

Edwin Simpson

Department of Computer Science,
University of Bristol, UK.

Limitations of Naïve Bayes

Reality: the conditional independence assumption is often violated!

$$P(x|y) = \prod_{i=1}^{N} P(x_i|y)$$

- Closed form computations
- We can easily add new conditionally independent features

- if the document contains "Bayes", "naïve" is likely to appear regardless of the class
- if the text contains the bigram "not good", then the unigram "good" is certain to occur

Using Bayes' rule (a generative classifier):

$$P(y|\mathbf{x}) = \frac{P(\mathbf{x}|y)P(y)}{P(\mathbf{x})}$$

Binary logistic regression (a discriminative classifier):

$$P(y|\mathbf{x}) = \frac{1}{1 + e^{-\sum_{i=1}^{N} \theta_i \cdot x_i}}$$

Apply weights to each feature:	$\theta_i \cdot x_i$

Features may be continuous, not just discrete occurrences.

Apply weights to each feature:	$\theta_i \cdot x_i$
Combine their individual contributions:	$\sum_{i=1}^N \theta_i \cdot x_i = \boldsymbol{\theta} \cdot \boldsymbol{x}$

Apply weights to each feature:

 $\theta_i \cdot x_i$

Combine their individual contributions:

$$\sum_{i=1}^{N} \theta_i \cdot x_i = \boldsymbol{\theta} \cdot \boldsymbol{x}$$

Use the logistic sigmoid to map unbounded real numbers to values between 0 and 1:

$$\sigma(\theta.x) = \frac{1}{1 + e^{-\sum_{i=1}^{N} \theta_i \cdot x_i}}$$

Learning Objective

- ullet Goal: choose $oldsymbol{ heta}$ to make training set predictions as close as possible to the training labels
- Measure how far we are from this objective using a loss or cost function:

$$L(\boldsymbol{\theta}; y) = -[y \log p(y|\boldsymbol{x}, \boldsymbol{\theta}) + (1 - y) \log(1 - p(y|\boldsymbol{x}, \boldsymbol{\theta}))]$$

• Find the values of θ that minimise the total loss on the training set using gradient descent

Gradient Descent

<u>Chapter 5, Speech and Language Processing</u> (3rd edition draft), Jurafsky & Martin (2021).

- Initialise all weights θ_i to random values
- Compute gradient of $L(\theta; y)$ with respect to θ_i
- Increase or decrease θ_i in the opposite direction to the gradient
- Thereby climb down the hill toward the minimum of the loss

Summary

- Combinations of features often violate the naïve Bayes conditional independence assumption, which could decrease performance.
- Logistic regression is a discriminative classifier that relaxes this assumption and allows continuous-valued features.
- The parameters (weights) are learned by minimising a loss function using gradient descent.