MATE 5150: Asignacion #7

Due on Noviembre 14, 2024

Dr. Pedro Vasquez

Alejandro Ouslan

Problem 1

Compute the determinants of the following matrices in $M_{2x2}(C)$.

$$\begin{bmatrix} 2i & 3 \\ 4 & 6i \end{bmatrix}$$

Problem 2

The classical adjoint of a 2x2 matrix $A \in M_{2x2}(F)$ is the matrix

$$C = \begin{bmatrix} A_{22} & -A_{12} \\ -A_{21} & A_{11} \end{bmatrix}$$

Prove that

- CA = AC = [det(A)]I
- det(C) = det(A)
- The classical adjoint of A^T is C^T
- If A is invertible, then $A^{-1} = [det(A)]^{-1}C$

Problem 3

$$\det \begin{bmatrix} b_1 + c_1 & b_2 + c_2 & b_3 + c_3 \\ a_1 + c_1 & a_2 + c_2 & a_3 + c_3 \\ a_1 + b_1 & a_2 + b_2 & a_3 + b_3 \end{bmatrix} = k \cdot \det \begin{bmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{bmatrix}$$

Problem 4

Evaluate the determinant of the given matrix by cofactor expansion along the indicated row.

$$\begin{bmatrix} 1 & -1 & 2 & -1 \\ -3 & 4 & 1 & -1 \\ 2 & -5 & -3 & 8 \\ -2 & 6 & -4 & 1 \end{bmatrix}$$

along the fourth row.

Problem 5

Compute $det(E_i)$ if E_i is an elementary matrix of type i.

Problem 6

Use Cramer's rule to solve the given system of linear equations.

$$x_1 - x_2 + 4x_3 = -4$$
$$-8x_1 + 3x_2 + x_3 = 8$$
$$2x_1 + x_2 + x_3 = 0$$

Problem 7

A matrix $M \in M_{nxn}(F)$ is called nipotent if, some positive interreg k, $M^k = 0$, where 0 is the nxn zero matrix. Prove that if M is nilpotent, then det(M) = 0.

Problem 8

Use determinants to prove that if $A, B \in M_{nxn}(F)$ are such that AB = I, then A is invertible (and hence $B = A^{-1}$).

Problem 9

Let $A \in M_{nxn}(F)$ have the form

$$A = \begin{bmatrix} 0 & 0 & 0 & \cdots & 0 & a_0 \\ -1 & 0 & 0 & \cdots & 0 & a_1 \\ 0 & -1 & 0 & \cdots & 0 & a_2 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & -1 & a_{n-1} \end{bmatrix}$$

Compute det(A + tI) where I is the nxn identity matrix.

Problem 10