

Boston Airbnb Prediction of Listing Price

Made by Sabrina Rizal, Sarah Abdul Ra'uf, Chan Kah Kei and Amira Azlan

PROBLEM STATEMENT

- Predicting prices is difficult due to various influencing factors.
- Incorrect pricing can result in underpricing (lost revenue) or overpricing (fewer bookings).
- Understanding key factors can improve pricing accuracy and booking rates.

OBJECTIVES

- 1. Identify key features impacting pricing.
- 2. Build a **regression model** to predict Airbnb prices.
- 3. Achieve **high accuracy** to minimize pricing errors.

METHODOLOGY

CORRELATION ANALYSIS

1. Pearson's (Numerical) Results

- Strong: accommodates, bathrooms, bedrooms, beds, latitude and longitude
- **Weak:** availability_365, maximum_nights, minimum_nights

2. Point-Biserial Correlation (Boolean Variables)

- **Strong Positive Correlations:** TV, air conditioning, cable TV, family/kid friendly, elevator, gym, doorman.
- Strong Negative Correlations: Lock on the bedroom door, free parking on premises, allow smoking, cats, pets on the property.

	Feature	Correlation	P-value	Significant
0	instant_bookable	-0.076629	4.527309e-06	Yes
1	Pets Allowed	0.086800	2.031561e-07	Yes
2	Dryer	0.168753	3.099260e-24	Yes
3	Dog(s)	-0.015865	3.430882e-01	No
4	Indoor Fireplace	0.113085	1.210133e-11	Yes
5	Elevator in Building	0.296059	3.314107e-73	Yes

3. Kruskal-Wallis Test (Categorical Variables)

• Significant differences observed across all categorical variables.

	Column	Statistic	P-Value	Significance
0	bed_type	119.070502	8.436792e-25	Significant
1	cancellation_policy	296.396510	5.993080e-64	Significant
2	neighbourhood_cleansed	1159.058571	1.301998e-229	Significant
3	property_type	243.510265	3.081255e-45	Significant
4	room_size	134.897939	5.096648e-30	Significant
5	room_type	1779.100883	0.000000e+00	Significant

MODEL PERFORMANCE

Model	MAE	MSE	R²	Ranking
Multiple Linear Regression	0.273	0.138	0.681	4
Decision Tree Regression	0.301	0.164	0.620	7
Random Forest Regression	0.251	0.121	0.719	2
Support Vector Regression	0.357	0.216	0.497	8
Gradient Boosting Machine Regression	0.258	0.123	0.714	3
XGBoost Regression	0.286	0.149	0.655	6
Voting Regression Model	0.253	0.120	0.722	1
Neural Network Model	0.270	0.141	0.673	5

Best Model

 The Voting Regressor Model achieved the best overall performance with the lowest MAE (0.253), lowest MSE (0.120), and highest R² (0.722), indicating excellent accuracy and minimal error.

Worst Model

The Support Vector Regression Model performed the worst, with the highest MAE (0.357), highest MSE (0.216), and lowest R² (0.497), showing difficulty in capturing relationships effectively.

REFERENCES

- 1. Dataset used for this project was taken from the Boston Airbnb

 Open Data dataset on Kaggle: <u>Boston Airbnb Open Data</u>
- 2. Full code for this project is available on GitHub: <u>Boston Airbnb</u>

 <u>Price Prediction</u>.
- 3. This project was developed as part of our AI group assignment at Multimedia University (MMU).