Deep Learning For Computer Vision PytzMLS2018: CIVE UDOM

Anthony Faustine

 $\begin{array}{c} {\rm PhD\ Fellow} \\ {\rm (IDLab\ research\ group\mbox{-}Ghent\ University)} \end{array}$

5 April 2018

Learning goal

- Understand how to build and train Convolution Neural Networks (CNN).
- Learn how to apply CNN to to visual detection and recognition tasks.
- Learn how to apply Transfer learning with image and language data.
- Understand how to implement Convolution Neural Network using Pytorch framework.

Outline

Introduction

Neural Networks For Visual Data

Computer vision tasks

Deep convolutional models

Transfer learning

So far we have learned MLP as a universal function approximator which can be used for classification or regression problem.

- They build up complex pattern from simple pattern hierarchically.
- Each layer learn to detect simple combination of pattern detected by previous layer.
- The lowest layers of the model capture simple patterns where the next layers capture more complex pattern.

Consider the following three problems.

Problem 1: Given speach signal below

Task: Detect if the signal contain the word HAPA KAZI TU

Consider the following three problems.

Problem 2: Given following image

Task: Idenify zebra in the image

Consider the following three problems.

Problem 2: Given following two images.

Figure 1: Zebra

Task: Classify the image as zebra regardless of the orientation of zebra in the image.

Composing MLP for these kind of problems is very challenging.

- 1 Require a very large network
- 2 MLPs are sensitive to the location of the pattern
 - Moving it by one component results in an entirely different input that the MLP wont recognize.

In many problems the location of a pattern is not important

- Only the presence of the pattern.
- Requirement: Network must be shift invariant.

More details

Outline

Introduction

Neural Networks For Visual Data

Computer vision tasks

Deep convolutional models

Transfer learning

Convolutioanl Neural Network (CNN)

Neural networks for visual data are designed specifically for such problems:

- Handle very high input dimension
- Exploit the 2D topology of image or 3D topology for video data.
- Build in invariance to certain variations we expect (translations, illumination etc)

Convolutional Neural Networks (CNN)

CNN are specialized kind of neural networks for processing visual data.

- They employs a mathematical operation called convolution in place of general matrix multiplication in at least one of their layers.
- CNNs are often used for 2D or 3D data (such as grayscale or RGB images), but can also be applied to several other types of input, such as:
 - 1 1D data: time-series, raw waveforms
 - 2 2D data: grayscale images, spectrograms
 - 3 3D data: RGB images, multichannel spectrograms

Convolutional Neural Networks (CNN)

Convolution leverages three important ideas that help improve a machine learning system.

- 1 Sparse interactions (local connectivity),
- 2 Parameter sharing,
- 3 Equivariant representations

CNN: Local connectivity

Unlike MLP, a feature at any given CNN layer only depends on a subset of the input of that layer.

- Each hidden unit is connected only to the subregion of the input image.
- This reduce the number of parameter.
- Reduce the cost of computing linear activations of the hidden units.

Figure 2: Local connectivity: credit: Prof. Seungchul Lee

CNN: Parameter Sharing

At each CNN layer, we learn several small filters (feature maps) and apply them to the entire layer input.

- Units organized into the same feature map share parameters.
- Hidden units within a feature map cover different positions in the image.
- Allow feature to be detected regardless of their position.

Figure 3: Parameter sharing: credit: Hugo Larochelle

CNN: Equivariant representations

A feature map (filter) that detects e.g. an eye can detect an eye everywhere on an image (translation invariance)

- Units organized into the same feature map share parameters.
- Hidden units within a feature map cover different positions in the image.
- Allow feature to be detected regardless of their position.

Figure 4: credit: Hugo Larochelle

CNN Architecture

A typical layer of a convolutional network consists of three layers:

- Convolutional layer
- Detector stage
- Pooling layer and
- Fully connected layer

CNN Architecture: Convolutional layer

This is the first layer in CNN and consist of set of independent filters that can be sought as feature extractor.

• The result is obtained by taking the dot product between the filter \mathbf{w} and the small $3 \times 3 \times 1$ chunck of the image \mathbf{x} plus bias term \mathbf{b} as the filter slides along the image.

$$\mathbf{w}^{\mathbf{T}}\mathbf{x} + \mathbf{b}$$

• The step size of slide is called stride ⇒ controls how the filter convolves around the input volume.

python

CNN Architecture: Convolutional layer

Consider more two filters

• If we have three filters of size $3 \times 3 \times 1$ we get 3 separate activation maps stacked up to get a new volume of size $5 \times 5 \times 3$

CNN Architecture: Convolutional operations

Figure 5: Conv operation

credit: Adam Gibson and Josh Patterson

CNN Architecture: Padding

Consider the following $7 \times 7 \times 1$ images convolved with $3 \times 3 \times 1$ filter and stride size of 1.

- If the size of image is N × N, and that of filter is F × F and S is the stride size S.
- The size of the feature map (output size) is $\frac{N-F}{S} + 1$
- For above image: N = 7, F = 3

CNN Architecture: Padding

Consider the following $7 \times 7 \times 1$ images convolved with $3 \times 3 \times 1$ filter and stride size of 1.

For above image: N = 7, F = 3

- Stride $1 S = 1, \Rightarrow \frac{7-3}{1} + 1 = 5$
- Stride $2 S = 2, \Rightarrow \frac{7-3}{2} + 1 = 3$
- Stride $3 S = 3, \Rightarrow \frac{7-3}{3} + 1 = 2.33$ Does not fit

CNN layers: Padding

For above image: N = 7, F = 3

Stride
$$3 S = 3, \Rightarrow \frac{7-3}{3} + 1 = 2.33$$
 Does not fit

- To address this we pad the input with suitable values (padding with zero is common)⇒ to preserve the spatial size.
- In general common to see convolutional layers with stride 1, filter $F \times F$ and zero padding with $P = \frac{F-1}{2}$

$$F = 3 \Rightarrow \text{ zero pad with } P = 1$$

$$F = 5 \Rightarrow$$
 zero pad with $P = 2$

$$F = 7 \Rightarrow$$
 zero pad with $P = 3$

CNN layers: Hyper-parameters

To summarize the conv layer

- Accepts a volume of size $W_1 \times H_1 \times D_1$
- Requires four hype-parameters:
 - \bigcirc Number of filters K.
 - 2 Spatial extent of filter F.
 - 3 Amount zero padding P.

Common settings:

- K = (power of 2 e.g) 4, 8, 16, 32, 64, 128
- F = 3, S = 1, P = 1
- F = 5, S = 1, P = 2
- F = 5, S = 2, P = ? whatever fits.
- Produce a volume of size $W_2 \times H_2 \times D_2$ where

$$W_2 = (W_1 - F + 2P)/S + 1$$

$$H_2 = (H_1 - F + 2P)/S + 1$$

$$D_2 = K$$

• The number of weights per filter is $F \cdot F \cdot D_1$ and the total number of parameters is $(F \cdot F \cdot D_1) \cdot K$ and K biases.

CNN layers: Hyper-parameters

To summarize the conv layer

- Accepts a volume of size $W_1 \times H_1 \times D_1$
- Requires four hype-parameters:
 - \bigcirc Number of filters K.
 - 2 Spatial extent of filter F.
 - 3 Amount zero padding P.

Common settings:

- K = (power of 2 e.g) 4, 8, 16, 32, 64, 128
- F = 3, S = 1, P = 1
- F = 5, S = 1, P = 2
- F = 5, S = 2, P = ? whatever fits.
- Produce a volume of size $W_2 \times H_2 \times D_2$ where

$$W_2 = (W_1 - F + 2P)/S + 1$$

$$H_2 = (H_1 - F + 2P)/S + 1$$

$$D_2 = K$$

• The number of weights per filter is $F \cdot F \cdot D_1$ and the total number of parameters is $(F \cdot F \cdot D_1) \cdot K$ and K biases.

CNN layers: Pytorch Implementation

torch.nn.Conv2d(in_channels, out_channels,kernel_size, stride=1, padding=0)

- in channels (int) Number of channels in the input image
- out channels (int) Number of channels produced by the convolution
- kernel_size (int or tuple) Size of the convolving kernel
- stride (int or tuple, optional) Stride of the convolution. Default: 1
- padding (int or tuple, optional) Zero-padding added to both sides of the input.

CNN Architecture: Detection layer

In this stage each feature map of a conv layer is run through a non-linear function.

- ReLU function is often used after every convolution operation.
- It replace all the negative pixel in the feature map by zero.

A pooling layer act as down-sampling filter \Rightarrow takes each feature map from a convolution layer produce a condensed feature map.

- Make representation smaller and more manageable.
- Operates over each activation map independently
 - Reduce computational cost and the amount of parameter.
 - Preserve spatial invariance.

Max Pooling

Figure 6: Max pooling (credit: CS231n Stanford University)

• Other pooling functions: average pooling or L2-norm pooling.

apython

To summarize the pooling layer.

- Accepts a volume of size $W_1 \times H_1 \times D_1$
- Requires two hype-parameters:
 - \bigcirc Spatial extent of filter F.
 - 2 Stride S.
 - Produce a volume of size $W_2 \times H_2 \times D_2$ where

$$W_2 = (W_1 - F)/S + 1$$

$$H_2 = (H_1 - F)/S + 1$$

$$D_2 = D_1$$

- Introduce zero parameters since it computes fixed function of input.
- Not common to use zero-padding for pooling layers.

Common settings:

- F = 2, S = 2
- F = 3, S = 2

To summarize the pooling layer.

- Accepts a volume of size $W_1 \times H_1 \times D_1$
- Requires two hype-parameters:
 - \bigcirc Spatial extent of filter F.
 - 2 Stride S.
 - Produce a volume of size $W_2 \times H_2 \times D_2$ where

$$W_2 = (W_1 - F)/S + 1$$

$$H_2 = (H_1 - F)/S + 1$$

$$D_2 = D_1$$

- Introduce zero parameters since it computes fixed function of input.
- Not common to use zero-padding for pooling layers.

Common settings:

- F = 2, S = 2
- F = 3, S = 2

Pooling layer: Pytorch Implementation

torch.nn.MaxPool2d(kernel_size, stride)

- kernel_size (int or tuple) Size of the convolving kernel
- stride (int or tuple, optional) Stride of the convolution. Default: 1

Convolutional Architecture: Fully connected layer

In the end it is common to add one or more fully connected (FC) layer.

• Contains neuron that connect the entire input volume as in MLP.

Figure 7: credit: Arden Dertat

Convolutional Architecture

32x32x3

```
apython
```

Convolutional Architecture

```
Conv1
                                 Conv2
                                             MaxPool
                                                        FC1
                                                                    FC2
                       MaxPool
        F=5, K=6,
                                F=5, K=6,
 Input
                                S=1 P=0
         S=1 P=0
                                                                    out dim=10
32x32x3
class CNN(nn.Module):
    def init (self):
        super(CNN, self).__init__()
        self.conv1 = nn.Conv2d(3, 6, 5)
        self.conv2 = nn.Conv2d(6, 16, 5)
        self.mp = nn.MaxPool2d(2, 2)
        self.fc1 = nn.Linear(16*53*53, 120)
        self.fc2 = nn.Linear(120, 10)
    def forward(self. x):
        in_size = x.shape[0]
        out = F.relu(self.conv1(x))
        out = self.mp(out)
        out = F.relu(self.conv2(out))
        out = self.mp(out)
        out = out.view(in_size, -1)
        out = F.relu(self.fc1(out))
        out = self.fc2(out)
                                       apython
        return out
```

4 D F 4 A B F 4 B F

Outline

Introduction

Neural Networks For Visual Data

Computer vision tasks

Deep convolutional models

Transfer learning

CNN applications: Image classification

Image Classification: Classify an image to a specific class.

- The whole image represents one class.
- We don't want to know exactly where are the object → only one object is presented.

The standard performance measures are:

- The error rate $P(f(\mathbf{x}; \theta) \neq \mathbf{y})$ or accuracy $P(f(\mathbf{x}; \theta) = \mathbf{y})$
- The balanced error rate (BER) $\frac{1}{K} \sum_{i=1}^{K} P(f(\mathbf{x}; \theta) \neq y_i | \mathbf{y} = y_i)$

CNN applications: Image classification

In the two-class case we can use True Positive (TP) and False Postive (FP) rate as:

- $TP = P(f(\mathbf{x}; \theta) = 1|\mathbf{y} = 1)$ and $FP = P(f(\mathbf{x}; \theta) = 1|\mathbf{y}) = 0$
- The ideal algorithm would have $TP \simeq 1$ and $FP \simeq 0$

Other standard performance representation:

- Receiver operating characteristic (ROC)
- Area under the curve AUC)

Figure 8: credit:Stanford CS 229: Machine Learning

CNN applications: Classification with localization

Image classification with localization: aims at predicting classes and locations of targets in an image.

 Learn to detect a class and a rectangle of where that object is.

A standard performance assessment considers

• a predicted bounding box \hat{B} is correct if there is an annotated bounding box \hat{B} for that class: such that the Intersection over Union (IoU) is large enough.

$$\frac{area(B \cap \hat{B})}{area(B \cup \hat{B})} \ge \frac{1}{2}$$

CNN applications: Object detection

Given an image we want to detect all the object in the image that belong to a specific classes and give their location.

• An image may can contain more than one object with different classes.

CNN applications: Image segmentation

Image segmentation: consists of labeling individual pixels with the class of the object it belongs to \Rightarrow It may also involve predicting the instance it belongs to.

Two types

- 1 Semantic Segmentation: Label each pixel in the image with a category label.
- 2 Instance Segmentation: Label each pixel in the image with a category label and distinguish them.

(c) Semantic segmentation

(d) Instance segmentation

nython 🔑

Outline

Introduction

Neural Networks For Visual Data

Computer vision tasks

Deep convolutional models

Transfer learning

Deep Convolutional Architecture

Several deep CNN architecture that works well in several tasks have been proposed.

- LeNet-5
- AlexNet
- VGG
- ResNet
- Inception

Outline

Introduction

Neural Networks For Visual Data

Computer vision tasks

Deep convolutional models

Transfer learning

Transfer learning

Transfer learning: The ability to apply knowledge learned in previous tasks to novel tasks.

 Based on human learning. People can often transfer knowledge learnt previously to novel situations.

Figure 9: credit: Romon Morros

Transfer learning

Transfer learning Idea: Instead of training a deep network from scratch for your task:

- Take a network trained on a different domain for a different source task.
- Adapt it for your domain and your target task.
- A popular approach in computer vision and natural language processing task.

Why Transfer learning

- In practice, very few people train an entire CNN from scratch (with random initialization) ⇒ (computation time and data availability)
- Very Deep Networks are expensive to train. For example, training ResNet18 for 30 epochs in 4 NVIDIA K80 GPU took us 3 days.
- Determining the topology/flavour/training method/hyper parameters for deep learning is a black art with not much theory to guide you.

References I

- Deep learning for Artificial Intelligence master course: TelecomBCN Bercelona(winter 2017)
- 6.S191 Introduction to Deep Learning: MIT 2018.
- Deep learning Specilization by Andrew Ng: Coursera
- Introductucion to Deep learning: CMU 2018
- Cs231n: Convolution Neural Network for Visual Recognition: Stanford 2018
- Deep learning in Pytorch, Francois Fleurent: EPFL 2018