

DC-DC Converter

Efficiency Comparison

Table of Contents

1.	DO	CUMENT HISTORY	2
2.		ERVIEW	_
	2.1	GOAL	_
	2.2	FEATURES:	
	2.3	INSTRUMENT	3
	2.3.	.1 Programmable Load: TENMA_7213210	3
	2.3.		
	2.3.		
3.		CERTAINTY	
	3.1	CALIBRATION IN SHORT CIRCUIT	
	3.2	CALCULATION	4
	3.2.	.1 Uncertainty type A	4
	3.2.	* **	
	3.2.		
	3.3	SPECIFICATIONS	
4.	EX/	AMPLE OF USE	8
	4.1	HELP	
	4.2	Instrument Detection	
	4.3	CALIBRATION	9
	4.4	PLOTTING DATA	
	4.5	Dropout Voltage	
5.	PAF	RAMETERS COMPARISON	
	5.1	SWITCHING FREQUENCY WITH WE-MAPI 744 383 560 22	
	5.2	WE-MAPI 744 383 560 22 VS WE-MAPI 744 383 560 22 H T	
6.	FIG	GURES TABLE	14

1. Document history

Date	Version	Author	Change description
08/09/2020	1.0	Simon DEGRES	Creation

2. Overview

2.1 Goal

The benchmark is composed of a power supply, an ammeter, a DC-DC converter and a load. We can calculate the input and output power in order to calculate the efficiency of the DC-DC converter.

Thanks to a four-terminal sensing available with the instruments, the dropout voltage in the cable is compensated.

The DC-DC Converter benchmark allows to plot efficiency curves in order to compare different parameters that can influence power conversion. The goal is to measure and maximize the efficiency on a DC-DC Converter.

2.2 Features:

- Editable parameters for measure
- · Calibration possibility
- Efficiency and Losses Curves
- Dropout Voltage in the DC-DC

2.3 Instrument

2.3.1 Programmable Load: TENMA_7213210

FIGURE 1: **TENMA_7213210**

2.3.2 Power Supply: ITECH_IT6724C

FIGURE 2: ITECH_IT6724C

2.3.3 Ammeter: GWINSTEK_8341

FIGURE 3: GWINSTEK_8341

3. Uncertainty

3.1 Calibration in short circuit

We add an offset to lout to calibrate the measure and we obtain this curve:

3.2 Calculation

3.2.1 Uncertainty type A

3 measure in the same condition allows us to determine the standard deviation.

$$U_A = \frac{\sigma}{\sqrt{3}}$$

For example, when lout=299.2mA, lin=137mA, Vout=4.967 et Vin =12V

We have
$$U_A(Pin) = \frac{\sigma}{\sqrt{3}} = \frac{0.32 \times 10^{-3}}{\sqrt{3}} = 0.18 mW$$
 and $U_A(Pout) = \frac{\sigma}{\sqrt{3}} = \frac{0.86 \times 10^{-3}}{\sqrt{3}} = 0.50 mW$

3.2.2 Uncertainty type B

$$y = f(x_1, x_2, \dots, x_k)$$

$$u^2(y) = \sum_{k=0}^n \left(\frac{\partial y}{\partial x_1}\right)^2 u^2(x_1) + \left(\frac{\partial y}{\partial x_2}\right)^2 u^2(x_2) + \dots + \left(\frac{\partial y}{\partial x_k}\right)^2 u^2(x_k)$$

$$P = U \times I$$

$$u(P) = \sqrt{I^2 \times u^2(U) + U^2 \times u^2(I)}$$

We can found u(I) and u(U) in the manual of the instrument that measure the parameter.

lin is measured by the ammeter with a Range of 500mA, so $U(Iin) = Iin \times 0.001 + 4 \times 10nA$

Vin is measured by the supply, so $U(Vin) = Vin \times 0.0003 + 10 \text{mV}$

lout is measured by the load but fixed by the ammeter when the calibration is done. With a Range of 500mA, so $U(\text{lout}) = \text{lout} \times 0.001 + 4 \times 10\text{nA}$

Vout is measured by the load, with a Range of 18V, so U(Vout) = Vout × 0.0003 + 0.00025 * 18V

With our example, lout=299.2mA, lin=137mA, Vout=4.967 et Vin =12V

We calculate the power: $Pin = 12 \times 0.137 = 1.65W \ Pout = 4.967 \times 0.2992 = 1.49W$

We calculate the uncertainty associated to power: $U_B(Pin) = 2.92mW$ $U_B(Pout) = 2.49mW$

3.2.1 Uncertainty type C

$$U_C = \sqrt{U_A^2 + U_B^2}$$

$$U_C(Pin) = 2.93mW$$

$$U_C(Pout) = 2.54mW$$

$$\eta = \frac{Pout}{Pin}$$

$$u(\eta) = \sqrt{\frac{1}{Pin^2} \times u^2(Pout) + \left(\frac{-Pout}{Pin^2}\right)^2 \times u^2(Pin)}$$

$$\eta = \frac{1.49}{1.65} = 89.99\% \quad U_C(\eta) = 0.22\%$$

Finally, we associate the uncertainty to the efficiency with 95% chance supposing a normal law by multiplying by 2 the uncertainty:

$$\eta = 89.99\% \pm 0.44\%$$
 $\eta \in [89.55\% - 90.43\%]$

We can put this uncertainty on curves.

The curve below represent the efficiency of a DC-DC Converter associated with a MAPI and a switching frequency of 700 kHz.

FIGURE 4: DC-DC WE-MAPI700KHZ WITH UNCERTAINTY AND CALIBER 0.5A

If we want to measure higher current which is not possible with our converter because it only provides 2A at the output. We can see on the curve below that there is less precision on little current but it improves when the current is rising.

FIGURE 5: DC-DC WE-MAPI700KHZ WITH UNCERTAINTY AND CALIBER 5A

3.3 Specifications

SPECIFICATIONS

Models		72-13200	72-13210
Input rating	Power	150W	300W
	Voltage	0-120V	0-120V
	Current	0-30A	0-30A
CC mode	Range	0-3A / 0-30A	0-3A / 0-30A
	Resolution	0.1mA / 1mA	0.1mA / 1mA
	Accuracy	± (0.05% of set+0.045% off.s)	± (0.05% of set+0.045% off.s)
CV mode	Range	0-18V / 0-120V	0-18V / 0-120V
	Resolution	0.1mV / 10mV	0.1mV / 10mV
	Accuracy	± (0.05% of set+0.025% off.s)	± (0.05% of set+0.025% off.s)
CR mode	Range	0.05Ω - 10Ω / 10Ω - $7.5k\Omega$	0.05Ω - 10Ω / 10Ω - $7.5k\Omega$
	Resolution	0.1Ω	0.1Ω
	Accuracy	$\pm (0.05\% \text{ of set+0.025\% off.s})$	$\pm (0.05\% \text{ of set+0.025\% off.s})$
CW mode	Range	150W	300W
	Resolution	0.01W	0.01W
	Accuracy	± (0.1% of set+0.1% off.s)	± (0.1% of set+0.1% off.s)
STOP	Range	0-3A / 0-30A	0-3A / 0-30A
	Rising	0.0001-0.3A/us- 0.001-1.5A/us	0.0001-0.3A/us- 0.001-1.5A/us
	Falling	0.0001-0.3A/us- 0.001-1.5A/us	0.0001-0.3A/us- 0.001-1.5A/us
Voltage Measurement	Range Resolution Accuracy	0-18V / 0-120V 1mV / 10mV ± (0.03% of set+0.025% off.s)	0-18V / 0-120V 1mV / 10mV ± (0.03% of set+0.025% off.s)
Current Measurement	Range Resolution Accuracy	0-3A / 0-30A 0.1mA / 1mA ± (0.05% of set+0.045% off.s)	0-3A / 0-30A 0.1mA / 1mA ± (0.05% of set+0.045% off.s)
Power Measurement	Range Resolution Accuracy	150W 0.01W ± (0.1% of set+0.1% off.s)	150W 0.01W ± (0.1% of set+0.1% off.s)

FIGURE 6: TOLERANCE LOAD TENMA

Technical Specification

Parameters	;	IT6723C	IT6724C	
Rated values (0 °C-40 °C)	voltage	0~32V		
	current	0~110A		
(0 0-40 0)	power	850W	1500W	
Load regulation	voltage	≤0.03%	+30mV	
±(% of Output+Offset)	current	≤0.1%+10mA		
Line regulation	voltage	≤0.01%	+5mV	
±(%of Output+Offset)	current	≤0.1%+	+10mA	
Setup resolution	voltage	10mV		
Setup resolution	current	10mA		
Readback resolution	voltage	10r	πV	
	current	10mA		
Setup accuracy (one year 、25°C±5°C)	voltage	≤0.03%+10mV		
±(%of Output+Offset)	current	≤0.1%+	⊦60mA	
=(/// Calput Giloot)				

FIGURE 7: TOLERANCE SUPPLY ITECH

DC Current

			Accuracy	Shunt	Burden
Range	Resolution	Full Scale	(1 year 23°C ±5°C)	Resistance	Voltage
500µA	10nA	510.00	0.05%+5	100Ω	0.06V max
5mA	100nA	5.1000	0.05%+4	100Ω	0.6V max
50mA	lμA	51.000	0.05%+4	1Ω	0.14V max
500mA	10μA	510.00	0.10%+4	1Ω	1.4V max
5 A	100μΑ	5.1000	0.25%+5	10m Ω	0.5V max
10 A	1mA	12.000	0.25%+5	$10 \text{m}\Omega$	0.8V max

FIGURE 8: TOLERANCE AMMETER GWINSTEK

4. Example of use

4.1 Help

First of all, if you need some help, there are some advice that can help you to use this interface.

Warning: Never ask 2 tasks in the same time to Scilab. It will crash.

FIGURE 9: HELP

4.2 <u>Instrument Detection</u>

Then, you need to verify that you will be able to discuss with all the instruments. By clicking on "Instrument Detection", a popup with your 3 instruments will appear.

FIGURE 10: INSTRUMENT DETECTION

If not, unplug and plug all the USB connections. If it's still not working, verify that your instruments are powered. Then verify, in the code "detection" that all the port COM match with those use in the peripheral manager.

4.3 Calibration

You will then make your calibration. Plug the input directly on the output to make a short circuit, choose your parameters (Choose Vin = Vout of your DC-DC converter), choose Efficiency and click on "Measure and plot".

FIGURE 11: CALIBRATION MEASURE

A popup will appear and if everything is ok, you will observe "Measure with out_I = 0.01" From your Imin to your Imax.

Then, your curve will appear directly on the interface like this:

FIGURE 12: CALIBRATION CURVE

You have to see a horizontal curve equal to 1. You can modify the offset and the coefficient to calibrate. Every time you change the coefficient or the offset, you can add a curve by choosing your calibration curve (here is zero.csv) in the popupmenu

FIGURE 13: CALIBRATION PLOT

And click on "Add Curve" to compare the new coefficient or offset. Be careful, you can't know which color correspond to which offset or coefficient you choose.

FIGURE 14: CHOOSING OFFSET

4.4 Plotting Data

After your calibration, you will be able to plot everything you have as data. You can plot the efficiency or the losses in function of the output current.

FIGURE 15: PLOT DATA

If you want to add some data and make a measurement. Just choose your switching frequency and your inductor directly on the PCB. Then name your file without space and be careful if you use the name of a file which already exists. Then your old data will be crushed.

Now that you have every data that you want. You can compare 2 or more different curves, for example 2 different switching frequency, you will be able to hide other curves by uncheck them at the bottom left.

FIGURE 16: HIDE CURVES TO COMPARE PARAMETERS

4.5 **Dropout Voltage**

Finally, if you want to check that you're output voltage has not fell too much. You can plot it by clicking on efficiency and choose Vout.

FIGURE 17: DROPOUT VOLTAGE

5. Parameters Comparison

5.1 Switching Frequency with WE-MAPI 744 383 560 22

FIGURE 18: SWITCHING FREQUENCY COMPARISON

FIGURE 19: ZOOM SWITCHING FREQUENCY

We can observe that from 900 kHz to 1,6MHz, the efficiency is higher than with other switching frequency.

5.2 WE-MAPI 744 383 560 22 VS WE-MAPI 744 383 560 22 H T

FIGURE 20: WE-MAPI VS WE-MAPI H T

We can observe a little difference, there is a little bit more losses with HT. It means that the efficiency will be lower.

6. Figures table

Figure 1: TENMA_7213210	3
Figure 2: ITECH_IT6724C	3
Figure 3: GWINSTEK_8341	4
Figure 4: DC-DC WE-MAPI700kHz with uncertainty and caliber 0.5A	6
Figure 5: DC-DC WE-MAPI700KHZ WITH UNCERTAINTY AND CALIBER 5A	6
Figure 6: Tolerance Load TENMA	7
Figure 7: Tolerance supply ITECH	7
Figure 8: Tolerance Ammeter GWINSTEK	7
Figure 9: HELP	8
Figure 10: Instrument detection	8
Figure 11: Calibration measure	9
Figure 12: Calibration curve	9
Figure 13: Calibration plot	10
Figure 14: Choosing offset	10
Figure 15: Plot data	11
Figure 16: Hide curves to compare parameters	12
Figure 17: Dropout Voltage	12
Figure 18: Switching frequency comparison	
Figure 19: Zoom switching frequency	
Figure 20: WE-MAPI VS WE-MAPI H T	14