Oracle Machines

Beyond C.E. sets

Co-hosted by Paul

From before

• C.e. sets are those a **computer** can list

 Computable: a computer can list them, and can also list their complements

• The set $K = \{x : \varphi_x(x) \downarrow \}$ is c.e. but not computable

• \overline{K} (the complement of K) is not c.e.

About c.e. sets

• We first defined a set to be c.e. if (means iff) it is empty or the range of a computable function

 We showed that a set is c.e. iff it is the range of a partial computable function

• We also showed that a set is c.e. iff it is the **domain** of a partial computable function

Proof:

Let A be a c.e. set

If A is empty, then A is the domain of the empty function given by the program which doesn't halt on any input

If A is not empty, then it is the range of a computable function, say $A = \{f(0), f(1), f(2), ...\}$.

Let $\varphi(x) = \mu y [f(y) = x]$. Then $dom(\varphi) = A$

Let's analyze the last definition of C.E.

• A is c.e. iff it is the domain of a p.c. function *f*.

• Given any x, if x is in A, then the $f(x) \downarrow$, and if x is not in A, then $f(x) \uparrow$

• So basically, we have a program that will confirm that YES if x is in A, and otherwise the program tells us nothing

Notation

ullet The domain of ϕ_e is denoted by W_e

• W_e is the e-th c.e. set

C.E. and 3

 There is a strong relationship between c.e. and the existential quantifier

• If A is c.e., then for some e, x is in A iff $\exists s \ \varphi_{e,s}(x) \downarrow$

Where, roughly, $\varphi_{e,s}(x) \downarrow$ means that the computation halts within s steps (or stages).

• Note that $\{(e,s,x): \varphi_{e,s}(x)\downarrow\}$ can be regarded as a relation $R(x_1,x_2,x_3)$

Computable Relations

- Recall, a binary relation over sets X, Y is a subset of the Cartesian product $X \times Y$
- More generally, an n-ary relation over sets X_1, \dots, X_n is a subset of $X_1 \times \dots \times X_n$
- An *n*-ary relation on $\mathbb N$ is one for which $X_1=\cdots=X_n=\mathbb N$
- A relation on $\mathbb N$ is computable if it is computable as a set
- We say a relation is c.e. if it is c.e. as a set.

Example

• $R = \{(x, y, z) \in \mathbb{N}^3 : x < y \text{ and } z = 2x\}$

We have R(1,2,2), R(0,3,0), R(10,11,20)But $\neg R(0,2,2)$, $\neg R(0,0,0)$, $\neg R(10,11,11)$

Here ¬ means negation

- R is clearly computable. There's a program which when given any tuple (a,b,c) it can decide if R(a,b,c) or $\neg R(a,b,c)$
- Note that we can regard relations as Boolean valued functions

• $R_2 = \{(x, e) \in \mathbb{N}^2 : \varphi_e(x) \downarrow \}$

Not computable (why?)

But it is c.e. because, for any given values a,b, if $R_2(a,b)$ then we can confirm that computably

Special Cases

Note that a function is a binary relation

A non-empty subset of X is a unary (1-ary) relation on X.

There are 0-ary relations (TRUE and FALSE)

 There is the empty relation Ø which is the same as FALSE (holds for nothing)

Deeper analysis of $\varphi_e(x) \downarrow$

• We assume s > x and s > e when we write $\varphi_{e,s}(x) \downarrow$

• When we write $\varphi_{e,s}(x) \downarrow = y$, we assume that s is greater than x,e,y

• Recall that the following ternary relation is computable $\{(e,s,x): \varphi_{e,s}(x)\downarrow\}$

One can prove that:

A relation R(x,y) is c.e. iff there exists a computable relation C(a,x,y)

such that for all x,y

$$R(x,y) \iff \exists a \ C(a,x,y)$$

The Arithmetical Hierarchy

• We use Σ_1^0 to denote the class of relations (formulas) obtained as $\exists \bar{a} \ C(\bar{a}, \bar{x})$ using some computable relation C

• Π_1^0 denotes the class of relations (formulas) obtained as $\forall \bar{a} \ C(\bar{a}, \bar{x})$ using some computable relation C

• Note that if a set is Σ^0_1 then its complement is Π^0_1 , and vice versa

Going higher

• Π_2^0 denotes the class of relations (formulas) obtained as $\forall \bar{a} \exists \bar{b} \ C(\bar{a}, \bar{b}, \bar{x})$ using some computable relation C Or equivalently $\forall \bar{a} \ D(\bar{a}, \bar{x})$ for some Σ_1^0 relation D

• Σ^0_2 denotes the class of relations (formulas) obtained as $\exists \bar{a} \forall \bar{b} \ C(\bar{a}, \bar{b}, \bar{x})$ using some computable relation C

In general

• Π^0_{n+1} denotes the class of relations (formulas) obtained as $\forall \bar{a} \ D(\bar{a}, \bar{x})$ for some Σ^0_n relation D

• Σ_{n+1}^0 denotes the class of relations (formulas) obtained as $\exists \bar{a} \ D(\bar{a}, \bar{x})$ for some Π_n^0 relation D

• Note that, for all n, $\Sigma_n^0 \cup \Pi_n^0 \subsetneq \Sigma_{n+1}^0 \cap \Pi_{n+1}^0$

Recall we mentioned that

A relation R(x, y) is c.e. iff there exists a computable relation C(a, x, y) such that for all x, y

$$R(x,y) \iff \exists a \ C(a,x,y)$$

• This means that C.E. = Σ_1^0

• BTW, Computable = $\Sigma_0^0 = \Pi_0^0$

The Normal Form Theorem for C.E. Sets

• The following are equivalent:

- A is c.e.
- A is Σ_1^0
- A = W_e for some $e \in \mathbb{N}$

Relative Computability

• We have just seen that C.E. = Σ_1^0

• How about Σ_2^0 ? Or more generally, Σ_{n+1}^0 ?

Are they c.e. in some sense w.r.t. some higher level?

 Indeed, it is all about the computable function which enumerates the set

Oracle Machines and Relative Computability

 Imagine a function which is computable but only after giving it certain knowledge

 Imagine its program which allows using the indicator function of some set A (not necessarily computable)

Such a function is said to be (relatively) computable from A

Turing Reducibility

• A set S is said to be Turing reducible to a set B ($S \leq_T B$) if the characteristic function of S is computable from B.

• If $S \leq_T B$ and $S \geq_T B$, then we write $S \equiv_T B$ and say they are Turing equivalent

• \leq_T is a partial order, and \equiv_T is an equivalence relation

Turing Degrees

• The equivalence classes corresponding to \equiv_T are called the Turing degrees (often denoted by bold lowercase **a**, **b**, **c**, ..)

They are also known as degrees of unsolvability

All computable sets have the same Turing degree (why?)

Structure of the set of Turing Degrees

Partially ordered but not linearly ordered (there are incomparable degrees)

 There is a smallest Turing degree which is the Turing degree of the empty set (which is also the Turing degree of any computable set)

Notation

• P_e^A , $\mathbf{\Phi}_e^A$, W_e^A

Program with oracle A, p.c. function with oracle A, A-c.e. set

How to get higher degrees? (the Jump operator)

Given a set A, consider the halting set with respect to A:

$$A' = K^A = \{x : \mathbf{\Phi}_{x}^{A}(x) \downarrow \} = \{x : x \in W_{x}^{A}\}$$

- This set is called the *jump of A* and we have that $A <_T A'$
- $\emptyset' = K$
- $A \equiv_T B$ implies $A' \equiv_T B'$
- *A'* is *A-c.e.* but not *A-computable*

Iterating the jump

• Ø'', Ø''', ...

•
$$\emptyset^{(2)} = \emptyset''$$

• $\emptyset^{(n)}$

• $deg(\emptyset) = \mathbf{0}$

• deg(A)' is defined as deg(A')

• $\operatorname{deg}(\emptyset^{(n)}) = \mathbf{0}^{(n)}$

C.E./ Co-c.e.

Computable level

Other Reducibilities

• Note that Turing reducibility does not distinguish a set from its complement (for any set A, $A \equiv_T \bar{A}$)

• But clearly both sets can be very different in terms of computability properties. Example: K and \overline{K}

• Similar properties can be maintained by stronger reducibilities

m-reducibility (many-one reducibility)

• $A \leq_m B$ (A is m-reducible to B) if there exists a computable function f such that: for every $x \in \mathbb{N}$,

$$x \in A \text{ iff } f(x) \in B$$