POZIOM PODSTAWOWY - 2011

Zadania zamknięte

Zadanie 1 (1 pkt)

Liczba $|\sqrt{3}-2|+|\sqrt{3}-1|$ jest równa

- **A.** $2\sqrt{3}$
- **B.** 1 **C.** $\sqrt{3} + 1$ **D.** -3

Zadanie 2 (1 pkt)

Wskazać rysunek, na którym przedstawiony jest zbiór rozwiązań nierówności $|x+1| \ge 2$.

- Α.
- В.
- $\mathbf{C}.$

- D.

Zadanie 3 (1 pkt)

Po dwukrotnej obniżce, najpierw o 15%, a następnie o 20%, cena telewizora wynosi 850 zł. Jaka była cena wyjściowa?

- **A.** 1100 zł
- **B.** 1250 zł
- **C.** 1300 zł
- **D.** 1150 zł

Zadanie 4 (1 pkt)

Liczba $x = 56^{-3} \cdot 14^2 \cdot (\frac{1}{2})^{-7}$. Wtedy

- **A.** $x = \frac{1}{7}$ **B.** x = 7 **C.** x = 2 **D.** $x = \frac{7}{2}$

Zadanie 5 (1 pkt)

Kwadrat liczby $\frac{2+\sqrt{3}}{1+\sqrt{3}}$ jest równy

- **A.** $3 + \sqrt{3}$
- **B.** $4-2\sqrt{3}$ **C.** $\frac{1}{2}(1+\sqrt{3})$ **D.** $\frac{7}{4}$

Zadanie 6 (1 pkt)

Liczba $\,\log_3 6 - \frac{1}{\log_2 3}\,$ równa jest

- $\mathbf{A.} \log_3 2$
- **B.** 1 **C.** $-\log_2 3$ **D.** -1

Zadanie 7 (1 pkt)

Dla jakiego m liczba -3 jest miejscem zerowym funkcji f(x) = (m+1)x + 6?

A. m = -2

B. m = 1 **C.** m = 2 **D.** m = -1

Zadanie 8 (1 pkt)

Liczby x_1 i x_2 $(x_1 \leqslant x_2)$ są pierwiastkami równania $x^2 - 7x + 6 = 0$. Obliczyć $z = \sqrt[3]{3x_1 + 4x_2}$.

A. z = 2

B. z = 3 **C.** $z = \sqrt{13}$ **D.** $z = \sqrt{30}$

Zadanie 9 (1 pkt)

Reszta z dzielenia wielomianu $W(x) = x^3 - ax + 5$ przez dwumian (x+1) równa jest 2. Współczynnik a równy jest

A. 2

B. -2

C. 3

D. 1

Zadanie 10 (1 pkt)

Zbiorem rozwiązań nierówności $(x+4)(x+\sqrt{15}) \ge 0$ jest zbiór

A. $[-4, -\sqrt{15}]$ **B.** $[-\sqrt{15}, -4]$ **C.** $(-\infty, -\sqrt{15}] \cup [-4, \infty)$ **D.** $(-\infty, -4] \cup [-\sqrt{15}, \infty)$

Zadanie 11 (1 pkt)

W ciągu geometrycznym (a_n) dane są: $a_1 = 2, a_{10} = 54$. Wtedy

A. $a_4 = 4$

B. $a_4 = 8$ **C.** $a_4 = 6$ **D.** $a_4 = 16$

Zadanie 12 (1 pkt)

W ciągu arytmetycznym $a_7=7$. Wtedy suma $S_{13}=a_1+a_2+\ldots+a_{13}$ jest równa

A. 13

B. 21

C. 91

D. 101

Zadanie 13 (1 pkt)

Pin do bankomatu jest ciągiem czterocyfrowym. Ile jest różnych pinów, których wszystkie cyfry są podzielne przez 3?

A. 3^4

B. 4⁴ **C.** 4³

D. 3^{3}

Zadanie 14 (1 pkt)

Trójkat prostokatny jest połową prostokata, w którym jeden z boków jest dwa razy krótszy niż drugi. Niech α będzie mniejszym z katów ostrych tego trójkata. Wówczas

A. $\cos \alpha = \frac{2\sqrt{5}}{5}$ **B.** $\operatorname{tg} \alpha = \frac{\sqrt{5}}{5}$ **C.** $\sin \alpha = \frac{2\sqrt{5}}{5}$ **D.** $\operatorname{ctg} \alpha = \sqrt{5}$

W zadaniach 7,8 i 9 wykorzystać przedstawione poniżej wykresy funkcji f i q.

$$y = g(x)$$

Zadanie **15** (1 pkt)

Zbiorem wartości funkcji f jest

A.
$$[-2,2]$$
 B. $(-2,2)$ **C.** $(-2,2]$ **D.** $[-4,4]$

B.
$$(-2,2)$$

$$\mathbf{C}. \ (-2,2)$$

D.
$$[-4, 4]$$

Zadanie **16** (1 pkt)

Wykorzystując wykres funkcji g, wskazać nierówność **fałszywą**

A.
$$g(-2) < g(2)$$

B.
$$g(-1) < g(1)$$

C.
$$g(0) > g(4)$$

A.
$$g(-2) < g(2)$$
 B. $g(-1) < g(1)$ **C.** $g(0) > g(4)$ **D.** $g(-4) < g(0)$

Zadanie 17 (1 pkt)

Funkcje f i g związane są zależnością

A.
$$g(x) = -f(x) + 2$$
 B. $g(x) = f(-x) + 2$ **C.** $g(x) = f(x+2)$ **D.** $g(x) = f(-x+2)$

B.
$$g(x) = f(-x) + 2$$

C.
$$g(x) = f(x+2)$$

D.
$$g(x) = f(-x+2)$$

Zadanie 18 (1 pkt)

Jaka jest długość odcinka x na rysunku obok

A.
$$x = 3$$

$$\mathbf{R} \quad r = 4$$

B.
$$x = 4$$
 C. $x = 2, 4$

D.
$$x = 2$$

Zadanie **19** (1 pkt)

Punkty A, B i C leżą na okręgu o środku S (zobacz rysunek), przy czym kąt wpisany ABC ma miarę 65° .

Wówczas miara zaznaczonego kata środkowego ASC jest równa

- **A.** 130°
- B. 230°
- **C.** 100°
- **D.** 270°

Zadanie 20 (1 pkt)

Proste o równaniach 2x + 3y + 1 = 0 i 3x + y + 2 = 0

- A. sa równoległe i różne.
- **B.** są prostopadłe.
- C. przecinają się pod katem innym niż prosty.
- **D.** pokrywają się.

Zadanie 22 (1 pkt)

Punkty A(-1,3) i C(1,-3) są wierzchołkami jednej z przekątnych kwadratu. Wówczas pozostałymi wierzchołkami są

- **A.** B(1,3) i D(-1,-3) **B.** B(-3,1) i D(-1,-3)
- **C.** A(3,1) i C(-3,-1) **D.** A(-1,-3) i C(1,3)

Zadanie 22 (2 pkt)

Środek okręgu o promieniu 1 stycznego do osi Oy leży w I ćwiartce układu współrzędnych na prostej y=2x. Równanie tego okręgu ma postać

- **A.** $(x-1)^2 + (y-2)^2 = 1$ **B.** $(x-2)^2 + (y-1)^2 = 1$
- C. $(x-1)^2 + (y-1)^2 = 2$ D. $(x-1)^2 + (y-2)^2 = 4$

Zadanie **23** (2 pkt)

Wysokość stożka S_1 jest trzy razy większa niż wysokość stożka S_2 , a promień podstawy stożka S_1 jest połową promienia podstawy stożka S_2 . Niech $V_1,\,V_2$ oznaczają objętości tych brył. Wówczas

- **A.** $4V_2 = 3V_1$
- **B.** $3V_2 = 4V_1$ **C.** $V_2 = V_1$ **D.** $2V_2 = V_1$

Zadania otwarte

Zadanie 1 (2 pkt)

Rozwiązać nierówność $|x^2-2|<2$.

Zadanie 2 (2 pkt)

Rozwiązać równanie $x^3 - 3x = 15 - 5x^2$.

Zadanie 3 (2 pkt)

Dwa kwadraty o tym samym boku są położone tak, jak na poniższym rysunku. Pole części wspólnej zbiorów przedstawionych na rysunku jest trzy razy mniejsze od pola sumy tych zbiorów. Wykazać, że punkt P dzieli bok kwadratu na dwie równe części.

Zadanie 4 (2 pkt)

Rozkład ocen ze sprawdzianu w klasie IIIa jest opisany tabelka

Jaś otrzymał ocenę 4. Czy wypadł powyżej średniej w swojej klasie? W pozostałych klasach średnie punktów wynosiły: 3,875 w IIIb (24 osoby) i 4,6 w IIIc (25 osób). Czy ocena otrzymana przez Jasia znajduje się powyżej średniej liczonej łącznie wśród wszystkich uczniów klas trzecich?

Zadanie 5 (2 pkt)

Obserwator, stojąc w pewnej odległości, widzi wieżę kościoła pod kątem 60°. Po oddaleniu się o 50 m kąt widzenia zmniejszył się do 45°. Obliczyć wysokość wieży.

Zadanie 6 (2 pkt)

O kącie α wiadomo, że tg $\alpha = -\frac{5}{12}$ oraz $\cos \alpha > 0$. Obliczyć $\sin \alpha$.

Zadanie 7 (3 pkt)

Obliczyć objętość ostrosłupa o podstawie kwadratowej, którego wszystkie krawędzie mają długość a.

Zadanie 8 (5 pkt)

Trapez o kątach przy podstawie 30° oraz 45° jest opisany na okręgu. Obliczyć stosunek pola koła do pola trapezu.

Zadanie 9 (5 pkt)

Trzy liczby dodatnie tworzą ciąg geometryczny. Suma tych liczb równa jest 26, a suma ich odwrotności wynosi 0.7(2). Wyznaczyć te liczby.