

Costos de operaciones de los TADs: Secuencia, Tabla y Conjunto

Suponer que:

 W_c : es el trabajo de la comparación de claves.

 S_c : es la profundidad de la comparación de claves.

1. Secuencias: Especificación de costo basada en una implementación con arreglos

Operación	W	S
$empty \\ singleton$		
nth	O(1)	O(1)
$showt \ s$ $take \ s \ n$		
$drop \ s \ n$ $append \ s \ t$	O(s + t)	
tabulate f n	$O\left(\sum_{i=0}^{n-1} W(f\ i)\right)$	$O\left(\max_{i=0}^{n-1} S(f\ i)\right)$
$map\ f\ s$	$O\left(\sum_{x\in s}W(f\ x)\right)$	$O\left(\max_{x \in s} S(f x)\right)$
filter f s	$O\left(\sum_{x\in s}W(f\ x)\right)$	$O\left(\lg s + \max_{x \in s} S(f x)\right)$
$reduce \oplus b s$	$O\left(s + \sum_{(x \oplus y) \in \mathcal{O}_r(\oplus, b, s)} W(x \oplus y)\right)$	$O\left(\lg s \cdot\max_{(x\oplus y)\in\mathcal{O}_r(\oplus,b,s)}S(x\oplus y)\right)$
$scan \oplus b s$	$O\left(s + \sum_{(x \oplus y) \in \mathcal{O}_r(\oplus, b, s)} W(x \oplus y)\right)$	$O\left(\lg s \cdot\max_{(x\oplus y)\in\mathcal{O}_r(\oplus,b,s)}S(x\oplus y)\right)$
collect s sort s	$O(W_c \cdot s \cdot \lg s)$	$O(S_c \cdot \lg^2 s)$
merge s t	O(s + t)	O(lg(s + t))

 $[\]mathcal{O}_r(\oplus, b, s)$ es el conj. de aplicaciones de \oplus en reduce.

2. Conjuntos: Especificación de costo basada en una implementación con árboles balanceados.

Operación	W	S
$empty \\ singleton \\ size$	O(1)	O(1)
$map \ f \ S$ filter $f \ S$	$O\left(\sum_{e \in S} W(f \ e)\right)$	$O\left(\lg S + \max_{e \in S} S(f \ e)\right)$
intersection S S' union S S' difference S S'	$O\left(W_C \cdot m \cdot \lg(1 + \frac{n}{m})\right)$	$O\left(S_C \cdot \lg(n+m)\right)$
find S e insert S e delete S e	$O\left(W_C \cdot \lg S \right)$	$O\left(S_C \cdot \lg S \right)$
fromSeq S	$O(S \cdot \lg S)$	$O(\lg^2 S)$
toSeq S	O(S)	$O(\lg S)$

 $n = \max(|S|, |S'|)$

 $m = \min(|S|, |S'|)$

 $[\]mathcal{O}_s(\oplus, b, s)$ es el conj. de aplicaciones de \oplus en scan.

3. Tablas: Especificación de costo basada en una implementación con árboles balanceados.

Operación	W	S
$empty \\ singleton \\ size$	O(1)	O(1)
filter f T	$O\left(\sum_{(k,v)\in T} W(f\ v)\right)$	$O\left(\lg T + \max_{(k,v)\in T} S(f v)\right)$
$map\ f\ T$	$O\left(\sum_{(k,v)\in T} W(f\ k\ v)\right)$	$O\left(\lg T + \max_{(k,v)\in T} S(f \ k \ v)\right)$
$extract\ T\ T'$ $merge\ f\ T\ T'$ $erase\ T\ T'$	$O\left(W_C \cdot m \cdot \lg(1 + \frac{n}{m})\right)$	$O\left(S_C \cdot \lg(n+m)\right)$
$ \begin{array}{cccc} find & T & k \\ insert & T & k \\ delete & T & k \end{array} $	$O\left(W_C\lg T ight)$	$O\left(S_C \lg T \right)$
$\begin{array}{c} domain \ T \\ range \ T \end{array}$	$O\left(T \right)$	$O\left(\lg T \right)$
$tabulate T \ f \ S$	$O\left(\sum_{k\in S}W(f\ k)\right)$	$O\left(\max_{k\in S}S(f\ k)\right)$
collectT s	$O(W_c \cdot s \cdot \lg s)$	$O(S_c \cdot \lg^2 s)$

 $n = \max(|T|, |T'|)$

 $m=\min(|T|,|T'|)$