

Hao Su Section 4 - 1 10/21/2011

Announcement

• Extra office hour for PS2:

10/27, 8 - 10pm, Gates 104

Topics

- Homogeneous Coordinates
 - Why is it helpful?
- Transformations
 - Rotations
 - Affine
 - Homography
 - Solving for an affine transform matrix
- Camera matrix
- Fundamental and Essential Matrix

Homogeneous Coordinates

- Why?
- Without homogeneous

With homogeneous

Hao Su Section 4 - 4 10/21/2011

Homogeneous Coordinates

Convert to homogeneous

$$(x,y) \Rightarrow \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$
 (Image)

$$(x,y) \Rightarrow \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$
 (Image) $(x,y,z) \Rightarrow \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix}$ (scene)

Convert from homogeneous

$$\begin{bmatrix} x \\ y \\ w \end{bmatrix} \Rightarrow (x/w, y/w)$$

$$\begin{bmatrix} x \\ y \\ w \end{bmatrix} \Rightarrow (x/w, y/w) \qquad \begin{bmatrix} x \\ y \\ z \\ w \end{bmatrix} \Rightarrow (x/w, y/w, z/w)$$

- Keep track of dimensions
 - Usually, 3 (world) to 2 (image)
 - Homogeneous: 4(world) to 3(image)
 - -X'=MX

$$\begin{bmatrix} x \\ y \\ z \\ w \end{bmatrix} \Rightarrow (x/w, y/w, z/w) \qquad \begin{bmatrix} cx \\ cy \\ cz \\ cw \end{bmatrix} \Rightarrow (x/w, y/w, z/w)$$

$$\begin{bmatrix} cx \\ cy \\ cz \\ cw \end{bmatrix} \Rightarrow (x/w, y/w, z/w)$$

Homogeneous Coordinates of Lines

- The homogeneous coordinate of a line is 1 = b
- The dot product of the homogeneous coordinates of a line and a point on it is zero

If
$$x = [x_1, x_2]^T \in I$$

$$ax + by + c = 0$$

$$\begin{vmatrix} x_1 \\ x_2 \\ 1 \end{vmatrix} \begin{bmatrix} a \\ b \\ c \end{vmatrix} = 0$$

- Cross product of two lines gives the homogeneous coordinate of their point of intersection $x = 1 \times 1'$
- Points at infinity (ideal points): $\mathbf{x}_{\infty} = [\mathbf{x}_1 \ \mathbf{x}_2 \ 0]^{\mathrm{T}}$
- Line at infinity (ideal line): set of ideal points, $\mathbf{l}_{\infty} = [0 \ 0 \ 1]^{\mathrm{T}}$

Hao Su Section 4 - 6 10/21/2011

Rotation Matrices

Examples

$$R_{z} = \begin{bmatrix} \cos\theta_{z} & -\sin\theta_{z} & 0\\ \sin\theta_{z} & \cos\theta_{z} & 0\\ 0 & 0 & 1 \end{bmatrix}$$

$$R_{y} = \begin{bmatrix} \cos\theta_{y} & 0 & -\sin\theta_{y}\\ 0 & 1 & 0\\ \sin\theta_{y} & 0 & \cos\theta_{y} \end{bmatrix}$$

$$R_{x} = \begin{bmatrix} 1 & 0 & 0\\ 0 & \cos\theta_{x} & -\sin\theta_{x}\\ 0 & \sin\theta_{x} & \cos\theta_{x} \end{bmatrix}$$

$$R=R_xR_yR_z$$

Important Properties

$$- |R| = 1$$

$$-R^TR=I$$

$$- R^T = R^{-1}$$

Homography/Projective/Perspective

- Parallel lines intersect at vanishing points
- World->image

$$\begin{bmatrix} x \\ y \\ w \end{bmatrix} = \begin{bmatrix} a_{11} & a_{12} & a_{13} & b_1 \\ a_{21} & a_{22} & a_{23} & b_2 \\ a_{31} & a_{32} & a_{33} & b_3 \end{bmatrix} \begin{bmatrix} X \\ Y \\ Z \\ 1 \end{bmatrix}$$

Image->image

$$\begin{bmatrix} x \\ y \\ w \end{bmatrix} = \begin{bmatrix} a_{11} & a_{12} & b_1 \\ a_{21} & a_{22} & b_2 \\ a_{31} & a_{32} & b_3 \end{bmatrix} \begin{bmatrix} X \\ Y \\ 1 \end{bmatrix}$$

• $|H| \neq 0$

A Quick Question...

• Do these 2 homography matrices yield the same points in the image space x and x'?

$$x = HX$$

$$x' = cHX$$

Homography/Projective/Perspective

- Parallel lines intersect at vanishing points
- World->image

$$\begin{bmatrix} x \\ y \\ w \end{bmatrix} = \begin{bmatrix} a_{11} & a_{12} & a_{13} & b_1 \\ a_{21} & a_{22} & a_{23} & b_2 \\ a_{31} & a_{32} & a_{33} & b_3 \end{bmatrix} \begin{bmatrix} X \\ Y \\ Z \\ 1 \end{bmatrix}$$

Image->image

$$\begin{bmatrix} x \\ y \\ w \end{bmatrix} = \begin{bmatrix} a_{11} & a_{12} & b_1 \\ a_{21} & a_{22} & b_2 \\ a_{31} & a_{32} & b_3 \end{bmatrix} \begin{bmatrix} X \\ Y \\ 1 \end{bmatrix}$$

• $|H| \neq 0$

Affine Transform

- Special case: weak perspective simpler math (less computations)
- Parallel lines remain parallel
- World->image

$$\begin{bmatrix} x \\ y \\ w \end{bmatrix} = \begin{bmatrix} a_{11} & a_{12} & a_{13} & b_1 \\ a_{21} & a_{22} & a_{23} & b_2 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ Y \\ Z \\ 1 \end{bmatrix}$$

Image->image

$$\begin{bmatrix} x \\ y \\ w \end{bmatrix} = \begin{bmatrix} a_{11} & a_{12} & b_1 \\ a_{21} & a_{22} & b_2 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} X \\ Y \\ 1 \end{bmatrix}$$

- $|H| \neq 0$
- w = 1 (no division required!)

Solving For an Affine Transform Matrix

$$\begin{bmatrix} x_1 & x_2 & x_3 \\ y_1 & y_2 & y_3 \dots \\ 1 & 1 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} a_{11} & a_{12} & a_{13} & b_1 \\ a_{21} & a_{22} & a_{23} & b_2 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} X_1 & X_2 & X_3 \\ Y_1 & Y_2 & Y_3 & \dots \\ Z_1 & Z_2 & Z_3 & \dots \\ 1 & 1 & 1 & 1 \end{bmatrix}$$
unknowns

Hao Su Section 4 - 12 10/21/2011

Solving For an Affine Transform Matrix

$$\begin{bmatrix} x_1 & x_2 & x_3 \\ y_1 & y_2 & y_3 \\ 1 & 1 & 1 \end{bmatrix} = \begin{bmatrix} a_{11} & a_{12} & b_1 \\ a_{21} & a_{22} & b_2 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} X_1 X_2 X_3 \\ Y_1 & Y_2 & Y_3 \\ 1 & 1 & 1 \end{bmatrix}$$

unknowns

Hao Su Section 4 - 13 10/21/2011

Camera Matrix

- Maps 3D world scene onto 2D image in homogeneous coordinates.
- M = K[R T]
 - [R T]: rigid transformation
 - From world to camera reference
 - Extrinsic parameters
 - K: camera calibration matrix
 - From camera reference to sensor
 - intrinsic parameters

Some Notation...

$$[a_{\times}]x = a \times x$$

Epipolar Geometry

 \overrightarrow{Op} , $\overrightarrow{O'p'}$, and $\overrightarrow{OO'}$ are coplanar.

Hao Su Section 4 - 16 10/21/2011

Essential and Fundamental Matrix

$$\overrightarrow{Op} \cdot [\overrightarrow{OO'} \times \overrightarrow{O'p'}] = 0.$$

$$p \cdot [t \times (\mathcal{R}p')]$$

$$p^{T} \mathcal{E}p' = 0 \qquad \mathcal{E} = [t_{\times}]\mathcal{R}$$

Hao Su Section 4 - **17 10/21/2011**

A Simple "Trick"

• The fundamental matrix corresponding to a camera pair, $M = [I \ 0]$ and $M' = [A \ a]$ is equal to $[a]_x A$

Hao Su Section 4 - **18 10/21/2011**