N79-31173

ENCLOSURE FIRE DYNAMICS MODEL 505-08-25

JOSETTE BELLAN

MARCH 1, 1979

1

ENCLOSURE FIRE DYNAMICS MODEL PLAN OF THE PRESENTATION

- 1) PRACTICAL SITUATION. WHY A FIRE DYNAMICS MODEL?
- 2) DIFFICULTIES IN ESTABLISHING A MODEL.
- 3) BRIEF REVIEW OF ENCLOSURE-FIRE MODELS AVAILABLE.
- 4) OUR APPROXIMATION OF THE PRACTICAL SITUATION.
- 5) OUR MODEL.

PRACTICAL SITUATION

IT HAS BEEN SHOWN BY GLOBAL MODELING OF EXPERIMENTAL DATA THAT FIRE CAN BE LIMITED IN ITS PROPAGATION BY TWO FACTORS:

- LACK OF O2 (VENTILATION, ENCLOSURE VOLUME)
- LACK OF FUEL (FUEL LOAD, FUEL SURFACE)

PRACTICAL SITUATION (contd)

IT HAS ADDITIONALLY BEEN OBSERVED THAT:

• THE OUTCOME OF THE FIRE IS STRONGLY INFLUENCED BY VENTILATION PATTERNS

- THE OUTCOME OF THE FIRE IS STRONGLY INFLUENCED BY THE LOCATION OF THE FIRE
- THERE IS A STRONG TEMPERATURE CHANGE NOT ONLY IN THE HORIZONTAL, BUT ALSO IN THE VERTICAL DIRECTION DUE TO AIR BUOYANCY
- SURFACES, OTHER THAN THOSE BURNING, ARE FURTHER IGNITED DUE TO RADIATION AND/OR CONVECTION FROM THE EXISTING FIRE

GLOBAL MODELING CANNOT PREDICT THESE LATTER FIRE CHARACTERISTICS

A DETAILED ANALYTICAL MODEL IS NEEDED

106

DIFFICULTIES IN ESTABLISHING A MATHEMATICAL MODEL DESCRIBING FIRE IN AIRCRAFT

- 1) GEOMETRICAL ASPECTS
- 2) TURBULENT ASPECTS

 LACK OF DATA TO INDICATE LEVELS OF TURBULENCE TRANSPORT

 (cm²/sec)
- Combustion aspects

 Lack of knowledge on the detailed chemical mechanism. Lack of data (E and A) to approximate those mechanisms by a one step reaction.
- 4) DESCRIPTION OF THE COUPLING BETWEEN COMBUSTION AND TURBULENCE
- 5) RADIATION ASPECTS
 VIEW FACTORS, EMISSIVITIES, GAS PHASE ABSORPTANCE AND TRANSMITTANCE
- 6) Boundary conditions and wall effects

 Difficult to correctly approximate both wall and core phenomena within reasonable constraints (money, time, computer time)
- 7) Lack of thermophysical and thermochemical constants for various materials that are used in aircraft.

ORIGINAL PAGE IS OF POOR QUALITY

REVIEW OF ENCLOSURE -

	Ţ	FIELD	CONSERVATION EQUATIONS						8,	벟	SOUNDARY CONDITIONS					SPECIFIC	PREDICTED QUANTITIES					
	1	OR ZONE	,			ALT	·	TE E	CASES	BULBIC	VENTILATION		SURFACES	RADIATION	PLUME MODEL	DATA REQUIRED	•	79	75	~	SAIGHE	SPECIES
ſ			MASS	MOM	LNERGY	SPECIE	SMOKE	٤	88	ž	OR FUNCED	UPONINGS					_	_			3	5
!	EFDM	F (2-0)	~	·	V	>	LATER	:ATB	P	EFFECTIVE TRANSPORT PROPERTIES	 F/N 	2	NO-SLIP VELOCITY; HEAT TRANSFER TO SURFACES; GAS IFI- CATION OF FUEL	~	MA	THERMOPHYSICAL AND THERMOCHEM- ICAL PROPERTIES, STOICHIOMETRY	V	v	✓.	~	CARER	V
	NOTRE DAME	(2-9)	v	>	~					ALGEBRATC MODEL ICURE AND WALLI	N	1,2	NU-SLIP VELUCITY; HEAT TRANSFER TO SURFACES	1-D MODEL; SOOT, H ₂ U, CU ₂ BANDS	N/A	VARIOUS FUNDAMENTAL PHYSICAL PROP- TIES: SPECIE AND SOOT CONCENTRATION	~	V	7	v		
	Mc DONNELL DOUGLAS	2 (3)	v		>	UK		UK	SE		UK	UK	HEAT TRANSFER TO SURFACES	BLACK BODY?		UK		~	~			UK
	DAYTON	2 (3)	V-€	PLUME, CEILING JET ONLY		√ -{	√-€	٧Ę	ε		F/N	2	HEAT TRANSFER TO WALLS AND CEILING	ABSORBING AND EMITTING UPPER LAYER: FLAME RADIATION MODEL INCLUDING SOOT	FANG/ ROCKET FLAME/ PLUME MODEL; STEW- ARD MUDEL IN BUOYANT PLUME	RATES AND TIMES GOVERNING TRANSITION STATES: HEAT RELEASE, SPECIE EVOLUTION, FLAME SPREAD		~	~		~	O2 CO HCN HC1 SO2 HF
	11 TRI	2 (2)	√ŧ	i .	√-ŧ			Ϋ́E	E		N	1	HEAT TRANSFER TO WALLS AND CEILING	Black Body?	FANG'S FLAME/ PLUME MODEL	PUEL GASIFICATION RATES; CUMBUSTION EFFICIENCY		~	~			
	NBS	Z (4)	~		~				P		N	1	HEAT TRANSFER TO WALLS AND CEILING		STEWARD'S "TURBULENT DIFFUSION BUOYANT FLAME" MODEL	SOOT CONCENTRATION AM, GASIFICATION TEMPS, STOICHIOMETRY						
	HARVARD	2 (2)	√ -€		√ 4				E		N	1	HEAT TRANSFER TO UPPER WALLS AND CEILING	7	MORTON'S "POINT - SGURCE" BUOYANT PLUME	BURNING RATES		V	>			

E - EMPIRICAL INPUT REQUIRED SE - SEMI-EMPIRICAL P - PREDICTED NA - NOT APPLICABLE UK - UNKNOWN

109

APPROXIMATION OF THE PRACTICAL SITUATION

MATHEMATICAL MODELING INCLUDES:

- . WRITING THE CONSERVATION EQUATIONS FOR TURBULENT FLOW
- MODELING THE COMBUSTION TERMS IN THESE EQUATIONS
- . MODELING THE RADIATION TERMS IN THESE EQUATIONS
- WRITING THE BOUNDARY CONDITIONS FOR A GIVEN SITUATION
- . WRITING THE INITIAL CONDITIONS FOR A GIVEN SITUATION
- FINDING THE VALUE OF THE RELEVANT BASIC CONSTANTS THAT ARE RELATED TO MATERIAL PROPERTIES

THE CONSERVATION EQUATIONS (1 of 3)

MASS

$$\frac{\partial \rho}{\partial t} + \frac{\partial (\rho u)}{\partial x} + \frac{\partial (\rho v)}{\partial y} = 0$$

transient convective terms

x-MOMENTUM COMPONENT

$$\frac{\rho \frac{\partial U}{\partial t}}{\partial t} + \rho U \frac{\partial U}{\partial x} + \rho V \frac{\partial U}{\partial y} = -\frac{\partial P}{\partial x} - g \rho \sin \theta + \frac{\partial U}{\partial x} + \rho V \frac{\partial U}{\partial y} = -\frac{\partial P}{\partial x} - g \rho \sin \theta + \frac{\partial P}{\partial x} + \frac{\partial P}{\partial x} - g \rho \sin \theta + \frac{\partial P}{\partial x} + \frac{\partial P}{\partial x} - g \rho \sin \theta + \frac{\partial P}{\partial x} + \frac{\partial P}{\partial x} - g \rho \sin \theta + \frac{\partial P}{\partial x} - g \rho \cos \theta + \frac{\partial P}{\partial x}$$

change term

 $\frac{\partial}{\partial x} \left[\left(-\frac{2}{3} \mu_{\mathsf{T}} \right) \left(\frac{\partial \mathsf{U}}{\partial \mathsf{x}} + \frac{\partial \mathsf{V}}{\partial \mathsf{y}} \right) \right] + 2 \frac{\partial}{\partial x} \left(\mu_{\mathsf{X}_{\mathsf{T}}} \frac{\partial \mathsf{U}}{\partial \mathsf{x}} \right) + \frac{\partial}{\partial y} \left[\mu_{\mathsf{y}_{\mathsf{T}}} \left(\frac{\partial \mathsf{U}}{\partial \mathsf{y}} + \frac{\partial \mathsf{V}}{\partial \mathsf{x}} \right) \right]$

term

viscous stress terms (turbulent)

THE CONSERVATION EQUATIONS

y-MOMENTUM COMPONENT

$$\rho \frac{\partial V}{\partial t} + \rho U \frac{\partial V}{\partial x} + \rho V \frac{\partial V}{\partial y} = -\frac{\partial P}{\partial y} - g \rho \cos \theta$$

transient convective terms pressure buoyancy term

term

$$+\frac{\partial}{\partial x}\left[\mu_{X_{T}}\left(\frac{\partial V}{\partial x}+\frac{\partial U}{\partial y}\right)\right]+\frac{\partial}{\partial y}\left[\left(-\frac{2}{3}\mu_{T}\right)\left(\frac{\partial U}{\partial x}+\frac{\partial V}{\partial y}\right)\right]+2\frac{\partial}{\partial y}\left[\mu_{Y_{T}}\frac{\partial V}{\partial y}\right]$$

viscous stress terms (turbulent)

SPECIES

transient term
$$\frac{\partial Y_{i}}{\partial t} + \rho u \frac{\partial Y_{i}}{\partial x} + \rho v \frac{\partial Y_{i}}{\partial y} = \frac{\partial}{\partial x} \left(D_{x_{T}} \rho \frac{\partial Y_{i}}{\partial x} \right) + \frac{\partial}{\partial y} \left(D_{y_{T}} \rho \frac{\partial Y_{i}}{\partial y} \right) + \dot{\omega}_{i}$$

$$\frac{\partial Y_{i}}{\partial x} + \rho v \frac{\partial Y_{i}}{\partial y} = \frac{\partial}{\partial x} \left(D_{x_{T}} \rho \frac{\partial Y_{i}}{\partial x} \right) + \frac{\partial}{\partial y} \left(D_{y_{T}} \rho \frac{\partial Y_{i}}{\partial y} \right) + \dot{\omega}_{i}$$

$$\frac{\partial Y_{i}}{\partial x} + \rho v \frac{\partial Y_{i}}{\partial y} = \frac{\partial}{\partial x} \left(D_{x_{T}} \rho \frac{\partial Y_{i}}{\partial x} \right) + \frac{\partial}{\partial y} \left(D_{y_{T}} \rho \frac{\partial Y_{i}}{\partial y} \right) + \dot{\omega}_{i}$$

$$\frac{\partial Y_{i}}{\partial x} + \rho v \frac{\partial Y_{i}}{\partial y} = \frac{\partial}{\partial x} \left(D_{x_{T}} \rho \frac{\partial Y_{i}}{\partial x} \right) + \frac{\partial}{\partial y} \left(D_{y_{T}} \rho \frac{\partial Y_{i}}{\partial y} \right) + \dot{\omega}_{i}$$

$$\frac{\partial Y_{i}}{\partial x} + \rho v \frac{\partial Y_{i}}{\partial y} = \frac{\partial}{\partial x} \left(D_{x_{T}} \rho \frac{\partial Y_{i}}{\partial x} \right) + \frac{\partial}{\partial y} \left(D_{y_{T}} \rho \frac{\partial Y_{i}}{\partial y} \right) + \dot{\omega}_{i}$$

$$\frac{\partial Y_{i}}{\partial x} + \rho v \frac{\partial Y_{i}}{\partial y} = \frac{\partial}{\partial x} \left(D_{x_{T}} \rho \frac{\partial Y_{i}}{\partial y} \right) + \frac{\partial}{\partial y} \left(D_{x_{T}} \rho \frac{\partial Y_{i}}{\partial y} \right) + \dot{\omega}_{i}$$

$$\frac{\partial Y_{i}}{\partial x} + \rho v \frac{\partial Y_{i}}{\partial y} = \frac{\partial}{\partial x} \left(D_{x_{T}} \rho \frac{\partial Y_{i}}{\partial y} \right) + \frac{\partial}{\partial y} \left(D_{x_{T}} \rho \frac{\partial Y_{i}}{\partial y} \right) + \dot{\omega}_{i}$$

$$\frac{\partial Y_{i}}{\partial x} + \rho v \frac{\partial}{\partial y} = \frac{\partial}{\partial x} \left(D_{x_{T}} \rho \frac{\partial Y_{i}}{\partial y} \right) + \frac{\partial}{\partial y} \left(D_{x_{T}} \rho \frac{\partial Y_{i}}{\partial y} \right) + \dot{\omega}_{i}$$

$$\frac{\partial Y_{i}}{\partial x} + \rho v \frac{\partial}{\partial y} = \frac{\partial}{\partial x} \left(D_{x_{T}} \rho \frac{\partial Y_{i}}{\partial y} \right) + \dot{\omega}_{i}$$

$$\frac{\partial Y_{i}}{\partial x} + \rho v \frac{\partial}{\partial y} = \frac{\partial}{\partial x} \left(D_{x_{T}} \rho \frac{\partial Y_{i}}{\partial y} \right) + \dot{\omega}_{i}$$

$$\frac{\partial Y_{i}}{\partial y} + \partial v \frac{\partial}{\partial y} = \frac{\partial}{\partial x} \left(D_{x_{T}} \rho \frac{\partial}{\partial y} \right) + \dot{\omega}_{i}$$

$$\frac{\partial Y_{i}}{\partial y} + \partial v \frac{\partial}{\partial y} = \frac{\partial}{\partial x} \left(D_{x_{T}} \rho \frac{\partial}{\partial y} \right) + \dot{\omega}_{i}$$

$$\frac{\partial Y_{i}}{\partial y} + \partial v \frac{\partial}{\partial y} = \frac{\partial}{\partial x} \left(D_{x_{T}} \rho \frac{\partial}{\partial y} \right) + \dot{\omega}_{i}$$

$$\frac{\partial Y_{i}}{\partial y} + \partial v \frac{\partial}{\partial y} = \frac{\partial}{\partial x} \left(D_{x_{T}} \rho \frac{\partial}{\partial y} \right) + \dot{\omega}_{i}$$

$$\frac{\partial Y_{i}}{\partial y} + \partial v \frac{\partial}{\partial y} = \frac{\partial}{\partial x} \left(D_{x_{T}} \rho \frac{\partial v}{\partial y} \right) + \dot{\omega}_{i}$$

$$\frac{\partial Y_{i}}{\partial y} + \partial v \frac{\partial}{\partial y} = \frac{\partial}{\partial x} \left(D_{x_{T}} \rho \frac{\partial}{\partial y} \right) + \dot{\omega}_{i}$$

$$\frac{\partial Y_{i}}{\partial y} + \partial v \frac{\partial}{\partial y} = \frac{\partial}{\partial x} \left(D_{x_{T}} \rho \frac{\partial}{\partial y} \right) + \dot{\omega}_{i}$$

$$\frac{\partial Y_{i}}{\partial y} + \partial v \frac{\partial}{\partial y} = \frac{\partial}{\partial x} \left(D_{x_{T}$$

i = fuel, oxygen, nitrogen, water, carbon dioxide.

THE CONSERVATION EQUATIONS

(3 of 3)

ENERGY

$$\rho C_{p} \frac{\partial T}{\partial t} + \rho U C_{p} \frac{\partial T}{\partial x} + \rho V C_{p} \frac{\partial T}{\partial y} - \frac{\partial P}{\partial t} + \frac{\partial}{\partial x} \left(k_{x_{T}} \frac{\partial T}{\partial x} \right) + \frac{\partial}{\partial y} \left(k_{y_{T}} \frac{\partial T}{\partial y} \right)$$

transient term

convective terms

pressure change

conductive terms (turbulent)

term

work

source of heat due to combustion radiation term

STATE

$$p = \rho RT$$
 with $R = R_U \sum_{i=1}^{N_i} \frac{Y_i}{W_i}$

112

OF POOR QUALITY

MODELING OF COMBUSTION

$$C_n H_m + (n + \frac{m}{4}) O_2 \longrightarrow n CO_2 + \frac{m}{2} H_2 O$$

$$\dot{\omega}_{\mathsf{F}} = c_1 \dot{\omega}_{0_2}$$

$$\dot{\omega}_{F} = c_{1} \dot{\omega}_{0_{2}}$$
 with $c_{1} = \frac{w_{F}}{w_{0_{2}}} \frac{1}{n + \frac{m}{4}}$

$$\dot{\omega}_{CO_2} = -c_2 \dot{\omega}_{O_2}$$
 with $c_2 = \frac{w_{CO_2}}{w_{O_2}} \frac{n}{n + \frac{m}{4}}$

$$c_2 = \frac{w_{CO_2}}{w_{O_2}} = \frac{n}{n + \frac{m}{4}}$$

$$\dot{\omega}_{\text{H}_2\text{O}} = -c_3 \dot{\omega}_{\text{O}_2}$$

$$\dot{\omega}_{\text{H}_2\text{O}} = -c_3 \dot{\omega}_{\text{O}_2}$$
 with $c_3 = \frac{w_{\text{H}_2\text{O}}}{w_{\text{O}_2}} \frac{\text{m/2}}{\text{n} + \frac{\text{m}}{4}}$

$$\dot{\omega}_{O_2} = w_{O_2} \frac{d [O_2]}{dt} = -k_f \frac{1}{w_F} Y_F Y_{O_2} \rho^2 \text{ with } k_f = Ae^{-E/RT}$$

$$\dot{Q} = \frac{1}{\rho} \left(c_1 h_F^0 - c_2 h_{CO_2}^0 - c_3 h_{EO}^0 \right) \left(-\dot{\omega}_{O_2} \right)$$

BOUNDARY CONDITIONS

WALLS (INERT)

$$u = 0$$
 , $v = 0$

$$\frac{\partial Y_i}{\partial n} = 0$$
; in is the direction perpendicular to the wall

thin wall assumption

 $A \overline{\rho} \overline{u} = \dot{m}_{air}$ (forced ventilation)

$$V = 0$$

BOUNDARY CONDITIONS (Cont'd)

EXIT $(x = 1 : y_3 < y < y_2)$

P, U, V, Y_F, Y_{O2}, Y_{N2}, Y_{CO2}, Y_{H2}O, T are found by forward extrapolation

POOL SURFACE $(y = 0, x_1 < x < x_2)$

$$v = 0$$

$$\rho V Y_{F} - \rho D \frac{\partial Y_{F}}{\partial y} = \dot{M}_{F}$$

$$\rho V Y_{i} - \rho D \frac{\partial Y_{i}}{\partial y} = 0 \qquad i = 0_{2}, N_{2}, CO_{2}, H_{2}O$$

$$\dot{M}_{F} = \alpha D_{atm} \left(\frac{\frac{1}{2} - \frac{1}{2}}{e} \right) - \frac{Y_{F}}{W_{F}} \frac{1}{\sum \frac{1}{W_{i}}} \left(\frac{W_{F}}{2\pi RT_{i}} \right)^{1/2}$$

thin wall assumption

$$\delta_1 P_1 C_1 \frac{\partial T_1}{\partial t} = k_g \frac{\partial T}{\partial y} + \dot{q}_{net} - \dot{M}_F L_g$$

115

OF POOR QUALTY

PRESENT AND FUTURE WORK

- 1) MODEL THE RADIATION TERMS
 - IN THE ENERGY EQUATION
 - IN THE BOUNDARY CONDITIONS
- 2) INCODE THE EQUATIONS
 - SELECT A COMPUTATION SCHEME
 - TRANSFORM THE EQUATIONS FROM A DIFFERENTIAL.

 TO A FINITE FORM
 - DEVELOP A COMPUTER CODE
- 3) ASCERTAIN THERMOPHYSICAL AND THERMOCHEMICAL CONSTANTS
 THAT ARE RELEVENT TO AIRCRAFT MATERIALS
- 4) CHARACTERIZE THE FLOW CONDITIONS IN AIRCRAFT (LEVELS OF FURBULENCE) USING AVAILABLE EXPERIMENTAL DATA