Week 3: Risk and Evaluation of Alternatives

- Making Decisions in Low-Uncertainty vs. High-Uncertainty Settings
- Example: Evaluating a Wireless Data Plan
- Reward and Risk
- Connecting Random Inputs and Random Outputs
- Simulating Uncertain Outcomes in Excel
- Interpreting Simulation Results: "Short" vs. "Long" Simulations
- Using Histograms to Visualize Simulation Results

Example: Evaluating a Wireless Data Plan

- A business analytics consultant based in Philadelphia is considering video streaming services changing her wireless data plan to accommodate her family's growing use of
- of data her family uses Under her current data plan called "Family Share" she pays \$10 for each GB
- consultant has decided to select the plan her carrier calls "Superior Share" After doing research on data plans offered by her wireless carrier, the
- up to 20GB of data per month. This data allowance may be shared among Under the Superior Share plan, the consultant will pay a flat fee of \$160 for the members of her family

Example: Evaluating a Wireless Data Plan

- If her family's actual monthly data usage exceeds 20GB, she will then have to pay for any data usage above this threshold at the rate of \$15 per GB
- payment will be \$160+(22-20)*\$15 = \$190 For example, if her family's monthly data usage is 22GB, her monthly
- If her family's actual monthly data usage does not exceed 20GB, she will still 20GB will not "roll over" to the next month have to pay the full \$160 amount, and the amount of unused data under
- For example, if her family's monthly data usage is 17GB, her monthly payment will be \$160

Future Monthly Payments Under the Old Plan We Have a Complete Description of the Random

- Consultant estimates that her monthly data usage is distributed as a normal random variable with the mean 23 GB and the standard deviation 5 GB
- So, the expected value of monthly payments under the old plan is \$230
- The standard deviation of monthly payments under the old plan is \$50

What About the Distribution of Monthly Payments Under the New Data Plan?

- What is the expected monthly payment under the new data plan?
- plan? What is the standard deviation of the monthly payments under the new data

An Algebraic Formula: Monthly Payment for Any Value of Data Usage

- We can calculate the monthly payment value P (in \$) for any value of data usage *U* (in GB)
- If *U* is below or at 20, then the monthly payment *P* is 160
- If *U* is above 20, then the monthly payment is 160 + 15*(*U*-20)
- We can combine these two cases into a single EXCEL formula: =IF(Condition, Choice1, Choice2)

$$P = 160 + IF(U > 20, 15*(U - 20), 0)$$

is equal to Choice2 value of IF is equal to **Choice1**; if the **Condition** is false, then the value of IF The IF function looks at the **Condition**: if the **Condition** is true, then the

An Algebraic Formula: Monthly Payment for Any Value of Data Usage

- P = 160 + IF(U > 20, 15*(U 20), 0)
- standard deviation of 5 U is distributed as a normal random variable with a mean of 23, and a
- ♦ What is the distribution of P?
- ♦ What is the expected value of P?
- ♦ What is the standard deviation of P?

New Plan? Expected Value of Monthly Payment Under the

$$P = 160 + IF(U > 20, 15*(U - 20), 0)$$

- ◆ Expected value of *U* is 23
- So, shouldn't the expected value of P be 160 + 15*(23-20) = 205?
- that way In general, we do not get the correct value for the expected monthly payment
- with probability 50% (so that the expected data usage value of U is still 23) Example: suppose that *U* takes only 2 values, 18 with probability 50% and 28
- If *U*=18, then *P*=160
- If U=28, then P=160+15*(28-20)=280
- The expected value of P is 0.5*160+0.5*280 = 220
- This value is very different from 205, the value one gets after plugging in the expected data usage value into the monthly payment formula

Simulation as an Analytics Tool

variable (such as monthly payment P) variable (such as data usage U) to create a distribution of the "output" random Simulation is a tool that uses a probability distribution of the "input" random

Simulation as an Analytics Tool

generated.. In each step of a simulation, a random instance of the "input" variable is

.. and the resulting value of the "catput" is calculated:

$$P = 160 + IF(U > 20, 15*(U-20), 0)$$

Simulation as an Analytics Tool

- times as necessary to generate the "sample distribution" of "output" values These simulation steps (called "**simulation runs**") can be repeated as many
- other reward and risk measures we choose determine estimates for the expected value, standard deviation, etc. – and any Once this "sample distribution" of output is generated, it can be analyzed to
- Excel can be used for both running the simulation and for the follow-up analysis

Running Simulation in Excel: Analysis ToolPak

Likely to be a part of standard Excel installation on Windows

Running Simulation in Excel: Analysis ToolPak

- Likely to be a part of standard Excel installation on Windows
- On Mac (see https://support.microsoft.com/en-us/kb/2431349)
- Included on Excel 2016 for Mac
- software called StatPlus:mac LE, available here Not included on earlier versions of Excel, but you can use a similar free http://www.analystsoft.com/en/products/statplusmacle/
- On Google Sheets: an equivalent add-on called XLMiner Analysis I oolPak is available

Simulated Data Usage Values and Corresponding Monthly Payment Values: Excel Implementation

	A	8	(U		_
⊢	DataPlan10.xlsx	Wireless Data Plan Simulation Run	Simulation Run	Data Usage, U (GB) Payment, P (\$)	Payment, P (\$)	
2	Operations Analytics MOOC		1	11.9319952	160	
ω			2	24.0282690	220.4240354	
4	Data Allowance (GB)	20	3	\$B\$5+IF(D2>\$B\$4,\$B\$6*(D2-\$B\$4),0)	\$B\$6*(D2-\$B\$4),0)
5	Fixed Payment (\$)	160	4	21.7321587	185.9823805	
6	Rate Above Allowance (\$/GB) 15	15	5	34.2335329	373.5029929	
7			6	16.5820597	160	
∞	Expected Data Usage (GB)	23	7	30.7079676	320.619514	
9	St. Dev. of Data Usage (GB)	5	8	36.9010808	413.5162123	
10			9	20.3471859	165.2077878	
11			10	28.3229996	284.8449946	
12			=AVERAGE(D2:D11)	2:D11)	=AVERAGE(E2:E11)	11)
13			Sample Mean	25.0470054	252.9339988	
14			Sample St. Dev.	7.787935101	92.19007977	
15			=STDEV(D2:D11)	011)	=STDEV(E2:E11)	

♦ See DataPlan10.xlsx