Université catholique de Louvain Ecole de physique

SIMULATION NUMÉRIQUE EN PHYSIQUE [LPHY2371]

Equation d'Advection-Diffusion et Prédictibilité

Auteurs : Arnaud Schils Valéry Materne Enseignant: Pr. Michel CRUCIFIX

Décembre 2016

Première partie Exercice d'examen 1

Introduction

Fournissez un schéma numérique expli-**I.1** cite d'ordre $\mathcal{O}(h+k)$. Donnez-en le stencil. Nous pouvons introduire les facteurs $\lambda_d = Dk/h^2$ et $\lambda_b = bk$. Quelles importances ces facteurs ont-ils pour la condition de stabilité?

Dans cette section un schéma numérique explicite est fourni pour l'équation aux dérivées partielles suivantes :

$$D\frac{\partial^2 u(x,t)}{\partial x^2} - a\frac{\partial u(x,t)}{\partial x} - bu(x,t) = \frac{\partial u(x,t)}{\partial t}$$
 (1)

où D, a, b sont des constantes et D est positive. Dans la suite de ce texte les dépendances en x et t de la fonction u ne seront pas toujours mentionnées explicitement.

Les dérivées de l'Equation 1 sont remplacées par leurs expressions en différences finies. Soient $u(x_i, t_j) \equiv U_{i,j}$, h le pas d'espace et k le pas de temps, ces expressions sont:

$$\frac{\partial^2 u(x,t)}{\partial x^2} \bigg|_{x=0,1,1} = \frac{U_{i-1,j} - 2U_{i,j} + U_{i+1,j}}{h^2} + \mathcal{O}(h^2)$$
 (2)

$$\frac{\partial u(x,t)}{\partial x}\bigg|_{x=x,t=t} = \frac{U_{i+1,j} - U_{i,j}}{h} + \mathcal{O}(h)$$
 (3)

$$\frac{\partial^2 u(x,t)}{\partial x^2}\Big|_{x=x_i,t=t_j} = \frac{U_{i-1,j} - 2U_{i,j} + U_{i+1,j}}{h^2} + \mathcal{O}(h^2) \qquad (2)$$

$$\frac{\partial u(x,t)}{\partial x}\Big|_{x=x_i,t=t_j} = \frac{U_{i+1,j} - U_{i,j}}{h} + \mathcal{O}(h) \qquad (3)$$

$$\frac{\partial u(x,t)}{\partial t}\Big|_{x=x_i,t=t_j} = \frac{U_{i,j+1} - U_{i,j}}{k} + \mathcal{O}(k) . \qquad (4)$$

Notons que pour la dérivée seconde par rapport à x, la formule à trois points d'ordre $\mathcal{O}(h^2)$ a été choisie au lieu de celles d'ordre $\mathcal{O}(h)$ afin d'obtenir à la fin une matrice tridiagonale. En injectant ces différences finies dans l'Equation 1 on obtient:

$$D\frac{U_{i-1,j} - 2U_{i,j} + U_{i+1,j}}{h^2} + \mathcal{O}(h^2) - a\frac{U_{i+1,j} - U_{i,j}}{h} + \mathcal{O}(h) - bU_{i,j}$$

$$= \frac{U_{i,j+1} - U_{i,j}}{k} + \mathcal{O}(k) . \quad (5)$$

En multipliant l'expression par le pas de temps k, en isolant $U_{i,j+1}$ et en négligeant l'erreur en $\mathcal{O}(h^2)$ car elle est d'ordre supérieur à $\mathcal{O}(h)$ on obtient :

$$U_{i,j+1} = \frac{Dk}{h^2} (U_{i-1,j} - 2U_{i,j} + U_{i+1,j}) - \frac{ak}{h} (U_{i+1,j} - U_{i,j}) - bkU_{i,j} + U_{i,j} + \mathcal{O}(h+k) .$$
 (6)

En définissant $\lambda_d=\frac{Dk}{h^2},\,\lambda_a=\frac{ak}{h}$ et $\lambda_b=bk$ l'expression devient :

$$U_{i,j+1} = \lambda_d(U_{i-1,j} - 2U_{i,j} + U_{i+1,j}) - \lambda_a(U_{i+1,j} - U_{i,j}) - \lambda_b U_{i,j} + U_{i,j} + \mathcal{O}(h+k) . \quad (7)$$

Sans spécifier l'ordre de l'erreur et en réarrangeant l'expression on a :

$$U_{i,j+1} = U_{i-1,j}\lambda_d + U_{i,j}(-2\lambda_d + \lambda_a - \lambda_b + 1) + U_{i+1,j}(\lambda_d - \lambda_a) .$$
 (8)

En imposant les conditions aux bords constantes $\forall j, U_{0,j} = 0$ et $\forall j, U_{N+1,j} = 0$, le schéma numérique peut s'écrire sous forme matricielle comme ceci :

$$M = \begin{pmatrix} 1 & 0 & \dots & 0 & 0 \\ \lambda_d & -2\lambda_d + \lambda_a - \lambda_b + 1 & \lambda_d - \lambda_a & 0 & \dots \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & \vdots & \ddots & \vdots & \vdots & \vdots \\ 0 & \dots & \lambda_d & -2\lambda_d + \lambda_a - \lambda_b + 1 & \lambda_d - \lambda_a \\ 0 & 0 & \dots & 0 & 1 \end{pmatrix}$$
(9)

$$\begin{pmatrix} U_{0,j+1} \\ U_{1,j+1} \\ \vdots \\ \vdots \\ U_{N,j+1} \\ U_{N+1,j+1} \end{pmatrix} = M \begin{pmatrix} U_{0,j} \\ U_{1,j} \\ \vdots \\ \vdots \\ U_{N,j} \\ U_{N,j} \\ U_{N+1,j} \end{pmatrix}$$

$$(10)$$

où M est une matrice tridiagonale. Notons que les $U_{i,0}$ sont connus grâce aux conditions initiales. Le stencil de ce schéma explicite est présenté à la Figure 1. Chaque $U_{i,j+1}$ dépend en effet des $U_{i-1,j}$, $U_{i,j}$ et $U_{i+1,j}$.

FIGURE 1 – Stencil du schéma numérique explicite.

I.2 Fournissez la solution analytique de l'équation, ainsi que la relation de dispersion. Discutez brièvement les cas particuliers déjà vus au cours (D=0, b=0, etc.)

L'équation aux dérivées partielles à résoudre est l'Equation 1. Les conditions aux bords suivantes sont imposées :

$$\begin{cases} u(x,0) = g(x) \\ u(0,t) = u(l,t) = 0 \end{cases}$$
 (11)

où l > 0. La solution u est donc recherchée dans le domaine :

$$\begin{cases} t \ge 0 \\ 0 < x < l \end{cases} \tag{12}$$

L'Equation 1 peut-être résolue par la méthode de séparation de variables. La solution u est supposée être de la forme :

$$u(x,t) = v(x)w(t) \tag{13}$$

En injectant cette forme de u dans l'Equation 1 on obtient :

$$Dw(t)\frac{\partial^2 v(x)}{\partial x^2} - aw(t)\frac{\partial v(x)}{\partial x} - bv(x)w(t) = v(x)\frac{\partial w(t)}{\partial t}$$
(14)

En divisant cette équation par v(x)w(t) on obtient :

$$\frac{D}{v}\frac{\partial^2 v}{\partial x^2} - \frac{a}{v}\frac{\partial v}{\partial x} - b = \frac{1}{w}\frac{\partial w}{\partial t} \equiv C_1$$
 (15)

Chaque partie de l'équation est en effet égale à une constante C_1 puisque la partie gauche ne dépend que de x et la partie droite ne dépend que de t. L'équation peut maintenant être résolue en résolvant séparément la partie qui dépend du temps t et la partie qui dépend de la position x. Pour la partie dépendante du temps on a :

$$\frac{1}{w}\frac{\partial w}{\partial t} = C_1 \tag{16}$$

$$\frac{\partial w}{\partial t} = C_1 w \tag{17}$$

$$w(t) = C_2 e^{C_1 t} (18)$$

où C_2 est une constante. Pour la partie dépendante de la position x on a :

$$\frac{D}{v}\frac{\partial^2 v}{\partial x^2} - \frac{a}{v}\frac{\partial v}{\partial x} = C_1 + b \tag{19}$$

$$D\frac{d^2v}{dx^2} - a\frac{dv}{dx} - (C_1 + b)v = 0$$
 (20)

C'est une équation différentielle linéaire homogène du 2ème ordre. Sa solution dépend donc de son polynôme caractéristique :

$$Dr^2 - ar - (C_1 + b) = 0 (21)$$

$$\rho = a^2 + 4D(C_1 + b) \tag{22}$$

Les deux racines de ce polynôme sont :

$$r_{1,2} = \frac{a \pm \sqrt{\rho}}{2D} \tag{23}$$

En fonction du signe de ρ la solution de l'équation peut avoir trois formes.

Si $\rho > 0$

$$v(x) = C_3 e^{r_1 x} + C_4 e^{r_2 x} (24)$$

où C_3 et C_4 sont des constantes. En utilisant la condition au bord $u(0,t) = 0 = v(0)w(t) \implies v(0) = 0$ on a :

$$C_4 = -C_3 \implies v(x) = C_3(e^{r_1x} - e^{r_2x})$$
 (25)

Et en utilisant la condition au bord $u(l,t)=0=v(l)w(t) \implies v(l)=0$ on a :

$$C_3(e^{r_1l} - e^{r_2l}) = 0 \implies C_3 = 0 \implies v(x) = 0$$
 (26)

Cette solution n'est donc pas intéressante par rapport à nos conditions aux bords.

Si $\rho = 0, r_1 = r_2 \equiv r$

$$v(x) = (C_3 + C_4 x)e^{rx} (27)$$

où C_3 et C_4 sont des constantes. En utilisant la condition au bord $u(0,t) = 0 = v(0)w(t) \implies v(0) = 0$ on a :

$$C_3 = 0 \implies v(x) = C_4 x e^{rx} \tag{28}$$

Et en utilisant la condition au bord $u(l,t) = 0 = v(l)w(t) \implies v(l) = 0$ on

$$C_4 l e^{rl} = 0 \implies C_4 = 0 \implies v(x) = 0 \tag{29}$$

Cette solution n'est donc pas intéressante par rapport à nos conditions aux bords.

Si $\rho < 0$

On définit

$$r_{1,2} \equiv \alpha \pm i\beta \tag{30}$$

avec

$$\alpha = \frac{a}{2D} \,, \tag{31}$$

$$\alpha = \frac{a}{2D},$$
(31)
$$\beta = \frac{\sqrt{-a^2 - 4D(C_1 + b)}}{2D}.$$

On a alors comme solution pour v(x):

$$v(x) = (C_3 \cos(\beta x) + C_4 \sin(\beta x))e^{\alpha x}. \tag{33}$$

En utilisant la condition au bord $u(0,t) = 0 = v(0)w(t) \implies v(0) = 0$ on a :

$$C_3 = 0 \implies v(x) = C_4 \sin(\beta x) e^{\alpha x}$$
 (34)

Et en utilisant la condition au bord $u(l,t)=0=v(l)w(t) \implies v(l)=0$ on a :

$$\sin(\beta l) = 0 \implies \beta l = m\pi \implies \beta = \frac{m\pi}{l}, m \in \mathbb{N}^*.$$
 (35)

On notera que $\beta > 0$ car $\rho < 0$ et D > 0.

La solution générale pour la partie de l'équation dépendante de la position est donc:

$$v(x) = \sum_{m=1}^{\infty} C_{4_m} \sin\left(\frac{m\pi x}{l}\right) e^{\alpha x}$$
 (36)

où les C_{4_m} sont des constantes. Utilisons maintenant la condition au bord u(x,0) = g(x) afin de déterminer les valeurs de ces constantes C_{4_m} :

$$u(x,0) = v(x)w(0) = v(x)C_2 = g(x).$$
(37)

On a alors,

$$g(x) = \sum_{m=1}^{\infty} C_{4_m} C_2 \sin\left(\frac{m\pi x}{l}\right) e^{\alpha x} . \tag{38}$$

En définissant $C_m = C_{4_m}C_2$ on obtient :

$$g(x) = \sum_{m=1}^{\infty} C_m \sin\left(\frac{m\pi x}{l}\right) e^{\alpha x}$$
 (39)

On voit dès lors que les coefficients C_m sont obtenus en projetant la fonction $g(x)e^{-\alpha x}$ sur la base des fonctions $\sin\left(\frac{m\pi x}{l}\right)$:

$$C_m = \frac{2}{l} \int_0^l g(x) \sin\left(\frac{m\pi x}{l}\right) e^{-\alpha x} dx \tag{40}$$

La fonction u(x,t) peut alors s'écrire :

$$u(x,t) = \sum_{m=1}^{\infty} C_m \sin\left(\frac{m\pi x}{l}\right) e^{\alpha x} e^{C_{1_m} t}$$
(41)

Nous devons maintenant déterminer l'expression de la constante C_{1m} qui dépend de β et donc de m. En partant de l'expression de β (32), on obtient :

$$C_{1_m} = \frac{-a^2 - 4D^2\beta^2}{4D} - b \tag{42}$$

et avec $\beta = \frac{m\pi}{l}$, on a :

$$C_{1_m} = -\frac{a^2}{4D} - \frac{Dm^2\pi^2}{l^2} - b \ . \tag{43}$$

En injectant l'expression de ${\cal C}_{1_m}$ dans celle de u on a alors :

$$u(x,t) = \sum_{m=1}^{\infty} C_m \sin\left(\frac{m\pi x}{l}\right) \exp\left(\frac{ax}{2D} + \left(-\frac{a^2}{4D} - \frac{Dm^2\pi^2}{l^2} - b\right)t\right)$$
(44)

$$u(x,t) = \sum_{m=1}^{\infty} C_m \sin\left(\frac{m\pi x}{l}\right) \exp\left(\frac{a}{2D}\left(x - \frac{a}{2}t\right) - \left(\frac{Dm^2\pi^2}{l^2} + b\right)t\right)$$
(45)

avec

$$C_m = \frac{2}{l} \int_0^l g(x) \sin\left(\frac{m\pi x}{l}\right) \exp\left(-\frac{a}{2D}x\right) dx$$
 (46)

Si $D=1,\,a=b=0$ on retrouve l'équation de la chaleur adimensionnelle et homogène :

$$\frac{\partial^2 u(x,t)}{\partial x^2} = \frac{\partial u(x,t)}{\partial t} \,. \tag{47}$$

En injectant ces valeurs de D, a et b dans l'Equation 45 on a :

$$u(x,t) = \sum_{m=1}^{\infty} C_m \sin\left(\frac{m\pi x}{l}\right) \exp\left(-\left(\frac{m^2 \pi^2}{l^2}\right)t\right)$$
 (48)

avec

$$C_m = \frac{2}{l} \int_0^l g(x) \sin\left(\frac{m\pi x}{l}\right) dx . \tag{49}$$

On retombe donc bien sur la solution de l'équation de la chaleur adimensionnelle homogène du cours si l'on pose l=1. Si D=0=b on retrouve la forme générale de l'équation d'advection :

$$\frac{\partial u(x,t)}{\partial t} + a \frac{\partial u(x,t)}{\partial x} = 0. {(50)}$$

La solution présentée à l'Equation 45 n'est alors plus valide car celle-ci n'est valable que si D>0 et $\rho<0$. La solution de l'Equation 50 est u(x,t)=g(x-at) avec comme condition initiale u(x,0)=g(x) (démonstration faite en séance d'exercices).

Conclusion

Deuxième partie Prédictibilité

Introduction

II.3 todo

Conclusion