

Introduction to Machine Learning

Multi-Class Classification and Bayesian optimization

Multiclass classification

More than two classes

Confusion matrix

$Predict \rightarrow$

	Enter	Leave	Cook	Sleep	Meds	Eat	Groom	Bathe	Bed-T	Relax
Enter	1673	27	6	0	0	0	0	0	0	0
Leave	9	1979	5	2	0	1	0	0	0	0
Cook	59	58	51238	39	199	137	28	2	0	0
Sleep	21	29	5	30795	4	86	14	0	51	0
Meds	11	2	200	0	3105	1	0	0	0	0
Eat	3	3	6	94	1	14278	5	0	0	0
Groom	0	11	4	1	1	3	21833	33	41	0
Bathe	0	0	0	1	0	0	59	592	5	0
Bed-T	0	0	0	18	0	0	15	2	501	0
Relax	0	0	0	1	0	0	0	0	0	3

Actual →

One-versus-all (one-vs-rest)

Algorithm 13 OneVersusAllTrain(D^{multiclass}, BinaryTrain)

 $_{1}$ for $i = \tau$ to K do

 $\mathbf{D}^{bin} \leftarrow \text{relabel } \mathbf{D}^{multiclass} \text{ so class } i \text{ is positive and } \neg i \text{ is negative}$

// initialize K-many scores to zero

 $f_i \leftarrow \text{BinaryTrain}(\mathbf{D}^{bin})$

a: end for

 $_{5:}$ return f_1,\ldots,f_K

1: $score \leftarrow \langle o, o, \ldots, o \rangle$

 $score_i \leftarrow score_i + y$

6: **return** $argmax_k score_k$

₂ for $i = \tau$ to K do

 $y \leftarrow f_i(\hat{x})$

5: end for

Algorithm 14 ONEVERSUSALLTEST $(f_1, \ldots, f_K, \hat{x})$

All-versus-all (one-versus-one)

Algorithm 15 AllVersusAllTrain(D^{multiclass}, BinaryTrain) $f_{ij} \leftarrow \emptyset, \forall 1 \leq i < j \leq K$ $_{2:}$ for i = 1 to K-1 do

3:
$$\mathbf{D}^{pos} \leftarrow \text{all } x \in \mathbf{D}^{multiclass} \text{ labeled } i$$

4: **for** $j = i+1$ **to** K **do**

 $\mathbf{D}^{neg} \leftarrow \text{all } x \in \mathbf{D}^{multiclass} \text{ labeled } i$

$$\mathbf{D}^{bin} \leftarrow \{(x, +1) : x \in \mathbf{D}^{pos}\} \cup \{(x, -1) : x \in \mathbf{D}^{neg}\}$$
$$f_{ij} \leftarrow \mathbf{BinaryTrain}(\mathbf{D}^{bin})$$

$$_{9:}$$
 end for $_{10:}$ return all f_{ij} s

$$f_{ij} \leftarrow D$$
8: **end for**

$$f_{ij} \leftarrow \text{Binar}$$

1: $score \leftarrow \langle o, o, \ldots, o \rangle$

 $_{2:}$ for i = 1 to K-1 do

 $y \leftarrow f_{ij}(\hat{x})$

end for

8: end for

for j = i+1 to K do

 $score_i \leftarrow score_i + y$ $score_i \leftarrow score_i - y$

9: **return** argmax_k score_k

$$f_{ij} \leftarrow \text{BINARY}$$

$$f_{ij} \leftarrow \{(x, +$$

$$\{(x,+1):x\in$$

Algorithm 16 AllVersusAllTest(all f_{ij} , \hat{x})

$$: x \in \mathbf{D}^{\mathsf{pos}} \} \cup \{ (x, -1)^{\mathsf{pos}} \}$$

$$[(x,-1):x\in$$

$$(x \in \mathbf{D}^{\mathrm{neg}})$$

// initialize K-many scores to zero

Binary tree of classifiers

Overrun by hyperparameters

- Manual
- Grid search
- Random search

Bayesian optimization to the rescue?

Uses Bayes Theorem to direct the search

Roll two dice

Sources of probabilities

- Frequency
- Consider the probability that the sun will still exist tomorrow.

Axioms of probability

- 0 ≤ P(Event) ≤ 1
- Disjunction, P(a or b) = P(a) + P(b) P(a and b)

Conditional probability and conjunction

• P(a|b) = P(a and b) / P(b)

Conditional probability and conjunction

- $P(a \text{ and } b) = P(a) \times P(b|a)$
- $P(a \text{ and } b) = P(b) \times P(a|b)$

- If a and b are independent events
 - $P(a \text{ and } b) = P(a) \times P(b)$

Bayes' rule

Bayesian optimization to the rescue?

• Optimization method to solve $\arg\min_{x\in X}f(x)$

Bayesian optimization

- Build probability model of objective function
- Use model to select hyperparameters to evaluate

Bayesian optimization

P(score | hyperparameters)

Surrogate model

Surrogate model

Simple 1D example

Compare Bayesian optimizer with random search

Compare Bayesian optimizer with random search

Let's try it out