Machine Learning para Inteligencia Artificial

Selección y Validación

Universidad ORT Uruguay

9 de Abril, 2025

Recordar: algoritmo de ML

$$\left(\underbrace{\overbrace{\mathsf{Datos}}^{\mathsf{Input}}, \underbrace{\mathsf{Sesgo\ Inductivo}}_{\mathcal{H}}, \underbrace{\mathsf{Loss}}_{\mathsf{L}} \right) \qquad \underbrace{\mathsf{ERM}}_{\mathsf{ERM}} \longrightarrow \underbrace{\mathsf{Hipótesis\ o\ modelo}}_{h_{\mathcal{T}}}$$

- \blacksquare Un algoritmo de ML busca la mejor hipótesis en el sesgo inductivo \mathcal{H} .
- lacksquare Idealmente buscamos $h_{ ext{opt}}$ que minimiza el Costo Verdadero $J_{\mathcal{D}}$.
- En la práctica buscamos h_T que minimiza el Costo Empírico (ERM) J_T .

Generalización y sobreajuste

■ El margen de generalización de una hipótesis h es la diferencia

$$G(h) = J_{\mathcal{D}}(h) - J_{\mathcal{T}}(h)$$

- Intuición: h_T no generaliza bien si el margen de generalización es "grande".
- Una posible causa de mala generalización es el **sobreajuste**:

h sobreajusta los datos de entrenamiento T si existe h' tal que

$$J_T(h') > J_T(h)$$
 y $J_D(h') < J_D(h)$

Notar que en dicho caso G(h') < G(h).

Selección y Validación

Selección

Proceso de elegir el sesgo inductivo con mejor rendimiento para una tarea específica, según criterios de rendimiento y otros factores como la complejidad.

Validación

Proceso de evaluar el rendimiento en datos no vistos de un modelo entrenado para garantizar que una generalización adecuada.

Validación

- Problema: no sabemos calcular $J_{\mathcal{D}}(h_T)$.
- Solución: tomar una muestra V independiente de T, y calcular

$$J_V(h_T) = \frac{1}{|V|} \sum_{(\mathbf{x}, y) \in V} \mathsf{Loss}\left(h_T(\mathbf{x}), y\right)$$

Nuestra estimación será por tanto

Estimación de
$$G(h_T) = J_V(h_T) - J_T(h_T)$$

- **Holdout** En la práctica se particionan *al azar* los datos disponibles:
 - Train (70 %-80 %-90 %): entrada del algoritmo de aprendizaje.
 - Test (o Validation) (30 %-20 %-10 %): evaluar el margen de generalización.

Diagrama de la técnica de Holdout

Fuente: Curso de ML de Sebastian Raschka

El algoritmo definitivo se entrena usando el dataset entero.

Pessimistic bias: Holdout y su dependencia con N

Fuente: Curso de ML de Sebastian Raschka

- Algoritmo de clasificación.
- 500 imágenes aleatorias de cada una de las diez clases del MNIST.
- Las 5000 imágenes se dividieron 70 % train y 30 % test con estratificación.
- Train se dividió en subconjuntos aún más pequeños, y estos subconjuntos se usaron para ajustar el clasificador.
- La curva se usa para evaluar el margen de generalización.

G tiende a disminuir con N, se produce un sesgo pesimista en la estimación.

Selección

- Es tentador usar Holdout para hacer model selection.
- Cuidado: optimistic bias.
- Para estimar correctamente el error de generalización del best fit particionar

$$\mathsf{Datos} = \underbrace{\mathsf{Train} + \mathsf{Val}}_{\mathsf{Dev}} + \mathsf{Test}$$

Fuente: Principles and Techniques of Data Science

Costo verdadero **esperado** en ${\cal H}$

 \blacksquare El output h_T del algoritmo de ML depende del dataset $T \sim \mathcal{D}^N$.

 \blacksquare El costo verdadero **esperado** en \mathcal{H} es

$$J_{\mathcal{D}}(\mathcal{H}) = \mathop{m{\mathcal{E}}}_{T\sim\mathcal{D}^N}[J_{\mathcal{D}}(h_T)]$$

- Particionar *Train* en k (5-10) *folds* $F_1 \dots F_k$ de igual tamaño
- Para todo $i = 1 \dots k$
 - Usar $T_i = \bigcup_{j \neq i} F_j$ (todos salvo F_i) como entrada para el algoritmo

$$h_i = \arg\min_{h \in \mathcal{H}} \left\{ J_{\mathcal{T}_i}(h) \right\}$$

- Evaluar el costo de la hipótesis obtenida h_i en F_i : $J_i = J_{F_i}(h_i)$
- Calcular el promedio de los costos

$$J_{CV}(\mathcal{H}) = \frac{1}{k} \sum_{i=1}^{k} J_i$$

Fuente: sklearn User Guide Capítulo 3

- \blacksquare $J_{CV}(\mathcal{H})$ es una estimación de $J_{\mathcal{D}}(\mathcal{H})$
- \blacksquare Se usa para comparar sesgos inductivos: \mathcal{H} y \mathcal{H}'
 - lacksquare Aplicar validación cruzada con ${\cal H}$ y ${\cal H}'$
 - Comparar $J_{CV}(\mathcal{H})$ vs $J_{CV}(\mathcal{H}')$

Fuente: sklearn User Guide Capítulo 3

Selección con Repeated Holdout

Fuente: Evaluating machine learning models and their diagnostic value

Bibliografía

■ An introduction to statistical learning with applications in Python. Capítulo 5.1.

■ Machine Learning - A First Course for Engineers and Scientists. Capítulo 4.