## Lecture 15

Message Authentication

#### Message authentication

- message authentication is concerned with:
  - protecting the integrity of a message
  - validating identity of originator
  - non-repudiation of origin (dispute resolution)
- then three alternative functions used:
  - message encryption symmetric
  - message authentication code (MAC)
  - digital signature



## Message encryption

- Symmetric message encryption by itself also provides a measure of authentication
- if symmetric encryption is used then:
  - receiver knows sender must have created it
  - since only sender and receiver know key used
  - know content cannot be altered

## Homework 1 questions

Q1: Symmetric Block Cypher provides authentication and confidentiality

• Ans: True

## Message encryption

- if public-key encryption is used:
  - encryption provides no confidence of sender
  - since anyone potentially knows public-key
  - so, need to recognize corrupted messages
  - however, if
    - sender **signs** message using their private-key
    - then encrypts with recipients' public key
    - have both secrecy and authentication
  - but at cost of two public-key uses on message

# Reasons to avoid encryption authentication

- Encryption software is quite slow
- Encryption hardware costs are nonnegligible
- Encryption hardware is optimized toward large data sizes
- An encryption algorithm may be protected by a patent

#### **Hash Function**

#### Hash functions

- Hash function: h = H(M)
  - M can be of any size
  - h is always of fixed size
  - Typically, h << size(M)</li>

#### One use case - using hash function



- Initialization: A and B share a common secret, S<sub>AB</sub>
- Message, M
- A calculates  $MD_M = H(S_{AB} | | M)$
- B recalculates MD'<sub>M</sub>, and check
- $MD'_{M} = MD_{M}$

This scheme cannot provide authentication.