- 1. The memory unit of a computer has 256K words of 32 bits each. The computer has an instruction format with 4 fields: an opcode field; a mode field to specify 1 of 7 addressing modes; a register address field to specify one of 60 registers; and a memory address field. Assume an instruction is 32 bits long. Answer the following:
- a. How large must the mode field be?
- b. How large must the register field be?
- c. How large must the memory address field be?
- d. How large is the opcode field?

Ans Memory -256k words of 32 bits instruction format -4 fields

Opcode	Mode field	Register Address	Memory address
——			

32 bits

a. 1-7 addressing mode

$$2^3 = 8$$

Therefore, the mode field must be large 3bits.

b. 60 registers

$$2^2 \ge 60$$

$$2^6 = 64$$

Therefore, the memory address field must be large 6 bits

c. 256k words

$$= 256 \times 2^{10}$$

$$= 2^8 \times 2^{10}$$

$$= 2^{18}$$

Therefore, the memory address field must be large 18 bits

d. Opcode + mode(field) + register(address)+memory(address) = 32 bits

Opcode
$$+ 3 + 6 + 18 = 32$$

Opcode +
$$27 = 32$$

Opcode =
$$5$$
 bits

2. Write code to implement the expression: A=(B+C)*(D+E) on 3-, 2-, 1- and 0-address machines. In accordance with programming language practice, computing the expression should not change the values of its operands.

$$A = (B + C) * (D + E)$$

3 Address Machine

ADD R1, B, C ADD R2, D, E MULT A, R1, R2

2 Address Machine

LOAD	R1, B
ADD	R1, C
LOAD	R2, D
ADD	R2, E
MULT	R1, R2
STORE	A, R1

1 Address Machine

LOAD B
ADD C
STORE TEMP
LOAD D
ADD E
MULT TEMP
STORE A

O Address Machine

PUSH B
PUSH C
ADD
PUSH D
PUSH E
ADD
MULT
POP A

- 3. 11. Convert the following expressions from infix to reverse Polish (postfix) notation.
- a) (8-6)/2
- b) (5×(4+3)×2–6)
- a) Ans 8 6 -2/
- b) Ans 543 + × 2 × 6 -
- 4. The first two bytes of a 2M x 16 main memory have the following hex values:

Byte 0 is FE

Byte 1 is 01

0	1
FE	01

If these bytes hold a 16-bit two's complement integer, what is its actual decimal value if:

- a. memory is big endian?
- b. memory is little endian?

a) Big endian

	1 2 ⁸	1111 2 ⁸ 2 ⁶ 2 ⁵ 2 ⁴	1111 2 ³ 2 ² 2 ¹ 2 ⁰
+			1
0000	0001	1111	1110→ 1's Complement
1 111	1110	0000	0001
F	Е	Ο	L

$$2^{8}+2^{7}+2^{6}+2^{5}+2^{4}+2^{3}+2^{2}+2^{1}+2^{0} = -511$$

b) Little endian

$$2^8 + 2^7 + 2^6 + 2^5 + 2^4 + 2^3 + 2^2 = 510$$

Group 2 (8 people)

- 1. 65130500201 Kampol Suwannatam
- 2. 65130500204 Jirawat Rongsupan
- 3. 65130500207 Chewin Grerasitsirt
- 4. 65130500209 Natthanon Somroop
- 5. 65130500210 Nontakorn Chatkoonsathien
- 6. 65130500212 Nithit Lertcharoensombat
- 7. 65130500227 Issadaorn Kulsantao
- 8. 65130500237 Chayapol Mahatthanachai