N_1 Fonction continue et positive

Une fonction f est **continue** sur un intervalle I de $\mathbb R$ quand sa courbe représentative $\mathcal C_f$ est en un seul morceau sur I c'est à dire que sa représentation graphique ne possède pas de "cassure" sur I ou encore on peut la tracer sans lever le crayon.

D Fonction positive

Une fonction f est **positive** sur un intervalle I de $\mathbb R$ quand pour tout réel $x\in I$, $f(x)\geqslant 0$.

Donner cinq fonctions continues et positives sur un intervalle I de $\mathbb R$

N₂ Intégrale

D Intégrale

Soient a et b deux réels tels que $a \le b$ et f une fonction **continue et positive** sur l'intervalle I = [a; b] de représentation graphique \mathcal{C}_f . L'**intégrale de** f sur [a; b] est l'aire de la partie du plan délimitée par \mathcal{C}_f , l'axe des abscisses (y = 0) et les droites verticales d'équation x = a et x = b.

On note cette aire : $\int_a^b f(x) dx$

P Intégrale et primitive

Soit F une primitive de f sur [a;b] alors : $\int_a^b f(x) dx = F(b) - F(a)$

On se place dans un repère orthonormé d'unité 1 cm.

- Soit une fonction f_1 définie sur $\mathbb R$ par $f_1(x)=2x+1$.
 - a) Tracer la courbe représentative \mathcal{C}_{f_1} de f_1 .
 - b) Hachurer le domaine \mathcal{D}_1 du plan délimité par \mathcal{C}_{f_1} , l'axe des abscisses et les droites d'équation x=2 et x=5. Calculer l'aire \mathcal{A}_1 du domaine \mathcal{D}_1 géométriquement puis algébriquement.
- Soit une fonction f_2 définie sur \mathbb{R}^* par $f_2(x)=rac{1}{x}$
 - a) Tracer la courbe représentative \mathcal{C}_{f_2} de f_2 .
 - b) Hachurer le domaine \mathcal{D}_2 du plan délimité par \mathcal{C}_{f_2} , l'axe des abscisses et les droites d'équation x=1 et x=3. Calculer l'aire \mathcal{A}_2 du domaine \mathcal{D}_2 algébriquement.
- Soit une fonction f_3 définie sur $\mathbb R$ par $f_3(x)=x^2$.
 - a) Tracer la courbe représentative \mathcal{C}_{f_3} de f_3 .
 - b) Hachurer le domaine \mathcal{D}_3 du plan délimité par \mathcal{C}_{f_3} , l'axe des abscisses et les droites d'équation x=-2 et x=3. Calculer l'aire \mathcal{A}_3 du domaine \mathcal{D}_3 algébriquement.

I_3 Aire entre deux courbes

P Aire entre deux courbes

Soient f et g deux fonctions continues et positive sur l'intervalle I=[a;b] $(a\leqslant b)$ telles que pour tout $x\in I$, $f(x)\leqslant g(x)$ alors l'aire du domaine $\mathcal D$ délimité par les deux courbes représentatives $\mathcal C_f$ et $\mathcal C_g$ et les deux droites verticales d'équation x=a et x=b vaut :

$$\int_a^b \Big(g(x)-f(x)\Big)dx = \int_a^b g(x)dx - \int_a^b f(x)dx$$

On se place dans un repère orthonormé d'unité 1 cm. Soient deux fonctions f_1 et f_2 définies sur $\mathbb R$ par $f_1(x)=2x+4$ et $f_2(x)=e^x$.

- lacktriangle Dans un même repère, tracer les courbes représentatives \mathcal{C}_{f_1} de f_1 et \mathcal{C}_{f_2} de f_2
- Démontrer que pour $x \in [0;2]$, $f_1(x) > f_2(x)$.
- Hachurer le domaine ${\cal D}$ du plan délimité par ${\cal C}_{f_1}$, ${\cal C}_{f_2}$ et les droites d'équation x=0 et x=2.
- Calculer l'aire ${\cal A}$ du domaine ${\cal D}$. Arrondir à 0,1 près.

N₄ Intégrale d'une fonction continue

P Intégrale d'une fonction continue

Soient I un intervalle de $\mathbb R$ et a et b deux réels tels que $a \in I$ et $b \in I$. Soient f une fonction continue sur I et dont une primitive sur I est la fonction F. L'**intégrale** de la fonction continue f entre a et b vaut :

$$igg|\int_a^b f(x)dx = F(b) - F(a) = \Big[F(x)\Big]_a^b$$

Calculer $\int_a^b f(x)dx$:

- avec $f(x)=3x^2-3x+1$, a=3 et b=5
- avec $f(x)=e^x+rac{1}{x}$, $a=rac{1}{2}$ et b=1

avec $f(x)=\sin x$, a=0 et $rac{\pi}{2}$.

avec f(x)=-5x+10 , a=-3 et $rac{3}{2}$

N₅ Linéarité

P Linéarité

Soient f et g deux fonctions continues sur l'intervalle I de $\mathbb R$ et a, et b deux réels appartenant à I et a et a deux réels alors :

$$\int_a^b \Big(lpha f(x) + eta g(x)\Big) dx = lpha \int_a^b f(x) dx + eta \int_a^b g(x) dx$$

Calculer $\int_a^b f(x)dx$ en utilisant la propriété précédente (arrondir à 0,01 près le cas échéant) :

- $oxed{1}$ avec $f(x)=7x+6x^2$, a=0 et b=2
- $oxed{2}$ avec $f(x)=-2e^x+3x$, $a=rac{1}{2}$ et b=1
- avec $f(x)=9\sin x-3\cos x$, a=0 et $rac{\pi}{2}$
- 4 avec $f(x)=rac{3}{x}+7x^4$, a=-3 et $rac{3}{2}$

N₆ Positivité

P Positivité

Soient a et b deux réels tels que $a\leqslant b$ et f une fonction continue et positive sur l'intervalle [a;b] alors :

$$oxed{\int_a^b f(x) dx \geqslant 0}$$

Démontrer que $\int_{-1}^{5} (2x^2+3)dx$ et que $\int_{-3}^{-1} 8e^{-2x-5}dx$ sont positives.

N_7 Relation de Chasles

P Relation de Chasles

Soient f une fonction continue sur l'intervalle I de $\mathbb R$ et a, b et c trois réels appartenant à I alors :

$$oxed{\int_a^b f(x) dx + \int_b^c f(x) dx = \int_a^c f(x) dx}$$

On a représenté la courbe représentative \mathcal{C}_f de la fonction f sur l'intervalle [0;10] :

- Par le calcul, déterminer $\int_0^{10} f(x) dx$
- En utilisant l'aire de trapèzes rectangles, déterminer l'aire du domaine du plan délimité par \mathcal{C}_f , l'axe des abscisses et les droites d'équation x=0 et x=10

N₈ Opposé

P Opposé

Soient f une fonction continue sur l'intervalle I de $\mathbb R$ et a, et b deux réels appartenant à I alors /

$$\int_a^b f(x) dx = - \int_b^a f(x) dx$$

On a représenté la courbe représentative \mathcal{C}_f de la fonction f sur l'intervalle [-3,5;4,5] :

Par le calcul, déterminer l'aire du domaine du plan délimité par l'axe des abscisses, \mathcal{C}_f et les droites d'équation x=0,5 et x=3,5

N₉ Valeur moyenne

P Valeur moyenne

Soient a, et b deux réels tels que a < b et f une fonction continue sur l'intervalle [a;b]. On appelle **valeur** moyenne de la fonction f sur [a;b] le réel : $\frac{1}{b-a}\int_a^b f(x)dx$

P Valeur moyenne d'une fonction périodique

Soit f une fonction continue et périodique de période T>0 (2π pour les fonctions trigonométriques comme \cos ; \sin) alors la valeur moyenne de f vaut (pour tout réel a) : $\frac{1}{T}\int_a^{a+T}f(x)dx$

- Calculer la valeur moyenne de la fonction f(x) = 3 6x sur [2;4]
- Calculer la valeur moyenne de la fonction $f(x) = rac{3}{x}$ sur [1;e]
- Calculer la valeur moyenne de la fonction $f(x) = 5\mathrm{e}^{4x-5}$ sur [-1;2]
- Calculer la valeur moyenne de la fonction $f(x) = 2\cos(3x)$
- Calculer la valeur moyenne de la fonction $f(x) = -\sin(5x)$

$n^{\circ}1$ Fonction f

Soit f la fonction définie sur $\mathbb R$ par : $f(x)=xe^x$. On note $\mathcal C_f$ la courbe représentative de f . On pose :

$$I = \int_0^1 f(x) dx$$

- Etudier le signe de f sur \mathbb{R} .
- Déterminer les réels a et b tels que la fonction F définie sur $\mathbb R$ par : $F(x)=(ax+b)e^x$ soit une primitive de f.
- Vérifier que I=1. Interpréter graphiquement l'intégrale I.
- Soit k un réel tel que $k \leq 0$. On note $\mathcal{D}(k)$ l'ensemble des points M du plan compris entre l'axe des abscisses et \mathcal{C}_f et dont l'abscisse x appartient à [0;k]. Exprimer l'aire $\mathcal{A}(k)$ du domaine $\mathcal{D}(k)$, en unités d'aire du repère.
- 5 Exprimer $\mathcal{A}(k)$ en fonction de k.
- 6 Calculer la limite de $\mathcal{A}(k)$ quand k tend vers $+\infty$.

$n^{\circ}2$ Fonction ϕ

Soit ϕ la fonction définie sur $\mathbb R$ par : $\phi(t)=t\sin{(\pi t)}$. On note $\mathcal C_\phi$ la courbe représentative de ϕ .

- Etudier le signe de ϕ sur [0;3].
- Déterminer le réel λ tel que la fonction Φ définie sur $\mathbb R$ par : $\Phi(t) = \lambda(\sin{(\pi t)} \pi t \cos{(\pi t)})$ soit une primitive de ϕ sur $\mathbb R$.
- Calculer l'aire du domaine du plan délimité par \mathcal{C}_ϕ , l'axe des abscisses et les droites d'équations x=0 et x=3.

n°3 Fonction h

Soit h la fonction définie sur [0;11] par : $egin{cases} h(x)=x^2+1 & pour & x\in[0;2] \\ h(x)=6-0,5x & pour & x\in[2;8] \\ h(x)=2 & pour & x\in[8;11] \end{cases}$

On note C_h la courbe représentative de h dans le repère $(O; \vec{i}, \vec{j})$. Calculer l'aire du domaine du plan délimité par C_h , l'axe des abscisses et les droites d'équations x = 0 et x = 11.

n°4 Intégrale et probabilité

On considère la fonction f définie sur $[1;+\infty[$ par : $f(x)=rac{lpha}{x^{lpha+1}}$ où lpha est un réel tel que lpha>0.

La variable aléatoire X suit la loi de Pareto de paramètre α lorsque pour a et b deux réels tels que $1 \leqslant a \leqslant b$,

la probabilité de l'événement "X appartient à [a;b]" vaut : $P(a\leqslant X\leqslant b)=P(X\in [a;b])=\int_a^b f(x)dx$

On définit par l'espérance mathématique, notée E(X), par : $E(X) = \lim_{t \to +\infty} \int_1^t x f(x) dx$

La fonction de répartition de la variable aléatoire X, notée F, et définie sur $[1; +\infty]$ et par :

$$F(x)=P(1\leqslant X\leqslant x)=\int_{1}^{x}f(t)dt$$

- Démontrer que $g(x)=-rac{1}{x^{lpha}}$ est une primitive de f sur $[1;+\infty[$
- Soit t un réel tel que $t\geqslant 1$. Calculer $\int_1^t f(x)dx$.
- Calculer $\lim_{t\to +\infty} \int_1^t f(x)dx$. En déduire que la fonction f est bien une densité de probabilité.
- 4 Calculer $P(a \leqslant X \leqslant b)$ et P(X = a).
- On suppose que $P(1\leqslant X\leqslant 5)=0,5$, calculer alors lpha puis donner l'arrondi au centième.
- On suppose que lpha=0,5 :
 - a) Donner l'expression de la fonction de répartition F(x) en fonction de x.
 - b) Calculer $P(1\leqslant X\leqslant 3)$. En déduire P(X>3) à 10^{-3} près. Calculer E(X).
- 7 On suppose que $\alpha = 1,5$:
 - a) Donner l'expression de la fonction de répartition F(x) en fonction de x.
 - **b)** Calculer P(X > 4) à 10^{-3} près. Calculer E(X).

$n^{\circ}5$ Fonctions f_1 et f_2

Soient f_1 et f_2 deux fonctions définies sur $\mathbb R$ par : $f_1(x)=-x^2+4$ et $f_2(x)=x+2$ On note $\mathcal C_{f_1}$ et $\mathcal C_{f_2}$ les courbes représentatives de f_1 et f_2 dans le repère $(O;\ i\ ,\ j\)$.

- Déterminer les points d'intersections d'abscisses $lpha_1$ et $lpha_2$ de \mathcal{C}_{f_1} et \mathcal{C}_{f_2} $(lpha_1 < lpha_2)$
- Calculer l'aire du domaine du plan délimité par \mathcal{C}_{f_1} , \mathcal{C}_{f_2} et les droites d'équations $x=lpha_1$ et $x=lpha_2$.

n°6 Fonction g

Soit g la fonction définie sur $]0;+\infty[$ par : $g(x)=\ln x$.

On note \mathcal{C}_g la courbe représentative de g dans le repère $(O; \overrightarrow{i}, \overrightarrow{j})$.

- Etudier le signe de g sur $]0;+\infty[$.
- Déterminer le réel k tel que la fonction G définie sur $]0;+\infty[$ par : $G(x)=x(k+\ln x)$ soit une primitive de g sur $]0;+\infty[$.
- Calculer l'aire du domaine du plan délimité par \mathcal{C}_g , l'axe des abscisses et les droites d'équations x=1 et x=4.

n°7 | Valeurs moyennes

- Déterminer la valeur moyenne de $f(x) = 5\mathrm{e}^{4-8x} + 3x^3$ sur [-2;3]
- Déterminer la valeur moyenne de $g(x) = \frac{-2}{x} + \frac{4}{x^2}$ sur [2e; 3e]