Teoria dei Giochi 2020/21

Compiti

G. Oriolo Esercizi Lezione 14/10

Esercizio 1 Consideriamo la seguente variazione del meccanismo d'asta in busta chiusa di secondo prezzo. Ogni giocatore i attribuisce al bene oggetto dell'asta un valore $v_i \geq 0$ e fa un'offerta $x_i \geq 0$. Vince l'asta il giocatore i che ha fatto l'offerta x_i più alta (a parità di offerta, vince il giocatore con indice i più basso), e paga un prezzo p pari a un terzo della seconda offerta più alta. Al solito, il payoff del giocatore i è : 0 se il giocatore i non vince l'asta; $v_i - p$ se il giocatore i vince l'asta. Per semplicità supponiamo di avere i o più giocatori.

Quali delle seguenti affermazioni è vera? N.B. Se un'affermazione è vera, non è necessario fornire una giustificazione, se un'affermazione è falsa è necessario fornire un esempio in cui appunto è falsa.

Per il giocatore i ogni strategia $x > v_i$ è un strategia debolmente dominante.

Per il giocatore i ogni strategia $x < v_i$ è un strategia debolmente dominante.

Per il giocatore i la strategia $x = v_i$ è un strategia debolmente dominante.

Per il giocatore i la strategia $x = 3v_i$ è un strategia debolmente dominante.

Per il giocatore i la strategia $x = \frac{v_i}{3}$ è un strategia debolmente dominante.

Soluzione 1 Si consideri per esempio la prima giocatrice. Se ella gioca un qualunque valore $x_1 > 3v_1$ e tutti gli altri giocatori giocano valori $x_j \in (x_1, 3v_1)$, allora la sua utilità è negativa: se invece ella avesse giocato $3v_1$ allora la sua utilità sarebbe stata zero. Segue che giocare qualunque strategia $x_1 > 3v_1$ non è debolmente dominante.

Analogamente, se la prima giocatrice gioca un qualunque valore $x_1 < 3v_1$ e tutti gli altri giocatori giocano valori $x_j \in (3v_1, x_1)$, allora la sua utilità è 0: se invece ella avesse giocato $3v_1$ allora la sua utilità sarebbe stata positiva. Segue che giocare qualunque strategia $x_1 < 3v_1$ non è debolmente dominante.

È facile verificare che invece $3v_1$ è invece una strategia debolmente dominante. Al solito si può procedere in questo modo: sia x' la giocata più alta tra quelle degli altri giocatori. Se $x' > 3v_1$, allora la prima giocatrice non sta vincendo l'asta e il suo payoff è 0: l'alternativa sarebbe giocare più di x' e vincere l'asta, ma con payoff negativo; se $x' < 3v_1$, allora la prima giocatrice sta vincendo l'asta e il suo payoff è $v_1 - \frac{x'}{3} > 0$ e non ci sono alternative che potrebbero darle un payoff più alto; se $x' = 3v_1$, qualunque strategia restituisce payoff 0 alla prima giocatrice. Segue che, qualunque sia il valore di x', giocare $3v_1$ è una migliore risposta e quindi giocare $3v_1$ è una strategia debolmente dominante.

Esercizio 2 Consideriamo il meccanismo d'asta in busta chiusa di terzo prezzo. Ogni giocatore i attribuisce al bene oggetto dell'asta un valore $v_i \geq 0$ e fa un'offerta $x_i \geq 0$. Vince l'asta il giocatore i che ha fatto l'offerta x_i più alta (a parità di offerta, vince il giocatore con indice i più basso), e paga un prezzo p pari alla terza offerta più alta. Il payoff del giocatore i è : 0 se il giocatore i non vince l'asta; $v_i - p$ se il giocatore i vince l'asta. Per semplicità supponiamo di avere 3 o più giocatori.

Quali delle seguenti affermazioni è vera? N.B. Se un'affermazione è vera, non è necessario fornire una giustificazione, se un'affermazione è falsa è necessario fornire un esempio in cui appunto è falsa.

Per il giocatore i giocare una strategia $x > v_i$ è un strategia debolmente dominante

Per il giocatore i giocare una strategia $x < v_i$ è un strategia debolmente dominante

Per il giocatore i giocare una strategia $x = v_i$ è un strategia debolmente dominante

Soluzione 2. Si consideri per esempio la prima giocatrice. Se ella gioca un *qualunque* valore $x_1 > v_1$ e tutti gli altri giocatori giocano valori $x_j \in (x_1, 3v_1)$, allora la sua utilità è negativa: se invece ella avesse giocato v_1 allora la sua utilità sarebbe stata zero. Segue che giocare qualunque strategia $x_1 > v_1$ non è debolmente dominante.

Analogamente, se la prima giocatrice gioca un qualunque valore $x_1 < v_1$ e tutti gli altri giocatori giocano valori $x_j \in (v_1, x_1)$, allora la sua utilità è 0: se invece ella avesse giocato v_1 allora la sua utilità sarebbe stata positiva. Segue che giocare qualunque strategia $x_1 < v_1$ non è debolmente dominante.

Osserviamo infine che neanche la strategia $x_1 = v_1$ è una strategia dominante. Infatti siano x' e x'' rispettivamente la giocata più alta e la seconda giocata più alta tra quelle degli altri giocatori. Nel caso in cui $x' > v_1 > x''$, allora il primo giocatore sta perdendo l'asta, quindi con payoff 0, mentre se avesse per esempio giocato $x' + \varepsilon$ avrebbe vinto l'asta con payoff $v_1 - p > 0$, visto che p, il terzo prezzo, sarebbe proprio uguale a x''.