

Combining Multiple Kernel Methods on Riemannian Manifold for Emotion Recognition in the Wild

Mengyi Liu, Ruiping Wang, Shaoxin Li, Shiguang Shan, Zhiwu Huang, and Xilin Chen

Visual Information Processing and Learning (VIPL) Group @ Institute of Computing Technology, Chinese Academy of Sciences

Outline

- Data and protocols
- Proposed method
- **Experiments**
- Conclusion

Introduction (1/1)

- ☐ Classify audio-video clips into seven categories
 - Neutral, anger, disgust, fear, happy, sad, surprise
- Challenge
 - Close-to-real-world conditions
 - Large variations: head pose, illumination, occlusion, etc.

Outline

- Data and protocols
- Proposed method
- Experiments
- Conclusion

Data and protocols (1/2)

Challenge data

- ☐ Acted Facial Expression in Wild (AFEW 4.0)
 - Over 1,000 audio-video clips collected from movies showing close-to-real-world conditions

Tab.1 Attributes of EmotiW 2014 challenge data [1]

Attribute	Description
Length of sequences	300-5400ms
Number of annotators	3
Emotion categories	Anger, disgust, fear, happiness, neutral, sadness, and surprise
Audio/Video format	Audio: WAV; Video: AVI
# of samples	1368
# of subjects	428
# of movies	111

[1] Abhinav Dhall, Roland Goecke, Jyoti Joshi, Karan Sikka and Tom Gedeon, Emotion Recognition In The Wild Challenge 2014: Baseline, Data and Protocol, ACM ICMI 2014.

Data and protocols (2/2)

- Evaluation protocols
 - □ Dataset division: training, validation, and testing
 - The test labels were unknown.
 - ☐ Either audio/video modality or both can be used.

Tab.2 Attributes of subjects of training, validation, and testing sets.

Set	# of subjects	Min. Age	Max. Age	Avg. Age	# of Males	# of Females
Train	177	5	76	34	102	75
Val	136	10	70	35	78	58
Test	115	5	88	34	64	51

Tab.3 The numbers of samples for each emotion category in the training, validation and testing sets.

	Anger	Digust	Fear	Happiness	Neutral	Sadness	Surprise
Train	92	66	66	105	102	82	54
Val	59	39	44	63	61	59	46
Test	58	26	46	81	117	53	26

Outline

- Data and protocols
- Proposed method
- **Experiments**
- Conclusion

Proposed method (1/9)

Framework

Stage 1: Emotion Video Representation

Stage 2: Emotion Video Recognition

Proposed method (2/9)

- □ Aligned face images: 64x64; Features: HOG, dense SIFT, DCNN.
- □ HOG
 - Block size: 16x16; stride: 8; # of blocks: 7x7=49
 - # of cells per block: 2x2; # of bins: 9; # of total dims: 2x2x9x49=1764
- Dense SIFT
 - Block size: 16x16; stride: 8; # of points: 7x7=49
 - # of dims per point: 4x4x8=128; # of total dims: 128x49=6272
- \supset DCNN
 - CaffeNet trained on CFW database (over 150,000 face images from 1520 subjects, identities are served as supervised label in the deep networks)
 - Deep Architecture 3@237x237 > 96@57x57 > 96@28x28 > 256@28x28 > 384@14x14 > 256@14x14 > 256@7x7 > 4096 > 1520
 - The 256x7x7=12544 nodes values output from the last convolutional layer are used for final image features

Proposed method (3/9)

☐ Given frame feature set

$$F = \{f_1, f_2, ..., f_n\} (f_i \in R^d)$$

Linear subspace

$$P \in R^{d \times r}$$
 s.t. $\sum_{i=1}^{n} f_i f_i^T = P \Lambda P^T$, $P = [p_1, p_2, ..., p_r]$

Covariance matrix

$$C = \frac{1}{n-1} \sum_{i=1}^{n} (f_i - \bar{f}) (f_i - \bar{f})^T$$

Gaussian distribution

Suppose $f_1, f_2, ..., f_n$ follow a k-dimensional Gaussian $\mathcal{N}(\mu, \Sigma)$

$$\mu = E(f_i) = \frac{1}{n} \sum_{i=1}^n f_i$$

$$\Sigma = E[(f_i - \mu)(f_i - \mu)^T] = \frac{1}{n-1} \sum_{i=1}^n (f_i - \bar{f}) (f_i - \bar{f})^T$$

Proposed method (4/9)

Riemannian kernels

- Kernels for linear subspace
 - The similarity of two subspaces can be measured via mapping Grassmann manifold to Euclidean space by Projection kernel originated from **principle angles**
 - Then the form of **polynomial kernel** can be calculated as

$$\mathcal{K}_{i,j}^{Proj.-Poly.} = \left(\gamma \cdot \left| \left| P_i^T P_j \right| \right|_F^2 \right)^{\alpha}$$

• Define $\Phi_{Proj.} = P_i P_i^T$. Then the form of **RBF** kernel is

$$\mathcal{K}_{i,j}^{proj.-RBF} = \exp(-\gamma \left| \left| \Phi_{Proj.}(P_i) - \Phi_{Proj.}(P_j) \right| \right|_F^2)$$

Proposed method (5/9)

Kernels for linear subspace

Fig.2 An illustration of principal angles of linear subspaces and their projection metric distances on Grassmann manifold M.

科学院

Proposed method (6/9)

- ☐ Kernels for covariance matrix
 - The SPD matrix on Riemannian manifold can be mapped to vector space via ordinary matrix logarithm operator originated from the Log-Euclidean Distance (LED)
 - Then the **polynomial kernel** can be calculated as $\mathcal{K}_{i,j}^{LED-Poly.} = (\gamma \cdot trace[\log(C_i) \cdot \log(C_j)])^{\alpha}$
 - The corresponding mapping is $\Phi_{LED} = \log(C_i)$, then the form of **RBF kernel** can be generated using Φ_{LED} by

$$\mathcal{K}_{i,j}^{LED-RBF} = \exp(-\gamma \left| \left| \Phi_{LED}(C_i) - \Phi_{LED}(C_j) \right| \right|_{E}^{2})$$

Proposed method (7/9)

Kernels for covariance matrix

Fig.3 An illustration of mapping covariance matrices from the SPD Riemannian manifold M to the tangent space T (which is a vector space) at the point of identity matrix I on M.

Proposed method (8/9)

Riemannian kernels

- Kernels for Gaussian distribution
 - The space of *d*-dimensional multivariate Gaussians $\mathcal{N}(\mu, \Sigma)$ lie on Riemannian manifold and can be embedded into the space of (d+1)**dimensional SPD** matrices (denoted as Sym_{d+1}^+) as follows

$$\mathcal{N}(\mu, \Sigma) \sim G = |\Sigma|^{-\frac{1}{d+1}} \begin{bmatrix} \Sigma + \mu \mu^T & \mu \\ \mu & 1 \end{bmatrix}$$

- Similar to covariance matrix, the **polynomial kernel** can be calculated $\mathcal{K}_{i,i}^{LED-Poly.} = (\gamma \cdot trace[\log(G_i) \cdot \log(G_i)])^{\alpha}$
- And the form of **RBF** kernel can be generated using Φ_{LED} by $\mathcal{K}_{i,j}^{LED-RBF} = \exp(-\gamma \left| \left| \Phi_{LED}(G_i) - \Phi_{LED}(G_j) \right| \right|_{r}^{2})$

Proposed method (9/9)

- Different classifiers
 - Kernel SVM
 - Logistic Regression
 - One-vs-rest Partial Least Squares
- Fusion scheme
 - Score-level fusion of different kernel methods
 - Linear weighted score fusion of audio and video modality

Outline

- Data and protocols
- Proposed method
- **Experiments**
- Conclusion

Experiments (1/7)

Experiments (2/7)

Experiments (3/7)

Experiments (4/7)

Results comparison – **HOG**

	Linear Subspace		Covarian	ce Matrix	Gaussian Distribution	
	ProjPoly. Kernel	ProjRBF Kernel	LED-Poly. Kenrel	LED-RBF Kernel	LED-Poly. Kenrel	LED-RBF Kernel
Kernel SVM	38.27	37.47	38.01	26.15	35.85	31.27
Logistic Regression	40.16	35.04	16.44	36.39	16.98	33.69
Partial Least Squares	38.01	38.01	38.01	38.27	35.85	37.47

Results comparison — Dense SIFT

	Linear Subspace		Covarian	Covariance Matrix		Gaussian Distribution	
	ProjPoly. Kernel	ProjRBF Kernel	LED-Poly. Kenrel	LED-RBF Kernel	LED-Poly. Kenrel	LED-RBF Kernel	
Kernel SVM	39.08	36.39	40.70	25.88	39.89	36.39	
Logistic Regression	39.08	38.54	16.44	30.46	16.98	38.27	
Partial Least Squares	42.05	42.05	40.97	40.70	39.62	40.70	

Experiments (5/7)

Results comparison — Caffe trained on ImageNet

	Linear Subspace		Covarian	ce Matrix	Gaussian Distribution	
	ProjPoly. Kernel	ProjRBF Kernel	LED-Poly. Kenrel	LED-RBF Kernel	LED-Poly. Kenrel	LED-RBF Kernel
Kernel SVM	37.74	36.39	36.93	31.00	39.08	33.42
Logistic Regression	37.47	37.20	17.25	37.47	33.69	36.66
Partial Least Squares	37.47	37.47	37.74	37.20	38.81	36.12

Results comparison — Caffe trained on CFW

	Linear Subspace		Covarian	ce Matrix	Gaussian Distribution	
	ProjPoly. Kernel	ProjRBF Kernel	LED-Poly. Kenrel	LED-RBF Kernel	LED-Poly. Kenrel	LED-RBF Kernel
Kernel SVM	40.70	38.54	40.43	30.46	38.01	36.12
Logistic Regression	40.97	38.27	16.98	40.97	16.98	38.27
Partial Least Squares	42.86	42.86	40.70	42.32	40.70	42.05

Experiments (6/7)

	M-41 - J.	Accu	racy
	Methods	Val	Test
	Baseline (provided by EmotiW organizers)	34.4%	33.7%
	Audio (OpenSMILE Toolkit)	30.73%	
	HOG	38.01%	
	Dense SIFT	43.94%	
	DCNN (Caffe-ImageNet)	39.35%	
Video	DCNN (Caffe-CFW)	43.40%	
	HOG + Dense SIFT	44.47%	
	HOG + Dense SIFT + DCNN (Caffe-ImageNet)	44.74%	
	HOG + Dense SIFT + DCNN (Caffe-CFW)	45.28%	
	Audio + Video (HOG+Dense SIFT)	46.36%	46.68%

Audio+Video (HOG + Dense SIFT + DCNN (Caffe-ImageNet))

Audio+Video (HOG + Dense SIFT + DCNN (Caffe-CFW))

46.90%

48.52%

47.91%

50.37%

Experiments (6/7)

Validation Set

Outline

- Data and protocols
- Proposed method
- Experiments
- Conclusion

Conclusion (1/1)

- Video representation
 - 4 types of image features
 - 3 types of image set models
- Video classification
 - multiple (6 types) kernel methods fusion on Riemannian manifold
 - 2 modality, i.e. audio and video, score-level fusion

Future work

- Few difficult categories
- Effective fusion strategy

Thanks!

Source code available at:

http://vipl.ict.ac.cn/members/myliu