Comm system optimization assisted by deep-learning algorithms

TOOLS & ALGORITHMS

I. AUTOENCODERS

TOOLS & ALGORITHMS

II. TRANSFER LEARNING

TRAINING FROM SCRATCH

TRANSFER LEARNING

PROBLEM STATEMENT

Using eye diagrams for evaluating system performance and gaining insight into the nature of channel imperfections that can lead to errors using deep learning algorithms

INTO THE EYE DIAGRAM

- > Characteristic parameters
- Overall signal performance indicators
- > Fiber length estimation
- Device Imperfections

a)OOK

b)PAM4

CHALLENGES

I. DIMENSIONALITY REDUCTION

CHALLENGES

II. SMALL IMAGE DATASET AVAILABILITY

STEPS OF ACTION

MODEL- Autoencoder

Dataset Size: 1000 Train/Val Split: 900/100 Input Size: (256,256)

None, 256, 256, 3)] one, 128, 128, 32) one, 128, 128, 32) one, 128, 128, 32) one, 64, 64, 64, 64)	0 896 0 128
one, 128, 128, 32) one, 128, 128, 32)	0
one, 128, 128, 32)	
	128
one 64 64 64)	
one, 04, 04, 04)	18496
one, 64, 64, 64)	0
one, 64, 64, 64)	256
one, 262144)	0
one, 16)	4194320
	one, 64, 64, 64) one, 262144)

Layer (type)	Output Shape	Param #
input_2 (InputLayer)	[(None, 16)]	0
dense_1 (Dense)	(None, 262144)	4456448
reshape (Reshape)	(None, 64, 64, 64)	0
conv2d_transpose (Conv2DTran	(None, 128, 128, 64)	36928
leaky_re_lu_2 (LeakyReLU)	(None, 128, 128, 64)	0
batch_normalization_2 (Batch	(None, 128, 128, 64)	256
conv2d_transpose_1 (Conv2DTr	(None, 256, 256, 32)	18464
leaky_re_lu_3 (LeakyReLU)	(None, 256, 256, 32)	0
batch_normalization_3 (Batch	(None, 256, 256, 32)	128
conv2d_transpose_2 (Conv2DTr	(None, 256, 256, 3)	867
activation (Activation)	(None, 256, 256, 3)	0
Total params: 4,513,091		
Trainable params: 4,512,899		

TRAINING-Autoencoder

Epochs: 40 Batch_size= 10 Optimizer: Adam Loss: mse

```
Epoch 11/20
90/90 [=========] - 75s 828ms/step - loss: 0.0062 - val loss: 0.0061
Epoch 12/20
90/90 [=========== ] - 75s 831ms/step - loss: 0.0062 - val loss: 0.0060
Epoch 13/20
Epoch 14/20
90/90 [=========== - 77s 855ms/step - loss: 0.0063 - val loss: 0.0062
Epoch 15/20
90/90 [========== ] - 76s 849ms/step - loss: 0.0061 - val loss: 0.0061
Epoch 16/20
90/90 [=========== - 77s 853ms/step - loss: 0.0061 - val loss: 0.0060
Epoch 17/20
90/90 [========= - 77s 852ms/step - loss: 0.0063 - val loss: 0.0063
Epoch 18/20
90/90 [========== ] - 77s 852ms/step - loss: 0.0061 - val loss: 0.0060
Epoch 19/20
90/90 [=========== - 77s 852ms/step - loss: 0.0060 - val loss: 0.0060
Epoch 20/20
90/90 [========= ] - 77s 855ms/step - loss: 0.0060 - val loss: 0.0060
```


RESULT: Reconstructed Images

VALIDATION LOSS

REGRESSION-With Trained Encoder

Epochs: 40 Batch_size= 10 Optimizer: Adam Loss: mse

```
90/90 [=======] - 13s 143ms/step - loss: 1.1415 - mape: 2085,2410 - val loss: 1.1538 - val mape: 784,8619
Epoch 11/25
90/90 [=======] - 13s 140ms/step - loss: 1.0965 - mape: 1740.4051 - val loss: 1.1707 - val mape: 786.8647
Epoch 12/25
Epoch 13/25
90/90 [=======] - 13s 140ms/step - loss: 1.1261 - mape: 2042.0766 - val loss: 1.1747 - val mape: 786.8647
90/90 [===============] - 13s 143ms/step - loss: 1.1394 - mape: 1844.3940 - val_loss: 1.1536 - val_mape: 786.8647
Epoch 15/25
Epoch 16/25
90/90 [=======] - 13s 140ms/step - loss: 1.1201 - mape: 1909.6134 - val loss: 1.1536 - val mape: 786.8647
Epoch 17/25
90/90 [===========] - 13s 145ms/step - loss: 1.1031 - mape: 1305.0840 - val_loss: 1.1536 - val_mape: 786.8647
90/90 [=======] - 13s 141ms/step - loss: 1.1174 - mape: 1684.2058 - val_loss: 1.1536 - val_mape: 786.8647
90/90 [===============] - 13s 144ms/step - loss: 1.1734 - mape: 1647.0072 - val loss: 1.1536 - val mape: 786.8647
Epoch 20/25
90/90 [============= ] - 13s 143ms/step - loss: 1.1292 - mape: 2816.0546 - val loss: 1.1536 - val mape: 786.8647
Epoch 21/25
Epoch 22/25
90/90 [==========] - 13s 146ms/step - loss: 1.1620 - mape: 2324.3711 - val_loss: 1.1536 - val_mape: 786.8647
Epoch 23/25
Epoch 25/25
90/90 [===========] - 13s 143ms/step - loss: 1.1526 - mape: 1451.0270 - val loss: 1.1536 - val mape: 786.8647
```


MODEL OVERFITTING

Pre-Trained Model Comparison

Bubble size represents model size (M)

REGRESSION WITH PREVIOUSLY TRAINED MODELS

MODELS AND ACCURACIES:

I. VGG16

INPUT SIZE: (150,150)

EPOCHS: 30

TRAIN LOSS: 0.0832

VAL LOSS: 0.1491

MODELS AND ACCURACIES:

II. RESNET50

INPUT SIZE: (150,150)

EPOCHS: 30

TRAIN LOSS: 0.1580

VAL LOSS: 0.1495

MODELS AND ACCURACIES:

III. MOBILENET

INPUT SIZE: (150,150)

EPOCHS: 200

TRAIN LOSS: 0.0103

VAL LOSS: 0.1494

What's Next?

Plan for the next few weeks

- Train autoencoder on a larger, different dataset & TL its parameters
- Increase the eye dataset
- Try other models (Like DenseNets, Inception etc.)
- Explore better performing models for regression

Learning Experience

- Tackling the problems related to small datasets
- Handling regression tasks in Computer Vision
- Exploring ways to avoid overfitting
- Discovering signal characteristics and distortions by eye diagram inspection

Thank You