HW4 - due 6/12 Krister OH Change 6/10

CS3000: Algorithms & Data Drew van der Poel

Lecture 17

- Strongly Connected Components
- Dijkstra's

June 9, 2021

Outline

Last class: Graphs: Topological Orderings, Connected Components

Next class: Graphs: Dijkstra's

Strongly Connected Components

- Observation: SCC(s) is all nodes $v \in V$ such that v^{\vee} is reachable from s and vice versa
 - Can find all nodes reachable from s using DFS
 - How do we find all nodes that can reach s?
 - DFS(s) in reverse of the graph!


```
SCC-Slow():
   GR = G with all edges "reversed"
   // Initialize an array and counter
   comp[1:n] = \bot, c = 1
   for (u = 1, ..., n) : \leftarrow O(\land)
    // If u has not been explored
 if (comp[u] == \bot):
O(h+n) S = set of nodes found by DFS(G,u) - nodes which
T = set of nodes found by DFS(GR,u) = which

// S N T contains SCC(u)
 Total: O(n(m+n))
   return comp
```

SCCs Form a DAG!

SCC Graph: acyclic

"Before I begin, one of the acronyms I'm going to use is completely made up. See if you can figure out which one."

Clever use of DFS for SCC

Sinki Compunent: has out-deg = 0
in SCC Graph

Observation: DFS from any node in a sink component finds that component

c,d

- Repeat until all nodes marked:
 - Find a node in a sink component of G
 - Run DFS(u) to find SCC of u
 - Mark the nodes in SCC of u so not visited again
- How to find a node in a sink component?

- Repeat until all nodes marked:
 - Find a node in a sink component of G
 - Run DFS(u) to find SCC of u
 - Mark the nodes in SCC of u so not visited again
- How to find a node in a sink component?

- Repeat until all nodes marked:
 - Find a node in a sink component of G
 - Run DFS(u) to find SCC of u
 - Mark the nodes in SCC of u so not visited again
- How to find a node in a sink component?
 - Node with largest finish time in reverse of G!

Fact: Node with largest finish time is in a *source* component

Linear-time algorithm for SCC

```
SCC(G):
    GR = G with all edges "reversed"

DFS of GR to compute finish times fR
comp[1:n] = \(\perp \), c = 1
for (u in reverse order of fR)
    if (comp[u] == \(\perp \)):
        S = set of nodes found by DFS(u) of G
        for v in S: comp[v] = c
        c = c + 1
return comp
```



```
SCC(G):
 GR = G with all edges "reversed"
 DFS of GR to compute finish times fR
 comp[1:n] = \bot, c = 1
  for (u in reverse order of f<sup>R</sup>)
    if (comp[u] == \bot):
      S = set of nodes found by DFS(u) of G
      for v in S: comp[v] = c
      c = c + 1
  return comp
```

```
SCC(G):
   GR = G with all edges "reversed"
   DFS of GR to compute finish times fR
   comp[1:n] = \( \triangle \), c = 1
   for (u in reverse order of fR)
    if (comp[u] == \( \triangle \)):
        S = set of nodes found by DFS(u) of G
        for v in S: comp[v] = c
        c = c + 1
   return comp
```



```
SCC(G):
    GR = G with all edges "reversed"

DFS of GR to compute finish times fR
comp[1:n] = \( \triangle \), c = 1
for (u in reverse order of fR)
    if (comp[u] == \( \triangle \)):
        S = set of nodes found by DFS(u) of G
        for v in S: comp[v] = c
        c = c + 1
return comp
```



```
SCC(G):
   GR = G with all edges "reversed"

DFS of GR to compute finish times fR
comp[1:n] = \(\perp \), c = 1

for (u in reverse order of fR)

   if (comp[u] == \(\perp \)):
      S = set of nodes found by DFS(u) of G
      for v in S: comp[v] = c
      c = c + 1

return comp
```



```
SCC(G):
   GR = G with all edges "reversed"
DFS of GR to compute finish times fR
comp[1:n] = \(\perp \), c = 1
for (u in reverse order of fR)
   if (comp[u] == \(\perp \)):
      S = set of nodes found by DFS(u) of G
      for v in S: comp[v] = c
      c = c + 1
return comp
```



```
SCC(G):
 GR = G with all edges "reversed"
 DFS of GR to compute finish times fR
 comp[1:n] = \bot, c = 1
  for (u in reverse order of f<sup>R</sup>)
    if (comp[u] == \bot):
      S = set of nodes found by DFS(u) of G
      for v in S: comp[v] = c
      c = c + 1
  return comp
```

```
SCC(G):
 GR = G with all edges "reversed"
 DFS of GR to compute finish times fR
 comp[1:n] = \bot, c = 1
  for (u in reverse order of f<sup>R</sup>)
    if (comp[u] == \bot):
      S = set of nodes found by DFS(u) of G
      for v in S: comp[v] = c
      c = c + 1
  return comp
                 6
                                  16
```


- Problems: counting students, stable matching, sorting, ndigit multiplication, array searching, selection, weighted interval scheduling, segmented least squares, knapsack, prefix-free encoding, graph exploration, bipartiteness, topological sorting, (strongly) connected components
- Alg. techniques: divide & conquer, dynamic programming, greedy

 Analysis: asymptotic analysis, recursion trees, Master Thm., Graph Terminology/representations

 Proof techniques: (strong) induction, contradiction, greedy stays ahead, exchange argument

Strongly Connected Components Recap

- **Problem:** Given a directed graph G, split it into strongly connected components
- Input: Directed graph G = (V, E)
- Output: A labeling of the vertices by their strongly connected component
- Punchline: O(n + m) time algorithm for SCCs
 - Clever use of DFS on G and reverse of G
 - Can also compute the meta-graph DAG of SCCs
- Can be directly invoked in other algorithms

Shortest Paths

Weighted Graphs

Weighted Graphs

- **Definition:** A weighted graph $G = (V, E, \{w(e)\})$
 - V is the set of vertices
 - $E \subseteq V \times V$ is the set of edges
 - $w(e) \in \mathbb{R}$ are edge weights
 - Can be directed or undirected

- Today:
 - Directed graphs (one-way streets)
 - Non-negative edge weights $(w(e) \ge 0)$

Shortest Paths

• In weighted graphs, the length of a path $P = v_1 - v_2 - \cdots - v_k$ is the sum of its edge weights:

- The distance d(s,t) is the length of the shortest path from s to t
- Shortest Path: given nodes $s, t \in V$, find the shortest path from s to t
- Single-Source Shortest Paths: given a node $s \in V$, find the shortest paths from s to every $t \in V$
- All-Pairs Shortest Paths: find the shortest path between every $(s,t) \in V$

 Problems: counting students, stable matching, sorting, n-digit multiplication, array searching, selection, weighted interval scheduling, segmented least squares, knapsack, prefix-free encoding, graph exploration, bipartiteness, topological sorting, (strongly) connected components, shortest paths

Alg. techniques: divide & conquer, dynamic programming, greedy

 Analysis: asymptotic analysis, recursion trees, Master Thm., Graph Terminology/representations

 Proof techniques: (strong) induction, contradiction, greedy stays ahead, exchange argument

Distance

- In weighted graphs, the length of a path $P=v_1-v_2-\cdots-v_k$ is the sum of the edge weights:
- The distance d(s,t) is the length of the shortest path from s to t

$$d(s,t) = 4$$

$$e(s-u-w-t) = 4 = 1+\lambda+1$$

$$e(s-t) = 5$$

$$e(s-v-t) = 4$$

$$e(s-v-w-t) = 6$$

Structure of Shortest Paths

• If $(u,v) \in E$, then $d(s,v) \leq d(s,u) + w(u,v)$ for every node $s \in V$ $\exists a \text{ path from } s \text{ to } v \text{ where } v \text{ the final of length } d(s,u) + w(u,v)$ The shiftst path (ant be any larger than this Λ

• If $(u, v) \in E$, and d(s, v) = d(s, u) + w(u, v) then there is a shortest $s \sim v$ -path ending with (u, v)

Compare to BFS

- **Thm.:** BFS finds distances from *s* to other nodes in unweighted graphs
 - L_i contains all nodes at distance i from s
 - Nodes not in any layer are not reachable from s

- Question: Does running a BFS from s ever solve the SSSP problem on weighted graphs?
- Question: Does running a BFS from s always solve the SSSP problem on weighted graphs?

Compare to BFS

Question: Does running a BFS from *s* **ever** solve the SSSP problem on weighted graphs?

Question: Does running a BFS from *s* **always** solve the SSSP problem on weighted graphs?

Dijkstra's Algorithm

- Dijkstra's Shortest Path Algorithm is a modification of BFS for non-negatively weighted graphs
- Informal Version:
 - Maintain a set X of explored nodes
 - Maintain an upper bound on distance for all unexplored nodes
 - If u is explored, then we know d(s, u) (from the source s) (Key Invariant)
 - If u is explored, and (u, v) is an edge, then we know $d(s, v) \le (d(s, u) + w(u, v))$
 - Explore the "closest" unexplored node
 - Repeat until we're done

Dijkstra's Algorithm

- Explore the "closest" unexplored node
 - The unexplored node with the smallest upper bound on its distance
 - Tighten (lower) its out-neighbors' upper bounds (when possible)

- Problems: counting students, stable matching, sorting, n-digit multiplication, array searching, selection, weighted interval scheduling, segmented least squares, knapsack, prefix-free encoding, graph exploration, bipartiteness, topological sorting, (strongly) connected components, shortest paths
- Alg. techniques: divide & conquer, dynamic programming, greedy,
 Dijkstra's

 Analysis: asymptotic analysis, recursion trees, Master Thm., Graph Terminology/representations

 Proof techniques: (strong) induction, contradiction, greedy stays ahead, exchange argument

$$X = \{$$

Dijkstra's Algorithm

- Explore the "closest" unexplored node
 - The unexplored node with the smallest upper bound on its distance
 - Tighten its out-neighbors' upper bounds (if we can)

	S	В	С	D	E		
$d_0(u)$	0	∞	∞	∞	∞		

$$X = \{ s, (s) \}$$

Explore C

	S	В	С	D	Е
$d_0(u)$	0	∞	∞	∞	∞
d ₁ (u)	0	10	3	∞	∞
$d_2(u)$	0	7	3	11	5

$$X = \{s, C\}$$

Explore E

	S	В	С	D	Е
$d_0(u)$	0	∞	∞	∞	∞
$d_1(u)$	0	10	3	∞	∞
$d_2(u)$	0	7	3	11	5
$d_3(u)$	0	7	3	11	5

$$X = \{s, C, E\}$$

Explore B

	S	В	С	D	E
$d_0(u)$	0	∞	∞	∞	∞
d ₁ (u)	0	10	3	∞	∞
$d_2(u)$	0	7	3	11	5
$d_3(u)$	0	7	3	11	5
d ₄ (u)	0	7	3	9	5

$$X = \{s, C, E, B\}$$

Don't need to explore D

	S	В	С	D	Ε
$d_0(u)$	0	∞	∞	∞	∞
d ₁ (u)	0	10	3	∞	∞
$d_2(u)$	0	7	3	11	5
$d_3(u)$	0	7	3	11	5
d ₄ (u)	0	7	3	9	5

$$X = \{s, C, E, B, D\}$$

Maintain parent pointers so we can find the shortest paths

	S	В	С	D	E
d ₀ (u)	0	∞	∞	∞	∞
d ₁ (u)	0	10	3	∞	∞
$d_2(u)$	0	7	3	11	5
$d_3(u)$	0	7	3	11	5
d ₄ (u)	0	7	3	9	5

Dijkstra's Algorithm: Practice

$$X = \{$$

