1 Objective

The objective is to measure the time constant of an RC circuit in order to verify the calculated values [1].

2 Equipment Used

• Digital Multimeter

• DC Power Supply

• Resistor: $20k\Omega$

• Capacitor: $2,200\mu F$

• Alligator (Clips) Jumper

3 Experiment Setup

1. Construct the circuit in Figure 10-1[1].

Figure 10-1 Series RC Circuit for Experimental Setup [1]

- 2. Measure the initial current [1].
- 3. Calculate the values of τ and 5τ in which τ is equal to R_{eq} times C_{eq} [1].
- 4. Collect data by timing the measurements of the current to ever 15 seconds and in order to measure the current remove the alligator clip from the circuit [1].
- 5. Take measurements every 15 seconds until 5τ and possibly further [1].
- 6. Repeat the previous 2 steps for trial 2 [1].
- 7. Take the average values of the two trials at each measured time [1].
- 8. Use the average current to calculate the voltage across the resistor [1].
- 9. Solve the voltage across the capacitor, V_c , which can be solved fro with the voltage across the resistor $V_c = (V_s V_R)$ [1].

4 Results

 $\tau=44$ seconds Initial Current = 1.745 mA $5\tau=220$ seconds

Table 10-1: Data Table for RC Time Constant [1]

Time	Current (mA)			Resistor Volt-	Capacitor
(min:sec)				age (V)	Voltage (V)
	Trial 1	Trial 2	Average		
0:00	1.745 mA	1.745 mA	1.745 mA	34.9 V	0 V
0:15	1.242 mA	1.24 mA	1.241 mA	24.82 V	10.08 V
0:30	.901 mA	.900 mA	.9005 mA	18.01 V	16.86 V
0:45	.662 mA	.666 mA	.664 mA	13.28 V	21.62 V
1:00	.490 mA	.500 mA	.495 mA	9.9 V	25 V
1:15	.365 mA	.373 mA	.369 mA	7.38 V	27.52 V
1:30	.277 mA	.274 mA	.2755 mA	5.51 V	29.39 V
1:45	.212 mA	.207 mA	.2095 mA	4.19 V	30.71 V
2:00	.165 mA	.158 mA	.1615 mA	3.23 V	31.67 V
2:15	.125 mA	.112 mA	.1185 mA	2.37 V	32.53 V
2:30	.100 mA	.092 mA	.096 mA	1.92 V	32.98 V
2:45	.076 mA	.072 mA	.074 mA	1.48 V	33.42 V
3:00	.062 mA	.057 mA	.0595 mA	1.19 V	33.71 V
3:15	.050 mA	.045 mA	.0475 mA	.95 V	33.95 V
3:30	.041 mA	.036 mA	.0385 mA	.77 V	34.13 V
3:45	.034 mA	.029 mA	.0315 mA	.63 V	34.27 V
4:00	.028 mA	.024 mA	.026 mA	.52 V	34.38 V
4:15	.023 mA	.020 mA	.0215 mA	.43 V	34.47 V
4:30	.020 mA	.016 mA	.018 mA	.36 V	34.54 V
4:45	.017 mA	.014 mA	.0155 mA	.31 V	34.59 V
5:00	.015 mA	.012 mA	.0135 mA	.27 V	34.63 V
5:15	.013 mA	.010 mA	.0115 mA	.23 V	34.67 V
5:30	.011 mA	.009 mA	.010 mA	.2 V	34.7 V
5:45	.010 mA	.008 mA	.009 mA	.18 V	34.72 V
6:00	.009 mA	.007 mA	.008 mA	.16 V	34.74 V

5 Conclusion

References

 $[1] \ \ UNCC \ ECE \ Department. \ Time \ constant \ of \ an \ rc \ circuit, \ 2023. \ [Online; \ accessed \ 21 \ November \ 2023].$