System Check_Head_2450MHz

DUT: D2450V2 - SN:908

Communication System: UID 0, CW; Frequency: 2450 MHz; Duty Cycle: 1:1

Medium: HSL_2450 Medium parameters used: f = 2450 MHz; $\sigma = 1.841$ S/m; $\varepsilon_r = 38.237$; $\rho = 1000$

Date: 2019.7.11

 kg/m^3

Ambient Temperature: 23.3 °C; Liquid Temperature: 22.8 °C

DASY5 Configuration:

- Probe: EX3DV4 SN3954; ConvF(7.62, 7.62, 7.62); Calibrated: 2019.4.25
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1338; Calibrated: 2018.12.3
- Phantom: ELI v5.0; Type: QDOVA002AA; Serial: TP:1201
- Measurement SW: DASY52, Version 52.10 (1); SEMCAD X Version 14.6.11 (7439)

Pin=250mW/Area Scan (71x71x1): Interpolated grid: dx=1.200 mm, dy=1.200 mm Maximum value of SAR (interpolated) = 22.3 W/kg

Pin=250mW/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 95.28 V/m; Power Drift = 0.10 dB Peak SAR (extrapolated) = 25.6 W/kg

SAR(1 g) = 13.2 W/kg; SAR(10 g) = 6.33 W/kgMaximum value of SAR (measured) = 21.3 W/kg

0 dB = 21.3 W/kg = 13.28 dBW/kg

System Check_Head_5250MHz

DUT: D5GHzV2 - SN:1006

Communication System: UID 0, CW (0); Frequency: 5250 MHz; Duty Cycle: 1:1

Medium: HSL_5000 Medium parameters used: f = 5250 MHz; $\sigma = 4.53$ S/m; $\varepsilon_r = 36.364$; $\rho = 1000$

Date: 2019.7.12

 kg/m^3

Ambient Temperature: 23.3 °C; Liquid Temperature: 22.7 °C

DASY5 Configuration:

- Probe: EX3DV4 SN3954; ConvF(4.98, 4.98, 4.98); Calibrated: 2019.4.25
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1338; Calibrated: 2018.12.3
- Phantom: ELI v5.0; Type: QDOVA002AA; Serial: TP:1201
- Measurement SW: DASY52, Version 52.10 (1); SEMCAD X Version 14.6.11 (7439)

Pin=100mW/Area Scan (71x71x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 18.6 W/kg

Pin=100mW/Zoom Scan (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 50.09 V/m; Power Drift = -0.12 dB Peak SAR (extrapolated) = 24.1 W/kg

SAR(1 g) = 7.75 W/kg; SAR(10 g) = 2.25 W/kg Maximum value of SAR (measured) = 18.3 W/kg

0 dB = 18.3 W/kg = 12.62 dBW/kg

System Check Head 5600MHz

DUT: D5GHzV2 - SN:1006

Communication System: UID 0, CW; Frequency: 5600 MHz; Duty Cycle: 1:1

Medium: HSL_5000 Medium parameters used: f = 5600 MHz; $\sigma = 4.86$ S/m; $\varepsilon_r = 35.894$; $\rho = 1000$

Date: 2019.7.13

 kg/m^3

Ambient Temperature: 23.3 °C; Liquid Temperature: 22.7 °C

DASY5 Configuration:

- Probe: EX3DV4 SN3954; ConvF(4.51, 4.51, 4.51); Calibrated: 2019.4.25
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1338; Calibrated: 2018.12.3
- Phantom: ELI v5.0; Type: QDOVA002AA; Serial: TP:1201
- Measurement SW: DASY52, Version 52.10 (1); SEMCAD X Version 14.6.11 (7439)

Pin=100mW/Area Scan (71x71x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 19.5 W/kg

Pin=100mW/Zoom Scan (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 49.43 V/m; Power Drift = -0.08 dB Peak SAR (extrapolated) = 32.9 W/kg

SAR(1 g) = 8.09 W/kg; SAR(10 g) = 2.31 W/kg Maximum value of SAR (measured) = 19.7 W/kg

0 dB = 19.4 W/kg = 12.94 dBW/kg

System Check_Head_5750MHz

DUT: D5GHzV2 - SN:1006

Communication System: UID 0, CW (0); Frequency: 5750 MHz; Duty Cycle: 1:1

Medium: HSL_5000 Medium parameters used: f = 5750 MHz; $\sigma = 5.006$ S/m; $\varepsilon_r = 35.7$; $\rho = 1000$

Date: 2019.7.13

 kg/m^3

Ambient Temperature: 23.3 °C; Liquid Temperature: 22.7 °C

DASY5 Configuration:

- Probe: EX3DV4 SN3954; ConvF(4.65, 4.65, 4.65); Calibrated: 2019.4.25
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1338; Calibrated: 2018.12.3
- Phantom: ELI v5.0; Type: QDOVA002AA; Serial: TP:1201
- Measurement SW: DASY52, Version 52.10 (1); SEMCAD X Version 14.6.11 (7439)

Pin=100mW/Area Scan (71x71x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 18.65 W/kg

Pin=100mW/Zoom Scan (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 46.41 V/m; Power Drift = -0.06 dB Peak SAR (extrapolated) = 32.2 W/kg

SAR(1 g) = 7.84 W/kg; SAR(10 g) = 2.26 W/kg Maximum value of SAR (measured) = 19.2 W/kg

0 dB = 19.2 W/kg = 12.83 dBW/kg