# Random Neural Network Models Application of Dynamic Mean Field Theory

Ziao Chen

Advisor: Professor Stamatis Dostoglou

University of Missouri-Columbia

May 5, 2022

### Reference

Sompolinsky, H., Crisanti, A., & Sommers, H. J. (1988). Chaos in random neural networks. *Phys. Rev. Lett.*, *61*, 259–262. https://doi.org/10.1103/PhysRevLett.61.259

Mastrogiuseppe, F., & Ostojic, S. (2018). Linking connectivity, dynamics, and computations in low-rank recurrent neural networks. *Neuron*, 99(3), 609-623

- A large recurrent network with N units (neurons).
- Each unit is characterized by  $h_i(t) \in \mathbb{R}$ ,  $i \in \{1, ..., N\}$  interpreted as membrane potential of a biological neuron.
- A related variable  $S_i(t) = \phi(h_i(t))$  interpreted as its firing rate.
- $\phi(x)$  is the non-linear activation function which defines the input-output characteristic.  $\phi$  is assumed to have a sigmoid shape  $\phi(x) \to \pm 1$  as  $x \to \pm \infty$ ,  $\phi(-x) = -\phi(x)$ . For concreteness, we choose

$$\phi(x) = \tanh(gx) \tag{1}$$

- A large recurrent network with N units (neurons).
- Each unit is characterized by  $h_i(t) \in \mathbb{R}$ ,  $i \in \{1, ..., N\}$  interpreted as membrane potential of a biological neuron.
- A related variable  $S_i(t) = \phi(h_i(t))$  interpreted as its firing rate.
- $\phi(x)$  is the non-linear activation function which defines the input-output characteristic.  $\phi$  is assumed to have a sigmoid shape  $\phi(x) \to \pm 1$  as  $x \to \pm \infty$ ,  $\phi(-x) = -\phi(x)$ . For concreteness, we choose

$$\phi(x) = \tanh(gx) \tag{1}$$

- A large recurrent network with N units (neurons).
- Each unit is characterized by  $h_i(t) \in \mathbb{R}$ ,  $i \in \{1, ..., N\}$  interpreted as membrane potential of a biological neuron.
- A related variable  $S_i(t) = \phi(h_i(t))$  interpreted as its firing rate.
- $\phi(x)$  is the non-linear activation function which defines the input-output characteristic.  $\phi$  is assumed to have a sigmoid shape  $\phi(x) \to \pm 1$  as  $x \to \pm \infty$ ,  $\phi(-x) = -\phi(x)$ . For concreteness, we choose

$$\phi(x) = \tanh(gx) \tag{1}$$

- A large recurrent network with N units (neurons).
- Each unit is characterized by  $h_i(t) \in \mathbb{R}$ ,  $i \in \{1, ..., N\}$  interpreted as membrane potential of a biological neuron.
- A related variable  $S_i(t) = \phi(h_i(t))$  interpreted as its firing rate.
- $\phi(x)$  is the non-linear activation function which defines the input-output characteristic.  $\phi$  is assumed to have a sigmoid shape  $\phi(x) \to \pm 1$  as  $x \to \pm \infty$ ,  $\phi(-x) = -\phi(x)$ . For concreteness, we choose

$$\phi(x) = \tanh(gx) \tag{1}$$

• The dynamic of the network is given by N equations

$$\dot{h}_i = -h_i + \sum_{j=1}^N J_{ij} S_j = -h_i + \sum_{j=1}^N J_{ij} \phi(h_j) = -h_i + \hat{\eta}_i$$
 (2)

 $\hat{\eta}_i$  denotes the total input to the *i*-th unit.

• The connectivity matrix J is a  $n \times n$  Gaussian random matrix

# Assumption (1)

 $J_{ij}$  's are i.i.d. and  $J_{ij} \sim \mathcal{N}(0, \mathrm{J}^2/N)$  .

• The dynamic of the network is given by N equations

$$\dot{h}_i = -h_i + \sum_{j=1}^N J_{ij} S_j = -h_i + \sum_{j=1}^N J_{ij} \phi(h_j) = -h_i + \hat{\eta}_i$$
 (2)

 $\hat{\eta}_i$  denotes the total input to the *i*-th unit.

• The connectivity matrix J is a  $n \times n$  Gaussian random matrix.

# Assumption (1)

 $J_{ij}$ 's are i.i.d. and  $J_{ij} \sim \mathcal{N}(0, \mathrm{J}^2/N)$ .

# Dynamic mean-field theory

Each  $\hat{\eta}_i$  can be approximated by a **Gaussian process**  $\eta_i(t)$ .

## Assumption (2)

The random connectivity J efficiently decorrelates single unit activity in the limit of  $N \to \infty$ . More specifically, for each unit j, its output  $S_j$  is uncorrelated of its outgoing weights  $J_{ij}$ ,  $\forall i$ .

A self-consistent consequence:  $\hat{\eta}_i$ 's are uncorrelated with mean 0.

Calculate the first two moments of  $\hat{\eta}_i$  over realizations of J.

$$\mathbb{E}[\hat{\eta}_i(t)] = \sum_{i=1}^N \mathbb{E}[J_{ij}S_j(t)] = \sum_{i=1}^N \mathbb{E}[J_{ij}]\mathbb{E}[S_j(t)] = 0 \quad \forall t$$
 (3)

$$\mathbb{E}[\hat{\eta}_{i}(t)\hat{\eta}_{j}(t+\tau)] = \mathbb{E}\left[\left(\sum_{k=1}^{N} J_{ik}S_{k}(t)\right)\left(\sum_{l=1}^{N} J_{jl}S_{l}(t+\tau)\right)\right]$$

$$= \sum_{k=1}^{N} \sum_{l=1}^{N} \mathbb{E}[J_{ik}J_{jl}S_{k}(t)S_{l}(t+\tau)]$$

$$= \sum_{k=1}^{N} \sum_{l=1}^{N} \mathbb{E}[J_{ik}J_{jl}]\mathbb{E}[S_{k}(t)S_{l}(t+\tau)]$$

$$= \delta_{ij} \frac{J^{2}}{N} \sum_{k=1}^{N} \mathbb{E}[S_{k}(t)S_{k}(t+\tau)]$$

$$(4)$$

Calculate the first two moments of  $\hat{\eta}_i$  over realizations of J.

$$\mathbb{E}[\hat{\eta}_i(t)] = \sum_{j=1}^N \mathbb{E}[J_{ij}S_j(t)] = \sum_{j=1}^N \mathbb{E}[J_{ij}]\mathbb{E}[S_j(t)] = 0 \quad \forall t$$
 (3)

$$\begin{split} \mathbb{E}[\hat{\eta}_i(t)\hat{\eta}_j(t+\tau)] &= \mathbb{E}\left[\left(\sum_{k=1}^N J_{ik}S_k(t)\right)\left(\sum_{l=1}^N J_{jl}S_l(t+\tau)\right)\right] \\ &= \sum_{k=1}^N \sum_{l=1}^N \mathbb{E}[J_{ik}J_{jl}S_k(t)S_l(t+\tau)] \\ &= \sum_{k=1}^N \sum_{l=1}^N \mathbb{E}[J_{ik}J_{jl}]\mathbb{E}[S_k(t)S_l(t+\tau)] \\ &= \delta_{ij}\frac{\mathrm{J}^2}{N} \sum_{l=1}^N \mathbb{E}[S_k(t)S_k(t+\tau)] \end{split}$$

(4)

Assume  $h_i(t)$ 's stationary process. Define an **autocorrelation** function:

$$C(\tau) := \mathbb{E}[N^{-1} \sum_{i=1}^{N} S_i(t) S_i(t+\tau)]$$
 (5)

With equation (4)

$$\mathbb{E}[\hat{\eta}_i(t)\hat{\eta}_i(t+\tau)] = J^2 C(\tau), \quad \forall i$$
 (6)

**Note:** 
$$\mathbb{E}[\hat{\eta}_i(t)\hat{\eta}_j(s)] = 0, \forall t, s, i \neq j.$$

Assume  $h_i(t)$ 's stationary process. Define an **autocorrelation** function:

$$C(\tau) := \mathbb{E}[N^{-1} \sum_{i=1}^{N} S_i(t) S_i(t+\tau)]$$
 (5)

With equation (4)

$$\mathbb{E}[\hat{\eta}_i(t)\hat{\eta}_i(t+\tau)] = J^2 C(\tau), \quad \forall i$$
 (6)

**Note:**  $\mathbb{E}[\hat{\eta}_i(t)\hat{\eta}_j(s)] = 0, \forall t, s, i \neq j.$ 

The dynamic mean field theory approximates the inputs to each neuron  $\hat{\eta}_i$ 's by independent Gaussian processes  $\eta_i$ 's, with the same first and second moments as  $\hat{\eta}_i$ 's. This approximation becomes exact in the limit of  $N \to \infty$ .

#### Because

- $\hat{\eta}_i(t) = \sum_{j=1}^N J_{ij}S_j(t)$
- For any i, j,  $\mathbb{E}[J_{ij}S_j(t)] = 0$
- $\mathbb{E}[(J_{ij}S_j(t))^2] = N^{-1}J^2\mathbb{E}[S_j(t)^2] = (\sigma_S J)^2/N$  for some  $\sigma_S < \infty$  since  $|S_j| < 1$  and the network is homogeneous.
- Assuming  $S_j$ 's are independent, apply central limit theorem as  $N \to \infty$ .

The dynamic mean field theory approximates the inputs to each neuron  $\hat{\eta}_i$ 's by independent Gaussian processes  $\eta_i$ 's, with the same first and second moments as  $\hat{\eta}_i$ 's. This approximation becomes exact in the limit of  $N \to \infty$ .

#### Because

- $\hat{\eta}_i(t) = \sum_{j=1}^N J_{ij}S_j(t)$
- For any i, j,  $\mathbb{E}[J_{ij}S_j(t)] = 0$
- $\mathbb{E}[(J_{ij}S_j(t))^2] = N^{-1}J^2\mathbb{E}[S_j(t)^2] = (\sigma_S J)^2/N$  for some  $\sigma_S < \infty$  since  $|S_j| < 1$  and the network is homogeneous.
- Assuming  $S_j$ 's are independent, apply central limit theorem as  $N \to \infty$ .

The dynamic mean field theory approximates the inputs to each neuron  $\hat{\eta}_i$ 's by independent Gaussian processes  $\eta_i$ 's, with the same first and second moments as  $\hat{\eta}_i$ 's. This approximation becomes exact in the limit of  $N \to \infty$ .

#### Because

- $\hat{\eta}_i(t) = \sum_{j=1}^N J_{ij}S_j(t)$
- For any  $i, j, \mathbb{E}[J_{ij}S_i(t)] = 0$
- $\mathbb{E}[(J_{ij}S_j(t))^2] = N^{-1}J^2\mathbb{E}[S_j(t)^2] = (\sigma_S J)^2/N$  for some  $\sigma_S < \infty$  since  $|S_j| < 1$  and the network is homogeneous.
- Assuming  $S_j$ 's are independent, apply central limit theorem as  $N \to \infty$ .

The dynamic mean field theory approximates the inputs to each neuron  $\hat{\eta}_i$ 's by independent Gaussian processes  $\eta_i$ 's, with the same first and second moments as  $\hat{\eta}_i$ 's. This approximation becomes exact in the limit of  $N \to \infty$ .

#### Because

- $\hat{\eta}_i(t) = \sum_{j=1}^N J_{ij}S_j(t)$
- For any i, j,  $\mathbb{E}[J_{ij}S_j(t)] = 0$
- $\mathbb{E}[(J_{ij}S_j(t))^2] = N^{-1}J^2\mathbb{E}[S_j(t)^2] = (\sigma_S J)^2/N$  for some  $\sigma_S < \infty$  since  $|S_j| < 1$  and the network is homogeneous.
- Assuming  $S_j$ 's are independent, apply central limit theorem as  $N \to \infty$ .

The dynamic mean field theory approximates the inputs to each neuron  $\hat{\eta}_i$ 's by independent Gaussian processes  $\eta_i$ 's, with the same first and second moments as  $\hat{\eta}_i$ 's. This approximation becomes exact in the limit of  $N \to \infty$ .

#### Because

- $\hat{\eta}_i(t) = \sum_{j=1}^N J_{ij}S_j(t)$
- For any i, j,  $\mathbb{E}[J_{ij}S_j(t)] = 0$
- $\mathbb{E}[(J_{ij}S_j(t))^2] = N^{-1}J^2\mathbb{E}[S_j(t)^2] = (\sigma_S J)^2/N$  for some  $\sigma_S < \infty$  since  $|S_i| < 1$  and the network is homogeneous.
- Assuming  $S_j$ 's are independent, apply central limit theorem as  $N \to \infty$ .

There exist processes  $\eta_i$ 's that have the same first two moments of  $\hat{\eta}_i$ 's.

Because for any finite set of indices  $\{t_1,\ldots,t_M\}$ , there exist random variables  $\{\eta_i(t_j)\}_{i\in\{1,\ldots,N\},j\in\{1,\ldots,M\}}$  that form a Gaussian MN-vector with

$$\mathbb{E}[\eta_i(t_j)] = 0, \quad \mathbb{E}[\eta_i(t_j)\eta_k(t_l)] = \delta_{ik} J^2 C(t_j - t_l), \quad \forall i, j, k, l$$

Then  $\eta_i$ 's are independent Gaussian processes. In particular

$$\mathbb{E}[\eta_i(t)\eta_i(t+\tau)] = J^2 C(\tau), \quad \forall i$$
 (7)

There exist processes  $\eta_i$ 's that have the same first two moments of  $\hat{\eta}_i$ 's.

Because for any finite set of indices  $\{t_1,\ldots,t_M\}$ , there exist random variables  $\{\eta_i(t_j)\}_{i\in\{1,\ldots,N\},j\in\{1,\ldots,M\}}$  that form a Gaussian MN-vector with

$$\mathbb{E}[\eta_i(t_j)] = 0, \quad \mathbb{E}[\eta_i(t_j)\eta_k(t_l)] = \delta_{ik}J^2C(t_j - t_l), \quad \forall i, j, k, l$$

Then  $\eta_i$ 's are independent Gaussian processes. In particular,

$$\mathbb{E}[\eta_i(t)\eta_i(t+\tau)] = J^2 C(\tau), \quad \forall i$$
 (7)

Under assumption 3, the dynamic of each unit is reduced to a Langevin-like equation

$$\dot{h}_i = -h_i + \eta_i \tag{8}$$

#### Claim:

If  $\eta$  is stationary Gaussian process, then an h that follows  $\dot{h}=-h+\eta$  is also a stationary Gaussian process.

First, solve the differential equation with initial condition  $h(t_0)$ 

$$h(t) = \int_{t_0}^t e^{t'-t} \eta(t') dt' + e^{t_0-t} h(t_0)$$

Assuming  $e^{t_0}h(t_0) \to 0$  as  $t_0 \to -\infty$ 

$$h(t) = \int_{-\infty}^{t} e^{t'-t} \eta(t') dt' = \int f(t, t') \eta(t') dt'$$
 (9)

where  $f(t,t')=e^{t'-t}\chi_{(-\infty,t]}(t')$ 

Under assumption 3, the dynamic of each unit is reduced to a Langevin-like equation

$$\dot{h}_i = -h_i + \eta_i \tag{8}$$

#### Claim:

If  $\eta$  is stationary Gaussian process, then an h that follows  $\dot{h}=-h+\eta$  is also a stationary Gaussian process.

First, solve the differential equation with initial condition  $h(t_0)$ 

$$h(t) = \int_{t_0}^t e^{t'-t} \eta(t') dt' + e^{t_0-t} h(t_0)$$

Assuming  $e^{t_0}h(t_0) o 0$  as  $t_0 o -\infty$ 

$$h(t) = \int_{-\infty}^{t} e^{t'-t} \eta(t') dt' = \int f(t, t') \eta(t') dt'$$
(9)

where  $f(t, t') = e^{t'-t} \chi_{(-\infty, t]}(t')$ .

Under assumption 3, the dynamic of each unit is reduced to a Langevin-like equation

$$\dot{h}_i = -h_i + \eta_i \tag{8}$$

#### Claim:

If  $\eta$  is stationary Gaussian process, then an h that follows  $\dot{h}=-h+\eta$  is also a stationary Gaussian process.

First, solve the differential equation with initial condition  $h(t_0)$ 

$$h(t) = \int_{t}^{t} e^{t'-t} \eta(t') dt' + e^{t_0-t} h(t_0)$$

Assuming  $e^{t_0}h(t_0) \rightarrow 0$  as  $t_0 \rightarrow -\infty$ 

$$h(t) = \int_{-\infty}^{t} e^{t'-t} \eta(t') dt' = \int f(t,t') \eta(t') dt'$$
 (9)

where  $f(t, t') = e^{t'-t} \chi_{(-\infty, t]}(t')$ .

The cumulant generating function of a random variable X is defined as

$$\psi(\lambda) = \ln \mathbb{E}[e^{\lambda X}]$$

If  $\psi$  can be expanded as a power series

$$\psi(\lambda) = \sum_{n=1}^{\infty} \frac{\lambda^n}{n!} \langle X^n \rangle_c$$

then  $\langle X^n \rangle_c$  is called the *n*-th cumulant of X.

Cumulants are related to moments of X

$$\langle X \rangle_c = \mathbb{E}[X]$$

$$\langle X^2 \rangle_c = \mathbb{E}[X^2] - \mathbb{E}[X]^2$$

$$\langle X^3 \rangle_c = \mathbb{E}[X^3] - 3\mathbb{E}[X^2]\mathbb{E}[X] + 2\mathbb{E}[X]^3$$

for  $n \le 3$ . In general, the n-th cumulant can be expressed by polynomial of moments not higher than the n-th.

The cumulant generating function of a random variable X is defined as

$$\psi(\lambda) = \ln \mathbb{E}[e^{\lambda X}]$$

If  $\psi$  can be expanded as a power series

$$\psi(\lambda) = \sum_{n=1}^{\infty} \frac{\lambda^n}{n!} \langle X^n \rangle_c$$

then  $\langle X^n \rangle_c$  is called the *n*-th cumulant of X.

Cumulants are related to moments of X

$$\begin{split} \langle X \rangle_c &= \mathbb{E}[X] \\ \langle X^2 \rangle_c &= \mathbb{E}[X^2] - \mathbb{E}[X]^2 \\ \langle X^3 \rangle_c &= \mathbb{E}[X^3] - 3\mathbb{E}[X^2]\mathbb{E}[X] + 2\mathbb{E}[X]^3 \end{split}$$

for  $n \le 3$ . In general, the n-th cumulant can be expressed by polynomial of moments not higher than the n-th.

The cumulant generating function can be extended for random vector  $(X_1, \ldots X_n)$ .

$$\psi(\lambda) = \ln \mathbb{E}[e^{\lambda \cdot X}] = \sum_{(r_1, \dots, r_n) \in \mathbb{N}_0^n \setminus \{\mathbf{0}\}} \langle X_1^{r_1} \dots X_n^{r_n} \rangle_c \prod_{k=1}^n \frac{(i\lambda_k)^{r_k}}{r_k!}$$

where the coefficients  $\langle X_1^{r_1} \dots X_n^{r_n} \rangle_c$  with  $\sum_{k=1}^n r_k = m$  are cumulants of m-th order.

**Fact:** Each m-th cumulant can be expressed in polynomial of moments  $\mathbb{E}[X_1^{r_1} \dots X_n^{r_n}]$  with  $\sum_{k=1}^n r_k \leq m$ .

## Marcinkiewicz (1939)

Gaussian distribution is the only distribution whose cumulant generating function is a polynomial, i.e. the only distribution having a finite number of non-zero cumulants (in particular, first and second order).

The cumulant generating function can be extended for random vector  $(X_1, \ldots X_n)$ .

$$\psi(\lambda) = \ln \mathbb{E}[e^{\lambda \cdot X}] = \sum_{(r_1, \dots, r_n) \in \mathbb{N}_0^n \setminus \{\mathbf{0}\}} \langle X_1^{r_1} \dots X_n^{r_n} \rangle_c \prod_{k=1}^n \frac{(i\lambda_k)^{r_k}}{r_k!}$$

where the coefficients  $\langle X_1^{r_1} \dots X_n^{r_n} \rangle_c$  with  $\sum_{k=1}^n r_k = m$  are cumulants of m-th order.

**Fact:** Each *m*-th cumulant can be expressed in polynomial of moments  $\mathbb{E}[X_1^{r_1} \dots X_n^{r_n}]$  with  $\sum_{k=1}^n r_k \leq m$ .

### Marcinkiewicz (1939)

Gaussian distribution is the only distribution whose cumulant generating function is a polynomial, i.e. the only distribution having a finite number of non-zero cumulants (in particular, first and second order).

The cumulant generating function can be extended for random vector  $(X_1, \ldots X_n)$ .

$$\psi(\lambda) = \ln \mathbb{E}[e^{\lambda \cdot X}] = \sum_{(r_1, \dots, r_n) \in \mathbb{N}_0^n \setminus \{\mathbf{0}\}} \langle X_1^{r_1} \dots X_n^{r_n} \rangle_c \prod_{k=1}^n \frac{(i\lambda_k)^{r_k}}{r_k!}$$

where the coefficients  $\langle X_1^{r_1} \dots X_n^{r_n} \rangle_c$  with  $\sum_{k=1}^n r_k = m$  are cumulants of m-th order.

**Fact:** Each m-th cumulant can be expressed in polynomial of moments  $\mathbb{E}[X_1^{r_1} \dots X_n^{r_n}]$  with  $\sum_{k=1}^n r_k \leq m$ .

# Marcinkiewicz (1939)

Gaussian distribution is the only distribution whose cumulant generating function is a polynomial, i.e. the only distribution having a finite number of non-zero cumulants (in particular, first and second order).

Any linear transform of  $\boldsymbol{\eta}$  is a Gaussian process.

$$h(t) = \int f(t, t') \eta(t') dt'$$

Because

$$\langle h(t)\rangle_{c} = \mathbb{E}[h(t)] = \int f(t,t')\mathbb{E}[\eta(t')]dt' = \int f(t,t')\langle \eta(t')\rangle_{c}dt' \qquad (10)$$

$$\langle h(t_{1})h(t_{2})\rangle_{c}$$

$$= \mathbb{E}[h(t_{1})h(t_{2})] - \mathbb{E}[h(t_{1})]\mathbb{E}[h(t_{2})]$$

$$= \iint f(t_{1},t'_{1})f(t_{2},t'_{2}) \left(\mathbb{E}[\eta(t'_{1})\eta(t'_{2})] - \mathbb{E}[\eta(t'_{1})]\mathbb{E}[\eta(t'_{2})]\right) dt'_{1}dt'_{2}$$

$$= \iint f(t_{1},t'_{1})f(t_{2},t'_{2})\langle \eta(t'_{1})\eta(t'_{2})\rangle_{c}dt'_{1}dt'_{2} \qquad (11)$$

Similarly, for any  $t_1, \ldots, t_n, n > 1$ 

$$\langle h(t_1) \dots h(t_n) \rangle_c = \int f(t_1, t_1') \cdots f(t_n, t_n') \langle \eta(t_1) \dots \eta(t_n) \rangle_c dt_1' \cdots dt_n' = 0$$

Any linear transform of  $\eta$  is a Gaussian process.

$$h(t) = \int f(t, t') \eta(t') dt'$$

Because

$$\langle h(t)\rangle_{c} = \mathbb{E}[h(t)] = \int f(t,t')\mathbb{E}[\eta(t')]dt' = \int f(t,t')\langle \eta(t')\rangle_{c}dt' \qquad (10)$$

$$\langle h(t_{1})h(t_{2})\rangle_{c}$$

$$= \mathbb{E}[h(t_{1})h(t_{2})] - \mathbb{E}[h(t_{1})]\mathbb{E}[h(t_{2})]$$

$$= \int \int f(t_{1},t'_{1})f(t_{2},t'_{2}) \left(\mathbb{E}[\eta(t'_{1})\eta(t'_{2})] - \mathbb{E}[\eta(t'_{1})]\mathbb{E}[\eta(t'_{2})]\right)dt'_{1}dt'_{2}$$

$$= \int \int f(t_{1},t'_{2})f(t_{2},t'_{2})(t'_{1})\eta(t'_{2})dt'_{2}dt'_{2}dt'_{2}dt'_{2}dt'_{2}dt'_{2}dt'_{2}dt'_{2}dt'_{2}dt'_{2}dt'_{2}dt'_{2}dt'_{2}dt'_{2}dt'_{2}dt'_{2}dt'_{2}dt'_{2}dt'_{2}dt'_{2}dt'_{2}dt'_{2}dt'_{2}dt'_{2}dt'_{2}dt'_{2}dt'_{2}dt'_{2}dt'_{2}dt'_{2}dt'_{2}dt'_{2}dt'_{2}dt'_{2}dt'_{2}dt'_{2}dt'_{2}dt'_{2}dt'_{2}dt'_{2}dt'_{2}dt'_{2}dt'_{2}dt'_{2}dt'_{2}dt'_{2}dt'_{2}dt'_{2}dt'_{2}dt'_{2}dt'_{2}dt'_{2}dt'_{2}dt'_{2}dt'_{2}dt'_{2}dt'_{2}dt'_{2}dt'_{2}dt'_{2}dt'_{2}dt'_{2}dt'_{2}dt'_{2}dt'_{2}dt'_{2}dt'_{2}dt'_{2}dt'_{2}dt'_{2}dt'_{2}dt'_{2}dt'_{2}dt'_{2}dt'_{2}dt'_{2}dt'_{2}dt'_{2}dt'_{2}dt'_{2}dt'_{2}dt'_{2}dt'_{2}dt'_{2}dt'_{2}dt'_{2}dt'_{2}dt'_{2}dt'_{2}dt'_{2}dt'_{2}dt'_{2}dt'_{2}dt'_{2}dt'_{2}dt'_{2}dt'_{2}dt'_{2}dt'_{2}dt'_{2}dt'_{2}dt'_{2}dt'_{2}dt'_{2}dt'_{2}dt'_{2}dt'_{2}dt'_{2}dt'_{2}dt'_{2}dt'_{2}dt'_{2}dt'_{2}dt'_{2}dt'_{2}dt'_{2}dt'_{2}dt'_{2}dt'_{2}dt'_{2}dt'_{2}dt'_{2}dt'_{2}dt'_{2}dt'_{2}dt'_{2}dt'_{2}dt'_{2}dt'_{2}dt'_{2}dt'_{2}dt'_{2}dt'_{2}dt'_{2}dt'_{2}dt'_{2}dt'_{2}dt'_{2}dt'_{2}dt'_{2}dt'_{2}dt'_{2}dt'_{2}dt'_{2}dt'_{2}dt'_{2}dt'_{2}dt'_{2}dt'_{2}dt'_{2}dt'_{2}dt'_{2}dt'_{2}dt'_{2}dt'_{2}dt'_{2}dt'_{2}dt'_{2}dt'_{2}dt'_{2}dt'_{2}dt'_{2}dt'_{2}dt'_{2}dt'_{2}dt'_{2}dt'_{2}dt'_{2}dt'_{2}dt'_{2}dt'_{2}dt'_{2}dt'_{2}dt'_{2}dt'_{2}dt'_{2}dt'_{2}dt'_{2}dt'_{2}dt'_{2}dt'_{2}dt'_{2}dt'_{2}dt'_{2}dt'_{2}dt'_{2}dt'_{2}dt'_{2}dt'_{2}dt'_{2}dt'_{2}dt'_{2}dt'_{2}dt'_{2}dt'_{2}dt'_{2}dt'_{2}dt'_{2}dt'_{2}dt'_{2}dt'_{2}dt'_{2}dt'_{2}dt'_{2}dt'_{2}dt'_{2}dt'_{2}dt'_{2}dt'_{2}dt'_{2}dt'_{2}dt'_{2}dt'_{2}dt'_{2}dt'_{2}dt'_{2}dt'_{2}dt'_{2}dt'_{2}dt'_{2}dt'_{2}dt'_{2}dt'_{2}dt'_{2}dt'_{2}dt'_{2}dt'_{2}dt'_{2}dt'_{2}dt'_{2}dt'_{2}dt'_{2}dt'_{2}dt'_{2}dt'_{2}dt'_{2}dt'_{2}dt'_{2}dt'_{2}dt'_{2}dt'_{2}dt'_{2}dt'_{2}dt'_$$

Similarly, for any  $t_1, \ldots, t_n$ , n > 1

$$\langle h(t_1) \dots h(t_n) \rangle_c = \int f(t_1, t_1') \cdots f(t_n, t_n') \langle \eta(t_1) \dots \eta(t_n) \rangle_c dt_1' \cdots dt_n' = 0$$

Any linear transform of  $\boldsymbol{\eta}$  is a Gaussian process.

$$h(t) = \int f(t, t') \eta(t') dt'$$

Because

$$\langle h(t)\rangle_{c} = \mathbb{E}[h(t)] = \int f(t,t')\mathbb{E}[\eta(t')]dt' = \int f(t,t')\langle \eta(t')\rangle_{c}dt' \qquad (10)$$

$$\langle h(t_{1})h(t_{2})\rangle_{c}$$

$$= \mathbb{E}[h(t_{1})h(t_{2})] - \mathbb{E}[h(t_{1})]\mathbb{E}[h(t_{2})]$$

$$= \iint f(t_{1},t'_{1})f(t_{2},t'_{2}) \left(\mathbb{E}[\eta(t'_{1})\eta(t'_{2})] - \mathbb{E}[\eta(t'_{1})]\mathbb{E}[\eta(t'_{2})]\right) dt'_{1}dt'_{2}$$

$$= \iint f(t_{1},t'_{1})f(t_{2},t'_{2})\langle \eta(t'_{1})\eta(t'_{2})\rangle_{c}dt'_{1}dt'_{2} \qquad (11)$$

Similarly, for any  $t_1, \ldots, t_n$ , n > 1

$$\langle h(t_1) \dots h(t_n) \rangle_c = \int f(t_1, t_1') \cdots f(t_n, t_n') \langle \eta(t_1) \dots \eta(t_n) \rangle_c dt_1' \cdots dt_n' = 0$$

Any linear transform of  $\eta$  is a Gaussian process.

 $= \mathbb{E}[h(t_1)h(t_2)] - \mathbb{E}[h(t_1)]\mathbb{E}[h(t_2)]$ 

$$h(t) = \int f(t, t') \eta(t') dt'$$

Because

 $\langle h(t_1)h(t_2)\rangle_c$ 

$$\langle h(t)\rangle_c = \mathbb{E}[h(t)] = \int f(t,t')\mathbb{E}[\eta(t')]dt' = \int f(t,t')\langle \eta(t')\rangle_c dt'$$
 (10)

$$= \iint f(t_1, t_1') f(t_2, t_2') \left( \mathbb{E}[\eta(t_1') \eta(t_2')] - \mathbb{E}[\eta(t_1')] \mathbb{E}[\eta(t_2')] \right) dt_1' dt_2'$$

$$= \iint f(t_1, t_1') f(t_2, t_2') \langle \eta(t_1') \eta(t_2') \rangle_c dt_1' dt_2'$$
(11)
Similarly, for any  $t_1, \dots, t_n$ ,  $n > 2$ 

 $\langle h(t_1) \dots h(t_n) \rangle_c = \int f(t_1, t_1') \cdots f(t_n, t_n') \langle \eta(t_1) \dots \eta(t_n) \rangle_c dt_1' \cdots dt_n' = 0$ 

Because by change of variable t'' = t' - t

$$h(t) = \int_{-\infty}^t g(t-t')\eta(t')dt' = \int_{-\infty}^0 g(-t'')\eta(t''+t)dt'$$

Its mean does not depend on t and its correlation depends only on  $t_2-t_1$ 

$$\begin{split} \mathbb{E}[h(t)] &= \int_{-\infty}^{0} g(-t') \mathbb{E}[\eta(t'+t)] dt' \\ \mathbb{E}[h(t_1)h(t_2)] &= \langle h(t_1)h(t_2) \rangle_c + \mathbb{E}[h(t_1)] \mathbb{E}[h(t_2)] \\ &= \int_{-\infty}^{0} \int_{-\infty}^{0} g(-t_1') g(-t_2') \mathbb{E}[\eta(t_1'+t_1)\eta(t_2'+t_2)] dt_1' dt_2' + \mathbb{E}[h(t)]^2 \\ &= \int_{-\infty}^{0} \int_{-\infty}^{0} g(-t_1') g(-t_2') \mathbb{E}[\eta(t_1')\eta(t_2'+t_2-t_1)] dt_1' dt_2' + \mathbb{E}[h(t)]^2 \end{split}$$

Because by change of variable t'' = t' - t

$$h(t) = \int_{-\infty}^t g(t-t')\eta(t')dt' = \int_{-\infty}^0 g(-t'')\eta(t''+t)dt''$$

Its mean does not depend on t and its correlation depends only on  $t_2-t_1$ .

$$\mathbb{E}[h(t)] = \int_{-\infty}^{0} g(-t') \mathbb{E}[\eta(t'+t)] dt' 
\mathbb{E}[h(t_1)h(t_2)] 
= \langle h(t_1)h(t_2)\rangle_c + \mathbb{E}[h(t_1)] \mathbb{E}[h(t_2)] 
= \int_{-\infty}^{0} \int_{-\infty}^{0} g(-t_1')g(-t_2') \mathbb{E}[\eta(t_1'+t_1)\eta(t_2'+t_2)] dt_1' dt_2' + \mathbb{E}[h(t)]^2 
= \int_{-\infty}^{0} \int_{-\infty}^{0} g(-t_1')g(-t_2') \mathbb{E}[\eta(t_1')\eta(t_2'+t_2-t_1)] dt_1' dt_2' + \mathbb{E}[h(t)]^2$$

Because by change of variable t'' = t' - t

$$h(t)=\int_{-\infty}^t g(t-t')\eta(t')dt'=\int_{-\infty}^0 g(-t'')\eta(t''+t)dt''$$

Its mean does not depend on t and its correlation depends only on  $t_2-t_1$ .

$$\mathbb{E}[h(t)] = \int_{-\infty}^{0} g(-t') \mathbb{E}[\eta(t'+t)] dt'$$

$$\mathbb{E}[h(t_1)h(t_2)]$$

$$= \langle h(t_1)h(t_2)\rangle_c + \mathbb{E}[h(t_1)] \mathbb{E}[h(t_2)]$$

$$= \int_{-\infty}^{0} \int_{-\infty}^{0} g(-t'_1)g(-t'_2) \mathbb{E}[\eta(t'_1+t_1)\eta(t'_2+t_2)] dt'_1 dt'_2 + \mathbb{E}[h(t)]^2$$

$$= \int_{-\infty}^{0} \int_{-\infty}^{0} g(-t'_1)g(-t'_2) \mathbb{E}[\eta(t'_1)\eta(t'_2+t_2-t_1)] dt'_1 dt'_2 + \mathbb{E}[h(t)]^2$$

Because by change of variable t'' = t' - t

$$h(t)=\int_{-\infty}^t g(t-t')\eta(t')dt'=\int_{-\infty}^0 g(-t'')\eta(t''+t)dt''$$

Its mean does not depend on t and its correlation depends only on  $t_2-t_1$ .

$$\begin{split} \mathbb{E}[h(t)] &= \int_{-\infty}^{0} g(-t') \mathbb{E}[\eta(t'+t)] dt' \\ \mathbb{E}[h(t_1)h(t_2)] &= \langle h(t_1)h(t_2) \rangle_c + \mathbb{E}[h(t_1)] \mathbb{E}[h(t_2)] \\ &= \int_{-\infty}^{0} \int_{-\infty}^{0} g(-t_1') g(-t_2') \mathbb{E}[\eta(t_1'+t_1)\eta(t_2'+t_2)] dt_1' dt_2' + \mathbb{E}[h(t)]^2 \\ &= \int_{-\infty}^{0} \int_{-\infty}^{0} g(-t_1') g(-t_2') \mathbb{E}[\eta(t_1')\eta(t_2'+t_2-t_1)] dt_1' dt_2' + \mathbb{E}[h(t)]^2 \end{split}$$

# Solving the autocorrelation function

Define the local-field autocorrelation

$$\Delta(\tau) := \mathbb{E}[h_i(t)h_i(t+\tau)] \tag{12}$$

We claim that

$$\ddot{\Delta} = \Delta - J^2 C \tag{13}$$

### Theorem (Wiener-Khinchin)

If  $\xi(t)$  is a wide-sense stationary process, with autocorrelation function  $Q(\tau) = \mathbb{E}[\xi(t)\xi(t+\tau)]$ , and has power spectral density

$$I(\omega) = \lim_{T \to \infty} \frac{1}{T} |\tilde{\xi}_T(\omega)|$$

where  $\xi_T(t) = \xi(t)\chi_{[-T/2,T/2]}(t)$  and  $\tilde{\xi}_T(\omega) = \int_{-\infty}^{\infty} \xi_T(t)e^{-i\omega t}dt$  is its Fourier transform. Then  $I = \tilde{Q}$ .

# Solving the autocorrelation function

Define the local-field autocorrelation

$$\Delta(\tau) := \mathbb{E}[h_i(t)h_i(t+\tau)] \tag{12}$$

We claim that

$$\ddot{\Delta} = \Delta - J^2 C \tag{13}$$

#### Theorem (Wiener-Khinchin)

If  $\xi(t)$  is a wide-sense stationary process, with autocorrelation function  $Q(\tau) = \mathbb{E}[\xi(t)\xi(t+\tau)]$ , and has power spectral density

$$I(\omega) = \lim_{T \to \infty} \frac{1}{T} |\tilde{\xi}_T(\omega)|^2$$

where  $\xi_T(t) = \xi(t)\chi_{[-T/2,T/2]}(t)$  and  $\tilde{\xi}_T(\omega) = \int_{-\infty}^{\infty} \xi_T(t)e^{-i\omega t}dt$  is its Fourier transform. Then  $I = \tilde{Q}$ .

$$i\omega \tilde{h}(\omega) = -\tilde{h}(\omega) + \tilde{\eta}(\omega)$$

$$(1+i\omega)\tilde{h}(\omega)=\tilde{\eta}(\omega)$$

$$(1+\omega^2)|\tilde{h}(\omega)|^2 = |\tilde{\eta}(\omega)|^2$$

Apply Theorem 3

$$(1+\omega^2)\tilde{\Delta}(\omega) = (1+\omega^2) \lim_{T \to \infty} \frac{1}{T} |\tilde{h}_T(\omega)|^2 = \lim_{T \to \infty} \frac{1}{T} |\tilde{\eta}_T(\omega)|^2 = J^2 \tilde{C}(\omega)$$

$$\Delta - \ddot{\Delta} = J^2 C$$

$$i\omega \tilde{h}(\omega) = -\tilde{h}(\omega) + \tilde{\eta}(\omega)$$

$$(1+i\omega)\tilde{h}(\omega)=\tilde{\eta}(\omega)$$

$$(1+\omega^2)|\tilde{h}(\omega)|^2 = |\tilde{\eta}(\omega)|^2$$

Apply Theorem 1

$$(1+\omega^2)\tilde{\Delta}(\omega) = (1+\omega^2)\lim_{T\to\infty} \frac{1}{T}|\tilde{h}_T(\omega)|^2 = \lim_{T\to\infty} \frac{1}{T}|\tilde{\eta}_T(\omega)|^2 = J^2\tilde{C}(\omega)$$

$$\Delta - \ddot{\Delta} = J^2 C$$

$$i\omega \tilde{h}(\omega) = -\tilde{h}(\omega) + \tilde{\eta}(\omega)$$

$$(1+i\omega)\tilde{h}(\omega)=\tilde{\eta}(\omega)$$

$$(1+\omega^2)|\tilde{h}(\omega)|^2 = |\tilde{\eta}(\omega)|^2$$

Apply Theorem 1

$$(1+\omega^2)\tilde{\Delta}(\omega) = (1+\omega^2)\lim_{T\to\infty} \frac{1}{T} |\tilde{h}_T(\omega)|^2 = \lim_{T\to\infty} \frac{1}{T} |\tilde{\eta}_T(\omega)|^2 = J^2 \tilde{C}(\omega)$$

$$\Delta - \ddot{\Delta} = J^2 C$$

$$i\omega \tilde{h}(\omega) = -\tilde{h}(\omega) + \tilde{\eta}(\omega)$$

$$(1+i\omega)\tilde{h}(\omega)=\tilde{\eta}(\omega)$$

$$(1+\omega^2)|\tilde{h}(\omega)|^2 = |\tilde{\eta}(\omega)|^2$$

Apply Theorem 1

$$(1+\omega^2)\tilde{\Delta}(\omega) = (1+\omega^2)\lim_{T\to\infty} \frac{1}{T}|\tilde{h}_T(\omega)|^2 = \lim_{T\to\infty} \frac{1}{T}|\tilde{\eta}_T(\omega)|^2 = J^2\tilde{C}(\omega)$$

$$\Delta - \ddot{\Delta} = J^2 C$$

$$i\omega \tilde{h}(\omega) = -\tilde{h}(\omega) + \tilde{\eta}(\omega)$$

$$(1+i\omega)\tilde{h}(\omega)=\tilde{\eta}(\omega)$$

$$(1+\omega^2)|\tilde{h}(\omega)|^2 = |\tilde{\eta}(\omega)|^2$$

Apply Theorem 1

$$(1+\omega^2)\tilde{\Delta}(\omega) = (1+\omega^2)\lim_{T\to\infty}\frac{1}{T}|\tilde{h}_T(\omega)|^2 = \lim_{T\to\infty}\frac{1}{T}|\tilde{\eta}_T(\omega)|^2 = \mathrm{J}^2\tilde{C}(\omega)$$

$$\Delta - \ddot{\Delta} = J^2 C$$

A **potential function**  $V(\Delta)$  can be constructed

$$V(\Delta) := -\frac{1}{2}\Delta^{2} + J^{2} \int_{-\infty}^{+\infty} \left\{ \int_{-\infty}^{+\infty} \Phi\left(\sqrt{\Delta(0) - |\Delta|}x + \sqrt{|\Delta|}z\right) \mathcal{D}x \right\}^{2} \mathcal{D}z$$
(14)

where

$$\mathcal{D}x := \frac{1}{\sqrt{2\pi}} e^{-x^2/2} dx$$

and in general

$$\Phi(x) := \int_0^x \phi(y) dy$$

In the particular case of equation (1)

$$\Phi(x) = g^{-1} \ln \cosh(gx)$$

We next show that V satisfies

$$\ddot{\Delta} = -\frac{\partial V}{\partial \Delta} \tag{15}$$

It suffices to show

$$\frac{\partial V}{\partial \Lambda}(\Delta(\tau)) = -\Delta(\tau) + J^2 C(\tau)$$

Let  $J^2U(\Delta)$  be the second term in equation (14). It suffices to show  $dU(\Delta(\tau))/d\Delta = C(\tau)$ .

For any given t and  $\tau$ ,  $h_i(t)$  and  $h_i(t+\tau)$  are two Gaussian variables mean 0, variance  $\Delta(0)$  and correlation  $\Delta(\tau)$ .

If  $X, Y, Z \sim \mathcal{N}(0, 1)$  independent, and

$$A = \sqrt{\Delta(0) - |\Delta(\tau)|}X + \sqrt{|\Delta(\tau)|}Z$$

$$\sqrt{\Delta(0) - |\Delta(\tau)|}Y + \operatorname{sgn}(\Delta(\tau))\sqrt{|\Delta(\tau)|}.$$

Then (A, B) have the same joint distribution as  $(h_i(t), h_i(t + \tau))$ .

Check

$$\mathbb{E}[A] = \mathbb{E}[B] = 0$$

$$\mathbb{E}[A^2] = \mathbb{E}[B^2] = \Delta(0)$$

$$\mathbb{E}[AB] = \Delta(\tau)$$

For any given t and  $\tau$ ,  $h_i(t)$  and  $h_i(t+\tau)$  are two Gaussian variables mean 0, variance  $\Delta(0)$  and correlation  $\Delta(\tau)$ .

If  $X, Y, Z \sim \mathcal{N}(0,1)$  independent, and

$$A = \sqrt{\Delta(0) - |\Delta(\tau)|} X + \sqrt{|\Delta(\tau)|} Z$$

$$B = \sqrt{\Delta(0) - |\Delta(\tau)|} Y + \operatorname{sgn}(\Delta(\tau)) \sqrt{|\Delta(\tau)|} Z$$

Then (A, B) have the same joint distribution as  $(h_i(t), h_i(t + \tau))$ .

Check

$$\mathbb{E}[A] = \mathbb{E}[B] = 0$$

$$\mathbb{E}[A^2] = \mathbb{E}[B^2] = \Delta(0)$$

$$\mathbb{E}[AB] = \Delta(\tau)$$

For any given t and  $\tau$ ,  $h_i(t)$  and  $h_i(t+\tau)$  are two Gaussian variables mean 0, variance  $\Delta(0)$  and correlation  $\Delta(\tau)$ .

If  $X, Y, Z \sim \mathcal{N}(0,1)$  independent, and

$$A = \sqrt{\Delta(0) - |\Delta(\tau)|}X + \sqrt{|\Delta(\tau)|}Z$$

$$B = \sqrt{\Delta(0) - |\Delta(\tau)|}Y + \operatorname{sgn}(\Delta(\tau))\sqrt{|\Delta(\tau)|}Z$$

Then (A, B) have the same joint distribution as  $(h_i(t), h_i(t + \tau))$ .

Check

$$\mathbb{E}[A] = \mathbb{E}[B] = 0$$
  
 $\mathbb{E}[A^2] = \mathbb{E}[B^2] = \Delta(0)$   
 $\mathbb{E}[AB] = \Delta(\tau)$ 

#### Calculate

$$C(\tau) = \mathbb{E}[N^{-1} \sum_{i=1}^{N} \phi(h_i(t))\phi(h_i(t+\tau))] = \mathbb{E}[\phi(A)\phi(B)]$$

$$= \iiint \phi\left(\sqrt{\Delta(0) - |\Delta(\tau)|}x + \sqrt{|\Delta(\tau)|}z\right)$$

$$\phi\left(\sqrt{\Delta(0) - |\Delta(\tau)|}y + \operatorname{sgn}(\Delta(\tau))\sqrt{|\Delta(\tau)|}z\right)\mathcal{D}x\mathcal{D}y\mathcal{D}z$$

$$= \int \left(\int \phi\left(\sqrt{\Delta(0) - |\Delta(\tau)|}x + \sqrt{|\Delta(\tau)|}z\right)\mathcal{D}x\right)$$

$$\left(\int \phi\left(\sqrt{\Delta(0) - |\Delta(\tau)|}y + \operatorname{sgn}(\Delta(\tau))\sqrt{|\Delta(\tau)|}z\right)\mathcal{D}y\right)\mathcal{D}z$$

If  $\Delta(\tau)<0$ , by change of variable y'=-y and  $\phi$  an odd function, we have the same as  $\Delta(\tau)>0$ . Then

$$C(\tau) = \int \left( \int \phi \left( \sqrt{\Delta(0) - |\Delta(\tau)|} x + \sqrt{|\Delta(\tau)|} z \right) \mathcal{D} x \right)^2 \mathcal{D} z \tag{16}$$

Calculate

$$= \iiint \phi \left( \sqrt{\Delta(0) - |\Delta(\tau)|} x + \sqrt{|\Delta(\tau)|} z \right)$$

$$\phi \left( \sqrt{\Delta(0) - |\Delta(\tau)|} y + \operatorname{sgn}(\Delta(\tau)) \sqrt{|\Delta(\tau)|} z \right) \mathcal{D} x \mathcal{D} y \mathcal{D} z$$

$$= \int \left( \int \phi \left( \sqrt{\Delta(0) - |\Delta(\tau)|} x + \sqrt{|\Delta(\tau)|} z \right) \mathcal{D} x \right)$$

$$\left( \int \phi \left( \sqrt{\Delta(0) - |\Delta(\tau)|} y + \operatorname{sgn}(\Delta(\tau)) \sqrt{|\Delta(\tau)|} z \right) \mathcal{D} y \right) \mathcal{D} z$$

 $C(\tau) = \mathbb{E}[N^{-1} \sum_{i=1}^{N} \phi(h_i(t))\phi(h_i(t+\tau))] = \mathbb{E}[\phi(A)\phi(B)]$ 

If  $\Delta(\tau) < 0$ , by change of variable y' = -y and  $\phi$  an odd function, we have the same as  $\Delta(\tau) > 0$ . Then

$$C(\tau) = \int \left( \int \phi \left( \sqrt{\Delta(0) - |\Delta(\tau)|} x + \sqrt{|\Delta(\tau)|} z \right) \mathcal{D} x \right)^2 \mathcal{D} z \tag{16}$$

On the other hand, consider  $\Delta > 0$ ,

$$\begin{split} \frac{dU}{d\Delta} &= \frac{d}{d\Delta} \int \left( \int \Phi \left( \sqrt{\Delta(0) - |\Delta|} x + \sqrt{|\Delta|} z \right) \mathcal{D} x \right)^2 \mathcal{D} z \\ &= \int \left( 2 \int \Phi(a) \mathcal{D} x \right) \left( \int \phi(a) \frac{\partial a}{\partial \Delta} \mathcal{D} x \right) \mathcal{D} z \\ &= \frac{1}{\sqrt{|\Delta|}} \int \left( \int \Phi \left( a \right) \mathcal{D} x \right) \left( \int \phi(a) \mathcal{D} x \right) z \mathcal{D} z \\ &- \frac{1}{\sqrt{\Delta(0) - |\Delta|}} \int \left( \int \Phi(a) \mathcal{D} x \right) \left( \int \phi(a) x \mathcal{D} x \right) \mathcal{D} z \end{split}$$

where 
$$a = \sqrt{\Delta(0) - |\Delta|}x + \sqrt{|\Delta|}z$$
, so  $\frac{\partial a}{\partial \Delta} = \frac{z}{2\sqrt{|\Delta|}} - \frac{x}{2\sqrt{\Delta(0) - |\Delta|}}$ .

Use integration by part, we have

$$\int_{-\infty}^{\infty} f(x) x \mathcal{D} x = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f(x) \frac{d}{dx} \left( -e^{-x^2/2} \right) dx = \int_{-\infty}^{\infty} \frac{df(x)}{dx} \mathcal{D} x \quad (17)$$

On the other hand, consider  $\Delta>0$ ,

$$\frac{dU}{d\Delta} = \frac{d}{d\Delta} \int \left( \int \Phi\left(\sqrt{\Delta(0) - |\Delta|}x + \sqrt{|\Delta|}z \right) \mathcal{D}x \right)^{2} \mathcal{D}z$$

$$= \int \left( 2 \int \Phi(a) \mathcal{D}x \right) \left( \int \phi(a) \frac{\partial a}{\partial \Delta} \mathcal{D}x \right) \mathcal{D}z$$

$$= \frac{1}{\sqrt{|\Delta|}} \int \left( \int \Phi(a) \mathcal{D}x \right) \left( \int \phi(a) \mathcal{D}x \right) z \mathcal{D}z$$

$$- \frac{1}{\sqrt{\Delta(0) - |\Delta|}} \int \left( \int \Phi(a) \mathcal{D}x \right) \left( \int \phi(a) x \mathcal{D}x \right) \mathcal{D}z$$

where 
$$a = \sqrt{\Delta(0) - |\Delta|}x + \sqrt{|\Delta|}z$$
, so  $\frac{\partial a}{\partial \Delta} = \frac{z}{2\sqrt{|\Delta|}} - \frac{x}{2\sqrt{\Delta(0) - |\Delta|}}$ .

Use integration by part, we have

$$\int_{-\infty}^{\infty} f(x) x \mathcal{D} x = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f(x) \frac{d}{dx} \left( -e^{-x^2/2} \right) dx = \int_{-\infty}^{\infty} \frac{df(x)}{dx} \mathcal{D} x \quad (17)$$

$$\begin{split} \frac{dU}{d\Delta} &= \frac{1}{\sqrt{|\Delta|}} \int \left( \int \phi\left(a\right) \frac{\partial a}{\partial z} \mathcal{D}x \right) \left( \int \phi(a) \mathcal{D}x \right) \mathcal{D}z \\ &+ \frac{1}{\sqrt{|\Delta|}} \int \left( \int \Phi\left(a\right) \mathcal{D}x \right) \left( \int \phi'(a) \frac{\partial a}{\partial z} \mathcal{D}x \right) \mathcal{D}z \\ &- \frac{1}{\sqrt{\Delta(0) - |\Delta|}} \int \left( \int \Phi(a) \mathcal{D}x \right) \left( \int \phi'(a) \frac{\partial a}{\partial x} \mathcal{D}x \right) \mathcal{D}z \\ &= \int \left( \int \phi\left(a\right) \mathcal{D}x \right) \left( \int \phi\left(a\right) \mathcal{D}x \right) \mathcal{D}z + \int \left( \int \Phi\left(a\right) \mathcal{D}x \right) \left( \int \phi'(a) \mathcal{D}x \right) \\ &- \int \left( \int \Phi\left(a\right) \mathcal{D}x \right) \left( \int \phi'(a) \mathcal{D}x \right) \mathcal{D}z \\ &= \int \left( \int \phi\left(\sqrt{\Delta(0) - |\Delta|}x + \sqrt{|\Delta|}z \right) \mathcal{D}x \right)^2 \mathcal{D}z \end{split}$$

By left and right continuity  $\frac{d\Delta}{d\Delta} = \int \left( \int \phi \left( \sqrt{\Delta(0)} x \right) \mathcal{D} x \right)^2 \mathcal{D} z = 0.$ 

$$\begin{split} \frac{dU}{d\Delta} &= \frac{1}{\sqrt{|\Delta|}} \int \left( \int \phi\left(a\right) \frac{\partial a}{\partial z} \mathcal{D}x \right) \left( \int \phi(a) \mathcal{D}x \right) \mathcal{D}z \\ &+ \frac{1}{\sqrt{|\Delta|}} \int \left( \int \Phi\left(a\right) \mathcal{D}x \right) \left( \int \phi'(a) \frac{\partial a}{\partial z} \mathcal{D}x \right) \mathcal{D}z \\ &- \frac{1}{\sqrt{\Delta(0) - |\Delta|}} \int \left( \int \Phi(a) \mathcal{D}x \right) \left( \int \phi'(a) \frac{\partial a}{\partial x} \mathcal{D}x \right) \mathcal{D}z \\ &= \int \left( \int \phi\left(a\right) \mathcal{D}x \right) \left( \int \phi\left(a\right) \mathcal{D}x \right) \mathcal{D}z + \int \left( \int \Phi\left(a\right) \mathcal{D}x \right) \left( \int \phi'(a) \mathcal{D}x \right) \\ &- \int \left( \int \Phi\left(a\right) \mathcal{D}x \right) \left( \int \phi'(a) \mathcal{D}x \right) \mathcal{D}z \\ &= \int \left( \int \phi\left(\sqrt{\Delta(0) - |\Delta|}x + \sqrt{|\Delta|}z \right) \mathcal{D}x \right)^2 \mathcal{D}z \end{split}$$

Since U is an even function,  $\frac{dU(\Delta)}{d\Delta} = -\frac{dU(-\Delta)}{d\Delta}$ .

By left and right continuity  $\frac{dU(0)}{d\Delta} = \int \left( \int \phi \left( \sqrt{\Delta(0)} x \right) \mathcal{D} x \right)^2 \mathcal{D} z = 0.$ 

 $-\frac{1}{\sqrt{\Delta(0)-|\Delta|}}\int \left(\int \Phi(a)\mathcal{D}x\right)\left(\int \phi'(a)\frac{\partial a}{\partial x}\mathcal{D}x\right)\mathcal{D}z$  $=\int\left(\int\phi\left(a\right)\mathcal{D}x\right)\left(\int\phi\left(a\right)\mathcal{D}x\right)\mathcal{D}z+\int\left(\int\Phi\left(a\right)\mathcal{D}x\right)\left(\int\phi'(a)\mathcal{D}x\right)$  $-\int \left(\int \Phi(a) \mathcal{D}x\right) \left(\int \phi'(a) \mathcal{D}x\right) \mathcal{D}z$ 

 $= \int \left( \int \phi \left( \sqrt{\Delta(0) - |\Delta|} x + \sqrt{|\Delta|} z \right) \mathcal{D} x \right)^2 \mathcal{D} z$ Since U is an even function,  $\frac{dU(\Delta)}{d\Delta} = -\frac{dU(-\Delta)}{d\Delta}$ .

 $\frac{dU}{d\Delta} = \frac{1}{\sqrt{|\Delta|}} \int \left( \int \phi(a) \frac{\partial a}{\partial z} \mathcal{D} x \right) \left( \int \phi(a) \mathcal{D} x \right) \mathcal{D} z$ 

 $+\frac{1}{\sqrt{|\Delta|}}\int \left(\int \Phi(a) \mathcal{D}x\right) \left(\int \phi'(a) \frac{\partial a}{\partial z} \mathcal{D}x\right) \mathcal{D}z$ 

By left and right continuity  $\frac{dU(0)}{dA} = \int \left(\int \phi\left(\sqrt{\Delta(0)}x\right)\mathcal{D}x\right)^2 \mathcal{D}z = 0.$ 

By change of variable  $\hat{h}_i(t) = h_i(t)/\mathrm{J}$ , equation (2) can be rewritten as

$$\dot{\hat{h}}_i = -\hat{h}_i + \sum_{j=1}^N J_{ij}^* \phi(\mathbf{J}\hat{h}_j)$$

where  $J_{ii}^* = J_{ii}/J \sim \mathcal{N}(0, 1/N)$ .

WLOG, we can reformulate the equation (14) as

$$V(\Delta) = -\frac{1}{2}\Delta^2 + \int_{-\infty}^{+\infty} \left\{ \int_{-\infty}^{+\infty} \Phi\left(\sqrt{\Delta(0) - |\Delta|}x + \sqrt{|\Delta|}z\right) \mathcal{D}x \right\}^2 \mathcal{D}z$$
(18)

where

$$\phi(x) = \tanh(gJx)$$

and

$$\Phi(x) = (gJ)^{-1} \ln \cosh(gJx)$$

By change of variable  $\hat{h}_i(t) = h_i(t)/\mathrm{J}$ , equation (2) can be rewritten as

$$\dot{\hat{h}}_i = -\hat{h}_i + \sum_{i=1}^N J_{ij}^* \phi(\mathbf{J}\hat{h}_j)$$

where  $J_{ii}^* = J_{ii}/J \sim \mathcal{N}(0, 1/N)$ .

WLOG, we can reformulate the equation (14) as

$$V(\Delta) = -\frac{1}{2}\Delta^2 + \int_{-\infty}^{+\infty} \left\{ \int_{-\infty}^{+\infty} \Phi\left(\sqrt{\Delta(0) - |\Delta|}x + \sqrt{|\Delta|}z\right) \mathcal{D}x \right\}^2 \mathcal{D}z$$
(18)

where

$$\phi(x) = \tanh(gJx)$$

and

$$\Phi(x) = (gJ)^{-1} \ln \cosh(gJx)$$

- $\ddot{\Delta} = -\partial V/\partial \Delta$  can be viewed as one-dimensional motion of  $\Delta(t)$  under the potential  $V(\Delta)$ .
- Given that  $\Delta(t)$  is an autocorrelation function, we have boundary conditions:
  - 1)  $\Delta(t)$  is even  $\Delta(t) = \Delta(-t)$ , and  $\dot{\Delta}(0) = 0$ , implying that the orbit must have zero initial kinetic energy,
  - $2) \ |\Delta(t)| \leq \Delta(0).$
- Potential  $V(\Delta)$  depends parametrically on  $\Delta(0)$  and gJ.

- 1. When gJ < 1, there is only one solution that satisfies the boundary conditions, which is the zero fixed point, *i.e.*  $\Delta(t) = 0, \forall t$ .
- 2. When gJ > 1, there are multiple solutions depending on parameter  $\Delta(0)$ . By analyzing the Schrodinger equation for  $\Delta(t)$ , there is only one bounded state, implying only one stable solution. The system has positive Lyapunove exponent implying chaos.

- $\ddot{\Delta} = -\partial V/\partial \Delta$  can be viewed as one-dimensional motion of  $\Delta(t)$  under the potential  $V(\Delta)$ .
- Given that  $\Delta(t)$  is an autocorrelation function, we have boundary conditions:
  - 1)  $\Delta(t)$  is even  $\Delta(t) = \Delta(-t)$ , and  $\dot{\Delta}(0) = 0$ , implying that the orbit must have zero initial kinetic energy,
  - **2)**  $|\Delta(t)| \leq \Delta(0)$ .
- Potential  $V(\Delta)$  depends parametrically on  $\Delta(0)$  and gJ.

- 1. When gJ < 1, there is only one solution that satisfies the boundary conditions, which is the zero fixed point, *i.e.*  $\Delta(t) = 0, \forall t$ .
- 2. When gJ > 1, there are multiple solutions depending on parameter  $\Delta(0)$ . By analyzing the Schrodinger equation for  $\Delta(t)$ , there is only one bounded state, implying only one stable solution. The system has positive Lyapunove exponent implying chaos.

- $\ddot{\Delta} = -\partial V/\partial \Delta$  can be viewed as one-dimensional motion of  $\Delta(t)$  under the potential  $V(\Delta)$ .
- Given that  $\Delta(t)$  is an autocorrelation function, we have boundary conditions:
  - 1)  $\Delta(t)$  is even  $\Delta(t) = \Delta(-t)$ , and  $\dot{\Delta}(0) = 0$ , implying that the orbit must have zero initial kinetic energy,
  - **2)**  $|\Delta(t)| \leq \Delta(0)$ .
- Potential  $V(\Delta)$  depends parametrically on  $\Delta(0)$  and gJ.

- 1. When gJ < 1, there is only one solution that satisfies the boundary conditions, which is the zero fixed point, *i.e.*  $\Delta(t) = 0, \forall t$ .
- 2. When gJ > 1, there are multiple solutions depending on parameter  $\Delta(0)$ . By analyzing the Schrodinger equation for  $\Delta(t)$ , there is only one bounded state, implying only one stable solution. The system has positive Lyapunove exponent implying chaos.

- $\ddot{\Delta} = -\partial V/\partial \Delta$  can be viewed as one-dimensional motion of  $\Delta(t)$  under the potential  $V(\Delta)$ .
- Given that  $\Delta(t)$  is an autocorrelation function, we have boundary conditions:
  - 1)  $\Delta(t)$  is even  $\Delta(t) = \Delta(-t)$ , and  $\dot{\Delta}(0) = 0$ , implying that the orbit must have zero initial kinetic energy,
  - **2)**  $|\Delta(t)| \leq \Delta(0)$ .
- Potential  $V(\Delta)$  depends parametrically on  $\Delta(0)$  and gJ.

- 1. When gJ < 1, there is only one solution that satisfies the boundary conditions, which is the zero fixed point, *i.e.*  $\Delta(t) = 0, \forall t$ .
- 2. When gJ > 1, there are multiple solutions depending on parameter  $\Delta(0)$ . By analyzing the Schrodinger equation for  $\Delta(t)$ , there is only one bounded state, implying only one stable solution. The system has positive Lyapunove exponent implying chaos.

- $\ddot{\Delta} = -\partial V/\partial \Delta$  can be viewed as one-dimensional motion of  $\Delta(t)$  under the potential  $V(\Delta)$ .
- Given that  $\Delta(t)$  is an autocorrelation function, we have boundary conditions:
  - 1)  $\Delta(t)$  is even  $\Delta(t) = \Delta(-t)$ , and  $\dot{\Delta}(0) = 0$ , implying that the orbit must have zero initial kinetic energy,
  - **2)**  $|\Delta(t)| \leq \Delta(0)$ .
- Potential  $V(\Delta)$  depends parametrically on  $\Delta(0)$  and gJ.

- 1. When gJ < 1, there is only one solution that satisfies the boundary conditions, which is the zero fixed point, *i.e.*  $\Delta(t) = 0, \forall t$ .
- 2. When gJ > 1, there are multiple solutions depending on parameter  $\Delta(0)$ . By analyzing the Schrodinger equation for  $\Delta(t)$ , there is only one bounded state, implying only one stable solution. The system has positive Lyapunove exponent implying chaos.

- $\ddot{\Delta} = -\partial V/\partial \Delta$  can be viewed as one-dimensional motion of  $\Delta(t)$  under the potential  $V(\Delta)$ .
- Given that  $\Delta(t)$  is an autocorrelation function, we have boundary conditions:
  - 1)  $\Delta(t)$  is even  $\Delta(t) = \Delta(-t)$ , and  $\dot{\Delta}(0) = 0$ , implying that the orbit must have zero initial kinetic energy,
  - **2)**  $|\Delta(t)| \leq \Delta(0)$ .
- Potential  $V(\Delta)$  depends parametrically on  $\Delta(0)$  and gJ.

- 1. When gJ < 1, there is only one solution that satisfies the boundary conditions, which is the zero fixed point, *i.e.*  $\Delta(t) = 0, \forall t$ .
- 2. When gJ>1, there are multiple solutions depending on parameter  $\Delta(0)$ . By analyzing the Schrodinger equation for  $\Delta(t)$ , there is only one bounded state, implying only one stable solution. The system has positive Lyapunove exponent implying chaos.

## Compute $V(\Delta)$ numerically



**Figure (a).** Computed potential function  $V(\Delta)$  with gJ=0.5, and  $\Delta(0)=0.5,1,1.5$ , respectively.

**Figure (b).** Computed potential function  $V(\Delta)$  with gJ=2, and different  $\Delta(0)$ . For each gJ>1, there is a critical  $\Delta_1$ , such that when  $0<\Delta(0)<\Delta_1$ , the potential  $V(\Delta)\geq 0$  has the single-well form, and when  $\Delta(0)>\Delta_1$ , the potential has the double-well form.

# Simulation (N = 1000)



Figure (a). gJ=0.5. There is stable zero fixed point solution.  $\Delta(\tau)=0$  is constant in this case.

**Figure (b).** gJ = 2. Chaotic phase.

## $\Delta(\tau)$ for chaotic phase



**Figure (a).** Stable solution is found by letting  $V(\Delta(0)) = V(0)$ . Then solve  $\Delta(\tau)$  with such  $\Delta(0)$ .

Figure (b). The theoretically predicted  $\Delta(\tau)$  matches the estimated autocorrelation from simulation.

### Rank-one network model

 The connectivity matrix J consists of a random part and a low-rank structured part:

$$J = g\chi + P \tag{19}$$

where  $\chi$  is a Gaussian random matrix and P is a low rank matrix.

Consider the simplest case where P has rank one

$$P = \frac{mn^T}{N} \tag{20}$$

*m* and *n* can be interpreted as input- and output- connectivity weights.

• The network dynamic follows the same equation (2), with  $\phi(x) = \tanh(x)$ . Here we reduced gJ to a single parameter g

### Rank-one network model

 The connectivity matrix J consists of a random part and a low-rank structured part:

$$J = g\chi + P \tag{19}$$

where  $\chi$  is a Gaussian random matrix and P is a low rank matrix.

• Consider the simplest case where *P* has rank one

$$P = \frac{mn^T}{N} \tag{20}$$

*m* and *n* can be interpreted as input- and output- connectivity weights.

• The network dynamic follows the same equation (2), with  $\phi(x) = \tanh(x)$ . Here we reduced gJ to a single parameter g

### Rank-one network model

 The connectivity matrix J consists of a random part and a low-rank structured part:

$$J = g\chi + P \tag{19}$$

where  $\chi$  is a Gaussian random matrix and P is a low rank matrix.

Consider the simplest case where P has rank one

$$P = \frac{mn^T}{N} \tag{20}$$

m and n can be interpreted as input- and output- connectivity weights.

• The network dynamic follows the same equation (2), with  $\phi(x) = \tanh(x)$ . Here we reduced gJ to a single parameter g.

### Assumption (4)

 $\chi_{ij}$ 's are i.i.d. and  $\chi_{ij} \sim \mathcal{N}(0, 1/N)$ .

### Assumption (5)

The structured connectivity P is independent of the random part  $\chi$ .  $(m_i, n_i)$ 's are i.i.d. and  $(m_i, n_i) \sim \mathcal{N}(M, \Sigma)$  where

$$M = \begin{pmatrix} M_m \\ M_n \end{pmatrix}, \quad \Sigma = \begin{pmatrix} \Sigma_m^2 & \rho \Sigma_m \Sigma_n \\ \rho \Sigma_m \Sigma_n & \Sigma_n^2 \end{pmatrix}$$

P is weak in large N limit in the sense of  $P_{ii} = m_i n_i / N_i$ 

#### Remark

Our analysis of the network dynamic will consider deterministic m, n, i.e. a realization of random m, n, but randomness is in  $\chi$ .

### Assumption (4)

 $\chi_{ij}$ 's are i.i.d. and  $\chi_{ij} \sim \mathcal{N}(0, 1/N)$ .

### Assumption (5)

The structured connectivity P is independent of the random part  $\chi$ .  $(m_i, n_i)$ 's are i.i.d. and  $(m_i, n_i) \sim \mathcal{N}(M, \Sigma)$  where

$$M = \begin{pmatrix} M_m \\ M_n \end{pmatrix}, \quad \Sigma = \begin{pmatrix} \Sigma_m^2 & \rho \Sigma_m \Sigma_n \\ \rho \Sigma_m \Sigma_n & \Sigma_n^2 \end{pmatrix}$$

P is weak in large N limit in the sense of  $P_{ii} = m_i n_i / N$ .

#### Remark

Our analysis of the network dynamic will consider deterministic m, n, i.e. a realization of random m, n, but randomness is in  $\chi$ .

### Assumption (4)

 $\chi_{ij}$ 's are i.i.d. and  $\chi_{ij} \sim \mathcal{N}(0, 1/N)$ .

### Assumption (5)

The structured connectivity P is independent of the random part  $\chi$ .  $(m_i, n_i)$ 's are i.i.d. and  $(m_i, n_i) \sim \mathcal{N}(M, \Sigma)$  where

$$M = \begin{pmatrix} M_m \\ M_n \end{pmatrix}, \quad \Sigma = \begin{pmatrix} \Sigma_m^2 & \rho \Sigma_m \Sigma_n \\ \rho \Sigma_m \Sigma_n & \Sigma_n^2 \end{pmatrix}$$

P is weak in large N limit in the sense of  $P_{ii} = m_i n_i / N$ .

#### Remark

Our analysis of the network dynamic will consider deterministic m, n, i.e. a realization of random m, n, but randomness is in  $\chi$ .

Calculate the first two moments of  $\hat{\eta}_i$  over realizations of  $\chi$ .

$$\mathbb{E}[\hat{\eta}_i(t)] = \sum_{j=1}^N \mathbb{E}[(g\chi_{ij} + P_{ij})S_j(t)]$$

$$= g \sum_{j=1}^N \mathbb{E}[\chi_{ij}]\mathbb{E}[S_j(t)] + \frac{m_i}{N} \sum_{j=1}^N n_j \mathbb{E}[S_j(t)]$$

$$= \kappa m_i$$
(21)

Here we define

$$\kappa(t) := \frac{1}{N} \sum_{i=1}^{N} n_i \mathbb{E}[S_i(t)] = \langle n_i \mathbb{E}[S_i(t)] \rangle$$
 (22)

where we use  $\langle x_i \rangle = N^{-1} \sum_{i=1}^{N} x_i$  to denote population average.

Calculate the first two moments of  $\hat{\eta}_i$  over realizations of  $\chi$ .

$$\mathbb{E}[\hat{\eta}_i(t)] = \sum_{j=1}^N \mathbb{E}[(g\chi_{ij} + P_{ij})S_j(t)]$$

$$= g\sum_{j=1}^N \mathbb{E}[\chi_{ij}]\mathbb{E}[S_j(t)] + \frac{m_i}{N}\sum_{j=1}^N n_j\mathbb{E}[S_j(t)]$$

$$= \kappa m_i$$
(21)

Here we define

$$\kappa(t) := \frac{1}{N} \sum_{i=1}^{N} n_i \mathbb{E}[S_i(t)] = \langle n_i \mathbb{E}[S_i(t)] \rangle$$
 (22)

where we use  $\langle x_i \rangle = N^{-1} \sum_{i=1}^{N} x_i$  to denote population average.

$$\mathbb{E}[\hat{\eta}_{i}(t)\hat{\eta}_{j}(t+\tau)]$$

$$= \mathbb{E}\left[\left(\sum_{k=1}^{N}(g\chi_{ik}+P_{ik})S_{k}(t)\right)\left(\sum_{l=1}^{N}(g\chi_{jl}+P_{jl})S_{l}(t+\tau)\right)\right]$$

$$= \sum_{k=1}^{N}\sum_{l=1}^{N}\mathbb{E}\left[\left(g^{2}\chi_{ik}\chi_{jl}+\chi_{ik}P_{jl}+\chi_{jl}P_{ik}+P_{ik}P_{jl}\right)S_{k}(t)S_{l}(t+\tau)\right]$$

$$= \sum_{k=1}^{N}\sum_{l=1}^{N}\left(g^{2}\mathbb{E}[\chi_{ik}\chi_{jl}]+\frac{m_{i}m_{j}}{N^{2}}n_{k}n_{l}\right)\mathbb{E}[S_{k}(t)S_{l}(t+\tau)]$$

$$= \delta_{ij}\frac{g^{2}}{N}\sum_{k=1}^{N}\mathbb{E}[S_{k}(t)S_{k}(t+\tau)]+\frac{m_{i}m_{j}}{N^{2}}\sum_{k=1}^{N}n_{k}^{2}\mathbb{E}[S_{k}(t)S_{k}(t+\tau)]$$

$$+\frac{m_{i}m_{j}}{N}\sum_{k=1}^{N}n_{k}\mathbb{E}[S_{k}(t)]\left(\frac{1}{N}\sum_{l=1,l\neq k}^{N}n_{l}\mathbb{E}[S_{l}(t+\tau)]\right)$$

$$= \delta_{ij}g^{2}\langle\mathbb{E}[S_{k}(t)S_{k}(t+\tau)]\rangle+m_{l}m_{j}\kappa(t)^{2}$$
(6)

$$\mathbb{E}[\hat{\eta}_{i}(t)\hat{\eta}_{j}(t+\tau)]$$

$$=\mathbb{E}\left[\left(\sum_{k=1}^{N}(g\chi_{ik}+P_{ik})S_{k}(t)\right)\left(\sum_{l=1}^{N}(g\chi_{jl}+P_{jl})S_{l}(t+\tau)\right)\right]$$

$$= \sum_{N} \sum_{k=1}^{N} \mathbb{E}\left[\left(g^2 \chi_{ik} \chi_{jl} + \chi_{ik} P_{jl} + \chi_{jl} P_{ik} + P_{ik} P_{jl}\right) S_k(t) S_l(t+\tau)\right]$$

$$=\sum_{l=1}^{N}\sum_{k=l}^{N}\left(g^{2}\mathbb{E}[\chi_{ik}\chi_{jl}]+\frac{m_{i}m_{j}}{N^{2}}n_{k}n_{l}\right)\mathbb{E}[S_{k}(t)S_{l}(t+\tau)]$$

$$=\delta_{ij}\frac{g^2}{N}\sum_{k=1}^N\mathbb{E}[S_k(t)S_k(t+\tau)]+\frac{m_im_j}{N^2}\sum_{k=1}^Nn_k^2\mathbb{E}[S_k(t)S_k(t+\tau)]$$

$$+ \frac{m_i m_j}{N} \sum_{k=1}^N n_k \mathbb{E}[S_k(t)] \left( \frac{1}{N} \sum_{l=1, l \neq k}^N n_l \mathbb{E}[S_l(t+ au)] \right)$$

$$=\delta_{ij}g^2\langle\mathbb{E}[S_k(t)S_k(t+ au)]
angle+m_im_j\kappa(t)^2$$

(23)

With equation (21), we also have

$$\mathbb{E}[\hat{\eta}_i(t)\hat{\eta}_j(t+\tau)] - \mathbb{E}[\hat{\eta}_i(t)]\mathbb{E}[\hat{\eta}_j(t+\tau)] = \delta_{ij}g^2\langle \mathbb{E}[S_k(t)S_k(t+\tau)]\rangle$$
(24)

By assumption 3, we can find Gaussian processes  $\eta_i$ 's that have the same first and second moments as  $\hat{\eta}_i$ 's.

Next we focus on finding the **stationary solution**. Since  $\int_{-\infty}^{t} e^{t'-t} dt' = 1$ , according equation (10), (11), we have the mean and variance of  $h_i$  coincide with  $\eta_i$ . So we can define

$$\mu_i := \mathbb{E}[h_i(t)] = \mathbb{E}[\eta_i(t)] = m_i \kappa$$

$$\Delta_0^I := \mathbb{E}[h_i(t)^2] - \mathbb{E}[h_i(t)]^2 = \mathbb{E}[\eta_i(t)^2] - \mathbb{E}[\eta_i(t)]^2 = g^2 \langle \mathbb{E}[S_k^2] \rangle \quad (25)$$

**Note:**  $h_i$ 's of different units are uncorrelated.  $\mu_i$  and  $\Delta_0^I$  are independent of time for stationary solution and  $\Delta_0^I$  is the same for all units.

With equation (21), we also have

$$\mathbb{E}[\hat{\eta}_i(t)\hat{\eta}_j(t+\tau)] - \mathbb{E}[\hat{\eta}_i(t)]\mathbb{E}[\hat{\eta}_j(t+\tau)] = \delta_{ij}g^2 \langle \mathbb{E}[S_k(t)S_k(t+\tau)] \rangle$$
 (24)

By assumption 3, we can find Gaussian processes  $\eta_i$ 's that have the same first and second moments as  $\hat{\eta}_i$ 's.

Next we focus on finding the **stationary solution**. Since  $\int_{-\infty}^{t} e^{t'-t} dt' = 1$ , according equation (10), (11), we have the mean and variance of  $h_i$  coincide with  $\eta_i$ . So we can define

$$\mu_i := \mathbb{E}[h_i(t)] = \mathbb{E}[\eta_i(t)] = m_i \kappa$$

$$\Delta_0^I := \mathbb{E}[h_i(t)^2] - \mathbb{E}[h_i(t)]^2 = \mathbb{E}[\eta_i(t)^2] - \mathbb{E}[\eta_i(t)]^2 = g^2 \langle \mathbb{E}[S_k^2] \rangle \quad (25)$$

**Note:**  $h_i$ 's of different units are uncorrelated.  $\mu_i$  and  $\Delta_0^I$  are independent of time for stationary solution and  $\Delta_0^I$  is the same for all units.

With equation (21), we also have

$$\mathbb{E}[\hat{\eta}_i(t)\hat{\eta}_j(t+\tau)] - \mathbb{E}[\hat{\eta}_i(t)]\mathbb{E}[\hat{\eta}_j(t+\tau)] = \delta_{ij}g^2 \langle \mathbb{E}[S_k(t)S_k(t+\tau)] \rangle \quad (24)$$

By assumption 3, we can find Gaussian processes  $\eta_i$ 's that have the same first and second moments as  $\hat{\eta}_i$ 's.

Next we focus on finding the **stationary solution**. Since  $\int_{-\infty}^{t} e^{t'-t} dt' = 1$ , according equation (10), (11), we have the mean and variance of  $h_i$  coincide with  $\eta_i$ . So we can define

$$\mu_i := \mathbb{E}[h_i(t)] = \mathbb{E}[\eta_i(t)] = m_i \kappa$$

$$\Delta_0^I := \mathbb{E}[h_i(t)^2] - \mathbb{E}[h_i(t)]^2 = \mathbb{E}[\eta_i(t)^2] - \mathbb{E}[\eta_i(t)]^2 = g^2 \langle \mathbb{E}[S_k^2] \rangle \quad (25)$$

**Note:**  $h_i$ 's of different units are uncorrelated.  $\mu_i$  and  $\Delta_0^I$  are independent of time for stationary solution and  $\Delta_0^I$  is the same for all units.

Define population mean and variance by averaging equation (25)

$$\mu := \langle \mathbb{E}[h_i(t)] \rangle = \langle m_i \rangle \kappa$$

$$\Delta_0 := \langle \mathbb{E}[h_i(t)^2] \rangle - \langle \mathbb{E}[h_i(t)] \rangle^2 = g^2 \langle \mathbb{E}[S_k^2] \rangle + \left( \langle m_i^2 \rangle - \langle m_i \rangle^2 \right) \kappa^2 \quad (26)$$

Want to derive expression for  $\kappa$  and  $\langle \mathbb{E}[S_k^2] \rangle$ . Start with

$$\mathbb{E}[S_i] = \mathbb{E}[\phi(h_i(t))] = \int \phi\left(\mu_i + \sqrt{\Delta_0^I}z\right) Dz \tag{27}$$

Define a density function of a bivariate distribution based on the given m, n

$$p_{mn}(m',n') := \frac{1}{N} \sum_{i=1}^{N} \delta(m'-m_i) \delta(n'-n_i)$$

Then population averageing can be expressed as taking the expectation over the distribution  $p_{mn}$ .

Define population mean and variance by averaging equation (25)

$$\mu := \langle \mathbb{E}[h_i(t)] \rangle = \langle m_i \rangle \kappa$$

$$\Delta_0 := \langle \mathbb{E}[h_i(t)^2] \rangle - \langle \mathbb{E}[h_i(t)] \rangle^2 = g^2 \langle \mathbb{E}[S_k^2] \rangle + \left( \langle m_i^2 \rangle - \langle m_i \rangle^2 \right) \kappa^2 \quad (26)$$

Want to derive expression for  $\kappa$  and  $\langle \mathbb{E}[S_k^2] \rangle$ . Start with

$$\mathbb{E}[S_i] = \mathbb{E}[\phi(h_i(t))] = \int \phi\left(\mu_i + \sqrt{\Delta_0^I} z\right) Dz \tag{27}$$

Define a density function of a bivariate distribution based on the given m, n

$$p_{mn}(m', n') := \frac{1}{N} \sum_{i=1}^{N} \delta(m' - m_i) \delta(n' - n_i)$$

Then population averageing can be expressed as taking the expectation over the distribution  $p_{mn}$ .

Define population mean and variance by averaging equation (25)

$$\mu := \langle \mathbb{E}[h_i(t)] \rangle = \langle m_i \rangle \kappa$$

$$\Delta_0 := \langle \mathbb{E}[h_i(t)^2] \rangle - \langle \mathbb{E}[h_i(t)] \rangle^2 = g^2 \langle \mathbb{E}[S_k^2] \rangle + \left( \langle m_i^2 \rangle - \langle m_i \rangle^2 \right) \kappa^2 \quad (26)$$

Want to derive expression for  $\kappa$  and  $\langle \mathbb{E}[S_k^2] \rangle$ . Start with

$$\mathbb{E}[S_i] = \mathbb{E}[\phi(h_i(t))] = \int \phi\left(\mu_i + \sqrt{\Delta_0^I}z\right) Dz$$
 (27)

Define a density function of a bivariate distribution based on the given  $\it m, \it n$ 

$$p_{mn}(m',n') := \frac{1}{N} \sum_{i=1}^{N} \delta(m'-m_i) \delta(n'-n_i)$$

Then population averageing can be expressed as taking the expectation over the distribution  $p_{mn}$ .

$$\kappa = \left\langle n_i \int \phi \left( \mu_i + \sqrt{\Delta_0^I} z \right) Dz \right\rangle 
= \frac{1}{N} \sum_{i=1}^N n_i \int \phi \left( m_i \kappa + \sqrt{\Delta_0^I} z \right) Dz 
= \iint n' \left( \int \phi \left( m' \kappa + \sqrt{\Delta_0^I} z \right) Dz \right) p_{mn}(m', n') dm' dn'$$
(28)

$$\langle \mathbb{E}[S_i^2] \rangle = \frac{1}{N} \sum_{i=1}^N \int \phi \left( m_i \kappa + \sqrt{\Delta_0'} z \right)^2 Dz$$
$$= \iint \left( \int \phi \left( m' \kappa + \sqrt{\Delta_0'} z \right)^2 Dz \right) p_{mn}(m', n') dm' dn' \qquad (29)$$

$$\kappa = \left\langle n_i \int \phi \left( \mu_i + \sqrt{\Delta_0^I} z \right) Dz \right\rangle$$
$$= \frac{1}{N} \sum_{i=1}^N n_i \int \phi \left( m_i \kappa + \sqrt{\Delta_0^I} z \right) Dz$$

$$N \underset{i=1}{\overset{\sim}{\sum}} m_i \int \varphi(m_i \kappa + \sqrt{\Delta_0^I} z) dz = \int \int n' \left( \int \phi\left(m' \kappa + \sqrt{\Delta_0^I} z\right) Dz \right) p_{mn}(m', n') dm' dn'$$
 (28)

$$\langle \mathbb{E}[S_i^2] \rangle = \frac{1}{N} \sum_{i=1}^{N} \int \phi \left( m_i \kappa + \sqrt{\Delta_0^I} z \right)^2 Dz$$
$$= \iint \left( \int \phi \left( m' \kappa + \sqrt{\Delta_0^I} z \right)^2 Dz \right) \rho_{mn}(m', n') dm' dn'$$

(29)

Approximate distribution  $p_{mn}$  by the Gaussian distribution  $\mathcal{N}(M,\Sigma)$  in assumption 5. The mean and variance of  $p_{mn}$  equal the sample mean and variance of  $(m_i,n_i)$ 's. By law of large number, they approach M and  $\Sigma$  in large N limit.

Ther

$$\mu \approx M_m \kappa$$

$$\Delta_0 \approx \Delta_0^I + \Sigma_m^2 \kappa^2$$

Define random variables

$$m' := M_m + \Sigma_m \sqrt{1 - \rho} x_1 + \Sigma_m \sqrt{\rho} y$$
  

$$n' := M_n + \Sigma_n \sqrt{1 - \rho} x_2 + \Sigma_n \sqrt{\rho} y$$
(30)

where  $x_1, x_2, y \sim \mathcal{N}(0, 1)$  are independent. Then  $(m', n') \sim \mathcal{N}(M, \Sigma)$  and let  $p_{mn}^*(m', n')$  be the density function.

Approximate distribution  $p_{mn}$  by the Gaussian distribution  $\mathcal{N}(M,\Sigma)$  in assumption 5. The mean and variance of  $p_{mn}$  equal the sample mean and variance of  $(m_i,n_i)$ 's. By law of large number, they approach M and  $\Sigma$  in large N limit.

Then

$$\mu \approx M_m \kappa$$

$$\Delta_0 \approx \Delta_0^I + \Sigma_m^2 \kappa^2$$

Define random variables

$$m' := M_m + \Sigma_m \sqrt{1 - \rho} x_1 + \Sigma_m \sqrt{\rho} y$$
  

$$n' := M_n + \Sigma_n \sqrt{1 - \rho} x_2 + \Sigma_n \sqrt{\rho} y$$
(30)

where  $x_1, x_2, y \sim \mathcal{N}(0, 1)$  are independent. Then  $(m', n') \sim \mathcal{N}(M, \Sigma)$  and let  $p_{mn}^*(m', n')$  be the density function.

Approximate distribution  $p_{mn}$  by the Gaussian distribution  $\mathcal{N}(M,\Sigma)$  in assumption 5. The mean and variance of  $p_{mn}$  equal the sample mean and variance of  $(m_i,n_i)$ 's. By law of large number, they approach M and  $\Sigma$  in large N limit.

Then

$$\mu \approx M_m \kappa$$

$$\Delta_0 \approx \Delta_0^I + \Sigma_m^2 \kappa^2$$

Define random variables

$$m' := M_m + \Sigma_m \sqrt{1 - \rho} x_1 + \Sigma_m \sqrt{\rho} y$$
  

$$n' := M_n + \Sigma_n \sqrt{1 - \rho} x_2 + \Sigma_n \sqrt{\rho} y$$
(30)

where  $x_1, x_2, y \sim \mathcal{N}(0, 1)$  are independent. Then  $(m', n') \sim \mathcal{N}(M, \Sigma)$  and let  $p_{mn}^*(m', n')$  be the density function.

Now substitute  $p_{mn}$  by  $p_{mn}^*$  in equation (28)

$$\kappa \approx \iint n' \left( \int \phi \left( m' \kappa + \sqrt{\Delta_0'} z \right) Dz \right) p_{mn}^*(m', n') dm' dn' 
= \iiint \left( \int \phi \left( \left( M_m + \Sigma_m \sqrt{1 - \rho} x_1 + \Sigma_m \sqrt{\rho} y \right) \kappa + \sqrt{\Delta_0'} z \right) Dz \right) 
\left( M_n + \Sigma_n \sqrt{1 - \rho} x_2 + \Sigma_n \sqrt{\rho} y \right) Dx_1 Dx_2 Dy$$
(31)

It gives rise to three terms when expanding n'. The first term

$$M_{n} \int Dx_{2} \iiint \phi \left( \left( M_{m} + \Sigma_{m} \sqrt{1 - \rho} x_{1} + \Sigma_{m} \sqrt{\rho} y \right) \kappa + \sqrt{\Delta_{0}^{\prime}} z \right) Dz Dx_{1} Dy$$

$$= M_{n} \int \phi \left( M_{m} \kappa + \sqrt{\Sigma_{m}^{2} \kappa^{2} + \Delta_{0}^{\prime}} z \right) Dz$$

$$= M_{n} \int \phi \left( \mu + \sqrt{\Delta_{0}} z \right) Dz$$

Now substitute  $p_{mn}$  by  $p_{mn}^*$  in equation (28)

 $= M_n \langle \mathbb{E}[S_i] \rangle$ 

$$\kappa \approx \iint n' \left( \int \phi \left( m' \kappa + \sqrt{\Delta_0^I} z \right) Dz \right) p_{mn}^*(m', n') dm' dn' 
= \iiint \left( \int \phi \left( \left( M_m + \Sigma_m \sqrt{1 - \rho} x_1 + \Sigma_m \sqrt{\rho} y \right) \kappa + \sqrt{\Delta_0^I} z \right) Dz \right) 
\left( M_n + \Sigma_n \sqrt{1 - \rho} x_2 + \Sigma_n \sqrt{\rho} y \right) Dx_1 Dx_2 Dy$$
(31)

It gives rise to three terms when expanding n'. The first term

$$\begin{split} &M_n \int Dx_2 \iiint \phi \left( \left( M_m + \Sigma_m \sqrt{1 - \rho} x_1 + \Sigma_m \sqrt{\rho} y \right) \kappa + \sqrt{\Delta_0^I} z \right) Dz Dx_1 Dy \\ &= M_n \int \phi \left( M_m \kappa + \sqrt{\Sigma_m^2 \kappa^2 + \Delta_0^I} z \right) Dz \\ &= M_n \int \phi \left( \mu + \sqrt{\Delta_0} z \right) Dz \end{split}$$

**Fact:**  $(M_m + \Sigma_m \sqrt{1 - \rho} x_1 + \Sigma_m \sqrt{\rho} y) \kappa + \sqrt{\Delta_0^I z}$  is the linear combination of Gaussian variables, so is also Gaussian, with mean  $M_n \kappa$  and variance  $\Sigma_m^2 \kappa^2 + \Delta_0^I$ .

Als

$$\langle \mathbb{E}[S_i] \rangle = \frac{1}{N} \sum_{i=1}^{N} \int \phi \left( \mu_i \kappa + \sqrt{\Delta_0^I} z \right) Dz$$

$$= \iint \left( \int \phi \left( m' \kappa + \sqrt{\Delta_0^I} z \right) Dz \right) p_{mn}(m', n') dm' dn'$$

$$\approx \iiint \phi \left( \left( M_m + \sum_m \sqrt{1 - \rho} x_1 + \sum_m \sqrt{\rho} y \right) \kappa + \sqrt{\Delta_0^I} z \right) Dz Dx_1 Dy$$

$$= \int \phi \left( \mu + \sqrt{\Delta_0} z \right) Dz$$

The second tern

$$\int \Sigma_{n} \sqrt{1 - \rho} x_{2} Dx_{2}$$

$$\int \int \int \phi \left( \left( M_{m} + \Sigma_{m} \sqrt{1 - \rho} x_{1} + \Sigma_{m} \sqrt{\rho} y \right) \kappa + \sqrt{\Delta_{0}^{I}} z \right) Dz Dx_{1} Dy$$

37 / 41

**Fact:**  $(M_m + \Sigma_m \sqrt{1-\rho}x_1 + \Sigma_m \sqrt{\rho}y) \kappa + \sqrt{\Delta_0^I z}$  is the linear combination of Gaussian variables, so is also Gaussian, with mean  $M_n \kappa$  and variance  $\Sigma_m^2 \kappa^2 + \Delta_0^I$ . Also

$$\langle \mathbb{E}[S_i] \rangle = \frac{1}{N} \sum_{i=1}^{N} \int \phi \left( \mu_i \kappa + \sqrt{\Delta_0^I} z \right) Dz$$

$$= \iint \left( \int \phi \left( m' \kappa + \sqrt{\Delta_0^I} z \right) Dz \right) p_{mn}(m', n') dm' dn'$$

$$\approx \iiint \phi \left( \left( M_m + \sum_m \sqrt{1 - \rho} x_1 + \sum_m \sqrt{\rho} y \right) \kappa + \sqrt{\Delta_0^I} z \right) Dz Dx_1 Dy$$

$$= \int \phi \left( \mu + \sqrt{\Delta_0} z \right) Dz$$

The second term

$$\int \Sigma_{n} \sqrt{1 - \rho} x_{2} Dx_{2}$$

$$\iiint \phi \left( \left( M_{m} + \Sigma_{m} \sqrt{1 - \rho} x_{1} + \Sigma_{m} \sqrt{\rho} y \right) \kappa + \sqrt{\Delta_{0}^{\prime}} z \right) Dz Dx_{1} Dy$$

37 / 41

**Fact:**  $(M_m + \Sigma_m \sqrt{1 - \rho} x_1 + \Sigma_m \sqrt{\rho} y) \kappa + \sqrt{\Delta_0^I z}$  is the linear combination of Gaussian variables, so is also Gaussian, with mean  $M_n \kappa$  and variance  $\sum_{m}^{2} \kappa^{2} + \Delta_{0}^{I}$ . Also

$$\langle \mathbb{E}[S_i] \rangle = \frac{1}{N} \sum_{i=1}^{N} \int \phi \left( \mu_i \kappa + \sqrt{\Delta_0^I} z \right) Dz$$

$$= \iint \left( \int \phi \left( m' \kappa + \sqrt{\Delta_0^I} z \right) Dz \right) p_{mn}(m', n') dm' dn'$$

$$\approx \iiint \phi \left( \left( M_m + \sum_m \sqrt{1 - \rho} x_1 + \sum_m \sqrt{\rho} y \right) \kappa + \sqrt{\Delta_0^I} z \right) Dz Dx_1 Dy$$

$$= \int \phi \left( \mu + \sqrt{\Delta_0} z \right) Dz$$

The second term

= 0

$$\int \Sigma_{n} \sqrt{1 - \rho} x_{2} Dx_{2}$$

$$\iiint \phi \left( \left( M_{m} + \Sigma_{m} \sqrt{1 - \rho} x_{1} + \Sigma_{m} \sqrt{\rho} y \right) \kappa + \sqrt{\Delta_{0}^{I}} z \right) Dz Dx_{1} Dy$$

The third term

$$\int Dx_{2} \iiint \Sigma_{n} \sqrt{\rho} y \phi \left( \left( M_{m} + \Sigma_{m} \sqrt{1 - \rho} x_{1} + \Sigma_{m} \sqrt{\rho} y \right) \kappa + \sqrt{\Delta_{0}^{I}} z \right) Dz Dx_{1} dx$$

$$= \Sigma_{n} \sqrt{\rho} \int y \phi \left( \left( M_{m} + \Sigma_{m} \sqrt{1 - \rho} x_{1} + \Sigma_{m} \sqrt{\rho} y \right) \kappa + \sqrt{\Delta_{0}^{I}} z \right) Dz Dx_{1} Dy$$

$$= \kappa \rho \Sigma_{m} \Sigma_{n} \int \phi' \left( \left( M_{m} + \Sigma_{m} \sqrt{1 - \rho} x_{1} + \Sigma_{m} \sqrt{\rho} y \right) \kappa + \sqrt{\Delta_{0}^{I}} z \right) Dz Dx_{1} Dy$$

$$= \kappa \rho \Sigma_{m} \Sigma_{n} \langle \mathbb{E}[S_{i}^{\prime}] \rangle$$

Here we used equation (17) and denote  $S'_i(t) := \phi'(h_i(t))$ .

Similarly, from equation (29) we have

$$\langle \mathbb{E}[S_i^2] \rangle = \int \phi \left( \mu + \sqrt{\Delta_0} z \right)^2 Dz$$

The third term

$$\int Dx_2 \iiint \Sigma_n \sqrt{\rho} y \phi \left( \left( M_m + \Sigma_m \sqrt{1 - \rho} x_1 + \Sigma_m \sqrt{\rho} y \right) \kappa + \sqrt{\Delta_0^I} z \right) Dz Dx_1 dy$$

$$= \Sigma_n \sqrt{\rho} \int y \phi \left( \left( M_m + \Sigma_m \sqrt{1 - \rho} x_1 + \Sigma_m \sqrt{\rho} y \right) \kappa + \sqrt{\Delta_0^I} z \right) Dz Dx_1 Dy$$

$$= \kappa \rho \Sigma_m \Sigma_n \int \phi' \left( \left( M_m + \Sigma_m \sqrt{1 - \rho} x_1 + \Sigma_m \sqrt{\rho} y \right) \kappa + \sqrt{\Delta_0^I} z \right) Dz Dx_1 Dy$$

$$= \kappa \rho \Sigma_m \Sigma_n \langle \mathbb{E}[S_i'] \rangle$$

Here we used equation (17) and denote  $S'_i(t) := \phi'(h_i(t))$ .

Similarly, from equation (29) we have

$$\langle \mathbb{E}[S_i^2] \rangle = \int \phi \left( \mu + \sqrt{\Delta_0} z \right)^2 Dz$$

We end up with a system of three equations.

$$\mu = M_m \kappa$$

$$\Delta_0 = g^2 \langle \mathbb{E}[S_i^2] \rangle + \Sigma_m^2 \kappa^2$$

$$\kappa = M_n \langle \mathbb{E}[S_i] \rangle + \kappa \rho \Sigma_m \Sigma_n \langle \mathbb{E}[S_i'] \rangle$$
(32)

To solve the equations, we can define the following dynamic

$$\mu = M_m \kappa$$

$$\dot{\Delta}_0 = -\Delta_0 + g^2 \langle \mathbb{E}[S_i^2] \rangle + \Sigma_m^2 \kappa^2$$

$$\dot{\kappa} = -\kappa + M_n \langle \mathbb{E}[S_i] \rangle + \kappa \rho \Sigma_m \Sigma_n \langle \mathbb{E}[S_i'] \rangle$$
(33)

Simulating (33) numerically until fixed point is reached. To find unstable fixed point of (33), revert the sign of time variable for the simulation.

We end up with a system of three equations.

$$\mu = M_m \kappa$$

$$\Delta_0 = g^2 \langle \mathbb{E}[S_i^2] \rangle + \Sigma_m^2 \kappa^2$$

$$\kappa = M_n \langle \mathbb{E}[S_i] \rangle + \kappa \rho \Sigma_m \Sigma_n \langle \mathbb{E}[S_i'] \rangle$$
(32)

To solve the equations, we can define the following dynamic

$$\mu = M_m \kappa$$

$$\dot{\Delta}_0 = -\Delta_0 + g^2 \langle \mathbb{E}[S_i^2] \rangle + \Sigma_m^2 \kappa^2$$

$$\dot{\kappa} = -\kappa + M_n \langle \mathbb{E}[S_i] \rangle + \kappa \rho \Sigma_m \Sigma_n \langle \mathbb{E}[S_i'] \rangle$$
(33)

Simulating (33) numerically until fixed point is reached. To find unstable fixed point of (33), revert the sign of time variable for the simulation.

We end up with a system of three equations.

$$\mu = M_m \kappa$$

$$\Delta_0 = g^2 \langle \mathbb{E}[S_i^2] \rangle + \Sigma_m^2 \kappa^2$$

$$\kappa = M_n \langle \mathbb{E}[S_i] \rangle + \kappa \rho \Sigma_m \Sigma_n \langle \mathbb{E}[S_i'] \rangle$$
(32)

To solve the equations, we can define the following dynamic

$$\mu = M_m \kappa$$

$$\dot{\Delta}_0 = -\Delta_0 + g^2 \langle \mathbb{E}[S_i^2] \rangle + \Sigma_m^2 \kappa^2$$

$$\dot{\kappa} = -\kappa + M_n \langle \mathbb{E}[S_i] \rangle + \kappa \rho \Sigma_m \Sigma_n \langle \mathbb{E}[S_i'] \rangle$$
(33)

Simulating (33) numerically until fixed point is reached. To find unstable fixed point of (33), revert the sign of time variable for the simulation.

## Simulation

Simulate rank-one network with N=1000, g=0.9,  $M_m=1$ ,  $M_n=1.2$ ,  $\Sigma_m=0.4$ ,  $\Sigma_n=0.8$ ,  $\rho=0.25$ .



**Figure (a).** Stable fixed point solution of the whole network is reached.

**Figure (b).** The solution of equation (32) was found by simulating equation (33). Green circles are mean and variance estimated from 100 trials of simulations.



The estimated mean activities  $\bar{h}_i$ 's of 1000 units averaged from 100 trials and the theoretically predicted  $\mu_i = m_i \kappa$ . The cosine similarity between them is 0.968.