לוגיקה ותורת הקבוצות - תרגול 6

מערכת הוכחה לתחשיב הפסוקים

הבא: באופן הבאודרת באופן היכיחים, $Ded\left(\emptyset\right)$, היא הפסוקים היכיחים, הפטוקים היכיחים, חיא הקבוצה האינדוקטיבית

- $W = \text{WFF}_{\{\neg, \rightarrow\}} \bullet$
- כאשר: במער, האקסיומות, קבוצת ה $B=A_1\cup A_2\cup A_3$

$$A_1 = \{ \alpha \to (\beta \to \alpha) \mid \alpha, \beta \in \mathrm{WFF}_{\{\neg, \to\}} \}$$
 -

$$A_2 = \left\{ (\alpha \to (\beta \to \gamma)) \to ((\alpha \to \beta) \to (\alpha \to \gamma)) \mid \alpha, \beta, \gamma \in \mathrm{WFF}_{\{\neg, \to\}} \right\} -$$

$$A_3 = \left\{ ((\neg \beta) \to (\neg \alpha)) \to (\alpha \to \beta) \mid \alpha, \beta \in \mathrm{WFF}_{\{\neg, \to\}} \right\} -$$

 $rac{lpha, lpha o eta}{eta}$ קבוצת כלל הניתוק החיסק, כאשר MP הוא כלל הניתוק י קבוצת כללי החיסק. $MP\left(lpha, lpha o eta
ight) = eta$ צורת רישום נוספת: $BP\left(lpha, lpha o eta
ight)$

מערכת הוכחה עם הנחות: קבוצת הפסוקים היכיחים מקבוצת פסוקים Σ (הנחות), $Ded\left(\Sigma\right)$, היא הקבוצה האינדוקטיבית מערכת הוכחה עם הנחות: קבוצת הפסוקים היכיחים מקבוצת פסוקים $X_{B\cup\Sigma,F}$

- $\Sigma \vdash \alpha$ נאמר כי α יכיח מ־ Δ ונסמן $\alpha \in Ded(\Sigma)$ אם
- Σ מתוך מתוך סדרת היצירה של פסוק מעל $Ded\left(\Sigma\right)$ מעל מעל פסוק סדרת היצירה של מעל
 - . או $\Sigma=\emptyset$ או הנחות), קבוצת הפסוקים היכיחים (ללא הנחות). $\Sigma=\emptyset$

משפט הנאותות ועקביות

 $\Sigma \models \alpha$ אז $\Sigma \vdash \alpha$ אז $\Sigma \vdash \alpha$ מתקיים, אם $\Sigma \vdash \alpha$ מתקיים, לכל קבוצת פסוקים כל לכל מתקיים, אם $\Sigma \vdash \alpha$ אז $Con\left(\Sigma\right) = \left\{\alpha \in \mathrm{WFF}_{\{\neg, \rightarrow\}} \mid \Sigma \vdash \alpha\right\}$ סימון: $\Sigma \vdash \alpha$ אז $\Sigma \not\vdash \alpha$ אז $\Sigma \not\vdash \alpha$ אז $\Sigma \not\vdash \alpha$ מסקנה ממשפט הנאותות: אם $\Sigma \not\vdash \alpha$ אז $\Sigma \not\vdash \alpha$

 $\models \alpha$ אז $\vdash \alpha$ משפט הנאותות הצר: אם

עקביות

. $\Sigma \vdash \neg \alpha$ גום $\Sigma \vdash \alpha$ כך ש־ $\alpha \in \mathrm{WFF}_{\{\neg,
ightarrow\}}$ היא א עקבית אם אם היא $\Sigma \subseteq \mathrm{WFF}_{\{\neg,
ightarrow\}}$ כך ש־ $\alpha \in \mathrm{WFF}_{\{\neg,
ightarrow\}}$ גום $\Sigma \nvdash \alpha$ עקבית אמ"מ קיים פסוק α כך ש־ $\alpha \not \subseteq \Delta$.

איך מראים שקבוצה Σ היא עקבית?

 $.\alpha\notin Ded\left(\Sigma\right)$ כלומר , $\Sigma \nvdash \alpha$ ער כך פסוק להראות ידי להראות, די להראות פסוק . בע α לפי להראות המסקנה ממשפט הנאותות, די להוכיח כי להוכיח המסקנה ממשפט הנאותות, די להוכיח ל

. היא עקבית $\Sigma=\{p_i o p_{i+1} \mid i \in \mathbb{N}\}=\{p_0 o p_1, p_1 o p_2, \dots\}$ היא הוכיחו כי הקבוצה בית הוכיחו כי הקבוצה

משפט 2: אם Σ ספיקה אז עקבית.

:2 תרגיל

נגדיר סדרה של קבוצות פסוקים:

$$\Sigma_{0} = \{\neg p_{0}\}\$$

$$\Sigma_{1} = \{p_{0}, \neg p_{1}\}\$$

$$\Sigma_{2} = \{p_{0}, p_{1}, \neg p_{2}\}\$$

$$\vdots$$

 $\Sigma_i = \{p_0, p_1, \dots, p_{i-1}, \neg p_i\}$ באופן כללי

- Σ_i עקבית? עקבית לכל לכל מתקיים ש
 - ? עקבית $\bigcup_{i\in\mathbb{N}}\Sigma_i$ עקבית 2
 - עקבית? עקבית: האם $\bigcap_{i\in\mathbb{N}}\Sigma_i$
- 4. תהי $\emptyset
 eq X$ קבוצת קבוצות פסוקים. ההי עקבית, אז $X \neq \emptyset$ היא עקבית. הוכיחו: אם לכל $\Sigma \in X$ מתקיים ש

משפט השלמות

 $.\Sigma \vdash \alpha$ אז $\Sigma \models \alpha$ אם ,
 Σ פסוקים וקבוצת פסוק לכל לכל אז $\Sigma \models \alpha$ א
 α וקבוצת פסוק לכל בצרוף משפט הנאותות נקבל כי
 $\Sigma \vdash \alpha \Leftrightarrow \Sigma \vdash \alpha$ כי

 $.\Sigma \not\models \alpha$ אז א, $\Sigma \not \vdash \alpha$ אם מסקנה ממשפט משלמות:

 Σ אז עקבית אז עקבית אס Σ אם בפוקים ספיקה. לכל לכל קבוצת לכל עקבית אמ"מ עקבית נקבל נקבל בצרוף משפט 2 נקבל כי Σ עקבית אמ"מ עקבית אמ"מ

. WFF $_{\{\neg,\rightarrow\}}$ מעל הפסוקים המחשיב הדשה חדשה הוכחה מערכת נגדיר בי נגדיר ו

• קבוצת האקסיומות מכילה את הפסוקים מהצורה הבאה:

,
$$\alpha,\beta,\gamma\in\mathrm{WFF}_{\{\neg,\rightarrow\}}$$
 לכל

$$\alpha \to (\beta \to \alpha) : A_1$$
 -

$$(\alpha \to (\beta \to \gamma)) \to ((\alpha \to \beta) \to (\alpha \to \gamma)) : A_2$$

• כללי היסק:

$$MP(\alpha, \alpha \to \beta) = \beta$$
 -

(יוגדר בהמשך)
$$MV$$
 –

. במערכת החדשה Σ במערכת יכיח שפסוק את א $\Sigma \underset{N}{\vdash} \alpha$ במערכת החדשה נסמן ב

$$.MV\left(lpha
ightarrow(eta
ightarrowlpha)
ight)=lpha$$
 נגדיר.

הוכיחו/ הפריכו: המערכת החדשה שלמה.

 $.\Sigma \vdash_N \alpha$ אז $\Sigma \vDash \alpha$ אם , $\alpha \in \mathrm{WFF}_{\{\neg, \to\}}$ ולכל פטוק ולכל בסוקים בסוקים המוקים בכלומר, כלומר, אוב

תרגול 6 לוגיקה

:1 תרגיל

. היא עקבית $\Sigma=\{p_i\to p_{i+1}|i\in\mathbb{N}\}=\{p_o\to p_1,p_1\to p_2,\dots\}$ היא הוכיחו כי הקבוצה ב

הוכחה:

 $\Sigma \nvDash \alpha$ כיח נוכיח , $\alpha = \neg (p_0 \to p_o)$ נבחר נבחר α את אם להראות השמה המספקת את Σ אם להראות יש

$$\overline{V_T}(p_i \to p_{i+1}) = TT_{\to}(V_T(p_i), V_T(p_{i+1}))$$
$$TT_{\to}(T, T) = T$$

 $V_T(lpha)=F$ ולכן N_T מספקת את את אבל אבל לפי מסקנה ממשפט הנאותות) איבלנו $\Sigma
ot \vdash lpha \Leftarrow \Sigma
ot \vdash lpha$ עקבית. (הגדרה שקולה עקביות)

משפט 2:

אם Σ ספיקה אז עקבית.

משפט 2 הוכחה:

 $\overline{V}(\lnot(p_0 o p_0)) = F$ נניח כי Σ ספיקה, אז קיימת לפי הגדרה השמה v כך ש $v \models \Sigma$ ש ככת כי $\Sigma \forall \lnot(p_0 o p_0)$ $\Longleftrightarrow \Sigma \not \vdash \lnot(p_0 o p_0)$

:2 תרגיל

נגדיר סדרה של קבוצות פסוקים:

$$\begin{split} & \Sigma_0 = \{ \neg p_o \} \\ & \Sigma_1 = \{ p_0, \neg p_1 \} \\ & \Sigma_2 = \{ p_0, p_1, \neg p_2 \} \\ & \vdots \\ \end{split}$$

באופן כללי:

$$\Sigma_i = \{p_0, p_1, \dots, p_{i-1}, \neg p_i\}$$

- Σ_i עקבית? עקבית לכל מתקיים ש
 - עקבית! עקבית! $\bigcup_{i\in\mathbb{N}}\Sigma_i$
 - עקבית! עקבית $\bigcap_{i\in\mathbb{N}}\Sigma_i$ אים.3
- 4. תהי $\emptyset \neq X$ קבוצת קבוצות פסוקים. מתהי $\bigcap X$ אז עקבית, אז $\bigcap X$ היא עקבית. בכל לכל $X \in X$

פתרון 1:

כן, על פי משפט מספיק להראות ש־ Σ_i ספיקה. לכל i נגדיר השמה כן, באופן הבא

$$V_i(p_k) \begin{cases} F & k = i \\ T & k \neq i \end{cases}$$

(צריך להוכיח). מספקת את ביקה ולכן Σ_i חלכן Σ_i ולכן Σ_i מספקת את v_i

:2 פתרון

 $p_0, \lnot p_0 \in igcup_{i \in \mathbb{N}} \Sigma_i$ גדול איחוד מהגדרת מהגדרת וי
 $p_0 \in \Sigma_1$ ו יי $\lnot p_o \in \Sigma_0$ לא,

$$igcup_{\in \mathbb{N}} \Sigma_i dash
eg p_0$$
 וגם $\sum_{i \in \mathbb{N}} \Sigma_i dash p_0$

מהנחת המבוקש: $\bigcup_{i\in\mathbb{N}}\Sigma_i\vdash \neg p_0\quad\text{i.c.}\quad\bigcup_{i\in\mathbb{N}}\Sigma_i\vdash p_0$ וגם 0 וגם

איחוד של קבוצות עקביות לא בהכרח עקבי.

פתרון 3:

. כן, נשים לב כי $\bigcap_{i\in\mathbb{N}}\Sigma_i=\emptyset$ זו קבוצה ספיקה ולפי משפט היא עקבית.

פתרון 4:

נניח בשלילה ש־ $\bigcap X$ לא עקבית. $\bigcap X \vdash \alpha \text{ מתקיים } \alpha \in \mathrm{WFF}_{\{\to,\neg\}}$ לכל מתקיים $\alpha \in \mathrm{WFF}_{\{\to,\neg\}}$ מכוון ש $\emptyset \neq X$, קיימת Σ כך ש־ $X \neq \emptyset$ (לפי הגדרת חיתוך גדול). ממונוטוניות ההוכחה מתקיים בר $\Sigma \vdash \alpha$ מתקיים מתקיים לא ממונוטוניות ממונוטוניות מתקיים

תרגיל 3:

 $MV(\alpha \to (\beta \to \alpha)) = \alpha$ גדיר. , $lpha\in \mathrm{WFF}_{\{\lnot,\to\}}$ ולכל פסוק ולכל בסוק לכל קבוצת לכל קבוצת לכל בסוקה החדשה המערכת החדשה הוכיחו $\Sigma \vdash_N \alpha$ אם $\Sigma \vDash \alpha$ אם

הוכחה סעיף 1:

כך נראה כז $\Sigma \vdash_N \alpha$ כי נראה כך α פסוקים בסוקים פסוקים ענה, תהי נכונה, הטענה מונה, מונה בסוקים ב

סדרת הוכחה:

$$(A_1)$$
 $\alpha \to (\beta \to \alpha)$.1

$$(MV(1)) \alpha$$
 .2

נשים לב בכלל לא השתמשנו בנתון ש־ $\Sigma \models lpha$. המערכת מוכיחה כל