

EFFECT OF EPOXY/NANO-PARTICLE FILM INTERLEAF ON INTERLAMINAR PROPERTIES OF A CARBON FIBER/ EPOXY COMPOSITE

Sandi G. Miller SAMPE 2013 May 6 – 9, 2013 Long Beach, CA

www.nasa.gov

National Aeronautics and Space Administration

Background

NASA Fixed Wing Project Goals for Propulsions Efficiency

Overall Project Goals-

Achieve a net aero-propulsive efficiency increase over conventional installation with minimal adverse

impaction weight and noise.

Task Objectives:

Increase aerodynamic efficiency of fan blade through a combination of a reduction in the thickness of composite fan blade- without adversely affecting toughness and impact resistance.

Approach

Thin, Toughened Fan Blade

- Nanocomposite/localized engineering of stiffness
- Aeroelastic tailoring

Benefit/Pay-off

- 1-2% reduction in fuel burn due to aerodynamic efficiency

Approach to Improved Damage Tolerance of Composites

Materials Screening: Down-select a materials approach for interlayer toughening of composite fan blades.

- Nanoparticle Dispersion in a Thermoset Resin
- · Thermoplastic Fiber Veil Interleaves.

Assessment: Tension, Compression, Short Beam Shear, GIC, GIIC

Goal: a reduction of damage on impact without reduction of inplane properties.

www.nasa.gov

National Aeronautics and Space Administration

Benefit of Interleave Approach

 A material interleave approach is attractive because interleave is incorporated only where the structure is prone to delamination.

Gelatin based bird simulant projectile fired at 1080 ft/sec, with an angle of 66° from normal and 50% initial engagement.

Characterization of Interleave Materials

Epoxy/nano-particle films, ~ 4 mil thick.

TEM images of clay dispersed in toughened epoxy shows a reduction in dispersion with scale-up.

Interleave coupons included: Epoxy film, Epoxy/clay, epoxy/ graphene, and epoxy/CNF.

Thermoplastic veil materials have been investigated where the thermoplastic fiber diameter varies from nano to micron scale.

Areal Weight: ~ 1-10 gsm

NASA

Resin Content- Short Beam Shear Coupons

Coupon	Density (g/cm³)	Resin (wt.%)	Fiber (vol. %)	ol. %) Void (%)	
Baseline	1.58	34.7 (1.1)	58.0 (1.2)	0	
Epoxy Film Interleave	1.47	56.5 (1.5)	35.9 (1.5)	0.4 (0.3)	
Epoxy/Clay	1.47	55.2 (0.36)	37.1 (0.4)	0.5 (0.4)	
Epoxy/Graphene	1.48	54.7 (0.50)	37.6 (0.4)	0.4 (0.3)	
Epoxy/CNF	1.49	51.6 (0.53)	40.6 (0.5)	0.3 (0.2)	

Laminate	Density (g/cm ³)	Resin Content (wt%)	Fiber Volume (%)	Void Content (%)
Baseline	1.56	34.9 (0.6)	57.3 (0)	0.8 (0.1)
Epoxy Interleave	1.49	50.9 (0.6)	41.2 (0.6)	0.4 (0.3)
Ep-Clay Interleave	1.44	48.7 (0.15)	41.7 (0.1)	4.1 (0.6)
Ep- Graphene Interleave	1.51	48.6 (0.2)	43.5 (0.2)	0.2 (0)
Ep-PR19 Interleave	1.52	45.4 (0.13)	46.7 (0.2)	0.2 (0)

Double Cantilever Beam Results

Laminate	GI _C	GI _R
Baseline	184.4 (11.9)	315.3 (13.0)
Epoxy Film	127.2 (26.7)	208.6 (7.0)
Ep-Clay Film	78.2 (9.7)	87.0 (12.2)
Ep-Graf Film	111.0 (46.7)	273.6 (7.05)
Ep- PR19 Film	148.3 (15.9)	143.2 (9.3)

Significant reduction in Mode I fracture toughness with thermosetting interleave.

Fracture Surface Analysis-Double Cantilever Beam Coupons

Electrospun PES Nanofibers

In Collaboration with Professor Kunigal Shivakumar, North Carolina A&T University

www.nasa.gov

National Aeronautics and Space Administration

Electrospun Nanofiber- Summary of Mechanical Properties

Properties		Base	Interleaved	% Change	Manufacturer's
Tensile Modulus, GPa		157 (7)*	153(5)*	-3%	164
Tensile Strength, MPa		2,557 (1)	2,694(3)	5%	2,723
Poisson's Ratio		0.31 (7)	0.29(6)		N/A
Compression Modulus, GPa		141 (2.4)	137(2.8)	-10%	150
Compression Str	ength. MPa	1517 (2.9)	1315(4.7)	-20%	1689
Interlaminar Shear Strength, MPa	0.0 wt % nanofabric	136.5 (2.5)		m na market	137.2
	0.5 wt % nanofabric		140.6(1.1)	3%	
	0.3 wt % nanofabric		140.0(1)	396	
	1.1 wt% nanofabric		138.6(1)	296	

^{*%} co-efficient of variation

Conclusions

Three candidate material forms were interleaved into IM7/8552-1 and evaluated for their potential to reduce delamination on impact.

Nanocomposites composed of epoxy resin and a nanoparticle lead to the greatest reduction of in-plane properties and a modest increase to interlaminar properties.

Thermoplastic veils (melt spun and electrospun) offered improved interlaminar performance with minimal reduction of in plane properties.

Impact tests of down-selected thermoplastic veils will be performed over the next year.

Acknowledgements

NASA Aeronautics Research Mission Directorate/ Subsonic Fixed Wing Project.

North Carolina A&T University- Professor Shivakumar's research group.