

September 26, 2022

Yubo Cai

EXERCISE 1

1.1

First, we want to compute x^2 and x^3 . We have $x^2 = x \cdot x$ and $x^3 = x^2 \cdot x$ which need 2 multiplications for computation. Then, since we compute recursively x^n in the algorithms $x^{n \bmod 4} \times \left(x^{n \operatorname{div} 4}\right)^4$, we have the inequality of C(n) that

$$C(n) \le C(n \operatorname{div} 4) + 3$$

Since we have $x^{n \operatorname{div} 4}$ and we compute it in the fourth power, therefore we need to compute $(x^{n \operatorname{div} 4})^2$ and then square it again in order to get $(x^{n \operatorname{div} 4})^4$, which needs 2 multiplications. Also we have to multiple $(x^{n \operatorname{div} 4})^4$ and $x^{n \operatorname{mod} 4}$ which requires another multiplication. For this reason, we get 3.

The number of recursion steps is bounded by the number of times n and we divide by 4 each time. Therefore, we have the height of the tree which is $\lfloor \log_4 n \rfloor = \lfloor \log_2 n / \log_2 4 \rfloor = \lfloor \frac{\log_2 n}{2} \rfloor$ (This can simply prove by computing $4^k = n$ where k in the height of the tree).

For each divide, we require 3 times of multiplications and when n becomes less than 4, we need 2 times to compute x^3 . Then we prove that

$$C(n) \le 3 \left[\frac{\log_2 n}{2} \right] + 2$$

1.2

The algorithms are similar to above:

- 1. Compute $1, x, x^2, x^3$ to x^{m-1} ;
- 2. Compute recursively x^n as $x^{n \mod m} \times (x^{n \operatorname{div} m})^m$

1.3

We apply the same method as in Exercise 1.1 to compute the number of multiplications required to compute x^n

We first have the inequality of C(n) that

$$C(n) \le C(n \operatorname{div} m) + k + 1$$

CSE202 - Design and Analysis of Algorithms

Since we have $x^{n \operatorname{div} m}$ and we compute it in 2^k power, therefore we need to compute it for k times and multiple $(x^{n \operatorname{div} m})^m$ and $x^{n \operatorname{mod} m}$ which requires another multiplication. For this reason, we get k+1. We estimate the number of recursion steps we have

$$(k+1) \lfloor \log_m n \rfloor + m - 2 = (k+1) \left| \frac{\log_2 n}{k} \right| + m - 2$$

where m-2 is the number of multiplications needed to compute $1, x, ..., x^{m-1}$. We can deduce that

$$(k+1) \lfloor \log_m n \rfloor + m - 2 = (k+1) \left\lfloor \frac{\log_2 n}{k} \right\rfloor + m - 2$$

$$\leq (k+1) \frac{\log_2 n}{k} + 2^k$$

$$\leq (1 + \frac{1}{k}) \log_2 n + 2^k$$

$$\leq \log_2 n \left(1 + \frac{1}{k} + \frac{2^k}{\log_2 n} \right)$$

Then we finish the prove.

1.4

For the given choice of $k = \lfloor \log_2 \log_2 n - \log_2 \log_2 \log_2 n \rfloor$, we have $2^k \leq \frac{\log_2 n}{\log_2 \log_2 n}$. Therefore, we have $\frac{1}{k}$ tend to 0 as $n \to \infty$ since k is divergent. Also, $\frac{2^k}{\log_2 n} \leq \frac{1}{\log_2 \log_2 n}$ and $\frac{1}{\log_2 \log_2 n}$ converge to 0 as $n \to \infty$. So we prove that the upper bound is equivalent to $\log_2 n$.

1.5

Since we have the optimal algorithm of $k = \lfloor \log_2 \log_2 n - \log_2 \log_2 \log_2 n \rfloor$ and k grows really slow with the increase of n. And we need at least $n \ge 10^9$ so that we can have k > 2 which is a really large power. Therefore we need this large exponent so that we can see the improvement of optimal algorithm.