中华人民共和国国家标准

GB 3102.13—93

代替 GB 3102.13—86

固体物理学的量和单位

Quantities and units-Solid state physics

引言

本标准等效采用国际标准 ISO 31-13:1992《量和单位 第十三部分:固体物理学》。

本标准是目前已经制定的有关量和单位的一系列国家标准之一,这一系列国家标准是:

- GB 3100 国际单位制及其应用;
- GB 3101 有关量、单位和符号的一般原则;
- GB 3102.1 空间和时间的量和单位;
- GB 3102.2 周期及其有关现象的量和单位;
- GB 3102.3 力学的量和单位;
- GB 3102.4 热学的量和单位;
- GB 3102.5 电学和磁学的量和单位;
- GB 3102.6 光及有关电磁辐射的量和单位;
- GB 3102.7 声学的量和单位;
- GB 3102.8 物理化学和分子物理学的量和单位;
- GB 3102.9 原子物理学和核物理学的量和单位;
- GB 3102.10 核反应和电离辐射的量和单位:
- GB 3102.11 物理科学和技术中使用的数学符号;
- GB 3102.12 特征数;
- GB 3102.13 固体物理学的量和单位。

上述国家标准贯彻了《中华人民共和国计量法》、《中华人民共和国标准化法》、国务院于 1984 年 2 月27 日公布的《关于在我国统一实行法定计量单位的命令》和《中华人民共和国法定计量单位》。

本标准的主要内容以表格的形式列出。表格中有关量的各栏列于左面各页,而将其单位列于对应的 右面各页并对齐。两条实线间的全部单位都是左面各页相应实线间的量的单位。

量的表格列出了本标准领域中最重要的量及其符号,并在大多数情况下给出了量的定义,但这些定义只用于识别,并非都是完全的。

某些量的矢量特性,特别是当定义需要时,已予指明,但并不企图使其完整或一致。

在大多数情况下,每个量只给出一个名称和一个符号。当一个量给出两个或两个以上的名称或符号,而未加以区别时,则它们处于同等的地位。当有两种斜体字母(例如: \emptyset 、 \emptyset , φ , ϕ , ϕ ,g,g)存在时,只给出其中之一,但这并不意味另一个不同等适用。一般这种异体字不应给予不同的意义。在括号中的符号为"备用符号",供在特定情况下主符号以不同意义使用时使用。

量的相应单位连同其国际符号和定义一起列出。

单位按下述方式编排:

一般只给出 SI 单位。应使用 SI 单位及其用 SI 词头构成的十进倍数和分数单位。十进倍数和分数

单位未明确地给出。

可与 SI 的单位并用的和属于国家法定计量单位的非 SI 的单位列于 SI 单位之下,并用虚线与相应的 SI 单位隔开。专门领域中使用的非国家法定计量单位列于"换算因数和备注"栏。一些非国家法定计量单位列于附录(参考件)中,这些参考件不是标准的组成部分。

关于量纲一的量的单位说明:

任何量纲一的量的一贯单位都是数字一(1)。在表示这种量的值时,单位1一般并不明确写出。词 头不应加在数字1上构成此单位的十进倍数或分数单位。词头可用10的乘方代替。

例:

折射率 $n=1.53\times1=1.53$ 雷诺数 $Re=1.32\times10^3$

考虑到一般是将平面角表示为两长度之比,将立体角表示为面积与长度的平方之比,国际计量委员会(CIPM)在1980年规定,在国际单位制中弧度和球面度为无量纲的导出单位;这就意味着将平面角和立体角作为无量纲的导出量。为了便于识别量纲相同而性质不同的量,在导出单位的表示式中可以使用单位弧度和球面度。

数值表示:

"定义"栏中的所有数值都是准确的。

在"换算因数和备注"栏中的数值如果是准确的,则在数值后用括号加注"准确值"字样。

本标准的特殊说明:

考虑到不同学科已有的传统习惯,有些量并列选用两个中文名称,它们应是等价的。

1 主题内容与适用范围

本标准规定了固体物理学的量和单位的名称与符号;在适当时,给出了换算因数。 本标准适用于所有科学技术领域。

2 名称和符号

量:13-1.1~13-5

	.5 1.1 15 5			
项 号	量的名称	符号	定义	备注
13-1.1	点阵基矢[量], 晶格基矢[量] fundamental lattice vector	a_1, a_2, a_3 a, b, c	晶体最小周期单元的边矢量	
13-1. 2	点阵矢[量], [晶]格矢[量] lattice vector	R , R_0 , T		$R=n_1a_1+n_2a_2+n_3a_3$ 式中 n_1,n_2,n_3 为整数
13-2.1	倒易点阵基矢 [量],倒格子基 矢[量] fundamental reciprocal lattice vectors	b_1, b_2, b_3 a^*, b^*, c^*	$a_i \cdot b_k = 2\pi \delta_{ik}$	在晶体学中通常采用 a_i·b_k=δ_{ik}
13-2. 2	倒易点阵矢 [量],倒格[子] 矢[量] angular reciprocal lattice vector	G	$G=l_1oldsymbol{b}_1+l_2oldsymbol{b}_2+l_3oldsymbol{b}_3$ 式中 l_1 , l_2 , l_3 为整数	
13-3	点阵平面间距, 晶面间距 lattice plane spacing	d	相邻点阵平面(晶面)间的距离	
13-4	布喇格角 Bragg angle	θ	$2d \sin \theta = n\lambda$ 式中 λ 为问题中辐射的波长, n 为整数	
13-5	反射级 order of reflexion	n		

单位:13-1.a~13-5.a

项 号	单位名称	符、号	定 义	换算因数和备注
13-1.a	米 metre	m		埃(Å), 1 Å=10 ⁻¹⁰ m(准确值) 1 Å=0.1 nm 推荐采用纳米(nm)
	0			
13-2. a	每米 reciprocal metre, 负一次方米 metre to the power minus one	m ⁻¹		
			·	
13-3. a	米 metre	m		埃(Å), 1 Å=10 ⁻¹⁰ m(准确值) 1 Å=0.1 nm 推荐采用纳米(nm)
13-4. a	弧度 radian	rad		
13-4. b	度 degree	o		1°=0.017 453 29 rad
13-5. а	one	1		

量:13-6.1~13-9

项 号	量的名称	符号	定义	备注
13-6.1	短程序参量 short-range order parameter	σ	以伊辛(Ising)铁磁体为例,在最近邻原子对中,具有平行磁矩与反平行磁矩的原子对数目之差除以最近邻原子对总数	类似的定义也适用于 其他有序-无序现象
13-6. 2	长程序参量 long-range order parameter	s	以伊辛铁磁体为例,磁矩指向 某一方向的原子数与磁矩指向相 反方向的原子数之差除以总原子 数	
13-7	伯格斯矢量 Burgers vector	b	标志位错的矢量,为环绕一条 位错线的伯格斯回路的封闭矢量	
13-8. 1	粒子位[置]矢 [量] particle position vector	r,R		为了区别电子和离子 的位置矢量,分别使用 小写和大写字母
13-8.2	离子平衡位[置] 矢[量] equilibrium position vector of ion or atom	R_0		
13-8.3	离子位移矢[量] displacement vector of ion or atom	и	$u = R - R_0$	
13-9	德拜-瓦勒因数 Debye-Waller factor	D	衍射线强度因点阵振动(晶格振动)而减弱的因数	有 时 表 示 为 $\exp(-2W)$,在穆斯堡 尔谱学中又称为 f 因 数,并用 f 表示

单位:13-6.a~13-9.a

项 号	单位名称	符号	定义	换算因数和备注
13-6. a	one	1		参阅引言
13-7. a	来 metre	m		埃(Å), 1 Å=10 ⁻¹⁰ m(准确值) 1 Å=0.1 nm 推荐采用纳米(nm)
13-8. a	米 metre			
13-9. a	one	1		参阅引言
			and the same of th	

量:13-10.1~13-12

项 号	量的名称	符号	定义	备注
13-10. 1	[角]波数 angular repetency, angular wavenumber	k,q	k=2π/λ 式中 λ 为波长	相应的矢量 k 或 q 称 为波数矢量。 当需要区别 k 和玻耳兹曼常量时,后者可用 k _B 当需要区别 k 和 q 时, q 应该用于声子和磁振子,而 k 应该用于电子、中子之类的粒子
13-10. 2	费密[角]波数 Fermi angular repetency, Fermi angular wavenumber	$k_{ m F}$	处于费密面上态中的电子的 [角]波数	
13-10.3	德拜[角]波数 Debye angular repetency, Debye angular wavenumber	$q_{ m D}$	在点阵振动(晶格振动)谱的德拜模型中引入的截止[角]波数	必须指明所用的 截 止 方法
13-11	德拜[角]頻率 Debye angular frequency	$\pmb{\omega}_{ extsf{D}}$	在点阵振动(晶格振动)谱的德 拜模型中引入的截止角频率	必须指明所用的 截 止 方法
13-12	德拜温度 Debye temperature	$oldsymbol{arTheta}_{ extsf{D}}$	kΘ _D =ħω _D 式中 k 为玻耳兹曼常量,ħ 为普 朗克常量除以 2π	$k = (1.380 658 \pm 0.000 012) \times 10^{-23} \text{ J/K}$ $h = (1.054 572 66 \pm 0.000 000 63) \times 10^{-34} \text{ J} \cdot \text{s}$

单位:13-10.a~13-12.a

项 号	单位名称	符号	定义	换算因数和备注
13-10. a	弧度每米 radian per metre	rad/m		参阅引言
13-10. Ь	每米 reciprocal metre, 负一次方米 metre to the power minus one	m ⁻¹		
				•
13-11.a	弧度每秒 radian per second	rad/s		参阅引言
13-11. b	每秒 reciprocal second, 负一次方秒 second to the power minus one	s^{-1}		
13-12. a	开[尔文] kelvin	K		

量:13-13~13-16.2

项 号	量的名称	符号	定义	备注
13-13	点阵振动模式密 度,晶格振动模 式密度 spectral concentration of vibration modes(in terms of angular frequency)	g , N_{ω}	在角频率 ω 附近无穷小角频 率间隔内的振动模式数除以该频 率间隔范围和晶体体积	$g(\omega)=N_{\omega}(\omega)=$ $\frac{dN(\omega)}{d\omega}$ 式中 $N(\omega)$ 是圆频率小于 ω 的振动模式总数除以晶体体积
13-14	格林爱森参量 Grüneisen parameter	γ,Γ	$\gamma = \alpha_v/(\kappa_T c_V \rho)$ 式中 α_v 为体膨胀系数, κ_T 为等 温压缩率, c_V 为定容比热, ρ 为质 量密度	
13-15	马德隆常量 Madelung constant	α	单价-单价离子性晶体每对离子的静电能量为 $E=\alpha \cdot \frac{e^2}{4\pi\epsilon_0 a}$ 式中 e 为元电荷, ϵ_0 为真空介电常量, a 为应予指出的电阵常量 (晶格常量)。 a 的数值决定于晶体结构类型	
13-16. 1	声子平均自由程 mean free path of phonons	$l_{ m ph}$, Λ		
13-16. 2	电子平均自由程 mean free path of electrons	l , l_e	•	

单位:13-13.a~13-16.a

项 号	单位名称	符号	定义	换算因数和备注
13-13. a	秒每弧度立方米 second per radian cubic metre	s/(rad • m³)		
13-13. Ъ	秒每立方米 second per cubic metre	s/m³		
13-14. a	one	1		参阅引言
13-15. a	one	1		参阅引言
		,		
13-16. а	米 metre	m		
			·	

量:13-17~13-21

项 号	量的名称	符号	定义	备注
13-17	态密度 density of states	N_E, ho	$ ho(E)=N_{\it E}(E)=rac{{ m d}N(E)}{{ m d}E}$ 式中 $N(E)$ 是能量小于 E 的电子态总数除以体积	
13-18	剩余电阻率 residual resistivity	$ ho_{ m R}$	金属电阻率外推到热力学温度零开尔文时的数值	
13-19	洛伦兹系数 Lorenz coefficient	L	$L=\lambda/\sigma T$ 式中 λ 为热导率, σ 为电导率, T 为热力学温度	
13-20	霍耳系数 Hall coefficient	$A_{ ext{H}}$, $R_{ ext{H}}$	在各向同性导体中,电场强度 E 和电流密度 J 之间的关系为 $E=\rho J+R_{\rm H}(B\times J)$ 式中 ρ 为电阻率, B 为磁通密度	
13-21	物质 a 与 b 之间 的温差电动势 thermoelectro- motive force between substances a and b	$E_{ m ab}$		在冷接头,从物质 a 到物质 b 的方向为 E_{ab} 的正方向

单位:13-17.a~13-21.a

项 号	单位名称	符号	定义	换算因数和备注
13-17. а	每焦[耳]立方米 reciprocal joule per cubic metre, joule to the power minus one per cubic metre	J ⁻¹ /m ³		
13-17. b	每电子伏立方米 reciprocal electronvolt per cubic metre, 负一次方电子伏 每立方米 electronvolt to the power minus one per cubic metre	$\mathrm{eV}^{-1}/\mathrm{m}^3$		$1 \text{ eV}^{-1}/\text{m}^3 = (6.2415064 \pm 0.0000019) \times 10^{18} \text{ J}^{-1}/\text{m}^3$
13-18. a	欧[姆]米 ohm metre	Ω • m		
13-19. a	二次方伏[特]每 二次方开[尔文] volt squared per kelvin squared	V^2/K^2		
13-20. a	立方米每库[仑] cubic metre per coulomb	m ³ /C		
13-21. a	伏[特] volt	V		

量:13-22~13-27

项 号	量的名称	符号	定义	备注
13-22	物质 a 和 b 的塞 贝克系数 Seebeck coefficient for substances a and b	S_{ab} , $oldsymbol{arepsilon}_{ab}$	$S_{ab}=rac{\mathrm{d}E_{ab}}{\mathrm{d}T}$ 式中 T 为热接头的温度 $_{*}E_{ab}$ 为物质 a 与 b 之间的温差电动势	$S_{ab} = S_a - S_b$ 式中 S_a 和 S_b 分别为物 质 a 和物质 b 的塞贝克 系数
13-23	物质 a 和 b 的珀 耳帖系数 Peltier coefficient for substances a and b	Π_{ab}	在接头处产生的珀耳帖热功率 除以物质 a 到 b 的电流	$II_{ab} = II_a - II_b$ 式中 II_a 和 II_b 分别为 物质 a 和物质 b 的珀耳 帖系数
13-24	汤姆逊系数 Thomson coefficient	μ,τ	所产生的汤姆逊热功率除以电 和温度差	沿电流方向,如果温 度降低而产生热量时, 则 μ 为正值
13-25	功函数 work function	Φ,W	无穷远处真空中一静止电子与 物质内部费密能级上一电子之间 的能量差	物质 a 和物质 b 的接触电位差为 $V_a - V_b = (\Phi_b - \Phi_a)/e$ 式中 e 为元电荷
13-26	电子亲和能 electron affinity	χ	无穷远处一静止电子与绝缘体 或半导体内导带最低能级上一电 子之间的能量差	
13-27	里查逊常量 Richardson constant	A	金属热离子发射电流密度 J 为 $J=AT^2\exp(-\Phi/kT)$ 式中 T 为热力学温度, k 为玻耳兹曼常量, Φ 为功函数	

单位:13-22.a~13-27.a

项号	单位名称	符号	定 义	换算因数和备注
13-22. a	伏[特]每开[尔 文] volt per kelvin	V/K		
13-23. a	伏[特] volt	V		
13-24. a	伏[特]每开[尔 文] volt per kelvin	V/K		
13-25. a	焦[耳] joule	Ј		
13-25. b	电子伏 electronvolt	eV		$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
13-26. a	焦[耳] joule	J		
13-26. b	电子伏 electronvolt	eV	<u></u>	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
13-27. a	安[培]每平方米 二次方开[尔文] ampere per square metre kelvin squared	A/(m² • K²)		

量:13-28.1~13-30.5

项 号	量的名称	符号	定义	备注
13-28.1	费密能[量]	$E_{ ext{ iny F}}$, $\pmb{arepsilon}_{ ext{ iny F}}$	每个电子的化学势	$T=0$ 时,金属的 $E_{\rm F}$
13-28. 2	Fermi energy 禁带宽度	E_{g}	导带的最低能级和价带的最高 能级之间的能	等于有电子占据的态的 最高能量
13-28.3	gap energy 施主电离能 donor ionization	$E_{ m d}$	此效之凹可能	
13-28.4	energy 受主电离能 acceptor ionization energy	$E_{\scriptscriptstyle m a}$		
13-29	费密温度	$T_{ m F}$	费密能量相应的温度,按 $T_{\rm F}$ =	
	Fermi		E _F /k 确定,式中 k 为玻耳兹曼常	
-	temperature		量	
13-30.1	电子浓度,电子数密度	n, n_n, n_p	单位体积中的导带电子数	下标 n 和 p 分别表示 n 型和 p 型半导体
13-30. 2	electron number density, volumic electron number 空穴浓度,空穴 数密度 hole number	$p,p_{\mathrm{n}},p_{\mathrm{p}}$	单位体积中的价带空穴数	
13-30.3	density, volumic hole number 本征载流子浓度, 本征载流子数密度 intrinsic	$n_{ m i}$	本征半导体单位体积中的导带 电子数或价带空穴数	np=n ² 式中 n, p 分别为电子 浓度和空穴浓度
	number density, volumic intrinsic number			
13-30.4	施主浓度,施主 数密度 donor number density, volumic donor	$N_{ m d}$, $n_{ m d}$	单位体积中的施主杂质数	
	number			
13-30. 5	受主浓度,受主 数密度 acceptor number density, volumic acceptor number	N_a , n_a	单位体积中的受主杂质数	

单位:13-28.a~13-30.a

项 号	单位名称	符号	定义	换算因数和备注
13-28. a	焦[耳] joule	. J		
13-28. b	电子伏 electronvolt	eV		1 eV=(1.602 177 33± 0.000 000 49)×10 ⁻¹⁹ J
13-29. a	开[尔文] kelvin	K		
13-30. a	每立方米 reciprocal cubic metre, 负三次方米 metre to the power minus three	m ⁻³		

量:13-31~13-36.3

项 号	量的名称	符号	定义	备 注
13-31	有效质量 effective mass	m*		<i>m</i> _n *, <i>m</i> _p * 分别用于半 导体中的电子和空穴
13-32	迁移率比 mobility ratio	Ь	$b=\mu_{\text{n}}/\mu_{\text{p}}$ 式中 $\mu_{\text{n}},\mu_{\text{p}}$ 分别为电子和空穴的 迁移率	关于迁移率,参阅 GB 3102.10 的 10-27
13-33. 1	弛豫时间 relaxation time	τ	趋于平衡的指数式衰减过程的 时间常数	对于金属中的电子, $\tau = l/v_F$ 式中 l 为平均自由程, v_F 为费密球面上的电子速度
13-33. 2	载流子寿命 carrier life time	$ au, au_n, au_p$	半导体中少数载流子复合过程 的时间常数	参阅 13-30 的备注
13-34	扩散长度 diffusion length	L , $L_{ extsf{n}}$, $L_{ extsf{p}}$	$L=\sqrt{D\tau}$ 式中 D 为扩散系数, τ 为寿命	参阅 13-30 的备注。 关 于 <i>D</i> ,参 阅 GB 3102.8中的 8-39
13-35	交换积分 exchange integral	J	由于电子交换而引起的交换能	
13-36.1	居里温度 Curie temperature	$T_{ m C}$	铁磁体的临界温度	T _{cr} 一般地用于临界 温度
13-36. 2	奈耳温度 Néel temperature	$T_{ m N}$	反铁磁体的临界温度	
13-36. 3	超导体转变温度 superconductor transition temperature	T_{c}	超导体的临界温度	

单位:13-31.a~13-36.a

				平位:13-31. a~13-30. a
项 号	单位名称	符号	定义	换算因数和备注
13-31. a	千克 kilogram	kg		
13-32. a	one ·	1		参阅引言
13-33. а	秒 second	S		
13-34. a	米 metre	m		
13-35. a	焦[耳] joule	J	i	
13-35. b	电子伏 electronvolt	eV		$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
13-36. a	开[尔文] kelvin	K		

量:13-37.1~13-41

项 号	量的名称	符号	定义	备注
13-37. 1	热力学超导临界 磁通[量]密度 thermodynamic critical magnetic flux density	$B_{ m c}$	$G_{n}-G_{s}=rac{1}{2}rac{B_{c}^{2}\cdot V}{\mu_{0}}$ 式中 G_{n} 和 G_{s} 分别为正常导体和超导体在零磁通[量]密度时的吉布斯(Gibbs)自由能, μ_{0} 为真空磁导率, V 为体积	对于第 I 类超导体, B。是失去超导电性的 临界磁通[量]密度。 符号 B。。表示失去表 面超导电性的临界磁通 [量]密度
13-37. 2	下临界磁通[量] 密度 lower critical magnetic flux density	B_{c1}	对于第 I 类超导体,使磁通进入超导体磁通[量]密度的阈值	
13-37.3	上临界磁通[量] 密度 upper critical magnetic flux density	$B_{ m c2}$	对于第 I 类超导体,使体超导电性消失的临界磁通[量]密度	
13-38	超导体能隙参数 superconductor energy gap	Δ		
13-39.1	伦敦穿透深度 London penetration depth	$\lambda_{ m L}$	当所加磁场与半无限超导体表面平面相平行时,贯穿超导体的磁场服从 $B(x)=$ $B(0) \exp(-x/\lambda_L)$ 的规律	• • • • • • • • • • • • • • • • • • •
13-39. 2	相干长度 coherence length	ξ	超导体内扰动具有相当影响的距离	
13-40	朗道-京茨堡参量 Landau-Ginzburg number	κ	在 $T=0$ 时, $\kappa=\lambda_{\rm L}/(\xi\sqrt{2})$	
13-41	磁通量子 fluxoid quantum	$oldsymbol{arPhi}_0$	$oldsymbol{\Phi}_0 {=} h/2e$	$\Phi_0 = (2.067 834 61 \pm 0.000 000 61) \times 10^{-15} \text{ Wb}$

单位:13-37.a~13-41.a

项 号	单位名称	符号	定义	换算因数和备注
13-37. a	特[斯拉] tesla	Т	1 T=1 Wb/m²	
		·		
		·		
·				
13-38. a	焦[耳] joule	J		
13-38. b	电子伏 electronvolt	eV		$ \begin{array}{c} 1 \text{ eV} = (1.602 \ 177 \ 33 \pm \\ 0.000 \ 000 \ 49) \times 10^{-19} \text{ J} \end{array} $
13-39. a	米 metre	m		
10-40. a	one	1		参阅引言
13-41. a	韦[伯] weber	Wb	1 Wb=1 V • s	
				,

附 录 A 晶体中平面和方向的符号

(补充件)

密勒指数

点阵(晶格)中单一平面或平行平面集 点阵(晶格)中因对称性而等价的诸平面的全集 点阵(晶格)中的方向 点阵[晶格]中因对称性而等价的诸方向的全集

- 1 若括号中字母用数字代替,习惯上略去数字间的逗号。
- 2 h,k或l的负数值通常以该数字上面一短划表示,例如($\overline{1}10$)。

 h_1, h_2, h_3 或 h, k, l (h_1, h_2, h_3) 或 (h, k, l) $\{h_1, h_2, h_3\}$ 或 $\{h, k, l\}$ [u, v, w] < u, v, w >

附加说明:

本标准由全国量和单位标准化技术委员会提出并归口。 本标准由全国量和单位标准化技术委员会第八分委员会负责起草。 本标准主要起草人王以铭。