第1章 数制与编码

名词:

- 数字(数码):用来记数并可用来表示数量大小的符号。
- <mark>数制:</mark> 多位数码中每一位的构成方法以及从低位到时高位的 进位规则。

常用数制

数 值	十进制	二进制	十六进制	八进制	数 值	十进制	二进制	十六进制	八进制
零	0	0	0	0	+	10	1010	A	12
	1	1	1	1	+-	11	1011	В	13
-	2	10	2	2	十二	12	1100	C	14
=	3	11	3	3	十三	13	1101	D	15
四	4	100	4	4	十四	14	1110	E	16
五	. 5	101	5	5	十五	15	1111	F	17
六	. 6	110	6	6	十六	16	10000	10	20
七	7	111	7	7	十七	17	10001	11	21
八	8	1000	8	10	十八	18	10010	12	22
九	9	1001	9	11	十九	19	10011	13	23

数的表示方法:

- 并列法: 3210.123
- 多项式表示法:

$$3 \times 10^{3} + 2 \times 10^{2} + 1 \times 10^{1} + 0 \times 10^{0} + 1 \times 10^{-1} + 2 \times 10^{-2} + 3 \times 10^{-3}$$

十进制数

位号	3	2	1	0		-1	-2	-3
十进制数	3	4	5	6		7	8	9
位权	10 ³	10 ²	10 ¹	10°	•	10-1	10-2	10 ⁻³

二进制数:

$$| \mathbf{5} | \cdot \mathbf{10110} = 1 \times 2^4 + 0 \times 2^3 + 1 \times 2^2 + 1 \times 2^1 + 0 \times 2^0$$

无符号二进制数的存放

字节:8位

字长: 二进制数包含的位数或字节数。

八进制数:

符号0、1、...7和小数点,且逢八进一,8为基, 8^i 称为第 i 位上的权。

例: $(37.6)_8 = (37.6)_0 = 3 \times 8^1 + 7 \times 8^0 + 6 \times 8^{-1} = (31.75)_{10}$

十六进制数:

符号0、1、...9、A、B、C、D、E、F和小数点,且逢十六进一,16为基, 16^i 称为第 i 位上的权。

例: $(B1F.8)_{16}$ = $(B1F.8)_H$ = $11 \times 16^2 + 1 \times 16^1 + 15 \times 16^0 + 8 \times 16^{-1}$ = $(2847.5)_{10}$

二—十进制间的转换

(1) 二进制数→十进制数

$$(101.11)_2 = 1 \times 2^2 + 0 \times 2^1 + 1 \times 2^0 + 1 \times 2^{-1} + 1 \times 2^{-2} = (5.75)_{10}$$

(2) 十进制数→二进制数

整数部分用基数除法,小数部分用基数乘法,小数部分算到r位误差小于2^{-r}。

例1: $(22.625)_{10}$ = $(10110.101)_2$

例2: (0.71)₁₀=(0.101101)₂ (六位二进制小数)

例3: (0.71)₁₀=(0.10110101)₂ (误差小于5‰)

$$2 \mid 22$$
 $2 \mid 11 \dots 0 \text{ LSM}$
 $2 \mid 5 \dots 1$
 $2 \mid 2 \dots 1$
 $2 \mid 1 \dots 0$
 $0 \dots 1 \text{ MSB}$

$$\begin{array}{c}
0.625 \\
\times 2 \\
\hline
MSB ... 1.250 \\
\times 2 \\
\hline
0.50 \\
\times 2 \\
\hline
LSB ... 1.0
\end{array}$$

二—八—十六进制之间的转换

71: $(1100101.11)_2 = (0110 \ 0101.1100)_2 = (65.C)_{16}$ = $(001 \ 100 \ 101.110)_2 = (145.6)_8$

例2: $(22)_{10}$ = $(10110)_2$ = $(16)_{16}$ = $(26)_8$

二进制的运算

」加法

最低位:本位相加(无进位加)。

其他位:除本位相加外,再加低位的进位(带进位加)。

1101

+1011

11000

二进制加法规则

半加器

S

(输入信号X为1位被加数、 Y为1位加数,输出信号S、 CO分别是和数及向高位的进 位)

全加器

CI_i	x_i	y_i	ČO _i	S_i
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

(被加数 X_i 、加数 Y_i 和低位来 的进位 CI_i ,输出信号是本位和 S_i 及向高位的进位 CO_i)

四位全加器

□减法

最低位:本位相减。

其他位:除本位相减外,再减低位的借位 (带借位减)。

二进制减法规则

x y	b d
0 0	0 0
0 1	1 1
1 0	0 1
1 1	0 0

1101 - 1011 - 0010

说明:通常利用所谓二进制的补码或反码相加来完成减法运算。

□乘法、除法

乘法: 当乘数为2r时,积为被乘数左移r位。

除法: 当除数为2r时, 商为被除数右移r位。

			1	0	1	0	
X				1	0	0	
			0	0	0	0	•
		0	0	0	0		
+	1	0	1	0			
	1	0	1	0	0	0	

$$(1010)_2 \times (100)_2 = (101000)_2$$

			1	0.	1	
100	1	0	1	0		
	1	0	0			
			1	0	0	
			1	0	0	
			0	0	0	
			U	U	U	

$$(1010)_2 \div (100)_2 = (10.1)_2$$

可见:乘法运算可以由加法运算和左移操作来完成,除法运算可以由减法运算和右移操作来完成。

编码定义:

■ 广义上: 用文字、符号或者数码来表示某种信息的过程 叫编码。

(由编码得到的表示给定的信息的符号串称为代码,符号串中的各符号称为码元,符号的位数称为码长。

在数字系统中,任何信息都是由若干位"0"和"1"组成的,这种编码称为二值编码。码长为n的二值编码,它的n位码元可组成2ⁿ种不同的代码,代表2ⁿ种不同的信息。)

例: A 1000001

■ 用一组二进制码按一定规则排列起来以表示数字、符号等特定信息。

- 代码: 利用数码来作为某一特定信息的代号
- 编码。代码的编制过程称之编码。
- 码制: 在编码时所遵循的规则。

BCD码编码

十进制数	8421	2421	631 - 1	余3码	格雷码	5中取2码	左移码
0	0000	0000	0011	0011	0010	00011	00000
1	0001	0001	0010	0100	0110	00101	10000
2	0010	0010	0101	0101	0111	00110	11000
3	0011	0011	0111	0110	0101	01001	11100
4	0100	0100	0110	0111	0100	01010	11110
5	0101	1011	1001	1000	1100	01100	11111
6	0110	1100	1000	1001	1101	10001	01111
7	0111	1101	1010	1010	1111	10010	00111
8	1000	1110	1101	1011	1110	10100	00011
9	1001	1111	1100	1100	1010	11000	00001

部分字符的ASCII码

字符	ASCII 码	字符	ASCII 码	字符	ASCII 码
空	0100000	4	0110100	K	1001011
	0101110	5	0110101	L	1001100
(0101000	6	0110110	M	1001101
+	0101011	7	0110111	N	1001110
\$	0100100	8	0111000	0	1001111
*	0101010	9	0111001	P	1010000
)	0101001	Α	1000001	Q	1010001
_	0101101	В	1000010	R	1010010
1	0101111	С	1000011	s	1010011
,	0101100	D	1000100	Т	1010100
,	0100111	E	1000101	U	1010101
=	0111101	F	1000110	v	1010110
0	0110000	G	1000111	w	1010111
1	0110001	Н	1001000	X	1011000
2	0110019	I	1001001	Y	1011001
3	0110011] J	1001010	Z	1011010

数制:表示数值的符号与规则

编码:表示信息的符号与规则

自然二进制码 按自然数顺序排列的二进制码

常用四位自然二进制码,表示十进制数0—15,各位的权值依次为2³、2²、2¹、2⁰。

十进制数	(自然)二进制码
0	0 0 0 0
1	0 0 0 1
2	0 0 1 0
3	0 0 1 1
4 5	0 1 0 0
	0 1 0 1
6	0 1 1 0
7	0 1 1 1
8	1 0 0 0
9	1 0 0 1
10	1 0 1 0
11	1 0 1 1
12	1 1 0 0
13	1 1 0 1
14	1 1 1 0
15	1 1 1 1

自然二进制码的缺点: 当一个代码变为相邻代码时,如欲由1001变为1010,由于实际电路中各个码元的变化总有先有后,难以做到绝对地"同时"变化,若1001的最低位1先变成0,然后次低位0再变成1,则1001变成1010的变化过程是: 1001→1000→1010,出现了误码1000。

格雷码

格雷码(又称循环码或反射码),是美国贝尔实验室的数学家弗兰克·格雷(Frank Gray)在二战期间为解决采用脉码调制方式PCM的无线电通信中,由于线路中的脉冲干扰而造成误码率太多这一严重问题而提出的,据此发明的格雷编码管(Grag cooler Tube)于1953年3月17日获得了美国专利。因此,格雷是对现代通信技术做出了特殊贡献的数学家。

格雷码的特点:在计数过程中,任何相邻的两个码,只有一个数位(又称码元)不同。

循环码

格雷码之所以在通信中获得广泛应用,一是因为相邻码只有一位发生变化,也就是只有一根线上有脉冲变化(在格雷编码管中),干扰减少,使通信的出错概率大大降低,二是码的生成和变换比较简单。

格雷码的特性:

- (1) 循环性
- (2) 反射性

十进制数	循环码
0	0000
1	0001
2	0011
3	0010
4	0110
5	0111
6	0101
7	0100
8	1100
9	1101
10	1111
11	1110
12	1010
13	1011
14	1001
15	1000

从自然二进制变换为二进制格雷码的规则:

- (1) 两种代码的最高位(即最左边一位)相同;
- (2) 从高位至低位依次读取二进制码的各位码元。若某位码元与其前一位不同,则该位对应的格雷码的码元为1,否则为0。

从二进制格雷码变换为自然二进制的规则如下:

- (1) 两种代码的最高位相同;
- (2)从高位至低位依次读取格雷码的各位码元。若某位码元为**0**,则表示与该位对应的二进制码的码元与其前一位相同;否则,表示与该位对应的二进制码的码元与其前一位不同。

某二进制格雷码为
$$G_{n-1}G_{n-2}\cdots G_2G_1G_0$$

其对应的自然二进制码为 $B_{n-1}B_{n-2}\cdots B_2B_1B_0$ 异或运算。

相同为0

其中: 最高位保留—— $B_{n-1} = G_{n-1}$

相异为1

其他各位——
$$B_{i-1} = G_{i-1} \oplus B_i$$
 $i=1, 2, ..., n-1$

带符号二进制数:

在对数进行算术运算时,必然涉及到数的符号问题。人们通常在一个数的前面用"+"号表示正数,用"一"号表示负数。而在数字系统中,符号和数值一样是用0和1来表示的,一般将数的最高位作为符号位,用0表示正,

用1表示负。

符号 和数值 积 和 数 码 表 的 数 数 数 数 数 数 数 数 数 机 器 码 。

例:

$$[+106]_{\text{\tiny \begin{subarray}{c} [-106]_{\text{\tiny \begin{subarray}{c} [-1000]_{\text{\tiny \begin{subarray}{c}$$

原码(表示法)

原码表示方法优点:简单易懂;

缺点: 实现加、减运算不方便。

- 当进行两数加、减运算时,要根据运算及参加运算的两个数的符号来确定是加还是减。
- 如果是做减法,则还需根据两数的大小确定被减数和减数,以及运算结果的符号。

显然,这将增加运算的复杂性,为此,引入了反码和补码的概念。

反码定义:

- 对于无符号数,反码是一种用对数值按位取反表示的二进制编码。
- 对于有符号数,反码是一种用符号位和对数值按位取反表示的二进制编码。 (有符号数的反码编码原则是:用最高位表示符号,正数用0表示,负数用1表示。正数的反码是其原码本身,负数反码的数值部分是原码的数值部分按位取 反。)

补码定义:

- 对于无符号数,补码是一种用对数值按位取反并加1表示的二进制编码。
- 对于有符号数,补码是一种用符号和对数值按位取反并加1表示的二进制编码。 (有符号数的补码编码原则是:用最高位表示符号,正数用0表示,负数用1表示。正数的补码是其原码本身,负数补码的数值部分是原码的数值部分按位取反并加1。)

例:

十进制数	二进制原码	二进制反码	二进制补码
+26	00011010	00011010	00011010
-26	10011010	11100101	11100110

带符号二进制数的表示方法

		数 值 位				
	符号位	原码表示法	反码表示法	补码表示法		
正数	0	绝对值的原码	绝对值的原码	绝对值的原码		
负数	1	绝对值的原码	绝对值的反码	绝对值的补码		

4位带符号位

十进制	二进制码		
	原码	反 码	补码、
+8	_	_	_
+7	0111	0111	0111
+6	0110	0110	0110
+5	0101	0101	0101
+4	0100	0100	0100
+3	0011	0011	0011
+2	0010	0010	0010
+1	0001	0001	0001
+0	0000	0000	0000
-0	1000	1111	
-1	1001	1110	1111
-2	1010	1101	1110
-3	1011	1100	1101
-4	1100	1011	1100
-5	1101	1010	1011
-6	1110	1001	1010
-7	1111	1000	1001
-8			1000

用反码进 行加法/减运算

用反码实现加/减运算的 步骤: (1)将 A与B均表示成 反码形式;

- (2) 两个反 码相加,且符 号位也参与运 算;
- (3) 若符号 位有进位,符 号位的进位需 加到和数的最 低位上(称为 循环进位)。

例 试用反码运算求 36+22 和 -22-36, 设字长为8位。

$$[+36]_{\text{$\not{\mathbb{R}}$}} = 00100100 \qquad \qquad [+22]_{\text{$\not{\mathbb{R}}$}} = 00010110 \\ [-36]_{\text{$\not{\mathbb{R}}$}} = 10100100 \qquad \qquad [-22]_{\text{$\not{\mathbb{R}}$}} = 10010110 \\ [-36]_{\text{$\not{\mathbb{R}}$}} = 11011011 \qquad \qquad [-22]_{\text{$\not{\mathbb{R}}$}} = 11101001$$

[36]点+[22]点为

即

$$[+36+22]_{5} = [+36]_{5} + [+22]_{5} = 00111010$$

因此

而
$$[-36]$$
_反+ $[-22]$ _反为

循环进位

即

$$[-22-36]_{\bar{g}} = [-36]_{\bar{g}} + [-22]_{\bar{g}} = 11000101$$

 $[-36-22]_{\bar{g}} = 10111010$

故

$$-22 - 36 = -58$$

用反码表示有符号数特点:

- 优点:符号位直接参与运算。
- <mark>缺点:</mark> 如果在运算时符号位有进位,需要将该进位加到结果的最低位上去,也就是说要做两次加法运算才能得到正确结果,增加了运算时间。并且,反码表示法仍然没有解决0的表示不惟一的问题。

用补码进 行加法/减运算

用补码实

现加法运算的 步骤为:

- (1) 将X与 Y均表示成补码 形式;
- (2) 两个补 码相加,且符 号位也参与运 算;
- (3) 若符号 位有进位,则 自动丢失,所 得结果为X+Y 的补码。

即

故

```
例
       试用补码运算求 36-22 和 22-36,设字长为8位。
               [+36]_{*}=00100100
                                         [+22]_{*}=00010110
               [-36]_{\$} = 10100100
                                         [-22]_{\$} = 10010110
               [-36]_{*}=11011100
                                         [-22]_{*}=11101010
   [36]*+[-22]*为
                      0 0 1 0 0 1 0 0
                    + 1 1 1 0 1 0 1 0
                    1 0 0 0 0 1 1 1 0
                 (自动丢失)
即
       [36-22]_{*} = [36]_{*} + [-22]_{*} = 00001110
因此
       36 - 22 = 14
    而[22]*+[-36]*为
                      0 0 0 1 0 1 1 0
                   + 1 1 0 1 1 1 0 0
```

 $[22-36]_{*} = [36]_{*} + [-22]_{*} = 11110010$ $[22-36]_{\$} = 10001110$

$$22 - 36 = -14$$

补码加法器框图

用补码来表示有符号数的优点:

- 符号位直接参与运算,两数补码的和直接等于两数和的补码,即(A)_补+(B)_补=(A+B)_补。
- 补码表示法对0的表示是唯一的,有利于简化系统。

四位带符号数 的原码、反码和补 码

n位二进制原码、反码、补码表示的 数的范围是:

□ 原码:
$$-(2^{n-1}-1) \sim +(2^{n-1}-1)$$

反码:
$$-(2^{n-1}-1) \sim +(2^{n-1}-1)$$

特殊!该值仅是人为定义,可参与实际运算。但不能通过数值位减去1,然后求反而得到正确的原码。原因是已经超过了四位原码可表示的范围。

	二进制码		
十进制	原码	反码	补码
+7	0111	0111	0111
+6	0110	0110	0110
+5	0101	0101	0101
+4	0100	0100	0100
+3	0011	0011	0011
+2	0010	0010	0010
+1	0001	0001	0001
+0	0000	0000	0000
-0	1000	1111	_
-1	1001	1110	1111
-2	1010	1101	1110
-3	1011	1100	1101
-4	1100	1011	1100
-5	1101	1010	1011
-6	1110	1001	1010
-7	1111	1000	1001
-8	_	_	1000

用补码进行同符号数加法运算时的溢出问题

- (1) 结果正确吗?
- (2) 如何判断?

n位二进制原码、反码、补码表示的数的范围是:

- **□原码:** $-(2^{n-1}-1) \sim +(2^{n-1}-1)$
- **□ 反码:** $-(2^{n-1}-1) \sim +(2^{n-1}-1)$
- 补码: $-2^{n-1} \sim +(2^{n-1}-1)$ (不含-0)

 $\begin{array}{r}
+5 & 0101 \\
++2 & 0010 \\
\hline
+7 & 00111
\end{array}$

思考题: 不同符号补码加法运算时是否存在溢出问题?

