FISICA TECNICA - riassunto

Federico Mainetti Gambera

2 maggio 2020

Indice

1	L01	L01-Introduzione 3											
	1.1	Introduzione											
		1.1.1 Sistema termodinamico											
		1.1.2 Il sistema semplice											
	1.2	Stato di equilibrio											
		1.2.1 Variabili termodinamiche											
		1.2.2 Regola di Gibbs											
	1.3	Tipologie di sistemi termodinamici											
	1.4	Trasformazioni termodinamiche											
	1.5	Equazione di stato nelle coordinate P,v,T											
		1.5.1 Equazione di stato per i gas ideali											
		1.5.2 Equazione di stato per i gas reali											
		1.5.3 Equazione di stato per liquidi e solidi											
2		-Principi di conservazione											
	2.1	Principi di conservazioni											
	2.2	Principio di conservazione della massa											
	2.3	Primo principio della termodinamica per sistemi chiusi											
	2.4	Secondo principio della termodinamica per sistemi chiusi											
	2.5	Osservazioni sul primo e secondo principio											
3	1.03.	-Trasformazioni 10											
•	3.1	Il lavoro termodinamico											
		3.1.1 Il lavoro termodinamico nelle trasformazioni reversibili e irreversibile											
		3.1.2 II lavoro termodinamico di un ciclo											
	3.2	calore											
		3.2.1 Calori specifici a volume costante c_V											
		3.2.2 Calori specifici a pressione costante c_P											
		3.2.3 c_V e c_P per i gas ideali											
		3.2.4 c_V e c_P per i gas perfetti											
		3.2.5 c_V e c_P per i liqudi (e solidi) incomprimibili ideali											
		3.2.6 c_V e c_P per i liqudi (e solidi) incomprimibili perfetti											
	3.3	Le trasformazioni politropiche											
		3.3.1 Trasformazione politropica per un gas ideale											
		3.3.2 Trasformazione politropica per un gas perfetto											
		3.3.3 Espressioni della politropica											
		3.3.4 Politropiche per trasformazioni elementari											
		3.3.5 Lavoro di una generica politropica											
		3.3.6 Politropiche nel diagramma T-S											

4	L04	I-Sistemi bifase	17
	4.1	Sistema eterogeneo	17
		4.1.1 Regola di gibs per sistemi eterogenei	17
		4.1.2 Transizione di fase	17
		4.1.3 Sistemi eterogenei monocomponente	18
	4.2	Diagramma di stato P-v-T	18
		4.2.1 terminologia	18
		4.2.2 Proiezione del diagramma P-v-T in un grafico P-T	19
			19
			19
			20
		4.2.6 Proiezione del diagramma P-v-T in un grafico P-s e P-h	20
	4.3	Proprietà termodinamiche dei sistemi eterogenei	21
			21
			21
	4.4		21
		·	21
		· ·	22
		•	22
		P	23
		· ·	23
		· ·	23
	4.5		25
			25
		•	25
		4.5.3 Stato vapore	26
5	L05	i-Macchine termodinamiche	27
6	L06	o-Sistemi aperti	28
7	L07	'-Cicli a gas	29
8	1.08	3-Cicli a vanore	30

1 L01-Introduzione

1.1 Introduzione

La **termodinamica** è la scienza che studia **l'energia**, la **materia** e le **leggi** che governano le loro interazioni (scambi).

1.1.1 Sistema termodinamico

Il sistema termodinamico è inteso come porzione di spazio limitata da un **contorno** che lo racchiude completamente (il contorno è costituito da una superficie reale o immaginaria, rigida o deformabile).

Tutto ciò che è esterno al sistema termodinamico è il **mondo esterno** e quando il mondo esterno è di massa infinita viene chiamato **ambiente**.

I termini **serbatoio**, **sorgente** o **pozzo** fanno riferimento ad ambienti che interagiscono con il sistema termodinamico.

Un sistema composto è un insieme di sistemi e sottosistemi a massa finita e/o infinita.

Il sistema può essere **monocomponente** (sostanza pura o miscela di sostanze pure in rapporto fisso, quale ad esempio l'aria) o **policomponente** cioè composto da più componenti.

Ogni sistema monocomponente può essere in diversi **stati di aggregazione** (solido, liquido, aeriforme). I sistemi saranno **monofase** o **polifase**.

1.1.2 II sistema semplice

- Chimicamente e fisicamente omogeneo ed isotropo;
- non soggetto a campi gravitazionali, elettrici o magnetici;
- chimicamente inerte
- esente da effetti di superficie per via delle grandi dimensioni.

1.2 Stato di equilibrio

Lo stato di equilibrio è il particolare stato cui perviene spontaneamente il sistema isolato.

E' ripoducibile e descrivibile da poche proprietà del sistema stesso.

1.2.1 Variabili termodinamiche

Il sistema all'equilibrio è compiutamente descritto attraverso un numero ristretto di variabili termodinamiche (anche dette grandezze o proprietà di stato, variabili o funzioni di stato).

Le grandezze si dividono in:

- **Grandezza intensiva**: valore **non dipende** dall'estensione del sistema (per esempio temperatura, pressione, densità). Ne consegue che lo stato interno del corpo non dipende dalla sua estensione.
- **Grandezza estensiva**: valore **dipende** dall'estensione del sistema (per esempio massa, volume). La grandezza estensiva è additiva e di conseguenza il suo valore riferito ad un sistema risulta somma dei valori relativi ai sottosistemi che lo compongono.
- **Grandezza estensiva specifica**: grandezza estensiva divisa per un'altra grandezza estensiva (tipicamente massa o numero di moli, per esempio $v = \frac{V}{M}$).

Massa: 200 g
Volume: 2 L
Temperatura: 10 °C
Pressione: 1 bar

Massa: 100 g	Massa: 100 g
Volume: 1 L	Volume: 1 L
Temperatura: 10 °C	Temperatura: 10 °C
Pressione: 1 bar	Pressione: 1 bar

Le grandezze estensive specifiche ed intensive vengono normalmente usate per descrivere lo stato di equilibrio di un sistema termodinamico.

dividendo il sistema in 2

Indicheremo le grandezze estensive, riferite cioè all'intera massa, con le lettere maiuscole e le estensive specifiche con le lettere minuscole.

Leggedi Duhem:

«Nel caso di sistema monocomponente, il numero di parametri termodinamici intensivi o estensivi specifici indipendenti atti a descrivere compiutamente lo stato interno di equilibrio è due.»

1.2.2 Regola di Gibbs

La differenza di ruolo tra grandezza estensiva specifica ed intensiva è messa in evidenza dalla regola di Gibbs

$$V = C + 2 - F$$

C: numero di componenti;

F: numero di fasi;

V: numero di variabili intensive indipendenti utilizzabili.

Concludendo la coppia intensiva-intensiva è sufficiente a descrivere il sistema monocomponente monofase, mentre per il sistema monocomponente bifase sarà necessaria la coppia intensiva-estensiva e per il sistema monocomponente trifase sarà necessaria una coppia estensiva-estensiva.

1.3 Tipologie di sistemi termodinamici

Tipologie di contorni:

CONTORNO	CALORE	LAVORO	MASSA
Adiabatico	NO		
Diatermano	SI		
Rigido		NO	
Deformabile		SI	
Impermeabile (chiuso)			NO
Permeabile (aperto)			SI
Sistema isolato	NO	NO	NO

Sistema aperto e chiuso:

Si parlerà di sistema chiuso se il contorno del sistema non consente scambi di massa con l'esterno; in tal caso la massa del sistema rimane costante mentre sono possibili scambi di energia sotto forma di lavoro e/o di calore con l'ambiente circostante. Un caso particolare di sistema chiuso è costituito dal sistema isolato il quale non ha scambi di energia con l'esterno.

Il sistema viene inoltre definito aperto se può scambiare con l'ambiente massa.

1.4 Trasformazioni termodinamiche

L'insieme degli stati intermedi successivi, tra lo stato iniziale e finale, a seguito di una variazione del sistema termodinamico, definisce la trasformazione termodinamica.

Le trasformazioni termodinamiche si dividono in:

- Quasi-statica o internamente reversibile: Costituita da una successione di stati di equilibrio; può non essere reversibile.
- **Reversibile**: Se percorsa in senso inverso, riporta il sistema e ambiente nello stasto iniziale. Per trasformazione reversibile si intende spesso una trasformazione lenta.
 - Traformazione internamente reversibile: nessuna irreversibilità si verifica all'interno del sistema.
 - Trasformazione esternamente reversibile: nessuna irreversibilità si verifica all'esterno del sistema.
 - Trasformazione totalmente reversibile (o reversibile): non implica alcuna irreversibilità sia all'interno sia all'esterno del sistema.
- Irreversibile: Trasformazione in parte o per intero non reversibile. Non è rappresentabile su un diagramma di stato. Per trasformazione irreversibile si intende spesso una trasformazione veloce.
- Chiusa o ciclica: Gli estremi della trasformazione coicidono.
- Elementare: Se una delle grandezze di stato si manitiene costatne durante la traformazione.

1.5 Equazione di stato nelle coordinate P,v,T

equazione di sato:

$$f(P, v, T) = 0$$

In molti casi, l'equazione di stato è ignota.

L' equazione di stato di un sistema semplice è rappresentata in uno spazio cartesiano tridimensionale da una superficie detta «superficie di stato», luogo dei punti rappresentativi di tutti i possibili stati termodinamici di equilibrio.

Lo stato termodinamico (punto appartenente alla superficie di stato) può anche essere geometricamente rappresentato da un punto su un piano cartesiano sui cui assi vi sono due delle tre variabili prescelte. In particolare si possono realizzare piani termodinamici in coordinate (P,v), (P,T) e (T,v).

1.5.1 Equazione di stato per i gas ideali

$$PV = NRT$$

P: pressione [Pa] V: volume $[m^3]$ N: moli [kmole] T: temperatura [K]

R: costante universale dei gas ideali $\rightarrow R = 8314[J/(kmole\ K)]$ Oppure:

$$PV = MR^*T$$

M: massa [kg]

 M_m : massa molare [kg/kmole]

 R^* : costante caratteristica del gas considerato $\to R^* = \frac{R}{M_m}$

Equazione di stato per i gas reali

Modello di equazione di stato più complesso per descrivere il comportamento di gas in condizioni di temperatura e pressioni elevate.

Equazione di van der Waals:

$$\left(P + \frac{a}{v_m^2}\right)(v_m - b) = RT$$

Ove a e b sono caratteristiche del particolare gaas considerato:

Gas	a [kPa(m ³ /kmole) ²]	b (m ³ /kmole)
aria	135.8	0.0366
Не	3.46	0.0237
H_2	24.8	0.0266
N_2	136.6	0.0386
O_2	137.8	0.0318
CO_2	364.0	0.0427
NH_3	426.5	0.0373
CH ₄	228.5	0.0427

1.5.3 Equazione di stato per liquidi e solidi

$$dv = \beta v dT - K_T v dP$$

Coefficiente di dilatazioen termica isobaro $\beta = \frac{1}{v} \left(\frac{\delta v}{\delta T} \right)_P$ Coefficiente di comprimibilità isotermo $K_T = -\frac{1}{v} \left(\frac{\delta v}{\delta P} \right)_T$

$$\beta = \frac{1}{v} \left(\frac{\delta v}{\delta T} \right)_P$$
$$K_T = -\frac{1}{v} \left(\frac{\delta v}{\delta P} \right)_T$$

Siccome β e K_T possono essere considerati costanti per ampi intervalli di temperatura e di pressione, la precedente relazione differenziale è integrabile e lo stato calcolabile.

Sostanza	Intervallo di temperatura (°C)	β ·10 ⁵ (K ⁻¹)	K _T ·10 ¹⁰ (Pa ⁻¹)		
0.00110	0-30	-6.43	0.49 - 4.45		
acqua	30-50	46.5	4.4		
rame	10-50	5.04	0.778		
alluminio	10-90	0.666	12.8		
platino	0-1000	0.259	3.45		

Un modello semplificato è quello per **liquidi e solidi incomprimibili**, in cui si considera $v={\sf costante}.$

2 L02-Principi di conservazione

2.1 Principi di conservazioni

- Conservazione della massa;
- Conservazione dell'energia (primo principio della termodinamica);
- Conservazione dell'entropia (secondo principio della termodinamica).

2.2 Principio di conservazione della massa

Un sistema chiuso no nscambia massa e quindi la massa totale del sistema è sempre costante.

Per i sistema aperti il discorso è differente (vedremo più avanti).

2.3 Primo principio della termodinamica per sistemi chiusi

Formulazione assiomatica

Per un sistema semplice all'equilibrio è definita una proprietà intrinseca (funzione di stato) detta energia interna U la cui variazione è il risultato di interazioni del sistema con l'ambiente esterno.

$$\Delta U = Q^{\leftarrow} - L^{\rightarrow}$$

che in forma differenziale diventa

$$du = \delta q^{\leftarrow} - \delta l^{\rightarrow}$$

dove d è un differenziale esatto e δ indica il differenziale di una grandezza che non è una funzione di stato (dal punto di vista matematico hanno lo stesso significato, è solo una notazione usata per indicare se si sta parlando di funzioni di stato o meno).

Lavoro L: energia fornita ad un sistema termodinamico semplice che sia riconducibile alla variazione di quota di un grave.

Calore Q: energia fornita ad un sistema termodinamico semplice che non è riconducibile alla variazione di quota di un grave.

Osservazioni:

• L'energia interna totale di un sistema, cioè l'energia interna riferita alla intera massa del sistema, M, è una quantità estensiva e perciò additiva:

$$U = M \cdot u$$

• In un sistema isolato isolato il bilancio energetico diviene

$$\Delta U_{\rm isolato} = 0$$

• Per un sistema che suubisce una trasformazione ciclica si ha

$$\Delta U_{\rm ciclo} = 0$$

ullet Per un sistema Z composto da due (o più) sottosistemi A,B l'energia interna totale è

$$U_Z = U_A + U_B$$

$$\Delta U_Z = \Delta U_A + \Delta U_B$$

• Se Z è un sistema composto da più sottosistemi (Z = A + B + ...) e non è isolato la variazione della sua energia interna risulta

$$\Delta U_Z = \Delta U_A + \Delta U_B + \dots = Q_Z^{\leftarrow} - L_Z^{\rightarrow}$$

Formulazione classica

L'energia che è immagazzinata in un sistema e che non va a cambiare né l'energia cinetica del centro di massa, né quella potenziale (e neanche l'energia elastica, o chimica, o elettrica) è chiamata energia interna.

2.4 Secondo principio della termodinamica per sistemi chiusi

Formulazione assiomatica

In un sistema termodinamico all'equilibrio esiste una funzione intrinseca dello stato del sistema (funzione di stato) detta **entropia** S la cui variazione per una trasformazione reversibile è data data

$$\Delta S = \int \frac{\delta Q_{\rm rev}^{\leftarrow}}{T}$$

Osservazioni:

ullet L'entropia totale di un sistema, cioè l'entropia riferita all'intera massa del sistema, M, è una quantità estensiva

$$S = M \cdot s$$

• La variazione di entropia totale di un sistema isolato sede di trasformazioni termodinamiche è sempre maggiore di zero e tende a zero con il tendere dei processi alla reversibilità

$$\Delta S_{\text{isolato}} \geq 0$$

• Essendo S una quantità estensiba (additiva), se il sistema Z è composto da due (o più) sottosistemi A,B,\ldots l'entropia totale è

$$S_Z = S_A + S_B$$

$$\Delta S_Z = \Delta S_A + \Delta S_B$$

 In un sistema chiuso sede di trasformazioni termodinamiche il bilancio entropico può essere scritto come

$$\Delta S = S_Q^{\leftarrow} + S_{\mathsf{irr}}$$

dove il termine S_Q^{\leftarrow} rappresenta l'**entropia entrante** attraverso i confini del sistema come conseguenza dello scambio di calore Q, mentre $S_{\rm irr}$ è il termine di **generazione entropica per irreversibilità**.

Notiamo che $S_{\mathrm{irr}} \geq 0$ è sempre maggiore di zero. Notiamo che il segno di S_Q^{\leftarrow} è uguale al segno di Q^{\leftarrow} .

2.5 Osservazioni sul primo e secondo principio

- Il primo principio non individua il verso delle trasformazioni spontanee. Il primo principio non precisa per esempio che il calore fluisce nel verso delle temperature decrescenti.
- Il primo principio non pone alcun limite alla possibilità di trasformazione di calore in lavoro, ma si limita a postularne la equivalenza metrologica.
- Il primo principio non stabilisce le condizioni di equilibrio termico e meccanico non vincolato.
- Il secondo principio colma le lacune individuate nei punti precedenti.

3 L03-Trasformazioni

Per variabile di stato si intende una grandezza che dipende dallo stato del sistema, viceversa variabili come il lavoro e il calore (che non sono di stato) non dipendono dallo stato del sistema, ma bensì dal percorso che hanno seguito per raggiungere quel determinato stato.

3.1 II lavoro termodinamico

In un dispositivo cilindro-pistone, uno squilibrio di forze infinitesimo tra forze esterne e forza interna $(P \cdot A)$ provoca uno spostamento infinitesimo del pistone a cui corrisponde un **lavoro**

$$\delta L^{\rightarrow} = PAds = P \cdot dV$$

In termini di grandezze specifiche, la relazione diventa

$$\delta l^{\rightarrow} = P \cdot dv$$

Quando il sistema evolve da uno stato **iniziale** (i) ad uno stato **finale** (f) attraverso una successione di **stati di equilibrio**, allora sarà possibile esprimere una legge, detta **equazione della trasformazione**, tra le variabili di stato P e v e la integrazione di Pdv rappresenterà il lavoro scambiato durante la trasformazione.

Il lavoro termodinamico è dunque calcolabile come

$$l^{\to} = \int_{i}^{f} P dv$$

che è un integrale calcolabile solo se si conosce la funzione P=P(v) detta equazione della trasformazione.

3.1.1 Il lavoro termodinamico nelle trasformazioni reversibili e irreversibile

Nel caso di trasformazione **reversibile** in un cilindro-pistone la pressione interna è sempre omogenea all'interno del cilindro.

Nel caso di trasformazione **irreversibile** in un cilindro-pistone la pressione interna non è omogenea all'interno del cilindro. Quindi per ricavare la forza applicata al pistone si usa la pressione dell'ambiente esterno che agisce sul pistone.

Solitamente il lavoro reversibile è maggiore del lavoro irreversibile, come si vede bene dal seguente grafico:

L'area verde insime all'area a linee rosse (cioè tutta quella sottesa alla curva) rappresenta il lavoro nel caso di trasformazione reversibile, la sola area a linee rosse rappresenta, invece, il lavoro nel caso di trasformazione irreversibile.

3.1.2 Il lavoro termodinamico di un ciclo

Un ciclo è un trasformazione che termina con lo stato iniziale. In funzione di come avviene il ciclo, orario o antiorario per esempio, avremo che il lavoro uscente dal sistema è positivo o negativo. Nel piano PV chiamiamo macchine a **ciclo diretto** (motrici) quelle che eseguono trasformazioni in senso orario, mentre chiameremo macchine a **ciclo inverso** (operatrici) quelle che eseguono trasformazioni in senso antiorario.

3.2 II calore

Capacità termica: è il rapporto fra il calore fornito al sistema e la variazione di temperature del sistema stesso

 $C_x = \left(\frac{\delta Q^{\leftarrow}}{dT}\right)_x$

Calore specifico: è il rapporto tra la capacità termica del sistema e la sua massa

$$c_x = \frac{1}{M} \left(\frac{\delta Q^{\leftarrow}}{dT} \right)_x$$

I calori specifici possono essere interpretati come derivate parziali di funzioni termodinamiche.

Il pedice x precisa la **trasformazione** lungo la quale viene scambiato il calore δQ . Vediamo i casi in cui x è la pressione e il caso in cui è il volume.

3.2.1 Calori specifici a volume costante c_V

$$c_V = \frac{1}{M} \left(\frac{\delta Q^{\leftarrow}}{dT} \right)_V = \left(\frac{\delta q^{\leftarrow}}{dT} \right)_V$$

Partendo dal primo principio della termodinamica e dalla definizione di lavoro data precedentemente si può scrivere che $\delta q^\leftarrow = du + P dv$ e che quindi $\delta q^\leftarrow = \left(\frac{\delta u}{\delta T}\right)_v dT + \left(\frac{\delta u}{\delta T}\right)_T dv + P dv$, e proseguendo

considerando il fatto che il volume è costante ricaviamo che $\delta q^\leftarrow = \left(\frac{\delta u}{\delta T}\right)_V dT$, da cui ricaviamo che

$$c_V = \left(\frac{\delta u}{\delta T}\right)_V$$

Siccome è una **derivata di una funzione di stato**, può in generale essere espresso come funzione di una coppia di variabili termodinamiche (in particolare della coppia T,P):

$$c_V = c_V(T, P)$$

3.2.2 Calori specifici a pressione costante c_P

$$c_P = \frac{1}{M} \left(\frac{\delta Q^{\leftarrow}}{dT} \right)_P = \left(\frac{\delta q^{\leftarrow}}{dT} \right)_P$$

Per lavorare sul calore specifico a pressione costante dobbiamo introdurre la funzione di stato **entalpia**, che esprime la quantità di energia che un sistema può scambiare con l'ambiente ed è definita come

$$h = u + Pv$$

Per le trasformazioni che avvengono a pressione costante, la variazione di entalpia è uguale al calore scambiato dal sistema con l'ambiente esterno. Col suo differenziale possiamo riscrivere il primo principio come dh=du+vdP+Pdv, da cui, ricordando che siamo a pressione costante, ricaviamo che $\delta q^\leftarrow=dh-vdP=\left(\frac{\delta h}{\delta T}\right)_P dT+\left(\frac{\delta h}{\delta T}\right)_T dP-vdP$, e quindi $\delta q^\leftarrow=\left(\frac{\delta h}{\delta T}\right)_P dT$, da cui ricaviamo che

$$c_P = \left(\frac{\delta h}{\delta T}\right)_P$$

Siccome è una **derivata di una funzione di stato**, può in generale essere espresso come funzione di una coppia di variabili termodinamiche (in particolare della coppia T,P):

$$c_P = c_P(T, P)$$

3.2.3 c_V e c_P per i gas ideali

Per un gas ideale la variazione di energia interna e l'entalpia sono funzioni della sola temperatura u=u(T) e h=h(T), per cui i calori specifici da derivate parziali diventano derivate esatte:

$$c_V = c_V(T) = \left(\frac{du}{dT}\right)$$

$$c_P = c_P(T) = \left(\frac{dh}{dT}\right)$$

Vale inoltre la realzione di Mayer

$$c_P = c_V + R^*$$

3.2.4 c_V e c_P per i gas perfetti

Per i gas ideali i calori specifici dipendono dalla temperatura, ma questa relazione di dipendenza è molto debole, per cui in intervalli ristretti di temperatura i calori specifici si ritengono spesso costanti: in questo caso il gas viene definito **perfetto**.

Per calcolare i calori specifici si usano le seguenti relazioni:

• Gas monoatomico (He, Ar)

$$c_v = \frac{3}{2}R^*;$$
 $c_P = \frac{5}{2}R^*$

• Gas biatomico o poliatomico lineare: (N_2, O_2, CO_2)

$$c_v = \frac{5}{2}R^*;$$
 $c_P = \frac{7}{2}R^*$

• Gas poliatomico non lineare: (CH_4)

$$c_v = \frac{6}{2}R^*;$$
 $c_P = \frac{8}{2}R^*$

3.2.5 c_V e c_P per i liqudi (e solidi) incomprimibili ideali

$$c_V = c_P = c(T)$$

3.2.6 c_V e c_P per i liqudi (e solidi) incomprimibili perfetti

$$c_V = c_P = c = \text{costante}$$

3.3 Le trasformazioni politropiche

Una trasformazione politropica è una trasformazione quasi-statica, cioè internamente reversibile, di un gas ideale per la quale c_x = costante.

Si definisce indice della politropica:

$$n = \frac{c_x - c_P}{c_x - c_V}$$

e l' equazione della politropica:

$$Pv^n = \text{costante}$$

3.3.1 Trasformazione politropica per un gas ideale

Per un gas ideale il valore di n è calcolabile

3.3.2 Trasformazione politropica per un gas perfetto

Per un gas perfetto il valore di n è calcolabile

3.3.3 Espressioni della politropica

$$Pv^{n} = costante$$

$$Tv^{n-1} = costante$$

$$PT^{\frac{n}{1-n}} = costante$$

$$Pvv^{n-1} = costante$$

$$T\left(\frac{R^{*}T}{P}\right)^{n-1} = costante$$

$$\frac{T^{n}}{P^{n-1}} = costante$$

3.3.4 Politropiche per trasformazioni elementari

Trasformazione	c_x	$n = \frac{c_x - x_P}{c_x - c_V}$
Isoterma $(T = costante)$	$\pm \infty$	1
Isocora ($v = costante$)	c_V	$\pm \infty$
Isobara $(P = costante)$	c_P	0
Adiabatica $(q = costante)$	0	$k = \frac{c_P}{c_V}$

3.3.5 Lavoro di una generica politropica

• per
$$n \neq 1$$

$$l^{\rightarrow} = \frac{P_1 v_1}{n-1} \left[1 - \left(\frac{v_1}{v_2} \right)^{n-1} \right]$$
$$l^{\rightarrow} = \frac{P_1 v_1}{n-1} \left[1 - \left(\frac{P_2}{P_1} \right)^{\frac{n-1}{n}} \right]$$

• per
$$n=1$$

$$l^{\rightarrow} = P_1 v_1 ln \frac{v_2}{v_1}$$
$$l^{\rightarrow} = P_1 v_1 ln \frac{P_1}{P_2}$$

3.3.6 Politropiche nel diagramma T-S

In un diagramma T-S, l'area sottesa dalla curva rappresentativa di una trasformazione internamente reversibile è uguale al calore scambiato dal sistema nella trasformazione:

$$Q_{rev} = \int_{\cdot}^{f} \delta Q_{rev} = \int_{\cdot}^{f} T(S) dS$$

Per una trasformazione ciclica e internamente reversibile, le aree incluse nelle curve chiuse rappresentative del ciclo nei diagrammi P-V e T-S sono uguali, essendo, per il primo principio $L^{\to}=Q^{\leftarrow}$

Nel piano T-S (o T-s) tutte le politropiche sono rappresentate da esponenziali:

$$T = T_0 e^{\frac{s-s_0}{c_x}}$$

- Isoterme: avendo $c_x = \infty$, sono rette orizzontali e così, per il gas ideale, anche le isoentalpiche dato che h = h(T).
- ullet Adiabatiche reversibili (isoentalpiche) invece sono rette verticali visto che $c_x=0.$
- Isocore, essendo $c_V < c_P$ sono più ripide delle isobare.

3.4 Calcolo di grandezze termodinamiche (u, h, s, l, q

Per il calcolo dell'energia interna:

• Per i gas perfetti: $\Delta u = c_v \Delta T$

• Per i liquidi (e solidi) incomprimibili perfetti (v=costante): $\Delta u=c\Delta T$

Per il calcolo dell'entalpia:

• Per i gas perfetti: $\Delta h = c_P \Delta T$

Per il calcolo di lavoro e calore per sistemi chiusi, determinate trasformazioni e GAS PERFETTI:

TRASF. INTERN. REVERSIBILE	$l = \int P dv$	$q = \int dq$		
P = cost	$P\Delta v$	$c_P\Delta \mathrm{T}$		
$v = \cos t$	0	$c_V\Delta \mathrm{T}$		
T = cost	$R^*T \ln \frac{v_2}{v_1}$ $-R^*T \ln \frac{P_2}{P_1}$	$-R^*T \ln \frac{v_2}{v_1}$ $-R^*T \ln \frac{P_2}{P_1}$		
q = 0	$-c_v \Delta T$	0		
$c_x = \cos t$	$(c_x-c_V)\Delta T$	$c_x \Delta T$		

Per il calcolo dell'entropia:

 Per un **generico sistema**: $\delta s = \frac{du}{T} + \frac{P}{T} dv$

ullet Per gas ideali: $ds = c_V rac{dT}{T} + R^* rac{dv}{v}$

• per gas perfetti ($c_V = costante$ e $c_P = costante$) possiamo integrare l'espressione e otteniamo:

$$\begin{split} \Delta s &= s_2 - s_1 &= c_V ln \frac{T_2}{T_1} + R^* ln \frac{v_2}{v_1} = \\ &= c_P ln \frac{T_2}{T_1} - R^* ln \frac{P_2}{P_1} = \\ &= c_P ln \frac{v_2}{v_1} + c_V ln \frac{P_2}{P_1} \end{split}$$

ullet per liquidi (e solidi) incomprimibili perfetti (v=costante):

$$\Delta s = s_2 - s_1 = c \ln \frac{T_2}{T_1}$$

4 L04-Sistemi bifase

4.1 Sistema eterogeneo

Un sistema omogeneo è un sistema con un solo stato di aggregazione.

Un sistema eterogeneo è un sistema con più stati di aggregazione.

Un sistema monocomponente è un sistema con una sola sostanza al suo interno.

Un sisteam multicomponente è un sistea con più sostanze al suo interno.

Le generica **grandezze estensive specifiche** e di un sistema eterogeneo costituito da due stati di aggregazione α e β possono essere rappresentate come **media pesata sulle masse** dei valori delle grandezze estensive specifiche delle singole fasi:

$$e = \frac{M_{\alpha}}{M}e_{\alpha} + \frac{M_{\beta}}{M}e_{\beta}$$

Si definisce **frazione massica** le proporzioni di massa in uno stato di aggregazione rispetto alla massa complessiva. Per esempio in un generico sistema eterogeneo con due stati di aggregazione α e β :

$$x_{\alpha} = \frac{M_{\alpha}}{M} \qquad \qquad x_{\beta} = \frac{M_{\beta}}{M}$$

Ricordiamo inoltre che

$$x_{\alpha} + x_{\beta} = 1$$

e che una generica grandezza estensiva specifica può quindi essere espressa come

$$e = x_{\alpha}e_{\alpha} + x_{\beta}e_{\beta} = (1 - x_{\beta})e_{\alpha} + x_{\beta}e_{\beta}$$

4.1.1 Regola di gibs per sistemi eterogenei

Regola di Gibbs:

$$V = C + 2 - F$$

V: numero di variabili intensive indipendenti utilizzabili per descrivere il generico stato di equilibrio.

C: numero di componenti.

F: numero di fasi.

- Per il generico sistema monocomponente e monofase V=2, quindi per descrivere uno stato di equilibrio è sufficiente una coppia intensiva-intensiva (per esempio P e T).
- Per il generico sistema **monocomponente bifase** V=1, quindi per descrivere lo stato termodinamico è necessaria una coppia intensiva-estensiva oppure un coppia estensiva-estensiva: (P,v) (T,v) (P,u) (T,u) (P,h) (T,h) (P,s) (T,s) (v,u) (v,h) (v,s) (u,h) (u,s) (h,s)
- Per il generico sistema **monocomponente trifase** V=0, quindi per descirvere uno stato di equilibrio è necessaria un coppia estensiva-estensiva: (v,u) (v,h) (v,s) (u,h) (u,s) (h,s)

4.1.2 Transizione di fase

Una transizione di fase:

- è il passaggio da uno stato di aggregazione ad un altro;
- avviene a pressione (e temperatura) costatne.

Definiamo l'**entalpia di transizione** come la quantità di energia necessaria per passare da uno stato a un altro:

$$dh = \delta q^{\leftarrow}$$

4.1.3 Sistemi eterogenei monocomponente

Possibili configurazioni:

- Stati monofase:
 - Solido
 - Liquido
 - Aeriforme (Gas)

• Stati bifase:

- Coesistenza di solido e liquido
- Coesistenza di solido e aeriforme (vapore)
- Coesistenza di liquido e aeriforme (vapore)

• Stati tripli:

- Coesistenza di solido, liquido e aeriforme (vapore)

Terminologia:

- Liquido sottoraffreddato: liquido non in porcinto di evaporare (temperatura di sistema sotto temperatura di saturazione)
- Liquido saturo: liquido in procinto di evaporare (liquido a temperatura di saturazione)
- Vapore saturo: vapore in condizioni di incipiente condensazione (gas a temperatura di saturazione)
- Vapore surriscaldato: vapore non in procinto di condensare (temperatura di sistema sopra temperatura di saturazione)
- **Temperatura di saturazione**: temperatura alla quale una sostanza pura comincia ad evaporare (se è un liquido) oppure condensare (se è un gas), fissata la pressione.

4.2 Diagramma di stato P-v-T

4.2.1 terminologia

Definizioni: Solido (S) Curve limite (in rosso) Liquido sottoraffreddato (L) curve che delimitano solido-liquido-vapore Liquido saturo (sulla curva limite ondono ai valori di saturazio inferiore, tra L e LV) Punto Critico (T_{cr}, P_{cr}) Vapore umido (miscela liquido vapore LV) Liquido saturo Vapore saturo secco (sulla curva limite superiore, tra LV e V) LV Vapore surriscaldato (V) Vapore saturo Temperatura di saturazione: fissata una P è la T alla quale Vapore > il liquido inizia a evaporare il vapore inizia a condensare (bifase) Temperatura

4.2.2 Proiezione del diagramma P-v-T in un grafico P-T

Transizioni di fase:

4.2.3 Gas

Fluido a $P < P_{cr}$ e $T > T_{cr}$ che non può essere liquefatto attraverso una trasformazione di compressione isoterma:

4.2.4 Trasformazione isobara

4.2.5 Traformazione isoterma

4.2.6 Proiezione del diagramma P-v-T in un grafico P-s e P-h

Uno dei problemi del proiettare la superficie di stato ne ldiagramm P-T, è che difficilmente riusciamo a rappresentare le transizioni di fase, perchè, per esempio le zone SL e LV corrispondono soltanto a un punto. Perciò il diagramma P-T è poco utili per rappresentare i cambi di stato. Per ovviare a ciò dobbiamo fare diverse proiezioni della superficie di stato, rispetto a una coppia di grandezze (P,v), per esempio:

Una soluzione a questo problema di rappresentazion è l'utilizzo del diagramma temperatura-entropia, per esempio:

Il tipo di diagramma utilizzato varia a seconda dello scopo che si vuole raggiungere, ce ne sono anche molti altri, per esempio quello P-h e quello h-s.

4.3 Proprietà termodinamiche dei sistemi eterogenei

4.3.1 Entalpia di transizione di fase

 $h_{solido} < h_{liquido} < h_{vapore}$

• entalpia di **liquefazione**: $h_{liquido} - h_{solido} > 0$

ullet entalpia di **solidificazione**: $h_{lst} = h_{solido} - h_{liquido} < 0$

• entalpia di **evaporazione**: $h_{lvt} = h_{vapore} - h_{liquido} > 0$

• entalpia di **condensazione**: $h_{liquido} - h_{vapore} < 0$

• entalpia di **sublimazione**: $h_{svt} = h_{vapore} - h_{solido} > 0$

• entalpia di **brinamento**: $h_{solido} - h_{vapore} < 0$

4.3.2 Titoli

Le frazioni massiche dei tre stati di aggregazione prendono il nome di titolo:

ullet titolo di vapore: $x_v=rac{M_v}{M}$

ullet titolo di liquido: $x_l=rac{M_l}{M}$

• titolo di solido: $x_s = \frac{M_s}{M}$

Ricordiamo che $x_v + x_l + x_s = 1$ e che una generica **grandezza estensiva** e può essere espressa come:

$$e = (1 - x_l - x_v)e_s + x_le_l + x_ve_v$$

4.4 Tabelle termodinamiche

4.4.1 Tabella di saturazione in pressione

E' detta "in pressione" perchè sulla prima colonna sono indicate le **pressioni**. La seconda colonna rappresenta delle **temperature**.

La prima riga è sempre quella che rappresenta il punto triplo.

Ogni coppia di valori Pressione-Temperatura presente in tabella segue la curva di saturazione liquidovapore proiettata su un diagramma P-T.

Per ogni coppia P-T specificato in tabella sono indicati i seguenti valori:

- volume specifico (terza, quarta, quinta colonna)
- entalpia specifica (sesta, settima, ottava colonna)
- entropia specifica (nona, decima, undicesima colonna)

Per ognuno di questi valori viene indicato il valore per **liquido saturo**, per **vapore saturo** e la differenza fra questi ultimi due.

4.4.2 Tabella di saturazione in temperatura

E' detta "in temperatura" perchè sulla prima colonna sono indicate le **temperature**. La seconda colonna rappresenta delle **pressioni**.

Il contenuto della tabella è il medesimo della tabella precedente, solo che il riferimento è basato sulla temperatura (sono in ordine di temperatura) e non sulla pressione.

4.4.3 Tabella del vapore surriscaldato

Questa tabella mostra le pressioni sulle righe e le temperature sulle colonne, per un sistema monofase, in cui P e T descrivono uno stato di equilibrio.

Per ogni riga di pressione, è mostrata la **temperatura** T_s di **saturazione** a tale pressione.

Per ogni coppia temperatura - pressione che andiamo a cercare troviamo i valori di **volume specifico**, **entalpia specifica**, **entropia specifica**.

La zona evidenziata in giallo, senza valori, rappresentano i valori oltre la curva limite, cioè la zona di liquido sottoraffreddato, dove $T_s > T$.

D (hard														
P (bar) Ts (°C)			50	100	150	200	emperatura 250	300	350	400	500	600	700	800
15 (0)	v	m3/kg	74.524	86.08	97.628	109.171	120.711	132.251	143.79	155.329	178.405	201.482	224.558	247.63
0.02	h	kJ/kg	2594.4	2688.5	2783.7	2880	2977.7	3076.8	3177.7	3279.7	3489.2	3705.6	3928.8	4158
17.5	5	k UkoK	8.9226	9.1934	9.4327	9.6479	9.8441	10.0251	10.1934	10.3512	10.6413	10.9044	11.1464	11.37
	v	m3/kg	37.24	43.027	48.806	54.58	60.351	66.122	71.892	77.662	89.201	100.74	112.278	123.8
0.04	h	AJ/Ra	2593.9	2688.3	2783.5	2879.9	2977.6	3076.8	3177.4	3279.7	3489.2	3705.6	3928.8	4158
29	5	k.VkgK	8.6016	8.873	9.1125	9.3279	9.5241	9.7051	9.8735	10.0313	10.3214	10.5845	10.8265	11.05
	v	m3/kp	24.812	28,676	32.532	37.383	40.232	44.079	47.927	51,773	59.467	67,159	74.852	82.5
0.06	h	k.Ukg	2593.5	2688	2783.4	2879.8	2977.6	3076.7	3177.4	3279.6	3489.2	3705.6	3928.8	4158
36.2	5	k-UkpK	8.4135	8.6854	8.9251	9.1406	9.3369	9.5179	9.6863	9.8441	10.1342	10.3973	10.6394	10.86
	V	m3/kg	18.598	21.501	24.395	27.284	30.172	33.058	35.944	38.829	44.599	50.369	56.138	61.9
0.08	h	k.Ukg	2593.1	2687.8	2783.2	2879.7	2977.5	3076.7	3177.3	3279.6	3489.1	3705.5	3928.8	415
41.5	5	k-UkpK	8.2797	8.5521	8.7921	9.0077	9.2041	9.3851	9.5535	9.7113	10.0014	10.2646	10.5066	10.7
	V	m3/kg	14.869	17.195	19.512	21.825	24,136	26.445	28.754	31.062	35.679	40.295	44.91	49.5
0.1	h	k.Ukg	2592.7	2687.5	2783.1	2879.6	2977.4	3076.6	3177.3	3279.6	3489.1	3705.5	3928.8	415
45.8	5	k UkpK	8.1757	8.4486	8.6888	8.9045	9.101	9.282	9.4504	9.6083	9.8984	10.1616	10.4036	10.62
	V	m3/kg		3.4181	3.8893	4.356	4.8205	5.2839	5.7467	6.2091	7.1335	8.0574	8.981	9.9
0.5	h	k.Ukg		2682.6	2780.1	2877.7	2976.1	3075.7	3176.6	3279	3488.7	3705.2	3928.6	415
81.3	5	k.l/kgK		7.6953	7.9406	8.1587	8.3564	8.538	8.7068	8.8649	9.1552	9.4185	9.6606	9.8
	V	m3/kg		1.6955	1.9363	2.1723	2.4061	2.6387	2.8708	3.1025	3.5653	4.0277	4.4898	4.9
1	h	k.Ukg		2676.2	2776.1	2875.4	2974.5	3074.5	3175.6	3278.2	3488.1	3704.8	3928.2	415
99.5	S	k.UkgK		7.3618	7.6137	7.8349	8.0342	8.2166	8.3858	8.5442	8.8348	9.0982	9.3405	9.5
	V	m3/kg			0.95954	1.0804	1.1989	1.3162	1.4328	1.5492	1.7812	2.0129	2.2442	2.4
2	h	k.Ukg			2768.5	2870.5	2971.2	3072.1	3173.8	3276.7	3487	3704	3927.6	415
120.2	5	k.//kgK			7.2794	7.5072	7.7096	7.8937	8.0638	8.2226	8.5139	8.7776	9.0201	9.2
_	V	m3/kg			0.63374	0.71635	0.79644	0.87529	0.95352	1.0314	1.1865	1.3412	1.4957	1.64
3	h	k Ukp			2760.4	2865.5	2967.9	3069.7	3171.9	3275.2	3486	3703.2	3927	415
133.5	5	k.l/kgK			7.0771	7.3119	7.5176	7.7034	7.8744	8.0338	8.3257	8.5898	8.8325	9.0
	V	m3/kg			0.47066	0.53426	0.59519	0.65485	0.71385	0.7725	0.88919	1.0054	1.1214	1.2
4	h	k.Ukg			2752	2860.4	2964.5	3067.2	3170	3273.6	3484.9	3702.3	3926.4	415
143.0	5	k.l/kgK			6.9285	7.1708	7.38	7.5675	7.7395	7.8994	8.1919	8.4563	8.6992	8.9
	V	m 3/kg				0.42496	0.47443	0.52258	0.57005	0.61716	0.71078	0.80395	0.89685	0.98
5	h	k.Ukp				2855.1	2961.1	3064.8	3168.1	3272.1	3483.8	3701.5	3925.8	415 8.8
151.8	.5	kJ/kgK				7.0592	7.2721	7.4614	7.6343	7.7948	8.0879	8.3626	8.5957	8.

4.4.4 Interpolazione lineare

Siccome non è possibile creare tabelle con ogni possibile valore, per tutti quei casi in cui non si trova una corrispondenza precisa nella tabella, si usa lì **interpolazione lineare**

$$Y = Y_A + \frac{Y_B - Y_A}{X_B - X_A} (X - X_A)$$

Y: grandezza che si vuole ricavare.

X: grandezza conosciuta.

A, B: stati di riferimento (presenti in tabella) con $X_A < X < X_B$.

4.4.5 interpolazione bilineare

Nel caso in cui più di una grandezza non corrisponda a nessun valore preciso della tabella usiamo la formula di **interpolazione bilineare**

$$Y = Y_A + \frac{Y_B - Y_A}{X_B - X_A} (X - X_A)$$

$$Y_A = Y_{A1} + \frac{Y_{A2} - Y_{A1}}{X_{A2} - X_{A1}} (X_A - X_{A1})$$

$$Y_B = Y_{B1} + \frac{Y_{B2} - Y_{B1}}{X_{B2} - X_{B1}} (X_B - X_{B1})$$

4.4.6 Formule per l'acqua sottoraffreddata

Vediamo come calcolare tutti quei valori per cui non esistono tabelle, per esempio i valori per un liquido sottoraffreddato.

Modello di liquido incomprimibile ideale

Per un liquido incomprimibile ideale abbiamo $c_P=c(T), \beta=0, K_T=0$ e

$$dh = c(T)dT + vdP$$

$$ds = c(T)\frac{dT}{T}$$

che sono forme differenziali e per poterle integrare devo conoscere la funzione c(T), che però non conosciamo. L'ipotesi che quindi facciamo è quella di liquido incomprimibile perfetto, cioè con c costante.

Modello di liquido incomprimibile perfetto

Per un liquido incomprimibile perfetto abbiamo c=costaten e quindi possiamo integrare le formule viste precedentemente e otteniamo

$$\Delta h = c\Delta T + v\Delta P$$
$$\Delta s = cln \frac{T_2}{T_1}$$

Dalla prima di queste due formule posso scrivere che

$$h - h_{ref} = c(T - T_{ref}) + v(P - P_{ref})$$

dove col pedice "ref" si intendono valori che troviamo in tabella per liquidi saturi.

Possiamo ora procedere in due maniere: fissando la temperatura (corretto) o fissando la pressione (sbagliato).

Approccio a temperatura costante:

La situazione è questa: stiamo cercando di calcolare il punto azzurro di "liquido sottoraffreddato" usando le tabelle di liquido saturo che ci permettono di individuare il punto rosso di "liquido saturo" alla medesima temperatura.

sostituiamo i valori con pedice "ref" dell'equazione precedentemente trovata

$$h - h_{ref} = c(T - T_{ref}) + v(P - P_{ref})$$

con i valori che troviamo con la tabella di liquido saturo eccetto per la temperatura che teniamo fissa:

$$h(P,T) - h_{ls}(P_{sat}(T)) = c(T-T) + v(P-P_{sat}(T))$$

 $h(P,T) = h_{ls}(P_{sat}(T)) + v(P-P_{sat}(T))$

inoltre per v si può usare il valore del liquido saturo fornito dalla tabella $v = v_{ls}(P_{sat}(T))$.

Approccio a pressione costante: N.B. non usare questo approccio!

P solido sottoraffreddato liquido solido punto triplo saturo vapore T

La situazione è questa: stiamo cercando di calcolare il punto verde di "liquido sottoraffreddato" usando le tabelle di liquido saturo che ci permettono di individuare il punto rosso di "liquido saturo" alla

medesima pressione.

Se seguiamo il medesimo procedimento di prima ma con pressione fissa, otteniamo:

$$h(P,T) - h_{ls}(T_{sat}(P)) = c(T - T_{sat}(P)) + v(P - P)$$

 $h(P,T) = h_{ls}(P_{sat}(T)) + c(T - T_{sat}(P))$

che non è valido perchè in genere $c \neq costante$.

Cosa fare se si conosce P e non T? (TODO, vedi esercizio ES 3.1.6)

Caso nel quale si conosce (P,h) e si vuole conoscere T

$$h(P,T) = h_{ls}(P_{sat}(T)) + v(P - P_{sat}(T))$$

in cui solitamente $v(P-P_{sat}(T))$ è solitamente trascurabile, e dunque si interpola in tabella di saturazione la temperatura per la quale $h_{ls}(T)=h$.

Caso nel quale si conosce (P,s) e si vuole conoscere T

Approccio simile a quello precedente.

4.5 Relazioni semplificate vicino al punto triplo per l'acqua

In assenza di tabelle, si possono usare le seguenti relazioni semplificate che rimandono valide in prossimità **punto triplo** per lo stato solido, lo stato liquido e lo stato vapore.

4.5.1 Stato solido

$$h(P,T) = h_0 + h_{lst} + c_s(T - T_0) + v_s(P - P_0)$$

$$s(P,T) = s_0 + s_{lst} + c_s ln \frac{T}{T_0} = s_0 + \frac{h_{lst}}{T_0} + c_s ln \frac{T}{T_0}$$

con

 P_0, T_0 : pressione e temperatura del punto triplo ($P_0 = 0.00611bar; T_0 = 0.01C^o$)

 h_0 : entalpia di riferimento al punto triplo in fase liquida ($h_0 = 0kJ/kg$)

 s_0 : entropia di riferimento al punto triplo in fase liquida $(s_0 = 0kJ/kgK)$

 h_{lst} : entalpia di solidificazione al punto triplo ($h_{lst} = -333kJ/kg$)

 c_s : calore specifico del ghiaccio ($c_s = 2093J/kgK$)

 v_s : volume specifico del ghiaccio ($v_s = 0.00109m^3/kg$)

Possiamo approssimare $T_{sat,L-S}(P) = T_0$.

4.5.2 Stato liquido

(USARE LE TABELLE)

$$h(P,T) = h_0 + c_l(T - T_0) + v_l(P - P_0)$$
$$s(P,T) = s_0 + c_l \ln \frac{T}{T_0}$$

con

 P_0,T_0 : pressione e temperatura del punto triplo ($P_0=0,00611bar;T_0=0.01C^o$)

 h_0 : entalpia di riferimento al punto triplo in fase liquida ($h_0=0kJ/kg$)

 s_0 : entropia di riferimento al punto triplo in fase liquida ($s_0 = 0kJ/kgK$)

 c_l : calore specifico dell'acqua liquida ($c_l = 4186J/kgK$)

 v_l : volume specifico dell'acqua liquida ($v_l = 0.001 m^s/kg$)

4.5.3 Stato vapore

(USARE LE TABELLE)

$$h(P,T) = h_0 + h_{lvt} + c_p(T - T_0)$$

$$s(P,T) = s_0 + s_{lvt} + c_p ln \frac{T}{T_0} - R^* ln \frac{P}{P_0} = s_0 + \frac{h_{lvt}}{T_0} c_P ln \frac{T}{T_0} - R^* ln \frac{P}{P_0}$$

con

 P_0, T_0 : pressione e temperatura del punto triplo ($P_0 = 0,00611bar; T_0 = 0.01C^o$)

 h_0 : entalpia di riferimento al punto triplo in fase liquida $(h_0 = 0kJ/kg)$

 s_0 : entropia di riferimento al punto triplo in fase liquida ($s_0 = 0kJ/kgK$)

 h_{lvt} : entalpia di evaporazione al punto triplo $(h_{lvt} = 2501.6kJ/kg)$

 c_P : calore specifico a pressione costante dell'acqua vapore ($c_P = 2009J/kgK$)

L05-Macchine termodinamiche

6 L06-Sistemi aperti

7 L07-Cicli a gas

8 L08-Cicli a vapore