

CMPT 825: Natural Language Processing

Text Classification - Evaluation

Fall 2020 2020-09-21

Adapted from slides from Danqi Chen and Karthik Narasimhan

Evaluation

Confusion matrix

Consider binary classification

Table of predictions

Truth

		Positive	Negative
Predicted	Positive	100	5
	Negative	45	100

Ideally, we want:

Truth

Predicted

	Positive	Negative
Positive	145	0
Negative	0	105

Truth

Predicted

	Positive	Negative
Positive	100 TP	5 FP
Negative	45 FN	100 TN

- True positive (TP): Predicted + and actual +
- True negative (TN): Predicted and actual -
- False positive (FP): Predicted + and actual -
- False negative (FN): Predicted and actual +

$$Accuracy = \frac{TP + TN}{Total} = \frac{200}{250} = 80\%$$

Actual positives

Predicted positives

(image credit: wikipedia)

Truth

Predicted

	Positive	Negative
Positive	100	5
Negative	45	100

	Positive	Negative
Positive	50	25
Negative	25	150

- True positive (TP): Predicted + and actual +
- True negative (TN): Predicted and actual -
- False positive (FP): Predicted + and actual -
- False negative (FN): Predicted and actual +

Coarse metric

Accuracy =
$$\frac{TP + TN}{Total} = \frac{200}{250} = 80\%$$

Precision and Recall

Precision: % of selected classes that are correct

$$Precision(+) = \frac{TP}{TP + FP}$$

• Recall: % of correct items selected

Recall(+) =
$$\frac{TP}{TP + FN}$$

Actual positives (relevant)

Predicted positives

(selected/retrieved)

(image credit: wikipedia)

Precision and Recall

Precision: % of selected classes that are correct

$$Precision(+) = \frac{TP}{TP + FP}$$

$$Precision(-) = \frac{TN}{TN + FN}$$

Recall: % of correct items selected

Recall(+) =
$$\frac{TP}{TP + FN}$$
 Recall(-) = $\frac{TN}{TN + FP}$

Truth

Predicted

	Positive	Negative
Positive	100	5
Negative	45	100

	Positive	Negative
Positive	50	25
Negative	25	150

Precision(+) =
$$\frac{TP}{TP + FP}$$
 $\frac{100}{100 + 5} = 0.95$

$$\frac{100}{100 + 5} = 0.95$$

$$\frac{50}{50 + 25} = 0.75$$

Recall(+) =
$$\frac{TP}{TP + FN}$$
 $\frac{100}{100 + 45} = 0.69$

$$\frac{100}{100 + 45} = 0.69$$

$$\frac{50}{50 + 25} = 0.75$$

Two metrics - which one to use?

F-Score

- Combined measure
- Harmonic mean of Precision and Recall

$$F_1 = \frac{2 \cdot \text{Precision} \cdot \text{Recall}}{\text{Precision} + \text{Recall}}$$

Or more generally,

$$F_{\beta} = \frac{(1 + \beta^2) \cdot \text{Precision} \cdot \text{Recall}}{\beta^2 \cdot \text{Precision} + \text{Recall}}$$

Truth

Predicted

	Positive	Negative
Positive	100	5
Negative	45	100

	Positive	Negative
Positive	50	25
Negative	25	150

Precision(+) =
$$\frac{TP}{TP + FP}$$
 $\frac{100}{100 + 5} = 0.95$

$$\frac{100}{100 + 5} = 0.95$$

$$\frac{50}{50 + 25} = 0.75$$

Recall(+) =
$$\frac{TP}{TP + FN}$$
 $\frac{100}{100 + 45} = 0.69$

$$\frac{100}{100 + 45} = 0.69$$

$$\frac{50}{50 + 25} = 0.75$$

$$F_1(+) = \frac{2 \cdot P(+)R(-)}{P(+) + R(+)}$$

Truth

Predicted

	Positive	Negative
Positive	100	5
Negative	45	100

Q: What happens to
$$F_1(+)$$
 if FN = 25 and FP = 25?

	Positive	Negative
Positive	100	25
Negative	25	100

Precision(+) =
$$\frac{TP}{TP + FP}$$
 $\frac{100}{100 + 5} = 0.95$

$$\frac{100}{100 + 5} = 0.95$$

Recall(+) =
$$\frac{TP}{TP + FN}$$
 $\frac{100}{100 + 45} = 0.69$

$$\frac{100}{100 + 45} = 0.69$$

$$F_1(+) = \frac{2 \cdot P(+)R(-)}{P(+) + R(+)}$$

Truth

Predicted

	Positive	Negative
Positive	TP	FP
Negative	FN	TN

Use a simple rule, can you design a classifier with

Q. perfect precision?

Q. perfect recall?

$$Precision(+) = \frac{TP}{TP + FP}$$

Recall(+) =
$$\frac{TP}{TP + FN}$$

Choosing Beta

Truth

Predicted

	Positive	Negative
Positive	200	100
Negative	50	100

$$F_{\beta} = \frac{(1 + \beta^2) \cdot \text{Precision} \cdot \text{Recall}}{\beta^2 \cdot \text{Precision} + \text{Recall}}$$

Q. Which value of Beta maximizes F_{β} for positive class?

A.
$$\beta = 0.5$$

B.
$$\beta = 1$$

C.
$$\beta = 2$$

Precision Recall tradeoff

Tune on validation set

Validation

Train Validation Test

- Choose a metric: Precision/Recall/F1
- Optimize for metric on Validation (aka Development) set
- Finally evaluate on 'unseen' test set
- Cross-validation:
 - Repeatedly sample several train-val splits
 - Reduces sampling bias due to sampling errors

Aggregating scores

- We have Precision, Recall, F1 for each class
- How to combine them for an overall score?
 - Macro-average: Compute for each class, then average
 - Micro-average: Collect predictions for all classes and jointly evaluate

Macro vs Micro average

Class 1

	Truth: yes	Truth: no
Classifier: yes	10	10
Classifier: no	10	970

Class 2

	Truth: yes	Truth: no
Classifier: yes	90	10
Classifier: no	10	890

Micro Ave. Table

	Truth: yes	Truth: no
Classifier: yes	100	20
Classifier: no	20	1860

Precision

- Macro-averaged precision: (0.5 + 0.9) / 2 = 0.7
- Micro-averaged precision: 100/120 = 0.85
- Micro-averaged score is dominated by score on common classes

Summary

- Evaluation Metrics
 - Accuracy coarse metric
 - Precision, Recall, F1 for each class
- Aggregated scores
 - Macro-average: Compute for each class, then average
 - Micro-average: Collect predictions for all classes and jointly evaluate (dominated by common classes)
- Precision-Recall curve: pick threshold for maximum F1
 - Use validation set to tune hyperparameters, test set should remain "unseen"