Transformation Review

1. Explain what each does to the *original* graph y = f(x).

Assume $c > 0$	Description	Assume $c > 1$	Description
f(x) + c		cf(x)	
$\int f(x) - c$		f(cx)	
f(x+c)		-f(x)	
$\int f(x-c)$		f(-x)	

2. Let $f(x) = x^2$. Graph each of the following using the ideas from # 1 above.

(a) f(x)

(c) f(x-1)

(b) -f(x)

(d) f(x-1)-1

Trigonometry Review

3. An isosceles triangle has a height of 10 ft and its base is 8 feet long. Determine the sine, cosine, tangent, cotangent, secant and cosecant of the base angle α .

4. Using a 45-45-90 triangle and a 30-60-90 triangle find the coordinates of **any three marked points**, **one of each color** on the unit circle. (The blue points are at multiples of $\frac{\pi}{6}$, the red points are at multiples of $\frac{\pi}{4}$, and the black points are at multiples of $\frac{\pi}{2}$.)

- 5. Without a calculator evaluate:
 - (a) $\sin(\frac{2\pi}{3})$

(b) $\cos(\frac{5\pi}{4})$

(c) $\tan(\frac{-\pi}{4})$

6. On the axes below, graph at least two cycles of $f(x) = \sin x$, $f(x) = \cos(x)$. Label all x- and y-intercepts.

7. (a) Graph $y = \sin(2x)$ and $y = 1 - 2\cos(x)$ on adjacent graphs. Label the points $0, \pi/2, \pi, 3\pi/2$ and 2π on the *x*-axis.

(b) Use the graph of $f(x) = \sin(2x)$ to determine the domain of $f(x) = \csc(2x)$