	专业	学号	姓名	
一. 填空题				
1. 设 A, B, C是	三个随机事件,	用字母A、B、C	②表示下列事件:	
事件 A、B	都发生,事件 (7不发生为	;	
事件 A, B,	, C都不发生为		;	
事件 A, B	至少一个发生,	事件 C不发生为	J:	;
2. 设 $P(A) = 0.4$	4 ,且 $B \subset A$, 贝	$P(\overline{A} \cdot \overline{B}) = \underline{}$;	
3. 设 A 和B是两	个随机事件, /	P(A) = 0.9, P(A)	$(AB) = 0.36, \ \mathbb{M}P(A$	· B)=
;				
4. 设 $P(A) = 0.3$	P(B) = 0.2,	$P(A \cup B) = 0.4$	4,则 <i>P(AĪ</i>)=	;
5. 设 A 和	B是两个随机事	事件, P((A) = 0.5, P(A-B)	$=0.2$, $\mathbb{M}P(AB)=$
;				
$P(\overline{AB})$				
二. 选择题				
1. 设 A, B 为任意两	5个事件,表达:	式 $A \cup B$ 表示().	
① A 与 B 同时	†发生;	② A 发生但	B 不发生;	
③ B 发生但 A	1不发生;	④ <i>A</i> 与 <i>B</i> 至	少有一件发生.	
2. 设 <i>A</i> , <i>B</i> 为两个事	4 件,则关系式。	$AB = A \stackrel{\text{\tiny def}}{=} ($) 时成立.	
$ \textcircled{1} A \subset B $	$\textcircled{2} B \subset A$	$, \qquad \Im \overline{A} \subset B$	$, \textcircled{4} \overline{B} \subset A$	
3. 设任意的两个事	件 A,B ,若 AB	= Φ ,则必有().	
① $P(A \cup B) =$	1;	② 事件 A	$\ni B$ 互不相容;	

③ P(A)=0 或 P(B)=0; ④. 事件 A 与 B 互为对立.

三. 解答题

1. 设 A, B 是两个随机事件,已知 P(A) = 0.45, P(B) = 0.3, $P(\overline{A} \cup \overline{B}) = 0.8$, 求 P(AB), $P(\overline{A} \cdot \overline{B})$, P(B-A), $P(A \cup \overline{B})$.

2. 已知 $P(A) = P(B) = P(C) = \frac{1}{4}$, $P(AB) = P(AC) = P(BC) = \frac{1}{8}$, $P(ABC) = \frac{1}{16}$, 求概 率 $P(A \cup B \cup C)$ 和 $P(\overline{ABC})$.

1.	己知	P(A)	= 0.5.	P(B)	= 0.4.	P($A \cup B$	= 0.6	求	P(A B).	P	$A \bar{B}$	Ī).
Τ.		1 (11	j = 0.5	I(D)	j = 0.7	1 (D	<i>j</i> – 0.0 ,	71	· (II D	J,	4 (1110	J.

2. 甲组有 3 男生 1 女生,乙组有 1 男生 3 女生. 今从甲组随机抽一人编入乙组,然后再从乙组随机抽一人编入甲组,求(1)甲组仍为 3 男生 1 女生的概率; (2)甲组为 4 男生的概率.

3. 袋中有5个白球与10个黑球,每次从袋中任取一个球,取出的球不再放回. 求第二次取出的球与第一次取出的球颜色相同的概率.

4. 某工厂有甲、乙、丙三个车间生产同一种产品,由于设备差别,各车间的生产量分别占总产量的 60%、 25%、15%;各车间生产的产品优质品率分别为 70%、80%、90% . 现从总产品中随机挑选一件,求此产品为优质品的概率.

#	专业学	:号	姓名	
一. 填空题				
1. 张、王二人独立地	向同一目标射击-	一次,他们各自	击中目标的概率	分别为 0.9 和
0.8,则目标被击中的]概率为 <i>p</i> =	·		
2. 甲乙两个实验员各	自独立的做同一等	实验,且知甲,乙	实验成功能够的概	既率分别为 0.6 和
0.8,则实验成功的概率	^医 为 <i>p</i> =	·		
3. 已知 $P(B) = 0.3$, $P(B) = 0.3$	$(\overline{A} \cup B) = 0.7$, \square	A 与 B 相互独立	江,则 $P(A) = $	
4. 掷一颗骰子 4 次,	只出现一次"一	点"的概率 <i>p</i> =	:	
5. 随机事件 A, B 相互	独立, 且 <i>P</i> (<i>A</i>) =	P(B) = 0.2, ,则	(1) A、B都不	下 发生的概率为
;	(2) A、 B 不都发	生的概率为	·	
二. 选择题				
1. 抛掷3枚均匀对称	的硬币,恰好有	两枚正面向上的]概率是()	
① 0.125;	② 0.25;	③ (). 375;	④ 0.5.
2. 若随机事件 A, B,	C相互独立,则	下列事件对中() 可能不	相互独立.
① $A \ni BC$;		② A =	$\exists B \cup C$;	
3 $A = B - C$;	4 AB	与 AC .	
3. 设一系统由两个元	件并联而成,如	下图所示		
		1		

已知各个元件独立地工作,且每个元件能正常工作的概率均为p(0 . 则系统能正常工作的概率为()

- ① p^2 ; ② 2p; ③ $(1-p)^2$; ④ $2p-p^2$.

三. 解答题

1. 某灯泡厂有甲、乙两条流水线,它们所出产的灯泡中,寿命大于2500小时的分别占 80%和90%,从它们生产的灯泡中各自随机地抽取一个,求下列事件的概率: (1)两个 灯泡寿命均大于2500小时; (2)两灯泡中至少有一个寿命大于2500小时; (3)两个 灯泡中至多有一个寿命大于2500小时.

2. 设两个随机事件 A 和 B 相互独立,且 $P(\overline{AB}) = \frac{1}{9}$, $P(\overline{AB}) = P(A\overline{B})$, 试求 P(A).

一. 填空题
1. 若随机变量 X 的概率函数为 $\frac{X \mid 0 \mid 1}{p \mid 0.1 \mid 0.2 \mid 0.3 \mid 0.3 \mid 0.1}$,则
$P(X \le 2) =; P(X > 3) =; P(X \ne 4)$
2. 若随机变量 X 服从泊松分布 $P(2)$,则 $P(X > 2) =$
3. 若随机变量 X 的概率函数为 $P(X = k) = c \cdot 2^{-k}$, $(k = 1, 2, 3, \cdots)$. 则 $c = $
4. 一批零件中有 10 个合格品和 2 个废品,每次取出废品后不再放回去,每次从中任取
一个,则取得合格品以前,已取出的废品数 X 的概率函数为
二. 选择题
1. 设随机变量 X 的概率分布为 $\frac{X}{p}$ 0 1 2 3 $\frac{1}{0.3}$ 0.4 0.2 $\frac{1}{0.2}$ $F(x)$ 为其分布函数,则 $F(2)$ =
().
① 0.2 ② 0.4 ③ 0.8 ④ 1
2. 一枚均匀骰子掷两次,用 X 表示两次的点数的和,则 $P(X=4)=($).
① $\frac{3}{36}$; ② $\frac{1}{36}$; ③ $\frac{4}{36}$; ④ $\frac{7}{36}$.
3. 设每次试验成功的概率为 $p(0 , 现独立进行 10 次这样的试验, 记 X 为实验$
成功的次数,则 $P(X=4)=$ ().

① $C_{10}^4 p^4 (1-p)^6$

 $2 C_9^3 p^4 (1-p)^6$

 $3 C_9^4 p^4 (1-p)^5$

三. 解答题

1. 从学校乘汽车到火车站的途中有 3 个交通岗,假设在各个交通岗遇到红灯的事件是相互独立的,并且概率都是 2/5. 设X 为途中遇到红灯的次数,求X 的概率函数.

2. 一个袋中有 5 个球,编号为 1, 2, 3, 4, 5. 在其中同时取 3 个球,以 X 表示取出的 3 个球中的最大号码,试求 X 的概率函数.

一. 填空题 1. 若随机变量 X 的概率密度为 $f(x) = ae^{-x}$, $(0 < x < +\infty)$, 则 a =______; P(X = 0) =_____. 2. 若连续型随机变量 X 的分布函数为 $F(x) = \begin{cases} 0, & x < -1 \\ \frac{x+1}{A}, & -1 \le x < 1 \end{pmatrix}$ 则 A =_____; 3. 若随机变量 X 的概率密度为 $f(x) = \begin{cases} \frac{1}{4}e^{-\frac{x}{4}}, & x > 0 \\ 0, & x \le 0 \end{cases}$, 则 $P(X \le 4) =$ ______; P(4 < X < 8) =_____. 二. 选择题 1. 若随机变量 X 的概率密度 $f(x) = \begin{cases} A \sin x, x \in [0, \frac{\pi}{2}], \\ 0, 其他 \end{cases}$,则 A = () . $2\frac{1}{2}$; 30; 42.

若连续型随机变量 X 的分布函数为 F(x) ,则以下结论错误的是(

- ① $P(a < X \le b) = F(b) F(a)$; ② P(a < X < b) = F(b) F(a);
- ③ $P(a < X < b) \neq F(b) F(a)$; ④ P(X = a) = 0.

三.解答题

- 1. 设随机变量 X 的概率密度 f(x) = $\begin{cases} ae^x, & x \le 0 \\ \frac{1}{4}, & 0 < x < 2 \\ 0, & x \ge 2 \end{cases}$
- (1) 求 a 值; (2) 求分布函数 F(x); (3) 求概率 P(X > -1).

2. 设连续型随机变量 X 的分布函数为 $F(x) = A + B \arctan x (-\infty < x < +\infty)$, (1) 求 A, B的值; (2) 求概率密度 f(x); (3) 求概率 P(|X|<1).

3. 设某型号电子元件的使用寿命 X (单位:小时)具有以下的概率密度函数

$$f(x) = \begin{cases} \frac{1000}{x^2}, x > 1000; \\ 0, 其他. \end{cases}$$
; 现有一批此种元件(各元件工作相互独立),(1)求概率

 $P(X \ge 1500)$; (2) 任取 4 只中至少有 1 只寿命大于 1500 小时的概率.

一. 填空题

1. 若二维随机变量(X,Y)的联合概率分布为

2. 设相互独立的随机变量 X与Y 都服从(0, 2)上的均匀分布,则它们的联合概率密度

函数 f(x,y) = ; $P(|X-Y| \le 1) =$ _____.

3. 设随机变量 X,Y 相互独立,概率密度分别为

$$f_X(x) = \begin{cases} 2e^{-2x}, & x > 0 \\ 0, & x \le 0 \end{cases}, \qquad f_Y(y) = \begin{cases} 3e^{-3y}, & y > 0 \\ 0, & y \le 0 \end{cases}$$

则概率 $P(X < 2, Y > 1) = ____.$

4. 设 X 和 Y 是独立的随机变量, 其分布密度函数为

$$f_{X}(x) = \begin{cases} 1 & 0 \le x \le 1 \\ 0 & \text{ i.i.} \end{cases}, \quad f_{Y}(y) = \begin{cases} e^{-y} & y > 0 \\ 0 & y \le 0 \end{cases}$$

则(X,Y)的联合概率密度函数为f(x,y)=

二. 解答题

 $P(X \leq Y)$.

1. 设X与Y是相互独立的随机变量, $X \sim U(0, 2)$,Y的概率密度

$$f_{Y}(y) = \begin{cases} \frac{1}{2}e^{-\frac{y}{2}}, & y > 0\\ 0, & y \le 0 \end{cases}$$
. 写出二维随机变量 (X,Y) 的联合概率密度 $f(x,y)$,并求概率

2. 若二维随机变量(X,Y)的联合概率密度为 $f(x,y)=\begin{cases} kxy, & 0\leq x\leq 1, 0\leq y\leq 1, \\ 0, &$ 其他.

解以下各题: (1) 求 k 值; (2) 求两个边缘概率密度 $f_X(x)$ 及 $f_Y(y)$; (3) 讨论随机变量 X 与 Y 的相互独立性; (4) 求概率 $P(Y \le 0.5)$ 及 $P(X \ge 0.5, Y \le 0.2)$.

一. 填空题

1. 若随机变量 X 的概率分布为 $\frac{X \mid -2 \mid -1 \mid 0 \mid 1 \mid 5}{P \mid 0 \mid 3 \mid 0 \mid 2 \mid 0 \mid 1 \mid 0 \mid 2 \mid 0 \mid 2}$,记 Y = X + 2 ,

Z = -X + 1, $W = X^2$, 则随机变量 $Y \setminus Z$ 和 W 的概率分布分别为:

2. 设随机变量 X 的概率分布为 $\frac{X \mid -1 \quad 0 \quad 1 \quad 2 \quad 3}{P \mid 0.2 \quad 0.1 \quad 0.1 \quad 0.3 \quad 0.3}$, 则 2X-1, X^2+1 的

概率分布为

二. 选择题

①
$$F(\frac{y-1}{3});$$

②
$$F(3y+1)$$
;

$$3F(y)+1;$$

①
$$F(\frac{y-1}{3})$$
; ② $F(3y+1)$; ③ $3F(y)+1$; ④ $\frac{1}{3}F(y)-\frac{1}{3}$

2. 设随机变量 $X \sim U(0,6)$, 则 Y = X - 3 的概率密度函数为 .

①
$$f_{Y}(y) = \begin{cases} 6, & -3 < y < 3 \\ 0, & \text{其他} \end{cases}$$
;

②
$$f_{Y}(y) = \begin{cases} \frac{1}{6}, & -3 < y < 3 \\ 0, & \text{其他} \end{cases}$$

③
$$f_Y(y) = \begin{cases} \frac{1}{6}, & 0 < y < 6 \\ 0, & 其他 \end{cases}$$
;

④
$$f_{Y}(y) = \begin{cases} 6, & 0 < y < 6 \\ 0, & 其他 \end{cases}$$

二.解答题

1. 若随机变量 X 的概率密度为 $f_X(x) = \frac{1}{\pi(1+x^2)}, x \in \square$, 求随机变量

 $Y = 1 - \sqrt[3]{X}$ 的概率密度函数 $f_Y(y)$.

2. 设随机变量 $X \sim U(0,\pi)$, 求随机变量 Y = 6 - 4X 的概率密度函数 $f_Y(y)$.

3. 若随机变量 X 的概率密度为 $f_X(x) = \begin{cases} \frac{x}{8}, & 0 < x < 4 \\ 0, & 其他 \end{cases}$,求随机变量 Y = 2X + 8 的概

率密度函数 $f_{y}(y)$.

一. 填空题

1	差随机变量 <i>Y</i> 的概索分布为		0	1	2	3	4	则 $E(X) =$	
1.	若随机变量 X 的概率分布为一	,	0.1	0.2	0.3	0.3	0.1	$\mathcal{M} E(\Lambda) = \underline{\hspace{1cm}}$	٠,

 $E(X^2) =$; D(X) =; $E(3X^2 + 5) =$.

2. 设
$$X \square p(4)$$
,则 $D(X) = _____, E(X^2) = _____.$

3. 已知随机变量 X 服从二项分布 B(n, p),且 E(X) = 2.4, D(X) = 1.68,二项分布的

4. 设随机变量 X 的概率密度为 $f(x) = \begin{cases} kx^{\alpha}, & 0 < x < 1 \\ 0, & \square \end{cases}$,且 E(X) = 0.75,则

 $k = \underline{\hspace{1cm}}; \quad \alpha = \underline{\hspace{1cm}}.$

5. 若相互独立的随机变量 X 与 Y 满足 E(X) = 2,

D(X) = 1, E(Y) = 1, D(Y) = 4, \emptyset $E(X - 2Y) = ______; <math>D(2X - Y) = ______$

二. 选择题

- 1. 已知随机变量 $X \sim P(2)$, 设 Y = 3X 2 , 则 E(Y) = (
 - $\widehat{1}$ 2:
- 2 4;
- $3\frac{1}{4};$ $4\frac{1}{2}$
- 2. 设X为一随机变量,若D(10X) = 10,则D(X) = ().
 - ① 0.1;
- ② 1;
- ③ 10;
- **4**) 100
- 3. 设两个相互独立的随机变量 X 和 Y 的方差分别为 4 和 2,则随机变量 3X 2Y 的方差

是().

① 8;

② 16; ③ 28; ④ 44

三. 解答题

1. 设随机变量 X 的概率密度函数为 $f(x) = \begin{cases} 2x, & 0 \le x \le 1 \\ 0, & \square \end{cases}$, 求 X 的数学期望 E(X) 和 方差D(X).

设随机变量 X 的概率密度函数为 f(x) = $\begin{cases} x, & 0 < x \le 1 \\ 2 - x, & 1 < x \le 2, \ 求 \ X \ \text{的数学期望} \\ 0, & \text{其他} \end{cases}$ E(X)和方差D(X).

一. 填空题

- 1. 若随机变量 X 服从区间 (0, 1) 上的均匀分布 U(0, 1) ,则 X 的 k 阶原点矩 $\nu_k(X) =$ ______
- 2. 若随机变量 X 与 Y 满足 D(X) = D(Y) = 1,相关系数 $R(X, Y) = -\frac{1}{2}$,则

D(X - Y) =_______; D(3X + 2Y) =______.

3. 若随机变量X与Y的协方差cov(X,Y)=0,则X与Y______.

二. 选择题

- 1. 若两个方差均不为 0 的随机变量 X 与 Y 满足 Y=1-X ,则相关系数 R(X,Y)=().
 - ① 1; ② -1; ③ 0.5; ④ -0.5.
- 2. 随机变量 X 与 Y 相互独立是 cov(X,Y) = 0 的 () 条件.
 - ① 充要; ② 充分; ③ 必要; ④ 即非充分又非必要.

三. 解答题

1.设随机变量(X,Y)的联合概率分布为

求: (1) cov(X,Y); (2) R(X,Y).

2. 设随机变量 X 有均值 4 和方差 25. 为了使得 rX-s 有均值 0 和方差 1, 应该怎样选择 r,s 的值.

3. 已知随机变量 X 与 Y 都服从二项分布 B(20,0.1) ,并且 X 与 Y 的相关系数 R(X,Y)=0.5 ,试求 D(X+Y) 及 Cov(X,2Y-X) .

4. 若二维随机变量 (X,Y) 的概率密度 f(x,y)= $\begin{cases} 4xy, & 0\leq x\leq 1,\ 0\leq y\leq 1\\ 0, & \text{其他} \end{cases}$,求相关系数 R(X,Y).

	专业	学号	姓名	
一. 填空题				
1. 设随机变量 <i>X</i>	的数学期望 $E(X)$	$)=\mu$,方差 $D(X)$	$(\sigma) = \sigma^2$,则由切以	北雪夫不等式得
$P(X-\mu \ge 4\sigma)$	≤			
2. 设 X_1, X_2, \dots, X_n	X_{10} 是相互独立、	同分布的随机变量	序列,且 $E(X_i)$	=1,
$D(X_i) = 10, i$	=1,2,…,10,则	$P(-10 < \sum_{i=1}^{10} X_i < 1)$	30)≥	<u></u> :
3. 已知正常女性原	戊年人的血液每毫	5升中红细胞含量 X	Z 是一个随机变量	上 ,若
E(X) = 7000,	$D(X) = 1100^2$,	则 P(4800 < X <	9200)≥	
二. 选择题				
1. 若随机变量 <i>X</i>	的数学期望与方差	差都存在,在以下 概	既率中,()肯定可以由切比
雪夫不等式进行取	仅值大小的估计.			

②
$$P(1 < X - E(X) < 2)$$
;

③
$$P(-1 < X < 1)$$
;

2. 随机变量 X 服从泊松分布 $P(\lambda)$,用切比雪夫不等式估计 $P(|X-\lambda| \ge \frac{1}{\lambda}) \le 1$) .

$$2\lambda^2$$

$$3 \lambda^3$$

3. 已知随机变量 X 的概率密度为 $f(x) = \begin{cases} \lambda e^{-\lambda x}, & x > 0 \\ 0, & x \leq 0 \end{cases}$, 用切比雪夫不等式估计

$$P(\left|X - \frac{1}{\lambda}\right| \ge 1) \le \quad () .$$

 λ; 			$ \stackrel{\text{\tiny 4}}{=} \frac{1}{\lambda}. $	
	天津科技大学	概率与统计 B M	验测题 11	
	专业学	号	,	
一、填空题				
1. 设随机变量 X_1 ,	X_2, X_3 相互独立,	其中 $X_1 \square U(0,6)$,	$X_2 \square N(0,2^2)$, X_2	$_{3}\square P(3)$,
记 $Y = X_1 - 2X_2 + 3$	$3X_3$,则 $D(Y) = $	·		
2. 根据标准正态分	布表填写:			
$\Phi(0) = $; Φ(1) =	; Φ(-1)	=;	$\Phi(1.96) =$
;				
若 $\Phi(x) = 0.975$,	则 <i>x</i> =	; 若 $\Phi(y) = 0.9$	5,则 y =	·
3. 若随机变量 <i>X</i> □	N(10,4),则P(6。	< X < 9) =	, $P(7 \le X \le 12) =$	=
4. 若随机变量 <i>X</i> □	$N(3,\sigma^2)$,且 $P(X)$	$Y \leq c) = P(X \geq c),$	则 <i>c</i> =	<u>_</u> ·
 若随机变量 X □ 	$N(2,\sigma^2)$, $\mathbb{H}P(2)$	< X < 3) = 0.3,则	P(X < 1) =	·
二、选择题				
1. 设随机变量 X □	$N(\mu,\sigma^2)$,则随 σ	的增大,概率 $P\{X$	$ -\mu < \sigma \} $	•
① 单调增大; 2. 设随机变量 <i>X</i> 的	② 单调减少; 的概率密度为	③ 保持不变;	④ 增减不定.	
	f(x) =	$=\frac{1}{2\sqrt{\pi}}e^{-\frac{(x+3)^2}{4}}$)2	
则服从标准正态分布	节的随机变量是().		
		$3 \frac{X-}{2}$	$\frac{3}{\sqrt{2}}$; $\qquad \qquad \underbrace{3}$	3
3	V 相互独立 日 日 日 相	从正		

态分布 $N(12,4^2)$. 设 $\xi = X + Y$, $\eta = X - Y$, 则 $cov(\xi, \eta) = ($) .

- ① 12;
- ② 4; ③ -16; ④ 0.

三、解答题

已知随机变量 $X \square N(-3,1)$, $Y \square N(2,1)$, 且X 与 Y相互独立,设随机变量 1. Z = X - 2Y + 7, 试求 E(Z) 和 D(Z), 并求出 Z 的概率密度函数.

2. 设随机变量 X 服从正态分布 N(10,4), 求 a, 使 $P\{|X-10| < a\} = 0.9$.

3. 某工厂生产的电子管的寿命 X (小时)服从 $N(160,\sigma^2)$. 若要求概率 $P{120 < X \le 200} \ge 0.80$,则允许 σ 最大为多少?

4. 若随机变量 $X \sim N(0, 1)$, 设 $Y = e^{-X}$, 求随机变量 Y 的概率密度 $f_{Y}(y)$.

一. 填空题

- 1. 若随机变量U与V相互独立,且都服从标准正态分布N(0,1),则(U,V)的联合概率密度为 f(u,v) =

二. 选择题

1. 若随机变量序列 $X_1, X_2, \dots, X_n, \dots$ 相互独立,且都服从密度函数为

$$f(x) = \begin{cases} \frac{1}{\lambda} e^{-\frac{x}{\lambda}}, x > 0 \\ 0, \quad x \le 0 \end{cases}$$
 的指数分布 $e(\frac{1}{\lambda})$, 当 $X = ($

 $\lim_{n\to\infty} P(X \le x) = \Phi(x)$. (其中 $\Phi(x)$ 为标准正态分布的分布函数).

三.解答题

1. 一加法器同时收到 300 个噪声电压 V_k $(k = 1, 2, \dots, 300)$, 设它们是相互独立的随机变量,

且都在区间(0,6)上服从均匀分布,记 $V = \sum_{k=1}^{300} V_k$,求 $P\{V > 930\}$ 的近似值.

2.	某保险公司多年的资料	表明,在索贝	音户中被盗雾	 索赔户占 20%,	用 X 表示	生随意抽查的
100	个索赔户中因被盗向保险	金公司索赔的	月户数. (1)	写出 X 的概率	区函数; (2)利用棣莫
佛一	立普拉斯中心极限定理,	求索赔户中	被盗索赔户	不少于 14 户目	1不多于 30	户的概率的
近似	值.					

3. 车间有 100 台机床,它们独立工作着,每台机床正常工作的概率均为 0.8,正常工作时耗电功率各为 1kw,问供电所至少要供给这个车间多少电功率,才能以 99.9%的概率保证这个车间不会因供电不足而影响生产?

一. 填空题

- 1. 设总体 X 具有分布函数 F(x), X_1, X_2, \cdots, X_n 为取自该总体的容量为 n 的样本,则样本联合分布函数
- 2.设总体 $X \sim P(\lambda)$, $X_1, X_2, ..., X_n$ 是来自总体 X 的样本,则 $E(\overline{X}) =$, $D(\overline{X}) =$

二. 选择题

设总体 $X\sim N\left(\mu,\sigma^2\right)$,其中 σ^2 已知,但 μ 未知,而 X_1,X_2,\cdots,X_n 为它的一个简单随机样本,则下列量中()是统计量,()不是统计量:

①
$$\frac{1}{n}\sum_{i=1}^{n}X_{i};$$
 ② $\frac{1}{n}\sum_{i=1}^{n}(X_{i}-\mu)^{2};$ ③ $\frac{1}{n}\sum_{i=1}^{n}(X_{i}-\overline{X})^{2};$

$$\textcircled{4} \frac{\overline{X} - 5}{\sigma} \sqrt{n}; \qquad \textcircled{5} \quad \frac{\overline{X} - \mu}{\sigma / \sqrt{n}}; \qquad \textcircled{6} \quad \frac{\overline{X} - 3}{\sqrt{\frac{1}{n(n-1)} \sum_{i=1}^{n} \left(X_{i} - \overline{X}\right)^{2}}}.$$

三. 解答题

1. 证明公式:
$$\sum_{i=1}^n \left(X_i - \overline{X}\right)^2 = \sum_{i=1}^n X_i^2 - n\overline{X}^2$$
, 其中 $\overline{X} = \frac{1}{n} \sum_{i=1}^n X_i$.

2. 设总体 X 的密度函数为 $f(x;\theta) = \begin{cases} \theta x^{\theta-1}, & 0 < x < 1 \\ 0, & 其他 \end{cases}$,其中 $\theta > 0$. X_1, X_2, \cdots, X_n 为取自总体 X 的简单随机样本,试写出样本的联合概率密度函数.

3. 设总体 $X \sim N(\mu, \sigma^2)$,而 X_1, X_2, \cdots, X_n 为它的一个简单随机样本, \overline{X} 和 S^2 分别是样本均值和样本方差,证明: $E(\overline{X}) = \mu$; $D(\overline{X}) = \frac{\sigma^2}{n}$; $E(S^2) = \sigma^2$.

一. 填空题

1. 设 X_1, X_2, X_3, X_4 相互独立且服从相同分布 χ^2 (6),则 $\frac{X_1 + X_2 + X_3}{3X_1} \sim$ ______

2. 设总体 $X \sim N(0,1)$,随机抽取样本 X_1, X_2, \dots, X_5 ,且 $\frac{c(X_1 + X_2)}{(X_2^2 + X_4^2 + X_5^2)^{1/2}} \sim t(3)$,

则 c= .

3. 设随机变量 $X \sim t(n)$,则 $Y = X^2 \sim$

二. 选择题

- 1. 设总体 $X \sim N(\mu, \sigma^2)$, \overline{X} 为该总体的样本均值,则 $P(\overline{X} > \mu)$ ______.

- $(1) < \frac{1}{4}$ $(2) = \frac{1}{4}$ $(3) > \frac{1}{2}$ $(4) = \frac{1}{2}$
- 2. 设 (X_1, X_2, \dots, X_n) 为总体 $N(1, 2^2)$ 的一个样本, \overline{X} 为样本均值,则下列结论中正 确的是 ____
 - $\textcircled{1}\frac{\overline{X}-1}{2^{1/\sqrt{n}}}\sim t(n);$

三. 解答题

1. 设总体 $X \sim N(0,1), X_1, X_2, \dots, X_6$ 为来自总体的样本,

 $Y = (X_1 + X_2 + X_3)^2 + (X_4 + X_5 + X_6)^2$, 试确定常数c, 使cY 服从 χ^2 分布.

2. 设总体 $X\sim N(\mu,\sigma^2)$,从中取得 16 个样本 X_1,X_2,\cdots,X_{16} ,已知 $\sigma=2$,求:

(1) $P\left(-\frac{1}{2} < \left| \overline{X} - \mu \right| < \frac{3}{4}\right)$; (2) $P\left(S^2 < 6.6656\right)$.

3. 设总体 $X \sim N(\mu, \sigma^2)$, X_1, X_2, \cdots, X_{10} 是取自总体 X 的样本,试求下列概率:

(1)
$$P\left(0.256\sigma^2 \le \frac{1}{10} \sum_{i=1}^{10} (X_i - \mu)^2 \le 2.321\sigma^2\right);$$
 (2)

$$P\left(0.27\sigma^2 \le \frac{1}{10}\sum_{i=1}^{10}(X_i - \overline{X})^2 \le 2.36\sigma^2\right).$$

天津科技大学概率与统计 B 检测题	15
人伴附父人子城举书统4 0 巡侧越	ıю

一. 填空题	
1. 设总体 $X \sim B(6, p)$, X_1, X_2, \dots, X_n 为来自总体 X 的样本,	则未知参数 p 的矩估计量
为	
二.解答题	

1. 设离散总体 X 的概率函数为 $P(x^{\square \square p}) = 1 - p^{x-1}p$ $x = 1, 2, \cdots$. 若样本观测值为 x_1, x_2, \cdots, x_n , 求未知参数 p 的最大似然估计值.

2. 设连续总体 X 的概率密度函数为

$$f(x; \theta) = \begin{cases} \theta x^{\theta-1}, & 0 < x < 1 \\ 0, & 其他 \end{cases}$$

其中 $\theta>0.X_1,X_2,\cdots,X_n$ 为来自总体X的样本,求未知参数 θ 的矩估计量和最大似然估计量.

3. 设
$$X \sim f(x,\theta) = \begin{cases} \frac{1}{\theta} e^{-\frac{x}{\theta}} & x > 0 \\ 0 & 其它 \end{cases}$$
 $(\theta > 0)$ $x_1, x_2, ..., x_n$ 为 X 的一组观察值,求

 θ 的最大似然估计.