Исследовать решения этой системы на устойчивость путём нахождения общего решения будет затруднительно, так как общее решение, хотя и может быть выражено в квадратурах, будет включать в себя эллиптический интеграл

$$\int \frac{dt}{\sqrt{C^4 - t^4}}.$$

Сначала найдём траектории, задаваемые решением этой системы. $\frac{dy}{dx} = \frac{\dot{x}}{\dot{y}} = \frac{-2x^3}{y}$. $2yy'_x + 4x^3 = 0$. $y^2 + x^4 = C^4$ (в правой части взят C^4 , потому что левая часть не даёт отринательных значений). Пля упобства также булем снитать C > 0. Функция

 $2yy_x'+4x^3=0$. $y^2+x^4=C^4$ (в правой части взят C^4 , потому что левая часть не даёт отрицательных значений). Для удобства также будем считать $C\geqslant 0$. Функция $y(x)=\sqrt{C^4-x^4}$ задаёт выпуклый вверх график, а в точках $x=\pm C$ значение равно нулю, так что уравнение $y^2+x^4=C^4$ задаёт замкнутую выпуклую кривую.

Направляющие векторы, посчитанные для некоторых точек, указаны на рисунке.

Из рисунка видно, что нулевое решение $\Phi_0(t) = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$ соответствует особой точке (началу координат) и эта точка относится к типу "центр". Решения, по всей видимости, являются периодическими функциями.

Найдём наибольшее расстояние $ho_{\max} =
ho_{\max}(C)$ от точки на этой кривой до начала координат. Для всякого $x \in [-C;C]$ расстояние равняется $ho =
ho(x) = \sqrt{x^2 + y^2} = \sqrt{C^4 + x^2 - x^4}$.

Наибольшее расстояние достигается в точках $x=\pm \frac{1}{\sqrt{2}},$ если она входит в область определения; в противном случае на $x\in [0;C]$ расстояние возрастает и наибольшее достигается при x=C.

Итак, точное наибольшее расстояние равно

$$ho_{ ext{max}}(C) = egin{cases} \sqrt{C^4 + rac{1}{4}}, \, ext{если} \, C > rac{1}{2} \ C, \, ext{если} \, C \leqslant rac{1}{2} \end{cases}$$

Докажем теперь устойчивость нулевого решения. Имеем для всякого решения $X(t) = \begin{pmatrix} x(t) \\ y(t) \end{pmatrix}$ и начального параметра $t_0 = 0$

$$|X(t) - \Phi(t)| = \sqrt{x^2(t) + y^2(t)}$$
 $|X(t_0) - \Phi(t_0)| = \sqrt{x^2(0) + y^2(0)}$

Возьмём произвольное $\varepsilon>0$ и для удобства ограничим $\delta\leqslant\frac{1}{4}$. Положим таким образом $\delta=\min\left(\varepsilon^2;\frac{1}{4}\right)$. Заметим, что для всякой начальной точки $A_0=\left(x(0);y(0)\right)$, отличной от начала координат, можно однозначно вычислить C>0. Это значит, что через всякую начальную точку A_0 проходит некоторая траектория $y^2+x^4=C^4$, при этом единственная.

Итак, пусть $\sqrt{x^2(0)+y^2(0)}<\delta$. При таких условиях имеем $\left|x(0)\right|<\delta\leqslant \frac{1}{4}$ и $\left|y(0)\right|<\delta\leqslant \frac{1}{4}$. Следовательно, $C=\sqrt[4]{x^4(0)+y^2(0)}<\sqrt[4]{x^2(0)+y^2(0)}<\sqrt{\delta}\leqslant \frac{1}{2}$.

Для всякого $t\geqslant t_0=0$ расстояние $\sqrt{x^2(t)+y^2(t)}$ от точки X(t) на траектории до начала координат таково, что

$$\sqrt{x^2(t) + y^2(t)} \leqslant \rho_{\text{max}} = C < \sqrt{\delta} \leqslant \sqrt{\varepsilon^2} = \varepsilon.$$

Таким образом, решение устойчиво, но не асимптотически, поскольку найденные траектории являются замкнутыми и к центру координат фазовой плоскости стремиться не могут.