Matematica Discreta I

Esame del 12-07-2005

Esercizio 1.

).) Trovare una base di
$$Im(F)$$
. (4 pt)

c.) E'
$$\vec{v} \in Im(F)$$
?

Esercizio 2.

Siano
$$F: \mathbb{R}^3 \to \mathbb{R}^3$$
 un'applicazione lineare, e la base naturale di \mathbb{R}^3 e $\vec{v}_1, \vec{v}_2, \vec{v}_3 \in \mathbb{R}^3$, dove F è dato dalla matrice $[F]_e^e = \begin{pmatrix} -1 & 1 & 0 \\ 0 & -2 & 7 \\ 0 & -1 & 3 \end{pmatrix}, \vec{v}_1 = \begin{pmatrix} 0 \\ 2 \\ 1 \end{pmatrix}, \vec{v}_2 = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}$ e $\vec{v}_3 = \begin{pmatrix} 2 \\ 3 \\ 1 \end{pmatrix}$.

a.) Dimostrare che
$$b = (\vec{v}_1, \vec{v}_2, \vec{v}_3)$$
 è una base di \mathbb{R}^3 . (1 pt)

b.) Trovare le matrici di cambiamento di base
$$[I]_e^b$$
 e $[I]_b^e$. (3 pt)

c.) Scrivere la relazione che lega la matrice
$$[F]_e^b$$
 con $[F]_b^b$ e calcolare $[F]_b^b$. (3 pt)

c.) Scrivere la relazione che lega la matrice
$$[F]_e^e$$
 con $[F]_b^b$ e calcolare $[F]_b^b$. (3 pt) d.) Trovare tutti i vettori \vec{v} con $F^{666666666666666666664}(\vec{v}) = \vec{v}_1 - \vec{v}_2$. (1 pt)

Esercizio 3.

Consideriamo in
$$\mathbb{R}^3$$
 le rette $l = \begin{cases} x = 5 + t \\ y = 3 - t \\ z = 3 + 2t \end{cases}$, $t \in \mathbb{R}$, e $m = \begin{cases} x = -2 - 2s \\ y = 4 + 2s \\ z = 1 - 4s \end{cases}$, $s \in \mathbb{R}$.

a.) Dimostrare che le retta
$$l$$
 e m sono parallele. (1 pt)

b.) Calcolare la distanza tra
$$l \in m$$
. (2 pt)

c.) Trovare l'equazione cartesiano del piano che contiene
$$l$$
 e che è perpendicolare al piano che contiene le due rette l e m . (2 pt)

Esercizio 4.

Sia
$$T: \mathbb{R}^2 \to \mathbb{R}^2$$
 la riflessione rispetto alla retta $x - y = 0$.
a.) Trovare una base b di \mathbb{R}^2 tale che $[T]_b^b = \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}$. (1 pt)

b.) Trovare tutte le base
$$c$$
 di \mathbb{R}^2 , o spiegiare perchè non esistono, tale che $[T]_c^c = \begin{pmatrix} 0 & -1 \\ -1 & 0 \end{pmatrix}$. (2 pt)

Sia $T: \mathbb{R}^3 \to \mathbb{R}^3$ un'applicazione lineare e sia A la sua matrice (rispetto alla base naturale). Sia $S: \mathbb{R}^3 \to \mathbb{R}^3$ l'applicazione lineare dato da $S: \vec{v} \mapsto T(\vec{v}) - \vec{v}$.

Dimostare: se per ogni $\vec{v} \in \mathbb{R}^3$ vale $S^2(\vec{v}) = \vec{0}$, allora A è una matrice invertibile.

Esercizio 6.
$$(3 pt)$$

6.1. Sia $\vec{n} \in \mathbb{R}^3$ un vettore non nullo e sia $T : \mathbb{R}^3 \to \mathbb{R}^3$ l'applicazione lineare $T : \vec{v} \mapsto \vec{v} - proj_{\vec{n}}(\vec{v})$. Allora la dimensione di Im(T) è

6.2. L'insieme $U=\{\left(\begin{array}{c}x\\y\end{array}\right)\in\mathbb{R}^2\mid x^2\geq 0\}$ è un sottospazio di $\mathbb{R}^2?$ a.) Si!

c.) No, perchè esistono $\vec{v}, \vec{w} \in U$ con $\vec{v} + \vec{w} \not\in U$.

b.) No, perchè
$$\vec{0} \notin U$$
. d.) No, perchè esistono $\vec{v} \in U$ e $k \in \mathbb{R}$ con $k\vec{v} \notin U$.

6.3. Sia A una matrice 2×2 dove la prima righa di A è 3 volte la seconda righa di A. Sia $\vec{b} = \begin{pmatrix} 3 \\ 1 \end{pmatrix}$.

Allora il sistema d'equazioni lineare $A\vec{x} = \vec{b}$

a.) non ha soluzioni. c.) ha infinite soluzioni.

b.) ha un unico soluzione. d.) Non si può dire, dipende da A.

Per gli esercizi 1, 2, 3, 4, e 5 le risposte devono essere giustificate. Per l'esercizio 6, dove ogni parte vale 1 punto, basta solo rispondere. Ogni scorettezza durante la prova comporterà l'immediato annullamento della prova e altre sanzioni in accordo con la presidenza del corso di Laurea.