#### UNIVERSIDAD NACIONAL DE SAN AGUSTIN



# IMPLEMENTACION KDTREE Y KNN

ING. JESUS ALPACA RENDON





| KD Tree        | 03 |
|----------------|----|
| KNN            | 04 |
| Dataset        | 05 |
| Implementacion | 06 |
| Resultados     | 08 |
| Conclusiones   | 09 |

## INDICE

## KDTREE

### La estructura KD Tree es una estructura multidimensional

Arbol binario que permite el ordenamiento de los datos segun las dimensiones que contenga de manera que cada nodo divide en secciones y va creando nodos izquierdos y derechos, siendo los de la izquierda menores y derecha mayores, iterando la dimensiones que toque en cada rotacion.

```
function kdtree (list of points pointList, int depth)
{
    // Select axis based on depth so that axis cycles through all valid values
    var int axis := depth mod k;

    // Sort point list and choose median as pivot element
    select median by axis from pointList;

    // Create node and construct subtree
    node.location := median;
    node.leftChild := kdtree(points in pointList before median, depth+1);
    node.rightChild := kdtree(points in pointList after median, depth+1);
    return node;
}
```



# KANN

#### **Algoritmo KNN**

Algoritmo que se encarga de encontrar los N vecinos cercanos de un punto segun su distancia, para aplicar una clasificacion por mayoria. Es decir, de 5 vecinos, 3 tienen clasificacion True y 2 clasificacion False, dando como clasificacion al nodo a evaluar que es de clasificacion True.

$$\hat{f}(x) \leftarrow rg \max_{v \in V} \sum_{i=1}^{k} [v = f(x_i)]$$





# HEART DISEASE CLASSIFICATION DATASET

El presente Dataset contiene registros de enfermedades cardiovasculares las cuales se muestran datos sobre sus diagnósticos, y se comparte con la finalidad de analizar cuales de ellos desembocaron en un ataque cardiovascular

#### Fuente:

<a href="https://www.kaggle.com/datasets/bharath">https://www.kaggle.com/datasets/bharath</a> 011/heart-disease-classification-dataset

#### Python

Se aplico el lenguaje Python para la realización del presente trabajo, esto por la facilidad que ofrecen ciertas librerías en la medición de métricas y creación de mapas y gráficos visuales para entender la implementación

## **Estructura KD Tree y algoritmo KNN**

Se aplico el algoritmo KNN para obtener los vecinos cercanos con la estructura de KD Tree

### Enlace de Github

https://github.com/Alpha004/AyEDJAAR2023/tree/main/Ejercicio\_Final

## RESULTADOS

**Metricas** 

|              | precision    | recall       | f1-score     | support    |
|--------------|--------------|--------------|--------------|------------|
| 0<br>1       | 0.40<br>0.56 | 0.65<br>0.31 | 0.50<br>0.40 | 136<br>194 |
| _            | 0.50         | 0.51         |              |            |
| accuracy     |              |              | 0.45         | 330        |
| macro avg    | 0.48         | 0.48         | 0.45         | 330        |
| weighted avg | 0.50         | 0.45         | 0.44         | 330        |







#### CLASIFICATION DATA:



## CONCLUSIONES

- La implementación de KDTree para la resolución del problema es una investigación que denota interés, ya que es una de las estructuras multidimensionales más completas.
- Se debe considerar que la precisión obtenida no es muy aceptable ya que con mucho esfuerzo logra pasar el 50% de precisión, KNN no seria un algoritmo idóneo para clasificar datos.
- Existen otros algoritmos mas fuertes que pueden aplicar una precisión mejor mas aceptable, lo cual se recomienda realizar un proceso similar con otros algoritmos.

