

Domain 1: General Security Concepts

- M1: Introduction to Information Security
 - Key Security Concepts and Models
- M2: Cryptography
 - Encryption, Symmetric/Asymmetric Cryptography, Key Management

Domain 2: Security Threats, Vulnerabilities, and Mitigations

- M3: Threat, Attacks, Vulnerability, and Mitigations
 - Types of Threats, Attacks, and Vulnerabilities, Mitigation Techniques

Domain 3: Security Architecture

- M4: Cloud Computing
 - Could computing, Virtualization, and Cloud Security Controls
- M5: Network Security
 - Secure Network Design, Network Security Techniques

M4. Cloud Security

- Cloud Computing
 - Definitions, Roles and Drivers for Cloud Computing
 - Cloud Deployment Models, Categorization of Cloud Service
 - Governance Structure of Cloud Computing
- Virtualization Technology
 - Hypervisor, Types of Hypervisor
- Cloud Security Issues and Controls
 - Virtualization Security Issues: VM Sprawl, VM Escape
 - Complexity, No security Perimeter, Lack of Auditability, Regulatory Compliance
 - Cloud Security Controls: Data Security Control, Cloud Resource Control, Resource Policy, Cloud Network Security Control

Cloud Computing 1/2

- IT resources provided as a service
 - servers, applications, storages, networks, databases, platforms, security services, etc.

Cloud Computing

Cloud Computing 2/2

- Cloud computing is a model for enabling delivering a shared pool of configurable computing resources to a remote customer over a network (e.g., Gmail, Amazon Web Services, Salesforce.com)
- On-Premises or Off-Premises

On-Premises vs. Off-Premises

- On-Premises
 - Systems that are on-site
 - The physical system can be accessed

- Off-Premises
 - Systems that are not on-site
 - Cannot be physically accessed

Cloud Computing 2/2

- Cloud entities: cloud customer, cloud service provider, cloud service partner, managed service provider (MSP), managed security service provider (MSSP)
 - MSP
 - Manages day to day services to customers
 - Third party outsourced
 - HR, contract management, vendor management, etc....
 - MSSP
 - Similar to MSP, but for securing devices
 - Manages firewalls, intrusion detection, VPN management, vulnerability scanning, etc....

Benefits

- Cost & management
 - On-demand self-service
 - Economies of scale
- Reliability
 - Massive, redundant, shared resources
- Sustainability
 - Hardware not owned
- Elasticity
 - Reduced Time to deployment
 - Expanding and contracting quickly
- Scalability (horizontal and vertical scaling)
 - On demand provisioning, co-locate data and compute

Private Cloud: Computing architecture is dedicated to the customer and is not shared with other organizations.

Public Cloud: Computing infrastructure is hosted at the vendor's premises.

Cloud Deployment Models (2/2)

- Hybrid Cloud: Organizations host some critical, secure applications in private clouds. The not so critical applications are hosted in the public cloud
 - Cloud bursting: the organization uses its own infrastructure for normal usage, but cloud is used for peak loads.
- Community Cloud: shared with a consortium

Categorization of Cloud Service

Everything as a Service (XaaS) notation

Application
Platform

Infrastructure

- Software as a service (SaaS)
 - Customer purchases a complete software offering on the cloud.
 - Pay-per-use basis.
 - E.g., Google Gmail, MS Office 365, Dropbox, Salesforce.com's CRM, etc.

- Platform as a Service (PaaS)
 - Purchase app platform to run own application code
 - E.g., AWS Lambda Service, Google Application Engine
- Infrastructure as a service (laaS)
 - Purchase hardware related services including servers, storage services (database or disk storage) or virtual servers
 - E.g., Amazon Web Services (AWS), MS Azure,
 Amazon EC2

More Refined Categorization

- Application-as-a-service (AaaS)
- Database-as-a-service (DBaS)
- Function-as-a-service (FaaS)
- Information-as-a-service
- Integration-as-a-service
- Management/governance-as-a-service
- Process-as-a-service
- Security-as-a-service (SEaS)
- Storage-as-a-service (STaS)
- Testing-as-a-service

Fog and Edge Computing

- Edge Computing at edge layer
 - Computing processes closed to the source of data device (IoTs)
 - Smart devices, autonomous vehicles

Fog Computing at fog layer Ways to handle data b/w edge and cloud computing

Computing tasks are normally

carried out on a LAN

Source: Edge Computing: learn to delegate - OCTO Talks!

Virtualization Technology

- The driving force behind cloud computing
- A virtual machine (VM) is a simulated software-based emulation of a computer
- Hypervisor (special software for VM monitoring) tricks each guest into thinking it is running on dedicated hardware

Type 1 vs Type 2 Hypervisor

Type 1 Hypervisor

Type 2 Hypervisor

VM Isolation (T2 hypervisor)

- Using a VM for each application provides isolation
 - More than running 2 apps on same server

Container

- Lightweight application virtualization software that packages all the code
 - Application is very reliable and runs very quickly
 - Can be used from one environment another
 - Similar to virtual machines
 - Contain much less than VM
 - Quicker than VM

VMs vs. Cloud Containers

Virtual Machines

App App App Guest OS Guest OS Hypervisor Host operating system Hardware

Containers

Cloud Security Issues

- Virtualization relevant Issues
 - VM Sprawl, VM Escape
- General Cloud Computing Issues
 - Accountability and Complexity
 - Larger Attack Surface/No Security Perimeter
 - Snapshot Data
 - Lack of Auditability
 - Regulatory Compliance, etc.

- VM Sprawl unused and unmaintained servers
 - The disorganization and uncontrolled spreading
 - Caused by lack of management
- VM Sprawl Avoidance
 - Done by an organization (everyone following same policies)
 - Similar storage names and locations
 - Admins can easily locate and use resources on VMs

- VM Escape Attacks
 - An attacker gains access to host machine through the VM
- Why is this bad?
 - Attacker can control all the VMs on the system
 - Attacker can have complete control over the host machine

Accountability/Complexity

 Hypervisor is often another layer on top of host OS, adding complexity and vulnerabilities

Your Network

Larger Attack Surface – No Security Perimeter

- Little control over physical or network location of cloud instance VMs
- Network access must be <u>controlled on</u> <u>a host by host basis</u>.

- Only cloud provider has access to full network traffic, hypervisor logs, physical machine data.
- Need mutual auditability
 - Ability of cloud provider to audit potentially malicious or infected client VMs.
 - Ability of cloud customer to audit cloud provider environment.

Regulatory Compliance

 Cloud service is subject to a wide variety of international, federal, state, and local security regulations (e.g., data sovereignty). A company follows the laws enforced by governing bodies in their geography or rules required.

Cloud Data Security Controls

- Data/Storage
 - Storing data on the cloud
 - Important factors:
 - Permissions
 - Who has permission to access the data
 - What data can they access?
 - Encryption
 - Make sure the data is encrypted
 - Protects the data
 - Replication
 - In case some of the data is destroyed
 - High Availability
 - Always accessible

- Security Groups
 - Compute security group profile is allocated by using a security group template
 - Includes the cloud account, the location of the resource, and the security rules.
- Dynamic Resource Allocation
 - Upgrades or downscales cloud resources
 - As demand grows or falls
- Instance Awareness
 - VM instances must be monitored to avoid an attacker placing an unmanaged VM that could lead to VM sprawl and the VM escape.

Cloud Network Security Controls

- Cost
 - Can range from free to several hundred dollars per month
- Segmentation requirements
 - A Zero-Trust model is used in cloud environments
 - In this model, each individual must provide identification to gain access to the cloud environment
- Cloud Native Controls versus Third-Party Solutions
 - AWS has their own tool, AWS Cloud Formation
 - Third-parties may add tools that provide more flexibility

Cloud Computing

- Definition, Roles and Drivers for Cloud Computing
- Cloud Deployment Models, Categorization of Cloud Service, Governance Structure of Cloud Computing
- Virtualization Technology
 - Hypervisor, Types of Hypervisor
- Security Issues and Controls
 - Virtualization relevant Issues: VM Sprawl, VM Escape
 - Complexity, No security Perimeter, Lack of Auditability, Regulatory Compliance,
 - Cloud Security Controls: Cloud Data, Cloud Resource, Resource Policy, Cloud Network Security Control

