Homework-9

November 17, 2024

- 1. (1). Give an example of integral domain s.t. dose not satisfy the factor chain condition.
- (2). Let R be a integral domain satisfying factor chain condition. Prove R is a UFD iff any two elements in R have greatest common divisor.
- 2. (1). Let R be a UFD, S is a multiplicatively closed set of R, $0 \notin S$. Prove that the ring of fractions $S^{-1}R$ is a UFD.
- (2). Give an example to show that the subring of a UFD may not a UFD.
- (3). Let R be a UFD, P is a prime ideal of R. Give an example to show that the quotient ring R/P may not a UFD.
- 3. (1). Prove that any principle ideal of $\mathbb{Z}[x]$ is not a maximal ideal.
- (2). Prove that all non-zero prime ideals in PID are maximal ideals.
- 4. Let K be a field. The formal power series $\sum_{i=0}^{\infty} a_i x^i$ ($a_i \in K$) form a ring under the usual addition and multiplication, which is called the ring of formal power series in one variable over K, denoted by K[[x]].
- (1). Let $f(x) = \sum_{i=0}^{\infty} a_i x^i \in K[[x]]$, prove that f(x) is invertible iff $a_0 \neq 0$.
- (2). Prove K[[x]] is a PID.
- 5. Let R be a PID, $a, b, d \in R$, then (a, b) = (d) (as ideals) iff d is the greatest common divisor of a and b.
- 6. Let D,R be PIDs, $R \subseteq D$. $a, b, d \in R$, d is the greatest common divisor of a and b in R. Prove that d is also the greatest common divisor of a and b in D.
- 7. Let K be a algebraic number field. We call $\alpha \in K$ an algebraic integer if α is a root of a monoic polynomial with integer coefficients. Let d be integer with no square factors. i.e. \sqrt{d} is not a integer. Let $K = \mathbb{Q}(\sqrt{d})$.
- (1). If $d \equiv 2, 3 \pmod{4}$, prove that all algebraic integer in K is a set:

$$\{a + b\sqrt{d} \mid a, b \in \mathbb{Z}\}$$

(2). If $d \equiv 1 \pmod{4}$, prove that all algebraic integer in K is a set:

$$\{a+b\frac{1+\sqrt{d}}{2}\mid a,b\in\mathbb{Z}\}$$

Therefore all algebraic integers in K form a ring, called the algebraic integer ring of K.

1

- 8. (1). Prove the algebraic integer ring of $\mathbb{Q}(\sqrt{-3})$ is a ED. (2). Prove the algebraic integer ring of $\mathbb{Q}(\sqrt{2})$ is a ED.
- (3). Prove the algebraic integer ring of $\mathbb{Q}(\sqrt{5})$ is a ED.
- 9. Prove the invertible elements in $\mathbb{Z}[i]$ where $i = \sqrt{-1}$ is $\{\pm 1, \pm i\}$.
- 10. Let p be a prime, if $p \equiv 1 \pmod{4}$, prove there exist $a, b \in \mathbb{Z}$ s.t. $p = a^2 + b^2$.