Propositional Language L_0

Formal languages usually

- 1. translate a restricted class of natural language.
- 2. have a fix set of atomic symbols and formation rules.
- 3. are precise and unambiguous.

Propositional logic formalizes certain type of assertions in natural language.

Definition 1

An assertion is a sentence that is either true or false.

Symbols

The following 3 types of elements are extracted from our natural language:

- 1. parenthesis (括号): (,).
- 2. propositional connectives (命题连接词):

$$\neg$$
 not \rightarrow if \cdots , then \cdots

3. proposition symbols (命题符号):

$$A_1, A_2, \cdots, A_n, \cdots$$

\mathcal{L}_0 -Formulas

Definition 4

The **propositional language** \mathcal{L}_0 is the smallest set L such that L is a set of finite sequences of symbols in

$$S_0 = \{(,), \neg, \rightarrow\} \cup \{A_n \mid n \in \mathbb{N}\}.$$

and such that

- 1. $\langle A_n \rangle \in L$, for each $n \in \mathbb{N}$. ¹
- 2. If $s \in L$, then $(\neg s) \in L$.
- 3. If $s, t \in L$, then $(s \to t) \in L$.

 $^{^1\}langle A\rangle$ denote the length-1 sequence that consists of only one symbol A.

\mathcal{L}_0 -Formulas

Definition 4

The **propositional language** \mathcal{L}_0 is the smallest set L such that L is a set of finite sequences of symbols in

$$S_0 = \{(,), \neg, \rightarrow\} \cup \{A_n \mid n \in \mathbb{N}\}.$$

and such that

- 1. $\langle A_n \rangle \in L$, for each $n \in \mathbb{N}$. ¹
- 2. If $s \in L$, then $(\neg s) \in L$.
- 3. If $s, t \in L$, then $(s \to t) \in L$.

The existence of the "smallest" such L needs some explanation. To see that \mathcal{L}_0 is well defined, we give an equivalent definition of \mathcal{L}_0 .

 $^{^{1}\}langle A \rangle$ denote the length-1 sequence that consists of only one symbol A.

\mathcal{L}_0 is well defined

Let (*) denote the three conditions in the previous definition.

Theorem 5

Let $\mathcal{L}_0^* = \bigcap \{L \mid L \text{ satisfies } (*)\}.$ Then $\mathcal{L}_0 = \mathcal{L}_0^*$.

\mathcal{L}_0 is well defined

Let (*) denote the three conditions in the previous definition.

Theorem 5

Let
$$\mathcal{L}_0^* = \bigcap \{L \mid L \text{ satisfies } (*)\}.$$
 Then $\mathcal{L}_0 = \mathcal{L}_0^*$.

Proof.

- Let $\Lambda = \{L \subseteq (S_0)^{<\omega} \mid L \text{ satisfies } (*)\}$. Then $\Lambda \neq \emptyset$, as $(S_0)^{<\omega} =_{\text{def}} \bigcup_{n \in \mathbb{Z}^+} (S_0)^n$, the set of all finite sequences of symbols in S_0 , belongs to Λ . Thus \mathcal{L}_0^* is well defined.
- ▶ Check that \mathcal{L}_0^* satisfies (*).
- ▶ Clearly $\mathcal{L}_0^* \subseteq L$, for all $L \in \Lambda$, i.e. \mathcal{L}_0^* is the ⊆-smallest among the L's in Γ , therefore $\mathcal{L}_0^* = \mathcal{L}_0$.

Well-formed formula

Definition 6

A finite sequence of elements in S_0 is called **well-formed** formulas (or simply formula or wff) if it can be built-up from $\{A_n \mid n \in \mathbb{N}\}$ by applying the following formula-building operations finitely many times:

$$\mathcal{E}_{\neg}(s) = (\neg s),$$

 $\mathcal{E}_{\rightarrow}(s,t) = (s \rightarrow t).$

$$((\neg(A_1 \to (\neg A_4))) \to ((\neg A_3) \to A_2))$$

$$(\neg(A_1 \to (\neg A_4))) \qquad ((\neg A_3) \to A_2)$$

$$(A_1 \to (\neg A_4)) \qquad (\neg A_3) \qquad A_2$$

$$A_1 \qquad (\neg A_4) \qquad A_3$$

Theorem 7

 $\varphi \in \mathcal{L}_0 \Leftrightarrow \varphi$ is a wff.

Theorem 7

 $\varphi \in \mathcal{L}_0 \Leftrightarrow \varphi$ is a wff.

Proof.

▶ For " \Rightarrow ", verify that wff satisfies (*). So $\mathcal{L}_0 \subseteq$ wff.

Theorem 7

 $\varphi \in \mathcal{L}_0 \Leftrightarrow \varphi$ is a wff.

Proof.

- ▶ For " \Rightarrow ", verify that wff satisfies (*). So $\mathcal{L}_0 \subseteq$ wff.
- " \Leftarrow " is due to the following property of wff. Prove by induction on the length of $\varphi \in$ wff.

Theorem 7

 $\varphi \in \mathcal{L}_0 \Leftrightarrow \varphi$ is a wff.

Proof.

- ▶ For " \Rightarrow ", verify that wff satisfies (*). So $\mathcal{L}_0 \subseteq$ wff.
- " \Leftarrow " is due to the following property of wff. Prove by induction on the length of $\varphi \in$ wff.

Proposition 8

Suppose $\varphi \in wff$. Then one of the following applies.

- 1. There is an n such that $\varphi = \langle A_n \rangle$.
- 2. There is a wff ψ such that $\varphi = (\neg \psi)$.
- 3. There are wffs ψ_1 and ψ_2 such that $\varphi = (\psi_1 \to \psi_2)$.

Corollary 9 (Readability)

Suppose $\varphi \in \mathcal{L}_0$. Then exactly one of the following applies.

- 1. There is an n such that $\varphi = \langle A_n \rangle$.
- 2. There is a $\psi \in \mathcal{L}_0$ such that $\varphi = (\neg \psi)$.
- 3. There are ψ_1 and ψ_2 in \mathcal{L}_0 such that $\varphi = (\psi_1 \to \psi_2)$.

Corollary 9 (Readability)

Suppose $\varphi \in \mathcal{L}_0$. Then exactly one of the following applies.

- 1. There is an n such that $\varphi = \langle A_n \rangle$.
- 2. There is a $\psi \in \mathcal{L}_0$ such that $\varphi = (\neg \psi)$.
- 3. There are ψ_1 and ψ_2 in \mathcal{L}_0 such that $\varphi = (\psi_1 \to \psi_2)$.

Proof.

As $\mathcal{L}_0 =$ wff, Proposition 8 gives us the readability of $\varphi \in \mathcal{L}_0$.

Corollary 9 (Readability)

Suppose $\varphi \in \mathcal{L}_0$. Then exactly one of the following applies.

- 1. There is an n such that $\varphi = \langle A_n \rangle$.
- 2. There is a $\psi \in \mathcal{L}_0$ such that $\varphi = (\neg \psi)$.
- 3. There are ψ_1 and ψ_2 in \mathcal{L}_0 such that $\varphi = (\psi_1 \to \psi_2)$.

Proof.

As $\mathcal{L}_0 =$ wff, Proposition 8 gives us the readability of $\varphi \in \mathcal{L}_0$.

For the "exact"-ness, it suffices to verify that the three cases are mutually exclusive.

- ► Case 1 has only one symbol
- ► Case 2 starts with "(¬"
- ▶ Case 3 starts with "((" or " (A_n) " for some A_n .

Subformulas

However, it remains unclearly that whether the choice of ψ_1 and ψ_2 is unique.

Subformulas

However, it remains unclearly that whether the choice of ψ_1 and ψ_2 is unique.

The following definition of *subformula* is natural and often used in practice, however, it's not well defined unless the Uniqueness of Readability (to see later) is proved.

Subformulas

However, it remains unclearly that whether the choice of ψ_1 and ψ_2 is unique.

The following definition of *subformula* is natural and often used in practice, however, it's not well defined unless the Uniqueness of Readability (to see later) is proved.

Definition 10 (Subformula, an inductive definition)

The set $S(\varphi)$ of all subformulas of a given $\varphi \in \mathcal{L}_0$ is defined inductively as follows:

$$\begin{split} S(\langle A_n \rangle) &= \{\langle A_n \rangle\}, \quad \text{for } n \in \mathbb{N} \\ S((\neg \alpha)) &= S(\alpha) \cup \{(\neg \alpha)\} \\ S((\alpha \to \beta)) &= S(\alpha) \cup S(\beta) \cup \{(\alpha \to \beta)\} \end{split}$$

For the proof of Unique Readability, we use a bit-by-bit definition of subformulas.

Definition 11

Suppose s,t are finite sequences, φ,ψ are formulas.

- 1. t is a block-subsequence of s $\cdots [\cdots] \cdots$
- 2. t is a (proper) initial segment of s $[\cdots]$
- 3. an occurrence of s in φ $\cdots [-s-] \cdots$
- 4. ψ is a subformula of φ block-subsequence + formula

For the proof of Unique Readability, we use a bit-by-bit definition of subformulas.

Definition 11

Suppose s, t are finite sequences, φ, ψ are formulas.

- 1. t is a block-subsequence of s $\cdots [\cdots] \cdots$
- 2. t is a (proper) initial segment of s $[\cdots]\cdots\cdots$
- 3. an occurrence of s in φ $\cdots [-s-] \cdots$
- 4. ψ is a subformula of φ block-subsequence + formula

Question

Let s be a finite sequence of length n. How many block-subsequence of s are there?

Unique Readability

Theorem 12 (Unique Readability)

Suppose $\varphi \in \mathcal{L}_0$. Then exactly one of the following applies.

- 1. There is an n such that $\varphi = A_n$.
- 2. There is a $\psi \in \mathcal{L}_0$ such that $\varphi = (\neg \psi)$.
- 3. There are ψ_1 and ψ_2 in \mathcal{L}_0 such that $\varphi = (\psi_1 \to \psi_2)$.

Further, in cases (2) and (3), the subformulas ψ , ψ_1 and ψ_2 are unique, respectively.

Remark

The Unique Readability enables us to prove by induction on the construction of formulas.

Unique Readability

Theorem 12 (Unique Readability)

Suppose $\varphi \in \mathcal{L}_0$. Then exactly one of the following applies.

- 1. There is an n such that $\varphi = A_n$.
- 2. There is a $\psi \in \mathcal{L}_0$ such that $\varphi = (\neg \psi)$.
- 3. There are ψ_1 and ψ_2 in \mathcal{L}_0 such that $\varphi = (\psi_1 \to \psi_2)$.

Further, in cases (2) and (3), the subformulas ψ , ψ_1 and ψ_2 are unique, respectively.

Remark

The Unique Readability enables us to prove by induction on the construction of formulas.

The uniqueness of case 1 and 2 are self-clear.

Unique Readability

Theorem 12 (Unique Readability)

Suppose $\varphi \in \mathcal{L}_0$. Then exactly one of the following applies.

- 1. There is an n such that $\varphi = A_n$.
- 2. There is a $\psi \in \mathcal{L}_0$ such that $\varphi = (\neg \psi)$.
- 3. There are ψ_1 and ψ_2 in \mathcal{L}_0 such that $\varphi = (\psi_1 \to \psi_2)$.

Further, in cases (2) and (3), the subformulas ψ , ψ_1 and ψ_2 are unique, respectively.

Remark

The Unique Readability enables us to prove by induction on the construction of formulas.

The uniqueness of case 1 and 2 are self-clear. To prove the uniqueness of ψ_1 and ψ_2 in case 3, we need

If $\varphi \in \mathcal{L}_0$, then no proper initial segment of φ is in \mathcal{L}_0 .

If $\varphi \in \mathcal{L}_0$, then no proper initial segment of φ is in \mathcal{L}_0 .

Proof.

Prove by induction on $|\varphi|$. Suppose $s \subsetneq_{\text{init}} \varphi$.

 $ightharpoonup |\varphi| = 1$. Then $s = \varnothing$. Vacuously true: $\varnothing \notin \mathcal{L}_0$.

If $\varphi \in \mathcal{L}_0$, then no proper initial segment of φ is in \mathcal{L}_0 .

Proof.

Prove by induction on $|\varphi|$. Suppose $s \subseteq_{\mathsf{init}} \varphi$.

- $\blacktriangleright |\varphi| = 1$. Then $s = \varnothing$. Vacuously true: $\varnothing \notin \mathcal{L}_0$.
- ▶ $|\varphi| > 1$. Assume that the statement is true for all $\varphi' \in \mathcal{L}_0$ of length $< |\varphi|$. By Readability, φ is $(\neg \psi)$ or $(\psi_0 \to \psi_1)$.

If $\varphi \in \mathcal{L}_0$, then no proper initial segment of φ is in \mathcal{L}_0 .

Proof.

Prove by induction on $|\varphi|$. Suppose $s \subseteq_{\mathsf{init}} \varphi$.

- $\blacktriangleright |\varphi| = 1$. Then $s = \varnothing$. Vacuously true: $\varnothing \notin \mathcal{L}_0$.
- ▶ $|\varphi| > 1$. Assume that the statement is true for all $\varphi' \in \mathcal{L}_0$ of length $< |\varphi|$. By Readability, φ is $(\neg \psi)$ or $(\psi_0 \to \psi_1)$.
 - $\varphi \equiv (\neg \psi)$, if $s \in \mathcal{L}_0$, then it must be $s \equiv (\neg \theta)$, some $\theta \in \mathcal{L}_0$. But then $\theta \subsetneq_{\mathsf{init}} \psi$ and $|\psi| < |\varphi|$. Contradiction!

If $\varphi \in \mathcal{L}_0$, then no proper initial segment of φ is in \mathcal{L}_0 .

Proof.

Prove by induction on $|\varphi|$. Suppose $s \subseteq_{\mathsf{init}} \varphi$.

- $\blacktriangleright |\varphi| = 1$. Then $s = \varnothing$. Vacuously true: $\varnothing \notin \mathcal{L}_0$.
- ▶ $|\varphi| > 1$. Assume that the statement is true for all $\varphi' \in \mathcal{L}_0$ of length $< |\varphi|$. By Readability, φ is $(\neg \psi)$ or $(\psi_0 \to \psi_1)$.
 - $\varphi \equiv (\neg \psi)$, if $s \in \mathcal{L}_0$, then it must be $s \equiv (\neg \theta)$, some $\theta \in \mathcal{L}_0$. But then $\theta \subsetneq_{\mathsf{init}} \psi$ and $|\psi| < |\varphi|$. Contradiction!
 - $\varphi \equiv (\psi_1 \to \psi_2)$, if $s \in \mathcal{L}_0$, it must be that $s \equiv (\theta_1 \to \theta_2)$, for some $\theta_1, \theta_2 \in \mathcal{L}_0$.

If $\varphi \in \mathcal{L}_0$, then no proper initial segment of φ is in \mathcal{L}_0 .

Proof.

Prove by induction on $|\varphi|$. Suppose $s \subseteq_{\text{init}} \varphi$.

- $|\varphi|=1$. Then $s=\varnothing$. Vacuously true: $\varnothing\notin\mathcal{L}_0$.
- $|\varphi| > 1$. Assume that the statement is true for all $\varphi' \in \mathcal{L}_0$ of length $< |\varphi|$. By Readability, φ is $(\neg \psi)$ or $(\psi_0 \to \psi_1)$.
 - $\varphi \equiv (\neg \psi)$, if $s \in \mathcal{L}_0$, then it must be $s \equiv (\neg \theta)$, some $\theta \in \mathcal{L}_0$. But then $\theta \subsetneq_{\text{init}} \psi$ and $|\psi| < |\varphi|$.
 Contradiction!
 - $\varphi \equiv (\psi_1 \rightarrow \psi_2)$, if $s \in \mathcal{L}_0$, it must be that $s \equiv (\theta_1 \rightarrow \theta_2)$, for some $\theta_1, \theta_2 \in \mathcal{L}_0$.
 - $\psi_1 \neq \theta_1$, one of $\{\psi_1, \theta_1\}$ is a proper initial segment of the other. Contradiction!
 - $\psi_1 = \theta_1$, one of $\{\psi_2, \theta_2\}$ is a proper initial segment of the other. Contradiction!

Exercises

Question

Fix a 1-1 enumeration of S_0 . Give an algorithm to enumerate (1) $(S_0)^{<\omega}$ = the set of finite sequences of members in S_0 ; (2) \mathcal{L}_0 .

Exercises

Question

Fix a 1-1 enumeration of S_0 . Give an algorithm to enumerate (1) $(S_0)^{<\omega}=$ the set of finite sequences of members in S_0 ; (2) \mathcal{L}_0 .

Exercise 1

§1.1.2: (2), (3)

Exercises

Question

Fix a 1-1 enumeration of S_0 . Give an algorithm to enumerate

- (1) $(S_0)^{<\omega}=$ the set of finite sequences of members in S_0 ;
- (2) \mathcal{L}_0 .

Exercise 1

§1.1.2: (2), (3)

Hints:

- (2) Show that there are no wffs of length 2, 3 or 6, but that any other positive length is possible.
- (3) The sequence $\langle \varphi_1, \dots, \varphi_n \rangle$ is called a construction sequence for φ_n , which is obtained from the construction tree for φ_n .

Polish Notation

Though parentheses are helpful for human eyes, it is possible to drop parentheses without loss of clarity. Let $S_0^* = S_0 - \{(,)\}$.

Definition 14

Let \mathcal{P}_0 be the smallest set $P\subseteq (S_0^*)^{<\omega}$ such that

- 1. For each n, $A_n \in P$.
- 2. If ψ_1 and ψ_2 belong to P, then so do $\neg \psi_1$ and $\rightarrow \psi_1 \psi_2$.

Theorem 15

For any $s \in (S_0^*)^{<\omega}$, $s \in \mathcal{P}_0 \Leftrightarrow s \in \mathcal{P}_0$ -wff.

\mathcal{P} -wff

Definition 16

A finite sequence of elements in S_0 is called \mathcal{P}_0 -wff if it can be built-up from $\{A_n \mid n \in \mathbb{N}\}$ by applying the following formula-building operations finitely many times:

$$\mathcal{D}_{\neg}(s) = \neg s,$$

 $\mathcal{D}_{\rightarrow}(s,t) = \rightarrow s t.$

$$\rightarrow \neg \rightarrow A_1 \neg A_4 \rightarrow \neg A_3 A_2$$
.

$$\rightarrow \neg \rightarrow A_1 \neg A_4 \rightarrow \neg A_3 A_2$$
.

It is our early example: $((\neg(A_1 \to (\neg A_4))) \to ((\neg A_3) \to A_2)).$

$$\rightarrow \neg \rightarrow A_1 \neg A_4 \rightarrow \neg A_3 A_2$$
.

It is our early example: $((\neg(A_1 \to (\neg A_4))) \to ((\neg A_3) \to A_2)).$

Try to write the Reverse Polish version of the above formula.

$$\rightarrow \neg \rightarrow A_1 \neg A_4 \rightarrow \neg A_3 A_2$$
.

It is our early example: $((\neg(A_1 \to (\neg A_4))) \to ((\neg A_3) \to A_2))$.

Try to write the Reverse Polish version of the above formula.

Polish Notation and Reverse Polish Notation

Disadvantage: hard to decode by human Advantage: processed faster by computer

$$\rightarrow \neg \rightarrow A_1 \neg A_4 \rightarrow \neg A_3 A_2$$
.

It is our early example: $((\neg(A_1 \to (\neg A_4))) \to ((\neg A_3) \to A_2))$.

Try to write the Reverse Polish version of the above formula.

Polish Notation and Reverse Polish Notation

Disadvantage: hard to decode by human Advantage: processed faster by computer

Assignment

Find out more about Polish and reverse Polish notations, as well as SVO, SOV, VSO, etc.

Priority of operators

To establish a more compact notation,

- 1. The outermost parentheses are omitted.
- 2. The priority of operators are ordered as: \neg is higher than \rightarrow . ² e.g.

$$B \to \neg A$$
 is $(B \to (\neg A))$

3. When connectives of the same priority are repeated, grouping is to the right:

$$A \to B \to C$$
 is $(A \to (B \to C))$

$$\neg \qquad (\lor, \land) \qquad (\to, \leftrightarrow).$$

 $^{^2}$ When \lor , ∧ and ↔ are considered:

Other connectives

Other connectives \vee , \wedge , \leftrightarrow are treated as abbreviations of formulas (involving $\{\neg, \rightarrow\}$ only) as follows:

$$\begin{array}{lll} p \vee q & & \text{iff} & \neg p \rightarrow q \\ p \wedge q & & \text{iff} & \neg (p \rightarrow \neg q) \\ p \leftrightarrow q & & \text{iff} & (p \rightarrow q) \wedge (q \rightarrow p) \end{array}$$

This treatment will be justified later.