

Design and realization of a vortex induced vibration converter

LIYANAGE A.L.D.N. (E/19/218)

Supervised by Dr. L.N.Wickramarathna

Department of Mechanical Engineering
Faculty of Engineering
University of Peradeniya

ME420- Mechanical Engineering Individual Research Project

Proposal Presentation

December, 2024

Content

- 1. Introduction
- 2. Aim
- 3. Objectives
- 4. Methodology
- 5. Timeline
- 6. Reference

INTRODUCTION

Vortex induced vibrations

- When a fluid flows past a structure, such as a cylinder or a bluff body, alternating low-pressure vortices form on either side. This phenomenon is known as *vortex shedding*.
- These vortices generate oscillating forces in a direction transverse to the flow.
- When the vortex shedding frequency approaches the natural frequency of the structure, the body begins to oscillate with a large amplitude. This motion becomes synchronized with the vortex shedding frequency and continues with significantly large amplitudes over a range of flow velocities..

Vortex induced vibration of an oscillating cylinder

INTRODUCTION

Vortex Induced Vibration (VIV) converters

 They enhance the vortex shedding phenomenon to generate electrical or mechanical energy over a wide range of flow velocities.

This technology harnesses abundant energy from ocean and river currents.

The VIVACE (Vortex Induced Vibration Aquatic Clean Energy) converter, a type of VIV converter, was invented in 2008 by Prof. M. Bernitsas at the University of Michigan.

Advantages

- Due to the vortex synchronization this has wide optimal operational window. Can efficiently operate in low velocity currents (0.25 2.5 m/s)
- Scalability and adaptability
- Comparably low cost

INTRODUCTION

Aim

- Develop a robust mathematical model to analyze the performance of vortex induced vibration converter and validate it using a lab prototype.
- Study the possible efficiency improvements to the system.

OBJECTIVES

- Obtain a conceptual understanding of the working principles of the VIVACE converter and its models.
- Develop a mathematical model and simulate the system's performance.
- Design and simulate a VIVACE lab prototype.
- Validate the mathematical model using the prototype.
- Study key areas for improvement, including:
 - The vortex synchronization region,
 - Determining optimum damping based on flow conditions, and
 - Exploring possible improvements in the power take-off system.

METHODOLOGY

- Learn about the hydrodynamic behavior of fluid flow around a cylinder, non-linear vibrations, and power take-off systems.
- Conduct a literature review on VIVACE converter models.
- Review existing mathematical models and develop a suitable model to simulate system performance using MATLAB/Python.
- Design a lab-scale prototype of the VIVACE converter using SOLIDWORKS. The scaling will be determined based on the capacity of the Fluid Mechanics Laboratory.
- The design will then be simulated using ANSYS/OpenFOAM.
- Fabrication and testing will be conducted using laboratory facilities.

TIMELINE

Weeks	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30
Finalizing the project																														'
topic																														<u> </u>
Project proposal																														'
presentation																									1					'
submission																														
Literature review about																									1					'
vortex induced vibration																														
and VIVACE converter																														
models																														Ь_
Literature review about																														
non linear vibrations																														oxdot
Literature review about																														'
power take-off systems																														$oxed{oxed}$
Understaning of																														
existing mathematical																									1					
models																														<u> </u>
Mid Video Presentation																														
and viva																														<u>L</u>
Develop a mathematical																														
model for VIVACE																														$oxed{oxed}$
Design and simulation																									1					
of the scaled-lab																									1					
prototype																														
Demonstration																														
Lab prototype																														
fabrication (without																														
generator)																														
Lab. Testing I																														
Implementation of the						†																								\vdash
generator																														
Study possible																														\vdash
improvements to the																														
system																														
Lab. Testing II																														
Final Evaluations																														

REFERENCES

- Bernitsas, M., Mortimer, E., Cooley, M., Director, M., Device, H. and Workshop, M. (2011). The VIVACE Converter Enhancing Flow Induced Motions to Harness Hydrokinetic Energy in an Environmentally Compatible Way. [online] Available at: https://www.nrel.gov/docs/fy12osti/51421-09.pdf.
- Bernitsas, M.M., Raghavan, K., Y. Ben-Simon and E. Oliver Garcia (2006).
 VIVACE (Vortex Induced Vibration Aquatic Clean Energy): A New Concept in Generation of Clean and Renewable Energy From Fluid Flow. doi: https://doi.org/10.1115/omae2006-92645.
- 3. Rostami, A.B. and Armandei, M. (2017). Renewable energy harvesting by vortex-induced motions: Review and benchmarking of technologies. Renewable and Sustainable Energy Reviews, 70, pp.193–214. doi:

https://doi.org/10.1016/j.rser.2016.11.202.

THANK YOU