Comaion Control Methods; * Thermodynamic Methods; make metal immune/passive by altering doctrode potential. * Kinetic Methods; reduce corrosion rate (inhibitor addition). * Barrier Methods; prevent contact between metal surface and solution. Sacrificial Anados * Make the M-> Mm reaction occur at the cathode. So contact your material with a more reactive metal in the galvanic sories. + e.g. we Zn, Mg or Al as a sacrificial anodo for protecting a or Fe. Ti an't be used as it has a possibilition layer making it iset. E(v) * Metal Fe becomes cathode so does not corrade. * Sacrificial analos have a "THROWING POWER". As the protected metal has a vasiotance, it is better to have lots of small anodes than fewer large ones. * Hydrogen Embrittlement may occur at the cathode. Impressed Current Cathodic Protection (ICCP); * Recall Pourbaise; Recall Evans; Comosion

- * Can see that imposing a potential can make a motel either themsolynemically instruce or veduce its corresion rate by a great deal.

 * A potentiated can beep Ercer fried. We need I = A(ic-in) from Evan!.

 * Comparing ICCP to societicial anodos:
- Advantages Disdenntages Advantages
 - Don't need to replace anode Circuits can go wrong!
 Electronics can control current supply Charing Escap is difficult.
- * If Excer & too we, possibility logis can be destroyed and hydrogen ombrittlement may also occur.

Anodic Rottetion;

* This is where E is increased so metal is in passivating state. However must be careful as if possive layer is lost the commission rate will be high.

Cathodic Inhibitor;

E(v)

69.0(1)

- * For cathodic reaction 2H++2e -> Ha, inhibitors are As, Birmeth, Antimony ion Here was transfer of Ha from surface is reduced, so hydrogen embrittlement may be a problem.
- * For 2HaO + Oz + 4e -> 40H inhibitors are In or magnession inc.
 Those for insoluble hydroxides that reduce Oz different.

Anodic Inhibitory;

- * Oxidising agents such as chromate, nitrates and fenates and presence passivation (agens. * Other inhibitors react with motal ions to give an insoluble product that blocks the anode.
- * If too little inhibitor is added, Aa < Ac so comosion gets WORSE!

Other Inhibitors;

- * Adsorption Type; organic compounds that advants on mobal surface and reduces both avode and cathodo reaction.
- * Scavengers; react and remove consider reagents.

Barrier Methods;

- * Paint can be porous so only reduce, not clininate, conosian. So inhibitores are added to the paint, or more reactive metals to act as sacrificial anoda.
- * Plastic Coatings mylon/ PTFE/ glass are resistent to correcion.
- Metallic (conting) these should comode slower than the protected motal. Brinetallic (Galvanisation) offects should be considered. The coating must be uniform.

Other Methods;

- * Robust Design we thicker walls, good drainage, ensure smooth flows.
- * Modify Environment alter temp, , pH, disideed Os, relative humidity.

Detecting Corrosion;

- * Regular visual inspection.
- * Oltrasonic thickness checks.
- * Roolingraphy.