AA203: Optimal and Learning-based Control Course Notes

James Harrison

April 1, 2019

1 Nonlinear Optimization

In this section we discuss the generic nonlinear optimization problem that forms the basis for the rest of the material presented in this class. We write the minimization problem as

$$\min_{\boldsymbol{x} \in \mathcal{X}} f(\boldsymbol{x})$$

where f is the cost function, usually assumed twice continuously differentiable, $x \in \mathbb{R}^n$ is the optimization variable, and $\mathcal{X} \subset \mathbb{R}^n$ is the constraint set. The special case in which the cost function is linear and the constraint set is specified by linear equations and/or inequalities is linear optimization, which we will not discuss.

1.1 Unconstrained Nonlinear Optimization

We will first address the unconstrained case, in which $\mathcal{X} = \mathbb{R}^n$. A vector \boldsymbol{x} is said to be an unconstrained *local minimum* if there exists $\epsilon > 0$ such that $f(\boldsymbol{x}^*) \leq f(\boldsymbol{x})$ for all $\boldsymbol{x} \in \{\boldsymbol{x} \mid \|\boldsymbol{x} - \boldsymbol{x}^*\| \leq \epsilon\}$, and \boldsymbol{x} is said to be an unconstrained *global minimum* if $f(\boldsymbol{x}^*) \leq f(\boldsymbol{x})$ for all $x \in \mathbb{R}^n$.

1.1.1 Necessary Conditions for Optimality

For a differentiable cost function, we can compare the cost of a point to its neighbors by considering a small variation Δx from x^* . By using Taylor expansions, this yields a first order cost variation

$$f(\boldsymbol{x}^* + \Delta \boldsymbol{x}) - f(\boldsymbol{x}^*) \approx \nabla f(\boldsymbol{x}^*)^T \Delta \boldsymbol{x}$$
 (1)

and a second order cost variation

$$f(\boldsymbol{x}^* + \Delta \boldsymbol{x}) - f(\boldsymbol{x}^*) \approx \nabla f(\boldsymbol{x}^*)^T \Delta \boldsymbol{x} + \frac{1}{2} \Delta \boldsymbol{x}^T \nabla^2 f(\boldsymbol{x}^*) \Delta \boldsymbol{x}.$$
 (2)

Setting Δx to be equal to positive and negative multiples of the unit coordinate vector, we have

$$\frac{\partial f(\boldsymbol{x}^*)}{\partial x_i} \ge 0 \tag{3}$$

where x_i denotes the i'th coordinate of \boldsymbol{x} , and

$$\frac{\partial f(\boldsymbol{x}^*)}{\partial x_i} \le 0 \tag{4}$$

for all *i*, which is only satisfied by $f(\mathbf{x}^*) = 0$. This is referred to as the *first order necessary* condition for optimality. Looking at the second order variation, and noting that $f(\mathbf{x}^*) = 0$, we expect

$$f(\boldsymbol{x}^* + \Delta \boldsymbol{x}) - f(\boldsymbol{x}^*) \ge 0 \tag{5}$$

and thus

$$\Delta \mathbf{x}^T \nabla^2 f(\mathbf{x}^*) \Delta \mathbf{x} \ge 0 \tag{6}$$

which implies $\nabla^2 f(\mathbf{x}^*)$ is positive semidefinite. This is referred to as the second order necessary condition for optimality. Stating these conditions formally,

Theorem 1.1 (Necessary Conditions for Optimality (NOC)). Let \mathbf{x}^* be an unconstrained local minimum of $f : \mathbb{R}^n \to \mathbb{R}$ and $f \in C^1$ in an open set S containing \mathbf{x}^* . Then

$$\nabla f(\boldsymbol{x}^*) = 0. \tag{7}$$

If $f \in C^2$ within S, $\nabla^2 f(\mathbf{x}^*)$ is positive semidefinite.

Proof is given in Section 1.1 of [Ber16].

1.1.2 Sufficient Conditions for Optimality

If we strengthen the second order condition to $\nabla^2 f(\boldsymbol{x}^*)$ being positive definite, we have the sufficient conditions for \boldsymbol{x}^* being a local minimum. Why is the second order necessary conditions not sufficient? An example function is given in figure 1. Formally,

Theorem 1.2 (Sufficient Conditions for Optimality (SOC)). Let $f : \mathbb{R}^n \to \mathbb{R}$ be C^2 in an open set S. Suppose a vector \mathbf{x}^* satisfies the conditions $\nabla f(\mathbf{x}^*) = 0$ and $\nabla^2 f(\mathbf{x}^*)$ is positive definite. Then \mathbf{x}^* is a strict unconstrained local minimum of f.

Proof is again given in Section 1.1 of [Ber16]. There are several reasons why the optimality conditions are important. In a general nonlinear optimization setting, they can be used to filter candidates for global minima. They can be used for sensitivity analysis, in which the sensitivity of \boldsymbol{x}^* to model parameters can be quantified [Ber16]. This is common in e.g. microeconomics. Finally, these conditions often provide the basis for the design and analysis of optimization algorithms.

Figure 1: An example of a function for which the necessary conditions of optimality are satisfied but the sufficient conditions are not.

1.1.3 Special case: Convex Optimization

A special case within nonlinear optimization is the set of *convex optimization* problems. A set $S \subset \mathbb{R}^n$ is called *convex* if

$$\alpha \boldsymbol{x} + (1 - \alpha) \boldsymbol{y} \in S, \quad \forall \boldsymbol{x}, \boldsymbol{y} \in S, \forall \alpha \in [0, 1].$$
 (8)

For S convex, a function $f: S \to \mathbb{R}$ is called convex if

$$f(\alpha \boldsymbol{x} + (1 - \alpha)\boldsymbol{y}) \le \alpha f(\boldsymbol{x}) + (1 - \alpha)f(\boldsymbol{y}). \tag{9}$$

This class of problems has several important characteristics. If f is convex, then

- A local minimum of f over S is also a global minimum over S. If in addition f is strictly convex (the inequality in (9) is strict), there exists at most one global minimum of f.
- If $f \in C^1$ and convex, and the set S is open, $\nabla f(\mathbf{x}^*) = 0$ is a necessary and sufficient condition for a vector $\mathbf{x}^* \in S$ to be a global minimum over S.

Convex optimization problems have several nice properties that make them (usually) computationally efficient to solve, and the first property above gives a certificate of having obtained global optimality that is difficult or impossible to obtain in the general nonlinear optimization setting. For a thorough treatment of convex optimization theory and algorithms, see [BV04].

1.1.4 Computational Methods

In this subsection we will discuss the class of algorithms known as *gradient methods* for finding local minima in nonlinear optimization problems. These approaches, rely (roughly) on following the gradient of the function "downhill", toward the minima. More concretely, these algorithms rely on taking steps of the form

$$\boldsymbol{x}^{k+1} = \boldsymbol{x}^k + \alpha^k \boldsymbol{d}^k \tag{10}$$

where if $\nabla f(\boldsymbol{x}) \neq 0$, \boldsymbol{d}^k is chosen so that

$$\nabla f(\boldsymbol{x})^T d < 0 \tag{11}$$

and $\alpha > 0$. Typically, the step size α^k is chosen such that

$$f(\boldsymbol{x}^k + \alpha^k \boldsymbol{d}^k) < f(\boldsymbol{x}^k), \tag{12}$$

but generally, the step size and the direction of descent (d^k) are tuning parameters.

We will look at the general class of descent directions of the form

$$\boldsymbol{d}^k = -D^k \nabla f(\boldsymbol{x}^k) \tag{13}$$

where $D^k > 0$ (note that this guarantees $\nabla f(\boldsymbol{x}^k)^T \boldsymbol{d}^k \mid 0$).

Steepest descent, $D^k = I$. The simplest choice of descent direction is directly following the gradient, and ignoring second order function information. In practice, this often leads to slow convergence and possible oscillation.

Newton's Method, $D^k = (\nabla^2 f(\boldsymbol{x}^k))^{-1}$. The underlying idea of this approach is to at each iteration, minimize the quadratic approximation of f around \boldsymbol{x}^k ,

$$f^{k}(\boldsymbol{x}) = f(\boldsymbol{x}^{k}) + \nabla f(\boldsymbol{x}^{k})^{T}(\boldsymbol{x} - \boldsymbol{x}^{k}) + \frac{1}{2}(\boldsymbol{x} - \boldsymbol{x}^{k})^{T}\nabla^{2}f(\boldsymbol{x}^{k})(\boldsymbol{x} - \boldsymbol{x}^{k}).$$
(14)

Setting the derivative of this to zero, we obtain

$$\nabla f(\boldsymbol{x}^k) + \nabla^2 f(\boldsymbol{x}^k)(\boldsymbol{x} - \boldsymbol{x}^k) = 0$$
(15)

and thus, by setting x^{k+1} to be the x that satisfies the above, we get the

$$\boldsymbol{x}^{k+1} = \boldsymbol{x}^k - (\nabla^2 f(\boldsymbol{x}^k))^{-1} \nabla f(\boldsymbol{x}^k)$$
(16)

or more generally,

$$\boldsymbol{x}^{k+1} = \boldsymbol{x}^k - \alpha(\nabla^2 f(\boldsymbol{x}^k))^{-1} \nabla f(\boldsymbol{x}^k). \tag{17}$$

Note that this update is only valid for $\nabla^2 f(\boldsymbol{x}^k) > 0$. When this condition doesn't hold, \boldsymbol{x}^{k+1} is not a minimizer of the second order approximation (as a result of the SOCs).

Diagonally scaled steepest descent, $D^k = \operatorname{diag}(d_1^k, \dots, d_n^k)$. Have $d_i^k > 0 \forall i$. A popular choice is

$$d_i^k = \left(\frac{\partial^2 f(\boldsymbol{x}^k)}{\partial x_i^2}\right)^{-1} \tag{18}$$

which is a diagonal approximation of the Hessian.

Modified Newton's method, $D^k = (\nabla^2 f(\boldsymbol{x}^0))^{-1}$. Requires $\nabla^2 f(\boldsymbol{x}^0) > 0$. For cases in which one expects $\nabla^2 f(\boldsymbol{x}^0) \approx \nabla^2 f(\boldsymbol{x}^k)$, this removes having to compute the Hessian at each step.

In addition to choosing the descent direction, there also exist a variety of methods to choose the step size α . A computationally intensive but efficient (in terms of the number of steps taken) is using a minimization rule of the form

$$\alpha^k = \operatorname{argmin}_{\alpha > 0} f(\boldsymbol{x}^k + \alpha \boldsymbol{d}^k) \tag{19}$$

which is usually solved via line search. Alternative approaches include a limited minimization rule, in which you constrain $\alpha^k \in [0, s]$ during the line search, or simpler approach such as a constant step size (which may not guarantee convergence), or a diminishing scheduled step size. In this last case, schedules are typically chosen such that $\alpha^k \to 0$ as $k \to \infty$, while $\sum_{k=0}^{\infty} \alpha^k = +\infty$.

1.2 Constrained Nonlinear Optimization

References

[Ber16] Dimitri P Bertsekas. Nonlinear programming. Athena Scientific, 2016.

[BV04] Stephen Boyd and Lieven Vandenberghe. *Convex optimization*. Cambridge university press, 2004.