LeBot James 4

Team 11

Project Objective:

"Construct an autonomous robot to play a one-on-one game that is a cross between soccer and basketball. The robot must be able to play either forward or defense and be capable of navigating the field without hitting obstacles..."

Main Tasks:

- Localize within 30 seconds
- Block opponent shots (Defense)

Agile Design Process:

Sprint Model:

Agile Manifesto:

Individuals + Interactions over Processes + Tools

Working Product over Comprehensive Documentation

Collaboration over Negotiation

Responding to Change over Following a Plan

Our Design Process:

Retrieve a ball

- Shoot ball through target

Subtasks:

- Odometry + Correction
- Navigation
- Obstacle Avoidance

Project Management:

Our Team:

Team Member:	Role:	Total Hours Worked:	% Diffrence From Team Average:
Alex Lam	Documentation Manager	54	-0.74%
Durham Abric	Design Team Manager	55	1.10%
Ethan Lague	Hardware Manager	53	-2.57%
Ian Smith	Testing Manager	54	-0.74%
John Wu	Software Manager	56	2.94%
	Team Total:	272 Hours	
	Team Average:	54.4 Hours	

Budget:

Design Tools + Components:

Overleaf

MINDSTORMS
EV3

busybot

Hardware Design:

Design Principles: Components:

- Minimal sensors to limit threading & battery usage
- Uncomplicated ball retrieval & launching mechanism
- Focus on navigation and obstacle mapping
- Sturdy/reliable wheelbase
- Large silhouette for defense

Software + Algorithms:

Odometry Correction:

Step 1:

- When first light sensor detects gridline, stop corresponsing motor
- Other wheel continues moving
- Step 2:
- When second light sensor detects gridline, start other motor again
- Correct heading (0,90,180,270)
- Correct X/Y coordinate

Navigation + Avoidance:

Mapping:

- Ultrasonic sensor detects obstacles in certain squares
- Robot registers those square as not allowed
- Only searches squares it hasn't previously

Navigation:

- Robot uses simple heuristic to rank possible moves
- Each move has a priority
- If move square contains obstacle, next priority move is executed
- Greedy, recursive algorithm