ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA I - ALG1002 GEOMETRIA ANALÍTICA - GAN0001

Lista 1: Vetores

Prof. Jeferson Zappelini Petry

- 1. Dados os vetores \vec{u} e \vec{v} da figura, mostrar num gráfico um representante do vetor:
 - (a) $\vec{u} \vec{v}$
 - (b) $\vec{v} \vec{u}$
 - (c) $\vec{u} + \frac{3}{4}\vec{v}$

2. Represente o vetor $\vec{x} = -2\vec{u} + \frac{3}{2}\vec{v} - \frac{2}{3}\vec{w}$ com origem no ponto O da figura abaixo, sendo \vec{u} , \vec{v} e \vec{w} como na figura.

- 3. Com base no paralelepípedo representado a seguir determine os seguintes vetores usando H como origem.
 - (a) (E F) + (B D) + (C D)
 - (b) -(G-B) + (B-A)

4. Dado o trapézio \overrightarrow{ABCD} em que $\overrightarrow{AB} = \vec{b}$, $\overrightarrow{CB} = \vec{a}$, $\overrightarrow{DC} = 2\vec{b}$ e $\overrightarrow{DP} = \frac{\overrightarrow{DA}}{4}$, expressar \overrightarrow{BD} e \overrightarrow{CP} em função de \vec{a} e \vec{b} .

5. Considere o tetraedro \overrightarrow{ABCD} dado a seguir, em que $\overrightarrow{AB} = \overrightarrow{a}$, $\overrightarrow{AC} = \overrightarrow{b}$, $\overrightarrow{AD} = \overrightarrow{c}$ e $\overrightarrow{CX} = \frac{1}{3}\overrightarrow{DC}$. Escreva o vetor \overrightarrow{BX} em função dos vetores \overrightarrow{a} , \overrightarrow{b} e \overrightarrow{c} .

6. Sejam M e N os pontos médios das diagonais \overline{AC} e \overline{BD} , respectivamente, do trapézio ABCD representado na figura abaixo.

Sendo $\vec{a} = \overrightarrow{AB}, \ \vec{b} = \overrightarrow{DC}$ e $\vec{u} = \overrightarrow{MN}$, escreva o vetor \vec{u} como combinação linear de \vec{a} e \vec{b} .

- 7. Prove que o segmento que une os pontos médios de dois lados de um triângulo é paralelo ao terceiro e tem a metade de sua medida.
- 8. No triângulo retângulo abaixo, demonstre vetorialmente as seguintes relações:
 - (a) O quadrado de um cateto é igual ao produto da hipotenusa pela projeção desse cateto sobre a hipotenusa, ou seja $b^2 = an$ e $c^2 = am$.
 - (b) O quadrado da altura é igual ao produto das projeções dos catetos sobre a hipotenusa, ou seja, $h^2=mn$

- 9. Prove que as diagonais de um losango são ortogonais entre si.
- 10. No paralelepípedo da figura abaixo tem-se que P(2,4,3).

Determine:

(a) os pontos A, B, C, D, E, F e O.

(b) $\overrightarrow{CD} \cdot \overrightarrow{EF}$.

(c) $\overrightarrow{AP} \times \overrightarrow{PB}$.

(d) $\overrightarrow{OP} \cdot \overrightarrow{OA} \times \overrightarrow{OE}$.

11. Determine a origem A do segmento que representa o vetor $\overrightarrow{u} = (2, 3, -1)$, sendo sua extremidade o ponto B(0, 4, 2).

12. Determine o ponto do eixo das ordenadas equidistante dos pontos A(1,-1,3) e B(2,2,1).

13. Prove que o triângulo $A(1,2,0),\ B(4,0,-1)$ e C(2,-1,2) é equilátero.

14. Determine os pontos do plano xz cuja distância ao ponto A(1,1,0) é 2 e ao ponto B(2,0,1) é 3.

15. Determine o ponto P pertencente ao eixo z e equidista dos pontos A(2,3,0) e B(0,1,2).

16. Dados os vértices A(9, -5, 12) e B(6, 1, 19) de um paralelogramo ABCD e P(4, -1, 7) o ponto de interseção de suas diagonais determine os vértices C e D.

17. Dados os vetores $\overrightarrow{u} = 2\overrightarrow{i}$, $\overrightarrow{v} = \overrightarrow{i} + \overrightarrow{j} + \overrightarrow{k}$ e $\overrightarrow{w} = 2\overrightarrow{i} + 6\overrightarrow{j} + 6\overrightarrow{k}$ expresse \overrightarrow{w} como combinação linear de \overrightarrow{u} e \overrightarrow{v} .

18. Dados os vetores $\vec{u}=(3,-1)$ e $\vec{v}=(-1,2)$ determine o vetor \vec{w} tal que $4(\vec{u}-\vec{v})+\vec{w}=\vec{u}-2\vec{w}$.

19. Sabendo que o ângulo entre os vetores \vec{u} e \vec{v} é de 60°, determinar o ângulo formado pelos vetores $-\vec{u}$ e $2\vec{v}$.

20. Determine a e b de modo que sejam colineares os pontos A(3, a, b), B(1, 5, 1) e C(-3, 13, 7).

21. Na figura abaixo tem-se $\overrightarrow{CM} = \frac{\overrightarrow{CA}}{3}$ e $\overrightarrow{CN} = \frac{\overrightarrow{CB}}{3}$. Prove que os segmentos \overline{MN} e \overline{AB} são paralelos, e que o comprimento do primeiro é $\frac{1}{3}$ do comprimento do segundo.

- 22. Sabendo que a distância entre os pontos A(-1,2,3) e B(1,-1,m) é 7 determine o valor de m.
- 23. Determine α para que o vetor $\vec{u}=(\frac{\sqrt{11}}{4},-\frac{1}{2},\alpha)$ seja unitário.
- 24. Prove que os pontos A(5,1,5), B(4,3,2) e C(-3,-2,1) são vértices de um triângulo retângulo.
- 25. Calcule o ângulo entre os vetores \overrightarrow{u} e \overrightarrow{v} , sabendo-se que $\overrightarrow{u} + \overrightarrow{v} + \overrightarrow{w} = \overrightarrow{0}$ e $|\overrightarrow{u}| = 2$, $|\overrightarrow{v}| = 3$ e $|\overrightarrow{w}| = 4$.
- 26. Calcule o ângulo entre os vetores $\overrightarrow{a} + 2\overrightarrow{b} \overrightarrow{c}$ e $-\overrightarrow{a} + \overrightarrow{b} 2\overrightarrow{c}$, sabendo-se que $|\overrightarrow{a}| = |\overrightarrow{b}| = |\overrightarrow{c}| = 1$ e \overrightarrow{a} , \overrightarrow{b} e \overrightarrow{c} são mutuamente ortogonais.
- 27. Um jovem parte de um ponto A, caminha 100 metros para norte, até um ponto B; em seguida, orienta-se para o leste e caminha mais 50 metros do ponto B até um ponto C.
 - (a) Determine o módulo do deslocamento resultante.
 - (b) Encontre o ângulo formado pelo entre vetor que representa o deslocamento resultante e o vetor \overrightarrow{AB} .
- 28. Encontre o vetor \overrightarrow{w} de forma que \overrightarrow{w} seja paralelo ao vetor $\overrightarrow{r} = (\overrightarrow{u}.\overrightarrow{v})(\overrightarrow{u} \overrightarrow{v})$, sendo $\overrightarrow{u} = 2\overrightarrow{i} + \overrightarrow{j}$ e $\overrightarrow{v} = (1, 3, -2)$, $|\overrightarrow{w}| = 6$ e \overrightarrow{w} forme um ângulo agudo com o eixo das abscissas.
- 29. Dado o triângulo retângulo ABC com ângulo reto em B, determine a medida da projeção do cateto AB sobre a hipotenusa AC, sendo A(0,0,2), B(3,-2,8) e C(-3,-5,10).
- 30. Considere os pontos A(2,4,1), B(3,3,5) e C(2,1,3).
 - (a) O triângulo determinado pelos pontos ABC é retângulo? Justifique.
 - (b) Determine a área do triângulo ABC.
- 31. Calcule $\vec{x} = \vec{j} \times 2\vec{i}$, determine o versor de \vec{x} e represente no gráfico abaixo os vetores \vec{x} e seu versor.

- 32. Calcule o valor de a para que o vetor $\overrightarrow{v} = \left(-28, 0, -\frac{7}{2}\right)$ seja mutuamente ortogonal aos vetores $\overrightarrow{w} = a\overrightarrow{i} + 5\overrightarrow{j} 4\overrightarrow{k}$ e $\overrightarrow{u} = (a-1)\overrightarrow{i} + 2\overrightarrow{j} + 4\overrightarrow{k}$.
- 33. Os pontos A(2,1,-1), B(-1,3,1) e C(0,-1,2) formam um triângulo.
 - (a) Determine a projeção do lado AB sobre o lado CA.
 - (b) Obtenha, se possível, o valor de c para que o vetor $\overrightarrow{v} = (3c + 4, -2, 9)$ seja colinear ao vetor projeção.

- 34. Calcule a área do paralelogramo que tem um vértice no ponto A(3,2,1) e uma diagonal de extremidades B(1,1,-1) e C(0,1,2).
- 35. Determine o vetor unitário ortogonal aos vetores $\overrightarrow{u} = (2, 3, -1)$ e $\overrightarrow{v} = (1, 1, 2)$.
- 36. Verifique se os pontos A(2,1,3), B(3,2,4), C(-1,-1,-1) e D(0,1,-1) são coplanares.
- 37. Determine o valor de k para que os seguintes vetores sejam coplanares: $\vec{a} = (2, k, 1), \vec{b} = (1, 2, k)$ e $\vec{c} = (3, 0, -3)$.
- 38. Calcule o volume de um paralelepípedo determinado pelos vetores \overrightarrow{u} , \overrightarrow{v} e \overrightarrow{w} , onde $\overrightarrow{u} = (-1, 2, 3)$, $\overrightarrow{v} = (2, -1, 3)$ e $\overrightarrow{w} = \overrightarrow{v} \times (\overrightarrow{u} \times \overrightarrow{v})$.
- 39. Considere o tetraedro ABCD, ilustrado a seguir, cujos vértices da base são: A(2,2,-1), B(3,2,1) e C(2,1,0). Calcular as coordenadas do vértice D, sobre o eixo x, de forma que o volume do tetraedro seja 8 unidades.

- 40. Considere os vetores \vec{u} e \vec{w} , tais que $\vec{u} = (1, -1, 4)$, $|\vec{w}| = 6$ e o ângulo entre \vec{u} e \vec{w} é $\frac{\pi}{3}$. Determine:
 - (a) a projeção do vetor \vec{w} sobre o vetor \vec{u} .
 - (b) a área do paralelogramo determinado pelos vetores $\vec{a} = \vec{u} + \vec{w}$ e $\vec{b} = \vec{u} \vec{w}$.
- 41. Considere os pontos A(1,1,1), B(-2,-1,-3), C(0,2,-2) e D(-1,0,-2). Classifique as afirmações abaixo em verdadeiras ou falsas e justifique sua resposta.
 - (a) Os pontos $A,\ B,\ C$ e D são vértices de um tetraedro com volume igual a 6 u.v..
 - (b) O vetor $\frac{1}{\sqrt{3}}(\overrightarrow{AB} \overrightarrow{AD})$ é um representante do versor de \overrightarrow{BD} .
 - (c) Os pontos $B, C \in D$ são colineares.
- 42. Determine um vetor que tenha módulo igual a $\sqrt{44}$, que esteja no segundo octante e que seja simultaneamente ortogonal aos vetores $\vec{u} = \vec{j} \vec{k}$ e $\vec{v} = (1, 2, 1)$.
- 43. Considere os vetores \vec{u} , \vec{v} e \vec{w} representados na figura a seguir.

- (a) Determine as coordenadas do ponto P para que o volume do tetraedro definido por \vec{u}, \vec{v} e \vec{w} seja igual a 4 u.v.
- (b) (1 ponto) Sabendo que \vec{q} é um vetor unitário e que forma um ângulo de $\frac{\pi}{6}$ rad com o vetor $\vec{v} + 2\vec{u}$, calcule a área do triângulo construído sobre \vec{q} e $\vec{v} + 2\vec{u}$.
- 44. Considere os vetores $\overrightarrow{v_1} = (2, -4, 4)$ e $\overrightarrow{v_2} = (3, 0, 3)$. Determine:
 - (a) o módulo dos vetores $\overrightarrow{w_1}$ e $\overrightarrow{w_2}$ que satisfazem as seguintes condições: $\overrightarrow{w_1}$ é paralelo a $\overrightarrow{v_1}$; $\overrightarrow{w_2}$ é ortogonal a $\overrightarrow{v_1}$; e $\overrightarrow{v_2} = \overrightarrow{w_1} + \overrightarrow{w_2}$.
 - (b) o ângulo formado pelos vetores $\overrightarrow{w_1}$ e $\overrightarrow{v_2}$, sendo $\overrightarrow{w_1}$ o vetor que satisfaz as relações do item (a).
- 45. Classifique as seguintes afirmações em verdadeiras ou falsas e justifique sua resposta.
 - (a) Se \vec{u} e \vec{v} são vetores unitários que formam um ângulo de 60°, então os vetores $\vec{u}+2\vec{v}$ e $5\vec{u}-4\vec{v}$ são ortogonais.
 - (b) Os pontos A(1,1,1), B(-2,-1,-3), C(0,2,-2) e D(-1,0,-2) são coplanares.
 - (c) Os vetores $\vec{u} = 2\vec{i} + \vec{j} + 3\vec{k}$, $\vec{v} = -\vec{i} + 2\vec{k}$ e $\vec{w} = -2\vec{i} + 7\vec{j} \vec{k}$, nesta ordem, formam uma base positiva (ou um triedro positivo) com \vec{w} ortogonal ao plano definido por \vec{u} e \vec{v} .
- 46. Calcule a área do paralelogramo construído sobre os vetores $2\overrightarrow{u}-3\overrightarrow{v}$ e \overrightarrow{w} , sabendo que $|\overrightarrow{u}|=3$, $|\overrightarrow{v}|=4$, o ângulo formado pelos vetores \overrightarrow{u} e \overrightarrow{v} é $\frac{\pi}{4}$ e que \overrightarrow{w} é a projeção do vetor \overrightarrow{u} sobre o vetor \overrightarrow{v} .

Respostas:

- 1.
- 2.

- 3. (a) \overrightarrow{HF} ; (b) \overrightarrow{HB}
- 4. $\overrightarrow{BD} = -(\vec{a} + 2\vec{b}) e \overrightarrow{CP} = \frac{\vec{a} 7\vec{b}}{4}$
- 5. $\overrightarrow{BX} = -\vec{a} + \frac{2}{3}\vec{b} + \frac{1}{3}\vec{c}$
- 6. $\vec{u} = \frac{\vec{a} \vec{b}}{2}$
- 7. Prove, usando soma de vetores, que $\overrightarrow{MN} = \frac{\overrightarrow{AB}}{2}$, sendo M o ponto médio do lado \overline{AC} e N o ponto médio do lado \overline{BC} .
- 8. Use soma de vetores.
- 9. Use soma de vetores.
- 10. .
 - (a) A(2,0,0); B(2,4,0); C(0,4,0); D(0,4,3); E(0,0,3); F(2,0,3); O(0,0,0).
 - (b) Zero, pois os vetores são ortogonais.
 - (c) $-12\vec{i}$.
 - (d) -24.
- 11. A(-2,1,3)
- 12. $(0, -\frac{1}{3}, 0)$
- 13. Prove que $|\overrightarrow{AB}| = |\overrightarrow{BC}| = |\overrightarrow{AC}|$
- 14. $\left(\frac{\sqrt{2}}{2}, 0, -\frac{\sqrt{2}}{2} 1\right)$ e $\left(-\frac{\sqrt{2}}{2}, 0, \frac{\sqrt{2}}{2} 1\right)$
- 15. P(0,0,-2)
- 16. C(-1,3,2) e D(2,-3,-5).
- 17. $\vec{w} = -2\vec{u} + 6\vec{v}$
- 18. $\vec{w} = \left(-\frac{13}{3}, \frac{11}{3}\right)$

- 19. 120°
- 20. a = 1 e b = -2
- 21. Dica: Use soma de vetores.
- 22. m = 9 ou m = -3
- 23. $\alpha = \pm \frac{1}{4}$
- 24. Dica: verifique que um dos ângulos é reto.
- 25. $\approx 75,52^{\circ}$
- 26. 60°
- 27. (a) 111,8m; (b) $\approx 26,56^{\circ}$
- 28. $\vec{w} = (2, -4, 4)$
- 29. $\frac{7\sqrt{2}}{2}$
- 30. (a) Não (Justifique!); (b) $A = \frac{\sqrt{113}}{2}$ u.a.
- 31. $\vec{x} = -2\vec{k}$ e versor de $\vec{x} = -\vec{k}$
- 32. $a = \frac{1}{2}$
- 33. (a) $\left(-\frac{16}{17}, -\frac{16}{17}, \frac{24}{17}\right)$; (b) não existe c.
- 34. $A = \sqrt{77}$ u.a.
- 35. $\pm \left(\frac{7}{5\sqrt{3}}, -\frac{1}{\sqrt{3}}, -\frac{1}{5\sqrt{3}}\right)$
- 36. Sim.
- 37. k = -3 ou k = 2
- 38. Os pontos são coplanares, logo não há paralelepípedo definido.
- 39. $D\left(\frac{51}{2},0,0\right)$ ou $D\left(-\frac{45}{2},0,0\right)$
- 40. .
 - (a) $\left(\frac{\sqrt{2}}{2}, -\frac{\sqrt{2}}{2}, 2\sqrt{2}\right)$
 - (b) $18\sqrt{6}$ u.a.
- 41. .
 - (a) Falso, esses pontos são coplanares e não definem um tetraedro.

- (b) Falso, é um representante do versor o vetor oposto a \overrightarrow{BD} , ou seja é um representante do versor de \overrightarrow{DB} .
- (c) Falso, pois os vetores \overrightarrow{BD} e \overrightarrow{BC} não são paralelos.
- 42. (-6, 2, 2).
- 43. (a) P(0,0,3)
 - (b) $\sqrt{2}$ u.a.
- 44. (a) $|\vec{w_1}| = |\vec{w_2}| = 3$
 - (b) $\theta = \frac{\pi}{4}$
- 45. (a) Verdadeira. Como justificativa prove que $(\vec{u}+2\vec{v})\perp(5\vec{5}-4\vec{v})$.
 - (b) Verdadeira. Como justificativa pode-se provar que $(\overrightarrow{AB},\overrightarrow{AC},\overrightarrow{AD})=0$
 - (c) Falso. Pois $\vec{w} = -\vec{u} \times \vec{v}$, ou seja, a base é negativa.
- 46. A = 9 u.a.