapsto \{0, 1\}$
 $\mathcal{G}_s = (\mathcal{V}, \mathcal{E})$ $s \in \Omega$

$$\min_{u} \int_{\Omega} |\nabla u| \, dx + \lambda \int_{\Omega} f u \, dx$$

$$\nabla_e u \le 0 \quad \forall e \in \mathcal{E}$$

Connectivity for Image Segmentation

Stühmer, Schröder, Cremers, ICCV 2013

Summary

Spatio-temporal multi-view 3D reconstruction

- semi-local data term performs better in wide-baseline setups
- temporal regularization reduces surface jitterering
- faster photoconsistency computation
- efficient parallel implementation

2-3min/frame competitive computation time

Generalized Connectivity Constraints

- integrated connectivity constraints into spatio-temporal reconstruction
- guaranteed loop preservation
- generalized connectivity constraints that respect the data term
- low computational time overhead additionally ~1-2min/frame

