Construcciones con regla y compás (In a nutshell)

Álgebra Moderna II, Septiembre 2020

Las matemáticas griegas

- Los matemáticos griegos consideraban que las rectas y los círculos [divina simetría y balance en la naturaleza] eran las únicas figuras perfectas.
- Su estudio de la geometría se restringía al de las figuras que podían realizarse usando únicamente regla para trazar lineas rectas y compás para trazar círculos.
- La regla debería ser sin marcas y usarse sólo de un lado.

Aún con estas restricciones, se pueden conseguir bastantes construcciones. Sin embargo, algunas de ellas quedaron sólo como conjeturas, pues debido a su dificultad y limitaciones, escaparon de las mentes de sus matemáticos. Algunos de etsos problemas son:

- La duplicación de cubo,
- la trisección del ángulo,
- la cuadratura del círculo.

y... ¿dónde quedaron los polinomios?

Metas:

- Veremos una aplicación de la teoría que hemos desarrollado a algunos problemas antiguos en geometría clásica que no pudieron ser resueltos por los geómetras griegos.
- Con las condiciones que impone la regla y el compás, estos problemas son imposibles.
- Formalizaremos la noción de constructibilidad con regla y compás con el modelo cartesiano del plano euclidiano
- Finalmente veremos que los problemas *clásicos* mencionados anteriormente no son solubles.

Formulación geométrica del problema

Movimientos básicos

Dado un conjunto \mathcal{P} de puntos en el plano $[\mathbb{R}^2]$ las operaciones permitidas son:

- Regla: Por cualesquiera dos punto trazar la recta que pasa por ellos
- Compás: Trazar el círculo cuyo centro es un punto de \mathcal{P} y su radio, la distancia entre algún par de puntos de \mathcal{P} .

La construcción es recursiva

Definición 1

Sea \mathcal{P} un subconjunto de \mathbb{R}^2 con al menos dos puntos.

- Un punto P es construible en un paso a partir de \mathcal{P} si es la intersección de dos rectas distintas, dos círculos o de un círculo y una recta, mediante una operación elemental.
- Un punto P es construible a partir de \mathcal{P} si existe una sucesión finita de puntos de \mathbb{R}^2 , $P_1, \ldots, P = P_n$, tales que
 - \bullet \bullet \bullet \bullet P₁ es contruible en un paso a partir de \bullet P.
 - ② P_k es contruible en un paso a partir de $\mathcal{P} \cup \{P_1, \dots, P_{k-1}\}$

Definición 2

Sea \mathcal{P} un subconjunto de \mathbb{R}^2 con al menos dos puntos. Un número real $\alpha \in \mathbb{R}$ es construible a partir de \mathcal{P} si existen puntos P y Q construibles a partir de \mathcal{P} tales que la longitud orientada del segmento \overline{PQ} es α

Formulación algebraica del problema

Tomamos dos puntos distintos de \mathbb{R}^2 . Sean P y Q tales puntos. Definimos la unidad de longitud orientada $1 = \overline{PQ}$. Por definición el número racional 1 es construible. También 0 es construible: la longitud del segmento \overline{PP} .

Proposición 3

Sea $\mathcal{P} \subset \mathbb{R}^2$ con al menos dos puntos. Si α, β son números construibles a partir de \mathcal{P} , entonces $\alpha + \beta$, $\alpha - \beta$, $\alpha\beta$ y $\frac{\alpha}{\beta}$ (cuando $\beta \neq 0$) son construibles a partir de \mathcal{P} .

Corolario 4

Sea $\mathcal{P} \subset \mathbb{R}^2$ con al menos dos puntos. El conjunto de números construibles a partir de \mathcal{P} , K, es un subcampo de \mathbb{R} y, más aún, $\mathbb{Q} \subset K \subset \mathbb{R}$.

Demostración de Proposición 3

Sean $\alpha, \beta \in \mathbb{R}$ construibles.

Por lo tanto, $\alpha + \beta$ y $\alpha - \beta$ son contruibles.

Por lo tanto, $\alpha\beta$ es construible.

Por lo tanto, $\frac{\alpha}{\beta}$ es construible.

Proposición 5

Sea $\mathcal{P} = (0,0), (1,0)$. Si u es un número real construible a partir de \mathcal{P} , entonces \sqrt{u} es contruible a partir de \mathcal{P} .

Demostración.

Los triángulos AHC y CHB son semejantes y comparten el lado HC.

Por lo tanto, $\frac{1}{v} = \frac{AH}{HB} = \frac{v}{u}$. Así, $v^2 = u$

Aquí están los polinomios

Corolario 6

Supongamos que $L, K \subset \mathbb{R}$ son subcampos y que L es una extensión de K de grado dos. Entonces, todo $\alpha \in L$ es construible a partir de un conjunto finito con coordenadas en K.

Demostración.

Si $\alpha \in K$, no hay nada que hacer. Si $\alpha \in L \setminus K$, $L = K(\alpha)$ y $\min(\alpha, K) = x^2 + bx + c$. Así,

$$\alpha = \frac{1}{2}[-b \pm \sqrt{b^2 - 4c}].$$

Como $b^2 - 4c \ge 0$ y $b^2 - 4c \in K$, entonces $\sqrt{b^2 - 4c}$ es construible a partir de K.

Lema 7

Sea \mathcal{P} un conjunto de puntos que contiene a (0,0) y a (1,0). Un punto (a,b) es construible a partir de \mathcal{P} si y sólo si (a,0) y (0,b) son construibles a partir de \mathcal{P} .

Demostración.

Extensiones

Fijemos a $\mathcal{P} = \{(0,0), (1,0)\}$. Supongamos que $Q_n = (x_n, y_n)$ es construible a partir de \mathcal{P} . Hay una sucesión de puntos $Q_j = (x_j, y_j)$ tales que

- Q_1 es construible a partir de \mathcal{P} en un paso,
- Q_j es contruible a partir de $\mathcal{P} \cup \{Q_1, \dots, Q_{j-1}\}$ en un paso.

En cada paso definimos $K_j := K_{j-1}(x_j, y_j)$ y ponemos $K_0 := \mathbb{Q}$.

Lema 8

Se tiene que $[K_j, K_{j-1}] \in \{1, 2\}.$

Prueba de Lema 8.

Tenemos que x_j y y_j se obtienen de K_{j-1} usando regla y compás como intersección de:

- dos rectas que pasan por puntos con coordenadas en K_{j-1} ,
- dos círculos cuyos centros tienen coordenadas en K_{j-1} y cuyo radio es dado por la distancia entre puntos con coordenadas en K_{j-1} ,
- una recta y un círculo con iguales restricciones.
- en el primer caso x_j y y_j satisfacen sendas ecuaciones lineales con coeficientes en K_{j-1} . Aquí ocurre que $K_j = K_{j-1}(x_j, y_j)$ coincide con K_{j-1}
- ② en los siguientes casos x_j y y_j ecuación lineal con coeficientes en K_{j-1} y x_j satisface una cuadrática con coeficientes en K_{j-1} . Por lo tanto $[K_{j-1}(x_j,y_j):K_{j-1}] \leq 2$.

Teorema 9

Sea $\mathcal{P} \subset \mathbb{R}^2$ con (0,0) y (1,0). Sea $\alpha \in \mathbb{R}$. Las afirmaciones son equivalentes

- \bullet α es construible
- 2 Existen números reales $\alpha_1, \ldots, \alpha_n$, tales que
 - $\bullet \ \alpha_1^2 \in \mathbb{Q},$

Corolario 10

Si $\alpha \in \mathbb{R}$ es construible, entonces $[\mathbb{Q}(\alpha) : \mathbb{Q}]$ es una potencia de dos.

Problemas griegos clásicas

Teorema 11

Es imposible, con regla y compás, trisecar el ángulo de 60°

Demostración.

Para trisecar 60°, debemos construir un punto (a,0) tal que $a=\cos(20^\circ)$. Supongamos que es posible. Entonces podemos contruir (2a,0). Tenemos la identidad $\cos(3\vartheta)=4\cos^3(\vartheta)-3\cos\vartheta$. Para $\vartheta=20^\circ$ se tiene

$$\frac{1}{2} = \cos(3\vartheta) = 4\cos^3(\vartheta) - 3\cos\vartheta.$$

Si $b = 2\cos(20^{\circ})$, se tiene que $b^3 - 3b - 1 = 0$. Esto es, b es raíz de $x^3 - 3x - 1 \in \mathbb{Q}[x]$. Este polinomio es irreducible. Por lo tanto, $[\mathbb{Q}(b):\mathbb{Q}] = 3$, lo cual es una contradicción.

Teorema 12

Es imposible, con regla y compás, duplicar el volumen del cubo.

Demostración.

Supongamos que tenemos un cubo unitario y que una de sus aristas es el intervalo unitario en el eje x. El volumen de este cubo es 1. Si queremos duplicarlo, hay que construir a partir de (0,0) y (1,0) un $(\alpha,0)$ tal que $\alpha^3=2$. Tal α es raíz del polinomio $x^3-2\in\mathbb{Q}[x]$ irreducible. Así

$$[\mathbb{Q}(\alpha):\mathbb{Q}]=3.$$

Lo cual es una contradicción.

Teorema 13

Es imposible, con regla y compás, hallar el área de un círculo dado.

Demostración.

Supongamos que tenemos un círculo de radio 1 centrado en el origen. Está determinado por los puntos (0,0) y (1,0). El área de este círculo es π . El cuadrado cuya área es igual a la de este círculo tiene lados de $\sqrt{\pi}$. Si fuera posible construir con regla y compás este cuadrado, entonces podríamos construir el punto $(\sqrt{\pi},0)$ y, por consiguiente, $[\mathbb{Q}(\sqrt{\pi}),\mathbb{Q}]$ sería una potencia de 2. Lo que implica que $\pi \in \mathbb{Q}(\sqrt{\pi})$ es algebraico sobre \mathbb{Q} . es una contradicción ón.

Bibliografía y referencias

Figuras

- La figura del origami es de By Dmcq Own work, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=17450465.
- La escuela de Atenas (La scuola di Atene) es de Rafael Sanzio
- El fresco de los delfines es del palacio de Knossos, que está en Grecia. [Las fotos las saqué de Wikipedia]

Libros

- [1] Artin, Emil: Galois Theory. Dover Publications.
- [2] Zaldívar, Felipe: Introducción a la Teoría de Galois. UNAM Instituto de Matemáticas (2018), Colección Papirhos. Serie Textos, no. 8.

Fin

and amount respected a DU.

nte $\mu > 0$ tal que la forma bilineal $B[\cdot, \cdot]$ asociada a ma de Lax-Milgram si $c(x) > -\mu$ para todo $x \in U$.

 $u\in H^2_0(U)$ es una solución débil de la ecuación

ontera de Dirichlet

$$U, \qquad u = \partial_{\nu} u = 0 \quad \text{sobre } \partial U$$

 $\int v \, dx$ para todo $v \in H_0^2(U)$.

1) tiene una única solución débil $u \in H_0^2(U)$.

na función $u \in H^1(U)$ es una solución débil del

Gracias

L'attention est la forme la plus rare et la plus pure de la générosité...

La atención es la forma más rara y más pura de la generosidad...

Simone Weil, Lettre au poète Joë Bousquet, 1942

