COL202: Discrete Mathematical Structures

Spring 2023

Tutorial Sheet 2

Announced on: Jan 12 (Thurs)

- 1. For what values of $n \in \mathbb{N} \cup \{0\}$ is $2^n > n^2$? Use induction to show that the inequality holds for the reported values of n. Repeat the exercise for $2^n \leq n!$.
- 2. [Submission Problem for Group 1] A graph (or a network) is a structure consisting of a set of objects (also known as vertices or nodes) some pairs of which are connected via edges. Assume that there are no self-edges (or loops). See Figure 1 for an example.

Figure 1: A graph with five vertices v_1, v_2, v_3, v_4, v_5 , five edges $\{v_1, v_2\}, \{v_2, v_3\}, \{v_1, v_3\}, \{v_3, v_4\},$ and $\{v_3, v_5\}$, and maximum degree four.

The degree of a vertex is the number of other vertices that share an edge with it.

Say we are given a set of k colors. A graph is said to be k-colorable if each vertex can be assigned one of the k colors in a way that all neighboring vertices (i.e., any pair of vertices that share an edge) have different colors. (Some of the k colors may be left unused.)

Prove via induction that any graph with maximum degree d is (d+1)-colorable.

- 3. [Submission Problem for Group 2] Prove the following statements using induction:
 - a) The number of subsets of an n-element set is 2^n .
 - b) The number of ways of ranking n different objects is n!.
- 4. [Submission Problem for Group 3] The sequence of Fibonacci numbers $\{F_n\}_{n\in\mathbb{N}\cup\{0\}}$ is defined as follows:

$$F_0 = 0$$

$$F_1 = 1$$

$$\forall n \geqslant 2, F_n = F_{n-1} + F_{n-2}$$

Let r be a positive real number satisfying $r^2 = r + 1$. Using induction, show that for all $n \in \mathbb{N}$, $F_n \geqslant r^{n-2}$.

- 5. [Submission Problem for Group 4] Prove the following using induction:
 - a) For all $n \in \mathbb{N}$ such that $n \ge 3$, the sum of internal angles of a regular n-gon is 180(n-2).
 - b) For all $n \in \mathbb{N}$, the last digit in the decimal expansion of 6^n is 6.