Summary of COMP523 Advanced Algorithm

May 4, 2023

Chapter 1

Symmetry Notation

1.1 Asymptotic Notation

Asymptotic notation is a way of describing the limiting behavior of a function when the argument tends towards a particular value or infinity. In computer science, asymptotic notation is frequently used to describe the running time or space usage of an algorithm.

- O-notation: f(n) = O(q(n)) if there exist constants c and n_0 such that $0 \le f(n) \le cq(n)$ for all $n \ge n_0$.
- Ω -notation: $f(n) = \Omega(g(n))$ if there exist constants c and n_0 such that $0 \le cg(n) \le f(n)$ for all $n \ge n_0$.
- Θ -notation: $f(n) = \Theta(g(n))$ if there exist constants c_1 , c_2 and n_0 such that $0 \le c_1 g(n) \le f(n) \le c_2 g(n)$ for all $n \ge n_0$.
- o-notation: f(n) = o(g(n)) if for any constant c > 0, there exists a constant n_0 such that $0 \le f(n) < cg(n)$ for all $n \ge n_0$.
- ω -notation: $f(n) = \omega(g(n))$ if for any constant c > 0, there exists a constant n_0 such that $0 \le cg(n) < f(n)$ for all $n \ge n_0$.

1.2 Comparing Functions

1.2.1 Transitivity

- f(n) = O(g(n)) and g(n) = O(h(n)) implies f(n) = O(h(n)).
- $f(n) = \Omega(g(n))$ and $g(n) = \Omega(h(n))$ implies $f(n) = \Omega(h(n))$.
- $f(n) = \Theta(g(n))$ and $g(n) = \Theta(h(n))$ implies $f(n) = \Theta(h(n))$.

For example, $n^2 = O(n^3)$ and $n^3 = O(n^4)$ implies $n^2 = O(n^4)$.

1.2.2 Reflexivity

- f(n) = O(f(n)).
- $f(n) = \Omega(f(n))$.
- $f(n) = \Theta(f(n))$.

For example, $n^2 = O(n^2)$.

1.2.3 Symmetry

- f(n) = O(g(n)) implies g(n) = O(f(n)).
- $f(n) = \Omega(g(n))$ implies $g(n) = \Omega(f(n))$.
- $f(n) = \Theta(g(n))$ implies $g(n) = \Theta(f(n))$.
- f(n) = o(g(n)) implies $g(n) = \omega(f(n))$.
- $f(n) = \omega(g(n))$ implies g(n) = o(f(n)).

For example, $n^2 = O(n^3)$ implies $n^3 = \Omega(n^2)$.

1.2.4 Transpose Symmetry

- f(n) = O(g(n)) if and only if $g(n) = \Omega(f(n))$.
- $f(n) = \Theta(g(n))$ if and only if $g(n) = \Theta(f(n))$.
- f(n) = o(g(n)) if and only if $g(n) = \omega(f(n))$.
- $f(n) = \omega(g(n))$ if and only if g(n) = o(f(n)).

For example, $n^2 = O(n^3)$ if and only if $n^3 = \Omega(n^2)$.

1.2.5 sum and maximum

$$f_1(n) + f_2(n) + \dots + f_k(n) = \Theta(\max(f_1(n), f_2(n), \dots, f_k(n)))$$

where k is a constant positive integer.

Let $f_j(n) = j$, k = n, then

$$f_1(n) + f_2(n) + \dots + f_k(n) = n(n+1)/2 = \Theta(n^2)$$

1.2.6 Running time hierarchy

- logarithmic: $O(\log n)$
- linear: O(n)
- $n \log n$: $O(n \log n)$
- quadratic: $O(n^2)$
- polynomial: $O(n^k)$
- exponential: $O(c^n)$
- constant: O(1)
- superconstant: $\omega(1)$
- sublinear: o(n)
- superlinear: $\omega(n)$
- superpolynomial: $\omega(n^k)$
- subexponential: $o(c^n)$

1.3 Expect of algorithms

Correctness: An algorithm is correct if it halts with the correct output for every input instance.

Termination: An algorithm is terminating if it halts for every input instance.

Efficiency: An algorithm is efficient if it halts with the correct output for every input instance and runs in polynomial

time.

Chapter 2

Recursion and Divide and Conquer techniques

2.1 Finding Majority in array

The pesudocode of the algorithm is shown in Algorithm 2.1.

Algorithm 1 Finding Majority in array

```
1: procedure MAJORITY(A)
        n \leftarrow \text{length of } A
       if n = 0 then
 3:
 4:
            return -1
        end if
       if n = 1 then
            return A[1]
 8:
       if n1 and n is odd then
 9:
10:
        end if
11:
       Array B of size n/2
12:
       set j=0
13:
        for i = 1 to n/2 do
14:
15:
            if A[2i-1] = A[2i] then
                B[j] \leftarrow A[2i-1]
16:
                j \leftarrow j+1
17:
            end if
18:
19:
        end for
20:
        m \leftarrow \mathsf{MAJORITY}(B)
        count \leftarrow 0
21:
        for i=1 to n do
22:
            if A[i] = m then
                count \leftarrow count + 1
24:
            end if
25:
        end for
        if count > n/2 then
27:
            return m
28:
29:
        else
            return -1
        end if
32: end procedure
```

Correctness:

Lemma: If A has a majority element, then the majority element of A is also the majority element of B.

Base case: n = 1, the majority element is A[1].

Induction hypothesis: Assume that the lemma is true for n = k, we will prove that the lemma is true for n = k + 1.

Induction step: If A has a majority element, then the majority element of A is also the majority element of B.

Case 1 (A has a majority element m): Then by the lemma, it is also the majority element of B. Then m appears more than k/2 times in B. Then m appears more than (k+1)/2 times in A.

Case 2 (A has no majority element): Then B has no majority element. Then A has no majority element.

Proof the lemma:

proof by contradiction. Assume that A has a majority element m and B has a majority element m', but $m \neq m'$.

Let x be the numbers of occurrence of m in A.

Let y be the numbers of occurrence of m' in B.

Then 2y times from pairs that are represented in B by a value different from m', and x-2y times, since each occurrence of m in A that is not paired with another occurrence of m in A is paired with an occurrence of m' in B.

In total, this gives 2y + x - 2y = x occurrences of m in A, which is a contradiction.

Running time:

Recursive formula for the running time:

$$T(n) \le T(n/2) + cn$$

where c is a constant.

The solution to the recurrence is T(n) = O(n).

2.2 Searching in logarithmic time

Searching faster with BinarySearch.

It is a particular case of the divide-and-conquer paradigm.

Input: A sorted array A of n elements and a value x.

Output: An index i such that A[i] = x or the special value -1 if x does not appear in A.

Pseudocode is shown in Algorithm 2.2.

Algorithm 2 BinarySearch

```
1: procedure BINARYSEARCH(x, i, j)
       if i = j then
2.
          if A[i] = x then
3:
4:
              return i
          else
5:
              return -1
6:
          end if
7:
       else
8:
          if x = A[|(i+j)/2|] then
9:
              return |(i+j)/2|
10:
          else if x < A[|(i+j)/2|] then
11:
              return BINARYSEARCH(x, i, |(i + j)/2|)
12:
13:
              return BINARYSEARCH(x, |(i+j)/2| + 1, j)
14:
          end if
15:
       end if
17: end procedure
```

Running time:

The number of comparisons performed by BinarySearch is:

$$T(n) \le T(n/2) + 4$$

Keep calculate:

$$\begin{split} T(n) &\leq T(n/2) + 4 \\ &\leq T(n/4) + 4 + 4 \\ &\leq T(n/8) + 4 + 4 + 4 \\ &\leq T(n/2^k) + 4k \\ &\leq T(n/2^{\log(n-1)}) + 4\log(n-1) \\ &= T(2) + 4(\log n - 1) \\ &\leq 4\log n - 4 \\ &= 4\log n \end{split}$$

proof $T(n) \leq 4 \log n$:

Base case: n = 1, $T(1) = 0 \le 4 \log 1 = 0$.

Induction hypothesis: Assume that the lemma is true for n = k, we will prove that the lemma is true for n = k + 1. Induction step: $T(k+1) \le 4\log(k+1)$.

$$T(k+1) \le T(k/2) + 4$$

$$\le 4 \log(k/2) + 4$$

$$= 4 \log k - 4 + 4$$

$$= 4 \log k$$

$$\le 4 \log(k+1)$$

Memory usage:

The memory usage of BinarySearch is:

$$M(n) = O(\log n)$$

Comparing BinarySearch and LinearSearch:

$$T_{ ext{BinarySearch}}(n) = O(\log n)$$

$$T_{ ext{LinearSearch}}(n) = O(n)$$

$$T_{ ext{BinarySearch}}(n) = O(\log n) < O(n) = T_{ ext{LinearSearch}}(n)$$
 $M_{ ext{BinarySearch}}(n) = O(\log n) < O(1) = M_{ ext{LinearSearch}}(n)$

2.3 Running time of Divide and Conquer algorithms

The Master Theorem:

Suppose that T(n) satisfies the recurrence:

$$T(n) \le aT(n/b) + cn^d$$

where $a \ge 1$, b > 1, c > 0 and $d \ge 0$ are constants.

Then T(n) has the following asymptotic bounds:

$$T(n) = \begin{cases} O(n^d) & \text{if } d > \log_b a \\ O(n^d \log n) & \text{if } d = \log_b a \\ O(n^{\log_b a}) & \text{if } d < \log_b a \end{cases}$$

This theorem is useful for solving recurrences of the form:

$$T(n) = aT(n/b) + f(n)$$

where $a \ge 1, b > 1$ and f(n) is an asymptotically positive function. **Example**:

```
\begin{split} T(n) &= 8T(n/2) + 100n^2\\ a &= 8, b = 2, f(n) = 100n^2, d = 2, \log_b a = \log_2 8 = 3.\\ d &= 2 < \log_b a = 3, \text{ so } T(n) = O(n^{\log_b a}) = O(n^3). \end{split}
```

2.4 Finding piar of points closest to each other

Input: A set P of n points in the plane.

Output: The pair of points in P that are closest to each other. **Pseudocode** is shown in Algorithm 2.4. **Running time**:

```
Algorithm 3 ClosestPair
```

```
1: procedure CLOSESTPAIR(P_1, \ldots, P_n)

2: Construct P_x and P_y. P_x is sorted by x-coordinate, P_y is sorted by y-coordinate.

3: return CLOSESTPAIRREC(P_x, P_y)

4: end procedure
```

Algorithm 4 ClosestPairRec

```
1: procedure CLOSESTPAIRREC(P_x, P_y)
        if |P_x| = |P_y| \le 3 then
2:
             For each pair of points (P_i, P_j), compute d(P_i, P_j)
 3:
             return the pair of points with the smallest distance
4:
 5:
         end if
        Construct Q_x, Q_y, R_x and R_y.
 6:
        (l_1, l_2) = \text{CLOSESTPAIRREC}(Q_x, Q_y)
 7:
        (r_1, r_2) = \text{CLOSESTPAIRREC}(R_x, R_y)
 8:
        \delta = \min\{d(l_1, l_2), d(r_1, r_2)\}\
9:
10:
        x^* = the largest x-coordinate in Q_x
         L = (x, y) : x = x^*
11:
        S = \{ p \in P : p \in L \text{ and } p \text{ is within } \delta \text{ of } L \}
12:
        Construct S_v
13:
14:
        for p \in S do
             Let q be the point in S_v closest to p
15:
             if d(p,q) < \delta then
16:
                 \delta = d(p,q)
17:
                 (s_1, s_2) = (p, q)
18:
             end if
19:
        end for
20:
        if d(s_1, s_2) < \min\{d(l_1, l_2), d(r_1, r_2)\} then
21:
             return (s_1, s_2)
22:
        end if
23:
        if d(l_1, l_2) < d(r_1, r_2) then
24:
25:
             return (l_1, l_2)
26:
27:
             return (r_1, r_2)
        end if
28:
29: end procedure
```

```
T(n) \le 2T(n/2) + O(n \log n) = O(n \log n) Example:
```

Chapter 3

Graph Algorithms

3.1 Graph Definitions

Graph: A graph G consists of a set V of vertices and a set E of edges, where each edge is associated with a pair of vertices.

Directed Graph: A directed graph G consists of a set V of vertices and a set E of directed edges, where each directed edge is associated with an ordered pair of vertices.

Undirected Graph: An undirected graph G consists of a set V of vertices and a set E of undirected edges, where each undirected edge is associated with an unordered pair of vertices.

Neighbours of a vertex v: Set of vertices that are connected to v by an edge.

Degree of a vertex v: number of neighbours of v, denoted by deg(v).

Path: A sequence of (non-repeating) nodes with consecutive nodes being connected by an edge.

length = node count - 1 = edge count.

Distance between two nodes: The number of edges in the shortest path between the two nodes.

Graph diameter: The maximum distance between any two nodes in the graph.

Lines, cycles, trees and cliques:

Line: A graph with n vertices and n-1 edges. **Cycle**: A graph with n vertices and n edges.

cliques: A graph with n vertices and n(n-1)/2 edges.

Tree: A graph with n vertices and n-1 edges.

Graph representations:

Adjacency matrix: A $n \times n$ matrix A where $A_{ij} = 1$ if there is an edge between i and j, and $A_{ij} = 0$ otherwise. examples of adjacency matrices:

Given the following graph:

The adjacency matrix is:

$$\begin{bmatrix} 0 & 1 & 1 & 1 \\ 1 & 0 & 1 & 0 \\ 1 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 \end{bmatrix}$$

Adjacency matrix for directed graphs: A $n \times n$ matrix A where $A_{ij} = 1$ if there is an edge from i to j, and $A_{ij} = 0$ otherwise.

examples of adjacency matrices for directed graphs: Given the following graph:

The adjacency matrix is:

$$\begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \end{bmatrix}$$

Adjacency list: A list of lists, where the ith list contains the neighbours of vertex i. Given the following graph:

The adjacency list is:

$$\begin{bmatrix} 1 & 2 & 3 \\ 0 & 2 \\ 0 & 1 & 3 \\ 0 & 2 \end{bmatrix}$$

Adjacency list for directed graphs: A list of lists, where the ith list contains the neighbours of vertex i. Given the following graph:

The adjacency list is:

$$\begin{bmatrix} 1 & 2 \\ 2 \\ 3 \\ 0 \end{bmatrix}$$

Adjacency matrix vs adjacency list:

Adjacency matrix	Adjacency list
O(1) to check if there is an edge between i and j	O(min(deg(i), deg(j))) to check if there is an edge between i and j
O(n) to find the neighbours of i	O(deg(j)) to find the neighbours of i
$O(n^2)$ space	O(n+m) space

3.2 Depth-first search

Depth-first search: A graph search algorithm that explores the neighbours of a vertex before exploring the neighbours of its neighbours.

example of depth-first search:

The depth-first search sequence is:

0, 1, 2, 3, 5, 4

Depth-first search algorithm:

Algorithm 5 Depth-first search algorithm

```
1: procedure DFS(G, v)
         for e \in V do
2:
             \quad \textbf{if} \ e \ \text{is unexplored then} \\
3:
                  u = \text{head of } e
 4:
                  if u is unexplored then
 5:
                      e is a tree edge
 6:
                      DFS(G, u)
 7:
                  else
 8:
                      e is a back edge
9:
                  end if
10:
             end if
11:
         end for
12:
13: end procedure
```

Running time of depth-first search: O(n+m)

3.3 Breadth-first search

Breadth-first search: A graph search algorithm that explores the neighbours of a vertex before exploring the neighbours of its neighbours.

exaqmple of breadth-first search:

The breadth-first search sequence starting from vertex 0 is $0,\,1,\,2,\,3,\,4,\,5.$

Breadth-first search algorithm:

Algorithm 6 Breadth-first search algorithm

```
1: procedure BFS(G, s)
         initial empty list L
 3:
         L \leftarrow s
 4:
         i \leftarrow 0
         while L[i] \neq \emptyset do
 5:
             L_{i+1} \leftarrow emptylist
 6:
             for v \in L[i] do
 7:
                 for edges (e) incident to v do
 8:
                      if e is unexplored then
 9:
                          w \leftarrow the other end of e
10:
                          if w is unexplored then
11:
                               label e as a tree edge
12:
                               add w to L_{i+1}
13:
                          else
14:
15:
                               label e as a cross edge
16:
                          end if
                      end if
17:
                 end for
18:
             end for
19:
20:
             i \leftarrow i + 1
         end while
21:
22: end procedure
```

Running time of breadth-first search: O(n+m)

3.4 Strong Connectivity

Directed graph: A graph where the edges have a direction.

Examples:

DFS and BFS on directed graphs:

Very similar to undirected graphs, except that we only consider edges that go out of a vertex.

Running time is O(n+m)

For example graph above the DFS sequence is 0, 1, 2, 3.

The BFS sequence is 0, 1, 2, 3.

3.4.1 Connectivity

Weak connectivity: If we ignore the direction for all edges, there would be a pah from any vertex to any other vertex. Strong Connectivity: For every two nodes u and v, there is a path from u to v and a path from v to u.

3.4.2 Mutual Reachability

Two nodes u and v are mutually reachable if there is a path from v to v and a path from v to v.

Strong connectivity: For every pair of nodes u and v, these two nodes are mutually reachable.

Transitivity: If u is mutually reachable with v and v is mutually reachable with w, then u is mutually reachable with w.

3.4.3 Testing strong connectivity

```
Algorithm 7 Testing strong connectivity
```

```
1: procedure TESTSTRONGCONNECTIVITY(G)
       define G^R to be the graph with the same vertices as G but with all edges reversed
       Select a node s in G
3:
       BFS(G, s), BFS(G^R, s)
4:
       for each node v do
 5:
          if v is unexplored in either BFS then
              return False
 7:
           end if
8:
       end for
9:
10:
       return True
11: end procedure
```

3.5 Testing bipartiteness

Bipartite graph: A graph G = (V, E) is bipartite if any only if the vertices can be partitioned into two sets V_1 and V_2 such that every edge has one end in V_1 and the other end in V_2 .

A Graph G = (V, E) is bipartite if and only if it has no odd cycles.(odd cycle: a cycle with odd number of edges)

Testing bipartiteness:

```
Given a graph G = (V, E), we want to test if G is bipartite. Given a graph G = (V, E), decide if it is 2-colourable. Given a graph G = (V, E), decide if it has an odd cycle. Colouring the nodes It is quite familiar with BFS:
```

Algorithm 8 Colouring the nodes

```
1: procedure Colouring(G, s)
        initial empty list L
 3:
        initial empty list C
 4:
        L \leftarrow s
        C[s] \leftarrow red
 5:
        i \leftarrow 0
 6:
        while L[i] \neq \emptyset do
 7:
 8:
             L_{i+1} \leftarrow emptylist
             for v \in L[i] do
 9:
                 for edges (e) incident to v do
10:
                     if e is unexplored then
11:
                          w \leftarrow the other end of e
12:
                          if w is unexplored then
13:
                              label e as a tree edge
14:
15:
                              add w to L_{i+1}
16:
                              if i+1 is odd then
                                  C[w] \leftarrow green
17:
                              else
18:
                                  C[w] \leftarrow red
19:
20:
                              end if
                          else
21:
                              label e as a cross edge
22:
                              if C[v] = C[w] then
23:
                                   return False
24:
                              end if
25:
                          end if
26:
27:
                     end if
                 end for
28:
             end for
29:
             i \leftarrow i + 1
30:
31:
        end while
        for e(v, w) \in G do
32:
             if C[v] = C[w] then
33:
                 return False
34:
35:
             end if
        end for
36:
        return True
37:
38: end procedure
```

Running time of colouring the nodes: O(n+m)

Correctness of colouring the nodes:

Proof by contradiction.

Suppose that G is not bipartite.

Then G has an odd cycle.

Suppose to the contrary that the algorithm return True.

That means that the algorithm did not detect the odd cycle.

3.6 DAGs and Topological Ordering

DAG: A directed acyclic graph (DAG) is a directed graph with no directed cycles. examples of DAGs:

Topological ordering: Given a graph G = (V, E), a topological ordering of G is an ordering of the nodes u_1, u_2, \ldots, u_n such that for every edge (u_i, u_j) , we have i < j.

Intutively, a topological ordering is an ordering of the nodes such that every edge goes from left to right. example of topological ordering based on given graph above:

Topological ordering implies DAG:

- If G has a topological ordering, then G is a DAG.
- Suppose by contradiction that G has a topological ordering u_1, u_2, \ldots, u_n but G also has a cycle C.
- Let u_i be the smallest element of C in the topological ordering.
- Let u_i be its predecessor in C.
- u_i must appear before u_i in the topological ordering.
- This contradicts the fact that u_i is the smallest element of C in the topological ordering.

DAG implies topological ordering:

Proof by induction: Base case: If G has one or two nodes, then G has a topological ordering.

Induction steps: Assume that a DAG up to k nodes has a topological ordering(induction hypothesis). we will prove that a DAG with k+1 nodes has a topological ordering.

- By our lemma, there is at least one source node in G, and let u be the node.
- Put u at the beginning of the topological ordering.
- Consider the graph G', obtained by G by removing u and its incident edges.
- G' is a DAG with k nodes.
- It has a topological ordering u_1, u_2, \dots, u_k by the induction hypothesis.
- Append this ordering to u to get a topological ordering of G.

Here is the algorithm:

Algorithm 9 Topological Sorting

- 1: **procedure** TOPOLOGICALSORTING(G)
- 2: set v as source vertex
- 3: end procedure