

CS/IS F214 Logic in Computer Science

MODULE: PROGRAM VERIFICATION

Floyd-Hoare Logic: Meta-Rule and Examples

13-11-2018 Sundar B. CS&IS, BITS Pilani 0

Floyd-Hoare Logic

• Meta-Rule:

$$|-_{\Delta} \phi' --> \phi$$
 $<\phi$, S, $\psi>$ $|-_{\Delta} \psi --> \psi'$ $<\phi'$, S, $\psi'>$

Alternatively,

- •This rule allows for <u>logical inferences</u> <u>between statements</u> in the program.
- •The *proof system* (Δ) would be:
 - any proof system (such <u>as Natural</u> <u>Deduction</u>) for <u>predicate logic</u> with
 - <u>added rules</u> for the <u>domain of</u> <u>computation</u> e.g. **integers**

- Example C2:
 - Re-do Example C1 so that m is the minimum of x and y

Example C3:

```
/* Pre: ? */
if (x % 2 == 0)
then { y = y + 2; }
else { y = y + 1; }
/* Post: (y > x) \land (y \% 2 = 0) */
```

Ex C3: /* Pre: ? */ if (x % 2 == 0) then { y = y + 2; } else { y = y + 1; } /* Post:

 $(y > x) \land (y \% 2 = 0) */$

• then-case:

/*
$$(y+2 > x) \land (y+2)\%2=0$$

i.e. $(y+2 > x) \land y\%2=0$
*/
 $y = y + 2$
/* $(y > x) \land (y \% 2 = 0)$ */

Ex C3:

```
/* Pre: ? */
if (x % 2 == 0)
then { y = y + 2; }
else { y = y + 1; }
/* Post:
(y > x) \( (y % 2 = 0) \) */
```

• then-case:

```
/* (y+2 > x) \land (y+2)\%2=0
i.e. (y+2>x) \land y\%2=0
*/
y = y + 2
/* (y > x) \land (y \% 2 = 0) */
```

• else-case:

/*
$$(y+1 > x) \land (y+1)\%2=0$$

i.e. $(y+1>x) \land \neg (y\%2=0)$
*/
 $y = y + 2$
/* $(y > x) \land (y \% 2 = 0)$ */

/* C3: /* Pre: ? */ if (x % 2 == 0) then { y = y + 2; } else { y = y + 1; } /* Post: (y > x) \(\cdot (y \% 2 = 0) \) */

if-statement

Given post-condition:

$$(y > x) \land (y \% 2 = 0)$$

the precondition would be φ
i.e. $(y + 1 > x) \land (x\%2=y\%2)$

• then-case:

/*
$$(y+2 > x) \land (y+2)\%2=0$$

i.e. $(y+2>x) \land y\%2=0$
<-- $(y+1>x) \land y\%2=0$
*/ ϕ B[y/x]
 $y = y + 2$
/* $(y > x) \land (y \% 2 = 0)$ */

• else-case:

/*
$$(y+1 > x) \land (y+1)\%2=0$$

i.e. $(y+1>x) \land \neg (y\%2=0)$
*/ ϕ $\neg B[y/x]$
 $y = y + 1$
/* $(y>x) \land (y\%2=0)$ */

Exercise: Initialize the variable y so as to satisfy the precondition (assuming x is the input).

Exercise C3a:

```
/* Pre: ? */
if (x % 2 == 0)
then { y = x + 2; }
else { y = x + 1; }
/* Post:
(y > x) \land (y \% 2 = 0) */
```

- 1. Derive the precondition in this modified version of Exercise C3.
- 2. Do you require an *initializer* for y?
 - If so, what is it?
 - If not, why not?