การประมาณค่าของ n!

ถ้าอยากรู้ว่า 100! มีค่าใหญ่ขนาดไหน ก็คงต้องคิดถึง Stirling's approximation ที่คำนวณช่วงของค่า n! ด้วยสูตรช้าง

ล่างนี้ ค่าขอบเขตล่างของ n! ค่าขอบเขตบนของ n! ค่าขอบเขตบนของ n! ค่าขอบเขตบนของ n! $\sqrt{2\pi}\ n^{n+\frac{1}{2}}e^{-n+\frac{1}{12n+1}} < n! < \sqrt{2\pi}\ n^{n+\frac{1}{2}}e^{-n+\frac{1}{12n}}$

งานของคุณ

์ เขียนโปรแกรมรับจำนวนเต็ม n เพื่อแสดงขอบเขตล่างและบนของการประมาณค่าของ n! จากสูตรข้างบนนี้

ข้อมูลนำเข้า

จำนวนเต็ม n

ข้อมูลส่งออก

ค่าขอบเขตล่าง และค่าขอบเขตบนของ n!

ตัวอย่าง

input (จากแป้นพิมพ์)	output (ทางจอภาพ)
1	0.9958701614627972
	1.0022744491822266
5	119.9698539592089
	120.00263708619698
50	3.0414009534599554e+64
	3.0414093877504934e+64
100	9.332615094728998e+157
	9.332621570317666e+157