

 $Y1 = (Q3\overline{Q1}) \ v \ (\overline{Q3}Q1) \ v \ (Q3X2) \ v \ (Q2)$

Y2 = (Q2) v (Q3Q1) v (Q3Q2X1) v (Q3Q1)

		G	71	_		<i>Y3</i>
	Q2	-	1	-	-	
<i>Q3</i>		_	1	-	-	X1
כש		0	0	0	0	ΛΙ
		0	0	0	0	
	Q2	0	0	1	0	
	WZ	0	0	1	0	X1
		0	0	0	0	ΛΙ
		0	0	0	0	
	•		λ	2		•

3M.	Арк.	№ докум.	Підп.	Дата

IA/ILI.463626.004	//3
	–

Y3 = (Q1) v (\overline{X2}) v (\overline{Q2})

		b	71			<i>Y</i> 4
	Q2	-	-	-	_	
0.2		1	-	_	_	X1
Q3		0	0	0	0	Λ/
		0	0	0	0	
	Q2	1	1	0	1	
	WZ	1	1	0	1	X1
		0	0	0	0	Λ/
		0	0	0	0	
	•		λ	(2		

 $Y4 = (\overline{Q2}) \ v \ (\overline{Q1}X2)$

R3 = (Q1) v (Q3)

Зм.	Арк.	№ докум.	Підп.	Дата

S3= (Q1) v (Q2)

 $R2 = \overline{(\overline{Q1})} \ v \ (\overline{Q2})$

		6	71			<i>S2</i>
	Q2	-	-	-	-	
Q3		_	-	-	-	X1
עש		0	0	0	0	ΛΙ
		0	0	0	0	
	Q2	0	0	-	-	
		0	0	-	-	X1
		1	1	0	0	λ/
		0	0	0	0	
	_		J	(2		1

Зм.	Арк.	№ докум.	Підп.	Дата

 $S2 = (\overline{Q1}) \ v \ (\overline{Q2X1}) \ v \ (Q2) \ v \ (Q3)$

		b	71			R1	
	Q2	-	-	-	-		
3	UΖ	-	ı	_	-	X1	
נ		1	1	0	0	1	
		1	1	0	0		
	Q2	1	1	0	0		
	WΖ	1	1	0	0	X1	
•		1	1	0	0	Λ1	
		1	1	0	0		
	•		λ	2			

 $R1 = (\overline{Q1})$

			G	71	-		<i>S1</i>
		Q2	-	-	-	-	
	כ	UΖ	-	-	ı	1	X1
Q.)		0	0	1	1	<i>\(\(\) \)</i>
			0	0	1	1	
		Q2	0	0	0	1	
		UZ	0	0	0	1	X1
			0	0	1	1	<i>\(1</i>
			0	0	1	1	
				X	2		1

S1 = (Q1) v (Q3Q2X2)

2.6. Побудова схеми автомата в заданому базисі

Отриманих після мінімізації даних достатньо для побудови комбінаційних схем функцій збудження тригерів і функцій сигналів виходів, таким чином, і всієї комбінаційної схеми. Автомат будуємо на RS-тригерах. Автомат є синхронним, так як його роботу синхронізує генератор, а RS-тригер керований перепадом сигналу.

Зм.	Арк.	№ докум.	Підп.	Дата

IAЛЦ.463626.004 ПЗ

Арк.