事例探索と確率モデルの最適化に基づく可逆符号化方式

事例探索

			r ₁₀		
		r ₉	r ₅	r ₁₁	
	r ₈	r ₄	r ₂	r ₆	r ₁₂
r ₇	r ₃	r ₁	p_k		

変数名	意味
\mathbb{Z}^2	画素の平面(整数の平面)
$oldsymbol{p}_k \in \mathbb{Z}^2$	符号化対象画素
S	探索窓の大きさを制御するパラメータ
$\boldsymbol{r}_i \in \mathbb{Z}^2$	$oldsymbol{p}_k$ を基準とした位置ベクトル
$\ oldsymbol{r}_i\ _1$	符号化対象画素との市街地距離
$\{oldsymbol{p}_k+oldsymbol{r}_i i=1,2,\ldots,12\}$	$\ oldsymbol{r}_i\ _1 \leq 3$ を満たす12画素
$\boldsymbol{q}\in\mathbb{Z}^2$	探索領域内の全ての画素
$J_k(oldsymbol{q})$	式(1):周辺輝度分布とテンプレートの類似度を示すコスト関数
f(q)	画素 q の輝度値
$\mu(oldsymbol{q})$	式(2): テンプレート内の輝度値の重み付き平均
w_i	式(3) : $\sigma_t = 1.25$ のガウス関数で定義された重み係数
$oldsymbol{E}_k = \{oldsymbol{q}_{k,1}, oldsymbol{q}_{k,2}, \dots oldsymbol{q}_{k,M}, \}$	式(1)のコストが小さい順に M 画素を抽出した事例の集合
$f_{k,m}$	式(4): 符号化対象画素の輝度値に関する推定値(M 種類)

$$J_k(q) = \left[\sum_{i=1}^{12} w_i \cdot (f(q + r_i) - \mu(q) - f(p_k + r_i) + \mu(p_k))^2\right]^{\frac{1}{2}} + \lambda_d \cdot ||q - p_k||_1$$
(1)

$$\mu(\boldsymbol{q}) = \sum_{i=1}^{12} w_i \cdot f(\boldsymbol{q} + \boldsymbol{r}_i)$$
 (2)

$$w_{i} = \frac{\exp\left(-\frac{1}{2}\|\boldsymbol{r}_{i}\|_{1}^{2}/\sigma_{t}^{2}\right)}{\sum_{l=2}^{12}\exp\left(-\frac{1}{2}\|\boldsymbol{r}_{l}\|_{1}^{2}/\sigma_{t}^{2}\right)}$$
(3)

$$f_{k,m} = f(q_{k,m}) - \mu(q_{k,m}) + \mu(p_k)$$
 $(m = 1, 2, ..., M)$ (4)

確率分布の最適化

Parameter	quantization range	Initial value (α_j)
a_0	[0.0, 10.0]	3.0
a_1	[-1.0, 5.0]	2.0
a_2	[-1.0, 2.0]	0.5
a_3	[-1.0, 2.0]	0.5

変数名	意味	
$f(oldsymbol{p}_k)$	符号化対象画素の輝度値	
$f (\approx f_{k,m})$	$f(oldsymbol{p}_k)$ の取りうる値(括弧内は $J_k(oldsymbol{q}_{k,m})$ が十分に小さい時)	
$\Pr(f \boldsymbol{E}_k,u_k)$	式(5): $oldsymbol{E}_k$ が与えられた時の f の確率	
$P(f oldsymbol{E}_k,u_k)$	$P(f oldsymbol{E}_k,u_k)$ ガウス関数の和 + 正定数	
$\epsilon=2^{-20}$	$\epsilon=2^{-20}$ 確率が 0 になることを避けるための正定数	
$g_{k,m}(f)$	$g_{k,m}(f)$ 式(6): ガウス関数	
$h_{k,m}$	式(7): ガウス関数の高さを制御するパラメータ($d_{k,m}$ に依存すると考える)	
$d_{k,m}$ 式(8) : 信頼度 = 事例 $oldsymbol{q}_{k,m}$ のテンプレートマッチングのコスト		
$w_{k,m}$	式(9): ガウス関数の幅を制御するパラメータ($d_{k,m}$ と u_k に依存すると考える)	
$\{a_j j=0,\ldots,3\}$	モデルパラメータ	
$\Pr(f(m{p}_k) m{E}_k,u_k)$ 式(10): 符号化対象画素の輝度値 $f(m{p}_k)$ の生起確率(式(5)を正規化) $L(m{p}_k)$ 式(11): $f(m{p}_k)$ エントロピー符号化した際の見積もり符号量(式(10) の確率分布で)		
		u_k
$J(\Omega)$	式(13): ある領域 Ω 内で最終的な符号量を最小にするモデルパラメータの最適化問題における目的関数	
$rac{\partial}{\partial a_j}J_(\Omega)$ 式(14): $J(\Omega)$ の各モデルパラメータに対する勾配成分		

$$Pr(f|\boldsymbol{E_k}, \boldsymbol{u_k}) \propto P(f|\boldsymbol{E_k}, \boldsymbol{u_k}) = \sum_{m=1}^{M} g_{k,m}(f) + \epsilon$$
 (5)

$$g_{k,m}(f) = h_{k,m} \cdot w_{k,m} \cdot \exp\left(-w_{k,m}^2 \cdot (f - f_{k,m})^2\right)$$

$$\tag{6}$$

$$h_{k,m} = \exp(-a_1 \cdot d_{k,m}) \tag{7}$$

$$d_{k,m} = J_k(\boldsymbol{q}_{k,m}) \tag{8}$$

$$w_{k,m} = a_0 \cdot \exp(-a_2 \cdot d_{k,m}) \cdot \exp(-a_3 \cdot u_k)$$
(9)

$$\Pr(f(\boldsymbol{p}_k)|\boldsymbol{E}_k, u_k) = \frac{P(f(\boldsymbol{p}_k)|\boldsymbol{E}_k, u_k)}{\sum_{f=0}^{255} P(f|\boldsymbol{E}_k, u_k)}$$
(10)

$$L(oldsymbol{p}_k) = -\log_2 \Pr(f(oldsymbol{p}_k) | oldsymbol{E}_k, u_k)$$

$$= \frac{1}{\ln 2} \left[\ln \left(\sum_{f=0}^{255} P(f|\boldsymbol{E}_k, u_k) \right) - \ln P(f(\boldsymbol{p}_k)|\boldsymbol{E}_k, u_k) \right]$$
(11)

$$u_k = \sum_{i=1}^{12} w_i \cdot L(\boldsymbol{p}_k + \boldsymbol{r}_i) \tag{12}$$

$$J(\mathbf{\Omega}) = \sum_{\mathbf{p}_k \in \mathbf{\Omega}} L(\mathbf{p}_k) + \lambda_p \sum_{j=0}^{3} (a_j - \alpha_j)^2$$
(13)

$$\frac{\partial}{\partial a_j} J(\mathbf{\Omega}) = \frac{1}{\ln 2} \sum_{\mathbf{p}_k \in \mathbf{\Omega}} \left(\frac{\sum_{f=0}^{255} \frac{\partial}{\partial a_j} P(f|\mathbf{E}_k, u_k)}{\sum_{f=0}^{255} P(f|\mathbf{E}_k, u_k)} - \frac{\frac{\partial}{\partial a_j} P(f|\mathbf{E}_k, u_k)}{P(f|\mathbf{E}_k, u_k)} \right) + 2\lambda_p(a_j - \alpha_j)$$
(14)