Apunte Único: Álgebra Lineal Computacional - Práctica $3\,$

Por alumnos de ALC Facultad de Ciencias Exactas y Naturales UBA

última actualización 09/05/25 @ 13:11

Choose your destiny:

(click click 🕈 en el ejercicio para saltar)

- Notas teóricas
- © Ejercicios de la guía:

1.	4.	7.	10 .	13.	16.	19.	22.
2.	5.	8.	11.	14.	17.	20.	23.
3.	6.	9.	12.	15.	18.	21.	24.

Esta Guía 3 que tenés se actualizó por última vez: 09/05/25 @ 13:11

Escaneá el QR para bajarte (quizás) una versión más nueva:

El resto de las guías repo en github para descargar las guías con los últimos updates.

Si querés mandar un ejercicio o avisar de algún error, lo más fácil es por Telegram <a>.

Notas teóricas:

* Matriz definida positiva:

Sea $A \in \mathbb{R}^{n \times n}$ definida positiva:

$$\forall x \neq 0 \quad x^t A x > 0 \text{ con } x \in \mathbb{R}^n$$

Algunas propiedades de las matrices definidas positivas:

- $\bullet \ A \in \mathbb{R}^{n \times n} \implies \exists A^{-1}.$
- Los elementos diagonales son positivos.
- Las submatrices principales también son matrices definidas positivas
- * Descomposición de Cholesky:

La descomposición de Cholesky para una matriz A simétrica y definida positiva:

$$A = LL^t$$

con L triangular inferior. A partir de la descomposición:

la de siempre
$$A = \overbrace{\tilde{L}U} \xrightarrow{\nearrow} A = \widetilde{L} D \widetilde{L}^t.$$
 matriz diagonal con los elementos diagonales de U

 $A = \tilde{L}D\tilde{L}^t$, es definida positiva si y solo si D lo es. Como D es diagonal, solo es cuestión de ver que $[D]_{ii} > 0$.

Finalmente:

$$A = \tilde{L}D\tilde{L} \Leftrightarrow A = \tilde{L}\sqrt{D}\sqrt{D}\tilde{L}^t \Leftrightarrow A = LL^t$$

* Proyectores:

Se llama Proyector a una transformación lineal P que cumple que:

- \bullet P(v) = v
- $P \circ P = P$

Con las propiedades:

$$\triangle$$
 Si $P: V \to V$ es proyector \Longrightarrow Nu $(P) = \{\mathbf{0}_V\}$

$$\triangle$$
 Si $P: V \to V$ es proyector $\implies v - P(v) \in \text{Nu}(P) \ \forall v \in V$

$$\triangle$$
 Si $P: V \to V$ es proyector $\Longrightarrow \operatorname{Nu}(P) \oplus \operatorname{Im}(P) = V$

$$\triangle$$
 P es un proyector ortogonal si $Nu(P) \perp Im(P)$

$$\triangle$$
 P es un proyector ortogonal \Leftrightarrow P = P^t

Ejercicios de la guía:

Ejercicio 1. Sean $A y B \in K^{n \times n}$. Probar que:

- (a) Si A y B son triangulares superiores, AB es triangular superior.
- (b) Si A y B son diagonales, AB es diagonal.
- (c) Si A es estrictamente triangular superior (es decir, $a_{ij} = 0$ si $i \ge j$), $A^n = 0$.
- (a) Una matriz A va a ser triangular superior si todos los número debajo de la diagonal son cero:

$$A_{ij} \stackrel{\blacktriangle}{=} \left\{ \begin{array}{ccc} 0 & \text{si} & i > j \\ a_{ij} & \text{si} & i \leq j \end{array} \right. \left(\begin{array}{c} a_{ij} \\ 0 \end{array} \right)$$

Los a_{ij} no tienen que ser necesariamente distinto a cero. Ahora multiplico dos matrices triangulares superiores:

$$[A \cdot B]_{ij} = \sum_{k=1}^{n} a_{ik} \cdot b_{kj} = a_{i1} \cdot b_{1j} + a_{i2} \cdot b_{2j} + \dots + a_{in} \cdot b_{nj} \stackrel{\bigstar^{1}}{=} \begin{cases} \sum_{i \le k \le j} a_{ik} \cdot b_{kj} & \bigstar^{2} \\ 0 & \text{en otro caso} \end{cases}$$

Se cumple \star^2 son los que tiene las *filas menores o iguales columnas* y *filas menores o iguales columnas*, si no son cero. Básicamente la definición de matriz triangular superior.

(b) Esta es un poco más fácil. Una matriz es diagonal si:

$$A_{ij} \stackrel{\bigstar}{=} \left\{ \begin{array}{ccc} 0 & \text{si} & i \neq j \\ a_{ij} & \text{si} & i = j \end{array} \right. \quad \left(\begin{array}{c} 0 \\ 0 \end{array} \right)$$

Nuevamente, los elementos diagnonales no tienen que ser necesariamente distintos de cero. Ahora multiplico dos matrices diagonales:

$$[A \cdot B]_{ij} = \sum_{k=1}^{n} a_{ik} \cdot b_{kj} = a_{i1} \cdot b_{1j} + a_{i2} \cdot b_{2j} + \dots + a_{in} \cdot b_{nj} \stackrel{\bigstar}{=} \begin{cases} a_{ii} \cdot b_{ii} & \bigstar^2 \\ 0 & \text{en otro caso} \end{cases}$$

En la sumatoria las columnas de los elementos de A coinciden con las filas de los elementos de B, pero solo cuando estemos multiplicando la fila i con la columna i es que ambos elementos podrían ser no nulos.

(c) Una matriz A va a ser triangular superior estricta si todos los número debajo y de la diagonal son cero:

$$A_{ij} \stackrel{\bullet}{=} \left\{ \begin{array}{ccc} 0 & \text{si} & i \ge j \\ a_{ij} & \text{si} & i < j \end{array} \right. \quad \left(\begin{array}{c} 0 & a_{ij} \\ 0 & 0 \end{array} \right)$$

Meto inducción porque es un viaje. Quiero probar que:

$$p(n): A \in K^{n \times n}$$
 estrictamente triangular superior $\implies A^n = 0$.

Caso base:

$$p(2): A \in K^{2 \times 2}$$
 estrictamente triangular superior $\implies A^2 = 0$

Cálculo directo

$$A \cdot A \left(\begin{array}{cc} 0 & a_{12} \\ 0 & 0 \end{array} \right) \cdot \left(\begin{array}{cc} 0 & a_{12} \\ 0 & 0 \end{array} \right) = \left(\begin{array}{cc} 0 & 0 \\ 0 & 0 \end{array} \right)$$

por lo tanto p(2) es verdadera.

Paso inductivo: Voy a asumir que para algún $k \in \mathbb{Z}$

$$p(k): \underbrace{A \in K^{k \times k} \text{ estrictamente triangular superior} \implies A^k = 0}_{\text{hipótesis inductiva}}$$

es verdadera. Por lo tanto ahora quiero probar que:

$$p(k+1): A \in K^{(k+1)\times(k+1)}$$
 estrictamente triangular superior $\implies A^{k+1} = 0$

Para probar esta tremenda garompa, voy a usar el producto en bloques. Tengo una matriz $A \in K^{(k+1)\times(k+1)}$ estrictamente triangular superior y la parto en bloques así:

$$A = \begin{pmatrix} 0 & a_{12} & \cdots & a_{1k+1} \\ \hline 0 & 0 & \ddots & \vdots \\ \vdots & 0 & \ddots & a_{kk+1} \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

$$A^{2} = A \cdot A = \begin{bmatrix} 1 \times 1 & 1 \times k & 1 & 1 \times k \\ k \times 1 & k \times k & k \times 1 & k \times k \end{bmatrix}$$

$$= \begin{bmatrix} 1 \times 1 & 1 \times k & 1 & 1 \times k \\ k \times 1 & k \times k & k \times 1 & k \times k \end{bmatrix}$$

$$= \begin{bmatrix} 1 \times 1 & 1 \times k & 1 & 1 \times k \\ k \times 1 & k \times k & k \times 1 & k \times k \end{bmatrix}$$

$$= \begin{bmatrix} 1 \times 1 & 1 \times k & 1 & 1 \times k \\ k \times 1 & k \times k & k \times 1 & k \times k \end{bmatrix}$$

$$= \begin{bmatrix} 1 \times 1 & 1 \times k & 1 & 1 \times k \\ k \times 1 & k \times k & k \times 1 & k \times k \end{bmatrix}$$

$$= \begin{bmatrix} 1 \times 1 & 1 \times k & 1 & 1 \times k \\ k \times 1 & k \times k & k \times 1 & k \times k \end{bmatrix}$$

$$= \begin{bmatrix} 1 \times 1 & 1 \times k & 1 & 1 \times k \\ k \times 1 & k \times k & k \times 1 & k \times k \end{bmatrix}$$

$$= \begin{bmatrix} 1 \times 1 & 1 \times k & 1 & 1 \times k \\ k \times 1 & k \times k & k \times 1 & k \times k \end{bmatrix}$$

Oka, esto se fue al carajo. Pero está demostrado. La última matriz, es el resultado de A^2 . Tiene todos ceros excepto en el bloque naranja, que está en $K^{k\times k}$ y es el producto de hacer el bloque naranja por el bloque naranja dado que el bloque violeta por el bloque verde dio 0. Por lo tanto el bloque naranja es la hipótesis inductiva!!! Multiplicar k+1 veces A por si misma dará 0, porque el producto, será el (bloque naranja)² con cada vez más ceros.

Dado que p(2), p(k) y p(k+1) resultaron verdaderas, por el principio de inducción en p(n) también será verdadera $\forall n \in \mathbb{N}$

El caso con n=1 es trivial, dejame en paz.

Dale las gracias y un poco de amor ♥ a los que contribuyeron! Gracias por tu aporte: 8 naD GarRaz •

Ejercicio 2. Sea
$$A = \begin{pmatrix} 1 & -1 & 0 & 1 \\ 0 & 1 & 4 & 0 \\ 2 & -1 & 0 & -2 \\ -3 & 3 & 0 & -1 \end{pmatrix} \in \mathbb{R}^{4 \times 4}$$

(a) Escalonar la matriz A multiplicándola a izquierda por matrices elementales $T^{ij}(a), a \in \mathbb{R}, 1 \leq i, j \leq 4$, con $i \neq j$.

Recordar que $T^{ij}(a) \in K^{n \times n}$ se define como:

$$T^{ij}(a) = I_n + aE^{ij}, \quad 1 \le i, j \le n, \quad i \ne j, a \in K,$$

siendo E^{ij} las matrices canónicas de $K^{n\times n}$

- (b) Hallar la descomposición LU de A.
- (c) Usando la descomposición del ítem anterior resolver el sistema Ax = b, para $b = \begin{pmatrix} 1 \\ -7 \\ -5 \\ 1 \end{pmatrix}$.
- (a) Hacer una operación entre filas es multiplicar por esas matrices T^{ij} , pero dado que el me da tremenda pajómetro explota, escribo las T^{ij} para la primera columna de ceros no más.

$$A = \begin{pmatrix} 1 & -1 & 0 & 1 \\ 0 & 1 & 4 & 0 \\ 2 & -1 & 0 & -2 \\ -3 & 3 & 0 & -1 \end{pmatrix} \iff \underbrace{\begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ -2 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}}_{T^{31}(-\frac{2}{1})=I_{4}+(-\frac{2}{1})E^{31}} \cdot \begin{pmatrix} 1 & -1 & 0 & 1 \\ 0 & 1 & 4 & 0 \\ 2 & -1 & 0 & -2 \\ -3 & 3 & 0 & -1 \end{pmatrix} = \begin{pmatrix} 1 & -1 & 0 & 1 \\ 0 & 1 & 4 & 0 \\ 0 & 1 & 0 & -4 \\ -3 & 3 & 0 & -1 \end{pmatrix}$$

$$\iff \underbrace{\begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 3 & 0 & 0 & 1 \end{pmatrix}}_{T^{41}(\frac{3}{1})=I_4+(\frac{3}{1})E^{41}} \cdot \begin{pmatrix} 1 & -1 & 0 & 1 \\ 0 & 1 & 4 & 0 \\ 0 & 1 & 0 & -2 \\ -3 & 3 & 0 & -1 \end{pmatrix} = \begin{pmatrix} 1 & -1 & 0 & 1 \\ 0 & 1 & 4 & 0 \\ 0 & 1 & 0 & -4 \\ 0 & 0 & 0 & 2 \end{pmatrix} \star^{1}$$

Ahí entonces están las T^{ij} para hacer ceros en la primera columna. Y como la matemagia en esta materia parece no tener parangón, cuando multiplicás esas matrices T^{ij} da lo mismo que sumar los elementos fuera de la diagonal componente a componente:

$$T^{31} \cdot T^{41} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 3 & 0 & 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ -2 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ -2 & 0 & 1 & 0 \\ 3 & 0 & 0 & 1 \end{pmatrix}$$

Es gracias a ese resultado que en el próximo paso podría armar solo una matriz con la info para triangular toda la segunda columna. solo un producto matricial. Continúo la triangulación de \star^1 :

$$\begin{pmatrix} 1 & -1 & 0 & 1 \\ 0 & 1 & 4 & 0 \\ 0 & 1 & 0 & -4 \\ 0 & 0 & 0 & 2 \end{pmatrix} \iff \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & -1 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 & -1 & 0 & 1 \\ 0 & 1 & 4 & 0 \\ 0 & 1 & 0 & -2 \\ 0 & 0 & 0 & 2 \end{pmatrix} = \begin{pmatrix} 1 & -1 & 0 & 1 \\ 0 & 1 & 4 & 0 \\ 0 & 0 & -4 & -4 \\ 0 & 0 & 0 & 2 \end{pmatrix}$$

Por lo tanto para que la matriz A quede triangulada superiormente:

$$\underbrace{\begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & -1 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 3 & 0 & 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ -2 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}}_{A} \cdot \underbrace{\begin{pmatrix} 1 & -1 & 0 & 1 \\ 0 & 1 & 4 & 0 \\ 2 & -1 & 0 & -2 \\ -3 & 3 & 0 & -1 \end{pmatrix}}_{A} = \underbrace{\begin{pmatrix} 1 & -1 & 0 & 1 \\ 0 & 1 & 4 & 0 \\ 0 & 0 & -4 & -4 \\ 0 & 0 & 0 & 2 \end{pmatrix}}_{U}$$

$$T^{32} \cdot T^{41} \cdot T^{31} \cdot A = U$$

(b) La U está una vez triangulada la matriz A. Encontrar la L sale con las matrices que multiplicamos para obtener la matriz triangulada:

$$L^{-1} \cdot A = U \xrightarrow{\times \text{izquierda}} L \cdot L^{-1} \cdot A = L \cdot U \Leftrightarrow A = L \cdot U$$

El producto de las matrices elementales me forma la inversa de $L:L^{-1}$. Por suerte encontrar la inversa de $(L^{-1})^{-1}$ es sencillo:

$$L^{-1} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ -2 & -1 & 1 & 0 \\ 3 & 0 & 0 & 1 \end{pmatrix} \implies L = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ +2 & +1 & 1 & 0 \\ -3 & 0 & 0 & 1 \end{pmatrix}$$

Solo hay que cambiarle los signos a los elementos que estás por debajo de la diagonal.

$$A = LU \iff \begin{pmatrix} 1 & -1 & 0 & 1 \\ 0 & 1 & 4 & 0 \\ 2 & -1 & 0 & -2 \\ -3 & 3 & 0 & -1 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 2 & 1 & 1 & 0 \\ -3 & 0 & 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 & -1 & 0 & 1 \\ 0 & 1 & 4 & 0 \\ 0 & 0 & -4 & -4 \\ 0 & 0 & 0 & 2 \end{pmatrix}$$

(c)

$$A \cdot x = b \xleftarrow{A = LU} LU \cdot x = b \Leftrightarrow L\underbrace{(U \cdot x)}_y = b \Leftrightarrow \left\{ \begin{array}{l} L \cdot y = b & \xrightarrow{\bigstar^1} & \text{Arranco por acá.} \\ U \cdot x = y & \xrightarrow{\bigstar^2} & \text{Sigo por acá una vez encontrado } y. \end{array} \right.$$

Entonces resuelvo primero \bigstar^1 :

$$Ly = b \xrightarrow{\text{armo sistema}} \begin{pmatrix} 1 & 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 & -7 \\ 2 & 1 & 1 & 0 & -5 \\ -3 & 0 & 0 & 1 & 1 \end{pmatrix} \implies y \stackrel{\bigstar}{=} \begin{pmatrix} 1 \\ -7 \\ 0 \\ 4 \end{pmatrix}$$

Con la \bigstar^3 resuelvo \bigstar^2 :

$$Ux = y \xrightarrow{\text{armo sistema}} \begin{pmatrix} 1 & -1 & 0 & 1 & 1 \\ 0 & 1 & 4 & 0 & -7 \\ 0 & 0 & -4 & -4 & 0 \\ 0 & 0 & 0 & 2 & 4 \end{pmatrix} \implies x = \begin{pmatrix} 0 \\ 1 \\ -2 \\ 2 \end{pmatrix}$$

Y porque soy un tipazo (y le piñé 1000 veces a las cuentas) acá tenés el código para corroborar:

 Δ Si hacés un copy paste de este código debería funcionar lo más bien Δ

```
import numpy as np
import scipy
# Matriz A
A = \text{np.array}([[1, -1, 0, 1], [0, 1, 4, 0], [2, -1, 0, -2], [-3, 3, 0, -1]])
L = np.array([[1, 0, 0, 0], [0, 1, 0, 0], [2, 1, 1, 0], [-3, 0, 0, 1]])
U = np.array([[1, -1, 0, 1], [0, 1, 4, 0], [0, 0, -4, -4], [0, 0, 0, 2]])
b = np.array([[1], [-7], [-5], [1]])
print (f"A = \n \{A\}")
print(f"L =\n {L}")
print(f"U =\n {U}")
print(f"\nA == LU --> {np.array_equal(A, L @ U)}")
print(f"Ax = b
                     x = \{np.transpose(np.linalg.solve(A,b))\}"\}
                -->
Dale las gracias y un poco de amor 💚 a los que contribuyeron! Gracias por tu aporte:
  👸 naD GarRaz 🞧
                              👸 Ale S. 🔼
```

Ejercicio 3. Escribir funciones de Python 🕏 que calculen la solución de un sistema:

- (a) Ly = b, siendo L triangular inferior.
- (b) Ux = y, siendo U triangular inferior.

Ejercicio 4. Escribir funciones de Python • que realicen las siguientes tareas:

- (a) Calcular la descomposición LU de una matriz dada A, asumiendo que no es necesario realizar pivoteos.
- (b) Resolver un sistema Ax = b, utilizando la función del ítem anterior y las del ejercicio 3. Aplicar esta función para resolver el ítem (c) del ejercicio 2.
- (a) El siguiente snippet es en gran parte código para generar la matriz y después del cálculo de la triangulación formar las matrices L y U.

```
\Delta Si hacés un copy paste de este código debería funcionar lo más bien \Delta
```

```
"""
Eliminacion Gausianna
"""

import numpy as np

def elim_gaussiana(A):
    m = A.shape[0]
    n = A.shape[1]
```

```
Ac = A.copy()
    if m != n:
        print("Matriz no cuadrada")
        return
    for i in range (0, n - 1):
        divisor = Ac[i][i]
        for j in range(i, n - 1):
            coef = Ac[j + 1][i] / divisor
            Ac[j + 1][i:] = np.subtract(Ac[j + 1][i:], coef * Ac[i][i:])
            Ac[j + 1][i] = coef
    L = np.tril(Ac, -1) + np.eye(A.shape[0])
    U = np.triu(Ac)
    return L, U
def main():
    n = 7
    B = np.eye(n) - np.tril(np.ones((n, n)), -1)
    B[:n, n - 1] = 1
   print(f"Matriz B = \n{B}\n")
    L, U = elim_gaussiana(B)
   print(f"Matriz L = \n{L}\n")
   print(f"Matriz U = \n{U}\n")
    print("B = LU? ", "Sí!" if np.allclose(np.linalg.norm(B - L @ U, 1), 0)
   else "No!")
    print("Norma infinito de U: ", np.max(np.sum(np.abs(U), axis=1)))
if __name__ == "__main__":
   main()
```

Ejercicio 5. O... hay que hacerlo!

Si querés mandá la solución \rightarrow al grupo de Telegram \bigcirc , o mejor aún si querés subirlo en \LaTeX una pull request al \bigcirc .

Ejercicio 6. O... hay que hacerlo!

Si querés mandá la solución \rightarrow al grupo de Telegram \bigcirc , o mejor aún si querés subirlo en IATEX \rightarrow una pull request al \bigcirc .

Ejercicio 7. O... hay que hacerlo!

Si querés mandá la solución \rightarrow al grupo de Telegram \bigcirc , o mejor aún si querés subirlo en IAT $_{\rm E}$ X \rightarrow una pull request al \bigcirc

Ejercicio 8. O... hay que hacerlo!

Si querés mandá la solución \rightarrow al grupo de Telegram \bigcirc , o mejor aún si querés subirlo en IAT $_{\rm EX}$ \rightarrow una pull request al \bigcirc

Ejercicio 9. Considerar la matriz

$$\left(\begin{array}{ccc}
4 & 2 & -2 \\
2 & 5 & 5 \\
-2 & 5 & 11
\end{array}\right)$$

Mostrar que es definida positiva y calcular su descomposición de Cholesky.

según la definición de matriz definida positiva:

$$\mathbf{x}^{t} \begin{pmatrix} 4 & 2 & -2 \\ 2 & 5 & 5 \\ -2 & 5 & 11 \end{pmatrix} \mathbf{x} = 4x^{2} - 4xz + 5y^{2} + 10yz + 11z^{2} \stackrel{\text{!!}}{=} (4x^{2} - 4xz + z^{2}) + 5(y^{2} + 2yz + z^{2}) + 5z^{2} \\
= 5z^{2} + 5(y + z)^{2} + (2x - z)^{2} > 0$$

La matriz cumple la defición de *matriz definida positiva* $\forall x \neq 0 \in \mathbb{R}^3$. Sí, oka, hacer eso es una locura, más fácil es hacer lo que sigue y mirar los elementos de la matriz D: Hay un teorema que dice algo así:

Sea $A \in \mathbb{R}^{n \times n}$ una matriz simétrica y definida positiva si y solo sí existe $L \in \mathbb{R}^{n \times n}$ triangular inferior con diagonal positiva tal que $A = LL^t$.

Arranco como buscando la descomposición LU:

$$\begin{pmatrix} 4 & 2 & -2 \\ 2 & 5 & 5 \\ -2 & 5 & 11 \end{pmatrix} \xrightarrow{F_2 - \frac{1}{2}F_1} \begin{pmatrix} 4 & 2 & -2 \\ 0 & 4 & 6 \\ 0 & 6 & 10 \end{pmatrix} \xrightarrow{F_3 - \frac{3}{2}F_2} \begin{pmatrix} 4 & 2 & -2 \\ 0 & 4 & 6 \\ 0 & 0 & 1 \end{pmatrix} = U$$

(2)

 \S í! Ver los valores diagonales de U alcanza para ver que la matriz era efectivamente definida positiva. ¿Pero quién puede quitarnos el placer de haberlo comprobado de ambas formas?

(3)

Y ahora me formo la \tilde{L} a partir de la eliminación gaussiana:

$$\tilde{L} = \begin{pmatrix} 1 & 0 & 0 \\ \frac{1}{2} & 1 & 0 \\ -\frac{1}{2} & \frac{3}{2} & 1 \end{pmatrix}$$

Con esto ya casi estamos:

$$A = \tilde{L}U = \tilde{L}D\tilde{L}^t = \tilde{L}\sqrt{D}\sqrt{D}\tilde{L}^t = \tilde{L}\sqrt{D}(\tilde{L}\sqrt{D})^t = LL^t \text{ con } L = \begin{pmatrix} 2 & 0 & 0 \\ 1 & 2 & 0 \\ -1 & 3 & 1 \end{pmatrix}$$

Pequeña verificación:

Dale las gracias y un poco de amor 💛 a los que contribuyeron! Gracias por tu aporte:

🞖 naD GarRaz 🞧

Ejercicio 10. Sea $A \in \mathbb{R}^{n \times n}$ una matriz simétrica. Probar que A es definida positiva si y solo si existe un conjunto de vectores linealmente indepedientes $\{x_1, \ldots, x_n\} \subseteq \mathbb{R}^n$ tal que $a_{ij} = x_i^t x_j$

(⇒) Si A es una matriz simétrica y definida positiva va a admitir la descomposición de Cholesky (mirá acá).

$$A \xleftarrow{A = A^t}_{A \text{ def. pos.}} A = \tilde{L} \tilde{D} \tilde{L}^t \Leftrightarrow A = \tilde{L} \sqrt{D} \sqrt{D} \tilde{L}^t \Leftrightarrow A = L L^t \underset{\mathbf{z} \neq \mathbf{0}}{\longleftrightarrow} 0 < \mathbf{x}^t A \mathbf{x} = \mathbf{x}^t L L^t \mathbf{x} = (L^t \cdot \mathbf{x})^t (L^t \mathbf{x})$$

$$= \mathbf{y}^t \mathbf{y}$$

Ahora esos y tienen que ser linealmente independientes, más fácil, tengo que encontrar \underline{un} solo conjunto:

$$\mathbf{y} = L^t \mathbf{x} \xrightarrow{\text{elijo}} \{x_1, \dots, x_n\} = \{e_1, \dots, e_n\} \implies \begin{cases} \mathbf{y}_1 = L^t e_1 = \operatorname{Col}(L^t)_1 \\ \vdots \\ \mathbf{y}_n = L^t e_n = \operatorname{Col}(L^t)_n \end{cases}$$

La matriz L es triangular inferior $\begin{pmatrix} a_{ij} \end{pmatrix}$, con unos en la diagonal por lo que sus columnas son mega linealmente independientes. Y dado que

$$\boldsymbol{x}_i^t A \boldsymbol{x}_j = \boldsymbol{e}_i^t A \boldsymbol{e}_j \stackrel{!}{=} a_{ij} = \boldsymbol{y}_i^t \boldsymbol{y}_j$$

tenemos que el conjunto que verifica lo pedido:

$$\left\{\operatorname{Col}(L^T)_1, \dots, \operatorname{Col}(L^T)_n\right\} \subseteq \mathbb{R}^n$$

(\Leftarrow) La hipótesis ahora me dice que tengo vectores linealmente independientes y además que con esos vectores me formo la matriz A. Es decir que $A = X^t X$, con X:

$$X = \left(\boldsymbol{x}_1 \middle| \cdots \middle| \boldsymbol{x}_n \right) \implies A = X^t X \iff \begin{array}{c} \times \\ \boldsymbol{y} \neq \boldsymbol{0} \end{array} \quad \boldsymbol{y}^t A \boldsymbol{y} = \boldsymbol{y}^t X^t X \boldsymbol{y} \\ \Leftrightarrow \qquad \boldsymbol{y}^t A \boldsymbol{y} = (X \boldsymbol{y})^t X \boldsymbol{y} = \|X \boldsymbol{y}\|_2^2 > 0 \end{array}$$

Queda demostrado ya que:

$$A = X^t X \xrightarrow{\text{transpongo}} A^t = (X^t X)^t = X^t X = A$$

$$\mathbf{y}$$

$$\mathbf{y}^t A \mathbf{y} > 0 \ \forall \mathbf{y} \neq \mathbf{0} \in \mathbb{R}^n \overset{\text{def}}{\Longleftrightarrow} A \text{ es definida positiva}$$

Dale las gracias y un poco de amor 💚 a los que contribuyeron! Gracias por tu aporte:

👸 naD GarRaz 😯

Ejercicio 11. S... hay que hacerlo!

Ejercicio 12. Sea $A \in \mathbb{R}^{n \times n}$ tal que $||A||_2 < 1$, siendo $||\cdot||_2$ la norma matricial inducida por la norma 2 vectorial.

- (a) Probar que $I A^t A$ es simétrica definida positiva.
- (b) Probar que la matriz $\begin{pmatrix} I & A \\ A^t & I \end{pmatrix}$ es simétrica definida positiva.

a) Para la simetría:

Transpongo y cruzo los dedos para que quede igual:

$$(I - A^t A)^t = I^t - (A^t A)^t = I - A^t A$$

linealidad en la trasposición

Sobre la linealidad de la transposición:

$$[A+B]_{ij} = a_{ij} + b_{ij} \xrightarrow{\text{transpongo}} [A+B]_{ij}^t = [A+B]_{ji} = a_{ji} + b_{ji}$$

Es simétrica.

Para ver si es definida positiva:

Intentamos con la definición de matriz definida positiva y vemos que sale:

$$I - A^t A \underset{\boldsymbol{x} \neq \boldsymbol{0}}{\longleftrightarrow} \boldsymbol{x}^t (I - A^t A) \boldsymbol{x} = \|\boldsymbol{x}\|_2^2 - \boldsymbol{x}^t A^t A \boldsymbol{x} = \|\boldsymbol{x}\|_2^2 - \boldsymbol{x}^t A^t A \boldsymbol{x} = \|\boldsymbol{x}\|_2^2 - \|\boldsymbol{A}\boldsymbol{x}\|_2^2$$

$$\stackrel{!!}{=} \|\boldsymbol{x}\|_2^2 (1 - \frac{\|\boldsymbol{A}\boldsymbol{x}\|_2^2}{\|\boldsymbol{x}\|_2^2}) \quad \bigstar^1$$

Y por la definición de la norma inducida:

$$||A||_2 = \max_{\boldsymbol{x} \neq \boldsymbol{0}} \frac{||A\boldsymbol{x}||_2}{||\boldsymbol{x}||_2} \downarrow \forall \boldsymbol{x} \in \mathbb{R}^n$$

queda entonces
$$\star^1 ||x||_2^2 \underbrace{(1 - \underbrace{\frac{\langle 1}{\|Ax\|_2^2}}_{||x||_2^2})}_{>0} > 0$$
:

$$\boldsymbol{x}^t(I - A^t A)\boldsymbol{x} > 0$$

b) Para la simetría:

Para ver si es definida positiva:

Me parece que multiplicar por bloque hace que caigamos en el ejercicio anterior:

$$\underbrace{(x_{1},\ldots,x_{n},x_{n+1},\ldots,x_{2n})}_{y_{n}}(\underbrace{I}_{x_{n}}A)\begin{pmatrix}x_{1}\\\vdots\\x_{n}\\x_{n+1}\\\vdots\\x_{2n}\end{pmatrix} = \begin{pmatrix}(x_{1},\ldots,x_{n})I,(x_{n+1},\ldots,x_{2n})A^{t},(x_{1},\ldots,x_{n})A,(x_{n+1},\ldots,x_{2n})I\end{pmatrix}\begin{pmatrix}x_{1}\\\vdots\\x_{n}\\x_{n+1}\\\vdots\\x_{2n}\end{pmatrix} = \|y_{n}\|_{2}^{2} + z^{t}A^{t}z + y^{t}Ay + \|z\|_{2}^{2}$$

Usando el resultado del ejercicio anterior:

$$\mathbf{x}^{t}(I - A^{t}A)\mathbf{x} = \|\mathbf{x}\|_{2}^{2} - \mathbf{x}^{t}A^{t}A\mathbf{x} = \|\mathbf{x}\|_{2}^{2} - \|A\mathbf{x}\|_{2}^{2}$$

CONSULTAR

Dale las gracias y un poco de amor 💛 a los que contribuyeron! Gracias por tu aporte:

👸 naD GarRaz 📢

Ejercicio 13. Sea $B = \{v_1, \dots, v_n\}$ una base de K^n $(K = \mathbb{R} \quad \text{o} \quad \mathbb{C})$

(a) Probar que si B es ortogonal, entonces

$$m{C}_{EB} = \left(egin{array}{ccc} \cdots & rac{v_1^*}{\|v_1\|_2^2} & \cdots \\ \cdots & rac{v_2^*}{\|v_2\|_2^2} & \cdots \\ & dots \\ \cdots & rac{v_n^*}{\|v_n\|_2^2} & \cdots \end{array}
ight)$$

- (b) Probar que si B es ortonormal, entonces $C_{EB} = C_{BE}^*$.
- (c) Concluir que si B es ortonormal, entonces las coordenadas de un vector v en base B son:

$$(v)_B = (v_1^* v, v_2^* v, \dots, v_n^* v).$$

- (d) Calcular $(v)_B$ siendo v=(1,-i,3), $B=\left\{(\frac{i}{\sqrt{2}},\frac{i}{\sqrt{2}},0),(-\frac{1}{\sqrt{2}},\frac{1}{\sqrt{2}},0),(0,0,i)\right\}.$
- (a) Si B es una base ortogonal, una BOG, entonces sus vectores cumplen que:

$$\mathbf{v}_i \cdot \mathbf{v}_j = \begin{cases} \|\mathbf{v}_i\|_2^2 & \text{si} \quad i = j \\ 0 & \text{si} \quad i \neq j \end{cases}$$

Para calcular la matriz de cambio de base C_{EB} hay que calcular las coordenadas de los vectores canónicos en la base B: Ojo que esa llave son ecuaciones vectoriales, todo lo que está en **negrita**, **bold** es vector:

$$\begin{cases}
e_{1} = c_{11}v_{1} + c_{12}v_{2} + \dots + c_{n1}v_{n} & \xrightarrow{\times \to \\ |v_{1}^{*}|} \underbrace{v_{1}^{*}}_{\in K} = c_{11}||v_{1}||_{2}^{2} \Leftrightarrow c_{11} = \frac{v_{1}^{*}}{||v_{1}||_{2}^{2}} \\
e_{2} = c_{21}v_{1} + c_{22}v_{2} + \dots + c_{2n}v_{n} & \xrightarrow{\times \to \\ |v_{1}^{*}|} v_{1}^{*} = c_{21}||v_{2}||_{2}^{2} \Leftrightarrow c_{21} = \frac{v_{1}^{*}}{||v_{1}||_{2}^{2}} \\
\vdots \\
e_{n} = c_{n1}v_{1} + c_{n2}v_{2} + \dots + c_{nn}v_{n} & \xrightarrow{\times \to \\ |v_{1}^{*}|} v_{1}^{*} = c_{n1}||v_{n}||_{2}^{2} \Leftrightarrow c_{n1} = \frac{v_{1}^{*}}{||v_{1}||_{2}^{2}}
\end{cases}$$

Esos coeficientes c_{ij} me forman la primera fila, c_{ij} de la matriz C_{EB} :

$$(c_{11},c_{21},\ldots,c_{n1}) = \left(\frac{v_1^*}{\|\boldsymbol{v}_1\|_2^2},\frac{v_1^*}{\|\boldsymbol{v}_1\|_2^2},\cdots,\frac{v_1^*}{\|\boldsymbol{v}_1\|_2^2}\right) \stackrel{!}{=} \frac{v_1^*}{\|\boldsymbol{v}_1\|_2^2}$$

Cuando quiera calcular <u>la fila</u> j-ésima:

$$(c_{1j}, c_{2j}, \dots, c_{nj}) = \left(\frac{v_j^*}{\|\boldsymbol{v}_j\|_2^2}, \frac{v_j^*}{\|\boldsymbol{v}_j\|_2^2}, \dots, \frac{v_j^*}{\|\boldsymbol{v}_j\|_2^2}\right) \stackrel{!}{=} \frac{v_j^*}{\|\boldsymbol{v}_j\|_2^2}$$

Y así me armo la matriz C_{EB} generando fila por fila con este método.

(b) Ahora B es una BON, así que:

$$\mathbf{v}_i \cdot \mathbf{v}_j = \begin{cases} \|\mathbf{v}_i\|_2^2 & \text{si} \quad i = j \\ 0 & \text{si} \quad i \neq j \end{cases}$$

Y con esto la matriz del ítem (a) queda más simple como:

$$oldsymbol{C}_{EB} = \left(egin{array}{cccc} \ldots & oldsymbol{v}_1^* & \ldots \ \ldots & oldsymbol{v}_2^* & \ldots \ & dots \ \ldots & oldsymbol{v}_n^* & \ldots \end{array}
ight)$$

La matriz de cambio de base C_{EB} toma vectores en coordenadas de E y da el resultado en coordenadas de la base B. Construir el cambio de base C_{BE} , es inmediato el cálculo de coordenadas haciendo el sistema como en el ítem (a) ¡Quedan los vectores de la base B conjugados como columnas de la matriz!

$$\overline{m{C}}_{BE} = \left(\overline{m{v}}_1 \middle| \overline{m{v}}_2 \middle| \dots \middle| \overline{m{v}}_n
ight) \quad \stackrel{ ext{transpongo}}{\Longrightarrow} \quad m{C}_{BE}^* = \left(egin{array}{ccc} \dots & m{v}_1^* & \dots \ \dots & m{v}_2^* & \dots \ & dots \ \dots & m{v}_n^* & \dots \end{array}
ight) \stackrel{ ext{$m{t}}^1}{=} m{C}_{EB}$$

(c) Sale con el sistemita del ítem (a) nuevamente:

$$oldsymbol{v} = c_1 oldsymbol{v}_1 + c_2 oldsymbol{v}_2 + \cdots + c_n oldsymbol{v}_n \stackrel{ imes imes o}{\leftarrow} oldsymbol{v}_j^* \cdot oldsymbol{v} = c_j \underbrace{\|oldsymbol{v}_1\|_2^2}_{-1} \Leftrightarrow \boxed{oldsymbol{c}_j = oldsymbol{v}_j^* \cdot oldsymbol{v}}$$

(d) Pajilla 2. B es una BON. Usando el ítem (c):

$$(\mathbf{v})_B = (\mathbf{v} \cdot \mathbf{v}_1^*, \mathbf{v} \cdot \mathbf{v}_2^*, \mathbf{v} \cdot \mathbf{v}_3^*) \stackrel{!}{=} (0, -\frac{2}{\sqrt{2}}i, 3i)$$

Dale las gracias y un poco de amor 💛 a los que contribuyeron! Gracias por tu aporte:

👸 naD GarRaz 🞧

Ejercicio 14. S... hay que hacerlo!

Si querés mandá la solución o al grupo de Telegram o, o mejor aún si querés subirlo en IATEXo una pull request al o

Ejercicio 15. En cada uno de los siguientes casos construir un proyector $f: \mathbb{R}^3 \to \mathbb{R}^3$ que cumpla:

- (i) $\operatorname{Im}(f) = \{(x_1, x_2, x_3)/x_1 + x_2 + x_3 = 0\}$
- (ii) $Nu(f) = \{(x_1, x_2, x_3)/x_1 + x_2 + x_3 = 0\}$
- (iii) $\operatorname{Nu}(f) = \{(x_1, x_2, x_3)/3x_1 x_3 = 0\} \text{ e } \operatorname{Im}(f) = \langle (1, 1, 1) \rangle$

Acá un poco de cosas de proyectores, click, click

(i) Encuentro un sistema de generadores de $\text{Im}(f) = \langle (-1, 1, 0), (-1, 0, 1) \rangle$, y dado que el subespacio $\text{Nu}(f) \oplus \text{Im}(f)$, por ejemplo $\text{Nu}(f) = \langle (1, 1, 1) \rangle$.

Con esa data defino el proyector:

$$\begin{cases}
f(-1,1,0) &= (-1,1,0) \\
f(-1,0,1) &= (-1,0,1) \\
f(1,1,1) &= (0,0,0)
\end{cases}$$

Si tomo como base $B = \{(-1, 1, 0), (-1, 0, 1), (1, 1, 1)\}$:

$$f_{BE} = \left(\begin{array}{ccc} -1 & -1 & 0\\ 1 & 0 & 0\\ 0 & 1 & 0 \end{array}\right)$$

Busco f, para lo cual multiplico por:

$$C_{BE} = \begin{pmatrix} -1 & -1 & 1\\ 1 & 0 & 1\\ 0 & 1 & 1 \end{pmatrix} \xrightarrow{\text{inversa}} C_{EB} = \begin{pmatrix} -\frac{1}{3} & \frac{2}{3} & -\frac{1}{3}\\ -\frac{1}{3} & -\frac{1}{3} & \frac{2}{3}\\ \frac{1}{3} & \frac{1}{3} & \frac{1}{3} \end{pmatrix}$$

Por lo tanto:

$$f = f_{EB} \cdot C_{EB} = \begin{pmatrix} \frac{2}{3} & -\frac{1}{3} & -\frac{1}{3} \\ -\frac{1}{3} & \frac{2}{3} & -\frac{1}{3} \\ -\frac{1}{3} & -\frac{1}{3} & \frac{2}{3} \end{pmatrix}$$

No sé si hay que expresar el resultado en base canónica, pero ahí está.

(ii) Usando lo mismo de antes:

$$\begin{cases} f(-1,1,0) &= (0,0,0) \\ f(-1,0,1) &= (0,0,0) \\ f(1,1,1) &= (1,1,1) \end{cases}$$

(iii) Ahora $Nu(f) = \langle (3, 0, 1), (0, 1, 0) \rangle$

$$\begin{cases} f(3,0,1) &= (0,0,0) \\ f(0,1,0) &= (0,0,0) \\ f(1,1,1) &= (1,1,1) \end{cases}$$

Dale las gracias y un poco de amor 💚 a los que contribuyeron! Gracias por tu aporte:

🎖 naD GarRaz 🞧

Ejercicio 16.

(a) Sea $B = \{(1, -1, 0), (0, 1, -1), (0, 0, 1)\}$ base de \mathbb{R}^3 y sea $f : \mathbb{R}^3 \to \mathbb{R}^3$ la transformación lineal tal que:

$$f(1,-1,0) = (1,-1,0), \ f(0,1,-1) = (0,1,-1), \ f(0,0,1) = (0,0,0).$$

Calcular $[f]_B$ y comprobar que f es un proyector.

(b) Construir un proyector $f: \mathbb{R}^3 \to \mathbb{R}^3$ tal que $\text{Nu}(f) = \langle (1,1,1) \rangle$ e $\text{Im}(f) = \{x \in \mathbb{R}^3 / x_1 + x_2 - 3x_3 = 0\}$. ¿Es f una proyección ortogonal?

Acá te dejo resumencito de proyector, click, click

(a) Para calcular $[f]_B$ o $[f]_{BB}$ que me parece más descriptivo:

$$[f]_{BE} = \left(\begin{array}{rrr} 1 & 0 & 0 \\ -1 & 1 & 0 \\ 0 & -1 & 0 \end{array}\right)$$

Para calcular $[f]_{BB}$ hay que calcular las coordenadas en base B de los transformados de la base B.

$$\begin{cases} (f(1,-1,0))_B &= (1,-1,0)_B \stackrel{!}{=} (1,0,0) \\ (f(0,1,-1))_B &= (0,1,-1)_B \stackrel{!}{=} (0,1,0) \\ (f(0,0,1))_B &= (0,0,0)_B \stackrel{!}{=} (0,0,0) \end{cases}$$

Salen a ojo esas coordenadas, porque son los $_{casi}$ mismos vectores que la base B. Si no lo ves, planteá las combinetas lineales para calcular las coordenadas y vas a llegar a lo mismo.

$$[f]_{BB} = \left(\begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{array}\right)$$

Si f es un proyector, lo va a ser en cualquier base, voy con la definición: $P \circ P = P$

$$[f]_{BB} \circ [f]_{BB} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix} = [f]_{BB}$$

(b) De ese subespacio pedorro saco que:

$$\operatorname{Im}(f) = \{(-1, 1, 0), (-3, 0, 1)\}\$$

Propongo un proyector P:

$$\begin{cases} P(-1,1,0) = (-1,1,0) \to v \in \operatorname{Im}(P) \implies P(v) = v \\ P(-3,0,1) = (-3,0,1) \to v \in \operatorname{Im}(P) \implies P(v) = v \\ P(1,1,1) = (0,0,0) \end{cases}$$

Ojo que eso sería algo como $[P]_{BE}$ con $B = \{(-1, 1, 0), (3, 0, 1), (1, 1, 1)\}$ para encontrar el proyector es su forma $m\'{a}s$ mejor:

Las cuentas estas que voy a hacer no son necesarias para contestar, pero quiero ver que no me quede simétrico.

$$\begin{cases} P(-1,1,0) &= (-1,1,0) \\ P(3,0,1) &= (3,0,1) \\ P(1,1,1) &= (0,0,0) \end{cases} \xrightarrow{\mathbb{Z}} \begin{cases} P(1,0,0) &= (\frac{4}{5}, -\frac{1}{5}, -\frac{1}{5}) \\ P(0,1,0) &= (-\frac{1}{5}, \frac{4}{5}, -\frac{1}{5}) \\ P(0,0,1) &= (-\frac{3}{5}, -\frac{3}{5}, \frac{3}{5}) \end{cases}$$

El proyector en base E queda:

$$P = \begin{pmatrix} \frac{4}{5} & -\frac{1}{5} & -\frac{3}{5} \\ -\frac{1}{5} & \frac{4}{5} & -\frac{3}{5} \\ -\frac{1}{5} & -\frac{1}{5} & \frac{2}{5} \end{pmatrix}$$

El proyector P no es un proyector ortogonal. Por un lado no se cumple que $Nu(P) \perp Im(P)$, dado que $\underbrace{(1,1,1)}_{\in Nu(P)} \cdot \underbrace{(3,0,1)}_{\in Im(P)} \neq 0$. Además la expresión matricial tampoco cumple $P = P^t$.

Se puede encontrar una base en la que el proyector sí va a ser simétrico. En este caso particular:

$$[f]_{BB} = \left(\begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{array}\right)$$

▲ consultar

igual que en ele ítem a.

Dale las gracias y un poco de amor 💛 a los que contribuyeron! Gracias por tu aporte:

o nab darkaz (

Ejercicio 17. Sea $v \in \mathbb{C}^n$ un vector columna tal que $||v||_2 = 1$. Probar que:

- (a) La transformación lineal definida por la matriz vv^* es la proyección ortogonal sobre $\langle v \rangle$.
- (b) Si $\{v_1, \ldots, v_m\}$ es una base ortonormal del subespacio S, entonces $A = \sum_{i=1}^m v_i v_i^*$ es la proyección ortogonal sobre S.
- (c) Si A es como en el ítem anterior, I-A es la proyección ortogonal sobre S^{\perp} .
- (d) Eligiendo $v \in \mathbb{R}^2$ tal que $||v||_2 = 1$, corroborar gráficamente en Python \P que $R = I 2vv^*$ es la reflexión respecto de $\langle v \rangle^{\perp}$.
- (a) Tenemos que:

$$||v||_2 = 1 \stackrel{\text{def}}{\Longleftrightarrow} v^* \cdot v \stackrel{\bigstar^1}{=} 1$$

Un proyector ortogonal sobre $\langle v \rangle$, P cumple:

$$P \cdot v \stackrel{\text{def}}{=} v$$
, $P \cdot v \stackrel{\perp}{=} \stackrel{\text{def}}{=} 0$, $P = P^*$ y Nu $P \perp \operatorname{Im} P$

Entonces si esta qaver vv* cumple eso, ganamos :

$$\overbrace{vv^*}^P \cdot v \stackrel{!}{=} v(v^* \cdot v) \stackrel{\triangleq}{=} v,$$

that was easy. Vamos a por la otra. Agarro algún $w \in \mathbb{C}^n$:

$$vv^* \cdot \underbrace{(Pw - w)}_{\perp v} = 0 \quad \Leftrightarrow \quad vv^* \cdot Pw - vv^* \cdot w = 0$$

$$\Leftrightarrow \quad v(P^*v)^*w - vv^*w = 0$$

$$\Leftrightarrow \quad v(Pv)^*w - vv^*w = 0$$

$$\Leftrightarrow \quad vv^*w - vv^*w \neq 0$$

Me doy cuenta que podría haber probado que $(vv^*)^* = vv^*$ ¿Pero quien me quita lo bailado?:

(b) Si tengo una base del subespacio, entonces puedo escribir a un vector genérico $w \in S$ como una combineta de los vectores de la base:

$$w = \sum_{j=1}^{m} a_j v_j = a_1 v_1 + a_2 v_2 + \dots + a_n v_n$$

Transformo teniendo en cuenta que $v_i^*(a_j v_j) = \begin{cases} a_i & \text{si} & i = j \\ 0 & \text{si} & i \neq j \end{cases}$, recordando que $||v_i||_2 = 1$:

$$Aw = \sum_{i=1}^{m} v_i v_i^* w = \sum_{i=1}^{m} a_i v_i = w \implies Aw = w$$

Me doy cuenta que podría haber probado que $A=A^*$ ¿Pero quien me quita lo bailado?:

$$A^* = \left(\sum_{i=1}^m v_i v_i^*\right)^* \stackrel{!}{=} \sum_{i=1}^m \left(v_i v_i^*\right)^* = \sum_{i=1}^m v_i v_i^* = A$$

(c) Medio que usé algo de esto en el ítem (a). Un proyector ortogonal sobre S, va a mandar todo elemento del complemento ortogonal de S, S^{\perp} al 0.

Es decir, si $w \in S^{\perp}$:

$$Aw = 0$$
 y $(I - A)w = w \implies A\underbrace{(I - A)w}_{w} = (A - A^{2})w \stackrel{!}{=} (A - A)w = 0.$

Podemos decir que A(I - A) es el operador nulo.

En general para cualquier elemento v del espacio vectorial V: Puedo escribir $v=s+s^{\perp}$, una combineta única de elementos de S y S^{\perp} , ya que $S \oplus S^{\perp}$.

$$A(I - A)v = A(I - A)(s + s^{\perp}) = A(s + s^{\perp} - As - As^{\perp}) = As + As^{\perp} - As - A^{2}s^{\perp} \stackrel{!}{=} 0$$

Los proyectores ortogonales cumplen que $Nu(P) \perp Im(P)$, donde la imagen es el S al que se proyecta y el núcleo es el S^{\perp} .

(d) Sí, lo sé, esto no es una implementación en Python .

Dale las gracias y un poco de amor \heartsuit a los que contribuyeron! Gracias por tu aporte:

👸 naD GarRaz 😯

Ejercicio 18. O... hay que hacerlo!

Si querés mandá la solución \rightarrow al grupo de Telegram \bigcirc , o mejor aún si querés subirlo en IATEX \rightarrow una pull request al \bigcirc .

Ejercicio 19. O... hay que hacerlo!

Si querés mandá la solución \rightarrow al grupo de Telegram \bigcirc , o mejor aún si querés subirlo en IATEX \rightarrow una pull request al \bigcirc .

Ejercicio 20. O... hay que hacerlo!

Si querés mandá la solución \rightarrow al grupo de Telegram \bigcirc , o mejor aún si querés subirlo en IATEX \rightarrow una pull request al \bigcirc .

Ejercicio 21. S... hay que hacerlo!

Si querés mandá la solución \rightarrow al grupo de Telegram \bigcirc , o mejor aún si querés subirlo en IATEX \rightarrow una pull request al \bigcirc .

Ejercicio 22. ⊚... hay que hacerlo! ⊕

Si querés mandá la solución \rightarrow al grupo de Telegram \bigcirc , o mejor aún si querés subirlo en IATEX \rightarrow una $pull\ request$ al \bigcirc .

Ejercicio 23. O... hay que hacerlo!

Si querés mandá la solución \rightarrow al grupo de Telegram \bigcirc , o mejor aún si querés subirlo en IATEX \rightarrow una pull request al \bigcirc .

Ejercicio 24. O... hay que hacerlo!

Si querés mandá la solución \rightarrow al grupo de Telegram \bigcirc , o mejor aún si querés subirlo en IATEX \rightarrow una pull request al \bigcirc .

•			
U	Ejercicios	de	parciales:

∆1. _____