

Deep learning for System Identification

Introduction

Marco Forgione, Dalle Molle Institute for Artificial Intelligence, USI-SUPSI, Lugano, Switzerland Milano, June 30, 2025

Slides originally prepared by:

Dario Piga, Dalle Molle Institute for Artificial Intelligence, Lugano, Switzerland

Introduction to System Identification

Models

- Abstractions of reality
- Models can describe mechanical systems, social interactions, markets, etc.
- Different types of models:
 - Intuitive/mental models
 - Graphical models (Bode diagrams, flowcharts)
 - Mathematical models describing relations between variables/signals of the system/process

$$\dot{\mathbf{x}}(t) = f(x(t), u(t))$$

$$\frac{\partial u}{\partial t} = \alpha \frac{\partial^2 u}{\partial x^2}$$

Modelling paradigms

- First principles modelling (from first principles laws of physics/chemistry/biology, etc.)
 - Pure physical modelling: white-box approach
 - Knowledge of the physics behind the system/process
 - Models are interpretable
 - Sometimes, physical modelling can be complex or even impossible

- Data-driven modelling (from measurements of variables gathered from experiments)
 - Pure data-driven modelling: black-box approach
 - Limited knowledge of the system/process
 - Models are usually not explainable
 - Need for (informative) data
 - Generalization properties might be limited

- Combination of first principles and data-driven modelling is also possible
 - □ E.g., model structure derived from physics, and some parameters estimated from data
 - In any case, even pure physical models needs often to be validated with experiments

Dynamical systems

Systems with memory (present also depends on the past)

Described by equations evolving in time

Continuous time: ODE

$$\begin{cases} \dot{x}(t) = f(x(t), u(t); \boldsymbol{\theta}) \\ y(t) = g(x(t); \boldsymbol{\theta}) \end{cases}$$

$$y^{(n)}(t) = h\left(y^{(n-1)}, \dots, y, u^{(n)}, \dots, u; \theta\right)$$

Discrete time: Recurrence equation

$$\begin{cases} x(k+1) &= f(x(k), u(k); \boldsymbol{\theta}) \\ y(k) &= g(x(k); \boldsymbol{\theta}) \end{cases}$$

$$y(k) = h(y(k-1), ..., y(k-n_a), u(k), ..., u(k-n_b); \theta)$$

Model structures

- Model: Given past inputs and outputs, provides an estimate of the current output
 - Example: AutoRegressive eXogenous (ARX) model

$$M(\theta): \hat{y}(k) = \underbrace{a_1 y(k-1) + \ldots + a_{na} y(k-na) + b_0 u(k) + \ldots + b_{nb} u(k-nb)}_{= [y(k-1) \ldots y(k-na) u(k) u(k-1) \ldots u(k-nb)]}_{\phi^{\top}(k)} \theta = \begin{bmatrix} a_1 & a_2 & \ldots & a_{na} & b_0 & b_1 & \ldots & b_{nb} \end{bmatrix}^{\top}$$

- Residual signal: $\epsilon(k, \theta) = y(k) \hat{y}(k)$
 - □ Example: $\epsilon(k, \theta) = y(k) \phi^{\top}(k)\theta$
- Loss: $\mathcal{L}_N(\boldsymbol{\theta}) = \frac{1}{N} \sum_{k=1}^N \ell(y(k), \hat{y}(k, \boldsymbol{\theta}))$
 - Example: least-squares loss:

$$\mathcal{L}_N(\boldsymbol{\theta}) = \frac{1}{N} \sum_{k=1}^N \|\epsilon(k, \boldsymbol{\theta})\|^2$$

Least squares estimate: ARX model structure

$$M(\theta) : \hat{y}(k) = a_1 y(k-1) + \dots + a_{na} y(k-na) + b_0 u(k) + \dots + b_{nb} u(k-nb)$$

$$= [\underline{y(k-1) \dots y(k-na) u(k) u(k-1) \dots u(k-nb)}] \theta$$

$$\mathcal{L}_{N}(\boldsymbol{\theta}) = \frac{1}{N} \sum_{k=1}^{N} \| \boldsymbol{\epsilon}(k, \boldsymbol{\theta}) \|^{2} = \frac{1}{N} \sum_{k=1}^{N} \left(\boldsymbol{\phi}^{\top}(k) \boldsymbol{\theta} - \boldsymbol{y}(k) \right)^{2}$$

$$\theta^* = \arg\min_{\theta} \mathcal{L}_N(\theta) \to \theta^* : \frac{\partial L_N(\theta)}{\partial \theta} = 0 \qquad \theta^* : \frac{1}{N} \sum_{k=1}^N \phi(k) \left(\phi^{\mathsf{T}}(k) \theta - y(k) \right) = 0$$

$$\theta^{\bullet} = \left(\frac{1}{N}\sum_{k=1}^{N}\phi(k)\phi^{\top}(k)\right)^{-1}\frac{1}{N}\sum_{k=1}^{N}\phi(k)y(k)$$

Example: Cascaded Tanks System

- Fluid level control system with two tanks
- Upper tank fed by a pump
- Water flows from upper tank to lower tank through a small opening
- Water flows from lower tank to reservoir through a small opening
- Overflow in the upper tank may happen
- Input: pump voltage
- Output: water level of lower tank
- Length of training set: 1024 samples
- Length of test set: 1024 samples
- Sampling time: 4 s

Jupyter Notebook: cascaded tanks (Part 1)

Metrics (over test data) both for 1-step and open-loop simulation:

$$MSE = \frac{1}{N} \sum_{k=1}^{N} \|y(k) - \hat{y}(k)\|^{2}$$

$$R^{2} = 1 - \frac{\sum_{k=1}^{N} \|y(k) - \hat{y}(k)\|^{2}}{\sum_{k=1}^{N} \|y(k) - \hat{y}(k)\|^{2}}$$

Schoukens, M. et al. "Cascaded tanks benchmark combining soft and hard nonlinearities." Workshop on nonlinear system identification benchmarks, 2016. https://www.nonlinearbenchmark.org/

Including nonlinearities

Linear-in-the-parameter NARX model:

$$M(\theta): \hat{y}(k) = F^{\top} \left(\overbrace{y(k-1), \dots, y(k-n_a), u(k-1), \dots, u(k-n_b)}^{=\phi(k)} \right) \theta$$

F is a vector function of ϕ containing (known) nonlinear elements, e.g.,

$$F(\phi(k)) = \left[\begin{array}{c} y(k-1)\\ \vdots\\ y^2(k-na)\\ u^3(k-1)\\ \vdots\\ u(k-1)\sin(u(k-nb)) \end{array}\right]$$
 How to choose the non-linearities?

General NARX model:

- F is a nonlinear function (e.g., neural network) of past observations
- Linearity in 0 is lost

$$M(\theta): \hat{y}(k) = \mathcal{F}(y(k-1), ..., y(k-na), u(k), u(k-1), ..., u(k-nb); \theta)$$

Limitations of (N)ARX models

$$M(\theta): \hat{y}(k) = \mathcal{F}(y(k-1), \dots, y(k-na), u(k), u(k-1), \dots, u(k-nb); \theta)$$
$$\epsilon(k, \theta) = y(k) - \hat{y}(k)$$

- Prediction error only looks one-step ahead
- In case of data sampled at high-frequency, a good one-step ahead predictor could be:

$$M(\theta): \hat{y}(k) = y(k-1)$$

• We would like to have predictive models that provide good prediction in a long-horizon

$$M(\theta): \hat{y}(k) = \mathcal{F}(\hat{y}(k-1), \dots, \hat{y}(k-na), u(k), u(k-1), \dots, u(k-nb); \theta)$$

 $k = 1, 2, \dots$

Simulation error minimization

- Linear models
 - Output Error (OE) model:

$$M(\theta): \hat{y}(k) = \underbrace{a_1 \hat{y}(k-1) + \ldots + a_{na} \hat{y}(k-na) + b_0 u(k) + \ldots + b_{nb} u(k-nb)}_{=[\hat{y}(k-1;\theta) \ldots \hat{y}(k-na;\theta) u(k) u(k-1) \ldots u(k-nb)]\theta}$$

$$= \underbrace{[\hat{y}(k-1;\theta) \ldots \hat{y}(k-na;\theta) u(k) u(k-1) \ldots u(k-nb)]\theta}_{\phi^{\top}(k;\theta)}$$

- Residual signal: $\epsilon(k,\theta) = y(k) \hat{y}(k) = y(k) \phi^{\top}(k,\theta)\theta$
- Loss: sum of squared residuals is no longer convex!

$$L_N(\boldsymbol{\theta}) = \frac{1}{N} \sum_{k=1}^{N} \|\epsilon(k, \boldsymbol{\theta})\|^2$$

First-order methods for non-convex optimization

Vanilla Gradient Descent

- 1. Initialize Parameters: $\theta^{(0)}$
- 2. for $k = 0, 1, \ldots$: until maximum number of iterations or convergence do:
 - (a) Compute Gradient: $\nabla_{\theta} \mathcal{L}(\theta^{(k)})$
 - (b) Update Parameters:

$$\theta^{(k+1)} = \theta^{(k)} - \gamma \cdot \nabla_{\theta} \mathcal{L}(\theta^{(k)})$$

Other updates are possible, e.g., gradient-descent with momentum:

$$v^{(k+1)} = \mu v^{(k)} + (1 - \tau) \cdot \nabla_{\theta} \mathcal{L}(\theta^{(k)})$$

 $\theta^{(k+1)} = \theta^{(k)} - \gamma v^{(k+1)}$

```
optimizer = optim.SGD(model.parameters(), lr=0.01, momentum=0.9) optimizer = optim.Adam([var1, var2], lr=0.0001)
```

Convergence of gradient-descent

Assumptions:

- $L(\theta^*) = 0$ (just to keep notation simple)
- Lipschitz continuity of ∇L : $\nabla^2 L(\theta) \leq \beta I \ \forall \theta \in B$
- μ -PL condition: $\frac{1}{2} \|\nabla L(\theta)\|^2 \ge \mu L(\theta) \ \forall \theta \in B$
- $\theta^{(k+1)} = \theta^{(k)} \gamma \nabla L(\theta^{(k)})$ (gradient update)

Convergence:

$$L(\theta^{(k+1)}) = L(\theta^{(k)}) + \left(\theta^{(k+1)} - \theta^{(k)}\right)^{\top} \nabla L(\theta^{(k)}) + \frac{1}{2} \left(\theta^{(k+1)} - \theta^{(k)}\right)^{\top} \nabla^{2} L(\bar{\theta}) \left(\theta^{(k+1)} - \theta^{(k)}\right)$$

$$\leq L(\theta^{(k)}) - \gamma \left\| \nabla L(\theta^{(k)}) \right\|^{2} + \frac{1}{2} \gamma^{2} \left\| \nabla L(\theta^{(k)}) \right\|^{2} \beta$$

$$= L(\theta^{(k)}) - \gamma \left\| \nabla L(\theta^{(k)}) \right\|^{2} \left(1 - \frac{1}{2} \gamma \beta\right)$$

$$= L(\theta^{(k)}) - \gamma \frac{1}{2} \left\| \nabla L(\theta^{(k)}) \right\|^{2} \longleftarrow \text{Take } \gamma = \frac{1}{\beta}$$

$$\leq L(\theta^{(k)})(1 - \gamma \mu)$$

$$L(\theta^{(k)}) \leq (1 - \gamma \mu)^{k} L(\theta^{(0)})$$

Karimi, H., Nutini, J., & Schmidt, M. (2016, September). Linear convergence of gradient and proximal-gradient methods under the Polyak-Lojasiewicz condition. In *Joint European conference on machine learning and knowledge discovery in databases* (pp. 795-811). Cham: Springer International Publishing.

Stochastic Gradient Descent

$$\theta^{(k+1)} = \theta^{(k)} - \gamma \nabla \ell_{i_k}(\theta^{(k)})$$

 $L(\theta) = \frac{1}{N} \sum_{i=1}^{N} \ell_i(\theta)$

$$\nabla L(\boldsymbol{\theta}) = \frac{1}{N} \sum_{i=1}^{N} \nabla \ell_i(\boldsymbol{\theta})$$

Uniformly randomly sampled from {1,2,...N}
$$\nabla L(\boldsymbol{\theta}) = \frac{1}{N} \sum_{i=1}^{N} \nabla \ell_i(\boldsymbol{\theta}) = \frac{1}{N} \sum_{i=1}^{N} \nabla \ell_i(\boldsymbol{\theta}) = \frac{1}{N} \sum_{i=1}^{N} \nabla \ell_i(\boldsymbol{\theta}^{(k)}) = \frac$$

Mini-batch gradient descent (B<<N):

$$\theta^{(k+1)} = \theta^{(k)} - \gamma \frac{1}{B} \sum_{j=1}^{B} \nabla \ell_{i_j}(\theta^{(k)})$$

1 iteration = 1 parameter update 1 epoch = $\frac{N}{R}$ parameter updates

Do not process the whole dataset to update the model parameters, just process a smaller batch of samples and then make the update

Bottou, L., Curtis, F. E., & Nocedal, J. (2018). Optimization methods for large-scale machine learning. SIAM review, 60(2), 223-311.

Enforcing sparsity: L1-regularization

$$\min_{\boldsymbol{\theta}} \frac{1}{N} \sum_{k=1}^{N} \|\epsilon(k, \boldsymbol{\theta})\|^2 + \lambda \|\boldsymbol{\theta}\|_1$$

Linear-in-the-parameter NARX model:

$$M(\theta): \hat{y}(k) = F^{\top}(y(k-1), ..., y(k-na), u(k), u(k-1), ..., u(k-nb))\theta$$

L1 regularization (LASSO-like): penalize model complexity during training

$$\min_{\theta} \frac{1}{N} \sum_{k=1}^{N} ||y(k) - F^{\top}(\phi(k))\theta||^{2} + \lambda ||\theta||_{1}$$

Non smooth functions

$$\min_{\boldsymbol{\theta}} \ \mathcal{L}\left(\boldsymbol{\theta}\right) + \lambda \left\|\boldsymbol{\theta}\right\|_{1} \longrightarrow 0 \in \nabla \mathcal{L}(\boldsymbol{\theta}^{\star}) + \partial \|\boldsymbol{\lambda} \cdot \boldsymbol{\theta}^{\star}\|_{1}$$

Parikh, N., & Boyd, S. (2014). Proximal algorithms. Foundations and Trends® in Optimization, 1(3), 127-239.

Proximal gradient methods

$$\min_{\boldsymbol{\theta}} \ \mathcal{L}\left(\boldsymbol{\theta}\right) + R(\boldsymbol{\theta})$$

Proximal operator of function $R(\cdot)$ with parameter γ

$$\operatorname{prox}_{\gamma R}(v) := \arg\min_{\theta \in \Theta} \left\{ \frac{1}{2} \|\theta - v\|^2 + \gamma R(\theta) \right\}$$

$$\theta^*$$
 minimizer of $\mathcal{L}(\theta) + R(\theta) \longrightarrow 0 \in \nabla \mathcal{L}(\theta^*) + \partial R(\theta^*)$

Fixed point equation

$$\mathbf{\theta}^{(k+1)} = \operatorname{prox}_{\gamma R} \left(\mathbf{\theta}^{(k)} - \gamma \nabla \mathcal{L}(\mathbf{\theta}^{(k)}) \right) \qquad \mathbf{\theta}^{\star} = \operatorname{prox}_{\gamma R} \left(\mathbf{\theta}^{\star} - \gamma \nabla \mathcal{L}(\mathbf{\theta}^{\star}) \right)$$

$$\boldsymbol{\theta}^{\star} = \operatorname{prox}_{\gamma R} \left(\boldsymbol{\theta}^{\star} - \gamma \nabla \mathcal{L}(\boldsymbol{\theta}^{\star}) \right)$$

Fixed point equation: proof of stationarity

We only prove in one direction:

$$\theta^* = \text{prox}_{\gamma R}(\theta^* - \gamma \nabla \mathcal{L}(\theta^*)) \rightarrow 0 \in \nabla \mathcal{L}(\theta^*) + \partial R(\theta^*)$$

By definition of the proximal operator:

$$\theta^* = \text{prox}_{\gamma R}(\theta^* - \gamma \nabla \mathcal{L}(\theta^*)) = \arg\min_{\theta} \frac{1}{2\gamma} \|\theta - (\theta^* - \gamma \nabla \mathcal{L}(\theta^*))\|^2 + R(\theta)$$

The minimized function is convex: smooth quadratic + non-smooth yet convex term.
 Its optimality condition is:

$$0 \in \frac{1}{\gamma} \left(\frac{\theta}{\theta} - \theta^* + \gamma \nabla \mathcal{L}(\theta^*) \right) \Big|_{\theta = \theta^*} + \partial R(\theta^*)$$
$$0 \in \nabla \mathcal{L}(\theta^*) + \partial R(\theta^*)$$

Proximal gradient methods: constrained optimization

$$\min_{\boldsymbol{\theta} \in C \subseteq \mathbb{R}^d} \ \mathcal{L}\left(\boldsymbol{\theta}\right) \longrightarrow \min_{\boldsymbol{\theta} \in \mathbb{R}^d} \ \mathcal{L}\left(\boldsymbol{\theta}\right) + \mathbb{I}_C(\boldsymbol{\theta})$$

$$\mathbb{I}_C(\boldsymbol{\theta}) = \begin{cases} 0 & \text{if } \boldsymbol{\theta} \in C \\ +\infty & \text{if } \boldsymbol{\theta} \notin C \end{cases}$$

Example: $R(\theta)$ indicator function \mathbb{I}_{C} of a convex $C \subseteq \mathbb{R}^d$:

$$\begin{aligned} \operatorname{prox}_{\mathbb{I}_C}(v) &= \arg\min_{\theta \in \mathbb{R}^d} \left\{ \frac{1}{2} \|\theta - v\|^2 + \mathbb{I}_C(\theta) \right\} \\ &= \arg\min_{\theta \in C} \|\theta - v\|^2 \\ &= \Pi_C(v) \end{aligned}$$
 orthogonal projection

This leads to the *projected* gradient descent algorithm:

$$\theta^{(k+1)} = \Pi_C(\theta^{(k)} - \lambda \nabla \mathcal{L}(\theta^{(k)}))$$

Proximal gradient methods: L1 regularization

$$\min_{\boldsymbol{\theta}} \mathcal{L}(\boldsymbol{\theta}) + \lambda \|\boldsymbol{\theta}\|_{1} \qquad \operatorname{prox}_{\lambda \|\cdot\|_{1}}(v) = \arg\min_{\boldsymbol{\theta} \in \mathbb{R}^{d}} \left\{ \frac{1}{2} \|\boldsymbol{\theta} - v\|^{2} + \lambda \|\boldsymbol{\theta}\|_{1} \right\} \\
= \left[\operatorname{prox}_{\lambda \|\cdot\|_{1}}(v) \right]_{i} = \operatorname{sign}(v_{i}) \cdot \max(|v_{i}| - \lambda, 0)$$

$$\theta^{(k+1)} = \text{SoftThreshold}(\theta^{(k)} - \lambda \nabla \mathcal{L}(\theta^{(k)}))$$

Proximal gradient methods: algorithm L1-regularization

$$\min_{\boldsymbol{\theta}} \mathcal{L}(\boldsymbol{\theta}) + \lambda \|\boldsymbol{\theta}\|_{1} \qquad \operatorname{prox}_{\lambda \|\cdot\|_{1}}(v) = \arg\min_{\boldsymbol{\theta} \in \mathbb{R}^{d}} \left\{ \frac{1}{2} \|\boldsymbol{\theta} - v\|^{2} + \lambda \|\boldsymbol{\theta}\|_{1} \right\}$$

$$= \left[\operatorname{prox}_{\lambda \|\cdot\|_{1}}(v) \right]_{i} = \operatorname{sign}(v_{i}) \cdot \max(|v_{i}| - \lambda, 0)$$

$$\boldsymbol{\theta}^{(k+1)} = \operatorname{prox}_{\gamma R} \left(\boldsymbol{\theta}^{(k)} - \gamma \nabla \mathcal{L}(\boldsymbol{\theta}^{(k)}) \right)$$

Algorithm 1 Proximal Gradient Method (LASSO)

- 1: **Input:** differentiable loss $\mathcal{L}(\theta)$, regularization parameter $\lambda > 0$, step size γ , initial $\theta^{(0)}$
- 2: for k = 0 to N_{iter} do
- 3: $q^{(k)} \leftarrow \nabla \mathcal{L}(\boldsymbol{\theta}^{(k)})$
- 4: $z^{(k)} \leftarrow \theta^{(k)} \gamma q^{(k)}$
- 5: $\theta^{(k+1)} \leftarrow \text{SoftThreshold}_{\gamma\lambda}(z^{(k)})$
- 6: end for
- 7: Return: $\theta^{(N_{\text{iter}})}$

<u>Jupyter Notebook: cascaded_tanks.ipynb (Part III)</u>