TikhonovNikS 20122024-160232

Если в каком-либо задании среди предлагаемых вариантов ответа нет правильного, нужно внести 0 в соответствующую строчку файла .txt.

Ко входам ПЧ квадратурного смесителя подключён согласованный по всем плечам делитель мощности. Развязанные плечи 2 и 3 делителя подключены соответственно к синфазному и квадратурному входам ПЧ. Известно, что: $s_{21} = 0.19821 - 0.51102i$, $s_{31} = -0.51183 - 0.19852i$.

Внутри смесителя квадратура выдержана идеально точно.

Какой относительный уровень мощности будет иметь верхняя боковая составляющая при преобразовании частоты вверх?

- 1) -57 дБн 2) -59 дБн 3) -61 дБн 4) -63 дБн 5) -65 дБн 6) -67 дБн 7) -69 дБн
- 8) -71 дБн 9) 0 дБн

Ко входу гетеродина двойного балансного смесителя подключён генератор синусоидального колебания частотой 918 МГц с внутренним сопротивлением 50 Ом и доступной мощностью плюс 6 дБм.

Колебание ПЧ формируется с помощью генератора меандра частотой 205 МГц с внутренним сопротивлением 50 Ом и доступной мощностью первой гармоники минус 3 дБм. Между выходом генератора и входом ПЧ включён фильтр нижних частот, имеющий прямоугольную частотную характеристику с частотой среза 2080 МГц. РЧ выход смесителя подключён в анализатору спектра с входным сопротивлением 50 Ом. Диапазон частот анализа от 1124 МГц до 1158 МГц.

Какова будет мощность наибольшей побочной составляющей, наблюдаемой на экране анализатора спектра? Варианты ОТВЕТА:

1) -60 дБм 2) -63 дБм 3) -66 дБм 4) -69 дБм 5) -72 дБм 6) -75 дБм 7) -78 дБм 8) -81 дБм 9) -84 дБм

Для полного подавления **верхней** боковой составляющей при преобразовании вверх используются квадратурный смеситель и согласованный по всем плечам делитель мощности. Плечи 2 и 3 делителя развязаны. Известно, что: $s_{21} = s_{31}$.

Плечо 2 подключено непосредственно к синфазному входу ПЧ. Между плечом 3 и квадратурным входом ПЧ включён фазовращатель. В качестве фазовращателя используется симметричный реактивный П-образный четырёхполюсник, выполненный с помощью сосредоточенных компонентов. Известно, что между синфазным и квадратурным колебаниями гетеродина внутри смесителя существует ошибка квадратуры равная плюс 29 градусов.

Чему равна индуктивность компонента фазовращателя, если частота $\Pi \Psi$ равна 135 М Γ_{Π} ?

Варианты ОТВЕТА:

1) 100.1 нГн 2) 34.7 нГн 3) 51.6 нГн 4) 67.4 нГн

Ко входу РЧ двойного балансного смесителя подключён генератор с внутренним сопротивлением 50 Ом и доступной мощностью плюс 3.5 дБм.

В смесителе использованы диоды с сопротивлением в открытом состоянии 27 Ом. На выходе смесителя путём преобразования на первой гармонике гетеродина получено колебание промежуточной частоты. Мощность колебания промежуточной частоты измерена с помощью анализатора спектра с входным сопротивлением 50 Ом, и получено значение минус 11.5 дБм.

Какова величина потерь в трансформаторе? (Это потери при передаче мощности от генератора с внутренним сопротивлением 50 Ом, подключённого в первичной обмотке, в нагрузку 50 Ом, подключённую к одной из половин вторичной обмотке при условии, что цепь второй половины вторичной обмотки разомкнута. Схема дана на рисунке 1.)

Рисунок 1 – Схема измерения потерь в трансформаторе

- 1) 7.2 дБ 2) 7.8 дБ 3) 8.4 дБ 4) 9 дБ 5) 9.6 дБ 6) 10.2 дБ 7) 10.8 дБ
- 8) 11.4 дБ 9) 12 дБ

При преобразовании частоты вверх с использованием двойного балансного смесителя, получен спектр на выходе РЧ, изображённый на рисунке 2. Как известно, в общем случае он содержит комбинационные составляющие вида $|nf_r + mf_{\Pi \Psi}|$ Какой комбинацией $\{n; m\}$ нельзя было бы объяснить наличие в спектре составляющей, отмеченной маркером 5?

(Значения частот, считываемые с экрана анализатора, округлять до единиц МГц.)

Рисунок 2 – Экран анализатора спектра

- 1) $\{38; -86\}$ 2) $\{38; -86\}$ 3) $\{38; -86\}$ 4) $\{31; -69\}$ 5) $\{17; -103\}$ 6) $\{31; -69\}$
- 7) $\{24; -52\}$ 8) $\{10; -18\}$ 9) $\{31; -69\}$

На рисунке 3 изображён двойной балансный смеситель. Диоды в этом смесителе представляют собой разрыв при подаче отрицательного напряжения и сопротивление r_i - при положительном смещении. Известно, что $r_1 = r_4$ и что сопротивления двух других диодов также равны. Колебание гетеродина переключает диоды из открытого в закрытое состояние и обратно меновенно.

Рисунок 3 – Двойной балансный смеситель

Частота гетеродина 205 МГц, частота ПЧ 45 МГц.

Колебание какой частоты отсутствует на выходе РЧ?

- 1) 160 MΓ_H
- 2) 115 MΓ_{II}
- 3) 570 МГц
- 205 MΓ_Ц.