Notatki z AiSD. Nr 12.

 $16~\mathrm{marca}~2005$

DRZEWA ZBALANSOWANE: DRZEWA AVL

IIUWr. II rok informatyki

Przygotował: Krzysztof Loryś

17 Definicja

Definicja 3 Binarne drzewo przeszukiwań jest drzewem AVL, jeśli dla kaźdego wierzchołka wysokości jego lewego i prawego poddrzewa róźnią się o co najwyżej 1.

UWAGA: Skrót AVL pochodzi od pierwszych liter nazwisk autorów (Adelson-Velskij i Landis).

18 Zasadnicza cecha

Twierdzenie 5 Wysokość drzewa AVL o n wierzchołkach jest mniejsza niź $1.4405 \log(n+2)$.

Fakt 19 Liczba wierzchołków w dowolnym drzewie binarnym jest o 1 mniejsza od liczby pustych wska "xników (tj. równych NIL).

Dowód (Twierdzenia 5)

Niech $\rho(i)$ = "liczba pustych wska" xników w minimalnym (tj. o najmniejszej 'liczbie wierzchołków) drzewie AVL o wysokości i".

Indukcyjnie po wysokości h drzewa dowodzimy, źe $\rho(h)=(h+2)$ -a liczba Fibonacciego. Łatwo sprawdzić, źe $\rho(1)=2$ i $\rho(2)=3$.

Niech T będzie minimalnym drzewem AVL o wysokości h ($h \geq 3$). Z minimalności T wiemy, źe jedno z poddrzew podwieszonych pod jego korzeniem musi być minimalnym drzewem AVL o wysokości h-1, a drugie - minimalnym drzewem AVL o wysokości h-2. Poniewaź kaźdy pusty wska"xnik T jest pustym wska"xnikiem w jednym z tych poddrzew, otrzymujemy wzór $\rho(h) = \rho(h-1) + \rho(h-2)$.

Teraz niech N będzie liczbą wierzchołków w T. Z Faktu 19 i powyźszych rozwaźań mamy

$$N+1 > \frac{1}{\sqrt{5}} \left(\frac{1+\sqrt{5}}{2}\right)^{h+2} - 1,$$

co po prostych przeksztaceniach daje tezę.

19 Operacje słownikowe na drzewach AVL

Wyszukiwanie elementu wykonuje się identycznie jak dla zwykłych binarnych drzew przeszukiwań. Pozostałe dwie operacje mogą zaburzyć strukturę drzewa AVL. Przywracanie tej struktury nazywamy balansowaniem drzewa.

19.1 Wstawianie elementu

Niech M będzie pierwszym węzłem na drodze od wstawionego elementu do korzenia, w którym nastąpiło naruszenie równowagi drzewa AVL. Oznacza to, źe przed operacją wstawienia poddrzewa zakorzenione w M były nierównej wysokości i wstawienie zwiększyło wysokość wyźszego poddrzewa. Załóźmy, źe tym poddrzewem jest lewe podrzewo i oznaczmy jego korzeń przez L (sytuacja, w której wyźszym poddrzewem jest prawe poddrzewo jest symetryczna).

Procedura balansowania musi oddzielnie rozpatrywać dwa przypadki:

(A) W drzewie o korzeniu L zwiększyła się wysokość lewego poddrzewa.

(B) W drzewie o korzeniu L zwiększyła się wysokość prawego poddrzewa.

Uwaga: Po zbalansowaniu wysokość drzewa zakorzenionego w C jest równa wysokości drzewa zakorzenionego w M przed operacją wstawienia. Dlatego nie ma potrzeby przywracania zrównowaźenia w innych węzłach poza M.

19.2 Usuwanie elementu

Operacja ta jest znacznie bardziej skomplikowana. IDEA:

Algorytm DeleteAVLnode

- 1. Znale"xć wierzchołek zawierający element g, który chcemy usunąć.
- 2. Jeśli jest to wierzchołek wewnętrzny to wstawić do niego element g' z drzewa bezpośrednio następny (bąd"x bezpośrednio poprzedni) po g.
- 3. Powtarzać rekurencyjnie krok 2 dla g', tak długo, aź g' będzie elementem z liścia.
- 4. Usunąć ten liść. Przejść drogę od tego liścia do korzenia przywracając zrównowaźenie wierzchołków na tej drodze przy pomocy rotacji.

UWAGI:

- 1. Tym razem moźe się zdarzyć, źe trzeba będzie dokonywać rotacji dla wszystkich wierzchołków na tej drodze.
- 2. Szczegółowy opis drzew AVL moźna znale"xć w ksiaźce [1].

19.3 Koszt

Wszystkie operacje słownikowe na drzewach AVL moźna wykonać w czasie ograniczonym funkcją liniową od wysokości drzewa, a więc w czasie $O(\log n)$.

20 Zastosowanie drzew AVL do implementacji list

Typowymi operacjami na listach są m.in.:

- 1. wstawianie elementu na wskazaną pozycję,
- 2. usuwanie elementu ze wskazanej pozycji,
- 3. konkatenacja list,
- 4. podział listy na dwie podlisty wg zadanej pozycji.

Przy tradycyjnych implementacjach list (tj. w tablicach lub przy pomocy zmiennych wska-"xnikowych) niektóre z tych operacji wymagają czasu liniowego. Drzewa AVL pozwalają na implementację list, która umoźliwia wykonanie powyźszych operacji w czasie $O(\log n)$. Wystarczy w kaźdym wierzchołku pamiętać liczbę elementów w jego lewym poddrzewie (liczba ta wyznacza pozycję elementu w liście przechowywanej w drzewie zakorzenionym w tym wierzchołku).

Szczegóły pozostawiamy jako temat do samodzielnych studiów.

Literatura

[1] N.Wirth, Algorytmy + Struktury Danych = Programy.