Attribute-based encryption for cloud computing access control: A survey

单击此处添加副标题

前言与引入

- ABE全称Attribute-Based Encryption,译为属性基加密
 允许数据的所有者根据用户的属性集合来定义访问策略,只有满足策略的用户才可以解密数据
- · 分为KP-ABE (基于密钥策略属性基加密) 和CP-ABE (基于密文策略属性基加密),这篇**论文主要讲了CP-ABE的分类**

2.1 分类

2.2.1 安全评估标准

- 敌手的种类
 - · 选择性敌手:攻击者在攻击前选择攻击目标,攻击策略是静态的。(类似于IND-CPA)
 - 自适应敌手:攻击者根据系统反馈不断调整攻击策略,攻击是动态和自适应的。(类似于IND-CCA)
- •安全模型
 - 使用通用群和非通用群
 - 使用标准模型和随机oracle模型
- 复杂性假设
 - ABE的安全往往规约到复杂性假设,简洁形式的复杂性假设下的安全证明更困难

2.2.2 性能评估标准

- 通用标准
 - 系统密钥大小
 - 密文大小
 - 属性密钥大小
 - 计算开销
 - 群的构建 (素数群比复合群更安全也更难构造)
- 表达能力 (定义访问控制策略时的灵活性和精确度)
 - LSSS (线性秘密共享方案) : 这是一种比较高效的策略。
 - 树形策略: 利用树状结构来定义访问权限。
 - 阈值策略:设定一个阈值,满足一定条件的人才能访问。

3.1 基础CP-ABE 的应用

CSP: The Cloud Service Provider, 云服务提供者

AA: The Attribute Authority, 权威属性机构

DO: The Data Owner,数据所有者,他们定义访问控制策略并加密数据。

DU: The Data User,数据用户,他们基于自己的属性密钥来解密数据,前提是他们的属性与加密时嵌入的访问控制策略匹配。

3.2 基础CP-ABE 的句法

- $setup(1^{\lambda}) \rightarrow (PK, MK)$ 由权威属性机构生成系统公钥和私钥(万能钥匙)
- $KeyGen(PK, MK, L) \rightarrow SK_L$ 由权威属性机构生成属性密钥,其中 L 为属性列表
- $Encrypt(PK, M, \mathbb{A}) \to CT_{\mathbb{A}}$ 由数据所有者生成密文,其中 \mathbb{A} 是策略, M 是为待加密明文
- $Decrypt(PK, CT_A, SK_L) \to M$ or \bot 由数据用户解密密文,如果 L 匹配 A 则正确解密,否则解密失败

3.3 对抗模型和安全目标

- 权威属性机构完全可信,而云服务提供者会诚实地执行系统中的程序但也可能读取密文
- 数据机密性
 - 云服务提供者无法获取明文
 - L_A | = \mathbb{A} 的数据用户无法获取明文 (| =意为不匹配)
 - $L_{R} = A$ 的数据用户可以获取明文

A=((通信工程 AND 教师) OR (计算机科学AND 学生))

则 L_A ={通信工程, 学生, 小明} 无法访问

 L_B ={通信工程, 教师, 小红} 可以访问

图4

• 防串通性

多个未授权的数据用户和云服务提供者联合,企图结合各自的属性私钥进 行解密密文,他们也无法成功解密

对于 \mathbb{S}^4 的例子,即便 L_A 和 L_B 联合起来也无法对数据进行访问

3.4 研究现状

列举了19篇,看不过来了>___< survey工作量好大

贡献者	时间	贡献	安全性
Sahai 和 Waters	2005	利用 秘密共享技术 实现了两种 模糊身份基加密 ;实现了 阈值访问控制 ,允许使用模糊匹配(例如,允许一些近似的身份信息)	分别依赖于DMBDH和DBDH
Bethencourt	2007	首次提出了一种 基于树形访问策略 的CP-ABE解决方案,采用了一种新颖的 属性私钥随机化技术 ,实现 抗串通性	基于通用群模型,安全性较低
Cheung 和 Newport	2007	使用AND们策略,提供了选择明文攻击安全,但表达能力有限引入 层次属性 提升了性能。	IND-CCA安全
Goyal	2008	设计了一种基于树形结构的 CP-ABE 方案,同时解决 表达能力 和 安全性证明 问题;但 效率 低下	IND-CCA安全
Liang	2009	设计了一个新的有限CP-ABE方案,减小了计算负担但仍存在 效率 需要提高和 属性空间 小的问题	依赖于 DBDH
Lewko	2010	新的构造,涉及 复合群体 ,但是导致 效率问题	在三个新的静态假设下能够 实现完全安全性

3.5 方案对比

- 计算开销最高效: Yinghui Zhang, Dong Zheng, Xiaofeng Chen, Jin Li, and Hui Li. 2014. Computationally efficient ciphertext-policy attribute-based encryption with constant-size ciphertexts.
- LSSS基础方案中最高效的是: Qutaibah M. Malluhi, Abdullatif Shikfa, and Viet Cuong Trinh. 2017. A ciphertext-policy attribute-based encryption scheme with optimized ciphertext size and fast decryption.
- 完全安全性方案只有
 - Shashank Agrawal and Melissa Chase. 2017. FAME: Fast attribute-based message encryption.
 - Allison Lewko, Tatsuaki Okamoto, Amit Sahai, Katsuyuki Takashima, and Brent Waters. 2010. Fully secure functional encryption: Attribute-based encryption and (hierarchical) inner product encryption.
 - Allison Lewko and Brent Waters. 2012. New proof methods for attribute-based encryption: Achieving full security through selective techniques.

其中后两篇已在标准模型下证明安全

• 需要同时满足完全安全性、表达能力和解密效率,最优方案为: Shashank Agrawal and Melissa Chase. 2017. FAME: Fast attribute-based message encryption.

4.1 可撤销CP-ABE 的应用

RS: The Entity Revocation Server,实体撤销服务器,不可信,用于启用撤销机制

4.2 可撤销CP-ABE 的句法

- setup() 和 KeyGen() 与初始构造基本相同
- $Encrypt(PK, M, \mathbb{A}, \mathcal{R}) \to CT_{\mathbb{A}}$ 由数据所有者生成密文,其中 \mathcal{R} 是属性撤销信息(即指定撤销的时间涉及的身份属性)
- $UKeyGen(PK, MK, \mathcal{R}^{(k)}) \rightarrow (PP^{(k)}, UK^{(k)})$
- $CTUpdate(PK, CT_{\mathbb{A}}, UK^{(k)}, \mathcal{R}^{(k)}) \to CT'_{\mathbb{A}}$
- $Decrypt(PK, PP, CT_A, SK_L) \rightarrow M$ or ⊥ 由数据用户解密密文,如果 L 匹配 A 则正确解密,否则解密失败