Golden Section Search Method

$$\frac{a}{b} = \frac{a+b}{a} = 1.618$$

Proof (1)

$$x_1$$
 x_2 x_2

$$x_1 - L = R - x_2$$

$$x_1+x_2=R+L$$

Apply
$$\frac{a}{b} = \frac{0+b}{a} = 1.618$$

$$\frac{x_2-L}{R-x_2} = \frac{R-L}{x_2-L} = 1.610$$

$$\frac{3(zL)}{R-L} = \frac{1}{1.618}$$

DC2 = L + 0.618 (R-L)

$$\leftarrow$$
 $q \longrightarrow \leftarrow B \longrightarrow$

$$\frac{a}{b} = \frac{(a+b)}{a} = 1.618$$

$$L$$
 x_1 x_2 R

$$x_1+x_2=L+R$$
 $\therefore x_1=L+R-x_2$

Step

***** *

First calculate x and z from equation Dand @.

$$R \leftarrow \chi_2$$
 $\chi_2 \leftarrow \chi_1$

Rreserve L

*

L 5 24

xit xa breserve R

Ra = L+R-xy

+ Now repeat the step @ for head

[1] Minimize
$$f(x) = x^2$$
 over $[-5, 15]$ using golden Section search method. (Take $n = 4$)

$$x_2 = L + 0.618(R - L) = -5 + 0.618 [15 + 5] = 7.3$$

L+R-22 = -5+15-7.36 = 2.64								
K	L	\mathfrak{X}_{1}	x_2	R	f(24)	f(x2)	LIR	Comment
1	-5	2.64	7.36	15	6-9698			f(N2) < = f(N2)
2	-5	-0.28 (LHR-712)	2.64	7-36	0-0784	6.9696	L	7(21) (月(42)
3	- 5	-2.0B	-6.28	2.64	4.3264	0.07 84	R	手(4,) >手(4)
4	-2.08	-0.28	0-84 (L+R-X1)	2-64	0.0484	@ 0.7056	11,0	すれりくず(か)
5	-2.0 B	-0.de	70.2B	0.84	09216	0.0404	R	f(a1) > f(a2)
6	-o-9 K	-0.28	0.16	0-94	0-07 84	00256	R	f(x1) 大手(a2)
7	To-28	0.16	0^4	0.04	0.0256	6.1/6	() -)) -	

$$x^* = \frac{(-0.20) + (6.84)}{2} = \frac{0.56}{2} = 0.28$$

$$f(6.20) = (6.20)^2 = 0.0784$$