Math 118B HW6

Zih-Yu Hsieh

March 7, 2025

1

Question 1 Rudin Chapter 5 Exercise 22:

Suppose f is a real function on \mathbb{R} . Call x a fixed point of f if f(x) = x.

- (a) If f is differentiable and $f'(t) \neq 1$ for every real t, prove that f has at most one fixed point.
- (b) Show that the function f defined by

$$f(t) = t + (1 + e^t)^{-1}$$

has no fixed point, although 0 < f'(t) < 1 for all real t.

(c) However, if there is a constant A < 1 such that $|f'(t)| \le A$ for all real t, prove that a fixed point x of f exists, and that $x = \lim x_n$, where x_1 is an arbitrary real number and

$$x_{n+1} = f(x_n)$$

for n = 1, 2, 3,

Pf:

(a) Given f is differentiable and $f'(t) \neq 1$ for all real t. Suppose the contrary that f has more than one fixed point, there exists distinct $x,y \in \mathbb{R}$ (and WLOG, assume x < y), with f(x) = x and f(y) = y. However, by Mean Value Theorem, there exists $c \in (x,y)$, such that $f'(c) = \frac{f(y) - f(x)}{y - x} = \frac{y - x}{y - x} = 1$, which contradicts the assumption that all $t \in \mathbb{R}$ satisfies $f'(t) \neq 1$.

Hence, the assumption is wrong, f couldn't have more than one fixed point.

(b) Given $f(t) = t + (1 + e^t)^{-1}$, apply the differentiation rules, we get:

$$f'(t) = 1 - (1 + e^t)^{-1} \cdot e^t = 1 - \frac{e^t}{(1 + e^t)^2}$$

Since for all $t \in \mathbb{R}$, $e^t > 0$, so $(1 + e^t) > 1$ and $(1 + e^t) > e^t$. Hence, $0 < \frac{e^t}{(1 + e^t)^2} < 1$ (since everything is positive, while $e^t < (1 + e^t) < (1 + e^t)^2$).

Yet, there doesn't exists a fixed point: If consider f(t) - t, we get $(1 + e^t)^{-1}$. Since $e^t > 0$ for all $t \in \mathbb{R}$, then $(1+e^t) > 0$, so does $(1+e^t)^{-1}$. Therefore, there doesn't exists $t \in \mathbb{R}$, with $(1+e^t)^{-1} = f(t) - t = 0$, so there doesn't exist any fixed point for this function.

(c) Suppose there exists $0 \le A < 1$ such that $|f'(t)| \le A$ for all real t. Then, for all distinct $x, y \in \mathbb{R}$ (WLOG, assume x < y), by Mean Value Theorem, there exists $c \in (x, y)$, with f'(c)(x - y) = (f(x) - f(y)). So, the following is true:

$$|f(x) - f(y)| = |f'(c)| \cdot |x - y| < A|x - y|$$

Now, for any $x_1 \in \mathbb{R}$, we'll prove by induction that all $n \in \mathbb{N}$, $|x_{n+1} - x_n| \le A^{n-1}|x_2 - x_1|$.

For base case n = 1, it's clear that $|x_{1+1} - x_1| = |x_2 - x_1| \le A^{1-1}|x_2 - x_1|$.

Now, suppose for given $n \in \mathbb{N}$, $|x_{n+1} - x_n| \leq A^{n-1}|x_2 - x_1|$, then for case (n+1):

$$|x_{(n+1)+1} - x_{n+1}| = |f(x_{n+1}) - f(x_n)| \le A|x_{n+1} - x_n| \le A \cdot A^{n-1}|x_2 - x_1| = A^{(n+1)-1}|x_2 - x_1|$$

Which, this completes the induction, showing that all $n \in \mathbb{N}$ satisfies $|x_{n+1} - x_n| \leq A^{n-1}|x_2 - x_1|$.

Now, we can prove that the sequence $(x_n)_{n\in\mathbb{N}}$ is a Cauchy sequence in \mathbb{R} , therefore converges:

Given that $0 \le A < 1$, then $\frac{1}{1-A} > 0$. Now, since $A^{n-1}|x_2 - x_1|$ defines a geometric sequence with ratio $0 \le A < 1$, then $\lim_{n \to \infty} A^{n-1}|x_2 - x_1| = 0$. So, for all $\epsilon > 0$, since $\frac{1-A}{|x_2 - x_1|} \epsilon > 0$, there exists N, with $n \ge N$ implies $A^{n-1}|x_2 - x_1| < (1-A)\epsilon$.

Now, for all $m > n \ge N$, the following is true:

$$|x_m - x_n| = \left| \sum_{k=0}^{m-n-1} (x_{n+(k+1)} - x_{n+k}) \right| \le \sum_{k=0}^{m-n-1} |x_{n+(i+1)} - x_{n+i}|$$

$$|x_m - x_n| \le \sum_{k=0}^{m-n-1} |x_{n+(i+1)} - x_{n+i}| \le \sum_{k=0}^{m-n-1} A^{n+k-1} |x_2 - x_1|$$

$$|x_m - x_n| \le A^{n-1} |x_2 - x_1| \sum_{k=0}^{m-n-1} A^k \le A^{n-1} |x_2 - x_1| \sum_{k=0}^{\infty} A^k$$

$$|x_m - x_n| \le A^{n-1} |x_2 - x_1| \cdot \frac{1}{1 - A} < (1 - A)\epsilon \cdot \frac{1}{1 - A} = \epsilon$$

Since for all $\epsilon > 0$, there exists N, with $m > n \ge N$ implies $|x_m - x_n| < \epsilon$, hence $(x_n)_{n \in \mathbb{N}}$ is a cauchy sequence, which converges to some $x \in \mathbb{R}$.

Then, since f is differentiable, then f is continuous; hence, the following is true:

$$\lim_{n \to \infty} f(x_n) = f\left(\lim_{n \to \infty} x_n\right) = f(x), \quad \lim_{n \to \infty} f(x_n) = \lim_{n \to \infty} x_{n+1} = x$$

Hence, f(x) = x, which any $x_1 \in \mathbb{R}$ with $x_{n+1} = f(x_n)$, has the sequential limit being a fixed point $x \in \mathbb{R}$.

Also, based on the previous part, since all $t \in \mathbb{R}$ has $|f'(t)| \le A < 1$, then by part (a), since $f'(t) \ne 1$ for all t, f has at most one fixed point. Hence, this fixed point is unique, all such sequence $(x_n)_{n \in \mathbb{N}}$ converges to a unique fixed point $x \in \mathbb{R}$.

Question 2 For $f(x) = \cos(x)$, show that $x_{n+1} = f(x_n)$ defines a convergent sequence for arbitrary $x_0 \in \mathbb{R}$. Calculate the root $\alpha = \cos(\alpha)$, with an error less than 10^{-2} .

Pf:

For all $x_0 \in \mathbb{R}$, since $|x_1| = |\cos(x_0)| \le 1$, then WLOG, we just need to consider the properties of $\cos(x)$ on the domain [-1, 1].

For all distinct $x, y \in [-1, 1]$ (WLOG, assume x < y), since $\cos(x)$ is differentiable on \mathbb{R} (with derivative $-\sin(x)$), by Mean Value Theorem, there exists $c \in (x, y)$, such that $(\cos(x) - \cos(y)) = -\sin(c)(x - y)$. Also, notice on [-1, 1], $|\sin(x)|$ has a maximum at 1 (since $\sin(x)$ is strictly increasing on this domain, hence $-\sin(1) = \sin(-1) \le \sin(x) \le \sin(1) < 1$; so $|\sin(x)| \le \sin(1)$ on [-1, 1]). Hence:

$$|\cos(x) - \cos(y)| = |-\sin(c)| \cdot |x - y| \le \sin(1) \cdot |x - y|$$

Using similar from **Question 1**, with the above inequality, since $x_1 = \cos(x_0) \in [-1, 1]$ and $\sin(1) < 1$, then all $n \in \mathbb{N}$ satisfies $|x_{n+1} - x_n| \le \sin(1)^{n-1} \cdot |x_2 - x_1|$.

Approximation:

3

Question 3

Pf:

4

Question 4

Pf:

5

Question 5 Let $K \subset \mathbb{R}^n$ be a compact set. Suppose that $T: K \to K$ satisfies

$$\forall x, y \in K, \quad ||T(x) - T(y)|| < ||x - y||$$

Show that there exists a unique $x_0 \in K$ such that $T(x_0) = x_0$.

Pf:

Question 6 Let $K \subset \mathbb{R}^n$ be a compact set and $f: K \to K$ be a function such that

$$||f(x) - f(y)|| = ||x - y||, \quad \forall x, y \in K$$

Show that f is a bijection.

Pf:

f is Injective:

For all $x, y \in K$, suppose f(x) = f(y), then since 0 = ||f(x) - f(y)|| = ||x - y||, then x = y is enforced. Hence, this proves injectivity.

f is Surjective:

Suppose the contrary, that f is not surjective (so, $f(K) \subseteq K$).

First, since for all $\epsilon > 0$, choose $\delta = \epsilon$, all $x, y \in K$ with $||x - y|| < \delta = \epsilon$ satisfies $||f(x) - f(y)|| = ||x - y|| < \epsilon$, hence f is uniformly continuous on K. Then, because K is compact, then f(K) is also compact, which is closed and bounded.

Now, since $K \setminus f(K) \neq \emptyset$ based on assumption, there exists $x_0 \in K \setminus f(K)$. Which, because the sets $\{x_0\}$ and f(K) are both compact (which are both closed), while the two sets are disjoint, then by **HW 1** Question 3 (part from Rudin Chapter 4 Question 21), in any metric space, disjoint closed set C and compact set K always have $\inf\{d(x,y) \mid x \in C, y \in K\} > 0$ (a positive distance between sets C and K). So, apply this to the two sets, there exists $\lambda > 0$, such that all $y \in f(K)$ satisfies $||x_0 - y|| = d(x_0, y) \ge \lambda$.

Then, define $f_0(x) = x$, $f_1(x) = f(x)$, and for all integer $n \ge 1$, $f_{n+1}(x) = f(f_n(x))$. (Note: inductively, we can also prove that all $m, n \in \mathbb{N}$ satisfies $f_m(f_n(x)) = f_{m+n}(x) = f_n(f_m(x))$).

With this definition, we can prove by induction that for all $n \in \mathbb{N}$, all $y \in f_n(K)$ satisfies $||f_n(x_0) - f(y)|| \ge \lambda$.

For base case n = 1, recall that for all $y \in f_1(K) = f(K)$, because all $y \in f(K)$ satisfies $||x_0 - y|| \ge \lambda$, since f preserves distance, we have:

$$||f_1(x_0) - f(y)|| = ||f(x_0) - f(y)|| = ||x_0 - y|| > \lambda$$

Hence, all $y \in f_1(K)$ satisfies $||f_1(x_0) - f(y)|| \ge \lambda$, the claim is true for n = 1.

Now, suppose for given $n \in \mathbb{N}$, all $y \in f_n(K)$ satisfies $||f_n(x_0) - f(y)|| \ge \lambda$. Then, for all $y \in f_{n+1}(K) = f(f_n(K))$, there exists $x \in f_n(K)$, with f(x) = y. Which, by induction hypothesis, $||f_n(x_0) - y|| = ||f_n(x_0) - f(x)|| \ge \lambda$. Hence, the following inequality is true:

$$||f_{n+1}(x_0) - f(y)|| = ||f(f_n(x_0)) - f(y)|| = ||f_n(x_0) - y|| \ge \lambda$$

Which, all $y \in f_{n+1}(K)$ satisfies $||f_{n+1}(x_0) - f(y)|| \ge \lambda$, completing the induction.

Lastly, consider the sequence defined recursively as $x_n = f_n(x_0)$ for all $n \in \mathbb{N}$. Then, since f restrict the element to still be in K, then $(x_n)_{n \in \mathbb{N}} \subset K$, a compact set (which is closed and bounded). Hence, by Bolzano Weierstrass Theorem, since $(x_n)_{n \in \mathbb{N}}$ is bounded, there exists a convergent subsequence $(x_{n_k})_{k \in \mathbb{N}}$, which this subsequence is Cauchy.

Then, given $\lambda > 0$, there exists $N \in \mathbb{N}$, such that all $p \geq N$ implies $||x_{n_p} - x_{n_{p+1}}|| < \lambda$, by the definition of Cauchy Sequence.

However, since $n_{p+1} = n_p + k$ for some $k \in \mathbb{N}$, looking back at the definition, $x_{n_p} = f_{n_p}(x_0)$, while $x_{n_{p+1}} = x_{n_p+k} = f_{n_p+k}(x_0) = f_k(f_{n_p}(x_0))$.

Because $k \ge 1$, then $f_k(x) = f(f_{k-1}(x))$, so $x_{n_{p+1}} = f_k(f_{n_p}(x_0)) = f(f_{k-1}(f_{n_p}(x_0))) = f(f_{n_p}(f_{k-1}(x_0)))$. So, let $y = f_{n_p}(f_{k-1}(x_0)) \in f_{n_p}(K)$, by the previous claim, the following inequality is true:

$$||x_{n_p} - x_{n_{p+1}}|| = ||f_{n_p}(x_0) - f(f_{n_p}(f_{k-1}(x_0)))|| = ||f_{n_p}(x_0) - f(y)|| \ge \lambda$$

Yet, this contradicts the statement that $||x_{n_p} - x_{n_{p+1}}|| < \lambda$.

Since we eventually reach a contradiction, then the assumption must be false, so f needs to be surjective.

The above two sections proved that f is in fact a bijection.