Formale Semantik o7. Einfach getypte höherstufige L-Sprachen

Roland Schäfer

Institut für Germanistische Sprachwissenschaft Friedrich-Schiller-Universität Jena

stets aktuelle Fassungen: https://github.com/rsling/VL-Deutsche-Syntax

Inhalt

- 1 Preliminaries
 - Different but related semantics
 - Sets and charactersitic functions
 - Functional application
- 2 Simply typed languages
 - New names for old categories

- The syntax of types
- Higher orders
- Summed up semantics for a higher-order language

Lambda languages

- lacksquare From set constructor to the functional λ abstractor
- General syntax/semantics for λ languages
- A glimpse at quantification in Montague's system

Preliminaries

Montague and the generative tradition

- Chierchia & McConnell-Ginet, Heim & Kratzer, etc.: GB-ish semantics
- both syntax and LF in phrase structures
- LF as a proper linguistic level of representation
- Montague: direct translation of NL into logic
- Monatgue's LF is just a notational system for NL semantics

Targets for this week

- Learn to tell the difference between the montagovian and generative approach.
- See the advantage of a general theory of typed languages.
- Understand how λ languages allow dramatically elegant formalizations.
- ... while keeping in mind that these devices are extensions to our PC representation for NL semantics.

Denotations

- denotations in set/function-theoretic terms
- a characteristic function (CF) S of a set S: S(a) = 1 iff $a \in S$, else 0
- a CF 'checks' individuals into a set
- · denotations can be stated as sets or their CF

Generalizing combinatory semantic operations

- Montague generally used CF's in definitions
- evaluating [S [NP Mary] [VP sleeps]] as a matter of functional application (FA):
 - ▶ $\llbracket Mary \rrbracket^{\mathcal{M},g} = Mary in \mathcal{M}$
 - $\llbracket sleeps \rrbracket^{\mathcal{M},g}$ be the CF of the set of sleepers in \mathcal{M}
 - $\qquad \qquad \mathbb{\llbracket} \mathsf{S} \mathbb{\rrbracket}^{\mathcal{M},g} = \mathbb{\llbracket} \mathsf{sleeps} \mathbb{\rrbracket}^{\mathcal{M},g} (\mathbb{\llbracket} \mathsf{Mary} \mathbb{\rrbracket}^{\mathcal{M},g})$
 - ideally: generalize to all nodes

The superscript notation

- all functions from S₁ to S₂
- $S_2^{S_1}$
- for $T = \{0, 1\}$
 - ► T^D: all pred₁
 - ► T^{D×D}: all pred₂

Some new names

- base for Dowty et al.: L_1 , a first-order predicate language as we know it
- semantic renaming of types:
 - ▶ terms: ⟨e⟩ (entity-denoting)
 - ▶ formulas: ⟨t⟩ (truth-valued)
 - ▶ pred₁: ⟨e, t⟩
 - ▶ pred₂: $\langle e, \langle e, t \rangle \rangle$

Possible denotations of types

- D_{α} possible denotation (a set) of expressions of type α
- $D_{\langle e \rangle} = U$ (Dowty et al.'s A)
- $D_{(t)} = \{0, 1\}$
- recursively: $D_{\langle \alpha, \beta \rangle} = D_{\langle \beta \rangle}^{D_{\langle \alpha \rangle}}$
- ullet e.g., $D_{\langle e,t
 angle}=D_{\langle t
 angle}^{D_{\langle e
 angle}}$
- $\bullet \ \ D_{\langle e,\langle e,t\rangle\rangle} = (D_{\langle t\rangle}^{D_{\langle e\rangle}})^{^{D_{\langle e\rangle}}}$
- ullet just a systematic way of naming types, model-theoretic interpretations still by V, g

Defining types

- in our PS syntax: S as start symbol
- in the typed system: sentences should be of type $\langle t \rangle$
- complex types: functions from \(\epsilon \) to \(\lambda t \)
 or generally from any (complex) type to any (comlex) type

Complex types as functions

- saturation of complex types by FA:
 - γ is of type $\langle e, \langle e, t \rangle \rangle$, δ of $\langle e, t \rangle$, α and β of $\langle e \rangle$
 - then $\gamma(\alpha)$ is of type $\langle e, t \rangle$
 - and $\delta(\beta)$ is of type $\langle t \rangle$
- for any pred₂ P and its arguments $a_1, a_2, P(a_2)(a_1)$ is a wff
- connectives are of types $\langle t, t \rangle$ (\neg), $\langle t, \langle t, t \rangle \rangle$ (\wedge , etc.)

General semantics of typed languages

- generalized CF/FA approach
- $\langle e \rangle$ -types (terms): $\llbracket a_n \rrbracket^{\mathcal{M},g} = V(a_n)$
 - $[\![x_n]\!]^{\mathcal{M},g}=g(x_n)$
- the rest: functional application $[\![\delta(\alpha)]\!]^{\mathcal{M},g} = [\![\delta]\!]^{\mathcal{M},g} ([\![\alpha]\!]^{\mathcal{M},g})$

Refinement

- Type is the set of types
- recursively defined complex types $\langle a, b \rangle$: infinite
- type label $\langle \alpha \rangle$
- vs. set of meaningful expressions of that type: $ME_{\langle \alpha \rangle}$

Higher order

- first order languages: variables over individuals ($\langle e \rangle$ -types)
- n-order: variables over higher types ($\langle e, t \rangle$ -types etc.)
- $P_{\langle e,t\rangle}$ or $Q_{\langle e,\langle e,t\rangle\rangle}$: constants of higher types
- so: $\mathbf{v}_{1_{\langle e,t\rangle}}\left[\mathbf{v}_{1}(\mathbf{m})\right]$
- if V(m) = Mary, v_1 is the set of all of Mary's properties

Typing variables

- we write:
 - $\mathbf{v}_{n_{(\alpha)}}$ for the n-th variable of type $\langle \alpha \rangle$
 - ▶ Dowty et al.: $v_{n,\langle\alpha\rangle}$
- alternatively abbreviated by old symbols x_1 , a, P, etc.

Constants, variables, functions

- non-logical constant α : $[\![\alpha]\!]^{\mathcal{M},g} = V(\alpha)$
- variable α : $[\![\alpha]\!]^{\mathcal{M},g} = V(\alpha)$
- $\alpha \in \langle a, b \rangle, \ \beta \in a$, then $[\![\alpha(\beta)]\!]^{\mathcal{M},g} = [\![\alpha]\!]^{\mathcal{M},g} ([\![\beta]\!]^{\mathcal{M},g})$

Logical constants and quantifiers

- logical constants interpreted as functions in {0,1} as usual
- if $\mathbf{v}_{1_{\langle \alpha \rangle}}$ is a variable and $\phi \in \mathit{ME}_t$ then $[\![(\forall \mathsf{v}_1)\phi]\!]^{\mathcal{M},g} = 1\mathit{iff}$ for all $a \in \mathsf{D}_\alpha \ [\![\phi]\!]^{\mathcal{M},g[a/\mathsf{v}_1]} = 1$

An example

- quantified variable of type $\langle e, t \rangle$: $v_{0_{\langle e, t \rangle}}$
- $\bullet \ \forall \mathbf{v}_{0_{\langle \mathbf{e}, \mathbf{t} \rangle}} \left[\mathbf{v}_{0_{\langle \mathbf{e}, \mathbf{t} \rangle}}(\mathbf{j}) \rightarrow \mathbf{v}_{0_{\langle \mathbf{e}, \mathbf{t} \rangle}}(\mathbf{d}) \right]$
- for $j, d \in ME_{\langle e \rangle}$
- one property of every individual: being alone in its union set
- hence, j = d
- else in $\forall v_{0_{\langle e,t\rangle}}$, \forall wouldn't hold

Defining non

- productive adjectival prefix: non-adjacent, non-local, etc.
- inverting the characteristic function of the adjective
- result denotes complement of the original adjective in $D_{\langle e \rangle}$
- adjective: $\langle e, t \rangle$, non: $\langle \langle e, t \rangle, \langle e, t \rangle \rangle$
- a function h s.t. for every $k \in D_{\langle e,t \rangle}$ and every $d \in D_{\langle e \rangle}$ (h(k))(d) = 1 iff k(d) = 0 and (h(k))(d) = 0 iff k(d) = 1

Argument deletion

- understood objects in: I eat. Vanity kills. etc.
- eat is in $ME_{\langle e,\langle e,t\rangle\rangle}$
- assume a silent logical constant: R_O in $ME_{\langle\langle e,\langle e,t\rangle\rangle,\langle e,t\rangle\rangle}$
- a function h s.t. for all $k \in D_{\langle e, \langle e, t \rangle \rangle}$ and all $d \in D_{\langle e \rangle}$ h(k)(d) = 1 iff there is some $d' \in D_{\langle e \rangle}$ s.t. k(d')(d)=1
- passives as similar subject deletion

All there is to λ

- a new variable binder
- allows abstraction over wff's of arbitrary complexity
- similar to $\{x || \phi\}$ (read as 'the set of all x s.t. ϕ ')
- we get $\lambda x [\phi]$
- on Montague's typewriter: $\hat{x}[\phi]$
- does not create a set but a function which can be taken as the CF of a set

λ abstraction

- for every wff ϕ , any $x \in Var$, and any $a \in Con$
- λ abstraction: $\phi \to \lambda x \left[\phi^{[a/x]}\right](a)$
- read $\phi^{(a/x)}$ as 'phi with every a replaced by x'
- x can be of any type

Two informal examples

- $\lambda x_{\langle e \rangle}[L(x)]$ is the characteristic function of the set of those individuals $d \in D_{\langle e \rangle}$ which have property L
- $\lambda x_{\langle e,t \rangle}[x(l)]$ is the characteristic function of the set of those properties $k \in D_{\langle e,t \rangle}$ that the individual l has

λ conversion

- $\lambda x [L(x)]$ is the abstract of L(a) (with some individual a)
- hence, it holds: $\lambda x [L(x)](a) \Leftrightarrow L(a)$
- for every wff ϕ , any $x \in Var$, and any $a \in Con$
- λ conversion: $\lambda x [\phi](a) \rightarrow \phi^{[x/a]}$

λ in and out

- $\lambda \mathbf{x} \left[\phi \right] \left(\mathbf{a} \right) \leftrightarrow \phi^{\left[\mathbf{x} / \mathbf{a} \right]}$
- not just syntactically, since truth conditions are equivalent
- $\lambda x [\phi] (a) \Leftrightarrow \phi^{[x/a]}$
- notice: $\lambda x_{\langle \alpha \rangle} [\phi]$ is in $ME_{\langle \alpha, t \rangle}$
- while ϕ (as a wff) is in $ME_{\langle t \rangle}$

The full rules

- Dowty et al., 102f. (Syn C.10 and Sem 10)
- If $\alpha \in ME_{\alpha}$ and $u \in Var_b$, then $\lambda u [\alpha] \in ME_{\langle b,a \rangle}$.
- If $\alpha \in ME_a$ and $u \in Var_b$ then $[\![\lambda u \ [\alpha]\!]]^{\mathcal{M},g}$ is that function h from D_b into D_a s.t. for all objects k in D_b , h(k) is equal to $[\![\alpha]\!]^{\mathcal{M},g[k/u]}$.

The non example revised (Dowty et al., 104)

- $\bullet \ \forall \mathbf{X} \forall \mathbf{V}_{0^{\langle \mathbf{e}, \mathbf{t} \rangle}} \left[(\mathbf{non}(\mathbf{V}_{0_{\langle \mathbf{e}, \mathbf{t} \rangle}}))(\mathbf{X}) \leftrightarrow \neg (\mathbf{V}_{0_{\langle \mathbf{e}, \mathbf{t} \rangle}}(\mathbf{X})) \right]$
- $\bullet \ \forall \mathbf{V_{0}}_{\langle \mathbf{e}, \mathbf{t} \rangle} \left[\lambda \mathbf{x} \left[(\mathbf{non}(\mathbf{v_{0}}_{\langle \mathbf{e}, \mathbf{t} \rangle}))(\mathbf{x}) \right] = \lambda \mathbf{x} \left[\neg (\mathbf{v_{0}}_{\langle \mathbf{e}, \mathbf{t} \rangle}(\mathbf{x})) \right] \right]$
- $\forall \mathbf{V}_{0_{\langle e,t\rangle}} \left[\mathbf{non}(\mathbf{V}_{0_{\langle e,t\rangle}}) = \lambda \mathbf{X} \left[\neg (\mathbf{V}_{0_{\langle e,t\rangle}}(\mathbf{X})) \right] \right]$ (since $\lambda \mathbf{X} \left[\mathbf{non}(\mathbf{V})(\mathbf{X}) \right]$ is unnecessarily abstract/ η reduction)
- $\lambda \mathbf{v}_{0_{\langle e,t\rangle}} \left[\mathbf{non}(\mathbf{v}_{0_{\langle e,t\rangle}}) = \lambda \mathbf{v}_{0_{\langle e,t\rangle}} \left[\lambda \mathbf{x} \left[\neg (\mathbf{v}_{0_{\langle e,t\rangle}}(\mathbf{x})) \right] \right] \right]$
- and since that is about all assignments for $\lambda v_{0_{\langle e,t\rangle}}$:

$$\mathbf{non} = \lambda \mathbf{v}_{0_{\langle \mathbf{e}, \mathbf{t} \rangle}} \left[\lambda \mathbf{x} \left[\neg \mathbf{v}_{0_{\langle \mathbf{e}, \mathbf{t} \rangle}} (\mathbf{x}) \right] \right]$$

Mary is non-adjacent.

(translate 'adjacent' as $c_{0_{\langle e,t\rangle}}$, 'Mary' as $c_{0_{\langle e \rangle}}$, ignore the copula)

The behavior of quantified NPs

- syntactically like referential NPs
- semantically like PC quantifiers
- $\bullet \ \ \textit{Every student walks.:} \ \forall \textit{v}_{0_{\langle \textit{e} \rangle}} \left[\textit{c}_{0_{\langle \textit{e}, \textit{t} \rangle}}(\textit{v}_{0_{\langle \textit{e} \rangle}}) \rightarrow \textit{c}_{1_{\langle \textit{e}, \textit{t} \rangle}}(\textit{v}_{0_{\langle \textit{e} \rangle}}) \right] \\$
- $\bullet \ \ \text{Some student walks.:} \ \forall \mathsf{v}_{0_{\langle e \rangle}} \left[\mathsf{c}_{0_{\langle e,t \rangle}}(\mathsf{v}_{0_{\langle e \rangle}}) \wedge \mathsf{c}_{1_{\langle e,t \rangle}}(\mathsf{v}_{0_{\langle e \rangle}}) \right]$
- making referential NPs and QNPs the same type?

A higher type

- $\bullet \ \lambda \mathbf{v}_{0_{\langle e,t\rangle}} \forall \mathbf{v}_{0_{\langle e\rangle}} \left[\mathbf{c}_{0_{\langle e,t\rangle}} (\mathbf{v}_{0_{\langle e\rangle}}) \rightarrow \mathbf{v}_{0_{\langle e,t\rangle}} (\mathbf{v}_{0_{\langle e\rangle}}) \right]$
- a second order function
- characterizes the set of all predicates true of every student
- $\bullet \ \ \mathsf{equally:} \ \lambda \mathsf{v}_{0_{\langle e,t\rangle}} \exists \mathsf{v}_{0_{\langle e\rangle}} \left[\mathsf{c}_{0_{\langle e,t\rangle}}(\mathsf{v}_{0_{\langle e\rangle}}) \wedge \mathsf{v}_{0_{\langle e,t\rangle}}(\mathsf{v}_{0_{\langle e\rangle}}) \right] \\$

Combining with some predicate

Literatur I

Autor

Kontakt

Prof. Dr. Roland Schäfer Institut für Germanistische Sprachwissenschaft Friedrich-Schiller-Universität Jena Fürstengraben 30 07743 Jena

https://rolandschaefer.netroland.schaefer@uni-jena.de

Lizenz

Creative Commons BY-SA-3.0-DE

Dieses Werk ist unter einer Creative Commons Lizenz vom Typ Namensnennung - Weitergabe unter gleichen Bedingungen 3.0 Deutschland zugänglich. Um eine Kopie dieser Lizenz einzusehen, konsultieren Sie

http://creativecommons.org/licenses/by-sa/3.0/de/ oder wenden Sie sich brieflich an Creative Commons, Postfach 1866, Mountain View, California, 94042, USA.