Chapter 7. Lagrange's Equations

1 Historical Introduction

Joseph-Louis Lagrange (1736-1813)

Berlin; Paris;

Mécanique analytique

William Rowan Hamilton (1805-1865)

Dublin;

"On a General Method in Dynamics"

Section 7.1. Lagrange's Equations for Unconstrained Motion

What do we mean by "unconstrained" motion?

The particle moves in 3 dimensions with a conservative net force F(r).

The potential energy is $U(\mathbf{r})$.

$$T = \frac{1}{2} m (\dot{x}^2 + \dot{y}^2 + \dot{z}^2)$$

$$U = U(\mathbf{r})$$

The Lagrangian is $\pounds = T - U$. (Notation: Script L)

(An example of "constrained motion" would be something like curvilinear motion of a bead on a wire, or planar motion.)

We define $\pounds = T - U$.

Think of this as a function of $\{x,y,z\}$ and $\{x, y, z\}$; i.e.,

$$\pounds = \pounds (\mathbf{r}, \mathbf{r}) \qquad \mathbf{r} = \{x, y, z\}$$

Now consider the *partial derivative*

$$\partial / \partial x$$
 meaning

vary x but keep the all other 5 variables

$$\partial \pounds / \partial x = - \partial U / \partial x = F_x(x)$$

Now consider the partial derivative $\partial / \partial x$ meaning

vary \dot{x} but keep the all other 5 variables { x, y, z, y, z } fixed;

$$\partial \pounds / \partial x = \partial T / \partial x = m x$$

Newton's second law: $F_x(x) = mx \Rightarrow$

$$\frac{\partial \pounds}{\partial x} = \frac{d}{dt} \frac{\partial \pounds}{\partial x}$$

Similarly for y and z.

$$\frac{\partial \pounds}{\partial y} = \frac{d}{dt} \frac{\partial \pounds}{\partial \dot{y}} \qquad \frac{\partial \pounds}{\partial z} = \frac{d}{dt} \frac{\partial \pounds}{\partial \dot{z}}$$

These are Lagrange's equations. 2

Lagrange's equations

For unconstrained motion,

$$\frac{\partial \pounds}{\partial \mathbf{r}} = \frac{\mathbf{d}}{\mathbf{dt}} \frac{\partial \pounds}{\partial \mathbf{\dot{r}}}$$
 (3 eqs.)

for
$$r = \{x, y, z\},\$$

where $\pounds = T - U$.

Remember the meanings of the partial derivatives!

- $\partial /\partial x$ means vary x but keep the other 5 variables fixed;
- $\partial / \partial x$ means vary x but keep the other 5 variables fixed.

Do you see that the equation looks like the Euler -Lagrange equation. Then what is the variational problem?

Hamilton's action integral

Define the action integral S by

$$S(\Gamma) = \int_{t_1}^{t_2} \pounds (\mathbf{r}, \dot{\mathbf{r}}) dt$$

where:

- Γ is a path is space from $\mathbf{r_1}$ to $\mathbf{r_2}$;
- $\mathbf{r}(t)$ is a function of time that traverses the path as $t: t_1 \rightarrow t_2$;
- Important: $\mathbf{r}(t_1) = \mathbf{r}_1$ and $\mathbf{r}(t_2) = \mathbf{r}_2$.

3

Hamilton's Principle

The actual path taken by m under the influence of the force $-\nabla U$, from $(t_1, \mathbf{r_1})$ to $(t_2, \mathbf{r_2})$, will be the path Γ_{actual} for which S is minimum.

"least action"

Hamilton's Principle

Suppose the particle moves from $(\mathbf{t}_1, \mathbf{r}_1)$ to $(\mathbf{t}_2, \mathbf{r}_2)$, under the influence of the force $\mathbf{F} = -\nabla \mathbf{U}$. The trajectory of the particle is $\mathbf{r}(\mathbf{t})$, which defines a path Γ_{actual} .

Hamilton's Principle states

$$\min_{\{\Gamma\}} S(\Gamma) = S(\Gamma_{actual})$$

Of all the paths from (t_1, \mathbf{r}_1) to (t_2, \mathbf{r}_2) , the particle follows the <u>path of least</u> <u>action.</u>

Note: The endpoints are fixed in both space and time.

Proof of Hamilton's Principle

$$S(\Gamma) = \int_{t_1}^{t_2} \pounds(\mathbf{r}, \dot{\mathbf{r}}) dt$$

What do I need to prove?

min $S(\Gamma)$ occurs when $\mathbf{r}(t)$ obeys Lagrange's equations __

$$\frac{\partial \pounds}{\partial \mathbf{r}} = \frac{\mathbf{d}}{\mathbf{dt}} \frac{\partial \pounds}{\partial \mathbf{\dot{r}}}$$

- The minimum over all paths Γ [from (t_1, \mathbf{r}_1) to (t_2, \mathbf{r}_2)] has $\delta S = 0$.
- The calculus of variations; consider $\delta \mathbf{r}$

$$\delta S = \int_{t1}^{t2} \left\{ (\partial \pounds / \partial \mathbf{r}) \cdot \delta \mathbf{r} + (\partial \pounds / \partial \mathbf{r}) \cdot \delta \mathbf{r} \right\} dt$$

$$2nd term = \frac{d}{dt} \left[(\partial \pounds / \partial \mathbf{r}) \cdot \delta \mathbf{r} \right]$$

$$-\frac{d}{dt} \left[(\partial \pounds / \partial \mathbf{r}) \right] \cdot \delta \mathbf{r}$$

We require $\delta \mathbf{r} = 0$ at the endpoints, so the integral of d/dt [...] is zero.

$$\therefore \delta S = \int_{t_1}^{t_2} \left\{ (\partial \pounds / \partial \mathbf{r}) - d/dt (\partial \pounds / \partial \mathbf{r}) \right\} \bullet \delta \mathbf{r} dt$$

- δS must be = 0 for any variation of the path, i.e., for any function $\delta \mathbf{r}(t)$. The only way that can be true is if the function in $\{\}$ brackets is 0.
- For the least action, r(t) obeys
 Lagrange's equation.

4

Generalized coordinates

We can always use Cartesian coordinates {x, y, z} to specify the trajectory of the particle.

But now suppose some other coordinates could be used, say, $\{q_1, q_2, q_3\}$.

For example, we could use spherical polar coordinates $\{r, \theta, \phi\}$.

We would have a 1-to-1 correspondence between $\{q_1, q_2, q_3\}$ and $\{x, y, z\}$. That is, \exists functions

$$q_i = q_i(r)$$
 for $i = 1, 2, 3$

or

$$\mathbf{r} = \mathbf{r} (q_1, q_2, q_3).$$

Then we could write

$$\pounds = \pounds (q_1,q_2,q_3, \dot{q}_1,\dot{q}_2,\dot{q}_3)$$

and

$$S = \int_{t_1}^{t_2} \pounds (q_1 q_2 q_3 \dot{q}_1 \dot{q}_2 \dot{q}_3) dt$$

The actual path of the particle has least action, $\delta S = 0$; that's Hamilton's principle.

The equation $\delta S = 0$ gives us Lagrange's equations, but now in terms of $\{q_1, q_2, q_3\}$.

The actual path obeys these equations, in terms of any set of generalized coordinates,

$$\frac{\partial \pounds}{\partial q_i} = \frac{d}{dt} \quad \frac{\partial \pounds}{\partial q_i} \qquad 3 \text{ equations;}$$

$$i = 1 2 3$$

To solve a problem using the Lagrangian method:

- 1. Define generalized coordinates.
- 2. Write T and U in terms of the g.c..
- 3. $\pounds = T U$
- 4. Derive Lagrange's equations.
- 5. Solve the equations.

Example 7.2 from Taylor

Plane Polar Coordinates

FIGURE 7.1

$$x = r \cos \phi$$

 $y = r \sin \phi$
 $x = r \cos \phi - r \phi \sin \phi$
 $y = r \sin \phi + r \phi \cos \phi$

Figure 7.1 The velocity of a particle expressed in two-dimensional polar coordinates.

$$\mathcal{L} = T - U = \frac{1}{2}m(\dot{x}^2 + \dot{y}^2) - U(x,y)$$

$$= \frac{1}{2}m(\dot{r}^2 + r^2\dot{\phi}^2) - U(x,\phi)$$

The regulation
$$\frac{\partial \vec{L}}{\partial r} = \frac{d}{dr} \left(\frac{\partial \vec{L}}{\partial r} \right)$$

where $\frac{\partial \vec{L}}{\partial r} = mr = \frac{1}{r} + mrs^2$
 $\frac{\partial \vec{L}}{\partial r} = rs^2$

z = 0

Problem 7.2 from Taylor

"Write down the Lagrangian for a one-dimensional particle moving along the x axis and subject to a force F = -kx (with k positive). Find the Lagrange equation of motion and solve it."

$$\pounds = \frac{1}{2} \text{ m } \dot{x}^2 - \frac{1}{2} \text{ k } x^2$$

$$\partial \pounds / \partial x = (\frac{d}{dt}) \partial \pounds / \partial \dot{x}$$

$$- \text{ k } x = (\frac{d}{dt}) \text{ m } \dot{x} = \text{ m } \dot{x}$$

$$\dot{x} = -\omega^2 x \implies x(t) = A \cos(\omega t - \delta)$$

Homework Assignment 12
due in class Friday December 2
[61] Problem 7.2 *
[62] Problem 7.3 *
[63] Problem 7.8 **
[64] Problem 7.14 *
[65] Problem 7.21 *
[66] Problem 7.31 **
[67] Problem 7.43 *** [computer]

[67] Problem 7.43 · · · [computer]

Use the cover sheet.