Θ2.04: Θεωρία Αναπαραστάσεων και Συνδυαστική

Βασίλης Διονύσης Μουστάκας Πανεπιστήμιο Κρήτης

3. Λήμμα του Schur και εφαρμογές

Σε αυτή την παράγραφο υποθέτουμε ότι

- G είναι μια πεπερασμένη ομάδα,
- Γ είναι ένα αυθαίρετο σώμα, και
- όλοι οι διανυσματικοί χώροι είναι πεπερασμένοι.

Ορισμός 3.1. Έστω (ρ, V) και (σ, W) δυο αναπαραστάσεις της G. Ομομορφισμός αναπαραστάσεων (ή G-ομομορφισμός) ονομάζεται μια γραμμική απεικόνιση $\varphi:V o W$ η οποία διατηρεί την δράση της G, δηλαδή

$$\varphi(\rho(q)(v)) = \sigma(q)(\phi(v)) \tag{3.1}$$

για κάθε $g \in G$ και $v \in V$, ή ισοδύναμα αν το διάγραμμα

$$\begin{array}{ccc} V & \stackrel{\varphi}{\longrightarrow} W \\ \rho(g) & & \uparrow \sigma(g) \\ V & \stackrel{\varphi}{\longrightarrow} W \end{array}$$

είναι μεταθετικό. Επιπλέον, αν η φ είναι γραμμικός ισομορφισμός, τότε ονομάζεται ισομορφισμός αναπαραστάσεων (ή G-ισομορφισμός) και στην περίπτωση αυτή γράφουμε $V\cong_G W$ $(ή απλά V \cong W).$

Αν έχουμε έναν G-ισομορφισμό $\varphi: V \to W$ με πίνακα T (ως προς κάποια βάση της V), τότε η Ταυτότητα (3.1) γίνεται

$$\rho(g) = T^{-1}\sigma(g)T.$$

Με άλλα λόγια, δυο αναπαραστάσεις είναι ισόμορφες όταν "διαφέρουν" κατά μια αλλαγή

Στον τρέχον παράδειγμα, όπου αναπαριστούμε την συμμετρική ομάδα \mathfrak{S}_3 ως ομάδα συμμετρίας του ισόπλευρου τριγώνου Δ έχουμε δει διάφορες εκδοχές της ίδιας αναπαράστασης στις ακόλουθες βάσεις του \mathbb{R}^3 :

- $\{\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3\}$
- $\{\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3\}$ $\{\mathbf{e}_1 + \mathbf{e}_2 + \mathbf{e}_3, \mathbf{e}_2 \mathbf{e}_1, \mathbf{e}_3 \mathbf{e}_1\}$ $\{\mathbf{e}_1 + \mathbf{e}_2 + \mathbf{e}_3, \mathbf{e}_2, \mathbf{e}_3\}.$

Ημερομηνία: 9 Οκτωβρίου 2025.

Γενικότερα, η δράση αυτή της \mathfrak{S}_n στον \mathbb{R}^n δίνεται από

$$\pi \cdot (v_1, v_2, \dots, v_n) \coloneqq (v_{\pi_1^{-1}}, v_{\pi_2^{-1}}, \dots, v_{\pi_n^{-1}})$$

για κάθε $\pi \in \mathfrak{S}_n$ και $(v_1, v_2, \dots, v_n) \in \mathbb{R}^n$ (βλ. Άσκηση (1.2)). Η αναπαράσταση αυτή είναι ισόμορφη με την αναπαράσταση καθορισμού της \mathfrak{S}_n , με τον ισομορφισμό να δίνεται από

$$\mathbf{e}_i \mapsto i$$
,

για κάθε $1 \le i \le n$ και ο αντίστοιχος πίνακας είναι ο ταυτοτικός.

Έστω C_2 η κυκλική ομάδα τάξης 2, η οποία παράγεται από ένα στοιχείο g, δηλαδή $C_2=\{\epsilon,g\}$. Θεωρούμε τη δράση της C_2 στον \mathbb{R}^2 που ορίζεται ως εξής:

Ισοδύναμα, έχουμε την αναπαράσταση $\sigma: C_2 \to GL(\mathbb{R}^2)$ με

$$\sigma(\epsilon) = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \quad \text{kai} \quad \sigma(g) = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}.$$

Αυτή είναι ισόμορφη με την απαράσταση (ρ, \mathbb{R}^2) της Παραγράφου 2. Πράγματι, τα ιδιοδιανύσματα του $\rho(g)$ είναι

- $\begin{pmatrix} 1 \\ -2 \end{pmatrix}$, που αντιστοιχεί στην ιδιοτιμή -1

(γιατί;) και γι' αυτό

$$\begin{pmatrix} 1 & 1 \\ 0 & -2 \end{pmatrix}^{-1} \rho(g) \begin{pmatrix} 1 & 1 \\ 0 & -2 \end{pmatrix} = \sigma(g).$$

Στην καινούργια βάση, μας είναι πιο εύκολο να "ξεχωρίσουμε" τις ανάγωγες υποαναπαραστάσεις. Κοιτώντας τον πίνακα $\sigma(g)$, προκύπτει η διάσπαση

$$\mathbb{R}^2 = \mathbb{R}[\mathbf{e}_1] \oplus \mathbb{R}[\mathbf{e}_2],$$

όπου

$$\sigma(g)(\mathbf{e}_1) = \mathbf{e}_1$$

 $\sigma(g)(\mathbf{e}_2) = -\mathbf{e}_2$

και κατά συνέπεια το $\mathbb{R}[\mathbf{e}_1]$ είναι ισόμορφο με την τετριμμένη αναπαράσταση και το $\mathbb{R}[-\mathbf{e}_2]$ είναι ισόμορφο με την αναπαράσταση προσήμου (γιατί;).

Δοθείσης μια γραμμικής απεικόνισης $\varphi:V o W$, οι υπόχωροι

$$\label{eq:Ker} \begin{split} \operatorname{Ker}(\varphi) &\coloneqq \{v \in V : \varphi(v) = 0\} \\ \operatorname{Im}(\varphi) &\coloneqq \{w \in W : \varphi(v) = w, \text{ για κάποιο } v \in V\} \end{split}$$

ονομάζονται πυρήνας και εικόνα της φ . Αν η φ είναι G-ομομορφισμός, τότε ο πυρήνας και η εικόνα είναι υποπρότυπα του V και W, αντίστοιχα (γιατί;). Το επόμενο αποτέλεσμα, γνωστό ως Λ ήμμα του Schur, χαρακτηρίζει τους G-ομομορφισμούς μεταξύ ανάγωγων αναπαραστάσεων και (παρά την απλή του απόδειξη) έχει πολύ σημαντικές συνέπειες, όπως θα δούμε στη συνέχεια.

Θεώρημα 3.2. (I. Schur 1905) Έστω V και W δυο ανάγωγα G-πρότυπα και $\varphi:V\to W$ είναι ένας G-ομομορφισμός.

- (1) Ο φ είναι είτε η μηδενική απεικόνιση, είτε είναι ισομορφισμός.
- (2) Αν το \mathbb{F} είναι αλγεβρικά κλειστό σώμα, τότε ο φ είναι πολλαπλάσιο του ταυτοτικού ομομορφισμού.

Απόδειξη.

- (1) Αφού τα V και W είναι ανάγωγα, έπεται ότι το υποπρότυπο $\mathrm{Ker}(\varphi)$ (αντ. $\mathrm{Im}(\varphi)$) είναι είτε $\{0\}$, είτε V (αντ. W). Αν $\mathrm{Ker}(\varphi)=V$, τότε η φ είναι η μηδενική απεικόνιση. Διαφορετικά, έστω $\mathrm{Ker}(\varphi)=\{0\}$. Αν $\mathrm{Im}(\varphi)\neq\{0\}$, τότε $V=\{0\}$, τ' οποίο είναι αδύνατο (γιατί;). Συνεπώς, $\mathrm{Im}(\varphi)=W$ και γι' αυτό η φ είναι ισομορφισμός.
- (2) Αφού το \mathbb{F} είναι αλγεβρικά κλειστό, ο φ (ως γραμμική απεικόνιση) έχει κάποια ιδιοτιμή $c \in \mathbb{F}$. Συνεπώς, ο ομομορφισμός

$$\varphi - c \operatorname{id}$$

όπου id είναι η ταυτοτική επεικόνιση, έχει μη-τετριμμένο πυρήνα. Άρα, δεν μπορεί να είναι (γραμμικός) ισομορφισμός και γι' αυτό από το (1) έπεται ότι είναι η μηδενική απεικόνιση. Με άλλα λόγια

$$\varphi = c \operatorname{id}$$

που είναι το ζητούμενο.

Σε ότι ακολουθεί υποθέτουμε ότι το \mathbb{F} είναι αλγεβρικά κλειστό σώμα (για παράδειγμα, το \mathbb{C}). Για δυο G-πρότυπα V και W, θέτουμε 1

$$\label{eq:Hom} \begin{split} \operatorname{Hom}(V,W) &\coloneqq \{\varphi: V \to W: \ \varphi \ \text{είναι γραμμική} \} \\ \operatorname{Hom}_G(V,W) &\coloneqq \{\varphi: V \to W: \ \varphi \ \text{είναι} \ G\text{-ομομορφισμός} \} \\ \operatorname{End}_G(V) &\coloneqq \operatorname{Hom}_G(V,V). \end{split}$$

Το $\operatorname{Hom}(V,W)$ έχει και αυτό τη δομή διανυσματικού χώρου. Στην ΄Ασκηση (1.4), βλέπουμε ότι υπάρχει μια δράση της G η οποία του δίνει την δομή G-προτύπου. Σε αυτή την περίπτωση, το $\operatorname{Hom}_G(V,W)$ ταυτίζεται με το σύνολο των σταθερών σημείων αυτής της δράσης. Το Λήμμα του Schur μας πληροφορεί ότι

$$\operatorname{End}_G(V) \cong \mathbb{F},$$
 (3.2)

ως διανυσματικοί χώροι.

 $^{^{1}}$ Ομομορφισμός μεταξύ διανυσματικών χώρων δεν είναι τίποτα άλλα παρά μια γραμμική απεικόνιση και μια γραμμική απεικόνιση του ίδιου χώρου ονομάζεται και ενδομορφισμός. Αυτό εξηγεί τα σύμβολα 1 End.

Πόρισμα 3.3. Αν V και W είναι δυο ανάγωγα G-πρότυπα, τότε

$$\dim \operatorname{Hom}_G(V,W) \ = \ \begin{cases} 1, & \text{ an } V \cong_G W \\ 0, & \text{ διαφορετικά}. \end{cases}$$

Απόδειξη. Αν τα V και W δεν είναι ισόμορφα, τότε από το Λήμμα του Schur έπεται ότι ${\rm Hom}_G(V,W)=\{0\}.$ Στην περίπτωση αυτή

$$\dim \operatorname{Hom}_G(V, W) = 0.$$

Διαφορετικά, έστω φ , $\vartheta:V\to W$ δυο μη-μηδενικοί G-ομομορφισμοί. Πάλι από το Λήμμα του Schur, έπεται ότι αυτοί είναι ισομορφισμοί και γι' αυτό μπορούμε να θεωρήσουμε το $\vartheta^{-1}\circ\varphi\in\mathrm{End}_G(V)$. Από την Ταυτότητα (3.2), έπεται ότι υπάρχει $c\in\mathbb{F}$ τέτοιο ώστε $\vartheta^{-1}\circ\varphi=c$ id ή ισοδύναμα $\varphi=c\,\vartheta$. Με άλλα λόγια, κάθε δυο στοιχεία του $\mathrm{Hom}_G(V,W)$ είναι συγγραμμικά και γι΄ αυτό

$$\dim \operatorname{Hom}_G(V, W) = 1.$$

Πόρισμα 3.4. Κάθε ανάγωγη αναπαράσταση μιας αβελιανής ομάδας είναι έχει διάσταση 1.

Απόδειξη. Υποθέτουμε ότι η G είναι αβελιανή και θεωρούμε μια ανάγωγη αναπαράστασή της (ρ,V) . Για κάθε $g\in G$, παρατηρούμε ότι $\rho(g)\in \mathrm{End}_G(V)$. Πράγματι, για κάθε $h\in G$ και $v\in V$,

$$\rho(g)\left(\rho(h)(v)\right) = \rho(gh)(v) = \rho(hg)(v) = \rho(h)\left(\rho(g)(v)\right)$$

όπου η πρώτη και τρίτη ισότητα έπονται από το ότι η ρ είναι ομομορφισμός ομάδων και η δεύτερη από το ότι η G είναι αβελιανή.

Επομένως, εφαρμόζωντας το Λήμμα του Schur σε κάθε $\rho(g)$ έπεται ότι η δράση κάθε στοιχείου της ομάδας G δίνεται από κάποιο πολλαπλάσιο της ταυτοτικής και κατά συνέπεια όλοι οι υπόχωροι της V θα είναι αναγκαστικά G-αναλλοίωτοι (γιατί;). Καθώς η V είναι ανάγωγη, αυτό αφήνει μόνο μια περίπτωση για τη διάστασής της (γιατί;), δηλαδή $\dim(V)=1$.

Στην Άσκηση (1.6) χρησιμοποιούμε το Πόρισμα 3.4 για να καθορίσουμε όλες τις ανάγωγες αναπαραστάσεις μιας κυκλικής ομάδας όταν $\mathbb{F}=\mathbb{C}$. Θα ολοκληρώσουμε την παράγραφο αυτή με μια ακόμα σημαντική εφαρμογή του Λήμματος του Schur.

Στο τέλος της Παραγράφου 2, είδαμε ότι ένα πλήρως αναγωγικό G-πρότυπο V μπορεί να γραφεί ως

$$V \cong_G V_1^{m_1} \oplus V_2^{m_2} \oplus \dots \oplus V_n^{m_n}, \tag{3.3}$$

για κάποια συλλογή V_1, V_2, \ldots, V_n ανά δύο $\mu\eta$ -ισόμορ $\phi\omega v$ αναπαραστάσεων της G και μη αρνητικούς ακέραιους m_1, m_2, \ldots, m_n .

Η Έκφραση (3.3) ονομάζεται ισοτυπική διάσπαση της V και κάθε m_i ονομάζεται πολλαπλότητα εμφάνισης του V_i στο V. Το παρακάτω αποτέλεσμα ολοκληρώνει τον παραλληλισμό που κάναμε με το Θεμελιώδες Θεώρημα της Αριθμητικής.

Πόρισμα 3.5. Η ισοτυπική διάσπαση ενός πλήρως αναγωγικού προτύπου είναι μοναδική ως προς ισομορφισμούς και αναδιατάξεις των μερών της.

Η απόδειξη του Πορίσματος 3.5 βασίζεται στην εξής παρατήρηση, η οποία με τη σειρά της είναι μια ακόμη εφαρμογή του Λήμματος του Schur.

Λήμμα 3.6. Έστω V ένα πλήρως αναγωγικό G-πρότυπο. Η πολλαπλότητα ενός ανάγωγου G-προτύπου W στην ισοτυπική διάσπαση του V ισούται με

$$\dim \operatorname{Hom}_G(W,V)$$
.

Απόδειξη. Έστω

$$V = W_1 \oplus W_2 \oplus \cdots \oplus W_k$$

η ανάλυση σε ανάγωγα υποπρότυπα του V. Τότε

$$\operatorname{Hom}_{G}(W, V) = \operatorname{Hom}_{G}(W, W_{1} \oplus W_{2} \oplus \cdots \oplus W_{k})$$

$$\cong \operatorname{Hom}_{G}(W, W_{1}) \oplus \operatorname{Hom}_{G}(W, W_{2}) \oplus \cdots \oplus \operatorname{Hom}_{G}(W, W_{k})$$

$$\cong \mathbb{F}^{|\{1 \leq i \leq k: W_{i} \cong W\}|}.$$

όπου ο τρίτος ισομορφισμός έπεται από το Πόρισμα 3.3. Για τον δεύτερο ισομορφισμό δείτε την παρατήρηση μετά το τέλος της απόδειξης. Συνεπώς,

$$\dim \text{Hom}_G(W, V) = |\{1 \le i \le k : W_i \cong W\}|,$$

και το ζητούμενο έπεται.

Παρατήρηση. (Γραμμικής ΄Αλγεβρας) Έστω V, V_1, V_2, W, W_1 και W_2 διανυσματικοί χώροι. Υπάρχουν φυσικοί ισομορφισμοί

$$\operatorname{Hom}(V, W_1 \oplus W_2) \cong \operatorname{Hom}(V, W_1) \oplus \operatorname{Hom}(V, W_2)$$

 $\operatorname{Hom}(V_1 \oplus V_2, W) \cong \operatorname{Hom}(V_1, W) \oplus \operatorname{Hom}(V_2, W),$

οι οποίοι δίνονται από

$$\varphi \mapsto (\operatorname{proj}_1 \circ \varphi, \operatorname{proj}_2 \circ \varphi)$$

$$\varphi \mapsto (\varphi \circ \iota_1, \varphi \circ \iota_2),$$

αντίστοιχα, όπου $\operatorname{proj}_i:W_1\oplus W_2\to W_i$ είναι η φυσική προβολή και $\iota_i:V_i\to V_1\oplus V_2$ είναι ο φυσικός εγκλεισμός (γιατί;). Ομοίως, για κάθε πεπερασμένο αριθμό διανυσματικών χώρων. Αυτό εξηγεί τον δεύτερο ισομορφισμό στην απόδειξη του Πορίσματος 3.6.

Αυτό έχει ως συνέπεια, η "ίδια" απόδειξη να μας πληροφορεί ότι η πολλαπλότητα ενός ανάγωγου G-προτύπου W στην ισοτυπική διάσπαση του V ισούται και με

$$\dim \operatorname{Hom}_G(V,W)$$

(γιατί;). Αυτή η συμμετρία θα εξηγεί σε επόμενες παραγράφους, όταν μιλήσουμε για χαρακτήρες ομάδων.

Ουσιαστικά το Λήμμα 3.6 μας πληροφορεί ότι η πολλαπλότητα της W στην ισοτυπική διάσπαση της V εξαρτάται μόνο από τα πρότυπα V και W και όχι από την εκάστοτε διάσπαση. Τώρα, μπορεί κανείς να αποδείξει το Πόρισμα 3.5, η απόδειξη του οποίου αφήνεται ως άσκηση.