CMOS Triple Serial Adders

High-Voltage Types (20-Volt Rating)
Positive Logic Adder — CD4032B
Negative Logic Adder — CD4038B

The RCA-CD4032B and CD4038B types consist of three serial adder circuits with common CLOCK and CARRY-RESET in-puts. Each adder has provisions for two serial DATA INPUT signals and an IN-VERT command signal. When the command signal is a logical "1", the sum is complemented. Data words enter the adder with the least significant bit first; the sign bit trails. The output is the MOD 2 sum of the input bits plus the carry from the previous bit position. The carry is only added at the positive-going clock transition for the CD4032B or at the negative-going clock for the CD4038B, thus, for spike-free operation the input data transitions should occur as soon as possible after the triggering edge.

The CARRY is reset to a logical "0" at the end of each word by applying a logical "1" signal to a CARRY-RESET input one-bit-position before the application of the first bit of the next word.

The CD4032B and CD4038B types are supplied in 16-lead hermetic dual-in-line ceramic packages (D and F suffixes), 16-lead dual-inline plastic packages (E suffix), 16-lead ceramic flat packages (K suffix), and in chip form (H suffix).

CD4032B, CD4038B TERMINAL DIAGRAM

Features:

- Invert inputs on all adders for sum complementing applications
- Fully static operation dc to 10 MHz (typ.)

 © VDD = 10 V
- Single-phase clocking
- Standardized, symmetrical output characteristics
- 100% tested for quiescent current at 20 V
- # 5-V, 10-V, and 15-V parametric ratings
- Maximum input current of 1 μA at 18 V over full package-temperature range; 100 nA at 18 V and 25°C
- Noise margin (over full package-temperature range)

 Meets all requirements of JEDEC Tentative Standard No. 13A, "Standard Specifications for Description of 'B' Series CMOS Devices"

Applications:

- Serial arithmetic units
- Digital correlators
- Digital datalink computers
- Digital datalink computers
 Flight control computers
- Digital servo control systems

MAXIMUM RATINGS, Absolute-Maximum Values:

	DC SUPPLY -VOLTAGE RANGE, (VD
-0.5 to +20 V	(Voltages referenced to Vss Termin
-0.5 to 4DD -0.5 t	INDUT VOLTAGE BANGE ALL INPUT
±10 mA	DC INPUT CURRENT, ANY ONE INP
PD):	POWER DISSIPATION PER PACKAG
E E) 500 mw	For T = 40 to +60°C (PACKAGE)
EE) Derate Linearly at 12 may 0 to 250 mm	For T. = +60 to +85°C (PACKAGE)
PES D, F, K)	Tan T - SE to +100°C (PACKAGE
Dorote Linearly at 12 mW/°C to 200 mW	FOR 1A = -55 10 + 100 C (FACIONGE
YPES D, F, K) Derate Linearly at 12 mW/°C to 200 mW	For TA = +100 to +125°C (PACKAG
ANSISTOR	DEVICE DISSIDATION PER OUTPUT
URE RANGE (All Package Types) 100 mW	For TA = FULL PACKAGE-TEMPER
ΓΑ).	ODEDATING TEMPERATURE RANG
-55 to +125°C	DACKAGE TYPES D. F. K. H.
-40 to +85°C	PACKAGE TYPE E
-65 to +150°C	PACKAGE TIPE E
g) –65 to +150°C	STORAGE TEMPERATURE HANGE
-HING):	LEAD TEMPERATIBE (DI IRING SOI
9 mm) from case for 10 s max +265°C	At distance 1/16 ± 1/32 inch (1.59 ±

RECOMMENDED OPERATING CONDITIONS at TA = 25°C, Unless Otherwise Specified

For maximum reliability, nominal operating conditions should be selected so that operation is always within the following ranges.

CHARACTERISTIC	V _{DD}	Min.	Max. 18	UNITS	
Supply Voltage Range (at TA = Full Package-Temperature Range)				3	V
		5	_	2.5	
Clock Input Frequency,	fCL	10	-	5	MHz
•		15	-	7.5	
		5	-	500	
Clock Input Rise or Fall Time,	t,CL, t,CL	10	-	500	μs
Jock Input Rise or Fall Time,		15	-	500	
		5	200	T -	
Data Input Set-Up Time,	^t SU	10	80	-	ns
Clock to A or B Inputs	50	15	60	1	i

STATIC EL	ECTRICAL	CHARACTERISTICS

STATIC ELEC		J////				NDICA	ren z-			10-1	111		
CHARAC- TERISTIC	CGN	DITIO	NS	LIMITS AT INDICATED TEMPERATURES (°C) Values at -55, +25, +125 Apply to D, F, K, H, Packages Values at -40, +25, +85 Apply to E Package							NIT		
	V _O	VIN	v _{DD}										
	(V)	(V)	(V)	-55	-40	+85	+125	Min.	Typ.	Max.			
Quiescent		0,5	5	5	5	150	150	-	0.04	5	T		
Device	-	0,10	10	10	10	300	300	_	0.04	10	1		
Current, IDD Max.		0,15	15	20	20	600	600		0.04	20	μА		
		0,20	20	100	100	3000	3000	T -	0.08	100	1		
Output Low	0.4	0,5	5	0.64	0.61	0.42	0.36	0.51	1	-			
(Sink) Current	0.5	0,10	10	1.6	1.5	1.1	0.9	1.3	2.6	_	1		
IOL Min.	1.5	0,15	15	4.2	4	2.8	2.4	3.4	6.8	_			
Output High	4.6	0,5	5	-0.64	-0.61	0.42	0.36	-0.51	-1		m		
(Source)	2.5	0,5	5	-2	-1.8	-1.3	-1.15	-1.6	-3.2				
Current, IOH Min.	9.5	0,10	10	-1.6	-1.5	-1.1	-0.9	-1.3	-2.6	-			
-OH	13.5	0,15	15	-4.2	-4	-2.8	-2.4	-3.4	-6.8				
Output Voltage:	-	0,5	5	0.05			_	0	0.05	T			
Low Level,		0,10	10	0.05				-	0	0.05	1		
VOL Max.		0,15	15	0.05				-	0	0.05	1,		
Output		0,5	5	4.95				4.95	5	_	1		
Voltage: High-Level,	-	0,10	10	9.95				9.95	10		1		
VOH Min.		0,15	15	14.95				14.95	15	_			
Input Low	0.5,4.5		5	1.5				_		1.5	H		
Voltage	1,9	-	10		3				-	3	1		
V _{IL} Max.	1.5,13.5	-	15	4				-	_	4	١,		
Input High	0.5,4.5		5	3.5			3.5	-		ĺ			
Voltage,	1,9	-	10	7				7	_	_	7		
V _{IH} Min.	1.5,13.5	_	15	11				11	-				
Input Current I _{IN} Max.		0,18	18	±0.1	±0.1	±1	±1	-	±10-5	±0.1	μ		

Fig.2 - CD40328 timing diagram.

92CM-29082R2

Fig.1 - CD40328 logic diagram of one of three serial adders.

DYNAMIC ELECTRICAL CHARACTERISTICS at T_A = 25°C, Input $t_{\rm f}$, $t_{\rm f}$ = 20 ns, C_L = 50 pF, R_L = 200 k Ω

CHARACTERISTIC	TEST CONDITIONS		LIMITS			
CHARACTERISTIC	V _{DD} (V)	Min.	Тур.	Max.	UNITS	
Propagation Delay Time: tpHL, tpLH	5	-	260	520		
A,B, Carry Reset, or Invert Inputs to	10	[-	120	240	ns	
Sum Outputs	15		90	180		
	5	_	325	650		
Clock Input to Sum Outputs	10	_	175	350	ns	
	15	-	150	300	<u> </u>	
Transition Time: t _{THL} , t _{TLH}	5	-	100	200		
	10	-	50	100	ns	
	15	-	40	80	l	
Minimum Date I and Committee	5	T -	125	200		
Minimum Data Input Setup Time, t _{SU}	10	-	50	80	ns	
Clock to A or B Inputs	15	-	40	60		
	5	2.5	4.5	_	1	
Maximum Clock Input Frequency, fcl	10	5	10	_	MHz	
	15	7.5	15	-		
	5	_	_	500		
Clock Input Rise or Fall Time, trCL,tfCL*	10	-	_	500	μs	
102 102	15		<u> </u>	500		
Input Capacitance, C _{IN}	(Any Input)	_	5	7.5	pF	

^{*} If more than one unit is cascaded t_{rCL} should be made less than or equal to the sum of the transition time and the fixed propagation delay of the output of the driving stage for the estimated capacitive load.

Fig. 3 - CD4038B logic diagram of one of three serial adders.

Fig.4 - CD40388 timing diagram.

Fig. 5 – Typical output low (sink) current characteristics.

Fig. 6 – Minimum output low (sink) current characteristics.

Fig. 7 — Typical output high (source) current characteristics.

Fig. 8 – Minimum output high (source) current characteristics.

Fig. 9 — Typical transition time as a function of load capacitance.

Fig. 10 — Typical propagation delay times as a function of load capacitance (A, B, carry reset or invert to SUM).

Fig. 11 – Typical dynamic power dissipation as a function of clock input frequency.

Fig. 12 – Dynamic power dissipation test circuit.

Fig. 13 - Input voltage test circuit.

Fig. 14 - Input current test circuit.

Fig. 15 - Quiescent-device current test circuit.

Dimensions in parentheses are in millimeters and are derived from the basic inch dimensions as indicated. Grid graduations are in mils $(10^{-3} \, \text{inch})$.

The photographs and dimensions of each CMOS chip represent a chip when it is part of the water. When the water is separated into individual chips, the angle of cleavage may vary with respect to the chip face for different chips. The actual dimensions of the isolated chip, therefore, may differ slightly from the nominal dimensions shown. The user should consider a tolerance of -3 mils to +16 mils applicable to the nominal dimensions shown.

Dimensions and pad layout for CD40328H; dimensions and pad layout for CD4038BH are identical.