CEE432/CEE532/MAE541 Developing Software for Engineering Applications

Lecture 22: Finite Element Modeling of Structural Systems

Assumptions

- Linear stress-strain relationship
 - Same behavior in tension and compression
 - No damage
 - No unloading and/or reloading
- Elastic behavior
- Small displacements
- Small strains

Type of Analyses

• Static

$$\mathbf{K}_{n\times n}\mathbf{D}_{n\times m}=\mathbf{F}_{n\times m}$$

Modal

$$\mathbf{K}_{n\times n}\mathbf{\Phi}_{n\times n}=\mathbf{\Lambda}_{n\times n}\mathbf{M}_{n\times n}\mathbf{\Phi}_{n\times n}$$

• Dynamic

$$\mathbf{M}_{n\times n}\ddot{\mathbf{D}}_{n\times m} + \mathbf{C}_{n\times n}\dot{\mathbf{D}}_{n\times m} + \mathbf{K}_{n\times n}\mathbf{D}_{n\times m} = \mathbf{F}(t)_{n\times m}$$

Beam Finite Element

Plate/Shell Finite Element

Plate vs Shell

- Shell (TB3/QB4)
 - 6 dof/node
 - Flat and thin
 - Membrane plus bending
- Plate
 - 3 dof/node
 - Flat and thin
 - Bending only
 - Special case of shell

Spring Elements

Element Response

Element	Response
Beam	Element nodal forces
Shell	$\{\sigma_x,\sigma_y, au_{xy}\}$
Translational Spring	Element axial force
Torsional Spring	Element torsional moment

Material Model

- Metal
 - Steel
 - Aluminum
- Brittle Composites
 - Concrete
 - Brick
- Elastic behavior
- Isotropic (E, CTE, Poisson's Ratio)

Element Properties

Concrete Modulus of Elasticity

$$E_c = w_c^{1.5} 33\sqrt{f_c'} psi$$

$$E_c = 57000\sqrt{f_c'} psi$$

• Moment of Inertia

$$I_{gt} = \frac{bc^3}{3} + nA_s(d - c)^2$$

$$I_e = I_{gt} + \left(\frac{M_{cr}}{M_a}\right)^3 \left(I_g - I_{gt}\right)$$

Loading

- Dead Load
 - Self-weight
 - Others
- Live Load
- Wind Load
- Snow Load
- Rain Load
- Seismic Load

Connection Points

- Centroid of cross-section
- Mid-plane of shell element
- Beam and shell elements are compatible
 - Eccentricities in connections?

Modeling Approximations

Figure 4.2-4 Superstructure Models (Priestley, et al 1996).

Modeling Approximations

Figure 4.2-5 Single-Column Bent Models (Priestley et al, 1996).

Case Study: Thin Steel Plate

$$t = 0.015 m$$

$$a \times b = 0.15 m \times 0.25 m$$

$$E = 200 GPa$$

$$v = 0.3$$

$$\rho = 7850 kg/m^3$$

$$p = 2000 N/m^2$$

Convergence Study

P1M1 P1M2

Convergence Study

FRAME3D V2.6

P1M3

FEA Results

Model Name	Element mesh size (m)	No. of nodes	Max. von Mises stress (Pa)	Max. Z-Nodal displacement (m)
P1M1	0.05	24	568812	2.43 x 10 ⁻⁶
P1M2	0.025	77	645999	2.38 x 10 ⁻⁶
P1M3	0.0125	273	684336	2.37 x 10 ⁻⁶

Deformed Shape Plot

Deformed Shape

Frame3D V2.72

Nodes: 273 Elements: 240 DOF: 1440 Load Cases: 1

(Model, Viewing Box) Limits

X Min: (0, 0) X Max: (0.15, 0.15)

Y Min: (0, 0)

Y Max: (0.25, 0.25) Z Min: (0, 0) Z Max: (0, 0)

Model Info

Max. Displacement: 2.36811e-006 Max. Rotation: 1.98766e-005 Magnification Factor: 6813.74

Stress Convergence

Convergence Check

von Mises Stress Plot

Case Study: Reinforced Concrete Slab-Beam-Column System


```
t = 0.1 m
h \times w = 0.4 m \times 0.25 m
E = 32 GPa
v = 0.15
\rho = 2400 kg/m^3
p = 5000 N/m^2
```

FEA Results

Model Name	Element mesh size (m)	No. of elements	Max. Slab Compressive Stress (MPa)	Max. Slab Tensile Stress (MPa)	Max. Z-Nodal displacement (m)
P3M0	1.0	164	10.7	10.1	0.08440
P3M1	0.5	384	11.9	10.2	0.08455
P3M2	0.25	1536	12.5	10.2	0.08447

Max. Tensile Stress Plot

Max. Compressive Stress Plot

Compressive Stress

Principal Stress 1 Plot

Current View Min: -2.44394e+006 Current View Max: 0.493441 Value: Maximum all GPs

Principal Stress 3 Plot

Project 4: Modeling and Analysis of a Multi-Storied Building

Floor	Height (ft)
Basement	16
Other floors	13

Structural Elements

- Beams and Columns
 - Wide-flange sections, welded box beam
 - High strength reinforced concrete
- Floor system
 - 3" cellular deck plus 2.5" concrete slab

Loading

- Live load
 - 100 psf (1st floor), 80 psf (other floors), 20 psf (roof)
- Dead Load
 - Self-weight
 - Roof: 48 psf (felt, gravel plus decking)
- Wind Load
 - N-S direction only
- 1 load case: DL + LL + WL

Tutorial #1

 Model a 0.5" cantilever steel plate that is 60" long and 10" wide and is subjected to a uniformly distributed loading of 2 psf.
 Compute the largest transverse displacement and von Mises stress.

Solution Strategy

- Can you compute an analytical, approximate solution (max. displacement, max. normal stress?
- What other response parameters do you know that can be used as a check?
 - Displacements
 - Stresses
 - Reactions

Solution Steps

- Select consistent units (lbm, in, s, lb)
- Try a single element solution
 - Analyze and go through the checks
- Refine the model
 - Analyze and go through the checks
- Refine the model even more
 - Analyze and go through the checks
- Document the results and check for convergence

Tutorial #2

• Model the building shown below using only beam elements.

Tutorial #3

• Model the building shown below using beam and shell elements.