Math 103A Homework 1

James Holden

Winter 2019

Question 1. Read sections 0 and 1 in the book.

Question 2. Let $F^x{}_5$ denote $\{1,2,3,4\}$ together with the multiplication mod 5. Show that $F^x{}_5$ is a group whose identity element is 1.

Proof. To show that a (set, binary operation) pair is a group, it is sufficient to show that:

- (i) an identity element: $\exists e \in F^{x}{}_{5}$ such that $\forall a \in F^{x}{}_{5} : a * e = e * a = a$
- (ii) inverses exist for every element of the group: $\forall a \in F^{x}_{5} : \exists a^{-1} \text{ such that } a * a^{-1} = a^{-1} * a = e$
- (iii) group operation is closed: $\forall a, b \in F^{x}_{5} : a * b \in F^{x}_{5}$
- (iv) associativity: $\forall a, b, c \in F^{x_5} : a * (b * c) = (a * b) * c$.

Showing these properties exist:

- (i) an identity element: $\forall a \in F^{x}_{5} : e = 1 \text{ and } \forall a \in F^{x}_{5}, a * 1 = a \times 1 \pmod{5} = a.$
- (ii) inverses exist for every element of the group: Since this group is only 4 elements, the pairs of inverses are (2,3), (1,1), and (4,4). If you multiply the elements of each of the pairs together and mod 5, you get 1, the identity.
- (iii) group operation is closed: $\forall a, b \in F^{x_5} : a * b = a \times b \pmod{5} \in F^{x_5}$
- (iv) associativity: $\forall a, b, c \in F^{x_5}$: a * (b * c) = (a * b) * c holds because $(b * c) \in F^{x_5}$ and $(a * b) \in F^{x_5}$.

Therefore, F_5^x is a group whose identity = 1.

Question 3. Recall that \mathbb{Z}_4 denotes $\{0,1,2,3\}$ together with addition mod 4. Show that $F^x{}_5$ and \mathbb{Z}_4 are isomorphic to each other.

Proof. For two groups to be isomorphic to each other, they have to (1) be homomorphic to each other (2) have a bijective function. Let us denote $G = (\mathbb{Z}_4, +_4)$ and let $G' = (F^x_5, *_5)$.

Consider the function $\phi(x) = x + 1$. ϕ is a map from $G \to G'$. If $\phi(ab) = \phi(a)\phi(b)$ is true, ϕ is a homomorphism by the homomorphism property.

This means that if $\forall a, b \in G$ and $\phi(a), \phi(b) \in G'$, we have $\phi(a*b) = \phi(a)*\phi(b)$ where the group operation between a, b is the group operation of G and the group operation between $\phi(a), \phi(b)$ is the group operation of G'.

For example: let a=2 and b=3. This means $\phi(a*b)=\phi(2+5)=\phi(1)=2$.

Likewise: $\phi(2) * \phi(3) = 3 * 4 = 3 \times_5 4 = 12 \mod 5 = 2$.

It is also easy to see these two groups are bijective by ϕ . We have $\forall a \in G$, there is a corresponding $b \in G'$.

Hence $\phi: \mathbb{Z}_4 \cong F^x_5$.

Question 4. Show that $exp:(\mathbb{R},+)$ is isomorphic to $((0,\infty),*)$. (You may use without a proof properties of the exponential map from calculus.)

Proof. Once again to show isomorphism, the function needs to satisfy (1) homorphism (2) bijection. Let $G = (\mathbb{R}, +)$ and let $G' = ((0, \infty), *)$. Let $a, b \in G$.

- (1) homomorphism: exp(a*b) = exp(a)*exp(b) $e^{a+b} = e^a \times e^b$
- (2) bijection: We know that the exponential function is well defined. For every member of G, there is a corresponding member in G' which means exp is injective. Furthermore, exp is surjective because the exponential function is strictly increasing and $\forall b \in G', \exists a \in G \text{ such that } log(b) = a$. Therefore, exp is bijective between these to groups.

Hence $exp:(\mathbb{R},+)\cong((0,\infty),*).$

Question 5. Exercise 1 page 19: 29, 30

(a) Problem 29: Find all solutions x of the given equation: $x +_{15} 7 = 3$ in \mathbb{Z}_{15}

Proof. We define \mathbb{Z}_{15} : $\{0, 1, 2, \dots, 14\}$ and let $x \in \mathbb{Z}_{15}$. It is easy to see that any $x \in \{0, 1, \dots, 8\}$ is not a solution. This is because any x in such a range applied to this binary operation $(+_7 \mod 15)$ will result in an integer that is between 7 and 15. So we have to examine $x \in \{9, 10, \dots, 14\}$. Solutions of this equation are $x \in \{11\}$.

(b) Problem 30: Find all solutions x of the given equation: $x +_{2\pi} \frac{3\pi}{2} = \frac{3\pi}{4}$ in $\mathbb{R}_{2\pi}$

Proof. We define $\mathbb{R}_{2\pi}: \{0...2\pi\}$ and let $x \in \mathbb{R}_{2\pi}$. We see that any $x \in \{0...\frac{\pi}{2}\}$ is not a solution. This is because any x in such a range applied to this binary operation $(+_{2\pi} \mod \frac{3\pi}{2})$ will result in an integer that is between $\frac{3\pi}{2}$ and 2π . So we have to examine $x \in \{\frac{\pi}{2}...2\pi\}$. Solutions of this equation are $x \in \{\frac{5\pi}{4}\}$.