WHAT IS CLAIMED IS:

1	1. A substrate processing chamber comprising:			
2	a chamber body;			
3	a chamber top disposed on the chamber body; and			
4	a transformer-coupled plasma generator plate within the substrate			
5	processing chamber having a plurality of transformer cores within the transformer-			
6	coupled plasma generator plate and a plurality of through holes forming conduits from			
7	a first side of the transformer-coupled plasma generator plate to a second side of the			
8	transformer-coupled plasma generator plate, a first conduit passing through a first			
9	transformer core.			
1	2. The substrate processing chamber of claim 1 further comprising			
2	a second conduit not passing through a transformer core.			
1	3. The substrate processing chamber of claim 1 wherein the plasma			
2	generator plate is flat.			
1	4. The substrate processing chamber of claim 1 further comprising			
2	a second transformer core within the transformer-coupled plasma generating plate, a			
3	first primary coil being disposed to electro-magnetically couple to the first transformer			
4	core and a second primary coil being disposed to electro-magnetically couple to the			
5	second transformer core, wherein the first primary coil and the second primary coil are			
6	connected to each other in series.			
1	5. The substrate processing chamber of claim 1 wherein the toroidal			
2	transformer core comprises ferrite material.			
1	6. The substrate processing chamber of claim 1 wherein the			
2	transformer-coupled plasma generator plate includes a dielectric spacer between the			
3	first side and the second side, and a remainder of an outer surface of the generator plat			
4	comprises an electrical conductor.			
1	7. The substrate processing chamber of claim 6 wherein the			
2	dielectric spacer is disposed within a conduit through the transformer-coupled generator			
3	plate.			

1	8. The substrate processing chamber of claim 1 further comprising			
2	an alternating-current power supply configured to operate at a frequency of about			
3	1 KHz-2 MHz.			
1	9. A substrate processing chamber comprising:			
1	•			
2	a chamber body;			
3	a chamber top disposed on the chamber body;			
4	an alternating-current power supply; and			
5	a transformer-coupled plasma generator plate having a plurality of			
6	through holes forming conduits from a first side of the transformer-coupled plasma			
7	generator plate within the substrate processing chamber to a second side of the			
8	transformer-coupled plasma generator plate within the substrate processing chamber, a			
9	first portion of the conduits passing through centers of a plurality of toroidal			
10	transformer cores within the generator plate and a second portion of the conduits not			
11	passing through centers of transformer cores, the generator having a first surface			
12	comprising metal, a second surface comprising metal, and a plurality of dielectric			
13	spacers disposed between the first surface and the second surface in each of the first			
14	portion of the conduits.			
1	10. A plasma generator plate comprising:			
2	a first side;			
3	a second side;			
4	a first conduit passing from the first side to the second side through a			
5	first transformer core within the plasma generator plate;			
6	a second conduit passing from the first side to the second side through a			
7	second transformer core.			
,				
1	11. The plasma generator plate of claim 10 further comprising a first			
2	dielectric spacer in a first secondary current path around the first transformer core.			
1	12. A method of processing a substrate in a plasma processing			
2	system, the method comprising:			
3	providing a substrate to a substrate holder in a processing chamber of the			
4	plasma processing system;			

5	flowing a plasma precursor into a multi-core transformer-coupled			
6	plasma generator;			
7	generating a plasma from the plasma precursor with the multi-core			
8	transformer coupled plasma generator; and			
9	processing the substrate.			
1	13. The method of claim 12 wherein the multi-core transformer-			
2	coupled plasma generator is within the processing chamber.			
1	14. The method of claim 13 wherein the multi-core transformer-			
2	coupled plasma generator is a generator plate comprising a plurality of transformer			
3	cores within the generator plate and a plurality of through-holes forming conduits from			
4	a first side of the generator plate to a second side of the generator plate.			
1	15. The method of claim 12 wherein plasma formed by the multi-			
2	core transformer-coupled plasma generator is coupled to the processing chamber			
3	through a conduit.			
1	16. The method of claim 15 wherein the multi-core transformer-			
2	coupled plasma generator has a first conduit passing through a first transformer core			
3	and through a second transformer core.			
1	17. The method of claim 15 wherein the multi-core transformer-			
2	coupled plasma generator has a first conduit passing through a first transformer core			
3	and a second conduit passing through a second transformer core.			
1	18. A plasma processing system comprising:			
2	a first substrate support structure configured to hold a first substrate in a			
3	processing chamber;			
4	a second substrate support structure configured to hold a second			
5	substrate in the processing chamber; and			
6	a transformer-coupled plasma generator within the processing chamber			
7	disposed between the first substrate support structure and the second substrate support			
8	structure.			

1	19. The plasma processing system of claim 18 wherein the			
2	transformer-coupled plasma generator includes a toroidal transformer core.			
1	20. The plasma processing system of claim 18 wherein the plasma			
2	generator comprises a plasma generating plate having a plurality of transformer cores			
3	within the plasma generating plate and a plurality of through holes forming conduits			
4	from a first side of the plate to a second side of the plate.			
1	21. A method of simultaneously processing substrates in a plasma			
2	processing system, the method comprising:			
3	providing a first wafer and a second wafer to a processing chamber;			
4	flowing plasma precursor into the chamber;			
5	generating a plasma with a transformer-coupled plasma generator			
6	disposed between the first wafer and the second wafer; and			
7	simultaneously processing the first wafer and the second wafer.			
1	22. A plasma generator comprising:			
2	an inlet in fluid communication with;			
3	a first conduit passing through			
4	a first toroidal transformer core and through			
5	a second toroidal transformer core;			
6	a second conduit completing a plasma current circuit, in cooperation			
7	with the first conduit, around the first toroidal transformer core and around the second			
8	toroidal transformer core; and			
9	an outlet in fluid communication with the first conduit.			
1	23. A plasma generator comprising:			
2	an inlet in fluid communication with			
3	a first conduit passing through a first transformer core and with			
4	a second conduit passing through a second transformer core;			
5	a third conduit in fluid communication with the first conduit to complete			
6	a first plasma current circuit around the first transformer and in fluid communication			
7	with the second conduit to complete a second plasma current circuit around the second			
8	transformer: and			

9	an outlet in fluid communication with at least the first conduit and the		
10	second conduit.		
1	24. A substrate processing system comprising:		
2	a process chamber with a chamber inlet;		
3	a chamber exhaust; and		
4	a transformer-coupled plasma generator having a first core,		
5	a first conduit passing through the first core,		
6	a second core,		
7	a second conduit passing through the second core, and		
8	a third conduit in fluid communication with the first conduit and		
9	the second conduit to complete a plasma current circuit path through the process		
10	chamber.		
1	25. The substrate processing system of claim 24 wherein the third		
2	conduit is a center conduit completing a first plasma current circuit path around the first		
3	core through the process chamber and the first conduit and completing a second plasma		
4	current circuit path around the second core through the process chamber and the second		
5	conduit.		
1	26. The substrate processing system of claim 24 wherein the first		
2	conduit and the second conduit comprise metal and further comprising a dielectric		
3	spacer in the plasma current circuit path.		
1	27. The substrate processing system of claim 24 further comprising:		
2	a fourth conduit passing through		
3	a third core; and		
4	a fifth conduit passing through		
5	a fourth core.		
1	28. The substrate processing system of claim 24 further comprising:		
2	a first primary coil disposed to couple electro-magnetic energy to the		
3	first core;		
4	a second primary coil disposed to couple electro-magnetic energy to the		
5	second core;		

6	a third primary coil disposed to couple electro-magnetic energy to the		
7	third core;		
8	a fourth primary coil disposed to couple electro-magnetic energy to the		
9	fourth core, wherein the first primary coil, the second primary coil, the third primary		
10	coil, and the forth primary coil are coupled to an AC power supply.		
1	29. The substrate processing system of claim 28 wherein the first		
2	primary coil, the second primary coil, the third primary coil, and the fourth primary coil		
3	are connected in series with the AC power supply.		
1	The sylvatuate was engine a system of aloing 28 sylvanoin the finat		
1	30. The substrate processing system of claim 28 wherein the first		
2	primary coil, the second primary coil, the third primary coil, and the fourth primary coil		
3	are connected in parallel to the AC power supply.		
1	31. A plasma generator comprising:		
2	an inlet configured to receive a plasma precursor, the inlet in fluid		
3	communication with a first plasma current path and with a second plasma current path;		
4	a first conduit passing through		
5	a first transformer core;		
6	a second conduit passing through		
7	a second transformer core, wherein the first conduit is essentially co-		
8	linear with the second conduit.		
1	32. A plasma generator comprising:		
2	an outer shell surrounding a first inner shell housing a first toroidal		
3	transformer core; and		
4	a second inner shell housing a second toroidal transformer core, wherein		
5	the first toroidal transformer core and the second toroidal transformer core are disposed		
6	along a common center axis.		
1	33. The plasma generator of claim 32 wherein the first inner shell is		
2	supported within the outer shell by a web allowing circulation of secondary plasma		
3	current around the first inner shell within the outer shell.		

1		34.	The plasma generator of claim 33 wherein the web contains an
2	electrical lead connected to a primary coil disposed to couple electro-magnetic energy		
3	to the first toroidal transformer core.		
1		35.	The plasma generator of claim 32 wherein the first inner shell
2	includes a shar		ttom portion to provide a circular cross-section to the inner shell.
<i>2</i> .	merades a snap	oca bo	tions portion to provide a eneglar cross-section to the finier shell.
1		36.	The plasma generator of claim 32 further comprising:
2	an inlet; and		
3		an out	elet, both the inlet and the outlet lying along the common center
4	axis.		
1		37.	An ion implantation system comprising:
2	an ion source having a toroidal plasma generator, and		
3	an ion source aperture aligned essentially along a center line of the		
4	toroidal plasm	a gene	rator.
1		38.	The ion implantation system of claim 37 further comprising a
2	first extraction		ode disposed to accelerate ions from the ion source toward a
3	second extract		•
-			
1		39.	The ion implantation system of claim 37 wherein the toroidal
2	plasma genera	tor inc	ludes a first core and a second core, the first core and the second
3	core being aligned essentially along a center line of the toroidal plasma generator.		
1		40.	A method of providing ions to an ion implantation system, the
2	method comprising:		
3		provid	ling an ion precursor to a transformer-coupled toroidal plasma
4	generator in an ion source;		
5		ionizii	ng at least a portion of the ion precursor into ions, the ions having
6	a greater densi	ty at a	center of the transformer-coupled toroidal plasma generator and
7	extending alor	ıg a lin	e through the center of the transformer-coupled toroidal plasma
8	generator; and		
9		ejectir	ng a portion of the ions out of the ion source.

1		41.	A plasma torch head comprising:	
2	an outer nozzle;			
3	an inner nozzle, the inner nozzle including a conduit passing through the			
4	inner nozzle fi	rom an	inlet side toward an outlet,	
5	a toroidal transformer core surrounding the conduit; and			
6		a bypass providing a return path for a secondary plasma current circuit		
7	around the toroidal transformer core.			
1		42.	The plasma torch head of claim 41 wherein the inner nozzle	
2	comprises me	tal and	further including a dielectric spacer in the inner nozzle to prevent	
3	an electric path through the inner nozzle around the toroidal transformer core.			
1		43.	The plasma torch head of claim 41 wherein a first gas is flown	
2	through the co	nduit a	nd a second gas if flown through the bypass, the first gas being	
3	different from	the sec	ond gas.	
1		44.	The plasma torch head of claim 43 wherein the first gas is	
2	oxygen and the second gas is either propane or hydrogen.			
1		45.	The plasma torch héad of claim 41 further comprising a primary	
2	coil disposed	to coup	le electro-magnetic energy to the toroidal transformer core	
3	wherein the primary coil and the toroidal transformer core are enclosed within the inner			
4	nozzle.			
1		46.	A method of cutting material using a plasma torch, the method	
2	comprising:			
3		flowin	g a plasma precursor in a conduit through a center of a toroidal	
4	transformer co	ore of a	plasma generator in an inner nozzle of a plasma torch;	
5		formin	ng plasma from the plasma precursor;	
6		compl	eting a plasma current secondary circuit around the toroidal	
7	transformer co	ore thro	ugh a bypass; and	
8		transp	orting plasma out an outlet of the plasma torch.	
1		47.	The method of claim 46 further comprising flowing carrier gas	
2	through the by	pass.		

1		48.	The method of claim 46 wherein the forming plasma step	
2	includes providing a primary voltage to a primary coil coupling electro-magnetic			
3	energy to the toroidal transformer core, the primary voltage being an alternating-current			
4	voltage less than about 115 Volts.			
1		49.	An ion source for an ion milling apparatus, the ion source	
2	comprising:			
3		a trans	former-coupled toroidal plasma generator (having a primary coil	
4	disposed to couple electro-magnetic energy to a toroidal core, the transformer-coupled			
5	toroidal plasma	a gener	ator disposed to provide plasma along a center line of the	
6	transformer-co	upled t	oroidal plasma generator toward an accelerator plate.	
1		50.	The ion source of claim 1 wherein the transformer-coupled	
2	toroidal plasma	a gener	rator further includes a second toroidal core.	
			,	
1		51.	A method for providing ions to an ion milling apparatus, the	
2	method compr	ising:		
3		provid	ing an ion precursor to a transformer-coupled toroidal plasma	
4	generator;			
5		ionizir	ng at least a portion of the ion precursor to form ions, the ions	
6	being concentrated along a center axis of the transformer-coupled toroidal plasma			
7	generator; and			
8		ejectio	on a portion of the ions toward an accelerator plate.	
1		52.	The method of claim 51 wherein the ion precursor forms reactive	
2	ions.			