Introduction to Mathematical Programming IE406

Lecture 13

Dr. Ted Ralphs

Reading for This Lecture

• Bertsimas Chapter 5

Sensitivity Analysis

- In many real-world problems, the following can occur:
 - The input data is not very accurate.
 - We don't know all of the constraints ahead of time.
 - We don't know all of the variables ahead of time.
- Because of this, we want to analyze the dependence of the model on the input data, i.e.,
 - the matrix A,
 - the right-hand side vector b, and
 - the cost vector c.
- We would also like to know the effect of additional variables and constraints.
- This is done using sensitivity analysis.
- Sensitivity analysis requires nothing more than straightforward application of techniques we've already developed.

The Fundamental Idea

• Using the simplex algorithm to solve a standard form problem, we know that if B is an optimal basis, then two conditions are satisfied:

-
$$B^{-1}b \ge 0$$

- $c^{\top} - c_B^{\top}B^{-1}A \ge 0$

- When the problem is changed, we can check to see how these conditions are affected.
- This is the simplest kind of analysis—we have already seen several examples.
- When using the simplex method, we always have B^{-1} available, so we can easily recompute appropriate quantities.
- Where is B^{-1} in the simplex tableau?

Adding a New Variable

- Suppose we want to consider adding a new variable to the problem, e.g., we want to consider adding a new product to our line.
- We simply compute the reduced cost of the new variable as

$$c_j - c_B^{\mathsf{T}} B^{-1} A_j$$

where A_i is the column corresponding to the new variable in the matrix.

- If the reduced costs is nonnegative, then we should not consider adding the product.
- Otherwise, it is eligible to enter the basis and we can reoptimize from the current feasible (but now non-optimal) basis.

Adding a New Inequality Constraint

• Suppose we want to introduce a new constraint of the form $a_{m+1}^\top x \ge b_{m+1}$.

• The new constraint matrix (in standard form) would look like

$$\left[\begin{array}{cc} A & 0 \\ a_{m+1}^{\top} & -1 \end{array}\right]$$

Hence, the new basis matrix would look like

$$\bar{B} = \left[\begin{array}{cc} B & 0 \\ a^{\top} & -1 \end{array} \right]$$

The new basis inverse would then be

$$\bar{B}^{-1} = \left[\begin{array}{cc} B^{-1} & 0 \\ a^{\top} B^{-1} & -1 \end{array} \right]$$

Adding a New Inequality Constraint (cont.)

The vector of reduced costs is

$$[c^{\top} \ 0] - [c_B^{\top} \ 0] \begin{bmatrix} B^{-1} & 0 \\ a^{\top} B^{-1} & -1 \end{bmatrix} \begin{bmatrix} A & 0 \\ a_{m+1}^{\top} & -1 \end{bmatrix} = [c^{\top} - c_B^{\top} B^{-1} A \ 0]$$

and so the reduced costs remain unchanged.

- Hence, we have a dual feasible basis and we apply dual simplex.
- The tableau can be computed as

$$\bar{B}^{-1} \begin{bmatrix} A & 0 \\ a_{m+1}^{\top} & -1 \end{bmatrix} = \begin{bmatrix} B^{-1}A & 0 \\ a^{\top}B^{-1}A - a_{m+1}^{\top} & 1 \end{bmatrix}$$

• Note that $B^{-1}A$ is available from the original tableau.

Adding a New Equality Constraint

- Assume the new constraint is not satisfied by the current optimal solution.
- We introduce an artificial variable x_{n+1} , as in the two-phase method, and consider the LP (assuming $a_{m+1}^{\top}x^* > b_{m+1}$)

min
$$c^{\top}x + Mx_{n+1}$$

s.t. $Ax = b$
 $a_{m+1}^{\top}x - x_{n+1} = b_{m+1}$
 $x \ge 0, x_{n+1} \ge 0$

- We can obtain a primal feasible basis by making the new variable basic.
- The new tableau can be computed as before.
- If the new problem is feasible and M is large enough, then the solution will have $x_{n+1} = 0$.
- The values of the remaining variables will yield an optimal solution to the original problem with the additional constraint.

Changes to the Right-hand Side

- Suppose we change b_i to $b_i + \delta$.
- The values of the basic variables change from $B^{-1}b$ to $B^{-1}(b + \delta e^i)$, where e^i is the i^{th} unit vector.
- The feasibility condition is then

$$B^{-1}(b + \delta e^i) \ge 0$$

• If g is the i^{th} column of B^{-1} , then the feasibility condition becomes

$$x_B + \delta g \ge 0$$

This is equivalent to

$$\max_{\{j|g_j>0\}} \left(-\frac{x_{B(j)}}{g_j}\right) \le \delta \le \min_{\{j|g_j<0\}} \left(-\frac{x_{B(j)}}{g_j}\right).$$

• If δ is outside the allowable range, we can reoptimize using dual simplex.

Changes in the Cost Vector

- Suppose we change some cost coefficient from c_j to $c_j + \delta$.
- If c_j is the cost coefficient of a nonbasic variable, then we need only recalculate its reduced cost.
- The reduced cost itself increases by δ and the current solution remains optimal as long as $\delta \geq -\bar{c}_i$.
- Otherwise, we reoptimize using the primal simplex method.
- If c_j is the cost coefficient of the l^{th} basic variable, then c_B becomes $c_B + \delta e_l$ and the new optimality conditions are

$$(c_B + \delta e_l)^{\top} B^{-1} A \leq c^{\top}$$

This is equivalent to

$$\delta q \leq \bar{c}$$

where q is the l^{th} row of $B^{-1}A$, which is available in the simplex tableau.

Changes in a Nonbasic Column of A

- Suppose we change some entry a_{ij} of the constraint matrix to $a_{ij} + \delta$.
- If column j is nonbasic, then B does not change and we only need to check the reduced cost of column j.
- The new reduced cost is

$$c_j - c_B^{\mathsf{T}} B^{-1} (A_j + \delta e^i)$$

• This means the current solution remains optimal if

$$\bar{c_j} - \delta p_i \ge 0$$

• Otherwise, we reoptimize with primal simplex.

Changes in a Basic Column of A

- This case is more complicated and will be left to the next homework.
- Suppose x^* and p^* are optimal primal and dual solutions.
- If the basic column A_j is changed to $A_j + \delta e^i$, then if $x^*(\delta)$ is the new solution, it can be shown that

$$c^{\top}x^{*}(\delta) = c^{\top}x^{*} - \delta x_{j}^{*}p_{i}^{*} + O(\delta^{2})$$

 This is in concert with our previous economic interpretations of duality and optimality.