

2010 年全国硕士研究生入学统一考试 数学三试题参考答案

一、选择题

(1)【答案】 (C).

【解析】

$$\lim_{x \to 0} \left(\frac{1}{x} - \left(\frac{1}{x} - a \right) e^x \right) = \lim_{x \to 0} \frac{1}{x} \left(1 - e^x \left(1 - ax \right) \right) = \lim_{x \to 0} \frac{1}{x} \left(1 - e^x + axe^x \right) = \lim_{x \to 0} \left(\frac{1 - e^x}{x} + \frac{axe^x}{x} \right)$$

$$= \lim_{x \to 0} \frac{1 - e^x}{x} + \lim_{x \to 0} \frac{axe^x}{x} = -1 + a = 1$$

所以a=2.

(2) 【答案】(A).

【解析】因 $\lambda y_1 - \mu y_2$ 是y' + P(x)y = 0的解,故 $(\lambda y_1 - \mu y_2)' + P(x)(\lambda y_1 - \mu y_2) = 0$,所以

$$\lambda \left[y_1' + P(x) y_1 \right] - \mu \left[y_2' + p(x) y_2 \right] = 0,$$

而由已知 $y_1' + P(x)y_1 = q(x), y_2' + P(x)y_2 = q(x),$ 所以

$$(\lambda - \mu)q(x) = 0, \qquad (1)$$

又由于一阶次微分方程 y'+p(x)y=(q) 是非齐的,由此可知 $q(x)\neq 0$,所以

 $\lambda - \mu = 0.$

由于 $\lambda y_1 + \mu y_2$ 是非齐次微分方程 y' + P(x)y = q(x)的解, 所以

$$(\lambda y_1 + \mu y_2)' + P(x)(\lambda y_1 + \mu y_2) = q(x),$$

整理得

$$\lambda \left[y_{1}' + P(x) y_{1} \right] + \mu \left[y_{2}' + P(x) y_{2} \right] = q(x),$$

即

$$(\lambda + \mu)q(x) = q(x), \pm q(x) \neq 0 \exists \exists \lambda + \mu = 1,$$
 ②

由①②求解得 $\lambda = \mu = \frac{1}{2}$,故应选(A).

(3)【答案】 (B).

【解析】 $\{f[g(x)]\}' = f'[g(x)] \cdot g'(x),$

$$\{f[g(x)]\}'' = \{f'[g(x)] \cdot g'(x)\}' = f''[g(x)] \cdot [g'(x)]^2 + f'[g(x)] \cdot g''(x)$$

由于 $g(x_0) = a$ 是 g(x) 的极值, 所以 $g'(x_0) = 0$. 所以

$$\{f[g(x_0)]\}'' = f'[g(x_0)] \cdot g''(x_0) = f'(a) \cdot g''(x_0)$$

由于 $g''(x_0) < 0$, 要使 $\left\{ f\left[g(x)\right]\right\}'' < 0$, 必须有 f'(a) > 0, 故答案为 B.

(4)【答案】 (C).

【解析】因为
$$\lim_{x\to +\infty} \frac{h(x)}{g(x)} = \lim_{x\to +\infty} \frac{e^{\frac{x}{10}}}{x} = \lim_{x\to +\infty} e^{\frac{x}{10}} \frac{1}{10} = +\infty$$
,所以,当 x 充分大时, $h(x) > g(x)$.

又因为
$$\lim_{x \to +\infty} \frac{f(x)}{g(x)} = \lim_{x \to +\infty} \frac{\ln^{10} x}{x} = \lim_{x \to +\infty} 10 \frac{\ln^9 x \cdot \frac{1}{x}}{1} = 10 \lim_{x \to +\infty} \frac{\ln^9 x}{x}$$

$$= 10.9 \lim_{x \to +\infty} \frac{\ln^8 x \cdot \frac{1}{x}}{1} = \dots = 10.9 \dots 2 \lim_{x \to +\infty} \frac{\ln x}{x} = 10! \lim_{x \to +\infty} \frac{1}{x} = 0.$$

所以当x充分大时, f(x) < g(x), 故当x充分大, f(x) < g(x) < h(x).

(5) 【答案】(A).

【解析】由于向量组 I 能由向量组 II 线性表示, 所以 $r(I) \le r(II)$, 即

$$r(\alpha_1, \dots, \alpha_r) \le r(\beta_1, \dots, \beta_s) \le s$$

若向量组 I 线性无关,则 $r(\alpha_1, \dots, \alpha_r) = r$,所以 $r = r(\alpha_1, \dots, \alpha_r) \le r(\beta_1, \dots, \beta_s) \le s$,即 $r \le s$,选 (A).

(6) 【答案】 (D).

【解析】设 λ 为A的特征值,由于 $A^2+A=O$,所以 $\lambda^2+\lambda=0$,即($\lambda+1$) $\lambda=0$,这样A的特征值只能为-1或 0.由于A为实对称矩阵,故A可相似对角化,即 $A\sim\Lambda$,

$$r(A)=r(\Lambda)=3$$
,因此, $\Lambda=egin{pmatrix} -1 & & & & & \\ & -1 & & & & \\ & & -1 & & \\ & & & 0 \end{pmatrix}$,即 $A\sim\Lambda=egin{pmatrix} -1 & & & \\ & & -1 & & \\ & & & 0 \end{pmatrix}$.

(7) 【答案】 (C).

【解析】离散型随机变量的分布函数是跳跃的阶梯形分段函数,连续型随机变量的分布函数是连续函数. 观察本题中 F(x) 的形式,得到随机变量 X 既不是离散型随机变量,也不是连续型随机变量,所以求随机变量在一点处的概率,只能利用分布函数的定义. 根据分布函数的定义,函数在某一点的概率可以写成两个区间内概率的差,即

$$P\{X=1\} = P\{X \le 1\} - P\{X < 1\} = F(1) - F(1-0) = 1 - e^{-1} - \frac{1}{2} = \frac{1}{2} - e^{-1},$$
故本题选
(C).

(8) 【答案】 (A).

【解析】根据题意知,
$$f_1(x) = \frac{1}{\sqrt{2\pi}} e^{\frac{-x^2}{2}} (-\infty < x < +\infty)$$
, $f_2(x) = \begin{cases} \frac{1}{4}, & -1 \le x \le 3 \\ 0, & 其它 \end{cases}$

利用概率密度的性质: $\int_{-\infty}^{+\infty} f(x) dx = 1$, 故

$$\int_{-\infty}^{+\infty} f(x) dx = \int_{-\infty}^{0} a f_1(x) dx + \int_{0}^{+\infty} b f_2(x) dx = \frac{a}{2} \int_{-\infty}^{+\infty} f_1(x) dx + b \int_{0}^{3} \frac{1}{4} dx = \frac{a}{2} + \frac{3}{4} b = 1$$
所以整理得到 $2a + 3b = 4$,故本题应选 (A).

二、填空题

(9)【答案】-1.

【解析】 $\int_0^{x+y} e^{-t^2} dt = x \int_0^x \sin t^2 dt$, 令 x = 0, 得 y = 0, 等式两端对 x 求导:

$$e^{-(x+y)^2}(1+\frac{dy}{dx}) = \int_0^x \sin t^2 dt + x \sin x^2.$$

将
$$x = 0$$
, $y = 0$ 代入上式, 得 $1 + \frac{dy}{dx}\Big|_{x=0} = 0$. 所以 $\frac{dy}{dx}\Big|_{x=0} = -1$.

(10)【答案】
$$\frac{\pi^2}{4}$$
.

【解析】根据绕x轴旋转公式,有

$$V = \int_{e}^{+\infty} \pi y^{2} dx = \int_{e}^{+\infty} \pi \frac{dx}{x(1 + \ln^{2} x)}$$

$$= \pi \int_{e}^{+\infty} \frac{d \ln x}{1 + \ln^{2} x} = \pi \cdot \left[\arctan \left(\ln x \right) \right]_{e}^{+\infty} = \pi \left(\frac{\pi}{2} - \frac{\pi}{4} \right) = \frac{\pi^{2}}{4}.$$

(11)【答案】 $p \cdot e^{\frac{1}{3}(p^3-1)}$

【解析】由弹性的定义, 得 $\frac{dR}{dp} \cdot \frac{p}{R} = 1 + p^3$, 所以 $\frac{dR}{R} = \left(\frac{1}{p} + p^2\right) dp$, 即 $\ln R = \ln p + \frac{1}{3} p^2 + C$,

又
$$R(1)=1$$
,所以 $C=-\frac{1}{3}$. 故 $\ln R=\ln p+\frac{1}{3}p-\frac{1}{3}$,因此 $R=p\cdot e^{\frac{1}{3}(p^3-1)}$.

(12)【答案】b=3.

【解析】函数为 $y=x^3+ax^2+bx+1$,它的一阶导数为 $y'=3x^2+2ax+b$,二阶导数为 y''=6x+2a,又因为 $\left(-1,0\right)$ 是拐点,所以 $y''\big|_{x=-1}=0$,得 $-\frac{a}{3}=-1$,所以 a=3,又因为曲线过点 $\left(-1,0\right)$,所以将 x=-1,y=0代入曲线方程,得b=3.

(13) 【答案】3.

【解析】由于 $A(A^{-1}+B)B^{-1}=(E+AB)B^{-1}=B^{-1}+A$,所以

$$|A + B^{-1}| = |A(A^{-1} + B)B^{-1}| = |A||A^{-1} + B||B^{-1}|$$

因为
$$|B|=2$$
,所以 $|B^{-1}|=|B|^{-1}=\frac{1}{2}$,因此

$$|A + B^{-1}| = |A||A^{-1} + B||B^{-1}| = 3 \times 2 \times \frac{1}{2} = 3.$$

(14) 【答案】 $\sigma^2 + \mu^2$.

【解析】
$$E(T) = E\left(\frac{1}{n}\sum_{i=1}^{n}X_{i}^{2}\right) = \frac{1}{n}E\left(\sum_{i=1}^{n}X_{i}^{2}\right) = \frac{1}{n}nE(X^{2}) = E(X^{2}) = \sigma^{2} + \mu^{2}$$
.

三、解答题

(15) 【解析】
$$\lim_{x \to +\infty} \left(x^{\frac{1}{x}} - 1 \right)^{\frac{1}{\ln x}} = \lim_{x \to +\infty} e^{\frac{\ln \left(\frac{1}{x^{x}} - 1 \right)}{\ln x}} = e^{\frac{\ln \left(\frac{1}{x^{x}} - 1 \right)}{\ln x}} = e^{\frac{\ln \left(\frac{\ln x}{x^{x}} - 1 \right)}{\ln x}}$$

其中

$$\lim_{x \to +\infty} \frac{\ln(e^{\frac{\ln x}{x}} - 1)}{\ln x} = \lim_{x \to +\infty} \frac{(e^{\frac{\ln x}{x}} - 1)^{-1}e^{\frac{\ln x}{x}}}{\frac{1}{x}} \cdot \frac{1 - \ln x}{x^2} = \lim_{x \to +\infty} \frac{e^{\frac{\ln x}{x}}}{\ln x} \cdot \frac{1 - \ln x}{x} = \lim_{x \to +\infty} e^{\frac{\ln x}{x}} (\frac{1}{\ln x} - 1) = -1.$$

故原式= e^{-1} .

(16) 【解析】积分区域
$$D = D_1 \cup D_2$$
,其中 $D_1 = \{(x, y) | 0 \le y \le 1, \sqrt{2}y \le x \le \sqrt{1 + y^2} \}$

$$D_2 = \{(x, y) | -1 \le y \le 0, -\sqrt{2}y \le x \le \sqrt{1 + y^2} \}$$

$$\iint_D (x + y)^3 dxdy = \iint_D (x^3 + 3x^2y + 3xy^2 + y^3) dxdy$$

因为区域 D 关于 x 轴对称,被积函数 $3x^2y+y^3$ 是 y 的奇函数,所以 $\iint\limits_{D} \left(3x^2y+y^3\right) dx dy = 0.$

$$\iint_{D} (x+y)^{3} dxdy = \iint_{D} (x^{3} + 3xy^{2}) dxdy = 2 \iint_{D_{1}} (x^{3} + 3xy^{2}) dxdy = 2 \left[\int_{0}^{1} dy \int_{\sqrt{2}y}^{\sqrt{1+y^{2}}} (x^{3} + 3xy^{2}) dx \right]$$

$$=2\int_0^1 \left(\frac{1}{4}x^4 + \frac{3}{2}x^2y^2\right) \left| \sqrt[4]{\frac{1+y^2}{2y}} dy = 2\int_0^1 \left(-\frac{9}{4}y^4 + 2y^2 + \frac{1}{4}\right) dy = \frac{14}{15}.$$

(17) 【解析】令 $F(x, y, z, \lambda) = xy + 2yz + \lambda(x^2 + y^2 + z^2 - 10)$,用拉格朗日乘数法得

$$\begin{cases} F'_x = y + 2\lambda x = 0, \\ F'_y = x + 2z + 2\lambda y = 0, \\ F'_z = 2y + 2\lambda z = 0, \\ F'_\lambda = x^2 + y^2 + z^2 - 10 = 0, \end{cases}$$

求解得六个点: $A(1,\sqrt{5},2), B(-1,-\sqrt{5},-2),$ $C(1,-\sqrt{5},2), D(-1,\sqrt{5},-2),$ $E(2\sqrt{2},0,-\sqrt{2}), F(-2\sqrt{2},0,\sqrt{2}).$

由于在点A与B点处, $u=5\sqrt{5}$;在点C与D处, $u=-5\sqrt{5}$;在点E与F处,u=0. 又因为该问题必存在最值,并且不可能在其它点处,所以 $u_{\max}=5\sqrt{5}$, $u_{\min}=-5\sqrt{5}$.

(18) 【解析】 (I) 当 0 < x < 1时 $0 < \ln(1+x) < x$, 故 $\left[\ln(1+t)\right]^n < t^n$, 所以

$$|\ln t| [\ln(1+t)]^n < |\ln t| t^n,$$

$$\int_0^1 |\ln t| [\ln(1+t)]^n dt < \int_0^1 |\ln t| t^n dt \ (n=1,2,\cdots).$$

$$(II) \int_0^1 |\ln t| t^n dt = -\int_0^1 \ln t \cdot t^n dt = -\frac{1}{n+1} \int_0^1 \ln t d \left(t^{n+1}\right) = \frac{1}{\left(n+1\right)^2}, \text{ in } t = \frac{1}{\left(n+1\right)^2},$$

根据夹逼定理得 $0 \le \lim_{n \to \infty} u_n \le \lim_{n \to \infty} \frac{1}{(n+1)^2} = 0$,所以 $\lim_{n \to \infty} u_n = 0$.

(19) 【解析】(I) 因为 $2f(0) = \int_0^2 f(x) dx$,又因为f(x)在[0,2]上连续,所以由积分中值定理得,至少有一点 $\eta \in [0,2]$,使得

$$\int_0^2 f(x)dx = f(\eta) \cdot (2-0)$$

即 $2f(0) = 2f(\eta)$, 所以存在 $\eta \in [0,2]$, 使得 $f(\eta) = f(0)$.

(II) 因为
$$f(2)+f(3)=2f(0)$$
, 即 $\frac{f(2)+f(3)}{2}=f(0)$, 又因为 $f(x)$ 在[2,3]上连

续,由介值定理知,至少存在一点 $\eta_1 \in [2,3]$ 使得 $f(\eta_1) = f(0)$.

因为f(x)在[0,2]上连续,在[0,2]上可导,且f(0)=f(2),所以由罗尔中值定理知, C存在 $\xi_1 \in (0,2)$,有 $f'(\xi_1)=0$.

又因为f(x)在 $[2,\eta_1]$ 上连续,在 $(2,\eta_1)$ 上可导,且 $f(2)=f(0)=f(\eta_1)$,所以由罗尔中值定理知,存在 $\xi_2 \in (2,\eta_1)$,有 $f(\xi_2)=0$.

又因为f(x)在 $\left[\xi_1,\xi_2\right]$ 上二阶可导,且 $f'(\xi_1)=f'(\xi_2)=0$,所以由罗尔中值定理,至少有一点 $Ax=b\subset(0,3)$,使得 $f''(\xi)=0$.

(20) 【解析】因为方程组有两个不同的解, 所以可以判断方程组增广矩阵的秩小于 3, 进而可以通过秩的关系求解方程组中未知参数, 有以下两种方法.

方法 1: (I)已知 Ax = b有 2 个不同的解, 故 $r(A) = r(\bar{A}) < 3$, 对增广矩阵进行初等行变换, 得

$$\bar{A} = \begin{pmatrix} \lambda & 1 & 1 & | & a \\ 0 & \lambda - 1 & 0 & | & 1 \\ 1 & 1 & \lambda & | & 1 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 1 & \lambda & | & 1 \\ 0 & \lambda - 1 & 0 & | & 1 \\ \lambda & 1 & 1 & | & a \end{pmatrix} \\
\rightarrow \begin{pmatrix} 1 & 1 & \lambda & | & 1 \\ 0 & \lambda - 1 & 0 & | & 1 \\ 0 & 1 - \lambda & 1 - \lambda^2 & | & a - \lambda \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 1 & \lambda & | & 1 \\ 0 & \lambda - 1 & 0 & | & 1 \\ 0 & 0 & 1 - \lambda^2 & | & a - \lambda + 1 \end{pmatrix}$$

当
$$\lambda = 1$$
时, $\overline{A} \rightarrow \begin{pmatrix} 1 & 1 & 1 & 1 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & a \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 1 & 1 & 1 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix}$,此时, $r(A) \neq r(\overline{A})$,故 $Ax = b$ 无解 (舍去).

当
$$\lambda = -1$$
 时, $\bar{A} \rightarrow \begin{pmatrix} 1 & 1 & -1 & 1 \\ 0 & -2 & 0 & 1 \\ 0 & 0 & 0 & a+2 \end{pmatrix}$,由于 $r(A) = r(\bar{A}) < 3$,所以 $a = -2$,故 $\lambda = -1$, $a = -2$.

方法 2: 已知 Ax = b 有 2 个不同的解, 故 $r(A) = r(\overline{A}) < 3$, 因此 |A| = 0, 即

$$|A| = \begin{vmatrix} \lambda & 1 & 1 \\ 0 & \lambda - 1 & 0 \\ 1 & 1 & \lambda \end{vmatrix} = (\lambda - 1)^2 (\lambda + 1) = 0,$$

知 λ =1或−1.

当 $\lambda=1$ 时, $r(A)=1\neq r(\overline{A})=2$,此时,Ax=b 无解,因此 $\lambda=-1$.由 $r(A)=r(\overline{A})$,得a=-2.

(II) 对增广矩阵做初等行变换

$$\overline{A} = \begin{pmatrix} -1 & 1 & 1 & | & -2 \\ 0 & -2 & 0 & | & 1 \\ 1 & 1 & -1 & | & 1 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & -1 & -1 & | & 2 \\ 0 & 2 & 0 & | & -1 \\ 0 & 0 & 0 & | & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & -1 & | & \frac{3}{2} \\ 0 & 1 & 0 & | & -\frac{1}{2} \\ 0 & 0 & 0 & | & 0 \end{pmatrix}$$

可知原方程组等价为
$$\begin{cases} x_1 - x_3 = \frac{3}{2} \\ x_2 = -\frac{1}{2} \end{cases}, 写成向量的形式, 即 \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = x_3 \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} + \begin{pmatrix} \frac{3}{2} \\ -\frac{1}{2} \\ 0 \end{pmatrix}.$$

因此
$$Ax = b$$
 的通解为 $x = k \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} + \begin{pmatrix} \frac{3}{2} \\ -\frac{1}{2} \\ 0 \end{pmatrix}$, 其中 k 为任意常数.

(21) 【解析】由于
$$A = \begin{pmatrix} 0 & -1 & 4 \\ -1 & 3 & a \\ 4 & a & 0 \end{pmatrix}$$
, 存在正交矩阵 Q , 使得 $Q^{T}AQ$ 为对角阵, 且 Q 的第一

列为 $\frac{1}{\sqrt{6}}(1,2,1)^T$, 故 A 对应于 λ_1 的特征向量为 $\xi_1 = \frac{1}{\sqrt{6}}(1,2,1)^T$.

根据特征值和特征向量的定义,有
$$A \begin{pmatrix} \frac{1}{\sqrt{6}} \\ \frac{2}{\sqrt{6}} \\ \frac{1}{\sqrt{6}} \end{pmatrix} = \lambda_1 \begin{pmatrix} \frac{1}{\sqrt{6}} \\ \frac{2}{\sqrt{6}} \\ \frac{1}{\sqrt{6}} \end{pmatrix}$$
,即

$$\begin{pmatrix} 0 & -1 & 4 \\ -1 & 3 & a \\ 4 & a & 0 \end{pmatrix} \begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix} = \lambda_1 \begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix}, 由此可得 $a = -1, \lambda_1 = 2.$ 故 $A = \begin{pmatrix} 0 & -1 & 4 \\ -1 & 3 & -1 \\ 4 & -1 & 0 \end{pmatrix}.$$$

$$\pm |\lambda E - A| = \begin{vmatrix} \lambda & 1 & -4 \\ 1 & \lambda - 3 & 1 \\ -4 & 1 & \lambda \end{vmatrix} = (\lambda + 4)(\lambda - 2)(\lambda - 5) = 0 ,$$

可得 A 的特征值为 $\lambda_1 = 2, \lambda_2 = -4, \lambda_3 = 5$.

由
$$(\lambda_2 E - A)x = 0$$
,即 $\begin{pmatrix} -4 & 1 & -4 \\ 1 & -7 & 1 \\ -4 & 1 & -4 \end{pmatrix}\begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = 0$,可解得对应于 $\lambda_2 = -4$ 的线性无关的

特征向量为 $\xi_2 = (-1,0,1)^T$.

由
$$(\lambda_3 E - A)x = 0$$
,即 $\begin{pmatrix} 5 & 1 & -4 \\ 1 & 2 & 1 \\ -4 & 1 & 5 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = 0$,可解得对应于 $\lambda_3 = 5$ 的特征向量为

$$\xi_3 = (1, -1, 1^T).$$

由于 A 为实对称矩阵, ξ_1,ξ_2,ξ_3 为对应于不同特征值的特征向量,所以 ξ_1,ξ_2,ξ_3 相互正交,只需单位化:

$$\eta_1 = \frac{\xi_1}{\|\xi_1\|} = \frac{1}{\sqrt{6}} (1, 2, 1)^T, \eta_2 = \frac{\xi_2}{\|\xi_2\|} = \frac{1}{\sqrt{2}} (-1, 0, 1)^T, \eta_3 = \frac{\xi_3}{\|\xi_3\|} = \frac{1}{\sqrt{3}} (1, -1, 1)^T,$$

$$\mathbb{R} Q = (\eta_1, \eta_2, \eta_3) = \begin{pmatrix} \frac{1}{\sqrt{6}} & -\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{3}} \\ \frac{2}{\sqrt{6}} & 0 & -\frac{1}{\sqrt{3}} \\ \frac{1}{\sqrt{6}} & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{3}} \end{pmatrix}, \quad \mathbb{N} Q^T A Q = \Lambda = \begin{pmatrix} 2 & & \\ & -4 & \\ & & 5 \end{pmatrix}.$$

(22) 【解析】当给出二维正态随机变量的的概率密度 f(x,y)后,要求条件概率密度

 $f_{Y|X}(y|x)$,可以根据条件概率公式 $f_{Y|X}(y|x) = \frac{f(x,y)}{f_{X}(x)}$ 来进行计算. 本题中还有待定参数,

A 要根据概率密度的性质求解, 具体方法如下.

$$f_X(x) = \int_{-\infty}^{+\infty} f(x, y) dy = A \int_{-\infty}^{+\infty} e^{-2x^2 + 2xy - y^2} dy = A \int_{-\infty}^{+\infty} e^{-(y - x)^2 - x^2} dy = A e^{-x^2} \int_{-\infty}^{+\infty} e^{-(y - x)^2} dy$$
$$= A \sqrt{\pi} e^{-x^2}, -\infty < x < +\infty.$$

根据概率密度性质有

$$1 = \int_{-\infty}^{+\infty} f_X(x) dx = A \sqrt{\pi} \int_{-\infty}^{+\infty} e^{-x^2} dx = A\pi$$
, $\mathbb{P} A = \pi^{-1}$,

故
$$f_X(x) = \frac{1}{\sqrt{\pi}} e^{-x^2}, -\infty < x < +\infty.$$

当 $-\infty$ < x < $+\infty$ 时, 有条件概率密度

$$f_{Y|X}(y|x) = \frac{f(x,y)}{f_X(x)} = \frac{Ae^{-2x^2+2xy-y^2}}{A\sqrt{\pi}e^{-x^2}} = \frac{1}{\sqrt{\pi}}e^{-x^2+2xy-y^2} = \frac{1}{\sqrt{\pi}}e^{-(x-y)^2}, -\infty < x < +\infty, -\infty < y < +\infty.$$

(23)【解析】(I) X 的所有可能取值为0,1,Y 的所有可能取值为0,1,2.

$$P\left\{X=0,Y=0\right\} = \frac{C_3^2}{C_6^2} = \frac{3}{15} = \frac{1}{5}$$
, 其中 $X=0,Y=0$ 表示取到的两个球都是黑球;

$$P\{X=0,Y=1\} = \frac{C_2^1 C_3^1}{C_6^2} = \frac{6}{15} = \frac{2}{5}$$
, 其中 $X=0,Y=1$ 表示取到的一个是白球,一个是

黑球:

$$P\{X=0,Y=2\}=\frac{C_2^2}{C_6^2}=\frac{1}{15}$$
, 其中 $X=0,Y=2$ 表示取到的两个球都是白球;

$$P\{X=1,Y=0\}=\frac{C_1^1C_3^1}{C_6^2}=\frac{3}{15}=\frac{1}{5}$$
,其中 $X=1,Y=0$ 表示取到的一个是红球,一个是

黑球:

$$P\{X=1,Y=1\} = \frac{C_1^1C_2^1}{C_6^2} = \frac{2}{15}$$
, 其中 $X=1,Y=1$ 表示取到的一个是红球, 一个是白球;

$$P\{X=1,Y=2\}=\frac{0}{C_6^2}=0$$
,

因此二维离散型随机变量(X,Y)的概率分布为

X	O	1	2	
0	3	$\frac{2}{5}$	$\frac{1}{15}$	$\frac{2}{3}$
1	$\frac{1}{5}$	$\frac{2}{15}$	0	$\frac{1}{3}$
	$\frac{2}{5}$	<u>8</u> 15	1 15	

(II)
$$Cov(X,Y) = E(XY) - E(X)E(Y)$$
,

$$E(XY) = 1 \times 1 \times \frac{2}{15} = \frac{2}{15}, \ E(X) = 0 \times \frac{2}{3} + 1 \times \frac{1}{3} = \frac{1}{3},$$

$$E(Y) = 0 \times \frac{2}{5} + 1 \times \frac{8}{15} + 2 \times \frac{1}{15} = \frac{2}{3}$$

$$Cov(X,Y) = E(XY) - E(X)E(Y) = \frac{2}{15} - \frac{1}{3} \times \frac{2}{3} = -\frac{4}{45}.$$

