TRABALHO FINAL DE SISTEMAS DIGITAIS

ANÁLISE, SIMULAÇÃO E SINTESE DE CIRCUITO SEQUENCIAL RECONHECEDOR DE SEQUÊNCIA "1101" NOS MODELOS DE MOORE E MEALY

Júlio César Borges de Oliveira Sampaio

RA 1120232038

UFABC 2025

INTRODUÇÃO

Esse projeto visa criar um circuito sequencial de reconhecimento da sequência "1101", isso é, presumindo um fluxo discreto de bits, esse circuito deve reconhecer todas as instâncias onde a nossa sequência aparece e emitir um sinal para indicar que reconheceu a sequência. Como esse circuito é uma máquina de estados, foi feito o modelo de estados tanto no modelo Mealy quanto o Moore.

OBJETIVOS

Esse projeto tem como objetivo:

- Elaborar um esquema de estado do reconhecedor tanto nas versões de Mealy quanto na de Moore.
- Fazer e simular este circuito em VHDL de forma que os resultados possam ser avaliados no GTKWave.
- Fazer uma síntese desse circuito com ajuda da síntese do programa Digital.
- Fazer uma versão funcional para a placa DE10-Lite / Altera e elaborar um tutorial para como reproduzir os resultados.
- Avaliar os resultados e apontar as principais diferenças entre as duas versões.

JUSTIFICATIVA

O reconhecedor de sequência é um ótimo circuito para praticar a elaboração de circuitos sequenciais, ele só tem uma entrada e sua saída depende bastante de uma sequência de entradas consecutivas.

METODOLOGIA

ELABORAÇÃO DO DIAGRAMA DE ESTADOS

Antes de qualquer coisa é importante elaborar o diagrama de estados do projeto, que vai definir o comportamento do reconhecedor.

Para ambos os casos, temos duas entradas digitais e uma saída também digital, a nossa primeira entrada digital será o *input* do usuário, e a segunda será o nosso *clock*, que mede o inicio e o fim de cada ciclo do reconhecedor de sequência (também foi implementada uma entrada *reset*, que traz o estado da máquina de volta ao estado inicial, mas essa não será abordada nos diagramas).

O comportamento desejado é que, a cada subida do *clock*, ele leia a entrada digital atual e, se em 4 entradas consecutivas for encontrado o nosso padrão "1101" ele deve emitir uma saída digital.

DIAGRAMA DO MODELO MEALY

O modelo Mealy é um modelo onde a saída depende da transição de estados, isso é, quando o estado muda a máquina deve emitir uma saída dependendo daquela mudança, e não somente do estado em si.

Para o reconhecedor de Mealy temos o seguinte diagrama

Onde o lado direito da barra é a nossa entrada e o lado esquerdo nossa saída. No caso do modelo de Mealy podemos ter somente 4 estados, o que será muito útil na síntese já que só precisaremos de 4 FFs para representar todos os estados possíveis.

ENTRADA	ESTADO	PRÓXIMO ESTADO	SAÍDA
0	А	А	0
1	Α	В	0
0	В	А	0
1	В	С	0
0	С	D	0
1	С	С	0
0	D	Α	0
1	D	В	1

Como a saída depende diretamente da entrada além do estado, veremos na simulação que o timing da saída do modelo de Mealy é um pouco mais inconsistente que a saída do modelo de Moore.

DIAGRAMA DO MODELO MOORE

O modelo de Moore é um modelo onde cada saída depende somente do estado atual da máquina, e a entrada só influencia o próximo estado, nesse caso precisaremos de 5 estados para representar o reconhecedor, o que leva um mínimo de 3 FFs num circuito.

Onde o círculo inferior é a saída de cada estado e cada seta representa uma transição com base na entrada.

ENTRADA	ESTADO	PRÓXIMO ESTADO	SAÍDA
0	А	А	0
1	А	В	0
0	В	А	0
1	В	С	0
0	С	D	0
1	С	С	0
0	D	Α	0
1	D	E	0
0	Е	Α	1
1	E	В	1

SÍNTESE DOS CIRCUITOS

Com auxilio do Digital foi feito o esquemático para cada circuito. Para cada estado, foi atribuída uma sequencia binaria correspondente da seguinte forma:

ESTADO	SEQUÊNCIA BINÁRIA (MEALY)	SEQUÊNCIA BINÁRIA (MOORE)
Α	00	000
В	01	001
С	10	010
D	11	011
E	XX	100

Podemos ver que o modelo de Mealy é relativamente mais simples, porém faz contato direto com a entrada, presumindo uma entrada assíncrona podemos acabar por ter uma saída um pouco mais temporalmente inconsistente.

ELABORAÇÃO VHDL

Ambos os circuitos foram elaborados em códigos VHDL, onde tanto as entradas quanto a saída foram interpretadas como objetos std_logic , embora o VHDL não nos diga muito sobre a arquitetura do circuito ele é bem útil na simulação de comportamentos. Todos os códigos e simulações estão presentes junto ao relatório, adicionalmente eu também estou mantendo um <u>repositório</u> com tudo que foi produzido.

RESULTADOS

SIMULAÇÃO

Os circuitos em VHDL foram simulados por meio da ferramenta GHDL, a visualização dos sinais é feita por meio do GTKWave, onde x é o nosso sinal de entrada e z o nosso sinal de saída.

Ambos os circuitos foram simulados com o mesmo ambiente, que recebe a sequência "01110101100" de forma assíncrona ao relógio.

SIMULAÇÃO DO MODELO DE MEALY

Podemos perceber que o intervalo de saída do nosso circuito é menor que um ciclo inteiro do relógio, pois a entrada foi assíncrona e começou depois do inicio do ciclo. Ainda assim, o circuito reconheceu corretamente a sequência.

SIMULAÇÃO DO MODELO DE MOORE

No caso do modelo de Moore, como a saída depende somente do estado da máquina, a saída leva exatamente 1 ciclo para concluir.

IMPLEMENTAÇÃO DA PLACA

CONCLUSÃO