Codifica sorgente e canale

- Codifica sorgente: comprimere i dati per rimuovere ridondanza
- Codifica canale: aggiungere ridondanza per proteggere da errori di trasmissione sul canale
- Comunicazione con successo: out=in

- Es. effetto rumore. Input possibili al canale: sequenze 101 e 111, input 101, rumore: secondo bit modificato, output: 111; input: 111, rumore: nessuno, output: 111;
 - ⇒ diverse sequenze in input producono lo stesso output (input confondibili).
- Obiettivo: proteggere l'informazione da eventuali errori di trasmissione legati al rumore

Obiettivo: Input NON Confondibili = correzione errori trasmissione

- Obiettivo: Input NON Confondibili = correzione errori trasmissione
- Metodo: Aggiungere ridondanza

- Obiettivo: Input NON Confondibili = correzione errori trasmissione
- Metodo: Aggiungere ridondanza
- Nota: impossibile eliminare effetto rumore vogliamo input non confondibili con alta probabilità

Canali discreti senza memoria

• Canale discreto (alfabeti I/O discreti): $(\mathcal{X}, \Pi, \mathcal{Y})$

 \mathcal{X} = alfabeto input al canale

 \mathcal{Y} = alfabeto output al canale

 $\Pi = [p(y/x)]$ = matrice delle probabilità di transizione

Canali discreti senza memoria

• Canale discreto (alfabeti I/O discreti): $(\mathcal{X}, \Pi, \mathcal{Y})$

 \mathcal{X} = alfabeto input al canale \mathcal{Y} = alfabeto output al canale $\Pi = [p(y/x)]$ = matrice delle probabilità di transizione

Canale discreto senza memoria (DMC) (X, ∏, Y): probabilità output dipende solo da input corrispondente NON da precedenti input o output.

Capacità per n usi del canale

$$C^{(n)} = \frac{1}{n} \max_{p(x_1...x_n)} I(X_1...X_n; Y_1...Y_n)$$

Capacità per n usi del canale

$$C^{(n)} = \frac{1}{n} \max_{p(x_1...x_n)} I(X_1...X_n; Y_1...Y_n)$$

Per canale discreto senza memoria (DMC)

$$\begin{split} I(X_1 \dots X_n; Y_1 \dots Y_n) &= H(Y_1 \dots Y_n) - H(Y_1 \dots Y_n/X_1 \dots X_n) \\ &= \sum_{i=1}^n H(Y_i/Y_1 \dots Y_{i-1}) - \sum_{i=1}^n H(Y_i/X_1 \dots X_n, Y_1 \dots Y_{i-1}) \\ &\leq \sum_{i=1}^n H(Y_i) - \sum_{i=1}^n H(Y_i/X_i) \quad \text{regola catena+DMC} \\ &\leq \sum_{i=1}^n I(X_i; Y_i) \end{split}$$

Capacità per n usi del canale

$$C^{(n)} = \frac{1}{n} \max_{p(x_1...x_n)} I(X_1...X_n; Y_1...Y_n)$$

Per canale discreto senza memoria (DMC)

$$\begin{split} I(X_1 \dots X_n; Y_1 \dots Y_n) &= H(Y_1 \dots Y_n) - H(Y_1 \dots Y_n/X_1 \dots X_n) \\ &= \sum_{i=1}^n H(Y_i/Y_1 \dots Y_{i-1}) - \sum_{i=1}^n H(Y_i/X_1 \dots X_n, Y_1 \dots Y_{i-1}) \\ &\leq \sum_{i=1}^n H(Y_i) - \sum_{i=1}^n H(Y_i/X_i) \quad \text{regola catena+DMC} \\ &\leq \sum_{i=1}^n I(X_i; Y_i) \end{split}$$

Max $I(X_1 ... X_n; Y_1 ... Y_n)$ massimizzando ogni $I(X_i; Y_i)$ Ci concentreremo su $\max I(X,Y) \equiv$ singolo uso canale

Capacità Canale

Capacità del canale senza memoria:

$$C = \max_{p(x)} I(X;Y)$$

Dimostreremo:

capacità = massimo numero di bit (di informazione) che possono essere trasmessi per ogni uso del canale.

Canale senza rumore

● Trasmette un bit per uso senza errore \Rightarrow C = 1

Canale senza rumore

- **●** Trasmette un bit per uso senza errore \Rightarrow C=1
- Infatti

$$C = \max_{p(x)} I(X;Y) = \max_{p(x)} H(X) - H(X/Y) = \max_{p(x)} H(X) = 1$$

per
$$p(x) = (1/2, 1/2)$$

Canale binario simmetrico

$$\begin{array}{c|c}
1-p & 0 \\
\hline
 & 1 \\
\hline
 & 1-p
\end{array}$$

$$\Pi = \begin{bmatrix} p & 1-p \\ 1-p & p \end{bmatrix}$$

$$\begin{split} I(X;Y) &= H(Y) - H(Y/X) = H(Y) - \sum_{x} p(x)H(Y/X = x) \\ &= H(Y) - \sum_{x} p(x)h(p) = H(Y) - h(p) \\ C &= max_{p(X)}I(X;Y) = max_{p(X)}H(Y) - h(p) \le 1 - h(p) \end{split}$$

$$p(X) = (1/2, 1/2) \Rightarrow p(y = 1) = \frac{1}{2}(1-p) + \frac{1}{2}p = \frac{1}{2} \Rightarrow H(Y) = 1$$

Quindi C = 1 - h(p)bits

Canali Simmetrici

Canale simmetrico: Ogni riga (risp. colonna) é permutazione di ogni altra riga (risp. colonna)

Es.
$$\Pi = \begin{bmatrix} 0.3 & 0.2 & 0.5 \\ 0.5 & 0.3 & 0.2 \\ 0.2 & 0.5 & 0.3 \end{bmatrix}$$

Canali Simmetrici

Canale simmetrico: Ogni riga (risp. colonna) é permutazione di ogni altra riga (risp. colonna)

Es.
$$\Pi = \begin{bmatrix} 0.3 & 0.2 & 0.5 \\ 0.5 & 0.3 & 0.2 \\ 0.2 & 0.5 & 0.3 \end{bmatrix}$$

Canale debolmente simmetrico: Ogni riga é permutazione di ogni altra riga; la somma su ogni colonna é costante

Es.
$$\Pi = \begin{bmatrix} 1/3 & 1/6 & 1/2 \\ 1/3 & 1/2 & 1/6 \end{bmatrix}$$

Canali Simmetrici

 Canale simmetrico: Ogni riga (risp. colonna) é permutazione di ogni altra riga (risp. colonna)

Es.
$$\Pi = \begin{bmatrix} 0.3 & 0.2 & 0.5 \\ 0.5 & 0.3 & 0.2 \\ 0.2 & 0.5 & 0.3 \end{bmatrix}$$

Canale debolmente simmetrico: Ogni riga é permutazione di ogni altra riga; la somma su ogni colonna é costante

Es.
$$\Pi = \begin{bmatrix} 1/3 & 1/6 & 1/2 \\ 1/3 & 1/2 & 1/6 \end{bmatrix}$$

Canale simmetrico ⇒ Canale debolmente simmetrico

ightharpoonup r=riga di Π

$$I(X;Y) = H(Y) - H(Y/X) = H(Y) - H(\mathbf{r}) \le \log|Y| - H(\mathbf{r})$$

y r=riga di ∏

$$I(X;Y) = H(Y) - H(Y/X) = H(Y) - H(\mathbf{r}) \le \log|Y| - H(\mathbf{r})$$

▶ Ponendo p(x) = 1/|X| per ogni $x \in X$ risulta

$$p(y) = \sum_x p(x)p(y/x) = \sum_x \frac{p(y/x)}{|X|} = \frac{\text{somma colonna}}{|X|} = \frac{1}{|Y|}$$

y r=riga di ∏

$$I(X;Y) = H(Y) - H(Y/X) = H(Y) - H(\mathbf{r}) \le \log|Y| - H(\mathbf{r})$$

▶ Ponendo p(x) = 1/|X| per ogni $x \in X$ risulta

$$p(y) = \sum_x p(x) p(y/x) = \sum_x \frac{p(y/x)}{|X|} = \frac{\text{somma colonna}}{|X|} = \frac{1}{|Y|}$$

• Quindi $C = \log |Y| - H(\mathbf{r})$

y r=riga di ∏

$$I(X;Y) = H(Y) - H(Y/X) = H(Y) - H(\mathbf{r}) \le \log|Y| - H(\mathbf{r})$$

▶ Ponendo p(x) = 1/|X| per ogni $x \in X$ risulta

$$p(y) = \sum_x p(x)p(y/x) = \sum_x \frac{p(y/x)}{|X|} = \frac{\text{somma colonna}}{|X|} = \frac{1}{|Y|}$$

• Quindi $C = \log |Y| - H(\mathbf{r})$

Es.
$$\Pi = \begin{bmatrix} 1/3 & 1/6 & 1/2 \\ 1/3 & 1/2 & 1/6 \end{bmatrix}$$
 $C = \log 3 - H(\frac{1}{3}, \frac{1}{6}, \frac{1}{2}) = \frac{1}{2} \log 3 - \frac{2}{3}$

$$\Pi = \begin{bmatrix} 1 - \alpha & \alpha & 0 \\ 0 & \alpha & 1 - \alpha \end{bmatrix}$$

$$\Pi = \begin{bmatrix} 1 - \alpha & \alpha & 0 \\ 0 & \alpha & 1 - \alpha \end{bmatrix}$$

$$I(X;Y) = H(Y) - H(Y/X)$$

= $H(Y) - pH(Y/X = 0) - (1 - p)H(Y/X = 1)$
= $H(Y) - h(\alpha)$

$$p(Y = 0) = p(1 - \alpha), P(Y = e) = \alpha$$

 $H(Y) - h(\alpha) = H(p(1 - \alpha), (1 - p)(1 - \alpha), \alpha) - h(\alpha) = (1 - \alpha)h(p)$

$$\begin{split} p(Y=0) &= p(1-\alpha), \, P(Y=e) = \alpha \\ H(Y) - h(\alpha) &= H(p(1-\alpha), (1-p)(1-\alpha), \alpha) - h(\alpha) = (1-\alpha)h(p) \\ C &= \max_p (1-\alpha)h(p) = 1 - \alpha, \qquad \text{per } p = 1/2 \end{split}$$

Frazione α bit cancellati \Rightarrow mumero medio bit di info trasmessi é $1-\alpha$.

Canale asimmetrico

$$\Pi = \begin{bmatrix} 1 - \alpha & \alpha & 0 \\ 0 & \alpha & 1 - \alpha \\ 0 & 0 & 10 \end{bmatrix}$$

Canale asimmetrico

$$\Pi = \begin{bmatrix} 1 - \alpha & \alpha & 0 \\ 0 & \alpha & 1 - \alpha \\ 0 & 0 & 10 \end{bmatrix}$$

$$2 \longrightarrow 2$$

$$Sia \ p(X) = (p, p, 1 - 2p) \Rightarrow P(Y) = (p, p, 1 - 2p)$$

$$H(Y/X) = 2ph(\alpha) + (1 - 2p)h(1) = 2ph(\alpha)$$

$$H(Y) = H(p, p, 1 - 2p) = -2p\log p - (1 - 2p)\log(1 - 2p)$$

Canale asimmetrico

$$\Pi = \begin{bmatrix} 1 - \alpha & \alpha & 0 \\ 0 & \alpha & 1 - \alpha \\ 0 & 0 & 10 \end{bmatrix}$$

Sia
$$p(X) = (p, p, 1 - 2p) \Rightarrow P(Y) = (p, p, 1 - 2p)$$

 $H(Y/X) = 2ph(\alpha) + (1 - 2p)h(1) = 2ph(\alpha)$
 $H(Y) = H(p, p, 1 - 2p) = -2p \log p - (1 - 2p) \log(1 - 2p)$

Per trovare C massimizziamo

$$f(p) = H(Y) - H(Y/X) = -2p \log p - (1 - 2p) \log(1 - 2p) - 2ph(\alpha)$$

$$f'(p) = -2 \log e - 2 \log p + 2 \log e + 2 \log(1 - 2p) - 2h(\alpha) = 0$$

$$h(\alpha) = -\log p + \log(1 - 2p)$$

$$C = -2p\log p - (1-2p)\log(1-2p) + (2p\log p - 2p\log(1-2p)) = \log(1-2p)$$

Codice canale (M, n) per $(\mathcal{X}, \Pi, \mathcal{Y})$:

- Insieme di indici $\{1,\ldots,M\}$ (\equiv possibili sequenze input)
- Funzione codifica $X^n:\{1,\ldots,M\}\to\mathcal{X}^n$
- Funzione decodifica $g: \mathcal{Y}^n \to \{1, \dots, M\}$

Probabilitá di errore quando si codifica indice i:

$$\lambda_i = Pr\{g(Y^n) \neq i/X^n = i\} = \sum_{y^n} p(y^n/X^n(i))I(g(y^n) \neq i)$$

Probabilitá di errore quando si codifica indice i:

$$\lambda_i = Pr\{g(Y^n) \neq i/X^n = i\} = \sum_{y^n} p(y^n/X^n(i))I(g(y^n) \neq i)$$

Probabilitá massima di errore:

$$\lambda^{(n)} = \max_{1 \le i \le M} \lambda_i$$

Probabilitá di errore quando si codifica indice i:

$$\lambda_i = Pr\{g(Y^n) \neq i/X^n = i\} = \sum_{y^n} p(y^n/X^n(i))I(g(y^n) \neq i)$$

Probabilitá massima di errore:

$$\lambda^{(n)} = \max_{1 \le i \le M} \lambda_i$$

Probabilitá media di errore:

$$P_e^{(n)} = \frac{1}{M} \sum_{i=1}^{M} \lambda_i$$

• Tasso codice
$$(M, n)$$
: $R = \frac{\log M}{n} \frac{\text{bit}}{\text{trasm.}}$

- Tasso codice (M, n): $R = \frac{\log M}{n} \frac{\text{bit}}{\text{trasm.}}$
- Tasso R é ottenibile se esiste sequenza di codici $(\lceil 2^{nR} \rceil, n)$ con $\lambda^{(n)} \to 0$ per $n \to \infty$

- Tasso codice (M, n): $R = \frac{\log M}{n} \frac{\text{bit}}{\text{trasm.}}$
- **Tasso** R **é** ottenibile se esiste sequenza di codici $(\lceil 2^{nR} \rceil, n)$ con $\lambda^{(n)} \to 0$ per $n \to \infty$
- Si dimostra che: (Teorema di Codifica Canale)
 - (a) ogni tasso $R \leq C$ é ottenibile,
 - (b) nessun tasso R > C é ottenibile

- Tasso codice (M, n): $R = \frac{\log M}{n} \frac{\text{bit}}{\text{trasm.}}$
- **Tasso** R **é** ottenibile se esiste sequenza di codici $(\lceil 2^{nR} \rceil, n)$ con $\lambda^{(n)} \to 0$ per $n \to \infty$
- Si dimostra che: (Teorema di Codifica Canale)
 - (a) ogni tasso $R \leq C$ é ottenibile,
 - (b) nessun tasso R > C é ottenibile
- Capacitá = limite superiore di tutti i tassi ottenibili

Coppie Tipiche

Definizione L'insieme $A_{\epsilon}^{(n)}$ delle coppie tipiche $\{(x^n, y^n)\}$ rispetto alla distribuzione p(x, y) è definito da:

$$A_{\epsilon}^{(n)} = \left\{ \left| (x^n, y^n) \in \mathcal{X}^n \times \mathcal{Y}^n : \right| \\ \left| -\frac{1}{n} \log p(x^n) - H(X) \right| < \epsilon, \\ \left| -\frac{1}{n} \log p(y^n) - H(Y) \right| < \epsilon, \\ \left| -\frac{1}{n} \log p(x^n, y^n) - H(XY) \right| < \epsilon \right\}$$

dove
$$p(x^{n}, y^{n}) = \prod_{i=1}^{n} p(x_{i}, x_{j}).$$

Joint AEP

Teorema Siano (X^n, Y^n) sequenze di v.c. i.i.d secondo $p(x^n, y^n) = \prod_{i=1}^n p(x_i, x_j)$. Allora,

1.
$$Pr((X^n, Y^n) \in A_{\epsilon}^{(n)}) \to 1 \text{ per } n \to \infty.$$

Joint AEP

Teorema Siano (X^n, Y^n) sequenze di v.c. i.i.d secondo $p(x^n, y^n) = \prod_{i=1}^n p(x_i, x_j)$. Allora,

- 1. $Pr((X^n, Y^n) \in A_{\epsilon}^{(n)}) \to 1 \text{ per } n \to \infty.$
- **2.** $(1-e)2^{n(H(X,Y)-\epsilon)} \le |A_{\epsilon}^{(n)}| \le 2^{n(H(X,Y)+\epsilon)}$

Joint AEP

Teorema Siano (X^n, Y^n) sequenze di v.c. i.i.d secondo $p(x^n, y^n) = \prod_{i=1}^n p(x_i, x_j)$. Allora,

- 1. $Pr((X^n, Y^n) \in A_{\epsilon}^{(n)}) \to 1 \text{ per } n \to \infty.$
- **2.** $(1-e)2^{n(H(X,Y)-\epsilon)} \le |A_{\epsilon}^{(n)}| \le 2^{n(H(X,Y)+\epsilon)}$
- 3. Se $\tilde{X^n}$ e $\tilde{Y^n}$ sono indipendenti e scelte secondo $p(x^n)$ e $p(y^n)$, quindi $Pr(\tilde{x^n}, \tilde{y^n}) = p(\tilde{x^n})p(\tilde{y^n})$, allora per $n \to \infty$

$$(1-e)2^{-n(I(X;Y)+3\epsilon)} \le Pr((\tilde{X}^n, \tilde{X}^n) \in A_{\epsilon}^{(n)}) \le 2^{-n(I(X;Y)-3\epsilon)}.$$

Teorema di Codifica Canale

Teorema Per ogni tasso R < C, esiste una sequenza di codici $(2^{nR}, n)$ con probabilità massima di errore $\lambda^{(n)} \to 0$.

Teorema di Codifica Canale

Teorema Per ogni tasso R < C, esiste una sequenza di codici $(2^{nR}, n)$ con probabilità massima di errore $\lambda^{(n)} \to 0$. Dim. La dimostrazione si basa sulle seguenti idee

analisi di sequenze lunghe, in modo da sfruttare la legge dei grandi numeri e, specificamente, le proprietà delle coppie tipiche.

Teorema di Codifica Canale

Teorema Per ogni tasso R < C, esiste una sequenza di codici $(2^{nR}, n)$ con probabilità massima di errore $\lambda^{(n)} \to 0$. Dim. La dimostrazione si basa sulle seguenti idee

- analisi di sequenze lunghe, in modo da sfruttare la legge dei grandi numeri e, specificamente, le proprietà delle coppie tipiche.
- Calcolo della probabilità di errore mediata su una scelta random del codice.

Codifica Canale - Parte Diretta

Generiamo 2^{nR} parole codice i.i.d. scegliendone i simboli da $\mathcal X$ indipendentemente in accordo ad una fissata d.p. p(x).

• una sequenza x^n è scelta con probabilità $p(x^n) = \prod_{i=1}^n p(x_i)$

Codifica Canale - Parte Diretta

Generiamo 2^{nR} parole codice i.i.d. scegliendone i simboli da \mathcal{X} indipendentemente in accordo ad una fissata d.p. p(x).

- una sequenza x^n è scelta con probabilità $p(x^n) = \prod_{i=1}^n p(x_i)$
- un codice

$$C = \begin{bmatrix} x_1(1) & x_2(1) & \dots & x_n(1) \\ \vdots & \vdots & \ddots & \vdots \\ x_1(2^{nR}) & x_2(2^{nR}) & \dots & x_n(2^{nR}) \end{bmatrix}.$$

con probabilità
$$Pr(\mathcal{C}) = \prod_{w=1}^{2^{nR}} \prod_{i=1}^{n} p(x_i(w)).$$

Consideriamo il seguente modello

Il codice viene scelto in maniera random (vedi sopra)

Consideriamo il seguente modello

- Il codice viene scelto in maniera random (vedi sopra)
- il messaggio W da trasmettere viene scelto uniformemente a caso: $Pr(W=w)=2^{-nR},$ per ogni $w=1,2,\ldots,2^{nR}.$

Consideriamo il seguente modello

- Il codice viene scelto in maniera random (vedi sopra)
- il messaggio W da trasmettere viene scelto uniformemente a caso: $Pr(W=w)=2^{-nR},$ per ogni $w=1,2,\ldots,2^{nR}.$
- ▶ La parola codice $X^n(w)$, corrispondente alla w-esima riga di $\mathcal C$ viene spedita sul canale.

Consideriamo il seguente modello

- Il codice viene scelto in maniera random (vedi sopra)
- il messaggio W da trasmettere viene scelto uniformemente a caso: $Pr(W=w)=2^{-nR},$ per ogni $w=1,2,\ldots,2^{nR}.$
- ▶ La parola codice $X^n(w)$, corrispondente alla w-esima riga di $\mathcal C$ viene spedita sul canale.
- L'output del canale è una sequenza Yⁿ determinata in accordo alla distribuzione

$$P(y^n|x^n(w)) = \prod_{i=1}^n p(y_i|x_i(w)).$$

- ullet La sequenza Y^n viene decodificata come \tilde{W} se
 - $(X^n(\tilde{W}), Y^n)$ formano coppia tipica
 - Non esiste un altro messaggio k t.c. $(X^n(k), Y^n)$ formano coppia tipica.

- ullet La sequenza Y^n viene decodificata come \tilde{W} se
 - $(X^n(\tilde{W}), Y^n)$ formano coppia tipica
 - Non esiste un altro messaggio k t.c. $(X^n(k), Y^n)$ formano coppia tipica.
- ullet se non esiste un tale W o ce ne è più di uno, si emette un segnale di errore.

- ullet La sequenza Y^n viene decodificata come \tilde{W} se
 - $(X^n(\tilde{W}), Y^n)$ formano coppia tipica
 - Non esiste un altro messaggio k t.c. $(X^n(k), Y^n)$ formano coppia tipica.
- ullet se non esiste un tale W o ce ne è più di uno, si emette un segnale di errore.
- Dichiariamo la codifica errata se $\tilde{W} \neq W$, e denotiamo con \mathcal{E} tale evento.

La probabilità di errore. La calcoliamo mediata su tutte le parole del codice, e mediata su tutti i codici possibili:

$$Pr(\mathcal{E}) = \sum_{\mathcal{C}} P(\mathcal{C}) P_e^{(n)}(\mathcal{C})$$

$$= \sum_{\mathcal{C}} P(\mathcal{C}) \frac{1}{2^{nR}} \sum_{w=1}^{2^{nR}} \lambda_w(\mathcal{C})$$

$$= \frac{1}{2^{nR}} \sum_{w=1}^{2^{nR}} \sum_{\mathcal{C}} P(\mathcal{C}) \lambda_w(\mathcal{C})$$

Poiché mediamo su tutti i codici

$$\sum_{\mathcal{C}} P(\mathcal{C}) \lambda_w(\mathcal{C})$$

non dipende da w. Infatti, guardando a tutti codici, la stessa parola appare lo stesso numero di volte con ogni indice.

• Quindi possiamo assumere, senza perdita di generalità che l'indice del messaggio inviato sia W=1, poiché

$$P(C) = \frac{1}{2^{nR}} \sum_{w=1}^{2^{nR}} \sum_{\mathcal{C}} P(C) \lambda_w(C) = \sum_{\mathcal{C}} P(C) \lambda_1(C)$$
$$= Pr(\mathcal{E}|W=1).$$

Sia Y^n la sequenza output quando $X^n(1)$ viene trasmesso (codifichiamo W=1).

■ Definiamo $\forall i$, l'evento "l" i-esima parola codice e Y^n formano coppia tipica":

$$E_i = \{ (X^n(i), Y^n) \in A_{\epsilon}^{(n)} \},$$

Sia Y^n la sequenza output quando $X^n(1)$ viene trasmesso (codifichiamo W=1).

■ Definiamo $\forall i$, l'evento "l' i-esima parola codice e Y^n formano coppia tipica":

$$E_i = \{ (X^n(i), Y^n) \in A_{\epsilon}^{(n)} \},$$

- Per la decodifica scelta, quando $X^n(1)$ viene trasmessa, si ha errore se una si verifica tra:
 - $(X^n(i), Y^n) \in A_{\epsilon}^{(n)}, i \neq 1$: I' evento E_i ;
 - $(X^n(1), Y^n) \notin A_{\epsilon}^{(n)}$: l'evento $\overline{E_1}$.

$$P(\mathcal{E}) = Pr(\mathcal{E}|W=1) = P(\overline{E_1} \cup E_2 \cup E_3 \cup \dots \cup E_{2^{nR}})$$

$$\leq P(\overline{E_1}) + \sum_{i=2}^{2^{nR}} P(E_i).$$

$$P(\mathcal{E}) = Pr(\mathcal{E}|W=1) = P(\overline{E_1} \cup E_2 \cup E_3 \cup \dots \cup E_{2^{nR}})$$

$$\leq P(\overline{E_1}) + \sum_{i=2}^{2^{nR}} P(E_i).$$

• $P(\overline{E_1}) \le \epsilon$, per $n \to \infty$ (joint AEP 1.);

$$P(\mathcal{E}) = Pr(\mathcal{E}|W=1) = P(\overline{E_1} \cup E_2 \cup E_3 \cup \dots \cup E_{2^{nR}})$$

$$\leq P(\overline{E_1}) + \sum_{i=2}^{2^{nR}} P(E_i).$$

- $P(\overline{E_1}) \le \epsilon$, per $n \to \infty$ (joint AEP 1.);
- $X^n(1)$ e $X^n(i)$ indipendenti $\Rightarrow Y^n$ e $X^n(i)$ indipendenti, $\forall i \neq 1$.

$$P(\mathcal{E}) = Pr(\mathcal{E}|W=1) = P(\overline{E_1} \cup E_2 \cup E_3 \cup \dots \cup E_{2^{nR}})$$

$$\leq P(\overline{E_1}) + \sum_{i=2}^{2^{nR}} P(E_i).$$

- $P(E_1) \le \epsilon$, per $n \to \infty$ (joint AEP 1.);
- $X^n(1)$ e $X^n(i)$ indipendenti $\Rightarrow Y^n$ e $X^n(i)$ indipendenti, $\forall i \neq 1$.
- $ightharpoonup P(E_i) \le 2^{-n(I(X;Y)-3\epsilon)}$ (joint AEP 3.).

Otteniamo

$$P(\mathcal{E}) \leq P(\overline{E_1}) + \sum_{i=2}^{2^{nR}} P(E_i)$$

$$\leq \epsilon + \sum_{i=2}^{2^{nR}} 2^{-n(I(X;Y) - 3\epsilon)}$$

$$= \epsilon + (2^{nR} - 1)2^{-n(I(X;Y) - 3\epsilon)}$$

$$\leq \epsilon + 2^{3n\epsilon}2^{-n(I(X;Y) - R)}$$

$$\leq 2\epsilon,$$

se scegliamo n sufficientemente grande e $R < I(X;Y) - 3\epsilon$.

- Se R < I(X;Y), possiamo scegliere ϵ e n in modo da rendere la media (su tutti i codici) di $P_e^{(n)} < 2\epsilon$.
- Che possiamo dire della probabilità massima di errore?

ullet scegliamo $p(x)=p^*(x)=\max_{p(x)}I(X;Y)$ cioè quella che ottiene la capacità

- ullet scegliamo $p(x)=p^*(x)=\max_{p(x)}I(X;Y)$ cioè quella che ottiene la capacità
- quindi possiamo sostituire R < C ad R < I(X; Y).

- scegliamo $p(x) = p^*(x) = \max_{p(x)} I(X;Y)$ cioè quella che ottiene la capacità
- quindi possiamo sostituire R < C ad R < I(X;Y).
- Se la media (su tutti i codici) di $P_e^{(n)}(C)$ è ≤ 2ε, allora esiste un codice C^* tale che $P_e^{(n)}(C)$ ≤ 2ε.

- scegliamo $p(x) = p^*(x) = \max_{p(x)} I(X;Y)$ cioè quella che ottiene la capacità
- quindi possiamo sostituire R < C ad R < I(X;Y).
- Se la media (su tutti i codici) di $P_e^{(n)}(C)$ è ≤ 2ε, allora esiste un codice C^* tale che $P_e^{(n)}(C)$ ≤ 2ε.
- eliminiamo da \mathcal{C}^* ogni parola i con $\lambda_i > 4\epsilon$ (sono meno della metá, altr. $P_e^{(n)}(\mathcal{C}) > \frac{1}{2^{nR}} \frac{2^{nR}}{2} 4\epsilon = 2\epsilon$)

- scegliamo $p(x) = p^*(x) = \max_{p(x)} I(X;Y)$ cioè quella che ottiene la capacità
- quindi possiamo sostituire R < C ad R < I(X;Y).
- Se la media (su tutti i codici) di $P_e^{(n)}(C)$ è $\leq 2\epsilon$, allora esiste un codice C^* tale che $P_e^{(n)}(C) \leq 2\epsilon$.
- eliminiamo da \mathcal{C}^* ogni parola i con $\lambda_i > 4\epsilon$ (sono meno della metá, altr. $P_e^{(n)}(\mathcal{C}) > \frac{1}{2^{nR}} \frac{2^{nR}}{2} 4\epsilon = 2\epsilon$)
- allora

$$2\epsilon \ge \frac{1}{2^{nR}} \sum_{i=1}^{2^{nR}} \lambda_i(\mathcal{C}^*) \Rightarrow \exists (i_1, \dots, i_{2^{nR-1}}) \ s.t. \ \lambda_{i_j}(\mathcal{C}^*) \le 4\epsilon.$$

Creiamo un nuovo codice che contiene solo tali parole di \mathcal{C}^* con prob. di errore piccola

•
$$\tilde{\mathcal{C}}^* = \{X^n(i_j) \in \mathcal{C}^* \mid j = 1, 2, \dots, 2^{nR-1}\}.$$

Creiamo un nuovo codice che contiene solo tali parole di \mathcal{C}^* con prob. di errore piccola

•
$$\tilde{\mathcal{C}}^* = \{X^n(i_j) \in \mathcal{C}^* \mid j = 1, 2, \dots, 2^{nR-1}\}.$$

■ Tale codice contiene ovviamente 2^{nR-1} parole, quindi il suo tasso è $R - \frac{1}{n}$ che per n grande non differisce significativamente da R.

Creiamo un nuovo codice che contiene solo tali parole di \mathcal{C}^* con prob. di errore piccola

•
$$\tilde{\mathcal{C}}^* = \{X^n(i_j) \in \mathcal{C}^* \mid j = 1, 2, \dots, 2^{nR-1}\}.$$

- Tale codice contiene ovviamente 2^{nR-1} parole, quindi il suo tasso è $R \frac{1}{n}$ che per n grande non differisce significativamente da R.
- Concludendo: per ogni R < C, possiamo scegliere un codice di tasso $R' = R \frac{1}{n}$, con probabilità massima di errore $\lambda^{(n)} < 4\epsilon$.

Codifica Canale - Osservazioni

La scelta random del codice serve per la prova non per la codifica

Codifica Canale - Osservazioni

- La scelta random del codice serve per la prova non per la codifica
- Mediando proviamo che esiste almeno un codice con le proprietà desiderate

- La scelta random del codice serve per la prova non per la codifica
- Mediando proviamo che esiste almeno un codice con le proprietà desiderate
- Tale codice può essere trovato (ricerca esaustiva !?!) ed il processo di codifica e decodifica rimane completamente deterministico.

- La scelta random del codice serve per la prova non per la codifica
- Mediando proviamo che esiste almeno un codice con le proprietà desiderate
- Tale codice può essere trovato (ricerca esaustiva !?!) ed il processo di codifica e decodifica rimane completamente deterministico.
- La ricerca di tale codice è esponenziale

- La scelta random del codice serve per la prova non per la codifica
- Mediando proviamo che esiste almeno un codice con le proprietà desiderate
- Tale codice può essere trovato (ricerca esaustiva !?!) ed il processo di codifica e decodifica rimane completamente deterministico.
- La ricerca di tale codice è esponenziale
- Possiamo sceglierlo random e avere buone chance di trovarne uno con le caratteristiche richieste. Però la decodifica risulta altamente inefficiente.

- La scelta random del codice serve per la prova non per la codifica
- Mediando proviamo che esiste almeno un codice con le proprietà desiderate
- Tale codice può essere trovato (ricerca esaustiva !?!) ed il processo di codifica e decodifica rimane completamente deterministico.
- La ricerca di tale codice è esponenziale
- Possiamo sceglierlo random e avere buone chance di trovarne uno con le caratteristiche richieste. Però la decodifica risulta altamente inefficiente.
- Un problema fondamentale: trovare codici con tasso prossimo a C e con una struttura che mantenga la decodifica efficiente

- Ci rimane da dimostrare che per ogni sequenza di codici $(2^{nR}, n)$ con $\lambda^{(n)} \to n$ deve valere R < C.
- Cominceremo con il dimostrare due lemmi che ci serviranno per la dimostrazione.
- $I(X^n, Y^n) \le \sum_{i=1}^n I(X_i, Y_i)$
- $H(X^n|Y^n) \le 1 + P_e^{(n)}nR$. (Disuguaglianza di Fano)

Lemma (Disuguaglianza di Fano) Consideriamo un DMC. Sia il messaggio in input W scelto in accordo alla distribuzione uniforme tra 2^{nR} messaggi. Sia \mathcal{C} il codice, Y^n la parola ricevuta in output al canale, $g(\cdot)$ la funzione di decodifica e $P_e^{(n)} = Pr(W \neq g(Y^n))$. Allora

$$H(X^n|Y^n) \le 1 + P_e^{(n)} nR.$$

Disuguaglianza di Fano

Dim. Definiamo
$$E = \begin{cases} 1, & se \ g(Y^n) \neq W, \\ 0, & se \ g(Y^n) = W. \end{cases}$$

Solution Espandiamo $H(E, W|Y^n)$ in due modi diversi

$$H(E, W|Y^n) = H(W|Y^n) + H(E|W, Y^n)$$

= $H(E|Y^n) + H(W|E, Y^n)$

Disuguaglianza di Fano

Dim. Definiamo
$$E = \begin{cases} 1, & se \ g(Y^n) \neq W, \\ 0, & se \ g(Y^n) = W. \end{cases}$$

• Espandiamo $H(E, W|Y^n)$ in due modi diversi

$$H(E, W|Y^n) = H(W|Y^n) + H(E|W, Y^n)$$

= $H(E|Y^n) + H(W|E, Y^n)$

• Notiamo che $H(E|W,Y^n)=0, H(E|Y^n)\leq H(E)\leq 1,$ e

$$H(W|E, Y^n) = \sum_{i=0}^{1} P(E=i)H(W|Y^n, E=i)$$
$$= (1 - P_e^{(n)})0 + P_e^{(n)}log(2^{nR} - 1) \le P_e^{(n)}nR.$$

Dim. (cont.)

Ne consegue che

$$H(W|Y^n) \le 1 + P_e^{(n)} nR$$

Dim. (cont.)

Ne consegue che

$$H(W|Y^n) \le 1 + P_e^{(n)} nR$$

● da cui segue la tesi, in quanto $H(X^n|Y^n) \le H(W|Y^n)$, poiché X^n è funzione di W.

– р. 35/42

Lemma Sia Y^n l'output di un DMC per input X^n . Allora, per ogni distribuzione $p(x^n)$, vale $I(X^n;Y^n) \leq \sum_{i=1}^n I(X_i;Y_i)$. **Dim.**

$$I(X^{n}, Y^{n}) = H(Y^{n}) - H(Y^{n}|X^{n})$$

$$= H(Y^{n}) - \sum_{i=1}^{n} H(Y_{i}|Y_{1}, \dots, Y_{i-1}, X^{n})$$

$$= H(Y^{n}) - \sum_{i=1}^{n} H(Y_{i}|X_{i}) \quad (no \ memoria)$$

$$\leq \sum_{i=1}^{n} H(Y_{i}) - \sum_{i=1}^{n} H(Y_{i}|X_{i}) = \sum_{i=1}^{n} I(X_{i}; Y_{i}).$$

Lemma Sia Y^n l'output di un DMC per input X^n . Allora, per ogni distribuzione $p(x^n)$, vale $I(X^n; Y^n) \leq \sum_{i=1}^n I(X_i; Y_i)$.

Corollario Sia Y^n l'output di un DMC per input X^n . Allora, per ogni distribuzione $p(x^n)$, vale $I(X^n;Y^n) \leq nR$.

$$\lambda^{(n)} \to 0 \Rightarrow P_e^{(n)} \to 0.$$

- $\lambda^{(n)} \to 0 \Rightarrow P_e^{(n)} \to 0.$
- Consideriamo il messaggio W scelto uniformemente in $\{1,2,\ldots,2^{nR}\},$ (quindi H(W)=nR)

- $\lambda^{(n)} \to 0 \Rightarrow P_e^{(n)} \to 0.$
- Consideriamo il messaggio W scelto uniformemente in $\{1,2,\ldots,2^{nR}\},$ (quindi H(W)=nR)
- $P_e^{(n)} = Pr(g(Y^n) \neq W).$

- Consideriamo il messaggio W scelto uniformemente in $\{1,2,\ldots,2^{nR}\},$ (quindi H(W)=nR)
- $P_e^{(n)} = Pr(g(Y^n) \neq W).$
- Allora,

$$nR = H(W) = H(W|Y^n) + I(W;Y^n) \quad [W \to X^n(W) \to Y^n]$$

 $\leq H(W|Y^n) + I(X^n(W);Y^n)$
 $\leq 1 + P_e^{(n)} nR + nC.$

•
$$nR \le 1 + P_e^{(n)} nR + nC$$
.

- $nR \le 1 + P_e^{(n)} nR + nC.$
- Dividendo per n otteniamo

$$R \le \frac{1}{n} + P_e^{(n)}R + C$$

Teorema Ogni sequenza di codici $(2^{nR}, n)$ con $\lambda^{(n)} \to 0$, deve avere R < C. Dim. (cont.)

$$nR \le 1 + P_e^{(n)} nR + nC.$$

Dividendo per n otteniamo

$$R \le \frac{1}{n} + P_e^{(n)}R + C$$

• e per $n \to \infty$ abbiamo la tesi, usando

$$P_e^{(n)} \to 0 \ e \ 1/n \to 0.$$

● Riscriviamo la disuguaglianza $R \leq \frac{1}{n} + P_e^{(n)}R + C$ come

$$P_e^{(n)} \ge 1 - \frac{C}{R} - \frac{1}{nR}$$

■ Riscriviamo la disuguaglianza $R \leq \frac{1}{n} + P_e^{(n)}R + C$ come

$$P_e^{(n)} \ge 1 - \frac{C}{R} - \frac{1}{nR}$$

• Questo mostra che per R>C la probabilità di errore si mantiene >0 per $n\to\infty$.

■ Riscriviamo la disuguaglianza $R \leq \frac{1}{n} + P_e^{(n)}R + C$ come

$$P_e^{(n)} \ge 1 - \frac{C}{R} - \frac{1}{nR}$$

- Questo mostra che per R>C la probabilità di errore si mantiene >0 per $n\to\infty$.
- ma deve valere per ogni n. Infatti, se avessimo codici con $P_e^{(n)} = 0$ per n piccoli potremmo estenderli a codici di lunghezza maggiore per concatenazione.

■ Riscriviamo la disuguaglianza $R \leq \frac{1}{n} + P_e^{(n)}R + C$ come

$$P_e^{(n)} \ge 1 - \frac{C}{R} - \frac{1}{nR}$$

- Questo mostra che per R>C la probabilità di errore si mantiene >0 per $n\to\infty$.
- ma deve valere per ogni n. Infatti, se avessimo codici con $P_e^{(n)} = 0$ per n piccoli potremmo estenderli a codici di lunghezza maggiore per concatenazione.
- In conclusione, non si può ridurre arbitrariamente la probabilità d'errore a tassi superiori alla capacità.

Codifica Sorgente-Canale

Teorema Se V_1, \ldots, V_n soddisfano la PEA allora esiste una codice sorgente-canale con $P_e^{(n)} \to 0$ se H(V) < C. Se H(V) > C la probabilitá di errore non puó essere resa arbitrariamente piccola.

Codifica Sorgente-Canale

Teorema Se V_1, \ldots, V_n soddisfano la PEA allora esiste una codice sorgente-canale con $P_e^{(n)} \to 0$ se H(V) < C. Se H(V) > C la probabilitá di errore non puó essere resa arbitrariamente piccola.

Dim.

Codifica Sorgente-Canale

Teorema Se V_1, \ldots, V_n soddisfano la PEA allora esiste una codice sorgente-canale con $P_e^{(n)} \to 0$ se H(V) < C. Se H(V) > C la probabilitá di errore non puó essere resa arbitrariamente piccola.

Dim.

$$\begin{array}{c|c} V^{n} & X^{n}(V^{n}) & Y^{n} & \hat{V}^{n} \\ \hline \end{array}$$

$$\mathsf{PEA} \Rightarrow |A_{\epsilon}^{(n)}| \le 2^{n(H(V) + \epsilon)} \mathsf{e} \ P(A_{\epsilon}^{(n)}) > 1 - \epsilon$$

Codifichiamo solo sequenze tipiche $\Rightarrow 2^{n(H(V)+\epsilon)}$ indici \Rightarrow se $R=H(V)+\epsilon < C$ possiamo trasmettere sul canale con prob. err $<\epsilon$

Quindi

$$P_e^{(n)} = P(V^n \neq \hat{V}^n)$$

$$\leq P(V^n \neq A_{\epsilon}^{(n)}) + P(g(Y^n) \neq V^n | V^n \in A_{\epsilon}^{(n)}) \leq \epsilon + \epsilon = 2\epsilon$$

Parte inversa. Dalla disuguaglianza di Fano

$$H(V^n|\hat{V}^n) \le 1 + P_e^{(n)} \log |\mathcal{V}^n| = 1 + P_e^{(n)} n \log |\mathcal{V}|$$

Parte inversa. Dalla disuguaglianza di Fano

$$H(V^n|\hat{V}^n) \le 1 + P_e^{(n)} \log |\mathcal{V}^n| = 1 + P_e^{(n)} n \log |\mathcal{V}|$$
 Quindi

$$H(V) = \frac{H(V_1 \dots V_n)}{n} = \frac{H(V^n)}{n} = \frac{1}{n} H(V^n | \hat{V}^n) + \frac{1}{n} I(V^n; \hat{V}^n)$$

$$\leq \frac{1}{n} (1 + P_e^{(n)} n \log |\mathcal{V}|) + \frac{1}{n} I(V^n; \hat{V}^n)$$

$$\leq \frac{1}{n} (1 + P_e^{(n)} n \log |\mathcal{V}|) + \frac{1}{n} I(X^n; Y^n)$$

$$\leq \frac{1}{n} + P_e^{(n)} \log |\mathcal{V}| + C$$

Parte inversa. Dalla disuguaglianza di Fano

$$H(V^n|\hat{V}^n) \le 1 + P_e^{(n)} \log |\mathcal{V}^n| = 1 + P_e^{(n)} n \log |\mathcal{V}|$$
 Quindi

$$H(V) = \frac{H(V_1 \dots V_n)}{n} = \frac{H(V^n)}{n} = \frac{1}{n} H(V^n | \hat{V}^n) + \frac{1}{n} I(V^n; \hat{V}^n)$$

$$\leq \frac{1}{n} (1 + P_e^{(n)} n \log |\mathcal{V}|) + \frac{1}{n} I(V^n; \hat{V}^n)$$

$$\leq \frac{1}{n} (1 + P_e^{(n)} n \log |\mathcal{V}|) + \frac{1}{n} I(X^n; Y^n)$$

$$\leq \frac{1}{n} + P_e^{(n)} \log |\mathcal{V}| + C$$

Per $n \to \infty$, se $P_e^{(n)} \to 0$ si ha $H(V) \le C$.