Project 02: Movielens Case Study

Submitted By Ms. Ankita Kale in September 2020

Background of Problem Statement:

The GroupLens Research Project is a research group in the Department of Computer Science and Engineering at the University of Minnesota. Members of the GroupLens Research Project are involved in many research projects related to the fields of information filtering, collaborative filtering, and recommender systems. The project is led by professors John Riedl and Joseph Konstan. The project began to explore automated collaborative filtering in 1992 but is most well known for its worldwide trial of an automated collaborative filtering system for Usenet news in 1996. Since then the project has expanded its scope to research overall information by filtering solutions, integrating into content-based methods, as well as, improving current collaborative filtering technology.

Problem Objective :

Here, we ask you to perform the analysis using the Exploratory Data Analysis technique. You need to find features affecting the ratings of any particular movie and build a model to predict the movie ratings.

Domain: Entertainment

Analysis Tasks to be performed:

- 1. Import the three datasets
- 2. Create a new dataset [Master Data] with the following columns MovieID Title UserID Age Gender Occupation Rating.
- (i) Merge two tables at a time.
- (ii) Merge the tables using two primary keys MovieID & UserId
- 3. Explore the datasets using visual representations (graphs or tables), also include your comments on the following:
- (i) User Age Distribution
- (ii) User rating of the movie "Toy Story"
- (iii) Top 25 movies by viewership rating
- (iv) Find the ratings for all the movies reviewed by for a particular user of user id = 2696

Feature Engineering:

Use column genres:

- 1. Find out all the unique genres (Hint: split the data in column genre making a list and then process the data to find out only the unique categories of genres)
- 2. Create a separate column for each genre category with a one-hot encoding (1 and 0) whether or not the movie belongs to that genre.
- 3. Determine the features affecting the ratings of any particular movie.
- 4. Develop an appropriate model to predict the movie ratings

Dataset Description:

These files contain 1,000,209 anonymous ratings of approximately 3,900 movies made by 6,040 MovieLens users who joined MovieLens in 2000.

In [1]:

```
%config IPCompleter.greedy=True
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
%matplotlib inline
# machine learning
from sklearn.model selection import train test split
from sklearn.linear model import LogisticRegression
from sklearn.svm import SVC, LinearSVC
from sklearn.ensemble import RandomForestClassifier
from sklearn.neighbors import KNeighborsClassifier
from sklearn.naive_bayes import GaussianNB
from sklearn.linear model import Perceptron
from sklearn.linear_model import SGDClassifier
from sklearn.tree import DecisionTreeClassifier
```

In [2]:

```
import warnings
warnings.filterwarnings("ignore")
```

Import the three datasets

```
In [3]:
```

```
#Load the data
movies = pd.read_csv('data/movies.dat', sep="::" , header=None, names=["MovieID","Title","Genres"],
engine='python')
ratings = pd.read_csv("data/ratings.dat" , sep='::' , header=None, names =['UserID','MovieID','Rati
ng','Timestamp'] , engine='python')
users = pd.read_csv("data/users.dat", sep='::' , header=None, names =['UserID','Gender','Age','Occu
pation','Zip-code'] , engine='python')
```

In [4]:

```
movies.head()
```

Out[4]:

Genres	Title	MovielD	
Animation Children's Comedy	Toy Story (1995)	1	0
Adventure Children's Fantasy	Jumanji (1995)	2	1
Comedy Romance	Grumpier Old Men (1995)	3	2
Comedy Drama	Waiting to Exhale (1995)	4	3
Comedy	Father of the Bride Part II (1995)	5	4

In [5]:

```
movies.info()
```

In [6]:

```
movies.describe()
```

Out[6]:

MovielD count 3883.000000

mean 1986.049446
 std 1146.778349
 min 1.000000
 25% 982.500000
 50% 2010.000000
 75% 2980.500000

max 3952.000000

In [7]:

```
movies['Title'].describe()
```

Out[7]:

2002

```
count 3003
unique 3883
top Psycho Beach Party (2000)
freq 1
Name: Title, dtype: object
```

In [8]:

```
ratings.head()
```

Out[8]:

	UserID	MovielD	Rating	Timestamp
0	1	1193	5	978300760
1	1	661	3	978302109
2	1	914	3	978301968
3	1	3408	4	978300275
4	1	2355	5	978824291

In [10]:

```
ratings.info()
```

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1000209 entries, 0 to 1000208
Data columns (total 4 columns):

#	Column	Non-Nul	Non-Null Count		
0	UserID	1000209	non-null	int64	
1	MovieID	1000209	non-null	int64	
2	Rating	1000209	non-null	int64	
3	Timestamp	1000209	non-null	int64	
dtyp	es: int64(4)			

dtypes: int64(4) memory usage: 30.5 MB

In [11]:

```
ratings.groupby(['UserID','MovieID']).count()
```

Out[11]:

Rating Timestamp

UserID	MovieID		
1	1	1	1
	48	1	1
	150	1	1
	260	1	1
	527	1	1
6040	3683	1	1
	3703	1	1
	3735	1	1
	3751	1	1
	3819	1	1

1000209 rows × 2 columns

In [12]:

```
ratings['Rating'].describe()
```

```
Out[12]:
count 1.000209e+06
        3.581564e+00
mean
std
        1.117102e+00
       1.000000e+00
min
25%
        3.000000e+00
        4.000000e+00
50%
75%
        4.000000e+00
max
        5.000000e+00
Name: Rating, dtype: float64
In [13]:
users.head()
Out[13]:
  UserID Gender Age Occupation Zip-code
            F
                 1
                         10
                              48067
1
      2
            Μ
                56
                         16
                              70072
2
      3
                25
                         15
                              55117
            М
                          7
                              02460
3
      4
                45
      5
                25
                         20
                              55455
            М
In [14]:
users.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 6040 entries, 0 to 6039
Data columns (total 5 columns):
             Non-Null Count Dtype
 # Column
                -----
 0 UserID
               6040 non-null int64
 1 Gender
               6040 non-null object
 2 Age
                6040 non-null int64
    Occupation 6040 non-null
 4 Zip-code
                              object
                6040 non-null
dtypes: int64(3), object(2)
memory usage: 236.1+ KB
In [15]:
users['Age'].describe()
Out[15]:
count 6040.000000
         30.639238
mean
std
          12.895962
          1.000000
min
25%
          25.000000
50%
          25.000000
75%
          35.000000
          56.000000
Name: Age, dtype: float64
In [16]:
len(set(users['UserID']))
Out[16]:
6040
```

```
In [17]:

6040*3883

Out[17]:
23453320

In [18]:

# Merging
tempDataset = pd.merge(ratings,movies,on='MovieID')
tempDataset.head()
```

Out[18]:

	UserID	MovieID	Rating	Timestamp	Title	Genres
0	1	1193	5	978300760	One Flew Over the Cuckoo's Nest (1975)	Drama
1	2	1193	5	978298413	One Flew Over the Cuckoo's Nest (1975)	Drama
2	12	1193	4	978220179	One Flew Over the Cuckoo's Nest (1975)	Drama
3	15	1193	4	978199279	One Flew Over the Cuckoo's Nest (1975)	Drama
4	17	1193	5	978158471	One Flew Over the Cuckoo's Nest (1975)	Drama

Create a new dataset [Master_Data] with the following columns MovieID Title UserID Age Gender Occupation Rating.

Here I created finalDF

```
In [19]:
```

```
finalDF = pd.merge(tempDataset, users, on='UserID')
finalDF.head()
```

Out[19]:

	UserID	MovieID	Rating	Timestamp	Title	Genres	Gender	Age	Occupation	Zip- code
0	1	1193	5	978300760	One Flew Over the Cuckoo's Nest (1975)	Drama	F	1	10	48067
1	1	661	3	978302109	James and the Giant Peach (1996)	Animation Children's Musical	F	1	10	48067
2	1	914	3	978301968	My Fair Lady (1964)	Musical Romance	F	1	10	48067
3	1	3408	4	978300275	Erin Brockovich (2000)	Drama	F	1	10	48067
4	1	2355	5	978824291	Bug's Life, A (1998)	Animation Children's Comedy	F	1	10	48067

In [20]:

```
# Counting values based on Movie Rating
finalDF.groupby(['Rating']).sum()
```

Out[20]:

	UserID	MovielD	Timestamp	Age	Occupation
Rating					
1	167800234	110817755	54622277176071	1539828	437705
2	320205562	208381312	104631794087106	3076948	858971
3	789368925	501107422	254012338022416	7765396	2098727
4	1056656983	654499954	339307570467704	10523013	2826659

Explore the datasets using visual representations (graphs or tables), also include your comments

1. User Age Distribution

In [21]:

```
#User Age Distribution
sns.distplot(users.Age)
```

Out[21]:

<matplotlib.axes._subplots.AxesSubplot at 0x2bab12a0a88>

In [22]:

```
sns.countplot(x='Age',data = finalDF).set_title('Age Distribution of the Users')
```

Out[22]:

Text(0.5, 1.0, 'Age Distribution of the Users')

2. User rating of the movie "Toy Story"

In [23]:

```
finalDF[finalDF.Title.str.contains("Toy Story")]['Title'].unique()
```

Out[23]:

```
array(['Toy Story (1995)', 'Toy Story 2 (1999)'], dtype=object)
```

- - - -

In [24]:

```
finalDF[finalDF.Title == 'Toy Story (1995)'].groupby('Rating')['MovieID'].count().plot(kind="pie")
```

Out[24]:

<matplotlib.axes._subplots.AxesSubplot at 0x2bab329b648>

In [25]:

```
finalDF[finalDF.Title == 'Toy Story (1995)'].groupby('Rating')['MovieID'].count().plot(kind="barh")
```

Out[25]:

<matplotlib.axes. subplots.AxesSubplot at 0x2bab32bb908>

It seems that lot of people rared 4 and 5 for the movie 'Toy Story (1995)'

In [26]:

```
# User rating of the movie "Toy Story"
toystoryRating = finalDF[finalDF['Title'].str.contains('Toy Story') == True]
toystoryRating
```

Out[26]:

	UserID	MovieID	Rating	Timestamp	Title	Genres	Gender	Age	Occupation	Zip-code
40	1	1	5	978824268	Toy Story (1995)	Animation Children's Comedy	F	1	10	48067
50	1	3114	4	978302174	Toy Story 2 (1999)	Animation Children's Comedy	F	1	10	48067
417	17	3114	5	978159386	Toy Story 2 (1999)	Animation Children's Comedy	М	50	1	95350
634	18	1	4	978154768	Toy Story (1995)	Animation Children's Comedy	F	18	3	95825
938	19	1	5	978555994	Toy Story (1995)	Animation Children's Comedy	М	1	10	48073
994256	1025	3114	5	975002777	Toy Story 2 (1999)	Animation Children's Comedy	М	25	16	34677
994289	1898	3114	5	974699028	Toy Story 2 (1999)	Animation Children's Comedy	М	25	12	91101
994315	1970	3114	4	974686535	Tov Story 2 (1999)	AnimationlChildren'slComedv	М	50	13	89052

00.0.0	1010	0		01 1000000	109 01019 2 (1000)	7 illimation portional on opcomody		- 00	.0	00002	
994367	UserID 4741	MovielD 3114	Rating	Timestamp 963267233	Toy Story 2 (1999)	Animation Children's Comedy	Gender M	Age	Occupation 7	Zip-code 15203	
994389	5713	3114	4	958512082		Animation Children's Comedy	 F	50	7	91362	
334003	07.10	0114	7	300012002	10y Otory 2 (1000)	7 tillination Officar		00	,	31002	

3662 rows × 10 columns

In [27]:

```
#User rating of the movie "Toy Story"
toystoryRating.groupby(["Title","Rating"]).size()
```

Out[27]:

Title	Rating	
Toy Story (1995)	1	16
	2	61
	3	345
	4	835
	5	820
Toy Story 2 (1999)	1	25
	2	44
	3	214
	4	578
	5	724

dtype: int64

In [28]:

```
#Visual representations of User rating of the movie "Toy Story"
toystoryRating.groupby(["Title","Rating"]).size().unstack().plot(kind='barh',stacked=False,legend=
True)
plt.show()
```


It seems that lot of people rared 4 and 5 for the movie 'Toy Story (1995)' and 'Toy Story 2 (1999)'

3. Top 25 movies by viewership rating

In [29]:

```
#top_25 = print(finalDF.groupby('Title').Rating.count().nlargest(25))
top_25 = finalDF.groupby('Title').size().sort_values(ascending=False)[:25]
top_25
```

Out[29]:

Title	
American Beauty (1999)	3428
Star Wars: Episode IV - A New Hope (1977)	2991
Star Wars: Episode V - The Empire Strikes Back (1980)	2990
Star Wars: Episode VI - Return of the Jedi (1983)	2883
Jurassic Park (1993)	2672
Saving Private Ryan (1998)	2653
Terminator 2: Judgment Day (1991)	2649
Matrix, The (1999)	2590
D1- +- +1- D-+ /100F1	2502

```
Back to the Future (1985)
                                                           2583
Silence of the Lambs, The (1991)
                                                           2578
Men in Black (1997)
                                                           2538
Raiders of the Lost Ark (1981)
                                                           2514
Fargo (1996)
                                                           2513
Sixth Sense, The (1999)
                                                           2459
Braveheart (1995)
                                                           2443
                                                           2369
Shakespeare in Love (1998)
Princess Bride, The (1987)
                                                           2318
Schindler's List (1993)
                                                           2304
L.A. Confidential (1997)
                                                           2288
Groundhog Day (1993)
                                                           2278
E.T. the Extra-Terrestrial (1982)
                                                           2269
Star Wars: Episode I - The Phantom Menace (1999)
                                                           2250
Being John Malkovich (1999)
                                                           2241
Shawshank Redemption, The (1994)
                                                           2227
Godfather, The (1972)
                                                           2223
dtype: int64
```

In [30]:

```
# Plotting Bar chart for Top 25 movies
#finalDF.groupby('Title').Rating.count().nlargest(25).plot(kind='barh')

top_25.plot(kind='barh', color=list('rgbkymc'), alpha=0.7, figsize=(8,10),stacked=False)
plt.xlabel("Viewership Ratings Count")
plt.ylabel("Movies (Top 25)")
plt.title("Top 25 movies by viewership rating")
plt.show()
```


In []:

```
#finalDF.groupby('Title').Rating.count().nsmallest(5)
```

```
In [31]:
```

```
# Subset the dataset wehere the UserId = 2696.
user_2696 = finalDF[finalDF['UserID']==2696]
user_2696
```

Out[31]:

	UserID	MovielD	Rating	Timestamp	Title	Genres	Gender	Age	Occupation	Zip- code
953847	2696	1270	2	973308676	Back to the Future (1985)	Comedy Sci-Fi	М	25	7	24210
953848	2696	1097	3	973308690	E.T. the Extra-Terrestrial (1982)	Children's Drama Fantasy Sci- Fi	М	25	7	24210
953849	2696	1617	4	973308842	L.A. Confidential (1997)	Crime Film- Noir Mystery Thriller	М	25	7	24210
953850	2696	800	5	973308842	Lone Star (1996)	Drama Mystery	М	25	7	24210
953851	2696	3386	1	973308842	JFK (1991)	Drama Mystery	М	25	7	24210
953852	2696	3176	4	973308865	Talented Mr. Ripley, The (1999)	Drama Mystery Thriller	М	25	7	24210
953853	2696	1711	4	973308904	Midnight in the Garden of Good and Evil (1997)	Comedy Crime Drama Mystery	М	25	7	24210
953854	2696	1589	3	973308865	Cop Land (1997)	Crime Drama Mystery	М	25	7	24210
953855	2696	1783	4	973308865	Palmetto (1998)	Film-Noir Mystery Thriller	М	25	7	24210
953856	2696	1892	4	973308904	Perfect Murder, A (1998)	Mystery Thriller	М	25	7	24210
953857	2696	1625	4	973308842	Game, The (1997)	Mystery Thriller	М	25	7	24210
953858	2696	1644	2	973308920	I Know What You Did Last Summer (1997)	Horror Mystery Thriller	М	25	7	24210
953859	2696	1645	4	973308904	Devil's Advocate, The (1997)	Crime Horror Mystery Thriller	М	25	7	24210
953860	2696	2389	4	973308710	Psycho (1998)	Crime Horror Thriller	М	25	7	24210
953861	2696	1805	4	973308886	Wild Things (1998)	Crime Drama Mystery Thriller	М	25	7	24210
953862	2696	1092	4	973308886	Basic Instinct (1992)	Mystery Thriller	М	25	7	24210
953863	2696	2713	1	973308710	Lake Placid (1999)	Horror Thriller	М	25	7	24210
953864	2696	1258	4	973308710	Shining, The (1980)	Horror	М	25	7	24210
953865	2696	2338	2	973308920	I Still Know What You Did Last Summer (1998)	Horror Mystery Thriller	М	25	7	24210
953866	2696	350	3	973308886	Client, The (1994)	Drama Mystery Thriller	М	25	7	24210

In [32]:

```
user_2696.shape
```

Out[32]:

(20, 10)

In [33]:

```
#Find the ratings for all the movies reviewed by for a particular user of user id = 2696
#print(finalDF[finalDF.UserID == 2696].groupby('Rating')['MovieID'].count())
print(user_2696.groupby('Rating')['MovieID'].count())
```

Rating

- 1 2
- 2 3
- 3 3
- 4 11
- 5 1

Name: MovieID, dtype: int64

In [34]:

```
# Dat plot for above Solution
#finalDF[finalDF.UserID == 2696].groupby('Rating')['MovieID'].count().plot(kind='barh')
user_2696.groupby('Rating')['MovieID'].count().plot(kind='barh')
```

Out[34]:

<matplotlib.axes._subplots.AxesSubplot at 0x2bac533dac8>

In [35]:

```
# Plotting the ratings given by the user 2696
sns.countplot(x='Rating',data = user_2696).set_title('Ratings for movies by user 2696')
```

Out[35]:

Text(0.5, 1.0, 'Ratings for movies by user 2696')

In [36]:

```
# Creating a scatter plot for the movies reviewed by the user 2696.
plt.figure(figsize=(12,10))
plt.scatter(user_2696.Rating,user_2696.Title, alpha=.55)
plt.title("Movies and the ratings given by User 2696 ")
plt.ylabel("Movie Titles")
plt.xlabel("Ratings")
plt.grid(b=True,which='major')
plt.show()
```


Feature Engineering: Use column genres:

1. Find out all the unique genres (Hint: split the data in column genre making a list and then process the data to find out only the unique categories of genres)

```
In [38]:
finalDF.head()
```

Out[38]:

	UserID	MovielD	Rating	Timestamp	Title	Genres	Gender	Age	Occupation	Zip- code
0	1	1193	5	978300760	One Flew Over the Cuckoo's Nest (1975)	Drama	F	1	10	48067
1	1	661	3	978302109	James and the Giant Peach (1996)	Animation Children's Musical	F	1	10	48067
2	1	914	3	978301968	My Fair Lady (1964)	Musical Romance	F	1	10	48067
3	1	3408	4	978300275	Erin Brockovich (2000)	Drama	F	1	10	48067
4	1	2355	5	978824291	Bug's Life, A (1998)	Animation Children's Comedy	F	1	10	48067

```
In [39]:
```

```
# split the data in column genre making a list
finalDF.Genres.str.split('|').tolist()[:5]
```

Out[39]:

```
[['Drama'],
['Animation', "Children's", 'Musical'],
['Musical', 'Romance'],
['Drama'],
['Animation', "Children's", 'Comedy']]
```

In [40]:

```
#Find out all the unique genres
list1 = finalDF.Genres.str.split('|').tolist()
finalList = []
for i in list1:
    for j in i:
        finalList.append(j)
list(set(finalList))
```

Out[40]:

```
['Horror',
 'Drama',
 "Children's",
 'Animation',
'Romance',
'Comedy',
 'Action',
 'Thriller',
 'Mystery',
'Crime',
'Sci-Fi',
 'Film-Noir',
 'Documentary',
 'War',
 'Western',
'Musical',
'Adventure',
'Fantasy']
In [41]:
```

finalDF.info()

```
<class 'pandas.core.frame.DataFrame'>
Int64Index: 1000209 entries, 0 to 1000208
Data columns (total 10 columns):
 # Column
             Non-Null Count
                                  Dtype
___
    -----
                _____
   UserID
               1000209 non-null int64
1000209 non-null int64
 0
    MovieID
 1
               1000209 non-null int64
   Rating
 3 Timestamp 1000209 non-null int64
 4 Title
               1000209 non-null object
               1000209 non-null object
 5 Genres
               1000209 non-null object
1000209 non-null int64
    Gender
 7
    Age
 8 Occupation 1000209 non-null int64
 9 Zip-code 1000209 non-null object
dtypes: int64(6), object(4)
memory usage: 83.9+ MB
```

2. Create a separate column for each genre category with a one-hot encoding (1 and 0) whether or not the movie belongs to that genre.

In [42]:

```
#Create a separate column for each genre category with a one-hot encoding ( 1 and 0)
finalOHEDF = pd.concat([finalDF.Genres.str.get_dummies('|') , finalDF.iloc[:,[0,1,3,4,5,6,7,8,9]]]
axis=1)
4
```

In [43]:

```
finalOHEDF.head()
```

Out[43]:

	Action	Adventure	Animation	Children's	Comedy	Crime	Documentary	Drama	Fantasy	Film- Noir	 Western	UserID	MovielD	Tin
(0	0	0	0	0	0	0	1	0	0	 0	1	1193	97
	I 0	0	1	1	0	0	0	0	0	0	 0	1	661	97
:	2 0	0	0	0	0	0	0	0	0	0	 0	1	914	97

```
        3 Action
        Adventure
        Animation
        Children's
        Comedy
        Crime
        Documentary
        Drama
        Fantasy
        Filmy Noir
        ...
        Western
        UserID
        Mo3408 Tin

        4
        0
        0
        1
        1
        1
        0
        0
        0
        0
        ...
        0
        1
        2355
        97

        5 rows × 27 columns
        Image: Property of the control of the
```

3. Determine the features affecting the ratings of any particular movie.

```
In [44]:
```

```
#Determine the features affecting the ratings of any particular movie.
#
# Hint: Perform Chi-square test between Xfeature v/s ratings ---- To do feature elimination
#
# and finalize your feature
#
# final numpy array called 'feature'

from scipy.stats import chi2_contingency

ctTitle = pd.crosstab(finalDF.Title,finalDF.Rating)
ctGenres = pd.crosstab(finalDF.Genres,finalDF.Rating)
ctGender = pd.crosstab(finalDF.Gender,finalDF.Rating)
ctAge = pd.crosstab(finalDF.Age,finalDF.Rating)
ctOccupation = pd.crosstab(finalDF.Occupation,finalDF.Rating)
ctZipCode = pd.crosstab(finalDF['Zip-code'],finalDF.Rating)
```

In [45]:

```
ctTitle.index.name
```

Out[45]:

'Title'

In [46]:

```
from scipy.stats import chi2_contingency

list1 = [ctTitle,ctGenres,ctGender,ctAge,ctOccupation,ctZipCode]

for i in list1:
    stat,pvalue,dof,expected_R = chi2_contingency(i)
    if pvalue <= 0.05:
        print("Alternate Hypothesis passed. {} and Rating have Relationship".format(i.index.name))
    else:
        print("Null hypothesis passed. {} and Profit doesnot have Relationship".format(i.index.name))
</pre>
```

```
Alternate Hypothesis passed. Title and Rating have Relationship Alternate Hypothesis passed. Genres and Rating have Relationship Alternate Hypothesis passed. Gender and Rating have Relationship Alternate Hypothesis passed. Age and Rating have Relationship Alternate Hypothesis passed. Occupation and Rating have Relationship Alternate Hypothesis passed. Zip-code and Rating have Relationship
```

In [48]:

```
finalDF.head()
```

Out[48]:

	UserID	MovielD	Rating	Timestamp	Title	Genres	Gender	Age	Occupation	Zip- code
0	1	1193	5	978300760	One Flew Over the Cuckoo's Nest (1975)	Drama	F	1	10	48067
1	1	661	3	978302109	James and the Giant Peach	Animation Children's Musical	F	1	10	48067

(1000) UserID MovielD Rating Timestamp Musical|Romance Gender Age Occupation My Fair Lady (1964) 3 Erin Brockovich (2000) 3408 978300275 Drama 10 48067 Bug's Life, A (1998) Animation|Children's|Comedy 2355 5 978824291 F 10 48067

In [49]:

```
finalDF.groupby(['Title','Rating']).size()
```

Out[49]:

Title		Rating	
\$1,000,000 Duck	(1971)	1	3
		2	8
		3	15
		4	7
		5	4
eXistenZ (1999)		1	43
		2	61
		3	109
		4	142
		5	55

Length: 16912, dtype: int64

In [50]:

```
dfGenderAffecting = finalDF.groupby('Gender').size().sort_values(ascending=False)[:25]
dfGenderAffecting
```

Out[50]:

Gender

M 753769 F 246440 dtype: int64

In [51]:

```
finalDF.groupby(['Gender','Rating']).size().unstack().plot(kind='bar',stacked=False,legend=True)
plt.show()
```


In [52]:

In [53]:

```
finalDF.groupby(["Occupation", "Rating"]).size().unstack().plot(kind='bar', stacked=False, legend=Tru
e, figsize=(20,5))
plt.show()
```


4. Develop an appropriate model to predict the movie ratings

In [54]:

```
# using above found feature numpy array and rating as label

features = finalDF.iloc[:,[1,6,7,8]]
label = finalDF.Rating
```

In [55]:

```
features.head()
```

Out[55]:

	MovielD	Gender	Age	Occupation
0	1193	F	1	10
1	661	F	1	10
2	914	F	1	10
3	3408	F	1	10
4	2355	F	1	10

In [56]:

```
from sklearn.preprocessing import LabelEncoder

stateLabelEncoder = LabelEncoder()
features.iloc[:,0] = stateLabelEncoder.fit_transform(features.iloc[:,0])
features.iloc[:,1] = stateLabelEncoder.fit_transform(features.iloc[:,1])
```

from sklearn.preprocessing import LabelEncoder from sklearn.preprocessing import OneHotEncoder titleLe = LabelEncoder() genderLe = LabelEncoder() features[:,0] = titleLe.fit_transform(features[:,0]) features[:,1] = genderLe.fit_transform(features[:,1]) features ohe = OneHotEncoder(categorical_features=[0,1]) features = ohe.fit_transform(features).toarray()

```
features.head()
Out[57]:
   MovieID Gender Age Occupation
     1104
                               10
1
      639
                               10
                0
                     1
      853
                0
                               10
                               10
 3
      3177
                0
                     1
      2162
                0
                               10
In [70]:
from sklearn.model selection import train test split
X train, X test, y train, y test = train test split(features,
                                                       label,
                                                        test size=0.2,
                                                        random state = 1)
In [71]:
# K Nearest Neighbors Classifier
from sklearn.neighbors import KNeighborsClassifier
knn model = KNeighborsClassifier(n neighbors = 3)
knn_model.fit(X_train,y_train)
knn predictions = knn model.predict(X test)
acc_knn = round(knn_model.score(X_train,y_train) * 100, 2)
acc_knn
Out[71]:
47.16
In [73]:
# creating a confusion matrix
from sklearn.metrics import confusion_matrix
cm_knn = confusion_matrix(y_test, knn_predictions)
In [74]:
knn predictions
Out[74]:
array([5, 5, 4, ..., 1, 1, 3], dtype=int64)
In [75]:
cm_knn
Out[75]:
array([[ 3021, 2560, 2962, 1979,
                                          708],
       [ 3773, 4659, 6466, 4901, 1681],
[ 5861, 9404, 16237, 14733, 5964],
[ 5190, 9688, 20280, 22353, 12206],
[ 2402, 4719, 11112, 13939, 13244]], dtype=int64)
In [76]:
# Decision Tree
```

```
|decision tree = DecisionTreeClassifier()
decision tree.fit(X train, y train)
dt_predict= decision_tree.predict(X_test)
acc decision tree = round(decision tree.score(X train, y train) * 100, 2)
acc decision tree
Out[76]:
59.77
In [ ]:
# Random Forest
random forest = RandomForestClassifier(n estimators=100)
random_forest.fit(X_train,y_train)
Y pred = random forest.predict(X test)
random_forest.score(X_train,y_train)
acc random forest = round(random_forest.score(X_train,y_train) * 100, 2)
acc random forest
In [78]:
# Logistic Regression
logreg = LogisticRegression()
logreg.fit(X train, y train)
Y_pred = logreg.predict(X_test)
acc log = round(logreg.score(X train, y train) * 100, 2)
acc log
Out[78]:
34.9
In [ ]:
# Support Vector Machines
svc = SVC()
svc.fit(X_train, y_train)
Y pred = svc.predict(X test)
acc_svc = round(svc.score(X_train, y_train) * 100, 2)
acc_svc
In [ ]:
# Gaussian Naive Bayes
gaussian = GaussianNB()
gaussian.fit(X train, y train)
Y pred = gaussian.predict(X test)
acc gaussian = round(gaussian.score(X train, y train) * 100, 2)
acc_gaussian
In [ ]:
# Perceptron
perceptron = Perceptron()
perceptron.fit(X train, y train)
Y pred = perceptron.predict(X test)
acc perceptron = round(perceptron.score(X train, y train) * 100, 2)
acc perceptron
In [ ]:
# Linear SVC
linear_svc = LinearSVC()
```

linear svc.fit(X train. v train)

```
Y_pred = linear_svc.predict(X_test)
acc_linear_svc = round(linear_svc.score(X_train, y_train) * 100, 2)
acc_linear_svc
In [ ]:
# Stochastic Gradient Descent
sgd = SGDClassifier()
sgd.fit(X_train, y_train)
Y pred = sgd.predict(X test)
acc sgd = round(sgd.score(X train, y train) * 100, 2)
acc_sgd
In [ ]:
models = pd.DataFrame({
    'Model': ['Support Vector Machines', 'KNN', 'Logistic Regression', 'Random Forest', 'Naive Baye
s', 'Perceptron',
             'Stochastic Gradient Decent', 'Linear SVC', 'Decision Tree'],
    'Score': [acc_svc, acc_knn, acc_log,
             acc random forest, acc gaussian, acc perceptron, acc sgd, acc linear svc,
acc decision_tree] })
models.sort values(by='Score', ascending=False)
                                                                                                 | ▶
In [ ]:
```

---- Thank You ----