

5 Octobre, 2023 - ENS Paris Saclay, France

Presenter - Hans Van den Wijngaert

From infinite to finite

The ADAS/AV development challenge

Simulation

Infinite number of different scenarios can occur in real-world traffic. How to break these down into a finite set of scenarios, and find those which are representative in order to make testing manageable?

X-in-the-Loop

Safety according ISO26262 and SOTIF The safety assessment

Safety Assessment

SIEMENS

Scenario Creation: safe and unsafe Scene focused methodology

Safety of the Intended Functionality (SOTIF) Identifying unknown-unsafe scenarios

Safety of the Intended Functionality (SOTIF) Identifying unknown-unsafe scenarios

Safety of the Intended Functionality (SOTIF) Mitigating unsafe scenarios

Scenario Creation: safe and unsafe

Approaches to unknown scenarios

Actor-focus approach:

- Uses recorded data
- Changes behaviour of one of the actors in the data relative to the ego-vehicle to create a critical scenario
- Limited by the imagination of engineers and/or actors present in the data

Applying actor-focus to the data recorded:

- Speeds up the movement of the actor

Visualization process:

Takes scenarios from area 1 2 to area 2, to potentially (!) uncover a scenario in area 3. Engineering the reaction allows the scenario to return 3 to area 1 from area 2.

Scene-focus systematic methodology:

- Uses recorded or synthethic data
- Considers all possible routes in a traffic situation by all recorded and potentially present actors
- Limited only by scientific constraints: the physically possible routes of actors

Applying scene-focus to the intersection:

- Adds cyclist and truck

Visualization process:

Takes scenarios from area 3 2 to area 2; and at the same time from area 4 to area 1. Engineering the reaction allows the scenario to move 3 to area 1 from area 2.

Framework **Definitions**

Scene: an environment in which a scenario takes place. Location, weather condition and lighting condition are defining one scene.

Basic scenario elements: a basic scenario element is defined as an abstracted model which describes behavior of a road user in lateral and longitudinal direction.

Scenario: is the combination of all road users and their respective basic scenario elements (i.e., their behavior) in a certain scene.

Critical Scenario Creation

Framework

Scene selection

Data **Recording**

Data Simcenter SCAPTOR

High bandwidth

Up to 3GBytes/s of sustained data per unit

Optional GPU

Allows for live data processing

Flexible interfaces

Records all data streams in the vehicle

Accurate timestamps

IEEE1588 synchronization and hardware timestamps

Extraction Basic scenarios and gates

Extraction

Probability calculation

Calculation for each actor-movement based on parameters probability

$$P_{parameters} = P_i \& i \{1: ...: n\}$$

$$P_{actor} = \prod_{i=1}^{n} P_{parameter,i}$$

Parameter Value

Generation Simcenter Prescan360

$$P_{scenario} = \prod_{j=1}^{m} P_{actor,j}$$

Optimization

Critical, probable scenarios

Criticality objective

Process Results

Safety of the Intended Functionality (SOTIF) Identifying unknown-unsafe scenarios

Process Results

Critical Scenario Creation

Framework

Data

Road users trajectories and traffic light status

Use real data in OSC and synthetic data in format of CSV files

Extraction

Realistic behavior of each actor from collected data

$$P_{actor} = \prod_{i=1}^{n} P_{param,i}$$

- Automatic gate generation
- Probability calculation

Generation

Realistic combinations of actor behavior in the scene

$$P_{scenario} = \prod_{j=1}^{m} P_{actor,j}$$

Including traffic light cycle as parameter for optimization

Optimization

Multi-objective optimization on Novelty and Criticality

$$Obj = S * P_{scenario}$$

- Using probability of scenario in optimization
- Using Simcenter Prescan 360

Critical Scenario Creation

Added Value

Systematic approach to identify high probable critical scenarios and reduce the unknown space __-

Generating realistic scenarios based on realistic actor behavior in the scene.

Reduce effort to find relevant, critical/nominal scenarios for specific ODD

Increase system confidence by testing against previously unknown scenarios

