MA111 TUTORIAL SOLUTIONS SPRING 2022

by MA111 TAs

Last updated : March 4, 2022

Contents

1	Tutorial Sheet 6 (I. Surface and surface integrals)	1
2	Tutorial Sheet 6 (II. Application of Stokes theorem)	2
3	Tutorial Sheet 6 (III. Application of Gauss divergence theorem)	4

TUTORIAL SHEET 6 (I. SURFACE AND SURFACE INTEGRALS)

- 1. Find a suitable parameterization $\Phi(u, v)$ and the normal vector $\Phi_u \times \Phi_v$ for the following surface:
 - (i) The plane x y + 2z + 4 = 0.
 - (ii) The right circular cylinder $y^2 + z^2 = a^2$.

Sol.

1. Parameterise the surface $\Phi(\mathfrak{u}, \mathfrak{v})$ as

$$\left(u,v,\frac{v}{2}-\frac{u}{2}-2\right)$$

then $\Phi_{\rm u}=(1,0,-\frac{1}{2}),\Phi_{\rm v}=(0,1,\frac{1}{2})$ which in turn gives

$$\Phi_{\mathbf{u}} \times \Phi_{\mathbf{v}} = \frac{1}{2}\mathbf{i} - \frac{1}{2}\mathbf{j} + \mathbf{k}.$$

2. Parameterise the surface Φ as

$$\Phi(\mathfrak{u},\mathfrak{v})=(\mathfrak{u},\mathfrak{a}\cos(\mathfrak{v}),\mathfrak{a}\sin(\mathfrak{v})).$$

then

$$\Phi_{u} = (1,0,0) \& \Phi_{v} = (0,-\alpha \sin(v),\alpha \cos(v)).$$

Which gives $\Phi_u \times \Phi_v = -\alpha \cos(\nu) \mathbf{j} - \alpha \sin(\nu) \mathbf{k}$ And the normal vector remains same by scaling so multiply by $-1/\alpha$ as it is non zero.

which gives the normal vector as (0, y, z) which is the final answer to all the cases.

2. Find the tangent plane to the surface with parametric equations $x = u^2$, $y = v^2$ and z = u + 2v at the point (1,1,3).

Sol. The surface $\Phi(\mathfrak{u}, \mathfrak{v})$ is given as

$$(u^2, v^2, u + 2v)$$

So $\Phi_{u} = (2u, 0, 1) \& \Phi_{v} = (0, 2v, 2)$ Which gives

$$\Phi_{u} \times \Phi_{v} = (-2v, -4u, 4uv) = (-2, -4, 4)$$

3. Compute the surface area of that portion of the sphere $x^2 + y^2 + z^2 = a^2$ which lies within the cylinder $x^2 + y^2 = ay$, where a > 0.

Sol.

The sphere intersects the cylinder at two equal surfaces, one for z > 0 and one for z < 0. We first calculate the area for z > 0. The surface may be parametrized by $\Phi(u, v) = (u, v, f(u, v))$ (the surface along the sphere), with $f(u, v) = \sqrt{a^2 - u^2 - v^2}$, on $E = \{(u, v) \in \mathbb{R}^2 \mid -\sqrt{av - v^2} \le u \le \sqrt{av - v^2}, \ 0 \le v \le a\}$ (the restriction to the cylinder). Then we have that the area is given by

$$\iint_{S}dS=\iint_{E}\|\Phi_{u}\times\Phi_{\nu}\|\,dud\nu=\iint_{E}\sqrt{1+f_{u}^{2}+f_{\nu}^{2}}dud\nu=\iint_{E}\frac{a}{\sqrt{a^{2}-u^{2}-\nu^{2}}}dud\nu,$$

where S is half of our total surface. This can be solved by converting to polar coordinates, with $u = r \cos \theta$, $v = r \sin \theta$, for $0 \le \theta \le \pi$, $0 \le r \le \alpha \sin \theta$. Substituting this into the above expression, we get

$$\frac{1}{2}\mathrm{Area} = \iint_S dS = \int_0^\pi \left(\int_0^{\alpha \sin \theta} \frac{\alpha r}{\sqrt{\alpha^2 - r^2}} dr \right) d\theta = (\pi - 2)\alpha^2.$$

Hence the total required area is given by $2(\pi-2)a^2$

4. Compute the area of that portion of the paraboloid $x^2 + z^2 = 2ay$ which is between the planes y = 0 and y = a.

Sol.

The following parametrisation is valid (check): $\Phi(u,\nu)=(u,f(u,\nu),\nu)$ (the surface along the paraboloid), with $f(u,\nu)=\frac{1}{2\alpha}(u^2+\nu^2)$, on $E=\{(u,\nu)\in\mathbb{R}^2\mid 0\leq u^2+\nu^2\leq 2\alpha^2\}$ (the restriction between the planes). Then we have that the area is given by

$$\iint_{S} dS = \iint_{F} \|\Phi_{u} \times \Phi_{v}\| \ du dv = \iint_{F} \sqrt{1 + f_{u}^{2} + f_{v}^{2}} du dv = \iint_{F} \frac{\sqrt{a^{2} + u^{2} + v^{2}}}{a} du dv,$$

where S is our total surface. This can be solved by converting to polar coordinates, with $u = r \cos \theta$, $v = r \sin \theta$, for $0 \le \theta \le 2\pi$, $0 \le r \le \sqrt{2}a$. Substituting this into the above expression, we get

$$\operatorname{Area} = \iint_{S} dS = \int_{0}^{2\pi} \left(\int_{0}^{\sqrt{2}a} \frac{1}{a} \sqrt{1 + \frac{r^2}{a^2}} r \, dr \right) d\theta = \boxed{\frac{3\sqrt{3} - 1}{3} 2\pi}.$$

5. Let S denote the plane surface whose boundary is the triangle with vertices at (1,0,0), (0,1,0), and (0,0,1), and let $\mathbf{F}(x,y,z)=x\mathbf{i}+y\mathbf{j}+z\mathbf{k}$. Let \mathbf{n} denote the unit normal to S having a nonnegative z-component. Evaluate the surface integral $\iint_S \mathbf{F} \cdot \mathbf{n} dS$.

Sol

Verify that (intuition?),

$$\iint_{S} \mathbf{F} \cdot \mathbf{n} dS = \iint_{S} \mathbf{F} \cdot (dx dy \mathbf{k} + dy dz \mathbf{i} + dz dx \mathbf{j})$$

Therefore,

$$\iint_{S} \mathbf{F} \cdot \mathbf{n} dS = \iint_{S} \mathbf{F} \cdot \mathbf{k} dx dy + \iint_{S} \mathbf{F} \cdot \mathbf{j} dz dx + \iint_{S} \mathbf{F} \cdot \mathbf{i} dz dy$$

$$= \iint_{S} z dx dy + \iint_{S} y dz dx + \iint_{S} x dz dy$$

$$= \int_{0}^{1} \int_{0}^{1-x} (1-x-y) dy dx + \int_{0}^{1} \int_{0}^{1-x} (1-z-y) dz dx + \int_{0}^{1} \int_{0}^{1-y} (1-z-y) dz dy$$

$$= \left[\frac{1}{2}\right]$$

TUTORIAL SHEET 6 (II. APPLICATION OF STOKES THEOREM)

1. Consider the vector field $\mathbf{F} = (x - y)\mathbf{i} + (x + z)\mathbf{j} + (y + z)\mathbf{k}$. Verify Stokes theorem for \mathbf{F} where S is the surface of the cone: $z^2 = x^2 + y^2$ intercepted by

(a)
$$x^2 + (y - a)^2 + z^2 = a^2 : z \ge 0$$

(b)
$$x^2 + (y - a)^2 = a^2$$

Sol.

As per Stokes theorem, given a bounded piecewise smooth, closed oriented surface S with non-empty, piecewise non-singular parametrised boundary ∂S , and a \mathcal{C}^1 vector field \mathbf{F} , we have

$$\int_{\partial S} \mathbf{F} \cdot d\mathbf{s} = \iint_{S} (\nabla \times \mathbf{F}) \cdot d\mathbf{S}.$$

It is now an exercise in calculation to check that the terms on both sides are equal to $2\pi a^2$ for both (a) and (b).

2. Using Stokes Theorem, evaluate the line integral

$$\oint_C yzdx + xzdy + xydz$$

where C is the curve of intersection of $x^2 + 9y^2 = 9$ and $z = y^2 + 1$ with clockwise orientation when viewed from the origin.

Sol.

Define $\mathbf{F}(x, y, z) = yz\mathbf{i} + zx\mathbf{j} + xy\mathbf{k}$. Then our required integral is

$$\oint_C yzdx + xzdy + xydz = \oint_C \mathbf{F} \cdot d\mathbf{s}.$$

Observe that \mathbf{F} is \mathcal{C}^1 and $\operatorname{curl}(\mathbf{F}) = \nabla \times \mathbf{F} = \mathbf{0}$. Since C is a simple, closed curve which allows a non-singular parametrisation, and there exists some bounded, smooth, oriented surface S for which C is the boundary, we may use Stokes theorem, and write

$$\oint_C yzdx + xzdy + xydz = \oint_C \mathbf{F} \cdot d\mathbf{s} = \iint_S (\nabla \times \mathbf{F}) \cdot d\mathbf{S} = \boxed{\mathbf{0}}.$$

3. Find the integral of $\mathbf{F}(x, y, z) = z\mathbf{i} - x\mathbf{j} - y\mathbf{k}$ around the triangle with vertices (0, 0, 0), (0, 2, 0) and (0, 0, 2). **Sol.**

Check that,

$$\nabla \times \mathbf{F} = -\mathbf{i} + \mathbf{j} - \mathbf{k}$$

Let S denote the surface of the given triangle. The positively oriented boundary ∂S of S will be the one that has been given i.e. $(0,0,0) \to (0,2,0) \to (0,0,2) \to (0,0,0)$. Therefore, we can now apply Stoke's theorem and say,

$$\oint_{\partial S} \mathbf{F} \cdot d\mathbf{l} = \iint_{S} \nabla \times \mathbf{F} \cdot d\mathbf{S}$$

$$= \int_{0}^{2} \int_{0}^{2-y} (z\mathbf{i} - x\mathbf{j} - y\mathbf{k}) \cdot \mathbf{i} dz dy$$

$$= \int_{0}^{2} \int_{0}^{2-y} z dz dy$$

$$= \left[\frac{4}{3}\right]$$

4. Let C be the intersection of the cylinder $x^2 + y^2 = 1$ and the plane x + y + z = 1. Let C be oriented so that when it is projected onto the xy-plane the resulting curve is traversed counterclockwise. Evaluate

$$\int_C -y^3 dx + x^3 dy - z^3 dz$$

Sal

Take $F = (-y^3, x^3, z^3)$ and verify that

$$\nabla \times \mathbf{F} = 3(x^2 + y^2)\mathbf{k}$$

Now taking the surface $\phi(u,v) = (u,v,1-u-v)$ we get the normal

$$n = i + j + k$$

Using Stoke's theorem, we get:

$$\oint_{C} \mathbf{F} \cdot d\mathbf{l} = \iint_{\Phi} \nabla \times \mathbf{F} \cdot d\mathbf{S}$$
$$= \iint 3(x^{2} + y^{2}) dx dy$$

Now using polar co-ordinates, we get:

$$\oint_{C} \mathbf{F} \cdot d\mathbf{l} = \int_{0}^{2\pi} \int_{0}^{1} 3r^{2} r dr d\theta$$

$$= \boxed{\frac{3\pi}{2}}$$

5. Let $\mathbf{F}(x, y, z) := (y, -x, e^{xz})$ for $(x, y, z) \in \mathbb{R}^3$ and let $S := \{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 + (x - \sqrt{3})^2 = 4 \text{ and } z \ge 0\}$, be oriented by the outward unit normal vectors. Find

$$\iint_{S} \operatorname{curl} \mathbf{F} \cdot d\mathbf{S}$$

Sol.

Note that, S is the portion of sphere centered at $(0,0,\sqrt{3})$ with radius 2 with the constraint of $z \geq 0$. It intersects the x - y plane at the points

$$\partial S = \{(x, y) \mid x^2 + y^2 = 1^2\}$$

Now, by Stokes Theorem,

$$\int_{\partial S} \mathbf{F} \cdot d\mathbf{s} = \iint_{S} \operatorname{curl} \mathbf{F} \cdot d\mathbf{S}$$

Parametrise ∂S as $\mathbf{c}(t) = (\cos t, \sin t, 0) \forall t \in [0, 2\pi]$. Thus, we have

$$\int_{0}^{2\pi} (\sin t \times -\sin t + -\cos t \times \cos t) = -2\pi$$

TUTORIAL SHEET 6 (III. APPLICATION OF GAUSS DIVERGENCE THEOREM)

1. Calculate the flux of $\mathbf{F} = x^3 \mathbf{i} + y^3 \mathbf{j} + z^3 \mathbf{k}$ through the unit sphere.

Sol.

We have,

$$\nabla \cdot \mathbf{F} = 3(x^2 + y^2 + z^2) = 3r^2$$

By the divergence theorem, we need to compute,

$$I = \iiint_{\mathbf{D}} \nabla \cdot \mathbf{F} dV$$

where D is the unit sphere. Applying the spherical transformation, we see,

$$I = \int_0^{2\pi} \int_0^{\pi} \int_0^1 3r^2 \times r^2 \sin \phi dr d\phi d\theta$$

Thus,

$$I = 2\pi \times 2 \times 3/5 = 12\pi/5$$

2. Evaluate $\iint_S \mathbf{F} \cdot d\mathbf{S}$ where $\mathbf{F} = xy^2\mathbf{i} + x^2y\mathbf{j} + y\mathbf{k}$ and S is the surface of the 'can' W given by $x^2 + y^2 \le 1$, -1 < z < +1.

Sol.

We have,

$$\nabla \cdot \mathbf{F} = (y^2 + x^2)$$

By the divergence theorem, we need to compute,

$$I = \iiint_{W} \nabla \cdot \mathbf{F} dV$$

Use the cylindrical transformation to see that.

$$\begin{split} I &= \int_0^{2\pi} \int_{-1}^{+1} \int_0^1 \rho^2 \times \rho d\rho dz d\theta \\ &= 2\pi \times 2 \times 1/4 \\ &= \pi \end{split}$$

3. Evaluate $\iint_S \mathbf{F} \cdot d\mathbf{S}$, where

$$\mathbf{F}(x,y,z) = xy\mathbf{i} + \left(y^2 + e^{xz^2}\right)\mathbf{j} + \sin(xy)\mathbf{k}$$

and S is the surface of the region E bounded by the parabolic cylinder $z = 1 - x^2$ and the planes z = 0, y = 0 and y + z = 2.

Sol. Verify that

$$\nabla \cdot \mathbf{F} = 3\mathbf{y}$$

Thus using Gauss divergence theorem we have

$$\iint_{S} F \cdot dS = \iiint_{F} \nabla \cdot F dV$$

where E is the region enclosed by S. Thus

$$\iint_{S} F \cdot dS = \iiint 3y dx dy dz$$

$$= \int_{-1}^{1} \int_{0}^{1-x^{2}} \int_{0}^{2-z} 3y dy dz dx$$

$$= \left[\frac{98}{35}\right]$$

4. Find out the flux of $F = xy\mathbf{i} + yz\mathbf{j} + zx\mathbf{k}$ outward through the surface of the cube cut from the first octant by the planes x = 1, y = 1, z = 1.

Sol.

The total flux will be the sum of the flux from the three sides, Let S_1 be the face represented by x=1 and similarly S_2 for y=1 and S_3 for z=1.

Then observe that the normal vector of S_1, S_2, S_3 are $\mathbf{i}, \mathbf{j}, \mathbf{k}$ respectively. So the flux is

Flux =
$$\int_{S_1} \mathbf{F} \cdot \mathbf{n} dS + \int_{S_2} \mathbf{F} \cdot \mathbf{n} dS + \int_{S_3} \mathbf{F} \cdot \mathbf{n} dS$$
=
$$\int_{S_1} \mathbf{F} \cdot \mathbf{i} dS + \int_{S_2} \mathbf{F} \cdot \mathbf{j} dS + \int_{S_3} \mathbf{F} \cdot \mathbf{k} dS$$
=
$$\int_{S_1} xy dy dz + \int_{S_2} yz dx dz + \int_{S_3} zx dx dy$$
=
$$\int_0^1 \int_0^1 y dy dz + \int_0^1 \int_0^1 z dz dx + \int_0^1 \int_0^1 x dx dy$$
=
$$\frac{1}{2} + \frac{1}{2} + \frac{1}{2}$$
=
$$\frac{3}{2}$$

5. Is $\mathbf{F}(x,y,z) = x\mathbf{i} - 2y\mathbf{j} + z\mathbf{k}$ defined in \mathbb{R}^3 the curl of a vector filed? If yes, find a vector field \mathbf{G} such that $\mathbf{F} = \text{curl } \mathbf{G}$ in \mathbb{R}^3 .

Sol. Observe that

$$div(F) = 1 - 2 + 1 = 0$$
.

And looking at F you can certainly say it is curl of some vector field, but to find a G such that $\nabla \times G = F$ looks hard, so we attempt at a general solution of the form

$$(a_1xy + a_2yz + a_3zx, b_1xy + b_2yz + b_3zx, c_1xy + c_2yz + c_3zx)$$

using which we get one of the solutions as (-yz, 0, xy) So setting G(x, y, z) = (-yz, 0, xy) gives the answer.