Estimación de Parámetros

Jhon Jairo Padilla A., PhD.

Inferencia Estadística

- La inferencia estadística puede dividirse en dos áreas principales:
 - Estimación de Parámetros
 - Prueba de Hipótesis

Estimación de Parámetros

- Modelado de sistemas:
 - Se posee un conjunto de muestras de un experimento aleatorio
 - Se desea obtener un valor estimado de los parámetros del sistema (valores con respecto a la población total)
- A el procedimiento usado para obtener los parámetros de la población total se le llama Estimación de Parámetros.
- En este procedimiento se requiere determinar la cercanía de la estimación con la realidad. Para esto se utilizan los Intervalos de Confianza.

Estimación de Parámetros

Figure 6-3 Relationship between a population and a sample.

Prueba de Hipótesis

- Se desea comparar dos tratamientos (métodos, procedimientos, mecanismos, funciones, etc) diferentes.
- Ejemplo:
 - Se tiene un proceso químico.
 - Un ingeniero puede usar dos temperaturas diferentes en el mismo proceso (t₁, t₂)
 - El ingeniero conjetura que t₁ produce rendimientos más altos que t₂.
 - El ingeniero asume una hipótesis a comprobar: "El rendimiento medio utilizando la temperatura t_1 es mayor que el rendimiento medio utilizando la temperatura t_2 "
- No se hace énfasis en la estimación de los rendimientos; más bien, la atención se centra en sacar conclusiones acerca de una hipótesis propuesta.

ESTIMACION DE PARÁMETROS

Muestreo Aleatorio

- Se requiere tomar unas muestras de una población para obtener un modelo estadístico
- Recordemos:
 - Población: Totalidad de las observaciones que son motivo de interés
 - Tamaño de la población: Número de observaciones que hay en la población. Esta puede ser finita y discreta (Ej: Número de botellas con llenado incompleto en un día en una embotelladora) o infinita y contínua (Ej: Mediciones posibles del porcentaje de monóxido de carbono en un día en una calle).
 - A toda población se la puede modelar mediante una distribución de probabilidad.

Razones para Muestrear

- En la mayoría de ocasiones es imposible o poco práctico observar la población completa:
 - Podría requerirse gran cantidad de tiempo
 - Sería extremadamente costoso
 - Al momento de tomar una decisión podría no existir toda la población

Muestras

- Una muestra es un subconjunto de observaciones que se seleccionan de una población.
- Para que las inferencias sean válidas, la muestra debe ser representativa de la población.
- Error común: Tomar las muestras más sencillas de obtener. Como resultado habrá un error en el parámetro de interés (Hay Sesgos en la muestra).
- La toma de las muestras debe ser aleatoria.
- Cada observación de la muestra es el valor observado de una variable aleatoria.

Características del experimento

- Sea X una v.a. que representa el resultado de una selección de una observación de una población.
- Sea f(x) que denota la f.d.p. de X
- Supóngase que cada observación de la muestra se obtiene de forma independiente, bajo las mismas condiciones.
- Se hacen n observaciones. La v.a. Xi representa la observación en la repetición i. Se obtienen los valores numéricos x₁,x₂,...,x_n
- Las observaciones realizadas tienen una misma distribución de probabilidad ya que fueron tomadas de forma independiente y bajo condiciones idénticas
- Por tanto, la función de distribución de probabilidad conjunta es

$$f_{X_1X_2...X_n}(x_1, x_2, ...x_n) = f_{X_1}(x_1)f_{X_2}(x_2)....f_{X_n}(x_n)$$

Muestra aleatoria

- Las variables aleatorias (X₁, X₂, ...,X_n) son una muestra aleatoria de tamaño n si:
 - Las Xi son variables aleatorias independientes
 - Cada Xi tiene la misma distribución de probabilidad

Estadísticos

• Ejemplo:

- Supóngase que se quiere establecer la proporción de la población de Colombia que prefiere una marca de refresco particular.
- Sea p que representa el valor desconocido de esta proporción
- Se selecciona una muestra aleatoria para hacer una inferencia respecto a p (no es práctico preguntar a cada individuo de la población).
- Se obtiene una proporción observada p'
- p' se obtiene dividiendo el número de individuos que prefieren la marca de refresco entre el número total de la muestra (n).
- p' depende del número de valores observados (p' varía de una muestra a otra)
- Luego, p' es una variable aleatoria y se conoce como estadístico.

Definición

• Un **estadístico** es cualquier función de las observaciones de una muestra aleatoria.

• Ejemplos:

- Media muestral
- Varianza muestral
- Desviación estándar muestral

Estadísticos

- Un estadístico es una variable aleatoria
- Tiene una distribución de probabilidad, llamada
 Distribución de muestreo.
- Utilidad:
 - Se usan para obtener estimaciones puntuales de parámetros como: media poblacional y varianza poblacional.
- El parámetro de interés se representa por θ .
- El valor numérico de un estadístico muestral se usa como la **estimación puntual**.

Definición

- Sea X una v.a. con distribución de probabilidad f(x)
- Sea que f(x) está caracterizada por un parámetro desconocido θ .
- Sea X₁, X₂, ...,X_n una muestra aleatoria de tamaño n.
- Al estadístico $\hat{\Theta} = h(X_1, X_2, ..., X_n)$ se le llama un **estimador puntual** de θ .
- $\hat{\Theta}$ es una v.a., ya que es función de v.a.'s.
- Al seleccionar la muestra, $\hat{\Theta}$ toma un valor numérico particular $\hat{\theta}$ llamado **estimación puntual** de θ .

Ejemplo

- Suponga una v.a. X que tiene una distribución normal con una media desconocida μ (media poblacional).
- La *media muestral* $\hat{\mu}$ es un **estimador puntual** de la media poblacional desconocida. Es decir, $\hat{\mu} = \overline{X}$.
- Si $x_1 = 25$ entonces la estimación puntual de μ

$$x_2 = 30$$
 es $\hat{\mu} = \overline{x} = \frac{25 + 30 + 29 + 31}{4} = 28.75$ $x_4 = 31$

Parámetros comunes de estimación

Parámetro	Estimación razonable
Media de una población (μ)	Media muestral: $\hat{\mu} = \overline{X}$
Varianza de una población (σ^2) ó la desviación estándar (σ)	Varianza muestral: $\hat{\sigma}^2 = s^2$
Proporción p de elementos de una población que pertenecen a una clase de interés	Proporción muestral: $\hat{p} = \frac{x}{n}$ donde x es el número de elementos de una muestra de n elementos que pertenecen a la clase de interés
Diferencia de las medias de dos poblaciones: μ_1 - μ_2	$\hat{\mu}_1 - \hat{\mu}_2 = \overline{x}_1 - \overline{x}_2$
La diferencia en las proporciones de dos poblaciones: p_1 - p_2	$\hat{p}_1 - \hat{p}_2$

Objetivo de una estimación puntual

- Seleccionar, con base en los datos muestrales, un solo número que sea el valor más recomendable de θ .
- Nota: Puede haber varias opciones diferentes de estimadores de un parámetro.

• Ejemplo:

- Parámetro a estimar: Media de una población
- Posibles estimadores puntuales:
 - Media muestral
 - Mediana Muestral
 - Promedio de las observaciones menor y mayor de la muestra
- Cuál será el mejor? Se requieren métodos para comparar estimadores.

Ejemplo

- Suponga que se toma una muestra aleatoria de tamaño n=10 de una población normal y se obtienen los datos de la tabla. Posibles estimadores son:

 - Media muestral $\overline{x} = \frac{\sum x_i}{n} = 11.04$ Mediana muestral $\overline{x} = \frac{10.3 11.6}{2} = 10.95$
 - ¿Cuál es mejor?....

Valores de x
12.8
9.4
8.7
11.6
13.1
9.8
14.1
8.5
12.1
10.3

PROPIEDADES DE LOS ESTIMADORES

Estimador Insesgado

• El estimador puntual $\hat{\Theta}$ es un estimador insesgado del parámetro θ si

$$E(\hat{\Theta}) = \theta$$

 Si el estimador no es insesgado, entonces, a la diferencia,

$$E(\hat{\Theta}) - \theta$$

se le llama el **sesgo** del estimador $\hat{\Theta}$.

Varianza de un estimador puntual

- Los dos estimadores son insesgados (tienen su centro en el valor real del parámetro estimado)
- El estimador que tenga menor varianza tendrá mayores posibilidades de estar cerca del valor estimado.

Escogencia de un estimador

- Si se consideran todos los estimadores insesgados de θ , al que tiene la varianza menor se le llama **estimador insesgado de varianza mínima** (MVUE).
- El MVUE es el estimador que tiene mayores posibilidades de estar cerca de θ .
- Si se desconoce el MVUE, podría usarse el principio de varianza mínima para elegir entre los posibles estimadores.

Caso importante: Distribución Normal

• Si X_1 , X_2 , X_3 ,..., X_n es una muestra aleatoria de tamaño \mathbf{n} de una distribución normal con media μ y varianza σ^2 , entonces la media muestral es el MVUE de μ .

Error estándar

- Da una idea de la precisión de la estimación.
- El error estándar de un estimador $\hat{\Theta}$ es su desviación estándar, dada por $\sigma_{\hat{\Theta}} = \sqrt{V(\hat{\Theta})}$.
- Si el error estándar incluye parámetros desconocidos que pueden estimarse, entonces la sustitución de dichos valores en $\sigma_{\hat{\Theta}}$ produce un error estándar estimado, denotado por $\hat{\sigma}_{\hat{\Theta}}$.

Caso: Distribución Normal

• Suponga que se hace un muestreo de una distribución normal con media μ y varianza σ^2 . Entonces la distribución de \overline{X} es normal con media μ y varianza σ^2/n , por lo que el error estándar de \overline{X} es

$$\hat{\sigma}_{\bar{X}} = \frac{S}{\sqrt{n}}$$
 Desviación estándar muestral

 Además, se puede suponer razonablemente que el valor real del parámetro está entre dos errores estándar de la estimación

Ejemplo

- Un artículo del Journal of Heat Transfer describía un nuevo método para medir la conductividad térmica del hierro Armco. Utilizando una temperatura de 100°F y una alimentación de energía de 550W, se obtuvieron las 10 mediciones de la conductividad térmica de la tabla.
- Estimación puntual: $\overline{x} = \frac{\sum x_i}{n} = 41,924$
- Error estándar:

$$\hat{\sigma}_{\bar{X}} = \frac{s}{\sqrt{n}} = \frac{0,284}{\sqrt{10}} = 0,0898$$

Medidas de conductividad térmica	
41.60	
41.48	
42.34	
41.95	
41.86	
42.18	
41.72	
42.26	
41.81	
42.04	

El valor medio real estará en el Intervalo 41,924±0,1796 (media mas/menos dos veces el error estándar)

El error estándar es el 0,2% de la media

Error cuadrado medio de un estimador

- Cuando se utilizan estimadores sesgados, es importante el error cuadrado medio del estimador.
- El error cuadrado medio de un estimador $\hat{\Theta}$ del parámetro θ se define como

$$MSE(\hat{\Theta}) = E(\hat{\Theta} - \theta)^{2}$$
$$MSE(\hat{\Theta}) = V(\hat{\Theta}) + sesgo^{2}$$

Criterio de comparación

- El error cuadrado medio es un criterio de comparación de dos estimadores.
- Sean $\hat{\Theta}_1$ y $\hat{\Theta}_2$ dos estimadores del parámetro θ y sean MSE($\hat{\Theta}_1$) y MSE($\hat{\Theta}_2$) los errores cuadrados medios de θ_1 y θ_2 . Entonces la eficiencia relativa de $\hat{\Theta}_2$ respecto a $\hat{\Theta}_1$ se define como $\frac{MSE(\hat{\Theta}_1)}{MSE(\hat{\Theta}_2)}$
- Si esta relación es menor que 1, se concluye que el estimador uno es más eficiente que el dos

Utilidad de estimadores sesgados

Figure 7-6 A biased estimator $\hat{\Theta}_1$ that has smaller variance than the unbiased estimator $\hat{\Theta}_2$.

Método de Máxima Verosimilitud

- Es un método para obtener un estimador puntual de un parámetro
- Es un método genérico que puede ser aplicado a cualquier parámetro con cualquier distribución de probabilidad

Definición

- Suponga que X es una v.a. con una distribución de probabilidad $f(x;\theta)$., donde θ es un solo parámetro desconocido.
- Sean x₁, x₂, ..., x_n los valores observados en una muestra aleatoria de tamaño n.
- La función de máxima verosimilitud de la muestra es

$$L(\theta) = f(x_1; \theta) f(x_2; \theta) ... f(x_n; \theta)$$

- Obsérvese que la función de verosimilitud es ahora función exclusiva del parámetro desconocido θ .
- El estimador de máxima verosimilitud de θ es el valor de θ que maximiza la función de verosimilitud $L(\theta)$.

Ejemplo: variable discreta

 Sea X una v.a de Bernoulli. La función de masa de probabilidad es

$$f(x; p) = \begin{cases} p^{x} (1-p)^{1-x}; x = 0, 1\\ 0; otrocaso \end{cases}$$

• Estimar el parámetro p.

Ejemplo: variable contínua

- Sea que X tenga una distribución normal con media desconocida y varianza conocida.
- Estimar la media para una muestra aleatoria de tamaño n.

Propiedades del estimador de máxima verosimilitud

- Bajo condiciones muy generales no restrictivas, cuando el tamaño de la muestra n es grande y si $\hat{\Theta}$ es el estimador de máxima verosimilitud del parámetro θ , entonces
 - $-\hat{\Theta}$ es un estimador aproximadamente insesgado

 - Â tiene una distribución normal aproximada
- Por tanto, un estimador de máxima verosimilitud es aproximadamente un MVUE
- Para usar la estimación de máxima verosimilitud, la distribución de probabilidad debe ser conocida.

Distribuciones de muestreo

- Recordemos que un estadístico es una v.a.
- A la distribución de probabilidad de un estadístico se le llama Distribución de muestreo.
- La distribución de muestreo de un estadístico depende de:
 - La distribución de la población,
 - Del tamaño de la muestra
 - y del método utilizado para seleccionar la muestra

Distribuciones de muestreo de medias

- Suponga que se quiere hallar la distribución de la media muestral
- Suponga que la población tiene una distribución normal con media μ y varianza σ^2 .
- Por tanto, cada observación X_i tiene una distribución normal e independiente con media μ y varianza σ^2 .
- Por tanto, la media muestral será:

$$\overline{X} = \frac{X_1 + X_2 + \dots + X_n}{n}$$

Y tiene una distribución normal con media:

$$\mu_{\bar{x}} = \frac{\mu + \mu + \dots + \mu}{n} = \mu$$

Y varianza:

$$\sigma_{\bar{X}}^2 = \frac{\sigma^2 + \sigma^2 + \dots + \sigma^2}{n^2} = \frac{\sigma^2}{n}$$

Teorema del límite central

Ejemplo: distribución de los resultados del lanzamiento de varios dados

Figure 7-1
Distributions of average scores from throwing dice. [Adapted with permission from Box, Hunter, and Hunter (1978).]

Teorema del límite central

• Si X_1 , X_2 ,..., X_n es una muestra aleatoria de tamaño n tomada de una población (sea finita o infinita) con media μ y varianza finita σ^2 , y si X es la media muestral, entonces la forma límite de la distribución de

$$Z = \frac{\overline{X} - \mu}{\sigma / \sqrt{n}}$$

 Cuando n tiende a infinito, es la distribución normal estándar

En la práctica...

- Si n>30, la aproximación normal será satisfactoria independientemente de la forma de la población.
- Si n<30, el teorema del límite central funcionará si la distribución de la población no se aparta significativamente de la distribución normal.

Ejemplo

 Suponga una v.a X con una distribución uniforme contínua:

$$f(x) = \begin{cases} 1/2; 4 \le x \le 6 \\ 0; enotrocaso \end{cases}$$

- Encuentre la distribución de la media muestral de una muestra de tamaño n=40
- Solución:
 - La media y varianza de X son
 μ=5 y σ^2 =1/3
 - Por el teorema del límite central, para la media:

$$\mu_{\overline{x}} = \mu = 5$$

$$\sigma_{\bar{X}}^2 = \frac{\sigma^2}{n} = \frac{1/3}{40} = \frac{1}{120}$$

Figure 7-3 The distributions of X and \overline{X} for Example 7-2.

Intervalos de Confianza

- Cuando se estima un parámetro, es necesario determinar qué tan cerca está la estimación puntual del valor real.
- Una forma de determinar la precisión de la estimación es con el error estándar
- Otra forma de estimar la precisión es con los intervalos de confianza

Intervalos de Confianza

- Se puede determinar que el valor desconocido θ está en un intervalo $l \leq \theta \leq u$
- Los valores de los límites dependen del valor numérico del estadístico para una muestra particular
- Diferentes muestras producen diferentes valores del estadístico y de los límites del intervalo.

Figure 8-1 Repeated construction of a confidence interval for μ .

Intervalos de confianza

- L y U son variables aleatorias que representan los límites superior e inferior de los intervalos de confianza
- Pueden determinarse unos valores de L y U de manera que:

$$P(L \leq \theta \leq U) = 1 - \alpha$$

- Donde $0<\alpha<1$.
- Por tanto, se tendrá una probabilidad 1- α de seleccionar una muestra que producirá un intervalo que incluya el valor verdadero de θ .

Intervalos de confianza

Al intervalo que resulta:

$$l \le \theta \le u$$

Se le llama un **intervalo de confianza** del $100(1-\alpha)$ por ciento para el parámetro θ .

- A las cantidades l y u se les llama **límites de confianza inferior y superior**, respectivamente.
- A $(1-\alpha)$ se le llama **coeficiente de confianza**.
- Una forma de calcular los límites inferior y superior es sumar y restar respectivamente un múltiplo del error estándar al valor estimado.

Interpretación

• Si se toma un número infinito de muestras aleatorias y se calcula un intervalo de confianza del $100(1-\alpha)$ por ciento para θ en cada muestra, entonces el $100(1-\alpha)$ por ciento de estos intervalos incluirán el valor real de θ .

Figure 8-1 Repeated construction of a confidence interval for μ.