1. Элементы векторной алгебры

Опр. Лучи AB и CD (или отрезки AB и CD) называются **параллельными**, если прямые AB и CD [различны и] параллельны: $AB \parallel CD$.

Опр. Параллельные лучи AB и CD называются **одинаково направленными**, если они лежат в одной полуплоскости с границей AC.

Лучи, лежащие на одной прямой, называются **одинаково направленными**, если один из них содержит другой.

Если два луча параллельны или лежат на одной прямой, но не одинаково направлены, то они называются **противоположно направленными**.

Опр. Отрезок называется **направленным**, если принимается во внимание порядок, в котором заданы его концы.

Если A — первая точка, а B — вторая, то точка A называется началом, а B — концом этого направленного отрезка; его обозначают так: \overline{AB} .

Длину отрезка \overline{AB} обозначают $|\overline{AB}|$.

Отрезок \overline{AA} для любой точки A называется нулевым и считается, что $|\overline{AA}|=0.$

Опр. Ненулевые отрезки \overline{AB} и \overline{CD} называются **одинаково** (**противоположно**) направленными, если одинаково (противоположно) направлены лучи AB и CD. Нулевой направленный отрезок одинаково направлен с любым.

Опр. Отрезки \overline{AB} и \overline{CD} называются **эквиполлентными**, если они одинаково направлены и имеют равные длины.

Лем 1. Отношение эквиполлентности на множестве векторов плоскости (пространства) является отношением эквивалентности.

Опр. Класс эквиполлентных направленных отрезков называется **вектором**: \overrightarrow{AB} .

Лем 2.
$$Ec\pi u \overrightarrow{AB} = \overrightarrow{CD}$$
, mo $\overrightarrow{AC} = \overrightarrow{BD}$.

Док-во. Возможны случаи:

- 1. Если $|\overline{AB}|=|\overline{CD}|=0$, то A=B и C=D, значит $\overrightarrow{AC}=\overrightarrow{BD}$.
- 2. \overline{AB} и \overline{CD} лежат на параллельных прямых: ABCD параллелограмм, значит $|\overline{AC}|=|\overline{BD}|$ и они сонаправлены;
- 3. \overline{AB} и \overline{CD} лежат на одной прямой: пусть, например, луч AB содержит CD
 - (a) если отрезки не пересекаются, то |AC| = |AB| + |BC| = |CD| + |BC| = |BD|
 - (b) если пересекаются, то |AC| + |CB| = |AB| = |CD| = |CB| + |BD|, |AC| = |BD|

и луч AC содержит BD.

Опр. Говорят, что точка M получена **откладыванием вектора** \overrightarrow{a} от точки O, если $\overrightarrow{OM} = \overrightarrow{a}$.

Утв 1. Пусть дана точка O и вектор \overrightarrow{a} . Тогда существует единственная точка M такая, что $\overrightarrow{OM} = \overrightarrow{a}$.

Док-во. Возьмем $\overrightarrow{AB} = \overrightarrow{a}$. Пусть $A \neq B$, т.к. иначе в качестве M можно брать O. Если данная точка O не принадлежит прямой AB, то существует прямая, параллельная AB и проходящая через O. От точки O можно отложить отрезок длины AB так, чтобы он был сонаправлен с \overline{AB} . Конец этого отрезка обозначим M. Если точка O принадлежит прямой AB, то от O можно отложить отрезок длины AB так, чтобы он был сонаправлен с \overline{AB} . Так же конец этого отрезка обозначим M. По построению, M — искомая точка.

Покажем единственность. Допустим $\overrightarrow{AB}=\overrightarrow{OM'}$ для некоторой точки M'. Тогда $\overrightarrow{OM'}=\overrightarrow{OM}$ и по Лемме 2 имеем $|\overrightarrow{MM'}|=|\overrightarrow{OO}|=0$. То есть M=M'. \square

Опр. Говорят, что вектор **параллелен прямой**, если любой его направленный отрезок параллелен этой прямой или лежит на ней;

...вектор **параллелен плоскости**, если он параллелен некоторой прямой на этой плоскости;

...векторы коллинеарны, если они параллельны некоторой прямой;

...векторы компланарны, если они параллельны некоторой плоскости;

...коллинеарные **векторы одинаково** (**противоположно**) **направлены**, если одинаково (противоположно) направлены их элементы.

Опр. Д**линой** вектора $\overrightarrow{a} = \overrightarrow{AB}$ называется длина его элементов: $|\overrightarrow{a}| = |\overline{AB}|$. Для $\overrightarrow{a} = \overrightarrow{AB}$ вектор \overrightarrow{BA} называется **противоположным** к \overrightarrow{a} и обозначается $-\overrightarrow{a}$.

Вектор $\overrightarrow{a}=\overrightarrow{AA}$ для любой точки A называется **нулевым** вектором и обозначается $\overrightarrow{0}$.

1.1. Действия над векторами

Опр. Суммой векторов \overrightarrow{a} и \overrightarrow{b} называется вектор \overrightarrow{c} такой, что если $\overrightarrow{a} = \overrightarrow{AB}$ и $\overrightarrow{b} = \overrightarrow{BC}$, то $\overrightarrow{c} = \overrightarrow{AC}$: $\overrightarrow{a} + \overrightarrow{b} = \overrightarrow{c}$.

Утв 2. Сумма векторов существует и определена однозначно.

Док-во. Отложим \overrightarrow{a} от произвольной точки A, полученную точку обозначим B, т.е. $\overrightarrow{a} = \overrightarrow{AB}$. Отложим \overrightarrow{b} от точки B, полученную точку обозначим C, т.е. $\overrightarrow{b} = \overrightarrow{BC}$. Вектор \overrightarrow{AC} — искомая сумма $\overrightarrow{a} + \overrightarrow{b}$.

чим C, т.е. $\overrightarrow{b}=\overrightarrow{BC}$. Вектор \overrightarrow{AC} — искомая сумма $\overrightarrow{a}+\overrightarrow{b}$. Допустим $\overrightarrow{a_1}=\overrightarrow{a}$ и $\overrightarrow{b_1}=\overrightarrow{b}$. Отложим $\overrightarrow{a_1}$ от произвольной точки A_1 , $\overrightarrow{a_1}=\overrightarrow{A_1B_1}$, и $\overrightarrow{b_1}$ от получившейся точки B_1 , $\overrightarrow{b_1}=\overrightarrow{B_1C_1}$. Тогда по Лемме 2 получаем $\overrightarrow{AA_1}=\overrightarrow{BB_1}=\overrightarrow{CC_1}$ и снова по Лемме 2 $\overrightarrow{AC}=\overrightarrow{A_1C_1}$.

Это позволяет к обеим частям равенства прибавлять равные векторы.

В целом же этим установлено, что определена бинарная операция на рассматриваемом множестве векторов, т.е. всюду определенное и однозначное соответствие.

Для сложения векторов можно применять правило треугольника и (для неколлинеарных) правило параллелограмма.

Утв 3 (Свойства). 1.
$$\overrightarrow{a} + (-\overrightarrow{a}) = \overrightarrow{0}$$

$$2 \overrightarrow{a} + \overrightarrow{0} = \overrightarrow{a}$$

$$3. \vec{a} + \vec{b} = \vec{b} + \vec{a}$$

4.
$$(\overrightarrow{a} + \overrightarrow{b}) + \overrightarrow{c} = \overrightarrow{a} + (\overrightarrow{b} + \overrightarrow{c})$$

Док-во. 3) Пусть
$$\overrightarrow{a} = \overrightarrow{AB} = \overrightarrow{CD}$$
 и $\overrightarrow{b} = \overrightarrow{BC}$. Тогда по Лемме 2 $\overrightarrow{AC} = \overrightarrow{BD}$. Но $\overrightarrow{a} + \overrightarrow{b} = \overrightarrow{AB} + \overrightarrow{BC} = \overrightarrow{AC}$ и $\overrightarrow{b} + \overrightarrow{a} = \overrightarrow{BC} + \overrightarrow{CD} = \overrightarrow{BD}$.

Опр. Разностью \overrightarrow{a} и \overrightarrow{b} называется \overrightarrow{c} такой, что $\overrightarrow{b} + \overrightarrow{c} = \overrightarrow{a} \colon \overrightarrow{a} - \overrightarrow{b} = \overrightarrow{c}$.

Утв 4. Разность векторов существует и определена однозначно.

Док-во. Возьмем в качестве \overrightarrow{c} вектор $\overrightarrow{a}+(-\overrightarrow{b})$. Тогда $\overrightarrow{b}+\overrightarrow{c}=\overrightarrow{b}+(\overrightarrow{a}+(-\overrightarrow{b}))=\overrightarrow{a}$.

Если
$$\overrightarrow{c'} = \overrightarrow{a} - \overrightarrow{b}$$
, то $\overrightarrow{b} + \overrightarrow{c'} = \overrightarrow{a}$. Прибавим к обеим частям равенства $-\overrightarrow{b}$, $\overrightarrow{c'} = \overrightarrow{a} + (-\overrightarrow{b}) = \overrightarrow{c}$.
 Из $\overrightarrow{AB} + \overrightarrow{BC} = \overrightarrow{AC}$ получаем $\overrightarrow{AC} - \overrightarrow{AB} = \overrightarrow{BC}$.

Опр. Произведением \overrightarrow{a} на число $\alpha \in \mathbb{R}$ называется вектор, обозначаемый $\alpha \overrightarrow{a}$, такой, что $|\alpha \overrightarrow{a}| = |\alpha| |\overrightarrow{a}|$ и [если $\overrightarrow{a} \neq \overrightarrow{0}]$ $\alpha \overrightarrow{a}$ одинаково направлен с \overrightarrow{a} , если $\alpha \geqslant 0$, и $\alpha \overrightarrow{a}$ противоположно направлен с \overrightarrow{a} , если $\alpha < 0$.

Утв 5. Произведение вектора на число существует и определено однозначно.

Док-во. Пусть $\overrightarrow{a}=\overrightarrow{AB}\neq\overrightarrow{0}$ и $\alpha\in\mathbb{R}$. Отложим от точки A на прямой AB точку C на расстоянии $|\alpha||\overrightarrow{a}|$ так, чтобы \overline{AC} был сонаправлен с \overline{AB} , если $\alpha\geqslant 0$, и так, чтобы \overline{AC} был противоположно направлен с \overline{AB} , если $\alpha<0$. Тогда по построению \overrightarrow{AC} есть произведение α на \overrightarrow{a} .

Допустим \overrightarrow{b} есть произведение α на \overrightarrow{a} . Тогда $|\overrightarrow{b}|=|\overrightarrow{AC}|$ и \overrightarrow{b} сонаправлен с \overrightarrow{AC} по определению произведения. Получили $\overrightarrow{b}=\overrightarrow{AC}$.

Утв 6 (Свойства). 1.
$$1\overrightarrow{a} = \overrightarrow{a}$$
, $0\overrightarrow{a} = \overrightarrow{0}$, $\alpha \overrightarrow{0} = \overrightarrow{0}$

2.
$$(-1)\overrightarrow{a} = -\overrightarrow{a}$$

3.
$$\alpha(\beta \overrightarrow{a}) = (\alpha \beta) \overrightarrow{a}$$

4.
$$\alpha(\overrightarrow{a} + \overrightarrow{b}) = \alpha \overrightarrow{a} + \alpha \overrightarrow{b}$$

5.
$$(\alpha + \beta)\overrightarrow{a} = \alpha \overrightarrow{a} + \beta \overrightarrow{a}$$

Док-во. Покажем следующие свойства в предположении $\alpha, \beta \neq 0$ и $\overrightarrow{a}, \overrightarrow{b} \neq \overrightarrow{0}$, т.к. в противном случае все получается тривиально.

- 3) Имеем $|\alpha(\beta\overrightarrow{a})|=|(\alpha\beta)\overrightarrow{a}|$. Если $\alpha\beta>0$, то $\alpha(\beta\overrightarrow{a})$ и \overrightarrow{a} сонаправлены, $(\alpha\beta)\overrightarrow{a}$ и \overrightarrow{a} также сонаправлены. Если $\alpha\beta<0$, то $\alpha(\beta\overrightarrow{a})$ и \overrightarrow{a} противоположно направлены, $(\alpha\beta)\overrightarrow{a}$ и \overrightarrow{a} также противоположно направлены. Поэтому $\alpha(\beta\overrightarrow{a})$ и $(\alpha\beta)\overrightarrow{a}$ сонаправлены.
- 4) Пусть $\overrightarrow{a}=\overrightarrow{AB}$ и $\overrightarrow{b}=\overrightarrow{BC}$. Выберем точку O, не лежащую на прямых AB, BC и AC. Построим точки A', B' и C' так, чтобы $\alpha\overrightarrow{OA}=\overrightarrow{OA'}$, $\alpha\overrightarrow{OB}=\overrightarrow{OB'}$ и $\alpha\overrightarrow{OC}=\overrightarrow{OC'}$. Треугольник AOB подобен треугольнику A'OB' по двум сторонам и углу O, т.е. $\alpha\overrightarrow{AB}=\overrightarrow{A'B'}$. Аналогично, $\alpha\overrightarrow{BC}=\overrightarrow{B'C'}$ и $\alpha\overrightarrow{AC}=\overrightarrow{A'C'}$. Таким образом, $\alpha\overrightarrow{a}+\alpha\overrightarrow{b}=\overrightarrow{A'B'}+\overrightarrow{B'C'}=\overrightarrow{A'C'}=\alpha(\overrightarrow{a}+\overrightarrow{b})$.
- 5) Пусть $\alpha\beta>0$ и $\alpha\overrightarrow{a}=\overrightarrow{AB},$ $\beta\overrightarrow{a}=\overrightarrow{BC}.$ Так как \overrightarrow{AB} и \overrightarrow{BC} сонаправлены, то $|\overrightarrow{AC}|=|\overrightarrow{AB}|+|\overrightarrow{BC}|=|\alpha||\overrightarrow{a}|+|\beta||\overrightarrow{a}|=(|\alpha|+|\beta|)|\overrightarrow{a}|=|\alpha+\beta||\overrightarrow{a}|.$ Если $\alpha+\beta>0$, т.е. при $\alpha,\beta>0$, векторы \overrightarrow{AC} и \overrightarrow{a} сонаправлены, а если $\alpha+\beta<0$, то противоположно направлены. Поэтому $\overrightarrow{AC}=(\alpha+\beta)\overrightarrow{a}.$

Пусть $\alpha\beta<0$. Если $\alpha+\beta=0$, то $\alpha\overrightarrow{a}+(-\alpha)\overrightarrow{a}=\alpha\overrightarrow{a}-\alpha\overrightarrow{a}=\overrightarrow{0}$. Если $\alpha+\beta\neq 0$, то $\alpha+\beta$ имеет либо знак α , либо β . Допустим $-\alpha$ и $\alpha+\beta$ одного знака. Тогда $(-\alpha)\overrightarrow{a}+(\alpha+\beta)\overrightarrow{a}=(-\alpha+\alpha+\beta)\overrightarrow{a}=\beta\overrightarrow{a}$. Прибавив к обоим частям $\alpha\overrightarrow{a}$ получаем $(\alpha+\beta)\overrightarrow{a}=\alpha\overrightarrow{a}+\beta\overrightarrow{a}$.

1.2. Скалярное произведение векторов

Опр. Углом между векторами $\overrightarrow{a} = \overrightarrow{OA} \ u \ \overrightarrow{b} = \overrightarrow{OB}$ называется угол между лучами $OA \ u \ OB$ (т.е. наименьший из углов, образованных этими лучами): $(\overrightarrow{a}, \overrightarrow{b})$.

Из определения следует, что $0\leqslant (\overrightarrow{a},\overrightarrow{b})\leqslant \pi$. По определению полагается, что $(\overrightarrow{a},\overrightarrow{0})=\frac{\pi}{2}$.

Опр. Скалярным произведением векторов \overrightarrow{a} и \overrightarrow{b} называется число, обозначаемое $\overrightarrow{a} \cdot \overrightarrow{b}$ [или короче \overrightarrow{a} \overrightarrow{b}], равное $|\overrightarrow{a}||\overrightarrow{b}|\cos(\overrightarrow{a},\overrightarrow{b})$.

Утв 7 (Свойства). 1. $\overrightarrow{a}\overrightarrow{b}=0$ тогда и только тогда, когда \overrightarrow{a} и \overrightarrow{b} взаимно перпендикулярны

2.
$$\overrightarrow{a}\overrightarrow{a} = \overrightarrow{a}^2 = |\overrightarrow{a}|^2$$

3.
$$|\vec{a}| = \sqrt{\vec{a}^2}$$

4.
$$\overrightarrow{a}\overrightarrow{b} = \overrightarrow{b}\overrightarrow{a}$$

1.3. Линейная зависимость и координаты векторов

Опр. Вектор $\overrightarrow{b}=\alpha_1\overrightarrow{a}_1+\alpha_2\overrightarrow{a}_2+...+\alpha_n\overrightarrow{a}_n$, где $\overrightarrow{a}_1,\overrightarrow{a}_2,...,\overrightarrow{a}_n$ — некоторые векторы, а $\alpha_1,\alpha_2,...,\alpha_n$ — некоторые числа, называют **линейной комбина**цией векторов $\overrightarrow{a}_1,\overrightarrow{a}_2,...,\overrightarrow{a}_n$ с коэффициентами $\alpha_1,\alpha_2,...,\alpha_n$.

B этом случае говорят, что вектор \overrightarrow{b} линейно выражается через векторы $\overrightarrow{a}_1, \overrightarrow{a}_2, \ldots, \overrightarrow{a}_n$.

Опр. Система векторов (т.е. упорядоченный набор) $\overrightarrow{a}_1, \overrightarrow{a}_2, \dots, \overrightarrow{a}_n$ называется **линейно зависимой**, если существуют такие числа $\alpha_1, \alpha_2, \dots, \alpha_n$, хотя бы одно из которых отлично от нуля (т.н. ненулевой набор), для которых $\alpha_1 \overrightarrow{a}_1 + \alpha_2 \overrightarrow{a}_2 + \dots + \alpha_n \overrightarrow{a}_n = \overrightarrow{0}$.

Система векторов называется **линейно независимой**, если она не является линейно зависимой.

След 1. Система векторов $\overrightarrow{a}_1, \overrightarrow{a}_2, \ldots, \overrightarrow{a}_n$ линейно независима, если из равенства $\alpha_1 \overrightarrow{a}_1 + \alpha_2 \overrightarrow{a}_2 + \ldots + \alpha_n \overrightarrow{a}_n = \overrightarrow{0}$ следует $\alpha_1 = \alpha_2 = \ldots = \alpha_n = 0$.

Teop 1. Система векторов \overrightarrow{a} , \overrightarrow{b} линейно зависима тогда и только тогда, когда \overrightarrow{a} и \overrightarrow{b} коллинеарны.

Система векторов \overrightarrow{a} , \overrightarrow{b} , \overrightarrow{c} линейно зависима тогда и только тогда, когда \overrightarrow{a} , \overrightarrow{b} и \overrightarrow{c} компланарны.

Док-во. Пусть $\alpha_1 \overrightarrow{a} + \alpha_2 \overrightarrow{b} = \overrightarrow{0}$, причем $\alpha_1 \neq 0$. Тогда $\overrightarrow{a}_1 = -\frac{\alpha_2}{\alpha_1} \overrightarrow{b}$, т.е. \overrightarrow{a} и \overrightarrow{b} коллинеарны.

Пусть \overrightarrow{a} и \overrightarrow{b} коллинеарны и отличны от $\overrightarrow{0}$. Тогда, если \overrightarrow{a} и \overrightarrow{b} сонаправлены, положим $\alpha = \frac{|\overrightarrow{b}|}{|\overrightarrow{a}|}$, если \overrightarrow{a} и \overrightarrow{b} противоположно направлены, то $\alpha = -\frac{|\overrightarrow{b}|}{|\overrightarrow{a}|}$. Получаем, что α $\overrightarrow{b} = \overrightarrow{a}$, отсюда $1 \cdot \overrightarrow{a} + (-\alpha)$ $\overrightarrow{b} = \overrightarrow{0}$.

Допустим $\alpha_1 \overrightarrow{a} + \alpha_2 \overrightarrow{b} + \alpha_3 \overrightarrow{c} = \overrightarrow{0}$, где хотя бы одно из чисел α_i отлично от нуля. Если коэффициент при каком-то векторе равен нулю, то другие два

вектора будут коллинеарны, а все три будут компланарны. Поэтому будем далее предполагать, что α_1 , α_2 и α_3 отличны от нуля. Тогда $\overrightarrow{a} = -\frac{\alpha_2}{\alpha_1} \overrightarrow{b} + (-\frac{\alpha_3}{\alpha_1} \overrightarrow{c})$. Взяв $\overrightarrow{AB} = -\frac{\alpha_2}{\alpha_1} \overrightarrow{b}$ и $\overrightarrow{BC} = -\frac{\alpha_3}{\alpha_1} \overrightarrow{c}$, получаем $\overrightarrow{a} = \overrightarrow{AC}$, следовательно векторы \overrightarrow{a} , \overrightarrow{b} и \overrightarrow{c} параллельны плоскости ABC, а значит компланарны.

Пусть теперь \overrightarrow{a} , \overrightarrow{b} и \overrightarrow{c} компланарны и отличны от $\overrightarrow{0}$. Если \overrightarrow{a} и \overrightarrow{b} коллинеарны, то существует ненулевой набор α_1,α_2 , что $\alpha_1\overrightarrow{a}+\alpha_2\overrightarrow{b}=\overrightarrow{0}=$ $\alpha_1\overrightarrow{a}+\alpha_2\overrightarrow{b}+0\cdot\overrightarrow{c}$. Если же \overrightarrow{a} и \overrightarrow{b} неколлинеарны, то пускай $\overrightarrow{a}=\overrightarrow{OA}$, $\overrightarrow{b}=\overrightarrow{OB}$ и $\overrightarrow{c}=\overrightarrow{OC}$. Возможно, C лежит на прямой OA или OB. Тогда \overrightarrow{c} коллинеарен с \overrightarrow{a} или \overrightarrow{b} , что влечет линейную зависимость \overrightarrow{a} , \overrightarrow{b} и \overrightarrow{c} , как и выше. А возможно, что C не лежит на указанных прямых. В этом случае существует прямая, параллельная OB и проходящая через C, которая пересекает OA в некоторой точке C_1 . Тогда $\overrightarrow{c}=\overrightarrow{OC}=\overrightarrow{OC_1}+\overrightarrow{C_1C}=\alpha_1\overrightarrow{a}+\alpha_2\overrightarrow{b}$.

Опр. Векторным пространством назовем любое множество векторов, замкнутое относительно сложения векторов и умножения числа на вектор.

Опр. *Базисом* векторного пространства называется линейно независимая система векторов такая, что любой вектор пространства линейно выражается через векторы этой системы.

Teop 2. Любая система неколлинеарных векторов \vec{a} , \vec{b} является базисом векторного пространства всех векторов плоскости.

Любая система некомпланарных векторов \overrightarrow{a} , \overrightarrow{b} , \overrightarrow{c} является базисом векторного пространства всех векторов трехмерного пространства.

Док-во. Пусть \overrightarrow{a} и \overrightarrow{b} неколлинеарны. По Теореме 1 векторы \overrightarrow{a} и \overrightarrow{b} линейно независимы. Для любого \overrightarrow{c} векторы \overrightarrow{a} , \overrightarrow{b} и \overrightarrow{c} компланарны, а значит линейно зависимы по Теореме 1. Найдется ненулевой набор $\alpha_1,\alpha_2,\alpha_3$ такой, что $\alpha_1 \overrightarrow{a} + \alpha_2 \overrightarrow{b} + \alpha_3 \overrightarrow{c} = \overrightarrow{0}$. Если $\alpha_3 = 0$, то $\alpha_1 \overrightarrow{a} + \alpha_2 \overrightarrow{b} = \overrightarrow{0}$, где α_1,α_2 — ненулевой набор, чего быть не может. Поэтому $\alpha_3 \neq 0$, а значит $\overrightarrow{c} = -\frac{\alpha_1}{\alpha_3} \overrightarrow{a} + (-\frac{\alpha_2}{\alpha_3} \overrightarrow{b})$.

Возьмем теперь некомпланарные \overrightarrow{a} , \overrightarrow{b} и \overrightarrow{c} . По Теореме 1 векторы \overrightarrow{a} , \overrightarrow{b} и \overrightarrow{c} линейно независимы. Заметим, что среди них нет нулевого вектора. Пока-

жем, что всякий \overrightarrow{d} линейно выражается через эти векторы. Возьмем произвольно $\overrightarrow{d}\neq\overrightarrow{0}$ и отложим векторы от некоторой точки O: $\overrightarrow{a}=\overrightarrow{OA}, \ \overrightarrow{b}=\overrightarrow{OB}, \ \overrightarrow{c}=\overrightarrow{OC}$ и $\overrightarrow{d}=\overrightarrow{OD}$. Если точка D лежит на прямой OC, то \overrightarrow{d} и \overrightarrow{c} коллинеарны и поэтому зависимы, отсюда $\overrightarrow{d}=\alpha\overrightarrow{c}$. Если же D не лежит на прямой OC, то \overrightarrow{d} и \overrightarrow{c} неколлинеарны. Проведем через D прямую, параллельную OC. Она обязана пересекать плоскость OAB в некоторой точке D'. Получаем $\overrightarrow{d}=\overrightarrow{OD}=\overrightarrow{OD'}+\overrightarrow{D'D}$, но $\overrightarrow{OD'}$ компланарен с \overrightarrow{a} и \overrightarrow{b} , а $\overrightarrow{D'D}$ коллинеарен \overrightarrow{c} . Таким образом, $\overrightarrow{OD'}$ линейно выражается через \overrightarrow{a} и \overrightarrow{b} , которые образуют базис на плоскости, как показано выше, и поэтому $\overrightarrow{d}=\alpha\overrightarrow{a}+\beta\overrightarrow{b}+\gamma\overrightarrow{c}$ для некоторых чисел α , β , γ .

След 2. Любой вектор пространства единственным образом представляется в виде линейной комбинации векторов базиса.

Док-во. Допустим $\alpha_1 \overrightarrow{e_1} + \alpha_2 \overrightarrow{e_2} + \ldots + \alpha_n \overrightarrow{e_n} = \beta_1 \overrightarrow{e_1} + \beta_2 \overrightarrow{e_2} + \ldots + \beta_n \overrightarrow{e_n}$, где $\overrightarrow{e_1}, \overrightarrow{e_2}, \ldots, \overrightarrow{e_n}$ — базис. Тогда $(\alpha_1 - \beta_1) \overrightarrow{e_1} + (\alpha_2 - \beta_2) \overrightarrow{e_2} + \ldots + (\alpha_n - \beta_n) \overrightarrow{e_n} = \overrightarrow{0}$. Но векторы $\overrightarrow{e_1}, \overrightarrow{e_2}, \ldots, \overrightarrow{e_n}$ линейно независимы, поэтому для каждого $i=1,\ldots,n$ имеем $\alpha_i - \beta_i = 0$ или $\alpha_i = \beta_i$.

След 3. Любой базис векторного пространства всех векторов состоит из трех векторов.

Размерностью векторного пространства называется число векторов в его базисе. Поэтому рассматриваемое нами пространство всех геометрических векторов называется трехмерным.

Опр. Пусть дан базис \overrightarrow{e}_1 , \overrightarrow{e}_2 , ..., \overrightarrow{e}_n векторного пространства. Если $\overrightarrow{a}=\alpha_1\overrightarrow{e}_1+\alpha_2\overrightarrow{e}_2+...+\alpha_n\overrightarrow{e}_n$, то коэффициенты $\alpha_1,\alpha_2,...,\alpha_n$ этой линейной комбинации называются **координатами вектора** \overrightarrow{a} в данном базисе:

$$(lpha_1,lpha_2,\ldots,lpha_n)$$
 — координаты \overrightarrow{a} в базисе $\overrightarrow{e}_1,\overrightarrow{e}_2,\ldots,\overrightarrow{e}_n;$ $\overrightarrow{a}(lpha_1,lpha_2,\ldots,lpha_n).$

Из определения и свойств следуют правила действий над векторами в координатах: сложение, вычитание, умножение на число.

Опр. Базис векторного пространства называется **ортонормированным**, если все его векторы попарно взаимно перпендикулярны и их длины равны 1.

Утв 8. Длина вектора \overrightarrow{a} , который имеет координаты (a_1,a_2,a_3) в ортонормированном базисе, вычисляется по формуле $|\overrightarrow{a}|=\sqrt{a_1^2+a_2^2+a_3^2}$.

Док-во. По определению $\overrightarrow{a}=a_1\overrightarrow{e}_1+a_2\overrightarrow{e}_2+a_3\overrightarrow{e}_3$. Если все координаты равны нулю, то формула очевидно верна. Допустим, две координаты из трех равны нулю: $\overrightarrow{a}=a_1\overrightarrow{e}_1$, где $a_1\neq 0$. Тогда $|\overrightarrow{a}|=|a_1||\overrightarrow{e}_1|=|a_1|\cdot 1=\sqrt{a_1^2+0+0}$.

Пусть теперь $\overrightarrow{a}=a_1\overrightarrow{e}_1+a_2\overrightarrow{e}_2$, где $a_1,a_2\neq 0$. В этом случае $|\overrightarrow{a}|$ есть длина гипотенузы прямоугольного треугольника с катетами $|a_1\overrightarrow{e}_1|=|a_1|$ и $|a_2\overrightarrow{e}_2|=|a_2|$. По теореме Пифагора $|\overrightarrow{a}|=\sqrt{a_1^2+a_2^2+0}$.

Допустим $\overrightarrow{a}=a_1\overrightarrow{e}_1+a_2\overrightarrow{e}_2+a_3\overrightarrow{e}_3$, где $a_1,a_2,a_3\neq 0$. Отложим векторы $\overrightarrow{e}_1,\overrightarrow{e}_2,\overrightarrow{e}_3$ и \overrightarrow{a} от некоторой точки O и получившиеся точки обозначим E_1,E_2,E_3 и A соответственно. Вектор \overrightarrow{a} неколлинеарен с \overrightarrow{e}_3 , поэтому существует прямая, проходящая через A параллельно \overrightarrow{e}_3 . Эта прямая пересекает плоскость OE_1E_2 в некоторой точке A'. Таким образом, $\overrightarrow{a}=\overrightarrow{OA'}+\overrightarrow{A'A}$. Здесь $\overrightarrow{OA'}$ компланарен с \overrightarrow{e}_1 и \overrightarrow{e}_2 и поэтому линейно выражается через них, а $\overrightarrow{A'A}$ коллинеарен с \overrightarrow{e}_3 , т.е. можно записать $\overrightarrow{a}=\alpha_1\overrightarrow{e}_1+\alpha_2\overrightarrow{e}_2+\alpha_3\overrightarrow{e}_3$ для некоторых $\alpha_1,\alpha_2,\alpha_3$. Но по Следствию 2 $\alpha_1=a_1,\alpha_3=a_3,\alpha_3=a_3$. Как установлено выше, $|\overrightarrow{OA'}|=\sqrt{a_1^2+a_2^2}$. Тогда по теореме Пифагора получаем $|\overrightarrow{a}|=\sqrt{|\overrightarrow{OA'}|^2+|\overrightarrow{A'A}|^2}=\sqrt{(\sqrt{a_1^2+a_2^2})^2+|a_3|^2}=\sqrt{a_1^2+a_2^2+a_3^2}$.

1.4. Свойства скалярного произведения векторов

Используя ортонормированный базис легко получается следующее

Утв 9 (Свойства). 1. $\overrightarrow{a}\overrightarrow{b}=a_1b_1+a_2b_2+a_3b_3$, где $\overrightarrow{a}(a_1,a_2,a_3)$, $\overrightarrow{b}(b_1,b_2,b_3)$ — координаты в некотором ортонормированном базисе

2.
$$(\alpha \vec{a}) \vec{b} = \alpha (\vec{a} \vec{b})$$

3.
$$\overrightarrow{a}(\overrightarrow{b} + \overrightarrow{c}) = \overrightarrow{a}\overrightarrow{b} + \overrightarrow{a}\overrightarrow{c}$$

Док-во. 1) Если один из векторов нулевой, то формула тривиальна. Будем считать, что это не так.

Если \overrightarrow{a} и \overrightarrow{b} коллинеарны, то из предположения $\overrightarrow{b}=\alpha\overrightarrow{a}$ имеем \overrightarrow{a} $\overrightarrow{b}=\overrightarrow{a}(\alpha\overrightarrow{a})=|\alpha||\overrightarrow{a}|^2\cos(\overrightarrow{a},\alpha\overrightarrow{a})$. Где, если $\alpha\geqslant 0$, то \overrightarrow{a} и \overrightarrow{b} сонаправлены, т.е. $\cos(\overrightarrow{a},\alpha\overrightarrow{a})=1$ и $|\alpha|=\alpha$, и если $\alpha<0$, то \overrightarrow{a} и \overrightarrow{b} противоположно направлены, $\cos(\overrightarrow{a},\alpha\overrightarrow{a})=-1$ и $|\alpha|=-\alpha$. Получаем \overrightarrow{a} $\overrightarrow{b}=\alpha|\overrightarrow{a}|^2=\alpha(a_1^2+a_2^2+a_3^2)=a_1b_1+a_2b_2+a_3b_3$.

Допустим, что $\overrightarrow{a} = \overrightarrow{OA}$ и $\overrightarrow{b} = \overrightarrow{OB}$ неколлинеарны. По теореме косинусов $|\overrightarrow{AB}|^2 = |\overrightarrow{OA}|^2 + |\overrightarrow{OB}|^2 - 2|\overrightarrow{OA}||\overrightarrow{OB}|\cos(\overrightarrow{a},\overrightarrow{b})$. Выражая последнее, $|\overrightarrow{OA}||\overrightarrow{OB}|\cos(\overrightarrow{a},\overrightarrow{b}) = \overrightarrow{a}\overrightarrow{b} = \frac{1}{2}(|\overrightarrow{OA}|^2 + |\overrightarrow{OB}|^2 - |\overrightarrow{AB}|^2) = \frac{1}{2}(|\overrightarrow{a}|^2 + |\overrightarrow{b}|^2 - |\overrightarrow{b}-\overrightarrow{a}|^2) = \frac{1}{2}(a_1^2 + a_2^2 + a_3^2 + b_1^2 + b_2^2 + b_3^2 - (b_1 - a_1)^2 + (b_2 - a_2)^2 + (b_3 - a_3)^2) = a_1b_1 + a_2b_2 + a_3b_3$.

Оставшиеся свойства устанавливаются с использованием 1), выбирая некоторый ортонормированный базис пространства.

След 4. Пусть $\overrightarrow{a}(a_1,a_2,a_3)$, $\overrightarrow{b}(b_1,b_2,b_3)$ — координаты векторов в некотором ортонормированном базисе. Тогда $(\overrightarrow{a},\overrightarrow{b})=\arccos\frac{a_1b_1+a_2b_2+a_3b_3}{|\overrightarrow{a}||\overrightarrow{b}|}$.

Док-во. Действительно, по определению $\overrightarrow{a}\overrightarrow{b}=|\overrightarrow{a}||\overrightarrow{b}|\cos(\overrightarrow{a},\overrightarrow{b})$, отсюда $\cos(\overrightarrow{a},\overrightarrow{b})=\frac{a_1b_1+a_2b_2+a_3b_3}{|\overrightarrow{a}||\overrightarrow{b}|}$. Так как $0\leqslant(\overrightarrow{a},\overrightarrow{b})\leqslant\pi$, а на этом интервале функция \cos имеет обратную, получаем нужное выражение.