

- Natural Language Processing (NLP) is an active and attractive field
- · Most of our activities online are text-based
- Most of the data available today is text: e-mails, blogs, news, search results, reviews, social media, medical reports, course content, etc.
- Leverage the large and valuable amounts of text available (estimated in hundreds of thousands of perabytes)
- Why NLP? Communicating with computers using natural language has always been a dream...
- 1. Ambiguity:

"At last, a computer that understands you like your mother."

1985 McDonnell-Douglas ad.

- 2. Anaphora: He bought a brand new car and drove it home.
- 3. Metonymy: She learned how to play Mozart at a very young age.
- 4. Metaphor: He is a walking dictionary! His room is a zoo.
- 5. Vagueness, discourse structure, auto correction, etc.

## Text Classification

Learning to classify text. Why?

- · Learn which news articles are of interest
- Learn to classify web pages by topic
- Classify Spam from non Spam emails
- Naive Bayes is among most effective algorithms
- What attributes shall we use to represent text documents?



- A training data (x<sub>i</sub>, y<sub>i</sub>), x<sub>i</sub> is a feature vector and y<sub>i</sub> is a discrete label. d features, and n examples.
- Example: consider document classification.
- A new example with feature values  $x_{new} = (a_1, a_2, ..., a_d)$ .
- We want to predict the label  $y_{new}$  of the new example.

$$y_{new} = \underset{y \in \mathbb{Y}}{\arg\max} \ p(y|a_1, a_2, \cdots, a_d)$$

Use simplifying assumption:

$$p(a_1, a_2, \cdots, a_d|y) = \prod_j p(a_j|y)$$

Naive Bayes Classifier:

$$y_{new} = \underset{y \in \mathbb{Y}}{\arg\max} \ p(y) \prod_{i} p(a_{j}|y)$$



Learning: Based on the frequency counts in the dataset:

- 1. Estimate all p(y),  $\forall y \in Y$ .
- 2. Estimate all  $p(a_i|y)$ ,  $\forall y \in Y$ ,  $\forall a_i$

Classification: For a new example, use:

$$y_{new} = \operatorname{argmax}_{y \in \mathbb{Y}} p(y) \prod_{i} p(a_i|y)$$

Note: No model per se or hyperplane, just count the frequencies of various data combinations within the training examples.



| Example                                                                                                                                                 |            |                    |                   |                        |              |                         |            |              |                          |                                  |   |
|---------------------------------------------------------------------------------------------------------------------------------------------------------|------------|--------------------|-------------------|------------------------|--------------|-------------------------|------------|--------------|--------------------------|----------------------------------|---|
| Classification of Radio and TV sentences.                                                                                                               | $p(C_{7})$ | r <sub>u</sub> ) = | 3/6               | = 0.5                  | p(           | $C_{Radio}$ )           | = 3/6      | 5 = 0.5      | 5                        |                                  |   |
| TV:                                                                                                                                                     |            |                    | $n_R$             |                        |              | <sup>©</sup> Кааго)     | _ 5, 0     | <i>—</i> 0.0 |                          |                                  |   |
| 1. TV programs are not interesting – TV is annoying.                                                                                                    |            |                    | $\in \mathcal{V}$ |                        | CI           | ass "TV"                | ,          |              | Class "R                 | odio"                            |   |
| 2. Kids like TV.                                                                                                                                        |            | T                  |                   | $n_T$                  | $V \mid n_w$ | p(w                     | $C_{TV}$ ) | $n_{Radi}$   | $n_{io} \mid n_w \mid p$ | $o(w C_{radio})$                 |   |
| 3. We receive TV by radio waves.  Radio:                                                                                                                |            | pro                | ogram             | 9<br>9<br>1 <b>q</b> 9 | 1            | (1+1)                   |            | 11           | 1 2                      | 1/(11+8)<br>2/(11+8)             |   |
| 1. It is interesting to listen to the radio.                                                                                                            |            | kid                |                   | 9 9                    | 1            | (1+1)                   | /(9+8      | 11           | 2 3                      | 2/(11+8)<br>3/(11+8)<br>3/(11+8) |   |
| 2. On the waves, kids programs are rare.                                                                                                                |            | wa                 | ive               | 9                      | 1            | (1+1)<br>(1+1)<br>(0+1) | /(9+8      | 11           | 1 2                      | 2/(11+8)                         |   |
| 3. The kids listen to the radio; it is rare!                                                                                                            |            | list               |                   | 9                      |              | (0+1)                   |            |              |                          | 3/(11+8)<br>3/(11+8)             |   |
| Vocabulary: V = {TV, program, interesting, kids, radio, wave, listen, rare}                                                                             |            |                    |                   |                        |              |                         |            |              |                          |                                  |   |
| v = {i v, program, interesting, kids, radio, wave, listeri, rate/                                                                                       |            |                    |                   |                        |              |                         |            |              |                          |                                  |   |
| Language Models                                                                                                                                         |            |                    |                   |                        |              |                         |            |              |                          |                                  |   |
|                                                                                                                                                         |            |                    |                   |                        |              |                         |            |              |                          |                                  |   |
| <ul> <li>We just saw that language is complex, there is no single meaning,<br/>we disagree on the grammar and there is not set of definitive</li> </ul> |            |                    |                   |                        |              |                         |            |              |                          |                                  |   |
| sentences                                                                                                                                               |            |                    |                   |                        |              |                         |            |              |                          |                                  |   |
| <ul> <li>Instead of talking of one single meaning of a sentence, we talk of<br/>probability distribution over meaning</li> </ul>                        |            |                    |                   |                        |              |                         |            |              |                          |                                  |   |
| A language model is an approximation of language                                                                                                        |            |                    |                   |                        |              |                         |            |              |                          |                                  |   |
| Aim: Model natural language                                                                                                                             |            |                    |                   |                        |              |                         |            |              |                          |                                  |   |
| Build a probabilistic language model that assigns a:                                                                                                    |            |                    |                   |                        |              |                         |            |              |                          |                                  |   |
| <ul> <li>probability to each next possible word: predict the next word</li> <li>P(mother Did you call your)</li> </ul>                                  |            |                    |                   |                        |              |                         |            |              |                          |                                  |   |
| P(dinosaut\Did you call your)                                                                                                                           |            |                    |                   |                        |              |                         |            |              |                          |                                  |   |
| P(doctor Did you call your)                                                                                                                             |            |                    |                   |                        |              |                         |            |              |                          |                                  |   |
| <ul> <li>probability to a complete sentence (sequence of words):</li> <li>predict the probability to see this sentence in a text</li> </ul>             |            |                    |                   |                        |              |                         |            |              |                          |                                  |   |
| P(Open your book on page six)                                                                                                                           |            |                    |                   |                        |              |                         |            |              |                          |                                  |   |
| P(book open ten your on page)                                                                                                                           |            |                    |                   |                        |              |                         |            |              |                          |                                  |   |
| Language models are crucial in many NLP applications:                                                                                                   |            |                    |                   |                        |              |                         |            |              |                          |                                  |   |
| Spell correction                                                                                                                                        |            |                    |                   |                        |              |                         |            |              |                          |                                  |   |
| "Once upon a time" versus "Ounce upon a time" • Statistical machine translation                                                                         |            |                    |                   |                        |              |                         |            |              |                          |                                  |   |
| "Out of sight, out of mind" translation to either (1) "Invisible, imbecile" or (2) "Hors de vue, hors de l' esprit".                                    |            |                    |                   |                        |              |                         |            |              |                          |                                  | 1 |
| Seek information (text classification, information retrieval,                                                                                           |            |                    |                   |                        |              |                         |            |              |                          |                                  |   |
| information extraction).  • Speech recognition                                                                                                          |            |                    |                   |                        |              |                         |            |              |                          |                                  |   |
| Language identification                                                                                                                                 |            |                    |                   |                        |              |                         |            |              |                          |                                  |   |
| N-gram models                                                                                                                                           |            |                    |                   |                        |              |                         |            |              |                          |                                  |   |
| • Estimate <i>P</i> (page open your book on) using frequencies in a large                                                                               |            |                    |                   |                        |              |                         |            |              |                          |                                  |   |
| corpus: $P(\text{page} \text{open your book on}) = \frac{\text{count}(\text{open your book on page})}{P(\text{page} \text{open your book on page})}$    |            |                    |                   |                        |              |                         |            |              |                          |                                  |   |
| • Estimate P(open your book on page) using frequencies in a large                                                                                       |            |                    |                   |                        |              |                         |            |              |                          |                                  |   |
| corpus: $P(\text{open your book on page}) = \frac{\text{count}(\text{open your book on page})}{\text{count}}$                                           |            |                    |                   |                        |              |                         |            |              |                          |                                  |   |
| • The corpus has to be very very large!                                                                                                                 |            |                    |                   |                        |              |                         |            |              |                          |                                  |   |
| Poor model. Will be zero for a sentence that does not appear in                                                                                         |            |                    |                   |                        |              |                         |            |              |                          |                                  |   |
| the corpus.  N-gram models                                                                                                                              |            |                    |                   |                        |              |                         |            |              |                          |                                  |   |
| Problem: How to estimate the joint probability?                                                                                                         |            |                    |                   |                        |              |                         |            |              |                          |                                  |   |
| $P(w_1, w_2, \dots, w_n)$                                                                                                                               |            |                    |                   |                        |              |                         |            |              |                          |                                  |   |
| <ul> <li>Solution: decompose the joint probability using chain rule of probability</li> </ul>                                                           |            |                    |                   |                        |              |                         |            |              |                          |                                  |   |
| $P(w_1, \dots, w_n) = p(w_1)P(w_2 w_1)P(w_3 w_1, w_2)\cdots P(w_n w_1\cdots w_{n-1})$                                                                   |            |                    |                   |                        |              |                         |            |              |                          |                                  |   |
| $P(w_1, \dots, w_n) = \prod_{k=1}^{n} P(w_k   w_1 \dots w_{k-1})$                                                                                       |            |                    |                   |                        |              |                         |            |              |                          |                                  |   |
| k=1                                                                                                                                                     |            |                    |                   |                        |              |                         |            |              |                          |                                  |   |
|                                                                                                                                                         |            |                    |                   |                        |              |                         |            |              |                          |                                  |   |



