Section 5.1

Problem # 38

An element x in a ring is called **idempotent** if $x^2 = x$. Find two different idempotent elements in $M_2(\mathbb{Z})$.

Solution

$$\left[\begin{array}{cc} 1 & 1 \\ 0 & 0 \end{array}\right], \left[\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array}\right]$$

Problem # 39

Show that the set of all idempotent elements of a commutative ring is closed under multiplication.

Solution

Let S be the set of all idempotent elements of a commutative ring. Select arbitrary x, y from S. Then

$$(xy)(xy) = x(yx)y = x(xy)y = x^2y^2 = xy$$

Therefore xy is idempotent and thus an element of S.

Problem # 40

Let a be idempotent in a ring with unity. Prove e-a is also idempotent.

Solution

$$(e-a)(e-a) = e(e-a) - a(e-a)$$

$$= ee - ea - ae - a(-a)$$

$$= e - a - a + a$$

$$= e - a$$

$$(1)$$

Problem # 42

Let

$$S = \left\{ \begin{bmatrix} a & -b \\ b & a \end{bmatrix}, a, b \in \mathbb{R} \right\}$$

- (a) Show that S is a commutative subring of $M_2(\mathbb{R})$.
- (b) Find the unity, if one exists.
- (c) Describe the units in S, if any.

Solution

Part (a)

It is clear that S is a nonempty subset of $M_2(\mathbb{R})$.

$$\begin{bmatrix} a & -b \\ b & a \end{bmatrix} + \begin{bmatrix} c & -d \\ d & c \end{bmatrix} = \begin{bmatrix} a+c & -(b+d) \\ b+d & a+c \end{bmatrix}$$
 (2)

So S is closed under addition.

$$\begin{bmatrix} c & -d \\ d & c \end{bmatrix} + \begin{bmatrix} a & -b \\ b & a \end{bmatrix} = \begin{bmatrix} a+c & -(b+d) \\ b+d & a+c \end{bmatrix}$$

So S is commutative with respect to multiplication.

$$\begin{bmatrix} a & -b \\ b & a \end{bmatrix} + \begin{bmatrix} c & -d \\ d & c \end{bmatrix} = \begin{bmatrix} a+c & -(b+d) \\ b+d & a+c \end{bmatrix}$$

$$\left[\begin{array}{cc} a & -b \\ b & a \end{array}\right] \left[\begin{array}{cc} c & -d \\ d & c \end{array}\right] = \left[\begin{array}{cc} ca - bd & -(cb + da) \\ cb + da & ca - bd \end{array}\right]$$

So S is closed under multiplication.

$$-\left(\left[\begin{array}{cc}a & -b\\b & a\end{array}\right]\right) = \left[\begin{array}{cc}-a & b\\-b & -a\end{array}\right]$$

Which is another member of S. Thus S contains additive inverses and is a subring of $M_2(\mathbb{R})$.

Part (b)

The unity is

$$\left[\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array}\right]$$

Part (c)

The units of S are all elements $\begin{bmatrix} a & -b \\ b & a \end{bmatrix}$ where $a^2 + b^2 \neq 0$.

Problem # 44

Consider the set T of all 2×2 matrices of the form $\begin{bmatrix} a & a \\ b & b \end{bmatrix}$, where a and b are real numbers, with the same rules for addition and multiplication as in $M_2(\mathbb{R})$.

- (a) Show that T is a ring that does not have a unity.
- (b) Show that T is not a commutative ring.

Solution

Part (a)

$$\left[\begin{array}{cc} a & a \\ b & b \end{array}\right] + \left[\begin{array}{cc} c & c \\ d & d \end{array}\right] = \left[\begin{array}{cc} a+c & a+c \\ b+d & b+d \end{array}\right]$$

 $\mathbb R$ is closed under addition so T is closed under addition. Further, we know that matrix multiplication is both associative and commutative. Every element $\begin{bmatrix} a & a \\ b & b \end{bmatrix}$ has an additive inverse $\begin{bmatrix} -a & -a \\ -b & -b \end{bmatrix}$ and T contains the additive identity $\begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$. We know that matrix multiplication is associative.

$$\begin{bmatrix} a & a \\ b & b \end{bmatrix} \begin{bmatrix} c & c \\ d & d \end{bmatrix} = \begin{bmatrix} ca + da & ca + da \\ cb + db & cb + db \end{bmatrix}$$

The above demonstrates that T is closed with respect to multiplication. Finally we show that the two distributive laws hold. First law:

$$\begin{bmatrix} a & a \\ b & b \end{bmatrix} \begin{pmatrix} \begin{bmatrix} c & c \\ d & d \end{bmatrix} + \begin{bmatrix} f & f \\ g & g \end{bmatrix} \end{pmatrix} = \begin{bmatrix} a(c+d+f+g) & a(c+d+f+g) \\ b(c+d+f+g) & b(c+d+f+g) \end{bmatrix}$$
$$= \begin{bmatrix} a & a \\ b & b \end{bmatrix} \begin{bmatrix} c & c \\ d & d \end{bmatrix} + \begin{bmatrix} a & a \\ b & b \end{bmatrix} \begin{bmatrix} f & f \\ g & g \end{bmatrix}$$

Second Law:

$$\left(\begin{bmatrix} c & c \\ d & d \end{bmatrix} + \begin{bmatrix} f & f \\ g & g \end{bmatrix} \right) \begin{bmatrix} a & a \\ b & b \end{bmatrix} = \begin{bmatrix} (a+b)(c+f) & (a+b)(c+f) \\ (a+b)(d+g) & (a+b)(d+g) \end{bmatrix}$$

$$= \begin{bmatrix} c & c \\ d & d \end{bmatrix} \begin{bmatrix} f & f \\ g & g \end{bmatrix} + \begin{bmatrix} a & a \\ b & b \end{bmatrix} \begin{bmatrix} f & f \\ g & g \end{bmatrix}$$
(4)

Thus T is a ring. The unity with respect to multiplication of 2x2 matrices is $\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ which is not a member of T. Thus T has no unity.

Part (b)

The following example demonstrates that T is not commutative.

$$\left[\begin{array}{cc} 2 & 2 \\ 1 & 1 \end{array}\right] \left[\begin{array}{cc} 0 & 0 \\ 1 & 1 \end{array}\right] = \left[\begin{array}{cc} 2 & 2 \\ 1 & 1 \end{array}\right]$$

but

$$\left[\begin{array}{cc} 0 & 0 \\ 1 & 1 \end{array}\right] \left[\begin{array}{cc} 2 & 2 \\ 1 & 1 \end{array}\right] = \left[\begin{array}{cc} 0 & 0 \\ 3 & 3 \end{array}\right]$$

Prove the following equalities in an arbitrary ring R.

(a)
$$(x+y)(z+w) = (xz+xw) + (yz+yw)$$

(b)
$$(x+y)(z-w) = (xz+yz) - (xw+yw)$$

(c)
$$(x-y)(z-w) = (xz+yw) - (xw+yz)$$

(d)
$$(x+y)(x-y) = (x^2-y^2) + (yx-xy)$$

Solution

Part (a)

$$(x+y)(z+w) = (x+y)z + (x+y)w$$

$$= xz + yz + xw + yw$$

$$= xz + xw + yz + yw$$
(5)

Part (b)

$$(x+y)(z-w) = (x+y)z + (x+y)(-w) = xz + yz + x(-w) + y(-w) = xz + yz - xw - yw = xz + yz - (xw + yw)$$
(6)

Part (c)

$$(x - y)(z - w) = (x - y)(z + (-w))$$

$$= (x - y)z + (x - y)(-w)$$

$$= (x + (-y))z + (x + (-y))(-w)$$

$$= xz + (-y)z + x(-w) + (-y)(-w)$$

$$= xz - yz - xw + yw$$

$$= xz + yw - xw - yz$$

$$= (xz + yw) - (xw + yz)$$
(7)

Part (d)

$$(x+y)(x-y) = (x+y)(x+(-y))$$

$$= (x+y)x + (x+y)(-y)$$

$$= x^2 + yx - ((x+y)y)$$

$$= x^2 + yx - (xy+y^2)$$

$$= x^2 - y^2 + (yx - xy)$$
(8)

An element a of a ring R is called **nilpotent** if $a^n = 0$ for some positive integer n. Prove that the set of all nilpotent elements in a commutative ring R forms a subring of R.

Solution

Let S be the set of nilpotent elements in R. It is clear that S is nonempty because a=0 is an element of S. For arbitrary elements $a,b \in S$ there exist positive integers n,m such that $a^n=0$ and $b^m=0$. Then THIS IS VERY WRONG - BINOMIAL STUFF PLEASE

$$(a+b)^{nm} = a^{nm} + b^{nm}$$

$$= (a^n)^m + (b^m)^n$$

$$= 0^m + 0^n$$

$$= 0$$
(9)

and

$$(ab)^{nm} = a^{nm}b^{nm} = (a^n)^m (b^m)^n = (0^m)(0^n) = 0$$
 (10)

For any $x \in S$ there exists a positive integer n such that $x^n = 0$. Then $(-x)^n = 0$ and -x is an element of S.

Therefore S is a subring of R.

Problem # 50

Let x and y be nilpotent elements that satisfy the following conditions in a commutative ring R: Prove that x + y is nilpotent.

(a)
$$x^2 = 0, y^3 = 0$$

(b)
$$x^n = 0, y^m = 0$$
 for some $n, m \in \mathbb{Z}^+$

Part (a)

BINOMIAL STUFF

$$(x+y)^6 = \tag{11}$$

Part (b)

Solution

Problem # 51

Let R and S be arbitrary rings. In the Cartesian product $R \times S$ of R and S, define

$$(r,s) = (r',s')$$
 if and only if $r = r'$ and $s = s'$,
 $(r_1,s_1) + (r_2,s_2)$ $= (r_1 + r_2, s_1 + s_2),$
 $(r_1,s_1) \cdot (r_2,s_2)$ $= (r_1r_2, s_1s_2)$

- (a) Prove that the Cartesian product is a ring with respect to these operation. Is is called the **direct sum** of R and S and is denoted by $R \oplus S$.
- (b) Prove that $R \oplus S$ is commutative if both R and S are commutative.
- (c) Prove that $R \oplus S$ has a unity element if both R and S have unity elements.
- (d) Give an example of rings R and S such that $R \oplus S$ does not have a unity element.

Solution

Part (a)

 $R \times S$ is closed under addition and multiplication as a direct result of R and S being closed. Addition and multiplication are both associative and addition is commutative as a result of the corresponding operations in R and S having these properties. It contains the additive identity (0,0) and every element (r,s) has an additive inverse (-r,-s) that is guaranteed to exist because R and S contain inverses. We now show that the distributive laws hold. For arbitrary elements $(r_1,s_1), (r_2,s_2), (r_3,s_3)$:

$$(r_{1}, s_{1})((r_{2}, s_{2}) + (r_{3}, s_{3})) = (r_{1}, s_{1})(r_{2} + r_{3}, s_{2} + s_{3})$$

$$= (r_{1}(r_{2} + r_{3}), s_{1}(s_{2} + s_{3}))$$

$$= (r_{1}r_{2} + r_{1}r_{3}, s_{1}s_{2} + s_{1}s_{3})$$

$$= (r_{1}r_{2}, s_{1}s_{2}) + (r_{1}r_{3}, s_{1}s_{3})$$

$$= (r_{1}, s_{1})(r_{2}, s_{2}) + (r_{1}, s_{1})(r_{3}, s_{3})$$

$$(13)$$

and

$$((r_{2}, s_{2}) + (r_{3}, s_{3}))(r_{1}, s_{1}) = (r_{2} + r_{3}, s_{2} + s_{3})(r_{1}, s_{1})$$

$$= ((r_{2} + r_{3})r_{1}, (s_{2} + s_{3})s_{1})$$

$$= (r_{2}r_{1} + r_{3}r_{1}, s_{2}s_{1} + s_{3}s_{1})$$

$$= (r_{2}r_{1}, s_{2}s_{1}) + (r_{3}r_{1}, s_{3}s_{1})$$

$$= (r_{2}, s_{2})(r_{1}, s_{1}) + (r_{3}, s_{3})(r_{1}, s_{1})$$

$$(14)$$

Thus $R \times S$ is a ring.

Part (b)

If R and S are commutative then for arbitrary elements $(r_1, s_1), (r_2, s_2) \in R \times S$:

$$(r_1, s_1)(r_2, s_2) = (r_1 r_2, s_1 s_2)$$

$$= (r_2 r_1, s_2 s_1)$$

$$= (r_2, s_2)(r_1, s_2)$$
(15)

Thus $R \times S$ is commutative when R and S are.

Part (c)

Let e_r, e_s be the unities of R and S respectively. Then the element (e_r, e_s) is the unity in $R \times S$. For an arbitrary element (r, s)

$$(e_r, e_s)(r, s) = (e_r r, e_s s)$$

$$= (r, s)$$

$$= (re_r, se_s)$$

$$= (r, s)(e_r, e_s)$$

$$(16)$$

Part (d)

Let $R = \mathbb{Z}$ and $S = \mathbb{E}$. Both R and S are rings but $R \times S$ has no unity.

Problem # 56

Suppose R is a ring in which all elements x are idempotent - that is, all x satisfy $x^2 = x$. (Such a ring is called a **Boolean Ring**).

- (a) Prove that x = -x for each $x \in R$. (Hint: Consider $(x + x)^2$.)
- (b) Prove that R is commutative. (Hint: Consider $(x+y)^2$.)

Solution

Part (a)

$$x = (-x)(-x)$$

$$= (-x)^{2}$$

$$= -x$$
(17)

Part (b)

$$(x+y)^{2} = x^{2} + y^{2} + xy + yx$$

$$x + y = x^{2} + y^{2} + xy + yx$$

$$x + y = x + y + xy + yx$$

$$0 = xy + yx$$

$$-(yx) = (xy)$$
(18)

and by the result of part one, -(yx) = yx and thus R is commutative.

Section 5.2

In Exercises 4 and 5, let $U = \{a, b\}$.

Problem # 4

Is $\mathcal{P}(U)$ an integral domain? If not, find all zero divisors in $\mathcal{P}(U)$.

Solution

 $\mathcal{P}(U)$ is not an integral domain. The elements $\{a\}$ and $\{b\}$ are zero divisors.

Problem # 5

Is $\mathcal{P}(U)$ an field? If not, find all nonzero elements that do not have multiplicative inverses.

Solution

 $\mathcal{P}(U)$ is not a field beause every field is an integral domain and we have already shown that this is not the case. The elements $\{a\}$ and $\{b\}$ do not have multiplicative inverses.

Problem # 11

Let R be the set of all matrices of the form $\begin{bmatrix} a & -b \\ b & a \end{bmatrix}$, where a and b are real numbers. Assume that R is a commutative ring with unity with respect to matrix addition and multiplication. Answer the following questions and give a reason for any negative answers.

- (a) Is R an integral domain?
- (b) Is R a field?

Solution

Part (a)

There are no zero divisors in R so R is an integral domain.

Part (b)

Any nonzero element of $R\begin{bmatrix} a & -b \\ b & a \end{bmatrix}$ has an inverse $(a^2+b^2)\begin{bmatrix} a & b \\ -b & a \end{bmatrix}$ This matrix is always defined for nonzero elements of R because the only case when a^2+b^2 is zero is when both a and b are zero. Thus R is an integral domain.

Conside the Gaussian integers modulo 3, that is, the set $S = \{a+bi|a, b \in \mathbb{Z}_3\} = \{0, 1, 2, i, 1+i, 2+i, 2i, 1+2i, 2+2i\}$, where we write 0 for [0], 1 for [1], and 2 for [2] in \mathbb{Z}_3 . Addition and multiplication are as in the complex numbers except that the coefficients are added and multiplied as in \mathbb{Z}_3 . Thus $i^2 = -1$ as in the complex numbers and -1 = 2 in \mathbb{Z}_3 .

- (a) Is S a commutative ring?
- (b) Does S have a unity?
- (c) Is S an integral domain?
- (d) Is S a field?

Solution

Part (a)

Using our knowledge of addition in the complex numbers and in \mathbb{Z}_3 it is clear that S forms an abelian group under addition with the identity element 0.

Similarly, it is clear that S is closed under multiplication and that multiplication is commutative.

The distributive laws hold for multiplication and addition defined in the complex numbers and in \mathbb{Z}_3 .

R is a commutative ring.

Part (b)

S has the unity 1.

Part (c)

S is an integral domain, it is a commutative ring with unity and it also has no zero divisor.

Part (d)

S is a field, every element has a multiplicative inverse.

$$1^{-1} = 1,$$
 $2^{-1} = 2, i^{-1} = 2i,$ $(1+1)^{-1} = (2+i), (1+2i)^{-1} = (2+2i)$

Problem # 13

Work Exercuse 12 using $S = \{a + bi \mid a, b \in \mathbb{Z}_5\}$, the Gaussian integers modulo 5.

Solution

All answers are the same.

Give an example of an infinite commutative ring with no zero divisors that is not an integral domain.

Solution

 \mathbb{E}