Introduction to Quantum Noise

Shruti Maliakal shruti@caltech.edu

What is quantum?

GW strain predicted by GR is a tiny, but classical, quantity

Spacetime? Mirrors? Light?

- * (Spacetime) Displacement rms $\sim 10^{-19}$ m, while the Planck length $\sim 10^{-35}$ m
- (Mirrors) Measurement of non-commuting observables. Heisenberg Uncertainty Principle (HUP)
 - $[x, p] = i\hbar$
 - $[x(0), x(t)] = \frac{4i\hbar t}{m}$
- (Light) Laser light is noisy also because of HUP
 - (1) radiation pressure, (2) shot noise
 - Coherent state ⇒ standard quantum limit
 - Squeezed states

 → Heisenberg limit (move the noise to where we don't see it)

AIM

The aim of the talk is to try and answer the following questions:

- 1. How does quantum mechanics contribute to additional noise in LIGO and other 'classical' precision measurements?
 - Basic quantum optics
 - * The standard quantum limit (SQL) and where it comes from
 - * What is the *fundamental* limit to the precision of these measurements?
- 2. How can quantum mechanics be used to minimise the noise?
 - Squeezing
 - Different readout schemes [DC, Homodyne, Heterodyne, etc.]
 - Quantum non-demolition measurements and other ideas (briefly)

Quantum Harmonic Oscillator (QHO)

* Test mass: QHO

Light fields: QHO's

Sec 1 of Jupyter notebook

Intro to QHO

•
$$\mathbf{H} = \frac{\mathbf{p}^2}{2m} + \frac{1}{2}m\omega^2\mathbf{x}^2$$
 This describes an object trapped in a quadratic potential.

*
$$\mathbf{x} = \sqrt{\frac{\hbar}{2m\omega}} (\mathbf{a} + \mathbf{a}^{\dagger})$$
, and $\mathbf{p} = \sqrt{\frac{\hbar m\omega}{2}} (\mathbf{a}^{\dagger} - \mathbf{a})$

The Hamiltonian looks much nicer: $\mathbf{H} = \hbar\omega \left(\mathbf{a}^{\dagger}\mathbf{a} + \frac{1}{2}\right)$ where $\mathbf{N} = \mathbf{a}^{\dagger}\mathbf{a}$

Optical cavity: harmonic potential for the EM field

- * $\mathbf{E}_1 \leftrightarrow \mathbf{x}$, $\mathbf{E}_2 \leftrightarrow \mathbf{p}$: the non-commuting quadrature operators of the EM field
- * $\mathbf{E}_1 = \left(\frac{\mathbf{a} + \mathbf{a}^{\dagger}}{2}\right)$, $\mathbf{E}_2 = \left(i\frac{\mathbf{a}^{\dagger} \mathbf{a}}{2}\right)$ in terms of photon creation and annihilation operators $\implies \Delta E_1 \Delta E_2 \ge 1/2$
- * $E(t) \sim E_1 \cos \omega t + E_2 \sin \omega t$
- * The Hamiltonian is exactly the same for a single mode with frequency ω :

$$\mathbf{H} = \hbar\omega \left(\mathbf{a}^{\dagger}\mathbf{a} + \frac{1}{2} \right)$$

Amplitude and phase quadrature

- * ${\bf E}_1$ is known as the *amplitude* quadrature and ${\bf E}_2$ the *phase* quadrature, as affected by amplitude and phase modulation, respectively
- * Carrier: $E_0 \cos(\omega_o t)$
- * AM with mod. depth δA : $E_0(1 + \delta A \cos(\omega_1 t))\cos(\omega_0 t)$ = $E_0\cos(\omega_0 t)\left(1 + \frac{\delta A}{2}(e^{i\omega_1 t} + e^{-i\omega_1 t})\right)$
- * PM with mod. depth $\delta \phi$: $E_0 \cos(\omega_0 t + \delta \phi \cos(\omega_2 t))$ $\approx E_0 \cos(\omega_0 t) E_0 \sin(\omega_0 t) \left(1 + \frac{\delta \phi}{2} (e^{i\omega_2 t} + e^{-i\omega_2 t}) \right)$

Some useful optical states

- Photon number eigen-states: { | n>}
- The 'classical' coherent state: $|\alpha\rangle = e^{-|\alpha^2|/2} \sum_{n=0}^{\infty} \frac{\alpha^n}{\sqrt{n!}} |n\rangle$
 - For a single-mode l of the EM field, $\langle E(\vec{r},t)\rangle = i\overrightarrow{\epsilon_l}\sqrt{\frac{\hbar\omega_l}{2\epsilon_0 V}}\left(\alpha_l e^{i\overrightarrow{k}\cdot\overrightarrow{r}-i\omega t} \alpha_l^* e^{-i\overrightarrow{k}\cdot\overrightarrow{r}+i\omega t}\right)$
 - $\Delta E_1 \Delta E_2 = 1/2$ and $\Delta E_1 = \Delta E_2 = 1/2$ [Minimum uncertainty possible for classical light]
- Squeezed coherent state:

Number-phase uncertainty

Sec 2 of Jupyter notebook

*
$$\mathbf{D} = \mathbf{c}^{\dagger} \mathbf{c} - \mathbf{d}^{\dagger} \mathbf{d} = \cos \phi \left(\mathbf{a}^{\dagger} \mathbf{a} - \mathbf{b}^{\dagger} \mathbf{b} \right) + i \sin \phi \left(\mathbf{a}^{\dagger} \mathbf{b} - \mathbf{b}^{\dagger} \mathbf{a} \right)$$

* At
$$\phi = \pi/2$$
: $\mathbf{D} = i(\mathbf{a}^{\dagger}\mathbf{b} - \mathbf{b}^{\dagger}\mathbf{a})$ and $|d\langle \mathbf{D} \rangle / d\phi| = |\langle \mathbf{a}^{\dagger}\mathbf{a} - \mathbf{b}^{\dagger}\mathbf{b} \rangle|$

For coherent state input,
$$\Delta \phi = \frac{\Delta D}{|\mathrm{d}\langle \mathbf{D}\rangle/\mathrm{d}\phi|} \sim 1/\sqrt{N}$$

Standard Quantum Limit

- $\mathbf{H}_{int} = \mathbf{x}\mathbf{F}_{rad} = \alpha\mathbf{x}\mathbf{E}_{in,1}(t)$
 - $\bullet \ \mathbf{E}_{out,1}(t) = \mathbf{E}_{in,1}(t),$
 - Change in x impacts phase of returning field:

$$\mathbf{E}_{out,2}(t) = \mathbf{E}_{in,2}(t) + \alpha(t) \int dt' G_{x}(t-t') [\alpha(t')\mathbf{E}_{in,1}(t') + F_{GW}(t')]$$

* In the frequency domain, $G_{\chi}(\omega)$ is the mechanical TF of the test mass:

$$\mathbf{E}_{out,2}(\omega) = \mathbf{E}_{in,2}(\omega) - \kappa \mathbf{E}_{in,1}(\omega) + \frac{\sqrt{2\kappa}}{h_{SQL}} h_{GW}(\omega)$$

$$\kappa = -\frac{\alpha^2}{\hbar} G_{\chi}(\omega) \propto \frac{P}{M\omega^2}$$
 for a free mass,

$$h_{SQL}^2 = \frac{2\hbar}{M\omega^2 L^2}$$

Understanding the SQL

- $* [\mathbf{x}(t), \mathbf{x}(t')] = \frac{4i\hbar(t'-t)}{m} \Longrightarrow \Delta x(t)\Delta x(t') \ge \frac{2\hbar |t'-t|}{m}$ (ignore light; include 4 test mass mirrors)
- * Minimum classical uncertainty:

$$\Delta x(t) = \Delta x(t') = \sqrt{S_x(\omega_{min})/|t'-t|} \implies \text{the SQL, where}$$

$$\omega_{min} \sim 1/|t'-t|$$

$$S_h(\omega) = \left(\frac{1}{\kappa} + \kappa\right) \frac{h_{SQL}^2}{2}$$

- At low ω , $S_h \propto P$
- At high ω , $S_h \propto 1/P$

Squeezed light

$$\psi_{\alpha}(E_{1,2}) = \frac{1}{\pi^{1/4}} e^{-(E_{1,2} - \sqrt{2}\alpha)^2/2}$$

- * Single-mode squeeze operator: $\mathbf{S}(r,\zeta) = \exp[re^{-i\zeta}\mathbf{a}^{\dagger 2} (re^{i\zeta}\mathbf{a}^2)/2]$
- For $\zeta = 0$:
 - $\mathbf{E}_1(r) = \mathbf{S}^{\dagger}(r)\mathbf{E}_1(0)\mathbf{S}(r) = \mathbf{E}_1(0)e^r$
 - $\mathbf{E}_2(r) = \mathbf{S}^{\dagger}(r)\mathbf{E}_2(0)\mathbf{S}(r) = \mathbf{E}_2(0)e^{-r}$

* $S_h^{sqz} = e^{-2r}S_h$ if optimal squeezing angle is selected for each frequency

Build correlations: ponderomotive squeezing

$$S_{xx}(\omega)S_{FF}(\omega) - |S_{xF}(\omega)|^2 \ge \hbar^2$$

$$S_{xx} = L^2 S_h$$

marodress or will skill

Readout schemes: (1) DC readout

$$E_{AS} = \frac{E_{in}}{2} \left(e^{i\phi_X} - e^{i\phi_Y} \right)$$

* If
$$\phi_X = -\phi_Y = \phi_{GW}$$
, $E_{AS} \simeq iE_{in}\phi_{GW} \implies P_{AS} \propto \phi_{GW}^2$

- * But with a DC offset, i.e, $\phi_X \phi_Y = 2\phi_{DC} + 2\phi_{GW}$, we have $E_{AS} \simeq iE_{in}(\phi_{GW} + \phi_{DC}) = A_{GW} + A_{DC}$
- O/P now linear $\Longrightarrow P_{AS} = |A_{DC}|^2 + 2\text{Re}[A_{DC}A_{GW}^*]$

Readout schemes: (1) DC readout

$$E_{AS} = \frac{E_{in}}{2} \left(e^{i\phi_X} - e^{i\phi_Y} \right)$$

* If
$$\phi_X = -\phi_Y = \phi_{GW}$$
, $E_{AS} \simeq iE_{in}\phi_{GW} \implies P_{AS} \propto \phi_{GW}^2$

- * But with a DC offset, i.e, $\phi_X \phi_Y = 2\phi_{DC} + 2\phi_{GW}$, we have $E_{AS} \simeq iE_{in}(\phi_{GW} + \phi_{DC}) = A_{GW} + A_{DC}$
- O/P now linear $\Longrightarrow P_{AS} = |A_{DC}|^2 + 2\text{Re}[A_{DC}A_{GW}^*]$
 - (Exercise: find ϕ_{DC} where sensitivity is maximum)

(2) Balanced Homodyne Readout

References

- Macroscopic Quantum Mechanics Yanbei Chen (2013)
- * The noise in gravitational-wave detectors and other classical-force measurements is not influenced by test-mass quantisation Braginsky et. al. (2002)
- * Thesis of Haixing Miao (2010)
- * Quantum measurement theory in gravitational-wave detectors Danilishin and Khalili (arxiv 1203.1706)
- * Balanced homodyne readout for quantum limited gravitational wave detectors Fritschel, Evans and Frolov (2014)