Tema 4. Relación de orden

4.0 Contenido y documentación

- 4.0 Contenido y documentación
- 4.1. Relación binaria sobre un conjunto
- 4.2. Propiedades y relación de orden
- 4.3. Elementos distinguidos en una relación de orden
 - 4.3.1. Cotas, supremo e ínfimo
- 4.4. Axioma de Elección, conjunto inductivo y Lema de Zorn
 - 4.4.1. Axioma de Elección
 - 4.4.2. Principio de Buena Ordenación
 - 4.4.3. Lema de Zorn
 - 4.4.4. Teorema de Equivalencia

H4 RelacionesOrden.pdf

4.1. Relación binaria sobre un conjunto

Definición. Decimos que una **relación binaria** en un conjunto X es un subconjunto $\mathcal R$ del conjunto $X \times X$.

Notación. (X, \mathcal{R}) para definir la relación y $x\mathcal{R}y$ si x está relacionado con y.

Ejemplo 1. $\mathcal R$ es la igualdad en $\mathbb R$: $(\mathbb R,=)$. Es decir, $x\mathcal R y\Leftrightarrow x=y$. Luego, $\mathcal R=\{(x,x):x\in\mathbb R\}$.

Ejemplo 2. \mathcal{R} es la divisibilidad en \mathbb{N} : $(\mathbb{N},|)$. Es decir, $x\mathcal{R}y \Leftrightarrow x|y$. Luego, $\mathcal{R} = \bigcup_{m=1}^\infty \{(m,mn): n \in \mathbb{N}\}$.

Ejemplo 3. \mathcal{R} es la inclusión en $\mathcal{P}(X)$: $(\mathcal{P}(X), \subset)$. Es decir, $\forall A, B \in \mathcal{P}(X), A\mathcal{R}B \Leftrightarrow A \subset B$.

Ejemplo 4. R es el valor absoluto en \mathbb{R} : $(\mathbb{R}, | |)$. Es decir, $x\mathcal{R}y \Leftrightarrow x^2 = y^2 \Leftrightarrow y = \pm x$. Luego, $\mathcal{R} = \{(x, \pm x) : x \in \mathbb{R}\}$.

Ejemplo 5. \mathcal{R} es la relación de inferioridad en \mathbb{R} : (\mathbb{R}, \leq) . Es decir, $x\mathcal{R}y \Leftrightarrow x \leq y$. Luego $\mathcal{R} = \{(x,y) \in \mathbb{R}^2 : x \leq y\}$.

4.2. Propiedades y relación de orden

Definición. Dada una relación \mathcal{R} en un conjunto X. Decimos que la relación es **reflexiva** si todo elemento está relacionado consigo mismo, es decir, $x\mathcal{R}x, \forall x \in X$.

Definición. Dada una relación $\mathcal R$ en un conjunto X. Decimos que la relación es **antisimétrica** si la relación entre dos elementos cualesquiera es conmutativa implica la igualdad de estos, es decir, $\forall x,y \in X$, si $x\mathcal Ry \wedge y\mathcal Rx$, entonces x=y.

Definición. Dada una relación $\mathcal R$ en un conjunto X. Decimos que la relación es **simétrica** si la relación entre dos elementos cualesquiera es conmutativa, es decir, $\forall x,y \in X$, si $x\mathcal R y$, entonces $y\mathcal R x$.

Definición. Dada una relación \mathcal{R} en un conjunto X. Decimos que la relación es **transitiva** si dados tres elementos de forma que el primero se relaciona con el segundo y el segundo con el tercero, entonces, el

primero también se relaciona con el tercero, es decir, $\forall x,y,z \in X$ si $x\mathcal{R}y \wedge y\mathcal{R}z$, entonces $x\mathcal{R}z$.

Definición. Dada una relación \mathcal{R} en un conjunto X. Decimos que \mathcal{R} es una **relación de orden** si cumple las propiedades reflexiva, antisimétrica y transitiva.

Definición. Dada una relación de orden \mathcal{R} en un conjunto X. Decimos que (X,\mathcal{R}) es un **conjunto ordenado**.

Ejemplo 6. \mathcal{R} es la igualdad en \mathbb{R} : $(\mathbb{R}, =)$.

- $\forall x \in \mathbb{R}$ tenemos que x=x, por lo que $x\mathcal{R}x$. Luego, \mathcal{R} es reflexiva.
- $\forall x,y \in \mathbb{R}$ si $x\mathcal{R}y \wedge y\mathcal{R}x$, entonces x=y. Luego, \mathcal{R} es antisimétrica.
- $\forall x,y \in \mathbb{R}$ si $x\mathcal{R}y$, entonces $x=y \Leftrightarrow y=x$, por lo que $y\mathcal{R}x$. Luego, \mathcal{R} es simétrica.
- $\forall x,y,z\in\mathbb{R}$ si $x\mathcal{R}y\wedge y\mathcal{R}z$, entonces $x=y\wedge y=z\Rightarrow x=z$, por lo que $x\mathcal{R}z$. Luego, \mathcal{R} es transitiva.

Así, $\mathcal R$ es una relación de orden que, además, cumple la propiedad de simetría.

Ejemplo 7. \mathcal{R} es la divisibilidad en \mathbb{N} : $(\mathbb{N}, |)$.

- $\forall x \in \mathbb{R}$ tenemos que x|x, por lo que $x\mathcal{R}x$. Luego, \mathcal{R} es reflexiva.
- $\forall x,y \in \mathbb{R}$ si $x\mathcal{R}y \wedge y\mathcal{R}x$, entonces $x|y \wedge y|x$, por lo que x=y. Luego, \mathcal{R} es antisimétrica.
- $orall x,y\in\mathbb{R}$ si $x\mathcal{R}y$, entonces $x|y\Rightarrow y|x$. Luego, $\mathcal R$ no es simétrica.
- $\forall x,y,z\in\mathbb{R}$ si $x\mathcal{R}y\wedge y\mathcal{R}z$, entonces $x|y\wedge y|z\Rightarrow x|z$, por lo que $x\mathcal{R}z$. Luego, \mathcal{R} es transitiva. Así, \mathcal{R} es una relación de orden.

Ejemplo 8. \mathcal{R} es la divisibilidad en \mathbb{Z} : $(\mathbb{Z}, |)$.

Podemos apreciar que en \mathbb{Z} , 1|-1 y -1|1, pero $1 \neq -1$. Luego, \mathcal{R} no es antisimétrica y, por tanto, \mathcal{R} no es una relación de orden.

Ejemplo 9. \mathcal{R} es la inclusión en $\mathcal{P}(X)$: $(\mathcal{P}(X), \subset)$.

- $\forall A \in \mathcal{P}(X)$ tenemos que $A \subset A$, por lo que $A\mathcal{R}A$. Luego, \mathcal{R} es reflexiva.
- $\forall A, B \in \mathcal{P}(X)$ si $A\mathcal{R}B \wedge B\mathcal{R}A$, entonces $A \subset B \wedge B \subset A$, por lo que A = B. Luego, \mathcal{R} es antisimétrica.
- $\forall A, B \in \mathcal{P}(X)$ si $A\mathcal{R}B$, entonces $A \subset B$, lo que no implica que $B \subset A$. Luego, \mathcal{R} no es simétrica.
- $\forall A, B, C \in \mathcal{P}(X)$ si $A\mathcal{R}B \wedge B\mathcal{R}C$, entonces $A \subset B \wedge B \subset C \Rightarrow A \subset C$, por lo que $A\mathcal{R}C$. Luego, \mathcal{R} es transitiva.

Así, \mathcal{R} es una relación de orden.

Definición. Dada un relación de orden $\mathcal R$ en un conjunto X. Decimos que $\mathcal R$ es de **orden total** si $\forall x,y\in X$ se tiene que $x\mathcal Ry$ o $y\mathcal Rx$, pudiendo darse ambas. De lo contrario, decimos que $\mathcal R$ es de **orden parcial**.

4.3. Elementos distinguidos en una relación de orden

Definición. Sea (X, \mathcal{R}) una relación de orden y $M \in X$. Decimos que M es un **máximo** del conjunto X si $\forall x \in X$ se tiene que $x\mathcal{R}M$.

Definición. Sea (X, \mathcal{R}) una relación de orden y $m \in X$. Decimos que m es un **mínimo** del conjunto X si $\forall x \in X$ se tiene que $m\mathcal{R}x$.

Definición. Sea (X,\mathcal{R}) una relación de orden y $M\in X$. Decimos que M es un **elemento maximal** de X si $\forall x\in X: M\mathcal{R}x$ se tiene que x=M. Es decir, $\not\exists x\in X$ con $x\neq M\wedge M\mathcal{R}x$.

Definición. Sea (X,\mathcal{R}) una relación de orden y $m\in X$. Decimos que m es un **elemento minimal** de X si $\forall x\in X:x\mathcal{R}m$ se tiene que x=m. Es decir, $\not\exists x\in X$ con $x\neq m\wedge x\mathcal{R}m$

Tanto el máximo como el mínimo de un conjunto son elementos únicos, que pueden existir, o no. En cambio, los elementos maximales y mínimales no lo son, pudiendo existir varios.

4.3.1. Cotas, supremo e ínfimo

Definición. Sea (X, \mathcal{R}) un conjunto ordenado, $A \subset X$ y $C \in X$. Decimos que C es una **cota superior** de A si $\forall x \in A$ se tiene que $x\mathcal{R}C$.

Definición. Sea (X, \mathcal{R}) un conjunto ordenado, $A \subset X$ y $c \in X$. Decimos que c es una **cota inferior** de A si $\forall x \in A$ se tiene que $c\mathcal{R}x$.

Definición. Sea (X, \mathcal{R}) un conjunto ordenado, $A \subset X$ y $C \in X$. Decimos que C es el **supremo** de A si es la menor de las cotas superiores.

Notación. $C = \sup A$.

Definición. Sea (X, \mathcal{R}) un conjunto ordenado, $A \subset X$ y $c \in X$. Decimos que c es el **ínfimo** de A si es la mayor de las cotas inferiores.

Notación. $c = \inf A$.

Definición. Sea (X, \mathcal{R}) un conjunto ordenado y $A \subset X$. Decimos que A está **acotado superiormente** si tiene, al menos, una cota superior en X.

Definición. Sea (X, \mathcal{R}) un conjunto ordenado y $A \subset X$. Decimos que A está **acotado inferiormente** si tiene, al menos, una cota inferior en X.

Definición. Sea (X, \mathcal{R}) un conjunto ordenado y $A \subset X$. Decimos que A está **acotado** si lo está superior e inferiormente.

Ejemplo 10. Sea $\mathcal R$ el orden usual en $\mathbb R$: $(\mathbb R,\leq)$ y $A=(-\infty,0)\cup(1,3)$. Vemos que:

- El conjunto de cotas superiores es $[3, \infty)$.
- El conjunto de cotas inferiores no existe.
- El supremo de A es $\sup A = 3$.
- El ínfimo de ${\cal A}$ no existe.
- El máximo de A no existe, ya que $3 \not\in A$.
- El ínfimo de *A* no existe.
- A está acotada superiormente por 3.

4.4. Axioma de Elección, conjunto inductivo y Lema de Zorn

4.4.1. Axioma de Elección

Axioma de Elección. Sea $f:\mathbb{R} o\mathbb{R}$ una función y $a\in\mathbb{R}$. Entonces, la continuidad de f en a implica que $orall \{x_n\}_{n\in\mathbb{N}}$, si $\lim_{n o\infty}x_n=a$, entonces $\lim_{n o\infty}f(x_n)=f(a)$.

Demostración.

 \Leftarrow) Suponemos que f no es continua en a. Es decir, $orall \delta>0$, $\exists \varepsilon>0: |x-a|<\delta\Rightarrow |f(x)-f(a)|\geq \varepsilon$. Si tomamos $\delta_n=rac{1}{n}$ y consideramos el conjunto $A_n=$

$$\left\{x\in\mathbb{R}:|x-a|<\frac{1}{n}\wedge|f(x)-f(a)|\geq\varepsilon\right\}. \text{ Entonces, }\exists\{x_n\}_{n\in\mathbb{N}}\in A_n \text{ tal que}\lim_{n\to\infty}x_n=a,$$
 pero $\lim_{n\to\infty}f(x_n)\neq f(a).$ Llegando a una contradicción. \Rightarrow) Es trivial. \Box

Axioma de elección (versión 1). Para todo conjunto $X \neq \emptyset$, existe una función de elección $\varphi: \mathcal{P}(X) \backslash \emptyset \to X$ tal que $\varphi(A) \in A \subset X$ con $A \neq \emptyset$.

Axioma de elección (versión 2). Dada una familia de conjuntos $\{X_i\}_{i\in I}
eq\emptyset$. Existe una función de elección $\varphi:\{X_i\}_{i\in I}\to\bigcup_{i\in I}X_i$, de tal forma que $\varphi(X_i)\in X_i, \forall i\in I$.

4.4.2. Principio de Buena Ordenación

Definición. Sea (X, \mathcal{R}) un conjunto ordenado. Decimos que \mathcal{R} es un buen orden, es decir, (X, \mathcal{R}) es un **conjunto bien ordenado**, si todo subconjunto, no vacío, de X tiene un mínimo.

Principio de Buena Ordenación. Dado un conjunto $X \neq \emptyset$. Existe una relación de orden \mathcal{R} en X de forma que (X, \mathcal{R}) es un conjunto bien ordenado.

4.4.3. Lema de Zorn

Definición. Sea (X,\mathcal{R}) un conjunto ordenado, $A\subset X$ y \mathcal{R}_A la relación \mathcal{R} inducida en A. Decimos que (A,\mathcal{R}_A) es una **cadena** de (X,\mathcal{R}) si es un subconjunto totalmente ordenador (de orden total).

Definición. Sea (X, \mathcal{R}) un conjunto ordenado. Decimos que (X, \mathcal{R}) es **inductivo** si toda cadena en X tiene una cota superior.

Lema de Zorn. Todo conjunto ordenado (X, \mathcal{R}) inductivo tiene algún elemento maximal.

4.4.4. Teorema de Equivalencia

Teorema de Equivalencia. El Axioma de Elección, el Principio de Buena Ordenación y el Lema de Zorn son equivalentes.