A Simplex based approach to Vertex Enumeration of Arrangements and Polyhedra

Tilman Hinnerichs

Seminar "Selected Topics in Logic and Verification" - TU Dresden

July 27, 2020

The paper

"A Pivoting Algorithm for Convex Hulls and Vertex Enumeration of Arrangements and Polyhedra"

Authors: David Avis and Komei Fukuda

Publication year: 1992

Journal: Discrete & Computational Geometry

The paper

"A Pivoting Algorithm for Convex Hulls and Vertex Enumeration of Arrangements and Polyhedra"

Authors: David Avis and Komei Fukuda

Publication year: 1992

Journal: Discrete & Computational Geometry Cited 751 times (according to Google Scholar)

Outline

1. The Vertex Enumeration Problem

2. Approaches to the VEP

3. The SIMPLEX Algorithm

A Simplex based approach to Vertex Enumeration of Arrangements and Polyhedra

The Vertex Enumeration Problem

Definition (Convex Polyhedron)

Given a matrix $A = (a_{ij}) \in \mathbb{R}^{m \times n}$ and a vector $b \in \mathbb{R}^m$.

A convex polyhedron P is defined as

$$P = \{x \in \mathbb{R}^n : Ax + b \ge 0\} \tag{1}$$

The Vertex Enumeration Problem

Definition (Convex Polyhedron)

Given a matrix $A = (a_{ij}) \in \mathbb{R}^{m \times n}$ and a vector $b \in \mathbb{R}^m$.

A convex polyhedron P is defined as

$$P = \{x \in \mathbb{R}^n : Ax + b \ge 0\} \tag{1}$$

Definition (Polyhedron Vertex)

A point $x \in P$ is a vertex of P iff

A Simplex based approach to Vertex Enumeration of Arrangements and Polyhedra

it cannot be written as a convex combination of two other solutions iff it is the unique solution to a subset of m inequalities solved as equations.

The Vertex Enumeration Problem (VEP)

Definition (Vertex Enumeration Problem)

For a given polytope/polyhedron, hyperplane arrangement P return all vertices of P.

¹Khachiyan et al. [2008]

The Vertex Enumeration Problem (VEP)

Definition (Vertex Enumeration Problem)

For a given polytope/polyhedron, hyperplane arrangement P return all vertices of P.

Theorem¹

The VEP is NP-complete.

¹Khachiyan et al. [2008]

The Vertex Enumeration Problem (VEP)

Definition (Vertex Enumeration Problem)

For a given polytope/polyhedron, hyperplane arrangement P return all vertices of P.

Theorem¹

The VEP is NP-complete.

Goals:

- should be deterministic
- should be fast
- shouldn't use too much space

¹Khachiyan et al. [2008]

An Example Problem

Example: Meals for 1 Euro

Var	Food type	Energy	Protein	Calcium	Price	Maximum
		(kcal/100g)	(g)	(mg)	(Euro	
					cents)	
<i>x</i> ₁	Oatmeal ²	250	15	40	10	500g
<i>x</i> ₂	Milk ³	80	4	130	4	1000g
<i>X</i> ₃	DD Stollen ⁴	340	7	30	20	200g
	Min. daily	2000	55	800		

²Regular LIDL oatmeal

³Regular Bio LIDL milk

⁴https://fddb.info

Putting data into inequalities

Example: Meals for 1 Euro

$$A = \begin{bmatrix} 350 & 80 & 340 \\ 15 & 4 & 7 \\ 40 & 130 & 30 \\ -10 & -4 & -20 \\ -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{bmatrix}, x = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}, -b = \begin{bmatrix} 2000 \\ 55 \\ 800 \\ -100 \\ -5 \\ -10 \\ -2 \end{bmatrix}, \begin{pmatrix} Energy \\ Protein \\ Calcium \\ Price \\ x_1 Max \\ x_2 Max \\ x_3 Max \end{pmatrix}$$

Polytope visualized

Example: Meals for 1 Euro

Figure: The exact shape is unknown/expensive

An Example Problem

▶ Use convex combination to yield infinitely many food combinations

An Example Problem

▶ Use convex combination to yield infinitely many food combinations

Definition (Convex combination)

A convex combination is a linear combination of points.

Let x_1, x_2, \dots, x_n be a finite set of points. A convex combination is a point of the form

$$y = a_1x_1 + a_2x_2 + \cdots + a_nx_n$$

while $a_1, \ldots, a_n \in \mathbb{R}^+$, and

$$a_1+\cdots+a_n=1$$

Approaches to the VEP

- 1. Double-description/Motzkin-based method
- 2. Pivot-based methods
- 3. Newer methods

Linear optimization problems

Definition

Let $G \subseteq \mathbb{R}^n$ be a polyhedron and $c \in \mathbb{R}^n$. Then a problem of the form

$$z = f(x) = c^T \cdot x \rightarrow min$$
 with $x \in G$

is called a *linear* optimization problem.

Linear optimization problems

Definition

Let $G \subseteq \mathbb{R}^n$ be a polyhedron and $c \in \mathbb{R}^n$. Then a problem of the form

$$z = f(x) = c^T \cdot x \rightarrow min$$
 with $x \in G$

is called a *linear* optimization problem.

Protein rich meals for 1 Euro

We are trying to maximize our protein intake:

$$c = \begin{bmatrix} 15 \\ 4 \\ 7 \end{bmatrix}, x = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$$

$$z = c^T x \rightarrow max$$

The SIMPLEX Algorithm

Figure: George Dantzig (1914 - 2005)

Algorithm 1 The SIMPLEX Algorithm

- 1: Find a first feasible vertex
- 2: Calculate the optimal vertex

From \geq to =

The inequalities

$$Ax + b > 0$$

describing P are transformed to the equivalent equality system

$$Mx + b = x_p$$

with
$$x \in \mathbb{R}^n_+$$
, $x_p \in \mathbb{R}^m_+$, and $M \in \mathbb{R}^{m \times n}$ (if $x \ge 0$)

From \geq to =

The inequalities

$$Ax + b \ge 0$$

describing P are transformed to the equivalent equality system

$$Mx + b = x_p$$

with $x \in \mathbb{R}^n_+$, $x_p \in \mathbb{R}^m_+$, and $M \in \mathbb{R}^{m \times n}$ (if $x \ge 0$)

Definition (Tableau form)

A linear program of the form

$$z = f'(x') = c'^T \cdot x' \to max$$
 with $Mx_N + b = x_B$ with $x_B := x_p,$ $x' \leftrightarrow \begin{pmatrix} x_N \\ x_B \end{pmatrix}$ $b > 0$

is said to be in tableau form.

 $x_N := x$

Another example

$$-z = -30x_1 - 45x_2 \rightarrow min$$

with

non-base variables, with indices $N = \{1, 2\}, |N| = n$ base variables, with indices $B = \{3, 4\}, |B| = m$

SIMPLEX-Tableau:

ST_0	<i>x</i> ₁	<i>x</i> ₂	1	ST_0	ΧN	1
$x_3 =$	-4	-3	100	$x_B =$	М	р
$x_4 =$	-1	-2	50			
-z =	-30	-45	0	z =	q^T	q_0

ST_0	x _N	1
$x_B =$	М	р
z =	q^T	q_0

 x_N results from x and N x_B results from x and BM results from A p := b

$$q := c'$$

$$q_0 := 0$$

Visualization of new polytope P

Phase 1: Determine first feasible basic solution

Algorithm 2 Phase 1: Determine first feasible basic solution (vertex)

- 1: if trivial solution visible then
- 2: choose it
- 3: end if
- 4: ...

Definition

The point

$$x \leftrightarrow \left(\begin{array}{c} x_B \\ x_N \end{array}\right) = \left(\begin{array}{c} p \\ 0 \end{array}\right)$$

is called basic solution.

If $p \ge 0$, x is called **basic feasible solution(BFS)**.

Phase 2: Bestimmung der optimalen Ecke

Algorithm 3 Phase 2: Bestimmung der optimalen Ecke

- 1: **while** $\tau \in N$ mit $q_{\tau} < 0$ existiert **do**
- 2: Wähle das PIVOT-Element $P_{\sigma\tau}$
- 3: Berechne mit Hilfe der Tauschungsregeln das neue Simplextableau
- 4: end while

Phase 2: Bestimmung der optimalen Ecke

Algorithm 4 Phase 2: Bestimmung der optimalen Ecke

- 1: **while** $\tau \in N$ mit $q_{\tau} < 0$ existiert **do**
- 2: Wähle das PIVOT-Element $P_{\sigma\tau}$
- 3: Berechne mit Hilfe der Tauschungsregeln das neue Simplextableau
- 4: end while

Satz

Das SIMPLEX-Tableau ist optimal gdw. $p \geq 0$ und $q \geq 0$

Die Wahl des PIVOT-Elements

$$ST_0 \quad x_N \quad 1$$

$$x_B = \quad P \quad p$$

$$z = \quad q^T \quad q_0$$

Wir wählen $\tau \in N$ mit $q_{\tau} < 0$ beliebig, und bilden daraufhin $-\frac{p_{\sigma}}{P_{\sigma\tau}} := \min\left\{-\frac{p_i}{P_{i\tau}} \middle| -\frac{p_i}{P_{i\tau}} < 0, i \in B\right\}:$

ST_0	<i>x</i> ₁	<i>x</i> ₂	1
$x_3 =$	-4	-3	100
$x_4 =$	-1	-2	50
-z =	-30	-45	0

	ì		
ST_0	x_1	<i>x</i> ₂	1
$x_3 =$	-4	-3	100
$x_4 =$	-1	-2	50
-z =	-30	-45	0

$$\begin{array}{c|ccccc} ST_1 & x_1 & x_4 & 1 \\ \hline x_3 = & -\frac{5}{2} & \frac{3}{2} & 25 \\ x_2 = & -\frac{1}{2} & -\frac{1}{2} & 25 \\ \hline -z = & -\frac{15}{2} & \frac{45}{2} & -1125 \\ \hline \end{array}$$

ST_0	<i>x</i> ₁	<i>x</i> ₂	1
$x_3 =$	-4	-3	100
$x_4 =$	-1	-2	50
-z =	-30	-45	0

$$\begin{array}{c|ccccc} ST_1 & x_1 & x_4 & 1 \\ \hline x_3 = & -\frac{5}{2} & \frac{3}{2} & 25 \\ x_2 = & -\frac{1}{2} & -\frac{1}{2} & 25 \\ \hline -z = & -\frac{15}{2} & \frac{45}{2} & -1125 \\ \hline \end{array}$$

ST_0	<i>x</i> ₁		1
$x_3 =$	-4	-3	100
$x_4 =$	-1	-2	50
-z =	-30	-45	0

$$ST_2 \qquad x_3 \qquad x_4 \qquad 1$$

$$x_1 = -\frac{2}{5} \qquad \frac{3}{5} \qquad 10$$

$$x_2 = \frac{1}{5} \qquad -\frac{8}{10} \qquad 20$$

$$-z = \qquad 3 \qquad 18 \qquad -1200$$

ST_1	x_1	<i>X</i> ₄	1
<i>x</i> ₃ =	$-\frac{5}{2}$	$\frac{3}{2}$	25
$x_2 =$	$-\frac{1}{2}$	$-\frac{1}{2}$	25
-z =	$-\frac{15}{2}$	$\frac{45}{2}$	-1125

Properties of the SIMPLEX algorithm

- ► Does not always terminate
 - easily fixable by introducing an ordering among the nodes

Properties of the SIMPLEX algorithm

- Does not always terminate
 - easily fixable by introducing an ordering among the nodes

Theorem

For a given basic feasible solution (BFS) v the SIMPLEX algorithm deterministically determines a path from v to the optimal vertex v*.

Some thoughts

- 1. What if we choose a pair of indices different from the optimal one in a simplex step?
- 2

A visual example

Example: From Avis' lecture notes

$$A = \begin{bmatrix} -1 & 0 & 1 \\ 0 & -1 & 1 \\ 1 & 0 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & -1 \end{bmatrix}, x = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}, -b = \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \\ 0 \end{bmatrix}, \begin{cases} 1 - x_1 + x_3 \ge 0 \\ 1 - x_2 + x_3 \ge 0 \\ 1 + x_1 + x_3 \ge 0 \\ 1 + x_2 + x_3 \ge 0 \\ -x_3 \ge 0 \end{cases}$$

A visual example

Example

Example: From Avis' lecture notes

Figure: P is a regular pyramid

The SIMPLEX Algorithm

Example

A linear OP example content...

Sources

L. Khachiyan, E. Boros, K. Borys, K. Elbassioni, and V. Gurvich. Generating all vertices of a polyhedron is hard. Discrete and Computational Geometry, 39(1):174–190, 2008.