后三题参考答案

2.(d) 求极限 $\lim_{n\to\infty} (3\sqrt{n})^{\frac{1}{2n}}$.

证明. 下面证明 $\lim_{n\to\infty} (3\sqrt{n})^{\frac{1}{2n}} = 1$. 由于 $(3\sqrt{n})^{\frac{1}{2n}} = 3^{\frac{1}{2n}} \cdot n^{\frac{1}{4n}}$, 因此只需证明

$$\lim_{n \to \infty} 3^{\frac{1}{2n}} = \lim_{n \to \infty} n^{\frac{1}{4n}} = 1.$$

首先, 对于 $\forall \xi > 0$, 令 $3^{\frac{1}{2n}} < 1 + \xi$, 即 $3 < (1 + \xi)^{2n}$, 注意到

$$(1+\xi)^{2n} = \sum_{k=0}^{2n} {2n \choose k} \xi^k \ge 1 + 2n\xi,$$

取 $N = [\frac{1}{\xi}]$, 则当 n > N 时, $1 < 3^{\frac{1}{2n}} < 1 + \xi$ 成立, 由极限定义, $\lim_{n \to \infty} 3^{\frac{1}{2n}} = 1$. 其次, 对于 $\forall \eta > 0$, 令 $n^{\frac{1}{4n}} < 1 + \eta$, 即 $n < (1 + \eta)^{4n}$, 由于

$$(1+\eta)^{4n} = \sum_{k=0}^{4n} {4n \choose k} \eta^k \ge 1 + 4n\eta + (8n^2 - 2n)\eta^2,$$

取 $M = \left[\frac{1}{8\eta^2}\right] + 1$,则当 n > M 时, $1 < n^{\frac{1}{4n}} < 1 + \eta$,因此 $\lim_{n \to \infty} n^{\frac{1}{4n}} = 1$.

3.(a) 叙述并证明单调收敛原理.

单调收敛原理:单调有界数列必收敛.

证明. 和教材 P50 证明相同. 设 $\{a_n\}$ 是单调且有界的数列, 不妨设 $\{a_n\}$ 单调递增 (若 $\{a_n\}$ 单调递减, 考虑 $\{-a_n\}$ 即可). 即

$$a_1 \leq a_2 \leq \cdots < M_1$$
.

则 M_1 是集合 $\{a_n\}_{n=1}^{\infty}$ 的上界, 由确界存在定理, $\{a_n\}_{n=1}^{\infty}$ 必有上确界 M_2 , 即 M_2 满足:

- (1) $\forall n \in \mathbb{N}^+, x_n \leq M_2$;
- (2) $\forall \xi > 0$, $\exists n$, $\notin \{ \{ x_n > M_2 \xi \} \}$.

现在证明 $\lim_{n\to\infty}=M_2$, 对于 $\forall \xi>0$, 由 (2) 可知 $\exists N$, 使得 $x_N>M_2-\xi$, 由于 $\{a_n\}$ 单调递增, $\forall n>N$, 都满足 $x_n>M_2-\xi$, 结合 (1),

$$|x_n - M_2| < \xi$$

 $\lim_{n \to \infty} = M_2,$

3.(b) 设函数 f(x) 在 \mathbb{R} 上定义. 若存在 $x_0 \in \mathbb{R}$, 使得 $f(x_0) = x_0$, 则称 x_0 是 f(x) 的不动点. 证明: 若 f(f(x)) 存在唯一的不动点, 则 f(x) 也存在唯一的不动点.

证明. 存在性. 记 $f^{(n)}(x) := f \circ f \circ \cdots \circ f(x)$. 设 x_0 是 $f^{(2)}$ 的唯一不动点,即 $f^{(2)}(x_0) = x_0$.则 $f^{(3)}(x_0) = f(x_0)$,因此 $f(x_0)$ 也是 $f^{(2)}$ 的不动点,由于 $f^{(2)}$ 的不动点唯一,则 $f(x_0) = x_0$,即 x_0 是 f(x) 的不动点.

唯一性. 假设 $\exists a,b \in \mathbb{R}$, 满足

$$f(a) = a, \ f(b) = b,$$

则 $f^{(2)}(a) = f(a) = a$, $f^{(2)}(b) = f(b) = b$, 因此 a, b 都是 $f^{(2)}$ 的不动点,由 $f^{(2)}$ 不动点唯一可知 a = b, 即 f(x) 的不动点是唯一的.