511-2018-09-14-neurophysiology

Rick Gilmore

Today's Topics

- · Quiz 1
- Why brains?
- The resting potential

Why brains?

• _____
• ____

Sterling & Laughlin, 2015

- Tiny, single-celled bacterium
- Feeds on glucose
- · Chemo ("taste") receptors on surface membrane
- Flagellum for movement
- Food concentration regulates duration of "move" phase
- ~4 ms for chemical signal to diffuse from anterior/posterior

- 300K larger than E. Coli
- Propulsion through coordinated beating of cilia
- Diffusion from head to tail ~40 s!
- Use electrical signaling instead
 - Na^+ channel opens (e.g., when stretched)
 - Voltage-gated Ca^{++} channels open, Ca^{++} enters, triggers cilia
 - Signal across cell within ms

- ~10x larger than paramecium
- · 302 neurons + 56 glial cells (out of 959)
- · Swim, forage, mate

Neural communication

- Electrical
 - Fast(er)
 - Within neurons
- · Chemical
 - Diffusion slow(er)
 - Within & between neurons

How are messages generated?

- Electrical potential (== voltage)
 - Think of potential energy
 - Voltage ~ pressure
 - Energy that will be released if something changes

Neurons as electrical devices

$$E = IR$$

- Current flow (I) across membrane
- Membrane varies in permeability (R) to ion flow

· Membrane stores (& releases) charge like

Potential energy

http://physics20project.weebly.com/uploads/1/6/4/8/16484122/1358825569.png

Types of neural electrical potentials

- Resting potential
- Action potential

- Measurement
 - Electrode on inside
 - Electrode on outside (reference)
 - Inside Outside = potential

http://www.physiologyweb.com/lecture_notes/resting_membrane_potential/figs/measuring_the_membrane_pot

- Neuron (and other cells) have
 - Inside is -60-70 mV, with respect to outside
 - About 1/20th typical AAA battery
- · Like charges repel, opposites attract, so
 - Positively charged particles pulled in
 - Negatively charged particles pushed out

Where does the resting potential come from?

- · lons
- · Ion channels
- Separation between charges
- · A balance of forces

We are the champlONs, my friend

- Potassium, K^+
- · Sodium, *Na*⁺
- · Chloride, Cl⁻
- · Calcium, Ca⁺⁺
- Organic anions, A^-

Party On

- Annie (A^-) was having a party.
 - Used to date Nate (Na^+), but now sees Karl (K^+)
- · Hired bouncers called
 - "The Channels"
 - Let Karl and friends in or out, keep Nate out
- Annie's friends (A^-) and Karl's (K^+) mostly inside
- Nate and friends (Na^+) mostly outside
- Claude (Cl^-) tagging along

Party On

Ion channels

- · Macromolecules that form openings in membrane
- Different types of subunits

Nature Reviews | Neuroscience

Ion channels

- Selective
- Vary in permeability
- Types
 - Passive/leak
 - Voltage-gated
 - Ligand-gated (chemically-gated)
 - Transporters

Ion channels

http://www.zoology.ubc.ca/~gardner/F21-08.GIF

Neuron at rest permeable to K^+

- Passive K^+ channels open
- K^+ flows out
- K^+ outflow creates charge separation from A-
- Charge separation creates voltage
- Voltage prevents K^+ concentration from equalizing b/w inside and out

Force of diffusion

semipermeable membrane

https://upload.wikimedia.org/wikipedia/commons/thumb/7/72/Diffusion.en.svg/1000px-Diffusion.en.svg.png

https://upload.wikimedia.org/wikipedia/commons/1/12/Bubble_bath.jpg

Neuron at rest

- Force of diffusion
 - K^+ moves from high concentration (~140 mM inside) to low (~4 mM outside)
 - Movement of charged particles == current

Neuron at rest

- Electrostatic pressure
 - Voltage build-up stops K^+ outflow
 - Voltage called "reversal potential"
 - K^+ positive, so reversal potential negative (w/ respect to outside)
 - Reversal potential close to resting potential

Equilibrium potential and Nernst equation

$$V_{K} = \frac{RT}{(+1)F} \ln \frac{[K^{+}]_{o}}{[K^{+}]_{i}}$$

http://www.physiologyweb.com/lecture_notes/resting_membrane_potential/figs/nernst_equation_v_k.gif

Building on intuition

http://www.daily-player.com/images/articles/finger-in-the-dyke.jpg

Back to neurons

- Na^+ also has reversal potential
- Membrane at rest has low Na^+ permeability
- Concentrated outside neuron (~145 mM) vs. inside (~12 mM)
- Some Na^+ flows
- Equilibrium potential is positive (with respect to outside)

- Net effects of ion flow across membrane
- Goldman-Hodgkin-Katz equation

$$V_{\rm m} = \frac{RT}{F} \ln \left(\frac{p_{\rm K}[{\rm K}^+]_{\rm o} + p_{\rm Na}[{\rm Na}^+]_{\rm o} + p_{\rm Cl}[{\rm Cl}^-]_{\rm i}}{p_{\rm K}[{\rm K}^+]_{\rm i} + p_{\rm Na}[{\rm Na}^+]_{\rm i} + p_{\rm Cl}[{\rm Cl}^-]_{\rm o}} \right)$$

http://www.physiologyweb.com/calculators/figs/ghk_equation.gif

Electrical circuit model

https://upload.wikimedia.org/wikipedia/commons/thumb/3/33/MembraneCircuit.jpg/500px-MembraneCircuit.jpg

Summary of forces

lon	Concentration gradient	Electrostatic force
K^+	Inside >> Outside, outward	- (pulls K^+ in)
Na^+	Outside >> Inside, inward	- (pulls Na^+ in)

Driving force and equilibrium potential

- "Driving Force" on a given ion depends on its equilibrium potential.
- Driving force larger if membrane potential far from equilibrium potential for ion.

.

- Voltage that keeps current (inside/outside) concentrations the same
- Voltage membrane potential will approach if **only** that ion flows

Equilibrium potentials calculated under typical conditions

lon	[inside]	[outside]	Voltage
K^+	~150 mM	~4 mM	~ -90 mV
Na^+	~10 mM	~140 mM	~ +55-60 mV
Cl-	~10 mM	~110 mM	- 65-80 mV

$$V_{K} = \frac{RT}{(+1)F} \ln \frac{[K^{+}]_{o}}{[K^{+}]_{i}}$$

Video summary of resting potential

Next time...

- See also https://en.wikipedia.org/wiki/Membrane_potential
- · Or, what could make Annie's party go haywire?

References