Gradient free optimization

© 2019 Philipp Krähenbühl and Chao-Yuan Wu

Why do we need a gradient?

getting good gradients is hard!

Why do we need a gradient?

is the forward pass hard?

What if we had an oracle?

- Given policies π_A and π_B
- which one is better?
 - rollout and compute return

Gradient Free Optimization

- maximize $f(\theta)$ w.r.t. θ
 - can only evaluate function value
 - no gradients
 - \bullet f is smooth
 - similar θ produce similar $f(\theta)$

Random Search

- \bullet Randomly sample θ
- pick highest $f(\theta)$

Iterative Random Search

- ullet Randomly sample heta
 - pick highest $f(\theta)$
 - Sample more points around maxima
 - repeat

Cross entropy method

- Initialize μ, σ
 - sample $\theta \sim \mathcal{N}(\mu, \sigma^2)$
 - compute reward $f(\theta)$
 - select top p% (p=20)
 - fit Gaussian for new μ, σ
 - repeat

Evolution Strategies

parameters space

- ullet Initialize heta
- Iterate
 - Sample $\epsilon_0, \epsilon_1, ..., \epsilon_n \sim \mathcal{N}(0,I)$
 - Compute returns $F_i = R(\theta + \sigma \epsilon_i)$

. Normalize
$$\tilde{F}_i = \frac{F_i - \mu_F}{\sigma_F}$$

• Update
$$w := w + \frac{\alpha}{\sigma n} \sum_{i=1}^{n} \tilde{F}_{i} \epsilon_{i}$$

Evolution strategies as a scalable alternative to reinforcement learning, Salimans et al., arXiv 2017

Augmented random search

- Initialize θ
- Iterate
 - Sample $\epsilon_0, \epsilon_1, ..., \epsilon_n \sim \mathcal{N}(0, I)$
 - Compute returns $F_i^+ = R(\theta + \sigma \epsilon_i)$, $F_i^- = R(\theta \sigma \epsilon_i)$
 - Update

$$w := w + \frac{\alpha}{\sigma n} \sum_{i=1}^{n} (F_i^+ - F_i^-) \epsilon_i$$

- Simple random search provides a competitive approach to reinforcement learning, Mania et al., NIPS 2018
- Multivariate Stochastic Approximation Using a Simultaneous Perturbation Gradient Approximation, Spall, Automatic Control, 1992

Gradient free optimization

- Exponential in parameter space
- works better if
 - parameter space small
 - parameters correlate with expected return

