

第1.2节 离差及其相关定理	第2页 ⊃
	_
1.2 离差及其相关定理	
27 September 2025	

第1.2节 离差及其相关定理	第3页 ⊃
§1.2.1 马尔可夫定理 §1.2.2 切比雪夫定理 §1.2.3 参数估计与假设检验 §1.2.4 切诺夫界	
27 September 2025	

第4页

离差

Deviation from the Mean

- > 考虑随机变量可能永远不会取期望附近的值
- > 判断抽样和测量的精度->偏离预期值的概率
- ▶ 极端 (extreme) 离差的概率广泛应用于工程领域
 - 一堵墙能抵御多长时间的海啸
 - · 组装设备一个月能容忍多少组件故障

27 September 2025

第1.2节 离差及其相关定理

第5页

§1.2.1 马尔可夫不等式

马尔可夫不等式 (Markov's Inequality)

如果X是一个非负随机变量,那么对任意x>0

$$P[X > a] < \frac{E(X)}{a}$$

 $P[X \ge a] \le \frac{E(X)}{a}$ 证明: 假设 Y_a 是基于X和a的一个随机变量:

$$Y_a = \begin{cases} 0, i & X < a \\ a, i & X > a \end{cases}$$

アルメラー で随机変量: $Y_a = \begin{cases} 0. \text{ if } X < a \\ a. \text{ if } X \geq a \end{cases}$ 对于変量 Y_a ,其期望可以表示为 $E[Y_a] = \Pr(X \geq a) * a$,且 $Y_a \leq X$ ⇒ $E[Y_a] \leq E(X)$ ⇒ $\Pr(X \geq a) * a \leq E(X)$

- $\Rightarrow \Pr(X \ge a) \le \frac{E(X)}{a}$

27 September 2025

5

第1.2节 离差及其相关定理

第6页

马尔可夫不等式:

如果R是一个非负随机变量,那么对任意x > 0, $P[X \ge a] \le \frac{E(X)}{a}$

推论:

如果X是一个非负随机变量,那么对任意 $c \ge 1$

 $P[X \ge c \cdot E[X]] \le \frac{1}{c}$

27 September 2025

第7页

例 *n* 个人把自己的帽子放进了一个房间,他们的帽子全部混在了一起,然后每个人再随机地取回一顶帽子,请问恰好k个人拿到自己帽子的概率不超过?

解法1: 设X为正确拿到自己帽子的人数,令 $X=x_1+x_2+\cdots+x_n$, $x_i=1$ 表示第i个人得到自己的帽子,否则 $x_i=0$:

$$E(X) = E(x_1) + E(x_2) + \cdots E(x_n),$$

注 x_i, x_j 不是相互独立,n-1拿到自己的帽子,最后一个人肯定也拿到自己帽子

27 September 2025

7

第1.2节 离差及其相关定理

第8页

解: $E(x_i) = 1 * \frac{1}{n} + 0 * (1 - \frac{1}{n}) = \frac{1}{n}$ $E(X) = E(x_1) + E(x_2) + \cdots E(x_n) = 1$

基于马尔可夫不等式:

$$P[X \ge k] \le \frac{E(X)}{k} = \frac{1}{k}$$

上界太大

27 September 2025

8

第1.2节 离差及其相关定理

第9页

解法2: 设X表示k人中每个人都拿到了自己的帽子,Y表示事件其它的n-k个人中没有人拿到自己的帽子。 x_i 表示第i个人得到自己的帽子,则

$$P(XY) = P(X)P(Y|X)$$

$$\begin{split} P(X) &= P(x_1, \cdots x_k) \\ &= P(x_1) P(x_2 | x_1) P(x_3 | x_1, x_2) \cdots P(x_k | x_1 \cdots x_{k-1}) \\ &= \frac{1}{n} \cdot \frac{1}{n-1} \cdots \frac{1}{n-k+1} = \frac{(n-k)!}{n!} \end{split}$$

27 September 2025

第10页 🕽

P(XY) = P(X)P(Y|X)

P(Y|X) 为n-k个人随机从n-k中找帽子,没有人选中的概率

考虑至少一个人选中的概率:

$$\begin{split} &+ (-1)^{j+1} \sum_{i_1 < i_2 < i_j} P\left(x_{i_1} x_{i_2} \cdots x_{i_j}\right) + \cdots + (-1)^{n-k+1} P(x_1 x_2 \cdots x_{n-k}) \\ &P\left(x_{i_1} x_{i_2} \cdots x_{i_j}\right) = \frac{(n-k-j)!}{(n-k)!} \quad \text{j个人选到自己的}, n-k-j \text{个人随机选} \end{split}$$

$$P\left(x_{i_1}x_{i_2}\cdots x_{i_j}\right) = \frac{(n-k-j)!}{(n-k)!}$$
 j个人选到自己的, $n-k-j$ 个人随机选

$$\sum_{i_1 < i_2 < i_j} P\left(x_{i_1} x_{i_2} \cdots x_{i_j}\right) = \frac{C_{n-k}^{j} (n-k-j)!}{(n-k)!} = \frac{1}{j!}$$

$$P(Y|X) = 1 - P(\cup x_i) = 1 - 1 + \frac{1}{2!} - \frac{1}{3!} + \cdots + \frac{(-1)^{n-k}}{(n-k)!} = \sum_{i=0}^{(-1)^i} \frac{(-1)^{i}}{i!}$$

27 September 2025

10

10

第1.2节 离差及其相关定理

第11页 ⊃

P(XY) = P(X)P(Y|X)

由于
$$P(X) = \frac{(n-k)!}{n!}$$
, $P(Y|X) = \sum_{i=0}^{n-k} \frac{(-1)^i}{i!}$

因此指定的 k人拿到自己帽子而其它人没有捡到 自己帽子的概率

$$P(XY) = \frac{(n-k)!}{n!} \sum_{i=0}^{n-k} \frac{(-1)^i}{i!}$$

只有水个人找到帽子概率为

$$C_n^k P(XY) = \frac{n!}{k!(n-k)!} \frac{(n-k)!}{n!} \sum_{i=0}^{n-k} \frac{(-1)^i}{i!} \le \frac{e^{-1}}{k!} < \frac{1}{k!}$$

基于Taylor 级数
$$e^{-x} = 1 - x + \frac{x^2}{2!} - \frac{x^3}{3!} + \cdots$$

27 September 2025

11

11

第1.2节 离差及其相关定理

第12页

例 假设某学校的大学生平均IQ为150, 请问这学校 的学生IQ大于200的概率?

解: 设X表示学校学生IQ, 从假设条件E(X) = 150 根据马尔 可夫定理:

$$P(X \ge 200) \le \frac{E(X)}{200} = \frac{3}{4}$$

让我们观察另外一个事实: 某校没有大学生智商低于100,

$$P(X \ge 200) = P \ (Y \ge 100) \ \le \frac{E(Y)}{100} = \frac{1}{2}$$

当对X-a (非负数) 使用马尔可夫定理将会获得更小的上界

27 September 2025

第13页 ⊃

§1.2.2 切比雪夫不等式

切比雪夫不等式 (Chebyshev's Inequality) 设随机变量R和正实数x,

$$P[|X - E[X]| \ge c] \le \frac{Var[X]}{c^2}$$

证明: 基于马尔可夫不等式

址明: 基于与尔可夫木等式
$$Pr(X \geq a) \leq \frac{E[X]}{a}$$
 令 $E[X] = \mu$, $Var[X] = \sigma^2$, 既 $X = (X - \mu)^2$, $a = c^2$, 代入上式:
$$Pr\left((X - \mu)^2 \geq c^2\right) \leq \frac{E[(X - \mu)^2]}{c^2} = \frac{\sigma^2}{c^2}$$
 $\rightarrow Pr(|X - \mu| \geq c) \leq \frac{\sigma^2}{c^2}$

27 September 2025

13

第1.2节 离差及其相关定理

第14页 ⊃

例 假设各人群中,IQ的标准差大约为15,国民平均IQ为100,请问IQ为300或更高的可能性?

解:设X表示国民IQ,根据马尔可夫定理,可得粗略边界:

$$P(X \ge 300) \le \frac{E(X)}{300} = \frac{1}{3}$$

基于切比雪夫定理获得更严格的边界:

$$P(X \ge 300) = P \ (X - 100 \ge 200)$$

 $\le \frac{Var(X)}{200^2} = 15^2/200^2 \approx 1/178$

178人中至多有一位IQ大于等于300

27 September 2025

14

14

第1.2节 离差及其相关定理

第15页

例 假设n个学生,一年共有d天,设M为生日匹配 的学生对的数量,请估计匹配数目的可能性?

解: $\Leftrightarrow B_1, B_2, \cdots, B_n$ 是n个人的生日, $\Leftrightarrow S_{i,j} = \mathbf{1}(i \neq j)$ 表示 $B_i = B_j$,给定i, j则 $E(S_{i,j}) = P(B_i = B_j) = \frac{1}{d}$

生日匹配的对数: $M = \sum_{1 \le i < j \le n} S_{i,j}$

$$E(M) = \sum_{1 \le i < j \le n} E(S_{i,j}) = C_n^2 \cdot 1/d$$

生日匹配事件两两独立:

$$Var(\mathbf{M}) = \sum_{1 \le i < j \le n} Var(S_{i,j}) = C_n^2 \cdot 1/d(1 - 1/d)$$

 $P(M - E(M) \ge x^2) \le C_n^2 \cdot 1/d(1 - 1/d)/x^2$

n=95,d=365,x=7,95人中有超过75%概率,6-19对生日匹配学生

27 September 2025

第16页

例 假设产品合格率为p,为了估计p,随机选择n个产品,假设我们希望<u>估计合格率与p</u>相差在0.04内的概率至少为95%,需要抽查n至少为多少?

解: 定义 x_i 为第t个产品为合格产品的变量 $x_i = 1$ 表示产品合格 令 $X_n = x_1 + x_2 + \dots + x_n$,我们使用 X_n/n 来估计p (statistical estimate)

为满足 $P(\left|\frac{x}{n}-p\right|\leq 0.04)\geq 0.95$

 x_i 两两独立、X服从二项式分布: $Var(X)=np(1-p)\leq n-rac{1}{4}$ $Var\Big(rac{X}{n}\Big)=rac{Var(X)}{n^2}\leq 1/4n$

为满足 $P\left(\left|\frac{x}{n}-p\right| \ge 0.04\right) \le \frac{1}{4n(0.04)^2} = \frac{156.25}{n} \le 1 - 0.95$

 $n \geq 3125$

27 September 2025

16

16

第1.2节 离差及其相关定理

第17页 ⊃

§1.2.3 参数估计与假设检验

27 September 2025

17

第1.2节 离差及其相关定理

第18页 ⊃

中心极限定理

设从均值为 μ ,方差为 σ^2 (有限)的任意总体中抽取样本量为n的样本,当n充分大,样本均值的抽样分布服从均值为 μ 、方差为 σ^2/n 正态分布。

$$ar{X}pprox \mu + rac{\sigma}{\sqrt{n}}\cdot N(0,1)$$

- 独立随机变量的标准化的和随样本量变大会趋向正态分布
 - 不要求随机变量本身是正态分布的,在一定条件下,我们可以使用对正态分布成 立的方法去应对非正态分布。
- 27 September 2025

18

第19页 ⊃

样本方差

- > <u>总体方差</u>: 给定一组数 $x_1, x_2, \dots, x_N, \mu = E(x_i), \sigma^2 = \frac{\sum_{i=1}^N (x_i \mu)^2}{N}$
- > <u>样本方差</u>: 给定一组数 $x_1, x_2, \cdots, x_{n-1} = \frac{\sum_{i=1}^{n} x_i}{n}, s^2 = \frac{\sum_{i=1}^{n} (x_i x)^2}{n-1}$

例 设 $x_1, x_2, ..., x_3$ 是均值为x、方差为 σ^2 的随机变量 X的n个观测值的随机样本,证明: 样本方差 s^2 是总体方差 σ^2 的一个无偏估计,其中: a) 被抽样总体为正太方布

- b) 被抽样总体的分布未知

27 September 2025

19

19

第1.2节 离差及其相关定理

第20页 ⊃

证明 a): 当样本来自正态分布时:

$$\frac{(n-1)s^2}{\sigma^2}=x^2$$

 $\frac{(n-1)s^2}{\sigma^2} = \chi^2$ 其中 χ^2 是自由度为v = (n-1)的卡方随机变量

$$s^{2} = \frac{\sigma^{2}}{(n-1)} X^{2}$$

$$\Rightarrow E(s^{2}) = E(\frac{\sigma^{2}}{(n-1)} X^{2}) = \frac{\sigma^{2}}{(n-1)} E(X^{2})$$

$$\Rightarrow E(s^{2}) = \sigma^{2}$$

$$E(X^{2}) = \mathbf{v} = (\mathbf{n} - \mathbf{1})$$

27 September 2025

20

20

第1.2节 离差及其相关定理

第21页 ⊃

z检测

根据中心极限定理

$$ar{X}pprox \mu + rac{\sigma}{\sqrt{n}}\cdot N(0,1)$$

如果总体均值、方差已知,可以用z统计量进行z检验

27 September 2025

第25页

参数估计和假设检验是统计推断的两个组成部分,都是利用样本对总体进行某种推断,但推断的角度不同。

- > 参数估计讨论的是用样本统计量估计总体参数的方法
- 假设检验讨论的是用样本信息去检验对总体参数的某种假设 是否成立的程序和方法。

27 September 2025

25

25

26

第1.2节 离差及其相关定理

第27页 ⊃

27

参数估计

点估计: 用样本统计量来估计总体参数, 样本统计量为数轴上某一点值, 估计的结果也以一个点的数值表示。

- > 对总体平均数 μ 的估计,用样本均数;
- > 对总体参数 σ² 的估计,常用样本方差;
- > 对总体相关系数ρ的估计,常用样本相关系数r。

优点:提供总体参数的估计值。

缺点: 点估计总是以误差的存在为前提,又不能提供正确估计的概率。

27 September 2025

第1.2节 离差及其相关定理

参数估计

区间估计:根据估计量以一定可靠程度推断总体参数所在的区间范围。
用数轴上的一段距离表示未知参数可能落入的范围,它虽不具体指出总体参数等于什么,但能指出总体的未知参数落入某一区间的概率有多大。
优点:可以解释总体参数落入某置信区间可能的概率。
缺点:如何平衡成功估计的概率大小及估计范围大小。

28

第29页 ⊃

29

28

27 September 2025

第1.2节 离差及其相关定理

区间估计 置信区间(置信间距):指在一定可靠程度上,总体参数所在的区域距离或区域长度。 置信界限(临界值):置信区间的上下两端点值。 显著性水平(意义阶段/信任系数):指估计总体参数落在某一区间时,可能犯错误的概率,用符号。表示。 置信度(置信水平):1- a。

29

27 September 2025

第1.2节 离差及其相关定理 —般规定 —般规定 — 正确估计的概率(置信水平) 为 .95 或 .99 — 显著性水平为 .05 或 .01 — .05 或 .01 属于小概率事件,原理:小概率事件在一次抽样中是不可能出现的 — a=0.01表示反复抽样1000次,则得到的1000个区间中不包含真值的仅为10个左右

ightarrow 当理论值为 $T_{\alpha/2}$ 时,置信区间为 $[X-T_{\alpha/2}\cdot SE_X,X+T_{\alpha/2}\cdot SE_X]$

> 6. 解释总体平均数的置信区间

27 September 2025

31

31

第1.2节 离差及其相关定理

第32页 ⊃

总体平均数的估计

总体分布为正态分布且总体方差已知

例1:已知某农场某批次冬瓜重量的总体方差为5.89公斤,从该农场随机抽取15个冬瓜,其平均重量为22.4公斤, 试求该农场冬瓜平均重量的95%和99%的置信区间。

27 September 2025

32

32

第1.2节	离	差及	其框	沃	理							第33页
		0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09	1
	0.0	0.5000	0.5040	0.5080	0.5120	0.5160	0.5199	0.5239	0.5279	0.5319	0.5359	
	0.1	0.5398	0.5438	0.5478	0.5517	0.5557	0.5596	0.5636	0.5675	0.5714	0.5753	
	0.2	0.5793	0.5832	0.5871	0.5910	0.5948	0.5987	0.6026	0.6064	0.6103	0.6141	
	0.3	0.6179	0.6217	0.6255	0.6293	0.6331	0.6368	0.6406	0.6443	0.6480	0.6517	
A6 AL /S.	0.4	0.6554	0.6591	0.6628	0.6664	0.6700	0.6736	0.6772	0.6808	0.6844	0.6879	
总体分	0.5	0.6915	0.6950	0.6985	0.7019	0.7054	0.7088	0.7123	0.7157	0.7190	0.7224	
.0.11.22	0.6	0.7257	0.7291	0.7324	0.7357	0.7389	0.7422	0.7454	0.7486	0.7517	0.7549	
	0.7	0.7580	0.7611	0.7642	0.7673	0.7704	0.7734	0.7764	0.7794	0.7823	0.7852	
	0.8	0.7881	0.7910	0.7939	0.7967	0.7995	0.8023	0.8051	0.8078	0.8106	0.8133	
解:	0.9	0.8159	0.8186	0.8212	0.8238	0.8264	0.8289	0.8315	0.8340	0.8365	0.8389	
胖:	1.0	0.8413	0.8438	0.8461	0.8485	0.8508	0.8531	0.8554	0.8577	0.8599	0.8621	
	1.1	0.8643	0.8665	0.8686	0.8708	0.8729	0.8749	0.8770	0.8790	0.8810	0.8830	
	1.2	0.8849	0.8869	0.8888	0.8907	0.8925	0.8944	0.8962	0.8980	0.8997	0.9015	
(1.3	0.9032	0.9049	0.9066	0.9082	0.9099	0.9115	0.9131	0.9147	0.9162	0.9177	
	1.4	0.9192	0.9207	0.9222	0.9236	0.9251	0.9265	0.9279	0.9292	0.9306	0.9319	
	1.5	0.9332	0.9345	0.9357	0.9370	0.9382	0.9394	0.9406	0.9418	0.9429	0.9441	
	1.6	0.9452	0.9463	0.9474	0.9484	0.9495	0.9505	0.9515	0.9525	0.9535	0.9545	
	1.7	0.9554	0.9564	0.9573	0.9582	0.9591	0.9599	0.9608	0.9616	0.9625	0.9633	
	1.8	0.9641	0.9649	0.9656	0.9664	0.9671	0.9678	0.9686	0.9693	0.9699	0.9706	
	1.9	0.9713	0.9719	0.9726	0.9732	0.9738	0.9744	0.9750	0.9756	0.9761	0.9767	
	2.0	0.9772	0.9778	0.9783	0.9788	0.9793	0.9798	0.9803	0.9808	0.9812	0.9817	
	2.1	0.9821	0.9826	0.9830	0.9834	0.9838	0.9842	0.9846	0.9850	0.9854	0.9857	
	2.2	0.9861	0.9864	0.9868	0.9871	0.9875	0.9878	0.9881	0.9884	0.9887	0.9890	
	2.3	0.9893	0.9896	0.9898	0.9901	0.9904	0.9906	0.9909	0.9911	0.9913	0.9916	
	2.4	0.9918	0.9920	0.9922	0.9925	0.9927	0.9929	0.9931	0.9932	0.9951	0.9936	
	2.5	0.9938	0.9940	0.9941	0.9943	0.9945	0.9946	0.9948	0.9949	0.9963	0.9952	
	2.6	0.9965	0.9955	0.9966	0.9957	0.9959	0.9960	0.9961	0.9962	0.9963	0.9964	
	2.8	0.9965	0.9975	0.9967	0.9908	0.9969	0.9970	0.9971	0.9972	0.9980	0.9981	
	2.9	0.9974	0.9975	0.9976	0.9983	0.9984	0.9978	0.9979	0.9979	0.9986	0.9981	
27 Sept	3.0	0.9981	0.9982	0.9982	0.9988	0.9988	0.9989	0.9989	0.9989	0.9990	0.9990	
Z, Scht	0.0	0.0001	010001	0.0001	0.0000	010000	0.0000	0.0000	0.0000	0.0000	0.0000	N.

第34页

总体平均数的估计

解:

 $SE_X = \frac{\sigma}{\sqrt{n}} = \frac{\sqrt{5.89}}{\sqrt{15}} = \frac{2.43}{3.87} = 0.63$

95%的置信区间的显著性水平 $\alpha=0.05$, $Z_{\alpha/2}=1.96$

所以95%的置信区间为

 $22.4-1.96 \times 0.63 \le u \le 22.4+1.96 \times 0.63$,即 [21.2,23.6]

99%的置信区间的显著性水平 $\alpha = 0.01$, $Z_{\alpha/2} = 2.58$

所以99%的置信区间为

 $22.4-2.58\times0.63 \le u \le 22.4+2.58\times0.63$,即 [20.8,24.0]

27 September 2025

34

34

第1.2节 离差及其相关定理

第35页 ⊃

总体平均数的估计

总体分布为非正态分布且总体方差已知

例2: 已知某批次产品木材产品长度的方差为436.8cm, 现从批次产品中抽取58件, 测得该组产品长度的平均数为198.4cm, 试求批次产品平均长度的95%和99%的置信区间。

当样本容量 n>30时,此时样本抽样分布渐近正态分布。这时可依正态分布进行估计,否则不能对总体平均数进行估计。

27 September 2025

35

35

第1.2节 离差及其相关定理

第36页 ⊃

总体平均数的估计

解: 由于样本容量大于30,该样本的抽样分布为渐进正态分布:

 $SE_X = \frac{\sigma}{\sqrt{n}} = \frac{\sqrt{436.8}}{\sqrt{58}} = \frac{20.9}{7.6} = 2.75$

所以95%的置信区间为

198.4–1.96×2.75 $\leq u \leq$ 198.4+1.96×2.75,即 [193.01,203.79]

所以99%的置信区间为

198.4-2.58×2.75 $\leq u \leq$ 198.4+2.58×2.75,即 [191.3,205.5]

27 September 2025

36

第37页 ⊃

总体平均数的估计

总体分布为正态分布且总体方差未知

例3: 从某市抽取20名7岁女童,经测量,这20名女童的平均身高为116cm,标准差为5cm,试求该市7岁女童总平均身高的95%和99%的置信区间。

无论样本容量 n 的大小,从该总体抽取的样本所形成的分布均服从自由 度为 $^{n-1}$ 的 t 分布,对总体平均数的估计可依 t 分布进行估计

27 September 2025

37

37

38

第1.2节 离差及其相关定理

第39页 ⊃

总体平均数的估计

解: 总体方差未知,总体分布为正态分布,故样本均数分布符合:分布,可以依:分布对总平均身高进行估计

 $SE_X = \frac{S}{\sqrt{n-1}} = \frac{5}{\sqrt{19}} = 1.15$ df=n-1=19

 $t_{0.05/2(19)} = 2.093$ $t_{0.01/2(19)} = 2.861$

所以95%的置信区间为

116-2.093×1.15 $\leq u \leq$ 116+2.093×1.15,即 [113.59, 118.41]

所以99%的置信区间为

116–2.861×1.15 $\leq u \leq 116 + 2.861 \times 1.15, \mathbb{P}$ [112.71,119.29]

27 September 2025

第40页

总体平均数的估计

总体分布为非正态分布且总体方差未知

例4: 某校进行一次考试,从中抽取40名考生经计算,这40 名 考生的平均成绩为82分,标准差为7分,试求全体考生平均成绩的95%和99%的置信区间。

只有当样本容量 n>30时,此时样本抽样分布服从自由度为n-1的t分布,这时可依t 分布对总体平均数进行估计,否则不能对总体平均数进行估计。

27 September 2025

40

40

第1.2节 离差及其相关定理

第41页 ⊃

总体平均数的估计

解: 由于n>30,可以依t分布对全体考生评价成绩进行估计

$$SE_X = \frac{S}{\sqrt{n-1}} = \frac{7}{\sqrt{39}} = 1.12$$
 df=n-1=39

 $t_{0.05/2(40)} = 2.\,021 \qquad t_{0.01/2(40)} = 2.\,704$

所以95%的置信区间为

82-2.021×1.12 $\leq u \leq$ 82 \neq 2.021×1.12,即 [79.74,84.26]

所以99%的置信区间为

82–2.704×1.12 $\leq u \leq$ 82 \neq 2.704×1.12,即 [78.97,85.03]

27 September 2025

41

41

第1.2节 离差及其相关定理

第42页 ⊃

总体标准差的估计

- > 1. 与总体平均数的估计过程类似
- ightarrow 2. 由于总体标准差未知,可以使用其无偏估计量 S_{n-1} 作为替代

$$SE_X = \frac{S_{n-1}}{\sqrt{2n}}$$

- > 3. 总体为正态分布时,若n>30,则可以通过正态分布来估计 ,否则,总体标准差无法估计
- 27 September 2025

42

第43页

总体标准差的估计

例5: 某区一次英语统考中,随机抽取40名考生,计算其英语成 绩的标准差为15.6,试求该区英语统考成绩总标准差的95%和 99%的置信区间。

27 September 2025

43

43

第1.2节 离差及其相关定理

第44页 ⊃

总体标准差的估计

解:由于n>30,可以依正态分布进行估计

$$SE_S = \frac{S_{n-1}}{\sqrt{2n}} = \frac{S \times \sqrt{n}/\sqrt{n-1}}{\sqrt{80}} = \frac{15.6 \times \sqrt{40}/\sqrt{39}}{\sqrt{80}} = 1.77$$

因此, 95%的置信区间为

15.6−1. 96×1. 77 ≤ σ ≤ 1*5.6+*1. 96×1. 77,即 [12. 15, 19. 05]

所以99%的置信区间为

15.6-2.58×1.77 $\leq \sigma \leq$ 15.6+2.58×1.77,即 [11.03,20.17]

27 September 2025

44

44

第1.2节 离差及其相关定理

第45页 ⊃

总体方差的估计

> 1. χ²分布:从正态分布的总体中,随机抽取容量为n的样本 ,其样本方差与总体方差的分布

$$\chi^2 = \frac{\sum (X - X)^2}{\sigma^2} = \frac{nS^2}{\sigma^2} = \frac{(n - 1)S_{n - 1}^2}{\sigma^2} \dots$$

> 2. 利用理论 χ^2 值与样本方差来确定总体方差的置信区间:

$$\frac{nS^2}{\chi_{\alpha/2}^2} \le \sigma^2 \le \frac{nS_n^2}{\chi_{1-\alpha/2}^2}$$

 $\frac{nS^2}{\chi_{\alpha/2}^2} \leq \sigma^2 \leq \frac{nS_n^2}{\chi_{1-\alpha/2}^2} \quad \text{ if } \qquad \frac{(n-1)S_{n-1}^2}{\chi_{\alpha/2}^2} \leq \sigma^2 \leq \frac{(n-1)S_{n-1}^2}{\chi_{1-\alpha/2}^2}$

27 September 2025

第46页 ⊃

总体方差的估计

例6: 在某市进行的一次智力测验中, 随机抽取20名12岁学生, 经计算其治理测验的方差为72.25, 试求该市12岁学生智力测验 分数总体方差的95%和99%的置信区间。

27 September 2025

46

46

2	(D.1.)	E (3	离差	100	₹1 ロ ∠	VE.	生						יד פע	7页
~	n a	0.995	0.99	0.975	0.95	0.90	0.75	0.50	0.25	0.10	0.05	0.025	0.01	0.005
	1	0.00004	0.00016	0.001	0.004	0.016	0.102	0.455	1.323	2.706	3.841	5.024	6.635	7.879
	2	0.010	0.020	0.051	0.103	0.211	0.575	1.386	2.773	4.605	5.991	7.378	9.210	10.597
	3	0.072	0.115	0.216	0.352	0.584	1.213	2.366	4.108	6.251	7.815	9.348	11.345	12.838
ı	4	0.207	0.297	0.484	0.711	1.064	1.923	3.357	5.385	7.779	9.488	11.143	13.277	14.860
A.	5	0.412	0.554	0.831	1.145	1.610	2.675	4.351	6.626	9.236	11.070	12.833	15.086	16.750
-	6	0.676	0.872	1.237	1.635	2.204	3.455	5.348	7.841	10.645	12.592	14.449	16.812	18,548
ı	7	0.989	1.239	1.690	2.167	2.833	4.255	6.346	9.037	12.017	14.067	16.013	18.475	20.278
١	8	1.344	1.646	2.180	2.733	3.490	5.071	7.344	10.219	13.362	15.507	17.535	20.090	21.955
	9	1.735	2.088	2.700	3.325	4.168	5.899	8.343	11.389	14.684	16.919	19.023	21.666	23.589
	10	2.156	2.558	3.247	3.940	4.865	6.737	9.342	12.549	15.987	18.307	20.483	23.209	25.188
ı-	11	2.603	3.053	3.816	4.575	5.578	7.584	10.341	13.701	17.275	19.675	21.920	24.725	26.757
	12	3.074	3.571	4.404	5.226	6.304	8.438	11.340	14.845	18.549	21.026	23.337	26.217	28.300
	13	3.565	4.107	5.009	5.892	7.042	9.299	12.340	15.984	19.812	22.362	24.736	27.688	29.819
	14	4.075	4.660	5.629	6.571	7.790	10.165	13.339	17.117	21.064	23.685	26.119	29.141	31.319
	15	4.601	5.229	6.262	7.261	8.547	11.037	14.339	18.245	22.307	24.996	27.488	30.578	32.801
	16	5.142	5.812	6.908	7.962	9.312	11.912	15.338	19.369	23.542	26.296	28.845	32.000	34.267
	17	5.697	6.408	7.564	8.672	10.085	12.792	16.338	20.489	24.769	27.587	30.191	33.409	35.718
	18	6.265	7.015	8.231	9.390	10.865	13.675	17.338	21.605	25.989	28.869	31.526	34.805	37.156
	19	6.844	7.633	8.907	10.117	11.651	14.562	18.338	22.718	27.204	30.144	32.852	36.191	38,582
	20	7.434	8.260	9.591	10.851	12.443	15.452	19.337	23.828	28.412	31.410	34.170	37.566	39.997
_	21	8.034	8.897	10.283	11.591	13.240	16.344	20.337	24.935	29.615	32.671	35.479	38.932	41.401
	22	8.643	9.542	10.982	12.338	14.041	17.240	21.337	26.039	30.813	33.924	36.781	40.289	42.796
	23	9.260	10.196	11.689	13.091	14.848	18.137	22.337	27.141	32.007	35.172	38.076	41.638	44.181
	24	9.886	10.856	12.401	13.848	15.659	19.037	23.337	28.241	33.196	36.415	39.364	42.980	45.559
	25	10.520	11.524	13,120	14.611	16,473	19,939	24.337	29,339	34.382	37.652	40.646	44.314	46,928

47

第1.2节 离差及其相关定理

第48页 ⊃

总体方差的估计

解: 我们认为智力测验分数服从正态分布, 由该总体中抽出的 样本的估计总体方差时服从χ²分布。

df=n-1=19, 由 χ^2 分布值表, $\chi^2_{.05/2} = 32.9$, $\chi^2_{1-.05/2} = 8.91$,

 $\chi^2_{.01/2} = 38.6, \chi^2_{1-.01/2} = 6.84$

所以95%的置信区间和99%的置信区间分别为

 $\frac{20 \times 72.25}{32.9} \leq \sigma^2 \leq \frac{20 \times 72.25}{8.91}$

 $\frac{20 \times 72.25}{38.6} \le \sigma^2 \le \frac{20 \times 72.25}{6.84}$

即 [43.92, 162.18]

[37.44,211.26]

27 September 2025

第49页

49

参数估计和假设检验是统计推断的两个组成部分, 都是利用样 本对总体进行某种推断,但推断的角度不同。

- > 参数估计讨论的是用样本统计量估计总体参数的方法
- > 假设检验讨论的是用样本信息去检验对总体参数的某种假设 是否成立的程序和方法。

27 September 2025

49

50

第1.2节 离差及其相关定理

第51页 ⊃

假设检验

- > 参数假设检验: 总体的分布形式已知, 需要对总体的未知参 数进行假设检验。
- > 非参数假设检验: 对总体分布形式所知甚少, 需对未知分布 函数的形式及其他特征进行假设检验。

27 September 2025

51

第1.2节 离差	及其相关定理	第54页 ⊃
	二项式尾切尔诺夫界	
独立抛1000次	硬币,求正面次数超过期望20%及以	上的概率边界
解	$X = x_1 + x_2 + \dots + x_{1000}$	
根据目标, c =	$= 1.2, \beta(c) = c \ln c - c + 1 = 0.0187$	
假设硬币均匀	, $E(X) = 500$, $P[X \ge 1.2E(X)] \le e^{-0.0187*5}$	500 < 0.000083
假设扔100万万	$\Re , \ E(X) = 500000, \ P[X \ge 1.2E(X)] \le e^{-9}$	392
假设超过期望	30%, $E(X) = 500$, $P[X \ge 1.2E(X)] \le e^{-0.0}$	41*500
		分之一
27 Septembe	r 2025	54

第55页 ⊃

彩票游戏切尔诺夫界

Pick-4: 花1元在0000-9999间选四位数,如果随机摇号选中了号码,获得5000元,中奖率1/10000。如果1000万人参加这个游戏,彩票发行商人不敷出的概率是多少?

解 中奖总人数: $X = x_1 + x_2 + \cdots + x_n$ 中奖期望人数: 1000人

如果假设玩家挑选数字及中奖数字随机、独立、均匀分布,超过2000人中奖 入不敷出, $c=2,\beta(c)=c\ lnc-c+1=0.386$

 $P[X \ge 2E(X)] \le e^{-386}$

c=1.1, $P[X \ge 1.1E(X)] \le e^{-0.00484*1000} < 0.01$

27 September 2025

55

55

第1.2节 离差及其相关定理

第56页 ⊃

随机负载均衡切尔诺夫界

总共有24000个任务,平均每个任务耗时 $_4^1$ 秒,确定服务器台数 $_m$,使得给定时间间隔内不大可能任一服务器被分配超过600秒的负荷而导致超载。

解 我们先确定第一台服务器超载概率。设r为第一台服务器分到负载秒数,计算 $p(r) \geq 600$)上界

$$T = t_1 + t_2 + \cdots + t_n, n = 24000$$

我们先确定第一台服务器超载概率。设T为第一台服务器分到负载秒数,计 算 $P(T \geq 600)$ 上界

假设任务到哪台服务器与任务耗时无关,每个任务耗时不超过1秒,平均每个

任务耗时 $\frac{1}{2}$ 秒。任务随机分配到m台服务器,第一台的期望负载为

$$E(X) = 24000 * \frac{1}{4}/m$$

27 September 2025

56

56

第1.2节 离差及其相关定理

第57页 ⊃

随机负载均衡切尔诺夫界

总共有24000个任务,平均每个任务耗的 $\frac{1}{4}$ 秒,确定服务器台数m,使得给定时间间隔内不大可能任一服务器被分配超过600秒的负荷而导致超载。

解 我们先确定第一台服务器超载概率。设T为第一台服务器分到负载秒数,计 第 $P(T \ge 600)$ 上界

$$E(X) = 24000 * \frac{\frac{1}{4}}{m} = 6000/m$$

超负载c=m/10:**P[X**≥600]≤ $e^{-(c \ln c - c + 1) \cdot 6000/m}$

 $P[有一台服务器超载] \leq \sum_{i=1}^{m} P[\hat{\pi}i 台服务器超载]$

=mP [第1台服务器超载]≤ me^{-(c lnc -c+1)·6000/m}

m = 11: 0.784... m = 12: 0.000999...m = 13: 0.0000000760

27 September 2025

57

第1.2节 离差及其相关定理 切尔诺夫界证明 证明: $E(c^X) \leq e^{(c-1)E(X)}$ $E(c^X) = E(c^{x_1} \cdots c^{x_n}) = E(c^{x_1}) \cdots E(c^{x_n})$ 由于: $E(c^{x_i}) = \sum c^r P(x_i = r) \leq \sum (1 + (c - 1)r) P(x_i = r)$ $= \sum P(x_i = r) + (c - 1) \sum r P(x_i = r)$ = 1 + (c - 1) E(x) $\leq e^{(c-1)E(x)}$ 由于 $1 + z \leq e^z$ $E(c^X) = E(c^{x_1} \cdots c^{x_n}) = E(c^{x_1}) \cdots E(c^{x_n}) \leq e^{(c-1)E(x_1)} \cdots e^{(c-1)E(x_n)}$ $\leq e^{(c-1)E(X)}$ 27 September 2025

第1.2	节 离差及其相关定理		第61页 ⊃			
	墨菲定律(N	Aurphy's law)			
	: A ₁ , A ₂ , ···, A _n 是相互独立 :随机变量。事件发生总数					
百百		$\mathbf{x}\mathbf{A} - \mathbf{x}_1 + \mathbf{x}_2 + \cdots$ $\mathbf{x}\mathbf{A} = \mathbf{A}_1 + \mathbf{A}_2 + \cdots$ $\mathbf{x}\mathbf{A} = \mathbf{A}_1 + \mathbf{A}_2 + \cdots$ $\mathbf{x}\mathbf{A} = \mathbf{A}_1 + \mathbf{A}_2 + \cdots$	$+\lambda_n$			
证明	$: P[X = 0] = P[\overline{A_1} \cap \overline{A_2} \cdots \cap$	$\overline{A_n}] = \prod_{i=1}^n (1 - P(A_i))$))			
		$\leq \Pi_{i=1}^n e^{-P(A_i)}$	$1+x\leq e^x$			
	预计10个事件发生,至少有一个事	$= e^{-\sum_{i=1}^{n} \mathbf{P}(A_i)}$				
	生概率不小于1-e ⁻¹⁰ > 1 - 2000	$= e^{-\sum_{i=1}^{n} E(A_i)}$ $= e^{-E(X)}$				
27 Sep	otember 2025	= e ^{-E(A)}	61	1		