Performance prediction in recommender systems: application to the dynamic optimisation of aggregative methods

Alejandro Bellogín Kouki

Tutor: Pablo Castells Azpilicueta

Departamento de Ingeniería Informática Escuela Politécnica Superior Universidad Autónoma de Madrid

Introducción

RI : Recuperación de Información

SR: Sistemas de Recomendación

Índice

- Motivación y objetivos
- Trabajo relacionado y contexto
- Marco formal
 - Fusión dinámica en sistemas de recomendación
 - Predictores de eficacia para componentes de sistemas de recomendación
- Ponderación de vecinos en filtrado colaborativo
 - Descripción
 - Experimentos
- Ponderación en recomendación híbrida
 - Descripción
 - Experimentos
- Conclusiones

Motivación

- En RI entran en juego distintas fuentes de información
- Uso de predicción de eficacia en RI: ajustar las estrategias de recuperación en función de la predicción
 - Típicamente entendida como eficacia de la consulta
 - Aplicaciones: expansión de consultas, fusión de rankings, RI distribuida, etc.

Objetivos

- Estudio y análisis del estado del arte en predicción de eficacia en Recuperación de Información
- Investigar la aplicación de estas técnicas en sistemas de recomendación y su utilidad
- Definición de predictores de eficacia en sistemas de recomendación
- Aplicación de predictores a combinaciones dinámicas en sistemas de recomendación

Predicción de eficacia en RI: expansión de consultas

 Decidir si una consulta debe ser expandida o no, es decir, dados un predictor γ y una consulta q:

si γ (q) es mayor que un cierto número (umbral) entonces la consulta funcionará bien y no se debe expandir,

en otro caso, se expande la consulta.

- Problemas:
 - Definición del predictor (cuanto mayor es el valor, mejor funciona la consulta)
 - Definición del valor del umbral (se puede buscar el óptimo)
- Miran la ambigüedad, vaguedad, o especificidad de la consulta
 - q_A: "carrera"
 - q_B: "coche de carreras", "carrera de caballos"

$$\gamma(q_B) > \gamma(q_A)$$

 Trabajos: Cronen-Townsend et al. 2002, He & Ounis 2004, Diaz & Jones 2004, Mothe & Tanguy 2005, Jensen et al. 2005, Amati et al. 2004, Zhou & Croft 2006, Zhou & Croft 2007, Carmel et al. 2006

Predictores de eficacia de consulta en RI

 Claridad: distancia (entropía relativa) entre los modelos de lenguaje de la consulta y de la colección

clarity
$$(q) = \sum_{w \in V} P(w|q) \log_2 \frac{P(w|q)}{P_{coll}(w)}$$

$$P(w|q) = \sum_{d \in R} P(w|d) P(d|q), \quad P(q|d) = \prod_{w_q \in q} P(w_q|d)$$

$$P(w|d) = \lambda P_{ml}(w|d) + (1-\lambda) P_{coll}(w)$$

Ejemplo:

Predicción de eficacia en RI: agregación de rankings

- Aplicación a la agregación de rankings
 - Obtener una única ordenación a partir de distintos rankings (p.e., metabúsqueda, búsqueda distribuida, etc.) (Fox & Shaw 1993)
- En esta área, la predicción de eficacia se utiliza para ponderar cada uno de los rankings a combinar (según su eficacia estimada)
- Referencias: Yom-Tov et al. 2005, Aslam & Pavlu 2007, Castells et al. 2005,
 Diaz 2007
- Ejemplo:
 - "gripe" **\rightarrow** 0.8 * PubMed + 0.2 * MathSciNet
 - "integral" \rightarrow 0.2 * PubMed + 0.8 * MathSciNet

• En este trabajo: aplicación a sistemas de recomendación

objetos

		i ₁	i _k	i _m
	u_1	r ₁₁	r _{1k}	r _{1m}
usuarios	u _j	r _{j1}	?	r _{jm}
	u _n	r _{n1}	r _{nk}	r _{nm}

¿cómo se predice el valor de r_{jk}?

• Filtrado colaborativo (FC) basado en usuarios

objetos

		i ₁	i _k	i _m
	u_1	r ₁₁	r_{1k}	r _{1m}
usuarios	u _j	r _{j1}	?	r _{jm}
	u _n	r _{n1}	r _{nk}	r _{nm}

• Filtrado colaborativo (FC) basado en objetos

objetos

		i ₁	i _k	i _m
	u_1	r ₁₁	$\mathbf{r}_{1\mathbf{k}}$	r _{1m}
usuarios	u _j	r _{j1}	?	r _{jm}
	u _n	r _{n1}	r _{nk}	r _{nm}

Recomendación basada en contenido (BC)

			obj	etos	
		i ₁		i _k	i _m
	u_1	r ₁₁		r _{1k}	r _{1m}
usuarios	u _j	r _{j1}		?	r _{jm}
	u _n	r _{n1}		r _{nk}	r _{nm}

Tanto FC como BC tienen desventajas:

Proble ma	Descripción	FC	BC
Oveja negra	Un usuario cuyos intereses son raros comparados con el resto de la comunidad	X	
Baja densidad (sparsity)	El número de ratings disponible es pequeño	X	
Nuevo objeto	Los objetos a ser recomendados debe ser puntuados por un número importante de usuarios	X	
Nuevo usuario	Un usuario tiene que votar un número suficiente de objetos para poder inferir sus preferencias	X	X
Análisis de contenido	Los objetos a recomendar deben tener datos disponibles con respecto a sus propiedades		X
Especialización	Los objetos recomendados son todos similares		X

- Una alternativa a estos problemas es utilizar estrategias híbridas:
 - En cascada
 - Usando ponderación (combinación lineal o esquemas de votación)

Operaciones de combinación en SR

Generación de recomendaciones en FC

$$g(u_{m}, i_{n}) = \frac{\sum_{u_{j} \in N[u_{m}]} \sin(u_{m}, u_{j}) \times r_{j,n}}{\sum_{u_{j} \in N[u_{m}]} \left| \sin(u_{m}, u_{j}) \right|}$$
There does

Recomendación híbrida

$$g(u_m, i_k) = \lambda \times g_{CB}(u_m, i_k) + (1 - \lambda) \times g_{CF}(u_m, i_k)$$

Operaciones de combinación en RI personalizada

$$s(d) = \lambda \times s_q(d) + (1 - \lambda) \times s_P(d)$$

• Pregunta a investigar:

¿Se podría aplicar la predicción de eficacia a estos problemas?

¿Cómo?

Marco formal

- Teoría de la utilidad: formulamos RI como encontrar $g: \mathcal{D} \times \Omega \to \mathbb{R}$, tal que $d_1 \leq_q d_2 \Leftrightarrow g(d_1, q) \leq g(d_2, q)$
- Un sistema compuesto de RI está formado por subsistemas, donde cada uno se encarga de un criterio o estrategia:

$$\vec{g} = g(d, q) = \varphi(g_1(d, q), ..., g_n(d, q))$$

La combinación lineal es una forma muy general de composición en RI:

$$\varphi(s_1, ..., s_n) = \alpha_1 s_1 + \cdots + \alpha_n s_n = \vec{\alpha} \cdot \vec{s}$$

- Ejemplos:
 - Cálculo de recomendaciones en FC
 - Recomendación híbrida
 - Búsqueda personalizada (combinación lineal entre la búsqueda estándar y la personalización): λ × score_q (d) + (1 λ) × score_p (d)
 - Fusión de rankings: $score(d) = \Sigma_{\tau} score_{\tau}(d)$ (CombSUM)

Marco formal

Esta combinación se puede mejorar usando los mejores pesos posibles, es decir:

$$\vec{\alpha}^* = \arg\max_{\vec{\alpha} \in \mathbb{R}^n} (\rho(\vec{g}))$$

- ρ representa una medida de la calidad de la decisión \vec{g}
- El coeficiente α_j determina cuánto debe dominar g_j en la decisión combinada \vec{g}
- De esta manera, se puede aumentar la eficacia de g favoreciendo los g_j que darían mayor calidad a la salida en cada situación
- Es necesario "predecir" la eficacia de cada componente:
 - Función (o predictor) $\gamma_j(d, q, \Omega)$
- Así: $\alpha_j = \psi(\gamma_j (d, q, \Omega))$
 - Simplificación: $\psi(x) = x$

Hipótesis

- 1. La combinación lineal es una manera apropiada y general de construir sistemas compuestos en RI
- 2. Una ponderación dinámica adecuada de los componentes permite mejorar la eficacia de sistemas de RI compuestos
- 3. Los predictores de eficacia del campo de RI pueden adaptarse a SR y obtener predictores efectivos
- 4. La bondad de los predictores de eficacia se puede medir usando la correlación con respecto a unas medidas de eficacia adecuadas
- 5. La eficacia de un sistema de RI, o de un componente, es monótonamente decreciente con respecto a la cantidad de incertidumbre involucrada en la tarea de RI

Fusión dinámica en sistemas de recomendación

- En este caso: $\mathcal{D} = \mathcal{I}$ y $\Omega = (\mathcal{U}, r)$, es decir, el espacio de búsqueda son los objetos a recomendar, mientras que el de entrada es el conjunto de usuarios y $r: \mathcal{S} \to \mathcal{R}$ con $\mathcal{S} \subset \mathcal{U} \times \mathcal{I}$, ratings de un usuario a un objeto (indicando cuánto le gusta a dicho usuario ese objeto)
- Normalmente, se centra en encontrar el mejor objeto (top 1):

$$g: \mathcal{U} \times \mathcal{I} \to \mathcal{R}$$

$$\forall \mathbf{u} \in \mathcal{U}, \mathbf{i}_{\mathbf{u}}^* = \arg\max_{\mathbf{i} \in \mathcal{I}} g(\mathbf{u}, \mathbf{i})$$

• La utilidad de un objeto es equivalente al rating (real o predicho por el sistema)

Predictores de eficacia para sistemas de recomendación

- Basados en claridad
 - De usuario vs objeto
 - Usando usuarios (UUC, UIC) u objetos (IUC, IIC)
- Basados en Teoría de la Información
 - Ganancia de información de un usuario (UIG) y de un objeto (IIG)
- Heurísticos
 - Contar frecuencias (inspirado en el IDF de RI):
 - Frecuencia inversa de usuario (IUF) y de objeto (IIF)
 - Frecuencia de ratings inversa de usuario (IURF) y de objeto (IIRF)
 - Características de un usuario (UF) y de un objeto (IF)

Formalización:

$$g(u_{m}, i_{k}) = \varphi_{N[u_{m}]}(g_{1}(u_{m}, i_{k}), \dots, g_{n}(u_{m}, i_{k}))$$

$$g_{j}(u_{m}, i_{k}) = \sin(u_{m}, v_{j}) \times r(u_{j}, i_{k})$$

$$\alpha_{j} = \frac{\gamma_{j}}{\sum_{v \in N[u_{m}]} |\sin(u_{m}, v)|}$$

$$g(u_m, i_n) = \frac{\sum_{u_j \in N[u_m]} \operatorname{sim}(u_m, u_j) \times r_{j,n}}{\sum_{u_j \in N[u_m]} \left| \operatorname{sim}(u_m, u_j) \right|}$$

Predictores utilizados:

• *Item-based user clarity* (IUC):

$$\gamma_{j} = \gamma_{j}(v_{j}) = IUC(u) = \sum_{i \in I} p(i|u) \log_{2} \frac{p(i|u)}{p_{c}(i)}$$

$$p(i|u) = \lambda \frac{rat(u,i)}{5} + (1-\lambda) p_{c}(i)$$

$$p_{c}(i) = \frac{1}{|I|}$$

User-based user clarity (UUC):

$$\gamma_{j} = \gamma_{j}(v_{j}) = \text{UUC}(u) = \sum_{v \in U} p(v|u) \log_{2} \frac{p(v|u)}{p_{c}(v)}$$

$$p(v|u) = \sum_{i:rat(u,i)\neq 0} p(v|i) p(i|u)$$

$$p(v|i) = \lambda \frac{rat(v,i)}{5} + (1-\lambda) p_{c}(v)$$

$$p_{c}(v) = \frac{1}{|U|}$$

Resultados:

Medida de evaluación: MAE (error medio promedio)

MAE =
$$\frac{1}{MN} \sum_{m=1}^{M} \sum_{n=1}^{N} |r_{m,n} - p_{m,n}|$$

• Comportamiento según la densidad de ratings:

- Resultados (cont.):
 - Comportamiento según el tamaño del vecindario (tamaño de N[u])

Resultados (cont.):

• Análisis de correlación con respecto a una nueva medida: *Neighbour Goodness* (bondad del vecino)

neighbour_goodness
$$(u) = MAE(U - \{u\}, R - R(u)) - MAE(U - \{u\}, R)$$

Correlación de Pearson a nivel de 5%

Predictor				% d	le ratir	ngs			
de eficacia	10	20	30	40	50	60	70	80	90
UUC	-0.23	0.21	0.26	0.22	0.21	0.20	0.19	0.18	0.15
IUC	-0.24	0.17	0.19	0.15	0.14	0.13	0.13	0.13	0.09

Formalización:

$$g(u_{m}, i_{k}) = \alpha_{CB} \times g_{CB}(u_{m}, i_{k}) + \alpha_{CF} \times g_{CF}(u_{m}, i_{k})$$

$$\alpha_{CB} = \gamma_{CB}$$

$$\alpha_{CF} = \gamma_{CF}$$

$$g(u_m, i_k) = \lambda \times g_{CB}(u_m, i_k) + (1 - \lambda) \times g_{CF}(u_m, i_k)$$

• Predictores utilizados:

- Componente basada en contenido (γ_{CB})
 - *Item features* (IF):

$$\gamma_{CB} = \gamma_{CB}(i_k) = IF(i_k) = \sum_{t \in \mathfrak{T}} TF-IDF(i,t)$$

- Item information gain (IIG):

$$\gamma_{CB} = \gamma_{CB} (i_k) = \text{IIG}(i_k) = \frac{p_1^i - p_0^i}{p_1^i}$$

- *Item-based user clarity* (IUC):

$$\gamma_{CB} = \gamma_{CB} (v_j) = IUC(v_j)$$

- Componente colaborativa (γ_{CF})
 - Item-based item clarity (IIC):

$$\gamma_{CF} = \gamma_{CF}(i_k) = \text{IIC}(i_k) = \sum_{u \in U} p(u \mid i) \log_2 \frac{p(u \mid i)}{p_c(u)}$$

User-based user clarity (UUC):

$$\gamma_{CF} = \gamma_{CF} (v_j) = UUC(v_j)$$

- También consideramos la referencia estática como predictor.
 - Referencia estática, de parámetro λ : $\gamma_{CB} = \gamma_{CF} = \gamma^{\lambda} = \lambda$

Resultados

- MAE no es suficientemente discriminativo (en este contexto)
- Nueva medida: reflejar la mejora producida al escoger los pesos según la combinación dinámica frente a la estática

$$\Delta_{\gamma} = \frac{100}{|\mathcal{U}|} \sum_{u \in \mathcal{U}} \frac{\text{MAE}(S(\alpha_{u}(u))) - \text{AE}_{\gamma}(u)}{\text{MAE}(S(\alpha_{u}(u)))}$$

$$\alpha_{u} = \frac{\alpha_{CB}}{\alpha_{CB} + \alpha_{CF}}$$

$$\gamma = (\gamma_{CB}, \gamma_{CF})$$

- Análisis de correlación con respecto al error promedio (por usuario / objeto)
 - Correlación con respecto a FC

Predictor				% d	le ratir	ngs			
de eficacia	10	20	30	40	50	60	70	80	90
UUC	-0.44	0.07	0.19	0.20	0.18	0.17	0.17	0.16	0.12
IIC	0.21	0.34	0.31	0.27	0.24	0.21	0.18	0.16	0.13

Correlación con respecto a BC

Predictor				0/0	de ratir	ngs			
de eficacia	10	20	30	40	50	60	70	80	90
IIG	-0.09	-0.07	-0.08	-0.08	-0.10	-0.10	-0.11	-0.10	-0.10
IUC	0.17	0.18	0.16	0.15	0.14	0.14	0.12	0.10	0.09
IF	0.06	0.00	N/A	N/A	-0.07	-0.07	-0.01	-0.03	0.08

- Los predictores basados en claridad: correlación positiva tanto en CB como en CF
- IIG e IF tienen valores negativos, aunque poco significativos

Conclusiones

- Contribuciones del trabajo:
 - Marco formal para introducir predicción de eficacia en sistemas de recomendación
 - Adaptación de técnicas de claridad a sistemas de recomendación
 - Definición de nuevos predictores para sistemas de recomendación, basados en Teoría de la Información
 - Aplicación a dos problemas:
 - Ponderación de vecinos en filtrado colaborativo
 - Ponderación de recomendación híbrida
 - Validación experimental de la propuesta:
 - Analizando los resultados en el sistema final, donde los predictores han sido introducidos
 - Estudiando la correlación entre predictores y medidas de precisión
 - Propuesta de dos nuevas medidas de precisión: NG y Δ_{γ}

Conclusiones

Trabajo futuro:

- Mejorar los predictores ya existentes y definir nuevos (basados en JSD o WIG)
- Análisis de los predictores (cambiando la definición de ψ)
- Creación de conjuntos de datos específicos
- Experimentos usando conjuntos de datos mayores
- Investigar medidas de precisión (propiedades, comportamiento)
- Extensión del marco formal
- Nuevas áreas de interés: búsqueda personalizada, RI basada en contexto, metabúsqueda, búsqueda distribuida

Gracias

Referencias

- (Amati et al. 2004) Amati, G., Carpineto, C. & Romano, G. (2004), 'Query difficulty, robustness, and selective application of query expansion', *Advances in Information Retrieval* pp. 127–137.
- (Aslam & Pavlu 2007) Aslam, J. A. & Pavlu, V. (2007), Query hardness estimation using Jensen-Shannon divergence among multiple scoring functions, *in* 'ECIR', pp. 198–209.
- (Carmel et al. 2006) Carmel, D., Yom-Tov, E., Darlow, A. & Pelleg, D. (2006), What makes a query difficult?, *in* 'SIGIR '06: Proceedings of the 29th annual international ACM SIGIR conference on Research and development in information retrieval', ACM, New York, NY, USA, pp. 390–397.
- (Castells et al. 2005) Castells, P., Fernández, M., Vallet, D., Mylonas, P. & Avrithis, Y. (2005), Self-tuning personalized information retrieval in an ontology-based framework, *in* R. Meersman, Z. Tari & P. Herrero, eds, 'SWWS'05: In proceedings of the 1st International Workshop on Web Semantics', Vol. 3762, Springer, pp. 977–986.
- (Cronen-Townsend et al. 2002) Cronen-Townsend, S., Zhou, Y. & Croft, B. W. (2002), Predicting query performance, *in* 'SIGIR '02: Proceedings of the 25th annual international ACM SIGIR conference on Research and development in information retrieval', ACM Press, New York, NY, USA, pp. 299–306.
- (Diaz 2007) Diaz, F. (2007), Performance prediction using spatial autocorrelation, *in* 'SIGIR '07: Proceedings of the 30th annual international ACM SIGIR conference on Research and development in information retrieval', ACM, New York, NY, USA, pp. 583–590.

Referencias

- (Diaz & Jones 2004) Diaz, F. & Jones, R. (2004), Using temporal profiles of queries for precision prediction, *in* 'SIGIR '04: Proceedings of the 27th annual international conference on Research and development in information retrieval', ACM Press, pp. 18–24.
- (He & Ounis 2004) He, B. & Ounis, I. (2004), Inferring query performance using pre-retrieval predictors, *in* 'String Processing and Information Retrieval, SPIRE 2004', pp. 43–54.
- (Jensen et al. 2005) Jensen, E. C., Beitzel, S. M., Grossman, D., Frieder, O. & Chowdhury, A. (2005), Predicting query difficulty on the web by learning visual clues, *in* 'SIGIR '05: Proceedings of the 28th annual international ACM SIGIR conference on Research and development in information retrieval', ACM, New York, NY, USA, pp. 615–616.
- (Mothe & Tanguy 2005) Mothe, J. & Tanguy, L. (2005), Linguistic features to predict query difficulty, *in* 'Predicting Query Difficulty Methods and Applications, SIGIR 2005'.
- (Yom-Tov et al. 2005) Yom-Tov, E., Fine, S., Carmel, D. & Darlow, A. (2005), Metasearch and federation using query difficulty prediction, *in* 'Predicting Query Difficulty Methods and Applications, SIGIR 2005'.(Zhou & Croft 2006) Zhou, Y. & Croft, B. W. (2006), Ranking robustness: a novel framework to predict query performance, *in* 'CIKM '06: Proceedings of the 15th ACM international conference on Information and knowledge management', ACM, New York, NY, USA, pp. 567–574.
- (Zhou & Croft 2007) Zhou, Y. & Croft, B. W. (2007), Query performance prediction in web search environments, *in* 'SIGIR '07: Proceedings of the 30th annual international ACM SIGIR conference on Research and development in information retrieval', ACM, New York, NY, USA, pp. 543–550.

