1 Equação de Injeção de água quente

Premissas:

- 1. Fluxo 1D;
- 2. Meio Poroso homogêneo;
- 3. Sistema Incompressível
- 4. Sem Dispersão;
- 5. Sem Adsorção;
- 6. Sem efeitos gravitacionais;
- 7. Sem efeitos capilares.
- 8. Sem energia cinética e potencial;
- 9. desconsiderando Trabalho;
- 10. Sem Difusão Térmica.

Dada a equação da conservação de massa:

$$\frac{\partial W_i}{\partial t} + \overrightarrow{\nabla} \cdot \overrightarrow{N_i} - R_i = 0, i = 1, 2, ..., N_c$$

$$\frac{\partial}{\partial t} \left(\phi \sum_{j=1}^{N_p} \rho_j S_j \omega_{ij} + (1 - \phi) \rho_s \omega_{is} \right)^0 + \overrightarrow{\nabla} \cdot \left(\sum_{j=1}^{N_p} (\rho_j \omega_{ij} \overrightarrow{u_j} - \phi \rho_j S_j \overrightarrow{K_{ij}} \cdot \overrightarrow{\nabla} \omega_{ij} \right)^0 =$$

$$\phi \sum_{j=1}^{N_p} S_j r_{ij} + (1 - \phi) r_{is}, i = 1, ..., N_c$$
(1.1)

Com isso a equação se torna:

$$\frac{\partial}{\partial t} \left(\phi \sum_{j=1}^{N_p} \rho_j S_j \omega_{ij} \right) + \overrightarrow{\nabla} \cdot \left(\sum_{j=1}^{N_p} \left(\rho_j \omega_{ij} \overrightarrow{u}_j \right) \right) = 0, \qquad i=1,...,N_c$$
 (1.3)

Considerando um sistema de 2 fases, pode-se defini-lás como:

- \bullet j= 1, aquosa;
- \bullet j= 2, oleosa;.

Há dois componentes presentes, que não reagem e não se misturam:

- i = 1, água;
- i = 2, óleo;
- Componente água:

$$\frac{\partial}{\partial t} \left(\phi \rho_1 S_1 \omega_{11} + \phi \rho_2 S_2 \omega_{12} \right) + \overrightarrow{\nabla} \cdot \left(\rho_1 \omega_{11} \overrightarrow{u_1} + \rho_2 \omega_{12} \overrightarrow{u_2} \right) = 0 \tag{1.4}$$

como não há troca de massa:

$$\omega_{11} = 1, \ \omega_{12} = 0$$

então,

$$\frac{\partial}{\partial t} \left(\phi \rho_1 S_1 \right) + \overrightarrow{\nabla} \cdot \left(\rho_1 \overrightarrow{u}_1 \right) = 0 \tag{1.5}$$

Considerando o fluxo unidimensional, temos:

$$\phi \frac{\partial}{\partial t} \left(\rho_1 S_1 \right) + \frac{\partial}{\partial x} \left(\rho_1 \overrightarrow{u_1} \right) = 0 \tag{1.6}$$

• Componente óleo:

$$\frac{\partial}{\partial t} \left(\phi \rho_1 S_1 \omega_{21} + \phi \rho_2 S_2 \omega_{22} \right) + \overrightarrow{\nabla} \cdot \left(\rho_1 \omega_{21} \overrightarrow{u_1} + \rho_2 \omega_{22} \overrightarrow{u_2} \right) = 0 \tag{1.7}$$

como não há troca de massa:

$$\omega_{21} = 0, \ \omega_{22} = 1$$

então,

$$\phi \frac{\partial}{\partial t} (\rho_2 S_2) + \overrightarrow{\nabla} \cdot (\rho_2 \overrightarrow{u_2}) = 0 \tag{1.8}$$

Considerando o fluxo unidimensional, temos:

$$\phi \frac{\partial}{\partial t} \left(\rho_2 S_2 \right) + \frac{\partial}{\partial x} \left(\rho_2 \overrightarrow{u_2} \right) = 0 \tag{1.9}$$

onde, $\rho(T)$, $\overrightarrow{u} = \frac{q}{A} = -\frac{kk_r}{\mu} \frac{dP}{dx}$ e $\mu(T)$.

Dada a equação da energia:

$$\frac{\partial}{\partial t} \left(\rho U + \phi \rho g D_z + \frac{1}{2} \sum_{j=1}^{N_p} \rho_j |\overrightarrow{u_j}|^2 \right) + \overrightarrow{\nabla} \cdot \left(\sum_{j=1}^{N_p} \rho_j \overrightarrow{u_j} \left[H_j + \frac{1}{2} |u_j|^2 \right] \right) - \overrightarrow{\nabla} \cdot \left(k_{T_t} \overrightarrow{\nabla} T \right) = 0,$$

$$(1.10)$$

aplicando as premissa apresentadas no início da seção, a equação da energia pode ser reescrita da seguinte forma:

$$\frac{\partial}{\partial t} \left(\rho U \right) + \overrightarrow{\nabla} \cdot \left(\sum_{j=1}^{N_p} \rho_j \overrightarrow{u_j} H_j \right) = 0 \tag{1.11}$$

e como,

$$\rho U = \phi \sum_{j=1}^{N_p} \rho_j S_j U_j + (1 - \phi) \rho_s U_s$$
 (1.12)

a equação da energia pode ser reescrita como:

$$\frac{\partial}{\partial t} \left[\phi \left(\rho_1 S_1 U_1 + \rho_2 S_2 U_2 \right) + (1 - \phi) \rho_s U_s \right]$$

$$+ \qquad \overrightarrow{\nabla} \cdot (\rho_1 \overrightarrow{u_1} H_1 + \rho_2 \overrightarrow{u_2} H_2) \qquad = \qquad 0 \quad (1.13)$$

Negligenciando o trabalho de pressão/volume, as entalpias serão iguais às energias internas ($\hat{H} = \hat{U} + \frac{p}{\rho_j}$) (uma boa suposição para líquidos e sólidos) e assumindo volume poroso incompressível:

$$\frac{\partial}{\partial t} \left[\phi \left(\rho_1 S_1 H_1 + \rho_2 S_2 H_2 \right) + (1 - \phi) \rho_s H_s \right]
+ \overrightarrow{\nabla} \cdot \left(\rho_1 \overrightarrow{u_1} H_1 + \rho_2 \overrightarrow{u_2} H_2 \right) = 0$$
(1.14)

Derivando a Eq.??, temos:

$$(1-\phi)\frac{\partial(\rho_{s}H_{s})}{\partial t} + \left[\phi\rho_{1}S_{1}\frac{\partial\hat{H}_{1}}{\partial t} + \phi\hat{H}_{1}\frac{\partial(\rho_{1}S_{1})}{\partial t}\right] + \left[\phi\rho_{2}S_{2}\frac{\partial\hat{H}_{2}}{\partial t} + \phi\hat{H}_{2}\frac{\partial(\rho_{2}S_{2})}{\partial t}\right] + \left[\rho_{1}\overrightarrow{u_{1}}\cdot\overrightarrow{\nabla}\hat{H}_{1} + \hat{H}_{1}\cdot\overrightarrow{\nabla}\cdot(\theta_{1}-\theta_{2})\right] + \left[\phi\rho_{1}\overrightarrow{u_{1}}\cdot\overrightarrow{\nabla}\hat{H}_{1} + \hat{H}_{1}\cdot\overrightarrow{\nabla}\cdot(\theta_{1}-\theta_{2})\right] + \left[\phi\rho_{1}\overrightarrow{u_{1}}\cdot(\theta_{1}-\theta_{2})\right] + \left[\phi\rho_{1}\overrightarrow{u_{1}}\cdot(\theta_{1}-\theta_{2}$$

Reorganizando a equação e substituindo as equações de conservação de massa para os componentes água e óleo (Equações ?? e ??) a equação ?? se torna:

$$(1 - \phi)\frac{\partial(\rho_s H_s)}{\partial t} + \phi \rho_1 S_1 \frac{\partial \hat{H}_1}{\partial t} + \phi \rho_2 S_2 \frac{\partial \hat{H}_2}{\partial t} + \rho_1 \overrightarrow{w_1} \cdot \overrightarrow{\nabla} \hat{H}_1 + \rho_2 \overrightarrow{w_2} \cdot \overrightarrow{\nabla} \hat{H}_2$$

$$+ \hat{H}_1 \left[\overrightarrow{\nabla} \cdot (\rho_1 \overrightarrow{u_1}) + \phi \frac{\partial (\rho_1 S_1)}{\partial t} \right]^0 + \hat{H}_2 \left[\overrightarrow{\nabla} \cdot (\rho_2 \overrightarrow{u_2}) + \phi \frac{\partial (\rho_2 S_2)}{\partial t} \right]^0 = 0$$

então,

$$(1 - \phi)\frac{\partial(\rho_s \hat{H}_s)}{\partial t} + \phi \rho_1 S_1 \frac{\partial \hat{H}_1}{\partial t} + \phi \rho_2 S_2 \frac{\partial \hat{H}_2}{\partial t} + \rho_1 \overrightarrow{u_1} \cdot \overrightarrow{\nabla} \hat{H}_1 + \rho_2 \overrightarrow{u_2} \cdot \overrightarrow{\nabla} \hat{H}_2 = 0$$

que considerando fluxo unidimensional, pode ser reecrita como:

$$(1 - \phi)\frac{\partial(\rho_s \hat{H}_s)}{\partial t} + \phi \rho_1 S_1 \frac{\partial \hat{H}_1}{\partial t} + \phi \rho_2 S_2 \frac{\partial \hat{H}_2}{\partial t} + \rho_1 \overrightarrow{u}_1 \cdot \frac{\partial \hat{H}_1}{\partial x} + \rho_2 \overrightarrow{u}_2 \cdot \frac{\partial \hat{H}_2}{\partial x} = 0$$

Assumimos que as entalpias são independentes da pressão, $dH_j = C_{pj}dT$, onde C_{pj} é o calor específico da fase j. Se o C_{pj} for constante, torna-se:

$$\left[\phi \rho_1 S_1 C_{P1} + \phi \rho_2 S_2 C_{P2} + (1 - \phi) \rho_s C_{ps}\right] \frac{\partial T}{\partial t} + \left(\rho_1 C_{p1} \overrightarrow{u_1} + \rho_2 C_{p2} \overrightarrow{u_2}\right) \frac{\partial T}{\partial x} = 0$$

Fluxo Fracionário

Definindo o fluxo fracionário como:

$$f_j = \frac{u_j}{u_t}$$

onde f_j é o fluxo fracionário, u_j a velocidade da fase e $u = \sum_{i=1}^{Np} u_j$, podemos reescrever as equações básicas governantes em termos de fluxo fracionário: - conservação de massa da água (Eq ????), conservação de massa do óleo (Eq. ????) e conservação de energia (Eq ?????).

$$\phi \frac{\partial(\rho_1 S_1)}{\partial t} + \frac{\partial(\rho_1 u_1)}{\partial x} = 0 \to \phi \frac{\partial(\rho_1 S_1)}{\partial t} + \frac{\partial(\rho_1 u_t f_1)}{\partial x} = 0$$
 (1.16)

Para o componente óleo, temos:

$$\frac{\phi\partial(\rho_2 S_2)}{\partial t} + \frac{\partial(\rho_2 u_t f_2)}{\partial x} = 0. \tag{1.17}$$

Utilizando as equações ?? e ?? para eliminar alguns termos da equação da conservação da energia (Eq. ??) representada em termos de fluxo fracionário:

$$[\phi \rho_1 S_1 C_{P1} + \phi \rho_2 S_2 C_{P2} + (1 - \phi) \rho_s C_{ps}] \frac{\partial T}{\partial t} + [u_t (\rho_1 C_{p1} f_1 + \rho_2 C_{p2} f_2)] \frac{\partial T}{\partial r} = 0$$

ou ainda,

$$\left[M_{t_1} S_1 + M_{t_2} S_2 + \frac{(1-\phi)}{\phi} M_{t_s} \right] \frac{\partial T}{\partial t} + \left[u_t (M_{t_1} f_1 + M_{t_2} f_2) \right] \frac{\partial T}{\partial x} = 0$$

onde $M_{T_j} = \phi \rho_j C_{pj}$.

Com isso, concluem-se 3 equações:

- $\phi \frac{\partial (\rho_1 S_1)}{\partial t} + \frac{\partial (\rho_1 u f_1)}{\partial x} = 0$, conservação de massa do componente água;
- $\frac{\phi\partial(\rho_2S_2)}{\partial t}+\frac{\partial(\rho_2uf_2)}{\partial x}=0$, conservação de massa do componente óleo;
- $\left[M_{t_1}S_1 + M_{t_2}S_2 + \frac{(1-\phi)}{\phi}M_{t_s}\right] \frac{\partial T}{\partial t} + \left[u_t(M_{t_1}f_1 + M_{t_2}f_2)\right] \frac{\partial T}{\partial x} = 0$, conservação da energia.

$$f_1(S_1, T) = \frac{\frac{k_{r_1}(S_1)}{u_1}}{\frac{k_{r_1}(S_1)}{u_1(S_1, T)} + \frac{k_{r_2}(S_1)}{u_2(S_1, T)}}$$

$$u_1(S_1, T) = -k \frac{k_{r_1}(S_1)}{\mu_1(T)} \frac{\partial P}{\partial x}$$

$$u_2(S_1, T) = -k \frac{k_{r_2}(S_1)}{\mu_2(T)} \frac{\partial P}{\partial x}$$

$$S_w + S_o = 1$$

Saturação da fase aquosa	$S_1 = \frac{Volume\ fase1}{Volume\ vazios}$		
Saturação da fase oleosa	$S_2 = \frac{V_{olume\ fase2}}{Volume\ vazios}$		
Permeabilidade relativa da fase aquosa	$k_{r_1} = \frac{permebeabilidade\ ef\ et\ iva\ fase1}{permeabilidade}$		
Permeabilidade relativa da fase oleosa	$k_{r_2} = \frac{permebeabilidade\ efetiva\ fase2}{permeabilidade}$		
Permeabilidade	k	$5x10^{-8}$	m^2
Porosidade	$\phi = \frac{volume de vazios}{volume total}$	0,2	
Capacidade de Calor Volumétrico da fase aquosa	$M_{T_1} = \phi \rho_1 C_{p1}$		
Capacidade de Calor Volumétrico da fase oleosa	$M_{T_2} = \phi \rho_2 C_{p2}$		
Calor específico da fase aquosa	C_{p1}	4186	J/kg
Calor específico da fase oleosa	C_{p2}	2135,268	J/kg
Massa específica da fase aquosa	$\rho_1 = \frac{massa fase1}{Volume fase1}$	1000	kg/r
Massa específica da fase oleosa	$ \rho_2 = \frac{massafase2}{Volumefase2} $	750	kg/r
Velocidade da fase aquosa	$\mathbf{u}_1(S_1, T) = -k \frac{k_{r_1}(S_1)}{\mu_1(T)} \frac{\partial P}{\partial x}$		m/
Velocidade da fase oleosa	$\mathbf{u}_2(S_1, T) = -k \frac{k_{r_2}(S_1)}{\mu_2(T)} \frac{\partial P}{\partial x}$		m/
Fluxo Fracionário da fase aquosa	$f_1 = \frac{velocidade fase1}{velocidade total}$		
Fluxo Fracionário da fase oleosa	$f_2 = rac{velocidade\ fase2}{velocidade\ total}$		
Pressão	P	100000	Pe
Temperatura água injetada	T^{0}	423	K
Viscosidade	$\mu_j = Ae^{B/T}$	0,11	Pa
Vazão	Q	500	m^3/ϵ
<u> </u>			

Tabela 1 - Condições de contorno sobre as fronteiras do reservatório.

Propriedades físicas	Unidade	Descrição	
Pressão estática / psi	2000	Poço produtor	
Vazão mássica de água / kg/s	0,577	Entrada do poço injetor	
Fração volumétrica	1	Água – Entrada do poço injetor	
Fração volumétrica	0	Óleo – Entrada do poço injetor	
Pressão do reservatório / psi	3441,9	,	
Temperatura / °F	233,24	Óleo no reservatório	
Fração volumétrica inicial	0	, Agua	
Fração volumétrica inicial	1	Oleo leve	

Tabela 2 - Propriedades do óleo e da água.

Propriedades físicas	Fase contínua (petróleo)	Fase contínua (água)
Massa molar / kg/kmol	105,47	18,02
Densidade / kg/m³	876,16	997,0
Viscosidade dinâmica / cp	2	0,0008899
Condutividade térmica / W/m.K	0,143	0,6069
Calor específico / J/kg.K	2092	4181,7
Pressão	constante	1

Tabela 3 - Propriedades do meio por oso.

Propriedades físicas	Rocha
Permeabilidade / m²	1.10-13
Porosidade	0,20
Coeficiente de perda de resistência (Kloss)	0

Figura 1: