Computer Networks

Additive Increase Multiplicative Decrease (AIMD) (§6.3.2)

Topic

- Bandwidth allocation models
 - Additive Increase Multiplicative
 Decrease (AIMD) control law

Recall

- Want to allocate capacity to senders
 - Network layer provides feedback
 - Transport layer adjusts offered load
 - A good allocation is efficient and fair
- How should we perform the allocation?
 - Several different possibilities ...

Bandwidth Allocation Models

- Open loop versus closed loop
 - Open: reserve bandwidth before use
 - Closed: use feedback to adjust rates
- Host versus Network support
 - Who is sets/enforces allocations?
- Window versus Rate based
 - How is allocation expressed?

Bandwidth Allocation Models (2)

- We'll look at closed-loop, host-driven, and window-based too
- Network layer returns feedback on current allocation to senders
 - At least tells if there is congestion
- Transport layer adjusts sender's behavior via window in response
 - How senders adapt is a <u>control law</u>

Additive Increase Multiplicative Decrease

- AIMD is a control law hosts can use to reach a good allocation
 - Hosts additively increase rate while network is not congested
 - Hosts multiplicatively decrease rate when congestion occurs
 - Used by TCP ☺
- Let's explore the AIMD game ...

AIMD Game

- Hosts 1 and 2 share a bottleneck
 - But do not talk to each other directly
- Router provides binary feedback
 - Tells hosts if network is congested

AIMD Game (2)

Each point is a possible allocation

AIMD Game (3)

Al and MD move the allocation

AIMD Game (4)

Play the game!

AIMD Game (5)

Always converge to good allocation!

AIMD Sawtooth

- Produces a "sawtooth" pattern over time for rate of each host
 - This is the TCP sawtooth (later)

AIMD Properties

- Converges to an allocation that is efficient and fair when hosts run it
 - Holds for more general topologies
- Other increase/decrease control laws do not! (Try MIAD, MIMD, MIAD)
- Requires only binary feedback from the network

Feedback Signals

- Several possible signals, with different pros/cons
 - We'll look at classic TCP that uses packet loss as a signal

•	Signal	Example Protocol	Pros / Cons
1	Packet loss	TCP NewReno Cubic TCP (Linux)	Hard to get wrong Hear about congestion late
1	Packet delay	Compound TCP (Windows)	Hear about congestion early Need to infer congestion
7	Router indication	TCPs with Explicit Congestion Notification	Hear about congestion early Require router support

END

© 2013 D. Wetherall

Slide material from: TANENBAUM, ANDREW S.; WETHERALL, DAVID J., COMPUTER NETWORKS, 5th Edition, © 2011. Electronically reproduced by permission of Pearson Education, Inc., Upper Saddle River, New Jersey