

Fast Dynamic Perfusion and Angiography Reconstruction using an end-to-end 3D Convolutional Neural Network

Sahar Yousefi^{1,*}, Lydiane Hirschler¹, Merlijn van der Plas¹, Mohamed S Elmahdy¹, Hessam Sokooti¹, Matthias Van Osch¹, Marius Staring^{1,2}

Medical Center

Leiden University ¹Leiden University Medical Center, Radiology, Leiden, The Netherlands ²Delft University of Technology, Intelligent Systems Department, Delft, The Netherlands

*s.yousefi.radi@lumc.nl

ABSTRACT

Arterial spin labeling (ASL) is a MRI technique which uses magnetically labeled blood water as an endogenous tracer for assessing cerebral blood flow (CBF)

Arterial spin labeling (ASL)

Hadamard time-encoded arterial spin labeling (te-pCASL) is a SNR-efficient MRI technique for acquiring dynamic pCASL signals that encodes the temporal information into the labeling according to a Hadamard matrix

Hadamard time encoded (te)-ASL

METHODS- DATA

- Training a CNN needs too many volunteers & acquiring ASL data is time consuming
- Solution: simulated ASL data for training and validation sets
- Contribution (1): we customized kinetic models for Hadamard te-ASL

Contribution (2): we designed a framework for generating the training and validation datasets

Data Generator framework

MOTIVATION

- Using Hadamard te-ASL both with and without flow-crushing, 4D perfusion and angiography images can be reconstructed -> two times longer acquisition times
- We proposed a 3D convolutional neural network (CNN) to accelerate Hadamard te-ASL quantification by a factor of two

METHODS-NETWORK

- Contribution (3): we designed an end-to-end DenseUnet network for performing the reconstruction
- We compared the performance of different loss functions: MSE, SSIM, Perceptual loss, and multi-level SSIM

Downsample

Concatenation

Loss function

Upsample

Multi-level loss= $w_1 \times Loss_{level1} + w_2 \times Loss_{level1} + w_3 \times Loss_{level3}$

Proposed network

RESULTS

- The dataset contains 1096 subjects for training, 155 for validation and 313 for testing
- 75% of the patches were extracted from the region containing arteries To tackle the sparsity of MRA with respect to the perfusion
- Augmentation methods: adding white noise extracted from a Gaussian distribution with μ =0 and random σ \in [0, 5], left-to-right flipping, and random rotation (up to 18°)

Results at multiple PLDs (ms) Error at multiple PLDs (ms)

865 1265 1665 5065 2665 265 565 865 1265 1665 5065 2665

Qualitative results for dynamic perfusion reconstruction

Quantitative results

CONCLUSIONS

- We proposed a CNN for accelerating dynamic angiography and perfusion reconstruction two times faster
- The proposed network obtained promising results for the challenging problem of 4D angiography and perfusion reconstruction
- Next step: enriching the training and validation datasets with in vivo data

Goal: accelerating 4D perfusion and angiography reconstruction two times faster

=Static tissue + Perfusion

