DAFTAR ISI

		Halaman
Halam	an Judul Luar	
Halam	an Judul Dalam	
Halam	an Persetujuan <i>Hardcover</i>	i
Abstra	k	ii
Prakata	a	iii
Daftar	Isi	V
Daftar	Tabel	X
Daftar	Gambar	xiii
Daftar	Lampiran	xvi
BAB 1	PENDAHULUAN	
1.1	Latar Belakang	. 1
1.2	Ruang Lingkup	. 4
1.3	Tujuan dan Manfaat	. 4
1.4	Sumber Literatur	. 5
1.5	Metodologi Perancangan	7
1.6	Sistematika Penulisan	. 9
BAB 2	LANDASAN TEORI	
2.1	Teori-teori Dasar/Umum	. 11
	2.1.1 FPGA (Field-Programmable Gate Array)	. 11

	2.1.2	VHDL (VHSIC (Very High Speed Integrated Circuit) Hardware	
		Decription Language)	16
	2.1.3	ISE (Integrated Design Environment)	18
2.2	Proses	or RISC	. 19
	2.2.1	Elemen Sistem RISC	19
		2.2.1.1 <i>Register</i> dalam Jumlah yang Besar	20
		2.2.1.2 Perancangan <i>Pipeline</i> Instruksi	21
		2.2.1.3 Waktu Eksekusi dalam Satu Siklus dengan Set Instruksi	
		yang Sederhana	23
	2.2.2	Ciri-ciri Sistem RISC	23
2.3	Ranca	ngan Set Instruksi	25
2.4	Forma	t Instruksi dan Mode Pengalamatan	26
2.5	Pipelii	ning Hazard	27
2.6	Little/L	Big-Endian	28
2.7	Stack		29
2.8	Prosec	lur	29
2.9	Interri	ıpt	31
2.10	Perhiti	ungan Speed Up untuk Pipelining	32
2.11	Survei	Arsitektur RISC	33
BAB 3	STRA	TEGI PERANCANGAN	
3.1	Arsite	ektur Prosesor	40
3.2	Ranca	ngan Kumpulan Instruksi	42
	3.2.1	Operation Repertoire	44

	3.2.2	Jenis Data (Data Type)	46
	3.2.3	Format Instruksi (Instruction Format)	46
	3.2.4	Register	48
	3.2.5	Pengalamatan (Addresing)	49
3.3	Detail	Rancangan	51
	3.3.1	Register File	52
	3.3.2	Function Unit	55
		3.3.2.1 <i>Addition</i>	56
		3.3.2.2 Adder and Subtractor	58
		3.3.2.3 Logika	60
		3.3.2.4 Arithmatic Logic Unit (ALU)	61
		3.3.2.5 <i>Shifter</i>	62
		3.3.2.6 Load Upper Immadiate (LUI)	64
	3.3.3	Datapath	66
	3.3.4	Memory Control	70
	3.3.5	Control Unit	73
		3.3.5.1 <i>Jump</i>	74
		3.3.5.2 <i>Branch</i>	76
		3.3.5.3 Branch Control	78
	3.3.6	Instruction Decoder	79
	3.3.7	Pipeline	84
		3.3.7.1 Data Hazard Stall	85
		3.3.7.2 Data Forwarding	87
		3.3.7.3 Branch Prediction	87

	3.3.8	Interrupt	88
BAB 4	IMPL	EMENTASI DAN EVALUASI	
4.1	Peralat	an yang Digunakan	92
	4.1.1	Sistem Perangkat Lunak	92
	4.1.2	Sistem Perangkat Keras	93
4.2	Implen	nentasi	94
	4.2.1	Persiapan Implementasi	94
	4.2.2	Pelaksanaan Implementasi	96
		4.2.2.1 Komponen-komponen Register File	100
		4.2.2.2 Komponen-komponen <i>Function Unit</i>	101
		4.2.2.3 Komponen-komponen <i>Control Unit</i>	105
		4.2.2.4 Komponen-komponen Prosesor RISC	106
	4.2.3	Perolehan Data dari Proses Implementasi	110
4.3	Evalua	si	113
	4.3.1	Persiapan Evaluasi	113
		4.3.1.1 Komponen-komponen Evaluasi	113
		4.3.1.2 Pembuatan Program Pengujian	113
		4.3.1.3 Pembuatan <i>Assembler</i> Sederhana	123
		4.3.1.4 Perancangan Komponen <i>Input/Output</i>	124
	4.3.2	Evaluasi Perangkat Lunak (Simulasi)	132
	4.3.3	Evaluasi Perangkat Keras	133
	4.3.4	Ringkasan Evaluasi	138
4.4	Perhitu	ungan Speed Up untuk Pipelining	140

BAB 5 KESIMPULAN DAN SARAN

5.1	Kesimpulan	143
5.2	Saran	144
DAFT	AR PUSTAKA	145
RIWA	YAT HIDUP	147
LAME	PIRAN-LAMPIRAN	

DAFTAR TABEL

	Н	alaman
Tabel 2.1	Ringkasan dari Lima Prosesor dengan Arsitektur RISC	33
Tabel 2.2	Ringkasan Mode Pengalamatan Data dari Lima Prosesor dengan	
	Arsitektur RISC	35
Tabel 2.3	Ringkasan Ketetapan Eksekusi dari Lima Prosesor dengan	
	Arsitektur RISC	35
Tabel 2.4	Ringkasan Instruksi Perpindahan Data dari Lima Prosesor dengan	
	Arsitektur RISC	36
Tabel 2.5	Ringkasan Instruksi Aritmatika dan Logika dari Lima Prosesor	
	dengan Arsitektur RISC	37
Tabel 2.6	Ringkasan Instruksi Kontrol dari Lima Prosesor dengan	
	Arsitektur RISC	38
Tabel 2.7	Kaidah yang Berlaku dari Lima Prosesor dengan Arsitektur	
	RISC	38
Tabel 3.1	Operation Repertoire	45
Tabel 3.2	Operasi Penambahan, Pengurangan, dan Pelewatan Data	60
Tabel 3.3	Operasi Logika	60
Tabel 3.4	Operasi ALU	62
Tabel 3.5	Operasi Pergeseran	64
Tabel 3.6	Operasi pada Function Unit	66
Tabel 3.7	Constant Unit	69
Tabel 3.8	Sinyal untuk Opersi <i>Load/Store</i>	70
Tabel 3.9	Dekoder untuk <i>Enable</i> pada MCO	71

Tabel 3.10	Posisi Bit pada MCO	71
Tabel 3.11	Dekoder untuk Enable pada MCI	73
Tabel 3.12	Posisi Bit pada MCI	73
Tabel 3.13	Multiplexer C	78
Tabel 3.14	Operasi Percabangan	79
Tabel 3.15	Sinyal-sinyal Kontrol	81
Tabel 3.16	Instruction Decoder	83
Tabel 3.17	Operasi Instruksi Berdasarkan Tahap Pipeline	85
Tabel 4.1	Jumlah Keseluruhan Komponen pada Xilinx Spartan 2 XC2S200-	
	PQ208 untuk Proses Sintesis	98
Tabel 4.2	Perbandingan Register File Flip-flop dengan DPRAM	100
Tabel 4.3	Register File Gabungan	101
Tabel 4.4	Perbandingan Empat Buah Adder	102
Tabel 4.5	Perbandingan Lima Buah Komponen Adder dan Subtractor	103
Tabel 4.6	Penggunaan Slice dan Lamanya TPD untuk Komponen Zero	
	Detector, Logic Unit, ALU, dan LUI	104
Tabel 4.7	Perbandingan Tiga Buah Shifter	104
Tabel 4.8	Laporan Sintesis untuk Function Unit	105
Tabel 4.9	Laporan Sintesis untuk Komponen yang Dirancang di Luar	
	Komponen RISC	106
Tabel 4.10	Laporan Sintesis untuk Komponen Register, Buffer, dan	
	Prosesor RISC	106
Tabel 4.11	Laporan Implementasi untuk Prosesor RISC	108

Tabel 4.12	Jumlah Keseluruhan Komponen pada Xilinx Spartan 2	
	XC2S200-PQ208 untuk Proses Implementasi	108
Tabel 4.13	Penundaan Maksimum dari Masing-masing Tahap Pipeline	111
Tabel 4.14	Perbandingan Solusi untuk Menghindari Data Hazard	112
Tabel 4.15	Program Pengujian Instruksi Dasar, LA, dan LUI	115
Tabel 4.16	Program Pengujian dengan Instruksi dan Register yang Diujinya	122
Tabel 4.17	Pin-pin Penghubung Antara Modul D2 dengan DIO2	126
Tabel 4.18	Pin-pin keluaran CPLD yang terhubung dengan tombol, saklar,	
	dan LED	126
Tabel 4.19	Alamat untuk Melewatkan Data Dari dan Ke Modul DIO2	127
Tabel 4.20	Projenct Device Options untuk CPLD Gambar 4.13 Hubungan	
	PC, Rangkaian Penyangga, dan Modul DIO2	130
Tabel 4.21	Rangkuman Laporan Hasil Implementasi Pengontrol	
	Input/Output	131
Tabel 4.22	Rangkuman Laporan Hasil Implementasi dari Komponen	
	Micro Controler	139
Tabel 4.23	Function Unit dengan Input	140
Tabel 4.24	CPI yang Dihasilkan Tanpa <i>Pipeline</i>	141
Tabel 4.25	CPI yang Dihasilkan Dengan Pipeline	141
Tabel 4.26	Laporan Implementasi untuk Prosesor RISC tanpa Pipeline	142

DAFTAR GAMBAR

	Н	alaman
Gambar 1.1	Garis Silsilah Mikroprosesor dengan Arsitektur RISC	2
Gambar 2.1	Tiga Komponen Utama FPGA	12
Gambar 2.2	Tiga Teknik Implementasi Pengontrolan Logika pada FPGA	13
Gambar 2.3	Skematik Sebuah Slice	14
Gambar 2.4	Skematik IOB	16
Gambar 2.5	Jenis-jenis <i>Pipeline</i>	22
Gambar 2.6	Format Instruksi dari Lima Prosesor dengan Arsitektur RISC	34
Gambar 3.1	Arsitektur Prosesor	41
Gambar 3.2	Diagram Alir Prosesor RISC	42
Gambar 3.3	Format Instruksi	47
Gambar 3.4	Mode Pengalamatan Register	49
Gambar 3.5	Mode Pengalamatan Basis	50
Gambar 3.6	Mode Pengalamatan Immediate	50
Gambar 3.7	Mode Pengalamatan PC-Relative	51
Gambar 3.8	Interaksi antara Datapath dan Control Unit	52
Gambar 3.9	Register File dengan Flip-flop	54
Gambar 3.10	Register File dengan Dual Port RAM	55
Gambar 3.11	Contoh Carry Selector Adder dengan x = 3	58
Gambar 3.12	Skematik Adder dan Subtractor	59
Gambar 3.13	Contoh Barrel Shifter dengan 32 bit input dan 2 bit selector	64
Gambar 3.14	Skematik Function Unit	65
Gambar 3 15	Skematik Constant Unit	68

Gambar 3.16	Skematik Datapath	69
Gambar 3.17	Sekamtik Memory Control Out	72
Gambar 3.18	Skematik Memory Control In	74
Gambar 3.19	Skematik untuk Mengkalkulasi Alamat pada Operasi Branch	
	dan Jump	76
Gambar 3.20	Skematik Control Unit	80
Gambar 3.21	Posisi Bit pada Control Word	82
Gambar 3.22	Skematik Prosesor dengan Pipeline	86
Gambar 3.23	Skematik Interrupt Control	90
Gambar 3.24	Skematik Processor RISC	91
Gambar 4.1	Icon Instalasi Xilinx ISE WebPack seri 5.2i	94
Gambar 4.2	New Project	95
Gambar 4.3	Jendela Editor	97
Gambar 4.4	Penyusunan Komponen pada Function Unit untuk Mendapatkan	
	Delay Path Terkecil	105
Gambar 4.5	Penempatan dan Hubungan Slice yang Digunakan	109
Gambar 4.6	Hubungan PC dengan Modul D2	110
Gambar 4.7	Flowchart Pengujian Instruksi Percabangan dan Set	117
Gambar 4.8	Flowchart Pengujian Data Forwarding dan Branch Prediction	119
Gambar 4.9	Rancangan Evaluasi	125
Gambar 4.10	Skematik Pengontrol <i>Input/Output</i> pada Modul DIO2	128
Gambar 4.11	Skematik LED Control pada Pengontrol Input/Output	128
Gambar 4.12	Skematik Interrupt Control pada Pengontrol Input/Output	129
Gambar 4.13	Hubungan PC, Rangkaian Penyangga, dan Modul DIO2	131

Gambar 4.14	Frekuensi Clock Generator	136
Gambar 4.15	Frekuensi pada Prosesor RISC	136
Gambar 4.16	Waktu untuk 83.886.074 Clock	137
Gambar 4.17	Sinyal Keluaran dari <i>Port</i> Data(0)	137
Gambar 4.18	Time Fall dan Time Rise dari keluaran FPGA	138

DAFTAR LAMPIRAN

•	Deskripsi Jenis-jenis Instruksi Mikro	L-1
•	Program VHDL	
	o Listing Komponen Prosesor RISC	L-12
	o Listing Komponen uC	L-107
	Listing Komponen Pengontrol Input/Output	L-115
•	File constrain	
	o FPGA	L-119
	o CPLD	L-120
•	Source Code Assembler	L-122
•	Rangkuman Laporan Hasil Sintesis	L-131
•	Program Pengujian	L-134