# Introduction to Machine Learning Regression

Teaching computers to predict continuous values through pattern recognition



# **Core Concept: Predicting Continuous Values**

#### **Problem Statement**

Given: house size x

Predict: price *y* 

Goal: learn y = f(x)



## **Input Feature**

Size in  $m^2 \rightarrow x$ 

**Target Variable** 

Price in  $\$ \rightarrow y$ 

**Model Output** 

Predicted value  $\hat{y}$ 

# **Linear Model: Line of Best Fit**

# **Model Equation**

$$\hat{y}=w_1x+w_0$$

## **Parameters**

 $w_1$ : slope (rate of change)

 $w_0$ : intercept (baseline)



# **Matrix Representation**

## **Design Matrix**

$$\mathbf{X} = egin{bmatrix} 1 & x_1 \ 1 & x_2 \ dots & dots \ 1 & x_n \end{bmatrix}$$

**Weight Vector** 

$$\mathbf{w} = egin{bmatrix} w_0 \ w_1 \end{bmatrix}$$

**Prediction** 

$$\hat{\mathbf{y}} = \mathbf{X}\mathbf{w}$$



 Matrix form enables efficient computation across all data points simultaneously

## Matrix Representation: Scaling to Multiple Features

Real-world predictions often use **multiple features** (e.g., house size, age, rooms). Individual equations become unwieldy. Matrix notation offers a compact way to represent features, weights, and data for efficient computation.

#### Design Matrix (X)

Rows are data points, columns are features. An initial column of **ones** accounts for the intercept  $(w_0)$ .

#### Weight Vector (w)

This vector holds all model parameters: the intercept weight  $(w_0)$  and weights for each feature (  $w_1, \ldots, w_n$ ).

$$\mathbf{X} = egin{bmatrix} 1 & x_{11} & \dots & x_{1n} \ 1 & x_{21} & \dots & x_{2n} \ dots & dots & \ddots & dots \ 1 & x_{m1} & \dots & x_{mn} \end{bmatrix}$$

$$\mathbf{w} = egin{bmatrix} w_0 \ w_1 \ dots \ w_n \end{bmatrix}$$

#### **Predictions**

Matrix multiplication yields all predictions simultaneously:

$$\hat{\mathbf{y}} = \mathbf{X}\mathbf{w}$$

#### **Example Calculation**

$$\begin{bmatrix} 1 & 2 \\ 1 & 3 \\ 1 & 4 \end{bmatrix} \begin{bmatrix} 0.5 \\ 2 \end{bmatrix} = \begin{bmatrix} (1 \cdot 0.5) + (2 \cdot 2) \\ (1 \cdot 0.5) + (3 \cdot 2) \\ (1 \cdot 0.5) + (4 \cdot 2) \end{bmatrix} = \begin{bmatrix} 0.5 + 4 \\ 0.5 + 6 \\ 0.5 + 8 \end{bmatrix} = \begin{bmatrix} 4.5 \\ 6.5 \\ 8.5 \end{bmatrix}$$

This compact form is fundamental for scaling linear regression to large datasets and numerous features, underpinning most modern machine learning libraries.

# **Loss Function: Mean Squared Error**



#### Objective

Minimize prediction error



**MSE Formula** 

$$ext{MSE} = rac{1}{n} \sum_{i=1}^n (y_i - \hat{y}_i)^2$$

#### **Matrix Form**

$$ext{MSE} = rac{1}{n}(\mathbf{y} - \mathbf{X}\mathbf{w})^T(\mathbf{y} - \mathbf{X}\mathbf{w})$$

Squaring penalizes large deviations; averaging normalizes across dataset size

# **Analytical Solution: Normal Equation**



8

**Closed-Form Solution** 

# $\mathbf{w} = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{y}$

## **Optimization Problem**

$$\min_{\mathbf{w}} rac{1}{n} (\mathbf{y} - \mathbf{X} \mathbf{w})^T (\mathbf{y} - \mathbf{X} \mathbf{w})$$



**Set Derivative to Zero** 

Direct computation; computationally expensive for large n due to matrix inversion

# **Iterative Optimization: Gradient Descent**



#### Initialize

 $w_0, w_1 \leftarrow \mathsf{random}\,\mathsf{values}$ 



#### **Predict**

$$\hat{y}_i = w_1 x_i + w_0$$



## **Compute Loss**

Calculate MSE





$$w_j := w_j - lpha rac{\partial ext{MSE}}{\partial w_j}$$

 $\alpha$ : learning rate (step size)



# **Gradient Computation**

## **Partial Derivative**

$$rac{\partial ext{MSE}}{\partial w_j} = -rac{2}{n} \sum_{i=1}^n x_{ij} (y_i - \hat{y}_i)$$

## **Vectorized Update Rule**

$$\mathbf{w} := \mathbf{w} + rac{2lpha}{n}\mathbf{X}^T(\mathbf{y} - \mathbf{X}\mathbf{w})$$



Foundation for training all neural networks and deep learning models

# **Implementation Example**

## **Python Code**

from sklearn.linear\_model import LinearRegression

X = [[1],[2],[3],[4],[5]]y = [2.1,4.1,5.9,8.2,10.1]

model = LinearRegression().fit(X,y)
print(model.coef\_, model.intercept\_)



- Training data points
- Fitted regression line

# **Key Takeaways**

| 01                               | 02                         |               | 03                      |  |
|----------------------------------|----------------------------|---------------|-------------------------|--|
| Model Form                       | Training Object            | tive          | Analytical Method       |  |
| $\hat{y} = \mathbf{X}\mathbf{w}$ | Minimize MSE loss function |               | Normal Equation (exact) |  |
| 04                               |                            | 05            |                         |  |
| Iterative Method                 |                            | Core ML Pi    | rinciple                |  |
| Gradient Descent (scalable)      |                            | Learn by mini | mizing loss             |  |