Ans no: 1

$$V_{x}-2UV$$
 $20 T_{x}$
 V_{y}
 $V_$

Hene,

$$V_{I_1} = -\frac{1}{RC}\int ydt - \frac{1}{|x|0^{4}x|x|0^{6}}\int ydt = -\int ydt$$
 $V_{I_2} = -\frac{2\times 10^{3}}{2\times 10^{3}}V_{I_1} = -\left(-\int ydt\right) = \int ydt$
 $V_{I_3} = -RC\frac{dx}{dt} = -|x|0^{6}x|0x|0^{-6}\frac{dx}{dt} = -\frac{dx}{dt}$
 $\Rightarrow f = -\left(\frac{2\times 10^{3}}{2\times 10^{3}}\cdot V_{I_2} + \frac{2\times 10^{3}}{2\times 10^{3}}\cdot V_{I_3}\right)$
 $\Rightarrow f = -\left(\int ydt - \frac{dx}{dt}\right)$
 $\Rightarrow f = -\int (ydt - \frac{dx}{dt})$
 $\Rightarrow f = -\int (ydt + \frac{dx}{dt})$
 $\Rightarrow f = -\int (zt + 2\cos zt)dt + \frac{d}{dx}\sin zt$
 $\Rightarrow f = \cos zt - \left[\frac{zt}{\ln z} + 2\cdot \frac{\sin zt}{2}\right]$
 $\Rightarrow f = \cos zt - \frac{zt}{\ln z} - \sin zt$
 $\Rightarrow f = \cos zt - \frac{zt}{\ln z} - \sin (2xz)$
 $\Rightarrow f = 0.65 \times 10^{2} \times 10^{2}$

(AMS.)

b)
$$f = -(3 \ln(x+y) - 2e^{z-w} - 5v)$$
 $x = -(3 \ln(x+y) - 2e^{z-w} - 5v)$
 $x = -(x+y) = -(x+y$

$$f = -4x + \frac{3y}{yz} = -(4x - \frac{3y}{yz})$$
 now, $\frac{y}{yz} = \frac{\ln(\frac{y}{yz})}{e} - \frac{\ln(y) - \ln(y) + \ln(z)}{e}$

4.

Answer to the question no. 05

