

Qualifying Exam: Geometry and topology

Spring 2012. January 17, 6:00 p.m. to 9:00 p.m.

Examiners: Prof. Ricardo Castaño-Bernard and Prof. David Yetter

Name:			

Instructions: Do all eight problems. Start each problem on a separate page and clearly indicate the problem number. Problems that are completely solved and thoroughly justified will be given more credit than scattered attempts leading to partial answers.

- 1. (a) State Tychonoff's theorem.
 - (b) Prove the finite case of Tychonoff's theorem completely.
 - (c) Name one of the concepts that can be used to prove the full version of Tychonoff's theorem that is not needed in the finite case.
- 2. (a) Give the definition of the derivative $f_*(p)$ of a smooth map between manifolds $f: M \to N$ at $p \in M$. Show that if $f_*(p)$ is an isomorphism, there is a neighborhood U of p such that for every $p' \in U$, $f_*(p')$ is an isomorphism.
 - (b) Let $M(k, \mathbb{R})$ be the set of $k \times k$ matrices. Show that the set of 2×2 matrices of rank 1 is a 3-dimensional submanifold of $M(2, \mathbb{R})$.
 - (c) Let $C = \{y^3 x^2 = 0\} \subset \mathbb{R}^2$ and $f : \mathbb{R} \to \mathbb{R}^2$ be the map $f(t) = (\cos(t), \sin(t))$. Show that f is transversal to C.
- 3. (a) Let M be a smooth manifold. Define $\bigwedge^k T^*M$ and show it is a smooth manifold
 - (b) Let $M = \mathbb{R}^3$. Show that

$$\theta = (x_1 + x_3^3)dx_1 \wedge dx_2 + x_1x_2dx_1 \wedge dx_3 + x_1dx_2 \wedge dx_3$$

is a section of the bundle $\bigwedge^2 T^*M$. Compute $d\theta$ and give an explicit description of the locus $Z \subseteq \mathbb{R}^3$ where $d\theta$ intersects the zero section of $\bigwedge^3 T^*M$.

(c) Let $X = (x_1 - x_2)\partial_{x_1} + (x_1 + x_2)\partial_{x_2}$ and θ as above. Compute the Lie derivative $L_X\theta$. Hint: you can use Cartan's identity, $L_Y = d \circ i_Y + i_Y \circ d$, where $i_Y\alpha = \alpha(Y, \cdot)$, for any vector field Y and any p-form α .

- 4. (a) Give the definition of (C^*, ∂) , the singular chain complex with real coefficients, and (Ω^*, d) the de Rham complex.
 - (b) Use Stokes' theorem to define a homomorphism between these two complexes in part (a).
 - (c) Give a sketch of how to prove that the homomorphism of part (b) gives rise to an isomorphism $H^k_{dR}(M) \cong H^k(M, \mathbb{R})$.
 - (d) Let $S^1 \subset \mathbb{R}^2 \subset \mathbb{R}^3$. Compute the de Rham cohomology of $\mathbb{R}^3 S^1$. Hint: use Mayer-Vietoris sequence. You could also use part (c).
- 5. (a) State the Seifert-Van Kampen Theorem for fundamental groupoids.
 - (b) What additional hypothesis is needed in the Seifert-Van Kampen theorem for fundamental groups?
 - (c) Use the Seifert-Van Kampen Theorem for fundamental groupoids to prove that if X, Y, Z and W are contractible spaces, with X and Y open subspaces of some larger ambient space (possibly simply their union), and in $X \cup Y$

$$X \cap Y \cong Z \coprod W$$

then $\pi_1(X \cup Y) \cong \mathbf{Z}$.

- (d) Explain why the Seifert-Van Kampen Theorem for fundamental groups is inadequate to prove the statement in part (c)
- 6. Consider a CW complex X with one 0-cell, two 1-cells a and b, and three 2-cells A, B, and C. The 1-cells are attached to the 0-cell so that the 1-skeleton is $S^1 \vee S^1 \cong S^1/\{1,-1\}$. Considering S^1 to be the unit circle in the complex plane and the 2-cells to the copies of the unit disk in the complex plane, the 2-cells are attached by mapping the boundary of A (resp. B) to the first (resp. second) circle in the wedge (which we take to be a (resp. b) and the 0-cell) by $e^{i\theta} \mapsto e^{2i\theta}$, and mapping the boundary of C to the 1-skeleton considered as the quotient of S^1 by identifying 1 and -1 by the map $e^{i\theta} \mapsto [e^{3i\theta}]$.
 - (a) Find the homology of X.
 - (b) Justify the assertion that $\pi_1(X) \cong \mathfrak{S}_3$ (the symmetric group on three elements)
 - (c) Describe a different CW complex in which only the attaching map of C has been changed, which has a different fundamental group, but the same homology.
 - (d) State the Hurewicz theorem relating π_1 and H_1 and explain why your answer to part (a) and what you proved in (b) illustrate the theorem.

- 7. (a) State the Künneth theorem (formula) for cohomology.
 - (b) Under what hypotheses does an extension of the Künneth theorem determine the multiplication on the cohomology ring of a product of two spaces from that on the two spaces? State the theorem.
 - (c) Use the well-known cohomology groups of spheres to determine

$$H^{\bullet}(S^2 \times S^2 \times S^4),$$

as a graded ring. That is, in addition to computing the cohomology groups, describe completely the multiplication on the cohomology ring.

8. Consider the finite topological space $X = \{0, x, 1\}$ with topology

$$\{\emptyset, \{x\}, \{0, x\}, \{x, 1\}, X\}.$$

Which of the following topological properties does this space have: compactness, connectedness, path connectedness, separability, contractibility, T_0 -ness, T_1 -ness, Hausdorffness, metrizability?