	Chapter - 1
1	Define AI? Explain the characteristics of AI problem.
2	What is artificial intelligence? Define the different task domains of artificial intelligence.

	Chapter - 2
1	Describe different heuristics for the following types of problems:
	i. Blocks world
	ii. Tic Tac Toe
2	Analyze following problems with respect to the 7 problem characteristics of AI.
	i. 8-puzzle
	ii. ii. Traveling salesman
3	Solve following cryptarithmetic problem with appropriate strategy/steps:
	EAT
	+ T H A T
	APPLE
4	Discuss hill climbing search method. Also discuss limitations and ways to overcome
4	these limitations.
5	Discuss simulated annealing search method. Which types of problems are suitable to
	solve using this method?
	OR
	Explain simulated annealing algorithm.
6	Discuss A* algorithm. Give one example where it is suitable to apply.
	OR
	What do you mean by admissibility of an algorithm? Is A* algorithm an admissible
	one? When?
7	Discuss AO* algorithm. Give one example where AO* is suitable to apply.
8	Explain the State Space with the use of 8 Puzzle Problem.
9	Solve The following Crypt arithmetic problem:
	CROSS
	+ R O A D S
	DENGER
10	Solve The following Crypt arithmetic problem:
10	B A S E
	+ B A L L
	GAMES
11	Given an example of a problem for which breadth-first search would work better than
	depth-first search.
	OR
	Explain depth first search (DFS) and breadth first search (BFS) with suitable examples.
	Why is :depth limited searchønecessary in DFS?

12	What is I Climbing.	Hill Clin	nbing?	Explain	Simple 1	Hill Clin	mbing	and Ste	epest-	Ascent Hill
13	Solve Travelling Salesman Problem using any AI technique.									
14	How prob					selection	of A	I technic	que? E	xplain these
15	Consider t	the follove for initi	wing ini ial three	tial and iteration	goal cont ns of A* a	lgorithn	n to rea	-	-	m. Draw the state to goal
			Initia	l state			C	Goal state	;	
			1	2	7	1	2	3		
		3	4	5	_	8		4		
		6	7	8		7	6	5		
16	Solve the EDONAL+GERAL ROBE	ALD ALD	g Crypt .	Arithmet	ic proble	n.				
17	Solve Wat		roblem v	ising pro	duction r	ule syste	em.			
	What do y represent (without a	following any meas	g water uring m	jug pro arks on t	blem as them) of	a state at 4 and 3	space s liters c	search: Tapacity,	There a	how you can are two jugs tively. There xactly 2 liter
18	Explain A	ND-OR	graphs.							
19	What do y algorithm		•		tisfaction	probler	ns? Ex	plain cor	nstraint	propagation
20	What is pr	oduction	system		n it with a	ın exam _]	ple. Dis	scuss the	charac	cteristics of a
	production	n system.								

Chapter - 3				
21	Explain the different issues in Knowledge representation.			
22	Explain different approaches of knowledge representation.			
23	Differentiate between declarative and procedural representation of knowledge.			

	Chapter - 4			
1	Consider the following axioms:			
	1. Anyone whom Mary loves is a football star.			

	2. Any student who does not pass does not play.
	3. John is a student.
	4. Any student who does not study does not pass.
	5. Anyone who does not play is not a football star.
	Prove using Resolution - õlf John doesn't study, Mary doesn't love John.ö (imp)
2	Explain the steps of unification in predicate logic. Also discuss the steps of converting
	predicate logic wffs to clause form.
3	Consider the following facts.
	i) The member of the St. Bridge club are Joe, Sally, Bill and Ellen.
	ii) Joe is married to Sally.
	iii) Bill is Ellenøs brother.
	iv) The spouse of every married person in the club is also in the club.
	v) The last meeting of the club was at Joeøs house.
	1) Translate the above sentences into formulas in predicate logic.
	2) Prove that Ellen is not married.
4	Translate these sentences into formulas in predicate logic.
	1. John likes all kinds of food.
	2. Apples are food.
	3. Chicken is food.
	4. Anything anyone eats and isnot killed-by is food.
	5. Bill eats peanuts and is still alive.
	6. Sue eats everything Bill eats.
5	Convert the formulas derived in above question (Question Number_4_ in this Question
	Bank) into clauses. Prove that John likes peanuts using resolution.
6	Consider the following sentences:
	ÉPrince is a mega star.
	ÉMega stars are rich.
	ÉRich people have fast cars.
	ÉFast cars consume a lot of petrol.
	(1) Translate these sentences into formulas in predicate logic.
	(2) Prove that Prince's car consumes a lot of petrol.

	Chapter - 5
1	Explain the Forward and Backward Reasoning.
2	Explain the algorithm of predicate logic resolution.
3	Using the formulas derived in in above question (Question Number_4_ in this Question
	Bank ó chapter - 4) prove John likes peanuts using forward chaining as well as
	backward chaining.
4	Justify using an example that Prolog uses Backward chaining to prove or answer any
	given goal.

Chapter - 6		
1	Explain non-monotonic reasoning in detail.	

2	What is non-monotonic reasoning? Explain different subtypes of non-monotonic
	reasoning in brief.
3	Explain abductive reasoning using example.

	Chapter - 7				
1	Explain Bayesian Network in detail.				
2	Define -certainty factor Mow does certainty factor help in dealing with uncertainty?				
	Explain with reference to rule based system.				
3	Describe any one conflict resolution approach used in rule based systems.				

	Chapter - 8				
1	Explain Semantic Net in detail. Explain example of partitioned Semantic Net.				
2	Explain Semantic Net and Frame with example.				
	OR				
	Explain followings:				
	(i) Semantic net				
	(ii) Frames				
3	Represent following sentence using semantic net: `Sita gave the pearl garland to				
	Hanuman.ø				
4	What is Semantic Nets? Consider the following statements and draw the				
	semantic net:				
	Tom is a cat.				
	Tom caught a bird.				
	Tom is owned by John.				
	Tom is ginger in colour.				
	Cats like cream.				
	The cat sat on the mat.				
	A cat is a mammal.				
	A bird is an animal.				
	All mammals are animals.				
	Mammals have fur.				

	Chapter - 10				
1	What is linearly separable problem? Design a perceptron for any of such problem. State				
	one example of a problem which is not a linearly separable.				
2	Explain Min-Max search procedure with an example.				
	OR				
	#Minimax is not good for game playing when the opponent is not playing optimally.ø				
	Justify using suitable example.				
3	Explain goal stack planning in detail.				
4	Consider the game tree of Fig. 1 in which the static scores are from first player point				
	of view. Suppose the first player is maximizing player. Applying mini-max search,				
	show the backed-up values in the tree. What move will the MAX choose? If the nodes				
	are expanded from left to right, what nodes would not be visited using alpha-beta				

Chapter - 12		
1	Explain each step of Natural Language Processing in detail.	
	OR	
	Explain steps of Natural Language Processing.	

Chapter - 13		
1	Discuss perceptron learning algorithm.	
2	Write a short note on: Hopfield Networks.	
3	What is an expert system? Explain Architecture of an Expert system.	
4	Explain perceptron learning algorithm for training a neural network. What are the	
	limitations of this algorithm?	
	OR	
	Explain Artificial Neural Network.	
5	Explain followings with reference to expert system:	
	(i) Expert system shell	
	(ii) Knowledge acquisition	
6	Write a short note on: Recurrent Networks.	

Chapter - 14		
1	Write a Prolog program to find the factorial of a number.	
2	Explain Cut, Fail and Repeat predicates in Prolog.	
3	Write a prolog program to find maximum number from a list.	
4	Write a prolog program to find sum of all the numbers of a list.	
5	Write a Prolog program for finding a set, which is result of the intersection of the two	
	given sets.	
	Hint: Goal: intersect([1, 2, 3], [2, 3, 4], A)	
	A = [2, 3]	
	Goal: intersect([d, f, g], [a, b, c], X)	
	X = []	
6	Write a Prolog program to merge two sequentially ordered (ascending) lists into one	
	ordered list.	

	Hint: Goal: merge([1, 3, 5, 7], [0, 2, 4, 6], L)
	L = [0, 1, 2, 3, 4, 5, 6, 7]
	Goal: merge([a, c], [b, d], [a, b, c, d])
	Yes
7	Explain following terms with reference to Prolog programming language: Clauses,
	Predicates, Domains, Goal, Cut, Fail, Inference engine
8	Explain how list is used in Prolog. Discuss how following list-functions can be
	implemented in Prolog:
	Checking membership of an item in a given list, concatenating two lists, and deleting
	an item in a given list.
9	Write a prolog program to reverse the given list.