Compte rendu automatique

Adam SINKOVICS, Mahdi MOUNZER, Jimmy NIYONKURU 2023-2024

Description et but du TP

Lors des scéances de TP en automatique, il nous est demandé d'identifier deux systemes inconnues, chacun mesurable sur des sorties differentes d'une boite. Le but est d'identifier, modéliser les systemes, puis les asservir. Nous avons effectué ces études sur la boite numéro 10.

Pour étudier ces systemes, on utilise un générateur a basse fréquences, une oscilloscope et une alimentation afin d'alimenter la boite.

Étude

1.1 Réponse harmonique

Lorsque le systeme étudié est linéaire, on observe en sortie un signale sinusoidale pour une entrée de signale sinusoidale. Il est donc possible d'écrire la fonction de transfert du systeme étudié, qui décrit les caractéristiques du signale de sortie par rapport a celui d'entrée. La fonction de transfert est une fonction complexe dont le module représente l'amplification dans la bande passante du systeme, c'est-a-dire pour une entrée constant dans le temps par combien le systeme amplifie-t-il le signale d'entrée (ou le mot "amplifie" ne signifie pas forcément une augmentation de la valeur du signale), et dont l'argument représente le déphasage du signale de sortie par rapport a l'entrée, c'est a dire par combien (mesuré en radians) est la sortie en retard ou en avance par rapport a l'entrée.

1.1.1 Théorie

Si on souhaite étudier, en tracant les diagrammes de Bode ou de Black, tels systemes, il est important de d'abord déterminer la nature du systeme. Pour ce déterminer, on soumets le systeme a des fréquences de grandeur différentes et on compare les sorties. Si le systeme blah blah blah

1.1.2 Pratique

Systeme 1

Apres avoir branché la premiere sortie de la boite sur la générateur et l'oscilloscope, on a déterminer que notre systeme est de type passe-bas, puisque pour des fréquences faibles, l'amplification variait peu, mais en augmentant la fréquence de l'entrée l'amplification mesurée sur la sortie diminuait. Pour tracer le diagramme de Bode et de Black, on mesure d'abord la fréquence de coupure a -3dB. Pour faire cela on soumets le systeme a une entrée de fréquence faible ($f_e < 1Hz$) et une mesure l'amplitude de la sortie, qu'on divise par l'amplitude de l'entrée pour obtenir l'amplification dans la bande passante A de notre systeme. Il est également possible, vu qu'on sait que le systeme est un filtre de type passebas, qu'on le soumets a un échelon (avec le générateur on délivre un signale carré de faible fréquence), et on mesure l'amplitude de la sortie en régime permanent c'est-a-dire lorsque la variation de l'amplitude de la réponse est faible. Ceci est garanti par le fait que le systeme soit linéaire. La régime permanent est visible sur la figure 1.1 dans une demi-période du signale de la sortie lorsque la courbe devient horizontale.

Ici on a mesuré A = 1.8

Figure 1.1: Image de l'oscilloscope lors la mesure de A pour le premiere systeme

Une fois A connue, sachant que la fréquence de coupure a -3dB f_{-3dB} représente

$$20 \cdot log(|A|) - 3dB = 20 \cdot log\left(|A|\right) + 20 \cdot log\left(\frac{1}{\sqrt{2}}\right) = 20 \cdot log\left(\frac{|A|}{\sqrt{2}}\right)$$

on sait qu'on cherche une fréquence pour laquelle l'amplitude de la sortie est $S_{-3dB} \simeq 0.7 \cdot A$, autrement dit 70% de l'amplitude dans la bande passante. En connaissant f_{-3dB} on peut commencer a mesurer l'amplification (le rapport sortie / entrée) et le déphasage de notre systeme, pour des valeur écarté sur l'échelle logarithmique, mais plus sérré autour la fréquence f_{-3dB} .

Figure 1.2: Diagramme de Bode pour le premiere systeme

Il est important de noter ici le fait que sur le graphique on a l'impression que l'intersection des deux droites n'est pas exactement sur la courbe. Il est vrai qu'une valeur de 7.4Hz corresponderais mieux sur le graphe pour f_{-3dB} mais expérimentalement on a mesuré un déphasage de $-45 \deg$ a une fréquence de 7.2Hz, c'est pour cela qu'on a décidé de guarder cette valeur.

Figure 1.3: Diagramme de Black pour le premiere systeme

Il est possible de déterminer la marge de phase en calculant graphiquement depuis la figure 1.3, la difference entre -180 et le point d'intersection de la courbe avec l'axe des abscisses. Dans notre cas:

$$M_{ph} = -57 - (-180) = 123$$

La marge de phase est orienté selon les valeurs de l'abscisse croissantes.

Systeme 2

1.2 Réponse indicielle