Paths of analysis*

Synthia

October 10, 2022

1 Analysis parameters

Analysis type: Automatic Retrosynthesis

Rules: none selected

Filters: Exclude Diastereoselecitve reactions, Tunnels, FGI, FGI with protec-

tions

Max. paths returned: 50

Max. iterations: 2000

Commercial:

1. Max. molecular weight - 1000 g/mol

2. Max. price - 1500 \$/g

Published:

- 1. Max. molecular weight 1000 g/mol
- 2. Popularity 5

My Stockroom:

1. Max. molecular weight - 1000 g/mol

Reaction scoring formula: TUNNEL_COEF*FGI_COEF*STEP*20+1000 000*(CONFLICT+NON SELECTIVITY+FILTERS+PROTECT)

Chemical scoring formula: SMALLER^ 3,SMALLER^ 1.5

Min. search width: 400

Max. reactions per product: 60

^{*}The results stated herein were generated using the proprietary platform owned and maintained by Grzybowski Scientific Inventions, Inc., a subsidiary of Merck KGaA, Darmstadt Germany. The results are provided on an as is basis, and shall be used solely in connection with the rights afforded in the license agreement and for no other purpose.

Strategies: none selected

FGI Coeff: 0

Tunnels Coeff: 0

JSON Parameters: {}

2 Paths

5 paths found. Paths are sorted by score. Reactions are sorted in appearance order for each path.

2.1 Path 1

Score: 1000115.31

Figure 1: Outline of path 1

2.1.1 Nitration of Aromatic Compounds

Substrates:

- 1. methyl b-benzoyldithioacetate
- 2. dioxoazanium

Products:

1. CSC(=S)CC(=O)c1cccc([N+](=O)[O-])c1

Typical conditions: H2SO4.HNO3.heat

Protections: none

Reference: doi:10.1021/ja021307w

Retrosynthesis ID: 10159

2.1.2 Aldol Condensation

Substrates:

1. Acrolein

 $2.~\mathrm{CSC}(=\mathrm{S})\mathrm{CC}(=\mathrm{O})\mathrm{c1cccc}([\mathrm{N+}](=\mathrm{O})[\mathrm{O-}])\mathrm{c1}$

Products:

1. C=CC=C(C(=O)c1cccc([N+](=O)[O-])c1)C(=S)SC

Typical conditions: NaOEt.base

Protections: none

Reference: 10.1080/00397911.2016.1206938

Retrosynthesis ID: 10049

2.1.3 Reduction of enones to saturated alcohols

1. C=CC=C(C(=O)c1cccc([N+](=O)[O-])c1)C(=S)SC

Products:

1. C=CCC(C(=S)SC)C(O)c1cccc([N+](=O)[O-])c1

Typical conditions: NaBH4.transition.metal.salt.(eg.Pd(OAc)2.or.CeCl3)

Protections: none

Retrosynthesis ID: 15304

2.1.4 Condensation of ketones with dithioesters

Substrates:

1. Methyl p-tolyl ketone - available at Sigma-Aldrich

2. C=CCC(C(=S)SC)C(O)c1cccc([N+](=O)[O-])c1

Products:

 $1. \ C = CCC(C(=S)CC(=O)c1ccc(C)cc1)C(O)c1cccc([N+](=O)[O-])c1$

Typical conditions: NaH.DMF

Protections:

Functional group SMARTS	Classification	Protecting groups
[#6][CH]([#6])[OH]	alcohols	Methoxymethyl Ether (MOM)
		2-Methoxyethoxymethyl Ether (MEM)
		Tetrahydropyranyl Ether (THP)
		Benzyl Ether (PMB)
		t-Butyldimethylsilyl Ether (TB-DMS)
		Methyl Ether

Reference: 10.1021/jo400599e and 10.1002/ejoc.201301667

Retrosynthesis ID: 9996413

2.2 Path 2

Score: 1000146.56

Figure 2: Outline of path 2

2.2.1 Synthesis of aryl Grignard reagents

Substrates:

- 1. Magnesium available at Sigma-Aldrich
- 2. 3-Nitro-1-bromobenzene available at Sigma-Aldrich

Products:

1. O=[N+]([O-])c1cccc([Mg]Br)c1

Typical conditions: iPrMgCl.THF or other conditions like BuLi.MgBr2 or Mg.THF

Protections: none

Reference: DOI: 10.1016/S0040-4039(99)01404-5 and 10.1021/jo0000574 and 10.1002/anie.200454084 and 10.1021/ol400150z

Retrosynthesis ID: 10011461

2.2.2 Synthesis of ketones from esters via Grignard addition

Substrates:

- 1. dimethyl-1,1-dithiooxalat
- 2. Allylmagnesium bromide solution available at Sigma-Aldrich

Products:

1. C=CCC(=O)C(=S)SC

Typical conditions: THF. Low temp

Protections: none

Reference: 10.1021/jm800136b and 10.1021/ol402802g

Retrosynthesis ID: 10011836

2.2.3 Olefination of ketones followed by hydrolysis

Substrates:

1. triphenylphosphonium methoxymethylide

2. C=CCC(=O)C(=S)SC

Products:

1. C=CCC(C=O)C(=S)SC

Typical conditions: KHMDS.THF hydrolysis: pTsOH.water.acetone

Protections: none

Reference: 10.1002/anie.201811403 and 10.1002/anie.201809130 and 10.1002/anie.201705809 and 10.1002/anie.201409038 and 10.1021/ol3028994 (SI)

2.2.4 Grignard-Type Reaction

Substrates:

- $1. \ \mathrm{C=CCC(C=O)C(=S)SC}$
- $2. \ O=[N+]([O-])c1cccc([Mg]Br)c1$

Products:

1. C=CCC(C(=S)SC)C(O)c1cccc([N+](=O)[O-])c1

 $\textbf{Typical conditions:} \ \operatorname{Mg} \ \mathrm{or} \ \operatorname{Li.ether}$

Protections: none

Reference: 10.1055/s-0030-1260809 or 10.1021/jm061429p or 10.1021/jo0621423

or 10.1021/ja00373a036 or 10.1016/S0040-4020(01)00457-4

Retrosynthesis ID: 25123

2.2.5 Condensation of ketones with dithioesters

Substrates:

1. Methyl p-tolyl ketone - available at Sigma-Aldrich

 $2. \ C{=}CCC(C(=S)SC)C(O)c1cccc([N+](=O)[O-])c1 \\$

Products:

 $1. \ C = CCC(C(=S)CC(=O)c1ccc(C)cc1)C(O)c1cccc([N+](=O)[O-])c1$

 ${\bf Typical\ conditions:}\ {\bf NaH.DMF}$

Protections:

Functional group SMARTS	Classification	Protecting groups
[#6][CH]([#6])[OH]	alcohols	Methoxymethyl Ether (MOM)
		2-Methoxyethoxymethyl Ether (MEM)
		Tetrahydropyranyl Ether (THP)
		Benzyl Ether (PMB)
		t-Butyldimethylsilyl Ether (TB-DMS)
		Methyl Ether

Reference: 10.1021/jo400599e and 10.1002/ejoc.201301667

Retrosynthesis ID: 9996413

2.3 Path 3

Score: 1000146.56

Figure 3: Outline of path 3

2.3.1 Synthesis of O-substituted N-substituted hydroxamic acids

Substrates:

1. 1-methyl-1,1-dithiooxalsaeure

2. n-methoxymethylamine - available at Sigma-Aldrich

Products:

1. CON(C)C(=O)C(=S)SC

Typical conditions: DCC.DMAP or CDI.TEA.DCM

Protections: none

Reference: Patent: WO2007/67333A2, 2007 & 10.1016/j.bmcl.2008.09.100

Retrosynthesis ID: 1152

2.3.2 Synthesis of ketones from Weinreb amides

Substrates:

1. Allyl bromide - available at Sigma-Aldrich

2. CON(C)C(=O)C(=S)SC

Products:

1. C=CCC(=O)C(=S)SC

Typical conditions: 1.RmgBr.THF 2.TFA.DCM

Protections: none

Reference: 10.1021/jm051185t and 10.1021/ol101021v (supporting info)

2.3.3 Olefination of ketones followed by hydrolysis

Substrates:

- 1. triphenylphosphonium methoxymethylide
- 2. C=CCC(=O)C(=S)SC

Products:

1. C=CCC(C=O)C(=S)SC

Typical conditions: KHMDS.THF hydrolysis: pTsOH.water.acetone

Protections: none

Reference: 10.1002/anie.201811403 and 10.1002/anie.201809130 and 10.1002/anie.201705809 and 10.1002/anie.201409038 and 10.1021/ol3028994 (SI)

Retrosynthesis ID: 31014861

2.3.4 Synthesis of aryl Grignard reagents

Substrates:

- 1. 1-Iodo-3-nitrobenzene available at Sigma-Aldrich
- 2. Magnesium available at Sigma-Aldrich

Products:

 $1. \ O{=}[N{+}]([O{-}])c1cccc([Mg]Br)c1$

Typical conditions: iPrMgCl.LiCl.THF or other conditions Mg.THF or

tBuLi.MgBr2

Protections: none

Reference: DOI: 10.1016/S0040-4039(99)01404-5 and 10.1021/jo0000574 and

WO2014123793 p.137 and 10.1021/jm400491x and 10.3762/bjoc.12.36

Retrosynthesis ID: 10011460

2.3.5 Grignard-Type Reaction

Substrates:

1. C=CCC(C=O)C(=S)SC

2. O=[N+]([O-])c1cccc([Mg]Br)c1

Products:

1. C=CCC(C(=S)SC)C(O)c1cccc([N+](=O)[O-])c1

Typical conditions: Mg or Li.ether

Protections: none

Reference: 10.1055/s-0030-1260809 or 10.1021/jm061429p or 10.1021/jo0621423

or 10.1021/ja00373a036 or 10.1016/S0040-4020(01)00457-4

2.3.6 Condensation of ketones with dithioesters

Substrates:

1. Methyl p-tolyl ketone - available at Sigma-Aldrich

 $2. \ C = CCC(C(=S)SC)C(O)c1cccc([N+](=O)[O-])c1$

Products:

 $1. \ C = CCC(C(=S)CC(=O)c1ccc(C)cc1)C(O)c1cccc([N+](=O)[O-])c1$

Typical conditions: NaH.DMF

Protections:

Functional group SMARTS	Classification	Protecting groups
[#6][CH]([#6])[OH]	alcohols	Methoxymethyl Ether (MOM)
		2-Methoxyethoxymethyl Ether (MEM)
		Tetrahydropyranyl Ether (THP)
		Benzyl Ether (PMB)
		t-Butyldimethylsilyl Ether (TB-DMS)
		Methyl Ether

Reference: 10.1021/jo400599e and 10.1002/ejoc.201301667

2.4 Path 4

Score: 1000146.56

Figure 4: Outline of path 4

2.4.1 Synthesis of ketones from esters via Grignard addition

Substrates:

1. dimethyl-1,1-dithiooxalat

2. Allylmagnesium bromide solution - available at Sigma-Aldrich

Products:

1. C=CCC(=O)C(=S)SC

 $\textbf{Typical conditions:} \ \, \textbf{THF. Low temp}$

Protections: none

Reference: 10.1021/jm800136b and 10.1021/ol402802g

Retrosynthesis ID: 10011836

2.4.2 Olefination of ketones followed by hydrolysis

1. triphenylphosphonium methoxymethylide

$$2. C=CCC(=O)C(=S)SC$$

Products:

1. C=CCC(C=O)C(=S)SC

Typical conditions: KHMDS.THF hydrolysis: pTsOH.water.acetone

Protections: none

Reference: 10.1002/anie.201811403 and 10.1002/anie.201809130 and 10.1002/anie.201705809 and 10.1002/anie.201409038 and 10.1021/ol3028994 (SI)

Retrosynthesis ID: 31014861

2.4.3 Synthesis of aryl Grignard reagents

Substrates:

1. 1-Iodo-3-nitrobenzene - available at Sigma-Aldrich

2. Magnesium - available at Sigma-Aldrich

Products:

 $1. \ O{=}[N{+}]([O{-}])c1cccc([Mg]Br)c1$

Typical conditions: iPrMgCl.LiCl.THF or other conditions Mg.THF or tBuLi.MgBr2

Protections: none

Reference: DOI: 10.1016/S0040-4039(99)01404-5 and 10.1021/jo0000574 and

WO2014123793 p.137 and 10.1021/jm400491x and 10.3762/bjoc.12.36

Retrosynthesis ID: 10011460

2.4.4 Grignard-Type Reaction

Substrates:

1. C=CCC(C=O)C(=S)SC

 $2.~O{=}[N{+}]([O{-}])c1cccc([Mg]Br)c1\\$

Products:

1. C=CCC(C(=S)SC)C(O)c1cccc([N+](=O)[O-])c1

Typical conditions: Mg or Li.ether

Protections: none

Reference: 10.1055/s-0030-1260809 or 10.1021/jm061429p or 10.1021/jo0621423

or 10.1021/ja00373a036 or 10.1016/S0040-4020(01)00457-4

Retrosynthesis ID: 25123

2.4.5 Condensation of ketones with dithioesters

1. Methyl p-tolyl ketone - available at Sigma-Aldrich

2. C=CCC(C(=S)SC)C(O)c1cccc([N+](=O)[O-])c1

Products:

 $1. \ C = CCC(C(=S)CC(=O)c1ccc(C)cc1)C(O)c1cccc([N+](=O)[O-])c1$

Typical conditions: NaH.DMF

Protections:

Functional group SMARTS	Classification	Protecting groups
[#6][CH]([#6])[OH]	alcohols	Methoxymethyl Ether (MOM)
		2-Methoxyethoxymethyl Ether (MEM)
		Tetrahydropyranyl Ether (THP)
		Benzyl Ether (PMB)
		t-Butyldimethylsilyl Ether (TB-DMS)
		Methyl Ether

Reference: 10.1021/jo400599e and 10.1002/ejoc.201301667

Retrosynthesis ID: 9996413

2.5 Path 5

Score: 1000146.56

2.5.1 Synthesis of O-substituted N-substituted hydroxamic acids

Figure 5: Outline of path 5

1. 1-methyl-1,1-dithiooxalsaeure

2. n-methoxymethylamine - available at Sigma-Aldrich

Products:

1. CON(C)C(=O)C(=S)SC

 $\textbf{Typical conditions:} \ \, \mathsf{DCC.DMAP} \ \, \mathsf{or} \ \, \mathsf{CDI.TEA.DCM}$

Protections: none

Reference: Patent: WO2007/67333A2, 2007 & 10.1016/j.bmcl.2008.09.100

Retrosynthesis ID: 1152

2.5.2 Synthesis of ketones from Weinreb amides

Substrates:

1. Allyl bromide - available at Sigma-Aldrich

2. CON(C)C(=O)C(=S)SC

Products:

1. C=CCC(=O)C(=S)SC

Typical conditions: 1.RmgBr.THF 2.TFA.DCM

Protections: none

Reference: 10.1021/jm051185t and 10.1021/ol101021v (supporting info)

Retrosynthesis ID: 6837

2.5.3 Synthesis of aryl Grignard reagents

Substrates:

1. Magnesium - available at Sigma-Aldrich

2. 3-Nitro-1-bromobenzene - available at Sigma-Aldrich

Products:

1. O=[N+]([O-])c1cccc([Mg]Br)c1

 $\textbf{Typical conditions:} \ \ \text{iPrMgCl.THF} \ \ \text{or other conditions like BuLi.MgBr2} \ \ \text{or}$

Mg.THF

Protections: none

Reference: DOI: 10.1016/S0040-4039(99)01404-5 and 10.1021/jo0000574 and

10.1002/anie.200454084 and 10.1021/ol400150z

Retrosynthesis ID: 10011461

2.5.4 Olefination of ketones followed by hydrolysis

1. triphenylphosphonium methoxymethylide

$$2. C=CCC(=O)C(=S)SC$$

Products:

1. C=CCC(C=O)C(=S)SC

Typical conditions: KHMDS.THF hydrolysis: pTsOH.water.acetone

Protections: none

Reference: 10.1002/anie.201811403 and 10.1002/anie.201809130 and 10.1002/anie.201705809 and 10.1002/anie.201409038 and 10.1021/ol3028994 (SI)

Retrosynthesis ID: 31014861

2.5.5 Grignard-Type Reaction

Substrates:

1. C=CCC(C=O)C(=S)SC

2. O=[N+]([O-])c1cccc([Mg]Br)c1

Products:

1. C=CCC(C(=S)SC)C(O)c1cccc([N+](=O)[O-])c1

Typical conditions: Mg or Li.ether

Protections: none

Reference: 10.1055/s-0030-1260809 or 10.1021/jm061429p or 10.1021/jo0621423 or 10.1021/ja00373a036 or 10.1016/S0040-4020(01)00457-4

2.5.6 Condensation of ketones with dithioesters

Substrates:

1. Methyl p-tolyl ketone - available at Sigma-Aldrich

 $2. \ C{=}CCC(C(=S)SC)C(O)c1cccc([N+](=O)[O-])c1$

Products:

 $1. \ C = CCC(C(=S)CC(=O)c1ccc(C)cc1)C(O)c1cccc([N+](=O)[O-])c1$

Typical conditions: NaH.DMF

Protections:

Functional group SMARTS	Classification	Protecting groups
[#6][CH]([#6])[OH]	alcohols	Methoxymethyl Ether (MOM)
		2-Methoxyethoxymethyl Ether (MEM)
		Tetrahydropyranyl Ether (THP)
		Benzyl Ether (PMB)
		t-Butyldimethylsilyl Ether (TB-DMS)
		Methyl Ether

Reference: 10.1021/jo400599e and 10.1002/ejoc.201301667