

W800_SDK DEMO 运行指南 V1.5

北京联盛德微电子有限责任公司 (winner micro)

地址:北京市海淀区阜成路 67 号银都大厦 18 层

电话: +86-10-62161900

公司网址: www.winnermicro.com

文档修改记录

版本	修订时间	修订记录	作者	审核
V0.1	2019/9/25	[C]创建文档	Zhangwl	
V0.2	2020/7/2	更新 I2C 和 I2S 的 Demo 复用脚及	Cuiyc	
		说明		
V0.3	2020/7/8	统一字体	Cuiyc	
V1.0	2020/8/4	增加 ADC、DSP 和 BLE 示例	Cuiyc	
V1.1	2020/10/29	更新 BLE 示例	Pengxg	
V1.2	2021/4/16	更新 httpget 和 httpfwup 示例参	Cuiyc	
		数		
V1.3	2022/04/08	增加固件防拷贝 Demo	Wanghf	
V1.4	2022/07/28	修改 DEMO_MQTT 操作步骤	Wanghf	
V1.5	2022/12/29	补充部分 demo 功能	Cuiyc	

目录

文村	当修改	记录		2
目表	录			3
1	引言			7
	1.1	编	写目的	7
	1.2	预:	期读者	7
	1.3	术	语定义	7
2	DEM	ⅠΟ 概要		7
3	配网	联网类	DEMO 功能描述	7
	3.1	DE	MO_CONNECT_NET 操作步骤	7
		3.1.1	t-connect 加网	8
		3.1.2	t-oneshot(oneshot 配网)	9
		3.1.3	t-oneshot(airkiss 配网)	10
		3.1.4	t-webcfg(网页配网)	10
		3.1.5	t-connet_ss (指定联网信息联网)	11
	3.2	DE	MO_APSTA 操作步骤	12
	3.3	DE	MO_SOFT_AP 操作步骤	14
	3.4	DE	MO_WPS 操作步骤	15
		3.4.1	t-wps-start-pbc	16
		3.4.2	t-wps-start-pin	17
	3.5	DE	:MO_SCAN 操作步骤	18
		3.5.1	t-scan 扫描	18
		3.5.2	t-scanf2 扫描	

	3.5.3 t-ss 扫描	19
1	硬件驱动类 DEMO 功能描述	20
	4.1 DEMO_UARTx 操作步骤	20
	4.2 DEMO_GPIO 操作步骤	21
	4.2.1 t-gpio	21
	4.2.2 t-gpioirq	22
	4.3 DEMO_FLASH 操作步骤	23
	4.4 DEMO_ENCRYPT 操作步骤	23
	4.5 DEMO_RSA 操作步骤	26
	4.6 DEMO_RTC 操作步骤	27
	4.7 DEMO_TIMER 操作步骤	28
	4.8 DEMO_PWM 操作步骤	29
	4.9 DEMO_PMU 操作步骤	30
	4.9.1 t-pmuT0	30
	4.9.2 t-pmuT1	31
	4.10 DEMO_I2C 操作步骤	32
	4.11 DEMO_I2S 操作步骤	33
	4.12 DEMO_MASTER_SPI 操作步骤	36
	4.13 DEMO_ADC 操作步骤	37
	4.14 DEMO_SLAVE_SPI 操作步骤	38
	4.15 DEMO_SDIO_HOST 操作步骤	40
5	应用类 DEMO 功能描述	41
	5.1 DEMO_STD_SOCKET_CLIENT 操作步骤	41

5.2	DE	MO_STD_SOCKET_SERVER 操作步骤	43
5.3	DE	MO_SOCKET_CLIENT_SERVER 操作步骤	45
	5.3.1	t-client	45
	5.3.2	t-server	46
5.4	DE	MO_UDP 操作步骤	48
	5.4.1	UDP 广播	48
	5.4.2	UDP 单播	49
	5.4.3	UDP 组播	50
5.5	DE	MO_NTP 操作步骤	52
	5.5.1	t-ntp	52
	5.5.2	t-setntps	53
	5.5.3	t-queryntps	54
5.6	DE	MO_HTTP 操作步骤	55
	5.6.1	t-httpget	57
	5.6.2	t-httpput	59
	5.6.3	t-httppost	61
	5.6.4	t-httpfwup	63
5.7	DE	MO_SSL_SERVER 操作步骤	64
5.8	DE	MO_WEBSOCKETS 操作步骤	66
	5.8.1	websocket 不加密方式的数据通信	66
	5.8.2	websocket 加密方式的数据通信	68
5.9	DE	MO_HTTPS 操作步骤	69
5.10	DE	MO MQTT 操作步骤	70

5.11	DEI	MO_DSP 操作步骤	. 75
5.12	DEI	MO_BT 操作步骤	. 76
	5.12.1	Ble server 示例	. 76
	5.12.2	Ble client 示例	. 80
	5.12.3	Ble 广播示例	. 81
		Ble 扫描示例	
5.13	DE	MO_FATFS 操作步骤	. 83
5.14		MO_MBEDTLS 操作步骤	
5.15	DE	MO_AVOID_COPY 操作步骤	. 85

1 引言

1.1 编写目的

为基于 W80X 芯片 SDK 进行二次开发的软件开发工程师提供相关功能的代码示例。

1.2 预期读者

FAE, 客户方软件开发工程师。

1.3 术语定义

2 DEMO 概要

该文档中用到的所有 DEMO 相关的宏定义都在 wm_demo.h 中。运行 DEMO 时必须打开该 DEMO 对应的宏定义,建议关闭不相关宏定义。DEMO 演示需要在控制台下进行,打开 DEMO_CONSOLE 编译选项,即打开了控制台。

DEMO_CONSOLE 同时还控制了 AT 指令的启用,如果使能此宏,则 AT 指令失效;关闭此宏,AT 指令生效。

以下三节将分别以配网联网类示例,硬件驱动类示例以及应用类示例来分别介绍其测试使用方法。

3 配网联网类 DEMO 功能描述

3.1 DEMO_CONNECT_NET 操作步骤

注:此 DEMO 下有四个演示 DEMO。

3.1.1 t-connect 加网

功能描述	本例实现了使 WiFi 设备连接指定名称和密码的路由器的功能
命令格式	t-connect("ssid_name" , "password")
涉及到的常用 api(其	tls_wifi_disconnect();
中 api 的具体释义请	tls_wifi_softap_destroy();
参考相关头文件注释)	tls_wifi_set_oneshot_flag(0);
	tls_mem_alloc();
	tls_netif_add_status_event();
	tls_wifi_connect();
涉及到的常用功能块	将 设 备 的 工 作 模 式 设 置 成 sta 模 式 :
	<pre>tls_param_get(TLS_PARAM_ID_WPROTOCOL, (void *) &wireless_protocol, TRUE); if (TLS_PARAM_IEEE80211_INFRA != wireless_protocol)</pre>
	<pre>tls_wifi_softap_destroy(); wireless_protocol = TLS_PARAM_IEEE80211_INFRA; tls_param_set(TLS_PARAM_ID_WPROTOCOL, (void *) &wireless_protocol, FALSE); }</pre>
示例测试步骤	1. 打开宏定义 DEMO_CONNECT_NET;
	2. 编译,升级成功后,在 uart0 打印的控制台信息中能看到对
	应命令;
	3. 通过 uart0 发送 t-connect("TEST_N40_6","1234567890")
	来让模块加入名称为 TEST_N40_6, 密码为 1234567890
	的无线网络(根据现有网络来修改名称,这里的这个只是示
	例)。
	注: 所有命令需要带回车换行,命令中使用英文符号;
	4. 加网成功后 uart0 会打印模块 ip。

3.1.2 t-oneshot(oneshot 配网)

功能描述	本例实现了使 WiFi 设备进行一键配网的功能,其中一键配网包括了官	
	方的 oneshot 配网和 airkiss 配网	
命令格式	t-oneshot	
涉及到的常用	tls_netif_add_status_event();	
api(其中 api 的具	tls_wifi_set_oneshot_config_mode();	
体释义请参考相关	tls_wifi_set_oneshot_flag();	
头文件注释)		
涉及到的常用功能	无	
块		
示例测试步骤	1. 打开宏定义 DEMO_CONNECT_NET;	
	2. 编译,升级成功后,在 uart0 打印的控制台信息中能看到对应	
	命令;	
	3. 通过 uart0 发送 t-oneshot;	
	4. 手机加入目标网络 , 安装 OneShotActivity (SDK ver2.0.0) ,	
	在 app 界面输入正确 ssid 和 password,点 Start	
	Configuration;	
	5. 模块加网成功后 uart0 会打印 ip。	
App 下载地址	http://www.winnermicro.com/html/1/156/158/497.html ,	
	在页面下找到"软件材料"标签里的 oneshotconfig2.0.zip	

3.1.3 t-oneshot (airkiss 配网)

功能描述	本例实现了使 WiFi 设备进行一键配网的功能, 其中一键
	配网包括了官方的 oneshot 配网和 airkiss 配网
命令格式	t-oneshot
涉及到的常用 api(其中 api 的具	tls_netif_add_status_event();
体释义请参考相关头文件注释)	tls_wifi_set_oneshot_config_mode();
	tls_wifi_set_oneshot_flag();
涉及到的常用功能块	无
示例测试步骤	1. 打开宏定义 DEMO_CONNECT_NET ,
	TLS_CONFIG_AIRKISS_MODE_ONESHOT;
	2. 编译,升级成功后,在 uart0 打印的控制台信息
	中能看到对应命令;
	3. 通过 uart0 发送 t-oneshot;
	4. 手机加入目标网络(需要外网),打开微信,关
	注公众号【联盛德微电子】,进入公众号后点击
	产品应用下的 AirKiss 配网,进入配置设备上网
	页面,设置正确 Wi-Fi 密码,点击连接按钮;
	5. 模块加网成功后 uart0 会打印 ip。

3.1.4 t-webcfg(网页配网)

功能描述	本例实现了通过内置网页来对设备进行网络配置的功能
命令格式	t-webcfg

涉及到的常用 api(其中 api 的具	tls_netif_add_status_event();
体释义请参考相关头文件注释)	tls_wifi_set_oneshot_config_mode();
	tls_wifi_set_oneshot_flag();
涉及到的常用功能块	无
示例测试步骤	1. 打开宏定义 DEMO_CONNECT_NET ,
	TLS_CONFIG_WEB_SERVER_MODE;
	2. 编译, 升级成功后, 在 uart0 打印的控制台信息
	中能看到对应命令;
	3. 通过 uart0 发送 t-webcfg;
	4. 手机或者有无线网卡的电脑加
	入" softap_XXXX" (其中 XXXX 是模块 mac
	地址的后 4 位), 用浏览器访问 192.168.1.1,
	在页面 List 中选择目标网络(如果找不到目标网
	络,尝试刷新页面或者手动输入 ssid),然后在
	pwd 输入框中输入正确密码,点击 save 按钮;
	5. 模块加网成功后 uart0 会打印模块 ip, 同网络
	设备可以 ping 通模块 ip。

3.1.5 t-connet_ss (指定联网信息联网)

功能描述	本例实现了通过指令部分联网信息来进行设备联网功能
命令格式	t-connet_ss
涉及到的常用 api(其中 api 的具	tls_wifi_disconnect();
体释义请参考相关头文件注释)	tls_wifi_softap_destroy();

	tls_wifi_set_oneshot_flag(0);	
	tls_mem_alloc();	
	tls_netif_add_status_event();	
	tls_wifi_cfg_connect_pci();	
	tls_wifi_cfg_connect_timeout();	
	tls_wifi_cfg_connect_scan_mode();	
	tls_wifi_connect();	
涉及到的常用功能块	无	
示例测试步骤	1. 打开宏定义 DEMO_CONNECT_NET;	
	2. 编译, 升级成功后, 在 uart0 打印的控制台信息	
	中能看到对应命令;	
	3. 通过 uart0 组合命令里的不同参数来发送	
	t-connect_ss("TEST_N40_6","1234567890",0	
	或大于 5 的值,0 或 1,0 或 1)来让模块加入名称	
	为 TEST_N40_6, 密码为 1234567890 的无线	
	网络(根据现有网络来修改名称,这里的这个只	
	是示例)。	
	注: 所有命令需要带回车换行,命令中使用英文	
	符号;	
	4. 加网成功后 uart0 会打印模块 ip。	

3.2 **DEMO_APSTA 操作步骤**

功能描述 本例实现了让设备建立一个 apsta 共存状态的功能,同时作为 sta 时去连

	接指定的路由器,而作为 ap 时也允许其它 sta 设备通过指定的密码来连接。		
	同时建立起了 udp 的数据转发功能,具体功能在测试步骤中的详细描述;		
命令格式	t-apsta("ssid_name","password","softapssid","87654321"),其中的 4		
	个参数分别是待连接的路由器的名称和密码及作为 ap 时的名称和密码。		
涉及到的常用	tls_netif_add_status_event();		
api(其中 api	tls_wifi_set_oneshot_config_mode();		
的具体释义请	tls_wifi_set_oneshot_flag();		
参考相关头文			
件注释)			
涉及到的常用	无		
功能块			
示例测试步骤	1. 打开宏定义 DEMO_APSTA;		
	2. 编译, 升级成功后, 在 uart0 打印的控制台信息中能看到对应命令;		
	3. 通 过 uart0 发 送		
	t-apsta("TEST_N40_6","1234567890","softapssid","87654321")		
	;		
	4. uart0 会打印 softap 的 ip 与模块 sta 的 ip;		
	5. 在与模块同网络的 PC1 上打开调试助手 UDP 的 65530 端口,设置		
	十六进制显示;		
	6. 使用其它 PC2 加入 softap,uart0 会打印设备上线;		
	7. 设置 PC2 打开调试助手监听 UDP 的 65530 端口,设置十六进制显		
	示;		

8. 通过	uart0 发送 t-asskt;
9. 此时	PC1 上的调试助手会收到 sta 重复发的 mac 地址;
10. 大约	1 分钟之后 PC2 上的调试助手会收到 softap 重复发的 mac
地址	;
11. 手机	加入 softap 后,uart0 会打印设备上线,手机可以 ping 通路

3.3 **DEMO_SOFT_AP** 操作步骤

由器下的设备。

功能描述	本例实现了使设备工作在 softAP 模式的功能 (也可以修改 demo	
	里有关黑名单信息,来限制某些热点加入)	
命令格式	t-softap("softap1s","1234567890",6,4,1); 其中的 5 个参数分别	
	表示 ap 的名称,密码,所用信道,加密方式和密码的格式;	
	加密方式: /*0:open, 1:wep64, 2:wep128,3:TKIP WPA ,4:	
	CCMP WPA, 5:TKIP WPA2 ,6: CCMP WPA2*/	
	密码格式: /*key's format:0-HEX, 1-ASCII*/	
涉及到的常用 api(其中	tls_mem_alloc();	
api 的具体释义请参考	tls_mem_free();	
相关头文件注释)	tls_wifi_set_oneshot_flag();	
	tls_wifi_disconnect();	
	tls_wifi_softap_create();	
	tls_os_timer_create();	
	tls_os_timer_start();	

	tls_os_timer_delete();		
	tls_wifi_softap_add_blacksta();		
	tls_wifi_softap_get_blackinfo();		
	tls_wifi_softap_del_blacksta();		
涉及到的常用功能块	将 设 备 的 工 作 模 式 设 置 成 ap 模 式 :		
	<pre>tls_param_get(TLS_PARAM_ID_WPROTOCOL, (void *) &wireless_protocol, TRUE); if (TLS_PARAM_IEEE80211_SOFTAP != wireless_protocol) { wireless_protocol = TLS_PARAM_IEEE80211_SOFTAP; tls_param_set(TLS_PARAM_ID_WPROTOCOL, (void *) &wireless_protocol, FALSE); }</pre>		
示例测试步骤	1. 打开宏定义 DEMO_SOFT_AP;		
	2. 编译, 升级成功后, 在 uart0 打印的控制台信息中能看到对应命令;		
	3. 通 过 uart0 发 送		
	t-softap("softap1s","1234567890",6,4,1)可以使设律		
	立起名为 "softap1s" , 密码为 "1234567890" 的热点;		
	4. 手机可以扫描到"softap1s"网络, 加入 softap 后, uart		
会打印手机 mac。			

3.4 **DEMO_WPS** 操作步骤

注:此 DEMO 下有两个演示 DEMO,需要路由器支持 wps

QSS安全设置

QSS功能: 已开启 关闭QSS

□ 锁定路由PIN码

当前PIN码: 18897456 恢复初始PIN码 产生新的PIN码

添加新设备: 添加设备

帮助

3.4.1 t-wps-start-pbc

功能描述	本例实现了通过内置网页来对设备进行网络配置的功能			
命令格式	t-wps-start-pbc			
涉及到的常用 api(其中 api	tls_netif_add_status_event();			
的具体释义请参考相关头文	tls_wifi_set_oneshot_config_mode();			
件注释)	tls_wifi_set_oneshot_flag();			
涉及到的常用功能块	无			
示例测试步骤	1. 打开宏定义 DEMO_WPS;			
	2. 编译,升级成功后,在 uart0 打印的控制台信息中能			
	看到对应命令;			
	3. 通过 uart0 发送 t-wps-start-pbc,并在路由器上按			
	wps 按钮,稍候 uart0 打印			
	[CMD]t-wps-start-pbcStart WPS pbc			
	mode			
	WiFi JOIN SUCCESS			
	NET UP OK,Local IP:192.168.1.101			

3.4.2 t-wps-start-pin

功能描述	本例实现了通过 wps pin 的方式来对设备进行网络配置			
	的功能			
命令格式	t-wps-start-pin			
涉及到的常用 api(其中 api 的具	tls_netif_add_status_event();			
体释义请参考相关头文件注释)	tls_wifi_set_oneshot_flag();			
	tls_wps_start_pin();			
涉及到的常用功能块	无			
示例测试步骤	1. 打开宏定义 DEMO_WPS;			
	2. 编译,升级成功后,在 uart0 打印的控制台信息			
	中能看到对应命令;			
	3. 通过 uart0 发送 t-wps-get-pin,uart0 打印			
	pin 码并自动给模块设置;			
	4. 在路由器中输入 pin 码,启动连接;			
	5. 通过 uart0 发送 t-wps-start-pin,稍候 uart0			
	打印			
	[CMD]t-wps-start-pinStart WPS pin			
	mode			
	WiFi JOIN SUCCESS			
	NET UP OK,Local IP:192.168.1.101			

3.5 **DEMO_SCAN** 操作步骤

3.5.1 t-scan 扫描

功能描述	本例实现了使用设备来扫描周围无线网络的功能		
命令格式	t-scan		
涉及到的常用 api(其中 api 的具	tls_wifi_scan_result_cb_register;		
体释义请参考相关头文件注释)	tls_wifi_scan;		
涉及到的常用功能块	无		
示例测试步骤	1,打开宏定义 DEMO_SCAN;		
	2,编译,升级成功后,在 uart0 打印的控制台信息		
	中能看到对应命令;		
	3 <i>,</i> 通过 uart0 发送 t-scan ;		
	4,设备收到 uart0 的命令后会去扫描周围网络,扫		
	描完成后会将其打印到 uart0。		

3.5.2 t-scanf2 扫描

功能描述	本例实现了使用设备来扫描周围无线网络的功能,扫描		
	的结果格式与 t-scan 稍有不同		
命令格式	t-scanf2		
涉及到的常用 api(其中 api 的具	tls_wifi_scan_result_cb_register;		
体释义请参考相关头文件注释)	tls_wifi_scan;		
	tls_wifi_get_scan_rslt_format2		
涉及到的常用功能块	无		
示例测试步骤	1,打开宏定义 DEMO_SCAN;		
	2,编译,升级成功后,在 uart0 打印的控制台信息		

中能看到对应命令;
3,通过 uart0 发送 t-scanf2;
4,设备收到 uart0 的命令后会去扫描周围网络,扫
描完成后会将其打印到 uart0。

3.5.3 t-ss 扫描

2.2.2 t-88 1 1 1 H			
功能描述	本例实现了使用设备来扫描周围指定无线网络的功能,		
	且使用扫描结果的格式 2 显示结果		
命令格式	t-ss		
涉及到的常用 api(其中 api 的具	tls_wifi_scan_result_cb_register;		
体释义请参考相关头文件注释)	tls_wifi_scan_by_param;		
	tls_wifi_get_scan_rslt_format2		
涉及到的常用功能块	无		
示例测试步骤	1,打开宏定义 DEMO_SCAN;		
	2,编译,升级成功后,在 uart0 打印的控制台信息		
	中能看到对应命令;		
	3 <i>,</i> 通过 uart0 发送		
	t-ss(ssid,macaddr,chan,scan_type,min_interv		
	al,max_interval);		
	4,设备收到 uart0 的命令后会去扫描指定周围网		
	络,扫描完成后会将其打印到 uart0。		

4 硬件驱动类 DEMO 功能描述

4.1 **DEMO_UARTx** 操作步骤

功能描述	本例实现串口 1 echo 数据的功能;
	备注: 如果需要测试其它串口,则需要将函数
	demo_uart_task()中的宏定义 "TLS_UART_1" 修改成
	相应的串口号,同时将复用功能口也修改成相应的复用
	接口。
命令格式	t-uart=(baudrate,parity,stopbit),其中的参数如其名
	称所示;
	Parity: 0,无校验;1,奇校验;2,偶校验;
	Stopbit: 0,一个停止位;1,两个停止位;
涉及到的常用 api(其中 api 的具	tls_os_queue_create();
体释义请参考相关头文件注释)	tls_os_task_create();
	tls_os_queue_send();
	tls_os_queue_receive();
	wm_uart1_rx_config();
	wm_uart1_tx_config();
	tls_uart_rx_callback_register();
	tls_uart_read();
	tls_uart_write();
涉及到的常用功能块	无
示例测试步骤	1. 打开宏定义 DEMO_ UARTx;
· · · · · · · · · · · · · · · · · · ·	

2.	编译, 升级成功后, 在 uart0 打印的控制台信息
	中能看到对应命令;
3.	通过 uart0 发送 t-uart=(9600,0,0)修改 uart1
	的参数;
4.	串口工具设置波特率 9600、校验位 NONE、数
	据位 8、停止位 1,打开 uart1 发数据,模块会
	把收到的数据从 uart1 打印出来(PB06_TX
	PB07_RX)。

4.2 **DEMO_GPIO** 操作步骤

注:此 DEMO 下有两个演示 DEMO

4.2.1 t-gpio

功能描述	本例实现了使用 PB6, 用于演示 GPIO 的输入输出及上		
	拉浮空功能		
命令格式	t-gpio		
涉及到的常用 api(其中 api 的具	tls_gpio_cfg();		
体释义请参考相关头文件注释)	tls_gpio_read();		
	tls_gpio_write();		
涉及到的常用功能块	无		
示例测试步骤	1. 打开宏定义 DEMO_ GPIO;		
	2. 编译, 升级成功后, 在 uart0 打印的控制台信息		
	中能看到对应命令;		

3. 通过 uart0 发送 t-gpio, uart0 会打印测试结果
gpioB[6] default value==[0]
gpioB[6] floating high value==[1]
gpioB[6] floating low value==[0]
gpioB[6] pullhigh high value==[1]
gpioB[6] pullhigh low value==[0]

4.2.2 t-gpioirq

功能描述	本例实现了使用 PA1 作为输入脚来产生中断的功能;		
命令格式	t-gpioirq		
涉及到的常用 api(其中 api 的具	tls_gpio_cfg();		
体释义请参考相关头文件注释)	tls_gpio_isr_register();		
	tls_gpio_irq_enable();		
	tls_get_gpio_irq_status();		
	tls_clr_gpio_irq_status();		
涉及到的常用功能块	无		
示例测试步骤	1. 打开宏定义 DEMO_ GPIO;		
	2. 编译, 升级成功后, 在 uart0 打印的控制台信息		
	中能看到对应命令;		
	3. 通过 uart0 发送 t-gpioirq, 把 PA1 拉低, uart0		
	打印		
	int flag =1		

after int io =0
4. 把 PA1 拉高 <i>,</i> uart0 打印
int flag =1
after int io =1

4.3 **DEMO_FLASH** 操作步骤

功能描述	本例实现了内部 flash 的读写功能.			
	写之前用户无需调用擦除函数,因其写函数内部已			
	经集成擦除功能。			
命令格式	t-flash			
涉及到的常用 api(其中 api 的具	tls_fls_write();			
体释义请参考相关头文件注释)	tls_fls_read();			
涉及到的常用功能块	无			
示例测试步骤	1. 打开宏定义 DEMO_ FLASH;			
	2. 编译, 升级成功后, 在 uart0 打印的控制台信息			
	中能看到对应命令;			
	3. 通过uart0发送t-flash,uart0会打印success。			

4.4 **DEMO_ENCRYPT** 操作步骤

功能描述	本例介绍了 sdk 内部自带的加密哈希等相关的函数使用方法;
命令格式	t-crypt

涉及到的加密算法	RNG_hard_demo();	
	rc4_hard_demo();	
	aes_hard_demo();	
	des_hard_demo();	
	des3_hard_demo();	
	crc_hard_demo();	
	md5_hard_demo();	
	sha1_hard_demo();	
涉及到的常用功能块	无	
示例测试步骤	1. 打开宏定义 DEMO_ ENCRYPT;	
	2. 编译, 升级成功后, 在 uart0 打印的控制台信息中能看	
	到对应命令;	
	3. 通过 uart0 发送 t-crypt,uart0 会打印	
	[CMD]t-cryptRNG out:	
	1 0 0 0 2A 0 0 0 5E 50	
	RNG out:	
	C2 1F 1 8D 34 5E F8 23 47 40 E3 85 B 7F 4 34 D0 78	
	E1 8F	
	rc4 test success	
	aes ecb test success	
	aes cbc test success	
	aes ctr test success	

des ecb test success

des cbc test success

3des ecb test success

3des cbc test success

CRYPTO_CRC_TYPE_8 normal value:0x000000B1

CRYPTO_CRC_TYPE_8 INPUT_REFLECT

value:0x0000008B

CRYPTO_CRC_TYPE_8 OUTPUT_REFLECT

value:0x0000008D

CRYPTO_CRC_TYPE_8 INPUT_REFLECT |

OUTPUT REFLECT value:0x000000D1

CRYPTO_CRC_TYPE_16_MODBUS normal

value:0x00004755

CRYPTO_CRC_TYPE_16_MODBUS INPUT_REFLECT

value:0x000090B1

CRYPTO_CRC_TYPE_16_MODBUS OUTPUT_REFLECT

value:0x0000AAE2

CRYPTO_CRC_TYPE_16_MODBUS INPUT_REFLECT |

OUTPUT_REFLECT value:0x00008D09

CRYPTO_CRC_TYPE_16_CCITT normal

value:0x0000B888

CRYPTO_CRC_TYPE_16_CCITT INPUT_REFLECT

value:0x00005B58
CRYPTO_CRC_TYPE_16_CCITT OUTPUT_REFLECT
value:0x0000111D
CRYPTO_CRC_TYPE_16_CCITT INPUT_REFLECT
OUTPUT_REFLECT value:0x00001ADA
CRYPTO_CRC_TYPE_32 normal value:0x3F96E516
CRYPTO_CRC_TYPE_32 INPUT_REFLECT
value:0x1DD50C89
CRYPTO_CRC_TYPE_32 OUTPUT_REFLECT
value:0x68A769FC
CRYPTO_CRC_TYPE_32 INPUT_REFLECT
OUTPUT_REFLECT value:0x9130ABB8
md5 test success
sha1 test success

4.5 **DEMO_RSA** 操作步骤

功能描述	本例实现了不同长度的 rsa 算法的使用步骤;	
命令格式	t-rsa	
涉及到的 rsa 计算的长度	rsa128_demo();	
	rsa256_demo();	
	rsa512_demo();	
	rsa1024_demo();	

	rsa2048_demo();	
涉及到的常用功能块	无	
示例测试步骤	1. 打开宏定义 DEMO_ RSA;	
	2. 编译, 升级成功后, 在 uart0 打印的控制台信息	
	中能看到对应命令;	
	3. 通过 uart0 发送 t-rsa,uart0 会打印	
	[CMD]t-rsarsa test start	
	rsa128 test sucess	
	rsa256 test sucess	
	rsa512 test sucess	
	rsa1024 test sucess	
	rsa2048 test sucess	
	rsa test end	

4.6 **DEMO_RTC** 操作步骤

功能描述	本例实现了芯片内置的 RTC 的使用步骤;	
命令格式	t-rtc	
涉及到的常用 api(其中 api 的具	tls_set_rtc();	
体释义请参考相关头文件注释)	tls_rtc_isr_register();	
	tls_rtc_timer_start();	
	tls_get_rtc();	
	tls_os_time_delay();	

涉及到的常用功能块	无	
示例测试步骤	1.	打开宏定义 DEMO_ RTC;
	2.	编译, 升级成功后, 在 uart0 打印的控制台信息
		中能看到对应命令;
	3.	通过 uart0 发送 t-rtc 开启 rtc clock, 20 秒时
		uart0 会打印 rtc clock 表示进入 rtc 中断。

4.7 **DEMO_TIMER** 操作步骤

_	
功能描述	本例实现了芯片内置的硬件定时器的使用方法;
	备注: , 芯片共内置有 5 个定时器, 相关的 api
	"tls_timer_create"会返回当前未使用到的定时器句柄
	号;定时器的时间单位可设置成微妙或者毫秒两种。
命令格式	t-timer
涉及到的常用 api(其中 api 的具	tls_timer_create();
体释义请参考相关头文件注释)	tls_timer_start();
涉及到的常用功能块	无
示例测试步骤	1. 打开宏定义 DEMO_ TIMER;
	2. 编译, 升级成功后, 在 uart0 打印的控制台信息
	中能看到对应命令;
	3. 通过 uart0 发送 t-timer 开启 timer,uart0 每
	2 秒打印 timer irq 表示进入 timer 中断。

4.8 **DEMO_PWM** 操作步骤

功能描述	本例实现了芯片内置的 PWM 外设的使用方法;
命令格式	t-pwm=(1,250,99,4,0) 第一个参数为通道序号,包含两
	组复用,序号 0-4 分别对应 demo 中的 PB00、PB01、
	PB02、PB03、PA07 共五路,5-9 对应 PB19、PB20、
	PA00、PA01、PA04;第二个参数是期望输出的 pwm
	频率; 第三个参数是占空比, 比如此处是 99 则表示实际
	占空比为 99/255; 第四个参数表示当前模式, 其中 4
	表示独立模式,即只此路 pwm 输出波形;第 5 个参数
	表示输出的波形周期数,其中 0 表示持续输出波形。具
	体定义可参考函数 pwm_demo()的上方注释。
涉及到的常用 api(其中 api 的具	wm_pwm0_config();
体释义请参考相关头文件注释)	wm_pwm1_config();
	wm_pwm2_config();
	wm_pwm3_config();
	wm_pwm4_config();
	tls_pwm_stop();
	tls_pwm_init();
	tls_pwm_start();
	tls_pwm_out_init();
	tls_pwm_isr_register();
	tls_pwm_cap_init();

	tls_dma_start();
	tls_dma_irq_register();
涉及到的常用功能块	pwm_demo_allsyc_mode();
	pwm_demo_multiplex_config();
	pwm_demo_2syc_mode();
	pwm_demo_mc_mode();
	pwm_demo_break_mode();
	pwm_isr_callback();
	pwm_capture_mode_int();
	pwm_capture_mode_dma();
示例测试步骤	1. 打开宏定义 DEMO_ PWM;
	2. 编译, 升级成功后, 在 uart0 打印的控制台信息
	中能看到对应命令;
	3. 通过 uart0 发送 t-pwm=(1,250,99,4,0),示波器
	量 PB01 可以测到 250Hz,占空比约为
	39%(99/255)的波形。

4.9 **DEMO_PMU** 操作步骤

注:此 DEMO 下有两个演示示例。

4.9.1 t-pmuT0

功能描述	本例实现了控制设备进入 standby 的低功耗模式并定时
	将其唤醒的功能;

命令格式	t-pmuT0
涉及到的常用 api(其中 api 的具	tls_pmu_timer0_isr_register();
体释义请参考相关头文件注释)	tls_pmu_timer0_start();
	tls_pmu_standby_start();
涉及到的常用功能块	无
示例测试步骤	1. 打开宏定义 DEMO_ PMU;
	2. 编译,升级成功后,在 uart0 打印的控制台信息
	中能看到对应命令;
	3. 通过 uart0 发送 t-pmuT0 模块启动 timer0 进
	入 standby,10 秒左右 uart0 打印模块复位,
	表示 timer0 中断唤醒。

4.9.2 t-pmuT1

功能描述	本例实现了
命令格式	t-pmuT1
涉及到的常用 api(其中 api 的具	tls_pmu_timer1_isr_register();
体释义请参考相关头文件注释)	tls_pmu_timer1_start();
	tls_pmu_standby_start();
涉及到的常用功能块	无
示例测试步骤	1. 打开宏定义 DEMO_ PMU;
	2. 编译,升级成功后,在 uart0 打印的控制台信息
	中能看到对应命令;

3. 通过 uart0 发送 t-pmuT1 模块启动 timer1 进入 standby, 5 秒左右 uart0 打印模块复位, 表示 timer1 中断唤醒。

4.10**DEMO_I2C** 操作步骤

注:此 DEMO 需要 AT24CXX 芯片

功能描述	本例实现了使用芯片内置的 i2c 模块来向 at24cxx 设备
	来进行写读数据的过程;
	备注:上图所示的测试板上默认接口上拉电阻,如果用
	户使用其它 i2c 设备测试不成功进,需要检查下连接电
	路的两条线上是否有上拉或者下拉。此处是不可以有下
	拉电阻的。
命令格式	t-i2c
涉及到的常用 api(其中 api 的具	wm_i2c_scl_config();
体释义请参考相关头文件注释)	wm_i2c_sda_config();
	tls_i2c_init();
	tls_i2c_write_byte();

	tls_i2c_wait_ack();
	tls_i2c_read_byte();
涉及到的常用功能块	AT24CXX_ReadOneByte();
	AT24CXX_ReadLenByte();
	AT24CXX_WriteOneByte();
	AT24CXX_Write();
示例测试步骤	1. 打开宏定义 DEMO_I2C;
	2. 编译,升级成功后,在 uart0 打印的控制台信息
	中能看到对应命令;
	3.模块 PIN 连接 AT24CXX 芯片:
	4.PA01接SCL,PA04接SDA,GND接GND,
	VCC 接 3.3v
	5. 通过 uart0 发送 t-i2c ,uart0 返回
	[CMD]t-i2c
	AT24CXX check success
	read data is:AT24CXX I2C TEST OK

4.11**DEMO_I2S** 操作步骤

功能描述	此 DEMO 用于演示设备进行 i2s 格式的数据通信。
	需要另一个相应的主设备或者从设备来配合发送或者接
	收数据。

	备注:接线方式 ck-ck ws-ws, di-do, do-di
命令格式	<pre>* @param[in] format * - \ref 0: i2s * - \ref 1: msb * - \ref 2: pcma * - \ref 3: pcmb * @param[in] tx_rx * - \ref 1: transmit * - \ref 2: receive * @param[in] freq * sample rate * @param[in] datawidth * - \ref 8: 8 bit * - \ref 16: 16 bit * - \ref 32: 32 bit * @param[in] stereo * - \ref 32: 32 bit * @param[in] stereo * - \ref 0: stereo * - \ref 1: mono * @param[in] mode * - \ref 1: dma * @retval * @note * t-i2s=(0,1,44100,16,0,0) M_I2S send(ISR mode) * t-i2s=(0,2,44100,16,0,0) S_I2S recv(ISR mode) * t-i2s=(0,2,44100,16,0,0) S_I2S recv(DMA mode) * t-i2s=(0,2,44100,16,0,1) S_I2S recv(DMA mode)</pre>
涉及到的常用 api(其中 api 的具	wm_i2s_port_init();
体释义请参考相关头文件注释)	wm_i2s_tx_int();
	wm_i2s_rx_int();
	wm_i2s_tx_rx_int();
	wm_i2s_tx_dma();
	wm_i2s_rx_dma();
	wm_i2s_tx_rx_dma();
涉及到的常用功能块	无
示例测试步骤	1. 打开宏定义 DEMO_ I2S;
	2. 编译, 升级成功后, 在 uart0 打印的控制台信息

中能看到对应命令;

- 3. 设备相应的 pin 接测试设备对应的 pin: 设备侧的引脚定义为: ck--PB08, ws--PB09, di--PB10, do--PB11, 四条信号线接好后还需要将两个通信设备共地。
- 4. 通过两个设备的 uart0 发送 t-i2sioinit 让设备初始化 io;
- 5. 通过 uart0 发送 t-i2s=(0,2,44100,16,0,1)将使用 DMA 方式来接收数据,此时的设备将处于slave 状态;
- 6. 通过 uart0 发送 t-i2s=(0,1,44100,16,0,1)将使用 DMA 方式来发送数据,此时的设备将处于master 状态(slave 端会打印全双工和半双工接收数据的对比结果);
- 7. 复位设备, 重新初始化 io;
- 8. 通过 uart0 发送 t-i2s=(0,4,44100,16,0,1)将使用 DMA 方式来接收数据,此时的设备将处于slave 状态;
- 9. 通过 uart0 发送 t-i2s=(0,3,44100,16,0,1)将使用 DMA 方式来发送数据,此时的设备将处于master 状态(两端会打印全双工和半双工接收数据的对比结果)。

4.12**DEMO_MASTER_SPI** 操作步骤

功能描述	本例实现了芯片侧作为 master 通过 spi 接口与 slave 侧的设
	备进行数据收发的过程;
	备注:测试此示例时,如果有需要可以在四条信号线上串口几
	十欧姆的电阻来保证通信正常。
	此 DEMO 需要下载对端代码;
命令格式	t-mspi-s
	t-mspi-r
涉及到的常用 api(其中 api	tls_spi_trans_type();
的具体释义请参考相关头文	tls_spi_setup();
件注释)	tls_spi_write();
	tls_spi_read();
涉及到的常用功能块	无
示例测试步骤	1. 打开宏定义 DEMO_ MASTER_SPI;
	2. 编译,升级成功后,在 uart0 打印的控制台信息中能
	看到对应命令;
	3.用 keil 打开
	STM32_SOC_TEST_SLAVE_SPI\Project\
	STM32F10x_StdPeriph_Template\MDK-ARM\Project
	编译后通过 jlink 给 stm32 升级;
	注:STM32 开发板型号: STM32_Mini_V2.0

4. 模块 PIN 连接对端 stm32(PA9tx, PA10rx 作为打印

口):

PB4 接 PB12(cs), PB2 接 PB13(ck), PB3 接 PB14(so), PB5 接 PB15(si), GND 接 GND;

5. 通过 uart0 发送 t-mspi-s(1000000,0)发送 1500 数据,stm32 的 uart0 打印

down data len: 1500;

6. 通过 uart0 发送 t-mspi-r,模块 uart0 打印
[CMD]t-mspi-rSPI Master receive 1500 byte,
modeA, little endian

rcv data len: 1500.

4.13 DEMO ADC 操作步骤

功能描述	本例实现了 ADC 针对芯片温度采集和外部输入电压检测的功		
	能		
命令格式	t-adcvolt(x), x 取值 0 表示通道 0, 1 表示通道 1, 8 表示差		
	分;		
	t-adctemp		

涉及到的常用 api(其中 api	adc_temp	
的具体释义请参考相关头文	wm_adc_config	
件注释)	adc_get_inputVolt	
涉及到的常用功能块	无	
示例测试步骤	1) 针对芯片温度测试,串口 0 直接输入 t-adctemp 命令执	
	行即可返回当前的芯片温度:tem:xxx	
	2) 针对输入电压, 串口 0 输入命令:	
	单端测试:t-adcvolt(0)或者 t-adcvolt(1)	
	差分测试:t-adcvolt(8)	
	执行完成后,返回:	
	chan:x, xxxx(mV) or x.xxx(V)	

4.14**DEMO_SLAVE_SPI 操作步骤**

功能描述	本例实现了设备作为 slave 时通过 HSPI 或者 SDIO 接口与主		
	设备进行数据通信的过程;		
	注:此 DEMO 使用 W800_ARDUINO_V1.0 开发板,并且需要		
	下载对端代码,STM32 开发板型号:STM32_Mini_V2.0。下		
	图为主机开发板;		
	STR32-hant Use 1 1923		

命令格式	t-sspi(0)使用 HSPI SLAVE 接口		
	t-sspi(1)使用 SDIO SLAVE 接口		
涉及到的常用 api(其中 api	wm_hspi_gpio_config();		
的具体释义请参考相关头文	wm_sdio_slave_config();		
件注释)	tls_slave_spi_init();		
	tls_set_high_speed_interface_type();		
	tls_set_hspi_user_mode();		
	tls_hspi_rx_data_callback_register();		
	tls_hspi_rx_cmd_callback_register();		
涉及到的常用功能块	无		
示例测试步骤	1. 打开宏定义 DEMO_ SLAVE_SPI		
	2. 编译,升级成功后,在 uart0 打印的控制台信息中能		
	看到对应命令;		
	3. 用 keil 打开 stm32_ucos_ri\uCOSDemo 编译后通过		
	jlink 给 stm32 升级;		
	4. 模块 PIN 连接对端 stm32(PA9tx, PA10rx 作为打印		
	□):		
	PB09 接 PA4(cs),PB06 接 PA5(ck),PB11 接		
	PA6(mi),PB10 接 PA7(mo),PB07 接 PA2(cts),		
	GND 接 GND		
	5. 通过 uart0 发送 t-sspi(0)		

6. 复位 stm32,模块 uart0 打印:
HspiRxCmdCb
rx[5] :5a 00 05 01 60
RX ok 100
RX ok 200
RX ok 300
7. Stm32 打印:
###kevin debug
tx start cmd
kevin debug TX_BUFF_AVAIL = 3, cmdlen=8
RX ok 100
RX ok 200
RX ok 300

4.15**DEMO_SDIO_HOST 操作步**骤

功能描述	本例实现了通过芯片内置的 sdio 接口来对 sd 卡进行读写操		
	作的过程;		
命令格式	t-sdh		
涉及到的常用 api(其中 api	wm_sd_card_set_bus_width();		
的具体释义请参考相关头文	wm_sd_card_set_blocklen();		
件注释)	wm_sd_card_block_write();		
	wm_sd_card_block_read();		

	wm_sd_card_blocks_write();		
	wm_sd_card_blocks_read();		
涉及到的常用功能块	无		
示例测试步骤	1,打开宏定义 DEMO_SDIO_HOST;		
	2,编译,升级成功后,在 uart0 打印的控制台信息中能		
	看到对应命令;		
	3,在开发板上接好 sd 卡,本示例使用的 IO 口为		
	PB06-PB11;		
	4,通过 uart0 发送 t-sdh;		
	5,设备收到串口 0 的命令后分别使用中断方式和 dma		
	的方式来向 sd 卡的指定 block 写入并读出数据;若写入		
	的和读出的数据均相同,则会打印测试成功相关的消息;		
	若有不同则会打印失败相关的消息。		

5 应用类 DEMO 功能描述

5.1 **DEMO_STD_SOCKET_CLIENT** 操作步骤

注:通过 uart0 发送 demohelp 模块 uart0 会返回控制台信息。

功能描述	本例实现了使用标准的 socket 函数来创建 tcp 客户端来与		
	同局域网内 PC 上的服务器端进行数据通信的过程;设备端		
	作为客户端,会将从服务端收到的数据的长度打印出来,并		
	将数据通过串口发送出去;		
命令格式	t-sockc(port, ip)		

	+ 61.66	od/lon wart trans)
	t-skcsnd(len, uart_trans)	
涉及到的常用 api(其中 api	socket();	
的具体释义请参考相关头文	conne	ct();
件注释)	closes	ocket();
	recv();	
	tls_ua	rt_write();
涉及到的常用功能块	无	
示例测试步骤	1.	打开宏定义 DEMO_STD_SOCKET_CLIENT 和
		DEMO_CONNECT_NET;
	2.	编译,升级成功后,在 uart0 打印的控制台信息中
		能看到对应命令;
	3.	通 过 uart0 发 送
		t-connect("TEST_N40_6","1234567890") 让 模 块
		加网;
	4.	在与模块同网络的 PC(ip 为 192.168.1.100)上打
		开调试助手 tcp server 端口号 1000;
	5.	通过 uart0 发送 t-sockc(1000,192.168.1.100)让模
		块创建 tcp client 连接对端 server, 连接成功后
		uart0 会打印 socket num;
	6.	Server 发数据,模块收到数据后 uart0 会打印收到
		的数据长度,每次累加;
	7.	通过 uart0 发送 t-skcsnd(0,1)设置使用 uart1 透

	传;
8.	串口工具设置波特率 115200、校验位 NONE、数据
	位 8、停止位 1 打开 uart1 <i>,</i> 通过 uart1 与 server
	双向透传;

5.2 **DEMO_STD_SOCKET_SERVER** 操作步骤

端来与		
同局域网内 PC 上的客户端端进行数据通信的过程;		
设备端建立 tcp server 成功后,可以在 PC 打开工具建立		
client 端与来与其建立连接;建立连接成功后,通过工具由		
PC 向设备发送数据,设备收到后会打印收到的数据的累加		
据被传		
输到 PC 的 client 处;		
t-socks(port)		
connect();		
1		

	send()	;
	tls_uaı	rt_write();
涉及到的常用功能块	无	
示例测试步骤	1.	打开宏定义 DEMO_STD_SOCKET_ SERVER 和
		DEMO_CONNECT_NET;
	2.	编译,升级成功后,在 uart0 打印的控制台信息中
		能看到对应命令;
	3.	通 过 uart0 发 送
		t-connect("HUAWEI-6SEWE5","123456789") 或
		t-oneshot 让模块加网;
	4.	通过 uart0 发送 t-socks(2000)让模块创建 tcp
		server,uart0 会打印监听的端口;
	5.	在与模块同网络的 PC 上打开调试助手, 创建 tcp
		client (设置模块的 ip 和端口号) 连接模块 server,
		连接成功后 uart0 会打印 client 信息(模块 server
		最多连接 7 个 client);
	6.	client 发数据,模块收到数据后 uart0 会打印收到
		对应连接的数据长度,每次累加;
	7.	通过 uart0 发送 t-skssnd(1,16,0)使用 1 号连接发
		送长度 16 的固定数据,client 能收到数据;
	8.	通过 uart0 发送 t-skssnd(1,0,1)设置 1 号连接在
		uart1 透传;

9. 串口工具设置波特率 115200、校验位 NONE、数据
位 8、停止位 1 打开 uart1 <i>,</i> 通过 uart1 与 client
双向透传。

5.3 **DEMO_SOCKET_CLIENT_SERVER** 操作步骤

本测试宏开关下共有两个示例,分别是设备作为 tcp client 与设备作为 tcp server。

5.3.1 t-client

功能描述	本例实现了使设备去连接指定名称和密码的路由器,并建立 tcp
	客户端,再去连接指定地址和端口的 tcp 服务端并进行数据通信
	的过程;
命令格式	t-client("ssid","password",port, "ip")
涉及到的常用 api(其中	socket();
api 的具体释义请参考	connect();
相关头文件注释)	closesocket();
	recv();
	tls_wifi_connect();
涉及到的常用功能块	<pre>static int c_connect_wifi(char *ssid, char *pwd) { if (!ssid) { return WM_FAILED; } printf("\nssid:\%s\n", ssid); printf("password=\%s\n", pwd); tls_netif_add_status_event(c_con_net_status_changed_event); tls_wifi_connect((u8 *)ssid, strlen(ssid), (u8 *)pwd, strlen(pwd)); return 0; }</pre>
示例测试步骤	1, 打开宏定义 DEMO_SOCKET_CLIENT_SERVER、
	DEMO_CONNECT_NET;

2,编译,升级成功后,在 uart0 打印的控制台信息中能看到
对应命令;
3,在 PC 上建立一个 tcp server,设置监听端口为 8080。
4 <i>,</i> 通过 uart0 发送 t-client("TEST_N40_6","1234567890",
8080, "192.168.1.100"); 其中的四个参数分别为待连接路
由器的名称,密码,待连接服务器的端口号及 ip 地址。
5,设备收到串口0的命令后会去连接路由器,连接路由成功
后会去连接服务器;连接服务器成功后会向其发送一条消息;
用户可以在服务器侧看到此消息,此时可通过服务器返回一条
消息给设备,设备收到消息后会有相应打印;

6,设备会一直处于发送接收再发送再接收的过程,直到连接

5.3.2 t-server

功能描述	本例实现了使设备去连接指定名称和密码的路由器,并建立 tcp 服务端,	
	再去接收客户端的连接并与其进行数据通信的过程;	
命令格式	t-server("ssid","password", port,)	
涉及到的常用	socket();	
api(其中 api 的	connect();	
具体释义请参考	closesocket();	
相关头文件注释)	recv();	
	bind();	

断开。


```
listen();
              accept();
              send();
              tls wifi connect();
              static int s connect wifi(char *ssid, char *pwd)
涉及到的常用功
                 if (!ssid)
                    return WM_FAILED;
能块
                 printf("\nssid:%s\n", ssid);
                 printf("password=%s\n", pwd);
                 tls_netif_add_status_event(s_con_net_status_changed_event);
                 tls wifi connect((u8 *)ssid, strlen(ssid), (u8 *)pwd, strlen(pwd));
                 return 0;
示例测试步骤
                 1, 打开宏定义 DEMO SOCKET CLIENT SERVER、
                 DEMO CONNECT NET;
                 2,编译,升级成功后,在 uart0 打印的控制台信息中能看到对应命
                 令;
                 3,通过 uart0 发送 t-server("TEST_N40_6","1234567890", 8080,);
                 其中的三个参数分别为待连接路由器的名称,密码,服务器的端口
                 号。
                 4,设备收到串口0的命令后会去连接路由器,连接路由成功后会打
                 印 ip 地址并去建立 tcp 服务器,并监听自己的 8080 端口;
                 5, 在处于相同局域网的 PC 上使用 tcp 工具建立一个 tcp 客户端去
                 连接此服务器的 ip 和端口; 建立成功后, 可以通过工具向其发送数
                 据;
                 6,服务器收到数据后,会向客户端侧发送"message from
                 server"的字符串。
```


7,设备将一直处于接收,发送,再接收再发送的过程,直到连接断
开。

5.4 **DEMO_UDP 操作步骤**

注:此 DEMO 下有三个演示 DEMO,需要使用抓包网卡

5.4.1 UDP 广播

│功能描述 	本例实现了通过 udp 方式来向外广播数据的过程;
命令格式	t-udp(mode,port,ip)
	t-sndudp(len)
涉及到的常用	tls_netif_get_ethif()
api(其中 api 的	socket()
具体释义请参考	bind()
相关头文件注释)	closesocket()
	setsockopt()
	recvfrom()
	sendto();
涉及到的常用功	<pre>ethif = tls_netif_get_ethif(); printf("local ip: %d.%d.%d.%d\n", ip4_addr1(ip_2_ip4(&ethif->ip_addr)), ip4_addr2 ip4_addr3(ip_2_ip4(&ethif->ip_addr)), ip4_addr4(ip_2_ip4(&ethif->ip_addr)));</pre>
能块	
示例测试步骤	1. 打开宏定义 DEMO_UDP 和 DEMO_CONNECT_NET;
	2. 编译,升级成功后,在 uart0 打印的控制台信息中能看到对应
	命令;
	3. 通过 uart0 发送 t-connect("TEST_N40_6","1234567890")或

t-oneshot 让模块加网;

4. 通过 uart0 发送 t-udp(0,1000,0)uart0 打印

udp demo,cast:0, port:1000

localip: 192.168.1.104

local port:3000

5. 在与模块同网络的 PC 上打开调试助手 udp 端口 1000;

6. 通过 uart0 发送 t-sndudp(10), 抓包网卡可以抓到模块到路由器的 Destination 为 Ethernet Broadcast 的包,同时调试助手收到了 10 个数据;

7. 调试助手发数据,模块收到数据后 uart0 会打印地址和数据长度。

5.4.2 UDP 单播

功能描述	本例实现了通过 udp 方式来向指定设备单播数据的过程;	
命令格式	t-udp(mode,port,ip)	
	t-sndudp(len)	
涉及到的常用	tls_netif_get_ethif()	
api(其中 api 的	socket()	
具体释义请参考	bind()	
相关头文件注释)	closesocket()	
	setsockopt()	
	recvfrom()	
	sendto();	

涉及到的常用功	printf(<pre>tls_netif_get_ethif(); "local ip : %d.%d.%d.%d\n", ip4_addr1(ip_2_ip4(&ethif->ip_addr)), ip4_addr2 ip4_addr3(ip_2_ip4(&ethif->ip_addr)), ip4_addr4(ip_2_ip4(&ethif->ip_addr)));</pre>
能块		
示例测试步骤	1.	打开宏定义 DEMO_UDP 和 DEMO_CONNECT_NET;
	2.	编译,升级成功后,在 uart0 打印的控制台信息中能看到对应
		命令;
	3.	通过 uart0 发送 t-connect("TEST_N40_6","1234567890")或
		t-oneshot 让模块加网;
	4.	通过 uart0 发送 t-udp(1,1001,192.168.1.100)uart0 会打印
		udp demo,cast:1, port:1001
		localip: 192.168.1.104
		local port :3000
	5.	在与模块同网络的 PC (ip 为 192.168.1.100) 上打开调试助手
		连接 udp 端口 1001;
	6.	通过 uart0 发送 t-sndudp(10)抓包网卡可以抓到模块到路由器
		的 Destination 为 PC 网卡的包,同时调试助手收到了 10 个数
		据;
	7.	调试助手发数据,模块收到数据后 uart0 会打印地址和数据长
	~	度。

5.4.3 UDP 组播

功能描述	本例实现了通过 udp 方式来向外组播数据的过程;
命令格式	t-udp(mode,port,ip)

50

	t-sndudp(len)	
涉及到的常用	tls_netif_get_ethif()	
api(其中 api 的	socket()	
具体释义请参考	bind()	
相关头文件注释)	closesocket()	
	setsockopt()	
	recvfrom()	
	sendto();	
涉及到的常用功	<pre>ethif = tls_netif_get_ethif(); printf("local ip : %d.%d.%d.%d\n", ip4_addr1(ip_2_ip4(&ethif->ip_addr)), ip4_addr2</pre>	
能块		
示例测试步骤	1. 打开宏定义 DEMO_UDP 和 DEMO_CONNECT_NET;	
	2. 编译,升级成功后,在 uart0 打印的控制台信息中能看到对应	
	命令;	
	3. 通过 uart0 发送 t-connect("TEST_N40_6","1234567890")或	
	t-oneshot 让模块加网;	
	4. 通过 uart0 发送 t-udp(2,5100,224.1.2.1)uart0 会打印;	
	udp demo,cast:2, port:5100	
	localip : 192.168.1.104	
	local port :3000	
	setmuticast	
	5. 在与模块同网络的 PC 上打开组播工具, 在接收测试中添加地址	
	(组播地址为 224.1.2.1,端口为 5100),选择地址,点击接收按	

钮;
6. 通过 uart0 发送 t-sndudp(1024),组播工具中显示未丢包;
7. 在 PC 打开调试助手,设置目标组播地址 224.1.2.1 目标端口

3000, 发送数据, 模块收到数据后 uart0 打印地址和数据长度。

5.5 **DEMO_NTP** 操作步骤

注:此 DEMO 下有三个演示 DEMO

5.5.1 t-ntp

功能描述	本例实现了使用 ntp 方式来获取当前时间的过程;
命令格式	t-ntp
涉及到的常用 api(其中 api	tls_ntp_client();
的具体释义请参考相关头文	localtime();
件注释)	tls_set_rtc();
涉及到的常用功能块	<pre>static int isNetworkOk(void) { struct tls_ethif *etherIf = tls_netif_get_ethif(); return etherIf->status; } static void setAutoConnectMode(void) { u8 auto_reconnect = 0xff; tls_wifi_auto_connect_flag(WIFI_AUTO_CNT_FLAG_GET, &auto_reconnect); if(auto_reconnect != WIFI_AUTO_CNT_ON) { auto_reconnect = WIFI_AUTO_CNT_ON; tls_wifi_auto_connect_flag(WIFI_AUTO_CNT_FLAG_SET, &auto_reconnect); } }</pre>
示例测试步骤	1. 打开宏定义 DEMO_ NTP 和
	DEMO_CONNECT_NET;
	2. 编译, 升级成功后, 在 uart0 打印的控制台信息中能

看到对应命令;
3. 通过 uart0 发送
t-connect("TEST_N40_6","1234567890")或
t-oneshot 让模块加网(有外网);
4. 通过 uart0 发送 t-ntp, uart0 会打印当前时间。

5.5.2 t-setntps

功能描述	本例实现了通过命令来修改默认的 ntp 服务器的过程;
命令格式	t-setntps("ntp_server_name1","ntp_server_name2","ntp_server_name3")
涉及到的	tls_ntp_set_server()
常用	
api(其中	
api 的具	
体释义请	
参考相关	
头文件注	
释)	
涉及到的	无
常用功能	
块	
示例测试	1. 打开宏定义 DEMO_ NTP 和 DEMO_CONNECT_NET;

步骤	2. 编译,升级成功后,在 uart0 打印的控制台信息中能看到对应命令;
	3. 通过 uart0 发送 t-setntps("120.25.108.11", "ntp.sjtu.edu.cn",
	"us.pool.ntp.org")手动设置 ntp 服务器;
	4. 复位模块后,通过 uart0 发送 t-queryntps 返回
	[CMD]t-queryntps"120.25.108.11","ntp.sjtu.edu.cn","us.pool.ntp.o
	rg"
	5. 通过 uart0 发送 t-connect("TEST_N40_6","1234567890")或
	t-oneshot 让模块加网(有外网);
	6. 通过 uart0 发送 t-ntp , uart0 会打印当前时间。

5.5.3 t-queryntps

功能描述	本例实现了通过命令来查询当前所使用的 ntp 服务器名称的过
	程;
命令格式	t-queryntps
涉及到的常用 api(其中	tls_ntp_query_sntpcfg()
api 的具体释义请参考相	
关头文件注释)	
涉及到的常用功能块	无
示例测试步骤	1,打开宏定义 DEMO_ NTP 和 DEMO_CONNECT_NET;
	2,编译,升级成功后,在 uart0 打印的控制台信息中能看
	到对应命令;
	3,通过 uart0 发送

t-connect("TEST_N40_6","1234567890")或 t-oneshot 让模块加网(有外网);
4,通过 uart0 发送 t-queryntps, uart0 会打印当前所用到的 ntp 服务器的地址。

5.6 **DEMO_HTTP** 操作步骤

注: 此 DEMO 下有四个演示 DEMO, 需要下载 tomcat 服务器 (需要放置所需脚本文件) 和 hfs 服务器。相关配件的下载地址在官网 http://www.winnermicro.com/html/1/156/158/497.html 的软件资料标签页下的"配套 wmsdk demo 使用的工具代码:"处。

配套wmsdk demo使用的工具代码:

> WM ● SDK DEMO Tools.rar 更新日期: 2019年8月12日

百度网盘链接地址: https://pan.baidu.com/s/1C04KI6Q84kHSDrkDg5ZJDA 提取码: 62ak

下图分别为 tomcat 服务器启动后的页面以及 http 服务器添加固件就绪后的页面:

其中 hfs 服务器及 tomcat 服务器可以从网上下载,hfs 下载后直接可用,tomcat(已测试过 7.0.34 及 8.5.23 版本)服务器下载下来后需要在里面修改添加一些脚本文件。具体为将 tomcat 根目录下的 webapps 文件夹下的 TestWeb 文件夹替换为官方提供的 TestWeb 文

件夹(已在里面添加了测试 httpget httpput httppost 所需要的相应脚本文件)。

5.6.1 t-httpget

功能描述	本例实现了 http 格式数据通信中的 get 数据的过程;
命令格式	t-httpget=(http://xxx.xxx.xxx.xxx:8080/filepath/)
涉及到的常用	HTTPClientOpenRequest()
api(其中 api 的	HTTPClientSetVerb()
具体释义请参考	HTTPClientSendRequest()
相关头文件注释)	HTTPClientRecvResponse()
	HTTPClientReadData()
	HTTPClientCloseRequest()
涉及到的常用功	int http_get_demo(char *buf)
能块	HTTPParameters httpParams;
	<pre>memset(&httpParams, 0, sizeof(HTTPParameters)); httpParams.Uri = (char *)tls_mem_alloc(128); if(httpParams.Uri == NULL)</pre>
	<pre>f printf("malloc error.\n"); return WM_FAILED;</pre>
	memset(httpParams.Uri, 0, 128);
	<pre>sprintf(httpParams.Uri, "http://%d.%d.%d.%d:8080/TestWeb/", httpParams.Verbose = TRUE; printf("Location: %s\n", httpParams.Uri);</pre>
	http_get(httpParams); tls_mem_free(httpParams.Uri);
	return WM_SUCCESS; }
示例测试步骤	1. 打开宏定义 DEMO_HTTP 和 DEMO_CONNECT_NET;
	2. 编译, 升级成功后, 在 uart0 打印的控制台信息中能看到对应命
	令;
	3. 通过 uart0 发送 t-connect("TEST_N40_6","1234567890")或

t-oneshot 让模块加网;

- 4. 在与模块同网络的 PC (ip 为 192.168.1.100) 上打开 tomcat 服务器并放置文件;
- 5. 通过 uart0 发送 t-httpget, uart0 返回

[CMD]t-httpgetLocation:

http://192.168.1.100:8080/TestWeb/

HTTP Client v1.0

Start to receive data from remote server...

<html>

<body>

<h2>Hello World!</h2>

<form method="POST" action="/TestWeb/login.do">

userd: <input id="user" type="text" name="user"/>

<input type="submit" value="Submit" />

<div> </div>

</form>

</body>

</html>

HTTP Client terminated 1000 (got 213 b)

5.6.2 t-httpput

功能描述	本例实现了 http 格式数据通信中的 put 数据的过程;
命令格式	t-httpput=("put_data")
涉及到的常用 api(其中	HTTPClientOpenRequest()
api 的具体释义请参考相	HTTPClientSetVerb()
关头文件注释)	HTTPClientSendRequest()
	HTTPClientRecvResponse()
	HTTPClientReadData()
	HTTPClientCloseRequest()
涉及到的常用功能块	<pre>int http_put_demo(char *putData) { HTTPParameters httpParams; memset(&httpParams, 0, sizeof(HTTPParameters)); httpParams.Uri = (char *)tls_me[n_alloc(128); if(httpParams.Uri == NULL) { printf("malloc error.\n"); return WM_FAILED; } memset(httpParams.Uri, 0, 128); sprintf(httpParams.Uri, "http://%d.%d.%d.%d.%d.8080/Tprintf("Location: %s\n", httpParams.Uri); http_put(httpParams, putData); tls_mem_free(httpParams.Uri); return WM_SUCCESS; }</pre>
示例测试步骤	 打开宏定义 DEMO_HTTP 和 DEMO_CONNECT_NET; 编译,升级成功后,在 uart0 打印的控制台信息中能看到对应命令; 通过 uart0 发送 t-connect("TEST_N40_6","1234567890")或 t-oneshot 让模块加网; 在与模块同网络的 PC (ip 为 192.168.1.100) 上打开

tomcat 服务器并放置文件;

5. 通过 uart0 发送 t-httpput=(user=winnermicroput), uart0 返回

Location:

http://192.168.1.100:8080/TestWeb/login_put.do

HTTP Client v1.0

Start to receive data from remote server...

<!DOCTYPE html PUBLIC "-//W3C//DTD HTML

4.01 Transitional//EN"

"http://www.w3.org/TR/html4/loose.dtd">

<html>

<head>

<meta http-equiv="Content-Type"

content="text/html; charset=GBK">

<title>Insert title here</title>

</head>

<body>

:winnermicroput

</body>

</html>

HTTP Client terminated 1000 (got 277 b)

5.6.3 t-httppost

功能描述	本例实现了 http 格式数据通信中的 post 数据的过程;
命令格式	t-httppost=("post_data")
涉及到的常用 api(其	HTTPClientOpenRequest()
中 api 的具体释义请	HTTPClientSetVerb()
参考相关头文件注释)	HTTPClientSendRequest()
	HTTPClientRecvResponse()
	HTTPClientReadData()
	HTTPClientCloseRequest()
涉及到的常用功能块	<pre>int http_post_demo(char *postData) { HTTPParameters httpParams; memset(&httpParams, 0, sizeof(HTTPParameters)); httpParams.Uri = (char *)tls_mem_alloc(128); if(httpParams.Uri == NULL) { printf("malloc error.\n"); return WM_FAILED; } memset(httpParams.Uri, 0, 128); sprintf(httpParams.Uri, "http://%d.%d.%d.%d.%d.8080/Tprintf("Location: %s\n", httpParams.Uri); httpParams.Verbose = TRUE; http_post(httpParams, postData); tls_mem_free(httpParams.Uri); return WM_SUCCESS; }</pre>
示例测试步骤	1. 打开宏定义 DEMO_HTTP 和 DEMO_CONNECT_NET; 2. 编译,升级成功后,在 uart0 打印的控制台信息中能看到对应命令;
	3. 通过 uart0 发送 t-connect("TEST_N40_6","1234567890")或 t-oneshot

让模块加网;

- 4. 在与模块同网络的 PC(ip 为 192.168.1.100)上打开 tomcat 服务器并放置文件;
- 5. 通过 uart0 发送 t-httppost=(user=winnermicropost),

uart0 返回

Location:

http://192.168.1.100:8080/TestWeb/login.do

HTTP Client v1.0

Start to receive data from remote server...

<!DOCTYPE html PUBLIC "-//W3C//DTD HTML

4.01 Transitional//EN"

"http://www.w3.org/TR/html4/loose.dtd">

<html>

<head>

<meta http-equiv="Content-Type"

content="text/html; charset=GBK">

<title>Insert title here</title>

</head>

<body>

:winnermicropost

</body>

HTTP Client terminated 1000 (got 278 b)

5.6.4 t-httpfwup

功能描述	本例实现了设备通过 ota 的方式来完成固件升级功能。
命令格式	t-httpfwup=(http://192.168.1.100:80/w800_ota.img)
	上述命令中 ip 地址为 ota 服务器的 lp 地址,冒号后为相应的端口号;
涉及到的常用	t_http_fwup()
api(其中api的	
具体释义请参	
考相关头文件	
注释)	
涉及到的常用	无
功能块	
示例测试步骤	1. 打开宏定义 DEMO_HTTP 和 DEMO_CONNECT_NET;
	2. 编译,升级成功后,在 uart0 打印的控制台信息中能看到对应命
	令;
	3. 通过 uart0 发送 t-connect("TEST_N40_6","1234567890")或
	t-oneshot 让模块加网;
	4. 在与模块同网络的 PC (ip 为 192.168.1.100) 上打开 hfs 服务器,
	端口 8080,并放置名称为 WM_W800_SEC.img 的固件;

63

5. 通过 uart0 发送
t-httpfwup=(http://192.168.1.100:80/w800_ota.img), uart0
打印升级进度,模块升级成功后复位。升级压缩的 img。

5.7 **DEMO_SSL_SERVER** 操作步骤

功能描述	本例实现了 ssl server;允许其它客户端与设备侧建立 tls 连接;
	注:需要打开 TLS_CONFIG_SERVER_SIDE_SSL, 演示其他 DEMO 时
	需要关闭此宏开关。测试需要下载 openssl 或其他可以连接 ssl server
	的工具
命令格式	t-ssl-server
涉及到的常用	tls_ssl_server_init()
api(其中 api 的具	tls_ssl_server_load_keys()
体释义请参考相	tls_ssl_server_handshake()
关头文件注释)	tls_ssl_server_recv()
	tls_ssl_server_send()
	tls_ssl_server_close()
涉及到的常用功	无
能块	
示例测试步骤	具体 demo 测试步骤如下:
	1. 打开宏定义 DEMO_ SSL_SERVER 和 DEMO_CONNECT_NET;
	2. 编译,升级成功后,在 uart0 打印的控制台信息中能看到对应
	命令;

- 3. 通过 uart0 发送 t-connect("TEST_N40_6","1234567890")或 t-oneshot 让模块加网(ip 为 192.168.1.104);
- 4. 通过 uart0 发送 t-ssl-server, uart0 返回

[CMD]t-ssl-server

ssl server task

Listening on port 4433

- 5. 在与模块同网络的 PC 上打开 openssl, 执行命令 s_client connect 192.168.1.104:4433, 其中的 ip 地址及端口号为设备的 ip 地址及开放的相应端口号。
- 6. 此时模块的 uart0 打印

accept fd 1

tls_mem_alloc cp 2001ef88

tls_ssl_server_handshake rc 0

cp->time.tv_sec 0

下图为使用openssl(需要用户自己安装)工具连接ssl server成功后的命令行页面信息。

5.8 DEMO_WEBSOCKETS 操作步骤

注:此 DEMO 下有两个演示 DEMO,需要下载 WEBSOCKET SERVER 测试服务器。

5.8.1 websocket 不加密方式的数据通信

功能描述	本例实现了使用 websocket 的方式与 websocket 服务器建立不
	加密连接并收发数据的过程;
命令格式	t-websockets
涉及到的常用 api(其中	lws_create_context()
api 的具体释义请参考	lws_client_connect_via_info()
相关头文件注释)	lws_callback_on_writable()

	lws_service()
	lws_context_destroy()
	lws_write()
涉及到的常用功能块	<pre>static void setAutoConnectMode(void) { u8 auto_reconnect = 0xff; tls_wifi_auto_connect_flag(WIFI_AUTO_CNT_FLAG_GET, &auto_reconnect); if(auto_reconnect != WIFI_AUTO_CNT_ON) { auto_reconnect = WIFI_AUTO_CNT_ON; tls_wifi_auto_connect_flag(WIFI_AUTO_CNT_FLAG_SET, &auto_reconnect); } } static int isNetworkOk(void) { struct tls_ethif* etherIf= tls_netif_get_ethif(); return etherIf->status; }</pre>
示例测试步骤	1. 打开宏定义 DEMO_WEBSOCKETS 和
	DEMO_CONNECT_NET,关闭 LWS_USE_SSL; 2. 编译,升级成功后,在 uart0 打印的控制台信息中能看到对应命令; 3. 通过 uart0 发送 t-connect("TEST_N40_6","1234567890")或 t-oneshot 让模块加网; 4. 如果使用 WEBSOCKET_SERVER 测试服务器,在与模块同网络的 PC(ip 为 192.168.1.100)上命令行运行websocketdport=8080 echo_client.bat; 5. 通过 uart0 发送 t-websockets, uart0 返回 [CMD]t-websocketsCLIENT_ESTABLISHED send {"msg_type":"keepalive"} 2 recv:websocket server send

recv:{"msg_type":"keepalive"} 2	

5.8.2 websocket 加密方式的数据通信

功能描述	本例实现了使用 websocket 的方式与 websocket 服务器建立加
	密连接并收发数据的过程;
命令格式	t-websockets
涉及到的常用 api(其中	lws_create_context()
api 的具体释义请参考	lws_client_connect_via_info()
相关头文件注释)	lws_callback_on_writable()
	lws_service()
	lws_context_destroy()
	lws_write()
涉及到的常用功能块	<pre>static void setAutoConnectMode(void) { u8 auto_reconnect = 0xff; tls_wifi_auto_connect_flag(WIFI_AUTO_CNT_FLAG_GET, &auto_reconnect); if(auto_reconnect != WIFI_AUTO_CNT_ON) { auto_reconnect = WIFI_AUTO_CNT_ON; tls_wifi_auto_connect_flag(WIFI_AUTO_CNT_FLAG_SET, &auto_reconnect); } }</pre>
	<pre>static int isNetworkOk(void) { struct tls_ethif* etherIf= tls_netif_get_ethif(); return etherIf->status; }</pre>
示例测试步骤	1. 打开宏定义 DEMO_ WEBSOCKETS、
	DEMO_CONNECT_NET、LWS_USE_SSL <i>,</i> 如果使用
	WEBSOCKET_SERVER 测试服务器,请按
	wm_websockets_demo.c 中 Notice 步骤修改代码 (正

规服务器测试时	无需关注 Notice	中的步骤	3)	:
ハンロルスフリ ロロハン かいしょ		1 4 1 2 2 2 2 2 2 2 2	_	,	,

- 2. 编译,升级成功后,在 uart0 打印的控制台信息中能看到对应命令;
- 3. 通过 uart0 发送 t-connect("TEST_N40_6","1234567890")或 t-oneshot 让模块加网;
- 4. 如果使用 WEBSOCKET_SERVER 测试服务器,在与模块 同网络的 PC(ip 为 192.168.1.100)上命令行运行 websocketd --port=8080 --ssl --sslcert="certificate.pem" --sslkey="key.pem"
- 5. 通过 uart0 发送 t-websockets, uart0 返回
 [CMD]t-websocketsCLIENT_ESTABLISHED
 send {"msg_type":"keepalive"} 1
 recv:websocket server send

recv:{"msg type":"keepalive"} 1

5.9 **DEMO_HTTPS** 操作步骤

功能描述	本例实现了通过 https 的方式来获取网页数据的过程;
命令格式	t-https
涉及到的常用 api(其	Gethostbyname()

echo client.bat;

69

中 api 的具体释义请	HTTPWrapperSSLConnect()
参考相关头文件注释)	HTTPWrapperSSLSend()
	HTTPWrapperSSLRecv()
	HTTPWrapperSSLClose()
涉及到的常用功能块	无
示例测试步骤	1. 打开宏定义 DEMO_HTTPS、DEMO_CONNECT_NET、
	TLS_CONFIG_HTTP_CLIENT 和
	TLS_CONFIG_HTTP_CLIENT_SECURE;
	2. 编译,升级成功后,在 uart0 打印的控制台信息中能看到
	对应命令;
	3. 通过 uart0 发送
	t-connect("TEST_N40_6","1234567890")或 t-oneshot
	让模块加网(有外网);
	4. 通过 uart0 发送 t-https, uart0 会打印出
	https://www.tencent.com/legal/html/zh-cn/index.h
	tml 的内容(注意 demo 中有打印信息)。

5.10**DEMO_MQTT** 操作步骤

功能	本例实现了用例 mqtt 的方式与服务器建立连接并进行通信的过程;根据参数的不
描述	同,支持通过 TCP、TLS 和 websockets 方式连接 MQTT Broker;
命令	t-mqtt(type) type: 0-TCP; 1-TLS; 2-WS; 3-WSS
格式	

涉及	mqtt_init()
到 的	mqtt_connect()
常用	MQTTParseMessageType()
api(mqtt_subscribe()
其 中	mqtt_publish()
api	mqtt_parse_msg_id()
的具	mqtt_ping()
体 释	
义请	
参考	
相关	
头 文	
件注	
释)	
涉及	无
到 的	
常用	
功能	
块	
示 例	1. MQTT Broker 采用 mosquitto broker,配置参数为:
测试	listener 1883
步骤	allow_anonymous true

listener 8080

protocol websockets

socket domain ipv4

allow_anonymous true

listener 8883

cafile /etc/mosquitto/Myca/ca.crt

certfile /etc/mosquitto/Myca/server.crt

keyfile /etc/mosquitto/Myca/server.key

allow_anonymous true

#require_certificate true

#use_identity_as_username true

listener 8081

protocol websockets

socket domain ipv4

cafile /etc/mosquitto/Myca/ca.crt

certfile /etc/mosquitto/Myca/server.crt

keyfile /etc/mosquitto/Myca/server.key

allow_anonymous true

2. 打开宏定义 DEMO_MQTT 和 DEMO_CONNECT_NET;

3. 打开 wm mqtt demo.c, 根据 broker 的 ip 地址修改下面宏定义:

```
00046: #define MQTT DEMO CLIENT ID
                                               "wm mqtt client"
00047: #define MOTT DEMO TX PUB TOPIC
                                               "topic tx"
00048: #define MQTT DEMO RX PUB TOPIC
                                               "topic rx"
00049:
00050: #define MQTT DEMO SERVER ADDR
                                               "192.168.1.101"
00051: #define MQTT DEMO SERVER PORT TCP
                                                     1883
00052: #define MQTT DEMO SERVER PORT TLS
                                                    8883
00053: #define MQTT DEMO SERVER PORT WS
                                                    8080
00054: #define MQTT DEMO SERVER PORT WSS
                                                    8081
```

- 4. 编译,升级成功后,在 uart0 打印的控制台信息中能看到对应命令;
- 5. 通过 uart0 发送 t-connect("TEST_N40_6","1234567890")或 t-oneshot 让模块加网(有外网);
- 6. 通过 uart0 发送 t-mqtt(type), type 参数可选 0~3, uart0 会打印出和 broker 建立 mqtt 连接。
- 7. 下载安装 MQTTBox 软件, 打开 MQTTBox 窗口, 如下设置:

8. 点击 save 按钮即可和服务器建立连接,设置客户端订阅如下,点击右侧 "Subscribe"按钮订阅:

5.11**DEMO_DSP** 操作步骤

功能描述	本例实现了 DSP 的处理示例
命令格式	t-dsp(x),x 取值为 0,1,2,3,4
涉及到的常用	csky_fir_init_q15
api(其中 api	csky_fir_q15
的具体释义请	csky_mat_init_q31
参考相关头文	csky_mat_mult_q31
件注释)	csky_rfft_q15
	csky_sin_q31
	csky_var_q15

涉及到的常用	无
功能块	
示例测试步骤	1. 打开宏定义 DEMO_DSP;
	2. 编译, 升级成功后, 在 uart0 打印的控制台信息中能看到对应命令;
	3. 通过 uart0 发送 t-dsp(0),uart0 打印:dsp fir run success!
	4. 通过 uart0 发送 t-dsp(1),uart0 打印:dsp matrix cal run
	success!
	5. 通过 uart0 发送 t-dsp(2),uart0 打印:dsp rfft run success!
	6. 通过 uart0 发送 t-dsp(3),uart0 打印:dsp sin run success!
	7. 通过 uart0 发送 t-dsp(4) , uart0 打印 : dsp variance run success!

5.12**DEMO_BT** 操作步骤

注:此 DEMO 下有四个演示 DEMO。

5.12.1 Ble server 示例

功能描述	本例实现了 W800 作 Ble server 的处理示例, 此 DEMO 需要手机安装 nRF	
	Connect (从应用商店下载即可)	
命令格式	t-bt-on	
	t-bt-off	
	t-ble-server-on	
	t-ble-server-off	
涉及到的常用	tls_open_peripheral_clock	
api(其中 api	tls_bt_enable	

的具体释义请	tls_bt_disable
参考相关头文	tls_close_peripheral_clock
件注释)	
涉及到的常用	无
功能块	
示例测试步骤	1. 打开宏定义 DEMO_BT(确认使用 SDK 发布时默认 ble 的 lib,确
	认 wm_config.h 中打开宏定义 TLS_CONFIG_BLE、关闭宏定义
	TLS_CONFIG_BR_EDR);
	2. 编译, 升级成功后, 在 uart0 打印的控制台信息中能看到对应命令;
	3. 通过 uart0 发送 t-bt-on,uart0 打印 init base application 相关
	信息;
	4. 通过 uart0 发送 t-ble-server-on,成功后 uart0 打印
	[WM_I] <0:00:07.188> ### wm_ble_server_api_demo_init
	success
	5. 手机打开蓝牙,使用 nRF connect 扫描到设备(名称默认为
	WM-XX:XX:XX,即模块 btmac 后六位);
	WM-11:04:92 20:25:08:11:04:92 NOT BONDED
	6. App 连接设备(注意:如果 app 主动断开连接,此 DEMO 需要设
	置 t-ble-server-off 和 t-ble-server-on 重新开启才能正常连接);

点击 SEND 后, uart0 打印 app 发的数据: ###write cb12;

9. App 点击向下箭头,读取描述符,app 显示设备发的"Hello";

Descriptors:

Client Characteristic Configuration

UUID: 0x2902

Value: Incorrect data length (16bit expected): (0x)

48-65-6C-6C-6F, "Hello"

10. App 点击上下箭头, 使能 Indication;

- 11. App 再次点击上下箭头,关闭 Indications;
- 12. 通过 uart0 发送 t-ble-server-off, 关闭 demo server 功能;
- 13. 通过 uart0 发送 t-bt-off, uart0 打印 bt system cleanup host 相关信息。

5.12.2 Ble client 示例

功能描述	本例实现了 W800 作 Ble client 的处理示例,此 DEMO 需要使用两个开发	
	板,开发板 A 做 Ble server,开发板 B 做 Ble client。	
命令格式	t-bt-on	
	t-bt-off	
	t-ble-server-on	
	t-ble-server-off	
	t-ble-client-on	
	t-ble-client-off	
涉及到的常用	tls_open_peripheral_clock	
api(其中 api	tls_bt_enable	
的具体释义请	tls_bt_disable	
参考相关头文	tls_close_peripheral_clock	
件注释)		
涉及到的常用	无	
功能块		
示例测试步骤	1. 打开宏定义 DEMO_BT(确认使用 SDK 发布时默认 ble 的 lib,确	
	认 wm_config.h 中打开宏定义 TLS_CONFIG_BLE、关闭宏定义	
	TLS_CONFIG_BR_EDR);	
	2. 编译,两块开发板板升级固件,升级成功后,在 uart0 打印的控制	
	台信息中能看到对应命令;	

3. 开发板 A 通过 uart0 发送 t-bt-on,uart0 打印 init base
application 相关信息;
再通过 uart0 发送 t-ble-server-on;
4. 开发板 B 通过 uart0 发送 t-bt-on,uart0 打印 init base
application 相关信息;
再通过 uart0 发送 t-ble-client-on;
5. 此时 B 会扫描,连接,并使能 A 的 Indication 功能。A 会不停
向 B 通过 Indication 发送数据。B 间隔一段时间在 uart0 打印约
结果。

5.12.3 Ble 广播示例

功能描述	本例实现了 W800 作 Ble server 的处理示例, 此 DEMO 需要手机安装 nRF
	Connect (从应用商店下载即可)
命令格式	t-bt-on
	t-bt-off
	t-ble-adv=(type) type 定义为: 1 可连接广播; 2 不可连接广播; 0 停止
	广播
涉及到的常用	tls_open_peripheral_clock
api(其中 api	tls_bt_enable
的具体释义请	tls_bt_disable
参考相关头文	tls_close_peripheral_clock
件注释)	

涉及到的常用	无
功能块	
示例测试步骤	1. 打开宏定义 DEMO_BT(确认使用 SDK 发布时默认 ble 的 lib,确
	认 wm_config.h 中打开宏定义 TLS_CONFIG_BLE、关闭宏定义
	TLS_CONFIG_BR_EDR);
	2. 编译,升级成功后,在 uart0 打印的控制台信息中能看到对应命令;
	3. 通过 uart0 发送 t-bt-on,uart0 打印 init base application 相关
	信息;
	4. 通过 uart0 发送 t-ble-adv=(1) <i>,</i> 手机可以扫描到蓝牙设备 <i>,</i> 并且
	可以连接成功;
	5. 通过 uart0 发送 t-ble-adv=(2) <i>,</i> 手机可以扫描到蓝牙设备 <i>,</i> 并且
	不能连接;
	6. 通过 uart0 发送 t-ble-adv=(0) <i>,</i> 手机扫不到蓝牙设备。

5.12.4 Ble 扫描示例

功能描述	本例实现了 W800 作 Ble server 的处理示例, 此 DEMO 需要手机安装 nRF	
	Connect (从应用商店下载即可)	
命令格式	t-bt-on	
	t-bt-off	
	t-ble-scan=(type) type 定义为:1 开始扫描;0 关闭扫描	
涉及到的常用	tls_open_peripheral_clock	
api(其中 api	tls_bt_enable	

的具体释义请	tls_bt_disable	
参考相关头文	tls_close_peripheral_clock	
件注释)		
涉及到的常用	无	
功能块		
示例测试步骤	1. 打开宏定义 DEMO_BT(确认使用 SDK 发布时默认 ble 的 lib,确	
	认 wm_config.h 中打开宏定义 TLS_CONFIG_BLE、关闭宏定义	
	TLS_CONFIG_BR_EDR);	
	2. 编译, 升级成功后, 在 uart0 打印的控制台信息中能看到对应命令;	
	3. 通过 uart0 发送 t-bt-on,uart0 打印 init base application 相关	
	信息	
	4. 通过 uart0 发送 t-ble-scan=(1) <i>,</i> uart0 打印扫描结果	
	5. 通过 uart0 发送 t-ble-scan=(0) <i>,</i> uart0 停止打印	

5.13**DEMO_FATFS** 操作步骤

功能描述	本示例演示了如何使用设备来在 sd 卡上使用文件系统。
	备注:若 sd 卡容易过大,可能会出现尝试多次才能格式化成
	功的现象。这不影响正常的读写,可以根据实际需要来调整使
	用多大的空间来建立文件系统,可通过修改函数 disk_ioctl()
	中的 SDCardInfo.CardCapacity 的值来设置。
命令格式	t-fatfs
涉及到的常用 api(其中 api	wm_sdio_host_config()

的具体释义请参考相关头文	f_mkfs()
件注释)	f_mount()
	f_open()
	f_write()
	f_read()
	f_close()
涉及到的常用功能块	无
示例测试步骤	1,打开宏定义 DEMO_FATFS;
	2,编译,升级成功后,在 uart0 打印的控制台信息中能
	看到对应命令;
	3,在开发板上接好 sd 卡,本示例使用的 IO 口为
	PB06-PB11;
	4,通过 uart0 发送 t-fatfs;
	5,设备收到 uart0 的命令后会先格式化 sd 卡;
	格式化成功后去挂载文件系统;
	挂载成功后,建立一个新文件并向其中写入数据;
	写入成功后,在 uart0 打印写入的数据,再从文件中读取
	数据;
	读取成功后,在 uart0 打印读取的数据。

5.14**DEMO_MBEDTLS** 操作步骤

功能描述	本例实现了通过 https 的方式来获取网页数据的过程;
命令格式	t-mbedtls

84

涉及到的常用 api(其	
中 api 的具体释义请	
参考相关头文件注释)	
涉及到的常用功能块	无
示例测试步骤	1. 打开宏定义 DEMO_CONNECT_NET 和 DEMO_MBEDTLS;
	2. 编译,升级成功后,在 uart0 打印的控制台信息中能看到
	对应命令;
	3. 通过 uart0 发送
	t-connect("TEST_N40_6","1234567890")或 t-oneshot
	让模块加网(有外网);
	4. 通过 uart0 发送 t-mbedtls, uart0 会打印出
	https://www.tencent.com/legal/html/zh-cn/index.h
	tml 的内容(注意 demo 中有打印信息)。

5.15DEMO_AVOID_COPY 操作步骤

功能描述	本例实现了固件防拷贝的参考实现,注意该实现仅作为固件防拷贝
. 611	的参考设计,需用户根据自身安全需求,设计并实现自己的方法;
	且该方法应在固件启动时被调用。
命令格式	t-avoidcopy
涉及到的常用 api(其	tls_fls_read_unique_id()
中 api 的具体释义请	tls_crypto_aes_init()
参考相关头文件注释)	tls_crypto_aes_encrypt_decrypt()
涉及到的常用功能块	无

示例测试步骤	1. 打开宏定义 DEMO_AVOID_COPY;
	2. 编译,升级成功后,在 uart0 打印的控制台信息中能看到
	对应命令;
	3. 通过 uart0 发送 t- avoidcopy;
	4. Demo 根据固件是否加密 , 调用不同实现方法 , 打印 avoid
	copy secret/open firm start fail!表示固件防拷贝测试失
	败, 打印 avoid copy secret/open firm start success!表
	示固件防拷贝测试成功。