Defects, quantum UV-IR map, and exact WKB

Fei Yan

Rutgers University

QFT for mathematicians

Perimeter Institute for Theoretical Physics

June 27th, 2022

Outlook

- Line defects in 4d N=2 theories:
 - The quantum UV-IR map and construction of link invariants
 - Line defect Schur indices and relation to 4d holomorphic topological twist and 2d VOAs
- Surface defects in 4d N=2 theories and the exact WKB method for higher order ODEs

Line defects in 4d N=2 theories

• Consider 4d N=2 theory, with the insertion of a susy line defect extending along time direction, sitting at the origin of spacial \mathbb{R}^3 . (susy Wilson-'t Hooft lines and generalizations)

[Kapustin-Saulina], [Drukker-Morrison-Okuda], [Alday-Gaiotto-Gukov-Tachikawa-Verlinde], [Gaiotto-Moore-Neitzke], [Córdova-Neitzke], [Aharony-Seiberg-Tachikawa], [Gaiotto-Kapustin-Seiberg-Willett], [Gaiotto-Kapustin-Komargodski-Seiberg], [Ang-Roumpedakis-Seifnashri], [Agmon-Wang], [Bhardwai, Huebner, Schafer-Nameki],...

• In abelian gauge theories, they are labeled by electromagnetic charge γ and a parameter $\zeta \in \mathbb{C}^{\times}$ (preserved supercharges): Example: 4d N=2 U(1) theory, γ purely electric:

$$\mathbb{L}(\gamma,\zeta) = \exp\left[\mathrm{i}\gamma\int_{\mathbb{R}_t} \left(A + \frac{1}{2}\left(\zeta^{-1}\phi + \zeta\bar{\phi}\right)\right)\right]$$

The UV-IR map

4d N=2 theories have a subspace of vacua called the Coulomb branch; the low energy effective field theory is $U(1)^r$ gauge theory. [Seiberg-Witten] Starting with a susy line defect $\mathbb L$ in the UV, deform onto the CB, \rightarrow superposition of line defects in effective abelian theory. [Gaiotto-Moore-Neitzke] An UV-IR map for line defects:

 $\mathbb{L} \overset{\text{index for ground states of bulk-defect system}}{\longrightarrow} F(\mathbb{L}) := \sum_{\gamma} \overline{\underline{\Omega}}(\mathbb{L}, \gamma) X_{\gamma}$ Defect Hilbert space $\mathcal{H}_{\mathbb{L}, u} = \bigoplus_{\gamma} \mathcal{H}_{\mathbb{L}, \gamma, u}$ $Q \to -1$ IR Wilson-'t Hooft lines. spin refinement $\overline{\underline{\Omega}}(\mathbb{L}, \gamma, q) := \mathrm{Tr}_{\mathcal{H}_{\mathbb{L}, \gamma, u}}(-q)^{2J_3} q_{1}^{2J_3} \mathrm{e}^{-\beta\{\mathcal{Q}, \mathcal{Q}^+\}} \in \mathbb{Z}[q, q^{-1}]$

Example

N=2 pure SU(2) SYM $F(\mathbb{L}_2) = X_{(1)}$ weak-coupling region fund Wilson lin

$$F(\mathbb{L}_{2}) = X_{(1,0)} + X_{(-1,0)} + X_{(1,1)}$$

Line defects in 4d N=2 theories of class-S

Compactifying 6d (2,0) theory of type $\mathfrak{gl}(N)$ on a Riemann surface C with partial top. twist \rightsquigarrow 4d N=2 theory of class-S T[C]. [Gaiotto], [Gaiotto], [Gaiotto-Moore-Neitzke]

Line defects \mathbb{L} in class- $S \leftrightarrow$ "loops" ℓ on C (junctions, laminations)

[Drukker-Morrison-Okuda], [Drukker-Gaiotto-Gomis], [Alday-Gaiotto-Gukov-Tachikawa-Verlinde], [Gaiotto-Moore-Neitzke]...

[Fock-Goncharov], [Sikora], [Le], [Xie], [Saulina], [Coman-Gabella-Teschner], [Tachikawa-Watanabe], [Gabella]...

Rk: ℓ carries a $\mathfrak{gl}(N)$ representation, consider fundamental representation

The UV-IR map: geometric picture

A pt. in Coulomb branch \leftrightarrow a *N*-fold branched covering $\widetilde{C} \to C$, $\widetilde{C} \subset T^*C$ is the Seiberg-Witten curve.

IR: bulk theory approx. by 6d (2,0) theory of type $\mathfrak{gl}(1)$ on $\widetilde{C} \times \mathbb{R}^{3,1}$. IR line defects \leftrightarrow loops $\widetilde{\ell}$ on \widetilde{C}

Line defects OPE

The space of line defects equipped with an algebra structure: line defects operator product $\mathbb{L}_1\mathbb{L}_2$

This algebra structure admits a quantization via skein algebras.

[Reshet ikhin-Turaev], [Turaev], [Witten], [Alday-Gaiotto-Gukov-Tachikawa-Verlinde], [Gaiotto-Moore-Neitzke], [Gaiotto-

[Drukker-Gomis-Okuda-Teschner], [Tachikawa-Watanabe], [Coman-Gabella-Teschner], [Gabella]...

Turning on Ω -bkg on a \mathbb{R}^2 -plane: non-commutative associative OPE *

 $[Nekrasov-Shatashvili], [Gaiotto-Moore-Neitzke], [Ito-Okuda-Taki], [Yagi], [Oh-Yagi], \dots \\$

$$\begin{array}{c|cccc}
L_1 & L_2 & \mathbb{R}_h \\
\hline
& & & & \\
\end{array}$$

IR: quantum torus algebra
$$X_{\gamma_1} * X_{\gamma_2} = (-q)^{\langle \gamma_1, \gamma_2 \rangle} X_{\gamma_1 + \gamma_2}$$

quantum UV-IR map: UV skein algebra → quantum torus algebra

◆ロト 4億ト 4億ト 4億ト 連回 約900

The UV and IR skein algebras

UV skein algebra: $\mathfrak{gl}(N)$ (1-para) HOMFLY skein algebra of $M = C \times \mathbb{R}_h$ IR skein algebra: (twisted) $\mathfrak{gl}(1)$ skein algebra of $\widetilde{M} = \widetilde{C} \times \mathbb{R}_h$ algebra structure \leftrightarrow stacking links along \mathbb{R}_h

UV: $\mathbb{Z}[q^{\pm 1}]$ -module of oriented framed links $L \subset M$

4d $\frac{1}{4}$ -BPS line defects: U(1) rot. & $U(1)_R \subset SU(2)_R$ [Witter] [Gasts-Witter] [Ougus-Varia], [Outor-Schwarz-Varia], [Dimothe-Gaisetts-Galon], [Outor-Gulow-ReggerMann] [Soles-Putters-Varial], [Outor-Per-Putters-Varial], [Outor-Schwarz-Varial], [Outor-SchwarzIR: $\mathbb{Z}[q^{\pm 1}]$ -module of oriented framed links $\widetilde{L} \subset \widetilde{M}$

$$(II) = q^{2}$$

$$(III) = -$$

$$(IIII)$$

iso. to quantum torus

The quantum UV-IR map

The quantum UV-IR map sends $L \subset M$ to combinations of $\widetilde{L} \subset \widetilde{M}$:

$$F(L) = \sum_{\widetilde{L}} \alpha(\widetilde{L}) \widetilde{L}, \quad \alpha(\widetilde{L}) \in \mathbb{Z}[q^{\pm 1}]$$

[Neitzke-Y,JHEP09(2020)153], [Neitzke-Y,arXiv:2112.03775]

See also [Bonahon-Wong],[Goncharov-Shen],[Douglas-Sun],...

T[C]: SU(2) with $N_f = 4$

Take N=2, $M=C\times\mathbb{R}^h$ where C is a four-punctured sphere,

$$\widetilde{C} = \{\lambda : \lambda^2 + \phi_2 = 0\} \subset T^*C, \quad \phi_2 = -\frac{z^4 + 2z^2 - 1}{2(z^4 - 1)^2}dz^2.$$

$$\begin{array}{l} X_{\gamma_1+\mu_1-\mu_3} + X_{\gamma_2+\mu_1-\mu_3} + X_{\gamma_1+\gamma_2+\mu_1-\mu_3} + X_{-\gamma_2-\mu_1+\mu_3} + X_{\gamma_1+\mu_1+\mu_3} \\ + X_{\gamma_1-\gamma_2+\mu_1+\mu_3} + X_{2\gamma_1-3\gamma_2-\mu_2+2\mu_3-3\mu_4} - \underbrace{(q+q^{-1})} X_{2\gamma_1-2\gamma_2-\mu_2+2\mu_3-3\mu_4} \\ + X_{2\gamma_1-\gamma_2-\mu_2+2\mu_3-3\mu_4} + X_{\gamma_1-2\gamma_2-\mu_1+\mu_3-2\mu_4} + X_{\gamma_1-\gamma_2-\mu_1+\mu_3-2\mu_4} \\ + X_{\gamma_1+\mu_1+\mu_3-2\mu_4} - \underbrace{(q+q^{-1})} X_{2\gamma_1+\mu_1+\mu_3-2\mu_4} - \underbrace{(q+q^{-1})} X_{2\gamma_1-2\gamma_2+\mu_1+\mu_3-2\mu_4} \\ + X_{\gamma_1-\gamma_2+\mu_1+\mu_3-2\mu_4} + \underbrace{(2+q^2+q^{-2})} X_{2\gamma_1-\gamma_2+\mu_1+\mu_3-2\mu_4} + X_{\gamma_1-\mu_2-\mu_4} \\ + X_{\gamma_1-\gamma_2-\mu_2-\mu_4} + X_{\gamma_1+\mu_2-\mu_4} + X_{\gamma_1-\gamma_2+\mu_2-\mu_4} + X_{\gamma_1+2\mu_1+\mu_2-\mu_4} \\ - \underbrace{(q+q^{-1})} X_{2\gamma_1+2\mu_1+\mu_2-\mu_4} + X_{2\gamma_1-\gamma_2+2\mu_1+\mu_2-\mu_4} + X_{\gamma_1+\gamma_2+2\mu_1+\mu_2-\mu_4} \\ + X_{2\gamma_1+\gamma_2+2\mu_1+\mu_2-\mu_4} + X_{\gamma_1-2\gamma_2-\mu_2+2\mu_3-\mu_4} + X_{\gamma_1-\gamma_2-\mu_2+2\mu_3-\mu_4}. \end{array}$$

T[C]: SU(3) gauging of 2 copies of E_6 MN theories

Take N = 3, $M = C \times \mathbb{R}^h$ with C a sphere with four full punctures.

$$\widetilde{C} = \{\lambda : \lambda^3 + \phi_2 \lambda + \phi_3 = 0\} \subset T^*C \ (\phi_3 \text{ very small})$$

915 X_{γ} appear in the UV-IR expansion:

- 707 X_{γ} with coefficient 1
- 192 X_{γ} with coefficient $-q-q^{-1}$
- 16 X_{γ} with coefficient $q^2 + 2 + q^{-2}$

Line defect Schur index in 4d N=2 theories

• The line defect Schur index is the $S^3 \times_q S^1$ partition function, with line defects \mathbb{L}_i inserted along a great circle of S^3 .

[Dimofte-Gaiotto-Gukov], [Gang-Koh-Lee], [Cordova-Gaiotto-Shao], [Dedushenko-Fluder]...

 The index counts the operators living at the junction between different line defects.

$$\mathcal{I}_{\{\mathbb{L}_i\}}(q,x) = \sum_{\mathsf{junc.\ ops}} (-1)^{2R} q^{R-J_\perp} x^f$$

 $R: SU(2)_R$ Cartan, J_{\perp} : perpendicular rotation

Relation to holomorphic topological twist in 4d N=2

The setup is compatible with the holomorphic twist wrt $Q=Q_-^1+\tilde{Q}_{2-1}^2$ [Kaputsin].[Costello-Dimofte-Gaiottol.[Oh-Yagi].[Butson].[Cautis-Williams].[Niu]....

• The space of local operators in Q-cohomology corresponds to the vacuum module of a Poisson vertex algebra V.

$$\chi[\mathcal{V}]:=\mathsf{Tr}_{\mathcal{V}}(-1)^Fq^J=\mathcal{I}_{\mathsf{Schur}}(q),$$
 where $F=2R$, $J=R-J$.

• The space of operators at the junction of lines gives rise to other modules of the Poisson vertex algebra \mathcal{V} , whose graded character coincides with the line defect Schur index.

Relation to 2d VOAs

- If the 4d N=2 theory is also conformal, the Poisson vertex algebra V can be further quantized by turning on an Omega background
 → 2d VOA introduced by [Beem-Lemos-Liendo-Peelaers-Rastelli-Van Rees]
 [Oh-Yagi], [Jeong], [Butson]
- The line defect Schur index can be expanded in terms of the VOA characters. Line defects OPE \leftrightarrow Verlinde algebra [Cordova-Gaiotto-Shao],[Neitzke-Y] Example: (A_1, A_2) AD theory \leftrightarrow (2, 5) minimal model

$$\mathcal{I}_L(q) = q^{-1/2} \left(\chi_{1,1}(q) - \chi_{1,2}(q) \right)$$

Relation to 2d VOAs

- If the 4d N=2 theory is also conformal, the Poisson vertex algebra V can be further quantized by turning on an Omega background
 → 2d VOA introduced by [Beem-Lemos-Liendo-Peelaers-Rastelli-Van Rees]
 [Oh-Yagi].[Jeong].[Butson]
- The line defect Schur index can be expanded in terms of the VOA characters. Line defects OPE \leftrightarrow Verlinde algebra [Cordova-Gaiotto-Shao],[Neitzke-Y] Example: (A_1, A_2) AD theory \leftrightarrow (2, 5) minimal model

$$\mathcal{I}_L(q) = q^{-1/2} \left(\chi_{1,1}(q) - \chi_{1,2}(q) \right)$$

• Relations to $U(1)_r$ -fixed locus in the corres. Hitchin moduli space [Fredrickson-Pei-W.Yan-Ye],[Neitkze-Y],[Dedushenko-Gukov-Nakajima-Pei-Ye]

Intermediate summary

- The quantum UV-IR map for line defects in class S theories, counting the ground states with spin for bulk-defect system, unified with a new computation of HOMFLY polynomials.
- Line defect Schur indices and relation to 4d holomorphic topological twist and 2d VOAs

Surface defects in 4d N = 2 class-S theories

 $[Gukov-Witten], [Alday-Gaiotto-Gukov-Tachikawa-Verlinde], [Gaiotto], [Gaiotto-Moore-Neitzke], \\ [Gaiotto-Gukov-Seiberg], ...$

- canonical surface defects preserve 2d (2,2) susy \subset 4d N=2 susy
- $z \in C \leftrightarrow$ marginal chiral deformation parameter for the defect theory

Surface defects and Schrödinger equations

• Consider the Seiberg-Witten curve of certain 4d N=2 theory:

$$\widetilde{C}$$
: $x^2 + P(z) = 0$,

Promoting x (momentum) and z (position) to Heisenberg operators \longrightarrow Schrödinger equation:

$$\left[\partial_z^2 + \hbar^{-2} P(z, \hbar)\right] \psi(z) = 0$$

- Turning on the Nekrasov-Shatashvili limit of Ω-background along the surface defect quantizes the Seiberg-Witten curve into Schrödinger equations or higher rank analogue, in a canonical way. [Nekrasov-Shatashvili].[Nekrasov],[Jeong-Nekrasov],[Jeong-Lee-Nekrasov],...
- This can also be derived through the conformal limit [Gaiotto] of the Hitchin moduli space or from the AGT-correspondence.

 $[Alday-Gaiotto-Tachikawa], [Alday-Gaiotto-Gukov-Tachikawa-Verlinde], \dots \\$

Exact WKB for Schrödinger equations

WKB ansatz:
$$\psi(z) = \exp\left(\hbar^{-1}\int_{z_0}^z \lambda(z')dz'\right) \rightarrow [\partial_z^2 + \hbar^{-2}P(z)]\psi(z) = 0$$

 $\lambda(z)$ obeys the Ricatti equation

$$\lambda(z)^2 + P(z) + \hbar \partial_z \lambda(z) = 0.$$

Build a formal series solution λ^{formal} in powers of \hbar ,

order-
$$\hbar^0$$
: $y^2 + p(z) = 0$, classical SW curve

Choose a branch labeled by $i \in \{\pm\}$:

$$\lambda_i^{\text{formal}} = y_i - \hbar \frac{P'}{4P} + \hbar^2 y_i \frac{5P'^2 - 4PP''}{32P^3} + \dots$$

 \longrightarrow Two formal solutions $\psi_{\pm}^{\text{formal}}(z,\hbar)$ as series in \hbar .

Exact WKB for Schrödinger equations

- Borel resummation gives two actual solutions $\psi_{\pm}(z)$ within each region, where the solutions jump across a Stokes curve.
- - \star geometrical way for solving ψ , exact quantization conditions etc

The Voros symbol

The Voros symbol: $\mathcal{X}_{\gamma}(\hbar) \in \mathbb{C}^{\times}$, $\gamma \leftrightarrow 1$ -cycles of Seiberg-Witten curve

• $\mathcal{X}_{\gamma}(\hbar)$ captures the Borel resummed WKB periods:

$$\Pi_{\gamma}(\hbar) := \oint_{\gamma} \lambda^{\mathsf{formal}}(\hbar) dz = \sum_{n=0}^{\infty} \Pi_{\gamma}^{(n)} \hbar^{n}$$

- $\mathcal{X}_{\gamma}(\hbar)$ expressed as Wronskians of distinguished local solutions:
 - * asymptotically decaying solutions as z approaches a singularity
 - * eigenvectors of the monodromy around a loop
- $\mathcal{X}_{\gamma}(\hbar)$ encodes exact quantization conditions for spectral problems.

Higher rank generalization

How do we generalize the story to higher order Schrödinger-like equations?

[Aoki-Kawai-Takei], [Dumitrescu-Fredrickson-Kydonakis-Mazzeo-Mulase-Neitzke], [Hollands-Neitzke], [Yan], ...

$$\left[\partial_z^N + P_2(z,\hbar)\partial_z^{N-2} + ...P_N(z,\hbar)\right]\psi(z) = 0.$$

Structure of Stokes curves becomes complicated:

A third-order ODE: pure SU(3) SYM

$$\left[\partial_z^3 + \hbar^{-2} \tfrac{u_1 + \hbar^2}{z^2} \partial_z + \left(\hbar^{-3} \left(\tfrac{\Lambda}{z^4} + \tfrac{u_2}{z^3} + \tfrac{\Lambda}{z^2} - \hbar^{-2} \tfrac{u_1 + \hbar^2}{z^3} \right) \right) \right] \psi(z) = 0 \quad \text{[Yan]}$$

Strong-coupling region: 12 BPS states

Numerical checks: Voros symbols

The Voros symbols $\mathcal{X}_{\gamma}(\hbar)$ expressed via special solutions s, t.

$$\begin{split} \hbar &\to 0: \\ \log \left(\mathcal{X}_{\gamma}(\hbar) \right) \sim \frac{1}{\hbar} \Pi_{\gamma}(\hbar) \\ \text{quantum periods} \\ \Pi_{\gamma}(\hbar) := \oint\limits_{\gamma} \lambda^{\text{formal}}(\hbar) \textit{d}z = \sum_{n=0}^{\infty} \Pi_{\gamma}^{(n)} \hbar^{n} \end{split}$$

	$\hbar = \frac{1}{2} e^{i\pi/3}$	
	Wronskians (s,t)	$\frac{1}{\hbar}\Pi_{\gamma}(\hbar)$ at $o(\hbar^6)$
$\log \mathcal{X}_{\gamma_1}$	-11.21119	-11.21120
$\log \mathcal{X}_{\gamma_2}$	-11.21119	-11.21120
$\log \mathcal{X}_{\gamma_3}$	5.60559 + 2.71805i	5.60560 + 2.71808i
$\log \mathcal{X}_{\gamma_4}$	5.60559 + 2.71805i	5.60560 + 2.71808i

Numerical checks: Voros symbols

The Voros symbols $\mathcal{X}_{\gamma}(\hbar)$ expressed via special solutions s, t.

$$\begin{array}{c} \hbar \to \mathbf{0}: \\ \log \left(\mathcal{X}_{\gamma}(\hbar) \right) \sim \frac{1}{\hbar} \Pi_{\gamma}(\hbar) \end{array}$$
 quantum periods

$$\Pi_{\gamma}(\hbar) := \oint\limits_{\gamma} \lambda^{\mathsf{formal}}(\hbar) \mathit{dz} = \sum_{n=0}^{\infty} \Pi_{\gamma}^{(n)} \hbar^{n}$$

	$\hbar=rac{1}{2}\mathrm{e}^{\mathrm{i}\pi/3}$	
	Wronskians (s,t)	$\frac{1}{\hbar}\Pi_{\gamma}(\hbar)$ at $o(\hbar^6)$
$\log \mathcal{X}_{\gamma_1}$	-11.21119	-11.21120
$\log \mathcal{X}_{\gamma_2}$	-11.21119	-11.21120
$\log \mathcal{X}_{\gamma_3}$	5.60559 + 2.71805i	5.60560 + 2.71808i
$\log \mathcal{X}_{\gamma_4}$	5.60559 + 2.71805i	5.60560 + 2.71808i

$\mathcal{X}_{\gamma}(\hbar)$ also computable via integral equations [Gaiotto], [Gaiotto-Moore-Neitzke]

$$\mathcal{X}_{\gamma}(\hbar) = \exp\left[\frac{Z_{\gamma}^{\gamma}}{\hbar} + \frac{1}{4\pi \mathrm{i}} \sum_{\mu} \frac{\Omega(\mu) \langle \gamma, \mu \rangle}{\mathsf{BPS}} \int_{\hbar' \in \mathbb{R} - Z_{\mu}} \frac{d\hbar'}{\hbar'} \frac{\hbar' + \hbar}{\hbar' - \hbar} \mathsf{log}(1 + \mathcal{X}_{\mu}(\hbar'))\right]$$

	$\hbar=\mathrm{e}^{\mathrm{i}\pi/3}$	
	Wronskians (s,t)	integral equation
$\log \mathcal{X}_{\gamma_1}$	-5.48645	-5.48650
$\log \mathcal{X}_{\gamma_2}$	-5.48645	-5.48650
$\log \mathcal{X}_{\gamma_3}$	2.74328 + 1.25232i	2.74325 + 1.25238i
$\log \mathcal{X}_{\gamma_4}$	2.74328 + 1.25232i	2.74325 + 1.25238i

Summary

- Line defects in 4d N=2 theories:
 - The quantum UV-IR map and construction of link invariants
 - Line defect Schur indices and relation to 4d holomorphic topological twist and 2d VOAs
- Surface defects in 4d N=2 theories and the exact WKB method for higher order ODEs

Thank You and Stay Healthy!