Category	sin	cos	tan
Basic			
Basic Trigonometric	$\sin x$	$\cos x$	$\tan x = \frac{\sin x}{\cos x}$
Reciprocal	$\csc x = \frac{1}{\sin x}$	$\sec x = \frac{1}{\cos x}$	$\cot x = \frac{\cos x}{\sin x}$
Inverse		$\arccos x$ Domain: $[-1,1]$ Range: $[0,\pi]$	$\begin{array}{c} \arctan x \\ \text{Domain: } \mathbb{R} \\ \text{Range: } (-\frac{\pi}{2}, \frac{\pi}{2}) \end{array}$
Hyperbolic	$\sinh x = \frac{e^x - e^{-x}}{2}$	$\cosh x = \frac{e^x + e^{-x}}{2}$	$\tanh x = \frac{e^x - e^{-x}}{e^x + e^{-x}}$
Reciprocal Hyperbolic	$\operatorname{csch} x = \frac{1}{\sinh x}$	$\operatorname{sech} x = \frac{1}{\cosh x}$	$\coth x = \frac{1}{\tanh x}$
Differentiation			
Derivatives	$\frac{d}{dx}(\sin x) = \cos x$	$\frac{d}{dx}(\cos x) = -\sin x$	$\frac{d}{dx}(\tan x) = \sec^2 x$
Second Derivatives	$\frac{d^2}{dx^2}(\sin x) = -\sin x$	$\frac{d^2}{dx^2}(\cos x) = -\cos x$	$\frac{d^2}{dx^2}(\tan x) = 2\sec^2 x \tan x$
Derivatives of Reciprocal	$\frac{d}{dx}(\csc x) = -\csc x \cot x$	$\frac{d}{dx}(\sec x) = \sec x \tan x$	$\frac{d}{dx}(\cot x) = -\csc^2 x$
Derivatives of Inverse	$\frac{d}{dx}(\arcsin x) = \frac{1}{\sqrt{1-x^2}}$	$\frac{d}{dx}(\arccos x) = -\frac{1}{\sqrt{1-x^2}}$	$\frac{d}{dx}(\arctan x) = \frac{1}{1+x^2}$
Derivatives of Hyperbolic	$\frac{d}{dx}(\sinh x) = \cosh x$	$\frac{d}{dx}(\cosh x) = \sinh x$	$\frac{d}{dx}(\tanh x) = \operatorname{sech}^2 x$
Integration			
Integrals	$\int \sin x dx = -\cos x + C$	$\int \cos x dx = \sin x + C$	$\int \tan x dx = -\ln \cos x + C$
Integrals of Reciprocal	$\int \csc x dx = -\ln \csc x + \cot x + C$	$\int \sec x dx = \ln \sec x + \tan x + C$	$\int \cot x dx = \ln \sin x + C$
Integrals of Inverse	$\int \arcsin x dx = $ $x \arcsin x + \sqrt{1 - x^2} + C$	$\int \arccos x dx = x \arccos x - \sqrt{1 - x^2} + C$	$\int \arctan x dx = x \arctan x - \frac{1}{2} \ln(1 + x^2) + C$
Inverse Integral	$\int \frac{dx}{\sqrt{a^2 - x^2}} = \arcsin \frac{x}{a} + C$		$\int \frac{dx}{x^2 + a^2} = \frac{1}{a} \arctan \frac{x}{a} + C$
Integrals of Hyperbolic	$\int \sinh x dx = \cosh x + C$	$\int \cosh x dx = \sinh x + C$	$\int \tanh x dx = \ln(\cosh x) + C$
Inverse Integral	$\int \frac{dx}{\sqrt{x^2 + a^2}} = \operatorname{arcsinh} \frac{x}{a} + C$	$\int \frac{dx}{\sqrt{x^2 - a^2}} = \operatorname{arccosh} \frac{x}{a} + C$	
Miscellanous			
Power Reduction Formulas	$\int \sin^2 x dx = \frac{1}{2}x - \frac{1}{4}\sin 2x + C$	$\int \cos^2 x dx = \frac{1}{2}x + \frac{1}{4}\sin 2x + C$	$\int \tan^2 x dx = \tan x - x + C$
Exponential Integral	$\int e^{ax} \sin bx dx = \frac{e^{ax}}{a^2 + b^2} (a \sin bx - b \cos bx) + C$	$\int e^{ax} \cos bx dx = \frac{e^{ax}}{a^2 + b^2} (a \cos bx + b \sin bx) + C$	