对称密码

设计与实现

第 2 讲

北京电子科技学院 瓷码系 李艳俊

本讲内容

第2章 基础部件的设计及分析

- 2.1 S盒的密码指标及设计
- 2.2 EASY1 分组密码差分分析

<u>作业</u>

检测S盒的六个指标

in	0	1	2	3	4	5	6	7	
out	0	3	6	1	4	7	2	5	

in	0	1	2	3	4	5	6	7
out	2	1	3	0	6	4	7	5

in	0	1	2	3	4	5	6	7	
out	2	5	3	7	6	4	0	1	

$$P(\alpha \rightarrow \beta) = ?$$

例1 S盒密码指标——差分均匀度

000	001	010	011	100	101	110	111
010	111	101	000	011	001	100	110

$$\delta_{s}(\alpha,\beta) = \left| \left\{ x \in GF(2)^{n} : S(x) \oplus S(x \oplus \alpha) = \beta \right\} \right|$$

1	α, β	000	001	010	011	100	101	110	111
	000	8	0	0	0	0	0	0	0
差	001	0	0	4	0	0	4	0	0
分	010	0	0	0	0	0	0	0	8
差分分布表	011	0	0	4	0	0	4	0	0
作 表	100	0	4					4	
1K	101	0			4	4			
	110	0	4					4	
	111	0			4	4			

左分均匀度

1.差分均匀度

S盒是分组密码的基本非线性模块,衡量S盒抵抗差分分析能力的重要指标: 差分均匀度。

定义:对于一个函数

$$S(x) = (f_1(x), \dots, f_m(x)) : GF(2)^n \to GF(2)^m, n \ge m,$$

差分均匀度为:
$$\delta_S = \max_{\substack{\beta \in GF(2)^m \\ 0 \neq \alpha \in GF(2)^n}} \delta_S(\alpha, \beta)$$

其中
$$\delta_s(\alpha,\beta) = \left| \left\{ x \in GF(2)^n : S(x) \oplus S(x \oplus \alpha) = \beta \right\} \right|$$

作业:检测以下3个S盒的差分分布表和差分均匀度

in	0	1	2	3	4	5	6	7
out	0	3	6	1	4	7	2	5

	0								
out	2	1	3	0	6	4	7	5	

	0								
out	2	5	3	7	6	4	0	1	

差分均匀度为2

2. 非线性度

定义: $\Diamond f(x): GF(2^n) \to GF(2)$ 是一个n元布尔函数,称

$$N_f = \min_{l \in L_n} d_H(f, l)$$

为f(x)的非线性度。其中 L_n 表示全体n元线性和仿射函数的集合, $d_H(f,l)$ 表示f和l之间的汉明距离。

定义: $\diamondsuit S(x) = (f_1(x), \dots, f_m(x)) : GF(2)^n \to GF(2)^m$ 是一个多输出函数,则 $N = \min_{x \in \mathcal{X}} d_x(x, S(x), I(x))$

$$N_{s} = \min_{\substack{l(x) \in L_{n} \\ u \neq 0 \in GF(2)^{m}}} d_{H}(u \cdot S(x), l(x))$$

为S(x)的非线性度。

例2 S盒的非线性度

[3, 7, 2, 4, 1, 5, 0, 6]

000	001	010	011	100	101	110	111
011	111	010	100	001	101	000	110

$$N_s(\alpha, \beta) = \# \left\{ x \in GF(2)^n : \alpha \cdot x = \beta \cdot S(x) \right\}$$

$$X2 = Y1 \oplus Y2$$

$$p = 1/4$$

α, β	000	001	010	011	100	101	110	111
000								
001								
010								
011								
100	4	4	2	6	4	4	2	2
101								
110								
111								

偏差Bias is | = 1/2|=1/4

作业: 检测以下3个S盒的非线性度。

in	0	1	2	3	4	5	6	7
out	0	3	6	1	4	7	2	5

in	0	1	2	3	4	5	6	7
out	2	1	3	0	6	4	7	5

in	0	1	2	3	4	5	6	7
out	2	5	3	7	6	4	0	1

3. 代数次数和项数分布

S盒的代数次数用于衡量S盒的代数非线性程度,代数次数的大小一定程度上反映了S盒的线性复杂度,S盒线性复杂度越高,越难用线性表达式逼近,而项数分布的程度和插值攻击密切相关。

定义: 设 $f(x):GF(2)^n \to GF(2)$ 的代数正规型(ANF)为

$$f(x) = a_0 \oplus \sum_{\substack{1 \le i_1 < \dots < i_k \le n \\ 1 \le k \le n}} a_{i_1 i_2 \dots i_k} x_{i_1} x_{i_2} \dots x_{i_k}$$

则f(x)的代数次数 $D(f) = \max \{0 \le k \le n | a_{i_1 i_2 \cdots i_k} = 1, 1 \le i_1 < \cdots < i_k \le n \}$

其中
$$x = (x_1, \dots, x_n), a_0, a_{i_1 i_2 \dots i_k} \in GF(2)_\circ$$

f(x)的代数正规型中的i次项的个数称为f(x)的i次项数,所有i $(1 \le i \le n)$ 次项数之和称为f(x)的<mark>项数</mark>。

定义:设 $n \times m$ S盒 $F(x) = (f_1(x), \dots, f_m(x))$, 其代数次数定义为

$$D(F) = \max \left\{ D(\beta \cdot F) \middle| \beta \neq 0, \beta \in GF(2)^m \right\}$$
$$= \max \left\{ D(\bigoplus_{i=1}^m b_i f_i(x)) \middle| (b_1, \dots, b_m) \neq 0, (b_1, \dots, b_m) \in GF(2)^m \right\}.$$

特别地,当D(F) = k时,称为k次S盒。

例: 设n=m=3, 令

$$f_1(x) = x_1 x_2 \oplus x_1 x_3 \oplus x_1 \oplus x_2$$
$$f_2(x) = x_1 \oplus x_1 x_3 \oplus x_3$$
$$f_3(x) = 1 \oplus x_1 \oplus x_1 x_2 \oplus x_2 x_3$$

则
$$GF(2)^3$$
 上置换 $F(x) = (f_1(x), f_2(x), f_3(x))$ 代数次数 $D(F) = 3 - 1 = 2$

000	001	010	011	100	101	110	111
011	111	010	100	001	101	000	110

用真值表的方式写出代数正规型:

x2	x 1	$\mathbf{x0}$	y 2	y1	y0
0	0	0	0	1	1
0	0	1	1	1	1
0	1	0	0	1	0
0	1	1	1	0	0
1	0	0	0	0	1
1	0	1	1	0	1
1	1	0	0	0	0
1	1	1	1	1	0

$$y_0 = f_0(x)$$

$$= \overline{x_2} \overline{x_1} \overline{x_0} \oplus \overline{x_2} \overline{x_1} x_0 \oplus x_2 \overline{x_1} \overline{x_0} \oplus x_2 \overline{x_1} x_0$$

$$= 1 \oplus x_1$$

练习:写出y2,y1的代数正规型。

作业:写出以下3个S盒的代数正规型。

in	0	1	2	3	4	5	6	7
out	0	3	6	1	4	7	2	5

in	0	1	2	3	4	5	6	7
out	2	1	3	0	6	4	7	5

in	0	1	2	3	4	5	6	7	
out	2	5	3	7	6	4	0	1	

4. 雪崩特性和 5.扩散特性

严格<mark>雪崩特性和扩散特性</mark>用于衡量S盒的输入改变量和 输出改变量之间的随机性,也是S盒设计的重要指标之一。

除了以上五个指标以外,还有针对代数攻击而提出的 代数免疫阶指标。根据不同的解方程算法,代数免疫阶的 定义不同,具体见[1]。此外,S盒最好是可逆的。

[1] N. Courtois and J. Pieprzyk. Cryptanalysis of block ciphers with over defined systems of equations. Proceedings of ASIACRYPT 2002, Lecture Notes in Computer Science 2501, pp. 267-287, 2002.

S盒的构造方法主要有以下几种:

1976年,美国NSA披露了DES的S盒设计原则:

1. 随机生 ✓每个S-盒的每一行是整数0~15的一个全排列;

尽管✓每个S-盒的输出都不是其输入的线性或仿射函数;

来寻找好 〈改变任一S-盒任意1bit的输入, 其输出至少有力允许的 2bit发生变化;

Serpent算法所使用的S盒就是基于DES中S盒满足的要求构造出来的。通过这种构造方法找到一个满足各项指标的S盒并不容易,小规模S盒组合构造的方式有很多,测试量较大,而且很有可能组合生成的新S盒不满足某项设计指标。

3.通过使用某个特定的密码结构来构造S盒。

例: CRYPTON v0.5中使用的S盒利用3轮Feistel结构来构造.

P0, P1, P2是3个4*4的S盒

	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
P_0	15	9	6	8	9	9	4	12	6	2	6	10	1	3	5	15
P_1	10	15	4	7	5	2	14	6	9	3	12	8	13	1	11	0
P_2	0	4	8	4	2	15	8	13	1	1	15	7	2	11	14	15

➤ 这个S盒的密码指标与P0、P1、 P2是什么关系?

例: CRYPTON v1.0中使用的S盒利用可逆SP结构来构造.

- ▶ 这个S盒的密码指标怎么样?
- ▶ 如何改进?

4. 数学函数,包括指数函数、对数函数、幂函数(逆函数可以看作幂函数的一种)、混沌映射,以及基于不同群上数学函数的复合。

例: AES算法的S盒由以下两个域上的变换合成而得:

①对于 $\underline{x}\neq 00$, $\underline{x}\rightarrow \underline{x}^{-1}$ (在GF(2⁸)中); 00→00。

(F₂上仿射变换)

例: ①对于57⁻¹→57⁻¹=BF;

所以有: 57→5B

同理,有12→C9; 35→96; 49→3B;

为了提高软件实现速度,将上述S盒变换做成如下替换表:

					_,							5 - 7 - 7 -				
	0	1	2	3	4	5	6	7	8	9	A	В	С	D	Е	F
0	63	7C	77	7B	F2	6B	бF	C5	30	01	67	2B	FE	D7	AB	76
1	CA	82	C9	7D	FA	59	47	F0	AD	D4	A2	AF	9C	A4	72	C0
2	В7	FD	93	26	36	3F	F7	CC	34	A5	E5	F1	71	D8	31	15
3	04	C7	23	C3	18	96	05	9A	07	12	80	E2	EB	27	B2	75
4	09	83	2C	1A	1B	6E	5A	A0	52	3B	D6	B3	29	E3	2F	84
5	53	D1	00	ED	20	FC	В1	5 B	6A	CB	BE	39	4A	4C	58	CF
б	D0	EF	AA	FB	43	4D	33	85	45	F9	02	7F	50	3C	9F	A8
7	51	A3	40	8F	92	9D	38	F5	BC	В6	DA	21	10	FF	F3	D2
8	CD	0C	13	EC	5F	97	44	17	C4	A7	7E	3D	64	5D	19	73
9	60	81	4F	DC	22	2A	90	88	46	EE	B8	14	DE	5E	0B	DB
Α	E0	32	3A	0A	49	06	24	5C	C2	D3	AC	B2	91	95	E4	79
В	E7	C8	37	6D	8D	D5	4E	A9	6C	56	F4	EA	65	7A	AE	08
С	BA	78	25	2E	1C	A6	B4	C6	E8	DD	74	1F	4B	BD	8B	8A
D	70	3E	B 5	66	48	03	F6	0E	61	35	57	В9	86	C1	1D	9E
Е	E1	F8	98	11	69	D9	8E	94	9B	1E	87	E9	CE	55	28	DF
F	8C	A1	89	0D	BF	Еб	42	68	41	99	2D	0F	B0	54	BB	16

00	01	02	•••	0F	10	11	•••	FE	FF
63	7C	77		76	CA	82		BB	16

此外,S盒还可以基于**几乎完全非线性置换**设计,如 MISTY算法中使用的S盒;或基于**电路结构**设计、基于人 工智能**遗传算法**设计、基于**混沌映射**方法设计等等。

区别:随机实现的S盒性能不易达到最好,非随机实现的则易达到安全性最优,或者更易于软硬件实现和优化。

➤ 利用S盒差分分布表对算法进行分析

$$P(\alpha \rightarrow \beta)$$

如果 f(x)=y 是线性函数,则满足以下性质:

$$f(x) \oplus f(x') = f(x \oplus x')$$

$$y \oplus y' = f(x \oplus x')$$
设
$$\Delta x = x \oplus x'$$
则
$$\Delta y = f(\Delta x)$$

◆对于r轮分组算法,如果存在差分轨迹,其概率为 P(α→β)<1,且大于随机函数的概率,那么称之为差分特 征或差分区分器。

*密钥比特也可以由最后一轮**S**盒的差分特征推导得到

Figure 4-5 EASY1 SPN cipher for a single round.

分组长度: 36-bit

密钥长度: 18-bit

S-box: 6 bits to 6

bits

P-线性置换

								9	X							
	0	1	2	3	4	5	6	7	8	9		Ь	¢	d	•	1
0	40	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
-1	0	0	0	0	0	0	0	0	0	0	0	2	0	2	2	2
2	0	0	0	0	0	2	0	0	0	0	0	0	2	2	2	(
3	0	0	2	0	0	2	2	0	2	0	0	0	0	2	4	(
4	0	2	0	2	2	0	0	0	2	2	2	0	2	2	0	(
5	0	0	0	0	0	2	0	0	4	0	0	0	0	0	0	(
6	0	0	0	2	2	0	6	0	2	2	0	2	2	0	2	2
7	0	0	0	2	0	4	0	0	0	4	2	0	0	0	2	(
Ωγ 8	0	4	2	0	0	0	4	2	2	0	2	2	2	2	0	2
9	0	2	0	0	0	2	0	2	0	0	0	0	0	0	0	4
a	0	0	0	0	0	0	2	2	0	2	0	2	0	4	0	-
ь	0	2	0	2	0	0	0	0	0	0	8	2	0	0	0	1
c	0	2	2	0	0	2	0	0	0	0	2	2	2	0	2	-
d	0	2	0	2	0	0	0	2	0	2	0	0	2	0	2	2
e	0	2	2	0	2	0	0	2	0	2	0	0	0	0	0	1
f	0	0	2	2	2	0	0	0	0	0	0	0	0	0	0	-

EASY1 算法S盒 部分差分特征表

表中最大的两个值是 6和8,对应的概率分 别为6/64和8/64。

(000110 ⇒ 000110) (000110 ⇒ 100001) (000110 ⇒ 110000) (000111 ⇒ 101001) =分分柱

probabilities of 6/64

probabilities of 6/64

 $(001011 \Rightarrow 001010)$

(010000 ⇒ 011001)

(011001 ⇒ 010110)

 $(110101 \Rightarrow 101001)$

```
(001001 \Rightarrow 011000) (001001 \Rightarrow 100010)

(001001 \Rightarrow 110010) (001010 \Rightarrow 110111)

(001100 \Rightarrow 101110) (001101 \Rightarrow 010100)

(001110 \Rightarrow 110001) (010001 \Rightarrow 010100)
```


密码差分分析

001001 > 011000)

probability of 6/64

$$\frac{6}{64} \times \frac{6}{64} \approx 0.008789$$

010010 **⇒** 000001) **probability of 6/64**

差分分析步骤

- 1. 现在构建3轮差分特征,p~2⁻⁷;
- 2. 选择满足输入差分的明文对, 若输出密文对满足期望的差分, 则称之为正确的明密文对;
- 3. 由正确的明密文对可推测出正确的密钥。

Plaintext S-box S-box S-box S-box S-box S-box S-box ⊕ Key S-box S-box S-box S-box S-box

码差分分析

恢复密钥攻击

1. 猜测最后一轮相关的6个密钥比特;

2. 将猜测的密钥与密文对异或, 得到最后一轮S盒的输出对;

3. 将S盒差分对与差分特征的输出差分进行匹配。

若匹配上的话,对猜测密钥值 计数加1,计数最多的密钥为正 确密钥。

猜测key	000000	000001	000010	000011	000100	•••	111111	总计
计数	11	28	7	11	14	•••	13	1000

28

这项工作需要26 × 1000 ≈ 216 次操作。

暴力破解剩余的密钥比特需要 230 次操作。

总结:暴力破解需要236次操作,这里只需要230次。

Question: How can we reduce the total work?

作业

- 1. 构造一个3bit输入输出的S盒,测试其密码指标,并根据指标进行调整,最后得到理想的S盒。
- 2.选择一个算法,学习它的S盒设计方法,完成对S盒设计描述(包括visio画图和密码指标测试结果)。

AES

ARIA

Camellia

LBlock

Serpent

SM4

Present

Crypton

MISTY

Kasumi

SAFER

E2

Keccak

Picolo

SKINNY

Led

BLACK

SKEIN

差分均匀度

非线性度

代数次数和项数

雪崩和扩散

代数免疫阶

后两个选做

