1 The Photon

$$c = 2.998 \cdot 10^{8} \left[\frac{\text{m}}{\text{s}} \right] \mathbf{C} \qquad \epsilon_{0} = 8.854 \cdot 10^{-12} \left[\frac{\text{F}}{\text{m}} \right]$$

$$h = 6.626 \cdot 10^{-34} \left[\frac{\text{m}^{2} \text{kg}}{\text{s}} \right] \mathbf{A} \qquad \hbar = \frac{h}{2\pi} = 1.055 \cdot 10^{-34} \left[\frac{\text{m}^{2} \text{kg}}{\text{s}} \right] \mathbf{B}$$

$$e = 1.602 \cdot 10^{-19} \text{ [C] } \mathbf{E} \qquad m_{e} = 9.109 \cdot 10^{-31} \text{ [kg]}$$

$$k_{B} = 1.381 \cdot 10^{-23} \left[\frac{\text{m}^{2} \text{kg}}{\text{s}^{2} \text{K}} \right] \mathbf{D} \qquad 1 \text{ [eV]} = 1.602 \cdot 10^{-19} \left[\frac{\text{kg m}^{2}}{\text{s}^{2}} \right] \text{ [J]}$$

1.1 Photon & Electron

$$\lambda \text{ [m]}, \nu \text{ } \left[\frac{1}{\text{s}}\right] \text{ Wavelength, Freq.} \qquad \lambda = \frac{c}{\nu} \quad \nu = \frac{c}{\lambda} \quad \omega = 2\pi\nu \quad k = \frac{2\pi\nu}{c}$$
 $k \quad \text{Wavenumber}$
 $E \text{ [J]} \quad \text{Energy} \qquad E = h \cdot \nu = \hbar \cdot \omega$
 $\vec{F_c} \text{ [N]} \quad \text{Coulomb Force} \qquad \left| \vec{F_c} \right| = \frac{Q_1 \cdot Q_2}{4\pi\epsilon_0 r^2}$

1.2 Photoelectric effect

ϕ_0 [eV]	Work function	
I [A]	Photo-current	$h\nu - \phi_0 = \frac{1}{2}m_e v^2 = eV$
$n \left[\text{m}^{-3} \right]$	Volume density of electrons	
$N \left[\frac{1}{s}\right]$	Number of photons per second	$V(\nu) = \frac{h}{e}\nu - \frac{\phi_0}{e}$
$A \left[m^2 \right]$	Area	$I = nAve, n = \frac{Ndt}{Avdt} \rightarrow I = N \cdot e$
$v \left[\frac{\mathrm{m}}{\mathrm{s}}\right]$	velocity of electrons	Avat

1.3 Blackbody Radiation

$$k_x = n\frac{\pi}{L} \quad k_y = m\frac{\pi}{L} \quad k_z = l\frac{\pi}{L} \quad k = \sqrt{k_x^2 + k_y^2 + k_z^2}$$

$$N(k) = \text{Num Polarizations} \cdot \frac{1}{2^{\text{Dim}}} \cdot \frac{\text{Volume or Area of sphere or circle with radius } k}{\text{Volume of the elementary cell}}$$

$$\text{In 3 Dimensions:} \quad N(k) = 2 \cdot \frac{1}{8} \cdot \frac{\frac{4}{3}\pi k^3}{\left(\frac{\pi}{L}\right)^3} = \frac{1}{3\pi^2} k^3 L^3 \qquad D(k) = \left(\frac{dN(k)}{dk}\right) \frac{1}{L^3} = \frac{k^2}{\pi^2}$$

$$u(\omega)d\omega = \frac{\omega^2}{\pi^2 c^3} \cdot \frac{\hbar\omega}{\exp\left(\frac{-\hbar\omega}{kT}\right) - 1} d\omega \qquad u(\nu)d\nu = \frac{8\pi h\nu^3}{c^3 \left(\exp\left(\frac{h\nu}{kT}\right) - 1\right)} d\nu$$

$$I(\omega)d\omega = c \cdot u(\omega)d\omega$$

Equipartition-Theorem: Each degree of Freedom has an energy of kT

1.4 Johnson-Noise

For Johnson-Noise, we use the model of Blackbody radiation in the 1 dimensional case. We can express $N(k)=\frac{k}{\frac{T}{L}}$ and $D(k)dk=\frac{1}{\pi}dk$ or $D(\omega)=\frac{1}{\pi c'}d\omega$, where c' is the velocity along the transmission line. We have one allowed polarization. The energy density in the line per unit length is: $u(\nu)d\nu=kT\frac{2}{c'}d\nu$ and the power radiated at one end of the line is then: $P=\frac{1}{2}c'u(\nu)d\nu=kTd\nu$.

This is the noise created in a one-dimensional circuit (like a coax-cable). If the impedance of the transmission line (TL) is equal to the resistors at the ends, the transmission line can be ignored $(P_R = P_{in})$. $\langle V^2 \rangle$: Noise Voltage and $\delta \nu$:bandwidth

$$D(k) = \frac{1}{L} \frac{dN(k)}{dk} = \frac{1}{\pi}$$
 (number of modes in TL)

$$E = E_0 \cdot \sin(k_x \cdot x)$$

$$\langle V^2 \rangle = 4R \cdot k_B T \cdot \Delta \nu$$

if
$$\frac{\hbar\omega}{kT} > 1$$
: $\langle V^2 \rangle = 3R \cdot k_b T \cdot \delta\nu \cdot \frac{h\nu}{\exp\left(\frac{h\nu}{kT}\right) - 1}$

if
$$Z \neq R \longrightarrow P_R = \frac{4RZ}{(R+Z)^2} P_{in}$$

1.5 Momentum of a photon

This process must conserve both total momentum and energy.

$$p \left[\frac{\log m}{s}\right] \quad \text{momentum}$$

$$p_{\text{absorbing}} = \frac{h\nu}{c} = m \cdot v \qquad p_{\text{reflecting}} = 2 \cdot \frac{h\nu}{c}$$

$$p = \sqrt{2m_e e \Delta V}$$

1.6 Absorption, spontaneous and stimulated emission

absorbtion spontaneous emission stimulated emission

Number of electrons in the lower energy state

 n_2 Number of electrons in the higher energy state

$$\frac{dn_2}{dt} = \underbrace{n_1 \cdot u(\nu) \cdot B_{12}}_{\text{absorbtion}} - \underbrace{n_2 \cdot u(\nu) \cdot B_{21}}_{\text{stimulated emission}} - \underbrace{n_2 \cdot A_{21}}_{\text{spontaneous emission}}$$

$$\frac{n_2}{n_1} = e^{-\frac{h\nu}{k_BT}} = \frac{u(\nu)B_{12}}{u(\nu)B_{21} + A_{21}}$$

$$B_{21} = B_{12} = B \qquad A_{21} = \frac{8\pi h\nu^3}{c^3}$$

1.7 Laser-optical amplification

Electrons are excited from the ground state "0" to the level "3" by pumping through incoherent radiation. The electrons then fall onto a long-lived state n_2 (State "2") from level "3". The pumping can be done either optically by shining a strong incoherent light or by passing a current. It is also assumed that the lower state is quickly emptied by a fast process with lifetime τ_1 . As a result, the population in state "2" is:

$$n_2 = \frac{R}{A_{21}}$$
 whereas $n_1 \approx 0$ because $A_{21} < \frac{1}{\tau_1}$

1.8 Fermi Energy of a metal

$$E_F = \frac{\hbar^2}{2m_e} \left(3n\pi^2\right)^{2/3} \qquad n = \frac{\rho}{m} = \frac{\rho \cdot N_A}{m_{mol}}$$

Where m_e [kg] is the mass of the electron, m [kg] is the mass of an single atom of the metal, m_{mol} $\left[\frac{\text{kg}}{\text{mol}}\right]$ is the atomic weight, n $\left[\frac{1}{\text{m}^3}\right]$ is the number of atoms per unit of volume and ρ $\left[\frac{\text{kg}}{\text{m}^3}\right]$ is the density of the metal.

2 Wave mechanics

	frequency	wavelength	momentum	energy
Particle Wave	$\nu_b = \frac{E}{h}$ $\omega, \ \nu$	$\lambda_b = \frac{h}{p} = \frac{h}{mv}$ $\lambda = \frac{2\pi c}{\omega} = \frac{c}{\nu}$	$p = mv$ $p = \hbar k = \frac{\hbar \omega}{c} = \frac{h\nu}{c}$	$E = \frac{1}{2}mv^2$ $E = h\nu = \hbar\omega$

2.1 Compton Scattering

2.2 Double Slit and Bragg Diffraction

2.3 Single slit and uncertainty relation

2.4 Bohr-Sommerfeld quantisation

Every single particle must satisfy the following equation. The quantized energy levels below relate to the hydrogen atom

		$\int_{length} p \cdot ds = n \cdot h \qquad n \in \mathbb{N}$
p	Momentum of particle	$E_n = -\frac{Z^2}{n^2} \cdot \frac{m_e e^4}{8\epsilon_0^2 h^2} = -\frac{Z^2}{n^2} \cdot E_{ry}$
E_n	Energy of the nth state	$E_n \equiv -\frac{1}{n^2} \cdot \frac{1}{8\epsilon_0^2 h^2} \equiv -\frac{1}{n^2} \cdot E_{ry}$
E_{ry}	Rydberg Energy	$r_n = \frac{n^2}{Z} \cdot \frac{2\epsilon_0 h}{m_e e^2} = \frac{n^2}{Z} \cdot a_0$
a_0	Bohr-radius	$m = \frac{1}{Z} \cdot \frac{1}{m_e e^2} = \frac{1}{Z} \cdot u_0$
Z	Number of protons	$E_{ry} = 13.6 \text{ [eV]}$
		$a_0 = 5.292 \cdot 10^{-11} \text{ [m]}$

3 Quantum Mechanics

3.1 Wave function

$$\begin{split} \psi(\boldsymbol{x},t): \mathbb{R}^4 \to \mathbb{C} & \iiint \left| \psi(\boldsymbol{x},t) \right|^2 d^3r = 1 \\ \psi(\boldsymbol{x},t) &= a\psi_1(\boldsymbol{x},t) + b\psi_2(\boldsymbol{x},t), \qquad |a|^2 + |b|^2 = 1 \\ P(x)dx &= \left| \psi(x) \right|^2 dx \qquad P_{ab} = \int_a^b |\psi(x)|^2 dx \qquad \langle x \rangle = \int_{-\infty}^\infty x |\psi(x)|^2 dx \end{split}$$

3.2 The Schrödinger equation

$$i\hbar \cdot \frac{\partial \Psi}{\partial t}(\boldsymbol{x}, t) = -\frac{\hbar^2}{2m} \cdot \nabla^2 \Psi(\boldsymbol{x}, t) + V(\boldsymbol{x}, t) \Psi(\boldsymbol{x}, t)$$

$$\Psi = A \cdot e^{i(\boldsymbol{k}\boldsymbol{x} - \omega t)} \qquad \boldsymbol{k} = \begin{bmatrix} k_x & k_y & k_z \end{bmatrix}, \quad \boldsymbol{x} = \begin{bmatrix} x & y & z \end{bmatrix}^T$$

$$E = \omega \hbar = \frac{\hbar^2 k^2}{2m}, \qquad k^2 = |k|^2$$

The wave function and it's derivative must be continuous where the potential V(x,t) is finite.

3.2.1 Phase and Group Velocity

phase velocity v_{ij} (phase movement), group velocity v_{ij} (movement of wave packet)

$$v_{\varphi} = \frac{\omega}{k}$$
 $v_g = \frac{\partial \omega}{\partial k}$ Particle wave: $v_{\varphi} \cdot 2 = v_g$

Stationary (Time independent) States

In a stationary state, the wave function is a product of a function $\varphi(x)$ independent of time and a function $\chi(t)$ independent of space.

$$\Psi_n(\boldsymbol{x},t) = \psi_n(\boldsymbol{x}) \cdot \chi_n(t) = \psi_n(\boldsymbol{x}) \cdot e^{-i\frac{E_n}{\hbar}t}$$

$$-\frac{\hbar^2}{2m} \nabla^2 \psi_n(\boldsymbol{x}) + V(\boldsymbol{x})\psi_n(\boldsymbol{x}) = \psi_n(\boldsymbol{x}) \cdot E_n$$

$$\iiint |\Psi|^2 d^3 \boldsymbol{x} = \iiint |\psi|^2 d^3 \boldsymbol{x} = 1$$

$$\Psi(\boldsymbol{x},t) = \sum a_n \psi_n(\boldsymbol{x}) \cdot e^{-i\frac{E_n}{\hbar}t} \sum |a_n|^2 = 1$$

Example: 1D infinite potential well

$$\Psi_1 = \Psi_3 = 0$$

$$-\frac{\hbar^3}{2m} \frac{\partial^2}{\partial x^2} \psi_2(x, t) = E\psi_2(x, t)$$

$$\psi_2 = A \sin(kx) + B \cos(kx)$$

$$\psi_2 = A\sin(kx) + B\cos(kx)$$

Boundary cond.: $\psi_2(0) = \psi_2(L) = 0$

$$\psi_{2_n} = A \cdot \sin(k_n x) \quad \Psi_{2_n} = A \cdot \sin(k_n x) \cdot e^{-i\frac{E_n}{\hbar}x}, \quad \text{Normalize:} \quad A = \sqrt{\frac{2}{L}}$$

$$E_n = n^2 \cdot \frac{\hbar^2 \pi^2}{2mL} = n^2 \cdot E_0, \qquad k_n = \frac{n\pi}{L} \left[\frac{1}{m} \right]$$

3.2.4 Example: 1D finite potential well

The Energy E can be either bigger or smaller than 0. If E > 0, the wave function will decay exponentially in region 1 and 3. If E < 0, the wave will propagate away from the potential well.

Inside the well: The general solution to the rearranged Schrödinger's is:

$$-\frac{\hbar^2}{2m}\frac{\partial^2}{\partial x^2}\psi_2(x) = (E - V_0)\psi_2(x)$$

$$\psi_2(x) = A_2 e^{ikx} + A_2' e^{-ikx} \qquad E = \frac{k^2 \hbar^2}{2m} \quad k = \sqrt{\frac{2m(E - V_0)}{\hbar^2}}$$

Outside the well: There are two cases, which can apply:

1. E > 0:Unbound state

$$-\frac{\hbar}{2m}\frac{\partial^2}{\partial x^2}\psi_1(x) = E\psi_1(x) \qquad \psi_1 = A_1e^{ikx} + A_1'e^{-ikx} \qquad k = \sqrt{\frac{2mE}{\hbar^2}}$$

The unbound state does not make sense to be investigated, because the particle is free to be anywhere. In the following, only the unbound state is considered.

2. E < 0: Bound state

$$-\frac{\hbar}{2m}\frac{\partial^2}{\partial x^2}\psi_1(x) = E\psi_1(x) \qquad \psi_1 = B_1 e^{\delta x} + B_1' e^{-\delta x} \qquad \delta = \sqrt{-\frac{2mE}{\hbar^2}}$$

We see that as $x \to -\infty$, the Term B_1' , as well as B_3 approaches ∞ . Since the wave function cannot approach ∞ , $B_1' = B_3 = 0$ is a condition.

Boundary conditions: We require, that the wave function is continuous, as well as it's spacial derivative. Therefore, we have:

$$\psi_1(-L) = \psi_2(-L) \qquad \psi_2(L) = \psi_3(L)$$
$$\frac{\partial}{\partial r}\psi_1(-L) = \frac{\partial}{\partial r}\psi_2(-L) \qquad \frac{\partial}{\partial r}\psi_2(L) = \frac{\partial}{\partial r}\psi_3(L)$$

Even solutions: only even (cosine) components

 $\left|\cos\left(kL\right)\right| = \frac{k}{l_0}, \quad \tan(kL) > 0$

$$k_0 = \sqrt{\frac{2mV_0}{\hbar^2}}$$

$$|\cos(kL)|$$

Odd solutions: only odd (sine) components

 $\left|\sin\left(kL\right)\right| = \frac{k}{k}, \quad \tan(kL) > 0$

$$k_0 = \sqrt{\frac{2mV_0}{\hbar^2}}$$

$$1 = \sqrt{\frac{|\sin(kL)|}{\hbar^2}}$$

$$k_0 = \sqrt{\frac{2mV_0}{\hbar^2}}$$

3.3 Example: 1D potential step function

An incoming plane wave from the left hits a potential step at x=0. In region 1, two waves are added together, one is traveling to the right and one to the left. If $E>V_0$, the wave is transmitted to region 2. if $E< V_0$, the wave decays exponentially in region 2.

In **Region 1**, the general solution to the Schrödinger equation is:

$$\frac{-\hbar^2}{2m} \frac{\partial^2}{\partial x^2} \psi_1(x) = E\psi_1(x), \quad \psi_1(x) = Ae^{ik_1x} + Be^{-ik_1x}, \quad k = \sqrt{\frac{2mE}{\hbar^2}}$$

In **Region 2**, there are two cases, which can apply:

1. $E > V_0$: Transmission

$$-\frac{\hbar^2}{2m}\frac{\partial^2}{\partial x^2}\psi_2 = (E - V_0)\psi_2(x) \qquad \psi_2 = Ce^{ik_2x}, \qquad k_2 = \sqrt{\frac{2m(E - V_0)}{\hbar^2}}$$

2. $E < V_0$: Complete reflection

$$-\frac{\hbar^2}{2m}\frac{\partial^2}{\partial x^2}\psi_2 = (E - V_0)\psi_2(x) \qquad \psi_2 = Ce^{\delta_2 x}, \qquad \delta_2 = \sqrt{\frac{2m(V_0 - 2)}{\hbar^2}}$$

Applying the **initial conditions**, which require the wave function and it's derivative to be continuous at x = 0, we get the following expression for A, B, C:

$$\psi_1(x=0) = \psi_2(x=0) \qquad \frac{\partial}{\partial x} \psi_1(x=0) = \frac{\partial}{\partial x} \psi_2(x=0)$$

$$\mathbf{E} > \mathbf{V_0} \qquad \mathbf{E} < \mathbf{V_0}$$

$$A + B = C \qquad A + B = C$$

$$k_1(A-B) = k_2C \qquad A = B$$

The **probability density function** $|\psi(x,t)|^2 = |\varphi(x)|^2 = \varphi \cdot \varphi^*$ can then be computed and sketched:

$$\mathbf{E} > \mathbf{V_0}$$

$$|\psi_1|^2 = A^2 + B^2 + 2AB\cos(2k_1x)$$

$$|\psi_2|^2 = C^2$$

$$|\psi_2|^2 = C^2 \cdot e^{-2\delta x}$$

$$|\psi_2|^2 = C^2 \cdot e^{-2\delta x}$$

To find the **transmission coefficient** T and the **reflection coefficient** R, we normalize A=1. Then, we can define $B=\sqrt{R}$ and $C=\sqrt{T}$. Then, we can solve for R and T:

$$T = \frac{4k_1k_2}{(k_1 + k_2)^2} \qquad R = \left(\frac{k_1 - k_2}{k_1 + k_2}\right)^2$$

If $E < V_0$, nothing is transmitted and therefore T = 0 and R = 1.

3.3.1 Example: 1D finite potential barrier

An incoming plane wave from the left hits a potential barrier with length l. The Transmission coefficient tells, how much of the wave can continue at the other side of the barrier (quantum tunneling).

In **Region 1 and 3**, the general expression for the wave equation is the following:

$$\psi_j(x) = A_j e^{ik_j x} + A'_j e^{-ik_j x}, \qquad k_j = \sqrt{\frac{2mE}{\hbar^2}}, \quad j \in \{1, 3\}$$

In **Region 2**, the expression is depending on V_0 . There are two cases:

1.
$$\mathbf{E} < \mathbf{V_0}$$
: $\varphi_2 = B_2 e^{\delta_2 x} + B_2' e^{-\delta_2 x}, \qquad \delta_2 = \sqrt{\frac{2m(V_0 - E)}{\hbar^2}}$

2.
$$\mathbf{E} > \mathbf{V_0}$$
: $\varphi_2 = A_2 e^{ik_2 x} + A_2' e^{-ik_2 x}, \qquad k_2 = \sqrt{\frac{2m(E - V_0)}{\hbar^2}}$

Apply boundary conditions at $x = -\ell/2$ and $x = \ell/2$ in order to determine all constants. If the wave is only traveling from left to right, then $A_3' = 0$.

$$\psi_1(-\ell/2) = \psi_2(-\ell/2), \quad \psi_2(\ell/2) = \psi_3(\ell/2)$$
$$\frac{\partial}{\partial x}\psi_1(-\ell/2) = \frac{\partial}{\partial x}\psi_2(-\ell/2), \quad \frac{\partial}{\partial x}\psi_2(\ell/2) = \frac{\partial}{\partial x}\psi_3(\ell/2)$$

Then, the transmission coefficient T and the reflection coefficient R can be calculated as following:

$$R = \left(\frac{A_1}{A_1'}\right)^2, \qquad T = \left(\frac{A_3}{A_1}\right)^2$$

$$\mathbf{E} < \mathbf{V_0}$$

$$T = \frac{4E(V_0 - E)}{4E(V_0 - E) + V_0^2 \sinh^2(\delta_2 \ell)} \qquad T = \frac{4E(V_0 - E)}{4E(V_0 - E) + V_0^2 \sin^2(k_2 \ell)}$$

If $\mathbf{E} > \mathbf{V_0}$, the transmission coefficient has a maximum. If $k_2 \ell = n\pi \Rightarrow T = 1$ (resonance). The minimum of $T\mathbf{u}$ is at: $k_2 \ell = \pi/2 + n\pi$.

If $\delta_2 \ell \gg 1$, the transmission coefficient is proportional to: $T \propto e^{-2\delta_2 \ell}$

4 Wave Function Space (Hilbert Space)

4.1 Inner Product

The inner product $\langle \psi_1 | \psi_2 \rangle$ is defined like the scalar product for vectors. If the inner product $\langle \psi_1 | \psi_2 \rangle = 0$, ψ_1 , ψ_2 are **orthogonal**.

$$\langle \psi_1 | \psi_2 \rangle = \int_{-\infty}^{\infty} \psi_1^*(\boldsymbol{x}, t) \psi_2(\boldsymbol{x}, t) d^3 \boldsymbol{x}$$
$$\langle \psi | \psi \rangle = \int_{-\infty}^{\infty} \psi^*(\boldsymbol{x}, t) \psi(\boldsymbol{x}, t) d^3 \boldsymbol{x} = \int_{-\infty}^{\infty} \left| \psi(\boldsymbol{x}, t) \right|^2 d^3 \boldsymbol{x} = 1$$

4.2 Fourier Transform

$$\begin{split} \psi(x) &= \frac{1}{\sqrt{2\pi\hbar}} \int_{-\infty}^{\infty} e^{\frac{ipx}{\hbar}} \varphi(p) dp, \quad \varphi(p) = \frac{1}{\sqrt{2\pi\hbar}} \int_{-\infty}^{\infty} e^{\frac{ipx}{\hbar}} \psi(x) dx \\ \psi(\vec{x}) &= \frac{1}{(2\pi\hbar)^{3/2}} \int_{-\infty}^{\infty} e^{\frac{i\vec{p}\vec{x}}{\hbar}} \varphi(\vec{p}) d\vec{p}, \quad \varphi(\vec{p}) = \frac{1}{(2\pi\hbar)^{3/2}} \int_{-\infty}^{\infty} e^{\frac{i\vec{p}\vec{x}}{\hbar}} \psi(\vec{x}) d\vec{x} \\ \int_{-\infty}^{\infty} \psi_1^*(x) \cdot \psi_2(x) \cdot dx &= \int_{-\infty}^{\infty} \varphi_1^*(p) \cdot \varphi_2(p) \cdot dp \end{split}$$

5 Observable Measurements, Time-dependence

Doing a measurement in quantum mechanics (observable) can be interpreted as applying an operator \hat{A} on the wave function $\psi(x,t)$. For example, tu o compute the expected position $\langle x \rangle_{\psi}$, we apply the operator $\hat{x} = x$ to average the wave function:

$$\langle \boldsymbol{x} \rangle_{\boldsymbol{\Psi}} = \iiint \boldsymbol{\Psi}^*(\boldsymbol{x},t) \cdot \boldsymbol{x} \cdot \boldsymbol{\Psi}(\boldsymbol{x},t) d^3 \boldsymbol{x} = \iiint \boldsymbol{x} \cdot \left| \boldsymbol{\Psi}(\boldsymbol{x},t) \right|^2 d^3 \boldsymbol{x} \quad \langle \psi_m | \psi_n \rangle = \delta_{mn} \quad |\psi_n \rangle \langle \psi_n | = 1$$

Name	Operator	
Position	$\widehat{m{x}} = [m{x}]$	
Momentum	$\widehat{\boldsymbol{p}} = [-i\hbar\boldsymbol{\nabla}]$	$oldsymbol{ abla} = egin{bmatrix} rac{\partial}{\partial x} & rac{\partial}{\partial y} & rac{\partial}{\partial z} \end{bmatrix}^T$
Hamiltonian	$\widehat{H} = \left[-rac{\hbar^2}{2m} abla^2 + V(oldsymbol{x}) ight]$	$\nabla^2 = \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2}$

5.1 Canonical commutation relation

The commutators is a way of describing the effect of the order, in which multiple operators are applied.

$$\begin{aligned} \left[\widehat{A}, \widehat{B}\right] &= \widehat{A}\widehat{B} - \widehat{B}\widehat{A}, \quad \left[\widehat{A}, \widehat{B}\right] = -\left[\widehat{B}, \widehat{A}\right], \quad \left[\widehat{A}, \widehat{A}\right] = 0 \\ \left[\widehat{A}, (\widehat{B} + \widehat{C})\right] &= \left[\widehat{A}, \widehat{B}\right] + \left[\widehat{A}, \widehat{C}\right] \\ \left[\widehat{p}_x, \widehat{p}_y\right] &= 0, \quad \left[\widehat{x}, \widehat{p}_x\right] = i\hbar, \quad \left[\widehat{z}, \widehat{p}_x\right] = \left[\widehat{z}, \widehat{p}_y\right] = 0 \end{aligned}$$

5.2 Eigenstates and Eigenvalues

An Observable has an Operator \widehat{A} a state $u_n(x)$ is called an eigenstate the operator applied on the wave function acts like a scalar multiplication to it. Then, the measurement of the general state $\psi(x)$ is a superposition of all the eigenstates.

$$\widehat{A}u_n(x) = a_n u_n(x), \quad \int_{-\infty}^{\infty} u_n^*(x) \widehat{A}u_n(x) dx = a_n \quad \widehat{A}\psi(x) = \sum_n c_n u_n(x)$$

5.3 Harmonic Oscillator

A Quantum mechanical harmonic oscillator can be interpreted as the solution to the Schrödinger equation:

$$\left[\frac{-\hbar^2}{2m}\frac{\partial^2}{\partial x^2} + V(x)\right]\psi(x) = E\psi(x), \quad V(x) = \frac{1}{2}kx^2 = \frac{m\omega^2}{2}x^2$$

To simplify the equation, we define a new length scale and energy:

$$a = \sqrt{\frac{\hbar}{m\omega}}, \quad \tilde{x} = \frac{x}{a}, \quad \tilde{E} = \frac{E}{\hbar\omega} \Rightarrow \frac{1}{2} \left[-\frac{\partial^2}{\partial \tilde{x}^2} + \tilde{x}^2 \right] \varphi(\tilde{x}) = \tilde{E}\varphi(\tilde{x})$$

Then, the solutions to the equation is:

$$E_n = \left(n + \frac{1}{2}\right)\hbar\omega, \quad \psi(\tilde{x}) = c_n H_n(\tilde{x})e^{-\tilde{x}/2}, \quad H_n(\tilde{x}) = (-1)^n e^{\tilde{x}^2} \cdot \frac{\partial^n}{\partial \tilde{x}^n} e^{-\tilde{x}^2}$$

$$H_0(\tilde{x}) = 1$$
, $H_1(\tilde{x}) = 2\tilde{x}$, $H_2(\tilde{x}) = 4\tilde{x}^2 - 2$, $H_3(\tilde{x}) = 8\tilde{x}^3 - 12\tilde{x}$

$$\Psi_n(x) = \frac{1}{\sqrt[4]{\pi}\sqrt{2^n n! a}} \cdot H_n\left(\frac{x}{a}\right) e^{-\frac{x^2}{2a^2}}$$

5.4 The coupled quantum well

This is the simplified potential of an ammonia molecule NH₃. The wave function outside the well $(|x| > b + \frac{a}{2})$ is zero. There exists a symmetric, as well as an antisymmetric solution. We consider the case: $E < V_0$

$$\psi_{\rm II} = \begin{cases} \mu \cosh(\delta x) & {\rm symmetric} \\ \mu \sinh(\delta x) & {\rm antisymmetric} \end{cases} \quad k = \sqrt{\frac{2mE}{\hbar^2}}, \quad \delta = \sqrt{\frac{2m(V_0 - E)}{\hbar^2}}$$

symmetric:
$$\varepsilon_s = \frac{1 + e^{-\delta \Delta}}{\delta a}$$
antisymmetric: $\varepsilon_a = \frac{1 - e^{-\delta \Delta}}{\delta a}$

$$\tan(ka) = -ka\varepsilon = -ka\frac{1 \pm e^{-\delta}}{\delta a}$$

Now, we can create a superposition of both the symmetric and the antisymmetric case:

$$\begin{split} \psi_{s_{\mathrm{I}}} &= +\lambda \sin \left(k \left(b - \frac{a}{2} + x \right) \right), \quad \psi_{s_{\mathrm{III}}} = +\lambda \sin \left(k \left(b - \frac{a}{2} + x \right) \right) \\ \psi_{a_{\mathrm{I}}} &= -\lambda \sin \left(k \left(b - \frac{a}{2} + x \right) \right), \quad \psi_{a_{\mathrm{III}}} = +\lambda \sin \left(k \left(b - \frac{a}{2} + x \right) \right) \\ \Psi_{L} &= \frac{1}{\sqrt{2}} (\Psi_{s} - \Psi_{a}), \qquad \Psi_{R} = \frac{1}{\sqrt{2}} (\Psi_{s} + \Psi_{a}) \\ \Psi_{L}(x, t) &= \frac{1}{\sqrt{2}} e^{-i\omega_{s}t} \left(\psi_{s}(x) - e^{-i(\omega_{a} - \omega_{s})t} \psi_{a}(x) \right) \\ \omega_{a} &= \frac{E_{a}}{\hbar}, \quad \omega_{s} = \frac{E_{a}}{\hbar}, \quad E_{a} - E_{s} = \frac{\hbar^{2} \pi^{2}}{2m\delta a^{2}} \cdot 8e^{-\delta \Delta} \end{split}$$

From the formula describing the wave equation, we can see that at t_0 , the particle can only be found in region I, and after some time $t_{1/2}$, the particle can only be found in region III. The particle has tunneled from one side to the other. Now, we can define a period $T = \frac{2\pi\hbar}{E_c - E_c}$

6 Schrödinger Equation in 3D

This equation can be separated into three smaller equations for every spacial dimension x_i

$$-\frac{\hbar^2}{2m}\frac{\partial^2}{\partial x_i^2}\psi_i(x_i) + V(x_i)\psi_i(x_i) = E_i\psi_i(x_i)$$
$$E_i^{(n_i)} = n_i^2 \frac{\hbar^2 \pi^2}{2mL_i^2}, \qquad \psi_i^{(n_1)} = A \cdot \sin\left(\frac{\pi n_i x}{L_i}\right)$$

After normalizing, the wave function can be written as:

$$\psi(x_1,x_2,x_3) = \sqrt{\frac{8}{L_1L_2L_3}}\sin\left(\frac{\pi n_1x_1}{L_1}\right)\sin\left(\frac{\pi n_2x_2}{L_2}\right)\sin\left(\frac{\pi n_3x_3}{L_3}\right)$$

When $L_1 = L_2 = L_3$, there sometimes exists multiple states (**degeneracies**) for the same energy $E = E_1 + E_2 + E_3$. Now, we can generate new solutions to the wave function via superposition of those states. In general, degeneracies arise from symmetries (obvious or hidden).

6.1 Schrödinger Equation in spherical coordinates

To use the Schrödinger equation, we must define the Laplacian operator ∇^2 :

$$\nabla^2 = \frac{1}{r^2} \frac{\partial}{\partial r} \left(r^2 \frac{\partial}{\partial r} \right) + \frac{1}{r^2 \sin \theta} \frac{\partial}{\partial \theta} \left(\sin \theta \frac{\partial}{\partial \theta} \right) + \frac{1}{r^2 \sin^2 \theta} \frac{\partial^2}{\partial \varphi^2}$$

Now, we insert this into the Schrödinger equation and try to separate the radial part R(r) from the angular part $Y(\theta, \varphi)$. By introducing a separation constant $\ell(\ell+1)$, we get:

$$\psi(r,\theta,\varphi) = R(r) \cdot Y(\theta,\varphi)$$

$$\frac{1}{R} \frac{\partial}{\partial r} \left(r^2 \frac{\partial R}{\partial r} \right) - \frac{2mr^2}{\hbar^2} (V - E) = -\left(\frac{1}{Y \sin \theta} \frac{\partial}{\partial \theta} \left(\sin \theta \frac{\partial Y}{\partial \theta} \right) + \frac{1}{\sin^2 \theta} \frac{\partial^2 Y}{\partial \varphi^2} \right) = \ell(\ell + 1)$$

The angular equation can be rewritten, in order to separate $Y(\theta, \varphi)$ into $\Theta(\theta)\Phi(\varphi)$. With this separation, we get for the angular part:

$$\Phi(2\pi) = \Phi(0) \rightarrow m \in \mathbb{Z}, \quad |m| < \ell$$

$$\psi_{n\ell m}(r,\theta,\varphi) = R_{n\ell}(r) \cdot Y_{\ell}^{m}(\theta,\varphi) = R_{n\ell}(r) \cdot P_{\ell}^{m}(\cos\theta)e^{im\varphi}$$

The angular part $Y_{\ell}^{m}(\theta,\varphi)$ can be written as:

$$P_{\ell}^{m}(x) = (i - x^{2})^{\frac{|m|}{2}} \frac{d^{|m|}}{dx^{|m|}} P_{\ell}(x) \qquad P_{\ell}(x) = \frac{1}{2^{\ell} \cdot \ell!} \frac{\partial^{\ell}}{dx^{\ell}} (x^{2} - 1)^{\ell}$$

6

The solution to Y will be a spherical harmonic. Finally, we must apply the normalization

$$\int_0^\infty \left| R(r) \right|^2 r^2 dr = 1, \qquad \int_{\theta=0}^\pi \int_{\varphi=-\pi}^\pi \left| Y_\ell^m(\theta, \varphi) \right|^2 \sin \theta d\varphi d\theta = 1$$

These solutions are the same as spherical harmonics. They form an orthogonal basis, meaning that every well-behaved function $f(\theta, \varphi)$ can be expressed as a superposition of those harmonics.

6.1.1 Hydrogen Atom

The radial part $R_{n\ell}$ of the hydrogen atom with potential $V(r) = \frac{-e^2}{4\pi\epsilon_0 r}$ can be written as:

$$R_{n\ell}(r) = \frac{1}{r} \rho^{\ell+1} e^{-\rho} v(\rho), \quad \rho = \frac{r}{na_0}, \quad a_0 = \frac{4\pi\epsilon_0 \hbar^2}{me^2} \approx 5.29 \cdot 10^{-11} \text{ [m]}$$

$$\psi_{n\ell m}(r,\theta,\varphi) = R_{n\ell}(r) Y_{\ell}^m(\theta,\varphi) \qquad j_{max} = (n-\ell-1) \ge 0 \qquad |m| \le \ell$$

$$E = -\frac{E_{Ry}}{n^2} \approx -\frac{13.6}{n^2} \text{ [eV]}$$

 $v(\rho)$ is a polynomial of degree j_{max} with coefficients: $C_{g+1} = \frac{2(g+l+1-n)}{(g+1)(g+2l+2)}C_g$. For state n, there are $d(n) = n^2$ different solutions (**degeneracies**). The **effective radius** is na_0 . The **probability** of finding an electron between r and r + dr is:

$$p(r)dr = r^2 \left| R_{n\ell}(r) \right|^2 dr$$

6.1.2 Quantum Numbers

n is the main quantum number, ℓ is the orbital quantum number and m is the magnetic quantum number (projection of angular momentum). Chemists give the different ℓ 's different names.

- $\ell = 0$: the orbital is called an s-state $(\max p(r)dr)$ is at r = 0.
- $\ell = 1$: the orbital is called an p-state (p(r=0)dr = 0).
- $\ell = 2$: the orbital is called an d-state.

7 Angular Momentum and Spin

$$\widehat{L}_{x} = \widehat{y}\widehat{p}_{z} - \widehat{z}\widehat{p}_{y} \qquad \widehat{L}_{y} = \widehat{z}\widehat{p}_{x} - \widehat{x}\widehat{p}_{z} \qquad \widehat{L}_{z} = \widehat{x}\widehat{p}_{y} - \widehat{y}\widehat{p}_{x}
\left[\widehat{L}_{x}, \widehat{L}_{y}\right] = i\hbar\widehat{L}_{z} \qquad \left[\widehat{L}_{y}, \widehat{L}_{z}\right] = i\hbar\widehat{L}_{x} \qquad \left[\widehat{L}_{z}, \widehat{L}_{x}\right] = i\hbar\widehat{L}_{y} \qquad \widehat{L} = \det \begin{vmatrix} e_{x} & e_{y} & e_{z} \\ \widehat{x} & \widehat{y} & \widehat{z} \\ \widehat{p}_{x} & \widehat{p}_{y} & \widehat{p}_{z} \end{vmatrix}$$

$$\widehat{L}_{x} = i\hbar \left(\sin\varphi \frac{\partial}{\partial\theta} + \frac{\cos\theta\cos\varphi}{\sin\theta} \frac{\partial}{\partial\varphi}\right), \ \widehat{L}_{y} = -i\hbar \left(\cos\varphi \frac{\partial}{\partial\theta} - \frac{\cos\theta\sin\varphi}{\sin\theta} \frac{\partial}{\partial\varphi}\right)$$

$$\widehat{L}_{z} = -i\hbar \frac{\partial}{\partial\varphi}, \quad \widehat{L}^{2} = -\hbar^{2} \left[\frac{1}{\sin\theta} \frac{\partial}{\partial\theta} \left(\sin\theta \frac{\partial}{\partial\theta}\right) + \frac{1}{\sin^{2}\theta} \frac{\partial^{2}}{\partial\varphi^{2}}\right]$$

Angular momentum operators do not commute. In order to get commutable operators, we introduce $\widehat{L}^2 = \widehat{L}_x^2 + \widehat{L}_y^2 + \widehat{L}_z^2$

$$\begin{split} \left[\widehat{L}^2, \widehat{L}_x\right] &= 0, \qquad \left[\widehat{L}^2, \widehat{L}_y\right] = 0, \qquad \left[\widehat{L}^2, \widehat{L}_z\right] = 0 \\ \widehat{L}^2 Y_\ell^m(\theta, \varphi) &= \hbar^2 \ell(\ell+1) Y_\ell^m(\theta, \varphi), \qquad \widehat{L}_z Y_\ell^m(\theta, \varphi) = \hbar m Y_\ell^m(\theta, \varphi) \end{split}$$

7.1 Ladder Operator

If a ladder operators $\widehat{L}_{\pm} = \widehat{L}_x \pm i \widehat{L}_y$ are used in the following way: Suppose, we have a wave function ψ , which is simultaneously an eigenfunction of \widehat{L}^2 and \widehat{L}_z . Then, $\widehat{L}_{\pm}\psi$ is also an eigenfunction of \widehat{L}^2 and \widehat{L}_z with the following eigenvalues:

$$\begin{split} \widehat{L}^2\psi &= \lambda \psi, \quad \widehat{L}_z\psi = \mu \psi \qquad \widehat{L}^2(\widehat{L}_\pm\psi) = \lambda(\widehat{L}_\pm\psi), \quad \widehat{L}_z(\widehat{L}_\pm\psi) = (\mu \pm \hbar)(\widehat{L}_\pm\psi) \\ \widehat{L}_+Y_\ell^m &= \hbar \sqrt{\ell(\ell+1) - m(m+1)} Y_\ell^{m+1} \qquad \widehat{L}_-Y_\ell^m = \hbar \sqrt{\ell(\ell+1) - m(m-1)} Y_\ell^{m-1} \end{split}$$

7.2 Spin

Idea: $\ell = \frac{1}{2} \to m = \pm \frac{1}{2}$. Instead of using ℓ , we use s to describe the spin. The operators \widehat{L}_i are now called \widehat{S}_i . We define the spin as $|s, m_s\rangle$:

$$\chi_{+} = \left| \frac{1}{2}, \frac{1}{2} \right\rangle = \left| \uparrow \right\rangle, \quad \chi_{-} = \left| \frac{1}{2}, -\frac{1}{2} \right\rangle = \left| \downarrow \right\rangle, \quad \chi = a\chi_{+} + \beta\chi_{-} = \begin{pmatrix} a \\ b \end{pmatrix}, \ |a|^{2} + |b|^{2} = 1$$

Since we have now only two eigenstates $|\uparrow\rangle$ and $|\downarrow\rangle$, we can write:

$$\widehat{S}^2 = \frac{3}{4}\hbar^2 \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \quad \widehat{S}_x = \frac{\hbar}{2} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \quad \widehat{S}_y = \frac{\hbar}{2} \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix} \quad \widehat{S}_z = \frac{\hbar}{2} \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$
$$|\uparrow_x\rangle = \frac{1}{\sqrt{2}} \left(|\uparrow_z\rangle + |\downarrow_z\rangle \right), \qquad |\downarrow_x\rangle = \frac{1}{\sqrt{2}} \left(|\uparrow_z\rangle - |\downarrow_z\rangle \right)$$

Now, we define the ladder operators in the same way as for the angular momentum:

$$\widehat{S}_{+} = \begin{pmatrix} 0 & \hbar \\ 0 & 0 \end{pmatrix} \quad \widehat{S}_{-} = \begin{pmatrix} 0 & 0 \\ \hbar & 0 \end{pmatrix} \quad \widehat{S}_{+} \mid \uparrow \rangle = \widehat{S}_{-} \mid \downarrow \rangle = 0, \ \widehat{S}_{+} \mid \downarrow \rangle = \hbar \mid \uparrow \rangle, \ \widehat{S}_{-} \mid \uparrow \rangle = \hbar \mid \downarrow \rangle$$

We can write states states in dirac notation as: $|\ell, m\rangle$. For spins, we get:

$$|1,1\rangle = |\uparrow\uparrow\rangle, \ |1,-1\rangle = |\downarrow\downarrow\rangle, \ |1,0\rangle = \frac{1}{\sqrt{2}}(|\uparrow\downarrow\rangle + |\downarrow\uparrow\rangle), \ |0,0\rangle = \frac{1}{\sqrt{2}}(|\uparrow\downarrow\rangle - |\downarrow\uparrow\rangle)$$
Clebsch Gordan: $|s, m\rangle = \sum_{m_1+m_2=m} C_{m_1m_2m}^{s_1s_2s} |s_1, m_1\rangle |s_2, m_2\rangle$

7.3 Identical Particles

When we have two particles with wave function $\varphi_a(\vec{x}_1)$ and $\varphi_b(\vec{x}_2)$, we can combine them in two different ways:

- Boson: $\psi_- = \frac{1}{\sqrt{2}} \left(\varphi_a(\vec{x}_1) \varphi_b(\vec{x}_2) \varphi_b(\vec{x}_1) \varphi_a(\vec{x}_2) \right)$: symmetric (electron)
- Fermion: $\psi_+ = \frac{1}{\sqrt{2}} \left(\varphi_a(\vec{x}_1) \varphi_b(\vec{x}_2) + \varphi_b(\vec{x}_1) \varphi_a(\vec{x}_2) \right)$: antisymmetric (photon)

Pauli exclusion principle: Two fermions cannot occupy the same identical state

7.3.1 Exchange Interactions

We have two particles, which have normalized and orthogonal wave functions. We have three different interactions:

1. The particles are **distinguishable**: $\psi = \psi_a(x_1)\psi_b(x_2)$

$$\left\langle (x_1 - x_2)^2 \right\rangle_{\psi} = \left\langle x^2 \right\rangle_{\psi_a} + \left\langle x^2 \right\rangle_{\psi_b} - 2 \left\langle x \right\rangle_{\psi_a} \left\langle x \right\rangle_{\psi_b}$$

2. Symmetric wave function: $\psi_{+} = \frac{1}{\sqrt{2}}(|\psi_{a}\rangle |\psi_{b}\rangle + |\psi_{b}\rangle |\psi_{a}\rangle)$

$$\left\langle (x_1 - x_2)^2 \right\rangle_{\psi_b} = \left\langle x^2 \right\rangle_{\psi_a} + \left\langle x^2 \right\rangle_{\psi_b} - 2 \left\langle x \right\rangle_{\psi_a} \left\langle x \right\rangle_{\psi_b} - 2 \left| \left\langle \psi_a | x | \psi_b \right\rangle \right|^2$$

3. Antisymmetric wave function: $\psi_{-} = \frac{1}{\sqrt{2}} (|\psi_{a}\rangle |\psi_{b}\rangle - |\psi_{b}\rangle |\psi_{a}\rangle)$

$$\left\langle (x_1 - x_2)^2 \right\rangle_{\psi} = \left\langle x^2 \right\rangle_{\psi_a} + \left\langle x^2 \right\rangle_{\psi_b} - 2 \left\langle x \right\rangle_{\psi_a} \left\langle x \right\rangle_{\psi_b} + 2 \left| \left\langle \psi_a | x | \psi_b \right\rangle \right|^2$$

7.4 Many Electrons: Atomic Shells

To write the wave function of an electron, we use the notation indexed by: $|n, \ell, m\rangle$.

shell n	subshell ℓ	$\max e^-$ in subshell	$\max e^-$ in shell
K	1s	2	2
L	2s	2	2 + 6 = 8
	2p	ь	
M	3s	2	2+6+10=10
	3p 3d	6	
	3d	10	

Here, the number of degeneracies per shell is displayed. Remember, we have $n \ge 1$, $0 \le \ell < n$, $-\ell \le m \le \ell$, and for every different state, the electron can have either spin up or spin down. So, the number of electrons in a sub shell is the number of degeneracies.

7.5 Term Symbol

$$^{2S+1}L$$

S is the total spin quantum number. 2S+1 is the number of possible states of J (total angular momentum quantum number) for a given L and $S \leq L$. $J_{max} = L + S$, $J_{min} = |L - S|$. L is the orbital quantum number in spectroscopic notation: $L = 0 \rightarrow S$, $L = 1 \rightarrow P$, $L = 2 \rightarrow D$, $L = 3 \rightarrow F$...

8 Quantum Statistics and Solid States

8.1 Chemical Potential

For the chemical potential μ , the flux of particles (instead of energy) is important.

$$\mu = \frac{\partial F}{\partial N}, \qquad F = U - TS$$

where F is the free energy, U is the total energy, T is the temperature, S is the entropy and N is the number of particles. In other words: Chemical Potential is the energy exchanged when a particle is added or removed.

8.2 Fermi-Dirac & Einstein Statistics

What is the probability of a given state to be occupied? And if we have multiple particles, how many electrons are in a state?

Fermions:
$$f_F(E, \mu, T) = \frac{1}{\exp\left(\frac{E-\mu}{kT}\right) + 1}$$
, Bosons: $f_B(E, \mu, T) = \frac{1}{\exp\left(\frac{E-\mu}{kT}\right) - 1}$

As the energy $E \gg \mu$, both distributions are the same: the classical Bolzmann distribution. If the electrons are far away, we do not need to consider the interaction between single particles.

8.3 Fermi-Dirac statistics of a free electron gas

The number of particles N given an energy E with temperature T=0 is:

$$N(E) = \frac{L^3}{3\pi^2} \frac{(2mE)^{\frac{3}{2}}}{\hbar^2} = \frac{4}{3}\pi k^3 \cdot \frac{1}{8} \cdot \left(\frac{L}{\pi}\right)^3 \cdot 2$$

This equation is derived by multiplying the Volume of a sphere (in the positive k sector) with radius k with the volume of a single state and the number of possible spins (2).

The Density of states D(E) is given by:

$$D(E) = \frac{\partial N(E)}{\partial E} \cdot \frac{1}{V} = \frac{1}{2\pi^2} \left(\frac{2m}{\hbar}\right)^{\frac{3}{2}} \sqrt{E}$$

8.4 Semiconductors and Doping

 n_c is the electron concentration in the conduction band, and n_i is the intrinsic carrier concentration (depending on the temperature).

$$n_c \ \left[\frac{1}{\mathrm{m}^3}\right] = n_i \cdot f_{F/B}(E_F, E_i, T) \approx n_i \exp\left(\frac{E_F - E_i}{k_B T}\right) \ \mathrm{if} \ \frac{E_F - E_i}{k_B T} \gg 1$$

$$E_C: \ \mathrm{Conduction\ band}$$

$$E_F \ \mathrm{for\ n\text{-type}}$$
 Band
$$\mathrm{Gap} \ E_g - - - - - - - - E_i: \ \mathrm{Intrinsic\ Fermi\ level}$$

$$- - - - - - - - E_F \ \mathrm{for\ p\text{-type}}$$

$$E_V: \ \mathrm{Valence\ band}$$

8.5 Bloch's Theorem

In a periodic potential, the wave equation can be written as a periodic function $u_{nk}(x)$ multiplied by a complex exponential:

$$\psi_{nk}(x) = e^{ikx} u_{nk}(x)$$

We can apply this theorem the band formation to conclude the following. As soon as we have a crystal, the electrons can be in a continuous band of energies:

$$E = E_0 - 2A\cos(ka) = E(k)$$

where A is the inter-atomic coupling. We can see that the band width is directly proportional to A.

9 Classical Mechanics

Quantity	Symbol		Definition	unit
Momentum	p	=	$moldsymbol{v}$	$\left[\frac{\text{kg m}}{\text{s}}\right]$
Force	$\boldsymbol{\mathit{F}}$	=	$rac{doldsymbol{p}}{dt}=moldsymbol{a}$	$[N] = \left[\frac{\text{kg m}}{\text{s}^2}\right]$
Angular momentum	L	=	$oldsymbol{r} imesoldsymbol{p}$	$\left[\frac{\text{kg m}^2}{\text{s}}\right]$
Impulse	$\Delta oldsymbol{p}$	=	$\int {m F} dt$	$\left[\frac{\text{kg m}}{\text{s}}\right]$
Mechanical Work (Energy)	W	=	$\int_{s} \mathbf{F} d\mathbf{r} = \frac{1}{2} m v^2$	$[J] = \ [Nm] = \ \left[\frac{kgm^2}{s^2}\right]$
Mechanical Power	P	=	$\frac{dE}{dt}$	$[W] = \left[\frac{J}{s}\right] = \left[\frac{kgm^2}{s^3}\right]$
Velocity	$oldsymbol{v}$	=	$\frac{d\mathbf{r}}{dt}$	$\left[\frac{\mathrm{m}}{\mathrm{s}}\right]$
Acceleration	a	=	$\frac{d\boldsymbol{v}}{dt} = \frac{d^2\boldsymbol{r}}{dt^2}$	$\left[\frac{\mathrm{m}}{\mathrm{s}^2}\right]$

10 Useful formulas

$$\int_{-\infty}^{\infty} e^{-ax^2} dx = \sqrt{\frac{\pi}{a}} \qquad \int_{0}^{\infty} x e^{-ax^2} dc = \frac{1}{2a} \qquad \int_{-\infty}^{\infty} x^2 e^{-ax^2} = \frac{\sqrt{\pi}}{2a^{3/2}}$$

$$\int x^n e^{cx} = e^{cx} \sum_{i=0}^{n} (-1)^{n-i} \frac{n!}{i!c^{n-i+1}} x^i \qquad \int_{0}^{\infty} x^n e^{-cx} = \frac{n!}{c^{n+1}}$$

Gaussian: $G = A \cdot e^{\frac{-x^2}{2\sigma^2}}$

10.1 Trigonometry

$$\begin{array}{llll} \sin(2\alpha) &=& 2\sin\alpha\cos\alpha & \cos(2\alpha) &=& \cos^2\alpha - \sin^2\alpha \\ \sin(\alpha\pm\beta) &=& \sin(\alpha)\cos(b)\pm\cos(\alpha)\sin(b) & \cos(\alpha\pm\beta) &=& \cos(\alpha)\cos(b)\mp\sin(\alpha)\sin(b) \\ \sin(\alpha)\pm\sin(\beta) &=& 2\sin\frac{\alpha\pm\beta}{2}\cos\frac{\alpha\mp\beta}{2} & \cos(\alpha)+\cos(\beta) &=& 2\cos\frac{\alpha+\beta}{2}\cos\frac{\alpha-\beta}{2} \\ \cos(\alpha)-\cos(\beta) &=& -2\sin\frac{\alpha+\beta}{2}\sin\frac{\alpha-\beta}{2} & \sin(\alpha)\sin(\beta) &=& \frac{1}{2}(\cos(\alpha-\beta)-\cos(\alpha+\beta)) \\ \cos(\alpha)\cos(\beta) &=& \frac{1}{2}(\cos(\alpha-\beta)+\cos(\alpha+\beta)) & \sin(\alpha)\cos(\beta) &=& \frac{1}{2}(\sin(\alpha-\beta)+\sin(\alpha+\beta)) \\ \sin^2\alpha &=& \frac{1}{2}(1-\cos2\alpha) & \cos^2\alpha &=& \frac{1}{2}(1+\cos2\alpha) \\ \sin^3\alpha &=& \frac{1}{4}(3\sin\alpha-\sin3\alpha) & \cos^3\alpha &=& \frac{1}{4}(3\cos\alpha+\cos3\alpha) \\ \frac{\sin2\alpha}{\sin\alpha} &=& 2\cos\alpha & \sin\alpha\cos\alpha &=& \frac{1}{2}\sin2\alpha \\ & c^2 &=& a^2+b^2-2ab\cos\gamma & \frac{\alpha}{\sin\alpha} &=& \frac{b}{\sin\beta} &=& \frac{c}{\sin\alpha} &= 2r &=& \frac{u}{\pi} \end{array}$$

10.2 Differentiation

Product rule
$$(fg)' = f'g + fg'$$
Quotient rule
$$\left(\frac{f}{g}\right)' = \frac{f'g - fg'}{g^2}$$
Chain rule
$$\frac{d}{dx}\left(f\left(g(x)\right)\right) = f'\left(g(x)\right)g'(x)$$
Power rule
$$\frac{d}{dx}\left(x^n\right) = nx^{n-1}$$
Inverse power rule
$$\frac{d}{dx}\left(\frac{1}{x^n}\right) = \frac{-n}{x^{n+1}}$$
Exponential rule
$$\frac{d}{dx}\left(e^{g(x)}\right) = g'(x)e^{g(x)}$$
Logarithm rule
$$\frac{d}{dx}\left(\ln g(x)\right) = \frac{g'(x)}{g(x)}$$

10.3 Integration

$$\begin{aligned} & \text{Partial integration} & \int_a^b u(x)v'(x)dx = u(x)v(x)\Big|_a^b - \int_a^b u'(x)v(x)dx \\ & \text{Power rule} & \int x^n dx = \frac{1}{n+1} \cdot x^{n+1} + c, \quad n \neq -1 \\ & \text{Inverse power rule} & \int \frac{1}{x^n} dx = \frac{1}{-n+1} \cdot \frac{1}{x^{n-1}} + c, \quad n \neq 1 \\ & x^{-1} \text{ rule} & \int \frac{1}{x} dx = \ln|x| + c, \quad \int \frac{1}{ax+b} dx = \frac{1}{a} \ln|ax+b| + c \\ & \text{Exponential rule} & \int e^x dx = e^x + c \quad \int a^x dx = \frac{a^x}{\ln x} + c \\ & \text{Logarithm rule} & \int \ln x dx = x \left(\ln x - 1\right) + c \end{aligned}$$

11 Ground State Electron Configuration

This table shows the ground state electron configuration for the four rows of the periodic table:

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	\boldsymbol{Z}	Element	Configuration	
2 He (1s) ² $^{2}S_{0}$ 3 Li (He)(2s) $^{2}S_{1/2}$ 4 Be (He)(2s) ² (2p) $^{2}P_{1/2}$ 5 B (He)(2s) ² (2p) ² $^{3}P_{0}$ 6 C (He)(2s) ² (2p) ³ $^{4}S_{3/2}$ 8 O (He)(2s) ² (2p) ⁴ $^{3}P_{2}$ 9 F (He)(2s) ² (2p) ⁵ $^{2}P_{3/2}$ 10 Ne (He)(2s) ² (2p) ⁶ $^{1}S_{0}$ 11 Na (Ne)(3s) $^{2}S_{1/2}$ 12 Mg (Ne)(3s) ² $^{1}S_{0}$ 13 Al (Ne)(3s) ² (3p) $^{2}P_{1/2}$ 14 Si (Ne)(3s) ² (3p) $^{2}P_{1/2}$ 15 P (Ne)(3s) ² (3p) ³ $^{4}S_{3/2}$ 16 S (Ne)(3s) ² (3p) ³ $^{4}S_{3/2}$ 17 Cl (Ne)(3s) ² (3p) ³ $^{4}S_{3/2}$ 18 Ar (Ne)(3s) ² (3p) ⁵ $^{2}P_{3/2}$ 19 K (Ar)(4s) $^{2}S_{1/2}$ 20 Ca (Ar)(4s) ² $^{1}S_{0}$ 21 Sc (Ar)(4s) ² (3d) $^{2}S_{1/2}$ 22 Ti (Ar)(4s) ² (3d) $^{2}S_{1/2}$ 23 V (Ar)(4s) ² (3d) $^{3}S_{1/2}$ 24 Cr (Ar)(4s)(3d) ⁵ $^{7}S_{3}$ 25 Mn (Ar)(4s) ² (3d) ⁵ $^{6}S_{5/2}$ 26 Fe (Ar)(4s) ² (3d) ⁶ $^{5}D_{4}$ 27 Co (Ar)(4s) ² (3d) ⁶ $^{5}D_{4}$ 28 Ni (Ar)(4s) ² (3d) ⁸ $^{3}F_{4}$ 29 Cu (Ar)(4s)(3d) ¹⁰ $^{2}S_{1/2}$ 30 Zn (Ar)(4s) ² (3d) ¹⁰ (4p) $^{2}S_{1/2}$ 31 Ga (Ar)(4s) ² (3d) ¹⁰ (4p) $^{2}S_{1/2}$ 32 Ge (Ar)(4s) ² (3d) ¹⁰ (4p) $^{2}S_{1/2}$ 33 As (Ar)(4s) ² (3d) ¹⁰ (4p) $^{3}S_{2/2}$ 35 Br (Ar)(4s) ² (3d) ¹⁰ (4p) ⁵ $^{2}S_{1/2}$	1	H		$^{2}S_{1/2}$
3 Li $(He)(2s)$ ${}^2S_{1/2}$ 4 Be $(He)(2s)^2$ 1S_0 5 B $(He)(2s)^2(2p)$ ${}^2P_{1/2}$ 6 C $(He)(2s)^2(2p)^2$ 3P_0 7 N $(He)(2s)^2(2p)^3$ ${}^4S_{3/2}$ 8 O $(He)(2s)^2(2p)^4$ 3P_2 9 F $(He)(2s)^2(2p)^5$ ${}^2P_{3/2}$ 10 Ne $(He)(2s)^2(2p)^6$ 1S_0 11 Na $(Ne)(3s)$ ${}^2S_{1/2}$ 12 Mg $(Ne)(3s)^2$ 1S_0 13 Al $(Ne)(3s)^2(3p)$ ${}^2P_{1/2}$ 14 Si $(Ne)(3s)^2(3p)$ ${}^2P_{1/2}$ 15 P $(Ne)(3s)^2(3p)^3$ ${}^4S_{3/2}$ 16 S $(Ne)(3s)^2(3p)^3$ ${}^4S_{3/2}$ 17 Cl $(Ne)(3s)^2(3p)^3$ ${}^4S_{3/2}$ 18 Ar $(Ne)(3s)^2(3p)^6$ 1S_0 19 K $(Ar)(4s)$ ${}^2S_{1/2}$ 20 Ca $(Ar)(4s)^2$ 1S_0 21 Sc $(Ar)(4s)^2$ 1S_0 22 Ti $(Ar)(4s)^2(3d)$ ${}^2P_{3/2}$ 23 V $(Ar)(4s)^2(3d)$ 3P_2 24 Cr $(Ar)(4s)^2(3d)^3$ ${}^4F_{3/2}$ 25 Mn $(Ar)(4s)^2(3d)^5$ ${}^5S_{5/2}$ 26 Fe $(Ar)(4s)^2(3d)^5$ ${}^6S_{5/2}$ 27 Co $(Ar)(4s)^2(3d)^6$ 5D_4 28 Ni $(Ar)(4s)^2(3d)^6$ 5D_4 29 Cu $(Ar)(4s)^2(3d)^{10}$ ${}^2S_{1/2}$ 20 Ca $(Ar)(4s)^2(3d)^{10}$ ${}^2S_{1/2}$ 21 Sc $(Ar)(4s)^2(3d)^6$ 5D_4 22 Ti $(Ar)(4s)^2(3d)^6$ 5D_4 23 V $(Ar)(4s)^2(3d)^6$ ${}^5S_{5/2}$ 24 Cr $(Ar)(4s)^2(3d)^6$ ${}^5S_{5/2}$ 25 Mn $(Ar)(4s)^2(3d)^6$ ${}^5S_{5/2}$ 26 Fe $(Ar)(4s)^2(3d)^6$ ${}^5S_{1/2}$ 27 Co $(Ar)(4s)^2(3d)^6$ ${}^5S_{1/2}$ 28 Ni $(Ar)(4s)^2(3d)^6$ ${}^5S_{1/2}$ 29 Cu $(Ar)(4s)^2(3d)^{10}$ ${}^2S_{1/2}$ 30 Zn $(Ar)(4s)^2(3d)^{10}$ 1S_0 31 Ga $(Ar)(4s)^2(3d)^{10}$ 1S_0 32 Ge $(Ar)(4s)^2(3d)^{10}(4p)$ ${}^2P_{1/2}$ 33 As $(Ar)(4s)^2(3d)^{10}(4p)$ 3P_2 34 Se $(Ar)(4s)^2(3d)^{10}(4p)^4$ 3P_2 35 Br $(Ar)(4s)^2(3d)^{10}(4p)^5$ ${}^2P_{3/2}$	2	He	$(1s)^2$	-30
5 B $(\text{He})(2s)^2(2p)$ $^2P_{1/2}$ 6 C $(\text{He})(2s)^2(2p)^2$ 3P_0 7 N $(\text{He})(2s)^2(2p)^3$ $^4S_{3/2}$ 8 O $(\text{He})(2s)^2(2p)^4$ 3P_2 9 F $(\text{He})(2s)^2(2p)^6$ 1S_0 10 Ne $(\text{He})(2s)^2(2p)^6$ 1S_0 11 Na $(\text{Ne})(3s)$ $^2S_{1/2}$ 12 Mg $(\text{Ne})(3s)^2$ 1S_0 13 Al $(\text{Ne})(3s)^2$ 1S_0 14 Si $(\text{Ne})(3s)^2(3p)$ $^2P_{1/2}$ 15 P $(\text{Ne})(3s)^2(3p)^3$ $^4S_{3/2}$ 16 S $(\text{Ne})(3s)^2(3p)^3$ $^4S_{3/2}$ 17 Cl $(\text{Ne})(3s)^2(3p)^5$ $^2P_{3/2}$ 18 Ar $(\text{Ne})(3s)^2(3p)^5$ $^2P_{3/2}$ 19 K $(\text{Ar})(4s)$ $^2S_{1/2}$ 19 K $(\text{Ar})(4s)$ $^2S_{1/2}$ 20 Ca $(\text{Ar})(4s)^2$ 1S_0 21 Sc $(\text{Ar})(4s)^2(3d)$ $^2D_{3/2}$ 22 Ti $(\text{Ar})(4s)^2(3d)$ $^2D_{3/2}$ 23 V $(\text{Ar})(4s)^2(3d)^3$ $^4F_{3/2}$ 24 Cr $(\text{Ar})(4s)^2(3d)^5$ $^6S_{5/2}$ 25 Mn $(\text{Ar})(4s)^2(3d)^5$ $^6S_{5/2}$ 26 Fe $(\text{Ar})(4s)^2(3d)^5$ $^6S_{5/2}$ 27 Co $(\text{Ar})(4s)^2(3d)^5$ $^6S_{5/2}$ 28 Ni $(\text{Ar})(4s)^2(3d)^6$ 5D_4 29 Cu $(\text{Ar})(4s)^2(3d)^{10}$ $^2S_{1/2}$ 30 Zn $(\text{Ar})(4s)^2(3d)^{10}$ 1S_0 31 Ga $(\text{Ar})(4s)^2(3d)^{10}$ 1S_0 32 Ge $(\text{Ar})(4s)^2(3d)^{10}(4p)$ $^2P_{1/2}$ 33 As $(\text{Ar})(4s)^2(3d)^{10}(4p)$ 3P_2 34 Se $(\text{Ar})(4s)^2(3d)^{10}(4p)^3$ $^4S_{3/2}$ 35 Br $(\text{Ar})(4s)^2(3d)^{10}(4p)^5$ $^2P_{3/2}$	3	Li	(He)(2s)	$^{2}S_{1/2}$
5 B $(\text{He})(2s)^2(2p)$ ${}^2P_{1/2}$ 6 C $(\text{He})(2s)^2(2p)^2$ 3P_0 7 N $(\text{He})(2s)^2(2p)^3$ ${}^4S_{3/2}$ 8 O $(\text{He})(2s)^2(2p)^4$ 3P_2 9 F $(\text{He})(2s)^2(2p)^6$ 1S_0 10 Ne $(\text{He})(2s)^2(2p)^6$ 1S_0 11 Na $(\text{Ne})(3s)$ ${}^2S_{1/2}$ 12 Mg $(\text{Ne})(3s)^2$ 1S_0 13 Al $(\text{Ne})(3s)^2(3p)$ ${}^2P_{1/2}$ 14 Si $(\text{Ne})(3s)^2(3p)$ 3P_0 15 P $(\text{Ne})(3s)^2(3p)^3$ ${}^4S_{3/2}$ 16 S $(\text{Ne})(3s)^2(3p)^4$ 3P_2 17 Cl $(\text{Ne})(3s)^2(3p)^5$ ${}^2P_{3/2}$ 18 Ar $(\text{Ne})(3s)^2(3p)^6$ 1S_0 19 K $(\text{Ar})(4s)$ ${}^2S_{1/2}$ 20 Ca $(\text{Ar})(4s)^2$ 1S_0 21 Sc $(\text{Ar})(4s)^2$ 1S_0 22 Ti $(\text{Ar})(4s)^2(3d)$ ${}^2P_{3/2}$ 23 V $(\text{Ar})(4s)^2(3d)^3$ ${}^4F_{3/2}$ 24 Cr $(\text{Ar})(4s)^2(3d)^5$ ${}^6S_{5/2}$ 25 Mn $(\text{Ar})(4s)^2(3d)^5$ ${}^6S_{5/2}$ 26 Fe $(\text{Ar})(4s)^2(3d)^6$ 5D_4 27 Co $(\text{Ar})(4s)^2(3d)^6$ 5D_4 27 Co $(\text{Ar})(4s)^2(3d)^6$ 5D_4 28 Ni $(\text{Ar})(4s)^2(3d)^6$ 5D_4 29 Cu $(\text{Ar})(4s)^2(3d)^{10}$ ${}^2S_{1/2}$ 30 Zn $(\text{Ar})(4s)^2(3d)^{10}$ 1S_0 31 Ga $(\text{Ar})(4s)^2(3d)^{10}$ 1S_0 32 Ge $(\text{Ar})(4s)^2(3d)^{10}(4p)$ ${}^2P_{1/2}$ 33 As $(\text{Ar})(4s)^2(3d)^{10}(4p)$ 3P_2 34 Se $(\text{Ar})(4s)^2(3d)^{10}(4p)^4$ 3P_2 35 Br $(\text{Ar})(4s)^2(3d)^{10}(4p)^5$ ${}^2P_{3/2}$	4	Be	$(\text{He})(2s)^2$	-30
6 C $(He)(2s)^2(2p)^2$ 3P_0 7 N $(He)(2s)^2(2p)^3$ ${}^4S_{3/2}$ 8 O $(He)(2s)^2(2p)^4$ 3P_2 9 F $(He)(2s)^2(2p)^5$ ${}^2P_{3/2}$ 10 Ne $(He)(2s)^2(2p)^6$ 1S_0 11 Na $(Ne)(3s)$ ${}^2S_{1/2}$ 12 Mg $(Ne)(3s)^2$ 1S_0 13 Al $(Ne)(3s)^2(3p)$ ${}^2P_{1/2}$ 14 Si $(Ne)(3s)^2(3p)$ 3P_0 15 P $(Ne)(3s)^2(3p)^3$ ${}^4S_{3/2}$ 16 S $(Ne)(3s)^2(3p)^4$ 3P_2 17 Cl $(Ne)(3s)^2(3p)^5$ ${}^2P_{3/2}$ 18 Ar $(Ne)(3s)^2(3p)^5$ ${}^2P_{3/2}$ 19 K $(Ar)(4s)$ ${}^2S_{1/2}$ 20 Ca $(Ar)(4s)^2$ 1S_0 21 Sc $(Ar)(4s)^2(3d)$ ${}^2D_{3/2}$ 22 Ti $(Ar)(4s)^2(3d)$ ${}^2D_{3/2}$ 23 V $(Ar)(4s)^2(3d)^3$ ${}^4F_{3/2}$ 24 Cr $(Ar)(4s)^2(3d)^5$ ${}^6S_{5/2}$ 25 Mn $(Ar)(4s)^2(3d)^5$ ${}^6S_{5/2}$ 26 Fe $(Ar)(4s)^2(3d)^5$ ${}^6S_{5/2}$ 27 Co $(Ar)(4s)^2(3d)^5$ ${}^6S_{5/2}$ 28 Ni $(Ar)(4s)^2(3d)^6$ 5D_4 27 Co $(Ar)(4s)^2(3d)^6$ 5D_4 27 Co $(Ar)(4s)^2(3d)^6$ 5D_4 28 Ni $(Ar)(4s)^2(3d)^{10}$ ${}^2S_{1/2}$ 29 Cu $(Ar)(4s)^2(3d)^{10}$ ${}^2S_{1/2}$ 30 Zn $(Ar)(4s)^2(3d)^{10}$ 1S_0 31 Ga $(Ar)(4s)^2(3d)^{10}$ 1S_0 32 Ge $(Ar)(4s)^2(3d)^{10}(4p)$ ${}^2P_{1/2}$ 33 As $(Ar)(4s)^2(3d)^{10}(4p)$ 3P_0 34 Se $(Ar)(4s)^2(3d)^{10}(4p)^4$ 3P_2 35 Br $(Ar)(4s)^2(3d)^{10}(4p)^5$ ${}^2P_{3/2}$	5	В		$^{2}P_{1/2}$
7 N (He)(2s) ² (2p) ³ $^4S_{3/2}$ 8 O (He)(2s) ² (2p) ⁴ 3P_2 9 F (He)(2s) ² (2p) ⁵ $^2P_{3/2}$ 10 Ne (He)(2s) ² (2p) ⁶ 1S_0 11 Na (Ne)(3s) $^2S_{1/2}$ 12 Mg (Ne)(3s) ² 1S_0 13 Al (Ne)(3s) ² (3p) $^2P_{1/2}$ 14 Si (Ne)(3s) ² (3p) ² 3P_0 15 P (Ne)(3s) ² (3p) ³ $^4S_{3/2}$ 16 S (Ne)(3s) ² (3p) ⁴ 3P_2 17 Cl (Ne)(3s) ² (3p) ⁵ $^2P_{3/2}$ 18 Ar (Ne)(3s) ² (3p) ⁶ 1S_0 19 K (Ar)(4s) $^2S_{1/2}$ 20 Ca (Ar)(4s) ² 1S_0 21 Sc (Ar)(4s) ² (3d) $^2D_{3/2}$ 22 Ti (Ar)(4s) ² (3d) $^2D_{3/2}$ 23 V (Ar)(4s) ² (3d) 3F_2 24 Cr (Ar)(4s)(3d) ⁵ 7S_3 25 Mn (Ar)(4s) ² (3d) ⁵ $^6S_{5/2}$ 26 Fe (Ar)(4s) ² (3d) ⁵ $^6S_{5/2}$ 27 Co (Ar)(4s) ² (3d) ⁶ 5D_4 28 Ni (Ar)(4s) ² (3d) ⁸ 3F_4 29 Cu (Ar)(4s) ² (3d) ⁸ 3F_4 29 Cu (Ar)(4s) ² (3d) ⁸ 3F_4 29 Cu (Ar)(4s) ² (3d) ¹⁰ $^2S_{1/2}$ 30 Zn (Ar)(4s) ² (3d) ¹⁰ 1S_0 31 Ga (Ar)(4s) ² (3d) ¹⁰ (4p) $^2P_{1/2}$ 32 Ge (Ar)(4s) ² (3d) ¹⁰ (4p) $^2P_{1/2}$ 33 As (Ar)(4s) ² (3d) ¹⁰ (4p) 3P_2 34 Se (Ar)(4s) ² (3d) ¹⁰ (4p) 3P_2 35 Br (Ar)(4s) ² (3d) ¹⁰ (4p) 3P_2	6	C	$(\text{He})(2s)^2(2p)^2$	$^{3}P_{0}$
8 O (He)(2s) ² (2p) ⁴ ${}^{3}P_{2}$ 9 F (He)(2s) ² (2p) ⁵ ${}^{2}P_{3/2}$ 10 Ne (He)(2s) ² (2p) ⁶ ${}^{1}S_{0}$ 11 Na (Ne)(3s) ${}^{2}S_{1/2}$ 12 Mg (Ne)(3s) ² ${}^{3}P_{0}$ 13 Al (Ne)(3s) ² (3p) ${}^{2}P_{1/2}$ 14 Si (Ne)(3s) ² (3p) ${}^{2}P_{1/2}$ 15 P (Ne)(3s) ² (3p) ³ ${}^{4}S_{3/2}$ 16 S (Ne)(3s) ² (3p) ⁴ ${}^{3}P_{0}$ 17 Cl (Ne)(3s) ² (3p) ⁵ ${}^{2}P_{3/2}$ 18 Ar (Ne)(3s) ² (3p) ⁶ ${}^{1}S_{0}$ 19 K (Ar)(4s) ${}^{2}S_{1/2}$ 20 Ca (Ar)(4s) ² ${}^{3}P_{0}$ 21 Sc (Ar)(4s) ² ${}^{3}P_{0}$ 22 Ti (Ar)(4s) ² (3d) ${}^{2}D_{3/2}$ 23 V (Ar)(4s) ² (3d) ³ ${}^{4}F_{3/2}$ 24 Cr (Ar)(4s)(3d) ⁵ ${}^{7}S_{3}$ 25 Mn (Ar)(4s) ² (3d) ⁵ ${}^{6}S_{5/2}$ 26 Fe (Ar)(4s) ² (3d) ⁶ ${}^{5}D_{4}$ 27 Co (Ar)(4s) ² (3d) ⁶ ${}^{5}D_{4}$ 27 Co (Ar)(4s) ² (3d) ⁸ ${}^{3}F_{4}$ 29 Cu (Ar)(4s)(3d) ¹⁰ ${}^{2}S_{1/2}$ 30 Zn (Ar)(4s) ² (3d) ¹⁰ (4p) ${}^{2}S_{1/2}$ 31 Ga (Ar)(4s) ² (3d) ¹⁰ (4p) ${}^{2}P_{1/2}$ 32 Ge (Ar)(4s) ² (3d) ¹⁰ (4p) ${}^{2}P_{1/2}$ 33 As (Ar)(4s) ² (3d) ¹⁰ (4p) ${}^{3}P_{0}$ 34 Se (Ar)(4s) ² (3d) ¹⁰ (4p) ${}^{3}P_{2}$ 35 Br (Ar)(4s) ² (3d) ¹⁰ (4p) ⁵ ${}^{2}P_{3/2}$	7	N	$(\text{He})(2s)^2(2p)^3$	4S3/2
9 F $(He)(2s)^2(2p)^5$ ${}^2P_{3/2}$ 10 Ne $(He)(2s)^2(2p)^6$ 1S_0 11 Na $(Ne)(3s)$ ${}^2S_{1/2}$ 12 Mg $(Ne)(3s)^2$ 1S_0 13 Al $(Ne)(3s)^2(3p)$ ${}^2P_{1/2}$ 14 Si $(Ne)(3s)^2(3p)$ 3P_0 15 P $(Ne)(3s)^2(3p)^3$ ${}^4S_{3/2}$ 16 S $(Ne)(3s)^2(3p)^4$ 3P_2 17 Cl $(Ne)(3s)^2(3p)^5$ ${}^2P_{3/2}$ 18 Ar $(Ne)(3s)^2(3p)^6$ 1S_0 19 K $(Ar)(4s)$ ${}^2S_{1/2}$ 20 Ca $(Ar)(4s)^2$ 1S_0 21 Sc $(Ar)(4s)^2(3d)$ ${}^2D_{3/2}$ 22 Ti $(Ar)(4s)^2(3d)$ ${}^2D_{3/2}$ 23 V $(Ar)(4s)^2(3d)^3$ ${}^4F_{3/2}$ 24 Cr $(Ar)(4s)^2(3d)^5$ 7S_3 25 Mn $(Ar)(4s)^2(3d)^5$ 7S_3 26 Fe $(Ar)(4s)^2(3d)^7$ ${}^4F_{9/2}$ 27 Co $(Ar)(4s)^2(3d)^7$ ${}^4F_{9/2}$ 28 Ni $(Ar)(4s)^2(3d)^7$ ${}^4F_{9/2}$ 28 Ni $(Ar)(4s)^2(3d)^7$ ${}^4F_{9/2}$ 29 Cu $(Ar)(4s)^2(3d)^{10}$ ${}^2S_{1/2}$ 30 Zn $(Ar)(4s)^2(3d)^{10}$ 1S_0 31 Ga $(Ar)(4s)^2(3d)^{10}$ 1S_0 33 As $(Ar)(4s)^2(3d)^{10}(4p)$ ${}^2P_{1/2}$ 34 Se $(Ar)(4s)^2(3d)^{10}(4p)^3$ ${}^4S_{3/2}$ 35 Br $(Ar)(4s)^2(3d)^{10}(4p)^5$ ${}^2P_{3/2}$	8	O		$^{3}P_{2}$
10 Ne $(He)(2s)^2(2p)^6$ 1S_0 11 Na $(Ne)(3s)$ ${}^2S_{1/2}$ 12 Mg $(Ne)(3s)^2$ 1S_0 13 Al $(Ne)(3s)^2(3p)$ ${}^2P_{1/2}$ 14 Si $(Ne)(3s)^2(3p)^2$ 3P_0 15 P $(Ne)(3s)^2(3p)^3$ ${}^4S_{3/2}$ 16 S $(Ne)(3s)^2(3p)^4$ 3P_2 17 Cl $(Ne)(3s)^2(3p)^5$ ${}^2P_{3/2}$ 18 Ar $(Ne)(3s)^2(3p)^6$ 1S_0 19 K $(Ar)(4s)$ ${}^2S_{1/2}$ 20 Ca $(Ar)(4s)^2$ 1S_0 21 Sc $(Ar)(4s)^2$ 1S_0 22 Ti $(Ar)(4s)^2(3d)$ ${}^2P_{3/2}$ 23 V $(Ar)(4s)^2(3d)^3$ ${}^4F_{3/2}$ 24 Cr $(Ar)(4s)^2(3d)^5$ 7S_3 25 Mn $(Ar)(4s)^2(3d)^5$ ${}^6S_{5/2}$ 26 Fe $(Ar)(4s)^2(3d)^5$ ${}^6S_{5/2}$ 27 Co $(Ar)(4s)^2(3d)^6$ 5D_4 28 Ni $(Ar)(4s)^2(3d)^8$ 3F_4 29 Cu $(Ar)(4s)(3d)^{10}$ ${}^2S_{1/2}$ 30 Zn $(Ar)(4s)^2(3d)^{10}$ 1S_0 31 Ga $(Ar)(4s)^2(3d)^{10}$ 1S_0 33 As $(Ar)(4s)^2(3d)^{10}(4p)$ ${}^2P_{1/2}$ 34 Se $(Ar)(4s)^2(3d)^{10}(4p)^3$ ${}^4S_{3/2}$ 35 Br $(Ar)(4s)^2(3d)^{10}(4p)^5$ ${}^2P_{3/2}$	9	F	$(\text{He})(2s)^2(2p)^5$	2P212
11 Na (Ne)(3s) ${}^2S_{1/2}$ 12 Mg (Ne)(3s) ² 1S_0 13 Al (Ne)(3s) ² (3p) ${}^2P_{1/2}$ 14 Si (Ne)(3s) ² (3p) ³ ${}^4S_{3/2}$ 15 P (Ne)(3s) ² (3p) ⁴ 3P_2 16 S (Ne)(3s) ² (3p) ⁵ ${}^2P_{3/2}$ 17 Cl (Ne)(3s) ² (3p) ⁵ 1S_0 18 Ar (Ne)(3s) ² (3p) ⁶ 1S_0 19 K (Ar)(4s) ${}^2S_{1/2}$ 20 Ca (Ar)(4s) ² 1S_0 21 Sc (Ar)(4s) ² (3d) ${}^2D_{3/2}$ 22 Ti (Ar)(4s) ² (3d) 3F_2 23 V (Ar)(4s) ² (3d) 3F_2 24 Cr (Ar)(4s)(3d) ⁵ 7S_3 25 Mn (Ar)(4s) ² (3d) ⁵ ${}^6S_{5/2}$ 26 Fe (Ar)(4s) ² (3d) ⁵ ${}^6S_{5/2}$ 27 Co (Ar)(4s) ² (3d) ⁶ 5D_4 27 Co (Ar)(4s) ² (3d) ⁸ 3F_4 29 Cu (Ar)(4s)(3d) ¹⁰ ${}^2S_{1/2}$ 30 Zn (Ar)(4s) ² (3d) ¹⁰ 1S_0 31 Ga (Ar)(4s) ² (3d) ¹⁰ (4p) ${}^2P_{1/2}$ 32 Ge (Ar)(4s) ² (3d) ¹⁰ (4p) 3P_0 33 As (Ar)(4s) ² (3d) ¹⁰ (4p) 3P_0 35 Br (Ar)(4s) ² (3d) ¹⁰ (4p) 3P_2	10	Ne	$(\text{He})(2s)^2(2p)^6$	$^{1}S_{0}$
12 Mg (Ne)(3s) ² $^{1}S_{0}$ 13 Al (Ne)(3s) ² (3p) $^{2}P_{1/2}$ 14 Si (Ne)(3s) ² (3p) ² $^{3}P_{0}$ 15 P (Ne)(3s) ² (3p) ³ $^{4}S_{3/2}$ 16 S (Ne)(3s) ² (3p) ⁴ $^{3}P_{2}$ 17 Cl (Ne)(3s) ² (3p) ⁵ $^{2}P_{3/2}$ 18 Ar (Ne)(3s) ² (3p) ⁶ $^{1}S_{0}$ 19 K (Ar)(4s) $^{2}S_{1/2}$ 20 Ca (Ar)(4s) ² $^{1}S_{0}$ 21 Sc (Ar)(4s) ² $^{3}P_{2}$ 21 Sc (Ar)(4s) ² (3d) $^{2}D_{3/2}$ 22 Ti (Ar)(4s) ² (3d) $^{3}F_{2}$ 23 V (Ar)(4s) ² (3d) ³ $^{4}F_{3/2}$ 24 Cr (Ar)(4s)(3d) ⁵ $^{7}S_{3}$ 25 Mn (Ar)(4s) ² (3d) ⁵ $^{6}S_{5/2}$ 26 Fe (Ar)(4s) ² (3d) ⁶ $^{5}D_{4}$ 27 Co (Ar)(4s) ² (3d) ⁶ $^{5}D_{4}$ 27 Co (Ar)(4s) ² (3d) ⁸ $^{3}F_{4}$ 29 Cu (Ar)(4s)(3d) ¹⁰ $^{2}S_{1/2}$ 30 Zn (Ar)(4s) ² (3d) ¹⁰ $^{1}S_{0}$ 31 Ga (Ar)(4s) ² (3d) ¹⁰ (4p) $^{2}P_{1/2}$ 32 Ge (Ar)(4s) ² (3d) ¹⁰ (4p) $^{2}P_{1/2}$ 33 As (Ar)(4s) ² (3d) ¹⁰ (4p) $^{3}P_{0}$ 34 Se (Ar)(4s) ² (3d) ¹⁰ (4p) ⁵ $^{2}P_{3/2}$ 35 Br (Ar)(4s) ² (3d) ¹⁰ (4p) ⁵ $^{2}P_{3/2}$	11	Na		$^{2}S_{1/2}$
13 Al $(Ne)(3s)^2(3p)$ ${}^2P_{1/2}$ 14 Si $(Ne)(3s)^2(3p)^2$ 3P_0 15 P $(Ne)(3s)^2(3p)^3$ ${}^4S_{3/2}$ 16 S $(Ne)(3s)^2(3p)^4$ 3P_2 17 Cl $(Ne)(3s)^2(3p)^5$ ${}^2P_{3/2}$ 18 Ar $(Ne)(3s)^2(3p)^6$ 1S_0 19 K $(Ar)(4s)$ ${}^2S_{1/2}$ 20 Ca $(Ar)(4s)^2$ 1S_0 21 Sc $(Ar)(4s)^2(3d)$ ${}^2D_{3/2}$ 22 Ti $(Ar)(4s)^2(3d)^2$ 3F_2 23 V $(Ar)(4s)^2(3d)^3$ ${}^4F_{3/2}$ 24 Cr $(Ar)(4s)(3d)^5$ 7S_3 25 Mn $(Ar)(4s)^2(3d)^5$ ${}^6S_{5/2}$ 26 Fe $(Ar)(4s)^2(3d)^5$ ${}^6S_{5/2}$ 27 Co $(Ar)(4s)^2(3d)^6$ 5D_4 27 Co $(Ar)(4s)^2(3d)^6$ 5D_4 27 Co $(Ar)(4s)^2(3d)^6$ 5D_4 28 Ni $(Ar)(4s)^2(3d)^6$ 5D_4 29 Cu $(Ar)(4s)^2(3d)^{10}$ ${}^2S_{1/2}$ 30 Zn $(Ar)(4s)^2(3d)^{10}$ ${}^2S_{1/2}$ 30 Zn $(Ar)(4s)^2(3d)^{10}$ 1S_0 31 Ga $(Ar)(4s)^2(3d)^{10}(4p)$ ${}^2P_{1/2}$ 32 Ge $(Ar)(4s)^2(3d)^{10}(4p)$ 3P_0 33 As $(Ar)(4s)^2(3d)^{10}(4p)^3$ ${}^4S_{3/2}$ 34 Se $(Ar)(4s)^2(3d)^{10}(4p)^4$ 3P_2 35 Br $(Ar)(4s)^2(3d)^{10}(4p)^5$ ${}^2P_{3/2}$	12	Mg		$^{1}S_{0}$
14 Si $(Ne)(3s)^2(3p)^2$ 3P_0 15 P $(Ne)(3s)^2(3p)^3$ ${}^4S_{3/2}$ 16 S $(Ne)(3s)^2(3p)^4$ 3P_2 17 Cl $(Ne)(3s)^2(3p)^5$ ${}^2P_{3/2}$ 18 Ar $(Ne)(3s)^2(3p)^6$ 1S_0 19 K $(Ar)(4s)$ ${}^2S_{1/2}$ 20 Ca $(Ar)(4s)^2$ 1S_0 21 Sc $(Ar)(4s)^2(3d)$ ${}^2D_{3/2}$ 22 Ti $(Ar)(4s)^2(3d)^2$ 3F_2 23 V $(Ar)(4s)^2(3d)^3$ ${}^4F_{3/2}$ 24 Cr $(Ar)(4s)(3d)^5$ 7S_3 25 Mn $(Ar)(4s)^2(3d)^5$ ${}^6S_{5/2}$ 26 Fe $(Ar)(4s)^2(3d)^5$ ${}^6S_{5/2}$ 27 Co $(Ar)(4s)^2(3d)^6$ 5D_4 27 Co $(Ar)(4s)^2(3d)^6$ 5D_4 28 Ni $(Ar)(4s)^2(3d)^6$ 5D_4 29 Cu $(Ar)(4s)^2(3d)^8$ 3F_4 29 Cu $(Ar)(4s)^2(3d)^8$ 3F_4 29 Cu $(Ar)(4s)^2(3d)^{10}$ ${}^2S_{1/2}$ 30 Zn $(Ar)(4s)^2(3d)^{10}$ 1S_0 31 Ga $(Ar)(4s)^2(3d)^{10}(4p)$ ${}^2P_{1/2}$ 32 Ge $(Ar)(4s)^2(3d)^{10}(4p)$ 3P_0 33 As $(Ar)(4s)^2(3d)^{10}(4p)^3$ ${}^4S_{3/2}$ 34 Se $(Ar)(4s)^2(3d)^{10}(4p)^4$ 3P_2 35 Br $(Ar)(4s)^2(3d)^{10}(4p)^5$ ${}^2P_{3/2}$	13	Al	$(Ne)(3s)^2(3p)$	$^{2}P_{1/2}$
15 P $(Ne)(3s)^2(3p)^3$ ${}^4S_{3/2}$ 16 S $(Ne)(3s)^2(3p)^4$ 3P_2 17 Cl $(Ne)(3s)^2(3p)^5$ ${}^2P_{3/2}$ 18 Ar $(Ne)(3s)^2(3p)^6$ 1S_0 19 K $(Ar)(4s)$ ${}^2S_{1/2}$ 20 Ca $(Ar)(4s)^2$ 1S_0 21 Sc $(Ar)(4s)^2(3d)$ ${}^2D_{3/2}$ 22 Ti $(Ar)(4s)^2(3d)^2$ 3F_2 23 V $(Ar)(4s)^2(3d)^3$ ${}^4F_{3/2}$ 24 Cr $(Ar)(4s)(3d)^5$ 7S_3 25 Mn $(Ar)(4s)^2(3d)^5$ ${}^6S_{5/2}$ 26 Fe $(Ar)(4s)^2(3d)^5$ ${}^6S_{5/2}$ 27 Co $(Ar)(4s)^2(3d)^6$ 5D_4 27 Co $(Ar)(4s)^2(3d)^8$ 3F_4 29 Cu $(Ar)(4s)^2(3d)^8$ 3F_4 29 Cu $(Ar)(4s)^2(3d)^{10}$ ${}^2S_{1/2}$ 30 Zn $(Ar)(4s)^2(3d)^{10}$ 1S_0 31 Ga $(Ar)(4s)^2(3d)^{10}(4p)$ ${}^2P_{1/2}$ 32 Ge $(Ar)(4s)^2(3d)^{10}(4p)$ 3P_0 33 As $(Ar)(4s)^2(3d)^{10}(4p)^3$ ${}^4S_{3/2}$ 34 Se $(Ar)(4s)^2(3d)^{10}(4p)^4$ 3P_2 35 Br $(Ar)(4s)^2(3d)^{10}(4p)^5$ ${}^2P_{3/2}$	14	Si	$(\text{Ne})(3s)^2(3p)^2$	$^{3}P_{0}$
16 S $(Ne)(3s)^2(3p)^4$ ${}^{3}P_2$ 17 C1 $(Ne)(3s)^2(3p)^5$ ${}^{2}P_{3/2}$ 18 Ar $(Ne)(3s)^2(3p)^6$ ${}^{1}S_0$ 19 K $(Ar)(4s)$ ${}^{2}S_{1/2}$ 20 Ca $(Ar)(4s)^2$ ${}^{1}S_0$ 21 Sc $(Ar)(4s)^2(3d)$ ${}^{2}D_{3/2}$ 22 Ti $(Ar)(4s)^2(3d)^3$ ${}^{4}F_{3/2}$ 23 V $(Ar)(4s)^2(3d)^3$ ${}^{4}F_{3/2}$ 24 Cr $(Ar)(4s)(3d)^5$ ${}^{7}S_3$ 25 Mn $(Ar)(4s)^2(3d)^5$ ${}^{6}S_{5/2}$ 26 Fe $(Ar)(4s)^2(3d)^5$ ${}^{6}S_{5/2}$ 27 Co $(Ar)(4s)^2(3d)^7$ ${}^{4}F_{9/2}$ 28 Ni $(Ar)(4s)^2(3d)^7$ ${}^{4}F_{9/2}$ 28 Ni $(Ar)(4s)^2(3d)^8$ ${}^{3}F_4$ 29 Cu $(Ar)(4s)^2(3d)^{10}$ ${}^{2}S_{1/2}$ 30 Zn $(Ar)(4s)^2(3d)^{10}$ ${}^{1}S_0$ 31 Ga $(Ar)(4s)^2(3d)^{10}(4p)$ ${}^{2}P_{1/2}$ 32 Ge $(Ar)(4s)^2(3d)^{10}(4p)^2$ ${}^{3}P_0$ 33 As $(Ar)(4s)^2(3d)^{10}(4p)^3$ ${}^{4}S_{3/2}$ 34 Se $(Ar)(4s)^2(3d)^{10}(4p)^4$ ${}^{3}P_2$ 35 Br $(Ar)(4s)^2(3d)^{10}(4p)^5$ ${}^{2}P_{3/2}$		P	$(Ne)(3s)^2(3p)^3$	4S3/2
17 Cl $(Ne)(3s)^2(3p)^5$ ${}^2P_{3/2}$ 18 Ar $(Ne)(3s)^2(3p)^6$ 1S_0 19 K $(Ar)(4s)$ ${}^2S_{1/2}$ 20 Ca $(Ar)(4s)^2$ 1S_0 21 Sc $(Ar)(4s)^2(3d)$ ${}^2D_{3/2}$ 22 Ti $(Ar)(4s)^2(3d)^2$ 3F_2 23 V $(Ar)(4s)^2(3d)^3$ ${}^4F_{3/2}$ 24 Cr $(Ar)(4s)(3d)^5$ 7S_3 25 Mn $(Ar)(4s)^2(3d)^5$ ${}^6S_{5/2}$ 26 Fe $(Ar)(4s)^2(3d)^5$ ${}^6S_{5/2}$ 27 Co $(Ar)(4s)^2(3d)^7$ ${}^4F_{9/2}$ 28 Ni $(Ar)(4s)^2(3d)^7$ ${}^4F_{9/2}$ 28 Ni $(Ar)(4s)^2(3d)^8$ 3F_4 29 Cu $(Ar)(4s)^2(3d)^{10}$ ${}^2S_{1/2}$ 30 Zn $(Ar)(4s)^2(3d)^{10}$ 1S_0 31 Ga $(Ar)(4s)^2(3d)^{10}(4p)$ ${}^2P_{1/2}$ 32 Ge $(Ar)(4s)^2(3d)^{10}(4p)^2$ 3P_0 33 As $(Ar)(4s)^2(3d)^{10}(4p)^3$ ${}^4S_{3/2}$ 34 Se $(Ar)(4s)^2(3d)^{10}(4p)^4$ 3P_2 35 Br $(Ar)(4s)^2(3d)^{10}(4p)^5$ ${}^2P_{3/2}$	16	S	$(Ne)(3s)^2(3p)^4$	$^{3}P_{2}$
18 Ar $(Ne)(3s)^2(3p)^6$ 1S_0 19 K $(Ar)(4s)$ ${}^2S_{1/2}$ 20 Ca $(Ar)(4s)^2$ 1S_0 21 Sc $(Ar)(4s)^2(3d)$ ${}^2D_{3/2}$ 22 Ti $(Ar)(4s)^2(3d)^2$ 3F_2 23 V $(Ar)(4s)^2(3d)^3$ ${}^4F_{3/2}$ 24 Cr $(Ar)(4s)(3d)^5$ 7S_3 25 Mn $(Ar)(4s)^2(3d)^5$ ${}^6S_{5/2}$ 26 Fe $(Ar)(4s)^2(3d)^5$ ${}^6S_{5/2}$ 27 Co $(Ar)(4s)^2(3d)^6$ 5D_4 27 Co $(Ar)(4s)^2(3d)^7$ ${}^4F_{9/2}$ 28 Ni $(Ar)(4s)^2(3d)^8$ 3F_4 29 Cu $(Ar)(4s)(3d)^{10}$ ${}^2S_{1/2}$ 30 Zn $(Ar)(4s)^2(3d)^{10}$ 1S_0 31 Ga $(Ar)(4s)^2(3d)^{10}(4p)$ ${}^2P_{1/2}$ 32 Ge $(Ar)(4s)^2(3d)^{10}(4p)^2$ 3P_0 33 As $(Ar)(4s)^2(3d)^{10}(4p)^3$ ${}^4S_{3/2}$ 34 Se $(Ar)(4s)^2(3d)^{10}(4p)^4$ 3P_2 35 Br $(Ar)(4s)^2(3d)^{10}(4p)^5$ ${}^2P_{3/2}$	17	Cl	$(\text{Ne})(3s)^2(3p)^5$	2P3/2
19 K $(Ar)(4s)$ ${}^2S_{1/2}$ 20 Ca $(Ar)(4s)^2$ 1S_0 21 Sc $(Ar)(4s)^2(3d)$ ${}^2D_{3/2}$ 22 Ti $(Ar)(4s)^2(3d)^2$ 3F_2 23 V $(Ar)(4s)^2(3d)^3$ ${}^4F_{3/2}$ 24 Cr $(Ar)(4s)(3d)^5$ 7S_3 25 Mn $(Ar)(4s)^2(3d)^5$ ${}^6S_{5/2}$ 26 Fe $(Ar)(4s)^2(3d)^6$ 5D_4 27 Co $(Ar)(4s)^2(3d)^6$ 5D_4 28 Ni $(Ar)(4s)^2(3d)^8$ 3F_4 29 Cu $(Ar)(4s)(3d)^{10}$ ${}^2S_{1/2}$ 30 Zn $(Ar)(4s)^2(3d)^{10}$ 1S_0 31 Ga $(Ar)(4s)^2(3d)^{10}(4p)$ ${}^2P_{1/2}$ 32 Ge $(Ar)(4s)^2(3d)^{10}(4p)^2$ 3P_0 33 As $(Ar)(4s)^2(3d)^{10}(4p)^3$ ${}^4S_{3/2}$ 34 Se $(Ar)(4s)^2(3d)^{10}(4p)^4$ 3P_2 35 Br $(Ar)(4s)^2(3d)^{10}(4p)^5$ ${}^2P_{3/2}$		Ar		$^{1}S_{0}$
20 Ca $(Ar)(4s)^2$ 1S_0 21 Sc $(Ar)(4s)^2(3d)$ $^2D_{3/2}$ 22 Ti $(Ar)(4s)^2(3d)^2$ 3F_2 23 V $(Ar)(4s)^2(3d)^3$ $^4F_{3/2}$ 24 Cr $(Ar)(4s)(3d)^5$ 7S_3 25 Mn $(Ar)(4s)^2(3d)^5$ $^6S_{5/2}$ 26 Fe $(Ar)(4s)^2(3d)^6$ 5D_4 27 Co $(Ar)(4s)^2(3d)^6$ 5D_4 28 Ni $(Ar)(4s)^2(3d)^8$ 3F_4 29 Cu $(Ar)(4s)^3(3d)^8$ 3F_4 29 Cu $(Ar)(4s)^3(3d)^8$ $^2S_{1/2}$ 30 Zn $(Ar)(4s)^3(3d)^{10}$ $^2S_{1/2}$ 31 Ga $(Ar)(4s)^2(3d)^{10}(4p)$ $^2P_{1/2}$ 32 Ge $(Ar)(4s)^2(3d)^{10}(4p)$ 3P_0 33 As $(Ar)(4s)^2(3d)^{10}(4p)^3$ $^4S_{3/2}$ 34 Se $(Ar)(4s)^2(3d)^{10}(4p)^4$ 3P_2 35 Br $(Ar)(4s)^2(3d)^{10}(4p)^5$ $^2P_{3/2}$	19	K		$^{2}S_{1D}$
21 Sc $(Ar)(4s)^2(3d)$ $^2D_{3/2}$ 22 Ti $(Ar)(4s)^2(3d)^2$ 3F_2 23 V $(Ar)(4s)^2(3d)^3$ $^4F_{3/2}$ 24 Cr $(Ar)(4s)(3d)^5$ 7S_3 25 Mn $(Ar)(4s)^2(3d)^5$ $^6S_{5/2}$ 26 Fe $(Ar)(4s)^2(3d)^6$ 5D_4 27 Co $(Ar)(4s)^2(3d)^7$ $^4F_{9/2}$ 28 Ni $(Ar)(4s)^2(3d)^8$ 3F_4 29 Cu $(Ar)(4s)(3d)^{10}$ $^2S_{1/2}$ 30 Zn $(Ar)(4s)^2(3d)^{10}$ 1S_0 31 Ga $(Ar)(4s)^2(3d)^{10}(4p)$ $^2P_{1/2}$ 32 Ge $(Ar)(4s)^2(3d)^{10}(4p)$ 3P_0 33 As $(Ar)(4s)^2(3d)^{10}(4p)^3$ $^4S_{3/2}$ 34 Se $(Ar)(4s)^2(3d)^{10}(4p)^4$ 3P_2 35 Br $(Ar)(4s)^2(3d)^{10}(4p)^5$ $^2P_{3/2}$	20	Ca		$^{1}S_{0}$
22 Ti $(Ar)(4s)^2(3d)^2$ 3F_2 23 V $(Ar)(4s)^2(3d)^3$ ${}^4F_{3/2}$ 24 Cr $(Ar)(4s)(3d)^5$ 7S_3 25 Mn $(Ar)(4s)^2(3d)^5$ ${}^6S_{5/2}$ 26 Fe $(Ar)(4s)^2(3d)^6$ 5D_4 27 Co $(Ar)(4s)^2(3d)^7$ ${}^4F_{9/2}$ 28 Ni $(Ar)(4s)^2(3d)^8$ 3F_4 29 Cu $(Ar)(4s)(3d)^{10}$ ${}^2S_{1/2}$ 30 Zn $(Ar)(4s)^2(3d)^{10}$ 1S_0 31 Ga $(Ar)(4s)^2(3d)^{10}(4p)$ ${}^2P_{1/2}$ 32 Ge $(Ar)(4s)^2(3d)^{10}(4p)$ 3P_0 33 As $(Ar)(4s)^2(3d)^{10}(4p)^3$ ${}^4S_{3/2}$ 34 Se $(Ar)(4s)^2(3d)^{10}(4p)^4$ 3P_2 35 Br $(Ar)(4s)^2(3d)^{10}(4p)^5$ ${}^2P_{3/2}$	21	Sc	$(Ar)(4s)^2(3d)$	$^{2}D_{3/2}$
23 V $(Ar)(4s)^2(3d)^3$ ${}^4F_{3/2}$ 24 Cr $(Ar)(4s)(3d)^5$ 7S_3 25 Mn $(Ar)(4s)^2(3d)^5$ ${}^6S_{5/2}$ 26 Fe $(Ar)(4s)^2(3d)^6$ 5D_4 27 Co $(Ar)(4s)^2(3d)^7$ ${}^4F_{9/2}$ 28 Ni $(Ar)(4s)^2(3d)^8$ 3F_4 29 Cu $(Ar)(4s)(3d)^{10}$ ${}^2S_{1/2}$ 30 Zn $(Ar)(4s)^2(3d)^{10}$ 1S_0 31 Ga $(Ar)(4s)^2(3d)^{10}(4p)$ ${}^2P_{1/2}$ 32 Ge $(Ar)(4s)^2(3d)^{10}(4p)$ 3P_0 33 As $(Ar)(4s)^2(3d)^{10}(4p)^3$ ${}^4S_{3/2}$ 34 Se $(Ar)(4s)^2(3d)^{10}(4p)^4$ 3P_2 35 Br $(Ar)(4s)^2(3d)^{10}(4p)^5$ ${}^2P_{3/2}$	22	Ti	$(Ar)(4s)^2(3d)^2$	$^{5}F_{2}$
24 Cr $(Ar)(4s)(3d)^3$ ${}^{1}S_3$ 25 Mn $(Ar)(4s)^2(3d)^5$ ${}^{6}S_{5/2}$ 26 Fe $(Ar)(4s)^2(3d)^6$ ${}^{5}D_4$ 27 Co $(Ar)(4s)^2(3d)^7$ ${}^{4}F_{9/2}$ 28 Ni $(Ar)(4s)^2(3d)^8$ ${}^{3}F_4$ 29 Cu $(Ar)(4s)(3d)^{10}$ ${}^{2}S_{1/2}$ 30 Zn $(Ar)(4s)^2(3d)^{10}$ ${}^{1}S_0$ 31 Ga $(Ar)(4s)^2(3d)^{10}(4p)$ ${}^{2}P_{1/2}$ 32 Ge $(Ar)(4s)^2(3d)^{10}(4p)^2$ ${}^{3}P_0$ 33 As $(Ar)(4s)^2(3d)^{10}(4p)^3$ ${}^{4}S_{3/2}$ 34 Se $(Ar)(4s)^2(3d)^{10}(4p)^4$ ${}^{3}P_2$ 35 Br $(Ar)(4s)^2(3d)^{10}(4p)^5$ ${}^{2}P_{3/2}$	23	V	$(Ar)(4s)^2(3d)^3$	$^{4}F_{3/2}$
25 Mn $(Ar)(4s)^2(3d)^5$ ${}^6S_{5/2}$ 26 Fe $(Ar)(4s)^2(3d)^6$ 5D_4 27 Co $(Ar)(4s)^2(3d)^7$ ${}^4F_{9/2}$ 28 Ni $(Ar)(4s)^2(3d)^8$ 3F_4 29 Cu $(Ar)(4s)(3d)^{10}$ ${}^2S_{1/2}$ 30 Zn $(Ar)(4s)^2(3d)^{10}$ 1S_0 31 Ga $(Ar)(4s)^2(3d)^{10}(4p)$ ${}^2P_{1/2}$ 32 Ge $(Ar)(4s)^2(3d)^{10}(4p)^2$ 3P_0 33 As $(Ar)(4s)^2(3d)^{10}(4p)^3$ ${}^4S_{3/2}$ 34 Se $(Ar)(4s)^2(3d)^{10}(4p)^4$ 3P_2 35 Br $(Ar)(4s)^2(3d)^{10}(4p)^5$ ${}^2P_{3/2}$	24	Cr	$(Ar)(4s)(3d)^5$	S_3
26 Fe $(Ar)(4s)^2(3d)^0$ 3D_4 27 Co $(Ar)(4s)^2(3d)^7$ ${}^4F_{9/2}$ 28 Ni $(Ar)(4s)^2(3d)^8$ 3F_4 29 Cu $(Ar)(4s)(3d)^{10}$ ${}^2S_{1/2}$ 30 Zn $(Ar)(4s)^2(3d)^{10}$ 1S_0 31 Ga $(Ar)(4s)^2(3d)^{10}(4p)$ ${}^2P_{1/2}$ 32 Ge $(Ar)(4s)^2(3d)^{10}(4p)^2$ 3P_0 33 As $(Ar)(4s)^2(3d)^{10}(4p)^3$ ${}^4S_{3/2}$ 34 Se $(Ar)(4s)^2(3d)^{10}(4p)^4$ 3P_2 35 Br $(Ar)(4s)^2(3d)^{10}(4p)^5$ ${}^2P_{3/2}$		Mn	$(Ar)(4s)^2(3d)^5$	6S5/2
27 Co $(Ar)(4s)^2(3d)^7$ ${}^4F_{9/2}$ 28 Ni $(Ar)(4s)^2(3d)^8$ 3F_4 29 Cu $(Ar)(4s)(3d)^{10}$ ${}^2S_{1/2}$ 30 Zn $(Ar)(4s)^2(3d)^{10}$ 1S_0 31 Ga $(Ar)(4s)^2(3d)^{10}(4p)$ ${}^2P_{1/2}$ 32 Ge $(Ar)(4s)^2(3d)^{10}(4p)^2$ 3P_0 33 As $(Ar)(4s)^2(3d)^{10}(4p)^3$ ${}^4S_{3/2}$ 34 Se $(Ar)(4s)^2(3d)^{10}(4p)^4$ 3P_2 35 Br $(Ar)(4s)^2(3d)^{10}(4p)^5$ ${}^2P_{3/2}$	26			$^{3}D_{4}$
28 Ni $(Ar)(4s)^2(3d)^8$ 3F_4 29 Cu $(Ar)(4s)(3d)^{10}$ ${}^2S_{1/2}$ 30 Zn $(Ar)(4s)^2(3d)^{10}$ 1S_0 31 Ga $(Ar)(4s)^2(3d)^{10}(4p)$ ${}^2P_{1/2}$ 32 Ge $(Ar)(4s)^2(3d)^{10}(4p)^2$ 3P_0 33 As $(Ar)(4s)^2(3d)^{10}(4p)^3$ ${}^4S_{3/2}$ 34 Se $(Ar)(4s)^2(3d)^{10}(4p)^4$ 3P_2 35 Br $(Ar)(4s)^2(3d)^{10}(4p)^5$ ${}^2P_{3/2}$		Co	$(Ar)(4s)^2(3d)^7$	$^{4}F_{9/2}$
29 Cu $(Ar)(4s)(3d)^{10}$ ${}^2S_{1/2}$ 30 Zn $(Ar)(4s)^2(3d)^{10}$ 1S_0 31 Ga $(Ar)(4s)^2(3d)^{10}(4p)$ ${}^2P_{1/2}$ 32 Ge $(Ar)(4s)^2(3d)^{10}(4p)^2$ 3P_0 33 As $(Ar)(4s)^2(3d)^{10}(4p)^3$ ${}^4S_{3/2}$ 34 Se $(Ar)(4s)^2(3d)^{10}(4p)^4$ 3P_2 35 Br $(Ar)(4s)^2(3d)^{10}(4p)^5$ ${}^2P_{3/2}$				3F_4
30 Zn $(Ar)(4s)^2(3d)^{10}$ ${}^{1}S_0$ 31 Ga $(Ar)(4s)^2(3d)^{10}(4p)$ ${}^{2}P_{1/2}$ 32 Ge $(Ar)(4s)^2(3d)^{10}(4p)^2$ ${}^{3}P_0$ 33 As $(Ar)(4s)^2(3d)^{10}(4p)^3$ ${}^{4}S_{3/2}$ 34 Se $(Ar)(4s)^2(3d)^{10}(4p)^4$ ${}^{3}P_2$ 35 Br $(Ar)(4s)^2(3d)^{10}(4p)^5$ ${}^{2}P_{3/2}$	29			$^{2}S_{1/2}$
32 Ge $(Ar)(4s)^2(3d)^{10}(4p)^2$ 3P_0 33 As $(Ar)(4s)^2(3d)^{10}(4p)^3$ ${}^4S_{3/2}$ 34 Se $(Ar)(4s)^2(3d)^{10}(4p)^4$ 3P_2 35 Br $(Ar)(4s)^2(3d)^{10}(4p)^5$ ${}^2P_{3/2}$	30			$^{1}S_{0}$
32 Ge $(Ar)(4s)^2(3d)^{10}(4p)^2$ 3P_0 33 As $(Ar)(4s)^2(3d)^{10}(4p)^3$ ${}^4S_{3/2}$ 34 Se $(Ar)(4s)^2(3d)^{10}(4p)^4$ 3P_2 35 Br $(Ar)(4s)^2(3d)^{10}(4p)^5$ ${}^2P_{3/2}$				$^{2}P_{1/2}$
33 As $(Ar)(4s)^2(3d)^{10}(4p)^3$ ${}^4S_{3/2}$ 34 Se $(Ar)(4s)^2(3d)^{10}(4p)^4$ 3P_2 35 Br $(Ar)(4s)^2(3d)^{10}(4p)^5$ ${}^2P_{3/2}$	32			$^{3}P_{0}$
34 Se $(Ar)(4s)^2(3d)^{10}(4p)^4$ 3P_2 35 Br $(Ar)(4s)^2(3d)^{10}(4p)^5$ ${}^2P_{3D}$				4S312
35 Br $(Ar)(4s)^2(3d)^{10}(4p)^5 {}^2P_{3p}$			$(Ar)(4s)^2(3d)^{10}(4p)^4$	P_2
36 Kr $(Ar)(4s)^2(3d)^{10}(4p)^6$ 1S_0			$(Ar)(4s)^2(3d)^{10}(4p)^5$	$^{2}P_{3/2}$
	36	Kr	$(Ar)(4s)^2(3d)^{10}(4p)^6$	$^{1}S_{0}$

Ω

12 Periodic Table of the Elements

1 2.20 1s Hydrogen 1.00784- 1.00811																	Helium 4.002602(2)
${\overset{0.98}{\text{Li}}}_{\text{1}}^{2s}$	$\overset{\text{4}}{\underset{\text{Beryllium}}{\text{Beryllium}}} \overset{\text{2}s}{\underset{\text{9.0121831(5)}}{\text{Beryllium}}}$		$egin{array}{cccc} \mathbf{z} & & & & & & & \\ & \mathbf{S} \mathbf{y} & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & & $		nic number; ene mbol, Name = e							$\overset{5}{\overset{2.04}{\text{Boron}}} \overset{2p}{\overset{\text{Boron}}{\text{10.806-10.821}}}$	Carbon 12.0096- 12.0116	7 3.04 2p Nitrogen 14.00643- 14.00728	8 <u>3.44</u> 2p Oxygen 15.99903- 15.99977	9 3.98 2p F sluorine 18.998403163(6)	$\overset{10}{\overset{\mathrm{Neon}}{\overset{\mathrm{Neon}}{\overset{\mathrm{20.1797(6)}}{\overset{\mathrm{Neon}}{\overset{\mathrm{20.1797(6)}}{\overset{\mathrm{Neon}}{\overset{\mathrm{Neo}}{\overset{\mathrm{Neon}}{\overset{\mathrm{Neon}}{\overset{\mathrm{Neon}}{\overset{\mathrm{Neon}}{\overset{\mathrm{Neon}}{\overset{\mathrm{Neon}}{\overset{\mathrm{Neon}}{\overset{\mathrm{Neon}}{\overset{\mathrm{Neon}}{\overset{\mathrm{Neon}}{\overset{\mathrm{Neon}}{\overset{\mathrm{Neon}}{\overset{\mathrm{Neo}}{\overset{\mathrm{Neo}}{\overset{\mathrm{Neo}}{\overset{\mathrm{Neo}}{\overset{\mathrm{Neo}}{\overset{\mathrm{Neo}}{\overset{\mathrm{Neo}}}{\overset{\mathrm{Neo}}{\overset{\mathrm{Neo}}{\overset{\mathrm{Neo}}{\overset{\mathrm{Neo}}{\overset{\mathrm{Neo}}{\overset{\mathrm{Neo}}{\overset{\mathrm{Neo}}{\overset{\mathrm{Neo}}{\overset{\mathrm{Neo}}{\overset{\mathrm{Neo}}}{\overset{\mathrm{Neo}}{\overset{\mathrm{Neo}}{\overset{\mathrm{Neo}}{\overset{\mathrm{Neo}}{\overset{\mathrm{Neo}}{\overset{\mathrm{Neo}}{\overset{\mathrm{Neo}}{\overset{\mathrm{Neo}}{\overset{\mathrm{Neo}}}{\overset{\mathrm{Neo}}{\overset{\mathrm{Neo}}}{\overset{\mathrm{Neo}}}{\overset{\mathrm{Neo}}{\overset{\mathrm{Neo}}{\overset{\mathrm{Neo}}}}{\overset{\mathrm{Neo}}}}{\overset{\mathrm{Neo}}}{\overset{\mathrm{Neo}}}{\overset{\mathrm{Neo}}}}{\overset{\mathrm{Neo}}}{\overset{\mathrm{Neo}}}}{\overset{\mathrm{Neo}}}{\overset{\mathrm{Neo}}}{\overset{\mathrm{Neo}}}}$
${\displaystyle \mathop{Na}_{\text{Sodium}}^{11}}_{22.98976928(2)}^{0.93}$	${\stackrel{12}{\rm Mg}}_{{\stackrel{\rm Magnesium}{24.304-24.307}}}$											13 <u>1.61</u> 3p Al Aluminium 26.9815385(7)	14 <u>1.90</u> 3p Si Silicon 28.084–28.086	15 <u>2.19</u> 3p Phosphorus 30.973761998(5)	16 <u>2.58</u> 3p Sulphur 32.059–32.076	17 3.16 3p Chlorine 35.446-35.457	18 3p Ar Argon 39.948(1)
$\mathbf{K}^{0.82} \overset{0.82}{\mathbf{K}} \overset{4s}{}_{\text{Potassium}}$ $\overset{9.0983(1)}{}_{\text{39.0983(1)}}$	$\overset{20}{\overset{1.00}{\overset{1.00}{\overset{1}{\overset{1}{\overset{1}{\overset{1}{\overset{1}{\overset{1}{\overset{1}{\overset$	21 1.36 3d Sc Scandium 44.955908(5)	22 1.54 3d Ti Titanium 47.867(1)	23 <u>1.63</u> 3 <i>d</i> Vanadium 50.9415(1)	24 Cr Chromium 51.9961(6)	$\mathop{\overline{\mathrm{Mn}}}_{\text{Manganese}}^{25} \mathop{\overset{1.55}{\longrightarrow}}_{3d}$ $\mathrm{Manganese}_{54.938044(3)}$	Fe Iron 55.845(2)	27 <u>1.88</u> 3 <i>d</i> Co Cobalt 58.933194(4)	28 1.91 3 <i>d</i> Nickel 58.6934(4)	$\overset{29}{\overset{1.90}{\text{Cu}}} \overset{3d^*}{\overset{\text{Copper}}{\overset{\text{Copper}}{\text{63.546(3)}}}}$	30 1.65 3d Zn Zinc 65.38(2)	31 <u>1.81</u> 4p Gallium 69.723(1)	Germanium 72.630(8)	33 <u>2.18</u> 4p AS Arsenic 74.921595(6)	34 <u>2.55</u> 4p Se Selenium 78.971(8)	35 2.96 4p Br Bromine 79.901–79.907	36 3.00 4p Krypton 83.798(2)
$\mathbf{Rb}^{37 \underline{0.82} 5s}_{\mathbf{Rubidium}}$ $\mathbf{85.4678(3)}$	38 <u>0.95</u> 5s Sr Strontium 87.62(1)	39 <u>1.22</u> 4 <i>d</i> Yttrium 88.90584(2)	40 1.33 4d Zr Zirconium 91.224(2)	11 1.6 4d* Nb Niobium 92.90637(2)	42 2.16 4d* Mo Molybdenum 95.95(1)	43 1.9 4d Tc Technetium (98)	44 <u>2.2</u> 4d* Ru Ruthenium 101.07(2)	45 2.28 4d* Rh Rhodium 102.90550(2)	$\overset{46}{\overset{2.20}{\mathbf{Pd}}}\overset{4d^*}{\mathbf{Pd}}_{\overset{\mathrm{Palladium}}{106.42(1)}}$	47 <u>1.93</u> 4 <i>d*</i> Ag Silver 107.8682(2)	48 <u>1.69</u> 4 <i>d</i> Cd Cadmium 112.414(4)	In Indium 114.818(1)	Sn Tin 118.710(7)	51 <u>2.05</u> 5p Sb Antimony 121.760(1)	$\overset{52}{\overset{2.1}{\text{Te}}}\overset{5p}{\overset{\text{Tellurium}}{\overset{127.60(3)}{}}}$	53 <u>2.66</u> 5 <i>p</i> I Iodine 126.90447(3)	${\overset{{\bf 54}}{{f Xe}}}_{\overset{{\bf 2.60}}{{f Xe}}}^{5p$
$ \begin{array}{ccc} 55 & \underline{0.79} & 6s \\ \mathbf{CS} \\ \text{Cesium} \\ 132.90545196(6) \end{array} $	$\overset{56}{\overset{0.89}{\overset{0.89}{\overset{6s}{\overset{6s}{\overset{0}{\overset{0}{\overset{0}{\overset{0}{\overset{0}{\overset{0}{\overset{0}{$	57-71 * Lanthanides	72 <u>1.3</u> 5 <i>d</i> Halfnium 178.49(2)	73 <u>1.5</u> 5 <i>d</i> Ta Tantalum 180.94788(2)	74 <u>2.36</u> 5 <i>d</i> Tungsten 183.84(1)	75 1.9 5 <i>d</i> Re Rhenium 186.207(1)	76 <u>2.2</u> 5 <i>d</i> OS Osmium 190.23(3)	77 <u>2.20</u> 5 <i>d</i> Ir Iridium 192.217(3)	78 2.28 5d* Pt Platinum 195.084(9)	79 <u>2.54</u> 5 <i>d*</i> Au Gold 196.966569(5)	80 2.00 5d Hg Mercury 200.592(3)	Thallium 204.382- 204.385	$\mathop{\mathbf{Pb}}_{\text{Lead}}^{82}\mathop{\mathbf{Pb}}_{207.2(1)}^{6p}$	83 <u>2.02</u> 6 <i>p</i> Bi Bismuth 208.98040(1)	84 <u>2.0</u> 6 <i>p</i> Po Polonium (209)	85 <u>2.2</u> 6 <i>p</i> At Astatine (210)	$\overset{86}{\overset{2.2}{\overset{1}{\overset{1}{\overset{1}{\overset{1}{\overset{1}{\overset{1}{\overset{1}{$
$\Pr^{\textbf{87} \underline{0.7} 7s}_{\text{Francium}}$	$\overset{88}{\overset{0.9}{{\mathbf{Radium}}}}\overset{7s}{{{\mathbf{Radium}}}}$	89-103 ** Actinides	Rutherfordium (261)	105 6d Db Dubnium (268)	Sg Seaborgium (269)	Bh Bohrium (270)	108 6 <i>d</i> HS Hassium (269)	Meitnerium (278)	DS Darmstadtium (281)	Roentgenium (282)	Cn Copernicium (285)	Nihonium (286)	Flerovium (289)	115 7p Mc Moscovium (289)	Lv Livermorium (293)	TS Tennessine (294)	$\mathop{\mathbf{Og}}_{\text{Oganesson}}^{118} {}^{7p}$
	*	$\overset{57}{\overset{1.1}{\overset{1.1}{\overset{5d^*}}}}$	Ce	Praseodymium	Nd Neodymium	61 1.13 4f Pm Promethium	Sm Samarium	Europium	$\overset{\text{64}}{\overset{1.2}{\text{Cd}}}\overset{4f^*}{\overset{\text{Gadolinium}}{}}$	Tb Terbium	$\overline{\mathbf{D}}\mathbf{y}$ Dysprosium	Holmium	Er	Tm	Yb Ytterbium	71 <u>1.27</u> 4f Lu Lutetium	
	**	138.90547(7) 89 1.1 6d* Ac Actinium (227)	140.116(1) 90 1.3 5f* Th Thorium 232.0377(4)	140.90766(2) 91 1.5 5f* Pa Protactinium 231.03588(2)	144.242(3) 92 1.38 5f* Uranium 238.02891(3)	$\overset{(145)}{\overset{93}{\overset{1.36}{\overset{1.36}{\overset{5}f^*}}}}\overset{5f^*}{\overset{Neptunium}{\overset{(237)}{\overset{(237)}{}}}}$	150.36(2) 94 1.28 5f Pu Plutonium (244)	151.964(1) 95 1.13 5f Am Americium (243)	157.25(3) 96 1.28 5f* Cm Curium (247)	158.92535(2) 97 1.3 5f Bk Berkelium (247)	98 1.3 5f Cf Californium (251)	164.93033(2) 99 1.3 5f Es Einsteinium (252)	167.259(3) 100 1.3 5f Fm Fermium (257)	168.93422(2) 101 1.3 5f Md Mendelevium (258)	173.045(10) 102 1.3 5f Nobelium (259)	174.9668(1) 103 1.3 5f Lr Lawrencium (266)	

Standard atomic weights taken from the Commission on Isotopic Abundances and Atomic Weights (ciaaw.org/atomic-weights.htm). Adapted from Ivan Griffin's LATEX Periodic Table. © 2017 Paul Danese

An asterisk (*) next to a subshell indicates an anomalous (Aufbau rule-breaking) ground state electron configuration.