Coloration de colliers

Léry Monnerat

2022

MPSI 2

- Introduction
 Position du problème
 Tentative informatique
- 2. Le secours de Burnside
- 3. Coloriage avec contraintes
- 4. Utilisation du théorème de Polya

- 5. Action de groupe
 Définition
 Orbites et stabilisateurs
 Formule de Burnside
- 6. Preuve du théorème de Polya

Introduction Position du problème

Tentative informatique

- 2. Le secours de Burnside
- 3. Coloriage avec contraintes
- 4. Utilisation du théorème de Polya

- Action de groupe
 Définition
 Orbites et stabilisateurs
 Formule de Burnside
- 6. Preuve du théorème de Polya

Problème

Déterminer le nombre de coloriage d'un collier de n perles avec p couleurs.

En notant $C = \{1, 2, \dots, p\}$ l'ensemble des couleurs, un coloriage peut être vu comme un élément de C^n , ou comme les sommets coloriés du polygone réguliers à n cotés. Problème ...

Figure 1: n = 5, p = 3

Diffèrentes "configurations" représentent le même collier (graphes induits isomorphes).

4/32

1. Introduction

Position du problème Tentative informatique

- 2. Le secours de Burnside
- 3. Coloriage avec contraintes
- 4. Utilisation du théorème de Polya

- Action de groupe
 Définition
 Orbites et stabilisateurs
 Formule de Burnside
- 6. Preuve du théorème de Polya

Un programme pour les générer (et les compter)

Idée : analogie avec le crible d'Eratosthène

Pour chaque collier $c \in E = C^n$, on calcule les colliers $(\neq c)$ équivalents par transformation et on les retire.

Quelles sont ces transformations pour n perles?

n rotations $i = r^0, r, r^2, \dots, r^{n-1}$ où *r* est la rotation d'angle $\frac{2\pi}{n}$.

n symétries $s, sr, sr^2, \dots, sr^{n-1}$ où s est une des symétries.

L'ensemble des ces transformations est le groupe diédral d'ordre n noté D_n (pour la composition).

Remarques sur l'implantation :

- Utilisation du logiciel https://www.sagemath.org/fr/ en python.
- On a représenté les transformations géométriques de D_n comme un sous-groupe de permutations de S_n.
 Par exemple, pour n = 6, D_n est engendré par [(1,2,3,4,5,6), (1,6)(2,5)(3,4)]
- La transformation d'un collier par un élément de D_n définit une action du groupe D_n sur l'ensemble des colliers.
- Les colliers équivalents (classe d'équivalence) s'appellent <u>une orbite</u> sous cette action.

Résultats

```
sage: collier(4,3)
{(0, 1, 0, 0), (2, 2, 1, 0), (1, 2, 1, 1), (2, 2, 2, 2), (2, 0, 2, 0), (2, 1, 0, 0),
(0, 0, 2, 2), (1, 2, 1, 2), (1, 2, 2, 1), (0, 2, 0, 1), (0, 1, 2, 1), (1, 0, 1, 0),
(0, 2, 1, 2), (0, 0, 0, 0), (0, 0, 2, 0), (1, 0, 0, 1), (0, 1, 1, 2), (2, 2, 2, 1),
(1, 1, 0, 1), (1, 1, 1, 1), (2, 0, 2, 2)}
```

n p	1	2	3	4
1	1	2	3	4
2	1	3	6	10
3	1	4	10	20
4	1	6	21	55
5	1	8	39	136
6	1	13	92	430
7	1	18	198	1300
8	1	30	498	4435

- Complexité en $O(n.p^{2n})$
- Possibilité de gagner du temps en utilisant une représentation arborescente des colliers.
- Comment faire le compte "à la main" ?

Le secours de Burnside

Intuitivement, plus les transformations ont de points fixes, plus les orbites sont petites, et donc plus grand sera leur nombre.

Plus précisémment, si n est le nombre d'orbites (classes de colliers), G le groupe diédral, et Fix(g) le nombre de colliers fixes par la transformation $g \in G$, la formule de Burnside s'écrit :

$$n = \frac{1}{|G|} \sum_{g \in G} |Fix(g)|$$

Il "suffit" donc de compter pour chaque transformation son nombre de points fixes (colliers invariants par la transformation associée).

L'idée centrale est qu'un coloriage est fixe par une transformation t si et seulement si chaque orbite de l'action de t (action du groupe engendré par t) sur les perles est monochrome.

^{1.} On peut le retrouver avec Burnside : $G=< i,r,\ldots,r^{d-1}>$. Seule i a n points fixe. Le nombre d'orbites est bien n/d

^{1.} On peut le retrouver avec Burnside : $G=< i,r,\ldots,r^{d-1}>$. Seule i a n points fixe. Le nombre d'orbites est bien n/d

- Le nombre d'éléments (de perles) dans une orbite est égale à l'ordre d de r, diviseur de n.
- Le nombre d'orbites ¹ est donc $\frac{n}{d}$.
- La couleur d'une orbite est libre.

^{1.} On peut le retrouver avec Burnside : $G = \langle i, r, \dots, r^{d-1} \rangle$. Seule i a n points fixe. Le nombre d'orbites est bien n/d

Soit r une rotation. Un coloriage est globlement fixe par r ssi chacune des perles d'une orbite de r a la même couleur :

- Le nombre d'éléments (de perles) dans une orbite est égale à l'ordre d de r, diviseur de n.
- Le nombre d'orbites ¹ est donc $\frac{n}{d}$.
- La couleur d'une orbite est libre.

Le nombre de colliers fixés par une rotation r d'ordre $d: p^{\frac{n}{d}}$.

Le nombre de rotation d'ordre d est $\varphi(d)$ (indicatrice d'Euler).

La contribution des rotations dans Burnside

$$\sum_{d|n} \varphi(d) p^{n/d}$$

^{1.} On peut le retrouver avec Burnside : $G = \langle i, r, \dots, r^{d-1} \rangle$. Seule i a n points fixe. Le nombre d'orbites est bien n/d

Soit s une symétrie. Comme pour les rotations, Il faut et il suffit que les perles de chaque orbite (ici longueur 1 ou 2) aient la même couleur.

Soit s une symétrie. Comme pour les rotations, Il faut et il suffit que les perles de chaque orbite (ici longueur 1 ou 2) aient la même couleur.

Soit s une symétrie. Comme pour les rotations, Il faut et il suffit que les perles de chaque orbite (ici longueur 1 ou 2) aient la même couleur.

- si n est impair, 1 perle est libre (appartient à l'axe), et $\frac{n-1}{2}$ paires de perles sont liées (même couleurs). Ce qui donne $p.p^{\frac{n-1}{2}} = p^{\frac{n+1}{2}}$.
- si n est pair, il y a $\frac{n}{2}$ symetries dont l'axe passe par 2 perles, et $\frac{n}{2}$ symétries dont l'axe ne passe par aucune des perles. Pour les symétries du premier type : $p^2 \cdot p^{\frac{n-2}{2}} = p^{\frac{n+2}{2}}$ Pour les autres symétries : $p^{\frac{n}{2}}$.

Soit s une symétrie. Comme pour les rotations, Il faut et il suffit que les perles de chaque orbite (ici longueur 1 ou 2) aient la même couleur.

- si n est impair, 1 perle est libre (appartient à l'axe), et $\frac{n-1}{2}$ paires de perles sont liées (même couleurs). Ce qui donne $p.p^{\frac{n-1}{2}} = p^{\frac{n+1}{2}}$.
- si n est pair, il y a $\frac{n}{2}$ symetries dont l'axe passe par 2 perles, et $\frac{n}{2}$ symétries dont l'axe ne passe par aucune des perles. Pour les symétries du premier type : $p^2.p^{\frac{n-2}{2}} = p^{\frac{n+2}{2}}$ Pour les autres symétries : $p^{\frac{n}{2}}$.

La contribution des symétries dans Burnside

$$\left\{ \begin{array}{ll} n \text{ impair} & np^{\frac{n+1}{2}} \\ n \text{ pair} & \frac{n}{2} \left(p^{\frac{n+2}{2}} + p^{\frac{n}{2}}\right) \end{array} \right.$$

Formule finale

Le nombre de colliers de n perles avec p couleurs :

n impair

$$\frac{1}{2n}\left(\sum_{d\mid n}\varphi(d)p^{\frac{n}{d}}+np^{\frac{n+1}{2}}\right)$$

n pair

$$\frac{1}{2n}\left(\sum_{d\mid n}\varphi(d)p^{\frac{n}{d}}+\frac{n}{2}\left(p^{\frac{n+2}{2}}+p^{\frac{n}{2}}\right)\right)\right)$$

Coloriage avec contraintes

Définition

On reprend le problème du coloriage d'un collier de n perles avec p couleurs.

On dira qu'un coloriage est de type

$$(n_1, n_2, \ldots, n_p)$$

ssi il y a n_1 perles de couleur 1, n_2 perle de couleur 2, etc

Le groupe D_n agit sur tous les coloriages d'un type donné. On peut donc utiliser la formule de Burnside.

Exemple classique dans la littérature

Nombre de colliers à 67 perles dont deux noires, sept bleues, deux jaunes et cinquante blanches?

Il faut donc compter tous les coloriages de type (2,7,2,50).

Les rotations

- L'identité fixe tous les colliers : $\binom{67}{2}$. $\binom{65}{7}$. $\binom{58}{2}$
- Les autres rotations sont toutes d'ordre 67, et ne possède qu'une orbite. Tout collier fixe est monochrome.

Les symétries

L'axe d'une symètrie passe par une seule perle, forcèment bleue (à cause de la parité). Les autres perles sont symétriques par rapport à l'axe, ce qui donne : $\binom{33}{1}$. $\binom{32}{1}$. $\binom{31}{3}$

La formule de Burnside nous donne le nombre de coloriage

$$\frac{1}{134}\left(\binom{67}{2}.\binom{65}{7}.\binom{58}{2}+67.\binom{33}{1}.\binom{32}{1}.\binom{31}{3}\right)$$

Utilisation du théorème de Polya

À un coloriage c, on associe son poids dans $\mathbb{Q}[X_1,\ldots,X_p]$

$$w(c) = X_1^{n_1} X_2^{n_2} \dots X_p^{n_p}$$

Tous les coloriages équivalents sous l'action d'un groupe G ont le même poids.

En notant $O(c_1), \ldots O(c_n)$ les classes de coloriage sous G, on définit l'inventaire des coloriages sous l'action de groupe G en posant

$$W = \sum_{i=1}^n w(c_i)$$

Par construction, le nombre de coloriage de type (n_1, n_2, \ldots, n_p) (à action près) est le coefficient de $X_1^{n_1}X_2^{n_2}\ldots X_p^{n_p}$ dans le polynôme w.

Notre problème peut donc se ramener à la détermination du polynôme W.

Théorème de Polya

$$W = \frac{1}{|G|} \sum_{g \in G} \prod_{i=1}^{n} (X_1^i + X_2^i + \ldots + X_p^i)^{e_i(g)}$$

où $e_i(g)$ est le nombre de cycles de longueur i de g (vue comme une permutation).

Rappel : toute permutation s'écrit comme un produit (unique) de cycle disjoints.

Implantation avec Sagemath

J'ai écrit une fonction qui calcule le polynôme W. Par exemple, pour n=12, et p=3 (trois couleurs)

```
sage: W=polvnome()
sage: W
W=x^12 + x^11*y + 6*x^10*y^2 + 12*x^9*y^3 + 29*x^8*y^4 + 38*x^7*y^5
+50*x^6*v^6 + 38*x^5*v^7 + 29*x^4*v^8 + 12*x^3*v^9 + 6*x^2*v^10
+ x*v^11 + v^12 + x^11*z + 6*x^10*v*z + 30*x^9*v^2*z + 85*x^8*v^3*z
+ 170*x^7*y^4*z + 236*x^6*y^5*z + 236*x^5*y^6*z + 170*x^4*y^7*z
+85*x^3*y^8*z + 30*x^2*y^9*z + 6*x*y^10*z + y^11*z + 6*x^10*z^2
+30*x^9*y*z^2 + 140*x^8*y^2*z^2 + 340*x^7*y^3*z^2 + 610*x^6*y^4*z^2
+708*x^5*v^5*z^2 + 610*x^4*v^6*z^2 + 340*x^3*v^7*z^2 + 140*x^2*v^8*z^2
+30*x*y^9*z^2 + 6*y^10*z^2 + 12*x^9*z^3 + 85*x^8*y*z^3 + 340*x^7*y^2*z^3
+781*x^6*y^3*z^3 + 1170*x^5*y^4*z^3 + 1170*x^4*y^5*z^3 + 781*x^3*y^6*z^3
+340*x^2*y^7*z^3 +85*x*y^8*z^3 +12*y^9*z^3 +29*x^8*z^4 +170*x^7*y*z^4
+ 610*x^6*v^2*z^4 + 1170*x^5*v^3*z^4 + 1493*x^4*v^4*z^4 + 1170*x^3*v^5*z^4
+610*x^2*y^6*z^4 + 170*x*y^7*z^4 + 29*y^8*z^4 + 38*x^7*z^5 + 236*x^6*y*z^5
+ 708*x^5*y^2*z^5 + 1170*x^4*y^3*z^5 + 1170*x^3*y^4*z^5 + 708*x^2*y^5*z^5
+ 236*x*y^6*z^5 + 38*y^7*z^5 + 50*x^6*z^6 + 236*x^5*y*z^6 + 610*x^4*y^2*z^6
+ 781*x^3*v^3*z^6 + 610*x^2*v^4*z^6 + 236*x*v^5*z^6 + 50*v^6*z^6 + 38*x^5*z^7
+ 170*x^4*y*z^7 + 340*x^3*y^2*z^7 + 340*x^2*y^3*z^7 + 170*x*y^4*z^7 + 38*y^5*z^7
+ 29*x^4*z^8 + 85*x^3*y*z^8 + 140*x^2*y^2*z^8 + 85*x*y^3*z^8 + 29*y^4*z^8
+ 12*x^3*z^9 + 30*x^2*y*z^9 + 30*x*y^2*z^9 + 12*y^3*z^9 + 6*x^2*z^10
+ 6*x*y*z^10 + 6*y^2*z^10 + x*z^11 + y*z^11 + z^12
```

Nombre de coloriages de type (5,3,4) :

sage: W.coefficient([5,3,4])

1170

Nombre de coloriages totals :

sage: W(1,1,1)

22913

pour n = 20, et p = 4

Nombre de coloriages de type (10,3,3,4) :

sage: W.coefficient([10,3,3,4])

27489127708

Nombre de coloriages totals :

sage: W(1,1,1,1)
177150973416848

- Introduction
 Position du problème
 Tentative informatique
- 2. Le secours de Burnside
- 3. Coloriage avec contraintes
- 4. Utilisation du théorème de Polya

5. Action de groupe Définition

Orbites et stabilisateurs Formule de Burnside

6. Preuve du théorème de Polya

Action de groupe Phack

Soient (G, *, e) un groupe et $E \neq \emptyset$ un ensemble (non vide).

Une action (à gauche) de G sur E est une application

$$\varphi : G \times E \rightarrow E$$
 $(g,x) \rightarrow g.x$

qui vérifie

- 1. $\forall x \in E$, e.x = x
- 2. $\forall (g,g') \in G^2, \ \forall x \in E, \quad g.(g'.x) = (g * g').x$

Remarques:

- 1. L'application $\varphi_g = \begin{pmatrix} E & \to & E \\ x & \to & g.x \end{pmatrix} \in \mathfrak{S}(E)$
- 2. L'application $g \to \varphi_g$ est un morphisme de groupe (de (G,*) dans $(\mathfrak{S}(E),\circ)$
- 3. Définir une action de G sur E revient à définir un tel morphisme.

- Introduction
 Position du problème
 Tentative informatique
- 2. Le secours de Burnside
- 3. Coloriage avec contraintes
- 4. Utilisation du théorème de Polya

5. Action de groupe

Définition

Orbites et stabilisateurs

Formule de Burnside

6. Preuve du théorème de Polya

Soit (G, *) qui agit (à gauche) sur E.

Relation d'équivalence \equiv_G

On définit sur E la relation d'équivalence \equiv_G :

$$x' \equiv_G x \Leftrightarrow_{def} \exists g \in G, \ x' = g.x$$

L'ensemble des classes d'équivalence de cette relation s'appelle les orbites de E sous l'action de G.

On notera $O(x) = \{g.x, g \in G\}$ la classe de x, appelée orbite de x.

Stabilisateur

Stabilisateur de x

$$S(x) = \{g \in G : g.x = x\}$$

On vérifie que S(x) est un sous-groupe de G.

On a évidemment un lien entre O(x) et S(x). Plus il y a "de monde" dans S(x), moins il y en a dans O(x).

Plus précisément :

$$\varphi_{\rm X}:\begin{array}{ccc} G & \to & O({\rm X}) \\ g & \to & g.{\rm X} \end{array} \quad {\rm est \ surjective. \ Pour \ l'injectivivit\'e}:$$

$$g'.x = g.x \Leftrightarrow (g^{-1} * g').x = x \Leftrightarrow g^{-1} * g' \in S(x) \Leftrightarrow g' \in g * S(x)$$

On peut factoriser φ_{X} en une bijection $\tilde{\varphi_{\mathsf{X}}}$

$$\tilde{\varphi}_{x}: \begin{array}{ccc} G/S(x) & \to & O(x) \\ \overline{g} & \to & g.x \end{array}$$

En particulier, si G et E sont finis, on a l'égalité (Lagrange)

$$\frac{|G|}{|S(x)|} = |O(x)|$$

Et si on a *n* orbites $O(x_1), \ldots, O(x_n)$ la formule des classes

$$|E| = \sum_{i} |O(x_i)| = |G| \sum_{i} \frac{1}{|S(x_i)|}$$

- Introduction
 Position du problème
 Tentative informatique
- 2. Le secours de Burnside
- 3. Coloriage avec contraintes
- 4. Utilisation du théorème de Polya

5. Action de groupe

Définition
Orbites et stabilisateurs

Formule de Burnside

6. Preuve du théorème de Polya

Soit (G,*) un groupe agissant sur un ensemble E.

Points fixes

Pour $g \in G$, on pose

$$Fix(g) = \{x \in E \mid g.x = x\}$$

Si G et E sont finis, le nombre n d'orbites de E sous l'action de G est

$$n = \frac{1}{|G|} \sum_{g \in G} |Fix(g)|$$

On considère
$$F = \{(g, x) \in G \times E \mid g.x = x\}$$

On dénombre F en :

		Ε				
		<i>x</i> ₁	<i>X</i> ₂	<i>X</i> 3		Xn
G	е					Xn
	g_1	<i>X</i> ₂	<i>X</i> ₃	<i>X</i> ₄		<i>x</i> ₁
	g ₂		<i>X</i> ₅	<i>X</i> 3		Xn
	:	:	:	:	:	:
	g _p	<i>X</i> ₄				Xn

• en colonne :

$$|F| = \sum_{x \in E} |S(x)|$$

• en ligne :

$$|F| = \sum_{g \in G} |Fix(g)|$$

Or $|S(x)| \cdot |O(x)| = |G|$. Soit $O(x_1), \dots, O(x_n)$ les n orbites.

$$\sum_{x \in E} |S(x)| = \sum_{i=1}^{n} \sum_{x \in O(x_i)} \underbrace{|S(x)|}_{= \frac{|G|}{|O(x_i)|}} = \sum_{i=1}^{n} \frac{|G|}{|O(x_i)|} |O(x_i)| = n|G|$$

Preuve du théorème de Polya

Comme dans la preuve du théorème de Burnside, on considère le produit cartésien $F = \{(g, x) \in G \times E \mid g.x = x\}$

$$\sum_{(g,x)\in F} w(x) = \sum_{g\in G} \sum_{x\in Fix(g)} w(x) \qquad \text{(sommation sur } g)$$

$$= \sum_{x\in E} \sum_{g\in S(x)} w(x) \qquad \text{(sommation sur } x)$$

$$= \sum_{x\in E} |S(x)| w(x)$$

On partionne la dernière somme avec les orbites de E sous G

$$\sum_{x \in E} |S(x)| w(x) = \sum_{x \in O(x_1)} |S(x)| w(x) + \ldots + \sum_{x \in O(x_n)} |S(x)| w(x)$$

Or dans dans chaque orbite, w est le même.

$$\sum_{x \in E} |S(x)| w(x) = w(x1) \sum_{x \in O(x_1)} |S(x)| + \ldots + w(x_n) \sum_{x \in O(x_n)} |S(x)|$$

Or

$$|S(x)|.|O(x)| = |G|$$

D'où

$$\sum_{x \in E} |S(x)|w(x) = w(x_1)|G| + \ldots + w(x_n)|G| = |G|.W$$

Et donc

$$W = \frac{1}{|G|} \sum_{g \in G} \sum_{x \in Fix(g)} w(x)$$

Fixons $g \in G$. Les coloriages x fixés par g sont les coloriages constants (même couleur) sur chaque cycle de g (argument déjà rencontré!).

Soient $g_1, g_2, \dots g_k$ les cycles de g. d'où

$$\sum_{x \in Fix(g)} w(x) = \sum_{c_1, c_2, \dots, c_k \in C} X_{c_1}^{|g_1|} \dots X_{c_k}^{|g_k|}$$

$$= \left(\sum_{c \in C} X_c^{|g_1|} \right) \dots \left(\sum_{c \in C} X_c^{|g_k|} \right)$$

$$= \prod_{i=1}^n (X_1^i + X_2^i + \dots + X_p^i)^{e_i(g)}$$

en considérant p couleurs.

Ressources

Bibliographie

- Basic Algebra, N.Jacobson
- https://fr.wikipedia.org/ pour le théorème de Pólya.

Outils numériques

- Beamer (thème metropolis: https://github.com/matze/mtheme)
- SageMath: https://www.sagemath.org/fr/

Mathématiciens cités

- Ératosthène (276 avjc-194 avjc)
- Lagrange (1736-1813)
- Euler (1707-1783)
- Burnside (1852-1927)
- Pólya (1885-1985)