START OF QUIZ Student ID: 31003346,De Jager,Rachelle

Topic: Lecture 8 Source: Lecture 8

What are two advantages of using .py files over .ipynb files for deployment, and two reasons why .ipynb files are preferred for prototyping or development? (1)

Topic: Lecture 6 Source: Lecture 6

What kinds of tags might be useful in the following text (describe at least two): "But you liked Rashomon!" "That's not how I remember it!" (1)

Topic: Lecture 6 Source: Lecture 6

Why is XML well-suited to representing linguistic data? (1)

Topic: Lecture 7 Source: Lecture 7

Can you think of any classes of words in English where the stem and the lemma will always be identical? Why is that of little interest to us? (1)

Topic: Lecture 5 Source: Lecture 5

List one advantage that regular expressions have over string comparison, and one disadvantage to using them. (1)

Topic: Lecture 8 Source: Lecture 8

In class, I mentioned that we always want to close a file correctly. Beyond freeing up system resources, it also "flushes the buffer", which ensures that any current read or write operations that are in the job queue, but haven't yet been processed, are completed. Knowing what you do about encodings, what is a possible ramification of not flushing the buffer? Explain at least 2. (2)

Topic: Lecture 5 Source: Lecture 5

Imagine we have a spell-checker that can identify common misspellings of words by replacing certain letters with a capture group that contains letters that are nearby on the keyboard. How aggressive of a regex would we want to write for this (ie, how many letters in the word would we want to replace with a group)? Explain. (2)

Topic: Lecture 7 Source: Lecture 7

I mentioned in class that POS tagging is often viewed as a pre-processing step for many CL tasks. What assumptions are we making (at least 3) when including it in our NLP pipeline? Do you think these are reasonable assumptions, and if they fail, is it worth the effort to solve the problem, or just ignore POS tagging? (2)

Topic: Long

Source: Lecture 8

Imagine that you find an important file buried on a hard drive found in the basement of a university. You are trying to access the data, but realize it is corrupted. Some of the bits have been flipped (switched from 0 to 1, or 1 to 0), and others have been completely deleted. You don't know the encoding, and you don't know the language the data is written in. What are some tests you could run to try to establish and restore at least some of the data? (Hint: remember that a "byte" is 8-bits, and that UTF-8 is 1 byte, or 8 bits, UTF-16 is 2 bytes, or 16 bits, and UTF-32 is 4 bytes, or 32 bits). (3)

END OF QUIZ