1

Assignment 14

Utkarsh Surwade AI20MTECH11004

Download latex-tikz codes from

https://github.com/utkarshsurwade/Matrix_Theory_EE5609/tree/master/codes

1 **Problem**

Let A be an $n \times m$ matrix with each entry equal to +1,-1 or 0 such that every column has exactly one +1 and exactly one -1. We can conclude that

1. Rank
$$\mathbf{A} \le n - 1$$
 (1.0.1)

2. Rank
$$\mathbf{A} = m$$
 (1.0.2)

3.
$$n \le m$$
 (1.0.3)

$$4. \ n-1 \le m \tag{1.0.4}$$

2 EXPLANATION

option	Solution
1.	Let us consider A as follows and let s be the summation of all column entries:
	$\mathbf{A} = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1m} \\ a_{21} & a_{22} & \dots & a_{2m} \\ \vdots & \vdots & \vdots & \vdots \\ a_{n1} & a_{n2} & \dots & a_{nm} \end{pmatrix}$
	$\begin{vmatrix} \mathbf{A} - \lambda \mathbf{I} \end{vmatrix} = \begin{pmatrix} a_{11} - \lambda & a_{12} & \dots & a_{1m} \\ a_{21} & a_{22} - \lambda & \dots & a_{2m} \\ \vdots & \vdots & \vdots & \vdots \\ a_{n1} & a_{n2} & \dots & a_{nm} - \lambda \end{pmatrix} = 0$
	$(a_{11} + a_{21} + \cdots + a_{11} - \lambda a_{11} + a_{21} + \cdots + a_{11} - \lambda \dots a_{11} + a_{21} + \cdots + a_{11} - \lambda)$
	$= \begin{pmatrix} a_{11} + a_{21} + \dots + an1 - \lambda & a_{11} + a_{21} + \dots + an1 - \lambda & \dots & a_{11} + a_{21} + \dots + an1 - \lambda \\ a_{21} & a_{22} - \lambda & \dots & a_{2m} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ a_{n1} & a_{n2} & \dots & a_{nm} - \lambda \end{pmatrix}$
	a_{n1} a_{n2} $a_{nm} - \lambda$
	$\implies (s - \lambda) \begin{pmatrix} 1 & 1 & \dots & 1 \\ a_{21} & a_{22} - \lambda & \dots & a_{2m} \\ \vdots & \vdots & \vdots & \vdots \\ a_{n1} & a_{n2} & \dots & a_{nm} - \lambda \end{pmatrix} = 0$

	Since s=0 according to question, Therefore $\lambda = 0$ is an eigen value of \mathbf{A} . Since $\lambda = 0$, Hence \mathbf{A} is singular. Which means at least two rows are linearly dependent. Therefore, $\operatorname{Rank}(\mathbf{A}) < n$ $\operatorname{Rank}(\mathbf{A}) \le n - 1$
Example	Let us Consider A as follows, where n=4 and m=3
	$\mathbf{A} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ -1 & -1 & -1 \end{pmatrix}$
	Calculating Row Reduced Echelon Form of A as follows:
	$ \begin{array}{c} R_4 \leftarrow R_1 + R_4 \\ R_4 \leftarrow R_2 + R_4 \end{array} $ $ \begin{array}{c} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & -1 \end{pmatrix} $ $ \begin{array}{c} R_4 \leftarrow R_3 + R_4 \\ \hline R_4 \leftarrow R_3 + R_4 \end{array} $ $ \begin{array}{c} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix} $
Conclusion	Since the Rank $A=3$ and $n=4$, Therefore the Rank $A \le n-1$ statement is true.
2.	Let us Consider A as follows, where n=2 and m=2
	$\mathbf{A} = \begin{pmatrix} -1 & 1 \\ 1 & -1 \end{pmatrix}$
	Applying elementary transformations on A as follows:
	$\xrightarrow{R_2 \leftarrow R_1 + R_2} \begin{pmatrix} -1 & 1 \\ 0 & 0 \end{pmatrix}$
Conclusion	Since the Rank $A=1$ and $m=2$, Therefore the Rank $A \neq m$, Hence the statement is false.

3.	Let us Consider A as follows, where n=3 and m=2
	$\mathbf{A} = \begin{pmatrix} 1 & 1 \\ -1 & -1 \\ 0 & 0 \end{pmatrix} \tag{2.0.1}$
Conclusion	Since there exists a matrix A when n>m, Therefore the statement is false.
4	Let us Consider A as follows, where n=4 and m=2
	$\mathbf{A} = \begin{pmatrix} 1 & 1 \\ -1 & -1 \\ 0 & 0 \\ 0 & 0 \end{pmatrix} \tag{2.0.2}$
Conclusion	Since there exists a matrix A when n-1>m, Therefore the statement is false.

TABLE 1: Solution summary