(Q5)

All odd numbers ≥ 3 . We are given that for a statement P(k):

- 1. P(3) is true.
- 2. For any k > 1, $P(k) \implies P(k+2)$ is true.

We can justify this using the principle of mathematical induction (PMI). Given a base case and an induction hypothesis, we can find all numbers n for which P(n) is true.

By (1), since P(3) is true but not P(1) (by (2)), we can take P(3) as our base case. Statement 2 tells us that $P(k) \implies P(k+2)$. This means for any given $k \ge 3$, e.g. $P(k) \implies P(k+2)$ (in this case $P(3) \implies P(5)$). By induction, we can continue this indefinitely for all odd natural numbers $P(5) \implies P(7)$, $P(7) \implies P(9)$, etc.).

Thus, by PMI, we can conclude that P(n) is true for all odd numbers $n \geq 3$.