

FIG.1A

FIG.1B-2

FIG.2

FIG.3

FIG.4

410

FIG.5

CASE 1: ALL 10 FACTORS ARE PRESENT OVERALL FACTOR CONCENTRATION =[10/10] = [1] [1] FACTOR/WELL

FIG.8

CASE 2: 5 OUT OF 10 FACTORS ARE PRESENT OVERALL FACTOR CONCENTRATION =[5/10] = [0.5] [0.5] FACTOR/WELL

CASE 1: ALL 10 FACTORS ARE PRESENT OVERALL FACTOR CONCENTRATION =[10/10] = [1] [1] FACTOR/WELL

FIG.9

CASE 2: 5 OUT OF 10 FACTORS ARE PRESENT OVERALL FACTOR CONCENTRATION = [1] [1] FACTOR/WELL

												1	2/	/3	0											ļ
LLAGEN III(μ I)	25							25			5					_	25	5	5		25		25			FIG. 10a
(ml) E:CO			25		25						5			25				5	2	25				25	Ц	
D:COLLAGEN VI																										
A:FIBRONECTIN(μ I) B:COLLAGEN I(μ I) C:VITRONECTIN(μ I) D:COLLAGEN VI(μ I) E:COLLAGEN III(μ I)	25		-				25		50		5							5	5					25		
B:COLLAGEN I(μ I)						25					2					25		5	5			25			20	
A:FIBRONECTIN(μ I)		25				25				25	5		25	25	25			5	5				25			50
RUN TYPE	1 CentEdge	2 CentEdge	3 CentEdge	4 VERTEX	5 CentEdge	6 CentEdge	7 CentEdge	8 CentEdge	9 VERTEX	10 CentEdge	11 CENTER	12 VERTEX	13 CentEdge	14 CentEdge	15 CentEdge	16 CentEdge	17 CentEdge	18 CENTER	19 CENTER	20 CentEdge	21 CentEdge	22 CentEdge	23 CentEdge	24 CentEdge		26 VERTEX

_	- -		_	- -		т	т —	1	. -	,	1	3/	/3	0	т —	ı 	T	. –			ı —			ı— ·	
	50				50		25		25				25	5										25	
25						25		25					25	2							20				
		25								25	25			2			25		25			25	25		
			25				25							5				25	25	25					
														5		25	25								
CentEdge	VERTEX	CentEdge	CentEdge	VERTEX	32 VERTEX	CentEdge	CentEdge	CentEdge	CentEdge	CentEdge	CentEdge	VERTEX	CentEdge	CENTER	VERTEX	CentEdge	CentEdge	CentEdge	CentEdge	CentEdge	VERTEX	CentEdge	CentEdge	CentEdge	· _ · _ · · · · · · · · · · · · ·
27	78	29	30	31	32	33	34	35	36	37		39	40	41	42	43	44	45	46	47	48	49	20	51	C

																				ַ	
J:POLY-L-LYSINE(μ I) K:POLY-L-ORNITHINE(μ I)				25				2			25			2	5						
J:POLY-L-LYSINE(μ I)			20		25			5						5	5						
H:ELASTIN(μ I)	25	25				25		5						5	5			25			
$V(\mu)$	_							5	50	25				5	5		22				
G:COLLAGEN IV(μ I)																					
F:LANININ(µ)							25	5				25	25	5	5	25					

							16	/3	50	
12										
=		FN/LAM	C N/LAM	C 1/P0	C M/C III	W/C N				
9		N	M	W/PL	EA	W/LAM				
တ		C III/EIA	QW	C W/C IV C III NVPL	W/P0	C N				
8		W/PL	C III/IAM	C M/C IV	W/ELA	NV i				
7		FN/C I	C I/LAM	N	1d/III 3	7d/I 0				
9		C VI/PO FN/C I	FN/C VI FN/PO	W/C VI CI	7d/III)	C 1/C IV C 1/PL			10 ADHESION LIGANDS	IG WELLS
5		PL	5	VN/C VI	c 1/c III	FN/NN				SINGLE ADHESION LIGAND CONTAINING WELLS
4		Col VI/ELA	FN/C IV	FN/C III	C W/PL	FN/PL			AIDPOINT-CONTAINS ALL	HESION LIGAN
3		FN/ELA	C W	C I/EIA	O	ь	C 1/C M)—INIOAQIM	SINGLE ADI
2		W/C III	MD	C III/C IV C I/ELA		MID	c III/Po			
-										
	٧	В	ပ	۵	ш	L	ပ	Ξ		

FIG.11

BEST AVAILABLE COPY

17/30

FIG. 12

(HORIZONTAL AXIS ON PLOT IS LN(CELL COUNT + 1)

			21/	′30				
RUN	F01	F02	F03	F04	F05	F06	F07	F08
1	-1	–1	-1	1	-1	-1	-1	1
2	-1	–1	1	1	<u>-1</u>	<u>-1</u>	<u>-1</u>	-1
3	1	1	1	-1	-1	-1	<u>-1</u>	<u>-1</u>
4	1	1	1	-1	1	1	1	1
5	1	-1	1	1	1	-1	1	-1
6	-1	-1	-1	1	1	-1	-1	-1
7	1	-1	1	-1	-1	- 1	1	-1
8	1	-1	1	-1	1	-1	-1	1
9	-1	1	1	1	1	1	-1	-1
10	1	1	1	1	-1	-1	-1	-1
11	-1	-1	-1	-1	-1	1	1	-1
12	1	-1	-1	-1	-1	-1	1	1
13	1	1	1	-1	-1	1	1	1
14	-1	-1	-1	1	1	-1	1	1
15	1	-1	-1	1	1	1	1	1
16	-1	1	-1	1	-1	-1	-1	1
17	-1	-1	1	-1	-1	-1	1	1
18	1	-1	-1	-1	1	1	-1	1
19	1	1	-1	-1	-1	-1	1	-1
20	1	-1	-1	1	-1	1	1	1
21	-1	-1	-1	-1	1	-1	-1	-1
22	1	-1	1	-1	1	-1	-1	-1
23	-1	-1	1	-1	-1	1	1	1
24	-1	1	-1	-1	1	1	1	-1
25	-1	1	-1	1	- 1	-1	1	-1
26	1	1	1	1	1	1	1	1
27	-1	1	1	1	-1	1	1	1
28	-1	1	-1	-1	-1	1	1	-1
29	1	1	-1	1	1	1	1	-1
30	1	-1	-1	1	-1	-1	1	1

FIG.16A-1 FIG.16A-2

FIG.16A

FIG. 16A-1

	31	-1	1	1	-1	1	-1	1	-1
	32	1	1	-1	1	-1	1	-1	-1
	33	1	1	-1	-1	-1	-1	-1	1
	34	1	1	1	1	-1	-1	1	1
	35	-1	-1	-1	1	-1	-1	1	-1
	36	1	-1	-1	-1	-1	1	-1	-1
	37	-1	1	-1	-1	1	-1	1	-1
	38	1	1	1	1	1	-1	-1	-1
	39	1	1	-1	-1	1	1	1	1
	40	-1	1	1	1	-1	1	-1	1
	41	1	-1	1	1	-1	1	-1	1
	42	1	1	1	-1	1	-1	1	-1
	43	-1	-1	1	-1	1	1	1	-1
	44	-1	1	1	1	1	-1	-1	1
	45	-1	1	1	-1	1	1	-1	1
	46	1	1	-1	1	1	-1	1	-1
	47	1	-1	-1	-1	1	-1	-1	1
	48	-1	1	-1	1	1	1	-1	1
	49	-1	-1	1	1	1	1	1	-1
	50	-1	-1	1	1	-1	1	1	1
	51	-1	-1	1	1	1	-1	1	1
	52	1	1	-1	1	-1	1	-1	-1
	53	-1	-1	-1	-1	1	1	-1	-1
	54	-1	1	-1	-1	-1	1	-1	-1
	55	1	-1	-1	1	1	1	-1	1
	56	-1	1	-1	-1	1	-1	-1	1
ĺ	57	-1	-1	1	-1	-1	1	-1	1
	58	-1	1	1	-1	-1	-1	-1	1
	59	1	-1	1	-1	-1	1	-1	-1
	60	1	-1	1	1	1	1	-1	-1
- 1									

FIG.16A-2

			23/	′30				
F09	F10	F11	F12	F13	F14	F15	F16	F17
(1	-1	1	1	-1	1	-1	1	-1
1	-1	-1	-1	1	1	-1	1	1
1	1	-1	-1	-1	-1	1	-1	-1
-1	-1	1	1	1	1	1	-1	-1
1	-1	-1	1	-1	-1	1	1	1
-1	1	-1	-1	-1	1	1	-1	1
-1	1	-1	1	1	1	-1	1	-1
-1	-1	1	1	1	-1	1	1	1
-1	-1	-1	1	1	-1	-1	-1	-1
-1	1	1	-1	-1	-1 ·	-1	1	-1
-1	-1	-1	1	-1	-1	-1	1	1
-1	-1	-1	-1	1	-1	-1	-1	1
1	1	-1	-1	-1	-1	-1	1	1
-1	1	-1	1	-1	-1	-1	1	-1
-1	-1	-1	-1	-1	1	1	-1	-1
-1	-1	1	-1	1	1	1	-1	1
-1	1	1	-1	1	-1	1	-1	-1
1	-1	1	- 1	1	-1	-1	-1	1
-1	-1	1	1	-1	1	1	-1	1
-1	1	-1	1	-1	-1	1	-1	-1
1	1	-1	1	1	-1	1	-1	1
1	-1	-1	1	-1	1	1	1	-1
-1	1	1	1	1	-1	-1	1	1
1	1	1	1	-1	-1	1	1	1
-1	1	1	1	-1	1	1	1	1
1	1	1	1	1	1	1	=	1
1		-1	•	1	1	1	1	-1
1	1	-1	1	-1		-1		-1
-1	1	1	1	1	1	-1	-1	-1
1	-1	1	1	1	1	-1	1	1

FIG.16B-1 FIG.16B-2 FIG.16B

FIG.16B-1

	-1	-1	1	-1	-1	1	-1	1	1
	1	-1	-1	1	1	1	-1	1	1
	1	-1	-1	-1	-1	1	-1	-1	-1
	1	1	1	-1	-1	-1	-1	-1	1
	1	1	1	-1	1	-1	1	-1	
	-1	1	1	-1	1	1	-1	1	-1
	1	-1	1	-1	1	-1	-1	1	-1
	-1	-1	1	1	-1	-1	-1	-1	1
	1	-1	-1	-1	-1	-1	1	1	-1
	- 1	-1	1	-1	-1	1	1	1	-1
	-1	-1	-1	1	-1	-1	1	-1	1
	-1	1	-1	-1	1	1	1	-1	1
	1	-1	1	-1	-1	1	-1	-1	1
	1	1	1	1	-1	-1	-1	-1	-1
	-1	1	-1	-1	-1	1	-1	-1	1
	1	-1	-1	-1	1	-1	-1	1	-1
	-1	1	1	1	-1	1	-1	1	-1
	-1	1	-1	-1	1	-1	-1	1	1
	-1	-1	-1	-1	1	1	-1	-1	-1
ı	1	-1	1	-1	-1	-1	1	-1	-1
	1	1	-1	-1	1	1	1	1	1
	-1	1	-1	-1	1	-1	1	1	1
	-1	-1	1.	-1	-1	-1	1	1	-1
	1	-1	1	1	1	-1	1	-1	1
	1	1	1	-1	-1	1	1	1	1
	1	1	-1	1	1	1	1	-1	-1
	1	1	-1	1	-1	•	-1	-1	1
	-1	-1	-1	1	1	-1		1	-1
	1	1	1	-1	1	1	1	1	-1
Į	1	1	1	1	1	-1	-1	-1	- 1

FIG.16B-2

				25	/30				
	F18	F19	F20	F21	F22	F23	F24	F25	F26
٠ (/ -1	-1	1	-1	-1	1	-1	1	1
	-1	1	-1	1	-1	-1	-1	1	-1
ŀ	-1	1	1	-1	1	1	-1	1	-1
	-1	-1	-1	1	1	-1	-1	-1	-1
	-1	1	1	1	1	-1	-1	1	1
١	1	-1	1	-1	1	-1	-1	-1	1
1	1	-1	-1	1	-1	-1	1	1	1
	1	-1	-1	1	1	1	1	1	-1
	-1	-1	-1	-1	1	1	-1	1	1
1	-1	-1	1	1	-1	1	1	-1	1
	-1	1	1	-1	1	-1	1	-1	-1
	1	-1	1	1	-1	1	-1	1	-1
	-1	-1	-1	-1	1	-1	-1	-1	1
	-1	1	-1	1	1	1	-1	1	-1
	-1	-1	1	-1	-1	-1	1	1	-1
ı	-1	1	-1	-1	1	-1	-1	1	1
	-1	1	-1	-1	1	-1	1	1	1
	-1	-1	1	-1	1	1	1	-1	1
1	-1	1	-1	-1	-1	1	-1	-1	1
	1	1	1	-1	1	1	1	1	-1
	-1	-1	-1	1	-1	-1	1	-1	1
	1	-1	1	-1	-1	1	-1	-1	1
	1	1	1	-1	-1	-1	-1	-1	1
	1	1	-1	-1	-1	-1	-1	1	1
	-1	-1	1	1	1	1	1	-1	-1
	1		1	1	1	1	1	1	1
	-1	-1	-1	-1	1		-1		
	1	-1	-1	1	-1		1		-1
	-1	-1	1	1	-1	-1			
	ı	1	1	1	-1	-1	-1	-1	-1
ı									

FIG.16C-1 FIG.16C-2 FIG.16C

FIG.16C-1

	1	-1	1	-1	1	 _1	-1	1	-1
	1	1	-1	-1	1	1	1	1	1
	1	1	-1	1	1	-1	1	-1	1
	1	-1	-1	-1	-1	1	-1	-1	-1
	1	-1	-1	1	1	1	-1	1	1
	1	-1	-1	-1	1	-1	-1	1	-1
	-1	1	1	1	-1	1	1	1	1
	-1	-1	-1	1	1	-1	1	1	-1
	1	-1	-1	1	-1	-1	-1	1	1
	1	1	1	1	-1	-1	1	1	1
	1	1	-1	1	-1	1	-1	-1	1
	1	1	1	-1	-1	1	1	1	1
	1	1	-1	1	1	1	1	-1	-1
	1	1	-1	-1	-1	-1	1	-1	-1
	-1	1	1	1	-1	1	-1	1	-1
	1	1	1	-1	1	-1	1	-1	-1
	-1	1	-1	· -1	1	1	1	-1	1
	1	-1	1	1	1	1	-1	-1	1
	-1	1	-1	-1	-1	1	1	-1	1
	1	-1	1	1	1	-1	1	-1	1
	-1	-1	-1	-1	-1	1	1	-1	-1
	-1	1	-1	1	-1	-1	1	-1	-1
	1	1	-1	1	-1	1	-1	-1	-1
	-1	-1	1	-1	-1	1	1	1	-1
	1	-1	-1	-1	-1	-1	1	1	-1
	1	1	1	1	1	-1	-1	-1	-1
	1	1	-1	1	-1	1	-1	-1	1
	1	-1	1	-1	-1	-1	1	-1	-1
	-1	1	1	1	1	1	-1	-1	-1
	-1	1	1	-1	-1	-1	-1	1	-1
•									

FIG.16C-2

		27	7/30	
F27	F28	F29	F30	
(1	-1	1	-1	
-1	1	-1	1	
1	-1	-1	-1	
1	-1	-1	-1	
1	1	1	-1	
_1	-1	1	-1	
-1	1	1	1	
-1	-1	-1	-1	
-1	1	-1	1	
-1	1	-1	-1	
-1	1	-1	-1	
-1	-1	1	-1	
1	-1	-1	1	
1	-1	-1	1	
1	1	-1	1	
1	-1	1	1	
-1	1	-1	1	
-1	1	-1	-1	
-1	1	1	1	
-1	1	1	1	
1	1	-1	1	
1	1	-1	1	
1	-1	-1	-1	
-1	-1	-1	-1	
-1	-1	-1	1	
1	1	• 1	1	FIC 16D 1
-1	1	-1	-1	FIG.16D-1
1	-1	1	-1	FIG.16D-2
-1	-1	-1	1	
1	1	-1 	-1 	FIG.16D

FIG.16D-1

		·		
	-1	1	1	-1
	-1	-1	-1	-1
	- 1	-1	-1	1
	1	1	-1	1
	1	1	-1	-1
i	1	1	1	-1
	- 1	-1	1	1
	1	-1	1	-1
	- 1	1	1	-1
	1	1	-1	-1
	- 1	-1	1	1
	1	-1	-1	-1
	1	1	1	1
	-1	1	1	-1
	-1	1	-1	-1
	1	-1	-1	1
	1	1	1	-1
	1	1	1	1
	1	-1	1	-1
	-1	-1	1	–1
	-1	-1	1	-1
	1	1	1	-1
╽	1	-1	-1	1
	1	1	1	1
	-1	-1	-1	1
	-1	1	1	-1
	1	-1	-1	1
	1	-1	1	1
	-1	-1	1	1
	-1	-1	1	1
Į				
	`			

FIG.16D-2

20	/7	SO
23	<u> </u>	<u> </u>

LUDIU CLOTOS	<u> </u>
MPM FACTOR	FACTOR
	SONIC HEDGEHOG AMINO-TERMINAL PEPTIDE
_F01	(SHH-N)
F02	BMP-COCKTAIL
F03	CHOLESTEROL (WATER SOLUBLE FORMULATION)
F04	LEPTIN (HUMAN, RECOMBINANT)
F05	PROLACTIN (HUMAN, RECOMBINANT)
	CILIARY NEUROTROPHIC FACTOR (CNTF)
_ F06	(HUMAN, RECOMBINANT)
_F07	AMPHIREGULIN (LONG FORM, RECOMBINANT)
	FIBROBLAST GROWTH FACTOR—8c (FGF—8c)
_ F08	MOUSE, RECOMBINANT)
F09	FIBROBLAST GROWN FACTOR-7 (FGF-7)=KGF
F10	VASOACTIVE INTESTINAL PEPTIDE (VIP)
F11	GASTRIN/CCK8-COCKTAIL
F12	NEUROPEPTIDE Y
F13	THROMBIN/TXA2-COCKTAIL
	C NATRIURETIC PEPTIDE) (HUMAN, PORCINE, RAT:
F14	FRAG 32-53)(CNP)
F15	INTERLEUKIN-3 (IL-3) (HUMAN, RECOMBINANT)
F16	INTERLEUKIN-18 (IL-18) (HUMAN, RECOMBINANT)
F17	MIDKINE (MK) (HUMAN, RECOMBINANT)
F18	NEURTURIN (NTN)
F19	DIBUTYRYL CYCLIC AMP
	DMF (n n DIMETHYLFORMAMIDE);
F20	A POLAR SOLVENT
F21	CYCLOHEXIMIDE (ACTIDIONE)
	PLATELET-DERIVED ENDOTHELIAL CELL GROWTH FACTOR
F22	(PD-ECGF) (AKA THYMIDINE PHOPHORYLASE)
F23	LAMININ
	TRANSFORMING GROWTH FACTOR BETA3
F24	(HUMAN, RECOMBINANT)
F25	ESTRADIOL, BETA (WATER SOLUBLE FORMULATION)
F26	HYDROCORTISONE
	NUCLEAR FACTOR OF ACTIVATED T CELLS (NFAT)
F27	PROTEINS (NFAT1-NFAT5)
	HEPATOCYTE GROWTH FACTOR (HGF, SCATTER
F28	FACTOR)
F29	GROWTH HORMONE FIG. 17
	BRAIN-DERIVED NEUROTROPHIC FACTOR (BDNF) \ FIG. 17
F30	(HUMAN, RECOMBINANT)

FIG.17a

FIG.17

30	/3	\cap
\mathbf{v}	/ _	\mathbf{v}

30/30	
RECEPTOR	CLASSIFICATION
PATCHED (PTCH-1)/	7-PASS TRANSMEMBRANE/
PTCH-2/SMO (SMOOTHENED)	7-PASS TRANSMEMBRANE/GPCR
BMPRc-1A, BMPRc-1B, BMPRc-2	BMPR-SER/THR KINASE
	ELS & MEMBRANE TRANSPORTERS
LEPTIN RECEPTOR	CYTOKINE Rc
PROLACTIN RECEPTOR	CYTOKINE Rc
CNTFR-ALPHA + GP130 + LIF Rc	CYTOKINE Rc
EGFR	EGFR-TYROSINE KINASE
FGF Rc FAMILY	EGFR-TYROSINE KINASE
FGF Rc FAMILY	EGFR-TYROSINE KINASE
VPAC1R/VPAC2R	GPCR
CCK-B/GASTRIN Rc	GPCR
NEUROPEPTIDE Y Rc FAMILY (Y1-Y6)	GPCR
THROMBOXANE A2 RECEPTOR	GPCR
GUANYLATE CYCLASE B (GC-B)	
Rc (ANPR-A & ANPR-B)	GUANYLYL CYCLASE
IL3Rc-BETA (AKA GMCSFRc)/IL3Rc-ALPHA	IL-CYTOKINE Rc
IL-18Rc	IL-CYTOKINE Rc
PTPZETA	MISCELLANEOUS
GFRa1/GFRa2/C-RET	MISCELLANEOUS
CAMP RECEPTOR PROTEIN KINASE (PKA)	SER/THR KINASE
NOT RECEPTOR MEDIATED	SMALL MOLECULE
NOT RECEPTOR MEDIATED	SMALL MOLECULE
NOT RECEPTOR MEDIATED	SMALL MOLECULE
LAMININ-ELASTIN Rc/ALPHA6 BETA4 INTEGRIN	SURFACE-MATRIX RECEPTOR
TGFBRc-1, TGFBRc-2, TGFBRc-5	TGFBR-SER/THR KINASE
ESTROGEN RECEPTOR-ALPHA (ER-A)/ESTROGEN RECEPTOR-	
BETA (ER-B)/ESTROGEN-RELATED RECEPTOR ALPHA	
(ERR-A)/ESTROGEN-RELATED RECEPTOR BETA (ERR-B)	TRANSCRIPTION FACTOR
HYDROCORTISONE Rc	TRANSCRIPTION FACTOR
1	
NOT RECEPTOR MEDIATED	TRANSCRIPTION FACTOR
c-MET (HGFR)	TYROSINE KINASE
GH RECEPTOR	TYROSINE KINASE
TrkB	TYROSINE KINASE