Structured Semi-Implicit Variational Inference

Iuliia Molchanova¹ Dmitry Molchanov^{1,3} Novi Quadrianto² Dmitry Vetrov^{1,3}

> ¹Samsung AI Center Moscow ²University of Sussex ³Samsung-HSE Joint Lab

> > December 08, 2019

SAMSUNG Al Center
- Moscow

DISTRIBUTIONS IN VARIATIONAL INFERENCE

$$q_{\phi}(z) \approx p(z \mid D) \quad \longleftrightarrow \quad \mathit{KL}(q_{\phi}(z) \mid\mid p(z \mid D)) \to \min_{\phi}$$

Explicit:

 $q_{\phi}(z)$ is given

$$z = g_{\phi}(\epsilon), \quad \epsilon \sim p(\epsilon)$$

 $q_{\phi}(z) = ?$

$$q_{\phi}(z) = \int q_{\phi}(z \mid \epsilon) p(\epsilon) d\epsilon$$

e.g. $z = \mu_{\phi}(\epsilon) + u \cdot \sigma_{\phi}(\epsilon)$

Implicit:

Semi-implicit:

KL-BASED VARIATIONAL INFERENCE: OVERVIEW

Explicit	Semi-implicit	Implicit
$q_\phi(z)$	$q_{\phi}(z) = \int q_{\phi}(z \mid \epsilon) p(\epsilon) d\epsilon$	$z = g_{\phi}(\epsilon), \epsilon \sim p(\epsilon)$ $q_{\phi}(z) = ?$
FFG	(D)SIVI	AVB
Normalizing flows	UIVI	SSGE
Neural ODE	HVI	KIVI
Autoregressive	IWHVI	Denoising AE
+ Proper ELBO	+ Proper ELBO (except UIVI)	- Biased ELBO
- Too simple or inefficient architectures	+ Almost no restrictions	+ No restrictions
memcient architectures	on $q_{\phi}(z)$	on $q_{\phi}(z)$

Semi-Implicit Variational Inference

$$q_{\phi}(z) = \int q_{\phi}(z \mid \epsilon) p(\epsilon) d\epsilon$$

Variational inference:

ELBO =
$$\mathbb{E}_{q_{\phi}(z)} \log p(D \mid z) + \mathbb{E}_{q_{\phi}(z)} \log p(z) - \mathbb{E}_{q_{\phi}(z)} \log q_{\phi}(z) \longrightarrow \max_{\phi}$$

No problem: reparameterization

No access to $q_{\phi}(z)$...

Semi-Implicit Variational Inference

$$q_{\phi}(z) = \int q_{\phi}(z \mid \epsilon) p(\epsilon) d\epsilon$$

Variational inference:

ELBO =
$$\underbrace{\mathbb{E}_{q_{\phi}(z)} \log p(D \mid z) + \mathbb{E}_{q_{\phi}(z)} \log p(z) - \mathbb{E}_{q_{\phi}(z)} \log q_{\phi}(z)}_{\text{No problem: reparameterization}} \rightarrow \max_{\phi}$$

Main idea:

$$q_{\phi}(z) = \mathbb{E}_{p(\epsilon)} q_{\phi}(z \mid \epsilon) \approx \frac{1}{K+1} \sum_{k=0}^{K} q_{\phi}(z \mid \epsilon^{k})$$
 Yin and Zhou. SIVI (ICML, 2018)

Semi-Implicit Variational Inference

$$q_{\phi}(z) = \int q_{\phi}(z \mid \epsilon) p(\epsilon) d\epsilon$$

Variational inference:

ELBO =
$$\mathbb{E}_{q_{\phi}(z)} \log p(D \mid z) + \overbrace{\mathbb{E}_{q_{\phi}(z)} \log p(z) - \mathbb{E}_{q_{\phi}(z)} \log q_{\phi}(z)}^{-KL(q_{\phi}(z) \mid\mid p(z))} \rightarrow \max_{\phi}$$

No problem: reparameterization

No access to $q_{\phi}(z)$...

Main idea:

$$q_{\phi}(z) = \mathbb{E}_{p(\epsilon)} q_{\phi}(z \mid \epsilon) \approx \frac{1}{K+1} \sum_{k=0}^{K} q_{\phi}(z \mid \epsilon^{k})$$
 Yin and Zhou. SIVI (ICML, 2018)

Results in a lower bound!

Molchanov et al. DSIVI (AISTATS, 2019)

$$-\mathbb{E}_{q_{\phi}(z)}\log q_{\phi}(z) \geq -\mathbb{E}_{\epsilon^{0..K}}\mathbb{E}_{z\,|\,\epsilon^{0}}\log\frac{1}{K+1}\sum_{k=0}^{K}q_{\phi}(z\,|\,\epsilon^{k})$$

SEMI-IMPLICIT VARIATIONAL INFERENCE

- + Simple procedure; only one hyperparameter *K*
- + A broader family of $q_{\phi}(z)$: Unlike HVI, UIVI and IWHVI, allows for implicit (and even discrete) $p(\epsilon)$!
- MoG approximation does not work well in high dimensions...

$$q_{\phi}(z) = \prod_{i=1}^{D} q_{\phi}(z_i \mid z_{1..i-1}) =$$

$$= \prod_{i=1}^{D} \mathbb{E}_{p(\epsilon_i)} q_{\phi}(z_i \mid z_{1..i-1}, \epsilon_i)$$

$$\varepsilon_1 \qquad \varepsilon_2 \qquad \varepsilon_3 \qquad \varepsilon_0$$

$$\varepsilon_1 \qquad \varepsilon_2 \qquad \varepsilon_3 \qquad \varepsilon_0$$

Straight-forward (joint) SIVI entropy bound:

$$-\mathbb{E}_{q_{\phi}(z)}\log q_{\phi}(z) \geq -\mathbb{E}_{\epsilon^{0}..\kappa}\mathbb{E}_{z\,|\,\epsilon^{0}}\log \frac{1}{K+1}\sum_{k=0}^{K}q_{\phi}(z\,|\,\epsilon^{k})$$

$$q_{\phi}(z) = \prod_{i=1}^{D} q_{\phi}(z_i \mid z_{1...i-1}) =$$

$$= \prod_{i=1}^{D} \mathbb{E}_{p(\epsilon_i)} q_{\phi}(z_i \mid z_{1...i-1}, \epsilon_i)$$

$$\varepsilon_1 \qquad \varepsilon_2 \qquad \varepsilon_3 \qquad \varepsilon_D$$

Straight-forward (joint) SIVI entropy bound:

$$-\mathbb{E}_{q_{\phi}(z)}\log q_{\phi}(z) \geq -\mathbb{E}_{\epsilon^{0..K}}\mathbb{E}_{z\mid\epsilon^{0}}\log \frac{1}{K+1}\sum_{k=0}^{K}\prod_{i=1}^{D}q_{\phi}(z_{i}\mid z_{1..i-1},\epsilon_{i}^{k})$$

$$q_{\phi}(z) = \prod_{i=1}^{D} q_{\phi}(z_i \mid z_{1...i-1}) =$$

$$= \prod_{i=1}^{D} \mathbb{E}_{p(\epsilon_i)} q_{\phi}(z_i \mid z_{1...i-1}, \epsilon_i)$$

$$\varepsilon_1 \qquad \varepsilon_2 \qquad \varepsilon_3 \qquad \varepsilon_D \qquad \varepsilon_D$$

Straight-forward (joint) SIVI entropy bound:

$$-\mathbb{E}_{q_{\phi}(z)}\log q_{\phi}(z) \geq -\mathbb{E}_{\epsilon^{0..K}}\mathbb{E}_{z\,|\,\epsilon^{0}}\log\frac{1}{K+1}\sum_{k=0}^{K}\prod_{i=1}^{D}q_{\phi}(z_{i}\,|\,z_{1..i-1},\epsilon_{i}^{k})$$

Structured SIVI entropy bound:

$$\begin{split} -\mathbb{E}_{q_{\phi}(z)} \log q_{\phi}(z) &= -\sum_{i=1}^{D} \mathbb{E}_{z_{1...i}} \log q_{\phi}(z_{i} \,|\, z_{1...i-1}) \geq \\ &\geq -\sum_{i=1}^{D} \mathbb{E}_{z_{1...i-1}} \mathbb{E}_{\epsilon_{i}^{0...K}} \mathbb{E}_{z_{i} \,|\, z_{1...i-1}, \epsilon_{i}^{0}} \log \frac{1}{K+1} \sum_{k=0}^{K} q_{\phi}(z_{i} \,|\, z_{1...i-1}, \epsilon_{i}^{k}) \end{split}$$

$$q_{\phi}(z) = \prod_{i=1}^{D} q_{\phi}(z_i \mid z_{1..i-1}) =$$

$$= \prod_{i=1}^{D} \mathbb{E}_{p(\epsilon_i)} q_{\phi}(z_i \mid z_{1..i-1}, \epsilon_i)$$

$$\varepsilon_1 \qquad \varepsilon_2 \qquad \varepsilon_3 \qquad \varepsilon_D$$

Straight-forward (joint) SIVI entropy bound:

$$-\mathbb{E}_{q_{\phi}(z)}\log q_{\phi}(z) \geq -\mathbb{E}_{\epsilon^{0..K}}\mathbb{E}_{z\,|\,\epsilon^{0}}\log\frac{1}{K+1}\sum_{k=0}^{K}\prod_{i=1}^{D}q_{\phi}(z_{i}\,|\,z_{1..i-1},\epsilon_{i}^{k})$$

Structured SIVI entropy bound:

$$\begin{split} & - \mathbb{E}_{q_{\phi}(z)} \log q_{\phi}(z) = - \sum_{i=1}^{D} \mathbb{E}_{z_{1...i}} \log q_{\phi}(z_{i} \mid z_{1...i-1}) \geq \\ & \geq - \mathbb{E}_{\epsilon^{0..K}} \mathbb{E}_{z \mid \epsilon^{0}} \log \frac{1}{(K+1)^{D}} \prod_{i=1}^{D} \sum_{k=0}^{K} q_{\phi}(z_{i} \mid z_{1...i-1}, \epsilon_{i}^{k}) \end{split}$$

SIVI approximation:

$$q_{\phi}(z) \approx \frac{1}{K+1} \sum_{k=0}^{K} q_{\phi}(z \mid \epsilon^{k}) = \frac{1}{K+1} \sum_{k=0}^{K} \prod_{i=1}^{D} q_{\phi}(z_{i} \mid z_{1...i-1}, \epsilon_{i}^{k})$$

SSIVI approximation: $q_{\phi}(z) \approx \frac{1}{(K+1)^D} \prod_{i=1}^D \sum_{k=0}^K q_{\phi}(z_i | z_{1..i-1}, \epsilon_i^k)$

SIVI approximation:

$$q_{\phi}(z) \approx \frac{1}{K+1} \sum_{k=0}^{K} q_{\phi}(z \mid \epsilon^{k}) = \frac{1}{K+1} \sum_{k=0}^{K} \prod_{i=1}^{D} q_{\phi}(z_{i} \mid z_{1...i-1}, \epsilon_{i}^{k})$$

SSIVI approximation: $q_{\phi}(z) \approx \frac{1}{(K+1)^D} \prod_{i=1}^{D} \sum_{k=0}^{K} q_{\phi}(z_i \mid z_{1..i-1}, \epsilon_i^k)$

SIVI approximation:

$$q_{\phi}(z) \approx \frac{1}{K+1} \sum_{k=0}^{K} q_{\phi}(z \mid \epsilon^{k}) = \frac{1}{K+1} \sum_{k=0}^{K} \prod_{i=1}^{D} q_{\phi}(z_{i} \mid z_{1...i-1}, \epsilon_{i}^{k})$$

SSIVI approximation: $q_{\phi}(z) \approx \frac{1}{(K+1)^D} \prod_{i=1}^{D} \sum_{k=0}^{K} q_{\phi}(z_i \mid z_{1..i-1}, \epsilon_i^k)$

SIVI approximation:

$$q_{\phi}(z) \approx \frac{1}{K+1} \sum_{k=0}^{K} q_{\phi}(z \mid \epsilon^{k}) = \frac{1}{K+1} \sum_{k=0}^{K} \prod_{i=1}^{D} q_{\phi}(z_{i} \mid z_{1...i-1}, \epsilon_{i}^{k})$$

SSIVI approximation:
$$q_{\phi}(z) \approx \frac{1}{(K+1)^D} \prod_{i=1}^D \sum_{k=0}^K q_{\phi}(z_i \mid z_{1...i-1}, \epsilon_i^k)$$

- ► Same computational complexity! (given the structure of $q_{\phi}(z)$)
- ► ELBO gap is **decreased** by

$$\mathbb{E}_{\epsilon^{0..K}} KL \left(\frac{1}{K+1} \sum_{k=0}^{K} q_{\phi}(z \mid \epsilon^{k}) \mid \frac{1}{(K+1)^{D}} \prod_{i=1}^{D} \sum_{k=0}^{K} q_{\phi}(z_{i} \mid z_{1..i-1}, \epsilon_{i}^{k}) \right)$$

AUTOREGRESSIVE SEMI-IMPLICIT GENERATOR

$$h_1 = h(0,0), \qquad \epsilon_1 \sim \mathcal{N}(\epsilon_1 \mid 0,1), \qquad z_1 \sim \mathcal{N}(z_1 \mid \mu(h_1,\epsilon_1), \sigma^2(h_1,\epsilon_1)),$$

$$h_i = h(z_{i-1}, h_{i-1}), \qquad \epsilon_i \sim \mathcal{N}(\epsilon_i \mid 0,1), \qquad z_i \sim \mathcal{N}(z_i \mid \mu(h_i,\epsilon_i), \sigma^2(h_i,\epsilon_i)).$$

Defines a general structure:

$$q_{\phi}(z) = q_{\phi}(z_1)q_{\phi}(z_2 \mid z_1) \cdot ... \cdot q_{\phi}(z_D \mid z_{1..D-1})$$

Implemented as a recurrent neural network

EXPERIMENTS: AUTOREGRESSIVE SEMI-IMPLICIT GENERATOR

$$p(z) = \text{Laplace}(z_1 \mid 0, 1) \prod_{i=2}^{d} \text{Laplace}(z_i \mid z_{i-1}, 1); \quad KL\left(q_{\phi}(z) \mid\mid p(z)\right) \rightarrow \min_{\phi}$$

EXPERIMENTS: DEEP GAUSSIAN PROCESSES

All columns but last are taken from Havasi et al. SGHMC DGP (NeurIPS, 2018)

Structured SIVI posterior approximation:

$$q_{\phi}(u^{1..L}) = q_{\phi}(u^{1}) \prod_{l=2}^{L} q_{\phi}(u^{l} | u^{l-1})$$

$$q_{\phi}(u^{l} | u^{l-1}) = \int q_{\phi}(u^{l} | \epsilon^{l}, u^{l-1}) q_{\phi}(\epsilon^{l}) d\epsilon^{l}$$

Discussion

► Utilizing structure results in a tighter evidence bound!

► Would utilizing structure help in UIVI, IWHVI, AVB and others?

► How would auto regressive semi-implicit models compare to straightforward semi-implicit models?