UNIVERSIDADE FEDERAL DE UBERLÂNDIA FACULDADE DE ENGENHARIA ELÉTRICA CIRCUITOS ELÉTRICOS II

2º Semestre de 2019 – Prof. Wellington M. S. Bernardes LABORATÓRIO - CIRCUITOS TRIFÁSICOS EQUILIBRADOS

1 – Objetivo

Verificar experimentalmente os conceitos teóricos sobre as relações existentes entre tensões de fases e de linhas em cargas ligadas em estrela, e correntes de fases e de linhas em cargas ligadas em triângulo. Além disso, comparar os resultados com os valores obtidos utilizando uma análise teórica.

2 – Materiais

Regulador de tensão (*varivolt*) Resistores de 50 Ω Reatores de 160 mH Medidor Trifásico *Kron Mult-K* Amperímetro Analógico AC

2 - Montagem

Carga em estrela

Observe a montagem indicada na Figura 1 abaixo, alimentando os pontos **a b c n** através de uma fonte alternada trifásica em seqüência de fases **abc** (ou **direta**), aplicando uma tensão entre linhas **V**_L **igual a 100 V**, em frequência de **60 Hz**.

Os parâmetros da carga são: $\mathbf{R} = 50~\Omega$; $\mathbf{R}_L = 3.8~\Omega$; $\mathbf{L} = 160~\text{mH}$. Na figura 1, \mathbf{V}_L representa um voltímetro conectado para medir a tensão entre linhas (fases \mathbf{ab}); \mathbf{V}_F representa um voltímetro conectado para medir a tensão de fase (fases \mathbf{cn} , por exemplo); \mathbf{A}_L representa um amperímetro conectado para medir a corrente de linha (igual a de fase) e; \mathbf{A}_N representa um amperímetro conectado para medir a corrente no fio neutro.

Figura 1 – Ligação em estrela em sequência de fases abc (n = n')

Observa-se pelo desenho que não é possível obter a tensão e corrente de todas as fases de forma simultânea, sendo necessária a mudança dos medidores V_L e V_F para a obtenção dos demais valores. Para isso, utilizaremos o medidor trifásico eletrônico *Kron*

Mult-K, usando as entradas V_A , V_B , V_C , V_N para as medidas de tensão e I_A , I_B e I_C para as medidas de corrente, assim sendo, realizando as ligações apropriadas. Como o Kron não mede a corrente de neutro, então é necessário um amperímetro analógico AC entre n e n'.

Parâmetros do Kron Mult-K

TP = TC = 1.00

 $TL^1 = 0000$ (Trifásico com Neutro "Estrela" – 3 Elementos 4 Fios) Uma corrente por fase (3); Três tensões e o sinal de neutro (4)

Os valores dos instrumentos devem ser anotados na Tabela I e na Tabela II (considere sequência ABC).

$V_{L}(V)$	$V_{\rm F}$	I_{L}	I_N	P _F (W)	P_{T}	Q_F	Q_{T}	S_{F}	S_{T}
	(V)	(A)	(A)		(W)	(VAr)	(VAr)	(VA)	(VA)
AB	AN'								
BC	BN'								
CA	CN'								

Tabela I – com neutro conectado

$V_{L}(V)$	$V_{\rm F}$	I_{L}	I_N	$P_F(W)$	P_{T}	Q_{F}	Q_{T}	S_{F}	S_{T}
	(V)	(A)	(A)		(W)	(VAr)	(VAr)	(VA)	(VA)
AB	AN'								
BC	BN'		-						
CA	CN'								

Tabela II – sem neutro conectado

Agora, conecte somente I_A , V_A e V_N do medidor eletrônico *Kron Mult-K*, e encontre os valores da Tabela III e IV com a seguinte configuração:

TP = TC = 1.00

TL = 0003 (Trifásico Equilibrado – 1 Elemento 2 Fios)

Uma corrente de fase A (1); Sinal de tensão da fase A e neutro (2)

Limitações: somente aplicável para sistemas equilibrados.

$V_{L}(V)$	V _F (V)	I _L (A)	I _N (A)	P _F (W)	P _T (W)	Q _F (VAr)	Q _T (VAr)	S _F (VA)	S _T (VA)
AB	AN'								
BC	BN'								
CA	CN'								

Tabela III – com neutro conectado

$V_{L}(V)$	V _F (V)	I _L (A)	I _N (A)	P _F (W)	P _T (W)	Q _F (VAr)	Q _T (VAr)	S _F (VA)	S _T (VA)
AB	AN'								
BC	BN'		-						
CA	CN'								

Tabela IV – sem neutro conectado

.

¹ TL = Tipo de Ligação.

Carga em triângulo

Agora observe a montagem indicada na Figura 2 abaixo, com a mesma impedância anterior, só que agora com a carga conectada em triângulo. Na Figura 2, V_L representa um voltímetro conectado para medir a tensão entre linhas; A_F representa um amperímetro conectado para medir a corrente de fase; A_L representa um amperímetro conectado para medir a corrente de linha.

Observa-se também, como no caso anterior, é necessária a mudança dos medidores V_L para a obtenção dos demais valores de tensão de linha. Para isso, utilizaremos o medidor trifásico eletrônico $Kron\ Mult-K$, sendo as entradas V_A , V_B e V_C para as medidas de tensão e I_A , I_B e I_C para as medidas de corrente, realizando as ligações apropriadas. A corrente A_F será obtida usando o amperímetro analógico.

Parâmetros do *Kron Mult-K*

TP = TC = 1.00

TL = 0048 (Trifásico sem Neutro – 3 Elementos 3 Fios)

Uma corrente por fase (3); Três tensões (3)

Figura 2 – Ligação em triângulo em sequência de fases abc (convencional)

Os valores dos instrumentos devem ser anotados na Tabela V.

$V_{L}(V)$	I_{F}	I_L	P _F (W)	P_{T}	Q_F	QT	S_{F}	S_{T}
	(A)	(A)		(W)	(VAr)	(VAr)	(VA)	(VA)
AB	A	A						
BC		В						
CA		С						

Tabela V – ligação em triângulo (TL = 0048)

Agora, conecte somente I_A , I_C , V_A , V_B e V_C (desconecte I_B) do medidor eletrônico *Kron Mult-K*, e encontre os valores da Tabela VI com a seguinte configuração:

TP = TC = 1.00

TL = 0049 (Trifásico sem Neutro – 2 Elementos 3 Fios)

Duas correntes de fase A e C (2); Sinal de tensão da três fases (3)

Limitações: somente aplicável para sistemas equilibrados.

$V_{L}(V)$	I _F (A)	I _L (A)	$P_F(W)$	P _T (W)	Q _F (VAr)	Q _T (VAr)	S _F (VA)	S _T (VA)
AB	A (7.1)	A		(**)	(• 1 11)	(() 111)	(111)	(111)
BC		В						
CA		С						

Tabela VI – ligação em triângulo (TL = 0049)

3 – Análise

- 3.1 Verifique a relação entre as tensões de fase (V_F) e de linha (V_L) obtidas a partir da montagem da figura 1.
- 3.2 Para o sistema equilibrado da figura 1, a soma das correntes no ponto "n" deveria ser igual ou muito próximo a zero para as tensões senoidais aplicadas. Isto aconteceu? Explique.
- 3.3 Se as correntes de linhas senoidais forem somadas fasorialmente, a soma será igual a corrente no neutro? Por quê?
- 3.4 Quando o fio neutro foi interrompido, o que aconteceu com cada instrumento de medida? As medidas foram as mesmas do caso anterior?
- 3.5 Se, desconectando-se o fio neutro, um voltímetro fosse ligado entre os pontos n' e n, que valor de tensão marcaria?
- 3.6 A relação de tensão $V_L = \sqrt{3} V_F$ foi comprovada experimentalmente? Por quê?
- 3.7 Verifique a relação entre as correntes de fase (I_F) e de linha (I_L) obtidas a partir da montagem da Figura 2. Foi igual a $I_L = \sqrt{3} I_F$?
- 3.8 Observando as potências, real e reativa, trifásicas para a mesma impedância, na conexão em estrela e na conexão em triângulo o que pode concluir?
- 3.9 Explique os motivos da pequena diferença apresentada entre as tensões de linha e de fase, mesmo sabendo que essas tensões são iguais entre si em circuitos elétricos equilibrados, alterando-se apenas o ângulo. Neste caso, a corrente no neutro é exatamente zero?
- 3.10 Quando TL = 0003, explique por que basta a corrente da fase A e a tensão $V_{\rm AN}$ para que o medidor *Kron* encontre as demais medidas corretamente? Aponte uma vantagem técnica ao utilizar esse artifício.
- 3.11 Ainda para TL = 0003, qual é a tensão informada pelo medidor: de fase ou de linha? Qual cuidado se deve ter em relação a esse experimento?
- 3.12 Ao aumentar gradativamente a tensão do *varivolt*, é importante checar se os amperímetros não se alterem bruscamente devido a um provável curto-circuito. Um aluno observa A_N no primeiro experimento. Está incorreto? Por quê?
- 3.13 Um aluno ao montar o primeiro experimento, à medida que altera o valor de tensão no *varivolt*, verifica que a corrente I_N está crescendo também. Está correto? Comente as principais causas.

Observações finais:

Parte 1 – Estrela. Parte 2 – Delta (Continuação na próxima semana);

Entrega de um relatório único (aulas em 2 semanas). Cada aula corresponde a 50% da nota;

Novas questões podem ser acrescentadas com aviso prévio.