MINISTERE DE L'ENSEIGNEMENT SUPERIEUR

ISSTECOA BAFOUSSAM

.....

REPUBLIQUE DU CAMEROUN

Paix-Travail-Patrie

.....

EXAMEN D'ELECTRICITE GENERALE

ANNEE ACADEMIQUE: 2019/2020

SEMESTRE 2

ENSEIGNANT: TCHOUDO EDDY

SPECIALITES: CIR, ER, ET, MAB, MEI & MSE

NIVEAU: BTS 1 DUREE: 3H

EXERCICE 1 (3Points)

2.1. On place quatre charges ponctuelles aux sommets ABCD d'un carré de côté a=1 m, et de centre O, origine d'un repère orthonormé Oxy de vecteurs unitaires \vec{e}_x et \vec{e}_y .

On donne:

$$q_1 = q = 10^{-8} \text{ C}$$
 $q_2 = -2q$
 $q_3 = 2q$ $q_4 = -q$
 $K = \frac{1}{4\pi\varepsilon_0} = 9 \cdot 10^9 \text{ S.I.}$

- 1) Déterminer le champ électrique \vec{E} au centre O du carré. Préciser la direction, le sens et la norme de \vec{E} .
- 2) Exprimer le potentiel V créé en O par les quatres charges.
- 3) Exprimer le potentiel sur les parties des axes x'x et y'y intérieures au carré. Quelle est, en particulier, la valeur de V aux points d'intersection de ces axes avec les côtés du carré (I, I', J et J')?

EXERCICE 2 (3Points)

- 1) Etablir les équations différentielles du circuit RC relatif à la charge q du condensateur.
- 2) Connaissant les expressions de la tension instantanée u(t) aux bornes du condensateur pendant la charge $(u_C(t) = E.(1 e^{-\frac{t}{RC}}))$ et pendant la décharge $(u_C(t) = E.e^{-\frac{t}{RC}})$
- a) En déduire l'expression de la charge instantanée q(t) du condensateur en fonction du temps au cours de la charge et de la décharge puis tracer le graphe q(t)=f(t) au cours de la charge et de la décharge
- b) En déduire l'expression de l'intensité instantanée i(t) en fonction du temps au cours de la charge et de la décharge puis tracer le graphe i(t)=f(t) au cours de la charge et de la décharge.

EXERCICE 3 (3Points)

Comment varie la durée de la charge d'un condensateur quand on réalise l'une des cinq opérations suivantes :

- 1) On double la résistance du circuit
- 2) On double la capacité du condensateur
- 3) On divise la résistance par trois
- 4) On remplace le condensateur pas deux condensateurs en parallèle
- 5) On remplace la résistance par deux résistances en parallèle

EXERCICE 4 (8points)

On maintient constante la tension aux bornes du GBF : U = 8 V et on mesure l'intensité efficace I du courant.

- Où faut-il placer le voltmètre numérique pour vérifier que la tension reste constante?
- •Où faut-il placer l'ampèremètre numérique pour mesurer le courant ?
- •Que mesure-t-on avec ce type d'appareils : une valeur efficace ou une valeur maximale ?
- 1) On fait varier la fréquence du GBF et on relève la valeur efficace de l'intensité :

f (Hz)	i (mA)]					1				
200	0,8	20 -					•				
300	1,5							1			
400	2,65]						١١			
500	6	45									
520	7,5	15 -						1			
540	8,8	-						🛉			
570	15,5	1						\			
580	20,5	10 -						\			
590	22	-					↓	\			
600	20,7	-					4	! ₹			
630	15]				•		1			
640	13,1	5 +									
660	10,6										
680	8,2]									
700	6,65										
750	4,6	0 +	1	-	1	 -	-	-	· ·	-	 -
800	3,5										

- Quel phénomène cette courbe met-elle en évidence ?
- Donner un titre à cette courbe. Qu'a-t-on noté en abscisse ? en ordonnée ?
- Quelle est la valeur de la fréquence de résonance f_o ?
- La valeur f_o correspond-elle à celle que donne le calcul : $LC \omega_o^2 = 1$, soit : $f_o = \frac{1}{2\pi\sqrt{LC}}$
- Quelle est la valeur de l'intensité I_o du courant à la résonance ?
- 2) Quelle est l'impédance : $Z_o = \frac{U}{I_o}$ du circuit à la résonance ?
- En déduire la résistance totale du circuit : R' = R + r
- 3) Détermination de la bande passante à 3 dB

La bande passante d'un circuit RLC série est l'ensemble des fréquences pour lesquelles :

$$I_1 \ge \frac{I_0}{\sqrt{2}}$$
; I_o étant l'intensité du courant à la résonance d'intensité

- Calculer $I_1 = \frac{I_0}{\sqrt{2}}$
- Déterminer les 2 fréquences f_1 et f_2 correspondant à cette valeur de I_1
- En déduire la largeur de la bande passante : $\beta = f_2 f_1$
- Hachurer la bande passante sur la courbe.
- Quel est le facteur de qualité Q de ce circuit : $Q = \frac{f_0}{\beta}$ (grandeur sans dimension)
- Vérifie-t-on : $Q = \frac{L\omega_0}{R'}$? Pourquoi observe-t-on une différence entre la valeur expérimentale et la valeur calculée ?
- Comment pourrait-on améliorer le facteur de qualité du circuit ?
- 4) Surtension à la résonance d'intensité aux bornes du condensateur
 - Déterminer l'impédance $Z_C = \frac{1}{C\omega}$ du condensateur et la valeur efficace $U_c = Z_C I_o$ aux

bornes du condensateur à la résonance. Vérifie-t-on : $Q = \frac{U_C}{U}$?

5) Déphasage entre la tension et le courant

De façon générale, la tension aux bornes de ce circuit s'écrit : $u(t) = U\sqrt{2} \sin(\omega t)$ et l'intensité

du courant :
$$i(t) = I\sqrt{2} \sin(\omega t - \varphi)$$
, avec : $\tan \varphi = \frac{L\omega - \frac{1}{C\omega}}{R_{totale}}$

- Quelle est la valeur de φ_o à la résonance ?
- En déduire l'expression de i(t) à la résonance.
- En déduire la puissance P_o consommée dans le circuit à la résonance.

- Calculer la valeur de φ_1 pour la fréquence f_1 .
- En déduire l'expression de $i_1(t)$ pour la fréquence f_1 .
- En déduire la puissance P_I consommée dans le circuit pour la fréquence f_I .
- En comparant $L\omega_1$ et $\frac{1}{C\omega_1}$ à la fréquence f_1 , dire si le circuit est inductif ou capacitif.

EXERCICE 5 (3points)

Sur un réseau (230 V / 400 V, 50 Hz) sans neutre, on branche en étoile trois récepteurs capacitifs identiques de résistance $R = 20 \Omega$ en série avec une capacité $C = 20 \mu F$.

- 1- Déterminer l'impédance complexe de chaque récepteur. Calculer son module et son argument.
- 2- Déterminer la valeur efficace des courants en ligne, ainsi que leur déphasage par rapport aux tensions simples.
- 3- Calculer les puissances active et réactive consommées par le récepteur triphasé, ainsi que la puissance apparente.