Problemas de Otimização Combinatória (2013-2)

Relatório

Para cada combinação problema vs. metaheurística, apresentar um relatório com aproximadamente 6 páginas contendo no mínimo, as seguintes informações:

- Introdução.
- Descrição clara do problema e formulação matemática do problema.
- Descrição com detalhes do algoritmo proposto:
 - Representação do problema.
 - Principais estruturas de dados
 - Heurística construtiva.
 - Vizinhança e a estratégia de escolha de vizinhos.
 - Parâmetros do método (combinações testadas e valores usados nos experimentos).
 - Critério de terminação.
- Tabela de resultados com no mínimo as seguintes colunas para cada instância:
 - Valor da solução inicial heurística.
 - Valor da melhor solução ou taxa de sucesso para problemas de satisfabilidade encontrada pelo seu algoritmo (S).
 - Tempo de execução (em segundos).
 - Solução ou taxa de sucesso para problemas de satisfabilidade do GLPK (Reportar a melhor solução encontra no tempo disponível para execução do GLPK, mesmo quando não ótima).
 - Tempo do GLPK (com limite de tempo de 1h ou mais tempo).
 - Desvio percentual ($100\frac{S-MC}{S}$ para o caso de problemas de minimização) da melhor solução conhecida MC.
 - Análise dos resultados.
 - Conclusões.
 - Bibliografia pesquisada.

Os resultados das metaheurísticas deve ser uma média de no mínimo 10 rodadas. Além do relatório, os alunos devem entregar (no moodle) um zip contendo os códigos.

Implementação

- Todas as implementações devem aceitar uma instância no formato do problema na entrada padrão (stdin) e imprimir a melhor solução encontrada, bem como o tempo utilizado na saída padrão (stdout).
- Os principais parâmetros do método devem ser definíveis pela linha de comando.
- Critérios básicos de engenharia de software: documentação, legibilidade, etc.
- Critérios como qualidade das soluções encontradas e eficiência das implementações serão considerados na avaliação.

1. Problema de Ordenação Linear

- Entrada: Uma matriz $C_{n\times n}$ de custos.
- Solução: Uma permutação π de colunas e linhas (a mesma permutação é utilizada para linhas e colunas).
- Objetivo: Maximizar a soma dos valores no triângulo superior (valores acima da diagonal).
- Informações Adicionais: Instâncias disponíveis em http://www.optsicom.es/lolib/. Testes devem ser feitos nas instâncias: IO(N-t65l11xx, N-tiw56n54), RandA1(N-t1d100.01, N-t1d150.11, N-t1d500.7, N-t1d500.25), RandA2(N-t2d150.02, N-t2d200.14), RandB(N-p50-09), SGB(N-atp111, N-atp163).

Melhores valores conhecidos:

Instância	Valores
N-t65l11xx	16719
N-tiw56n54	91554
N-t1d100.01	106852
N-t1d150.11	234157
N-t1d500.7	2400739
N-t1d500.25	2405718
N-t2d150.02	73624
N-t2d200.14	144384
N-p50-09	43711
N-atp111	1495
N-atp163	2073

2. Particionamento de Conjuntos

- ullet Entrada: Um universo U, uma família S de subconjuntos do universo e custos c(S) para cada conjunto.
- Solução: Uma seleção de conjuntos, em que cada elemento de U pertence a exatamente um conjunto, i.e., $\sum_{j \in S} a_{rj} x_j = 1$ com $r \in U$.
- Objetivo: Minimizar o custo total dos conjuntos selecionados.
- Informações Adicionais: Instâncias disponíveis em http://people.brunel.ac.uk/~mastjjb/jeb/orlib/sppinfo.html. Testes devem ser feitos nas instâncias: sppnw41, sppnw32, sppnw34, heart, delta, sppnw36, meteor, sppaa06, sppnw05, sppnw16, sppus01.

Melhores valores conhecidos:

Instância	Valores
sppnw41	11307
sppnw32	14877
sppnw34	10488
heart	180
delta	126
sppnw36	7314
meteor	60
sppaa06	27040
sppnw05	132878
sppnw16	1181590
sppus01	10036

3. Minimizar o tempo de fluxo no flow shop permutacional

- Instância Um conjunto de tarefas J=[n] a serem executadas nas máquinas M=[m]. Uma tarefa $j \in J$ possui m operações com tempo de execução t_{ij} para $i \in M$. A i- ésima operação de cada tarefa deve ser executada na máquina i. Em cada instante, uma tarefa pode ser processada por uma única máquina, e cada máquina pode processar no máximo uma tarefa. Uma vez iniciado, o processamento de uma tarefa tem que ser executada sem interrupção (non-preemptive). Além disso, as tarefas devem ser processadas em cada máquina na mesma ordem.
- Solução Uma permutação π das tarefas que define o escalonamento das tarefas. (A saber: a tarefa π_j termina na máquina i no momento $C_{i\pi_j} = \max\{C_{i-1,\pi_j}, C_{i,\pi_{j-1}}\}$, com $C_{0j} = C_{i,\pi_0} = 0$.)
- Objetivo Minimizar o tempo de fluxo $\sum_{j \in J} C_j$ (ingl. flowtime) total das tarefas, sendo $C_j = C_{mj}$ o tempo de término (ingl. completion time) da tarefa j.
- Informações adicionais Um gerador de instâncias é disponível em http://www.mathematik. uni-osnabrueck.de/research/OR/fsbuffer/taillard.c. Testes devem ser feitos com instâncias $\tan n$, com n = 1 + 10k para $k \in \{0, 1, ..., 11\}$.

Melhores valores conhecidos:

Instância	Valor	Instância	Valor
ta001	14033	ta061	253266
ta011	20911	ta071	298385
ta021	33623	ta081	365463
ta031	64802	ta091	1046314
ta041	87114	ta101	1227733
ta051	125831	ta111	6698656

4. Árvores de Steiner

- Entrada: Um grafo G=(V,A) não direcionado com vértices V e arestas A e custos $c_a \geq 0$ para $a \in A$.
- Solução: Um subgrafo conexo mínimo que inclui um dado conjunto de vértices necessários $T\subseteq V.$
- Objetivo: Minimizar $\sum_{a \in A} c_a$.
- Informações Adicionais:Instâncias disponíveis em http://steinlib.zib.de//steinlib. php. Testes devem ser feitos nas instâncias: b14, c01, d10, e20, mc11, brasil58, cc3-4p, hc10p, i160-003, i160-033.

Melhores valores conhecidos:

Instância	Valores
b14	235
c01	85
d10	d10
e20	1342
mc11	11689
brasil58	13655
cc3-4p	2338
hc10p	60679
i160-003	2297
i160-033	2101