Assignment 2 : Q2: Report

Question 2 Denoising Phantom Magnetic Resonance Image

Part a,b,c,d

Complex gaussian noise model is implemented along with different priors like quadratic, discontinuity adaptive huber function, huber function. Codes for the same can be found in code folder of question 2. "myDenoiser.m" contains the relevant information.

Reporting

Part a

RRMSE between noisy and noiseless image: 0.2931

Part b

Optimal Values for Quadratic Prior

Optimal Value of alpha = 0.231

Description	alpha	RRMSE
alpha_optimal	0.231	0.23359
1.2*alpha_optimal	0.2772	0.23523
0.8*alpha_optimal	0.1848	0.23455

Optimal Values for Huber Prior

Optimal Value of alpha = 1

Optimal Value of Gamma = 0.01

Description	(alpha,gamma)	RRMSE
alpha_optimal,gamma_optimal	(1,0.01)	0.079497
1.2*alpha_optimal,gamma_optimal	(1,0.01)	0.079497
0.8*alpha_optimal,gamma_optimal	(0.8,0.01)	0.24494
alpha_optimal,1.2*gamma_optimal	(1,0.012)	0.087185
alpha_optimal,0.8*gamma_optimal	(1,0.008)	0.080729

Optimal Values for Discontinuity adaptive huber Prior

Optimal Value of alpha = 0.999 Optimal Value of gamma = 0.008

Description	(alpha,gamma)	RRMSE
alpha_optimal,gamma_optimal	(0.999,0.008)	0.094544
1.2*alpha_optimal,gamma_optimal	(1,0.008)	0.14487
0.8*alpha_optimal,gamma_optimal	(0.7992,0.008)	0.2518
alpha_optimal,1.2*gamma_optimal	(0.999,0.0096)	0.13452
alpha_optimal,0.8*gamma_optimal	(0.999,0.0064)	0.11971

Looking at the table we can conclude that optimal values are indeed local minima for objective function.

Part c
Corresponding images for Different Type of Prior

Part d

Corresponding plots of Objective Function for Different Type of Prior

Prior Type	Plot of log of Objective Function
------------	-----------------------------------

Disclaimer

All the images and corresponding plots in high resolution can be found in 'images' folder of question 2. Sub folder are made for different priors and you can locate optimal images and objective function plot.