

Computer Processors

Logic minimisation

What is minimisation?

- Minimisation is the process of optimising some criteria
- The criteria might be
 - Number of transistors
 - Number of different types of gates
 - Depth of a logic circuit
 - Fan-in/Fan-out

Why?

- There is a limit to transistor density on silicon wafer
- There is a cost implication for each transistor and gate
- There is propagation time through logic gates
 - The greater the depth the longer it takes
- Conceptual simplicity for bug finding
- Simple designs are less likely to go wrong

Algebraic manipulation

- From Fundamental Mathematical Concepts (COMP1421) you are aware of a set of logical equivalences
- These logical equivalences can be applied to reduce the number of variables and terms in a given expression
- There are no fixed rules to the application of logical equivalences, it comes down to practice

 $(\neg a \wedge b) \vee (b \wedge \neg c) \vee (b \wedge c) \vee (a \wedge \neg b \wedge \neg c)$

а	b	С	output
0	0	0	0
0	1	0	1
1	0	0	1
1	1	0	1
0	0	1	0
0	1	1	1
1	0	1	0
1	1	1	1

Algebraic manipulation example

$$(\neg a \land b) \lor (b \land \neg c) \lor (b \land c) \lor (a \land \neg b \land \neg c)$$

Algebraic manipulation example

$$b \vee (\neg c \wedge a)$$

- From 11 gates to 3
- From a spaghetti of wires to a simple design

Karnaugh maps

- Karnaugh maps are an alternative
 representation of a truth table with some
 interesting properties
- Developed in 1953 by Maurice Karnaugh
- Ideal for identifying redundant variables in logic expressions.
- Ideal for up to 6 variables

Truth table

Karnaugh maps

- Karnaugh maps have 0 and 1 entries
- Each entry corresponds to a truth table entry

Note: Each of the row and column headings are only one bit different to their adjacent heading

- Karnaugh maps make it easy to group terms together
- Terms are grouped together on the condition that two entries are both 1's and are side by side (vertically or horizontally)

а	b	output
0	0	0
0	1	1
1	0	1
1	1	1

Karnaugh Map

Truth table

Let's examine the entries in the box

The terms are

 $\neg a \wedge b$

and

 $a \wedge b$

These terms can be combined into $oldsymbol{b}$

	а	b	output
	0	0	0
	0	1	1
^	1	0	1
	1	1	1

Truth table

Let's examine the entries in the box

The terms are

 $a \wedge \neg b$

and

 $a \wedge b$

These terms can be combined into

 \boldsymbol{a}

	а	b	output
	0	0	0
	0	1	1
^	1	0	1
	1	1	1

Truth table

The two groupings result in the expressions $oldsymbol{a}$

As with the normal process of producing a sum of products we **Or t**he expressions together.

Resulting in:

 $a \vee b$

Truth table

 With 3 variables things get slightly awkward

• The karnaugh map will contain 8 entries

		bc			
		00	01	11	10
_	0	0	0	1	0
а	1	0	1	1	1

Let's consider the entries in the box, they correspond to:

$$a \wedge \neg b \wedge c$$

and

$$a \wedge b \wedge c$$

This can be reduced to

$$a \wedge c$$

		bc			
		00	01	11	10
	0	0	0	1	0
a	1	0	1	1	1

Notice the order of the column in the karnaugh map - NOT in binary order.

Ordered in such a way that adjacent entries differ by exactly 1 bit.

Let's consider the entries in the box, they correspond to:

$$a \wedge b \wedge c$$

and

$$a \wedge b \wedge \neg c$$

This can be reduced to

$$a \wedge b$$

		bc			
		00	01	11	10
	0	0	0	1	0
а	1	0	1	1	1

Let's consider the entries in the box, they correspond to:

$$a \wedge b \wedge c$$

and

$$\neg a \land b \land c$$

This can be reduced to

$$b \wedge c$$

		bc			
		00	01	11	10
	0	0	0	1	0
а	1	0	1	1	1

Karnaugh maps

Karnaugh map groups in general can wrap round the end of a map

	cd			
Г	00	01	11	10
00	1	0	0	1
01	0	0	0	0
11	0	0	0	0
10	1	0	0	1
	01	00 1 01 0 11 0	00 01 00 1 0 01 0 0 11 0 0	00 01 11 00 1 0 0 01 0 0 0 11 0 0 0

- Groups should be of size 2ⁿ for some n
 - o For a group of size n, n variables are excluded from the term

Tabular Method

- Karnaugh maps are a great tool for minimising small logic expressions
- Difficult to implement on a computer due to the reliance on human pattern matching
- Quine-McCluskey algorithm is a modification of Karnaugh maps which is implementable on a computer

<u>Note</u>: The problem of minimising boolean functions is NP-Hard, under some reasonable assumptions it is believed that there is no algorithm that runs in polynomial time that can compute it.

Summary

- Introduced the concept of logic minimisation
- Demonstrated logic equivalences as a tool for minimisation
- Introduced Karnaugh maps
- Demonstrated the use of Karnaugh maps
- Explained that logic minimisation is a hard problem