

VISÃO COMPUTACIONAL

02.1 – Tipos de Aprendizado

INTRODUÇÃO

- Dentro da área de Aprendizado de Máquina, existem diferentes maneiras de a máquina aprender.
- Vimos que dentro da categorização, podemos classificar as imagens em rótulos (classes) já conhecidas ou separá-las em grupos (categorias) de imagens semelhantes.
- Essa diferença reflete a divisão básica dentro da área:
 - Aprendizado supervisionado
 - Aprendizado não-supervisionado
 - Aprendizado semi-supervisionado

APRENDIZADO SUPERVISIONADO

- O aprendizado supervisionado consiste em criar um modelo computacional que consiga mapear um conjunto de entradas em saídas predeterminadas.
 - Quando temos classes já definidas e queremos construir um modelo capaz de "dizer" a qual categoria a entrada está associada (com um grau de confiança).
- Esse tipo de abordagem deve ser utilizada quando é inviável construir um sistema baseado em regras do tipo se-então.
 - Seja porque são muitas (para escrever ou manter)
 - Ou porque não se tem conhecimento suficiente para construir tais regras.

APRENDIZADO SUPERVISIONADO

- O aprendizado supervisionado é a estratégia mais utilizada e estudada no contexto de AM.
- De uma maneira geral, temos o seguinte:
 - A partir de um conjunto de dados (rotulados) um modelo é criado através de um processo chamado de treinamento.
 - O treinamento consiste em modificar (corrigir) os parâmetros do modelo para que a entrada seja corretamente associada a saída correspondente (rótulo).
 - Esse processo é repetido até que um determinado critério seja atingido: taxa de erro, número de iterações, etc.

CLASSIFICAÇÃO DE IMAGENS

- No contexto de classificação de imagens, a base de dados normalmente consiste de imagens, cada uma já com seu rótulo (classe) determinada.
- O papel do algoritmo é, a partir de um ponto inicial, realizar correções nos seus parâmetros para que a saída do modelo seja igual ao rótulo da imagem.
- O grande desafio nesse ponto é determinar como representar uma imagem.
 - Em geral, não são utilizados simplesmente os valores de RGB dos pixels, uma vez que a intensidade de cor de cada ponto da imagem não é suficientemente informativo para que um algoritmo posso aprender.
 - Podemos, então, extrair características dessa imagem para representa-la.

BASE DE DADOS

Label	Rμ	Gμ	Βμ	Rσ	Gσ	Βσ
Cat	57.61	41.36	132.44	158.33	149.86	93.33
Cat	120.23	121.59	181.43	145.58	69.13	116.91
Cat	124.15	193.35	65.77	23.63	193.74	162.70
Dog	100.28	163.82	104.81	19.62	117.07	21.11
Dog	177.43	22.31	149.49	197.41	18.99	187.78
Dog	149.73	87.17	187.97	50.27	87.15	36.65

APRENDIZADO NÃO-SUPERVISIONADO

- Em contraste com o aprendizado supervisionado, o aprendizado não-supervisionado não conta com os rótulos associados aos dados de entrada.
- Com isso, não existe a ideia de correção do modelo com base nos erros de predição.
- Os algoritmos desse tipo de aprendizado estão focados, portanto, na dedução da estrutura presente nos dados de entrada.
- As técnicas de agrupamento são as mais utilizadas nessa categoria e o objetivo delas é separar os dados de entrada em grupos distintos de forma que os elementos dentro de um mesmo grupo sejam mais parecidos entre si do que elementos de grupos diferentes.

BASE DE DADOS

Rμ	Gμ	Вμ	Rσ	Gσ	Βσ
57.61	41.36	132.44	158.33	149.86	93.33
120.23	121.59	181.43	145.58	69.13	116.91
124.15	193.35	65.77	23.63	193.74	162.70
100.28	163.82	104.81	19.62	117.07	21.11
177.43	22.31	149.49	197.41	18.99	187.78
149.73	87.17	187.97	50.27	87.15	36.65

APRENDIZADO SEMI-SUPERVISIONADO

- Quando temos dentro do conjunto de dados entradas que são rotuladas e outras, não... o que fazer?
- Utilizamos uma estratégia híbrida de aprendizado supervisionado e não-supervisionado denominada de aprendizado semi-supervisionado.
 - O algoritmo utilizar a parte rotulada do conjunto de dados para rotular os demais pontos.
 - Existem muitas estratégias diferentes para realizar essa tarefa.
 - O objetivo principal é aumentar a quantidade de dados rotulados no conjunto de dados.

APRENDIZADO SEMI-SUPERVISIONADO

- Em visão computacional, o aprendizado semi-supervisionado é extremamente utilizado para "poupar" tempo ao rotular imagens dentro de um conjunto de dados.
 - Um conjunto pequeno de imagens pode ser rotulado manualmente e construir um modelo a partir desse conjunto para rotular as demais imagens.
 - Pode existir uma perda de acurácia no modelo final, então a relação custo-benefício deve ser avaliada.

BASE DE DADOS

Label	Rμ	Gμ	Вμ	Rσ	Gσ	Βσ
Cat	57.61	41.36	132.44	158.33	149.86	93.33
?	120.23	121.59	181.43	145.58	69.13	116.91
?	124.15	193.35	65.77	23.63	193.74	162.70
Dog	100.28	163.82	104.81	19.62	117.07	21.11
?	177.43	22.31	149.49	197.41	18.99	187.78
Dog	149.73	87.17	187.97	50.27	87.15	36.65

Referências

Richard Szeliski. Computer Vision: Algorithms and Applications. 2nd Edition. 2021. http://szeliski.org/Book/

Adrian Rosebrock. PylmageSearch Gurus Course. Disponível em: https://customers.pyimagesearch.com/