ÁLGEBRA LINEAR - 2017.2 (Avaliação 2)

ESCOLHA SOMENTE 5 QUESTÕES

- **1. (2,0 pontos)** Considere o espaço vetorial $P_2 = \{at^2 + bt + c; a, b, c \in \mathbb{R}\}$. Escreva o vetor $\vec{v} = 5t^2 5t + 7$ como combinação linear dos vetores $v_1 = t^2 2t + 1$, $v_2 = t + 2$ e $v_3 = 2t^2 t$.
- **2. (2,0 pontos)** Determine o valor de k para que o conjunto de vetores $\{(-1,0,2),(1,1,1),(k,-2,0)\}$ seja Linearmente Independente (LI).
- **3. (2,0 pontos)** Sejam os vetores $v_1 = (1,0,-1)$, $v_2 = (1,2,1)$ e $v_3 = (0,-1,0)$ do \mathbb{R}^3 . Verifique que $B = \{v_1, v_2, v_3\}$ é uma base do \mathbb{R}^3 .
- **4. (2,0 pontos)** No espaço vetorial do P_2 considere o produto interno $u(t) \cdot v(t) = \int_0^1 u(t)v(t)dt$. Calcule ||u(t)|| para $u(t) = t^2 2t$.
- **5. (2,0 pontos)** Seja o espaço vetorial \mathbb{R}^4 munido do produto interno usual. Determine um vetor não nulo desse espaço que seja ortogonal aos vetores $v_1 = (1,1,1,-1), v_2 = (1,2,0,1)$ e $v_3 = (-4,1,5,2)$.
- **6. (2,0 pontos)** Seja $B = \{(1,0,0), (0,1,1), (0,1,2)\}$ uma base não ortogonal do \mathbb{R}^3 . Obtenha uma base ORTONORMAL pelo processo de Gram-Schmidt.