WS14/15, Dr. Schilling

Spacecraft System Design

Tafelanschriebe

Andre Löffler

10. November 2014

Inhaltsverzeichnis

1 13.10.2014 3

1 13.10.2014

$$m \cdot \ddot{\vec{r}} = F = -G \cdot \frac{m_1 m_2}{r^2}$$

G ist die universal gravity constant: $6.674 \cdot 10^{-11} \frac{Nm^2}{kq^2}$

$$\ddot{\vec{r}} = \frac{\mu}{\|r\|^2}$$

 μ is the gravity constant of the specific gravity attractor. μ_E ist die gravity constant of earth: $398600\frac{km^3}{s^2}$, außerdem gilt: $\mu_E=G\cdot m_E$ m_E ist die mass of earth: $5.97219\cdot 10^{24}kg$ Die Lösungen dieser Gleichung sind Kegelschnitte.

$$r = \frac{p}{1 + \varepsilon \cdot \cos \varphi}$$

r ist radius towards focal point ε eccentricity of the orbit p parameters (spartial extensions of orbit) φ true anomaly

Interrelationships between parameters:

 r_a apocenter, r_p pericenter

$$a = \frac{p}{1 - \varepsilon^2} \Rightarrow p = a(1 - \varepsilon^2) = r_p(1 + \varepsilon) = r_a(1 - \varepsilon)$$
$$a = \frac{r_a + r_p}{2}, \ r_a = a(1 + \varepsilon), \ r_p = a(1 - \varepsilon)$$
$$\varepsilon = \frac{r_a - r_p}{r_a + r_p}$$

For the specific case of circular orbits:

- gravitational acceleration in distance a to gravitational center: $\frac{\mu}{a^2}$
- centrifugal acceleration: $\omega^2 \cdot r$ with $\omega = \frac{2\pi}{T}$ angular velocity and T the orbital period

$$\left(\frac{2\pi}{T}\right)^2 \cdot a \Rightarrow \frac{\mu}{a^2} = \left(\frac{2\pi}{T}\right)^2 \cdot a \Rightarrow T = 2\pi\sqrt{\frac{a^3}{\mu}}$$

which also holds for general ellipses

$$v_{\rm circle} = \frac{2\pi a}{T} = \sqrt{\frac{a^3}{\mu}}$$

Potential energy: $E_{\text{pot}} = \frac{-\mu m}{r} + C$ Kinetic energy: $E_{\text{kin}} = \frac{mv^2}{2}$

$$E = E_{\text{kin}} + E_{\text{pot}} = \frac{mv^2}{2} - \frac{\mu m}{r} \stackrel{\substack{\varepsilon \to 1, \\ v_a \to 0, \\ r_a \to 2a}}{=} - \frac{\mu m}{2a} \text{(constant)}$$

 v_a velocity at apocenter

Binet's equation, Vis-Viva equation:

$$v = \sqrt{\mu \left(\frac{2}{r} - \frac{1}{a}\right)}$$

For circles: r = a, $v = \sqrt{\frac{\mu}{a}}$ v first cosmic velocity: needed to bring a satellite on closed orbit (without perturbing forces, just gravity considered). In case of earth: r = 6378km, $\mu_E = 398600 \frac{km^3}{s^2}$

 \Rightarrow 7.905 $\frac{km}{s}$ required as minimum velocity from the rocket launch to insert into an earth orbit.

A rocket launch in equatorial direction and in rotation direction of earth, we recieve a velocity component $0.463\frac{km}{s}$ for free earth rotation rate.

For parabola: $a \to \infty$, $v = \sqrt{\frac{2\mu}{r}} \ v$ second cosmic velocity (escape velocity): is the minimum velocity applied to leave the gravitational field of the home planet. For earth: $11.179 \frac{km}{s}$

Derive position of the satellite in the orbit plane, e.g. we want the true anomaly φ as the function of time $\varphi = f(t)$. There is no explicit solution but only an algorithm using the support variable eccentric anomaly E can be derived.

Keplers equation:

$$E - \varepsilon \cdot \sin(E) = \frac{2\pi}{T}(t - t_{\text{perigee}}) = M(t)$$

M(t) average anomaly at time t, can be solved by numerical methods. From E, you can calculate r and φ as follows:

$$r \sin \varphi = a \sin E \cdot \sqrt{1 - \varepsilon^2}$$

$$r \cos \varphi = a(\cos E - \varepsilon)$$

$$\Rightarrow \tan \frac{\varphi}{2} = \sqrt{\frac{1 + \varepsilon}{1 - \varepsilon}} \cdot \tan \frac{E}{2}$$

$$r = a(1 - \varepsilon \cos E)$$

Satellite Ground Tracks:

Analyse the triangle KFB in spherical coordinates.

 $\theta \ latitude: \sin \theta = \sin i \sin(\omega + \varphi)$ $\lambda \ longitude: \cos \lambda_1 = \frac{\cos(\omega + \varphi)}{\cos \theta}$

$$\lambda = \lambda_1 + \Omega + \lambda_G$$

$$\lambda_G = \lambda_{G0} - 0.25068448^{\circ} / \text{min} \cdot t$$
 (Greenwich position versus γ)

Draw the line from the satellite to earth center, the intersection with surface is specified by θ and λ (subsatellite point).

Perturbations:

gravitational potential of earth

$$u(r, \phi, \Lambda)$$

u gravitational at distance r and latitude ϕ and longitude Λ of the position.

$$u(r,\phi,\Lambda) = \frac{\mu}{r} \left(1 + \sum_{n=2}^{\infty} \left[\left(\frac{R_E}{r} \right)^n \cdot J_2 \cdot P_{n0} \cos \phi + \sum_{m=1}^n \left(\frac{R_e}{r} \right)^n \cdot \left(C_{nm} \cos(m\Lambda) + S_{nm} \sin(m\Lambda) \right) \cdot P_{nm} (\cos \phi) \right] \right)$$

spherical harmonic expansion with:

r distance from the earth center

 P_{nm} Legendre polynomials

 R_E radius of earth 6378km

 J_n , C_{nm} , S_{nm} constants of body reflecting the mass distribution:

 J_n zonal harmonic coefficient (mass distribution independent from longitude)

 C_{nm} , S_{nm} earth's tesseral harminic coefficients (for $n \neq m$) or earth's sectoral harmonic coefficients (for n = m)

By far, the largest coefficient is J_n (related to equatorial bulge) by 3 orders of magnitude. Example: Molniya orbits of 63, 4° have minimum change in position of perigee and apogee.

Additional gravitational fields:

by other bodies in the solar system

Index

```
Binet's equation, 4
first cosmic velocity, 4
gravity constant of earth, 3
Keplers equation, 4
Kinetic energy, 4
latitude, 4
longitude, 4
mass of earth, 3
Perturbations, 5
Potential energy, 4
second cosmic velocity (escape velocity), 4
spherical harmonic expansion, 5
subsatellite point, 4
universal gravity constant, 3
Vis-Viva equation, 4
```