Cours 2: algorithme du simplexe

Christophe Gonzales

LIP6 - Université Paris 6, France

Plan du cours

- Rappel sur l'algorithme vu la semaine dernière
- 2 Définition de l'algorithme du simplexe
- Interprétation géométrique
- Critères de choix pour les variables entrantes

Rappels sur le cours de la semaine dernière (1/10)

Forme standard

$$\max \sum_{j=1}^{n} c_{j} x_{j}$$
s.c.
$$\begin{cases} \sum_{j=1}^{n} a_{ij} x_{j} \leq b_{i} & (i = 1, 2, ..., m) \\ x_{j} \geq 0 & (j = 1, 2, ..., n) \end{cases}$$

Rappels sur le cours de la semaine dernière (1/10)

Forme standard

$$\max \sum_{j=1}^{n} c_{j} x_{j}$$
s.c.
$$\begin{cases} \sum_{j=1}^{n} a_{ij} x_{j} \leq b_{i} & (i = 1, 2, ..., m) \\ x_{j} \geq 0 & (j = 1, 2, ..., n) \end{cases}$$

Algorithme de résolution (1/2)

• Ajouter des variables d'écart x_{n+1}, \dots, x_{n+m} :

$$x_{n+i} = b_i - \sum_{j=1}^{n} a_{ij}x_j$$
 $(i = 1, 2, ..., m)$
 $z = \sum_{j=1}^{n} c_jx_j$

Rappels sur le cours de la semaine dernière (2/10)

Algorithme de résolution (2/2)

- 2 première solution réalisable : $x^0 = (0, ..., 0, b_1, b_2, ..., b_m)$ variables en base : $x_{n+1}, ..., x_{n+m}$, hors base : $x_1, ..., x_n$
- \circ s'il existe un coefficient positif dans z, soit x_i la variable correspondante, sinon aller en \circ
- calculer la valeur maximale de x_i de manière à ce que les variables en base restent positives ou nulles. Soit x_j une des variables en base qui s'annule
- \odot faire entrer x_i en base, faire sortir x_j de la base
- exprimer les variables en base en fonction des variables hors base
- 7 retourner en 3
- on est à l'optimum. Les variables en base définissent la solution optimale

Rappels sur le cours de la semaine dernière (3/10)

Problème à résoudre :

max
$$x_1 + 5x_2 + x_3$$

s.c. $x_1 + 3x_2 + x_3 \le 3$
 $-x_1 + 3x_3 \le 2$
 $2x_1 + 4x_2 - x_3 \le 4$
 $x_1 + 3x_2 - x_3 \le 2$
 $x_1 > 0, x_2 > 0, x_3 > 0$

Rappels sur le cours de la semaine dernière (3/10)

Problème à résoudre :

$$\begin{array}{lll} \max & x_1 + 5x_2 + x_3 \\ s.c. & x_1 + 3x_2 + x_3 \leq 3 \\ & -x_1 & + 3x_3 \leq 2 \\ & 2x_1 + 4x_2 - x_3 \leq 4 \\ & x_1 + 3x_2 - x_3 \leq 2 \\ & x_1 \geq 0, \ x_2 \geq 0, \ x_3 \geq 0 \end{array}$$

Première étape : ajouter des variables d'écart :

Rappels sur le cours de la semaine dernière (4/10)

Expression de z et des variables en base en fonction des variables hors base :

$$x_4 = 3 - x_1 - 3x_2 - x_3$$

 $x_5 = 2 + x_1 - 3x_3$
 $x_6 = 4 - 2x_1 - 4x_2 + x_3$
 $x_7 = 2 - x_1 - 3x_2 + x_3$
 $x_7 = 2 - x_1 + 5x_2 + x_3$

Rappels sur le cours de la semaine dernière (4/10)

Expression de z et des variables en base en fonction des variables hors base :

$$x_4 = 3 - x_1 - 3x_2 - x_3$$

 $x_5 = 2 + x_1 - 3x_3$
 $x_6 = 4 - 2x_1 - 4x_2 + x_3$
 $x_7 = 2 - x_1 - 3x_2 + x_3$
 $z = x_1 + 5x_2 + x_3$

variables en base : x_4 , x_5 , x_6 , x_7

 \implies solution réalisable = (0,0,0,3,2,4,2)

Rappels sur le cours de la semaine dernière (4/10)

Expression de z et des variables en base en fonction des variables hors base :

$$x_4 = 3 - x_1 - 3x_2 - x_3$$

 $x_5 = 2 + x_1 - 3x_3$
 $x_6 = 4 - 2x_1 - 4x_2 + x_3$
 $x_7 = 2 - x_1 - 3x_2 + x_3$
 $z = x_1 + 5x_2 + x_3$

variables en base : x_4 , x_5 , x_6 , x_7

 \implies solution réalisable = (0,0,0,3,2,4,2)

- 3 coefficients positifs dans $z \Longrightarrow x_1, x_2$ et x_3
- \implies choix (au hasard) de faire rentrer x_1 en base

Rappels sur le cours de la semaine dernière (5/10)

$$x_4 = 3 - x_1 - 3x_2 - x_3$$

 $x_5 = 2 + x_1 - 3x_3$
 $x_6 = 4 - 2x_1 - 4x_2 + x_3$
 $x_7 = 2 - x_1 - 3x_2 + x_3$
 $z = x_1 + 5x_2 + x_3$

- \bullet calcul de la valeur optimale de x_1 :
 - augmenter $x_1 \Longrightarrow$ augmenter z
 - ne pas trop augmenter x_1 afin que x_4 , x_5 , x_6 , x_7 , restent ≥ 0

Rappels sur le cours de la semaine dernière (5/10)

$$x_4 = 3 - x_1 - 3x_2 - x_3$$

$$x_5 = 2 + x_1 - 3x_3$$

$$x_6 = 4 - 2x_1 - 4x_2 + x_3$$

$$x_7 = 2 - x_1 - 3x_2 + x_3$$

$$z = x_1 + 5x_2 + x_3$$

- \bullet calcul de la valeur optimale de x_1 :
 - augmenter $x_1 \Longrightarrow$ augmenter z
 - ne pas trop augmenter x_1 afin que x_4 , x_5 , x_6 , x_7 , restent ≥ 0

$$\begin{array}{lll} (x_4) & 3-x_1 \geq 0 \\ (x_5) & 2+x_1 \geq 0 \\ (x_6) & 4-2x_1 \geq 0 \\ (x_7) & 2-x_1 \geq 0 \\ \\ \Longrightarrow x_1 < 3, x_1 > -2, x_1 < 2, x_1 < 2 \\ \end{array}$$

Rappels sur le cours de la semaine dernière (5/10)

$$x_4 = 3 - x_1 - 3x_2 - x_3$$

 $x_5 = 2 + x_1 - 3x_3$
 $x_6 = 4 - 2x_1 - 4x_2 + x_3$
 $x_7 = 2 - x_1 - 3x_2 + x_3$
 $z = x_1 + 5x_2 + x_3$

- \odot calcul de la valeur optimale de x_1 :
 - augmenter $x_1 \Longrightarrow$ augmenter z
 - ne pas trop augmenter x_1 afin que x_4 , x_5 , x_6 , x_7 , restent ≥ 0

$$\implies x_1 \le 3, x_1 \ge -2, x_1 \le 2, x_1 \le 2 \implies x_1 = 2$$

 \implies variable à sortir de la base : x_6 ou x_7

Rappels sur le cours de la semaine dernière (6/10)

$$x_4 = 3 - x_1 - 3x_2 - x_3$$

 $x_5 = 2 + x_1 - 3x_3$
 $x_6 = 4 - 2x_1 - 4x_2 + x_3$
 $x_7 = 2 - x_1 - 3x_2 + x_3$
 $z = x_1 + 5x_2 + x_3$

 \odot choix (au hasard) de faire sortir x_7 de la base

$$\implies x_1 = 2 - 3x_2 + x_3 - x_7$$

• expression des variables en base en fonction des variables hors base :

$$x_4 = 1$$
 $-2x_3 + x_7$
 $x_5 = 4 - 3x_2 - 2x_3 - x_7$
 $x_6 = 2x_2 - x_3 + 2x_7$
 $x_1 = 2 - 3x_2 + x_3 - x_7$
 $z = 2 + 2x_2 + 2x_3 - x_7$

Rappels sur le cours de la semaine dernière (7/10)

$$x_4 = 1$$
 $-2x_3 + x_7$
 $x_5 = 4 - 3x_2 - 2x_3 - x_7$
 $x_6 = 2x_2 - x_3 + 2x_7$
 $x_1 = 2 - 3x_2 + x_3 - x_7$
 $x_2 = 2 + 2x_2 + 2x_3 - x_7$

3 coefficients positifs dans $z: x_2$ et x_3 \Rightarrow choix (au hasard) : rentrer x_3 en base

Rappels sur le cours de la semaine dernière (7/10)

$$x_4 = 1$$
 $-2x_3 + x_7$
 $x_5 = 4 - 3x_2 - 2x_3 - x_7$
 $x_6 = 2x_2 - x_3 + 2x_7$
 $x_1 = 2 - 3x_2 + x_3 - x_7$
 $z = 2 + 2x_2 + 2x_3 - x_7$

- 3 coefficients positifs dans $z: x_2$ et x_3 \implies choix (au hasard) : rentrer x_3 en base
- ⇒ choix de la variable à sortir de la base :

$$\begin{array}{ccc} (x_4) & 1 - 2x_3 \ge 0 \\ (x_5) & 4 - 2x_3 \ge 0 \\ (x_6) & 0 - x_3 \ge 0 \\ (x_1) & 2 + x_3 \ge 0 \end{array} \} \Longrightarrow$$

$$\begin{array}{ll} (x_4) & 1-2x_3 \geq 0 \\ (x_5) & 4-2x_3 \geq 0 \\ (x_6) & 0-x_3 \geq 0 \\ (x_1) & 2+x_3 \geq 0 \end{array} \} \Longrightarrow x_3 = \min\{b_i/-\text{coeff de } x_3: \text{coeff} \neq 0\}$$

 \bigwedge X_3 rentre en base, mais sa valeur est égale à 0 ⇒ la valeur de la fonction objectif ne change pas!

Rappels sur le cours de la semaine dernière (8/10)

• expression des variables en base en fonction des variables hors base :

$$x_4 = 1 - 4x_2 + 2x_6 - 3x_7$$

$$x_5 = 4 - 7x_2 + 2x_6 - 5x_7$$

$$x_3 = 2x_2 - x_6 + 2x_7$$

$$x_1 = 2 - x_2 - x_6 + x_7$$

$$z = 2 + 6x_2 - 2x_6 + 3x_7$$

ocefficients positifs dans $z : x_2$ et x_3 \Rightarrow choix (au hasard) : rentrer x_2 en base :

$$\begin{array}{ll} (x_4) & 1 - 4x_2 \ge 0 \\ (x_5) & 4 - 7x_2 \ge 0 \\ (x_3) & 2x_2 \ge 0 \\ (x_1) & 2 - x_2 \ge 0 \end{array} \} \Longrightarrow x_4 \text{ sort de la base}$$

Rappels sur le cours de la semaine dernière (9/10)

• expression des variables en base en fonction des variables hors base :

$$x_{2} = \frac{1}{4} - \frac{1}{4}X_{4} + \frac{1}{2}X_{6} - \frac{3}{4}X_{7}$$

$$x_{5} = \frac{9}{4} + \frac{7}{4}X_{4} - \frac{3}{2}X_{6} + \frac{1}{4}X_{7}$$

$$x_{3} = \frac{1}{2} - \frac{1}{2}X_{4} + \frac{1}{2}X_{7}$$

$$x_{1} = \frac{7}{4} + \frac{1}{4}X_{4} - \frac{3}{2}X_{6} + \frac{7}{4}X_{7}$$

$$z = \frac{7}{2} - \frac{3}{2}X_{4} + X_{6} - \frac{3}{2}X_{7}$$

3-6 rentrer x_6 en base et sortir x_1 :

$$X_{2} = \frac{5}{6} - \frac{1}{3}X_{1} - \frac{1}{6}X_{4} - \frac{1}{6}X_{7}$$

$$X_{5} = \frac{1}{2} + X_{1} + \frac{3}{2}X_{4} - \frac{3}{2}X_{7}$$

$$X_{3} = \frac{1}{2} - \frac{1}{2}X_{4} + \frac{1}{2}X_{7}$$

$$X_{6} = \frac{7}{6} - \frac{2}{3}X_{1} + \frac{1}{6}X_{4} + \frac{7}{6}X_{7}$$

$$Z = \frac{14}{2} - \frac{2}{2}X_{1} - \frac{4}{2}X_{4} - \frac{1}{2}X_{7}$$

 $x_3 = \frac{1}{2}$ $-\frac{1}{2}x_4 + \frac{1}{2}x_7$ $\Longrightarrow z$: coeffs négatifs \Longrightarrow optimum

Rappels sur le cours de la semaine dernière (10/10)

En résumé :

- plusieurs variables peuvent être candidates à entrer en base
 critère de choix à définir
- plusieurs variables peuvent être candidates à sortir de la base
 critère de choix à définir
- dégénérescence : certaines variables entrant en base peuvent avoir pour valeur 0 ⇒ la fonction objectif n'augmente pas ⇒ éviter que l'algorithme ne boucle

Principe : placer toutes les variables du même côté

Principe : placer toutes les variables du même côté

La notation en tableau peut s'appliquer à toutes les étapes :

Avant pivot:

dictionnaire	tableau
$x_4 = 3 - x_1 - 3x_2 - x_3$	$x_1 + 3x_2 + x_3 + x_4 = 3$
$x_5 = 2 + x_1 - 3x_3$	$-x_1 + 3x_3 + x_5 = 2$
$x_6 = 4 - 2x_1 - 4x_2 + x_3$	$2x_1 + 4x_2 - x_3 + x_6 = 4$
$x_7 = 2 - x_1 - 3x_2 + x_3$	$x_1 + 3x_2 - x_3 + x_7 = 2$
$z = x_1 + 5x_2 + x_3$	$-z + x_1 + 5x_2 + x_3 = 0$

Après pivot : x_1 entre et x_7 sort

dictionnaire	tableau
$x_4 = 1$ $-2x_3 + x_7$	$2x_3 + x_4$ $- x_7 = 1$
$x_5 = 4 - 3x_2 - 2x_3 - x_7$	$3x_2 + 2x_3 + x_5 + x_7 = 4$
$x_6 = 2x_2 - x_3 + 2x_7$	$-2x_2 + x_3 + x_6 - 2x_7 = 0$
$x_1 = 2 - 3x_2 + x_3 - x_7$	$x_1 + 3x_2 - x_3 + x_7 = 2$
$z = 2 + 2x_2 + 2x_3 - x_7$	$-z + 2x_2 + 2x_3 - x_7 = -2$

Pivot en termes de dictionnaires

Faire entrer x_i et sortir x_j :

supp. que x_i est défini à gauche des «=» sur la kème ligne

- exprimer x_i en fonction des autres variables sur la kème ligne
- 2 sur toutes les autres lignes, remplacer les x_i par cette expression

Pivot en termes de tableaux

Faire entrer x_i et sortir x_j :

- diviser la seule ligne dont le coeff de x_j est \neq 0 (kème ligne) par le coeff associé à x_i sur cette ligne \implies le coeff de x_i devient 1
- ② pour toute autre ligne $r \neq k$, soustraire a_{ri} fois la kème ligne \Longrightarrow le coeff de x_i sur ces lignes devient 0

Application du pivot directement sur les tableaux :

pivot : x_1 entre et x_7 sort

ligne où x7 est défini : 4ème ligne

Application du pivot directement sur les tableaux :

pivot : x_1 entre et x_7 sort

coeff de $x_1 = 1$

Application du pivot directement sur les tableaux :

pivot : x_1 entre et x_7 sort

on divise la 4ème ligne par 1

Application du pivot directement sur les tableaux :

pivot : x_1 entre et x_7 sort

$$2x_3 + x_4 - x_7 = 1$$

$$- x_1 + 3x_3 + x_5 = 2$$

$$2x_1 + 4x_2 - x_3 + x_6 = 4$$

$$x_1 + 3x_2 - x_3 + x_7 = 2$$

$$-z + x_1 + 5x_2 + x_3 = 0$$

on soustrait de la 1ère ligne la 4ème

Application du pivot directement sur les tableaux :

pivot : x_1 entre et x_7 sort

$$2x_{3} + x_{4} - x_{7} = 1$$

$$3x_{2} + 2x_{3} + x_{5} + x_{7} = 4$$

$$2x_{1} + 4x_{2} - x_{3} + x_{6} = 4$$

$$x_{1} + 3x_{2} - x_{3} + x_{7} = 2$$

$$-z + x_{1} + 5x_{2} + x_{3} = 0$$

on soustrait de la 2ème ligne -1 fois la 4ème

Application du pivot directement sur les tableaux :

pivot : x_1 entre et x_7 sort

$$2x_3 + x_4 - x_7 = 1$$

$$3x_2 + 2x_3 + x_5 + x_7 = 4$$

$$-2x_2 + x_3 + x_6 - 2x_7 = 0$$

$$x_1 + 3x_2 - x_3 + x_7 = 2$$

$$-z + x_1 + 5x_2 + x_3 = 0$$

on soustrait de la 3ème ligne 2 fois la 4ème

Application du pivot directement sur les tableaux :

pivot : x_1 entre et x_7 sort

$$2x_3 + x_4 - x_7 = 1$$

$$3x_2 + 2x_3 + x_5 + x_7 = 4$$

$$-2x_2 + x_3 + x_6 - 2x_7 = 0$$

$$x_1 + 3x_2 - x_3 + x_7 = 2$$

$$-z + 2x_2 + 2x_3 - x_7 = -2$$

on soustrait de la 5ème ligne 1 fois la 4ème

D'un point de vue informatique, stocker uniquement les nombres, pas les chaînes de caractères x_i :

$$2x_3 + x_4 - x_7 = 1$$

$$3x_2 + 2x_3 + x_5 + x_7 = 4$$

$$-2x_2 + x_3 + x_6 - 2x_7 = 0$$

$$x_1 + 3x_2 - x_3 + x_7 = 2$$

$$-z + 2x_2 + 2x_3 - x_7 = -2$$

⇒ tableau stocké sous forme informatique :

Algorithme du simplexe : 1ère version

- examiner s'il existe un nombre positif sur la dernière ligne (excepté la dernière colonne qui vaut -z). S'il n'y en a pas, aller en ③. sinon, soit j l'index d'une de ces colonnes
- 2 pour chaque ligne, soit s le nombre dans la colonne la plus à droite et r le nombre dans la colonne j. Déterminer la ligne i ayant le plus petit ratio $s/r \ge 0$. Si les r de toutes les lignes sont négatives ou nulles, aller en o
- \odot diviser la ligne *i* par son coefficient r
- opour toutes les lignes $\neq i$, soit k le nombre stocké sur cette ligne à la colonne j. soustraire à la ligne k fois la ligne i
- revenir en
- on est à l'optimum. Les nombres égaux à 0 sur la dernière ligne (excepté la dernière colonne) déterminent la solution optimale.
- Le problème n'est pas borné, i.e., le max de la fonction objectif est $+\infty$.

Interprétation géométrique de l'algorithme (1/8)

$$\max x_1 + 3x_2$$

$$s.c. \begin{cases} x_2 \leq 4 \\ x_1 - 3x_2 \leq 1 \\ 2x_1 - 3x_2 \leq 5 \\ x_1 - x_2 \leq 3 \\ 2x_1 - x_2 \leq 7 \\ x_1 + 2x_2 \leq 11 \\ x_1 \geq 0, x_2 \geq 0 \end{cases}$$

Interprétation géométrique de l'algorithme (2/8)

Interprétation géométrique de l'algorithme (2/8)

base: $x_3, x_4, x_5, x_6, x_7, x_8$

Interprétation géométrique de l'algorithme (2/8)

base: $x_3, x_4, x_5, x_6, x_7, x_8$

 \implies Pivot : on fait entrer x_1 et sortir x_4

Interprétation géométrique de l'algorithme (3/8)

base: $x_1, x_3, x_5, x_6, x_7, x_8$

Interprétation géométrique de l'algorithme (3/8)

base: $x_1, x_3, x_5, x_6, x_7, x_8$

 \implies Pivot : on fait entrer x_2 et sortir x_5

Interprétation géométrique de l'algorithme (4/8)

$$x_{3} + \frac{2}{3}x_{4} - \frac{1}{3}x_{5} = 3$$

$$x_{1} - x_{4} + x_{5} = 4$$

$$x_{2} - \frac{2}{3}x_{4} + \frac{1}{3}x_{5} = 1$$

$$\frac{1}{3}x_{4} - \frac{2}{3}x_{5} + x_{6} = 0$$

$$\frac{4}{3}x_{4} - \frac{5}{3}x_{5} + x_{7} = 0$$

$$\frac{7}{3}x_{4} - \frac{5}{3}x_{5} + x_{8} = 5$$

$$x_{2} + 3x_{4} - 2x_{5} = -7$$

base: $x_1, x_2, x_3, x_6, x_7, x_8$

Interprétation géométrique de l'algorithme (4/8)

$$x_{3} + \frac{2}{3}x_{4} - \frac{1}{3}x_{5} = 3$$

$$x_{1} - x_{4} + x_{5} = 4$$

$$x_{2} - \frac{2}{3}x_{4} + \frac{1}{3}x_{5} = 1$$

$$\frac{1}{3}x_{4} - \frac{2}{3}x_{5} + x_{6} = 0$$

$$\frac{4}{3}x_{4} - \frac{5}{3}x_{5} + x_{7} = 0$$

$$\frac{7}{3}x_{4} - \frac{5}{3}x_{5} + x_{8} = 5$$

$$-z + 3x_{4} - 2x_{5} = -7$$

base: $x_1, x_2, x_3, x_6, x_7, x_8$

 \Longrightarrow Pivot : on fait entrer x_4 et sortir x_6

Interprétation géométrique de l'algorithme (5/8)

base: $x_1, x_2, x_3, x_4, x_7, x_8$

dégénérescence!!!!!

Interprétation géométrique de l'algorithme (5/8)

base: $x_1, x_2, x_3, x_4, x_7, x_8$

🚺 dégénérescence!!!!!

 \implies Pivot : on fait entrer x_5 et sortir x_7

Interprétation géométrique de l'algorithme (6/8)

base: $x_1, x_2, x_3, x_4, x_5, x_8$

dégénérescence!!!!!

Interprétation géométrique de l'algorithme (6/8)

base: $x_1, x_2, x_3, x_4, x_5, x_8$

🚺 dégénérescence!!!!!

 \implies Pivot : on fait entrer x_6 et sortir x_8

Interprétation géométrique de l'algorithme (7/8)

base: $x_1, x_2, x_3, x_4, x_5, x_6$

Interprétation géométrique de l'algorithme (7/8)

base: $x_1, x_2, x_3, x_4, x_5, x_6$

 \Longrightarrow Pivot : on fait entrer x_7 et sortir x_3

Interprétation géométrique de l'algorithme (8/8)

$$5x_{3} + x_{7} - 2x_{8} = 5$$

$$x_{1} - 2x_{3} + x_{8} = 3$$

$$x_{2} + x_{3} = 4$$

$$5x_{3} + x_{4} - x_{8} = 10$$

$$7x_{3} + x_{5} - 2x_{8} = 11$$

$$3x_{3} + x_{6} - x_{8} = 4$$

$$-z - x_{3} - x_{8} = -15$$

base: $x_1, x_2, x_4, x_5, x_6, x_7$

Interprétation géométrique de l'algorithme (8/8)

$$5x_3 + x_7 - 2x_8 = 5$$

$$x_1 - 2x_3 + x_8 = 3$$

$$x_2 + x_3 = 4$$

$$5x_3 + x_4 - x_8 = 10$$

$$7x_3 + x_5 - 2x_8 = 11$$

$$3x_3 + x_6 - x_8 = 4$$

$$-z - x_3 - x_8 = -15$$

base: $x_1, x_2, x_4, x_5, x_6, x_7$

 \Rightarrow optimum!!!!!

Choix des variables entrantes (1/3)

choisir une variable dont le coeff dans la fonction objectif est > 0

 \Longrightarrow règle ambiguë : plusieurs variables peuvent être candidates

But : choisir la variable pour minimiser le nombre d'itérations de l'algorithme

Choix des variables entrantes (1/3)

choisir une variable dont le coeff dans la fonction objectif est > 0

⇒ règle ambiguë : plusieurs variables peuvent être candidates

But : choisir la variable pour minimiser le nombre d'itérations de l'algorithme

Règle du plus grand coefficient

Choisir de faire entrer la variable qui a le plus grand coefficient dans la fonction objectif

grand coeff ⇒ le taux d'augmentation de la fonction objectif est élevé

aucune garantie que ce soit optimal : la variable peut être contrainte à prendre une petite valeur \Longrightarrow peu de variation de la fonction objectif

Choix des variables entrantes (2/3)

Règle du plus grand accroissement de z

Choisir de faire entrer la variable qui fait le plus augmenter la fonction objectif

aucune garantie que ce soit optimal : on peut faire beaucoup augmenter localement la fonction objectif et rester coincé plus tard :

Choix des variables entrantes (3/3)

La règle du plus grand coefficient est plus souvent utilisée que la règle du plus grand accroissement car elle est calculable plus rapidement

Choix des variables entrantes (3/3)

La règle du plus grand coefficient est plus souvent utilisée que la règle du plus grand accroissement car elle est calculable plus rapidement

Dégénérescence

Avec les deux règles précédentes, on peut cycler (boucler indéfiniment sur les mêmes itérations)

Éviter les problèmes de dégénérescence

Dégénérescence ⇒ possibilité de cycles

⇒ exemple de Beale (1955)

heureusement, les cycles sont rares!

il existe des méthodes garantissant que l'on ne cycle pas :

- méthodes des perturbations
- 2 méthode lexicographique
- règle du plus petit indice
- 4

Méthode des perturbations

Idée force

la dégénérescence est très rare
 c'est plutôt un accident

Méthode des perturbations

Idée force

- la dégénérescence est très rare
 ⇒ c'est plutôt un accident
- on peut la supprimer en «perturbant» très légèrement le tableau simplexe \implies ajouter des ϵ aux b_i

Méthode des perturbations

Idée force

- la dégénérescence est très rare
 ⇒ c'est plutôt un accident
- on peut la supprimer en «perturbant» très légèrement le tableau simplexe \implies ajouter des ϵ aux b_i
- $\epsilon \Longrightarrow$ les solutions obtenues par l'algo du simplexe \approx solution du problème d'origine

Fiabilité de la méthode des perturbations (1/2)

ajouter le même ϵ aux $b_i \Longrightarrow$ méthode peu fiable

exemple:

base réalisable : (x_6, x_7, x_8, x_9)

Fiabilité de la méthode des perturbations (1/2)

ajouter le même ϵ aux $b_i \Longrightarrow$ méthode peu fiable

exemple:

base réalisable : (x_6, x_7, x_8, x_9)

$$x_6 = 1 + \epsilon$$
 - x_5
 $x_7 = 1 + \epsilon - 0, 5x_1 + 5, 5x_2 + 2, 5x_3 - 9x_4 - x_5$
 $x_8 = 1 + \epsilon - 0, 5x_1 + 1, 5x_2 + 0, 5x_3 - x_4 - x_5$
 $x_9 = 2 + \epsilon - x_1 - x_5$
 $z = 10x_1 - 57x_2 - 9x_3 - 24x_4 + 100x_5$

 \implies faire entrer x_5 et sortir (e.g.) x_6

Fiabilité de la méthode des perturbations (2/2)

$$x_6 = 1 + \epsilon$$
 - x_5
 $x_7 = 1 + \epsilon - 0, 5x_1 + 5, 5x_2 + 2, 5x_3 - 9x_4 - x_5$
 $x_8 = 1 + \epsilon - 0, 5x_1 + 1, 5x_2 + 0, 5x_3 - x_4 - x_5$
 $x_9 = 2 + \epsilon - x_1 - x_5$
 $z = 10x_1 - 57x_2 - 9x_3 - 24x_4 + 100x_5$

faire entrer x_5 et sortir x_6 :

 \Longrightarrow on a perdu les ϵ mais il y a toujours dégénérescence

⇒ ici, le simplexe cycle au bout de 6 itérations

Solution plus fiable

même ϵ pour chaque $b_i \Longrightarrow$ les ϵ s'éliminent d'une ligne sur l'autre

 \Longrightarrow choisir des ϵ_i très différents pour chaque b_i

Solution plus fiable

même ϵ pour chaque $b_i \Longrightarrow$ les ϵ s'éliminent d'une ligne sur l'autre

 \Longrightarrow choisir des ϵ_i très différents pour chaque b_i

méthode des perturbations

- choisir $0 < \epsilon_m \ll \epsilon_{m-1} \ll \cdots \ll \epsilon_2 \ll \epsilon_1 \ll 1$
- appliquer l'algorithme du simplexe sur le tableau perturbé

choix possible : $\epsilon_1 = \epsilon$, $\epsilon_2 = \epsilon^2$, $\epsilon_3 = \epsilon^3$, etc

Solution plus fiable (suite)

$$x_6 = 1 + \epsilon_1 - 0, 5x_1 + 5, 5x_2 + 2, 5x_3 - 9x_4 - x_5$$

 $x_7 = 1 + \epsilon_2 - 0, 5x_1 + 1, 5x_2 + 0, 5x_3 - x_4 - x_5$
 $x_8 = 1 + \epsilon_3 - x_5$
 $x_9 = 2 + \epsilon_4 - x_1 - x_5$
 $z = 10x_1 - 57x_2 - 9x_3 - 24x_4 + 100x_5$

contrainte : $0 < \epsilon_4 \ll \epsilon_3 \ll \epsilon_2 \ll \epsilon_1 \ll 1$

Solution plus fiable (suite)

$$x_6 = 1 + \epsilon_1 - 0, 5x_1 + 5, 5x_2 + 2, 5x_3 - 9x_4 - x_5$$

 $x_7 = 1 + \epsilon_2 - 0, 5x_1 + 1, 5x_2 + 0, 5x_3 - x_4 - x_5$
 $x_8 = 1 + \epsilon_3 - x_5$
 $x_9 = 2 + \epsilon_4 - x_1 - x_5$
 $z = 10x_1 - 57x_2 - 9x_3 - 24x_4 + 100x_5$

contrainte : $0 < \epsilon_4 \ll \epsilon_3 \ll \epsilon_2 \ll \epsilon_1 \ll 1$

traiter les ϵ_i comme des variables :

Solution plus fiable (suite)

$$x_6 = 1 + \epsilon_1 - 0, 5x_1 + 5, 5x_2 + 2, 5x_3 - 9x_4 - x_5$$

 $x_7 = 1 + \epsilon_2 - 0, 5x_1 + 1, 5x_2 + 0, 5x_3 - x_4 - x_5$
 $x_8 = 1 + \epsilon_3 - x_5$
 $x_9 = 2 + \epsilon_4 - x_1 - x_5$
 $z = 10x_1 - 57x_2 - 9x_3 - 24x_4 + 100x_5$

contrainte : $0 < \epsilon_4 \ll \epsilon_3 \ll \epsilon_2 \ll \epsilon_1 \ll 1$

traiter les ϵ_i comme des variables :

 \implies faire entrer x_5 et sortir x_8

Solution plus fiable (fin)

Après pivotage:

Solution plus fiable (fin)

Après pivotage:

pivotages \Longrightarrow les ϵ_i se mélangent sur les m premières colonnes :

m premières colonnes =
$$r = r_0 + \sum_{j=1}^{m} r_j \epsilon_j$$

Solution plus fiable (fin)

Après pivotage:

pivotages \Longrightarrow les ϵ_i se mélangent sur les m premières colonnes :

$$m$$
 premières colonnes = $r = r_0 + \sum_{j=1}^{m} r_j \epsilon_j$

choix de la variable sortante = la ligne de plus petit r

La méthode lexicographique (1/2)

choix de la variable sortante = la ligne de plus petit $r = r_0 + \sum_{i=1}^{m} r_i \epsilon_i$

or la règle : $0 < \epsilon_4 \ll \epsilon_3 \ll \epsilon_2 \ll \epsilon_1 \ll 1$

$$\implies$$
 si ligne $i = r = r_0 + \sum_{j=1}^m r_j \epsilon_j$ et ligne $j = s = s_0 + \sum_{j=1}^m s_j \epsilon_j$

alors $r < s \iff r_k < s_k$ pour k le plus petit indice tel que $r_k \neq s_k$.

 \Longrightarrow ordre lexicographique

La méthode lexicographique (2/2)

Méthode lexicographique

- créer une colonne par ϵ_i
- choix des variables sortantes = la ligne de plus petit r (au sens lexicographique)

Théorème

L'algorithme du simplexe se termine, i.e., ne cycle pas, dès lors que les variables sortantes sont choisies avec la règle lexicographique

cette règle n'est à appliquer qu'en cas de dégénérescence

La méthode du plus petit indice

Règle du plus petit indice

Lorsque plusieurs variables sont candidates à entrer en base (selon un certain critère (e.g., les règles ci-dessus)), choisir celle qui a le plus petit indice dans le tableau. Faire de même avec les variables sortant de la base.

Théorème — Bland (1977)

si on applique cette nouvelle règle, l'algorithme du simplexe ne peut cycler.

cette règle n'est à appliquer qu'en cas de dégénérescence