Problem C. Chef and Queries

Time limit 2000 ms Code length Limit 50000 B OS Linux

Problem Statement

You have a set S, initially empty. You need to process Q queries on this set, of the following two types:

- Add a number to the set (if this number is *not* already present in the set).
- Erase a number from the set (if this number exists in the set).

Find out the sum of the elements of the set after performing all the queries.

Note: In this problem, the time limit is very tight. Using built-in data structures, such as set/unordered_set in C++ or TreeSet/HashSet in Java, may lead to a Time Limit Exceeded verdict.

Constraints

- $1 \le Q \le 10^7$
- $1 < S_1, A, B < 10^9$

Input

The first line of input contains four integers — Q, S_1 , A, B. S_1 is the first number in the operations. A and B are special constants explained later.

Every operation S_i is represented by a single integer. If S_i is odd, then it represents the first operation, otherwise the second type, and in both of them the integer you have to add/delete equals $\lfloor \frac{S_i}{2} \rfloor$.

For
$$i > 1$$
, $S_i = (A \cdot S_{i-1} + B) \mod 2^{32}$.

Output

Output

Output a single line containing a single integer — sum of elements in the set after ${\bf Q}$ queries.

Sample 1

Input	Output
5 1 1 1	3

Sample 2

Input	Output
10000000 777777777 777777777 777777777	5362358669068782

Note

The sequence $\{S_i\}$ is 1, 2, 3, 4, 5:

- Operation 1: $1 \pmod 2 = 1$, add number $\lfloor \frac{1}{2} \rfloor = 0$ to set, sum is 0.
- Operation 2: $2 \pmod 2 = 0$, erase number $\lfloor \frac{2}{2} \rfloor = 1$ from set, 1 is not in set, so nothing happens, sum is 0.
- Operation 3: 3 $\pmod{2} = 1$, add number $\lfloor \frac{3}{2} \rfloor = 1$ to set, sum is 1.
- Operation 4: 4 $\pmod{2} = 0$, erase number $\lfloor \frac{4}{2} \rfloor = 2$ from set, 2 is not in set, so nothing happens, sum is 1.
- Operation 5: $5 \pmod 2 = 1$, add number $\lfloor \frac{5}{2} \rfloor = 2$ to set, sum is 3.