Departamento de Matemática da Universidade de Aveiro

ANÁLISE MATEMÁTICA II

2007/08

1º teste Duração: 2h30

- Este teste consta de 7 questões (algumas com alíneas) e termina com a palavra FIM, a que se segue um formulário.
- Entre parênteses antes de cada questão indica-se a cotação da mesma e das suas alíneas.
- Não se esqueça de justificar convenientemente as suas afirmações, se necessário apresentando os cálculos intermédios que efectuar.
- (2) **1.** Calcule a expressão geral para o polinómio de Taylor $T_0^n f'(x)$, onde $f(x) := \frac{1}{1-x} + e^x$, $x \neq 1$.
- (2) **2.** Usando o resto na forma de Lagrange, determine, para $f(x) = \cos(x \frac{\pi}{3})$, um valor de n para o qual garanta que o polinómio de Taylor $T^n_{\pi/3}f(x)$ aproxima f, num intervalo de amplitude 0, 2 centrado em $\frac{\pi}{3}$, com erro inferior a 0,0001. [Atenção: não serão aceites respostas onde o n tenha sido meramente obtido por experimentação directa.]
- (3) **3.** Determine o raio de convergência e o domínio de convergência da série de potências $\sum_{n=1}^{\infty} \frac{(x-1)^{3n}}{n8^n}.$
- (0,5+1+2) 4. Considere, para cada $n \in \mathbb{N}$, $f_n(x) = \begin{cases} e^{-n/x^2} & \text{se } x \neq 0 \\ 0 & \text{se } x = 0 \end{cases}$, $x \in \mathbb{R}$. Mostre que
 - (a) $(f_n)_{n\in\mathbb{N}}$ converge pontualmente em \mathbb{R} ;
 - (b) $(f_n)_{n\in\mathbb{N}}$ não converge uniformemente em \mathbb{R} ;
 - (c) $(f_n)_{n\in\mathbb{N}}$ converge uniformemente em qualquer intervalo do tipo [-a,a], a>0.
- (1+0,5+2) **5.** (a) Partindo do desenvolvimento em série de Taylor para a função exponencial (ver formulário), mostre que

$$\frac{1}{x^x} = 1 + \sum_{n=1}^{\infty} (-1)^n \frac{x^n (\ln x)^n}{n!}, \quad x > 0.$$

- (b) É fácil ver que a igualdade anterior também é válida para x=0 desde que se convencione (neste caso) que $0^0=1$ e que $0 \ln 0=0$. Mostre, além do mais, que, com esta convenção, a função $x\mapsto x \ln x$ é contínua em [0,1].
- (c) Sabendo que, usando a convenção anterior, a série converge uniformemente em [0,1], mostre que

$$\int_0^1 \frac{1}{x^x} \, dx = \sum_{n=1}^\infty \frac{1}{n^n}.$$

(2,5) **6.** Seja f uma função periódica de período T e seccionalmente contínua. Seja a um qualquer número real. Mostre que, nestas condições,

$$\int_{a}^{a+T} f(x) dx = \int_{0}^{T} f(x) dx.$$

- $(1,5+2\times0,5+1)$ 7. Considere a função f definida por $f(x)=1-\frac{x}{\pi},\ x\in[0,\pi].$
 - (a) Mostre que a série de Fourier de senos (de período 2π) de f é

$$\sum_{n=1}^{\infty} \frac{2}{\pi n} \sin(nx).$$

- (b) Faça um esboço do gráfico da soma da série anterior no intervalo $[-\pi, \pi]$.
- (c) Diga, justificando, se aquela série é ou não é uniformemente convergente em $[-\pi,\pi].$
- (d) Calcule a soma da série

$$\sum_{n=1}^{\infty} \frac{\sin(n)}{n}.$$

\mathbf{FIM}

Formulário

(apenas simbologia sumária é apresentada, de acordo com a notação usual ou a convencionada nas aulas; nem sempre se referem as hipóteses que validam as fórmulas)

$$(T_c^n f)'(x) = T_c^{n-1} f'(x); T_c^n f(x) = f(c) + \int_c^x T_c^{n-1} f'(t) dt.$$

$$\frac{1}{1-x} = \sum_{n=0}^{\infty} x^n, -1 < x < 1; e^x = \sum_{n=0}^{\infty} \frac{x^n}{n!}, x \in \mathbb{R}.$$

$$\int_a^b u' v = [uv]_a^b - \int_a^b uv'; \int_{\varphi(a)}^{\varphi(b)} f = \int_a^b (f \circ \varphi) \varphi'$$