



กลางภาคเทอม 1



A | สารบัญ JxxnO3z



# สารขัญ

- 1 | Atomic model development
- 2 | Atomic model development
- 3 | Electron
- 4 | Transition & oxidation number & แนวโน้มสมบัติของธาติ & กัมมันตรั้งสี





### ้เกิดโดยดีโมคริตุสและลูซิปป์ส (นักวิทย์สมัยก่อน)เชื่อว่าสารมีขนาดเล็กลงเรื่อยๆในที่สุดจะได้หน่วยหย่อยที่ไม่สามารถแยกได้อีกเรียกว่า ATOM

### Delton Model



[X ล้มล้างแล้ว] - อนุภาคที่เล็กที่สุดของธาติไม่สามารถแยกได้อีก (ปัจจุบันได้แล้ว)

[X ล้มล้างแล้ว] - อะตอมของธาตุมีสมบ์ติเหมือนก์นและแตกต่างจากอะตอม (ปัจจุบันแตกต่าง)

อะตอมของแต่ล่ะธาตุไม่สามารถเปลี่ยนเป็นธาตุอื่นได้โดยปฏิกริยาทางเคมี ไม่เกิดใหม่หรือหาย สารประกอบเกิดจากอะตอมของธาตุมากกว่า 1 ชนิดสร้างพันธะต่อกันในอัตราส่วนที่ลงตัว

### Thomson model ดิดคันโดย Josep John thomson

Positive Charge spead throught spher --> = Negative electron



รังสี Cathode ในสนามแม่เหล็กและสรุปว่าอะตอมทุกชนิดมือนุภาคไฟฟ้าประจุลบ หรืออิเล็กตรอนเป็นองค์ประกอบ

+ อะตอมเป็นกรางทางไฟฟ้ามีจำนวนประจุ + และ - เท่ากัน

### การทดลอง Thomson's experiments with cathode ray tubes

รังสีประจุลบเรียกว่า cathode



(+) Anchode ผลที่ได้

ร้งสีแคทโทดหรืออิเล็กตรอนมีประจุเป็นลบ (-) มีประจุต่อมวล (e/m) =1.76x10^8 e/g atom ชนก์บอากาศเกิดเป็นเส้น เมื่อเปลี่ยนชนิดของแก็สพบว่าค่าประจุต่อมวลอิเล็กตรอนไม่เปลี่ยนแปลง



### โกล์สไตน Gold stein



อะตอมประกอบด้วยประจุไฟฟ้าที่เป็นบวก (+) เคลื่อนที่จากแอโนดไปแดดโทด เมื่อเปลี่ยนชนิดแก็สแล้วประจุต่อมวลของประจุบวกมีการเปลี่ยนแปลง เพราะมวลของประจุบวกไม่คงที่เมื่อมีการเปลี่ยนประจุไฟฟ้าเคียวกันเช่น H+ และ O+ ประจุ +1 ทั้งคู่มวลของ O มากกว่า H ทำให้หาประจุได้ไม่เท่ากัน

ประจุต่อมวล -e เท่ากัน | ประจุต่อมวล + ไม่เท่ากัน

### มิลลิแดน (millikan)

ทำให้ทราบว่าประจุของอิเล็กตรอน = 1.6 x 10<sup>-19</sup> e | ประจุต่อมวล e (electron) = 1.76x10 e/q

### Rutherford model

alpha ( $\alpha$ ), beta ( $\beta$ ), gamma ( $\gamma$ ) ray in eletric field



- มือนุภาคแอลฟาส่วนใหญ่เคลือนที่เป็นเส้นตรงแสดงว่าพื้นที่ส่วนใหญ่ของอะตอม เป็นที่ว่างจึงทะลุผ่านได้เกือบหมด
- อนุภาคแอลฟาที่เบนออกจากแนวเดิมแสดงว่ามีการเคลื่อนที่เฉียดกับประจุบวก
- อนุภาคส่วน น้อยมากเคลื่อนที่**สะท้องกลับ**แสดงว่ามีการชนกับประจุบวกที่มีขนาด เล็กมากและมวลมาก

### สรุป Rutherford

อะตอมประกอบด้วยนิวเคลียสที่มีโปรตอนรวมกันอยู่ตรงกลางมีขนาดเล็กมวลมากและมีประจุเป็นบวกมี อิเล็กตรอนซึ่งมีประจุเป็นลบมวลน้อยเคลื่อนที่รอบๆ นิวเคลียสเป็นบริเวณกว้าง



### การสนบสนุนของ chadwick

- P โปรตอน (proton p) ประจุ +
- n° พิวตรอน (neutron n) ไม่มีประจุ
- e อิเล็กตรอน (electron e) ประจุ -

### Nuclear Symbol 🔀 ลำคัญ



เลขอะตอม (จำนวนโปรตอน)

Element symbol (ตัวย่อสาร)

ธาตุเดียวกันจะมีโปรตอนเท่ากัน





Neutron = 77 (หารพิวตรอน = A-Z)



### นิวไคล์ด Nuclide

(1) - เมื่อ P เท่ากัน <sup>12</sup>C <sup>13</sup>C <sup>15</sup>C

- สมบัติทางเคมีเหมือนกัน
- เลขอะตอมเท่ากัน(ธาตุชนิดเดียวกัน)
- เลขมวล (A) ต่างกัน เรียกว่า ไอโซโทป (Isotape)

(2) - เพื่อ n เท่ากัน <sup>9</sup>Li <sup>10</sup>Be <sup>11</sup><sub>5</sub>B <sub>n=6</sub> n=6 n=6

- จำนวน กเท่ากัน
- เลขมวล (A) และเลขอะตอม (p) ต่างกัน

เรียกว่า ไอโซโทน (Isotone)

(3) - เมื่อเลขมวล (เลขบน A ) เท่ากัน

 $3 \frac{12}{6} C \frac{12}{7} N$ 

- เลขมวล (A) เท่าก็น
- เลขอะตอม (p) และจำนวน n ที่ต่างกัน เรียกว่า ไอโซบาร์ (isobar)

ไออน (Ion) เกี่ยวข้องเฉพาะจำนวนอิเล็กตรอน (อนุภาคนิวเคลียสเหมือนเดิม) แบ่งเป็น



อะตอมหรือไออนใดก็ตามที่มีจำนวนอิเล็กตรอนเท่ากันเรียกว่า ISOELECTRONIC

### Bohr Model

ศึกษาสเปกตรัมของอะตอมทำให้ทราบว่าภายในอะตอมมีการจัดระดับพลังงานเป็นชั้นๆในแต่ละชั้นจะมีอิเล็กตรอน บรรจุอยู่

### electron magnetic spectrum





Spectrum -> Continuous spectrum
-> cloud of gas -> Continuous spectrum with dark line (Absorption Line)
-> Bright line with spectrum (Emission line)

Frame test ใช้วิเครห์ว่ามี ไออนโลหะ (โลหะเท่านั้น) ชนิดใดเป็นองค์ประกอบโดยการนำสีมาเปรียบเทียบ กับสเปกตร์ม

### Bohr Model

องค์ประกอบด้วย หิวเคลียสซึ่ง มีขนาดเล็ก มีมวลมากอยู่กลาง อะตอมโดยจะ มีอิเล็กตรอนเคลื่อนที่เป็น ชั้นๆ ตามระดับพลังงาน ของแต่ละอิเล็กตรอน





สูตรคำนวณหาพลังงานอิเล็กตรอนที่คายออกมาในระดับพลังงานต่างๆ

สูตรดำนวณหาพลังงานอิเล็กตรอนที่คายออกมาเป็น Spectrum

$$E = h v$$
  $E = \frac{he}{\lambda}$   $h = 6.63 \times 10^{-3} \text{J/s}$   $V = \text{Hz}$   $v$  คือเครื่องหมายหิว  $\lambda$  คือเครื่องหมาย lamda  $C = \Theta$  อามเร็วแสง =  $3 \times 10^{\circ} \text{ m/s}$ 

$$\Delta E = h v = \frac{hc}{\lambda} \quad v \quad \frac{C}{\lambda}$$



ความยาว λ1>2>3

- ระดับพลังงานยิ่งอยู่สูงขึ้นจะอยู่ชิดกุ้นมากขึ้น
- อิเล็กตรอนที่อยู่ใกล้นิวเคลียสมุากที่สุดจะมีพลังงานมากสุด
- ระดับพลังงานที่ใกล้นิวเคลียสที่สุดคือ n=1 ไปเรื้อยๆ (ออกไป) ใช้อธิบายอะตอมของธาตไฮโดรเจน / มี 1 electron เท่านั้น

### การจัดเรียง อิเล็กตรอน

จำนวน e ีสูงสุดในแต่ละชั้น = 2(n<sup>2</sup>)

n = 1 -> 2

 $n = 2 \rightarrow 8$ 

n = 3 -> 18

n = 4 -> 32

กฎในการจัดเรียงอิเล็กตรอน สำหรับธาตุหมู่ Representative (A)

- 1) จำนวน e ขึ้นนอกสดไม่เกิน 8
- 2) จำนวน e ชั้นที่ถัดเข้ามาต้องเป็น 8 หรือ 18

หมู่หาได้จากตัวสุดท้าย ดาบหาได้จากจำนวนตัวเลขทั้งหมด

### เลขควอนต้ม

H = 1

1 เลขควอนต์มหลัก คือค่า n มีตั๋งแต่ n = 1,2,3,4,...,7 ใช้บอกระดับพลังงานหลัก เช่น 2s n = 2 เลขควอนต์มหลัก = 2 , 3p n = 3 เลขควอนต์มหลัก = 3

2 เลขควอนต์มโมเมนต์มเร่งมุม I ใช้บอกรูปร่างของระดับพลังงานย่ยหรือ subshell

เช่น 2 s s = O เลขควอนตัมโมเมน = O 3pp=1 เลขควอนตัมโมเมน=1

3 เลขควอนต้มแม่เหล็ก ml มาจากการ spin electron Spd f



เช่น 2s SPIN 🛊 🖡 = O เลขควอนต้มแม่เหล็ก = O 3p SPIN 🕇 🛊 🕇 = +1 เลขควอนต้มแม่เหล็ก = +1 3p SPIN 🛊 🖡 🛊 🛊 = -1 เลขควอนต์มแม่เหล็ก = -1



### n = 1n = 2n = 3n = 4n = 5n = 6n = 7n = 8สำคัญที่สูดดดดดดด

### การจัดเรียง อิเล็กตรอนแบบ 1s2 2s2



เริ่มจาก 1s ไป 2s (ตามในรูปตามลูกศร) s จะเก็บได้ 2 ตัว +.p จะเก็บได้ 6 ตัว ตามรูป d จะเก็บได้10 ตัว f จะเก็บได้ 14 ตัว

18 36 (+18) 54 (+18) 72 (+18)

\*\*คิดตาม 2.8.18.32.18.8 ได้เลย

เช่น 2,8,8,2 = 20 = 1s2 2s2,2p6,3s2,3p6,4s22 + 2 + 6 + 2 + 6 + 2 = 20



### Trasition ให้ดูตัว d ว่า d ไม่เต็ม ลงท้ายด้วย 2 (3 ไม่ได้)

รัศมีโควาเลนซ์ (covalent radius) วัดรัศมีของโมเลกุล

สูตร

Coverent -> Coverent



a Transition

รัศมีแวนเดอร์วาลส์ (varder waals radius) วัดจากโมเลกุลเดียว (ธาตุ) ระหว่างโมเลกุล

### Transition



x + จะมีแค่ vender waals อย่าง เคียวในธาตุหมู่ 8 [Kr xe]

รัศมีโลนะ เนมือนอโลนะ / กึ่งโลนะ (covalent + Varder waal)

สารประกอบเชิงซ้อนของธาตุทรานซิชัน Co-ordination entity : ไอออนเชิงซ้อน Central metal Ion : อะตอมถาง

Ligands ลิแกด์ : ล้อมรอบอะตอมกลาง Transition

Counter Ions : คุมประจุ

เช่น [co(H20) 61CL3 = co-ordination entity

Co3+ Central Metal Ion

6HN<sub>3</sub>= Ligands 3CL = counter Ion

### สมบ์ติของธาตุทรานซิชัน

1 ทุกธาตุเป็นโลนะ แต่มีความเป็นโลนะน้อยกว่าหมู่ IA และ IIA

2 เป็นของแข็งมีจุดหลอมเหลงจุดเดือนและความหนาแน่นสูงกว่าโลหะหมู่ IA , IIA ในคาบเดียวกัน (มีขนาดที่เล็กกว่า พันธโลหะแข็งแรงกว่า)

3 นำไฟฟ้าและความุร้อนได้ดี เช่น ทองแดง เงิน ทองคำ

4 มีสมบัติคล้ายกันทั้งในภายหมู่และคาบเดียวกัน โดยเฉพาะในหมู่ VII พบว่าธาตุแนวมีสมบัติใกล้เคียงกัน

5 ขนาดของอะตอมจะเล็กลงจากซ้ายไปขวาเพียงเล็กน้อย

6 มีเลขวอกชเดชันได้หลายค่า ยกเว้น 3D เช่น Sc เป็น +3 เท่านั้นและหมู่ 2B (2n1cd) เป็น +2 ค่าเดียวเท่านั้น

7 สารประกอบไวออนของธาตุทรานซิชันส่วนใหญ่มีสี

8 พลังงานไออนไนเซชันที่ 1 สูงกกว่าหมู่ IA และ IIA ในดาบเดียวกันและเพิ่มขึ้น

ๆ เกิดสารประกอบเชิงซ้อนได้ง่าย เพระาไออนของธาตุทรานซิชันมีขนาดเล็กและประจุบวกสูง

10 ธาตุชนิดมีสมบัติเป็นแม่เหล็ก เช่น Ni co Fe

11 สามารถเกิดปฏิกิริยากับธาตุอโลหะได้เมื่อให้ความร้อนแก้ไม่รุนแรงเท่ากับหมู่ IA และ IIA

12 ธาตุบางชนิดเป็นโลหะมีตระกูล (ไม่ชอบเกิดปฏิกริยา) เช่นPt Aบถึงแม้ว่าจะเป็นโลหะแต่เสีย e- ได้ยากและไม่ละลายในกรด

### Ox number

### แนวโน้มสมบ์ติของธาตุตามตารางธาตุ



1 ธาตุอิสละมี ox number = O

$$Na = O$$
  $CI = O$   $Single O$   $S$ 

3 ไออน/กลุ่มไอออนุมี ox number = ประจุของไอออนนั้นๆ

$$Na_{a}^{+1} = +1$$
 $Ci = -1 \log_{10} + - Nh_{4}^{+} = +1$ 
 $Fe = +2$ 
 $S^{-1} = -2 \cos_{10} = -2$ 

2 สารประกอบพื่ ox.number รวม = 0

 $H_2O = O$   $NaCL \rightarrow Na = +1 CI = -1 = O$  $C_1H_2O_2 = O$   $[M_2(H_2O)_2]CI_2 = O$ 

- 4 สารประกอบที่มี H
- 4.1 ถ้า H อยู่กับธาตุโลหะ ox.number = -1

LiH; H = -1  $C_a H_2$ ; H = -1

4.2 ถ้า H อยู่กับธาตุอโลหะ ox.number<sup>2</sup>= +1

H, O; H =+1 H, CO; H=+1

### 5 สารประกอบที่มี O ลงท้ายด้วย oxide

5.1 - สารประกอบออกไวท์ ; ox.number ของ O = -2 5.2 - สารประกอบเปอร์ออกไซ พ์ ; ox.number ของ O = -1 5.3 - สารประกอบซุปเปอร์ออกไซน์ ; ox.number ของ O = -

### กัมมันตรังสี

พิวเครียสที่เสถียร - ไม่แผ่รังสี พิวเครียสที่ไม่เสถียร - แผ่รังสี

\*\*ความเสถียรขึ้นอยู่กับอัตราส่วนระหว่งจำนวนโปรตอนและนิวตรอน

การสลายตัวของธาตุกัมมันตรังสี -> ปล่อยรังสีแม่เหล็กไฟฟ้า ออกมากซึ่งเรียกว่ากัมมันตภาพรังสี

| Particle | Symbol              | Mass (amu) | Charge (e) |
|----------|---------------------|------------|------------|
| Alpha    | ½He                 | 4.0026     |            |
| Beta     | β or e <sup>-</sup> | 0.0005486  |            |
| Gamma    |                     |            |            |
| Positron |                     | 0.0005486  |            |
| Neutron  |                     | 1.008665   |            |
| Proton   |                     | 1.007276   |            |
| Deuteron | $^{2}_{1}H$         | 2.014102   |            |
| Triton   | 3 <i>H</i>          | 3.016049   |            |

ปฏิกิริยานิวเคลียร -> ให้รวมเลขอะตอมทางด้านซ้ายให้เท่ากับด้านขวา

## Good Luck on the test

หากมีข้อแนะนำหรือมีอะไรที่ไม่ถูกต้องสามารถติดต่อ IG : JxxnO3z เพื่อจะได้พัฒนาสรุปให้ดีที่สุดครับ

ขอบคุณที่อ่านน้ำวา 🤝

https://www.scimath.org/lesson-chemistry/item/7121-atomic-model https://unacademy.com/content/jee/study-material/chemistry/thomsons-model/ https://www.khanacademy.org/science/chemistry/atomic-structure-and-properties/history-of-atomic-structure/a/discovery-of-theelectron-and-nucleus

> https://byjus.com/chemistry/cathode-ray-experiment/ https://en.wikipedia.org/wiki/Eugen\_Goldstein

https://chemed.chem.purdue.edu/qenchem/history/goldstein.html

https://rinconeducativo.orq/en/recursos-educativos/eugen-goldstein-his-discovery-of-canal-rays-which-led-to-the-discovery-of-

https://personalpages.manchester.ac.uk/staff/Marcus.TressI/papers/GreekAlphabet.pdf

https://en.wikipedia.org/wiki/Ernest\_Rutherford

https://chem.libretexts.org/Courses/Sacramento\_City\_College/SCC%3A\_CHEM\_33O\_-\_Adventures\_in\_Chemistry\_(Alviar-Agnew)/03%3A\_Atomic\_Structure/3.04%3A\_Rutherford's\_Experiment-\_The\_Nuclear\_Model\_of\_the\_Atom

https://www.britannica.com/science/Rutherford-model

https://chemistry.mju.ac.th/goverment/25610518095245\_chemistry/Doc\_25651219141938\_936808.pdf

https://th.wikipedia.org/wiki/%EO%B9%84%EO%B8%AD%EO%B8%AD%EO%B8%AD%EO%B8%99

https://en.wikipedia.org/wiki/Electromagnetic\_spectrum

https://stock.adobe.com/th/search?k=visible+light+spectrum

https://www.differencebetween.com/difference-between-continuous-and-discrete-spectrum/

https://chemed.chem.purdue.edu/genchem/history/bohr.html

https://www.franklychemistry.co.uk/20to9/snap\_tuition/y13/Energy\_of\_photon.pdf

https://www.stkc.go.th/stiarticle/%E0%B8%AD%E0%B8%99%E0%B8%B8%E0%B8%AO%E0%B8%B2%E0%B8%84%E0%B9%81%E0%B8%AA%E0%B 8%87

https://homework.study.com/explanation/the-equation-for-photon-energy-e-is-e-hc-lambda-where-h-6-626-x-10-34-j-s-planck-sconstant-and-c-2-99-x-10-8-m-s-the-speed-of-light-what-is-the-wavelength-lambda-of-a-photon-that-ha.html

https://www.thoughtco.com/energy-from-wavelength-example-problem-609479

https://lavelle.chem.ucla.edu/forum/viewtopic.php?t=79576

https://ptable.com/#Properties

+ หนังสือ/สมุด

