18.745 Introduction to Lie Algebras

September 28, 2010

Lecture 6 — Generalized Eigenspaces & Generalized Weight Spaces

Prof. Victor Kac Scribe: Andrew Geng and Wenzhe Wei

Definition 6.1. Let A be a linear operator on a vector space V over field \mathbb{F} and let $\lambda \in \mathbb{F}$, then the subspace

$$V_{\lambda} = \{v \mid (A - \lambda I)^{N} v = 0 \text{ for some positive integer N}\}$$

is called a generalized eigenspace of A with eigenvalue λ . Note that the eigenspace of A with eigenvalue λ is a subspace of V_{λ} .

Example 6.1. A is a nilpotent operator if and only if $V = V_0$.

Proposition 6.1. Let A be a linear operator on a finite dimensional vector space V over an algebraically closed field \mathbb{F} , and let $\lambda_1, ..., \lambda_s$ be all eigenvalues of A, $n_1, n_2, ..., n_s$ be their multiplicities. Then one has the generalized eigenspace decomposition:

$$V = \bigoplus_{i=1}^{s} V_{\lambda_i} \text{ where } \dim V_{\lambda_i} = n_i$$

Proof. By the Jordan normal form of A in some basis $e_1, e_2, ... e_n$. Its matrix is of the following form:

$$A = \begin{pmatrix} J_{\lambda_1} & & & \\ & J_{\lambda_2} & & \\ & & \ddots & \\ & & & J_{\lambda_n} \end{pmatrix}$$

where J_{λ_i} is an $n_i \times n_i$ matrix with λ_i on the diagonal, 0 or 1 in each entry just above the diagonal, and 0 everywhere else.

Let $V_{\lambda_1} = \text{span}\{e_1, e_2, ..., e_{n_1}\}, V_{\lambda_2} = \text{span}\{e_{n_1+1}, ..., e_{n_1+n_2}\}, ...$, so that J_{λ_i} acts on V_{λ_i} . i.e. V_{λ_i} are A-invariant and $A|_{V_{\lambda_i}} = \lambda_i I_{n_i} + N_i$, N_i nilpotent.

From the above discussion, we obtain the following decomposition of the operator A, called the classical Jordan decomposition

$$A = A_s + A_n$$

where A_s is the operator which in the basis above is the diagonal part of A, and A_n is the rest $(A_n = A - A_s)$. It has the following 3 properties

1

- (i) A_s is a diagonalizable operator (usually called semisimple)
- (ii) A_n is a nilpotent operator
- (iii) $A_s A_n = A_n A_s$.
- (iii) holds since $V=\bigoplus_{i=1}^s V_{\lambda_i},\ AV_{\lambda_i}\in V_{\lambda_i},\ {\rm and}\ A_s|_{V_{\lambda_i}}=\lambda_iI.$ Hence $A_sA_n=A_nA_s$.

Definition 6.2. A decomposition of an operator A of the form $A = A_s + A_n$, for which these three properities hold is called a Jordan decomposition of A. We have established its existence, provided that $\dim V < +\infty$, $\mathbb{F} = \bar{\mathbb{F}}$

Proposition 6.2. Jordan decomposition is unique under the same assumptions

Lemma 6.3. Let A and B be commuting operators on V; i.e., AB = BA. Then

- (a) All generalized eigenspaces of A are B-invariant
- (b) if $A = A_s + A_n$ is the classical Jordan decomposition, then B commutes with both A_s and A_n .

Proof. (a) is immediate from definition of generalized eigenspace. (b) follows from (a) since each V_{λ_i} is B-invariant, $A_s|_{V_{\lambda_i}} = \lambda_i I_{n_i}$, therefore A and A_s commute on each V_{λ_i} , therefore commute.

Proof of the proposition. Consider a Jordan decomposition $A = A'_s + A'_n$, and let $A = A_s + A_n$ be the classical Jordan decomposition. Take the difference, we get

$$A_s - A_s' = A_n - A_n'$$

But A'_s commutes with A'_n and itself, hence with A. Hence by taking $B = A'_s$ in lemma (b), we conclude that A'_s commutes with A_s and A_n . Therefore $A'_n = A - A'_s$ also commutes with A_s and A_n . So in (2) we we have difference of commutative operators on both sides. Hence LHS is diagonalizable and RHS is nilpotent (by the binomial formula). But equality of a diagonalizable operator to a nilpotent one is possible only if both are 0.

Question. Is it true in general that Jordan decomposition is unique?

Exercise 6.1. Show that any nonabelian 3-dimensional nilpotent Lie algebra is isomorphic to the Heisenberg algebra H_3 .

Proof. If \mathfrak{g} is nonabelian and 3-dimensional, then $Z(\mathfrak{g})$ must have dimension less than 3. By a previous exercise (3.2), dim $Z(\mathfrak{g}) \neq \dim \mathfrak{g} - 1$, so this dimension cannot be 2. A proposition from lecture 4 states that if \mathfrak{g} is nonzero and nilpotent, $Z(\mathfrak{g})$ is nonzero. Hence $Z(\mathfrak{g})$ is 1-dimensional.

Now by exercise 3.3, the *n*-dimensional Lie algebras for which $Z(\mathfrak{g})$ has dimension two less than \mathfrak{g} are $Ab_{n-2} \oplus \mathfrak{g}_2$ and $Ab_{n-3} \oplus H_3$, where \mathfrak{g}_2 is the 2-dimensional Lie algebra $\mathbb{F}x + \mathbb{F}y$ defined by [x,y] = y.

Since \mathfrak{g} is nilpotent, it cannot be $Ab_1 \oplus \mathfrak{g}_2$, because \mathfrak{g}_2 is not nilpotent. Then the only remaining possibility is $\mathfrak{g} = Ab_0 \oplus H_3 = H_3$.

Let \mathfrak{g} be a finite-dimensional Lie algebra and π its representation on a finite-dimensional vector space V, over an algebraically closed field \mathbb{F} of characteristic 0. We have the following generalized eigenspace decompositions for a fixed $a \in \mathfrak{g}$.

$$V = \bigoplus_{\lambda \in \mathbb{F}} V_{\lambda}^{a} \qquad V_{\lambda}^{a} = \left\{ v \in V \mid (\pi(a) - \lambda I)^{N} v = 0 \text{ for some } N \in \mathbb{N} \right\}$$

$$\mathfrak{g} = \bigoplus_{\alpha \in \mathbb{F}} \mathfrak{g}_{\alpha}^{a} \qquad \mathfrak{g}_{\alpha}^{a} = \left\{ g \in \mathfrak{g} \mid (\mathbf{ad} \ a - \alpha I)^{N} g = 0 \text{ for some } N \in \mathbb{N} \right\}$$

We'll prove the following.

Theorem 6.4. $\pi(\mathfrak{g}^a_{\alpha}) V^a_{\lambda} \subseteq V^a_{\lambda+\alpha}$

First, we need a lemma on associative algebras.

Lemma 6.5. Suppose U is a unital associative algebra over \mathbb{F} , and let $a, b \in U$ and $\lambda, \alpha \in \mathbb{F}$. Then

$$(a - \alpha - \lambda)^N b = \sum_{j=0}^N \binom{N}{j} \left((\operatorname{ad} \ a - \alpha I)^j \ b \right) (a - \lambda)^{N-j} \ .$$

Proof. Write ad $a = L_a - R_a$, where $L_a(x) = ax$ and $R_a(x) = xa$. Then

$$L_{a-\alpha-\lambda} = L_a - \alpha I - \lambda I$$

$$= \mathbf{ad} \ a + R_a - \alpha I - \lambda I$$

$$L_{a-\alpha-\lambda} = (\mathbf{ad} \ a - \alpha) + R_{a-\lambda}$$
(1)

For any given $a, b \in U$, the operators L_a and R_b commute by associativity of U. Since **ad** a is just the difference $L_a - R_a$, it commutes with both L_a and R_a . Then since $\alpha I, \lambda I \in \mathbb{F}I \subset Z(U)$, the terms (**ad** $a - \alpha$) and $R_{a-\lambda}$ on the right side of (1) commute. Given this, the claimed equality follows from raising both sides of (1) to the Nth power and applying the Binomial Theorem. \square

Proof of Theorem 6.4. Applying the lemma to $\pi(\mathfrak{g})$, we have the following for all $g \in \mathfrak{g}$, and thus for all $g \in \mathfrak{g}_{\alpha}^{a}$. (Recall that $a \in \mathfrak{g}$ is fixed.)

$$(\pi(a) - \alpha - \lambda)^N \pi(g) = \sum_{j=0}^N \binom{N}{j} (\operatorname{ad} \pi(a) - \alpha)^j \pi(g) (\pi(a) - \lambda)^{N-j}$$

Apply both sides of this to $v \in V_{\lambda}^{a}$ with $N > \dim V_{\lambda}^{a} + \dim \mathfrak{g}_{\alpha}^{a}$. By this choice of N, either $j > \dim \mathfrak{g}_{\alpha}^{a}$ or $N - j > \dim V_{\lambda}^{a}$. If $j > \dim \mathfrak{g}_{\alpha}^{a}$, then $(\operatorname{ad} \pi(a) - \alpha)^{j} \pi(g) = 0$ since $g \in g_{\lambda}^{a}$. Otherwise, $N - j > \dim V_{\lambda}^{a}$, so $(\pi(a) - \lambda)^{N - j} v = 0$ since $v \in V_{\lambda}^{a}$.

This makes every term in the sum on the right zero, so $(\pi(a) - \alpha - \lambda)^N \pi(g)v = 0$. Then $\pi(g)v$ is a generalized eigenvector of $\pi(a)$ with eigenvalue $\alpha - \lambda$, so $\pi(g)v \in V_{\lambda+\alpha}^a$. Since this holds for all $g \in \mathfrak{g}_{\alpha}^a$ and $v \in V_{\lambda}^a$, the claimed inclusion holds.

By analogy to the definition of a generalized eigenspace, we can define generalized weight spaces of a Lie algebra \mathfrak{g} .

Definition 6.3. Let \mathfrak{g} be a Lie algebra with a representation π on a vector space on V, and let $\lambda \in \mathfrak{g}^*$ be a linear functional on \mathfrak{g} . The generalized weight space of \mathfrak{g} in V attached to λ is

$$V_{\lambda}^{\mathfrak{g}} = \left\{ v \in V \mid \left(\pi(g) - \lambda(g)I \right)^{N} v = 0 \text{ for some } N \text{ depending on } g, \text{ for all } g \in \mathfrak{g} \right\}.$$

Under the right conditions, a nilpotent subalgebra $\mathfrak{h} \subseteq \mathfrak{g}$ permits decomposing V as a direct sum of the generalized weight spaces of \mathfrak{h} , each of which is a subrepresentation of $\pi_{\mathfrak{h}}$. The following theorem makes this precise.

Theorem 6.6. Let \mathfrak{g} be a finite-dimensional Lie algebra and π its representation on a finite-dimensional vector space V, over an algebraically closed field \mathbb{F} of characteristic 0. Let \mathfrak{h} be a nilpotent subalgebra of \mathfrak{g} . Then the following equalities hold.

$$V = \bigoplus_{\lambda \in \mathfrak{h}^*} V_{\lambda}^{\mathfrak{h}} \tag{2}$$

$$\pi \left(\mathfrak{g}_{\alpha}^{\mathfrak{h}} \right) V_{\lambda}^{\mathfrak{h}} \subseteq V_{\lambda + \alpha}^{\mathfrak{h}} \tag{3}$$

Remark. In the case of the adjoint representation, we may express these as follows.

$$\mathfrak{g} = \bigoplus_{\alpha \in \mathfrak{h}^*} \mathfrak{g}_{\alpha}^{\mathfrak{h}} \tag{4}$$

$$\left[\mathfrak{g}_{\alpha}^{\mathfrak{h}},\mathfrak{g}_{\beta}^{\mathfrak{h}}\right]\subseteq\mathfrak{g}_{\alpha+\beta}^{\mathfrak{h}}\tag{5}$$

Proof of Theorem 6.6.

Case 1. For each $a \in \mathfrak{h}$, $\pi(a)$ has only one eigenvalue.

In this case, V is a generalized eigenspace $V_{\lambda(a)}^a$ of every $a \in \mathfrak{h}$, so we just need to check the linearity of λ .

Since \mathfrak{h} is nilpotent, it is solvable. Since we assumed \mathbb{F} to be algebraically closed and with characteristic 0, we can then apply Lie's theorem, which guarantees the existence of a weight λ' with some nonzero weight space $V_{\lambda'}^{\mathfrak{h}}$. Then $\lambda'(a)$ must be the eigenvalue of $\pi(a)$ with which $\pi(a)$ acts on $V_{\lambda'}^{\mathfrak{h}}$, so $\lambda' = \lambda$. Therefore λ is linear, so V is the generalized weight space $V_{\lambda}^{\mathfrak{h}}$.

Case 2. For some $a_0 \in \mathfrak{h}$, $\pi(a_0)$ has at least two distinct eigenvalues.

Since \mathfrak{h} is nilpotent, ad a is a nilpotent operator on \mathfrak{h} for all $a \in \mathfrak{h}$. Thus $\mathfrak{h} \subset \mathfrak{g}_0^a$. Then by Theorem 6.4, $\pi(\mathfrak{h})V_{\lambda}^a \subseteq V_{\lambda}^a$ for any $a \in \mathfrak{h}$.

Since $\mathbb F$ is algebraically closed, V can be written as a direct sum of the generalized eigenspaces of a_0 . Since each $V_\lambda^{a_0}$ is invariant under the action of $\mathfrak h$, each $V_\lambda^{a_0}$ is also a representation of $\mathfrak h$. Since $\dim V_\lambda^{a_0} < \dim V$, we may apply induction on $\dim V$. This establishes the equality (2).

To finish, we'll prove the inclusion (3). Suppose $\alpha, \lambda \in \mathfrak{h}^*$, and suppose $g \in \mathfrak{g}^{\mathfrak{h}}_{\alpha}$. Then $g \in \mathfrak{g}^{a}_{\alpha(a)}$ for all $a \in \mathfrak{h}$. By Theorem 6.4, $\pi(g)V^a_{\lambda(a)} \subset V^a_{\lambda(a)+\alpha(a)}$ for all $a \in \mathfrak{h}$. Then

$$v \in \bigcap_{a \in \mathfrak{h}} V^a_{\lambda(a)} \implies \pi(g)v \in \bigcap_{a \in \mathfrak{h}} V^a_{\lambda(a) + \alpha(a)}.$$

Since $\bigcap_{a \in \mathfrak{h}} V_{\lambda(a)}^a = V_{\lambda}^{\mathfrak{h}}$ by the definition of a generalized weight space, this establishes (3).

Exercise 6.2. Suppose \mathbb{F} has characteristic 2, and $V = \mathbb{F}[x]/(x^2)$ is a representation of H_3 where $p \mapsto \frac{\partial}{\partial x}$, $q \mapsto x$, and $c \mapsto I$. Then $V = V_{\lambda}$, but λ is not a linear function on H_3 . Compute λ .

Proof. Suppose p acts as $\frac{\partial}{\partial x}$, q acts as multiplication by x, and c acts as the identity on $\mathbb{F}[x]/(x^2)$. Then:

$$p(a+bx) = b + 0x = \begin{bmatrix} 1 & x \end{bmatrix} \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} a \\ b \end{bmatrix}$$
$$q(a+bx) = 0 + ax = \begin{bmatrix} 1 & x \end{bmatrix} \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} a \\ b \end{bmatrix}$$
$$c(a+bx) = a + bx = \begin{bmatrix} 1 & x \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} a \\ b \end{bmatrix}$$

Then making a basis on $\mathbb{F}[x]/(x^2)$ using 1 and x, we can write the matrix representing some $rp + sq + tc \in H_3$ as the following matrix.

$$\begin{bmatrix} t & r \\ s & t \end{bmatrix}$$

Then finding λ is a matter of solving its characteristic polynomial.

$$0 = \det \begin{bmatrix} t - \lambda & r \\ s & t - \lambda \end{bmatrix}$$
$$= (t - \lambda)^2 - rs$$
$$\pm \sqrt{rs} = t - \lambda$$
$$\lambda = t \pm \sqrt{rs}$$

In a field of characteristic 2, we can drop the \pm sign. By passing to the algebraic closure if necessary, we can assume the square root of rs always exists. Thus:

$$\lambda(rp + sq + tc) = t + \sqrt{rs}$$

(To verify that λ is not linear, observe that by this formula, $\lambda(p) = \lambda(q) = 0$, but $\lambda(p+q) = 1$.)

Exercise 6.3. By the example of the adjoint representation of a nonabelian solvable Lie algebra, show that the generalized weight space decomposition fails if the Lie algebra is solvable but not nilpotent.

Proof. Consider the Lie algebra $\mathfrak{g}_2 = \mathbb{F}x + \mathbb{F}y$, with the bracket operation defined by [x,y] = y.

It's apparent by induction that $\mathfrak{g}_2^k = [\mathfrak{g}_2, \mathfrak{g}_2^{k-1}] = \mathbb{F}y$ (for $k \geq 2$), so \mathfrak{g}_2 is not nilpotent. However, then $\mathfrak{g}_2^{(1)} = \mathbb{F}y$, which is 1-dimensional, so $\mathfrak{g}_2^{(2)} = 0$, and thus \mathfrak{g}_2 is solvable.

Taking x and y as the basis elements of \mathfrak{g}_2 , the adjoint representation takes x and y to the following matrices.

$$x \mapsto \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} \qquad \qquad y \mapsto \begin{bmatrix} 0 & 0 \\ -1 & 0 \end{bmatrix}$$

So we find their eigenvalues by solving their characteristic polynomials.

$$\lambda(\lambda - 1) = 0$$

$$\lambda = 0 \text{ or } 1$$

$$\lambda^2 = 0$$

$$\lambda = 0$$

The corresponding generalized eigenvectors can be found by lucky guessing. Specifically, ad x has x with eigenvalue 0 and y with eigenvalue 1, while ad y has all of \mathfrak{g}_2 with eigenvalue 0.

So we can get weight spaces $V_0 = \text{span}\{x\}$ and $V_{x^*} = \text{span}\{y\}$, corresponding to the zero linear functional and the linear functional defined by $x \mapsto 1$. The vector space decomposes into the direct sum of these weight spaces, but the *representation* does not! Specifically, V_0 is not closed under the action of y.

Exercise 6.4. Take $\mathfrak{g} = \mathfrak{gl}_n(\mathbb{F})$ and $\mathfrak{h} = \{\text{diagonal matrices}\}$. Find the generalized weight space decomposition in both the tautological and the adjoint representations, and check the inclusions (3) and (5) in Theorem 6.6.

Proof. Suppose $\mathfrak{g} = \mathfrak{gl}_n(\mathbb{F})$ and $\mathfrak{h} \subset \mathfrak{g}$ consists of diagonal matrices. Then the generalized eigenvectors of $h \in \mathfrak{h}$ are actual eigenvectors, so every standard basis element of \mathbb{F}^n is an eigenvector. Also, given any linear combination $ae_i + be_j$ of more than one basis element, there is some diagonal matrix that takes e_i to e_i and e_j to zero, so these linear combinations are not generalized eigenvectors of everything in \mathfrak{h} . Thus the only candidates for generalized weight spaces are the n axes, each of which is the span of a single standard basis element of \mathbb{F}^n .

For the axis V_i spanned by e_i , the linear functional on \mathfrak{h} that takes h to the component $h_{i,i}$ is a weight making V_i a weight space. Thus in the tautological representation, \mathbb{F}^n decomposes as a direct sum of n copies of \mathbb{F} .

To do the same with the adjoint representation, suppose the diagonal entries of $h \in \mathfrak{h}$ are h_i . Then for $a \in \mathfrak{g}$, we have:

$$((ad h)a)_{i,j} = (ha - ah)_{i,j}$$

= $h_i a_{i,j} - a_{i,j} h_j$
= $(h_i - h_j)a_{i,j}$

This shows that $\mathbf{ad}\ h$ is diagonalizable, which again implies that its generalized eigenvectors are actual eigenvectors, and so its generalized weight spaces are actually weight spaces.

Possible pairs of eigenvalues are

- 1. $h_i h_i$ vs. $h_i h_k$,
- 2. $h_i h_i$ vs. $h_k h_\ell$,
- 3. $h_i h_j$ vs. $h_j h_i$, and
- 4. $h_i h_i$ vs. $h_j h_j$.

By appropriate choice of h, we can always make distinct eigenvalues in (1) and (2), so the basis elements $e_{i,j}$ of \mathfrak{g} satisfying i < j lie in distinct eigenspaces for some h, and thus they lie in distinct candidate weight spaces. This weight space can be achieved with the linear functional $\lambda_{i,j}$ taking h to $h_i - h_j$.

Since for the theorem we assume the characteristic of \mathbb{F} is not 2, the eigenvalues in (3) will be distinct, so we'll also have $\lambda_{i,j}$ with i > j. Finally, both eigenvalues in (4) are always zero, so the zero linear functional has \mathfrak{h} as its weight space.

Combining all of this, the generalized weight space decomposition of \mathfrak{g} in the adjoint representation is \mathfrak{h} plus some 1-dimensional weight spaces:

$$\mathfrak{g} = \mathfrak{h} \oplus \bigoplus_{i \neq j} \operatorname{span} \{e_{i,j}\}$$

To check the assertion of the theorem from class, first we verify for the tautological representation that:

$$\pi\left(\mathfrak{g}_{\alpha}^{\mathfrak{h}}\right)V_{\lambda}^{\mathfrak{h}}\subseteq V_{\lambda+\alpha}^{\mathfrak{h}}$$

Each $V_{\lambda}^{\mathfrak{h}}$ is the span of some basis element e_i , with λ corresponding to the map $h \mapsto h_i$, so we really only need to check that, for some appropriate j:

$$\pi\left(\mathfrak{g}_{\alpha}^{\mathfrak{h}}\right)e_{i}\propto e_{j}$$

In the case $\alpha = 0$ we should get j = i, and we do; the space $\mathfrak{g}_0^{\mathfrak{h}}$ consists of all diagonal matrices, so they act on e_i by scaling.

In the case $\alpha h = h_k - h_\ell$, we then have $\mathfrak{g}_{\alpha}^{\mathfrak{h}} = e_{k,\ell}$, and $\alpha + \lambda = h_k - h_\ell + h_i$. We should expect zero if $i \neq \ell$, since we only have nonzero weight spaces for λ of the form $h \mapsto h_{something}$; and indeed this is the case, since if $i \neq \ell$ then $e_{k,\ell}e_i = 0$. Furthermore, if $i = \ell$ then we should get the span of e_k , which is the weight space corresponding to $h \mapsto h_k$. We verify this by observing that $e_{k,i}e_i = e_k$. So in fact we have equality:

$$\pi\left(\mathfrak{g}_{\alpha}^{\mathfrak{h}}\right)V_{\lambda}^{\mathfrak{h}}=V_{\lambda+\alpha}^{\mathfrak{h}}$$

The second assertion in (b) of the theorem is essentially the same statement for the adjoint representation. First, if $\alpha = \beta = 0$, then both $\mathfrak{g}^{\mathfrak{h}}_{\alpha}$ and $\mathfrak{g}^{\mathfrak{h}}_{\beta}$ are equal to \mathfrak{h} . Since \mathfrak{h} consists of diagonal matrices, it's commutative, so the bracket is zero and thus is contained in any weight space we like.

If $\alpha = 0$ and $\beta = \{h \mapsto h_i - h_j\}$, then we end up with $[\mathfrak{h}, \operatorname{span}\{e_{i,j}\}]$. Observe that:

$$[h, e_{i,j}] = he_{i,j} - e_{i,j}h$$

= $(h_i - h_j)e_{i,j} \in \text{span}\{e_{i,j}\}$

Finally, if α maps h to $h_i - h_j$ and β maps h to $h_k - h_\ell$, we have essentially $[e_{i,j}, e_{k,\ell}]$. We need either j = k or $i = \ell$ for $\alpha + \beta$ to be a weight, and we indeed see that if neither holds, then $e_{i,j}e_{k,\ell} = 0$. Otherwise, by relabeling α and β , we can assume without loss of generality that j = k. This gives us $e_{i,\ell}$ if $i \neq \ell$ and 0 if $i = \ell$, so either way it's in the weight space of $h \mapsto h_i - h_\ell$.