

Cell images prediction

Rayees Ahamed

Capstone Project – Three Springboard Data Science Career Track (2021 -2022)

The Problem

- Infectious diseases such as malaria & dengue are caused by parasites like viruses
- Body cells infected with parasites called Parasitized cells
- Cells that are not infected called Uninfected cells
- These cell images can be captured using microscopes

"Can we predict the infected and uninfected cells from microscopic images?"

Goals of the project

- Labelling the two classes of images
- Extracting the features using image processing
- Training the images on a suitable neural network model
- Predicting the test images using the final model

Data wrangling

Exploratory Data Analysis

Image visualization

Parasitized cell

Uninfected cell

- Images were labelled with two classes
- Labelled images verified by matplotlib visualization

Image classes (binary):

- 0 Parasitized
- 1 Uninfected

Extracting image features

Image edge detection

Image thresholding

Finding contours

Applying features to the dataset

Parasitized set

Uninfected set

Preprocessing

Image augmentation

Generator Structure:

- Keras Image Data Generator
- Parameters used:
 - Rotation
 - Zoom
 - Brightness
 - Horizontal / vertical flips
 - Width / Height shift

Modeling - Convolutional Neural Network (CNN)

Layer (type)	Output Shape	Param #
separable_conv2d (Separable Conv2D)		75
batch_normalization (BatchN ormalization)	(None, 254, 254, 12)	48
max_pooling2d (MaxPooling2D)	(None, 127, 127, 12)	0
separable_conv2d_1 (Separab leConv2D)	(None, 127, 127, 24)	420
dropout (Dropout)	(None, 127, 127, 24)	0
max_pooling2d_1 (MaxPooling 2D)	(None, 63, 63, 24)	0
time_distributed (TimeDistributed)	(None, 63, 1512)	0
bidirectional (Bidirectiona 1)	(None, 63, 64)	395520
bidirectional_1 (Bidirectional)	(None, 63, 64)	18816
flatten_1 (Flatten)	(None, 4032)	0
dense (Dense)	(None, 256)	1032448
dropout_1 (Dropout)	(None, 256)	0
dense_1 (Dense)	(None, 1)	257
Fotal params: 1,447,584 Frainable params: 1,447,560 Hon-trainable params: 24		

Model training Performance metrics

Prediction

Model evaluation

Training vs validation

Loss & accuracy vs Epochs

	Accuracy	Loss
Training image set	0.93	0.22
Validation image set	0.92	0.23
Test image set	0.92	0.24

Prediction on test images

Summary

- CNN model successfully classified the cell images classes
- High accuracy (94%) and minimal loss (0.2) obtained
- Very few images misclassified into other classes can be rectified using larger sample size
- Other models can be also tested in future for model comparison study.

Acknowledgements

