Formale Sprachen und Komplexität Theoretische Informatik für Medieninformatiker Sommersemester 2022

FSK & TIMI

Begrüßung, Organisatorisches, Inhaltsübersicht und Grundlagen

Prof. Dr. David Sabel

LFE Theoretische Informatik

Personen

Dozent:

Prof. Dr. David Sabel

Email: david.sabel@ifi.lmu.de

Wissenschaftliche Mitarbeiter:innen:

SoSe 2022

Sarah Vaupel

Stephan Barth

Tutor:inn:en und Korrektor:inn:en:

Charlotte Gerhaher

David Mosbach

Elisabeth Lempa

Elisabeth Schwertfellner

Lea Korn

Luca Maio

Lukas Bartl

Michael Fink Amores

Simon Rossmair

Thomas Grill

Zielgruppe der Veranstaltung (Hörerkreis)

Formale Sprachen und Komplexität [FSK]:

- Studierende der Informatik
- Studierende der Bioinformatik
- Studierende im Lehramt
- Studierende im Nebenfach Informatik

Theoretische Informatik für Medieninformatiker [TIMI]:

Studierende der Medieninformatik

Struktur der Veranstaltung

- Vorlesung: FSK: 3V, TIMI 2V (integriert, Plan auf Webseite)
- Digitale Alternative: ScreenCasts aus dem SoSe 2021
- Zentralübung: Zusatzangebot, Fragestunde & Beispiele (Plan auf Webseite) Raum A 240

4/26

• Übungen: präsenz oder online; Besprechung der Hausaufgaben; FSK: 2Ü, TIMI: 1Ü

Webseiten

Webseiten zu den Veranstaltungen:

www.tcs.ifi.lmu.de/lehre/ss-2022/fsk und www.tcs.ifi.lmu.de/lehre/ss-2022/timi

5/26

Anmeldung im Uni2Work:

- uni2work.ifi.lmu.de/course/S22/IfI/FSK
- uni2work.ifi.lmu.de/course/S22/IfI/TIMI

Anmeldung ist **notwendig** für:

- Zugriff auf Material, Abgabe & Korrektur der Hausaufgaben
- Anmeldung zu den Übungsterminen
- Anmeldung zur Prüfung (noch nicht online)

Zulip-Chat

- Server-Adresse: chat.ifi.lmu.de
- Stream: TCS-22S-FSK-TIMI

Fragen und Kommentare am besten dort stellen.

Hausaufgaben

- Übungen diese Woche ab Donnerstag: Kennenlernen+Besprechung Blatt 0 (ohne Abgabe)
- Ausgabe, Abgabe und Korrektur elektronisch über Uni2Work
- Prüfungsbonus für erfolgreiches Bearbeiten der Aufgaben

Korrektur und Bonuspunkte

- Ausgewählte Hausaufgaben werden bepunktet
- Für jede Lösung zu einer bepunkteten Aufgabe gibt es 0 oder 1 oder 2 Punkte

Bonusregelung (gilt für Prüfung und Nachholprüfung im SoSe 2022):

100% der erreichbaren Übungspunkte entsprechen 10% der Prüfungspunkte

 $\frac{\text{Prüfungsbonus}}{\text{maximale Übungspunkte}} \cdot 0.1 \cdot \text{maximale Prüfungspunkte}$

wenn die Prüfung bestanden ist (Bonuspunkte helfen nicht zum Bestehen)

Die Prüfung ist auf jeden Fall bestanden, wenn 50% der Prüfungspunkte erreicht wurden.

Prüfungen

- Plan (beantragt, noch nicht bestätigt):
 Erstklausur am 17.08.2022 und Nachklausur am 21.09.2022
- Anmeldung zur Prüfung wird noch freigeschaltet
- Bonuspunkte gelten für Prüfung und Nachprüfung
- Teilnahme an der Nachholprüfung auch ohne Teilnahme an der Prüfung möglich

Material

- Vorlesungsfolien
- Skript zur Vorlesung (wird nach und nach bereit gestellt):
 Markierungen mit ★ für nicht-TIMI-relevante Teile
- ScreenCasts zur Vorlesung (aus SoSe 2021)
- Lehrbuch: Uwe Schöning, Theoretische Informatik Kurz gefasst
- Hausaufgaben (Übungsblätter im Uni2Work)

Literatur

Wesentliche Quellen:

- Vorlesungsskript
- Uwe Schöning: Theoretische Informatik kurz gefasst, 5. Auflage, Spektrum Akademischer Verlag, 2008 (ältere Auflagen sind auch in Ordnung) Teile sind u.U. zu kurz gefasst

Weitere Literatur:

- Alexander Asteroth und Christel Baier: Theoretische Informatik, Pearson Studium 2002. Gutes Buch. Aufbau in anderer Reihenfolge. Zugriff über UB
- John E. Hopcroft, Rajeev Motwani und Jeffrey D. Ullman: Introduction to Automata Theory, Languages, and Computation, 3, Auflage, 2006 Der Klassiker, umfangreich (Erstauflage 1979!)
- Ingo Wegener: Theoretische Informatik eine algorithmenorientierte Einführung, 3. Auflage, Teubner Verlag, 2005. Gutes Buch, andere Reihenfolge, Algorithmen stehen im Vordergrund, Zugriff über UB

Inhaltsübersicht über die Veranstaltung

Inhalte der Veranstaltung

Drei große wesentliche Themen der Theoretischen Informatik:

- Formale Sprachen und Automatentheorie Wie stellt man Entscheidungsprobleme formal dar?
- Berechenbarkeitstheorie Welche Probleme kann man algorithmisch (bzw. mit dem Computer) überhaupt lösen?
- Somplexitätstheorie
 Welche Probleme kann man in annehmbarer Zeit lösen?

Inhalte: Formale Sprachen und Automatentheorie

- Chomsky-Grammatiken und Chomsky-Hierarchie
- Das Wortproblem und weitere Entscheidungsprobleme
- Reguläre Sprachen: reguläre Grammatiken, deterministische endliche Automaten, nichtdeterministische endliche Automaten, ε -Übergänge, reguläre Ausdrücke, Äguivalenz der Formalismen, Pumpinglemma, Satz von Myhill-Nerode, Minimalautomaten, Abschlusseigenschaften
- Kontextfreie Sprachen: kontextfreie Grammatiken, Chomsky-Normalform, Greibach-Normalform, Pumpinglemma, Ogden's Lemma, Cocke-Younger-Kasami-Algorithmus, Kellerautomaten, Abschlusseigenschaften
- Kontextsensitive Sprachen und Typ 0-Sprachen: kontextsensitive Grammatiken, Kuroda-Normalform, Turingmaschinen, Linear bounded automata (LBA), LBA-Probleme

TIMI: Zum Teil nur Auswahl der Inhalte / oberflächlichere Behandlung!

Inhalte: Berechenbarkeitstheorie

- Intuitive Berechenbarkeit. Churchsche These
- Turing-Berechenbarkeit, Varianten von Turingmaschinen (z.B. Mehrbandmaschinen)
- LOOP-, WHILE-, GOTO-Berechenbarkeit: LOOP-Programme WHILE-Programme, GOTO-Programme, Äquivalenz zu Turingmaschinen
- Primitiv-rekursive Funktionen, Ackermannfunktion, mu-Rekursion
- Halteproblem, Unentscheidbarkeit
- Rekursiv aufzählbar
- Reduktionen
- Postsches Korrespondenzproblem

SoSe 2022

TIMI: Zum Teil nur Auswahl der Inhalte / oberflächlichere Behandlung!

Inhalte: Komplexitätstheorie

- Zeitkomplexität
- Klassen P und NP
- NP-Härte, NP-Vollständigkeit

SoSe 2022

- polynomielle Reduktionen
- das SAT-Problem
- Satz von Cook
- weitere NP-vollständige Probleme (z.B. 3-SAT, Clique, Vertex Cover, Subset Sum, Knapsack, Directed Hamilition Circuit, Hamilition Circuit,...)

TIMI: Zum Teil nur Auswahl der Inhalte / oberflächlichere Behandlung!

Grundlagen: Worte und Formale Sprachen

Worte

Alphabet

Ein Alphabet Σ ist eine endliche nicht-leere Menge von Zeichen (oder Symbolen).

$$\mathsf{Z.B.}\ \Sigma = \{a,b,c,d,e\}$$

Wort

Ein Wort w über Σ ist eine endliche Folge von Zeichen aus Σ .

- bade ist ein Wort über $\{a, b, c, d, e\}$
- baden ist kein Wort über $\{a, b, c, d, e\}$

Weitere Notationen zu Worten

- Das leere Wort wird als ε notiert.
- Für $w = a_1 \cdots a_n$ ist |w| = n die Länge des Wortes
- Für $1 \le i \le |w|$ ist w[i] das Zeichen an i. Position in w.
- Für $a \in \Sigma$ und w ein Wort über Σ sei $\#_a(w) \in \mathbb{N}$ die Anzahl an Vorkommen des Zeichens a im Wort w

- Es gilt $|\varepsilon| = 0$ und $\#_a(\varepsilon) = 0$ für alle $a \in \Sigma$.
- Für $\Sigma = \{a, b, c\}$ ist
 - |abbccc| = 6
 - |aabbbccc| = 8
 - $\#_a(abbccc) = 1$
 - $\#_c(aabbbccc) = 3$
- Für w = abbbcd ist w[1] = a, w[5] = c und w[7] undefiniert.

Konkatenation und Kleene-Stern

Konkatenation

Das Wort uv (alternativ $u \circ v$) entsteht, indem Wort v hinten an Wort u angehängt wird.

 Σ^* bezeichnet die Menge aller Wörter über Σ :

Definition von $\Sigma^i, \Sigma^*, \Sigma^+$

Sei Σ ein Alphabet, dann definieren wir:

$$\begin{array}{lll} \Sigma^0 &:= & \{\varepsilon\} \\ \Sigma^i &:= & \{aw \mid a \in \Sigma, w \in \Sigma^{i-1}\} \text{ für } i > 0 \\ \Sigma^* &:= & \bigcup_{i \in \mathbb{N}} \Sigma^i \\ \Sigma^+ &:= & \bigcup_{i \in \mathbb{N}_{>0}} \Sigma^i \end{array}$$

19/26

Beachte: $\mathbb{N} = \{0, 1, 2, ...\}$ und $\mathbb{N}_{>0} = \{1, 2, ...\}$

Sei
$$\Sigma = \{a, b\}.$$

Dann ist

Sei
$$\Sigma=\{a,b\}$$
.

Dann ist
$$\Sigma^0=\{\varepsilon\}$$

$$\Sigma^1=\Sigma=\{a,b\}$$

$$\Sigma^2=\{aa,ab,ba,bb\}$$

$$\Sigma^3=\{xw\mid x\in\{a,b\},w\in\Sigma^2\}=\{aaa,aab,aba,abb,baa,bab,bba,bbb\}$$
...
und
$$\Sigma^*=\{\varepsilon,a,b,aa,ab,ba,bb,aaa,aab,aba,abb,baa,bab,bba,bbb,aaaa$$

```
Sei \Sigma = \{a, b\}.
Dann ist
 \Sigma^0 = \{\varepsilon\}
 \Sigma^1 = \Sigma = \{a, b\}
```

```
Sei \Sigma = \{a, b\}.
Dann ist
 \Sigma^0 = \{\varepsilon\}
 \Sigma^1 = \Sigma = \{a, b\}
 \Sigma^2 = \{aa, ab, ba, bb\}
```

```
Sei \Sigma = \{a, b\}.
Dann ist
 \Sigma^0 = \{\varepsilon\}
 \Sigma^1 = \Sigma = \{a, b\}
 \Sigma^2 = \{aa, ab, ba, bb\}
 \Sigma^3 = \{\mathsf{x} w \mid \mathsf{x} \in \{a,b\}, w \in \Sigma^2\} = \{aaa, aab, aba, abb, baa, bab, bba, bbb\}
```

```
Sei \Sigma = \{a, b\}.
Dann ist
\Sigma^0 = \{\varepsilon\}
\Sigma^1 = \Sigma = \{a, b\}
\Sigma^2 = \{aa, ab, ba, bb\}
 \Sigma^{3} = \{xw \mid x \in \{a, b\}, w \in \Sigma^{2}\} = \{aaa, aab, aba, abb, baa, bab, bba, bbb\}
 . . .
und
 \Sigma^* = \{\varepsilon, a, b, aa, ab, ba, bb, aaa, aab, aba, abb, baa, bab, bba, bbb, aaaa, \ldots\}
```

Weitere Notationen und Begriffe

Sei w ein Wort über Σ

• w^m entsteht aus m-maligen Konkatenieren von w, d.h.

$$w^0 = \varepsilon$$
 und $w^m = ww^{m-1}$ für $m > 0$

 \bullet \overline{w} ist das rückwärts gelesene Wort w. d.h.

$$\overline{arepsilon}=arepsilon$$
 und für $w=a_1\cdots a_n$ ist $\overline{w}=a_na_{n-1}\cdots a_1$

21/26

• w ist ein Palindrom g.d.w. $w = \overline{w}$

SoSe 2022

Beispiele für Palindrome: anna, reliefpfeiler, lagerregal, annasusanna

Sprechweisen: Präfix, Suffix, Teilwort

Seien u, v Wörter über einem Alphabet Σ .

- u ist ein Präfix von v, wenn es ein Wort w gibt mit uv = v.
- u ist ein Suffix von v, wenn es ein Wort w gibt mit yy = y.
- u ist ein **Teilwort** von v, wenn es Wörter w_1, w_2 gibt mit $w_1uw_2 = v$.

Beispiel: Sei w = ababbaba

- aba ist ein Präfix, Suffix und Teilwort von w
- ababb ist ein Präfix (und Teilwort) von w, aber kein Suffix von w
- bab ist Teilwort von w, aber weder ein Präfix noch ein Suffix

Formale Sprache

Formale Sprache

Eine (formale) Sprache L über dem Alphabet Σ ist eine Teilmenge von Σ^* d.h. $L\subseteq \Sigma^*$

Beachte: Wir verwenden L für "language".

Formale Sprache

Formale Sprache

Eine (formale) Sprache L über dem Alphabet Σ ist eine Teilmenge von Σ^* d.h. $L\subseteq \Sigma^*$

Beachte: Wir verwenden L für "language".

Operationen auf formalen Sprachen

Seien L, L_1 , L_2 formale Sprachen über Σ

- Vereinigung: $L_1 \cup L_2 := \{w \mid w \in L_1 \text{ oder } w \in L_2\}$
- Schnitt: $L_1 \cap L_2 := \{ w \mid w \in L_1 \text{ und } w \in L_2 \}$
- ullet Komplement zu $L \colon \overline{L} := \Sigma^* \setminus L$
- Produkt: $L_1L_2 = L_1 \circ L_2 = \{uv \mid u \in L_1 \text{ und } v \in L_2\}$

Sei $\Sigma = \{a, b\}$ und $L_1 = \{a^i \mid i \in \mathbb{N}\}$ $L_2 = \{b^i \mid i \in \mathbb{N}\}.$

- $L_1 \cup L_2 = ?$
- $L_1 \cap L_2 = ?$
- $\overline{L_1} = ?$
- $L_1L_2 = ?$
- $L_2L_1 = ?$
- $L_1L_1 = ?$

Sei
$$\Sigma = \{a, b\}$$
 und $L_1 = \{a^i \mid i \in \mathbb{N}\}$ $L_2 = \{b^i \mid i \in \mathbb{N}\}.$

- $L_1 \cup L_2 = \mathsf{Sprache}$ aller Wörter, die nur aus a's oder nur aus b's bestehen
- $L_1 \cap L_2 = ?$
- \bullet $\overline{L_1} = ?$
- $L_1L_2 = ?$
- $L_2L_1 = ?$
- $L_1L_1 = ?$

Sei
$$\Sigma = \{a, b\}$$
 und $L_1 = \{a^i \mid i \in \mathbb{N}\}$ $L_2 = \{b^i \mid i \in \mathbb{N}\}.$

- $L_1 \cup L_2 = \mathsf{Sprache}$ aller Wörter, die nur aus a's oder nur aus b's bestehen
- $L_1 \cap L_2 = \{\varepsilon\}$
- \bullet $\overline{L_1} = ?$
- $L_1L_2 = ?$
- $L_2L_1 = ?$
- $L_1L_1 = ?$

Sei
$$\Sigma = \{a, b\}$$
 und $L_1 = \{a^i \mid i \in \mathbb{N}\}$ $L_2 = \{b^i \mid i \in \mathbb{N}\}.$

- $L_1 \cup L_2 = \mathsf{Sprache}$ aller Wörter, die nur aus a's oder nur aus b's bestehen
- $L_1 \cap L_2 = \{\varepsilon\}$
- ullet $\overline{L_1}=$ Sprache der Worte, die mindestens ein b enthalten
- $L_1L_2 = ?$
- $L_2L_1 = ?$
- $L_1L_1 = ?$

Sei
$$\Sigma = \{a, b\}$$
 und $L_1 = \{a^i \mid i \in \mathbb{N}\}$ $L_2 = \{b^i \mid i \in \mathbb{N}\}.$

- $L_1 \cup L_2 = \mathsf{Sprache}$ aller Wörter, die nur aus a's oder nur aus b's bestehen
- $L_1 \cap L_2 = \{\varepsilon\}$
- ullet $\overline{L_1}=$ Sprache der Worte, die mindestens ein b enthalten
- $\bullet L_1L_2 = \{a^ib^j \mid i, j \in \mathbb{N}\}\$
- $L_2L_1 = ?$
- $L_1L_1 = ?$

Sei
$$\Sigma = \{a, b\}$$
 und $L_1 = \{a^i \mid i \in \mathbb{N}\}$ $L_2 = \{b^i \mid i \in \mathbb{N}\}.$

- $L_1 \cup L_2 = \mathsf{Sprache}$ aller Wörter, die nur aus a's oder nur aus b's bestehen
- $L_1 \cap L_2 = \{\varepsilon\}$
- $\overline{L_1}$ = Sprache der Worte, die mindestens ein b enthalten
- $L_1L_2 = \{a^ib^j \mid i, j \in \mathbb{N}\}$
- $L_2L_1 = \{b^i a^j \mid i, j \in \mathbb{N}\}$
- $L_1L_1 = ?$

Sei
$$\Sigma = \{a, b\}$$
 und $L_1 = \{a^i \mid i \in \mathbb{N}\}$ $L_2 = \{b^i \mid i \in \mathbb{N}\}.$

- $L_1 \cup L_2 = \mathsf{Sprache}$ aller Wörter, die nur aus a's oder nur aus b's bestehen
- $L_1 \cap L_2 = \{\varepsilon\}$
- ullet $\overline{L_1}=$ Sprache der Worte, die mindestens ein b enthalten
- $\bullet L_1L_2 = \{a^ib^j \mid i,j \in \mathbb{N}\}\$
- $\bullet L_2L_1 = \{b^i a^j \mid i, j \in \mathbb{N}\}\$
- $L_1L_1 = L_1$

Für $L_1 = \{ \spadesuit, \clubsuit, \diamondsuit, \heartsuit \}$ und $L_2 = \{ 7, 8, 9, 10, J, D, K, A \}$ stellt L_1L_2 eine Repräsentation der Spielkarten eines Skatblatts dar.

Sei L eine Sprache. Dann ist:

$$\begin{array}{ll} L^0 := \{\varepsilon\} & \qquad \qquad L^* := \bigcup\limits_{i \in \mathbb{N}} L^i \\ L^i := L \circ L^{i-1} \text{ für } i > 0 & \qquad \qquad L^+ := \bigcup\limits_{i \in \mathbb{N}_{>0}} L^i \end{array}$$

Die Sprache L^* nennt man auch den Kleeneschen Abschluss von L benannt nach Stephen Cole Kleene (1909-1994).

Sei L eine Sprache. Dann ist:

$$\begin{array}{ll} L^0 := \{\varepsilon\} & \qquad \qquad L^* := \bigcup\limits_{i \in \mathbb{N}} L^i \\ L^i := L \circ L^{i-1} \text{ für } i > 0 & \qquad \qquad L^+ := \bigcup\limits_{i \in \mathbb{N} > 0} L^i \end{array}$$

Die Sprache L^* nennt man auch den Kleeneschen Abschluss von L benannt nach Stephen Cole Kleene (1909-1994).

- $L^0 = \{ \varepsilon \}$
- $L^1 = L \circ L^0 = L = \{ab, ac\}$
- $L^2 = \{abab, abac, acab, acac\}$
- $\bullet \ L^3 = \{ababab, ababac, abacab, abacac, acabab, acabac, acacab, acacac\}$
- $L^* = \{\varepsilon\} \cup \{ax_1ax_2 \cdots ax_i \mid i \in \mathbb{N}_{>0}, x_j \in \{b, c\}, j = 1, \dots, i\}.$

Sei L eine Sprache. Dann ist:

$$\begin{array}{ll} L^0 := \{\varepsilon\} & \qquad \qquad L^* := \bigcup\limits_{i \in \mathbb{N}} L^i \\ L^i := L \circ L^{i-1} \text{ für } i > 0 & \qquad \qquad L^+ := \bigcup\limits_{i \in \mathbb{N} > 0} L^i \end{array}$$

Die Sprache L^* nennt man auch den Kleeneschen Abschluss von L benannt nach Stephen Cole Kleene (1909-1994).

- $L^0 = \{ \varepsilon \}$
- $L^1 = L \circ L^0 = L = \{ab, ac\}$
- $L^2 = \{abab, abac, acab, acac\}$
- $\bullet \ L^3 = \{ababab, ababac, abacab, abacac, acabab, acabac, acacab, acacac\}$
- $L^* = \{\varepsilon\} \cup \{ax_1 ax_2 \cdots ax_i \mid i \in \mathbb{N}_{>0}, x_j \in \{b, c\}, j = 1, \dots, i\}.$

Sei L eine Sprache. Dann ist:

$$\begin{array}{ll} L^0 := \{\varepsilon\} & \qquad \qquad L^* := \bigcup\limits_{i \in \mathbb{N}} L^i \\ L^i := L \circ L^{i-1} \text{ für } i > 0 & \qquad \qquad L^+ := \bigcup\limits_{i \in \mathbb{N} > 0} L^i \end{array}$$

Die Sprache L^* nennt man auch den Kleeneschen Abschluss von L benannt nach Stephen Cole Kleene (1909-1994).

- $L^0 = \{\varepsilon\}$
- $L^1 = L \circ L^0 = L = \{ab, ac\}$
- $L^2 = \{abab, abac, acab, acac\}$
- $\bullet \ L^3 = \{ababab, ababac, abacab, abacac, acabab, acabac, acacab, acacac\}$
- $L^* = \{\varepsilon\} \cup \{ax_1ax_2 \cdots ax_i \mid i \in \mathbb{N}_{>0}, x_j \in \{b, c\}, j = 1, \dots, i\}.$

Sei L eine Sprache. Dann ist:

$$\begin{array}{ll} L^0 := \{\varepsilon\} & \qquad \qquad L^* := \bigcup\limits_{i \in \mathbb{N}} L^i \\ L^i := L \circ L^{i-1} \text{ für } i > 0 & \qquad \qquad L^+ := \bigcup\limits_{i \in \mathbb{N} > 0} L^i \end{array}$$

Die Sprache L^* nennt man auch den Kleeneschen Abschluss von L benannt nach Stephen Cole Kleene (1909-1994).

- $L^0 = \{\varepsilon\}$
- $L^1 = L \circ L^0 = L = \{ab, ac\}$
- $L^2 = \{abab, abac, acab, acac\}$
- $\bullet \ L^3 = \{ababab, ababac, abacab, abacac, acabab, acabac, acacab, acacac\}$
- $L^* = \{\varepsilon\} \cup \{ax_1 ax_2 \cdots ax_i \mid i \in \mathbb{N}_{>0}, x_j \in \{b, c\}, j = 1, \dots, i\}.$

Sei L eine Sprache. Dann ist:

$$\begin{array}{ll} L^0 := \{\varepsilon\} & \qquad \qquad L^* := \bigcup\limits_{i \in \mathbb{N}} L^i \\ L^i := L \circ L^{i-1} \text{ für } i > 0 & \qquad \qquad L^+ := \bigcup\limits_{i \in \mathbb{N} > 0} L^i \end{array}$$

Die Sprache L^* nennt man auch den Kleeneschen Abschluss von L benannt nach Stephen Cole Kleene (1909-1994).

- $L^0 = \{\varepsilon\}$
- $L^1 = L \circ L^0 = L = \{ab, ac\}$
- $L^2 = \{abab, abac, acab, acac\}$
- $\bullet \ L^3 = \{ababab, ababac, abacab, abacac, acabab, acabac, acacab, acacac\}$
- $L^* = \{\varepsilon\} \cup \{ax_1 ax_2 \cdots ax_i \mid i \in \mathbb{N}_{>0}, x_j \in \{b, c\}, j = 1, \dots, i\}.$

Sei L eine Sprache. Dann ist:

$$\begin{array}{ll} L^0 := \{\varepsilon\} & \qquad \qquad L^* := \bigcup\limits_{i \in \mathbb{N}} L^i \\ L^i := L \circ L^{i-1} \text{ für } i > 0 & \qquad \qquad L^+ := \bigcup\limits_{i \in \mathbb{N}_{>0}} L^i \end{array}$$

Die Sprache L^* nennt man auch den Kleeneschen Abschluss von Lbenannt nach Stephen Cole Kleene (1909-1994).

- $L^0 = \{ \varepsilon \}$
- $L^1 = L \circ L^0 = L = \{ab, ac\}$
- $L^2 = \{abab, abac, acab, acac\}$
- $L^3 = \{ababab, ababac, abacab, abacac, acabab, acabac, acacab, acacac\}$
- $L^* = \{\varepsilon\} \cup \{ax_1ax_2 \cdots ax_i \mid i \in \mathbb{N}_{>0}, x_i \in \{b, c\}, j = 1, \dots, i\}.$

Weitere Beispiele

$$((\{\varepsilon,1\}\circ\{0,\ldots,9\})\cup(\{2\}\circ\{0,1,2,3\}))\circ\{:\}\circ\{0,1,2,3,4,5\}\circ\{0,\ldots,9\}$$

Beschriebene Sprache = ?

$$\{0\} \cup (\{1,\ldots,9\} \circ \{0,\ldots,9\}^*)$$

Beschriebene Sprache = ?

Weitere Beispiele

$$((\{\varepsilon,1\}\circ\{0,\dots,9\})\cup(\{2\}\circ\{0,1,2,3\}))\circ\{:\}\circ\{0,1,2,3,4,5\}\circ\{0,\dots,9\}$$

Beschriebene Sprache = Sprache aller gültigen Uhrzeiten

$$\{0\} \cup (\{1,\dots,9\} \circ \{0,\dots,9\}^*)$$

Beschriebene Sprache = ?

Weitere Beispiele

$$((\{\varepsilon,1\}\circ\{0,\dots,9\})\cup(\{2\}\circ\{0,1,2,3\}))\circ\{:\}\circ\{0,1,2,3,4,5\}\circ\{0,\dots,9\}$$

Beschriebene Sprache = Sprache aller gültigen Uhrzeiten

$$\{0\} \cup (\{1,\ldots,9\} \circ \{0,\ldots,9\}^*)$$

Beschriebene Sprache = Sprache aller natürlichen Zahlen