2022 年安徽大学数学竞赛试题(数学类)

2022.9.24

1. 有直线

$$l_1: \frac{x-4}{1} = \frac{y-3}{-2} = \frac{z-8}{1}; \qquad l_2: \frac{x+1}{7} = \frac{y+1}{-6} = \frac{z+1}{1}$$

- $(1)l_1$ 与 l_2 是否异面;(2) 求两直线任一点连线线段的中点轨迹的一般方程.(10 分)
- **2.** $A \in M_4(\mathbb{C}), \operatorname{tr}(A^k) = k(k = 1, 2, 3, 4), \ \vec{x} \det A.(15 \ \vec{\%})$
- **3.** $f,g \in \mathbb{F}[x]$ 且 (f(x),g(x)) = 1. 设 $M \in M_n(\mathbb{F}), A = f(M), B = g(M)$. 证明:ABX = 0 的任一解能被表为 AX = 0 和 BX = 0 解的和.(10 分)
- **4.** 有半正定矩阵 $A \neq O$ 与正定矩阵 B. 证明:(1) 存在可逆矩阵 P 使得 P^TAP 为对角矩阵且 P^TBP 为单位矩阵;(2)det $A + B \geq \det B$.(15 分)
- 5. 证明: $(1)\lim_{n\to\infty}(n+1)!^{\frac{1}{n+1}}-n!^{\frac{1}{n}};(2)\lim_{n\to\infty}\int_0^{\pi/2}\sin^{\sqrt{n}}x\mathrm{d}x.$ (每小题 5 分, 共 10 分)
- **6.** $(a, +\infty)$ 上一致连续函数 f 的值域 $R_f \subset (A, +\infty)$, 以及 $(A, +\infty)$ 上一致连续函数 g. 求证 $g \circ f$ 是 $(a, +\infty)$ 上一致连续函数. $(10 \ \%)$
- 7. 求证 $\sum_{n=2}^{\infty} \frac{\cos(nx)}{n \ln n}$ 在 $(0, 2\pi)$ 上内闭一致收敛, 但不一致收敛. $(10 \ \%)$
- 8. f 在 $[0, +\infty)$ 上单调增且二阶可导,F 在 \mathbb{R} 上非负, $\int_0^{+\infty} F(x) dx$ 发散,且在 $[0, +\infty)$ 上恒成立 $f''(x) + F(f(x)) \leq 0$. 证明: $\lim_{x \to +\infty} f'(x) = 0.(10 分)$
- 9. f,g 是在 [0,1] 上的非负连续函数,h 是在 $[0,1]^2$ 上的非负连续函数,且在 [0,1] 上恒成立

$$g(x) = \int_0^1 h(x, y) f(y) dy \qquad f(x) = \int_0^1 h(x, y) g(y) dy$$

证明:(1) $\forall x \in [0,1]$ $\exists \xi \in [0,1]: \frac{f(x)}{g(x)} = \frac{g(\xi)}{f(\xi)}; (2) f(x) \equiv g(x). (10 分)$