Maths – MPI

Romain Bricout

15 décembre 2024

Introduction

Ce document réunit l'ensemble de mes cours de Mathématiques de MPI, ainsi que les exercices les accompagnant. Le professeur était M. Walbron. J'ai adapté certaines formulations me paraissant floues ou ne me plaisant pas mais le contenu pur des cours est strictement équivalent.

Les éléments des tables des matières initiale et présentes au début de chaque chapitre sont cliquables (amenant directement à la partie cliquée). C'est également le cas des références à des éléments antérieurs de la forme, par exemple, « Démonstration 5.22 ».

Cette version contient, en plus des cours imprimés distribués durant l'année, toutes les démonstrations qui vont avec. Voir l'autre version pour n'avoir que les cours bruts.

Table des matières

1	Cours		O
1	Espaces ve	ectoriels normés	9
	1.1 Bo	ornes supérieures, bornes inférieures	10
	1.1.1	Borne supérieure d'une partie de $\mathbb R$	10
	1.1.2	Borne supérieure d'une application à valeurs dans \mathbb{R}	12
	1.1.3	Règles pratiques	12
	1.2 No	ormes	13
	1.2.1	Définition	13
	1.2.2	Exemples fondamentaux	14
	1.2.3	Normes équivalentes	16
	1.2.4	Boules	19
	1.2.5	Parties bornées	22
	1.3 Co	onvergence des suites	27
	1.3.1	Définition	27
	1.3.2	Propriétés usuelles	28
	1.3.3	Cas particulier en dimension finie	30
	1.3.4	Point adhérent à une partie	32
	1.4 Li	mites de fonctions	35
	1.4.1	Définition	35
	1.4.2	Caractérisation séquentielle de la limite	35
	1.4.3	Propriétés usuelles	36
	1.4.4	Cas particulier de la dimension finie	37
	1.4.5	Composition des limites	38

1.4.6	Extensions des définitions	38
1.5 Fo	onctions continues	39
1.5.1	Continuité en un point	39
1.5.2	Continuité sur une partie	40
1.5.3	Cas particulier de la dimension finie	40
1.5.4	Fonctions lipschitziennes	41
1.5.5	Continuité des applications linéaires et n -linéaires	43
1.5.6	Norme subordonnée	50
1.6 To	opologie d'un espace vectoriel normé	54
1.6.1	Intérieur d'une partie, voisinage d'un point	54
1.6.2	Parties ouvertes	56
1.6.3	Parties fermées	57
1.6.4	Ouverts ou fermés relatifs à une partie	62
1.6.5	Image réciproque d'un ouvert ou d'un fermé par une fonction continue	62
1.6.6	Frontière d'une partie	65
1.7 Co	ompacité	65
1.7.1	Valeurs d'adhérence d'une suite	65
1.7.2	Théorème de Bolzano-Weierstrass	67
1.7.3	Parties compactes	69
1.7.4	Théorème des bornes atteintes	73
1.8 Co	onnexité par arcs	78
1.8.1	Chemin	78
1.8.2	Parties connexes par arcs	79
1.8.3	Théorème des valeurs intermédiaires	80
Séries nur	nériques et vectorielles : révisions et compléments	82
2.1 Ra	appels	82
2.1.1	Définitions et notations	82
2.1.2	Convergence d'une série	83
2.1.3	Lien entre convergence de suites et convergence de séries	84

 $\mathbf{2}$

	2.2 Se	eries réelles à termes positifs	85
	2.2.1	Théorème de Cesàro	. 89
	2.2.2	Théorème de comparaison par domination de séries à termes positifs	. 90
	2.2.3	Théorème de comparaison par équivalence de séries à termes positifs	. 92
	2.2.4	Théorème de comparaison série - intégrale	. 94
	2.3 Sé	ries absolument convergentes	98
	2.3.1	Lien entre absolue convergence et convergence	. 98
	2.3.2	Un exemple fondamental : l'exponentielle de matrice	. 99
	2.3.3	Extension des résultats par comparaison	. 99
	2.3.4	Produit de Cauchy de deux séries absolument convergentes	. 101
	2.4 Sé	ries alternées	103
3	Familles s	ommables	105
Ü		ommes finies	
	3.1.1	Définition	
	3.1.2	Propriétés	
	3.2 Co	onventions de calcul dans $\mathbb{R}_+ \cup \{+\infty\}$	109
	3.3 Sc	omme d'une famille de réels positifs	110
	3.3.1	Propriétés	. 111
	3.3.2	Théorème de sommation par paquets	. 112
	3.3.3	Théorème de Fubini	. 112
	3.4 Fa	amilles sommables dans un espace vectoriel normé de dimension finie	113
	3.4.1	Définitions	. 113
	3.4.2	Propriétés	. 115
	3.4.3	Théorème de sommation par paquets	. 116
	3.4.4	Théorème de Fubini	. 118
	3.4.5	Produit de Cauchy de deux séries	. 120
4	Donrala -	et compléments d'algèbre linéaire	122
4	maddeis e	t compléments d'algèbre linéaire	$\perp ZZ$

4.1 So	ommes de sous-espaces vectoriels
4.1.1	Généralités
4.1.2	Sommes directes
4.1.3	Sous-espaces supplémentaires
4.1.4	Cas particulier de deux sous-espaces
4.1.5	Applications linéaires et sommes directes
4.2 So	omme de sous-espaces vectoriels en dimension finie
4.2.1	Base adaptée à un sous-espace
4.2.2	Sommes directes et bases
4.2.3	Dimension d'une somme de sous-espaces vectoriels
4.2.4	Sous-espaces supplémentaires
4.2.5	Dimension d'une somme de deux sous-espaces vectoriels
4.3 Pe	olynômes d'endomorphismes et de matrices
4.3.1	\mathbb{K} -algèbres
4.3.2	Cas particulier des algèbres $\mathcal{L}(E)$ ou $\mathcal{M}_n(\mathbb{K})$
4.3.3	Polynôme annulateur d'une matrice ou d'un endomorphisme
4.3.4	Utilisation pratique d'un polynôme annulateur
4.4 M	Tatrices semblables, trace
4.4.1	Trace d'une matrice
4.4.2	Matrices semblables
4.4.3	Trace d'un endomorphisme
4.5 O	pérations par blocs
4.5.1	Cas général
4.5.2	Cas particuliers des matrices carrées
4.5.3	Interprétation des blocs
Réduction	n des endomorphismes 153
	léments propres d'un endomorphisme
5.1.1	Valeurs propres et vecteurs propres
5.1.2	Lien avec les polynômes annulateurs
U.I.2	

	5.1.3	Sous-espaces propres	57
5.2	Po	olynôme caractéristique d'un endomorphisme	59
	5.2.1	Caractérisation des valeurs propres en dimension finie	59
	5.2.2	Définition et lien avec les valeurs propres	59
	5.2.3	Ordre de multiplicité et dimension du sous-espace propre	62
	5.2.4	Endomorphisme scindé	63
5.3	S Él	éments propres d'une matrice carrée	64
	5.3.1	Valeurs propres et vecteurs propres	64
	5.3.2	Lien avec les polynômes annulateurs	65
	5.3.3	Sous-espaces propres	65
5.4	l Po	olynôme caractéristique d'une matrice carrée	66
	5.4.1	Définition et lien avec les valeurs propres	66
	5.4.2	Ordre de multiplicité et dimension du sous-espace propre	68
	5.4.3	Matrice scindée	68
5.5	6 En	ndomorphismes diagonalisables, matrices diagonalisables	69
	5.5.1	Définition	69
	5.5.2	Caractérisations équivalentes	70
	5.5.3	Lien avec le polynôme caractéristique	72
5.6	i Lie	en entre diagonalisabilité et polynômes annulateurs	73
	5.6.1	Racines du polynôme minimal	73
	5.6.2	Lemme des noyaux	74
	5.6.3	Application à la diagonalisabilité	76
	5.6.4	Diagonalisabilité d'un endomorphisme induit	79
5.7	' Qı	uelques applications de la diagonalisation	80
	5.7.1	Puissances d'une matrice, suites récurrentes linéairement	80
	5.7.2	Systèmes d'équations différentielles	81
5.8	B En	ndomorphismes trigonalisables, matrices trigonalisables	81
	5.8.1	Définition et propriétés	81
	5.8.2	Caractérisation équivalente	82

	5.8.3	Théorème de Cayley-Hamilton	185
	5.8.4	Sous-espaces caractéristiques	186
	5.9 Er	ndomorphismes nilpotents, matrices nilpotentes	188
	5.9.1	Généralités	188
	5.9.2	Éléments propres d'un nilpotent	190
	5.9.3	Application aux sous-espaces caractéristiques d'un endomorphisme	190
6	Intégrales	généralisées	193
7	Intégrales	à paramètre	194
8	Espaces p	réhilbertiens réels	195
9	Endomorphismes dans un espace euclidien 19		
10	Fonctions	vectorielles	197
11	Suites et s	séries de fonctions	198
12	Séries ent	ières	199
13	Probabilit	és	200
14	Variables	aléatoires discrètes	201
15	Équations	différentielles linéaires	202
16	Calcul diff	férentiel	203
17	Structures	s algébriques	204
II	Exercio	ces	205
1	Espaces vo	ectoriels normés	206
2	Séries nun	nériques et vectorielles : révisions et compléments	207

3	Familles sommables	208
4	Rappels et compléments d'algèbre linéaire	209
5	Réduction des endomorphismes	210
6	Intégrales généralisées	211
7	Intégrales à paramètre	212
8	Espaces préhilbertiens réels	213
9	Endomorphismes dans un espace euclidien	214
10	Fonctions vectorielles	215
11	Suites et séries de fonctions	216
12	Séries entières	217
13	Probabilités	218
14	Variables aléatoires discrètes	219
15	Équations différentielles linéaires	220
16	Calcul différentiel	221
17	Structures algébriques	222

Première partie

Cours

Chapitre 1

Sommaire

1.1

1.5

1.5.1

1.5.2

1.5.3

1.5.4

1.5.5

1.5.6

1.6.1

1.6.2

1.6.3

1.6.4

1.6

Espaces vectoriels normés

1.1.1	Borne superieure d'une partie de \mathbb{R}
1.1.2	Borne supérieure d'une application à valeurs dans \mathbb{R}
1.1.3	Règles pratiques
1.2	Normes
1.2.1	Définition
1.2.2	Exemples fondamentaux
1.2.3	Normes équivalentes
1.2.4	Boules
1.2.5	Parties bornées
1.3	Convergence des suites
1.3.1	Définition
1.3.2	Propriétés usuelles
1.3.3	Cas particulier en dimension finie
1.3.4	Point adhérent à une partie
1.4	Limites de fonctions
1.4.1	Définition
1.4.2	Caractérisation séquentielle de la limite
1.4.3	Propriétés usuelles
1.4.4	Cas particulier de la dimension finie
1.4.5	Composition des limites
1.4.6	Extensions des définitions

39

39

40

40

41

43

50

54

54

56

57

62

1.6.5	Image réciproque d'un ouvert ou d'un fermé par une fonction continue	62
1.6.6	Frontière d'une partie	65
1.7	Compacité	65
1.7.1	Valeurs d'adhérence d'une suite	65
1.7.2	Théorème de Bolzano-Weierstrass	67
1.7.3	Parties compactes	69
1.7.4	Théorème des bornes atteintes	73
1.8	Connexité par arcs	78
1.8.1	Chemin	78
1.8.2	Parties connexes par arcs	79
1.8.3	Théorème des valeurs intermédiaires	80

Dans ce chapitre, la lettre \mathbb{K} désigne \mathbb{R} ou \mathbb{C} .

1.1 Bornes supérieures, bornes inférieures

1.1.1 Borne supérieure d'une partie de \mathbb{R}

On rappelle le théorème fondamental, dit « théorème (ou axiome) de la borne supérieure ».

Théorème 1.1

Toute partie A de \mathbb{R} , non-vide et majorée, possède une borne supérieure, notée sup A.

Toute partie A de \mathbb{R} , non-vide et minorée, possède une borne inférieure, notée inf A.

On dispose de caractérisations équivalentes de la borne supérieure.

Proposition 1.2

Soient A une partie de \mathbb{R} , non-vide et majorée, et s un réel.

Alors il y a équivalence entre les propositions suivantes :

$$(\alpha)$$
 $s = \sup A$

$$(\beta) \begin{cases} \forall a \in A, \ a \leq s \\ \forall \varepsilon > 0, \ \exists x \in A, \ s - \varepsilon < x \leq s \end{cases}$$

$$(\gamma) \begin{cases} \forall a \in A, \ a \leq s \\ \exists (x_n) \in A^{\mathbb{N}}, \ x_n \xrightarrow[n \to +\infty]{} s \end{cases}$$

 $D\acute{e}monstration 1.3 ((\alpha) \implies (\beta))$

 \triangleright $s = \sup A$ est le plus petit majorant de A donc c'est un majorant de A:

$$\forall a \in A, \ a \leq s.$$

 \triangleright s est le plus petit majorant de A donc

$$\forall \varepsilon > 0, \ s - \varepsilon < s$$

donc $s - \varepsilon$ n'est pas un majorant de A.

Donc il existe $x \in A$ tel que $s - \varepsilon < x \le s$.

Démonstration 1.4 $((\beta) \implies (\alpha))$

s est un majorant de A et tout réel strictement inférieur à s n'est pas un majorant i.e. tout majorant est supérieur ou égal à s.

Donc
$$s = \sup A$$
.

 $D\'{e}monstration 1.5 ((\beta) \implies (\gamma))$

On spécialise $\varepsilon \leftarrow \frac{1}{n+1}$ pour $n \in \mathbb{N}$. On a

$$\forall n \in \mathbb{N}, \ \exists x_n \in A, \ s - \frac{1}{n+1} < x_n \leqslant s.$$

De cette façon, on construit une suite $(x_n) \in A^{\mathbb{N}}$ telle que

$$\forall n \in \mathbb{N}, \ s - \frac{1}{n+1} < x_n \leqslant s.$$

D'après le théorème des gendarmes, on a $x_n \xrightarrow[n \to +\infty]{} s$.

Démonstration 1.6 $((\gamma) \implies (\beta))$ Soit $\varepsilon > 0$.

Il existe $N \in \mathbb{N}$ tel que

$$\forall n \ge N, |x_n - s| \le \frac{\varepsilon}{2}$$

$$\operatorname{donc} s - \frac{\varepsilon}{2} \le x_n.$$

Or $x_n \in A$ donc $s - \varepsilon < s - \frac{\varepsilon}{2} \le x_n \le s$.

D'où

$$\forall \varepsilon > 0, \ \exists x \in A, \ s - \varepsilon < x \leqslant s.$$

On a évidemment les caractérisations associées à la borne inférieure.

1.1.2 Borne supérieure d'une application à valeurs dans \mathbb{R}

Définition 1.7

Soient X un ensemble non-vide et $f: X \longrightarrow \mathbb{R}$.

Si f est majorée sur X, alors on appelle borne supérieure de f sur X le réel sup $f(X) = \sup_{X} f = \sup_{x \in Y} f(x)$.

Si f est minorée sur X, alors on appelle borne inférieure de f sur X le réel inf $f(X) = \inf_X f = \inf_{x \in X} f(x)$.

On déduit de la Proposition 1.2 les caractérisations suivantes.

Proposition 1.8

Soient X un ensemble non-vide, $f: X \longrightarrow \mathbb{R}$ majorée sur X et s un réel.

Alors il y a équivalence entre les propositions suivantes :

$$s = \sup_{X} f$$

$$\begin{cases} \forall x \in X, \ f(x) \leq s \\ \forall \varepsilon > 0, \ \exists x \in X, \ s - \varepsilon < f(x) \leq s \end{cases}$$

$$\begin{cases} \forall x \in X, \ f(x) \leq s \\ \exists (x_n) \in X^{\mathbb{N}}, \ f(x_n) \xrightarrow[n \to +\infty]{} s \end{cases}$$

1.1.3 Règles pratiques

D'abord, des évidences auxquelles on ne pense pas toujours.

Proposition 1.9

Soit A une partie de \mathbb{R} , non-vide et majorée. Alors $\forall a \in A$, $a \leq \sup A$.

Soient X un ensemble non-vide et $f: X \longrightarrow \mathbb{R}$ majorée sur X. Alors $\forall x \in X, f(x) \leq \sup_{X} f$.

En pratique, on n'a pas souvent besoin de connaître la valeur exacte d'une borne supérieure, on a plus souvent besoin de la majorer.

Proposition 1.10

- ▶ Soient A une partie de \mathbb{R} , non-vide et majorée, et M un réel. Pour montrer sup $A \leq M$, il suffit de montrer $\forall a \in A$, $a \leq M$.
- ▶ Soient X un ensemble non-vide, $f: X \longrightarrow \mathbb{R}$ majorée sur X et M un réel. Pour montrer $\sup_{X} f \leq M$, il suffit de montrer $\forall x \in X, f(x) \leq M$.

Multiplication par un réel positif.

Proposition 1.11

Soient X un ensemble non-vide et $f: X \longrightarrow \mathbb{R}$ majorée sur X.

Alors pour tout $\lambda \ge 0$, $\sup_{X} (\lambda f) = \lambda \sup_{X} f$.

Démonstration 1.12

Soit $\lambda \ge 0$. On pose $s = \sup_{\mathbf{y}} f$.

On veut montrer $\sup_{X} (\lambda f) = \lambda s$.

On a $\forall x \in X$, $f(x) \leq s$ et $\lambda \geq 0$ donc

$$\forall x \in X, \ \lambda f(x) \leq \lambda s.$$

Donc λs est un majorant de λf .

Comme $s = \sup_X f$, il existe $(x_n) \in X^{\mathbb{N}}$ telle que $f(x_n) \xrightarrow[n \to +\infty]{} s$.

D'après les théorèmes d'opération sur les limites, on a

$$\lambda f(x_n) \xrightarrow[n \to +\infty]{} \lambda s.$$

D'où $\lambda s = \sup_{X} (\lambda f)$ d'après la Proposition 1.2.

Attention! C'est bien sûr faux si $\lambda < 0$.

1.2 Normes

1.2.1 Définition

Définition 1.13

Soit E un \mathbb{K} -espace vectoriel.

On appelle norme sur E toute application $N: E \longrightarrow \mathbb{R}_+$ telle que :

- ightharpoonup pour tout $x \in E$, $N(x) = 0 \iff x = 0$ (séparation)
- \triangleright pour tout $x \in E$, pour tout $\lambda \in \mathbb{K}$, $N(\lambda x) = |\lambda| N(x)$ (homogénéité)
- ▶ pour tout $(x, y) \in E^2$, $N(x + y) \leq N(x) + N(y)$ (inégalité triangulaire).

Un espace vectoriel est dit espace vectoriel normé quand on lui associe une norme.

On déduit de l'inégalité triangulaire une inégalité classique (souvent appelée aussi inégalité triangulaire) :

pour tout
$$(x, y) \in E^2$$
, $|N(x) - N(y)| \le N(x - y)$.

Démonstration 1.14 Soit $(x, y) \in E^2$.

D'après l'inégalité triangulaire, on a

$$N(x - y + y) \le N(x - y) + N(y)$$

$$N(x) \le N(x - y) + N(y)$$

$$N(x) - N(y) \le N(x - y).$$

De même, en échangeant x et y:

$$N(y) - N(x) \leq N(y - x)$$
.

Or

$$N(x - y) = N(-(y - x)) = |-1|N(y - x) = N(y - x).$$

D'où

$$\begin{cases} N(x) - N(y) \le N(x - y) \\ N(y) - N(x) \le N(x - y) \end{cases}$$

donc

$$|N(x) - N(y)| \le N(x - y).$$

Si N est une norme sur E, alors on peut définir une distance entre deux vecteurs de E : d(u,v) = N(u-v).

On définit ainsi une application $d: E^2 \longrightarrow \mathbb{R}_+$ telle que :

- \triangleright pour tout $(x, y) \in E^2$, d(y, x) = d(x, y) (symétrie)
- ▶ pour tout $(x, y) \in E^2$, $d(x, y) = 0 \iff x = y$ (séparation)
- \triangleright pour tout $(x, y, z) \in E^3$, $d(x, z) \le d(x, y) + d(y, z)$ (inégalité triangulaire).

1.2.2 Exemples fondamentaux

- ightharpoonup La valeur absolue dans $\mathbb R$ et le module dans $\mathbb C$ sont des normes.
- ▶ La norme euclidienne habituelle en géométrie plane ou spatiale est une norme.

- ▶ Plus généralement, si $\langle \cdot | \cdot \rangle$ est un produit scalaire sur E, la norme euclidienne associée $x \longmapsto \sqrt{\langle x | x \rangle}$ est une norme au sens précédent.
- ▶ Soit E un \mathbb{K} -espace vectoriel de dimension finie. On choisit une base de E $\mathscr{B} = (e_1, \ldots, e_n)$. Si v est un vecteur de E, on note (v_1, \ldots, v_n) les coordonnées de v dans la base \mathscr{B} . On définit classiquement trois normes sur E:

$$\|v\|_{\infty} = \max_{i \in [1,n]} |v_i| \qquad \|v\|_1 = \sum_{i=1}^n |v_i| \qquad \|v\|_2 = \sqrt{\sum_{i=1}^n |v_i|^2}$$

appelées respesctivement norme infinie ou norme sup, norme 1 et norme 2.

Cas particulier : $E = \mathbb{R}^n$ muni de la base canonique.

Cas particulier : $E = \mathcal{M}_{n,p}$ (\mathbb{K}) muni de la base canonique. Si $A = (a_{ij})_{\substack{1 \leq i \leq n \\ 1 \leq j \leq p}}$ est une matrice de $\mathcal{M}_{n,p}$ (\mathbb{K}), alors

$$||A||_{\infty} = \max_{\substack{1 \le i \le n \\ 1 \le j \le p}} |a_{ij}| \qquad ||A||_1 = \sum_{\substack{1 \le i \le n \\ 1 \le j \le p}} |a_{ij}| \qquad ||A||_2 = \sqrt{\sum_{\substack{1 \le i \le n \\ 1 \le j \le p}} |a_{ij}|^2}$$

▶ Soient X un ensemble et E l'ensemble des applications bornées de X dans \mathbb{K} . La norme sup sur E est définie par $||f||_{\infty} = \sup_{X} |f(x)|$.

Cas particulier : si $X=\mathbb{N}, E$ est l'ensemble des suites bornées et $\|u\|_{\infty}=\sup_{n\in\mathbb{N}}|u_n|$.

Démonstration 1.15 ($\|\cdot\|_{\infty}$ est une norme sur E)

▶ Si $||v||_{\infty} = 0$ alors par définition d'un maximum

$$\forall i \in \llbracket 1 \; ; \; n \rrbracket \; , \;\; 0 \leqslant |v_i| \leqslant \|v\|_{\infty} = 0 \text{ donc } v_i = 0$$

donc v = 0.

 \triangleright Soit $\lambda \in \mathbb{K}$. On a

$$\|\lambda v\|_{\infty} = \sup_{i \in [1;n]} |\lambda v_{i}|$$

$$= \sup_{i \in [1;n]} |\lambda| \times |v_{i}|$$

$$= |\lambda| \sup_{i \in [1;n]} |v_{i}|$$

$$= |\lambda| \|v\|_{\infty}.$$

D'après la Proposition 1.10, il suffit de montrer

$$\forall i \in [1; n], |v_i + w_i| \leq ||v||_{\infty} + ||w||_{\infty}.$$

Pour $i \in [1; n]$, on a

$$|v_i + w_i| \le |v_i| + |w_i|$$

 $\le ||v||_{\infty} + ||w||_{\infty}.$
 $\begin{cases} |v_i| \le ||v||_{\infty} \\ |w_i| \le ||w||_{\infty} \end{cases}$

Donc $||v + w||_{\infty} \le ||v||_{\infty} + ||w||_{\infty}$.

Démonstration 1.16 ($\|\cdot\|_1$ est une norme sur E)

▶ Si $||v||_1 = 0$ alors $\sum_{i=1}^n |v_i| = 0$. Or une somme de réels positifs est nulle ssi tous les réels sont nuls. Donc

$$\forall i \in [1; n], |v_i| = 0$$

donc v = 0.

 \triangleright Soit $\lambda \in \mathbb{R}$. On a

$$\|\lambda v\|_1 = \sum_{i=1}^n |\lambda v_i|$$

$$= \sum_{i=1}^n |\lambda| \times |v_i|$$

$$= |\lambda| \sum_{i=1}^n |v_i|$$

$$= |\lambda| \|v\|_1.$$

 \triangleright Soit $(v, w) \in E^2$. On a

$$||v + w||_1 = \sum_{i=1}^n |v_i + w_i|$$

$$\leq \sum_{i=1}^n (|v_i| + |w_i|)$$

$$= ||v||_1 + ||w||_1.$$

Proposition 1.17

Soient E, F deux espaces vectoriels normés.

L'application de $E \times F$ dans \mathbb{R}_+ qui à (x, y) associe $\max(\|x\|_E, \|y\|_F)$ est une norme.

Autrement dit, le produit de deux espaces vectoriels normés est encore un espace vectoriel normé, résultat qui se généralise par récurrence à un nombre quelconque (fini) d'espaces vectoriels normés.

1.2.3 Normes équivalentes

Définition 1.18

Soient E un \mathbb{K} -espace vectoriel et N_1, N_2 deux normes sur E.

On dit que N_1 et N_2 sont équivalentes quand il existe deux constantes strictement positives a, b telles que pour tout $v \in E$, $aN_1(v) \leq N_2(v) \leq bN_1(v)$.

Proposition 1.19

On note \mathcal{N} (E) l'ensemble des normes sur E et

$$\forall (N_1, N_2) \in \mathcal{N}(E)^2, N_1 \sim N_2 \iff N_1 \text{ et } N_2 \text{ sont \'equivalentes}.$$

La relation \sim est alors une relation d'équivalence sur \mathcal{N} (E).

Démonstration 1.20

▶ Soit $N \in \mathcal{N}(E)$. On a $N \leq N \leq N$ donc $N \sim N$.

Donc ~ est réflexive.

▶ Soit $(N_1, N_2) \in \mathcal{N}(E)^2$ tel que $N_1 \sim N_2$.

Il existe a, b > 0 tels que $aN_1 \le N_2 \le bN_1$.

Donc
$$\frac{1}{b}N_2 \le N_1 \le \frac{1}{a}N_2 \ i.e. \ N_2 \sim N_1.$$

Donc ~ est symétrique.

▶ Soit $(N_1, N_2, N_3) \in \mathcal{N}(E)^3$ tel que $N_1 \sim N_2$ et $N_2 \sim N_3$.

Il existe
$$a,b,c,d>0$$
 tels que
$$\begin{cases} aN_1 \leq N_2 \leq bN_1 \\ cN_2 \leq N_3 \leq dN_2 \end{cases}$$

Donc $acN_1 \leq N_3 \leq bdN_1$ i.e. $N_1 \sim N_3$.

Donc \sim est transitive.

Finalement, ~ est une relation d'équivalence.

Exercice 1.21

Montrez que si E est de dimension finie, les trois normes $\|\cdot\|_{\infty}$, $\|\cdot\|_{1}$ et $\|\cdot\|_{2}$ sont équivalentes.

Correction 1.22

Soient E un espace vectoriel normé de dimension finie et \mathcal{B} une base de E.

Soit
$$v = (v_1, \ldots, v_n)_{\mathscr{B}}$$
.

On a

$$\|v\|_{\infty} = \sup_{i \in [1:n]} |v_i| \qquad \|v\|_1 = \sum_{i=1}^n |v_i| \qquad \|v\|_2 = \sqrt{\sum_{i=1}^n |v_i|^2}.$$

 $\quad \triangleright \ \, \text{On a} \, \, \|v\|_{\infty} \leq \|v\|_1 \leq n \, \|v\|_{\infty}.$

En effet, il existe $j \in [1 ; n]$ tel que $||v||_{\infty} = |v_j|$ donc

$$||v||_{\infty} = |v_j| \le |v_1| + \cdots + |v_n| = ||v||_1$$
.

De plus, pour tout $i \in [1; n]$, $|v_i| \le ||v||_{\infty}$ donc en additionnant les inégalités :

$$\sum_{i=1}^{n} |v_i| = ||v||_1 \leqslant \sum_{i=1}^{n} ||v||_{\infty} = n ||v||_{\infty}.$$

Donc $\|\cdot\|_{\infty} \sim \|\cdot\|_{1}$.

▶ En mettant des carrés partout on arrive à

$$||v||_{\infty} \leq ||v||_2 \leq \sqrt{n} ||v||_{\infty}$$
.

Donc $\|\cdot\|_{\infty} \sim \|\cdot\|_2$.

▶ Par transitivité, on a $\|\cdot\|_1 \sim \|\cdot\|_2$.

Exercice 1.23 Soient $E = \mathbb{R}[X]$ et $P = \sum_{i=0}^{n} a_i X^i \in E$. On pose $N_1(P) = \sum_{i=0}^{n} |a_i|$ et $N_{\infty}(P) = \max_{0 \le i \le n} |a_i|$.

Montrez que N_1 et N_{∞} sont des normes sur E.

Montrez qu'elles ne sont pas équivalentes en considérant la suite des polynômes $P_n = \sum_{i=0}^n X^i$.

Correction 1.24

- ▶ N_1 et N_∞ sont clairement des normes (cf. Démonstration 1.15 et Démonstration 1.16).
- $Pour n \in \mathbb{N}, \text{ on pose } P_n = \sum_{i=0}^n X^i = 1 + X + \dots + X^n.$

Par l'absurde, on suppose $N_1 \sim N_{\infty}$.

Il existe a, b > 0 tels que $aN_1 \le N_{\infty} \le bN_1$.

Donc

$$\forall n \in \mathbb{N}, \ a \underbrace{N_1(P_n)}_{=n+1} \leq \underbrace{N_\infty(P_n)}_{=1} \leq b \underbrace{N_1(P_n)}_{=n+1}$$

donc

$$\forall n \in \mathbb{N}, \ a(n+1) \leq 1$$

or $\lim_{n \to +\infty} a(n+1) = +\infty$: contradiction.

Donc N_1 et N_{∞} ne sont pas équivalentes.

Remarque 1.25

Soit $(N_1, N_2) \in \mathcal{N}(E)^2$. On a

$$N_1 \sim N_2 \iff v \longmapsto \frac{N_1(v)}{N_2(v)}$$
 est bornée sur $E \setminus \{0\}$.

Ainsi, pour montrer que N_1 et N_2 ne sont pas équivalentes, on cherche une suite $(v_n) \in (E \setminus \{0\})^{\mathbb{N}}$ telle que

$$\frac{N_1(v_n)}{N_2(v_n)} \xrightarrow[n \to +\infty]{} +\infty$$
 ou $\frac{N_1(v_n)}{N_2(v_n)} \xrightarrow[n \to +\infty]{} 0$.

Le résultat suivant est fondamental.

Théorème 1.26

Si E est un K-espace vectoriel de dimension finie, alors toutes les normes sur E sont équivalentes.

Quand on est en dimension finie, cela signifie que tous les résultats qu'on peut démontrer pour une norme sont à facteurs près valables pour n'importe quelle norme, autrement dit cela nous permettra de choisir la norme que l'on préfère si on ne nous l'impose pas.

Dans toute la suite, E est un espace vectoriel normé par la norme $\|\cdot\|$.

1.2.4 Boules

Définition 1.27

Soient $a \in E$ et $r \in \mathbb{R}_+^*$.

On appelle boule ouverte de centre a et de rayon r l'ensemble noté B(a,r) défini de la façon suivante :

$$B(a,r) = \{ v \in E \mid ||v - a|| < r \}.$$

On appelle boule fermée de centre a et de rayon r l'ensemble noté (généralement) $\overline{B}(a,r)$:

$$\overline{B}(a,r) = \{ v \in E \mid ||v - a|| \le r \}.$$

On appelle sphère de centre a et de rayon r l'ensemble (généralement) noté S(a,r):

$$S(a,r) = \{v \in E \mid ||v - a|| = r\}.$$

On appelle boule-unité la boule de centre 0 et de rayon 1, sphère-unité la sphère de centre 0 et de rayon 1.

Exercice 1.28

Que sont les boules dans \mathbb{R} ? Que sont les sphères dans \mathbb{R} ?

Correction 1.29

 $|\cdot|$ est une norme sur \mathbb{R} .

Soient $a \in \mathbb{R}$ et r > 0.

On a

$$B(a,r) =]a - r \; ; \; a + r[\qquad \overline{B}(a,r) = [a - r \; ; \; a + r] \qquad S(a,r) = \{a - r, a + r\} \; .$$

Exercice 1.30

On prend $E = \mathbb{R}^2$ et on définit les normes infinie, 1 et 2 relativement à la base canonique.

Représentez graphiquement les boules-unités pour chacune de ces trois normes.

Correction 1.31

On a

$$\|(x,y)\|_{\infty} = \max{(|x|,|y|)} \qquad \|(x,y)\|_1 = |x| + |y| \qquad \|(x,y)\|_2 = \sqrt{x^2 + y^2}.$$

On en déduit les boules suivantes :

Exercice 1.32

Montrez que toute boule ouverte est contenue dans une boule fermée et contient une boule fermée de mêmes centres.

Montrez la même chose en inversant les mots « ouverte » et « fermée ».

Correction 1.33

Soient $a \in E$ et r > 0.

On a

$$\overline{B}\left(a,\frac{r}{2}\right)\subseteq B\left(a,r\right)\subseteq \overline{B}\left(a,r\right)$$

et

$$B(a,r) \subseteq \overline{B}(a,r) \subseteq B(a,2r)$$
.

Définition 1.34

Soit $(x, y) \in E^2$. On note $[xy] = \{tx + (1 - t)y \mid t \in [0; 1]\}$, appelé segment (géométrique) d'extrémités x et y.

Une partie A de E est dite convexe quand pour tout $(x, y) \in A^2$, $[xy] \subseteq A$.

On a:

A est convexe
$$\iff \forall (x, y) \in A^2, \ \forall t \in [0; 1], \ tx + (1 - t)y \in A.$$

Proposition 1.35

Les boules (ouvertes ou fermées) sont des parties convexes.

Les sphères ne sont jamais convexes.

Dans \mathbb{R} , les convexes sont les intervalles.

Démonstration 1.36 (Les boules sont convexes) Soient $a \in E$ et r > 0.

Soient $(x, y) \in B(a, r)^2$ et $t \in [0; 1]$.

On veut montrer que $tx + (1-t)y \in B(a,r)$ i.e. ||tx + (1-t)y - a|| < r.

On a

$$\begin{aligned} \|tx + (1-t)y - a\| &= \|t(x-a) + at + (1-t)y - a\| \\ &= \|t(x-a) + (t-1)a + (1-t)y\| \\ &= \|t(x-a) + (1-t)(y-a)\| \\ &\leq \|t(x-a)\| + \|(1-t)(y-a)\| \end{aligned} \qquad \begin{tabular}{l} inégalité triangulaire \\ homogénéité et t \geq 0 et \\ 1-t \geq 0 \\ x, y \in B(a, r) \\ &\leq tr + (1-t)r \\ &= r. \end{aligned}$$

Ceci prouve

$$\forall (x, y) \in B(a, r), [xy] \subseteq B(a, r)$$

i.e. B(a,r) est convexe.

De même, $\overline{B}\left(a,r\right)$ est convexe.

Démonstration 1.37 (Les sphères ne sont pas convexes) Soient $a \in E$ et r > 0.

On veut montrer que S(a,r) n'est pas convexe *i.e.*

$$\exists (x, y) \in S(a, r)^2, \exists t \in [0; 1], tx + (1 - t) y \notin S(a, r).$$

On choisit $x \in S(a, r)$ puis y = 2a - x (diamétralement opposé).

On a

$$a \in [xy]$$

$$\operatorname{car} \, a = \frac{1}{2}x + \frac{1}{2}y \text{ et}$$

$$a \notin S(a,r)$$
.

Donc S(a,r) n'est pas convexe.

1.2.5 Parties bornées

Définition 1.38

On dit qu'une partie A de E est bornée quand il existe une boule qui la contient.

Exercice 1.39

Montrez que A est bornée ssi A est contenue dans une boule de centre 0.

Plus généralement, on choisit arbitrairement un point de E, noté x. Montrez l'équivalence A est bornée ssi A est contenue dans une boule de centre x.

Correction 1.40 (Première équivalence)

⇐ Immédiat.

Soit A une partie bornée de E.

Il existe $a \in E$ et r > 0 tels que $A \subseteq B(a, r)$.

On pose r' = ||a|| + r > 0.

Soit $x \in A$.

On a $x \in B(a, r)$ donc ||x - a|| < r.

Donc r > |||x|| - ||a|||.

Donc r > ||x|| - ||a||.

Donc r + ||a|| > ||x||.

Donc $A \subseteq B(0, r')$.

Correction 1.41 (Seconde équivalence)

Plus généralement, soit $x \in E$.

Avec r'' = ||x - a|| + r, on a de même $A \subseteq B(x, r'')$.

Exercice 1.42

Montrez qu'en dimension finie, cette définition ne dépend pas de la norme.

Correction 1.43

On veut montrer que si E est de dimension finie et N_1, N_2 sont des normes sur E, alors

A est bornée pour $N_1 \iff A$ est bornée pour N_2 .

Soit A une partie bornée pour N_1 .

Alors il existe $r_1 > 0$ tel que $A \subseteq B_1(0, r_1)$.

Comme E est de dimension finie, les normes N_1 et N_2 sont équivalentes.

Il existe donc a, b > 0 tels que $aN_2 \le N_1 \le bN_2$.

On pose
$$r_2 = \frac{r_1}{a} > 0$$
.

Soit $x \in A$.

Alors $x \in B_1(0, r_1)$ donc

$$N_1(x) < r_1$$

$$N_2(x) \leqslant \frac{1}{a} N_1(x) < r_2.$$

Donc $x \in B_2(0, r_2)$.

Donc $A \subseteq B_2(0, r_2)$.

Donc A est bornée pour N_2 .

Et réciproquement.

Proposition 1.44

Une partie A de E n'est pas bornée ssi il existe une suite (v_n) à termes dans A telle que $||v_n|| \xrightarrow[n \to +\infty]{} +\infty$.

Exercice 1.45

Dans $E = \mathbb{R}^2$, on pose $A = \{(x, y) \mid x^4 + y^4 = 20\}$: A est-elle bornée? Si oui, pour chacune des normes infinie, 1 et 2, donnez un rayon d'une boule centrée en 0 qui contient A.

Correction 1.46

E est de dimension finie donc les normes sur E sont toutes équivalentes.

On choisit la norme sup.

Soit $(x, y) \in A$.

On a $x^4 + y^4 = 20$ donc $x^4 \le x^4 + y^4 = 20$ car $x^4 \ge 0$.

Donc $|x| \le \sqrt[4]{20}$ et, de même, $|y| \le \sqrt[4]{20}$.

Donc $(x, y) \in \overline{B_{\infty}} (0, \sqrt[4]{20}).$

Donc $A \subseteq \overline{B_{\infty}} (0, \sqrt[4]{20}).$

D'après l'Exercice 1.21, on a

$$\|\cdot\|_{\infty} \leqslant \|\cdot\|_{1} \leqslant 2\|\cdot\|_{\infty}$$

et

$$\|\cdot\|_{\infty} \leq \|\cdot\|_2 \leq \sqrt{2} \|\cdot\|_{\infty}$$
.

Donc $A \subseteq \overline{B_1}\left(0, 2\sqrt[4]{20}\right)$ et $A \subseteq \overline{B_2}\left(0, \sqrt{2}\sqrt[4]{20}\right)$.

Exercice 1.47

Même question avec $E = \mathbb{C}^2$.

Correction 1.48

E est de dimension finie donc les normes sur E sont équivalentes.

x étant quel
conque dans \mathbb{C} , existe-t-il $y \in \mathbb{C}$ tel que $x^4 + y^4 = 20$?

Dans \mathbb{C} , tout nombre possède une racine quatrième donc en posant y une racine quatrième de $20 - x^4$, on obtient $(x, y) \in A$.

On pose $v_n = (n, y_n)$ où y_n est une racine quatrième de $20 - n^4$.

On a $||v_n||_{\infty} = \max(n, |y_n|) \ge n$ donc

$$||v_n||_{\infty} \xrightarrow[n \to +\infty]{} +\infty.$$

Or $(v_n) \in A^{\mathbb{N}}$ donc A n'est pas bornée.

Exercice 1.49

Dans $E = \mathbb{R}^3$, on pose $B = \{(x, y, z) \mid x^2 + 3y^2 + 4z^2 + 2xy + 2xz - 2yz \le 42\}$: B est-elle bornée? Si oui, pour chacune des normes infinie, 1 et 2, donnez un rayon d'une boule centrée en 0 qui contient B.

Correction 1.50

E est de dimension finie donc les normes sur E sont équivalentes.

On a

$$\forall (x, y, z) \in E, \quad x^2 + 3y^2 + 4z^2 + 2xy + 2xz - 2yz = (x + y + z)^2 - y^2 - z^2 - 2yz + 3y^2 + 4z^2 - 2yz$$
$$= (x + y + z)^2 + 2y^2 + 3z^2 - 4yz$$
$$= (x + y + z)^2 + 2(y - z)^2 + z^2.$$

Si $(x, y, z) \in B$ alors $(x + y + z)^2 + 2(y - z)^2 + z^2 \le 42$.

Donc
$$\begin{cases} z^{2} \le 42 \\ 2(y-z)^{2} \le 42 \\ (x+y+z)^{2} \le 42 \end{cases}$$

Donc
$$\begin{cases} |z| \le 7 \\ |y - z| \le 5 \\ |x + y + z| \le 7 \end{cases}$$

$$\text{Donc} \begin{cases} |z| \leq 7 \\ |y| = |y - z + z| \leq |y - z| + |z| \leq 12 \\ |x| = |x + y + z - y - z| \leq |x + y + z| + |y| + |z| \leq 26 \end{cases}$$

Donc $||(x, y, z)||_{\infty} \le 26$ et on a

$$B \subseteq B_{\infty}(0, 26)$$
 $B \subseteq B_1(0, 78)$ $B \subseteq B_2(0, 26\sqrt{3}).$

Exercice 1.51

Dans $\mathcal{M}_2(\mathbb{R})$, on note \mathcal{P} l'ensemble des matrices de projecteurs : \mathcal{P} est-il borné?

Correction 1.52

 $\mathcal{M}_{2}\left(\mathbb{R}\right)$ est de dimension finie donc les normes sont équivalentes.

On choisit la norme sup:

$$\left\| \begin{pmatrix} x & z \\ y & t \end{pmatrix} \right\|_{\infty} = \max \left(\left| x \right|, \left| y \right|, \left| z \right|, \left| t \right| \right).$$

On a $\mathcal{P} = \{ M \in \mathcal{M}_2(\mathbb{R}) \mid M^2 = M \}.$

On pose $M = \begin{pmatrix} x & z \\ y & t \end{pmatrix}$ et on a

$$M = M^{2} \iff \begin{cases} x^{2} + yz = x \\ z(x+t) = z \\ y(x+t) = y \\ t^{2} + yz = t \end{cases}$$

On impose x + t = 1.

On a

$$t - t^2 = (1 - x) - (1 - x)^2 = x - x^2.$$

Donc avec $y \neq 0$, on a $M = \begin{pmatrix} x & \frac{x - x^2}{y} \\ y & 1 - x \end{pmatrix}$.

On en déduit que $\mathcal P$ contient les matrices $M_n = \begin{pmatrix} n & n-n^2 \\ 1 & 1-n \end{pmatrix}$ et on a $\|M_n\|_\infty \ge n$.

Donc $\mathcal P$ n'est pas bornée.

Définition 1.53

On dit qu'une suite v à termes dans E est bornée quand l'ensemble de ses valeurs est borné, autrement dit quand il existe M > 0 tel que pour tout $n \in \mathbb{N}$, $||v_n|| \leq M$.

On dit qu'une fonction f d'un ensemble X dans E est bornée quand l'ensemble de ses valeurs prises sur X est borné, autrement dit quand il existe M > 0 tel que pour tout $x \in X$, $||f(x)|| \leq M$.

Exercice 1.54

Soit u une suite complexe arithmético-géométrique de raison a. À quelle condition est-elle bornée?

Correction 1.55

Soit $(u_n) \in \mathbb{C}^{\mathbb{N}}$ telle que $\forall n \in \mathbb{N}, \ u_{n+1} = au_n + b$.

Si $a \neq 1$, (u_n) est de la forme $\left(\lambda a^n + \frac{b}{1-a}\right)_{n \in \mathbb{N}}$ où $\lambda \in \mathbb{C}$.

Si $a=1,\;(u_n)$ est de la forme $(\lambda+nb)_{n\in\mathbb{N}}$ où $\lambda\in\mathbb{C}.$

On choisit $\lambda \neq 0$.

On a alors

$$(u_n)$$
 est bornée \iff $\begin{vmatrix} |a| \leqslant 1 \text{ et } a \neq 1 \\ \text{ou} \\ a = 1 \text{ et } b = 0 \end{vmatrix}$

Exercice 1.56

Soient B, B' deux boules de E. Si $(x, x') \in E^2$, on pose f(x, x') = d(x, x'). Montrez que f est bornée sur $B \times B'$.

Correction 1.57

Soient $(a,b) \in E^2$ et r,s > 0 tels que B = B(a,r) et B' = B(b,s).

On a

$$\forall (x, x') \in B \times B', \ 0 \leqslant f(x, x') \leqslant ||b - a|| + r + s$$

car

$$f(x,x') = ||x - x'||$$

$$= ||x - a + a - b + b - x'||$$

$$\leq ||x - a|| + ||a - b|| + ||b - x'||$$

$$\leq r + s + ||b - a||.$$

1.3 Convergence des suites

Dans cette section, E désigne un espace vectoriel normé par la norme $\|\cdot\|$.

1.3.1 Définition

Définition 1.58

Soient $u = (u_n)$ une suite à termes dans E et $\ell \in E$.

On dit que la suite u converge vers ℓ quand toute boule ouverte de centre ℓ contient tous les termes de la suite à partir d'un certain rang :

$$\forall \varepsilon > 0, \ \exists n_0 \in \mathbb{N}, \ \forall n \geqslant n_0, \ u_n \in B(\ell, \varepsilon).$$

Proposition 1.59

Dans la définition, on peut remplacer les boules ouvertes par des boules fermées.

On peut réécrire la définition sous deux formes équivalentes :

$$\forall \varepsilon > 0, \ \exists n_0 \in \mathbb{N}, \ \forall n \geqslant n_0, \ \|u_n - \ell\| < \varepsilon$$

ou

$$\forall \varepsilon > 0, \ \exists n_0 \in \mathbb{N}, \ \forall n \ge n_0, \ \|u_n - \ell\| \le \varepsilon.$$

On peut donc se ramener aux suites réelles positives : la suite vectorielle u converge vers ℓ ssi la suite réelle ($||u_n - \ell||$) converge vers 0.

Une suite qui ne converge vers aucun élément de E est dite divergente.

1.3.2 Propriétés usuelles

Proposition 1.60 (Unicité de la limite) Si une suite $u \in E^{\mathbb{N}}$ converge vers $\ell \in E$, elle ne peut converger vers un autre point de E.

On peut donc noter classiquement $\ell = \lim u = \lim_{n \to +\infty} u_n$ ou $u_n \xrightarrow[n \to +\infty]{} \ell$.

Démonstration 1.61

Par l'absurde, soit $(\ell, \ell') \in E^2$ tel que u converge vers ℓ et ℓ' , et $\ell \neq \ell'$.

Soit
$$\varepsilon = \frac{\|\ell - \ell'\|}{2}$$
.

Il existe $N_1 \in \mathbb{N}$ et $N_2 \in \mathbb{N}$ tels que

$$\forall n \geqslant N_1, ||u_n - \ell|| < \varepsilon$$

et

$$\forall n \geq N_2, \|u_n - \ell'\| < \varepsilon.$$

On pose $N = \max(N_1, N_2)$.

On a alors

$$\forall n \geq N, \quad \varepsilon = \frac{\|\ell - \ell'\|}{2}$$

$$= \frac{\|\ell - u_n + u_n - \ell'\|}{2}$$

$$\leq \frac{\|\ell - u_n\| + \|u_n - \ell'\|}{2}$$

$$\leq \varepsilon.$$

Contradiction donc $\ell = \ell'$.

Proposition 1.62

Si une suite $u \in E^{\mathbb{N}}$ converge, alors elle est bornée.

Démonstration 1.63

On pose $\varepsilon = 42$.

Il existe $N \in \mathbb{N}$ tel que

$$\forall n \geqslant N, \|u_n - \ell\| \leqslant 42$$

i.e. $\forall n \geq N, \ u_n \in \overline{B}(\ell, 42).$

Parmi les N premiers termes de la suite u, on détermine le plus lointain de ℓ : on pose

$$r = \max_{0 \leq k \leq N-1} \|u_k - \ell\| \,.$$

Puis on pose $R = \max(42, r) > 0$.

On a alors $\forall n \in \mathbb{N}, \|u_n - \ell\| \leq R$.

Donc $\forall n \in \mathbb{N}, \ u_n \in \overline{B}(\ell, R).$

Donc la suite est bornée.

Théorème 1.64 (Opérations sur les suites convergentes)

Soient $u, v \in E^{\mathbb{N}}$ convergeant respectivement vers ℓ et m deux éléments de E.

Alors pour tout $(a,b) \in \mathbb{K}^2$, la suite au + bv converge vers $a\ell + bm$.

Soit $\alpha \in \mathbb{K}^{\mathbb{N}}$ convergeant vers $\lambda \in \mathbb{K}$.

Alors la suite αu converge vers $\lambda \ell$.

Démonstration 1.65 (αu converge vers $\lambda \ell$) On a

$$\forall n \in \mathbb{N}, \quad \|\alpha_n u_n - \lambda \ell\| = \|\alpha_n u_n - \lambda u_n + \lambda u_n - \lambda \ell\|$$

$$= \|(\alpha_n - \lambda) u_n + \lambda (u_n - \ell)\|$$

$$\leq \|(\alpha_n - \lambda) u_n\| + \|\lambda (u_n - \ell)\|$$

$$= |\alpha_n - \lambda| \|u_n\| + |\lambda| \|u_n - \ell\|$$

$$\leq |\alpha_n - \lambda| \|u_n\| + (|\lambda| + 1) \|u_n - \ell\|.$$

Soit $\varepsilon > 0$.

Il existe $n_0 \in \mathbb{N}$ tel que

$$\forall n \geqslant n_0, \ \|u_n - \ell\| \leqslant \frac{\varepsilon}{|\lambda| + 1}.$$

u converge donc est bornée : il existe $K \in \mathbb{R}_+^*$ tel que

$$\forall n \in \mathbb{N}, ||u_n|| \leq K.$$

Donc il existe $n_1 \in \mathbb{N}$ tel que

$$\forall n \geqslant n_1, \ |\alpha_n - \lambda| \leqslant \frac{\varepsilon}{K}.$$

Donc

$$\begin{split} \forall n \geq \max \left(n_0, n_1 \right), \ |\alpha_n u_n - \lambda \ell| \leq K \frac{\varepsilon}{K} + \left(|\lambda| + 1 \right) \frac{\varepsilon}{|\lambda| + 1} \\ &= 2\varepsilon. \end{split}$$

D'où
$$\alpha_n u_n \xrightarrow[n \to +\infty]{} \lambda \ell$$
.

Proposition 1.66

Toute suite extraite d'une suite convergente converge vers la même limite.

Quasi-réciproque : si u est une suite telle que les deux suites extraites (u_{2n}) et (u_{2n+1}) convergent vers la même limite ℓ , alors u converge vers ℓ .

Proposition 1.67

Dans un produit de deux espaces vectoriels normés $E \times F$, une suite $(u_n) = ((a_n, b_n))$ converge ssi les suites (a_n) et (b_n) convergent dans E, respectivement F.

Dans ce cas, $\lim (a_n, b_n) = (\lim a_n, \lim b_n)$.

Ce résultat se généralise sans difficulté par récurrence à un nombre quelconque (fini) d'espaces vectoriels normés.

1.3.3 Cas particulier en dimension finie

Dans cette partie, on suppose que E est de dimension finie.

Définition 1.68

Soit $\mathcal{B} = (e_1, \dots, e_n)$ une base de E.

Pour $i \in [1 ; n]$, on appelle *i*-ème forme coordonnée (relative à la base \mathcal{B}), notée souvent d_i , la forme linéaire qui à un vecteur associe sa *i*-ème coordonnée dans la base \mathcal{B} :

pour tout
$$v \in E$$
, $v = \sum_{i=1}^{n} d_i(v) e_i$.

Théorème 1.69

Soit B une base de E.

Une suite $u \in E^{\mathbb{N}}$ converge vers $\ell \in E$ ssi pour toute forme coordonnée d relative à \mathcal{B} , la suite $(d(u_n))$ converge vers $d(\ell)$.

Autrement dit, une suite converge ssi ses suites-coordonnées dans n'importe quelle base convergent.

Dans ce cas, la limite de la suite u est le vecteur ℓ tel que pour toute forme coordonnée d, d (ℓ) = $\lim_{n \to +\infty} d$ (u_n).

Démonstration 1.70

E est de dimension finie donc toutes les normes sur E sont équivalentes. On note $p=\dim E$.

 \mathcal{B} étant une base de E, on choisit la norme $\|\cdot\|_{\infty}$ relative à \mathcal{B} .

Il existe a,b>0 tels que $a\|\cdot\|_{\infty} \leq \|\cdot\| \leq b\|\cdot\|_{\infty}.$

 \implies

Si (u_n) converge vers ℓ , alors $||u_n-\ell|| \xrightarrow[n \to +\infty]{} 0$ donc d'après l'inégalité ci-dessus, on a

$$0 \leqslant \|u_n - \ell\|_{\infty} \leqslant \frac{1}{a} \|u_n - \ell\|_{\infty}.$$

Donc, d'après le théorème des gendarmes, on a

$$||u_n - \ell||_{\infty} \xrightarrow[n \to +\infty]{} 0.$$

En notant $u_n=\left(u_{n,1},\ldots,u_{n,p}\right)_{\mathcal{B}}$ et $\ell=\left(\ell_1,\ldots,\ell_p\right)_{\mathcal{B}},$ on a

$$||u_n - \ell||_{\infty} = \max_{k \in \llbracket 1; p \rrbracket} |u_{n,k} - \ell_k|.$$

Donc $\forall k \in [1:p]$, $\left|u_{n,k}-\ell_k\right| \leq \|u_n-\ell\|_{\infty}$ et, par théorème des gendarmes, on a

$$u_{n,k} \xrightarrow[n \to +\infty]{} \ell_k$$
.

₩

Si pour tout $k \in [1; p]$, $(u_{n,k})_{n \in \mathbb{N}}$ converge vers ℓ_k , on a $||u_n - \ell||_{\infty} \xrightarrow[n \to +\infty]{} 0$ et d'après l'inégalité précédente, on a

$$\|u_n-\ell\| \le b \, \|u_n-\ell\|_\infty$$

donc $||u_n - \ell|| \xrightarrow[n \to +\infty]{} 0$ *i.e.* (u_n) converge vers ℓ .

Exemple 1.71

Si $M_n = \begin{pmatrix} 1 & \mathrm{e}^{-n} \\ 1/n & n \sin{(1/n)} \end{pmatrix}$, alors la suite de matrices (M_n) converge vers la matrice I_2 .

Corollaire 1.72

Si E est de dimension finie, la convergence d'une suite ne dépend pas du choix de la norme. On peut donc choisir la norme qu'on veut.

1.3.4 Point adhérent à une partie

Définition 1.73

Soient A une partie de E et $x \in E$.

On dit que x est un point adhérent à A quand il existe une suite $u \in A^{\mathbb{N}}$ qui converge vers x.

L'adhérence de A est l'ensemble de ses points adhérents, noté \overline{A} .

Intuitivement, l'adhérence d'une partie est elle-même à laquelle on ajoute tous les points qui se trouvent sur son bord.

Remarque 1.74

On remarque qu'on a $A \subseteq \overline{A}$ car pour tout $a \in A$, la suite constante égale à a converge vers a et est à termes dans A.

Exercice 1.75

Quelle est l'adhérence d'une boule ouverte?

Correction 1.76

Soient $a \in E$ et r > 0. Montrons que $\overline{B(a,r)} = \overline{B}(a,r)$.

 \subseteq

Soit $b \in \overline{B(a,r)}$.

Il existe $(u_n) \in B(a,r)^{\mathbb{N}}$ qui converge vers b.

D'après la deuxième inégalité triangulaire, on a

$$|||u_n - a|| - ||b - a||| \le ||(u_n - a) - (b - a)||$$

= $||u_n - b||$.

Or $||u_n - b|| \xrightarrow[n \to +\infty]{} 0$ donc d'après le théorème d'encadrement, on a

$$||u_n-a|| \xrightarrow[n \to +\infty]{} ||b-a||.$$

Or $\forall n \in \mathbb{N}, \ u_n \in B(a,r) \text{ donc } ||u_n - a|| < r.$

Par passage à la limite, $||b - a|| \le r$.

Donc $b \in \overline{B}(a,r)$.

⊇

Soit $b \in \overline{B}(a, r)$.

Alors $||b - a|| \le r$.

Si $\|b - a\| < r$, alors $b \in B\left(a, r\right) \subseteq \overline{B\left(a, r\right)}$.

Si ||b-a|| = r, on pose, pour $n \in \mathbb{N}^*$, $u_n = \frac{1}{n}a + \left(1 - \frac{1}{n}\right)b$.

La suite (u_n) converge vers b par opérations sur les limites et on a

$$\forall n \in \mathbb{N}^*, \quad ||u_n - a|| = \left\| \left(\frac{1}{n} - 1 \right) a + \left(1 - \frac{1}{n} \right) b \right\|$$
$$= \left| 1 - \frac{1}{n} \right| ||b - a||$$
$$= \frac{n - 1}{n} r$$
$$< r$$

donc $(u_n) \in B(a,r)^{\mathbb{N}}$.

On a ainsi trouvé une suite à termes dans B(a,r) qui converge vers b donc $b \in \overline{B(a,r)}$.

Remarque 1.77

On a montré au passage que si $u_n \xrightarrow[n \to +\infty]{} \ell$ alors pour tout $a \in E$, $||u_n - a|| \xrightarrow[n \to +\infty]{} ||\ell - a||$.

Exercice 1.78

Quelle est l'adhérence de $\mathbb Z$ dans $\mathbb R$?

Correction 1.79

 \mathbb{R} est muni de la norme $|\cdot|$.

Montrons que $\mathbb{Z} = \overline{\mathbb{Z}}$.

 \subseteq Trivial.

 \supseteq

Soit $b \in \overline{\mathbb{Z}}$.

Il existe une suite $(u_n) \in \mathbb{Z}^{\mathbb{N}}$ qui converge vers b.

On pose $\varepsilon = \frac{1}{2}$.

Il existe $n_0 \in \mathbb{N}$ tel que

$$\forall n \geqslant n_0, \ |u_n - b| < \frac{1}{2}$$

i.e.
$$u_n \in \left[b - \frac{1}{2} ; b + \frac{1}{2} \right].$$

Or l'intervalle $\left|b-\frac{1}{2};b+\frac{1}{2}\right|$ est de longueur 1 et est ouvert donc il contient au plus un entier.

Or il en contient un donc il en contient un et un seul.

On en déduit que (u_n) est stationnaire en cet entier à partir de n_0 et donc $\lim u = b$ est un entier.

Donc $b \in \mathbb{Z}$.

Proposition 1.80

Soient A une partie de E et $x \in E$.

Alors x est adhérent à A ssi toute boule centrée en x rencontre A.

De manière formalisée : $x \in \overline{A} \iff \forall r > 0, \exists y \in A, y \in B(x,r).$

Démonstration 1.81

On a pour tout $n \in \mathbb{N}^*$, $B\left(x, \frac{1}{n}\right) \cap A \neq \emptyset$.

On peut choisir $y_n \in B\left(x, \frac{1}{n}\right) \cap A$.

On construit ainsi une suite $(y_n) \in A^{\mathbb{N}^*}$ telle que

$$\forall n \in \mathbb{N}^*, \ \|x - y_n\| < \frac{1}{n}.$$

D'après le théorème d'encadrement, on a donc $y_n \xrightarrow[n \to +\infty]{} x$.

Donc $x \in \overline{A}$.

Soient $x \in \overline{A}$ et $(u_n) \in A^{\mathbb{N}}$ telle que $u_n \xrightarrow[n \to +\infty]{} x$.

Soit r > 0.

Il existe $n_0 \in \mathbb{N}$ tel que

$$\forall n \geq n_0, \quad ||u_n - x|| < r$$

donc $u_{n_0} \in A \cap B(x,r)$ donc $A \cap B(x,r) \neq \emptyset$.

On peut donner la définition de la densité d'une partie.

Définition 1.82

On dit qu'une partie A est dense dans E quand $\overline{A} = E$, c'est-à-dire qu'on peut trouver des éléments de A aussi proches de n'importe quel point.

Exemple 1.83

- \triangleright Dans \mathbb{R} , \mathbb{Q} et $\mathbb{R} \setminus \mathbb{Q}$ sont denses (*cf.* cours de première année).
- $ightharpoonup \operatorname{GL}_n(\mathbb{K})$ est dense dans $\mathcal{M}_n(\mathbb{K})$ (démonstration ultérieure).

1.4 Limites de fonctions

Dans cette section, E et F sont deux espaces vectoriels normés par les normes $\|\cdot\|_E$ et $\|\cdot\|_F$.

1.4.1 Définition

Définition 1.84

Soient f une fonction de E dans F, D son ensemble de définition, $a \in \overline{D}$ et $\ell \in F$.

On dit que f a pour limite ℓ en a quand

$$\forall \varepsilon > 0, \ \exists \eta > 0, \ \forall x \in D, \ \|x - a\|_E < \eta \implies \|f(x) - \ell\|_F < \varepsilon.$$

Remarque 1.85

On peut remplacer les inégalités strictes sur les normes par des inégalités larges.

On peut réécrire la définition à l'aide de boules ouvertes (ou fermées) :

$$\forall \varepsilon > 0, \exists \eta > 0, \forall x \in D \cap B(a, \eta), f(x) \in B(\ell, \varepsilon).$$

Si E et F sont de dimension finie, cette définition ne dépend pas du choix des normes.

1.4.2 Caractérisation séquentielle de la limite

Théorème 1.86

Soient f une fonction de E dans F, D son ensemble de défintion, $a \in \overline{D}$ et $\ell \in F$.

f a pour limite ℓ en a ssi pour toute suite u à termes dans D convergeant vers a, la suite $f \circ u = (f(u_n))$ converge vers ℓ .

Démonstration 1.87

 \Longrightarrow

Suposons que f a pour limite ℓ en a.

Soit $u \in D^{\mathbb{N}}$ qui converge vers a.

Pour tout $\varepsilon > 0$, il existe $\eta > 0$ tel que

$$\forall x \in D, \|x - a\|_{E} < \eta \implies \|f(x) - \ell\|_{E} < \varepsilon.$$

On a $\eta > 0$ et $u_n \xrightarrow[n \to +\infty]{} a$ donc il existe $N \in \mathbb{N}$ tel que

$$\forall n \geqslant N, \ \|u_n - a\|_E < \eta.$$

Donc pour tout $n \ge N$, comme $u_n \in D$ et $||u_n - a||_E < \eta$, on a

$$||f(u_n) - \ell||_F < \varepsilon.$$

Donc $(f(u_n))$ converge vers ℓ .

 \leftarrow

Par contraposée, montrons que si f n'a pas pour limite ℓ en a alors il existe $u \in D^{\mathbb{N}}$ telle que $u_n \xrightarrow[n \to +\infty]{} a$ et $f(u_n) \xrightarrow[n \to +\infty]{} \ell$.

Si f n'a pas pour limite ℓ en a, alors il existe $\varepsilon > 0$ tel que pour tout $\eta > 0$, il existe $x \in D$ tel que $\|x - a\|_E < \eta$ et $\|f(x) - \ell\|_F \ge \varepsilon$.

Donc pour tout $n \in \mathbb{N}$, il existe $u_n \in D$ tel que $\begin{cases} \|u_n - a\|_E < \frac{1}{n+1} \\ \|f(u_n) - \ell\|_F \ge \varepsilon \end{cases}$

On construit ainsi une suite $(u_n) \in D^{\mathbb{N}}$ telle que

$$\forall n \in \mathbb{N}, \begin{cases} \|u_n - a\|_E < \frac{1}{n+1} \\ \|f(u_n) - \ell\|_F \geqslant \varepsilon \end{cases}$$

Par encadrement, (u_n) converge vers a mais $(f(u_n))$ ne converge pas vers ℓ .

En pratique, on utilise beaucoup plus souvent le sens direct de l'équivalence précédente.

1.4.3 Propriétés usuelles

Proposition 1.88 (Unicité de la limite)

Soient f une fonction de E dans F, D son ensemble de définition, $a \in \overline{D}$ et $\ell \in F$.

Si f a pour limite ℓ en a, alors elle ne peut avoir d'autre limite que ℓ en a.

On peut donc noter classiquement $\ell = \lim_{a} f = \lim_{x \to a} f(x)$ ou $f(x) \xrightarrow[x \to a]{} \ell$.

Proposition 1.89

Si f a pour limite ℓ en a, alors elle est bornée au voisinage de a.

Théorème 1.90 (Opérations sur les limites)

Soient f et g deux fonctions de E dans F, définies sur la même partie D et ayant respectivement pour limites ℓ et m deux éléments de F en $a \in \overline{D}$.

Alors pour tout $(\lambda, \mu) \in \mathbb{K}^2$, la fonction $\lambda f + \mu g$ a pour limite $\lambda \ell + \mu m$ en a.

Soient α une fonction de E dans \mathbb{K} et f une fonction définie de E dans F, définies sur la même partie D et ayant respectivement pour limites $\beta \in \mathbb{K}$ et $\ell \in F$ en $a \in \overline{D}$.

Alors αf a pour limite $\beta \ell$ en a.

Proposition 1.91

Une fonction f = (g, h) à valeurs dans un produit d'espaces vectoriels normés a une limite ssi g et h ont chacune une limite.

Dans ce cas, $\lim_{a} f = \left(\lim_{a} g, \lim_{a} h\right)$.

Ce résultat se généralise sans difficulté par récurrence à un nombre quelconque (fini) d'espaces vectoriels normés.

1.4.4 Cas particulier de la dimension finie

Théorème 1.92

On suppose que F est de dimension finie. Soit \mathcal{B} une base de F.

Soit f une fonction de E dans F, D son ensemble de définition, $a \in \overline{D}$ et $\ell \in F$.

La fonction f a pour limite ℓ en a ssi pour toute forme coordonnée d relative à \mathcal{B} , la fonction $d \circ f$ a pour limite $d(\ell)$ en a.

Autrement dit, une fonction a une limite en a ssi ses fonctions-coordonnées dans n'importe quelle base ont chacune une limite en a.

Dans ce cas, la limite de la fonction f en a est le vecteur ℓ tel que pour tout forme coordonnée d, $d(\ell) = \lim_{x \to a} d(f(x))$.

1.4.5 Composition des limites

G désigne un troisième espace vectoriel normé.

Théorème 1.93

Soient f une fonction de E dans F et D_f son ensemble de définition. Soient g une fonction de F dans G et D_g son ensemble de définition. On suppose que $f(D_f) \subseteq D_g$ (condition qui permet de définir la composée $g \circ f$ sur D_f).

Soient $a \in \overline{D_f}$, $b \in \overline{D_g}$ et $\ell \in G$.

Si f a pour limite b en a et g a pour limite ℓ en b, alors $g \circ f$ a pour limite ℓ en a.

Autrement dit, si
$$\begin{cases} f(x) \xrightarrow[x \to a]{} b \\ g(y) \xrightarrow[y \to b]{} \ell \end{cases} \text{ alors } g \circ f(x) \xrightarrow[x \to a]{} \ell.$$

1.4.6 Extensions des définitions

D'abord les limites infinies en un point dans le cas où l'espace d'arrivée est \mathbb{R} .

Définition 1.94

Soient f une fonction de E dans \mathbb{R} , D son ensemble de définition et $a \in \overline{D}$.

On dit que f a pour limite $+\infty$ en a quand

$$\forall M > 0, \exists \eta > 0, \forall x \in D, \|x - a\|_E \leq \eta \implies f(x) \geq M.$$

On dit que f a pour limite $-\infty$ en a quand

$$\forall M < 0, \ \exists \eta > 0, \ \forall x \in D, \ \|x - a\|_E \leqslant \eta \implies f(x) \leqslant M.$$

Puis les limites en « l'infini ».

Définition 1.95

Soient f une application de E dans F et $\ell \in F$.

On dit que f a pour limite ℓ quand ||x|| tend vers l'infini quand

$$\forall \varepsilon > 0, \ \exists B > 0, \ \forall x \in E, \ \|x\|_E \geqslant B \implies \|f(x) - \ell\|_F \leqslant \varepsilon.$$

Dans le cas où $F = \mathbb{R}$, on dit que f(x) a pour limite $+\infty$ quand ||x|| tend vers l'infini quand

$$\forall M > 0, \exists B > 0, \forall x \in E, \|x\|_E \geqslant B \implies f(x) \geqslant M.$$

(Définition semblable pour la limite $-\infty$).

Enfin, dans le cas où l'espace de départ est R, on peut parler de limite en l'infini au sens habituel.

Définition 1.96

Soient f une fonction de \mathbb{R} dans F, définie sur un ouvert]?; $+\infty$ [et $\ell \in F$.

On dit que f(x) a pour limite ℓ quand x tend vers $+\infty$ quand

$$\forall \varepsilon > 0, \ \exists B > 0, \ \forall x \ge B, \ \|f(x) - \ell\| \le \varepsilon.$$

(Définition semblable pour la limite x tend vers $-\infty$).

1.5 Fonctions continues

Dans cette section, E et F sont des espaces vectoriels normés par les normes $\|\cdot\|_E$ et $\|\cdot\|_F$.

1.5.1 Continuité en un point

Proposition 1.97

Soient f une fonction de E dans F, D son ensemble de définition, $a \in \overline{D}$ et $\ell \in F$.

Si f a pour limite ℓ en a et si $a \in D$, alors $\ell = f(a)$.

Dans ce cas, on dit que la fonction f est continue en a.

Définition 1.98

Soient f une fonction de E dans F, D son ensemble de définition et $a \in D$.

On dit que f est continue en a quand f a pour limite f(a) en a.

On déduit de cette définition et des théorèmes précédents

- ▶ la caractérisation séquentielle de la continuité en un point ;
- ▶ le fait qu'une fonction continue en un point est bornée au voisinage de ce point;
- ▶ les théorèmes d'opérations et de compositions des fonctions continues en un point;
- \triangleright l'équivalence entre la continuité d'une fonction et celle de ses fonctions-coordonnées dans une certaine base de F dans le cas où F est de dimension finie.

1.5.2 Continuité sur une partie

Définition 1.99

Soient f une fonction de E dans F, D son ensemble de définition et $A \subseteq D$.

On dit que f est continue sur A quand f est continue en tout point de A.

On déduit de cette définition et des théorèmes précédents

- ▶ les théorèmes d'opérations et de compositions des fonctions continues sur une partie;
- \triangleright l'équivalence entre la continuité d'une fonction et celle de ses fonctions-coordonnées dans une certaine base de F dans le cas où F est de dimension finie.

Proposition 1.100

Soient f et g deux fonctions de E dans F définies sur D et $A \subseteq D$.

Si A est dense dans D, f et g sont continues sur D et f = g sur A, alors f = g sur D.

Démonstration 1.101

On suppose que A est dense dans D et que f et g sont continues.

Soit $x \in D$.

Il existe $(u_n) \in A^{\mathbb{N}}$ telle que $u_n \xrightarrow[n \to +\infty]{} x$.

f est continue en x donc d'après la caractérisation séquentielle de la continuité, on a

$$f\left(u_{n}\right)\xrightarrow[n\longrightarrow+\infty]{}f\left(x\right).$$

De même, on a

$$g(u_n) \xrightarrow[n \to +\infty]{} g(x)$$
.

Or f = g sur A donc $(f(u_n)) = (g(u_n))$ donc f(x) = g(x) par unicité de la limite.

1.5.3 Cas particulier de la dimension finie

On suppose que E et F sont de dimensions finies.

Dans une base donnée, les formes coordonnées relatives à cette base sont en particulier des applications continues.

Donc toute fonction f de E dans F dont les fonctions-coordonnées (f_1, \ldots, f_n) dans une base de F sont définies polynomialement à partir des formes coordonnées dans une base de E est continue.

Exemple 1.102

- ▶ La fonction $f: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$ telle que $f(x,y) = (x^2 + y^2, xy (1+x)^3)$ est continue sur \mathbb{R}^2 .
- \succ Les applications trace et déterminant définies sur $\mathcal{M}_n\left(\mathbb{K}\right)$ sont continues.

Exercice 1.103

Montrez que l'application $A \longmapsto A^2$ est continue de $\mathcal{M}_n(\mathbb{K})$ dans lui-même.

Correction 1.104

On a
$$A^2 = \left(\sum_{k=1}^n a_{i,k} a_{k,j}\right)_{(i,j) \in [1,n]^2} \text{donc } A \longmapsto A^2 \text{ est continue.}$$

Exercice 1.105

En admettant (momentanément) que $\operatorname{GL}_n(\mathbb{K})$ est un ouvert, montrez que l'application $A \longmapsto A^{-1}$ est continue de $\operatorname{GL}_n(\mathbb{K})$ dans lui-même.

Correction 1.106
Si
$$A \in GL_n(\mathbb{K})$$
, alors $A^{-1} = \frac{1}{\det A} (\operatorname{Com} A)^{\top}$.

Les coefficients de $(\operatorname{Com} A)^{\mathsf{T}}$ sont des déterminants calculés à partir des coefficients de A donc dépendent polynomialement de ces coefficients, donc $A \longmapsto (\operatorname{Com} A)^{\mathsf{T}}$ est continue.

Donc $A \longmapsto A^{-1}$ est le produit de deux fonctions continues et est donc continue.

1.5.4 Fonctions lipschitziennes

Définition 1.107

Soient f une application de E dans F, A une partie de E et $K \in \mathbb{R}_+$.

On dit que f est K-lipschitzienne sur A (ou lipschitzienne de rapport K) quand

$$\forall (x, y) \in A^2, \|f(y) - f(x)\|_F \le K \|y - x\|_E.$$

On dit que f est lipschitzienne sur A quand il existe $K \in \mathbb{R}_+$ tel que f soit K-lipschitzienne sur A.

Remarque 1.108

Si f est K-lipschitzienne sur A, alors le rapport K n'est pas unique, puisque pour tout $L \ge K$, on a encore f L-lipschitzienne sur A.

Proposition 1.109

Toute fonction lipschitzienne est continue.

Mais la réciproque est fausse (contre-exemple : la fonction $\sqrt{\cdot}$ sur $[0; +\infty[)$).

Un exemple fondamental : la fonction $x \mapsto d(x, A)$.

Définition 1.110

Soit A une partie de E.

Pour $x \in E$, on appelle distance de x à A le réel $\inf_{a \in A} d(x, a)$.

Proposition 1.111

Pour toute partie A de E, la fonction $x \mapsto d(x, A)$ est 1-lipschitzienne.

L'adhérence de A est l'ensemble des points à distance nulle de A, i.e. tels que d(x, A) = 0.

Démonstration 1.112 (1-lipschitziannité de la fonction)

On veut montrer

$$\forall (x, y) \in E^2, |d(x, A) - d(y, A)| \le ||x - y||.$$

On montre d'abord

$$\forall (x, y) \in E^2, \ d(x, A) - d(y, A) \le ||x - y||$$

ce qui est équivalent à

$$\forall (x, y) \in E^2, \ d(x, A) \le d(y, A) + ||x - y||.$$

On a $d(x, A) = \inf_{a \in A} ||x - a||$ donc pour tout $a \in A$, on a

$$d\left(x,A\right)\leqslant\left\Vert x-a\right\Vert .$$

Or $||x - a|| = ||x - y + y - a|| \le ||x - y|| + ||y - a||$ donc

$$d\left(x,A\right)\leqslant\left\|x-y\right\|+\left\|y-a\right\|.$$

De plus, on a $d\left(y,A\right)=\inf_{a\in A}\left\|y-a\right\|$ donc il existe $(u_{n})\in A^{\mathbb{N}}$ telle que

$$||y - u_n|| \xrightarrow[n \to +\infty]{} d(y, A)$$
.

Alors pour tout $n \in \mathbb{N}, \ d\left(x,A\right) \leqslant \|x-y\| + \|y-u_n\|,$ donc par passage à la limite quand $n \longrightarrow +\infty$:

$$d(x, A) \leq ||x - y|| + d(y, A)$$

donc $d(x, A) - d(y, A) \le ||x - y||$.

En échangeant x et y, on obtient

$$\forall (x, y) \in E^2, \ d(y, A) - d(x, A) \le ||y - x|| = ||x - y||.$$

D'où

$$\forall (x, y) \in E^2, |d(x, A) - d(y, A)| \le ||x - y||.$$

 $D\'{e}monstration \ 1.113 \ (x \in \overline{A} \iff d \ (x,A) = 0)$

 \Longrightarrow

Si $x \in \overline{A}$ alors il existe une suite $(u_n) \in A^{\mathbb{N}}$ qui converge vers x.

Or $x \mapsto d(x, A)$ est lipschitzienne donc continue, donc

$$d(u_n, A) \xrightarrow[n \to +\infty]{} d(x, A)$$
.

Or pour tout $n \in \mathbb{N}$, $d(u_n, A) = 0$ car $(u_n) \in A^{\mathbb{N}}$, donc

$$d\left(x,A\right) =0.$$

 \leftarrow

Si d(x, A) = 0, alors $\inf_{a \in A} ||x - a|| = 0$.

Donc il existe $(a_n) \in A^{\mathbb{N}}$ telle que $||x - a_n|| \xrightarrow[n \to +\infty]{} 0$ i.e. (a_n) converge vers x i.e. $x \in \overline{A}$.

1.5.5 Continuité des applications linéaires et n-linéaires

Proposition 1.114

Soit $f \in \mathcal{L}(E, F)$.

Il y a équivalence entre les propositions suivantes :

- (1) f est continue en 0;
- (2) f est continue en un point x;
- (3) f est continue sur E;

- (4) f est lipschitzienne sur E;
- (5) il existe $K \ge 0$ tel que pour tout $x \in E$, $||f(x)||_E \le K ||x||_E$;
- (6) f est bornée sur la boule-unité;
- (7) f est bornée sur une boule.

Démonstration 1.115

On a clairement
$$(4) \implies (3), (3) \implies (2)$$
 et $(3) \implies (1)$.

 $D\'{e}monstration 1.116 ((1) \implies (2))$

Soit $x \in E$.

f est continue en 0 donc $\lim_{h \to 0} f(h) = f(0) = 0$.

Donc $f(x + h) = f(x) + f(h) \xrightarrow[h \to 0]{} f(x)$.

Donc f est continue en x.

 $D\acute{e}monstration 1.117 ((2) \implies (3))$

Soit $y \in E$.

f est continue en x donc $\lim_{t \longrightarrow x} f(t) = f(x)$.

Donc

$$f(t) = f(t - y + x - x + y)$$

$$= f(t - y + x) - f(x) + f(y)$$

$$\xrightarrow{t \longrightarrow y} f(y).$$

Donc f est continue en y.

Donc f est continue sur E.

 $D\'{e}monstration 1.118 ((3) \implies (7))$

Soit $x \in E$.

f est continue en x donc f est bornée au voisinage de x i.e. il existe r > 0 tel que f soit bornée sur B(x,r).

 $D\'{e}monstration 1.119 ((7) \implies (6))$

f est bornée sur B(x,r): il existe M>0 tel que

$$\forall t \in B(x,r), \|f(t)\| \leq M.$$

Pour tout $y \in B(0,r)$, on a $x + y \in B(x,r)$.

Donc $||f(x+y)|| \le M$.

Donc $||f(x) + f(y)|| \le M$ donc $||f(y)|| - ||f(x)|| \le ||f(y) + f(x)|| \le M$.

Donc $||f(y)|| \le M + ||f(x)|| = M'$.

Pour tout $z \in B(0,1)$, on a $rz \in B(0,r)$.

Donc d'après ce qui précède :

$$||f(rz)|| \le M'$$

$$||rf(z)|| \le M'$$

$$r||f(z)|| \le M'$$

$$||f(z)|| \le \frac{M'}{r}.$$

Donc f est bornée sur B(0,1).

 $D\'{e}monstration 1.120 ((6) \implies (5))$

Pour tout $x \in E \setminus \{0\}$, $\left\| \frac{x}{\|x\|} \right\| = 1$.

Donc $\frac{x}{2\|x\|} \in B(0,1)$.

fest bornée sur $B\left(0,1\right) :$ il existe M>0 tel que

$$\forall t \in B(0,1), ||f(t)|| \leq M.$$

Donc pour tout $x \neq 0$, $\left\| f\left(\frac{x}{2\|x\|}\right) \right\| \leq M$.

Donc $\left\| \frac{1}{2 \|x\|} f(x) \right\| \le M$.

Donc $\frac{1}{2\left\Vert x\right\Vert }\left\Vert f\left(x\right) \right\Vert \leq M.$

Donc $||f(x)|| \le 2M ||x||$.

Ceci est vrai aussi pour x=0 : $\|f(0)\|=\|0\|=0\leq 2M\,\|0\|.$

 $D\'{e}monstration 1.121 ((5) \implies (4))$

On a

$$\forall (x, y) \in E^2, \|f(x) - f(y)\| = \|f(x - y)\| \le K \|x - y\|.$$

On a donc montré toutes les équivalences :

Exercice 1.122

On pose $E = \mathcal{C}^0([0;1],\mathbb{R})$ muni de la norme infinie.

L'application $f \longmapsto \int_0^1 f(t) dt$ est-elle continue sur E?

Correction 1.123

Pour $f \in E$, on a $||f||_{\infty} = \sup_{[0;1]} |f| \in \mathbb{R}$ car |f| est continue sur le segment [0;1].

On note $I: f \longmapsto \int_0^1 f(t) dt$. I est linéaire.

Pour $f \in E$, on a $|I(f)| \le \int_0^1 |f|$.

Or $\forall t \in [0; 1], |f(t)| \le ||f||_{\infty}.$

Donc

$$|I(f)| \le \int_0^1 |f| \le \int_0^1 ||f||_{\infty} dt = ||f||_{\infty}.$$

Donc d'après la Proposition 1.114, I est continue sur E.

Exercice 1.124

E désigne le même espace et on pose $||f||_1 = \int_0^1 |f(t)| dt$.

Montrez que $\|\cdot\|_1$ est une norme sur E.

L'application $f \longmapsto f(1)$ est-elle continue sur E?

Correction 1.125 ($\|\cdot\|_1$ est une norme sur E)

- ▶ Soit $f \in E$. Si $||f||_1 = 0$ alors $\int_0^1 |f| = 0$. Or |f| est continue et positive donc d'après le théorème de stricte positivité de l'intégrale, |f| = 0 donc f = 0.
- \triangleright Soient $f \in E$ et $\lambda \in \mathbb{R}$. On a

$$\|\lambda f\|_1 = \int_0^1 |\lambda f| = \int_0^1 |\lambda| |f| = |\lambda| \int_0^1 |f| = |\lambda| \|f\|_1.$$

▶ Soit $(f,g) \in E^2$. On a

$$||f+g||_1 = \int_0^1 |f+g| \le \int_0^1 (|f|+|g|) = \int_0^1 |f| + \int_0^1 |g| = ||f||_1 + ||g||_1.$$

▶ Donc $\|\cdot\|_1$ est une norme sur E.

Correction 1.126 (Continuité de l'application?)

On pose $V: E \longrightarrow \mathbb{R}$ $f \longmapsto f(1)$

Pour
$$n \in \mathbb{N}^*$$
, on pose $f_n : x \longmapsto \begin{cases} 0 & \text{si } x \in \left[0 ; 1 - \frac{1}{n}\right] \\ n^2 \left(x - \left(1 - \frac{1}{n}\right)\right) & \text{sinon} \end{cases}$

Pour $n \in \mathbb{N}^*$, on a $\int_0^1 |f| = \int_0^1 f_n = \frac{1}{2}$ donc $f_n \in B(0, 1)$.

Or
$$|V(f_n)| = |f_n(1)| = n \xrightarrow[n \to +\infty]{} +\infty$$
.

On a ainsi trouvé une suite (f_n) à termes dans B(0,1) telle que $V(f_n) \xrightarrow[n \to +\infty]{} +\infty$.

Donc V n'est pas bornée sur B(0,1).

Donc comme V est linéaire, V n'est pas continue sur $(E, \|\cdot\|_1)$.

Remarque : on a $\forall f \in E, \ |V(f)| = |f(1)| \leq ||f||_{\infty} \text{ donc } V \text{ est continue sur } (E, ||\cdot||_{\infty}).$

Définition 1.127

On note $\mathcal{L}_{c}(E,F)$ l'ensemble des applications linéaires continues de E dans F.

Proposition 1.128

 $\mathscr{L}_{c}\left(E,F\right)$ est un sous-espace vectoriel de $\mathscr{L}\left(E,F\right)$, en général distinct de $\mathscr{L}\left(E,F\right)$.

Cas particulier en dimension finie.

Théorème 1.129

On suppose que E est de dimension finie.

Toute application linéaire de E dans F est lipschitzienne sur E, donc continue.

Autrement dit, si E est de dimension finie, alors $\mathcal{L}_c(E,F) = \mathcal{L}(E,F)$.

Démonstration 1.130

On note $p = \dim E$ et $\mathscr{B} = (e_1, \dots, e_p)$ une base de E.

Pour
$$x = (x_1, ..., x_p)_{\mathcal{B}}$$
, on a $||x||_{\infty} = \sup_{1 \le i \le p} |x_i| = \max_{1 \le i \le p} |x_i|$.

Soit $f \in \mathcal{L}(E, F)$ et N une norme sur F.

Pour
$$x = (x_1, ..., x_p)_{\mathcal{B}}$$
, on a $x = \sum_{k=1}^{p} x_k e_k$.

Donc, f étant linéaire, on a $f(x) = \sum_{k=1}^{p} x_k f(e_k)$.

Donc

$$N(f(x)) = N\left(\sum_{k=1}^{p} x_k f(e_k)\right)$$

$$\leq \sum_{k=1}^{p} N(x_k f(e_k))$$

$$= \sum_{k=1}^{p} |x_k| N(f(e_k)).$$

De plus, on a

$$\forall i \in [1; p], |x_i| \le ||x||_{\infty}$$

 $|x_i| N(f(e_i)) \le ||x||_{\infty} N(f(e_i)).$

Donc
$$N(f(x)) \le ||x||_{\infty} \underbrace{\sum_{k=1}^{p} N(f(e_k))}_{x}$$
.

Ceci prouve d'après la Proposition 1.114 que f est continue de $(E, \|\cdot\|_{\infty})$ dans (F, N).

Soit maintenant $\|\cdot\|$ une norme quelconque sur E.

Comme E est de dimension finie, toutes les normes sur E sont équivalentes, donc il existe a, b > 0 tels que $a \| \cdot \| \le \| \cdot \|_{\infty} \le b \| \cdot \|$.

Donc pour tout $x \in E$, $N(f(x)) \le bK ||x||$.

Donc f est continue de $(E, \|\cdot\|)$ dans (F, N).

Remarque 1.131

L'hypothèse de dimension finie de E est indispensable. Dans le cas contraire, c'est faux en général.

Le résultat précédent s'étend aux applications multilinéaires.

Théorème 1.132

Soient E_1, \ldots, E_n des espaces vectoriels normés de dimensions finies et $f: E_1 \times \cdots \times E_n \longrightarrow F$ une application n-linéaire.

Il existe alors une constante $K \ge 0$ telle que

pour tout
$$(x_1, ..., x_n) \in E_1 \times \cdots \times E_n$$
, $||f(x_1, ..., x_n)|| \le K ||x_1||_{E_1} ... ||x_n||_{E_n}$.

Démonstration 1.133

Pour tout $i \in [1; n]$, on note $p_i = \dim E_i$ et $\mathcal{B}_i = (e_{i,1}, \dots, e_{i,p_i})$ une base de E_i .

Soit $(x_1, \ldots, x_n) \in E_1 \times \cdots \times E_n$. Pour tout $i \in [1; n]$, on note $x_i = (x_{i,1}, \ldots, x_{i,p_i})_{\mathcal{B}_i}$.

On a

$$f(x_1, \dots, x_n) = f\left(\sum_{j_1=1}^{p_1} x_{1,j_1} e_{1,j_1}, \dots, \sum_{j_n=1}^{p_n} x_{n,j_n} e_{n,j_n}\right)$$
$$= \sum_{j_1=1}^{p_1} \dots \sum_{j_n=1}^{p_n} x_{1,j_1} \dots x_{n,j_n} f\left(e_{1,j_1}, \dots, e_{n,j_n}\right).$$

Donc

$$N(f(x_{1},...,x_{n})) \leq \sum_{1 \leq j_{1} \leq p_{1}} |x_{1,j_{1}}| ... |x_{n,j_{n}}| N(f(e_{1,j_{1}},...,e_{n,j_{n}}))$$

$$\vdots$$

$$1 \leq j_{n} \leq p_{n}$$

$$\leq ||x_{1}||_{1,\infty} ... ||x_{n}||_{n,\infty} \sum_{1 \leq j_{1} \leq p_{1}} N(f(e_{1,j_{1}},...,e_{n,j_{n}}))$$

$$\vdots$$

$$\vdots$$

$$1 \leq j_{n} \leq p_{n}$$

On conclut de la même façon que dans la démonstration précédente.

Corollaire 1.134

Soient E_1, \ldots, E_n des espaces vectoriels normés de dimensions finies.

Toute application $f: E_1 \times \cdots \times E_n \longrightarrow F$ qui est n-linéaire est continue sur $E_1 \times \cdots \times E_n$.

Exemple 1.135

- ▶ Le produit matriciel de \mathcal{M}_{np} (\mathbb{K}) × \mathcal{M}_{pq} (\mathbb{K}) dans \mathcal{M}_{nq} (\mathbb{K}) est bilinéaire, donc continu.
- ▶ Un produit scalaire dans un espace euclidien est bilinéaire, donc continu.
- \triangleright Le déterminant dans $\mathcal{M}_n(\mathbb{K})$ est *n*-linéaire par rapport aux colonnes, donc il est continu.

1.5.6 Norme subordonnée

On définit sur l'espace vectoriel $\mathcal{L}_c(E,F)$ des applications linéaires continues de E dans F la notion de norme subordonnée (relative aux deux normes sur E et F) ou norme triple.

Définition 1.136

Soit $f \in \mathcal{L}_c(E, F)$.

On pose $|||f||| = \sup_{x \in B(0,1)} ||f(x)||$, appelée la norme subordonnée de f.

Remarque 1.137

Cette définition a un sens car f étant linéaire de E dans F et continue, elle est bornée sur B (0,1) d'après la Proposition 1.114.

Remarque 1.138

On a

$$\left\| \left\| f \right\| = \sup_{x \in B(0,1)} \left\| f\left(x\right) \right\| = \sup_{x \in S(0,1)} \left\| f\left(x\right) \right\| = \sup_{x \in \overline{B}(0,1)} \left\| f\left(x\right) \right\|.$$

Proposition 1.139

Soit $f \in \mathcal{L}_c(E, F)$.

Alors ||f|| est

- $\triangleright \textit{\'egal \'a} \sup_{x \neq 0} \frac{\|f(x)\|}{\|x\|}, \textit{mais aussi \'a} \sup_{x \in S(0,1)} \|f(x)\|;$
- ▶ le plus petit réel positif M tel que pour tout $x \in E$, $||f(x)|| \le M ||x||$.

Démonstration 1.140 On note
$$N_1(f) = \sup_{x \neq 0} \frac{\|f(x)\|}{\|x\|}$$
 et $N_2(f) = \sup_{x \in S(0,1)} \|f(x)\|$.

 $D\acute{e}monstration \ 1.141 \ (N_1(f) = N_2(f))$

Pour tout $x \neq 0$, $\frac{x}{\|x\|} \in S(0, 1)$.

Donc
$$\left\| f\left(\frac{x}{\|x\|}\right) \right\| \leqslant N_2(f)$$
.

Donc
$$\frac{1}{\|x\|} \|f(x)\| \le N_2(f)$$
 i.e. $N_1(f) \le N_2(f)$.

De plus, pour tout $x \in S(0,1)$, ||x|| = 1 donc $\frac{||f(x)||}{||x||} = ||f(x)|| \le N_1(f)$.

Donc $N_2(f) \leq N_1(f)$.

Finalement, on a $N_1(f) = N_2(f)$.

Démonstration 1.142 $(N_2(f) = |||f|||)$

Pour tout $x \in B(0,1) \setminus \{0\}$, on a $\frac{x}{\|x\|} \in S(0,1)$ donc

$$\left\| f\left(\frac{x}{\|x\|}\right) \right\| \le N_2(f)$$

$$\frac{1}{\|x\|} \|f(x)\| \le N_2(f).$$

 $\text{Or } \left\|x\right\| \leqslant 1 \text{ donc } \left\|f\left(x\right)\right\| \leqslant \frac{1}{\left\|x\right\|} \left\|f\left(x\right)\right\| \leqslant N_2\left(f\right).$

Ceci est encore vrai pour x = 0 donc $|||f||| \le N_2(f)$.

De plus, soient $x \in S\left(0,1\right)$ et $\lambda \in \left[0\;;\;1\right[.$

On a $\|\lambda x\| = \lambda < 1$ donc $\lambda x \in B\left(0,1\right)$.

Donc $||f(\lambda x)|| = \lambda ||f(x)|| \le |||f|||$.

Donc, par passage à la limite quand $\lambda \longrightarrow 1$:

$$||f(x)|| \le ||f||$$

i.e. $N_2(f) \leq ||f||$.

Donc $N_2(f) = |||f|||$.

Démonstration 1.143 (Second point)

On a

$$|||f|| = \sup_{x \neq 0} \frac{||f(x)||}{||x||}$$

$$= \min \left\{ K \in \mathbb{R} \mid \forall x \neq 0, \ \frac{||f(x)||}{||x||} \leq K \right\}$$

$$= \min \left\{ K \in \mathbb{R} \mid \forall x \in E, \ ||f(x)|| \leq K ||x|| \right\}.$$

Exemple 1.144

Dans l'Exercice 1.122, on avait montré $\forall f \in E, |I(f)| \leq ||f||_{\infty}$

On a $|I(1)| = 1 = 1 \times ||1||_{\infty}$.

Donc ||I|| = 1.

Méthode 1.145

Si

$$\forall x \in E, \|f(x)\| \le K \|x\|$$

et s'il existe $x_0 \in E$ tel que

$$||f(x_0)|| = K ||x_0||$$

alors ||f|| = K.

Proposition 1.146

Les normes subordonnées sont des normes sur les espaces $\mathcal{L}_c(E,F)$.

Elles sont dites sous-multiplicatives : pour toutes applications linéaires continues et composables f et g,

$$|||f \circ g||| \le |||f||| \times ||g|||.$$

Démonstration 1.147 ($\|\cdot\|$ est une norme sur $\mathscr{L}_{c}\left(E,F\right)$)

▶ Soit $f \in \mathcal{L}_c(E, F)$.

Si |||f||| = 0 alors $\forall x \in E$, $||f(x)|| \le 0 \times ||x||$ donc f = 0.

▶ Soient $f \in \mathcal{L}_c(E, F)$ et $\lambda \in \mathbb{K}$.

On a

$$\||\lambda f|\| = \sup_{x \neq 0} \frac{\|\lambda f(x)\|}{\|x\|} = \sup_{x \neq 0} |\lambda| \frac{\|f(x)\|}{\|x\|} = |\lambda| \sup_{x \neq 0} \frac{\|f(x)\|}{\|x\|} = |\lambda| \|f\|.$$

▶ Soit $(f,g) \in \mathcal{L}_c(E,F)^2$.

On a

$$\forall x \in B (0,1), \| (f+g)(x) \| = \| f(x) + g(x) \|$$

$$\leq \| f(x) \| + \| g(x) \|$$

$$\leq \| f \| + \| g \|$$

donc $||f + g|| \le ||f|| + ||g||$.

Démonstration 1.148 (Sous-multiplicativité)

On a

$$\forall x \in E, \ \|f \circ g(x)\| = \|f(g(x))\|$$

$$\leq \|f\| \|g(x)\|$$

$$\leq \|f\| \|g\| \|x\|.$$

Donc $||f \circ g|| \le ||f|| ||g||$.

Comme en dimension finie, on peut représenter par choix de bases les applications linéaires par des matrices, on définit de manière semblable la notion de norme sous-multiplicative de matrices (relativement aux normes) ou norme triple.

Définition 1.149

Soit $(n, p) \in (\mathbb{N}^*)^2$. On choisit deux normes sur \mathbb{K}^p et \mathbb{K}^n (espaces identifiés à ceux des matrices-colonnes).

Pour toute matrice $A \in \mathcal{M}_{np}\left(\mathbb{K}\right)$, on pose $||A|| = \sup_{||X||=1} ||AX||$.

Proposition 1.150

Des normes étant choisies sur les espaces \mathbb{K}^p et \mathbb{K}^n , les normes subordonnées sont des normes sur tous les espaces \mathcal{M}_{np} (\mathbb{K}).

Elles sont dites sous-multiplicatives: pour toutes matrices multipliables A et B,

$$|||AB||| \leq |||A||| \times |||B|||$$
.

Remarque 1.151

Dans le cas où un espace vectoriel normé E est aussi une \mathbb{K} -algèbre, on dit qu'il est une algèbre normée quand la norme vérifie en plus la propriété de sous-multiplicativité : $\forall (x,y) \in E^2$, $||xy|| \leq ||x|| \cdot ||y||$.

Remarque 1.152

En dimension finie, toute \mathbb{K} -algèbre A possède des normes sous-multiplicatives.

Démonstration 1.153

Soit A une \mathbb{K} -algèbre de dimension finie.

L'application $A^2 \longrightarrow A$ est bilinéaire donc continue. $(a,b) \longmapsto ab$

Il existe donc K > 0 tel que

$$\forall (a,b) \in A^2, \|ab\| \le K \|a\| \|b\|.$$

On pose $N = K \| \cdot \|$.

On a alors

$$\forall (a,b) \in A^2$$
, $N(ab) \leq N(a) N(b)$

et N est une norme sur A.

1.6 Topologie d'un espace vectoriel normé

Dans cette section, E est un espace vectoriel normé.

1.6.1 Intérieur d'une partie, voisinage d'un point

Définition 1.154

Soient A une partie de E et $a \in A$.

On dit que a est un point intérieur à A quand on peut trouver un rayon r > 0 tel que B(a, r) soit incluse dans A. On dit aussi dans ce cas que A est un voisinage de a.

L'intérieur de A est l'ensemble de ses points intérieurs, noté \mathring{A} .

On a:

$$a \in \mathring{A} \iff \exists r > 0, \ B(a,r) \subseteq A.$$

Exercice 1.155

Dans \mathbb{R} , quels sont les intérieurs des parties suivantes : [0;1], $[0;+\infty[,\mathbb{Q}?$

Correction 1.156

▶ Si A = [0; 1], alors $\mathring{A} = [0; 1]$.

En effet, pour $x \in]0$; 1[, on peut poser $r = \min\left(\frac{x}{2}, \frac{1-x}{2}\right) > 0$ pour avoir $B(x,r) \subseteq [0;1]$.

- \triangleright Si $A=[0\ ; +\infty[, \ {\rm alors}\ \mathring{A}=]0\ ; +\infty[$ (même idée).
- $\triangleright \text{ Si } A = \mathbb{Q}, \text{ alors } \mathring{A} = \emptyset.$

En effet, pour tout $x \in \mathbb{Q}$, pour tout r > 0, il existe $y \in \mathbb{R} \setminus \mathbb{Q}$ tel que |x - y| < r *i.e.* $B(x, r) \nsubseteq \mathbb{Q}$.

Exercice 1.157

Quel est l'intérieur d'une boule de centre a et de rayon r > 0?

Correction 1.158

Soient $a \in E$ et r > 0.

Si A = B(a, r), alors $\mathring{A} = A$.

En effet, pour tout $x \in B\left(a,r\right)$, on pose $p = \frac{r - \|x - a\|}{2} > 0$ et on a

$$B(x, p) \subseteq A$$
.

Remarque 1.159

Cette notion dépend a prori de la norme utilisée. En dimension finie, ce n'est pas le cas : l'intérieur d'une partie d'un espace vectoriel normé de dimension finie ne dépend pas du choix de la norme (pourquoi?).

Démonstration 1.160

Si N_1, N_2 sont deux normes équivalentes sur E, A est une partie de E et $a \in E$, alors a est intérieur à A pour N_1 ssi a est intérieur à A pour N_2 .

55

Il existe $\alpha, \beta > 0$ tels que $\alpha N_2 \leq N_1 \leq \beta N_2$.

Si a est intérieur à A pour N_1 , alors il existe r > 0 tel que $B_1(a,r) \subseteq A$.

On pose $p = \frac{r}{\beta} > 0$ et on montre $B_2(a, p) \subseteq A$.

Soit $x \in B_2(a, p)$.

On a $N_2(a-x) .$

Donc $N_1(a-x) \leq \beta N_2(a-x) < r$.

Donc $x \in B_1(a,r) \subseteq A$.

Donc x est intérieur à A pour N_2 .

On montre la réciproque de même, en montrant $B_1(a, \alpha r) \subseteq B_2(a, r)$.

Proposition 1.161 Soient $u \in E^{\mathbb{N}}$ et $\ell \in E$.

La suite u converge vers ℓ ssi tout voisinage de ℓ contient tous les termes de la suite à partir d'un certain rang.

Parties ouvertes 1.6.2

Définition 1.162

On dit qu'une partie A de E est ouverte (ou est un ouvert) quand à tout point de $a \in A$, on peut associer un rayon r > 0 tel que la boule de centre a et de rayon r soit incluse dans A:

$$\forall a \in A, \exists r > 0, B(a,r) \subseteq A.$$

Autrement dit, A est ouverte quand tout point de A est intérieur à A : $A = \mathring{A}$, ou, autrement dit, quand A est un voisinage de chacun de ses points.

Proposition 1.163

L'ensemble vide et E sont des parties ouvertes. Toute boule ouverte est une partie ouverte. Tout produit (fini) de parties ouvertes est ouvert.

Démonstration 1.164

Soient E, F deux esapces vectoriels normés par $\|\cdot\|_E$ et $\|\cdot\|_F$.

On pose $N(x, y) = \max(\|x\|_E, \|y\|_F)$ pour obtenir une norme $N \text{ sur } E \times F$.

Montrons que si A est un ouvert de E et B un ouvert de F, alors $A \times B$ est un ouvert de $E \times F$.

Soit $(a, b) \in A \times B$.

 $a \in A$ et A est un ouvert donc il existe r > 0 tel que $B_E(a,r) \subseteq A$.

 $b \in B$ et B est un ouvert donc il existe s > 0 tel que $B_F(b, s) \subseteq B$.

On pose $p = \min(r, s) > 0$.

Montrons que $B_{E\times F}\left(\left(a,b\right),p\right)\subseteq A\times B$.

Soit $(x, y) \in B_{E \times F}((a, b), p)$.

On a N((x, y) - (a, b)) < p i.e. N(x - a, y - b) < p.

Donc $||x - a||_E < p$ et $||y - b||_F < p$.

Donc $x \in B_E(a, p)$ et $y \in B_F(b, p)$.

Or $p \le r$ donc $B_E(a, p) \subseteq B_E(a, r) \subseteq A$ et $p \le s$ donc $B_F(b, p) \subseteq B_F(b, s) \subseteq B$.

Donc $(x, y) \in A \times B$.

Donc $B_{E\times F}((a,b),p)\subseteq A\times B$.

On généralise à un produit de plusieurs ouverts par récurrence.

La topologie de E est l'ensemble de tous les ouverts de E.

$Remarque\ 1.165$

La topologie dépend a priori de la norme utilisée. En dimension finie, ce n'est pas le cas : dans un espace vectoriel normé de dimension finie, le fait d'être un ouvert ne dépend pas du choix de la norme.

1.6.3 Parties fermées

On rappelle la notion de point adhérent à une partie.

Définition 1.166

Soient A une partie de E et $x \in E$.

On dit que x est un point adhérent à A quand il existe une suite $u \in A^{\mathbb{N}}$ qui converge vers x, ou, ce qui revient au même, quand toute boule centrée en x rencontre A, ou encore quand d(x, A) = 0.

L'adhérence de A est l'ensemble de ses points adhérents, noté \overline{A} .

On a montré

Définition 1.167

On dit qu'une partie A de E est fermée (ou est un fermé) quand tout point adhérent à A est dans A, autrement dit quand la propriété suivante est vraie :

si une suite quelconque à termes dans A converge vers un point x de E, alors $x \in A$.

Ou encore : A est fermée quand $A = \overline{A}$.

Proposition 1.168

L'ensemble vide et E sont des parties fermées. Toute boule fermée est une partie fermée. Tout produit (fini) de parties fermées est fermé.

On note le lien avec les parties ouvertes.

Proposition 1.169

Soit A une partie de E.

Alors A est une partie ouverte ssi son complémentaire est une partie fermée.

Démonstration 1.170

On suppose A ouverte. On veut montrer que $E \setminus A$ est fermée.

Soit $(x_n) \in (E \setminus A)^{\mathbb{N}}$ qui converge vers ℓ .

Par l'absurde, supposons $\ell \in A$.

A est ouverte donc il existe $\varepsilon > 0$ tel que $B(\ell, \varepsilon) \subseteq A$.

Or $x_n \xrightarrow[n \to +\infty]{} \ell$ donc il existe $N \in \mathbb{N}$ tel que

$$\forall n \geqslant N, \ x_n \in B(\ell, \varepsilon).$$

Donc pour tout $n \ge N$, $x_n \in A$: contradiction.

Donc $\ell \in E \setminus A$.

Donc $E \setminus A$ est un fermé.

Supposons que $E \setminus A$ est fermée. On veut montrer que A est ouverte.

Soit $a \in A$.

Par l'absurde, on suppose $\forall r > 0, \ \exists x \in B (a, r), \ x \notin A$.

Alors pour tout $n \in \mathbb{N}$, il existe $x_n \in B\left(a, \frac{1}{n+1}\right)$ tel que $x_n \notin A$.

On a construit une suite $(x_n) \in (E \setminus A)^{\mathbb{N}}$ telle que $\forall n \in \mathbb{N}, \|a - x_n\| < \frac{1}{n+1}$.

Par théorème d'encadrement, on a $x_n \xrightarrow[n \to +\infty]{} a$.

Or $a \notin E \setminus A$: contradiction car $E \setminus A$ est un fermé.

Donc il existe r > 0 tel que $B(a, r) \subseteq A$.

Donc A est un ouvert.

Encore une fois, le fait d'être un fermé en dimension finie ne dépend pas de la norme.

Proposition 1.171

- ▶ Toute réunion de parties ouvertes est ouverte. Toute intersection finie de parties ouvertes est ouverte.
- ▶ Toute intersection de parties fermées est fermée. Toute réunion finie de parties fermées est fermée.

Démonstration 1.172 (Réunion d'ouverts)

Soit $(A_i)_{i \in I}$ une famille de parties ouvertes.

Montrons que $\bigcup_{i \in I} A_i$ est ouverte.

Soit
$$x \in \bigcup_{i \in I} A_i$$
.

Il existe $i \in I$ tel que $x \in A_i$.

Or A_i est ouverte donc il existe r > 0 tel que $B(x, r) \subseteq A_i$.

Donc
$$B(x,r) \subseteq \bigcup_{i \in I} A_i$$
.

Démonstration 1.173 (Intersection finie d'ouverts)

Soient A_1, \ldots, A_n des parties ouvertes.

Montrons que $\bigcap_{i=1}^{n} A_i$ est ouverte.

Soit
$$x \in \bigcap_{i=1}^{n} A_i$$
.

Pour tout $i \in [1; n]$, il existe $r_i > 0$ tel que $B(x, r_i) \subseteq A_i$.

On pose $r = \min_{1 \le i \le n} r_i > 0$.

Pour tout $i \in [1; n]$, $B(x, r) \subseteq B(x, r_i) \subseteq A_i$.

Donc
$$B(x,r) \subseteq \bigcap_{i=1}^{n} A_i$$
.

Remarque 1.174

Si la famille d'ouverts n'est pas finie, on ne peut rien dire sur l'intersection.

Par exemple, pour $n \in \mathbb{N}$, on pose les ouverts $A_n = \left\lfloor \frac{-1}{n+1} ; \frac{1}{n+1} \right\rfloor$.

Alors $\bigcap_{n \in \mathbb{N}} A_n = \{0\}$ n'est pas ouverte.

Exercice 1.175

Montrez que pour tout $a \in E$, $E \setminus \{a\}$ est un ouvert. Déduisez-en que si A est une partie finie de E, alors $E \setminus A$ est un ouvert.

Correction 1.176 Pour tout $x \in E \setminus \{a\}$, on pose $r = \frac{\|x - a\|}{2}$.

Alors $B(x,r) \subseteq E \setminus \{a\}$.

Donc $E \setminus \{a\}$ est un ouvert.

Si $A = \{a_1, \dots, a_n\}$, alors $E \setminus A$ est le complémentaire de $\bigcup_{i=1}^n \{a_i\}$, qui est un fermé par union finie de fermés, et est donc un ouvert.

Exercice 1.177

Quels sont les sous-espaces vectoriels de E qui sont ouverts?

Correction 1.178

Soit F un sous-espace vectoriel de E ouvert dans E.

 $0 \in F$ et F est un ouvert donc il existe r > 0 tel que $B(0, r) \subseteq F$.

Soit $x \in E \setminus \{0\}$.

On a $\frac{r}{2} \frac{x}{\|x\|} \in B(0,r)$ donc

$$x = \frac{2\|x\|}{r} \left(\frac{r}{2} \frac{x}{\|x\|}\right) \in F.$$

60

Donc E = F : E est le seul sous-espace vectoriel de E ouvert dans E.

Exercice 1.179

Montrez que $F = \{(x, y) \in \mathbb{R}^2 \mid x \ge 0 \text{ et } xy = 1\}$ est un fermé de \mathbb{R}^2 .

Correction 1.180

Soit $((x_n, y_n)) \in F^{\mathbb{N}}$ qui converge vers (a, b).

Montrons que $(a, b) \in F$.

On a
$$x_n \xrightarrow[n \to +\infty]{} a$$
, $y_n \xrightarrow[n \to +\infty]{} b$ et $\forall n \in \mathbb{N}$, $x_n y_n = 1$.

Donc par passage à la limite quand $n \longrightarrow +\infty$, on a $a \ge 0$ et ab = 1.

Donc $(a, b) \in F$.

Donc F est un fermé.

Exercice 1.181

On note S l'ensemble des matrices de $\mathcal{M}_n(\mathbb{R})$ telles que tous les coefficients soient positifs et sur chaque ligne la somme des coefficients vaut 1.

Montrez que S est un fermé.

NB : S est l'ensemble des matrices dites stochastiques.

Remarque 1.182

A priori, une partie de E n'est ni ouverte ni fermée : par exemple, dans \mathbb{R} , l'ensemble]0; 1] n'est ni ouvert ni fermé.

Donc ne pas confondre « complémentaire » et « contraire » : on peut dire qu'une partie est un fermé quand son complémentaire est un ouvert, mais pas que le contraire d'être un ouvert c'est être un fermé.

Remarque 1.183

Il est souvent assez facile de montrer qu'une partie est un fermé grâce à la caractérisation séquentielle. Donc pour montrer qu'une partie est un ouvert, on montre souvent de cette façon que son complémentaire est un fermé.

Les fermés sont souvent définis par des égalités ou des inégalités larges. Par complémentaire, les ouverts sont souvent définis par des inégalités strictes ou des différences.

1.6.4 Ouverts ou fermés relatifs à une partie

Les définitions précédentes parlent d'ouverts et de fermés de E. On peut définir ces notions relativement à une partie.

Définition 1.184

Soient A une partie de E et U un sous-ensemble de A.

On dit que U est un ouvert de A quand il existe un ouvert V de E tel que $U = A \cap V$.

On dit que U est un fermé de A quand il existe un fermé V de E tel que $U = A \cap V$.

On remarque que les fermés de A sont les complémentaires dans A des ouverts de A. On peut caractériser de même une partie U fermée de A par l'égalité entre U et l'ensemble de ses points adhérents dans A.

1.6.5 Image réciproque d'un ouvert ou d'un fermé par une fonction continue

 $Rappel \ 1.185$

Si f est une fonction de E dans F définie sur D_f et $B \subseteq F$, l'image réciproque de B par f est

$$f^{-1}\left(B\right) = \left\{x \in D_f \mid f\left(x\right) \in B\right\}.$$

Théorème 1.186

Soit f une fonction de E dans F définie sur D.

Alors on a équivalence entre les propositions suivantes :

- (1) f est continue sur D;
- (2) pour tout fermé B de F, son image réciproque $f^{-1}\left(B\right)$ est un fermé de D;
- (3) pour tout ouvert B de F, son image réciproque $f^{-1}\left(B\right)$ est un ouvert de D.

Ceci est valable en particulier quand f est une application continue de E dans F, auquel cas on peut se passer des notions d'ouvert ou fermé relatif.

Démonstration 1.187 ((1) \Longrightarrow (2)) Soient B un fermé de F et $(u_n) \in f^{-1}(B)^{\mathbb{N}}$ telle que $u_n \xrightarrow[n \to +\infty]{} \ell \in D$.

f étant continue sur D et donc en ℓ , on a $f(u_n) \xrightarrow[n \to +\infty]{} f(\ell)$.

De plus, on a $(f(u_n)) \in B^{\mathbb{N}}$ or B est un fermé donc $f(\ell) \in B$.

Donc $\ell \in f^{-1}(B)$.

Donc $f^{-1}(B)$ est un fermé de D.

 $D\'{e}monstration 1.188 ((2) \implies (3))$

Soit A un ouvert de F.

Alors $F \setminus A$ est un fermé de F.

Donc $f^{-1}(F \setminus A)$ est un fermé de D.

Or
$$f^{-1}\left(F\setminus A\right)=D\setminus f^{-1}\left(A\right).$$

Donc $f^{-1}(A)$ est un ouvert de D.

 $D\'{e}monstration 1.189 ((3) \implies (1))$

On suppose que pour tout A ouvert de F, $f^{-1}(A)$ est un ouvert de D.

Soit $d \in D$. Montrons que f est continue en d.

Soit $\varepsilon > 0$.

La boule $B(f(d), \varepsilon)$ est un ouvert de F.

Donc $f^{-1}(B(f(d), \varepsilon))$ est un ouvert de D.

Or $f(d) \in B(f(d), \varepsilon)$ donc $d \in f^{-1}(B(f(d), \varepsilon))$.

Donc il existe $\alpha > 0$ tel que $D \cap B(d, \alpha) \subseteq f^{-1}(B(f(d), \varepsilon))$.

Donc pour tout $x \in D$ tel que $x \in B(d, \alpha)$, on a $f(x) \in B(f(d), \varepsilon)$ i.e.

$$\forall x \in D, \|x - d\| < \alpha \implies \|f(x) - f(d)\| < \varepsilon.$$

Donc f est continue en d.

Exemple 1.190 (Cas particuliers fondamentaux)

Si f est continue sur E et à valeurs réelles, alors pour tout $a \in \mathbb{R}$, les ensembles suivants sont des fermés de E:

$$\{x \in E \mid f(x) \ge a\}$$
 $\{x \in E \mid f(x) \le a\}$ $\{x \in E \mid f(x) = a\}$.

Exemple 1.191

- \triangleright Les courbes de fonctions continues de $\mathbb R$ dans $\mathbb R$ sont des fermés de $\mathbb R^2$.
- \triangleright L'ensemble des matrices de trace nulle est un fermé de $\mathcal{M}_n\left(\mathbb{K}\right).$

Démonstration 1.192 (Courbes des fonctions continues)

Si $f: \mathbb{R} \longrightarrow \mathbb{R}$ est continue, on pose $\Gamma_f = \{(x, y) \in \mathbb{R}^2 \mid y = f(x)\}.$

On a alors

$$\Gamma_f = \varphi^{-1}\left(\{0\}\right)$$

où $\varphi: \mathbb{R}^2 \longrightarrow \mathbb{R}$ est continue sur \mathbb{R}^2 car f est continue sur \mathbb{R} . $(x,y) \longmapsto y-f(x)$

Or $\{0\}$ est un fermé de \mathbb{R} donc Γ_f est un fermé de \mathbb{R}^2 .

Démonstration 1.193 (Ensemble des matrices de trace nulle)

L'ensemble des matrices de trace nulle dans $\mathcal{M}_n(\mathbb{K})$ est

$$T = \{ M \in \mathcal{M}_n (\mathbb{K}) \mid \operatorname{tr} (M) = 0 \}.$$

Or $\mathcal{M}_n(\mathbb{K})$ est de dimension finie et tr est linéaire donc tr est continue.

Donc T est l'image réciproque du fermé $\{0\}$ par l'application continue tr.

Donc T est un fermé de $\mathcal{M}_n(\mathbb{K})$.

Par passage au complémentaire, si f est continue sur E et à valeurs réelles, alors pour tout $a \in \mathbb{R}$, les ensembles suivants sont des ouverts de E:

$$\left\{x \in E \mid f\left(x\right) < a\right\} \qquad \left\{x \in E \mid f\left(x\right) > a\right\} \qquad \left\{x \in E \mid f\left(x\right) \neq a\right\}.$$

Exemple 1.194

- ▶ L'ensemble des couples $(x, y) \in \mathbb{R}^2$ tels que x > 0 et y > x est un ouvert de \mathbb{R}^2 .
- $ightharpoonup \operatorname{GL}_n(\mathbb{K})$ est un ouvert de $\mathcal{M}_n(\mathbb{K})$: si une matrice A est inversible, alors toutes les matrices proches de A le sont aussi.

Démonstration 1.195 (Ensemble des couples susmentionnés)

On pose

$$A = \{(x, y) \in \mathbb{R}^2 \mid x > 0 \text{ et } y > x\}$$

= \{(x, y) \in \mathbb{R}^2 \cept| x \in]0; +\infty[\} \cap \{(x, y) \in \mathbb{R}^2 \cept| y - x \in]0; +\infty[\}.

Or $(x, y) \longmapsto x$ et $(x, y) \longmapsto y - x$ sont continues.

Donc A est un ouvert de \mathbb{R}^2 .

Démonstration 1.196 (GL_n (\mathbb{K}))

On a $GL_n(\mathbb{K}) = \det^{-1}(\mathbb{K} \setminus \{0\}).$

Or det est continue et $\mathbb{K} \setminus \{0\}$ est un ouvert de \mathbb{K} donc $\mathrm{GL}_n(\mathbb{K})$ est un ouvert de $\mathcal{M}_n(\mathbb{K})$.

1.6.6 Frontière d'une partie

Définition 1.197

Soit A une partie de E. On appelle frontière de A l'ensemble $\overline{A} \setminus \mathring{A}$.

Exemple 1.198

- \triangleright Si B est une boule, alors son intérieur est la boule ouverte de même centre et de même rayon, son adhérence est la boule fermée et sa frontière est la sphère.
- \triangleright L'ensemble des rationnels est d'intérieur vide, d'adhérence égale à \mathbb{R} et donc de frontière \mathbb{R} .

1.7 Compacité

Dans cette section, E est un espace vectoriel normé.

1.7.1 Valeurs d'adhérence d'une suite

Définition 1.199

Soient $u=(u_n)\in E^{\mathbb{N}}$ et $a\in E$.

On dit que a est une valeur d'adhérence de la suite u quand il existe une extractrice φ telle que la suite extraite $(u_{\varphi(n)})$ converge vers a.

Une suite peut avoir une ou plusieurs valeurs d'adhérence ou ne pas avoir de valeur d'adhérence :

- ▶ la suite $(n)_{n \in \mathbb{N}}$ n'a pas de valeur d'adhérence;
- ▶ toute suite convergente possède une seule valeur d'adhérence : sa limite ;
- ▶ la suite u définie par $u_{2n} = \frac{1}{n+1}$ et $u_{2n+1} = 1 \frac{1}{n+1}$ possède deux valeurs d'adhérence : 0 et 1;
- \triangleright il est possible de numéroter les rationnels, autrement dit de créer une suite u qui prend exactement toutes les valeurs rationnelles dans \mathbb{R} : cette suite a pour valeurs d'adhérence tous les réels.

On peut donner une caractérisation équivalente sans passer par la notion de suite extraite.

Proposition 1.200

Soient $u = (u_n) \in E^{\mathbb{N}}$ et $a \in E$.

Alors a est une valeur d'adhérence de u ssi pour tout $\varepsilon > 0$, $\{n \in \mathbb{N} \mid u_n \in B(a, \varepsilon)\}$ est infini.

Démonstration 1.201

 \leftarrow

Supposons que pour tout $\varepsilon > 0$, $\{n \in \mathbb{N} \mid u_n \in B(a, \varepsilon)\}$ est infini.

On spécialise $\varepsilon \leftarrow \frac{1}{k+1}$ pour $k \in \mathbb{N}$.

L'ensemble $\{n \in \mathbb{N} \mid u_n \in B\ (a,1)\}$ est infini donc non-vide. On choisit $\varphi(0)$ un élément de cet ensemble.

L'ensemble $\left\{n \in \mathbb{N} \mid u_n \in B\left(a, \frac{1}{2}\right)\right\}$ est infini donc il contient des entiers strictement supérieurs à $\varphi\left(0\right)$; on en choisit un, qu'on note $\varphi\left(1\right)$.

Si on suppose avoir construit $\varphi(0) < \varphi(1) < \cdots < \varphi(k)$ tels que $u_{\varphi(0)} \in B(a, 1), u_{\varphi(1)} \in B\left(a, \frac{1}{2}\right), \dots, u_{\varphi(k)} \in B\left(a, \frac{1}{k+1}\right)$, comme l'ensemble

$$\left\{ n \in \mathbb{N} \mid u_n \in B\left(a, \frac{1}{k+2}\right) \right\}$$

est infini, on peut choisir $\varphi(k+1)$ dans cet ensemble tel que $\varphi(k+1) > \varphi(k)$.

Par récurrence, on construit une suite $(\varphi(k))_{k\in\mathbb{N}}$ strictement croissante d'entiers naturels tels que

$$\forall k \in \mathbb{N}, \ u_{\varphi(k)} \in B\left(a, \frac{1}{k+1}\right)$$

i.e.
$$||u_{\varphi(k)} - a|| < \frac{1}{k+1}$$
.

Par théorème d'encadrement, on a $u_{\varphi(k)} \xrightarrow[k \to +\infty]{} a: a$ est une valeur d'adhérence de la suite (u_n) .

 \Longrightarrow

Supposons que a est une valeur d'adhérence de la suite (u_n) .

Il existe alors une extractrice φ telle que $u_{\varphi(k)} \xrightarrow[k \to +\infty]{} a$.

Donc pour tout $\varepsilon > 0$, il existe $N \in \mathbb{N}$ tel que

$$\forall n \geq N, \ \|u_{\varphi(n)} - a\| < \varepsilon.$$

Donc $\{n \in \mathbb{N} \mid u_n \in B(a, \varepsilon)\}$ contient $\varphi(N), \varphi(N+1), \ldots i.e.$ c'est un ensemble infini.

Ceci peut encore être réécrit de la façon suivante.

Proposition 1.202

Soient $u = (u_n) \in E^{\mathbb{N}}$ et $a \in E$.

Alors a est une valeur d'adhérence de u ssi $\forall \varepsilon > 0$, $\forall N \in \mathbb{N}$, $\exists n \ge N$, $||u_n - a|| < \varepsilon$.

Démonstration 1.203 Soit I une partie de \mathbb{N} .

On a

$$I$$
est infini $\iff I$ n'est pas majorée
$$\iff \neg \ (\exists N \in \mathbb{N}, \ \forall n \in I, \ n \leqslant N)$$

$$\iff \forall N \in \mathbb{N}, \ \exists n \in I, \ n > N.$$

Pour tout $\varepsilon > 0$, on pose $I_{\varepsilon} = \{ n \in \mathbb{N} \mid u_n \in B (a, \varepsilon) \}.$

On a alors, d'après la Proposition 1.200 :

$$a$$
 est une valeur d'adhérence de $u\iff \forall \varepsilon>0,\ I_{\varepsilon}$ est infini
$$\iff \forall \varepsilon>0,\ \forall N\in\mathbb{N},\ \exists n\in I_{\varepsilon},\ n>N$$

$$\iff \forall \varepsilon>0,\ \forall N\in\mathbb{N},\ \exists n>N,\ \|u_n-a\|<\varepsilon.$$

Exercice 1.204

Soit $u = (u_n) \in E^{\mathbb{N}}$. Montrez que l'ensemble V des valeurs d'adhérence de la suite u est un fermé de E en utilisant les ensembles $U_p = \{u_n \mid n \ge p\}$.

Correction 1.205

Soit $a \in E$.

On a

$$a \in V \iff \forall \varepsilon > 0, \ \forall N \in \mathbb{N}, \ \exists x \in U_N, \ \|x - a\| < \varepsilon$$

$$\iff \forall \varepsilon > 0, \ \forall N \in \mathbb{N}, \ U_N \cap B \ (a, \varepsilon) \neq \emptyset$$

$$\iff \forall N \in \mathbb{N}, \ \forall \varepsilon > 0, \ U_N \cap B \ (a, \varepsilon) \neq \emptyset$$

$$\iff \forall N \in \mathbb{N}, \ a \in \overline{U_N}$$

$$\iff a \in \bigcap_{N \in \mathbb{N}} \overline{U_N}.$$

Donc
$$V = \bigcap_{N \in \mathbb{N}} \overline{U_N}$$
.

V est donc un fermé par intersection de fermés.

1.7.2 Théorème de Bolzano-Weierstrass

Théorème 1.206

Si E est de dimension finie, alors toute suite bornée de E possède une valeur d'adhérence.

Démonstration 1.207

On note $\mathcal{P}(k)$ le prédicat « si E est de dimension k, alors toute suite bornée de E possède une valeur d'adhérence ».

ightharpoonup Pour k = 1:

On pose $E = \text{Vect } (e_1)$.

Si (u_n) est une suite bornée de E, en notant $(u_n) = (\lambda_n e_1)$ où (λ_n) est une suite bornée de \mathbb{K} , d'après le théorème de Bolzano-Weierstrass dans \mathbb{R} ou \mathbb{C} , (λ_n) possède une valeur d'adhérence et donc (u_n) aussi.

D'où $\mathcal{P}(1)$.

▶ Soit $k \in \mathbb{N}^*$ tel que $\mathscr{P}(k)$ soit vraie.

Soit E de dimension k + 1.

On choisit une base $\mathcal{B} = (e_1, \dots, e_{k+1})$ de E.

Soit $(u_n) \in E^{\mathbb{N}}$ une suite bornée.

Alors les suites-coordonnées associées sont bornées.

Pour tout $n \in \mathbb{N}$, on note $u_n = (u_{1,n}, \dots, u_{k+1,n})_{\mathscr{B}}$.

 $(u_{k+1,n})_{n\in\mathbb{N}}$ est une suite bornée de \mathbb{K} donc (même théorème) il existe une extractrice φ telle que $(u_{k+1,\varphi(n)})_{n\in\mathbb{N}}$ converge.

Pour tout $n \in \mathbb{N}$, on pose $v_n = (u_{1,n}, \dots, u_{k,n}, 0)_{\mathscr{B}}$.

 $(v_{\varphi(n)})_{n\in\mathbb{N}}$ est une suite de vecteurs de Vect (e_1,\ldots,e_k) et bornée donc par hypothèse de récurrence, il existe une extractrice ψ telle que $(v_{\varphi\circ\psi(n)})_{n\in\mathbb{N}}$ converge.

De plus, $(u_{k+1,\varphi\circ\psi(n)})_{n\in\mathbb{N}}$ converge car c'est une suite extraite d'une suite convergente.

Donc $(u_{\varphi \circ \psi(n)})_{n \in \mathbb{N}}$ converge.

Donc $\mathcal{P}(k+1)$ est vrai.

▶ Donc pour tout $k \in \mathbb{N}^*$, $\mathscr{P}(k)$ est vrai.

Remarque 1.208

Ce théorème est faux en dimension infinie donc il faut bien mettre en valeur la dimension finie.

On peut ajouter une précision au théorème précédent.

Proposition 1.209

Si E est de dimension finie, alors toute suite bornée de E qui ne possède qu'une seule valeur d'adhérence est convergente vers cette valeur d'adhérence.

Démonstration 1.210

Supposons E de dimension finie.

Soit $(u_n) \in E^{\mathbb{N}}$ une suite bornée qui admet une unique valeur d'adhérence ℓ .

Par l'absurde, on suppose que (u_n) ne converge pas vers ℓ .

On a

$$\exists \varepsilon > 0, \ \ \underbrace{\forall N \in \mathbb{N}, \ \ \exists n \geq N, \ \ \|u_n - \ell\| \geq \varepsilon}_{\{n \in \mathbb{N} \ | \ u_n \notin B(\ell, \varepsilon)\} \text{ infini}}.$$

En ordonnant les éléments de cet ensemble et en les notant $\varphi(0) < \varphi(1) < \dots$, on construit une extractrice φ telle que

$$\forall n \in \mathbb{N}, \ u_{\varphi(n)} \notin B(\ell, \varepsilon).$$

Or $(u_{\varphi(n)})$ est bornée et E est de dimension finie donc d'après le théorème de Bolzano-Weierstrass, il existe une extractrice ψ et $\ell' \in E$ tels que

$$u_{\varphi \circ \psi(n)} \xrightarrow[n \to +\infty]{} \ell'.$$

Or pour tout $n \in \mathbb{N}$, $u_{\varphi(n)}$ appartient au fermé $E \setminus B(\ell, \varepsilon)$ donc $\ell' \in E \setminus B(\ell, \varepsilon)$.

Donc $\ell' \neq \ell$.

Donc $\ell' = \lim_{n \to +\infty} u_{\varphi \circ \psi(n)}$ est une autre valeur d'adhérence de (u_n) : contradiction.

Donc
$$u_n \xrightarrow[n \to +\infty]{} \ell$$
.

1.7.3 Parties compactes

Définition 1.211

Soit A une partie de E.

On dit que A est une partie compacte de E (ou un compact de E) quand toute suite à termes dans A possède une valeur d'adhérence dans A (propriété dite de Bolzano-Weierstrass).

Exemple 1.212

- ▶ Tout segment [a; b] de \mathbb{R} est un compact et ce sont les seuls intervalles compacts. $[0; 1] \cup [2; 3]$ est compact.
- ▶ Dans \mathbb{K}^n , tout pavé $\prod_{i=1}^n [a_i; b_i]$ est un compact. Plus généralement, un produit (fini) de compacts est compact.

Les parties compactes sont donc celles dont on peut extraire des sous-suites convergentes. Un résultat précédent se généralise alors.

Proposition 1.213

Si A est une partie compacte, alors toute suite de A qui ne possède qu'une seule valeur d'adhérence est convergente vers cette valeur d'adhérence.

Un compact étant connu, il est facile d'en construire d'autres.

Proposition 1.214

Si A est une partie compacte de E, alors toute partie B fermée dans A est aussi compacte.

Démonstration 1.215

Soient A une partie compacte de E, B un fermé de A et $(u_n) \in B^{\mathbb{N}}$.

Comme $B \subseteq A$, on a $(u_n) \in A^{\mathbb{N}}$.

A est compacte donc il existe une extractrice φ et $\ell \in A$ tels que $u_{\varphi(n)} \xrightarrow[n \to +\infty]{} \ell$.

La suite $(u_{\varphi(n)})$ est à termes dans B et converge vers ℓ donc comme B est un fermé, on a $\ell \in B$.

Ainsi, toute suite de $B^{\mathbb{N}}$ possède une valeur d'adhérence dans B i.e. B est un compact.

Reconnaître si une partie est compacte n'est pas toujours facile. On dispose d'une condition nécessaire, qui est suffisante en dimension finie.

Proposition 1.216

Soit A une partie de E.

Si A est compacte, alors A est une partie fermée et bornée.

Démonstration 1.217

▶ Si A n'est pas bornée, alors pour tout $n \in \mathbb{N}$, il existe $a_n \in A$ tel que $||a_n|| \ge n$.

Si (a_n) possède une valeur d'adhérence dans A, alors il existe une extractrice φ et $\ell \in A$ tels que $a_{\varphi(n)} \xrightarrow[n \to +\infty]{} \ell$.

Alors $||a_{\varphi(n)}|| \xrightarrow[n \to +\infty]{} ||\ell||$: contradiction.

Donc A n'est pas compacte.

 \triangleright Supposons que A est compacte.

Soit
$$(u_n) \in A^{\mathbb{N}}$$
 telle que $u_n \xrightarrow[n \to +\infty]{} \ell \in E$.

A étant compacte, il existe φ une extractrice et $\ell' \in A$ tels que $u_{\varphi(n)} \xrightarrow[n \to +\infty]{} \ell'$.

La suite $(u_{\varphi(n)})$ est extraite de la suite convergente (u_n) donc $u_{\varphi(n)} \xrightarrow[n \to +\infty]{} \ell$.

Donc par unicité de la limite, on a $\ell' = \ell \in A$.

Donc A est fermée.

La réciproque est hélas fausse en général. Néanmoins, en dimension finie, elle est vraie.

Proposition 1.218

Si E est de dimension finie, alors une partie de E est compacte ssi elle est fermée et bornée.

Remarque 1.219

En fait, il n'y a qu'en dimension finie que ce résultat est vrai. Un théorème de Riesz affirme que la boule-unité fermée d'un espace vectoriel normé est compacte ssi l'espace est de dimension finie, ce qui revient à dire que l'équivalence précédente n'est valable que dans un espace de dimension finie.

En dimension infinie, il se passe des choses vraiment étranges : les compacts sont des parties très petites et plates, par exemple, un compact est forcément d'intérieur vide. Heureusement, il est plus courant de travailler à notre niveau en dimension finie.

Exemple 1.220

- \triangleright L'ensemble des matrices stochastiques de $\mathcal{M}_n\left(\mathbb{R}\right)$ est un compact.
- ▶ La boule-unité fermée de $E = \mathscr{C}^0([0;1],\mathbb{R})$ pour la norme infinie n'est pas compacte, car la suite des fonctions $(x \mapsto x^n)$ a pour seule valeur d'adhérence possible la fonction $x \mapsto 0$ si $x \neq 1$ et $1 \mapsto 1$, qui n'est même pas dans l'espace E.

Démonstration 1.221 (Matrices stochastiques) On note

$$S_n = \left\{ M = \left(m_{i,j} \right) \in \mathcal{M}_n \left(\mathbb{R} \right) \middle| \forall \left(i,j \right) \in \llbracket 1 \; ; \; n \rrbracket^2 \; , \; \; m_{i,j} \geq 0 \; \text{et} \; \forall i \in \llbracket 1 \; ; \; n \rrbracket \; , \; \; \sum_{j=1}^n m_{i,j} = 1 \right\} .$$

Soit $M = (m_{i,j}) \in S_n$.

Pour tout $i \in [1; n]$, $\sum_{j=1}^{n} m_{i,j}$ est une somme de réels positifs qui vaut 1 donc pour tout $j \in [1; n]$, $0 \le m_{i,j} \le 1$.

Donc $||M||_{\infty} \leq 1$.

Donc S_n est bornée.

Soit $(M_k) = \left(\left(m_{i,j}^k\right)_{i,j}\right)_k$ une suite de matrices de S_n qui converge vers $A = \left(a_{i,j}\right) \in \mathcal{M}_n\left(\mathbb{R}\right)$:

$$\forall (i,j) \in [1;n]^2, \ m_{i,j}^k \xrightarrow[k \to +\infty]{} a_{i,j}.$$

Par passage à la limite quand $k \longrightarrow +\infty$ dans les deux conditions qui définissent S_n , on obtient

$$\forall (i, j) \in [1; n]^2, \ a_{i,j} \ge 0$$
 et $\forall i \in [1; n], \ \sum_{i=1}^n a_{i,j} = 1.$

Donc $A \in S_n$.

Donc S_n est fermée.

On aurait aussi pu considérer les fonctions continues sur $\mathcal{M}_n(\mathbb{R})$

$$c_{i,j}:(m_{i,j})\longmapsto m_{i,j}$$
 et $s_i:(m_{i,j})\longmapsto \sum_{j=1}^n m_{i,j}$

et remarquer que

$$S_n = \bigcap_{1 \le i, j \le n} c_{i,j}^{-1} ([0; +\infty[) \cap \bigcap_{i=1}^n s_i^{-1} (\{1\}))$$

ce qui montre que S_n est un fermé par intersection de fermés.

Alors, comme $\mathcal{M}_n(\mathbb{R})$ est de dimension finie, on en déduit que S_n est un compact de $\mathcal{M}_n(\mathbb{R})$.

Démonstration 1.222 (Deuxième point)

On pose $f_n: x \longmapsto x^n$.

Pour tout $n \in \mathbb{N}$, $||f||_{\infty} = 1$.

Si (f_n) a une valeur d'adhérence $g \in \overline{B}(0,1)$, alors il existe une extractrice φ telle que $f_{\varphi(n)} \xrightarrow[n \to +\infty]{} g$ i.e. $||f_{\varphi(n)} - g||_{\infty} \xrightarrow[n \to +\infty]{} 0$.

Or pour tout $x \in [0; 1]$, $|f_{\varphi(n)}(x) - g(x)| \le ||f_{\varphi(n)} - g||_{\infty}$.

Donc par encadrement, on a $f_{\varphi(n)}(x) \xrightarrow[n \to +\infty]{} g(x)$.

Si $x \in [0; 1[$, alors $f_{\varphi(n)}(x) = x^{\varphi(n)} \xrightarrow[n \to +\infty]{} 0$.

Si x = 1, alors $f_{\varphi(n)}(x) = 1 \xrightarrow[n \to +\infty]{} 1$.

 $\text{Donc } g: x \longmapsto \begin{cases} 0 & \text{si } x \in [0 \ ; 1[\\ 1 & \text{sinon} \end{cases}$

Or $g \notin E$: contradiction de la compacité.

Une application importante de la notion de compacité est le théorème suivant.

Théorème 1.223

Tout sous-espace vectoriel de dimension finie de E est fermé.

Démonstration 1.224

Soit F un sous-espace vectoriel de E de dimension finie.

Soit $(u_n) \in F^{\mathbb{N}}$ une suite convergente vers $\ell \in E$.

Alors (u_n) est bornée : il existe R>0 tel que $\forall n\in\mathbb{N},\ u_n\in\overline{B}\ (0,R).$

Donc $\forall n \in \mathbb{N}, \ u_n \in \overline{B}\left(0,R\right) \cap F = \left\{x \in F \mid \left\|x\right\| \leqslant R\right\} = \overline{B_F}\left(0,R\right).$

Donc $\overline{B_F}\left(0,R\right)$ est un fermé borné de F et donc un compact de F.

Il existe donc une extractrice φ et $a \in \overline{B_F}(0,R)$ tels que $u_{\varphi(n)} \xrightarrow[n \to +\infty]{} a$.

Donc $\ell = a \in F$.

Donc F est fermé.

En dimension infinie, là encore il peut se passer des choses étranges : un sous-espace de E de dimension infinie peut être dense (et donc non-fermé s'il est différent de E).

1.7.4 Théorème des bornes atteintes

Le principal intérêt des compacts est de pouvoir généraliser un théorème de première année.

Théorème 1.225

Soient E, F deux espaces vectoriels normés, A une partie de E et $f: A \longrightarrow F$.

Si f est continue sur A et A est compacte, alors f(A) est compacte.

Démonstration 1.226

On suppose que f est continue et que A est compacte.

Soit $(u_n) \in f(A)^{\mathbb{N}}$.

Pour tout $n \in \mathbb{N}$, $u_n \in f(A)$ donc il existe $v_n \in A$ tel que $u_n = f(v_n)$.

 $(v_n) \in A^{\mathbb{N}}$ et A est compacte donc il existe une extractrice φ et $a \in A$ tels que $v_{\varphi(n)} \xrightarrow[n \to +\infty]{} a$.

 $f \text{ est continue en } a \text{ donc } u_{\varphi(n)} = f\left(v_{\varphi(n)}\right) \xrightarrow[n \longrightarrow +\infty]{} f\left(a\right) \in f\left(A\right).$

Donc f(A) est compacte.

On résume en disant que l'image continue d'un compact est un compact.

En particulier, toute fonction continue sur un compact est donc bornée. Dans le cas des fonctions numériques (i.e. à valeurs dans \mathbb{R}), on peut même être plus précis.

Théorème 1.227

Toute fonction continue sur un compact et à valeurs réelles est bornée et atteint ses bornes.

Autrement dit, si $f: A \longrightarrow \mathbb{R}$ est continue sur A et A est une partie compacte de E, alors il existe $(a,b) \in A^2$ tel que pour tout $x \in A$, $f(a) \leqslant f(x) \leqslant f(b)$, ce qui revient à dire que f possède un minimum et un maximum sur A.

Démonstration 1.228

f(A) est un fermé borné de \mathbb{R} donc possède un minimum et un maximum.

Remarque 1.229

Pour toute partie X bornée de \mathbb{R} non-vide, sup X et inf X sont dans l'adhérence de X.

Remarque 1.230

Ce théorème est à rapprocher du théorème vu en première année : toute fonction de \mathbb{R} dans \mathbb{R} continue sur un segment est bornée et atteint ses bornes.

Néanmoins, le théorème de l'an dernier donnait un résultat un peu plus précis que celui de cette année car il donnait aussi l'image du segment, en précisant qu'il s'agissait aussi d'un segment, car il faisait aussi intervenir le théorème des valeurs intermédiaires.

Ici, dans la version proposée cette année, on ne peut rien dire de plus.

Exercice 1.231

Un exercice classique, à savoir refaire! C'est la base de nombreux exercices.

Soient E de dimension finie et $f: E \longrightarrow \mathbb{R}$ continue et telle que f(x) tende vers $+\infty$ quand ||x|| tende vers $+\infty$. Montrez que f possède un minimum.

Exemple : dans le plan euclidien géométrique, on choisit trois points A, B, C; montrez alors qu'il existe un point M du plan tel que la somme AM + BM + CM soit minimale.

Correction 1.232 (Cas général)

On a $f(0) \in \mathbb{R}$ donc il existe A > 0 tel que $\forall x \in E, ||x|| > A \implies f(x) \ge f(0)$.

Sur $\overline{B}(0, A)$, fermé borné d'un espace de dimension finie donc un compact, f est continue et y admet donc un minimum en x_0 d'après le théorème des bornes atteintes.

Pour tout $x \in E$,

$$ightharpoonup \operatorname{si} x \notin \overline{B}(0,A), \operatorname{alors} f(x) \ge f(0) \ge f(x_0) \operatorname{car} 0 \in \overline{B}(0,A)$$

$$ightharpoonup ext{si } x \in \overline{B} (0, A), ext{ alors } f(x) \ge f(x_0).$$

Donc $f(x_0) = \min_{E} f$.

Correction 1.233 (Exemple)

On note \mathcal{P} le plan considéré.

On pose $f: \mathcal{P} \longrightarrow \mathbb{R}$ qui est une fonction continue. $M \begin{pmatrix} x \\ y \end{pmatrix} \longmapsto AM + BM + CM$

Par inégalité triangulaire, on a $f(M) \ge 3OM + \text{cte donc}$

$$f(M) \xrightarrow{\|\overrightarrow{OM}\| \to +\infty} +\infty.$$

D'où l'existence d'un minimum d'après la propriété démontrée précédemment.

Exercice 1.234

Soit
$$f:(x,y) \longmapsto xy\sqrt{1-x^2-2y^2}$$
.

Justifiez que l'ensemble de définition D de f est un compact de \mathbb{R}^2 .

Déterminez les points critiques de f dans l'ouvert \mathring{D} , puis les maxima et minima de f.

Correction 1.235

On a
$$D = \{(x, y) \in \mathbb{R}^2 \mid x^2 + 2y^2 \le 1\}.$$

Pour tout $(x, y) \in D$, on a

$$x^2 \le 1 \text{ donc } |x| \le 1$$

et

$$2y^2 \le 1 \text{ donc } |y| \le \frac{1}{\sqrt{2}} \le 1$$

donc $\|(x,y)\|_{\infty} \le 1$ donc D est borné.

De plus, $D=\varphi^{-1}\left(]-\infty\;;\;1]\right)$ où $\varphi:(x,y)\longmapsto x^2+2y^2$ continue sur \mathbb{R}^2 donc D est un fermé.

 \mathbb{R}^2 est de dimension finie donc D est un compact.

f est continue sur D donc d'après le théorème des bornes atteintes, $\max_{D} f$ et $\min_{D} f$ existent.

Sur \mathring{D} , f est de classe \mathscr{C}^1 .

$$(x,y)\in \mathring{D} \text{ est un point critique de } f \text{ ssi } \nabla f\left(x,y\right)=0 \text{ } i.e. \begin{cases} \frac{\partial f}{\partial x}\left(x,y\right)=0\\ \\ \frac{\partial f}{\partial y}\left(x,y\right)=0 \end{cases}$$

Or

$$\begin{cases} \frac{\partial f}{\partial x}(x, y) = 0 \\ \frac{\partial f}{\partial y}(x, y) = 0 \end{cases} \iff \begin{cases} y\sqrt{1 - x^2 - 2y^2} - xy\frac{x}{\sqrt{1 - x^2 - 2y^2}} = 0 \\ x\sqrt{1 - x^2 - 2y^2} - xy\frac{2y}{\sqrt{1 - x^2 - 2y^2}} = 0 \end{cases}$$
$$\iff \begin{cases} y(1 - x^2 - 2y^2) - x^2y = 0 \\ x(1 - x^2 - 2y^2) - 2xy^2 = 0 \end{cases}$$
$$\iff (S) \begin{cases} y(1 - 2x^2 - 2y^2) = 0 \\ x(1 - x^2 - 4y^2) = 0 \end{cases}$$

Si x = 0 alors y = 0 donc une solution : (0, 0).

Si $x \neq 0$, alors

$$(S) \iff \begin{cases} x^2 = 1 - 4y^2 \\ y \left(1 - 2\left(1 - 4y^2\right) - 2y^2\right) = 0 \end{cases}$$

$$\iff \begin{cases} x^2 = 1 - 4y^2 \\ y = 0 \text{ ou } y^2 = \frac{1}{6} \end{cases}$$

$$\iff \begin{cases} x^2 = \frac{1}{3} \\ y^2 = \frac{1}{6} \end{cases}$$

On en déduit quatre autres solutions : $\left(\frac{t}{\sqrt{3}}, \frac{t}{\sqrt{6}}\right)$ où $t \in \{-1, 1\}$.

★★ À finir ★★

On retrouve aussi le théorème de Heine en conséquence de la compacité.

Définition 1.236

Soient E, F deux espaces vectoriels normés, A une partie de E et $f: A \longrightarrow F$.

On dit que f est uniformément continue sur A quand

$$\forall \varepsilon > 0, \ \exists \eta > 0, \ \forall (x, y) \in A^2, \ \|x - y\| \le \eta \implies \|f(x) - f(y)\| \le \varepsilon.$$

Théorème 1.237

Soient E, F deux espaces vectoriels normés, A une partie de E et $f: A \longrightarrow F$.

Si f est continue sur A et A est compacte, alors f est uniformément continue sur A.

Démonstration 1.238

Par l'absurde, on suppose

$$\exists \varepsilon > 0, \ \forall \eta > 0, \ \exists (x, y) \in A^2, \ \begin{cases} ||x - y|| \le \eta \\ ||f(x) - f(y)|| > \varepsilon. \end{cases}$$

On spécialise $\eta \leftarrow \frac{1}{n+1}$ pour $n \in \mathbb{N}$.

Pour $n \in \mathbb{N}$, il existe $(x_n, y_n) \in A^2$ tel que $||x - y|| \le \frac{1}{n+1}$ et $||f(x) - f(y)|| > \varepsilon$.

On a ainsi construit deux suites $(x_n)\,,(y_n)\in A^{\mathbb{N}}$ telles que

$$\forall n \in \mathbb{N}, \ \|x_n - y_n\| \le \frac{1}{n+1}$$
 et $\|f(x_n) - f(y_n)\| > \varepsilon$.

A étant compacte, (x_n) possède une valeur d'adhérence dans A donc il existe une extractrice φ et $\ell \in A$ tels que $x_{\varphi(n)} \xrightarrow[n \to +\infty]{} \ell$.

On a

$$\forall n \in \mathbb{N}, \quad \left\| y_{\varphi(n)} - \ell \right\| \le \left\| y_{\varphi(n)} - x_{\varphi(n)} \right\| + \left\| x_{\varphi(n)} - \ell \right\|$$

$$\le \frac{1}{\varphi(n) + 1} + \left\| x_{\varphi(n)} - \ell \right\|.$$

77

Or $\varphi(n) \xrightarrow[n \to +\infty]{} +\infty$ et $\|x_{\varphi(n)} - \ell\| \xrightarrow[n \to +\infty]{} 0$ donc par encadrement, on a $y_{\varphi(n)} \xrightarrow[n \to +\infty]{} \ell$.

Par continuité de
$$f$$
 en ℓ , on a
$$\begin{cases} f\left(x_{\varphi(n)}\right) \xrightarrow[n \to +\infty]{} f\left(\ell\right) \\ f\left(y_{\varphi(n)}\right) \xrightarrow[n \to +\infty]{} f\left(\ell\right) \end{cases}$$

Donc $f(x_{\varphi(n)}) - f(y_{\varphi(n)}) \xrightarrow[n \to +\infty]{} 0$, ce qui contredit l'inégalité

$$\forall n \in \mathbb{N}, \ \left\| f\left(x_{\varphi(n)}\right) - f\left(y_{\varphi(n)}\right) \right\| > \varepsilon.$$

1.8 Connexité par arcs

Dans cette section, E est un espace vectoriel normé.

1.8.1 Chemin

Définition 1.239

Soient A une partie de E et $a, b \in A$.

On appelle chemin (ou arc) dans A de a à b toute application continue $\varphi : [0; 1] \longrightarrow A$ telle que $\varphi (0) = a$ et $\varphi (1) = b$. Le support du chemin est l'image de φ .

On peut définir une relation d'équivalence sur une partie de E en mettant en relation les points joignables par un chemin.

Définition 1.240

Soient A une partie de E et $a, b \in A$.

On pose $a\mathcal{R}b$ quand il existe un chemin dans A de a à b.

Proposition 1.241

Avec les notations précédentes, la relation \mathcal{R} est une relation d'équivalence sur A.

Démonstration 1.242

▶ Soit $a \in A$.

La fonction $\varphi: [0;1] \longrightarrow A$ est continue sur [0;1] et on a $\varphi(0) = a$ et $\varphi(1) = a$. $t \longmapsto a$

Donc $a\mathcal{R}a:\mathcal{R}$ est réflexive.

▶ Soit $(a, b) \in A^2$ tel que $a \Re b$.

Il existe une fonction continue $\varphi:[0;1]\longrightarrow A$ telle que $\varphi(0)=a$ et $\varphi(1)=b$.

On pose
$$\psi: [0;1] \longrightarrow A$$

 $t \longmapsto \varphi(1-t)$

 ψ est une fonction continue sur [0;1] telle que $\psi(0)=b$ et $\psi(1)=a$.

Donc $b\mathcal{R}a:\mathcal{R}$ est symétrique.

▶ Soit $(a, b, c) \in A^3$ tel que $a\Re b$ et $b\Re c$.

Il existe $(\varphi, \psi) \in \mathcal{C}^0([0; 1], A)$ tel que $\varphi(0) = a, \varphi(1) = b, \psi(0) = b$ et $\psi(1) = c$.

On pose
$$\theta: [0;1] \longrightarrow A$$

$$x \longmapsto \begin{cases} \varphi(2x) & \text{si } 0 \leq x \leq \frac{1}{2} \\ \psi(2x-1) & \text{sinon} \end{cases}$$

 θ est une fonction continue sur [0;1] telle que $\theta(0)=a$ et $\theta(1)=c$.

Donc $a\mathcal{R}c:\mathcal{R}$ est transitive.

 ${\blacktriangleright}$ Finalement, ${\mathcal R}$ est une relation d'équivalence.

1.8.2 Parties connexes par arcs

Définition 1.243

Soit A une partie de E.

On dit que A est connexe par arcs quand tout couple de points $(a,b) \in A^2$ est joignable par un chemin.

Exemple 1.244

- \triangleright Les parties convexes de E sont connexes par arcs.
- \triangleright Les parties étoilées de E sont connexes par arcs.
- $\triangleright \mathbb{C}^*$ et $\mathbb{C} \setminus D$ où D est la demi-droite des réels négatifs sont connexes par arcs.

Démonstration 1.245

▶ Une partie convexe est une partie dont tous les points sont reliables en ligne droite donc, en particulier, est une partie connexe par arcs.

▶ Une partie A est dite étoilée quand il existe $c \in A$ tel que pour tout $b \in A$, $[cb] \subseteq A$. Alors A est clairement connexe par arcs.

Les classes d'équivalences de la relation notée \mathcal{R} précédemment s'appellent les composantes connexes par arcs de A: ce sont par définition des parties connexes par arcs.

Proposition 1.246

Les seules parties connexes par arcs de \mathbb{R} sont les intervalles.

Remarque 1.247

Il existe une notion plus générale, celle de partie connexe : une partie A de E est dite connexe quand les seules parties de A à la fois ouvertes et fermées sont \emptyset et A. Elle est plus délicate à aborder et est hors-programme, c'est pourquoi on s'en tient à la notion de connexité par arcs (toute partie connexe par arcs est connexe).

1.8.3 Théorème des valeurs intermédiaires

Là encore, la notion de connexité par arcs permet de généraliser des résultats de première année.

Théorème 1.248

Soient E, F deux espaces vectoriels normés, A une partie de E et $f: A \longrightarrow F$.

Si f est continue par A et A est connexe par arcs, alors f(A) est connexe par arcs.

Démonstration 1.249

Supposons que A est connexe par arcs et que f est continue.

Soit $(x, y) \in f(A)^2$.

Il existe $(a, b) \in A^2$ tel que f(a) = x et f(b) = y.

Or A est connexe par arcs donc il existe $\varphi: [0; 1] \longrightarrow A$ continue telle que $\varphi(0) = a$ et $\varphi(1) = b$.

 $f \circ \varphi$ est donc un chemin qui relie x et y (par composition de fonctions continues).

Donc f(A) est connexe par arcs.

On résume en disant que l'image continue d'un connexe par arcs est un connexe par arcs.

Dans le cas des fonctions numériques (i.e. à valeurs dans \mathbb{R}), on peut même être plus précis.

Théorème 1.250

Toute fonction continue sur un connexe par arcs et à valeurs réelles vérifie la propriété des valeurs intermédiaires.

Autrement dit, si $f: A \longrightarrow F$ est continue sur A une partie connexe par arcs de E, alors f(A) est un intervalle.

Ou encore:

$$\forall (y,z) \in f(A)^2, \ \forall w \in [yz], \ \exists t \in A, \ f(t) = w.$$

Démonstration 1.251

Évident à partir du Théorème 1.248.

Chapitre 2

Séries numériques et vectorielles : révisions et compléments

Sommaire

2.1	Rappels
2.1.1	Définitions et notations
2.1.2	Convergence d'une série
2.1.3	Lien entre convergence de suites et convergence de séries
2.2	Séries réelles à termes positifs
2.2.1	Théorème de Cesàro
2.2.2	Théorème de comparaison par domination de séries à termes positifs 90
2.2.3	Théorème de comparaison par équivalence de séries à termes positifs 92
2.2.4	Théorème de comparaison série - intégrale
2.3	Séries absolument convergentes
2.3.1	Lien entre absolue convergence et convergence
2.3.2	Un exemple fondamental : l'exponentielle de matrice
2.3.3	Extension des résultats par comparaison
2.3.4	Produit de Cauchy de deux séries absolument convergentes 101
2.4	Séries alternées

Dans ce chapitre, E désigne un espace vectoriel normé (qui peut être \mathbb{R} ou \mathbb{C}) et $\|\cdot\|$ la norme associée (qui est dans ces cas la valeur absolue ou le module).

2.1 Rappels

2.1.1 Définitions et notations

Définition 2.1 (Série vectorielle)

Soit u une suite de E.

On associe à cette suite la suite s définie de la façon suivante : pour tout $n \in \mathbb{N}$, $s_n = \sum_{k=0}^n u_k$.

La suite s est appelée série de terme général u_n et notée $\sum_{n\geq 0}u_n$ ou $\sum u$.

Chaque nombre s_n est appelé somme partielle d'indice n de la série.

L'adjectif « numérique » associé au mot « série » signifie que les termes généraux de la série sont en fait des nombres réels ou complexes.

2.1.2 Convergence d'une série

Définition 2.2

Soit u une suite de E.

On dit que la série $\sum u$ converge ssi la suite des sommes partielles $(s_n) = \left(\sum_{k=0}^n u_k\right)$ converge.

Dans ce cas, si $\ell = \lim_{n \to +\infty} s_n$, alors ℓ est appelée somme de la série $\sum u$ et on note $\ell = \sum_{n=0}^{+\infty} u_n$.

On appelle aussi reste partiel d'indice n de la série le nombre $r_n = \sum_{k=n+1}^{+\infty} u_k$, de sorte que $r_n + s_n = \ell$.

La suite des restes partiels converge donc vers 0.

Dans le cas contraire, on dit que la série $\sum u$ diverge.

Exemple 2.3

- emple 2.3

 Noit $x \in \mathbb{C}$. La série $\sum_{n \ge 0} x^n$ converge ssi |x| < 1 et, dans ce cas, $\sum_{n=0}^{+\infty} x^n = \frac{1}{1-x}$. Cette série est appelée série géométrique de raison x.
- ▶ Les séries de Riemann : $\sum_{n>1} \frac{1}{n^{\alpha}}$ converge ssi $\alpha > 1$.
- ▶ Pour tout $z \in \mathbb{C}$, la série $\sum \frac{z^n}{n!}$ converge et $\sum_{n=0}^{+\infty} \frac{z^n}{n!} = e^z$.

On peut bien sûr généraliser aux séries quelques théorèmes d'opérations.

Proposition 2.4

Soient u, v deux suites de E et λ un scalaire.

Si les séries $\sum u$ et $\sum v$ convergent, alors la série $\sum (u + \lambda v)$ converge et $\sum_{n=0}^{+\infty} (u_n + \lambda v_n) = \sum_{n=0}^{+\infty} u_n + \lambda \sum_{n=0}^{+\infty} v_n$.

Ceci prouve aussi que l'ensemble des séries convergentes est un espace vectoriel.

Remarque 2.5

La somme d'une série divergente et d'une série convergente est une série divergente.

En revanche, il n'y a rien à dire a priori à propos de la somme de deux séries divergentes.

2.1.3 Lien entre convergence de suites et convergence de séries

Proposition 2.6

Soit u une suite de E.

Si la série $\sum u$ converge, alors la suite u converge vers 0.

$Remarque\ 2.7$

- ▶ La réciproque est fausse.
- \triangleright Par contraposition, si une suite u ne tend pas vers 0, alors la série associée diverge : on dit que la série $\sum u$ diverge grossièrement.

Exemple 2.8

On appelle série harmonique la série $\sum_{n\geqslant 1} \frac{1}{n}$.

Cette série diverge, pourtant son terme général tend vers 0.

Définition 2.9

Soit u une suite de E. On pose $v_n = u_{n+1} - u_n$.

La série $\sum v$ est appelée la série télescopique (ou série domino, ou série différence) associée à u.

Proposition 2.10

Une suite converge ssi sa série télescopique associée converge.

Exercice 2.11

On pose $u_n = \sum_{k=1}^n \frac{1}{k} - \ln n$. Montrez que la suite u converge.

Correction 2.12 u converge ssi $\sum (u_{n+1} - u_n)$ converge.

On a

$$u_{n+1} - u_n = \frac{1}{n+1} - \ln(n+1) + \ln n$$
$$= \frac{1}{n+1} + \ln\frac{n}{n+1}$$
$$= \frac{1}{n+1} + \ln\left(1 - \frac{1}{n+1}\right).$$

Or
$$\ln (1+u) \underset{u \to 0}{=} u - \frac{u^2}{2} + o(u^2)$$
 et $\frac{1}{n+1} \xrightarrow[n \to +\infty]{} 0$ donc
$$u_{n+1} - u_n \underset{n \to +\infty}{=} \frac{1}{n+1} + \left(\frac{-1}{n+1} + \frac{1}{2(n+1)^2} + o\left(\frac{1}{(n+1)^2}\right)\right)$$

$$\underset{n \to +\infty}{=} \frac{1}{2(n+1)^2} + o\left(\frac{1}{(n+1)^2}\right)$$

Les séries $\sum (u_{n+1} - u_n)$ et $\sum \frac{1}{2n^2}$ sont à termes positifs à partir d'un certain rang et $\sum \frac{1}{n^2}$ converge donc d'après le théorème de comparaison des séries à termes positifs, $\sum (u_{n+1} - u_n)$ converge *i.e.* u converge.

Note culturelle : on appelle constante d'Euler-Mascheroni la limite de cette suite, notée γ et on a le développement asymptotique

$$\sum_{k=1}^{n} \frac{1}{k} = \ln n + \gamma + o(1).$$

On remarque que l'on a

$$\sum_{k=1}^{n} \frac{1}{k} \underset{n \longrightarrow +\infty}{\sim} \ln n.$$

2.2 Séries réelles à termes positifs

Dans cette section, on s'intéresse uniquement aux séries dont le terme général est un réel positif.

On appelle un premier théorème issu du cours de première année.

Théorème 2.13

Soient u et v deux suites réelles positives.

 $\gt{Si} \ 0 \leqslant u \leqslant v \ et \ si \ la \ s\'{e}rie \sum v \ converge, \ alors \ la \ s\'{e}rie \sum u \ converge.$

- $ightharpoonup Si 0 ≤ u ≤ v et si la série <math>\sum u$ diverge, alors la série $\sum v$ diverge.
- $\gt{Si} \ u \sim v, \ alors \ les \ s\'{e}ries \ \sum u \ et \ \sum v \ sont \ de \ m\^{e}me \ nature.$

Une application classique : la règle de d'Alembert.

Proposition 2.14

Soit u une suite réelle strictement positive telle que $u_{n+1} \xrightarrow[n \to +\infty]{} \ell$. Alors

- $ightharpoonup si \ell < 1$, la série $\sum u$ converge;
- $ightharpoonup si \ell > 1$, la série $\sum u$ diverge;
- $ightharpoonup si \ \ell = 1$, on ne peut rien conclure.

Démonstration 2.15

Si $\ell < 1$, on pose $K = \frac{1+\ell}{2}$.

 $\text{Comme } \ell < K < 1 \text{ et } \frac{u_{n+1}}{u_n} \xrightarrow[n \to +\infty]{} \ell, \text{ il existe } N \in \mathbb{N} \text{ tel que pour tout } n \geq N, \ 0 < \frac{u_{n+1}}{u_n} \leq K.$

Par récurrence, on montre $\forall n \geq N, \ u_n \leq u_N K^{n-N} = \frac{u_N}{K^N} K^n$.

Comme 0 < K < 1, la série $\sum K^n$ converge donc d'après le théorème de comparaison des séries à termes positifs, $\sum u_n$ converge.

 ${\tt > Si \; \ell > 1, \, \grave{\rm a} \; partir \; d'un \; certain \; rang, \; on \; a \; u_n \geqslant \left(\frac{1+\ell}{2}\right)^n \times {\rm cte} \xrightarrow[n \longrightarrow +\infty]{} \pm \infty.}$

Donc $\sum u_n$ diverge grossièrement.

- \triangleright Si $\ell=1,$ on ne peut rien dire. Deux exemples :
 - En posant $u_n = \frac{1}{n}$, on a $\frac{u_{n+1}}{u_n} \xrightarrow[n \to +\infty]{} 1$ mais $\sum u_n$ diverge.
 - En posant $u_n = \frac{1}{n^2}$, on a $\frac{u_{n+1}}{u_n} \xrightarrow[n \to +\infty]{} 1$ mais $\sum u_n$ converge.

Exercice 2.16

Soient x, y > 0. Représentez graphiquement l'ensemble des couples (x, y) tels que la série $\sum \frac{x^n}{y^n + n^x}$ converge.

Correction 2.17 Pour tout $n \in \mathbb{N}$, on pose $u_n = \frac{x^n}{y^n + n^x} \ge 0$.

$$\triangleright \ \mathrm{Si} \ x=1, \ \mathrm{alors} \ u_n = \frac{1}{y^n + n} \xrightarrow[n \to +\infty]{} 0.$$

— Si y > 1:

On a $n = o(y^n)$ donc $y^n + n \sim y^n$.

Donc
$$u_n \underset{n \longrightarrow +\infty}{\sim} \frac{1}{y^n} = \left(\frac{1}{y}\right)^n$$
.

Or $0 \le \frac{1}{v} < 1$ donc la série géométrique $\sum_{v} \left(\frac{1}{v}\right)^n$ converge.

Ainsi, d'après le théorème de comparaison des séries à termes positifs, $\sum u_n$ converge.

— Sinon, on a $y^n = o(n)$ donc $u_n \sim \frac{1}{n \to +\infty}$.

Or $\sum_{n=1}^{\infty} \frac{1}{n}$ diverge donc d'après le théorème de comparaison des séries à termes positifs, $\sum u_n$ diverge.

Donc
$$u_n \underset{n \longrightarrow +\infty}{\sim} \frac{x^n}{y^n} = \left(\frac{x}{y}\right)^n$$
.

Ainsi, d'après le théorème de comparaison des séries à termes positifs, $\sum u_n$ converge ssi $\frac{x}{y} < 1 \ i.e. \ x < y.$

▶ Si $y \le 1$, on a $y^n = o(n^x)$ donc $u_n \sim \frac{x^n}{n \to +\infty}$

— Si x > 1, on a $n^x = o(x^n)$ donc $\lim_{n \to +\infty} u_n = +\infty$: $\sum u_n$ diverge grossièrement.

— Si x < 1, on a $0 \le \frac{x^n}{n^x} \le x^n$ donc, comme 0 < x < 1, $\sum x^n$ converge et par théorème de comparaison des séries à termes positifs, $\sum \frac{x^n}{n^x}$ converge, donc $\sum u_n$ converge.

Finalement, on a la représentation graphique suivante :

Exercice 2.18

Montrez que la suite (u_n) définie par $u_0 \in [0; 1]$ et $u_{n+1} = \frac{1}{2} (u_n + u_n^2)$ converge vers 0 et donnez la nature de la série $\sum u_n$.

Correction 2.19

Localisation : on montre par récurrence triviale que $\forall n \in \mathbb{N}, \ u_n \in [0; 1[.$

Monotonie : pour tout $n \in \mathbb{N}$, on a

$$u_{n+1} - u_n = \frac{u_n + u_n^2}{2} - u_n = \frac{u_n^2 - u_n}{2} \le \frac{u_n (u_n - 1)}{2} \le 0$$

donc (u_n) est décroissante.

Or (u_n) est minorée par 0 donc (u_n) converge d'après le théorème de la limite monotone.

On pose $\ell = \lim_n u_n \in [0 ; 1[.$

Par opérations sur les limites, on a

$$u_{n+1} = \frac{u_n + u_n^2}{2} \xrightarrow[n \to +\infty]{} \frac{\ell + \ell^2}{2}.$$

Or (u_{n+1}) est extraite de (u_n) donc $u_{n+1} \xrightarrow[n \to +\infty]{} \ell$.

Par unicité de la limite, on a donc $\ell = \frac{\ell + \ell^2}{2}$.

Donc $\ell(\ell-1)=0$, or $\ell\in[0\,;\,1[$ donc $\ell=0.$

Enfin, on a $u_n \xrightarrow[n \to +\infty]{} 0$ donc il existe $N \in \mathbb{N}$ tel que $\forall n \geq N, \ u_n^2 \leq \frac{u_n}{2}$.

Donc pour $n \ge N$, on a $u_{n+1} \le \frac{3}{4}u_n$.

Par récurrence, on montre que pour tout $n \ge N$, $u_n \le \left(\frac{3}{4}\right)^{-N} u_N \times \left(\frac{3}{4}\right)^n$.

Or la série géométrique $\sum \left(\frac{3}{4}\right)^n$ converge donc d'après le théorème de comparaison des séries à termes positifs, $\sum u_n$ converge.

On donne quelques versions plus élaborées du théorème de comparaison.

2.2.1 Théorème de Cesàro

Théorème 2.20

Soit u une suite numérique qui converge vers ℓ . Alors $\frac{u_0 + \cdots + u_n}{n} \xrightarrow[n \to +\infty]{} \ell$.

Démonstration 2.21

Soit $\varepsilon > 0$. Il existe $N \in \mathbb{N}$ tel que $\forall n \geq N, \ |u_n - \ell| \leq \varepsilon$.

On a

$$\frac{u_0 + \dots + u_n}{n} - \ell = \frac{u_0 + \dots + u_N}{n} + \frac{u_{N+1} + \dots + u_n}{n} - \ell$$

$$= \frac{u_0 + \dots + u_N}{n} + \frac{u_{N+1} - \ell + \dots + u_n - \ell}{n} + \frac{(n-N)\ell}{n} - \ell$$

$$= \frac{u_0 + \dots + u_N}{n} - \frac{N\ell}{n} + \frac{u_{N+1} - \ell + \dots + u_n - \ell}{n}.$$

Donc

$$\left|\frac{u_0 + \dots + u_n}{n} - \ell\right| \leq \underbrace{\frac{\left|u_0 + \dots + u_N - N\ell\right|}{n}}_{K} + \frac{\left|u_{N+1} - \ell\right| + \dots + \left|u_n - \ell\right|}{n}$$

$$\leq \frac{K}{n} + \frac{(n-N)\varepsilon}{n}$$

$$\leq \frac{K}{n} + \varepsilon.$$

$$\frac{n-N}{n} \leq 1$$

 $\text{Or } \frac{K}{n} \xrightarrow[n \to +\infty]{} 0 \text{ donc il existe } N' \in \mathbb{N} \text{ tel que } \forall n \geq N', \ \frac{K}{n} \leq \varepsilon.$

On pose $N'' = \max(N, N')$.

Donc pour tout $n \ge N''$, $\left| \frac{u_0 + \dots + u_n}{n} - \ell \right| \le 2\varepsilon$.

On a montré

$$\forall \varepsilon > 0, \ \exists N \in \mathbb{N}, \ \forall n \geqslant N, \ \left| \frac{u_0 + \dots + u_n}{n} - \ell \right| \leqslant \varepsilon$$

donc
$$\frac{u_0 + \dots + u_n}{n} \xrightarrow[n \to +\infty]{} \ell$$
.

Dans le cas où $\ell \neq 0$, la série $\sum u$ diverge grossièrement et $\sum_{k=0}^n u_k \sim n\ell$.

Dans le cas où $\ell=0,$ on peut juste dire $\sum_{k=0}^n u_k=o(n).$

Exercice 2.22

Soit u la suite définie par récurrence par $u_0 > 0$ et pour tout $n \in \mathbb{N}$, $u_{n+1} = u_n + \frac{u_n + 1}{u_n + 2}$.

Étudiez la convergence ou divergence de la suite u, puis donnez un équivalent simple de u_n quand n tend vers $+\infty$.

Correction 2.23

Par récurrence immédiate, (u_n) est à termes strictement positifs.

On en déduit que pour tout $n \in \mathbb{N}$, $u_{n+1} - u_n = \frac{u_n + 1}{u_n + 2} > 0$ donc (u_n) est croissante.

Par l'absurde, on suppose que (u_n) converge vers $\ell \in \mathbb{R}_+^*$.

De la même façon que dans l'Exercice 2.18, par passage à la limite, on obtient $\ell - \ell = \frac{\ell+1}{\ell+2}$ donc $\ell = -1$: contradiction.

Donc (u_n) est croissante et diverge donc elle diverge vers $+\infty$.

De plus, on a
$$\sum_{k=0}^{n-1} (u_{k+1} - u_k) = u_n - u_0 = \sum_{k=0}^{n-1} \frac{u_n + 1}{u_n + 2}$$
.

Or $\frac{u_n+1}{u_n+2} \xrightarrow[n \to +\infty]{} 1$ donc d'après le théorème de Cesàro, on a

$$\frac{\sum_{k=0}^{n-1} \frac{u_n + 1}{u_n + 2}}{n} \xrightarrow[n \to +\infty]{} 1$$

i.e.
$$u_n - u_0 \sim n$$
.

Donc $u_n \sim n$.

2.2.2 Théorème de comparaison par domination de séries à termes positifs

90

Dans le cas convergent d'abord, les restes partiels suivent la même relation de comparaison.

Théorème 2.24

Soient u, v deux suites réelles positives.

Si
$$u = \mathcal{O}(v)$$
 et la série $\sum v$ converge, alors la série $\sum u$ converge. De plus, $\sum_{k=n+1}^{+\infty} u_k = \mathcal{O}\left(\sum_{k=n+1}^{+\infty} v_k\right)$.

$$Si \ u = o \ (v) \ et \ la \ s\'erie \sum v \ converge, \ alors \ la \ s\'erie \sum u \ converge. \ De \ plus, \sum_{k=n+1}^{+\infty} u_k = o \left(\sum_{k=n+1}^{+\infty} v_k\right).$$

Démonstration 2.25

 $\triangleright \text{ Si } u_n \underset{n \longrightarrow +\infty}{=} \mathcal{O}\left(v_n\right), \text{ il existe } K > 0 \text{ et } N \in \mathbb{N} \text{ tels que } \forall n \geq N, \ 0 \leq u_n \leq K v_n.$

La série $\sum v_n$ converge donc d'après le théorème de comparaison des séries à termes positifs, $\sum u_n$ converge.

Pour
$$n \ge N$$
, on a $\sum_{k=n+1}^{+\infty} u_k \le K \sum_{k=n+1}^{+\infty} v_k$.

D'où
$$\sum_{k=n+1}^{+\infty} u_k = \mathcal{O}\left(\sum_{k=n+1}^{+\infty} v_k\right)$$
.

 $\triangleright \text{ Si } u_n \underset{n \longrightarrow +\infty}{=} o \ (v_n), \text{ pour tout } \varepsilon > 0, \text{ il existe } N \in \mathbb{N} \text{ tel que } \forall n \geq N, \ 0 \leq u_n \leq \varepsilon v_n.$

La série $\sum v_n$ converge donc d'après le théorème de comparaison des séries à termes positifs, $\sum u_n$ converge.

Pour
$$n \ge N$$
, on a $\sum_{k=n+1}^{+\infty} u_k \le \varepsilon \sum_{k=n+1}^{+\infty} v_k$.

D'où
$$\sum_{k=n+1}^{+\infty} u_k = o\left(\sum_{k=n+1}^{+\infty} v_k\right)$$
.

Dans le cas divergent ensuite, les sommes partielles suivent aussi la même relation de comparaison.

Théorème 2.26

Soient u, v deux suites réelles positives.

$$Si \ u = \mathcal{O}(v) \ et \ la \ s\'erie \sum u \ diverge, \ alors \ la \ s\'erie \sum v \ diverge. \ De \ plus, \sum_{k=0}^n u_k = \mathcal{O}\left(\sum_{k=0}^n v_k\right).$$

$$Si \ u = o(v) \ et \ la \ série \sum u \ diverge, \ alors \ la \ série \sum v \ diverge. \ De \ plus, \sum_{k=0}^n u_k = o\left(\sum_{k=0}^n v_k\right).$$

91

Démonstration 2.27

 $\Rightarrow \text{ Si } u_n \underset{n \longrightarrow +\infty}{=} \mathcal{O}(v_n), \text{ il existe } K > 0 \text{ et } N \in \mathbb{N} \text{ tels que } \forall n \geq N, \ 0 \leq u_n \leq K v_n.$

Par comparaison de séries à termes positifs, $\sum v_n$ diverge.

u et v étant deux suites positives telles que $\sum u_n$ et $\sum v_n$ divergent, on en déduit que $\sum_{k=0}^n u_k \xrightarrow[n \to +\infty]{} + \infty \text{ et } \sum_{k=0}^n v_k \xrightarrow[n \to +\infty]{} + \infty.$

Pour $n \ge N$, on a

$$\sum_{k=0}^{n} u_{k} = \sum_{k=0}^{N} u_{k} + \sum_{k=N+1}^{n} u_{k}$$

$$\leq \sum_{k=0}^{N} u_{k} + K \sum_{k=N+1}^{n} v_{k}$$

$$\leq \sum_{k=0}^{N} u_{k} - K \sum_{k=0}^{N} v_{k} + K \sum_{k=0}^{n} v_{k}.$$

Or $\sum_{k=0}^n v_k \xrightarrow[n \to +\infty]{} +\infty$ donc il existe $N' \in \mathbb{N}$ tel que $\forall n \geq N', \ L \leq \sum_{k=0}^n v_k$.

Alors, pour $n \ge \max(N, N')$, on a $\sum_{k=0}^{n} u_k \le (K+1) \sum_{k=0}^{n} v_k$.

On a montré : $\sum_{k=0}^{n} u_k \underset{n \longrightarrow +\infty}{=} \mathcal{O}\left(\sum_{k=0}^{n} v_k\right).$

▶ Idem.

2.2.3 Théorème de comparaison par équivalence de séries à termes positifs

Théorème 2.28

Soient u, v deux suites réelles positives.

Si $u \sim v$, alors les séries $\sum u$ et $\sum v$ sont de même nature; l'une converge ssi l'autre converge. De plus,

- \triangleright si les séries convergent, alors les restes partiels sont équivalents : $\sum_{k=n+1}^{+\infty} u_k \sim \sum_{k=n+1}^{+\infty} v_k$;
- ▶ si les séries divergent, alors les sommes partielles divergent vers +∞ et sont équivalentes : $\sum_{k=0}^{n} u_k \underset{n \longrightarrow +\infty}{\sim} \sum_{k=0}^{n} v_k.$

92

Démonstration 2.29

 \triangleright Si les séries convergent, comme $u_n \underset{n \longrightarrow +\infty}{\sim} v_n,$ on a

$$\forall \varepsilon > 0, \ \exists N \in \mathbb{N}, \ \forall n \geq N, \ (1-\varepsilon) \, v_n \leq u_n \leq (1+\varepsilon) \, v_n$$

donc

$$\forall n \geq N, \ (1-\varepsilon) \sum_{k=n+1}^{+\infty} v_k \leq \sum_{k=n+1}^{+\infty} u_k \leq (1+\varepsilon) \sum_{k=n+1}^{+\infty} v_k.$$

$$\operatorname{Donc} \, \sum_{k=n+1}^{+\infty} u_k \underset{n \longrightarrow +\infty}{\sim} \, \sum_{k=n+1}^{+\infty} v_k.$$

▶ Si les séries divergent, la démonstration est similaire à la Démonstration 2.27.

Exercice 2.30

Soit a > 0. On pose $u_n = \sin \frac{a^n}{n}$ pour $n \in \mathbb{N}^*$. Selon la valeur de a, déterminez la nature de la série $\sum_{n\geq 1} u_n.$

Montrez que si a = 1, alors $\sum_{k=0}^{n} u_k \sim \ln n$ et si a < 1, $\sum_{k=0}^{+\infty} u_k = o(a^n)$.

Correction 2.31
$$\rightarrow$$
 Si $a = 1$, on a $u_n = \sin \frac{1}{n} \sim \frac{1}{n \rightarrow +\infty} \frac{1}{n}$.

Or $\sum_{\text{verge.}} \frac{1}{n}$ diverge donc par théorème de comparaison des séries à termes positifs, $\sum u_n$ diverge.

$$\triangleright \text{ Si } a < 1, \text{ on a } u_n = \sin \frac{a^n}{n} \underset{n \longrightarrow +\infty}{\sim} \frac{a^n}{n} \underset{n \longrightarrow +\infty}{=} o\left(a^n\right).$$

Or $\sum a^n$ converge car a < 1 donc par théorème de comparaison des séries à termes positifs, $\sum u_n$ converge.

De plus, d'après le Théorème 2.28, si a = 1, on a

$$\sum_{k=1}^{n} u_k \underset{n \longrightarrow +\infty}{\sim} \sum_{k=1}^{n} \frac{1}{n} \underset{n \longrightarrow +\infty}{\sim} \ln n$$

et d'après le Théorème 2.24, si a < 1, on a

$$\sum_{k=n+1}^{+\infty} u_k = o\left(\sum_{k=n+1}^{+\infty} a^k\right)$$

$$= o\left(\frac{a^{n+1}}{1-a}\right)$$

$$= o\left(a^n\right).$$

2.2.4 Théorème de comparaison série - intégrale

Proposition 2.32

Soit f une fonction continue, positive et décroissante sur \mathbb{R}_+ .

Alors la série de terme général f(n) et la suite de terme général $\int_0^n f$ sont de même nature.

Démonstration 2.33

f étant décroissante et continue sur \mathbb{R}_+ , pour $k \in \mathbb{N}^*$, pour tout $t \in [k-1; k]$, $f(k) \leq f(t)$.

$$\operatorname{Donc} \, \int_{k-1}^k f\left(k\right) \, \mathrm{d}t \leq \int_{k-1}^k f\left(t\right) \, \mathrm{d}t \ \textit{i.e.} \ f\left(k\right) \leq \int_{k-1}^k f\left(t\right) \, \mathrm{d}t.$$

De même,
$$\int_{k}^{k+1} f(t) dt \leq f(k)$$
.

$$\text{Donc pour tout } n \in \mathbb{N}^*, \ \sum_{k=1}^n \int_k^{k+1} f\left(t\right) \mathrm{d}t \leq \sum_{k=1}^n f\left(k\right) \leq \sum_{k=1}^n \int_{k-1}^k f\left(t\right) \mathrm{d}t.$$

Donc
$$\int_{1}^{n+1} f(t) dt \leq \sum_{k=1}^{n} f(k) \leq \int_{0}^{n} f(t) dt.$$

$$f$$
 étant positive, les suites $\left(\sum_{k=1}^{n} f(k)\right)$ et $\left(\int_{0}^{n} f(t) dt\right)$ sont croissantes.

Donc si
$$\left(\int_0^n f\right)$$
 converge, elle est majorée, donc $\left(\sum_{k=1}^n f\left(k\right)\right)$ est majorée et donc convergente, $i.e.$ $\sum f\left(n\right)$ converge.

Réciproquement, si
$$\sum f(n)$$
 converge, $\left(\sum_{k=1}^n f(k)\right)$ est majorée donc $\left(\int_1^{n+1} f\right)$ est majorée et croissante donc convergente. Donc $\left(\int_0^n f\right)$ converge.

Méthode 2.34 (À retenir)

La technique d'encadrement des sommes partielles d'une série $\sum f(n)$ (ou des restes partiels) par des intégrales quand f est continue, positive et monotone.

Exemple 2.35

$$\triangleright \sum_{k=1}^{n} \frac{1}{k} \underset{n \longrightarrow +\infty}{\sim} \ln n \text{ (à connaître)}.$$

 $\succ \text{ Si }\alpha > 1, \text{ un \'equivalent simple de } \sum_{k=n+1}^{+\infty} \frac{1}{k^{\alpha}} \text{ quand } n \longrightarrow +\infty \text{ est } \frac{1}{(\alpha-1)\,n^{\alpha-1}}.$

Rappel 2.36

Si $u_n \underset{n \longrightarrow +\infty}{\sim} v_n$ et $u_n \xrightarrow[n \longrightarrow +\infty]{} +\infty$ ou 0, alors

$$\ln u_n \sim \lim_{n \to +\infty} \ln v_n$$
.

Démonstration 2.37 (Premier point)

La fonction $f: t \longmapsto \frac{1}{t}$ est positive, décroissante et continue sur $[1; +\infty[$.

On a donc l'inégalité :

$$\underbrace{\int_2^{n+1} \frac{1}{t} \, \mathrm{d}t}_{=\ln(n+1)-\ln 2} \leq \sum_{k=2}^n \frac{1}{k} \leq \underbrace{\int_1^n \frac{1}{t} \, \mathrm{d}t}_{=\ln n}.$$

Or on a

$$\ln(n+1) - \ln 2 \sim \ln(n+1) \sim \ln n$$

donc d'après le théorème d'encadrement, on a

$$\sum_{k=2}^{n} \frac{1}{k} \underset{n \longrightarrow +\infty}{\sim} \ln n.$$

Démonstration 2.38 (Deuxième point)

Soit $\alpha > 1$.

La fonction $f: t \longmapsto \frac{1}{t^{\alpha}}$ est continue, décroissante et positive sur $[1; +\infty[$.

On a

$$\int_{n+1}^{+\infty} f\left(t\right) \mathrm{d}t \leq \sum_{k=n+1}^{+\infty} f\left(k\right) \leq \underbrace{\int_{n}^{+\infty} f\left(t\right) \mathrm{d}t}_{=\lim_{X \longrightarrow +\infty} \int_{n}^{X} f(t) \, \mathrm{d}t}.$$

Soient $X \ge n \ge 1$.

On a

$$\int_{n+1}^{X+1} \frac{1}{t^\alpha} \, \mathrm{d}t \leq \sum_{k=n+1}^X \frac{1}{k^\alpha} \leq \int_n^X \frac{1}{t^\alpha} \, \mathrm{d}t.$$

Or

$$\int_{n}^{X} \frac{1}{t^{\alpha}} dt = \left[\frac{1}{-\alpha + 1} t^{-\alpha + 1} \right]_{n}^{X} = \frac{1}{1 - \alpha} \left(\frac{1}{X^{\alpha - 1}} - \frac{1}{n^{\alpha - 1}} \right).$$

Donc

$$\frac{1}{\alpha - 1} \left(\frac{1}{(n+1)^{\alpha - 1}} - \frac{1}{(X+1)^{\alpha - 1}} \right) \leqslant \sum_{k=n+1}^{X} \frac{1}{k^{\alpha}} \leqslant \frac{1}{\alpha - 1} \left(\frac{1}{n^{\alpha - 1}} - \frac{1}{X^{\alpha - 1}} \right).$$

Or
$$\frac{1}{X^{\alpha-1}} \xrightarrow[X \to +\infty]{} 0$$
 et $\frac{1}{(X+1)^{\alpha-1}} \xrightarrow[X \to +\infty]{} 0$.

Donc, par passage à la limite quand $X \longrightarrow +\infty$, on a

$$\frac{1}{(\alpha-1)\left(n+1\right)^{\alpha-1}} \leq \sum_{k=n+1}^{+\infty} \frac{1}{k^{\alpha}} \leq \frac{1}{(\alpha-1)\,n^{\alpha-1}}.$$

Or $\frac{1}{(n+1)^{\alpha-1}} \sim \frac{1}{n \longrightarrow +\infty} \frac{1}{n^{\alpha-1}}$ donc par encadrement, on a

$$\sum_{k=n+1}^{+\infty} \frac{1}{k^{\alpha}} \underset{n \longrightarrow +\infty}{\sim} \frac{1}{(\alpha-1) n^{\alpha-1}}.$$

Exercice 2.39 Pour $n \in \mathbb{N}^*$, on pose $u_n = \sum_{k=n}^{+\infty} \frac{\ln k}{k^2}$.

Justifiez l'existence de u_n , puis montrez la divergence de la série $\sum u_n$.

Montrez que $\sum_{k=1}^{n} u_k \sim \frac{\ln^2 n}{2}$.

Correction 2.40

Pour $k \ge 1$, on a

$$0 \leqslant \frac{\ln k}{k^2} = \frac{\ln k}{k^{1/2} \times k^{3/2}} = \frac{\ln k}{k^{1/2}} \times \frac{1}{k^{3/2}}.$$

$$\text{Or } \frac{\ln k}{k^{1/2}} \xrightarrow[k \longrightarrow +\infty]{} 0 \text{ donc } \frac{\ln k}{k^{1/2}} = o\left(\frac{1}{k^{3/2}}\right).$$

Or $\sum \frac{1}{k^{3/2}}$ converge donc d'après le théorème de comparaison des séries à termes positifs, $\sum \frac{\ln k}{k^2}$ converge.

Donc pour tout $n \ge 1$, $\sum_{k=0}^{\infty} \frac{\ln k}{k^2}$ existe.

La fonction $f: t \longmapsto \frac{\ln t}{t^2}$ est de classe \mathscr{C}^{∞} et positive sur $[1; +\infty[$.

On a $f': t \longmapsto \frac{t-2t \ln t}{t^4}$.

Or, pour $t \ge 2$, on a $t \le 2t \ln t$ et $t^4 \ge 0$ donc

$$\forall t \in [2; +\infty[, f'(t) \leq 0]$$

donc f est décroissante sur $[2; +\infty[$.

Soient $X \ge n \ge 3$.

On a

$$\int_n^{X+1} \frac{\ln t}{t^2} \, \mathrm{d}t \leqslant \sum_{k=n}^X \frac{\ln k}{k^2} \leqslant \int_{n-1}^X \frac{\ln t}{t^2} \, \mathrm{d}t.$$

Or, par intégration par parties, on a

$$\int_{n-1}^{X} \frac{\ln t}{t^2} dt = \frac{\ln (n-1) + 1}{n-1} - \frac{\ln X + 1}{X}.$$

Donc

$$\frac{\ln n + 1}{n} - \frac{\ln (X+1) + 1}{X+1} \le \sum_{k=n}^{X} \frac{\ln k}{k^2} \le \frac{\ln (n-1) + 1}{n-1} - \frac{\ln X + 1}{X}.$$

Donc, par passage à la limite quand $X \longrightarrow +\infty$, on a

$$\frac{\ln n + 1}{n} \le u_n \le \frac{\ln (n-1) + 1}{n-1}.$$

Or $\ln (n-1) \sim_{n \to +\infty} \ln n$ donc

$$\frac{\ln(n-1)+1}{n-1} \underset{n \longrightarrow +\infty}{\sim} \frac{\ln n+1}{n} \underset{n \longrightarrow +\infty}{\sim} \frac{\ln n}{n}.$$

D'où $u_n \sim \frac{\ln n}{n}$.

Pour $n \ge 3$, on a $\frac{\ln n}{n} \ge \frac{1}{n} \ge 0$.

Or $\sum \frac{1}{n}$ diverge donc d'après le théorème de comparaison des séries à termes positifs, $\sum \frac{\ln n}{n}$ diverge et donc $\sum u_n$ diverge.

De plus, d'après le Théorème 2.28, on a

$$\sum_{k=1}^{n} u_k \underset{n \longrightarrow +\infty}{\sim} \sum_{k=1}^{n} \frac{\ln k}{k}.$$

La fonction $g: t \longmapsto \frac{\ln t}{t}$ est de classe \mathscr{C}^{∞} , positive et décroissante sur $[3; +\infty[$.

On pose $n \ge 4$. On a

$$\int_4^{n+1} \frac{\ln t}{t} \, \mathrm{d}t \leq \sum_{k=4}^n g\left(k\right) \leq \int_3^n \frac{\ln t}{t} \, \mathrm{d}t.$$

Or

$$\int_3^n \frac{\ln t}{t} \, \mathrm{d}t = \int_3^n \frac{1}{t} \ln t \, \mathrm{d}t = \left[\frac{\ln^2 t}{2} \right]_3^n = \frac{\ln^2 n}{2} - \frac{\ln^2 3}{2}.$$

Donc

$$\underbrace{\frac{\ln^2(n+1)}{2} + K_2}_{n \xrightarrow{n \to +\infty}} \leq \sum_{k=4}^n \frac{\ln k}{k} \leq \underbrace{\frac{\ln^2 n}{2} + K_1}_{n \xrightarrow{n \to +\infty}}.$$

Par encadrement, on a $\sum_{k=4}^n u_k \underset{n\longrightarrow +\infty}{\sim} \frac{\ln^2 n}{2}$ puis $\sum_{k=1}^n u_k \underset{n\longrightarrow +\infty}{\sim} \frac{\ln^2 n}{2}$.

2.3 Séries absolument convergentes

Définition 2.41

Soit u une suite de E.

On dit que la série $\sum u$ est absolument convergente ssi la série à termes positifs $\sum \|u\|$ est convergente.

2.3.1 Lien entre absolue convergence et convergence

Théorème 2.42

Si E est de dimension finie, alors toute série absolument convergente est convergente.

Démonstration 2.43

Soient E un espace vectoriel normé de dimension finie $p \in \mathbb{N}$ et \mathcal{B} une base de E.

On choisit la norme sup $\|\cdot\|_{\infty}$ associée à cette base.

Toutes les normes sont équivalentes sur E donc si $\|\cdot\|$ est une norme telle que $\sum \|u_n\|$ converge, alors $\sum \|u_n\|_{\infty}$ converge d'après le théorème de comparaison des séries à termes positifs.

On note $(u_{n,1}, \ldots, u_{n,p})$ les coordonnées de u_n dans \mathscr{B} .

On a $\forall k \in [1; p]$, $|u_{n,k}| \leq ||u_n||_{\infty}$ donc d'après le théorème de comparaison des séries à termes positifs, $\sum_{n} |u_{n,k}|$ converge, donc $\sum_{n} u_{n,k}$ est absolument convergente et donc convergente.

Donc les suites des sommes partielles $\left(\sum_{j=0}^n u_j\right) = \left(\left(\sum_{j=0}^n u_{j,1}, \dots, \sum_{j=0}^n u_{j,p}\right)\right)$ convergent *i.e.* $\sum u_n$ converge.

Remarque 2.44

- marque 2.44

 ▶ La réciproque est fausse : la série $\sum_{n\geqslant 1} \frac{(-1)^n}{n}$ converge (on l'appelle la série harmonique alternée) mais ne converge pas absolument.
- ▶ L'hypothèse de la dimension finie est indispensable. En dimension infinie, ce résultat est faux en général.

Exercice 2.45

Soit x > 0. Montrez que les séries suivantes convergent :

$$\sum_{n \ge 2} \frac{\ln \left(n^2 + (-1)^n \, n \right)}{n^2 + (-1)^n \, x^n} \qquad \sum_{n \ge 0} \sqrt{n} \cos \left(x \right) \sin^n \left(x \right) \qquad \sum_{n \ge 0} \frac{(-1)^n \, \sqrt{n + x}}{x^n + n^{2/x}}.$$

2.3.2 Un exemple fondamental : l'exponentielle de matrice

Soit $p \in \mathbb{N}^*$.

On choisit comme norme sur $E = \mathcal{M}_p(\mathbb{C})$ une norme sous-multiplicative.

Alors pour tout $n \in \mathbb{N}^*$, $\|A^n\| \leq \|A\|^n$, donc $\left\|\frac{A^n}{n!}\right\| \leq \frac{\|A\|^n}{n!}$.

Or la série $\sum \frac{\|A\|^n}{n!}$ converge (et sa somme vaut $\exp \|A\|$), donc par comparaison de séries à termes positifs, la série $\sum \frac{A^n}{n!}$ est absolument convergente.

On pose alors $\exp A = \sum_{n=0}^{+\infty} \frac{A^n}{n!}$.

2.3.3 Extension des résultats par comparaison

Définition 2.46

Soit u une suite de E et v une suite réelle positive.

On dit que $u = \mathcal{O}(v)$ quand $\exists M > 0$, $\exists n_0 \in \mathbb{N}$, $\forall n \ge n_0$, $||u_n|| \le Mv_n$.

On dit que $u=o\left(v\right)$ quand $\forall \varepsilon>0,\ \exists n_{0}\in\mathbb{N},\ \forall n\geq n_{0},\ \left\Vert u_{n}\right\Vert \leqslant\varepsilon v_{n}.$

Proposition 2.47

Soient u une suite de E et v une suite réelle positive.

Si E est de dimension finie, $u_n = \mathcal{O}(v_n)$ quand n tend vers $+\infty$ et la série $\sum v$ converge, alors la série $\sum u$ est absolument convergente.

$$De \ plus, \ \sum_{k=n+1}^{+\infty} u_k = \mathcal{O}\left(\sum_{k=n+1}^{+\infty} v_k\right).$$

Démonstration 2.48

On a
$$u_n = \mathcal{O}(v_n) \iff ||u_n|| = \mathcal{O}(v_n).$$

Si $\sum v_n$ converge alors $\sum \|u_n\|$ converge d'après le théorème de comparaison des séries à termes positifs donc, comme E est de dimension finie, $\sum u_n$ converge.

De plus, on a $\left\|\sum_{k=n+1}^{+\infty}u_k\right\| \le \sum_{k=n+1}^{+\infty}\|u_k\|$ donc d'après le Théorème 2.24, on a

$$\sum_{k=n+1}^{+\infty} \|u_k\| \underset{n \longrightarrow +\infty}{=} \mathcal{O}\left(\sum_{k=n+1}^{+\infty} v_k\right).$$

Donc

$$\left\| \sum_{k=n+1}^{+\infty} u_k \right\| = \mathcal{O}\left(\sum_{k=n+1}^{+\infty} v_k\right).$$

Ceci est encore valable si $u_n = o(v_n)$.

Proposition 2.49

Soient u une suite de E et v une suite réelle positive.

Si E est de dimension finie, $u_n = o(v_n)$ quand n tend vers $+\infty$ et la série $\sum v$ converge, alors la série $\sum u$ est absolument convergente.

De plus,
$$\sum_{k=n+1}^{+\infty} u_k = o\left(\sum_{k=n+1}^{+\infty} v_k\right).$$

 $D\'{e}monstration~2.50$

Idem.

2.3.4 Produit de Cauchy de deux séries absolument convergentes

Définition 2.51

Une K-algèbre est un K-espace vectoriel muni d'un produit interne bilinéaire.

Définition 2.52

Soient E une algèbre normée de dimension finie, $\sum_{n\geq 0} a_n$ et $\sum_{n\geq 0} b_n$ deux séries à termes dans E.

On appelle produit de Cauchy des deux séries la série $\sum_{n\geqslant 0}c_n$ où pour tout $n\in\mathbb{N},\ c_n=\sum_{k=0}^na_kb_{n-k}$.

Remarque 2.53

Quand les séries ne commencent pas à partir du rang 0, il faut se méfier! Une idée simple est de se ramener au cas précédent en décalant les indices.

Exemple très courant : les séries commencent au rang 1. Dans ce cas, le produit de Cauchy des séries

$$\sum_{n\geqslant 1}a_n \text{ et } \sum_{n\geqslant 1}b_n \text{ est la série } \sum_{n\geqslant 1}c_n \text{ où pour tout } n\in \mathbb{N}^*, \ c_n=\sum_{k=1}^na_kb_{n+1-k}.$$

Théorème 2.54

Avec les mêmes hypothèses sur E.

Si les séries $\sum_{n\geqslant 0} a_n$ et $\sum_{n\geqslant 0} b_n$ convergent absolument, alors leur produit de Cauchy est aussi absolument convergent et

$$\sum_{n=0}^{+\infty} c_n = \sum_{n=0}^{+\infty} a_n \times \sum_{k=0}^{+\infty} b_n.$$

Démonstration 2.55 (Premier cas : $E = \mathbb{R}$ et (a_n) , (b_n) positives)

On pose
$$A_n = \sum_{k=0}^n a_k$$
, $B_n = \sum_{k=0}^n b_k$ et $C_n = \sum_{k=0}^n c_k$.

On a
$$A_n B_n = \sum_{k=0}^n a_k \times \sum_{k=0}^n b_k = \sum_{\substack{0 \le k \le n \\ 0 \le \ell \le n}} a_k b_\ell.$$

On a (\star) $C_n \leq A_n B_n \leq C_{2n}$.

Les séries $\sum a_n$ et $\sum b_n$ convergent donc les suites (A_n) et (B_n) convergent et sont donc majorées.

Comme ce sont des suites positives, la suite (A_nB_n) est majorée (produit d'inégalités entre positifs).

Donc (C_n) , qui est croissante, est majorée donc converge *i.e.* $\sum c_n$ converge.

Donc
$$A_n \xrightarrow[n \to +\infty]{} \sum_{k=0}^{+\infty} a_k$$
, $B_n \xrightarrow[n \to +\infty]{} \sum_{k=0}^{+\infty} b_k$, $C_n \xrightarrow[n \to +\infty]{} \sum_{k=0}^{+\infty} c_k$ et $C_{2n} \xrightarrow[n \to +\infty]{} \sum_{k=0}^{+\infty} c_k$.

Donc, par passage à la limite dans (\star) , on a

$$\sum_{k=0}^{+\infty} c_k = \sum_{k=0}^{+\infty} a_k \times \sum_{k=0}^{+\infty} b_k.$$

Démonstration 2.56 (Cas général)

On a dim $E \in \mathbb{N}$ donc toutes les normes sont équivalentes sur E; on en choisit donc une qui est sous-multiplicative.

Avec les mêmes notations, on a $A_nB_n-C_n=\sum_{k=0}^n\sum_{j=n-k+1}^nc_j$, d'où

$$||A_n B_n - C_n|| \le \sum_{k=0}^n \sum_{j=n-k+1}^n ||c_j||$$

$$= \sum_{k=0}^n \sum_{j=n-k+1}^n ||\sum_{\ell=0}^j a_{j-\ell} b_\ell||$$

$$\le \sum_{k=0}^n \sum_{j=n-k+1}^n \sum_{\ell=0}^j ||a_{j-\ell} b_\ell||$$

$$\le \sum_{k=0}^n \sum_{j=n-k+1}^n \sum_{\ell=0}^j ||a_{j-\ell}|| \times ||b_\ell||.$$

On pose
$$A'_n = \sum_{k=0}^n \|a_k\|$$
, $B'_n = \sum_{k=0}^n \|b_k\|$ et $C'_n = \sum_{k=0}^n c'_k = \sum_{k=0}^n \sum_{j=0}^k \|a_{k-j}\| \times \|b_j\|$.

On a de même $\|A_nB_n-C_n\| \leqslant A_n'B_n'-C_n'.$

D'après le premier cas, (C'_n) converge vers $\sum_{k=0}^{+\infty} \|a_k\| \times \sum_{k=0}^{+\infty} \|b_k\| = \lim_n A'_n B'_n$.

Donc $A'_n B'_n - C'_n \xrightarrow[n \to +\infty]{} 0$ donc par encadrement $A_n B_n - C_n \xrightarrow[n \to +\infty]{} 0$.

Or
$$A_n \xrightarrow[n \to +\infty]{} \sum_{k=0}^{+\infty} a_k$$
 et $B_n \xrightarrow[n \to +\infty]{} \sum_{k=0}^{+\infty} b_k$ donc

$$C_n \xrightarrow[n \to +\infty]{} \sum_{k=0}^{+\infty} a_k \times \sum_{k=0}^{+\infty} b_k.$$

2.4 Séries alternées

Définition 2.57

Une série alternée est une série réelle $\sum u_n$ telle que pour tout $n \in \mathbb{N}, \ u_{n+1}$ est de signe opposé à u_n .

En général, les séries alternées sont reconnaissables à la présence d'un facteur $(-1)^n$ dans l'expression du terme général.

On dispose d'une condition suffisante de convergence d'une série alternée qu'on appelle le critère spécial des séries alternées.

Théorème 2.58

Soit $\sum_{n=0}^{\infty} (-1)^n u_n$ une série alternée.

Si la suite u

- ightharpoonup est positive,
- ▶ est décroissante,
- ▶ et converge vers 0,

alors la série $\sum (-1)^n u_n$ converge.

Dans ce cas, la somme de la série est positive, et si on note $R_n = \sum_{k=n+1}^{+\infty} (-1)^k u_k$ le reste partiel d'indice n, alors pour tout $n \in \mathbb{N}$, R_n est du signe de son premier terme (i.e. du signe de $(-1)^{n+1}$) et $|R_n| \le u_{n+1} \le u_n$.

Exemple 2.59

- remple 2.33

 ▶ La série harmonique alternée $\sum_{n\geq 1} \frac{(-1)^n}{n}$ converge.
- ▶ La série $\sum_{n \ge 2} \frac{(-1)^n}{\ln n}$ converge.

Remarqu<u>e 2</u>.60

- ▶ Si $\sum_{n \ge n_0} (-1)^n u_n$ est une série alternée convergente, sa somme a le signe du premier terme de la série (ici le signe de $(-1)^{n_0} u_{n_0}$).
- ▶ La condition de décroissance de la suite u est essentielle! Contre-exemple : la série $\sum_{n\geq 2} \frac{(-1)^n}{(-1)^n+\sqrt{n}}$ est une série alternée divergente.

De plus, cela fournit un contre-exemple au théorème de comparaison par équivalents si on ne tient pas compte de la condition sur le signe, qui doit être constant.

Exercice 2.61 Soit
$$\alpha > 1$$
. Pour $n \in \mathbb{N}^*$, on pose $u_n = \sum_{k=n}^{+\infty} \frac{(-1)^k}{k^{\alpha} + k}$.

Justifiez l'existence de u_n . Montrez que la série $\sum_{n>1} u_n$ converge.

Correction 2.62

La suite $\left(\frac{1}{k^{\alpha}+k}\right)_{k\in\mathbb{N}^*}$ est positive, décroissante et converge vers 0 donc d'après le critère spécial des séries alternées, $\sum \frac{(-1)^k}{k^{\alpha} + k}$ converge.

Ainsi,
$$u_n = \sum_{k=n}^{+\infty} \frac{(-1)^k}{k^{\alpha} + k}$$
 existe pour $n \in \mathbb{N}^*$.

De plus, on a

$$|u_n| = \left| \sum_{k=n}^{+\infty} \frac{(-1)^k}{k^{\alpha} + k} \right| \leqslant \frac{1}{n^{\alpha} + n} \leqslant \frac{1}{n^{\alpha}}.$$

Or $\alpha>1$ donc d'après le théorème de comparaison des séries à termes positifs, $\sum |u_n|$ converge et donc $\sum u_n$ converge.

Chapitre 3

Familles sommables

Sommaire

3.1	Sommes finies
3.1.1	Définition
3.1.2	Propriétés
3.2	Conventions de calcul dans $\mathbb{R}_+ \cup \{+\infty\}$
3.3	Somme d'une famille de réels positifs
3.3.1	Propriétés
3.3.2	Théorème de sommation par paquets
3.3.3	Théorème de Fubini
3.4	Familles sommables dans un espace vectoriel normé de dimension
	finie
3.4.1	Définitions
	3.4.1.1 Cas réel
	3.4.1.2 Cas complexe
	3.4.1.3 Cas général
3.4.2	Propriétés
3.4.3	Théorème de sommation par paquets
3.4.4	Théorème de Fubini
3.4.5	Produit de Cauchy de deux séries

Dans ce chapitre, E désigne un espace vectoriel normé de dimension finie (qui peut être \mathbb{R} ou \mathbb{C}) et $\|\cdot\|$ la norme associée (qui est dans ce cas la valeur absolue ou le module).

Si A, B sont deux ensembles, alors on note $A \subseteq_f B$ pour indiquer que A est un sous-ensemble fini de B.

3.1 Sommes finies

3.1.1 Définition

D'abord un rappel : on définit par récurrence la somme de n éléments de E notés x_1,\dots,x_n par :

ightharpoonup si n=0, alors $\sum_{k=1}^{n} x_k = 0$ (une somme vide a pour valeur 0 par convention);

▶ pour tout
$$n \in \mathbb{N}$$
, $\sum_{k=1}^{n+1} x_k = x_{n+1} + \sum_{k=1}^{n} x_k$.

On définit de même par récurrence les sommes de la forme $\sum_{k=1}^{q} x_k$ quand $p-1 \le q$ (si q=p-1, la somme est vide donc vaut 0).

Proposition 3.1

Soient $n \in \mathbb{N}^*$ et $x_1, \ldots, x_n \in E$.

Alors:

(1) pour tout
$$(p,q) \in [1; n]^2$$
 tel que $p \leq q$, $\sum_{k=p}^n x_k = \sum_{k=p+1}^q x_k + \sum_{k=q+1}^n x_k$;

(2) pour tout
$$\varphi \in \mathfrak{S}_n$$
, $\sum_{k=1}^n x_k = \sum_{k=1}^n x_{\varphi(k)}$.

Démonstration 3.2 (1)

On pose $\mathcal{P}(n)$ la proposition $\forall (p,q) \in [1;n], p \leq q \implies \sum_{k=n}^{n} x_k = \sum_{k=n}^{n} x_k + \sum_{k=q+1}^{n} x_k \gg 1$

Si n = 1, alors pour tout $(p, q) \in [1; n]^2$, p = q = 1 done $\sum_{k=1}^{n} x_k = x_1 + 0 = \sum_{k=1}^{q} x_k + \sum_{k=1}^{n} x_k$ done $\mathcal{P}(1)$ est vraie.

Si $\mathcal{P}\left(n\right)$ est vraie, alors soient $(x_1,\ldots,x_{n+1})\in E^{n+1}$ et $(p,q)\in \left[\!\left[1\;;n+1\right]\!\right]^2$ tel que $p\leqslant q$:

 \triangleright si $q \le n$, alors par définition, $\sum_{k=n}^{n+1} = \sum_{k=n}^{n} x_k + x_{n+1}$, donc d'après l'hypothèse de récurrence,

$$\sum_{k=p}^{n+1} x_k = \sum_{k=p}^{q} x_k + \sum_{k=q+1}^{n} x_k + x_{n+1} = \sum_{k=p}^{q} x_k + \sum_{k=q+1}^{n+1} x_k;$$

$$ightharpoonup ext{si } q = n+1, ext{ alors } \sum_{k=p}^{n+1} x_k = \sum_{k=p}^q x_k + 0 = \sum_{k=p}^q x_k + \sum_{k=q+1}^{n+1} x_k.$$

Dans les deux cas, on a montré $\sum_{k=n}^{n+1} x_k = \sum_{k=n}^{q} x_k + \sum_{k=n+1}^{n+1} x_k$. Autrement dit, $\mathcal{P}(n+1)$ est vraie.

D'après le principe de récurrence, pour tout $n \in \mathbb{N}^*$, $\mathcal{P}(n)$ est vraie.

Démonstration 3.3 (2)

On pose $\mathcal{P}(n)$ la proposition $\forall \varphi \in \mathfrak{S}_n, \sum_{k=1}^n x_k = \sum_{k=1}^n x_{\varphi(k)}$ ».

 $\mathcal{P}(1)$ est vraie car le seul élément de \mathfrak{S}_1 est l'application $1 \longmapsto 1$.

Si $\mathcal{P}(n)$ est vraie, alors soient $(x_1,\dots,x_{n+1})\in E^{n+1}$ et $\varphi\in\mathfrak{S}_{n+1}$:

- $\text{$\Rightarrow$ si $\varphi(n+1) = n+1$ alors φ induit une bijection de $\llbracket 1 ; n \rrbracket$ dans lui-même donc d'après l'hypothèse de récurrence, $\sum_{k=1}^n x_k = \sum_{k=1}^n x_{\varphi(k)} \operatorname{donc} \sum_{k=1}^{n+1} x_{\varphi(k)} = \sum_{k=1}^n x_{\varphi(k)} + x_{\varphi(n+1)} = \sum_{k=1}^n x_k + x_{n+1} = \sum_{k=1}^{n+1} x_k ;$
- ▶ si $\varphi(n+1) = m \neq n+1$, alors on pose $\psi = (m + 1)\varphi$ et $a = \varphi^{-1}(n+1)$. On a alors $\psi(n+1) = n+1$, $\psi(a) = m$ et pour tout $k \in [1; n+1] \setminus \{a, n+1\}$, $\psi(k) = \varphi(k)$. D'après le cas précédent, $\sum_{k=1}^{n+1} x_k = \sum_{k=1}^{n+1} x_{\psi(k)}$, donc en utilisant le résultat précédent :

$$\begin{split} \sum_{k=1}^{n+1} x_k &= \sum_{k=1}^{a-1} x_{\psi(k)} + x_{\psi(a)} + \sum_{k=a+1}^{n} x_{\psi(k)} + x_{\psi(n+1)} \\ &= \sum_{k=1}^{a-1} x_{\varphi(k)} + x_m + \sum_{k=a+1}^{n} x_{\varphi(k)} + x_{n+1} \\ &= \sum_{k=1}^{a-1} x_{\varphi(k)} + x_{\varphi(n+1)} + \sum_{k=a+1}^{n} x_{\varphi(k)} + x_{\varphi(a)} \\ &= \sum_{k=1}^{n+1} x_{\varphi(k)}. \end{split}$$

Dans les deux cas, on a montré $\sum_{k=1}^{n+1} x_{\varphi(k)} = \sum_{k=1}^{n+1} x_k$. Autrement dit, $\mathcal{P}(n+1)$ est vraie.

D'après le principe de récurrence, pour tout $n \in \mathbb{N}^*$, $\mathcal{P}(n)$ est vraie.

Proposition 3.4

Soient I un ensemble fini et non-vide d'indices, n son cardinal et f, g deux bijections de [1; n] dans I (des énumérations de I).

Alors pour tout $(x_i)_{i \in I} \in E^I$, $\sum_{k=1}^n x_{f(k)} = \sum_{k=1}^n x_{g(k)}$.

Démonstration 3.5

On remarque que $g^{-1} \circ f$ est une bijection de [1; n] dans lui-même donc d'après la Proposition 3.1 :

$$\sum_{k=1}^{n} x_{g(k)} = \sum_{k=1}^{n} x_{g(g^{-1} \circ f(k))} = \sum_{k=1}^{n} x_{f(k)}.$$

Autrement dit, quel que soit l'ordre dans lequel on numérote les éléments de la famille $(x_i)_{i \in I}$, on obtient toujours la même somme en les additionnant.

Définition 3.6

Si I est un ensemble fini d'indices et $(x_i)_{i \in I}$ une famille d'éléments de E, alors on pose $\sum_{i \in I} x_i$ la valeur

d'une somme $\sum_{k=1}^n x_{f(k)}$, où f est une bijection de $[\![1:n]\!]$ dans I quelconque.

Cette définition est cohérente, puisque la valeur de la somme $\sum_{k=1}^n x_{f(k)}$ ne dépend pas du choix de f d'après la proposition précédente. Autrement dit, il est inutile de connaître l'énumération choisie pour additionner les éléments de la famille, on peut considérer cette somme comme une somme « en vrac » de tous les éléments.

3.1.2 Propriétés

Proposition 3.7

Soient I un ensemble fini d'indices de cardinal n et $(x_i)_{i\in I}$ une famille d'éléments de E.

Alors:

- (1) pour toute bijection f d'un ensemble J dans I, $\sum_{i \in I} x_i = \sum_{j \in J} x_{f(j)}$ (changement d'indice dans une somme);
- (2) pour toute bijection f de I dans lui-même, $\sum_{i \in I} x_i = \sum_{i \in I} x_{f(i)}$ (propriété de commutativité);
- (3) pour tout couple (J, J') de parties de I disjointes et de réunion I, $\sum_{i \in I} x_i = \sum_{i \in J} x_i + \sum_{i \in J'} x_i$ (propriété d'associativité);
- (4) plus généralement, pour toute partition $(I_k)_{k \in K}$ de l'ensemble I, $\sum_{i \in I} x_i = \sum_{k \in K} \sum_{i \in I_k} x_i$.

Démonstration 3.8 (1)

Soit f une bijection de J dans I. On choisit une énumération ψ de J. Alors $f \circ \psi$ est une énumération de I.

Alors, par définition,
$$\sum_{i \in I} x_i = \sum_{k=1}^n x_{f \circ \psi(k)}$$
 et $\sum_{j \in J} x_{f(j)} = \sum_{k=1}^n x_{f \circ \psi(k)}$ donc $\sum_{i \in I} x_i = \sum_{j \in J} x_{f(j)}$.

Démonstration 3.9 (2)

Cas particulier I = J du point précédent.

Démonstration 3.10 (3)

Soit (J, J') un couple de parties de I disjointes et de réunion I. On note q le cardinal de J, de sorte que n-q est le cardinal de J'.

On choisit une énumération φ de J et une énumération ψ de J'. Alors l'application

est une énumération de I.

Donc

$$\sum_{i \in I} x_i = \sum_{k=1}^n x_{\theta(k)}$$

$$= \sum_{k=1}^q x_{\theta(k)} + \sum_{k=q+1}^n x_{\theta(k)}$$

$$= \sum_{k=1}^q x_{\varphi(k)} + \sum_{k=q+1}^n x_{\psi(k-q)}$$

$$= \sum_{k=1}^q x_{\varphi(k)} + \sum_{k=1}^{n-q} x_{\psi(k)}$$

$$= \sum_{i \in J} x_i + \sum_{i \in J'} x_i.$$

Démonstration 3.11 (4)

Si $(I_k)_{k \in K}$ est une partition de l'ensemble I, l'ensemble K est fini donc par récurrence sur le cardinal b de K, on montre $\sum_{i \in I} x_i = \sum_{k \in K} \sum_{i \in I_k} x_i$ en utilisant le cas b = 2 démontré précédemment (il suffit de choisir un élément a de K, poser $J = I_a$ et $J' = \bigsqcup_{k \in K \setminus \{a\}} I_k$ et remarquer que la famille $(I_k)_{k \in K \setminus \{a\}}$ est une partition de l'ensemble J' et que le cardinal de $K \setminus \{a\}$ est b - 1).

3.2 Conventions de calcul dans $\mathbb{R}_+ \cup \{+\infty\}$

L'ensemble $\mathbb{R}_+ \cup \{+\infty\}$ est muni d'une addition : pour tout $(x,y) \in (\mathbb{R}_+ \cup \{+\infty\})^2$,

- \triangleright si x et y sont réels, x + y est la somme habituelle de deux réels positifs;
- \Rightarrow si $x = +\infty$ ou $y = +\infty$ alors on pose $x + y = +\infty$

et d'une multiplication :

- \triangleright si x et y sont réels, xy est le produit habituel de deux réels positifs;
- ightharpoonup si x = 0 ou y = 0 alors on pose xy = 0;
- \Rightarrow si $x = y = +\infty$ alors on pose $xy = +\infty$.

Il est aussi muni d'une relation d'ordre:

- \triangleright si x et y sont deux réels, alors $x \le y$ ou x < y désignent les relations habituelles;
- ightharpoonup si x est réel et $y=+\infty$, alors on pose $x\leqslant +\infty$ et $x<+\infty$;
- \triangleright si $x = y = +\infty$ alors $+\infty \le +\infty$.

Proposition 3.12

L'addition dans $\mathbb{R}_+ \cup \{+\infty\}$ est associative, commutative et admet pour neutre 0.

La relation \leq est une relation d'ordre total dans $\mathbb{R}_+ \cup \{+\infty\}$.

De plus, l'addition et la multiplication sont compatibles avec la relation d'ordre : on peut additionner ou multiplier deux inégalités membre à membre.

Définition 3.13

Soit A une partie non-vide de $\mathbb{R}_+ \cup \{+\infty\}$.

Si A ne contient pas $+\infty$, alors :

- \triangleright si A est majorée, elle possède une borne supérieure dans \mathbb{R} ;
- ▶ sinon on pose $\sup A = +\infty$.

Si A contient $+\infty$, on pose $\sup A = +\infty$.

Cette définition prolonge la notion de borne supérieure à toutes les parties de $\mathbb{R}_+ \cup \{+\infty\}$, au sens où pour toute partie A de $\mathbb{R}_+ \cup \{+\infty\}$, sup A est le plus petit majorant dans $\mathbb{R}_+ \cup \{+\infty\}$ de la partie A.

3.3 Somme d'une famille de réels positifs

Définition 3.14

Soit $(x_i)_{i\in I}$ une famille d'éléments de $\mathbb{R}_+\cup\{+\infty\}$.

On pose
$$\sum_{i \in I} x_i = \sup \left\{ \sum_{i \in J} x_i \mid J \subseteq_f I \right\}.$$

Remarque 3.15

Cette définition est sensée, car l'ensemble $\left\{\sum_{i\in I} x_i \mid J\subseteq_f I\right\}$ est une partie de $\mathbb{R}_+\cup\{+\infty\}$, donc possède toujours une borne supérieure dans $\mathbb{R}_+ \cup \{+\infty\}$

Définition 3.16

Soit $(x_i)_{i\in I}$ une famille d'éléments de $\mathbb{R}_+ \cup \{+\infty\}$.

On dit que la famille $(x_i)_{i \in I}$ est sommable quand $\sum_{i=1}^{n} x_i < +\infty$.

Evidemment, une famille sommable positive ne peut pas prendre la valeur $+\infty$, autrement dit, une famille sommable est nécessairement une famille de réels positifs.

3.3.1 Propriétés

Proposition 3.17

La somme d'une famille $(x_i)_{i\in I}$ d'éléments de $\mathbb{R}_+ \cup \{+\infty\}$ est invariante par permutation : si σ est une permutation de I, alors $\sum_{i \in I} x_i = \sum_{i \in I} x_{\sigma(i)}$.

En particulier, si $(x_i)_{i\in I}$ est une famille sommable, toute permutation de la famille est encore une famille sommable de même somme.

En particulier, dans le cas où $I=\mathbb{N}$, si une série à termes positifs $\sum u_n$ est convergente, alors on dit qu'elle est commutativement convergente : changer l'ordre des termes change bien sûr les valeurs des sommes partielles mais ne change pas la valeur de la limite de ces sommes partielles.

Proposition 3.18

Soient $(x_i)_{i\in I}$, $(y_i)_{i\in I}$ deux familles d'éléments de $\mathbb{R}_+ \cup \{+\infty\}$ et λ un réel positif.

$$Alors \ \sum_{i \in I} \left(x_i + y_i \right) = \sum_{i \in I} x_i + \sum_{i \in I} y_i \ \ et \ \sum_{i \in I} \lambda x_i = \lambda \sum_{i \in I} x_i.$$

Corollaire 3.19

La somme de deux familles positives est sommable ssi les deux familles sont sommables.

Le produit par un réel strictement positif d'une famille positive est sommable ssi la famille est sommable.

Proposition 3.20

Soient $(x_i)_{i\in I}$, $(y_i)_{i\in I}$ deux familles d'éléments de $\mathbb{R}_+ \cup \{+\infty\}$.

Si pour tout $i \in I$, $0 \le x_i \le y_i$ et si la famille $(y_i)_{i \in I}$ est sommable, alors la famille $(x_i)_{i \in I}$ l'est aussi et $\sum_{i \in I} x_i \le \sum_{i \in I} y_i$.

3.3.2 Théorème de sommation par paquets

Théorème 3.21

Soit $(x_i)_{i \in I}$ une famille de réels positifs.

Si I est partitionné en une famille $(I_p)_{p \in P}$ de parties, alors

$$\sum_{p \in P} \sum_{i \in I_p} x_i = \sum_{i \in I} x_i.$$

3.3.3 Théorème de Fubini

Théorème 3.22

Soit $(x_{ij})_{(i,j)\in I\times J}$ une famille de réels positifs. Alors

$$\sum_{(i,j) \in I \times J} x_{ij} = \sum_{j \in J} \sum_{i \in I} x_{ij} = \sum_{i \in I} \sum_{j \in J} x_{ij}.$$

Ce résultat se généralise par récurrence dans le cas d'un produit cartésien $I_1 \times \cdots \times I_k$.

Un cas particulier courant.

Proposition 3.23

Soient $(a_i)_{i \in I}$, $(b_j)_{j \in J}$ deux familles de réels positifs.

Alors la famille $(a_ib_j)_{(i,j)\in I\times J}$ est sommable ssi les familles $(a_i)_{i\in I}$ et $(b_j)_{j\in J}$ sont sommables et dans ce cas, on a

$$\sum_{(i,j)\in I\times J} a_ib_j = \sum_{i\in I} a_i\times \sum_{j\in J} b_j.$$

3.4 Familles sommables dans un espace vectoriel normé de dimension finie

3.4.1 Définitions

Définition 3.24

Soit $(x_i)_{i \in I}$ une famille de vecteurs de E.

On dit que la famille $(x_i)_{i \in I}$ est sommable quand la famille $(\|x_i\|)_{i \in I}$ est sommable, c'est-à-dire quand $\sum_{i \in I} \|x_i\| < +\infty.$

Cette définition est indépendante du choix de la norme, car en dimension finie, toutes les normes sont équivalentes.

3.4.1.1 Cas réel

Définition 3.25

Soit x un réel.

On appelle partie positive de x le réel $x^+ = \max(0, x)$ et partie négative de x le réel $x^- = -\min(x, 0)$.

On remarque les égalités suivantes : $|x| = x^+ + x^-$ et $x = x^+ - x^-$.

Proposition 3.26

Soit $(x_i)_{i \in I}$ une famille sommable de nombre réels.

Alors les familles positives $(x_i^+)_{i\in I}$ et $(x_i^-)_{i\in I}$ sont sommables et on a bien sûr $\sum_{i\in I} |x_i| = \sum_{i\in I} x_i^+ + \sum_{i\in I} x_i^-$.

On pose alors
$$\sum_{i \in I} x_i = \sum_{i \in I} x_i^+ - \sum_{i \in I} x_i^-$$
, qui est un réel tel que $\left| \sum_{i \in I} x_i \right| \leq \sum_{i \in I} |x_i|$.

3.4.1.2 Cas complexe

Proposition 3.27

Soit $(a_k)_{k\in I}$ une famille sommable de nombres complexes.

Alors les deux familles réelles $(\operatorname{Re} a_k)_{k\in I}$ et $(\operatorname{Im} a_k)_{k\in I}$ sont sommables.

On pose alors
$$\sum_{k \in I} a_k = \sum_{k \in I} \operatorname{Re} a_k + i \sum_{k \in I} \operatorname{Im} a_k$$
 qui est un complexe tel que $\left| \sum_{k \in I} a_k \right| \leq \sum_{k \in I} |a_k|$.

Exemple 3.28

- > Toute famille finie est sommable et sa somme au sens des familles sommables est sa somme habituelle.
- ▶ Une suite $(a_n)_{n\in\mathbb{N}}$ est sommable ssi la série $\sum_n a_n$ est absolument convergente.

Exercice 3.29 Soit $\theta \in]0$; $2\pi[$. Montrez que la famille $\left(\frac{e^{i\ell\theta}}{(k+\ell)^3}\right)_{(k,\ell)\in(\mathbb{N}^*)^2}$ est sommable.

Correction 3.30

On a

$$\sum_{(k,\ell)\in(\mathbb{N}^*)^2} \left| \frac{\mathrm{e}^{i\ell\theta}}{(k+\ell)^3} \right| = \sum_{(k,\ell)\in(\mathbb{N}^*)^2} \frac{1}{(k+\ell)^3}$$

$$= \sum_{k\in\mathbb{N}^*} \sum_{\ell\in\mathbb{N}^*} \frac{1}{(k+\ell)^3}$$

$$= \sum_{k=1}^{+\infty} \sum_{\ell=1}^{+\infty} \frac{1}{(k+\ell)^3}.$$
Fubini positif

On veut donc montrer que pour $k \in \mathbb{N}^*$, la série $\sum_{\ell > 1} \frac{1}{(k+\ell)^3}$ converge et que la série $\sum_{\ell > 1} \sum_{\ell = 1}^{+\infty} \frac{1}{(k+\ell)^3}$ converge.

Pour $k \ge 1$, on a $\frac{1}{(k+\ell)^3} \sim \frac{1}{\ell^3}$ donc par théorème de comparaison des séries à termes positifs, $\sum_{k=1}^{\infty} \frac{1}{(k+\ell)^3}$ converge.

Or
$$\sum_{\ell=1}^{+\infty} \frac{1}{(k+\ell)^3} = \sum_{\ell=k+1}^{+\infty} \frac{1}{\ell^3} \underset{k \to +\infty}{\sim} \frac{1}{2k^2}$$
 (cf. DS1).

Donc $\sum_{k=1}^{\infty} \frac{1}{(k+\ell)^3}$ converge par théorème de comparaison des séries à termes positifs.

Finalement,
$$\left(\frac{\mathrm{e}^{i\ell\theta}}{(k+\ell)^3}\right)_{(k,\ell)\in(\mathbb{N}^*)^2}$$
 est sommable.

3.4.1.3 Cas général

Comme E est de dimension finie, on en choisit une base $\mathcal{B} = (e_1, \dots, e_p)$.

Pour toute famille sommable $(x_i)_{i \in I} \in E^I$, on note (x_{i1}, \dots, x_{ip}) les coordonnées de x_i dans la base \mathcal{B} .

Alors pour tout $k \in [1 ; p]$, la famille de réels ou de complexes $(x_{i\,k})_{i \in I}$ est sommable.

On pose alors
$$\sum_{i \in I} x_i$$
 le vecteur qui a pour coordonnées $\left(\sum_{i \in I} x_{i\,1}, \dots, \sum_{i \in I} x_{i\,p}\right)$ dans la base \mathcal{B} .

On note $\ell^1\left(I,E\right)$ l'ensemble des familles sommables de E indicées par I.

3.4.2 Propriétés

Proposition 3.31

Toute sous-famille d'une famille sommable de E est elle-même sommable.

Toute permutation d'une famille sommable de E est encore sommable et de même somme.

En particulier, les séries absolument convergentes sont commutativement convergentes.

Les familles sommables sont celles qui sont approchables par des familles finies à ε près au sens de la proposition suivante.

Comme pour les séries, on dispose d'un théorème de comparaison entre familles sommables.

Proposition 3.32

Soient $(a_i)_{i \in I}$, $(b_i)_{i \in I}$ deux familles d'éléments indicées par I.

Si pour tout $i \in I$, $0 \le ||a_i|| \le b_i$ et si la famille $(b_i)_{i \in I}$ est une famille sommable de réels positifs, alors la famille $(a_i)_{i \in I}$ est sommable et on a $\left\| \sum_{i \in I} a_i \right\| \le \sum_{i \in I} \|a_i\| \le \sum_{i \in I} b_i$.

La linéarité est encore vérifiée, mais n'est pas évidente au regard des définitions.

Proposition 3.33

L'ensemble $\ell^1(I, E)$ est un espace vectoriel et l'application $(a_i)_{i \in I} \longmapsto \sum_{i \in I} a_i$ est une forme linéaire : $si(a_i), (b_i) \in \ell^1(I, E)$ et λ est un scalaire, alors $\sum_{i \in I} (a_i + b_i) = \sum_{i \in I} a_i + \sum_{i \in I} b_i$ et $\sum_{i \in I} \lambda a_i = \lambda \sum_{i \in I} a_i$.

3.4.3 Théorème de sommation par paquets

Théorème 3.34

Soit $(a_i)_{i\in I}$ une famille sommable de E.

Si I est partitionné en une famille $(I_p)_{p\in P}$ de parties, alors pour tout $p\in P$, $(a_i)_{i\in I_p}$ est sommable et

$$\sum_{i \in I} a_i = \sum_{p \in P} \sum_{i \in I_p} a_i.$$

Exercice 3.35

Montrez que pour tout complexe z tel que 0 < |z| < 1, la famille $\left(z^{|n|}\right)_{n \in \mathbb{Z}}$ est sommable et calculez sa somme.

Correction 3.36

On a

$$\begin{split} \sum_{n \in \mathbb{Z}} \left| z^{|n|} \right| &= \sum_{n \in \mathbb{Z}} |z|^{|n|} \\ &= \sum_{n \in \mathbb{N}} |z|^n + \sum_{n \in \mathbb{Z}_{-}^*} |z|^{-n} \\ &= \sum_{n = 0}^{+\infty} |z|^n + \sum_{n = 1}^{+\infty} |z|^n \\ &< +\infty. \end{split}$$

Donc $\left(z^{|n|}\right)_{n\in\mathbb{Z}}$ est sommable et on a

$$\sum_{n \in \mathbb{Z}} z^{|n|} = \sum_{n \in \mathbb{N}} z^n + \sum_{n \in \mathbb{Z}_{-}^*} z^{-n}$$

$$= \sum_{n=0}^{+\infty} z^n + \sum_{n=1}^{+\infty} z^n$$

$$= \frac{1}{1-z} + \frac{z}{1-z}$$

$$= \frac{1+z}{1-z}.$$

Exercice 3.37

Exercice 3.31 Montrez que la famille $\left(\frac{(-1)^n}{\max{(m,n)^3}}\right)_{m,n\geqslant 1}$ est sommable et calculez sa somme en fonction de ζ (2) et $\zeta(3)$.

Correction 3.38

On a
$$\sum_{(m,n)\in(\mathbb{N}^*)^2} \left| \frac{(-1)^n}{\max(m,n)^3} \right| = \sum_{(m,n)\in(\mathbb{N}^*)^2} \frac{1}{\max(m,n)^3}.$$

On pose $I_k = \{(m,k) \mid m \in \llbracket 1 \; ; k \rrbracket \} \cup \{(k,n) \mid n \in \llbracket 1 \; ; k \rrbracket \}.$

On a bien $(\mathbb{N}^*)^2 = \bigsqcup_{k \in \mathbb{N}^*} I_k$.

On a donc

$$\sum_{(m,n)\in(\mathbb{N}^*)^2} \frac{1}{\max(m,n)^3} = \sum_{k\in\mathbb{N}^*} \sum_{(m,n)\in I_k} \frac{1}{\max(m,n)^3}$$

$$= \sum_{k\in\mathbb{N}^*} \sum_{(m,n)\in I_k} \frac{1}{k^3}$$

$$= \sum_{k\in\mathbb{N}^*} \frac{2k-1}{k^3}$$

$$= \sum_{k=1}^{+\infty} \frac{2k-1}{k^3}$$

 $\operatorname{car} \frac{2k-1}{k^3} \underset{k \longrightarrow +\infty}{\sim} \frac{2}{k^2} \text{ donc par théorème de comparaison des séries à termes positifs, } \sum \frac{2k-1}{k^3}$

Donc $\left(\frac{(-1)^n}{\max{(m,n)^3}}\right)_{(m,n)\in(\mathbb{N}^*)^2}$ est sommable.

Donc
$$S = \sum_{(m,n) \in (\mathbb{N}^*)^2} \frac{(-1)^n}{\max{(m,n)}^3} = \sum_{k \in \mathbb{N}^*} \frac{1}{k^3} \sum_{(m,n) \in I_k} (-1)^n.$$

Or

$$\sum_{(m,n)\in I_k} (-1)^n = k (-1)^k + \sum_{n=1}^{k-1} (-1)^n$$

$$= k (-1)^k + (-1) \frac{1 - (-1)^{k-1}}{1 - (-1)}$$

$$= k (-1)^k - \frac{1}{2} \left(1 + (-1)^k \right).$$

Donc

$$S = \sum_{k=1}^{+\infty} \frac{k (-1)^k - \frac{1}{2} \left(1 + (-1)^k \right)}{k^3}$$

$$= \sum_{k=1}^{+\infty} \frac{(-1)^k}{k^2} - \sum_{\substack{k=1\\k \text{ pair}}}^{+\infty} \frac{1}{k^3}$$

$$= \sum_{k=1}^{+\infty} \frac{(-1)^k}{k^2} - \sum_{\ell=1}^{+\infty} \frac{1}{(2\ell)^3}$$

$$= \sum_{k=1}^{+\infty} \frac{1}{k^2} \left(\frac{1}{2^k} \right)^3$$

Or

$$\sum_{k=1}^{+\infty} \frac{(-1)^k}{k^2} = \sum_{k=1}^{+\infty} \frac{(-1)^k + 1 - 1}{k^2}$$

$$= \sum_{k=1}^{+\infty} \frac{(-1)^k + 1}{k^2} - \sum_{k=1}^{+\infty} \frac{1}{k^2}$$

$$= \sum_{k=1}^{2} \frac{2}{k^2} - \zeta(2)$$

$$= \sum_{\ell=1}^{+\infty} \frac{2}{(2\ell)^2} - \zeta(2)$$

$$= \frac{-1}{2} \zeta(2).$$

D'où
$$S = -\frac{1}{8}\zeta\left(3\right) - \frac{1}{2}\zeta\left(2\right).$$

3.4.4 Théorème de Fubini

Théorème 3.39

Soit $(a_{ij})_{(i,j)\in I\times J}$ une famille sommable de E.

Alors pour tout $i \in I$, la famille $(a_{ij})_{j \in J}$ est sommable; pour tout $j \in J$, la famille $(a_{ij})_{i \in I}$ est sommable et

$$\sum_{(i,j)\in I\times J}a_{i\,j}=\sum_{j\in J}\sum_{i\in I}a_{i\,j}=\sum_{i\in I}\sum_{j\in J}a_{i\,j}.$$

Ce résultat se généralise par récurrence dans le cas d'un produit cartésien $I_1 \times \cdots \times I_k$.

Exercice 3.40

Exercice 3.40 Montrez que la famille $\left(\frac{(-1)^p}{q^p}\right)_{p,q\geqslant 2}$ est sommable et calculez sa somme.

Correction 3.41

On a

$$\sum_{p,q \ge 2} \left| \frac{(-1)^p}{q^p} \right| = \sum_{p,q \ge 2} \frac{1}{q^p}$$

$$= \sum_{q \ge 2} \sum_{p \ge 2} \frac{1}{q^p}$$

$$= \sum_{q \ge 2} \frac{1/q^2}{1 - 1/q}$$

$$= \sum_{q \ge 2} \frac{1}{q^2 - q}$$

$$= \sum_{q \ge 2} \frac{1}{q(q - 1)}$$

$$= \sum_{q \ge 2} \left(\frac{1}{q - 1} - \frac{1}{q} \right).$$

Donc $\left(\frac{(-1)^p}{q^p}\right)_{p,q\geqslant 2}$ est sommable.

De plus, on a

$$\sum_{p,q\geqslant 2} \frac{(-1)^p}{q^p} = \sum_{p,q\geqslant 2} \left(\frac{-1}{q}\right)^p$$

$$= \sum_{q=2}^{+\infty} \sum_{p=2}^{+\infty} \left(\frac{-1}{q}\right)^p$$

$$= \sum_{q=2}^{+\infty} \frac{1/q^2}{1+1/q}$$

$$= \sum_{q=2}^{+\infty} \frac{1}{q(q+1)}$$

$$= \sum_{q=2}^{+\infty} \left(\frac{1}{q} - \frac{1}{q+1}\right)$$

$$= \frac{1}{2}.$$

Un cas particulier courant.

Proposition 3.42

Soient $(a_i) \in \ell^1(I, E)$ et $(b_i) \in \ell^1(J, E)$.

Alors la famille $(a_ib_j)_{(i,j)\in I\times J}$ est sommable et

$$\sum_{(i,j)\in I\times J}a_ib_j=\sum_{i\in I}a_i\times\sum_{j\in J}b_j.$$

Produit de Cauchy de deux séries 3.4.5

Définition 3.43 Soient $\sum_{n>0} a_n$ et $\sum_{n>0} b_n$ deux séries à termes dans E.

On appelle produit de Cauchy des deux séries la série $\sum_{n=0}^{\infty} c_n$ où pour tout $n \in \mathbb{N}$, $c_n = \sum_{n=0}^{\infty} a_k b_{n-k}$.

Remarque 3.44

Quand les séries ne commencent pas à partir du rang 0, il faut se méfier! Une idée simple est de se ramener au cas précédent en décalant les indices.

Exemple très courant : les séries commençant au rang 1. Dans ce cas, le produit de Cauchy des séries $\sum_{n\geq 1} a_n \text{ et } \sum_{n\geq 1} b_n \text{ est la série } \sum_{n\geq 1} c_n \text{ où pour tout } n \in \mathbb{N}^*, \ c_n = \sum_{k=1}^n a_k b_{n-k+1}.$

Théorème 3.45 Si les séries $\sum_{n\geqslant 0} a_n$ et $\sum_{n\geqslant 0} b_n$ sont absolument convergentes, alors leur produit de Cauchy est aussi absolument convergent et

$$\sum_{n=0}^{+\infty} c_n = \sum_{n=0}^{+\infty} a_n \times \sum_{n=0}^{+\infty} b_n.$$

Un exemple fondamental.

Proposition 3.46

Soit $z \in \mathbb{C}$. La série de terme général $\frac{z^n}{n!}$ est absolument convergente et

$$\sum_{n=0}^{+\infty} \frac{z^n}{n!} = e^z.$$

Remarque 3.47

L'absolue convergence des séries est indispensable! Si on ne suppose que la convergence des séries, alors le produit de Cauchy peut très bien être une série divergente (voir exercice suivant).

Exercice 3.48

Soit x > 0. On pose b_n la somme partielle de la série $\sum_{n > 0} \frac{x^n}{n!}$ et $c_n = \frac{b_n}{x^n}$.

Donnez une CNS sur x pour que la série $\sum_{n>0} c_n$ converge. Dans le cas où elle converge, donnez la valeur de sa somme en fonction de x.

Exercice 3.49 Pour tout $n \in \mathbb{N}^*$, on pose $a_n = \frac{(-1)^n}{\sqrt{n}}$.

Montrez que la série $\sum_{n\geq 1} a_n$ converge, mais que son produit de Cauchy avec elle-même diverge

(indication : pour tout b > 0, pour tout $x \in [0; b]$, $x(b-x) \le \frac{b^2}{4}$).

Chapitre 4

Rappels et compléments d'algèbre linéaire

$\boldsymbol{\alpha}$						•		
•	_	w	N 1	\mathbf{r}	•	11	re	ı
. 7					7			•
\sim	$\mathbf{\mathcal{I}}$				·			

4.1	Sommes de sous-espaces vectoriels					
4.1.1	Généralités					
4.1.2	Sommes directes					
4.1.3	Sous-espaces supplémentaires					
4.1.4	Cas particulier de deux sous-espaces					
4.1.5	Applications linéaires et sommes directes					
4.2	Somme de sous-espaces vectoriels en dimension finie					
4.2.1	Base adaptée à un sous-espace					
4.2.2	Sommes directes et bases					
4.2.3	Dimension d'une somme de sous-espaces vectoriels					
4.2.4	Sous-espaces supplémentaires					
4.2.5	Dimension d'une somme de deux sous-espaces vectoriels					
4.3	Polynômes d'endomorphismes et de matrices					
4.3.1	\mathbb{K} -algèbres					
	4.3.1.1 Définition					
	$4.3.1.2$ Polynômes d'éléments dans une $\mathbb{K}\text{-algèbre}$					
4.3.2	Cas particulier des algèbres $\mathcal{L}(E)$ ou $\mathcal{M}_n(\mathbb{K})$					
4.3.3	Polynôme annulateur d'une matrice ou d'un endomorphisme					
4.3.4	Utilisation pratique d'un polynôme annulateur					
	4.3.4.1 Calcul de l'inverse					
	4.3.4.2 Calcul de puissances					
4.4	Matrices semblables, trace					
4.4.1	Trace d'une matrice					
4.4.2	Matrices semblables					
4.4.3	Trace d'un endomorphisme					
4.5	Opérations par blocs					
4.5.1	Cas général					
4.5.2	Cas particuliers des matrices carrées					
4.5.3	Interprétation des blocs					

Dans tout ce chapitre, $\mathbb K$ désigne un sous-corps de $\mathbb C$, en général $\mathbb R$ ou $\mathbb C$.

4.1 Sommes de sous-espaces vectoriels

4.1.1 Généralités

Définition 4.1

Soient E un \mathbb{K} -espace vectoriel et F_1, \ldots, F_n des sous-espaces vectoriels de E.

On appelle somme de F_1, \ldots, F_n l'ensemble noté $F_1 + \cdots + F_n$:

$$F_1 + \cdots + F_n = \left\{ \sum_{i=1}^n x_i \mid (x_1, \dots, x_n) \in F_1 \times \cdots \times F_n \right\}.$$

Proposition 4.2

Soit $(u_1,\ldots,u_p,u_{p+1},\ldots,u_n) \in E^n$.

Alors Vect $(u_1, \ldots, u_p, u_{p+1}, \ldots, u_n) = \text{Vect}(u_1, \ldots, u_p) + \text{Vect}(u_{p+1}, \ldots, u_n)$.

Proposition 4.3

Avec les mêmes notations : $F_1 + \cdots + F_n$ est un sous-espace vectoriel de E.

De plus, c'est le plus petit sous-espace vectoriel qui contient F_1, \ldots, F_n .

Si on connaît des familles génératrices de chacun des sous-espaces vectoriels F_1, \ldots, F_n , alors en concaténant ces familles, on obtient une famille génératrice de $F_1 + \cdots + F_n$.

Conséquence : en fraction nant une famille génératrice de E en sous-familles, on décompose l'espace E en une somme de sous-espaces vectoriels.

4.1.2 Sommes directes

Définition 4.4

Soient E un \mathbb{K} -espace vectoriel et F_1, \ldots, F_n des sous-espaces vectoriels de E.

On dit que la somme $F_1 + \cdots + F_n$ est directe quand tout vecteur de $F_1 + \cdots + F_n$ a une unique écriture $\sum_{i=1}^n x_i \text{ où } (x_1, \dots, x_n) \in F_1 \times \cdots \times F_n.$

On dit aussi que les sous-espaces sont en somme directe. Dans ce cas, quand on veut insister sur cette propriété, on note la somme sous la forme $F_1 \oplus \cdots \oplus F_n = \bigoplus_{i=1}^n F_i$.

Proposition 4.5

Avec les mêmes hypothèses.

La somme $F_1 + \cdots + F_n$ est directe ssi le vecteur nul a une unique décomposition $\sum_{i=1}^n x_i$ où $(x_1, \ldots, x_n) \in F_1 \times \cdots \times F_n$, qui est la décomposition triviale.

Autrement dit, la somme $F_1 + \cdots + F_n$ est directe ssi la seule solution de l'équation $\sum_{i=1}^n x_i = 0$ d'inconnue $(x_1, \ldots, x_n) \in F_1 \times \cdots \times F_n$ est le n-uplet nul.

Démonstration 4.6

Immédiat : le vecteur nul appartient à $F_1 + \cdots + F_n$ et a une unique écriture sous la forme $\sum_{i=1}^n x_i$ où $(x_1, \ldots, x_n) \in F_1 \times \cdots \times F_n$.

Or on en connaît une : $0 = 0 + \cdots + 0$.

Donc la seule solution à l'équation $\sum_{i=1}^{n} x_i = 0$ d'inconnue $(x_1, \dots, x_n) \in F_1 \times \dots \times F_n$ est la solution triviale $(0, \dots, 0)$.

 \longleftarrow

Soit $z \in F_1 + \cdots + F_n$.

On veut montrer que z a une unique écriture $z=\sum_{i=1}^n x_i$ où $(x_1,\ldots,x_n)\in F_1\times\cdots\times F_n$.

Si
$$z = \sum_{i=1}^{n} x_i = \sum_{i=1}^{n} x_i'$$
 où $(x_1, \dots, x_n), (x_1', \dots, x_n') \in F_1 \times \dots \times F_n$, alors $\sum_{i=1}^{n} (x_i - x_i') = 0$.

Or pour tout $i \in [1; n]$, $x_i - x_i' \in F_i$ car F_i est un sous-espace vectoriel.

Ainsi, pour tout $i \in [1; n]$, $x_i - x_i' = 0$ i.e. $(x_1, ..., x_n) = (x_1', ..., x_n')$.

D'où l'unicité voulue.

Un exemple fondamental : si (v_1, \ldots, v_n) est une famille libre, alors les droites vectorielles Vect (v_i) sont en somme directe.

Proposition 4.7

Avec les mêmes hypothèses.

Si la somme $F_1 + \cdots + F_n$ est directe, alors en concaténant des familles libres de chacun des sous-espaces vectoriels, on obtient une famille libre.

 $D\'{e}monstration~4.8$

Si $F_1 + \cdots + F_n$ est une somme directe alors soient L_1, \ldots, L_n des familles libres de F_1, \ldots, F_n respectivement.

On note $L_i = (e_{i1}, \ldots, e_{i\ell_i})$ où $i \in [1; n]$.

Soit $(\lambda_{i\,j})_{\substack{1\leqslant i\leqslant n\\1\leqslant j\leqslant \ell_i}}$ une famille de scalaires telle que $\sum_{\substack{1\leqslant i\leqslant n\\1\leqslant j\leqslant \ell_i}} \lambda_{i\,j}e_{i\,j}=0.$

Alors $\sum_{i=1}^{n} \sum_{j=1}^{\ell_i} \lambda_{ij} e_{ij} = 0.$

Or $F_1 + \cdots + F_n$ est directe donc pour tout $i \in [1; n]$, $\sum_{j=1}^{\ell_i} \lambda_{ij} e_{ij} = 0$.

Or L_i est libre donc $\lambda_{i\,1} = \cdots = \lambda_{i\,\ell_i} = 0$.

Donc la concaténation de L_1, \ldots, L_n est libre.

4.1.3 Sous-espaces supplémentaires

Définition 4.9

Soient E un \mathbb{K} -espace vectoriel et F_1, \ldots, F_n des sous-espaces vectoriels de E.

On dit que les sous-espaces F_1, \ldots, F_n sont supplémentaires (dans E) quand $E = \bigoplus_{i=1}^n F_i$.

On déduit des deux parties précédentes le résultat de la décomposition d'un vecteur.

Proposition 4.10

Soient E un \mathbb{K} -espace vectoriel et F_1, \ldots, F_n des sous-espaces vectoriels de E.

Il y a équivalence entre :

- ightharpoonup les sous-espaces F_1,\ldots,F_n sont supplémentaires
- \triangleright tout vecteur de E peut s'écrire de façon unique comme somme de vecteurs des sous-espaces vectoriels F_1, \ldots, F_n :

$$\forall v \in E, \exists! (v_1, \dots, v_n) \in F_1 \times \dots \times F_n, v = \sum_{i=1}^n v_i.$$

125

Dans ce cas, soit v un vecteur de E. Il existe un unique n-uplet $(v_1, \dots, v_n) \in F_1 \times \dots \times F_n$ tel que $v = \sum_{i=1}^n v_i$.

Pour tout $j \in [1 ; n]$, on définit $p_j : E \longrightarrow E$ en posant $p_j(v) = v_j$.

Alors les applications p_i sont des projecteurs qui vérifient les propriétés :

$$\triangleright \sum_{i=1}^{n} p_i = \mathrm{id}_E$$

ightharpoonup pour tout $(i,j) \in [1;n]^2$, $p_i \circ p_j = \delta_{ij} p_i$ où δ_{xy} est le symbole de Kronecker.

La réciproque est vraie : si (p_1, \ldots, p_n) sont n projecteurs vérifiant les deux propriétés précédentes, alors les sous-espaces $(\operatorname{Im} p_i)_{1 \leq i \leq n}$ sont supplémentaires.

Démonstration 4.11

Soient F_1, \ldots, F_n supplémentaires dans E.

▶ Pour tout $j \in [1; n]$, p_j est un projecteur :

Soit
$$v \in E$$
. On écrit $v = v_1 + \cdots + v_j + \cdots + v_n$.

Par définition, on a
$$p_j(v) = v_j = 0 + \cdots + 0 + v_j + 0 + \cdots + 0$$
.

Donc, par définition, on a
$$p_j(p_j(v)) = p_j(v_j) = v_j$$
.

Donc
$$p_j^2 = p_j$$
.

Donc p est un projecteur (la linéarité est évidente).

 $\blacktriangleright \text{ Montrons que pour tout } (i,j) \in \llbracket 1 \; ; n \rrbracket^2 \; , \;\; p_i p_j = \delta_{ij} p_i.$

Si i = j, c'est vrai car p_i est un projecteur.

Si
$$i \neq j$$
, soit $v \in E$. On écrit $v = v_1 + \cdots + v_n$.

Par définition,
$$p_j(v) = v_j = 0 + \cdots + 0 + v_j + 0 + \cdots + 0$$
.

D'où
$$p_i p_j(v) = 0$$
.

Réciproquement, montrons que si p_1, \ldots, p_n sont des projecteurs tels que $\sum_{i=1}^n p_i = \mathrm{id}_E$ et $\forall (i,j) \in [1:n]^2$, $p_i p_j = \delta_{ij} p_i$, alors $E = \bigoplus_{i=1}^n \mathrm{Im}\, p_i$.

▶ Montrons que $\operatorname{Im} p_1 + \cdots + \operatorname{Im} p_n$ est directe.

Soit $(v_1, \ldots, v_n) \in \operatorname{Im} p_1 \times \cdots \times \operatorname{Im} p_n$ telle que $v_1 + \cdots + v_n = 0$.

Pour $i \in [1; n]$, on a

$$p_{i}(0) = 0 = p_{i}(v_{1}) + \dots + p_{i}(v_{n})$$

$$= p_{i}p_{1}(v_{1}) + \dots + p_{i}p_{i}(v_{i}) + \dots + p_{i}p_{n}(v_{n})$$

$$= v_{i}.$$

Donc $v_1 = \cdots = v_n = 0$.

Donc la somme est directe.

 $\blacktriangleright \text{ On a } \sum_{i=1}^n p_i = \operatorname{id}_E \text{ donc pour tout } v \in E, \ \ v = \sum_{i=1}^n p_i \left(v \right).$

Donc $v \in \text{Im } p_1 + \cdots + \text{Im } p_n$.

Finalement,
$$E = \bigoplus_{i=1}^{n} \operatorname{Im} p_i$$
.

Exercice 4.12

Soit $E=\mathcal{F}\left(\mathbb{C},\mathbb{C}\right)$. Pour $k\in\{0,1,2\},$ on pose $E_{k}=\left\{f\in E\mid \forall x\in\mathbb{C},\ f\left(jx\right)=j^{k}f\left(x\right)\right\}.$

Montrez que E_0, E_1, E_2 sont trois sous-espaces vectoriels de E supplémentaires.

Correction 4.13

▶ Soit $k \in \{0, 1, 2\}$. E_k contient l'application nulle.

Soient $(f,g) \in E_k^2$, $\lambda \in \mathbb{C}$ et $x \in \mathbb{C}$.

On a

$$(\lambda f + g) (jx) = \lambda f (jx) + g (jx)$$

$$= \lambda j^k f (x) + j^k g (x)$$

$$= j^k (\lambda f (x) + g (x))$$

$$= j^k (\lambda f + g) (x).$$

Donc $\lambda f + g \in E_k$ i.e. E_k est un sous-espace vectoriel de E.

▶ Montrons que $\forall f \in E, \exists! (f_0, f_1, f_2) \in E_0 \times E_1 \times E_2, f = f_0 + f_1 + f_2.$

analyse

Soient $f \in E$ et $(f_0, f_1, f_2) \in E_0 \times E_1 \times E_2$ telles que $f = f_0 + f_1 + f_2$.

Pour tout $x \in \mathbb{C}$, on a

$$f(jx) = f_0(jx) + f_1(jx) + f_2(jx) = f_0(x) + jf_1(x) + j^2f_2(x)$$

et

$$f(j^2x) = f_0(x) + j^2 f_1(x) + j f_2(x)$$
.

D'où

$$\begin{cases} f_0(x) + f_1(x) + f_2(x) = f(x) \\ f_0(x) + jf_1(x) + j^2 f_2(x) = f(jx) \\ f_0(x) + j^2 f_1(x) + jf_2(x) = f(j^2 x) \end{cases}$$

Or $\begin{vmatrix} 1 & 1 & 1 \\ 1 & j & j^2 \\ 1 & j^2 & j^4 \end{vmatrix}$ est un déterminant de Vandermonde et est donc non-nul.

En faisant $L_1 + L_2 + L_3$, on obtient

$$f_0(x) = \frac{1}{3} (f(x) + f(jx) + f(j^2x)).$$

En faisant $L_1 + j^2L_2 + jL_3$, on obtient

$$f_1(x) = \frac{1}{3} (f(x) + j^2 f(jx) + j f(j^2 x)).$$

En faisant $L_1 + jL_2 + j^2L_3$, on obtient

$$f_2(x) = \frac{1}{3} (f(x) + jf(jx) + j^2 f(j^2x)).$$

Ceci prouve l'unicité de la décomposition (si elle existe).

synthèse

On pose
$$f_k : x \longmapsto \frac{1}{3} \left(f(x) + j^{2k} f(jx) + j^k f(j^2 x) \right)$$
 pour $k \in \{0, 1, 2\}$.

On a
$$\forall x \in \mathbb{C}$$
, $f(x) = f_0(x) + f_1(x) + f_2(x)$ i.e. $f = f_0 + f_1 + f_2$.

De plus, on a
$$f_0(jx) = \frac{1}{3} (f(jx) + f(j^2x) + f(j^3x)) = f_0(x)$$
 car $j^3 = 1$ donc $f_0 \in E_0$.

On montre de même que $f_1 \in E_1$ et $f_2 \in E_2$.

$$\boxed{\text{conclusion}} \text{ On a bien } E = \bigoplus_{k=0}^{2} E_k.$$

Proposition 4.14

Avec les mêmes hypothèses.

Si les sous-espaces F_1, \ldots, F_n sont supplémentaires, alors en concaténant des bases de chacun des sous-espaces vectoriels, on obtient une base de E.

4.1.4 Cas particulier de deux sous-espaces

Proposition 4.15

Soient E un \mathbb{K} -espace vectoriel et F, G deux sous-espaces vectoriels de E.

La somme F + G est directe ssi $F \cap G = \{0\}$.

Attention! Il ne faut pas généraliser à trois ou plus sous-espaces. Même si $F_1 \cap F_2 \cap F_3$ est le sous-espace nul, on ne peut pas conclure que la somme $F_1 + F_2 + F_3$ est directe.

4.1.5 Applications linéaires et sommes directes

Proposition 4.16

Soient E, F deux \mathbb{K} -espaces vectoriels, E_1, \ldots, E_n des sous-espaces vectoriels supplémentaires dans E et f_1, \ldots, f_n des applications linéaires de E_1, \ldots, E_n dans F respectivement.

Alors il existe une unique application linéaire f de E dans F telle que pour tout $i \in [1; n]$, $f|_{E_i} = f_i$.

Autrement dit, pour définir une application linéaire sur une somme directe de sous-espaces vectoriels, il suffit de la définir sur chacun des sous-espaces vectoriels.

Démonstration 4.17 analyse

On suppose que f existe telle que $\forall i \in [1; n], \ f|_{E_i} = f_i$.

Soit $x \in E$.

Comme $E = \bigoplus_{i=1}^n E_i$, il existe un unique *n*-uplet $(x_1, \ldots, x_n) \in E_1 \times \cdots \times E_n$ tel que $x = \sum_{i=1}^n x_i$.

f étant linéaire, on a $f(x) = \sum_{i=1}^{n} f(x_i)$.

Or pour tout $i \in [1; n]$, $x_i \in E_i$ et $f|_{E_i} = f_i$ donc $f(x_i) = f_i(x_i)$.

Donc
$$f(x) = \sum_{i=1}^{n} f_i(x_i)$$
.

L'analyse prouve l'unicité de f (si elle existe).

synthèse

Pour
$$x \in E$$
 qu'on écrit $\sum_{i=1}^{n} x_i$ où $(x_1, \dots, x_n) \in E_1 \times \dots \times E_n$, on pose $f(x) = \sum_{i=1}^{n} f_i(x_i)$.

 $\blacktriangleright \text{ Montrons que pour tout } i \in \llbracket 1 \; ; n \rrbracket \; , \; \; f \big|_{E_i} = f_i.$

Pour $i \in [1; n]$, pour $x \in E_i$, on a $x = 0 + \dots + 0 + x + 0 + \dots + 0$.

Donc $f(x) = f_1(0) + \cdots + f_{i-1}(0) + f_i(x) + f_{i+1}(0) + \cdots + f_n(0) = f_i(x)$.

Donc $f|_{E_i} = f_i$.

ightharpoonup Montrons que f est linéaire.

Soient $(x, y) \in E^2$ et $\lambda \in \mathbb{K}$.

On écrit
$$x = \sum_{i=1}^{n} x_i$$
 et $y = \sum_{i=1}^{n} y_i$ où $(x_1, \dots, x_n), (y_1, \dots, y_n) \in E_1 \times \dots \times E_n$.

Alors

$$f(\lambda x + y) = \sum_{i=1}^{n} f_i (\lambda x_i + y_i)$$

$$= \sum_{i=1}^{n} (\lambda f_i (x_i) + f_i (y_i))$$

$$= \lambda \sum_{i=1}^{n} f_i (x_i) + \sum_{i=1}^{n} f_i (y_i)$$

$$= \lambda f(x) + f(y).$$

Exercice 4.18

Soient E_1, \ldots, E_n des sous-espaces vectoriels supplémentaires. Quelles sont les applications qui induisent l'application identité sur un des E_i et l'application nulle sur les autres E_j ?

Correction 4.19

On pose $f = \mathrm{id}_{E_i}$ sur E_i et f = 0 sur E_j pour $j \neq i$.

f est le projecteur sur E_i parallèlement à $\bigoplus_{j\neq i} E_j$.

4.2 Somme de sous-espaces vectoriels en dimension finie

4.2.1 Base adaptée à un sous-espace

Définition 4.20

Soient E un \mathbb{K} -espace vectoriel de dimension p et F un sous-espace vectoriel de E de dimension p.

On appelle base de E adaptée à F toute base de E qui contient une base de F. Quitte à changer l'ordre des vecteurs, on peut suppose dans une base adaptée à F que les p premiers vecteurs de la base forment une base de F.

Définition 4.21

Soient E un \mathbb{K} -espace vectoriel de dimension n et (F_1, \ldots, F_p) une famille de sous-espaces vectoriels supplémentaires dans E.

On appelle base adaptée à la somme $E = \bigoplus_{i=1}^{p} F_i$ la concaténation de bases de chacun des sous-espaces F_1, \ldots, F_p (dans cet ordre).

Si \mathcal{B} est une base de E, alors en fractionnant la base en sous-familles, les sous-espaces vectoriels engendrés par chacune de ces sous-familles sont supplémentaires et la base est alors adaptée à la somme des sous-espaces.

4.2.2 Sommes directes et bases

On donne un moyen simple de vérifier qu'une somme est directe, voire plus.

Proposition 4.22

Soient E un \mathbb{K} -espace vectoriel de dimension n et (F_1, \ldots, F_p) une famille de sous-espaces vectoriels de E.

Si en concaténant des bases de chacun des sous-espaces vectoriels F_1, \ldots, F_p on obtient une famille libre, alors les sous-espaces vectoriels sont en somme directe.

Si en concaténant des bases de chacun des sous-espaces vectoriels F_1, \ldots, F_p on obtient une base de E, alors les sous-espaces vectoriels sont supplémentaires.

4.2.3 Dimension d'une somme de sous-espaces vectoriels

Proposition 4.23

Soient E un \mathbb{K} -espace vectoriel de dimension finie et F_1, \ldots, F_n des sous-espaces vectoriels de E.

Alors dim
$$\sum_{i=1}^{n} F_i \leq \sum_{i=1}^{n} \dim F_i$$
.

Démonstration 4.24

On note $p_i = \dim F_i$ pour $i \in [1; n]$.

Pour tout $i \in [1; n]$, on choisit une base \mathcal{B}_i de F_i et on a F_i = Vect (\mathcal{B}_i) .

Donc $F_1 + \cdots + F_n = \text{Vect } (\mathcal{B}_1 \dots \mathcal{B}_n).$

Donc

$$\dim (F_1 + \dots + F_n) \leq \operatorname{Card} (\mathcal{B}_1 \dots \mathcal{B}_n)$$

$$= \sum_{i=1}^n \dim F_i.$$

Démonstration 4.25 (Autre méthode)

On pose l'application linéaire

$$\varphi: F_1 \times \cdots \times F_n \longrightarrow E$$

$$(x_1, \dots, x_n) \longmapsto \sum_{i=1}^n x_i$$

On a Im $\varphi = F_1 + \cdots + F_n$.

Donc

$$\dim (F_1 + \dots + F_n) = \dim \operatorname{Im} \varphi$$

$$= \operatorname{rg} \varphi$$

$$= \dim (F_1 \times \dots \times F_n) - \dim \ker \varphi$$

$$\leq \dim (F_1 \times \dots \times F_n)$$

$$= \sum_{i=1}^n \dim F_i.$$

Il y a égalité quand la somme est directe.

Théorème 4.26

Soient E un \mathbb{K} -espace vectoriel de dimension finie et F_1, \ldots, F_n des sous-espaces vectoriels de E.

Alors F_1, \ldots, F_n sont en somme directe ssi dim $\sum_{i=1}^n F_i = \sum_{i=1}^n \dim F_i$.

Démonstration 4.27

On reprend la Démonstration 4.25.

Si dim
$$\sum_{i=1}^{n} F_i = \sum_{i=1}^{n} \dim F_i$$
, alors dim $\ker \varphi = 0$.

Donc
$$\ker \varphi = \left\{ (x_1, \dots, x_n) \in F_1 \times \dots \times F_n \mid \sum_{i=1}^n x_i = 0 \right\} = \{ (0, \dots, 0) \}.$$

Ainsi, $F_1 + \cdots + F_n$ est directe.

Et réciproquement.

4.2.4 Sous-espaces supplémentaires

En dimension finie, on a une façon plus simple de prouver que des sous-espaces vectoriels sont supplémentaires.

Proposition 4.28 (Trois pour le prix de deux)

Soient E un \mathbb{K} -espace vectoriel de dimension finie et F_1, \ldots, F_n des sous-espaces vectoriels de E.

Quand deux propriétés parmi les trois suivantes sont vraies, alors la troisième l'est aussi :

$$\triangleright E = \sum_{i=1}^{n} F_i$$

$$\Rightarrow \dim \sum_{i=1}^{n} F_i = \sum_{i=1}^{n} \dim F_i$$

$$\Rightarrow \dim E = \sum_{i=1}^{n} \dim F_i$$

Donc dans ce cas, les sous-espaces vectoriels F_1, \ldots, F_n sont supplémentaires.

En pratique, le cas le plus utile est le suivant : si dim $\sum_{i=1}^{n} F_i = \sum_{i=1}^{n} \dim F_i = \dim E$, alors les sous-espaces vectoriels F_1, \ldots, F_n sont supplémentaires.

Démonstration 4.29

Si dim
$$\sum_{i=1}^{n} F_i = \sum_{i=1}^{n} \dim F_i$$
 et dim $\sum_{i=1}^{n} F_i = \dim E$.

Alors $F_1 + \cdots + F_n$ est directe et $\sum_{i=1}^n F_i = E$.

Alors
$$E = \bigoplus_{i=1}^{n} F_i$$
.

Exercice 4.30

Dans \mathbb{R}^4 , soient $H = \{(x, y, z, t) \in \mathbb{R}^4 \mid x + z + t = 0 \text{ et } x - y - z + t = 0\}$, F = Vect ((-1, 0, 1, 1)) et G = Vect ((2, -1, 1, 0)).

F, G et H sont-ils supplémentaires?

Correction 4.31

H est l'ensemble des solutions d'un système linéaire homogène :

$$S: \begin{cases} x+z+t=0\\ x-y-z+t=0 \end{cases}$$

i.e. $H = \ker f$ où $f: (x, y, z, t) \longmapsto (x + z + t, x - y - z + t)$.

D'après le théorème du rang, on a dim $H = \dim \mathbb{R}^4 - \operatorname{rg} S = 4 - 2 = 2$.

F et G sont des droites vectorielles donc dim F = dim G = 1.

On a donc dim $\mathbb{R}^4 = \dim F + \dim G + \dim H$.

On a

$$v = (x, y, z, t) \in H \iff \begin{cases} x + z + t = 0 \\ x - y - z + t = 0 \end{cases}$$

$$\iff \begin{cases} x = -z - t \\ y = -2z \end{cases}$$

$$\iff v = (-z - t, -2z, z, t)$$

$$\iff v = z \underbrace{(-1, -2, 1, 0)}_{h_1} + t \underbrace{(-1, 0, 0, 1)}_{h_2}.$$

Donc $H = \text{Vect } (h_1, h_2)$.

On note f = (-1, 0, 1, 1) et g = (2, -1, 1, 0).

On a alors $F + G + H = \text{Vect } (f, g, h_1, h_2)$.

Donc dim $(F + G + H) = \operatorname{rg}(f, g, h_1, h_2)$.

On note \mathcal{B}_0 la base canonique de \mathbb{R}^4 .

On a

$$A = \underset{\mathscr{B}_{0}}{\operatorname{Mat}} (f, g, h_{1}, h_{2}) = \begin{pmatrix} -1 & 2 & -1 & -1 \\ 0 & -1 & -2 & 0 \\ 1 & 1 & 1 & 0 \\ 1 & 0 & 0 & 1 \end{pmatrix}$$

$$\begin{bmatrix} -1 & 2 & -1 & -1 \\ 0 & -1 & -2 & 0 \\ 0 & 3 & 0 & -1 \\ 0 & 2 & -1 & 0 \end{pmatrix}$$

$$\begin{bmatrix} -1 & 2 & -1 & -1 \\ 0 & -1 & -2 & 0 \\ 0 & 3 & 0 & -1 \\ 0 & 2 & -1 & 0 \end{bmatrix}$$

$$\begin{bmatrix} -1 & 2 & -1 & -1 \\ 0 & 1 & -2 & 0 \\ 0 & 0 & -6 & -1 \\ 0 & 0 & -5 & 0 \end{bmatrix}$$

Donc $\operatorname{rg} A = 4$.

Donc dim $(F + G + H) = \dim \mathbb{R}^4 = \dim F + \dim G + \dim H$.

Finalement, on a $\mathbb{R}^4 = F \oplus G \oplus H$.

4.2.5 Dimension d'une somme de deux sous-espaces vectoriels

Rappel : la formule de Grassmann.

Proposition 4.32

Soient E un \mathbb{K} -espace vectoriel de dimension finie et F, G deux sous-espaces vectoriels de E.

Alors dim $(F + G) = \dim F + \dim G - \dim (F \cap G)$.

4.3 Polynômes d'endomorphismes et de matrices

4.3.1 K-algèbres

4.3.1.1 Définition

Définition 4.33

Un ensemble A est appelé \mathbb{K} -algèbre quand A est à la fois un anneau et un \mathbb{K} -espace vectoriel, dont les multiplications sont compatibles.

Il y a donc trois lois dans une K-algèbre :

▶ une addition classique +;

- ▶ une multiplication externe .;
- ▶ une multiplication interne, compatible avec la précédente :

$$\forall (\lambda, a, b) \in \mathbb{K} \times A^2, \ \lambda. (ab) = (\lambda.a) b = a (\lambda.b).$$

On qualifie les K-algèbres par du vocabulaire des anneaux (algèbres intègres, algèbres principales, etc) ou des espaces vectoriels (algèbres de dimension finie, etc).

Exemple 4.34

- \triangleright \mathbb{K} est lui-même une \mathbb{K} -algèbre, où les deux multiplications sont confondues; \mathbb{C} est aussi une \mathbb{R} -algèbre de dimension 2.
- $\triangleright \mathbb{K}[X]$ est une \mathbb{K} -algèbre intègre, commutative et de dimension finie.
- \triangleright Si I est un intervalle, $\mathcal{F}(I,\mathbb{K})$ est une \mathbb{K} -algèbre commutative, non-intègre et de dimension finie.
- ightharpoonup Si $n \in \mathbb{N}^*$, $\mathcal{M}_n(\mathbb{K})$ est une \mathbb{K} -algèbre de dimension n^2 qui n'est ni intègre ni commutative.
- \triangleright Si E est un \mathbb{K} -espace vectoriel, alors $\mathscr{L}(E)$ est une \mathbb{K} -algèbre de dimension finie ssi E l'est aussi qui n'est ni intègre ni commutative.

4.3.1.2 Polynômes d'éléments dans une \mathbb{K} -algèbre

Proposition 4.35

Soient A une \mathbb{K} -algèbre et $a \in A$.

Pour
$$P = \sum_{i=0}^{n} c_i X^i \in \mathbb{K}[X]$$
, on pose $P(a) = \sum_{i=0}^{n} c_i a^i$.

$$\forall (P,Q) \in \mathbb{K}[X]^{2}, \ \forall \lambda \in \mathbb{K}, \begin{cases} (P+Q)(a) = P(a) + Q(a) \\ (PQ)(a) = P(a)Q(a) \\ (\lambda P)(a) = \lambda P(a) \end{cases}$$

De plus, on note $\mathbb{K}[a]$ l'ensemble $\{P(a) \mid P \in \mathbb{K}[X]\}$: cet ensemble est stable par les lois de A, on dit que c'est une sous-algèbre de A.

4.3.2 Cas particulier des algèbres $\mathcal{L}(E)$ ou $\mathcal{M}_n(\mathbb{K})$

E étant un \mathbb{K} -espace vectoriel, l'ensemble $\mathcal{L}(E)$ est une \mathbb{K} -algèbre. De même, n étant un entier non-nul, $\mathcal{M}_n(\mathbb{K})$ est une \mathbb{K} -algèbre. Dans ces algèbres, on définit naturellement la notion de polynôme d'endomorphisme ou de matrice. Bien sûr, ces notions sont liées par choix d'une base de l'espace.

Proposition 4.36

 $Soient \ E \ un \ \mathbb{K} \text{-}espace \ vectoriel \ de \ dimension \ n, \ \mathscr{B} \ une \ base \ de \ E \ et \ f \in \mathscr{L}(E) \ tel \ que \ \underset{\mathscr{R}}{\operatorname{Mat}} \ (f) = A.$

Alors pour tout polynôme $P \in \mathbb{K}[X]$, P(f) a pour matrice P(A) dans la base \mathcal{B} .

Démonstration 4.37

Comme $A = \operatorname{Mat}_{\mathscr{B}}(f)$, pour tout $k \in \mathbb{N}$, $A^k = \operatorname{Mat}_{\mathscr{B}}(f^k)$.

Donc
$$\forall (a_0, \dots, a_p) \in \mathbb{K}^p$$
, $\operatorname{Mat}_{\mathscr{B}} \left(\sum_{i=0}^p a_i f^i \right) = \sum_{i=0}^p a_i A^i$ c'est-à-dire

$$\forall P \in \mathbb{K}\left[X\right], \ \operatorname{Mat}_{\mathcal{B}}\left(P\left(f\right)\right) = P\left(A\right).$$

Remarque 4.38

- ▶ La « multiplication » dans $\mathscr{L}(E)$ est la composition ∘. Donc la deuxième propriété de la Proposition 4.35 doit être comprise comme suit : si $f \in \mathscr{L}(E)$, alors $(PQ)(f) = P(f) \circ Q(f)$.
- ▶ Même si les multiplications dans $\mathcal{M}_n(\mathbb{K})$ ou $\mathcal{L}(E)$ ne sont pas commutatives en général, on peut intervertir l'ordre des polynômes car la multiplication dans $\mathbb{K}[X]$ est commutative : si $A \in \mathcal{M}_n(\mathbb{K})$, (PQ)(A) = P(A)Q(A) = Q(A)P(A); si $u \in \mathcal{L}(E)$, $(PQ)(u) = P(u) \circ Q(u) = Q(u) \circ P(u)$.
- ▶ Attention aux notations! Si $f \in \mathcal{L}(E)$, $x \in E$ et $P \in \mathbb{K}[X]$, alors l'application de P(f) au vecteur x se note P(f)(x) et pas P(f(x)), notation qui n'a aucun sens.

4.3.3 Polynôme annulateur d'une matrice ou d'un endomorphisme

Définition 4.39

Soient $n \in \mathbb{N}^*$ et $A \in \mathcal{M}_n(\mathbb{K})$. On appelle polynôme annulateur de A tout polynôme non-nul $P \in \mathbb{K}[X]$ tel que P(A) = 0.

Soient E un \mathbb{K} -espace vectoriel et $u \in \mathcal{L}(E)$. On appelle polynôme annulateur de u tout polynôme non-nul $P \in \mathbb{K}[X]$ tel que P(u) = 0.

Remarque 4.40

Attention à ne pas confondre les notions : si P est un polynôme annulateur de la matrice A (on dit aussi que P annule A par abus de langage), on ne dit pas que A est une racine de P!

Une racine d'un polynôme est un nombre...

De même, si P(u) = 0, on ne dit pas que u est une racine de P, ça n'a aucun sens.

Définition 4.41

Si $A \in \mathcal{M}_n(\mathbb{K})$, alors l'ensemble Ann $(A) = \{P \in \mathbb{K} [X] \mid P(A) = 0\}$ est appelé idéal annulateur de A.

Si u est un endomorphisme d'un espace vectoriel E, alors l'ensemble Ann $(u) = \{P \in \mathbb{K}[X] \mid P(u) = 0\}$ est appelé idéal annulateur de u.

Théorème 4.42

Soit $A \in \mathcal{M}_n(\mathbb{K})$. Alors Ann (A) est un sous-espace vectoriel de $\mathbb{K}[X]$ stable par \times . De plus, il existe un unique polynôme unitaire μ_A tel que Ann (A) = $\mu_A \mathbb{K}[X]$.

Soient E un \mathbb{K} -espace vectoriel de dimension finie et $u \in \mathcal{L}(E)$. Alors Ann (u) est un sous-espace vectoriel de $\mathbb{K}[X]$ stable par \times . De plus, il existe un unique polynôme unitaire μ_u tel que Ann $(u) = \mu_u \mathbb{K}[X]$.

Démonstration 4.43

▶ Soient $(P,Q) \in \text{Ann } (A)^2$ et $\lambda \in \mathbb{K}$.

On a

$$(P + Q)(A) = P(A) + Q(A) = 0 + 0 = 0$$

 et

$$(PQ)(A) = P(A)Q(A) = 0 \times 0 = 0$$

et

$$(\lambda P)(A) = \lambda P(A) = \lambda \times 0 = 0.$$

Donc $P + Q \in \text{Ann}(A)$, $PQ \in \text{Ann}(A)$ et $\lambda P \in \text{Ann}(A)$.

Remarque : on a même montré que $\forall P \in \mathbb{K}[X], \forall Q \in \text{Ann}(A), PQ \in \text{Ann}(A)$.

▶ On montre d'abord l'existence d'un polynôme annulateur de A non-nul.

On considère la famille $(I_n, A, ..., A^{n^2})$ qui contient $n^2 + 1$ éléments de $\mathcal{M}_n(\mathbb{K})$, espace de dimension n^2 , et est donc liée : il existe $(a_0, ..., a_{n^2}) \in \mathbb{K}^{n^2+1}$ tel que

$$(a_0, \dots, a_{n^2}) \neq (0, \dots, 0)$$
 et $\sum_{i=0}^{n^2} a_i A^i = 0.$

Alors le polynôme $\sum_{i=0}^{n^2} a_i X^i$ est un polynôme annulateur de A.

▶ On pose $D = \{ \deg P \mid P \in \text{Ann}(A) \setminus \{0\} \}.$

D'après ce qui précède, D est une partie non-vide de \mathbb{N} .

Donc D admet un minimum $d \ge 1$ d'après le principe fondamental de \mathbb{N} , associé à un polynôme $P \ne 0$ tel que P(A) = 0.

En notant λ le coefficient dominant de P, le polynôme $\mu=\frac{1}{\lambda}P$ est annulateur de A et unitaire.

▶ Montrons que Ann $(A) = \mu \mathbb{K}[X]$.

L'inclusion $\mu \mathbb{K}[X] \subseteq \text{Ann}(A)$ est triviale.

Soit $P \in \text{Ann}\,(A)$. On effectue la division euclidienne de P par μ : il existe $(Q,R) \in \mathbb{K}\,[X]^2$ tel que

$$P = Q\mu + R$$
 et $\deg R < \deg \mu = d$.

Donc $P(A) = Q(A) \mu(A) + R(A)$.

Or
$$P(A) = \mu(A) = 0$$
 donc $R(A) = 0$ i.e. $R \in \text{Ann}(A)$.

Par définition de d, on a R = 0.

Donc P est un multiple de μ .

D'où Ann $(A) \subseteq \mu \mathbb{K}[X]$.

Donc Ann $(A) = \mu \mathbb{K}[X]$.

 \triangleright Montrons maintenant l'unicité de μ .

Si ν est un polynôme annulateur de A de degré d et unitaire, alors Ann $(A) = \nu \mathbb{K}[X] = \mu \mathbb{K}[X]$.

Donc $\nu \mid \mu \text{ et } \mu \mid \nu$.

Or μ et ν sont unitaires donc $\mu = \nu$.

Remarque 4.44

Ce dernier résultat est faux en dimension infinie. Contre-exemple : l'endomorphisme $u: \mathbb{K}[X] \longrightarrow \mathbb{K}[X]$ défini par u(P) = XP.

Définition 4.45

On appelle polynôme minimal d'une matrice carrée A le polynôme μ_A précédent (noté aussi parfois π_A). C'est le polynôme unitaire de degré minimal qui annule A.

On appelle polynôme minimal d'un endomorphisme u en dimension finie le polynôme μ_u précédent (noté aussi parfois π_u). C'est le polynôme unitaire de degré minimal qui annule u.

Autrement dit, on a l'équivalence : pour tout $P \in \mathbb{K}[X]$,

$$P(u) = 0 \iff \mu_u \mid P$$
.

De même, on a l'équivalence : pour tout $P \in \mathbb{K}[X]$,

$$P(A) = 0 \iff \mu_A \mid P.$$

Les polynômes annulateurs sont donc les multiples des polynômes minimaux.

On verra plus tard qu'on peut trouver des polynômes annulateurs de plus petits degrés que ceux donnés par le théorème précédent.

En général, il est souvent pénible de calculer le polynôme minimal. En pratique, on se contente de trouver des polynômes annulateurs de degrés pas trop grands (et souvent, il s'agit du polynôme minimal).

Remarque 4.46

Si $A \in \mathcal{M}_n(\mathbb{K})$ et \mathbb{K}' est un sous-corps de \mathbb{C} qui contient \mathbb{K} (on dit que \mathbb{K}' est une extension de \mathbb{K}), alors le polynôme minimal de A, vue comme matrice de $\mathcal{M}_n(\mathbb{K}')$, est a priori différent de celui de A vue comme matrice de $\mathcal{M}_n(\mathbb{K})$. On peut seulement affirmer pour l'instant que $\mu_{A\mathbb{K}'}$ divise $\mu_{A\mathbb{K}}$.

En fait, on montre plus loin que le polynôme minimal ne dépend pas du corps K.

4.3.4 Utilisation pratique d'un polynôme annulateur

4.3.4.1 Calcul de l'inverse

Proposition 4.47

Soient $n \in \mathbb{N}^*$ et $A \in \mathcal{M}_n(\mathbb{K})$.

Alors A est inversible ssi A possède un polynôme annulateur P tel que 0 ne soit pas racine de P. Dans ce cas, A^{-1} est un polynôme en A.

De même, soient E un \mathbb{K} -espace vectoriel et $f \in \mathcal{L}(E)$.

Alors si f possède un polynôme annulateur P tel que 0 ne soit pas racine de P, f est un automorphisme de E. Dans ce cas, f^{-1} est un polynôme en f. La réciproque est vraie si E est de dimension finie.

Démonstration 4.48

 \Longrightarrow

On suppose que A possède un polynôme annulateur P tel que $P(0) \neq 0$.

En notant
$$P = \sum_{i=0}^{p} a_i X^i$$
, on a $\sum_{i=0}^{p} a_i A^i = 0$ et $a_0 \neq 0$.

Donc $a_0I_n + a_1A + \cdots + a_pA^p = 0$.

Donc $a_0I_n = -a_1A - \cdots - a_pA^p$.

Donc
$$I_n = A \underbrace{\left(\frac{-a_1}{a_0}I_n - \dots - \frac{a_p}{a_0}A^{p-1}\right)}_{B}.$$

On a trouvé une matrice $B \in \mathcal{M}_n(\mathbb{K})$ telle que $AB = I_n = BA$.

Donc A est inversible et $A^{-1} = B = Q(A)$ où $Q = \sum_{i=0}^{p-1} \frac{-a_{i+1}}{a_0} X^i$.

 \Longrightarrow

On suppose A inversible. On veut montrer que $\mu_A(0) \neq 0$.

Par l'absurde, on suppose $\mu_A(0) = 0$.

On a $\mu_A = a_1 X + \dots + X^p$ et $\mu_A(A) = 0$.

Donc $a_1A + \cdots + A^p = 0$.

A étant inversible, on multiplie par A^{-1} et on obtient $a_1I_n + a_2A + \cdots + A^{p-1} = 0$.

Donc $a_1+a_2X+\cdots+X^{p-1}$ est annulateur de A et de degré strictement inférieur à celui de μ_A : contradiction.

Donc $\mu_A(0) \neq 0$.

Exercice 4.49

On pose $A = \begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 2 \end{pmatrix}$. Déterminez un polynôme annulateur de A, montrez que A est inversible et calculez A^{-1} .

Correction 4.50

On a
$$A^2 = \begin{pmatrix} 1 & 2 & 4 \\ 0 & 1 & 3 \\ 0 & 0 & 4 \end{pmatrix}$$
 et $A^3 = \begin{pmatrix} 1 & 3 & 11 \\ 0 & 1 & 7 \\ 0 & 0 & 8 \end{pmatrix}$.

Donc on a

$$A^{3} = xA^{2} + yA + zI_{3} \iff \begin{cases} 1 = x + y + z \\ 8 = 4x + 2y + z \end{cases}$$

$$7 = 3x + y$$

$$11 = 4x + y$$

$$3 = 2x + y$$

$$\iff \begin{cases} x = 4 \\ y = -5 \\ z = 2 \end{cases}$$

Donc $A^3 = 4A^2 - 5A + 2I_3$.

Donc $P = X^3 - 4X^2 + 5X - 2$ est un polynôme annulateur de A.

On a $P(0) \neq 0$ donc A est inversible.

On obtient

$$A^{-1} = \frac{1}{2} \left(A^2 - 4A + 5I_3 \right) = \begin{pmatrix} 1 & -1 & 0 \\ 0 & 1 & -1/2 \\ 0 & 0 & 1/2 \end{pmatrix}.$$

Exercice 4.51

Soient E un \mathbb{K} -espace vectoriel et $p \in \mathcal{L}(E)$ un projecteur. Déterminez un polynôme annulateur de p.

Soit $\lambda \in \mathbb{K}$. On pose $f = p - \lambda \mathrm{id}_E$. Déterminez un polynôme annulateur de f et vérifiez que f est un automorphisme pour presque toutes les valeurs de λ ; dans ce cas, calculez son inverse.

Correction 4.52

p est un projecteur donc $p^2 = p$ donc $X^2 - X$ est un polynôme annulateur de p.

Donc le polynôme annulateur minimal de p est un diviseur unitaire de $X^2-X:X^2-X,X$ (auquel cas p=0) ou X-1 (auquel cas $p=\mathrm{id}_E$).

On a $f = p - \lambda i d_E$ donc

$$f^{2} = p^{2} - 2\lambda p + \lambda^{2} \mathrm{id}_{E}$$

$$= (1 - 2\lambda) p + \lambda^{2} \mathrm{id}_{E}$$

$$= (1 - 2\lambda) f + \lambda (1 - 2\lambda) \mathrm{id}_{E} + \lambda^{2} \mathrm{id}_{E}$$

$$= (1 - 2\lambda) f + (-\lambda^{2} + \lambda) \mathrm{id}_{E}.$$

Donc $P = X^2 + (2\lambda - 1)X + (\lambda^2 - \lambda)$ est annulateur de f.

Si $\lambda \neq 0$ et $\lambda \neq 1$ alors $\lambda^2 - \lambda = P(0) = 0$.

Donc d'après la Proposition 4.47, $f \in GL(E)$.

De plus,
$$f^{-1} = \frac{1}{\lambda - \lambda^2} (f + (2\lambda - 1) id_E).$$

Si $\lambda = 0$ alors f = p est un automorphisme ssi $p = \mathrm{id}_E$.

Si $\lambda=1$ alors $f=p-\mathrm{id}_E$ est un automorphisme ssi p=0.

4.3.4.2 Calcul de puissances

Proposition 4.53

Soient $n \in \mathbb{N}^*$ et $A \in \mathcal{M}_n(\mathbb{K})$. On choisit un polynôme annulateur P de la matrice A.

Alors pour tout $p \in \mathbb{N}$, $A^p = R_p(A)$ où R_p est le reste de la division euclidienne de X^p par P.

De même, soient E un K-espace vectoriel et $f \in \mathcal{L}(E)$ qui possède un polynôme annulateur P.

Alors pour tout $p \in \mathbb{N}$, $f^p = R_p(f)$ où R_p est le reste de la division euclidienne de X^p par P.

Démonstration 4.54

On effectue la division euclidienne de X^p par $P: X^p = PQ + R_p$ et $\deg R_p < \deg P$.

Alors
$$A^p = P(A)Q(A) + R_p(A) = R_p(A) \operatorname{car} P(A) = 0.$$

Conséquence:

- \triangleright si A possède un polynôme annulateur de degré a, alors $\mathbb{K}[A] = \{P(A) \mid P \in \mathbb{K}_{a-1}[X]\}$;
- \triangleright si f possède un polynôme annulateur de degré a, alors $\mathbb{K}[f] = \{P(f) \mid P \in \mathbb{K}_{a-1}[X]\}$.

Proposition 4.55

Si p est le degré du polynôme minimal d'une matrice A, alors $\dim \mathbb{K}[A] = p$ et $(I_n, A, \ldots, A^{p-1})$ est une base de $\mathbb{K}[A]$.

Si p est le degré du polynôme minimal d'un endomorphisme f d'un espace vectoriel E, alors $\dim \mathbb{K}[f] = p$ et $(\mathrm{id}_E, f, \ldots, f^{p-1})$ est une base de $\mathbb{K}[f]$.

Démonstration 4.56

On note $p = \deg \mu_A$.

Soit $B \in \mathbb{K}[A]$.

Il existe $P \in \mathbb{K}[X]$ tel que B = P(A).

On effectue la division euclidienne de P par $\mu_A: P = Q\mu_A + R$ avec deg R < p.

Donc
$$P(A) = Q(A) \mu_A(A) + R(A) = R(A) \in \text{Vect}(I_n, A, \dots, A^{p-1}).$$

Donc $\mathbb{K}[A] \subseteq \text{Vect}(I_n, A, \dots, A^{p-1}).$

L'inclusion réciproque est immédiate.

Donc $\mathbb{K}[A] = \text{Vect}(I_n, A, \dots, A^{p-1}).$

Si
$$(I_n, A, \dots, A^{p-1})$$
 est liée, alors il existe $(a_0, \dots, a_{p-1}) \neq (0, \dots, 0)$ tel que $\sum_{i=0}^{p-1} a_i A^i = 0$.

En posant $P = \sum_{i=0}^{p-1} a_i X^i$, on a un polynôme annulateur de A de degré strictement inférieur à $p = \deg \mu_A$: contradiction.

Donc $(I_n, A, ..., A^{p-1})$ est libre et est donc une base de $\mathbb{K}[A]$ et dim $\mathbb{K}[A] = p$.

Exercice 4.57

Soient E un espace vectoriel et $(p,q) \in \mathcal{L}(E)^2$ deux projecteurs tels que $p+q=\mathrm{id}_E$. Vérifiez que $p \circ q = q \circ p = 0$. Déterminez un polynôme annulateur de f = 2p + 3q. Donnez une expression générale de f^k en fonction de f et k.

Correction 4.58

On a $p+q=\mathrm{id}_E$ donc $p\circ p+p\circ q=p$ donc $p\circ q=0$ car $p\circ p=p$.

De même, $q \circ p = 0$.

On a donc $f^2 = 4p^2 + 6pq + 6qp + 9q^2 = 4p + 9q$.

Donc

$$f^{2} = xf + yid_{E} \iff \begin{cases} 4 = 2x + y \\ 9 = 3x + y \end{cases}$$

$$\iff \begin{cases} 5 = x \\ -6 = y \end{cases}$$

Donc $P = X^2 - 5X + 6$ est un polynôme annulateur de f dont les racines sont 2 et 3.

Soit $k \in \mathbb{N}$.

On effectue la division euclidienne de \boldsymbol{X}^k par \boldsymbol{P} :

$$X^{k} = (X^{2} - 5X + 6) Q + a_{k}X + b_{k}.$$

En appliquant en 2 et en 3, on obtient

$$\begin{cases} 2a_k + b_k = 2^k \\ 3a_k + b_k = 3^k \end{cases} \quad \text{donc} \quad \begin{cases} a_k = 3^k - 2^k \\ b_k = 3 \times 2^k - 2 \times 3^k \end{cases}$$

Donc
$$f^k = a_k f + b_k \mathrm{id}_E = \left(3^k - 2^k\right) f + \left(3 \times 2^k - 2 \times 3^k\right) \mathrm{id}_E$$
.

Remarque 4.59

Plus généralement, si P est annulateur de f et de degré N à N racines simples $\omega_1, \ldots, \omega_N$.

Alors
$$X^k = PQ + c_{N-1}X^{N-1} + \dots + c_1X + c_0$$
.

Alors on a un système linéaire à N équations et N inconnues

$$\begin{cases} c_0 + c_1 \omega_1 + c_2 \omega_1^2 + \dots + c_{N-1} \omega_1^{N-1} = \omega_1^k \\ \vdots \\ c_0 + c_1 \omega_N + c_2 \omega_N^2 + \dots + c_{N-1} \omega_N^{N-1} = \omega_N^k \end{cases}$$

Ce système a pour déterminant

$$\begin{vmatrix} 1 & \omega_1 & \omega_1^2 & \dots & \omega_1^{N-1} \\ & \vdots & & \vdots \\ 1 & \omega_N & \omega_N^2 & \dots & \omega_N^{N-1} \end{vmatrix} = \prod_{1 \le i < j \le n} (\omega_j - \omega_i) \neq 0$$

et admet donc une unique solution.

Exercice 4.60

On pose $A = \begin{pmatrix} 2 & -4 & -5 \\ -1 & 2 & 2 \\ 1 & -2 & -2 \end{pmatrix}$. Vérifiez que $P = X^3 - 2X^2 + X$ est un polynôme annulateur de A. Donnez une expression générale de A^p en fonction de A et p.

Correction 4.61

On a
$$A^2 = \begin{pmatrix} 3 & -6 & -8 \\ -2 & 4 & 5 \\ 2 & -4 & -5 \end{pmatrix}$$
 et $A^3 = \begin{pmatrix} 4 & -8 & -11 \\ -3 & 6 & 8 \\ 3 & -6 & -8 \end{pmatrix}$ donc $P = X^3 - 2X^2 + X = X(X - 1)^2$ est annulateur de A .

Soit $k \in \mathbb{N}$.

On effectue la division euclidienne de X^k par P:

$$X^{k} = X(X-1)^{2}Q + a_{k}X^{2} + b_{k}X + c_{k}.$$

En évaluant en 0 et 1, on obtient

$$\begin{cases} c_k = 0^k \\ a_k + b_k + c_k = 1^k \\ 2a_k + b_k = k1^k \end{cases}$$

Or 1 est racine double donc P'(1) = 0 donc $2a_k + b_k = k$.

Donc, si $k \neq 0$, on a

$$\begin{cases} c_k = 0 \\ a_k + b_k = 1 \\ 2a_k + b_k = k \end{cases} \quad \text{donc} \quad \begin{cases} a_k = k - 1 \\ b_k = 2 - k \\ c_k = 0 \end{cases}$$

Donc pour tout $k \in \mathbb{N}^*$, $A^k = (k-1)A^2 + (2-k)A$.

Corollaire 4.62

Si \mathbb{K}' est une extension de \mathbb{K} , alors pour toute matrice $A \in \mathcal{M}_n(\mathbb{K})$, ses polynômes minimaux relativement à \mathbb{K} et \mathbb{K}' sont égaux : $\mu_{A\mathbb{K}'} = \mu_{A\mathbb{K}'}$.

Autrement dit, le polynôme minimal ne dépend pas du corps K.

Démonstration 4.63

Soit $A \in \mathcal{M}_n(\mathbb{K})$.

On note $\operatorname{Ann}_{\mathbb{K}}(A) = \{ P \in \mathbb{K}[X] \mid P(A) = 0 \}$ et $\operatorname{Ann}_{\mathbb{K}'}(A) = \{ P \in \mathbb{K}'[X] \mid P(A) = 0 \}$.

Soit $P \in Ann_{\mathbb{K}}(A)$.

Comme $\mathbb{K} \subseteq \mathbb{K}'$, on a $P \in \operatorname{Ann}_{\mathbb{K}'}(A)$.

Donc $\mu_{A \mathbb{K}} \mathbb{K}[X] = \operatorname{Ann}_{\mathbb{K}}(A) \subseteq \operatorname{Ann}_{\mathbb{K}'}(A) = \mu_{A \mathbb{K}'} \mathbb{K}'[X].$

Donc $\mu_{A\mathbb{K}} \in \operatorname{Ann}_{\mathbb{K}'}(A)$ donc $\mu_{A\mathbb{K}'} \mid \mu_{A\mathbb{K}}$.

Donc $p' = \deg \mu_{A \mathbb{K}'} \leq \deg \mu_{A \mathbb{K}} = p$.

Or $(I_n, A, ..., A^{p-1})$ est libre dans le \mathbb{K} -espace vectoriel $\mathbb{K}[A]$ et $(I_n, A, ..., A^{p'-1})$ est libre dans le \mathbb{K}' -espace vectoriel $\mathbb{K}'[A]$.

On veut montrer que $\left(I_n,A,\ldots,A^{p-1}\right)$ est libre dans le \mathbb{K}' -espace vectoriel $\mathbb{K}'\left[A\right]$.

Par l'absurde, si cette famille est liée, alors il existe $(\lambda_0, \ldots, \lambda_{p-1}) \in (\mathbb{K}')^p$ tel que

$$\begin{cases} \left(\lambda_0, \dots, \lambda_{p-1}\right) \neq (0, \dots, 0) \\ \sum_{i=0}^{p-1} \lambda_i A^i = 0 \end{cases}$$

On pose $q = \max \{i \in [0; p-1] \mid \lambda_i \neq 0\}.$

On a alors $A^q = -\sum_{i=0}^{q-1} \frac{\lambda_i}{\lambda_q} A^i$.

Cette égalité est interprétable en un système linéaire à n^2 équations dont les « inconnues » sont $\frac{-\lambda_i}{\lambda_q}$ et les coefficients sont les coefficients de A^q, \ldots, I_n qui sont tous dans \mathbb{K} .

En résolvant ce système linéaire, on obtient des solutions qui sont dans K.

Donc on obtient une relation de dépendance linéaire entre les matrices $(I_n, \ldots, A^q, \ldots, A^{p-1})$ à coefficients dans \mathbb{K} : contradiction car (I_n, \ldots, A^{p-1}) est libre.

Donc $p \leq \dim_{\mathbb{K}'} \mathbb{K}'[A] = p'$.

D'où p = p'.

Donc, comme $\mu_{A\,\mathbb{K}'}\mid \mu_{A\,\mathbb{K}}$ et que ces polynômes sont unitaires, on a

$$\mu_{A \mathbb{K}'} = \mu_{A \mathbb{K}}.$$

4.4 Matrices semblables, trace

4.4.1 Trace d'une matrice

Définition 4.64

Soit $A \in \mathcal{M}_n(\mathbb{K})$. On appelle trace de A la somme de ses coefficients diagonaux :

$$\operatorname{tr} A = \sum_{i=1}^{n} a_{i\,i}.$$

L'application trace vérifie de remarquables propriétés.

Proposition 4.65

- $ightharpoonup La trace est une forme linéaire sur <math>\mathcal{M}_n(\mathbb{K})$.
- $\succ \ Pour \ tout \ A \in \mathcal{M}_n \left(\mathbb{K} \right), \ \operatorname{tr} \left(A^\top \right) = \operatorname{tr} A.$
- $\succ \ Pour \ tout \ (A,B) \in \mathcal{M}_n \left(\mathbb{K} \right)^2, \ \operatorname{tr} \left(AB \right) = \operatorname{tr} \left(BA \right).$

4.4.2 Matrices semblables

Définition 4.66

Soient $A, B \in \mathcal{M}_n(\mathbb{K})$.

On dit que A et B sont semblables quand il existe $P\in \mathrm{GL}_n\left(\mathbb{K}\right)$ telle que $B=P^{-1}AP$.

Proposition 4.67

La relation de similitude entre matrices de $\mathcal{M}_n(\mathbb{K})$ est une relation d'équivalence.

La relation de similitude est une relation très contraignante. Il n'existe pas de caractérisation simple de la similitude entre deux matrices carrées : savoir si deux matrices sont semblables est un problème difficile.

D'après la formule de changement de base, on a immédiatement le résultat suivant.

Proposition 4.68

Deux matrices de $\mathcal{M}_n(\mathbb{K})$ sont semblables ssi elle représentent un même endomorphisme dans des bases différentes. La matrice P est la matrice de passage d'une base à l'autre.

Corollaire 4.69

Deux matrices semblables ont même rang, même trace et même déterminant.

Mais c'est loin d'être suffisant pour être semblables.

Proposition 4.70

Si A et B sont deux matrices semblables, alors pour tout polynôme $P \in \mathbb{K}[X]$, P(A) et P(B) sont semblables avec la même matrice de passage.

Démonstration 4.71

Si A et B sont semblables, il existe $Q \in GL_n(\mathbb{K})$ telle que $B = Q^{-1}AQ$.

Alors, par récurrence sur $k \in \mathbb{N}$, on a $B^k = Q^{-1}A^kQ$.

Puis, par combinaison linéaire, pour tout $P \in \mathbb{K}[X]$, $P(B) = Q^{-1}P(A)Q$.

4.4.3 Trace d'un endomorphisme

Proposition 4.72

Soient E un \mathbb{K} -espace vectoriel de dimension finie et $f \in \mathcal{L}(E)$.

Toutes les matrices carrées représentant f ont la même trace. Cette trace ne dépend donc pas du choix de la base dans laquelle on écrit la matrice de f, elle ne dépend que de f: on l'appelle trace de f et on la note $\operatorname{tr} f$.

On peut alors reformuler les résultats sur la trace d'une matrice.

Proposition 4.73

- ightharpoonup La trace est une forme linéaire sur $\mathscr{L}(E)$.
- $Pour \ tout \ (u,v) \in \mathcal{L}(E)^2, \ \operatorname{tr}(u \circ v) = \operatorname{tr}(v \circ u).$

4.5 Opérations par blocs

4.5.1 Cas général

Soit $(n,p) \in (\mathbb{N}^*)^2$. On fixe deux entiers k,ℓ tels que $1 \le k \le n-1$ et $1 \le \ell \le p-1$.

À toute matrice $M \in \mathcal{M}_{np}(\mathbb{K})$, on associe quatre matrices obtenues en découpant la matrice en blocs :

$$M = \begin{pmatrix} A & B \\ C & D \end{pmatrix}$$

où
$$A=\begin{pmatrix} m_{i\,j} \end{pmatrix}_{\substack{1 \leq i \leq k \\ 1 \leq j \leq \ell}}, \ B=\begin{pmatrix} m_{i\,j} \end{pmatrix}_{\substack{1 \leq i \leq k \\ \ell+1 \leq j \leq p}}, \ C=\begin{pmatrix} m_{i\,j} \end{pmatrix}_{\substack{k+1 \leq i \leq n \\ 1 \leq j \leq \ell}} \text{ et } D=\begin{pmatrix} m_{i\,j} \end{pmatrix}_{\substack{k+1 \leq i \leq n \\ \ell+1 \leq j \leq p}}.$$

Cette décomposition par blocs permet de faire des calculs formellement comme s'il s'agissait de nombres.

Proposition 4.74

Soient $M = \begin{pmatrix} A & B \\ C & D \end{pmatrix}$ et $M' = \begin{pmatrix} A' & B' \\ C' & D' \end{pmatrix}$ deux matrices de même taille décomposées de la même façon en blocs et $\lambda \in \mathbb{K}$.

$$Alors\ M+M'=\begin{pmatrix} A+A' & B+B' \\ C+C' & D+D' \end{pmatrix}\ et\ \lambda M=\begin{pmatrix} \lambda A & \lambda B \\ \lambda C & \lambda D \end{pmatrix}.$$

Proposition 4.75

Soient $M = \begin{pmatrix} A & B \\ C & D \end{pmatrix}$ et $M' = \begin{pmatrix} A' & B' \\ C' & D' \end{pmatrix}$ deux matrices telles que le produit MM' existe et décomposées en blocs.

Alors, sous réserve que les blocs soient de tailles compatibles pour la multiplication, on a

$$MM' = \begin{pmatrix} AA' + BC' & AB' + BD' \\ CA' + DC' & CB' + DD' \end{pmatrix}.$$

Remarque 4.76

- ▶ Comme les symboles mis en jeu ne sont pas des nombres mais des matrices, il est indispensable de respecter l'ordre dans les produits.
- ▶ On peut généraliser à un nombre quelconque de blocs, pas forcément deux en ligne ou en colonne.

4.5.2 Cas particuliers des matrices carrées

Si M est une matrice de $\mathcal{M}_n(\mathbb{K})$, alors avec les mêmes notations, on choisit toujours A et D carrées elles aussi. Dans ce paragraphe, on suppose que c'est le cas.

Définition 4.77

On dit que M est triangulaire supérieure par blocs quand il existe des matrices carrées A_1, \ldots, A_k telles que M soit de la forme

$$M = \begin{pmatrix} A_1 & ? & ? & ... & ... & ? \\ 0 & A_2 & ? & ... & ... & ? \\ \vdots & & \ddots & & \vdots \\ 0 & ... & ... & 0 & A_{k-1} & ? \\ 0 & ... & ... & 0 & 0 & A_k \end{pmatrix}.$$

On définit de même la notion de matrice triangulaire inférieure par blocs.

Définition 4.78

On dit que M est diagonale par blocs quand il existe des matrices carrées A_1, \ldots, A_k telles que M soit de la forme

$$M = \begin{pmatrix} A_1 & 0 & 0 & \dots & 0 \\ 0 & A_2 & 0 & \dots & 0 \\ \vdots & & \ddots & & \vdots \\ 0 & \dots & 0 & A_{k-1} & 0 \\ 0 & \dots & 0 & 0 & A_k \end{pmatrix}.$$

Les résultats sur les matrices triangulaires ou diagonales restent valables par blocs : la somme et le produit de deux matrices triangulaires supérieures par blocs de mêmes tailles l'est encore, et de même pour les matrices triangulaires inférieures par blocs et les matrices diagonales par blocs.

Une conséquence est qu'une matrice M triangulaire par blocs est inversible ssi tous les blocs diagonaux sont inversibles.

Dans ce cas, l'inverse de M est triangulaire par blocs et ses blocs diagonaux sont les inverses des blocs diagonaux de M.

En particulier, l'inverse d'une matrice M diagonale par blocs est la matrice diagonale par blocs dont les blocs diagonaux sont les inverses de ceux de M.

De plus, le déterminant d'une matrice triangulaire par blocs est le produit des déterminants des blocs diagonaux.

4.5.3 Interprétation des blocs

Définition 4.79

Soient E un K-espace vectoriel, $f \in \mathcal{L}(E)$ et F un sous-espace vectoriel de E.

On dit que F est stable par f quand $f(F) \subseteq F$, i.e. pour tout $x \in F$, $f(x) \in F$.

Dans ce cas, on peut définir une application φ de F dans F en posant pour tout $x \in F$, $\varphi(x) = f(x)$.

Il est facile de vérifier que φ est un endomorphisme de F, appelé endomorphisme induit par f dans F.

Exemple 4.80

Si g est un endomorphisme de E qui commute avec f (i.e. fg = gf), alors $\ker g$ et $\operatorname{Im} g$ sont stables par f.

Proposition 4.81

Soient E un \mathbb{K} -espace vectoriel de dimension $n, f \in \mathcal{L}(E)$ et F un sous-espace vectoriel de E de dimension p.

Si F est stable par f, alors il existe une base de E dans laquelle la matrice de f est triangulaire supérieure par bloc, le premier bloc étant de taille (p,p):

$$\operatorname{Mat}_{\mathscr{B}}(f) = \begin{pmatrix} A & B \\ 0 & D \end{pmatrix} et A \in \mathscr{M}_{p}(\mathbb{K}).$$

Réciproquement, si f possède une matrice de cette forme, alors le sous-espace vectoriel engendré par les p premiers vecteurs est stable par f.

Démonstration 4.82 On choisit une base de E adaptée à $F: \mathcal{B} = \underbrace{\left(e_1, \ldots, e_p, e_{p+1}, \ldots, e_n\right)}_{\text{base de } E}$.

Pour tout $j \in [1; p]$, en notant $f(e_j) = (a_{1j}, \dots, a_{nj})_{\mathcal{B}}$, on a

$$f(e_j) \in F \iff f(e_j) \in \text{Vect}(e_1, \dots, e_p)$$

 $\iff \forall i \ge p+1, \ a_{ij} = 0$
 $\iff f(e_j) = (a_{1j}, \dots, a_{pj}, 0, \dots, 0)_{\mathscr{B}}.$

Alors, si F est stable par f, on a

$$\operatorname{Mat}_{\mathscr{B}}(f) = \begin{pmatrix} a_{11} & \dots & a_{1p} & ? & \dots & ? \\ \vdots & & \vdots & \vdots & & \vdots \\ \vdots & & \vdots & \vdots & & \vdots \\ a_{p1} & \dots & a_{pp} & \vdots & & \vdots \\ 0 & \dots & \dots & 0 & \vdots & & \vdots \\ \vdots & & \vdots & & \vdots & & \vdots \\ 0 & \dots & \dots & 0 & ? & \dots & ? \end{pmatrix}.$$

Et réciproquement.

Proposition 4.83

Soient E un \mathbb{K} -espace vectoriel de dimension n et $f \in \mathcal{L}(E)$.

Si F_1, \ldots, F_k sont des sous-espaces vectoriels supplémentaires stables par f de dimensions respectives p_1, \ldots, p_k , alors il existe une base de E dans laquelle la matrice de f est diagonale par blocs, la taille du i-ème bloc étant (p_i, p_i) :

$$\operatorname{Mat}_{\mathscr{B}}(f) = \begin{pmatrix} A_1 & 0 & 0 & \dots & 0 \\ 0 & A_2 & 0 & \dots & 0 \\ \vdots & & \ddots & & \vdots \\ 0 & \dots & 0 & A_{k-1} & 0 \\ 0 & \dots & 0 & 0 & A_k \end{pmatrix}.$$

Réciproquement, si f possède une matrice dans une certaine base qui est diagonale par blocs et contenant k blocs carrés, alors il existe k sous-espaces vectoriels F_1, \ldots, F_k stables par f et supplémentaires dans E.

Chapitre 5

Réduction des endomorphismes

Sommaire	
5.1	Éléments propres d'un endomorphisme
5.1.1	Valeurs propres et vecteurs propres
5.1.2	Lien avec les polynômes annulateurs
5.1.3	Sous-espaces propres
5.2	Polynôme caractéristique d'un endomorphisme
5.2.1	Caractérisation des valeurs propres en dimension finie
5.2.2	Définition et lien avec les valeurs propres
5.2.3	Ordre de multiplicité et dimension du sous-espace propre
5.2.4	Endomorphisme scindé
5.3	Éléments propres d'une matrice carrée
5.3.1	Valeurs propres et vecteurs propres
5.3.2	Lien avec les polynômes annulateurs
5.3.3	Sous-espaces propres
5.4	Polynôme caractéristique d'une matrice carrée
5.4.1	Définition et lien avec les valeurs propres
5.4.2	Ordre de multiplicité et dimension du sous-espace propre
5.4.3	Matrice scindée
5.5	Endomorphismes diagonalisables, matrices diagonalisables 169
5.5.1	Définition
5.5.2	Caractérisations équivalentes
5.5.3	Lien avec le polynôme caractéristique
5.6	Lien entre diagonalisabilité et polynômes annulateurs
5.6.1	Racines du polynôme minimal
5.6.2	Lemme des noyaux
5.6.3	Application à la diagonalisabilité
5.6.4	Diagonalisabilité d'un endomorphisme induit
5.7	Quelques applications de la diagonalisation
5.7.1	Puissances d'une matrice, suites récurrentes linéairement
5.7.2	
5.8	Endomorphismes trigonalisables, matrices trigonalisables 181
5.8.1	Définition et propriétés
5.8.2	Caractérisation équivalente
5.8.3	Théorème de Cayley-Hamilton

5.9	Endomorphismes nilpotents, matrices nilpotentes
5.9.1	Généralités
5.9.2	Éléments propres d'un nilpotent
5.9.3	Application aux sous-espaces caractéristiques d'un endomorphisme 190

Dans ce chapitre, \mathbb{K} désigne un sous-corps de \mathbb{C} , en général \mathbb{R} ou \mathbb{C} .

5.1 Éléments propres d'un endomorphisme

Dans cette section, E est un \mathbb{K} -espace vectoriel de dimension quelconque, finie ou non.

5.1.1 Valeurs propres et vecteurs propres

Définition 5.1

Soient $f \in \mathcal{L}(E)$ et $\lambda \in \mathbb{K}$.

On dit que λ est une valeur propre de f quand il existe un vecteur v non-nul tel que $f(v) = \lambda v$.

Si λ est une valeur propre de f, alors tout vecteur non-nul v tel que $f(v) = \lambda v$ est appelé vecteur propre associé à la valeur propre λ .

Remarque 5.2

Si $f(v) = \lambda v$ et $v \neq 0$ alors pour tout $\alpha \neq 0$, $f(\alpha v) = \alpha f(v) = \alpha (\lambda v) = \lambda (\alpha v)$. Donc αv est un vecteur propre de f pour la valeur propre λ .

Exemple 5.3

- ▶ Pour tout $\alpha \in \mathbb{K}$, αid_E a pour unique valeur propre α et tout vecteur non-nul de E est un vecteur propre associé.
- ▶ Si p est un projecteur non-trivial (i.e. $p \neq 0$ et $p \neq \mathrm{id}_E$), alors p a pour seules valeurs propres 0 et 1.
- ▶ De même, si s est une symétrie non-triviale (i.e. $s \neq id_E$ et $s \neq -id_E$), alors les valeurs propres de s sont 1 et -1.
- ightharpoonup L'endomorphisme de $\mathbb{K}[X]$ $P \longmapsto XP$ n'a pas de valeur propre.

L'ensemble des valeurs propres d'un endomorphisme f est appelé le spectre de f et est noté $\operatorname{Sp}_{\mathbb{K}}(f)$ ou plus simplement $\operatorname{Sp}(f)$ (en toute rigueur, cette définition est fausse en dimension infinie, mais à notre niveau, cette approximation est acceptable).

Définition 5.4

On appelle droite propre d'un endomorphisme toute droite dirigée par un vecteur propre.

Proposition 5.5

Les droites propres d'un endomorphisme sont exactement les droites stables par cet endomorphisme.

Exercice 5.6

Soit $f \in \mathcal{L}\left(\mathbb{R}^{\mathbb{N}}\right)$ défini par : si $(u_n) \in \mathbb{R}^{\mathbb{N}}$, on pose $f(u) = (u_{n+1})$. Quelles sont les valeurs propres de f et les vecteurs propres associés?

Exercice 5.7

Même question avec d l'opérateur de dérivation dans $\mathscr{C}^{\infty}(\mathbb{R},\mathbb{R})$.

Exercice 5.8

Même question avec D l'opérateur de dérivation dans $\mathbb{R}[X]$.

5.1.2 Lien avec les polynômes annulateurs

En dimension quelconque, il est souvent difficile de trouver les valeurs propres d'un endomorphisme. La connaissance d'un polynôme annulateur peut aider.

Lemme 5.9

Soient $f \in \mathcal{L}(E)$ et $P \in \mathbb{K}[X]$. Si λ est une valeur propre de f et v un vecteur propre associé, alors $P(f)(v) = P(\lambda)v$.

Démonstration 5.10

On montre par récurrence la propriété $\mathcal{P}\left(k\right)$: « $f^{k}\left(v\right)=\lambda^{k}v$ ».

On a
$$f^{0}\left(v\right)=v=\lambda^{0}v.$$

Si $\mathcal{P}(k)$ est vraie, alors

$$f^{k+1}(v) = f f^{k}(v)$$

$$= f \left(\lambda^{k} v\right)$$

$$= \lambda^{k} f(v)$$

$$= \lambda^{k} \lambda v$$

$$= \lambda^{k+1} v.$$

D'où $\mathcal{P}(k+1)$.

Par récurrence, pour tout $k \in \mathbb{N}$, $\mathcal{P}(k)$ est vraie.

On écrit
$$P = \sum_{i=0}^{n} a_i X^i$$
.

Alors
$$P(f) = \sum_{i=0}^{n} a_i f^i$$
.

Donc

$$P(f)(v) = \sum_{i=0}^{n} a_i f^i(v)$$
$$= \sum_{i=0}^{n} a_i (\lambda^i v)$$
$$= v \sum_{i=0}^{n} a_i \lambda^i$$
$$= P(\lambda) v.$$

Si $P \in \mathbb{K}[X]$, on note $\mathbb{Z}_{\mathbb{K}}(P)$ l'ensemble des racines de P dans \mathbb{K} .

Proposition 5.11

Soit $f \in \mathcal{L}(E)$.

Si P est un polynôme annulateur de f, alors $Sp(f) \subseteq Z_{\mathbb{K}}(P)$.

Démonstration 5.12

Il existe $v \neq 0$ tel que $f(v) = \lambda v$.

D'après le lemme précédent, $P(f)(v) = P(\lambda)v$.

Or P(f) = 0 donc $P(\lambda) v = 0$.

Or $v \neq 0$ donc $P(\lambda) = 0$.

Donc $\lambda \in Z_{\mathbb{K}}(P)$.

Remarque 5.13

Attention! La réciproque est fausse. Contre-exemple : le polynôme $P = X^2 - 1$ est annulateur de id_E et pourtant -1, qui est racine de P, n'est pas valeur propre de id_E .

Exercice 5.14

Soit $n \ge 2$. Pour $M \in \mathcal{M}_n(\mathbb{K})$, on pose $f(M) = M + M^{\top} + \operatorname{tr}(M) I_n$: f est clairement un endomorphisme de $\mathcal{M}_n(\mathbb{K})$.

Déterminez un polynôme annulateur de f de degré 3 et déduisez-en les valeurs propres de f.

5.1.3 Sous-espaces propres

Proposition 5.15

Soient $f \in \mathcal{L}(E)$ et $\lambda \in \mathbb{K}$.

Alors λ est valeur propre de f ssi ker $(f - \lambda id_E) \neq \{0\}$, autrement dit ssi $f - \lambda id_E$ n'est pas injectif.

Démonstration 5.16

On a

$$\lambda \in \operatorname{Sp}(f) \iff \exists v \in E, \ v \neq 0 \text{ et } f(v) = \lambda v$$

$$\iff \exists v \in E, \ v \neq 0 \text{ et } f(v) - \lambda v = 0$$

$$\iff \exists v \in E, \ v \neq 0 \text{ et } (f - \lambda \operatorname{id}_E)(v) = 0$$

$$\iff \exists v \in E, \ v \neq 0 \text{ et } v \in \ker(f - \lambda \operatorname{id}_E)$$

$$\iff \ker(f - \lambda \operatorname{id}_E) \neq \{0\}$$

$$\iff f - \lambda \operatorname{id}_E \text{ non-injective.}$$

Définition 5.17

Soit $f \in \mathcal{L}(E)$.

Si $\lambda \in \operatorname{Sp}(f)$, le noyau $\ker(f - \lambda \operatorname{id}_E)$ est appelé le sous-espace propre associé à la valeur propre λ . Il est souvent noté $\operatorname{sep}(f, \lambda)$.

Par conséquent, sep (f, λ) est l'ensemble des vecteurs propres associés à la valeur propre λ auquel on ajoute le vecteur nul.

Remarque 5.18

Un cas particulier important : 0 est valeur propre ssi f n'est pas injective.

Exercice 5.19 Soit u un endomorphisme ayant pour matrice $M = \begin{pmatrix} -3 & 4 & -4 \\ 4 & -3 & 3 \\ 4 & -4 & 4 \end{pmatrix}$ dans une certaine base \mathcal{B} .

Calculez $M^3 + 2M^2 - 3M$. Déduisez-en les valeurs propres de u puis déterminez les sous-espaces propres associés.

Proposition 5.20

Tout sous-espace propre d'un endomorphisme est stable par cet endomorphisme. L'endomorphisme induit sur un sous-espace propre est alors une homothétie.

Démonstration 5.21

Soit $v \in \text{sep}(f, \lambda)$.

On a $f(v) = \lambda v$.

Donc $f(f(v)) = \lambda f(v)$.

Donc $f(v) \in \text{sep}(f, \lambda)$.

Donc le sous-espace propre sep (f, λ) est stable par f.

De plus, l'endomorphisme induit par f sur ce sous-espace est

$$sep (f, \lambda) \longrightarrow sep (f, \lambda)
v \longmapsto f (v) = \lambda v$$

i.e. l'homothétie de rapport λ .

Théorème 5.22

Soient $f \in \mathcal{L}(E)$ et $\lambda_1, \ldots, \lambda_p$ des valeurs propres distinctes de f.

Alors les sous-espaces propres $(\text{sep }(f,\lambda_i))_{1 \leq i \leq p}$ sont en somme directe.

Autrement dit, toute famille de vecteurs propres associés à des valeurs propres distinctes est libre.

Démonstration 5.23

Soit
$$(v_1, \ldots, v_p) \in \prod_{i=1}^p \operatorname{sep}(f, \lambda_i)$$
 tel que $v_1 + \cdots + v_p = 0$ (1).

On veut montrer que $v_1 = \cdots = v_p = 0$.

On applique $f \ge (1) : f(v_1) + \cdots + f(v_p) = 0$ i.e. $\lambda_1 v_1 + \cdots + \lambda_p v_p = 0$.

On réitère p-2 fois et on obtient le système suivant :

$$\begin{cases} v_1 + \dots + v_p = 0 \\ \lambda_1 v_1 + \dots + \lambda_p v_p = 0 \\ \lambda_1^2 v_1 + \dots + \lambda_p^2 v_p = 0 \\ \vdots \\ \lambda_1^{p-1} v_1 + \dots + \lambda_p^{p-1} v_p = 0 \end{cases}$$

La matrice de ce système linéaire est

$$\begin{pmatrix} 1 & \dots & 1 \\ \lambda_1 & \dots & \lambda_p \\ \lambda_1^2 & \dots & \lambda_p^2 \\ \vdots & & \vdots \\ \vdots & & \vdots \\ \lambda_1^{p-1} & \dots & \lambda_p^{p-1} \end{pmatrix}$$

i.e. une matrice de Vandermonde inversible car les λ_i sont distincts donc le système a une unique solution $(v_1, \ldots, v_p) = (0, \ldots, 0)$.

Remarque 5.24

Quand on demande de déterminer les éléments propres d'un endomorphisme, on demande de déterminer les valeurs propres et les vecteurs propres associés, *i.e.* les sous-espaces propres.

À partir de maintenant, il est toujours supposé que E est de dimension finie n

5.2 Polynôme caractéristique d'un endomorphisme

5.2.1 Caractérisation des valeurs propres en dimension finie

Proposition 5.25

Soient $f \in \mathcal{L}(E)$ et $\lambda \in \mathbb{K}$. Alors

$$\lambda \in \operatorname{Sp}(f) \iff \operatorname{rg}(f - \lambda \operatorname{id}_E) < n.$$

Dans ce cas, dim sep $(f, \lambda) = n - \operatorname{rg} (f - \lambda \operatorname{id}_E)$.

Démonstration 5.26

D'après le théorème du rang, on a

$$n = \underbrace{\dim \ker (f - \lambda \mathrm{id}_E)}_{=\dim \mathrm{sep}(f,\lambda)} + \mathrm{rg}(f - \lambda \mathrm{id}_E).$$

Donc dim sep $(f, \lambda) = n - \operatorname{rg} (f - \lambda \operatorname{id}_E)$.

On obtient l'inégalité voulue grâce à la Proposition 5.15.

5.2.2 Définition et lien avec les valeurs propres

Définition 5.27

Soit $f \in \mathcal{L}(E)$.

On appelle polynôme caractéristique de f le polynôme $\chi_f = \det(X \mathrm{id}_E - f)$.

La notation χ_f est très courante : elle est à connaître.

Théorème 5.28

Soit $f \in \mathcal{L}(E)$.

Alors χ_f est un polynôme unitaire de degré n de $\mathbb{K}[X]$ et les valeurs propres de f sont exactement les racines dans \mathbb{K} de $\chi_f: \mathbb{Z}_{\mathbb{K}}(\chi_f) = \operatorname{Sp}(f)$.

Par conséquent, un endomorphisme d'un espace de dimension n a au plus n valeurs propres distinctes.

Démonstration 5.29

On choisit une base \mathcal{B} de E et on pose $A = (a_{ij}) \in \mathcal{M}_n(\mathbb{K})$ la matrice de f dans \mathcal{B} .

On a

$$\chi_{f} = \det (X \operatorname{id}_{E} - f)$$

$$= \det (X I_{n} - A)$$

$$= \begin{vmatrix} X - a_{11} & -a_{12} & \dots & -a_{1n} \\ -a_{21} & X - a_{22} & \dots & \vdots \\ \vdots & \ddots & \ddots & \vdots \\ -a_{n1} & \dots & -a_{nn-1} & X - a_{nn} \end{vmatrix}$$

On pose
$$c_{ij} = \begin{cases} -a_{ij} & \text{si } i \neq j \\ X - a_{ii} & \text{sinon} \end{cases}$$

Alors

$$\chi_f = \sum_{\sigma \in \mathfrak{S}_n} \varepsilon(\sigma) \prod_{i=1}^n c_{i\sigma(i)}$$

$$= \varepsilon(\mathrm{id}) \prod_{i=1}^n c_{ii} + \sum_{\sigma \in \mathfrak{S}_n \setminus \{\mathrm{id}\}} \varepsilon(\sigma) \prod_{i=1}^n c_{i\sigma(i)}$$

On remarque que si $\sigma \in \mathfrak{S}_n$ alors σ a n points fixes si σ = id et σ a moins de n-2 points fixes sinon donc si $\sigma \neq$ id, il existe au moins deux entiers $i, j \in [1 ; n]$ tels que $\sigma(i) \neq i$ et $\sigma(j) \neq j$.

Donc pour toute permutation $\sigma \neq id$, parmi les facteurs du produit $\prod_{i=1}^{n} a_{i\sigma(i)}$, il en existe au moins deux qui sont de la forme $a_{??}$ donc $\prod_{i=1}^{n} c_{i\sigma(i)}$ est un polynôme de degré au plus n-2.

Donc deg $\chi_f = n$ et χ_f est unitaire.

De plus, on a

$$\lambda \in \operatorname{Sp}(f) \iff f - \lambda \operatorname{id}_E \text{ n'est pas injectif}$$

$$\iff f - \lambda \operatorname{id}_E \text{ n'est pas bijectif}$$

$$\iff \det (f - \lambda \operatorname{id}_E) = 0$$

$$\iff \det (\lambda \operatorname{id}_E - f) = 0$$

$$\iff \chi_f(\lambda) = 0.$$

Exercice 5.30

Montrez que si dim E = 2, alors pour tout $f \in \mathcal{L}(E)$, $\chi_f = X^2 - \operatorname{tr}(f) X + \det f$.

Exercice 5.31 Calculez le polynôme caractéristique d'un endomorphisme de matrice $\begin{pmatrix} 1 & 4 & 7 \\ 2 & 5 & 8 \\ 3 & 6 & 9 \end{pmatrix}$ et donnez ses valeurs propres.

Exercice 5.32

Soient $\mathcal{B} = (e_1, \dots, e_n)$ une base de E, $s = \sum_{i=1}^n e_i$ et $f \in \mathcal{L}(E)$ tel que pour tout $j \in [1; n]$, $f(e_j) = e_j + s$.

Calculez son polynôme caractéristique et ses éléments propres.

On peut noter un lien avec la trace et le déterminant.

Proposition 5.33

Soit $f \in \mathcal{L}(E)$.

Alors $\chi_f = X^n - \operatorname{tr}(f) X^{n-1} + \dots + (-1)^n \det f$.

Démonstration 5.34

▶ On a $\chi_f = \det (X id_E - f)$ donc

$$\chi_f(0) = \det(-f) = (-1)^n \det f$$

est le coefficient constant de χ_f .

▶ On avait $\chi_f = \prod_{i=1}^n (X - a_{ii}) + Q$ avec deg $Q \leq n - 2$ (cf. Démonstration 5.29).

Donc le coefficient d'indice n-1 est celui du produit $\prod_{i=1}^{n} (X-a_{ii})$.

Or on a

$$(X - a_{11}) \dots (X - a_{nn}) = X^n + (-a_{11} - \dots - a_{nn}) X^{n-1} + \dots$$

= $X^n - \operatorname{tr}(f) X^{n-1} + \dots$

5.2.3 Ordre de multiplicité et dimension du sous-espace propre

Définition 5.35

Soient $f \in \mathcal{L}(E)$ et $\lambda \in \operatorname{Sp}(f)$.

On appelle ordre de multiplicité de la valeur propre λ son ordre de multiplicité en tant que racine de χ_f .

Proposition 5.36

Soient $f \in \mathcal{L}(E)$, F un sous-espace vectoriel de E stable par f et g l'endomorphisme induit par f dans F.

Alors χ_g divise χ_f .

Démonstration 5.37

On choisit une base $\mathcal{B} = (e_1, \dots, e_p, e_{p+1}, \dots, e_n)$ de E adaptée à $F: (e_1, \dots, e_p)$ est une base de F.

Alors

$$\operatorname{Mat}_{\mathscr{B}}(f) = \begin{pmatrix} A & ? \\ 0 & B \end{pmatrix}$$

où $A \in \mathcal{M}_p(\mathbb{K})$ et $B \in \mathcal{M}_{n-p}(\mathbb{K})$.

On remarque que $A = \operatorname{Mat}_{\left(e_1, \dots, e_p\right)}(g).$

Alors

$$\chi_f = \begin{vmatrix} XI_p - A & -? \\ 0 & XI_{n-p} - B \end{vmatrix}$$
$$= \underbrace{\det (XI_p - A)}_{=\chi_g} \det (XI_{n-p} - B).$$

Donc $\chi_g \mid \chi_f$.

Une conséquence très importante de ce résultat est le théorème suivant.

Théorème 5.38

Soient $f \in \mathcal{L}(E)$ et $\lambda \in \operatorname{Sp}(f)$.

Si λ est une valeur propre d'ordre α , alors $1 \leq \dim \operatorname{sep}(f, \lambda) \leq \alpha$.

Démonstration 5.39

Si $\lambda \in \operatorname{Sp}(f)$ alors $\operatorname{sep}(f,\lambda)$ est stable par f et l'endomorphisme induit par f dans $\operatorname{sep}(f,\lambda)$ est l'homothétie de rapport $\lambda: g = \lambda \operatorname{id}$.

On note $p = \dim \operatorname{sep}(f, \lambda)$.

On a

$$\chi_g = \begin{vmatrix} X - \lambda & 0 & \dots & 0 \\ 0 & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & 0 \\ 0 & \dots & \ddots & 0 & X - \lambda \end{vmatrix}_{[p]} = (X - \lambda)^p.$$

D'après la Proposition 5.36, $(X - \lambda)^p \mid \chi_f$ donc $p \leq \alpha$.

De plus, on a $1 \le p$ car sep $(f, \lambda) \ne \{0\}$.

Exercice 5.40 Soit f un endomorphisme de matrice $\begin{pmatrix} 3 & -4 & -5 \\ -1 & 3 & 2 \\ 1 & -2 & -1 \end{pmatrix}$. Déterminez les valeurs propres de f, leur multiplicité et la dimension des sous-espaces propres associés.

5.2.4 Endomorphisme scindé

Définition 5.41

On dit qu'un endomorphisme de E est scindé quand son polynôme caractéristique est scindé dans $\mathbb{K}[X]$.

Dans le cas d'un endomorphisme scindé, on connaît alors la somme et le produit des valeurs propres.

Proposition 5.42

Si $f \in \mathcal{L}(E)$ est scindé et a pour valeurs propres $\lambda_1, \ldots, \lambda_p$ avec les ordres de multiplicité $\alpha_1, \ldots, \alpha_p$, alors

$$\operatorname{tr} f = \sum_{k=1}^{p} \alpha_k \lambda_k \qquad et \qquad \det f = \prod_{k=1}^{p} \lambda_k^{\alpha_k}.$$

Démonstration 5.43

Relations coefficients/racines.

Si $\mathbb{K} = \mathbb{C}$ alors on est dans ce cas, car tous les polynômes de $\mathbb{C}[X]$ sont scindés dans $\mathbb{C}[X]$ d'après le théorème de d'Alembert-Gauss.

Mais si $\mathbb{K} = \mathbb{R}$, alors il faut se méfier des raisonnements hâtifs : comme un \mathbb{R} -endomorphisme peut ne pas avoir de valeurs propres réelles, la trace et le déterminant peuvent ne pas avoir de rapport avec les valeurs propres.

Exercice 5.44

Soit f un endomorphisme d'un \mathbb{C} -espace vectoriel de dimension $n \ge 2$ dont la matrice dans une base est remplie par ligne de 1, ligne de 2, etc. Sans calculer le polynôme caractéristique, déterminez les valeurs propres complexes de f, leur multiplicité et la dimension des sous-espaces propres associés.

Remarque 5.45

Dans le langage courant, on dit souvent que la trace est la somme des valeurs propres. Cette phrase est correcte seulement si l'on sous-entend que l'on parle de la somme des valeurs propres comptées chacune avec son ordre de multiplicité.

On rencontre en fait deux types de résultats à propos des valeurs propres :

- ▶ ceux où l'on parle des valeurs propres distinctes (comme le Théorème 5.28);
- ▶ ceux où l'on parle des valeurs propres comptées selon leur multiplicité (comme la Proposition 5.42).

Il faut donc être très attentif à la façon dont on considère les valeurs propres.

5.3 Éléments propres d'une matrice carrée

Soit $n \in \mathbb{N}^*$. Les matrices-colonnes d'ordre n sont les matrices de $\mathcal{M}_{n1}(\mathbb{K})$, espace souvent identifié avec \mathbb{K}^n .

5.3.1 Valeurs propres et vecteurs propres

Définition 5.46

Soient $A \in \mathcal{M}_n(\mathbb{K})$ et $\lambda \in \mathbb{K}$.

On dit que λ est valeur propre de A quand il existe une matrice-colonne X non-nulle telle que $AX = \lambda X$.

Si λ est une valeur propre de A, alors toute matrice-colonne non-nulle X telle que $AX = \lambda X$ est appelée vecteur propre associé à la valeur propre λ .

Exemple 5.47

- ▶ Pour tout $\alpha \in \mathbb{K}$, αI_n a pour unique valeur propre α et toute matrice-colonne non-nulle est un vecteur propre associé.
- \triangleright Si A est une matrice diagonale, alors ses valeurs propres sont les coefficients diagonaux et des vecteurs propres associés sont les colonnes remplies de 0 sauf un seul coefficient égal à 1.

L'ensemble des valeurs propres d'une matrice A est appelé le spectre de A et est noté $\operatorname{Sp}_{\mathbb{K}}(A)$ ou plus simplement $\operatorname{Sp}(A)$.

Mais comme une matrice à coefficients réels est aussi une matrice à coefficients complexes, il vaut mieux savoir si on parle des valeurs propres réelles ou complexes. Il est donc préférable d'indiquer clairement le corps de base, comme le montre le résultat suivant.

Proposition 5.48

Soient $A \in \mathcal{M}_n(\mathbb{K})$ et \mathbb{K}' une extension de \mathbb{K} dans \mathbb{C} .

Alors $\operatorname{Sp}_{\mathbb{K}}(A) \subseteq \operatorname{Sp}_{\mathbb{K}'}(A)$.

Proposition 5.49

Soient $A \in \mathcal{M}_n(\mathbb{K})$, $f \in \mathcal{L}(E)$ et \mathcal{B} une base de E.

$$Si\ A = \operatorname*{Mat}_{\mathcal{B}}\left(f\right),\ alors\ \operatorname{Sp}_{\mathbb{K}}\left(A\right) = \operatorname{Sp}\left(f\right).$$

Par conséquent, deux matrices semblables ont les mêmes valeurs propres (mais attention, pas forcément les mêmes vecteurs propres).

5.3.2 Lien avec les polynômes annulateurs

Proposition 5.50

Soit $A \in \mathcal{M}_n(\mathbb{K})$.

Si P est un polynôme annulateur de A, alors $\operatorname{Sp}_{\mathbb{K}}(A) \subseteq \operatorname{Z}_{\mathbb{K}}(P)$.

Attention! La réciproque est fausse. Contre-exemple : le polynôme $P = X^2 - 1$ est annulateur de I_n et pourtant -1, qui est racine de P, n'est pas valeur propre de I_n .

5.3.3 Sous-espaces propres

Proposition 5.51

Soient $A \in \mathcal{M}_n(\mathbb{K})$ et $\lambda \in \mathbb{K}$.

Alors λ est valeur propre de A ssi $A - \lambda I_n$ n'est pas inversible, autrement dit ssi $\operatorname{rg}(A - \lambda I_n) < n$ ou $\det(A - \lambda I_n) = 0$.

Si $\lambda \in \operatorname{Sp}_{\mathbb{K}}(A)$, le sous-espace propre associé à la valeur propre λ est l'ensemble des vecteurs propres associés à la valeur propre λ auquel on ajoute le vecteur nul. Il est souvent noté $\operatorname{sep}_{\mathbb{K}}(A,\lambda)$:

$$\operatorname{sep}_{\mathbb{K}}\left(A,\lambda\right)=\left\{X\in\mathcal{M}_{n\,1}\left(\mathbb{K}\right)\mid AX=\lambda X\right\}.$$

Proposition 5.52

Soient $A \in \mathcal{M}_n(\mathbb{K})$ et $\lambda \in \mathbb{K}$. Alors

$$\lambda \in \mathrm{Sp}_{\mathbb{K}}(A) \iff \mathrm{rg}(A - \lambda I_n) < n.$$

 $Dans\ ce\ cas,\ \dim \operatorname{sep}_{\mathbb{K}}\left(A,\lambda\right)=n-\operatorname{rg}\left(A-\lambda I_{n}\right).$

Attention! Dans la relation dim $\operatorname{sep}_{\mathbb{K}}(A,\lambda) = n - \operatorname{rg}(A - \lambda I_n)$, c'est n, pas n^2 ! Il s'agit de la dimension de $\mathcal{M}_{n,1}(\mathbb{K})$, pas celle de $\mathcal{M}_{n}(\mathbb{K})$.

Remarque 5.53

Un cas particulier important : 0 est valeur propre ssi A n'est pas inversible, c'est-à-dire ssi rg A < n.

Théorème 5.54

Soient $A \in \mathcal{M}_n(\mathbb{K})$ et $\lambda_1, \ldots, \lambda_p$ des valeurs propres distinctes de A.

Alors les sous-espaces propres $(\operatorname{sep}_{\mathbb{K}}(A,\lambda_i))_{1 \leq i \leq p}$ sont en somme directe.

Autrement dit, toute famille de vecteurs propres associés à des valeurs propres distinctes est libre.

Remarque 5.55

Quand on demande de déterminer les éléments propres d'une matrice, on demande de déterminer les valeurs propres et les vecteurs propres associés, *i.e.* les sous-espaces propres.

5.4 Polynôme caractéristique d'une matrice carrée

5.4.1 Définition et lien avec les valeurs propres

Définition 5.56

Soit $A \in \mathcal{M}_n(\mathbb{K})$.

On appelle polynôme caractéristique de A le polynôme $\chi_A = \det(XI_n - A)$.

Proposition 5.57

Soient $A \in \mathcal{M}_n(\mathbb{K}), f \in \mathcal{L}(E)$ et \mathcal{B} une base de E.

$$Si\ A = \underset{\mathcal{B}}{\operatorname{Mat}}(f),\ alors\ \chi_A = \chi_f.$$

Par conséquent, deux matrices semblables ont le même polynôme caractéristique.

Théorème 5.58

Soit $A \in \mathcal{M}_n(\mathbb{K})$.

Alors χ_A est un polynôme unitaire de degré n de $\mathbb{K}[X]$ et les valeurs propres de A sont exactement les racines de χ_A dans \mathbb{K} .

Par conséquent, une matrice carrée de taille (n,n) a au plus n valeurs propres distinctes.

Corollaire 5.59

L'ensemble $\mathrm{GL}_n\left(\mathbb{K}\right)$ est dense dans $\mathcal{M}_n\left(\mathbb{K}\right)$.

Démonstration 5.60

Soit $A \in \mathcal{M}_n(\mathbb{K})$.

On veut montrer qu'il existe une suite de matrices inversibles qui converge vers A.

Considérons la suite $\left(A + \frac{1}{k}I_n\right)_{k \in \mathbb{N}^*}$.

On a
$$\lim_{k \to +\infty} \left(A + \frac{1}{k} I_n \right) = A$$
.

Montrons qu'à partir d'un certain rang, cette suite est constituée de matrices inversibles.

Pour tout $k \in \mathbb{N}^*$, $A + \frac{1}{k}I_n$ n'est pas inversible $\iff \frac{-1}{k}$ est valeur propre de A.

- ▶ Si A n'a que des valeurs propres positives ou nulles, alors comme pour tout $k \in \mathbb{N}^*$, $\frac{-1}{k} < 0$, $\frac{-1}{k}$ n'est pas valeur propre.
- ▶ Si A possède au moins une valeur propre strictement négative, on pose $r = \min \{ |\lambda| \mid \lambda \in \operatorname{Sp}(A) \cap \mathbb{R}_{-}^{*} \} > 0$. Dès que $\frac{1}{L} < r$, il est certain que $\frac{-1}{L}$ n'est pas valeur propre.

On peut noter un lien avec la trace et le déterminant.

Proposition 5.61

Soit $A \in \mathcal{M}_n(\mathbb{K})$.

Alors $\chi_A = X^n - \operatorname{tr}(A) X^{n-1} + \dots + (-1)^n \det A$.

5.4.2 Ordre de multiplicité et dimension du sous-espace propre

Définition 5.62

Soient $A \in \mathcal{M}_n(\mathbb{K})$ et $\lambda \in \operatorname{Sp}_{\mathbb{K}}(A)$.

On appelle ordre de multiplicité de la valeur propre λ son ordre de multiplicité en tant que racine de χ_A .

Théorème 5.63

Soient $A \in \mathcal{M}_n(\mathbb{K})$ et $\lambda \in \mathrm{Sp}_{\mathbb{K}}(A)$.

Si λ est une valeur propre d'ordre α , alors $1 \leq \dim \operatorname{sep}_{\mathbb{K}}(A, \lambda) \leq \alpha$.

Proposition 5.64

Soient $A \in \mathcal{M}_n(\mathbb{K})$, $f \in \mathcal{L}(E)$ et \mathcal{B} une base de E.

 $Si\ A = \underset{\mathcal{B}}{\operatorname{Mat}}(f),\ alors\ \dim\operatorname{sep}_{\mathbb{K}}(A,\lambda) = \dim\operatorname{sep}(f,\lambda).$

Par conséquent, deux matrices semblables ont des sous-espaces propres de même dimension (mais pas les mêmes vecteurs propres).

5.4.3 Matrice scindée

Définition 5.65

On dit qu'une matrice de $\mathcal{M}_n(\mathbb{K})$ est scindée quand son polynôme caractéristique est scindé dans $\mathbb{K}[X]$.

Dans le cas d'une matrice scindée, on connaît alors la somme et le produit des valeurs propres.

Proposition 5.66

 $Si A \in \mathcal{M}_n(\mathbb{K})$ est scindée et a pour valeurs propres $\lambda_1, \ldots, \lambda_p$ avec les ordres de multiplicité $\alpha_1, \ldots, \alpha_p$, alors

$$\operatorname{tr} A = \sum_{k=1}^{p} \alpha_k \lambda_k \qquad et \qquad \det A = \prod_{k=1}^{p} \lambda_k^{\alpha_k}.$$

Si $\mathbb{K} = \mathbb{C}$, alors on est dans ce cas, car tous les polynômes de $\mathbb{C}[X]$ sont scindés dans $\mathbb{C}[X]$ d'après le théorème de d'Alembert-Gauss.

Mais si $\mathbb{K} = \mathbb{R}$, alors il faut se méfier des raisonnements hâtifs : comme un polynôme à coefficients réels peut ne pas avoir de racines réelles, la trace et le déterminant peuvent ne pas avoir de rapport avec les valeurs propres.

168

5.5 Endomorphismes diagonalisables, matrices diagonalisables

5.5.1 Définition

Définition 5.67

Soient $f \in \mathcal{L}(E)$ et $A \in \mathcal{M}_n(\mathbb{K})$.

On dit que f est diagonalisable quand il existe une base de E constituée de vecteurs propres de f.

On dit que A est diagonalisable dans $\mathcal{M}_n(\mathbb{K})$ (ou \mathbb{K} -diagonalisable) quand il existe une base de $\mathcal{M}_{n,1}(\mathbb{K})$ constituée de vecteurs propres de A.

D'après le lien entre les endomorphismes et les matrices carrées, un endomorphisme est diagonalisable ssi sa matrice dans n'importe quelle base est diagonalisable.

Exercice 5.68

La matrice $\begin{pmatrix} 1 & \sqrt{3} \\ -\sqrt{3} & 1 \end{pmatrix}$ est-elle $\mathbb R$ -diagonalisable? $\mathbb C$ -diagonalisable?

Exercice 5.69 Montrez que la matrice $A = \begin{pmatrix} 5 & -8 & -4 \\ 8 & -15 & -8 \\ -10 & 20 & 11 \end{pmatrix}$ est diagonalisable.

Exercice 5.70 $\text{Même exercice avec } B = \begin{pmatrix} 0 & 1 & -1 \\ 2 & 1 & 1 \\ 4 & -2 & 4 \end{pmatrix}.$

Exercice 5.71 $\begin{pmatrix} 11 & 7 & -3 \\ 11 & 7 & -3 \\ 66 & 42 & -18 \end{pmatrix}$ est-elle diagonalisable?

Proposition 5.72

Si un endomorphisme (une matrice) est diagonalisable, alors il (elle) est scindé(e).

Mais la réciproque est fausse.

5.5.2 Caractérisations équivalentes

On note $\mathcal{D}_n(\mathbb{K})$ l'ensemble des matrices diagonales de $\mathcal{M}_n(\mathbb{K})$.

Proposition 5.73

Soient $f \in \mathcal{L}(E)$ et $A \in \mathcal{M}_n(\mathbb{K})$.

f est diagonalisable ssi il existe une base \mathscr{B} de E telle que $\operatorname{Mat}(f) \in \mathscr{D}_n(\mathbb{K})$. Dans ce cas, les valeurs propres de f sont les éléments diagonaux de cette matrice.

A est \mathbb{K} -diagonalisable ssi elle est \mathbb{K} -semblable à une matrice diagonale, i.e. il existe $P \in GL_n(\mathbb{K})$ et $D \in \mathcal{D}_n(\mathbb{K})$ tel que $A = PDP^{-1}$. Dans ce cas, les valeurs propres de A sont les éléments diagonaux de D.

Démonstration 5.74

Si f est diagonalisable, il existe une base $\mathcal{B} = (e_1, \dots, e_n)$ de E constituée de vecteurs propres, i.e.

pour tout
$$j \in [1; n]$$
, $f(e_i) = \lambda_i e_i$

où λ_i est la valeur propre associée à e_i .

Donc

$$\operatorname{Mat}_{\mathscr{B}}(f) = \begin{pmatrix} \lambda_{1} & 0 & \dots & 0 \\ 0 & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \dots & \ddots & 0 & \lambda_{n} \end{pmatrix} \in \mathscr{D}_{n}(\mathbb{K}).$$

Et réciproquement.

Exemple 5.75

- ▶ Toute matrice diagonale est diagonalisable, car elle est semblable à elle-même.
- ▶ Les projecteurs et les symétries sont diagonalisables.

Remarque 5.76

Quitte à changer l'ordre des vecteurs dans la base, on peut ranger les valeurs propres sur la diagonale dans l'ordre qu'on veut.

Exemple 5.77

Si $D = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 3 \end{pmatrix}$, $P = \begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 2 & -1 & 3 \end{pmatrix}$ et $D = P^{-1}AP$, alors la colonne 1 de P est un vecteur propre de A

pour la valeur propre 1 et les deux autres sont des vecteurs propres pour la valeur propre 3, donc en

posant
$$Q = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 0 \\ 3 & -1 & 2 \end{pmatrix}$$
, on a $Q^{-1}AQ = \begin{pmatrix} 3 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 1 \end{pmatrix}$.

Lemme 5.78

Soit $f \in \mathcal{L}(E)$ diagonalisable : il existe une base de E dans laquelle la matrice D de f est diagonale.

Les valeurs propres de f sont les éléments diagonaux de D et si λ est un tel nombre, alors la dimension de sep (f, λ) est le nombre d'occurrences de λ dans la diagonale de D.

On en déduit les théorèmes suivants.

Théorème 5.79

Soit $f \in \mathcal{L}(E)$.

Il y a équivalence entre les propositions suivantes :

- \triangleright f est diagonalisable
- ▶ les sous-espaces propres de f sont supplémentaires dans E

$$\triangleright \sum_{\lambda \in \operatorname{Sp}(f)} \dim \operatorname{sep} \left(f, \lambda \right) = n$$

Démonstration 5.80

Les sous-espaces propres d'un endomorphisme sont en somme directe donc ils sont supplémentaires ssi la somme de leurs dimensions est celle de l'espace E.

Et sa version matricielle.

Théorème 5.81

Soit $A \in \mathcal{M}_n(\mathbb{K})$.

Il y a équivalence entre les propositions suivantes :

- ightharpoonup A est diagonalisable dans $\mathcal{M}_n(\mathbb{K})$
- ightharpoonup les sous-espaces propres de A dans $\mathcal{M}_{n1}\left(\mathbb{K}\right)$ sont supplémentaires dans $\mathcal{M}_{n1}\left(\mathbb{K}\right)$
- $\triangleright \sum_{\lambda \in \operatorname{Sp}_{\mathbb{K}}(A)} \dim \operatorname{sep}_{\mathbb{K}}(A, \lambda) = n$

Exercice 5.82

On pose $A = \begin{pmatrix} 0 & 1 & -1 \\ 2 & 1 & 1 \\ 4 & -2 & 4 \end{pmatrix}$. On a vu à l'Exercice 5.70 que A est diagonalisable. Diagonalisez A.

5.5.3 Lien avec le polynôme caractéristique

Théorème 5.83

Soit $f \in \mathcal{L}(E)$.

Il y a équivalence entre les propositions suivantes :

- \triangleright f est diagonalisable
- ▶ f est scindé et pour tout $\lambda \in \operatorname{Sp}(f)$, la dimension de $\operatorname{sep}(f,\lambda)$ est égale à l'ordre de multiplicité de λ

Démonstration 5.84

Si $\lambda \in \operatorname{Sp}(f)$, on note $\omega(\lambda)$ l'ordre de multiplicité de la valeur propre λ .

Si f est diagonalisable alors $\sum_{\lambda \in \operatorname{Sp}(f)} \dim \operatorname{sep} \left(f, \lambda \right) = n = \sum_{\lambda \in \operatorname{Sp}(f)} \omega \left(\lambda \right).$

Donc
$$\sum_{\lambda \in \operatorname{Sp}(f)} \underbrace{(\omega(\lambda) - \dim \operatorname{sep}(f, \lambda))}_{\geqslant 0 \text{ d'après le Théorème 5.38}} = 0.$$

Or une somme de réels positifs est nulle ssi tous ces réels sont nuls donc

$$\forall \lambda \in \operatorname{Sp}(f), \ \omega(\lambda) = \dim \operatorname{sep}(f, \lambda).$$

←

Si f est scindé et $\forall \lambda \in \text{Sp}(f)$, $\omega(\lambda) = \dim \text{sep}(f, \lambda)$, alors χ_f est scindé.

Donc
$$\sum_{\lambda \in \text{Sp}(f)} \omega(\lambda) = \text{deg } \chi_f = n.$$

Donc
$$\sum_{\lambda \in \text{Sp}(f)} \dim \text{sep}(f, \lambda) = n.$$

Donc f est diagonalisable d'après le Théorème 5.79.

Et sa version matricielle.

Théorème 5.85

Soit $A \in \mathcal{M}_n(\mathbb{K})$.

Il y a équivalence entre les propositions suivantes :

 $ightharpoonup A \ est \ diagonalisable \ dans \ \mathcal{M}_n \ (\mathbb{K})$

▶ A est scindée et pour tout $\lambda \in \operatorname{Sp}_{\mathbb{K}}(A)$, la dimension de $\operatorname{sep}_{\mathbb{K}}(A,\lambda)$ est égale à l'ordre de multiplicité de λ

Dans le cas où $\mathbb{K} = \mathbb{C}$, la condition « être scindé » est automatiquement satisfaite.

Un cas particulier très courant.

Proposition 5.86

Si un endomorphisme de E possède exactement n valeurs propres distinctes, alors il est diagonalisable.

Si une matrice de $\mathcal{M}_n(\mathbb{K})$ possède exactement n valeurs propres distinctes dans \mathbb{K} , alors elle est diagonalisable dans $\mathcal{M}_n(\mathbb{K})$.

Exercice 5.87 Montrez que la matrice
$$\begin{pmatrix} -4 & 8 & 22 \\ -2 & 3 & 4 \\ -1 & 2 & 7 \end{pmatrix}$$
 est diagonalisable.

Théorème 5.88 (Théorème spectral)

Si A est une matrice réelle symétrique, alors A est diagonalisable.

Démonstration 5.89

** Admis, sera démontré plus tard **

5.6 Lien entre diagonalisabilité et polynômes annulateurs

5.6.1 Racines du polynôme minimal

Proposition 5.90

Soit $f \in \mathcal{L}(E)$. Les racines de μ_f sont exactement les valeurs propres de $f : \mathbb{Z}_{\mathbb{K}}(\mu_f) = \operatorname{Sp}(f)$.

Soit $A \in \mathcal{M}_n(\mathbb{K})$. Les racines dans \mathbb{K} de μ_A sont exactement les valeurs propres dans \mathbb{K} de A: $Z_{\mathbb{K}}(\mu_A) = \operatorname{Sp}_{\mathbb{K}}(A)$.

Démonstration 5.91

 \supseteq Cf. Proposition 5.11 car μ_f est un polynôme annulateur de f.

 \subseteq

Soit $\lambda \in \mathcal{Z}_{\mathbb{K}}(\mu_f)$.

Alors $X - \lambda \mid \mu_f$, *i.e.* il existe $Q \in \mathbb{K}[X]$ tel que $\mu_f = (X - \lambda)Q$.

Alors $\mu_f(f) = 0 = (f - \lambda id_E) \circ Q(f)$.

Donc pour tout $x \in E$, $(f - \lambda id_E)(Q(f)(x)) = 0$.

Donc Im $Q(f) \subseteq \ker (f - \lambda id_E)$.

Or $\deg Q < \deg \mu_f$ donc Q n'est pas annulateur de f, i.e. $Q(f) \neq 0$, i.e. $\operatorname{Im} Q(f) \neq \{0\}$.

Donc ker $(f - \lambda id_E) \neq \{0\}$, i.e. $\lambda \in \text{Sp}(f)$.

Donc $Z_{\mathbb{K}}(\mu_f) \subseteq Sp(f)$.

5.6.2 Lemme des noyaux

Proposition 5.92

Soient $f \in \mathcal{L}(E)$ et $P, Q \in \mathbb{K}[X]$ tels que $P \wedge Q = 1$.

 $Alors \ \ker \left(PQ \right) \left(f \right) = \ker P \left(f \right) \oplus \ker Q \left(f \right).$

Démonstration 5.93

D'après le théorème de Bézout, il existe $(U,V) \in \mathbb{K}[X]^2$ tel que UP + VQ = 1.

Donc $(UP)(f) + (VQ)(f) = id_E, i.e.$

$$U\left(f\right)\circ P\left(f\right)+V\left(f\right)\circ Q\left(f\right)=\mathrm{id}_{E}\qquad\left(1\right)$$

Soit $x \in \ker P(f) \cap \ker Q(f)$.

On a P(f)(x) = 0 et Q(f)(x) = 0.

Donc, en appliquant (1) sur le vecteur x, on obtient

$$x = U(f)(P(f)(x)) + V(f)(Q(f)(x))$$

= $U(f)(0) + V(f)(0)$
= 0.

Donc $\ker P(f)$ et $\ker Q(f)$ sont en somme directe.

 \supseteq

On a
$$(PQ)(f) = P(f) \circ Q(f) = Q(f) \circ P(f)$$
.

Donc $\ker P(f) \subseteq \ker (PQ)(f)$ et $\ker Q(f) \subseteq \ker (PQ)(f)$.

Donc $\ker P(f) \oplus \ker Q(f) \subseteq \ker (PQ)(f)$.

 \subseteq

Soit $x \in \ker(PQ)(f)$.

On veut montrer qu'il existe $(a, b) \in \ker P(f) \times \ker Q(f)$ tel que x = a + b.

On applique (1) sur x:

$$x = U(f) \circ P(f)(x) + V(f) \circ Q(f)(x).$$

On pose $a = V(f) \circ Q(f)(x)$.

On a

$$P(f)(a) = P(f)(V(f) \circ Q(f)(x)) = (P(f) \circ V(f) \circ Q(f))(x).$$

Or $\mathbb{K}\left[f\right]$ est une algèbre commutative donc

$$P(f)(a) = (V(f) \circ P(f) \circ Q(f))(x)$$

$$= V(f)(P(f) \circ Q(f)(x))$$

$$= V(f)((PQ)(f)(x))$$

$$= V(f)(0)$$

$$= 0.$$

Donc $a \in \ker P(f)$.

De même, $b = U(f) \circ P(f)(x) \in \ker Q(f)$.

Finalement, on a

$$\ker \left(PQ\right) \left(f\right) =\ker P\left(f\right) \oplus \ker Q\left(f\right) .$$

Proposition 5.94

Soient $f \in \mathcal{L}(E)$ et $P_1, \ldots, P_k \in \mathbb{K}[X]$ premiers entre eux deux à deux. On pose $P = \prod_{i=1}^{k} P_i$.

Alors
$$\ker P(f) = \bigoplus_{i=1}^{k} \ker P_i(f)$$
.

Démonstration 5.95

On note $\mathcal{P}(k)$ le prédicat énoncé.

- ▶ On a clairement $\mathcal{P}(1)$ et $\mathcal{P}(2)$ est vraie (cf. Proposition 5.92).
- ▶ Soit $k \in \mathbb{N}^*$ tel que $\mathscr{P}(k)$ soit vraie.

Soient $P_1, \ldots, P_{k+1} \in \mathbb{K}[X]$ premiers entre eux deux à deux.

On a $P_1 \dots P_k \wedge P_{k+1} = 1$.

D'après $\mathcal{P}(2)$, on a

$$\ker (P_1 \dots P_{k+1}) (f) = \ker (P_1 \dots P_k) (f) \oplus \ker P_{k+1} (f)$$
.

Puis, par hypothèse de récurrence, on a

$$\ker (P_1 \dots P_k) (f) = \bigoplus_{i=1}^k \ker P_i (f).$$

Finalement, on a

$$\ker (P_1 \dots P_{k+1}) (f) = \bigoplus_{i=1}^{k+1} P_i (f)$$

d'où $\mathcal{P}(k+1)$.

▶ D'après le principe de récurrence, pour tout $k \in \mathbb{N}^*$, $\mathscr{P}(k)$ est vraie.

5.6.3 Application à la diagonalisabilité

Définition 5.96

Un polynôme est dit simplement scindé quand il est scindé et à racines simples.

Théorème 5.97

Soit $f \in \mathcal{L}(E)$.

Il y a équivalence entre les propositions suivantes :

- (α) f est diagonalisable
- $(\beta) \mu_f$ est simplement scindé

- (γ) il existe un polynôme annulateur de f simplement scindé
- (δ) le polynôme $\prod_{\lambda \in \operatorname{Sp}(f)} (X \lambda)$ est un polynôme annulateur de f

Démonstration 5.98 (
$$(\beta) \implies (\gamma)$$
)
Immédiat car μ_f est annulateur de f .

$$D\'{e}monstration 5.99 ((\gamma) \implies (\beta))$$

Si P est simplement scindé et P(f) = 0 alors $\mu_f \mid P$ donc μ_f est simplement scindé.

 $D\acute{e}monstration 5.100 ((\beta) \implies (\delta))$

On sait que $Z_{\mathbb{K}}(\mu_f) = \operatorname{Sp}(f)$ donc si μ_f est simplement scindé, alors $\mu_f = \prod_{\lambda \in \operatorname{Sp}(f)} (X - \lambda)$. Or μ_f est

annulateur de f.

 $D\acute{e}monstration~5.101~((\delta) \implies (\gamma))$

Immédiat.

 $D\'{e}monstration 5.102 ((\alpha) \implies (\delta))$

Supposons f diagonalisable, i.e. il existe une base $\mathcal B$ de E telle que $\operatorname*{Mat}_{\mathcal B}(f)$ soit diagonale :

$$\operatorname{Mat}_{\mathscr{B}}(f) = \begin{pmatrix} \Lambda_1 & 0_1 & \dots & 0_1 \\ 0 & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0_1 \\ 0 & \dots & \vdots & 0 & \Lambda_k \end{pmatrix} = D$$

où $\lambda_1, \ldots, \lambda_k$ sont les valeurs propres distinctes de f et pour tout $i \in [1; k]$, $\Lambda_i = \begin{pmatrix} \lambda_i & 0 & \ldots & 0 \\ 0 & \ddots & \ddots & \vdots \\ 0 & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \ldots & 0 & \lambda_i \end{pmatrix}$.

On pose
$$P = \prod_{i=1}^{k} (X - \lambda_i)$$
.

Or on a pour tout $Q \in \mathbb{K}[X]$, $Q(D) = \begin{pmatrix} Q(\Lambda_1) & 0 & \dots & 0 \\ & \ddots & \ddots & & \vdots \\ 0 & & \ddots & \ddots & \vdots \\ \vdots & \ddots & & \ddots & \ddots & \vdots \\ \vdots & \ddots & & \ddots & \ddots & 0 \\ 0 & \dots & \dots & \dots & 0 & Q(\Lambda_k) \end{pmatrix}$

et pour tout
$$Q \in \mathbb{K}[X]$$
, pour tout $i \in [1; k]$, $Q(\Lambda_i) = \begin{pmatrix} Q(\lambda_i) & 0 & \dots & 0 \\ 0 & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & 0 \\ 0 & \dots & \ddots & \dots & 0 \end{pmatrix}$.

En particulier, P(D) = 0 car $\{\lambda_1, \ldots, \lambda_k\} = \mathbb{Z}_{\mathbb{K}}(P)$.

 $D\'{e}monstration 5.103 ((\delta) \implies (\alpha))$

On pose Sp $(f) = \{\lambda_1, \ldots, \lambda_k\}$ et pour tout $i \in [1; k]$, $P_i = X - \lambda_i$.

Les polynômes P_1, \ldots, P_k sont premiers entre eux deux à deux donc d'après le lemme des noyaux, on a

$$\ker \underbrace{\left(P_{1} \dots P_{k}\right)\left(f\right)}_{=0} = \bigoplus_{i=1}^{k} \underbrace{\ker P_{i}\left(f\right)}_{=\operatorname{sep}\left(f,\lambda_{i}\right)}.$$

D'où
$$E = \bigoplus_{i=1}^k \operatorname{sep}(f, \lambda_i).$$

Donc d'après le Théorème 5.79, f est diagonalisable.

Et sa version matricielle.

Théorème 5.104

Soit $A \in \mathcal{M}_n(\mathbb{K})$.

Il y a équivalence entre les propositions suivantes :

- $ightharpoonup A \ est \ diagonalisable \ dans \ \mathcal{M}_n \ (\mathbb{K})$
- $\triangleright \mu_A$ est simplement scindé
- ightharpoonup il existe un polynôme annulateur de A simplement scindé dans $\mathbb{K}[X]$
- ightharpoonup le polynôme $\prod_{\lambda \in \operatorname{Sp}_{\mathbb{K}}(A)} (X \lambda)$ est un polynôme annulateur de A

Exercice 5.105

On pose
$$A = \begin{pmatrix} 2 & -1 & 2 \\ 5 & -3 & 3 \\ -1 & 0 & -2 \end{pmatrix}$$
. Calculez $(A + I_3)^3$. A est-elle diagonalisable?

Exercice 5.106

Soit $A \in \mathcal{M}_n(\mathbb{K})$ telle que $A^3 = I_n$. Selon que \mathbb{K} soit égal à \mathbb{C} ou \mathbb{R} , à quelle condition A est-elle \mathbb{K} -diagonalisable?

5.6.4 Diagonalisabilité d'un endomorphisme induit

Proposition 5.107

Soient $f \in \mathcal{L}(E)$, F un sous-espace vectoriel de E stable par f et g l'endomorphisme induit par f dans F.

Alors μ_g divise μ_f .

Démonstration 5.108

On a
$$g: F \longrightarrow F$$

 $x \longmapsto f(x)$

Pour tout $x \in F$, pour tout $P \in \mathbb{K}[X]$, P(g)(x) = P(f)(x).

Or $\mu_f(f) = 0$ donc pour tout $x \in F$, $\mu_f(g)(x) = 0$, i.e. μ_f est annulateur de g.

Donc $\mu_g \mid \mu_f$.

Corollaire 5.109

Soient $f \in \mathcal{L}(E)$ et F un sous-espace vectoriel de E stable par f.

 $Si\ f\ est\ diagonalisable,\ alors\ l'endomorphisme\ induit\ par\ f\ dans\ F\ est\ aussi\ diagonalisable.$

Démonstration 5.110

Si f est diagonalisable, d'après le Théorème 5.97, μ_f est simplement scindé.

Or $\mu_g \mid \mu_f$ donc μ_g est simplement scindé.

Donc g est diagonalisable d'après le Théorème 5.97.

Remarque 5.111

On a également :

$$\triangleright \operatorname{Sp}(g) = \operatorname{Z}_{\mathbb{K}}(\mu_g) \subseteq \operatorname{Z}_{\mathbb{K}}(\mu_f) = \operatorname{Sp}(f)$$

 \Rightarrow si x est un vecteur propre de g pour la valeur propre λ , i.e. $\begin{cases} x \in F \\ x \neq 0 \end{cases}$ alors x est un vecteur propre de f dans F, et réciproquement.

On a donc sep $(g, \lambda) = \text{sep } (f, \lambda) \cap F$.

Exercice 5.112 Soit f un endomorphisme de matrice $\begin{pmatrix} 1 & 1 & -1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}$ dans une base $\mathcal{B} = (e_1, e_2, e_3)$. Déterminez les sous-espaces vectoriels de E stables par f.

Exercice 5.113 (Codiagonalisation ou diagonalisation simultanée)

Soient $A, B \in \mathcal{M}_n(\mathbb{K})$ diagonalisables et qui commutent.

Montez qu'il existe $P \in GL_n(\mathbb{K})$ telle que $P^{-1}AP$ et $P^{-1}BP$ sont diagonales.

5.7 Quelques applications de la diagonalisation

5.7.1 Puissances d'une matrice, suites récurrentes linéairement

Un petit lemme déjà rencontré.

Lemme 5.114

Soient $A, B \in \mathcal{M}_n(\mathbb{K})$ et $P \in GL_n(\mathbb{K})$ telles que $A = PBP^{-1}$.

Alors pour tout $k \in \mathbb{N}$, $A^k = PB^kP^{-1}$.

Le lemme précédent est particulièrement utile si A est diagonalisable et si on choisit B = D, matrice diagonale semblable à A, car calculer les puissances d'une matrice diagonale est très facile.

Grâce à la diagonalisation de A, on peut espérer exprimer la forme générale des suites récurrentes linéaires (voir le chapitre précédent, section sur les polynômes annulateurs).

Exercice 5.115

Soient u, v, w les trois suites réelles telles que $u_0 = v_0 = w_0 = 1$ et

$$\text{pour tout } n \in \mathbb{N}, \ \begin{cases} u_{n+1} = u_n - v_n \\ v_{n+1} = -4u_n + 4v_n - 6w_n \\ w_{n+1} = -3u_n + 3v_n - 4w_n \end{cases}$$

Déterminez des expressions de u_n, v_n, w_n en fonction de n.

Cette technique s'applique en particulier aux suites u vérifiant une relation de récurrence linéaire de la forme : pour tout $n \in \mathbb{N}$, $u_{n+d} = a_{d-1}u_{n+d-1} + \cdots + a_2u_{n+2} + a_1u_{n+1} + a_0u_n$.

On pose alors
$$X_n = \begin{pmatrix} u_n \\ u_{n+1} \\ \vdots \\ u_{n+d-1} \end{pmatrix}$$
 et $A = \begin{pmatrix} 0 & 1 & 0 & \dots & 0 \\ 0 & 0 & 1 & \ddots & \vdots \\ \vdots & \vdots & \ddots & \ddots & \vdots \\ 0 & 0 & 0 & \dots & \ddots & 1 \\ a_0 & a_1 & a_2 & \dots & a_{d-1} \end{pmatrix} \in \mathcal{M}_d(\mathbb{K}).$

Alors pour tout $n \in \mathbb{N}$, $X_{n+1} = AX_n$ et on est ramené au cas précédent.

La matrice A s'appelle la matrice-compagnon du polynôme $P = X^d - a_{d-1}X^{d-1} - \cdots - a_1X - a_0$: elle a la propriété remarquable que son polynôme caractéristique est P, son polynôme minimal est aussi P et donc que ses valeurs propres sont les racines de P. C'est pourquoi le polynôme P est appelé polynôme caractéristique associé à la suite u (cas déjà étudié en première année : d = 2).

On en déduit que A est diagonalisable ssi P est simplement scindé et dans ce cas, A possède d valeurs propres distinctes. Dans ce cas, en notant $\lambda_1, \ldots, \lambda_p$ les valeurs propres distinctes, la suite u est combinaison linéaire des suites géométriques $(\lambda_1^n), \ldots, (\lambda_d^n)$.

Exercice 5.116

Explicitez l'unique suite (u_n) vérifiant

$$u_0 = 0, u_1 = 1, u_2 = 5$$
 et $\forall n \in \mathbb{N}, u_{n+3} = 6u_{n+2} - 11u_{n+1} + 6u_n$.

5.7.2 Systèmes d'équations différentielles

Ce point sera traité dans le chapitre sur les équations différentielles linéaires.

5.8 Endomorphismes trigonalisables, matrices trigonalisables

5.8.1 Définition et propriétés

Définition 5.117

Un endomorphisme est dit trigonalisable quand il existe une base dans laquelle sa matrice est triangulaire supérieure.

Une matrice carrée de $\mathcal{M}_n(\mathbb{K})$ est dite trigonalisable dans $\mathcal{M}_n(\mathbb{K})$ quand elle est semblable à une matrice triangulaire dans $\mathcal{M}_n(\mathbb{K})$.

Remarque 5.118

- ▶ Si un endomorphisme (une matrice) est diagonalisable, alors il (elle) est trigonalisable.
- ▶ Si une matrice est trigonalisable, ses valeurs propres sont les nombres sur la diagonale de toute matrice triangulaire semblable.

Exercice 5.119 On considère la matrice $M = \begin{pmatrix} -2 & -1 & 7 \\ 5 & 4 & -8 \\ 1 & 1 & 1 \end{pmatrix}$ et f un endomorphisme de matrice M. Déterminez les

éléments propres de M. Est-elle diagonalisable? En complétant une famille libre de vecteurs propres, déterminez une base \mathcal{B} de l'espace où la matrice de f est triangulaire supérieure, puis trigonalisez M.

Exercice 5.120

Exercice 5.120 Soit f un endomorphisme de matrice $A = \begin{pmatrix} 2 & -4 & -5 \\ -1 & 2 & 2 \\ 1 & -2 & -2 \end{pmatrix}$. Montrez que f n'est pas diagonalisable mais

est trigonalisable et donnez une base de trigonalisation de f. Donnez une forme générale pour A^n .

Quand un endomorphisme ou une matrice n'est pas diagonalisable, on peut espérer qu'il ou elle est trigonalisable : faute de grives, on se contente de merles!

Remarque 5.121

On ne confondra pas la trigonalisation d'une matrice carrée et la transformation par lignes (ou colonnes) des matrices vue en première année! Seule la trigonalisation fournit des matrices semblables! La transformation par lignes ne conserve que le rang!

5.8.2 Caractérisation équivalente

La trigonalisabilité est beaucoup plus courante que la diagonalisabilité, comme on le voit grâce aux résultats suivants.

Proposition 5.122

Un endomorphisme (une matrice) est trigonalisable ssi il (elle) est scindé(e).

Démonstration 5.123

On pose $\mathcal{P}(n)$: « si f est un endomorphisme d'un espace de dimension n et si χ_f est scindé, alors fest trigonalisable ».

- $\triangleright \ \mathcal{P}\left(1\right)$ est vraie car tout endomorphisme en dimension 1 est trigonalisable.
- ▶ Supposons $\mathcal{P}(n-1)$.

Soient E un espace de dimension n et $f \in \mathcal{L}(E)$ tel que χ_f soit scindé.

Comme χ_f est scindé, il existe $\lambda \in \mathbb{K}$ tel que λ soit racine de χ_f et donc une valeur propre de fà laquelle on associe un vecteur propre u_1 .

Comme $u_1 \neq 0$, d'après le théorème de la base incomplète, il existe $(u_2, \dots, u_n) \in E^{n-1}$ tel que $\mathcal{B}_0 = (u_1, \dots, u_n)$ soit une base de E.

On a

$$\operatorname{Mat}_{\mathscr{B}_{0}}(f) = \begin{pmatrix} \lambda & L & \\ \hline 0 & & \\ \vdots & & B & \\ \hline 0 & & & \end{pmatrix}.$$

Donc

$$\chi_f = \begin{vmatrix} X - \lambda & -L \\ 0 \\ \vdots \\ 0 & XI_{n-1} - B \end{vmatrix} = (X - \lambda) \chi_B.$$

On pose $F = \text{Vect } (u_2, \dots, u_n)$.

Soit $g \in \mathcal{L}(F)$ tel que $\underset{(u_2,\dots,u_n)}{\operatorname{Mat}}(g) = B$.

On a $\chi_g=\chi_B$ scindé donc par hypothèse de récurrence, g est trigonalisable : il existe une base

$$(u_2',\ldots,u_n') \text{ de } F \text{ telle que } \underset{(u_2',\ldots,u_n')}{\operatorname{Mat}}(g) = \begin{pmatrix} t_{2\,2} & t_{2\,3} & \ldots & t_{2\,n} \\ \vdots & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & t_{n-1\,n} \\ 0 & \ldots & \vdots & 0 & t_{n\,n} \end{pmatrix} = T.$$

La famille $\mathcal{B} = (u_1, u'_2, \dots, u'_n)$ est une base de E.

On veut montrer que

$$\operatorname{Mat}_{\mathscr{B}}(f) = \begin{pmatrix} \lambda & \alpha_{2} & \dots & \alpha_{n} \\ 0 & t_{22} & t_{23} & \dots & t_{2n} \\ \vdots & \vdots & \ddots & \ddots & \vdots \\ \vdots & \vdots & \ddots & \ddots & \vdots \\ \vdots & \vdots & \ddots & \ddots & \vdots \\ \vdots & \vdots & \ddots & \ddots & t_{n-1n} \\ 0 & 0 & \dots & \vdots & 0 & t_{nn} \end{pmatrix}.$$

On a $g = p \circ f|_F$ où p est le projecteur sur F parallèlement à Vect (u_1) .

Donc pour tout $x \in F$, $f(x) = \underbrace{g(x)}_{\in F} + \alpha u_1$ où $\alpha \in \mathbb{K}$.

De plus,

pour tout
$$j \in [2; n]$$
, $f(u'_j) = g(u'_j) + \alpha_j u_1$
$$= \sum_{i=2}^j t_{ij} u'_i + \alpha_j u_1.$$

D'où $\mathcal{P}(n)$.

▶ Par récurrence, pour tout $n \in \mathbb{N}^*$, $\mathscr{P}(n)$ est vraie.

En particulier, quand $\mathbb{K} = \mathbb{C}$, tous les endomorphismes sont trigonalisables, toutes les matrices de $\mathcal{M}_n(\mathbb{C})$ sont trigonalisables dans $\mathcal{M}_n(\mathbb{C})$.

En pratique, quand on cherche à trigonaliser un endomorphisme, on peut chercher une base dans laquelle la matrice est triangulaire supérieure avec des 1 ou des 0 sur la sur-diagonale et des 0 sur les diagonales partielles encore au-dessus (c'est démontrable, mais c'est difficile à démontrer, cela s'appelle le théorème de Jordan – hors-programme –).

Théorème 5.124

Soit $f \in \mathcal{L}(E)$.

Il y a équivalence entre les propositions suivantes :

- \triangleright f est trigonalisable
- $\triangleright \chi_f \ est \ scind\acute{e}$
- ▶ μ_f est scindé
- ▶ il existe un polynôme annulateur de f scindé

Et sa version matricielle.

Théorème 5.125

Soit $A \in \mathcal{M}_n(\mathbb{K})$.

Il y a équivalence entre les propositions suivantes :

- ightharpoonup A est trigonalisable dans $\mathcal{M}_n(\mathbb{K})$
- $\triangleright \chi_A \ est \ scind\acute{e}$
- $\triangleright \mu_A \ est \ scind\acute{e}$
- ightharpoonup il existe un polynôme annulateur de A qui est scindé dans $\mathbb{K}[X]$

Exercice 5.126

Soit $A = \begin{pmatrix} 0 & 1 & 1 \\ 0 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}$. Calculez A^2 , puis A^3 . La matrice A est-elle diagonalisable? trigonalisable? Dans

l'affirmative, diagonalisez ou trigonalisez la.

5.8.3 Théorème de Cayley-Hamilton

Théorème 5.127

Le polynôme caractéristique d'un endomorphisme (d'une matrice carrée) est un polynôme annulateur.

Démonstration 5.128

On pose $\mathcal{P}(n)$: « si $A \in \mathcal{M}_n(\mathbb{C})$, alors $\chi_A(A) = 0$ ».

ightharpoonup Si n=1: on pose A=(a).

On a
$$\chi_A = X - a$$
 donc $\chi_A(A) = A - aI_1 = (a) - (a) = 0$.

D'où $\mathcal{P}(1)$.

▶ Supposons $\mathcal{P}(n-1)$.

Soit $A \in \mathcal{M}_n(\mathbb{C})$.

Le polynôme χ_A est scindé donc A est trigonalisable dans $\mathcal{M}_n(\mathbb{C})$, i.e. il existe $P \in \mathrm{GL}_n(\mathbb{C})$ et

$$T \in \mathcal{T}_n^+(\mathbb{C}) \text{ telles que } A = PTP^{-1}, \text{ avec } T = \begin{pmatrix} \lambda_1 & ? & \dots & ? \\ 0 & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & ? \\ 0 & \dots & \ddots & 0 \end{pmatrix}.$$

On a
$$\chi_A = \chi_T = \prod_{i=1}^n (X - \lambda_i)$$
.

On peut écrire

$$T = \begin{pmatrix} \lambda_1 & ? & \dots & \ddots & ? \\ 0 & \lambda_2 & ? & \dots & \ddots & ? \\ \vdots & \vdots & \ddots & \ddots & \ddots & \vdots \\ \vdots & \vdots & \ddots & \ddots & \ddots & \vdots \\ \vdots & \vdots & \ddots & \ddots & \ddots & ? \\ 0 & 0 & \dots & \ddots & 0 & \lambda_n \end{pmatrix} = \begin{pmatrix} \lambda_1 & ? & \dots & ? \\ 0 & & & & \\ \vdots & & & & & \\ 0 & & & & & \end{pmatrix}$$

où $U \in \mathcal{M}_{n-1}(\mathbb{C})$.

On a
$$\chi_U = \prod_{i=2}^n (X - \lambda_i)$$
 donc $\chi_A = \chi_T = (X - \lambda_1) \chi_U$.

Donc

$$\begin{split} \chi_{A}\left(A\right) &= \left(A - \lambda_{1}I_{n}\right)\chi_{U}\left(A\right) \\ &= \left(PTP^{-1} - \lambda_{1}I_{n}\right)\chi_{U}\left(PTP^{-1}\right) \\ &= P\left(T - \lambda_{1}I_{n}\right)\chi_{U}\left(T\right)P^{-1}. \end{split} \right) \left(PTP^{-1}\right)^{k} = PT^{k}P^{-1} \end{split}$$

Or on a

$$\underbrace{\begin{pmatrix}
0 & ? \dots & ? \\
0 & \lambda_2 - \lambda_1 & ? \dots & ? \\
\vdots & 0 & \ddots & \ddots & \vdots \\
\vdots & \vdots & \ddots & \ddots & \ddots & \vdots \\
\vdots & \vdots & \ddots & \ddots & \ddots & ? \\
0 & 0 & \dots & \vdots & \ddots & \ddots & ? \\
0 & 0 & \dots & \vdots & \ddots & \ddots & ?
\end{pmatrix}}_{T-\lambda_1 I_n}
\underbrace{\begin{pmatrix}
\chi_U(\lambda_1) & ? \dots & ? \\
0 & \vdots & \ddots & ? \\
\vdots & \chi_U(U)
\end{pmatrix}}_{\chi_U(T)} = \begin{pmatrix}
0 & 0 & \dots & 0 \\
0 & \vdots & \ddots & \vdots \\
\vdots & 0 & 0
\end{pmatrix}$$

 $\operatorname{car} \chi_U(U) = 0.$

Donc $\chi_A(A) = 0$, d'où $\mathcal{P}(n)$.

▶ Par récurrence, pour tout $n \in \mathbb{N}^*$, $\mathscr{P}(n)$ est vraie.

Corollaire 5.129

Le polynôme minimal divise le polynôme caractéristique. Donc en dimension n, le polynôme minimal est de degré au plus n.

Les polynômes minimal et caractéristique partagent les mêmes racines dans \mathbb{C} (en fait dans tout corps \mathbb{K}) mais pas avec les mêmes ordres de multiplicité : si f est scindé, alors en notant $\lambda_1, \ldots, \lambda_k$ les kvaleurs propres distinctes de f, on peut écrire

$$\chi_f = \prod_{i=1}^k (X - \lambda_i)^{\alpha_i}$$
 et $\mu_f = \prod_{i=1}^k (X - \lambda_i)^{\beta_i}$

où pour tout $i \in [1; k]$, $1 \le \beta_i \le \alpha_i$.

5.8.4 Sous-espaces caractéristiques

Définition 5.130

Soit $f \in \mathcal{L}(E)$ un endomorphisme scindé. On écrit $\chi_f = \prod_{i=1}^k (X - \lambda_i)^{\alpha_i}$ où $\lambda_1, \dots, \lambda_k$ sont les k valeurs propres distinctes de f.

Les sous-espaces caractéristiques de f sont les noyaux $\ker (f - \lambda_i \mathrm{id}_E)^{\alpha_i}$.

Proposition 5.131

Les sous-espaces caractéristiques d'un endomorphisme scindé sont supplémentaires et stables par f.

Démonstration 5.132

▶ Soient $\lambda \in \text{Sp}(f)$ et α l'ordre de multiplicité de λ .

Soit $x \in \ker (f - \lambda id_E)^{\alpha}$.

On a

$$(f - \lambda id_E)^{\alpha} (f(x)) = ((f - \lambda id_E)^{\alpha} \circ f)(x)$$

$$= (f \circ (f - \lambda id_E)^{\alpha})(x)$$

$$= (f \circ (f - \lambda id_E)^{\alpha})(x)$$

$$= f(0)$$

$$= 0.$$
composée de deux
polynômes en f donc
commutative

Donc $f(x) \in \ker (f - \lambda id_E)^{\alpha}$.

Donc ker $(f - \lambda id_E)^{\alpha}$ est stable par f.

▶ On a $\chi_f = \prod_{i=1}^k (X - \lambda_i)^{\alpha_i}$: produit de polynômes premiers entre eux deux à deux.

D'après le lemme des noyaux, on a

$$\ker \chi_f(f) = \bigoplus_{i=1}^k \ker (f - \lambda_i \mathrm{id}_E)^{\alpha_i}.$$

Or $\chi_f(f) = 0$ d'après le théorème de Cayley-Hamilton donc

$$E = \bigoplus_{i=1}^{k} \ker (f - \lambda_i \mathrm{id}_E)^{\alpha_i}.$$

Théorème 5.133

Tout endomorphisme scindé possède une base dans laquelle sa matrice est diagonale par blocs telle que :

- ▶ il y a autant de blocs que de valeurs propres : à chaque valeur propre, on associe un unique bloc;
- ▶ chaque bloc est de la forme $\lambda I_r + U$ où λ est la valeur propre associée au bloc, r est l'ordre de multiplicité de λ et U est une matrice strictement triangulaire supérieure de $\mathcal{M}_r(\mathbb{K})$

Toute matrice scindée est semblable à une matrice diagonale par blocs vérifiant les conditions précédentes.

Démonstration 5.134

Soient $\lambda \in \operatorname{Sp}(f)$ et α son ordre de multiplicité.

Sur $F = \ker (f - \lambda i d_E)^{\alpha}$, f induit un endomorphisme \tilde{f} tel que $(\tilde{f} - \lambda i d_F)^{\alpha} = 0$.

Donc $(X - \lambda)^{\alpha}$ est un polynôme annulateur de \tilde{f} qui est scindé donc \tilde{f} a pour unique valeur propre λ et est trigonalisable.

Donc il existe une base \mathcal{B}_{λ} de F telle que

$$\operatorname{Mat}_{\mathscr{B}_{\lambda}}(\tilde{f}) = \begin{pmatrix} \lambda & ? & \dots & ? \\ \ddots & \ddots & \ddots & \vdots \\ 0 & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & ? \\ \vdots & \ddots & \ddots & \ddots & ? \\ 0 & \dots & \ddots & 0 & \lambda \end{pmatrix} = \lambda I_{\alpha} + U.$$

Comme $E = \bigoplus_{i=1}^{k} \ker (f - \lambda_i \mathrm{id}_E)^{\alpha_i}$, en concaténant de telles bases, on obtient une base de E dans laquelle la matrice de f est

$$\begin{pmatrix} \lambda_1 I_{\alpha_1} + U_1 & 0 & \dots & 0 \\ 0 & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & 0 \\ 0 & \dots & \dots & 0 & \lambda_k I_{\alpha_k} + U_k \end{pmatrix}.$$

Corollaire 5.135

La dimension d'un sous-espace caractéristique est l'ordre de multiplicité de la valeur propre associée.

5.9 Endomorphismes nilpotents, matrices nilpotentes

5.9.1 Généralités

Définition 5.136

Soit $u \in \mathcal{L}(E)$. On dit que u est nilpotent quand il existe $p \in \mathbb{N}$ tel que $u^p = 0$.

Soit $A \in \mathcal{M}_n(\mathbb{K})$. On dit que A est nilpotente quand il existe $p \in \mathbb{N}$ tel que $A^p = 0$.

Le plus petit indice p satisfaisant à la condition précédente s'appelle l'indice de nilpotence de u (de A).

Proposition 5.137

Toute matrice strictement triangulaire (supérieure ou inférieure) est nilpotente. Par conséquent, les matrices semblables à une matrice strictement triangulaire sont nilpotentes.

Démonstration 5.138

Soit $A \in \mathcal{M}_n(\mathbb{K})$ une matrice strictement triangulaire :

$$A = \begin{pmatrix} 0 & ? & \cdots & ? \\ 0 & \ddots & \ddots & \vdots \\ 0 & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \vdots \\ 0 & \cdots & \vdots & 0 \end{pmatrix}.$$

On a $\chi_A = X^n$ et $\chi_A(A) = 0$ donc $A^n = 0$.

Dans la décomposition en sous-espaces caractéristiques, on a vu apparaître des matrices $\lambda I_r + U$: les matrices U sont nilpotentes.

L'ensemble des matrices nilpotentes n'a pas de structure particulière : en général, la somme et le produit de deux matrices nilpotentes ne sont pas nilpotents. Néanmoins, avec une condition de commutation supplémentaire, on a quelques résultats.

Proposition 5.139

Soient $A, B \in \mathcal{M}_n(\mathbb{K})$ deux matrices nilpotentes.

 $Si\ A\ et\ B\ commutent,\ alors\ A+B\ et\ AB\ sont\ nilpotentes.$

Démonstration 5.140

Soit $(k, \ell) \in \mathbb{N}^2$ tel que $A^k = 0$ et $B^\ell = 0$.

Supposons AB = BA.

On a

$$(AB)^{\min(k,\ell)} = A^{\min(k,\ell)}B^{\min(k,\ell)}$$
$$= 0$$

et

$$(A+B)^{k+\ell} = \sum_{i=0}^{k+\ell} \binom{k+\ell}{i} A^i B^{k+\ell-i}$$

$$= \sum_{i=0}^k \binom{k+\ell}{i} A^i \underbrace{B^{k+\ell-i}}_{=0} + \sum_{i=k+1}^{k+\ell} \binom{k+\ell}{i} \underbrace{A^i}_{=0} B^{k+\ell-i}$$

$$= 0.$$

On a bien sûr les mêmes résultats concernant les endomorphismes nilpotents.

5.9.2 Éléments propres d'un nilpotent

Proposition 5.141

Un endomorphisme en dimension n est nilpotent ssi son polynôme caractéristique est X^n , i.e. s'il est scindé et admet 0 comme unique valeur propre.

Une matrice de $\mathcal{M}_n(\mathbb{K})$ est nilpotente ssi son polynôme caractéristique est X^n , i.e. si elle est scindée et admet 0 comme unique valeur propre.

L'indice de nilpotence dans ces deux cas est alors le degré du polynôme minimal; il est donc inférieur ou égal à n.

Démonstration 5.142

Si f est nilpotent alors il existe $k \in \mathbb{N}$ tel que $f^k = 0$ donc X^k est annulateur de f donc Sp $(f) = \{0\}$ donc $\chi_f = X^n$.

Réciproquement, si $\chi_f = X^n$, d'après le théorème de Cayley-Hamilton, $f^n = 0$ donc f est nilpotent.

Or $\mu_f \mid \chi_f$ donc μ_f est de la forme X^ℓ avec $\ell \leq n$ et par définition de μ_f , ℓ est l'indice de nilpotence de f.

Mis à part la matrice nulle, aucune matrice nilpotente n'est diagonalisable : c'est une idée parfois utile pour prouver qu'une matrice est nulle (diagonalisable et nilpotente implique nulle).

Proposition 5.143

Tout endomorphisme nilpotent est trigonalisable : il existe une base dans laquelle sa matrice est triangulaire supérieure stricte. Réciproquement, si un endomorphisme est trigonalisable et n'a que 0 pour valeur propre, alors il est nilpotent.

Toute matrice nilpotente est trigonalisable : elle est semblable à une matrice triangulaire supérieure stricte. La réciproque est vraie.

5.9.3 Application aux sous-espaces caractéristiques d'un endomorphisme

Proposition 5.144

Soit $f \in \mathcal{L}(E)$.

Pour toute valeur propre λ de f, si α est l'ordre de multiplicité de λ dans le polynôme minimal de f, le sous-espace caractéristique associé est aussi le noyau ker $(f - \lambda id_E)^{\alpha}$.

Lemme 5.145
$$Si F_1, \ldots, F_k, G_1, \ldots, G_k \text{ v\'erifient } \bigoplus_{i=1}^k F_i = \bigoplus_{i=1}^k G_i \text{ et pour tout } i \in [1 ; k], F_i \subseteq G_i, \text{ alors pour tout } i \in [1 ; k], F_i = G_i.$$

Démonstration 5.146

Soient $i \in [1; k]$ et $x \in G_i$.

On a
$$x \in \bigoplus_{j=1}^k G_j = \bigoplus_{j=1}^k F_j$$
.

Donc il existe $(y_1,\ldots,y_k)\in F_1\times\cdots\times F_k$ tel que

$$\underbrace{x}_{\in G_i} = \underbrace{y_1}_{\in F_1 \subseteq G_1} + \dots + \underbrace{y_k}_{\in F_k \subseteq G_k}.$$

Or la somme $\bigoplus_{i=1}^k G_i$ est directe donc par unicité

$$\begin{cases} y_1 = 0 \\ \vdots \\ y_{i-1} = 0 \\ y_i = x \\ y_{i+1} = 0 \\ \vdots \\ y_k = 0 \end{cases}$$

Donc $x = y_i \in F_i$.

Donc $F_i \subseteq G_i$.

Donc $F_i = G_i$.

Démonstration 5.147 (de la Proposition 5.144)

On note $\chi_f = \prod_{i=1}^k (X - \lambda_i)^{\alpha_i}$ et $\mu_f = \prod_{i=1}^k (X - \lambda_i)^{\beta_i}$ où pour tout $i \in [1; k]$, $\alpha_i \ge \beta_i \ge 1$.

On veut montrer que pour tout $i \in [1; k]$, $\ker (f - \lambda_i \mathrm{id}_E)^{\alpha_i} = \ker (f - \lambda_i \mathrm{id}_E)^{\beta_i}$.

Comme $\beta_i \leq \alpha_i$, on a immédiatement pour tout $i \in [1; k]$, $\ker (f - \lambda_i \mathrm{id}_E)^{\beta_i} \subseteq \ker (f - \lambda_i \mathrm{id}_E)^{\alpha_i}$.

Comme $\mu_{f}\left(f\right)=\chi_{f}\left(f\right)=0,$ d'après le lemme des noyaux :

$$E = \bigoplus_{i=1}^{k} \ker (f - \lambda_i \mathrm{id}_E)^{\beta_i} = \bigoplus_{i=1}^{k} \ker (f - \lambda_i \mathrm{id}_E)^{\alpha_i}.$$

D'après le Lemme 5.145, on en déduit

$$\forall i \in [1; k], \text{ ker } (f - \lambda_i \text{id}_E)^{\alpha_i} = \text{ker } (f - \lambda_i \text{id}_E)^{\beta_i}.$$

On peut même démontrer mieux.

Proposition 5.148

Soient $f \in \mathcal{L}(E)$, $\lambda \in \operatorname{Sp}(f)$ et α l'ordre de multiplicité de λ dans le polynôme minimal de f.

Alors la suite des noyaux $\left(\ker (f - \lambda \mathrm{id}_E)^k\right)_{k \in \mathbb{N}}$ est strictement croissante jusqu'au rang α , puis constante à partir du rang α :

$$\{0\} \subsetneq \ker (f - \lambda \mathrm{id}_E) \subsetneq \ker (f - \lambda \mathrm{id}_E)^2 \subsetneq \dots \subsetneq \ker (f - \lambda \mathrm{id}_E)^\alpha = \ker (f - \lambda \mathrm{id}_E)^{\alpha+1} = \dots$$

Intégrales généralisées

Intégrales à paramètre

Espaces préhilbertiens réels

Endomorphismes dans un espace euclidien

Fonctions vectorielles

Suites et séries de fonctions

Séries entières

Probabilités

Variables aléatoires discrètes

Équations différentielles linéaires

Calcul différentiel

Structures algébriques

Deuxième partie

Exercices

Espaces vectoriels normés

Séries numériques et vectorielles : révisions et compléments

Familles sommables

Rappels et compléments d'algèbre linéaire

Réduction des endomorphismes

Intégrales généralisées

Intégrales à paramètre

Espaces préhilbertiens réels

Endomorphismes dans un espace euclidien

Fonctions vectorielles

Suites et séries de fonctions

Séries entières

Probabilités

Variables aléatoires discrètes

Équations différentielles linéaires

Calcul différentiel

Structures algébriques