

PointInverter: Point Cloud Reconstruction and Editing via a Generative Model with Shape Priors

DEAKIN

Jaeyeon Kim

Binh-Son Hua

Duc Thanh Nguyen

Sai-Kit Yeung

1. Overview

- In the 2D domain, an GAN inversion is a common approach to editing real data with generative models.
- Recent point cloud generative models produce the high-quality objects and semantic parts.
- However, few studies have been conducted on how to use point cloud GANs for inversion.

2. Contribution

- We introduce a novel hybrid-based point cloud GAN inversion network.
- Global and local latent code refinements to resolve the point ordering and prevent the generator overfitted.
- We show the state art of result results in point cloud GAN inversion.

3. Method

First, train the encoder to map the global latent code with SP-GAN as pretrained GAN.

Second, initialize latent code extracted by encoder.

Third, optimize to local latent codes corresponding to each point.

- Global and local refinement, it is possible to solve t he point ordering problem and maintain the dense correspondence.
- The local latent code optimization maps the local detail easily based on provided global latent code, without overfitting.

4. Comparison on reconstruction

➤ Qualitative Results

Zhang et al. Target Achlioptas et al.

Achlioptas et al. Zhang et al. Target

Ours

➤ Quantitative Results

	avg.	chair	airplane	car	lamp
Achlioptas et al.	3.46×10^{-3}	3.61×10^{-3}	1.15×10^{-3}	1.14×10^{-3}	7.95×10^{-3}
Zhang et al.	2.50×10^{-3}	2.09×10^{-3}	3.59×10^{-3}	1.95×10^{-3}	2.38×10^{-3}
Ours	$0.54 imes10^{-3}$	$0.66 imes 10^{-3}$	$0.49 imes 10^{-3}$	$0.55 imes10^{-3}$	$0.49 imes 10^{-3}$

	avg.	chair	airplane	car	lamp	animal
Learning-based, global	2.23×10^{-3}	2.11×10^{-3}	0.94×10^{-3}	1.87×10^{-3}	4.03×10^{-3}	2.23×10^{-3}
Learning-based, local	0.62×10^{-3}	0.59×10^{-3}	0.35×10^{-3}	0.62×10^{-3}	0.31×10^{-3}	1.27×10^{-3}
Optimization-based, global	45.5×10^{-3}	13.5×10^{-3}	73.1×10^{-3}	94.9×10^{-3}	17.6×10^{-3}	28.4×10^{-3}
Optimization-based, local	21.2×10^{-3}	2.60×10^{-3}	23.4×10^{-3}	48.6×10^{-3}	2.77×10^{-3}	7.48×10^{-3}
Ours	0.63×10^{-3}	0.66×10^{-3}	0.49×10^{-3}	$0.55 imes 10^{-3}$	0.49×10^{-3}	$0.98 imes 10^{-3}$

5. Ablation studies

SP-GAN (Sphere)

Target

TreeGAN (Global)

SP-GAN (Encoder, Global)

SP-GAN

(Encoder,

Local)

SP-GAN

(Optimization,

Global)

SP-GAN Ours (Optimization, Local)