2020~2021学年第一学期期末考试试卷(A卷)

Scores

I. For each blank in the following statements, choose the best answer from the

choices given below. (This problem contains 6 questions, 3 points for each question and 18 points in all)

- 1. Which of the following statements is true. ()
 - (A) $\lim_{x \to \infty} \frac{\sin x}{x} = 1$

(B) $\lim_{x \to \infty} x \sin \frac{1}{x} = 1$

(C) $\lim_{x \to \infty} (1 - \frac{1}{x})^x = -e$

(D) $\lim_{x \to \infty} (1 + \frac{1}{x})^{-x} = e$

2. Assume that

$$f(x) = \begin{cases} \ln(1+x^2) & \text{if } x > 1\\ x^2 + b & \text{if } x \le 1. \end{cases}$$

is continuous everywhere. Then (

(A)b = -1.

(B) $b = \ln 4 - 1$.

(C) $b = \ln 3 - 1$.

- (D) $b = \ln 2 1$.
- 3. Assume that the function is determined by $e^{x+y} + \sin(xy) = 1$. Then y'(0) = (
 - (A) 0.
- (B)1.
- (C) -1.

(D) $\frac{1}{2}$.

4. The antiderivative of $\int \arctan x dx$	dx is (()
---	---------	-----

(A) $x \arctan x + \ln(1 + x^2) + C$.

(B) $x \arctan x - \ln(1 + x^2) + C$.

(C) $-x \arctan x + \frac{1}{2} \ln(1+x^2) + C$.

(D) $x \arctan x - \frac{1}{2} \ln(1 + x^2) + C$.

5. Assume that $F(x) = \int_x^{x+2\pi} e^{\sin t} \sin t \, dt$. Then F(x) is

- (A) a positive constant.
- (B) a negative constant.

(C) 0.

(D) not a constant.

6. Which of the following improper integrals is convergence (

(A) $\int_e^{+\infty} \frac{\ln^{2021} x}{x} dx$

(B) $\int_{e}^{+\infty} \frac{1}{x \ln x} dx$

(C) $\int_{e}^{+\infty} \frac{1}{x \ln \frac{1}{2021} x} dx$

(D) $\int_{e}^{+\infty} \frac{1}{x \ln^{2021} x} dx$

Scores

II. Fill the correct answer in the blanks (This problem contains 6 questions, 3

points for each question and 18 points in all)

8. If
$$f(x)$$
 is determined by $f(x) = \int_1^u \cos^2 t \, dt$, where $u = \ln(x^2 + x - 1)$. Then $f'(1) = \frac{1}{2} \cos^2 t \, dt$

9.
$$\int (e^{-2x} + 1) dx =$$

10. Assume that
$$f''(x)$$
 is continuous on $[0,2]$ and $f(2) = f(0) = 3$, $f'(2) = 5$. Then $\int_0^1 x f''(2x) dx = \frac{1}{2} \int_0^1 x f'$

11. The definite integral
$$\int_{-2}^{2} \left(\frac{x}{1+x^2} + \sqrt{4-x^2} \right) dx =$$
______.

12. The particular solution the differential equation
$$\frac{dy}{dx} = \frac{x+3x^2}{y^2}$$
 with the initial condition $y(0) = 6$ is _____

Scores

III. Calculations (This problem contains 6 questions, 6 points for each question

and 36 points in all)

13. Find the Following limits.

$$(1)\lim_{x\to a^2}\frac{x-a^2}{\sqrt{x}-a}, \quad a>0;$$

$$(1) \lim_{x \to a^2} \frac{x - a^2}{\sqrt{x} - a}, \quad a > 0; \qquad (2) \lim_{x \to +\infty} (\sqrt{x^2 + 2x} - x); \qquad (3) \lim_{x \to 0^+} (x + 1)^{\cot x}.$$

(3)
$$\lim_{x \to 0^+} (x+1)^{\cot x}$$
.

14. Find the Differentials dy of the dependent variable y with $y=(x^2+1)^{\sin x^2}$.

15. If $\lim_{x \to \infty} \left(\frac{x+c}{x-c} \right)^x = \int_{-\infty}^c te^{2t} dt$, find the value of c.

16. Find the general antiderivative of

(1)
$$\int (5x^2+1)\sqrt{5x^3+3x-2}\,dx$$
;

 $(2) \int \sin^2 x \cos^3 x \, dx.$

17. Let f(x) be given by

$$f(x) = \begin{cases} xe^{-x} & \text{if } x \le 0\\ \sqrt{2x - x^2} & \text{if } 0 < x \le 1. \end{cases}$$

Please evaluate the definite integral $\int_{-3}^{1} f(x) dx$.

18. Find the following improper integral:

$$\int_0^a \frac{x^3}{\sqrt{a^2 - x^2}} \, dx \quad (a > 0).$$

Scores

IV. Application (This problem contains 4 questions, 7 points for each question

and 28 points in all)

- 19. Let R be the region bounded by $x=0,y=e^x$ and the tangent line to $y=e^x$ that goes through the origin. Find
 - (a) the area of R;
 - (b) the volume of the solid obtained when R is revolved about the x-axis.

20. Find the particular solution of

$$\frac{dy}{dx} - 3y = xe^{3x}$$

that satisfies y = 4 when x = 0.

21. Please identify the evaluation of the definite integral $\int_0^1 f(x) dx$ from the following equation:

$$2x \int_0^1 f(x) \, dx + f(x) = \ln(1 + x^2).$$

22. Assume that the function f(x) is continuous on [a,b] and differentiable on (a,b), and

$$\frac{1}{\lambda - a} \int_{a}^{\lambda} f(x) \, dx = f(b),$$

where $\lambda \in (a,b)$. Show that there exists at least $\xi \in (a,b)$ such that $f'(\xi) = 0$.