Resolução: 21 Fev 2022

91 de Exame de Recurso

pag. 1/2

1.a) $f(x) := \arccos(\ell^{2x} - 2\ell^{x} + 1) = \arccos((\ell^{x} - 1)^{2})$

Como Darcos = [-1,1] tem-se

 $\mathfrak{D}_{+} = \frac{1}{2} \times \mathbb{R} : -1 \leq \frac{(2^{2}-1)^{2}}{1} \leq 1 = \frac{1}{2} \times \mathbb{R} : (2^{2}-1)^{2} \leq 1$

 $D_{q}=]-\infty$, $\ln 2$].

1.b) $f'(x) = \frac{-\left[(e^{x}-1)^{2}\right]'}{\sqrt{1-(e^{x}-1)^{2}}} = \frac{-2(e^{x}-1)e^{x}}{\sqrt{1-(e^{x}-1)^{2}}}$

 $f'(x) = \frac{-2 e^{x} (e^{x}-1)}{\sqrt{1-(e^{x}-1)^{2}}}, x \in]-\infty, lm z [.$

Como f é diferenciavel em J-00, ln 2 [0 Técrema de Fermat permite conduir que se houver extrementes locais em 2 €7-00, ln 2 [entre f'(2) = 0.

extrementes locais em $\# \in J_{-\infty}$, $l_{12}[$ entro f'(#) = 0. $f'(\#) = 0 \iff -2 \ \ell^{\#}(\ell^{\#}-1) = 0 \iff \ell^{\#} = 1 \iff \# = 0$ Concluindo-se que $\# = 0 \ \ell'$ candidato a extremente. $f(6) = \arccos(1-2+1) = \arccos(6) = \sqrt{2}$

 $f(\ln z) = \arccos(e^{\ln z} - 1)^2) = \arccos(1) = 0$

• • • /• • •

lim $f(x) = \arccos(1) = 0$. Para $x \in J-\infty, ln z [: x \rightarrow -\infty]$ $f'(x) < 0 \iff -2 \cdot 2^{x} (e^{x}-1) < 0 \iff x^{x}-1 > 0 \iff 7 > 0$ $f'(x) > 0 \iff x < 0$

_ (>	, ,			
		0		lu Z	
7	×	V ₂ .	B	O	
f'	+	0		N.D.	

Conclusão: m=0 e'o minimo local e global de f atingido em Zm=ln2.

M=\overline{\infty} e'o máximo local e slobal de f atingido em Zm=0.

Não existem outros extremos de f.