RÉVISIONS D'ALGÈBRE LINÉAIRE

Applications linéaires

Solution 1

- 1. Soit $x \in K_p$. Alors $u^p(x) = 0_E$ et donc $u^{p+1}(x) = u(0_E) = 0_E$. Donc $x \in K_{p+1}$. On en déduit que $K_p \in K_{p+1}$. Soit $y \in I_{p+1}$. Il existe $x \in E$ tel que $y = u^{p+1}(x) = u^p(u(x))$. Donc $y \in I_p$. On en déduit que $I_{p+1} \in I_p$.
- 2. Comme u est injectif, u^p est également injectif pour tout $p \in \mathbb{N}$. Donc $K_p = \{0\}$ pour tout $p \in \mathbb{N}$. Pour tout $p \in \mathbb{N}$, u^p est un endomorphisme injectif d'un espace vectoriel de dimension finie donc également surjectif. On en déduit $I_p = E$ pour tout $p \in \mathbb{N}$.
- 3. a. Notons $A = \{p \in \mathbb{N} \mid K_p = K_{p+1}\}$. Si on suppose A vide, on a donc $K_p \subsetneq K_{p+1}$ pour tout $p \in \mathbb{N}$. La suite $(\dim K_p)_{p \in \mathbb{N}}$ est donc une suite strictement croissante d'entiers. Mais cette suite est majorée par n. Il y a donc contradiction. A est donc une partie non vide de \mathbb{N} : elle admet un plus petit élément r. De plus, pour p < r, on a $K_p \subsetneq K_{p+1}$ donc $\dim K_p + 1 \le \dim K_{p+1}$. En additionnant ces inégalités pour k variant de 0 à r-1, on obtient : $\dim K_0 + r \le \dim K_r$. Or $\dim K_0 = 0$ et $\dim K_r \le n$ donc r < n.
 - **b.** Par le théorème du rang on a donc, dim $I_r = \dim I_{r+1}$. Or $I_r \subset I_{r+1}$ donc $I_r = I_{r+1}$. Soit l'hypothèse de récurrence $\operatorname{HR}(p) : K_r = K_{r+p}$. HR(0) est clairement vérifiée. Supposons $\operatorname{HR}(p)$ pour un certain $p \in \mathbb{N}$. Soit $x \in K_{r+p+1}$. Alors $u^{r+p+1}(x) = u^{r+1}(u^p(x)) = 0_E$. Donc $u^p(x) \in \operatorname{Ker} u^{r+1} = \operatorname{Ker} u^r$. Donc $u^r(u^p(x)) = 0_E$. D'où $x \in K_{r+p} = K_r$ d'après $\operatorname{HR}(p)$. Ainsi $\operatorname{HR}(p)$ est vraie pour tout $p \in \mathbb{N}$.

On a clairement $I_{r+p} \subset I_r$ pour tout $p \in \mathbb{N}$. Comme $K_r = K_{r+p}$ pour tout $p \in \mathbb{N}$, le théorème du rang nous donne : dim $I_{r+p} = \dim I_r$ pour tout $p \in \mathbb{N}$. On a donc $I_r = I_{r+p}$ pour tout $p \in \mathbb{N}$.

- c. D'après le théorème du rang, on a dim $E = \dim K_r + \dim I_r$. Il nous suffit de prouver que $I_r \cap K_r = \{0_E\}$. Soit donc $x \in I_r \cap K_r$. On a donc $u^r(x) = 0_E$ et il existe $y \in E$ tel que $x = u^r(y)$. On a alors $u^{2r}(y) = 0_E$. D'où $y \in K_{2r} = K_{r+r} = K_r$ d'après la question 3.b. Donc $x = u^r(y) = 0_E$.
- **4.** Considérons et $u: \begin{cases} \mathbb{K}[X] & \longrightarrow & \mathbb{K}[X] \\ P & \longmapsto & P' \end{cases}$. On a $K_p = \mathbb{K}_{p-1}[X]$. La suite (K_p) est donc une suite strictement croissante (pour l'inclusion) d'espaces vectoriels.

Solution 2

1. En utilisant le fait que $p \circ q = q \circ p$, $p^2 = p$ et $q^2 = q$, on a :

$$(p \circ q)^{2} = p \circ q \circ p \circ q = p \circ p \circ p \circ q \circ q = p \circ q$$

$$(p + q - p \circ q)^{2} = (p + q)^{2} + (p \circ q)^{2} - (p + q) \circ p \circ q - p \circ q \circ (p + q)$$

$$= p^{2} + q^{2} + p \circ q + q \circ p + p \circ q - p^{2} \circ q - q \circ p \circ q - p \circ q \circ p - p \circ q^{2} = p + q - p \circ q$$

- 2. Soit $x \in \text{Ker}(p \circ q)$. On pose u = x p(x) et v = p(x). On a alors $p(u) = p(x) p^2(x) = 0$ car $p = p^2$ et $q(v) = q \circ p(x) = p \circ q(x)$ car $x \in \text{Ker } p \circ q$. Donc $x = u + v \in \text{Ker } p + \text{Ker } q$. Ainsi $\text{Ker}(p \circ q) \subset \text{Ker } p + \text{Ker } q$.

 Soit $x \in \text{Ker } p + \text{Ker } q$. Il existe donc $u \in \text{Ker } p$ et $v \in \text{Ker } q$ tels que x = u + v. On a alors $p \circ q(x) = p \circ q(u) + p \circ q(v) = q \circ p(u) + p \circ q(v) = 0$ car $u \in \text{Ker } p$ et $v \in \text{Ker } q$. Ainsi $\text{Ker } p + \text{Ker } q \subset \text{Ker}(p \circ q)$.

 On a $\text{Im}(p \circ q) \subset \text{Im } p$ et $\text{Im}(p \circ q) = \text{Im}(q \circ p) \subset \text{Im } q$ donc $\text{Im}(p \circ q) \subset \text{Im } p \cap \text{Im } q$.
 - Soit $y \in \text{Im } p \cap \text{Im } q$. Alors q(y) = y car $y \in \text{Im } q$ puis $p \circ q(y) = p(y) = y$ car $y \in \text{Im } p$. Donc $y \in \text{Im } p \circ q$. Ainsi $\text{Im } p \cap \text{Im } q \subset \text{Im}(p \circ q)$.
- 3. On a toujours $\operatorname{Ker} p \cap \operatorname{Ker} q \subset \operatorname{Ker} (p+q-p \circ q)$. Soit $x \in \operatorname{Ker} (p+q-p \circ q)$. On a donc $p(x)+q(x)=p \circ q(x)$. En composant par p, on obtient p(x)=0. En composant par q, on obtient q(x)=0. Donc $x \in \operatorname{Ker} p \cap \operatorname{Ker} q$. Ainsi $\operatorname{Ker} (p+q-p \circ q) \subset \operatorname{Ker} p \cap \operatorname{Ker} q$. On a toujours $\operatorname{Im} (p+q-p \circ q) \subset \operatorname{Im} p + \operatorname{Im} q$. Soit $x \in \operatorname{Im} p + \operatorname{Im} q$. Il existe donc $u \in \operatorname{Im} p$ et $v \operatorname{Im} q$ tels que x=u+v. On a alors p(x)=p(u)+p(v)=u+p(v) car $u \in \operatorname{Im} p, q(x)=q(u)+q(v)=q(u)+v$ car $v \in \operatorname{Im} q$ et $p \circ q(x)=q \circ p(u)+p \circ q(v)=q(u)+p(v)$ pour les mêmes raisons. Donc $(p+q-p \circ q)(x)=u+v=x$. Donc $x \in \operatorname{Im} (p+q-p \circ q)$. Ainsi $\operatorname{Im} p+\operatorname{Im} q \subset \operatorname{Im} (p+q-p \circ q)$.

Solution 3

On vérifie aisément que $s \in \mathcal{L}(E)$ et $s^2 = Id_E$. s est donc une symétrie. De plus, $\mathcal{P} = Ker(s - Id_E)$ est l'ensemble des applications paires tandis que $\mathcal{I} = Ker(s - Id_E)$ est l'ensemble \mathcal{P} des applications paires. s est la symétrie par rapport à \mathcal{P} parallélement à \mathcal{I} .

Solution 4

Soient $\lambda, \mu \in \mathbb{K}$ et $x, y \in E$. On a d'une part :

$$f(\lambda x + \mu y) = \varphi(\lambda x + \mu y)$$

et d'autre part :

$$f(\lambda x + \mu y) = \lambda f(x) + \mu g(y) = (\lambda \varphi(x) + \mu \varphi(y))u$$

Comme on a $u \neq 0_E$, on en déduit $\varphi(\lambda x + \mu y) = \lambda \varphi(x) + \mu \varphi(y)$. Ainsi u est bien une forme linéaire sur E. De plus, pour tout $x \in E$,

$$f^{2}(x) = f(\varphi(x)u) = \varphi(x)f(u) = \varphi(x)\varphi(u)u = \varphi(u)\varphi(x)u = \varphi(u)f(x)$$

Le scalaire λ recherché est donc g(u).

Matrices

Solution 5

On a A =
$$\begin{pmatrix} 1 & 1 & 1 & \dots & 1 \\ 1 & 2 & 2 & \dots & 2 \\ 1 & 2 & 3 & \dots & 3 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & 2 & 3 & \dots & n \end{pmatrix}$$
. On va effectuer les mêmes opérations sur les lignes de A_n et I_n.

On effectue d'abord les opérations $L_i \leftarrow L_i - L_{i-1}$ pour i variant de n à 2. A_n est alors transformée en la matrice triangulaire supérieure où tous les coefficients de la partie triangulaire supérieure sont égaux à 1 et I_n est tranformée en la matrice avec une diagonale de 1, une sous-diagonale de -1 et des 0 ailleurs.

On effectue ensuite les opérations $L_i \leftarrow L_i - L_{i+1}$ pour i variant de 1 à n-1. A est transformée en I_n et I_n est transformée en la matrice B_n formée d'une diagonale de 2, d'une sous-diagonale et d'une sur-diagonale de -1 et de zéros partout ailleurs. Ceci prouve que A_n est inversible d'inverse B_n .

Solution 6

- 1. Les applications $P \mapsto P(X + a)$ pour $a \in \mathbb{R}$ sont linéaires. Donc f est bien linéaire comme somme d'applications linéaires. De plus, $\deg P(X + a) = \deg P$ pour $a \in \mathbb{R}$. Donc $\deg f(P) \leq \max(\deg P(X + 1), \deg P(X 1), \deg P) = \deg(P)$. Ainsi f est un endomorphisme de $\mathbb{R}_3[X]$.
- 2. Des calculs élémentaires donnent;

$$f(1) = 0$$
 $f(X^2) = (X + 2)^2 + X^2 - 2(X + 1)^2 = 2$ $f(X) = (X + 2) + X - 2(X + 1) = 0$ $f(X^3) = (X + 2)^3 + X^3 - 2(X + 1)^3 = 6X + 6$

La matrice de f dans la base canonique est donc $A = \begin{pmatrix} 0 & 0 & 2 & 6 \\ 0 & 0 & 0 & 6 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$. Il est alors clair que $\operatorname{Ker} f = \operatorname{Im} f = \operatorname{vect}(1, X)$.

3. Posons $P_3 = X^2$, $P_4 = X^3$, $P_1 = f(X^2) = 2$ et $P_2 = f(X^3) = 6X + 6$. La famille (P_1, P_2, P_3, P_4) est une base de $\mathbb{R}_3[X]$ car c'est une famille de quatre polynômes à degrés échelonnés. P_1 et P_2 appartiennent au noyau de f. Il est alors clair que la matrice de f dans la base (P_1, P_2, P_3, P_4) est de la forme voulue.

Solution 7

1. Il est clair que f est bien à valeurs dans $\mathcal{M}_n(\mathbb{R})$. f est linéaire par linéarité de la trace et bilinéarité du produit matriciel. f est donc un endomorphisme de $\mathcal{M}_n(\mathbb{R})$.

2. f est une symétrie si et seulement si $f^2 = \mathrm{Id}_{\mathcal{M}_n(\mathbb{K})}$. Or

$$f^{2}(X) = X + tr(AX)B + tr(A(X + tr(AX)B))B = X + tr(AX)B + tr(AX + tr(AX)AB)B$$

= $X + (2 tr(AX) + tr(AX) tr(AB))B = X + tr(AX)(2 + tr(AB))B$

Ainsi f est une symétrie si et seulement si $\operatorname{tr}(AX)(2 + \operatorname{tr}(AB))B = 0$ pour tout $X \in \mathcal{M}_n(\mathbb{R})$, c'est-à-dire si et seulement si l'une des trois conditions suivantes est réalisée :

- B = 0:
- tr(AB) = -2;
- $\forall X \in \mathcal{M}_n(\mathbb{R})$, $\operatorname{tr}(AX) = 0$ ce qui équivaut à A = 0 (prendre pour X les éléments de la base canonique de $\mathcal{M}_n(\mathbb{R})$.
- 3. Si A=0 ou B=0, alors $f=\mathrm{Id}_{\mathcal{M}_n(\mathbb{K})}$ donc la base de f est $\mathcal{M}_n(\mathbb{R})$ et sa direction est le sous-espace nul. Supposons maintenant $A\neq 0$ et $B\neq 0$; on a donc $\mathrm{tr}(AB)=-2$. La base de f est $\mathrm{Ker}(f-\mathrm{Id}_{\mathcal{M}_n(\mathbb{K})})$. Or

$$X \in Ker(f - Id_{\mathcal{M}_n(\mathbb{K})}) \iff tr(AX)B = 0 \iff tr(AX) = 0 \text{ car } B \neq 0$$

La direction de f est $\operatorname{Ker}(f+\operatorname{Id}_{\mathcal{M}_n(\mathbb{K})})$. Soit $X\in\operatorname{Ker}(f+\operatorname{Id}_{\mathcal{M}_n(\mathbb{K})})$. Alors $2X=\operatorname{tr}(AX)B$ et donc $X\in\operatorname{vect}(B)$. Réciproquement soit $X\in\operatorname{vect}(B)$. Il existe donc $\lambda\in\mathbb{R}$ tel que $X=\lambda B$. Alors $f(X)=\lambda B+\lambda\operatorname{tr}(AB)B=-\lambda B=-X$ car $\operatorname{tr}(AB)=-2$. Donc f(X)=-X. La base de f est donc le noyau de la forme linéaire $X\mapsto\operatorname{tr}(AX)$ non nulle car $A\neq 0$: c'est un hyperplan de $\mathcal{M}_n(\mathbb{R})$. La direction de f est f(AX) est une droite vectorielle de f(AX).

Solution 8

Soit $X \in \text{Ker } A$. On a donc AX = 0 puis $A^TAX = 0$ donc $X \in \text{Ker } A^TA$. Ainsi $\text{Ker } A \subset \text{Ker } A^TA$.

Soit maintenant $X \in \text{Ker } A^T A$. On a donc $A^T A X = 0$ puis $X^T A^T A X = 0$. Notons Y = A X. Ainsi $Y^T Y = 0$. Or $Y^T Y$ est la somme des carrés des composantes de Y donc Y = 0 i.e. A X = 0. D'où $X \in \text{Ker } A$. Ainsi $\text{Ker } A^T A \subset \text{Ker } A$.

Finalement, $\operatorname{Ker} A = \operatorname{Ker} A^T A$ et $\operatorname{rg} A = \operatorname{rg} A^T A$ via le théorème du rang (A et $A^T A$ ont le même nombre de colonnes). En changeant A en A^T , on a également $\operatorname{rg} A^T = \operatorname{rg} AA^T$. Or $\operatorname{rg} A = \operatorname{rg} A^T$. Ainsi $\operatorname{rg} A^T A = \operatorname{rg} AA^T = \operatorname{rg} A$.

Solution 9

Première méthode Le calcul de M^2 donne $M^2 = M + 2I$ i.e. $M^2 - M - 2I = 0$. Soit R_n le reste de la division euclidienne de X^n par $P = X^2 - X - 2 = (X + 1)(X - 2)$. R_n est de degré 1 donc de la forme $a_nX + b_n$ avec $a_n, b_n \in \mathbb{R}$. Comme -1 et 2 sont racines de P, on trouve $-a_n + b_n = (-1)^n$ et $2a_n + b_n = 2^n$. Il vient $a_n = \frac{2^n - (-1)^n}{3}$ et $b_n = \frac{2^n + 2 \cdot (-1)^n}{3}$. On a alors $M^n = a_nM + b_nI$.

Deuxième méthode En calculant les premières puissances de M, on est amené à faire l'hypothèse de récurrence suivante :

HR(n): M^n est de la forme $a_nI + b_nM$.

La récurrence est facile et nous donne de plus les relations de récurrence $a_{n+1}=2b_n$ et $b_{n+1}=a_n+b_n$ pour tout $n\in\mathbb{N}$. Un calcul rapide nous montre que les suites (a_n) et (b_n) vérifient la relation de récurrence $u_{n+2}-u_{n+1}+2b_n=0$ pour tout $n\in\mathbb{N}$. Le polynôme caractéristique associé à cette relation de récurrence est $P=X^2-X+2=(X+1)(X-2)$. Ainsi a_n et b_n sont de la forme $\lambda(-1)^n+\mu 2^n$. Comme $a_0=1$ et $b_0=0$, on trouve λ et μ dans les deux cas puis $a_n=\frac{2^n-(-1)^n}{3}$ et $b_n=\frac{2^n+2\cdot(-1)^n}{3}$.

Solution 10

Notons E_1, E_2, E_3, E_4 la base canonique de $\mathcal{M}_{4,1}(\mathbb{K})$ et C_1, C_2, C_3, C_4 les colonnes de A. On a donc $AE_i = C_i$ pour tout $i \in [1,4]$. On remarque que $C_3 = 0$ et que $C_4 = -2C_1$. Enfin, C_2 et C_1 ne sont pas proportionnelles donc (C_1, C_2) est une base de Im A. Comme $C_3 = 0$, on a $E_3 \in \mathbb{K}$ er A. Comme $2C_1 + C_4 = 0$, $2E_1 + E_4 \in \mathbb{K}$ er A. Ainsi $\text{vect}(E_3, 2E_1 + E_4) \subset \mathbb{K}$ er A. D'après le théorème du rang matriciel, dim \mathbb{K} er A = 2. Donc \mathbb{K} er $A = \text{vect}(E_3, 2E_1 + E_4)$ et $(E_3, 2E_1 + E_4)$ est une base de \mathbb{K} er A.

Solution 11

 $\textbf{1. Soit } (\lambda_1,\lambda_2,\lambda_3) \in \mathbb{R}^3 \text{ tel que } \lambda_1e_1+\lambda_2e_2+\lambda_3e_3=0. \text{ Alors } \begin{cases} \lambda_1+\lambda_2+\lambda_3=0\\ \lambda_1-\lambda_3=0. \text{ On trouve sans peine } \lambda_1=\lambda_2=\lambda_3=0. \text{ Ainsi } -\lambda_1-\lambda_2=0\\ (e_1,e_2,e_3) \text{ est libre. Puisque } \dim \mathbb{R}^3=3, (e_1,e_2,e_3) \text{ est une base de } \mathbb{R}^3. \end{cases}$

2. On a P =
$$\begin{pmatrix} 1 & 1 & 1 \\ 1 & 0 & -1 \\ -1 & -1 & 0 \end{pmatrix}$$
. On trouve par pivot de Gauss P⁻¹ = $\begin{pmatrix} 1 & 1 & 1 \\ -1 & -1 & -2 \\ 1 & 0 & 1 \end{pmatrix}$.

3. Notons D la matrice de f dans la base \mathcal{B} .

Première méthode

Notons X_1, X_2, X_3 les matrices respectives de e_1, e_2, e_3 dans la base canonique. Un calcul donne $AX_1 = X_1, AX_2 = 2X_2$ et $AX_3 = 3X_3$.

Ainsi
$$f(e_1) = e_1$$
, $f(e_2 = 2e_2 \text{ et } f(e_3) = 3e_3$. On en déduit que $D = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3 \end{pmatrix}$.

Seconde méthode

La formule de changement de base donne $D = P^{-1}AP$. Un calcul montre que $D = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3 \end{pmatrix}$.

4. Soit $n \in \mathbb{N}$. Puisque $A = PDP^{-1}$, $A^n = PD^nP^{-1}$. Puisque D est diagonale, $D^n = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 2^n & 0 \\ 0 & 0 & 3^n \end{pmatrix}$. On trouve alors

$$A^{n} = \begin{pmatrix} 3^{n} - 2^{n} + 1 & -2^{n} + 1 & 3^{n} - 2^{n+1} + 1 \\ -3^{n} + 1 & 1 & -3^{n} + 1 \\ 2^{n} - 1 & 2^{n} - 1 & 2^{n+1} - 1 \end{pmatrix}$$

Solution 12

Remarquons d'abord que si X est une solution, alors tr(X) + tr(X)tr(A) = 0 i.e. tr(X)(tr(A) + 1) = 0 par linéarité de la trace. On est donc amené à distinguer deux cas.

Cas $tr(A) \neq -1$ Si X est solution, on a tr(X) = 0 d'après ce qui précède. Mais alors X = 0. On vérifie que 0 est bien solution de l'équation.

Cas tr(A) = -1 Si X est solution, alors X est de la forme $X = \lambda A$ avec $\lambda \in \mathbb{R}$. Réciproquement si $X = \lambda A$ avec $\lambda \in \mathbb{R}$, alors $X + tr(X)A = \lambda A + \lambda tr(A)A = 0$ donc X est bien solution.

Récapitulons : si $tr(A) \neq -1$, la seule solution est la solution nulle ; si tr(A) = -1, l'ensemble des solutions est vect(A).

Solution 13

Remarquons que

$$\begin{pmatrix} A & B \\ C & D \end{pmatrix} \cdot \begin{pmatrix} I_p & -A^{-1}B \\ 0 & I_q \end{pmatrix} = \begin{pmatrix} A & 0 \\ C & S \end{pmatrix}$$

Puisque la matrice $\left(\frac{I_p - A^{-1}B}{0 I_q} \right)$ est clairement inversible, les matrices M et $\left(\frac{A 0}{C S} \right)$ ont même rang. Puisque le rang est la dimension du sous-espace vectoriel engendré par les colonnes d'une matrice,

$$\operatorname{rg}\left(\frac{A \mid 0}{C \mid S}\right) = \operatorname{rg}\left(\frac{A}{C}\right) + \operatorname{rg}\left(\frac{0}{S}\right)$$

Puisque A est inversible et de taille p, $\operatorname{rg}\left(\frac{A}{C}\right) \ge p$. Mais comme cette matrice possède p colonnes, $\operatorname{rg}\left(\frac{A}{C}\right) \le p$. Finalement, $\operatorname{rg}\left(\frac{A}{C}\right) = p = \operatorname{rg}(A)$.

Puisque le rang d'une matrice est également la dimension du sous-espace vectoriel engendré par ses lignes, $rg\left(\frac{0}{S}\right) = rg(S)$.

On obtient bien rg(M) = rg(A) + rg(S).

Déterminants

Solution 14

- 1. Le déterminant d'une matrice est une somme de produits de coefficients de cette matrice. Comme les coefficients de A et B sont des entiers, det A et det B sont également des entiers.
- 2. On sait que $A \operatorname{com}(A)^T = (\det A)I_n$ et que $B \operatorname{com}(B)^T = (\det B)I_n$. Comme $\det A \wedge \det B = 1$, il existe $u, v \in \mathbb{Z}$ tels que $u \det A + v \det B = 1$. En posant $U = u \operatorname{com}(A)^T$ et $V = v \operatorname{com}(B)^T$, on a donc $AU + BV = I_n$. Les coefficients de com A et com B sont, au signe près, des déterminants d'ordre n-1 extraits de A et B: ce sont donc des entiers. Ainsi U et V sont à coefficients entiers.

Solution 15

Il y a trois cas.

- Soit rg(A) = n. Alors A est inversible et com(A) également puisque $det(A) \neq 0$ et $\left(\frac{1}{det(A)}A^{\top}\right)com(A) = I_n$. Donc rg(com(A)) = n.
- Soit rg(A) < n − 1. Alors toutes les sous-matrices carrées de taille n − 1 extraites de A sont de déterminant nul. Par conséquent com(A) = 0 et rg(com(A)) = 0.
- Soit rg(A) = n 1. Alors on peut extraire de A une sous-matrice carrée inversible de taille n 1 qui est, au signe près, un cofacteur de A. Ainsi $com(A) \neq 0$. Puisque det(A) = 0, on a $A^{T}com(A) = det(A)I_{n} = 0$. Ainsi $Im(com(A)) \subset Ker(A^{T})$. Puisque $rg(A^{T}) = rg(A) = n 1$, dim $Ker(A^{T}) = 1$ via le théorème du rang. Ainsi $rg(com(A)) \leq 1$. Puisque rg(A) = 1.

Solution 16

Notons $D_{n,p}$ le déterminant cherché. Suppososons $p \ge 1$. On note L_0, L_1, \dots, L_p les lignes de la matrice et on effectue les opérations :

$$L_{p} \leftarrow L_{p} - L_{p-1}$$

$$L_{p-1} \leftarrow L_{p-1} - L_{p-2}$$

$$\vdots$$

$$L_{2} \leftarrow L_{2} - L_{1}$$

$$L_{1} \leftarrow L_{1} - L_{0}$$

$$D_{n,p} = \begin{vmatrix} \binom{n}{0} & \binom{n}{1} & \dots & \binom{n}{p} \\ \vdots & \vdots & & \vdots \\ \binom{n+p}{0} & \binom{n+p}{1} & \dots & \binom{n+p}{p} \end{vmatrix}$$

$$= \begin{vmatrix} 1 & \binom{n}{1} & \dots & \binom{n}{p} \\ 0 & \binom{n}{0} & \dots & \binom{n}{p-1} \\ \vdots & \vdots & & \vdots \\ 0 & \binom{n+p-1}{0} & \dots & \binom{n+p-1}{p-1} \end{vmatrix}$$

$$= D_{n,p-1}$$

en développant par rapport à la première colonne. Par récurrence, $D_{n,p} = D_{n,0} = 1$.

Solution 17

Supposons $n \ge 3$. En développant D_n par rapport à la première ligne, on trouve

$$D_{n} = (1+x^{2})D_{n-1} - x \begin{vmatrix} x & x & 0 & \dots & 0 \\ 0 & 1+x^{2} & x & 0 & \dots & 0 \\ 0 & \ddots & \ddots & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & \ddots & 0 \\ 0 & \dots & 0 & x & 1+x^{2} & x \\ 0 & \dots & \dots & 0 & x & 1+x^{2} \end{vmatrix}_{[n-1]}$$

En développant le dernier déterminant par rapport à la première colonne, on aboutit à $D_n = (1 + x^2)D_{n-1} - x^2D_{n-2}$. Le polynôme caractéristique associé à cette relation de récurrence est $X^2 - (1 + x^2)X + x^2$ qui a pour discriminant $(1 + x^2)^2 - 4x^2 = (1 - x^2)^2$. Ses racines sont donc 1 et x^2 . On distingue alors deux cas :

Cas $x^2 \neq 1$: Il existe alors $\lambda, \mu \in \mathbb{R}$ tels que $D_n = \lambda 1^n + \mu(x^2)^n = \lambda + \mu x^{2n}$. Puisque $D_1 = 1 + x^2$ et $D_2 = (1 + x^2)^2 - x^2 = 1 + x^2 + x^4$, on trouve $\lambda = \frac{1}{1 - x^2}$ et $\mu = \frac{x^2}{x^2 - 1}$. On a donc $D_n = \frac{1 - x^{2(n+1)}}{1 - x^2}$.

Cas $x^2 = 1$: Il existe alors $\lambda, \mu \in \mathbb{R}$ tels que $D_n = (\lambda n + \mu)1^n = \lambda n + \mu$. On a $D_1 = 1 + x^2 = 2$ et $D_2 = 1 + x^2 + x^4 = 3$. On trouve $\lambda = 1$ et $\mu = 1$ d'où $D_n = n + 1$.

Remarque. On aurait également pu passer l'expression de D_n pour $x^2 \neq 1$ à la limite quand x tend vers ± 1 puisque D_n est polynomial en x donc continu en x.