Search

HOME NEWS RESEARCH PUBLICATIONS GROUP EDUCATION RESOURCES CONTACT

The Kalman Filter

Basic Introduction to Kalman Filtering. The basic Kalman Filter structure is explained and accompanied with a simple python implementation.

Kalman Filter Basic Intro

Introduction

The Kalman Filter (KF) is a set of mathematical equations that when operating together implement a **predictor-corrector** type of estimator that is optimal in the sense that it minimizes the estimated error covariance when some presumed conditions are met.

Mathematical Formulation

The KF addresses the general problem of trying to estimate the state $x \in \mathbb{R}^n$ | of a discrete-time controlled process that is governed by the linear stochastic difference equation:

$$x_k = Ax_{k-1} + Bu_k + w_{k-1} \qquad |$$
 with a measurement $y \in \mathbf{R}^m$ | that is:

$$y_k = Hx_k + v_k$$

The random variables w_k and v_k represent the process and measurement noise respectively. They are assumed to be **independent** of each other, white, and with normal probability distributions:

$$p(w) \approx N(0, Q)$$
 | $p(v) \approx N(0, R)$ |

The $n\times n$ |matrix A| relates the state at the previous time step to the state at the current step, in the absence of either a driving input or process noise. The $n\times l$ |matrix B| relates the control input $u\in \mathbb{R}^{|I|}$ to the state x; The $m\times n$ matrix H|in the measurement equation relates the state to the measurement y_k ;

How the KF works

The KF process has two steps, namely:

- * **Prediction step:** the next step state of the system is predicted given the previous measurements
- * **Update step:** the current state of the system is estimated given the measurement at that time step

These steps are expressed in equation-form as follows:

Prediction

$$\begin{array}{lll} X_{\,k}^{\,-} = A_{\,k-1}\,X_{\,k-1} + B_{\,k}\,U_{k} & | \\ P_{\,k}^{\,-} = A_{\,k-1}\,P_{\,k-1}\,A_{\,k-1}^{\,T} + Q_{\,k-1} & | \\ \textbf{Update} \\ V_{\,k} = Y_{\,k} - H_{\,k} - X_{\,k}^{\,-} & | \end{array}$$

https://www.autonomousrobotslab.com/the-kalman-filter.html

Python Implementation

File: KalmanFilter_Basic.py

```
from numpy import *
import numpy as np
from numpy.linalg import inv
from KalmanFilterFunctions import *
# time step of mobile movement
dt = 0.1
# Initialization of state matrices
X = array([[0.0], [0.0], [0.1], [0.1]))
P = diag((0.01, 0.01, 0.01, 0.01))
A = array([[1, 0, dt, 0], [0, 1, 0, dt], [0, 0, 1,
0 = eve(X.shape[0])
B = eye(X.shape[0])
U = zeros((X.shape[0],1))
# Measurement matrices
  = array([[X[0,0] + abs(random.randn(1)[0])], [X[1]
H = array([[1, 0, 0, 0], [0, 1, 0, 0]])
R = eye(Y.shape[0])
# Number of iterations in Kalman Filter
N_{iter} = 50
# Applying the Kalman Filter
for i in range(0, N_iter):
    (X, P) = kf_predict(X, P, A, Q, B, U)
    (X, P, K, IM, IS, LH) = kf_update(X, P, Y, H,
    Y = array([[X[0,0] + abs(0.1 * random.randn(1)]])
```

File: KalmanFilterFunctions.py

```
from numpy import dot, sum, tile, linalg, log, pi,
from numpy.linalg import inv, det

def kf_predict(X, P, A, Q, B, U):
    X = dot(A, X) + dot(B, U)
    P = dot(A, dot(P, A.T)) + Q
    return(X, P)

def gauss_pdf(X, M, S):
    if M.shape[1] == 1:
        DX = X - tile(M, X.shape[1])
        E = 0.5 * sum(DX * (dot(inv(S), DX)), axis=
        E - E + 0.5 * M.shape[0] * log(2 * pi) + 0.
        P = exp(-E)
    elif X.shape[1] == 1:
        DX = tile(X, M.shape[1] - M)
```

```
\begin{split} S_k &= H_k P_k^- H_k^T + R_k \ \big| \\ K_k &= P_k^- H_k^T S_k^- 1 \big| \\ X_k &= X_k^- + K_k V_k \ \big| \\ P_k &= P_k^- - K_k S_k K_k^T \ \big| \end{split}
```

whore

4

- * X_k^- | and P_k^- | are the predicted mean and covariance of the state, respectively, on the time step k| before seeing the measurement.
- * X_k |and P_k |are the estimated mean and covariance of the state, respectively, on time step k|after seeing the measurement.
- * Y_k | is the mean of the measurement on time step k|.
- * V_k |is the innovation or the measurement residual on time step k|
- * $S_k \mid$ is the measurement prediction covariance on the time step $k \mid$
- * K_k | is the filter gain, which tells how much the predictions should be corrected on time step k |

```
E = 0.5 * sum(DX * (dot(inv(S), DX)), axis
E = E + 0.5 * M.shape[0] * log(2 * pi) + 0.
P = exp(-E)
else:
    DX = X - M
E = 0.5 * dot(DX.T, dot(inv(S), DX))
E = E + 0.5 * M.shape[0] * log(2 * pi) + 0.
P = exp(-E)
return (P[0],E[0])

def kf_update(X, P, Y, H, R):
    IM = dot(H, X)
    IS = R + dot(H, dot(P, H.T))
    K = dot(P, dot(H.T, inv(IS)))
    X = X + dot(K, (Y-IM))
P = P - dot(K, dot(IS, K.T))
LH = gauss_pdf(Y, IM, IS)
return (X,P,K,IM,IS,LH)
```

Proudly powered by Weebly