k-Means Clustering

What is Clustering?

• Clustering is a technique used in unsupervised machine learning to group a set of objects in such a way that objects in the same group, which is called a cluster are more similar to each other than to those in other groups.

The k-Means Algorithm Explained

• k-Means is a popular clustering algorithm that organizes a specified number of data points into a predefined number of clusters.

The goal is to minimize the variance within each cluster, where each point belongs to the cluster with the nearest mean.

Example

 Segmenting credit card customers based on spending behavior and usage patterns to tailor marketing strategies and enhance customer service.

The image illustrates the K-Means cluster algorithm. It shows unclassified data points on the left graph and classified clusters on the right graph.

Implementation

1. Data Preparation

- Load the credit card customer dataset.
- Drop unnecessary identifiers and convert data to floats.
- Use features like Total Visits Online and Average Credit Limit.
- · Display pair plots and density distributions to identify initial clusters visually.

2. Scaling and Initialization

- · Set Initial Cluster Centers
- Apply MinMaxScaler scaling to the dataset and cluster centers.

3. k-Means Iterative Process

- Calculate Euclidean distances between each data point and cluster centers.
- · Assign each data point to the nearest cluster based on the minimum distance.
- Update the cluster centers based on the mean of the assigned data points.
- Visualize cluster assignments and updated centroids after each iteration.

Clustering - algorithm description

Visualization insights

• The Plots depict the progression of k-Means clustering from Iteration 1 to Iteration 2, highlighting changes in centroids' positions and cluster assignments. After the second iteration, there were no further changes.

Key Observations

- Centroids move towards denser regions, enhancing cluster accuracy.
- Data points are reassigned between clusters, reflecting refinement in their classification.

Conclusions

- The algorithm adjusts centroids dynamically based on data, optimizing clustering.
- Improved centroid positioning results in more accurate and meaningful clusters, valuable for targeted business strategies.

Plot of the first Iteration:

Plot of the second Iteration:

