Санкт-Петербургский Политехнический Университет им. Петра Великого

Институт прикладной математики и механики Кафедра прикладной математики

ЛАБОРАТОРНАЯ РАБОТА №7 ПРОВЕРКА ГИПОТЕЗЫ О ЗАКОНЕ РАСПРЕДЕЛЕНИЯ ГЕНЕРАЛЬНОЙ СОВОКУПНОСТИ. МЕТОД ХИ-КВАДРАТ.

Студент группы 3630102/70301

Камянский Д.В.

Преподаватель

Баженов А. Н.

Содержание

1.	Список таблиц	3			
2.	Постановка задачи	4			
3. Теория					
	3.1. Метод максимального правдоподобия	4			
	3.2. Критерий согласия Пирсона	4			
4.	Реализация	5			
5.	Результаты				
	5.1. Метод максимального правдоподобия	5			
	5.2. Критерий Пирсона	5			
6.	Выводы	5			
7.	Список литературы	6			
8.	Приложения	6			

1	Список	таблиц

2 Постановка задачи

Необходимо сгенерировать выборку объемом 100 элементов для нормального распределения N(x;0,1). По сгенерированной выборке оценить параметры μ и σ нормального закона методом максимального правдоподобия. В качестве основной гипотезы H_0 будем считать, что сгенерированное распределение имеет вид $N(x, \mathring{\mu}, \mathring{\sigma})$. Проверить основную гипотезу, используя критерий согласия χ . В качестве ровня значимости взять $\alpha=0,05$. Привести таблицу вычислений χ^2 .

3 Теория

3.1 Метод максимального правдоподобия

Метод максимального правдоподобия – метод оценивания неизвестного параметра путём максимимзации функции правдоподобия.

$$\hat{\theta}_{\text{MII}} = argmax \mathbf{L}(x_1, x_2, \dots, x_n, \theta) \tag{1}$$

Где **L** это функция правдоподобия, которая представляет собой совместную плотность вероятности независимых случайных величин X_1, x_2, \ldots, x_n и является функцией неизвестного параметра θ

$$\mathbf{L} = f(x_1, \theta) \cdot f(x_2, \theta) \cdot \dots \cdot f(x_n, \theta) \tag{2}$$

Оценкой максимального правдоподобия будем называть такое значение $\hat{\theta}_{\text{MH}}$ из множества допустимых значений параметра θ , для которого функция правдоподобия принимает максимальное значение при заданных x_1, x_2, \ldots, x_n .

Тогда при оценивании математического ожидания m и дисперсии σ^2 нормального распределения $N(m,\sigma)$ получим:

$$\ln(\mathbf{L}) = -\frac{n}{2}\ln(2\pi) - \frac{n}{2}\ln(\sigma^2) - \frac{1}{2\sigma^2}\sum_{i=1}^{n}(x_i - m)^2$$
(3)

Отсюда находятся выражения для оценок m и σ^2 :

$$\begin{cases}
 m = \bar{x} \\
 \sigma^2 = s^2
\end{cases}$$
(4)

3.2 Критерий согласия Пирсона

Разобьём генеральную совокупность на k неперсекающихся подмножеств $\Delta_1, \Delta_2, \ldots, \Delta_k, \Delta_i = (a_i, a_{i+1}], p_i = P(X \in \Delta_i), i = 1, 2, \ldots, k$ – вероятность того, что точка попала в iый промежуток.

Так как генеральная совокупность это \mathbb{R} , то крайние промежутки будут бесконечными: $\Delta_1 = (-\infty, a_1], \ \Delta_k = (a_k, \infty), \ p_i = F(a_i) - F(a_{i-1})$

 n_i – частота попадания выборочных элементов в $\Delta_i,\ i$ = $1,2,\ldots,k$.

В случае справедливости гипотезы H_0 относительно частоты $\frac{n_i}{n}$ при больших n должны быть близки к p_i , значит в качестве меры имеет смысл взять:

$$Z = \sum_{i=1}^{k} \frac{n}{p_i} \left(\frac{n_i}{n} - p_i \right)^2 \tag{5}$$

Тогда

$$\chi_B^2 = \sum_{i=1}^k \frac{n}{p_i} \left(\frac{n_i}{n} - p_i \right)^2 = \sum_{i=1}^k \frac{(n_i - np_i)^2}{np_i}$$
 (6)

Для выполнения гипотезы H_0 должны выполняться следующие условия:

$$\chi_B^2 < \chi_{1-\alpha}^2(k-1) \tag{7}$$

где $\chi^2_{1-\alpha}(k-1)$ – квантиль распределения χ^2 с k-1 степенями свободы порядка $1-\alpha$, где α заданный уровень значимости.

4 Реализация

Работы была выполнена на языке Python 3.8.2 Для генерации выборок использовался модуль . Для генерации выборок и обработки функции распределения использовалась библиотека scipy.stats.

5 Результаты

5.1 Метод максимального правдоподобия

При подсчете оценок параметров закона нормального распределения методом максимального правдоподобия были получены следующие значения:

$$\hat{m}_{\text{MII}} = 0.090527$$

$$\hat{\sigma}_{\text{MII}}^2 = 0.963167$$
(8)

5.2 Критерий Пирсона

Таблица 1: Таблица вычислений χ^2

i	Δ_i	n_i	p_i	$\frac{(n_i - np_i)^2}{np_i}$
1	$(-\infty, -1.0]$	15	0.1288	0.3501
2	(-1.0, -0.5)	10	0.1411	1.1988
3	(-0.5, 0.0)	24	0.1927	1.1634
4	(0.0, 0.5)	19	0.2021	0.0721
5	(0.5, 1.0)	13	0.1629	0.6626
6	$(1.0,\infty)$	19	0.1725	0.1771
Σ		100	1	3.6241

$$\chi_B^2 = 3.6241$$

6 Выводы

Табличное значение квантиля $\chi^2_{1-\alpha}(k-1) = \chi^2_{0.95}(5) = 11.0705$. Полученное значение критерия согласия Пирсона $\chi^2_B = 3.6241 < \chi^2_{0.95}(5)$, следовательно основная гипотеза H_0 на исходной выборке не может быть отвергнута на уровне значимости $\alpha = 0.05$..

7 Список литературы

- [1] Модуль numpy https://physics.susu.ru/vorontsov/language/numpy.html
- [2] Модуль scipy https://docs.scipy.org/doc/scipy/reference/
- [3] Таблица значений χ^2 http://statsoft.ru/home/textbook/modules/sttable.html#chi

8 Приложения

Код лаборатрной: https://github.com/dkamianskii/MatStatLabs/tree/master/