Chapter 3 Borne supérieure dans $\mathbb R$

3.1 Majorant, minorant

Exercice 3.1 (**)

Il paraît peu vraisemblable que \mathbb{N} , sous-ensemble de \mathbb{R} , soit majoré. Et pourtant, voici une démonstration forcement fausse, de ce que N est majoré.

Quel que soit $n \in \mathbb{N}$, l'entier naturel n+1 majore n; puisque chaque élément de \mathbb{N} est majoré, nous pouvons conclure que N est majoré.

D'où vient cet apparent paradoxe ?

Exercice 3.2 (**)

Les parties suivantes de R sont-elles majorées, minorées? Ont-elles un plus grand élément, un plus petit élément?

1.] – 4, 6].

2. [-1,0[.

3. $[3, +\infty[$.

4. ℝ*.

5. ℤ.

7. $\{x \in \mathbb{R}, x^2 \le 2\}$. 8. $[0, \pi] \cap \mathbb{Q}$.

Exercice 3.3 (***)

Soit

$$A = \left\{ x \in \mathbb{R} \mid \left| 3|x| - 6 \right| > 2|x| - x \right\}.$$

Déterminer l'ensemble A^{\uparrow} de ses majorant et l'ensemble A^{\downarrow} de ses minorants.

3.2 Théorème de la borne supérieure

Exercice 3.4 (**)

Déterminer si les parties suivantes de R sont majorées, minorées. Puis déterminer, s'ils existent, le plus grand élément, le plus petit élément, la borne supérieure et la borne inférieure.

1.]0, 1[,

2. [0, 1[,

3. $]1, +\infty[,$

4. ℕ,

5. $\left\{ \frac{1}{n} \mid n \in \mathbb{N}^* \right\}$, 6. $\left\{ x \in \mathbb{R} \mid x^2 \le 2 \right\}$, 7. $\left\{ x \in \mathbb{Q} \mid x^2 \le 2 \right\}$.

Exercice 3.5 (***)

On considère

$$E = \left\{ (-1)^n + \frac{1}{p} \mid n \in \mathbb{N} \text{ et } p \in \mathbb{N}^* \right\}.$$

L'ensemble E admet-il une borne inférieure, une borne supérieure ? Si oui, les déterminer.

Exercice 3.6 (***)

Soit x>0 un réel, écrit en décimal sous la forme $n_0,\alpha_1\alpha_2\dots$ Notons x_k sa troncature à la k-ème décimale, c'est-à-dire le nombre décimal

$$x_k \stackrel{\text{def}}{=} n_0, \alpha_1 \alpha_2 \dots \alpha_k$$

et *X* l'ensemble de toutes ces troncatures, sous-ensemble de l'ensemble des décimaux. Montrer que *x* est la borne supérieure de *X*. Dans quels cas est-il le maximum?

Que peut-on dire dans le cas où x < 0?

Exercice 3.7 (**)

Soit A une partie non vide et majorée de \mathbb{R} . On suppose que la borne supérieure M de A vérifie $M = \sup(A) > 0$. Montrer qu'il existe un élément de A strictement positif.

Exercice 3.8 (**)

Soient A et B deux parties non vides majorées de \mathbb{R} .

- **1.** Montrer que $A \subset B \implies \sup A \leq \sup B$.
- **2.** Montrer que $A \cup B$ est majorée et déterminer sup $(A \cup B)$.

Exercice 3.9 (***)

Soient A et B deux parties non vides, majorées, de $\mathbb R$; on définit

$$C = A + B = \{ z \in \mathbb{R} \mid \exists x \in A, \exists y \in B, z = x + y \};$$

Prouver que $\sup C = \sup A + \sup B$.

Exercice 3.11 (****)

Soient A et B deux parties non vides, majorées, de \mathbb{R}_+ ; on définit

$$D = AB = \{ z \in \mathbb{R} \mid \exists x \in A, \exists y \in B, z = xy \};$$

Déterminer $\sup(D)$.

Exercice 3.12 (***)

Soient A et B deux parties non vides de \mathbb{R} telles que

$$\forall (a, b) \in A \times B, a \leq b.$$

Montrer que $\sup(A)$ et $\inf(B)$ existent et que $\sup(A) \le \inf(B)$.

Exercice 3.13 (****)

Soit A une partie bornée non-vide de \mathbb{R} . Montrer

$$\sup_{(x,y)\in A\times A}|x-y|=\sup(A)-\inf(A).$$

Exercice 3.14 (***)

Soit $f: \mathbb{R} \to \mathbb{R}$ un application croissante et $A \subset \mathbb{R}$ une partie non-vide majorée.

- **1.** Montrer que $\sup (f(A)) \le f(\sup A)$.
- 2. Trouvez un exemple où l'inégalité est stricte.

Exercice 3.15 (***)

Soient f une fonction majorée et g une fonction bornée définies sur une partie X de \mathbb{R} et à valeurs réelles. Montrer

$$\sup_{Y} f + \inf_{X} g \le \sup_{Y} (f + g). \tag{1}$$

Exercice 3.17 (****) Un théorème de point fixe

Soit une application croissante $f:[0,1] \rightarrow [0,1]$, c'est-à-dire

$$\forall (u, v) \in [0, 1]^2, u \le v \implies f(u) \le f(v).$$

On se propose de montrer que f admet un point fixe, c'est-à-dire

$$\exists \alpha \in [0, 1], f(\alpha) = \alpha.$$

On considère l'ensemble

$$A = \{ x \in [0,1] \mid f(x) \le x \}.$$

- **1.** Montrer que l'ensemble A est non vide et qu'il admet une borne inférieure $\alpha \in [0, 1]$.
- **2.** Démontrer que si $x \in [0, 1]$ est un minorant de A, alors f(x) est aussi un minorant de A. En déduire que $f(\alpha) \le \alpha$.
- 3. Démontrer que si $x \in [0, 1]$ est un élément de A, alors f(x) est aussi un élément de A. En déduire que $f(\alpha) \ge \alpha$.
- 4. Conclure.

3.3 Les dix types d'intervalles de \mathbb{R}

Exercice 3.18 (*)

Montrer que l'intersection de deux intervalles est un intervalle (éventuellement vide). Que peut-on dire de l'intersection de deux intervalles ouverts ? De deux intervalles fermés ?

3.4 La droite achevée $\overline{\mathbb{R}}$