Corrigé test 1 Modèle 1

Exercice1:

$$A = \left\{1 + \frac{1}{2n}, n \in \mathbb{N}^*\right\}$$

Montrons d'abord que A est bornée.

Soit $x \in A \Rightarrow x = 1 + \frac{1}{2n}, n \ge 1$. On a: $n \ge 1 \Leftrightarrow 2n \ge 2 \Leftrightarrow 0 < \frac{1}{2n} \le \frac{1}{2} \Leftrightarrow 1 < 1 + \frac{1}{2n} \le \frac{3}{2} \Leftrightarrow A$ est bornée.(*) On a aussi $\frac{3}{2} \in A$ pour $n = 1, \frac{3}{2} = 1 + \frac{1}{2.1} \in A$ et $\frac{3}{2}$ est un mojorant de A, alors $\max A = \frac{3}{2} = \sup A$.

$$\inf A = 1 \Leftrightarrow \left\{ \begin{array}{l} \forall x \in A, x \geq 1 \text{ vérifiée d'aprés } (*) \\ \forall \varepsilon > 0, \exists n_{\varepsilon} \geq 1/1 + \frac{1}{2n_{\varepsilon}} < 1 + \varepsilon \end{array} \right.$$

Soit $\varepsilon > 0, 1 + \frac{1}{2n_{\varepsilon}} < 1 + \varepsilon \Rightarrow \frac{1}{2n_{\varepsilon}} < \varepsilon \Rightarrow n_{\varepsilon} > \frac{1}{2\varepsilon}$, il suffit de prendre $n_{arepsilon} = \left[rac{1}{2arepsilon}
ight] + 1.$ Exercice2:

$$\left\{ \begin{array}{c} U_0 \leq 2 \\ U_{n+1} = \frac{1}{2}U_n + 1, n \in \mathbb{N} \end{array} \right. .$$

1. Montrons que $U_n \leq 2, \forall n \in \mathbb{N}$ par recurrence.

Pour n = 0, on a $U_0 \le 2$ vraie.

Supposons que $U_n \leq 2$ et montrons que $U_{n+1} \leq 2$.

On a $U_n \leq 2 \Leftrightarrow \frac{1}{2}U_n \leq 1 \Leftrightarrow \frac{1}{2}U_n + 1 \leq 2 \Leftrightarrow U_{n+1} \leq 2$. D'où $\forall n \in \mathbb{N}, U_n \leq 2$.

 $U_{n+1}-U_n=\frac{1}{2}U_n+1-U_n=-\frac{1}{2}U_n+1.$ On a $U_n\leq 2\Leftrightarrow -\frac{1}{2}U_n+1\geq 0$ alors (U_n) est croissante.

2. Puisque (U_n) est croissante et majorée alors elle est convergente vers l. $\lim_{n \to +\infty} U_n = l \Rightarrow \lim_{n \to +\infty} U_{n+1} = l \Leftrightarrow l = \frac{1}{2}l + 1 \Leftrightarrow l = 2, \text{ d'où } \lim_{n \to +\infty} U_n = 2.$ 3. $V_n = U_n - 2$.

$$\frac{V_{n+1}}{V_n} = \frac{\frac{1}{2}U_n + 1 - 2}{U_n - 2} = \frac{\frac{1}{2}U_n - 1}{U_n - 2} = \frac{\frac{1}{2}(U_n - 2)}{U_n - 2} = \frac{1}{2}.$$

D'où (V_n) est une suite géométrique de raison $\frac{1}{2}$.

Expression de U_n en fonction de U_0 et n.

On a (V_n) est une suite géométrique de raison $\frac{1}{2}$, alors

$$V_n = V_0 \left(\frac{1}{2}\right)^n = (U_0 - 2) \left(\frac{1}{2}\right)^n$$

et

$$U_n = V_n + 2 = (U_0 - 2) \left(\frac{1}{2}\right)^n + 2.$$