Lecture Notes for **Machine Learning in Python**

Professor Eric Larson

Lecture: RNN Demo

Lecture Agenda

- Logistics
 - RNNs due **During Finals Time**
- Recurrent Networks
 - Overview
 - Problem Types
 - · Embeddings
 - Types of RNNs
 - Demo A
 - CNNs and RNNs
 - Demo B
 - Ethics Case Study
 - Course Retrospective

Class Overview, by topic

Last Time

padding/clipping

Self Test

- T/F: In Recurrent Neural Networks that are "rolled out", each RNN cell can be run in parallel.
 - A. **True**, state vectors can be added later
 - B. **True**, but parallelization must use forward backward (like Viterbi)
 - C. **False**, state vectors must be found sequentially

D. **False**, input changes due to sequential nature of X_t

Commonly Used RNN Nodes

I like this version better.

General recurrent flow (many to one)

Recurrent Networks: GRUs

gated recurrent units

Selectivity controls, gates (0 or 1)

$$r_{t} = \sigma(W_{r}s_{t-1} + U_{r}x_{t} + b_{r})$$

$$z_{t} = \sigma(W_{z}s_{t-1} + U_{z}x_{t} + b_{z})$$
past state current input

Self Test

- What element of the GRU helps with vanishing and exploding gradients?
- A. derivative of σ
- B. no activation function
- C. derivative of ϕ
- D. φ

$$r_t = \sigma(W_r s_{t-1} + U_r x_t + b_r)$$

$$z_t = \sigma(W_z s_{t-1} + U_z x_t + b_z)$$

$$\widetilde{s_t} = \phi(W(r_t \odot s_{t-1}) + Ux_t + b)$$

$$s_t = z_t \odot s_{t-1} + (1 - z_t) \odot \widetilde{s_t}$$

Derivative of GRU

hard to vanish unless $z_t = 0$

Recurrent Networks: Gen 1 LSTM

LSTM prototype

Selectivity controls (gates, 0 or 1) $o_t = \sigma(W_o s_{t-1} + U_o x_t + b_o)$ $i_t = \sigma(W_i s_{t-1} + U_i x_t + b_i)$ $f_t = \sigma(W_f s_{t-1} + U_f x_t + b_f)$

selectively remember past with influence
$$\widetilde{s_t} = \phi(W(o_t \odot s_{t-1}) + Ux_t + b)$$

$$s_t = f_t \odot s_{t-1} + i_t \odot \widetilde{s}_t$$
 selectively remember past with past weighted influence

Recurrent Networks: Gen 2 LSTM

LSTM in TensorFlow

Selectivity controls (gates, 0 or 1)

$$i_{t} = \sigma(W_{i}h_{t-1} + U_{i}x_{t} + b_{i})$$

$$o_{t} = \sigma(W_{o}h_{t-1} + U_{o}x_{t} + b_{o})$$

$$f_{t} = \sigma(W_{f}h_{t-1} + U_{f}x_{t} + b_{f})$$

explicit remembering state $\tilde{c}_t = \phi(Wh_{t-1} + Ux_t + b)$ $c_t = f_t \odot c_{t-1} + i_t \odot \tilde{c}_t$ $remember \qquad update with output, h_t$ $h_t = o_t \odot \phi(c_t) \quad \text{get next ht for selecting gates}$

LSTM Dropout

$$i_t = \sigma(W_i h_{t-1} + U_i x_t + b_i)$$
 $o_t = \sigma(W_o h_{t-1} + U_o x_t + b_o)$
 $f_t = \sigma(W_f h_{t-1} + U_f x_t + b_f)$

Recurrent Input Dropout

The days of training without using dropout are over.

What to choose?

- There is no hard and fast rule
 - try both
 - basic LSTM has had great success
 - GRU also sometimes is easier to train
 - you will see many variations
 - peephole LSTM
 - hierarchical LSTM
 - · and many more...

Recurrent Networks in Keras

Final Demo - Part A

Many to one:
Simple RNNs
GRUs
LSTMs

More examples:

https://github.com/tensorflow/tensorflow/tree/r0.11/tensorflow/examples/skflow http://r2rt.com/recurrent-neural-networks-in-tensorflow-i.html http://machinelearningmastery.com/sequence-classification-lstm-recurrent-neural-networks-python-keras/

Seq2Seq:

https://github.com/tensorflow/tensorflow/blob/r0.11/tensorflow/examples/skflow/neural translation word.py

CNNs for Sequences

CNNs and RNNs

is an RNN similar to a CNN?

CNNs with Multiple Region Sizes

Demo - Part B

Back to the CNN

More examples:

http://www.wildml.com/2015/11/understanding-convolutional-neural-networks-for-nlp/

Seq2Seq:

https://github.com/tensorflow/tensorflow/blob/r0.11/tensorflow/examples/skflow/neural_translation_word.py