

Universidade do Minho

Escola de Engenharia

Sistemas de comunicações óticas Ano letivo 2018/2019 MIETI

Relatório de Projeto

Comunicação ótica entre 2 dispositivos digitais

Grupo:

André Lopes, a75363

David Alves, a79625

Pedro Dourado, a77973

Índice

1.Introdução	2
2.Fundamentos teóricos	3
2.1 O contexto histórico do <i>laser</i>	3
2.2 A transmissão de dados via <i>laser</i>	
2.3 Esquemáticos dos circuitos	
2.4 A comunicação com os <i>Arduinos</i>	
3.Análise experimental	
4 Conclusão	

1.Introdução

O objetivo deste projeto é a realização de uma comunicação entre dois dispositivos utilizando um emissor *laser*, de forma a que o recetor receba a mensagem que se encontra definida no emissor. Para que tal aconteça é utilizado como meio de propagação o ar.

O presente relatório encontra-se divido em duas partes, fundamentos Teóricos e análise experimental. A primeira parte pretende mostrar como decorreu a montagem dos circuitos utilizados e ainda como é realizada a comunicação entre *Arduino*.

Na segunda parte do relatório, apresentamos os testes do funcionamento da comunicação implementada.

Por fim, existe ainda uma conclusão onde refletimos acerca do que foi feito neste projeto.

2. Fundamentos teóricos

2.1 O contexto histórico do laser

Os díodos de *laser* têm sido amplamente usados nas comunicações sem fios, principalmente a partir de 1960, sendo que naquele tempo as comunicações via *laser* requeriam componentes de hardware altamente custosos, o que tornavam as comunicações via *laser* inviáveis. Contudo com o desenvolvimento de novas tecnologias, este tipo de comunicações ficou bastante mais acessível e viável, sendo essa também uma das principais razões que nos levou a escolher a comunicação via *laser* para este projeto.

Figura 1-Um laser em funcionamento

2.2 A transmissão de dados via *laser*

Os sistemas de comunicação via *laser* funcionam de acordo com o princípio de modulação de amplitude, no qual a amplitude do portador é variada de acordo com a amplitude instantânea do sinal de modulação ou sinal de entrada.

No nosso projeto, o sinal de entrada vai ser ao pino TX do *Arduino* emissor, o que faz com que a intensidade do sinal que está a ser enviado, altere-se de acordo com o valor instantâneo do sinal de entrada e essa variação é sentida tanto no emissor como no recetor. No emissor a sinal de TX pode ser adicionado ao sinal do *laser* usando um transístor numa montagem coletor comum, tal como se mostra nas secções seguintes.

No recetor estas variações de intensidade são detetadas com um *photoresistor* ou *phototransitor* que depois é conectado a amplificador operacional para

amplificar o sinal recebido, e conectada essa saída amplificada ao pino RX do *Arduino* recetor, de modo a interpretar o sinal recebido.

O esquema de uma transmissão via *laser* pode ser observado na seguinte figura.

Figura 2-Esquema de uma transmissão via laser

2.3 Esquemáticos dos circuitos

Antes de tudo, sabíamos que o projeto proposto necessitava de dois circuitos com duas funções diferentes, um seria o circuito emissor e outro o circuito recetor, para isso e com o apoio, sempre que necessário, do professor da unidade curricular, projetámos os seguintes circuitos:

Figura 3- Esquema do circuito emissor

Figura 4-Esquema do circuito recetor

2.4 A comunicação com os Arduinos

Como o objetivo deste projeto é enviar um conjunto de dados através de um emissor (*laser*) e receber esses mesmos dados num recetor (*photoresistor*), optámos pelo envio de um simples "*Hello World*". A comunicação realizada é unidirecional, recorrendo assim à utilização de dois *arduinos*. Um destes é utilizado como emissor e o outro como recetor.

Sabendo isto projetamos o esquemático dos *arduinos* emissor e recetor, tal como se pode observar nas imagens seguintes.

Figura 5-Circuito emissor com arduino

Figura 6-Circuito recetor com arduino

Posto isto, foram utilizados diferentes códigos para cada um dos arduinos.

Recorrendo às portas TX e RX dos *arduinos*, tal como mostrado anteriormente nas figuras, elaboramos os seguintes códigos:

```
Emissor:

void setup() {
   Serial.begin(9600);

}

// main loop
void loop() {
   Serial.println("Hello, world!");
   delay(50);
}
```



```
Recetor:

void setup() {
    Serial.begin(9600) ;
}

void loop() {
    int n, i, ch ;

    n = Serial.available() ;
    if (n > 0) {
        i = n ;
        while (i--) {
        ch = Serial.read() ;
        Serial.print((char)ch) ;
      }
    }
    delay(50) ;
}
```

Adicionalmente, é de referir, que escolhemos um *baudrate* de 9600ms, e acrescentamos um *delay* de 50 ms, *delay* este que fomos variando de modo a obter mais rapidamente ou mais lentamente as mensagens enviadas pelo emissor.

3. Análise experimental

Para pôr em prática o esquema elaborado para o nosso projeto, numa primeira fase, averiguámos e enumeramos o material necessário, que foi o seguinte:

- Transístor 2n2222
- Amplificador Operacional LT1169
- Resistências de 100 Ω , 10 k Ω , 1M Ω
- 2 Breadboards
- 2 Arduinos

De seguida, cumprindo os esquemas projetados, procedemos à montagem do circuito em *breadboard*.

Depois de preparados corretamente os circuitos do emissor e do recetor, procedemos à fase de testes, na qual testámos a comunicação entre os dois *arduinos* a várias distâncias, na qual a distância máxima que obtivemos sem a ocorrência de falhas, foi de 2,5 metros com um *baudrate* de 9600 *bits* por segundo.

As seguintes imagens mostram o momento em que conseguimos obter essa mesma transmissão contínua de dados.

Figura 7-Transmissão entre emissor e recetor

Figura 8-Circuito emissor

Figura 9-Circuito recetor

4.Conclusão

Finalizado este projeto, resta-nos dizer que foi uma experiência bastante produtiva, da qual ficamos, sem dúvida, a compreender melhor o funcionamento das comunicações óticas (neste caso, sem fios). Experiência esta, que agradecemos também ao professor da unidade curricular, pela disponibilidade sempre que necessária, para a resolução de problemas e falhas que tivemos ao longo da elaboração deste projeto.