光学分析法导论

主要内容

- 1 电磁辐射及其与物质的相互作用
- 2 光学分析法分类
- 3 光谱分析仪器基本构造

光学分析法 (OPTICAL ANALYSIS)

- 基于物质发射的电磁辐射(光)或物质与辐射相互作用 产生的辐射信号来测定物质的性质、含量和结构的仪器 分析方法。
- 电磁辐射是一种以电磁波的形式在空间高速传播的粒子流,具有波动性和微粒性。

光学分析法 (OPTICAL ANALYSIS)

电磁辐射的波动性: 电磁辐射为正弦波, 电磁波不需传播介质, 可在真空中传输。

光学分析法 (OPTICAL ANALYSIS)

- ■电磁辐射的微粒性:电磁辐射是由一颗颗不连续的光子构成的粒子流。当物质吸收或发射一定波长的电磁波时, 是以吸收或发射一颗颗量子化的光子形式进行的。
- ■每个光子的能量为:

$$E = \frac{hc}{\lambda} = hv$$
 v 频率 λ 波长

电磁辐射与物质相互作用

电磁辐射照射物质时, 其传播方向、速度等**物 理性质**发生改变。

非光谱法

折射法、干涉法 旋光法、圆二色光谱法 散射浊度法 X射线衍射法 电磁辐射照射物质时,发生能量转移,使物质内部有相应的能级跃迁。

光谱法

吸收(absoption)光谱法 发射(emission)光谱法 散射(scattering)光谱法 (非弹性)

知识回顾

• 分子光谱基于分子电子能级、振动能级和转动能级的跃迁。

$E_M = Ee + Ev + Er$
$\Delta E = E2 - E1 = h\nu = hc/\lambda$

跃迁类别	ΔE(eV)	波长(μm)	光谱
ΔEe	1-20	1.25-0.06	紫外可见
ΔΕν	0.05-1	25-1.25	中红外
ΔEr	0.005-0.05	250-25	远红外

知识回顾

• 分子光谱基于分子电子能级、振动能级和转动能级的跃迁。

电磁波谱分区表

辐射区段	波长范围	辐射区段	波长范围
Y射线	10 ⁻⁴ ~10 ⁻² nm	近红外辐射	0.76~2.5 μm
X射线	10 ⁻² ~10 nm	中红外辐射	2.5~50 μm
远紫外辐射	10~200 nm	远红外辐射	50~300 μm
紫外辐射	200~400 nm	微波	0.3 mm~1 m
可见光	400~760 nm	无线电波	1~1000 m

知识回顾

• 按照能量转化方式可分为吸收光谱和发射光谱。

光谱分析法分类

分光光度计基本组成 SPECTROPHOTOMETER

分光光度计是将成分复杂的光,分解为光谱线的科学仪器。测量范围一般包括波长范围为380~780 nm的可见光区和200~380 nm的紫外光区。

分光光度计基本组成 辐射源

• 不同的光源都有其特有的发射光谱,因此可采用不同的发光体作为仪器的光源。

连续光源	紫外光源	H ₂ 灯	160-375nm	
		D ₂ 灯		
	可见光源 红外光源	W灯	320-2500nm	
		氙灯	250-700nm	
		Nernst 灯	6000-5000cm ⁻¹ 之	
		硅碳棒	间有最大强度	

• 钨灯的发射光谱:钨灯光源所发出的380~780nm波长的光谱光通过三棱镜折射后,可得到由红、橙、黄、绿、蓝、靛、紫组成的连续色谱。

分光光度计基本组成

辐射源

	金属蒸汽灯	Hg灯	254-734nm
		Na灯	589.0nm, 589.6nm
	空心阴极灯	空心阴极灯	也称元素灯
		高强度空心阴极	
线光源		灯	
	激光*	红宝石激光器	693.4nm
	****	He-Ne 激光器	632.8nm
		Ar 离子激光器	515.4nm, 488.0nm
	发射光谱光 源	直流电弧	
		交流电弧	电能
		火花	
		ICP	

分光光度计基本组成 单色器

- 将连续波长的"复合光"分开为一系列"单一" 波长的"单色光"的器件。
- 理想的100%的单色光是不可能达到的,实际上只能获得的是具有一定"纯度"的单色光,即该"单色光具有一定的宽度(有效带宽)。有效带宽越小,分析的灵敏度越高、选择性越好、分析物浓度与光学响应信号的线性相关性也越好。

分光光度计基本组成单色器的构成

- 狭缝、准直镜、棱镜或光栅、物镜
- 其中最主要的分光元件为棱镜或光栅

分光光度计基本组成 单色器的构成

- 狭缝、准直镜、棱镜或光栅、会聚透
- 其中最主要的分光元件为棱镜和光栅

分光光度计基本组成 检测器 DETECTOR

波段	γ射线	X射线	紫外-可见	红外	微波	射频
检测器	闪烁计 半导体		光电 倍增管	热电偶	晶体 二极管	晶体 三极管

光电倍增管 光转换为电

热电偶

相应的仪器基本构造

发射光谱仪 (FL, Raman)

小 结

Thank You!