1. Sea $\mathbf{X} = (X, Y)'$ un vector aleatorio continuo. Usando las propiedades de la función de distribución conjunta F(x, y), muestre que X y Y son independientes si y sólo si

$$f\left(x,y\right) = f_X\left(x\right) \times f_Y\left(y\right)$$

- donde f(x, y) es la función de densidad conjunta del vector \mathbf{X} y $f_X(x)$ y $f_Y(y)$ son las densidades marginales de X y Y.
- 2. Sean X y Y dos variables aleatorias tal que $\mathbb{E}\left(X^2\right)<\infty$ y $\mathbb{E}\left(Y^2\right)<\infty$. Usando la definición de varianza, covarianza y correlación y las propiedades del valor esperado, muestre que
 - (a) $Var(X) = \mathbb{E}(X^2) \left[\mathbb{E}(X)^2\right]$
 - (b) $Cov(X, Y) = \mathbb{E}(XY) \mathbb{E}(X)\mathbb{E}(Y)$
 - (c) Cov(aX + b, Y) = aCov(X, Y) para todo $a, b \in \mathbb{R}$
 - (d) $\rho(aX + b, Y) = \rho(X, Y)$ para todo a > 0 y $b \in \mathbb{R}$
- 3. [Independencia, independencia en media condicional, ortogonalidad]. Sean X y Y dos variables aleatorias tal que $\mathbb{E}(X^2) < \infty$ y $\mathbb{E}(Y^2) < \infty$. Muestre que
 - (a) Si X y Y son independientes, entonces Cov(X, Y) = 0
 - (b) Si X y Y son independientes en media condicional, i.e. si $\mathbb{E}(Y|X) = \mathbb{E}(Y)$, entonces Cov(X,Y) = 0. (Pista: $\mathbb{E}(XY) = \mathbb{E}[\mathbb{E}(XY|X)]$)
 - (c) ¿Es posible que X y Y no sean independientes pero que $\mathbb{E}\left(Y|X\right)=\mathbb{E}\left(Y\right)$? Justifique su respuesta