Machine Translation Attention Mechanism

Radoslav Neychev

Outline

- Machine Translation historical overview
 - Statistical Machine Translation
 - Word alignments
- Neural Machine Translation (NMT)
 - Seq2Seq
 - Beam Search
- Attention mechanism

Historical overview

Before Deep Learning

1950s: first Machine Translation

- Georgetown experiment (7 Jan 1954)
 - Automatic Russian-English translation of 60 sentences
 - 250 vocabulary articles
 - 6 grammar rules
 - Calculated on Mainframe IBM 701
- The same experiment in the USSR (1954 too)
 - Rule-based translation
 - Calculated on BESM

MT Training Data

Parallel corpora

- Pairs <source, translation>
- Typically sentence-level (although sometimes can be paragraph- or doc-level)
- Can be manually curated by translators, crawled from web or synthetic

Source	角柱を過ぎる粘性流体の乱流をラージエディシミュレーションし, フイルタ幅と数値粘性の影響を調べた。
Reference	The large eddy simulation of a turbulent flow of a viscous fluid passing through a square column was conducted, and the effects of the filter width and numerical viscosity were examined.

Want to find best English sentence y, given French sentence x

Let's use Bayes Rule to break this down into two components:

Source: http://web.stanford.edu/class/cs224n/slides/cs224n-2019-lecture08-nmt.pdf

How to learn translation model from the parallel corpus?

Let's calculate

Where **a** is an **alignment** (word-level correspondence between French sentence x and English sentence y)

Alignment can be: many-to-one

Source: http://web.stanford.edu/class/cs224n/slides/cs224n-2019-lecture08-nmt.pdf

Alignment can be: one-to-many

Some words are very fertile!

Alignment can be: many-to-many

12

Enumerate every possible y and calculate the probability? No!

Use a heuristic search algorithm to search for the best translation, discarding hypotheses that are too low-probability

PBMT

- PBMT: phrase-based machine translation
 - N-Gram phrase table
 - N-Gram language model

Phase tables

Target language N-Gram set // -logP

Я видел кошку // 4.5 Я увидел кошку // 9.8 Я видел кошечку // 8.2

PBMT

- PBMT: phrase-based machine translation
 - N-Gram phrase table
 - N-Gram language model

NGram LM's

Source language N-Gram // -logP (next | prefix)

I saw a cat I saw a dog I saw a bicycle

PBMT

Source: http://web.stanford.edu/class/cs224n/slides/cs224n-2019-lecture08-nmt.pdf

- Systems had many separately-designed subcomponents
- Lots of feature engineering
- Need to design features to capture particular language phenomena
- Require compiling and maintaining extra resources (tables of equivalent phrases)
- Lots of human effort to maintain
- Repeated effort for each language pair!

Neural Machine Translation

What is Neural Machine Translation?

 Neural Machine Translation (NMT) is a way to do Machine Translation with a single neural network

 The neural network architecture is called sequence-to-sequence (aka seq2seq), it involves two RNNs

hidden state to decoder

NMT: how does it work?

- NMT directly calculates P(y|x)
 - y target sentence, x source sentence

$$P(y|x) = P(y_2|y_1, x)P(y_3|y_1, y_2, x) \dots P(y_T|y_1, y_2, \dots, x)$$

Probability of next word in target language

To train it we need a huge parallel corpus.

Seq2seq is trained end-to-end

27

Greedy decoding

- Decoder predicts the most probable token (argmax) on each step
- The approach is greedy

Any problems with it?

Any mistake is treated as input on the next step!

We want the translation that maximizes the likelihood:

$$P(y|x) = P(y_1|x) \prod_{t=2}^{r} P(y_t|y_1, \dots y_{t-1}, x)$$

 We cannot compute all the possible sequences (exponential complexity)

Beam search

- On each step of decoder, keep track of the k most probable partial translations (which we call hypotheses)
- k is the beam size (in practice around 5 to 10)
- A hypothesis has a score which is its log probability:

score
$$(y_1, ..., y_t) = \log P_{LM}(y_1, ..., y_t | x) = \sum_{i=1}^t \log P_{LM}(y_i | y_1, ..., y_{i-1}, x)$$

- We search for high-scoring hypotheses, tracking top k on each step
- Beam search does not guarantee finding optimal solution

Beam search decoding: example

Beam size = k = 2. Blue numbers =
$$score(y_1, ..., y_t) = \sum_{i=1}^{t} log P_{LM}(y_i|y_1, ..., y_{t-1}, x)$$

Source: http://web.stanford.edu/class/cs224n/slides/cs224n-2019-lecture08-nmt.pdf

Beam search decoding: stopping criterion

- In greedy decoding, usually we decode until the model produces <EOS> token
- In beam search decoding, different hypotheses may produce
 <EOS> tokens on different timesteps
 - When a hypothesis produces <EOS>, that hypothesis is complete.
 - Place it aside and continue exploring other hypotheses via beam search.
- Usually we continue beam search until:
 - We reach pre-defined timestep T
 - We have at least n completed hypotheses

Beam search decoding: finishing up

- How to select top one with highest score?
- Each hypothesis on our list has a score:

$$score(y_1, ..., y_t) = log P_{LM}(y_1, ..., y_t | x) = \sum_{i=1}^{t} log P_{LM}(y_i | y_1, ..., y_{i-1}, x)$$

• Problems?

Longer hypotheses have lower scores

• Fix: Normalize by length. Use this to select top one instead:

$$\frac{1}{t} \sum_{i=1}^{t} \log P_{\mathrm{LM}}(y_i|y_1,\ldots,y_{i-1},x)$$

NMT: Quality Evaluation

BLEU

BLEU (Bilingual Evaluation Understudy) compares the machine-written translation to human-written translation, and computes a similarity score based on:

- n-gram precision
- penalty for too-short system translations (brevity penalty)

$$BLEU = ext{brevity penalty} \cdot \left(\prod_{i=1}^n ext{precision}_i
ight)^{1/n} \cdot 100\%$$

$$ext{brevity penalty} = min\left(1, rac{ ext{output length}}{ ext{reference length}}
ight)$$

BLEU

BLEU (Bilingual Evaluation Understudy) compares the machine-written translation to human-written translation, and computes a similarity score based on:

- n-gram precision
- brevity penalty

SYSTEM A:	Israeli officials	responsibility of	airport	safety
	2-GRAM MATCH	1-0	RAM MAT	CH

EFERENCE: Israeli officials are responsible for airport security

SYSTEM B: airport security | Israeli officials are responsible | 2-GRAM MATCH | 4-GRAM MATCH

System A	System B 6/6	
3/6		
1/5	4/5	
0/4	2/4	
0/3	1/3	
6/7	6/7	
0%	52%	
	3/6 1/5 0/4 0/3 6/7	

$$BLEU = ext{brevity penalty} \cdot \left(\prod_{i=1}^n ext{precision}_i
ight)^{1/n} \cdot 100\%$$

BLEU is imperfect:

- There are many valid ways to translate a sentence
- So a good translation may get a poor BLEU score just because of low n-gram overlap with the human translation

Quality metrics for MT

- ROUGE (Recall-Oriented Understudy for Gisting Evaluation)
- METEOR (Metric for Evaluation of Translation with Explicit ORdering)
 - Uses synonyms from WordNet

Quality metrics for MT

Human evaluation

Side-by-side (SbS HE)

Q: Pick the best translaiton

Src: Beam search decoding

System1: декодирование с поиском лучадекодирование поиска луча

System2: декодирование поиска луча

Direct Assessment (DA)

Q: Rate this translation of 5-point scale

Src: Beam search decoding

Translation: декодирование поиска луча

Quality metrics for MT

Human eval is expensive

Solution: ML models trained to approximate HE

- 1. BLEURT (Google) BERT finetuned on DA ratings
- 2. XCOMET (Unbabel) XLM finetuned on DA + MQM ratings
- 3. LLM-based estimators prompt LLM to estimate MT quality

- Better performance
 - More fluent
 - Better use of context
 - Better use of phrase similarities
- A single neural network to be optimized end-to-end
 - No subcomponents to be individually optimized
- Requires much less human engineering effort
 - No feature engineering
 - Same method for all language pairs

- NMT is less interpretable
 - Hard to debug

- NMT is difficult to control
 - For example, can't easily specify rules or guidelines for translation
 - Safety concerns!

eedback

Send feedback

Is Machine Translation solved?

- Challenges yet to be resolved
 - Use of large context in translation
 - Low-resource language pairs (no big parallel corpora)
 - Slang and narrow domains
 - Robustness to errors and typos

Attention

Seq2seq NMT

Attention

Main idea:

on each step of the **decoder**, use **direct connection to the encoder** to focus on a particular part of the source sequence

Attention in equations

Denote encoder hidden states $\mathbf{h}_1,\dots,\mathbf{h}_N\in\mathbb{R}^k$ and decoder hidden state at time step t $\mathbf{s}_t\in\mathbb{R}^k$

The attention scores \mathbf{e}^t can be computed as dot product

$$\mathbf{e}^t = [\mathbf{s}^T\mathbf{h}_1, \dots, \mathbf{s}^T\mathbf{h}_N]$$

Then the attention vector is a linear combination of encoder states

 $\mathbf{a}_t = \sum m{lpha}_i^t \mathbf{h}_i \in \mathbb{R}^k$, where $m{lpha}_t = \operatorname{softmax}(\mathbf{e}_t)$

Attention provides interpretability

- We may see what the decoder was focusing on
- We get word alignment for free!

Attention variants

- Basic dot-product (the one discussed before): $e_i = s^T h_i \in \mathbb{R}$
- Multiplicative attention: $e_i = s^T W h_i \in \mathbb{R}$
 - \bigcirc $W \in \mathbb{R}^{d_2 \times d_1}$ weight matrix
- Additive attention: $e_i = v^T \tanh(W_1 h_i + W_2 s) \in \mathbb{R}$
 - \circ $W_1 \in \mathbb{R}^{d_3 imes d_1}, W_2 \in \mathbb{R}^{d_3 imes d_2}$ weight matrices
 - \circ $v \in \mathbb{R}^{d_3}$ weight vector

Summary

