Návrh číslicových systémů (INC)

Jiří Matoušek, Otto Fučík

Vysoké učení technické v Brně Fakulta informačních technologií Božetěchova 2, 612 66 Brno

Použitá literatura

N. Frištacký, M. Kolesár, J. Kolenička a J. Hlavatý: "Logické systémy", SNTL Praha, 1986 M. Eysselt: "Logické systémy", SNTL Praha, skriptum VUT v Brně, 1985 J. F. Wakerly: "Digital Design. Principles and Practices", Prentice Hall, ISBN 0-13-769191-2, 2000 V. P. Nelson, H.T.Nagle, B.D.Carroll, J.D.Irwin: "Digital Logic Circuit Analysis & Design", ISBN 0-13-463894-8, 1995 T.L.Floyd: "Digital Fundamentals", Prentice Hall, ISBN 0-13-080850-4, 2000

Obsah

- Úvod
- Mapování na logické členy
- Mapování na kombinační moduly
- Mapování na programovatelná zařízení
- Syntéza sekvenčních obvodů

Fáze syntézy

1. Převod HDL popisu obvodu do interní reprezentace syntézního nástroje

2. Booleovské optimalizace interní reprezentace

3. Mapování do cílové technologie

Příklad mapování synchronního čítače

- Čítač v Grayově kódu
- Graf přechodů
 - Vstup Y=1 přechody po směru hodinových ručiček – čítání nahoru
 - Vstup Y=0 přechody proti směru hodinových ručiček – čítání dolů
- Tabulka přechodů a slovník přechodů
 - Implementace pomocí J-K KO

			Next State						
Þ	resent State	2	Y :	Y = 0 (DOWN)			Y = 1 (UP)		
Q_2 Q_1		Q_0	Q_2	Q_1	Q_0	Q_2	Q_1	Q_0	
0	0	0	1	0	0	0	0	1	
0	0	1	0	0	0	0	1	1	
0	1	1	0	0	1	0	1	0	
0	1	0	0	1	1	1	1	0	
1	1	0	0	1	0	1	1	1	
1	1	1	1	1	0	1	0	1	
1	0	1	1	1	1	1	0	0	
1	0	0	1	0	1	0	0	0	

Qi	Q _{i+1}	J	K
0	0	0	X
0	1	1	X
1	0	X	1
1	1	Х	0

Příklad mapování synchronního čítače

Excitační Karnaughovy mapy

Excitační výrazy pro budicí vstupy KO

$$J_{0} = Q_{2}Q_{1}Y + Q_{2}\overline{Q}_{1}\overline{Y} + \overline{Q}_{2}Q_{1}\overline{Y} + \overline{Q}_{2}\overline{Q}_{1}Y \qquad K_{0} = \overline{Q}_{2}\overline{Q}_{1}\overline{Y} + \overline{Q}_{2}Q_{1}Y + Q_{2}Q_{1}\overline{Y} + Q_{2}\overline{Q}_{1}Y$$

$$J_{1} = \overline{Q}_{2}Q_{0}Y + Q_{2}Q_{0}\overline{Y} \qquad K_{1} = \overline{Q}_{2}Q_{0}\overline{Y} + Q_{2}Q_{0}Y$$

$$J_{2} = Q_{1}\overline{Q}_{0}Y + \overline{Q}_{1}\overline{Q}_{0}\overline{Y} \qquad K_{2} = Q_{1}\overline{Q}_{0}\overline{Y} + \overline{Q}_{1}\overline{Q}_{0}Y$$

Příklad mapování synchronního čítače

- Logické schéma
 - Y=0 čítej dolů
 - Y=1 čítej nahoru

Obsah

- Úvod
- Mapování na logické členy
- Mapování na kombinační moduly
- Mapování na programovatelná zařízení
- Syntéza sekvenčních obvodů

Shannonův teorém - rozklad logické funkce

ÚNDF

$$f(x_1, x_2, ..., x_n) = [\bar{x}_k \cdot f(x_1, x_{k-1}, 0, x_{k+1}, ..., x_n)] + [x_k \cdot f(x_1, x_{k-1}, 1, x_{k+1}, ..., x_n)]$$

ÚNKF

$$f(x_1, x_2, ..., x_n) = [\bar{x}_k + f(x_1, x_{k-1}, 1, x_{k+1}, ..., x_n] \cdot [x_k + f(x_1, x_{k-1}, 0, x_{k+1}, ..., x_n)]$$

- Např. podle proměnné x₁
 - ÚNDF $f(x_1, x_2,...,x_n) = [\underline{x_1} \cdot f(0, x_2,...,x_n)] + [x_1 \cdot f(1, x_2,...,x_n)]$
 - ÚNKF $f(x_1, x_2,...,x_n) = [x_1 + f(1, x_2,...,x_n)] \cdot [x_1 + f(0, x_2,...,x_n)]$
- Platí dualita funkcí

$$f(x_1, x_2,..., x_n, 0, 1, +, \cdot) = f(x_1, x_2,..., x_n, 1, 0, \cdot, +)$$

Důsledek

 Každou log. funkci libovolného počtu proměnných lze realizovat pomocí základních log. operací AND, OR a NOT dvou proměnných - superpozice logických funkcí

Shannonův teorém - příklad

Rozklad funkce dle proměnné x₁

$$f(x_1, x_2, x_3) = x_1 \cdot x_2 \cdot \overline{x}_3 + \overline{x}_1 \cdot x_2 + \overline{x}_1 \cdot \overline{x}_2 \cdot x_3 \qquad f(x_1 = 1) = x_2 \cdot \overline{x}_3$$

= $x_1 \cdot (x_2 \cdot \overline{x}_3) + \overline{x}_1 \cdot (x_2 + \overline{x}_2 \cdot x_3) \qquad f(x_1 = 0) = x_2 + \overline{x}_2 \cdot x_3$

Rozklad funkce dle proměnné x₂

$$f(x_1, x_2, x_3) = x_1 \cdot x_2 \cdot \overline{x}_3 + \overline{x}_1 \cdot x_2 + \overline{x}_1 \cdot \overline{x}_2 \cdot x_3 \qquad f(x_2 = 1) = x_1 \cdot \overline{x}_3 + \overline{x}_1$$
$$= x_2 \cdot (x_1 \cdot \overline{x}_3 + \overline{x}_1) + \overline{x}_2 \cdot (\overline{x}_1 \cdot x_3) \qquad f(x_2 = 0) = \overline{x}_1 \cdot x_3$$

Rozklad funkce dle proměnné x₃

$$f(x_{1}, x_{2}, x_{3}) = x_{1} \cdot x_{2} \cdot \overline{x}_{3} + \overline{x}_{1} \cdot x_{2} + \overline{x}_{1} \cdot \overline{x}_{2} \cdot x_{3} \qquad f(x_{3} = 1) = \overline{x}_{1} \cdot \overline{x}_{2} + \overline{x}_{1} \cdot x_{2}$$

$$= x_{1} \cdot x_{2} \cdot \overline{x}_{3} + \overline{x}_{1} \cdot x_{2} \cdot x_{3} + \overline{x}_{1} \cdot x_{2} \cdot \overline{x}_{3} + \overline{x}_{1} \cdot \overline{x}_{2} \cdot x_{3} \qquad f(x_{3} = 0) = x_{1} \cdot x_{2} + \overline{x}_{1} \cdot x_{2}$$

$$= x_{3} \cdot (\overline{x}_{1} \cdot \overline{x}_{2} + \overline{x}_{1} \cdot x_{2}) + \overline{x}_{3} \cdot (x_{1} \cdot x_{2} + \overline{x}_{1} \cdot x_{2})$$

Shannonův teorém - příklad

Rozklad funkce dle proměnné x₁

$$f(x_1, x_2, x_3) = x_1 \cdot x_2 \cdot \overline{x}_3 + \overline{x}_1 \cdot x_2 + \overline{x}_1 \cdot \overline{x}_2 \cdot x_3 \qquad f(x_1 = 1) = x_2 \cdot \overline{x}_3$$

= $x_1 \cdot (x_2 \cdot \overline{x}_3) + \overline{x}_1 \cdot (x_2 + \overline{x}_2 \cdot x_3) \qquad f(x_1 = 0) = x_2 + \overline{x}_2 \cdot x_3$

Shannonův teorém - vícenásobná aplikace

Důsledek

- Každá log. funkce může být implementována pouze pomocí multiplexorů
- Poznámka: zvyšuje se zpoždění obvodu

Příklad

Shefferova algebra

- Využívá pouze log. funkci NAND (a·b)', $a \uparrow b$, $\overline{a \cdot b}$
 - Lze ukázat, že pomocí funkce NAND lze realizovat základní log. členy a tedy i veškeré logické funkce
- Vede na efektivní realizaci v technologii CMOS

Hradlo NAND

Hradlo AND

(a) Schéma, (b) Pravdivostní tabulka, (c) Symbol

Shefferova algebra - pravidla

Platí zákon komutativní

$$(a \cdot b)' = (b \cdot a)'$$

Neplatí zákon asociativní

$$((a \cdot b)' \cdot c)' \neq (a \cdot (b \cdot c)')'$$

$$(a \cdot b)' \cdot 1 = ((a \cdot b)')' = a \cdot b$$

$$((a \cdot a)' \cdot (b \cdot b)')' = (a' \cdot b')' = a + b$$

Převod Booleovy algebry na Shefferovu algebru

- Využití teorémů:
 - Involuce (dvojí negace)
 - de Morganovy zákony
- Pro implementaci výrazu stačí pouze členy NAND
- Příklad

$$\overline{a} \cdot b + a \cdot \overline{b}$$

$$= \overline{\overline{a} \cdot b + a \cdot \overline{b}}$$

$$= \overline{\overline{a} \cdot b \cdot a \cdot \overline{b}}$$

Piercova algebra

- Využívá pouze log. funkci NOR (a+b)', $a \downarrow b$
 - Lze ukázat, že pomocí funkce NOR lze realizovat základní log.
 členy a tedy i veškeré logické funkce
- Vede na efektivní realizaci v technologii CMOS
 - Hradlo NOR vs. hradlo OR viz hradlo NAND vs. hradlo AND

Piercova algebra - pravidla

Platí zákon komutativní

(a+b)' = (b+a)'

Neplatí zákon asociativní

$$((a+b)'+c)' \neq (a+(b+c)')'$$

Převod Booleovy algebry na Piercovu algebru

- Využití teorémů:
 - Involuce (dvojí negace)
 - de Morganovy zákony
- Pro implementaci výrazu stačí pouze člen NOR
- Příklad

$$(\overline{a}+b)\cdot(a+\overline{b})$$

$$=(\overline{a}+b)\cdot(a+\overline{b})$$

$$=(\overline{a}+b)\cdot(a+\overline{b})$$

$$=(\overline{a}+b+\overline{a}+\overline{b})$$

$$\frac{\overline{\overline{a}} = a}{\overline{a \cdot b} = \overline{a} + \overline{b}}$$

Obsah

- Úvod
- Mapování na logické členy
- Mapování na kombinační moduly
- Mapování na programovatelná zařízení
- Syntéza sekvenčních obvodů

- Příklad: Implementace funkce
- $f(x_1, x_2, x_3) = \sum m(0,2,3,5)$

- Pravdivostní tabulka
- Realizace multiplexorem 8-1

Vstu	Výstup		
С, В, А	Data	Y	
X ₁ , X ₂ , X ₃		f(x ₁ , x ₂ , x ₃)	
000	$D_0=1$	1	
001	$D_1 = 0$	0	
010	D ₂ =1	1	
011	D ₃ =1	1	
100	D ₄ =0	0	
101	D ₅ =1	1	
110	D ₆ =0	0	
111	D ₇ =0	0	

Příklad

• Implementace funkce $f(x_1, x_2, x_3, x_4) = \sum m(0,1,2,3,4,9,13,14,15)$

 Realizace multiplexorem 8-1 a invertorem

	С, В, А		f	=	Y		
	X ₁ , X ₂ , X ₃	X ₄			f(x ₁ , x ₂ , x ₃ , x ₄)		
0	000 000	0 1	1 1	1	$D_0 = 1$		
2	001 001	0 1	1 1	1	D ₁ =1		
4 5	010 010	0 1	1 0	X ₄ '	$D_2=x_4'$		
6 7	011 011	0 1	0 0	0	D ₃ =0		
8 9	100 100	0 1	0	X ₄	D ₄ =x ₄		
10 11	101 101	0 1	0	0	D ₅ =0		
12 13	110 110	0 1	0	X ₄	D ₆ =x ₄		
14 15	111 111	0 1	1 1	1	D ₇ =1		

- Příklad verze 1
 - Implementace funkce
 - Pravdivostní tabulka
 - Realizace multiplexorem 4-1

Vs	tupy	Výstup
B, A	Data	Y
a, b		f(a, b, c)
00	$D_0=c$	С
01	$D_1 = 0$	0
10	D ₂ =c	С
11	D ₃ =1	1

$$f(a,b,c) = a \cdot b + \overline{b} \cdot c$$

$$= a \cdot b \cdot 1 + 1 \cdot \overline{b} \cdot c$$

$$= a \cdot b \cdot (c + \overline{c}) + (a + \overline{a}) \cdot \overline{b} \cdot c$$

$$= a \cdot b \cdot c + a \cdot b \cdot \overline{c} + a \cdot \overline{b} \cdot c + \overline{a} \cdot \overline{b} \cdot c$$

- Příklad verze 2
 - Implementace funkce
 - Pravdivostní tabulka
 - Realizace multiplexorem 4-1

Vs	tupy	Výstup
B, A	Data	Y
b, c		f(a, b, c)
00	$D_0 = 0$	0
01	$D_1=1$	1
10	D ₂ =a	а
11	D ₃ =a	а

$$f(a,b,c) = a \cdot b + \overline{b} \cdot c$$

$$= a \cdot b \cdot 1 + 1 \cdot \overline{b} \cdot c$$

$$= a \cdot b \cdot (c + \overline{c}) + (a + \overline{a}) \cdot \overline{b} \cdot c$$

$$= a \cdot b \cdot c + a \cdot b \cdot \overline{c} + a \cdot \overline{b} \cdot c + \overline{a} \cdot \overline{b} \cdot c$$

Implementace log. funkce pomocí dekodéru

- Implementace funkce $f(Q, X, P) = \sum m(0,1,4,6,7)$
 - S výstupem aktivním v jedničce pomocí tříbitového dekodéru s výstupy aktivními v log. 1 a log. členu OR
 - S výstupem aktivním v nule pomocí tříbitového dekodéru s výstupy aktivními v nule a log. členu NAND (DeMorganův zákon)

Implementace log. funkce pomocí dekodéru

- Implementace funkce $f(Q, X, P) = \sum m(0,1,4,6,7)$
 - S výstupem aktivním v jedničce pomocí tříbitového dekodéru s výstupy aktivními v nule a log. členu NOR
 - S výstupem aktivním v nule pomocí tříbitového dekodéru s výstupy aktivními v nule a log. členu AND (de Morganův zákon)

$$f(Q, X, P) = \sum m(0,1,4,6,7) = \prod M(2,3,5)$$

Implementace log. funkce pomocí dekodéru

Příklad

Implementace funkcí pomocí dekodéru DC 4-16 s povolovacími vstupy aktivními v nule

Majoritní funkce

Definice

- n≥3...počet logických proměnných x₀, ..., x_n
- Všem logickým proměnným je přiřazena váha w_i=1
- Prahová funkce nabývá hodnoty 1, pokud alespoň nadpoloviční většina vstupních proměnných je rovna 1
- = symetrická prahová funkce lichého řádu s prahem $T = \frac{n+1}{2}$

$$M_n = 1 \Leftrightarrow \sum_{i=1}^n x_i \ge \frac{n+1}{2}$$

Řád majority - počet proměnných

Příklad

- $W_a=1$, $W_b=1$, $W_c=1$
- N=1+1+1=3
- T=2 $M_3(a,b,c)$ = $\overline{a} \cdot b \cdot c + a \cdot \overline{b} \cdot c + a \cdot b \cdot \overline{c} + a \cdot b \cdot c$ = $a \cdot b + a \cdot c + b \cdot c$

а	b	С	Σx _i	$M_3=1\Leftrightarrow \Sigma(w_i\cdot x_i)\geq 2$
0	0	0	1.0+1.0+1.0=0	0
0	0	1	1.0+1.0+1.1=1	0
0	1	0	1.0+1.1+1.0=1	0
0	1	1	1.0+1.1+1.1=2	1
1	0	0	1.1+1.0+1.0=1	0
1	0	1	1.1+1.0+1.1=2	1
1	1	0	1.1+1.1+1.0=2	1
1	1	1	1.1+1.1+1.1=3	1

Implementace log. funkce pomocí majority

Příklady

Implementace log. funkce pomocí majority

Příklad

$$M_{3}(a,b,c) = \overline{a} \cdot b \cdot c + a \cdot \overline{b} \cdot c + a \cdot b \cdot \overline{c} + a \cdot b \cdot \overline{c}$$

$$M_{3}(\overline{a}, \overline{b}, \overline{c}) = a \cdot \overline{b} \cdot \overline{c} + \overline{a} \cdot b \cdot \overline{c} + \overline{a} \cdot \overline{b} \cdot c + \overline{a} \cdot \overline{b} \cdot \overline{c} = \overline{M}_{3}(a,b,c)$$

$$\sum m(3,5,6,7) = \prod M(0,1,2,4)$$

а	b	С	Σx_i	$M_3=1\Leftrightarrow\Sigma(w_i\cdot x_i)\geq 2$
0	0	0	1.0+1.0+1.0=0	0
0	0	1	1.0+1.0+1.1=1	0
0	1	0	1.0+1.1+1.0=1	0
0	1	1	1.0+1.1+1.1=2	1
1	0	0	1.1+1.0+1.0=1	0
1	0	1	1.1+1.0+1.1=2	1
1	1	0	1.1+1.1+1.0=2	1
1	1	1	1.1+1.1+1.1=3	1

Obsah

- Úvod
- Mapování na logické členy
- Mapování na kombinační moduly
- Mapování na programovatelná zařízení
- Syntéza sekvenčních obvodů

Implementace log. funkce pomocí ROM

Implementace log. funkce pomocí ROM

- Použití paměti ROM (PROM) pro realizaci log. funkcí
 - AND pole dekodér adres
 - OR pole data uložena v paměti
 - Díky fixnímu AND poli je využití omezeno, neboť pro funkce s více vstupy je třeba velkých kapacit paměti, což je drahé

Implementace log. funkce pomocí PLA

Implementace ÚNDF log. funkce pomocí PLA

Duálně platí, že pole OR-AND implementuje součin sum (ÚNKF, POS)

Implementace log. funkce pomocí PLA

- Programmable Logic Array (PLA)
 - Výhodou je skutečnost, že jsou obě pole plně programovatelná
 - Nevýhodou je větší zpoždění kvůli programovacím propojkám ("pojistkám") v obou polích, které mají větší zpoždění než vodiče a log. členy díky přechodovému odporu a parazitním kapacitám
 - Pomalé, drahé

Implementace log. funkce pomocí PAL

Implementace log. funkce pomocí PAL

- Programmable Array Logic (PAL)
 - Pouze pole AND je programovatelné
 - Nemají omezení pamětí PROM (díky programovatelnému poli AND)
 - Jsou rychlejší díky fixnímu poli OR bez propojek
 - Jsou levnější než PLA
 - Realizují disjunktní formu

Implementace log. funkce pomocí PAL

- Vnitřní struktura
 - Obsahuje též invertory pro každou vstupní proměnnou
 - Pro naše účely budeme místa, ve kterých propojky zůstanou, značit křížkem

Implementace log. funkce v FPGA

- Look-Up Table (LUT)
 - Základní logické hradlo: N-bitový vstup, 1-bitový výstup
 - Realizuje libovolnou binární funkci // proměnných
- Technologie
 - Spartan3: N=4
 - Virtex UltraScale: N=6
- Příklad:
 - 4-vstupé hradlo

$$F(A,B,C,D) = \overrightarrow{ABCD} \text{ or } \overrightarrow{ABCD} \text{ or } \overrightarrow{ABCD}$$

Α	В	С	D	<u> </u>
000000001111111	0000111100001111	001100110011	01010101010101	0100000001100001

Implementace log. funkce v FPGA

- Pomocí multiplexerů MUXFx lze jednoduše vytvářet složitější funkce
- MUXFx je potom označován jako MUXF5, MUXF6, ...
- Příklad:
 - 4-vstupá hradla LUT

Obsah

- Úvod
- Mapování na logické členy
- Mapování na kombinační moduly
- Mapování na programovatelná zařízení
- Syntéza sekvenčních obvodů

- Navrhněme řídicí obvod (konečný automat) robota, který bude fungovat následovně
 - Robot má dvě kolečka a umí se otáčet vlevo a vpravo
 - Výstup z1=1 zatoč vlevo
 - Výstup z2=1 zatoč vpravo
 - Výstupy z1=0 a z2=0 robot jede dopředu
 - Robot má vpředu dotykový senzor, který generuje signál x následovně
 - Vstup x=1 je detekována překážka
 - Vstup x=0 žádná překážka není detekována
 - Robot má na střeše majáček
 - Výstup m=1 svítí, pokud robot jede dopředu
 - Výstup m=0 nesvítí, pokud robot zatáčí vlevo či vpravo
 - Jedno z možných "inteligentních" chování robota definice stavů řídícího automatu
 - Stav A překážka není detekována, poslední zatočení bylo vlevo
 - Stav B překážka detekována, zatoč vpravo
 - Stav C překážka není detekována, poslední zatočení bylo vpravo
 - Stav D překážka detekována, zatoč vlevo

- Graf přechodů
 - Lze nakreslit např. dle slovního popisu či tabulky přechodů
 - Ve stavech jsou uvedeny kódy stavu/hodnota Mooreova výstupu M kód/M
 - Na hranách je uvedena hodnota vstupu X/hodnota Mealyho výstupů
 Z1 a Z2 X/Z₁Z₂

Souč sta	•	Vstup	Následující stav		Mealyho výstupy	Mooreův výstup
Název	Kód	X	Název	Kód	Z1 Z2	М
Α	00	0	Α	00	00	1
Α	00	1	В	01	01	1
В	01	0	С	10	00	0
В	01	1	В	01	01	0
С	10	0	С	10	00	1
С	10	1	D	11	10	1
D	11	0	Α	00	00	0
D	11	1	D	11	10	0

Slovník přechodů klopných obvodů

Opakování

- Určuje požadované hodnoty na excitačních vstupech (S a R, J a K, D či T) klopného obvodu, které je třeba aplikovat, aby automat provedl požadovaný přechod ze současného stavu Q_i do následujícího stavu Q_{i+1}
- Jedná se o naopak zapsané tabulky přechodů pro dané hodnoty výstupů definujeme potřebné hodnoty vstupů

Qi	Q_{i+1}	S	R	J	K	D	Т
0	0	0	X	0	X	0	0
0	1	1	0	1	Х	1	1
1	0	0	1	Х	1	0	1
1	1	Χ	0	Χ	0	1	0

 Při návrhu (syntéze) sekvenčních automatů používáme excitační tabulky KO, neboť nás zajímají přechody mezi stavy automatu, na základě kterých definujeme hodnoty vstupů KO

- Určení rovnic pro excitační vstupy jednotlivých KO
 - Současný stav Present State (PS)
 - Hodnota vstupu X
 - Následující stav Next State (NS)
- Doplníme hodnoty pro všechny excitační vstupy jednotlivých KO

Qi	Q _{i+1}	S	R	J	K	D	Т
0	0	0	X	0	X	0	0
0	1	1	0	1	X	1	1
1	0	0	1	X	1	0	1
1	1	X	0	X	0	1	0

souč	. stav	vstup	násl.	stav			upy -R				upy -K		vst:		vst	upy T	,	výstup	У
PS1	PS0	Х	NS1	NS0	S1	R1	S0	R0	J1	K1	J0	K0	D1	D0	T1	T0	М	Z1	Z 2
0	0	0	0	0	0	Х	0	X	0	Х	0	Х	0	0	0	0	1	0	0
0	0	1	0	1	0	Х	1	0	0	Х	1	Х	0	1	0	1	1	0	1
0	1	0	1	0	1	0	0	1	1	Х	Х	1	1	0	1	1	0	0	0
0	1	1	0	1	0	Х	X	0	0	Х	Х	0	0	1	0	0	0	0	1
1	0	0	1	0	X	0	0	X	X	0	0	Х	1	0	0	0	1	0	0
1	0	1	1	1	X	0	1	0	X	0	1	X	1	1	0	1	1	1	0
1	1	0	1	1	X	0	X	0	X	0	Х	0	1	1	0	0	0	0	0
1	1	1	0	0	0	1	0	1	Χ	1	Х	1	0	0	1	1	0	1	0

- Nalezneme rovnice pro excitační vstupy jednotlivých KO, např. pomocí Karnaughovy mapy
 - Pro jednotlivé excitační vstupy D0 a D1 KO
 - Pro jednotlivé výstupy Z1, Z2 a M

$$M = \overline{PS0}$$

Řešení pro KO D

$$D0 = X \cdot \overline{PS0} + \overline{X} \cdot PS0 \cdot PS1 + X \cdot PS0 \cdot \overline{PS1}$$

$$Z1 = X \cdot PS1$$

$$D1 = \overline{PS0} \cdot PS1 + \overline{X} \cdot PS0$$

$$Z2 = \overline{PS1} \cdot X$$

Řešení pro KO J-K

$$J0 = X \cdot PS1 + \overline{X} \cdot \overline{PS1}$$

$$J1 = \overline{X} \cdot PS0$$

$$K0 = X \cdot PS1 + \overline{X} \cdot \overline{PS1}$$

$$K1 = X \cdot PS0$$

$$M = \overline{PS0}$$

$$Z1 = X \cdot PS1$$

$$Z2 = \overline{PS1} \cdot X$$

Řešení pro KO J-K – schéma

$$J0 = X \cdot PS1 + \overline{X} \cdot \overline{PS1}$$
 $K0 = X \cdot PS1 + \overline{X} \cdot \overline{PS1}$ $M = \overline{PS0}$ $Z1 = X \cdot PS1$
 $J1 = \overline{X} \cdot PS0$ $Z2 = \overline{PS1} \cdot X$

M = PS0

 $Z1 = X \cdot PS1$

 $Z2 = PS1 \cdot X$

Řešení pro KO R-S

$$S0 = X \cdot \overline{PS0} \cdot PS1 + \overline{X} \cdot \overline{PS0} \cdot \overline{PS1}$$

$$R0 = \overline{X} \cdot \overline{PS1} + X \cdot PS0 \cdot PS1$$

$$R1 = X \cdot PS0$$

Řešení pro KO T

$$T1 = X \cdot PS0 \cdot PS1 + \overline{X} \cdot PS0 \cdot \overline{PS1}$$

$$M = \overline{PS0}$$

$$Z1 = X \cdot PS1$$

$$Z2 = \overline{PS1} \cdot X$$

Syntéza detektoru náběžné hrany

- Synchronizační obvod
 - Omezuje pravděpodobnost toho, že se metastabilní stav projeví na vstupu synchronního automatu
 - Výstupem je zasynchronizovaná vstupní asynchronní událost
 - Vstupní událost je zpožděna o 2 takty hodinového signálu
- Synchronní obvod
 - Konečný automat detekující kladnou hranu
 - Zkusíme implementovat jako Mooreův i Mealyho konečný automat

Syntéza detektoru náběžné hrany - Moore

Varianta 1: Mooreův konečný automat

Kódování stavů je výhodné volit tak, aby byla implementace co

nejjednodušší

	sný stav PS	Vstup A	Následující stav NS		Výstup Mealy	Výstup Moore
Název	Kód Q1,Q0		Název	Kód D1,D0		S
q_0	00	0	q_0	00	-	0
q_0	00	1	q ₁	01	-	0
q ₁	01	0	q_0	00	-	1
q ₁	01	1	q ₂	11	-	1
q_2	11	0	q_0	00	-	0
q_2	11	1	q_2	11	-	0

Následují stav	Následující stav			Současný stav Q1,Q0					
D1	00 01		11	10					
Α	0	0	0	0	X				
	1	0	1		Х				

Následují stav	CÍ	Současný stav Q1,Q0						
D0	D0			11	10			
Α	0	0	0	0	Х			
	1	1	1	1	X			

	Mooreův výstup S			
		0	1	
Současný	0	0	Х	
stav Q0	1	1	0	

$$D1 = A \cdot Q0$$
 $D0 = A$ $S = \overline{Q1} \cdot Q0$

Syntéza detektoru náběžné hrany - Moore

Synchronní sekvenční obvod

Syntéza detektoru náběžné hrany - Mealy

- Varianta 2: Mealyho konečný automat
 - Mealyho automat může mít méně stavů než Mooreův

	sný stav PS	Vstup A		ıjící stav NS	Výstup Mealy	Výstup Moore
Název	Kód Q0		Název	Kód D0	S	
q_0	0	0	q_0	0	0	•
q_0	0	1	q ₁	1	1	ı
q ₁	1	0	q_0	0	0	-
q ₁	1	1	q ₁	1	0	-

Mealyho	Vstup A			
výstup S	5	0	1	
Současný	0	0	1	
stav Q0	1	0	0	

$$D0 = A$$
 $S = A \cdot \overline{Q0}$

Syntéza detektoru náběžné hrany - Mealy

Synchronní sekvenční obvod

