Graph Theory Midterm 1 Review

Definitions: complete graph K_n , r-coloring, cycle graph C_n , path graph P_n , adjacent, bipartite, chromatic number $\chi(G)$, chromatic polynomial $P_G(x)$, complement, complete bipartite graph $K_{m,n}$, component, connected, cycle, degree, degree sequence, edge, graph, greedy coloring, incident, independent sets, isomorphic graphs, line graph, path, proper r-coloring, self-complementary, spanning tree, subgraph, unlabeled graph, vertex.

Theorems:

- K_n has $\binom{n}{2}$ edges.
- There are $2^{\binom{n}{2}}$ graphs on *n* vertices.
- The sum of the degree sequence is twice the number of edges.
- If G has n vertices and more than $\binom{n-1}{2}$ edges, then G is connected.
- If G and G^c are connected, then G has a P_4 subgraph.
- If p is prime, then $r^p r$ is divisible by p for integer r.
- If G is not K_n or C_{2n+1} , then $\chi(G)$ is not more than the largest degree in G.
- G is bipartite if and only if G does not have an odd cycle.
- $P_G(x) = P_{G-e}(x) P_{G/e}(x)$.
- $P_G(C_n) = (x-1)^{n-1} + (-1)^n(x-1).$
- $P_G(K_n) = x(x-1)\cdots(x-n+1)$.
- $P_G(x) = x^{\text{(number of vertices)}} (\text{number of edges})x^{\text{(number of vertices)}} 1 + \dots \pm ax^{\text{(number of components)}}$.
- Let *T* be a graph with *n* vertices. The following statements are equivalent:
 - **a.** *T* is a tree.
 - **b.** *T* is connected and has no cycles (of length \geq 3).
 - **c.** *T* is connected and has n-1 edges.
 - **d.** there is a unique path of distinct vertices between every pair of vertices *u* and *v* in *T*.
 - **e.** $P_T(x) = x(x-1)^{n-1}$.
- There are n^{n-2} trees.
- There are $n^{m-1}m^{n-1}$ spanning trees for $K_{m,n}$.

Extra exercises:

1. If *G* has *n* vertices with degree sequence (d_1, \ldots, d_n) , then what is the degree sequence of the complement graph G^c ?

2. Let *G* be a graph with *m* vertices of degree 1 and let *H* be the graph found after removing all degree 1 vertices from *G*. Explain why the chromatic polynomial $P_G(x) = (x-1)^m P_H(x)$.

3. Show that a graph cannot have an odd number of vertices with an odd degree.

4. Find all connected unlabeled graphs with degree sequence (3, 3, 2, 2, 1, 1).

5. Find the chromatic number for the **Grötzsch graph**:

6. Suppose *T* is a tree such that every vertex adjacent to a leaf has degree at least 3. Show that two leaves have a common adjacent vertex.

7. Find the number of spanning trees for:

