Data structures and Algorithms Searching

Pham Quang Dung

Hanoi, 2012

Outline

- Sequential searches
- 2 Binary searches
- Binary search trees
- 4 AVL trees
- 5 String searching
- 6 Map and Hashing

Sequential searches

- Input: a list A[1..n] and an item x
- Output: position i such that A[i] = x

```
int sSearch(int A[], int L, int R, int x){
  for(int i = L; i <= R; i++)
    if(A[i]==x)
        return i;
  return -1;
}</pre>
```

Outline

- Sequential searches
- ② Binary searches
- Binary search trees
- 4 AVL trees
- 5 String searching
- 6 Map and Hashing

Binary search

- Input: a list A[1..n] in non-decreasing order and an item x
- Output: position i such that A[i] = x

```
int bSearch(int A[], int L, int R, int x){
  int I = L:
  int r = R;
  while (l \ll r)
    int mid = (l+r)/2;
    if(A[mid] == x)
      return mid:
  if(A[mid] > x)
      r = mid -1:
    else
      I = mid + 1:
  return -1:
```

Outline

- Sequential searches
- 2 Binary searches
- 3 Binary search trees
- 4 AVL trees
- 5 String searching
- 6 Map and Hashing

Binary search trees

Binary search trees (BST)

- Each node has unique key
- \bullet Keys of nodes of left subtree of a node v are less than the key of v
- ullet Keys of nodes of right subtree of a node v are greater than or equal to the key of v

Binary search trees

```
struct Node{
  int key;
  Node* leftChild;
  Node* rightChild;
};
Node* root;
```

- makeNode(int v): create a node with key = v, return the new created node
- insert(Node* ptr, int v): insert a new node with key = v to the BST pointed by ptr
- search(Node* ptr, int v): search a node having key = v, return this node if found
- findMin(Node* ptr): return the node having smallest key of the BST pointed by ptr
- del(Node* ptr, int v): remove a node having key = v

```
Node* makeNode(int x) {
   Node* p = new Node;
   p->key = x;
   p->leftChild = NULL;
   p->rightChild = NULL;
   return p;
}
```

```
Node* insertNode(Node* r, int x){
   if(r == NULL){
     r = makeNode(x);
   }else if(r->key > x){
     r->leftChild = insertNode(r->leftChild,x);
   }else if(r->key <= x){
     r->rightChild = insertNode(r->rightChild,x);
   }
   return r;
}
```

```
Node* search(Node* r, int x){
  if(r!= NULL){
   if(r->key == x)
    return r;
  else if(r->key > x)
    return search(r->leftChild ,x);
  else
    return search(r->rightChild ,x);
}
return NULL;
}
```

```
Node* findMin(Node* r){
   if(r == NULL) return NULL;
   Node* Imin = findMin(r->leftChild);
   if(Imin == NULL) return r;
   if(Imin->key < r->key)
     return Imin;
else
   return r;
}
```

```
1 Node* del(Node* r, int x){
   Node* tmp;
   if (r = NULL) printf("Not Found \n");
   else if (x < r \rightarrow key) r \rightarrow leftChild = del(r \rightarrow leftChild, x);
   else if (x > r \rightarrow key) r \rightarrow rightChild = del(r \rightarrow rightChild, x);
   else \{// x = r \rightarrow \text{key}, \text{ remove } r \text{ means that make the smallest} \}
        node of the right tree of r the root of the new tree
      if(r->leftChild != NULL && r->rightChild != NULL){
        tmp = findMin(r->rightChild);
        r\rightarrow kev = tmp \rightarrow kev:
        r->rightChild = del(r->rightChild,tmp->key);
     }else{
        tmp = r; // keep this node for freeing memory
        if(r\rightarrow leftChild == NULL)   r = r\rightarrow rightChild;
        else if (r\rightarrow rightChild == NULL)   r = r\rightarrow leftChild;
        delete tmp;
15
   return r;
```

Outline

- Sequential searches
- 2 Binary searches
- Binary search trees
- 4 AVL trees
- 5 String searching
- 6 Map and Hashing

AVL trees

- AVL is a BST (G. M. Adelson-Velskii and E. M. Landis, 1962)
 - the height of the left child differs from the height of the right child by at most 1 (balance property)
 - left and right subtrees are both AVL
- Modification (insertion, deletion of nodes) on AVL must conserve the balance property
- Assumption: the keys of all nodes are different (e.g., cannot construct an AVL for 8, 8, 9)

a. BST (not AVL)

b. AVL

AVL tree - recovery the balance property

- A BST T whose left and right subtrees are AVL
- Perform rotation actions so that the resulting BST is an AVL
- After the insertion or deletion of a node on an AVL
 - balance property of the AVL may loss
 - the height of any subtree change at most 1
 - identify which subtrees loosing balance property

Case 1 (perform right rotation at K2)

Case 2 (perform left rotation at K1)

Case 3 (perform left rotation at K1 and then right rotation at K3)

Case 4 (perform right rotation at K3 and then left rotation at K1)

Outline

- Sequential searches
- Binary searches
- Binary search trees
- AVL trees
- String searching
- 6 Map and Hashing

String searching

- String matching problem: find one or all occurrences of a pattern in a given text
- Applications
 - information retrieval
 - Text editors
 - computational biology (DNA sequences)
- Formal formulation
 - A text is an array T[1..n] and a pattern is an array P[1..m] $(m \neq n)$
 - $\mathcal{T}[i], \mathcal{P}[j] \in \mathsf{a}$ finite alphabet \sum (e.g., $\sum = \{0,1\}$ or $\sum = \{a,\dots,z\}$)
 - We say that pattern P occurs with shift s in T if $0 \le s \le n-m$ and T[s+1..s+m]=P[1..m]

String searching algorithms

- Naive
- Boyer-Moore
- Rabin-Karp
- Knuth-Morris-Pratt (KMP)

Naive algorithm

Algorithm 1: NaiveSM(P, T)

```
1 foreach s=0..n-m do

2 i \leftarrow 1;

3 while i \leq m and P[i] = T[i+s] do

4 i \leftarrow i+1;

5 if i \geq m then

6 Output(s);
```

Boyer-Moore algorithm

- Left to right shift
- Right to left scan
- Use information gained by preprocessing P in order to skip as many alignment as possible
- Bad character shift rule
 - last[c]: the right-most occurrence of c in P
 - When mismatch: shift P right by $max\{j last[c], 1\}$ where j is the position of mismatch character of P

Boyer-Moore algorithm

Boyer-Moore algorithm

```
void computeLast(){
    for (int c = 0; c < 256; c++)
    last[c] = 0;
    for (int i = m; i >= 1; i--){
     if(last[P[i]] == 0)
        last[P[i]] = i;
9 void BoyerMoore(){
    int s = 0:
   while (s \le n-m)
      int j = m;
      while (i > 0 \&\& T[i+s] = P[i]) i--;
      if(i == 0){
      Output(s);
        s = s + 1:
      }else{
        int k = last[T[j+s]];
        s = s + \max(j-k,1);
```

Rabin-Karp algorithm

• Convert the pattern P[1..m] to a number:

$$p = P[1] * d^{m-1} + P[2] * d^{m-2} + \cdots + P[m] * d^{0}$$

where each character P[i] is viewed as a nonnegative integer < d, and d is the size of the alphabet

Using Horner's rule:

$$p = P[m] + d * (P[m-1] + d * (\cdots + d * P[1]) + \dots)$$

• Convert T[s+1..s+m] to the integer

$$t_s = T[s+1] * d^{m-1} + \cdots + T[s+m]$$

• **Note**: t_{s+1} can easily be computed from t_s as follows:

$$t_{s+1} = (t_s - T[s+1] * d^{m-1}) * d + T[s+m+1]$$

Rabin-Karp algorithm

- Drawback: when m is large, then the computation of p and t_s does not take constant time
- Solution: Compute p and t_s modulo a suitable number q
 - Still problem: $p \equiv t_s \pmod{q}$ does not mean that $p = t_s$, we have to check P[1..m] and T[s+1..s+m] character by character to see if they are really identical
- Worst-case time is $\mathcal{O}(mn)$ where $P = a^m$ and $T = a^n$

Knuth-Morris-Pratt (KMP) algorithm

- Comparison: from left to right
- Shift: more than one position
- Preprocessing the pattern
 - Pattern P[1..m]
 - $\pi[q]$ is the length of the longest prefix of P[1..m] which is also the **strictly** suffix of P[1..q]

Example

q	1	2	3	4	5	6	7	8	9	10
P[q]	а	b	а	b	а	b	а	b	С	а
$\pi[q]$	0	0	1	2	3	4	5	6	0	1

Knuth-Morris-Pratt (KMP) algorithm - preprocessing

```
void computePI() {
    pi[1] = 0;
    int k = 0;
    for(int q = 2; q <= m; q++) {
        while(k > 0 && P[k+1] != P[q])
        k = pi[k];
        if(P[k+1] == P[q])
        k = k + 1;
    pi[q] = k;
    }
}
```

Knuth-Morris-Pratt (KMP) algorithm - preprocessing

Denote
$$k = \pi[q]$$

• If P[q+1] = P[k+1], then $\pi[q+1] = \pi[q] + 1$

Knuth-Morris-Pratt (KMP) algorithm - preprocessing

Denote $k = \pi[q]$

- if $P[q+1] \neq P[k+1]$ and $P[q+1] = P[\pi[k]+1] = b$:
 - $P[1..k] = P[q k + 1..q] \Rightarrow P[k \pi[k] + 1..k] = P[q \pi[k] + 1..q]$
 - Moreover, $P[k \pi[k] + 1] = P[1..\pi[k]]$, so $P[1..\pi[k]] = P[q \pi[k] + 1..q]$,
 - Hence $P[1..\pi[k] + 1] = P[q \pi[k] + 1..q + 1]$, this means $\pi[q+1] = \pi[k] + 1$

Knuth-Morris-Pratt (KMP) algorithm

```
1 void kmp(){
    int q = 0;
    for (int i = 1; i \le n; i++){
      while (q > 0 \&\& P[q+1] != T[i]) {
      q = pi[q];
     if(P[q+1] = T[i])
      q++;
      if(q == m)
       cout << "match at position " << i-m+1 << endl;</pre>
        q = pi[q];
```

Knuth-Morris-Pratt (KMP) algorithm

Outline

- Sequential searches
- 2 Binary searches
- Binary search trees
- 4 AVL trees
- 5 String searching
- 6 Map and Hashing

Map ADT

- Table stores key-value pairs
- Keys cannot be duplicated
- Operations
 - size()
 - empty()
 - get(k): return the item having key k
 - put(k, v): put a key-value pair (k, v) into the table
 - remove(k): remove item having key k from the table
- Operations should be performed efficiently without sorting items of the table

Map implementation

- Arrays
- Linked-lists
- Binary search trees
- Hash tables (focus of this topic)

Hashing

- A different approach to searching from the comparison-based methods
- Hashing tries to reference an item in the table directly based on its key without navigating through the table and comparing the search key with the keys of all items
- Hashing transform a key into a table address
- Two approaches
 - Direct-address tables
 - Hash tables

Direct-address tables

- Simple technique
- Work well when the universe *U* of keys is small
- Suppose each key is taken from $U = \{0, \dots, m-1\}$ where m is not too large
- Use an array (direct-address table) T[0..m-1]
 - Each slot k corresponds to a key k

Hash table

• Each element with key k is stored in slot h(k) of the hash table (called **hash function**)

$$h: U \to \{0, 1, \ldots, m-1\}$$

- The size m of hash table is typically much less than the size of U
- **Collision** when two keys k_1 , k_2 hash the same slot: $h(k_1) = h(k_2)$
 - Solution by chaining
 - Solution by open addressing

Chaining

- Place all elements that hash to the same slot into the same linked list
- Slot i of the table stores a pointer to the head of the linked list

Algorithm 2: Put(k,v)

- 1 $x.key \leftarrow k$;
- 2 $x.value \leftarrow v$;
- 3 Insert x at the head of list T[h(k)];

Algorithm 3: Get(k)

- 1 Search an element with key k in list T[h(k)];
- 2 return x;

Algorithm 4: Remove(k)

- $1 \times \leftarrow \operatorname{Get}(k);$
- 2 Delete x from list T[h(k)];

Hashing: example

- keys: integer
- *m* is chosen to be 10
- $h(k) = k \mod 10$
- Collison: two keys that hash to the same value (e.g., 22, 202)

Analysis of hashing with chaining

- We define a **load factor** $\alpha = \frac{n}{m}$
- Assumption of simple uniform hashing
- Average running time of unsuccessful search is $\Theta(1+\alpha)$ (proof is detailed in "Introduction to Algorithms" book)
- Average running time of successful search is $\Theta(1+\alpha)$ (proof is detailed in "Introduction to Algorithms" book)
- ullet Put and get actions take $\mathcal{O}(1)$ if the lists are implemented as doubly linked lists

Open addressing

- All elements are stored in table itself
- When searching for an element: examine tables slots
- No list and no elements stored outside the table, avoid pointers together
- The hash table can fill up, no further insertion can be made

Open addressing - insertion

- Sucessively examine (**probe**) the table until an empty slot is found to put the key
- Instead of fixing the order 0, 1, m-1 ($\Theta(n)$ search time), the sequence of slots probed depends the key being inserted
- Extended hash function: $h: U \times \{0,1,\ldots,m-1\} \rightarrow \{0,1,\ldots,m-1\}$
- The probe sequence for key k is $\langle h(k,0), h(k,1), \ldots, h(k,m-1) \rangle$ which is a permutation of $0,1,\ldots,m-1$

Open addressing - insertion

Algorithm 5: Put(k, v)

```
1 x.key \leftarrow k;

2 x.value \leftarrow v;

3 i \leftarrow 0;

4 while i < m do

5 j \leftarrow h(k,i);

6 if T[j] = NULL then

7 T[j] \leftarrow x;

8 return j;

9 i \leftarrow i + 1;
```

.0 Error "hash table overflow";

Open addressing - search

```
Algorithm 6: Get(k)

1 i \leftarrow 0;

2 while i < m do

3 j \leftarrow h(k, i);

4 if T[j].key = k then

5 columnt [j];

6 columnt i \leftarrow i + 1;
```

7 return NULL;

Open addressing

- **Uniform hashing** assumption: Each key is equally likely to have any of m! permutation of $\{0, 1, ..., m-1\}$ as its probe sequence
- Three common techniques for probe sequence computation
 - Linear probing
 - Quadratic probing
 - Double hashing
- All of three techniques guarantee that $h(k,0), h(k,1), \ldots, h(k,m-1)$ is a permutation of $0,1,\ldots,m-1$ for each key k
- None of three techniques fulfills the assumption of uniform hashing

Open addressing

- Linear probing: $h(k,i) = (h'(k) + i) \mod m$ where h' is an ordinary hash function
- Quadratic probing: $h(k,i) = (h'(k) + c_1i + c_2i^2)$ mod m where h' is ordinary hash function and $c_1, c_2 \neq 0$ are constants
- Double hashing (one of the best method for open addressing): $(h(k,i) = (h_1(k) + ih_2(k)) \mod m$ where h_1, h_2 are auxiliary hash functions
 - The value of h₂(k) must be relatively prime to the hash table size m for the entire hash table to be searched (see "Introduction to Algorithms" for more detail)
 - Some approaches:
 - Let m be a power of 2 and design $h_2(k)$ such that it always returns an odd value
 - Let m be a prime and design $h_2(k)$ such that it always returns a positive integer less than m (e.g., $h_2(k) = 1 + k \mod (m-1)$)

Open addressing - analysis

• Inserting an element into an open-address hash table with load factor $\alpha=\frac{n}{m}$ requires at most $\frac{1}{1-\alpha}$ probes on average, assuming uniform hashing

Universal hashing

- If the chosen hash function is fixed, then there might be n keys that hash to the same slot, yielding an average retrieval time of $\Theta(n)$
- Solution: universal hashing
 - Select the hash function randomly from a carefully designed class of functions at the beginning of the execution
 - Randomization guarantees that no single input will always evoke worst-case behavior
 - Good average running time

Definition

Let $\mathcal H$ be a finite collection of hash functions that map a given universe U of keys into the range $\{0,1,\ldots,m-1\}$. Such collection is said to be **universal** if for each pair of distinct keys $k, l \in U$, the number of hash functions $h \in \mathcal H$ for which h(k) = h(l) is at most $\frac{\mathcal H}{m}$. In other words, for a given pair of distinct keys k, l, we pick a hash function from $\mathcal H$, the probability that h(k) = h(l) is at most $\frac{1}{m}$.

Universal hashing

Theorem

Suppose that a hash function h is chosen randomly from a universal collection of hash functions and has been used to hash n keys into a table T of size m using chaining to resolve collisions. If key k is not in the table, then the expected length $E[n_{h(k)}]$ of the list that k hashes to is at most the load factor $\alpha = \frac{n}{m}$. If the key k is in the table, then the expected length $E[n_{h(k)}]$ of the list that k hashes to is at most $1 + \alpha$

Proof.

See "Introduction to Algorithms" book

Universal hashing - example

- Choose a prime number p large enough so that every possible key k is in the range $0,\ldots,p-1$, inclusive. Let $\mathbb{Z}_p=\{0,\ldots,p-1\}$, and $\mathbb{Z}_p^*=\{1,2,\ldots,p-1\}$
- p > m by assumption that the size of universe U is greater than the number of slots of the hash table
- Define hash function $h_{a,b}(k) = ((ak + b) \mod p) \mod m$, $\forall a \in \mathbb{Z}_p^*, b \in \mathbb{Z}_p$
- $\mathcal{H}_{p,m} = \{h_{a,b} : a \in \mathbb{Z}_p^*, b \in \mathbb{Z}_p\}$

Theorem

 $\mathcal{H}_{p,m}$ defined above is universal

Proof.

See "Introduction to Algorithms" book

Perfect hashing

- Hashing can provide excellent worst-case performance when the set of keys is static: once the keys are stored in the table, they never change
- **Perfect hashing**: $\mathcal{O}(1)$ memory access are required to perform a search in the worst-case
- Idea: Two-levels hashing with universal hashing at each level
 - First level: selected carefully from a family of universal hash functions
 - Second level uses hash tables instead of linked lists: Choose carefully hash function h_j for hash table S_j of slot j in order to guarantee that there are no collisions at the second level
 - Set the size m_j of hash table S_j to n_j^2 where n_j is the number of keys hashing to slot j

Perfect hashing

