Mathematics Department Perth Modern Perth Modern

1 | Page

Task weighting:

Working out space

	_ шэгкs	6E	Marks available:
ed ed		Drawing No note	Special items:
วreferred), pencils (including coloured), sharpener, ape, eraser, ruler, highlighters s/classpads allowed	գ/թյոլյ ս	correctio	Standard items:
			Materials required:
		9	Number of questions:
Working time allowed for this task: 40 mins			
		suim & : te	Reading time for this te
	ə	gesbous	_ sak tуре:
Teacher name:			Student name:
Test 3 Year 12	tsil	sioəd	Course S
WODERN SCHOOL students.	lenoi	Except	

Note: All part questions worth more than 2 marks require working to obtain full marks.

Formula sheet provided: no but formulae given on page 2

%^{___}tT

9 g s q **| 8**

Useful formulae

	I I
$\frac{d}{dx} \ln x = \frac{1}{x}$	$\int \frac{1}{x} dx = \ln x + c$
$\frac{d}{dx}\ln f(x) = \frac{f'(x)}{f(x)}$	$\int \frac{f'(x)}{f(x)} dx = \ln f(x) + c$
$\frac{d}{dx}\sin f(x) = f'(x)\cos f(x)$	$\int \sin(ax) dx = -\frac{1}{a} \cos(ax) + c$
$\frac{d}{dx}\cos f(x) = -f'(x)\sin f(x)$	$\int \cos(ax) dx = \frac{1}{a} \sin(ax) + c$
$\frac{d}{dx}\tan f(x) = f'(x)\sec^2 f(x) = \frac{f'(x)}{\cos^2 f(x)}$	$\int \sec^2(ax) dx = \frac{1}{a} \tan(ax) + c$

Volumes of solids of revolution	
About the <i>x</i> -axis	$V = \pi \int_{a}^{b} [f(x)]^{2} dx$
About the <i>y</i> -axis	$V = \pi \int_{c}^{d} [f(y)]^{2} dy$

Prism	V = Ah, where A is the area of the cross section		
Pyramid	$V = \frac{1}{3} Ah$, where A is the area of the base		
Cylinder	$V = \pi r^2 h$	$TSA = 2\pi rh + 2\pi r^2$	
Cone	$V = \frac{1}{3} \pi r^2 h$	$TSA = \pi rs + \pi r^2$, where s is the slant height	
Sphere	$V = \frac{4}{3} \pi r^3$	$TSA = 4\pi r^2$	

Identities	
$\cos^2 x + \sin^2 x = 1$	$1 + \tan^2 x = \sec^2 x$
$\cos(x \pm y) = \cos x \cos y \mp \sin x \sin y$	$\cos 2x = \cos^2 x - \sin^2 x$ $= 2\cos^2 x - 1$ $= 1 - 2\sin^2 x$
$\sin(x \pm y) = \sin x \cos y \pm \cos x \sin y$	$\sin 2x = 2\sin x \cos x$

2 | P a g e

Q5 cont-

Mathematics Department

c) Determine the time taken for the maximum growth rate.

Q6 (5 marks)

Consider a woman of height 1.75 m, travelling at 2 m/s along the edge of a road of width 10 m (See direction below). A lamp of height 6 m on the other side of the road, casts a shadow of the woman of length, l, as shown below. Determine the **exact** time rate of change of the length of the shadow when y = 20 m.

Mathematics Department Perth Modern

No notes allowed

Q1 (2, 3 & 3 = 8 marks)

An object starts from rest at the origin and moves with a velocity $v = \frac{2\sin 2t}{t \sin 2t}$ has at time t

- Determine the following.
- a) Acceleration at time t.
- b) The cartesian equation of the path of the object. (Do not simplify)
- perpendicular. c) Determine to the nearest second the first time for t>0 that the acceleration and velocity are

- Q2 (5 marks)
- If $\frac{\sqrt{y}}{x}$ in terms of $\frac{\sqrt{x}}{x}$ in the solution of $\frac{\sqrt{y}}{x}$ in terms of $\frac{\sqrt{y}}{x}$.

Mathematics Department Perth Modern

kangaroos, N can be modelled by the differential equation $\frac{dN}{dt} = \frac{N}{300} \Big(100 - N \Big)$. At time $\,t=0\,$ years, 26 kangaroos are placed in an isolated habitat such that the number of Q5 (5, 2 & 2 = 9 marks)

a) Using separation of variables and partial fractions determine $N(\mathfrak{t})$ without the use of a

b) Determine the limiting value of the population of kangaroos.

Continued on next page.

6 Page

3 | Page

Mathematics Department

Perth Modern

Q3 (6 marks)

Sand is poured into a gigantic metal cone of height 15 m and a radius of 4 m at a rate of 120 cubic metres per minute, as shown below.

Determine the time rate of change, metres per minute, of the height, $\it h$ metres, of the sand when the height is 5 m.

4 | Page

Mathematics Department Perth Modern

Q4 (6 marks)

5 | Page

A water pipe of length 10 metres can be modelled by a cross-section AB where $y = 8 - 2\sin\left(\frac{\pi x}{10}\right)$, $0 \le x \le 10$ and this curve is revolved about the x axis.

Determine the volume of water that this length of pipe will hold. Show all working **without** the use of a classpad. (Simplify)