Tidyverse Problem Set

MA615 Xiaofan Xia September 29, 2019

The purpose of this problem set is to provide data contexts in which to exercise the capabilities of the tidyverse. While some questons require specific answers, other parts of the problems have been written to be purposely ambiguous, requiring you to think through the presentation details of your answer.

HOLD THE PRESSES!

As I was preparing to post these problems yesterday, I noticed that tidyr had been updata in the last few weeks. I was looking for more exercises on gather() and spread() – which are always difficult to master. And I found that they have been superceded!! Why do I love working with R as the tidyversie is on a path of continuous improvement? Because the improvements come from developers who write things like this:

For some time, it's been obvious that there is something fundamentally wrong with the design of spread() and gather(). Many people don't find the names intuitive and find it hard to remember which direction corresponds to spreading and which to gathering. It also seems surprisingly hard to remember the arguments to these functions, meaning that many people (including me!) have to consult the documentation every time. Hadley Wickham, Pivot Vingette

So... before you do anymore tidyverse exercises, Read this tidyr 1.0.0.

Then go to the tidyr cran page and to the examples and exercise in the new vignettes.

In your solutions to the problems below, if you need to use table reshaping functions from TidyR, be sure that you use pivot_longer(), and pivot_wider().

Problem 1

Load the gapminder data from the gapminder package.

```
library(gapminder)
head(gapminder)
```

```
## # A tibble: 6 x 6
##
                            year lifeExp
                                                pop gdpPercap
     country
                  continent
##
     <fct>
                  <fct>
                                     <dbl>
                                              <int>
                                                         <dbl>
                            <int>
## 1 Afghanistan Asia
                                      28.8
                                           8425333
                                                          779.
                             1952
                                                          821.
## 2 Afghanistan Asia
                             1957
                                      30.3 9240934
## 3 Afghanistan Asia
                                      32.0 10267083
                             1962
                                                          853.
## 4 Afghanistan Asia
                             1967
                                      34.0 11537966
                                                          836.
## 5 Afghanistan Asia
                             1972
                                      36.1 13079460
                                                          740.
## 6 Afghanistan Asia
                             1977
                                      38.4 14880372
                                                          786.
```

How many continents are included in the data set?

```
str(gapminder$continent) #There are 5 continents included in the dataset.
```

```
## Factor w/ 5 levels "Africa","Americas",..: 3 3 3 3 3 3 3 3 3 ...
```

How many countrys are included? How many countries per continent?

```
str(gapminder$country) #There are 142 countries included in the dataset.
```

```
## Factor w/ 142 levels "Afghanistan",..: 1 1 1 1 1 1 1 1 1 1 ...
```

```
gapminder.country <- gapminder %>%
 group_by(continent) %>%
 summarize(n = n(),
           n_countries = n_distinct(country))
gapminder.country #number of countries per continent
## # A tibble: 5 x 3
##
    continent n n_countries
##
    <fct>
             <int>
                          <int>
## 1 Africa
                624
                             52
## 2 Americas
                300
                             25
## 3 Asia
                396
                             33
## 4 Europe
                360
                             30
## 5 Oceania
                 24
                              2
```

Using the gapminder data, produce a report showing the continents in the dataset, total population per continent, and GDP per capita. Be sure that the table is properly labeled and suitable for inclusion in a printed report.

```
gapminder.pop <-
gapminder%>%
group_by(continent) %>%
summarize(population=sum(as.numeric(pop)),GDP=sum(gdpPercap))

kable(gapminder.pop) #total population and total GDP for each continent in table
```

continent	population	GDP
Africa	6187585961	1368902.9
Americas	7351438499	2140833.1
Asia	30507333901	3129251.6
Europe	6181115304	5209011.2
Oceania	212992136	446918.6

Produce a well-labeled table that summarizes GDP per capita for the countries in each continent, contrasting the years 1952 and 2007.

```
gapminder.1952 <-
gapminder%>%
filter(year=="1952")%>%
group_by(continent)%>%
summarize(GDP=sum(gdpPercap))

year.1952 <- c(rep(1952,5))

gapminder.1952.new <- cbind(year.1952,gapminder.1952)

gapminder.2007 <-
gapminder%>%
filter(year=="2007")%>%
group_by(continent) %>%
summarize(GDP=sum(gdpPercap))

year.2007 <- c(rep(2007,5))</pre>
```

```
gapminder.2007.new <- cbind(year.2007,gapminder.2007)

combined.gapminder.year <- cbind(gapminder.1952.new,gapminder.2007.new)

kable(combined.gapminder.year)</pre>
```

year.1952	continent	GDP	year.2007	continent	GDP
1952	Africa	65133.77	2007	Africa	160629.70
1952	Americas	101976.56	2007	Americas	275075.79
1952	Asia	171450.97	2007	Asia	411609.89
1952	Europe	169831.72	2007	Europe	751634.45
1952	Oceania	20596.17	2007	Oceania	59620.38

Product a plot that summarizes the same data as the table. There should be two plots per continent.

ggplot(data=gapminder.1952, aes(continent,GDP))+geom_point()

ggplot(data=gapminder.2007, aes(continent,GDP))+geom_point()

Which countries in the dataset have had periods of negative population growth? Illustrate your answer with a table or plot.

Which countries in the dataset have had the highest rate of growth in per capita GDP? Illustrate your answer with a table or plot.

Problem 2

The data for Problem 2 is the Fertility data in the AER package. This data is from the 1980 US Census and is comprised of date on married women aged 21-35 with two or more children. The data report the gender of each woman's first and second child, the woman's race, age, number of weeks worked in 1979, and whether the woman had more than two children.

```
library(AER)
## Loading required package: car
## Loading required package: carData
##
## Attaching package: 'car'
## The following object is masked from 'package:dplyr':
##
##
       recode
## The following object is masked from 'package:purrr':
##
##
       some
## Loading required package: lmtest
## Loading required package: zoo
##
## Attaching package: 'zoo'
## The following objects are masked from 'package:base':
##
       as.Date, as.Date.numeric
##
## Loading required package: sandwich
## Loading required package: survival
data("Fertility")
head(Fertility)
     morekids gender1 gender2 age afam hispanic other work
##
## 1
           no
                 male female 27
                                                           0
                                     nο
                                              nο
                                                     nο
## 2
                                                          30
           no
               female
                         \mathtt{male}
                                30
                                     no
                                              no
                                                     no
## 3
                 male female 27
                                                           0
           nο
                                     no
                                              no
                                                     no
                                                           0
## 4
           no
                 male female 35
                                    yes
                                              no
                                                     no
```

There are four possible gender combinations for the first two Children. Product a plot the contracts the frequency of these four combinations. Are the frequencies different for women in their 20s and wemen who are older than 29?

no

Produce a plot that contrasts the frequency of having more than two children by race and ethnicity.

Problem 3

5

6

Use the mtcars and mpg datasets.

no

female female

male female

30

26

no

```
df.mtcars <- data.frame(mtcars)
df.mtcars <- tibble::rownames_to_column(df.mtcars, "car") #transfer the rownames in mtcars into first c
head(df.mtcars)</pre>
```

22

no

```
car mpg cyl disp hp drat
##
                                                                                                                              wt qsec vs am gear carb
## 1
                                                                              6 160 110 3.90 2.620 16.46
                                 Mazda RX4 21.0
                                                                                                                                                         0
                                                                                                                                                                 1
                       Mazda RX4 Wag 21.0
## 2
                                                                              6 160 110 3.90 2.875 17.02
## 3
                              Datsun 710 22.8
                                                                             4 108 93 3.85 2.320 18.61 1 1
                                                                                                                                                                                           1
                    Hornet 4 Drive 21.4
                                                                          6
                                                                                     258 110 3.08 3.215 19.44 1
## 5 Hornet Sportabout 18.7 8 360 175 3.15 3.440 17.02 0 0
                                                                                                                                                                                           2
## 6
                                      Valiant 18.1
                                                                             6 225 105 2.76 3.460 20.22 1 0
head(mpg)
## # A tibble: 6 x 11
            manufacturer model displ year
                                                                                                   cyl trans drv
                                                                                                                                                    cty
                                                                                                                                                                    hwy fl
                                                                                                                                                                                              class
##
             <chr>>
                                              <chr> <dbl> <int> <int> <chr> <int> <int> <int> <chr>
## 1 audi
                                                                    1.8 1999
                                                                                                       4 auto(~ f
                                              a4
                                                                                                                                                       18
                                                                                                                                                                      29 p
                                                                                                                                                                                              comp~
## 2 audi
                                                                    1.8 1999
                                                                                                       4 manua~ f
                                                                                                                                                       21
                                                                                                                                                                      29 p
                                              a4
                                                                                                                                                                                              comp~
## 3 audi
                                                                                2008
                                                                                                                                                      20
                                                                   2
                                                                                                       4 manua~ f
                                              a4
                                                                                                                                                                      31 p
                                                                                                                                                                                              comp~
                                                                                                                                                                      30 p
## 4 audi
                                              a4
                                                                    2
                                                                                 2008
                                                                                                        4 auto(~ f
                                                                                                                                                      21
                                                                                                                                                                                              comp~
## 5 audi
                                              a4
                                                                   2.8 1999
                                                                                                        6 auto(~ f
                                                                                                                                                       16
                                                                                                                                                                      26 p
                                                                                                                                                                                              comp~
## 6 audi
                                              a4
                                                                    2.8 1999
                                                                                                       6 manua~ f
                                                                                                                                                       18
                                                                                                                                                                      26 p
                                                                                                                                                                                              comp~
How many times does the letter "e" occur in mtcars rownames?
number_e <- str_count(df.mtcars$car,"e") #Count numbers of letter "e" occurred in each mtcars car name(
number_e
sum(number e) #The number of occurances of letter "e" in total is 25.
## [1] 25
How many cars in mtcars have the brand Merc?
number_Merc <- str_count(df.mtcars$car, "Merc") #Count numbers of "Merc" occurred in each mtcars car nam
number_Merc
sum(number_Merc) #The number of occurances of "Merc" in total is 7.
## [1] 7
How many cars in mpg have the brand ("manufacturer" in mpg) Merc?
number_Merc_mpg <- str_count(mpg$manufacturer, "merc") #Count numbers of "merc" occurred in each row of
number Merc mpg
              \hbox{\tt \#\#} \quad \hbox{\tt [71]} \quad \hbox{\tt 0} \quad \hbox{\tt 0
sum(number_Merc_mpg) #The number of occurances of "Merc" in total is 4.
## [1] 4
#Not sure about if mercury is "Merc", but I am assuming mercury is denoted by "Merc".
```

Contrast the mileage data for Merc cars as reported in mtcars and mpg. Use tables, plots, and a short explaination.

df.mtcars.new <- df.mtcars %>%

```
separate(car,into = c("manufacturer","model"),sep = " ") %>%
select(manufacturer,mpg) %>%
filter(manufacturer=="Merc") %>%
mutate(manufacturer,mpg)

## Warning: Expected 2 pieces. Additional pieces discarded in 3 rows [2, 4,
## 29].

## Warning: Expected 2 pieces. Missing pieces filled with `NA` in 1 rows [6].

mpg.new <- mpg %>%
select(manufacturer,cty,hwy) %>%
filter(manufacturer=="mercury") %>%
transmute(manufacturer,mpg=(cty+hwy)/2)

combined.mpg <- merge(df.mtcars.new,mpg.new,all=T)

kable(combined.mpg) #Contrast the mileage data for Merc cars in two different datasets by a table (diff</pre>
```

manufacturer	mpg
Merc	15.2
Merc	16.4
Merc	17.3
Merc	17.8
Merc	19.2
Merc	22.8
Merc	24.4
mercury	15.0
mercury	15.5
mercury	16.0
mercury	16.0

ggplot(data=combined.mpg,aes(manufacturer,mpg))+ geom_point() #Contrast the mileage data for Merc cars

#The mpg dataset has less samples than the mtcars dataset does. The data of mileage of Merc in mtcars h

Problem 4

Install the babynames package.

library(babynames)

Draw a sample of 500,000 rows from the babynames data

Produce a tabble that displays the five most popular boy names and girl names in the years 1880,1920, 1960, 2000.

What names overlap boys and girls?

What names were used in the 19th century but have not been used in the 21sth century?

Produce a chart that shows the relative frequency of the names "Donald", "Hilary", "Hillary", "Joe", "Barrack", over the years 1880 through 2017.