Data Mining & Machine Learning

CS37300 Purdue University

March 20, 2023

Announcement

My office hour this week is moved to Thursday 5:00-6:00

Next week, it's back to Wednesday 1:00-2:00 as usual

Today's topics

- Intro to learning theory
- Test set bound
- VC dimension
- Structural Risk Minimization

The units for model complexity

What are the appropriate "units" for the x-axis here?

The main theoretical questions

• If an algorithm outputs a classifier with low test error rate, what can we guarantee about its true error rate?

- For a given model, if a learning algorithm achieves low training error rate, what can we guarantee about its true error rate?
 - o Because of overfitting, we know the answer depends on
 - ➤ How expressive the model is (how do we measure this?)
 - How much data we have

Binary Classification

- We have a **training data set** $X = \{(x_1, y_1), \dots, (x_n, y_n)\}$ of pairs (x, y)
- x: representation of the **instances** (e.g., feature vectors)
- y: the labels
- Let's focus on the case of binary labels
- Want to use **X** to **train** a classifier \hat{h} : function mapping x to y
- We want $\hat{h}(x)$ to predict y correctly for **future** x instances (unknown)
- Called generalization
- We don't know the future, so we use X as if it is representative of what instances we will need to classify in the future
- Typically, we suppose future instances (x,y) have unknown distribution P and X is a sequence of i.i.d. samples with distribution

Binary Classification

- We have a training data set $X = \{(x_1, y_1), \dots, (x_n, y_n)\}$
- Want to use **X** to **train** a classifier \hat{h}
- Future misclassification error rate:

$$\operatorname{error}_{P}(\hat{h}) = \operatorname{Pr}_{(\mathbf{x}, \mathbf{y}) \sim P}(\hat{h}(\mathbf{x}) \neq \mathbf{y})$$

- Want small error_P(\hat{h}), but don't know P
- But we have X. Define training error rate (a.k.a. empirical error):

$$\operatorname{error}_{S}(\hat{h}) = \frac{1}{n} \sum_{i=1}^{n} \mathbb{I}\left[\hat{h}(x_{i}) \neq y_{i}\right]$$

- Simple idea: try to get small error $\mathbf{x}(\hat{h})$
- Under some conditions, this implies small error_P(\hat{h})

Test Error Concentration: Hoeffding's inequality

- Suppose we have a **test set** $T = \{(x_1, y_1), \dots, (x_n, y_n)\}$ iid with distribution P
- For any particular classifier \hat{h} , how far is $error_T(\hat{h})$ from $error_P(\hat{h})$?
- Notice $n \cdot \operatorname{error}_T(\hat{h}) = \sum_{i=1}^n \mathbb{I}[\hat{h}(x_i) \neq y_i]$
- Each $\mathbb{I}[\hat{h}(x_i) \neq y_i]$ is an independent {0,1}-valued random variable
- with mean equal $Pr(\hat{h}(x_i) \neq y_i) = error_P(\hat{h})$
- So $n \cdot \operatorname{error}_{\mathsf{T}}(\hat{h})$ is a Binomial(n,p) random variable, with $p = \operatorname{error}_{\mathsf{P}}(\hat{h})$

Very low probability that the random variable is very far from its mean

Very high probability that the random variable is close to its mean

Test Error Concentration: Hoeffding's inequality

Very low probability that the random variable is very far from its mean

Very high probability that the random variable is close to its mean

- Mathematically, this is described by Hoeffding's inequality:
- For any $\varepsilon > 0$, $\Pr\Big(\left| \operatorname{error}_T(\hat{h}) \operatorname{error}_P(\hat{h}) \right| > \varepsilon \Big) \le 2e^{-2\varepsilon^2 n}$
- Equivalently: For any δ with $0 < \delta \le 1$, with probability at least 1- δ ,

$$\left|\operatorname{error}_{T}(\hat{h}) - \operatorname{error}_{P}(\hat{h})\right| \leq \sqrt{\frac{\ln(2/\delta)}{2n}}$$

• Why? set $2e^{-2\varepsilon^2 n} = \delta$ and solve for ε

This explains why having more data gives a better estimate of error_P(h)

The main theoretical questions

• If an algorithm outputs a classifier with low test error rate, what can we guarantee about its true error rate?

- For a given model, if a learning algorithm achieves low training error rate, what can we guarantee about its true error rate?
 - o Because of overfitting, we know the answer depends on
 - ➤ How expressive the model is (how do we measure this?)
 - How much data we have

Training Error Concentration: Uniform Convergence

- We saw how error rate on a test set is close to the true error rate
- But what can the **training error rate** tell us about error_P(\hat{h})?
- Now suppose $S = \{(x_1, y_1), ..., (x_n, y_n)\}$ is a **training** set \hat{h} is trained on
- Can we claim

$$\left|\operatorname{error}_{S}(\hat{h}) - \operatorname{error}_{P}(\hat{h})\right| \leq \sqrt{\frac{\ln(2/\delta)}{2n}}$$
?

Training Error Concentration: Uniform Convergence

- We saw how error rate on a test set is close to the true error rate
- But what can the **training error rate** tell us about error_P(\hat{h})?
- Now suppose $S = \{(x_1, y_1), ..., (x_n, y_n)\}$ is a **training** set \hat{h} is trained on
- Can we claim $\left| \operatorname{error}_S(\hat{h}) \operatorname{error}_P(\hat{h}) \right| \leq \sqrt{\frac{\ln(2/\delta)}{2n}} ?$
- \hat{h} is dependent on S, so the variables $\mathbb{I}[\hat{h}(x_i) \neq y_i]$ are no longer (conditionally) iid Bernoulli's with mean $\operatorname{error}_{\mathbb{P}}(\hat{h})$.
- What we need instead is called a uniform convergence bound
- Uniform convergence bounds account for the model complexity

Model Complexity

- Let ${\mathcal H}$ be the set of all classifiers the model can represent
- Called the model space or hypothesis class
 - \circ Example: \mathcal{H} might be the set of all linear separators
 - Example:
 H might be the set of all decision tree classifiers
 of depth ≤ 5

Uniform Convergence Bound

Theorem: For any δ with $0 < \delta \le 1$, with probability at least 1- δ , every $h \in \mathcal{H}$ has

$$\left|\operatorname{error}_{S}(h) - \operatorname{error}_{P}(h)\right| \leq c\sqrt{\frac{1}{n}} \left(\operatorname{VC}(\mathcal{H}) + \ln\left(\frac{1}{\delta}\right)\right)$$
(c is a constant)

 $VC(\mathcal{H})$ is called the Vapnik-Chervonenkis (VC) dimension of \mathcal{H}

Since \hat{h} is a classifier in the model class \mathcal{H} , we know

$$\left|\operatorname{error}_{S}(\hat{h}) - \operatorname{error}_{P}(\hat{h})\right| \leq c\sqrt{\frac{1}{n}}\left(\operatorname{VC}(\mathcal{H}) + \ln\left(\frac{1}{\delta}\right)\right)$$

Compare this with the bound for test error rate:

$$\left|\operatorname{error}_{T}(\hat{h}) - \operatorname{error}_{P}(\hat{h})\right| \leq \sqrt{\frac{\ln(2/\delta)}{2n}}$$

 $VC(\mathcal{H})$ adjusts the bound to account for model complexity

Uniform Convergence Bound

Theorem: For any δ with $0 < \delta \le 1$, with probability at least 1- δ , every $h \in \mathcal{H}$ has

$$\left|\operatorname{error}_{S}(h) - \operatorname{error}_{P}(h)\right| \leq c\sqrt{\frac{1}{n}} \left(\operatorname{VC}(\mathcal{H}) + \ln\left(\frac{1}{\delta}\right)\right)$$
(c is a constant)

 $VC(\mathcal{H})$ is called the Vapnik-Chervonenkis (VC) dimension of \mathcal{H}

- Low $VC(\mathcal{H})$: $error_{S}(\hat{h})$ is close to $error_{P}(\hat{h})$
- High $VC(\mathcal{H})$: can have big gap between $error_S(\hat{h})$ and $error_P(\hat{h})$

- The **VC** dimension of \mathcal{H} , denoted VC(\mathcal{H}), is defined as the largest number n such that there exist points $x_1, ..., x_n$ that can be classified in all 2^n possible ways by classifiers in \mathcal{H} .
- If no such largest n exists, define $VC(\mathcal{H})=\infty$.
- Any points $x_1,...,x_n$ are said to be **shattered** by \mathcal{H} if they can be classified in all 2^n possible ways by classifiers in \mathcal{H} .
- So equivalently: $VC(\mathcal{H})$ = the largest size of a set shattered by \mathcal{H}

- The **VC** dimension of \mathcal{H} , denoted VC(\mathcal{H}), is defined as the largest number n such that there exist points $x_1, ..., x_n$ that can be classified in all 2^n possible ways by classifiers in \mathcal{H} .
- If no such largest n exists, define $VC(\mathcal{H})=\infty$.
- Any points $x_1,...,x_n$ are said to be **shattered** by \mathcal{H} if they can be classified in all 2^n possible ways by classifiers in \mathcal{H} .
- So equivalently: $VC(\mathcal{H})$ = the largest size of a set shattered by \mathcal{H}
- Example: one-dimensional thresholds $h_t(x) = \begin{cases} 1 & \text{if } x \geq t \\ 0 & \text{if } x < t \end{cases}$

- The **VC** dimension of \mathcal{H} , denoted VC(\mathcal{H}), is defined as the largest number n such that there exist points $x_1, ..., x_n$ that can be classified in all 2^n possible ways by classifiers in \mathcal{H} .
- If no such largest n exists, define $VC(\mathcal{H})=\infty$.
- Any points $x_1,...,x_n$ are said to be **shattered** by \mathcal{H} if they can be classified in all 2^n possible ways by classifiers in \mathcal{H} .
- So equivalently: $VC(\mathcal{H})$ = the largest size of a set shattered by \mathcal{H}
- Example: one-dimensional thresholds $h_t(x) = \begin{cases} 1 & \text{if } x \geq t \\ 0 & \text{if } x < t \end{cases}$

- The **VC** dimension of \mathcal{H} , denoted VC(\mathcal{H}), is defined as the largest number n such that there exist points $x_1, ..., x_n$ that can be classified in all 2^n possible ways by classifiers in \mathcal{H} .
- If no such largest n exists, define $VC(\mathcal{H})=\infty$.
- Any points $x_1,...,x_n$ are said to be **shattered** by \mathcal{H} if they can be classified in all 2^n possible ways by classifiers in \mathcal{H} .
- So equivalently: $VC(\mathcal{H})$ = the largest size of a set shattered by \mathcal{H}
- Example: one-dimensional thresholds $h_t(x) = \begin{cases} 1 & \text{if } x \geq t \\ 0 & \text{if } x < t \end{cases}$

- The **VC** dimension of \mathcal{H} , denoted VC(\mathcal{H}), is defined as the largest number n such that there exist points $x_1, ..., x_n$ that can be classified in all 2^n possible ways by classifiers in \mathcal{H} .
- If no such largest n exists, define $VC(\mathcal{H})=\infty$.
- Any points $x_1,...,x_n$ are said to be **shattered** by \mathcal{H} if they can be classified in all 2^n possible ways by classifiers in \mathcal{H} .
- So equivalently: $VC(\mathcal{H})$ = the largest size of a set shattered by \mathcal{H}
- Example: one-dimensional thresholds $h_t(x) = \begin{cases} 1 & \text{if } x \ge t \\ 0 & \text{if } x < t \end{cases}$

Can shatter one point:

$$VC(\mathcal{H}) \ge 1$$

- The **VC** dimension of \mathcal{H} , denoted VC(\mathcal{H}), is defined as the largest number n such that there exist points $x_1, ..., x_n$ that can be classified in all 2^n possible ways by classifiers in \mathcal{H} .
- If no such largest n exists, define $VC(\mathcal{H})=\infty$.
- Any points $x_1,...,x_n$ are said to be **shattered** by \mathcal{H} if they can be classified in all 2^n possible ways by classifiers in \mathcal{H} .
- So equivalently: $VC(\mathcal{H})$ = the largest size of a set shattered by \mathcal{H}
- Example: one-dimensional thresholds $h_t(x) = \begin{cases} 1 & \text{if } x \ge t \\ 0 & \text{if } x < t \end{cases}$

Can we shatter 2 points?

- The **VC** dimension of \mathcal{H} , denoted VC(\mathcal{H}), is defined as the largest number n such that there exist points $x_1, ..., x_n$ that can be classified in all 2^n possible ways by classifiers in \mathcal{H} .
- If no such largest n exists, define $VC(\mathcal{H})=\infty$.
- Any points $x_1,...,x_n$ are said to be **shattered** by \mathcal{H} if they can be classified in all 2^n possible ways by classifiers in \mathcal{H} .
- So equivalently: $VC(\mathcal{H})$ = the largest size of a set shattered by \mathcal{H}
- Example: one-dimensional thresholds

$$h_t(x) = \begin{cases} 1 & \text{if } x \ge t \\ 0 & \text{if } x < t \end{cases}$$

Can we shatter 2 points? For any 2 points, any h_t that labels the leftmost point 1 must label the rightmost point 1 too. Therefore, cannot realize 1, 0 labels

$$VC(\mathcal{H}) < 2$$

- The **VC** dimension of \mathcal{H} , denoted VC(\mathcal{H}), is defined as the largest number n such that there exist points $x_1, ..., x_n$ that can be classified in all 2^n possible ways by classifiers in \mathcal{H} .
- If no such largest n exists, define $VC(\mathcal{H})=\infty$.
- Any points $x_1,...,x_n$ are said to be **shattered** by \mathcal{H} if they can be classified in all 2^n possible ways by classifiers in \mathcal{H} .
- So equivalently: $VC(\mathcal{H})$ = the largest size of a set shattered by \mathcal{H}
- Example: one-dimensional thresholds $h_t(x) = \begin{cases} 1 & \text{if } x \ge t \\ 0 & \text{if } x < t \end{cases}$

$$VC(\mathcal{H}) \ge 1$$
 and $VC(\mathcal{H}) < 2$

Therefore,
$$VC(\mathcal{H}) = 1$$

- The **VC** dimension of \mathcal{H} , denoted VC(\mathcal{H}), is defined as the largest number n such that there exist points $x_1, ..., x_n$ that can be classified in all 2^n possible ways by classifiers in \mathcal{H} .
- If no such largest n exists, define $VC(\mathcal{H})=\infty$.

Example: Linear separators in \mathbb{R}^d $f_{\mathbf{w},b}(\mathbf{x}) = \operatorname{sign}(\mathbf{w}^{\top}\mathbf{x} + b)$

$$VC(\mathcal{H}) = d + 1$$

Example: Decision trees of depth \leq D Suppose x has k features, each with values in $\{0,1\}$ Let \mathcal{H} be the set of all decision tree classifiers of depth \leq D

$$VC(\mathcal{H}) \le D2^{D+2} \log_2(k+1)$$

Sauer's Lemma

- Why is VC(H) relevant to uniform convergence?
- It bounds the effective number of classifiers
- Sauer's Lemma: For any points $x_1,...,x_n$, the number of distinct ways $x_1,...,x_n$ can be classified by elements of $\mathcal H$ is at most $n^{VC(\mathcal H)}$

Uniform Convergence Bound

Theorem: For any δ with $0 < \delta \le 1$, with probability at least 1- δ , every $h \in \mathcal{H}$ has

$$\left|\operatorname{error}_{S}(h) - \operatorname{error}_{P}(h)\right| \leq c\sqrt{\frac{1}{n}} \left(\operatorname{VC}(\mathcal{H}) + \ln\left(\frac{1}{\delta}\right)\right)$$
(c is a constant)

 $VC(\mathcal{H})$ is called the Vapnik-Chervonenkis (VC) dimension of \mathcal{H}

- Low $VC(\mathcal{H})$: $error_{S}(\hat{h})$ is close to $error_{P}(\hat{h})$
- High $VC(\mathcal{H})$: can have big gap between $error_S(\hat{h})$ and $error_P(\hat{h})$

Optimizing model complexity vs training error

- How can we optimize the trade-off between model complexity and training error rate?
- We want to find the "sweet spot" where the training error is small, but there is no overfitting.

Optimizing model complexity vs training error

- How can we optimize the trade-off between model complexity and training error rate?
- We want to find the "sweet spot" where the training error is small, but there is no overfitting.
- If there aren't too many models to pick from: cross-validation.
- Otherwise, a theoretical approach: Structural Risk Minimization

Model complexity vs training error rate

Suppose we have a sequence of model classes

$$\mathcal{H}_1 \subset \mathcal{H}_2 \subset \mathcal{H}_3 \subset \cdots$$

- Example: \mathcal{H}_1 is decision trees of depth 1, \mathcal{H}_2 trees of depth 2, \mathcal{H}_3 depth 3...
- Example: \mathcal{H}_k is 2-layer neural network classifiers with k hidden units

- \mathcal{H}_k with larger k represents a more-complex model
 - Easier to get small training error with more-complex model
 - But also has higher VC dimension, so true error and training error aren't guaranteed to be as close
 - The theory gives us a way to optimize this trade-off

Structural Risk Minimization (SRM)

Suppose we have a sequence of hypothesis classes

$$\mathcal{H}_1 \subset \mathcal{H}_2 \subset \mathcal{H}_3 \subset \cdots$$

• For each k, let \hat{h}_k be a classifier trained based on model k: i.e., $\hat{h}_k \in \mathcal{H}_k$

Theorem: For any δ with $0 < \delta \le 1$, with probability at least 1- δ , for every k,

$$\operatorname{error}_{P}(\hat{h}_{k}) \leq \operatorname{error}_{S}(\hat{h}_{k}) + c\sqrt{\frac{1}{n}} \left(\operatorname{VC}(\mathcal{H}_{k}) + \ln\left(\frac{2k^{2}}{\delta}\right)\right)$$

 \mathcal{H}_k with larger k represents a more-complex model: **Higher VC(\mathcal{H}_k)**

- Easier to get small training error with more-complex model:
 - \succ Smaller error_S(\widehat{h}_k)
- But also has higher VC dimension, so true error and training error aren't guaranteed to be as close

$$\blacktriangleright$$
 Larger $c\sqrt{rac{1}{n}\left(\mathrm{VC}(\mathcal{H}_k)+\ln\left(rac{2k^2}{\delta}
ight)
ight)}$

Structural Risk Minimization (SRM)

Suppose we have a sequence of hypothesis classes

$$\mathcal{H}_1 \subset \mathcal{H}_2 \subset \mathcal{H}_3 \subset \cdots$$

• For each k, let \hat{h}_k be a classifier trained based on model k: i.e., $\hat{h}_k \in \mathcal{H}_k$

Theorem: For any
$$\delta$$
 with $0 < \delta \le 1$, with probability at least 1- δ , for every \mathbf{k} ,
$$\mathrm{error}_P(\hat{h}_k) \le \mathrm{error}_S(\hat{h}_k) + F(VC(k), n, \delta)$$

The principle of **Structural Risk Minimization** (SRM):

Minimize the upper bound on the true error rate

Let \hat{k} be the value of k that **minimizes**

$$\mathrm{error}_S(\hat{h}_k) + F(VC(k), n, \delta)$$

Optimizes the trade-off between training error and model complexity

Output: $\widehat{h}_{\widehat{k}}$

Structural Risk Minimization (SRM)

SRM outputs h that minimizes

$$\operatorname{error}_{S}(h) + r(h)$$

This is just **regularization** (e.g., recall SVM was like this too)

This shows us that regularization and model selection are related

Summary

- Hoeffding's inequality relates test error rate to true error rate
- Uniform convergence bounds relate training error rate to true error rate, if the amount of data is large compared to the VC dimension

• VC dimension is a way to define the "units" for model complexity

 Structural Risk Minimization (SRM) is a principle for optimizing the trade-off between model complexity and training error rate, by choosing the model complexity that minimizes an upper bound on the true error rate