I217E: Functional Programming

Nao Hirokawa JAIST

Term 2-1, 2022

http://www.jaist.ac.jp/~hirokawa/lectures/fp/

1217E: Functional Programming

1/29

Orthogonality

Schedule			
10/12 10/14 10/19 10/21 10/26 10/28 11/2 11/4	introduction algebraic data types I algebraic data types II applications program reasoning data structures I data structures II computational models	/	interpreters compilers termination confluence verification review exam

Evaluation

exam (60) + reports (40)

1217E: Functional Programming

2/29

4/29

Orthogonality

Definition

t is linear if every variable in t occurs exactly once

Example

eq(x,y) and eq(s(x),0) are linear, but eq(s(x),s(x)) and x+(-x) are not

Definition

- \blacksquare TRS ${\mathcal R}$ is left-linear if ℓ is linear for all rules $\ell \to r \in {\mathcal R}$
- TRS \mathcal{R} is **orthogonal** if \mathcal{R} is left-linear and $\mathsf{CP}(\mathcal{R}) = \emptyset$

Theorem (Rozen, 1973)

every orthogonal TRS is confluent

1217E: Functional Programming 3/29 1217E: Functional Programming

Exhaustiveness of Patterns

data Nat =
$$Z \mid S$$
 Nat
eq :: Nat \rightarrow Nat \rightarrow Bool
eq $Z Z$ = True
eq $(S x) (S y) = eq x y$

is this well-defined? what is result of following term?

5/29

1217E: Functional Programming

Type System

Haskell Programs are Orthogonal TRSs

 $\mathsf{data}\ \mathsf{Nat} = \mathsf{Z} \mid \mathsf{S}\ \mathsf{Nat}$

eq :: Nat \rightarrow Nat \rightarrow Bool

eq Z Z = True

 $\operatorname{eq}\left(\mathsf{S}\;x\right)\,\left(\mathsf{S}\;y\right)=\operatorname{eq}\;x\;y$

eq x y = False

Exercise

instantiate eq x y = False to fulfill orthogonality

Note

- every Haskell program is virtually orthogonal
- hence confluence is guaranteed

1217E: Functional Programming

6/29

Type Inference (Type Reconstruction Problem)

Question

what is type of f in next Haskell program?

```
data List a = Nil | Cons a (List a)

f (Cons x y) z = Cons x (f y z)

f Nil z = z
```

Note

corresponding system is applicative TRS ${\cal R}$ over type environment Γ

$$\mathcal{R} = \left\{ \begin{array}{c} \mathsf{f} \ (\mathsf{c} \ x \ y) \ z \to \mathsf{c} \ x \ (\mathsf{f} \ y \ z) \\ \mathsf{f} \ \mathsf{nil} \ z \to z \end{array} \right\} \qquad \Gamma = \left\{ \begin{array}{c} \mathsf{c} : a \to \mathsf{List} \ a \to \mathsf{List} \ a \\ \mathsf{nil} : \mathsf{List} \ a \end{array} \right\}$$

I217E: Functional Programming 7/29

1217E: Functional Programming

8/29

Typing

Definition

polymorphic type τ is term of form:

■ type environment is partial function from symbols to types

Example

$$\left\{\begin{array}{l} x: \mathsf{Nat} \\ \mathsf{0}: \mathsf{Nat} \\ \mathsf{f}: a \to (a \to \mathsf{Bool}) \end{array}\right\} \text{ is type environment}$$

1217E: Functional Programming

9/29

Definition

- term t is typable under Γ if $\Gamma \vdash t : \tau$ for some τ
- lacktriangledown rule $\ell o r$ is typable under Γ if $\Gamma dash \ell : au$ and $\Gamma dash r : au$ for some type au
- \blacksquare applicative TRS is typable under Γ if all rules are typable under Γ

Example

- lacksquare g g is typeable under $\{g:a
 ightarrow a\}$ but not under $\{g: \mathsf{List}\ a
 ightarrow \mathsf{List}\ a\}$
- {map $f(x:xs) \rightarrow f(x:map) f(xs)$ } is typable under {map: $(a \rightarrow b) \rightarrow \text{List } a \rightarrow \text{List } b, \ldots$ }

Fact (type preservation)

for every applicative TRS ${\cal R}$ typable under Γ

$$\Gamma \vdash s : \tau \& s \to_{\mathcal{R}} t \implies \Gamma \vdash t : \tau$$

Definition (type judgement)

given type environment Γ

$$\frac{\Gamma(x) = \tau}{x : \tau \sigma} \qquad \frac{t : \tau_1 \to \tau_2 \quad u : \tau_1}{t \quad u : \tau_2}$$

where σ is type version of substitution

Example

$$\Gamma = \left\{ \begin{array}{l} x: \mathsf{Nat} \\ \mathsf{0}: \mathsf{Nat} \\ \mathsf{f}: a \to a \to \mathsf{Bool} \end{array} \right\} \quad \frac{\Gamma(\mathsf{f}) = a \to a \to \mathsf{Bool}}{\frac{\Gamma \vdash \mathsf{f}: \mathsf{Nat} \to \mathsf{Nat} \to \mathsf{Bool}}{\Gamma \vdash x: \mathsf{Nat} \to \mathsf{Bool}}} \quad \frac{\Gamma(x) = \mathsf{Nat}}{\Gamma \vdash x: \mathsf{Nat}} \quad \frac{\Gamma(\mathsf{0}) = \mathsf{Nat}}{\Gamma \vdash \mathsf{0}: \mathsf{Nat}}$$

1217E: Functional Programming

10/29

Definition (constraint typing)

let Γ be type environment and a, d_x, d_f type variables

$$\frac{\Gamma \vdash_{\mathcal{C}} x : a}{\Gamma \vdash_{\mathcal{C}} x : a} [a \approx d_x] \qquad \frac{\Gamma(f) = \tau}{\Gamma \vdash_{\mathcal{C}} f : a} [a \approx \tau'] \qquad \frac{\Gamma(f) = \bot}{\Gamma \vdash_{\mathcal{C}} f : a} [a \approx d_f]$$

$$\frac{\Gamma \vdash_{\mathcal{C}} t : b \qquad \Gamma \vdash_{\mathcal{C}} u : c}{\Gamma \vdash_{\mathcal{C}} t u : a} [b \approx c \rightarrow a]$$

where b,c are fresh variables, and au' is renamed version of au with fresh variables

Notation

- lacksquare $\mathcal{C}_{\Gamma}(t,a)$ is set of constraints in derivation of $\Gamma \vdash_{\mathcal{C}} t:a$
- $\blacksquare \mathcal{C}_{\Gamma}(\mathcal{R}) = \{e \mid e \in \mathcal{C}_{\Gamma}(\ell \to r) \text{ for some } \ell \to r \in \mathcal{R}\}$

Example of (Monomorphic) Type Inference

let
$$\Gamma = \{c : a \to L \ a \to L \ a, \ nil : L \ a\}$$
 (below, $\Gamma \vdash_{\mathcal{C}}$ is omitted)

$$\frac{\Gamma(\mathsf{f}) = \bot}{\frac{\mathsf{f} : a_2}{\mathsf{f}}} \underbrace{\begin{bmatrix} \mathsf{G} : a_6 \to \mathsf{L} & a_6 \to \mathsf{L} & a_6 \\ \hline c : a_5 & [6] & \frac{\Gamma(x) = \bot}{x : a_7} & [5] \\ \hline c : a_5 & [5] & \frac{\Gamma(y) = \bot}{y : a_8} & [4] \\ \hline c : a_7 & [2] & \frac{\Gamma(z) = \bot}{z : a_9} & [2] \\ \hline f : (c : x : y) : a_1 & \frac{\Gamma(z) = \bot}{z : a_9} & [1] \end{bmatrix}}_{\mathsf{f}} \underbrace{\frac{\Gamma(z) = \bot}{z : a_9}}_{\mathsf{f}} \underbrace{\frac{\Gamma(z) = \bot}{z : a_9}}_{$$

 $\mathcal{C}_{\Gamma}(f(x,y),z,a_0)$ consists of following equations:

1217E: Functional Programming

13/29

Review

variable-renamed applicative TRS \mathcal{R} over $\Gamma = \{c : a \to L \ a \to L \ a, \ nil : L \ a\}$:

$$\ell_1 = f(c x y) z \rightarrow c x (f y z) = r_1$$

 $\ell_2 = f \text{ nil } \frac{w}{v} \rightarrow \frac{w}{v} = r_2$

 $C_{\Gamma}(\mathcal{R}) = C_{\Gamma}(\ell_1, a_0) \cup C_{\Gamma}(r_1, a_{10}) \cup \{a_0 \approx a_{10}\} \cup C_{\Gamma}(\ell_2, a_{20}) \cup C_{\Gamma}(r_2, a_{25}) \cup \{a_{20} \approx a_{25}\}$

```
19: a_0 \approx a_{10}
20: a_{21} \approx a_{24} \rightarrow a_{20} 22: a_{22} \approx d_{\rm f} 24: a_{24} \approx d_w 21: a_{22} \approx a_{23} \rightarrow a_{21} 23: a_{23} \approx d_{\rm nil} 25: a_{25} \approx d_w 26: a_{20} \approx a_{25}
26: a_{20} \approx a_{25}
```

since $\mu(d_{\mathbf{f}}) = \mathsf{L} \ d_x \to \mathsf{L} \ d_x \to \mathsf{L} \ d_x$ for mgu μ of $\mathcal{C}_{\Gamma}(\mathcal{R})$, type of f is $\mathsf{L} \ a \to \mathsf{L} \ a \to \mathsf{L} \ a$

1217E: Functional Programming

14/29

1: Trees

Consider trees defined by the following type:

$$\mathsf{data}\ \mathsf{Tree} = \mathsf{Leaf}\ |\ \mathsf{Node}\ \mathsf{Tree}\ \mathsf{Int}\ \mathsf{Tree}$$

Implement the postorder traversal function post :: Tree \rightarrow [Int].

$$\operatorname{post} \left(\begin{array}{c} \operatorname{Node} \ \ (\operatorname{Node} \ \operatorname{Leaf} \ 1 \ \operatorname{Leaf}) \ 2 \\ (\operatorname{Node} \ \ (\operatorname{Node} \ \operatorname{Leaf} \ 4 \ \operatorname{Leaf}) \ 3 \\ (\operatorname{Node} \ \operatorname{Leaf} \ 5 \ \operatorname{Leaf}) \end{array} \right) \\ = [1,4,5,3,2]$$

1217E: Functional Programming 15/29 1217E: Functional Programming 16/29

2: Trees

A binary tree t is perfect if for each node in t, its left and right subtrees have the same number of nodes.

Implement perfect :: Tree \rightarrow Bool that checks if a binary tree is perfect.

Perfect binary trees.

Non-perfect binary trees.

1217E: Functional Programming

17/29

4: Inifinite List

Let H be the smallest subset of $\mathbb N$ that satisfies the next two conditions:

- $\blacksquare 1 \in H$.
- If $n \in H$ then $2n, 3n, 5n \in H$.

Implement the infinite list h that enumerates all elements in H in ascending order:

$$h = 1:2:3:4:5:6:8:9:10:12:15:16:\cdots$$

3: Proof

Consider the following code:

len :: [a] -> **Int** .

len [] = 0.

len (x : xs) = len xs + 1.

f :: [a] -> [a] -> [a]

f[] ys = ys

f(x:xs) ys = fxs(x:ys).

rev :: [a] -> [a]

rev xs = f xs []

Show that len (rev xs) = len xs for all lists xs.

1217E: Functional Programming

18/29

5: Termination

Prove or disprove termination of the TRS \mathcal{R} :

$$d([]) \to []$$
$$d(x:xs) \to x:(x:d(xs))$$

6: Confluence

Prove or disprove confluence of the TRS \mathcal{R} :

$$p(x) + y \rightarrow p(x + y)$$
$$x + (y + z) \rightarrow (x + y) + z$$

1217E: Functional Programming

21/29

To Conclude...

7: Combinatorial Problem

Implement the function $f:[a] \to Int \to [[a]]$

$$f [a_1, a_2, \dots, a_n] k$$

$$= [[a_{i_1}, a_{i_2}, \dots, a_{i_k}] | 1 \le i_1 < i_2 < \dots < i_k \le n]$$

For instance, we have:

$$\begin{array}{l} {\sf f} \,\, [1,2,3,4] \,\, 3 = [\, [1,2,3], [1,2,4], [1,3,4], [2,3,4] \,] \\ {\sf f} \,\, [1,2,3,4] \,\, 5 = [\,] \end{array}$$

1217E: Functional Programming

22/29

Drawing Fractals

Data Structures and Algorithms

I217E: Functional Programming 25/29

Wire World

N-Queen Problem Solver

I217E: Functional Programming

26/29

Mini-Haskell Interpreter

sample input:

output:

[1,2,3,4,5]

1217E: Functional Programming

28/29

Conclusion

Goal

to become familiar with function definitions, learning

- **■** functional programming
- **■** program reasoning
- computational model (programming language theory)

Ultimate Goal

to understand that math is not your enemy

Thank You for Your Active Participation

Good Luck in Exam!

I217E: Functional Programming

29/29