Al6122 Text Data Management & Analysis

Topic: Entity Linking

NER and **EL**

- Named-entity recognition (NER)
 - The task to locate and classify named entities in text into pre-defined categories
 - names of persons, organizations, locations,
 - expressions of times, quantities, monetary values, percentages, etc.
 - Example: [Jim]_{Person} bought 300 shares of [Acme Corp.]_{Organization} in [2006]_{Time}.
- Entity linking (EL)
 - The task of determining the *identity of entities mentioned in text*, with reference to a knowledge base.
 - Example: Michael Jordan will give a talk at the conference

Entity Linking

Pacquiao, 37, easily won his third battle with Tim Bradley in Las Vegas, capping a 21 - year professional career with 66 bouts under his belt.

Pacquiao, 37, easily won his third battle with Tim Bradley in Las Vegas, capping a 21 - year professional career with 66 bouts under his belt.

Recognition

Linking

Local contexts:

- Probability of an entity given the mention's surface form
- String similarity features between the mention's surface form and the entity's title (e.g., prefix, suffix, abbreviation...)
- Semantic similarity between the candidate entity and the mention's surrounding context.

Java (disambiguation)

From Wikipedia, the free encyclopedia

Java is an island of Indonesia.

Java may also refer to:

Computing [edit]

- · Java (programming language), an object-oriented high
- · Java (software platform), software and specifications
- · Java virtual machine, an abstract computing machine

Geography [edit]

United States [edit]

- Java, Alabama
- Java. New York
- Java, South Dakota
- Java, Virginia
- Java, Ohio

Other places [edit]

- Java-eiland, a neighborhood in Amsterdam
- Java (town), a town in Georgia/South Ossetia
- Java District, district around this town in Georgia
- Java, São Tomé and Príncipe

Entertainment [edit]

- Java (board game), a board game set on the island
- Java (comics), a villain appearing in the DC Comics

Collective Context

Although the shots sounded the death - knell for the Pelicans, they were greeted by cheers from fans, who like their counterparts around the **T**u their own during a season that has turned into a farev

Bryant to scored a season - high 38 in a win at N those adoring fans a glimpse of past glories.

" He's on a nice little roll, " said Lakers coach Byron

Candidates (local confidence):

- New Orleans Pelicans (0.28)
- Lahti Pelicans (0.07)
- Pelican (0.04)
- #Pelicans (0.02)
- Perth Pelicans (0.01)
- New Orleans Pelicans (baseball) (0.01)
- Australian pelican (0.01)
- Myrtle Beach Pelicans (0.01)

The linking is made at step 35. Click

" Our young guys are still so young they don't understand when you've got a doub lead you can't relax, " [Scott] said. " Not in this league. "

Collective context:

Coherence between **linked entities** in a document

Coherence between linked entities (in a document)

What does coherence mean?

What does coherence mean?

Assumption: All pairs of linked entities are related

"Woods played at 2006 Masters held in Augusta, Georgia"

- $\psi(e_i, e_j)$
 - relatedness of linked entities
- $\phi(m_i, e_i)$
 - local confidence score

Collective Linking: Assumption

All-Link: all pairs of linked entities are related

$$\Gamma^* = \arg\max_{\Gamma} \left[\sum_{i=1}^{N} \phi(m_i, e_i) + \sum_{i=1}^{N} \sum_{j=1, j \neq i}^{N} \psi(e_i, e_j) \right]$$
Local confidence
Global coherence

– Utilize of **disambiguation context** Γ'

$$\Gamma^* = \underset{\Gamma}{\operatorname{arg\,max}} \sum_{i=1}^{N} \left[\phi(m_i, e_i) + \sum_{e_j \in \Gamma'} \psi(e_i, e_j) \right]$$

Collective Linking: Assumption

- Disambiguation context Γ' not always available
 - Contribution from both unambiguous and ambiguous mentions.
 - $-S_{ij}(e_i)$: support for label e_i from mention m_j

$$S_{ij}(e_i) = \max_{e_j} \left[\phi(m_j, e_j) + \psi(e_i, e_j) \right]$$

$$e_i = \arg\max_{e_i} \left[\phi(m_i, e_i) + \sum_{j=1, j \neq i}^{N} S_{ij}(e_i) \right]$$

- best performance is obtained by considering evidence from <u>not all</u> but only <u>top-k</u> supporting mentions
- Single-Link: consider only the most related evidence

$$\Gamma^* = \underset{\Gamma}{\operatorname{arg max}} \sum_{i=1}^{N} \left[\phi(m_i, e_i) + \underset{j=1}{\overset{N}{\max}} \psi(e_i, e_j) \right]$$

Are mentioned entities densely connected?

"Woods played at 2006 Masters held in Augusta, Georgia"

Are mentioned entities densely connected?

"The Sun and The Times reported that Greece will have to leave the Euro soon".

Complete-pairwise coherence is not always necessary

Complete-pairwise coherence is not always necessary?

- Measure the <u>degree of coherence</u> in real datasets
 - Average degree of entity relatedness graph which consists of high-weighted edges.
 - Possible connection patterns

Pairwise Coherence (Relatedness) Measure

Wikipedia Link-based Measure

$$WLM(e_1, e_2) = 1 - \frac{\log(\max(|U_1|, |U_2|) + 1) - \log(|U_1 \cap U_2| + 1)}{\log(|W| + 1) - \log(\min(|U_1|, |U_2|) + 1)}$$

Normalized Jaccard Similarity

$$NJS(e_1, e_2) = \frac{\log(|U_1 \cap U_2| + 1)}{\log(|U_1 \cup U_2| + 1)}$$

Embedding Similarity

$$EES(e_1, e_2) = cos(embeding(e_1), embeding(e_2))$$

More About Coherence Analysis

Filtered graph by edge weight: the maximum value such that every node has at least one edge

Dataset	$\parallel_{\mid D \mid}$		eg (theo	retical)	Coh_deg (calculated)				
Dataset		Forest	Tree	Dense	WLM	NJS	EES		
Reuters128	30	1.00	1.64	5.93	3.21	2.13	2.68		
ACE2004	25	1.00	1.69	7.20	3.23	2.83	2.75		
MSNBC	19	1.00	1.83	14.89	6.35	4.48	7.08		
Dbpedia	35	1.00	1.71	6.60	3.08	2.55	2.92		
KORE50	9	1.00	1.54	3.44	1.36	1.58	1.36		
Micro14	80	1.00	1.53	3.33	1.81	1.72	1.82		
AQUAINT	50	1.00	1.84	12.82	5.78	3.39	4.53		

In general, the calculated values lie closer to tree (or chain) form's expected values rather than that of the dense form.

Tree-based Objective for Collective Linking

- MINTREE Coherence Measure.
 - Given a set of entities V and its associated entity relatedness graph G(V; E), the edges connecting all pairs of entities are weighted by a semantic distance.
 - The coherence of the graph G is defined as the weight of the minimum-spanning tree that can be formed in G.
 - Semantic distance

$$d(e_i, e_j) = 1 - \frac{\phi(m_i, e_i) + \psi(e_i, e_j) + \phi(m_j, e_j)}{3}$$

MINTREE coherence

$$d(e_i, e_j) = 1 - \frac{\phi(m_i, e_i) + \psi(e_i, e_j) + \phi(m_j, e_j)}{3}$$

ALL-Link, SINGLE-Link, and MINTREE

Spearman's Correlation	ALL-L	WLM SINGLE-L	MINTREE	ALL-L	NJS SINGLE-L	MINTREE	ALL-L	EES SINGLE-L	MINTREE
Disambiguation quality	0.924	0.925	-0.927	0.954	0.952	-0.951	0.947	0.945	-0.947
ALL-Link SINGLE-Link MINTREE	_	0.986 -	-0.983 -0.985 -	_	0.995 -	-0.994 -0.992 -	_	0.989 -	-0.990 -0.986 -

- Given a document with a set of mentions
- Start with all mentions assigned to wrong entities
- At each step, make one mention links to its current entity
 - Increase number of correct decision by one
 - Compute the objective score
- Spearman's Correlation
 - The number of correct decisions
 - The objective scores

MINTREE coherence

MINTREE coherence

• Existing algorithms for minimum spanning tree cannot be applied directly

Pair-Linking

- We do not need to look at all other entity when deriving linking decisions.
- Interactively resolve a pair of mention at each step, from the more confident pairs to less confident pairs.

Pair-Linking: Local confidence + Coherence

Pairwise confidence

"Woods played at 2006 Masters held in Augusta, Georgia"

"Woods played at 2006 Masters held in Augusta, Georgia"

Pair-Linking is Super Fast

- Pair-Linking cares about the pair with highest confidence score.
 - Use priority queue to store and retrieve the pair.
 - Utilize early stop to avoid scanning all possible pair of candidates.

Experiment: 8 benchmark datasets

Dataset	Type	D	M	Avg_m	Length
Reuters128	news	111	637	5.74	136
ACE2004	news	35	257	7.34	375
MSNBC	news	20	658	32.90	544
DBpedia	news	57	331	5.81	29
RS\$500	RSS-feeds	343	518	1.51	30
KORE50	short sentences	50	144	2.88	12
Micro14	tweets	696	1457	2.09	18
AQUAINT	news	50	726	14.52	220

Pair-Linking Performance

Linking accuracy (F₁) Normalized Jaccard + Embedding Sim

CL Method	Reuters128*	ACE2004	MSNBC	Dbpedia	RSS500*	KORE50	Micro14*	AQUAINT	Average	#1st	#2nd
Iter_Sub(AL)	0.856	0.894	0.879	0.839	0.793 [†]	0.682	0.811	0.876	0.829	0	1
Iter_Sub(SL)	0.807^{\dagger}	0.883	0.870	0.835	0.809	0.653	0.808	0.850	0.814	0	0
LBP(AL)	0.864	0.861	0.895	0.833	0.777^{\dagger}	0.715	0.822	0.877	0.831	1	1
LBP(SL)	0.823 [†]	0.875	0.900	0.843	0.814	0.762	0.824	0.872	0.839	1	3
FwBw	0.830 [†]	0.895	0.905	0.832	0.802^{\dagger}	0.749	0.818	0.866	0.837	1	1
DensSub	0.851	0.886	0.887	0.835	0.806^{\dagger}	0.738	0.809	0.878	0.836	0	1
PageRank	0.837 [†]	0.882	0.888	0.822	0.785^{\dagger}	0.512	0.797^{\dagger}	0.872	0.799	0	0
Pair-Linking	0.859	0.883	0.910	0.845	0.823	0.787	0.813	0.879	0.850	5	1

• Speed: average number of milli-seconds per document

CL method	Reuters128	ACE2004	MSNBC	Dbpedia	RSS500	KORE50	Micro14	AQUAINT	#1st	#2nd
Iter_Sub(AL)	97.515	21.369	3010.214	12.922	0.127	2.235	0.682	293.271	0	0
Iter_Sub(SL)	67.772	20.183	3211.341	11.603	0.108	2.284	0.684	107.640	0	0
LBP(AL)	40.049	41.911	1584.504	42.673	0.331	11.515	3.667	269.854	0	0
LBP(SL)	92.625	43.173	4421.172	44.263	0.289	8.627	3.170	403.140	0	0
FwBw	0.940	1.975	8.880	2.034	0.103	1.190	0.367	4.959	2	6
DensSub	166.862	$22\overline{1.437}$	12714.782	$16\overline{8.716}$	1.196	$1\overline{3.719}$	7.402	$112\overline{1.231}$	0	0
PageRank	110.572	77.398	4293.670	132.009	5.436	64.982	15.796	375.239	0	0
Pair-Linking	1.721	0.590	28.699	0.491	0.025	0.951	0.117	3.105	6	2

NIL mention: cannot link to any entity in knowledge base

- How robust is Pair-Linking if NIL mentions are presenting in a document?
- Randomly remove some ground truths from candidate entities
- F_1 score vs percentage of NIL mentions (as noises)

Dataset	0%	20%	40%	60%
Reuters128	0.859	0.842	0.850	0.848
ACE2004	0.883	0.879	0.900	0.869
MSNBC	0.910	0.890	0.887	0.893
AQUAINT	0.879	0.873	0.875	0.863

Summary

- Relook at the assumption of ALL-Link in collective linking
- Study the average degree of coherence graph for collective linking

_

- Propose MINTREE objective and design Pair-Linking
 - High accuracy
 - Low computational cost

Pair-Linking for Collective Entity Disambiguation: Two Could Be Better Than All. IEEE TKDE. 31(7): 1383-1396 (2019)