Type 2 Diabetes

Leveraging BRFSS Survey Data to Predict Diabetes With Known Risk Factors

Course: Data Mining Visualization

Instructor: Dr. Sherry Ni

By: Khushbuben Patel, Saiyida Zainab Jabeen, Dipti Paldhikar, and Kalyn Simmons

Table of contents

O1
Introduction

 $\frac{\mathbf{02}}{\mathbf{Data}}$

O3
Data Exploration

O4
Raw Dataset

O5
Processed Dataset

06 Problem Statement

WHAT IS TYPE 2 DIABETES?

Introduction

- Diabetes is a chronic disease that affects millions of people in the US, leading to serious complications that can reduce life expectancy.
- We, as healthcare professionals, are interested in analyzing the risk factors of diabetes to help prevent its onset.
- There are two types of diabetes: Type I and Type II, with Type II being the most common form.
- Our aim is to identify the risk variables in the provided dataset that are most effective in predicting risk for developing Type 2 Diabetes.

Symptoms of the disease

United States of America

The Behavioral Risk Factor Surveillance System (BRFSS) is the nation's premier system of health-related telephone surveys that collect state data about U.S. residents regarding their health-related risk behaviors, chronic health conditions, and use of preventive services. Established in 1984 with 15 states, BRFSS now collects data in all 50 states as well as the District of Columbia and three U.S. territories. BRFSS completes more than 400,000 adult interviews each year, making it the largest continuously conducted health survey system in the world

Description of Data

441,455 individuals and has 330 features

Source: Kaggle using dataset for the year 2015

253,680 survey responses with 22 feature variables

Source: We will be using diabetes_012_health_indicators_BRFSS2015.csv dataset

Target Variable: (Diabetes_012) with 3 classes

The data represented in the dataset is records from the telephonic survey which was collected annually by the CDC.

Source: Kaggle

Diabetes_012 Dataset

- Diabetes_012 is the target variable in the dataset.
- It has 3 classes: 0 is for no diabetes or only during pregnancy, 1 is for prediabetes, and 2 is for diabetes.

Diabetes_012	Frequency	Percent
Has no diabetes or only during pregnancy	8218	83.94%
Has diabetes	1606	16.06%
Is prediabetic	176	1.76%

Data Exploration Steps

It is the first step of data analysis which is used to explore and visualize data to uncover insights from the start to identify patterns to dig into more.

Selected relevant data and target variable for diabetes risk prediction

Removed irrelevant variables and converted "is prediabetic" to "nondiabetic" to make Target variable in binary format

Explored data in SAS Enterprise Miner, filtered out repetitive variables, and imputed missing values

Prepared data for accurate modeling to predict diabetes risk

Data Preprocessing Steps

It is a component of data preparation which describes any type of processing performed on raw data to prepare it for another data processing procedure

Problem, Goal and Constraints

- •The BRFSS survey from 2015 provided a dataset of 21 feature variables to predict the risk of developing diabetes.
- •The goal is to develop a prediction model that can accurately forecast an individual's risk of developing diabetes.
- •However, class imbalance in the dataset, with the majority of replies coming from class 0, presents a major obstacle.

Plan for Data Mining

- The most significant diabetes risk variables were selected using variables graph study and selection approaches.
- SAS Enterprise Miner, a data mining and predictive analytics tool, was used to build the model.
- The plan is broken down into four stages: data exploration and preprocessing, variable selection, model selection and evaluation.

Data Preprocessing Result

(none)		not Equal to		~][
Columns:	Label				Mining			Basic
Name	Hidden	Hide	Role	New Role	Level	New Level	New Order	New Report
Age	N	Default	Input	Default	Interval	Interval	Default	Default
AnyHealthcare	N	Default	Input	Default	Interval	Binary	Default	Default
BMI	N	Default	Input	Default	Interval	Interval	Default	Default
CholCheck	N	Default	Input	Default	Interval	Binary	Default	Default
Diabetes_012	N	Default	Input	Target	Interval	Binary	Default	Default
DiffWalk	N	Default	Input	Default	Interval	Binary	Default	Default
Education	N	Default	Input	Rejected	Interval	Binary	Default	Default
Fruits	N	Default	Input	Default	Interval	Binary	Default	Default
GenHith	N	Default	Input	Rejected	Interval	Binary	Default	Default
HeartDiseaseon	AN	Default	Input	Default	Interval	Binary	Default	Default
HighBP	N	Default	Input	Default	Interval	Binary	Default	Default
HighChol	N	Default	Input	Default	Interval	Binary	Default	Default
HvyAlcoholCons	MIN.	Default	Input	Default	Interval	Binary	Default	Default
Income	N	Default	Input	Default	Interval	Interval	Default	Default
MentHith	N	Default	Input	Default	Interval	Interval	Default	Default
NoDocbcCost	N	Default	Input	Rejected	Interval	Binary	Default	Default
PhysActivity	N	Default	Input	Default	Interval	Binary	Default	Default
PhysHlth	N	Default	Input	Default	Interval	Interval	Default	Default
Sex	N	Default	Input	Default	Interval	Binary	Default	Default
Smoker	N	Default	Input	Default	Interval	Binary	Default	Default
Stroke	N	Default	Input	Default	Interval	Binary	Default	Default
Veggies	N	Default	Input	Default	Interval	Binary	Default	Default

Model Analysis Model 1- Maximal Decision Tree

- The maximal tree had 38 leaves, with High BP as the root of the splitting tree.
- Subtree assessment model shows the tree was optimal until 7 leaves, after which it becomes overfitting.
- Misclassification rate for validation was 0.135855.
- However, due to the high level of overfitting, we decided to create another tree model to reduce the noise.
- Further analysis and modeling was conducted to develop an accurate and reliable model for predicting the outcome variable.

Model Analysis Model 2- Default Decision Tree

- Important Variables: High BP, DiffWalk, BMI, High Chol, HvyAlcohol
- Tree: 6 leaves, High BP as root
- Misclassification validation rate:
 0.134375
- Purest leaf: HighBP=0/missing, Diffwalk=0/missing
- High BP is the main contributing factor in developing Type 2 Diabetes
- Skipped Average Square Error Tree Model due to categorical target variable.

🛮 Variable Imp	ortance				
Variable Name	Label	Number of Splitting Rules	Importance	Validation Importance	Ratio of Validation to Training Importance
HighBP	HighBP	1	1	1	1
		1	0		
BMI	BMI		0	0	0
	HighChol	1	0	0	0
HvvAlc		1	0	0	0
HeartD	MentHIth	0	0	0	
	PhysHlth	0	0 0	0 0	
	AnvHe	ŏ	0	0	
Fruits	Fruits	ŏ	0	0	
	Sex	ŏ	0	0	
Age	Age	0	0	0	
	CholC	0	0	0	
	Income	0	0	0	
	PhysA	0	0	0	
Stroke	Stroke	0	0	0	
	Smoker	0	0	0	
Veggies	Veggies	U	0	0	

Model Analysis Model 2- Default Decision Tree

Model Analysis

Model 3- Max 3 Decision Tree

- High BP is best for first split
- Competing variables: DiffWalk, BMI, HighChol, Age
- 7 leaves in subtree assessment plot
- Validation misclassification rate:
 0.133861
- Purest leaf splitting rule:
 High BP=0 or missing High BP=1
- High BP is major factor in predicting type 2 Diabetes

Model Analysis

Model 3- Max 3 Decision Tree

Model Analysis

Model 4-Max 4 Decision Tree

- High BP, DiffWalk, BMI, HighChol, and Age were the selected variables.
 The tree had 8 leaves with High BP as the root.
- Purest leaf splitting rule: High BP=0 or missing High BP=1 BMI< 23.5.
- Validation misclassification rate: 0.134375.
- Next tree model was not pursued due to higher misclassification rate compared to Max 3 tree.

Model Analysis: Alternative Models

- •Two logistic regression models were chosen:
- (a) Default Regression
- (b) Stepwise Regression
- •Impute node was added to remove missing values and redundant variables.

Model Analysis Model 5- Default Regression Model

1.128

		Wald	
Effect	DF	Chi-Square	Pr > ChiSq
Age	1	292.2523	<.0001
AnyHealthcare	1	0.2469	0.6192
BMI	1	832.5025	<.0001
CholCheck	1	41.0074	<.0001
DiffWalk	1	55.1541	<.0001
Fruits	1	1.3601	0.2435
HeartDiseaseorAttack	1	39.0886	<.0001
HighBP	1	454.1584	<.0001
HighChol	1	323.3006	<.0001
HvyAlcoholConsump	1	60.6805	<.0001
Income	1	155.3997	<.0001
MentHlth	1	0.0022	0.9623
PhysActivity	1	15.1811	<.0001
PhysHlth	1	28.4158	<.0001
Sex	1	46.3744	<.0001
Smoker	1	0.0070	0.9334
Stroke	1	11.4499	0.0007

8.0578

0.0045

Veggies

Veggies

Type 3 Analysis of Effects

Odds Ratio I	Est	tima	ates	
				Point
Effect				Estimate
Age				1.132
AnyHealthcare	0	vs	1	1.042
BMI				1.080
CholCheck	0	vs	1	0.323
DiffWalk	0	vs	1	0.718
Fruits	0	vs	1	1.043
HeartDiseaseorAttack	0	vs	1	0.740
HighBP	0	vs	1	0.437
HighChol	0	vs	1	0.524
HvyAlcoholConsump	0	vs	1	2.145
Income				0.901
MentHlth				1.000
PhysActivity	0	٧s	1	1.162
PhysHlth				1.010
Sex	0	vs	1	0.786
Smoker	0	vs	1	0.997
Stroke	0	vs	1	0.801
	_		_	

0 vs 1

- •Type 3 Analysis of Effects shows Age, BMI, DiffWalk, HeartDiseaseAttack, HighBP, HighChol, HvyAlcoholConsump, Income, Phy sActivity, PhysHlth, and sex are most significant (p=< 0.0001). •Odds Ratio
- shows HvyAlcoholConcsump, PhysActivity, and Age have the most significant effect on the target variable.
- •Misclassification rate on validation set was 0.133606, and ASE was 0.099558.

Model 6- Default Regression Model Results

Fit Statistics						
Target	Target Label	Fit Statistics	Statistics Label	Train	Validation	Test
REP Diabetes 012	Replacement: Diabe	AIC_	Akaike's Information	23541.84		
REP Diabetes 012	Replacement: Diabe		Average Squared Er	0.099418		
REP Diabetes 012	Replacement: Diabe	AVERR	Average Error Funct	0.324039		
REP Diabetes 012 REP Diabetes 012	Replacement: Diabe Replacement: Diabe	DFE DFM	Degrees of Freedo Model Degrees of F	36248 19		
REP Diabetes 012	Replacement: Diabe		Total Degrees of Fr	36267	·	
REP Diabetes 012	Replacement: Diabe	Div'	Divisor for ASE	72534	31092	
REP Diabetes 012	Replacement: Diabe	ERR	Error Function	23503.84		
REP Diabetes 012	Replacement: Diabe	FPE	Final Prediction Error	0.099522		
REP Diabetes 012	Replacement: Diabe	MAX	Maximum Absolute	0.991175	0.990802	
REP Diabetes 012	Replacement: Diabe	MSE	Mean Square Error	0.09947	0.099558	
REP Diabetes 012	Replacement: Diabe	NOBS	Sum of Frequencies	36267	15546	
REP Diabetes 012	Replacement: Diabe	NW_	Number of Estimate	19		
REP Diabetes 012	Replacement: Diabe		Root Average Sum	0.315306		
REP Diabetes 012 REP Diabetes 012	Replacement: Diabe Replacement: Diabe	RFPE RMSE	Root Final Predictio Root Mean Squared	0.315472 0.315389		
REP Diabetes 012	Replacement: Diabe	SBC	Schwarz's Bavesian	23703.31	0.315528	
REP Diabetes 012	Replacement: Diabe		Sum of Squared Err	7211.195	3095.457	
REP Diabetes 012	Replacement: Diabe	SUMW	Sum of Case Weigh	72534		
REP Diabetes 012	Replacement: Diabe	MISC	Misclassification Rate	0.134751	0.133603	
TEL BIODERES OTE	Tropiaconiciti. Diabo	WIICO	Wilder a Common Trate	0.104701	0.100000	

Model Analysis Model 6- Stepwise Regression Model

Fit	Fit Statistics									
Target			Target Label		Fit Statistics	Statistics Label	Train	Validation		
REP	Diabetes	012	Replacement:	Diabe	AIC	Akaike's Information	23535.45			
REP			Replacement:			Average Squared Er		0.099575		
REP			Replacement:			Average Error Funct		0.324885		
			Replacement:		DFE	Degrees of Freedo	36252			
REP			Replacement:			Model Degrees of F	15			
REP			Replacement:			Total Degrees of Fr	36267			
REP			Replacement:			Divisor for ASE	72534	31092		
REP			Replacement:			Error Function	23505.45	10101.31		
REP			Replacement:			Final Prediction Error	0.099511			
REP			Replacement:			Maximum Absolute	0.991294	0.990995		
REP			Replacement:			Mean Square Error	0.099469	0.099575		
REP			Replacement:			Sum of Frequencies	36267	15546		
REP			Replacement:			Number of Estimate	15			
REP			Replacement:			Root Average Sum	0.315323	0.315555		
REP			Replacement:			Root Final Predictio	0.315453			
REP			Replacement:			Root Mean_Squared	0.315388	0.315555		
REP			Replacement:			Schwarz's Bayesian	23662.93			
REP			Replacement:			Sum of Squared Err	7211.933	3095,987		
REP			Replacement:			Sum of Case Weigh	72534	31092		
REP	Diabetes	012	Replacement:	Diabe	MISC	Misclassification Rate	0.134861	0.133732		

•Variables selected by the algorithm: Age,

BMI, CholCheck, DiffWalk, HeartDisea seAttack, HighBP, HighChol, HvyAlco holConsump, Income, PhysActivity, PhysHlth, Sex, and Veggies

- •Misclassification validation rate: 0.133732
- •ASE value: 0.099575

Comparison of Experimental results

Model Comparison Node was added, and all the models were assessed.

Comparison of Experimental results by Fit Statistics

- •Fit statistics measure how well a model fits a dataset by comparing the predicted outcome to the actual outcome.
- •The lower the misclassification rate, the better the model performs.
- •The regression model in the study showed slightly lower misclassification rates and Average squared errors compared to the tree models.
- •The Default Regression Model had the lowest validation misclassification rate of 0.1336, indicating that it is the best model for predicting an individual's risk of type 2 diabetes.
- •The Stepwise Regression was the second-best choice for the model.

Conclusions

- Age, Heavy Alcohol Consumption, and Physical Activity had the greatest effects on the target variable (diabetes_012)according to our best predictive model Logistic Regression
- The findings emphasize the importance of lifestyle variables and health indicators in determining the likelihood of developing Type 2 Diabetes.
- The research findings can be utilized to improve risk-taking individual prevention strategies and create more precise prediction models.

References

- Cowap, N. (2015). *Diabetes*. Mercury Learning & Information.
 <a href="https://eds.s.ebscohost.com/eds/ebookviewer/ebook/bmx1YmtfXzE4MDkxMDVfX0FO0?sid=f4975b1b-055e-427f-91e2-60ccb3be55c6@redis&vid=1&format=EB&rid=1
- Diabetes Research Institute Foundation. (2023, March 31). Diabetes Statistics.
 https://diabetesresearch.org/diabetes-statistics/#:~:text=37.3%20million%20people%2C%20or%2011.3,%2C%20economic%2C%20and%20ethnic%20backgrounds.
- Teboul, A. (2021, November 8). *Diabetes Health Indicators Dataset*. Kaggle. https://www.kaggle.com/datasets/alexteboul/diabetes-health-indicators-dataset
- Ullah, Z., Saleem, F., Jamjoom, M., Fakieh, B., Kateb, F., Ali, A. M., & Shah, B. (2022). Detecting High-Risk Factors and Early Diagnosis of Diabetes Using Machine Learning Methods. *Computational Intelligence & Neuroscience*, 2022, 1–10. https://doi.org/10.1155/2022/2557795

Do you have any questions?