ALGEBRA Y ALGEBRA LINEAL 520142

PRACTICA 18: Espacios y Subespacios Vectoriales

Problema 1.

- a) Sea $V = \mathbb{C}$, espacio vectorial complejo. Demostrar que V también es un \mathbb{Q} -espacio vectorial, y en este caso interprete gráficamente la operación de multiplicación por escalar.
- b) Sea $V = \mathbb{Q}$, espacio vectorial sobre \mathbb{Q} . Mostrar que V no es un espacio vectorial real. (Indicación: construir un contra-ejemplo).
- c) Mostrar que $V = \mathbb{R} \mathbb{Q}$ no es *espacio vectorial real*, con respecto a las operaciones binarias usuales. (Indicación: construir un contra-ejemplo).
- d) Mostrar que $\mathbb{R} \mathbb{Q}$ no es cuerpo. (Indicación: construir un contra-ejemplo).

[En Práctica a) y c).]

Problema 2.

- a) Demostrar que el conjunto E de las aplicaciones $f: \mathbb{R} \to \mathbb{R}$ puede dotarse de manera natural de la estructura de espacio vectorial real.
- b) \dot{z} . Cuál de los siguientes subconjuntos de \boldsymbol{E} son subespacios vectoriales?

$$egin{array}{lll} E_1 &=& \{ \ f \in E : \ orall x \in \mathbb{R} \ f(-x) = f(x) \ \} \ \\ E_2 &=& \{ \ f \in E : \ orall x \in \mathbb{R} \ f(-x) = -f(x) \ \} \ \\ E_3 &=& \{ \ f \in E : \ f \ es \ continua \ \} \ \\ E_4 &=& \{ \ f \in E : \ f(0) = f(1) \ \} \ \\ E_5 &=& \{ \ f \in E : \ f \ es \ dos \ veces \ derivable \ y \ \ f'' - f' + f = 0 \ \} \ \\ E_6 &=& \{ \ f \in E : f \ es \ integrable \ Riemann \ \} \ \end{array}$$

c) En los casos que sean subespacios vectoriales, ξ cuál es el vector nulo ? ξ cuál es el simétrico de un elemento ? ξ cómo se expresa la ley de cancelación ? Exhibir al menos un vector no nulo (salvo para $\boldsymbol{E_5}$, que es contenido del curso de EDO.)

[En Práctica a), b) $(E_1, E_4 y E_5) y c$].

1

Problema 3.

- a) Demostrar que el conjunto $E = \mathcal{M}_{3x3}(\mathbb{Q})$ puede dotarse de manera natural de la estructura de espacio vectorial sobre \mathbb{Q} . Recordar que dos matrices $A = (a_{ij})$ y $B = (b_{ij})$ del mismo orden n son iguales sí y sólo sí, $a_{ij} = b_{ij}$ $i, j = 1, \ldots, n$.
- b) Muestre que $E_1 = \{ A \in \mathcal{M}_{3x3}(\mathbb{Q}) : \operatorname{traza}(A) = \theta := \frac{0}{1} \}$ es un \mathbb{Q} -subespacio vectorial de E.

[En Práctica b).]

Problema 4.

Determine si los siguientes conjuntos son subespacios de \mathbb{R}^3 :

a)
$$W_1 = \{ (a, b, c) \in \mathbb{R}^3 : a = b^2 \}$$

b)
$$W_2 = \{ (a, b, c) \in \mathbb{R}^3 : ab = 0 \}$$

c)
$$W_3 = \{ (a, b, c) \in \mathbb{R}^3 : a = 3b = 2c \}$$

d)
$$W_4 = \{ t \cdot (a,b,c) \in \mathbb{R}^3 : t \in \mathbb{R} \}$$

e)
$$W_5 = \{ (a, b, c) \in \mathbb{R}^3 : a+b+c=0 \}$$

f)
$$W_6 = \{ (a, b, c) \in \mathbb{R}^3 : a+b+c=1 \}$$

g)
$$W_7 = \{ (a, b, c) \in \mathbb{R}^3 : a = b \}$$

h)
$$W_8 = \{ (a, b, c) \in \mathbb{R}^3 : a = b + c \}$$

i)
$$W_9 = \{ (a, b, c) \in \mathbb{R}^3 : a = b - 1 \}$$

Además, interprete gráficamente W_3, W_4, W_5, W_6 y W_9 . [En Práctica a) y c).]

Problema 5.

Sea $V=\mathbb{C},\;$ espacio vectorial complejo, con las operaciones de suma y multiplicación por escalar usuales.

- a) Si $\alpha = 2cis(\pi/4)$ y v = 2 + 3i, represente gráficamente $\alpha \cdot v$.
- b) Demostrar que $V = \{ t \cdot (2+3i) \in \mathbb{C} : t \in \mathbb{C} \}$.
- c) Dado $(a + bi) \in \mathbb{C}$ arbitrario, ¿Qué puede decir del conjunto

$$\{\ t\cdot(a+bi)\in\mathbb{C}:t\in\mathbb{C}\ \}$$
?

d) Si α y v son como en a) y $\beta = 3cis(\pi/3)$, represente gráficamente $\alpha \cdot (\beta \cdot v)$ y $(\alpha\beta) \cdot v$.

[En Práctica a) y b).]