Лабораторная работа 2.1.4

Определение теплоемкости твердых тел

10 Марта 2021 г.

Старченко Иван Александрович

Цель работы: 1) измерение количества подведенного тепла и вызванного им нагрева твердого тела; 2) определение теплоемкости по экстраполяции отношения $\frac{\Delta Q}{\Delta T}$ к нулевым потерям тепла.

В работе используются: калориметр с нагревателем и термометром сопротивления; амперметр; вольтметр; В мост постоянного тока; источник питания 36 В.

1. Теоретическое введение

В предлагаемой работе измерение теплоёмкости твёрдых тел производится по обычной схеме. Исследуемое тело помещается в калориметр. Измеряется ΔQ — количество тепла, подведённого к телу, и ΔT — изменение температуры тела, произошедшее в результате подвода тепла. Теплоёмкость определяется по формуле

$$C = \frac{\Delta Q}{\Delta T} \tag{1}$$

Температура исследуемого тела надежно измеряется термометром сопротивления, а определение количества тепла, поглощенного телом, обычно вызывает затруднение. В реальных условиях не вся энергия $P\Delta t$, выделенная нагревателем, идет на нагревание исследуемого тела и калориметра, часть ее уходит из калориметра благодаря теплопроводности его стенок. Оставшееся в калориметре количество тепла ΔQ равно

$$\Delta Q = P\Delta t - \lambda \left(T - T_{\kappa} \right) \Delta t, \tag{2}$$

где P — мощность нагревателя, λ — коэффициент теплоотдачи стенок, T — температура тела, $T_{\rm K}$ — комнатная температура, Δt — время, в течение которого идет нагревание.

Из уравнений (1) и (2) получаем

$$C = \frac{P - \lambda (T - T_{\kappa})}{\Delta T / \Delta t} \tag{3}$$

Формула (3) является основной расчетной формулой работы. Она определяет теплоемкость тела вместе с калориметром. Теплоемкость калориметра измеряется отдельно и вычитается из результата.

С увеличением температуры исследуемого тела растет утечка энергии, связанная с теплопроводностью стенок калориметра. Из формулы (2) видно, что при постоянной мощности нагревателя по мере роста температуры количество тепла, передаваемое телу, уменьшается и, следовательно, понижается скорость изменения его температуры.

Погрешности, связанные с утечкой тепла, оказываются небольшими, если не давать телу заметных перегревов и проводить все измерения при температурах, мало отличающихся от комнатной. Однако при небольших перегревах возникает большая ошибка при измерении $\Delta T = T - T_{\rm k}$, и точность определения теплоемкости не возрастает. Чтобы избежать этой трудности, в работе используется следующая методика измерений. Зависимость скорости нагревания тела $\Delta T/\Delta t$ от температуры измеряется в широком интервале изменения температур. По полученным данным строится график:

$$\frac{\Delta T}{\Delta t} = f(T) \tag{4}$$

Этот график экстраполируется к температуре $T=T_{\rm K}$, и таким образом определяется скорость нагревания при комнатной температуре $(\Delta T/\Delta t)_{T_{\rm K}}$. Подставляя полученное выражение в формулу (3) и замечая, что при $T=T_{\rm K}$ член $\lambda(T-T_{\rm K})$ обращается в ноль, получаем

$$C = \frac{P}{(\Delta T/\Delta t)_{T_{\kappa}}} \tag{5}$$

Температура измеряется термометром сопротивления, представляющим собой медную проволоку, намотанную на теплопроводящий каркас внутренней стенки калориметра (рис. 1). Сопротивление проводника изменяется с температурой по закону

$$R_T = R_0 (1 + \alpha \Delta T) \tag{6}$$

где R_T – сопротивление термеметра про $T^{\circ}C, R_0$ – его сопротивление при $0^{\circ}C, \alpha$ – температурный коэффициент сопротивления.

Дифференцируя (6) по времени, найдем

$$\frac{dR}{dt} = R_0 \alpha \frac{dT}{dt},\tag{7}$$

Выразим сопротивление R_0 через исмеренное значение R_{κ} – сопротивление термометра при комнатной температуре. Согласно (6), имеем

$$R_0 = \frac{R_{\kappa}}{1 + \alpha \Delta T_{\kappa}} \tag{8}$$

Рис. 1: "Схема устройства калориметра"

Подставляя (7) и (8) в (5), найдем

$$C = \frac{P \cdot R \cdot \alpha}{\left(\frac{dR}{dt}\right)_{T_{K}} (1 + \alpha \Delta T_{K})} \tag{9}$$

Входящий в формулу температурный коэффициент сопротивления меди равен $\alpha=4,28\cdot 10^{-3}~{\rm K}^{-1},$ все остальные величины определяются экспериментально.

2. Эксперементальная установка

Установка состоит из калориметра с пенопластовой изоляцией, помещенного в ящик из многослойной клееной фанеры. Внутренние стенки калориметра выполненым из материала с высокой теплопроводностью. Надежность теплового контакта между телом и стенками обеспечивается их формой: они имеют вид усеченных конусов и плотно прилегают друг к другу.

Рис. 2: "Схема включения нагревателя"

В стенку калориметра вмонтированы электронагреватель и термометр сопротивления. Схема включения нагревателя изображения на рис. 2. Система реостатов позволяет установить нужную силу тока в цепи нагревателя. По амперметру и вольтметру определяется мощность, выделяемая в нагревателе. Величина сопротивления термометра измеряется мостом постоянного тока.

3. Ход работы

Настроим мост, а также измерим сопротивление термометра при комнатной температуре. Затем настроим нагреватель. Настройка оборудования закончена.

При неизменной мощности нагревателя опрелелите зависимость сопротивления термометра от времени для пустого калориметра $R_{\rm T}=$

R(t). Заполним таблицу с полученными данными.

R, Om	18,08	18,18	18,28	18,38	18,48	18,58	18,68	18,78	18,88
t, c	0	92	187	289	398	513	638	766	904
R, Om	18,98	19,08	19,18	19,28	19,38	19,48			
t, c	1049	1202	1362	1538	1723	1914			

Таблица 1: Измерение зависимости сопротивления от времени для пустого калориметра.

Аналогично получим таблицу зависмости сопротивления для латуни и алюминия.

R, Om	18,08	18,18	18,28	18,38	18,48	18,58	18,68	18,78	18,88
t, c	0	108	224	348	481	619	772	935	1112
R, Om	18,98	19,08	19,18	19,28	19,38	19,48			
t, c	1294	1488	1701	1927	2157	2389			

Таблица 2: Измерение зависимости сопротивления от времени для алюминия.

R, Om	18,08	18,18	18,28	18,38	18,48	18,58	18,68	18,78	18,88
t, c	0	135	274	421	576	741	913	1094	1285
R, O	18,98	19,08	19,18	19,28	19,38	19,48			
t, c	1483	1693	1909	2135	2371	2619			

Таблица 3: Измерение зависимости сопротивления от времени для латуни.

Изобразим полученные точки на графике и проведем через них плавную кривую. Затем разделим полученный график на 14 отрезков, найдя

на каждом найдя коэффициент наклона по формуле (10). Полученные значени нанесем на график с помощью Matlab(график приведен в самом конце). Не забудем проэкстраполировать к точке $R_{\rm T}=R_{\rm K}$

$$\frac{dR}{dt} \approx \frac{R(t_2) - R(t_1)}{t_2 - t_1},\tag{10}$$

Затем найдем теплоемкость пустого калориметра (C_0) по формуле (9). Аналогично найдем теплоемкости для латунного и алюминиевого тела, при этом учтя поправки на незамкнутость системы по следующей формуле.

$$C_{1,2} = C_{1,2}' - C_0, (11)$$

Где $C_{1,2}$ – искомые теплоемкости без учета калориметра, $C'_{1,2}$ – полученные из графика теплоемкости с учетом калориметра, C_0 – теплоемкость калориметра.

Далее посчитаем удельную и молярную теплоемкость по формулам:

$$c_{1,2} = \frac{C_{1,2}}{m_{1,2}}, \qquad C_{\mu_1,\mu_2} = c_{1,2} \cdot \mu_{1,2}$$
 (12)

4. Обработка данных

С помощью Matlab получим уравнения апроксимирующих прямых. В данном случае я воспоьзовался аппроксимацией полином второй степени, так как коэффициент при кубе в каждом из случаев <<1. Найдем $\left(\frac{dR}{dt}\right)$ при $R_k=18.08$ Ом в кадом из случаев:

$$\left(\frac{dR_{\text{\tiny KAJ}}}{dt}\right) = 0,0001R_{\text{\tiny K}}^2 - 0,0056R_{\text{\tiny K}} + 0,700 = 14,21 \cdot 10^{-4} \, \frac{\text{O}_{\text{\tiny M}}}{\text{c}}., \qquad (13)$$

$$\left(\frac{dR_{\text{mat}}}{dt}\right) = 0,0002R_{\text{\tiny K}}^2 - 0,0074R_{\text{\tiny K}} + 0,694 = 9,84 \cdot 10^{-4} \, \frac{\text{O}_{\text{M}}}{\text{c}}, \qquad (14)$$

$$\left(\frac{dR_{\text{алм}}}{dt}\right) = 0,0001R_{\text{\tiny K}}^2 - 0,0036R_{\text{\tiny K}} + 0,333 = 9,01 \cdot 10^{-4} \, \frac{\text{Om}}{\text{c}}.\tag{15}$$

Погрешности полученные в Matlab:

$$\sigma_{\frac{dR_{\text{Ka},\Pi}}{dt}} = 0.91 \cdot 10^{-4} \frac{\text{O}_{\text{M}}}{\text{c}}, \qquad \varepsilon_{\frac{dR_{\text{Ka},\Pi}}{dt}} = 6,4 \%$$
 (16)

$$\sigma_{\frac{dR_{\text{Ka}_{\text{I}}}}{dt}} = 0.72 \cdot 10^{-4} \frac{\text{O}_{\text{M}}}{c}, \qquad \varepsilon_{\frac{dR_{\text{Ka}_{\text{I}}}}{dt}} = 7,32 \%$$
 (17)

$$\sigma_{\frac{dR_{\text{Ka},\Pi}}{dt}} = 0,51 \cdot 10^{-4} \frac{\text{O}_{\text{M}}}{\text{c}}, \qquad \varepsilon_{\frac{dR_{\text{Ka},\Pi}}{dt}} = 5,66 \%$$
 (18)

Теперь с помощью формулы (9) найдем теплоемкости.

$$C_{\text{кал}} = 588, 5 \frac{\text{Дж}}{\text{K}} \tag{19}$$

$$C'_{\text{a,tm}} = 849, 3 \frac{\text{Дж}}{\text{K}}$$
 (20)

$$C'_{\text{\tiny JAT}} = 927, 6 \frac{\text{Дж}}{\text{K}}$$
 (21)

Погрешности полученные в Matlab:

$$\sigma_{C_{\text{кал}}} = 41.1 \frac{\text{Дж}}{\text{K}}, \qquad \qquad \varepsilon_{C_{\text{кал}}} = 7,0 \%$$
 (22)

$$\sigma_{C'_{\text{nat}}} = 53,6 \frac{\text{Дж}}{\text{K}}, \qquad \qquad \varepsilon_{C'_{\text{nat}}} = 5,8 \%$$
 (24)

Вычтем из полученных теплоемкостей теплоемкость пустого калориметра

$$C_{\text{алм}} = 260, 8 \frac{\text{Дж}}{\text{K}} \tag{25}$$

$$C_{\text{лат}} = 339, 1 \frac{\text{Дж}}{\text{K}}$$
 (26)

Погрешности полученные в Matlab:

$$\sigma_{C_{\text{алм}}} = 25.1 \frac{\text{Дж}}{\text{K}}, \qquad \varepsilon_{C_{\text{алм}}} = 9,6 \%$$
 (27)

$$\sigma_{C_{\text{nat}}} = 12.5 \frac{\text{Дж}}{\text{K}}, \qquad \qquad \varepsilon_{C_{\text{nat}}} = 3.7 \%$$
 (28)

Найдем удельнуютеплоемкость по формуле (12):

$$c_{\text{алм}} = \frac{260, 8}{294, 2 \cdot 10^{-3}} = 886, 5 \frac{\text{Дж}}{\text{K} \cdot \text{кг}}$$
 (29)

$$c_{\text{\tiny JAT}} = \frac{339, 1}{875, 5 \cdot 10^{-3}} = 387, 3 \frac{\text{Дж}}{\text{K} \cdot \text{кr}}$$
 (30)

Погрешности полученные в Matlab:

$$\sigma_{c_{\text{алм}}} = 43.3 \frac{\text{Дж}}{\text{K}}, \qquad \qquad \varepsilon_{C_{\text{алм}}} = 4.9 \%$$
 (31)

$$\sigma_{c_{\text{\tiny nat}}} = 34.4 \frac{\text{Дж}}{\text{K}}, \qquad \qquad \varepsilon_{C_{\text{\tiny nat}}} = 8,9 \%$$
 (32)

Найдем молярную теплоемкость по формуле (12):

$$C_{\mu \text{алм}} = 886, 5 \cdot 27 \cdot 10^{-3} = 23, 9 \frac{\text{Дж}}{\text{K} \cdot \text{моль}}$$
 (33)

$$C_{\mu,\text{mat}} = 387, 3 \cdot 64, 3 \cdot 10^{-3} = 24, 9 \frac{\text{Дж}}{\text{K} \cdot \text{моль}}$$
 (34)

Погрешности полученные в Matlab:

$$\sigma_{c_{\text{алм}}} = 103.86 \frac{\text{Дж}}{\text{K}}, \qquad \varepsilon_{C_{\text{алм}}} = 4.9 \%$$
 (35)

$$\sigma_{c_{\text{nat}}} = 49.45 \frac{\text{Дж}}{\text{K}}, \qquad \qquad \varepsilon_{C_{\text{nat}}} = 8,9 \%$$
 (36)

5. Заключение

В результате проделанного эксперимента были получены $c_{\rm алм}=886,5\pm43,3$ $\frac{{\rm Дж}}{{\rm K}\cdot{\rm K\Gamma}},$ $c_{\rm лат}=387,3\pm34,4$ $\frac{{\rm Дж}}{{\rm K}\cdot{\rm K\Gamma}}.$ Табличные значения соответственно равны $c_{\rm a,\ Tабл}=920,0$ $\frac{{\rm Дж}}{{\rm K}\cdot{\rm K\Gamma}}$ и $c_{\rm n,\ Taбл}=380,0$ $\frac{{\rm Дж}}{{\rm K}\cdot{\rm K\Gamma}}.$ Полученные значения лежат в пределах погрешности, что говрит о применимости данного метода.

6. Список используемой литературы

- ullet Гладун А. Д. Лабораторный практикум по общей физике. Термодинамика и молекулярная физика
 - Описание лабораторных работ на кафедре общей физики МФТИ

7. Графики

