Universidade de São Paulo

Escola de Artes, Ciências e Humanidades Graduação em Sistemas de Informação

GUSTAVO TSUYOSHI ARIGA

Integração do WoTPy com Grafos de Conhecimento

GUSTAVO TSUYOSHI ARIGA

INTEGRAÇÃO DO WOTPY COM GRAFOS DE CONHECIMENTO

Plano de atividades apresentado como parte dos requisitos necessários para cumprimento da disciplina ACH2017 ou ACH2018 - Projeto Supervisionado ou de Graduação I ou II.

Orientador: Professores Fábio Nakano e José de Jesús Pérez-Alcázar

1 RESUMO

A acelerada expansão da Internet das Coisas (IoT) tem impulsionado a demanda por plataformas e ferramentas que garantam uma comunicação integrada e transparente entre dispositivos oriundos de distintos fabricantes. O WoTPy García Mangas e Suárez Alonso (2019), um gateway experimental fundamentado no padrão W3C-WoT Lagally et al. (2023), manifesta-se como uma resposta saliente a essa necessidade. No primeiro semestre de 2023, o projeto concentrou-se meticulosamente na internalização e implementação das bases fundamentais do WoTPy, abordando as rigorosas especificações do W3C-WoT, a criteriosa seleção e análise de bibliotecas correlatas, a solução de obstáculos associados à instalação e a meticulosa validação das contribuições realizadas.

Para o segundo semestre de 2023, propõe-se uma ampliação robusta das funcionalidades intrínsecas ao WoTPy, direcionando esforços para sua integrada relação com grafos de conhecimento. Tais grafos, estruturas de dados consagradas por modelar, representar e inquirir informações de natureza complexa, detêm o potencial de elevar significativamente a capacidade de interoperabilidade na esfera da IoT. Através da amalgamação do WoTPy com esses grafos, aspira-se engendrar um sistema em que os dispositivos, além de estabelecerem comunicação, possam contextualizar e interpretar dados com uma sofisticação sem precedentes.

Salienta-se, como ponto nevrálgico desta etapa, a implementação de um endpoint SPARQL RDFLib (2022) — linguagem de consulta estandardizada para bases de dados que empregam grafos de conhecimento. Esta implementação propiciará que usuários e profissionais do setor realizem consultas acerca das capacidades dos sensores, suas respectivas observações e as inter-relações entre distintos dispositivos de maneira padronizada e intuitiva.

Esta sofisticada integração visa catapultar o WoTPy ao patamar de ferramenta essencial à comunidade IoT, transcendendo a mera comunicação entre dispositivos. Enfatiza-se a busca por uma compreensão mais profunda e contextualizada dos dados, facilitando assim o desenvolvimento de aplicações IoT dotadas de maior inteligência, adaptabilidade e relevância contextual. Consequentemente, o projeto para o segundo semestre aspira consolidar o WoTPy não apenas como uma ferramenta de integração, mas como um instrumento primordial para a decodificação e acessibilidade do vasto universo da IoT para pesquisadores, desenvolvedores e usuários finais.

2 PALAVRAS CHAVES

Internet das Coisas (IoT), Web das Coisas (WoT), World Wide Web Consortium (W3C), WoTPy, Grafos de Conhecimento, Endpoint SPARQL.

3 MODALIDADE

- () Trabalho de Graduação Curto – 1 semestre - individual
- () Trabalho de Graduação Longo (parte 1) 1 ano individual
- (\mathbf{x}) Trabalho de Graduação Longo (parte 2) 1 ano individual
- () Trabalho de Graduação Curto 1 semestre grupo
- () Trabalho de Graduação Longo (parte 1) – 1 ano – grupo
- () Trabalho de Graduação Longo (parte 2) 1 ano grupo

4 APRESENTAÇÃO DO PROBLEMA

A "Web das Coisas" é um termo que representa a integração de sensores, atuadores, objetos físicos e seres humanos usando tecnologias web (GROUP, 2015b), (GROUP, 2015a). O W3C define e promove padrões para a Web das Coisas, enfatizando interoperabilidade e o uso de tecnologias populares como HTTP e JavaScript.

A principal questão é como conectar diferentes redes e dispositivos. O W3C, com contribuições de empresas e pesquisadores, trabalha na criação de padrões para a Web das Coisas, visando uma abordagem amplamente aceita e duradoura (STIRBU, 2008) (GYRARD et al., 2017). (García Mangas; Suárez Alonso, 2019), (TZAVARAS et al., 2021).

É evidente a necessidade de dispositivos que façam a ponte entre redes internas e a Internet, comumente referidos como "gateways". Esses dispositivos desempenham um papel crucial na interoperabilidade, segurança de dados e interação com o usuário (STIRBU, 2008), (GYRARD et al., 2017), (García Mangas; Suárez Alonso, 2019).

A Semantic Web of Things (SWoT) representa uma inovação notável, situada na confluência da Internet das Coisas (IoT) e da Web Semântica (SHETH; HENSON; SAHOO, 2008). A plena compreensão do impacto e dos princípios fundamentais dessa combinação exige uma exploração separada de suas componentes subjacentes: IoT e Web Semântica.

A IoT refere-se à integração de dispositivos e objetos do dia a dia à rede mundial, conferindo-lhes inteligência e conectividade (ATZORI; IERA; MORABITO, 2010). Esta revolução tecnológica permite que tais dispositivos coletem, transmitam e atuem com base em dados do ambiente circundante, tudo sem intervenção humana direta (VERMESAN; FRIESS, 2013). No entanto, a diversidade de dispositivos, padrões e fabricantes na IoT introduz complexidades, principalmente quanto à interoperabilidade.

Por outro lado, a Web Semântica, uma evolução da web atual, ambiciona tornar as informações online acessíveis não apenas a humanos, mas também a máquinas (BERNERS-LEE; HENDLER; LASSILA, 2001). Por meio de padrões como RDF e OWL, esta tecnologia descreve conceitos, relações e significados (ANTONIOU; HARMELEN, 2004). A visão é que os dados na web sejam complementados com metainformações semânticas, permitindo um processamento e compreensão mais profundos por parte das máquinas.

É nesse cenário que o SWoT ganha relevância, propondo-se a superar desafios de interoperabilidade na IoT, utilizando os princípios e técnicas da Web Semântica (BARNAGHI; SHETH; HENSON, 2013). Integrando semântica aos dispositivos da IoT, passamos a ter uma descrição mais precisa não apenas dos dados gerados, mas também dos serviços ofertados, capacidades e relações entre dispositivos, tudo de forma padronizada e máquina-legível.

5 OBJETIVOS

O presente relatório delineia metas meticulosamente articuladas, destinadas a serem atingidas ao longo do segundo semestre de 2023. Com a intenção de promover uma evolução significativa no WoTPy, o conjunto de objetivos apresentados busca atender às necessidades emergentes e multifacetadas da comunidade IoT. A seguir, detalham-se o objetivo geral e os objetivos específicos propostos:

5.1 Objetivo Geral

Refinar e expandir as capacidades do WoTPy, viabilizando sua integração avançada com grafos de conhecimento, visando posicioná-lo como uma ferramenta insuperável, capaz de responder de forma mais sofisticada às demandas da comunidade IoT.

5.2 Objetivo Espcífico

- Exploração Detalhada de Grafos de Conhecimento
 - Profundar a investigação acadêmica sobre grafos de conhecimento, com ênfase em suas potenciais aplicações no âmbito da IoT.
 - Adquirir proficiência nas tecnologias emergentes e padrões estabelecidos relacionados a grafos de conhecimento e SPARQL.
- Integração entre o Grafo de Conhecimento e o WoTPy
 - Concretizar a fusão do WoTPy com sistemas de grafos de conhecimento, estabelecendo um mecanismo robusto que facilite consultas e operações avançadas.
- Desenvolvimento do Endpoint SPARQL
 - Adaptar o WoTPy para acolher e processar eficientemente consultas SPARQL, otimizando o acesso, manipulação e interpretação dos dados armazenados.
 - Certificar que a plataforma possa recuperar, de forma ágil e precisa, informações pertinentes sobre sensores e respectivas observações.

• Testes e Validação

 Submeter as inovações implementadas a testes em cenários reais, assegurando sua funcionalidade, resiliência e escalabilidade.

• Documentação

 Providenciar documentação e exemplo prático, fortalecendo a capacidade de desenvolvedores e usuários em explorar plenamente as novas funcionalidades.

6 RELEVÂNCIA OU JUSTIFICATIVA

A revolução digital atual evidencia uma transição notável de um mundo conectado para um universo hiperconectado, impulsionado pela proliferação da Internet das Coisas (IoT). Neste contexto, a capacidade de garantir que dispositivos e sistemas heterogêneos conversem entre si torna-se uma necessidade imperativa, e não apenas um luxo.

A demanda emergente por uma integração eficiente, conforme indicada por Stirbu (2008) e Gyrard et al. (2017), coloca em destaque o desafio da interoperabilidade. Isso é ainda mais premente à luz dos desafios identificados em estudos como García Mangas e Suárez Alonso (2019) e as diretrizes propostas por (TZAVARAS et al., 2021).

No âmago deste trabalho, o WoTPy surge como um catalisador para uma integração mais fluida no domínio da IoT. Oferecendo uma estrutura arquitetônica coesa e padronizada, a proposta transcende os constrangimentos tradicionais associados à diversidade de fabricantes, levando a uma visão unificada e harmonizada para aplicações e sistemas IoT. Em essência, isso não apenas facilita a implementação técnica, mas também amplifica o impacto social da IoT, democratizando seu acesso e uso.

Este trabalho, portanto, traz à tona benefícios tangíveis:

- Uma ampliação da usabilidade do WoTPy, tornando-o uma solução mais abrangente e amigável para diferentes públicos;
- A disposição de recursos didáticos, como documentação e exemplos práticos, para aprimorar o entendimento e a adoção do WoTPy.

Ao refletirmos sobre os potenciais beneficiários deste projeto, percebemos a universalidade de sua aplicação. Desde fabricantes de dispositivos IoT que aspiram por uma integração mais simplificada, passando por desenvolvedores e engenheiros dedicados à inovação, até organizações empresariais e instituições acadêmicas, a gama de partes interessadas é vasta e diversificada.

7 MATERIAIS E MÉTODOS

A metodologia adotada para este projeto foi projetada para garantir uma pesquisa robusta, um desenvolvimento sistemático e uma implementação eficaz da integração do WoTPy com grafos de conhecimento. A abordagem metodológica proposta é estruturada em etapas sequenciais, garantindo que cada fase do projeto seja rigorosamente executada, resultando em um trabalho consistente e confiável.

7.1 Revisão Bibliográfica

Objetivo: Compreender a literatura atual em torno da Web das Coisas (WoT), WoTPy e grafos de conhecimento.

- Identificação e seleção de publicações, artigos, conferências e padrões relevantes.
- Análise crítica da literatura para identificar lacunas, tendências e desafios.
- Síntese das informações para formar uma base sólida para o desenvolvimento do projeto.

7.2 Análise de Requisitos

Objetivo: Definir os requisitos específicos para a integração do WoTPy com grafos de conhecimento.

- Realizar entrevistas e discussões com especialistas da área e stakeholders.
- Elaborar questionários para identificar as necessidades específicas dos usuários.
- Consolidar os requisitos coletados e priorizá-los.

7.3 Projeto da Arquitetura

Objetivo: Desenhar a arquitetura da solução, considerando as necessidades e limitações identificadas.

- Definir as principais componentes e suas inter-relações.
- Especificar padrões, protocolos e ferramentas a serem utilizados.
- Produzir diagramas arquiteturais detalhados e documentação associada.

7.4 Desenvolvimento e Implementação

Objetivo: Codificar e implementar a solução proposta, baseando-se na arquitetura definida.

- Estabelecer um ambiente de desenvolvimento colaborativo e versionado.
- Implementar funcionalidades de acordo com os requisitos definidos.
- Realizar testes unitários e de integração contínuos para assegurar a qualidade do código.

7.5 Validação e Testes

Objetivo: Garantir que a solução atende às necessidades identificadas e funciona como esperado.

- Definir cenários de teste e criar casos de teste específicos.
- Executar testes em diferentes ambientes e configurações.
- Recolher feedback e realizar ajustes conforme necessário.

7.6 Documentação e Divulgação

Objetivo: Assegurar que a solução seja compreendida, adotada e amplamente disseminada.

- Preparar documentação detalhada, abrangendo aspectos técnicos e de uso.
- Desenvolver tutoriais e exemplos práticos.
- Promover a solução em conferências, workshops e fóruns relevantes.

A metodologia acima será acompanhada de reuniões regulares de revisão, para avaliar o progresso, identificar desafios e realinhar estratégias conforme necessário. A abordagem iterativa e incremental permitirá ajustes e refinamentos contínuos.

8 RESULTADOS ESPERADOS

O projeto visa integrar WoTPy com grafos de conhecimento, buscando promover uma melhor interoperabilidade entre dispositivos IoT de diferentes fabricantes e potencializar a eficácia na comunicação e integração destes dispositivos. Neste contexto, os resultados esperados são multifacetados, abrangendo aspectos técnicos e aplicativos.

8.1 Contribuições Técnicas

- Integração Efetiva: A conclusão bem-sucedida da integração do WoTPy com sistemas de grafos de conhecimento, resultando em uma solução robusta e estável.
- Desenvolvimento de Endpoint SPARQL: Implementação de um endpoint SPARQL eficiente, permitindo consultas dinâmicas sobre capacidades de sensores e suas observações.
- Documentação Detalhada: Disponibilização de documentação técnica abrangente, garantindo que os desenvolvedores possam entender, adotar e estender a solução proposta.

8.2 Aplicações e Usabilidade

- Interoperabilidade Aprimorada: Dispositivos IoT de diferentes fabricantes poderão se comunicar e integrar de maneira mais eficiente, impulsionando a criação de sistemas IoT unificados.
- Aplicações Semânticas: A capacidade de explorar os benefícios da Web Semântica na IoT, possibilitando o desenvolvimento de aplicações mais inteligentes, personalizadas e contextuais.
- Exemplo Prático: Disponibilização de exemplo prático que demonstra o potencial e as capacidades da solução, facilitando sua adoção em projetos reais.

9 CRONOGRAMA

Ao dar início ao segundo semestre, será promovida uma revisão meticulosa da literatura pertinente que envolve a Web das Coisas (WoT), WoTPy e grafos de conhecimento (5.2). Esta revisão tem por objetivo consolidar o entendimento teórico, garantindo assim uma base sólida para as etapas subsequentes. Subsequentemente, será implementado o processo de integração do WoTPy com os grafos de conhecimento (5.2), visando uma harmonização eficaz entre estas duas ferramentas essenciais.

Posteriormente, a atenção será dirigida ao desenvolvimento do endpoint SPARQL (5.2), assegurando uma interface robusta e eficiente para consultas.

Ao nos aproximarmos do encerramento do segundo semestre, uma série de testes e validações será conduzida com o intuito de certificar que a solução elaborada atenda de forma precisa às necessidades previamente estabelecidas (5.2). Por fim, será redigida uma documentação detalhada e rigorosa, garantindo que os usuários e interessados possam compreender, implementar e se beneficiar da solução proposta (5.2).

REFERÊNCIAS

ANTONIOU, G.; HARMELEN, F. *A Semantic Web Primer*. 2004. Disponível em: https://www.semanticscholar.org/paper/A-semantic-web-primer-Antoniou-Harmelen/cb700d53e6be65063d0523b4beba317edaf68bb9c. Citado na página 5.

ATZORI, L.; IERA, A.; MORABITO, G. *The Internet of Things: A survey.* 2010. Disponível em: https://www.sciencedirect.com/science/article/abs/pii/S1389128610001568. Citado na página 5.

BARNAGHI, P.; SHETH, A.; HENSON, C. *From Data to Actionable Knowledge: Big Data Challenges in the Web of Things.* 2013. Disponível em: https://ieeexplore.ieee.org/abstract/document/6733221c. Citado na página 5.

BERNERS-LEE, T.; HENDLER, J.; LASSILA, O. *The Semantic Web.* 2001. Disponível em: . Citado na página 5.

García Mangas, A.; Suárez Alonso, F. J. Wotpy: A framework for web of things applications. *Computer Communications*, v. 147, p. 235–251, 2019. ISSN 0140-3664. Disponível em: https://www.sciencedirect.com/science/article/pii/S0140366419304633. Citado 3 vezes nas páginas 2, 5 e 7.

GROUP, W. W. of T. C. *Main Page*. 2015. Disponível em: https://www.w3.org/community/wot/wiki/Main_Page#What_is_the_Web_of_Things.3F>. Acesso em: 29 de março de 2023. Citado na página 5.

GROUP, W. W. of T. I. *Terminology*. 2015. Disponível em: https://www.w3.org/WoT/IG/wiki/Terminology. Acesso em: 29 de março de 2023. Citado na página 5.

GYRARD, A. et al. Semantic web meets internet of things and web of things: [2nd edition]. In: *Proceedings of the 26th International Conference on World Wide Web Companion*. Republic and Canton of Geneva, CHE: International World Wide Web Conferences Steering Committee, 2017. (WWW '17 Companion), p. 917–920. ISBN 9781450349147. Disponível em: https://doi.org/10.1145/3041021.3051100. Citado 2 vezes nas páginas 5 e 7.

LAGALLY, M. et al. *Web of Things (WoT) Architecture 1.1.* 2023. Disponível em: https://www.w3.org/TR/wot-architecture>. Acesso em: 06 de abril de 2023. Citado na página 2.

RDFLIB. *SPARQL Endpoint interface to Python*. 2022. Disponível em: https://sparqlwrapper.readthedocs.io/en/latest/. Citado na página 2.

SHETH, A.; HENSON, C.; SAHOO, S. *Semantic Sensor Web.* 2008. Disponível em: https://www.semanticscholar.org/paper/Semantic-Sensor-Web-Sheth-Henson/c2165995eb8f40ca27fd56ae92cd79185780270c. Citado na página 5.

STIRBU, V. Towards a restful plug and play experience in the web of things. In: *2008 IEEE International Conference on Semantic Computing*. [S.I.: s.n.], 2008. p. 512–517. Citado 2 vezes nas páginas 5 e 7.

TZAVARAS, A. et al. Openapi thing descriptions for the web of things. In: *2021 IEEE 33rd International Conference on Tools with Artificial Intelligence (ICTAI)*. [S.I.: s.n.], 2021. p. 1384–1391. Citado 2 vezes nas páginas 5 e 7.

VERMESAN, O.; FRIESS, P. Internet of things: converging technologies for smart environments and integrated ecosystems. 2013. Disponível em: https://www.semanticscholar.org/paper/Internet-of-Things%3A-Converging-Technologies-for-and-Vermesan-Friess/b8bdf7c65931129a85300c9740ca696ea5460e3d. Citado na página 5.