Problem

In a circle with center O chord AB = chord AC. Chord AD cuts BC in E. If AC = 12 and AE = 8, then AD equals:

- (A) 27
- (B) 24 (C) 21
- (D) 20
- (E) 18

Solution

(E). Since
$$AB = AC, \angle ACB = \angle ABC = \alpha$$
. Connect BD .

 $\angle ADB = \angle ACB = \alpha$ (they face the same arc AB).

Then triangles ABE and ADB are similar to each other, so the following equality holds true: $\frac{AB}{AD} = \frac{AE}{AB}$

Method 2: Connect CD. Let $\angle EAC = \angle BAC = \alpha$.

 $\angle ACB = \angle ADC = \beta$ (they face the arcs of the same length: arcs AC, AB). Then triangles AEC and ACD are similar to each other, so the following equality holds true: $\frac{AC}{AE} = \frac{AD}{AC}$ $\Rightarrow \frac{12}{8} = \frac{AD}{12}$ $\Rightarrow AD = 18$

$$\Rightarrow \frac{12}{8} = \frac{AD}{12}$$

$$\Rightarrow AD = 18$$

3. When two circles are tangent or intersecting, draw the common tangent line, the common chords, or connect the centers. 3.1. Circle O_1 and O_2 are tangent. Draw the common tangent line AB. Connect O_1A and O_2B . Connect O_1O_2 . Draw $O_1C//AB$.

We have $AB = O_1C.$ $AB \perp O_1C.$ $AB \perp O_2B.$ $O_1O_2 = r_1 + r_2.$ $O_2C = r_2 - r_1.$ $\triangle O_1\text{CO}_2 \text{ is a right triangle.}$ $O_1C = \sqrt{(r_2 + r_1)^2 - (r_2 - r_1)^2}$ $r_1 \text{ and } r_2 \text{ are the radius of circle } O_1 \text{ and } O_2, \text{ respectively.}$

3.2. Circle O_1 and O_2 are intersecting at E and F. Draw the common tangent lines AB, CD, respectively. Connect O_2C, EF , and O_1O_2 . O_1O_2 is the perpendicular bisector of $EF.O_2C \perp DC$.

Theorem 6.9. Any point on the perpendicular bisector of a line segment is equidistant from the endpoints of the line segment. Two points equidistant from the endpoints of a line segment determine the perpendicular bisector of the line segment.