Samenvatting elektronische signalen 2

Haroen Viaene

17 januari 2016

Inhoudsopgave

1	Inverterende versterker	2
2	Niet-inverterende versterker	3
3	Spanningsvolger	4
4	Inverterende sommator	5
5	Verschilversterker	6
6	Spanningscomparator	7
7	Dataconversieschakelingen	8
	7.1 ADC	8

1 Inverterende versterker

uitgang aan invert input

 U_{in} aan invert input

ingangsspanning $U_i=rac{U_o}{A_{uo}}=rac{U_o}{\inf}=0V$

versterking $A_{uf}=rac{U_o}{U_q}=-rac{R_f}{R_1}$

Signaal wordt geïnverteerd en vergroot

2 Niet-inverterende versterker

uitgang aan invert input

 U_{in} aan input

ingangsspanning $U_i = 0V$

$$U_g=U_i+U_f=U_f$$
 en $U_f=U_o\cdot rac{R_1}{R_1+R_f}=U_g$, dus: $U_o=U_g\cdot rac{R_1+R_f}{R_1}$

versterking $A_{uf} = \frac{U_o}{U_a} = 1 + \frac{R_f}{R_1}$

Signaal wordt enkel vergroot

3 Spanningsvolger

speciaal geval van niet-inverterende versterker

invert input enkel aan uitgang, niet aan massa

versterking: $A_{uf} = 1$

een ideale buffertrap: we kunnen uitgang belasten zonder dat ingang het "voelt"

Inverterende sommator

inputs aan invert input, uitgang ook aan invert input uitgangsspanning: $U_o = -\sum^i rac{R_f}{R_i} \cdot U_{gi}$

uitgang is invers, als je dit wil tegen gaan: invertor na de uitgang zetten gebruikt in mengpaneel of stereo-naar-mono omvormer

5 Verschilversterker

bron aan input en invert input, uitgang aan invert input, massa aan input weerstanden aan beide bronnen gelijk, en aan uitgang/massa

bereken met superpositie: $U_o = \frac{R_4}{R_1} \cdot (U_{g1} - U_{g2})$

bruikbaar om stroom over een verbruiker te vinden

6 Spanningscomparator

basically een schakelaar: of U_{sat}^+ of U_{sat}^-

Schmitt-trigger: spanningcomp + positieve terugkoppeling voor trager omschakeling

7 Dataconversieschakelingen

7.1 ADC

Theorema van Nyquist-Shannon: sample rate is minstens 2x zo groot als f van grootste ingangsspanning