15-213

"The course that gives CMU its Zip!"

Cache Memories October 6, 2006

Topics

- Generic cache memory organization
- Direct mapped caches
- Set associative caches
- ■Impact of caches on performance
- The memory mountain

class12.ppt

Cache Memories

Cache memories are small, fast SRAM-based memories managed automatically in hardware.

■ Hold frequently accessed blocks of main memory

CPU looks first for data in L1, then in L2, then in main memory.

Typical system structure:

Inserting an L1 Cache Between the CPU and Main Memory

The tiny, very fast CPU register file has room for four 4-byte words.

The small fast L1 cache has room for two 4-word blocks.

The big slow main memory has room for many 4-word blocks.

General Organization of a Cache

15-213, F'06

Addressing Caches

Addressing Caches

Direct-Mapped Cache

-5-

Simplest kind of cache, easy to build (only 1 tag compare required per access)

Characterized by exactly one line per set.

Cache size: $C = B \times S$ data bytes

Accessing Direct-Mapped Caches

Set selection

■ Use the set index bits to determine the set of interest.

-7- 15-213

15-213, F'06

15-213, F'06

Accessing Direct-Mapped Caches

Line matching and word selection

- Line matching: Find a valid line in the selected set with a matching tag
- Word selection: Then extract the word

Accessing Direct-Mapped Caches

Line matching and word selection

- Line matching: Find a valid line in the selected set with a matching tag
- Word selection: Then extract the word

Direct-Mapped Cache Simulation

M=16 byte addresses, B=2 bytes/block, S=4 sets, E=1 entry/set

t=1 s=2 b=1 x xx x

Address trace (reads):

0	[0000 ₂],	miss
1	[0001 ₂],	hit
7	[0111 ₂],	miss
8	[1000 ₂],	miss
0	[0000]	miss

٧	tag	data
1	0	M[0-1]
1	0	M[6-7]

Set Associative Caches

Characterized by more than one line per set

E-way associative cache

- 12 -

Accessing Set Associative Caches

Set selection

■ identical to direct-mapped cache

Accessing Set Associative Caches

Line matching and word selection

must compare the tag in each valid line in the selected set.

Accessing Set Associative Caches

Line matching and word selection

■ Word selection is the same as in a direct mapped cache

2-Way Associative Cache Simulation

M=16 byte addresses, B=2 bytes/block, S=2 sets, E=2 entry/set

t=2 s=1 b=1 X XX X

- 16 -

Address trace (reads):

0	[0000 ₂],	miss
1	$[0001_{2}^{-}]$,	hit
7	[0111 ₂],	miss
8	[1000 ₂],	miss
0	[0000]	hit

٧	tag	data
1	00	M[0-1]
1	10	M[8-9]
1	01	M[6-7]
0		

15-213. F'06

15-213. F'06

Why Use Middle Bits as Index?

High-Order Bit Indexing

- Adjacent memory lines would map to same cache entry
- Poor use of spatial locality

Middle-Order Bit Indexing

- Consecutive memory lines map to different cache lines
- Can hold S*B*E-byte region of address space in cache at one time

Maintaining a Set-Associate Cache

- How to decide which cache line to use in a set?
 - Least Recently Used (LRU), Requires \[\lfloor \lfl
 - Not recently Used (NRU)
 - Random
- Virtual vs. Physical addresses:
 - The memory system works with physical addresses, but it takes time to translate a virtual to a physical address. So most L1 caches are virtually indexed, but physically tagged.

– 18 – 15-213, F'06

Multi-Level Caches

Options: separate data and instruction caches, or a unified cache

What about writes?

Multiple copies of data exist:

- L1
- L2
- Main Memory
- Disk

What to do when we write?

- Write-through
- Write-back
 - need a dirty bit
 - What to do on a write-miss?

What to do on a replacement?

Depends on whether it is write through or write back

- 19 - 15-213, F'06 - 20 - 15-213, F'06

Intel Pentium III Cache Hierarchy

- 21 - 15-213, F'06

Cache Performance Metrics

Miss Rate

- Fraction of memory references not found in cache (misses / references)
- Typical numbers:
 - 3-10% for L1
 - can be quite small (e.g., < 1%) for L2, depending on size, etc.

Hit Time

Miss Penalty

- Time to deliver a line in the cache to the processor (includes time to determine whether the line is in the cache)
- Typical numbers:
 - 1-2 clock cycle for L1
 - 5-20 clock cycles for L2

Aside for architects:

- -Increasing cache size?
- -Increasing block size?
- -Increasing associativity?
- Additional time required because of a miss
 - Typically 50-200 cycles for main memory (Trend: increasing!)

- 22 - 15-213, F'06

Writing Cache Friendly Code

- Repeated references to variables are good (temporal locality)
- Stride-1 reference patterns are good (spatial locality)
- Examples:

- 23 -

■cold cache, 4-byte words, 4-word cache blocks

```
int sum_array_rows(int a[M][N])
{
  int i, j, sum = 0;

  for (i = 0; i < M; i++)
     for (j = 0; j < N; j++)
        sum += a[i][j];
  return sum;
}</pre>
```

Miss rate = 1/4 = 25%

int sum_array_cols(int a[M][N])
{
 int i, j, sum = 0;

 for (j = 0; j < N; j++)
 for (i = 0; i < M; i++)
 sum += a[i][j];
 return sum;
}</pre>

Miss rate = 100% 15-213. F'06

The Memory Mountain

Read throughput (read bandwidth)

■ Number of bytes read from memory per second (MB/s)

Memory mountain

- Measured read throughput as a function of spatial and temporal locality.
- Compact way to characterize memory system performance.

– 24 – 15-213, F'06

Memory Mountain Test Function

Memory Mountain Main Routine

```
/* mountain.c - Generate the memory mountain. */
#define MINBYTES (1 << 10) /* Working set size ranges from 1 KB */
#define MAXBYTES (1 << 23) /* ... up to 8 MB */
#define MAXSTRIDE 16
                            /* Strides range from 1 to 16 */
#define MAXELEMS MAXBYTES/sizeof(int)
int data[MAXELEMS];
                            /* The array we'll be traversing */
int main()
    int size:
                     /* Working set size (in bytes) */
    int stride;
                     /* Stride (in array elements) */
    double Mhz:
                     /* Clock frequency */
    init data(data, MAXELEMS); /* Initialize each element in data to 1 */
                               /* Estimate the clock frequency */
    for (size = MAXBYTES; size >= MINBYTES; size >>= 1) {
        for (stride = 1; stride <= MAXSTRIDE; stride++)</pre>
            printf("%.1f\t", run(size, stride, Mhz));
        printf("\n");
    exit(0);
                                                                15-213, F'06
```

– 25 – 15-213, F'06

Pentium III **The Memory Mountain** 550 MHz 16 KB on-chip L1 d-cache Throughput (MB/sec) 16 KB on-chip L1 i-cache 1200 512 KB off-chip unified L2 cache 1000 800 Slopes of Spatial Ridges of Locality Temporal Locality Working set size Stride (words) (bytes) **- 27 -**15-213. F'06

X86-64 Memory Mountain

Opteron Memory Mountain

Ridges of Temporal Locality

Slice through the memory mountain with stride=1

illuminates read throughputs of different caches and memory

A Slope of Spatial Locality

Slice through memory mountain with size=256KB

shows cache block size.

Matrix Multiplication Example

Major Cache Effects to Consider

- Total cache size
- Exploit temporal locality and keep the working set small (e.g., use blocking)
- Block size

-30 -

Exploit spatial locality

Description:

- Multiply N x N matrices
- O(N3) total operations
- Accesses
- N reads per source element
- N values summed per destination
- » but may be able to hold in register

Variable sum /* iik */ held in reaister for (i=0; i<n; i++) for (j=0; j<n; j++) sum = 0.0; +for (k=0; k< n; k++)sum += a[i][k] * b[k][j];c[i][j] = sum;

15-213. F'06 15-213, F'06 - 31 -

Miss Rate Analysis for Matrix Multiply

Assume:

- Line size = 32B (big enough for four 64-bit words)
- Matrix dimension (N) is very large
 - Approximate 1/N as 0.0
- Cache is not even big enough to hold multiple rows

Analysis Method:

■ Look at access pattern of inner loop

- 33 - 15-213, F'06

Layout of C Arrays in Memory (review)

C arrays allocated in row-major order

■ each row in contiguous memory locations

Stepping through columns in one row:

- for (i = 0; i < N; i++)sum += a[0][i];
- accesses successive elements
- if block size (B) > 4 bytes, exploit spatial locality
 - compulsory miss rate = 4 bytes / B

Stepping through rows in one column:

- for (i = 0; i < n; i++) sum += a[i][0];
- accesses distant elements
- no spatial locality!
 - compulsory miss rate = 1 (i.e. 100%)

- 34 - 15-213, F'06

Matrix Multiplication (ijk)

```
/* ijk */
for (i=0; i<n; i++) {
  for (j=0; j<n; j++) {
    sum = 0.0;
    for (k=0; k<n; k++)
        sum += a[i][k] * b[k][j];
    c[i][j] = sum;
  }
}</pre>
```


Misses per Inner Loop Iteration:

 $\begin{array}{ccc} \underline{\mathbf{A}} & \underline{\mathbf{B}} & \underline{\mathbf{C}} \\ 0.25 & 1.0 & 0.0 \end{array}$

Matrix Multiplication (jik)

```
/* jik */
for (j=0; j<n; j++) {
  for (i=0; i<n; i++) {
    sum = 0.0;
    for (k=0; k<n; k++)
        sum += a[i][k] * b[k][j];
    c[i][j] = sum
  }
}</pre>
```


Misses per Inner Loop Iteration:

<u>A</u> <u>B</u> <u>C</u> 0.25 1.0 0.0

Matrix Multiplication (kij)

```
/* kij */
for (k=0; k<n; k++) {
  for (i=0; i<n; i++) {
    r = a[i][k];
    for (j=0; j<n; j++)
        c[i][j] += r * b[k][j];
  }
}</pre>
```


Misses per Inner Loop Iteration:

 $\frac{A}{0.0}$ $\frac{B}{0.25}$ $\frac{C}{0.25}$

15-213, F'06

- 38 -

- 40 -

Matrix Multiplication (ikj)

Misses per Inner Loop Iteration:

 $\begin{array}{ccc} \underline{A} & \underline{B} & \underline{C} \\ 0.0 & 0.25 & 0.25 \end{array}$

15-213, F'06

Matrix Multiplication (jki)

```
/* jki */
for (j=0; j<n; j++) {
  for (k=0; k<n; k++) {
    r = b[k][j];
    for (i=0; i<n; i++)
        c[i][j] += a[i][k] * r;
  }
}</pre>
```


Misses per Inner Loop Iteration:

 $\begin{array}{ccc} \underline{\mathbf{A}} & \underline{\mathbf{B}} & \underline{\mathbf{C}} \\ 1.0 & 0.0 & 1.0 \end{array}$

Matrix Multiplication (kji)

```
/* kji */
for (k=0; k<n; k++) {
  for (j=0; j<n; j++) {
    r = b[k][j];
    for (i=0; i<n; i++)
        c[i][j] += a[i][k] * r;
  }
}</pre>
```


Misses per Inner Loop Iteration:

<u>A</u> <u>B</u> <u>C</u>

- 37 -

Summary of Matrix Multiplication

```
for (i=0; i<n; i++) {
 for (j=0; j<n; j++) {
  sum = 0.0;
  for (k=0; k< n; k++)
    sum += a[i][k] * b[k][j];
  c[i][j] = sum;
}
```

```
for (k=0; k< n; k++) {
for (i=0; i<n; i++) {
 r = a[i][k];
 for (j=0; j<n; j++)
  c[i][j] += r * b[k][j];
}
```

```
for (i=0; i<n; i++) {
for (k=0; k< n; k++) {
  r = b[k][j];
  for (i=0; i<n; i++)
   c[i][j] += a[i][k] * r;
}
```

ijk (& jik):

- · 2 loads, 0 stores
- misses/iter = 1.25

kij (& ikj):

- · 2 loads, 1 store
- misses/iter = 0.5

jki (& kji):

- · 2 loads 1 store
- misses/iter = 2.0 15-213, F'06

Pentium Matrix Multiply Performance

Miss rates are helpful but not perfect predictors.

• Code scheduling matters, too.

15-213, F'06

Improving Temporal Locality by Blocking

Example: Blocked matrix multiplication

- "block" (in this context) does not mean "cache block".
- Instead, it mean a sub-block within the matrix.
- Example: N = 8; sub-block size = 4

$$\begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix} \times \begin{bmatrix} B_{11} & B_{12} \\ B_{21} & B_{22} \end{bmatrix} = \begin{bmatrix} C_{11} & C_{12} \\ C_{21} & C_{22} \end{bmatrix}$$

Key idea: Sub-blocks (i.e., A_{xy}) can be treated just like

$$C_{11} = A_{11}B_{11} + A_{12}B_{21}$$
 $C_{12} = A_{11}B_{12} + A_{12}B_{22}$
 $C_{21} = A_{21}B_{11} + A_{22}B_{21}$ $C_{22} = A_{21}B_{12} + A_{22}B_{22}$

Blocked Matrix Multiply (bijk)

```
for (jj=0; jj<n; jj+=bsize) {</pre>
  for (i=0; i<n; i++)
    for (j=jj; j < min(jj+bsize,n); j++)</pre>
      c[i][j] = 0.0;
  for (kk=0; kk<n; kk+=bsize) {</pre>
    for (i=0; i<n; i++) {
       for (j=jj; j < min(jj+bsize,n); j++) {</pre>
         for (k=kk; k < min(kk+bsize,n); k++) {</pre>
           sum += a[i][k] * b[k][j];
         c[i][j] += sum;
```

-41-

Blocked Matrix Multiply Analysis

- Innermost loop pair multiplies a 1 X bsize sliver of A by a bsize X bsize block of B and accumulates into 1 X bsize sliver of C
- Loop over i steps through n row slivers of A & C, using same B

```
for (i=0; i<n; i++) {
    for (j=jj; j < min(jj+bsize,n); j++) {
        sum = 0.0
        for (k=kk; k < min(kk+bsize,n); k++) {
            sum += a[i][k] * b[k][j];
        }
        c[i][j] += sum;
}

Innermost Loop Pair
}

C | Update successive elements of sliver bsize times block reused n times in succession 15-213, F'06
```

Pentium Blocked Matrix Multiply Performance

Blocking (bijk and bikj) improves performance by a factor of two over unblocked versions (ijk and jik)

relatively insensitive to array size.

Concluding Observations

Programmer can optimize for cache performance

- How data structures are organized
- How data are accessed
 - Nested loop structure
 - Blocking is a general technique

All systems favor "cache friendly code"

- Getting absolute optimum performance is very platform specific
 - Cache sizes, line sizes, associativities, etc.
- Can get most of the advantage with generic code
 - Keep working set reasonably small (temporal locality)
 - Use small strides (spatial locality)

- 47 - 15-213, F'06