Constructing quantum gates.

information processing.

The way in which any quantum gates are realized physically depends on the particular physical system used to represent the qubits. We will illustrate this with the example of a "single molecule" NMR system. This consists of a molecule with several spin-1/2 nuclei. Provided that the qubit 2 nuclei are distinguishable, they each constitute a single qubit.

We need to consider now these qubit qubits may evolve in the presence of external magnetic fields Such evolution will eventually provide the gates that needed for quantum

Single qubit in a magnetic field

We begin by considering a single qubit in a constant magnetic field $\vec{B} = B_0 \hat{z}$. Then the energy operator for this, or Hamiltonian is $\hat{H} = 8 \pm \hat{B} \cdot \hat{\sigma}$

where $X = \frac{9e}{2m}$ is a constant for the particular qubit.

$$\hat{H} = 8 \pm B_{o} \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

A standard result from quantum theory is that the eigenstates of the Hamiltonian are also the states that are associated with outcomes of energy measurements. Recall that an eigenstate satisfies

where E is a constant. Here the eigenstates and associated energy values are

state:	eregy
Hラ〉	8tB6
1-3>	- 8th Bo

Thus the external magnetic field along 2 establishes a higher energy state and a lower energy state. It also determines the evolution of the state.

The key ingredient here is that the state vector satisfies:

- this is the Schrödinger equation

One can show that

If
$$\hat{H}$$
 is independent of time then the solution to it $\frac{2}{3t}$ $|\Psi(t)\rangle = \hat{H} |\Psi(t)\rangle$

is

where $|\Psi_0\rangle = |\Psi(t=0)\rangle$ is the initial state of the system

This enables us to start with the Homiltonian and ultimately determine how the system evolves. Specifically it gives the evolution operator:

1 Evolution of a single spin-1/2 system in a constant magnetic field

Consider a single spin-1/2 particle in a magnetic field $\mathbf{B} = B_0 \hat{\mathbf{z}}$. Then

$$\hat{H} = \gamma \hbar B_0 \hat{\sigma}_z.$$

- a) Determine a matrix representing the evolution operator for this system,
- b) Suppose that the qubit is initially in the state $|0\rangle = |+\hat{z}\rangle$. Determine the state of the system at any later time.
- c) Suppose that the qubit is initially in the state $|1\rangle = |-\hat{z}\rangle$. Determine the state of the system at any later time.
- d) Suppose that the qubit is initially in the state $(|0\rangle + |1\rangle)/\sqrt{2}$. Determine the state of the system at any later time. Describe the evolution of the state in terms of the Bloch sphere.
- e) Describe how this could be used to construct the gate $\hat{\sigma}_z$.
- f) Determine an expression for the angular frequency ω_{c} of the evolution.

Answer: a)
$$\hat{U}(t) = e^{-i\hat{H}t/t}$$

$$= e^{-i\hat{$$

b)
$$|a\rangle = |+\hat{z}\rangle \langle m\rangle \langle b\rangle$$

$$\hat{U}(b) = \begin{pmatrix} e^{-i \times B_{e}t} & 0 \\ 0 & e^{i \times B_{e}t} \end{pmatrix} \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \begin{pmatrix} e^{-i \times B_{e}t} & \begin{pmatrix} 1 \\ 0 \end{pmatrix} \\ = e^{-i \times B_{e}t} & |+\hat{z}\rangle \langle m\rangle \langle m\rangle \langle m\rangle$$

c)
$$117 \sim \binom{0}{1}$$
. By same reasoning $\widehat{U}(1) = e^{-\frac{1}{2}} \frac{1}{2}$ and 117

$$= 1$$
 $|\Psi\rangle = \frac{1}{\sqrt{2}}e^{-i\vartheta B_0 t} |0\rangle + \frac{1}{\sqrt{2}}e^{i\vartheta B_0 t} |1\rangle$

$$= e^{-i\vartheta B_0 t} \frac{1}{\sqrt{2}}\{10\} + e^{i2\vartheta B_0 t} |1\rangle$$

$$= \frac{1}{\sqrt{2}}e^{-i\vartheta B_0 t} \frac{1}{\sqrt{2}}\{10\} + e^{i2\vartheta B_0 t} |1\rangle$$

correspond to state with $e = \frac{\pi}{2}$ $\phi = 78B_0 t$

e) Chaose e s.t.
$$\hat{U} = -i \sigma_{\tilde{\tau}}$$
 i.e. $\mathcal{C} = \pi/2$. Then global phase

Then
$$\hat{u} = \hat{\sigma}_z$$

f) After time t Bloch sphere state has rotated by $28B_ct$ =0 $W_0 = 28B_c$

Single qubit in an oscillating magnetic field

Now suppose that the spin-1/z particle is in a constant magnetic field along with one which is perpendicular + oscillates sinusoidally. Here the constant hidd is $\vec{B}_0 = B_0 \hat{z}$ and the time varying field is

$$\vec{B}_1 = B_1(os(\omega t) \hat{x} + B_1 sin(\omega t) \hat{y}$$

Then the Hamiltonian for the system is:

1) = 8hB, Oz + 8hB, coswtóx + 8hB, snul og

TOTALES A B.

So

$$\hat{H} = \frac{\hbar \omega_0}{2} \hat{\sigma}_z + \frac{\hbar \omega_1}{2} \left[\cos \omega t \hat{\sigma}_x + \sin \omega t \hat{\sigma}_y \right]$$

argular freq. w

Again the state satisfies

However, this time it depends on time and thus we cannot ux

There is a mathematical trick call working in the rotating reference frame This enterils using

This is called working in the rotating ref frame because if $|\Psi(t)\rangle = e^{-i\omega t} \hat{\sigma}_z / 2 |\Psi_o\rangle$ (i.e. $|\Psi(t)\rangle$ rotates about the z-axis with angular frequency ω) then $|\Psi(t)\rangle = |\Psi_o\rangle$ and this just appears to be constant.

Now

$$\frac{1}{1} \frac{\partial}{\partial t} \frac{|\hat{\Psi}(t)\rangle}{|\hat{\Psi}(t)\rangle} = \frac{1}{1} \frac{1}{1} \frac{|\omega O_{\bar{z}}|}{|\omega O_{\bar{z}}|} \frac{1}{1} \frac{|\omega O_{$$

=
$$-\frac{\hbar\omega}{2}\hat{\sigma}_z |\bar{\Psi}(t)\rangle$$

+ $e^{i\omega\hat{\sigma}_z t/z} \left[\frac{\hbar\omega}{2}\hat{\sigma}_z + \frac{\hbar\omega}{2}(\cos\omega t \hat{\sigma}_x + \sin\omega t \hat{\sigma}_y)\right] |\Psi\rangle$

=
$$-\frac{\hbar\omega}{z}\hat{\sigma}_{z}|\tilde{\Psi}(t)\rangle + \frac{\hbar\omega}{z}e^{-i\omega\hat{\sigma}_{z}t/z}\hat{\sigma}_{z}e^{-i\omega\hat{\sigma}_{z}t/z}|\tilde{\Psi}(t)\rangle$$

+ $\frac{\hbar\omega}{z}$ [$e^{-i\omega\hat{\sigma}_{z}t/z}\cos\omega t\hat{\sigma}_{x}e^{-i\omega\hat{\sigma}_{z}t/z}$
+ $e^{-i\omega\hat{\sigma}_{z}t/z}\sin\omega t\hat{\sigma}_{y}e^{-i\omega\hat{\sigma}_{z}t/z}$] $|\tilde{\Psi}(t)\rangle$

$$e^{i\omega t \hat{\sigma}_z/z} \hat{\sigma}_z e^{-i\omega t \hat{\sigma}_z/z} = \hat{\sigma}_z$$
 $e^{i\omega t \hat{\sigma}_z/z} \hat{\sigma}_x e^{-i\omega t \hat{\sigma}_z/z} = \cos \omega t \hat{\sigma}_x - \sin \omega t \hat{\sigma}_y$
 $e^{i\omega t \hat{\sigma}_z/z} \hat{\sigma}_x e^{-i\omega t \hat{\sigma}_z/z} = \sin \omega t \hat{\sigma}_x + \cos \omega t \hat{\sigma}_y$

Thus

it
$$\frac{\partial}{\partial t} |\tilde{\Psi}(t)\rangle = \left[-\frac{\hbar\omega}{z} \hat{\sigma}_z + \frac{\hbar\omega}{z} \hat{\sigma}_z + \frac{\hbar\omega}{z} \hat{\sigma}_x (\omega^2 \omega t + \sin^2 \omega t) + \frac{\hbar\omega}{z} \hat{\sigma}_y (-\cos \omega t \sin \omega t + \sin \omega t \cos \omega t) \right] |\tilde{\Psi}(t)\rangle$$

$$= \left[\frac{\frac{1}{2}(\omega_{\circ} - \omega) \hat{\sigma}_{z} + \frac{1}{2} \hat{\sigma}_{x}}{2} \hat{\sigma}_{x}\right] |\widetilde{\Psi}(1)\rangle$$

Thus

where

$$(\hat{H}_{rot} = \frac{\pi}{2} (\omega_0 - \omega) \hat{\sigma}_{\varepsilon} + \frac{\pi \omega}{2} \hat{\sigma}_{x})$$

is a time-independent rotating frame Hamiltonian. It then follows that

Exercise: How must w be chosen in relation to w_0 to create a rotation about \hat{x}^2

Answer: We need $\hat{H}_{ret} = const \times \hat{\sigma}_{x}$ Thus choose $\omega = \omega_{o}$ Then $|\Psi(t)\rangle = e^{-i\omega_{o}} \sigma_{z} t/2 e^{-i\omega_{1}} \hat{\sigma}_{x} t/2 |\Psi(o)\rangle$

If we subsequently let the system evolve under Bo for a period of time t' then the state of the system would be

14(+1) = e -iwo 02(++t')/2 e-ihw10xt/2 146)>

We can always choose t' s.t. $wdt+t')/2 = 2\pi$. Then we get

14(t) = e-itw, oxt/2 14(0)>

//

$$cos(with) \hat{I} - i\hat{o}_{x}sin(with) = \hat{o}_{x}$$

So
$$\omega_1 t/2 = \Pi$$
 = $0 t = \frac{2\pi}{\omega_1}$

IT -pulse"

$$\sin\left(\frac{\omega_1 t}{2}\right) = \frac{1}{\sqrt{2}}$$
 = $t = \frac{2\pi}{2\omega_1}$

"T/z-pulse"

2 Single qubit rotation about the x axis

Consider a single spin-1/2 particle in the situation described in the lecture.

- a) How must ω be chosen in relation to ω_0 in order to create a rotation about the x axis.
- b) How must the time of evolution be chosen in relation to ω_1 so that the evolution maps $|0\rangle \rightarrow |1\rangle$?
- c) How must the time of evolution be chosen in relation to ω_1 so that the evolution maps

$$||0
angle
ightarrow rac{1}{\sqrt{2}} \; (|0
angle - i \, |1
angle)?$$

٠