Quiz 3

Due Jan 26 at 11:59pm Poi

Points 8 Questions 8

Available Jan 18 at 11:59pm - Jan 26 at 11:59pm 8 days

Time Limit 15 Minutes

Allowed Attempts 2

Attempt History

	Attempt	Time	Score
KEPT	Attempt 2	6 minutes	8 out of 8
LATEST	Attempt 2	6 minutes	8 out of 8
	Attempt 1	15 minutes	7 out of 8

Score for this attempt: 8 out of 8

Submitted Jan 26 at 7pm This attempt took 6 minutes.

	Question 1	1 / 1 pts
	Which of the following is/are property/properties of a dynamic prograproblem?	amming
	Greedy approach	
Correct!	Both optimal substructure and overlapping subproblems	
	Overlapping Subproblems	
	Optimal Substructure	

Question 2	1 / 1 pts

	In dynamic programming, the technique of storing the previously calculated values is called
	Mapping
	Storing value property
	Saving value property
Correct!	Memoization

	Question 3 1 / 1 pts
	If a problem can be solved by combining optimal solutions to non-overlapping problems, the strategy is called
	Dynamic Programming
Correct!	Divide and Conquer
	Recursion
	Iteration
	Greedy

Question 4	1 / 1 pts
Which of the following standard algorithms is NOT Dynamic Prograbased?	amming
0-1 Knapsack problem	

- Fibonacci
- Binomial Coefficients

Correct!

Binary Search

Question 5 1 / 1 pts

Consider the following two sequences:

$$X = \langle K, L, M, L, J, K, L \rangle$$
, and

$$Y = \langle L, J, M, K, L, K \rangle$$

The length of the longest common subsequence of X and Y is:

- 5
- 3
- 2

Correct!

- 4
- 1

Question 6

1 / 1 pts

The terms in the Fibonacci sequence are given by :

$$F_1 = 1$$
, $F_2 = 1$; $F_n = F_{n-1} + F_{n-2}$

Consider the following recursive algorithm to calculate the nth Fibonacci number.

What is the running time of the recursive Fib? What is the running time of an efficient DP algorithm to calculate the nth Fibonacci number?

- Recursive: O(n^2) and DP : O(n)
- Recursive: Theta(2ⁿ) and DP: Theta(n²)
- Recursive O(4ⁿ) and DP: O(lgn)

Correct!

- Recursive: O(2ⁿ) and DP: Theta(n)
- Both algorithms are O(n)

Question 7 1 / 1 pts

Consider the weights and values of items below and a knapsack that can hold at most 20 lbs.

Item	Value	Weight
liteiii	in \$	in lbs
1	20	10
2	30	15
3	22	12
4	9	5
5	7	4

Assume that each item can be used at most once and can not be broken. What is the maximum value of items that can be placed in the knapsack?

Correct!	• \$39
	\$50
	\$42
	\$52

	Question 8	1 / 1 pts	
	If a dynamic programming algorithm uses an nxn table then the runnin is always :		
	O(n)		
	O(n^2)		
Correct!	not enough information to determine		
	O(nlgn)		
	O(n^3)		

Quiz Score: 8 out of 8