Chap IV: VECTOR SPACES

1 Vector Spaces and Subspaces

Definition 1.1. A vector space is a nonempty set V of objects, called vectors, with two operations: addition and scalar multiplication, such that for every \vec{u}, \vec{v} , and \vec{w} in V and for all scalars c and d:

- (1) $\vec{u} + \vec{v}$ is in V (closure under addition).
- (2) $\vec{u} + \vec{v} = \vec{v} + \vec{u}$ (commutative).
- (3) $(\vec{u} + \vec{v}) + \vec{w} = \vec{u} + (\vec{v} + \vec{w})$ (associative).
- (4) There is a zero vector $\vec{0}$ in V such that $\vec{0} + \vec{u} = \vec{u}$.
- (5) For each \vec{u} in V, there is vector $-\vec{u}$ in V such that $\vec{u} + (-\vec{u}) = \vec{0}$ (negatives).
- (6) The scalar multiple $c\vec{u}$ of \vec{u} by c is in V (closure under scalar multiplication).
- (7) $c(\vec{u} + \vec{v}) = c\vec{u} + c\vec{v}$ (distributive).
- (8) $(c+d)\vec{u} = c\vec{u} + d\vec{u}$ (distributive).
- (9) $c(d\vec{u}) = (cd)\vec{u}$ (associative).
- (10) $1\vec{u} = \vec{u}$ (identity).

Fact 1.2. For each vector \vec{u} in a vector space V and for each scalar c:

- (a) $0\vec{u} = \vec{0}$.
- (b) $c\vec{0} = \vec{0}$.
- (c) $-\vec{u} = (-1)\vec{u}$ (negative \vec{u} or the additive inverse of \vec{u}).

Example 1.3. The set \mathbb{R}^n , where the addition and scalar multiplication are component-wise, is a vector space.

Example 1.4. For a positive integer n, let \mathbb{P}_n denote the set of polynomials of degree at most n. Let p(t) be a polynomial

$$p(t) = a_0 + a_1 t + a_2 t^2 + \dots + a_n t^n, \ a_i \in \mathbb{R}.$$

The degree of p(t) is the highest power of t whose coefficient is not zero. If $p(t) = a_0$, where $a_0 \neq 0$ in \mathbb{R} , then the degree of p(t) is zero. We call p(t) = 0 the zero polynomial and we include it in \mathbb{P}_n even if its degree is not defined. If $p(t) = a_0 + a_1t + a_2t^2 + \cdots + a_nt^n$, $q(t) = b_0 + b_1t + b_2t^2 + \cdots + b_nt^n$ be polynomials in \mathbb{P}_n and if c is a scalar then

$$p(t) + q(t) = (a_0 + b_0) + (a_1 + b_1)t + (a_2 + b_2)t^2 + \dots + (a_n + b_n)t^n$$

and

$$cp(t) = ca_0 + ca_1t + ca_2t^2 + \dots + ca_nt^n$$

1

With these two operations, the set \mathbb{P}_n is a vector space. The zero polynomial is the zero vector.

Example 1.5. Let $\mathcal{C}((0,1))$ be the set of all continuous real-valued functions.

$$\mathcal{C}((o,1)) = \{ f : (0,1) \to \mathbb{R} \mid f \text{ is continuous} \}.$$

If f and g are in $\mathcal{C}((0,1))$ and if c is a scalar, we define

$$(f+g)(x) = f(x) + g(x)$$
 and $(cf)(x) = cf(x)$ for each $x \in (0,1)$.

Then $\mathcal{C}((o,1))$ is a vector space. The zero function defined by f(x)=0, for each x in \mathbb{R} , is the zero vector.

Example 1.6. Let $M_{m \times n}(\mathbb{R})$ denote the collection of $m \times n$ matrices (with real number entries). Together with component-wise addition and component-wise scalar multiplication, $M_{m \times n}(\mathbb{R})$ is vector space.

Example 1.7. The collection of all polynomials (any degree is possible) is a vector space.

Subspaces

Definition 1.8. Let V be a vector space. A subspace of V is a subset H of V (i.e. $H \subseteq V$) that satisfies the following

- (a) The zero vector $\vec{0}$ is in H.
- (b) For every \vec{u} and \vec{v} in H, $\vec{u} + \vec{v}$ is also in H (closure under addition).
- (c) For every \vec{u} in H and for every scalar c, $c\vec{u}$ is in H (closure under scalar multiplication).

Example 1.9. For any vector space V, the subset $\{\vec{0}\}$ is a subspace of V.

Example 1.10. Let m and n be positive integers with $m \leq n$. Then the set \mathbb{P}_m of polynomials of degree at most m is a subspace of the vector space \mathbb{P}_n of polynomials of degree at most n.

Example 1.11. Note that \mathbb{R}^2 is not a subspace of \mathbb{R}^3 as \mathbb{R}^2 is not even a subset of \mathbb{R}^3 . However the collection of vectors in \mathbb{R}^3 of the form $\begin{bmatrix} a \\ b \\ 0 \end{bmatrix}$, where a, b in \mathbb{R} , is subsapce of \mathbb{R}^3 .

A subspace Spanned by a Set

Let V be a vector space and let $\vec{v}_1, \vec{v}_2, \dots, \vec{v}_p$ be vectors in V. Recall that

$$Span(\vec{v}_1, \vec{v}_2, \dots, \vec{v}_p) = \{c_1 \vec{v}_1 + c_2 \vec{v}_2 + \dots + c_p \vec{v}_p \mid c_1, c_2, \dots, c_p \in \mathbb{R}\}\$$

is the collection of all linear combinations of $\vec{v}_1, \vec{v}_2, \dots, \vec{v}_p$. Clearly, $\operatorname{Span}(\vec{v}_1, \vec{v}_2, \dots, \vec{v}_p)$ is a subset of V.

Theorem 1.12. Let V be a vector space and let $\vec{v}_1, \vec{v}_2, \ldots, \vec{v}_p$ be vectors in V. Then $\mathrm{Span}(\vec{v}_1, \vec{v}_2, \ldots, \vec{v}_p)$ is a subspace of V.

We call $H = \text{Span}(\vec{v}_1, \vec{v}_2, \dots, \vec{v}_p)$ the subspace spanned (or generated) by $\{\vec{v}_1, \vec{v}_2, \dots, \vec{v}_p\}$, and the set $\{\vec{v}_1, \vec{v}_2, \dots, \vec{v}_p\}$ is a spanning (or generating) set of H.

Example 1.13. Let H be the set of all vectors in \mathbb{R}^4 of the form $\begin{bmatrix} x_1 - 3x_2 \\ -x_1 + x_2 \\ x_1 \\ x_2 \end{bmatrix}$, where x_1 and x_2 are arbitrary

scalars. Show that H is a subspace of \mathbb{R}^4 .

Solution

For every vector \vec{u} in H, \vec{u} is of the form

$$\vec{u} = \begin{bmatrix} x_1 - 3x_2 \\ -x_1 + x_2 \\ x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} x_1 \\ -x_1 \\ x_1 \\ 0 \end{bmatrix} + \begin{bmatrix} -3x_2 \\ x_2 \\ 0 \\ x_2 \end{bmatrix}$$
$$= x_1 \begin{bmatrix} 1 \\ -1 \\ 1 \\ 0 \end{bmatrix} + x_2 \begin{bmatrix} -3 \\ 1 \\ 0 \\ 1 \end{bmatrix} = x_1 \vec{v}_1 + x_2 \vec{v}_2.$$

It follows that $H = \operatorname{Span}(\vec{v}_1, \vec{v}_2)$. Thus by Theorem 1.12, H is a subspace of \mathbb{R}^4 .