EJERCICIOS 8

- (1) Sea σ un automorfismo de un cuerpo \mathbb{F} de característico k. Probar que
- (1) σ^{-1} es un automorfismo de \mathbb{F} ;
- (2) Fij(σ) = { $x \in \mathbb{F} \mid x^{\sigma} = x$ } es un subcuerpo de \mathbb{F} ;
- (3) si W es un subespacio de \mathbb{F}^n entonces $\sigma(W)$ es un subespacio de la misma dimensión;
- (4) k es primo;
- (5) Si V es un espacio vectorial sobre V y $v \in V$, entonces $\underbrace{v + \dots + v}_{k} = 0$.
- (2) Sean f, g dos formas bilineales sobre V un espacio vectorial finitodimensional, con f no-degenerada. Demostrar que hay un único operador lineal $T: V \to V$ tal que

$$g(x,y) = f(x,T(y))$$
 para todo $x,y \in V$.

Mostrar que T es biyectivo si y sólo si g también es no degenerada.

(3) Sea d una forma bilineal simétrica sobre V, un espacio vectorial finitodimensional. Para cada subespacio $M \le V$, denótese por M^{\perp} el subespacio ortogonal a M con respecto a d. Si N es otro subespacio de V, demostrar que $(M+N)^{\perp} = M^{\perp} \cap N^{\perp}$.

Demostrar también que $(M \cap N)^{\perp} = M^{\perp} + N^{\perp}$ si d es no degenerada.

(4) Sean μ_1, \dots, μ_r los autovalores distintos de la matriz simétrica $A \in M_n(\mathbb{R})$, en orden decreciente: $\mu_1 > \mu_2 > \dots > \mu_r$. Demostrar que la forma cuadrática $q(x) := x^t A x$ obedece

$$\mu_r \mathbf{x}^t \mathbf{x} \leq \mathbf{x}^t A \mathbf{x} \leq \mu_1 \mathbf{x}^t \mathbf{x},$$

y que los valores máximo y mínimo de q(x) sobre la esfera $x^t x = 1$ son μ_1 y μ_r , respectivamente.

(5) Encontrar una matriz ortogonal $Q \in M_3(\mathbb{R})$ tal que $Q^{-1}AQ$ sea diagonal, donde

$$A := \begin{bmatrix} 2 & 1 & 1 \\ 1 & 2 & 1 \\ 1 & 1 & 2 \end{bmatrix}.$$

Luego, hallar los valores máximo y mínimo de la función $q(x, y, z) := x^2 + xy + xz + y^2 + yz + z^2$ sobre la esfera $x^2 + y^2 + z^2 = 1$.

- (6) Expresar las formas cuadráticas reales siguientes como una combinación de cuadrados de formas lineales: 1
 - (a) $q(x_1, x_2) = 4x_1x_2$,
 - (b) $q(x_1, x_2, x_3) = -2x_1^2 + 6x_1x_2 + 10x_1x_3 + x_2^2 2x_2x_3 + 4x_3^2$,
 - (c) $q(x_1, x_2, x_3) = x_1x_2 + x_1x_3 + x_2x_3$,

Sea π un plano en \mathbb{R}^3 . Describir la intersección con la superficie cuadrática de (a) (No quiero calculaciones detallas, solo una descripción cualitativa.)

- (7) Dibujar los grafos siguientes:
- (1) $x^2 + 2xy + y^2 3x 4y 2 = 0$.
- (2) $x^2 + 2xy 3x 4y 2 = 0$.

¹Hay un algoritmo para este proceso, se llama *reducción de Lagrange*. Pero podemos usar álgebra lineal directamente.

2 EJERCICIOS 8

En los tres ejercicios siguientes sera conveniente definir la matriz $J_n \in M(n, \mathbb{F})$ (con n par) como sigue:

$$J_2 = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$$
 and $J_n := \begin{bmatrix} J_2 & & & \\ & J_2 & & \\ & & \ddots & \\ & & & J_2 \end{bmatrix}$.

- (8) Sea $f: V \times V \to \mathbb{F}$ una forma alternante no-degenerada, donde $\dim(V) = 2$.
- (1) Demostrar que hay una base $\{v, w\}$ de V tal que

$$f(v,v) = f(w,w) = 0$$
, $f(v,w) = 1$, $f(w,v) = -1$

(2) Demostrar que el grupo de isometrías I_f es isomorfo al grupo de matrices

$$Sp_2(\mathbb{F}) := \{X \in GL(2, \mathbb{F}) \mid X^t \cdot J_2 \cdot X = J_2\}$$

(donde la operación grupo es, como siempre, producto de matrices).

- (9) Sean V finitodimensional y $f: V \times V \to \mathbb{F}$ una forma alternante no-degenerada.
- (1) Demostrar que hay un subespacio U de dimension 2 con base $\{v, w\}$ tal que

$$f(v,v) = f(w,w) = 0$$
, $f(v,w) = 1$, $f(w,v) = -1$.

Concluir que la restricción $f|_{U}$ es una forma alternante no-degenerada.

- (2) Sea U^{\perp} el complemente ortogonal de U. Probar que $V = U \oplus U^{\perp}$ y que la restricción $f|_{U^{\perp}}$ es una forma alternante no-degenerada.
- (3) Usar (1), (2) y inducción para demostrar que hay una base $\{v_1, w_1, \dots, v_k, w_k\}$ tal que, para todo $i, j = 1, \dots, k$,

$$f(v_i, v_j) = f(w_i, w_j) = 0, \ f(v_i, w_j) = \delta_{ij}, \ f(w_i, v_j) = -\delta_{ij}.$$

Concluir, en particular, que $\dim(V)$ es par.

(4) Demostrar que el grupo de isometrías I_f es isomorfo al grupo de matrices

$$Sp_n(\mathbb{F}):=\{X\in GL(2,\mathbb{F})\mid X^t\cdot J_n\cdot X=J_n\}$$

(donde la operación grupo es, como siempre, producto de matrices).²

(10) Para la siguiente matriz antisimétrica $A \in M_4(\mathbb{F})$ encontrar una matriz inversible $P \in M_4(\mathbb{F})$ tal que $P^tAP = J_4$.

$$A := \begin{bmatrix} 0 & 2 & -1 & 3 \\ -2 & 0 & 4 & -2 \\ 1 & -4 & 0 & 1 \\ -3 & 2 & -1 & 0 \end{bmatrix},$$

(11) Demostrar que si A es una matriz simpléctica, entonces det(A) = 1.

²Este grupo es *el grupo simpléctico de dimensión n sobre el cuerpo* \mathbb{F} . Los elementos de este grupo se llaman *matrices simplécticas*.