Demostraciones Algebra

July 25, 2025

Teorema 1 Sean $A, B \in \mathbb{K}^{m \times n}$ matrices equivalentes por filas, entonces el sistema de ecuaciones Ax = 0 y Bx = 0 tienen exactamente las mismas soluciones.

Prueba: Si $A \sim B \Longrightarrow \exists$ una sucesion de matrices tal que $A = A_0 \to A_1 \to \cdots \to A_n = B$, donde cada A_j se obtiene por medio de una operacion elemental por filas. Por lo tanto basta probar que $A_j x = 0$ y $A_{j+1} x = 0$.

- Caso e_r^c : $a_{r1}x_1 + a_{r2}x_2 + \cdots + a_{rn}x_n = 0 \iff c \cdot a_{r1}x_1 + c \cdot a_{r2}x_2 + \cdots + c \cdot a_{rn}x_n = 0$, pero como $c \neq 0 \implies c \cdot (a_{r1}x_1 + a_{r2}x_2 + \cdots + a_{rn}x_n) = 0$, por lo tanto ambos sistemas son iguales.
- Caso $e_{r,s}$: es trivial pues ambas filas r, s ya eran iguales a 0 y lo siguen siendo.
- Caso $e_{r,s}^c$: $(r+c\cdot s) = (a_{r1}+c\cdot a_{s1})x_1 + (a_{r2}+c\cdot a_{s2})x_2 + \cdots + (a_{rn}+c\cdot a_{sn})x_n = 0$ de la misma formas que en el primer caso como las filas r, s son iguales a 0 por lo tanto la nueva fila r tambien lo es.

Teorema 2 Sea $A \in \mathbb{K}^{m \times n}$ con $m < n \Longrightarrow el$ sistema Ax = 0 tiene soluciones no triviales.

Prueba: Sea R la MERF equivalente a $A \Longrightarrow$ los sistemas Ax = 0 y Rx = 0 tienen exactamente las mismas soluciones. Sea r = la cantidad de filas no nulas de $R \Longrightarrow r \le m$ y por lo tanto $r < n \Longrightarrow \text{hay } n - r > 0$ variables libres, por lo tanto hay soluciones no triviales.

Teorema 3 Sea $A \in \mathbb{K}^{n \times n}$. Entonces A es equivalente por filas a las $Id \iff Ax = 0$ tiene unicamente la solucion trivial.

Prueba:

- (\Longrightarrow) : Si $A \sim Id$, estas tienen exactamente las mismas soluciones. Por lo tanto como Idx = 0 admite unicamente la solucion trivial queda probado.
- (\iff): Sea R la MERF $\sim A \implies$ el sistema Rx = 0 tiene unicamente la solucion trivial. Sea r =la cantidad de filas no nulas de $R \implies n r = 0$ porque no tienen variables libres. Entonces cada fila i tiene un 1 en la columna k_i por lo tanto R = Id.

Teorema 4 Propiedades de la multiplicación de matrices:

- 1. $A \in \mathbb{K}^{m \times n}, B \in \mathbb{K}^{n \times p}, C \in \mathbb{K}^{p \times q} \Longrightarrow (AB)C = A(BC)$.
- 2. $A \in \mathbb{K}^{m \times n} \Longrightarrow Id_m A = Id_n A = A$.
- 3. $A, A' \in \mathbb{K}^{m \times n}, B, B' \in \mathbb{K}^{n \times p} \Longrightarrow (A + A')B = AB + A'B \ y \ A(B + B') = AB + AB'.$
- 4. $A \in \mathbb{K}^{m \times n}, B \in \mathbb{K}^{n \times p}, \lambda \in \mathbb{K} \Longrightarrow \lambda \cdot (AB) = (\lambda A)B = A(\lambda B)$

Teorema 5 Sea e una operacion elemental por filas y sea E = e(Id) la matriz elemental asociada. Entonces para toda $A \in \mathbb{K}^{n \times n}$ se cumple que $e(A) = E \cdot A$.

Prueba: Tenemos que el elemento i, j de e(A) es el mismo que el de la matriz EA para cada operacion elemental, osea $(e(A))_{ij} = (EA)_{ij}$.

• Caso e_r^c :

Sabemos que
$$(e(A))_{ij} = \begin{cases} A_{ij} & \text{si } i \neq r \\ cA_{ij} & \text{si } i = r \end{cases}$$

Veamos $(EA)_{ij} = \sum_{k=1}^{m} E_{ik} A_{kj} \text{ (si } i \neq k \Longrightarrow E_{ik} = 0)$
 $= E_{ii} A_{ij} = \begin{cases} A_{ij} & \text{si } i \neq r \\ cA_{ij} & \text{si } i = r \end{cases}$

• Caso $e_{r,s}$:

$$\begin{aligned} & \text{Sabemos que } (e(A))_{ij} = \begin{cases} A_{ij} \text{ si } i \neq r, s \\ A_{sj} \text{ si } i = r \\ A_{rj} \text{ si } i = s \end{cases} \\ & (EA)_{ij} = \sum_{k=1}^m E_{ik} A_{kj} \text{ , donde } E_{ik} = \begin{cases} 1 \text{ si } i = k \vee i = r, s \vee k = r, s \\ 0 \text{ caso contrario} \end{cases} \\ & \text{Veamos } (EA)_{ij} \text{ en cada caso:} \begin{cases} \text{si } i \neq r, s \Longrightarrow (EA)_{ij} = A_{ij} \\ \text{si } i = r \Longrightarrow (EA)_{ij} = E_{is} A_{sj} = A_{sj} \\ \text{si } i = s \Longrightarrow (EA)_{ij} = E_{ir} A_{rj} = A_{rj} \end{cases}$$

• Caso $e_{r,s}^c$:

Sabemos que
$$e(A)_{ij} = \begin{cases} [within]A_{ij} & \text{si } i \neq r \\ A_{rj} + cA_{sj} & \text{si } i = r \end{cases}$$

$$(EA)_{ij} = \sum_{k=1}^{m} E_{ik}A_{kj} , \text{ donde } E_{ik} = \begin{cases} 1 & \text{si } i = k \\ c & \text{si } i = r \land j = s \\ 0 & \text{caso contrario} \end{cases}$$

 \Box def

Teorema 6 Sean $A, B \in \mathbb{K}^{n \times n}$:

- 1. Si A es inversible $\Longrightarrow A^{-1}$ tambien lo es $y(A^{-1})^{-1} = A$.
- 2. Si A, B son inversibles \Longrightarrow AB es inversible y $(AB)^{-1} = B^{-1}A^{-1}$.

Prueba:

1.
$$A \cdot A^{-1} = A^{-1} \cdot A = Id \Longrightarrow A^{-1}$$
 inversible $v(A^{-1})^{-1}$ es A .

2.
$$(AB) \cdot (B^{-1}A^{-1}) = A(BB^{-1})A^{-1} = A(Id)A^{-1} = AA^{-1} = Id.$$

Teorema 7 Toda matriz elemental E es inversible.

Prueba: Sea e la operacion elemental por fila correspondiente a E y sea e' la operacion elemental inversa (sabemos que existe por teorema). Por lo tanto sea E' = e'(Id)

$$\begin{split} Id &= e'(e(Id)) = e'(E) = E'E \\ Id &= e(e'(Id)) = e(E') = EE' \\ &\Longrightarrow E \text{ es inversible y su inversa es } E' \end{split}$$

Teorema 8 Sea $A \in \mathbb{K}^{n \times n}$ entonces son equivalentes:

- 1. A es inversible.
- 2. A es equivalente por filas a la Id.
- 3. A es producto de matrices elementales.

Prueba:

- [1 \Longrightarrow 2] Sea R la MERF $\sim A \Longrightarrow$ existen matrices elementales E_1, \ldots, E_k talque $R = E_k \cdots E_2 E_1 A$. Como las matrices elementales E_j y A son inversibles $\Longrightarrow R$ tambien lo es $\Longrightarrow R$ no tiene filas nulas por lo tanto R = Id.
- $[2 \Longrightarrow 3]$ Si $A \sim Id \Longrightarrow Id \sim A \Longrightarrow$ existen P productos de matrices elementales talque $A = P \cdot Id = E_1 E_2 \cdots E_k \cdot Id$.
- $[3 \Longrightarrow 1]$ Supongamos $A = E_1 \cdots E_k$ donde E_j es una matriz elemental. Como cada E_j es inversible y el producto de matrices inversibles tambien lo es \Longrightarrow A es inversible.

Teorema 9 Sean $A, B \in \mathbb{K}^{m \times n}$. Entonces B es equivalente por filas a $A \iff \exists P$ matriz inversible $m \times m$ talque $B = P \cdot A$

Prueba:

- (\Longrightarrow): Si $B \sim A$ sabemos que $B = E_k E_{k-1} \cdots E_1$ y como cada E_i es inversible el producto de matrices inversibles tambien lo es.
- (\iff) : Sea P inversible talque B=PA como P es producto de matrices elementales $\implies B=E_k\cdots E_1A \implies B$ se obtiene de A haciendo operaciones elementales $\implies B\sim A$.

Teorema 10 Sea $A \in \mathbb{K}^{n \times n}$. Entonces son equivalentes:

- 1. A es inversible.
- 2. El sistema Ax = 0 tiene una unica solucion (la trivial).
- 3. $\forall b \in \mathbb{K}^{n \times 1}$ el sistema no-homogeneo Ax = b tiene una unica solucion.

Prueba:

- [1 \iff 2] Sabemos que A es inversible \iff $A \sim Id \iff$ el sistema Ax = 0 tiene como unica solucion la trivial.
- $[1 \Longrightarrow 3]$ Sea $b \in \mathbb{K}^{n \times 1}$, como A es inversible $\Longrightarrow \exists A^{-1}$. Por lo tanto sea $x_0 = A^{-1}b \in \mathbb{K}^{n \times 1}$ $\Longrightarrow Ax_0 = A(A^{-1}b) = b$. Veamos que es unica, para eso supongamos que existe otra solucion $x_1 \Longrightarrow Ax_1 = b \Longrightarrow Ax_1 = b = Ax_0$ ahora multiplicamos por la inversa $\Longrightarrow A^{-1}Ax_0 = A^{-1}Ax_1 \Longrightarrow x_0 = x_1$
- $[3 \Longrightarrow 2]$ Como tiene solucion para todo b tomo b=0 por lo tanto, obviamente, tiene una unica solucion por hipotesis.

Teorema 11 Si $W \subseteq V$ y $W \neq \emptyset$. Entonces W es un \mathbb{K} -subespacio vectorial de $V \iff \forall v, w \in W$ y $\forall c \in \mathbb{K}$ el vector $[c \cdot v + w] \in W$

Prueba:

- (\Longrightarrow) : Si W es un subespacio vectorial y $c \in \mathbb{K}$, $v, w \in W \Longrightarrow c \cdot v \in W \Longrightarrow c \cdot v + w \in W$
- (\Leftarrow): Supongamos que $\forall v, w \in W$ y $\forall c \in \mathbb{K} : c \cdot v + w \in W$ veamos contiene al $\vec{0}$, que es cerrado para la suma y el producto por escalar.
 - 1. Como $W \neq \emptyset \implies \exists w \in W \implies (-1) \cdot w + (1) \cdot w \in W \implies \vec{0} \in W$.
 - 2. Tomamos c=1 por lo tanto $(1) \cdot v + w = v + w \in W$ por lo tanto la suma esta bien definida.
 - 3. Como $\vec{0} \in W$ tomamos $w = \vec{0}$ por lo tanto $c \cdot v + \vec{0} = c \cdot v \in W$ entonces el producto esta bien definido.

Teorema 12 Sea V un \mathbb{K} -espacio vectorial. Entonces la interseccion de subespacios de V es un subespacio vectorial de V.

Prueba:

Sea $\{W_i\}_{i\in I}$, donde W_i es un subespacio vectorial de V. Entonces sea $W=\bigcap_{i\in I}W_i$.

Para ver que W es un subespacio veamos que si $v, w \in W$, $c \in \mathbb{K} \Longrightarrow c \cdot v + w \in W$. Si $v, w \in W \Longrightarrow v, w \in W_i$ para todo $i \in I$ y como todo W_i es un subespacio $\Longrightarrow c \cdot v + w \in W_i$ $\Longrightarrow c \cdot v + w \in W$.

Teorema 13 Sea V un \mathbb{K} -espacio vectorial y sean $v_1, \ldots, v_k \in V$. Entonces $W = \{c_1v_1 + \cdots + c_kv_k | c_i \in \mathbb{K}\}$ = Conjunto de todas la combinaciones lineales, es un subespacio vectorial de V.

Prueba: Tomemos $v, w \in W$, $c \in \mathbb{K}$ veamos $c \cdot v + w \in W$.

Sean
$$v = c_1v_1 + \dots + c_kv_k$$
 y $w = d_1v_1 + \dots + d_kv_k \Longrightarrow$
 $c \cdot v + w = (c \cdot c_1v_1 + \dots + c \cdot c_kv_k) + (d_1v_1 + \dots + d_kv_k)$
 $= (c \cdot c_1 + d_1)v_1 + \dots + (c \cdot c_k + d_k)v_k$
 $\Longrightarrow c \cdot v + w$ es una combinacion lineal, por lo tanto $\in W$

Teorema 14 Sea V un \mathbb{K} -espacio vectorial de dimension finita y W subespacio de V. Todo subconjunto L.I. de W es finito y se puede completar a una base.

Prueba: Si $S_0 \subseteq W$ es L.I. $\Longrightarrow S_0$ es un conjunto L.I de V y si dim(V) = n, sabemos que $|S_0| \le n$, osea es finito. Queremos extenderlo a una base de la siguiente forma:

• Si S_0 genera W ya es una base.

• Si S_0 no genera $W \Longrightarrow \exists w_1 \in W$ talque $w_1 \notin \langle S_0 \rangle$, vimos que si agregamos algo que no esta en el espacio generado este conjunto sigue siendo L.I. Repetimos este paso hasta algun $S_k = S_0 \cup w_1 \cup \cdots \cup w_k$ talque $\langle S_k \rangle = W$. Como este conjunto es por definicion L.I. y genera este es una base.

Teorema 15 Sea V un \mathbb{K} -espacio vectorial, sea $S = \{v_1, \dots, v_m\}$ un conjunto de generadores de V. Entonces existe $B \subseteq S$ que es una base de V.

Prueba: Vamos a definir inductivamente subconjuntos $G_j \subseteq S$ (j = 1, ..., m) que sean L.I.

• (j = 1):

$$G_1 = \begin{cases} \{v_1\} & si & v_1 \neq 0 \\ \emptyset & si & v_1 = 0 \end{cases} \implies G_1 \text{ es L.I.}$$

• (j=2):

$$G_2 = \begin{cases} G_1 \cup v_2 & si \quad v_2 \notin \langle G_1 \rangle \\ G_1 & si \quad v_2 \in \langle G_1 \rangle \end{cases} \implies G_2 \text{ es L.I. en cualquier caso}$$

• (j+1):

$$G_{j+1} = \begin{cases} G_j \cup v_{j+1} & si \quad v_{j+1} \notin \langle G_j \rangle \\ G_j & si \quad v_{j+1} \in \langle G_j \rangle \end{cases} \implies \text{en ambos casos } G_{j+1} \text{ es L.I.}$$

$$\Longrightarrow G_m$$
 es L.I. y $\langle G_m \rangle = \{v_1, \dots, v_m\} = V \Longrightarrow \mathcal{B} = G_m \subseteq S$ y la dimension de $V = |G_m|$. \square

Teorema 16 Sean W_1, W_2 dos subespacios de V:

- 1. $W_1 + W_2$ es un subespacio de V.
- 2. $W_1 + W_2$ es el menor subespacio (respecto a la inclusion) que contiene a $W_1 + W_2$.
- 3. Si $\{v_i\}_{i\in I}$ es un conjunto de generadores de W_1 y $\{w_j\}_{j\in J}$ es un conjunto de generadores de $W_2 \Longrightarrow \{v_i\}_{i\in I} \cup \{w_j\}_{j\in J}$ es un conjunto de generadores de $W_1 + W_2$.

Prueba:

1. $W_1 + W_2 \neq \emptyset$ pues $\vec{0} \in W_1$ y $\vec{0} \in W_2 \Longrightarrow \vec{0} = \vec{0} + \vec{0} \in W_1 + W_2$. Sean $v_1, v_2 \in W_1 + W_2$ queremos ver que $c \cdot v_1 + v_2 \in W_1 + W_2$.

$$\begin{aligned} v_1 &= x_1 + y_1 \ , \ v_2 = x_2 + y_2 \ \text{con} \ x_1, x_2 \in W_1 \subseteq V \ \text{y} \ y_1, y_2 \in W_2 \subseteq V \\ &\Longrightarrow c \cdot v_1 + v_2 = c \cdot (x_1 + y_1) + (x_2 + y_2) = (cx_1 + x_2) \in W_1 + (cy_1 + y_2) \in W_2 \\ &\Longrightarrow c \cdot v_1 + v_2 \in W_1 + W_2 \end{aligned}$$

2. $W_1 \subseteq W_1 + W_2$ pues si $w_1 \in W_1 \Longrightarrow w_1 + \vec{0} \in W_1 + W_2$ y del mismo modo con W_2 . Por lo tanto $W_1 \cup W_2 \subseteq W_1 + W_2$, basta ver que es el menor subespacio que lo contiene. Sea U un subespacio de V talque $W_1 \cup W_2 \subseteq U$, queremos ver que $W_1 + W_2 \subseteq U$. Sea $v \in W_1 + W_2 \Longrightarrow v = x + y$ con $x \in W_1 \subseteq U$, $y \in W_2 \subseteq U$ osea $v \in U \Longrightarrow W_1 + W_2 \subseteq U$.

3. $\{v_i\}_{i\in I}$ genera W_1 , $\{w_i\}_{i\in J}$ genera $W_2 \Longrightarrow S = \{v_i\}_{i\in I} \cup \{w_i\}_{i\in J}$ genera $W_1 + W_2$.

Sea
$$v \in W_1 + W_2 \Longrightarrow v = x + y \text{ con } x \in W_1, y \in W_2$$

 $\Longrightarrow x = \sum_{i \in I} \alpha_i v_i , y = \sum_{j \in J} \beta_j w_j \quad (\text{ con } \alpha_i, \beta_j \in \mathbb{K})$
 $\Longrightarrow v = x + y = \sum_{i \in I} \alpha_i v_i + \sum_{j \in J} \beta_j w_j$

Por lo tanto v es combinacion lineal de elementos de S

Teorema 17 Sea V un \mathbb{K} -espacio vectorial, sean W_1, W_2 subespacios de V y de dimension finita.

 $Entonces\ W_1+W_2\ es\ un\ subespacio\ y\ dim(W_1+W_2)=dim(W_1)+dim(W_2)-dim(W_1\cap W_2)$

Prueba: $W_1 \cap W_2$ es un subespacio de W_1 (y de W_2) por lo tanto es de dimension finita. Sea $\{u_1, \ldots, u_k\}$ base de $W_1 \cap W_2 \Longrightarrow \{u_1, \ldots, u_k\}$ es L.I. en $W_1 \Longrightarrow$ se puede extender a una base de W_1 , analogamente con W_2 .

Osea existen $\{v_1,\ldots,v_n\}\subseteq W_1$ tales que $\{u_1,\ldots,u_k,v_1,\ldots,v_n\}$ es una base de W_1 . De la misma forma existen $\{w_1,\ldots,w_m\}\subseteq W_2$ tales que $\{u_1,\ldots,u_k,w_1,\ldots,w_m\}$ es base.

 $\Longrightarrow W_1 + W_2$ es generado por $\mathcal{B} = \{u_1, \dots, u_k, v_1, \dots, v_n, w_1, \dots, w_m\}$ es $\mathcal{B}_1 \cup \mathcal{B}_2$. Veamos que este conjunto es L.I.

Si
$$\sum_{i=1}^{k} a_i u_i + \sum_{i=1}^{n} b_i v_i + \sum_{i=1}^{m} c_i w_i = 0$$

$$\Longrightarrow \sum_{i=1}^{k} a_i u_i + \sum_{i=1}^{n} b_i v_i = -\sum_{i=1}^{m} c_i w_i \in W_1 \cap W_2$$
Como $\{u_1, \dots, u_k\}$ es base de $W_1 \cap W_2 \Longrightarrow -\sum_{i=1}^{m} c_i w_i = \sum_{i=1}^{k} d_i u_i$
Reemplazando
$$\sum_{i=1}^{k} a_i u_i + \sum_{i=1}^{n} b_i v_i + \sum_{i=1}^{k} (-d_i) u_i = 0$$

$$\sum_{i=1}^{k} (a_i - d_i) u_i + \sum_{i=1}^{n} b_i v_i = 0$$

Como $\{u_1, \ldots, u_k, v_1, \ldots, v_n\}$ es base de W_1 el conjunto es $L.I. \implies a_i = d_i$ y $b_i = 0, \forall i$. Volviendo a la sumatoria con este resultado sabemos que:

$$\sum_{i=1}^{k} a_i u_i + \sum_{i=1}^{m} c_i w_i = 0$$

Como $\{u_1, \ldots, u_k, w_1, \ldots, w_m\}$ es base de W_2 el conjunto es L.I. \Longrightarrow todos los escalares son 0. Osea $\beta = \{u_1, \ldots, u_k, v_1, \ldots, v_n, w_1, \ldots, w_m\}$ es L.I. y por lo tanto es base de $W_1 + W_2$

$$\implies \dim(W_1 + W_2) < \infty \text{ y } \dim(W_1 + W_2) = k + n + m$$
$$\dim(W_1) = k + n \text{ , } \dim(W_2) = k + m \text{ , } \dim(W_1 \cap W_2) = k$$
$$\implies \dim(W_1 + W_2) = \dim(W_1) + \dim(W_2) - \dim(W_1 \cap W_2)$$

Proposicion 17.1 Si $V = W_1 \oplus W_2 \Longrightarrow para\ cada\ v \in V : \exists\ unicos\ elementos\ x \in W_1, y \in W_2$ tales que v = x + y.

Prueba: Como $V = W_1 + W_2$ sabemos que existen $w_1 \in W_1, w_2 \in W_2$ tales que $v = w_1 = w_2$. Si ademas $v = u_1 + u_2 \Longrightarrow \vec{0} = v - v = (w_1 + w_2) - (u_1 + u_2) = (w_1 - u_1) + (w_2 - u_2) \Longrightarrow w_1 - u_1 = w_2 - u_2 \in W_1 \cap W_2 = \{0\}$ (pues es suma directa) $\Longrightarrow w_1 = u_1, w_2 = u_2$.

Teorema 18 Sean W_1, W_2 subespacios vectoriales de V y sean $\mathcal{B}_1, \mathcal{B}_2$ bases de W_1 y W_2 . Entonces son equivalentes:

- 1. $V = W_1 \oplus W_2$.
- 2. $\mathcal{B} = \mathcal{B}_1 \cup \mathcal{B}_2$ es una base de V.

Prueba:

• $[1 \Longrightarrow 2]$: Asumimos que $V = W_1 \oplus W_2 \Longrightarrow \mathcal{B} = \mathcal{B}_1 \cup \mathcal{B}_2$ es un conjunto de generadores de $W_1 + W_2$ bastar ver que es L.I. Sabemos que $dim(V) = dim(W_1 \oplus W_2) = dim(W_1) + dim(W_2) - dim(\{0\})$

$$\sum_{i \in I} a_i v_i + \sum_{j \in J} b_j w_j = 0 \Longrightarrow \sum_{\substack{i \in I \\ \in W_1}} a_i v_i = -\sum_{\substack{j \in J \\ \in W_2}} b_j w_j \Longrightarrow W_1 \cap W_2 = \{0\}$$

$$\sum_{i \in I} a_i v_i = \vec{0} , \sum_{j \in J} b_j w_j = \vec{0}$$

 $\implies a_i = 0, b_j = 0 \ \forall i \in I, \forall j \in J$ pues ambos v_i, w_j son base y por lo tanto son L.I.

• $[2 \Longrightarrow 1]$: Asumimos que $\mathcal{B} = \mathcal{B}_1 \cup \mathcal{B}_2$ base de $V \Longrightarrow V = W_1 + W_2$ pues sabemos que:

$$v = \sum_{i \in I} a_i v_i + \sum_{j \in J} b_j w_j$$

Necesitamos ver que $W_1 \cap W_2 = \{0\}$ para ver que la suma es directa. Sea $v \in W_1 \cap W_2$:

$$\implies v = \sum_{i \in I} a_i v_i = \sum_{j \in J} b_j w_j$$

$$\implies 0 = \sum_{i \in I} a_i v_i - \sum_{j \in J} b_j w_j$$

(como ambos conjuntos son L.I. esto solo pasa si $a_i = 0 \ \forall i \in I, b_j = 0 \ \forall j \in J$) $\Longrightarrow v = 0 \Longrightarrow W_1 \cap W_2 = \{0\}$

Definicion 1 Dados V, W espacio vectoriales sobre \mathbb{K} .

Una transformacion lineal de V en W es una funcion, $T: V \to W$ que satisface:

•
$$T(v+w) = T(v) + T(w) \quad \forall v, w \in V$$

•
$$T(c \cdot v) = c \cdot T(v) \quad \forall v \in V, \forall c \in \mathbb{K}$$

De esas propiedades se deducen las siguientes:

$$\bullet \ T(\vec{0}_V) = \vec{0}_W$$

•
$$T(-v) = -T(v) \quad \forall v \in V$$

Teorema 19 Sean V, W \mathbb{K} -espacio vectorial, $T: V \to W$ una T.L.

1. Si
$$U \subseteq V$$
 es un subespacio de $V \Longrightarrow T(U)$ es un subespacio de W .

2. Si
$$Z \subseteq W$$
 es un subespacio de $W \Longrightarrow T^{-1}(Z) = \{v \in V \mid T(w) \in Z\}$

Prueba:

1. Sea
$$T(U) = \{w \in W \mid \exists v \in U \text{ con } T(v) = w\} \neq \emptyset$$
, veamos que $T(U)$ es subespacio: Como $\vec{0} \in U$ (por ser subespacio) y $T(\vec{0}) = 0 \Longrightarrow \vec{0} \in T(U)$ Sean $w_1, w_2 \in T(U) :\Longrightarrow \exists v_1, v_2 \in U$ tales que $w_1 = T(v_1), w_2 = T(v_2)$ $\Longrightarrow c \cdot w_1 + w_2 = cT(v_1) + T(V_2) = T(c \cdot v_1 + v_2)$ Como $c \cdot v_1 + v_2 \in U \Longrightarrow c \cdot w_1 + w_2 \in T(U)$

2. $\vec{0} \in T^{-1}(Z)$ pues $T(0) = \vec{0} \in Z$ por lo tanto $T^{-1}(Z) \neq \emptyset$. Sean $v_1, v_2 \in T^{-1}(Z), c \in \mathbb{K}$ veamos que $c \cdot v_1 + v_2 \in T^{-1}(Z)$:

$$T(c \cdot v_1 + v_2) = cT(v_1) + T(v_2) \in defZ$$

$$\Longrightarrow c \cdot v_1 + v_2 \in T^{-1}(Z)$$

Teorema 20 Sean $V, W \mathbb{K}-espacio$ vectoriales, sea $T: V \to W$ transformacion lineal. Entonces:

- 1. Nu(T) es un subespacio de V.
- 2. Im(T) es un subespacio de W.

Prueba:

1.

$$Nu(T) \neq \emptyset$$
, pues $\vec{0} \in Nu(T)$ porque $T(\vec{0}) = \vec{0}$
Sean $v_1, v_2 \in Nu(T)$, $c \in \mathbb{K}$
 $\Longrightarrow T(cv_1 + v_2) = cT(v_1) + T(v_2) = \vec{0} \Longrightarrow c \cdot v_1 + v_2 \in Nu(T)$

2.

$$\begin{split} ℑ(T) \subseteq W, Im(T) \neq \emptyset \ \text{ pues } \vec{0} \in Im(T) \ , \ \vec{0} \in T(\vec{0}) \\ &\operatorname{Sean } w_1, w_2 \in Im(T) \ , c \in \mathbb{K} \\ &\Longrightarrow \exists v_1, v_2 \in V \ \text{tales que } T(cv_1 + v_2) = cT(v_1) + T(v_2) = c \cdot w_1 + w_2 \in Im(T) \end{split}$$

Teorema 21 Sean V, W \mathbb{K} -espacio vectoriales, sea $T: V \to W$ transformacion lineal. (con $dim(V) < \infty$) Entonces:

$$dim(V) = dim(Im(T)) + dim(Nu(T))$$

Prueba: Sea $\{v_1, \ldots, v_k\}$ base de $Nu(T) \subseteq V$. Como el conjunto es L.I. podemos completarlo a una base de V. Sean $\{v_{k+1}, \ldots, v_n\} \subseteq V$ tal que $\{v_1, \ldots, v_k, v_{k+1}, \ldots, v_n\}$ es una base de V. Probemos $\{T(v_{k+1}), \ldots, T(v_n)\}$ es base de Im(T):

Sea
$$w \in Im(T) \Longrightarrow \exists v \in V$$
 tal que $w = T(v) \Longrightarrow v = \sum_{j=1}^{n} c_j v_j$

$$T(v) = \sum_{j=1}^{n} c_j T(v_j) = \sum_{j=k+1}^{n} c_j T(v_j) \quad \text{(porque } T(v_j) = 0 \text{ si } j \leq k\text{)}$$

$$\Longrightarrow w \text{ es combinacion lineal de } \{T(v_{k+1}), \dots, T(v_n)\}$$

Falta ver que el conjunto es L.I.:

$$\implies b_{k+1}T(v_{k+1}) + \dots + b_nT(v_n) = T(\underbrace{b_{k+1}v_{k+1} + \dots + b_nv_n}_{v_0}) = 0$$

$$\implies v_0 \in Nu(T) \implies v_0 = \sum_{j=k+1}^n b_jv_j = \sum_{j=1}^k c_iv_i \text{ pues } \{v_1, \dots, v_k\} \text{ es base de } Nu(T)$$

$$\implies \sum_{j=k+1}^n b_jv_j + \sum_{j=1}^k (-c_i)v_i = 0$$

Como la segunda parte es $L.I. \implies b_j = 0$, $\forall j = \{k+1, \dots, n\}$. Con esto probamos que $\{T(v_{k+1}), \dots, T(v_n)\}$ es L.I. y como genera es base de Im(T). Por lo tanto dim(Im(T)) = n - k, ademas sabiamos que dim(Nu(T)) = k

$$\implies dim(Nu(T)) + dim(Im(T)) = k + (n - k) = n = dim(V)$$