iMage Captioning

By **Rishabh Jha** S20190010150

wHat is Image Captioning?

- It refers to the task of generating textual descriptions of a given Image such that It captures the objects and the actions happening in the Image.
- It is an Interdisciplinary Research problem that lies between the Area of Computer Vision and Natural Language Processing

wHy Image Captioning?

- Image related search
- A Boon to Visually Impaired People.
- Social Media

The DATAset

FLICKr 8K

beach with a big dog

A person is walking along a A black and white dog carries A soccer player takes a a tennis ball in its mouth

soccer ball in the grass

A man is doing a trick on a snowboard

A surfer dives into the ocean

A black and white dog leaps to catch a Frisbee

- Total 8k Images
- Good small dataset to carry out the Experiment

6k train Images 1k validation Images 1k test Images

Images will contain 5 different captions describing them

The architECTURE

Inject Architecture

Inject Architecture

- Conditioning-by-inject
- In this Architecture/model, the RNN is trained to predict the sequences based on histories containing both linguistic and perceptual features
- In this model, the RNN is primarily responsible for image-conditioned language generation, hence conditioning-by-inject
- This model learns a "visuo-linguistic" representation of each word.
- This model can learns how to disambiguate the tokens of same word having different meaning using visual representation, such as crane, can be a bird or construction equipment.
- All these points implies that inject models learns larger vocabularies.

Merge Architecture

Merge Architecture

- Conditioning-by-merge
- In the Merge Architecture/model, the RNN is functioning as an encoder of sequences of word embeddings.
- This model learns only "linguistic" representation by RNN and combining it with the visual representation in a later layer.
- Visual features are extracted from image using a CNN model (VGG/InceptionV3) and then merged with linguistic feature vector in a multimodal layer, which in turn is responsible for generating the caption.
- This model generally fails to disambiguate the tokens of same word having different meaning using visual representation, such as Bank, can be a River Bank or a Financial Institution.

reSULts

		% Vocabulary		CIDEr		METEOR		ROUGE-L	
Layer	Vocab.	Merge	Inject	Merge	Inject	Merge	Inject	Merge	Inject
128	2539	14.730 (0.40)	10.555 (0.34)	0.460 (0.01)	0.431 (0.01)	0.192 (0.00)	0.183 (0.00)	0.445 (0.00)	0.430 (0.00)
128	2918	13.719 (0.49)	8.876 (0.24)	0.456 (0.00)	0.431 (0.00)	0.191 (0.00)	0.185 (0.00)	0.437 (0.00)	0.434 (0.00)
128	3478	11.223 (0.35)	8.175 (0.31)	0.458 (0.01)	0.433 (0.01)	0.192 (0.00)	0.187 (0.00)	0.442 (0.00)	0.432 (0.00)
256	2539	15.439 (0.84)	11.448 (0.71)	0.462 (0.01)	0.456 (0.01)	0.192 (0.00)	0.189 (0.00)	0.439 (0.00)	0.436 (0.00)
256	2918	13.697 (0.19)	10.430 (0.34)	0.456 (0.01)	0.451 (0.01)	0.190 (0.00)	0.189 (0.00)	0.438 (0.00)	0.440 (0.00)
256	3478	11.252 (0.51)	8.405 (0.39)	0.470 (0.01)	0.449 (0.02)	0.191 (0.00)	0.189 (0.00)	0.439 (0.00)	0.437 (0.00)
512	2539	15.741 (0.40)	12.761 (0.81)	0.452 (0.01)	0.464 (0.00)	0.191 (0.00)	0.192 (0.00)	0.437 (0.00)	0.442 (0.00)
512	2918	13.114 (0.75)	10.155 (0.42)	0.469 (0.01)	0.457 (0.00)	0.193 (0.00)	0.189 (0.00)	0.440 (0.00)	0.437 (0.00)
512	3478	11.501 (0.49)	8.587 (0.50)	0.458 (0.01)	0.439 (0.01)	0.192 (0.00)	0.188 (0.00)	0.439 (0.00)	0.434 (0.00)

(a) Flickr8k: % of vocabulary used, CIDEr, METEOR and ROUGE-L results.

		BLEU-1		BLEU-2		BLEU-3		BLEU-4	
Layer	Vocab.	Merge	Inject	Merge	Inject	Merge	Inject	Merge	Inject
128	2539	0.600 (0.00)	0.592 (0.01)	0.410 (0.00)	0.405 (0.01)	0.272 (0.00)	0.270 (0.01)	0.179 (0.00)	0.177 (0.00)
128	2918	0.595 (0.01)	0.590 (0.00)	0.405 (0.01)	0.406 (0.00)	0.267 (0.01)	0.271 (0.00)	0.175 (0.00)	0.178 (0.00)
128	3478	0.608 (0.01)	0.586 (0.01)	0.416 (0.01)	0.401 (0.01)	0.276 (0.01)	0.268 (0.01)	0.182 (0.01)	0.178 (0.01)
256	2539	0.594 (0.00)	0.591 (0.00)	0.407 (0.01)	0.408 (0.00)	0.269 (0.01)	0.276 (0.00)	0.176 (0.01)	0.184 (0.00)
256	2918	0.596 (0.01)	0.596 (0.01)	0.405 (0.01)	0.413 (0.01)	0.265 (0.00)	0.278 (0.01)	0.172 (0.00)	0.184 (0.00)
256	3478	0.601 (0.00)	0.596 (0.01)	0.411 (0.00)	0.409 (0.01)	0.272 (0.01)	0.274 (0.01)	0.179 (0.01)	0.181 (0.01)
512	2539	0.597 (0.01)	0.603 (0.00)	0.406 (0.01)	0.419 (0.00)	0.267 (0.01)	0.283 (0.00)	0.176 (0.01)	0.188 (0.00)
512	2918	0.593 (0.01)	0.589 (0.01)	0.404 (0.01)	0.409 (0.00)	0.268 (0.00)	0.277 (0.00)	0.177 (0.00)	0.185 (0.00)
512	3478	0.597 (0.01)	0.587 (0.00)	0.407 (0.01)	0.405 (0.00)	0.270 (0.01)	0.272 (0.00)	0.178 (0.00)	0.180 (0.01)

(b) Flickr8k: BLEU-n scores.

cOnclusionS

- With lesser number of layer, merge models generate better quality captions.
- As we increase the number of layers, inject models tend to perform better with captions.
- Merge Architecture models uses more of training vocab on test captions.

methoDoLogy

PROcedure

- Storing descriptions into a dictionary from a text file
- Cleaning the descriptions
- Creating the Vocabulary
- Extracting feature vector (2048) of every image using InceptionV3 model
- Storing features into a pickle file
- Converting training captions into sequence of vector (number)
- Padding every captions with zero
- Word Embeddings
- Training the Model
- Generating the Captions using Greedy Search and Beam Search

eXACT mOdel

Download my model

ConclusioN

- Merge model used
- 23% accuracy over 30 epochs
- Beam Search generates better captions than greedy search in general.
- Brute Hyper-parameters analysis can also help in increasing the accuracy of the model
- Accuracy can be improved with more number of epochs or better architecture having attention etc.

Greedy: man in black on the street of front of front of the background
Beam: group of people sit on front of bus

Greedy: two white and white dog is running in the snow Beam: white and white dog is running in the snow

Greedy: football player in sooners
Beam: two football players in sooners

Greedy: two girl is pink in the water Beam: little girl white in the water

fuTure wORk

- Improving the results of the current model
- Trying out more complex architectures such as model with visual attention or Transformers
- Experiment with the larger dataset FLICKR 8k or MS COCO
- Deploy the model online.

REFerences

- <u>Tanti, M., Gatt, A. and Camilleri, K.P., 2017. What is the role of recurrent neural networks (rnns) in an image caption generator?.</u>
 <u>arXiv preprint arXiv:1708.02043.</u>
- <u>Tensorflow Image Captioning Article</u>
- Image Captioning with keras

THANK yoU

