DDOS Attack Detection Report Using Wireshark

Maya Lotfy

1. Introduction

This report presents the findings of a Distributed Denial of Service (DDoS) attack, specifically a SYN flood attack, detected using Wireshark. The analysis was performed on a PCAP file, which captured the network traffic during the attack. The goal was to identify the attack's characteristics, analyze the traffic patterns, and present the relevant findings.

2. Objective

The objectives of this analysis were to:

- Detect and identify the SYN flood attack in the captured network traffic.
- Analyze the network conversations and endpoints involved in the attack.
- Present visual evidence of the attack using I/O graphs.

3. Tools and Techniques Used

• **Tool**: Wireshark

• PCAP File: pkt.TCP.synflood.spoofed.pcap

Version: 4.2.6 (v4.2.6-0-g2acd1a854bab).

Command Executed: The PCAP file was analyzed using Wireshark's graphical user interface.

4. Methodology

4.1. Loading the PCAP File

- 1. Open Wireshark.
- 2. Load the PCAP file by navigating to File > Open and selecting [file.pcap].

4.2. Identifying SYN Flood Attack

A SYN flood attack can be identified by:

- High Volume of SYN Packets: An abnormal number of TCP SYN packets sent to a specific port or IP address.
- **Uncompleted Handshakes**: A large number of half-open TCP connections with no corresponding ACK packets.

4.3. Analyzing Conversations and Endpoints

1. Conversations:

- Go to Statistics > Conversations.
- Analyze the TCP conversation statistics to identify abnormal patterns or a high volume of connections.

2. Endpoints:

- Go to Statistics > Endpoints.
- Analyze the endpoints involved to determine which IP addresses are primarily targeted and which ones are sending the attack traffic.

5. Findings

5.1. SYN Flood Detection

- Traffic Analysis:
 - Number of SYN Packets: 37841
- Traffic Pattern:
 - The SYN flood attack was characterized by a high frequency of SYN packets directed towards a specific port, causing the target server to allocate resources for incomplete connections.

5.2. Conversations and Endpoints

- conversation exhibited a high volume of packets and data, which is significantly above the normal traffic levels. This high traffic volume suggests a potential DDoS attack, where either the source IP is generating excessive traffic or the destination IP is being overwhelmed.
- Endpoints analysis revealed several IP addresses with abnormally high traffic volumes, both in terms of packets and bytes. These endpoints are potentially involved in or targeted by a DDoS attack. Specifically, high-traffic source IPs could be either attackers or compromised hosts, while high-traffic target IPs are likely victims of the attack.

6. I/O Graphs

• **Description**: The I/O graph below shows the spike in SYN packets over time, indicative of the SYN flood attack.

7. Recommendations

1. Mitigation Strategies:

- Implement rate limiting and SYN cookies on the affected server to handle SYN flood attacks.
- Configure firewalls and intrusion prevention systems to detect and block high volumes of SYN packets.

2. Network Monitoring:

 Enhance network monitoring to detect and respond to abnormal traffic patterns promptly.

3. Incident Response:

 Develop and test an incident response plan for DDoS attacks, including communication protocols and mitigation measures.