B.TECH/CSE/4TH SEM /MATH 2201/2016 2016

NUMBER THEORY AND ALGEBRAIC STRUCTURES (MATH 2201)

Time Allotted: 3 hrs Full Marks: 70

Figures out of the right margin indicate full marks.

Candidates are required to answer Group A and any 5 (five) from Group B to E, taking at least one from each group.

Candidates are required to give answer in their own words as far as practicable.

Group - A (Multiple Choice Type Questions)

	(Multiple Choice Type Questions)				
L. Choose the correct alternatives for the following:					10 × 1=10
	(i)	The notation * defined by a*b= $\frac{a+b}{5}$ is a binary relation on the			on on the
		(a) set of all integers(c) set of negative integers		(b) set of positive integers(d) set of rationals.	
	(ii)	$ \ln \mathbb{Z}_7, \\ \text{(a) } \overline{7} = \overline{15} $	(b) $\overline{7} = \overline{48}$	(c) $\overline{7} = \overline{70}$	(d) $\overline{7} = \overline{1}$
	(iii)	In the additive gro (a) 1/8	oup (Z,+), 2 ⁻³ is (b) -8	(c) -6	(d) 8
	(iv)	A group G is a sim (a) 6	ple group if the (b) 8	order of <i>G</i> is (c) 10	(d) 13.
	(v)	If the cyclic group G contains 11 distinct elements then the number of its generators are (a) 2 (b) 7 (c) 9 (d) 10.			
	(a) 2 (b) 7 (c) 9 (d) 1 (vi) If a is prime to b and a is prime to c, then a is prime to (a) $b^2 + c^2$ (b) $b^3 + c^3$ (c) ab (d) $a^2 - b^2$				
	(vii) A connected planar graph with the same number of vertioce edges determines				
		(a) 1 region (c) 3 regions		(b) 2 region (d) 4 region	
A Z	TH 220	11	4		

B.TECH/CSE/4TH SEM /MATH 2201/2016

- (viii) In the field $\mathbb{Z}_7 = \{\overline{0}, \overline{1}, \overline{2}, \overline{3}, \overline{4}, \overline{5}, \overline{6}\}$, the multiplicative inverse of $\overline{6}$ is (a) $\overline{2}$ (b) $\overline{3}$ (c) $\overline{5}$ (d) none of the others.
- (ix) A divisor of zero in Z_8 , the ring of integers modulo 8, is (a) [7] (b) [3] (c) [5] (d) [4].
- The number of subrings of $2\mathbb{Z} = \{0, \pm 2, \pm 4, \pm 6, \pm 8, \dots\}$ is
 (a) 1
 (b) 2
 (c) 4
 (d) infinite.

Group - B

- 2. (a) If p is a prime and is not a divisor of a, then prove that $a^{p-1} \equiv 1 \pmod{p}$
 - (b) Find the greatest common divisor of 624 and 441by using the Eucledian algorithm and express it as 624x+441y, where x and y are integers.

6 + 6 = 12

- 3. (a) State the Chinese Remainder Theorem. Use it to solve the following set of simultaneous congruences: $x \equiv 1 \pmod{3}$, $x \equiv 2 \pmod{5}$, $x \equiv 3 \pmod{3}$.
 - (b) Prove that there is an infinite number of prime numbers.

7 + 5 = 12

Group - C

- 4. (a) (i) Determine whether * defined as a * b = ab + 3 is a binary operation.
 - (ii) Determine whether $(\mathbb{R}^+,*)$, * given by $a*b=\sqrt{ab}$ is a group.
 - (b) Let G be a group and $a,b \in G$. Show that $(aba^{-1})^n = aba^{-1}$ iff $b = b^n$.

(3+3)+6=12

- 5. (a) Show that all the roots of $x^4=1$ forms a commutative group under the operation multiplication.
 - (b) Prove that the order of a permutation on a finite set is the lcm of length of its disjoint cycles.

6 + 6 = 12

B.TECH/CSE/4TH SEM /MATH 2201/2016

Group - D

- 6. (a) Prove that *intersection* of any two subgroups of a group (G,*) is a subgroup of G. Is a similar result true for *union*? Justify.
 - (b) Show that every proper subgroup of a group of order 6 is cyclic.

4 + 2 + 6 = 12

- 7. (a) Let H and K be subgroups of a finite group G. Then prove that $|HK| = \frac{|H||K|}{|H \cap K|}$.
 - (b) Show that the 8-th roots of unity form a cyclic group. Find all generators of this group.

6 + 6 = 12

Group - E

- 8. (a) Prove that every field is an integral domain.
 - (b) If in a ring K with unity, $(xy)^2 = x^2y^2$ for all $x, y \in K$, then prove that K is commutative.

4 + 8 = 12

- 9. (a) Prove that, for any positive n, the ring Z_n of all integers modulo n, is an integral domain if and only if n is a prime integer.
 - (b) If a,b be two elements of a field F where $b\neq 0$ and $(ab)^2=ab^2+bab-b^2$, then prove that a=1.

6 + 6 = 12