前舊

图论是研究离散对象二元关系系统中关系结构的一个数字分支。它与拓朴学、代数学、组合数学等学科关系极为密切、其应用也极为广泛,已经渗透到物理学、化学、电子学、生物学、运筹学、经济学、系统工程以及计算机科学等学科领域。基于上述原因,引起了越来越多的人对图论的兴趣与重视。

目前,國內不少學校有关专业先后开设了图论课程,图论的中文书籍也出版了近十种。由于这一學科本身的特殊性,图论习题在该學科的學习中占有重要地位。因而,几乎每本而论书都精心地安排了大量的习题。这些习越不但是书中内容的扩充,也是自发诱导初學者掌握图论方法和技巧的重要组成部分。为了与學习图论的读者共同切磋图论的解题方法,我们编写了本题解,并想尽力做到使本书对图论教学人员及其它有关人员有一定的参考价值。

J.A.Bondy 和 U.S.R.Murty 著的《Graph Theory with Applications》是一本较好的图论入门书。它精选了内容广泛、难度不同的 327 道习题,其中有些习题对图论的进一步学习是应当掌握的。本题解依序将该书的重要内容摘要列出,并将全部习题——解出。本书采用的术语、符号尽量与该书一致,且对书中个别题目的疏忽或欠妥之处,题解中都一一作了补充或修改。一道题的解法常常不只一种,一

"被情况下,我们仅选择一种解法。主观上是以图论意义比较 "清晰、逻辑推理比较简捷,读者易于阅读为取舍标准。算法 方面的习题,不考虑它在计算机上如何实现,而只是用图论 的语言与符号写出它的粗略的计算步骤。至于算法框图,因 篇幅关系全部从略。读者自己补出不无裨益。

除上述书的习题外,为了加深理解并扩大视野,我们参考了李修睦先生著的《图论导引》、卢开澄同志著的《图论及其应用》等国内流行的几种图论书籍及一些文献资料,增添了一些习题。此外还对一些问题作了注释,目的是为了说明该问题的进展情况和指出进一步阅读的参考文献。但限于篇幅,这些增补是极少贵的,又限于水平,难免挂一漏万。

这本书是我们在几年的教学过程中,几经修改、逐步完成的。在编写过程中,我们得到许多同志的帮助。特别要提到的是新疆大学张福基同志与华中师节学院毛经中同志,他们对本书提供了许多宝贵的修改意见。 遊此一并致谢。

· 限于我们学识浅陋, 书中缺点错误在所难免, 恳请读者 批评指证。

编者

目 录

第一章	图与子图	(1)
1.1	图与单图	(1)
1.2	图的同构	(4)
1.3	邻接矩阵和关联矩阵	(13)
1.4	子凶	(16)
1.5	頂点的度	(21)
1.6	路和连通性	(28)
1.7	***************************************	(34)
8.1	最短路问题	(38)
1.9	Sperner引理	(44)
第二章	***************************************	(49)
2.1	树	(49)
2.2	割边和健	
2.3	割点 ····································	(63)
2.4	Cayley 公式	(65)
2.5	连接问题	(71)
第三章	達 通 性… ;	(76)
3.1	连通性 ************************************	(76)

3.2	块	· (80)
3.3	可靠通讯网络的构造	· (80)
第四章	Euler 游历和Hamilton 置······	· (93)
4.1	Euler 游历	(93)
4.2	Hamilton 圈 ······	(96)
4.3	中国 邮递 员问题·······	(113)
4.4	旅行售货员问题 ······	(116)
第五章	匹配	(118)
5.1	匹配	(118)
5.2	2-部图的匹配和覆盖	(123)
5-3	完美匹配	(129)
5-4	人员工作分配问题 ·······	(138)
5.5	最优分配问题	(139)
第六章	边着色	(144)
6.1	边色数	(144)
6.2	Vizing 定理	(149)
6.3	时间表问题	(159)
第七章	独立集和電	(161)
7.1	独立集***********************************	(161)
7.2	Ramsey定理 ······	(185)
7.3	Turán定理	(174)
7.4	Schur 定理······	(179)

	·一个几何问题····································	
第八章	顶点着色	
8.1	色数	(185)
8.2	Brooks定理 ·······	(193)
8.3	Hajos猜測 ·······	(195)
8.4	色多项式	(198)
8.5	圈长和 色数····································	(205)
8.6	存储问题······	(207)
第九章	平面图	(209)
9.1	平面图和可平题图	(209)
9.2	对偶图	(212)
9.3	Euler 公式····································	(219)
9.4	桥	(223)
9.5	Kuratowski 定理	(226)
9.6	5-色定理和4-色猜测	
9.7	非Hamilton可平面图·················	(236)
9.8	平面性算法	(241)
第十章	有向题	(243)
10.1	有向图	(243)
10.2	有向路	(249)
10.3	有向题	(254)
10.4	工作排序问题	(259)
10.5	高效率计算机磁鼓的设计	(261)

10.6	单向道路系统的构造	(262)
10.7	比赛参加者的名次评定	(264)
第十一章	開路	(268)
11-1	流	(268)
11.2	***********************************	(272)
11.3	最大流最小截定理	(274)
11-4	Menger 定理 ······	(284)
11.5	可行流	(288)
第十二章	圖空间和穩空间	(296)
12.1	环流和势差	(296)
12.2	生成树的数目	(300)
	完美正方形	

. -

.

•

:

•

1

.

第一章 图与子图

1.1 图与单图

定义,可平面图。图G 若存在一个平面图形,它们的边 仅相交于端点,则称G 为可平面图。反之称为非可平面面。

定义,和一条公共边相关联的两顶点称为相邻,和一个公共顶点相关联的两边称为边相邻。

定义,具有同一端点的边称为环,不同端点的边则称为 杆。

建义, 若 G是一个无环且不存在两个顶点连接二条杆的图, 则称 G为单图。

定义、p(G),简记p,表示图G的顶点数,p(G),简记p,表示图G的边数。

1.1.1 从日常生活中列举五个例子,在这些例子中,图 的概念的导出是自然的。 解,若 V(G)表 中国的城市集合,E(G) 表城市间的道路集合,若 e 是 u 城到 v 城的道路, ψ_{G} 则 代 表 $\psi_{G}(e) = uv$ 这种关联函数全体,所成之图 G 是中国国内的交通图。类似地,可定义国内的通讯网络图,某城居民的亲属关系图,球事中的比赛关系图,图书馆的藏书分类图等。

1.1.2 将1.1.2(1) 图画成一个不同的图形以说明该图是可平面图。

1.1.2 图

解, 其图形如 1.1.2(6)图。

1.1.3 若 G 是单图,证明 e≤(^v₂).

证,因 G是单图,无环且无重边,任二顶点至多有一条一边,故 $e \leq {v \choose 2}$ 。

1.1.4 有序三元组(V, E, ψ_a) 是图,当且仅当存在有序二元组(V, E'),其中E' 是V的二元子集擬(这里的二元: 子集允许两个元是相同的,且子集簇中的子集可以重复)。

证: \Rightarrow : $G=(V, E, \psi_e)$ 是图,则对任意 $e\in E$,日u, $v\in V$ 使得 $\psi_a(e)=uv$,令 $E'=\{(u,v)|\psi_a(e)=uv$, $e\in E\}$ 。

犯 是 P 的二元子集簇。

◆, 设E'是V的二元子集簇,令

 $E = \{e = uv\}(u, v) \in E'\}$ 且对任意 $e \in E$ 作关 联函 数 ψ_a : $\psi_a(e) = uv$, 这里 u, v 满足uv = e。显然这样由(V, E') 确定的三元组(V, E, ψ_a) 是图。

(本题说明图也可定义为有序二元组(V, E'), 其中 E' 是 V的二元子集簇, E' 中的元素称为图的边。图的 这 种定:义精加推广即得超图的概念。)

1-1-5 題图 H是有序二元组 (V(H), E(H)),其中 W(H)是頂点非空有限集合,E(H)是V(H) 的非空子集簇,且 $U = E_1 = V(H)$,E(H) 中的元素 E_1 称为超图的 E_2 ,没有相同边的超图称为单超图。

证明, 若H是单超图,则 ε≤ε* 1,其中 2, ≥分别是 H的顶点数与边数。

证,因H是单超图,V(H) 的每一个非空子集至多是定E(H)的一个元素,而V(H)的一切非空子集的数目是, $\binom{p}{1}+\binom{p}{2}+\cdots+\binom{p}{p}=2^*-1$ 故 $s\leqslant 2^*-1$ 。

1.1.6 岩超图的每一条边中的顶点教目均为 4,则称:为 4-- 数超图.

证明2-一致单超图是无孤立点的单图。

证:2--致超图的每一边均是二元的,因而由练习 图1-1-4],它是图且每一边均是杆。又因是单超图, 據 无 重 查, 新以是单图。又依定义,超图的每一顶点至少属于一条 查,故此图无弧立点。

(关于超图理论, 可参阅 C. Berge 著《Graphs and Hypergraphs》(1973)及李慰萱著《图论》第九章(1980))。

1.2 图的词构

定义、若图 $G=(V(G), E(G), \psi_a)$ 和图 $H=(V(H), E(H), \psi_B)$ 之间满足 V(G)=V(H), E(G)=E(H) 和 ψ_B = ψ_B , 则称图G 和图H 恒等,记为 G=H .

定义。若图 $G=(V(G), E(G), \phi_a)$ 和图 $H=(V(H), E(H), \phi_B)$ 之间存在一个双方单值的映射偶 (θ, ϕ) ,满足 $\theta:V(G)\to V(H)$,及 $\phi:E(G)\to E(H)$,且 $\phi=uv \Longleftrightarrow \phi_B(\phi)$ $(\phi)=\theta(u)\theta(v)$ 。则称图 G和 H **简**构,记为 $G\cong F$

1.2.1 在图 G和图 H间找导一个同构映射。

1,2,1 图

第,由同构定义、同构映射下对应点关联边的 种类(杆或环)和数目应保持不变。若 G, H间存在另一双方单值映射 偶(θ_1 , ϕ_1),则 θ_1 (v_1)=y, θ_1 (v_2)=x, θ_1 (v_4)= θ_1 。 同样由 同构定义,两相邻顶点间的关联边数保持不变,从而我们有 θ_1 (v_4)=v, θ_1 (v)=v, θ_1 (v)=v)=v

射偶)。进而我们定义 ϕ_1 如下,除 $\phi_1(e_1)=f_1\phi_1(e_1)=d=0$ 不同外,其它与 ϕ 一样。 (θ_1,ϕ_1) 是异于 (θ_1,ϕ) 的一个双方单值映射偶。易由同构定义验证,图 G和 H 之间只有这两个相异的同构映射。

1.2.2 (a) 若 $G\cong H$, 则 $\nu(G)=\nu(H)$, $\varepsilon(G)=\varepsilon(H)$.

(b) 给出一个例子说明(a)的逆不真。

 \mathbf{L}_{i} (a) 由同构定义中的 θ 与 ϕ 都是一一对应映射,结论显然。

(b) 如图中 G 和H, 显然 $\nu(G)=4=\nu(H)$, $\varepsilon(G)=4=\varepsilon(H)$, 但G 和H不同构。

1.2.2 (b) 图

1.2.3 证明下面的图不同构。

1.2.3 图

æ

证。因为G中有环的顶点 v_1 与关联重边的顶点 v_4 相邻。但H不是这样,故G与H不同构。

1.2.4 证明有11个不同构的四个顶点单图。证。

1	e = 0	1	2	3	4	5	6	
	0 0	o c					X	

对四个顶点的单图 G,由练习 $i\cdot 1\cdot 3$ 知 $\epsilon(G) \leq {4\choose 2} = 6$,从而上而已穷举了四个顶点的一切可能的单图,其总数恰为11个。

1.2.5 证明,两个单图G 和H同构的充要条件是存在双方单值映射 θ ; $V(G) \rightarrow V(H)$,使得 $uv \in E(G)$ 的充要条件是 $\theta(u)\theta(v) \in E(H)$ 。

证,由同构的定义,必要性是显然的。下面证明其充分性,首先由 θ 定义 ϕ . $E(G) \rightarrow E(H)$ 如下, $uv \in E(G)$ 和 $\theta(u)\theta(v) \in E(H)$ 对应,由于 G 和 H 均是单图, 从而 ϕ 是 双方单值映射,且有 $\phi_a(e)=uv$ 的充要条件 为 $\phi_n(\phi(e))=\theta(u)\theta(v)$,从而按定义 $G\cong H$ 。

1.2.6 证明下面两图是同构的。

证,将图G和H顶点编号如图,令 θ , $\theta(v_i)=u_i$ (i=

1,2,6 图

1, 2, …, 10), 显然 $\theta \in V(G) \rightarrow V(H)$ 上是双 方单值映射, 易直接验证 $v_i v_j \in E(G)$ 的充要条件是 $u_i u_j = \theta(v_i)$ $\theta(\hat{v}_j) \in E(H)$, 从而由练习1.2.5知, $G \cong H$.

1.2.7 设 G是单图,证明 $s=\binom{p}{2}$ 成立的充要条件是 G 为完全图。

证、其充分性是显然的。现证明其必要性,由于完全图K,的 $e(K_1)=\binom{p}{2}$,从而不是完全图且又要满足 $e=\binom{p}{2}$ 的图G,必包含多重边或环,但这又与G是单图的假定矛盾。故G是完全图。

1.2.8 证明, (a) $\varepsilon(K_{m,n})=mn$, "

(b) 若 G是二部的单图, 则 ε≤v²/4.

证。(a)显然。

**(b) 若G的一部分是 m 个顶点,则 $s(G) \leq s(K_{r-m,m})$ = $(v-m) \cdot m = vm - m^2 = v^2/4 - (v/2-m)^2 \leq v^2/4$.

1-2-9 k-都图是其顶点集合能划分成点个子集合,且没有--条边其两端点都在同一子集合中的图,完全k-都图是一个 k- 部单图,且它的不在同一子集中的每对顶点均存在边相

连.几个顶点的完全 m— 部图,若其中每一部为(n/m) 个 或为 $\{n/m\}$ 个顶点时,记为 T_m , n.证明:(a)8 $(T_m$, n) = $\binom{n-k}{2}$ + $(m-1)\binom{k+1}{2}$, 其中 k=(n/m);

- (b) 如果 G是 n 个顶点 的 完 全 m-部 图,则 ε(G)≤ε (Tm,,),且只有在 G≅Tm,,时等号成立。
- 证。(a) 因为令n=mk+r, $0 \le r < m$ 时,则由 T_m ,定义有 $e(T_m,n)=\binom{n}{2}-r\binom{k+1}{2}-(m-r)\binom{k}{2}$.用 r=n-mk 代入化简整理即得结论。
- (b) 设完全 m-部图G 的m 个部分的顶点数分别为, n_1 , n_2 ,…, n_m ; 若G不同构 T_m , ",则存在 n_i — $n_j>1$; 考虑 如下的完全 m-部图G',它的m部分的顶点数分别为, n_1 , n_2 ,

...,
$$n_i - 1$$
, ..., $n_f + 1$, ..., n_m , 由于 $\epsilon(G) = \frac{1}{2} \sum_{k=1}^{m} (n - n_k) n_k$, $\epsilon(G') = \frac{1}{2} \sum_{k=1}^{m} (n - n_k) n_k + \frac{1}{2} (n - n_i + 1) (n_i - 1)$

 $+\frac{1}{2}(n-n_i-1)(n_i+1)=\epsilon(G)+(n_i-n_i)-1>\epsilon(G)$ 。若 $G'\cong T_m$, $_n$ 则(b) 结论已成立,若G'不同构 T_m , $_n$,则上述过程可继续进行,直到对一切 i,j, $\lfloor n_i-n_j\rfloor \leq 1$ 为止,这时所得的图恰 为 T_m , $_n$,注意到在这过程中产生的新图的边数在逐渐增大,直至 $\epsilon(T_m,_n)$ 为止,故(b) 成立。

1.2.10 k-方体图是其顶点为 0 与 1 的有序 k-元组,当 且仅当它们的一个坐标不相同时,此两个顶点相连以边。证明k-方体图是有2*个顶点k2*-1条边的2-部图。 证:按定义k-方体图中顶点与分量取值 0 和 1 的 k 维向量——对应;而后者恰为2*个,从而k-方体图有2*个顶点。另外在这 k 维向量中,固定 k-1 个坐标后,恰恰在 k-方体中,对应两个顶点,且这两顶点按定义应连以一条边,故k-方体有 C(\$-1)2*-1=k2*-1条边。最后我们按每个顶点的坐标和的奇偶性,将k-方体图的顶点分成两部分,显然由k-方体图边的定义,每一部分中的顶点相互没有边相连。故k-方体图是2-部图。

- 1.2.11 (α)单图G的**补關**G°是顶点集为V(G)的单图,两个顶点在G°中相邻的充要条件是它们在G中不相邻. $K_{n,n}^{\alpha}$ 是怎样的图?
- (b) 如果单图 $G满足G\cong G'$,则称 G为**自鲁**的。证明。若 <math>G是自补的,则 $\nu(G)\equiv 0$ 或 $1\pmod{4}$ 。

证。(σ) K_n^c 为几个顶点的空图。 $K_{n,n}^c$ 则为 $K_{n,n}^c$ 和 $K_{n,n}^c$ 的并。

- (b) 由 G° 定义,我们有 $\varepsilon(G) + \varepsilon(G^{\circ}) = \varepsilon(K_{\bullet}) = {v \choose 2}$ = v(v-1)/2,由于 $G \cong G^{\circ}$,从而 $\varepsilon(G) = \varepsilon(G^{\circ})$,所以 $\varepsilon(G) = v(v-1)/4$ 为整数,又因为 v ,v-1 间有一为奇数,从而只能 $v \equiv 0$,1(mod 4)。
 - 1.2.12 图的自同构是图到自身的一个同构。
- (a) 用练习1.2.5证明。单图 G的自同构可以看 成 是在 V(G) 上保持相邻性的一个置换,且这种置换的集合在 通常 置换的乘法运算下构成群 $\Gamma(G)$ (称为 G的自**同构**群)。
 - (b) 求 $\Gamma(K_n)$ 和 $\Gamma(K_{m,n})$.
 - (c) 求一个自同构群为唯一么元的非平凡单图。
 - (d) 证明对于任意单图G 有 $\Gamma(G) = \Gamma(G^{\circ})$.

- (e) 考虑元素为(1)(2)(3), (1, 2, 3)和(1, 3, 2)构成的置换群 Λ 、证明不存在顶点集为 $\{1, 2, 3\}$ 的单图G使 \P $\Gamma(G)=\Lambda$.
- (f) 求一个单图使得 $\Gamma(G)\cong \Lambda$. (R.Frucht.1939年已证明,每一个抽象群都同构于某些图的自同构群)。

证。(a) 将练习 1.2.5 中的 H换成 G, 于是由练 习 1.2.5, (a) 的前半部分的结论是显然的 再应用练习1.2.5的结论, 易证 G 的两自同构对应的置换 的 乘积, 仍为 G 上的自同构所对应的置换, G 的自同构对应的置换的逆置换。 仍为 G 上的自同构所对应的置换,从而由于群的 定义 和性质, G 上自同构所对应的置换所成的集合, 在通常的置换乘法运算下构成群 $\Gamma(G)$ 。

 $\Gamma(K_{m,n}) = S_{m} + S_{n,n}$

(c)

1.2.12(c) 图

(d) 由练习1.2.5知,若 θ 是 G 上的自同构对应的置换,即 θ , $V(G) \rightarrow V(G)$,使得 $\mathfrak{sv} \in E(G)$ 的充要条件 是 θ (\mathfrak{s}) θ (\mathfrak{v}) θ

的充要条件是 $\theta(u)\theta(v) \in E(G^{\bullet})$. 从而 θ 亦是 G^{\bullet} 上的自同构。类似地可证 G^{\bullet} 上的自同构也是 G 上的自同构,所以 Γ $(G)=\Gamma(G^{\bullet})$.

(e) 用**穷举来加以证明。对顶点集为**{1,2,3}的单图 G— 共仅有四个,它们及所对应的自同构群如下。

1.2.12 (e) 图

都与 1 不同,从而结论成立。

(f) 下列两图均可直接验证 $\Gamma(G)=\Lambda$.(可以证明图(1)是满足 $\Gamma(G)=\Lambda$ 的顶点数最小的单图。证明见 F.Harary and E.M.Palmer, Czech.Math.J.16(1966),70~71.)

1.2.12 (f) 图

1.2.13 单图 G 称为**源点传递图**,若对于任两个 顶 点 *

和 v, 在 $\Gamma(G)$ 中有元素 g 使得 g(u)=v; G 称为**边传递 图**_n. 若对于任意两条边 u_1v_1 和 u_2v_2 在 $\Gamma(G)$ 中有元素 h 使 得 $h(\{u_1, v_1\})=\{u_2, v_2\}$ 。求一个图满足。

- (a) 它是顶点传递的但不是边传递的。
- (b) 它是边传递的但不是顶点传递的。

解.见图。

1.2.13 图

- (a) 图中 G_1 即为所求。易直接验证 G_1 是顶点传递 的,但不存在自同构变换,将边 aa' 变成边 ab,这可以从边 aa' 的顶点 a' 的另外两个相邻顶点 b'、c' 和 a' 构成 一个三角形,而边 ab 中无论是 a 或 b 点均无此 性 质 得证 G_1 不是边传递的。
- (b) 图中 G₂ 即为所求。易直接验证 G₂ 是边传递的,但由于 a 的邻点个数为 1, b 的邻点个数为 2, 而同构下的对应点的邻点个数应相等,所以不存在自同构将 a 变成 b, 故 G₂ 不是顶点传递的。

(传递图的有关知识可参阅 N. L. Biggs 着的《Algebtaic Graph Theory》(1974)第 3部分)。

1.3 邻接矩阵和关联矩阵

定义: 邻接矩阵 $A(G) = [a_{i,j}]_{v \times v}$, 其中 $a_{i,j}$ 是连接顶点 $a_{i,j}$ 和 $a_{i,j}$ 的边数。

定义: 类聚矩阵 $M(G)=[m_{i,j}]_{v\times v}$, 其中 $m_{i,j}$ 是顶点 v_s 和边 e_s 的关联次数(0, 1 或2)。

- 1.3.1 设M是图G的关联矩阵,而A是图G的邻接矩阵。
 - (a) 证明 M 的列和为 2。
 - (b) A的列和是多少?

证。(a)按 M 的定义,它的第 j 列是对应 e_j 和V(G)中 顶点的关联次数所成的向量,由于一条边只有二个端点,故 M 的列和为 2。

- (b)根据定义, A的第三列的列和恰为与v, 关联的边的数目。

$$\begin{bmatrix} 0 & A_{12} \\ A_{21} & 0 \end{bmatrix}$$
 其中 A_{21} 是 A_{12} 的转置

证,由于 G 是 2-部图,故 V(G) 可划分成二部分 V_1 和 V_2 , V_1 、 V_2 两部顶点之间没有边相连。先对 V_1 编号,编 完后,再对 V_2 编号。这时 A(G) 具有上述形状,又 A 为对 称矩阵,故 A_{21} 是 A_{12} 的转置。

1.3.3 证明, 若G是单图, A(G)的特征值均相异,

则 $\Gamma(G)$ 是 Abel 群。

证、G的一个自同构对应一个置换矩阵 P,且 PAP'=A,即 $PA=AP(::P'=P^{-1})$ 。设 X 是 A的特征值 λ 对应的特征矢量,从而有 PAX=APX,因为 $PAX=\lambda PX$,所以 $APX=\lambda PX$,即 PX 亦是 A的 λ 所对应的特征 矢量。由于 A的特征值均相异,从而他们对应的特征矢量均相异且正交,所以 $PX=\mu X$ 。于是若我们取 A的所有特征值所对应的特征矢量作为空间的正交基底时,则 P 在 这基底下化成对角阵 P,即存在满秩方阵 T,对于任意的 G 中的自同构的置换矩阵 P成立 $TPT^{-1}=P$,即 $T^{-1}PT=P$ 。设 P_{**} ,是 G 中任意两个自同构的置换矩阵,于是 $P_{**}P_{**}=(T^{-1}P_{**}T)(T^{-1}P_{**}T)=T^{-1}P_{**}P_{**}T=(T^{-1}P_{**}T)(T^{-1}P_{**}T)=T^{-1}P_{**}P_{**}T=(T^{-1}P_{**}T)$,就 P(G)是 Abel 群。

1.3.4 图 G 的邻接矩阵 A(G)的特征多项式

 $|\lambda I - A| = \lambda' + C_1 \lambda'^{-1} + C_2 \lambda'^{-2} + C_3 \lambda'^{-8} + \cdots + C_n$ (其中 I 是单位方阵)称为图 G 的**特征多项式**。A(G)的特征 值及其重数称为图 G 的**谐**。

证明: 若 G 是单图, 则有:

(a) $C_1=0$, (b) $-C_2=s(G)$, (c) $-C_2$ 是 G 中含 有不同的 K_3 子图的个数的两倍。

证.对于每个 $i \in \{1, \dots, \nu\}$,数 $(-1)^{!}C_{i}$ 是 A(G)的 所有: 阶主子式的和。

- (a) 对于单图 G, A(G) 主对角线元素全为 0, 所以 C_1 = 0.
 - (b) 对于单图 G, A(G)中非零的 2 阶主子式必为。

$$\begin{vmatrix} 0 & 1 \\ 1 & 0 \end{vmatrix} = -1$$

显然,这样的2阶主子式对应G中的一条边,反之亦真。所以。 $(-1)^{2}C_{2}=-\epsilon(G)$ 。

(c) 对于单图 G, A(G)中非零的 3 阶主子式必为:

$$\begin{vmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{vmatrix} = 2$$

这样的 3 阶主子式对应 G 中一个 K_3 , 反之 亦 真。设 G 中有 s 个 K_3 ,则(-1) 3C_3 =2s.

1.3.5 若两个非同构的图具有相同的谱,则称它们是**同 谱的**。

试证本题的图 G 与图 H 是同谱的。

1.3.5 图:

证,显然G = H非同构。对于G, H 的顶点任作一种标号,写出A(G) > A(H), 经计算可得。

 $|\lambda I - A(G)| = |\lambda I - A(H)| = \lambda^0 - 7\lambda^4 - 4\lambda^3 + 7\lambda^2 + 4\lambda - 1$, 故 $G \ni H$ 是同谐图。

1.3.6 设 A(G)的特征值为 λ₁≥λ₂≥···≥λ,,则

$$\lambda_1 \leq \sqrt{\frac{2e(\nu-1)}{\nu}}$$

证。设 G 的特征多项 式 为 $\lambda' + C_1 \lambda''^{-1} + C_2 \lambda''^{-2} + \cdots$ + C_r ,由练习 1.3.4 知, $C_1 = 0$, $C_2 = -\epsilon$,根据 V ieta 定理 得。 $\sum_{i=1}^{r} \lambda_i = -C_1 = 0$

$$\sum_{i=1}^{\infty} \lambda_i \lambda_j = C_2 = -\varepsilon$$

$$\sum_{i=1}^{r} \lambda_{i}^{2} = \left(\sum_{i=1}^{r} \lambda_{i}\right)^{2} - 2\sum_{i \neq j} \lambda_{i} \lambda_{j} = 2\varepsilon$$

因而,
$$\begin{cases} \lambda_1 = -(\lambda_2 + \dots + \lambda_r) \\ \lambda_1^2 = 2\varepsilon - (\lambda_2^2 + \dots + \lambda_r^2) \end{cases}$$
 (*)

又由 Cauchy-Schwarz 不等式可得:

$$|\lambda_2 \cdot 1 + \dots + \lambda_r \cdot 1| \leq \sqrt{\lambda_2^2 + \dots + \lambda_r^2} \sqrt{\nu - 1}$$

以(*)代入上式后平方得、 $\lambda_1^2 \leq (2e - \lambda_1^2)(\nu - 1)$, 整 理 即 得结论。

(关于图的谱的研究成果,可参阅 D.M.Cvetkovic', M.Doob, H.Saehs 的专著《Spectra of Graphs》(1980)。)

1.4 子 图

定义。若 $V(H)\subseteq V(G)$, $E(H)\subseteq E(G)$,且 ϕ_H 为 ϕ_G 在E(H)上的限制,则称H为G的**于图**,记为 $H\subseteq G$,当 $H\neq G$ 时称H为G的**真予图**,记为 $H\subset G$,若V(H)=V(G),则H称为G的生成子图。(或支撑子图)。去掉G中的环和重边的生成子图称为G的基础单图或图图。

定义,设V'为V的非空子集,G的一个子图。其顶点集合为V',边集合是 G中两端点均在V'中的那些边全体,则称这子图为V'在 G中的导出子图,记为G[V'],类似地由边子集E'可以定义由E'在 G中的边导出子图,记为G[E']。

1.4.1 证明 n 个顶点的任一个单图均同构于 K_{\bullet} 的一个子图。

证:由子图和 K_{\bullet} 的定义,结论是显然的。

- 1.4.2 证明: (a) 完全图的任一个导出子图均是 完 全的。
 - (b) 2-部图的一个子图均是2-部图。

证,由完全图,2-部图及导出子图及子图的定义,结论是显然的。

- 1.4.3 说明 M(G-E')和 M(G-V')如,何 从 M(G)中得到?又 A(G-V')如何从 A(G)中得到?
- 解,从M(G)中划去对应于E'中的边的列,所得的短裤即为M(G-E')。从M(G)中划去对应于V'中的顶点的行,在所得到的矩阵中,再划去列和为0或1的列,最后所得的矩阵即为M(G-V')。从A(G)中划去对应于V'中的顶点的行和列,所得的矩阵即为A(G-V')。
 - 1.4.4 找一个不与任何 6 方体的予图同构的2-部图。
- 解: 设 G=3-方体 + g, 其中 e 为 (0, 0, 0) 和 (1, 1, 1) 之间的边。显然 G 是 2-部图 (它的顶点可划分成如下两部分, $V_1=\{(0, 0, 0), (1, 1, 0), (1, 0, 1), (0, 1, 1)\}$, $V_2=\{(1, 0, 0), (0, 1, 0), (0, 0, 1), (1, 1, 1)\}$,对

点 \leq 3 的 k-方体,其边数少于G的边数,它的子图不可能与G同构。

若 G 与 k— 方体 (k > 4) 某子图同构, 注意 到 G 中 (0, 0, 0) 与 V 中的顶点均相邻。由 k— 方体的对 称 性, 适 当地进行坐标变换, 不失一般性地可假定(0, 0,0)和(0, 0, …, 0)和对应, 它的邻点(1,0,0),(0, 1, 0)(0, 0, 1), (1, 1, 1)分别依 次 和(1, 0, 0, …, 0),(0,1, 0, …, 0), (0, 0, 1, 0, …, 0), (0, 0, 0, 1, 0, …, 0)和(1, 1, 1)在 G 中除(0, 0, 0)外,还有两个公共邻点(1, 1, 0)和(1, 0, 1),可是按 k— 方体边的定义(1, 0, 0, …, 0)和(0, 0, 0, 1, 0, …, 0)除(0, 0, …, 0)外,仅能和(1, 0, 0, 1, 0, …, 0)这个顶点相邻,矛盾、故 G 不与 k > 4的 k— 方体的子图同构。

01.4.5 设 G 是单图,整数 n 满足 $1 < n < \nu - 1$ 证明:若 $\nu > 4$,且 G 的所有 n 个顶点的导出子图都具有相同的边数时,则 $G \cong K$,或 $G \cong K$ 。

证:设 G中 n 个顶点的导出子图的边数为 m。 v_1 , v_2 是 G 中任意两个顶点, $e(G)-d(v_1)=e(G-v_2)$,这里 $d(v_1)$ 表示和 v_2 关联的边数。显然在 $G-v_2$ 中取 n 个顶点的导出子图—共有 $\binom{v-1}{n}$ 种取法,由于 G 是单图,在 $G-v_2$ 中的任一边 nv_1 ,在这 $\binom{v-1}{n}$ 个 n 个顶点的导出子图 中,取 到的次数恰为 $G-\{v_1, u_1, v_2\}$ 中取 n-2 个顶点的导出子图的个数 $\binom{v-3}{n-2}$,故我们有:

$$\varepsilon(G) - d(v_i) = \varepsilon(G - v_i) = m \binom{v - 1}{n} / \binom{v - 3}{n - 2} \quad (1)$$

类似地我们有:

$$\begin{aligned}
\varepsilon(G) - d(v_{j}) &= \varepsilon(G - v_{j}) = m \binom{v - 1}{n} / \binom{v - 3}{n - 2} \quad (2) \\
\varepsilon(G) - d(v_{i}) - d(v_{j}) + a_{i,j} &= \varepsilon(G - \{v_{i}, v_{j}\}) \\
&= m \binom{v - 2}{n} / \binom{v - 4}{n - 2} \quad (3)
\end{aligned}$$

这里a,, 当v,与v,相邻时为1,当v,与v,不相邻时为0.

由式(3)-(1)-(2),于是:
$$a_{i,j}=\epsilon(G)+m\binom{r-2}{n}$$

$$\binom{v-4}{n-2} - 2m\binom{v-1}{n} / \binom{v-3}{n-2}$$
. 故 a_i , 与 i , j 的选取无 关,若 a_i , $=0$, 则 $G \cong K$, 若 a_i , $=1$, 则 $G \cong K$,

1.4.6 G 的子图 H 具有性质 P,若不存在具有性质 P 的子图 F,使得 $F \supset H$,则称 H 为具有性质 P 的**极大子圈**。可类似地定义**极小子圈**。

证明 H是 G的基础单图当且仅当它是 G的极大 子单图。

证,由单图、基础单图及极大子图的定义易知结论成立。

1.4.7 证明:对任意单图 G 及正整数 m(≤v),存在 m-部生成子图 H,满足:

$$\left(1-\frac{1}{m}\right)e(G)\leqslant e(H)\leqslant e(T_{m,r})$$

证.令 $H \in G$ 的边数最多的极大 m-部生成 子 图。由练习 1.2.9(b)知,右边不等式显然成立。

下面证左边不等式。设 $v \in G$ 的任一顶点, H 的 m 部 顶点划分为 $\{V_1, V_2, \dots, V_m\}$,不妨设 $v \in V_1$,令 $dv_1(v)(i=1, \dots, m)$ 表示G 中 v 点在 V 中的邻点个数,则有

$$d_{V,i}(v) \leqslant d_{V,i}(v)$$
 $(i=2, \dots, m)$

因为,否则,有 i_0 使得 $dv_1(v)>dv_{i_0}(v)$,这时取 V_1 一 $\{v\},V_{i_0}\cup\{v\}$ 分别代替 V_1,V_{i_0} ,得另一个极大m-部生成子图H',易知e(H')>e(H),这与H的假定矛盾。

于是 $(m-1)d_{V_1}(v) \leq \sum_{i=2}^m d_{V_i}(v) = d_{R}(v)$,这里 $d_{R}(v)$ 是v点在 H 中的邻点个数。令d(v)表示 v 点在 G 中的邻点个数,则有:

$$d(v) = d_{V_1}(a) + d_{H}(v) \leq \frac{1}{m-1} d_{H}(v) + d_{H}(v) = \frac{m}{m-1} d_{H}(v)$$

寡得, $(1-\frac{1}{m})d(v) \leq d_H(v)$

由于v的任意性,故有 $(1-\frac{1}{m})e(G) \leqslant e(H)$.

- 1.4.8 设单图 $G=(V, E, \phi)$, 和任给 的 单 图 $H=(V', E', \phi')$, 若有 $V=(v_1, v_2, \cdots, v_r)$ 、 $V'=(v_1', v_2', \cdots, v_r')$,且对每个 $i(i=1, 2, \cdots, v)$, $G-v_i\cong H-v_i'$,就有 $G\cong H$ 。则称 G 是**可置构的**,若 有 $E=\{e_1, e_2, \cdots, e_r\}$ 、且对每个 $i(i=1, 2, \cdots, e_r)$,且对每个 $i(i=1, 2, \cdots, e_r)$, $G-e_i\cong H-e_i'$,就有 $G\cong H$,则称 G 是**边可重构的**。证 明:
 - (a) v=2 的图不是可重构的;
 - (b) e=2, 3的图不是边可重构的。

证、 $(a) \nu=2$ 的单图,一共仅有 二图。 K_2 与 K_2^2 ,它们满足重构的条件,但不同构,故(a)成立。

(b) e=2 又满足边重构条件的 v个顶点的G(2)和H(2)图仅能 是 如 下 单 图 $G(2)=2K_2+K_{-4}^2$ 、 $H(2)=P_2+$

 K_{s-1}^* , 其中 P_2 是长度为 2 的路, 但 G(2) 华H(2);

E=3 又满足边重构条件的 ν 个顶点的G(3)和H(3)图仅能是如下单图。 $G(3)=K_3+K_{1-3}^{\circ}$ 、 $H(3)=K_1$, $_3+K_{1-4}^{\circ}$,但G(3)华H(3),故(b)成立。

(宣傳聯想(Ulam猜想)(S.M. Ulam和P.J. Kelly, 1941年):v>2的每个图是可重构的。这一猜想至今未获证明,是图论中的一大难题。相应地有**边可重构的猜想**(F.Hara-ry,1964年)。e>3的每个图是边可重构的。关于重构猜想可参看J.A. Bondy和R. J. Hemminger在J. Graph Theory Vol.(1977)227-286的综合性文章。)

1.5 顶点的度

定义。G 中与顶点 a 关联的边数(我们约定 环作二条边计算)称为 G 中顶点 a 的度。记为 $d_{\sigma}(a)$,或简 记 d(a),我们用 $\delta(G)$ 与 $\Delta(G)$ 分别记 G 中顶点的最小度和最大糖。

定理1.1 $\sum_{v \in V} d(v) = 2\varepsilon$.

聚1.1任意图中,度为奇数的顶点有偶数个。

定义: 若 $\delta(G) = \Delta(G) = k$ 时,称图 $G \in k$ -正则 图。

1.5.1 证明δ≤2e/v≤Δ. 证. 由定理1.1我们有 νδ≤Σd(v)=2e≤νΔ.

故命题成立。

1-5.2 若G是单图,则MM'和 A^2 的对角线上的元素均是G的顶点的度。

证:因为G是单图,M和A中只有0和1。由M的

定义,M 中;行向量中"1"的个数恰为 **, 的度,从而 MM 中;行;列位置上的元素为 $d_o(a_i)$ 。类似地,A 中;行向量中"1"的个数恰为 **, 的度,又 A 是对称的,从 而 $AA' = A^*$ 中,;行:列位置上的元素也为 $d_o(a_i)$ 。

1.5.3 证明、若一个 k>0 的 k-正则的 2-**部图**有 2-部 划分(X, Y), 则 X = |Y|.

证。对 \mathbf{z} 一部图讲 \mathbf{z} $\mathbf{d}(\mathbf{z}) = \mathbf{z}$ $\mathbf{d}(\mathbf{z})$,故 对 \mathbf{k} 一正则 \mathbf{z} 一部图成立 $\mathbf{d}(\mathbf{z})$,从而 \mathbf{z} $\mathbf{z$

1.5.4 证明,在任何两个或两个以上人的组内、存在两个人在组内有相同个数的朋友。

证,令上述组内人的集合为图 G 的顶点集合,若两人互相是朋友,则其间连以一边,所得之图 G 是组内人 员的朋友关系图。显然 G 是单图,图中顶点的度恰表示 该 人 在组内朋友的个数,利用图 G,上述问题就抽象成如下的图论问题或在一单图 G 中,若 $\nu(G) \ge 2$,则在 G 中存在度相等的两个顶点。下面我们证明这个命题。

用反证法,设 G 中各点的度均不相等。必有最 大 度 $\Delta > \nu - 1$,若 $\Delta = \nu - 1$,必有 $\delta > 1$,从而 $\Delta - \delta + 1 < \nu$, 这 与各点度均不等矛盾」若 $\Delta > \nu - 1$,又与 G 是单图矛 盾。

1.5.5 若 G 有顶点 v_1 , v_2 , …, v_n , 则序列($d(v_1)$, $d(v_2)$, …, $d(v_n)$) 称为 G 的**度序列**。证明非负整数 的 序 列 (d_1 , d_2 , …, d_n) 为某个图的度序列的充要条件是 Σ d_n 为 偶数。

证,由定理 1.1 知,必要性是显然的。对于充分性,取 n 个相异顶点 v_1 , v_2 , \cdots , v_n , 若 $d_1 = 2k$,则 在 v_n 处 作 k 个

环。若 $d_1=2l+1$,则在顶点 v_1 处作 l 个环,由于 $\sum_i d_i$ 为偶数,故其中 d_i 为奇数的项数是偶数,从而 d_i 为奇数 所对应的顶点 v_i 可以配对并以边相连。最后所得之图记为 G_i G_i 的度序列按作法恰是 (d_1, d_2, \dots, d_n) ,故充分性成立。

1.5.6 单图的度序列d=(d₁,d₂,…,d_n)称为**图序列**。 证明,(a)序列(7,6,5,4,3,3,2)和(6,6,5,4,3,3,1)都不是图序列。

- (b)若 d 为图序列,且 $d_1 \geqslant d_2 \geqslant \cdots d_n$ 。则 $\sum_{i=1}^n d_i$ 是偶数,且对 $1 \leqslant k \leqslant n$ 成立 $\sum_{i=1}^n d_i \leqslant k (k-1) + \sum_{i=k+1}^n \min\{k, d_i\}$ 。
- (P. Erdős 和 T. Gallai, 在 1960 年已证明这是 d 为图序列的充要条件。其充分性证明可参阅 F. Harary, 《Graph Theory》P.60,或中译本P.70。)

证、(a)(7, 6, 5, 4, 3, 3, 2)对应的是7个顶点的图,若是单图,则每个顶点度最大为6,现 $d(v_1)$ =7,故它不是图序列。(6, 6, 5, 4, 3, 3, 1)对应是7个顶点的图,若是单图,则由 $d(v_1)$ =6, $d(v_2)$ =6知, v_1 , v_2 和图中每一个顶点均需相连,故图中每一个顶点的度应不小于2, 这又和 $d(v_1)$ =1矛盾,故它不是图序列。

(b)由练习1.5.5 知 Σ d 为偶数,又 k 个顶点的导出图的顶点的度之和 $\leq k(k-1)$ (练习1.1.3),剩下的 $v_{k+1}, v_{k+2}, v_{k+1}, v_{k+2}, v_{k+1}, v_{k+2}, v_{k+1}, v_{k+2}, v_{k+1}, v_{k+2}, v_{k+1}, v_{k+2}, v_{k+1}, v_{k+1}, v_{k+2}, v_{k+1}, v_{k+1}, v_{k+2}, v_{k+1}, v_{k+2}, v_{k+1}, v_$

- 1.5.7 设 $\mathbf{d} = (d_1, d_2, \dots, d_n)$ 是非负整数的不增序列,令 \mathbf{d}' 来记序列 $(d_2-1, d_3-1, \dots, d_{d_1+1}-1, d_{d_1+2}, \dots, d_n)$ 。
 - (a)证明 d 为图序列的充要条件是 d' 为图序列。
 - (b)利用(a)给出构造具有图序列 d 的单图的一个算法。 (V.Havel, S.Hakimi)

证、 $(a) \Longrightarrow$ 、设 G 是单图,其图序 列 为 d,且 $d(v_i) = d_1(i=1, \dots, n)$,分两种情况证明,

- (1) 若v₁ 关联的 d₁ 条边恰 为 v₁v₂, …, v₁v_{d1+1}, 则 G-v₁ 的图序列是d'。
- (2) 若 v_1 关联的 d_1 条边 中,有 v_1v_2 ,且 $j>d_1+1$ 。 令 $j_0=\max\{j|v_1v_2\in E(G)\}>d_1+1$,

 $i_0 = \min\{i | v_1 v_i \in E(G)\} \leqslant d_1 + 1$,则 $v_1 v_j \in E(G)$,且 $j > j_0$ 时 $v_1 v_j \in E(G)$;

 $v_1v_{i_0}$ $\in E(G)$ 且i< i_0 时 v_1v_i $\in E(G)$ 。 因为 $d_{i_0} \ge d_{j_0}$, 考察与 v_{i_0} 相邻的 d_{i_0} 个点,其中必有一点 v_i 与 v_{j_0} 不相邻,否则, $d_{j_0} \ge d_{i_0} + 1 \ge d_{i_0}$ 矛盾!作 $G' = G - \{v_1v_{j_0} + v_{i_0}v_{i_0}\} + \{v_1v_{i_0} + v_{i_0}v_{i_0}\}$,这时,G' 与 G 有相同的图序 列

1.5.7 (0) 图

 \mathbf{d} , 只是 \mathbf{G}' 的 \mathbf{j} 。小了, \mathbf{i} 。大了,如此继续下去,必可化为情况(1)。

一、设 G' 的图序列为 d'。在 G'上加入异于 G' 顶点 v_2 , v_4 , …, v_a 的新顶点 v_1 , 并在 v_1 和 v_2 , v_8 , …, v_{d_1+1} 之间连以边,所得之新图记为 G。则 G 的图序列为 d。

解: (b) 构造图序列为 $\mathbf{d}=(d_1, \dots, d_n)$ 的单图G, 其步歌如下:

第 1 步 2 令 $E^{(0)} = \phi$, $\mathbf{d}^{(0)} \leftarrow (d_1, d_2, \cdots, d_n) = \mathbf{d}$, $V^{(0)'} = (v_1^{(0)'}, v_2^{(0)'}, \cdots, v_n^{(0)'})$, k=1;

第 2 步,对 $d^{(k-1)'} = (d_1^{(k-1)'}, d_2^{(k-1)'}, \cdots, d_n^{(k-1)'})$,求出其下标集 $(1, 2, \cdots, n)$ 的一个置换 σ ,使 $\sigma d^{(k-1)'} = (d_1^{(k)}, d_2^{(k)}, \cdots, d_n^{(k)})$ 成为一个非增序列。同时,令 $\sigma V^{(k-1)'} = (v_1^{(k)}, v_2^{(k)}, \cdots, v_n^{(k)}) = V^{(k)}$,若 $d_1^{(k)} = 0$,则转第 4 步;否则,转第 3 步。

第 3 步: 令 $E^{(k)} \leftarrow E^{(k-1)} \cup \{v_1^{(k)}v_j^{(k)}| j=2, 3, \cdots, d_1^{(k)}+1\}$,

$$\begin{split} \mathbf{d}^{(k)'} = & (0, d_2^{(k)} - 1, d_2^{(k)} - 1, \cdots, \\ d_{d_1^{(k)}(k)+1}^{(k)} - 1, d_{d_1^{(k)}(k)+2}^{(k)}, \cdots, d_n^{(k)}), \end{split}$$

k←-k+1, 转第2步。

第 4 步, 令 $G=(V^{(k)}, E^{(k-1)})$, 停。

(度序列的综合性文献见 Lecture Notes in Math, 885。《Combinatorics and Graph Theory》(1980)中 S.B.Rao的文章。P.417-440)

1.5.8 证明: 无环图 G 含 2-部生成子图 H,使得 $\forall v \in V$ 成立 $d_R(v) \geqslant \frac{1}{2} d_a(v)$ 。

证:设H为含于 G 中边数最多的一个 2-部生成子图,此 H 即为所求。事实上在无环图中,可以有重边,若两 顶点间有重边,计算其中一点的邻点个数时,我们计算其重边的个数。这样改动后,练习[1·4·7]左边不等式的证明 仍 成立,故这一不等式对无环图也成立。注意到该证明中实际上先证明了 $d_H(v) \ge (1-1/m)d_G(v)$ 、令 m=2,即证。

1.5.9 设 $S = \{x_1, x_2, ..., x_n\}$ 是平面上的点集,其中任意两点之间的距离至少是 1,证明最多 有 3n 对点 距 离恰好为 1。

证、作图G, 其中V(G)=S, S 中两点相连当且仅当两点间距离为 1。由于两点间距离为 $\geqslant 1$,从而对任意 $x_i \in V$ (G),在 x_i 为心的单位圆周上,最多含有 S 的六个点,故 $d_G(x_i) \leqslant b$ 。对 G 应用定理 1·1 有 $\sum_{i=1}^n d_G(x_i) = 2e$,从而 有 $6n \geqslant 2e$,故 $3n \geqslant e$ 。

1.5.10 图 G 的**线图**是顶点集合为 E(G)的图 ,其中两个顶点相连的充要条件是它们在 G 中为相邻的 边。证 明:如果 G 是单图,

- (a) G 的线图具有e(G)个顶点和 $\sum_{v \in V(G)} \binom{d_{\theta}(v)}{2}$ 条边。
- (b) K, 的线图与练习 1.2.6 中所描述的图 的 补图 同构。

证,按线图的定义,(a)的结论是显然的。

(b) K₆的线图和 Petersen 图(即练习 1.2.6 的图)的 补图的同构关系,可以由下面两图之间标明的顶点对应并利 用练习 1.2.5 直接验证它。

1.5.11 G 是单图, A、M 分别是 G 的邻接矩阵 与关·26·

1,5,10 (6) 图

联矩阵, $A_L \in G$ 的线图 L(G) 的邻接矩阵。证明: (a) $M'M = A_L + 2I$.

(b) 若 G 是 k—正则的,则 MM'=A+kI.

证:(a)由于 $(M'M)_{i,j}=\sum_{i=1}^{n}(M)_{i,i}(M)_{i,j}$, $i\neq j$ 时此数是与边 e_i , e_j 均关联的顶点数,对单图 它为 1 或 0,它正好是线图 L(G)的顶点 e_i , e_j 间的 边数。当 i=j,显然 $(M'M)_{i,j}=2$ 。再由 A_L 的定义,即得(a)。

- (b) 由于 $(MM')_{i,j} = \sum_{i=1}^{n} (M)_{i,j} (M)_{j,j}$,可知,当 $i \neq j$ 时此数是以 v_i , v_j 为端点的边的数目。当 i = j 时,因 $G \in \mathbb{R}$ k-正则,显然 $(MM')_{i,j} = k$,故得(b)。
- 1.5.12 若 G 是 k-正则图,则 k 是 G 的一个特征值,且对 G 的任何特征值 λ 有 λ $\leq k$ 。

证:因G是k-正则的,u=(1, ···, 1)'满足Au=ku,故 k是G的一个特征值。

设 λ 是 G 的任意特征值,则有向量 X 满 足 $AX = \lambda X$,其中 $X \neq 0$ 。令 x_1 是 X 中绝对值最大的分量,则有。

 $|\lambda||x_{j}| = |\lambda x_{j}| = |(AX)_{j}| = |\sum_{a_{j,j}=1} a_{i,j} x_{i}|$ $\leq \sum_{a_{j,j}=1} |x_{j}| \leq k|x_{j}|$

1.6 路和连通性

定义。G中的途径是一个有限非空序列 $W=v_0e_1v_1e_2v_2\cdots e_bv_b$,它为顶点和边的交错序列,且 $e_i(1\leq i\leq k)$ 的端点是 v_{i-1} 和 v_i 。上述从 v_0 到 v_b 的途径W,记为(v_0,v_b)一途径,而顶点 v_0 , v_b 分别称为W的起点和终点, v_1,v_1,\cdots , v_{b-1} 称为W的**内顶点**,k称为W的长。

若W中 e_1 , e_2 , …, e_n 两两不相同, 我们称它为**途**。 若迹W中 v_0 , v_1 , …, v_n 两两不相同, 我们称它为**路**。

定义:若 G 中存在(u, v)-路,则称 u, v是遼 **通 的**,顶点的连通性是一个等价关系。V(G)的每一等价类的导 出 子图称为 G 的一个**连通分支**,记 G 的连通分支个数为o(G),若 o(G)=1,称 G 是连通的,否则称 G 不速通。

1.6.1 证明:如果 G 中有一条(a, v)-途径,则 G 中也存在一条(a, v)-路。

证,事实上,我们由 u 出发沿(u, v)-途径定,若遇到相同点,则把相同点间的那段途径去掉,然后继续沿(u,v)-。途径往下走,一直走到终点 v 为止。按作法知,最后我们所得的(u, v)-途径,它是 G 中一条(u, v)-路。

1.6.2 证明 G 中长为 k 的 (v_i, v_j)-途径 的 条 数 是 A*中的(i, j)元素。

证,用归纳法证明,k=1 时, 由邻接矩阵 A 的定义知结论成立。若 k=1 时结论成立,即

 $P_{*-1}=A^{*-1}=\begin{pmatrix}P_{*,*}^{(k-1)}\end{pmatrix}$, G中长为k-1的(v_* , v_*)-途 径的条数为 $P_{*,*}^{(k-1)}$ 。下面证明k时结论也成立。令 $P_*=A^k=\begin{pmatrix}P_{*,*}^{(k)}\end{pmatrix}$,则 $P_{*,*}^{(k)}=\sum_{i=1}^{k}a_{i,i}P_{i,i}^{(k-1)}$,显然G中任一条长为k的(v_* , v_*)-途径,可看成先 经 v_*v_* 边到达 v_* ,然后 经(v_* , v_*)-途径到达 v_* ,由定义 $a_{*,*}$ 恰表示 v_* , v_* 间的边数,于是由归纳法假设 $a_{*,*}P_{*,*}^{(k-1)}$ 恰表示 长 为k 由 v_* 出发经边 v_*v_* 到达 v_* 的途径的条数。故 $P_{*,*}^{(k)}=\sum_{i=1}^{k}a_{i,i}P_{*,*}^{(k-1)}$ 表示长为k的(v_* , v_*)-途径的条数。

1.6.3 证明。若 G 是单图且 $\delta \geqslant k$,则 G 有一条长为 k 的路。

证: 若P是 G 中的一条最长路,它的长l 小于 k,设 P 为 $v_1v_2v_3\cdots v_1v_{l+1}$,由假定 $d_c(v_1) \ge \delta \ge k \ge l$,从而在 P 外存在一顶点 v_0 和 v_1 邻接,于是 $v_0v_1v_2\cdots v_{l+1}$ 是 G 中长于 P 的一条路,这和 P 是 G 中最长路矛盾,故 $l \ge k$ 。我们可以在 P 中取一段长为 k 的路,故 G 中存在长为 k 的路。

1.6.4 证明,G 为连通的充要条件是对V 的每一个分成二个非空子集 V_1 和 V_2 的划分,存在一条边它的二个端点分别属于 V_1 , V_2 。

证: \Longrightarrow ,设 $v_1 \in V_1$, $v_2 \in V_2$,由G的连通性,G中存在一条(v_1 , v_2)-路,在这路上必有两点u,v,使 $u \in V_1$, $u \in V_1$, $u \in V_2$, $u \in V_3$,u

 \Leftarrow : 若 G 不连通,则 G 至少存在二个 连 通 分 支 G_1 , G_2 ,令 $V_1 = V(G_1)$, $V_2 = V(G) \setminus V_1$,则按连通分支定 义 V_1 , V_2 间不存在两个端点分别属于 V_1 , V_2 的边,这和充分性假设矛盾,故 G 为连通。

1.6.5 (a)证明、岩 G 为单图,且 $e > {\binom{\nu-1}{2}}$ 则 G 是连通的。

(b)对
$$v>1$$
, 求一个非连通单图 G 使得 $e=\binom{v-1}{2}$.

证。(a)若 G 不连通,可分为两个顶点数分别 为 v_1, v_2 的互不连通子图 G_1 , G_2 。 易知 $v_4 \ge 1$, (i=1, 2) , $v_1+v_2 = v_0$ 于是

$$e(G) \leqslant \binom{v_1}{2} + \binom{v_2}{2} = \frac{v_1(v_1 - 1)}{2} + \frac{v_2(v_2 - 1)}{2} \leqslant$$

$$\leqslant \frac{(v - 1)(v_1 + v_2 - 2)}{2} = \frac{(v - 1)(v - 2)}{2}$$

$$= \binom{v - 1}{2}.$$

$$\dot{z} = s > \binom{v - 1}{2} \mathcal{F} f_!$$

- (b) $G=K_{-1}+K_1$ 即为所求的单图。
- 1.6.6 (a)证明: 若 G 为 单 图 , δ>[ν/2]-1 , 则 G 连通。
- (b) ν 为偶数时, 找一个([v/2]-1)-正则的不连 通 单 · 图.
- 证。(a) 若 G 不连通,则 ν 个顶点至少分属于 G 的 两个分支。且有一个分支 C , V(C) [ν /2],由子 G 是单图,故 C 上的顶点的度均不大于 [ν /2]—1,这和 δ > [ν /2]—1矛盾。故 G 连通。

- (b) $K_{*/2}+K_{*/2}$ 即为所求之单图。
- 1.6.7 证明。若 G 不连通,则 G^{σ} 是连通的。

证:对 G^o 的任二点 u, v, 若 u, v 在 G 中不相邻,则 在 G^o 中相邻。若 u, v 在 G 中相邻,则 u, v 是 G 的 一个分支中,且必有 G 的另一分支的点 v 与 u, v 都不相邻,于 是 v 与 u, v 在 G^o 中相邻,v—v 即为 G^o 中的 一条 (u, v)—通路。故 G^o 连通。

- 1.6.8 (a) 证明、若 e∈E, 则ω(G)≤ω(G~e)≤ω
 (G)+1.
- (b) 若 v∈V, 证明上述不等式中 G-* 换成 G-v-般不成立。
- 证、(a)若 $e \in E$,由 ω 的定义,显然有 $\omega(G) \leq \omega(G e)$,又注意到一条边 e 至多仅能把 G e 中两个分支 连 在 一起成为 G 中的一个分支,故 $\omega(G e) \leq \omega(G) + 1$.
- (b) 如图 G_1 , G_2 , $\omega(G_1)=2>\omega(G_1-v)=1$, $\omega(G_2-v)=3>\omega(G_2)+1=2$.

1.6.8 (6) 图

1.6.9 证明。若 G 连通,且 G 中每一个顶点 的 g 为 偶数,则对任意 $v \in V$, $\omega(G-v) \leq d(v)/2$ 。

证:设C为G-v的任一分支,由于G中的每个顶点的

度为偶数,故 $\sum_{v \in V(\sigma)} d_o(v)$ 亦为偶数,又由定理 1.1G 的子图 C 所产生的度为 $2\varepsilon(C)$,所以由 G 的连通性知,v与C中植产,且 $\sum_{v \in V(\sigma)} d_o(v) - 2\varepsilon(C) > 0$ 为偶数。故 v 伸向 C 中点之边至少二条。从而显然有 $o(G-v) \leqslant \frac{1}{2} d(v)$ 。

1.6.10 证明,在连通图中任意两条最长的路都有公共 顶点。

证:设 (v_1, v_2) -路, (v_1', v_2') -路均是G中之最长路,且无顶点公共。由G是连通的,故存在 (v_2, v_2') -路,令 v_8 为由 v_2 出发沿 (v_2, v_2') -路前进,最后一个和 (v_1, v_2) -路相交的顶点, v_8 '为由 v_8 出发,沿 (v_2, v_2') -路前进,第一个和 (v_1', v_2') -路相交的顶点。不失一般性 (v_1, v_2) -路中 (v_1, v_3) -段的长度不小于 (v_1', v_2') -路中 (v_1, v_3) -段的长度不小于 (v_1', v_2') -路中 (v_1, v_3) -段,于是从 v_1 出发,经 (v_1, v_2) -路中的 (v_1, v_3) -段,然后经 (v_2, v_2') -路中 (v_3, v_3') -段,最后 经 (v_1', v_2') -路中 (v_3', v_2') -路中 (v_3, v_3') -段,最后 经 (v_1', v_3') -路中 (v_3', v_2') -路里长,这和 (v_1, v_2) -路是最长路矛盾。所以 (v_1, v_2) -路和 (v_1', v_2') -路有公共点。

1.6.11 若顶点 u, v 在 G 中是连 通 的,则 定 义 G 中最短的(u, v)-路的长为 G 中 u, v之间的距离,记为 $d_{\sigma}(u$, v): 若 u, v 在 G 中不连通,则我们定义 $d_{\sigma}(u$, v)为无 穷。证明对于任意三个顶 点 有 d(u, v)+d(v, w) $\geqslant d(u$, w).

证: d(u, v)是在不引起混淆的情况下 d_e(u,v)的简记。(1)当 u, v, w 连通时, 因为由(u, v)-路和(v, w)-路, 合并起来构成(u, w)-途径, 又因为最短的(u, w)-路 的 长不超过上述(u, w)-途径, 故由距离的定义,结论成立。(2)

当 \mathbf{s} , \mathbf{v} , \mathbf{w} 不连通时, $d(\mathbf{s}$, \mathbf{v}), $d(\mathbf{v}$, \mathbf{w}), $d(\mathbf{s}$, \mathbf{w}) 中 至 少二个为无穷。结论也成立。

1.6.12 图 G 的**直径**是 G 中两顶点之间的最大距离。证明。若 G 有大于 3 的直径,则 G 的直径小于 3.

证,对任意一对 $u, v \in V(G)$ 。若边 $uv \in E(G)$,则 $uv \in E(G^o)$ 故 $d_{\sigma^o}(u, v) = 1$ 。若 $uv \in E(G)$,则 $uv \in E(G^o)$,这时分两种情况讨论。(1)若V(G)中任意顶点至少和u, v中一顶点相邻。此时任意的 $x, y \in V(G)$ 有 $d_{\sigma}(x, y) \leq 3$,这和假设矛盾,故(1)不可能。(2)V(G)中存在一顶 点 $uv \in u$, $uv \in E(G)$,则 vvv, $uv \in E(G^o)$ 。此时 $d_{\sigma^o}(u, v) = 2$ 。综合上述情况, G^o 的直径小于 3。

1.6.13 证明: 若G是直径等于2的单图,且 $\Delta=\nu-2$,则 $e \ge 2\nu-4$ 。

证,由 $\Delta=\nu-2$ 知,G中有顶点 υ 与 $\nu-2$ 个顶点相邻,从而有 $\nu-2$ 条边。剩下的另一顶点 u 与 υ 必不相邻。为 使 G 的直径为 2, u 到各顶点的距离不超过 2,至少要增加 $\nu-2$ 条边。故 $\varepsilon(G) \geqslant 2(\nu-2) = 2\nu-4$ 。

1.6.14 若 G 是连通单图,但不是完全 图 ,则 G 存在 如下三个顶点 u , v 和 w ,满足 uv , vw $\in E$, uv $\in E$.

证:由假定 G 不是完全图,故存在 u, $w_1 \in V$, $uw_1 \in E$;由于 G 是连通的,故存在一条连接 u, w_1 的最短 路,设为 $uu_1u_2\cdots u_nw_1$, $n \ge 1$. 显然 $uu_2 \in E$, 否则和最短路便定矛盾、于是我们 ϕ $u_1=v$, $u_2=w$ (当 u=1 时, $u_2=w_1$)。即为所求。

1.6.15 图 G 是连通的当且仅当(A+I)*-1 中无零元。

证:
$$(A+I)^{r-1} = \sum_{k=0}^{r-1} {r-k-1 \choose k} A^{r-k-1} (其中 A^0 = I)$$

 \Rightarrow : 由练习 1.6.2 知, A^* 中的(i, j)元是 G 中 两 顶点 v_i , v_j 间长为 k 的途径的数目。由于 G 是连通图,对 任 意 (i, j) 一定存在 (v_i, v_j) -路,其路 长 k 满足 $0 \le k \le v-1$,从而 A^* 中的(i, j) 元非零,故 $(A+I)^{*-1}$ 中无零元。

 \Leftarrow : $(A+I)^{r-1}$ 中无零元,对任意(i,j),必 有 k 満足。 $0 \le k \le r-1$ 使得 A^r 中的(i,j)元非零,因而顶点 v_i , v_j 间。 存在长为 k 的途径。故 G 连通。

1.7 图

定义:起点和终点相同的途径(迹,路)称为闭途径(闭缝,闭路)。闭路又称为圈。长为 k 的圈称为 k-圈。k 为俱数时称为俱置,k 为奇数时,称为备置。

定理 1.2 图为 2-部图的充要条件是圈中不含奇圈。

1.7.1 证明。若边 e在 G的一个闭迹内,则 e也在 G的一个圈内。

证。若T是G中含e的一条闭迹,由T中任一点出发,沿T前进,若在前进过程中发生经过某顶点v。两次的情况,则将迹中两个v。间的那个圈除去,然后继续船T前进,直到把T走完为止。于是这样我们把T分解成为圈之和,故e在G的某一个圈内。

1.7.2 证明: 若 8≥2,则 G 含有图。

证: 由于8≥2, 从而由 v₀ 出发到 v₂ 的路可以向前 延伸, 又由于 G 是有限个顶点, 从而延伸到某一点后再 往下延伸时, 必然要和已走过顶点相重, 于是我们就 得 到 G 中的一个圈。

1.7.3 若 G 是单图,且 δ≥2,则 G 含有长最小为 δ+
 1 的圈

证:设 G 中最长路为 (v_0, v_*) -路,其顶点依次为 v_0 , v_1 , v_2 , …, v_* 。显然 v_0 的所有邻点均在 (v_0, v_*) -路上,不然它和最长路矛盾。取 v_0 的所有邻点 v_* 中的足标最大者记为l,显然 $l \ge \delta$ 。于是 $v_0 v_1 v_2 \cdots v_i v_0$ 是 G 中的一个长不小于 $\delta+1$ 的圈。

- 1.7.4 G的图长是G中最短圈之长。若G不含圈,我们定义G的圈长为无穷。证明:
- (a)围长为 4 的 k-正则图,至少有 2k 个顶点,在 同 构意义下,2k 个顶点这样的图是唯一的。
 - (b)圈长为 5 的 k-正则图至少有 k²+1 个顶点。
- 证、(a)考虑图 G 相邻的两顶点 x, y。令S(x), S(y) 分别表示 G 中与 x, y 距离为 1 的顶点集,S(x) $\cap S(y)$ = ϕ , 否则 G 的围长 为 3, 这 和 G 的 围长 为 4 矛盾。因此 $|S(x)\setminus y|=|S(y)\setminus x|=k-1$,故至少有2+2(k-1)=2k 预点。若在S(x),S(y)问再将它连成完全 2-部图。最后所得之图,即是围长为 4,2k个顶点的 k-正则图。由作法知它在 **饲**构意义下是唯一的。
- (b)从 G 中顶点 x 出发,S,表示在 G 中与 x 距离 为 i 的顶点集(i=0,1,2,…) 显然 S,中的顶点相互不相邻,S,中的每一个顶点恰好存在一边与 S,相连,否则 G 的 围

长就小于 5, 这与 G 的圈长为 5 矛盾。再由正则 性,因此 $|S_0|=1$, $|S_1|=k$, $|S_2|=k(k-1)$, 故 G 至少有 1 十 k+k

1.7.5 证明。围长为 5 直径为 2 的k-正则图恰有 k^2+1 个顶点。对 k=2, 3 找出这样的图。

证、应用练习 1.7.4(b)中的符号和证明过程,由于直径为2、故 $S_4(i \ge 3)$ 为空集。从而 $V(G)|=|S_0|+|S_1|+|S_2|=1+k+k(k-1)=k^2+1$ 个顶点。

对于 k=2,围长为 5,直径为 2 的 2-正则图是 图 C_{4} 。对于 k=3,围长为 5,直径为 2 的 3-正 则 图 是 Petersens图.

[(k,g)-笼,又称(k,d)-Moore 图,是顶点数为最少,度为 k,直径为 d 和围长为 g 的正则图。故本题结论说明 C_0 是(2,5)-笼,Petersen 图是(3,5)-笼。研究这一类图是代数图论中一个有趣的问题,可以证明有如下关系,d=[g/2]。对 g=5 的理论上证明存在的笼,先后已构作出来,唯(57,5)-笼祇知存在的可能性。如果它存在的话,按练习 1.7.4(b)计算将是 3250 个顶点的图。构造 这样的图,对设计理论家来说将是一次严重挑战。对这种图的研究,近来已发展成为 Moore 几何理论。有关笼的进一步结论,可参阅 N.L. Biggs 著的《Algebraic graph theory》的第二十三章。〕

1.7.6 证明, (a) 若e≥v, 则 G 含有圈。

(b) 若 e≥v+4,则G包含两个边不相交的圈。(L.Posa) 证, (a)若 G 含有环或重边,则 G 含有圈。故不失一般 性,可以假定 G 是单图,若 G 存在度为 1 的顶点,则 我 们 除去这些顶点和它关 联 的 边 ,我 们 得 G_1 ,显然 $e(G_1) \ge v(G_1)$,若 G_1 还存在度为 1 的顶点,则类似由 G 到 G_2 的过程,可得到 G_2 ,这样继续下去可得 G_8 , G_4 ,…。由于 v=1 或 2 的单图不可能满足 $e \ge v_0$,故这过程到某 一 个 G_m 就停止了。 G_m 中每一个顶点的度均不小于 2,即 $\delta(G_m) \ge 2$,由练习 1.7.2 知,在 G_m 中存在圈,从而在 G 中亦存在 圈。

(b) 事实上,只需证明 e=v+4 时,命题成立。用反证 法,设G是满足e=p+4,但不包含二个边不相交的圈的图 箧中顶点数最少的一个图。则 G 有如下两点 性 质。①G 的 图长 $g \ge 5$ 。事实上若 G 的图长 ≤ 4 ,则在 G 中除去 - 个长 度≤4的圈 C_1 的边,所得之图记为G',显然 $\varepsilon(G') \geqslant \nu(G)$ =v(G'),由(a),G'中存在一个圈 C_2 , C_1 、 C_2 的边不相 交,但这和G的假设矛盾。 $(2\delta(G)) \ge 3$ 。事实上,若 $d(v_0)$ =2 时,设 v_0v_1 , $v_0v_2 \in E(G)$,则构作 $G_1 = G - v_0 + \{v_1\}$ v_2); 若 $d(v_0) \leq 1$ 时,则 G_1 为在 G 中除去 v_0 以及其关 联 之边 $(d(v_0)=0$ 时,任去G中一边)所得之图。显然 $e(G_1)=$ $\mathfrak{p}(G_1)+4$, G_1 仍是不含二个边不相交的圈的图。但 $\mathfrak{p}(G_1)$ $= \nu(G) - 1$,这又与G的顶点数为最少的假定矛盾。下面我 们由②及定理 1.1 有: ν+4=ε≥3ν/2, 所 以 ν≤8。但另一 方面,由①,在G中存在一个图 C_{\bullet} , C_{\bullet} 上的顶点之间的 边,除 C_a 上之边外,再没有其它边,以 S_a 表 C_a 上的顶点 集,故由②、S。上每一顶点均有伸向C。外的边。记与S。距 离为 1 的顶点集为 S_1 。则 S_0 的每一点有伸向 S_1 的边,反过来 S_1 中的每一个顶点仅有唯一的一边与 S_0 相连,不然在G 中 则含有长不大于 g/2+2(< g)的圈,这和 G 的 圈 长 为 g 矛 盾,故以。≪以。」。于是我们有 ν≥以。|+以 ,|≥g+g≥10。 但

这又和 ν ≤8的结果矛盾。故反证法中假设的 G 不存在。所以(b)成立。

1.8 最短路问题

定义,对 G 的每一边 e 赋以一个实数 w(e),称 为 e 的 **权。赋**了权的图称**赋权图。子图的权**是子图上所有边的权的和。

定义: (u, v)-路的权称该路的路长, u, v间最小路长的路称(u, v)的最短路。

计算各顶点到 u₀ 的最短路的 Dijkstro **算法**(这里 是 根据原书框图写的).

第 1 步: 置 $l(u_0)=0$; 对 $v\neq u_0$, $l(v)=\infty$; $S_0=\{u_0\}$, 且 i=0。

第 2 步, 若 i=v-1, 则停, i<v-1, 转 3 步。

第 3 步,对每个 $v \in S_t$, $l(v) \leftarrow \min\{l(v), l(u_t) + w(u_tv)\}$;

计算 $\min_{v \in I_i} \{I(v)\}$, 并用 u_{i+1} 记达到这最小值的某一 顶点,置 $S_{i+1} = S_i \cup \{u_{i+1}\}$, $i \leftarrow i+1$, 转 2 步。

定义,一个图论算法是好的,若在任何图上完成这个算法所需要的计算量,由 ν 和 ϵ 的一个多项式为其上界。

Dijkstra 算法是一个好算法。

1.8.1 在本题图(1)的赋权图中,找出从 u₀ 到所 有 其它顶点的最短路。

解。用Dijkstra算法求解, 其结果如图(2)。

图(2)中各顶点 v 旁的数字即最后的 l(v), 它表示 从 v 到 u。的最短路的长。各 u, 的下标 j 表示在算法过程中该顶点进入 S 的次序。(u,)的说明见下题。

1.8.2 为使 Dijkstra算法除确定距离外, 还可确定最短路, 需要另加哪些指令?

解: 在第3步中,当 $l(v)=l(u_1)+w(u_1v)$ 时,记下 u_1 ,表示该点v的l(v)是从 u_1 来的,如上题图(2)中的 (u_1) 所

示。根据(u,)可回追出各点v到u。的最短路。

1.8.3 某公司在六个城市 C_1, \dots, C_6 中有分公司,从 C_i 到 C_j 的直接航程票价记在下述矩阵的 (i, j)位置上。 $(\infty 表示无直接航路)$.

$$\begin{bmatrix} 0 & 50 & \infty & 40 - 25 & 10 \\ 50 & 0 & 15 & 20 & \infty & 25 \\ \infty & 15 & 0 & 10 & 20 & \infty \\ 40 & 20 & 10 & 0 & 10 & 25 \\ 25 & \infty & 20 & 10 & 0 & 55 \\ 10 & 25 & \infty & 25 & 55 & 0 \end{bmatrix}$$

该公司想要一张任两城市间的票价最便宜的路线表,试作出这样的表格。

你,以 C_1 ,…, C_0 为顶点,两顶点相邻当且仅当票价不为 ∞ 。各边上的权等于票价。在这样的赋权图上,重复使用练习 1.8.2 中的 Dijkstra 算法, 算出 C_i (即 u_0)到 C_i (i < i)的票价最便宜路线。结果如下页表。

1.8.4 在一河岸有狼、羊和卷心菜,摆渡入要将它们渡过河去,但由于他的船太小,每次只能载一样东西,显然,狼和羊,羊和卷心菜都不能在无人监视的情况下放在一起,问摆渡人将如何把它们渡过河去?

解,人、粮、羊、菜四种东西的任意组合,共有2°=16种情况,其中狼羊菜、羊菜、狼羊三种情况不允许,因而这三种情况的余,人、人粮、人菜三种情况也不会出现。这样,岸上只能有如下10种情况。

人貌羊菜 人貌羊 人貌菜 人羊菜 入羊 空 菜 羊 狼 狼菜

起歧核市	兼便宜路鉄	票 价
$C_1 \rightleftarrows C_2$	$C_1 \rightleftarrows C_6 \rightleftarrows C_2$	35
C 3	$C_1 \rightleftharpoons C_8 \rightleftharpoons C_8 {=} C_1 \rightleftharpoons C_8 \rightleftharpoons C_4 \rightleftharpoons C_8$	45
C_{4}	$C_1 \rightleftarrows C_4 \rightleftarrows C_4 \rightleftarrows C_4 \rightleftarrows C_6 \rightleftarrows C_4$	35
C _B	$C_1 \rightleftarrows C_6$	25
C 6	$C_1 \rightleftarrows C_6$	10
$C_2 \rightleftarrows C_3$	$C_2 \rightleftarrows C_3$	15
C_{\bullet}	$C_2 \rightleftarrows C_4$	20
C s	$C_2 \rightleftarrows C_* \rightleftarrows C_6$	3.0
C_{6}	$C_8 \rightleftharpoons C_6$	25
C ₃ ⇒ C ₄	C₃⊋C.	10
C 5	$C_3 \rightleftarrows C_5$ 歳 $C_3 \rightleftarrows C_4 \rightleftarrows C_5$	220
C a	C ₈ ⊋C ₄ ⊋C ₆	4 35 (_
C.=C.	$C_4 \rightleftarrows C_5$	10 =
Ca :	$C_4 \rightleftarrows C_8$	25 .
*e _i ⊋c _i	$C_5 \rightleftarrows C_1 \rightleftarrows C_6 \not \boxtimes C_5 \rightleftarrows C_4 \rightleftarrows C_6$	35

1.8.4 图

将这 10 种情况各用一顶点表示。两种情况的两顶点有边相连,当且仅当两种情况可用载人(或加一物)的渡船互相转变。于是可得上图。

我们的问题化为求一条从"人狼羊菜"顶点到"空"顶点的路,如果各边赋权为1,即化为求一条这样的最短路。从图用Dijkstra算法易知,摆渡人有如下两种办法渡河。

✓ 1.8.5 某二人有一只8升的酒壶装满了酒,还有两只空壶,分别为5升和3升。试问将酒平分的最简单方法应当怎样?

篇. 设 x_1 , x_2 , x_3 分别表示 8, 5, 3 加 仑酒壶中的酒量。则 $x_1+x_2+x_3=8$, $x_1 \le 8$, $x_2 \le 5$, $x_8 \le 3$ 的非负整数向量(x_4 , x_2 , x_3)可表示装酒的各种可能情况,(共 24 种)。每一可能情况用一顶点表示,两顶点间有边相连,当且仅当该两种情况可通过倒酒的方法互相变换。如果各 边 赋 权为1, 于是,问题化为在这样的图上求(8, 0, 0)到(4, 4, 0)的最短路。用 Dijkstra 算法得到结果如下。

 $(8, 0, 0) \rightarrow (3, 5, 0) \rightarrow (3, 2, 3) \rightarrow (6, 2, 0) \rightarrow (6, 0, 2) \rightarrow (1, 5, 2) \rightarrow (1, 4, 3) \rightarrow (4, 4, 0).$

1.8.6 给出一个好算法来确定。(a)图的分 支;(b)图的图长。并说明为什么是好算法?

解。(a) 注意到对所有边赋权1,不相邻两点倾赋权∞的图使用Dijkstra算法时,第3步中可能出现min{l(v)}=∞

的情况。这说明 u_0 所在分支 $H(u_0)$ 的顶点已经 算 完 ,且 $V(H(u_0))=S_1$ 据此,我们只要将Dijkstra算法作适当修改,可得一个求图的分支的好算法,步骤如下:

第 0 步, $\omega=1$, V=V(G), V 中任选一顶点 u_0 ;

第 1步、置 $l(u_0)=0$ 、对 $v\neq u_0$ 、 $l(v)=\infty$, $S_0=\{u_0\}$, 且 i=0: (同Dijkstra 算法第 1 步)。

第 2 步,若 $S_1=\phi$,则 $V_{\bullet}=S_1$,停止: (这时,图 的分支数为 w,各分支顶点集为 $\{V_1, \dots, V_{\omega}\}$),否则,转第 3 步。

第3步,对每个v∈S,,l(v)←min{l(v),l(s,)+w(u,v)}; 计算 min {l(v)}后,增加如下指令。

若 $\min_{v \in S_1} \{l(v)\} = \infty$, 則 $V_w \leftarrow -S_1$, $V \leftarrow -S_1$, $\varphi \leftarrow -S_1$, $\varphi \leftarrow -S_1$, 且在 S_1 (即 V) 中任选一项点为 $*_1$, 转第 1 步 。

否则,用 u, +1 记 达 到 min { l(v)} 的某一顶点,并置

 $S_{i+1} = S_i \cup \{u_{i+1}\}, i \leftarrow i + 1 转第 2 步;$

显然,这一算法的计算量与 Dijkstra 算法的计算量基本一样,因为增加指令并没有增加大于 p² 数量级的计算量,故也是 p² 数量级的,是一个好算法。

(b) 为了简便,我们只对v>3 的连通的单图加以说明。在这样的图 G中,取一顶点 u_0 ,设 T_{u_0} 是利用 Dijkstra 算法得到的各顶点到 u_0 的最短路所形成的树,树 T_{u_0} 称为 u_0 的最短路生成树,每个不在树 T_{u_0} 上的边 e,唯 一 对 应 一 个圈,这个圈上的其它边都在树 T_{u_0} 上,这种圈称为 u_0 的生成树圈,记 C_{u_0} ($e\in T_{u_0}$),它们有 e-v+1 个。

当 a。是 G 中某个最短圈 C 上的一个顶点时,则存在一个 a。的生成树圈是 G 的最短圈。据此, 可 将 Dijkstra 算 法增加些指令,修改为一个求图的图长的好算法。其步骤如下,

第 0 步, V 中任取一顶点 a₀; U₀ = {a₀}; |C| = ∞.

第1步,同Dijkstra算法第1步。

第 2 步,若 $i=\nu-1$,则转第 4 步,否则, $i<\nu-1$ 转第 3 步。

第3步,同Dijkstra算法第3步。

第4步、计算 a_0 的所有生成树圈的 图 长,即、 $|C_s|$, (e, $\in T_{a_0}$);

 $|C| \leftarrow \min\{|C|, \min_{\bullet \in T_{\theta,\bullet}}\{|C_{\bullet}|\}\}$;

若|C|=3, 義第5步, 否则, |C|>3, 转第6步。

第5步,停(围长为3)。

第 6 步,若 $U_0 = \nu$,转第 7 步,否则,在 V/U_0 中任取一项点 0_0 , $U_0 \leftarrow U_0 \cup \{\psi_0\}$,转第 1 步。

第7步,停(圈长为|C|)。

这个算法的计算量为 » 数量 级。因为 Diikstra 算法的计算量是 » 级的,我们又将它重复了 » 次。而且。计算 。 的生成树圈圈长的计算量也不超过 » 级。所以这是一个好算法。

1.9 Sperner 引理

定义: 设 x₀, x₁, ···, x₄, (q≤n)是 E*中的最广点

组(即向量组 $\{x_i-x_0|i=1, \dots, q\}$ 是线性无关组)。

$$\Rightarrow x = \sum_{i=0}^{q} \lambda_i x_i, \sum_{i=0}^{q} \lambda_i = 1, \lambda_i \ge 0, (i=0, 1, \dots, q)$$

E*中这样的x的集合称为一个q 维单形。2 维单形是闭 三角形。

定义:将 q 维单形 T, 重分为有限个较小的 q 维单形, 使得任意两个小 q 维单形如果相交, 则相交部 分 恰 是它们 b+1 个 公共顶点形成的 k 维子单形。这样的重分 称 为单纯重分。

定义. 将单纯重分了的 q 维单形 T 中的所 有 小 q 维 单形的顶点标记以 0, 1, \cdots , q: 这个标记称为**固有的**,若它满足.

- (1) T 的 q+1 个 顶点以任何顺序被标记为 0, 1, …, q.
- (2) T 的被标为 i_1 , i_2 , …, $i_{2+1}(1 \le k \le q)$ 的 顶点组成的 k 维子单形中的每个重分顶点,只能 标为 i_1 , …, i_{2+1} 中的一个。特别地,T 的被标为 i_1 , i_2 的边上重分 顶 点只能标为 i_3 或 点

定义,单纯重分中的 q 维小单形, 若其 q+1 个顶 点 具有 q+1 个不同标记,则称为可识别的 q 编集器。

定理 1.3(Sperner 引理) 每一标以固有标记的三 角形单纯重分,有奇数个可识别的三角形。

1.9.1 设T 是 2 维单形(闭三角形), T 。是T 的 外 部 区域 对T 任作一单纯重分, T , …, T 。是单 纯 重 分下

的小三角形,又任给一个固有标记。作图 G 如下, $V = \{v_1, v_1, \dots, v_n\}$, v_1, v_2 ,连以边,当且仅当 T_1 , T_2 的公共边是一条其端点标记为 0 和 1 的线段(1 维单形)。

试证, v_0 是 G 中的奇数度顶点。

1.9.2 设T是顶点为 x_0, x_1, x_2 的闭三角形,T上的点x可表为。

$$x = a_0 x_0 + a_1 x_1 + a_2 x_2$$
, $\sum_{i=0}^{2} a_i = 1$, $a_i \ge 0$

(i=0, 1, 2)。 (a_0, a_1, a_2) 称 x 的重心坐标。

又设 f 是 T 到自身的 1-1 连续映射:

$$f(a_0, a_1, a_2) = (a_0', a_1', a_2')$$

令 $S_1 = \{x | x = (a_1, a_1, a_2), a_i' \leq a_i\}$ (i = 0, 1, 2) 试证, (a)对 T 的任一单纯重分,存在固有标记使得标记为:的顶点都属于 S_1 ;

(b) 集合S,是闭的。

证、(a)对任一 $x \in T$,设 $x = (a_0, a_1, a_2)$, $f(x) = (a_0', a_1', a_2')$ 。则 $\exists S$,使得 $x \in S$,且 $a_1 > 0$,因为,

否则对任一
$$a_i > 0$$
有 $a_i' > a_i$,从而 $\sum_{i=0}^{i} a_i' > \sum_{j=0}^{i} a_i$,矛盾

于是,对于及了的任一单纯重分存在如下标记法。

- 一个重分顶点 $x \in S$, 且 $a_i > 0$, 则 x 标记为 i。因为 T 的三个顶点 x_i (i = 0, 1, 2) 显然有 $a_i = 1$, $x_i \in S$, 故 在 这个标记法下被标为 i, 其次,比 如 $x_0 x_1$ 边 上 的 重 分 顶 点,它的原重心坐标有 $a_2 = 0$,这一标记法下不会标 为 2, 故必被标为 0 或 11 对 $x_0 x_2$, $x_1 x_2$ 上的重分点可作类似论证。从而这个标记法是固有标记,且标为 i 的顶点属于 S_i 。
- (b) 设 $y_n = (a_0^{(n)}, a_1^{(n)}, a_2^{(n)}) \in S_t$, $f(y_n) = (a_0^{(n)'}, a_1^{(n)'}, a_2^{(n)'})$,于是有 $a_1^{(n)'} \leq a_1^{(n)}$ 。又设 $y = \lim_{n \to \infty} y_n$ 。由 f 的 连 续 性 , 有 : $z = \lim_{n \to \infty} f(y_n) = f(\lim_{n \to \infty} y_n) = f(y)$. 因 T 是闭的,故 y , $z \in T$,且 z 是 y 的 f 象点。即 ,若 $y = (a_0, a_1, a_2)$ 则 $z = (a_0', a_1', a_2') = f(a_0, a_1, a_2)$,且有 $a_1' = \lim_{n \to \infty} a_1^{(n)'} \leq \lim_{n \to \infty} a_1^{(n)} = a_1$,所以, $y \in S_t$,故 S_t 是团的。
- 1.9.3 对高维单形的情形, 叙述并证明 Sperner 引理。
- 解,q维单形的 Sperner 引理,"每一标以固有标记的q维单形的重分中有奇数个可识别的q维单形。"

证明如下,设置是被单纯重分且标以固有标记的原 q维单形。 $T^{(k)}$ 是 T 中标记以 0, 1, \cdots , k 的顶点 作成 的 k维子单形。现用归纳法证明 $T^{(k)}(k>2)$ 中的可识别的 k维单形是奇数个。

2维Sperner引理已证明 $T^{(2)}$ 中可识别的2维单形(三角形)有奇数个。现归纳假设 $T^{(2-1)}$ 中的可识别的k-1维单形是奇数个。考虑 $T^{(k)}$ 外的区域 $T_0^{(k)}$ 及T的限制在 $T^{(k)}$ 中的单

纯重分与固有标记。设 $T^{(a)}$ 的这一重分为 $T_1^{(a)}$, …, $T_n^{(a)}$; 令 v_0 , v_1 , …, v_n 与 $T_0^{(a)}$, $T_1^{(a)}$, …, $T_n^{(a)}$ ——对应,在 $\{v_0,v_1,\dots,v_n\}$ 上构造一个图, $T_1^{(a)}$, $T_1^{(a)}$, 个一对应,在 $\{v_0,v_1,\dots,v_n\}$ 上构造一个图, $T_1^{(a)}$, $T_1^{(a)}$, 有公共面单形被标以 0, 1, …, k-1 的 n 的 n 的 n 的 n 是 n 的 n 的 n 是 n 的 n 的 n 是 n 的 n 的 n 是 n 的 n 的 n 是 n 的 n 的 n 是 n 的 n 的 n 是 n 的 n 的 n 是 n 的 n 的 n 是 n 的 n 的 n 的 n 是 n 的 n 的 n 是 n 的

第二章 树

2.1 树

定义, 无圈图, 不包含圈的图。

定义,连通的无圈图称为树。

定图2.1 制中任意两顶点有唯一的路相连。

定图2.2 若G是树,则e(G)=9-1。

聚2.2 非平凡树至少有二个度为1的顶点。

2.1.1 证明,如果无环图 G 的任意两顶点都被唯一的 路相连,则 G 是树。

证,由于 G 中任愈两顶点都被唯一的路相 连, 我 G 连 通。又若 G 含有圈 C,则 C 上的两点,在 G 中存在两条路相连,这与"唯一的路"的假定矛盾,故 G 中不含 圈,由 树 的定义,G 是树。

2.1.2 通过证明非平凡树中的最长路的起点和终点 度均是 1,来证明系2.2。

证,事实上若非平凡树中的(*, **)-路的超点或终点的度大于1。这时因树无图,易知(*, **)-路可继续延长。故对非平凡树中的最长路的端点和终点度必为1,所以第2.2成立。

2.1.3 用练习1.7.2证明系2.2。

证,若 $\delta(G) \ge 2$,则由练习1.7.2G 中含有圈,这和G是树不含有圈相矛盾。故 G 至少存在一个顶 点u,d(u)=1,在G 中由 u 出发的(u,v)-路,若d(v)大于1,显然(u,v)-路可继续延伸,由于G 中不含圈,这种路的延伸永远不会终止,但这又和G 是有限图相矛盾,故 G 中除 u 外至 v 还存在一个顶点度亦为v 1。所以系v 2.2 成立。

2.1.4 证明, 若一棵树恰好有两个顶点的 度 为 1, 则 它是一条路。

证,设 G 是恰有两个 I 度顶点的树,则e=v-1, $\Sigma d(v)=2e=2(v-1)$, G 连通且除两个 I 度点外,其它顶点的度 ≥ 2 。若其它顶点中有度大于 2 的顶点,则 $\Sigma d(v)$ >2+2(v-2)=2(v-1),矛盾! 故其它顶点度均为 2 。于 是 G 是略。

2.1.5 设 G 是有 v-1 条边的图,证明下列三个 命 题 是等价的。(a) G 是连通的。(b) G 是 无 图 的。(c) G 是 材。

证。事实上由树的定义(c) \Rightarrow (a), (c) \Rightarrow (b)是显然的。故剩下要证明的是(a) \Rightarrow (b), 从而 \Rightarrow (c); 和(b) \Rightarrow (a), 从而 \Rightarrow (c)。对于(a) \Rightarrow (b),若 G 含有圈 G,长度 为 n,则 G 上有 n 个顶点和 n 条边,对于那 v-n 个不在 G 上的顶点,每一个顶点必有一条关联于它的边,且这条边在连接它与圈 G 的最短路上,这种边每条均不相同,所以 a > v。这与 a = v — 1 假设矛盾,故 G 不含圈,即(b)成立。对于(b) \Rightarrow (a),若 G 不连通,设含有 o(G)>2 个分支,由(b)显然这些 A

支均为树,对每个分支用定理2.2然后 相加,我们有s(G) = v-o(G)< v-1,这和 s=v-1 矛盾,故 G 连通,即(a)成立。

2.1.6 证明, 若 G 是 △ ≥ k 的树, 则 G 至少有 k 个 顶 点度为 1....

证. 用反证法,若 G 中度为 1 的顶点个数 s 小于 k, 由定理1.1 $2e(G) = \sum_{v \in V(G)} d(v) \ge 2[v(G) - (s+1)] + k$

+s≥2v-1, 这和定理 2.2 矛盾。故命题成立。

- 2.1.7 一个无圈图,亦称森林,证明。
- (a) 森林的每分支为树。
- (b) 当且仅当 e=v- o 时, G 是森林。

证。(6) 由森林和树的定义,结论显然。

- 2.1.8 G的中心定义为使 maxd(x, v)最小的一个 顶点 x. 证明树或者仅有一个中心或者有两个相邻的中心。
- 证 1. 这结论对于树 K_1 , K_2 是显然的。我们证明 任何一个其它的树 T, 与除去 T 的别有度为 1 的顶点(即 T 的

端点)得到的树T'有同样的中心,显然,由T的一个输定顶点。到T的任何一个其它的点v的距离仅当v是一端点时,才可能达到最大值。于是 $\max_{v \in V(T)} d(u,v) = \max_{v \in V(T)} d(u,v)$

十1. 故 T, T'有相同中心。若重复这种除去端点的过程,我们相端得到一系列与 T 具有相同中心的树,因为 T 有限'故经有限步后,我们最终得到的 树 是 K_1 或 K_2 . 且 K_1 , K_3 的中心即为 T 的中心。从而 T 的中心正好由一个 顶 点或两个相邻顶点组成。

证 2, 考虑 G 中的 最长 路 $P = v_0 v_1 \cdots v_s$, 当 h 为 偶数时, $v_{s/2}$ 是 G 的唯一的一个中心; 当 h 为 奇数 时, $v_{(s-1)/2}$, $v_{(s+1)/2}$ 是 G 的唯一的相邻的两个中心。详细证明从略。

2.1.9 证明 若 G 是恰好具有 2k 个顶点为奇 数 度 的 森林。则 G 中存在 k 条边不相交的路。 P_1 、 P_2 , …, P_3 ,使得 $E(G)=E(P_1)\cup E(P_2)\cup \cdots \cup E(P_n)$ 。

归纳法知命题成立,

2.1.10 证明,正整数序列 (d_1, d_2, \dots, d_r) 是 树 的 度序列的充要条件为

$$\sum_{i=1}^{r} d_{i} = 2(r-1).$$

证. ⇒,由定理1.1,定理2.2,结论是显然的。

 \leftarrow ,设正整数序列 (d_1, d_2, \dots, d_r) 满足

 $\sum_{i=1}^{r} d_i = 2(r-1)$,由练习 1.5.5 知,它是一个度序列。设G

是这个度序列的图像中连通分支最少的一个图,知 s(G) = v-1。假如 G 不连通,则 $o(G) \ge 2$,且至少有一分支 G_1 含有圈 C,否则,G 是森林,s(G) = v-o < v-1 矛盾。从 C 中任取一边 $e_1 = s_1v_1$ 。并在另一分支 C_2 中任取 一 边 $e_2 = s_2v_2$,作图

$$G' = G - \{u_1v_1, u_2v_2\} + \{u_1v_2, u_2v_1\}$$

G'的度序列仍为 (d_1, d_2, \dots, d_r) 且 $\omega(G') = \omega(G) - 1$,这 与 G 的选取矛盾 ! 故 G 是连通的。由练习 2.1.5(a) 知 G 是树,从而 (d_1, d_2, \dots, d_r) 是树的度序列。

2.1.11 设T是任一棵k+1个顶点的树。若G是单图,且 $\delta \ge k$,则G中含有与T同构的子图。

证、对 k 用归纳法。当k=1, $T=K_1$, 显然对G,由于 $\delta \ge 1$,故 $s(G) \ge 1$,所以 G 中含有 T 的同构子图。故 k=1 时命题成立。今考虑 k=n(>1) 的情况。设 T 是一棵n+1 个顶点的树,则由系 2.2,存在 u, $v \in V(T)$, $d_{x}(v)=1$, $uv \in E(T)$ 。考虑 $T_1=T-\{v\}$,显然 T_1 仍是树,且 $V(T_1)$ 1

=n. 由归纳假设在 G 中存在一个 子图 $T_1\cong T_1$,且设在这同构对应下 s 与 u 相对 应。由于 $d_o(s) \geqslant \delta \geqslant n$,另一方面由于 $|V(T_1)|=|V(T_1)|=n$, $d_{\overline{r}_1}(s)=d_{\overline{r}_1}(u)\leqslant n-1$ 。从而在 V(G) 中存在与 $V(T_1)$ 相异的 s 的邻点 t,令 $T=T_1+\{s\ t\}$,易知 T 是一棵树,且 $T\cong T$ 。故由归纳法 命 题 成立。

2.1.12 饱和烃是一个形如 C_nH_n 的 分 子, 其 中 每一个碳原子有四个价健, 氢原子有一个价健, 且不存在一串价键构成圈。证明:对于每一个正整数 m,仅当 n=2m+2 时, C_nH_n才可能存在。

证. 若将碳、氢原子看成顶点,其价键看成边,则 C_nH_n 分子结构图 T 是 m 个 4 度顶点,n 个 1 度顶点的树。且 v(T)=m+n, $\sum_{v\in V(T)}d(v)=4m+n$ 。由练习 2.1.10知,

4m+n=2(m+n-1), 4m+n=2m+2.

2.1.13 设 ν_1 是树中度为 i 的顶点数。证明 $\nu_1 \ge \nu_1$, $(i=2, 3, \cdots, \Delta)$ 或 $\nu_2 \ge \nu_1 \ge \nu_1$, $(i=3, 4, \cdots, \Delta)$.

证、显然只要证明 $\nu_1 \ge \nu_1$, $(i=3, 4, \cdots, \Delta)$ 就够了。由定理 2.2 知, $e=\nu-1=\nu_1+\nu_2+\cdots+\nu_{\Delta}-1$,再由定理 1.1.有。

 $2(\nu_1 + \nu_2 + \dots + \nu_{\Delta} - 1) = \nu_1 + 2\nu_2 + 3\nu_3 + \dots + \Delta \nu_{\Delta}$ $\nu_1 = \nu_3 + 2\nu_4 + \dots + (\Delta - 2)\nu_{\Delta} + 2$ 故 $\nu_1 \geqslant \nu_4 \quad (i = 3, 4, \dots, \Delta)$

2.2 割边和键

定义, G 中满足 ω(G-e)>ω(G)的边 e 称为 G 的割。
54.

边.

定义、设 $S \in V(G)$ 中任一非空真子集, $S = V \setminus S$,在 G 中连结 S、 S 之间的边集,记为[S , S],称为 G 的一个 **边需集**。若 $\omega(G - [S, S]) = \omega(G) + 1$,则称[S , S] 是 G 的一个键。

定义、设工是连通图 G 的一棵生成树,我们称T=G-E(T)为 G 中 T 的条制。

定理2.3 e是G的割边的充要条件是e不含于G的 任一圈中。

定理2.4 连通图是树的充要条件是它的每一边均是割边。

票2.4.1 每个连通图都有生成树。

三 定理2.5 设 T 是连通图 G 的生成树, $e \in E(G) \setminus E(T)$,则 T+e 包含 G 中唯一的一个理。

定程2.6 设 T 是连通图 G的生成树,令 $e \in E(T)$,则 (i) 余树 T 不包含 G 的任何憷。(ii) T 十e包含 G 的唯一的一个键。

[注。圈和键,生成树和余树等键念的公理化,引出了 拟阵这一分支,它统一处理了图论中许多定理和结果。关于拟 阵的理论可参阅D.J.A.Welesh著的《Matroid Theory》 (1976)。]

2.2.1 证明 G 是森林的充要条件是 G 的每一 D 是 割 D.

证. G 是森林 \iff G 的每分支是树 \iff G 的 每 G 边

是割边。

- 2.2.2 若 G 连通且 $e \in E$, 证明 .
- (a) e属于 G 的每一个生成树, 当且仅当 e 是 G 的割边。
- (b) e 不属于 G 的任一个生成树,当且仅当 e 是 G中的环。
- 证、(a) ⇒、若 e 不是 G 的割边,则 G -e 连通、由系 2.4.1 在 G -e 中包含一生成树 T . 显然 T 亦是 G 的生成 树 且不包含 e , 这和假定矛盾。故 e 是 G 的割边。
- ←, 若 e 是 G 的割边,且在 G 中存在一个不 含 e 的 生成树 T。由定理2.5,T + e包含一圈 C,且 e ∈ C,这与 e 是割边矛盾。从而 e 属于 G 的每一个生成树。
- (b) ⇒,由系 2.4.1 知,在 G 中存在生成 树 T ,由 假设 $e \in T$,又由定理 2.5 ,T + e 包含图 C 。若 C 包含果 $T \in \mathcal{O}$ 的边 e' ,现构造 T' = T + e e' ,显然 T' 连通,且 e(T') = v 1 ,由练习 2.1.5(a) 知 T' 也是 G 的一棵生成树且包含 e ,这和假设矛盾。故 E(c) = e ,即 e 是 G 中的环。
- \leftarrow ,e是G中的环,显然由树的定义,它不可能属于G的任一生成树。
- 2.2.3 证明,若G不含环,且恰好有一棵生成 树T,G=T.
- 证,因于是G的生成树,故V(G)=V(T),若有 $e\in E(G)/E(T)$,由 G不含环,e 不是环,由定理 2.5,T+e包含的圈中必有另一边 $e'\in T$,易知 T'=T+e-e' 仍是 G中的一棵生成树,这与 G 只有一棵生成树 T 的假定 矛盾,故 E(G)=E(T),从而 G=T。
 - 2.2.4 设 F 是 G 的极大森林,证明。

- (a) 对G的每一分支H, $F \cap H$ 都是H的生成树:
- (b) $\varepsilon(F) = r(G) \omega(G)$.
- 证、(a) 显然 $F \cap H$ 是 H 上的森林,若它不是 H 的生成树,则 存在 $e \in E(H)$, $e \in E(F \cap H)$,且 $F \cap H + e^*$ 仍为 H 上的森林。于是 F + e 显然是 G 上的森林。且 e(F + e) = e(F) + 1。这和 F 是 G 的极大森林的假定矛盾。故 $F \cap H$ 是 H 的生成树。
 - (b) 由(a)及定理2.2, 易知(b)成立。
 - 2.2.5 证明, G 至少包含 $8-\nu+\sigma$ 个不同的圈。

证:对于 G 是连通的情况,即 $\omega(G)=1$ 时,由系2.4.1, G 含有生成树 T,由定理2.5对于 $e\in E(G)\setminus E(T)$, T+e中存在包含 e 的圈 C(e),显然当 $e\neq e'\in E(G)\setminus E(T)$ 时, C(e) Δ C(e') \supseteq $\{e,e'\}$,故 C(e) \neq C(e')。所以 $E(G)\setminus E(T)$ 中每一边 e 与 C(e) —一对应。由定理 2.2,e(T)=v-1,于是 e(G-E(T))=e-v+1,所以 G 中至少包含 e-v+1 个不同的圈。故 G 连通时上述命题成立。对学 G 不连通情况,只需分别考虑 G 的每一分支,然后将各分 支 所得的不同的圈个数相加起来,即得结论。

2.2.6 证明;

- (a) 若 G 中每个顶点的度均为偶数,则 G 没有'翻'边。
- (b) 若 G 为 k≥2 的 k-正则 2-部图。则 G 没有 割 边。
- 证:(a)用反证法,若 G 中存在割边 e ,取 G e 中含 e 的一个端点 u 的连通分支记为 G_1 ,则 G_1 申 除 u 的 度数 为奇数外,其余顶点均为偶数。这和系 1.1 矛盾。故 G 中不含割边。
 - (b) 用反证法、设 e 是 G 中的一割边、取 G-e 的一个

一分支 G_1 ,它仍为2-都图,且除一点的度为 k-1 外,其余的点的度仍为 k,该 G_1 的2-部顶点数分别为 m, n,于是我们有 $k_0-1=kn$ 。但当 $k\ge 2$ 时,上述等式不可能成立,矛盾。 故 G 中无割边。

2.2.7 求图 H, G 中非同构的生成树的数目。

2.2.7 題 图

解, (a) 图 H 中 1, 2, …, 6 顶点的地位是对 称 的。 7, 8 两顶点地位亦是对称的,且 1, 2, …, 6 顶点 在 生 成 树中不是和 7 相连,就是和 8 相连。另外在同构意义下,不 失一般性可以假定67,68在生成树上。于是图 H 共有 三 个 非同构的生成树,如图所示。

2.2.7 (4) 图

(b) 由定理 2.3 知,和度为 1 的顶点相关联的边,恒在生成树中。故 G 的非同构的生成树棵数等于 G' 中非同构的生成树棵数。对于 G' 的非同构的生成树, 易直接验证仅 如图所示的二种。故 G 的非同构的生成树棵数为 2.

2.2.7 (5) 图

2.2.8 设 G 连通,S 是 V(G)的非空真子集,证明 边割集 [S, S] 为 G 的键的充要条件是 G[S] 与 G[S]都 是 连通的。

证:易知, $G-[S, S]=G[S]\cup G[S]$, $\omega(G-[S, S])=\omega(G[S])+\omega(G[S])$ 。又 G 连强, $\omega(G)=1$ 。

⇒. [S, 8]是雜, ω(G-{S, 8})=ω(G)+1=2。 ω(G[S])+ω(G[8])=2。故ω(G[S])=ω(G[8])= 1。 故 G[S], G[8]都是连通的。

 $\Leftarrow: G[S], G[S] 连通, <math>\omega(G[S]) = \omega(G[S]) = 1.$ $\omega(G - [S, S]) = \omega(G[S]) + \omega(G[S]) = \omega(G) + 1, 故$

[S, 8]是键。

2.2.9 证明G的任一非空边割集是G的两两不相交的

"魏的并集。

证,设[S,S]是G的非空边割集。分两种情况证明如 下.

当G是连通的。

考虑 G[S]的各连通分支。设各分支的顶点 集 是 $H_{\bullet 1}$ 又G-H,的各连通分支为G,,由于G连通,H,与各分 支 $G_{i,j}$ 有边相连,故 $G[V(G_{i,j})]$ 连通。依练习2.2.8知 $[V(G_{\bullet,\bullet}),\overline{V(G_{\bullet,\bullet})}]$ 是个键。显然,这些键互不相交。 $X_{\cdot,\cdot} \cup [V(G_{\cdot,\cdot}), \widehat{V(G_{\cdot,\cdot})}] = \cup [V(G_{\cdot,\cdot}), H_{\cdot}]$ = \cup $[H_*, H_*]=$ \cup $[S, H_*]=[S, S].$ 得证。

(2) 当 G 不连通。

设 $G^{(*)}$ 是 G 的一个连通分支 $S_* = V(G^{(*)}) \cap S_* S^{(*)} =$ $V(G^{(*)})\setminus S_*$, $S_*=V(G)\setminus S_*$ 。显然有。

$$[S, B] = \cup [S, B^{(*)}] = \cup [S, B,],$$
 (*)

若 $[S_*, S_*^{(*)}]$ 是 $G^{(*)}$ 中的键。则有。

$$\omega(G^{(*)}[S_*]) + \omega(G^{(*)}[S_*^{(*)}]) = \omega(G^{(*)} - [S_*, S_*^{(*)}])$$

$$=\omega(G^{(1)})+1=2.$$

$$\omega(G-[S_*, S_*])=\omega(G[S_*])+\omega(G[S_*])$$

$$= \omega(G^{(*)}[S_*]) + \omega(G^*[S_*^{(*)}]) + \omega(G - V(G^{(*)}))$$

$$=2+\omega(G)-1=\omega(G)+1$$

故[S_* , S_*]也是G中的键。若[S_* , S_*)]不是 G_* 个中 的键,由(1)知,边割集 $[S_*, S_*]$ 可分解为 G^{*} 中,从而 也是G中两两不相交的键的并集。故由(\bullet)知,结论也成 <u>V</u>.

- 2.2.10 设 B_1 , B_2 都是键, C_1 , C_2 是图(看作 是 边) **约集合**)证明。
 - (a) $B_1 \triangle B_2$ 是不相交的键的并。
 - (b) $C_1 \Delta C_2$ 是不相交的圈之并。
 - (c) 对于任意的边 e, $(B_1 \cup B_2) \setminus \{e\}$ 包含一个键。
 - (d) 对于任意的边 e, $(C_1 \cup C_2) \setminus \{e\}$ 包含一个圈。

证。(a) 设 $B_1 = [S_1, S_1], B_2 = [S_2, S_2], 则$ 。

 $B_1 \Delta B_2 = [S_1, S_1] \Delta [S_2, S_2] = [S_1 \Delta S_2, \overline{S_1 \Delta S_2}]$ 故它是一个边割集。由练习2.2.9知,结论成立。

(b) 显然子图 $C_1 \triangle C_2$ 上顶点的度均为 2 或 4 ,由练习 1.7.2知, $C_1 \triangle C_2$ 中含有圈 C_1 。且子图 $(C_1 \triangle C_2) \setminus C_1$ 上 顶点的度仍为 2 或 4 (除孤立顶点外),如此继续下去,可得不相交的圈 C_1' , C_2' , … , C_n' 使得,

$$C_1 \triangle C_2 = \bigcup_{i=1}^n C_i'.$$

- (c) 若 $e \in B_1 \cap B_2$,不失一般性,假定 $e \in B_1$,则 $(B_1 \cup B_2) \setminus \{e\} \supseteq B_1$ 。 若 $e \in B_1 \cap B_2$,则 $(B_1 \cup B_2) \setminus \{e\} \supseteq B_1 \land B_2$,由 (a) 知它包含 G 的键。 故对任 意 e , $(B_1 \cup B_2) \setminus \{e\}$ 恒含有 G 的键。
- (d) 若 e ∈ C₁ ∩ C₂, 不失一般性, 假定 e ∈ C₁, 则 (C₁ ∪ C₂)\{e}⊇C₁.

若 $e \in C_1 \cap C_2$,则 $(C_1 \cup C_2) \setminus \{e\} \supseteq C_1 \land C_2$,由(b)知它包含 G 的图。故对 任 意 e, $(C_1 \cup C_2) \setminus \{e\}$ 但含有 G 的圈。

2.2.11 证明,若G包含k个边不相交的生成树,则对

V(G)的每一分划(V_1 , V_2 , …, V_n), 边的两端点属于 分划里的不同部分的边数至 少 是 k(n-1)条。(W.T.Tutte 和C.St.J.A. Nash-Williams 分别于1961年证明了上 述条件亦是充分的)。

证。因为任一个生成树T,均把这n个部分连接起来,从而T中至少含n-1条边的两端点分属于分划里的不同部分。由已知条件,G中包含k个边不相交的 生 成 树,故 G中至少包含k(n-1)条边,它的两端点分属于分划里的不同部分。

2.2.12 设 S 是 n 个元素的集 合, $A=\{A_1, A_2, \cdots, A_n\}$ 是 S 的 n 个不同的子集的**族**。证明。存在一个元素 $x \in S$,使得集 合 $A_1 \cup \{x\}$, $A_2 \cup \{x\}$, \cdots , $A_n \cup \{x\}$ 均 相,异。

证:定义标号图 G 如下,其顶点为 A_1 , A_2 , …, A_n . 顶点 A_1 , A_1 , 速以边并附以标号 a, 当且仅当 A_1 = A_1 U{a} 或 A_1 = A_1 U{a} 。设 H 是 G 的任意子 图,记 L(H) 为 H 中边上的标号的集合。若 F 是 G 的极大森林,我们证明有 L(F) = L(G) 成立。对 G 中任一圈 C, 给一个定向,若 $A_1A_1 \in C$, A_1 = A_1 U{a}, 记 A_1 → A_1 或 A_1 → A_1 ,其中精 头方向是 C 的某一定向。如图,按边的定义,显然 + a, a — a 在 a 中必成对地出现。这是因为 a 年 a — a 。 这和 a — a 。 这种 a — a 。 这种 a — a 。 这种 a — a 。 以然被减去了,故 a 上的边的标号值偶数次出现。从而在 a — a 。 从而在 a — a 。 a — a 。 a — a 。 a — a 。 a — a 。 a —

练习 2.2.4(a), 易知 L(F)=L(G)成立。再由练习2.2.4 (b), 我们有 $|L(G)|=|L(F)|\leqslant n-1$, 故 $S\setminus L(G)$ 非空,设 $x\in S\setminus L(G)$,则这 x 即为所求。事实上,若 A_i , A_j 不相 邻,则 A_i , A_j 至少有二个元素相异,故 $A_i\cup\{x\}$, $A_j\cup\{x\}$ 仍相异;若 A_i , A_j 相 邻,此时 $A_i=A_j\cup\{a\}$ 或 $A_j=A_i\cup\{a\}$, $a\in L(G)$,而 $x\in L(G)$, $a\neq x$,故 x 或同时含于 A_i , A_j 之中;或均不含于 A_i , A_j 之中,不管何种情况 $A_i\cup\{x\}$ 和 $A_j\cup\{x\}$ 恒相异。

2.3 割 点

定义、 $v \in V(G)$ 称为割点,如 E(G)能被分成两个非空子集 E_1 , E_2 , 使得 $G[E_1]$, $G[E_2]$ 恰好以 v 为公共顶点。

显然,若 G 无环且非平凡,则 v 是割点的充要条 件 是 $\omega(G-v)>\omega(G)$.

定職2.7 υ是树的顶点,则υ是耐点当且仅当d(v)>1。

票2.7 每个非平凡的无环连通图,至少有两个顶点 不 是割点。

2.3.1 设 G 是 v≥3 的连通图, 证明,

- (a) 若 G 有割边,则存在顶点 v,使得 ω(G-v)>ω(G);
 - (b) (a)的逆未必成立.

证:(a) 设 $e=uv \in E(G)$ 是 G 中的割边,则按定义 $\omega(G-e)>\omega(G)=1$ 。故 G-e 包含 2 个分支 G_1 、 G_2 。由于 $w \ge 3$,故不失一般性,可假定 $v \in G_2$, $V(G_2) \ge 2$.

显然 $G-v=G_1\cup (G_2-v)$, 且 $G_1\cap (G_2-v)=\boldsymbol{\phi}$, 故 $\omega(G-v)\geqslant 2>1=\omega(G)$.

(b) 其反例如图:

2.3.1 (b) 图

2.3.2 证明恰有两个非割点的连通单图是一条路。

证,设 G 是满足条件的单图,它有 v-2 个割点,故 G 的任一生成树 T 也至少有 v-2 个割点,即 T 至多有 2 个非割点;于是,由系 2.7 知, T 恰有 2 个非割点。由定 理 2.7 知,这 2 个非割点在 T 中的度为 1。再由练习 2.1.4 知, T 是一条路。故 G 的任意生成树都是路。这样的单图 只 有 两种,圈或路。但圈的非割点多于两个,与条件矛盾,于是G 只能是路。

2.4 Cayley公式

定义、设 $e \in E(G)$,将 e 从 G 中除去并将 e 的两端点置合在一起的运算称为收缩,经收缩边 e 后所得的图记为 $G \cdot e$ 。

定义。记 $\tau(G)$ 是G中的生成树棵数。N。N

定理2.8 若e是G的杆,则 $\tau(G) = \tau(G - e) + \tau(G \cdot e)$ 。 定理2.9 $\tau(K_*) = n^{n-1}$ 。

2.4.1 利用定理 2.8 的递推公式,求 $K_{8,8}$ 中生成树的 **探**数。

解,下面图中生成树棵数象征地由图本身来代表。且由于环不会影响生成树的棵数,故在图中略去。

而 $\mathfrak{r}(C_6)=6$:

同理

所以 $\tau(K_{3,3})=6+3\times9+3\times12+12=81$.

2.4.2 **轮**是由圈添加一个新顶点(称为**轮**心),且在圈上的每一个顶点到新顶点之间连以边(称为轮的**看**)所得之图。试求有 n 条辐的轮的生成树的棵数表达式。

解:令 W , 记 n 条辐的轮的生成树的棵 数, 下 面 图 解 中, 仍和原书中一样象征地由图本身来代表其生 成 树 的 棵 数, 且由于环和悬挂边不影响生成树的棵数,故在图中略去。

应用定理 2.8 甚易直接验证: $W_3=16$; $W_4=45$; $W_5=121$.

当 $n \ge 6$ 时,可以证明 W_n 间有如下递归关系。 $W_{n-4}W_{n-1}+4W_{n-2}-W_{n-3}=0$ 下面我们来证明它:

$$W_{n} = \bigvee_{n-1} + \bigvee_{n-1} + \bigvee_{n-1} + \bigvee_{n-1} = 2W_{n-1} - \bigvee_{n-2} + \bigvee_{n-3} + \bigvee_{n-$$

$$= \begin{pmatrix} 1 \\ n-1 \end{pmatrix} + \begin{pmatrix} 1 \\ n-2 \end{pmatrix}$$

$$= \left(\begin{array}{c} \\ \\ \\ \\ \\ \end{array} \right) + 2 \left(\begin{array}{c} \\ \\ \\ \\ \end{array} \right)$$

$$= \bigvee_{n-2} + 2 \left(W_{n-1} - \bigvee_{n-2} \right)$$

$$= \underbrace{n-2} + \underbrace{n-3}$$

$$+2W_{n-1}-2\left(\begin{array}{c} & & & \\ & & & \\ & & & \\ & & & \end{array}\right)$$

$$=2W_{n-1}-2W_{n-2}-\binom{n-2}{n-2}+\binom{n-3}{n-3}$$

$$=2W_{n-1}-2W_{n-2}-$$

故

$$W_{n} = \left(2W_{n-1} - 2W_{n-2} + \frac{1}{n-3}\right)$$

$$+ \left(2W_{n-1} - 2W_{n-2} - \frac{1}{n-3}\right)$$

$$= 4W_{n-1} - 4W_{n-2} + \frac{1}{n-3}$$

$$= 4W_{n-1} - 4W_{n-2} + \left(W_{n-3} + \frac{1}{n-3}\right) - \frac{1}{n-3}$$

$$=4W_{n-1}-4W_{n-2}+W_{n-3}$$

所以递归关系成立。

上述线性递归关系的特征多项式及其因子分解如下:

$$\lambda^{n} - 4\lambda^{n-1} + 4\lambda^{n-2} - \lambda^{n-3} = \lambda^{n-3} \left(\lambda - 1\right) \left(\lambda - \frac{3 - \sqrt{5}}{2}\right)$$
$$-\left(\lambda - \frac{3 + \sqrt{5}}{2}\right)$$

故
$$W_n = C_1 + C_2 \left(\frac{3-\sqrt{5}}{2}\right)^n + C_3 \left(\frac{3+\sqrt{5}}{2}\right)^n$$
,并由
 $n=3$ 、4、5可得 $C_1 = -2$, $C_2 = C_3 = 1$ 。从而

$$W_n = -2 + \left(\frac{3 - \sqrt{5}}{2}\right)^n + \left(\frac{3 + \sqrt{5}}{2}\right)^n$$
.

2.4.3 画出 K₄ 的所有16棵生 成树。

解: K₄的顶点标号及它的16 棵生成树如图:

2.4.4 证明:石 e 为 K_n 的一条边,则 $\tau(K_n - e) = (n-2)n^{n-3}$.

- 证,由定理 2.9, $\tau(K_n)=n^{n-2}$ 。 K_n 的生成树均由 n-1 条边组成。由对称性, K_n 中每条边在它所有的生成树中恰出现了 $(n-1)n^{n-2}/\frac{1}{2}n(n-1)=2n^{n-3}$ 次。 所以 $\tau(K_n-e)=n^{n-2}-2n^{n-3}=(n-2)n^{n-3}$.
- 2.4.5 (a) 设 H 为任意两相邻顶点间连 以 k 条 边 的 图, G 是 H 的单底图。证明 $\tau(H)=k^{r-1}\tau(G)$.
- (b) 设 H 是由 G 将每条边用长度为 k 的路来代替得到的图。证明 $\tau(H)=k^{*-r+1}\tau(G)$ 。
 - (c) 从(b)推出 $\tau(K_{2,n}) = n2^{n-1}$.
- 证。(a) G中每一棵生成树计有v-1条边,而每条边对应在H中共有k种取法,故G中一棵树,对应在H中相应地有 k^{r-1} 棵树。所以 $\tau(H)=k^{r-1}\tau(G)$ 。
- (c) $K_{2,n}$ 可以看成是由二个顶点连以 n 条边的多 重 图 G 的每边以一个长度为 2 的路代替所产生的图,从而由(b), $\tau(K_{2,n})=2^{n-2+1}\tau(G)=n2^{n-1}$.

2.5 连 接 问 题

定义, 权图中的最小权生成树(支撑树)称为量优制。

Kruskal算法;

- 1. 选择一根杆 e1, 使得 w(e1)尽可能小。
- 若边e₁, e₂, ···, e_i 已经选好,则从
 E \{e₁, e₂, ···, e_i}

中依照使。

- (i) G[{e₁, e₂, ···, e_{i+1}}]为无圈图。
- (ii) 满足(i)的条件下,使 w(e,+1)尽可能小的原则来. 选 e,+1。
 - 3. 当第2步不能再执行时停止。

定理2.10 由 Kruskal 算法构造的任一支撑 树 $T^*=G$ { $\{e_1, e_2, \dots, e_{v-1}\}$ }都是最优树。

2.5.1 用 Kruskal 算法验证图中所指出的树(粗边)实际上是最优的。

证。图中边标号旁()中的数字表示边所赋的权。易验证粗边所示的生成树 $T = G[\{e_8, e_5, e_{11}, e_9, e_7, e_1\}]$ 恰是由 Kruskal 算法,接所示的顺序构造出来的。故由定理2.10、T 是2.5.1图的最优树。

2,5,1图

- 2.5.2 修改Kruskal 算法,使适用预求解预先指定的连接问题,用最小费用建造一个连接若干城镇的网络,且要求某些指定的城镇对之间是直接连接的。
- 解:设E。是预先指定的k对城镇之直接连边的集合,它们是一定要建造的。由于G[E],不一定是无圈的,我们不能从E。开始施行Kruskal 算法;但可在G[E]的每个分支上使用求生成树的算法,然后在G上从G[E]的生成森林开始使用Kruskal 算法。结果选到的 ν -1条边与E。的并,就是这一问题的解。根据这一想法,算法如下:
 - 1. 在 E_k 中选择一条杆 e_1 ;
- 2. 若已选好边 e₁, ···, e₄, 则从 E₄\(\left(e₁, ···, e₄\right) 中 选取 e₄₊₁, 使 G[{e₁, ···, e₄, e₄₊₁}]是无圈的,
 - 3. 当第2步不能继续执行时,转第4步,
- **4.** 若已选好边 e₁, ···, e₅, 则从 E \{e₁,···, e₅} 中 选取 e₅,₁, 使得
 - (i) G[{e₁, …, e_j, e_{j+1}}]是无圈的。
 - (ii) w(e₁₊₁)是满足(i)的条件下尽可能小的权。
- 5. 当第 4 步不能继续执行时,停止。求出 的 ν -1 条 边与 E_{\bullet} 的并。即是解。
 - 2.5.3 Kruskal算法能否用来:
 - (a) 在赋权的连通图中求最大权树?
 - (b) 在赋权图中求最小权的极大林?

如果可以,怎样求呢?

- 解:对于(a)和(b)都可以用 Kruskal 算法。具体用 法是,对(a)有两种方法。
 - (i) 把 Kruskal 算法中的"小"字换为"大"字。

(ii) 重新规定图的权为,

$$w'(e) = \begin{cases} \frac{1}{w(e)} & \exists w(e) \neq 0 \\ M(充分大) & \exists w(e) = 0 \end{cases}$$

这样就可直接用 Kruskal 算法。

对于(b), 只需对G的每一分支施行Kruskal算法。

- 2.5.4 证明:下述 Kruskal 型算法,在赋权 连 通 图中未必求出最小权支撑路:
 - 1. 选择一根杆 e₁, 使得 w(e₁)尽可能小。
- 2. 若边 e₁, e₂, ···, e₁ 已选好, 则从 E \{e₁, e₂. ···, e₁}中选一条边 e₁+1, 使得
 - (i) G[{e₁, e₂, ···, e₄₊₁}]是不交路的并;
 - (ii) 满足(i)的条件下, 使 w(e,+1)尽可能小。
 - 3. 当第2步不能再执行时停止。

证. 赋权图G如图。

由题给的算法和不按该算法得出的支 撑 路 P_1 , P_2 分 别 如图。

2.5.4 图

但 $w(P_1)=23>21=w(P_2)$,说明题中给的算法在赋权 \cdot 74 \cdot

连通图中未必求出最小权支撑路。

2.5.5 连通图 G 的树图是一个图,它的顶点为 G 的生。成树 T_1 , T_2 , …, T_n , T_n , 与 T_n , 相连的充要条件是 它 们 恰好有 ν — 2 条公共边。证明任何连通图的树 图 都 是 连 通 的。

证,对任意两株生成树 T_i , T_j , 设 T_i , T_j 已有 k 会共之。 $\{e_1, \dots, e_k\}(k < \nu - 2)$, 而有 $\nu - 1 - k$ 条边 不相同。这时存在边 $e'_{k+1} \in E(T_i)$ 但 $e'_{k+1} \in E(T_j)$ 。从而 T_j $+ e'_{k+1}$ 有唯一的圈,圈中存在 $e_{k+1} \in E(T_j)$,使 $e_{k+1} \in E(T_i)$,且 $T_i - e'_{k+1} + e_{k+1} = T_{i+1}$ 仍是 G 的生成树。否则, T_i 中有圈,这与 T_i 是树矛盾。

易知 T_* 与 T_{*+1} 恰有 v-2 条公共边,在树 图上 它 们有边相连。且 T_{*+1} 与 T_* 的公共边比 T_* 与 T_* 的公 共 边多了一条。再对 T_{*+1} 如法泡制,增加与 T_* 的公共边数,总可达到与 T_* 只有一条不同边的树 $T_{*+v-2-v}$ 。相应 地 在、树图上找到了一条从 T_* 到 T_* 的路。故树图连通。

(关于树的应用,可参阅 W.K.Chen的《Applied Graph Theory》(1971)及卢开澄《图论及其应用》(1981))。

第三章 连 通 性

3.1 连通性

定义:设G中顶点子集 $V'\subseteq V$,使G-V'不连通则称V'是G的顶点割集。若[V']=k,则称为k-顶点割集。

定义, $\kappa(G) = \min\{k \mid G \oplus k -$ 顶点割集: $G \neq K$,}称为G 的**速通度**。 $\kappa(K_*)$ 定义为 $\nu-1$,若G满足 $\kappa(G) \geqslant k$,则称 G 是k-连通。

定义、 $\kappa'(G) = \min\{k | G + k - i \}$,称为 G 的边建·通度。若 G 满足 $\kappa'(G) \ge k$,则称 $G + i \}$ 连通的。

定理3.1 $\kappa \leqslant \kappa' \leqslant \delta$.

(关于连通性与连通度的综合性文献, 见W. Mader, Connectivity and edge-connectivity in, finite graphs, in Survey in Combinatorics, Edited by B. Bolloba's, Combridge Vniv. Press, 1979, 66—95).

- 3.1.1 (a)证明,若G是k-边连通,且k>0,E'是G的 k条边的集合,则 $\omega(G-E') \leq 2$ 。
- (b) 对k>0,找一个k-连通图G,及G的k个顶点的集合、V',使得 $\omega(G-V')>2$ 。

证。(a)设e∈E',则按定义ω((G-E')∪e)=1, 若 e
· 78 ·

是 $G_1 = (G - E') \cup e$ 割边,则 $\omega(G - E') = 2$ 。若e不是 G_1 的割边,则 $\omega(G - E') = 1$ 。故结论成立。

(b)对于任意给定的k>0,令 $G=K_*\vee(K_1+K_1+K_1)$, (**联**"\"的定义如下:两个不相交的图 G_1 与 G_2 的 联 $G_1\vee G_2$ 是把 G_1 的每个顶点与 G_2 的每个顶点连以边所得之图)。显然 G 是k—连通的,取G中属于 K_* 的k个顶点作为V',则有 $\omega(G-V')=3>2$ 。

3.1.2 证明,若G是k-边连通,则 $e \geqslant \frac{1}{2}kv$ 。

证,由定理3.1对 G中任一顶点v,有 $d_G(v) \geqslant \delta \geqslant \kappa'(G) \geqslant h$,再由定理1.1,于是

$$2\varepsilon = \sum_{v \in V} d_G(v) \geqslant k_v$$
, $\forall v \geqslant \frac{1}{2} kv$.

3.1.3 (a)证明:若G是单图,且 δ ≥ ν -2,则 κ (G)= δ 。

(b) 找一个单图G,满足 $\delta=v-3$, $\kappa(G)<\delta$ 。

解: (a)证: 当 $\delta=\nu-1$ 时, G=K, 故 $\kappa(G)=\nu-1=0$. 当 $\delta=\nu-2$ 时, 若 ν_1 , $\nu_2\in V(G)$ 不相邻,则对任意第三点: $\nu_3\in V(G)$, 都有 $\nu_1\nu_3$, $\nu_2\nu_3\in E(G)$ 。这时,对任意 $\nu-3$ 个顶点的子集V',均有G-V'仍连通。故 $\kappa(G)>\nu-2=\delta$, 再由定理3.1即得 $\kappa(G)=\delta_{K}$.

(b)对v≥4,作

$$G = \begin{cases} K_2 + K_2 & (\preceq v = 4) \\ K_{,-4} \lor (K_2 + K_2) & (\preceq v > 4) \end{cases}$$

易知、 $\nu=4$ 时, $\kappa(G)=0$ $<\delta(G)=1$ 、 $\nu>4$ 时, $K_{,-4}$ 中的 $\nu-4$ 个顶点构成 G 的顶点割 集,故 $\kappa(G) \leqslant \nu-4 < \nu-3 = \delta(G)$ 。

3.1.4 (a) 证明、如果G是单图且 $\delta \ge v/2$,则 $\kappa'(G) = \delta$ 。 (b) 找一个 $\delta = [v/2-1]$ 且 $\kappa'(G) < \delta$ 的单图。

证。(a)如图按x'的定义,存在x'条边,除去后把 G分成两个分支。不失一般性,假 定 $|V(G_1)|=l \leqslant \nu/2$, 显 然 $\delta \geqslant \nu/2 \geqslant 1$,故

3.1.4 (a) 图

 $\delta(l-1) > l(l-1)$, 即 [$\delta-(l-1)$] $l > \delta$. 另一方面 G_1 中每个顶点至少有 $\delta-(l-1)$ 条 边伸向 G_2 , 故 $\kappa'(G) > [\delta-(l-1)] > \delta$, 再由定理3.1, $\kappa'=\delta$.

(b)在 $K_{((r+1)/2)}$ 上取一点 u , $K_{\{(r-1)/2\}}$ 上取一点 v . 连u 、v 一条边e ,所得之图记为G ,即

 $G = (K_{((r+1)/2)} \cup K_{\{(r-1)/2\}}) + uv,$ 其中 $u \in V(K_{((r+1)/2)}), v \in V(K_{\{(r-1)/2\}})$

显然,e=uv是G的割边, $\kappa'(G)=1$,在 $v \ge 6$ 的条件下, $\delta(G)=\{(v-1)/2\}-1=[v/2-1]>1=\kappa'(G)$ 。

3.1.5 证明,若G为满足 $\delta \geqslant \frac{1}{2}(\nu+k-2)$ 的单图,则G是 k-连通的、[注]

[注]按定义 $\kappa(K_*)=\nu-1$,从而对 $k=\nu$ 时, $\delta \ge \nu-1$ 的情况,即 $G \in K_*$ 的情况,要相应地把结论中的 ν -连**通换成**

(>-1)连通。

3.1.6 若G是3-正则单图,则 $\kappa=\kappa'$ 。

证。① 若 $\kappa=0$.则G不连通,故 $\kappa'=0$,所以 $\kappa=\kappa'$ 。②若 $\kappa=1$,则存在 $v\in V(G)$,G-v不连通,由于 $d_{0}(v)=3$,从而至少存在一个分支仅一条边和v相关联。显然这边为G的割边,故 $\kappa'=1$,所以 $\kappa=\kappa'$ 。③ $\kappa=2$,设 v_1 , $v_2\in V(G)$, $G-\{v_1,v_2\}$ 不连通, $G_1=G-v_1$ 连通。则 v_2 是 G_1 的 割点且 $d_{G1}(v_2) \le 3$,类似于②知在 G_1 中存在一割边 e_2 (关联于 v_2)使 G_1-e_2 不连通。另一方面由定理3.1 $\kappa' \ge \kappa=2$,故 $G-e_2$ 连通。由于 $G_1-e_2=(G-e_2)-v_1$,故 v_1 是 $G-e_2$ 的割点,且 $G_1-e_2=(G-e_2)-v_1$,故 $g_1=G-e_2$ 的割点,且 $G_1-e_2=G-e_1=G-e_2$ 不连通,故 $g_1=G-e_2$ 的割点,以 $g_1=G-e_2$ 不连通,故 $g_1=G-e_2$ 所以 $g_1=G-e_2$ 不连通,故 $g_2=G-e_2$ 所以 $g_1=G-e_2$ 不连通,故 $g_1=G-e_2$ 所以 $g_1=G-e_2$ 不连通,故 $g_1=G-e_2$ 所以 $g_1=G-e_2$ 不连通,故 $g_1=G-e_2$ 所以 $g_1=G-e_2$ 不连通,故 $g_1=G-e_2$ 所以 $g_1=G-e_2$ 可能情况,故综合上述,结论成立。

(注,值得注意,在证明过程中仅用到 $\Delta \leq 3$ 这条件,从而对于 $\Delta \leq 3$ 的单图成立x = x'。)

3.1.7 证明,若l, m, n是满足 $0 < l \le m \le n$ 的整数,则存在一个单图满足 $\kappa = f$, $\kappa' = m$, $\delta = n$. (G.Chartrand 和F.Harary)

3.1.7 图

证,我们用构造的方法来证明。如图中的两个圈表示两个 K_{n+1} 。在一个 K_{n+1} 上取出I个点,另一个 K_{n+1} 上取出I0个点,并在其间连以I0条边,使得左边I1个点,每点至少加一边,右边的I1个点,每点恰好加一边。所得之图,满足题目要求。

3.2 块

定义,一个无割点之连通图称为块。

定义,图G的一个子图 G_1 ,它是块,且G 中不存在包含 G_1 的更大的块,则称 G_1 是G的块。

定理3.2 ν ≥3的图G是2-连通的充要条件是G的任意两个个顶点都最少由两条内部不相交的路所连通 $\mathcal{A}(U,V)$ 为有

系3.2.1 若G是2-连通的,则G的任意两个顶点都在某个圈上。

3.2.1 证明,图G为2-边连通的充要条件是任 意 两 点都最少由两条边不相交的路所连通。

证, \leftarrow . 若G中任意两点都最少由两条边不相交的路 所连通,显然对任意 $e \in E(G)$,G-e是连通的,故 G 为2-边连通。

⇒,若G为2-边连通,则G无割边。将G分解成块,于是,G中每一顶点至少属于一个块。这些块的顶点数不少于3,且块与块之间以G中的割点相互连接。今对G中任意两顶

3.2.2 举例来证明,若P是一条2-连通图中的(u, v)一路,则G未必包含另一条与P内部不相交的(u, v)-路Q。

解:如下页图示它是2-连通图。P路为 $u \times y v$,则图中无与P内部不交的(u, v)-路了。

3.2.3 证明、若G不含偶圈,则G的块或是 K_2 或是奇圈。

3,2,2

3.2.3

3.2.4 证明,一个不是块的连通圈 G,至少存 在 两 个 块,它们仅包含G的一个割点。

证,当G仅有一个割点时,结论显然。当G的割点个数 \geq 2时,考虑G中以割点为两端点的最长路P。若B是 G中含 P的端点但不含P的边的块,则 B一定是仅含一个割点的块,否则就和P是最长路矛盾。由于P有两个端点,故G中至少存在两个仅含一个割点的块。

3.2.5 若b(v)表示G中含v的块的块数。证明。G的块数等于 $\omega + \sum_{v \in V(v)} (b(v) - 1)$ 。

证,先考虑G是连通的情况,对G中的割点数n用归纳法。由于对G的非割点v,b(v)=1,即b(v)-1=0,故对n=0 时,G的块数为 $1+\sum_{v\in V}(b(v)-1)$,命题成立,假设当 $n\leq k$ $(k\geq 0)$

时命题成立。对n=k+1的情况,任取G的一个割点a,可将G分解为连通子图G,使得a在G,中不是割点,a又是G,的唯一公共点。这样,每一G。,有且只有一个块含有a,若这些G。共有r个,则 b(a)=r,又显然 G。的块亦是 G 的块,且 G,的割点数 l。 $\leq k$ 。故由归纳法假设 G。的块的块数为

1 + $\sum_{v=v(a_1)}^{\infty} (b_1(v)-1)(i=1, 2, \dots, r)$, 这里 $b_i(v)$ 是 G_i 中

含v的块的块数,注意到 G_i 中异于a的v, $b(v)=b_i(v)$, 而a在每一个 G_i 中均为非割点,故 $b_i(a)=1$ (i=1, 2, …, r).

于是
$$G_i$$
的块数为 1+ $\sum_{v \in V(G_i)} (b(v)-1), (i=1, 2, \dots, r).$

将它们全 部 加 起 来 即 得 G 的块数为

$$r + \sum_{i=1}^{r} \sum_{v \in V(G) \atop v = G} (b(v) - 1) = 1 + \sum_{v \in V(G)} (b(v) - 1).$$

故由归纳法知,当连通时命题成立。当G有 α 个分支时,我们逐个对它的分支应用上述结果,然后相加,于是G的块数为 α + $\sum_{v \in V(v)} (b(v)-1)$ 。故命题成立。

3.2.6 设G是一个2-连疆图,X,Y是V中不相交子集,且每个至少包含两个顶点。证明G含不相交路P和Q,使得,(i)P,Q的起点均属于X,(ii)P,Q的终点均属于Y;(iii)P,Q的内点均不属于XUY。

证,由G加上一点x,仅和X中一切点相连,再加上一点y,仅和Y中一切点相连,所得之图记为G*。由假设 $|X| \ge 2$, $|Y| \ge 2$,故易直接验证G*仍为2-连通图。对x、y在G*中应用定理3-2,我们得到两条起点为x、终点为y、内部不相交的路P*,Q*。由x出发沿P*走向y的过程中,P*中最后一个属于X的顶点记为 x_1 ,然后再由 x_1 继续沿P*前进,到达第一个属于Y的顶点记为 y_1 ,令P*中一段 (x_1, y_1) -路记为P.

类似地在 Q^* 中可以找到一条 (x_2, y_2) -路Q, 其中 $x_2 \in X$, $y_2 \in Y$ 。由 P^* , Q^* 的内部不相交,推知P, Q 不相交。故P, Q 路即为所求。

- 3.2.7 一个非空图G,满足对任意的边e, $\kappa(G-e)$ < $\kappa(G)$ 时,称G 是 κ -临界的。
- (a)证明,每个×临界的2-连通图恒有一个度为2的顶点[注]。
- (R. Halin 1969年证明了一般的结果。每个k-临界 k-连通图恒有一个度为k的顶点。)
- (b)证明: 若G是一个K-临界2-连通图,且v≥4,则 e≤ 2v-4.

[注] 本题中的2-连通定义是指 $\ell(G)=2$ 。

- 证: (a) 对 e 用归纳法·当 e = 3时,G 只能是3-圈 C_{\bullet} ,它有2度顶点,命题成立。归纳设e = m 时,命题成立。对于 e = m 十 1 的情况,任取一边 e_1 = v_1v_2 ,首先我们证明 $G \cdot e_1$ 仍是块。事实上,若 $G \cdot e_1$ 含有割点 v_{\bullet} ,则 v_{\bullet} 只能是 e_1 收缩后所成之顶点,于是 $\{v_1,v_2\}$ 是 G 的 2-顶点割集。若 u , v 分属于 $G \cdot e_1$ 的不同块中,则由定理3.2,在G 中存在两条内部不交的 $\{u,v\}$ 一路,分别经过 v_1 和 v_2 ,又由定理3.2,G e_1 仍然是2-连通的,这和G 是x 临界的,矛盾!下分两种情况证明,
- (1) 若 $G \cdot e_1$ 是临界块。由 $e(G \cdot e_1) = m$,根据归纳假设。 $G \cdot e_1$ 具有一个度为2的顶点 v_0 ,若 v_0 不是 e_1 收缩后之顶点,显然它在G中的度仍为 2;若 v_0 是 e_1 收缩后所成之顶点,则 v_1 , v_2 在G中只能是度为2的顶点。故此时命题成立。
- (2) 若 G·e₁ 不 是临界块。存在 e₂∈ E(G·e₁) 使 得
 (G·e₁)-e₂仍是一个块。另一方面由G的*-临界性知,G-e₂

是 1-连通的,存在割点。但($G-e_2$)· $e_1 = (G\cdot e_1)-e_2$,是块。有割点的图 $G-e_2$ 收缩边 e_1 后没有割点了,这被收缩的边 e_1 只能是 $G-e_2$ 的悬挂边。设 e_1 的端点 v_1 在 $G-e_2$ 中 度为1,由于G是2-连通的,故 e_2 在G中必需和 v_1 相关联。于是有 $d_a(v_1)=2$ 。故这情况下,命题也成立。

(b) 对v进行归纳法,对v=4,G只能是 C_1 , $e(C_1)$ =4,满足e=2v-4,命题成立。假如 $v \le k$ 时, $e \le 2v-4$ 成立。现考虑v=k+1的情况,由(a)知G中存在一个顶点 v_0 , $d_a(v_0)=2$,和 v_0 关联的两边记为 e_1 , e_2 ,若 $G \cdot e_1$ 是临界块,则由归纳法假设 $e(G \cdot e_1) \le 2(v-1)-4$,故 $e(G)=e(G \cdot e_1)+1 \le 2v-5 < 2v-4$ 。若 $G \cdot e_1$ 不是临界块,显然有 $e_3 \in E(G \cdot e_1)$,($G \cdot e_1$)— e_3 是块,若 $e_3 \mapsto e_2$,则由($G \cdot e_1$)— e_3 是块,这和G是临界的假设矛盾,故 $e_3=e_2$,即($G \cdot e_1$)— e_2 是块。若($G \cdot e_1$)— e_2 不临界,则存在 $e_1 \in E$ 。 {($G \cdot e_1$)— e_2 }— $e_4 = (G - v_0)$ — e_4 是块由此推之 $G - e_4$ 亦是块,这又和G是临界的假设矛盾。故($G \cdot e_1$)— e_2 是临界块。按归纳法假设, $e((G \cdot e_1)-e_2) \le 2(v-1)-4$ 。所以 $e(G)=e((G \cdot e_1)-e_2)+2 \le 2v-4$ 。

3.2.8 给出一个求图的块的好算法。

解,求图G的任一生成森林F,且对每一边e&F,求F十e中的唯一圈,设这些圈 C₁, C₂, ..., C₁₊, ... 都已求得,(这些都有好算法)。在此基础上,我们注意到,两个圈(或一个圈与一个块)若有多于1个公共点,则它们属于同一块。此外,由定理2.3知,G的任一割边不含于任何圈中,且它们都是 G的块。基于这些道理,可得如下求图 G的块的 好算法。

- 1. $\diamondsuit s=1$, t=1, $p=e-r+\omega$.
- 2. 岩 p>0, 输入 C₁, C₂, ···, C_p; 否则, 转 第 4 步。
- 3. 若|V(C_s)∩V(C_{s+s})|>1, 令C_s←C_s∪C_{s+s},且 对 i=s+t, …, p-1, 令C_s←C_{s+1}; p←p-1,转第4步; 否则, t←t+1, 转第5步。
- 4. 若s < p, 令t = 1, 转第3步, 否则,停(这时 C_1 ,…, C_p) 中的每一边都是G的块)。
 - 5. 若s+t≤p转第3步; 否则, s←s+1, 转第4步。

本算法除了求圈 C_1 , …, C_{s-r+o} 有好算法外, 计 算 量主要在第3步, 比较 C_s 与 C_{s+r} 的顶点寻找它们的公共点的运算中, 这些运算不超出 $v^2(e-v+\omega)$ 次, 故是好算法。

- 3.2.9 ν ≥3的无环图G,且 δ ≥1,则下面陈述是 等 价的。
 - (1) G是块,即G是2~连通图;
- (2) G的任意两个顶点在某个圈上,即 G 的任意两个顶点至少有两条内部不相交的路连通;
 - (3) G的任一个顶点和任一条边在某个圈上:
 - (4) G的任意两边在某个圈上:
- (5) G的任意两个顶点u, v及任一边e, 总存在连接u, v 且过 e 的路:
- (6) G的任意三个顶点,总存在连接其中任意两个顶点、 并且通过第三个顶点的路;
- (7) G的任意三个顶点,总存在连接其中任意两个顶点、 并且不过第三顶点的路。

证, (1)⇒(2), 即定理3.2;

- $(2) \Longrightarrow (3)$,令 \mathbf{s} 是任一顶点, \mathbf{v} w是任一边,由(2),存在包含 \mathbf{s} , \mathbf{v} 的圈C。若 $\mathbf{w} \in C$,则C中含 \mathbf{s} 的 (\mathbf{v},\mathbf{w}) -段十 \mathbf{v} 物 校 成圈C',即为所求;若 $\mathbf{w} \in C$,由(2)知, \mathbf{v} 不是G的割点。故 存在不过 \mathbf{v} 点的 (\mathbf{u},\mathbf{w}) -路P,设 \mathbf{v} 是由 \mathbf{w} 出发、沿P前进、与 C相交的第一个顶点,则C中含 \mathbf{s} 的 (\mathbf{v},\mathbf{x}) -段十P中的 (\mathbf{v},\mathbf{x}) -段十P中的 (\mathbf{v},\mathbf{x}) -段十P中的 (\mathbf{v},\mathbf{x}) -段十P中的 (\mathbf{v},\mathbf{x}) -段十P0
 - (3) ⇒ (4), 类似(2) ⇒ (3)的证明;
- $(4) \Longrightarrow (5)$,易见 $(4) \Longrightarrow (3)$,令u,v是任意两个 顶点,e是任意一条边,由(3)存在 C_1 , C_2 分别包含u、e及v、e、若 $u \in C_2$ 或 $v \in C_1$,则(5)已成立。否则从u 出发,沿 C_1 前进,到达 C_1 与 C_2 的第一个交点,然后沿 C_2 含e的部分 到达u,即为所求之路;
- (5) ⇒ (6), 设4, v是任意两个顶点, w是任意第三个顶点, e是w的关联边, 由(5)存在过e的(4, v)-路, 显然此路必过w,
- (6) ⇒ (7), 设u,v,w是任意三个顶点,由(6)存在过v的(s,w)-路P,则P中(s,v)-段、即为过s,v而不过w的路;
- $(7) \Longrightarrow (1)$,对G中任意两顶点a,v及任意第三顶点a,由(7)知,在G-w中存在(a,v)-路,即G-w连通,从而G是2-连通的。

(本题刻划了2-连通图的特征,对3-连通和4-连通图,W、T. Tutte 在 Indag. Math. Soc. 13 (1963)和P. J. Slater 在J. Combin, Theory 1(1966) 上分别给出它们的构造特征。对n-连通图的特征,除原书上已指出的Me-nger定理外, L. Lova'sz 在Acta Math. Acad. Sei.

Hungar. 30(1977)和 E. Győri在Combinatorics(1978) 得到刻划n-连通图的非常精致的定理如下:

"G是 n-连通的,当且仅当在 V(G) 中任取n个不同的顶点 $v_*(i=1, 2, \cdots, n)$ 及v(G) 的任意正整数划分 $m_*(i=1, 2, \cdots, n)$,存在V(G)的一个划分 $V_*(i=1,2,\cdots, n)$ 使得对于每个 $i \in \{1, 2, \cdots, n\}, v_* \in V_*, |V_*,|=m_*, \text{且}G[V_*]$ 是连通的。")。

3.3 可靠通讯网络的构造

若用图表示网络,图的连通度可解释为,网络中某些通讯站受破坏就会破坏整个网络系统的通讯业务的最少站数。故可靠通讯网络的最经济构造的数学模型可抽象为。对给定的正整数点,在赋权图上确定一个最小权的 一连通的生成子图。这种问题的一般情况尚未解决。

对于n个顶点上每边赋权为1的完鉴图,求尽可能少的边的m-连通图,已为 F·Harary 所解决,得到了n个顶点上具有最少边数f(m, n)的m-连通图 H_m , n的构造法,并证明了 $f(m, n) = \{mn/2\}$.

H.,, 的构造法如下。

- 当m是偶数时, H₂,,,有顶点 0,1,...,n-1; 两顶点 i 和j连以边,当且仅当i→r≤j≤i+r(这里取模n加法)。
- 2. 当m是奇数,n是偶数时, H_{2r+1} ,,构作如下:先作 H_{2r} ,,然后添加边,这些边把顶点;与顶点;十(n/2) 和连 $(1 \le i \le n/2)$.
 - 3. 当m, n均为奇数时, H2++1, n 构作如下: 先作

 $H_{2r,n}$,然后添加边,这些边把顶点 0 连到顶点 (n-1)/2 和 (n+1)/2,并把顶点 i 连到顶点 i+(n+1)/2 $(1 \le i \le (n-1)/2)$.

3.3.1 证明 H_{2r+1} , n是(2r+1)-连通的。

证: 只要证明 H_{2r+1} , n 不存在少于 2r+1个顶点 的 顶点割集。设V'是一个 |V'| < 2r+1的任一顶点子集。分两种情形:

- (1) 当[V'] <2r时,正如原书上已证V'不是 H34,,,的顶点割集,自然也不是在H2+,,上加些边的H2++1,。的顶点割集。
- (2) 当 |V| = 2r; 设V' 是 H_{2r+1} , 的顶点割集。i, j属。于 H_{2r+1} , -V'的不同分支。考察顶点集合

和 $S = \{i, i+1, \dots, j-1, j\}$ (这里加法取模n) $T = \{j, j+1, \dots, i-1, i\}$

①若冬或了中,有一个含V'的点少于个,则在(Par+1, m)中存在(1, 1)一路,矛盾1

- ② 者S与T中都有V'的r个顶点。
- 1. 君S或T中,有一个(比如S中)V的r个顶点不是相继连成段,则S V中存在(i,j)-路,矛盾
- 2. 若S与T中,V'的r个顶点都是相继连成一段的。则S V'被分为两段,含i的记 S_1 ,含i的记 S_2 ,同样,T V'也被分为两段,含i的记 T_1 ,含i的记 T_2 。这样一来,V V'被分为两段, $S_1 \cup T_1$ 含i, $S_2 \cup T_2$ 含i。这两段本身是连通的,且含i 段的中间一点(或最靠近中间的一点)i 。与含i 段

的类似点了。满足:

$$j_0 = \begin{cases} i_0 + \frac{n}{2} & (n \text{ 的偶数}) \\ i_0 + \frac{n+1}{2} & (n \text{ 的奇数}) \end{cases}$$

故有边相连。于是在 $H_{2**1,n}-V'$ 中有路(i,\cdots,i_0,j_0) ---, j), 矛盾! 3.3.2 证明: $\kappa(H_m, n) = \kappa'(H_m, n) = m$.

证,由于 H_m ,是m-连通的,且 $\delta(H_m, \bullet)$ 一种。再根据定 理3.1, 有m≤κ(H_{m,*})≤κ'(H_{m,*})≤m, 得证. 。

3.3.3 作一个具有9个顶点和23条边的图, 使它是5-连 通的,但不同构于原书图3.7(C)中的图 $H_{s,ss}$

解:将 $H_{5,0}$ 中的(0.4)边去掉,改为(1.4)边,即为所 求。它与 H_s ,。如图。

 $H_{5,0}$ 3,3,3

利用练习3.3.1的证明方法,不难证明所作之图是5-连 - 蓮的。

若它与H, 同构,则在同构对应下,必须保持对应点。 的度数及邻接性。于是必有:

1'↔0, {5',7'}→{3,6}, 但5'与7'间有边相连, 而3与 6不相邻。矛盾: 故它与H。, 不同构。

3.3.4 n个顶点m-边连通的图集中,边的最少可能数目记为g(m, n),证明: $g(m, n) = \{mn/2\}$, 对一切m > 1和n > 1成立。

证:由定理3.1,对任何m-边连通图G,有 $m \le \delta(G)$.再由定理1.1, $e(G) = \sum d(v)/2 \ge n\delta/2 \ge mn/2$,因 e是非负整数,故 $e(G) \ge \{mn/2\}$ 。于是有 $g(m,n) \ge \{mn/2\}$ 。

若m < n,则由练习3.3.2, $\kappa'(H_m, n) = m$, $e(H_m, n) = \{mn/2\}$,故n个顶点的m-边连通图中的最小可能的边数 $g(m, n) \le \{mn/2\}$ 。

若 $m \ge n$,则 \exists 非负整数 $k \le r(< n)$ 使得m = k(n-1) + r,作图 $H'_{m,n}$,它是在 $H_{r,n}$ 上的任两顶点间外加 k 重边所成之图。易知 $H'_{m,n}$ 是n 个顶点的 m - 边连通图,且 $s(H'_{m,n}) = \{mn/2\}$,故这时也有 $g(m,n) \le \{mn/2\}$ 。于是, $g(m,n) = \{mn/2\}$ 。

3.3.5 对一切ν≥5, 求一个直径为2, 且ε=2ν-5的2-连通图。

(U.S.R. Murty, 1969 年已经证明,每个这样的图,至少有这么多的边)。

解. 如图.

显然此图直径为2, 且ε=2(ν-4)+3=2ν-5, 无割点。故 満足要求。

3,3,5

.

- .

第四章 Euler 游历和

Hamilton 图

4.1 Euler游历

- 定义。G中 Euler 选,是G中的一条取G中所有边的选。闭的 Euler 迹称为G中的 Euler 游历。存在 Euler 游历的图称为Euler 图。
- **定理4.1** 非空连通图是 Euler 图的充要条件 是它不含 **奇数度**的顶点。
- 第4·1 连通图具有 Euler迹的充要条件是 G中最多有两个奇数度顶点。
- 4.1.1 4.1.1图见下页是否可能在笔不离纸而每条线尽过一次的条件下画出来呢?
- 解:由定理 4·1 和系 4·1 易知(1),(3)图 均 可以,而(2)图的奇数度顶点(用 ②表示)为四个,故不可能一笔画出来。
- 4.1.2 如果可能的话,画一个 ν 为偶数, ϵ 为青数的 Euler 图 G,否则说明为何不存在这种图。

证:在 ν -圈 C 上某一顶点加上 ϵ - ν 个环,所成之图,

4.1.1图

即为所求。不过,可以证明,偶数个顶点奇数条边,且又有偶数个顶点的度能被 4 除尽的Euler 图是不存在的。

4.1.3 证明, 若 G 是 Euler 图, 则 G 的每一 映亦是 Euler 图。

证:设B是G的块,任取G中一架Edier游历C,由B的某一点v出发,语C前进。C只有经过G的割点才能离开B,亦只有经过同一割点才能回到B中,注意到这事实后,我们将C中属于B外的一个个闭迹除去,最后回到v时,我们得到的就是B上的一个Euler闭迹,故B亦是Euler图。

4.1.4 证明,若 G 没有奇数度的预点,则G 中存在边不相交的圈 C_1 , C_2 , ... , C_n 使得 $E(G) = E(C_1) \cup E(C_2)$... $\cup E(C_n)$.

证:将 G 中孤立点除去后的图记 G_1 ,则 G_1 也无奇数度点,且 $\delta(G_1) \ge 2$,由练习 1.7.2, G_1 有一个 图 C_1 ,在 图 G_1 - C_1 中去孤立点,得图 G_2 ; 显然 G_2 仍无奇数 度点,且 $\delta(G_2) \ge 2$,再由练习 1.7.2, G_2 中 有 一圈 C_2 ,…,如 此

直至 G_m 中有圈 C_m ,且 G_m $-C_m$ 全为 孤 立 点 为 止。于是 $E(G) = E(C_1) \cup E(C_n) \cup \cdots \cup E(C_m)$ 。

4.1.5 证明、若 G 连通,且有 2k>0 个奇数度顶点,则 G 有 k 条边不相交的 迹 Q_1 , Q_2 , … , Q_n 使得 $E(G)=E(Q_1)\cup E(Q_2)\cup \dots \cup E(Q_n)$.

证,设 v_1 , v_2 , v_3 , v_4 , v_4 , v_4 , v_5 , v_5 , v_6 , v_7 , v_8 , v_9 ,

4.1.6 设 G 是非平凡的 Euler 图,且 $v \in V$ 证明。 G 中起点为 v 的每一条 迹可以延长成 G 的 Euler 游 历的充. 要条件是 G-v 是森林。 (O. Ore)

年。设 Q=(v, w)-迹为一条不能延长成 G 中的 Euler 游历的最长迹,因而 Q 的终点 w 必为 v,且 Q 包含 了和 v 关联的所有的边,Q 是一条闭迹。于是有 $G-v \supseteq G-Q$,且 G-Q 的每个顶点亦为偶数度,从而G-Q的每个分类亦必然

为 Euler 图,即 G-Q 的每一个分支都含圈。这与 G-v是森林这假定相矛盾。故 G 中以 v 为起点的每一条 m 可以延长成 G 中的一条 Euler 游历。

4.2 Hamilton E

定义. G中包含所有顶点的路称为 Hamilton **端**. G中的闭 Hamilton 路称为 Hamilton **端**. 若 G 含有 Hamilton 图称 G 是 Hamilton 图。

定理4.2 G是 Hamilton 图,则对每个非空子集 $S \subset V$,成立 $\omega(G-S) \leq S$,以のこと。) $\leq S$

定继4.3 (G.A.Dirac 1952)若 G 是 ν≥3 的单图, 且 δ≥ν/2,则 G 是 Hamilton 图。

定職4.4 单图 G 是 Hamilton 图的充要 条件 是 G 的闭包 C(G) 是 Hamilton 图。

承4.4 对 ν ≥3 的单图 G, 若 C(G)是完备的,则 G是 Hamilton 图。

定理4.5 单图 G 具有度序列 $(d_1, d_2, \dots, d_r), d_1 \le d_2 \le \dots \le d_r, \nu \ge 3$,假若不存在 $m < \nu/2$,它满足 $d_m \le m$,和 $d_{r-m} < \nu-m$,则 G 是 Hamilton图。

第4.6 若 G 是 $\nu > 3$, $\epsilon > \binom{\nu-1}{2} + 1$ 的单图,则 G 是 Hamilton图,而且, $\epsilon = \binom{\nu-1}{2} + 1$ 的非 Hamilton单图只有 C_1 ,,和 C_2 , 6 。 这里 C_m , $\epsilon = K_m V(K_n^c + K_{n-2m})$.

4.2.1 证明, 若(a) G 不是 2~连通的, 或(b) G 是二·.9 6:

部图,且它的二部划 $\mathcal{G}(X,Y)$ 有 $|X| \succeq |Y|$,则 \mathcal{G} 是 非 \mathcal{H} milton 图。

证: (a)若 G 不是 2-连通的,则 G 不连通或存在 割 点 v ,有 $\omega(G-v) \ge 2$,由定理 $4\cdot 2$ 知 G 是非 Hamilton 图。 (b) 设 G 是 2-部图,其划分为(X,Y),且 |X| < |Y|,则有 $\omega(G-X)=|Y|>|X|$,由定理 $4\cdot 2$ 知 G 是非 Hamilton 图。

4.2.2 一只老鼠吃 3 × 3 × 3 立方体的 乳 酪, 其方法是借助于打洞通过所有的 27 个 1×1×1 子立方体。如果 它在一个角上开始,然后依次走向未吃的立方体,问它吃完时能否拾在立方体的中心?

解:我们构作图 G,其顶点为 1×1×1 的子立方体,当且仅当两子立方体有公共面时,对应的两顶点相连以边。容易看出 G是一个2-部图,其划分为(X,Y)。若角上一子立方体对应的点属于 X,则立方体中心的子立方体对应的点属于 Y。易直接验证[X]=14, [Y]=13。故以 X 中的一顶点为起点, Y 中的顶点为经点的 Hamilton 路不可能存在。否则,起点与终点连一条边是个 Hamilton 图,与练习4.2.1 (b)矛盾:所以老鼠吃完时不可能在立方体的中心。

4.2.3 证明, 若 G 有 Hamilton 路, 则 对 V 的 每一个真子集 S, 有 ω(G-S)≤|S|+1。

证:设 $C \in G$ 中的一条 Hamilton 路、子是有 $\omega(G-S)$ ≤ $\omega(C-S)$ ≤|S|+1.

4.2.4 设 G 最度序列为 (d_1, d_2, \cdots, d_r) 的 非平凡单图,其中 $d_1 \leq d_2 \leq \cdots \leq d_r$ 。证明,若不存在 $m < (\nu+1)$ (p+1) 它满足 $d_m < m$ 和 $d_{\nu-m+1} < \nu-m$,则 G 有 Hamilton路。 (V.Chva'tal)

证,对 G加入一个新顶点 v,它和 G 中每一 顶 点 为相 连、所得之图记为 <math>G',于是 G' 的度序列为 $(d_1+1,d_2+1,\cdots,d_r+1,\nu)$,由巳知条件可知,不存在 $m<(\nu+1)/2$,它满足 $d_m< m$ 和 $d_{\nu-m+1}< \nu-m$,即不存在 $m<(\nu+1)/2$,它满足 $d_{m+1} \le m$ 和 $d_{\nu-m+1}+1< \nu-m+1=(\nu+1)-m$ 。由定理 4.5 知, G' 中含有 H a milton 图 C,显然 G-v 是 G 中的 H a milton 路。

4.2.5 (a)设 G 为度序列(d_1 , d_2 , …, d_n)的单图,并设 G° 有度序列(d'_1 , d'_2 , …, d'_n)其中 $d_1 \leq d_2 \leq \dots \leq d_n$, 证明,若对一 切的 $m \leq \nu/2$, 均有 $d_n \geq d'_n$, 则 G 有 Hamilton 路。

(b) 证明。若 G 是自补的,则 G 有 Hamilton 路。 (C.R.J.Chaphan)

证、(a) 由 G 与 G° 的互补性及度序列的单调性知》若 $d_0(v_i)=d_i$,则 $d_0^a(v_i)=d_{r-i+1}$ 。

若存在 $m < (\nu+1)/2$,满足 $d_m < m$ 和 $d_{\nu-m+1} < \nu-m$ 。由假定 知,有 $d'_m < d_m < m-1$,且有 $d_{\nu-m+1} < \nu-m-1$ 。于是 $\nu-1=d_0(\nu_{\nu-m+1})+d_0(\nu_{\nu-m+1})+d_0(\nu_{\nu-m+1})+d_0(\nu_{\nu-m+1})$,不存在这样的 m。由 等 $3\cdot 4\cdot 2\cdot 4$ 知, G 有 Hamilton 路。

一(b) 因为 $G\cong G^{\circ}$, 则 有 $d_i=d_i(i=1,\dots,\nu)$, 形从 而 (a)的条件满足,所以 G 有 Hamilton 路。

4.2.6 设 G 是一个 2 部東图,其划分为(X),且 $|X| = |Y| \ge 2$ 。若G 具有度序列(d_1, d_2, \cdots, d_n)。满足 $d_1 \le d_n \le m$ 。在 $d_1 \le m \le d_n$,证明。若 不 存 在 $m \le \nu/4$,满 足 $d_m \le m$,和 $d_{\nu/2} \le \nu/2 - m$,则 G 是 Hamilton 图。

证,在G中加入新的边构作-新图G'、使G''(X) 是完全图。为了叙述方便,设在G中Y的 顶 点 度 序 列为 $(d(u_1), d(u_2), \cdots, d(u_{7/2})), \exists d(u_1) \leq d(u_2) \leq \cdots \leq$ $d(v_{1/2})$, X中的顶点的度序列为 $(d(v_1),d(v_2),\cdots,d(v_{1/2}))$, 且 $d(v_1) \leq d(v_2) \leq \cdots \leq d(v_{1/2})$ 。它们合并起来的度序列是 (d_1, d_2, \cdots, d_r) ,于是对于 G'的度序列显然是如下情况 i_1 。 $(d(u_1), d(u_2), \dots, d(u_{r/2}), d(v_1)+v/2-1, d(v_2)+$ $v/2-1, \dots, d(v_{r/2})+v/2-1)=(d'_1, d'_2, \dots, d'_{r/2}, d'_{r/2+1},$ …, d,), 下面分两种情况来讨论。(1) 若存在 m≤v/4, 有 $d'_{m}=d(u_{m}) \leq m, d'_{r-m} < v-m, \emptyset) \neq d_{m} \leq m \leq v/2-m, d'_{r-m}=$ $d(v_{r/2-m})+v/2-1 < v-m$,即 $d(v_{r/2-m}) \le v/2-m$ 。由于 m+(v/2-m)=v/2, 知非降序列 (d_1, \dots, d_r) 中至少有v/2个d,≤v/2-m, 于是对应在G中有d,,2≤v/2-m, 这 与假定相矛盾。(2) 若存在 2/4<m<2/2, 有d=d(um)≤ m, $d' r_{-m} < v - m$, 令 b = v/2 - m < v/4, 则 $d(u_m) \le m$ 变 成 d(n-/2-1)≤v/2-k,d', m < v-m 变成 d(v;/2-1) =d(n1)≤ v/2-m=k < v/2-k,由于k+(v/2-k)=v/2,于是对应在 G 中有 $d_{1/2} \leq v/2 - k$,但这又与假定不存在这种性质的 k相 矛眉。综合(1)、(2)知, 不存在 m<v/2, 同聊成立 dы≤m, $d_{*-m} < \nu - m$ 。故由定理 4.5 知,G' 是 Hamilton 图。设 C是 G' 中的 Hamilton 圈,C 中一定不含G'(X) 中的边。这 是因为假如含G'(X)的边。时,则挖。吹编 撑,并 把 e 的 两端点合并成一个新顶点,这过程一直进行到 不 含 G'(X)的边为止。最后 C 变成 C^* , G' 变 成G'', 显然 G'', 仍。是12-部图,且划分的两部顶点的个数不相等,C*是G"上的Hamilton 圈。但由练习 4.2.1(b) 知矛盾:所以 $C \subseteq G$ 中,即

G是 Hamilton 图。

4.2.7 用系 4.4 证明系 4.6.

证: (a) 先证系 4.6 的前半部分。若G 是非 Hamilton图,由系 4.4 知, C(G)不是完全图。在 G中存在 u_1 , u_2 使得, $d(u_1)+d(u_2) \leq \nu-1$ 且 u_1u_2 年E(G)。令 $V'=V\setminus\{u_1,u_2\}$,故有;

$$e(G) = \frac{1}{2} (d(u_1) + d(u_2) + \sum_{v \in v'} d(v))$$

$$\leq \frac{1}{2} ((v-1) + (v-2)(v-3) + (v-1))$$

$$= {\binom{v-1}{2}} + 1$$

与条件矛盾! 所以, G是 Hamilton 图。

(b) 证票 4.6 的后半部,设G是 >>3, (2-1) + 1条 边的非Hamilton图,由s(G)>(2)及练习1.6.5 知,G 连通,故 6≥1. 其次有。C(G)=G,否则 s(C(G))> (2-1)+1,由(6)知,C(G)是 Hamilton图,从而G是Hamilton图,矛盾!

设 $d_{\sigma}(v_{\bullet}) = \delta$ 考察 $G - v_{\bullet}$ 有, $\varepsilon(G - v_{\bullet}) = {v-1 \choose 2} - (\delta - 1)$,故 $G - v_{\bullet}$ 是 $K_{\bullet - 1}$ 去掉 $\delta - 1$ 条边后的图。下面分三种情况讨论。

(1) 当 β>2。有 ν>3; G→υ, 中至多一个頂点 的度为 (ν-2)-(δ-1)=ν-β-1,其余ν-2个頂点的度均不小子・100・

 $\nu-\delta$ 。由于 C(G)=G,这 $\nu-2$ 个顶点在 G 中应和 υ_δ 相连,故 $\nu-2 \le \delta$,于是对 G 中任意两点 u, v,有 d(u) 十 $d(v) \ge 2\delta \ge 2(\nu-2) \ge \nu$,从而 C(G)=K,由系 4.4这与 G 是非 Hanilton 图矛盾! 故不存在满足系 4.6 中条 件 且 $\delta > 2$ 的 非 Hamilton 图。

- (2) 当 $\delta=2$. $G-v_s$ 是 K_{s-1} 中去 掉 1 条 边的 图。这时, $G-v_s$ 有 2 个顶点,其度为 v-3。有 v-3 个顶点,其度为 v-3 个顶点在 G 中应和 v_s 相连,故 $v-3 < \delta=2$,即 v < 5。于是由上面所得的性质,直接构作 G, 易知,当 v=3,4 时,有 $\delta(G)=1$ 而矛 盾。故仅能 v=5,此时 $G=C_{s+s}$ 。
 - (3) $\delta=1$ 时, G-v, 是 K_{*-1} , 故 $G=C_{1,*}$,

4-2-8 证明: 岩 G是单图,且ν≥6θ, ε>(^{ν-δ}₂)+δ^ν
则 G 是 Hamilton 图。

(P.EYdos)

整,若 G 是一个非 Hamilton单数, $v \geqslant 3$,由定理 4.6 存在 $C_{m,n}$, G 的度序列被 $C_{m,n}$ 度序列所控制。这里 n 满足 $\delta \leqslant m \leqslant \frac{v}{2}$ 。因此由定理 $1.1.s(G) \leqslant e(C_{m,n}) = \frac{1}{2}(m^2 + (v + 1))$

$$-2m)(v-m-1)+m(v-1))=\binom{v-\delta}{2}+\delta^2-\frac{1}{2}(m-\delta)(2v-\delta)$$

$$-3m-3\delta-1$$
)。当 $6\delta \leqslant v$, $\delta \leqslant m < \frac{v}{2}$ 时, $2v-3m-3\delta-1$

1>0, 故我们有
$$e(G) \leq {\binom{v-\delta}{2}} + \delta^2$$
, 这 和 $e(G) > {\binom{v-\delta}{2}}$

 $+\delta^2$ 的假定相矛盾。故 G 是 Hamilton 图。

4.2.9 若 G 是连通单图,且 $v > 2\delta$,则 G 中有一条长度至少为 2δ 的路。 (G.A.Dirac)

(G.A.Dirac 1952 年还证明了,假如G是一个2-连通单图,且 $\nu \ge 2\delta$,则G中有一个长度至少为 2δ 的图。)

证: 设 P(u,v)是 G 中最长的路,其长度为 $l < 2\delta$,路 P(u,v) 中的顶点依次为 $v_1(=u)$, v_2 , …, $v_{l+1}(=v)$,故 和 u, v 相邻的顶点均在路上。由于 G 是 单图,从而 若 令 $S = \{v_t | uv_{t+1} \in E\}$, $T = \{v_t | uv_t \in E\}$,则 $|S| = d(u) > \delta$, d 是

4.2.10 利用练习 4.2.2 的原书附注,证明每个 4k+1 个顶点的2k-正则单图(k≥1)是 Hamilton 图。

(C.St.J.A.Nash-Williams)

值,设 $v \in V$,若 G-v 不连通,由于G-v 共 4k 个 顶点,故不失一般性设 G-v 的一个分支 G_1 有 $v(G_1) \leq 2k$,

102 •

 $v(\delta) \leq 2k+1$,其中 G_1 是 $G(V(G_1) \cup \{v\})$ 。由 G 是 2k- 正则 单图,故 G_1 仅能是 K_{2k+1} 。特别 v 在 G_1 中的度亦为 2k,故 v 和 G-v 中 G_1 以外的分支 G_2 等均不相连,且 $v(G_2) \leq 2k$,所以 G_2 中的顶点的度 均 不 大 于 2k-1,但 这 和 G 是 2k- 正则 的 矛 盾,故 G 是 2- 连通 的。根据练习 $4\cdot 2\cdot 9$ 中的原书附注知,G 中存在一个长度至少为 4k 的圈,假 如 G 中不含 4k+1 长 的圈,设 v_0 年 G 一 G 一 G 是 G 一 G 是 G 一 G 是 G 一 G 是 G 一 G 是 G

- **4.2.11** 若 G 中任意两点均存在→ 条 Hamilton 路相连,则称 G 是 Hamilton 连通的。
- (a) 证明. 若 G 是 Hamilton 连通的, 且 v≥4, 则e≥ ((3v+1)/2)。
- (b) 对 v≥4, 构造一个 Hamilton 连通图 G, 且 满足 e=[(3v+1)/2]。 (J.W.Moon)
- **证**. (a) 若有 $v_0 \in V(G)$, 使 $d(v_0) = 2$. 设 v_0 的两邻。点为 v_1 , v_2 , 因 $v \ge 4$, 则在 G 中不存在以 v_1 , v_2 为 端点的一条 Hamilton 路,这是和假设矛 盾 的。故 $\delta(G) \ge 3$ 。由定理 1·1, $\epsilon \ge \{3v/2\}$,故 $\epsilon \ge \lceil (3v+1)/2 \rceil$.
 - (b) 对 v=偶数时 对 v=奇数时

4,2,11 (b) 图

本例说明(a)之不等式不能改进。

4.2.12 若 G 不是 Hamilton 图,但对 G 中任意顶点 v∈V(G), G-v 均是Hamilton 图,则 称 G 是亚 Hami-1ton 图。证明,Petersen 图是亚 Hamilton 图。

(J.C.Herz, J.J.Duby 和 F. Vigue 1967 年 证 明了 Petersen 图是最小的亚 Hamilton 图。)

证,4.2.12 图的四张图均是Petersen 图,其顶点间的对应关系已在图上标明,从(1)、(2)、(3)图中可知 Petersen 图中各边和各顶点间之地位是完全对称的。再由 Petersen 图是 3-正则的,从而标定 一个 Hamilton 圈 C 相当于和顶点相关联的三条边中标定一条不在 Hamilton 圈 C 上的边,故不失一般性,假定边(1,2)&C,于是(1,5),(1,6),(2,3),(2,7)&C。下面分两种情况讨论。a),(8,10)&C,则(5,10),(7,10),(3,8),(6,8)&C,可是这样一来这些边已构成 15(10)723861 圈。b),(8,10)&C,则(5,10)和(7,10)中有一边不属于 C,由(4)图 不失一般性,假定(7,10)&C,于是(5,10)、(7,9)&C,(4,5)&C。从面又有(3,4),(4,9)&C,可是这样一来这些边中已包含了 234972 圈,故 Petersen 图不是 Hamilton 图。

对任意v∈V(由顶点的对称性,在(4)图中,不妨设v=10),显然 G-v是 Hamilton 图,故 Petersen 图是亚 Hamilton 图。

4.2.12 图

4.2.13 G 中没有 Hamilton 路,但对任意的 v∈V(G), G-v存在 Hamilton 路,则称G是**亚可能的**。 证明Thomassen 图是亚可迹的。

证:为了叙述方便,如图,我们用两条中心线将 Tho-massen 图分成 I、II、II、YI部分,这四部分是对称的,

Thomassen 图

故不失一般性,若 Thomassen 图具有 Hamilton 路 P,其端点为 a, β , 可假定 $a \in I \cup \{a\}$,由练习4.2.12,Petersen 图不存在 Hamilton 圈,从而我们有如下性质。

(A) I $\bigcup \{a\}$ 中不存在以 $\{a,c,d\}$ 中任两点作为端点的 Hamilton 路。

由(A)并注意到 I、Ⅱ之间仅两边相连,于是有

(B) I∪ II ∪ {a,b} 不存在以 a 为 端 点 的 Hamilton 路。

又 Thomassen 图是2-连通图, $\{a,b\}$ 是其割集,且 a,b 在图中的地位是对称的。于是当 $\beta \in I \cup II \cup \{a,b\}$ 时,P 的存在相当于在 $II \cup IV \cup \{a,b\}$ 中 存在以 a 或 b 为 端 点的 Hamilton 路;当 $\beta \in II \cup IV$ 时,由 a 出发,沿 P 前 进 在经过 a 或 b 进入 $II \cup IV$ 前,必须经过 II 的所有顶点,否则 II 中未经过之顶点,由于 $\{a,b\}$ 是割集,再没有机会落在P 中,于是 P的存在相当于在 $II \cup \{b\}$ 中存在以 $\{b,e,f\}$ 中的

某两顶点为端点的 Hamilton 路。或相当于 $\Pi \cup V \cup \{a,b\}$ 中存在以 a 或 b 为端点的 Hamilton 路。这 些 都 和(A)、(B)相矛盾。故 Thomassen 图不存在 Hamilton 路。

至于 Thomassen 图 G 中任一点 $v \in V(G)$, G-v 恒存在 H mailton 路的结论,由图在 I 、 II 、 II 、 II 、 IV 中的 对称性,我们仅需取 b 和 III 中的顶点作为 v 来穷举,并在图上以箭头具体标明它的 H a milton 路来证明。见 $4\cdot 2\cdot 13$ 图 II

图中带虚线圈的顶点表示 Hamilton 路的端点,用带叉的边表示和除去的顶点 n 相关联的边。其中(3)—(9)图,它们的 I、II 部分均和(2)同,在图中不再画出来。

故 Thomassen 图是亚可迹的。

- $4\cdot 2\cdot 14$ (a)证明 $4\cdot 2\cdot 14$ 图见109页中 G_1 , 不存在仅含 e_1 或 e_2 一条边的Hamilton图。
- (b) 利用(c), 证明图 G_2 的每 \wedge Hamilton 圈包含 ∂e .
 - (c) 导出 Horton 图是一个非 Hamilton 图。

证。(a) 设 G_1 中存在仅含 e_1 ,不含 e_2 的 H-圈(将Ha-milton 圈简写为 H-圈)。由于边 集 E_1 ={ e_1 , e_2 , e_3 , e_4 , e_4 }将 G_1 分成两部分,因此这样的 H-圈一定 含 E_1' =

4.2.14 题图

 $E_1 \setminus \{e_2\}$ 中的偶数条边。

- (1) 若 G_1 中有 H-圈 仅 含 E_1 中 的 e_1 , e_3 , 它 也 是 G_1 -{ e_2 , e_4 , e_5 , e_6 } 的 H-圈, 故它含边(5, 6), (7, 6), 不含边(6, 1), 从而含边(1, 2), 不含边(2, 3), 但这样一来, G_1 -{ e_2 , e_4 , e_5 , e_6 , (6, 1), (2, 3)}不 连通, 矛盾! 由对称性知, 若 G_1 中 有 仅 含 e_1 , e_4 的 H-圈, 同样矛盾!
- (2) 若 G₁ 中有 H-圈 仅含 E'₁ 中的 e₁, e₆, 它也是 G₁-{e₂, e₃, e₄, e₆} 的 H-圈, 故必含(9, 14), (13, 14), (15,14), 但这样一来顶点 14 在 H-圈中的度为 3, 矛盾! 由对称性, G₁ 中若有仅含 e₁, e₅的 H-圈。同样矛盾!
- (3) 若 G₁ 中有 H-圈 仅 含 E'₁ 中的 e₁, e₂, e₄, e₆, 它也是 G₁-{e₂, e₄} 的 H-圈, 故它含边(9, 10)。(9, 14), (12, 11), (12, 13), 不含(10, 11), (13, 14), 从而含边 (11, 16), (14, 15)。若又含边(1, 2), 这 时(16)1 2(13)

- (12)(11)(16) 是一圈,且其中边全在 H-圈中,矛盾! 若不含边(1,2),必含(1,6),这时,又必含(4,5),于是 4 5(10)9(14)(15) 4,又是边全在 H-圈中的圈,矛盾! 由对称性,若 G_1 中有 H-圈 仅 含 e_1 , e_2 , e_4 , e_5 , 有 类 似 矛盾!
- (4) 若 G₁ 中有 H-圈 仅 含 E'₁ 中的 e₁, e₈, e₆, e₆, 它也是 G-{e₂, e₄} 的 H-圈, 故 它必 含 (9, 10), (15, 16), 不含 (11, 16), (10, 11), 但这时点11 在 H-圈中度为 1, 矛盾!由对称性,若有仅含 e₁, e₄, e₅, e₆的 H-圈,等出同样矛盾!

综上所述, G_1 中不存在仅含 e_1 , 不含 e_2 的 H-圈, 同理不存在仅含 e_2 , 不含 e_1 的 H-圈。故 (a) 的结 论 成 立。

- (b) 为了叙述方便,将连接 G2~e 左右两部分之间的边标以 e1, e2, e3。今假如 G2 中 e 边已除去后,仍存在 H-圈 C的话,注意到 G2 是2~部图,黑点和白点是 G2 顶点的二部划分。显然 e1 边一定属于 C, 不然 G2 的右 边部分的图中存在一条两端点都是白点的 Hamilton 路,在 二部顶点数相同的2-部图中,这是不可能的。其次,e2也一定属于 C, 不然我们将 e1, e3 连同 G2 的左边部 分在 C中的一段路看成 G1 中的一条边"e1",于是我们得到 G1 的一条含有e1 边而不含 e2 边的 H-圈,这与 (a) 矛盾。同理 e3 也一定属于 C, 即 C 中必需包含 e1, e2, e3 三边。但由于 {e1, e2, e3}是 G2~e 的边割集, C 不可能同时包含 e1, e2, e2, 矛盾,故 G2 若有 H-圈,它一定包含 e 边。
- (c) 为了叙述方便,将下面的 Horton 图中的三个顶点 标以 a, b, c, 若图存在 H-圈 C, 则 C 中 只能包含过 a 点

Horton 图

之二边,由对称性,不失一般性可假定和 a 关联的打"×"的边不在 C 上,现将 C 中不在右上角(虚线内)的图 内的那段路收缩成一点,此时 b 和 c 点当然亦就合并成一个顶点,最后所得的圈记为 C', 显然 C' 就成了 G_2 —e 的一条 H—圈,但由 (b) 知,它不可能存在,故推之 C 亦不可能存在,所以Horton 图是非 Hamilton 图

(Horton 图否定了 W.T.Tutte 的 猜测。每 一个 3-正则 3-连通2-部图是 Hamilton 图。)

- 4.2.15 写出一个下圈问题的好算法。
- (a) 构造图的闭包:
- (b) 若图 G 的闭包是完全图,求 G 的 Hamilton 圈。解,(a) 求图 G 的闭包 C(G) 的算法步骤可如下,第 0 步,令 $G_0=G$,h=0;

第 1 步: 在 G, 中求顶点 u₀, v₀ 满足:

 $d_{G_k}(u_0) + d_{G_k}(v_0) = \max\{d_{G_k}(u) + d_{G_k}(v) \mid uv \in E$ $(G_k)\}$

第 2 步,若 $d\sigma_*(u_0) + d\sigma_*(v_0) \ge v$ 转第 3 步,否则,停、(得 $C(G) \cong G_*$)

第 3 步, 令 $G_{k+1} = G_k + u_0 v_0$, $k \leftarrow k+1$, 转 第 1 步.

 G_* 中求不相邻点的比较次 数不超过 $\binom{\nu}{2}$,且不相邻点对的数目不超过 $\binom{\nu}{2}$ 一e ,于是,1至 3步每循环 1 次计算量不超过 $\binom{\nu}{2}$ 十 2 $\binom{\nu}{2}$ 一e) + 3,而循环次数最多 $\binom{\nu}{2}$ 一e 次,故这个算法是好的。

(b) 我们注意到,若 $G_{s+1}=G_s+u_0v_0$, $u_0v_0\in E(G_s)$ 且 $d_{\sigma_s}(u_0)+d_{\sigma_s}(v_0)\geq v$,而在 G_{s+1} 中有Hamilton圈 C_{s+1} 如下: $(u_0,v_0,v_1,\cdots,v_{s-2})$,则在 C_{s+1} 上一定存在 v_i , v_{i+1} 使得: v_iu_0 , $v_{i+1}v_0\in E(G_s)$,否则在 G_s 中有: $d_{\sigma_s}(u_0)+d_{\sigma_s}(v_0)< v$,这与条件矛盾 1 故, $(u_0,v_1,v_2,v_3,v_4,v_4,v_5)$ 是 G_s 的Hamilton圈。根据这一道理,可得如下算法:

第 0 步。实行(a)的算法步驟,由 G 构造 C(G);已 知 $C(G)\cong G_*$ 是完全图。将其中外加边按加入顺序 记 为 e_1 ,…, e_* ;任取 G_* 中一条 Hamilton 圈 C_* ,令 k=n;($n=\binom{\nu}{2}-8$)。

第 1 步、若 $e_* \in C_*$, 令 $G_{*-1} = G_* - e_*$, $C_{*-1} = C_*$, 转第 3 步、否则,转第 2 步。

第 2 步,设 $e_* = u_0 v_0 \in C_*$,令, $G_{*-1} = G_* - e_*$;求 C_* 中两个相邻点 u_0 , 使得 u_0 、 v_0 、 u 、 v 依 序 排 列在 C_* 上,且有, uu_0 , $vv_0 \in E(G_{*-1})$,令 $C_{*-1} = C_* - \{u_0 v_0$, $uv_0 \in E(G_{*-1})$,令 $uv_0 \in E(G_{*-1})$ 。

第 3 步, 岩 k=1, 转第 4 步; 否则, 令k←k-1, 转第 1 步;

第 4 步: 停: (得 Co即 G的 Hamilton 图)。

这一算法,循环次数 为 $n=\binom{\nu}{2}-8$;每次 循 环最多的计算量在第 2 步中,其中 C_{ν} 上找相邻点 a_{ν} v 不 超出 v 3 对,故除第 0 步的计算量外,又增加了最多 $n(\nu-3)$ 数量、级的运算次数,故是好算法。

4.2.16 求最小度为δ的图序列,它不满足定理4.5的条件。

解. 对 δ≤k<ν/2,如下图序列符合要求。δ, k,···,k,

v-k-1, …, v-k-1 , v-2, …, v-2 , v-1 , …, v-1 . 显然它是满足 $\delta \leq k < v/2$, 且使 $d_s=k$, $d_{s-s}=v-k-1 < v-k$ 的一个极图的度序列。

4.3 中国邮递员问题

定义:中国邮递员问题是在赋以非负权的连通图上,求 一条最小权游历。(称为最优游历)。

显然 Euler 图的任一 Euler 游历是最优游历。

求 Euler 游历有下列 Fleury 算法。

- 1. 选任意一个顶点 vo, 令 wo=vo。
- 2. 假设迹 w₁=v₀e₁v₁…e₁v₁ 已 选 好,从 E \ ⟨e₂
 e₁, …, e₁⟩中按下列方法选择一条边 e₁+1;
 - (i) e₁₊₁ 与 v₁ 关联。
- (ii) 除非没有其它选择, e_{i+1} 不是 $G_i = G \{e_1, \dots, e_i\}$ 的割边。
 - 3. 当第2步不能执行时,停止。

定理4.7 若 G 为 Euler 图,则由 Fleury 算法构造的 G 中任一条迹都是 G 的 Euler 游历。

中国邮递员问题的解法:

- 1. 用双倍边的方法求G的一个Euler型 赋权母图G*,使双倍边的权和最小。
 - 2. 求 G*的 Euler 游历。(有 Fleury 算法)。

4.3.1 证明: 在图(1)的党权图中 メニソ ロッスロッスロッ

4.3.1 图

v x z y x 是一条最优游历。

证。因为图(1)只有两个奇数度顶点 u, v, 根据最短路 算法可得, u x y w v 是 G中最小权(u, v)-路。而图(2)是由

4.3.2 框图

- 图(1)将最小 权(x,v)-路的每一条边都加倍得到的。所以使加倍边的权和最小。由于给定的游历是图(2)的Euler游历,因而给定的游历是图(1)的最优游历。
- 4.3.2 画出 Fleury 算法的框图,并说明 它 是一个好事法。

篇, Fleury 算法的框图如前页图所示,

这个算法需循环 ε 次,每次循环中最大的运算量是在判别 $\omega(G_1-\varepsilon)>\omega(G_1)$ 这一框,由练习 $1\cdot 8\cdot 6$ 知,该框是 v^* 数量级的。故这算法是 εv^2 数量级的,是个好算法。

4.4 旅行售货员问题

旅行售货员问题是在一个赋权的完全图中(有些权可为 ∞),找出一条最小权的 Hamilton 循、常称为最优置。

目前尚没有求解旅行售货员问题的好算法。求近似最优额的方法通常是从一条 Hamilton 圈出发,修改两条边,得到较小权的另一 Hamilton 圈。这种修改法如下:

设 $C=v_1v_2\cdots v_1$, 则对所有满足 $1<i+1<j<\nu$ 的i, j, 可得一条新的 Hamilton 觀如下.

 $C_{i,j}=v_1v_2\cdots v_iv_jv_{j+1}\cdots v_{i+1}v_{j+1}\cdots v_iv_1$ 它是从C中期去 v_iv_{i+1} , v_jv_{j+1} ,增添 v_iv_j , $v_{i+1}v_{j+1}$ 得到的。

若 $w(v_iv_j)+w(v_{i+1}v_{j+1})< w(v_iv_{i+1})+w(v_jv_{j+1})$,则 $C_{i,j}$ 就是 C 的一个改进。

4.4.1 设G是赋权的完全图,且对任意 $x,y,z \in V(G)$ 满足三角不等式

$w(x,y)+w(y,z)\geqslant w(x,z)$

证明。G 中最优圈最多具有权 2w(T), 其中 T 是 G 的一棵最优树。

(D. J. Rosencrantz, R.E. Stearns, P.M. Lewis)

证,设 $T \in G$ 中的一棵最优生成树,将T 的每边加倍得到图T',则T'的每个顶点的度数均为偶数。所以T'有一Euler游历。

$$Q=(v_1, v_2, \cdots, v_n, v_1) \qquad (n>p)$$

Q中某些顶点可能有重复,且w(Q)=2w(T)。在Q中,从 v_2 开始,凡前面出现过的顶点全部删去,得到 G 的 v 个顶点的一个排列 π 。由于 G 是完全的,所以 π 可以 看成 G 中的一个 Hamilton 圈。在 π 中任意 边 (u,v),在 T 中对应存在唯一的(u,v)-路 P,由权的三角不等式有 w(u,v) 《w(P)》。由于将 π 中的边(u,v)用 T 中的 P 来代 替 时,就得到 Q,因而 $w(\pi) \leq w(Q) = 2w(T)$,故 G 中的最优 圈 C 的权 $w(C) \leq w(\pi) \leq 2w(T)$ 。

第五章 匹 配

5.1 匹配

定义:图 G 中的一个子集 $M \supset E$,若它的元素均是杆,且 M 中的元素互不相邻,则称 M 是 G 的一个**医配**。M 中的杆的两端称为在 M 下被**医配**。若 $v \in V$ 被 M 匹 配,则 称 v 是 M — 饱和的,反之称 v 是 M — 不饱和的。

定义: 若G中每一顶点均M-饱和, 则称M是G的完美匹配。

定义: 若G中不存在匹配M', 使|M'| > |M|, 则称 $M \in G$ 的量大匹配。

定义:设 M 是 G 的一个匹配,若 G 中的 一条 路的边分别交替地属于M和 E M。则称该路是 G 中的一条 M-交错路,若 G 中的一条 M-交错路的起点和终点均是 M-不饱和的,则称该路是 G 中的一条 M-增广路。

定理 5.1 (C.Berge 1957)M 是 G 的最大匹配的充要条件是 G 中不含有 M-增广路。

(匹配理论的进一步内容如 f-因子理论等,可参阅 W. T. Tutte, 《Graph Factors》, Combinatorica (1981) 79-97, 或 C. Berge, 《Graphs and Hypergraphs》(1973) 中有关章节。)

5.1.1 (a)证明 k-分体有完美匹配(k≥2).** (b)求 K₂₄, K₁, 中不相同的完美匹配的个数。

国选定某一边属于 M 之后,剩下来尚有2(n-1)个顶点,它们的导出矛围是 K X n-1)。故 易由归纳法知 K 。的 不同的 完美匹配其(2n-1)+1 个。对于 K x , 类似地用归纳法,并注意到 X 和 n-1 ,的 在一顶点有 n 种方法匹配,一旦 遗定某一遗漏于 W 之后,剩下来尚有 2(n-1) 个 预点,它们 的导出子图为 K n-1 , n-1 , 所以 K n , 的 不同的完美 匹配 共 引

解、当及年傳教时、取む=K,以,用由中傳教學預点的图 不可能存在完美匹配、級 G 满足要求。 当 k年晴敷时、作む 如下、取 2k-1 个頂点 51, 52, ..., で2, ..., 在晴起耕頂点和 傳足标頂点個两两连 以 近 外、再 连 以 51 的人 5 。 ..., n_{2k-1} , v_{2k-1} 边,所得之图记为 G_0 , 显然 G_0 除 v_{2k-1} 外其 余顶点的废均为 k, 而 $d_{G_0}(v_{2k-1})=k-1$ 。取 k 个两 两 不相交的 G_0 的拷贝和一个新顶点 v_0 , 并把每个 G_0 拷贝中 对应于 v_{2k-1} 的顶点和 v_0 相连以边。最后我们所得之图 记为 G, 显然 G 是 k— 正则的单图。又由于 G_0 含 2k-1 个顶点,若 G 存在完美 匹配 M,则 M 在 G_0 中至多能取 k-1 条边,从而加上 v_0 被 匹配 的 一边, $|M| \leq (k-1)(k+1)$ 而另一方面当 k>1 时, $v(G)=(2k-1)k+1>2(k^2-k+1)$ $\geq 2|M|$,这 和 |M|=v/2 相矛盾。故 G 不可能存在完美 匹配

5.1.4 两人在图 G上进行博奕,交替选择不相同的顶点 v. v. v. v. 使得 > 0 时 v. 要和 v. v. 相邻,直到不能选到顶点为止,最后选到顶点的人为赢。证明第一个选点之人有一个赢的策略的充要条件是 G.中不存在 完美匹配。

证: ⇒,用反证法,假如 G 中 存 在 一个 完 美 匹配 M。即 G 中任一点偏是 M-饱和的,被不管第一人,如何取 v₁₋₁,第二人永远可取 M 中和 p₁₋₁相关联边。碑 另 型端点作为 v₁。故第一人必输。所以要第一人有一个家的策 M。 G 中不能存在完美匹配。

 的矛盾。故这种取法是第一人必赢的一种策略。

5.1.5 G 的k-因子是G 的 k-正则生成 子 图,G 称为 G K-因子化的,若存在边不相交的 k-因子 H_1 , H_2 , ..., H_n , 有 G H_1 \cup H_2 \cup ... \cup H_n .

- (a)证明, (i)K_n, n和 K₁,是可 1-因子化的。 (ii)Petersen 图不是可 1-因子化的。
- (b)下列图有 2-因子吗?

· 5.1;5 (b) 图 。

(c)用Dirac 定理(即定理 4.3)证明。若 G 是 v 为 偶数 且 δ ≥ v/2 + 1 的 单图,则 G 有 3 - 因子 。

证、(a) (i)对于 K_n , 为 叙 述方便,我们把顶点的分划(X, Y)中的 X, Y 的顶点分别 加 以 0, 1, 2, \dots , n-1 的编号,记(i, i)是 X 中 的 i 和 Y 的 i 相 连 的 边 。 显 然 $\{(i, i+h(\bmod n))\}$ (i=0, 1, 2, \dots , n-1)是 K_n , 中 的 1 一因子,且不同的 k 对应 K_n , 中 边 不相交的不同的 1 一因子,是 1 和

对于 K_{2n} ,我们将 K_{2n} 中 v_1,v_2 ; \cdots , v_{2n} v_1 个顶点 安排在一个2n-1 正多边形顶点上, v_0 位于这正 多。边形的

中心。对任一点,取 v_0v_1 边,以及和 v_0v_2 相垂直的。边,即边 $v_1v_2v_3$,($k=1,2,\cdots,n-1$),其中顶点的足标理解成模。2n-1 的同余。显然这几条边构成 K_2 ,中的一个位于因子F₁,且i=j时,F₁和F₃的边不相交, K_2 ,进 F_1 UF₂U \cdots UF_{2n-1},散 K_2 ,是可1-因子化的。

(ii) 图为对 Petesen 图代去中个 1-18 子后,就成为两个不相交的 5-圈,从而再没有 对新子了, 微增添建(南1-图子化的。

(1)对图(1),图中 v₁, v₂, v₃ 的度均为2, 故若 存在 2-因子的酒,和v₁, v₂, v₃ 美联的边均应属于图的任一十2-因子,但这样一来 v₃点在 2-因子中度为 3, 基质 故忽(1)不存在 2-因子。

对于图(2),图中相边构成图的Hamilton图,故它有一2-因子。

对于图(3),它是 2-部图, 出工部分划(X, Y)中的顶流散床等,|X|=3,|Y|=5。另一方面,若它存在 2-因子 F,应有 $\sum d_F(v)=2|X|=\sum d_F(v)=2|Y|$,矛盾,放它还可能存在 2-因子。

是偶数。故 C 是偶数长的圈,在 C 上相间地取进,将 C 分成 G 的两个 1-因子,取其中一个记为 F 。 令 G 是 G 是 F 。 心 G 的 两个 G 是

证: 把 K_{2n+1}中 2n+1 个顶点 编号,记以 0; 1,22, ..., 2n, 将 6 放在圈心,而其余 2n 个顶点均匀地 放在圆周。 上。全 C₁=0 1 2(2n)3(2n-1)4(2n-2)···n(n+2)(n+1) 0, C₁是 K_{2n+1}的 个 2+因子,将 C₁以 0 为心核逆明邻每 旋转一个顶点,就产生一个条件 2-因子,于是 旋转 0 次击 共产生 2 个 2-因子,记为 G₁, C₂, ···, C_n, 显然 C_n之间, 两两边不相交,且 G=C₁ U C₂ U ··· U C_n.

5.2 2 部图勒匹配和覆盖

Company of the Compan

F 定义。G中关于 $S(\subseteq N(G))$ 的 等集 $N_{2}(S)$ = $\{M(\subseteq F)\}$ V(G), 章和 S 中的 顶点相邻 $\{M(G)\}$ 。

建义。每中的一个项点子类 K G V 对 岩 G 中的 任 一边。 至少有一个端点含于 K 中, 赚 **系 称为** 发 的一个**要 盖**。

是 N(S) ≥ N(S) ≥ N(S) ≥ N(S) = N(S) ≥ N(S) = N(S)

定理场.3 (König 定理)— 治 G 强。2~翻图,则 色的最下大匹配 Ma和最小覆盖器 或立 | M* | 每 | 逐中。

(满足等式 Mell = | E | 的图 称 具有 ponic 性 頭 x 供 充聚条件已得到,可参阅, F · Sterboul, 《A Characte-rization of graphs in which the transversal 具 p 市 b er equals the matching number》, J. Comb. Theory, B27 (1979) 228-229.)

5.2.1 证明,一个 8×8 正方形期去 2 个位于对角上的 1×1 的小正方形后,不能用 1×2 长方形恰好遮盖住。

5.2,1 图"

近,如图所示,若我们将无图方格和有图方格看成顶点,它们的全体分别记为 X, Y。若无图方格和有圈方格有公共边相邻,则对格和有圈方格有公共边相邻,则对应的顶点连以边。于是上述的图形就诱导出一个以(X, Y)为分划的2-部图 G, 且[X] = |Y| +2, 故 G 不可能存在完美 匹 配。由 G 的 边

的定义知,1×2长方形,恰代表0中之一边。故由《中不存在完美匹配知,原图不可能用1×2长方形恰好来覆盖。

(事实上,图中删去任何两个有图方格或无题 **涉**稽,都 不能用**选**和 长方形恰好遮盖住。)

(5.2.2) (6):2-部图 G 有完美匹配的充要条件 是好任意 S:⊊V 有 |N(S)| > |S|.

(b)给出一个例子说明上述命题当 O 不是 2-都图时不一定成立。

证, $(a)\Longrightarrow$,若 G 有完美匹配 M,则 对 任 意 的 S \subseteq V,有 $|N_{g}(S)| \geqslant |N_{g}(S)| = |S|$, $(A^{(G)})$ δ δ 是 野宝

 \leftarrow ,设 2-部图 \bullet 的 \Box 部分划为(基) V),取 S = X 有 $|X| = |S| \leqslant |W(S)| \leqslant |W|$,类似有 $|Y| \leqslant |X|$ 故 |X| = |Y| 。 |Y| 。 |Y| 。 |Y| 。 |X| 本 |X| 。 |Y| 。 |Y|

(b) 易重接验证 K_{2n+1} 对任意 的 $S \subseteq V$ 均 满 是 |N(S)| > |S|,但它无完美匹配。

- 5.2.3 对于 k>0,证明。
- (a)每个 k-正则 2-部图是可 1-因子化的。

(J. Petersen)

(b)每一个 2k-正则图, 是可 2-因子化的。

证,(a) 由系 5.2 知,k- 正则 2-部图 G 有完 美匹配 M_1 ,于是考虑 $G-M_1$,它为(k-1)- 正则 2-部图,故 它有完 美匹配 M_2 ,于是再考虑 $G-\{M_1+M_2\}$,如此继续下去,共进行 k次,最后我们得 M_1 , M_2 , …, M_2 共 k个 之不相 交的 G 的 1-因 子,且 $G=M_1\cup M_2\cup \dots\cup M_3$,故 G 是 可 1-因 子化的。

(b) 若 G 是 2k-正则图,则由定 理 $4\cdot 1G$ 中存在 E u ler 游历 C. 设 G 的顶点是 $\{v_1, v_2, \cdots, v_r\}$,今由 G 来 存作一个 2-部图 G',其分划为 $\{X, Y\}$, $X=\{x_1, x_2, \cdots, x_r\}$, $Y=\{y_1, y_2, \cdots, y_r\}$ 。 x_1 和 y_1 ,在 G' 中相连以边 的 \hat{x} 要条件是 v_1 , v_2 , v_1 , v_2 , v_1 , v_2 , v_2 , v_3 , v_4 , v_4 , v_5 , v_5 , v_6 , v_7 , v_8

 A_2 , …, A_n) 的 不 同代表 是 S 的 子、集 $\{a_1, a_2, \dots, a_n\}$, 其中 $a_1 \in A_1$, $1 \le i \le m$; 且 $i \ge j$ 时 $q_1 \ne q_2$ 。证明: (A_1, A_2, \dots, A_n) 有不同代表系的充要条件是对 $\{1, 2, \dots, m\}$ 的任意子集合 j 或立 j j j j j .

18 - 707] - 181 - 19 m - (、20 年 - 121 -

证。我们构作 2-部图 G 如下,G 的 \mathcal{G} 均 为 (X_1,Y_2) ,X 中的元素 是 $\{M_1, A_2, \cdots, A_n\}$, $Y=S_nM_1$ 和G ,间 连以

边的充要条件是 $a_n \in A_n$ 。显然, $\{A_1, A_2, \cdots, A_m\}$ 有不同代表系相当于 G 中有饱和 X 的匹 配。 a_n 验。证 对 G 讲, $1 \cup A_n > |I|$ 就是定理 5.2 中相对应的条件,故由定理 5.2 得证。

5.2.5 矩阵的一行或一列称为矩阵的一条 键。证明。 (0,1)-矩阵中包含矩阵的所有"1"的线集的最小条数,等于 没有两个在問一条线上的"1"的最大个数。

证. 构作一个 2-部图 G, 其分划(X, Y)中的 X, Y分别为矩阵的行线集和列线集。两顶点相连的充要条件是对应两线含有公共的"1"。显然矩阵中的"1"对应 G中一条边,不同的"1"对应 G中不同的边,于是(0, 1)-矩阵中包含矩阵的所有"1"的线集,对应在 G中是一个顶点覆盖。没有两个在同一线上的"1"的集合对应在 G中是一个匹配。对 G应用定理 5.3, 就得本题结论。

5.2.6 (a)证明 Hall 定理 5.2 的 如下 推广. 若 G 是 一个分划为(X, Y)的2-部图, 则 G 的最大匹配的边数等于 |X|-max{|S|-|N(S)|}。 D. König, Q.Ore)

(b)推导。岩G是|X|=|Y|=n,且e>(h-1)n的单图,则G含有k条边的匹配。

证。(a)令B=X-S,于是 $|X|-\max_{S}\{|S|-|N(S)|\}$

 $= \min_{B \subseteq X} \{ |X| - |S| + |N(S)| \} = \min_{B \subseteq X} \{ |B| + |N(X-B)| \}.$

显然 BUN(X+B)是 G的一个覆盖,且 G的任一最不覆盖 均取BUN(X+B)的形式。故由定理 5_3 知,G的最大匹配 M*的边数等于 | X | -max { | S | - | N(S) | }.

(b)因为 |X|= |Y|=n, 故 \((G) \leq n, 所以 \(\text{o} \) 向每一个顶点最多覆盖 \(\text{o} \) 中 不 \(\text{o} \) 由于 \(\text{o} \) \(\text{k} \) 一 1 \(\text{n} \) 故 \(\text{o} \) 每 至 \(\text{o} \) 要 不 \(\text{o} \) 下 \(\text{o} \) 有 \(\text{o} \) 就 \(\text{o} \) 就 \(\text{o} \) 就 \(\text{o} \) 表 \(\text{o} \) 就 \

5.2.7 从 Konig 定理 5.3 推导 Hall 定理 5.2.

证。由练习 5.2.6(d)知, G的最大政配 从清定, 1 M小 = |X|-max(|S|-|N(S)|), 而饱和 X 的应配是 最大匹配, 因而, 存在饱和 X 的匹配的充要条件是 max (|S|-

|N(S)|}=0。即,对任意(SGX, 有刊(S)|≥ (S)...。

5.2.8 非负实矩阵 Q, 若它的行和与列和均为 1, 则 Q 称为**家籍机矩阵**。若(0,1)—矩阵的每行和每列都 恰 含 有 一个 "1",则称为**宣接矩阵**。(故每一个 宣 换 矩 阵 是 双 随 机 的)。 证明。

(a)每个双随机矩阵必须是方阵。

(b)每一个双随机矩阵Q能表示成量换矩阵的凸线性组合,即 $Q=c_1P_1+c_2P_2+\cdots+c_sP_s$ 这几 P_s 是置换矩阵,

c, 是非负实数且 $\sum_{i=1}^{n} c_i = 1$.

(G.Birkhoff, J.Von Neumann)

证, (a) 由于 Q_{m×4}的 行和 与列和 均为 1、 放有。...

 $n = \sum_{s=1}^{n} \left(\sum_{s=1}^{m} q_{s,s} \right) = \sum_{s=1}^{m} \left(\sum_{s=1}^{n} q_{s,s} \right) = m$, 所以 Q 是方阵。

繁,从而经过有限次后,不妨设为 k 次后, $Q_k=0$,所以 $Q=c_1P_1+c_1P_2+\cdots+c_2P_3$ 。又因 $\sum_{q_{11}}q_{11}=k-c_1\sum_{p_{11}}(1)+$

 $c_2 \sum_{i=1}^{n} p_{i,1}(2) + \dots + c_k \sum_{i=1}^{n} p_{i,1}(k) = c_1 + c_2 + \dots + c_k$. 故命题

5.2.9 设 H 是一个有限群,K 是 H 的子群,证 明, 存在元素 h_1 , h_2 , …, h_n \in H ,使 得 h_1K , h_2K , …, h_nK 构成 K 的左陪集簇。 Kh_1 , Kh_2 , …, Kh 、构成 K 的

5.3 完美匹配 (2-13) (2-13) (2-13) (2-13) (1-13) (2-13) (1-13

1999 ・ 1990 (おかる

存在完美匹配。从而 Hali 定理 5.2 等价于。"H 存在完美匹配的充要条件是对任给的 S型X;成立 IVA(S) → ISI"。 下面我们来证明此命题。

 \Longrightarrow ,对任给的 $S\subseteq X$,令 $S_1=N_A(S_1)$,更是 $H=S_1$ 中 S 的每一顶点均是一个奇分支。由定理5.4知 $\{S_1\}$ $\geqslant O(H+S_1)\geqslant |S|$,即 $\{N_A(S_1)\}\geqslant |S|$

一、首先由假设条件对 $V.x \in X$, $|N(\{2i\})| > |\{x\}| = 1$, 故 X 中无孤立点,其次对任意的 $S \subseteq V$ 。 设 $S = S_1 + B_2$, $S_1 \subseteq X$, $B_2 \subseteq V$ 。 今 $S_1 \subseteq X$ 是满足 $P_1(S_2) \subseteq B_2 \subseteq V$ 的最大点集。故由假设条件有 $|S_2| > |N_1(S_2)| > |S_2|$ 。 $H = S_2$ 共 $|S_2| + 1$ 个分支,且其中 $|S_2|$ 个分支是孤立 顶点。设剩下的那个非孤立顶点的分支记为 $|S_1|$ 中 $|S_2|$ 的表达 $|S_2|$, $|S_3|$, $|S_3|$

于是由于 G 是 k-正则的, 我们有:

 $m_{i} = \sum_{v \in V(G_{i})} d(v) - 2e(G_{i}) = k|V(G_{i})| - 2e(G_{i})^{2}$

新聞に 100mm 100mm

即 m, 和 k-1 有相异的奇偶性。今由假设 G 是 (k-1) - 边连通,故 G, 与 S 至少有 k-1 条边相连。所数 有 m 之 k 。 于 m 公司 m 是 m 公司 m 是 m 公司 m 是 m

当S=0时由于v=偶数,战 Ō(0~S)=O(0)=0=10。 所以对任意的S=V(0),O(0~S)至151均成立。于是由 定理5:4知,0具有完美性配。

5.3.5 树で其有完美匹配的充要条件是对任意velv, 均成型O(G=v)=1. (V. Chung Phaisan)型

一个。由于对 $\nabla v \in V$,有 O(G-v)=1,即 G-v 中存在 唯一的 奇分文 $C_0(v)$,令 v 与 $C_0(v)$ 的 关 联 边 为 e(v)=vu,显然 v 确定后, e(v) 是唯一确定的,且 易知 e(u)=uv,于是 $M=\{e(v)\}$ 恰构成 V 的一个完美匹配。

5.3.4 证明 Tutte 定理 5.4 的如下推广。图 6 的最大 匹配的边数等于(v-d)/2,其中 d=max(O(G-S)-15}}. 证,不失一般性,可假定 G 是连通的,今分二种情况验证如下,

- (一) 若 G 有完美匹配 M,则 M 是 最 大匹配,由定理 6.4,对一切 $S \subset V$ 有 $O(G S) \leq 1.5$ 。特别 当 $S = \Phi$ 时 $O(G) = |\Phi| = 0$,故 $d = \max_{S \in V} (O(G S) |S|) = 0$, $|M| = \frac{1}{S}$
- v/2=(v-d)/2成立。
- (二) 若 G 是无完美匹配的连 通 图。设 G*是由 G 尽可 能增添一些边,使得G*与G的最大匹配的边数相同的极大 生成母图。显然, G^* 也无完美匹配。设 $U=\{s \mid s \in V(G^*),$ dan(a) 三水一儿,可知,①Unfo,②指UnfV,则·GingUpp 各分支是完全图。这是因为, ① 设 M 是 G*的最太匹配,它 不是完美匹配, 必存在 M 未饱和点四, 中的邻点 # 是 M 、饱、 和的。否则,M 不是最太匹配。若 dae(#) < 2-2, 存在 o 使 $E(G^{\bullet})$,由 G^{\bullet} 的最大性,M 不是 G^{\bullet} 十里的最大匹。 配。故在G*+** 上必存在一条经过 ** 口的,M-增广路。 U* 一条 M-增广路,这与 M 是 G*的最大匹配矛盾,故 d_{G} *(g) =v-1, $U\neq\phi$. ②若 $U\neq V$, 而 $G^{\bullet}-U$ 的某一分支不是完 全图。则由练习1.6.14在此分支中存在顶点点, y, z使 $xy, yz \in E(G^*), xz \in E(G^*), 又因, y \in U, 在 G^* \to U$ 中 存在 w 使 yw & E(G*)。由于 G*的极大性,G*+*2和 G* 土物的最大匹配 M_{**} 的边数一定大于G的最大匹配 的边数,且 M_1 , M_2 分别包含xz,yw。令H是由 $M_1\Delta$ M_2 在 $G^*+\{xz, yz\}$ 图上导出的子图,则 H 中每顶点的

度为 1 或 2 ,且 H 的每一支均是路或圈,它 f 都 是 M_1 , M_2 的边的交错路,故各交错路上 M_1 的边数与 M_2 的边数 最多相差 1 。分两种情况导出矛 盾,

若 H_{**} 中 M_{*} 的边数不超过 M_{*} 的边数,我们在 H_{**} 中取 M_{*} 的边连同 H_{**} 外的 M_{*} 的边,超组成了 G^{*} 的一个匹配,其边数不少 于 M_{*} H_{**} 这与 G^{*} 的 极 大 性 矛 M_{*} 的 放 数 大 H_{**} 中 M_{*} 的 边数 、 同理 H_{**} 中 M_{*} 的 边数 大 H_{**} 的 边数 (见图(1))。

1 2 5.3 4 A M 111 = (2 **) も

这时,如图(1)所示,在(u_1 , …, z, y, w, …, u_2)的路上取 yz 及 M, 的边,连筒此路外 M, 的边一起组成了 G^* 的一个匹配,其边教等于 $|M_1|$,这又与 G^* 极大性矛盾! 故

情况 2. 若 xz 和 yw 在 H 的同一分变 C 中。由 x 和 z 的对称性,故 x, y, z, w 在 C 中 的出现顺序仅两种可能。当 y, w, z, x 依次出现在 C 中时(见图(2)), 取 yz 和 yw … z 段中 M, 的边及 yw … z 段外的 M 。的边一起组 成了 G 的一个匹配,其边数等于 $|M_2|$,矛盾! 当 z, x, y, w 依次出现在 G 中时,取 yz 和 zx y 段中 M 。的边 X zx … y 段 外的 M 。的 边,它们组成 G 的一个匹配,其边数等于 M_1 ,矛盾!

于是,不论什么情况都**导致矛盾。可知 G***→U的 各分支,均是完全图。

下面对任意的 $S \subset V(G^{\bullet})$ 考察 $A^{\bullet}(S) \cong O(G^{\bullet \hookrightarrow}S)$ ー |S|:

る)、当
$$S=\phi$$
、 $d^*(\phi)=O(G^*)=$ $\begin{cases} 1 & \gamma & \exists \nu$ 奇数 0 当 ν 偶数

b), 当 S ≠ φ 且 S 不 含 U 时 , G* - S 含 U 的 点 , 可 得;

 $O(G^{\bullet}-S) \leqslant 1 \leqslant |S|$, $\langle R|d^{\circ}(S) = O(G^{\bullet}-S) - |S| \leqslant 0 \leqslant O(G^{\bullet})$

c), 当 $S \neq \phi$ 且 $S \stackrel{>}{=} U$ 时,因 $G \stackrel{\bullet}{=} - U$ 各分支是完全图,有。

$$O(G^{\bullet} - S) = O(G^{\bullet} - U - (S \setminus U))$$

$$\leq O(G^{\bullet} - U) + |S \setminus U|$$

$$= O(G^{\bullet} - U) + |S| - |U|$$

校
$$d^*(S) = O(G^* - S) - |S| \leqslant O(G^* - U) - |U|$$

于是 $d^{\bullet} = \max_{S \subset V} d^{\bullet}(S) = \max \{O(G^{\bullet}), O(G^{\bullet} - U) - U\}$

对 G^* ,设它的最大匹配边数为 m,我们证 明 $m=(v-d^*)/2$ 如下。

- (1) 当 $O(G^*-U)-|U| \le 0$ 时,有, $d^*=O(G^*)$ 。这时 G^* 的一个最大匹配为, G^*-U 的各分支自己匹配后,各 奇分支有一点与 U 中点匹配,U 中多余点,相互匹配后,必 还剩下一点,否则与 G^* 无完美匹配 矛 盾,从 而, ν 奋数, $d^*=1$,故 $m=(\nu-1)/2=(\nu-d^*)/2$ 。
- (2) 当 $O(G^*-U)-|U|>0$ 时,有 $d^*=O(G^*-U)-|U|$ 。这时, G^* 的一个最大匹配为。 G^*-U 各分支 自己匹配后,其中奇分支的一点必须与U 中点匹配,由于U 中点数不足,必有 d^* 个奇分支中各含一点无法 匹配,故 $m=(v-d^*)/2$ 。

最后,由于 G 是 G* 的生成 子图,故 $O(G^{\bullet}-S) \leq O$ (G-S),从而, $d^{\bullet} \leq d$, $m=(\nu-d^{\bullet})/2 \geq (\nu-d)/2$,另一方面,设 $S_0 \subset V(G)$ 使 $d=O(G-S_{\bullet})-|S_{\bullet}|$ 成立。因 $d \geq 0$, G 的匹配的最大可能是 $G-S_{\bullet}$ 各分支自己 匹配 后,其中各奇分支的一点与 S_{\bullet} 中点匹配,这样,至少还有 d 个奇分支中各一点得不到 匹 配,故 $m \leq (\nu-d)/2$ 。从 而 $m=(\nu-d)/2$ 。

综合上述本题得证.

- 5.3.5 (a)利用 Tutte 定理 5.4 来描述无 完 美匹配的极大单图。
 - (b)若G是单图,且p为偶数, 6<1/2,证明。若

 $\epsilon(G) > {\delta \choose 2} + {v-2\delta-1 \choose 2} + \delta(v-\delta)$,则 G 具有 完美四記。

证, (a)题目中的"maximal"(极大)一词含意不明确。 可以有如下两种理解。(1)理解为G中若再增加边时G就变 成具有完美匹配的图。(2)理解为 > 个顶点无完美 匹配的单 图中,边数最多的图。对于 > 为奇数时,由于任一奇数顶点之 单图均无完美匹配,从而,此时不存在理解(1)下的极大单图, 而理解(2)下的极大单图为 $K_{\bullet,\bullet}$ 对于 ν 为偶数时,对理解(1) 的极大单图 G 就是定理 5.4 中的 G^* ,由于无完美匹配,故 存在 $S \subset V(G)$,成立 $O(G-S) > |S| \ge 0$,所以G-S一定含 有奇分支,下面由G的极大性得到如下四点结论、(A) G-S的每一个分支,以及G[S]均为完全图。(B)G-S中不含偶分 支。这是因为假如含偶分支,则我们恒可将它与G-S的某 一奇分支合并添加新边使构成更大的奇分支完全图, 最后所 得之图记为 G_1 ,由作法 $O(G_1+S)=O(G-S)>|S|$,故 G_1 仍无完美匹配。这与G 的极大性相矛盾。(C) G-S 的 奇分支只能有|S|+2个。这因为假设G-S共k个奇分支, 其奇分支的顶点数分别为 $\nu_1, \nu_2, \dots, \nu_k, k > |S|, \nu_1 +$ $\nu_2 + \cdots + \nu_s + |S| = \nu =$ 偶数,故 $\nu_1 + \nu_2 + \cdots + \nu_s + |S| =$ (k+ |S|) mod 2 至 0 (mod 2)。即 k 和 |S| 有相同的奇偶性, 所以 k≥ |S| +2。当 k≥ |S| +4 时, 在 G-S 中 任 取 k-|S|-1(奇数)个分支,类似(B)中的合并,将它们合并起来 而得到与G的极大性相矛盾的结论。故k=|S|+2。(D)G $=K_{181} \lor (K_{*1}+K_{*2}+\cdots+K_{*181+2})$ 。综合 (A) — (D) . 极大单图 G 应为 $K_{151} \lor (K_{*1} + K_{*2} + \cdots + K_{*151+2})$ 其中 $v_1, v_2, \dots, v_{|S|+2}$ 均为奇数, $v_1+v_2+\dots v_{|S|+8}+|S|=v$ 。对理解(2)的极大单图 G,则要在理解(1)的极大单图基础上进一步考虑。首先我们在 v,|S| 固定的条件下,任 取 G-S 的两个分支 H_1 , H_2 , 它们的顶点数分别 为 v_1 , v_2 , v_1

 $+\nu_2=\nu'$ 。这两分支含的边数为 $\binom{\nu_1}{2}+\binom{\nu_2}{2}$,当且仅当

 $v_1=1$, $v_2=v'-1$ 或 $v_1=v'-1$, $v_2=1$ 的情况下它达到极大,多次应用这结论,我们知 G-S 的 |S|+2 个分支 中当且仅当 |S|+1 个分支取一个顶点,剩下的一个 奇 分 变取 v-2 |S|-1 个顶点时,G-S 中的边达到极大。此时所得到

的图记为
$$\tilde{G}$$
,则 $e(\tilde{G}) = {|S| \choose 2} + (\nu - |S|) |S| + {\nu - 2|S| \choose 2}$

-1), $0 \le |S| \le \frac{v}{2} - 1$. 由简单的极值 计算 易知, 当 |S|

$$=0$$
时, $\epsilon(\tilde{G})={v-1\choose 2}$ 达到最大值。 即 \tilde{G} 是 K_1 以 K_{r-1} 。

这就是理解(2)中的极大单图。

(b)本题结论是错的,如G是将 $K_{(*/2-1)} \lor K_{(*/2+1)} \lor (*$ ≥ 8 , ** 为偶数)除去一条连接 $K_{(*/2+1)}$ 到 $K_{(*/2+1)}$ 之间的边所得之图就是反例。

显然
$$e(G) = {\binom{\nu/2-1}{2}} + {\binom{\nu}{2}+1} {\binom{\nu}{2}-1} + {\binom{\nu}{2}-1} = \frac{1}{8} {\binom{3\nu^2-1}{2}}$$

$$\delta(v-8), \ \delta(G) = \frac{v}{2} - 2, {\delta \choose 2} + {v-2\delta-1 \choose 2} + \delta(v-\delta) = 0$$

 $\frac{1}{8}(3v^{\frac{1}{2}}-10v+16)<\epsilon(G)$ 。但对 G,若取S 为 G 中 $K_{\frac{1}{2}-1}$ 的 $\nu/2-1$ 个顶点,则 $O(G-S)=\nu/2+1>|S|=\nu/2-1$ 。 故由定理 5.4 知 G 不存在完美匹配。

「注]本题结果之所以弄错,主要是因为"极大"的含意不 明确。注意到(a)的证明过程中的G,它是|S| 固定的条件下 的一种无完美匹配的极大单图,且 $\delta(\ddot{G})=|S|$,于是 $\epsilon(\ddot{G})=$ $\binom{\delta}{2} + \binom{\nu-2\delta-1}{2} + \delta(\nu-\delta)$. 若讨论这种意义下的无完 美匹配的单图,当 e(G)>e(G)时,显然由(a)的 证明 过程

知, 6 具有完美匹配。但讨论这种中间类型的无完美匹配的 极大单图,意义不大。

5.4 人员工作分配问题

分配 n 个人做 n 件工作,每人能做其中的某几件, 闽能 否对所有的人都分配给一件他能做的工作。这就是人员工作 分配问题。

以顶点 x_1 , …, x_n 表示人, 以 y_1 , …, y_n 表示工作。 x, 与 y, 相连当且仅当 x, 会做 y, 这项工作。这样一来, 问 題就化为。求 2-部图(X,Y)中饱和X的匹配。用匈牙利 算法,可以解决这一问题。

健牙利算法,从任一匹配 M 开始。

- 若X是M-饱和,则停、否则、设业是X中一个 M-不饱和顶点,置 $S=\{a\}$ 及 $T=\phi$ 。
 - 2. 若N(S) = T, 有[T] = |S| 1,故[N(S)] < |S|, 1.38

- 停止:这时,不存在饱和X的匹配。否则,设 $y \in N(S) \setminus \mathcal{F}_{\bullet \bullet}$
- 3. 若 y 是 M-饱 和 的,设 yz ∈ M, 用 S U {z} 代 S, 用 T U {y} 代 T, 转第 2 步,否则 ∑ 3 (*, y)-交错路是 M-增广路 P, 用 M=M Δ E(P)代 M, 转第 1 步。
 - 5.4.1 怎样修改匈牙利算法来求 2-部图的最 大匹配?
- 解:注意到匈牙利算法在一个 M-不饱和点 n 的 交错树上出现 |N(S)| < |S| 时,根据 Hall 定理 知 不存在他 和 X 的匹配而停止。但当求其最大匹配时,应继续 捡 查 X \ S = Φ否? X \ S 还存在其它 M-不饱和点否?一直到所有繁饱和点都找不到 M-增广路时,才得到最大匹配。根据这一想 法,可修改匈牙利算法以求 2-部图的最大匹配,算法步 禁加下:从任一匹配 M 开始。
 - $1. \quad \Xi S = \phi, T = \phi,$
- 2. 若 $X \setminus S \in M$ -饱和,则停,否则,设 # 是 $X \setminus S$ 中的一个 M-不饱和点,置 $S = S \cup \{u\}$.
 - 3. 若N(S)=T, 转第 5 步, 否则,设 $y \in N(S) \setminus T$.
- 4. 若 y 是 M-饱和 的,设 yz∈M, 用SU{z}代S, TU{y}代T, 转第 3 步;否则,∃(u, y)-交错路是 M-增。 广路 P, 用 Ω=M ΔE(P)代 M, 转第 1 步。
 - 5. 若 X\S=Φ则停, 否则, 转第 2 步.

5.5 最优分配问题

在人员分配问题中,把个人的工作效率考虑进去,求使得全体人员工作总效率最大的分配方案,称 为 量 优 分纂]

这问题可化为在赋权完全 2-部图(X, Y)上求一个最大权的完美匹配,或称**最优监查**。这里边 z, y, 的权 w, ,表示人 z, 做工作 y, 的效率。

定义,给顶点 v 一个实数 l(v),称为顶点 v 的一个标记。一个顶点标记使得每条边的两个端点的标记之和不小于该边的权,称为一个**可行顶点标记**。

定义、若l是一个可行顶点标记, $E_1=\{xy\in B|l(x)+l(y)=w(xy)\}$, $G_1=(V,E_1)$ 称为可行顶点标记l的相等子配。

定理 6.5 设 l 是 G 的一个可行顶点标记。若 G 含 有一个定美匹配 M^* ,则 M^* 是 G 的最优匹配。

求最优匹配的Kuhn-Munkres 算法如下。

由任意的可行顶点标记l 开始,决定 G_1 ,在 G_2 中任选一个匹配 M_2

1. 若 $X \in M$ -饱和的;则停($M \in \mathbb{R}$ 优 配),否则,设,是一个M-不饱和点,令 $S = \{a\}$,T = a;

3.2. (S)⊃T, 则转第 3.考。 密则 W → (S)=T。 计算。

$$\alpha_{i} = \min_{\substack{x \in S \\ x \notin T}} \{l(x) + l(y) - w(xy)\} > 0$$

给出另一个可行顶点标记。

$$\widehat{l}(v) = \begin{cases} l(v) - a_1 & \exists v \in S \\ l(v) + a_1 & \exists v \in T \end{cases}$$

$$\underline{l}(v) & \text{其它}$$

以î代1, Gî代G1.

- 3. 选择 $No_1(S)\setminus T$ 中一顶 点 y, 考察 y 是否 M-饱和? 若M-饱和且 $yz\in M$, 用 $S\cup\{z\}$ 代 S, $T\cup\{y\}$ 代 T, 转第 2 步。否则,(u, y)-路是 G, 中的 一条 M-增广路 P, 用 M=M $\Delta E(P)$ 代 M, 转第 1 步。
- 5.5.1 n×n方阵中两两不同行不同列的n个元素的集合称为方阵的一条对角线。对角线的权是它的n个元素之和。找出下列矩阵 A 具有最小权的对角线。

解,将方阵的每行视为 X 中一点,每列视为 Y 中一点, 方阵的元素即完全 2-部图(X, Y)的各边的根以执例的对角 线即 2-部图的完美匹配。本题即要求最小权的完美匹配。

原问题化为求这一权矩阵下 2-部图的最优匹配。用 Kuhn-Munkres 算法求解如下。

方阵外的数字是一可行顶点标记l,粗体数对应的 边是l下相等子图 G_1 的边。

 \bullet r 表 G , 中的一个匹配 M 的元素。方阵中由算法得该 M 下,属于 S 的行与属于 T 的列都在矩 阵 旁 标 出了。且 $No_{s}(S)=T$.

中的元素是行z在S中列y不在T中的元素。 求得 $a_1=1$,得如下页方阵。

故原方阵中元 索(1,1), (2,5), (3,2), (4,4), 165,3) 是一个最小权的对角线。

(这题也可在原方阵上求解,只要将再行标记定义改变 为一边两端点的标记之和不大于该边的权即可!)。

<u>6</u> <u>1</u> 9 . 1- 9 6 - 1- 9 2 7 8 6 8 9 6 7 8-8 . வை: மூ 2 **co − co** co **~ 20 1**2 0 ഗ 🗢 **6** 9 9 6 6 SS

第六章 边着色

6.1 边 色 数 ~

定义。无环图 G 的一个 k--边着色是把 E(G) 划分成 k个子集 $E_*(i=1,2,\cdots,k)$ 的一种分法, E_* 中的每递均着以 i 色。如果 G 中任意相邻两边均着以不同颜色,即 E_* 均是 G 中的匹配,则称这 k--边着色是正常的,若 G 有正常的 k--边着色,则称 G 为 k--边可着色的图。

定义: 边色数 $\chi'(G)$ 是 G 的所有 k-边间着色中最小的 k, 若 $\chi'(G)=k$, 则称 G 为 k-边色的。由矩义 显 然 有 $\chi'(G) \geqslant \Delta(G)$ 。

定义。假如关联顶点で的一边着以:色、则称:色在 顶点 v 处出理。

定义,给定 G 的 k-边着色 B 后,用 c(v) 表示在v 上出现的不同颜色的数目。若不存在另外一个 k-边着色 B' ,它在 v 上出现的不同颜色数目为 c'(v) , 。使

$$\sum_{v \in V} c'(v) > \sum_{v \in V} c(v)^{\circ}$$

则称 8 为 G 的一个**最优 k-边着色**。

引现 6.1.2 设 $\mathscr{C} = (E_1, E_2, \dots, E_k)$ 是 G 的 一个 最优 k-边着色。若存在 G 中的一个顶点 μ 和不同的颜色

i 及 j,使得 i 色在 u 不出现,而 j 色在 u 至少出现两次,则 $G(E, \bigcup E_j)$ 中包含 u 的分支是奇圈。

定理6.1 若 G 是2~部图,则 $\mathcal{X}'(G) = \Delta$.

6·1·1 具体找一个边着色,证明: X'(K_{m,n})= Δ(K_{m,n}),

证,设 $m \ge n$ 。于是 $\Delta(K_{m,n}) = m$ 。令 $X = \{x_1, x_2, \dots, x_m\}$, $Y = \{y_1, y_2, \dots, y_n\}$,设 $0, 1, \dots, m-1$ 是 m 种颜色,我们在 $x_i y_i$ 边上着以(i+j)(m od m)色,显然这 种m-边着色是正常的,从而我们有 $\mathcal{X}'(K_{m,n}) \le \Delta(K_{m,n})$ 。另一方面,对任意 G 恒有 $\mathcal{X}'(G) \ge \Delta(G)$ 。故 $\mathcal{X}'(K_{m,n}) = \Delta(K_{m,n})$ 。

6.1.2 证明 Petersen 图是4-边色的.

证:由练习 5.1.5(a)(ii)的结论知 Petersen图不是可 1-因子化的,从而 Paterson 图的边色数水/>3。最而方面

6.1.2图

6.1.3图

如图所示它是Petersen图的一种4-边正常着色,故有X = 4.

- **6-1-3** (a) 若G 是2-部图,则 G 是某个 △-正则2-部图 **G***的子图。
- (b) 利用(a)和练习 5.2.3(a)给出定理 6.1 的另外一个证明。
- 证:(a) 设 G是以(X, Y)为分划的2-部图, $X=\{x_1, x_2, \dots, x_m\}$, $Y=\{y_1, y_2, \dots, y_n\}$ 。若 G是正则图,则 取 $G^{\bullet}=G$ 。若 G 不是正则图,于是有 $\Delta(G)>\delta(G)$,我 们 首先将 G 的两个拷贝 $G^{(1)}$, $G^{(2)}$ 用如下方法构作 2-部图如图所示,其顶点分划为($X^{(1)}$ $\bigcup Y^{(2)}$), $X^{(3)}$ $\bigcup Y^{(1)}$), 然后将 G 中度小于 $\Delta(G)$ 之顶点,在 $G^{(1)}$, $G^{(2)}$ 中的对应点间连以边(图中以——示之),最后所得之图记为 G_1 ,由 G_1 的作法, G_1 中之顶点若对应在 G 中的度为 Δ 时,它在 G_1 中的度仍为 Δ ,而 G_1 中其它的顶点的度相对于它在 G 中的对应点的度要增加 1。若 G_1 已是正则图,则取 $G^{\bullet}=G_1$,否则类似于由 G 构作 G_1 的方法,由 G_1 构作 G_2 ,如此 继 续构作下去。显然 $G_{\Delta-a}$ 即为所求之 G^{\bullet} , 包者 G 是单图,这样得到的 G^{\bullet} 也是单图。
- (b) G 是一个 2-部图,由(a) 知存在一个 Δ 正则的 2-部图 G^{\bullet} , G 是 G^{\bullet} 的子图。又由练习 5·2·3(a) 知 G^{\bullet} 是可 1-因子化的,即 G^{\bullet} 可分解成 Δ 个完美匹配。在每 个 完美匹配上分别着以不同的颜色,显然它是 G^{\bullet} 上的一个正常的 Δ -边着色,当然它也是 G 上的一个正常的 Δ -边着色。再 由 Z' (G) $\geq \Delta$ (G),故 Z'(G) $=\Delta$ 即定理 6·1 成立。
- 6·1·4 描述一个求2-部图 G 的正常的 Δ 边 着 色的好 算法。

解:设 G 是 2-部图,其中X 》 。首先加点扩充 Y 为 Y *,使得|X| = |Y *,且仍记为 G 。对 G 找 X 中的最小度点 与 Y * 中的最小度点连以边;直至各点的度全为 Δ 为 止。这样得到一个 Δ — 正则 2-部图 G *(可能有多重边)。 G *是有完美匹配的,可用匈牙利法求其完美匹配,且在算法过程中不会出现 S $\subset X$,|N(S)| \subset |S| 的情况。设 M 是 G * 的完美匹配,则 G *-M 是 $(\Delta$ - 1) — 正则 2-部图,仍可用匈牙利法求其完美匹配,直至求出 G * 的 Δ 个边不重的完美匹配。每一个完美匹配着一种颜色。这一边着色法限制在 G 上即 G 的一个 Δ - 边着色。

依据上述想法,可得相应的算法如下。

设2-部图 G 的二分划(X, Y),有 $|X| \ge |Y|$,在 Y 中增,加一些孤立点成 Y^* ,使 $|X| = |Y^*|$ 。

第 9 步。令 $G^{\bullet}=G$ 是以(X, Y^{\bullet})为二部分 划 的 2- 部。图。

第 1 步、若 $\Delta(G^*) = \delta(G^*)$,则 令 k=1,转 第 3 步。 否则转第 2 步。

第2步,取x⁶∈X,y⁶∈Y*使得,

 $d_{a}*(x^{0}) = \min_{x_{i} \in x} d_{a}*(x_{i}), d_{a}*(y^{0}) = \min_{y_{i} \in Y} d_{a}*(y_{i})$

令 G*←G*+x⁰y⁰, 转第 1步。

第 3 步,任取 G^* 的一个匹配M。

第 4 步,若 X 已 M-饱和,转第 7 步。否则,取 X 中 — 个 M-不饱和点 u,置 S={u},T= ϕ .

第5步,在 $N(S) \setminus T$ 中取一点 y。

第6步、若 y 是 M-饱和的,有 z 使 yz $\in M$,用 S \cup

51,

 $\{z\}$ 代 S,用 $T \cup \{y\}$ 代 T,转 第 5 步。否 则,且一条(u,y)-路是 M-增广路P,用 $\hat{M} = M \Delta E(P)$ 代 M,转第 4 步。

第 7 步。 若 $k=\Delta$,则 停。 否 则,令 $k \leftarrow k+1$, $G^{\bullet} \leftarrow G^{\bullet} - M$, 转第 3 步。

这算法中,由 G 构造 G*的加边循环次数不超 过 $X \mid \Delta$ 次,且匈牙利算法是多项式的,故此算法是好的。

6.1.5 利用练习 1.5.8 和定理 6.1 证明。若 G 是无环图,且 Δ=3,则 2′≤4。

证:由练习 1.5.8 的结果知,G 中包含了一个生成2-部子图 H,且对任意 $v \in V$ 满足 $d_B(v) \geqslant \frac{1}{2} d_B(v)$ 。由于 $\Delta(G) = 3 \geqslant \Delta(H)$,故由定理 6.1 知,对 H 存在正常的 3-边着色。又由于 $d_{G-R(H)}(v) = d_G(v) - d_H(v) \leqslant \frac{1}{2} d_B(v) \leqslant \frac{3}{2}$,故 $d_{G-R(H)}(v)$ 为 0,或 1。所以对 G-E(H) 恒可以用第四色 将它的边正常着色,把上述 H 的边着色和 G-E(H) 上的边着色合并起来就成为 G 上的一个 正常的 4-边着色,故 $\chi'(G) \leqslant 4$ 。

6.1.6 证明: 若 G 是 2-部图, 且 δ(G)> 0, 则 G 有 - 个 δ-边着色, 在 G 的任一个顶点上均有 δ 个颜色 出现。 (R.P.Gupta)

证、若结论不成立,则对 G 存在一个最优的 δ - 边蓍色和一个顶点 $v \in V$,满足 $d_{\sigma}(v) > C(v)$ 。显然 v 点满 足引理 $6 \cdot 1 \cdot 2$ 的条件,故由引理 $6 \cdot 1 \cdot 2$ 知,在 G 中存在一个含有 v 的奇圈。这和 G 是2-部图不含奇圈相矛盾。

6·1·7 设 x 是连通图 G 的割点,而
 G-x=G'₁∪G'₂, E(G'₁)∩E(G'₂)=φ,G'₁, G' 连通。
 • 148 •

$$G_i = G(V(G_i) \cup \{x\})$$
 (i=1, 2)

其中 $E_i = \{ux|ux \in E(G), u \in V | (G'_N)\}$, 若 $G_i \setminus G_2$ 均为k—边可着色的,且 $k \ge d_G(x)$,则 G 也为 k—边可着色的。

证:设象1、82分别为 G_1 、 G_2 的 和边正常着色法, $\mathcal{S}(x, \mathcal{C})$ 表示在着色法象下x 处出现的颜色集合, $\mathcal{S}(x, \mathcal{C})$ 表示在一个表示。

- (i) 若 $\mathcal{S}(x,\mathcal{E}_1) \cap \mathcal{S}(x,\mathcal{E}_2) = \emptyset$, 结论显然。
- (ii) 若 $\mathcal{S}(x, \mathcal{S}_1) \cap \mathcal{S}(x, \mathcal{S}_2) = \mathcal{S}^* = \{a_1, a_2, \cdots, a_n\} \in \emptyset$. 由于 $k \geqslant d_g(x), d_{g_1}(x) + d_{g_2}(x) = d_g(x)$,可得

$$|\mathscr{G}(x, \mathbf{e}_1) \cap \mathscr{G}(x, \mathbf{e}_2) = \mathscr{G}(x, \mathbf{e}_1) + |\mathscr{G}(x, \mathbf{e}_2)|$$
$$-|\mathscr{G}(x, \mathbf{e}_1) \cup \mathscr{G}(x, \mathbf{e}_2)|$$

 $=k-d_{\sigma}(x)+|\mathcal{S}^{*}|>|\mathcal{S}^{*}|=n.$

所以存在 β_1 , β_2 , ..., $\beta_n \in \mathcal{G}(x, \mathscr{C}_1) \cap \mathcal{G}(x, \mathscr{C}_2)$. 在 G_1 中, β_n 色边改着 d_1 色, d_1 色边改着 β_n 色(i=1, 2, ..., n),则得 G_1 的另一%—边正常着色法 \mathscr{C}' ,且

 $\mathscr{S}(x, \mathscr{C}'_1) \cap \mathscr{S}(x, \mathscr{C}_2) = \emptyset$

由(i)知, G为 k-边可着色的。

6.2 Vizing 定 理

定理6.2 (Vizing 定理) 若 G 是单 图, 所 % (G)= Δ 或 Δ+1.

(オッ个頂点的草图 G 来说,若 $\chi'(G) = \Delta(G)$ 則称 G 为第 I 类团,且记 $G \in C'(\nu)$,若 $\chi'(G) = \Delta(G) + 1$,則

称 G 为第 II 类图,且记 $G \in C^2(v)$ 。判定一个 图 属 于何类问定,就是所谓边着色中的分类问题。它是一个未解决的问题,但 P·Erdös 和 R·J·Wilson在《On The Chromatic index of almost all graphs》,J·Comb. Theory(B) 23. 255-257(1977)文中证明了如下结论:

$$\lim_{v \to \infty} \frac{|C^{1}(v)|}{|C^{1}(v) \cup C^{1}(v)|} = 1.$$

6.2.1 找一个边着色的方法,来证明 $\chi'(K_{2n-1}) = \chi' \cdot (K_{2n}) = 2n-1$.

证:利用练习5·1·5(a)中证 K_{2n} 可1-因子化的方法,将它的2n-1个完美匹配找出来,并对每一个完美匹配着以不同的颜色。按定义这种(2n-1)-边着色是正常的,故 $\chi'(K_{2n})$ $\leq 2n-1$.又因为有 $\chi'(K_{2n}) \geq \Delta(K_{2n}) = 2n-1$ 。所以 $\chi'(K_{2n}) = 2n-1$ 。若把 $\chi'(K_{2n-1}) = 2n-1$ 。为例图。且从原来在 $\chi'(K_{2n-1}) = 2n-1$ 。为一方面由于 $\chi'(K_{2n-1}) = 2n-1$ 。为一方面由于 $\chi'(K_{2n-1}) = 2n-1$ 。所以 $\chi'(K_{2n-1}) = 2n-1$ 。所以 $\chi'(K_{2n-1}) = 2n-1$ 。所以 $\chi'(K_{2n-1}) = 2n-1$ 。

6-2-2 证明. 若 G 是非空正则单图, 且 ν 为奇数, 则 $\mathcal{X}'(G) = \Delta + 1$.

证,因为 ν =奇数,故G的任一正常的边着色的每一色类最多是 $\frac{1}{2}(\nu-1)$ 条边,从而 $\frac{1}{2}\chi'(G)(\nu-1)\geqslant \epsilon(G)$,又由于

G 是正则图,从 而 $\varepsilon(G) = \frac{1}{2} \Delta \nu$,故 $\chi'(G) > \Delta$ 。另一方面由 Vizing 定理知 $\chi'(G) \leq \Delta + 1$,故 $\chi'(G) = \Delta + 1$ 。

6.2.3(注)(a) 证明: 若 G 是无环单图, 且 $\nu=2n+1$, $e>n\Delta$, 则 $\chi'(G)=\Delta+1$. (V.G. Vizing)

- (b) 利用(a)证明:
- (i) 若 G 是一个由顶点数为偶数的无环正则单图剖分一边后得到之图,则 $\chi'(G) = \Delta + 1$;
- (ii) 若 G 是一个由无环 k-正则的顶点为奇数个的单图中除去小于 k/2 条边后得到之图,则 $\mathcal{X}'(G) = \Delta + 1$.

(L.W.Beineke 和 R.J.Wilson)

- 〔注〕 单图条件应该要求。若不加这条件,结论不一定成立。如(a)r=3的无环 4-正则图就是一个反例。类似地(b)中亦需加单图条件。否则结论也不一定成立。(b)的反例这儿从略。
- 证。(a)因为 $\nu=2n+1$,故对于 G 的任一个 正 常 的边着色的每一个色类最多含 n 条边。故 Δ 色在 G 的 正 常的边着色中最多仅能着 $n\Delta$ 条边。由 $\varepsilon>n\Delta$,故 $\chi'(G)>\Delta$ 。又由 $Vizing 定理 \chi'(G) \leq \Delta+1$,故 $\chi'(G)=\Delta+1$ 。
- (b) (i)设 $\nu(G)=2n+1$, 由假设 $\varepsilon(G)=\frac{1}{2}\Delta(\nu(G)-1)+1>n\Delta$, 故由(a)知 $\chi'(G)=\Delta+1$.
- (ii) 设 v(G)=2n+1, 若除去的边为 $k_1(\langle k/2\rangle)$ 条,则 $e(G)=vk/2-k_1>kn=\Delta n$ 。故由(a)知, $\chi'(G)=\Delta+1$ 。

(证明完全同于(a)可得。若 G 是无环单 图,且 v=2n, $e>n\Delta$,则 $\chi'(G)=\Delta+1$ 。综合(a)与此可得 命 题。若 G 是无环单图,且 $e>(v/2)\Delta$,则 $\chi'(G)=\Delta+1$ 。)

- 6.2.4 (a)证明, 若 G 是无环图,则存在一个 Δ -正则图 G^* , G 是 G^* 的子图。
- (b)利用(a)和练习 5·2·3(b)证明。假 如 G 无环, Δ 是 偶数,则 χ'(G)≤3 Δ/2。(C.E.Shannon 1949 年证明上。 述不等式,当 Δ 为奇数时也成立。)
- 证: (a) 完全类似于 6·1·3(a) 作图的 方法,可求得这, 里的 G*,且若 G 是单图时, G*亦是单图。详细 的叙述这. 里从略。
- (b)利用(a),存在一个 Δ -正则无环图 G_1 , G 是 G_1 的子图。对 G_1 由练习 5·2·3(b)知,它是可 2- 因 子化的,即它可以分解成 $\Delta/2$ 个 2-因子,而对每一个2-因子最 多用 3 色就可正常的边着色。故对 G_1 可用 $3\Delta/2$ 种颜色正常的边着色,所以对 G_1 的子图 G 有 $\chi'(G) \leq 3\Delta/2$ 。
- 6.2.5 若图 G 中任意两个正常的 k-边着色对 E(G)均导出相同的分划,则称 G 是唯一的 k-边着色的 图。证明每一个唯一的3-边着色的3-正则图是 Hamilton图。

(D.L.Greenwell 和H.V.Kronk)

- 证:由于G是唯一的3-边着色的3-正则图,按定义有正常的3-边着色,从而G上每一顶点三种颜色各出现一次。每一色类恰是G的一匹配。取G中1,2色的边所构成的子图G1,它是G的一个2-因子。若G1不连通,则G1可分成G1,G1两个互不相交的子图。对调G1中1,2色边的颜色,则构成和原来不相同的E(G)的分划,这和G是唯一的3-边着色假定相矛盾。故G1连通,所以G1就是G的一条Hamilton图。
 - 6.2.6 单图 G×H 称为单图 G, H的**乘积**, 其顶点集 • 152 •

合是 $V(G) \times V(H)$, (u, v)和(u', v')相邻的充要条件是: 或者 u=u', $vv' \in E(H)$, 或者 v=v', $uu' \in E(G)$.

- (a) 利用 Vizing 定理 6.2,证明 $\chi'(G \times K_2) = \Delta(G \times K_2)$.
- (b) 若 H 是一个非平凡图,且 $\chi'(H) = \Delta(H)$,则 $\chi'(G \times H) = \Delta(G \times H)$ 。
- 证:(a)显然 $\Delta(G \times K_2) = \Delta(G) + 1$,故 $\chi'(G \times K_2) \gg \Delta(G \times K_2) = \Delta(G) + 1$ 。 下面由 Vizing 定理 $6 \cdot 2$ 知 只 需 分 两 种 情 况来 讨 论。(1) 若 $\chi'(G) = \Delta(G)$ 。 则 用 $\chi'(G)$ 色 $\chi'(G) = \Delta(G)$ 。则 用 $\chi'(G)$ 色 $\chi'(G) = \Delta(G)$ 。则 用 $\chi'(G)$ 色 $\chi'(G) = \Delta(G)$ 。则 用 $\chi'(G)$ 查 $\chi'(G) = \Delta(G) + 1$ 色。这种边着色方法对于 $\chi'(G) = \Delta(G) + 1$ 色。这种边着色方法对于 $\chi'(G) = \Delta(G) + 1$ 则用 $\chi'(G)$ 色对 $\chi'(G) = \Delta(G) + 1$ 则用 $\chi'(G)$ 色对 $\chi'(G) = \Delta(G) + 1$ 是 有 正常的 边着色,且使这两图的对应边着以相同的颜 色。而 $\chi'(G) = \Delta(G) + 1$ 是 有 正常的 边着色,且使这两图的对应边着以相同的颜 色。而 $\chi'(G) = \Delta(G) + 1$ 是 中 $\chi'(G) = \Delta(G) + 1$ 是 中 $\chi'(G) = \Delta(G) + 1$ 是 中 $\chi'(G) = \Delta(G) + 1$ 是 $\chi'(G) =$
- (b) 由定义 $\Delta(G \times H) = \Delta(G) + \Delta(H)$, 故 $\mathcal{X}'(G \times H) \geqslant \Delta(G) + \Delta(H)$ 。另一方面我们 对 $G \times H$ 中 G 的每一个拷贝 $G \times \{v_i\}$, $v_i \in V(H)$,用 1, 2, …, $\mathcal{X}'(G)$ 色对它作正常边着色,且使每一拷贝对应于 G的同一边的边均着以同一色。我们还 用 $\Delta(G) + 1$, $\Delta(G) + 2$,…, $\Delta(G) + 2$

 $\Delta(H)$ 色对 $G \times H$ 中的 H 的每个拷贝 $\{u_2\} \times H$, $u_i \in V(G)$ 进行正常的边着色,由于 $\mathcal{X}'(H) = \Delta(H)$,从而 这种边着 色是可能的。于是下面由 Vizing 定理 $6\cdot 2$ 知只需分两种情况来讨论,(1) 若 $\mathcal{X}'(G) = \Delta(G)$ 时,则上述的边着色是对 $G \times H$ 的正常边着 色,故 此 时 有 $\mathcal{X}'(G \times H) \leq \Delta(G) + \Delta(H)$ 。(2) 若 $\mathcal{X}'(G) = \Delta(G) + 1$ 时,我们在上述边着色的基础上对 $\{u_i\} \times H$ 中着 $\Delta(G) + 1$ 色的边,相应地换成 1 , 2, …, $\Delta(G) + 1$ 色中在 G 中的 u_i 点处不出现的那颜色,其余边着色均不变,最后所得之边着色,显然对 $G \times H$ 是正常的,故此时仍然有 $\mathcal{X}(G \times H) \leq \Delta(G) + \Delta(H)$ 。综合(1)、(2),我 们 有 $\mathcal{X}'(G \times H) \leq \Delta(G) + \Delta(H)$,所以 $\mathcal{X}'(G \times H) = \Delta(G) + \Delta(H)$,所以 $\mathcal{X}'(G \times H) = \Delta(G) + \Delta(H)$ 。

6.2.7 在一个单图 G 上寻找正常的 Δ + 1- 边着色的好。 算法。

解:由定理 6·2 知,对任意单图,存在正常的 Δ + 1-边 着色,且 Δ + 1-边着色是正常的当且仅当它是 最优的。从 而我们作出寻找最优 Δ + 1-边着色的好算法即可。

由引理 6.1.2 知,一个 Δ 十二边 着色,若存在顶点 u和 颜色 i 及 j,使 i 色在 u 不出现,而 j 色在 u 至少两次出现,且 $G(E, \cup E_j)$ 包含 u 的那个分支(记为 $G_{i,j}(u)$)不是一条奇圈,则它不是最优的。这时我们可用引理 6.1.1 中的证明方法得到这个 Δ 十1-边着色的一个改进。改进的方法如下,

若 $G_{i,j}(u)$ 是 Euler 图, 在 $G_{i,j}(u)$ 上使用 Fleury 算法, 得 $G_{i,j}(u)$ 的一个 Euler 环游。

若 $G_{i,j}(\mathbf{u})$ 不是 \mathbf{E} uler图,则用增添一个新顶点并把它和 $G_{i,j}(\mathbf{u})$ 中每个奇度的顶点连以边的方法构造一个 \mathbf{E} uler 图

 $G_{j}^{*}(u)$ 。在 $G_{j}^{*}(u)$ 上使用 Fleury 算法,得 $G_{j}^{*}(u)$ 的一个 Euler 环游。

将上面得到的Euler环游,依各边在环游上的顺序关系交错地着;色和 i 色。 $G_{i,j}(u)$ 上的这样的边着色 与 $G_{i,j}(u)$ 外的原 $\Delta+1$ -边着色一起构成了 G 上的一个改 进 的 $\Delta+1$ -边着色。如果这种改进的着色仍不是最优的,又可重复上述过程,直至得到最优的 $\Delta+1$ -边着色。

算法的具体步骤如下:

第 0 步: $d(v_k) \rightarrow d_k(k=1, \dots, v)$; 任给一个 $\Delta + 1$ -边 着色 $(E_1, E_2, \dots, E_{A+1})$.

第 1 步, $0 \rightarrow c_*(k=1, \dots, \nu)$; $0 \rightarrow q$, $1 \rightarrow s_*$

第 2 步, 令 P=Φ.

第 3 步、若 $E \rightarrow \phi$,任取 $v_*v_* \in E_*$, $P \cup \{r, t\} \rightarrow P_*$ 转第 4 步、否则,转第 5 步。

第 4 步, E , \ {v, v, }→E , 转第 3 步,

第5步: ∀k∈P, 令c*+1→c*.

第 8 步, 若 s < △ + 1, 则 s + 1 → s, 转 第 2 步, 否则, 转第 7 步。

第7步: 若q<v,则q+1→q,转第8步;否则,停。

第8步, 若 $c_0 < d_0$, 则令 $u=v_0$, $\exists i, j$ 色, 使在u上; 色不出现, j色至少出现两次, 找出 $G(E_1 \cup E_j)$ 含 u的分支 $G_{i,j}(u)$, 转第9步, 否则, 转第7步。

第 9 步, 若 G,,(a) 是 Euler 图, 在 G,,(a) 上使用 Fleury 算法, 求 G,,(a)上的一个 Euler 环游。转第11步。

第 10 步, 增添新顶点, 构造 Euler 图 G*,(u), 并在 G*,(u)上使用 Fleury 算法, 求 G*,(u)上的一个 Euler 环

游。转第11步。

第 11 步、将 Euler 环游上的边依序排好,次序为奇数 (偶数)且属于 $G_{i,j}(u)$ 的边集记为 $E'_{i}(E'_{j})$,令 $(E_{i}\setminus E(G_{i,j}(u)))$ $\bigcup E'_{i}\to E_{i,j}(E_{j}\setminus E(G_{i,j}(u)))$ $\bigcup E'_{j}\to E_{j,j}$, $\forall h \approx i,j$, $E_{i}\to E_{i,j}$ 转第 1 步。

算法的第1步至第8步是判断 $\Delta+1$ -边着色是否为最优 $\Delta+1$ -边着色,这里主要是算各顶点出现的不同的颜色数 $c_*(k=1,\cdots,\nu)$,其运算次数 不超过 $\left(3\binom{\nu}{2}+\nu\right)(\Delta+1)$ 。 第8步中构作 $G_{*,*}(a)$ 的运算次数不超过 $e\nu$,第9步 至第11步是改进 $\Delta+1$ -边着色,其中主要 是 Fleury 算法,已知它是好算法。且改进的循环次数不会超过28。因而算法是好的。

6.2.8 证明, 若 G 是 δ>1 的单图,则对 G 存 在一种 (δ-1)-边着色,使 G 的每一个顶点均出现(δ-1)种颜色。 (R.P.Gupta)

点处出现一次。考察 v_* ,因为 $d(v_*) \geqslant \delta > \delta - 1$,故 在 v_* 点 处存在: 色重复出现。设由 v, 经; 色边所到达之顶点集合 V_{s+1} 中,若存在 $v_{s+1}' \in V_{s+1}$,它被 i_s 色重复出现,现将 8中v₂v≤+1 边改着i(-1 色, v₂v₂+1'边改着i₂-1 色, 其余 ·边着色不变,最后所得的新的(6-1)-边着 色 记为8°,,显然 $C_k(v_i) = C(v_i) + 1, C_k(v_j) \geqslant C(v_j) (j = 2, \dots, k), C_k(v_{k+1}')$ $\geq C(v_{k+1}')$,其余顶点 C(v)不变,于是 $\sum_{v \in V} C_{\nu}(v) > \sum_{v \in V} C(v)$, 这仍和《是最优的相矛盾,故》,,,,中任一顶点,,,,,均出现一 次,从而具有上述性质的点列和色列均可以无限制地延续下 去,但因为仅有6-1个颜色,因而在色列;1,12,111,13,13+1,111 i_1 , …, 中必存在最小的正整数偶 h_{i_1} $h < l_{i_2}$ 使 $i_2 = i_2$, 对应的点列为 01,02,…,02,04+1,…,02,…,其 中 0,10,+1 边 着;色、且在ャ。点处;。色重复出现,在ャリャュ点处;色只 出现一次。现在分的基础上,重新着色如下。 2/2/+1 边改 着 i_{j-1} 色 $(j=1, 2, \dots, h)$, 其它边着色不变。此时 v_1 点 处多了一个:0色,而 ++1点处少出现一了个:4色,因而新着 色仍是一个 $(\delta-1)$ -最优边着色记为 \mathscr{E}' 、对 \mathscr{E}' 而言,在 v_{s+1} 点 处,缺 i 色,但 i_{n+1} 色重复出现。由引理6.1.2 $G(E', i_n)$ $E'_{(\lambda+1)}$ 中含 $v_{\lambda+1}$ 点的分支是一个寄圈,且此奇圈 恒包含 01+1点。在此奇圈上保持 01+101+2边着色不变,对其它的边 i,和i,+1 互换,所得的新着色记为8°,对8°,在v,+1处 增加一个1,色,而在02+2点处少了一个1,色,否则就和8__ 是最优的相矛盾。因而 \mathscr{E} "仍为 $(\delta-1)$ -最优边着色。对 \mathscr{E} "而 育,由引理 6.1.2, G(E", UE",,,,)中含 9,42点的分支

为一奇圈,又在此奇圈上,保持 $v_{A+2}v_{A+3}$ 边的着色不变,仍为 i_{A+2} 色,其余之边交换 i_{A} 、 i_{A+2} 色,所得的新的边着色类似上述证明仍是最优的,且在 v_{A+2} 点处增加了 i_{A} 色,在 v_{A+3} 点处少了一个 i_{A} 色,依次类推,可一直作下去,且每次所得的新着色法均保持最优性不变,直到使 v_{A+1} 点处失去 i_{A} 色时,把边 v_{A+1} 电,所得的新的边着色,在 v_{A+1} 点处增加了 i_{A} 色,所得的新的边着色,在 v_{A+1} 点处增加了 i_{A} 色,在 v_{A+1} 点处少了一个 i_{A+1} 色,从而它仍然是最优的。但在 v_{A} 处, i_{A} 二 i_{A} 色出现 最 少有三次。从而 i_{A} 中 i_{A} 色边和 i_{A+1} 色边的导出子图中含 v_{A} 的分支不可能是奇圈。这和引理 i_{A+1} 色边而得证。

(在李珍睦著的《图论导引》中有较多的边**着**色结果,特别是有

定理12.6 若 $G' = G - \overline{ab}$ 为 k-边可着色的, $k \geqslant d_G(a)$, $k \geqslant d_G(b)$,且对 $\forall x \in N_G$, (a)有

$$d_{\sigma'}(x)+m_{\sigma'}(x, a) \leqslant \begin{cases} k & x \neq b \\ k-1 & x=b \end{cases}$$

则G 也为h-边可着色。其中 $ab \in E(G)$, $N_{a'}(a)$ 表 在 G^* 中与 a 相邻的点集, $m_{a'}(x, a)$ 表 x、a 间的边数。

利用此定理可推得多重图的 Vizing 定理,以及许多重要结果。)

6.2.9 设单图G, $F = \{u | d(u) = \Delta\}$, 若G(F)是森林,则 $G \in C^1$ 。

证:对 8 用数学归纳法。

e=0,1时结论显然成立。设 e=m 时结论成立,现推158。

 $\varepsilon = m + 1$ 时结论也成立。

由于G满足题中条件时,必有 $u \in V(G(F))$,使 $d_{g(F)}(u) \leq 1$ 。考虑G' = G - uv,其中岩 $d_{g(F)}(u) = 0$,取 $uv \in E(G)$,岩 $d_{g(F)}(u) = 1$,取 $uv \in E(G(F))$ 。

若 $\Delta(G') \leq \Delta(G)-1$,则G'为 $\Delta(G)$ -边可着色,由上面括号中的定理 12.6 知,G 也为 $\Delta(G)$ -边可着色,从而 $G \in C^1$:

若 $\Delta(G') = \Delta(G)$, 显然 G'满足题中的条件,且 $e(G') \Rightarrow$ m, 所以 由归纳假设 G'为 $\Delta(G)$ -边可着色。再由定理12.6 知 G 也为 $\Delta(G)$ -边可着色,从而 $G \in C^1$ 。

综合上面论证得 $G \in C^1$ 。

(关于边着色的进一步知识,可参阅 S. Fiorini and R. J. Wilson (Edge-colouring of graphs) 1978.)

6.3 时间表问题

定理6.3 若 G 是2-部图,且 $p \ge \Delta$,则 G 中存在 p 个不相交的 匹 配 M_1 , M_2 , …, M_p 使得 $E = M_1 \cup M_2 \cup \cdots$ $\cup M_p$,且对 $1 \le i \le p$ 均 有 $\{e/p\} \le M_p | \le \{e/p\}$ 。

票,若有 6 种课程被安排在 p 节课的时间表内,则一节 课平均 讲 8/p种课程,且至少需要 {8/p} 个教室。

6.3.1 在一个学校中,有7个教师和12个班。在每周进行5天教学的条件下,教课的要求由下列矩阵给出

其中 $p_{i,j}$ 是教师 X_i 必须教 Y_j 班的节数。试问:

- (a) 一天分成几节课,才能满足所提的要求?
- (b) 若安排出每天8节课的时间表,需要多少间数室? f(x) 设由矩阵f(x) 对应的2-部图为f(x) 我们有。f(x) = $d(X_1)=d(X_4)=d(X_4)=35; d(X_1)=32; d(X_5)=$ $d(X_7)=34$, |V(G)|=19, |E(G)|=240.
- (a) $\Delta = 35$, 由定理 $6 \cdot 1$, G 有 35 个不相交的匹配。所以,一天分成7(7=35/5)节课就可以完成教学任务。
- (b) 由定理 6.3 的系有 240/(5×8)=6, 知 在每天 8 节 的时间表下,需要8间教堂。

- 160 ·

第七章 独立集和团

7.1 独 立 集

定义。V(G)的子集S 称为G的独立集,当且仅当S 中的任意两点均不相邻,若G中不存在独立集S',使 |S'| > |S|,则称S 是 G中的最大独立集。 $S(\subseteq V)$ 称G 的覆盖集当且仅当G 中的任一边至少有一端点在S 中。若 G中 不存在覆盖集S',使得 |S'| < |S|,则称S为最小覆盖集。类似可 定义边独立集(匹配)和边覆盖集,这里从略。

定义,G的最大独立集的顶点数称为独立数,记为 $\alpha(G)$,G的最大边独立集的边数称为边独立数,记为 $\alpha'(G)$,G的最小覆盖的顶点数称为覆盖数,记为 $\beta(G)$,G的最小边覆盖的边数称为边覆盖数,记为 $\beta'(G)$ 。

定理7.1 $S \subseteq V$ 是G的独立集的充要条件是 $V \setminus S \in G$ 的 覆盖。

聚7.1 $\alpha+\beta=\nu$ 。

定理7.2(T.Gallai) 若 $\delta > 0$,则 $\alpha' + \beta' = \nu$ 。

定理7.3 2-部图 G, 若 δ>0 , 则 α=β'.

7.1.1 (a) 证明,G 是2-部图的充要条件是对G 中任意子图 H,成立 $\alpha(H) \geqslant \frac{1}{2} \nu(H)$ 。

- (b) 证明。G 是2-部图的充要条件是对G的任意子图H, $\delta(H)>0$,成立 $\alpha(H)=\beta'(H)$ 。
- 证: (a) ⇒: 由于G 是2-部图,从而它的子图H 亦是 2-部图,显然2-部图顶点分划(X,Y)中的 X,Y 均是2-部图的独立集,故 $\alpha(H) \ge \max\{|X(H)|,|Y(H)|\} \ge \nu(H)/2$.
- ←: 用反证法。若G 不是2-部图,则 G含有奇圈H。H 是G 的子图,但 $\alpha(H) = \frac{1}{2}(\nu(H) 1) < \frac{1}{2}\nu(H)$,这 和 假设矛盾。故 G是2-部图。
- (b)⇒,由于H仍为2-部图,且 $\delta(H)>0$,则由定理7.3, $\alpha(H)=\beta'(H)$.

 \leftarrow . 用反证法、若G含奇圈H,对G的子图H,我们有 $a(H) < \beta'(H)$,这和假设矛盾。所以G是2-部图。

7.1.2 一个图 G是 α **一花界的**,是指任意的 e \in E(G),均有 $\alpha(G-e)$ > $\alpha(G)$ 成立。

证明,连通的a-临界图无割点。

征:因α-临界图是无环的,故我们只要证明连通的有 割点的无环图是非α-临界的即可!

设G是连通的有割点w的无环图,由割点定义可分 E(G),为 E_1 、 E_2 使得 G_1 = $G(E_1)$, G_2 = $G(E_2)$,以w 为唯一的公共交点。设 $E_1^*(k=1, 2)$ 是 G_2 中与 如关联的边境。由于G 连通, E_1^* 非空。下面分两种情况给以证明:

(1) G的一切最大独立集S均不含w时,若有 $e_1=wu\in E_1^w$ 使得 $\alpha(G-e_1)>\alpha(G)$,且设S'是 $G-e_1$ 的一个最大独立集,当然 $|S'|=\alpha(G-e_1)>\alpha(G)$ 。则S'必含w和u,否则,S'不含w或u,S'是G的独立集,但 $|S'|>\alpha(G)$,矛盾1于是,

 $S''=S'\setminus\{u\}$ 是G 的独立集,且 $|S''|=|S'\setminus\{u\}|\geqslant a(G)$,从而 S''是G 的含 w 的最大独立集,与条件矛盾 1 故对一切 $e_1\in E''$ 均有 $a(G-e_1)=a(G)$,G 非a-临界。

(2) G 有最大独立集S, 使 $w \in S$ 时, 令 $S_1 = S \cap V(G_1)$, $S_2 = S \cap V(G_2)$.

显然, S_* 是 G_* 的最大独立集,否则,与 S 是 G 的最大独立集矛盾! 又 $\alpha(G) = |S| = |S_1| + |S_2| - 1$ 。这时,若有 $\alpha_1 \in E_1^w$, $e_2 \in E_2^w$,使得 $\alpha(G_1 - e_1) > \alpha(G_1)$, $\alpha(G_2 - e_2) > e(G_2)$,设 S_*' 是 $G_* - e_*$ 的最大独立集。当然 $|S_2'| - 1 = \alpha(G_* - e_*) - 1 \ge \alpha(G_*)$,令 $S' = (S_1' \cup S_2') \setminus \{w\}$,则 $S' \in G$ 的独立集,且

 $||S'|| \ge |S_1'| + |S_2'| - 2 \ge \alpha(G_1) + \alpha(G_2)$

 $e = |S_1| + |S_2| > |S_1| + |S_2| - 1 = a(G)$,矛盾!所以,要么 $\forall e_1 \in E_1^w$ 有 $a(G_1 - e_1) = a(G_1)$,要么 $\forall e_2 \in E_2^w$ 有 $a(G_2 - e_2) = a(G_2)$ 。不妨设后者成立,则 $S_2 \ge G_2 - e_2$ 的 最大独立集。于是, $S = S_1 \cup S_2 \ge G - e_2$ 的最大独立集, $\alpha(G - e_2) = |S| = a(G)$,故 G = a - a。

另证:由系 7.1知, G 是a-临界图必然也是 β 临界图, 于是利用练习 7.1.3(a)本命题成立。

- 7.1.3 若对任意的 $e \in E(G)$ 均有 $\beta(G-e) < \beta(G)$ 则称 . G 为 β -临界圈。证明:
 - (a) 连通 β -临界图无割点:
 - (b) 若 G连通,则 $\beta \leqslant \frac{1}{2}(\varepsilon+1)$.

E: (a) 若G 存在割点 $w \in V(G)$, 如图所示, $J \in H$ 是 以w 相连的G 的两部分,令 $M \in G - x - y$ 的最小 覆 盖,则

 $M \cup \{w\}$ 是G的覆盖,故 $\beta(G-x-y)+1 \geqslant \beta(G) > \beta(G-x)$

7,1,3 图

-y),所以 $\beta(G)=\beta(G-x-y)+1$,同理由 $\beta(G)>\beta(G-x-y)+1$,同理由 $\beta(G)>\beta(G-x-y)$,于是有 $\beta(G-x)=\beta(G-x-y)$,于是有 $\beta(G-x)=\beta(G-x-y)$ 。对于 $\beta(G-x-y)$ 。对于 $\beta(G-x)=\beta(G-x-y)$ 的最小覆盖分别记为 $\beta(G-x-y)$

 M_{v} 。今若存在 $N \subset V(J)$ 是J的覆盖,且 $|N| < |M_{x} \cap V(J)|$,由于 $W = N \cup \{M_{x} \cap V(H)\} \cup \{w\}$ 是G的 覆盖,于是 β $(G) \leq |W| \leq |N| + 1 + |M_{x} \cap V(H)| \leq |M_{x} \cap V(J)| + |M_{x} \cap V(H)| = |M_{x}| = \beta(G-x)$,这和 G是 β -临界相矛盾。从而知 $|N| \geq |M_{x} \cap V(J)|$,即 $M_{x} \cap V(J)$ 是J 的最小覆盖。又 $(M_{v} \cap V(J)| \cup \{w\}$ 也是J 的覆盖,从而有 $M_{x} \cap V(J)| \cup \{w\}$ 也是J 的覆盖,从而有 $M_{x} \cap V(J)| \cup \{M_{v} \cap V(J)\}$,显然R是G 的覆盖,从而有 $\beta(G) \leq |M_{x} \cap V(J)| + |M_{v} \cap V(H)| \leq |M_{v} \cap V(J)| + 1 + |M_{v} \cap V(H)| = |M_{v}| + 1 = \beta$ (G-y)+1,所以有 $M_{x} \cap V(J)| = |M_{v} \cap V(J)| + 1$ 。下面令 $R' = (M_{v} \cap V(J)) \cup (M_{x} \cap V(H))$,它是G-x-y的一个覆盖,故有 $\beta(G-x-y) \leq |M_{v} \cap V(J)| + |M_{x} \cap V(H)| < |M_{x} \cap V(J)| + |M_{x} \cap V(H)| = |M_{x}| = \beta(G-x)$,这与 $\beta(G-x-y) = \beta(G-x)$ 矛盾,故G不存在割点。

另证:由系 7.1 知,G 是 β ~临界当且仅当 G是 α ~临界,再由练习 7.1.2 知,G 无割点。

(b) 用归纳法证明。ε=1 时,结论显然成立。设ε<k时,结论均成立。现设ε(G)=k,考虑G中的最长路μ。记为υ₁
 Φ₂····υ₂。令G₂=G-υ₂,若G₂连通,由于ε(G₂)≪k-2=ε

(G)—2,故由归纳法假设 $\beta(G_2) \leq \frac{1}{2}(\epsilon(G_2)+1)$;又由定义有 $\beta(G) \leq \beta(G_2) \leq +1 \leq \frac{1}{2}(\epsilon(G_2)+3) \leq \frac{1}{2}(\epsilon(G_2)+1)$ 。若 G_2 不连通,设 G_2 含有两个非平凡分支 $G_2(1)$, $G_2(n)$,且不失一般性可假定 $v_n \in G_2(n)$, $v_0v_1 \in E(G_2(1))$,于是 G 中存在路 $v_0v_1v_2\cdots v_n$,它比 μ_n 更长,矛盾,故 G_2 中至多仅能含有一个非平凡分支 $G_2(n)$ 。显然有 $\epsilon(G_2(n)) \leq k-2=\epsilon(G)$ 一2,由归纳法假设 $\beta(G_2(n)) \leq \frac{1}{2}(\epsilon(G_2(n)+1)$,又 $G_2(n)$ 中的点覆盖再加上 v_2 ,就构成G 中的点覆盖,故 $\beta(G) \leq \beta(G_2(n)) +1 \leq \frac{1}{2}(\epsilon(G_2(n))+3) \leq \frac{1}{2}(\epsilon(G)+1)$,所以,不论 G_2 连通与否,结论均成立。

7.2 Ramsey定理

定义、V(G)中的子集S,若G(S)是完全图,则称S是单图G的团。

显然S 是G 的团的充要条件是S是G°的独立集。

定义,对任给的正整数对k, l, 称满足如下性质的最小正整数n(记为r(k, l))为Romsey数,若任意的n个顶点的单图G中或含 K_k 子图(即 k团)或含l个顶点的独立集。

定义,对任意的正整数列 k_1, k_2, \dots, k_m ,称满足如下性质的最小正整数 n 记为 $r(k_1, k_2, \dots, k_m)$ 为广义的Rom-sey 数,若对 K_n 的任意 m边着色的边分划(E_1, E_2, \dots, E_m)中,包存在某个 $i(1 \le i \le m)$, K_n (E_i) 中包含 K_n 子图。

定理7.4 对任意的整数对 $k \ge 2$, $l \ge 2$, 总成立r(k, l) $\le r(k-1, l)+r(k, l-1)$.

定理7.5
$$r(k,l) \leqslant {k+l-2 \choose k-1}$$
。

定理7.6(P.Erdős) $r(k, k) \ge 2^{k/2}$.

定理7.7 $r(k_1, k_2, \dots, k_m) \leq r(k_1-1, k_2, \dots, k_m) + \dots$ + $r(k_1, k_2, \dots, k_m-1)-m+2$.

聚7.7 $r(k_1+1, k_2+1, \dots, k_m+1) \leq \frac{(k_1+\dots+k_m)}{k_1!k_2!\dots k_m!}$

定义: r(h, l)-1 个顶点的单图 G, 若它既不含 K, 子图, 又不含 l 个顶点的独立集, 称 G为(k, l)-Romsey数。

7.2.1 证明,对一切的 $k, l, k \geq r(k, l) = r(l, k)$.

证:由于若G含有 K_k 子图,则G°含有 k个顶点的独立集;若G含有 l个顶点的独立集,则G°含有 K_1 子图。故由Ramsey 数定义,成立 r(k, l) = r(l, k)。

7.2.2 证明定理7.7和系7.7。

证,定理7.7的证明,令 $n=r(k_1-1,k_2,\cdots,k_m)+r(k_1,k_2-1,\cdots,k_m)+r(k_1,k_2,\cdots,k_m-1)-m+2$,任取一个 K_* 的m—边着色,其色类的边分划为 (E_1,E_2,\cdots,E_m) ,在 K_* 中任取一顶点 $v\in V(K_*)$,设与v关联的边中着以,色的边数

记为 r_* , 显然有 $r_1+r_*+\cdots+r_m=dx_*(v)=n-1=[r(k_1-1,k_1,\cdots,k_m)-1]+\cdots+[r(k_1,k_2,\cdots,k_m-1)-1]+1$, 故恒存在某个 $j(1\leq j\leq m)$, 满足 $r_j\geq r$ ($k_1,\cdots,k_{j-1},k_{j-1},k_{j-1}$, k_1,\cdots,k_m)。考虑 K_n 中的子图 K_r , 它的顶点在 K_n 中和v关联的边均为j色,且 K_r ,上的m—边着色保持了它作为 K_n 子图的m—边着色。由 $r(k_1,\cdots,k_{j-1},k_{j-1},k_{j+1},\cdots,k_m)$ 的定义,当 $i\neq j$ 时,若在 K_r ,中存在着以i色的 K_n ,于图,则这 K_n ,也是在上述 K_n 的m—边着色中着以i色的 K_n ,子图。反之则在 K_r ,中存在者以j色的 K_n ,一1的子图。于是 K_n ,一1 $V\{v\}=K_n$,是上述 K_n 的m—边着色中着以j色的子图。综合上述,由广义的 K_n

聚7.7的证明,用归纳法对 $k=k_1+k_2+\cdots+k_m$,加以证明。易知 $\tau(1, 1, \cdots, 1)=1 \le \frac{0!}{0!\cdots 0!}$ 。今设 $k'=k'_1+k'_2+\cdots+k'_m < k_1+k_2+\cdots+k_m=k$,且 $k'_i \le k_i (i=1, 2, \cdots, m)$ 附, $\tau(k'_1+1, k'_2+1, \cdots, k'_m+1) \le \frac{(k'_1+k'_2+\cdots+k'_m)!}{k'_1!}$ 成立。于是 $\tau(k_1+1, k_2+1, \cdots, k_m+1) \le \tau(k_1, k_2+1, \cdots, k_m+1)+\tau(k_1+1, k_2, k_2+1, \cdots, k_m+1)+\cdots+\tau(k_1+1, \cdots, k_{m-1}+1, k_m) \le \frac{(k_1+\cdots+k_m-1)!}{(k_1-1)!}+\cdots + \frac{(k_1+\cdots+k_m-1)!}{k_1!}\cdots + \frac{(k_1+\cdots+$

7.2.3 令 r.表示所有k,均为 3 的Ramsey 数 r(k1,k2, ---,k,).

(a) 证明, $r_n \leq n(r_{n-1}-1)+2$.

- (b) 注意到 r₂=6, 利用(a), 证明: r_π≤[n! e]+1...
- (c) 推导 $r_8 \le 17$ 。(R.E. Greenwood 和A.M.Gleason, 1955证明了 $r_3 = 17$ 。)

证:(a) 对 $K_{r_{n-1}}$ 进行n-边着色,其色类边分划为(E_1 , E_2 , …, E_n)。若 1 色出现,则显然 E_1 的导出子图中含有 K_2 ; 若 1 色不出现,则此时是(n-1)-边着色,按 r_{n-1} 的定义,存在某个 $i(2 \leqslant i \leqslant n)$ 对应的 E_i 的导出子图中含 有 K_3 的子图,故 $r(2, 3, …, 3) \leqslant r_{n-1}$ 。类似地有 $r(3, …, 3, 2, 3, …, 3) \leqslant r_{n-1}$ 。再由定理 $r_n \leqslant r(2, 3, …, 3) \leqslant r_{n-1}$,并 $r(3, 2, 3, …, 3) + \dots + r(3, …, 3, 2) - n + 2 \leqslant nr_{n-1} - n + 2 \leqslant n(r_{n-1}-1) + 2$ 。

(b) 由于 $r_2=6$,直接验证 $r_2 \leq [2] e]+1=6$,故命题 当 n=2 时成立。用归纳法,假如 $r_n \leq [n] e]+1$ 成立。由于 (a), $r_{n+1} \leq (n+1)(r_n-1)+2 \leq (n+1)[n] e]+2=(n+1)[n]$

$$+1) \left[n_{1} \left(1 + \frac{1}{1!} + \dots + \frac{1}{n!} + \frac{\theta}{n \cdot n_{!}} \right) \right] + 2^{|\theta| < 1} (n+1)_{!}$$

$$\left(1 + \frac{1}{1!} + \dots + \frac{1}{n_{!}} \right) + 2; \quad \mathcal{B} - \mathcal{D} \overline{\mathbf{m}}, \left[(n+1)_{1} e \right] = \left[(n+1)_{!} \left(1 + \frac{1}{1!} + \frac{1}{2!} + \dots + \frac{1}{(n+1)_{!}} + \frac{\theta'}{(n+1)(n+1)_{!}} \right) \right]^{|\theta'| < 1} = (n+1)_{!} \cdot \left(1 + \frac{1}{1!} + \frac{1}{2!} + \dots + \frac{1}{(n+1)_{!}} \right) = (n+1)_{!}$$

$$\times \left(1 + \frac{1}{1!} + \dots + \frac{1}{n_{!}} \right) + 1, \quad \text{if } r_{n+1} \leq \left[(n+1)_{!} e \right] + 1.$$

$$(c) \ \dot{\mathbf{m}}(b), \ r_{3} \leq \left[3_{!} e \right] + 1 = 17.$$

7.2.4 单图 G和H的**合成**是一个单图,记为G[H],其 · 168 · 顶点集为 $V(G) \times V(H)$, (u, v)和(u', v')相 邻的 充要条件是 $uu' \in E(G)$ 或 u=u', $vv' \in E(H)$ 。

- (a) 证明 $\alpha(G[H]) \leq \alpha(G)\alpha(H)$;
- (b) 利用(a)证明

$$r(kl+1, kl+1)-1 \ge (r(k+1, k+1)-1) \times (r(l+1, l+1)-1);$$

- (c) 推导 r(2*+1, 2*+1)≥5*+1, , 对一切的 n≥ 0 均或立。 (H.L.Abbott)
- (d) 推导 $r(k^n+1, k^n+1) \ge m^n+1$, 对一切的 $n \ge 0$ 均成立, 其中 r(k+1, k+1) = m+1.

证,(a)设 I_a , I_B 分别记为G和H的某一最大独立集。 G 記拷贝 $G(v_0)$ 为由 $\{(u, v_0)|u\in V(G), v_0\in V(H)$ 中某,一周定顶点》在G [H] 中的诱导子图。若 $v_1v_2\in E(H)$,则由合成定义, $G(v_2)$ 中任一顶点至少和 $\{(u, v_1)|u\in I_a\}$ 中某个顶点相邻,故有 $\alpha(G[v_1v_2])=\alpha(G)$ 。于是G[H]中任一顶点或属于 $\{(u, v)|u\in I_a, v\in I_B\}$,或与其中某一顶点相邻,从而有 $\alpha(G[H]) \leqslant \alpha(G)\alpha(H)$ 。进一步注意到,若u, u': v, v' 分别在G 和H中不相邻,则由定义知 $\{(u,v), (u,v'), (u',v')$ 为是G[H]中的独立集,从而有 $\alpha(G[H]) \geqslant \alpha(G)\alpha(H)$ 。

(注. 这里我们得到的结论比(a)更强。)

(b)取 G为(k+1, k+1)-Ramsey 图,由定义知。 $\alpha(G)$ $\leq k$, $\alpha(G^\circ) \leq k$, 同理取H为(l+1, l+1)-Ramsey 图,有 $\alpha(H) \leq l$, $\alpha(H^\circ) \leq l$ 。由(a)知, $\alpha(G[H]) \leq \alpha(G)\alpha(H) \leq kl$,故G[H]中不含kl+1个顶点的独立集。另一方面由G中

的K,子图及 $vv' \in E(H)$ 知,K,[vv']是 G[H]中的 K,,子图,若 H_1 为v,v'两点构成的空图,由合成的定义,(u,v),(u,v')之间在K。 $[H_1]$ 中没有边相连,故 K, $[H_1]$ 中的极大完全子图仍为K,。利用上面这二结果易知,若K。1(G),K,(H), $(k_1 \leq k, l_1 \leq l)$,分别是G,H中的极大完全图,则K。1(G)[K,1(H)]=K。1(H)中的极大完全图,故G[H]中不存在K。1(H)01(H)1

(c) 由(b)及r(3, 3)=6,于是 $r(2^n+1, 2^n+1)-1 > (r(2+1, 2+1)-1)$ 。

 $(r(2^{n-1}+1, 2^{n-1}+1)-1)=5(r(2^{n-1}+1, 2^{n-1}+1)$ -1), 由归纳法知, $r(2^{n}+1, 2^{n}+1)-1 \ge 5^{n}$, 所以结论成立。

- (b) 证明与(c)相同, 从略。
- 7.2.5 证明,3-圈 C_* 和5-圈 C_* 的联 C_* V C_* 不包含 K_* 子图,但是它的任一个2-边着色均产生单色三角形。
- (J.Folkman 1970年构造出一个顶点数非常大的图,它不包含K.子图,但它的任一2-边着色均产生单色三角形。

证、先证 $C_* \lor C_*$ 中不含 K_* ,由于 $K_* = K_* \lor K_*$,而 C_* 中不含 K_* ,从而推知 $C_* \lor C_*$ 不含 K_* ,虽然如此,但 $C_* \lor C_*$ 的任一个2-边着色含单色三角形。证明如下。

设 $C_s=xyzx$, $C_s=abodea$ 。不妨设 x, y, z 中存 在一点,比如 x, 使 xy, xz 是不同 色的(否则, C_s 是单色三角形)。考虑 x 与 C_s 各点的连边,其中至少有三条边是同色的,不妨设 xa, xb 与 xy 同色,考察边 ya, yb 及 ab 的

着色,易见要么abya是单色三角形,要么xabx(或 xbyx 或 xayx)是单色三角形。

7.2.6 设 G_1 , G_2 , ..., G_n 是单图,称 满足 如下性质的最小正整数 n, 记为 $r(G_1, G_2, ..., G_m)$, 为广义的Romsey 数,若对 K_n 的任意 m-边着色的边分划(E_1 , E_2 , ..., E_n)中,恒存在某 个 i.(1 $\leq i \leq m$), $K_n[E_i]$ 中包含同构于 G_i 的子图。

(a) 若G 是长为 3 的路,H 是4-圈,则r(G,G)=5,r(G,H)=5,r(H,H)=6;

(b) 若T是m个顶点的树,且m-1整除n-1,则 $r(T, K_{1,n})=m+n-1$;

(c) 若T是m个顶点的树,则 $r(T, K_n)=(m-1)(n-1)$ +1. (V.Chvátal)

7.2.8 图

证: (a)我们在图中分别以带点的边和带×的边代 表 着以 1 和 2 色的边,由图(1)知, $r(G,G) \ge 5$, r(G,H) ≥ 5 .

类似习题7.2.1的证明,对任意 G_1 , G_2 图,有 $r(G_1$, G_2)= $r(G_2$, G_1),故对 K_5 进行2-边着色时,不失一般性,存在某一顶点至少有两条关联边着以 1 色,若不存在着 1 色的 G 图,则如图(2)中的带×边必须着以 2 色,但这样一来,又产生了着 2 色的 G 和 H 图。故按定义 $r(G,G) \leq 5$, $r(G,H) \leq 5$ 。所以有 r(G,G) = 5,r(G,H) = 5。

由图(3)知 r(H, H) > 6。另一方面由 r(H, H) 的对称性,不失一般性,假设在 K_0 的2-边着色中,顶点"6"至少有 3 条边着 1 色。若在 K_0 — {6}中,对上述2-边着色,存在着 2 色的 H 子图,则这 H 子图也是上述2-边着色下 K_0 中的着 2 色在 H 子图,反之,若在 K_0 — {6}中不存在着 2-色的 H 子图,子是由 r(G, H) = 5 知,在 K_0 — {6}中一定 存在着 1 色的 G 子图,此时在 K_0 中我们排除 明显 地存在着 1 色的 G 子图,此时在 G 中我们排除 明显 地存在着 1 色的 G 子图,此时在 G 中我们排除 明显 地存在着 1 色的 G 子图,此时在 G 中我们排除 明显 地存在着 1 色的 G 子图,,对于图(4),13必须着 2 色,否则 1623 成为着 1 色的 G 图。14也必须着 2 色,否则 1234 成为着 1 色的 G 图。14也必须着 2 色的 G 图。对于图(5)中的 25,35边;图(6)中的 15,45边,类似讨论均需着以 2 色,但这样一来,图(5)中的 2635,图(6)中的 1645 成为着 2 色的 G 图。综合上述讨论,由定义 G G 个的 1645 成为着 2 色的 G 图。综合上述讨论,由定义 G G 个的 1645 成为着 2 色的 G 图。

(b) 由于 m-1 可整除 n-1, 令 p(m-1)=n-1, G为 每部是 m-1个顶点的完全(p+1)-部图, v(G)=(p+1)(m-1)

- 1)=m+n-2, 显然它不含 $K_{1,n}$, G° 不含 T, 故 $r(T,K_{1,n})$ $\geq r(G)+1=m+n-1$ 。 另一方面对 K_{m+n-1} 的任一2-边着色中,若着 2 色的边构成 G_1 ,则着 1 色的边构成 G_1° 。若 G_1 中不含 $K_{1,n}$ 子图时,则 $\Delta(G_1) \leq n-1$,故 $\delta(G_1^{\circ}) = (m+n-2)-\Delta(G_1) \geq (m+n-2)-(n-1)=m-1$ 。由练习 2.1.11 知, G_1° 中含有T 子图,故由定义 $r(T,K_{1,n}) \leq m+n-1$ 。 于是 $r(T,K_{1,n}) = m+n-1$ 。

(关于Ramsey数的进一步理论,可参阅R.G.Graham, B.L.Rothschild, and J.H.Spencer,《Ramsey Theory ry》Wiley, New York(1980).或参阅J.Graph Theory Vol 7, No1(1983)纪念F.P.Ramsey的专辑。)

7.3 Turan定理

定理7.8 (P.Turán 1941) 若单图G 不含 K_{m+1} , 则存在完全m-部图H, H的度优于G, 即H的不增度序列的各分量均不小于G的不增度序列的相应分量,且当G 和H有相同的度序列时,则 $G \cong H$ 。

定理7.9 若单图G不含 K_{n+1} ,则 $s(G) \leq s(T_{n,n})$,且当 $s(G) = s(T_{n,n})$ 时,则 $G \cong T_{n,n}$ 。

("极图理论"是近年来图论中比较活跃的分支之一,Turran 定理是这一分支的先驱工作。它研究具备某种性质的某一类图,使图的参量达到极值的极图问题。例如练习[1.4.6]。[1.4.7]等均属于它的内容。有关这方面进一步知识,可参阅B.Bollobas《Extremal Groph Theory》, Acad. press (1978))。

7.3.1 在一个九人组成的团体中,有一人认识另外两个人,有两个每人都认识另外四个人,有四个人都认识另外 五个人,剩下来的最后两人每个人认识另外六个人,证明其中有三人是彼此互相认识的。

证、将团体内的每一个人看成图G的顶点,两点相邻的充要条件是对应的两人相互认识。若 G存在,现它的废序列为(6, 6, 5, 5, 5, 5, 4, 4, 2),现多次利用练习1.5.7(4)的结果,我们有(6, 8, 5, 5, 5, 5, 4, 4, 2)…(5, 4, 4, 4, 4, 4, 4, 3, 2)—(3, 3, 3, 3, 3, 3, 2)—(3, 3, 2, 2, 2, 2,)—(2, 2, 2, 1, 1)—(1, 1, 1, 1),由于(1, 1, 1, 1)

是 K_1+K_2 的度序列,故 G 确实存在。计算 $e(G)=\frac{1}{2}(1\times 2+2\times 4+4\times 5+2\times 6)=21$, $e(T_1, e)=20$ 。故由定理 $7\cdot 9$ 知 G中含有 K_2 ,所以结论成立。

7.3.2 某个桥牌俱乐部订了一个特殊的规则,仅当四人中无二人曾经相互做过伙伴才能一起玩,在一次有14个会员参加的集会中,他们每一个均曾已和其它5人做过伙伴,三局以后,按俱乐部规则只能停止,正当他们准备离开时,他们都不认识的一个新会员来了,证明现在至少还有一局可以玩。

证,我们将俱乐部的成员看成 G中的顶点,两点间联以边的充要条件是对应的两成员间未曾做过伙伴。由题意14人共有 $\binom{14}{2}$ =91个配对,每人曾与其它人进行 5 次配对,共 $(14\times5)/2=35$ 次配对,今又进行三局共 6 次配对,故 $\varepsilon(G)=91-35-6=50$,而 $\varepsilon(T_{2,14}=49)$,于是由定理7.9知,在 G中含有 K_{1} 于图,这 K_{2} 中的三顶点对应的三个成员和新来的成员间可以进行一局桥牌游戏。

7.3.3 (a)证明: 若 G是单图且 8>v²/4, 则 G含有 三 角形。

- (b) 找一个 $8 = 9^3/4$ 的单图 G,它不含有三角形。
- (c) 证明, 若G是单图, 但不是 2-部图, 且 e>(v-1)*/4+1, 则 G 含有三角形。
- (d) 找一个非2-部图的单图 G,且 e=[(v-1)²/4]+1, 它不含三角形。 (P.Erdos)

证。(a) 因为
$$s(T_1,...) = \begin{cases} r^2/4 & r = 偶数 \\ (r^2-1)/4 & r = 奇数 \end{cases}$$
 故由定理 7.9 知,结论成立。

- (b) 取 $G=T_2$,,即可。

 $d\cdots bv$ 、 $b\cdots e\cdots cv$ 、 $c\cdots f\cdots av$ 圈的长度均小于m,且这三个圈中至少有一个是奇圈,这和C 的取法矛盾。其次V(C)顶点间除C 上之边外不可能再有其它之边。否则它又和C 的取法相矛盾。令 $G_1=G-V(C)$,故 $s(G_1) \ge (\nu-1)^2/4$

7.3.3 图 $+2-2(\nu-m)-m>(\nu-m)^2/4=$ $(\nu(G_1))^2/4$ 。由(a)知, G_1 含有三角形,这和假设矛盾。从而G含有三角形。

- (d) 当>>5,将 $T_{2,*-1}$ 的一条边重分所得之图显然不含三角形,再由(a)知边数满足要求。但><4时不存在满足要求的图。
- 7.3.4 (a) 证明: 若G是单图,且 $\sum_{v \in V(a)} \binom{d(v)}{2} > (m$ $-1) \binom{v}{2}, \quad \text{则 } G$ 含有 $K_{2,m}(m \ge 2)$.
 - (b) 证明, 若 G是单图,且ε>(m-1)^{1/2}ν^{8/2}/2+ν/4,

 176 •

则 G含有K_{2,m} (m≥2)。

(c) 证明,在平面上任意给定的n个点,两点间距离恰为 1 的点对对数最多是 $\frac{n^{3/2}}{\sqrt{2}} + \frac{n}{4}$ 。

证。(a) 考虑如下形式的向量 $(v_0,(v',v''))$,其中 v_0v' , $v_0v'' \in E(G)$, 于是这种向量在G中的个数为 $\sum_{v} \binom{d(v)}{2}$,且在G中恒存在一对顶点v',v'',以(v',v'')为 分量的向量个数≥m。事实上,假如不然,则G的这种形式 的向量个数最多有(m-1) $\binom{v}{2}$ 个,但这与 $\sum_{v \in v} \binom{d(v)}{2}$ > (m-1) $\binom{v}{2}$ 相矛盾。现任取以(v',v'') 为分量的m个向量 $(v_i, (v', v''))(i=1, 2, ...,m)$, 于是 $\{v_i, v', v_i, v'', i=1, ..., v''\}$ 2, ···, m}在G中的导出子图即为 $K_{2,m}$ 。故G中含有 $K_{2,m}$ 。 (b) 在 ϵ 固定的条件下, 将 d(v) 看 成连续 变 量; 用 Lagrange 乘数法, 求条件极值, 易知当所有的d(v) $=\frac{2\varepsilon}{v}$ 时, $\sum_{v\in v} {d(v) \choose 2}$ 达到极小值,故 $\sum_{v\in v} {d(v) \choose 2} \geqslant \varepsilon \left(\frac{2\varepsilon}{v} - 1\right)$ 。 另一方面,由假设 $e > \frac{1}{2} (m-1)^{1/2} v^{3/2} + \frac{v}{4} \ge \frac{1}{4} \left\{ v + \frac{v}{4} \right\}$ $\sqrt{v^2+4(m-1)v^2(v-1)}$, $m \ge 2$ 时, 推出不等式 $4e^2-2ve$ $-(m-1)v^2(v-1)>0$ 成立,即 $e\left(\frac{2e}{v}-1\right)>(m-1)\left(\frac{v}{2}\right)$ 。 故有 $\sum_{v \in V} {d(v) \choose 2} > (m-1) {v \choose 2}$. 于是由(a)知, G含 有 K2.m.

(c) 将任取的平面上的 n 个点看作 G 的顶点,两顶点间连以边的充要条件是两点间距离为 1 ,则 G 是单图。且因 为平面上一点 v_0 到另外三点的距离均为 1 时,则这三点必须在以 v_0 为心的单位面周上。因两个不同的圆最多只有两个 交点,从而 G 中不可能含有 K_2 ,。今若 $s(G) > \frac{n^{2/2}}{\sqrt{2}} + \frac{n}{4}$,则由 (b) 知, G 中必含 K_2 ,。,矛盾。故 $s(G) \le \frac{n^{3/2}}{\sqrt{2}} + \frac{n}{4}$ 。即平面上 n 个点,两点间距离恰为 1 的点对对数最多是 $\frac{n^{3/2}}{\sqrt{2}} + \frac{n}{4}$ 。即平面上 n 个点,两点间距离恰为 1 的点对对数最多是 $\frac{n^{3/2}}{\sqrt{2}} + \frac{n}{4}$ 。

7.3.6 证明,若G是单图,且 $s>\frac{1}{2}$ $\{(m-1)^{1/m} y^{2-1/m} + (m-1)y\}$ 时,则G含有 $K_{m,m}$.

证,由于 $s > \frac{1}{2} \{ (m-1)^{1/m} v^{2-1/m} + (m-1) v \}$,故有 $\frac{2s}{v} > (m-1)^{1/m} v^{1-1/m} + (m-1) \cdot \text{即} \frac{2s}{v} - m + 1 > (m-1)^{1/m} \cdot \text{p} \frac{2s}{v} - m + 1 > (m-1)^{1/m} \cdot \text{p} \frac{2s}{v} - m + 1 > (m-1)^{1/m} \cdot \text{p} \frac{2s}{v} - m + 1 = m + 1$

连续变量,用 Lagrange乘数法,求条件极值,易知当所有 的 $d(v) = \frac{2s}{v} = d$ 时 , $\sum_{v} {d(v) \choose v}$ 达到极小值,故 $\sum_{v \in V} {d(v) \choose v}$ $> \nu \binom{d}{m} > (m-1) \binom{\nu}{m}$.下面我们完全类似于练习7.3.4(a) 的证明,考虑如下形式的向量(v_0 ,($v^{(1)}$, $v^{(2)}$,…, $v^{(n)}$)),其中 $v_0v^{(1)}, v_0v^{(1)}, \cdots, v_0v^{(m)} \in E(G)$,于是这种向量在G中的个 数为 $\sum_{v \in V} {d(v) \choose m}$,且在G中恒存在m个顶点 $v^{(1)}, v^{(2)}, \cdots$, **^(m),以(v⁽¹⁾,v⁽²⁾, ···,v^(m))为分量的向量个数 ≥m,事实 上假如不然,则 G的向量个数最多有(m-1) $\binom{\nu}{m}$ 个,但这 与上面导出的 $\sum_{v} {d(v) \choose m} > (m-1) {v \choose m}$ 相矛盾。现取 以(v(1), v(1), ···,v(1)) 为分量的 m个向量 (v,, (v(1), v(2), $w_1 v^{(m)}$, $i=1, 2, \cdots, m$ }在 G中的导出子图即为 $K_{m,m}$, 故 G中含有化和,和

7.4 Schur定理 .

定理7·10 设(S_1, S_2, \dots, S_n)是整数集合 $\{1, 2, \dots, r_n\}$ 的任意一个分划,其中 r_n 是练习7·2·3中定义的 Ramsey数; 则对某一个i, S_n 中存在三个整数 x_n ,y和 z , 淌 足 方程, x+y=z 。

7.4.1 证明, s₁=2; s₂=5; s₄=14(这里s₄表示满足下•179•

列条件的最小整数,把 $\{1, 2, \dots, s_n\}$ 分成 n个子集的任意婚分中,总存在一个子集包含方程 x+y=z的解,其中 x,y, z 是整数,但可以相同)。

证. 集合 $\{1\}$ 无方程的解,故 $s_1 \ge 2$,集合 $\{1, 2\}$ 有方程的解,得 $s_1 \le 2$,因而 $s_1 = 2$ 。

集合 $\{1, 2, 3, 4\}$ 的2分划。($\{1, 4\}, \{2, 3\}$),它的两个子集均不含方程的解。故 $s_2 \ge 5$;考察集合 $\{1, 2, 3, 4, 5\}$ 的2分划。因 $s_1 = 2$,故其中1,2在一子集中的分划必含方程的解,只需考察1,2分在不同子集的分划。($\{1\}, \{2\}$),将3加进去得($\{1, 3\}, \{2\}$)与($\{1\}, \{2, 3\}$),均无方程之解,又加进4,前者成($\{1, 3, 4\}, \{2\}$),($\{1, 3\}, \{2, 4\}$)。后者成($\{1\}, \{2, 3, 4\}$),($\{1, 4\}, \{2, 3\}$),只有最后一种无方程的解,但将5加进后,也有解。故 $s_2 = 5$ 。

由书中本节开头例子知, $s_a>13$,进一步考察 $\{1,2,\cdots,14\}$ 的任意 3分划。因 $s_2=5$,故将1,2,3,4,5分在两个子集中的分划,有方程之解。此外,若1,2;2,4;1,3,4;2,3,5;1,4,5分在一个子集者也有方程之解。因而,只需考察如下11种情况。

({1}, {2}, {3, 4, 5}), ({1}, {2, 3}, {4,5}), ({1}, {2, 5}, {3, 4}), ({2}, {4}, {1, 3, 5}), ({2}, {1,3}, {4,5})), ({2}, {1, 4}, {3, 5}), ({2}, {1, 5}, {3,4}), ({3}, {1, 4}, {2, 5}), ({4}, {1, 3}, {2, 5}), ({4}, {1, 5}, {2, 3}), ({5}, {1, 4}, {2, 3}).

对上述各种情况,逐个加入 6 —14的各数,可证任一 3: 划分都有方程之解。故 $s_8=14$ 。

_ 7.4.2 (a)证明, s_{*}≥3s_{*-1}-1, n为≥2的自然数.

(b) 利用(a)的结果和 sa=14, 证明;

$$s_n \geqslant \frac{1}{2}(3^n+1)$$
.

(1966年 H.L.Abbott 和 L.Moser 在 Acta Arith(E) 已得到它的一个更好的下界)。

证.由 s_{n-1} 定义知,总可找到 $\{1, 2, \dots, s_{n-1}-1\}$ 的一个 n-1 分划 $\{P_1, P_2, \dots, P_{n-1}\}$ 使得每一个 P_n 内没有方程的解。下面我们构造 $\{1, 2, \dots, 3s_{n-1}-2\}$ 的一个 n-1 分划如下。

$$\bar{P}_{k} = \{a_{i}, b_{i} \mid a_{i} \in P_{k}, a_{i} + b_{i} = 3s_{n-1} - 1\}, \\
(k=1,2,\dots,n-1)$$

$$\bar{P}_n = \{s_{n-1}, \dots, 2s_{n-1} - 1\}$$

下面我们证明这个 n 分划各子集无方程之解:

因 $2s_{n-1} > 2s_{n-1} - 1$, 故 P_n 中无方程的解。

对 $P_k(k < n)$, 设 a_i , a_j , b_i , $b_j \in P_k$, 由 P_k 构造知 a_i , a_j , $\in P_k$ 且 $a_i + b_i = a_j + b_j = 3s_{n-1} - 1$.

- (1) 当 $a_i + a_j \ge s_{n-1}$ 时,因 a_i , $a_j \in P_n$ 有 $a_i + a_j \le 2s_{n-1} 2$ 故 $a_i + a_j \in P_n$ 。
- (2) 当 $a_1 + a_2 < s_{n-1}$ 时,因 P_n 内无方程的 解, 所 以 $a_1 + a_2 \in P_n$.
- (3) $b_i + b_j \ge 4s_{n-1} \ge 3s_{n-1} + s_1 > 3s_{n-1} 2故b_i + b_j \in P_{n+1}$
- (4) $a_i + b_i = a_i + 3s_{n-1} 1 a_i = 3s_{n-1} 1 + (a_i a_i)$,
- ② 若 a_j-a_i<0, 因(a_j+b_i)+(a_i-a_j)=3s_{n-1}-1 知, 若a_j+b_i∈P_k,则a_i-a_j∈P_k,再由 a_j+(a_i-a_j)=a_k 推出P_k中有方程的解,矛盾!故 a_j+b_i∈P_k。

综上所述 P_s(k<n) 中也无方程之解。故 而 ≈_s≥3s_{s-1}-1。

(b) 当 n=2,3 时,由练习 7.4.1 结果直接验 证不等 式成立。今假定 n=k 时,不等式成立,则当 n=k+1 时,由 (a) 知, $s_{s+1} \ge 3s_s - 1 \ge 3 \cdot \frac{1}{2} (3^s + 1) - 1 = \frac{1}{2} (3^{s+1} + 1)$,从而由归纳法,不等式成立。

7.5 一个几何问题

定理7.11 若 $\{x_1, x_2, \dots, x_n\}$ 是平面上直径为1的点集。那么,距离大于 $1/\sqrt{2}$ 的点对的最大可能数目为 $[n^2/3]$ 。此外,对每个n,都有一个直径为1的集合 $\{x_1, x_2, \dots, x_n\}$,它恰好有 $[n^2/3]$ 对顶点的距离大于 $1/\sqrt{2}$ 。

7.5.1 设 $\{x_1, x_2, \dots, x_n\}$ 是平面上直径为1的集合。

- (a) 证明距离为1的点对最大可能数目是 # 。
- (b) 构造一个平而上直径为1的集合(x₁, x₂,..., x_n), 使它恰有有 n 对距离为 1 的点对。 (E. Pannwitz)

证。(a)设图 $G=(V(G), E(G)), 其中V(G)=\{x_1, x_2, \dots, x_n\}, E(G)=\{x_1x_1|d(x_1, x_2)=1\}.$

我们要证 $|E(G)| \leq n$. 先证 G有如下性质(i),(ii),

(i) G的任意二条边若不相邻,则必相交。不然,设 G的二边 #101、#202 既不相邻又不相交,则四边形#101#102中,如图(1),总有不小于90°的内角存在,不妨设

∠2,v2v1≥90°

劉有 d(x2, v1)>1, 这与假设矛盾。

(ii) 若u∈V(G), d(u)=k>2,则u的邻点n1, n3, · 182 ·

7.5.1 图

…, \mathbf{u}_s , 依次落在 \mathbf{u} 为中心的单位圆周上,且 $\mathbf{d}(\mathbf{u}_s) = 1$, "($\mathbf{i} = 2$, …, k-1)。不然就会出现既不相邻又不相交的边,这与(\mathbf{i})矛盾!

现对G 逐次去掉悬挂边;由(ii)最后所得之图 G_1 的 每个分支只可能或是平凡图或是 K_1 ,故对 G_1 有 $|E(G_1)| \leq |V(G_1)|$,所以,我们有 $|E(G)| \leq n$.

- (b) 作图 $G_1 \triangle x_1 x_2 x_4$ 为等边三角形,且边长为 1.以 x_1 为圆心, 1 为半径,从 x_2 到 x_4 作成圆弧,在圆弧上顺序取顶点 x_3 , x_4 , …, x_{n-1} , 使它们分别与 x_1 相连,如图(2),它们恰好构成 n 个距离为 1 的点对。
- 7.5.2 半径为6英里的圆形城市,由十八辆警车巡逻, 色们之间用无线电通讯联系。若无线电使用范围为9英里, 证明不管什么时刻最少有两辆车,每一辆车可以和其余五辆 车通讯联系。

征,根据定理7.11,有

$$e\left(x_{i}x_{j}\left|\frac{d(x_{i}, x_{j})}{12}\right| \leq \frac{1}{\sqrt{2}} < \frac{9}{12}\right) > {18 \choose 2} - \left[\frac{18^{2}}{3}\right] = 45$$
(*)

即最少有45对车可以互相通讯。若题目所述情况不成立,就是不存在两个5度以上的顶点(车)。则

$$s(x_i x_j | \frac{d(x_i, x_j)}{12} \leq \frac{1}{\sqrt{2}}) \leq (1 \times 17 + 17 \times 4)/2 < 43$$

说明在这种情况下,最多有43对车可以互相通讯,这与(◆)式矛盾。所以,题目所述结论成立。

第八章 顶 点 着 色

8.1 色 数

定义: G的顶点 k-着色,是将 k 种 颜色分配 给 V(G) 的一种分配方法。即将 V(G) 分划 成 (V_1, V_2, \cdots, V_n) ,在 V_1 中的顶点均着 i 色。在 G 的 顶点 k-着色中,如果 没有两个相邻顶点着同一颜色,即上述分划中 $V_1(i=1,2,\cdots,k)$ 均是 G 中的独立集,则称这种顶点 k-着色 是 **正**常的。上面简称正常的顶点 k-着色为 k-着色,当 G 有一个 k-着色时,称 G是 k-可着色的。

定义, 色数 $\chi(G) = \min\{k \mid G \neq k \mid \text{ 可着色的}\}$ 。若 $\chi(G) = k$. 则称 $G \neq k$ -色图。

定义、岩G的任意真子图H均有 $\chi(H)<\chi(G)$,则称G是電界图。

显然 $G \neq k$ -可着色的充要条件是 G的 底图 亦 是 k-可着色、故本章均假定图是单图。

定理8.1 若 $G \in k$ -临界图,则 $\delta \geqslant k-1$ 。

票8.1.1 每个 k-色图都最少有 k 个度 不 小 于 k-1 的 顶点。

聚8.1.2 对任一个图 G 都有 $\chi \leq \Delta + 1$.

定理8.2 在临界图中,没有一个顶点割集是团。

系8.2 临界图是一个块。

聚8.3 G 是 k-临界图,且有 2 顶点 割 集 $\{u, v\}$,则 $d(u)+d(v) \ge 3k-5$.

8.1.1 证明, 若 G 是单图, 则 X(G)≥v²/(v²-2e).

证,因为 $\chi(G) = \chi$,则 V(G)可分划成 χ 个独立集。设第 i 个独立集的元素个数记为 n_i ,则 $\sum_{i=1}^{\chi} n_i = \nu$ 。且 $2e(G) \leq 2e(T_{\chi,i}) = \sum_{i=1}^{\chi} n_i (\nu - n_i) = \nu^2 - \sum_{i=1}^{\chi} n_i^2$ 。

若称 n_* 看成连续变量,由 Lagrange 乘数 法 知,当 $n_* = \nu/\chi$ 时, $\sum_{n_*} n_*$ 达到极小值 $\chi(\nu/\chi)^2 = \nu^2/\chi$ 。于是有 $\nu^2 - 2e \ge \sum_{n_*} n_*^2 \ge \nu^2/\chi$ 。所以

$$\chi \gg \frac{v^2}{(v^2 - 2s)}$$

8.1.2 证明,若 G 中任意两个奇圖均有一个公共顶点。糊 X≤5。

证、若 $\mathcal{X} \geqslant 6$,且假定在 G 上已用 \mathcal{X} 种颜色着色。令 G 是 G 中着 1, 2, 3 色的顶点在 G 中的导出子图, G 是 G 中着 4, 5, …, \mathcal{X} 色的顶点在 G 中的导出子图。显然 \mathcal{X} (G₁) = 3, \mathcal{X} (G₂) = \mathcal{X} - 3 \geqslant 3。由于 2-部图的色数为 2, 故 G₁, G₂ 均不是 2-部图,所以在 G₁, G₂ 中均含有奇圈且它们 互不相交,这和假设矛盾,故 $\mathcal{X} \leqslant 5$ 。

8.1.3 证明, 若 G 有度 序 列 (d₁, d₂, ···, d_r), 且 d₁≥d₂≥···≥d_r, 则 X≤max min{d_i+1, i}.

(D.J.A. Welsh 和 M.B. Powell)

证:由系·8·1·1 至少有 % 个度不小于 %~1的顶点,即•186•

 $d_1 \geqslant \cdots \geqslant d_x \geqslant \chi - 1$. 故 $\chi \leqslant d_x + 1$, $\chi = \min\{d_x + 1, \chi\}$, 从而有 $\chi \leqslant \max \min\{d_x + 1, i\}$.

8.1.4 利用练习 8.1.3 证明,

- (a) 当s>0 时, %≤{(2s)1/2};
- (b) $\chi(G) + \chi(G^{\circ}) \leq r+1$;
- (c) $\chi(G)\chi(G^{\circ}) \leqslant \left[\left(\frac{\nu+1}{2}\right)^{2}\right]$.

(E.A. Mordhaus和J. W. Gaddum)

证,(a)当 $\chi > 1$ 时, $\chi > (\chi(\chi-1))^{1/2} > \chi$ 一 1,故 $\{(\chi(\chi-1))^{1/2}\} = \chi$ 。另一方面,由练习8.1.3知,存在某个 $k \le \nu$, $\min\{d, +1, k\} \geqslant \chi(G)$, $\mathbb{P} d_{n} + 1 \geqslant \chi(G)$, $\mathbb{P} \chi(G)$ 有 $\{(2e)^{1/2}\} \geqslant \{(\chi(\chi-1))^{1/2}\} = \chi$.

- (b)由练习 8·1·3 知,存在 k, k', 成立 $k \ge \chi(G)$ 、 d_* +1 $\ge \chi(G)$; $k' \ge \chi(G^\circ)$, $d_*'(G^\circ) + 1 \ge \chi(G^\circ)$. 下面分两种情况讨论: (1)若 $k' \ge \nu k + 1$. 于是由 $\nu 1 = d_*(G) + d_{*-k+1}(G^\circ) \ge d_*(G) + d_*'(G^\circ) \ge (\chi(G) 1) + (\chi(G^\circ) 1)$. 所以 $\nu + 1 \ge \chi(G) + \chi(G^\circ)$.
- (c)如同(b), 分两种情况,(1)若 $k' \geqslant \nu k + 1$,则 $\chi(G)\chi(G^{\circ}) \leqslant (d_{k}(G) + 1)(d_{k}'(G^{\circ}) + 1) = d_{k}(G)d_{k}'(G^{\circ}) + d_{k}(G) + d_{k}'(G^{\circ}) + 1 \leqslant d_{k}(G)d_{k}'(G^{\circ}) + \nu$. 又用求极值的方法,得 $d_{k}(G)d_{k}'(G^{\circ}) \leqslant \left(\frac{\nu 1}{2}\right)^{2}$,所以 $\chi(G)\chi(G^{\circ}) \leqslant \left[\left(\frac{\nu + 1}{2}\right)^{2}\right]$. (2)若 $k' < \nu k + 1$,则 $\chi(G)\chi(G^{\circ}) \leqslant kk' \leqslant k\nu k^{2} + k \leqslant k^{2}$

$$-\left(k-\frac{\nu+1}{2}\right)^2+\left(\frac{\nu+1}{2}\right)^2\leqslant \left(\frac{\nu+1}{2}\right)^2.$$
故命题成立。

(H.J.Finck 1966年证明了(b)、(c)达到上界的所有正则图,对(b)只有 K_1 , K_2 ,和 C_5 ;对(c)只有 K_1 , K_2 , K_2 ,和 C_6 。

又E.A. Nordhaus 和J.W. Gaddum 1956 年还 证 明对应(b)、(c)的下界如下:

 $(b')2\sqrt{v} \leqslant \chi(G) + \chi(G^{\circ})$

 $(c')v \leqslant \chi(G)\chi(G^o)$

这下界同样不能再改进。)

8.1.5 证明、 $\chi(G) \leq 1 + \max \delta(H)$, 这里是对G的所有导出子图 H取最大值的。

(G.Szekeres 和 H.S.wilf)

证,取G的 χ -临界子图 G, 作为H, 由定理 8-1 知, $1+\delta(G_1) \geqslant \chi(G)$, 故 $\chi(G) \leqslant 1+\max \delta(H)$ 成立。

8.1.6 若 k-色图 G 有一种碧色法,使得每一种颜色最少着了G 中的两个顶点。证明, G 有一个这种类型的 k-着色法。 (T.Gallai)

证,令8'是G的一种着色法,使得每一种颜色至少着了G中的两个顶点。由假设这种8'是存在的。若8'是k-着色,结论已成立,否则令8是G的k-着色中,使仅含一个顶点的色类的色类数n。为最小的某一个k-着色。若n。>0,设8的色类的色类数n。为最小的某一个k-着色。若n。>0,设8的色分划为 (V_1,V_2,\cdots,V_s) ,不失一般性假定 $V_1=\{v_1\}$ 。由8'的性质,可假定存在 $u_1 \in V_2$, v_1 , u_2 在8'中着同色。于是我们得到一个新的k-着色8 $_1=(V_1^{(1)},V_2^{(1)},\cdots,V_s^{(1)})$,其中 $V_1^{(1)}=\{v_1,u_2\}$, $V_2^{(1)}=V_1$ $\{u_2\}$, $V_2^{(1)}=V_1$ $\{u_3\}$ $\{u_4\}$ $\{u_5\}$

*),显然若 $|V_{1}^{(1)}| \ge 2$,有 $n_{e_1} < n_{e_n}$,这和罗的选取矛盾,故 $|V_{2}^{(1)}| = \{v_{2}\}$,且 v_{1} , v_{2} 在 $v_{1}^{(1)}$ 中着不同色,不然我们将 $|V_{1}^{(1)}|$ 均着以 1 色, v_{1} 中其余顶点着色不变,于是我们得到 $|V_{1}^{(1)}|$ 均着以 1 色, $|V_{2}^{(1)}|$ 与了是 $|V_{2}^{(1)}|$ 中心,这又与 $|V_{2}^{(1)}|$ 是一色图矛盾。于是类似对 $|V_{1}^{(1)}| = \{v_{1}^{(1)}\}$ 的讨论,存在 $|v_{2}^{(1)}|$ $|v_{2}^{(2)}|$ $|v_{2}^{(2)$

8.1.7 证明,仅有的 1-临界图是 K_1 ,仅有的 2-临界图是 K_2 ,而仅有的 3-临界图是 k-奇图(k>3)。

证,由于1-色图是空图,从而1-临界图仅能 是 K_1 , 2-色图是2-部图,从而2-临界图仅能是 K_2 , 3-色图恒含奇圈。且奇圈至少是 3-色才能正常着色,从 而 3-临 界图 仅 能 是 k-奇圈($k \ge 3$)。

8.1.8 若 G 的任意两个 k-着色均诱导出相同 的 V(G) 的分划,则称 G 是唯一的 k-可着色的。证明 k-临界图的任一个项点割集都不能导出一个唯一的(k-1)-可着色的子图。

证: 设 k-临界图 G, 存在一个顶点 割 集 C, G(C)是一

个唯一的(k-1)-可着色子图、若 G-C 离散成 G_1 , G_1 两个子图,由于 k-临界图一定是连通的,故可分别取点 $v_1 \in G_1$, $v_2 \in G_2$ 使 v_1 , $v_2 \in G(C)$ 均有边相连,连边分别 记 为 e_1 , e_2 。由 G 的 k-临 界 性,知 $\chi(G-e_1) \leq k-1$, $\chi(G-e_2) \leq k-1$ 。故存在正常的(k-1)-着色81和82,分别对 $G(C \cup V(G_2))$ 着色,且由于 G(C) 是唯一的(k-1)-可着色图,从而在81、82 着色中可假定 G(C) 有相同着色,子是将81、82 着色合并起来就成为 G 的一个正常的(k-1)-着色,但这与 $\chi(G) = k$ 相矛盾。故结论成立。

8.1.9 (a)证明。者 u, v 是临界图的两个顶点,则N(u)不是N(v)的子集; (b)证明不存在 k+1个顶点的 k-临界图 G.

(b) 若这样 G 存在,由定理 8.1 知, $\delta(G) \ge k-1$,另一方面显然 $G = K_{k+1}$,故在 G 中存在两个不相邻的顶点 v_1 v_2 ,由于 $d(v_1) \ge \delta = k-1$, $d(v_2) \ge \delta = k-1$ 及v(G) = k+1 ,故 $N(v_1) = N(v_2)$,但这与(a)相矛盾,故结论成立。

8.1.10 证明, $(a)\chi(G_1 \vee G_2) = \chi(G_1) + \chi(G_2)$.

 $(b)G_1 \vee G_2$ 是临界图的充要条件是 $G_1 \setminus G_2$ 均是临界图。

证:(a) 显然有 $\chi(G_1 \vee G_2) \leq \chi(G_1) + \chi(G_2)$,又若 $G_1 \vee G_2$ 存在正常 k-着色,显然 G_1 中顶点所着之颜色,由联的定义,必然和 G_2 中顶点着的颜色均不相同,故又有 $\chi(G_1)$

 $\forall G_1) \geqslant \chi(G_1) + \chi(G_2)$,所以 $\chi(G_1 \lor G_2) = \chi(G_1) + \chi(G_2)$.

(b) 之,若 $G_1 \vee G_2$ 是临界图,而 G_1 不是临界图,则存在 G_1 的真子图H,使 $\chi(H)=\chi(G_1)$,于是 $H \vee G_2$ 是 $G_1 \vee G_2$ 的真子图,但由(a) 知 $\chi(H \vee G_2)=\chi(H)+\chi(G_2)=\chi(G_1)+\chi(G_2)=\chi(G_1 \vee G_2)$,这和 $G_1 \vee G_2$ 是临界图相矛盾,故 G_2 是临界图,类似可证明 G_2 亦是临界图。

8.1.11 设 G_1 和 G_2 为恰好有一个公共顶点 σ 的两个 σ 临界图, $\sigma \sigma_1$ 、 $\sigma \sigma_2$ 分别是 G_1 、 G_2 的边。

证明。 $(G_1-vv_1)\cup (G_2-vv_2)+v_1v_2$ 是 M-临界图。 (G.Hajós)

证、显然当 k=1, 2 时结论不成立。故下面我们假定在 $k \ge 3$ 的条件下进行讨 论。令 $G=(G_1-vv_1)\cup (G_2-vv_2)+v_1v_2$, 首先由于 G_1 、 G_2 是 k-临界图,从而 $\chi(G_1-vv_1)=k-1$, $\chi(G_2-vv_2)=k-1$, 分别用 1, 2, …, k-1色对 G_1

一 vv_1 、 G_2-vv_2 进行正常(k-1)-潜色,且使v 在两图中均着 1 色,显然 v_1 、 v_2 也必须着的是 1 色,否则 G_1 或 G_2 则 成为(k-1)-色图,这和 G_1 、 G_2 是 k-临界图相矛盾。现 将 v_1 改着 k 色,得 G 的一个 k 着 色,故 $\chi(G) \leq k$ 又 若 $\chi(G) < k$,则 G 有一个(k-1)-着色,其中 v_1 、 v_2 必着不同色,于是 v 必与 v_1 (或 v_2)不同色,这与 $\chi(G_1)=k$ 矛盾! 故 $\chi(G)=k$ 。 其次 若 v_2 ,显然由上讨论 $\chi(G-e)=k-1 < \chi(G)$,若 v_2 ,是 之 v_2 ,是 然由上讨论 $\chi(G-e)=k-1 < \chi(G)$,若 v_3 , v_4 。 v_4) 。 v_4) 。 在两图中均着 1 色, v_4 包,于是 v_4 必然 着 1 色。两图的着色合起来的着色即为 G-e 的(k-1)-正常着色,故 $\chi(G-e) \leq k-1 < \chi(G)$ 。所以对 G 中任一边 v_4 为有 $\chi(G-e) < \chi(G)$ 、故 G 是 k-临界图。

8.1.42 对于 n=4 和 ∀n≥6, 构作一个 n个顶点的 4-临界图。

证.对 $n \ge 4$ 的偶数, 易 证 轮 W_{n-1} 是 4-临 界 图。对' $n \ge 7$ 的奇数, 易知存在两个大于等 于 4 的 偶 数 n_1 , n_2 使 $n_1 + n_2 = n + 1$,然后用练习8 · 1 · 1 1 的结果对 $W_{n_1 \ge 1}$ 、 $W_{n_2 = 1}$, 构作 n 个顶点的 4-临界图。

8.1.13 (a)设(X, Y)是 V(G)的一个使 G(X)、G(Y) 均是 n-可着色的分類,证明,若边割集(X, Y)至多有n-1 条边,则 G 也是 n-可着色的。 (P.C.Kainen)

(b)证明每一个 k~临界图是(k-1)-边连通图。

(G.A.Dirac)

证。(a)设在 G(X)、G(Y)上已 n-正常着色了, $\{X_1, X_2, \dots, X_n\}$ 、 $\{Y_1, Y_2, \dots, Y_n\}$ 分别是G(X)、G(Y)的

8.2 Brooks 定 理 -

定理 8.4(R.L.Brooks, 1941) 若 G 是连通单图,它 既不是奇圈,也不是完全图,则 $Z \leq \Delta$.

8.2.1 证明, Brooks 定理等价于下述 命 题, 若 G 是 k-临界(k≥4), 且不是完全图, 则 2e≥v(k-1)+1.

证: \Rightarrow : 由于 $k \ge 4$, 故 G 不可能是奇麗, 由 假 设 G 不是完全图, 于是由 Brooks 定理 $\Delta \ge k$, 令 $d_1 = \Delta$, 再 由定

理 1.1 和定理 8.1 有 $2e = \sum_{i=1}^{n} d_i = \Delta + \sum_{i=1}^{n} d_i \geqslant \Delta + (\nu-1)\delta \geqslant$ $\Delta + (\nu-1)(k-1) = \Delta - k + \nu(k-1) + 1 \geqslant \nu(k-1) + 1$.

仁。设 G 的 $\chi(G)$ -临界子图记为 H,下面我们分 三种情况讨论。(1) H 是奇圈。由于 G 是连通的非奇圈图,故在 G 中存在 H 外的边与 H 相连,所以 $\Delta(G) \geqslant 3$ 。另一方面 $\chi(G) = \chi(H) = 3$,故有 $\chi(G) \leqslant \Delta(G)$,(2) H 是完全图 $K_{\chi(G)}$ 。由于 G 的连通性及 G 不是完全图,故在 G 中存在 H 外的边与 H 相连,所以 $\Delta(G) \geqslant \chi(G) + 1 > \chi(G)$;(3) H 既不是奇圈 又不是完全图,由练习 $8\cdot 1\cdot 7$ 知, $\chi(H) \geqslant 4$,所以此时 H 满足命圈的条件。于是 有 $\nu\Delta(H) \geqslant 2e(H) \geqslant \nu(\chi(G) - 1) + 1$ 。即 $\Delta(H) \geqslant \chi(G) - 1 + 1/\nu$ 所以有 $\Delta(G) \geqslant \Delta(H) \geqslant \chi(G) + 1/\nu$ 综合上述情况,命题成立。

8.2.2 用 Brooks 定理证明, 岩 G 是无环图, 且Δ=3,则 2′≤4.

证、若 G不连通,则考虑它的连通分支,若对它的连通分支命题均成立,则显然命题对 G也成立。故不失一般性假定 G是连通的。若 G是三重图,则在 Δ =3 的条件下,G 仅能是 , 显然此时 $\chi'(G)=3<4$ 。若 G是二重图,由于 Δ =3,故 G 的 二重 边 和 其 它 顶 点 的 相 邻 关 系 如 一 或 一 ,这些子图均能 4-边着色。于是 对 G 的底图 G',假若 $\chi'(G') \le 4$,则 $\chi'(G) \le 4$ 。故下面不失一般性假定 G 是单图。设 L(G)表示 G 对应的线图,显然 由 G 是连通单图,故 L(G)亦是连通单图。若 L(G)是 奇 题,则 G 必须是奇 题 或 $K_{1,18}$ 。此时 $\chi'(G)=3$,又 岩 L(G) 为

完全图时,因为 $\Delta=3$,故 $\Delta(L(G))\leqslant 4$,所以L(G)只能是 K_{\bullet} 、 K_{\bullet} 、 K_{\bullet} 、 K_{\bullet} 、上面已讨论过 K_{\bullet} 是奇圈,而 K_{\bullet} 、 K_{\bullet} 对应的G 是 $K_{1,4}$ 、 $K_{1,6}$ 。这两图与 $\Delta=3$ 相矛盾。若L(G) 不是奇圈,也不是完全图,此时由Brooks 定理 $\chi'(G)=\chi(L(G))\leqslant \Delta(L(G))\leqslant 4$ 。综合上述,命题 成立。

8.3 Hajós 猜 测

Hajós 精精(1961), "若 G 是 k-色图, 则 G 含有 K"的 重分"。

对 Hajós 猜测, k=1, 2, 3 时, 由练习 8.1.7 知是 对的; k=4 时就是定理 8.5。

定理8.5(G.A.Dirac, 1952) 若 G 是 4-色图,则G包含一个 K_* 的量分。

对 k≥7, P.A. Caflin 在 J. Comb, Theory B26,268

一274,(1979)中,列举了如下反例。当 k=7 时,如图 G 的线图 L(G)是 一反例,当 k>7 时, $L(G) \vee K_{A-7}$ 是一反例。从而对 Hajós 猜测目前仅剩下 k=6. 6 没有证明。

5.6没有证明。
 和 Hajós 猜测有联系的是 Hadwi ger 猜测(1943). "若 G是 k-色图,则 G 可收缩成含有 K,子图的图。"Hadwiger猜测当 k=5 时,等价于四色猜测。它

和 Hajos 猜测有 很大不同。

B.Bollobás, P. A. Caflin and P. Erdös 在European J. Comb. Vol., No3,195-199(1980)中证明了"Had-

wiger 猜测几乎对每一个图都成立"。

8.3.1 证明,若G 是单图, $G \hookrightarrow K_1$,且至多有一个顶点的度小于 3,则 G 包含 K_4 的重分。

证:由于 $G \hookrightarrow K_1$,且它至多有一个顶点的度 小 于 3,故不失一般性,可假定 G 连通,否则考虑 G 的非平凡连通 分支即可。其次由练习3.2.4 知,可假定 G 是2-连通图,否则考虑仅包含 G 的一个割点又不含 G 中度小于 3 的顶点 的那个块。设 C 为 G 中最长的圈,则 V(C) \geqslant 4。事实 上,若 C 是 3-圈,如图(1)所示。由于 G 中至多一个顶点 度 小于 3,故可假定 $d_G(v_1) \geqslant$ 3。所以存 在 $v_* \in V(G) \setminus V(C)$,由系 3.2.2,在 G 中存在包含 v_1v_2 , v_1v_4 的 圈 C_1 ,若 $v_* \in C_1$,则 C_1 的长度 大于 3;若 $v_3 \in C_1$,则 $(C_1-v_1q_2)$ U $\{v_2v_3, v_3v_1\}$ 是 G 中长度大于 3 的圈。不管哪种情况,均和 C的取法矛盾,故 V(C) \geqslant 4。

C上依序存在如下相异的四个顶点 a1, a2, a3, a4, 若 满足在 G-C 中 存 在 (u_1, u_2) -路 R 和 (u_2, u_4) -路 Q, 则 称 R、Q 为 C 上的**交叉路**。当 C 含有交叉路时,若R、Q相 交于 u_s , 如图(2), 则 CUQUR' 是 G 中的 K_s 重分, 其中 R' 为 R 中($\mathbf{u}_{\mathbf{s}}$, $\mathbf{u}_{\mathbf{s}}$)-段。若 R、Q 不相交,如图(3),则 CUQUR 是 G 中的 K。重分。故不失一般性。下面假定 C上 不含交叉路,显然 $V(C) \neq V(G)$.不然按假定 C 上的顶点在 G中的度 \geqslant 3 的顶点个数 \geqslant 3, G 又是单图, 则易 知 C 上一 定出现交叉的边而矛盾。故下面可假设在 $\mathbf{z}_0 \in V(G) \setminus V(C)$, 如图(4)所示,其中 e 为 C 上之一边、于是由 系 3.2.2 知、 在G中恒有包含e和 u_e 的圈 C_1 。从 u_e 出发,沿 C_1 的两 个方向前进,和 C相遇的第一个交点,分别记为 *1、*1。 由于 C_1 中含 e, 故 $a_1 \neq a_8$, 又由于 C 是最长之图. 故在 C上 u_1 , u_3 之间, 还分别含有顶点 u_2 , u_4 .于是G 中必含有如 图(5)所示的 θ 图。由假定不失一般性可令 $u_1 \cdots u_2 \cdots u_8$ 路P上的顶点的度均≥3。同样可证,假如 P U R 圈上含交叉路。 或 P 和 R 的内点间有路相连 时,G 中总含有 K、 \mathbb{I} 最 分。故 下面可假定PUR圈上不含交叉路,且P和R的内点间不存 在路相连,于是必然存在一点 $a_7 \in P$,它与 $P \cup R$ 中的其它 顶点均无路相连。由于 $d_a(u_1) \ge 3$,故 存 在 $u_8 \in V(G) \setminus (P)$ UR)、 $u_7u_8 \in E(G)$, 今由于 G 是2-连通的, 所以 G- u_7 是 连通的。于是 在 $G-u_7$ 中 存 在 (u_8, u_4) -路 T。从 u_7u_8 出 发,沿了前进和C的第一个交点记为 #8,由上面的假定, "。一定是 u.···u.····u. 路的内点。记 Q'为 T 中(u., u.)~段 $+u_7u_8$, 于是Q'与R构成C上的交叉路,这与假设矛盾。 综合上述, 命题成立.

- 8.3.2 (a)证明, 若 G 是单 图, 且 v≥4, e≥2v-2, 側 G包含 K₄的重分。
- (b)对于 ν ≥4, 找一个单图 G, ε =2 ν -3, 但 不包含 K_{\bullet} 的重分。
- 证: (a) 用归纳法证明。对v=4, $e \ge 6$ 的单图G,仅能是 K_4 , 故v=4 时结论成立。设 $4 \le v \le n$,且满足 $e \ge 2v-2$ 的一切单图中,均包含 K_4 的重分,现 考 虑 v(G)=n。若 G 不含度小于 3 之点,则由练习 $8\cdot3\cdot1$ 知,G 中 包含 K_4 的重分。不然 G 中存 在 v_0 , $d_G(v_0) \le 2$, 令 $G_1=G-v_0$,于 是 $v(G_1)=n-1$, $e(G_1) \ge 2(v-1)-2$,由归纳法假设知, G_1 中包含 K_4 的重分。从而 G 中包含 K_4 的重分。
- (b)如图 G,因为 G 中若含 K_4 的重分, G 中必需至少有 4 个顶点,它们的度 ≥ 3 ,但 G 中仅 v_1 、 v_2 的 $g \geq 3$,故 G不可能包含 K_4 的重分,另一方面易 证 $\varepsilon(G) = 2v 3$ 。故 G 即为所求。

8.3.2 凝固

8.4 色多项式

定义,如果 G 在两种 h- 着色中,存在某些顶点着以不同的颜色,则认为这两种 h- 着色是不同的。用 $\pi_*(G)$ 表示

G 的不同 4~着色个数, 称为 G 的色多项式。

定理8.8 若 G 是单图, $e \in E(G)$, 则 $\pi_*(G) = \pi_*(G - e) - \pi_*(G \cdot e)$.

票8.6 对任何图 G, π, (G)都是 k 的 ν 次整系数 g 式,常数项为 0,且系数正负交错。

8.4.1 计算下列两图的色多项式

8.4.1 版图

解:对图(1)、(2)计算前,先计算另外三个图的色多项式。下面我们沿用以图本身形象地代表它的色多项式的方法。由于环与重边对色多项式不产生影响,从而将它们从图中略去,一律用单图画出来。我们不妨先用练习 8-4-6 的结果来得到后面计算中要用到的(1)式。

(1)
$$G = G - G$$

$$= (k-1)\pi_k(G)$$

$$=(k-1)$$

$$=(k-1)$$

$$= (k-2)$$

$$= k(k-1)(k-2)^2(k-3) + k(k-1)^2(k-2)$$

$$=k(k-1)(k-2)(k^2-4k+5)$$

 $=k(k-1)(k-2)^{2}(k-3)$

所以对图(1)

$$=h(k-1)(k-2)^{2}(k^{2}-4k+5)$$

$$=h(k-1)(k-2)^{2}(k-3)$$

$$=h(k-1)(k-2)^{2}(k^{2}-5k+8)$$

8.4.2 (a) 借助于定理 8.6, 证明, 若 G 是单 图,则 #*(G)中 k*-1的系数为 -e.

(6)证明, $k^4-3k^3+3k^2$ 不是任何图的色多项式。

证,(a)用归纳法来证明。当 e=1 时,直接计算 $\pi_*(G_1)$ 一k'-k'-1,故 e=1 时命题成立。设 $e<\pi$ 时的一切单图命题均成立。设 G_n 满足 $e(G_n)=n$, $e\in E(G_n)$,于是由定理 8.6 及系 8.6 有, $\pi_*(G_n)=\pi_*(G_n-e)$ $\pi_*(G_n\cdot e)$, 显然 $\pi_*(G_n-e)=n-1$ 、 $\pi_*(G_n\cdot e)$ $\pi_*(G_n\cdot e)=\nu(G_n)-1$. 故 $\pi_*(G_n)=(k'-(n-1)k'^{-1}+\cdots)-(k'^{-1}-\cdots)=k'-1$ 故 由 归纳法 命题成立。

(b) 一个多项式,若是某个图的色多项式,那么也是该图对应的底图的色多项式。故我们仅需对单图来证明。若 $k_1-3k_1^2+3k_2^2=\pi$ 。是某个单图 G 的色多项式,则由(a)知。(G)=3,从而 $\chi(G)\geq 2$,另一方面 $\pi_1=1$,这说明 $\chi(G)< 1$,矛盾。故 π ,不可能是任何单图的色多项式。

还可以另法证明如下。

由(a)及系8.6知,若G存在,则 e=3, p=4.而p=4, e=3的所有图的色多项式均不是 $k^4-3k^3+k^2$,故 G 不存在。

8.4.3 (a)若 G 是树,则 m,(G)=k(A-1)*-1.

(b)若 G 连通,则 $\pi_*(G) \leq k(k-1)^{r-1}$, k= 非负整数,且证明仅当 G 是树时等号成立。

证,(a)当v=1时, $\pi_*(K_1)=k$,故命题成立。若v<m时,命题均成立。设 G 是树,且v(G)=m。由系2.2 知,存在悬挂边 $e\in E(G)$,于是 G-e 是孤立点加上顶点 数 为 m-1 的树, $G\cdot e$ 是 $v(G\cdot e)=m-1$ 的树。由定理 8.8 及 归纳法假设, $\pi_*(G)=\pi_*(G-e)-\pi_*(G\cdot e)=k^2(k-1)^{m-1}+k(k-1)^{m-2}=k(k-1)^{m-1}$,故命题成立。

(b) 由定理8.6, $\pi_*(G-e)=\pi_*(G)+\pi_*(G\cdot e)$,因为 $\pi_*(G\cdot e)\geqslant 0$,所以 $\pi_*(G-e)\geqslant \pi_*(G)$,另一方面由于G连通,设 T 是 G 的生成树,逐次用上述导出的公式将 余 **树** T 的边从 G 中除去,于是最 后 有 $\pi_*(G)\leqslant \pi_*(T)$,由 (a), $\pi_*(T)=k(k-1)^{r-1}$,故 $\pi_*(G)\leqslant k(k-1)^{r-1}$

若连通图 G 的 $\pi_*(G)=k(k-1)^{r-1}$ 时,则由练习 $8\cdot 4\cdot 2$ (a)知,8(G)=r-1。于是由练习 $2\cdot 1\cdot 5$ 知,G 是一棵树。

8.4.4 证明. 若 G 是一个长度 为 n 的 面,则 $\pi_n(G)$ = $(k-1)^n + (-1)^n(k-1)$ 。

证,对于n=3时, $G=K_1$, $\pi_*(G)=\pi_*(K_3)=k(k-1)$ · $(k-2)=(k-1)^3+(-1)^*(k-1)$,命题成立。设当 n< m 时命题成立。若 G 是 m-圈,于是 G-e是m个顶点的树,由练习8·4·3(a), $\pi_*(G-e)=k(k-1)^{m-1}$ 。" $G\cdot e$ 是(m-1)-圈。故由归纳法假设 $\pi_*(G\cdot e)=(k-1)^{m-1}+(-1)^{m-1}(k-1)$ 。今由定理 8·6, $\pi_*(G)=\pi_*(G-e)-\pi_*(G\cdot e)=k(k-1)^{m-1}-(k-$

- 8.4.5 (a) 证明 # (G V K₁)=k#_{*-1}(G).; ~
- (b) 利用(a)和练习 8.4.4 证明,若 G 是 # 条幅的轮," 動 $\pi_*(G) = k(k-2)^* + (-1)^* k(k-2)$.
- 证、(a) K_1 共 k 种着色、由于 G 中的每一个顶点均和 K_1 相连,从而 K_1 取定色后,G 就不能再取这色了,此 联 G 仅能着 k-1 种颜色,故 $\pi_*(G \vee K_1) = k\pi_{k-1}(G)$ 成立。
- (b) 显然由(a)及练习8·4·4, 即有π_k(G)=k(h-2)*+ (-1)*k(h-2)。
- 8.4.6 设 G_1 、 G_2 、…、 G_a 是G的两个分支,则 $\pi_a(G)=\pi_a(G_1)\pi_a(G_2)$ … $\pi_a(G_a)$ 。
- 证,只需注意到 G_1 , G_2 …、 G_n 均可用 A 色独 立 地 进行着色,故命题成立。
- 8.4.7 证明,若 $G \cap H = R$ 是完全图,则 $\pi_*(G \cup H)\pi_*(G \cap H) = \pi_*(G)\pi_*(H)$. 证. 显然若 $k < \chi(H)$,则 $\pi_*(H) = 0$,承 $(G \cup H) = 0$ 。故所求等式恒成立。今假定 $k > \chi(H)$,对 G 的任一 k = 2 色,就确定 R 上的一个 k = 2 色。对于 H ,在 R 已着色的情况下,令 $\pi_*(H-R)$ 表示在 R 着色固定的情况下,H 的 k = 2 色的个数。由 R 是完全 图,从 而 $\pi_*(H-R) = R$ 具体 着何色无关,且因为 $\chi(H) \le k$,故 $\pi_*(H-R) > 0$,于是我们有 $\pi_*(H) = \pi_*(H-R)\pi_*(R)$, $\pi_*(G)\pi_*(H-R) = \pi_*(G \cup H)\pi_*(G)\pi_*(H-R)$, $\pi_*(G)\pi_*(H) = \pi_*(G \cup H)\pi_*(R) = \pi_*(G \cup H)\pi_*(G \cap H)$
- 8.4.8 证明 #*(G)的实根不大于 **-1. (L.Lov4s*) 证。对 V(G)的任一独立集分划 P, 显然不论 h 取任何值, 按 P 用 k 色对 G 正常着色有k(k-1)…(k-|P|+1)种

着色方法。所以我们有 $\pi_*(G) = \sum k(k-1)\cdots(k+|P|+1)$,这里是对通取 V(G) 的所有相异的独立集 分 如 P 求和。由于 $|P| \leq \nu$,当实数 $k > \nu-1$ 时, $\pi_*(G)$ 中求和号下的每一项,均大于 0,故 $\pi_*(G) > 0$ 。所以 $\pi_*(G)$ 的实根不大于 $\nu-1$ 。

8.5 團长和色数

定理8.7 对任给的正整集 k, 存在不含 K, 的 k-色图.

8.5.1 设 G_4 , G_4 , …是由 Mycielski 构造方法及 G_3 — K_2 , 得到的图列, 证明 G_3 是 k-临界图(k=2, 3, …).

 $\in E(G_*)$,在8基础上,在 $G_*-v_*v_*$ 中着以1色的顶点 v_* 一的对应点 u_* 以k色,其余的 u_* 看以和对应的 v_* 相同的 \overline{g} 色, v_* 为着以1色;(3)若 $e=v_*v_*$,在8'的基础上,令 u_* 和 v_* 为着以相同的颜色, v_* 着以k色。显然上述(1)-(3)的着色是 G_*+v_*-e 的一个k-正常着色。故 $\chi(G_*+v_*-e) \leq k$, G_*+v_* 是(k+1)-临界图。由归纳法知,命题成立。

- 8.5.2 (a) 设 G 为 图长不少于 6 的k-色图($k \ge 2$).用下列方法构造一个新图 H: 取 G的 $\binom{kv}{v}$ 个不相交的拷贝,及 kv 个新顶点的点集 S,在 G的拷贝和 S 的 v 个元素的子集间建立 1-1对应。对 G 中每一个拷贝的顶点与它相对应的 S 中旬 个元素的子集中的顶点间用匹配相连。证明, H 的色数 最少为 k+1,图长最少为 6.
- (b) 推导, 对任何一个 h≥2, 都存在 图 长 为 6 的 h 色 图. (B. Descartes)/

证: (a) 由假定G的任一个拷贝中均不可能含长度小子6的圈, 又由 H 的定义, 若 H 中的圈含 S 中的顶点, 剔透-个圈至少要含两个 S 中的顶点 u₁, u₂ 和 不同的两个G 的操一贝中的顶点, 且在 H 中 u₁、u₂ 闻, 距离 ≥ 3。故含 S 中顶点的圈长度也是 ≥ 6。所以 H 的图长至少为6。

又由于S 共有kv 个餐点,故不论何种 kv 卷色。总存在一个S 中的 v 个 g 点的子集 S_1 , S_1 上的顶点均着以相同的颜色,不失一般性假定是着 1 色,按定义 g ,应称 G 的某一个 拷贝 G_1 对应,可是 G_1 是 kv 色图,不论何种 kv 正常着色,值有顶点着 1 色,于是必然产生均着 1v 色的相邻顶点: 所以 H 不可能用 k 色进行正常着色,故 S(H) > k+1 。

注意: 实际上,2(ff) mk+19. 这只要将 G 的拷贝正常

(b) $H_1=C_6$ 是围长为 6 的 2-色图,用(a)中方法,构造出围长为 6 的 3-色图 H_1 ,再用(a)中方法,由 H_2 可构造出围长为 6 的 4-色图 H_4 ,如此继续下去递次 用(a)中方法来构造图,k-2 次后,得 H_2 图,显然 H_3 是四长为 6 的 k-色图。

8.6 存储问题

定义:用。简记指令"选择顶点。"。若 z 和 y 是已知指令,则逻辑和是"x 或 y",记为 z 十 y;逻辑积是"x 与 y",记为 x y。

定义,图 G 的一个 k-- 着 色 S = (V_1, V_2, \dots, V_n) ,如果满足 V_i 是 G- $(V_1 \cup V_2 \cup \dots \cup V_{i-1})$, $(i=1, 2, \dots, k, V_0 = \emptyset)$ 的极大独立集,则称S 为典整的k-- 着色。

8.6.1 对逻辑和与逻辑积验证结合律、交换律、分配律和吸收律成立。

证,设 x、y、z 是已知指令。由定义 有 (x+y)+z=x+y+z,x+(y+z)=x+y+z,从而(x+y)+z=x+(y+z), 同理有 (xy)z=x(yz), 改结合律成立。

因为指令"x与y"和指令"y与x"是一回事,故xy=yx,同理有x+y=y+x。故交换律成立。

由于指令"x 与(y或z)"相当于指令"(x与y)或(x与z)",故有 x(y+z)=xy+xz. 又利用交换律 可 得(y+z)x=xy

十xx=yx+2x。所以,分配律成立。

最后由指令"x 与 x"、"x 或 x"就是指令"选择 x",可 得 xx=x,x+x=x。从而 x+xy=x(x+y)=x,故吸收律成 立。

8.6.2 得逻辑表达式

(a + bd)(b+aceg)(c+bdef)(d + aceg)(e + bcdf)(f+ceg)(g+bdf)

化简为, aceg+bcdeg+bdef+bcdf。

篇, 根据练习 8.6.1,

原式=(aceg+bd+ab)(aceg+bdef+cd)(ceg+bcdf+bcd)+ef)(g+baf)=(aceg+bdef+bcd)(ceg+efg+bcdf+bcdef+bcdeg+bcdf+bdef+bcdeg+bcdef+bdef+bcdeg+bcdef+bdef+bcdeg+bcdef+bdef+bcdef

8.6.3 证明, 若 G 是 k--可着色,则 G 有典型的 k--着色。

 征,对于G的某一人着色V=(V₁, V₂, ···, V₂),
 我们令S₂=>, 遊雜地构造S₂, (1=1, 2, ···, k)如下。

 $S_1 = \{v_i | v_i \in V \setminus \bigcup V_i\}$,任两个 v_i 之间不相邻, v_i 与 $(V_i \setminus \bigcup_{j=0}^{i-1} S_j)$ 中顶点都不相邻。 $\}$ 利用 S_1 ,再作新的顶点分划如下。

 $V_{1}'=(V_{1}\setminus (\bigcup_{i=1}^{l-1}S_{i}))\cup S_{1},(l=1,2,...,k)$ 。由 S_{1} 的构造法知, V_{1}' 是 $G_{1}(V_{1}'\cup V_{1}'\cup ...\cup V_{l-1}')$ 的极大独立集,故着色 $(V_{1}',V_{1}',...,V_{l}')$ 是 G 的典型 k--- 着色。

第九章 平面图

9.1 平面图和可平面图

定义,一个图G,如果可以将它画在平面上,使它的边 仅在端点上才可能相交,则称图G为可平面图。图的这种平面上的画法称为图G的平面做入,或称为平面图。

定理9.1 K,是非可平面图。

定理9.2 图 G是平面可嵌入的充要条件是它是**球面可嵌**入的。

9.1.1 证明 $K_{s,s}$ 是非可平面图。

9.1.1 建

证,如图(1)所示,令C表示图(1)中v181v282这4- 图在

平面上的表示,如图(2),显然C是平面上的一条Jordan曲线(这里指的就是点集拓扑学中的Jordan简单闭曲线)。设 $v_0 \in \text{int} C$,于是 u_1v_3 , u_2v_3 连同C将平面分成三个两两不相交的区域,而 u_3 应落入这三个区域中的某一个区域,不失一般性,假定 $u_3 \in \text{ext} C$,则由Jordan定理知, u_3v_3 的连线必须与C相交,故 K_3 ,是非可平面图。

- 9.1.2 (a) 证明: 对 K_s 的任一边 e, K_s —e是可平面图。
 - (b) 证明,对 $K_{2,3}$ 的任一边 $e, K_{3,3}$ 一e是可平面图。

证。由于 K_* 、 $K_{*,*}$ 的对称性,仅需对它们的某一边e,分别验证 K_* 一e、 $K_{*,*}$ 一e是可平面图即可。图(1)、(2)分别是它们对应的平面图,故结论成立。

9.1.2 图

9.1.3 证明任意的图G均能嵌入 R^{3} [注]。

[注] H. Vollmerhaus 1968年,证明了"对任意亏格· 的可定向曲面》,均存在长类整图不能嵌入》"。

证,将图G中的顶点任意安排在曲线。 x=t; $y=t^2$; $x=t^3$ 上的不同点,当 v_1 、 v_2 、 v_3 、 v_4 是任意四个相异的顶。

点时,则对应的t₁、t₂、t₄、t₄两两不等。故Vandermonde。行列式。

由空间解析几何可知。v₁、v₂、v₃、v₄不共面。即图G的 任意两边v₁v₂,v₄v₄在R³中不相交。所以对任意图G均可以嵌入R³中。

9.1.4 证明图G是K,在环面上的嵌入。

(类似地K, 也能嵌入环面。可参看F。Wattaty著《图论》中图11.18。)

证,首先若将图中矩形打箭头的两对边两两重合,则矩形变成了一个环面,故右面带箭头的矩形是环面的平面展开。 其次我们将图中顶点给以标号,易由顶点标号,验证它和K, 铜构,故结论成立。

į

8.1.5 求图G的一个平面嵌入,并使得其中每一条边都

是直线。

(I.Fáry 1948年证明了每一个可平面化单图均有一个一每条边都是直线的平面嵌入)

舞。图H是G的平图图,它的每条边均为直线。

9.1.5 图

9.2 对偶图

定义,平面图G的对偶图G*定义如下,G中每个面f内取一点作G*的一个顶点f*,G*中f*、g* 相连以边 e* 的充要条件是f*、g*在G中对应的面f、g含公共边 e,且使 e 和 e* 相交。

易知 G^* 仍是平面图,且有 $v(G^*) = \phi(G)(G$ 中的面数); $s(G^*) = s(G)$, $d_{\sigma}^*(f^*) = d_{\sigma}(f)(G$ 中和面f 关联的边数)。

值得指出,这里的对偶定义,通常称为几何对偶。 H.Whitney对图的几何对偶进行了抽象,给出了另一种对偶。 定义——组合对偶。读者可以从下.Harary着的《图论》中,或 从王朝瑞编的《图论》中找到它的定义。

定理9.3 设v是可平面图G上任一顶点。则存在一个平面嵌入使v落在这嵌入的外部面上。

定瑞9.4 若G是平面图,则 $\sum_{f \in F} d(F) = 28$.

- 9.2.1 (a) 证明图是**可平面**图的充要条件是它的每一块均是可平面的。
- (b) 推导极小非可平面图(即其任意真子图均是可平面图) 包的非可平面图) 是一个单块。

征: (a)⇒, 显然。

一、不失一般性,假定G连通、今对块数 π 用归纳法。 n=1 时由假设结论成立。假设对一切的n < k,G总是可平面的。下面考虑n=k的情况,设n=1 是n=1 的情况,设n=1 是n=1 是n=1 的情况,设n=1 是n=1 是n=1

- (b) 若G是极小非可平面图,显然由极小性G应是单图, 又若G不是单块,于是G中存在割点,特G分解成G₁、G₂、···、 G_r, r个块。由(a)知,这些块中必有非可平面块,但这样一 来又和G是极小的相矛盾,故G一定是单块。
- 9.2.2 平面图若和它的对偶面简构,则称图为 含 对偶图
 - (a) 证明,若Q是自对偶的,则 $s=2\nu-2$ 。
 - (b) 对每一个n≥4,求作一个n个顶点的自对偶平面图。

- 证,(a)由于G是自对偶的,从而p=+申。且由于G*连通, 知G连通。又注意到每去一非割边少一面,故去掉\$-1条边后,G变成一棵生成树。由定理2.2, z-(\$-1)==>-1故==2>-2.
- (b) 当 $n \ge 4$, n-1 条幅的轮 W_{n-1} 是一个自对偶 平 而图。
- 9.2.3 (a) 证明B是平而图G的键的充要条件是 $\{e^* \in E(G^*) | e \in B\}$ 是 G^* 中的图。
 - (b) 证明平而Euler图的对偶图是2-部图。
- 证,(a) ⇒,对B的边数n进行归纳。当n=1时,在G*中对应的是一个环。故结论成立。设n<k时结论成立。今考虑 **=*k的情况,设 $e_1 \in B$,于是 $B=e_1$ 是 $G=e_1=G_1$ 的一个键,由归纳法假设 $\{e^* \in E(G_1^*)\} e \in B=e_1\} = C_1^*$ 是 G_1^* 中的一个圈,且圈 G_1^* 上的顶点 f_1^* 对应于 G_1 中的面 f_1 ,有的边界上有键 $B=e_1$ 中的边、现将 e_1 加入 G_1 使恢复到 G_1 由于 G_2 平面图,其作用相当于圈 G_1^* 上的一个顶点 f_1^* 对应于 G_1 中的一个平面区域 f_1^* 被 e_1 划分成两个以 e_1 为公共边的区域 f_1^* , f_1^* 。对应在 G_1^* 中,其作用相当于将顶点 f_1^* 分成两个顶点 f_1^* 。,并在其间连以 e_1 所对应的边 e_1^* 。故 e_1 的次在 e_1^* 中的 e_1^* 年。
- ←, G•中的一个圈, 对应于G中的边的集合B显然是G中的一个边割集, 若它不是镜, 则由练习2.2.9知, 它是G中键之都。由必要性知每一个键对应G•中是一个圈, 从而推出B在G•中对应的边集是圈的和集, 这和假设矛盾, 故B是G 电的键。
 - (b) 由于Euler 图的任一边割集均含偶数条边,故在对 214·

应的对偶图中,由(a)知,不含奇圈,故Euler 图的对偶图是2-部图。

- 9.2.4 设G是平面图,证明:
- (a) $G^{**}\cong G$ 的充要条件是G是连通的。
- (b) $\chi(G^{\bullet \bullet}) = \chi(G)$.

证,(a) \Rightarrow ,因为G是平面图,从而G 中之边和顶点将平面划分成内点不相交的闭区域(面),显然这些面中的任意两面,均可通过一串依次之间有公共边的面相连,故G *连通,从而G **连通。由于G ** \cong G ,所以G 连通。

一。由对偶图定义知,平面图G与对偶图 G*嵌入在同一平面上,当G连通时,易知G*的无界面f**中仅含G的唯一顶点v。;除顶点v。外,G中其它顶点v均与G*中的有限面f**1~1对应,于是G中顶点和G**中顶点在这自然对应方式下1~1对应,且对应顶点间的邻接关系保持不变。故G** $\cong G$ 。

(b) 若G是含有 G_1 、 G_2 、…、 G_n ,k个分支的平面图。设 $v_i^{(r)}$ 是 G_i 中的无界面的一个非割点的边界点, $i=1,2,\cdots,k$ 。 今由 G 构作一个连通的平面嵌入图 G 如下,将 $v_i^{(r)}$,i=1,2、…,k,重合成 G 中的一个新顶点 v_i ,且使 G_i — v_i 。含有 k 个连通分支 C_i (也可能 C_i = v_i),且 $G_i \cong G[C_i \cup \{v_o\}]$ (i=1, 2, …, k)。又不妨假定 $\chi(G_1)=\chi(G)$,于是显然有 $\chi(G) \geqslant \chi(G_1)=\chi(G)$,另一方面对每个 G_i (i=1, 2, …, k)用 $\chi(G)$ 色进行正常着色,且使 $v_i^{(r)}$ 均着以1色,在这着色基础上,我们将G变成 G_i ,并保持顶点在 G 中的原来着色,显然它也是 G_i 中的 G_i 0 ,并保持顶点在 G_i 0 ,故 G_i 0 , 是 G_i 0

9.2.5 设T是连通平面图G的生成树, $E^*=\{e^*\in E(G^*)\}$ [$e\in E(T)$]。证明 $T^*=G^*[E^*]$ 是 G^* 中的生成树。

证,对 $\phi(G)=1$,G=T, $E^*=\phi$,此时 T^* 是平凡图,结论成立。当 $\phi(G)\ge 2$,由于G的每一个面含 $e\in E(T)$ 。即 G^* 中的每一个点均与 E^* 之边关联,即 T^* 是 G^* 中的一个生成于图。若 T^* 中含有 G^* 的圈,则由练习9.2.3知,T中含有G中的键,这和定理2.6矛盾,故 T^* 不含 G^* 中的圈。又对G,每去掉E(T)中的一条边,G就减少一个面。当E(T) 中的边从G全部去除时,G变成一棵树T,从而有 $e(T^*)=e(T)=\phi(G)$ — $1=p(G^*)-1$ 。于是由练习2.1.5, T^* 是 G^* 中的生成树。

9.2.6 平面三角剖分是一个每个面度均为3的平面图。 证明每个平面单图(>≥3),是某个平面三角剖分单图的生成 子图。

且它比 G_{max} 的边多,这又与 G_{max} 的定义矛盾。故 G_{max} 中的f的面度恒为3。所以 G_{max} 是一个平面三角前分单图。显然 按 $^{\circ}$ G_{max} 的定义G是它的生成子图。

9.2.7 设G是 ν ≥4的平面三角剖分单图,证明 G• 是一 个2~边连通3~正则的平面单图。

证,由G*定义,它是3-正则平面图。于是G*者不是单 图, 只可能如图(1)、(2)所示 的两种情况,其中 粗边 是 G^{\bullet} 中的边。细边是G中的边。但 图(1)与G是单图矛盾,图(2)推出 G≅K₈, 与ν≥4 矛盾。 故 G^* 不含重边、又因G是 三 角剖分图, 故 G 不含环 和 割 边,否则无界面的面度大于3。 所以 G^* 也不含环和割边。故 G^{\bullet} 是2-边**连通**的单图。

9,2,7

9.2.8 证明任一平面三角剖分G包含一个具有 2e(G)/3 条边的2-部子图。 (F. Harary, D. Matula)

证, 类似于练习9.2.7的证明, G*是2-边连通 3- 正则的 图,于是由系5.4知,在G*中存在一个完美匹配M* $\subset G$ *。由 于G是三角剖分图,故G连通,于是由练习 $9.2.4(a),G^{**}$ G,考虑 $G_1 = (G^* - M^*)^*$,从而 G_1 同构子G的一个子图。首先 由对偶图定义有 $\epsilon(G_i) = \epsilon(G^* - M^*) = 2\epsilon(G^*)/3 = 2\epsilon(G)/3$. 其次G*中除去M*的边,相当于除去G 中的对应的一对相邻。 三角形面的公共边界,于是 $(G^{\bullet}-M^{\bullet})^{\bullet}=G$,中的面均为恒。 边形面。故 G_1 不含奇圈,所以 G_1 是2-部圈。故命圈成立。

9.2.9 若平面单图G,在不相邻的顶点间,增加任何新边,均破坏G的平面性时,则称G是极大平面图。证明平面单图G是极大平面图的充要条件为G是三角部分的。

证. \Rightarrow . 若 G 含有面度大于3的面,像 9.2.6 题中证明的那样,可在这面的边界上某两个不相邻顶点间连以新边,而不破坏G的平面性,和单图性矛盾。故G是三角剖分的。

 \leftarrow 、若G不是极大平面图,则G中存在两个不相邻的顶点在一个面内连以边,但这对三角形面来说是不可能的。故G 是极大平面图。

9.2.10 试举例说明下述命题"平面图 G 有度为 1 的 顶点,则其对偶图 G*含有环;若 G 有度为 2 的顶点,则 G*含有二重边。"的逆命题不真。

证,其例如图,它的对偶图既含环又含重边。

9.2.10 图

9.2.11 证明不存在这样的平面图,它有5个面,且任二面间均至少有一条公共边。

证、用反证法、考虑它的对偶图 G*,于是有**=5,且 G*中任二项点间均有边相连,故 G*⊇ K。,从而 G*是非可平面图。但这与平面图的对偶图是平面图的性质矛盾。故结论 成立。

9.3 Euler公式

定理9.5 (Euler公式) 岩G是连通平面图,则 $v-e+\phi$ =2. (推广的Euler公式为 $v-e+\phi=\omega+1$.)

泵9.5.1 连通可平面图的所有平面嵌入,具有相同的面数。

系9.5.2 若G是可平面单图,且 ν≥3,则 6≤3ν-6...

系9.5.3 若G是可平面单图,则δ≤5.

9.3.1 (a) 证明若G是围长为k \geqslant 3的连通可平面图,则 $e \stackrel{<}{\leqslant} k(v-2)/(k-2)$.

(b) 利用(a)证明Petersen图是非可平面图。::

证: (a)由于G的围长为k,故 $d_o(f) \geqslant k$, $2s \Rightarrow \sum_{f \in F} d_o(f) \geqslant k\phi$,将它代入Euler公式,化简即得 $s \leqslant k(p-2)/(k-2)$ 。

(b) Petersen图的图长为5, v=10, ε=15, 它不满足(a), 故Petersen图是非可平面图。

9.3.2 证明每个可平面图是6-可着色图。

证,对 ν 进行归纳, ν <6,命题显然成立。设 ν <k命题均成立。现考虑k+1个顶点的可平面图G,由家 9.5.3知,G中存在 ν 0, $d_{G}(\nu_{0})$ <5。考虑 $G_{1}=G-\nu$ 0,显然 G_{1} 仍是可平面图,且 ν (G_{1})=k,由归纳法假设,对 G_{1} 可进行6一正常着色。由于 $d_{G}(\nu_{0})$ <5,故 ν 0在G中的邻点在上述着色中至少有一种颜色,设为1色,不出现。将 ν 0着以1色,于是在 G_{1} 的

6-正常着色基础上,得到G的6-正常着色。由归纳法,命题成立。

- 9.3.3 (a) 证明者G是o>11[注]的可平面单图,则G°是非可平面的。
 - (b) 找一个v=8 的可平面单图 G, G° 也是可平面的。
- 证, (a) 由系 9.5.2 知, $\varepsilon(G) \leq 3\nu(G) 6$. 又 $\varepsilon(G) + \varepsilon(G') = \nu(\nu-1)/2$. 所以 $\varepsilon(G'') \geqslant (\nu^2 7\nu + 12)/2$,故当 $\nu \geqslant 11$ 时, $\varepsilon(G'') < 3\nu(G) 6 = 3\nu(G'') 6$. 再由系 9.5.2 知,G''是非可平面图。

(b) 其例如图,

[注] W.T.Tutte 于 Canad. Math.Bull.6(1973), 证明">≥9"本命题也成立。

- 9.3.4 图G分解成可平面图的最少个数 称 为 G 的厚度 $\theta(G)$. (于是 $\theta(G)$ =1的充要条件是G是可平面的。)
 - (e) 苦G是单图,证明 · θ(G)≥{ε/(3ν-6)}, ν≠2.
 - (b) 推导, θ(K,)≥⟨ν(ν-1)/6(ν-2)⟩,ν≠2,并利用练・220・

习9.3.3(6)证明, 当3≤ν≤8时, 上途等式成立。

证, (a) 当v=1时, $\theta(G)=1$,结论成立。当v>3 时,读 $E(G)=E(G_1)\cup\cdots\cup E(G_{s(a)})$,其中 G_v 均为可平面单图,由系9.5.2知, $e_1=e(G_1)\leq 3v-6$,于是 $e_1/(3v-6)\leq 1$ 。又 $e=e(G)=e_1+e_2+\cdots+e_r$,故 $e/(3v-6)=(e_1+e_2+\cdots+e_r)/(3v-6)\leq \theta(G)$,由于 $\theta(G)$ 是整数,所以

 $\theta(G) \geqslant \{e/(3\nu-6)\}.$

(b) 因为 $8(K_r)=p(\nu-1)/2$,代入(1)中公式得 $\theta(G) \ge \{\nu(\nu-1)/6(\nu-1)\}$,当 $\nu=3$,4时, $\theta(K_r)=1$,而 $\nu(\nu-1)/6(\nu-1)$,当 $\nu=3$,4时, $\theta(K_r)=1$,而 $\nu(\nu-1)/6(\nu-2)=1$,故上述不等式中等号成立。当5 $\le \nu \le 8$ 。由系 9.5.4及练习9.3.3(2)知, $\theta(K_r)=2$,而 $\{\nu(\nu-1)/6(\nu-2)\}$ =2.故上述不等式中等号仍成立。

9.3.5 利用练习9.2.5的结果推导Euler公式。

证:设G是连通平面图,由练习9.2.5知,若T是G中的生成树,则T*=G*[E*],E*={e* \in E(G*)|e \in E(T)}是G*的生成树,故由定理 2.2, $s(T)=\nu-1$, $s(T^*)=\phi-1$. 又因 $s(T)+s(T^*)=s(T)+s(T^*)=e(G)$,所以有 $\nu+\phi-2=s$ 。即 $\nu-s+\phi=2$.

9.3.6 设G是一个平面三角部分,则 $\epsilon=3\nu-6$ 。

证。因为G是一个平面三角剖分,故G连通且 $3\phi=28$ 。 将它代入Euler公式化简得8=3v-6。

9.3.7 设 $S = \{x_1, x_2, \dots, x_n\}$, $n \ge 3$, 是平面上的一个点集,它的任意两点间的距离至少为1.证明最多有3n-6个点对,它们之间的距离为1.

证,以S为顶点集构造一个单图G, x_1 , x_2 , 在G 中相连以边的充要条件是 x_2 , x_3 之间的距离为1,

下面证明G可以是每边均是直线的平面图。事实上,若G中存在AB、CD两边相交于O时,如图所示,由于|AB|=1,|CD|=1,故不失一般性,可假定。 $|OA| \leq 1/2$ 。 $|OC| \leq 1/2$ 。

于是由余弦定理有, $|AC| = (|OA|^* + |OC|^* - 2 |OA| |OC| \cos \theta)^{1/*}$,当 $\theta = \pi$ 时,显然 |OA| = 1/2,|OC| = 1/2不能同时成立,否则A和D,B和C相重合。这与它们是两条不同边相矛盾。

9.3.7 图 故有 AC < 1.但这又和 S 的假设相 F 后。故G 是平面单图。于是由系9.5.2知 E(G) < 3n - 6, 按 G 的边的定义知,结论成立。

9.3.8 对任何K.,都有 $\theta(K_*) \ge [(\nu+7)/6]$.(实际上,已证明,除 $\nu=9$, 10时 $\theta(K_*) = \theta(K_{10}) = 3$ 外,对一切 ν ,等号均成立。)

证,对 $v \le 5$,易直接验证,等号成立。对 $v \ge 6$,由练习 9.3.4(b)有, $\theta(K_*) \ge \{v(v-1)/6(v-2)\}$ 。由于有 $\{x\} \ge [x+\delta]$, $0 < \delta < 1$,于是取 $\delta = 1-1/(3v-6)$ 代入得 $\theta(K_*) \ge [v(v-1)/6(v-2)+1-1/(3v-6)] = [(v+7)/6]$ 。

9.3.9 G是平面单图,证明:

- (a) zr(G)≥4,则至少有4个顶点的度不大于5.
- (b) 若 $\delta(G)$ =5, 则 $\nu(G)$ ≥12, 试构造一个 ν =12 的 5~ 连通的平面单图。
 - (c) K(G)≤5(即,不存在6-连通的平面单图)。

证、(a) 若 $v \le 6$,结论显然。对v > 6,若 $\delta(G) = 1$,设 $d_{\sigma}(v_{\sigma}) = 1$,考虑 $G_{1} = G - v_{\sigma}$,显然若 G_{1} 结论成立,则G亦成立。故下面总假定 $\delta(G) \ge 2$ 来证明结论。用反证法,若 G

的度不大于6的顶点不多于3个。当 $\delta(G)$ =2时,有2 δ = Σda (v) $\geqslant 2\times 3+6(v-3)=6v-12$,即 δ =3v-6。另一方面,由系9.5.2,故 δ =3v-6,且G是极大平面图。再由练习9.2.9 知,G是一个平面三角剖分。由于 $\delta(G)$ = δ = δ 0.2.7中图(1)作为它的子图。这与 δ 0.2.7中图(1)作为它的子图。这与 δ 0.2.7中图(1)作为它的子图。这与 δ 0.3×3+ δ 0.2.7中图。 δ 0.5×3+ δ 0.5

(b) 设G中度为5的项点个数记为场,于是有。

 $2e = \sum_{v \in V} d_G(v) \geqslant 5k + 6(v - k)$ = 6v - k, 再由系 9.5.2, 有 .6v - 12 $\geqslant 6v - k$, 即 $k \geqslant 12$, 故 $v(G) \geqslant 12$.

对5-连通图,显然有6≥5,故v=12的这种图是它的一张点数最少的图。现构造如图。

(c) 反证法, 若存在平面 单图G, x(G)≥6, 显然 δ(G)≥ 9.3.9 (b) 图 6. 于是有2e=∑d_c(v)≥6p, 这与系9.5.2相矛盾。故(c)成 立。

9.4 桥

定义,设H是图G的子图, e_1 , $e_2 \in E(G) \setminus E(H)$,若存在一条途径W,使得(i)W的首尾两条边分别。是 e_1 , e_3 ,(ii)W的内点和V(H)不相交,则说 $e_1 \sim e_2$ 。易证 \sim 是 $E(G) \setminus E(H)$ 上的一个等价关系,在 \sim 下的每个等价类的诱导子图

称G中H的概。设B是G中H的一个桥,记V(B,H)=V(B) $\cap V(H)$ 称为桥B对H的接触顶点。本节假定H是一个圈C,且将"C的桥"简称为"桥"。

定义。有A个接触顶点的桥称为A-桥,A-桥B的接触顶点将C分成无公共边的路的分划,这些路称为B的股。如果一个桥的所有接触顶点都位于另一个桥的同一段中,则称这两桥为相连回题的。否则称为交叉的。

定理9.8 内(外)桥是相互回避的。

9.4.1 证明。若B和B'是两个不同的桥,则 $V(B) \cap V(B') \subseteq V(C)$ 。

证,用反证法,若存在 $v \in V(B) \cap V(B')$, $v \in V(C)$ 。考虑 v_1 、 v_2 , 它们分别是B、B'中任意一个顶点,由于B、B'是分别连通的,从而存在 $W_1(v_1, v)$, $W_2(v, v_2)$ 途径,它们的内点和V(C)不相交。于是得到了一个新途径 $W(v_1, v_2)$ $= W_1(v_1, v) \cup W_2(v, v_2)$ 它的内点同样与V(C)不相交,故 v_1 、 v_2 应属于同一个桥,即S = B',这与假设矛盾。所以 $V(B) \cap V(B') \subseteq V(C)$ 。

9.4.2 设 x、v和 y是平面图中桥 B对圈 C的依次的四个不同的接触顶点。证明在 B 中存在(x, v)—路 P和(x, y)—路 Q,使得(i)P、Q的内点都和 C 不相交,(ii) $|V(P)\cap V(Q)| \ge 1$.

证,不失一般性假定B是内桥,于是B整个在C内部,见图。由B的定义知,在B中存在 $W(\mathfrak{a},\mathfrak{v})$ -途径它的内点和 C不相交,对 $W(\mathfrak{a},\mathfrak{v})$ -途径,由练习1.6.1,知在 $W(\mathfrak{a},\mathfrak{v})$ -途径 径中包含一个 $P(\mathfrak{a},\mathfrak{v})$ -路,显然 $P(\mathfrak{a},\mathfrak{v})$ -路的内点和C不相交,类似地知在B中存在 $Q(\mathfrak{x},\mathfrak{y})$ -路,它的内点和C不相交, 故(i)成立。下面考虑 $PU\{u\cdots x\cdots v$ 在C上的一段路 $\}$,它是一条Jordan曲线记为C',由于Q除端点外在C内部,若将Q看成一条连续曲线时,必存在一个点(它不一定是G的顶点)x' ∈ intC',而y ∈ extC',从而由Jordan曲线定理P和Q相交,由于G是平面图,故其交点必须是G中的顶点,所以|V(P) $\cap V(Q)| \ge 1$ 。即(ii)成立。

9.4.3 (a)令 $C=v_1v_2\cdots v_nv_1$ 是非 Hamilton 连通图中最长的圈。证明(i)存在标B,使得 $V(B)\setminus V(C)\neq 0$; (ii) v_i 、 v_i 是B的接触点,则 $v_{i+1}v_{j+1}\in E$ 。

(b) 推导。若a≤*,则G是Hamilton的。

(V.Chvatal和P.Erdos

证:(a)由于G是非Hamilton图,从而存在 v_* $\in V(C)$,设含 v_* 之桥记为B,则B即为(i)中所求之桥。又设 v_* 、 v_* 是 B在 C 上的接触点,见图。按标的定义,在B中存在途径 W (v_*, v_*) ,再由练习1.6.1结论,在B中存在长度大于1的 $P(v_*, v_*)$ -路,由C是G中的最长圈,故[i-j]>1,否则用 $P(v_*, v_*)$ -路代替 v_*v_* 边,得比C 更长的圈。今

者 $v_{t+1}v_{t+1} \in E$,则在G中存在圈C',如图中箭头所示之圈,其长度大于C,矛盾。故 $v_{t+1}v_{t+1} \in E$,(ii)成立。

(b) 若G是非Hamilton图,设 $C=v_1v_2\cdots v_nv_1$ 是 G中的最长圈,且存在 $v_0 \in V$ (C),令B是含 v_0 的 C的桥。由(a) 知,B的任意两接触顶点均不相邻,所以在C上存在不是B的接触顶点 v_0 ,由 Menger 定理, v_0 , v_0 之间至少存在*条内点不相交的路相连,若B在C上的接触顶点个数<**,则存在不经过B的接触顶点由 v_0 到达 v_0 的路,但这样一来 v_0 成了B在C上的接触顶点,矛盾。故B的接触顶点之个数>*。下面又由(a)(ii)知,若 v_1,v_1,v_2,\cdots,v_n 是B在C中的接触顶点,则 $v_1,v_1,v_2,v_1,v_2,\cdots,v_n$ 是B在C中的接触顶点,则 $v_1,v_1,v_2,v_1,v_2,\cdots,v_n$ 是B在C中的接触顶点,例 $v_1,v_1,v_2,v_1,v_2,\cdots,v_n$ 是B在C中的接触顶点,

9.5 Kuratowski定理

定理9.10 (Kuratowski定理) 一个图是可平面图的充要条件是它不含有 K_{\bullet} 或 $K_{\bullet,\bullet}$ 的重分。(或一个图是可 平面图的充要条件是它经收缩变换后不含子图 K_{\bullet} 或 $K_{\bullet,\bullet}$ 。)

引**避9.10.1** 若G是非可平面图,则G的任一重分也是非可平面图。

引理9.10.2 岩G是可平面图,则G的任一个子图均是可平面图。

一个图的可平面性判定,除了上述定理9.10外,还有好下充要条件,虽然它们均是等价的,但在算法上,后者较优。

- (1) 一个图是可平面图的充要条件是它有一个 组 合 对 (H. Whitney. Fund. Math. 21(1933))
- (2) 一个图是可平面图的充要条件是它的每一个非平凡块有一个圈基 C_1 , C_2 , …, C_m 和 C_4 (对应于块的无界面的边界), 其中 $m=8-\nu+\omega$, 使得块中每边恰含于这m+1个圈的二个圈中。 (S.Maclane, Duke Math.J.3(1973))
 - (3) 一个图是可平面图的充要条件是 **0**³(G)=0. (吴文俊, 科学通报2(1974))

9.5.1 证明引理9.10.1和引理9.10.2.

证,由于重分的结果是在G中增加一些度为2的新斑点,而原来的顶点的度不变,显然若G的重分能嵌入平而时,则我们把这些新顶点对应在平面嵌入中的点抹去并连成一边,最后所得的平面图就是G的平面嵌入,这和G是非可平面图矛盾。所以G的重分一定是非可平面图。故引理9.10.1成立。

设G是可平面的,G是它的平面嵌入,显然G的子图G,对应在G中的子图G,是G,的平面嵌入,故G,是可平面图,引理G10.2成立。

9.5.2 用Kuratowski定理证明Petersen 图是非可率 面的。

证法1,从Petersen图(1)中,除去图中带点的边,如图所示, $\{1, 2, 3\}$, $\{4, 5, 6\}$ 分别作为 $K_{3, 4}$ 的顶点的两部,其余的顶点作为 $K_{3, 4}$ 的重分点。所以Petersen图中含有 $K_{4, 4}$ 重分,由Kuratowski定理,Petersen图是非可平面的。

9.5.4 图

证法2. 分别把Petersen图(2)中的i'和i"(i=1,2,…,5)的两点,收缩成一个顶点i,最后成为K₅. 故由Kuratow-ski定理知, Petersen图是非可平面的.

9.6 5-色定理和4-色猜测

定理9.11 可平面图是5-可着色的。

4-色精测(4CC),可平面图是 4-可着色的(本猜测自1879年A.B.Kempe给出第一个错误的证明起,一个多世纪来已多次被"证明"其中包括1976年由K.Appel,W.Hahen和J.Koch借助计算机得到的"证明",至今猜测未被解决)。

定理9.12 下列命题是等价的:

- (i) 可平面图是4-可着色的。
- (ii) 平面图是4-面可着色的。
- (iii) 任一2-边连通, 3-正则可平面单图是 3-边可着色的。

9.6.1 证明 无割边的平面连通图G是 2- 面可着色的 充要条件是G是Euler图。

证、⇒、考虑 G 中任一顶点 v, 若 $d_o(v)=k$. 当 k为奇数时,因 G 无割边,则围绕 v 的是 k(奇数)个区域,它不可能2-面正常着色,故 $d_o(v)$ 必为偶数。又因 G 连通,于是由定理 4.1,G 是 Euler 图。

年: 若 G 是 平面 Euler 图,显然 G 无割边且 连通,由 练习 g . g

9.6.2 证明 平面三角剖分 G是 3-可着色的充要条件 是G是 Euler 图。

证、⇒、由于 G 是平面的三角剖 \mathcal{G} ,从 面 G 连通,不然无界面不是三角形,导致矛盾。设 $v \in V(G)$, $d_o(v)$ 为奇数,则 v 的邻点在 G 中的导出子图是 奇 豳 C, $C \vee \{v\}$ 这奇轮显然不可能3-正常着色,从面 G 也不可能3-正常着色,这和假设矛盾,故 $d_o(v)$ 为偶数。于是由定理4.1知,G 是 E e ler 图。

一、由于 G是 Euler 图,故由练 习 9.8.1 知, G是 2-面可着色的,若 G的面用红、蓝色已正常着 色,今给 G以 定向,使每边的定向保持红面在右侧。令 G是 G的任一圈,和 G的红面相关联的 G上之边数为G,G=G0)一G0、又 G0 和 G1 分别是 G2 内的着红、蓝色的 面数,于是 G2 上加 G3 的边数为 G4 + G6 或 G4 + G6 或 G6 本 G7 的边数为 G8 + G8 或 G8 中国 G9 均 域以 G8 中国 G9 中国 G

9.6.3 证明每— Hamilton 平面图 总 是 4- 面可着色的。

证,设 G 是一个具有 Hamilton 圈 H 的平面图。H连 同 H 内的边在 G 中的 远导出子图记为 G1,显然 G1 仍是平面图,由系 1.1 知 G1 中度为奇数的顶点个数为偶数,故我们可以在 H 上依次将 G1 中度为奇数的顶点两两在 H 外连以边,并保持其平面性。最后所得之图记为 G2,于是 G2的现态度均为偶数,由定理 4.1 知,G2是 Euler 图,于是 Q1 由练习 9.6.1 知 G2是 2-面可着色的,故特别对 G中 H 内部的面是 2-面可着色的。数 G是 4-面可着色的。数 G是 4-面可着色的。

9.6.4 证明 Hamilton3-正则图恒有Tait着色法(即 - 230.

3-正则图的正常3-边着色法)。

证,设 G 是 Hamilton 3-正则图,则 3p=28,故 p 为 **偶数**。从而 G 中的 Hamilton 而 H 中的边 可 2- 边正常着色。由于 G 是 3-正则的,故 G-H 是 G 中的完 美匹配,将它着以第 3 色,最后得到的 G 的边着色法,显然是一种 T a it 着色法。

9.6.5 依(iii) ⇒(ii) ⇒(i) ⇒(iii) 的顺序来证明定 理9.12.

证,(iii)⇒(ii),首先证明命題,任意平而图是4-而可着色的充要条件是任意的2-边连通3-正则的平而单图是4-面可着色的。命题的必要性是显然的。命题的充分性证明如下,若平面图 G 不连通或含有割边,则可分别 考虑 G 的分支或 G 的块,对它们进行而正常着色,并每次 使无界面着同一色,于是合并起来,就成 G 之面正常着色。若 G的每一分支或块均是4-面可着色,则显然 G 亦是 4-而可着色。又显然 G 的底图是4-面可着色的,则 G 一定是4-面可着色的。故不失一般性,可假定 G 是2-边连通的平面 单图。此时若 G 不是 3-正则图,我们可由 G 构作一个新图 G。其方 法是 将 G 中度为 2,和度大于等于 4 的顶点,转换成如图所示的图形。

显然 *G*是2-边连通3-正则平面单图, 故 *G* 是 4-面 可**着** 色的,于是 *G*也是4-而可**着**色的。所以命题成立。

在上述命題基础上,(iii) \Rightarrow (ii) 等价于由(iii) 证明 2-边 连通 3-正则平面单图 G 是 4-而可着色的。由(iii) 知, G 是 3-边可着色的,即 G 存在 T ait 着色法。设对应的边的色分划为 $\{E_1, E_2, E_3\}$,于是 $E_1 \cup E_2$, $E_1 \cup E_3$ 对应的导出

转换前G中之图形 转换后G中对应的图形 9.6.5 图

子图 G_{12} , G_{18} 将分别是由两两不相交的圈的并组成,故它们分别是2-面可着色的。设 G_{12} 用 向 量(1,0), (2,0)表示的颜色进行了正常着色, G_{18} 用向量(0,1)、(0,2)表示的颜色进行了正常着色。由于 $G=G_{12}\cup G_{18}$ 。 G的每一个面均是 G_{12} 、 G_{18} 面的交,我们用对应的色向量和表示交面着的颜色。显然交面的着色 共 有 四种,即(1,0)+(0,1)=(1,1)及(1,2)、(2,1)、(2,2),且易证这种着色是正常的,故 G 是 4-面可着色。故(ii)成立。

(ii)⇒(i)、设 G 是任意的一个可平面图,G 的 平 面 嵌 入为 G ,由练 习 9·2·4(b),有 $\chi(G^{**})=\chi(G)$,又由 于 $\chi^*(G)=\chi(G^*)$, $\chi^*(G^*)=\chi(G^{**})$,于是 $\chi(G)=\chi(G)=\chi(G^{**})=\chi(G^*)$ 《 故(i)成立。

(i)⇒(iii), 设 G 是 2-边连通 3-正则平面单 图, 则 G* 是平面图,由(i)知, G*是4-可着色的,故 G是4-面可着色。再用定理 9·12 中(ii)⇒(iii)的证明,知(iii)成立。

9.6.6 设 $G \neq x=2$ 的 3- 正则图,见题图。

9.6.6题图

- (a) 证明 存在 G 的子图 G_1 和 G_2 ,以及 不 相邻的顶点对 u_1 , $v_1 \in V(G_1)$, u_2 , $v_2 \in V(G_2)$,使 得 G 是由 G_1 和 G_2 通过"梯子形"连接顶点 u_1 、 v_1 、 u_2 和 v_2 而组成。
- (b) 证明 若 $G_1+u_1v_1$ 以及 $G_2+u_2v_2$ 均有 Tait着色. 法、则 G 也有 Tait 着色法。
- (c) 用定理 9.12 推导, 四色猜测等 价 子 Tait 猜测。 任意3-正则3-连通可平面单图均有 Tait 着色法。
- 证:(a) 由于 $\kappa'=2$,故存在 e_1 , $e_2 \in E(G)$, $G-e_1-e_2$ 离散成 G'、G''. e_1 , e_2 不可能有公共顶点。否则由于 G是 3-正则图,如图(1)中的 e_3 必是 G 的割 边,这 与 $\kappa'=2$ 矛盾。又若 e_1 、 e_2 的端点有边相连,则如图(2),在 G' 中存在 e_3 、 e_4 ,类似对 e_1 、 e_2 的证明, e_3 、 e_4 也不可能有公共顶点。若 e_3 、 e_4 的左端点仍有边相连,则在 G'中存在 e_3 、 e_6 …。如(a)中的 u_1 , v_1 不存在,则这过程一直 可 以 进行下去,由于 G'是有限图,故有限次后会 出 现 如图(3)的情况,此时 G'的顶点均在"梯子形"上,但这和 G是 3-正则相矛盾。所以在 G'中进行若干次上述过程后,就会 出 现如题目中所示的 u_1 、 v_1 点,把 G'剩下来的 图 记为 G_1 。类似对 G'' 讨论,可知(1)的结论成立。
 - (b) 设 G 如题 图 所 示,设 G1+u1v1, G2+u1v2 已按

9.6.6 (4) 图

Tait 着色法着色,且不失一般性,当"梯子形"有奇数档时,总可使 u_1v_1 着 1 色, u_2v_2 着 2 色。当"梯子形"有 偶 数 档时,总可使 u_1v_1 、 u_2v_2 均着 1 色。于是可转换为如 图(1)、(2)所示的着色。它们是 G 的 Tait 着色。

当"梯子形"为奇数档时,以3档为例,如图(1)当"梯子形"为偶数档时,以2档为例,如图(2)

9.6.6 (b) 图

(c) 设 G 是 3-正则 3-连通平面单图,故有 *'=3、从而由定理 9·12 知,若四色猜测成立,推知 Tait猜测也成立。 反过来由定理 9·12 只需证明,若 Tait猜测成立则 2-边连通 3-正则可平面单图 G 必有 Tait 着 色 法。由(a)知,G 是题图中所示的图,显然 G1+**1**1=G1 是 3-正则图,且由 Menger 定理,*'(G)≥ 2。若 G1 仍为 2-边 连通,则可用(a)对 G1 继续分解下去,由于图 G 是有限的,且是 3-正则的,从

而到某一步后用(a)分解出来的 G_1 …均是3-边连通图,由练习 3.1.6 知它们的 x=3。故若 Tait 猜测成立,则G…等有 Tait 着色,再多次用(b),知 G 亦有 Tait 着色。所以假如 Tait 猜测成立,则四色猜测也成立。

- 9.6.7 给出下列例子:
- (a) 无 Tait 着色法的 3-正则平面图。
- (b) 无 Tait 着色法的 3-正则2-连通图。
- 解, (a) 其例见图(1), 它无 Tait 着色法。
- (b) 其例为 Petersen 图, 易直接验证它 无 Tait 着色法。利用 Petersen 图还可构作图(2)所示的 3-正则 2-连通图, 岩图(2)有 Tait 着色,则 a、b、c 必 着 同 色,但这样一来,相当于 Petersen 图有 Tait 着色了。矛盾。

9.6.7图

对图(1)和 Petersen 图也可以 如下 证 明 它 们不存在 Tait 着色法。

用反证法,若图(1)或 Petersen 图存在 Tait 着色 法,并已用 1, 2, 3 色进行了 Tait 着色,则 1, 2 色 边 在图中的导出子图 G_{12} 是图的2-因子,且每个圈均 为 偶 圈,由于这两图均无 Hamilton 则,又 p=10,故 G_{12} 仅能 是 4- 圈

和 6-圈组成的2-因子,但在图(1)中不含6-圈,而 Petersen 图不含4-圈,矛盾。所以图(1)和 Petersen 图不存在 Tai^t 着色法。

9.6.8 若 $P(k) = k(k^2 - 6k + 5) Q(k)$, 其中 Q(k)是 9-3 次多项式,证明 P(k)不是平面图的色多项式。

证,若 P(k)是某图 G 的色多项式,由于 P(5)=0,故 G 不存在 5-正常着色。又由于平面图是5-可着色的。故G一定是非可平面图。所以结论成立。

9.7 非 Hamilton 可平面图

定理 9.13(Grinberg 定理) 若 G 是 平面图,且具有 Hamilton 图 C。若 ϕ'_i , ϕ''_i 分别表示含在 C 内、C 外的面 度为 i 的面的个数,则 $\sum_{i=1}^{n} (i-2)(\phi'_i - \phi''_i) = 0$.

- 9.7.1 (a) 证明 图 G, 中没有 Hamilton 图 同时含有 e和 e' 边。
- (b) 用(a)证明 图 G₂ 中没有 Hamilton 圈 同时含边 e
 - (c) 用(b)证明 G_s 中所有 Hamilton 圈均含边 e_s
 - (d) 推导 Tutte 图是非 Hamilton 的。
- 证,(a) 着 G_1 中含 e、e' 的 Hamilton圈 C 存在,则 G_1 中带" ||" 的四条边不可能同时在 C 上,于是由对称性可 假定两条带"×"的边在 C 上,从而立即导出粗边均在 C 上,但粗边中已含有不是 Hamilton 图的圈,故(a)成立。

9.7.1 题图

- (b) 若 G_2 中存在含 e、e' 的 Hamilton 圈 C ,则粗边所示的边一定在 C 上,可是这样一来,若把 e、e' 连同它所在的三角形收缩成一点,则 G_2 变成 G_1 , G_2 中的粗边 变成 G_1 中的 e、e' 边,由(a)知这不可能,故(b)成立。
- (c) 若 G_1 中存在不经 过 e 边 的 Hamilton圈 C,则 C 必须包含粗边所示的路,若将这粗边的路换成一边,则 C 就 变成 G_2 中 经 过 e、e' 的 Hamilton 圈,由(b)知,这 不可能,故(c)成立。
- (d) 若 Tutte 图中含 Hamilton 圈 C ,易知,C中 必含 $\{e_1, e_2, \check{e}\}$ 三条边中的两条(见图)。若 C含 C_1 , e_2 ,我们将顶点 a_1 、 a_2 、 a_3 合成一点 a ,则 Tutte 图中虚线所示的上面部分变成 G_3 ,且 \check{e} 相当于 G_3 中的 e ,这样就得到 G_3 中不含 e 的 Hamilton圈,与(c) 矛盾,故圈 C 必须经过 \check{e} 。再由对称性知,和 a_3 点关联的三边均应含于 C 中,这是不可能的。所以 Tutte 图不存在 Hamilton 圈,故 (d) 成立。
- 9.7.2 用定理 9.13 证明 Herschel 图是非 Hamilton 图(事实上,它是最小非 Hamilton 3-连通平面图).

Hershel E

9.7.1 Tutte 图

9.7.2图

证,Herschel 图的 $\phi_4 = \phi_4' + \phi_4'' = 9$, 其余的 $\phi_4 = \phi_4' + \phi_4'' = 9$ $\phi_{*}^{\prime\prime}(i \rightleftharpoons 4)$ 均为零,从而 $\phi_{*}^{\prime} = \phi_{*}^{\prime\prime} \rightleftharpoons 0$,而其 它 的 $\phi_{*}^{\prime} = \phi_{*}^{\prime\prime} = 0$ (i = 4),于是 $\sum_{i=1}^{n} (i-2)(\phi'_{i} - \phi''_{i}) = 2(\phi'_{i} - \phi''_{i}) = 0$ 。故由定 理9.13 知, Herschel 图是非 Hamilton图。

9.7.3 给出一个2-连通3-正则非 Hamilton 可平而单 图的例子。

解,如图 G 是平面单图,易检查 G 是 2-连 通 3-正则 图, 其中{a, b}就是它的一个2-顶点 割 集。若 G 存在 Hamilton 圈 C,则图中所示的粗边一定在 C 上,将 G 中的粗

边连同夹在其中的" 一起去 掉, 换 上 ab、cd

边,于是G变成练习9.7.1中的 G_1 ,C就变成 G_1 的一条含 e、e'的Hamilton 圈,由练习 9.7.1(a)知,这不可能。 所以 G 是非 Hamilton 图。故 G 是满足要求之例子。

9.7.5图

- 9.7.4 (a) G是一个图, B是G的键, 若G-B为2-树(即它的二个分支均为树)时, 称B是G的Hamilton键。试证连通平面图G含Hamilton圈的充要条件是对偶图G*含Hamilton键。
- (b) 试在平面图的对偶图上叙述 Grinberg 定理,并证明它对非可平面图也成立。

仁、设 B^{\bullet} 是 G^{\bullet} 中的 Hamilton 健,由练 习 9.2.3(a) 知, B^{\bullet} 在 G 中对应的边集是圈记为 C。若 C 不是 G 的Ha—milton 圈,于是存在 $v_0 \in C$,由 G 的连通性, v_0 不可能是

G的孤立点。取与V。相关联之边集记为 B。,显然 它 是 G中的键,且 $B \subseteq G - C$ 。于是由练习 $9 \cdot 2 \cdot 3(\alpha)$, $\{e^{\alpha} \in G^{\alpha} \mid e \in B_{\alpha}\} \subseteq G^{\alpha} - B^{\alpha}$ 中含圈,这与 $G^{\alpha} - B^{\alpha}$ 是 $G^{\alpha} - G^{\alpha}$ 是 G^{α}

(b) Grinberg 定理在平面图的对偶图上 应 叙 述 成。 "若 G 是平面图,且具有 Hamilton 键 B, 则。

$$\sum_{i=1}^{\infty} (i-2)(v'_i - v''_i) = 0$$

其中 ν_i 、 ν_i 分别记为G-B中的2-树T'、T''中度为i的顶点个数。"

下面对 G 是非可平面图时,证明上述变型的 Grinberg 定理。令 E'=E(T'),s'=|E'|,于是 v(T')=s'+1。故

$$\sum_{i=1}^{\infty} v_i' = \varepsilon' + 1 \tag{1}$$

又E'中之边恰以T'中的两个顶点为端点。而B中每一边恰以T'中一个顶点为端点,故有。

$$\sum_{i=1}^{\infty} i v_i' = 2\varepsilon' + |B| \qquad (2)$$

(2)-2(1)得:
$$\sum_{i=1}^{n} (i-2)\nu'_{i} = |B|-2$$
 (3)

类似可得:
$$\sum_{i=1}^{\infty} (i-2) p_i'' = |B| -2$$
 (4)

(3)-(4)得:
$$\sum_{i=1}^{\infty} (i-2)(\nu'_i - \nu''_i) = 0$$

故定理得证.

9.8 平面性算法

定义,G是可平面图,H是 G的子图,H是 H的一个平面嵌入,若 G有一个平面嵌入 G使 H的平面嵌入 $H \subseteq G$,则称 H是 G-可容纳的。

平面性算法:

- 1. 设 G_1 是G中的圈,求 G_1 的一个平面嵌入 G_1 。令 i=1。
- 2. 若 $E(G) \setminus E(G_i) = \emptyset$, 停止, 否则, 确定 $G + G_i$ 的所有桥, 对每一个这样的桥B, 都求出集合 $F(B, G_i)$.
- 3. 若有桥 B 使 $F(B, Q_1) = \Phi$; 则停止(这时根据定理9·14, G是非可平面图)。否则,若有桥 B 使 $[F(B, Q_1)] = 1$, 则令 $\{f\} = F(B, Q_1)$; 否则,设 B 为 任一 桥,令 f 为 $F(B, Q_1)$ 中的任一面。
- 4. 选择一条连接 B 对于 G_i 的两个接触顶点的路 P_i \subseteq B_i , 令 $G_{i+1} = G_i$ UP_i , 将 P_i 画在 G_i 的面f 内,得到 G_{i+1} 的一个平面嵌入 G_{i+1} , 将 i 用 i+1 来代替转入第 2 步。
 - 9.8.1 用平面性算法证明 Petersen 图 是 非 可 平 面

图.

证、如图,从图 $\ddot{G}_1 = 123451$ 开始; $\{16, 27, 38, 49, 5(10), 68, 69, 7(10), 79, 8(10)\}$; $\{69\}$, $\{27\}$, $\{38\}$, $\{5(10)\}$; $\{69\}$, $\{38\}$, $\{5(10)\}$ 分别为 \ddot{G}_1 、 \ddot{G}_2 、 \ddot{G}_3 每一步中的各个桥(为简单起见用 $\{\}$ 中的边集合来表示),粗体字表示其中 $\{F(B, \ddot{G}_1)\}=1$ 的桥 B、 \ddot{G}_2 由 \ddot{G}_1 加路 $P_1=168$ $\{10\}$ 794得到, \ddot{G}_3 由 \ddot{G}_2 加路 $P_2=27$ 得到。最后, \ddot{G}_3 中由 38 组成的桥 \ddot{B} 有 $\{F(B, \ddot{G}_3)\}=0$,从 而 Petersen 图是非可平面图。

9.8.1图

第十章 有 向 图

10.1 有向图

定义、有向图 D 是如下的一个有序三 元 组(V(D), A (D), ψ_0), 其中 V(D) 是顶点的非空集合,A(D) 是弧的集合,且 A(D) 与 V(D) 无公共的元素; ψ_0 是一个将 A(D) 中的每一个弧和 V(D) 中的顶点有序对(可以相同)相联系的类 **联图数**。若 $a \in A(D)$, a, $v \in V(D)$ 且 $\psi_0(a) = (a$, v), 则称 * 为 a 的 * 和 a 的 * 和 a 的 * 为 a 的 * 和 a 的 * , 为 a 的 * 4.

定义,每一个有向图 D,可以构作一个无向图 G 如下,V(G)=V(D),A(D)中的每条弧,用相同端点的边来代替,构成 E(G), $\phi_0=\phi_0$,我们称上述 G 是 D的图图。反过来,对任一无向图 G,对它的每一边的两端点规定一个次序,就相应地得到一个有向图 D,我们称 D 为 G 的一个定陶,在本章中约定用 D 记有向图,用 G 来记 D 的底图。

定义,有向图 D 中,若不含环、且有相同端 点 的两条 **强没有一**对是相同的,称 D 是**严格的有陶图**。

类似于无向图,可定义有向途数、有向数、有向路、有向数数分支(强速数分支)和内度 $d_{\bar{p}}(v)$,外度 $d_{\bar{p}}(v)$ 。

将无向图的边看成两个方向相反的弧,则无向图也可以看成有向图,故有向图是更广泛的一类图。读者可参阅

C.Berge著的《Graphs and Hypergraphs》(1973)。它是一一本用有向图来叙述图论基本结果的著作。

- 10.1.1 一个单图 G, 可构作出多少个定向图?
- **舞**. 由于单图 G 的每一边,有两个方向 可 **供 选择,故** 单图 G 可构作出 $2^{\bullet(G)}$ 个定向图。

10.1.2 证明
$$\sum_{v \in V} d^-(v) = s = \sum_{v \in V} d^+(v)$$
.

证:由于 D 中的任一弧恰有一个头和一个 尾,故上述命题成立。

- 10.1.3 设 D 是一个不含有向圈的有向图。
- (a) 证明 δ⁻=0.
- (b) 推导: V(D)中有一个排序v₁, v₂, ···, v_{*}使得对于 1≤i≤v, D 中头为 v_{*} 的所有弧, 其尾都在⟨v₁, v₂,···, v_{*-1}⟩中。
- 证。(a) 用反证法,若 $\delta^->0$,则 D 中每一个 顶 点至 少有一条入弧,故均可沿这弧反向到 达 D 的另一个 顶点,且这过程永远不会终止。另一方面,由于 D 是不 含 有向医的有限图,故上述过程不可能永远进行下去。矛盾。所以 $\delta^-=0$ 。
- (b) 由(a)知,存在 $v_1,d_{\bar{p}}(v_1)=0$,然后考虑 $D_1=D-v_1$,它仍为一个不含有向圈的有向图,再由(a)知,存在 v_2 , $d_{\bar{p}_1}(v_2)=0$; 再考虑 $D_2=D_1-v_2=D-\{v_1,v_2\}$,如此一直进行下去,共进行v次后,得 v_1,v_2,\cdots,v_r ,按作法易知,即为所求之V(D)的排序。
 - 10·1·4 证明, D 为有向连通的充要条件 是 D 是连进 • 244 •

的,且D的块是有向连通的。

证、⇒、由于 D 中的一条有向路,在 D 的底图 G 中是一条路,从而由定义,D 是有向连通时,D 显然是连通的。又设 D_1 是 D 中之块, D_1 上任意两顶点 u, v, 由于 D 是有向连通的,从而在 D 中存在有向路 P(u, v)和 Q(v, u),由于端点在同一块的有向路不可能包含其它块中之顶点,故 P(u, v)和 Q(v, u)亦是 D_1 中的有向路,故按 定 义 D_1 是有向连通的。

仁、设 u, v 是 D 中分属于不同块的两个顶点,由于 D 是连通的,故在 D 中存在连接 u, v 的路,在路上依次经过 D 的割点 u₁, u₂, …, u_k, 由于 u, u₁属于 D 的 同一块,故存在 $P_1(u, u_1)$ -, $Q_1(u_1, u)$ -有向路, u_{i-1} , $u_i(i=2, \dots, k)$ 属于 D 的同一块,故存在 $P_i(u, u_1)$ -, $Q_i(u_1, u)$ -有向路, u_{i-1} , $u_i(i=2, \dots, k)$ 属于 D 的同一块,故存在 $P_i(u_{i-1}, u_i)$ -, $Q_i(u_i, u_{i-1})$ -有向路,最后由于 u_k , v属于 D 的同一块,故存在 $P_{k+1}(u_k, v)$, $Q_{k+1}(v, u_k)$ -有向路,于是 $P_1(u, u_1) \cup P_2(u_1, u_2) \cup \dots \cup P_k(u_{k-1}, u_k) \cup P_{k+1}(u_k, v) = P(u, v)$, $Q_{k+1}(v, u_k) \cup Q_k(u_k, u_{k-1}) \cup \dots \cup Q_2(u_2, u_1) \cup Q_1(u_1, u_k)$ = Q(v, u) 分别是 D 中的有向路,所以按有向连通的定义,D是有向连通的。

10.1.5 D的**逆** D是由 D 倒转每条弧的方向**得到**的有**向**图。

$$(a)$$
 证明。 (i) $D=D$; (ii) $d^{+}_{D}(v)=d^{-}_{D}(v)$; (iii) $D=D$; (iii)

(b) 利用(a)中(ii)及练习 10.1.3(a), 证明。若 D 是不含有向圈的有向图,则 $\delta^+=0$ 。

证,(a)按定义结论是显然的。

(b) 由(a)中(ii), 故 $\delta_{\rho}^{+}=\delta_{\overline{\rho}}^{-}$, 又若 D 不含有向圈,

则显然 \overrightarrow{D} 亦不含有向圈,故由练习 10.1.3(a) 知有 $\delta_{\overline{D}}=0$,所以 $\delta_{\overline{D}}^{+}=0$ 。

 $10\cdot 1\cdot 6$ 证明。若 D 是严格的 有向图,则 D 含有长度不小于 $\max\{\delta^-, \delta^+\}$ 的有向路。

证:不失一般性,可假定 $\max\{\delta^-, \delta^+\}=\delta^+$.不然考虑D即可。设 $P(u_0, v_0)$ 是 D 中的最长有向路,若它的长度小于 δ^+ ,则由于 D 是严格的,必存在以 v_0 为尾,头不在 $P(u_0, v_0)$ 中的弧,从而 $P(u_0, v_0)$ 可继续延长,这与 (u_0, v_0) 是最长有向路相矛盾。所以 $P(u_0, v_0)$ 的长度不 $P(u_0, v_0)$ 是最长有向路相矛盾。所以 $P(u_0, v_0)$ 的长度不 P 小于 δ^+ = $\max\{\delta^-, \delta^+\}$.

 $10\cdot 1\cdot 7$ 证明。若 D 是严格的有向图,且 $\max\{\delta^-, \delta^+\}=k>0$,则 D 中含有长度不小于 k+1 的有向圈。

证、不失一般性,可以假定 $\max\{\delta^*, \delta^*\} = \delta^*$,不然考虑 即可。由练习 10.1.6 知, D 中之最长有 向路 $P(u_0, \bullet)$ 长度 > k,由于 D 是严格的,从而应 有 $d^*(v_0) > k$ 条头不相同的弧,以 v_0 为尾。且由于 $P(u_0, v_0)$ 是最 长性知,这些以 v_0 为尾的 $d^*(v_0)$ 条弧的头均在 $P(u_0, v_0)$ 上,故 D 中含有长度不小于 k+1 的有向關。

10·1·8 设 v₁, v₂, ···, v₂, 是有向图 D 的顶点, D的
• 248 •

邻接矩阵是一个 $v \times v$ 矩阵 $A = [a_i,j]$,其中 a_i ,是D中尾为 v_i ,头为 v_j 的弧的条数,证明 A^i 的(i,j)元素的值是B中长度为k的 (v_i,v_j) -有向途径的条数。

证:对k用归纳法、k=1时,由 A的定义知命题成立。设对 A^{*-1} 命题已成立。今考虑 $A^{*}=(a_{i}^{*})=A^{*-1}A$,故 $a_{i}^{*}=\sum_{i=1}^{n}a_{i}^{*}(a_{i}^{*})a_{i}$,由归纳法假定 $a_{i}^{*}(a_{i}^{*})$ 表示 D 中长度 为 k-1 的 $\{v_{i}, v_{i}\}$ 一有向途径的条数,而 a_{i} ,则表示 D 中 v_{i} 为是, v_{i} 为头的弧的条数,故 $a_{i}^{*}(a_{i}^{*})a_{i}$,表示 D 中最后经由弧 $\{v_{i}, v_{i}\}$ 的长度为 k 的 $\{v_{i}, v_{i}\}$ 一有向途径的 条数。由于 D 中任一条 $\{v_{i}, v_{i}\}$ 一有向途径,最后总要经由某一条 $\{v_{i}, v_{i}\}$ 则, m 所以 $a_{i}^{*}(a_{i}^{*})$ 是, $a_{i}^{$

10·1·9 设 D₁, D₂, ···, D_m是 D 的有向逢通分支, 所谓 D的**凝聚器**D 是定义如下的 m 个顶点 w₁, w₂, ···, w_m的 有向图, D 中有尾为 w₁, 头为 w₁的弧的充要条件是 D 中有 尾在 D₁中,而头在 D₂中的弧,证明 D的凝聚图 D 不含有 **构图**。

证: 者 D 中含有有向圈,则按 D 的定义,对应在 D 中含有连接 D 的数个有向连通分支的顶点的 有 向圈。但这样一来,对应的这数个有向连通分支,按定义应是同一个有向连通分支,矛盾。故 D 不含有向圈。

10·1·10 证明。G 有定向 D,使得对所有的 $v \in V(G)$ 都有 $|d_{\overline{v}}(v)-d_{\overline{v}}(v)| \leq 1$ 。

证: G 有偶数个奇度顶点,将这些顶点一对一对联边,得 Euler 图 G'。在 G'上找一 Euler 环游,自 它的起点开

始沿此 Euler 环游前进的方向给各边定向,得有向图 D',显然 $\forall v \in V(G)$ 有 $d_{v}(v) = d_{v}(v)$ 。将 D'中外加 给 G 的 边对应的弧去掉,得 G 的一个定向 D,易知 D 满足

 $|d_{B}^{+}(v)-d_{B}^{-}(v)|\leqslant 1, \ \forall v\in V(G).$

- 10·1·11 树的定向称为有向树。有向图 D, 岩 它的任一顶点均由顶点 a 可达,则称 a 是 D的根。有根的有向树称为树形。又有向图 D 称为拟强连逼的,如果 对 D 中任一对顶点 a, v,总存在 w,它到 u,v均可达。T 是树形的充要条件是它是拟强连通的,且满足下面三个条件之一。
 - (a) $\varepsilon(T) = v(T) 1$,
 - (b) T 中去掉任一条弧均破坏其拟强连通性,
- (c) T 中存在一顶点 a, $d_{\overline{s}}(a)=0$, $d_{\overline{s}}(a)=1$ 又对 $a \in V(T)$, $a \neq a$, $d_{\overline{s}}(a)=1$.

证、今、由定义,了显然是拟强连通的。又由定理2.2 烟,(a)成立;由于树形的底图是树,树的蜡、边(对应在树形中是一条弧)均是割边,故(b)成立;若了中的 根 为 a,d;(a)>0,设(v, a) \in A(T),又由根的定义,在了中存在(a, v)—有向路,于是它和(v, a)弧构成了中的有向圈,矛盾。所以d;(a)=0。类似地,若d;(a)>2,设(v; u)、(w, a) \in A(T),再加上了中的(a, v)—,(a, w)—有向路、它们之中一定含有圈,矛盾,故(c)成立。

仁,由于T是拟强连通的,设T的顶点为 v_1 , v_2 ,…, v_3 ,于是存在 u_1 ,它到 v_1 , v_2 ,可达。存在 u_2 ,它到 u_1 , v_3 可达。…。最后存在顶点 u_{n-1} ,它到 v_{n-2} , v_n 可达。整然 u_{n-1} 是 u_1 的根。又 u_1 是连通的,若 u_2 的成立,则由定理 u_1 2.2 知, u_1 2 的底图是树,故 u_2 2 是树形。又若 u_3 3 以表

剿(c)成立。这是因为若 $d_{\overline{s}}(a)>0$,则去掉 a 的入弧,不破坏 T 的拟强连通性。若 $d_{\overline{s}}(a)\ge 2$, $a > a \in V(T)$,设 (v, a), $(v, a) \in A(T)$,因而有两条不同的有向路由 a 到 a 可达,如果去掉(v, a) 弧,不破坏 T 的拟强 连 通 性。这些均均 与(b)矛盾。最后若(c)成立,则由练 习 10.1.2,有 s(G) $\Rightarrow v(G)-1$,于是由(a)知,T 是树形。

10.2 有 向 路

定义。完全图的定向称为竞赛图。

定理10.1 有向图 D 含有长度为 X-1 的有向路。

系10.1 竞赛图总含有有向 Hamilton 路。

定理10.2 无环有向图 D 存在一个独立集 S,使 得 所有不在 S 中的顶点都可以从 S 中的顶点出发,终长度 不大于 S 的有向路而到达。

聚10.2 竞赛图总存在这样一个顶点,由此顶点出发; **其景顶点均可**经由长度不超过 2 的有向路到达。

10·2·1 证明, 竞赛图域是有向连通图, 或只要改变——条弧的方向, 就可变成有向连通图。

证,由系 10·1 知, 竞赛图恒存在有向 Hamilton 路,从而竞赛图或者有有向 Hamilton圈,或改变一条弧的方向后,有有向 Hamilton 圈,故结论成立。

10.2.2 有向图 D 中任意两个顶点 u 和 v, 或者可从 ⇒ 到达 v, 或者可从 v 到达 u, 则称 D 为单向的。证明,D 是 单向的充要条件是 D 中有一条生成有向途径。

仁, 显然。

- 10.2.3 (a)设 $P=(v_1,v_2,...,v_s)$ 是竞赛图D中的一条极大有向路,若P不是 Hamilton 路,对任一 $v \in P$,证明一存在某个i,有 (v_1,v) 和 (v,v_{s+1}) 都是 D 中的弧。
 - (b) 证明 Rédei 定理(即系 10.i)
- 证: (a) 由于 P 是极大有向路,从而 仅能 (v_1,v) 、 (v,v_2) 。 (v_1,v_2) $\in A(D)$ 。又由于 D 是竞赛图,每一个 v_1 , $i=1,2,\cdots,k$ 均与 v 有弧相连。从而至少存在这样 一个 i ,有 (v_1,v) 。 $(v,v_{i+1})\in A(D)$ 。
- (b) 若D中的最长有向路 $P=(v_1,v_2,...,v_n)$ 不是Hamil-ton 有向路,故存在 $v\in P$,由(a)知,存在某个v有(v_1,v_1)、(v_1,v_1,v_2)、中人人($v_1,v_2,...,v_1,v_2,v_3$)、中人人($v_1,v_2,...,v_1,v_2,v_3$)。是一条比P 更长的有向路,这和P 是最长有向路的 假定相,对P 是,故P 是 P 中的 Hamilton 有向路。

10.2.4 藉助最大外度顶点,来证明系 10.2。

证,设 v_0 是竞赛图 D中的最大外度顶点。在D中若存在 v_1 ,使 v_0 到 v_1 需长度大于 2 的有向路才能到达,则(v_1 , v_0) \in A(D),且 v_0 的外邻点必需也 是 v_1 的外 邻点。于 是 $\circ d_{\mathfrak{o}}(v_1) > d_{\mathfrak{o}}^{+}(v_0)$,这和 v_0 是 D 的最大外度顶点的假定相

矛盾。故系 10.2 成立。

- 10.2.5 (a)设 D是X>mn的有向图,f 是定义在V(D) 上的实值函数。证明:D 或者有一条有向路(u_0 , u_1 , …, u_m)使得 $f(u_0) \leq f(u_1) \leq \dots \leq f(u_m)$; 或有一条有向路(v_0 , v_1 , …, v_n)使得 $f(v_0) > f(v_1) > \dots > f(v_n)$ 。

 ($V \cdot Chv$ at all 和 $J \cdot Komlos$)
- (b) 推导,任意一个 mn+1 个相异整数的序列或包含一个有 m 项的增子序列或包含一个有 n 项的减子序列。

(P.Erdős 和 G.Szekeres)*

- 证:(a) 由 D 构作 D_1 和 D_2 两个有向生成子图,D 中之弧(a,v)属于 $A(D_1)$ 的充要条件是 $f(u) \leq f(v)$ 。 D 中之弧(a,v)属于 $A(D_2)$ 的充要条件是 f(u) > f(v)。故 $D = D_1 \cup D_2$ 。若 $\chi(D_1) \leq m$, $\chi(D_2) \leq n$,且 D_1 , D_2 分别已用m,n种颜的色正常着色。设 $v \in V(D)$,在 D_1 中着 i_1 色,在 D_2 中着 i_2 色,现象对 v 在D中着以(i_1,i_2)色,显然这种着色方式,对D是正常的, 故 $\chi(D) \leq mn$,这与 $\chi(D) > mn$ 相矛盾,所以有 $\chi(D_1) > m$ 或 $\chi(D_2) > n$ 。若 $\chi(D_1) > m$,则由定理 10.1 知,在 D_1 中存在一条长度不小于 $\chi(D_1) 1 > m$ 的有向路($u_0, u_1, \dots, u_m, \dots, u_{\chi(D_1)-1}$),按 D_1 定义显然 有 $f(u_0) \leq f(u_1) \leq \dots \leq f(u_m)$ 。若 $\chi(D_2) > n$,则由定理 10.1 知,在 D_2 中存在一条长度不小于 $\chi(D_2) 1 > n$ 的有向路($v_0, v_1, \dots, v_n, \dots, v_{\chi(D_2)-1}$),接近 D_2 定义显然有 $f(v_0) > f(v_1) > \dots > f(v_n)$,故命题成立。
- (b) 设 mn+1 个相异整数序 列 为 $\{a_1,a_2,\cdots,a_{mn+1}\}$,取 $V(D)=\{v_1,v_2,\cdots,v_{mn+1}\}$,构作 如 下 的 竞 赛 图 D。 $\{v_i,v_j\}\in A(D)$ 的充要条件是 i< j。显然 $\chi(D)=mn+1$ 。今在 V(D)上构作实值函数 f,使 $f(v_i)=a_1$,($i=1,2,\cdots,m_n$)

- +1)。于是由(a)知,在 D 中或有一条有向 路($v_{i_0}, v_{i_1}, \cdots, v_{i_m}$)使得 $f(v_{i_0}) \leq f(v_{i_1}) \leq \cdots \leq f(v_{i_m})$,即存在 $i_0 < i_1 < \cdots < i_m$,对应有 $a_{i_0} \leq a_{i_1} \leq \cdots \leq a_{i_m}$;因 a_i 是相异的,故 $a_{i_0} < \cdots < a_{i_m}$;或者在 D 中有一条有向 路($v_{i_0}', \cdots, v_{i_n}'$)使 得, $(v_{i_0}') > f(v_{i_1}') > \cdots > f(v_{i_n}')$,即存在 $i_0' < i_1' < \cdots < i_n'$ 对应有 $a_{i_0}' > a_{i_1}' > \cdots > a_{i_n}'$ 故结论成立。
- 10·2·6 (α) 利用定理 10·1[注]和系8·1·2 证 明 G 有 一个定向 D, 它的每一条有向路的长度均不大于 Δ.

[注]: (a)的证明不必用此定理。

- (b) 给(a)一个构造性的证明。
- 证: (a) 由系 8.1.2 知, $\chi(G) \leq \Delta + 1$,故 G 存在 ($\Delta + 1$)—正常替色,设对 G 已用 $\Delta + 1$ 种 颜 色进 行 了 正 常 替 色。对 G 中之边 πv ,定向取为(π, v)的充要条件是 π 的 替色 π 小于 π 的 替色 π , 显然在这种定向下它的有向路 的 长 度 π ($\Delta + 1$)— π π 。
- (b) 设 $V(G) = \{v_1, v_2, \dots, v_n\}$, 由于对 G 中任 意 点 v 连同它的邻点个数不会超过 $\Delta + 1$, 从而我们总可以 依 次 对 v_i 进行着色,使 v_i 着的颜色和 v_i 的邻点 v_i $(j \le i-1)$ 着 的 颜色相异,一直到 G 被 $\Delta + 1$ 种颜色正常着色完为止,然 后 在这种着色基础上,按 (a) 中的定向方法将 G 定向,记为 D, 虽然 D 中的有向路长度 $\le (\Delta + 1) 1 = \Delta$ 。
- 10.2.7 类似练习 1.4.8, 对有向图也有对 应 的 Ulama 猜想, 试举反例说明 ν=5,6 时, 竞赛 图 的 Ulama 猜想不成。 立(猜测 ν≥? 不存在反例).

(L.W.Beineke和 E.M.Parker)

解,其反例如图:

10,2,7 图

10.2.8 (H.G.Landau, 1955) 非负整数序列: (r_1, r_2, \dots, r_r) 是某个竞赛图的出度序列的充要条件是满足: (a) $\sum_{r_s > r_s > \binom{|Y|}{2}}, 对任意非空子集<math>Y \subseteq X = \{1, 2, \dots, r\};$

(b)
$$\sum_{k\in X} r_k = \binom{\nu}{2}.$$

证: \Rightarrow 以 $X = \{1,2,\cdots,\nu\}$ 为顶点集的竞赛图 T ,任 取 $Y \subseteq X$, T[Y] 是 |Y| 个顶点的子竞赛图,由练习 10.1.1 , $(T[Y]) = {|Y| \choose 2}$; 另一方面, $\sum_{x \in Y} r_x \geqslant \epsilon(T[Y])$ 。故必要性 成立。

 $\leftarrow : \forall k \in X,$ 取点集 $G_*, |G_*| = r_*,$ 且使 $\{G_*\}$ 两两不相交,令 $G = \bigcup_{k \in X} G_*, B = \{(i,j)| 1 \le i < j < \nu\}, H := \{G_*, UG_*, |G_*| = (i,j) \in B\}$ 。显然由 $\{G_*, G_*\} = [G_*]$

注意到对于非空子集 $B' \subseteq B$, 令 $Y = \{k \mid (k,j) \text{或}(j,k) \in B'\}$ 。于是由(a)有:

$$|B'| \leqslant {|Y| \choose 2} \leqslant \sum_{k \in Y} r_k = |\bigcup_{k \in Y(I,J) \in B} G_k| = |\bigcup_{G_i \cup G_J} G_I| \quad (*)$$

下面定义 2-部图 K,其顶点划 分 为(B,G), (i,j)和v $\in G$ 相邻的充要条件是 $v \in G$, $\bigcup G$, $v \in G$, $\bigcup G$, $v \in G$

用 f 我们来构作竞赛图T=(V,A)如下; $V=\{v_1,v_2,\cdots,v_r\}$, 对于 i < j, $(v_i,v_j) \in A$ 的充要条件 是 $f((i,j)) \in G_i$, 否则 $(v_j,v_i) \in A$ 。显然由于 f 是一一映射,故有 $d_x^*(v_i) = r_i(i=1,2,\cdots,v)$,所以 f 是满足已知条件的竞赛图。

10.3 有 向 圈

定理 10.3 在 $\nu \ge 3$ 的有向连通竞赛图中的每个顶点 都含于某个有向 k-圏中, $3 \le k \le \nu$ 。

定理 10.4 若 D 是 严 格 的 有向图,且 min $\{\delta^-, \delta^+\}$ $\ge v/2 > 1$,则 D 包含一个有向Hamilton 圈。

(关于有问圈有极为丰富的内容,读者可参看, J.C.Be, rmond 和 C. Thomassen 在 J. Graph Theory Vol 5 (1981)1-43 的综合性文章。)

10.3.1 用定理 10.4 来推导定理 4.3.

证、若 G 是单图, $v \ge 3$,且 $\delta \ge v/2$ 。对于 G 中之边 uv,分别连以(u,v),(v,u)弧所得之有向图记为 D,D 显然是严格的且有 $\min\{\delta^-,\delta^+\} = \delta \ge v/2 \ge 1$ 。于是由 定 理 10.4 知,在 D 中存在一个有向Hamilton 圈,它对应在 G 中的 一个Hamilton圈,故定理 4.3 得证。

10.3.2 有向图 D 中的**有向** Euler **游历是**它经过 D 的每一条弧恰好一次的有向 游 历,证明。D 含有 有向 Euler 游历的充要条件 是 D 是 连 通 的, 且 $d^+(v) = d^-(v)$,对 $\forall v \in V(D)$ 。

证: ⇒: 显然。

仁: 易知,D中含有问閱,设 C 是 D 中最长的有问闭迹,考虑 $D_1 = D - A(C)$ 。若 D_1 是 空图,按定 义 C 就 是 D 中的有向 Euler 游历。若 D_1 不是空图,则,不 失 一 **般性** 假定存在 $e \in A(D) \setminus A(C)$,且 e 的 一 个 端 点在 C 上。另一 一方面显然 D_1 中的每一个顶点 $v \in V(D)$ 仍然有 d_{D1} 气v0),故在 D_1 中一定存在含有 e 的有问图 C_1 ,C U C_1 显然是 D 中比 C 长的有问闭迹,这和 C 的选取相矛盾,故 C 一定是 D 中的有问 Euler 游历

10.3.3 设 D 是有向图, 且满足

- (i) $d^+(x)-d^-(x)=l=d^-(y)-d^+(y)$,
- (ii) $d^+(v)=d^-(v)$, 対 $\forall v \in V \setminus \{x,y\}_{v=1}^\infty$

用练习 10.3.2 证明 D 中有 l 条无公共弧 的(x, y) -有: 向路。

证:在 D 的基础上,加入 l 条以 y 为尾,x 为头的弧诱导一个新有向图 D,对 D 的每一个顶点 v 均成 立 $d_{D}^{-1}(v)=d_{D}^{-1}(v)$ 。取 D 中含 x 顶点的分支 D_1 ,显然 D_1 满足练习 10.3.2的条件,所以在 D_1 中存在有向 E u lev 游历,由作法, D_1 中含 l 条(y,x)弧,所以 D_1 中存在 l 条不含(y,x)的(x,y)一有向迹,将这 些 有 向迹上所含的有向圈除 去,最后 得 到 D_1 中 l 条不含(y,x)的(x,y)一有向路,显然它也是 D 中的 l 条无公共弧的(x,y)一有向路。

10.3.4 证明,有向连通图,若它含奇圈,则它亦含存向奇圈。

证:设 v₁v₂····v_{2,k+1}v₁是有向图 D 中的奇圈,若 e₁ = (v₁,v₁₊₁)∈A,则令 P₁=v₁e₁v₁₊₁。若(v₁,v₁₊₁)∈A,则 (v₁₊₁,u₁)∈A,且由于D是有向连通的,所以存在一条(v₁,v₁₊₁)-有向路,记为P₁,若P₁为偶数长,则P₁+(v₁₊₁,v₁)是 D中的有向奇圈,命题已成立。故假定P₁(i=1,2,···,2k+1) 均为奇数长的路,于是P₁P₂···P_{1,k+1}是 D 中的一条有向奇形。途径 T。下面由 v₁ 出发,沿 T 前进,在前进过程中假如 已。产生有向圈,且是有向奇圈,则命题已成 立。若是 有 向 医圆,则将它从 T 中除去,继续沿 T 前进,直到走完 为 止。显然,最后剩下来的有向圈一定是有向奇圈,故命题成立。

10.3.5 如果V(D)中每一个非空真子集S,均有 $\{(S, S)\}$ > k,则称非平凡有向图D是 k - 弧连遍的。证明 非平凡有向图D是有向连通的充要条件是它是 1 - 弧连通的。

证、 \Rightarrow 、设 $S \in V$ 的非空真子集,任取 $v_1 \in S$ 、 $v_2 \in S$,由于 D 是有向连通的,从而在 D 中存在(v_1 , v_2)-有向路,所以(S, S)非空,即{(S, S)| \geqslant 1,按定义 D 是 1-弧连遍的。

 \leftarrow ,设 D 是 1-弧 连 通的,但不是有向连通 的。设 v_1 , v_1 在D 中不存在 (v_1,v_2) -有向路,令 S 是 D 中存在 (v_1,v_2) -有向路的所有项点 v 的集合。 显然 $v_2 \in S$,但 (S,S) = ϕ ,故 |(S,S)| = 0,这 与 D 的 假设相矛盾。故 D 是有向连 \mathcal{A} 的。

10.3.6 图 G 的相伴有向图 D(G)是指将 G 的每条边。,用和 e 有相同端点的两条方向相对的弧来代替 e 所得到的 存向图。证明。

- (a) G 的路和 D(G)的有向路之间存在 1-1 对应:
- (b) D(G)是 k-强连通的充要条件是 G 是 k-边连通.

证: (a) 若 $P=v_0e_1v_1e_2\cdots e_nv_n$ 是 G 中的一条 路,则 $P=(v_0,a_1,v_1,a_2,\cdots,a_n,v_n)$,其 中 $a_1=(v_{k-1},v_k)\in A(D(G))$,是 D(G) 中一条有向路,令 P和 P 之间建立一个 对 应关系, 易知这对应关系是 1-1 的。

- (b) 由(a)及 k-孤连通和 k-边连通的定义,结论 是显然的。
- 10.3.7 试证明:对解决图的 Hamilton 问题来说, 2- 部图、无向图和有向图都是一样困难的吗?

证:由于 2-部图和无向图可以看成有向图的特殊情况,从而只需证明:"假如 2-部图的 Hamilton 问题已解决,则有向图的 Hamilton 问题由此而得到解决"。为此我们将任一有向图 D,相应地构造一个 2-部图 G(D) 如下:D 的任一顶点 v,对应于 G(D)的两个顶点 v',v'',又以 v',v'' 为端点作一条路 P_* ,其长度>2,且不同的 P_* 顶点不相交。对于 D 中任一弧 (v_*,v_*) ,在 G(D)中增加一条 $v_*(v_*)$ 的边,如图所示。

10.3.7 图

显然 D 存在有向Hamilton 圈的充要条件是G(D)存在 $Hamilton oldsymbol{B}$ 、另外当P。的长均取奇数长 时、G(D) 是 2-部图,故命题成立。

10.3.8 每一个顶点的出度和入度均为 k 的竞赛图称为 **ሎ正则竟赛圈。**证明**检**正规**竞赛图**的弧可以分解成两两弧不 相交的 2-因子和。即它可 2-因子 化。(P. Kelly在 1966年提上 出如下著名的猜测。好正则竞赛图可以分解成两两弧不相交 的有向 Hamilton 圈, 这猜测至今尚未解决。)

证,对给定的k-正则竞赛图T,类似于练习10.3.7构作 G(T), 即把 T 中的顶点 v, 在G(T)中拉开成 v, v''两 个 顶 点,不过这里不作路 P_{\bullet} 。于是 T 是可 2-因子化的充要条件 是 G(T)是 1-可因子化的。另一方面,由 T 的 k-正 则-性。 G(T)是 k-正则 2-部图,于是由系 5.2 知,G(T)中存在n= 因子 M。注意到 G(T)-M 仍然是(k-1)-正则 2-部图,故 多次应用系 5.2 的结果知,G(T)是可 1-因子化的,综合 上 述,故命题成立。

角形。若竞赛图 T 具有出度序列 (S_1,S_2,\cdots,S_r) 则。

(a)
$$T$$
 中传递三角形的数目为: $\sum_{i=1}^{n} S_{i}(S_{i}-1)/2$:

(b) T 中有 3-有向圈的数目 t(v,3)为:

$$t(v,3) \leqslant \begin{cases} (v^8-v)/24 & \exists v \equiv 1 \pmod{2} \\ (v^8-4v)/24 & \exists v \equiv 0 \pmod{2} \end{cases}$$
(F. Harary 和 B. Moser)

证。(a) 考察顶点 v., 它的出度为 S., 于晨申它作 为传递三角形中出度为 2 的顶点。一共能产生 S.(S,-1)/2个传递三角形。故(a)成立。

(b) $t(\nu,3)=\begin{pmatrix} \nu \\ 3 \end{pmatrix}-T$ 中传递三角形的数目。所以

$$t(v,3) = {v \choose 3} - \sum_{i=1}^{v} S_i(S_i-1)/2 = {v \choose 3} + \frac{1}{4}v(v-1)$$

 $-\sum_{b=1}^{n}S_{a}^{n}/2$. 经简单的极值计算,知(b)成立。

10.4 工作排序问题

问题:工作 J_1,J_2,\cdots,J_n 都必须在同一机器上进行,设 J_1 到 J_2 的机器调整时间为 t_1,t_2 、求一排序,使得 Σt_1 ,为最小。

工作排序间题的解显然和旅行售货员问题相关, 雄没有好算法, 下面介绍的算法仅仅是一个得到比较好的求解的方法。

- 构造有向图 D. V(D)={v₁,v₂, ···, v_n}, 当且仅
 当 t_n≤t_n, 时, (v_n,v_n)∈ A(D);
- 2. 求出 D 中一条有向 Hamilton 路 P(具体求法见习 题 10.4.1), 并将这些工作按 P 中顧序来排序。
- 10.4.1 借助习题 10.2.3 描述一个在意舞图中求 有 向 Hamilton 路的好算法。
- 舞:下面算法第 0 步至第 5 步是求一条极大有向路,由 此继续利用习题 10.2.3 可作第 6 步至第 9 步,求出一条 有

胸Hamilton路。

第 0 步: 任取 *。∈V, 置 V=-{ste}, i=0;

第 1 步,若 $N_{\mathfrak{p}}(\mathfrak{s}_{\mathfrak{p}}) \cap (V \setminus U) \neq \emptyset$,任取 $\mathfrak{s}_{\mathfrak{p}+1} \in N_{\mathfrak{p}}^{+}(\mathfrak{s}_{\mathfrak{p}})$ $\cap (V \setminus U) \boxtimes U \leftarrow U \cup \{\mathfrak{s}_{\mathfrak{p}+1}\}$,转第 2 步,否则,转第 3 步,

第 2 步, 若 i=v-1, 停; 否则, i←i +1, 转 第 1 步;

第 3 步, j=0, 转第 4 步;

第 4 步。若 $N_{\mathfrak{p}}^{-}(\mathfrak{u}_{-J}) \cap (V \setminus U) \neq \emptyset$,任取 $\mathfrak{u}_{-(J+1)} \in N_{\mathfrak{p}}^{-}(\mathfrak{u}_{-J}) \cap (V \setminus U)$,置 $U \leftarrow U \cap \{\mathfrak{u}_{-(J+1)}\}$,转 第 5 步,否 則,特第 6 步;

第5步, 若i+j=>-1,停, 否则,j←j+1,转第4步.

第 6 步,任取 $v \in V \setminus U$,置 $U \leftarrow U \cup \{v\}$, k=i, 特第 7 步。

第8步, k←k-1, 转第7步.

第9步: 岩i+j=v-1, 停, 否则, 转第6步。

这个算法结果得 Hamilton 有向路为,

$$(u_{-j}, u_{-(j-1)}, \cdots, u_{-1}, u_0, u_1, \cdots, u_{\ell})$$

算法的计算量主要在第1、4、7 各步中,第1、4 步的运算次数均不超过v(v-1),第7 步不超过 bv,且它最多 循环 v 次,故是好算法。

10.4.2 举例说明,用上述方法得到的工作排序可以是 远非最优的。

第:取本节原书中的例。设工作 J_1 , J_2 , ···, J_0 间的 调整时间为。

	\boldsymbol{J}_1	I_2	\boldsymbol{J}_3	I_{ι}	$J_{,5}$	J,
I_1	0	5	3	4	2	1
I_2	1	0	1	2	3	2
I_a	2	5	0	1	2	3
J_4	1	4	4	0	1	2
J_{s}	1	3	4	5	0	5
$egin{array}{c} egin{array}{c} \egin{array}{c} \egin{array}{c} \egin{array}{c} \egin{array}{c} \egin{array}{c} \egin{array}$	4	4	2	3	1	0
ı						

从下述极大有向路 $P=(J_3,J_3,J_2,J_4,J_6)$ 开始,得到一条有向 Hamilton 路 $(J_3,J_3,J_2,J_4,J_1,J_6)$,其调整时间为 9。但是,最优解是 有向 Hamilton 路 (J_2,J_3,J_4,J_4,J_5) ,它的调整时间为 5。

10.5 高效率计算机磁鼓的设计

设计方法,定义有向图 D_s ,使其顶点是n-1位二进制数 $p_1p_2\cdots p_{n-1}$,当且仅当 $(p_1p_2\cdots p_{n-1},p_2p_3\cdots p_n)\in A(D_s)$,对弧 $(p_1p_2\cdots p_{n-1},p_2p_3\cdots p_n)$ 给以标记 $p_1p_2\cdots p_n$ 。取 D_s 的一个有向 Euler游历,并将此游历各弧的第一个数码排序 作为数面的设计即可。

10.5.1 求一个含有7个0和7个1的循环序列,使得 所有4位二进制数除0000和11111外,都作为这个序列 的一段而出现。

 求.

10.5.2 设 S 是 n 个字母的字母表,证明:有一个包含每个字母 n^s 次的循环序列,使得由 S 中每 4 个字母构成的"字",都出现在序列的一段中。

证:分两步:

- 1. 构造有向图 D, 顶点是 S 中的任意三个字母,当且仅当 $(p_1p_2p_3,p_2p_3p_4)\in A(D)$ 。这样,每条弧都对应 S中的四个字母所组成的字。
- 2. 易知 D 是连通的,且 $d^+(v) = d^-(v) = n$, $\forall v \in V(D)$, 于是 D 包含一条有向 Euler游历。考察按Euler游历 依次取每条弧的第一个字母作成的循环序列。由于 $|V(D)| = n^a$, $|A(D)| = n^a$ 和各字母地位的对称性知,在所取的循环序列中,每个字母均出现了 n^a 次,且每 4 个字母构成的字即 D 中的一条弧,均出现在循环序列的一段中。

10.6 单向道路系统的构造

定理 10.5 (Nash-Williams定理) 2k-边连通图 G 均有k-弧连通的定向。

10.6.1 考察 Petersen 图,证明下述命题是错误的。对每个图都有一个定向,使得对每个 $S \subseteq V$, (S, S)和(S, S)的基数差的绝对值最多为 1。

证: 若 Petersen 图有这样的 定 向, 易知, 这 种 定 向下, 它的每个顶点或入度为 2 或出度为 2, 再由练习 10.1.2 知,这两种点均各有 5 个,任取 2 个入度为 2 的不相邻的点组

裁 S, 必有 | |(S, S)| - |(S, S)| | =2>1, 矛盾! 故命题是 错误的。

- 10.6.2 (a) 证明 Nash-Williams 定理等价于下述命题: 若 G 的每个割集至少有 2k 条边,则 存 在 G 的一个 定向,它的每个割集在各自的方向上至少有 k 条弧。
- (b) 考察 Grötzsch 图,证明 类似于 Nash-Williams 定理的下述命题是错误的。若 G 的每个圈至少 有 2h 条边,则存在 G 的一个定向,它的每个圈在各自的方向上至少有 h 条弧。
- 证、(a) 由于 G 是 2k-边连通的充要条件是 G 的 任 意 割集至少有 2k 条边。再由 k-弧连通的定义,知它们是等 价的。
- (b) 用反证法, 若 Grötzsch图 G 存在满足所述命题的结论的定向,则对 G 中 C₄, C₅ 圈中各方向都至少有 两 条 弧,从而对 G 的最外面的五边形,在考虑到图形的对称性,仅有如图(1)、(2)两种定向,而对 G 中的 C₄ 亦仅有如图(3)、(4)两种定向。

特别值得注意的是 C_4 中 a-型点是成对出现,且它们在 C_4 中不相邻,这一点在下面穷举过程中不断地用到。

下面我们对图(1)、(2)的情况穷举,图(1,1)-(2,2)中强边上出现的数字,是依次由 C。的性质确定 G中边的定向的顺序,粗边弧是穷举过程中的假定定向,"G中带" X "的边是无法定向之边。从而最后引出矛盾。所以 Grötzsch 图 不存在在满足所述命题的结论中的定向,故(b)得证。

10.6.2 (6) 图

10.7 比赛参加者的名次评定

问题: 如何决定循环赛中参加者的名次。

下面介绍的是 T.H.Wei 和 M.G.Kendall 提出来的排 名次的方法:

构造有向图 D,以参加者为 D 的顶点,(v₁,v₂) €
 264・

- A(D)的充要条件是 v_i 胜 v_j .
- 2. 在四个以上顶点的每个有向连通分支上,依邻接矩 棒求出绝对值最大的特征值所对应的特征矢量。按特征矢量。 分量的大小,依次定出该分支的参加者的名次。

对三个顶点的有向连通分支的参加者名次并列。

3. 将所有有向连通分支排定次序 D_1,D_2,\cdots,D_m

使得。i < j 当且仅当一端在 D_i 另一端在 D_j 的所有 弧,其头均在 D_j 中。

这样即得一种比赛参加者的名次排定。

10.7.1 将 10.7 节所述排名次方法用于

- (a) 如图所示的 4 个竞赛图;
- (b) 如下邻接矩阵的竞赛图:

	Ā	B	C	D	\boldsymbol{E}	F	\boldsymbol{G}	H	I	J
A	0	1	<u>C</u>	1	1	1	0	0	1	1
\boldsymbol{B}	0	Ð	1	Ð	0	1	0	0	0	0
C	0	0	0	ø	0	0	0	0	0	0
D	Ð	1	1	0	1	1	0	0	1	0
\boldsymbol{E}	0	1	1	0	0	0	0	0	0	0
F	0	0	1	0	1	0	0	0	1	0
G	1	1	t	1	1	i	0	0	1	0
H	1	1	1	1	1	1	1	0	1	1
I	0	1	1	0	1	0	0	0	0	0
			1							

解: (a)4个竞赛图如10.7.1(a)图.

图(1)的 $D_1=D[\{4\}]$, $D_2=[\{1,2,3\}]$; 故名次为"4"第一,"1","2","3"并列第二;

图(2)的 $D_1=D[\{1,2,3\}], D_2=[\{4\}];$ 故名次为"1"。

10.7 1 (a) 图

--2-, "3"并列第一, "4"第二。

图(3)是有向连通的, 其邻接矩阵为:

特征方程是 $\lambda^4-2\lambda-1=0$, 其绝对值最大的特征值 $\lambda \approx 1.4$, 相应的特征矢量为 (1,0.714,0.51,0.874), 故名次为: "1"."4","2","3"。

图(4)有 4 个有向连通分支,排序如下。 $D_1=D[\{1\}]$, $D_2=D[\{4\}]$, $D_3=D[\{3\}]$, $D_4=D[\{2\}]$;故名次排列为"1","4"。"3","2"。

(b) 由邻接矩阵可知, D有如下几个有向连通分支, D[{C}], D[{H}], D[{B, E, F, I}], D[{D}], D[{A, G, J}]; 这些分支应如下排序:

 $D_1=D[\{H\}]$, $D_2=D[\{A,G,J\}]$, $D_3=D[\{D\}]$, $D_4=D[\{B,E,F,I\}]$, $D_3=D[\{C\}]$. 其中 4 预点以上的 分支只 D_4 一个。注意到 D_4 中顶点 $\{F,B,E,I\}$ 依次 与 $\{a\}$

中(3)图 D 的顶点 $\{1,2,3,4\}$ 相对应时, $D_4\cong D$ 。故 D_4 各的顶点名次应为:"F","I","B","E"。于是 D 中各参加者名次如下:

"H"第一, "A", "G", "J"并列第二, "D"第三, "F"第四, "I"第五, "B"第六, "E"第七, "C"第八。

- 10.7.2 排名次的另外一个方法是考虑"失分矢量"来代。 替得分矢量。
- (a) 证明: 这相当对竞赛图的逆来排名次,然后把所求 得的名次倒过来。
- (b) 考虑 4 个顶点以上的有向连通竞赛图,证明排名次的两种方法,未必得到相同结果。
- 证.(a) 因 D 的得分矢量 S 是 各 顶点的出度,故 D的失分矢量 S°是各顶点的入度,从而它是 D 的逆 D的得分矢量。故按 S°在 D 上求出的名次是其得分大小顺序,也是 D 上的失分大小顺序。由于失分愈多,应名次愈后,故依 D 上得分失量求出的名次倒过来即为 D 上的名次排序。
- (b) 比如练习 10.7.1(a)中的(3)图,记为 D. 当 D 中顶点{1,2,3,4}依次与 D 中顶点{2,1,4,3}对应时,易验证。 D ≃ D。于是 D 上按得分矢量排的名次为。"2","3","1","4"。 把它倒过来是"4","1","3","2",便是 D 上失分矢量排的 名。次、显然,这与练习10.7.1(a)中的结果。"1","4","2","3",不同。

第十一章 网络

11.1 流

定义、网络 N 是指下述的有向图 D,它具有 两个非空的不相交的顶点子集 X、Y,以及定义在 A(D)上的一个取非负整数值的函数 c ,称 X 中的顶点为 N 的发点(或源)、Y 中的顶点为 N 的收点(或汇),称其它的顶点为中间顶点,记为 $I=V(D)\setminus\{X\cup Y\}$ 。c 称为N的容量函数。它在 弧 a 上的值 c(a) 称为 a 的容量。

定义, 网络 N 中, 在 A 上定义一个整实值函 数 f, 它满足, (1) 容量约 束条件, $0 \le f(a) \le c(a)$, 对 $\forall a \in A$, (2) 守恒条件, $f^-(v) = f^+(v)$, 对 $\forall v \in I$; 则称 $f \in N$ 中的一个流。若 $f_0 = 0$, 对 $\forall a \in A$, 则称 f_0 为零流。

定义。若f 是 N 上的一个流,称 $f^*(X)-f^*(X)$ 为f 的值,记为 valf。若 N 中不存在流 f' ,满足 valf'>valf,则称流 f 为 N 中的量大流。

(网络流理论是图论中极重要的一个分支.它提供了图论中十多个著名结果的新证明。同时它还有极为广泛的应用。读者可参阅L.R.Ford, Jr., and D.R. Fulkerson 著的《Flows in Networks》(1962)和陈树柏主编的《网络图论及其应用》。)

11.1.1 对下列的网络确定所有可能的流和最大流。

11.1.1图

解,对网络(1),(2)分别列表表示其所有可能的流,值 -最大者即为该网络的最大流,不再另外标明。

网络(1)的流如下:

源	e 1	€ 2	e 3	e 4	e 5	ø g	87	e g	e 9	流的值
$f_{0,1}$	0	0	0	0	0	0	0	0	0	0
f 0,2	٥	0	1	0	1	1	0	0	0	0
$f_{2:1}$	1	0	1	0	0	ī	1	1	0	i
f_{1_12}	1	0	1	0	0	i	O	0	í	i
$f_{1,3}$	1	0	1	ī	1	į	0	1	0	1
f_{1H}	1	0	Ð	1	0	0	0	1	0	t t
$f_{1,5}$	G	1	0	1	1	1	0	Ł	0	1
$f_{1,6}$	0	1	0	0	0	1	1	1	0	1 -
f 1.7	0	1	0	0	0	1	0	0	1	1
f_{2r1}	2	0	1	1	0	1	1	2	0	2
$f_{2,2}$	2	0	1	1	0	1	0	1	i	2
$f_{2,3}$	1	i.	0	1	0	ı	1	2	Ð	2
$f_{2,4}$	1	1	0	1	0	i	0	1	1	2

故网络(1)共有13个可能的流,有4个最大流,其值为2.

网络(2)的流如下:

流	s 1	e 2	6 8	e 4	e ₅	e e	67	6 B	e g	流作	ត់ 🍅
fer	0	0	0	0	0	0	0	0	0	·	0
$f_{1,1}$	1	Û	i	0	+ 1	0	0	1	0		1
$f_{1,2}=1$	1	0	0	j	0	0	a	Ţ	0		1
$f_{1,3}$	0	1	0	0	1	0	0	1	0	1	1
$f_{2,1}$	2	0	2	0	2	0	0	2	0	i	2
$f_{2,2}$	2	0	1	1	ľ	Ó	O	2	0	-{ :	2
f_{2_13}	1	1	1	0	2	0	0	2	0		2
f_{2i4}	1	1	0	1	1	0	0	2	0	į :	2
$f_{2,3}$	0	2	0	0	2	G	0	2	0	į	2
$f_{2,1} = 1$	3	0	2	1	2	0	0	3	0	Ì	3
$f_{3\cdot 2}$	2	1	2	0	3	0	0	3	0		3
f 3,3	2	1	1	Į.	2	0	0	3	0	ĺ	3 -
$f_{3,4}$	1	2	1	O	3	0	0	3	0	;	3
f 3+8	. 1	2	O	1	2	0	0	3	0	1	3 _
f 3.5	G	3	0	0	3	0	0	3	0	1	3

故网络(2)共有 15 个可能的流; 有 6 个最大流, 其值为 3.

11.1.2 证明对 N 中任一流 f 及任一 $S \subseteq V$ 均有:

$$\sum_{v \in S} (f^{+}(v) - f^{-}(v)) = f^{+}(S) - f^{-}(S)$$

(注意,一般情况 $\sum_{v \in S} f^+(v) \neq f^+(S)$, $\sum_{v \in S} f^-(v) \neq f^-(S)$.)

证、若 v_1 , $v_2 \in S$, $(v_1, v_2) \in A(D)$, 则 在 $f^+(v_1)$ 中含 $f((v_1, v_2))$, $f^-(v_2)$ 中 也含 $f((v_1, v_2))$, 故 f 对 (v_1, v_2) 这种现在 $\sum_{v \in S} (f^+(v) - f^-(v))$ 中不产生影响,故 $\sum_{v \in S} (f^+(v) - f^-(v)) = f(S,S) - f(S,S) = f^+(S) - f^-(S).$

11.1.3 证明对 N 中的任一流 f , 从 X 流出 的合成流 等于进入 Y 的合成流。

证:由练习 11.1.2,若取 S = V,则 $S = \Phi$,故有 $\sum_{v \in V} (f^+(v) - f^-(v)) = 0$,另由流的守恒条件对 I 中的顶点 v,有 $f^+(v) - f^-(v) = 0$,于是 $\sum_{v \in V} (f^+(v) - f^-(v)) = \sum_{v \in X} (f^+(v) - f^-(v)) = f^-(v) = f^-(v)$,即成立 $f^+(x) - f^-(x) = f^-(v) - f^+(v)$,按定义 $f^+(x) - f^-(x)$ 是从 X 流出的合成流,而 $f^-(y) - f^+(y)$ 是进入 Y 的合成流。故命题成立。

11.1.4 设 N 是一个给定的网络,构作新 网络 N' 如下,在 N 中添加两个新顶点 x, y; 且 添 加 以 x 为尾, X 中每一顶点为头的新弧,以及 Y 中每一顶点为尾, y 为头的新弧,这些新弧容量均为 ∞ ,这样的网络 N' 具有单 一发点 x 和单一收点 y.

若 $f \in N$ 中的流, 定义 N' 中弧的函数 f' 如下,

$$f'(a) = \begin{cases} f(a) & \text{若 } a \neq N \text{ 的弧} \\ f'(v) - f'(v) & \text{若 } a = (x, v) \\ f''(v) - f''(v) & \text{若 } a = (v, y) \end{cases}$$

证明。(a) 函数 f' 是 N' 中的一个流,且valf' = valf。

(b) N'中的流限制在 N 的弧集上是一个 N 中 具有相同值的流。

证: (a) 由 f'定义知,对于 N'的中间顶点满足守恒条件,对于 N 中的弧 a,由于 $0 \le f(a) = f'(a) \le c(a)$, N'中与 x, y 关联的弧,由于其容量为 ∞ ,容量约束条件恒成立,故按流的定义 f'是 N'中的流。

又 $valf = f^{+}(X) - f^{-}(X)$, 由练习 11.1.2 知, $valf = \sum_{v \in X} (f^{+}(v) - f^{-}(v)) = \sum_{v \in X} f'((x,y)) = f'^{+}(x) - f'^{-}(x) = valf'$.

(b) 显然由定义知,N'中的流f'限制在N的 弧 集 上时,对 N 讲守恒条件及容量约束条件均满足,它是 N 上的流,且由(a)知,valf'=valf。故命题成立。

11.2 截

定义。设 N 是一个具有一个发点 x , 一个 收 点 y 的两络,又 $x \in S$, $y \in S$, 则称(S , S)为 N 中的微。截 K 的客量 $\operatorname{cap} K = \sum_{a \in K} c(a)$ 。 岩 N 中不存在截 K' , 满足 $\operatorname{cap} K' < \operatorname{cap} K$, 则称截 K 为 N 中的最小截。

定义,f 是网络的一个流。若f(a) = c(a),称 $a \ge f$ -饱和的,否则称 f-未饱和的。若 f(a) = 0,称 $a \ge f$ -零的,否则称 f-正的。

引理11.1 对 N 中任一流 f 和任一 截 (S, S),恒 有 $\forall a \mid f = f^+(S) - f^-(S)$.

定理11.1 N 中任 一流f 和任 一截 K = (S, B) 有

11,2.1图

valf≤capK, 且等式成立的充要-条件是(S, B)中每条弧均f-饱和。 (B, S)中每条弧均是f-零。

系11.1 设 f 是 N 中的流, K 是 N 的 截,且 valf=eapK,则 f 是 N 的最大流,K 是 N 的最小截。

11.2.1 在如图所示网络中。

- (a) 确定所有的截;
- (b) 求最小截的容量;
- (c) 证明()中所给出的流是最大流。

解, (a) 列表表示所示网络的所有截,

s	徴 K=(S, <u>S</u>)	K 药容量	
. ,	xv_1 , xv_2	6	
x, v ₁	xv_2 , v_1y	7	
x, v ₂	xv_1 , v_2v_1 , v_2v_3	7	
#. V3	x01, x02, v3v1, v3y	12	
x, v ₁ , v ₂	v ₁ y. v ₂ v ₃	5	
x, v1, v3	x02, 91 y, 03 y	12	
x , v_2 , v_3	xv1, v2v1, v3v1, v8y	11	
x, v1, v2, v8	v1 y, v3 y	8	

- (b) 由(a)中之表所示, 网络的最小截为 {v₁y, v₂v₂}, 其容量为 5。
- (c) 首先, ()中给出的数字, 易验证是一个流。它的值为 5, 等于(b)中算出的最小截容量, 于是由系 11·1 知, 它是最大流。
- 11.2.2 证明若 N 中不存在有 向(x, y)-路,则 最 大流之值和最小截的容量均等于 0.

证,令 $S=\{vine\ N\ vine Fac(x,v)-有向路\}$ 。显然 $x\in S$,又由条件知在 N 中不存在(x,y)-有向路,故 $y\in S$; $(S,S)=\emptyset$,截 K=(S,S)的容量为 0,又显然零流 f_0 的值 $volf_0=0$,于是 $volf_0=capK$,由 $S_11.1$ 知 结 论 成立.

11.2.3 若(S,S)和(T,T)都是N的最小截,证明, $(S \cup T,\overline{S \cup T})$ 和 $(S \cap T,\overline{S \cap T})$ 均为N的最小截。

证,由集合的运算和容量的定义,可直接验证下式成立,

 $\operatorname{cap}(S \cup T, \overline{S \cup T}) \leq \operatorname{cap}(S; \overline{S}) + \operatorname{cap}(T, \overline{T}) - \operatorname{cap}(S \cap T, \overline{S \cap T}).$

另一方面,由于(S, B),(T, T)均是最小截,故有;

 $\operatorname{cap}(S, \mathcal{B}) \leqslant \operatorname{cap}(S \cup T, \overline{S \cup T})$ 和 $\operatorname{cap}(T, \overline{T}) \leqslant \operatorname{cap}(S \cap T, \overline{S \cap T})$.

从而有, $cap(S \cup T, \overline{S \cup T}) = cap(S, \overline{S})$ 和 $cap(S \cap T, \overline{S \cap T}) = cap(S, \overline{S})$ 。

故。 $(S \cup T, \overline{S \cup T}), (S \cap T, \overline{S \cap T})$ 均是N的最小截。

11.3 最大流最小截定理

定义,设 f 是网络中的流,对于 N 中的每一条 路 P^* 定义如下非负整 数 $l(P)=\min_{a\in A(P)}l(a)$,其中

$$l(a) =$$

$$\begin{cases} c(a)-f(a) & a \text{ in } P \in \mathbb{N}, \\ f(a) & a \text{ in } P \in \mathbb{N}. \end{cases}$$

当 I(P) = 0 时,称 $P \neq f$ -饱和的。I(P) > 0,称 $P \neq f$ -朱饱和的。若 P是由发点 x 到收点 y的一条 f-未饱和路,则称 P 为 f-增大路。

定理11.2 流 f 是网络 N 的最大流的充要条件是 N 中、不含f-增大路。

定理11.3 (Ford-Fulkerson 定理) 任一网络中,最大: 274·

流的值等于最小截的容量。

求单一发点单一收点网络最大流的标号法如下。

对任给流 f, 将发点 x 标号为 δ(x)=∞.

- 1. 若 a 是 f-未饱和弧, 其尾 a 已标 号, 其 头 a 未标 号, 则 a 标号为 l(a) = min {l(a), c(a)-f(a)}.
- 2. 若 a 是 f-正的, 其头 a 已标号, 其尾 v 未标号,则 w 标号为 l(v)=min{l(a), f(a)}.

经上述标号, 0 称为基本 8 被标号。所有基于 4 可被标号的顶点 0 全被标号后, 4 称为已查顶点。这个标号过程一直进行到或者收点 y 被标号(称为突破), 则得 f-增大路,可改进流, 对新的流重新标号; 或者收点 y 未被标号前, 所有标号点都成已查点了, 无法再标下去(称为截断), 这时不含 f-增大路, 已得最大流。

11.3.1 设于是网络中的流, P为广增大路, 令

$$\hat{f}(a) = egin{cases} f(a) + l(P) & \exists a 是 P 的 顺向弧. \\ f(a) - l(P) & \exists a 是 P 的 逆向弧 \\ f(a) & 其它 \end{cases}$$

证明 f 是满足 val f=val f+l(P)的流。

证。由于 $l(P) = \min_{a \in A(P)} l(a)$,其中 l(a) = c(a) - f(a) (当 a 为 P 中顺向弧。) l(a) = f(a),(当 a 为 P 中逆向弧。) 于是由 \hat{f} 的定义知,当 a 为 P 中顺向弧时, $l(P) \leq l(a) = c(a) - f(a)$,所以 $c(a) \geq f(a) + l(P) = \hat{f}(a) \geq 0$,而当 a 为 P 中的逆向弧时, $l(P) \leq l(a) = f(a)$,所以 $0 \leq f(a) - l(P) = \hat{f}(a) \leq f(a) \leq c(a)$,故定义在A 上的 \hat{f} 满足流的容量约束条

一件. 今考虑 $v \in I$. 若 $v \in P$. 则显然 $\hat{f}^+(v) = \hat{f}^-(v)$. 潜 $v \in P$. 且 P 中和 $v \in P$. 以 两 $v \in P$. 且 P 中和 $v \in P$. 以 两 $v \in P$. 以 $v \in P$.

11.3.2 产品由工厂 x₁ 和 x₂ 生产, 经 下 述网络运到。 "市场 y₁、y₂ 和 y₃,用标号法确定可以从工厂 运 到市场的

11.3.2 题图

最大总量。

解,我们由网络的零流开始进行标号,极易得到图(1) 新示的流,它们经过中间点到达市场。

图(1)中弧旁()中的数字表示流在该弧的值。我们在图(1)上用标号法,粗弧旁〇中的数字表示标号的次序,得图(2)中的修改流,并在这基础上进一步用标号法。

图(2)中为了方便将 3 条 f-增大路合在一起, 于 是 我们 得图(3)的修改流, 并在图(3)上用标号法。

图(3) 中有一条 f-增大路, 在图(4)中表示 它的 修改流。

11.3.2 图

在图(4)中易验证已无f-增大路,于是由定理 11.2知,"图(4)中所示的 流是网络的最大流,其值为 39,即从工厂运到市场的最大总量为39。

11.3.3 证明在任一容量均为整数的网络N中,恒存在最大流f,它对任意 $a \in A$ 的f(a)均为整数。

证,注意到在用标号法时,由练习11.3.1中f的定义及1(P)是整数知,从N 的零流开始逐次所得的修正流在任意强上的值均为整数。这过程一直到N中的流不再存在f-增大路为止,这时这流记为 f_M 。由定理 11.2, f_M 是N 的最大流,故 f_M 即为所求。

11.3.4 考虑网络 N, 它的每一条弧 a 均赋 予 一个整数 $b(a) \leq c(a)$, 修改标号法,求 N 中对 $\forall a \in A$,满足约束条件 $f(a) \geq b(a)$ 的最大流 f(假定有一个初始流满足这条件)。

解. 设 f_{\bullet} 是满足题中条件的初始流,即对 $\forall a \in A$,成立 $0 \le b(a) \le f_{\bullet}(a) \le c(a)$, 又对 $\forall v \in I$ 成立 $f_{\bullet}(v) = f_{\bullet}(v)$ 。

对 N 中的每条路 P 定义非负整数 $l(P) = \min_{a \in A(P)} \{l(a)\}$,

当 I(P)=0 时称 P为 f_0 -饱和路。当 I(P)>0则称 P 为 f_0 -饱和路。当 I(P)>0则称 I(P)>0则则 I(P

$$\hat{f}(a) = \begin{cases} f_0(a) + l(P) & \text{若 a 是 } P \text{ 的順向弧} \\ f_0(a) - l(P) & \text{若 a } E P \text{ 的逆向弧} \\ f_0(a) & \text{其它} \end{cases}$$

于是类似于 练 习 11.3.1 得 $valf=valf_0+l(P)$,且易知 \hat{f} 满足题中的约束条件,此外,类似地定义 N 中的 f_0 -未饱 和村 T,只不过未饱和的含意是本题所定义的。 开 始 T 仅 由发点 x 组成,每一步均可按下述两种方法来增长树。

- (i) 岩在(S, S) 中存在 f_0 -未饱和弧a,其中S-: V(T),则将a和它的头一起加入T。
- (ii) 若在(S, S)中存在一条 $f_0(a)-b(a)>0$ 的弧 a, 则将 a 和它的尾一起加入 T。

若 T 最后增长到 y,则得 N 中的 - 条 f_0 - 增大 路,可'得到一个修改流f,将 f 看作初始流 f_0 ,继续这过程,直到 N 中不存在 f_0 - 增大路为止。此时 N 中的流记为 f,显然 f 满足题中条件。下面我们证明 f 是满足题中条件的最大流。首先考虑满足题中条件的任一流 f',由于 $f'(a) \leq c(a)$,故对任意 S 有 f' + $(S) \leq cap(S,S)$,又由于 $b(a) \leq f'(a)$ 。所以 f' = $(S) \geq \sum_{a \in S,S}$

 $-f'^-(S) \leqslant \operatorname{cap}(S, \mathcal{B}) - \sum b(a)$, 且易知仅当(\mathcal{B} , \mathcal{S})。 中每条弧 a, f'(a)均为值 b(a), (\mathcal{S} , \mathcal{B})的 每条 弧 均饱称时,上述等号成立,显然对 f, 由于在 N 中无 f-增 大路, 者取 $\mathcal{S} = V(T)$,则有 $\operatorname{val} f = \operatorname{cap}(\mathcal{S}, \mathcal{B}) - \sum b(a)$,所以 $a \in (\mathcal{B}, \mathcal{B})$

根据以上分析,为求本题约束的最大流,可**如下修改标**。号法,

对任给满足本题约束的流 fo, 将发点 与标号为 l(x) ●

- 1. 若 a 是 f_0 —未饱和弧,其尾 u 已标号,其头 v 未标: 号,则 v 标号为 $l(v)=\min\{l(u), c(a)-f_0(a)\}$ 。
- 2. 若 a 是 f₀(a)-b(a)>0的弧,其头 u 已标号,其 尾 v 未标号,则 v 标号为 l(v)=min{l(u),f₀(a)-b(a)}...

这标号过程一直进行到或者收点 y 被标号,则得f₀-增大路与改进流f,对新流重新标号;或者出现截断,即得最大流。

11.3.5 考虑网络 N,其中的每一个中间顶点 v都赋予:一个非负整数 m(v),说明如何修改网络使得能用标 号法来求出对 $\forall v \in V \setminus \{x, y\}$ 均满足约束 $f^-(v) \leq m(v)$ 的 最大流流 f.

证.用定理 11.6 证明中由 D 构造 D'的方法,从 N 构造 N'于下、将 $v \in V \setminus \{x, y\}$ 在 N'中分成两顶点。并连以弧(v', v''),赋以 m(v)的容量:设 u, $v \in V \setminus \{x, y\}$,将 N 中弧(u, v)、(x, v)、(x, v)、(x, y),在 N'中分别用弧(u'', v')、(x, v')、(u'', y)来代替,并保持原弧的容量。若 N 中含弧(x, y),则在 N' 中仍保留弧(x, y)和 它的容量。今用标号法对 N'求得最 大流 f',显然 把 N'中(v', v'')收缩成一点 v 时,则 N'变成 N, f'则变成 N 中的最大流,记为 f, 于是 $f^-(v)=f'^-(v')=f'^+(v')$ 与 $f'(v',v'')) \leq m(v)$,故 f 即为所求之 N 中最大流。

11.3.6 对2-部图(X, Y, E),将 E 中之边换成自 X 到 Y 的弧,并赋以其容量,再增加新的顶点 x、y,分 别 作为收、发点,并对(x, X)、(Y, y)弧赋以适当的容量。 如

图所示,称为逻辑网络 N.。

11.3.6 题图

试证,在 N_x 中存在饱和所有 收 弧(Y,y)流的充要条件是。

$$F(B)\geqslant d(B) \quad (\forall B\subseteq Y) \quad (\bullet)$$

其中F(B)是N,可能送到B的最大流量,d(B)是B到收点y的总容量。 (D.Gale)

证:设 f^* 是 N_x 中的最大流,由定 理 11.3 知,有 val f^* = min cap(S, S),其中($x \in S$, $y \in S$)。暂时取定 $B \subseteq Y$, 令 $S = A \cup B \cup \{y\}$,其中 $A \subseteq X$,如图(1)所示。于是 min cap(S, S) = min[$c(x, A) + c(X \setminus A, B) + c(Y \setminus B, A \subseteq X, B \subseteq Y)$] = min[min $\{c(x, A) + c(X \setminus A, B)\} + c(Y \setminus B, B \subseteq Y, A \subseteq X, B \subseteq Y)$].

由定理 11.3,对图(2)中 S智时取定后,所得的特殊部分网络的最大流量F(B),应等于 $\min_{A\subseteq X}[c(x,A)+c(X\setminus A,A\subseteq X)]$ 。 于是有 $valf^*=\min_{B\subseteq Y}[F(B)+c(Y\setminus B,y)]=c(Y,y)+\min_{B\subseteq Y}[F(B)-c(B,y)]$ 。由于(Y,y)是 N_* 中一个截,故饱和所有收弧的充要条件是 $valf^*=c(Y,y)$ 。

即 $\min_{B\subseteq T}(F(B)\neg c(B,y))=0$,亦即 $F(B)\geqslant c(B,y)$,(B $\subseteq T$

11.3.6 图

11.3.7 用练习 [1.3.6 证明练习 10.2.8.

证,构作 N_r 如图。

图中 $Y = \{(i, j) | i < j, i, j = 1, \dots, v\}$ 。 N_v 是运输 网络。 易证对 N_v 来说,练习 11·3·6 中的式 (•) 等价于 练习 10·2·8中的条件(a)。另一方面收弧一共 $\binom{v}{2}$ 条,且 $\sum r_i = \binom{v}{2}$,故饱和所有收弧的流,也 一定饱和发弧。

而饱和 N_r 收弧和发弧的流等价于在 X 上有一个 竞 赛图的 实现,它的出度序列为 (r_1, r_2, \dots, r_r) 。综合上述,故由 练习 11.3.6 知,练习 10.2.8 成立。

Ţ)

11.4 Menger定理

Menger 定理是关于图的连通性和它的路之间的共系的一簇定理。这里仅列举定理 11.7 为例。

定理11.7 设 x, y为 G 中两个不相邻的顶点。那么,G 中无公共内点的(x, y)-路的最大条数等于删去一些顶点后就使 G 中所有(x, y)-都遭破坏的最少的顶点个数。

聚11.7 $\nu(>k+1)$ 个顶点的图 G 为 k-连 通 的 充要条件是 G 中任意两个顶点至少有 k 条无公共内顶 点 的路所连通。

11.4.1 证明在定理 11.6 的证明中提到的命题。D中 - 284 -

·删去一些弧后,就使所有(x,y)-有向路都遭破坏的最少弧象,等于 D 中删去一些顶点后就使所有(x,y)- 有 向 路都 遭破坏的最少顶点数。

证,设 $S \in D$ 中破坏一切(x, y)-有向路 的 最小顶点:集,|S|=k, $K \in D'$ 中 破 坏一切(x, y)-有向路的最小弧:集,|K|=k',我们要证 k=k'。

由 D'的定义知,D 中的点 v 对应 D' 中的弧(v',v''),故 D 中 S 对应 D' 中的一个弧集 K_s ,由于 D-S 不 连 通,故 D'- K_s 也不连通,从而, K_s 是破坏 D' 中 \mathfrak{M} 有(\mathbf{z} , \mathbf{y})-有向路的一个弧集,于是, $k=|S|=|K_s|\geqslant |K|=k'$ 。

另一方面,若 K 中有一个 (v_1', v_2') 形式的弧,可知,经过此弧的一切(x, y)-有向路,必经过弧 (v_1, v_1') ,故将 K 中的 (v_1', v_2') 用 (v_1, v_1') 来代替,也仍是 D 中破 坏一切 (x, y)-有向路的最小弧集。所以,不妨设 K 中弧全具 (v_1', v_2'') 形式。同样由 D' 的定义,D' 中 这 样 的 K 对应 D 中一个破坏一切(x, y)-有向路的顶点 集 S_k ,于 是, $k'=|K|=|S_k| \geqslant |S|=k$,得证。

11.4.2 利用定理 11.7 推导 König 定理 (5.3)。

证:不妨设 G 为连通的2-部图, V=(X, Y), 再给 G 加上两个顶点 x 和 y, 使 x 与 X 中的每一个顶点相 连, y 与 Y 中的每一个顶点相连得新图 G'。则 G中最大匹配数就是 G'中的无公共内点的(x, y)-路的最大条数k。根据定理 11.7, k等于破坏所有(x, y)-路的最小顶点集 V'的基数。 李实上 V'是 G的最小覆盖集; 否则, 有一条 G 的边 e的两个幅点不在 V'中,由 G'的定义知,G'-V'中还有一条(x, y)-路,这与 V'的定义矛盾;从而定理得证。

11.4.3 设 G 是一个图, S 和 T 是 V 的两个不相交子集。证明, 一个端点在 S, 另一端点在 T 的 点 不 相交的路的最大数目, 等于删去后就会 把 S 和 T 分 离(即 删 去它们之后, 没有分支同时包含 S 和 T 的顶点)的那些顶点的最小数目。

证:在 G 外增加两个顶点 x, y, 且将 x 与 S 中的所有点相连,y 与 T 中的所有点相连。得一新 图 G' 。 S 知,G 的一端在 S 另一端在 T 的点不相交的路,与 G' 中无公共内点的 (x, y) 一路一一对应。由定理 11.7 知,这种 (x, y) 一路的最大条数,等于 G' 中删去一些顶点就 破 坏一切 (x, y) 一路的那些顶点的最小数目。设这些顶点组成集 G 为 V' ,在 G 中删去 V' ,必使 S ,T 分离,因为否则 G 一V' 中有个分支同时包含 S 和 T 的顶点,从而 G' 一V' 中包含 (x, y) 一路。 F 后,反之,若 F 一F 一F 以给 F 一F 一F 的一个。 F 一个。 F 一新。 F 一个。 F 一个。 F 一个。 F 一个。 F 一个。 F 一个。 F 一个, F 一个。 F 一个 F 一个。 F 一个 F 一个

11.4.4 若 $G \in k \ge 2$ 的 k-连通图,则 G 的 任 意 $k \land$ 顶点都必然在某个圈中。

证:由定理 $3\cdot 2$ 知,k=2时,命题成立。假设 $k-1\geq 2$ 时命题成立。下面假定 G 是 k-连通。在 G 中任 取 k 个顶点 $\{v_0, v_1, \dots, v_{k-1}\}$,故 $G_1=G-v_0$ 是 k-1-连通。由假设 $\{v_1, \dots, v_{k-1}\}$ 在 G_1 中的某个圈 C_1 中。当然 C_1 中 可能 还有不同于 $v_1(i=1, \dots, k-1)$ 的其它七个顶点。不妨设 v_i 在 C_1 中位置的排列顺序与它的下标相同,于是圈 C_1 被 v_i 分成 k-1 个 $\{v_i, v_{i+1}\}$ 一闭段 $\{i=1, \dots, k-1, v_k=v_1\}$ 。再由 G 是 k-连通,故 v_0 在 G 中至少有 k 个邻 点,其全体记为 $N(v_0)$,设 $\{N(v_0)\cap V(C_1)\}=p_0$ 令, $S=N(v_0)$

 $(N(v_0)\cap V(C_1)),T=V(C_1)\setminus (N(v_0)\cap V(C_1))$ 。显然。 S, T不相交,且 $S|\geqslant k-p$, $T|\geqslant k-1+t-p$ 。在 G 中屬去一个顶点子集V',使S,T分离(分离的定义见练习11.4.3)。 若它不包含 S 或 T,则因 G 是 k-连通推,知必须V' $\geqslant k$ 0 若 V'包含 S 或 T,则 V'还可能 是 S 或 T,散 使 S, T分离的最小 V',记为 V'0,有

$$|V'_{\bullet}| \ge \min(k, k-p, k-p+t-1) = \begin{cases} k-p-1 & (\exists t=0) \\ k-p & (\exists t \ge 1) \end{cases}$$

由练习 11.4.3 知,S 与 T 间点不相交的路有 V 》 条。这些路从 S 延长一条边到 v_0 ,即成为从 v_0 到 T (即到 C_1 上某些点)的除 v_0 外其它顶点均不相交的路。分两种情况讨论。

- (1) 当 t=0 时,从 v_0 到 C_1 有 $p+(k-p-1)-k-1=V(C_1)$ 条除 v_0 外其它顶点均不交的路。任取两条(v_0 , v_i)-和(v_0 , v_{i+1})-路,则 $C=C_1-v_iv_{i+1}+(v_0, v_i)$ -路+(v_0 , v_{i+1})-路,是 G 中包含{ v_0 , v_1 , …, v_{k-1} }的一个圈。
- (2) 当 t≥1 时,从 v₀ 到 C₁ 上有 p+(k-p)= k 条除 v₀ 外其它顶点均不交的路。因 C₁ 仅有 k-1个[v₁, v₁₊₁]-闭股,于是必有两条路的端点同在某个[v₁₀, v₁₀₊₁]-闭股上,设这两端点 为 u₁, u₂, 则,C=C₁-在 C₁上的(u₁, v₂)-股+(v₀, u₁)-路+(v₀, u₂)-路是 伊中包含{v₀, v₁, ···, v₀₋₁}的一个圈。由归统法知,定理成立。

11.5 可行流

定义,设 N 为网络,假定对 N 的每一个发点 x 都 指定一个非负整数 $\sigma(x_i)$,称为 x 处的**供应**,对 N 的每个收点 y ,都指定一个非负整数 $\partial(y_i)$,称为 y ,处的 儒 求 N 的流 f 如果满足,

$$f^{+}(x_{i})-f^{-}(x_{i}) \leqslant \sigma(x_{i}) \qquad x_{i} \in X$$

$$f^{-}(y_{i})-f^{+}(y_{i}) \geqslant \partial(y_{i}) \qquad y_{i} \in Y$$

则称 f 是可行流。

定理11.8(D.Gale, 1957) 网络N中存在可行流的充要条件是对任意 $S \subseteq V$,都有

$$c(S, \overline{S}) \geqslant \partial(Y \cap \overline{S}) - \sigma(X \cap \overline{S})$$

定义:设 $p=(p_1, p_2, \dots, p_m)$ 和 $q=(q_1, q_2, \dots, q_n)$ 是两个非负整数序列。如果存在一个顶点划分为 $\{x_1, x_2, \dots, x_m\}$, $\{y_1, y_2, \dots, y_n\}$)的2-部单图G,使得

$$d(x_1) = p_1 \qquad 1 \le i \le m \quad \text{fi}$$

$$d(y_j) = q_j \qquad 1 \le j \le n$$

则称偶(p,q)可用 2-部单图来实现。

建理 11.9 设 $p=(p_1,p_2,\cdots,p_m)$ 和 $q=(q_1,q_2,\cdots,q_n)$ 是两个非负整数序列,且 $\sum_{i=1}^m p_i = \sum_{j=1}^n q_j, q_1 \geqslant q_2 \geqslant \cdots \geqslant q_n$,则**何**(p,q)可用 2-部单图来实现的充要条件是

$$\sum_{i=1}^{n} \min \left\{ p_i, k \right\} \ge \sum_{j=1}^{k} q_j, \quad 1 \le k \le n$$

11.5.1 证明: 在定理 11.8 的证明中, 网络 N 具有可 - 2004 -

行流的充要条件是 N'具有使截 $(Y,\{y\})$ 的每 条弧均饱和的流。

证: \Leftarrow : 设 f' 是 N' 中使截(Y, $\{y\}$)的每条弧都饱和的流。则 f' 满足:

$$0 \leqslant f'((x,x_i)) \leqslant \sigma(x_i) \qquad \forall x_i \in X$$

$$f'((y_j,y)) = \partial(y_j) \qquad \forall y_j \in Y$$

$$0 \leqslant f'(a) \leqslant c(a) \qquad \forall N \text{ 中的弧 } a$$

$$f'^{-}(v) = f'^{+}(v) \qquad \forall v \in V(N).$$

我们将 f' 限制在 N 上,记为 f ,则易知 f 满足容量约束条件与守恒条件,且对任意的 $x_i \in X$, $y_j \in Y$,有:

$$0 = f'^{+}(x_{i}) - f'^{-}(x_{i}) = f^{+}(x_{i}) - f^{-}(x_{i}) - f'((x_{i}) - f'((x_{i}) - f'(x_{i}) - f'(x_{i}) - f'(x_{i})) \ge f^{+}(x_{i}) - f^{-}(x_{i}) - \sigma(x_{i})$$

故 $f^+(x_I)-f^-(x_I) \leqslant \sigma(x_I)$

故 $f^-(y_i)-f^+(y_i)=\partial(y_i)$, 所以f是N上的可行流。

 \Rightarrow : 若 N 存在可行流,我们考虑 val f 最小的可行流 f。且不妨设, f 对 N 的任一有向圈,在圈中总有弧 a,使 f(a) = 0. 因为,否则可将有向圈上所有弧 a 的 f(a) 同减去 其 中最小数,这样得到的流 f*, 也有 val f = val f*, 故 f*仍是有最小流值的可行流。用 f* 代 f 继续这过程,由于 N 上的圈是有限的,每进行一次相当于破一次圈,有限次后便可得所假定的流。

上述f一定满足: $f^-(y_j) - f^+(y_j) = \partial(y_j)$. 否则,有 $f^-(y_j) - f^+(y_j) - \partial(y_j) > 0$,因而 $f^-(y_j) > 0$,

御 y, 点 有人弧 $a_1 = (v_1, y_{*0})$ 使 $f(a_1) > 0$, 若 v_1 是 N 的 某个中间点或另一 y, 则由守恒条件或 $f^-(y_*) - f^+(y_*) > \partial(y_*)$ 可知, v_1 点有人 弧 $a_* = (v_1, v_1)$ 使 $f(a_2) > 0$, 因 为 f 在 N 中不存在有向圈使其上的 f(a) 均大于 0,故 v_* 必不同于 y_{*0} 或 v_1 ,如此下去,只有到某个 $a_* = (v_*, v_{*-1})$ 。 v_* 是某个 x_* 时,这一过程才可能终止。于是我们得到一条 从 x_* 到 y_{*0} 的有向路。其上的每一 弧 a_* 均 有 $f(a_*) > 0$,显然将此有向路上的所有 $f(a_*)$ 同减去 min $\{\partial_* f(a_*), (i=1, 2, \cdots, k)\}$,得到的仍然是 N 中的可行流 记为 f,且 v_* v_*

$$f^{-}(y_I) - f^{+}(y_I) = \partial(y_I) \quad \forall y_I \in Y$$

由这一f, 我们构作 N'中的流 f'如下。

$$f'(a) = f(a) \quad \forall a \in N,$$

$$f'((x, x_i)) = f^+(x_i) - f^-(x_i) \quad \forall x_i \in X,$$

$$f'((y_i, y)) = f^-(y_i) - f^+(y_i) = \partial(y_i) \quad \forall y_i \in Y.$$

容易验证,f'是满足容量约束条件与守恒条件,且使**做** $(Y,\{y\})$ 中的一切弧均饱和的N'中的流。

11.5.2 设 p=(5,4,4,2,1), q=(5,4,4,2,1), 证 明. -偶(p,q)不能由 2-部单图来实现。

证: 若能实现,当 k→3 时,由定理 11.9 应有

$$\sum_{i=1}^{5} \min \left\{ p_i, 3 \right\} \ge \sum_{j=1}^{3} q_j$$

$$\bigoplus \sum_{i=1}^{5} \min \left\{ p_i, 3 \right\} = 3 + 3 + 3 + 2 + 1 = 12, \sum_{j=1}^{3} q_j$$

$$= 5 + 4 + 4 = 13.$$

这与上式矛盾、故偶(p,q)不可能由 2-部单圈来实现。

11.5.3 给定两个序列 $p=(p_1,p_2,\cdots,p_n)$, $q=(q_1,\overline{q_1},\cdots,q_n)$,求在顶点集 $\{v_1,v_2,\cdots,v_n\}$ 上存在有向图 D使得

- (i) $d^{-}(v_{i}) = p_{i}$, $d^{+}(v_{i}) = q_{i}$, $1 \le i \le n$;
- (ii) D 的邻接矩阵是(0,1)~矩阵, 成立的充要条件。

解:不妨设序列 p,q 中一个是非增序列,比如, $q_1 \ge q_2$ $\ge \cdots \ge q_n$;这时可以证明存在满足本题条件的有向图 D 的充立要条件是序列 p,q 满足:

(1)
$$\sum_{i=1}^{n} p_i = \sum_{j=1}^{n} q_j$$

(2) $q_1 \geqslant q_2 \geqslant \cdots \geqslant q_n \bowtie$, $\sum_{i=1}^n \min(p_i, k) \geqslant \sum_{j=1}^k q_j$, (1 $\leqslant n$)

⇐,注意到证明必要性的过程是可逆的,从而知,当, 申, q满足条件(1)、(2)时,存在满足题目条件(i)、(ii)的有, 向而D.

- 11.5.4 设p= (p_1, p_2, \dots, p_m) 和q= (q_1, q_2, \dots, q_n) 是非负整数的两个非增序列,分别用p'和 q' 来记序列((q_1, q_2, \dots, p_n) 和 $(q_1-1, q_2-1, \dots, q_{n_1}-1, q_{n_1}+1, \dots, q_n)$ 。
- (a) 证明(p,q)可由2-部单图来实现的充要条件是(p',q')可由2-部单图来实现。
- (b) 利用(a) 描述一个算法,来构作偶(p,q)的一个2~部。 单图实现,如果这种实现存在的话。

证:本题的证明和算法,类似于练习1.5.7中的证明和算法,故从略。

- 11.5.5 一个(m+n)-正则图G是(m, n)-可定向的,是指它可以被定向使得每个顶点的入度是m或n。
- (a) 证明,G是(m,n)-可定向的充要条件是存在V的一个分划 (V_1,V_2) ,对 $\forall S \subseteq V$ 有 $|(m-n)(|V_1 \cap S|-|V_2 \cap S|)| \leq |\Gamma_S,S|$
- (b) 推导, 若G是(m, n)-可定向的, 且 m>n, 则G也。是(m-1, n+1)-可定向的。
- 证、(a) ⇒、设D是G的(m, n)-可定向,我们把D中人度为m的顶点的集合取为 V_1 ,入度为n的顶点集合取为 V_2 , (V_1, V_2) 是V的一个分划。对每个S \subseteq V_1 令。

 A_{i} 是S中顶点的全部入强所成的集合:

 A_{i} 是S中顶点的全部出弧所成的集合。则有, $(S, S) \cup (S, S) = A_{i} \triangle A_{i} = (A_{i} \cup A_{i}) \setminus (A_{i} \cap A_{i})$ 故 $|[S, S]| = |(S, S) \cup (S, S)|$ $= |A_{i} \cup A_{i}| - |A_{i} \cap A_{i}|$ $= |A_{i}| + |A_{i}| - 2|A_{i} \cap A_{i}|$

又由于 $|A_s \cap A_s| \leq \min(|A_s|, |A_s|)$ 则

$$|[S, S]| \ge \begin{cases} |A_s^-| - |A_s^+| & (\le |A_s^-| \ge A_s^+|) \\ |A_s^+| - |A_s^-| & (\le |A_s^+| \ge |A_s|) \end{cases}$$

$$= ||A_s^-| - |A_s^+| |$$

$$= |(m|V_1 \cap S| + n|V_2 \cap S|)$$

$$-(n|V_1 \cap S| + m|V_2 \cap S|)|$$

$$= |(m-n)(|V_1 \cap S| - |V_2 \cap S|)|$$

 \leftarrow . 设G是满足条件的(m+n)-正则图。分两种情况。

- (1) 岩m=n,则G每个连通分支是Euler图,按每个分支的Euler圈的前进方向定向,对每个点都有m条入弧,故G是(m, n)-可定向。
 - (2) 岩m≠n; 当取S=V, 可得。

$$0 \le |(m-n)(|V_1|-|V_2|)| \le 0$$
, $\& |V_1|=|V_2|$

我们在G的相伴有向图D(见练习10.3.6)上,构作 网络N使得。D上的每条弧的容量为1,N的源集 $X=V_1$,汇集 $Y=V_2$,且每个源 x_i 上的供应 $\sigma(x_i)$,每个汇 y_i 上的 需 求 $\partial(y_i)$ 均为 |m-n| 。于是由条件知,对任意 $S \subseteq V$ 有。

$$c(S, S) = |[S, S]_{g}| = |[S, S]_{g}|$$

$$\geq |(m-n)(|V_{1} \cap S| - |V_{2} \cap S|)|$$

$$= |m-n||(|V_{1} \cap S| - |V_{2} \cap S|)|$$

$$\geq |m-n||V_{2} \cap S| - |m-n||V_{1} \cap S|$$

$$= \partial(Y \cap S) - \sigma(X \cap S)$$

依定理11.8,网络N存在可行流,与练习11.5.1 的必要 推证明一样,可得,N 中存在流值最小的可行流f,使对一切y, $\in Y$ 满足。

又由 $|V_1| = |V_2|$,故 $f^+(X) - f^-(X) = \sum_{x_i \in X} (f^+(x_i) - f^-(X)) = \sum_{x_i \in X} (f^+(x_i) - f^-(X))$

 $f^{-}(x_{i})) = |m-n| |V_{i}|$,从而对一切 $x_{i} \in X, f^{+}(x_{i}) - f^{-}(x_{i})$ = $|m-n| = \sigma(x_{i})$.

与练习11.5.1一样,还可得到最小值流的可行流f,满足,对N中任一有向圈,在圈中总有弧a,使f(a)=0;于是,D中端点相同方向相反的两条弧,有一个是f-零的。换言之,这两弧至多有一条饱和。

今由流f的一切饱和弧导出G的一个子图H的一个定向,由上知,这个定向下H中x,点的出弧比入弧多 |m-n| 条,y,点的入弧比出弧多 |m-n| 条。余下G-E(H)中的边尚未定向,我们可证G'=G-E(H)的每个分支是Euler图。因为在G'中,有;

$$d'_{a}(x_{i}) = (m+n) - (f^{+}(x_{i}) + f^{-}(x_{i}))$$

$$= (m+n) - (f^{+}(x_{i}) - f^{-}(x_{i})) - 2f^{-}(x_{i})$$

$$= (m+n) - |m-n| - 2f^{-}(x_{i})$$

$$= \begin{cases} 2(n-f^{-}(x_{i})) & \exists m \ge n \\ 2(m-f^{-}(x_{i})) & \exists m < n \end{cases}$$

$$= \text{偶数}$$

飼理, $d_a(y_i)$ =偶数

赦G'上有个Euler型定向,它与H的上述定向一起构成了G上的一个(m, n)-可定向。

(b) 若G是(m,n)-可定向,并且m > n,则由(a)知,存

在分划(V_1 , V_2), 对每个 $S \subseteq V$ 都有。 $|(m-n-2)(|V_1 \cap S| - |V_2 \cap S|)| \leq |(m-n)(|V_1 \cap S| - |V_2 \cap S|)| \leq |(S, S)|.$ 再由(a)知, G是(m-1, n+1)-可定向的。

第十二章 圈空间和键空间

12.1 环流和势差

定义,设 D 为有向图,定义在 A 上的实值 函 数 f ,若对任意的 $v \in V$,均满足守恒条件 $f^-(v) = f^+(v)$,则称 f 为 A 上的环流,以环流 f 为空间的点,实数域 R 为系 数 域,所生成的矢量空间记为 g ,称为圆空间。

定义,设 D 为有向图,定义在 V 上的实值函 数 p,若 $a=(x,y)\in A$,定义函 数 $\delta p(a)=p(x)-p(y)$ 。今 在 A 上的函数 g,若存在 V 上的某个 p,使 $g=\delta(p)$,则称 g 为 D 中的势垒。以势差 g 为空间的点,实数域 R 为系 数 域,所生成的矢量空间记为 g、称为镭空间。

定理12.1 设M是有向图D的关联矩阵,则 \mathcal{S} 是M的行空间。而 \mathcal{S} 是 \mathcal{S} 的正交补空间。

定义,定义在 A 上的函数 f, 称 $|f| = \{a|f(a) \neq 0, a \in A\}$ 为 f 的 f .

引理 12.2.1 若 f 是非空环流,则f 含有圈。

引理12.2.2 若 g 是非零势差,则 g 含有键。

定理12.2 设B和C分别为 \mathcal{F} 和 \mathcal{F} 的基矩阵,则对任 $-S\subseteq A$,有。

(i) BS 的列向量线性独立的充要条件是S不含圈。

- (ii) C|S 的列向量线性独立的充要条件是S 不含键。
- **聚12.2** 匆和分的维数是dim **3=v-0**; dim 3 = e-v+0
- 12.1.1 (a)将下列图(1)中生成树(粗边)上标出的函数和图(2)中余树(粗边)上标出的函数,分别扩充成图(1)的势差和图(2)的环流。

12.1.1 图

- (b)令f, g, T 分别为 D 中的环流、势差和 生 成 树。 证明, f 被 f T 唯一确定;-g 被 g T 唯一确定。
- 证, (a) 易验证图中所标明的函数是所求的 势差和 环流。
- - 12.1.2 (a) 令 B 和 C 分别是 # 和 8 的基矩 阵。 T 是

上D的任一棵生成树[在1],证明。B由B|T,C由C| P唯一确定。

(b) 令 T 和 T_1 是 D 中两裸给定的生成 树[注1] , B 和 B_1 分别表示 \mathcal{S} 的对应于 T 和 T_1 的基矩 阵, C 和 C_1 分别表示 \mathcal{S} 的对应于 T 和 T_1 的基矩阵,证明。 $B=(B|T_1)B_1$ 和 $C=(C|T_1)C_1$ [注2]

[注1] D 不一定要求连通,只需在证明中将T 相 应地换成生成森林,结论同样成立。

[注2] 可不必要求 B, C 是对应于某个 树 T 的 基 矩 阵。

证。(a) 由练习12.1.1(b)知,B中的任一行向量g由gT唯一确定。从而B由BT唯一确定。完全类似地可证。C 由CT唯一确定。

(b) 由于 B, B, 均是 \mathcal{B} 的基矩阵,故它们的秩相 等。于是,存在满秩方阵 A 使 $B = AB_1$,从 而($B \mid T_1$)= $A(B_1 \mid T_1)$ 。由于 B_1 是 \mathcal{B} 的对应于 T, 的基矩阵,故 $B_1 \mid T_1$ 是单位方阵,于是, $A = (B \mid T_1)$, $B = (B \mid T_1)B_1$,

类似可证, $C=(C|T_1)C_1$ 。

12.1.3 设 K 是由连通有向图 D 的关联矩 阵 M 中 M 去任一行得到的矩阵,证明 K 是 \mathcal{S} 的基矩阵。

证,设 M 的行向量为 β_1 , β_2 …, β_n , 显然 $\beta_1 + \beta_2 + \dots + \beta_n = 0$ 。 若命题不成立,不失一般性假 定 β_1 , β_2 …, β_{n-1} 线性相关,即存在不全为零 的 数 α_1 , α_2 , …, α_{n-1} , 不妨假定 $\alpha_1 = -1$, 成立 $\beta_1 = \alpha_2 \beta_2 + \dots + \alpha_{n-1} \beta_{n-1}$. 从 而 有 $\theta = \beta_1 + \beta_2 + \dots + \beta_n = (\alpha_2 + 1)\beta_2 + \dots + (\alpha_{n-1} + 1)\beta_{n-1} + \beta_n$, 故 β_2 , β_3 , …, β , 之间亦线性相关,所以 β_1 , β_2 , …, β , 的生成空间的维数 $\leq \nu - 2$, 由定理 12.1 知 dim $\beta \leq \nu - 2$, 由定理 12.1 知 dim $\beta \leq \nu - 2$

 $\nu-2$. 但另一方面 D 连通,由系 12.2知 $\dim \mathcal{F}=\nu-1$,矛盾。 所以 M 中的任意 $\nu-1$ 个向量均是线性独立的,可以作为 \mathcal{F} 的基,所以 K 是 \mathcal{F} 的基矩阵。

12.1.4 证明若 G 是平面图,则 第(G)≃*(G*), *(G)≃*(G*)。[注]

[注]这里 $\mathscr{B}(G)$, $\mathscr{C}(G)$, $\mathscr{B}(G^*)$, $\mathscr{C}(G^*)$, 应分别理 解为 $\mathscr{B}(\overline{G})$, $\mathscr{C}(\overline{G})$, $\mathscr{B}(\overline{G}^*)$, $\mathscr{C}(\overline{G}^*)$, 其中 \overline{G} 是 G、 \overline{G}^* 是 G^* 的任一个确定的定向。

证,由对偶图的定义有 $v^*=\phi$, $e^*=e$, $\omega^*=1$ 。又由推广的 Euler 公式, $v-e+b=\omega+1$ 。于是由系 12.2 有。 $\dim \mathcal{B}(G)=v-\omega=e^*-v^*+\omega^*=\dim \mathcal{B}(G^*)$, $\dim \mathcal{B}(G)=v-\omega=e^*-v^*+\omega^*=\dim \mathcal{B}(G^*)$, 又因为有限维线性 空间同构的充要条件是它们维数相等。故结论成立。

12.1.5 D在域 F 上的一个环流是指在 F 中满足, $f^+(v)=f^-(v)$, $\forall v \in V$ 的一个函数 f, $A \to F$,F 上的势差可类似定义。这些势差和环流所决定的矢量空间 分别记为 \mathcal{S}_{P} 、 \mathcal{S}_{P} ,证明分别用 \mathcal{S}_{P} , \mathcal{S}_{P} 来代替 \mathcal{S}_{P} , \mathcal{S}_{P} 经成立。

证. 在书"Craph Theory with Applications"中对 f_o , g_B , 引理 12.2.1, 引理 12.2.2, 定理 12.2 的叙述 和证明是在实数域 R 上进行的, 在那里仅用到域的一般性质, 而没有用到它的特殊性质, 故可以完全平行地逐字逐句地将 f_o , g_B , 引理 12.2.1, 引理 12.2.2, 以及定理 12.2的叙述 和证明换成对域 F 上来叙述。我们将叙述过程中的"1"看成 F 上的么元素,"一1"看成负么元素,"0"看成 F 中的 零元

意,线性独立和线性相关的概念亦将它定义在系数域为 F 上来理解,则毫无困难地证明对 S , , 定理 12.2 仍成立。详细叙述从略。

12.1.5 证明 ν 个顶点, ν -1条边的单图G是一棵树的充要条件是 $\dim \mathcal{B}(G) = \nu$ -1。

证: ⇒ : 由系 12.2, 结论显然:

 \leftarrow 。同样由系 12.2 知, $\mathbf{w}(G)=1$,即 G 连通。于 是 油练习 2.1.5 知, G 是树。

12.2 生成树的数目

定义。若矩阵 A 的一切满阶子方阵的行列式值均为 0. 1 或 -1 ,则称 A 是单模的。

定理12.3 多的对应于树T的基矩阵B是单模的。

定理12.4 $\tau(G) = \det BB'$,这里B是任意 \mathcal{S} 的单模基矩阵。

系 12.4 $\tau(G) = \pm \det \begin{pmatrix} B \\ C \end{pmatrix}$ 这里 B, C 分别是任意的。第

和《的单模基矩阵。

極時-制定理、 $\tau(G) = \det KK'$,其中 K 是由 G 的 任 一定向的关联矩阵 M 删去任一行得到的矩阵。

12.2.1 证明:

(a)从关联矩阵 M 中删去任意一行得到的矩阵 K 是 单模的:

(b)
$$\tau(G) = \pm \det \begin{bmatrix} K \\ C \end{bmatrix}^{(2)}$$

(注)这里 C 应理解为 8 的单模基矩阵, 否则本 式 不 一定成立。

证,(a)事实上我们可以证明更强的命题。M 中的任意子方阵 P 的行列式值恒等于 0 ,1 或 - 1 。对 P 的阶数 n 用归纳法,当 n = 1 时,由 M 的定义显然成立。若 n ≤ k 时命题均已成立,今考虑 k+1 阶的 M 的子方阵 P ,若 P 中所有的列向量均含两个非零元素,则我们将 P 中所有行向量相加时,它变成零向量,所以 det P = 0;不然 P 中至少有一列最多仅有一个非零元素 p, , , 将 det P 按这一列进行行列式展开,于是 det P = (-1) ^{1 + 1} p₁ , det P**, , 这里 det P**, , 是 P 的 h 阶余子式,按归纳法假定 det P**, , 取值为 0,1 或 - 1,所以 det P 也 取值 0,1 或 - 1,所以 由归;纳法知命题成立。

(b)由练习12.1.3知 K 是细的基矩阵,故由(a)及类似于定理12.4的证明,有 $\tau(G) = \det KK'$,又因 C 是单模的,类似于定理.12.4的证明,还有 $\tau(G) = \det CC'$ 。细和智由定理12.1是正交的。从而有KC' = CK' = 0。于是有 $\tau^2(G) =$

$$\det KK' \cdot \det CC' = \det \begin{bmatrix} KK' & 0 \\ 0 & CC' \end{bmatrix} = \det \begin{bmatrix} KK' & KC' \\ CK' & CC' \end{bmatrix}$$

$$= \det \left(\left[\frac{K}{C} \right] (K'C') \right) = \det \left[\frac{K}{C} \right] \det (K'C')$$

$$= \left(\det \left\{ \begin{array}{c} K \\ C \end{array} \right\} \right)^2, \quad \text{MUT}(G) = \pm \det \left\{ \begin{array}{c} K \\ C \end{array} \right\}.$$

12.2.2 无环图 G 的传导矩阵 $C=[C_{i,j}]$ 是如下的一个

 $r \times r$ 矩阵,其中 $C_{i,j} = \sum_{i \neq j} a_{i,j}, c_{i,j} = -a_{i,j}$ (当 $i \neq j$), $A = \{a_{i,j}\}$ 是G的邻接矩阵。证明。 $\{a\}C = MM'$,其中M是G的任一定向的关联矩阵。

(b) C 的所有代数余子式均等于 $\tau(G)$.

证,(a)由于G无环,故接定义 $C_{i,j}$ 恰表示顶点 v_{i} 的度。另一方面不管G如何定向, $MM'=(b_{i,j})$, $b_{i,j}$ 的做按定义也恰为 v_{i} 的度,故 $C_{i,j}=b_{i,j}$,当 $i\neq j$ 时, $b_{i,j}$ 按定义恰为 v_{i} , v_{i} 之间连的边数的负值,即 $b_{i,j}=-a_{i,j}=c_{i,j}$,故C=MM'。

(b)设 C 之行向量为 C_1 , C_2 , ..., C_n , 按 C 的定义易验证 $C_1+C_2+\cdots+C_n=0$, 故由行列式的性质易证 $A_{1,n}=A_{1,n}$, 这里 $A_{1,n}$ 是 C 的 $C_{1,n}$ 的代数余子式,由于 A 是 对称矩阵,故 C 亦是对称矩阵,所以亦有 $A_{1,n}=A_{1,n}$, 推对任意的,,,有 $A_{2,n}=A_{1,1}$ 。又设 K_1 是 M 中划 去 第 一 行 之矩阵,于是 $MM'=\begin{bmatrix}C_1\\K,C',K',K'\end{bmatrix}$ 由于

 (C_1C_1) 是 1×1 矩阵,故由(a)知 A_{11} =det (K_1K_1) ,由练习12.2.1(b)的证明知, $A_{11}=\tau(G)$ 。从而对任定:,,均有 $A_{11}=\tau(G)$ 。

12·2·3 若矩阵的所有子方阵,其行列式值均为0,1 或-1,则称矩阵是全单模的。

证明:

- (a) 多和 8 对应于树[注]的基矩阵均是全单模的。
- (b)单图 G 的关联矩阵是全单模的充要条件 是 G 为 2- 都图。

〔注〕 这里树的假定,可换成生成森林。事实上,以两个分支的有向图 D 为例,在这两分支间任意加入一条弧。使其连通,所得之图记为 D_1 . 设 T 为 D 中生成森林,则 T 十 $e=T_1$ 是 D_1 的生成树。设 B , C 分别为对应 于 T 的 基矩阵, B_1 , C_1 分别为对应于 T_1 的基矩阵, 于是由这些基矩阵的定义, B , C 分别是 B_1 , C_1 的子矩阵,由于 B_1 , C_1 是全单模矩阵,推之 B , C 也是全单模矩阵。

证,(a)设务与多对应于树T的基矩阵为B和C $_{1}$,则 $_{1}B$ $_{1}T$ $_{2}$ =I $_{3}$ $_{4}$ C $_{1}T$ =I $_{4}$

下面只对B 证明命题成立,对C的证明完全类似。

将单位矩阵B I T 放在B 的前 ν -1列。对子方阵的 阶数 k 作归纳。因B中只含0,土1这些元素,故k=1成立。 假设 k < l 的一切 k 阶子方阵 P 的行列式 det P = 0,土 1,特别 $det P_1 = 0$,土 1。

设 P_{i+1} 是B的任-l+1阶子方阵,且取自B中的 i_2,i_2,\cdots , i_{i+1} 行, j_1,j_2,\cdots,j_{i+1} 列,不妨设 $j_1 < j_2 < \cdots < j_{i+1}$ 。

- (1) 若 $j_1 \le \nu 1$, 这时 P_{i+1} 中的 j_1 列除0 外至多有一个 1. 故 $\det P_{i+1} = 0$ 或按 j_1 列展开**得** $\det P_{i+1} = \pm \det P_i$,由 **假设**它为0, ± 1 .
- (2) 若 $j_1>\nu-1$,这时再取 i_1,i_2,\cdots,i_{l+1} 行外的其它所有行 i_{l+1},\cdots,i_{r-1} 行与 i_{l+1},\cdots,i_{r-1} 列,组成($\nu-1$)一(l+1)阶子方阵 J,它经行、列自身的适当置换是一单位矩阵,于是,可知B中的 $j_1,j_2,\cdots,j_r,j_{r+1},\cdots,i_{r-1}$ 列组成了B中的一个满阶子方阵P。它与 P_{l+1} 有如下关系。

$$P = \begin{bmatrix} P_{i+1} & 0 \\ P_{(i-1)-(i+1),i+1} & 0 \end{bmatrix}$$

敬 $\det P_{t+1} = \pm \det P_t$ 由定理12.3知 $\det P = 0$, ± 1 ,所以 $\det P_{t+1} = 0$, ± 1 。由归纳法知,B是全单模的。

(b) \implies ,若单图 G 的关联矩阵 M 是全单模的,但 G不是 2-部图,由定理 1.2 ,G 中含有奇圈,设 C 是 G 中长度为最小的奇圈,因为任一奇圈上的非相邻点间有边相连时,必然要产生更小的奇圈,故 C 上非相邻点均 无边相 连。设 C 为 $v_1 e_1 v_2 e_2 \cdots v_n e_n v_1$, h 为 奇数,于是 适当地对 G 的预点和边缘。号 v_1 , v_2 , v_n 。 v_n , v_n , v_n 。 v_n 。

这与M是全单模相矛盾。故G是2-部图。

由于 G 是 2-部图,设 G 的顶点 G 划 为 (X, Y),将 M 的中对应于 X 中和 Y 中的行向量分别加起来,均 得 行 向 量 $(1,1,\cdots,1)$ 故 $\det M_1=0$,所以不论何种情 况, l+1 阶子方 阵对应的行列式的值均为 0,1 或 -1,由归纳法得知 M 是全 单模的。

12.2.4 设F是特征数为p的域,证明:

$$\det \begin{bmatrix} B \\ C \end{bmatrix} = \tau(G) \pmod{p}.$$

(b) dim(ま, ∩ 8,)>0的充要条件是p[τ(G)。 (H. Shank)

证: (a) 对定理12.2, 练习12.1.2, 定理 12.3, 定理 12.4以及系12.4的叙述及证明, 把其中的"1"看成F上的 么元, "一1"看成F上的负么元, "0"看成F的零元, , 线性相关概念亦相应地换成域F上的叙述, 于是自然地行列式的值 秒换成了W(modp), 不难仔细检查上述定理, 练习等 在F 域上叙述的结论仍成立。故(a)成立。详细叙述这里从 略。

$$(b)$$
因为 $\dim(\mathcal{F}_{r}\cap\mathcal{F}_{r})>0$ \iff C 的行向量线性相关 \Leftrightarrow $\det\begin{bmatrix} B \\ C \end{bmatrix}$ $\triangleq(a)$ $\tau(G) \pmod{p} \implies 0 \pmod{p}$ \Leftrightarrow $p \mid \tau(G)$.

12.3 完美正方形

定义:整方矩形是一个被分割成有限个(至少有两个)正

方形的矩形。若其组成正方形的面积互不相同,则称为**完美**。 **矩形**。

定义、整方矩形 R的相伴有向图是如下构作的一个有向图 D。 R的每条水平分割线段对应 D的一个顶点,D的 两个顶点 v , v , 连接有弧 (v_1, v_2) 当且仅当它们对应的水平分割线段 H , H

由D的底图G与D的极x、y,作成图的G+xy 称为R**的**水平图。

定理:设D是整方矩形R的相伴有向图。将D每条弧 α 看作电阻为1的导线。 $g(\alpha)$ 表示在 α 上的电流, α 是离开x的总电流。K是D的关联矩阵删去对应于y的一行。C是D的圈**空**。何x对应于树x的基矩阵。则有

$$\begin{bmatrix} K \\ C \end{bmatrix} \varrho' = \begin{bmatrix} \sigma \\ 0 \end{bmatrix}$$

12.3.1 证明整方矩形中各组成正货形的边是 可 **公** 度的。

证、设 D 是整方矩形 R 的相伴有向图,x , y 是 D 的 极。对 D 的每个顶点o ,确定一个势 p(v) , 它等于对应水平分割线段的高。D 的每一弧看作电阻为1的导线, 则势差 $g=\delta p$ 确定了从x到y的一个电流。由上述定理知 g满足。

$$\binom{K}{C}g' = \binom{\sigma}{0}$$

另一方面每个 g(a) 是 a 对 应 的组成正方形的边长, $\sigma=R$ 的铅直线边长。由 K,C 的元素是 θ ,士1及练习 12.2.1 (b)

$$rip \det \begin{bmatrix} K \\ C \end{bmatrix} = \pm \tau(G)(整数), 故 \begin{bmatrix} K \\ C \end{bmatrix}^{-1}$$
中元素均是有理

数、于是由

$$g' = \left[\frac{K}{C} \right]^{-1} \left[\frac{\sigma}{0} \right]$$

知, $g(a) = \sigma[r(a)/q(a)]$, 其中既约分数r(a)/q(a)是

$$\begin{bmatrix} K \\ C \end{bmatrix}^{-1}$$
 中第一列对应于 a 的分量。 $\diamond s$ 是一切 $q(a)$ 的最大公

借数、则有: $g(a) = \frac{\sigma}{s} m(a)$,这里 m(a) = r(a)[s/q(a)]整数、即各个组成正方形的边可以用 σ/s 公度。

12.3.2 整方矩形R的铅直图是将R旋转一个直角得到的整方矩形的水平图。若R中没有由四个组成正方形的隅角交成的点,证明R的水平图与铅直图是对偶的。

证,由R水平图的定义知,它是平面图,其顶点与R的水平分割线段对应,它的边与R的组成正方形对应。如边与R的外面无界矩形对应。

R的铅直图是R旋转90°的水平图。故R的铅直分割线段对应于铅直圈的顶点,铅直图的边仍与R的组成正方形对应。 R的左右铅直线对应铅直图的顶点x', y', 且x'y'边仍与 R的外面无界矩形对应。

当及沒有四个组成正方形的隅角交点时,它只有不超过、两个隅角的交点。对这样的R,可知其器直线与其水平面图的面——对应(注意,过有四个隅角交点的铅直线与水平图的面对应不是——的)。故满足题目条件的铅度图的一个顶点与水平图的一个面对应。由于它们的边都与R的组成正为

形对应,且当且仅当水平图中两个面被一边分隔时, R的对应两条铅直线是该边对应的组成正方形的左右铅直线,于是在铅直图中R的这两条铅直线的对应顶点有边相连。于是由对偶图的定义,命题成立。

12.3.3 **完美立方体**是能剖分为有限个(最少两个)较小立方体的一种立方体,且其中任两个小的组成立方体的体积。都不相同。证明不存在完美立方体。

证,首先注意到在任何一个完美短形中,最小的组成正 方形不会在周界上。若在周界上,如图所示带阴影的正才形 表示最小组成正方形。则这个最小组成正方形上方的组成正 方形只能是比最小组成正方形的边长更短的正方形,矛盾。

12.3.3 图

今假定存在某一个完美立方体记为C,为了叙述方便,将C放在空间直角坐标系的第一卦限里,C的三个面和三个坐标面重合。令R,是C在XY平面上的底,C中落在R,上的小立方体元素"诱导"出尽,上一个完美方形的剖分,设S,是R,这完美方形中最小的组成正方形,由上面的证明。S,不可能位于R,的周界上。令C,是S,对应在C中的组成立方体,是然由完美立方体的定义。一面落在R,上C中围绕C,四周的组成立方体均比C,高。因此用z=C,的高这平面去微C时,

 C_1 在这平面上的截口正方形记为 R_* , 显然C落在 R_* 上的小立方体元素"诱导"出 R_* 上的一个完美方形,记 R_* 是 R_* 这完美方形中最小组成正方形, C_* 是 S_* 对应在C中的组成立方体,如此象 R_1 到 R_* , S_1 到 S_* , C_1 到 C_* 的过程可一直进行下去,得到C中组成立方体的元素序列 C_* , 且从体积角度来看 C_{*+1} < C_* , 这与C是剖分成有限个立方体的定义相矛盾。故不存在完美立方体。