1. Permutations and combinations

There are $n! = \prod_{i=1}^{n} i = 1.2.3.4...n$ permutations of n objects.

There are $\binom{n}{k} = n!/(k!(n-k)!)$ ways of choosing a given k objects from n.

2. Joint and conditional probabilities

If C and D are any events: $P(C \cup D) = P(C) + P(D) - P(C \cap D)$.

The conditional probability of C given D is $P(C \mid D) = P(C \cap D) / P(D)$.

C and D are independent if $P(C \cap D) = P(C).P(D)$.

3. Laws and theorems

Suppose E_1, \ldots, E_k is a partition of Ω . That is $E_i \cap E_j$ is empty, and $E_1 \cup E_2 \cup \ldots \cup E_k = \Omega$. The law of total probability states that: $P(D) = \sum_{j=1}^k P(D \cap E_j) = \sum_{j=1}^k P(D \mid E_j) P(E_j)$ Bayes' Theorem states that: $P(E_i \mid D) = P(D \mid E_i) P(E_i)/P(D)$

4. Random variables and distributions

discrete (mass) continuous (density) pmf: $P(X = x) = p_X(x)$ Probability mass/density function pdf: $f_X(x)$ Probability $P(X \in B)$ $\sum_{x \in B} p_X(x)$ $\int_{x \in B} f_X(x) dx$ $F_X(x) = \sum_{w \le x} p_X(w)$ $F_X(x) = \int_{-\infty}^x f_X(w) dw$ Cumulative dist. func. CDF, $P(X \le x)$ $p_{X,Y}(x,y) = P(X = x, Y = y)$ $p_X(x) = \sum_y p_{X,Y}(x,y)$ $f_X(x) = \int_{y=-\infty}^{\infty} f_{X,Y}(x,y) dy$ Joint mass/density func. of (X, Y)Marginal mass/density of X $p_{X,Y}(x,y) = P(X=x)P(Y=y)$ $f_{X,Y}(x,y) = f_X(x)f_Y(y)$ Independence of X and YMust hold for all x and all y

5. Moments of random variables: (provided the relevant sums/integrals converge absolutely.)

Expectation:
$$E(X)$$
 $\sum_{x} x P(X = x)$ $\int_{-\infty}^{\infty} x f_X(x) dx$ $E(g(X))$ $\sum_{x} g(x) P(X = x)$ $\int_{-\infty}^{\infty} g(x) f_X(x) dx$

For any random variables X:

Variance:
$$var(X) = E((X - E(X))^2) = E(X^2) - (E(X))^2$$

Note also:

$$E(aX + b) = a E(X) + b,$$

$$var(aX + b) = a^{2} var(X).$$

For any random variables X, Y, Z and W:

Covariance:
$$cov(X,Y) = E((X - E(X))(Y - E(Y))) = E(XY) - E(X)E(Y)$$

Correlation:
$$\rho(X,Y) = \text{cov}(X,Y)/\sqrt{\text{var}(X)\text{var}(Y)}, -1 \le \rho(X,Y) \le 1$$

Note also:

$$\begin{split} \mathbf{E}(X+Y) &= \mathbf{E}(X) + \mathbf{E}(Y), \\ \mathbf{var}(X+Y) &= \mathbf{var}(X) + \mathbf{var}(Y) + 2\mathbf{cov}(X,Y) \\ \mathbf{cov}(aX+b,cW+d) &= ac\ \mathbf{cov}(X,W), \\ \mathbf{cov}(X+Y,W+Z) &= \mathbf{cov}(X,W) + \mathbf{cov}(X,Z) + \mathbf{cov}(Y,W) + \mathbf{cov}(Y,Z) \end{split}$$

6. Standard distributions:	pmf or pdf	mean	variance
(a) Binomial; $B(n, p)$	$P(X = k) = \binom{n}{k} p^k (1-p)^{n-k}$	np	np(1-p)
index n , parameter p	k = 0, 1, 2,, n		
(b) Hypergeometric (N, k, n) ;	$P(X = x) = {k \choose x} {N-k \choose n-x} / {N \choose n}$	$nk/N \equiv np$	$np(1-p)\frac{N-n}{N-1}$
sample n from N , $p = k/N$	$x=\min(0,k+n-N),,\max(n,k)$		
(c) Poisson with parameter μ ,	$P(X=x) = \exp(-\mu)\mu^x/x!$	μ	μ
$\mathcal{P}o(\mu)$	x = 0, 1, 2, 3, 4		
(d) Geometric; $Geom(p)$;	$P(X=k) = p(1-p)^{k-1}$	1/p	$(1-p)/p^2$
parameter p	$k = 1, 2, 3, 4, \dots$		
(e) Neg. Binomial; $NegB(r, p)$;	$P(X = k) = {k-1 \choose r-1} p^r (1-p)^{k-r}$	r/p	$r(1-p)/p^2$
index r , parameter p	$k=r,r+1,r+2,\ldots$		
(f) Multinomial: $Mn(n, (p_1,, p_k))$	$P(X_i = n_i, i = 1,k) =$	$X_i \sim Bin(n, p_i), i = 1,, k$	
$\sum_{i} p_i = 1$ $\sum_{i} n_i = n$	$(n!/(n_1!)(n_k!)) p_1^{n_1}p_k^{n_k}$		
(g) Uniform on (a, b) ; $U(a, b)$;	$f_X(x) = 1/(b-a), a < x < b$	(b + a)/2	$(b-a)^2/12$
(h) Exponential; $\mathcal{E}(\lambda)$	$f_X(x) = \lambda \exp(-\lambda x)$	$1/\lambda$	$1/\lambda^2$
rate parameter λ	$0 \le x < \infty$		
(j) Normal; $N(\mu, \sigma^2)$	$f_X(x) = (1/\sqrt{2\pi\sigma^2}) \exp(-(x-\mu)^2/2\sigma^2)$	μ	σ^2

 $-\infty < x < \infty$