MP23 @ II UWr 20 kwietnia 2023 r.

Lista zadań nr 8

Programowanie ze stanem

Poniższe trzy zadania rozwiąż w języku Racket.

Zadanie 1.

Zdefiniuj procedurę cycle!, która zapętla listę mutowalną, czyli przepina wskaźnik ogona ostatniego elementu na początek listy.

Zadanie 2.

Zdefiniuj procedurę mreverse!, która odwraca listę mutowalną "w miejscu", czyli nie tworzy nowych bloczków mcons-em, a odpowiednio przepina wskaźniki.

Zadanie 3. (3 pkt)

Wzorując się na implementacji kolejek z wykładu zaimplementuj kolejki dwukierunkowe, czyli takie w których można wstawiać i usuwać element zarówno z jednej jak i z drugiej strony kolejki. Do implementacji kolejek dwukierunkowych użyj list dwukierunkowych, czyli takich w których każdy węzeł ma wskaźnik na następny i poprzedni węzeł listy.

Twoja implementacja powinna znajdować się w osobnym module, a eksportowane procedury powinny mieć odpowiednie kontrakty.

MP23 @ II UWr Lista 8

Składnia abstrakcyjna

Poniższe zadania rozwiąż w języku Plait.

Zadanie 4.

Zmodyfikuj parser wyrażeń arytmetycznych z wykładu tak, by nie konstruował *abstrakcyjnego drzewa rozbioru* (drzewa typu Exp), ale od razu obliczał podane wyrażenie do liczby.

Zadanie 5. (2 pkt)

Rozszerz kalkulator z wykładu o operacje potęgowania, silni i liczby przeciwnej (unarny minus). W tym celu najpierw uzupełnij składnię abstrakcyjną i interpreter, a następnie rozbuduj parser, tak aby obsługiwał nowe konstrukcje.

Zadanie 6. (2 pkt)

Zaproponuj składnię abstrakcyjną fragmentu języka Racket i zdefiniuj ją jako odpowiedni typ danych w języku Plait. Na fragment języka Racket rozważany w tym zadaniu zawiera tylko wyrażenia (nie zawiera definicji), na które mogą składać się zmienne, liczby, lambda-wyrażenia, aplikacje, formy specjalne let, if i cond. Do reprezentacji zmiennych użyj typu Symbol.

Zadanie 7. (2 pkt)

Napisz parser dla języka z poprzedniego zadania. Podobnie jak w parserze z wykładu, załóż, że składnia konkretna jest reprezentowana jako S-wyrażenie.