

🧲 Shenzhen Zhongjian Nanfang Testing Co., Ltd.

Report No: CCISE190303304

FCC REPORT (BLE)

Applicant: MOVILTELCO TRADE, S.L.

Address of Applicant: ABTAO, 25-1Floor A-office MADRID Spain

Equipment Under Test (EUT)

Product Name: mobile phone

Model No.: A87, A87A, A87B, A87C, A87D

Trade mark: mtt

FCC ID: 2ACQKTELCO021

Applicable standards: FCC CFR Title 47 Part 15 Subpart C Section 15.247

Date of sample receipt: 12 Mar., 2019

Date of Test: 12 Mar., to 02 Apr., 2019

Date of report issued: 03 Apr., 2019

Test Result: PASS *

* In the configuration tested, the EUT complied with the standards specified above.

Authorized Signature:

Bruce Zhang Laboratory Manager

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product and does not permit the use of the CCIS product certification mark. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report.

This report may only be reproduced and distributed in full. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards.

This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

2 Version

Version No.	Date	Description
00	03 Apr., 2019	Original

Tested by: Mike DU Date: 03 Apr., 2019

Test Engineer

Reviewed by: Date: 03 Apr., 2019

Project Engineer

3 Contents

			Page
1	COV	ER PAGE	1
2	VER:	SION	2
3	CON	TENTS	3
4		SUMMARY	4
5	GEN	ERAL INFORMATION	5
	5.1	CLIENT INFORMATION	-
	-	GENERAL DESCRIPTION OF E.U.T.	_
	-	TEST ENVIRONMENT AND TEST MODE	
		DESCRIPTION OF SUPPORT UNITS	
		MEASUREMENT UNCERTAINTY	
		LABORATORY FACILITY	
		LABORATORY LOCATION	
		TEST INSTRUMENTS LIST	
6	TEST	RESULTS AND MEASUREMENT DATA	8
	6.1	ANTENNA REQUIREMENT:	8
		CONDUCTED EMISSION	
	6.3	CONDUCTED OUTPUT POWER	14
	6.4	OCCUPY BANDWIDTH	16
	6.5	POWER SPECTRAL DENSITY	18
	6.6	BAND EDGE	20
	6.6.1	Conducted Emission Method	
	6.6.2	Radiated Emission Method	
	6.7	Spurious Emission	
	6.7.1	Conducted Emission Method	
	6.7.2	Radiated Emission Method	29
7	TEST	SETUP PHOTO	36
0	CHT	CONSTRUCTIONAL DETAILS	20

Test Summary

Test Items	Section in CFR 47	Result
Antenna requirement	15.203 & 15.247 (b)	Pass
AC Power Line Conducted Emission	15.207	Pass
Conducted Peak Output Power	15.247 (b)(3)	Pass
6dB Emission Bandwidth 99% Occupied Bandwidth	15.247 (a)(2)	Pass
Power Spectral Density	15.247 (e)	Pass
Band Edge	15.247 (d)	Pass
Spurious Emission	15.205 & 15.209	Pass
Pass: The FUT complies with the essential red	uirements in the standard	

N/A: Not Applicable.

5 General Information

5.1 Client Information

Applicant:	MOVILTELCO TRADE, S.L
Address:	ABTAO,25-1Floor A-office MADRID Spain
Manufacturer/Factory:	MOVILTELCO TRADE, S.L
Address:	6 floor, building 2, Zhenyan industrial park, No.1 xiangxing road, lanlian; longgang District, Shenzhen, China.

5.2 General Description of E.U.T.

Product Name:	mobile phone
Model No.:	A87, A87A, A87B, A87C, A87D
Operation Frequency:	2402-2480 MHz
Channel numbers:	40
Channel separation:	2 MHz
Modulation technology:	GFSK
Data speed :	1Mbps
Antenna Type:	Internal Antenna
Antenna gain:	-2.5 dBi
Power supply:	Rechargeable Li-ion Battery DC3.8V-2000mAh
AC adapter:	US and Europe have the same adapter specifications Model: A87 Input: AC100-240V, 50/60Hz, 0.2A Output: DC 5.0V, 1A
Test Sample Condition:	The test samples were provided in good working order with no visible defects.
Remarks:	item No.: A87, A87A, A87B, A87C, A87D were identical inside, the electrical circuit design, layout, components used and internal wiring, with only difference being model name.

Operation	Operation Frequency each of channel						
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
0	2402MHz	10	2422MHz	20	2442MHz	30	2462MHz
1	2404MHz	11	2424MHz	21	2444MHz	31	2464MHz
2	2406MHz	12	2426MHz	22	2446MHz	32	2466MHz
3	2408MHz	13	2428MHz	23	2448MHz	33	2468MHz
4	2410MHz	14	2430MHz	24	2450MHz	34	2470MHz
5	2412MHz	15	2432MHz	25	2452MHz	35	2472MHz
6	2414MHz	16	2434MHz	26	2454MHz	36	2474MHz
7	2416MHz	17	2436MHz	27	2456MHz	37	2476MHz
8	2418MHz	18	2438MHz	28	2458MHz	38	2478MHz
9	2420MHz	19	2440MHz	29	2460MHz	39	2480MHz

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test. Channel No. 0, 20 & 39 were selected as Lowest, Middle and Highest channel.

5.3 Test environment and test mode

Operating Environment:	
Temperature:	24.0 °C
Humidity:	54 % RH
Atmospheric Pressure:	1010 mbar
Test mode:	
Transmitting mode	Keep the EUT in continuous transmitting with modulation

Report No: CCISE190303304

The sample was placed 0.8m (below 1GHz)/1.5m (above 1GHz) above the ground plane of 3m chamber. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case are shown in Test Results of the following pages. Duty cycle setting during the transmission is 100% with maximum power setting for all modulations.

5.4 Description of Support Units

The EUT has been tested as an independent unit.

5.5 Measurement Uncertainty

Parameters	Expanded Uncertainty
Conducted Emission (9kHz ~ 30MHz)	±2.22 dB (k=2)
Radiated Emission (9kHz ~ 30MHz)	±2.76 dB (k=2)
Radiated Emission (30MHz ~ 1000MHz)	±4.28 dB (k=2)
Radiated Emission (1GHz ~ 18GHz)	±5.72 dB (k=2)
Radiated Emission (18GHz ~ 40GHz)	±2.88 dB (k=2)

5.6 Laboratory Facility

The test facility is recognized, certified, or accredited by the following organizations:

FCC - Registration No.: 727551

Shenzhen Zhongjian Nanfang Testing Co., Ltd. has been accredited as a testing laboratory by FCC (Federal Communications Commission). The Registration No. is 727551.

IC - Registration No.: 10106A-1

The 3m Semi-anechoic chamber of Shenzhen Zhongjian Nanfang Testing Co., Ltd. has been Registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 10106A-1.

• CNAS - Registration No.: CNAS L6048

Shenzhen Zhongjian Nanfang Testing Co., Ltd. is accredited to ISO/IEC 17025:2005 General Requirements for the Competence of Testing and Calibration laboratories for the competence of testing. The Registration No. is CNAS L6048.

A2LA - Registration No.: 4346.01

This laboratory is accredited in accordance with the recognized International Standard ISO/IEC 17025:2005 General requirements for the competence of testing and calibration laboratories. The test scope can be found as below link: https://portal.a2la.org/scopepdf/4346-01.pdf

5.7 Laboratory Location

Shenzhen Zhongjian Nanfang Testing Co., Ltd.

Address: No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road,

Bao'an District, Shenzhen, Guangdong, China Tel: +86-755-23118282, Fax: +86-755-23116366

Email: info@ccis-cb.com, Website: http://www.ccis-cb.com

Shenzhen Zhongjian Nanfang Testing Co., Ltd.
No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road, Bao'an District, Shenzhen, Guangdong, China
Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

Page 6 of 38

5.8 Test Instruments list

Radiated Emission:					
Test Equipment	Manufacturer	Model No.	Serial No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)
3m SAC	SAEMC	9m*6m*6m	966	07-22-2017	07-21-2020
Loop Antonno	SCHWARZBECK	FMZB1519B	00044	03-16-2018	03-15-2019
Loop Antenna	SCHWARZBECK	FIVIZD 1319D	00044	03-16-2019	03-15-2020
PiCanil og Antonna	SCHWARZBECK	VULB9163	497	03-16-2018	03-15-2019
BiConiLog Antenna	SCHWARZBECK	VOLDS103	497	03-16-2019	03-15-2020
Horn Antenna	SCHWARZBECK	BBHA9120D	916	03-16-2018	03-15-2019
Hom Antenna	SCHWARZBECK	DDHA9120D	910	03-16-2019	03-15-2020
Horn Antenna	SCHWARZBECK	BBHA9120D	1805	06-22-2017	06-21-2020
Horn Antenna	SCHWARZBECK	BBHA 9170	BBHA9170582	11-21-2018	11-20-2019
EMI Test Software	AUDIX	E3	\	ersion: 6.110919/	b
Pre-amplifier	HP	8447D	2944A09358	03-07-2019	03-06-2020
Pre-amplifier	CD	PAP-1G18	11804	03-07-2019	03-06-2020
Spectrum analyzer	Rohde & Schwarz	FSP30	101454	03-07-2019	03-06-2020
Spectrum analyzer	Rohde & Schwarz	FSP40	100363	11-21-2018	11-20-2019
EMI Test Receiver	Rohde & Schwarz	ESRP7	101070	03-07-2019	03-06-2020
Cable	ZDECL	Z108-NJ-NJ-81	1608458	03-07-2019	03-06-2020
Cable	MICRO-COAX	MFR64639	K10742-5	03-07-2019	03-06-2020
Cable	SUHNER	SUCOFLEX100	58193/4PE	03-07-2019	03-06-2020
RF Switch Unit	MWRFTEST	MW200	N/A	N/A	N/A
Test Software	MWRFTEST	MTS8200		Version: 2.0.0.0	

Conducted Emission:					
Test Equipment	Manufacturer	Model No.	Serial No.	Cal. Date	Cal. Due date
rest Equipment	Manaracturer	Model No.	ochanito.	(mm-dd-yy)	(mm-dd-yy)
EMI Test Receiver	Rohde & Schwarz	ESCI	101189	03-07-2019	03-06-2020
Pulse Limiter	SCHWARZBECK	OSRAM 2306	9731	03-07-2019	03-06-2020
LICN	CHACE	MNIOOEOD	4.447	03-19-2018	03-18-2019
LISN	CHASE	MN2050D	1447	03-19-2019	03-18-2020
LISN	Rohde & Schwarz	ESH3-Z5	8438621/010	07-21-2018	07-20-2019
Cable	HP	10503A	N/A	03-07-2019	03-06-2020
EMI Test Software	AUDIX	E3	\	/ersion: 6.110919	b

6 Test results and Measurement Data

6.1 Antenna requirement:

Standard requirement: FCC Part 15 C Section 15.203 /247(b)

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(b) (4) requirement:

(4) The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

E.U.T Antenna:

The BLE antenna is an Internal antenna which cannot replace by end-user, the best-case gain of the antenna is -2.5 dBi.

6.2 Conducted Emission

Test Requirement:	FCC Part 15 C Section 15	.207			
Test Method:	ANSI C63.10: 2013				
Test Frequency Range:	150 kHz to 30 MHz				
Class / Severity:	Class B				
Receiver setup:	RBW=9kHz, VBW=30kHz				
Limit:	INDVV-9KI IZ, VDVV-30KI IZ		(dBuV)		
LIIIIII.	Frequency range (MHz)	Quasi-peak	Average		
	0.15-0.5	66 to 56*	56 to 46*		
	0.5-5	56	46		
	5-30	60	50		
Test procedure	* Decreases with the logar				
	 50ohm/50uH coupling The peripheral device a LISN that provides a termination. (Please r photographs). Both sides of A.C. line interference. In order positions of equipmen 	 a LISN that provides a 50ohm/50uH coupling impedance with 50ohm termination. (Please refer to the block diagram of the test setup and photographs). 3. Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.4: 2014 on conducted 			
Test setup:	LISN 40cm		AC power		
Test Instruments:	Refer to section 5.8 for details				
Test mode:	Refer to section 5.3 for det	tails			
Test results:	Passed				

Measurement Data:

With EU adapter

Product name:	mobile phone	Product model:	A87
Test by:	Mike	Test mode:	BLE Tx mode
Test frequency:	150 kHz ~ 30 MHz	Phase:	Line
Test voltage:	AC 120 V/60 Hz	Environment:	Temp: 22.5℃ Huni: 55%

Trace: 17

Remark : EU

. EU							
Freq			Loss	Level			Remark
MHz	dBu∜	₫B	₫B	dBu₹	dBu∜	dB	
0.162	37.64	0.17	10.77	48.58	65.34	-16.76	QP
0.343	38.78	0.13	10.73	49.64	59.13	-9.49	QP
0.361	25.28	0.12	10.73	36.13	48.69	-12.56	Average
0.459	41.39	0.12	10.74	52.25	56.71	-4.46	QP
0.471	28.45	0.12	10.75	39.32	46.49	-7.17	Average
0.521	23.12	0.12	10.76	34.00	46.00	-12.00	Average
0.546	37.33	0.12	10.76	48.21	56.00	-7.79	QP
0.683	36.48	0.13	10.77	47.38	56.00	-8.62	QP
0.683	21.94	0.13	10.77	32.84	46.00	-13.16	Average
0.885	37.38	0.13	10.84	48.35	56.00	-7.65	QP
1.249	20.42	0.13	10.90	31.45	46.00	-14.55	Average
2.636	20.33	0.16	10.93	31.42	46.00	-14.58	Average
	Freq 0.162 0.343 0.361 0.459 0.471 0.521 0.546 0.683 0.683 0.885 1.249	Read Freq Level MHz dBuV 0.162 37.64 0.343 38.78 0.361 25.28 0.459 41.39 0.471 28.45 0.521 23.12 0.546 37.33 0.683 36.48 0.683 21.94 0.885 37.38 1.249 20.42	Read LISN Level Factor MHz dBuV dB 0.162 37.64 0.17 0.343 38.78 0.13 0.361 25.28 0.12 0.459 41.39 0.12 0.471 28.45 0.12 0.521 23.12 0.12 0.546 37.33 0.12 0.683 36.48 0.13 0.683 21.94 0.13 0.885 37.38 0.13 1.249 20.42 0.13	Read LISN Cable Freq Level Factor Loss MHz dBuV dB dB 0.162 37.64 0.17 10.77 0.343 38.78 0.13 10.73 0.361 25.28 0.12 10.73 0.459 41.39 0.12 10.74 0.471 28.45 0.12 10.75 0.521 23.12 0.12 10.76 0.546 37.33 0.12 10.76 0.683 36.48 0.13 10.77 0.683 21.94 0.13 10.77 0.885 37.38 0.13 10.84 1.249 20.42 0.13 10.90	Read LISN Cable Freq Level Factor Loss Level MHz dBuV dB dB dBuV 0.162 37.64 0.17 10.77 48.58 0.343 38.78 0.13 10.73 49.64 0.361 25.28 0.12 10.73 36.13 0.459 41.39 0.12 10.74 52.25 0.471 28.45 0.12 10.75 39.32 0.521 23.12 0.12 10.76 34.00 0.546 37.33 0.12 10.76 48.21 0.683 36.48 0.13 10.77 47.38 0.683 21.94 0.13 10.77 32.84 0.885 37.38 0.13 10.84 48.35 1.249 20.42 0.13 10.90 31.45	Read LISN Cable Limit Freq Level Factor Loss Level Line MHz dBuV dB dB dB dBuV dBuV 0.162 37.64 0.17 10.77 48.58 65.34 0.343 38.78 0.13 10.73 49.64 59.13 0.361 25.28 0.12 10.73 36.13 48.69 0.459 41.39 0.12 10.74 52.25 56.71 0.471 28.45 0.12 10.75 39.32 46.49 0.521 23.12 0.12 10.76 34.00 46.00 0.546 37.33 0.12 10.76 48.21 56.00 0.683 36.48 0.13 10.77 47.38 56.00 0.683 21.94 0.13 10.77 32.84 46.00 0.885 37.38 0.13 10.84 48.35 56.00 1.249 20.42 0.13 10.90 31.45 46.00	Read LISN Cable Limit Over Freq Level Factor Loss Level Line Limit MHz dBuV dB dB dB dBuV dBuV dB 0.162 37.64 0.17 10.77 48.58 65.34 -16.76 0.343 38.78 0.13 10.73 49.64 59.13 -9.49 0.361 25.28 0.12 10.73 36.13 48.69 -12.56 0.459 41.39 0.12 10.74 52.25 56.71 -4.46 0.471 28.45 0.12 10.75 39.32 46.49 -7.17 0.521 23.12 0.12 10.76 34.00 46.00 -12.00 0.546 37.33 0.12 10.76 48.21 56.00 -7.79 0.683 36.48 0.13 10.77 47.38 56.00 -8.62 0.683 21.94 0.13 10.77 47.38 56.00 -8.62 0.685 37.38 0.13 10.84 48.35 56.00 -7.65 1.249 20.42 0.13 10.90 31.45 46.00 -14.55

Notes

- 1. An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level =Receiver Read level + LISN Factor + Cable Loss.

Product name:	mobile phone	Product model:	A87
Test by:	Mike	Test mode:	BLE Tx mode
Test frequency:	150 kHz ~ 30 MHz	Phase:	Neutral
Test voltage:	AC 120 V/60 Hz	Environment:	Temp: 22.5℃ Huni: 55%

Remark	: EU							
	Freq	Read Level	LISN Factor	Cable Loss	Level	Limit Line	Over Limit	Remark
	MHz	dBu∜	₫B	₫B	dBu∀	dBu∜	<u>d</u> B	
1	0.343	38.55	0.97	10.73	50.25	59.13	-8.88	QP
2 3 4 5 6	0.346	26.59	0.97	10.73	38.29	49.05	-10.76	Average
3	0.449	40.55	0.97	10.74	52.26	56.89	-4.63	QP
4	0.471	28.91	0.97	10.75	40.63	46.49	-5.86	Average
5	0.549	25.08	0.97	10.76	36.81	46.00	-9.19	Average
6	0.686	36.93	0.97	10.77	48.67	56.00	-7.33	QP
7 8 9	0.686	24.41	0.97	10.77	36.15	46.00	-9.85	Average
8	0.890	37.96	0.97	10.84	49.77	56.00	-6.23	QP
9	1.303	23.09	0.97	10.90	34.96	46.00	-11.04	Average
10	1.959	33.96	0.98	10.96	45.90	56.00	-10.10	QP
11	2.678	21.07	0.99	10.93	32.99	46.00	-13.01	Average
12	4.180	33.71	1.00	10.88	45.59	56.00	-10.41	QP

Notes:

- 1. An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level =Receiver Read level + LISN Factor + Cable Loss.

With US adapter

Product name:	mobile phone	Product model:	A87
Test by:	Mike	Test mode:	BLE Tx mode
Test frequency:	150 kHz ~ 30 MHz	Phase:	Line
Test voltage:	AC 120 V/60 Hz	Environment:	Temp: 22.5℃ Huni: 55%

Remark	- TIC

Contain	Freq	Read Level	LISN Factor	Cable Loss	Level	Limit Line	Over Limit	Remark
-	MHz	dBu∀	₫B	₫B	dBu₹	dBu∜	<u>d</u> B	
1	0.153	31.81	0.18	10.78	42.77	65.82	-23.05	QP
2	0.154	19.58	0.18	10.78	30.54	55.78	-25.24	Average
2	0.230	27.72	0.14	10.75	38.61	62.44	-23.83	QP
4 5 6 7 8	0.230	16.96	0.14	10.75	27.85	52.44	-24.59	Average
5	0.358	22.75	0.12	10.73	33.60	48.78	-15.18	Average
6	0.361	32.18	0.12	10.73	43.03		-15.66	
7	0.415	15.55	0.12	10.73	26.40	47.55	-21.15	Average
8	0.486	26.57	0.12	10.76	37.45	56.23	-18.78	QP
9	0.665	14.50	0.13	10.77	25.40	46.00	-20.60	Average
10	0.697	28.89	0.13	10.77	39.79	56.00	-16.21	QP
11	2.448	11.78	0.15	10.94	22.87	46.00	-23.13	Average
12	2.567	22.87	0.15	10.94	33.96	56.00	-22.04	QP

Notes:

- 4. An initial pre-scan was performed on the line and neutral lines with peak detector.
- 5. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 6. Final Level =Receiver Read level + LISN Factor + Cable Loss.

Product name:	mobile phone	Product model:	A87
Test by:	Mike	Test mode:	BLE Tx mode
Test frequency:	150 kHz ~ 30 MHz	Phase:	Neutral
Test voltage:	AC 120 V/60 Hz	Environment:	Temp: 22.5℃ Huni: 55%
	·	<u> </u>	·

Remark	:US Freq		LISN Factor	Cable Loss	Level	Limit Line		Remark
	MHz	dBu∀	dB	dB	dBuV	dBu∀	dB	
1 2 3 4 5 6 7 8	0. 154 0. 158 0. 178 0. 182 0. 258 0. 354 0. 354 0. 705 0. 763	33. 25 21. 87 16. 86 29. 80 27. 93 33. 71 21. 07 16. 15 28. 63	0.98 0.98 0.95 0.94 0.95 0.97 0.97 0.97	10.78 10.77 10.77 10.77 10.75 10.73 10.73 10.77	45.01 33.62 28.58 41.51 39.63 45.41 32.77 27.89 40.40	55.56 54.59 64.42 61.51 58.87 48.87 46.00 56.00	-26.01 -22.91 -21.88 -13.46 -16.10 -18.11 -15.60	Average Average QP QP QP Average Average QP
10 11 12	1.032 2.707 2.721	15.16 24.61 13.05	0.97 0.99 0.99	10.87 10.93 10.93	27.00 36.53 24.97	56.00	-19.47	Average QP Average

Notes:

- 4. An initial pre-scan was performed on the line and neutral lines with peak detector.
- 5. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.

6. Final Level =Receiver Read level + LISN Factor + Cable Loss.

6.3 Conducted Output Power

Test Requirement:	FCC Part 15 C Section 15.247 (b)(3)
Test Method:	ANSI C63.10:2013 and KDB 558074
Limit:	30dBm
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane
Test Instruments:	Refer to section 5.8 for details
Test mode:	Refer to section 5.3 for details
Test results:	Passed

Measurement Data:

Test CH	Maximum Conducted Output Power (dBm)	Limit(dBm)	Result
Lowest	-0.60		
Middle	-0.83	30.00	Pass
Highest	-1.57		

Test plot as follows:

6.4 Occupy Bandwidth

Test Requirement:	FCC Part 15 C Section 15.247 (a)(2)		
Test Method:	ANSI C63.10:2013 and KDB 558074		
Limit:	>500kHz		
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane		
Test Instruments:	Refer to section 5.8 for details		
Test mode:	Refer to section 5.3 for details		
Test results:	Passed		

Measurement Data:

Test CH	6dB Emission Bandwidth (MHz)	Limit(kHz)	Result
Lowest	0.520		
Middle	0.516	>500	Pass
Highest	0.520		
Test CH	99% Occupy Bandwidth (MHz)	Limit(kHz)	Result
Lowest	1.076		
Middle	1.076	N/A	N/A
Highest	1.076		

Test plot as follows:

6.5 Power Spectral Density

Test Requirement:	FCC Part 15 C Section 15.247 (e)		
Test Method:	ANSI C63.10:2013 and KDB 558074		
Limit:	8 dBm		
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane		
Test Instruments:	Refer to section 5.8 for details		
Test mode:	Refer to section 5.3 for details		
Test results:	Passed		

Measurement Data:

Test CH	Power Spectral Density (dBm)	Limit(dBm)	Result
Lowest	-1.21		
Middle	-1.37	8.00	Pass
Highest	-2.07		

Test plots as follow:

6.6 Band Edge

6.6.1 Conducted Emission Method

Test Requirement:	FCC Part 15 C Section 15.247 (d)			
Test Method:	ANSI C63.10:2013 and KDB 558074			
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.			
Test setup:				
	Spectrum Analyzer			
	E.U.T			
	Non-Conducted Table			
	Ground Reference Plane			
Test Instruments:	Refer to section 5.8 for details			
Test mode:	Refer to section 5.3 for details			
Test results:	Passed			

Test plots as follow:

6.6.2 Radiated Emission Method

6.6.2 Radiated Emission	1 Wethod				
Test Requirement:	FCC Part 15 C	Section 15.	205 and 15.209		
Test Method:	ANSI C63.10:	2013 and KI	DB 558074		
Test Frequency Range:	2.3GHz to 2.5	GHz			
Test Distance:	3m				
Receiver setup:	Frequency	Detector	RBW	VBW	Remark
	Above 1GHz	Peak	1MHz	3MHz	Peak Value
Limit:	Frequer	RMS	1MHz _imit (dBuV/m @3	3MHz	Average Value Remark
Liitiit.		-	54.00		verage Value
	Above 10		74.00		Peak Value
Test Procedure:	the groun to determ 2. The EUT antenna, tower. 3. The anter the groun Both horizemake the 4. For each case and meters are to find the 5. The test-case specified 6. If the emite the limits of the EU have 10 ce	ad at a 3 meta- ine the position was set 3 meta- which was mental height is ad to determing the control and vertical and vertical and the rota tate maximum respected enter the maximum respective systems. Bandwidth was in level of specified, ther T would be red margin would margin would in the position of the rotal and the	varied from one received from one received from one received between tweether was turned from the EUT in peak of testing could be eported. Otherwis	ble was rotated radiation. The interference of a variable meter to four value of the fis of the anter was arranged heights from 0 degrees at Detect Full Mode, mode was 1 stopped and the emissione by one united the mode was 1 stopped and the emissione by one united the emissione and the emissione the emissione of the emissione the emissione of the emissione the emissione the emissione and the emissione the	ted 360 degrees ce-receiving e-height antenna meters above ield strength. nna are set to d to its worst m 1 meter to 4 s to 360 degrees nction and 0 dB lower than d the peak values ons that did not sing peak, quasi-
Test setup:	AE Wags 1	Test Receive	3m Jund Reference Plane	Antenna Tower	
Test Instruments:	Refer to section	on 5.8 for deta	ails		
Test mode:	Refer to section	on 5.3 for deta	ails		
Test results:	Passed				

Product Name:	mob	ile phone			Product Model:		A87				
Test By:	Mike)			Te	Test mode: Polarization:		BLE T	BLE Tx mode		
Test Channel:	Low	est chann	el		Po			Vertica	al		
Test Voltage:	AC 1	120/60Hz			Eı	nvironme	nt:	Temp:	24℃ Huni: 579		
110 Lev	el (dBuV/m)										
100											
									Λ.		
80								FCC F	PART 15 (PK)		
60								FCC F	PART 15 (AV)		
n	man	my	mon	~~~	m	~~~	money	my	m'		
40											
V 500											
20											
231	0 2320			2350 Erecu	uency (MHz	1			2404		
PPMID				rieq	dericy (miriz	-,					
REMARI	К :	ReadA	ntenna	Cable	Preamp		Limit	Over			
	Freq	Level	Factor	Loss	Factor	Level	Line	Limit	Remark		
	MHz	dBu∀	dB/m	₫B	₫B	dBuV/m	dBuV/m	₫B			
1	2390.000	14.09	27.37	4.69	0.00	47.83	74.00	-26.17	Peak		
2	2390.000	9.35	27.37	4.69	0.00	43.09	54.00	-10.91	Average		

Remark:

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product Name:	mobile phone	Product Model:	A87				
Test By:	Mike	Test mode:	BLE Tx mode				
Test Channel:	Lowest channel	Polarization:	Horizontal				
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24℃ Huni: 57%				
Lovel (dDvV/m)							

REMARK ReadAntenna Cable Preamp Limit Over Level Factor Loss Factor Level Line Limit Remark Freq MHz dBuV dB/m ďΒ dB dBuV/m dBuV/m 2390.000 14.64 27.37 4.69 0.00 48.38 74.00 -25.62 Peak 2390.000 27.37 43.27 54.00 -10.73 Average 9.53 4.69 0.00

Remark:

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product Name:	mobile phone	Product Model:	A87
Test By:	Mike	Test mode:	BLE Tx mode
Test Channel:	Highest channel	Polarization:	Vertical
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24℃ Huni: 57%

Remark:

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product Name:	mobile phone	Product Model:	A87
Test By:	Mike	Test mode:	BLE Tx mode
Test Channel:	Highest channel	Polarization:	Horizontal
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24℃ Huni: 57%
	<u> </u>	·	<u> </u>

REMARK	:	Read	Antenna	Cable	Preamo		Limit	Over	
	Freq		Factor				Line	Limit	Remark
3	MHz	dBu∜	<u>dB</u> /m	<u>dB</u>	<u>dB</u>	dBuV/m	dBuV/m	<u>dB</u>	
1	2483.500	19.38	27.57	4.81	0.00	53.46	74.00	-20.54	Peak
1 2	2483.500	10.33	27.57	4.81	0.00	44.41	54.00	-9.59	Average

Remark:

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

6.7 Spurious Emission

6.7.1 Conducted Emission Method

Test Requirement:	FCC Part 15 C Section 15.247 (d)			
Test Method:	ANSI C63.10:2013 and KDB 558074			
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.			
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane			
Test Instruments:	Refer to section 5.8 for details			
Test mode:	Refer to section 5.3 for details			
Test results:	Passed			

Test plot as follows:

6.7.2 Radiated Emission Method

	Method Food 45 C.	Caption 4F C	005 and 45 000			
Test Requirement:	FCC Part 15 C		.05 and 15.209			
Test Method:	ANSI C63.10:20)13				
Test Frequency Range:	9kHz to 25GHz					
Test Distance:	3m			_		
Receiver setup:	Frequency	Detector	RBW	W VB		Remark
	30MHz-1GHz	Quasi-peak		3001		Quasi-peak Value
	Above 1GHz Pea			1MHz 3M		Peak Value
I incit.	Frequency		<u> </u>	3M	HZ	Average Value Remark
Limit:	30MHz-88M		40.0	(3111)		Quasi-peak Value
	88MHz-216M		43.5			Quasi-peak Value
	216MHz-960N		46.0			Quasi-peak Value
	960MHz-1G	Hz	54.0		C	Quasi-peak Value
	Above 1GH	lz	54.0			Average Value
			74.0		1 - 1'	Peak Value
Test Procedure:	1GHz)/1.5r The table we highest rad 2. The EUT antenna, we tower. 3. The antenre the ground Both horizon make the meters and to find the meters and the meters and to find the meters and	n(above 1G was rotated iation. was set 3 hich was me ha height is to determinental and ver heasurement suspected et hen the ant I the rota tal maximum re eceiver syst sandwidth with sion level of ecified, then would be re margin wor	Hz) above the 360 degrees to meters away bunted on the varied from one the maximularitical polarization, the Elenna was tuned ading. The EUT in petesting could be ported. Other ald be re-tested.	e groun to deter from the top of a ne met um val tions of to Pea lold Mo to Pea lold Mo to Pea lold Mo to Pea top e stop wise the done b	d at a rmine ne inter to fue of the a arra degree de was ped arra de eminy one	table 0.8m(below a 3 meter camber. the position of the efference-receiving ble-height antenna four meters above the field strength. antenna are set to anged to its worst from 1 meter to 4 ees to 360 degrees tect Function and as 10 dB lower than and the peak values ssions that did not using peak, quasi-reported in a data
Test setup:	EUT	4m 4m 0.8m 1m			Antenna Search Antenn Test eiver —	1

Measurement Data (worst case):

Below 1GHz:

With EU adapter

Product Name:	mobile phone	Product Model:	A87
Test By:	Mike	Test mode:	BLE Tx mode
Test Frequency:	30 MHz ~ 1 GHz	Polarization:	Vertical
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24℃ Huni: 57%

Remark:

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product Name:	mobile phone	Product Model:	A87
Test By:	Mike	Test mode:	BLE Tx mode
Test Frequency:	30 MHz ~ 1 GHz	Polarization:	Horizontal
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24℃ Huni: 57%

REMARK	: Freq		Antenna Factor		Preamp Factor		Limit Line	Over Limit	Remark
	MHz	dBu∜	dB/m	<u>d</u> B	<u>dB</u>	dBuV/m	dBu√/m	<u>dB</u>	
1	31.620		10.98	0.85		33.54	40.00		
2 3 4 5 6	154.821 191.745	40.49	8.85 11.25	2.55 2.81	29.18 28.89	22.71 34.36	WARRED TO THE PLAN	-20.79 -9.14	(V. DOST TOPICS)
4	275.157 763.376	35.59 31.70	13.46	2.87 4.36		23.43 28.66		-22.57 -17.34	
6	942.131	32.16	22.38	4.13	27.75	30.92		-15.08	1007/0000

Remark:

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Page 32 of 38

Below 1GHz:

With US adapter

Product Name:	mobile phone	Product Model:	A87
Test By:	Mike	Test mode:	BLE Tx mode
Test Frequency:	30 MHz ~ 1 GHz	Polarization:	Vertical
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24℃ Huni: 57%

REMARK	: Freq		Antenna Factor			Level	Limit Line	Over Limit	Remark
-	MHz	dBu₹	dB/π		<u>dB</u>	dBuV/m	dBuV/m	<u>dB</u>	
1 2 3 4 5	31.955	49.60	11.05	0.85		31.53		-8.47	- 18 Page 19 P
2	38.212	45.03	12.42	1.18		28.71		-11.29	
3	52.025	42.85	13.73	1.29	29.81	28.06	40.00	-11.94	QP
4	62.651	42.63	11.47	1.38	29.76	25.72	40.00	-14.28	QP
5	93.768	43.89	10.66	2.02	29.56	27.01	43.50	-16.49	QP
6	154.821	50.86	8.85	2.55	29.18	33.08		-10.42	

Remark:

- 3. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 4. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product Name:	mobile phone	Product Model:	A87
Test By:	Mike	Test mode:	BLE Tx mode
Test Frequency:	30 MHz ~ 1 GHz	Polarization:	Horizontal
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24°C Huni: 57%
	•	·	·

REMARK			Antenna Factor				Limit Line	Over Limit	Remark
	MHz	−dBuV			<u>dB</u>	$\overline{dBuV/m}$	$\overline{dBuV/m}$	<u>dB</u>	
1 2 3 4 5	43.050 55.027 99.180 178.758 237.476 319.937	32. 71 32. 42 37. 03 48. 53 39. 02 39. 32	13.36 13.21 11.57 9.75 12.89 14.02	1. 26 1. 36 1. 95 2. 72 2. 83 3. 00	29.88 29.80 29.53 28.98 28.61 28.50	17. 45 17. 19 21. 02 32. 02 26. 13 27. 84	40.00 43.50 43.50 46.00	-22.55 -22.81 -22.48 -11.48 -19.87 -18.16	QP QP QP QP

Remark:

- 3. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 4. The emission levels of other frequencies are very lower than the limit and not show in test report.

Above 1GHz

Test channel: Lowest channel										
Detector: Peak Value										
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
4804.00	47.03	30.85	6.80	41.81	42.87	74.00	-31.13	Vertical		
4804.00	46.88	30.85	6.80	41.81	42.72	74.00	-31.28	Horizontal		
Detector: Average Value										
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
4804.00	37.16	30.85	6.80	41.81	33.00	54.00	-21.00	Vertical		
4804.00	37.58	30.85	6.80	41.81	33.42	54.00	-20.58	Horizontal		
Test channel: Middle channel										
			De	tector: Peak	Value Value					
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
4884.00	46.42	31.20	6.86	41.84	42.64	74.00	-31.36	Vertical		
4884.00	46.95	31.20	6.86	41.84	43.17	74.00	-30.83	Horizontal		
			Dete	ector: Avera	ge Value					
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
4884.00	37.13	31.20	6.86	41.84	33.35	54.00	-20.65	Vertical		
4884.00	37.20	31.20	6.86	41.84	33.42	54.00	-20.58	Horizontal		
			Test ch	annel: High	est channel					
			De	tector: Peak	v Value					
	Dood	Antonno	Coblo	Droomn			Over			

Test channel: Highest channel											
Detector: Peak Value											
Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization				
46.85	31.63	6.91	41.87	43.52	74.00	-30.48	Vertical				
46.42	31.63	6.91	41.87	43.09	74.00	-30.91	Horizontal				
		Dete	ctor: Averaç	ge Value							
Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization				
37.94	31.63	6.91	41.87	34.61	54.00	-19.39	Vertical				
37.18	31.63	6.91	41.87	33.85	54.00	-20.15	Horizontal				
	Level (dBuV) 46.85 46.42 Read Level (dBuV) 37.94	Level (dBuV) Factor (dB/m) 46.85 31.63 46.42 31.63 Read Level (dBuV) Antenna Factor (dB/m) 37.94 31.63	Read Level (dBuV) Antenna (dB/m) Cable Loss (dB/m) 46.85 31.63 6.91 46.42 31.63 6.91 Dete Read Antenna Level Factor (dBuV) Cable Loss (dB/m) (dBW) (dB/m) (dB) 37.94 31.63 6.91	Detector: Peak	Detector: Peak Value	Detector: Peak Value Read Level (dBuV) (dB/m) (dB) (dB) (dB) Level (dBuV/m) (dBuV/m) Level (dBuV/m) (dBuV/m) (dBuV/m) Level (dBuV/m) (dBuV/m) (dBuV/m) Level (dBuV/m) (dBuV/m) (dBuV/m) Level (dBuV/m) (dBuV/m) Level (dBuV/m) (dBuV/m) Level (dBuV/m) (dBuV/m) (dBuV/m) (dBuV/m) (dBuV/m) Level (dBuV/m) (dBuV/m) (dBuV/m) Level (dBuV/m) (dBuV/m) (dBuV/m) (dBuV/m) Level (dBuV/m)	Detector: Peak Value Cable Preamp Level (dBuV) (dB/m) (dB) (dB) (dB) (dBuV/m) (dBuV/m) (dB) (d				

Remark

^{1.} Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

^{2.} The emission levels of other frequencies are very lower than the limit and not show in test report.