Category Theory - Lecture 5 (Notes)

Vorashil Farzaliyev

September 2024

Exercise 0.1. Let C be a category.

Let $f, g: A \longrightarrow B$ and let $u: A' \longrightarrow A$ be an isomorphism. Then,

$$f = g \Leftrightarrow f \circ u = g \circ u$$

Proof. (\Rightarrow) : It is clear.

 (\Leftarrow) : If $u:A'\longrightarrow A$ is an isomorphism, then there exists $u^{-1}:A\longrightarrow A'$ such that

$$fu = gu \Rightarrow fuu^{-1} = guu^{-1}$$
$$\Rightarrow f = g$$

1 Natural Transformations

Definition 1.1. Let $F, G : \mathbf{C} \longrightarrow \mathbf{D}$ be functors.

A natural transformation $\phi: F \Rightarrow G$ is a family of maps:

$$\{\phi_A: FA \longrightarrow GA \mid A \in Ob(\mathbf{C})\}\$$

such that for all $f: A \longrightarrow B$ in \mathbb{C} , we have

Example 1.1. Fix $n \in \mathbb{N}$

- ullet $\mathbf{C} = CRing = category of commutative rings$
- $\mathbf{D} = category \ of \ monoids$
- $F: CRing \longrightarrow \underline{Mon}$ is the functor

$$F = M_n : CRing \longrightarrow \underline{Mon}$$

Here $M_n(R)$ is $n \times n$ matrix with entries in R. So \underline{Mon} is the category of monoids with $n \times n$ matrices as objects.

$$R \longmapsto F \longrightarrow M_n(R)$$

$$\downarrow^f \qquad \qquad \downarrow^{M_n(f)}$$

$$S \longmapsto F \longrightarrow M_n(S)$$

• $G: \underline{CRing} \longrightarrow \underline{Mon}$ is the functor

$$G = U : \underline{CRing} \longrightarrow \underline{Mon}$$

Here we have

$$(R, +, *, 0, 1) \longmapsto U \longrightarrow (R, +, 1)$$

$$\downarrow f \qquad \qquad \downarrow U(f)$$

$$(S, +, *, 0, 1) \longrightarrow U \longrightarrow (S, *, 1)$$

So U simply returns the underlying monoid of a given ring

Now we can define a natural transformation

$$det: M_n \Longrightarrow U$$

For $R = (R, +, *, 0, 1) \in CRing$, we need

$$det_R: FR \longrightarrow GR$$

$$det_R: M_n(R) \longrightarrow U(R)$$

$$det_R: M_n(R) \longrightarrow (R, *, 1)$$

Here det_R is a monoid homomorphism

This is monoid homomorphism because

$$\begin{cases} det_R(M*N) = det_R(M)*det_R(N) & (it preserves multiplication) \\ det_R(I_n) = 1_R & (it preserves identity) \end{cases}$$

So now need to check that this is a natural transformation. (i.e we need to check its naturality).

$$\frac{\mathbf{Cring}}{R} \qquad \frac{\mathbf{Mon}}{det_R} \longrightarrow R$$

$$\downarrow^f \qquad \downarrow^{M_n(f)} \qquad \downarrow^f$$

$$S \qquad M_n(S) \longrightarrow det_S \longrightarrow S$$

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} \longmapsto det_R \longrightarrow ad - bc$$

$$\downarrow^{M_n(f)} \qquad \qquad \downarrow^f$$

$$\begin{pmatrix} fa & fb \\ fc & fd \end{pmatrix} \longrightarrow f(ad - bc)$$

1.1 Notation

1.1.1 Natural transformation diagram

For $F,G:\mathbf{C}\longrightarrow\mathbf{D}$ and $\phi:F\Rightarrow G$ as natural transformation, we write

1.1.2 Composition diagram

Given $F, G, H : \mathbf{C} \longrightarrow \mathbf{D}$ and $\phi, \psi : F \Rightarrow G$ as natural transformations, we write

We define

Also

$$FA \xrightarrow{(\psi\phi)_A} HA \ =_{def} \ FA \xrightarrow{\phi_A} GA \xrightarrow{\psi_A} HA$$

So we can define composition

1.2 Identity natural transformation

For $F: \mathbf{C} \longrightarrow \mathbf{D}$, we can define

by
$$FA \xrightarrow{1_{FA}} FA$$
 for all $A \in \mathbf{C}$.

Naturality of this is

1.3 Functor category

Definition 1.2. (Functor category)

For categories C, D, where C is a small category, we define the **functor category** [C, D] (sometimes denoted as D^C) as having

• objects: functors $F: \mathbf{C} \longrightarrow \mathbf{D}, G: \mathbf{C} \longrightarrow \mathbf{D}$

• maps: natural transformations $\phi: F \Rightarrow G$

Exercise 1.1. Check the associativity and unit axioms for functor category.

1.3.1 Isomorphisms in D^{C} or [C, D]

Fix C, D.

By definition, an isomorphism in $[\mathbf{C}, \mathbf{D}]$ is $\phi : F \Rightarrow G$ with an inverse

$$\phi^{-1}:G\Rightarrow F$$

This means that

This holds if and only if, for all $A \in \mathbb{C}$, we have

This implies $\forall A \in \mathbf{C}, \ \phi_A : FA \longrightarrow GA$ is an isomorphism.

Proposition 1.1. Let $\phi: F \Rightarrow G$ be a natural transformation.

Then ϕ is an isomorphism if and only if for all $A \in \mathbf{C}$

$$\phi_A: FA \longrightarrow GA$$

is an isomorphism.

Note 1.1. We need ϕ to be natural in order to piece together all isomorphisms $FA \longrightarrow GA$ for all $A \in \mathbf{C}$