dieren kann unter Bildung der entsprechenden Essigester. Als wir nun das Acetylpregnenolon mit Bleitetraacetat behandelten, zeigte es sich, daß in der Hauptsache folgende Reaktion vor sich geht:

d. h. aus Acetylpregnenolon ist 3,21-Diacetoxy-pregnenon entstanden, die der CO-Gruppe benachbarte CH₃-Gruppe wird also für die Oxydation bevorzugt.

Wir haben diese Reaktion auf das Progesteron übertragen, wobei allerdings noch weitere Angriffsmöglichkeiten für die Oxydation gegeben sind, wie sich aus der Konstitution ohne weiteres ergibt; aber überraschenderweise verläuft die Reaktion fast nur in der Richtung:

$$CH_3$$

$$CH_3$$

$$CH_3$$

$$CH_4$$

$$CO \cdot CH_2O \cdot COCH_3$$

$$+ Pb(OCOCH_3)_4 = CH_3COOH$$

$$+ Pb(OCOCH_3)_2 + CH_3COOH$$

d. h. aus Progesteron entsteht das Desoxycorticosteronacetat, bzw. bei Verwendung anderer Pb(4)-acylate die entsprechenden Ester, wir haben z. B. Propionat, Benzoat, Palmitat usw. dargestellt.

Es ist klar, daß sich diese Reaktion auch auf im Kern eine oder mehrere Oxygruppen tragende Progesterone übertragen läßt. Steiger u. Reichstein haben für das Desoxycorticosteron einen Schmp. von 141—1420 angegeben. Unsere Versuche zeigen teilweise davon abweichende Resultate. Wir erhalten bei der Verseifung des Desoxy-

corticosteronacetats eine Verbindung, die bei 138—140° klar schmilzt; läßt man erstarren und stellt nun erneut den Schmelzpunkt fest, so liegt er nunmehr bei 152—154°. Wir führen diese Erscheinung auf Polymorphie zurück, die übrigens bereits beim Progesteron und Dehydroandrosteron beobachtet wurde und in unserem Falle um so

ŊЕ

weniger auffallend ist, als das Progesteron unser Ausgangsmaterial darstellt und bereits zwei Modifikationen enthält. Die spezifische Drehung finden wir mit Reichstein bei +1760, ebenso stimmen Löslichkeit und Kristallform vollständig überein. Mischschmelzpunkte mit der nach Reichstein dargestellten Substanz sind wegen der weiten Schmelzpunktsgrenzen nicht sehr überzeugend. Wir haben aber Absorptionsspekdie tren des Desoxycorticosteronacetats nach Reichstein und des nach unserer Methode dargestellten Produktes miteinander verglichen¹⁵), und dabei zeigt sich, daß die Kurven innerhalb der Fehlergrenzen miteinander vollkommen identisch sind, womit auch die Identität beider Substanzen erwiesen sein dürfte.

25

-- nach Sleiger u. Aeldtskein
-- nech verliegenden
Markeiren

Abb. 1.

Desoxycorticosteronacetat.

Desoxycorticosteronacetat, 1 mg pro 1 cm² in abs. Alkohol bzw. die 10fache Verdünnung.

Es ist also gelungen, ausgehend von dem aus dem

Sterin der Sojabohne leicht zugänglichen Stigmasterin über die Oxybisnorcholensäure in einfachen Reaktionen und in technischem Ausmaß das Progesteron darzustellen, das sich einerseits leicht zu dem männlichen Sexualhormon abbauen läßt, andererseits aber auf einfachem Wege durch Oxydation die Darstellung des bisher nur in geringen Mengen zugänglichen Nebennierenrindenhormons gestattet¹⁶).

Pisanbanad

15) Wir verdanken die Aufnahmen Herrn Dr. J. Eisenbrand.
 16) Unter dem Namen "Cortenil" in die Therapie eingeführt.

VERSAMMLUNGSBERICHTE

Physikalisches Institut der Universität Berlin. Colloquium am 14. April 1939.

C. F. v. Weizsäcker: "Zur Theorie der Uranspaltung."
Nach Entdeckung der Transurane (Fermi¹; Meitner, Hahn
und Straβmann³) und insbesondere nach der Entdeckung, daß
diese Kerne in Bruchstücke gleicher Größenordnung zerfallen
können (Hahn und Straβmann³) sind von verschiedener Seite
Theorien entwickelt worden, deren Grundannahme ist, daß diese
Kerne keine Kugelgestalt, sondern eine mehr gestreckte Form
haben. Das Zerfallen in zwei etwa gleich schwere Teile soln
man sich dann vorstellen als ein Zerbrechen der gestreckten
Form ungefähr in ihrer Mitte. Existiert ein Kern statt in Kugelform in einer gestreckten Form, so muß er in dieser eine höhere
Bindungsenergie besitzen. Die Bindungsenergien von Kernen
höhere Masse kann man nun darstellen nach einem Tröpfehen-

1) E. Formi, Nature 188, 898 [1934].

²) L. Meitner, F. Straßmann u. O. Hahn, Z. Physik 109, 538 [1938].

2) O. Hahn u. F. Straβmann, Naturwiss. 26, 756 [1938].

modell. Nach diesem Modell setzt sich die Energie eines Kernes zusammen aus einer dem Volumen proportionalen Volumenenergie, einer der Oberfläche proportionalen Oberflächenenergie und der Coulomb-Energie der positiven Ladung des Kernes. Es ist

$$\mathbf{E}_{\mathbf{B}} = \mathbf{E}_{\mathbf{V}} - \mathbf{E}_{\mathbf{O}} - \mathbf{E}_{\mathbf{C}}$$

und zwar sind bei dieser Schreibweise E_V , E_O und E_C positive Größen⁴). Jeder Kern wird nun in einer solchen Form existieren, für die die Bindungsenergie E_B ein Maximum ist. Vergleicht man verschiedene Formen gleichen Volumens, die also sämtlich die gleiche Volumenenergie haben, miteinander, so muß die stabile Form unter ihnen einem Minimum $E_O + E_C$ entsprechen. Geht man bei einem Kern bestimmter Zusammensetzung von der Kugelgestalt zu einer mehr gestreckten Form über, so wird die Oberflächenenergie wachsen, die Coulomb-Energie aber fallen, weil jetzt die Kernbestandteile im Durchschnitt mehr voneinander entfernt sind. Fällt nun die Coulomb-Energie stärker ab, als die Oberflächenenergie anwächst, so wird eine gestreckte Form des Kernes stabiler sein als die Kugelgestalt.

4) Vgl. C. F. v. Weizeäcker: Die Atomkerne, 1937.

Weizsäcker hat zu diesen Gedankengängen eine quantitative Rechnung durchgeführt, in der er annimmt, daß die Kerne rotationsellipsoidische Gestalt haben. Er erhält als Ergebnis, daß für Kernladungszahlen kleiner als etwa 100 die Kugelgestalt die stabile Form, für Kernladungszahlen größer als etwa 100 ein sehr gestrecktes Rotationsellipsoid (Exzentrizität ungefähr 0,9) die stabile Form ist. Es liegt also die Grenze der Stabilität der Kugelgestalt am Ende des Periodischen Systems, wie wir es, wenn die eingangs angeführten Vorstellungen richtig sind, erwarten müssen. In einem kleinen Bereich um Z=100 herum sind beide Formen, Kugel und gestrecktes Rotationsellipsoid, stabil. Diese Tatsache gibt vielleicht einen Anhaltspunkt zum Verstehen des Auftretens von Isomeren (Kernen gleicher Ladung und gleicher Masse mit verschiedenen Eigenschaften) im radioaktiven Gebiet.

Kaiser Wilhelm-Institut für physikalische Chemie und Elektrochemie, Berlin-Dahlem.

Colloquium am 18. April 1939.

E. Jenckel, Berlin: "Zur Änderung der Viscosität der Schmelzen mit der Temperatur".»).

Es ist naheliegend, diese Änderung nach der Gleichung $\eta = A \cdot e_{RT}$ darzustellen, worin η die Viscosität und A eine Konstante bedeuten. Der Ausdruck e $_{RT}^{Q}$ gibt bekanntlich den Bruchteil derjenigen Moleküle an, die mindestens die Energie Q tragen. Diese einfache Gleichung entspricht jedoch nicht der Erfahrung. Aus dem vorhandenen Beobachtungsmaterial an Silicatgläsern, organischen und anorganischen Stoffen und Polystyrol läßt sich die allgemeine Form der Viscositätstemperaturkurve (in den Koordinaten log η gegen 1/T) wie folgt ableiten: Bei kleinen Viscositäten eine verhältnismäßig geringe geradlinige Änderung, bei hohen Viscositäten eine sehr starke Änderung. Zur Deutung wird angenommen, daß nur bei niederen Viscositäten (geradliniger Teil), wenn der Abstand von einem aktivierten Molekül zum anderen klein ist, jedes aktivierte Molekül zum Fließen beiträgt. Bei hohen Viscositäten, großen Abständen, ist jedoch das einzelne aktivierte Molekül von einer sehr großen Zahl inaktiver Moleküle umgeben, die es wie ein Käfig mit dicken Mauern einschließen und hindern, zum Fließen beizutragen, obwohl es die van der Waalsschen Kräfte zu seinen nächsten Nachbarn zu überwinden vermag. Erst wenn mehrere aktive Moleküle in einer Gruppe nebeneinander vereinigt sind, ein viel selteneres Ereignis, sind sie imstande, die Mauern des Käfigs zu sprengen und am Pließen teilzunehmen. Hierfür wird der folgende quantitative Ansatz vorgeschlagen:

$$\eta = A \cdot e^{n \cdot Q}_{RT}; \quad n = 1 + m; \quad m = \kappa' e^{-Q}_{RT}$$

 \times ist also ein Maß für die Festigkeit der Käfigmauern (der Gesamtheit der umgebenden inaktiven Moleküle) und bewirkt hauptsächlich die großen stofflichen Unterschiede in der Viscosität. Die vorgeschlagene Formel gibt die Messungen insbes. an Äthylalkohol, bei dem der geradlinige Teil der Kurve und damit Q und A bekannt sind, hinreichend wieder. Beim Äthylalkohol sind bei der Einfriertemperatur (n = 10^{19}) 2—3 aktive Moleküle in einer Gruppe nötig. Schließlich wird darauf hingewiesen, daß die Geschwindigkeit der Erholung der Metalle ebenfalls sehr stark mit der Temperatur zunimmt und vermutlich entsprechend zu verstehen ist.

Colloquium am 25. April 1939.

H. Schüler, H. Gollnow u. H. Haber: "Die Hohlkathodenentladung als Hilfsmittel zur Beobachtung von Molekülbildungsprozessen an Metalloberslächen und Stoβvorgängen im
Gasraum." (Vortragende: 1. H. Schüler, 2. H. Gollnow,
3. H. Haber.)

Die Tatsache, daß Molekülspektren in Entladungen mit gekühlten und ungekühlten Hohlkathoden beobachtet werden, ergibt, weil hier wegen des geringen Druckes Molekülbildung im Gasraum durch Dreierstoß ausgeschlossen ist, die Möglichkeit, Molekülbildungsprozesse an der Kathodenoberfläche zu beobachten, und beim Übergang von der hohen "Zerstäubungs-Verdampfungs-Temperatur" zur niedrigen "Gastemperatur" elementare Stoßprozesse zu studieren.

Es wurden bisher folgende Effekte beobachtet:

- 1. Das CuH-Molekül entsteht an der Kathodenoberfläche im wesentlichen im rotationslosen Zustand.
- 2. Im Gegensatz zum CuH zeigt die Intensitätsverteilung der Rotationslinien in der (O—O)-Bande λ 4241 des AlH eine Boltzmann-Verteilung von 1800° abs., die der Zerstäubungs-Verdampfungs-Temperatur entspricht.
- 3. Die Umstellung der Rotationsverteilung zwischen verschiedenen Temperaturen erfolgt nicht momentan. Ganz allgemein stellen sich die niederen Rotationszustände schneller ein als die höheren.
- 4. Von einem bestimmten Betrag des Druckes an ändert weitere Erhöhung des Druckes die aus der Boltsmann-Verteilung bestimmte Temperatur der Moleküle nicht mehr; die Molekülrotationen sind dann im Temperaturgleichgewicht mit der Gasraumtemperatur.

 Die Rotation mit Schwingung ergibt eine wesentlich größere Stoßausbeute als die Rotation ohne Schwingung (Beobachtungen beim BiH).

 Es zeigt sich, daß sich das Verhältnis der Oscillationszustände in dem möglichen Druckbereich der Hohlkathodenentladung beim AlH und BiH noch nicht ändert.

 Stöße von AlH mit Argon zeigen, daß im gleichen Gasraum die Rotationsverteilung mit Schwingung sich auf andere Boltsmann-Temperaturen einstellt als die Rotationsverteilung ohne Schwingung.

8. Sowohl beim CuH als auch beim BiH läßt sich eine charakteristische "Schwundtemperatur" der Kathodenoberfläche feststellen, oberhalb dieser Temperatur wird keine Molekülbildung mehr beobachtet.

Institut für angewandte Photochemie an der T. H. Berlin.

Colloquium am 18. April 1939.

F. Leiber, Berlin: "Über Steigerung der Farbenwahrnehmung."

Vortr., Erfinder des Geaphotbrillenfilters, führte die Wirkung dieser Filter praktisch vor und zeigte die Absorptions-diagramme dieser Filter und des Neophanglases, das in Weiterentwicklung des dem Geaphotfilter zugrunde liegenden Erfindungsgedankens entstanden ist. Das Geaphotfilter hebt den Kontrast zwischen Grün und Rot, jedoch auf Kosten des Blau-Gelb-Kontrastes. Das Neophanglas steigert die Sättigung hauptsächlich der roten und grünen Töne, ohne den Farbton der anderen Farben wesentlich zu beeinflussen.

Eine rein physikalische Betrachtung dieser Erscheinungen genügt nicht zur Erklärung aller Phänomene, die mit diesen Filtern beobachtet werden. Zur richtigen Erkenntnis bedarf es der Heranziehung der Physiologie des Farbensehens. Vortr. legte hierzu die von Guild verbesserte Young-Helmholtzsche Theorie zugrunde. Auf Grund der spektralen Verteilung der drei Reizkurven sieht das menschliche Auge auch Spektralfarben in verschiedener Reinheit. Dieser Reinheitsgrad der Spektralfarben errechnet sich aus dem Verhältnis der überwiegenden Reinempfindung (überwiegende Erregung einer Grundempfindung) zur Mischempfindung (gleichstarke Erregung von mehr als einer Grundempfindung); je höher die hiernach für eine bestimmte Lichtwellenlänge errechnete Zahl ist, um so reiner wird die Parbe vom Auge wahrgenommen. Die graphische Darstellung dieser Werte ergibt eine Kurve mit drei Maxima (450, 522 u. 650 m μ) und zwei Minima (498 und 578 m μ).

Für weißes, spektral aber nicht kontinuierliches Beleuchtungslicht ist zu folgern, daß es bunte Objekte im verschiedenen Reinheitsgrad ihrer Färbung erscheinen läßt, je nachdem, ob seine Bestandteile mehr im Gebiet der erwähnten Maxima oder Minima liegen. Vortr. erwähnte zuerst Versuche mit einem Licht, das verminderte Farbwirkung erzeugt, dem als Beweis für die Richtigkeit der Theorie wissenschaftliche, aber keine praktische Bedeutung zukommt. Er zeigte dann das Gegenstück dazu, das Emissionsdiagramm eines Lichtes, das gesteigerte Farbwirkung hervorruft und das er "Maximu mlicht" nennt. Durch Beleuchtung einer Farbtafel und eines bunten Bildes zeigte er die Wirkung des Lichtes selbst. Bei Vergleich mit einem durch Tageslichtlampen angestrahlten identischen Bild war das Ergebnis dieses Versuches von über-

⁵) Vgl. hierzu auch die Referate in dieser Ztschr. 50, 372, 614 [1937] sowie 51, 177 [1938].