

Who am I? Who are you?

B.Sc. & M.Sc. Psychology Heidelberg Academic Career

Ph.D. Cognitive Individual Differences Heidelberg PostDoc & SNF Ambizione Fellow Zurich

Individual
Differences
in cognitive
processes

Research Focus

Advanced

Bayesian

Methods

Mathematic al Modelling of Cognition

Who are you?

What do you hope to learn?

What challenges do you anticipate?

How would you rate your Statistics & R level?

SEM Workshop: Overview

Practical Example

Non-SEM Analyses

Why SEM?

Summary

Path diagrams & terms

Path diagrams & terms

Definition equations

Technically:

Specify all correlations that are zero.

Top Model:

$$X1 = b1*Psi + e1$$

$$X2 = b2*Psi + e2$$

$$X3 = b3*Psi + e3$$

$$X4 = b4*Psi + e4$$

$$Cov(e,e) = Cov(Psi, e) = 0$$

Bottom Model:

$$X1 = b1*LV1 + e1$$

$$X2 = b2*LV1 + e2$$

$$X3 = b3*LV2 + e3$$

$$X4 = b4*LV2 + e4$$

$$Cov(e,e) = Cov(LV1, e) =$$

$$Cov(LV2,e) = 0$$

Summary: Path diagrams & Definition Equations

Exercise: Path diagrams & Definition Equations

Specify the definition equations.

Definition Equations:

Y11 =

Y12 =

Y13 =

Y11 =

Y12 =

Y13 =

Structural Equations

Definition

equations

X1 X2 X3 X4

X1 Var(X1)

 $X2 \quad Cov(X1,X2) \quad Var(X2)$

Structural

Equations

Definition

Equations

Calculation

Rules

X3 Cov(X1,X3) Cov(X2,X3) Var(X3)

X4 Cov(X1,X4) Cov(X2,X4) Cov(X3,X4) Var(X4)

Definition Equations:

$$X1 = b1*Psi + e1$$

$$X2 = b2*Psi + e2$$

$$X3 = b3*Psi + e3$$

$$X4 = b4*Psi + e4$$

$$Cov(e,e) = Cov(Psi, e) = 0$$

Specify
Variances &
covariances
of observed
variables

Var(X1) = Var(b1*Psi + e1)

= Var(b1*Psi) + Var(e1) + 2*b1*Cov(Psi,e1)

 $= b1^2*Var(Psi) + Var(e1)$

Cov(X1,X2) = Cov(b1*Psi + e1,b2*Psi + e2)

= b1*b2*Cov(Psi,Psi) + b1*Cov(Psi,e2) +

b2*Cov(e1,Psi) + Cov(e1,e2)

= b1*b2*Var(Psi)

Calculation Rules for Variances & Covariances:

- Cov(X,X) = Var(X)
- Cov(aX + bY, cV + dW) = ac * Cov(X,V) + ad * Cov(X,W) + bc * Cov(Y,V) + bd * Cov(Y,W)
- $Var(aX + bY) = a^2 * Var(X) + b^2 * Var(Y) + 2ab * Cov(X,Y)$

Specifying

Exercise: Path diagrams & Definition Equations

Specify the structural equations.

Definition Equations:

X1 = b1*LV1 + e1X2 = b2*LV1 + e2X3 = b3*LV2 + e3X4 = b4*LV2 + e4

Cov(LV1,LV2)

Cov(e,e) = Cov(LV1, e) = Cov(LV2,e) = 0

Cov(q,X) = Cov(r,X) = 0

Structural Equations:

Var(X1) =

Var(X2) =

Var(X3) =

Var(X4) =

Cov(X1,X2) =

Cov(X1,X3) =

Cov(X1,X4) =

Cov(X2,X3) =

Cov(X2,X4) =

Cov(X3,X4) =

b3 LV2 b4

Calculation Rules for Variances & Covariances:

- Cov(X,X) = Var(X)
- Cov(aX + bY, cV + dW) = ac * Cov(X,V) + ad * Cov(X,W) + bc * Cov(Y,V) + bd * Cov(Y,W)
- $Var(aX + bY) = a^2 * Var(X) + b^2 * Var(Y) + 2ab * Cov(X,Y)$

Introduction: lavaan syntax

Specifying

Introduction: lavaan syntax

Specifying

Simulating Data: lavaan

Exercise: Specify SEM with lavaan syntax

b1

.60

2) Simulate Data for 200 subjects

b3

1.00

b2

1.00

load model my model <- readLines("my-model-syntax.txt")</pre>

simulate data my data <- simulateData(model, sample.nobs)</pre>

b6

b5

Specifying SEM?

3) Calculate The empirical covariance matrix

> 4) Obtain The model implied covariance matrix

implied cov.structure fitted(sem(model))

> 5) Correlate the aggregated X and Y values

0.8	0.7	0.9	0.6	0.5	0.7
e1	e2	e3	e4	e5	e6
0.3	0.5	0.2	0.65	0.75	0.5
covXY	varX	varY			

b4

Simulating Data: lavaan

Exercise:
Compare
the implied
covariance
structures

implied cov.structure
fitted(sem(model))

Defaults
for
simulation

Variances = 1
If not
specified

