

FUNDAMENTALS OF MACHINE LEARNING IN DATA SCIENCE

CSIS 3290
WHY DATA MINING
FATEMEH AHMADI (PH.D.)

Data Collection and Database Creation

(1960s and earlier)

■ Primitive file processing

Database Management Systems

(1970s to early 1980s)

- Hierarchical and network database systems
- Relational database systems
- Data modeling: entity-relationship models, etc.
- Indexing and accessing methods
- Query languages: SQL, etc.
- User interfaces, forms, and reports
- Query processing and optimization
- Transactions, concurrency control, and recovery
- Online transaction processing (OLTP)

Advanced Database Systems

(mid-1980s to present)

- Advanced data models: extended-relational, object relational, deductive, etc.
- Managing complex data: spatial, temporal, multimedia, sequence and structured, scientific, engineering, moving objects, etc.
- Data streams and cyber-physical data systems
- Web-based databases (XML, semantic web)
- Managing uncertain data and data cleaning
- Integration of heterogeneous sources
- Text database systems and integration with information retrieval
- Extremely large data management
- Database system tuning and adaptive systems
- Advanced queries: ranking, skyline, etc.
- Cloud computing and parallel data processing
- Issues of data privacy and security

Advanced Data Analysis

(late-1980s to present)

- Data warehouse and OLAP
- Data mining and knowledge discovery: classification, clustering, outlier analysis, association and correlation, comparative summary, discrimination analysis, pattern discovery, trend and deviation analysis, etc.
- Mining complex types of data: streams, sequence, text, spatial, temporal, multimedia, Web, networks, etc.
- Data mining applications: business, society, retail, banking, telecommunications, science and engineering, blogs, daily life, etc.
- Data mining and society: invisible data mining, privacy-preserving data mining, mining social and information networks, recommender systems, etc.

Data Collection and Database Creation

(1960s and earlier)

Primitive file processing

Database Management Systems

(1970s to early 1980s)

- Hierarchical and network database systems
- Relational database systems
- Data modeling: entity-relationship models, etc.
- Indexing and accessing methods
- Query languages: SQL, etc.
- User interfaces, forms, and reports
- Query processing and optimization
- Transactions, concurrency control, and recovery
- Online transaction processing (OLTP)

Advanced Database Systems

(mid-1980s to present)

- Advanced data models: extended-relational, object relational, deductive, etc.
- Managing complex data: spatial, temporal, multimedia, sequence and structured, scientific, engineering, moving objects, etc.
- Data streams and cyber-physical data systems
- Web-based databases (XML, semantic web)
- Managing uncertain data and data cleaning
- Integration of heterogeneous sources
- Text database systems and integration with information retrieval
- Extremely large data management
- Database system tuning and adaptive systems
- Advanced queries: ranking, skyline, etc.
- Cloud computing and parallel data processing
- Issues of data privacy and security

Advanced Data Analysis

(late-1980s to present)

- Data warehouse and OLAP
- Data mining and knowledge discovery: classification, clustering, outlier analysis, association and correlation, comparative summary, discrimination analysis, pattern discovery, trend and deviation analysis, etc.
- Mining complex types of data: streams, sequence, text, spatial, temporal, multimedia, Web, networks, etc.
- Data mining applications: business, society, retail, banking, telecommunications, science and engineering, blogs, daily life, etc.
- Data mining and society: invisible data mining, privacy-preserving data mining, mining social and information networks, recommender systems, etc.

Future Generation of Information Systems

(Present to future)

The abundance of data, coupled with the need for powerful data analysis tools, has been described as a **data rich but information poor situation**. The fast-growing, tremendous amount of data, collected and stored in large and numerous data repositories, has far exceeded our human ability for comprehension without powerful tools.

What Is Data Mining?

- Mining is a vivid term characterizing the process that finds a small set of precious nuggets from a great deal of raw material.
- In addition, many other terms have a similar meaning to data mining—for example, knowledge mining from data, knowledge extraction, data/pattern analysis, data archaeology, and data dredging.
- Many people treat data mining as a synonym for another popularly used term, knowledge discovery from data, or KDD, while others view data mining as merely an essential step in the process of knowledge discovery

What Is Data Mining?

The knowledge discovery process:

- 1. **Data cleaning** (to remove noise and inconsistent data)
- 2. **Data integration** (where multiple data sources may be combined)
- 3. **Data selection** (where data relevant to the analysis task are retrieved from the database)
- 4. **Data transformation** (where data are transformed and consolidated into forms appropriate for mining by performing summary or aggregation operations)
- 5. **Data mining** (an essential process where intelligent methods are applied to extract data patterns)
- 6. **Pattern evaluation** (to identify the truly interesting patterns representing knowledge based on interestingness measures—see Section 1.4.6)
- 7. **Knowledge presentation** (where visualization and knowledge representation techniques are used to present mined knowledge to users

Example: Decision Trees

T_ID	Refund	Marital Status	Income	Cheat
1	Yes	Single	125	No
2	No	Married	100	No
3	No	Single	70	No
4	Yes	Married	120	No
5	No	Divorced	95	Yes
6	No	Married	60	No
7	Yes	Divorced	220	No
8	No	Single	85	Yes
9	No	Married	75	No
10	No	Single	90	No

Example: Decision Trees

Decision Tree No.1

Decision Tree No.2

There could be more than one decision tree per a table

Example: Market Basket Analysis

 $\{X \rightarrow Y\}$: {Butter, Bread} \rightarrow Milk

Transaction	Milk	Bread	Butter
1	1	1	0
2	0	0	1
3	0	0	0
4	1	1	1
5	0	1	0

Support: Supp(X) = $1/5 = 0.2 \sim 20\%$

(Since it occurs in 20% of all transactions)

Confidence: Conf(X)= Supp(X U Y)/ Supp(X) = $0.2/0.2=1 \sim 100\%$ (100% of the times a customer buys butter and bread, milk is bought as well)

Example: Clustering

Famous Clustering Algorithms

- ✓ K-Means
- **✓ DBSCAN**
- **✓** Hierarchical Clustering
- **√** ...

Clustering

Clustering

https://www.bing.com/images/search?view=detailV2&ccid=3LdJGuOj&id=8CC2488C0F8B17E22DD76E9D59F2ACDFDA158EEE&thid=OIP.3LdJGuOjoIHFG7m8W2 NmXQHaCw&mediaurl=https%3a%2f%2fmiro.medium.com%2fmax%2f1200%2f1*KqWII7sFp1JL0EXwJGpqFw.png&cdnurl=https%3a%2f%2fth.bing.com%2fth%2fid%2fR.dcb7491ae3a3a251c51bb9bc5b63665d%3frik%3d7o4V2t%252bs8Imdbg%26pid%3dImgRaw%26r%3d0&exph=448&expw=1200&q=dbscan&simid=607992534376195191&FORM=IRPRST&ck=D05FFCD01B189C12EA922B280124E7E8&selectedIndex=3&ajaxhist=0&ajaxserp=0

Data Warehouses

Data Cube

Market _ Id	Product _ Id	Time _ Id	Sales _ Amt
M1	P1	Q1	1000
M 1	P2	Q1	2000
M 1	Р3	Q4	1500
M 2	P1	Q3	500
M2	P2	Q1	800
M 2	Р3	Q4	0
M3	P1	Q1	5000
M3	P2	Q2	8000
M3	Р3	Q2	10

A Fact Table for a Supermarket Application

Table Name: Sales

Operations in Data Cubes:

- ✓ Drill down
- ✓ Roll Up
- ✓ Slice
- **✓** Dice
- **√** ...

Data Cube

OLAP Operations: Dice

OLAP Operations: Slice

Dimensional Tables for the Supermarket Application: To describe additional information on each dimension

Market _ Id	City	State	Region
M1	New York	New York	East
M2	Toronto	New Jersey	North
M3	Oakland	California	West

Table Name:

Market

Table Name: Product

Product _ Id	Name	Category	Price
P1	Tissue	Soft Goods	1.98
P2	Soft Drink	Drink	2.96
Р3	Cold cuts	Meat	1.78

Time _ Id	Week	Month	Quarter
T1	Wk-1	January	First
T2	Wk-13	April	Second
Т3	Wk-25	July	Third
Т3	Wk-37	October	Fourth

Table Name: *Time*

Star Schema

In **Star Schema**, the fact table is at the center and the dimension tables radiate it.

If dimension tables are normalized and each becomes several tables, the star schema will be more complex called **Snowflake Schema**.

Constellation Schema

The Forth Dimension

Technologies Used in Data Mining

Reference

Data Mining, Concepts and Techniques, Jiawei Han, Micheline Kamber, Jian Pei. MK. Chapter 1.

