1 List of Problems for Chapter 4

This is a list of problems from Chapter 4 which I left in class as exercises or referred to during proofs. The Homework will be picked from these problems. They are a good practice list for the probability spaces chapter.

- $(\Omega, \mathcal{H}, \mathbb{P})$ will denote a probability space.
- 1. Let \mathcal{F} be a σ -algebra included in \mathcal{H} . If X is a \mathcal{F} -measurable random variable such that

$$\int_{A} X \, dP = 0, \qquad \forall A \in \mathcal{F},$$

show that X = 0 almost surely.

- 2. Let $X, Y \geq 0$ are \mathcal{F} -measurable such that $\mathbb{E}[fX] \leq \mathbb{E}[fY]$, for all $f \in \mathcal{F}_+$, show that $X \leq Y$ almost surely.
- 3. (i) Show that $\mathbb{E}[\mathbb{E}[X|\mathcal{F}]] = \mathbb{E}[X]$
 - (ii) Let X be an integrable random variable and $Y = \mathbb{E}[X, \mathcal{F}]$. Show that Y is integrable.
- 4. Show that $\mathbb{E}[X|\mathcal{H}] = X$, where \mathcal{H} is the total information on Ω .
- 5. Show that if $\mathcal{F} = \{\emptyset, \Omega\}$ then $\mathbb{E}[X|\mathcal{F}] = \mathbb{E}[X]$.
- 6. Let H be an event and let $\mathcal{F} = \sigma H = \{\emptyset, H, H^c, \Omega\}$. Show that $\mathbb{E}[X|\mathcal{F}](\omega) = \mathbb{E}[X|H](\omega)$ for all ω in H.
- 7. (i) If $X \leq b$ for some constant b, show that $\mathbb{E}[X|\mathcal{F}] \leq b$.
 - (ii) If a < X < b for some constants a and b, show that $a < \mathbb{E}[X|\mathcal{F}] < b$.
- 8. (i) If $X \in L^1$, show that $\mathbb{E}[X|\mathcal{F}] \in L^1$.
 - (ii) If $X \in L^2$, show that $\mathbb{E}[X|\mathcal{F}] \in L^2$.
 - (iii) If $X \in L^{\infty}$, show that $\mathbb{E}[X|\mathcal{F}] \in L^{\infty}$.
- 9. If (X_n) is uniformly integrable and converges to X in probability, then $E[X_n|\mathcal{F}] \longrightarrow E[X_n|\mathcal{F}]$ in L^1 .
- 10. Let X and Y be independent random variables and consider

$$S = X + Y$$

$$Z = X - Y$$
.

Compute the conditional expectations $\mathbb{E}[X|S,Z]$, $\mathbb{E}[S|X]$, $\mathbb{E}[Z|Y]$.

11. Toss a fair coin 4 times. Each toss yields either H (heads) or T (tails). Consider the following information sets:

 \mathcal{F} = we know the outcomes of the first two tosses

 \mathcal{G} = we know the outcomes of the tosses but not the order.

Define the random variables:

X = number of H - number of T

Y = number of T before the first H.

- (i) Show that X is \mathcal{G} -measurable while Y is not \mathcal{G} -measurable.
- (ii) Find the expectations $\mathbb{E}[X]$, $\mathbb{E}[Y]$ and $\mathbb{E}[X|\mathcal{G}]$.
- 12. Let X be a random variable which is independent of the σ -algebra \mathcal{F} .
 - (i) Show that $\mathbb{E}[X1_A] = \mathbb{E}[X]P(A)$, for any A in \mathcal{F} .
 - (ii) Prove that $\mathbb{E}[X|\mathcal{F}] = \mathbb{E}[X]$.
- 13. If Y is \mathcal{F} -measurable, show that $\mathbb{E}[XY|\mathcal{F}] = Y\mathbb{E}[X|\mathcal{F}]$.
- 14. If $\mathcal{F} \subset \mathcal{G}$ prove that:
 - (i) $\mathbb{E}[\mathbb{E}[X|\mathcal{F}]|\mathcal{G}] = \mathbb{E}[X|\mathcal{F}].$
 - (ii) $\mathbb{E}[\mathbb{E}[X|\mathcal{G}]|\mathcal{F}] = \mathbb{E}[X|\mathcal{F}].$
- 15. Ann and Bob got married at time 0. It is known that they have not divorced until time t. The divorce time is modeled by a positive random variable X with distribution measure μ . Find the expected remaining time they will still be married in the following two cases:
 - (i) The distribution is exponential with parameter c.
 - (ii) The distribution is normal with mean m and variance σ^2 .
- 16. Consider X to be a nonegative random variable. Let μ be absolutely continuous and $\mathbb{E}[X|X>t]=t+a$ for some constant a>0 and all $t\geq 0$. Prove that μ is the exponential distribution with parameter c=1/a.
- 17. Let $X \leq Y$. Show that $\mathbb{E}[X|\mathcal{F}] \leq \mathbb{E}[Y|\mathcal{F}]$.
- 18. Let c be a constant. Show that $\mathbb{E}[c|\mathcal{F}] = c$.
- 19. (i) If $X:\Omega\to\mathbb{N}$ is a discrete random variable, show that for any measurable $A\in\mathcal{H}$ we have

$$P(A) = \sum_{n \in \mathbb{N}} P(A|X=n)P(X=n).$$

(ii) What does the relation (i) become in the case when $X:\Omega\to\mathbb{R}$ is a real-valued random variable?

20. (i) If $X:\Omega\to\mathbb{N}$ is a discrete random variable, show that for any integrable random variable Y we have

$$\mathbb{E}(Y) = \sum_{n \in \mathbb{N}} \mathbb{E}(Y|X=n)P(X=n).$$

- (ii) Let X be a Poisson distributed random variable with parameter λ . Consider the random variable $Y = \rho^X$, with $\rho > 1$ constant. Find the expectation $\mathbb{E}(Y)$.
- 21. Let $\mathcal F$ and $\mathcal G$ be two σ -algebras. Define the commutator of $\mathcal F$ and $\mathcal G$ acting of a random variable Z as

$$[\mathcal{F},\mathcal{G}](Z) = \mathbb{E}_{\mathcal{F}}\mathbb{E}_{\mathcal{G}}Z - \mathbb{E}_{\mathcal{G}}\mathbb{E}_{\mathcal{F}}Z.$$

- (i) What is $[\mathcal{F}, \mathcal{F}]$?
- (ii) If $\mathcal{F} \subset \mathcal{G}$, find $[\mathcal{F}, \mathcal{G}](Z)$;
- (iii) What is $[\mathcal{F} \cap \mathcal{G}, \mathcal{G}](Z)$?
- (iv) Assume that \mathcal{F} and \mathcal{G} are independent σ -algebras. What is $[\mathcal{F} \cap \mathcal{G}, \mathcal{G}](Z)$ in this case?
- 22. Prove or disprove: For any random variables X, Y and Z we have

$$\mathbb{E}[Z|X,Y] = \mathbb{E}[\mathbb{E}[Z|X]|Y].$$

Note that the above relation can be written more clearly as $\mathbb{E}_{X,Y}Z = \mathbb{E}_Y\mathbb{E}_XZ$.