Pokročilé metody DSP

Nástěnka > Pokročilé metody DSP > Testy > TEST 2, ZS 22/23 (16 bodů) - Czech

Započetí testu Thursday, 15. December 2022, 09.22

Stav Dokončeno

Dokončení testu Thursday, 15. December 2022, 10.11

Délka pokusu 48 min. 28 sekund

Známka 12,00 z možných 16,00 (75%)

Úloha **1**

Správně

Bodů 2,00 / 2,00

Určete kosinovou transformaci DCT-2 signálu <u>frame-023.bin</u> (uloženo jako binární soubory bez hlavičky, pro načtení do MATLABu použijte funkci *loadbin*. Segment před výpočtem **váhujte Hammingovým oknem** odpovídající délky a jako výsledek uveďte prvních 8 koeficientů DCT spektra.

POZN. DCT-2 signálu délky N je definovaná jako

$$X^{c2}[k] = 2\sum_{n=0}^{N-1} x[n]\cosrac{\pi k(2n+1)}{2N}$$

Vyberte jednu z nabízených možností:

- O.02790 0.00708 -0.00154 0.01718 0.01039 0.01154 0.01207 0.00172 ...
- 0.00588 0.04170 0.04039 0.04504 0.03497 0.03736 0.03612 -0.13869 ...
- O -0.03748 -0.01485 -0.01516 -0.00513 -0.08508 -0.34627 0.22806 0.49868 ...
- -0.01925 -0.00102 0.00602 -0.00784 -0.00145 0.01349 0.00765 0.00900 ...

Vaše odpověď je správná.

Správná odpověď je: -0.01925 -0.00102 0.00602 -0.00784 -0.00145 0.01349 0.00765 0.00900

>

Úloha 2	
Správně	
Bodů 2,00 / 2,00	

Komprimuje signál <u>frame-013.bin</u> na bázi kosinové transformace (použijte funkce *dct* a *idct* definované v MATLABu). Pro danou kompresi (aproximaci) použijte prvních **65 komponent DCT spektra**. Signál je uložen jako binární soubor bez hlavičky, pro načtení do MATLABu použijte funkci *loadbin*. Původní a dekomprinovaný signál si pro kontrolu ilustrativně zobrazte.

Spočítejte výkony původního i komprimovaného signálu a určete jaké procento výkonu původního signálu je zahrnuto v signálu komprimovaném.

Vyberte jednu z nabízených možností:

- O 48.11 %
- O 57.65 %
- 0 88.76 %
- O 69.88 %
- 97.15 %

Vaše odpověď je správná.

Správná odpověď je: 97.15 %.

Úloha 3Nesprávně
Bodů 0,00 / 2,00

Určete LPC KEPSTRUM signálu <u>frame-002.bin</u> (uloženo jako binární soubory bez hlavičky, pro načtení do MATLABu použijte funkci *loadbin*). Řád LPC volte **p=16** a signály **váhujte Hammingovým oknem** příslušné délky. Zobrazte **prvních 21 koeficientů včetně nultého koeficientu c[0]**, tj. koeficienty **c[0]-c[20]**.

Vyberte jednu z nabízených možností:

Vaše odpověď je chybná.

Spočítejte **vyhlazený odhad vzájemné spektrální výkonové hustoty (CPSD)** Welchovou metodou pro signály **x** a **y** uložené v mat-souboru <u>sig_xy_02.mat</u> (pro načtení do MATLABu použijte "*load sig_xy_02.mat*"). Signály jsou vzorkované kmitočtem fs = 16 kHz a pro výpočet volte následující parametry:

- délku krátkodobého segmentu volte 1024 vzorků,
- krátkodobé segmenty váhujte Hammingovým oknem,
- segmentujte s 50% překryvem,
- počet bodů FFT volte stejný, jako je délka segmentu,
- počítejte s implicitním jednostranným odhadem CPSD reálných signálů.

Určete, který z následujících obrázků je požadovaným odhadem modulu CPSD v decibelech!

Vyberte jednu z nabízených možností:

>

Vaše odpověď je správná.

Úloha 5 Nesprávně Bodů 0,00 / 2,00

Určete EUKLIDOVSKOU KEPSTRÁLNÍ VZDÁLENOST na bázi reálného KEPSTRA mezi dvěma signály frame-001.bin a frame-012.bin (oba signály jsou uloženy jako binární soubory bez hlavičky, pro načtení do MATLABu použijte funkci loadbin). Počítejte reálné kepstrum, signály váhujte Hammingovým oknem příslušné délky. Vzdálenost počítejte z prvních 13 koeficientů včetně nultého koeficientu c[0], tj. z koeficientů c[0]-c[12].

Pro výpočet vzdálenosti použijte funkci <u>cde.m</u> (POZN. Funkci je třeba stáhnout do aktuálního adresáře!!).

<u>Switch to English</u>

Nontaktujte nás Vyberte jednu z nabízených možností:

Spustit znovu Průvodce uživatele

0 1.9460

Užitečné odkazy 4.0801

Web fakulty

<u>Harmonogram</u>

0.3823 Studijní oddělení

<u>FELSight</u>

Moodle API Vaše odpověď je chybná.

© 2021 Centrum znalostního managementu Správná odpověď je: 2.6185.

Navigace

Moje kurzy

<u>Známky</u>

Odhlásit se

2022-12-15, 10:11 6 z 12

```
Úloha
6
Správně
Bodů
2,00
2,00
```

Pro signály sig1

а

sig2

vzorkované

kmitočtem

fs

16

kHz а

uložené

mat-

souboru

sigs_2chan_01.mat

(pro

načtení

do

MATLABu

použijte

"load

sigs_2chan_01.mat")

vypočtěte

koherenční

funkci,

konkrétně

MSC

(Magnitude

Square

Coherence),

přičemž

pro

výpočet

volte

následující

parametry:

délka

krátkodobého

segmentu

8

ms,

• váhování

Hammingovo

okno

odpovídající

délky,

• segmentace

s

>

```
50%
 překryvem,
• řád
 FFT
 stejný,
 jako
 je
  délka
  krátkodobého
  segmentu.
Určete
průměrnou
koherenci
(tj.
průměrnou
hodnotu
vypočítané
MSC).
Výsledek
uveďte
s
minimální
přesností
na
3
platné
cifry.
Odpověď:
  0,568723131581549
Správná
odpověď
```

je: 0,56872

Úloha **7** Správně Bodů 2,00

2,00

Jaký je

odstup

signálu

od

šumu

(SNR)

zašuměného

signálu

SX019S01.CS0

je-

li

referenční

čistý

signál

SA019S01.CS0?

Oba

signály

jsou

uloženy

jako

binární

soubory

bez

hlavičky,

pro

načtení

do

MATLABu

použijte

funkci

loadbin.

Vypočítané

SNR

٧

dB

uveďte

S

přesností

na 2

desetinná

čísla

_

>

Úloha **8**

Správně

Bodů

2,00

2,00

Určete

zkreslení

delšího

signálu

SA012S01.CSX

na

bázi

kepstrální

vzdálenosti

а

LPC

KEPSTRA,

jestliže

referenční

nezkreslený

signál

je

SA012S01.CS0

Oba

signály

jsou

uloženy

jako

binární

soubory

bez

hlavičky,

pro

načtení

do

MATLABu

použijte

funkci

loadbin. Počítejte

LPC

kepstrum

ро

segmentech

délky

wlen=512

S

50%

překryvem

а

uvažujte

implicitní

váhování každého

segmentu

Hammingovým

oknem.

>

Řád

LPC

volte

p=16,

počet

kepstrálních

koeficentů

(bez

c[0])

volte

cp=20

а

vzdálenost

počítejte

na

bázi

Euklidovské

vzdálenosti

včetně

nultého

koeficientu

c[0],

tj.

Z

koeficientů

c[0]-

c[20].

Pro

výpočet

vzdálenosti

použijte

funkci

cde.m

(POZN.

Funkci

je

třeba

stáhnout

do

aktuálního

adresáře!!).

Vaše odpověď je správná.

Správná

>

odpověď je: 5.505.

TEST 1, ZS

22/23

(8

bodů)

Czech