Problem Set #3

MACS 40000, Dr. Evans

Due Tuesday, Oct. 18 at 10:30am

1. Checking feasibility in the steady-state (2 points). Using the calibration of the S-period-lived agent model described in Section 6.6 of Chapter 6, write a Python function named feasible() that has the following form,

```
b_cnstr, c_cnstr, K_cnstr = feasible(f_params, bvec_guess)
```

where the inputs are a tuple f_params = (nvec, A, alpha, delta), and a guess for the steady-state savings vector bvec_guess = np.array([scalar₂, scalar₃,...scalar_S]). The outputs should be Boolean (True or False, 1 or 0) vectors of lengths S-1, S, and 1, respectively. K_cnstr should be a singleton Boolean that equals True if $K \leq 0$ for the given f_params and bvec_guess. The object c_cnstr should be a length-S Boolean vector in which the sth element equals True if $c_s \leq 0$ given f_params and bvec_guess. And b_cnstr is a length-(S-1) Boolean vector that denotes which element of bvec_guess is likely responsible for any of the consumption nonnegativity constraint violations identified in c_cnstr. If the first element of c_cnstr is True, then the first element of b_cnstr is True. And if the last element of c_cnstr is True, then the last element of b_cnstr is True.

- (a) Which, if any, of the constraints is violated if you choose an initial guess for steady-state savings of bvec_guess = np.ones(S-1)?
- (b) Which, if any, of the constraints is violated if you choose the following initial guess for steady-state savings?

(c) Which, if any, of the constraints is violated if you choose the following initial guess for steady-state savings?

- (d) What is a principle or a rule that might help you in this problem to choose a good initial guess? That is, what properties should a feasible initial guess have? [Hint: There are upper bounds and lower bounds on all the savings levels \bar{b}_{s+1} that you cannot calculate ex ante.]
- 2. Solve for the steady-state equilibrium (4 points). Use the calibration from Section 6.6 and the steady-state equilibrium Definition 6.1. Write a function named get_SS() that has the following form,

```
ss_output = get_SS(params, bvec_guess, SS_graphs)
```

where the inputs are a tuple of the parameters for the model params = (beta, sigma, nvec, L, A, alpha, delta, SS_tol), an initial guess of the steady-state savings bvec_guess, and a Boolean SS_graphs that generates a figure of the steady-state distribution of consumption and savings if it is set to True.

The output object ss_output is a Python dictionary with the steady-state solution values for the following endogenous objects.

```
ss_output = {
'b_ss': b_ss, 'c_ss': c_ss, 'w_ss': w_ss, 'r_ss': r_ss,
'K_ss': K_ss, 'Y_ss': Y_ss, 'C_ss': C_ss,
'EulErr_ss': EulErr_ss, 'RCerr_ss': RCerr_ss,
'ss_time': ss_time}
```

Let ss_time be the number of seconds it takes to run your steady-state program. You can time your program by importing the time library. And let the object EulErr_ss be a length-(S-1) vector of the Euler errors from the resulting steady-state solution given in ratio form $\frac{\beta(1+\bar{r})u'(\bar{c}_{s+1})}{u'(\bar{c}_s)}-1$ or difference form $\beta(1+\bar{r})u'(\bar{c}_{s+1})-u'(\bar{c}_s)$. The object RCerr_ss is a resource constraint error which should be close to zero. It is given by $\bar{Y}-\bar{C}-\delta\bar{K}$.

(a) Solve numerically for the steady-state equilibrium values of $\{\bar{c}_s\}_{s=1}^S$, $\{\bar{b}_s\}_{s=2}^S$, \bar{w} , \bar{r} , \bar{K} , \bar{Y} , \bar{C} , the S-1 Euler errors and the resource constraint error. List those values. Time your function. How long did it take to compute the steady-state?

- (b) Generate a figure that shows the steady-state distribution of consumption and savings by age $\{\bar{c}_s\}_{s=1}^S$ and $\{\bar{b}_s\}_{s=2}^S$.
- (c) What happens to each of these steady-state values if all households retire sooner? That is, what happens if exogenous labor supply becomes the following?

$$n_s = \begin{cases} 1.0 & \text{if} \quad s \le \text{round}\left(\frac{S}{2}\right) \\ 0.2 & \text{if} \quad s > \text{round}\left(\frac{S}{2}\right) \end{cases}$$

Specifically, how does this change affect each steady-state value $\{\bar{c}_s\}_{s=1}^S$, $\{\bar{b}_s\}_{s=2}^S$, \bar{w} , and \bar{r} ? What is the intuition?

3. Solve for the non-steady-state equilibrium time path (4 points). Use time path iteration (TPI) to solve for the non-steady state equilibrium transition path of the economy. Let the initial state of the economy be given by the following distribution of savings,

$$\{b_{s,1}\}_{s=2}^{S} = \{x(s)\bar{b}_s\}_{s=2}^{S} \text{ where } x(s) = \frac{(1.5 - 0.87)}{78}(s - 2) + 0.87$$

where the function of age x(s) is simply a linear function of age s that equals 0.87 for s=2 and equals 1.5 for s=S=80. This gives an initial distribution where there is more inequality than in the steady state. The young have less than their steady-state values and the old have more than their steady-state values. You'll have to choose a guess for T and a time path updating parameter $\xi \in (0,1)$, but I can assure you that T<320. Use an L^2 norm for your distance measure (sum of squared percent deviations), and use a convergence parameter of $\varepsilon=10^{-9}$. Use a linear initial guess for the time path of the aggregate capital stock from the initial state K_1^1 to the steady state K_T^1 at time T.

- (a) Plot the equilibrium time paths of the aggregate capital stock $\{K_t\}_{t=1}^{T+5}$, wage $\{w_t\}_{t=1}^{T+5}$, and interest rate $\{r_t\}_{t=1}^{T+5}$.
- (b) Also plot the equilibrium time path for savings of every person age s=15 in every period $\{b_{15,t}\}$. Are there any periods t in which $b_{15,t}$ rises above its steady-state value \bar{b}_{15} ?
- (c) How many periods did it take for the economy to get within 0.0001 of the steady-state aggregate capital stock \bar{K} ? What is the period after which the aggregate capital stock never is again farther than 0.0001 away from the steady-state?