Towards a PROPS ontology

W3C Linked Building Data Community Group

12th of March 2018

Mathias Bonduel - PhD researcher @ KU Leuven and Ugent

mathias.bonduel@kuleuven.be

TECHNOLOGIECAMPUS GENT

Content

- O. Introduction: scope of PROPS ontology
- ▶ 1. The need for standardization: existing approaches
 - Ontology structure: basic data structure / patterns
 - Ontology content
- 2. Considerations for ontology structure
 - Competency questions / functionality
 - New proposals: pros and cons
 - A range of solutions with different levels of complexity?
- **3. Next steps:** standardization of:
 - Ontology structure
 - Ontology content
- ▶ 4. sparql-visualizer tool: functionality
- Sources further reading links

O. Introduction Scope of PROPS ontology

- Building-related properties of:
 - Building elements:
 - bot:Element: elements and parts of elements (bot:aggregates property)
 - ▶ PROD ontology classes: products and parts of products
 - Others:
 - bot:Zone (bot:Site, bot:Building, bot:BuildingStorey, bot:Space)
 - bot:Interface
 - Materials? (material-MTL ontology?)
- ▶ Alignment to other domains: e-commerce, mechanical engineering, etc.

1. The need for standardization: existing approaches regarding basic data structure

- IFC based
 - ▶ ifcOWL
 - ► IfcWoD and simpleBIM
- BIM based (general)
 - ► BIMSO BIMDO
- E-commerce
 - ► Good Relations schema.org
- Sensor data?
- Not based on traditional BIM?

ifcWoD

BIMSO-BIMDO

1. The need for standardization: existing approaches regarding basic data structure

- IFC based
 - ▶ ifcOWL
 - ► IfcWoD and simpleBIM
- BIM in general
 - ► BIMSO BIMDO
- **E**-commerce
 - ► Good Relations schema.org
- Sensor data?
- Not based on traditional BIM?

1. The need for standardization: existing approaches regarding ontology content

- Based on IFC: PSET generator (Maxime)
- Based on Wikipedia (PTO approach implemented by Mads)
- Based on Wikidata (Mads)
- Custom properties (user defined): what should be provided + how to extend existing PROPS ontology?
- QUDT ontology
 - Domains: construction / architecture / civil engineering is absent
 - Properties available, but contain no extra information (e.g. qudt:Volume)
- OM ontology
 - Properties available with extra information (om:Volume)
- Schema.org ontology (e.g. schema:width)
 - Limited to generic properties
 - Not OWL but rdf:Property (?)

2. Considerations for ontology structure

Possibilities:

- Datatype properties?
- Object properties?
- Combination of (one or multiple) object and datatype properties?
- Combination of (one or multiple) object and datatype properties, together with owl:Classes?

2. Considerations for ontology structure Competency questions - functionality

- Query execution time
- Easy/intuitive to discover properties
- Reasoning
- Alignment with other existing ontologies (e.g. schema.org)
- PROPS ontology should be easy to maintain and extend
- Extra information about a property (description, label, validity, etc.)
- Grouping props (e.g. IFC psets)
- Versioning of props
- Units for props
- literals: data typing (integer, float, boolean, strings, etc.) + language tags (strings)
- ► Complex props: depending on other props via a math function + table of values
- ...?

2. Considerations for ontology structure New proposals (WIP)

- ► <u>IFCtoLBD converter</u>: converts IFC files to LBD ontologies (BOT, PRODUCT and PROPS) (Jyrki)
 - Different conversion options investigated
 - ► 1 step/relation => 1 object/datatype property
 - 2 steps/relations => 1 object property + 1 object/datatype property
 - 3 steps/relations => 2 object properties + 1 object/datatype property
 - Optionally: grouping of properties (e.g. IFC psets) + adding units
 - Optionally: versioning of properties of IFC elements
- <u>Building-related requirements</u> (Mads)
 - Versioning of properties necessary + metadata (when, by who changed)
 - Differentiation between properties as required / designed / built / assumption / ...
 - ► Requirements: exact value ⇔ min value ⇔ max value
 - Units
- Alignment to schema.org (swallowed GoodRelations) (Mads Georg)

Remarks

1 step/relation (1 object/datatype property)

- Not easy to query for psets + hinders readability
- Not easy to maintain ontology if IFC psets are in property name
- No formal units
 - Workaround: mention units in ontology in a rdfs:description string
- No extra information about props

But: easy to discover + best query
execution times
props:slabCommonLoadBearing
inst:slab_982f59b0-f2e1-485f-8ce1-c9f6117b7a99
rdf:type
bot:Element

2 steps/relations (1 object property + 1 object/datatype property)

IFCtoLBD converter

- Not one ideal solution => depends on the case
 - Different levels of complexity?
 - ► All in one ontology ⇔ different PROPS ontology for each level?
 - ▶ Different levels of complexity in one db ⇔ one level of complexity per db?
 - ▶ E.g. ID property only needs one datatype property (no versioning, units, etc.)

One property cannot be an owl:DatatypeProperty / owl:ObjectProperty / owl:Class at the same time (?)

- ► <u>Level 1</u>: (1 step => 1 object/datatype property)
 - searching in large database of e.g. products (public part of e-commerce)
 - ▶ All props that don't need versioning, don't have units, are not part of psets (e.g. ID, ...?)
- Level 2: (2 steps => 1 object property + 1 object/datatype property)
 - manufacturer / reseller (private part of e-commerce)
 - During construction projects (shared part of project member)
- ► <u>Level 3</u>: (3 steps => 2 object properties + 1 object/datatype property)
 - during construction projects (private part of project member)
 - Facility Management, LCA?

	Level 1	Level 2	Level 3
Query execution time	+++	++	+
Easy/intuitive to discover props	+++	++	+
Reasoning	?	?	?
Alignment to schema.org	?	?	?
Ontology is easy to maintain and extend	?	?	?
Extra information about property	/	\checkmark	✓
Grouping of props	/	✓	✓
Versioning of props	/	/	✓
Units for props	In rdfs:description (string)	QUDT, OM, other	QUDT, OM, other
Literals: data typing + language tags	✓	\checkmark	\checkmark
Complex props	/	✓ (?)	✓ (?)

Mathias Bonduel

2

- Not one ideal solution => depends on the case
- Standardize conversion between different complexity levels
 - To lower complexity: selection (in the case of versioning)
 - To higher complexity: extra information needed
 - How? => conversions or reasoning
 - ► SPARQL queries (INSERT / CONSTRUCT) => possibility to place converted part in other DB
 - ► SWRL (rules) or <u>inferencing/reasoning</u>

Datatype property (⇔ props:phaseCreated as object property)

SPARQL INSERT or CONSTRUCT

- Only possible for viewing as Level 1, when in fact Level 2 (SWRL needed for Level 3)
- Difficult to update the property (not clear for user if property is inferred or not)
- Filter needed for instances of properties

owl DL reasoning

3. Next steps Open issues in ontology structure

- ▶ Different levels of complexity (interchangeable) ⇔ most complex situation?
 - In the case of different levels of complexity:
 - How many levels?
 - Conversion methods?
 - ▶ one ontology for the three levels ⇔ one per level?
 - ▶ One level of complexity per DB ⇔ multiple levels?
- What documented where?
 - ▶ PROPS ontology/ontologies ⇔ OPM ontology (not yet documented)?
 - Materials in separate ontology?
 - What?
 - Classes: Pset (and other grouping of properties)
 - Relations: partOfPset (and other grouping of properties)

3. Next steps Open issues in ontology structure

- Level 1:
 - Information about units in rdfs:description string of the property in the PROPS ontology
- Level 2:
 - Units
 - ▶ Choose for one units ontology? (QUDT, OM, ...)
 - Compatibility with schema.org? (schema:unitCode => range: text + URL)
 - Blank nodes for:
 - ▶ Instances of properties?
 - states?
 - ▶ Property name info in object property ⇔ class?
- Level 3:
 - Same as level 2
 - Units and opm:Assumption/opm:asDesigned/opm:asBuilt/... => on state or property instance?

Not possible to refer to it from outside the DB => are properties/states supposed to be shared?

3. Next steps Open issues in ontology content

- Ontology should restrict the kind of units that can be used?
- Methods to extend the ontology with custom properties (will never be complete)
 Results compatible with PROD derived from IFC (domain)
- ▶ IFC properties (pset generator) as subproperties of more general properties?
 - Wikipedia?
 - Standards containing definitions?
 - Wikidata?
 - QUDT?
 - OM?
 - schema.org?
 - Custom made properties?

Probably combination of these sources (+ alignments between them)?

Mathias Bonduel

CEN / TC 442 or others?

30

4. sparql-visualizer tool

What? => means to communicate during ontology engineering process between:

Intuitive graph visualization

Application of ontologies: Tbox + Abox

- Domain expert
- Application engineer
- Ontology engineer
- No installment necessary:
 - Online
 - Offline: download ready-to-use <u>ZIP version</u>
- Easy to use + documentation online:
 - ► <u>Github readme</u> (quickstart + detailed functionality)
 - Tutorial videos: <u>pt1. basics</u> + <u>pt2. running locally</u>
- Flexible:
 - Prepare samples in JSON and share one-click links via Dropbox or Github
 - connection with separate triple store possible (atm only Stardog)
 - Loading of turtle files
- Open source: everyone can contribute

https://madsholten.github.io/sparqlvisualizer/?file=https://dl.dropbox.com/s/x 7z1aw4hzgtv0c9/ifcOWL-properties.json

Sources - links - further reading

- ▶ PROPS discussion: https://github.com/w3c-lbd-cg/props/issues/2#issuecomment-371807503
- PSET Generator (Maxime): https://github.com/w3c-lbd-cg/props
- ► IFCtoLBD converter (Jyrki): https://github.com/jyrkioraskari/IFCtoLBD
- ▶ Demo to get PROPS ontology from Wikipedia: https://objprops-gen.herokuapp.com/id/area
- Ontologies:
 - ifcOWL: http://ifcowl.openbimstandards.org/
 - ► BOT: https://github.com/w3c-lbd-cg/bot
 - schema.org: http://schema.org/version/3.3/schema.ttl
 - ▶ QUDT (2.0)
 - ► General: http://www.qudt.org/release2/qudt-catalog.html
 - ▶ Disciplines: http://qudt.org/doc/2017/DOC_VOCAB-QUDT-DISCIPLINES-v2.0.html
 - OM (ontology of units of measure): https://github.com/HajoRijgersberg/OM

Sources - links - further reading Literature

- Farias, T. M. De, Roxin, A.-M., & Nicolle, C. (2015). IfcWoD, Semantically Adapting IFC Model Relations into OWL Properties. In *Proc. of the 32nd CIB W78 Conference 2015*, 27th-29th October 2015, Eindhoven, The Netherlands (pp. 175-185).
- Niknam, M., & Karshenas, S. (2017). A shared ontology approach to semantic representation of BIM data. *Automation in Construction*, 80, 22-36. https://doi.org/10.1016/j.autcon.2017.03.013
- Pauwels, P., & Roxin, A. (2016). SimpleBIM: From full ifcOWL graphs to simplified building graphs. In S. Christodoulou & R. Scherer (Eds.), EWORK AND EBUSINESS IN ARCHITECTURE, ENGINEERING AND CONSTRUCTION (pp. 11-18). Limassol, Cyprus.
- Pauwels, P., & Terkaj, W. (2016). EXPRESS to OWL for construction industry: Towards a recommendable and usable ifcOWL ontology. *Automation in Construction*, 63, 100-133. https://doi.org/10.1016/j.autcon.2015.12.003
- Rasmussen, M. H., Pauwels, P., Hvidd, C. A., & Karlshøj, J. (2017). Proposing a Central AEC Ontology That Allows for Domain Specific Extensions. In *LC3 2017: Proceedings of the Joint Conference on Computing in Construction* (pp. 237-244). Heraklion, Greece.
- Rasmussen, M. H., Pauwels, P., Lefrançois, M., Schneider, G. F., Hviid, C. A., & Karshøj, J. (2017). Recent changes in the Building Topology Ontology. In 5th LDAC workshop.