Федеральное государственное автономное образовательное учреждение высшего образования «Санкт-Петербургский Политехнический университет Петра Великого» Институт физики, нанотехнологий и телекоммуникаций Кафедра космических исследований

Работа допущена к защите
Заведующий кафедрой КИ
Варшалович Д.А.
«»2015 г.

ВЫПУСКНАЯ РАБОТА БАКАЛАВРА

«Численное моделирование ускорения частиц на ударных волнах»

Направление: 03.03.02 - «Физика»

Профиль: «Физика космоса»

Студент гр.43412 Лиознов А.В.

Руководитель

ст.н.с. ФТИ им.

А.Ф.Иоффе, к.ф.-м.н.

Гладилин П.Е.

Санкт-Петербург

Содержание

1	Введение				
	1.1	Актуа	альность	2	
	1.2 Цели и задачи				
	1.3	.3 Процес ускорения на ударных волнах			
	1.4	Метод	цы исследования	٦	
		1.4.1	Моделирование диффузиозно-конвективного уравнения		
			с помощью неявного метода Эйлера	6	
		1.4.2	Моделирование стохастического процесса	7	

1 Введение

1.1 Актуальность

В течение продолжительного времени учёные пытаются определить, как образуется наблюдаемое распределение космических лучей по энергиям. Далеко не весь диапазон спектра можно описать с помощью теплового взаимодействия.

Особую роль играют механизмы нетеплового ускорения частиц в бесстолкновительной космической плазмы.

Такие частицы можно непосредственно наблюдать в межпланетном пространстве, частицы низких энергий - непосредственно наблюдать с Земли, а частицы высоких энергий (> $10^5 \, \Gamma$ эВ) - в виде широких атмосферных ливней.

Особый интерес составляет процесс ускорения на фронтах ударных волн, в силу их распространённости. Примерами таких волн могут служить волны от хромосферных солнечных вспышек, вспышек сверхновых звёзд...

Дополнительный интерес к данным процессам связан с возможностью выделения в них большого количества энергии, существенная часть которой может быть преобразована в направленное ускорение небольшого количества частиц, что и приводит к появлению частиц с энергиями, на много порядков превышающих тепловые.

Понимание данных процессов необходимы для построения моделей ударных волн.

Проблемой занимаются давно.

Бережко Е. Г. и Крымский Г. Ф. в 1988 году привели теоретический вывод диффузиозно-конвективного уравнения. X. Канг в 2011 году провёл численные расчёты для этого вида.

С другой стороны к задаче подошёли А. Ахтенберг и В. Круллс, которые в 1992 году провёли рассмотрение ускорения стохастическим подходом.

И, хотя сравнения данных подходов предпринимались, количественные оценки как с точки зрения времени работы, так и с точки зрения простоты реализации и расширяемости сделаны не были.

1.2 Цели и задачи

В связи со всем вышесказанным целью работы был анализ и сравнение диффузиозно-конвективного и стохастического подхода в ускорении частиц на ударных волнах.

В рамках этой цели были поставлены следующие задачи:

- 1 Реализовать численное моделирование решения диффузиозно- конвективного уравнения методом Эйлера в ускорении частиц на ударных волнах.
- 2 Реализовать численное моделирование стохастического процесса в ускорении частиц на ударных волнах.
- 3 Провести сравнение данных подходов
- 4 Указать положительные и отрицательные стороны в каждом из них

1.3 Процес ускорения на ударных волнах

Рассмотрим физическую сторону процесса ускорения на ударных волнах:

Движение частиц плазмы определяется не соударениями, как в случае теплового движения, а возникающий на фронте турбулентностью.

Несмотря на то, что сама теория ударных волн ещё далека от завершения, характер достаточно быстрых частиц на фронте мало зависит от особенностей структуры. Это связано с тем, что движение частиц зависит, в основном, от двух факторов: взаимодействии с магнитным полем - крупномасштабным, регулярным, с одной стороны, и турбулентным, хаотичным - с другой. Это

поле приводит к рассеянию частиц, причём пробег до рассеяния сильно превышает толщину фронта.

Возможность ускорения частиц связана, прежде всего, с имеющимися в пространстве электрическими полями. Для иллюстрации на рисунке 1а схематически изображена траектория частицы в системе покоя фронта в случае, когда мелкомасштабные электрические поля отсутствуют. Для быстрой частицы ударная волна представляет собой магнитогидродинамический разрыв, в котором скорость плазмы u, плотность ρ , магнитное поле B связано следующими соотношениями:

$$\rho_2 = \sigma \rho_1 \tag{1}$$

$$u_2 = \frac{u_1}{\sigma} \tag{2}$$

$$B_2 = \sigma B_1 \tag{3}$$

Где индексы 1, 2 означают область до и после фронта соответственно, а σ - степень сжатия вещества.

Пересекая фронт, частица испытывает градиентный дрейф и смещается вдоль электрического поля $\vec{E}=-[\vec{u}\vec{B}]/c$, где c - скорость света.

Рис. 1: Движение быстро заряженной частицы в ламинарной ударной волне (a) и турбулетной(б)

Каждая частица рассеивается на неоднородностях магнитного поля (рис 1б), что приводит к многократному перемещению между областями фронтов и многократному ускорению. За один цикл (двукратное пересечение фронта) среднее изменение импульса частицы будет равно

$$\langle \Delta p \rangle = \frac{4}{3} (u_2 - u_1) \frac{p}{v} \tag{4}$$

Где $u_2,\ u_1$ - скорость плазмы за и перед фронтом, v - скорость частицы.

В каждом цикле часть частиц уходит и уже не возвращается к фронту. Интегральный спектр ускорения частиц N(p) - количество частиц в единице объёма с импульсами, большими p, - может быть найден из уравнения баланса

$$\frac{dN}{dp} = \frac{P_c - 1}{\langle \Delta p \rangle} N \tag{5}$$

Где P_c - вероятность совершения очередного цикла. $P_c = P_1 \cdot P_2$, где P_1 - вероятность частицы попавшей в область перед фронтом, вернуться на фронт и равна 1, а P_2 - аналогичная вероятность для области за фронтом и равна $1 - \frac{4u_2}{v}$

Используя последние уравнения, можно получить уравнение на плотность:

$$\frac{dpn}{dp} + 3\frac{u_2}{u_1 - u_2}n = 0\tag{6}$$

1.4 Методы исследования

Для решения диффузиозно-конвективного уравнения была разработана программа на языке C++, организующая численное моделирование методом прогонки.

Стохастическое уравнение решалось в виде уравнения Ито и реализацией алгоритма так же на языке C++.

Остановимся подробнее на каждом из них

1.4.1 Моделирование диффузиозно-конвективного уравнения с помощью неявного метода Эйлера

Изначальное уравнение имеет вид

$$\frac{\partial f}{\partial t} = \frac{\partial}{\partial x} \kappa \frac{\partial f}{\partial x} - u \frac{\partial f}{\partial x} - \frac{\Delta u}{3} \delta(x) p \frac{\partial f}{\partial p} + Q \tag{1}$$

Где f - функция распределения частиц, κ - коэффициент диффузии, Q - мощность источника частиц.

Решим данное уравнение с помощью неявного метода Эйлера.

Для этого надо подставить вместо производных конечные разности и получить следующий общий вид:

$$\frac{f_{i,j,k} - f_{i,j,k-1}}{\Delta t} = \kappa_j \frac{f_{i+1,j,k} + f_{i-1,j,k} - 2f_{i,j,k}}{\Delta^2 x} - u_i \frac{f_{i,j,k} - f_{i-1,j,k}}{\Delta x} - \frac{u_i - u_{i-1}}{3\Delta x} \frac{f_{i,j,k} - f_{i,j-1,k}}{\Delta y} + Q \quad (2)$$

Где индексы i, j, k отвечают за координату, импульс и время соответственно, а y есть логарифм от импульса. Далее система записывается в виде матричного уравнения

$$Mx = F \tag{3}$$

где M - трёхдиаганальная матрица с A_i на поддиаганали, C_i - на главной диаганали и B_i на наддиаганали. В приложении задачи коэффициенты получились следующими:

$$A_i = \frac{\Delta t \kappa_{i,j}}{\Delta^2 x} + \frac{u_i \Delta t}{\Delta x} \tag{4}$$

$$C_i = \frac{2\Delta t \kappa_{i,j}}{\Delta x^2} + \frac{\Delta t u_i}{\Delta x} + \frac{u_i - u_{i-1} \Delta t}{3\Delta x \Delta y} - 1$$
 (5)

$$B_i = \frac{\Delta t \kappa_{i,J}}{\Delta^2 x} \tag{6}$$

$$F_i = -f_{i,j,k-1} - \frac{f_{i,j-1,k}}{\Delta y} \frac{u_i - u_i - 1\Delta t}{3\Delta x} - Q\Delta t \tag{7}$$

Далее данное уравнение решается методом прогонки.

1.4.2 Моделирование стохастического процесса

В данном случае уравнение принимает вид

$$\frac{\partial F(\vec{Z},t)}{\partial t} = \frac{\partial}{\partial \vec{Z}} \left(-\dot{\vec{Z}}F + \frac{\partial}{\partial \vec{Z}} [DF] \right) \tag{8}$$

Где $Z \equiv (x, p)$.

$$\dot{\vec{Z}} = \left\langle \frac{d\vec{Z}}{dt} \right\rangle + \frac{\partial}{\partial \vec{Z}} D \tag{9}$$

Это уравнение может быть представлено в форме уравнения Ито:

$$d\vec{Z} = d\dot{\vec{Z}}(\vec{Z}, t) + \sqrt{2D}dW \tag{10}$$

Где dW - Винеровский процесс В приложении к конкретной задачи для заряженных частиц имеем

$$dx = V(x)dt + \sqrt{2K_{\parallel}}dW \tag{11}$$

$$du = -\frac{1}{3}\frac{\partial V}{\partial x}dt\tag{12}$$

Здесь V(x) - скорость плазмы, K_{\parallel} - коэффициент диффузии, u - логарифм импульса.

Как известно, общий вид уравнения Ито выглядит как

$$dx = a(x,t)dt + b(x,t)\underbrace{\varepsilon\sqrt{dt}}_{dW}$$
(13)

где a имеет физический смысл сноса частицы, а b - отклонения. arepsilon - нормально распределённая случайная величина.

Задав обе функции, а так же размер и количество шагов по времени, мы получаем предсказание координаты и импульса для одной частицы.

Запустив код для N частиц, можно получить массивы координат и импульсов для конца времени. Далее строя гистограмму распределения для импульса мы получаем империческую функцию распределения f_p , которая может быть сравнима с аналогичной функцией, полученной в другом подходе.

Как было написано выше, $a(x,t)\equiv V(x)$, где V(x) - скорость для ударной волны. Стандартная степень сжатия на фронте равна 4, т.е. $V|_{x\ll x_{inj}}=4V|_{x\gg x_{inj}}$ Для устойчивости работы программы должно выполняться условие

$$V\Delta t \le \Delta x_s \ll \sqrt{K_{\parallel} \Delta t} \tag{14}$$

Где Δx_s - характерное масштаб фронта.

В качестве демонстрации преимуществ данного подхода были реализовано ещё два физических процесса: ускорение электронов с учётом синхротронных потерь и ускорение на сходящихся фронтах.

Синхротронные потери можно ввести, заменив уравнение для логарифма импульса на

$$du = -\left(\frac{1}{3}\frac{\partial V}{\partial x} + \beta_s \sqrt{1 + e^{2u}}\right) dt \tag{15}$$

Для они существенны лишь для электронов в силу малой массы.

Ускорение на сходящихся фронтах соответствует занулению скорости вдали от фронта и увеличению числа частиц в двое. Физический смысл у данной операции следующий: Представим две сходящиеся волны. Для быстрых частиц расстояние между фронтами много меньше длины свободного пробега. А значит для них как бы существует лишь пространство перед фронтом, а за фронтом скорость равна нулю. Соответственно, поскольку мы рассматриваем ударные волны симметричными, допустимо свести их к одной, увеличив количество частиц вдвое.