Opérades

1 Notions introductives

1.1 Catégories monoïdales

Définition. (Catégorie monoidale symétrique) Catégorie \mathcal{M} munie d'un bifoncteur produit tensoriel $\otimes: \mathcal{M} \times \mathcal{M} \to \mathcal{M}$, d'une unité $I \in \mathcal{M}$, d'un isomorphisme naturel α dit associateur de $(-\otimes -)\otimes - \mathrm{vers} - \otimes (-\otimes -)$ et de deux autres induisant en tout $A: \lambda_A: I \otimes A \to A$ et $\rho_A: A \otimes I \to A$ vérifiant tous kes conditions de cohérence (identité du triangle)

(identité du pentagone)

Exemples. Ens munie du produit cartésien, Top munie du produit cartésien et de la topologie produit, R-Mod munie du produit tensoriel \otimes_R , dg-R-Mod de même, Ch(R) munie du produit tensoriel de complexes de chaînes.

1.2 Opérades

Définition. (Opérade) Un opérade \mathcal{P} dans \mathcal{M} est une collection d'objets $(\mathcal{P}(r))_{r\in\mathbb{N}}\in\mathcal{M}^{\mathbb{N}}$ dont les éléments $p\in\mathcal{P}(r)$ représentent des opérations r-aires à une seule sortie. De plus, on a des produits ou compositions $\mathcal{P}(r)\times\mathcal{P}(l)\to\mathcal{P}(r+l-1)$. Les opérades se représentent plutôt bien avec des arbres, car ils émergent de questions d'associativité.

FIGURE $1.1 - Associaedre K_4.$

Exemples. De nombreux exemples forment des opérades : les surfaces de Riemann pointées avec des bords, des ensembles simpliciaux, etc.

1.3 Définition des opérades par présentation

Fait. Un opérade se définit aussi par présentation par $\mathcal{P} = \mathcal{F}(M)/(R)$ où \mathcal{F} est l'opérade libre qui collecte toutes les compositions formelles d'opérations génératrices, M la collection qui collecte les opérations génératrices et R l'idéal généré par les relations génératrices entre les composées de relations génératrices. Exemples.

1. $Ass = \mathcal{F}(\mathbb{K}\mu(x_1, x_2) \oplus \mathbb{K}\mu(x_2, x_1))/(\mu_1 \circ_1 \mu - \mu \circ_2 \mu) \ (i.e. \ (\mu(\mu(x_1, x_2), x_3)) - \mu(x_1, \mu(x_2, x_3)) \text{ où } \mu \text{ est le produit. Alors } Ass(r) = \bigoplus_{(i_1, \dots, i_r) \in \mathcal{S}_r} \mathbb{K}X_{i_1} \dots X_{i_r}$

(les variables ne commutant pas!).

2. Com = $\mathcal{F}(\mathbb{K}\mu(x_1, x_2))/(\mu_1 \circ_1 \mu_- \mu_2 \mu)$. Alors Com $(r) = \mathbb{K}X_1...X_r.$ 3. Lie = $\mathcal{F}(\mathbb{K}\lambda(x_1, x_2))/(\lambda(\lambda(x_1, x_2), x_3) - \lambda(\lambda(x_1, x_3), x_2) - \lambda(x_1, \lambda(x_2, x_3)))$ (i.e. $\lambda \circ_1 \lambda - (23).\lambda \circ_1 \lambda - \lambda \circ_2 \lambda$) où λ est le crochet. Alors Lie(r) =

 $\mathbb{K}[...[X_{i_1}X_{i_2}]X_{i_3}]...X_{i_r}]$ les polynôme de Lie à r variables de $(i_1,...,i_r) \in \mathfrak{S}_r, i_1 = 1$

Définition. L'associaèdre est l'opérade formé par la suite de polytope qui encode les opérations associaque a(bc) signifie : faire a sur la première moitié de 'intervalle et faire c sur le dernier quart. Ces deux cation » n'est pas associative. Mais nous pouvons passer d'une boucle à l'autre simplement en ajus-Ici, (ab)c signifie: faire a sur le premier quart de 'intervalle, et faire c sur la seconde moitié, tandis boucles ne sont pas égales, donc cette « multipli-En d'autres termes, nous pouvons passer de (ab)c à a(bc) de manière continue en parcourant a un peu tives à homotopie près, comme représenté ci-contre. tant la vitesse à laquelle nous parcourons a (et c)!

plus lentement et c un peu plus rapidement. Cela définit une homotopie entre les deux boucles, que nous pouvons représenter comme un segment de droite, appelé K_3 , reliant deux points.

Définition. Une algèbre sur l'opérade de l'associaèdre est appelé un A_{∞} -espace

1.4.2 Opérades en petites disques, E_n -opérades

donné par $C_n(r)$ ∈ Top l'espace dont les éléments lignes qui ne se recoupent pas de petits n-cubes $c_i: I^n \longrightarrow I^n, (t_1,...,t_n) \mapsto (a_1,...,a_n) + (\lambda t_1,...,\lambda t_n).$ Le produit de composition est donné par $C_n(k) \times$ sont les r-tuples $(c_1,...,c_r)$ de plongements recti-Définition. L'opérade des n-disques/cubes est $C_n(\overline{l}) \to C_n(k+l)$ comme sur le dessin ci-contre. **Dé**-

homotopiquement équivalent à C_n . L'idée est que $\underline{c} \in C_n(r)$ donne une oépration finition. Un E_n -opérade dans Top est un opérade

 $\mu_{\underline{c}}: \Omega^n X \times \Omega^n X \to \Omega^n X.$

Définition. (Calcul des plongements de Goodwillie-Weiss) $\overline{\text{Plong}}_c(\mathbb{R}^m,\mathbb{R}^n)$ est la $X \in \text{Top}_*$ tel que $Y \sim \Omega^n X$.

Théorème. (Boavida-Weiss) $\overline{\mathrm{Plong}_c}(\mathbb{R}^m,\mathbb{R}^n) \sim \Omega^{m-1}\mathrm{Hom}(E_m,E_n) \text{ pour } n-m \geqslant$ fibre homotopique de Plong $_c(\mathbb{R}^m,\mathbb{R}^n) \to \operatorname{Imm}_c(\mathbb{R}^m,\mathbb{R}^n)$

3, d'où une description combinatoire de Hom (E_m, E_n) .

1.4 Exemples classiques chaque degré relatif 1. 1.4.1 Associaèdre

40 E

Opérades en petites cubes

Théorème. (May-Boardman-Vogt) Si $Y \in \text{Top}_*$ est connexe et $C_n \bigcirc Y$, il existe