INTRODUCTION TO UNIX-LINUX – QUALITY CONTROL

Klebsiella Workshop Sep 2024

South African Nationa

From experiments to data

we are here

Informative data and graphics

Quality control = First step of the bioinformatics analyses

Quality control (raw reads)

Trimming

(adapters/low quality reads)

Alignment /mapping (QC)

Variant calling

Tree
Building
(QC/caveats)

Different Quality Control tools

Illumina

- FastQC (most widely used)
- MultiQC (compresses dataset)
- Fastp (all-in-one)

DeNovo

- Metaplan
- BLAST

Quality control

Adaptor / Trimming

Alignment / mapping

Variant calling

Quality Control: FastQC

- A quality control tool for high throughput sequence data.
- FastQC aims to provide a simple way to do some quality control checks on raw sequence data coming from high throughput sequencing pipelines. It provides a modular set of analyses which you can use to give a quick impression of whether your data has any problems of which you should be aware before doing any further analysis.

The main functions of FastQC are:

- Import of data from BAM, SAM or FastQ files (any variant)
- Providing a quick overview to tell you in which areas there may be problems
- Summary graphs and tables to quickly assess your data
- Export of results to an HTML based permanent report
- Offline operation to allow automated generation of reports without running the interactive application

Quality control

Adaptor / Trimming

Alignment / mapping

Variant calling

Installation & Usage: FastQC

Installation:

Wget
 https://github.com/s-andrews/FastQC/archive/refs/tags/v0.12.1.
 zip

• Usage:

- Run either interactive graphical application in which you can dynamically load FastQ files and view their results OR
- In a non-interactive mode where you specify the files you want to process on the command line and FastQC will generate an HTML report for each file without launching a user interface.

Quality control

Adaptor / Trimming

Alignment / mapping

Variant calling

Installation of fastQC using conda

```
we are here
```

Quality control

Adaptor / Trimming

Alignment / mapping

Variant calling

```
conda install bioconda::fastqc
conda install
bioconda/label/broken::fastqc
conda install
bioconda/label/cf201901::fastqc
```

Quality Scoring

we are here

Measure of the quality of the identification of the nucleobases generated by automated DNA sequencing

Phred Quality Score	Probability of incorrect base call	Base call accuracy
10	1 in 10	90%
20	1 in 100	99%
30	1 in 1000	99.9%
40	1 in 10,000	99.99%
50	1 in 100,000	99.999%
60	1 in 1,000,000	99.9999%

Quality control

Adaptor / Trimming

Alignment /mapping

Variant calling

Sequence: FASTA

we are here

```
>Identifier1
 (comment)
>Identifier2 (comment)
XX
```

Quality control

Adaptor / Trimming Alignmen mapping Variant calling

Sequence: FASTQ

we are here

Quality control

Adaptor / Trimming Alignmen mapping Variant calling

№ FastQC Report

Summary

Basic Statistics

Per base sequence quality

Per sequence quality scores

Per base sequence content

Per base GC content

Per sequence GC content

Per base N content

Sequence Length Distribution

Sequence Duplication Levels

Overrepresented sequences

Mer Content

Basic Statistics

Measure	Value
Filename	WES_human_Illumina.pe_1.fastq
File type	Conventional base calls
Encoding	Sanger / Illumina 1.9
Total Sequences	4942814
Filtered Sequences	0
Sequence length	76
%GC	47

Per base sequence quality

Produced by FastQC (version 0.10.1)

Quality control

Adaptor / Trimming Alignmen mapping Variant calling

Quality score: Per-base

Quality control

Adaptor / Trimming

Alignment / mapping

Variant calling

Per-base Quality

Quality control

Adaptor / Trimming

Alignment / mapping

Variant calling

Quality control

Adaptor / Trimming

Alignment / mapping

Variant calling

Tree Building

Improving Quality

- Filtering of sequences
 - with small mean quality score
 - too short
 - with too many N bases
 - based on their GC content
- Cutting/Trimming sequences
 - from low quality score parts
 - tails

Different trimming tools

Illumina – ref data

- Trimmomatic
- CutaDapt
- Fastp
- Flexar
- Trimgalore

DeNovo – no ref

- Kraken
- Blobology
- BLAST

we are here

Quality control

Adaptor / Trimming

Alignment / mapping

Variant calling

Trimmomatic

- Trimmomatic performs a variety of useful trimming tasks for Illumina paired-end and single ended data. The selection of trimming steps and their associated parameters are supplied on the command line.
- Requires Java installation check: run java -version
- Inputs Single-end or Paired-end FASTQ or FASTQ.gz reads
- https://github.com/usadellab/Trimmomatic?tab = readme-ov-file

Quality control

Adaptor / Trimming

we are here

Alignment / mapping

Variant calling

Installation & Usage: Trimmomatic

• Installation:

we are here

- wget https://github.com/usadellab/Trimmomatic.git
- Usage:
 - java -jar trimmomatic-0.39.jar PE input_forward.fq.gz input_reverse.fq.gz output_forward_paired.fq.gz output_forward_unpaired.fq.gz output_reverse_paired.fq.gz output_reverse_unpaired.fq.gz ILLUMINACLIP:TruSeq3-PE.fa:2:30:10:2:True LEADING:3 TRAILING:3 MINLEN:36
- The above code is for reference only

Quality control

Adaptor / Trimming

Alignment / mapping

Variant calling

Fastp

- <u>fastp</u> is a tool designed to provide fast all-in-one preprocessing for FASTQ files. This tool is developed in C++ with multithreading supported to afford high performance.
- Inputs Single-end or Paired-end FASTQ or FASTQ.GZ reads
- https://github.com/OpenGene/fastp?tab=readme-o v-file#features

Quality control

Adaptor / Trimming

Alignment / mapping

Variant calling

Installation & Usage: Fastp

- Installation:
 - wget http://opengene.org/fastp/fastp
 - chmod a+x ./fastp
- Usage:
 - SE code: fastp -i in.fq -o out.fq
 - PE code: fastp -i in.R1.fq.gz -I in.R2.fq.gz -o out.R1.fq.gz -o out.R2.fq.gz

The above code is for reference only

Quality control

Adaptor / Trimming

we are here

Alignment / mapping

Variant calling