Group assignment 2

David Östling, Mohamed Mahdi, Hamid Noroozi, Filip Döringer Kana December 11, 2022

Problem description

In some graphs the minimum cut is not unique, i.e., there can be more than one minimum cut. Design and analyze a polynomial time algorithm that finds all minimum cuts in a graph. The algorithm should output a correct answer with probability p for some constant (independent of the size of the graph) p > 0.

Hint: look closely at the analysis of Karger's random contraction algorithm. What is the probability that this algorithm outputs any particular minimum cut?

Algorithm ALG

```
Algorithm ALG
Require: GraphG = (V, E) & iterations
Ensure: Return all minimum cuts in G with probability p > 0
  solutions \leftarrow \{\}
  minCut \leftarrow \infty
  counter \leftarrow 1
  while counter \leq iterations do
      (cut, A, B) \leftarrow KargerAlg(G)
                                                                                     ▷ Running Karger's algorithm
      if cut < minCut then
          solutions \leftarrow \emptyset
                                               ▶ Empty the list of solutions when a new minimum cut is found
         minCut \leftarrow cut
      else
         if cut == minCut then
             if Not (A, B) in solutions then
                 solutions \leftarrow solutions \cup (A, B)
             end if
          end if
      end if
      counter \leftarrow counter + 1
  end while
  return (minCut, solutions)
```

Time Complexity: $O(n^4 \ln n)$

The first loop will be based on how many iterations we want to run. In this context the number of iterations is chosen to be $4n^2 \ln n$ giving us $\mathcal{O}(n^2 \ln n)$. Furthermore, when running Karger's Algorithm which is the second loop we get $\mathcal{O}(n^2)$ proven from class [1]. Hence, the overall time complexity of the algorithm would then be $\mathcal{O}(n^4 \ln n)$ which is polynomial time.

Lemma 1: Probability of Karger's algorithm missing a particular mincut $< 1 - \frac{1}{n^2}$

Proof: From the lecture [2], we have that the probability of Kargers algorithm finding a particular mincut when running it once to be $<\frac{1}{n^2}$. Thus, the probability that the algorithm misses that particular min cut is $<1-\frac{1}{n^2}$

Lemma 2: $(1 - \frac{1}{x})^x \le \frac{1}{e}$

Proof: Also from the lecture [2], we have that $1-x \le e^{-x}$. We can use this as follows

$$(1 - \frac{1}{x})^x \le e^{-\frac{1}{x}^x} = e^{-1} = \frac{1}{e}$$

Lemma 3: The number of possible min cuts in a graph is $O(n^2)$

Proof There are n vertices in the graph. The number of possible different pairs of vertices is thus

$$\binom{n}{2} = \frac{1}{2}n(n-1)$$

As the algorithm outputs 2 vertices the number of possible min cuts is bounded by the number of pairs, and from the expression above we get that the number of min cuts is thus $O(n^2)$

Lemma 4: if $iterations == 4n^2 \ln n$ then $Pr[finding all minimum cuts] > \frac{8}{9}$

Proof: According to lemmal, if we run the Karger's algorithm $4n^2 \ln n$ times, we have:

$$Pr[\text{missing a particular mincut}] < (1 - \frac{1}{n^2})^{4n^2 \ln n}$$

And by lemma2, we have:

$$(1 - \frac{1}{n^2})^{4n^2 \ln n} = ((1 - \frac{1}{n^2})^{n^2})^{4 \ln n} \le (\frac{1}{e})^{4 \ln n} = \frac{1}{e^{4 \ln n}} = \frac{1}{e^{\ln n^4}} = \frac{1}{n^4}$$

therefore:

$$Pr[\text{missing a particular mincut}] < \frac{1}{n^4}$$

And that is the same for all minimum cuts, because finding a minimum cut in every execution is independent from other executions, meaning that the probability of not finding 2 minimum cuts, would be the same as multiplying the probability of not finding a minimum cut by 2.

Also, according to lemma3, the total number of minimum cuts are $< n^2$, so we have:

$$Pr[\text{missing X mincuts}] < n^2(\frac{1}{n^4}) = \frac{1}{n^2}$$
 where $1 \le X < n^2$

Assuming n > 2, we have:

$$Pr[\text{missing X mincuts}] < \frac{1}{9}$$
 where $1 \le X < n^2$

Therefore,

$$Pr[\text{finding all minimum cuts}] > 1 - \frac{1}{9} > \frac{8}{9}$$

Conclusion

We have shown that the probability p of finding all minimum cuts is constant with $p > \frac{8}{9}$ when running Karger's algorithm $4n^2 \ln n$ times and saving all the minimum cuts found. Also, this algorithm has a polynomial time complexity of $O(n^4 \ln n)$.

References

- $[1]\,$ Austrin P., 2022, Chapter 5: Minimum Cut Lecture 8. p. 19 26
- [2] Austrin P., 2022, Chapter 5: Minimum Cut Lecture 8. p. 18