CoVE Attestation Framework

CCC Attestation Meeting - 2023/05/09
Samuel Ortiz, Ravi Sahita

Goals

- 1. Make the CCC aware of the RISC-V attestation specification ongoing efforts
- 2. Gather feedback from the CCC to improve/enhance the specification

Agenda

- CoVE (and RISC-V) Refresher
- CoVE Attestation Flows and Formats

RISC-V Primer

- RISC ISA
- Free and Open
- Stable but modular ISA
 - Base ISA and standard extensions are frozen
 - Extensions are optional
 - Hardware virtualization is an extension (H-Extension)

Privilege Modes

- \circ M > U > S
 - M only Basic embedded systems
 - M + U Enhanced embedded systems
 - \blacksquare M + S + U Rich OS (e.g. Linux), Applications
 - M + HS + U Hypervisor, with Rich OS guests (e.g. Linux), Applications

CoVE

Previously known as AP-TEE

- Application Processor Trusted Execution Environment
- Target use case Confidential Computing for application class RISC-V-based platforms

Now known as - Confidential VM Extension

- TEE workloads are typically VM guests
- Similar goals as other Confidential VM e.g. Intel TDX, AMD SEV-ES-SNP or ARM CCA

Main Components

- TVM TEE VM
- TSM TEE Security Manager, a TCB intermediary between the TVMs and the host
- TSM Driver TEE Security Manager Driver, a TCB M-mode component hosting the TSM ABI
- Host VMM/Hypervisor Untrusted Virtual Machine Monitor

TEE/non-TEE isolation provided by CPU e.g. MTT

CoVE Attestation

- DICE layered attestation
- EAT-formatted Attestation Evidence

CoVE DICE

- A CoVE workload TCB is composed of 3 independent TCBs
 - a. Platform TCB
 - All platform components participating to the CoVE workload TCB
 - RoT, CPU, all SoC subsystems (Memory, PCIe, PM, etc controllers, IOMMU, etc)
 - All M-mode firmwares, all SoC components firmwares
 - b. TSM TCB
 - TSM and TSM Driver
 - c. TVM TCB
 - TVM measured pages
 - [Assigned TEE-IO devices]
- DICE starts at platform ROM
- The platform RoT derives the platform TCB
 - a. Provides CDI and Certificate to the TSM Driver
- TSM generates the final Attestation Evidence

CoVE Attestation Evidence

- Evidence payload is a UCCS (Unprotected CWT Claim Set)
- One EAT Submodule Claim Set
 - Each map value is an attestation token
 - One token per TCB component (Platform, TSM, TVM)
- The payload is embedded into either an CBOR or X.509 certificate

CoVE EAT profile claim

The platform EAT profile claim describes the EAT profile that the CoVE platform implements. The profile should include a description of all three tokens (platform, TSM and TVM) as they are bound together.

EAT Profile Claim

```
riscv-cove-eat-profile-label = 265 ; EAT profile
riscv-cove-eat-profile-doc = "https://riscv.org/TBD"

riscv-cove-eat-profile = (
   riscv-cove-eat-profile-label => riscv-cove-eat-profile-doc
)
```


Evidence Generation

- Defined through the CoVE Attestation ABI
- TVM requests the evidence to TSM
- sbi_covg_get_evidence()
 - Inputs
 - TVM public key
 - Nonce,
 - Certificate format (CBOR or X.509)
 - Outputs
 - Attestation Certificate
 - TSM signed

References

CoVE specification (See pdf in the repo for ease of reference)

CoVE attestation specification

Linux CoVE RFC

RISC-V TSM github

RISC-V ISA specification

