# Projet Axessim : Calcul de matrice d'impédance pour la simulation numérique des lignes de transmission multi-conducteur

Simulations

J. Aghili, G. Dollé, N. Pham, A. Samake, S. Asmar supervisé par

C. Giraudon, P. Helluy et T. Strub,

Semaine d'étude Maths-Entreprises













/ 25

Strasbourg, le 27 juin 2014

Projet Axessim SEME 2014

Simulations

# Plan de la présentation

- Introduction
- 2 Problème
- 3 Conducteurs et blindages
- Simulation sur des multi-conducteurs
- 5 Conclusions et perspectives

# Problème physique

Intro.

Calculer les tensions  $U(z,\omega)=(u_1\cdots u_N)^T$  et les courants  $I(z,\omega)=(I_1\cdots I_N)$  complexes dans un faisceau de conducteurs  $w_i$ ,  $i=1\cdots N$ . Les cables sont entourés d'un blindage  $w_0$ . La forme du faisceau est fixée dans le plan (x, y) et invariante suivant z.



Simulations

Exemple de section d'un cable.

## Ligne de transmission

Équation des lignes de transmissions  $(j^2 = -1)$ 

$$\frac{\partial U}{\partial z} = ZI, \quad Z = R + j\omega L,$$
  
$$\frac{\partial I}{\partial z} = YU, \quad Y = G + j\omega C.$$

Matrices : Impédance Z, Résistance R, Inductance L, Admittance Y, Conductance G, Capacité  $C=L^{-1}$ .

Propriétes des matrices :

- Symétrique
- Définie positive

#### Problème

Intro.

Flux magnétique  $\varphi(x,y)$ .

Champ magnétique : dédrive d'un potentiel vecteur

$$B = \nabla \times (0, 0, \varphi)^T.$$

et

$$\nabla \times \boldsymbol{B} = (0, 0, j_z)^T$$

avec

- $j_z(x,y)$ : densité de courant suivant z
- $I_i = \int_{w} j_z(x,y) dx dy$  : courant

On a

$$-\Delta \varphi = \begin{cases} j_z \\ 0 & \text{sur } \Omega = w_0 \setminus \cup_i w_i, \end{cases} \tag{1}$$

#### Sous forme de matrice

On peut écrire

$$\tilde{\varphi} = \sum_{k} \phi_k \tilde{\varphi}_k \tag{2}$$

avec  $\tilde{\varphi}$  est solution de problème suivante

$$\begin{cases} -\Delta \varphi = 0 & \text{sur } \Omega \\ \varphi = \delta_{ij} \end{cases} \tag{3}$$

donc on a

$$\sum_{j} \phi_{j} \left( \int_{w_{i}} -\Delta \tilde{\varphi}_{j} \right) = I_{i} \tag{4}$$

ou bien

$$\sum_{i} \phi_{j} \left( \int_{\partial w_{i}} -\nabla \tilde{\varphi}_{j} \right) \cdot n = I_{i}$$
 (5)

en déduit

$$\sum M_{ij}\phi_j = I_i \quad \forall i \tag{6}$$

Projet Axessim **SEME 2014** 

#### Calcul la matrice M

On a

$$M_{ij} = \int_{\partial w_i} \frac{\partial \varphi_i^{-1}}{\partial n} \tag{7}$$

Properties de la matrice M

- Symétrique
  - Définie positive
  - Inversible

Ou bien

$$M\phi = I$$
 ou bien  $\phi = LI$  où  $L = M^{-1}$  (8)

#### Calcul la matrice M

Problème quand on a calculer directement l'intégrale : La matrice M n'est plus symétrique => solution : formulation faible

$$\int_{w} -\Delta\varphi\psi = \int_{w} \nabla\varphi\nabla\psi - \int_{\partial w} \nabla\varphi \cdot n\psi = \int_{\partial w} \nabla\varphi \cdot n \tag{9}$$

avec  $\psi \in H^1(w)$  satisfait

$$\psi(z) = \begin{cases} 0 & \text{si } z \in w \\ 1 & \text{si } z \in \partial w \end{cases}$$
 (10)

## Cas des cables et des blindages

- Blindage de référence  $w_0$  et N conducteurs  $w_1 \cdots w_N^1$
- Chaque conducteur  $w_i$  contient  $N_{int}^i$  sous conducteurs dedans
- Chaque conducteur  $w_i$  matrice d'inductance  $L^i_{int}$
- $L_{ext}$  : matrice d'inductance des conducteurs extérieurs



# Cas des cables et des blindages

#### On obtient

$$\begin{bmatrix} \phi_{ext} \\ \tilde{\phi}_{int}^1 \\ \vdots \\ \tilde{\phi}_{int}^{N_{int}} \end{bmatrix} = \begin{bmatrix} L_{ext} \\ & L_{int}^1 \\ & & \ddots \\ & & L_{int}^{N_{int}} \end{bmatrix} \begin{bmatrix} \tilde{I}_{ext} \\ I_{int}^1 \\ \vdots \\ I_{int}^{N_{int}} \end{bmatrix}$$

Simulations

en d'éduite

$$\begin{bmatrix} \phi_{ext} \\ \tilde{\phi}_{int} \end{bmatrix} = \begin{bmatrix} L_{ext} \\ L_{int} \end{bmatrix} \begin{bmatrix} \tilde{I}_{ext} \\ I_{int} \end{bmatrix}$$

 $(\tilde{\phi}_{int}$  potentiel intérieux calculé avec une référence sur les blindages)

# Cas des cables et des blindages

Changement de variables

Matrices

$$\phi_{int} = \tilde{\phi}_{int} + \delta^T \phi_{ext}, \tag{11}$$

avec  $\delta$ : matrice de taille  $N_{ext} \times N_{int}$  et

$$\delta(i,j) = \begin{cases} 1 & \text{ si le conducteur } j + N_{ext} \text{ est dans le conducteur } i, \\ 0 & \text{ sinon.} \end{cases}$$

(12)

/ 25

De plus,

$$\phi_{ext} = L\tilde{I}_{ext} = L(I_{ext} - \delta I_{int}) \tag{13}$$

La matrice d'inductance globale

$$\left[\begin{array}{c} \phi_{ext} \\ \phi_{int} \end{array}\right] = L \left[\begin{array}{c} I_{ext} \\ I_{int} \end{array}\right]$$

avec

$$L = P_I^T \begin{bmatrix} L_{ext} & 0 \\ 0 & L_{int} \end{bmatrix} P_I, \qquad P_I \begin{bmatrix} 1 & -\delta \\ 0 & 1 \end{bmatrix}$$

Projet Axessim **SEME 2014** 

## Cas simple d'un blindage avec des conducteurs



Blindage de rérérence  $w_0$ , 2 conducteurs  $w_1$ ,  $w_2$ 

Simulations

•  $1^{ere}$  étape : calcul  $\varphi_i$  avec i=1,2-solution de

$$\begin{cases} -\Delta \varphi_i = 0 & \text{sur } \Omega \\ \varphi_i = \begin{cases} 1 & \text{sur } w_i \\ 0 & \text{sur } \{w_0, w_1, w_2\} \setminus w_i \end{cases} \end{cases}$$
(14)

- $2^{ere}$  étape : Chercher des fonction test  $\psi_i$ pour chaque  $\varphi_i$
- 3<sup>ere</sup> étape : Caculer les coefficients de la matrice M

$$M_{ij} = \int_{w_i} -\Delta \varphi_j \psi \tag{15}$$

Projet Axessim **SEME 2014** 

# Cas simple d'un blindage avec des conducteurs

Résultat :

ullet La matrice M obtenu est symétrique définie positive et inversible

• La matrice  $L = M^{-1}$  est symétrique définie positive

# Stratégie pour la résolution du problème

#### Plusieurs stratégie possible :

- Méthode intégrale (Choix Axessim)
- Méthode élément finis
  - Découplage du problème en sous problème simple (Nécessite un réassemblage des sous-matrices L et de générer le découpage du maillage).

Simulations

• Résolution du système complet (FreeFEM, Feel++).

## Génération de conducteurs et maillage

- Maillage explicite sur des cas tests simples.
- Généralisation sur des géométrie contenant des conducteurs imbriqué sur différent niveaux (blindages successifs).
- Utilisation d'outils de maillage automatique et paramétrique (GMSH et FreeFem)





Création de différent niveaux de conducteurs par construction itérative :

- Blindage principale extérieur contenant 3 blindages
- Chaque sous blindage contient 3 conducteurs et 1 blindage
- Répétition des deux précédentes étapes dans les étages inférieurs

L'idée est de retrouver le défaut de positivité qui apparait sur ce genre de géométrie.

# Comparaison et difficultés

- Découpez chaque niveau de maillage en sous maillage en respectant la numérotation.
- Dans le cas du découplage, chaque conducteur est considéré comme un trou sur la géométrie.



Observation : Le modèle simple à deux niveaux avec peu de cables ne reproduit pas le problème.

Nécessite d'étudier un problème un peu plus complexe :



Figure: Second blindage à deux niveaux

# Plan d'attaque

#### Procédure d'assemblage :

- ullet Calculer les matrices M du plus bas niveau vers le haut
  - Définir la géométrie (FF++)
  - $M_{ij}$  nécessite d'introduire une certaine fonction  $\psi_j$  localisée autour de  $\partial w_j$  (pour obtenir une parfaite symétrie)
- Procédures d'inversions de matrices denses  $(M \to L)$
- Assembler  $\delta$  sur le niveau le plus haut puis la matrice globale (Non achevé)

## Exemple de solution

**TEST** 

### Observations

#### En pratique, difficultés rencontrées :

- Comprendre la théorie
- ullet S'assurer que M est bien symétrique :
  - FreeFem++ : Automatisation des conditions aux bords multiples
  - $\psi_j$  doit être parfaitement localisée : défauts de symétrie constatés dans le cas de simples projections.

Simulations

000000000

Adapter le maillage.

#### **Observations**

- A tous les niveaux, M, L ont les propriétés attendues
  - Définies positive,  $\kappa \simeq 15$
  - Symétriques

|           | Niv.1 | Niv. 2 | Niv.3 |
|-----------|-------|--------|-------|
| $M_{ext}$ | -     | -      | -     |
| $L_{ext}$ | -     | -      | -     |

Table: Temps de calculs

#### Bilan :

• Résolution des problèmes locaux vers global sur FreeFEM++.

Simulations

Résolution du problème global.

/ 25

#### Bilan :

- Résolution des problèmes locaux vers global sur FreeFEM++.
- Résolution du problème global.

#### Perspectives:

- Résoudre le problème global vers local (Meilleurs stabilité?).
- Travailler sur des modèles plus complexes.

Merci de votre attention!

Projet Axessim

References I

**SEME 2014** 

/ 25