

Erratum: Radial conduction effects in the pulse method of measuring thermal diffusivity

A. B. Donaldson

Citation: Journal of Applied Physics 48, 849 (1977); doi: 10.1063/1.324304

View online: http://dx.doi.org/10.1063/1.324304

View Table of Contents: http://scitation.aip.org/content/aip/journal/jap/48/2?ver=pdfcov

Published by the AIP Publishing

Articles you may be interested in

Thermal diffusivity measurements at high temperatures by the radial flash method

J. Appl. Phys. 51, 336 (1980); 10.1063/1.327377

Thermal diffusivity measurement by a radial heat flow method

J. Appl. Phys. 46, 4584 (1975); 10.1063/1.321399

Radial conduction effects in the pulse method of measuring thermal diffusivity

J. Appl. Phys. 43, 4226 (1972); 10.1063/1.1660899

Pulse Method of Measuring Thermal Diffusivity at High Temperatures

J. Appl. Phys. 34, 926 (1963); 10.1063/1.1729564

Pulse Method for the Measurement of Thermal Diffusivity of Metals

J. Appl. Phys. **32**, 40 (1961); 10.1063/1.1735957

Providing the utmost in sensitivity, accuracy and resolution for applications in materials characterization and nano research

- Photovoltaics
- Ceramics
- Polymers
- DNA film structures
- Thin films
- Coatings
- Paints
- Packaging materials

Click here to learn more

Erratum: Radial conduction effects in the pulse method of measuring thermal diffusivity [J. Appl. Phys. 43, 4226 (1972)]

A. B. Donaldson

Sandia Laboratories, Albuquerque, New Mexico 87115

PACS numbers: 99.10. + g, 66.70. + f

Table I contains incorrect values and should be replaced by the following:

TABLE I. Values of dimensionless half-time as a function of H_1 and H_2 for various σ .

H_1	$H_2/H_1^{m a}$	$\tau_{1/2}(\sigma=\infty)$	$ au_{1/2}(\sigma=10)$	$\tau_{1/2}(\sigma=5)$	$ au_{1/2}(\sigma=1)$	$\tau_{1/2}(\sigma = 0.5)$	$\tau_{1/2}(\sigma=0.1)$
0.000	Finite	0.13878	0.13878	0.13867	0.09880	0.08100	0.07311
0.050	0.000	0.13548	0.13548	0.13547	0.09829	0.08068	0.07284
0.050	0.500	0.13417	0.13417	0.13416	0.09804	0.08053	0.07272
0.050	1.000	0.13298	0.13298	0.13298	0.09779	0.08037	0.07259
0.100	0,000	0.13305	0.13305	0.13305	0.09780	0.08037	0.07259
0.100	0.500	0.13087	0.13087	0.13087	0.09731	0.08007	0.07234
0.100	1.000	0.12895	0.12895	0.12895	0.09684	0.07977	0.07209
0.500	0.000	0.12113	0.12113	0.12113	0.09446	0.07822	0.07080
0.500	0.500	0.11518	0.11518	0.11518	0.09240	0.07689	0.06970
0.500	1.000	0.11080	0.11080	0.11080	0.09065	0.07574	0.06873
1.000	0.000	0.11276	0.11276	0.11276	0.09127	0.07609	0.06901
1.000	0.500	0.10455	0.10455	0.10455	0.08781	0.07381	0.06710
1.000	1.000	0.09929	0.09929	0.09929	0.08518	0.07203	0.06558
5.000	0,000	0.09112	0.09112	0.09112	0.07988	0.06793	0.06189
5.000	0.500	0.07729	0.07729	0.07729	0.07140	0.06205	0.05689
5.000	1.000	0.07221	0.07221	0.07221	0.06767	0.05925	0.05442
10.000	0.000	0.08396	0.08396	0.08396	0.07513	0.06423	0.05455
10.000	0.500	0.06768	0.06768	0.06768	0.06409	0.05644	0.05177
10.000	1.000	0.06358	0.06358	0.06358	0.06078	0.05380	0.04908

a Values of $H_2 \leq H_1$ are taken since for similar surface and surroundings the heat loss is proportional to \overline{T}^3 , and $T_2 \leq T_1$.

Erratum: On the generalized theory of normal mode excitation in electromagnetic and polarized medium waveguides by external sources [J. Appl. Phys. 46, 1707 (1975)]

A. A. Barybin

California Institute of Technology, Pasadena, California 91109

PACS numbers: 01.85.+s, 84.40.Sr, 72.30.+q, 72.50.+b

Formulas (78) and (79) must be written $\int_{S_1} F_{1\tilde{n}}^{(b)} dS = \frac{\partial}{\partial z} \int_{S_1} (\mathbf{e}_z \cdot \mathbf{G}_{1\tilde{n}}) dS + \oint_{L_s} (\mathbf{n}_s^* \cdot \mathbf{G}_{1\tilde{n}}^*) dl,$

$$\int_{S_2} F_{1\tilde{n}}^{(b)} dS = \frac{\partial}{\partial z} \int_{S_2} (\mathbf{e}_z \cdot \mathbf{G}_{1\tilde{n}}) dS + \oint_{L_3} (\mathbf{n}_s^- \cdot \mathbf{G}_{1\tilde{n}}^+) dl. \tag{79}$$

In the subsequent formulas (80), (91), (96), (97), (101), (104), (107), (121), and (125) signs before the contour integrals as $\int_{L_3}(\ldots)dl$ must be replaced by opposite ones.

849

Journal of Applied Physics, Vol. 48, No. 2, February 1977

Copyright © 1977 American Institute of Physics