

CPSC 131

Data Structures

Breadth-First Search (BFS)

Review: Graph Traversals

- A systematic procedure for exploring a graph by examining all of its vertices and edges
- Traversal algorithms
 - Depth-First Search (DFS)
 - Visits the child vertices before visiting the sibling vertices
 - A stack OR recursion is used when implementing DFS

- Breadth-First Search (BFS)
 - Visits the neighbor vertices before visiting the child vertices
 - A queue is used in the search process

BFS Traversal Terminologies & Sketches

- A unexplored vertexA visited vertex
- ——unexplored edge
- → discovery edge
- --- cross edge

BFS Algorithm Pseudo Code

```
BFS(startV) {
Set all vertices to not visited
Push startV to queue
Set startV to visited
while (queue is not empty )
  currentV = Pop queue
  "Visit" current
  for each vertex adjV adjacent to currentV do
    if ( adjV is not visited)
      Push adjV to queue
      Set adjV to visited
```


Analysis of BFS

- Setting/getting a vertex/edge label takes O(1) time
- Each vertex is labeled twice
 - once as NOT VISITED
 - once as VISITED
- ☐ For-loop is called once for each vertex
- \square BFS runs in O(n + m) time provided the graph with n vertices and m edges is represented by the adjacency list structure

How can one find and report a shortest path using BFS?