Hanlin Sun

Website: Hanlin Sun Twitter: @sunhanlin151 Google Scholar:Hanlin Sun Email: hanlin.sun@qmul.ac.uk GitHub: github.com/hanlinsun97

EDUCATION

Queen Mary, University of London

London, United Kingdom

Ph.D. in Applied Mathematics, Advisor: Prof. Ginestra Bianconi

2019-Current

Aston University

Birmingham, United Kingdom

Visiting student, Advisor: Prof. David Saad

2018

KTH Royal Institute of Technology

Stockholm, Sweden

Visiting student

2018

University of Chinese Academy of Sciences

Beijing, China

B.Sc. in Physics, Advisor: Prof. Pan Zhang

2015–2019

- Thesis: "Low rank approximation of tensor networks"

EXPERIENCE

Aston University

Birmingham, United Kingdom

Summer 2019

Advisor: Prof. David Saad

- Competition, collaboration, and optimization in multiple interacting spreading processes
- Using dynamic message passing algorithm to compute the interaction and optimization in competing and collaborative processes.

KTH Royal Institute of Technology

Stockholm, Sweden

Advisor: Prof. Michael Hanke

Spring 2018

- Project of Parallel Computation: Simulation of N-body problems
- Using Barnes-Hut Algorithm to simulate N-body problem and the example which we are implementing is to calculate the energy spectrum of electron beam.

KTH Royal Institute of Technology

Stockholm, Sweden

Advisor: Prof. Josephine Sullivan

Spring 2018

- Project of Deep Learning: End-to-End Text Detection and Recognition of Web Images
- Recognizing English and Chinese characters on web images.

Institute of Theoretical Physics, CAS

Beijing, China

Advisor: Prof. Pan Zhang

Summer 2017

- The application of Mean Field Approximation in neural network
- The purpose of this study is trying to construct (supervised and unsupervised) neural network learning algorithms using approximation method in statistical physics.

University of Chinese Academy of Sciences

Beijing, China

Advisor: Prof. Xiaosong Chen

Spring 2017

- Project of Statistics Physics: Computer Simulation of Kosterlitz-Thousless Phase Transition
- Using Monte Carlo method to simulate the Kosterlitz-Thouless Phase Transition on 2 dimensional XY model.

TEACHING

Teaching Associate at Queen Mary University of London

Calculus I

Calculus II

Vectors and Matrices

Linear Algebra I

Machine Learning with Python (Master Course)
Demonstrator at Queen Mary University of London

Complex Networks

Electricity and Atomic Physics
Graduate Teaching Associate at King's College London

Calculus I

Linear Algebra and Geometry II

SKILLS

• Programming skills:

- MATLAB, Python, Mathematica, Julia, LATEX
- Basic knowledge on TensorFlow and Pytorch
- Basic knowledge on C and C++

• Languages:

English: very fluentChinese: native speaker

REVIEW SERVICE

- Physica A: Statistical Mechanics and its Applications
- Communication Physics
- Scientific Reports
- New Journal of Physics
- IEEE Transactions on Network Science and Engineering
- Bioinformatics

ACTIVITIES, SEMINARS AND CONFERENCES

•	Co-organiser of DERI PhD forum	2020-Current
	A seminar at the Digital Environment Research Institute, Queen Mary University of London	
•	Co-organiser of NetPLACE Seminar	2021-Current
	A seminar of Network, Phd Life And ComplExity, Queen Mary University of London	
•	Complex Systems Seminar, Queen Mary University of London	Apr 2021
	Oral presentation: Mathematics in epidemic spreading: from containment measures to critical behavior	urs
•	Internal seminar at Aston University	Mar 2021
	Oral presentation: Mathematics in epidemic spreading: from containment measures to critical behavior	urs
•	Conference on Complex Systems 2021	Oct 2021
	Oral presentation: Higher-order percolation processes on multiplex hypergraphs	
•	TopoNet2021: Networks beyond pairwise interactions, Satellite @ Networks 2021	$\mathrm{Jun}\ 2021$
	Oral presentation: Higher-order percolation processes on multiplex hypergraphs	
•	The 46th Conference of the Middle European Cooperation in Statistical Physics (MECO46)	May 2021
	Oral presentation: A message-passing approach to epidemic tracing and mitigation with apps	
•	Conference on Complex Systems 2020 (CCS2020)	Dec 2020
	Oral presentation: A message-passing approach to epidemic tracing and mitigation with apps	
•	Queen Mary Internal Postgraduate Seminar (QuIPS)	Nov 2020
	Talk: A message-passing approach to epidemic tracing and mitigation with apps	

PUBLICATIONS

- [1] **H. Sun**, I. Kryven, and G. Bianconi, "Critical time-dependent branching process modelling epidemic spreading with containment measures", *Journal of Physics A: Mathematical and Theoretical*, 2022.
- [2] **H. Sun**, F. Radicchi, J. Kurths, and G. Bianconi, *Triadic interactions induce blinking and chaos in the connectivity of higher-order networks*, 2022.
- [3] G. Bianconi, **H. Sun**, G. Rapisardi, and A. Arenas, "Message-passing approach to epidemic tracing and mitigation with apps", *Phys. Rev. Research*, vol. 3, p. L012014, 1 Feb. 2021.
- [4] G. St-Onge, **H. Sun**, A. Allard, L. Hébert-Dufresne, and G. Bianconi, "Universal nonlinear infection kernel from heterogeneous exposure on higher-order networks", *Phys. Rev. Lett.*, vol. 127, p. 158 301, 15 Oct. 2021.
- [5] **H. Sun** and G. Bianconi, "Higher-order percolation processes on multiplex hypergraphs", *Phys. Rev. E*, vol. 104, p. 034 306, 3 Sep. 2021.
- [6] **H. Sun**, D. Saad, and A. Y. Lokhov, "Competition, collaboration, and optimization in multiple interacting spreading processes", *Phys. Rev. X*, vol. 11, p. 011048, 1 Mar. 2021.
- [7] **H. Sun**, R. M. Ziff, and G. Bianconi, "Renormalization group theory of percolation on pseudofractal simplicial and cell complexes", *Phys. Rev. E*, vol. 102, p. 012308, 1 Jul. 2020.