Minimum bases in permutation groups

Lawrence Chen

October 20, 2022

Honours presentation

Contents

Some basic group theory

Permutations

Permutation groups

Generating a group

Group actions

Orbits and stabilisers

The Rubik's group

Bases and stabiliser chains Primitive subgroups of affine

groups
Affine group

Affine groups

Large base permutation groups

Main result

Motivation: understanding the Rubik's cube

- How can we represent operations of a cube?
- How can we tell how many states a Rubik's cube can take?
- How can we better *understand* operations of a cube?

One answer: using permutations and computational group theory!

(J. A. Paulos, Innumeracy)

Ideal Toy Company stated on the package of the original Rubik cube that there were more than three billion possible states the cube could attain. It's analogous to McDonald's proudly announcing that they've sold more than 120 hamburgers.

Some basic group theory

Permutations

Definition (permutation)

Permutation of $[n] := \{1, ..., n\}$ is bijection $\sigma : [n] \to [n]$. **Symmetric group** Sym(n) is set of permutations of [n].

Write 1 = () for identity. Write i^{σ} not $\sigma(i)$ for *image*.

Cycle notation: $\sigma = (1, 4, 5)(2, 6) \in Sym(6)$ is:

It means

$$1^{\sigma} = 4$$
, $4^{\sigma} = 5$, $5^{\sigma} = 1$, $2^{\sigma} = 6$, $6^{\sigma} = 2$, $3^{\sigma} = 3$.

2

Permutations (ii)

Product/composition: for $\sigma, \tau \in \operatorname{Sym}(n), \sigma\tau$ means "first σ , then τ ", so $i^{\sigma\tau} = (i^{\sigma})^{\tau}$. E.g. $\sigma = (1, 2, 3), \tau = (1, 3)(2, 4) \in \operatorname{Sym}(4)$,

$$\sigma\tau = (1, 2, 3)(1, 3)(2, 4) = (1, 4, 2) \in \text{Sym}(4).$$

Note: here, $\sigma \tau \neq \tau \sigma$, since $1^{\sigma \tau} = 4$ but $1^{\tau \sigma} = (1^{\tau})^{\sigma} = 3^{\sigma} = 1$. Identity 1 = () satisfies $1\sigma = \sigma 1 = \sigma$ for $\sigma \in \operatorname{Sym}(n)$.

Permutation groups

Note: for $\sigma, \tau, \pi \in \text{Sym}(n)$, (i) $\sigma \tau \in \text{Sym}(n)$, (ii) $1 = () \in \text{Sym}(n)$, (iii) $\sigma^{-1} \in \text{Sym}(n)$, (iv) $(\sigma \tau)\pi = \sigma(\tau \pi)$. If true for subset:

Definition (permutation group)

Permutation group of degree *n* is subset $G \leq \text{Sym}(n)$ satisfying:

- (i) **(closure)** $\sigma \tau \in G$ for $\sigma, \tau \in G$;
- (ii) **(identity)** $1 = () \in G$;
- (iii) (inverses) $\sigma^{-1} \in G$ for $\sigma \in G$.

Example (alternating group)

Alternating group $Alt(3) = \{(), (1, 2, 3), (1, 3, 2)\} < Sym(3)$. In general, Alt(n) is all *even* permutations of [n] (product of even # of *transpositions* (i, j), e.g. (1, 2, 3) = (1, 2)(1, 3)).

Generating a group

Definition (generator)

Set X generates G if every $\sigma \in G$ is $\sigma = x_1^{\pm 1} \cdots x_r^{\pm 1}$ for some $r \in \mathbb{N}$, $x_i \in X$ generators; write $G = \langle X \rangle$.

(If $G = \langle X \rangle$ for some X with |X| = 1, G is **cyclic**.)

Example (cyclic group)

Consider Alt(3) = {(), (1, 2, 3), (1, 3, 2)}: (1, 2, 3)² = (1, 3, 2), (1, 2, 3)³ = (), so Alt(3) = $\langle (1, 2, 3) \rangle$ is cyclic (only for n = 3).

Example (symmetric group)

Consider $Sym(3) = \{(), (1, 2), (1, 3), (2, 3), (1, 2, 3), (1, 3, 2)\}.$

Not cyclic, but $Sym(3) = \langle (1,2), (2,3) \rangle$ (adjacent swaps).

Also, $Sym(3) = \langle (1, 2), (1, 2, 3) \rangle$, e.g. (2, 3) = (1, 2, 3)(1, 2).

Group actions

Definition (group action)

For permutation group G and set $\Omega \neq \emptyset$, G-action is map $\Omega \times G \to \Omega$, $(\alpha, \sigma) \mapsto \alpha^{\sigma}$ s.t. $\alpha^{1} = \alpha$ and $\alpha^{\sigma \tau} = (\alpha^{\sigma})^{\tau}$ for $\alpha \in \Omega$ and $\sigma, \tau \in G$.

Idea: $\alpha \in \Omega$ is *state*, apply *move* $\sigma \in G$ to get state $\alpha^{\sigma} \in \Omega$, in way that respects permutation product.

Example (natural action)

$$G \leq \operatorname{Sym}(n)$$
 acts on $\Omega = [n]$ by $\alpha^{\sigma} := \alpha^{\sigma}$ (image) for $\alpha \in [n]$, $\sigma \in G$.

Example (right regular action)

Perm group G acts on $\Omega = G$ (itself) via $\alpha^{\sigma} := \alpha \sigma$ for $\alpha, \sigma \in G$. (*Check:* $\alpha^{1} = \alpha 1 = \alpha$ and $\alpha^{\sigma \tau} = \alpha(\sigma \tau) = (\alpha \sigma)\tau = (\alpha^{\sigma})^{\tau}$.)

6

Group actions (ii)

Example (dihedral group)

Let $r = (1, 2, 3, 4), s = (1, 4)(2, 3) \in \text{Sym}(4)$. **Dihedral group** is $D_8 := \langle r, s \rangle = \{1, r, r^2, r^3, s, sr, sr^2, sr^3\}$, "symmetries of square".

Note: sr = (2,4), $sr^2 = (1,2)(3,4)$. Action of D_8 on vertices of square (labelled by [4]): $\sigma \in D_8$ sends vertex at i to i^{σ} .

Orbits and stabilisers

Definition (orbit)

If G acts on Ω , then **orbit** of $\alpha \in \Omega$ is $\alpha^G := \{\alpha^\sigma : \sigma \in G\}$. *Idea:* states $\alpha^\sigma \in \Omega$ reachable from fixed $\alpha \in \Omega$ by moves $\sigma \in G$.

Definition (stabiliser)

If G acts on Ω , then **stabiliser** of $\alpha \in \Omega$ is $G_{\alpha} := \{ \sigma \in G : \alpha^{\sigma} = \alpha \}$. *Idea:* moves $\sigma \in G$ that fix given $\alpha \in \Omega$.

Example (right regular action)

G acts on $\Omega = G$ via $\alpha^{\sigma} = \alpha \sigma$ for $\alpha, \sigma \in G$. Orbit of $\alpha \in G$ is $\Omega = G$ $(\alpha^{\alpha^{-1}\beta} = \beta \in G)$; stabiliser of α is $\{1\} = 1$ $(\alpha \sigma = \alpha \implies \sigma = 1)$.

One orbit only: **transitive** action.

Orbits and stabilisers (ii)

Orbit α^G : states $\alpha^{\sigma} \in \Omega$ reachable from fixed α by moves $\sigma \in G$. Stabiliser G_{α} : moves $\sigma \in G$ that fix given α .

Example (dihedral group)

Recall
$$G = D_8 = \langle r, s \rangle = \{1, r, r^2, r^3, s, sr, sr^2, sr^3\} \le \text{Sym}(4)$$
 where $r = (1, 2, 3, 4), s = (1, 4)(2, 3).$

Orbit of 1:
$$1^1 = 1$$
, $1^r = 2$, $1^{r^2} = 3$, $1^{r^3} = 4$, so $1^G = [4]$ (transitive).

Stabiliser of 1:
$$sr = (2, 4)$$
, $sr^2 = (1, 2)(3, 4)$, $sr^3 = (1, 3)$, so $G_1 = \{(), (2, 4)\} = \{1, sr\}$.

Note:
$$|1^G||G_1| = 4 \cdot 2 = 8 = |G|$$
. Coincidence?

Theorem (orbit-stabiliser)

If G acts on Ω , then for $\alpha \in \Omega$, $|\alpha^G| |G_\alpha| = |G|$.

The Rubik's group

Bases and stabiliser chains

Primitive subgroups of affine groups

Affine groups

Definition

Large base permutation groups

Definition

Large base permutation groups (ii)

Liebeck

Moscatiello, Roney-Dougal

Main result

Statement

Main result (ii)

Approach (dot points/observations)

Main result (iii)

Conjecture

References and resources

- Analyzing Rubik's cube with GAP: https://www.gap-system.org/Doc/Examples/rubik.html
- J.A. Paulos *Innumeracy* (book)
- Holt *Handbook of Computational Group Theory* (textbook)
- Dixon and Mortimer Permutation Groups (textbook)
- Orders of elements in Rubik's group (1260 largest, 13 smallest without, 11 rarest, 60 most common, median 67.3, 73 options): https://www.jaapsch.net/puzzles/cubic3.htm#p34
- Thistlethwaite's 52 move algorithm (using group theory): https://www.jaapsch.net/puzzles/thistle.htm