

planetmath.org

Math for the people, by the people.

a group of even order contains an element of order 2

 ${\bf Canonical\ name} \quad {\bf AGroupOfEvenOrderContainsAnElementOfOrder2}$

Date of creation 2013-03-22 17:11:37 Last modified on 2013-03-22 17:11:37 Owner azdbacks4234 (14155) Last modified by azdbacks4234 (14155)

Numerical id 20

Author azdbacks4234 (14155)

Entry type Theorem Classification msc 20A05

Proposition. Every group of even order contains an element of order 2.

Proof. Let G be a group of even order, and consider the set $S = \{g \in G : g \neq g^{-1}\}$. We claim that |S| is even; to see this, let $a \in S$, so that $a \neq a^{-1}$; since $(a^{-1})^{-1} = a \neq a^{-1}$, we see that $a^{-1} \in S$ as well. Thus the elements of S may be exhausted by repeatedly selecting an element and it with its inverse, from which it follows that |S| is a http://planetmath.org/Divisibilitymultiple of 2 (i.e., is even). Now, because $S \cap (G \setminus S) = \emptyset$ and $S \cup (G \setminus S) = G$, it must be that $|S| + |G \setminus S| = |G|$, which, because |G| is even, implies that $|G \setminus S|$ is also even. The identity element e of G is in $G \setminus S$, being its own inverse, so the set $G \setminus S$ is nonempty, and consequently must contain at least two distinct elements; that is, there must exist some $b \neq e \in G \setminus S$, and because $b \notin S$, we have $b = b^{-1}$, hence $b^2 = 1$. Thus b is an element of order 2 in G.

Notice that the above is logically equivalent to the assertion that a group of even order has a non-identity element that is its own inverse.