This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

BD

PATENT ABSTRACTS OF JAPAN

(11) Publication number: 63150837 A

(43) Date of publication of application: 23.06.88

(51) Int. CI

H01J 29/48 H01J 1/30 H01J 3/02

(21) Application number: 61297682

(22) Date of filing: 16.12.86

(71) Applicant:

CANON INC

(72) Inventor:

SUZUKI AKIRA TSUKAMOTO TAKEO SHIMIZU AKIRA SUGATA MASAO SHIMODA ISAMU OKUNUKI MASAHIKO

(54) ELECTRON EMITTING DEVICE

(57) Abstract:

PURPOSE: To allow high integration by providing a control electrode on an electron emitting source via an insulating layer and providing a focusing electrode on this electrode via an insulating layer.

CONSTITUTION: An insulating layer 1b and a metal layer 1c are partially laminated on a substrate electrode 1a to form an electron emitting element. The layer 1c is separated from the other region by an insulating region 1d. A control electrode 3 is provided on the region 1d via an insulating layer 2, and a focusing electrode 5 is provided on the electrode 3 via an insulating layer 4. According to this constitution, the ON-OFF of the electrons emitted from the layer 1c is controlled by the electrode 3. In addition, the ON-OFF of the electrons emitted from the layer 1c is controlled by the electrode 5. Accordingly, the electrode 3 and electrode 5 can be integrally manufactured on the same substrate, and high integration is allowed.

COPYRIGHT: (C)1988,JPO&Japio

印日本国特許庁(JP)

① 特許出願公開

⑫ 公 開 特 許 公 報 (A)

昭63 - 150837

@Int.Cl.4

識別記号

庁内整理番号

匈公開 昭和63年(1988)6月23日

29/48 H 01 J 1/30 3/02 -7301-5C 6722-5C 7129-5C

未請求 発明の数 1 (全4頁) ·審査請求

図発明の名称 電子放出装置

> 创特 昭61-297682 頣

頸 昭61(1986)12月16日 ②出

,彰 木 明 者 鈴 ⑫発 本 健 夫 個発 明 者 塚 跀 明 者 漕 水 ②発 夫 田 īF. 眀 者 菅 四発 勇 下 田 母発 明 者 昌。彦 貫 眀 者 奥 ⑫発 キャノン株式会社 ①出 顋 人 弁理士 山下 穣 平 東京都大田区下丸子3丁目30番2号 キャノン株式会社内 東京都大田区下丸子3丁目30番2号 キャノン株式会社内 東京都大田区下丸子3丁目30番2号 キャノン株式会社内 東京都大田区下丸子3丁目30番2号 キャノン株式会社内 東京都大田区下丸子3丁目30番2号 キャノン株式会社内 東京都大田区下丸子3丁目30番2号 キャノン株式会社内

東京都大田区下丸子3丁目30番2号

喟

1. 発明の名称

多代

理

電子放出裝置

2. 特許請求の範囲

- (1) 電子放出源と、この電子放出駅の電子放出 部上に電子放出口が設けられた第1の絶録層を介 して形成された制御用電極と、この制御用電橋上 に電子放出口が設けられた第2の絶録暦を介して 形成された集東用電極とを有する電子放出装置。
- (2) 前記制御用電板と前記集東用電板とをマト リクス状に配設し且つ、両電極の交差する位数に 前記電子放出部を設けた特許請求の範囲第1項記 截の電子放出装置。

3. 発明の詳細な説明

[產業上の利用分野]

本発明は電子放出装置に係り、特に電子放出額 と、制御用電極と、集束用電極とを有する電子放 出装置に関する。

〔従来技術〕

世子放出源としては、従来より、PN接合のな だれ降伏を用いたもの、 P N 接合に順パイプスを かけてP屑に低子を注入する方式のもの、薄い絶 録層を金属で挟んだ構造を有するもの(MIM型)、 狙い高抵抗薄膜に進流を流して電子を放出させる 要面伝導型のもの、その他電界放出型等の電子放 出案子が種々提案されている。

第3図以は、PN接合に頂方向パイアスをかけ てP層に電子を注入する方式の電子放出業子の模 式的説明図であり、第3図側は、その概略的な質 流 - 電圧特性を示すグラフである。

同図Wにおいて、 P N 接合に頂方向のパイテス 電圧 V を印加すると、同図 (B) に示すよりな順方向 電流 I が流れ、N層からP層に注入された電子の

一部がP層接面から真空中へ放出される。とのP 層表面には、仕事関数を下げて電子放出量を増加 させるためにセンクム Ca 等が塗布されている。

第4図はMIM型電子放出素子の概略的排成図、 第5図は表面伝導型電子放出素子の概略的排成図 である。

MIM型電子放出業子は、金属電極8、絶録層9 かよび薄い金属電極10が萩原された構造を有し、 電極8かよび10間に電圧を印加することで薄い 電極10側から電子が放出される。

また、表面伝導型電子放出業子は、絶縁基板 11上に電極12かよび13が形成され、その間 に租い高抵抗薄膜14が形成されている。そして、 電圧を電極12かよび13間に印加することで、 高抵抗薄膜14の表面から電子が放出される。

とのよりな電子放出案子を用いた電子放出装置 においては、電子放出案子の電子放出口にアイン ツェルレンズやペイポテンシャルレンズ等の静電 型レンズを設け、放出された電子のピームを対象 面、例えば蛍光板スクリーン、ウェハ等に集束さ

電極にそれぞれ所定の電圧を印加することにより、 各電極ごとに放出された電子の通過量を側御する ものである。

なお、制御用電磁と条束用電磁とをマトリクス 状に配設し、且つ両電磁の交差する位置に前配電 子放出部を設け、両電極に印加する電圧を制御す ることにより、マルチ型電子放出装置を構成する ことができる。

(実 紙 例)

以下、本発明の実施例について図面を用いて詳細に説明する。

第1図は本発明の電子放出装置の一実施例の構 成を説明するための無路図である。

同図において、1は電子放出源であり、基板電 在1 s上に部分的に厚さ30~100 Å程度の絶 級階1b、厚さ20~100 Å程度の金属層1 c が秩層され、MIM型電子放出案子を構成する。絶 級層1b、金属層1 c は厚さ50~150 Å程度 の絶録領域1 d によって他の領域と分離されてい る。なお、絶錄層1 b と絶録領域1 d とは同一材 せている。

〔発明が解決しようとする問題点〕

しかしながら、従来の電子放出装置では、電子 ビームの広がりを防ぐための集束用電極を電子放 出口に別値に取付けられていたために、位置合せ の必要があり、特に電子ビームを複数放出するマ ルチ型電子放出装置において集束用電極の位置合 せが用鍵であった。

[問題点を解決するための手段]

上記の問題点は、電子放出源と、この電子放出 源の電子放出部上に電子放出口が設けられた第1 の絶録層を介して形成された制御用電極と、この 制御用電極上に電子放出口が設けられた第2の絶 録暦を介して形成された集束用電極とを有する本 発明の電子放出設置によって解決される。

(作用)

本発明は、電子放出源上に第1の絶談層を介して制御用電板を設け、さらにこの制御用電板上に第2の絶談層を介して集束用電板を設けることにより、両電板を一体化するものであり、加えて両

であってもよい。7は電子放出源1の電子放出部である。絶数領域1 d 上には絶数暦2を介して制御用電極3が設けられ、さらにこの制御用電極3上に絶録暦4を介して集束用電極5が設けられている。制御用電価3及び集束用電極5は電子放出源1の電子放出部7上の電子放出口6に、その一部が露出してかり、後述するように電子放出部7から放出された電子は両電極に印加する電圧によって制御される。

基板電低 1 m , 金属層 1 c , 制御用電極 3 , 集束用電極 5 としては A L 等 の金属が用いられ、絶録層 1 b , 絶録領域 1 d , 絶録層 2 , 絶録層 4 としては A L 2 O 5 等の絶録物が用いられる。

とのよりを構造の電子放出装置において電子放出源1に電圧V。を印加すると、絶数度1 b をトンネリングした電子が金銭層1 c から放出される。放出された電子は、制御用電極3 に電圧V1 を印加する場合には加速されて制御用電極3 を通過し、電圧V1 を印加したい場合には散速する。すなわち、制御用電極3によって、放出された電子の

ON-OFF制御がなされる。制御用電径3を通過した程子は、集束用電板5に正電圧V+を印加する場合には、加速されて集束用電板5を通過し、負電圧V-を印加する場合には、負電位により散逸される。すなわち、集束用電低5によって、放出された電子のON-OFF制御がなされる。なか負電圧V-の制御により、電子を散逸させず集束させて、電子レンズとして用いることもできる。

上記の作用を有する本発明の電子放出装置は、 多数の電子放出源を有するマルチ型電子放出装置 に好適に用いられる。

第2凶は本発明によるマルチ型低子放出装置の 一実施例の構成凶である。

阿図に示すように、制御用電極 3 1 ~ 3 4 と集束用電極 5 1~ 5 4 とをマトリクス状に交送させて、それぞれの交点の位置に前述した電子放出源の電子放出部を設ける。前述したように、トランジスタエ 21~ T 2 4 を制御して所望の集束用電極 5 1~ 5 4 に負電

点。線,面の電子放出が可能とたる。

4.図面の簡単な説明

第1 図は本発明の電子放出案子の一実施例の構 成を説明するための概略図である。

第2図は本発明によるマルチ型電子放出装置の --実施例の構成図である。

第3図(A)は、PN接合に順方向バイアスをかけてP層に電子を注入する方式の電子放出案子の模式的説明図であり、第3図(B)は、その概略的な電流・電圧特性を示すグラフである。

第4図はMIM型電子放出業子の概略的構成図である。

第 5 図は表面伝導型電子放出案子の概略的 擦成 図である。

代理人 弁理士 山 下 簑 平

EV-又は正電EV+を印加するととによって、 所留の位置の電子放出部から電子を放出させると とが可能となり、点,線,面の電子放出が可能と なる。

なか、上配各実施例では、電子放出源として MIM 型電子放出菜子を示したが、勿論PN接合の なだれ降伏型,袋面伝導型、あるいはPN接合に 関方向パイアスをかけて電子を放出するもの等を 電子放出源として用いてもよい。

[発明の効果]

以上、詳細に説明したように、本発明の電子放出装置によれば、電子放出領上に第1の絶疑層を介して制御用電極を設け、さらにこの制御開電を全かして無東用電極を設けることにより、両電極を一体化して、同一多板上になったではすることが可能となり、高無殺化が可能となった。また両電極にそれぞれ所定の電圧を印かからとなり、複数の電子放出領するマルチ型電子放出装置に利用可能となり、

第3図

