

Algorithms & Data Structures

Lesson 13: Minimum Spanning Trees

Marc Gaetano

Edition 2017-2018

Spanning Trees

- A simple problem: Given a connected undirected graph G=(V,E), find a minimal subset of edges such that G is still connected
 - A graph G2=(V,E2) such that G2 is connected and removing any edge from E2 makes G2 disconnected

Observations

- 1. Any solution to this problem is a tree
 - Recall a tree does not need a root; just means acyclic
 - For any cycle, could remove an edge and still be connected
- 2. Solution not unique unless original graph was already a tree
- 3. Problem ill-defined if original graph not connected
 - So |E| >= |V|-1
- 4. A tree with |V| nodes has |V|-1 edges
 - So every solution to the spanning tree problem has |V|-1 edges

Motivation

A spanning tree connects all the nodes with as few edges as possible

- Example: A "phone tree" so everybody gets the message and no unnecessary calls get made
 - Bad example since would prefer a balanced tree

In most compelling uses, we have a *weighted* undirected graph and we want a tree of least total cost

- Example: Electrical wiring for a house or clock wires on a chip
- Example: A road network if you cared about asphalt cost rather than travel time

This is the minimum spanning tree problem

Will do that next, after intuition from the simpler case

Two Approaches

Different algorithmic approaches to the spanning-tree problem:

- 1. Do a graph traversal (e.g., depth-first search, but any traversal will do), keeping track of edges that form a tree
- 2. Iterate through edges; add to output any edge that does not create a cycle

Spanning tree via DFS

```
spanning tree(Graph G) {
  for each node i: i.marked = false
  for some node i: f(i)
f(Node i) {
  i.marked = true
  for each j adjacent to i:
    if(!j.marked)
      add(i,j) to output
      f(j) // DFS
```

Correctness: DFS reaches each node. We add one edge to connect it to the already visited nodes. Order affects result, not correctness.

Time: *O*(**|E|**)

Stack f(1)

Output:

Stack (bottom)

f(1)

f(2)

Output: (1,2)

Stack (bottom)

f(1)

f(2)

f(7)

Output: (1,2), (2,7)

Stack (bottom)

f(1)

f(2)

f(7)

f(5)

Output: (1,2), (2,7), (7,5)

Stack (bottom)

- f(1)
- f(2)
- f(7)
- f(5)
- f(4)

Output: (1,2), (2,7), (7,5), (5,4)

- f(5)
- f(4)
- f(3)

Output: (1,2), (2,7), (7,5), (5,4),(4,3)

Output: (1,2), (2,7), (7,5), (5,4), (4,3), (5,6)

Output: (1,2), (2,7), (7,5), (5,4), (4,3), (5,6)

Second Approach

Iterate through edges; output any edge that does not create a cycle

Correctness (hand-wavy):

- Goal is to build an acyclic connected graph
- When we add an edge, it adds a vertex to the tree
 - Else it would have created a cycle
- The graph is connected, so we reach all vertices

Efficiency:

- Depends on how quickly you can detect cycles
- Reconsider after the example

Edges in some arbitrary order:

$$(1,2), (3,4), (5,6), (5,7), (1,5), (1,6), (2,7), (2,3), (4,5), (4,7)$$

Output:

Edges in some arbitrary order:

$$(1,2)$$
, $(3,4)$, $(5,6)$, $(5,7)$, $(1,5)$, $(1,6)$, $(2,7)$, $(2,3)$, $(4,5)$, $(4,7)$

Output: (1,2)

Edges in some arbitrary order:

$$(1,2), (3,4), (5,6), (5,7), (1,5), (1,6), (2,7), (2,3), (4,5), (4,7)$$

Output: (1,2), (3,4)

Edges in some arbitrary order:

$$(1,2), (3,4), (5,6), (5,7), (1,5), (1,6), (2,7), (2,3), (4,5), (4,7)$$

Output: (1,2), (3,4), (5,6),

Edges in some arbitrary order:

$$(1,2), (3,4), (5,6), (5,7), (1,5), (1,6), (2,7), (2,3), (4,5), (4,7)$$

Output: (1,2), (3,4), (5,6), (5,7)

Edges in some arbitrary order:

$$(1,2), (3,4), (5,6), (5,7), (1,5), (1,6), (2,7), (2,3), (4,5), (4,7)$$

Output: (1,2), (3,4), (5,6), (5,7), (1,5)

Edges in some arbitrary order:

(1,2), (3,4), (5,6), (5,7), (1,5), (1,6), (2,7), (2,3), (4,5), (4,7)

Output: (1,2), (3,4), (5,6), (5,7), (1,5)

Edges in some arbitrary order:

(1,2), (3,4), (5,6), (5,7), (1,5), (1,6), (2,7), (2,3), (4,5), (4,7)

Output: (1,2), (3,4), (5,6), (5,7), (1,5)

Edges in some arbitrary order:

$$(1,2), (3,4), (5,6), (5,7), (1,5), (1,6), (2,7), (2,3), (4,5), (4,7)$$

Output: (1,2), (3,4), (5,6), (5,7), (1,5), (2,3)

Cycle Detection

- To decide if an edge could form a cycle is O(|V|) because we may need to traverse all edges already in the output
- So overall algorithm would be O(|V||E|)
- But there is a faster way: use union-find
 - Initially, each item is in its own 1-element set
 - Union sets when we add an edge that connects them
 - Stop when we have one set
 - Explain in next lesson

Summary So Far

The spanning-tree problem

- Add nodes to partial tree approach is O(|E|)
- Add acyclic edges approach is almost O(|E|)
 - Using union-find "as a black box"

But really want to solve the minimum-spanning-tree problem

- Given a weighted undirected graph, give a spanning tree of minimum weight
- Same two approaches will work with minor modifications
- Both will be O(|E|log|V|)

Getting to the Point

Algorithm #1

Prim's Algorithm for Minimum Spanning Tree is

Exactly our 1st approach to spanning tree but process crossing edges in cost order

Algorithm #2

Kruskal's Algorithm for Minimum Spanning Tree is

Exactly our 2nd approach to spanning tree but process edges in cost order

Prim's Algorithm Idea

Idea:

- grow the MST starting with no edge
- mark vertices connected to the MST
- add an edge to the MST by picking the smallest weight edge among the crossing edges (crossing edge: edge with a vertex marked and a vertex not marked

Algorithm pseudo-code

- 1. Set all vertices as unmarked
- 2. Set $S = \{ \}$, the set of edges of the MST
- 3. Set $C = \{ \}$, the set of crossing edge ((u, v) is a crossing edge iff \underline{u} is marked and v is unmarked)
- 4. Choose any node u
 - a) Mark <u>u</u>
 - b) For each edge $e = (\underline{u}, v)$, () add e to C
- 5. While there are unmarked vertices in the graph
 - a) Select the crossing edge $e = (\underline{a}, b)$ with lowest cost
 - b) Add e to S
 - c) Mark b
 - d) For each edge $e' = (\underline{b}, c)$ (c **not** marked), label e' "crossing"

Prim example

Prim example

Prim's analysis

Correctness

- Invariant: S is a MST of the subgraph induced by the <u>marked</u> vertices
- Variant: |U| decrease down to 0 (U is the set of unmarked vertices)
- Run-time complexity
 - Sort the set of edges (O(|E| log |E|)) and pick each edge in increasing order of weight (O(|E|)) = O(|E| log |E|)
 - Somehow (non asymptotically) better: O(|E|log|E|) using a heap to store the crossing edges

Kruskal's algorithm idea

Idea:

- grow a forest out of edges that do not grow a cycle, just like for the spanning tree problem.
- But now consider the edges in order by increasing weight

So:

- Sort edges: O(|E|log |E|)
- Iterate through edges: O(|E|)
- Use union-find for cycle detection: O(|E|) (next lesson)

Kruskal's pseudocode

- 1. Set $S = \{ \}$, the set of edges of the MST
- 2. Sort edges by weight
- 3. Put each vertex in its own set
- 4. While the number of sets > 1
 - pick next smallest edge e = (u, v)
 - if u and v are in in different sets S_1 and S_2
 - add e to S
 - merge S₁ and S₂

Edges in sorted order:

1: (A,D), (C,D), (B,E), (D,E)

2: (A,B), (C,F), (A,C)

3: (E,G)

5: (D,G), (B,D)

6: (D,F)

10: (F,G)

MST: { }

Sets: {A} {B} {C} {D} {E} {F} {G}

Edges in sorted order:

1: (A,D), (C,D), (B,E), (D,E)

2: (A,B), (C,F), (A,C)

3: (E,G)

5: (D,G), (B,D)

6: (D,F)

10: (F,G)

MST: { (A,D) }

Sets: {A, D} {B} {C} {E} {F} {G}

Edges in sorted order:

1: (A,D), (C,D), (B,E), (D,E)

2: (A,B), (C,F), (A,C)

3: (E,G)

5: (D,G), (B,D)

6: (D,F)

10: (F,G)

MST: { (A,D), (C,D) }

Sets: {A, D, C} {B} {E} {F} {G}

Edges in sorted order:

1: (A,D), (C,D), (B,E), (D,E)

2: (A,B), (C,F), (A,C)

3: (E,G)

5: (D,G), (B,D)

6: (D,F)

10: (F,G)

MST: { (A,D), (C,D), (B,E) }

Sets: {A, D, C} {B, E} {F} {G}

Edges in sorted order:

1: (A,D), (C,D), (B,E), (D,E)

2: (A,B), (C,F), (A,C)

3: (E,G)

5: (D,G), (B,D)

6: (D,F)

10: (F,G)

MST: { (A,D), (C,D), (B,E), (D,E) }

Sets: {A, D, C, B, E} {F} {G}

Edges in sorted order:

1: (A,D), (C,D), (B,E), (D,E)

2: (A,B), (C,F), (A,C)

3: (E,G)

5: (D,G), (B,D)

6: (D,F)

10: (F,G)

MST: { (A,D), (C,D), (B,E), (D,E) }

Sets: {A, D, C, B, E} {F} {G}

Edges in sorted order:

1: (A,D), (C,D), (B,E), (D,E)

2: (A,B), (C,F), (A,C)

3: (E,G)

5: (D,G), (B,D)

6: (D,F)

10: (F,G)

MST: { (A,D), (C,D), (B,E), (D,E), (C,F) }

Sets: {A, D, C, B, E, F} {G}

Edges in sorted order:

1: (A,D), (C,D), (B,E), (D,E)

2: (A,B), (C,F), (A,C)

3: (E,G)

5: (D,G), (B,D)

6: (D,F)

10: (F,G)

MST: { (A,D), (C,D), (B,E), (D,E), (C,F) }

Sets: {A, D, C, B, E, F} {G}

Edges in sorted order:

1: (A,D), (C,D), (B,E), (D,E)

2: (A,B), (C,F), (A,C)

3: (E,G)

5: (D,G), (B,D)

6: (D,F)

10: (F,G)

MST: { (A,D), (C,D), (B,E), (D,E), (C,F), (E,G) }

Sets: {A, D, C, B, E, F, G}

Kruskal's analysis

Correctness:

- invariant: S is a MST of the sub-graph induced by the set of sets of vertices
- variant: either the number of sets or the number of non chosen edges is decreasing

Runtime complexity:

- Floyd's algorithm to build min-heap with edges O(|E|)
- Iterate through edges using deleteMin to get next edge:
 O(|E|log|E|)
- Use union-find to manage the set of sets of vertices: O(|E|)
- often stop long before considering all edges