to consistently extend the AdS coupling to the UV domain, consistent with pQCD.

VIII. HOLOGRAPHIC COUPLING IN CONFIGURATION SPACE

In order to obtain modifications to the instantaneous Coulomb potential in configuration space $V(r) = -C_F \alpha_V(r)/r$ from the running coupling, one must transform the coupling defined by the static quark potential $V(q) = -4\pi C_F \alpha_V(q)/q^2$ in the nonrelativistic limit and extract the coefficient of 1/r to define the coupling $\alpha_V(r)$ in the V scheme. The couplings are related by the Fourier transform [60]

$$\alpha_V(r) = \frac{2}{\pi} \int_0^\infty dq \, \alpha_V(q) \frac{\sin(qr)}{q}.$$
 (17)

From (9) we find the expression

$$\alpha_V^{AdS}(r) = C \operatorname{erf}(\kappa r) = \frac{2}{\sqrt{\pi}} C \int_0^{\kappa r} e^{-t^2} dt, \tag{18}$$

where $C = \alpha_V(Q = 0) = \alpha_V(r \to \infty)$ since $\operatorname{erf}(x \to +\infty) = 1$. We have written explicitly the normalization at Q = 0 in the V scheme since it is not expected to be equal to the normalization in the g_1 scheme for the reasons discussed in Sec. VII.

The couplings in the V and g_1 schemes are related at leading twist by the CSR: [10]

$$\frac{\alpha_V(Q^2)}{\pi} = \frac{\alpha_{g_1}(Q^{*2})}{\pi} - 1.09 \left(\frac{\alpha_{g_1}(Q^{**2})}{\pi}\right)^2 + 25.6 \left(\frac{\alpha_{g_1}(Q^{**2})}{\pi}\right)^3 + \cdots, \tag{19}$$

with $Q^* = 1.18\,Q$, $Q^{**} = 2.73\,Q$, and we set $Q^{***} = Q^{**}$. We have verified that this relation numerically holds at least down to $Q^2 = 0.6~{\rm GeV^2}$, as shown in the figure in the Appendix (Fig. 7). In order to transform $\alpha_{g_1}(Q^2)$ into $\alpha_V(Q^2)$ over the full Q^2 range, we extrapolate the CSR to the nonperturbative domain. For guidance, we use the fact that QCD is near conformal at very small Q; thus, the ratio α_V/α_{g_1} is Q independent. A model for the ratio $\alpha_V(Q)/\alpha_{g_1}(Q)$ is shown in Fig. 4. We apply this ratio to $\alpha_{Modified,g_1}^{AdS}(Q)$, Eq. (11), and then Fourier transform the result using Eq. (17) to obtain $\alpha_{Modified,V}^{AdS}(r)$. We find $C \simeq 2.2$.

A. Comparison of V and g_1 Results

The right panel of Fig. 5 displays $\alpha_V^{AdS}(r)$ (dashed line) and $\alpha_V(r)$ obtained with the same procedure but applied to the JLab data (lower cross-hatched band). Also shown for