DataStructure

October 1, 2019

1 Stack

This is a famous example of using STACK as a DataStructure, mainly, Evaluation of different expressions.

- infix a/b-c+d*e-a*c
- postfix $ab/c-de^*+ac^*-$
- \bullet prefix -+-/abc*de*ac

1.1 Evaluate Prefix Expression Using Stack

Take every element to the stack, and evaluate whenever operation comes.

2 Queue

Queue has FIFO structure, that is, first element that got in get to go out first.

- Objects: a finite ordered list of elements
- Functions
 - Queue Create(max size)
 - Boolean IsFull(Queue *Q)
 - Boolean IsEmpty(Queue *Q)
 - Boolean Add(Queue *Q, Element)
 - Boolean Delete(Queue *Q, Element)

```
• null
```

```
Queue Create(100)
typedef struct{
   int item[100];
   int float = -1;
   int rear = -1
} Queue;
Queue Q;
Isfull(&Q);

boolean Is Full(Queue *pQ){
return (pQ-> rear == 99);
}

boolean IsEmpty(Queue *pQ){
return()
}
```

3 Binary Search Tree

```
Problem: Given x and S[1,2,...,n]|, find an index $k$ such that \vb{S[k] = x}
    * An array S| has items in sorted order.
    Example code:

index bs(index low index high)
{
    index min;
    if(low > high) return 0; //ending condition
    else {
    mid = (low + high) /2
    if ( x == S[mid]) return mid;
    else if (x < S[mid]) return bs[low,mid-1];
    else return bs(mid+1 , high);
    }
}</pre>
```

Time Complexity:

- - worst case: x| does not exist.
- recurrence relation with $n=2^k$.

$$\begin{cases} W(n) &= W(n/2) + a \\ W(1) &= a \end{cases}$$