Project Description

The loan providing companies find it hard to give loans to the people due to their insufficient or non-existent credit history. Because of that, some consumers use it as their advantage by becoming a defaulter. The data given below contains the information about the loan application at the time of applying for the loan. It contains two types of scenarios:

- The client with payment difficulties: he/she had late payment more than X days on at least one of the first Y instalments of the loan in our sample
- · All other cases: All other cases when the payment is paid on time.

The libraries for data analysis and visualization used in this project are Numpy & Pandas.

- 1. **Present** the overall approach of the analysis. Mention the problem statement and the analysis approach briefly
- 2. **Identify** the missing data and use appropriate method to deal with it. (Remove columns/or replace it with an appropriate value)

Hint: Note that in EDA, since it is not necessary to replace the missing value, but if you have to replace the missing value, what should be the approach. Clearly mention the approach.

- 3. **Identify** if there are **outliers** in the dataset. Also, mention why do you think it is an outlier. Again, remember that for this exercise, it is not necessary to remove any data points.
- 4. **Identify** if there is data imbalance in the data. Find the ratio of data imbalance.

Hint: Since there are a lot of columns, you can run your analysis in loops for the appropriate columns and find the insights.

- 5. Explain the **results of univariate**, **segmented univariate**, **bivariate analysis**, **etc.** in business terms.
- 6. **Find the top 10 correlation** for the Client with payment difficulties and all other cases (Target variable). Note that you have to find the top correlation by segmenting the data frame w.r.t to the target variable and then find the top correlation for each of the segmented data and find if any insight is there. Say, there are 5+1(target) variables in a dataset: Var1, Var2, Var3, Var4, Var5, Target. And if you have to find top 3 correlation, it can be: Var1 & Var2, Var2 & Var3, Var1 & Var3. Target variable will not feature in this correlation as it is a categorical variable and not a continuous variable which is increasing or decreasing.
- 7. **Include visualizations** and **summarize** the most important results in the presentation. You are free to choose the graphs which explain the numerical/categorical variables. Insights should explain why the variable is important for differentiating the clients with payment difficulties with all other cases.

Approach and Tech Used

For this project I used Jupyter Notebook (Anaconda) to run my queries and charts.

The notebook extends the console-based approach to interactive computing in a qualitatively new direction, providing a web-based application suitable for capturing the whole computation process: developing, documenting, and executing code, as well as communicating the results. The Jupyter notebook combines two components:

A web application: a browser-based tool for interactive authoring of documents which combine explanatory text, mathematics, computations and their rich media output.

Notebook documents: a representation of all content visible in the web application, including inputs and outputs of the computations, explanatory text, mathematics, images, and rich media representations of objects.

This project helped me in understanding the tables at a much-detailed manner and helped to improve my strength in extracting data from tables in a more efficient manner.

Datasets

First, we imported all the libraries needed:

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
```

Next, we read the dataset files given to us:

Dataset 1 - "application_data.csv"

df_application = pd.read_csv('application_data.csv')
df_application.head()

Output:

	SK_ID_CURR	TARGET	NAME_CONTRACT_TYPE	CODE_GENDER	FLAG_OWN_CAR	FLAG_OWN_REALTY	CNT_CHILDREN	ΑN
0	100002	1	Cash loans	М	N	Υ	0	
1	100003	0	Cash loans	F	N	N	0	
2	100004	0	Revolving loans	М	Υ	Υ	0	
3	100006	0	Cash loans	F	N	Υ	0	
4	100007	0	Cash loans	М	N	Υ	0	
4								-

Dataset 2 - "previous_application.csv"

df_previous_application = pd.read_csv('previous_application.csv')
df_previous_application.head()

	SK_ID_PREV	SK_ID_CURR	NAME_CONTRACT_TYPE	AMT_ANNUITY	AMT_APPLICATION	AMT_CREDIT	AMT_DOWN_PAYMEN1
0	2030495	271877	Consumer loans	1730.430	17145.0	17145.0	0.0
1	2802425	108129	Cash loans	25188.615	607500.0	679671.0	NaN
2	2523466	122040	Cash loans	15060.735	112500.0	136444.5	NaN
3	2819243	176158	Cash loans	47041.335	450000.0	470790.0	NaN
4	1784265	202054	Cash loans	31924.395	337500.0	404055.0	NaN
4							+

Cleaning the data

Dataset 1 - "application_data.csv"

We find out the number of null values in the dataset:

First, we find out the null values in dataframe:

df_application.isnull().sum()

Output:

o acp act	
SK_ID_CURR	0
TARGET	0
NAME_CONTRACT_TYPE	0
CODE_GENDER	0
FLAG_OWN_CAR	0
FLAG_OWN_REALTY	0
CNT_CHILDREN	0
AMT_INCOME_TOTAL	0
AMT_CREDIT	0
AMT_ANNUITY	12
AMT_GOODS_PRICE	278
NAME_TYPE_SUITE	1292
NAME_INCOME_TYPE	0
NAME_EDUCATION_TYPE	0
NAME_FAMILY_STATUS	0
NAME_HOUSING_TYPE	0
REGION_POPULATION_RELATIVE	0
DAYS_BIRTH	0
DAYS_EMPLOYED	0
DAYS_REGISTRATION	0
DAYS_ID_PUBLISH	0
OWN_CAR_AGE	202929
FLAG_MOBIL	0
FLAG_EMP_PHONE	0
FLAG_WORK_PHONE	0
FLAG_CONT_MOBILE	0
FLAG_PHONE	0
FLAG_EMAIL	0
OCCUPATION_TYPE	96391
CNT_FAM_MEMBERS	2

Checking Percentage of Null Value's in dataframe usning function

def Missing_Values(dataframe):

return round((dataframe.isnull().sum()*100/len(dataframe)).sort_values(asce nding = False),3)

Missing_Values(df_application)

Output:

output.		
COMMONAREA_MEDI	69.872	
COMMONAREA_AVG	69.872	ı
COMMONAREA_MODE	69.872	
NONLIVINGAPARTMENTS_MODE	69.433	
NONLIVINGAPARTMENTS_AVG	69.433	
NONLIVINGAPARTMENTS_MEDI	69.433	
FONDKAPREMONT_MODE	68.386	
LIVINGAPARTMENTS_MODE	68.355	
LIVINGAPARTMENTS_AVG	68.355	
LIVINGAPARTMENTS_MEDI	68.355	
FLOORSMIN_AVG	67.849	
FLOORSMIN_MODE	67.849	
FLOORSMIN_MEDI	67.849	
YEARS_BUILD_MEDI	66.498	
YEARS_BUILD_MODE	66.498	
YEARS_BUILD_AVG	66.498	
OWN_CAR_AGE	65.991	
LANDAREA_MEDI	59.377	
LANDAREA_MODE	59.377	
LANDAREA_AVG	59.377	
BASEMENTAREA_MEDI	58.516	•

Then I stored it in a variable which contains more than 50% missing values:

Null=Missing_Values(df_application)[Missing_Values(df_application) > 50]

Null

```
COMMONAREA_MEDI
                                69.872
COMMONAREA_AVG
                                69.872
COMMONAREA_MODE
                                69.872
NONLIVINGAPARTMENTS_MODE
                                69.433
NONLIVINGAPARTMENTS_AVG
                                69.433
NONLIVINGAPARTMENTS_MEDI
                                69.433
FONDKAPREMONT_MODE
                                68.386
LIVINGAPARTMENTS_MODE
                                68.355
LIVINGAPARTMENTS_AVG
                                68.355
LIVINGAPARTMENTS_MEDI
                                68.355
FLOORSMIN_AVG
                                67.849
FLOORSMIN_MODE
                                67.849
FLOORSMIN_MEDI
                                67.849
YEARS_BUILD_MEDI
                                66.498
YEARS_BUILD_MODE
                                66.498
YEARS_BUILD_AVG
                                66.498
                                65.991
OWN_CAR_AGE
LANDAREA_MEDI
                                59.377
LANDAREA_MODE
                                59.377
LANDAREA AVG
                                59.377
BASEMENTAREA_MEDI
                                58.516
BASEMENTAREA_AVG
                                58.516
BASEMENTAREA_MODE
                                58.516
EXT_SOURCE_1
                                56.381
NONLIVINGAREA_MODE
                                55.179
NONLIVINGAREA_AVG
                                55.179
NONLIVINGAREA_MEDI
                                55,179
ELEVATORS_MEDI
                                53.296
ELEVATORS_AVG
                                53.296
ELEVATORS_MODE
                                53.296
```

Dropping all those values since these have lots of missing data and it will disrupt the data:

Null.index

Output:

```
Index(['COMMONAREA_MEDI', 'COMMONAREA_AVG', 'COMMONAREA_MODE', 'NONLIVINGAPARTMENTS_MODE',
'NONLIVINGAPARTMENTS_AVG', 'NONLIVINGAPARTMENTS_MEDI', 'FONDKAPREMONT_MODE',
'LIVINGAPARTMENTS_MODE', 'LIVINGAPARTMENTS_AVG', 'LIVINGAPARTMENTS_MEDI', 'FLOORSMIN_AVG',
'FLOORSMIN_MODE', 'FLOORSMIN_MEDI', 'YEARS_BUILD_MEDI', 'YEARS_BUILD_MODE', 'YEARS_BUILD_AVG',
'OWN_CAR_AGE', 'LANDAREA_MEDI', 'LANDAREA_MODE', 'LANDAREA_AVG', 'BASEMENTAREA_MEDI',
'BASEMENTAREA_AVG', 'BASEMENTAREA_MODE', 'EXT_SOURCE_1', 'NONLIVINGAREA_MODE',
'NONLIVINGAREA_AVG', 'NONLIVINGAREA_MEDI', 'ELEVATORS_MEDI', 'ELEVATORS_AVG', 'ELEVATORS_MODE',
'WALLSMATERIAL_MODE', 'APARTMENTS_MEDI', 'APARTMENTS_AVG', 'APARTMENTS_MODE', 'ENTRANCES_MEDI',
'ENTRANCES_AVG', 'ENTRANCES_MODE', 'LIVINGAREA_AVG', 'LIVINGAREA_MODE', 'LIVINGAREA_MEDI',
'HOUSETYPE_MODE'], dtype='object')
```

Droping all the colums having missing values >50%:

df_application.drop(columns=Null.index ,inplace=True)
df_application.head()

Output:

	SK_ID_CURR	TARGET	NAME_CONTRACT_TYPE	CODE_GENDER	FLAG_OWN_CAR	FLAG_OWN_REALTY	CNT_CHILDREN	Αľ
0	100002	1	Cash loans	М	N	Υ	0	
1	100003	0	Cash loans	F	N	N	0	
2	100004	0	Revolving loans	М	Υ	Υ	0	
3	100006	0	Cash loans	F	N	Υ	0	
4	100007	0	Cash loans	М	N	Υ	0	
+								١

Checking the missing values above 40%:

Missing_Values(df_application)[Missing_Values(df_application)>40]

Output:

FLOORSMAX_AVG	49.761
FLOORSMAX_MODE	49.761
FLOORSMAX_MEDI	49.761
YEARS_BEGINEXPLUATATION_AVG	48.781
YEARS_BEGINEXPLUATATION_MODE	48.781
YEARS_BEGINEXPLUATATION_MEDI	48.781
TOTALAREA_MODE	48.269
EMERGENCYSTATE_MODE	47.398
dtype: float64	

Checking the percentage of missing values:

Null_1 =

Missing_Values(df_application)[Missing_Values(df_application)>40]

Null_1

Output:

FLOORSMAX_AVG	49.761
FLOORSMAX_MODE	49.761
FLOORSMAX_MEDI	49.761
YEARS_BEGINEXPLUATATION_AVG	48.781
YEARS_BEGINEXPLUATATION_MODE	48.781
YEARS_BEGINEXPLUATATION_MEDI	48.781
TOTALAREA_MODE	48.269
EMERGENCYSTATE_MODE	47.398
dtype: float64	

Dropping the unnecessary columns from the datafame as they were not important:

df_application.drop(columns=Null_1.index ,inplace=True)
print('Null_1 dropped from the df_application')

Output:

Null_1 dropped from the df_application

Checking the missing values in dataframe:

df_application.isnull().sum()

SK_ID_CURR	0
TARGET	0
NAME_CONTRACT_TYPE	0
CODE_GENDER	0
FLAG_OWN_CAR	0
FLAG_OWN_REALTY	0
CNT_CHILDREN	0
AMT_INCOME_TOTAL	0
	0
AMT_CREDIT	_
AMT_ANNUITY	12
AMT_GOODS_PRICE	278
NAME_TYPE_SUITE	1292
NAME_INCOME_TYPE	0
NAME_EDUCATION_TYPE	0
NAME_FAMILY_STATUS	0
NAME_HOUSING_TYPE	0
REGION_POPULATION_RELATIVE	0
DAYS_BIRTH	0
DAYS_EMPLOYED	0
DAYS_REGISTRATION	0
DAYS_ID_PUBLISH	0
FLAG_MOBIL	0
FLAG_EMP_PHONE	0
FLAG_WORK_PHONE	0
FLAG_CONT_MOBILE	0
FLAG_PHONE	0
FLAG_EMAIL	0
OCCUPATION_TYPE	96391
CNT_FAM_MEMBERS	2
REGION_RATING_CLIENT	0

Finding the value count of AMT_ANNUITY:

df_application.AMT_ANNUITY.value_counts()

Output:

9000.0		6385				
13500.	0	5514				
6750.0)	2279				
10125.	0	2035				
37800.	0	1602				
4635.0		1				
65209.	5	1				
70920.	0	1				
85792.	5	1				
51331.	5	1				
Name:	AMT	ANNUITY,	Length:	13672,	dtype:	int64
			- J			

Ploting a Box plot for AMT_ANNUITY to check the outliers:

sns.boxplot(df_application.AMT_ANNUITY)
plt.show()

Finding the null value count:

df_application.AMT_ANNUITY.median()

Output:

24903.0

Replacing the null values with median of AMT_ANNUITY, as we have outliers hence using mean will not be a correct imputation technique:

```
df_application['AMT_ANNUITY'] =
df_application.AMT_ANNUITY.fillna(df_application.AMT_ANNUITY.m
edian())
```

Checking the value count of AMT_GOODS_PRICE:

df_application.AMT_GOODS_PRICE.value_counts()

Output:

450000.0	26022
225000.0	25282
675000.0	24962
900000.0	15416
270000.0	11428
592452.0	1
1130125.5	1
362632.5	1
498856.5	1
1271875 5	1

Name: AMT_GOODS_PRICE, Length: 1002, dtype: int64

Checking for outliers in AMT_GOODS_PRICE as it is a continuous variable:

sns.boxplot(df_application['AMT_GOODS_PRICE'])
plt.show()

Output:

Imputing null values with AMT_CREDIT based on the assumption that the amount of loan taken is equal to the amount of goods purchase:

df_application["AMT_GOODS_PRICE"] =
df_application.AMT_GOODS_PRICE.fillna(df_application['AMT_GOOD
S PRICE'] == df application['AMT_CREDIT'])

Calculating the null value count:

df_application['NAME_TYPE_SUITE'].isna().sum()

Output:

1292

Replacing the null values by mode for this categorical variable:

df_application["NAME_TYPE_SUITE"] =
df_application.NAME_TYPE_SUITE.fillna("Unaccompanied")

Checking null value counts for the variable:

df_application.CNT_FAM_MEMBERS.isna().sum()

Output:

2

Plotting boxplot for variable:

sns.boxplot(df_application['CNT_FAM_MEMBERS'])
plt.show()

This is a continuous variable and we can impute the mean/median inputting null values with Median due to the presence of outlier values:

```
df_application["CNT_FAM_MEMBERS"] =
df_application.CNT_FAM_MEMBERS.fillna(df_application.CNT_FAM_
MEMBERS.median())
```

Percentage of each category present in "OCCUPATION_TYPE":

df_application["OCCUPATION_TYPE"].value_counts(normalize=True)* 100

Output:

Laborers	26.139636
Sales staff	15.205570
Core staff	13.058924
Managers	10.122679
Drivers	8.811576
High skill tech staff	5.390299
Accountants	4.648067
Medicine staff	4.043672
Security staff	3.183498
Cooking staff	2.816408
Cleaning staff	2.203960
Private service staff	1.256158
Low-skill Laborers	0.991379
Waiters/barmen staff	0.638499
Secretaries	0.618132
Realty agents	0.355722
HR staff	0.266673
IT staff	0.249147
Name: OCCUPATION_TYPE,	dtype: float64

Finding the null value count:

df_application.OCCUPATION_TYPE.isnull().sum()

Output:

96391

Imputing null values with "Unknown" as using mode may distort the picture because of presence of large number of null values:

```
df_application["OCCUPATION_TYPE"] =
df_application.OCCUPATION_TYPE.fillna("Unknown")
```

Plotting a bar graph for the variable Occupation Type to understand the distribution by various occupations:

```
plt.figure(figsize = [15,6])
```

df_application.OCCUPATION_TYPE.value_counts().plot.barh(width =
.8)

plt.title("Type of Occupations", fontdict={"fontsize":15}, pad =20)
plt.show()

Output:

16 | Page

Computing statistics for various numerical variables of number of queries to Credit Bureau about the client to understand their distribution:

df_application[["AMT_REQ_CREDIT_BUREAU_YEAR","AMT_REQ_C REDIT_BUREAU_QRT","AMT_REQ_CREDIT_BUREAU_MON","AMT_ _REQ_CREDIT_BUREAU_WEEK",

"AMT_REQ_CREDIT_BUREAU_DAY","AMT_REQ_CREDIT_BUREAU _HOUR"]].describe()

Output:

	AMT_REQ_CREDIT_BUREAU_YEAR	AMT_REQ_CREDIT_BUREAU_QRT	AMT_REQ_CREDIT_BUREAU_MON	AMT_REQ_CREDIT
count	265992.000000	265992.000000	265992.000000	
mean	1.899974	0.265474	0.267395	
std	1.869295	0.794056	0.916002	
min	0.000000	0.000000	0.000000	
25%	0.000000	0.000000	0.000000	
50%	1.000000	0.000000	0.000000	
75%	3.000000	0.000000	0.000000	
max	25.000000	261.000000	27.000000	
4				+

Making a list of all variables pertaining to number of queries to Credit Bureau about the client:

AMT REQ CREDIT =

["AMT_REQ_CREDIT_BUREAU_YEAR","AMT_REQ_CREDIT_BURE AU_QRT","AMT_REQ_CREDIT_BUREAU_MON","AMT_REQ_CREDIT_BUREAU_WEEK",

"AMT_REQ_CREDIT_BUREAU_DAY","AMT_REQ_CREDIT_BUREAU _HOUR"]

Replacing the missing values with median values for the Credit Bureau list above:

df_application.fillna(df_application[AMT_REQ_CREDIT].median(),inpl
ace = True)

Computing statistics for various numerical variables pertaining to client's social surroundings:

df_application[['OBS_3o_CNT_SOCIAL_CIRCLE','DEF_3o_CNT_SOCIAL_CIRCLE','OBS_6o_CNT_SOCIAL_CIRCLE','DEF_6o_CNT_SOCIAL_CIRCLE']].describe()

Output:

	OBS_30_CNT_SOCIAL_CIRCLE	DEF_30_CNT_SOCIAL_CIRCLE	OBS_60_CNT_SOCIAL_CIRCLE	DEF_60_CNT_SOCIAL_CIRCLE
count	306490.000000	306490.000000	306490.000000	306490.000000
mean	1.422245	0.143421	1.405292	0.100049
std	2.400989	0.446698	2.379803	0.362291
min	0.000000	0.000000	0.000000	0.000000
25%	0.000000	0.000000	0.000000	0.000000
50%	0.000000	0.000000	0.000000	0.000000
75%	2.000000	0.000000	2.000000	0.000000
max	348.000000	34.000000	344.000000	24.000000
4				→

Making a list of all variables pertaining to client's social surroundings:

SOCIAL_CIRCLE = ['OBS_3o_CNT_SOCIAL_CIRCLE','DEF_3o_CNT_SOCIAL_CIRCLE','O BS_6o_CNT_SOCIAL_CIRCLE','DEF_6o_CNT_SOCIAL_CIRCLE']

Replacing the missing values with median values for the social surroundings list as above:

df_application.fillna(df_application[SOCIAL_CIRCLE].median(),inplace = True)

Finding the values for two variables of external sources:

df_application[['EXT_SOURCE_2','EXT_SOURCE_3']]

	EXT_SOURCE_2	EXT_SOURCE_3
0	0.262949	0.139376
1	0.622246	NaN
2	0.555912	0.729567
3	0.650442	NaN
4	0.322738	NaN
307506	0.681632	NaN
307507	0.115992	NaN
307508	0.535722	0.218859
307509	0.514163	0.661024
307510	0.708569	0.113922

307511 rows × 2 columns

Computing statistics for the columns pertaining to external sources:

df_application[['EXT_SOURCE_2','EXT_SOURCE_3']].describe()

	EXT_SOURCE_2	EXT_SOURCE_3
count	3.068510e+05	246546.000000
mean	5.143927e-01	0.510853
std	1.910602e-01	0.194844
min	8.173617e-08	0.000527
25%	3.924574e-01	0.370650
50%	5.659614e-01	0.535276
75%	6.636171e-01	0.669057
max	8.549997e-01	0.896010

Replacing the missing values with median values for external source variable:

df_application['EXT_SOURCE_2'] =
df_application.EXT_SOURCE_2.fillna(df_application['EXT_SOURCE_2'
].median())

Replacing the missing values with median values for external source variable:

df_application['EXT_SOURCE_3'] =
df_application.EXT_SOURCE_3.fillna(df_application['EXT_SOURCE_3'
].median())

Computing various statistics for the variable to understand about the values:

df_application.DAYS_LAST_PHONE_CHANGE.describe()

Output:

```
count
         307510.000000
mean
           -962.858788
std
            826.808487
min
          -4292.000000
25%
          -1570.000000
50%
           -757.000000
75%
           -274.000000
max
              0.000000
Name: DAYS_LAST_PHONE_CHANGE, dtype: float64
```

Finding the counts for various values of the variable:

df_application.DAYS_LAST_PHONE_CHANGE.value_counts(normalize
=True)

Output:

```
0.0
          0.122507
-1.0
           0.009144
-2.0
           0.007538
-3.0
           0.005733
-4.0
           0.004179
-3747.0
           0.000003
-3999.0
           0.000003
-3607.0
           0.000003
-3915.0
           0.000003
-3752.0
           0.000003
Name: DAYS_LAST_PHONE_CHANGE, Length: 3773, dtype: float64
```

Imputing missing values with o which is the most occuring value:

```
df_application['DAYS_LAST_PHONE_CHANGE'] =
df_application.DAYS_LAST_PHONE_CHANGE.fillna(o)
```

Dataset 2 - "previous_application.csv"

We find out the number of null values in the dataset:

First, we find out the null values in dataframe:

df_previous_application.isnull().sum()

Output:

_	acpac.	
	SK_ID_PREV	0
	SK_ID_CURR	0
	NAME_CONTRACT_TYPE	0
	AMT_ANNUITY	372235
	AMT_APPLICATION	0
	AMT_CREDIT	1
	AMT_DOWN_PAYMENT	895844
	AMT_GOODS_PRICE	385515
	WEEKDAY_APPR_PROCESS_START	0
	HOUR_APPR_PROCESS_START	0
	FLAG_LAST_APPL_PER_CONTRACT	0
	NFLAG_LAST_APPL_IN_DAY	0
	RATE_DOWN_PAYMENT	895844
	RATE_INTEREST_PRIMARY	1664263
	RATE_INTEREST_PRIVILEGED	1664263
	NAME_CASH_LOAN_PURPOSE	0
	NAME_CONTRACT_STATUS	0
	DAYS_DECISION	0
	NAME_PAYMENT_TYPE	0
	CODE_REJECT_REASON	0
	NAME_TYPE_SUITE	820405
	NAME_CLIENT_TYPE	0
	NAME_GOODS_CATEGORY	0
	NAME_PORTFOLIO	0
	NAME_PRODUCT_TYPE	0
	CHANNEL_TYPE	0
	SELLERPLACE_AREA	0
	NAME_SELLER_INDUSTRY	0
	CNT_PAYMENT	372230
	NAME_YIELD_GROUP	0

Finding the percentage of null values for all variables:

Missing_Values(df_previous_application)

Output:

RATE_INTEREST_PRIVILEGED	99.644
RATE_INTEREST_PRIMARY	99.644
AMT_DOWN_PAYMENT	53.636
RATE_DOWN_PAYMENT	
NAME_TYPE_SUITE	49.120
NFLAG_INSURED_ON_APPROVAL	40.298
DAYS_TERMINATION	40.298
DAYS_LAST_DUE	40.298
DAYS_LAST_DUE_1ST_VERSION	40.298
DAYS_FIRST_DUE	40.298
DAYS_FIRST_DRAWING	40.298
AMT_GOODS_PRICE	23.082
AMT_ANNUITY	22.287
CNT_PAYMENT	22.286
PRODUCT_COMBINATION	0.021
AMT_CREDIT	0.000
NAME_YIELD_GROUP	0.000
NAME_PORTFOLIO	0.000
NAME_SELLER_INDUSTRY	0.000
SELLERPLACE_AREA	
CHANNEL_TYPE	0.000
NAME_PRODUCT_TYPE	0.000
SK_ID_PREV	0.000
NAME_GOODS_CATEGORY	0.000
NAME_CLIENT_TYPE	0.000
CODE_REJECT_REASON	0.000
SK_ID_CURR	0.000
DAYS_DECISION	0.000
NAME_CONTRACT_STATUS	0.000
NAME_CASH_LOAN_PURPOSE	0.000

Finding all the variables with null value % >50%:

Null_2 =

Missing_Values(df_previous_application)[Missing_Values(df_previous_application) > 50]

Null_2

RATE_INTEREST_PRIVILEGED	99.644
RATE_INTEREST_PRIMARY	99.644
AMT_DOWN_PAYMENT	53.636
RATE_DOWN_PAYMENT	53.636
dtype: float64	

Ketrieving variable names with half balaes >50%.
Null_2.index
Output:
<pre>Index(['RATE_INTEREST_PRIVILEGED', 'RATE_INTEREST_PRIMARY', 'AMT_DOWN_PAYMENT',</pre>
Dropping the unnecessary columns from the data fame as they are not important:
df_previous_application.drop(columns=Null_2.index ,inplace=True) print('Null_2 dropped from the df_previous_application')
Output:
Null_2 dropped from the df_previous_application
Finding the percentage of null values for other variables: Missing_Values(df_previous_application)
wissing_varues(ui_previous_application)
Output:

| Page

		_
NAME_TYPE_SUITE	49.120	
DAYS_FIRST_DRAWING	40.298	
DAYS_TERMINATION	40.298	
DAYS_LAST_DUE	40.298	
DAYS_LAST_DUE_1ST_VERSION	40.298	
DAYS_FIRST_DUE	40.298	
NFLAG_INSURED_ON_APPROVAL		
AMT_GOODS_PRICE	23.082	
AMT_ANNUITY	22.287	
CNT_PAYMENT	22.286	
PRODUCT_COMBINATION	0.021	
AMT_CREDIT	0.000	
WEEKDAY_APPR_PROCESS_START	0.000	
HOUR_APPR_PROCESS_START		
NAME_CONTRACT_TYPE	0.000	
AMT_APPLICATION	0.000	
NAME_YIELD_GROUP		
NAME_SELLER_INDUSTRY		
SELLERPLACE_AREA		
CHANNEL_TYPE	0.000	
NAME_PRODUCT_TYPE	0.000	
NAME_PORTFOLIO	0.000	
NAME_GOODS_CATEGORY		
NAME_CLIENT_TYPE	0.000	
SK_ID_CURR	0.000	
CODE_REJECT_REASON	0.000	
NAME_PAYMENT_TYPE		
DAYS_DECISION	0.000	
NAME_CONTRACT_STATUS	0.000	
NAME_CASH_LOAN_PURPOSE	0.000	
.1		

Finding the count of various values for the variable:

df_previous_application.NAME_TYPE_SUITE.value_counts()

Output:

Unaccompanied	508970
Family	213263
Spouse, partner	67069
Children	31566
Other_B	17624
Other_A	9077
Group of people	2240

Name: NAME_TYPE_SUITE, dtype: int64

Imputing null values with mode:

```
df_previous_application['NAME_TYPE_SUITE'] =
df_previous_application.NAME_TYPE_SUITE.fillna('Unaccompanied')
```

Imputing null values with AMT_CREDIT based on the assumption that the amount of good purchased is equal to the loan amount:

```
df_previous_application["AMT_GOODS_PRICE"] =
df_previous_application.AMT_GOODS_PRICE.fillna(df_previous_appli
cation['AMT_GOODS_PRICE'] ==
df_previous_application['AMT_CREDIT'])
```

Imputing null values with median:

```
df_previous_application['AMT_ANNUITY'] =
df_previous_application.AMT_ANNUITY.fillna(df_previous_application
.AMT_ANNUITY.median())
```

Finding value counts for various product combinations:

df_previous_application.PRODUCT_COMBINATION.value_counts()

Cash	285990
POS household with interest	263622
POS mobile with interest	220670
Cash X-Sell: middle	143883
Cash X-Sell: low	130248
Card Street	112582
POS industry with interest	98833
POS household without interest	82908
Card X-Sell	80582
Cash Street: high	59639
Cash X-Sell: high	59301
Cash Street: middle	34658
Cash Street: low	33834
POS mobile without interest	24082
POS other with interest	23879

POS industry without interest 12602 POS others without interest 2555 Name: PRODUCT COMBINATION, dtype: int64

Imputing NA values with mode:

df_previous_application['PRODUCT_COMBINATION'] =
df_previous_application.PRODUCT_COMBINATION.fillna(df_previous
_application.PRODUCT_COMBINATION.mode()[o])

Imputing null values with median:

df_previous_application['CNT_PAYMENT'] =
df_previous_application.CNT_PAYMENT.fillna(df_previous_application
.CNT_PAYMENT.median())

Finding values greater than 40% of null values:

Missing_Values(df_previous_application)

DAYS_TERMINATION		
DAYS_LAST_DUE	NFLAG_INSURED_ON_APPROVAL	40.298
DAYS_LAST_DUE_1ST_VERSION	DAYS_TERMINATION	40.298
DAYS_FIRST_DUE	DAYS_LAST_DUE	40.298
DAYS_FIRST_DRAWING	DAYS_LAST_DUE_1ST_VERSION	40.298
AMT_CREDIT 0.000 SELLERPLACE_AREA 0.000 NAME_PORTFOLIO 0.000 NAME_PRODUCT_TYPE 0.000 CHANNEL_TYPE 0.000 PRODUCT_COMBINATION 0.000 NAME_SELLER_INDUSTRY 0.000 CMT_PAYMENT 0.000 NAME_VIELD_GROUP 0.000 NAME_CLIENT_TYPE 0.000 NAME_CLIENT_TYPE 0.000 NAME_COODS_CATEGORY 0.000 SK_ID_PREV 0.000 SK_ID_CURR 0.000 NAME_PAYMENT_TYPE 0.000 NAME_POODS_CATEGORY 0.000 NAME_COODS_CATEGORY 0.000 NAME_COODS_CATEGORY 0.000 NAME_COODS_CATEGORY 0.000 NAME_CASH_LOAN_PURPOS 0.000 NAME_CASH_LOAN_PURPOSE 0.000 NEEKDAY_APPR_PROCESS_START 0.000 NEEKDAY_APPR_PROCESS_START 0.000 NEEKDAY_APPR_PROCESS_START 0.000 NEEKDAY_APPR_PROCESS_START 0.000 NEEKDAY_APPR_PROCESS_START 0.000 NEEKDAY_APPR_PROCESS_START 0.000	DAYS_FIRST_DUE	40.298
SELLERPLACE_AREA	DAYS_FIRST_DRAWING	40.298
NAME_PORTFOLIO	AMT_CREDIT	0.000
NAME_PRODUCT_TYPE	SELLERPLACE_AREA	0.000
CHANNEL_TYPE	NAME_PORTFOLIO	0.000
PRODUCT_COMBINATION	NAME_PRODUCT_TYPE	0.000
NAME_SELLER_INDUSTRY 0.000 CNT_PAYMENT 0.000 NAME_YIELD_GROUP 0.000 NAME_CLIENT_TYPE 0.000 NAME_GOODS_CATEGORY 0.000 SK_ID_PREV 0.000 SK_ID_CURR 0.000 CODE_REJECT_REASON 0.000 NAME_PAYMENT_TYPE 0.000 DAYS_DECISION 0.000 NAME_CONTRACT_STATUS 0.000 NAME_CASH_LOAN_PURPOSE 0.000 NFLAG_LAST_APPL_IN_DAY 0.000 FLAG_LAST_APPL_PER_CONTRACT 0.000 HOUR_APPR_PROCESS_START 0.000 MEEKDAY_APPR_PROCESS_START 0.000 AMT_GOODS_PRICE 0.000	CHANNEL_TYPE	0.000
CNT_PAYMENT 0.000 NAME_YIELD_GROUP 0.000 NAME_CLIENT_TYPE 0.000 NAME_GOODS_CATEGORY 0.000 SK_ID_PREV 0.000 SK_ID_CURR 0.000 CODE_REJECT_REASON 0.000 NAME_PAYMENT_TYPE 0.000 DAYS_DECISION 0.000 NAME_CONTRACT_STATUS 0.000 NAME_CASH_LOAN_PURPOSE 0.000 NFLAG_LAST_APPL_IN_DAY 0.000 FLAG_LAST_APPL_PER_CONTRACT 0.000 HOUR_APPR_PROCESS_START 0.000 AMT_GOODS_PRICE 0.000	PRODUCT_COMBINATION	0.000
NAME_YIELD_GROUP 0.000 NAME_CLIENT_TYPE 0.000 NAME_GOODS_CATEGORY 0.000 SK_ID_PREV 0.000 SK_ID_CURR 0.000 CODE_REJECT_REASON 0.000 NAME_PAYMENT_TYPE 0.000 DAYS_DECISION 0.000 NAME_CONTRACT_STATUS 0.000 NAME_CASH_LOAN_PURPOSE 0.000 NFLAG_LAST_APPL_IN_DAY 0.000 FLAG_LAST_APPL_PER_CONTRACT 0.000 HOUR_APPR_PROCESS_START 0.000 MEEKDAY_APPR_PROCESS_START 0.000 AMT_GOODS_PRICE 0.000	NAME_SELLER_INDUSTRY	0.000
NAME_CLIENT_TYPE 0.000 NAME_GOODS_CATEGORY 0.000 SK_ID_PREV 0.000 SK_ID_CURR 0.000 CODE_REJECT_REASON 0.000 NAME_PAYMENT_TYPE 0.000 DAYS_DECISION 0.000 NAME_CONTRACT_STATUS 0.000 NAME_CASH_LOAN_PURPOSE 0.000 NFLAG_LAST_APPL_IN_DAY 0.000 FLAG_LAST_APPL_PER_CONTRACT 0.000 HOUR_APPR_PROCESS_START 0.000 MEEKDAY_APPR_PROCESS_START 0.000 AMT_GOODS_PRICE 0.000	CNT_PAYMENT	0.000
NAME_GOODS_CATEGORY 0.000 SK_ID_PREV 0.000 SK_ID_CURR 0.000 CODE_REJECT_REASON 0.000 NAME_PAYMENT_TYPE 0.000 DAYS_DECISION 0.000 NAME_CONTRACT_STATUS 0.000 NAME_CASH_LOAN_PURPOSE 0.000 NFLAG_LAST_APPL_IN_DAY 0.000 FLAG_LAST_APPL_PER_CONTRACT 0.000 HOUR_APPR_PROCESS_START 0.000 MEEKDAY_APPR_PROCESS_START 0.000 AMT_GOODS_PRICE 0.000	NAME_YIELD_GROUP	0.000
SK_ID_PREV 0.000 SK_ID_CURR 0.000 CODE_REJECT_REASON 0.000 NAME_PAYMENT_TYPE 0.000 DAYS_DECISION 0.000 NAME_CONTRACT_STATUS 0.000 NAME_CASH_LOAN_PURPOSE 0.000 NFLAG_LAST_APPL_IN_DAY 0.000 FLAG_LAST_APPL_PER_CONTRACT 0.000 HOUR_APPR_PROCESS_START 0.000 MEEKDAY_APPR_PROCESS_START 0.000 AMT_GOODS_PRICE 0.000	NAME_CLIENT_TYPE	0.000
SK_ID_CURR 0.000 CODE_REJECT_REASON 0.000 NAME_PAYMENT_TYPE 0.000 DAYS_DECISION 0.000 NAME_CONTRACT_STATUS 0.000 NAME_CASH_LOAN_PURPOSE 0.000 NFLAG_LAST_APPL_IN_DAY 0.000 FLAG_LAST_APPL_PER_CONTRACT 0.000 HOUR_APPR_PROCESS_START 0.000 NEEKDAY_APPR_PROCESS_START 0.000 AMT_GOODS_PRICE 0.000	NAME_GOODS_CATEGORY	0.000
CODE_REJECT_REASON 0.000 NAME_PAYMENT_TYPE 0.000 DAYS_DECISION 0.000 NAME_CONTRACT_STATUS 0.000 NAME_CASH_LOAN_PURPOSE 0.000 NFLAG_LAST_APPL_IN_DAY 0.000 FLAG_LAST_APPL_PER_CONTRACT 0.000 HOUR_APPR_PROCESS_START 0.000 NEEKDAY_APPR_PROCESS_START 0.000 AMT_GOODS_PRICE 0.000	SK_ID_PREV	0.000
NAME_PAYMENT_TYPE 0.000 DAYS_DECISION 0.000 NAME_CONTRACT_STATUS 0.000 NAME_CASH_LOAN_PURPOSE 0.000 NFLAG_LAST_APPL_IN_DAY 0.000 FLAG_LAST_APPL_PER_CONTRACT 0.000 HOUR_APPR_PROCESS_START 0.000 MEEKDAY_APPR_PROCESS_START 0.000 AMT_GOODS_PRICE 0.000	SK_ID_CURR	0.000
DAYS_DECISION 0.000 NAME_CONTRACT_STATUS 0.000 NAME_CASH_LOAN_PURPOSE 0.000 NFLAG_LAST_APPL_IN_DAY 0.000 FLAG_LAST_APPL_PER_CONTRACT 0.000 HOUR_APPR_PROCESS_START 0.000 NEEKDAY_APPR_PROCESS_START 0.000 AMT_GOODS_PRICE 0.000	CODE_REJECT_REASON	0.000
NAME_CONTRACT_STATUS 0.000 NAME_CASH_LOAN_PURPOSE 0.000 NFLAG_LAST_APPL_IN_DAY 0.000 FLAG_LAST_APPL_PER_CONTRACT 0.000 HOUR_APPR_PROCESS_START 0.000 NEEKDAY_APPR_PROCESS_START 0.000 AMT_GOODS_PRICE 0.000	NAME_PAYMENT_TYPE	0.000
NAME_CASH_LOAN_PURPOSE 0.000 NFLAG_LAST_APPL_IN_DAY 0.000 FLAG_LAST_APPL_PER_CONTRACT 0.000 HOUR_APPR_PROCESS_START 0.000 NEEKDAY_APPR_PROCESS_START 0.000 AMT_GOODS_PRICE 0.000	DAYS_DECISION	0.000
NFLAG_LAST_APPL_IN_DAY 0.000 FLAG_LAST_APPL_PER_CONTRACT 0.000 HOUR_APPR_PROCESS_START 0.000 WEEKDAY_APPR_PROCESS_START 0.000 AMT_GOODS_PRICE 0.000	NAME_CONTRACT_STATUS	0.000
FLAG_LAST_APPL_PER_CONTRACT 0.000 HOUR_APPR_PROCESS_START 0.000 WEEKDAY_APPR_PROCESS_START 0.000 AMT_GOODS_PRICE 0.000	NAME_CASH_LOAN_PURPOSE	0.000
HOUR_APPR_PROCESS_START 0.000 WEEKDAY_APPR_PROCESS_START 0.000 AMT_GOODS_PRICE 0.000	NFLAG_LAST_APPL_IN_DAY	0.000
WEEKDAY_APPR_PROCESS_START 0.000 AMT_GOODS_PRICE 0.000	FLAG_LAST_APPL_PER_CONTRACT	0.000
AMT_GOODS_PRICE 0.000	HOUR_APPR_PROCESS_START	0.000
	WEEKDAY_APPR_PROCESS_START	0.000
AMT_APPLICATION 0.000	AMT_GOODS_PRICE	0.000
	AMT_APPLICATION	0.000

Standardizing Numerical values, changing data types and Creating buckets:

Dataset 1 - "application_data.csv"

Converting Days to Years to improve Readability:

```
df_application[["DAYS_BIRTH", "DAYS_EMPLOYED",
"DAYS_REGISTRATION", "DAYS_ID_PUBLISH",
"DAYS_LAST_PHONE_CHANGE"]] =
abs(df_application[["DAYS_BIRTH", "DAYS_EMPLOYED",
"DAYS_REGISTRATION", "DAYS_ID_PUBLISH",
"DAYS_LAST_PHONE_CHANGE"]])
```

Converting days to years up to 2 decimal places:

```
df_application['AGE_IN_YEARS'] =
round(df_application['DAYS_BIRTH']/365,2)
```

df_application['EMPLOYMENT_YEARS'] =
round(df_application['DAYS_EMPLOYED']/365,2)

Creating a Bucket for age:

df_application['AGE_IN_YEARS_RANGE'] = pd.cut(df_application['AGE_IN_YEARS'],bins=[0,20,25,30,35,40,45,

50,55,60,65,70],labels=["0-20",'20-25','25-30','30-35','35-40','40-45','45-50','50-55','55-60','60-65','above 65'])

df_application[['AGE_IN_YEARS_RANGE','AGE_IN_YEARS']]

Output:

	AGE_IN_YEARS_RANGE	AGE_IN_YEARS
0	25-30	25.92
1	45-50	45.93
2	50-55	52.18
3	50-55	52.07
4	50-55	54.61
307506	25-30	25.55
307507	55-60	56.92
307508	40-45	41.00
307509	30-35	32.77
307510	45-50	46.18

307511 rows × 2 columns

Creating a Bucket for Employment years:

df_application['EMPLOYMENT_YEARS_RANGE'] = pd.cut(df_application['EMPLOYMENT_YEARS'],bins=[0,5,10,15,20,25,3 0,35,40,45,50,55],labels=["0-5",'5-10','10-15','15-20','20-25','25-30','30-35','35-40','40-45','45-50','above 50'])

df_application[['EMPLOYMENT_YEARS_RANGE','EMPLOYMENT_YE
ARS']]

Output:

	EMPLOYMENT_YEARS_RANGE	EMPLOYMENT_YEARS
0	0-5	1.75
1	0-5	3.25
2	0-5	0.62
3	5-10	8.33
4	5-10	8.32
307506	0-5	0.65
307507	NaN	1000.67
307508	20-25	21.70
307509	10-15	13.11
307510	0-5	3.46

307511 rows × 2 columns

Converting to lakhs up to 2 decimal places:

df_application['AMT_INCOME_TOTAL_in_lakhs'] =
round(df_application['AMT_INCOME_TOTAL']/100000,2)

df_application['AMT_CREDIT_in_lakhs'] =
round(df_application['AMT_CREDIT']/100000,2)

Creating buckets:

df_application['AMT_CREDIT_in_lakhs_Range'] = pd.cut(df_application['AMT_CREDIT_in_lakhs'],bins = [0,5,10,15,20,25,30,35,40,45], labels = ['0-5L','5-10L','10-15L','15-20L','20-25L','25-30L','30-35L','35-40L','Above 40L'])

df_application[['AMT_CREDIT_in_lakhs','AMT_INCOME_TOTAL_in_lakhs','AMT_CREDIT_in_lakhs_Range','AMT_CREDIT_in_lakhs']]

Output:

	${\sf AMT_CREDIT_in_lakhs}$	${\sf AMT_INCOME_TOTAL_in_lakhs}$	${\sf AMT_CREDIT_in_lakhs_Range}$	AMT_CREDIT_in_lakhs
0	4.07	2.02	0-5L	4.07
1	12.94	2.70	10-15L	12.94
2	1.35	0.68	0-5L	1.35
3	3.13	1.35	0-5L	3.13
4	5.13	1.22	5-10L	5.13
307506	2.55	1.58	0-5L	2.55
307507	2.70	0.72	0-5L	2.70
307508	6.78	1.53	5-10L	6.78
307509	3.70	1.71	0-5L	3.70
307510	6.75	1.58	5-10L	6.75

Creating a Bucket for AMT_INCOME_TOTAL:

df_application['AMT_INCOME_TOTAL_RANGE'] = pd.cut(df_application['AMT_INCOME_TOTAL_in_lakhs'],bins = [0,1,2,3,4,5,6,7,8,9,10,100], labels = ['0-1L','1-2L','2-3L','3-4L','4-5L','5-6L','6-7L','7-8L','8-9L','9-10L','Above 10L'])

df_application[['AMT_INCOME_TOTAL_RANGE','AMT_INCOME_TO TAL']]

	AMT_INCOME_TOTAL_RANGE	AMT_INCOME_TOTAL
0	2-3L	202500.0
1	2-3L	270000.0
2	0-1L	67500.0
3	1-2L	135000.0
4	1-2L	121500.0
307506	1-2L	157500.0
307507	0-1L	72000.0
307508	1-2L	153000.0
307509	1-2L	171000.0
307510	1-2L	157500.0

307511 rows × 2 columns

Finding the count of various values:

df_application[['AMT_INCOME_TOTAL_RANGE','AMT_INCOME_TO TAL_in_lakhs']].value_counts()

AMT_INCOME_TOTAL_RANGE	AMT_INCOME_TOTAL_in_lakhs	
1-2L	1.35	35763
	1.12	31053
	1.58	26580
	1.80	24725
0-1L	0.90	22501
6-7L	6.60	1
	6.57	1
3-4L	3.89	1
6-7L	6.48	1
Above 10L	90.00	1
Length: 571, dtype: int	:64	

Removing rogue outlier values to prevent distortions in analysis:

```
df_application['EMPLOYMENT_YEARS'] =
df_application.EMPLOYMENT_YEARS.replace(df_application.EMPLOY
MENT_YEARS.max(),np.NaN)
```

Adding a column to understand the ratio:

```
df_application['Credit_Ratio'] =
round(df_application.AMT_CREDIT/df_application.AMT_INCOME_TO
TAL,2)
```

df_application['Credit_Ratio'].head()

Output:

```
0 2.01
1 4.79
2 2.00
3 2.32
4 4.22
Name: Credit_Ratio, dtype: float64
```

Dataset 2 - "previous_application.csv"

Converting to lakhs:

```
df_previous_application['AMT_ANNUITY_LAKHS'] =
df_previous_application['AMT_ANNUITY']/100000
```

df_previous_application['AMT_APPLICATION_LAKHS'] =
df_previous_application['AMT_APPLICATION']/100000

df_previous_application['AMT_CREDIT_LAKHS'] =
df_previous_application['AMT_CREDIT']/100000

Converting days to absolute number:

df_previous_application[['DAYS_DECISION','DAYS_FIRST_DRAWING'
,'DAYS_FIRST_DUE','DAYS_LAST_DUE_1ST_VERSION',
'DAYS_LAST_DUE','DAYS_TERMINATION']] =
abs(df_previous_application[['DAYS_DECISION','DAYS_FIRST_DRAWING', 'DAYS_FIRST_DUE',
'DAYS_LAST_DUE_1ST_VERSION','DAYS_LAST_DUE',
'DAYS_TERMINATION']])

Converting days to years up to 2 decimal places:

df_previous_application[['DAYS_DECISION_YEARS','DAYS_FIRST_D RAWING_YEARS','DAYS_FIRST_DUE_YEARS','DAYS_LAST_DUE_1S T_VERSION_YEARS',
'DAYS_LAST_DUE_YEARS','DAYS_TERMINATION_YEARS']] = round(df_previous_application[['DAYS_DECISION','DAYS_FIRST_DRA WING', 'DAYS_FIRST_DUE',
'DAYS_LAST_DUE_1ST_VERSION','DAYS_LAST_DUE',
'DAYS_TERMINATION']]/365,2)

Creating various buckets:

df_previous_application['AMT_CREDIT_LAKHS_Range']=pd.cut(df_application['AMT_INCOME_TOTAL_in_lakhs'], bins = [0,1,2,3,4,5,6,7,8,9,10,100], labels = ['0-1L','1-2L','2-3L','3-4L','4-5L','5-6L','6-7L','7-8L','8-9L','9-10L','Above 10L'])

df_previous_application['AMT_APPLICATION_LAKHS_Range'] = pd.cut(df_application['AMT_INCOME_TOTAL_in_lakhs'], bins = [0,1,2,3,4,5,6,7,8,9,10,100], labels = ['0-1L','1-2L','2-3L','3-4L','4-5L','5-6L','6-7L','7-8L','8-9L','9-10L','Above 10L'])

Making a list of all the flag variables:

```
list_Flag =
['FLAG_MOBIL','FLAG_EMP_PHONE','FLAG_WORK_PHONE','FLAG_
CONT_MOBILE','FLAG_PHONE','FLAG_EMAIL']
```

list_Flag

Output:

```
['FLAG_MOBIL',
    'FLAG_EMP_PHONE',
    'FLAG_WORK_PHONE',
    'FLAG_CONT_MOBILE',
    'FLAG_PHONE',
    'FLAG_EMAIL']
```

Conversion of 0 to No and 1 to Yes for Flag variables for better understanding of the variables:

```
df_application['FLAG_MOBIL'] =
df_application['FLAG_MOBIL'].apply(lambda x : 'YES' if x == 1 else 'NO')
```

```
df_application['FLAG_EMP_PHONE'] =
df_application['FLAG_EMP_PHONE'].apply(lambda x : 'YES' if x == 1
else 'NO')
```

```
df_application['FLAG_WORK_PHONE'] =
df_application['FLAG_WORK_PHONE'].apply(lambda x : 'YES' if x == 1)
else 'NO')
df_application['FLAG_CONT_MOBILE'] =
df_application['FLAG_CONT_MOBILE'].apply(lambda x : 'YES' if x == 1)
else 'NO')
df_application['FLAG_PHONE'] =
df_application['FLAG_PHONE'].apply(lambda x : 'YES' if x == 1 else
'NO')
df_application['FLAG_EMAIL'] =
df_application['FLAG_EMAIL'].apply(lambda x : 'YES' if x == 1 else 'NO')
```

Analysis of Variables:

Univariate Analysis:

Dataset for "application_data.csv"

```
Numarical Data =
['AMT ANNUITY','AMT GOODS PRICE','AGE IN YEARS','EMPLOY
MENT YEARS', 'AMT INCOME TOTAL in lakhs',
'AMT CREDIT in lakhs', 'CNT FAM MEMBERS', 'Credit Ratio']
Categorical Data =
['FLAG OWN CAR','FLAG OWN REALTY','NAME TYPE SUITE','NA
ME_INCOME_TYPE', 'NAME_EDUCATION_TYPE',
'NAME FAMILY STATUS', 'NAME HOUSING TYPE', 'OCCUPATION
TYPE', 'AGE IN YEARS RANGE', 'EMPLOYMENT YEARS RANGE', 'A
MT_CREDIT_in_lakhs_Range','AMT_INCOME_TOTAL_RANGE']
def Uni Analysis Numarical(dataframe, column):
 sns.set(style='darkgrid')
 plt.figure(figsize=(25, 5))
 plt.subplot(1, 3, 1)
 sns.boxplot(data=dataframe, x=column, orient='v').set(title='Box Plot')
plt.subplot(1, 3, 2)
 sns.distplot(dataframe[column].dropna()).set(title='Distplot')
```

```
plt.show()
```

def Uni_Analysis_Categorcal(dataframe, column):

```
sns.set(style='darkgrid')
plt.figure(figsize = [12,5])
dataframe[column].value_counts().plot.barh(width = 0.8)
plt.title(column)
```

plt.show()

for i in Numarical_Data:

Uni_Analysis_Numarical(df_application,i)

for i in Categorical_Data:

Uni_Analysis_Categorcal(df_application,i)

sns.set(style='darkgrid')
plt.figure(figsize = [15,12])

$$\label{eq:counts} \begin{split} df_application['ORGANIZATION_TYPE'].value_counts().plot.barh(widt h = 1) \end{split}$$

plt.title('ORGANIZATION_TYPE')

plt.show()

Dataset for "previous_application.csv"

Categorical_Data_for_prev =
['NAME_CONTRACT_TYPE','NAME_CONTRACT_STATUS','NAME_PA
YMENT_TYPE','NAME_TYPE_SUITE',
'NAME_CLIENT_TYPE','AMT_CREDIT_LAKHS_Range','AMT_APPLIC
ATION_LAKHS_Range',]

for i in Categorical_Data_for_prev:
Uni_Analysis_Categorcal(df_previous_application,i)

TARGET Analysis

Univariate Analysis of TARGET

Categorical_Data_1 = ['NAME_CONTRACT_TYPE','FLAG_OWN_CAR','FLAG_OWN_REALT

50 | Page

```
Y', 'NAME TYPE SUITE', 'NAME INCOME TYPE', 'NAME EDUCATIO
N TYPE',
'NAME FAMILY STATUS', 'NAME HOUSING TYPE', 'OCCUPATION
TYPE','AGE_IN_YEARS_RANGE',
'EMPLOYMENT_YEARS_RANGE','AMT_CREDIT_in_lakhs_Range','A
MT INCOME TOTAL RANGE']
Numarical Data 1 =
['AMT_ANNUITY','AMT_GOODS_PRICE','CNT_FAM_MEMBERS','CNT
_CHILDREN','Credit_Ratio']
Tagget Variable Payment Difficulty =
df_application[df_application.TARGET == 1]
Tagget Variable All Other = df application[df application.TARGET ==
[0
Tagget_Variable_All_Other.CODE_GENDER.value_counts()
     188278
     94404
XNA
Name: CODE GENDER, dtype: int64
Function to plot for categorical variables:
def Tagget_categorical_Uni(variable):
 plt.style.use('classic')
 sns.despine
 fig,(ax1,ax2) = plt.subplots(1,2,figsize=(25,8))
```

```
sns.countplot(x=variable,data=Tagget_Variable_Payment_Difficulty,line
width=1,ax=ax1,edgecolor=sns.color_palette("dark", 3),hue =variable)
  ax1.set vlabel('Total Counts')
  ax1.set title(f'Distribution of {variable} Tagget
Payment Difficulty', fontsize=18)
  ax1.set xticklabels(ax1.get xticklabels(), rotation=40, ha="right")
  for p in ax1.patches:
ax1.annotate('{:.1f}%'.format((p.get height()/len(Tagget Variable Paym
ent Difficulty))*100), (p.get x()+0.4, p.get height()+100), ha='center')
  sns.countplot(x=variable,
data=Tagget_Variable_All_Other,ax=ax2,linewidth=1,edgecolor=sns.colo
r palette("dark", 3),hue =variable)
  ax2.set ylabel('Total Counts')
  ax2.set_title(f'Distribution of {variable} Tagget All_Other',fontsize =
18,)
  ax2.set xticklabels(ax2.get xticklabels(), rotation=40, ha="right")
  for p in ax2.patches:
ax2.annotate('{:.1f}%'.format((p.get height()/len(Tagget Variable All O
ther))*100), (p.get_x()+0.4, p.get_height()+100), ha='center')
  plt.show()
Tagget_categorical_Uni('CODE_GENDER'):
Output:
```


for i in Categorical_Data_1: Tagget_categorical_Uni(i)

Function to plot for categorical variables:

```
def Tagget_Numarical_Uni(variable):
  sns.set(style='darkgrid')
  plt.figure(figsize=(15, 5))
  plt.subplot(1, 2, 1)
  sns.distplot(Tagget_Variable_Payment_Difficulty[variable].dropna())
  plt.title(f'Distribution of {variable} Payment_Difficulty',fontsize=15)
  plt.xlabel(variable)
  plt.subplot(1, 2, 2)
  sns.distplot(Tagget_Variable_All_Other[variable].dropna())
  plt.title(f'Distribution of {variable} All Other',fontsize=15)
  plt.xlabel(variable)
  plt.show()
Tagget Numarical Uni('Credit Ratio')
Output:
```


Tagget_Numarical_Uni('DAYS_EMPLOYED')

Tagget_categorical_Uni('CNT_FAM_MEMBERS')


```
plt.subplot(1, 2, 1)
Tagget_Variable_Payment_Difficulty['CNT_FAM_MEMBERS'].plot.hist(bins=range(15))
plt.title('Distribution of CNT_FAM_MEMBERS for Non-Defaulters',fontsize=15)
plt.xlabel('CNT_FAM_MEMBERS')

plt.subplot(1, 2, 2)
Tagget_Variable_All_Other['CNT_FAM_MEMBERS'].plot.hist(bins=range(15))
plt.title(f Distribution of CNT_FAM_MEMBERS for Defaulters',fontsize=15)
plt.xlabel('CNT_FAM_MEMBERS')

plt.show()
```

Output:

Bivariate Analysis of TARGET

sns.scatterplot(x=Tagget_Variable_Payment_Difficulty.AMT_ANNUITY, y = Tagget_Variable_Payment_Difficulty.AMT_GOODS_PRICE, data=Tagget_Variable_Payment_Difficulty,hue = 'TARGET')

Tagget_Numarical('AGE_IN_YEARS','AMT_INCOME_TOTAL_in_lakhs

Output:

sns.scatterplot(x=Tagget_Variable_Payment_Difficulty.AMT_ANNUITY, y = Tagget_Variable_Payment_Difficulty.AMT_GOODS_PRICE, data=Tagget_Variable_Payment_Difficulty,hue = 'TARGET')

plt.figure(figsize = [10,6]) sns.set(style='darkgrid') sns.barplot(x = df_application.CODE_GENDER,y = df_application.AGE_IN_YEARS)

plt.show()

Output:

sns.pairplot(df_application,vars =
['AMT_CREDIT_in_lakhs','AMT_INCOME_TOTAL_in_lakhs','OCCUPA
TION_TYPE'],diag_kind = 'hist', hue = 'TARGET',plot_kws = {'alpha':
0.6, 's': 80, 'edgecolor': 'k'},size = 4)

plt.show()

plt.figure(figsize=(25, 5))
sns.heatmap(Tagget_Variable_Payment_Difficulty.corr(),cmap="YlGnBu")
plt.title('Payment_Difficulty')

plt.show()

df_3=Tagget_Variable_Payment_Difficulty[['CNT_CHILDREN','AMT_A NNUITY','AMT_GOODS_PRICE','AGE_IN_YEARS','EMPLOYMENT_YE ARS','AMT_INCOME_TOTAL_in_lakhs','AMT_CREDIT_in_lakhs','CNT _FAM_MEMBERS','FLAG_OWN_CAR','FLAG_OWN_REALTY','NAME _TYPE_SUITE','NAME_INCOME_TYPE','NAME_EDUCATION_TYPE',' NAME_FAMILY_STATUS','OCCUPATION_TYPE','NAME_HOUSING_TYPE']]

plt.figure(figsize=(25, 5))
sns.heatmap(df_3.corr(method = 'pearson'),cmap = 'YlGnBu',
annot=True)
plt.title('Payment_Difficulty')

plt.show()

Output.								
_				Payment_Difficulty				
CNT_CHILDREN		0.031	-0.26	-0.033	0.0048	-0.0017	0.89	- 0.90
AMT_ANNUITY	0.031	1	0.014	0.049	0.046	0.75	0.076	- 0.75
AGE_IN_YEARS	-0.26	0.014	1	0.31	-0.0031	0.14	-0.2	- 0.60
EMPLOYMENT_YEARS	-0.033	0.049	0.31	1	4.6e-05	0.11	0.0016	- 0.45 - 0.30
AMT_INCOME_TOTAL_in_lakhs	0.0048	0.046	-0.0031	4.6e-05	1	0.038	0.0067	- 0.15
AMT_CREDIT_in_lakhs	-0.0017	0.75	0.14	0.11	0.038		0.051	- 0.00
CNT_FAM_MEMBERS	0.89	0.076	-0.2	0.0016	0.0067	0.051	1	- -0.15
	CNT_CHILDREN	AMT_ANNUITY	AGE_IN_YEARS	EMPLOYMENT_YEARS	AMT_INCOME_TOTAL_in_lakhs	AMT_CREDIT_in_lakhs	CNT_FAM_MEMBERS	