MMBT3906

PNP Silicon General Purpose Transistor

for switching and amplifier applications.

As complementary types the NPN transistors MMBT3904 is recommended.

Base 2. Emitter 3. Collector
TO-236 Plastic Package

Absolute Maximum Ratings (T_a = 25 °C)

Parameter	Symbol	Value	Unit
Collector Base Voltage	-V _{CBO}	40	V
Collector Emitter Voltage	-V _{CEO}	40	V
Emitter Base Voltage	-V _{EBO}	6	V
Collector Current	-I _C	200	mA
Power Dissipation	P _{tot}	350	mW
Junction Temperature	T _j	150	°C
Storage Temperature Range	T _{stg}	- 55 to + 150	°C

Dated: 16/03/2015 Rev: 01

Characteristics at T_a = 25 °C

Parameter	Symbol	Min.	Max.	Unit
DC Current Gain				
at $-V_{CE} = 1 \text{ V}$, $-I_{C} = 0.1 \text{ mA}$	h _{FE}	60	-	-
at $-V_{CE} = 1 \text{ V}, -I_{C} = 1 \text{ mA}$	h _{FE}	80	-	-
at $-V_{CE} = 1 \text{ V}$, $-I_{C} = 10 \text{ mA}$	h _{FE}	100	300	-
at $-V_{CE} = 1 \text{ V}$, $-I_{C} = 50 \text{ mA}$	h _{FE}	60	-	-
at $-V_{CE} = 1 \text{ V}$, $-I_{C} = 100 \text{ mA}$	h _{FE}	30	-	-
Collector Base Cutoff Current	ı		F0	n ^
at $-V_{CB} = 30 \text{ V}$	-I _{CBO}	-	50	nA
Emitter Base Cutoff Current	-I _{EBO}	-	50	nA
at -V _{EB} = 6 V				
Collector Base Breakdown Voltage at $-I_C = 10 \mu A$	-V _{(BR)CBO}	40	-	V
Collector Emitter Breakdown Voltage at $-I_C = 1$ mA	-V _{(BR)CEO}	40	-	V
Emitter Base Breakdown Voltage at -I _E = 10 µA	-V _{(BR)EBO}	6	-	V
Collector Emitter Saturation Voltage				
at $-I_C = 10$ mA, $-I_B = 1$ mA	-V _{CE(sat)}	-	0.25	V
at $-I_C = 50 \text{ mA}$, $-I_B = 5 \text{ mA}$	-V _{CE(sat)}	-	0.4	V
Base Emitter Saturation Voltage				
at $-I_C = 10 \text{ mA}$, $-I_B = 1 \text{ mA}$	-V _{BE(sat)}	0.65	0.85	V
at $-I_C = 50 \text{ mA}$, $-I_B = 5 \text{ mA}$	-V _{BE(sat)}	-	0.95	V
Current Gain Bandwidth Product at $-V_{CE} = 20 \text{ V}$, $-I_{C} = 10 \text{ mA}$, $f = 100 \text{ MHz}$	f _T	250	-	MHz
Output Capacitance at $-V_{CB} = 5 \text{ V}$, $I_E = 0$, $f = 1 \text{ MHz}$	C _{obo}	-	4.5	pF
Delay Time at $-V_{CC} = 3 \text{ V}$, $-V_{BE} = 0.5 \text{ V}$, $-I_{C} = 10 \text{ mA}$, $-I_{B1} = 1 \text{ mA}$	t _d	-	35	ns
Rise Time at $-V_{CC} = 3 \text{ V}$, $-V_{BE} = 0.5 \text{ V}$, $-I_{C} = 10 \text{ mA}$, $-I_{B1} = 1 \text{ mA}$	t _r	-	35	ns
Storage Time at $-V_{CC} = 3 \text{ V}$, $-I_C = 10 \text{ mA}$, $-I_{B1} = I_{B2} = 1 \text{ mA}$	t _s	-	225	ns
Fall Time at $-V_{CC} = 3 \text{ V}$, $-I_C = 10 \text{ mA}$, $-I_{B1} = I_{B2} = 1 \text{ mA}$	t _f	-	75	ns

I_C, COLLECTOR CURRENT (mA) Typical Base-Emitter Saturation Voltage vs. Collector Current

