

Analysis and Design of Algorithm

第11次课

- 贪心算法的基本概念
 - 贪心选择性质
 - 局部最优和全局最优
- 贪心算法的应用
 - 活动安排问题
 - ■最优装载问题
 - 哈夫曼编码

哈夫曼编码及其应用

哈夫曼编码是广泛用于数据文件压缩的编码方法,其使用字符在文件中出现的频率表来建立一个用0,1串表示各个字符的最优表示方式。

Google

Draco 3D compressor

facebook

Zstandard

中国MOOC 8.2 最优前缀码及哈夫曼算法

3.3 哈夫曼算法的正确性证明

哈夫曼编码-实例

- ■《海绵宝宝》的剧本
 - 剧集: The Camping Episode (第三季17集)
 - 共12953个字符
 - 占13KB 如何压缩?

```
Squidward: [enters his bedroom in nightgoom, with book, and cop of tee] Ahh, finally, the weekend is here. And this isn't just any old weekend. [gestures to "Dence On go camping, bouldn't it be great If they got lost in the woods and never came back? [thought bubble appears over squidward]
Spongebot. [In Squidward's thoughts, walking along with Partick, both have caphing gears excepted to their backs] Partick, I as carrod! [thought bubble disappears]
Spongebot is real laugh outside] What the...? [gene sortide to find spongebot and Partick in a tent, complete with sleeping bags and books, the two are laughing] Spongebot are as easying.
Spongebot is ear easying.
Spongebot is an excepting to complete the form of the particle of the spongebot and Partick in a tent, complete with sleeping bags and books, the two are laughing] Spongebot and partick in a tent, complete with sleeping bags and books, the two are laughing] Spongebot and partick in a tent, complete with sleeping bags and books, we're out here, pitti Squidward and the spongebot and partick from your house. [camera zoons out to show that is location]
Spongebot into the spongebot and partick resume reading; Squidward into the spongebot and partick resume reading; Squidward into the spongebot and partick resume reading; Squidward into the shows that the shows the spongebot into the spongebot and partick resume reading; Squidward on the shows the shows the spongebot into the spongebot and partick resume reading; Squidward on the shows the s
```


回顾: 图像的变位压缩存储

变位压缩的思想: 灰度值序列分段都用小 于8位的数字表示一个灰度值

2 3	2	37	40	14	9
------------	---	----	----	----	---

2 bits 2 bits 2 bits 6 bits 6 bits 4 bits 4 bits

压缩前占用比特数: 8×7=56

实际需要比特数: 2+2+2+6+6+4+4=26

回顾: 图像的变位压缩存储

- 变位压缩存储
 - 优点: 减少表示一个元素所需的位数
 - 缺点: 额外的存储空间(*l*[*i*]和*b*[*i*])

哈夫曼编码一问题描述

- 用字符在文件中出现的频率表来建立一个 用0,1串表示各字符的最优表示方式。
 - 给出现频率高的字符较短的编码

■ 给出现频率较低的字符以较长的编码

采用变长码 总码长减少25%

	a	b	c	d	e	f
频率(千次)	45	13	12	16	9	5
定长码	000	001	010	011	100	101
变长码	0	101	100	111	1101	1100

二元前缀码:对每一个字符规定一个0,1串作为其代码并要求 任一字符的代码都不是其他字符代码的前缀。

000101100111 => 0|0|0|101|100|111 => aaabcd

二元前缀码

- 二元前缀码
 - 用0-1字符串作为代码表示字符,要求任何字符的代码都不能作为其他字符代码的前缀

■ 非前缀码的例子

a: 001, b: 00, c:010, d:01

■解码的歧义,例如字符串0100001

■ 解码1: 01,00,001 d,b,a

■ 解码2: 010,00,01 c,b,d

前缀码的二叉树表示

■ 前缀码:

 $\{00000, 00001, 0001, 001, 01, 100, 101, 11\}$

- 构造树:
 - 0-左子树
 - 1-右子树
 - 码对应一片树叶
 - ■最大位数为树深

平均码长

$$B = \sum_{i=1}^{n} \frac{f(x_i)d(x_i)}{\text{\mathfrak{P}}}$$

$$B = [(5+5) \times 5+10 \times 4 + (15+10+10) \times 3 + (25+20) \times 2]$$

$$\div 100$$

= 2.85

问题: 给定字符集 $C=\{x_1,x_2,...,x_n\}$ 和每个字符的频率 $f(x_i)$, i=1,2,...,n。求关于C的一个最优前缀码(平均码长最小)。

哈夫曼编码一贪心策略

- 回顾压缩编码的思路
 - 给出现频率高的字符较短的编码
 - 给出现频率较低的字符以较长的编码
- 贪心策略
 - 从底向上构建二叉树
 - 优先合并频率较低的字符,生成新的树节点
 - 依次合并,直到完成构建

时间复杂度: $O(n\log n)$

4

哈夫曼树算法伪码

- 算法 Huffman(C)
- $\mathfrak{h}\lambda$: C={ $x_1,x_2,...,x_n$ }, $f(x_i)$, i=1,2,...,n
- 输出: Q //队列
 - 1. $n \leftarrow |C|$
 - Q ← C //频率递增队列Q
 - 3. for $i \leftarrow 1$ to n-1 do
 - 4. z ← Allocate-Node() //生成结点z
 - 5. z.left ← 取出Q中最小元 //最小元作为z左儿子,pop()操作
 - 6. z.right ← 取出Q中最小元 //最小元作为z右儿子, pop()操作
 - 7. $f(z) \leftarrow f(x) + f(y)$
 - 8. Insert(Q, z) //将z插入Q, insert()操作
 - 9. return Q

哈夫曼编码-实例的结果

- 《海绵宝宝》的剧本
 - 压缩前占13KB
 - 压缩后占7KB
- 频率排名前十的字符

字符	频率	字符	频率
空格	15.5%	i	5.0%
e	7.3%	n	4.7%
a	6.4%	S	4.4%
t	5.9%	r	4.1%
0	5.9%	h	3.4%

'0'

■ 'r'

■ 'b'

■ 'S'

哈夫曼编码-实例的结果

最短的编码为:000(空格)

最长的编码: 1001000101110(Q)和1001000101111(V)

课堂练习

输入: $a_1:0.3$, $a_2:0.2$, $a_3:0.15$, $a_4:0.15$, $a_5:0.1$, $a_6:0.1$

编码:

- $a_1 \rightarrow 11$
- $a_2 \rightarrow 01$
- $a_3 \rightarrow 100$
- $a_{\Delta} \rightarrow 101$
- $a_5 \rightarrow 000$
- $a_6 \rightarrow 001$

平均码长?

小结

- 哈夫曼编码的应用
- 二叉前缀码及其性质
- 哈夫曼编码的基本流程
 - 贪心选择性质
- 哈夫曼编码的实例

图问题中的贪心算法

图问题的应用

无向连通带权图

$$G=(V,E,W)$$

其中 $w(e) \in W$ 是边e的权值。

G的一棵生成树T是包含了G所有顶点的树,树中各边的权值之和W(T)称为树的<mark>权</mark>,具有最小权的生成树称为G的最小生成树。

最小生成树的实例

 $G=(V, E, W), V=\{1,2,3,4,5,6\}, W$ 如图所示。 $E=\{\{1,2\},\{1,3\},\{1,4\},\{2,3\},\{2,5\},\{3,4\},\{3,5\},\{3,6\},\{4,6\},\{5,6\}\}\}$

求最小生成树

■ 问题:

给定连通带权图 $G=(V,E,W),W(e)\in W$ 是边e的权。求G的一棵最小生成树。

贪心法:

- Prim算法
- Kruskal算法

生成树在网络中有着重要应用

Prim算法

■ 设计思想

- 输入: 图*G*=(*V*,*E*,*W*), V={1,2,...,*n*}
- 输出: 最小生成树T
- 步骤:
 - 初始S={1};
 - 选择连接S与V-S集合的最短边 $e=\{i,j\}$,其中 $i\in S$, $j\in V-S$ 。将e加入树T,j加入S;
 - ■继续执行上述过程,直到S=V为止。

Prim算法伪码

- 算法Prim(G,E,W)
 - 1. $S \leftarrow \{1\}$
 - 2. while $V-S \neq \emptyset$ do
 - 3. 从V-S中选择/使得/到S中顶点的边权最小
 - 4. $S \leftarrow S \cup \{j\}$

■ 实例:

Prim算法的复杂度

- 算法步骤执行*O*(*n*)次
- 每次执行*O*(*n*)时间:
 - 找连接S与V-S的最短边
 - 参考课本第104页
- 算法时间: $T(n)=O(n^2)$
- 如果引入堆数据结构,时间复杂度如何?

Kruskal算法

■设计思想

■ 输入: 图G=(V,E,W), V={1,2,...,n}

■ 输出: 最小生成树T

■ 步骤:

■ 按照长度从小到大对边进行排序;

• 依次考察当前最短边e,如果e与T的边不构成回路,则把e加入到树T,否则跳过e。直到选择了n-1条边为止。

-

Kruskal算法伪码

- 输入: 图G //顶点数n, 边数m
- 输出: 最小生成树T
 - 1. 权从小到大排序E的边, $E=\{e_1, e_2, ..., e_m\}$
 - 2. T←Ø
 - 3. repeat
 - **4**. *e*←E中的最短边
 - $\frac{1}{6}$ if e的两端点不在同一连通分支
 - 6. then $T \leftarrow T \cup \{e\}$
 - 7. $E \leftarrow E \{e\}$
 - 8. until T包含了n-1条边

Kruskal算法

■ 实例

Kruskal算法的复杂度

- 对所有的边按权值排序O(eloge)次
- 最多检查e条边,花费O(e)时间
- 算法时间: *T*(*n*)=*O*(*e*log*e*)

哪些情况用Prim算法, 哪些情况用Kruskal算法?

最短路径问题及其应用

最短路径问题是图论研究中的一个经典 算法问题,旨在寻找图(由结点和路径 组成的)中两结点之间的最短路径。

网络路由

Latex排版

单源最短路径问题

给定带权有向图G=(V,E,W),每条边e=<i,j>的权w(e)为非负实数,表示i到j的距离。n点 $s\in V$ 。

求:从s出发到达其他结点的最短路径。

- 源点: 1
- $1 \rightarrow 6 \rightarrow 2$: short[2]=5
- $1 \rightarrow 6 \rightarrow 2 \rightarrow 3 : short[3]=12$
- $1 \rightarrow 6 \rightarrow 4 : short[4] = 9$
- $1 \rightarrow 6 \rightarrow 5 : short[5] = 4$
- $1 \rightarrow 6 : short[6] = 3$

Dijkstra算法有关概念

- $x \in S \Leftrightarrow x \in V$ 且从s到x的最短路径已经找到
- 初始: $S=\{s\}$, S=V时算法结束
- 从*s*到*u*相对于S的最短路径: 从*s*到*u*且仅经过S中顶点的最短路径
- dist[u]: 从s到u相对S最短路径的长度
- \blacksquare *short*[*u*]: 从*s*到*u*的最短路径的长度
- \bullet dist[u] \geqslant short[u]

算法的设计思想

- 输入: 有向图 $G=(V,E,W), V=\{1,2,...,n\}, s=1$
- 输出: 从*s*到每个顶点的最短路径
- 步骤:
 - 1. 初始S={1};
 - 2. 对于 $i \in V-S$,计算1到i的相对S的最短路径, 长度记为dist[i];
 - 3. 选择V-S中dist值最小的j,将j加入到S,修改 V-S中的顶点的dist值;
 - 4. 继续上述过程, 直到S=V为止。

运

运行实例

• 输入: $G=(V,E,W), V=\{1,2,3,4,5,6\},$ 源点1

$$S=\{1\}$$

$$dist[1]=0$$

$$dist[2]=10$$

$$dist[6]=3$$

$$dist[3]=\infty$$

$$dist[4]=\infty$$

$$dist[5]=\infty$$

4

运行实例

• 输入: $G=(V,E,W), V=\{1,2,3,4,5,6\},$ 源点1

$$S = \{1,6\}$$
 $dist[1] = 0$
 $dist[6] = 3$
 $dist[2] = 5$
 $dist[4] = 9$
 $dist[5] = 4$
 $dist[3] = \infty$

运行

运行实例

• 输入: $G=(V,E,W), V=\{1,2,3,4,5,6\},$ 源点1

$$S = \{1,6,5\}$$
 $dist[1] = 0$
 $dist[6] = 3$
 $dist[5] = 4$
 $dist[2] = 5$
 $dist[4] = 9$
 $dist[3] = \infty$

运行实例

• 输入: $G=(V,E,W), V=\{1,2,3,4,5,6\},$ 源点1

$$S = \{1,6,5,2\}$$

$$dist[5]=4$$

$$dist[2]=5$$

运

运行实例

■ 输入: G=(V,E,W), V={1,2,3,4,5,6}, 源点1

运行实例

• 输入: $G=(V,E,W), V=\{1,2,3,4,5,6\},$ 源点1

$$S = \{1,6,5,2,4,3\}$$

$$dist[5]=4$$

$$dist[2]=5$$

$$dist[4]=9$$

找到了问题的解!

时间复杂度分析

- 时间复杂度: O(n²)
 - 用数组存储dist[]
 - 算法进行*n*-1步
 - 每步挑选1个具有最小dist函数值的结点进入到 S,需要O(n)时间

■ 选用基于堆实现的优先队列的数据结构,可以将算法时间复杂度降低到 $O(m\log n)$

贪心算法求解NP完全问题

- NP问题(Non-Deterministic Polynomial)
- P问题的集合
 - 所有可以在多项式时间内求解的判定问题。
- NP完全问题的集合
 - NP中某些问题不确定能否在多项式时间内求解。这些问题中任何一个如果存在多项式时间的算法,那么所有NP问题都是多项式时间可解
- P=NP?
 - 七个"千僖年数学难题"之一

多机调度问题及其应用

多机调度问题要求给出一种作业调度方案,使 所给的n个作业,每个作业运行时间为t_i,要求 在尽可能短的时间内由m台相同的机器加工处 理完成。

多机调度问题是NP完全问题,到目前为止还没有有效的解法。对于这一类问题,用贪心选择策略有时可以设计出较好的近似算法。

多机调度问题一贪心策略

- 当机器数 $m \ge$ 任务数n时
 - 每台机器放一个任务

多机调度问题一贪心策略

- 当机器数*m*<任务数*n*时
 - 优先放长任务
 - 优先选择负载最轻机器

旅行商问题

旅行商问题(Travelling Salesman Problem,TSP): 旅行家旅行n个城市,要各城市经历且经历一次,然后回到源点,求出最短路程。

规划快递线路

电路板钻洞

飞机发动机维修

旅行商问题一最短链接策略

- 最近邻点策略:
 - 从任意城市出发,每次在没有到过的城市中选择 最近一个,直到经所有城市回到出发点。
- 将5城市的代价矩阵列出:

$$C = \begin{bmatrix} \infty & 3 & 3 & 2 & 6 \\ 3 & \infty & 7 & 3 & 2 \\ 3 & 7 & \infty & 2 & 5 \\ 2 & 3 & 2 & \infty & 3 \\ 6 & 2 & 5 & 3 & \infty \end{bmatrix}$$

旅行商问题一最短链接策略

$$C = \begin{bmatrix} \infty 3 & 3 & 2 & 6 \\ 3 & \infty 7 & 3 & 2 \\ 3 & 7 & \infty 2 & 5 \\ 2 & 3 & 2 & \infty 3 \\ 6 & 2 & 5 & 3 & \infty \end{bmatrix}$$

城市4→3:

旅行商问题一最短链接策略

- 时间复杂度 $O(n^2)$
 - 因为n-1次贪心选择,每次都找满足条件的最短边。
- ■贪心算法不一定是最优解
 - 最优解是1→2→5→4→3→1
 - 最优解代价为13

图着色问题及其应用

- 一给定无向连通图G=(V,E),求图G的最小色数k,使得用k种颜色对G中顶点着色,可使任意两个顶点着色不同。
 - k个颜色的集合为{颜色1,颜色2,...,颜色k}。

地图着色

程序编译器的 寄存器分配算法

任务调度

图着色问题

- 贪心策略:以任意顶点作为开始,依次考虑未被着色的每个顶点
 - 如果一顶点可用颜色1着色,即该顶点的邻接点都 还未被着色,则用颜色1为该顶点着色;
 - 当没有顶点能以这种颜色着色时,选择颜色2和一个未被着色的顶点作为开始顶点,用第二种颜色 尽可能多的顶点着色;
 - 如果还有未着色的顶点,则选颜色3,尽可能多的 着色,依此类推。

图着色问题

例如:

如果求解顶点顺序是:

1, 2, 3, 4, 5

得到最优解。

如果求解顶点顺序是:

1, 5, 2, 3, 4

得到近似解。

贪心法小结

- 贪心法适用于组合优化问题
- 求解过程是多步判断过程,最终的判断序列对应于问题的最优解
- 判断依据某种"短视"贪心选择性质,性质的好坏决定了算法的成败。贪心性质往往依赖于直觉或者经验

贪心法小结(cont.)

- 贪心法正确性证明方法:
 - 直接计算优化函数,贪心法的解恰好取得最优值
 - 数学归纳法(对算法步骤或者问题规模归纳)
 - 交换论证

■ 证明贪心策略不对: 举反例

贪心法小结(cont.)

- 对于某些不能保证对所有的实例都得到最 优解的贪心算法(近似算法),可做参数 化分析或者误差分析。
- 贪心算法的优势:
 - 算法简单
 - 时空复杂度低
- 几个著名的贪心算法
 - ■最小生成树的Prim算法和Kruskal算法
 - 单源最短路径的Dijkstra算法