Ejercicios

Nombre:	 	

Enunciar claramente las propiedades que se usen en la resolución de los problemas.

- 1. Enuncie al menos dos invariantes topológicos que clasifiquen las superficies cerradas (compactacas y sin frontera).
- 2. De una lista exahustiva de las superficies.
- 3. De una construcción como CW-complejo de las superficies cerradas.
- 4. Describa el espacio cubriente universal de las superficies cerradas.
- 5. Proporcione una presentación para el grupo fundamental del espacio de las superficies cerradas orientables.
- 6. Proporcione una presentación para el grupo fundamental del espacio proyectivo real de dimensión 2 $(\mathbb{R}P^2)$ y de la botella de Klein (K).
- 7. Sean x_0 y x_1 puntos distintos de un espacio X conectado por trayectorias. Demuestre que $\pi_1(X, x_0)$ es abeliano si y sólo si para todo par α y β de caminos de x_0 a x_1 los isomorfismos inducidos $\hat{\alpha}$, $\hat{\beta}$: $\pi_1(X, x_0) \to \pi_1(X, x_1)$ de cambio de punto base de x_0 a x_1 son iguales.
- 8. Calcule el grupo fundamental del espacio obtenido de la unión disjunta de dos toros T que se identifican en dos puntos.
- 9. Demuestre que \mathbb{R}^2 no es homeomorfo a \mathbb{R}^n para $n \neq 2$. Justifica claramente todos los pasos de tu respuesta.
- 10. Sea $p:E\to B$ una función de recubrimiento entre dos espacios con estructura de CW-complejo. Suponga que p es nulhomotópica. Demuestre que E es simplemente conexo.
- 11. Sea $p:E\to B$ una función cubriente y sean $e_0\in E$ y $b_0\in B$ con $p(e_0)=b_0$. Pruebe que $p:\pi_1(E,e_0)\to\pi_1(B,b_0)$ es inyectivo.
- 12. a) Describa todos los espacios de recubrimiento arco-conexos de $\mathbb{R}P^2$.
 - b) Describa todos los espacios de recubrimiento arco-conexos de $\mathbb{R}P^2 \vee \mathbb{R}P^2$.