8

NETWORK SECURITY

Adversary	Goal
Student	To have fun snooping on people's e-mail
Cracker	To test out someone's security system; steal data
Sales rep	To claim to represent all of Europe, not just Andorra
Businessman	To discover a competitor's strategic marketing plan
Ex-employee	To get revenge for being fired
Accountant	To embezzle money from a company
Stockbroker	To deny a promise made to a customer by e-mail
Con man	To steal credit card numbers for sale
Spy	To learn an enemy's military or industrial secrets
Terrorist	To steal germ warfare secrets

Fig. 8-1. Some people who cause security problems and why.

Fig. 8-2. The encryption model (for a symmetric-key cipher).

Fig. 8-3. A transposition cipher.

 Message 1:1001001
 0100000
 1101100
 1101111
 1110110
 1100101
 0100000
 1111001
 1101111
 1110101
 0101110

 Pad 1:
 1010010
 1001011
 1110010
 1010101
 100010
 1100011
 0001011
 0101010
 1010111
 1100110
 0101011

 Ciphertext:
 0011011
 1101011
 0011110
 0110101
 0100100
 0000110
 0101011
 1010011
 0111000
 0010011
 0000101

 Pad 2:
 1011110
 0000111
 1101001
 1010111
 0100110
 1000111
 0111010
 1101101
 1110110
 1110110

 Plaintext 2:
 1000101
 1101100
 1110010
 1110011
 1110011
 1100101
 1101001
 1110101
 1110011

Fig. 8-4. The use of a one-time pad for encryption and the possibility of getting any possible plaintext from the ciphertext by the use of some other pad.

Fig. 8-5. An example of quantum cryptography.

Fig. 8-6. Basic elements of product ciphers. (a) P-box. (b) S-box. (c) Product.

Fig. 8-7. The data encryption standard. (a) General outline. (b) Detail of one iteration. The circled + means exclusive OR.

Fig. 8-8. (a) Triple encryption using DES. (b) Decryption.

```
#define LENGTH 16
                                            /* # bytes in data block or key */
                                            /* number of rows in state */
#define NROWS 4
#define NCOLS 4
                                            /* number of columns in state */
#define ROUNDS 10
                                            /* number of iterations */
typedef unsigned char byte;
                                            /* unsigned 8-bit integer */
rijndael(byte plaintext[LENGTH], byte ciphertext[LENGTH], byte key[LENGTH])
 int r;
                                            /* loop index */
 byte state[NROWS][NCOLS];
                                            /* current state */
 struct {byte k[NROWS][NCOLS];} rk[ROUNDS + 1];
                                                          /* round keys */
 expand_key(key, rk);
                                            /* construct the round keys */
 copy_plaintext_to_state(state, plaintext);
                                            /* init current state */
 xor_roundkey_into_state(state, rk[0]);
                                            /* XOR key into state */
 for (r = 1; r \leq ROUNDS; r++) {
                                            /* apply S-box to each byte */
     substitute(state);
     rotate_rows(state);
                                            /* rotate row i by i bytes */
     if (r < ROUNDS) mix_columns(state); /* mix function */
     xor_roundkey_into_state(state, rk[r]); /* XOR key into state */
 copy_state_to_ciphertext(ciphertext, state);
                                                   /* return result */
```

Fig. 8-9. An outline of Rijndael.

Fig. 8-10. Creating of the *state* and *rk* arrays.

Fig. 8-11. The plaintext of a file encrypted as 16 DES blocks.

Fig. 8-12. Cipher block chaining. (a) Encryption. (b) Decryption.

Fig. 8-13. Cipher feedback mode. (a) Encryption. (b) Decryption.

Fig. 8-14. A stream cipher. (a) Encryption. (b) Decryption.

Fig. 8-15. Encryption using counter mode.

Cipher	Author	Key length	Comments	
Blowfish	Bruce Schneier	1-448 bits	Old and slow	
DES	IBM	56 bits	Too weak to use now	
IDEA	Massey and Xuejia	128 bits	Good, but patented	
RC4	Ronald Rivest	1-2048 bits	Caution: some keys are weak	
RC5	Ronald Rivest	128–256 bits	Good, but patented	
Rijndael	Daemen and Rijmen	128–256 bits	Best choice	
Serpent	Anderson, Biham, Knudsen	128–256 bits	Very strong	
Triple DES	IBM	168 bits	Second best choice	
Twofish	Bruce Schneier	128–256 bits	Very strong; widely used	

Fig. 8-16. Some common symmetric-key cryptographic algorithms.

Plaintext (P)		Ciphertext (C)			After decryption	
Symbolic	Numeric	<u>P</u> ³	P ³ (mod 33)	<u>C</u> ⁷	C ⁷ (mod 33)	Symbolic
S	19	6859	28	13492928512	19	S
U	21	9261	21	1801088541	21	U
Z	26	17576	20	1280000000	26	Z
Α	01	1	1	1	01	Α
N	14	2744	5	78125	14	N
N	14	2744	5	78125	14	N
Е	05	125	26	8031810176	05	Е
Sender's computation			on	Receiver's co	omputation	

Fig. 8-17. An example of the RSA algorithm.

Fig. 8-18. Digital signatures with Big Brother.

Fig. 8-19. Digital signatures using public-key cryptography.

Fig. 8-20. Digital signatures using message digests.

Fig. 8-21. Use of SHA-1 and RSA for signing nonsecret messages.

Fig. 8-22. (a) A message padded out to a multiple of 512 bits. (b) The output variables. (c) The word array.

Fig. 8-23. A way for Trudy to subvert public-key encryption.

I hereby certify that the public key 19836A8B03030CF83737E3837837FC3s87092827262643FFA82710382828282A belongs to

Robert John Smith 12345 University Avenue Berkeley, CA 94702 Birthday: July 4, 1958

Email: bob@superdupernet.com

SHA-1 hash of the above certificate with the CA's private key

Fig. 8-24. A possible certificate and its signed hash.

Field	Meaning
Version	Which version of X.509
Serial number	This number plus the CA's name uniquely identifies the certificate
Signature algorithm	The algorithm used to sign the certificate
Issuer	X.500 name of the CA
Validity period	The starting and ending times of the validity period
Subject name	The entity whose key is being certified
Public key	The subject's public key and the ID of the algorithm using it
Issuer ID	An optional ID uniquely identifying the certificate's issuer
Subject ID	An optional ID uniquely identifying the certificate's subject
Extensions	Many extensions have been defined
Signature	The certificate's signature (signed by the CA's private key)

Fig. 8-25. The basic fields of an X.509 certificate.

Fig. 8-26. (a) A hierarchical PKI. (b) A chain of certificates.

Fig. 8-27. The IPsec authentication header in transport mode for IPv4.

Fig. 8-28. (a) ESP in transport mode. (b) ESP in tunnel mode.

Fig. 8-29. A firewall consisting of two packet filters and an application gateway.

Fig. 8-30. (a) A leased-line private network. (b) A virtual private network.

Fig. 8-31. Packet encryption using WEP.

Fig. 8-32. Two-way authentication using a challenge-response protocol.

Fig. 8-33. A shortened two-way authentication protocol.

Fig. 8-34. The reflection attack.

Fig. 8-35. A reflection attack on the protocol of Fig. 8-0.

Fig. 8-36. Authentication using HMACs.

Fig. 8-37. The Diffie-Hellman key exchange.

Fig. 8-38. The bucket brigade or man-in-the-middle attack.

Fig. 8-39. A first attempt at an authentication protocol using a KDC.

Fig. 8-40. The Needham-Schroeder authentication protocol.

Fig. 8-41. The Otway-Rees authentication protocol (slightly simplified).

Fig. 8-42. The operation of Kerberos V4.

Fig. 8-43. Mutual authentication using public-key cryptography.

Fig. 8-44. PGP in operation for sending a message.

Fig. 8-45. A PGP message.

Fig. 8-46. (a) Normal situation. (b) An attack based on breaking into DNS and modifying Bob's record.

- 1. Look up foobar.trudy-the-intruder.com (to force it into the ISP's cache)
- 2. Look up www.trudy-the-intruder.com (to get the ISP's next sequence number)
- 3. Request for www.trudy-the-intruder.com (Carrying the ISP's next sequence number, n)
- 4. Quick like a bunny, look up bob.com (to force the ISP to query the com server in step 5)
- 5. Legitimate query for bob.com with seq = n+1
- 6. Trudy's forged answer: Bob is 42.9.9.9, seq = n+1
- 7. Real answer (rejected, too late)

Fig. 8-47. How Trudy spoofs Alice's ISP.

Domain name	Time to live	Class	Туре	Value
bob.com.	86400	IN	Α	36.1.2.3
bob.com.	86400	IN	KEY	3682793A7B73F731029CE2737D
bob.com.	86400	IN	SIG	86947503A8B848F5272E53930C

Fig. 8-48. An example RRSet for *bob.com*. The *KEY* record is Bob's public key. The *SIG* record is the top-level *com* server's signed hash of the *A* and *KEY* records to verify their authenticity.

Fig. 8-49. A self-certifying URL containing a hash of server's name and public key.

Application (HTTP)				
Security (SSL)				
Transport (TCP)				
Network (IP)				
Data link (PPP)				

Fig. 8-50. Layers (and protocols) for a home user browsing with SSL.

Fig. 8-51. A simplified version of the SSL connection establishment subprotocol.

Fig. 8-52. Data transmission using SSL.

Fig. 8-53. Applets can be interpreted by a Web browser.

Fig. 8-54. How Alice uses 3 remailers to send Bob a message.

Fig. 8-55. (a) Three zebras and a tree. (b) Three zebras, a tree, and the complete text of five plays by William Shakespeare.