Cząstki elementarne i oddziaływania

ZADANIA III

Model Kwarkowy

1. Stan spinowy cząstki można zapisać używając braketów: $|sm_s\rangle$, np. stan spinowy elektronu lub kwarka o spinie 1/2 z trzecią składową 1/2, czyli stan \uparrow , zapisujemy jako: $\left|\frac{1}{2}\frac{1}{2}\right\rangle$. A zatem układ $\uparrow\uparrow$ dwóch kwarków o spinach 1/2, z trzecią składową 1/2 zapiszemy jako:

$$\left|\frac{1}{2}\frac{1}{2}\right\rangle \left|\frac{1}{2}\frac{1}{2}\right\rangle = \left|1\right\rangle$$

Proszę znaleźć i zapisać pozostałe stany spinowe dwóch kwarków.

- 2. Operatory parzystości przestrzennej i ładunkowej proszę je zdefiniować i określić wartości własne. Jaka jest parzystość przestrzenna układu dwóch fermionów z zadania 1?
- 3. Proszę określić, jaki może być całkowity moment pędu mezonów i barionów, które złożone są odpowiednio z dwóch i trzech kwarków.

Całkowity moment pędu cząstki jest to wektorowa suma jej spinu i momentu pędu: $\vec{J} = \vec{L} + \vec{S}$, ale jak dodajemy te wektory? W mechanice kwantowej nie znamy przecież wszystkich współrzędnych?

Używając braketów, zapytamy: jakie są możliwe momenty pędu $|jm\rangle$ układu złożonego ze stanów $|j_1 m_1\rangle$ oraz $|j_2 m_2\rangle$? Trzecie składowe dodają się łatwo: $m=m_1+m_2$, ale co z długością całkowitego momentu pędu $\vec{J}=\vec{J_1}+\vec{J_2}$?

Jak \vec{J}_1 i \vec{J}_2 są równoległe, ich długości się dodadzą, gdy antyrównolegle – odejmą. Czyli długość \vec{J} może on przyjąć każdą całkowitą wartość j z przedziału: $j=|j_1-j_2|,|j_1-j_2|+1,...,0,|j_1+j_2|-1,|j_1+j_2|$.

Odpowiedź na pytanie z początku zadania jest intuicyjna, gdy kwarki mają zerowy orbitalny moment pędu *L*. W przypadku ogólnym konieczna jest znajomość znajdywania tych stanów przy pomocy tablic ze współczynnikami Clebsha-Gordana*.

- 4. Deuteron to stan związany neutronu i protonu. Deuteron ma spin 1 i dodatnią parzystość. Proszę wytłumaczyć, dlaczego można go znaleźć tylko w stanach 3S_1 oraz 3D_1 .
- 5. Mezon ρ^0 zaliczamy do multipletu o $J^P=1^-$. Wyjaśnij, biorąc pod uwagę własności symetrii funkcji falowej, dlaczego możliwy jest rozpad: $\rho^0 \to \pi^+\pi^-$, a wzbroniony: $\rho^0 \to \pi^0\pi^0$.
- 6. Jakie są możliwe wartości J^P dla układu fermion-antyfermion (np. dla pozytronium, tj. stanu związanego elektron-pozyton), które są w fali S lub P? Proszę również podać te stany w notacji spektroskopowej.
- 7. Kwarki u i d mają izospin $I = \frac{1}{2}$ oraz trzecią składową izospinu $I_3 = +\frac{1}{2}$ (kwarki u i \bar{d}) lub $I_3 = -\frac{1}{2}$ (kwarki d i \bar{u}). Jaki całkowity izospin mogą mieć mezony złożone z kwarków u i d? Odpowiednie współczynniki można otrzymać z tablic współczynników Clebsha-Gordana, analogicznie jak dla spinów. Proszę napisać postacie funkcji falowych tych mezonów i przypisać im fizyczne cząstki z multipletu o 0^- . Pamiętać należy tu o pewnej konwencji*, która powoduje, że funkcja falowa jednego z tych kwarków ma znak

przeciwny do funkcji antykwarka.

- * zmiana $q \to \overline{q}$ jest równoważna działaniu operatora parzystości ładunkowej $\hat{C}: \hat{C}|u\rangle = e^{i\phi}|\overline{u}\rangle$. Konwencja Condona-Shortleya oznacza, że przemiany lekkich kwarków mają znaki odpowiednio: $|u\rangle \to -|\overline{u}\rangle$, $|d\rangle \to +|\overline{d}\rangle$. Może być również konwencja (M.Thomson): $|u\rangle \to |\overline{u}\rangle$, $|d\rangle \to -\overline{d}\rangle$. Proszę przeanalizować, jaka jest różnica pomiędzy obydwoma podejściami.
- 8. (Zad.*) Rozpatrujemy silne oddziaływania w rozpraszaniu pionów na protonach: $\pi + N \rightarrow \pi + N$.
 - a) Proszę wypisać możliwe stany izospinowe w tych procesach. Matematyka izospinu jest taka sama, jak spinu, tzn, wiedząc, że piony mają izospin I=0 i trzy możliwe wartości $I_3=-1,0,+1$, a nukleony $I=\frac{1}{2}$ i $I_3=-\frac{1}{2},+\frac{1}{2}$, używając współczynników Clebsha-Gordana dodajemy izospiny analogicznie jak spiny.
 - b) Przekrój czynny proporcjonalny jest do kwadratu elementu macierzowego $\langle \psi_f | \widehat{H} | \psi_i \rangle$, w którym \widehat{H} zależy tylko od izospinu. Rozpatrzmy trzy konkretne procesy:

$$\pi^{+} + p \rightarrow \pi^{+} + p$$

$$\pi^{-} + p \rightarrow \pi^{0} + n$$

$$\pi^{-} + p \rightarrow \pi^{-} + p$$

Proszę wyznaczyć odpowiednie amplitudy rozpraszania, pamiętając, że izospin w oddziaływaniach silnych jest zachowany.