

Primer to Data Science

Pri Oberoi, Star Ying

Get started:

https://github.com/StarCYing/open_data_day_dc

Follow the readme.md instructions to setup for the workshop

The quick definition of data science

The quick definition of data science

Data Ingestion

Means Source Question Size Velocity

Data Munging and Wrangling

Warehouse Extract Transform Filter Aggregation Training

Computation and Analyses

Hypothesis Design Method Time

Modeling and Application

Supervised Unsupervised Regression Classification Clustering Etc...

Reporting and Visualization

Crucial
Active Learning
Error Detection
Mashups
Value

Modeling and Application

- Scope
 - What is the question/problem statement?
 - What data is available to answer this question?
- Explore
 - 'Initial data touch'
 - Summary statistics
 - Simple visualizations
- Clean
- Model
 - choose a machine learning model (more on that in a minute)
- Evaluate
 - figure out if your model is any good

Visualize

- Types
 - Boxplots
 - Scatter Plots
 - Tables
 - o etc...
- Tools
 - \circ R
 - Matplotlib

Choose a machine learning method

Choose a machine learning method

Regression

Predict a numerical target using predictors (which can be numerical and categorical)

Example dataset: patient age, diagnosis, surgery date, discharge date, number of months survival post-discharge, where we are trying to predict how long a patient survives post-discharge.

- Simple Linear Regression
- Multiple Linear Regression
- K-Nearest Neighbors Regression

Choose a machine learning method

Classification

Identifying which category an object belongs to

Example dataset: patient age, diagnosis, surgery date, discharge date, label of whether the patient died, where we are trying to predict whether a patient will survive

- Logistic Regression
- Multiple Logistic Regression
- Linear Discriminant Analysis
- K-Nearest Neighbors Classifier

Choose a machine learning method

Clustering

Grouping of similar objects into sets

Example datasets: clustering protein structures using amino acid sequence and secondary structures cluster structurally similar proteins together

- K-means
- Spectral Clustering
- Gaussian mixtures

Prediction Accuracy versus Model Interpretability

interpret

Linear regression assumes a linear shape, which is pretty straightforward

GAMs extend the linear model to allow for non-linear relationships. So it's more flexible than linear relationships but also less interpretable.

What news topics get published by NIST?

- K-Means Clustering on news published on <u>NIST's</u> newsfeed in 2014
- Their website doesn't indicate which subject area the article is about, so our data is unlabeled
- We know NIST publishes news on 15 subject areas, so we know k=15
- The goal is to find homogeneous clusters in your data, where we try to minimize the amount of variation within the cluster (Euclidean distance)
- Each iteration slightly improves the clustering

Optimizing

- Change the number of clusters (k)
- Change the stop_words to include words common in your dataset (for example, National Institute of Standards and Technology)
- Mess with the init parameters sklearn.cluster.KMeans
- If you have a lot more data and the computing time is getting ridiculous, try MiniBatchKMeans.

Resources

- MIT OpenCourseware
 - Machine Learning
 - Statistics
 - Probability
 - Linear Algebra
 - Algorithms
 - Optimization
- An Introduction to Machine Learning with Python (Rebecca Bilbro)
- Machine Learning map for <u>scikit learn</u> and <u>in general</u>
- Binge watch machine learning
- Introduction to Statistical Learning in R

Question, Comments, Contact

Check out more of our open work at:

http://www.commerce.gov/datausability