电路中的冲激与阶跃

无04 2019012137 张鸿琳

在ADE中利用 Parametric Analysis 工具,对下面电路中的电阻阻值进行扫描(其中电压源提供电压为1V,电容值为1pF):

从0.001Ω到10Ω进行指数增长的扫描,可以得到相应的电容充电时的电压和电流变化如下:

可以看到随着电阻阻值的逐渐减小,电压变化越来越接近阶跃函数,而电流变化越来越接近冲激函数。

下面计算电路能量变化,首先利用calculator得到各个元件的功率,再利用integ函数,计算出电压达到稳定后,电阻总计消耗和电源总计输出的能量如下:

电阻阻值 $\mathbf{R}(\Omega)$	电源输出能量(J)	电阻消耗能量(J)	能量差值(J)
0.001	$9.926 imes 10^{-13}$	$4.999 imes 10^{-13}$	$4.927 imes 10^{-13}$
0.01	$9.927 imes 10^{-13}$	$5.001 imes 10^{-13}$	$4.926 imes 10^{-13}$
0.1	$9.927 imes 10^{-13}$	$5.001 imes 10^{-13}$	$4.926 imes 10^{-13}$
1	$9.928 imes 10^{-13}$	$5.001 imes 10^{-13}$	$4.927 imes 10^{-13}$
10	$9.968 imes 10^{-13}$	$5.001 imes 10^{-13}$	$4.967 imes 10^{-13}$
100	$9.985 imes 10^{-13}$	$5.000 imes 10^{-13}$	$4.985 imes 10^{-13}$

而由公式可以计算得到电容最终稳定时存储的能量为 $E_C=\frac{1}{2}CV^2=\frac{1}{2}\times 10^{-12}\times 1=5\times 10^{-13}J$,这与上面仿真的结果基本一致,也就验证了能量守恒。