MTH108 — Linear Algebra

 $\mathrm{James\ Li} - 501022159$

Professor: K. Q. Lan

Email: klan@torontomu.ca

Content by Week

1	Euclidean Spaces	2
	1.1 Products of Vectors with Constants	2
	1.1.1 Examples:	2
	1.2 Products of two Vectors	2
	1.2.1 Examples:	2
2	Placeholder	3
3	Placeholder	3
4	Placeholder	3
5	Placeholder	3
6	Placeholder	3
7	Placeholder	3
8	Placeholder	3
9	Placeholder	3
10	Placeholder	3

1 Euclidean Spaces

A Euclidean Space is a mathematical space in which points and lines can be represented by a set of coordinates in the respective dimension of the space, and every point can be represented in a defined set. For example:

$$\mathbb{R}^3 = (x, y, z); x, y, z \in \mathbb{R}$$

is three-dimensional space represented using coordinates in terms of (x, y, z), where $x, y, z \in \mathbb{R}$.

Theorem 1.1. Given two vectors \vec{a} , \vec{b} and some constant k, \vec{a} and \vec{b} are called **parallel** if:

$$\vec{a} = k\vec{b} \Leftrightarrow \vec{a}//\vec{b}$$

1.1 Products of Vectors with Constants

Theorem 1.2. Given a constant k in \mathbb{R} and some vector \vec{a} in \mathbb{R}^2 , the product of $k\vec{a}$ is:

$$k\vec{a} = k(x_1, y_1) = (k \cdot x_1, k \cdot y_1), x, y \in \mathbb{R}$$

To represent a vector in Linear Algebra, we can use the following notation (using the previously mentioned vector \vec{a} as an example):

$$\vec{a} = (x_1, y_1) = \begin{pmatrix} x_1 \\ y_1 \end{pmatrix}$$

1.1.1 Examples:

Take $\vec{a} = \begin{pmatrix} 2 \\ -1 \end{pmatrix}$ and $\vec{b} = \begin{pmatrix} 4 \\ -1 \end{pmatrix}$, compute $-2\vec{a} + 3\vec{b}$:

$$-2\vec{a} + 3\vec{b} = 2 \begin{pmatrix} 2 \\ 1 \end{pmatrix} + 3 \begin{pmatrix} 4 \\ -1 \end{pmatrix}$$

$$= \begin{pmatrix} -4 \\ 2 \end{pmatrix} + \begin{pmatrix} 12 \\ -3 \end{pmatrix}$$

$$= \begin{pmatrix} 8 \\ -1 \end{pmatrix}$$
(1)

1.2 Products of two Vectors

Theorem 1.3. Given two vectors in \mathbb{R}^n , $\vec{a} = (\underbrace{\vdots}_{x_n})$, $\vec{b} = (\underbrace{\vdots}_{y_n})$, the product of $\vec{a} \cdot \vec{b}$ is:

$$\vec{a} \cdot \vec{b} = (x_1, \dots, x_n) \cdot \begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix}$$

= $x_1 y_1 + x_2 y_2 + \dots + x_n y_n$

This is known as the **Dot Product**.

1.2.1 Examples:

Take $\vec{A} = \begin{pmatrix} \frac{1}{-1} \\ \frac{2}{3} \end{pmatrix}$ and $\vec{b} = \begin{pmatrix} \frac{2}{1} \\ -1 \\ 1 \end{pmatrix}$, Find the dot product of $\vec{a} \cdot \vec{b}$:

$$\vec{a} \cdot \vec{b} = (2) + (-1) + (-2) + (3)$$
= 2 (2)

- 2 Placeholder
- 3 Placeholder
- 4 Placeholder
- 5 Placeholder
- 6 Placeholder
- 7 Placeholder
- 8 Placeholder
- 9 Placeholder
- 10 Placeholder