Mini projet Physique Expérimentale

Ondes à la surface d'un liquide

Isaure CARRIVE - Lou SCHETTER

Présentation du montage et mesures

Figure 1: Montage

Expérience 1 - Relation de dispersion

- Graphe 1 : Expériences réalisées avec de l'eau distillée et des hauteurs d'eau 1,15cm et 1,30cm.
- Graphe 2 : Expériences réalisées avec de l'eau distillée + 2 gouttes de liquide vaisselle et ensuite de l'eau distillée + 15 gouttes de liquide vaisselle.
- Graphe 3 : Expérience réalisée avec de l'eau distillée + glycérol (concentré a 32% en glycérol).

Expérience 1 - Relation de dispersion

Relation de dispersion générale des ondes de surface:

$$\omega^2 = (gk + \frac{\gamma}{\rho}k^3)\tanh(hk)$$

- $\omega = 2\pi f$ la pulsation en $rad.s^{-1}$
- $q = 9,81m.s^{-1}$ l'accélération de la pesenteur
- $k = \frac{2\pi}{\lambda}$ le nombre d'onde en m^{-1}
- γ la tension de surface en $N.m^{-1}$
- ρ la masse volumique en $g.L^{-1}$
- h la hauteur d'eau en m.

Expérience 1 - Relation de dispersion

Relation de dispersion générale des ondes de surface:

$$\omega^2 = (gk + \frac{\gamma}{\rho}k^3)\tanh(hk)$$

- Graphe 1: $\rho = 1000g.L^{-1} \gamma = (48,76 \pm 0,48) \text{mN.m}^{-1}$ et $\gamma = (44,54 \pm 0,42) \text{mN.m}^{-1}$
- Graphe 2 : $\rho = 1000g.L^{-1}$ $\gamma = (25, 57 \pm 0, 56)mN.m^{-1}$ et $\gamma = (23, 16 \pm 0, 46)mN.m^{-1}$
- · Graphe 3 : $\rho =$ 1084g. L^{-1} $\gamma =$ (39, 91 \pm 0, 48)mN. m^{-1} \rightarrow valeur pas forcement cohérante

Expérience 2 - Interférences

Expérience 2 - Interférences

Expérience 2 - Interférences

Différence de marche : $\delta_X = |S_1 - X| - |S_2 - X|$

Sur une ligne de tempête (extrémas) :

· au point A :
$$\delta_{A}=3\lambda-4\lambda=-\lambda$$

· au point B :
$$\delta_{B}=6\lambda-7\lambda=-\lambda$$

Sur une ligne de repos (amplitude nulle) :

• au point C :
$$\delta_C = (3 + \frac{1}{2})\lambda - 4\lambda = -\frac{1}{2}\lambda$$

• au point D :
$$\delta_D = 7\lambda - (7 + \frac{1}{2})\lambda = -\frac{1}{2}\lambda$$

Remarque:

- · sur une ligne de tempête : $\delta_X = k\lambda$, avec $k \in \mathbb{Z}$
- sur une ligne de repos : $\delta_X = (k + \frac{1}{2})\lambda$, avec $k \in \mathbb{Z}$

Expérience 3 - Diffraction

Expérience 3 - Diffraction

 \rightarrow La longueur d'onde est conservée mais la forme du front d'onde ne reste pas la même.

Conclusion

Résumé:

 \rightarrow Relation de dispersion (non linéaire) vérifiée. \rightarrow Phénomènes d'interférences (plusieurs ondes) et de diffraction (fente) mis en évidence.

Autres expériences possibles :

- · Ondes: longueurs d'ondes plus grandes.
- · Interférences et diffraction : plus d'obstacles et de fentes.
- Relation de dispersion : faire varier ρ et γ avec plusieurs liquides.