認知モデルの説明2 (失語例)

WEAVER++/ARC model

目白大学 橋本幸成

橋本幸成 言語聴覚士 目白大学(大学院もほそぼそと) 博士(行動科学) 筑波大学 人間総合科学研究科

研究領域:失語症者のリハビリテーション

Email: ko.hashimoto@mejiro.ac.jp

つい最近、妻に連れられて上野の美術館に行きました。 何でも興味はありますが、芸術に触れるのは稀です。 キュービスト(ピカソなど)の取り組みはある種の実験だったそうで、 興味深かったですよ。

WEAVER++/ARC modelの概要

5個の語彙概念ノード 5個のレンマノード 5個の語彙入力形式ノード 10個の入力音素ノード 5個の語彙出力形式ノード 10個の出力音素ノード 5個の音節プログラムノード + それぞれの間の接続

$$a(m, t + \Delta t) = a(m, t)(1 - d) + \sum_{n} ra(n, t)$$

標的語:cat

他の単語: dog, fish, fog, mat

損傷:接続の重み r, 減衰率 d の操作 損傷によって標的と代替ノード間の活性化の差が小さくなる \rightarrow 精度が低下 \rightarrow エラー

情報伝達と神経線維

Lee et al. (2015)

脳皮質と神経線維のネットワーク

神経線維

意味処理と音韻処理

WEAVER++/ARC model (その他のモデルも大体) Ueno et al. (2011)

- 2 つの経路を想定
- 音韻処理 vs. 語彙・意味処理
- 認知的, 計算的 + **神経解剖学的**な仮定
- 音韻処理→背側、意味処理→腹側

音韻性エラーの分析

- 背側経路
- ・脳部位:input phonemes, output phonemesおよびその間の接続
 - → 上側頭回,下前頭回,弓状束

音韻性エラーの分析

- 金魚 → 「りんごじゃない…りん、りんぎょ」
 出力語彙ノード⇔出力音素ノード
 cat→matに相当
- 猫 → 「ねと」
- ステッキ → 「すてっち」
 出力語彙ノード⇔ 出力音韻ノード
 ☞語彙〇, 一部の音素×

立場氏の症例

意味性エラーの分析

- 腹側経路
- ・脳部位:lexical concepts, lemma⇒中下側頭葉

意味性エラーの分析

- 物干し竿→「やり」
 レンマノード⇔出力語彙ノード
 cat→dogに相当
 視覚的類似性?
- ・ 千羽鶴 → 折り紙
 レンマノード⇔出力語彙ノード
 cat→dogに相当

語彙概念ノードの障害

- → 意味性認知症(側頭葉前方病変)による説明 本例の前頭葉病変
- →トップダウン制御の障害による意味性エラー表出?

大門氏の症例

文献:

- Roelofs, A. (2014). A dorsal-pathway account of aphasic language production: The WEAVER++/ARC model. *Cortex*, *59*, 33-48.
- Ueno, T., Saito, S., Rogers, T. T., & Ralph, M. A. L. (2011). Lichtheim 2: synthesizing aphasia and the neural basis of language in a neurocomputational model of the dual dorsal-ventral language pathways. Neuron, 72(2), 385-396.
- Lee, S. J., Lee, S. J., Song, J. Y., Kim, G. Y., Kim, H., Lee, S. J., ... & Kim, H. (2015). White matter connectivity as a neurophysiological mechanism for auditory comprehension in the neurologically normal and impaired. Communication Sciences & Disorders, 20(1), 121-132.