Torsion Fields vs Phase-Coherence / Gauge Potential Physics (Illustrated)

This enhanced document includes illustrations and additional context from Hal Puthoff's scalar/vector potential communication designs. It is meant for graduate seminar use and compares Russian torsion field theory with mainstream gauge-potential physics.

Illustration 1: Aharonov–Bohm setup showing phase shift around solenoid.

Illustration 2: Spin precession diagram showing phase accumulation and resonance.

Illustration 3: Conceptual schematic of Puthoff's coil + plate potential transmitter.

Illustration 4: Timing curve showing optimal 3 ms window aligned with theta cycle.

Aspect	Russian Torsion Field Thed	ainstream Phase-Coherence Phy	s Ecoperimental Status
Underlying Field P	ostulated fifth force coupled to	sp@auge potentials with spin couplin	so confirmed fifth force
Math FrameworkAff	ine connections with torsion pot	இருள்ளுe-invariant field theory (AB @ #ர	gt) potential effects ver
Claimed Effects Su	perluminal signaling, space me	Patronsye shifts limited by cohereAn Beeffin	netsobserved; others un
Biological Links M	odulation of DNA, remote bi odiff	econsolule coherence, Fröhlich Scomde	r sā6 ∕spH correlations re
Phase Coherence	Torsion locks phases Pl	nase-locking via shared vector Noted	n tiata blished in lasers, E
Information Transfetu	nshieldable spin-information Rhaz	nscedependent interference ne blobs cod	etferctoerd unshieldable cl
Acceleration / Rhythms	Excites torsion waves	Sweeps through resonaldsed i	n NMR, ESR, coherent
Timing Windows	3 ms pauses optimal	Matches neuronal phas@urpsettecht	ngneuroscience phase-

Key Insight: Puthoff's potential transmitters and Persinger/Kernbach rotating-field setups may be two engineering routes to exploit the same principle: phase manipulation via vector potentials. The theoretical challenge is separating confirmed phase effects (Aharonov–Bohm) from speculative torsion claims, and focusing on reproducible, engineerable phenomena.