Axiomatic Analysis

	Maximin	Optimism- pessimism	Minimax regret	Insufficient reason
1. Ordering	8	8	8	8
2. Symmetry	\otimes	\otimes	\otimes	\otimes
3. Strict dominance	\otimes	\otimes	\otimes	\otimes
4. Continuity	\otimes	\otimes	\otimes	Х
5. Interval scale	Х	\otimes	х	Х
6. Irrelevant alternatives	\otimes	\otimes		\otimes
7. Column linearity			\otimes	\otimes
8. Column duplication	\otimes	\otimes	\otimes	
9. Randomization	\otimes		\otimes	Х
10. Special row adjunction	х	х	\otimes	X

- $\bullet \ \ \, \text{--} \to incompatible$
- $\backslash cross \rightarrow compatible$
- $\bigotimes \rightarrow$ characterize
- To prove a rule / principle
 - The mathematical equations of a rule / principle can be proven by a set of axioms that is compatible, and characterize that rule.
- A set of axioms that characterize, and is used to prove a rule / principle must be difference between the set of axioms for other rules and principles (Re-watch lecture)
- Remark for *Irrelevant alternatives*
- Let's say $a_1 > a_2 > a_3$, insert a_4
 - ullet It's plausible if $a_1>a_2>a_4>a_3$
 - It is not plausible if $a_2>a_1>a_4>a_3$