Asignación-3.R

Usuario 2025-10-15

```
# Asignación 3: Contraste de medias/Base de datos Iris
# Semana 2 (04/09/2025)
# Andrea Michelle Luna Vasconcelos 1950889
# Base de datos Iris -----
data("iris")
View(iris)
summary(iris)
    Sepal.Length
                 Sepal.Width
                               Petal.Length Petal.Width
                 Min. :2.000
                                     :1.000
## Min.
        :4.300
                               Min.
                                             Min. :0.100
## 1st Qu.:5.100 1st Qu.:2.800 1st Qu.:1.600
                                             1st Qu.:0.300
## Median :5.800 Median :3.000 Median :4.350 Median :1.300
        :5.843
                                             Mean :1.199
## Mean
                 Mean :3.057
                               Mean
                                      :3.758
                 3rd Qu.:3.300
## 3rd Qu.:6.400
                               3rd Qu.:5.100
                                             3rd Qu.:1.800
## Max. :7.900 Max. :4.400 Max. :6.900
                                             Max. :2.500
##
        Species
## setosa
            :50
## versicolor:50
## virginica:50
##
##
##
knitr::kable(iris[1:10, ], caption = "Cuadro 1: Muestra de las
características
de las tres especies de iris")
```

Cuadro 1: Muestra de las características de las tres especies de iris

Sepal.Length	Sepal.Width	Petal.Length	Petal.Width	Species
5.1	3.5	1.4	0.2	setosa
4.9	3.0	1.4	0.2	setosa
4.7	3.2	1.3	0.2	setosa
4.6	3.1	1.5	0.2	setosa
5.0	3.6	1.4	0.2	setosa
5.4	3.9	1.7	0.4	setosa

Sepal.Length	Sepal.Width	Petal.Length	Petal.Width	Species			
4.6	3.4	1.4	0.3	setosa			
5.0	3.4	1.5	0.2	setosa			
4.4	2.9	1.4	0.2	setosa			
4.9	3.1	1.5	0.1	setosa			
<pre>boxplot(iris\$Sepal.Length ~ iris\$Species,</pre>							

Distribución de la longitud de pétalo por especie

Distribución de la longitud de pétalo de dos especi

Prueba de T ---head(dat_iris) ## Sepal.Length Sepal.Width Petal.Length Petal.Width Species ## 51 7.0 3.2 4.7 1.4 versicolor ## 52 6.4 3.2 4.5 1.5 versicolor ## 53 6.9 3.1 4.9 1.5 versicolor ## 54 5.5 2.3 4.0 1.3 versicolor ## 55 6.5 2.8 4.6 1.5 versicolor 1.3 versicolor ## 56 5.7 2.8 4.5 summary(dat_iris)

```
##
    Sepal.Length Sepal.Width Petal.Length Petal.Width
## Min. :4.900
                  Min. :2.000
                                  Min.
                                         :3.000
                                                 Min.
                                                        :1.000
                  1st Qu.:2.700
## 1st Qu.:5.800
                                  1st Qu.:4.375
                                                 1st Qu.:1.300
##
   Median :6.300
                  Median :2.900
                                 Median :4.900
                                                 Median :1.600
   Mean :6.262
                  Mean :2.872
                                 Mean :4.906
                                                 Mean :1.676
## 3rd Qu.:6.700
                  3rd Qu.:3.025 3rd Qu.:5.525
                                                 3rd Qu.:2.000
## Max. :7.900
                  Max. :3.800 Max. :6.900
                                                 Max. :2.500
         Species
##
## versicolor:50
## virginica:50
##
##
##
##
# Pregunta de investigación: ¿Varía la longitud de pétalo entre la
especie versicolor y virginica?
# H0 = No existe diferencia significativa en la longitud de pétalos entre
versicolor y virginica.
# H1 = Sí existe una diferencia significativa en la longitud de pétalos
entre versicolor y virginica.
versicolor <- subset(dat_iris, Species == "versicolor")$Petal.Length</pre>
virginica <- subset(dat_iris, Species == "virginica")$Petal.Length</pre>
# 00-plot -----
par(mfrow=c(1,2))
qqnorm(versicolor); qqline(versicolor)
qqnorm(virginica); qqline(virginica)
```

Normal Q-Q Plot

Normal Q-Q Plot

Theoretical Quantiles

Theoretical Quantiles

```
par(mfrow=c(1,2))
# Normalidad 🗹
shapiro.test(versicolor) # p-value = 0.1585
##
##
   Shapiro-Wilk normality test
##
## data: versicolor
## W = 0.966, p-value = 0.1585
shapiro.test(virginica) # p-value = 0.1098
##
##
   Shapiro-Wilk normality test
##
## data: virginica
## W = 0.96219, p-value = 0.1098
# Varianza 🗹
```

```
var.test(versicolor, virginica) # df = 49, p-value = 0.2637
##
## F test to compare two variances
##
## data: versicolor and virginica
## F = 0.72497, num df = 49, denom df = 49, p-value = 0.2637
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
## 0.411402 1.277530
## sample estimates:
## ratio of variances
           0.7249678
##
# Homogeneidad ------
# Homogeneidad 🗹
var.test(versicolor, virginica, alternative = "two.sided")
##
## F test to compare two variances
##
## data: versicolor and virginica
## F = 0.72497, num df = 49, denom df = 49, p-value = 0.2637
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
## 0.411402 1.277530
## sample estimates:
## ratio of variances
##
           0.7249678
# Prueba t de Student -----
# Prueba t de Student
t.test(versicolor, virginica,
      alternative = "two.sided",
      var.equal = T)
##
  Two Sample t-test
##
##
## data: versicolor and virginica
## t = -12.604, df = 98, p-value < 2.2e-16
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
```

```
## -1.495426 -1.088574
## sample estimates:
## mean of x mean of y
##
      4.260
                5.552
# p-value < 2.2e-16 = 0.00000000000000022
# **Se rechaza la H0 y se acepta la H1.**
# Cohen's effect -------
# Cohen's effect f
cohens efecto <- function(x, y) {</pre>
  n1 <- length(x); n2 <- length(y)</pre>
  s1 \leftarrow sd(x); s2 \leftarrow sd(y)
  sp \leftarrow sqrt(((n1 - 1) * s1^2 + (n2 - 1) * s2^2) / (n1 + n2 - 2))
  (mean(x) - mean(y)) / sp
}
d1 cal <- cohens efecto(versicolor, virginica)</pre>
d1 cal
## [1] -2.520756
# Cohen's effect = -2.520756 Lo que nos dice que es un efecto muy grande.
library(ggplot2)
dat_sub <- subset(dat_iris, Species %in% c("versicolor", "virginica"))</pre>
ggplot(dat sub, aes(x = Species, y = Petal.Length, fill = Species)) +
  geom_violin(trim = FALSE, color = "black", alpha = 0.6) +
  geom_boxplot(width = 0.1, fill = "white", outlier.shape = NA) +
  stat summary(fun = mean, geom = "point", shape = 23, size = 3, fill =
"red") +
  theme_minimal() +
  labs(title = "Distribución de la longitud de pétalos por especie",
      x = "Especie",
      y = "Longitud de pétalo (cm)") +
  theme(legend.position = "none")
```

Distribución de la longitud de pétalos por especie

