EECS 151/251A SP2022 Discussion 7

GSI: Yikuan Chen, Dima Nikiforov

Agenda

- Olnverter Delay continue from last week's
- OLogical Effort
- Elmore Delay

Loaded Inverter Delay

$$t_{p,inv} = \ln 2 \cdot R_{eq} \left(C_{p,tot} + C_L \right)$$

$$= \ln 2 \cdot R_{eq} C_{p,tot} \left(1 + \frac{C_L}{C_{p,tot}} \right)$$

$$= \ln 2 \cdot R_{eq} C_{p,tot} \left(1 + \frac{C_L}{\gamma C_{in}} \right)$$

$$= \ln 2 \cdot R_{eq} C_{p,tot} \left(1 + \frac{f}{\gamma} \right)$$

$$= \ln 2 \cdot \tau_{inv} \left(1 + \frac{f}{\gamma} \right)$$

- Intrinsic vs. Extrinsic delay
 - Intrinsic τ_{inv} independent of sizing
- Fanout $f = C_L/C_{in}$
- Generalizable to any CMOS gate

Inverter Chain Sizing

- Goal: minimize path delay
 - Assume 1st inverter has unit size (C_{in,1} = 1)
- Path delay:

$$D = t_{p1} + ... + t_{pN} = (1 + f_1) + ... + (1 + f_N)$$

- Path fanout $F = \frac{c_L}{c_{in}}$
- Solution
 - ∘ Take partial derivatives w.r.t C₂, ..., C_N
 - \circ Get $f_1 = f_2 = ... = f_N$
 - o Min. path delay = Nf + N = N \sqrt{F} + N
 - Size backwards

Logical Effort, Parasitic Delay

- For any gate, $D(gate) = LE \cdot FO + P$
- Logical Effort
 - LE, Also defined as **g** in $t_{p,gate} = \tau_{inv}(p + \frac{gf}{v})$

- $\sim LE \equiv rac{R_{eq,gate}C_{in,gate}}{R_{eq,equiv}C_{in,inv}}$, i.e. ratio of $C_{in,gate}$ to $C_{in,inv}$ of a unit inverter with the same output current
- $\,^\circ$ Key to calculating LE: size the transistors to have the same $R_{\rm eq}$ as a unit inverter
- Parasitic Delay
 - Also defined as p in $t_{p,gate} = \tau_{inv}(p + \frac{gf}{\gamma})$
 - Only difference from LE is that p looks at the ratio of $C_{\text{out,gate}}$ to $C_{\text{out,inv}}$ (intrinsic capacitance)

PMOS/NMOS Resistance

• In lecture, $LE_{NAND2} = LE_{NOR2} = \frac{3}{2}$. What if $R_{on,p} = K \cdot R_{on,n}$?

Minimizing Path Delay

- Path Logical Effort: $G = g_1 \cdot g_2 \cdot ... \cdot g_N$
- Path fanout $F = C_L / C_{in}$
- Branching, b

• Extra loading factor
$$b = \frac{C_{onpath} + C_{offpath}}{C_{onpath}}$$

- Calculate an "effective fanout" for each stage: $EF = \sqrt{H}$
- Size each stage such that $EF = g_i \cdot f_i$. You can control f_i by sizing!
- Min. path delay = $N * {}^{N}\sqrt{H} + \sum p_{i}$

Logic Path w/ Branch Example

$$LE_{NAND2} = LE_{NOR2} = \frac{3}{2}$$

$$LE_{NAND3} = LE_{NOR3} = 2$$

Calculating EF:

$$N = 7$$

$$G = 3/2 \cdot 3/2 \cdot 2 \cdot 2 = 9$$

$$B = 4$$

$$F = 200$$

$$H = 7200$$

$$EF = \sqrt[7]{7200}$$

Sizing each stage:

$$f = 200/EF \cdot 1$$

$$e = f/EF \cdot 2$$

$$d = e/EF \cdot 2$$

$$c = d/EF \cdot 1$$

$$b = c/EF \cdot 3/2$$

$$a = b/EF \cdot 3/2 \stackrel{\text{def}}{=} EF$$

Elmore Delay – "All the R's for that C" or "All the C's by that R"

$$\begin{array}{c|c} R_1 & R_2 & R_3 & R_N \\ \hline & & \\ \hline & & \\ \hline \end{array} \qquad \begin{array}{c|c} C_1 & \\ \hline & \\ \hline \end{array} \qquad \begin{array}{c|c} C_2 & \\ \hline & \\ \hline \end{array} \qquad \begin{array}{c|c} C_3 & \\ \hline \end{array} \qquad \begin{array}{c|c} C_N & \\ \hline \end{array}$$

$$\begin{split} t_{pd} &\approx \sum_{\text{nodes } i} R_{i-to-source} C_i \\ &= R_1 C_1 + \left(R_1 + R_2\right) C_2 + \ldots + \left(R_1 + R_2 + \ldots + R_N\right) C_N \end{split}$$

Approximately the dominant RC time constant of a network

R's can be:

- Gate equivalent resistance R_{eq}
- Wire resistance $R = R_{\square} \cdot \#$ squares

C's can be:

- \circ Gate C_{in} and C_{p} , load C_{L}
- Wire plate & fringing capacitance
- $\pi model$ Think of it 2 equivalent ways:
 - $\circ \sum [C_i \cdot (sum \ of \ R's \ charging \ C_i)]$
 - $\sum [R_i \cdot (sum \ of \ C's \ that \ R_i \ charges)]$

Elmore Example

• What parameters do we need?

Draw the equivalent circuit Elmore RC model

Calculate delay to V_a

Elmore Example

What parameters do we need?

$$C_{in}, C_p, R_{on,p}, R_{on,n}, R_{wire}, C_{pp}, C_{fr}$$

Draw the equivalent circuit Elmore RC model

Calculate delay to V_a

$$t_{p,a} = \ln 2 \cdot R_{w1} \cdot \left(C_{i,1x} + \frac{C_{w1}}{2} \right) +$$

$$\ln 2 \cdot R_{p,4x} \cdot \left(C_{i,1x} + \frac{C_{w1}}{2} + C_{i,1x} + \frac{C_{w2}}{2} + \frac{C_{w2}}{2} + C_{o,4x} \right)$$

$$C_{i,1x} + \frac{C_{w2}}{2} + \frac{C_{w2}}{2} + \frac{C_{w1}}{2} + C_{o,4x}$$

Power/Energy in Digital Circuits

- Fundamentally, charging/discharging capacitors (gate, parasitic, load)
 through resistances (PMOS, NMOS, wires)
 - Capacitors draw CV² joules from supply over 1 charge/discharge cycle
 - $\frac{1}{2}CV^2$ dissipated in PMOS as heat when charging
 - = $\frac{1}{2}CV^2$ stored on capacitor, then dissipated in NMOS when discharging
- Dynamic power = $P_{switching} = \alpha CV^2 f$
 - How to minimize each term?
 - Minimizing which terms reduces total energy consumed?
- Static power = leakage → wasted energy!

CPU CLK

CPU VDD

O.7V

Idle

Digital Power=F*CV2

Task

Topic CPU CLK

CPU CLK

CPU CLK

CPU CLK

Energy Example

- Initially: A = 1, C = 1, Out = 0
- Energy pulled from supply when $B = 1 \rightarrow 0$?

• Then, how much energy dissipated when $C = 1 \rightarrow 0$?

Energy Example

- Initially: A = 1, C = 1, Out = 0
- Energy pulled from supply when $B = 1 \rightarrow 0$?

Out can only be charged to V_{DD} - $V_{th,n}$ because NMOS passes "bad 1"

$$E = C_L V_{DD} \left(V_{DD} - V_{th,n} \right)$$

Then, how much energy dissipated when $C = 1 \rightarrow 0$?

Out is discharged to |V_{th,p}| because PMOS passes "bad 0"

$$E = \frac{1}{2} * C_L * [(V_{DD} - V_{th,n})^2 - V_{th,p}^2]$$

