

RLoc: Towards Robust Indoor Localization by Quantifying Uncertainty

Tianyu Zhang, Dongheng Zhang, Guanzhong Wang, Yadong Li, Yang Hu, Qibin Sun and Yan Chen*

University of Science and Technology of China

Indoor & Wi-Fi Localization

https://www.marketsandmarkets.com/Market-Reports/global-wi-fi-market-994.html

Related Work

Fingerprint-based methods

• High accuracy but requires intensive data collection and recalibration.

Room A

When collecting fingerprint...

Angle-based methods

• Effective but sensitive to multipath effects and Non-Line-of-Sight (NLoS) condition.

How About Leveraging the Strengths of Both?

Model the relationship between Wi-Fi signal and Angle of Arrival (AoA) using a neural network.

Then, perform triangulation for localization.

Benefits with Both Approaches

Room B

Room B

Train in Room A, apply in Room B

Opportunity I: Use neural networks to extract more comprehensive information from 2D-FFT maps.

Opportunity II: Leverage AoA's cross-domain potential to reduce the cost of fingerprinting in different environments.

Challenges with Both Approaches

- Experiences from deployments have shown learning-based wireless localization methods to be sensitive to environmental changes.
- Complex and dynamic interferences, as well as NLoS conditions, can still lead to unreliable AoA estimations.

RLoc: Quantify Uncertainty!

How can we achieve this?

1. Incorporating Wireless Localization Knowledge for Input Representation

Beamwidth $(\Delta \phi_{3dB})$ represents the angle between the half-power points of the main lobe.

Table 1. Comparison of Pearson correlation coefficient [20] (PPC) between two variables. The PPC ranges between -1 and 1, with a value closer to 1 indicating a stronger positive linear correlation.

PPC	S1	S2	S3	S4	S5	S6
$\theta_{max} - \theta_{label}$	0.70	0.47	0.55	0.62	0.27	0.59
$\theta_{beam} - \theta_{label}$	0.71	0.49	0.58	0.64	0.30	0.61
$\theta_{max} - \theta_{error}$		-0.37				
$\triangle \phi_{3dB} - \theta_{error}$	0.41	0.40	0.29	0.26	0.35	0.28

2. Incorporating Uncertainty in Neural Network

2.1 Utilize the Kullback-Leibler (KL) divergence loss function to predict the distribution.

$$L_{KL} = D_{KL}(\mathcal{N}(\mu, \sigma) || \delta_f(y)) \propto \frac{\log(\sigma^2)}{2} + \frac{(y - \mu)^2}{2\sigma^2}$$

2.2 Use the technique of deep ensemble to capture the uncertainty.

3. Uncertainty-assisted Localization and Tracking

$$\chi^* = argmaxL(\chi)$$
.

Given AoA estimates with their uncertainties from multiple APs, we perform weighted averaging.

$$x_t = x_{t-1} + W_p$$

$$z_t = x_t + W_o$$

Using Kalman filtering to smooth AoA estimates by incorporating quantified uncertainty.

Human-held device Wi-Fi indoor localization dataset (H-WILD)

We construct a **human-held device** Wi-Fi indoor localization dataset (H-WILD), consisting of approximately 120k data points collected from ten volunteers across four classic indoor scenarios.

Train in scenario A, Test in scenario B/C/...

Fig. 14. Cross-scenario evaluation of localization and tracking results. "SA-B" denotes training on Scenario A and testing on Scenario B.

- (a) Comparison of median errors in localization.
- (b) Comparison of tail errors in localization.
- (c) Comparison of MAE in tracking.
- (d) Comparison of LEO in tracking.

Evaluation of quantified uncertainty in cross-scenario.

Fig. 15. Evaluation of quantified uncertainty in cross-scenario. (a) Evaluation of PPC between AoA error and quantization uncertainty in different scenarios. (b) Comparative analysis of the localization system's performance with and without the incorporation of uncertainty.

CONCLUSION

- Exploiting underutilized spatial spectrum information.
- Exploring uncertainty in angle estimation tasks using deep learning.
- Utilizing uncertainty feedback to enhance localization and tracking.
- The first human-held device Wi-Fi localization and tracking dataset.

Thanks!

- Tianyu Zhang
- Email: tianyuzhang@ustc.edu.cn
- Homepage: https://ray-ui.github.io/

IP Lab Homepage

H-WILD Dataset

My Homepage

