Projet de Travaux d'études et de recherche

Implémentation d'un système multi-agent pour la Smart City

Sihame AARAB - Mohamed IMLI

Université Paris Descartes

16 Mai 2013

Encadré par Mr : Nacim Belkhir

Plan

- 1 Introduction
- 2 Etat de l'art
 - Ville intelligente
 - Problèmatique
- Simulateur de Smart Grids
 - Architecture générale du réseau éléctrique
 - L'architecture de l'application
 - Fonctionnement de l'application
 - Modèle
 - Controleur
 - Vue
- 4 Conclusion

Introduction & Contexte

- Villes intelligentes
- But : amélioration de la qualité de vie
- Moyens d'action :
 - Introduction des techniques d'intelligence artificielle
 - Systèmes multi-agents
- Problèmatique

Qu'est ce qu'une ville intelligente?

Projet futur de ERDF : Smart Grid

- Panneaux solaires avec compteur électrique chez les particuliers
 - Si sur-tension (sur-production): alimentation automatique de certains appareils électriques.
 - Si sous-tension : alerte en temps réel du consommateur pour qu'il arrête les consommations inutiles.
 - 35 millions de compteurs pour gérér l'equilibre entre production et consommation

Problèmatique

- Confidentialité des données collectées
- Perte de la liberté individuelle
- Risque d'exclusion
- Urbaniser les technologies plutôt que ce soit les technologies qui désurbanisent les villes!

Architecture générale du réseau éléctrique L'architecture de l'application Fonctionnement de l'application Modèle Controleur

L'architecture de l'application

- Adaptation de MVC au système multi-agents
 - Meilleure organisation
 - Maintenance flexible

Fonctionnement de l'application

Agent Producteur local: Algorithme de simulation

- Choix d'une capacité de production entre un MIN et MAX donnés
 - Choix d'un panneau disponible sur le marché
- Distribution de probabilité normale
- Une fonction :

$$f(IntervalleHoraire) = (DebitMin, DebitMax)$$

- Subdivison de l'ensembre d'arrivé en 60 intervalles réguliers
 - Génération d'une valeur aléatoire debitProd

$$debitProd \in DebitMin + Rand((1/60) * | DebitMin - DebitMax | * nbMinutes))$$

Passage à l'intervalle suivant chaque minute

Agent Foyer : Algorithme de simulation

- Initialisation de la liste des appareils
- Chaque séconde le foyer décide :
 - d'arrêter ou démarrer chaque appareil :

$$P(ArretDemarrage) = 1/2$$

- L'arrêt est effectué si l'appareil est arretable
- Le demarrage est effectué si l'appareil est demarrable

Controleur

- Agent Statisticien producteur local
 - Reception des débits des producteurs locaux
 - Calcule la moyenne et Communique le résultat à la vue
- Agent Statisticien Foyer
 - Reception des débits des foyers
 - Calcule la moyenne et Communique le résultat à la vue
- Agent Statisticien
 - Reception les débits du producteur
 - Communique leurs valeurs à la vue

Vue: Agent Interface Graphique

- Il intercepte les événements de l'interface graphique
- Il reçoie les informations de la partie controleur
- Il Met à jour l'interface graphique (les graphes)

Conclusion

- Améliorations à apporter :
 - Prioriser le transfert d'énérgie
 - Techniques d'apprentissage
- Limites:
 - Pas au delà de 2500 Agents
- Apports du projet :
 - Simulateur multi-agents pour Smart Grids
 - Concept de la ville intelligente

