Paper Review: On-The-Fly Static Analysis via Dynamic Bidirected Dyck Reachability

Krishna et al., POPL '24.

Jung Hyun Kim

SoftSec Lab., KAIST IS661 Spring, 2024

$$I \to I I | \alpha_1 I \overline{\alpha}_1 | \cdots | \alpha_k I \overline{\alpha}_k | \epsilon$$

$$I \to I I | \alpha_1 I \overline{\alpha}_1 | \cdots | \alpha_k I \overline{\alpha}_k | \epsilon$$

$$I \to I I | \alpha_1 I \overline{\alpha}_1 | \cdots | \alpha_k I \overline{\alpha}_k | \epsilon$$

Bidirected graph

$$I \to I I | \alpha_1 I \overline{\alpha}_1 | \cdots | \alpha_k I \overline{\alpha}_k | \epsilon$$

Bidirected graph

$$I \to I I | \alpha_1 I \overline{\alpha}_1 | \cdots | \alpha_k I \overline{\alpha}_k | \epsilon$$

Bidirected graph

 Dyck Reachability: two nodes have a path with labels following the grammar I:

$$I \to I I | \alpha_1 I \overline{\alpha}_1 | \cdots | \alpha_k I \overline{\alpha}_k | \epsilon$$

Bidirected graph

$$A \rightarrow (\alpha) \rightarrow B \rightarrow (\overline{\alpha}) \rightarrow C$$

$$C \rightarrow (\alpha) \rightarrow B \rightarrow (\overline{\alpha}) \rightarrow A$$

A, C: Dyck reachable

 Many analyses can be transformed into Dyck reachability problem: alias analysis, points-to analysis, etc.

 Many analyses can be transformed into Dyck reachability problem: alias analysis, points-to analysis, etc.

 Many analyses can be transformed into Dyck reachability problem: alias analysis, points-to analysis, etc.

$$d = f.L$$

 Many analyses can be transformed into Dyck reachability problem: alias analysis, points-to analysis, etc.

$$d = f.L$$

 Many analyses can be transformed into Dyck reachability problem: alias analysis, points-to analysis, etc.

$$d = f.L$$

 $f.L = c$

 Many analyses can be transformed into Dyck reachability problem: alias analysis, points-to analysis, etc.

$$d = f.L$$

 $f.L = c$

 Many analyses can be transformed into Dyck reachability problem: alias analysis, points-to analysis, etc.

 Many analyses can be transformed into Dyck reachability problem: alias analysis, points-to analysis, etc.

 Many analyses can be transformed into Dyck reachability problem: alias analysis, points-to analysis, etc.

ex) field-sensitive alias analysis:

c, d, e: Dyck reachable

• Continuous (on-the-fly) analysis: an analysis to be run in *real-time* for *constant changes*.

- Continuous (on-the-fly) analysis: an analysis to be run in realtime for constant changes.
 - We may run offline algorithms every time a change occurs.

- Continuous (on-the-fly) analysis: an analysis to be run in realtime for constant changes.
 - We may run offline algorithms every time a change occurs.

Type hints from an IDE

- Continuous (on-the-fly) analysis: an analysis to be run in *real-time* for *constant changes*.
 - We may run offline algorithms every time a change occurs.

```
1 SELECT *
2 FROM actor
3 WHERE UPPER(last_name) LIKE '%LI%'
4 ORDER BY last_name,
5 | first_name; las
```

Is offline algorithm efficient for constant changes?

rypo minio mom am ide

	Chatterjee ^[a]	Krishna
Offline time	$O(m + n \cdot \alpha(n))$	
Online time	$O(m^2 + m \cdot n \cdot \alpha(n))$	

Offline Algorithm

	Chatterjee ^[a]	Krishna
Offline time	$O(m + n \cdot \alpha(n))$	
Online time	$O(m^2 + m \cdot n \cdot \alpha(n))$	

Offline Algorithm

	Chatterjee ^[a]	Krishna
Offline time	$O(m + n \cdot \alpha(n))$	O(m·n·α(n))
Online time	$O(m^2 + m \cdot n \cdot \alpha(n))$	

Offline Algorithm

	Chatterjee ^[a]	Krishna
Offline time	$O(m + n \cdot \alpha(n))$	O(m·n·α(n))
Online time	$O(m^2 + m \cdot n \cdot \alpha(n))$	

Online time in worst cases $(m = n^2)$

Offline Algorithm

	Chatterjee ^[a]	Krishna
Offline time	$O(m + n \cdot \alpha(n))$	O(m·n·α(n))
Online time	$O(m^2 + m \cdot n \cdot \alpha(n))$	

Online time in worst cases (m =
$$n^2$$
)
 \rightarrow O(n^4) vs O(n^3)

Offline Algorithm

	Chatterjee ^[a]	Krishna
Offline time	$O(m + n \cdot \alpha(n))$	O(m·n·α(n))
Online time	$O(m^2 + m \cdot n \cdot \alpha(n))$	

Online time in worst cases (m =
$$n^2$$
)
 \rightarrow O(n^4) vs O(n^3)

→ n times faster than before!

We cannot avoid inevitable recalculation of reachability.

- We cannot avoid inevitable recalculation of reachability.
 - Then, reduce the recalculation cost as much as possible.

- We cannot avoid inevitable recalculation of reachability.
 - Then, *reduce* the recalculation cost as much as possible.
- Reduce the cost by maintaining primitive information.

- We cannot avoid inevitable recalculation of reachability.
 - Then, reduce the recalculation cost as much as possible.
- Reduce the cost by maintaining primitive information.
 - DSCC: SCC w/ Dyck reachability.

The Core Idea of Krishna Algorithm

- We cannot avoid inevitable recalculation of reachability.
 - Then, reduce the recalculation cost as much as possible.
- Reduce the cost by maintaining primitive information.
 - DSCC: SCC w/ Dyck reachability.
 - Maintain and reuse PDSCCs (Primary DSCC).

The Core Idea of Krishna Algorithm

- We cannot avoid inevitable recalculation of reachability.
 - Then, reduce the recalculation cost as much as possible.
- Reduce the cost by maintaining primitive information.
 - DSCC: SCC w/ Dyck reachability.
 - Maintain and reuse PDSCCs (Primary DSCC).
 - → Try not to recalculate DSCCs from scratch.

We focus on deletion case.

- We focus on deletion case.
 - Insertion case is trivial since we can just expand the DSCCs.

- We focus on deletion case.
 - Insertion case is trivial since we can just expand the DSCCs.

- We focus on deletion case.
 - Insertion case is trivial since we can just expand the DSCCs.

 $DSCC_1 = \{ A, C \}$

- We focus on deletion case.
 - Insertion case is trivial since we can just expand the DSCCs.

- We focus on deletion case.
 - Insertion case is trivial since we can just expand the DSCCs.

 $DSCC_1 = \{ A, C, D \}$

- We focus on deletion case.
 - Insertion case is trivial since we can just expand the DSCCs.

- We focus on deletion case.
 - Insertion case is trivial since we can just expand the DSCCs.
- Deletion case necessitates (non-trivial) recalculation of DSCCs.

- We focus on deletion case.
 - Insertion case is trivial since we can just expand the DSCCs.
- Deletion case necessitates (non-trivial) recalculation of DSCCs.

- We focus on deletion case.
 - Insertion case is trivial since we can just expand the DSCCs.
- Deletion case necessitates (non-trivial) recalculation of DSCCs.

- We focus on deletion case.
 - Insertion case is trivial since we can just expand the DSCCs.
- Deletion case necessitates (non-trivial) recalculation of DSCCs.

 $DSCC_1 = \{ B, D, F \}$ $DSCC_2 = \{ A, E \}$

- We focus on deletion case.
 - Insertion case is trivial since we can just expand the DSCCs.
- Deletion case necessitates (non-trivial) recalculation of DSCCs.

 $DSCC_1 = \{ B, D, F \}$ $DSCC_2 = \{ A, E \}$

• PDSCC: a maximal CC in an undirected graph (V, E) where

PDSCC: a maximal CC in an undirected graph (V, E) where
 E = { (p, q) | p, q ∈ V ∧ |path_{dyck}(p, q)| = 2 }.

- PDSCC: a maximal CC in an undirected graph (V, E) where $E = \{ (p, q) \mid p, q \in V \land |path_{dyck}(p, q)| = 2 \}.$
- Observation:

- PDSCC: a maximal CC in an undirected graph (V, E) where
 E = { (p, q) | p, q ∈ V ∧ |path_{dyck}(p, q)| = 2 }.
- Observation:
 - "DSCC consists of PDSCCs."

- PDSCC: a maximal CC in an undirected graph (V, E) where
 E = { (p, q) | p, q ∈ V ∧ |path_{dvck}(p, q)| = 2 }.
- Observation:
 - "DSCC consists of PDSCCs."
 - We can split the affected DSCCs into PDSCCs!

- PDSCC: a maximal CC in an undirected graph (V, E) where
 E = { (p, q) | p, q ∈ V ∧ |path_{dvck}(p, q)| = 2 }.
- Observation:
 - "DSCC consists of PDSCCs."
 - We can split the affected DSCCs into PDSCCs!
 - "We can over-approximate the candidates for DSCC splits."

- PDSCC: a maximal CC in an undirected graph (V, E) where
 E = { (p, q) | p, q ∈ V ∧ |path_{dvck}(p, q)| = 2 }.
- Observation:
 - "DSCC consists of PDSCCs."
 - We can split the affected DSCCs into PDSCCs!
 - "We can over-approximate the candidates for DSCC splits."
 - We can estimate and split the candidates!

- PDSCC: a maximal CC in an undirected graph (V, E) where
 E = { (p, q) | p, q ∈ V ∧ |path_{dvck}(p, q)| = 2 }.
- Observation:
 - "DSCC consists of PDSCCs."
 - We can split the affected DSCCs into PDSCCs!
 - "We can over-approximate the candidates for DSCC splits."
 - We can estimate and split the candidates!
 - Will be discussed with an example.

- PDSCC: a maximal CC in an undirected graph (V, E) where
 E = { (p, q) | p, q ∈ V ∧ |path_{dvck}(p, q)| = 2 }.
- Observation:
 - "DSCC consists of PDSCCs."
 - We can split the affected DSCCs into PDSCCs!
 - "We can over-approximate the candidates for DSCC splits."
 - We can estimate and split the candidates!
 - Will be discussed with an example.
- After splitting DSCCs into PDSCCs, recalculate the fixpoint.

[Candidates]

 S_2 : DSCC(d) = S_2

 S_3 : d \rightarrow g and e \rightarrow h

 S_4 : d \rightarrow u and f \rightarrow x

Evaluation Setup

Evaluation Setup

Three configurations for evaluation:

Evaluation Setup

- Three configurations for evaluation:
 - Incremental updates only.

- Three configurations for evaluation:
 - Incremental updates only.
 - Decremental updates only.

- Three configurations for evaluation:
 - Incremental updates only.
 - Decremental updates only.
 - Both incremental and decremental updates.

- Three configurations for evaluation:
 - Incremental updates only.
 - Decremental updates only.
 - Both incremental and decremental updates.
- Three evaluation targets:

- Three configurations for evaluation:
 - Incremental updates only.
 - Decremental updates only.
 - Both incremental and decremental updates.
- Three evaluation targets:
 - Offline algorithm: running an offline algorithm on every edit.

- Three configurations for evaluation:
 - Incremental updates only.
 - Decremental updates only.
 - Both incremental and decremental updates.
- Three evaluation targets:
 - Offline algorithm: running an offline algorithm on every edit.
 - DDlog: the state-of-the-art datalog engine.

- Three configurations for evaluation:
 - Incremental updates only.
 - Decremental updates only.
 - Both incremental and decremental updates.
- Three evaluation targets:
 - Offline algorithm: running an offline algorithm on every edit.
 - DDlog: the state-of-the-art datalog engine.
 - Dynamic: the proposed method.

* The authors have not specified the details on the figures.

^{*} The authors have not specified the details on the figures.

The online algorithm is much faster than the offline algorithm!

no aumoro navo not opoomoa tho actano on thé figures

What about its memory usage?

- What about its memory usage?
- Why not compare against the so-called wrong algorithm?

- What about its memory usage?
- Why not compare against the so-called wrong algorithm?
- Is the datalog solver^[d] used in this paper the SOTA^[e]?

• Krishna's algorithm is efficient in dynamically-changing CFGs.

- Krishna's algorithm is efficient in dynamically-changing CFGs.
- To build an optimal online algorithm, we should observe some properties and introduce a *proper data structure* in order to optimize the *necessary recalculation* until reaching its fixpoint.

- Krishna's algorithm is efficient in dynamically-changing CFGs.
- To build an optimal online algorithm, we should observe some properties and introduce a *proper data structure* in order to optimize the *necessary recalculation* until reaching its fixpoint.
- Going forward from the previous step is sometimes better than going backward incrementally (c.f. datalog engines).

Question?

