Notes on An Invitation to 3-D Vision by Ma, Soatto, Kosecka, and Sastry

Jay Monga

December 26, 2020

Contents

1	Intr	roduction	5
	1.1	Visual perception from 2-D images to 3-D models	5
	1.2	A mathematical approach	5
	1.3	A historical perspective	5
Ι	Int	troductory Material	7
2	Rep	presentation of a Three-Dimensional Moving Scene	9
	2.1	Three-dimensional Euclidean space	9
	2.2	Rigid-body motion	10
	2.3	Rotational motion and its representations	10
		2.3.1 Orthogonal matrix representation of rotations	
		2.3.2 Canonical exponential coordinates for rotations	
	2.4	Rigid-body motion and its representations	
		2.4.1 Homogenous representation	
		2.4.2 Canonical exponential coordinates for rigid-body motions	
	2.5	Coordinate and velocity transformations	
	2.6	Summary	
	$\frac{2.7}{2.7}$	Exercides	
	2.8	Quaternions and Fuler angles for rotations	

4 CONTENTS

Chapter 1

Introduction

- 1.1 Visual perception from 2-D images to 3-D models
- 1.2 A mathematical approach
- 1.3 A historical perspective

Part I Introductory Material

Chapter 2

Representation of a Three-Dimensional Moving Scene

In this chapter, we focus on the first fundamental set of transformations central to the geometry of 3D-vision: *Euclidean motion*, or *rigid-body motion*. This is pretty important for modeling how a camera moves. We will start by going into what a Euclidean space is and then spend the rest of the time talking about rigid-body motions.

2.1 Three-dimensional Euclidean space

We are going to use \mathbb{E}^3 to denote three-dimensional Euclidean space.

- 2.2 Rigid-body motion
- 2.3 Rotational motion and its representations
- 2.3.1 Orthogonal matrix representation of rotations
- 2.3.2 Canonical exponential coordinates for rotations
- 2.4 Rigid-body motion and its representations
- 2.4.1 Homogenous representation
- 2.4.2 Canonical exponential coordinates for rigid-body motions
- 2.5 Coordinate and velocity transformations
- 2.6 Summary
- 2.7 Exercides
- 2.8 Quaternions and Euler angles for rotations