Lab session (5th Jan)

General:

- You are allowed only stdio.h as header.
- Use the input handler provided for each problem.

Problem 1

Statement:

- Input: $n \in \mathbb{N}$.
- Goal: Compute $f(n) = ((\sum_{i=0}^{n} i)^2 \sum_{i=0}^{n} i^2))$
- Output: Print $f(n) \setminus n$

Implementation Rules:

• You are not allowed to use long. You can only use the plain old int that we taught you in class.

Remark: Be careful of int overflow! If f(n) fits inside an int, then your program should not have an overflow.

Problem 2

Statement:

- Input: $a, b \in \mathbb{N}$ given as two integers separated by a space.
- Goal: Find the greatest common divisor (gcd) of a and b.
- Output: Print gcd(a, b) followed by \n

Implementation Rules:

- Use Euclid's GCD algorithm, described as follows:
 - Without loss of generality, we assume a < b.
 - If *a* divides *b*, then *a* itself is the gcd.
 - \circ Else, divide b by a to get remainder r.
 - \circ Find gcd of r and a.

Remark 1: The "without loss of generality" is not guaranteed by the inputs of the program.

Remark 2: The above can be written iteratively, or recursively. Usually iteration is faster.

Problem 3:

Statement:

- Input: $n\in\mathbb{N}$ followed by a set A of n natural numbers a_1,a_2,\ldots,a_n and a number $k\in\mathbb{N}$ such that the numbers in A are given in descending order. (For convenience, we assume $n\leq 50$)
- Goal: Check if $k \in A$.
- Output:
 - \circ If $k \in A$, then print 1 \n
 - o Else print 0 \n

Implementation Rules:

• You have to use an idea similar to the bisection method taught in class.

Problem 4:

Homework from lecture 6: compute square root upto a precision parameter using bisection method. (No submission to server)