MIT OpenCourseWare http://ocw.mit.edu

18.175 Theory of Probability Fall 2008

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

Section 26

Laws of Brownian motion at stopping times. Skorohod's imbedding.

Let W_t be the Brownian motion.

Theorem 63 If τ is a stopping time such that $\mathbb{E}\tau < \infty$ then $\mathbb{E}W_{\tau} = 0$ and $\mathbb{E}W_{\tau}^2 = \mathbb{E}\tau$.

Proof. Let us start with the case when a stopping time τ takes finite number of values

$$\tau \in \{t_1, \ldots, t_n\}.$$

If $\mathcal{F}_{t_i} = \sigma\{W_t; t \leq t_j\}$ then $(W_{t_j}, \mathcal{F}_{t_j})$ is a martingale since

$$\mathbb{E}(W_{t_j}|\mathcal{F}_{t_{j-1}}) = \mathbb{E}(W_{t_j} - W_{t_{j-1}} + W_{t_{j-1}}|\mathcal{F}_{t_{j-1}}) = W_{t_{j-1}}.$$

By optional stopping theorem for martingales, $\mathbb{E}W_{\tau}=\mathbb{E}W_{t_1}=0$. Next, let us prove that $\mathbb{E}W_{\tau}^2=\mathbb{E}\tau$ by induction on n. If n=1 then $\tau=t_1$ and

$$\mathbb{E}W_{\tau}^2 = \mathbb{E}W_{t_1}^2 = t_1 = \mathbb{E}\tau.$$

To make an induction step from n-1 to n, define a stopping time $\alpha = \tau \wedge t_{n-1}$ and write

$$\mathbb{E}W_{\tau}^{2} = \mathbb{E}(W_{\alpha} + W_{\tau} - W_{\alpha})^{2} = \mathbb{E}W_{\alpha}^{2} + \mathbb{E}(W_{\tau} - W_{\alpha})^{2} + 2\mathbb{E}W_{\alpha}(W_{\tau} - W_{\alpha}).$$

First of all, by induction assumption, $\mathbb{E}W_{\alpha}^2 = \mathbb{E}\alpha$. Moreover, $\tau \neq \alpha$ only if $\tau = t_n$ in which case $\alpha = t_{n-1}$. The event

$$\{\tau = t_n\} = \{\tau \le t_{n-1}\}^c \in \mathcal{F}_{t_{n-1}}$$

and, therefore,

$$\mathbb{E}W_{\alpha}(W_{\tau} - W_{\alpha}) = \mathbb{E}W_{t_{n-1}}(W_{t_n} - W_{t_{n-1}})I(\tau = t_n) = 0.$$

Similarly,

$$\mathbb{E}(W_{\tau} - W_{\alpha})^{2} = \mathbb{E}\mathbb{E}(I(\tau = t_{n})(W_{t_{n}} - W_{t_{n-1}})^{2} | \mathcal{F}_{t_{n-1}}) = (t_{n} - t_{n-1})\mathbb{P}(\tau = t_{n}).$$

Therefore,

$$\mathbb{E}W_{\tau}^{2} = \mathbb{E}\alpha + (t_{n} - t_{n-1})\mathbb{P}(\tau = t_{n}) = \mathbb{E}\tau$$

and this finishes the proof of the induction step. Next, let us consider the case of a uniformly bounded stopping time $\tau \leq M < \infty$. In the previous lecture we defined a dyadic approximation

$$\tau_n = \frac{\lfloor 2^n \tau \rfloor + 1}{2^n}$$

which is also a stopping time, $\tau_n \downarrow \tau$, and by sample continuity $W_{\tau_n} \to W_{\tau}$ a.s. Since (τ_n) are uniformly bounded, $\mathbb{E}\tau_n \to \mathbb{E}\tau$. To prove that $\mathbb{E}W_{\tau_n}^2 \to \mathbb{E}W_{\tau}^2$ we need to show that the sequence $(W_{\tau_n}^2)$ is uniformly integrable. Notice that $\tau_n < 2M$ and, therefore, τ_n takes possible values of the type $k/2^n$ for $k \leq k_0 = \lfloor 2^n(2M) \rfloor$. Since the sequence

$$(W_{1/2^n},\ldots,W_{k_0/2^n},W_{2M})$$

is a martingale, adapted to a corresponding sequence of \mathcal{F}_t , and τ_n and 2M are two stopping times such that $\tau_n < 2M$, by Optional Stopping Theorem 31, $W_{\tau_n} = \mathbb{E}(W_{2M}|\mathcal{F}_{\tau_n})$. By Jensen's inequality,

$$W_{\tau_n}^4 \leq \mathbb{E}(W_{2M}^4 | \mathcal{F}_{\tau_n}), \ \mathbb{E}W_{\tau_n}^4 \leq \mathbb{E}W_{2M}^4 = 6M.$$

and uniform integrability follows by Hölder's and Chebyshev's inequalities,

$$\mathbb{E}W_{\tau_n}^2 \mathrm{I}(|W_{\tau_n}| > N) \le (\mathbb{E}W_{\tau_n}^4)^{1/2} (\mathbb{P}(|W_{\tau_n}| > N))^{1/2} \le \frac{6M}{N^2} \to 0$$

as $N \to \infty$, uniformly over n. This proves that $\mathbb{E}W_{\tau_n}^2 \to \mathbb{E}W_{\tau}^2$. Since τ_n takes finite number of values, by the previous case, $\mathbb{E}W_{\tau_n}^2 = \mathbb{E}\tau_n$ and letting $n \to \infty$ proves

$$\mathbb{E}W_{\tau}^2 = \mathbb{E}\tau. \tag{26.0.1}$$

Before we consider the general case, let us notice that for two bounded stopping times $\tau \leq \rho \leq M$ one can similarly show that

$$\mathbb{E}(W_{\rho} - W_{\tau})W_{\tau} = 0. \tag{26.0.2}$$

Namely, one can approximate the stopping times by dyadic stopping times and using that by the optional stopping theorem $(W_{\tau_n}, \mathcal{F}_{\tau_n})$, $(W_{\rho_n}, \mathcal{F}_{\rho_n})$ is a martingale,

$$\mathbb{E}(W_{\rho_n} - W_{\tau_n})W_{\tau_n} = \mathbb{E}W_{\tau_n}(\mathbb{E}(W_{\rho_n}|\mathcal{F}_{\tau_n}) - W_{\tau_n}) = 0.$$

Finally, we consider the general case. Let us define $\tau(n) = \min(\tau, n)$. For $m \le n, \tau(m) \le \tau(n)$ and

$$\mathbb{E}(W_{\tau(n)} - W_{\tau(m)})^2 = \mathbb{E}W_{\tau(n)}^2 - \mathbb{E}W_{\tau(m)}^2 - 2\mathbb{E}W_{\tau(m)}(W_{\tau(n)} - W_{\tau(m)}) = \mathbb{E}\tau(n) - \mathbb{E}\tau(m)$$

using (26.0.1), (26.0.2) and the fact that $\tau(n), \tau(m)$ are bounded stopping times. Since $\tau(n) \uparrow \tau$, Fatou's lemma and the monotone convergence theorem imply

$$\mathbb{E}(W_{\tau} - W_{\tau(m)})^2 \le \liminf_{n \to \infty} (\mathbb{E}\tau(n) - \mathbb{E}\tau(m)) = \mathbb{E}\tau - \mathbb{E}\tau(m).$$

Letting $m \to \infty$ shows that

$$\lim_{m \to \infty} \mathbb{E}(W_{\tau} - W_{\tau(m)})^2 = 0$$

which means that $\mathbb{E}W^2_{\tau(m)} \to \mathbb{E}W^2_{\tau}$. Since $\mathbb{E}W^2_{\tau(m)} = \mathbb{E}\tau(m)$ by the previous case and $\mathbb{E}\tau(m) \to \mathbb{E}\tau$ by the monotone convergence theorem, this implies that $\mathbb{E}W^2_{\tau} = \mathbb{E}\tau$.

Theorem 64 (Skorohod's imbedding) Let Y be a random variable such that $\mathbb{E}Y = 0$ and $\mathbb{E}Y^2 < \infty$. There exists a stopping time $\tau < \infty$ such that $\mathcal{L}(W_{\tau}) = \mathcal{L}(Y)$.

Proof. Let us start with the simplest case when Y takes only two values, $Y \in \{-a, b\}$ for a, b > 0. The condition $\mathbb{E}Y = 0$ determines the distribution of Y,

$$pb + (1-p)(-a) = 0$$
 and $p = \frac{a}{a+b}$. (26.0.3)

Let $\tau = \inf\{t > 0, W_t = -a \text{ or } b\}$ be a hitting time of the two-sided boundary -a, b. The tail probability of τ can be bounded by

$$\mathbb{P}(\tau > n) \le \mathbb{P}(|W_{j+1} - W_j| < a + b, 0 \le j \le n - 1) = \mathbb{P}(|W_1| < a + b)^n = \gamma^n.$$

115

Therefore, $\mathbb{E}\tau < \infty$ and by the previous theorem, $\mathbb{E}W_{\tau} = 0$. Since $W_{\tau} \in \{-a, b\}$ we must have

$$\mathcal{L}(W_{\tau}) = \mathcal{L}(Y).$$

Let us now consider the general case. If μ is the law of Y, let us define Y by the identity Y = Y(x) = x on its sample probability space $(\mathbb{R}, \mathcal{B}, \mu)$. Let us construct a sequence of σ -algebras

$$\mathcal{B}_1 \subseteq \mathcal{B}_2 \subseteq \ldots \subseteq \mathcal{B}$$

as follows. Let \mathcal{B}_1 be generated by the set $(-\infty, 0)$, i.e.

$$\mathcal{B}_1 = \{\emptyset, \mathbb{R}, (-\infty, 0), [0, +\infty)\}.$$

Given \mathcal{B}_j , let us define \mathcal{B}_{j+1} by splitting each finite interval $[c,d) \in \mathcal{B}_j$ into two intervals [c,(c+d)/2) and [(c+d)/2,d) and splitting infinite interval $(-\infty,-j)$ into $(-\infty,-(j+1))$ and [-(j+1),-j) and similarly splitting $[j,+\infty)$ into [j,j+1) and $[j+1,\infty)$. Consider a right-closed martingale

$$Y_i = \mathbb{E}(Y|\mathcal{B}_i).$$

It is almost obvious that $\mathcal{B} = \sigma(\bigcup \mathcal{B}_j)$, which we leave as an exercise. Then, by the Levy martingale convergence, Lemma 35, $Y_j \to \mathbb{E}(Y|\mathcal{B}) = Y$ a.s. Since Y_j is measurable on \mathcal{B}_j , it must be constant on each simple set $[c,d) \in \mathcal{B}_j$. If $Y_j(x) = y$ for $x \in [c,d)$ then, since $Y_j = \mathbb{E}(Y|\mathcal{B}_j)$,

$$y\mu([c,d)) = \mathbb{E}Y_j \mathbf{I}_{[c,d)} = \mathbb{E}Y \mathbf{I}_{[c,d)} = \int_{[c,d)} x d\mu(x)$$

and

$$y = \frac{1}{\mu([c,d))} \int_{[c,d)} x d\mu(x). \tag{26.0.4}$$

Since in the σ -algebra \mathcal{B}_{j+1} the interval [c,d) is split into two intervals, the random variable Y_{j+1} can take only two values, say $y_1 < y_2$, on the interval [c,d) and, since (Y_j,\mathcal{B}_j) is a martingale,

$$\mathbb{E}(Y_{i+1}|\mathcal{B}_i) - Y_i = 0. \tag{26.0.5}$$

We will define stopping times τ_n such that $\mathcal{L}(W_{\tau_n}) = \mathcal{L}(Y_n)$ iteratively as follows. Since Y_1 takes only two values -a and b, let $\tau_1 = \inf\{t > 0, W_t = -a \text{ or } b\}$ and we proved above that $\mathcal{L}(W_{\tau_1}) = \mathcal{L}(Y_1)$. Given τ_j define τ_{j+1} as follows:

if
$$W_{\tau_j} = y$$
 for y in (26.0.4) then $\tau_{j+1} = \inf\{t > \tau_j, W_t = y_1 \text{ or } y_2\}$.

Let us explain why $\mathcal{L}(W_{\tau_j}) = \mathcal{L}(Y_j)$. First of all, by construction, W_{τ_j} takes the same values as Y_j . If \mathcal{C}_j is the σ -algebra generated by the disjoint sets $\{W_{\tau_j} = y\}$ for y as in (26.0.4), i.e. for possible values of Y_j , then W_{τ_j} is \mathcal{C}_j measurable, $\mathcal{C}_j \subseteq \mathcal{C}_{j+1}$, $\mathcal{C}_j \subseteq \mathcal{F}_{\tau_j}$ and at each step simple sets in \mathcal{C}_j are split in two,

$$\{W_{\tau_i} = y\} = \{W_{\tau_{i+1}} = y_1\} \cup \{W_{\tau_{i+1}} = y_2\}.$$

By Markov's property of the Brownian motion and Theorem 63, $\mathbb{E}(W_{\tau_{i+1}} - W_{\tau_i} | \mathcal{F}_{\tau_i}) = 0$ and, therefore,

$$\mathbb{E}(W_{\tau_{i+1}}|\mathcal{C}_i) - W_{\tau_i} = 0.$$

Since on each simple set $\{W_{\tau_j} = y\}$ in C_j , the random variable $W_{\tau_{j+1}}$ takes only two values y_1 and y_2 , this equation allows us to compute the probabilities of these simple sets recursively as in (26.0.3),

$$\mathbb{P}(W_{\tau_{j+1}} = y_2) = \frac{y_2 - y}{y_2 - y_1} \, \mathbb{P}(W_{\tau_j} = y).$$

By (26.0.5), Y_j 's satisfy the same recursive equations and this proves that $\mathcal{L}(W_{\tau_n}) = \mathcal{L}(Y_n)$. The sequence

 τ_n is monotone, so it converges $\tau_n \uparrow \tau$ to some stopping time $\tau.$ Since

$$\mathbb{E}\tau_n = \mathbb{E}W_{\tau_n}^2 = \mathbb{E}Y_n^2 \le \mathbb{E}Y^2 < \infty,$$

we have $\mathbb{E}\tau = \lim \mathbb{E}\tau_n \leq \mathbb{E}Y^2 < \infty$ and, therefore, $\tau < \infty$ a.s. Then $W_{\tau_n} \to W_{\tau}$ a.s. by sample continuity and since $\mathcal{L}(W_{\tau_n}) = \mathcal{L}(Y_n) \to \mathcal{L}(Y)$, this proves that $\mathcal{L}(W_{\tau}) = \mathcal{L}(Y)$.