Models With Three or More Levels and Cross-Classified Models

2024-08-25

Table of contents

Introduction	2
Three Or More Levels	2
The Data	2
The Equation	2
	3
Stata	3
	3
	3
	4
	5
	6
	6
0	6
	7
Conditional Model	
	9
	9
0	9
Unconditional Model	9
Conditional Model	9
Interpretation	0
	0
	0
The Equation	0
	10
	10
	10
OCU THE Dava	٠U

	Unconditional Model	11
	Conditional Model	12
R		13
	Get The Data	13
	Change Some Variables To Categorical	13
	Unconditional Model	13
	Conditional Model	14
Julia .		14
	Get The Data	14
	Change Some Variables To Categorical	15
	Unconditional Model	15
	Conditional Model	15
Interpretation	1	16

Introduction

A two level multilevel model imagines that *Level 1* units are nested in *Level 2* units. A three level multilevel model imagines that *Level 1* units are nested in *Level 2* units, which are in turn nested in *Level 3*.

A cross classified model imagines that the nesting is not hierarchical, but rather that there are two sets of clusters or nestings in which individuals may be nested.

Below, I describe the use of Stata, R, and Julia to estimate these models.

Three Or More Levels

The Data

I use the *longitudinal* data from *Multilevel Thinking* to which I have added an extra level of *United Nations Region* (Arel-Bundock, Enevoldsen, and Yetman 2018).

The Equation

$$\text{outcome}_{itj} = \beta_0 + \beta_1 \text{parental warmth}_{itj} + \beta_2 \text{physical punishment}_{itj} + \beta_3 \text{time}_{itj} + \qquad (1)$$

$$\beta_4 \text{identity}_{itj} + \beta_5 \text{intervention}_{itj} + \beta_6 \text{HDI}_{itj} +$$

$$w_{0k} + u_{0j} + v_{0i} + e_{itjk}$$

Here we imagine w_{0k} (region), u_{0j} (country) and v_{0i} (family) are hierarchically nested effects.

Run The Models

Stata

Get The Data

```
use "fourlevel.dta", clear
```

Unconditional Model

```
mixed outcome || UNregion: || country: || family:
```

Performing EM optimization ...

Performing gradient-based optimization:

Iteration 0: Log likelihood = -29061.686
Iteration 1: Log likelihood = -29061.679
Iteration 2: Log likelihood = -29061.679

Computing standard errors ...

 ${\tt Mixed-effects}\ {\tt ML}\ {\tt regression}$

Number of obs = 9,000

Grouping information

Group variable	No. o		rvations per Average	group Maximum
UNregion country family		5 600 30 300 00 3	1,800.0 300.0 3.0	3,600 300 3

 $\label{eq:wald-chi2} \mbox{Wald chi2(0)} = . \\ \mbox{Log likelihood} = -29061.679 \qquad \qquad \mbox{Prob} > \mbox{chi2} = . \\ \mbox{Prob} > \mbox{Prob} > . \\ \mbox{Prob}$

outcome Coefficient				
_cons 54.05906	.987367	54.75 0		2385 55.99426
Random-effects parameters	s Estim	ate Std.	err. [95%	conf. interval]
UNregion: Identity	i			852 18.65194
country: Identity var(_cons			225 1.565	5.187414
family: Identity	 s) 11.72	403 .574		997 12.90641
		424 .51548	342 27.24	177 29.26286
LR test vs. linear model: o	chi2(3) = 18	43.44	Prob	> chi2 = 0.0000

Note: LR test is conservative and provided only for reference.

Conditional Model

```
mixed outcome t warmth physical_punishment i.identity i.intervention HDI || UNregion: || cour
```

Performing EM optimization ...

Performing gradient-based optimization:

Iteration 0: Log likelihood = -28503.082
Iteration 1: Log likelihood = -28503.039
Iteration 2: Log likelihood = -28503.039

Computing standard errors ...

Mixed-effects ML regression Number of obs = 9,000

Grouping information

	No. of		rvations per	
Group variable	groups -+	Minimum 	Average 	Maximum
UNregion	J 5	600	1,800.0	3,600
country	30	300	300.0	300
id	3,000	3	3.0	3

Log likelihood = -28503.039

Wald chi2(6) = 1209.42Prob > chi2 = 0.0000

outcome		Coefficient	Std. er		z	P> z		interval]
t		.9433791	.065866		14.32	0.000	.8142827	1.072476
warmth		.9140704	.037915	56	24.11	0.000	.8397571	.9883837
physical_punishment		-1.008615	.049777	72	-20.26	0.000	-1.106176	9110531
1.identity		1332133	.151643	37	-0.88	0.380	4304294	.1640028
1.intervention		.8589263	.151961	L9	5.65	0.000	.5610865	1.156766
HDI		.0148561	.019660)5	0.76	0.450	0236777	.0533899
_cons		50.16426	1.67521	L9	29.94	0.000	46.88089	53.44763

Random-effects parameters				
UNregion: Identity				
var (_cons)	4.722007			
country: Identity	 			
var(_cons)	2.863495			
id: Identity	 			
var(_cons)	8.421131		7.546445	9.397199
var(Residual)			25.11417	26.97755
LR test vs. linear model: chi2)	Prob > chi:	2 = 0.0000	

Note: LR test is conservative and provided only for reference.

 R

Get The Data

```
library(haven)
df4 <- read_dta("fourlevel.dta")</pre>
```

Change Some Variables To Categorical

```
df4$identity <- factor(df4$identity)</pre>
df4$intervention <- factor(df4$intervention)</pre>
```

Unconditional Model

Caution

lme4 does not directly provide p values in results, because of some disagreement over exactly how these p values should be calculated. Therefore, in this Appendix, I also call library lmerTest to provide p values for lme4 results.

? Tip

library(lme4)

step

R prefers to use scientific notation when possible. I find that the use of scientific notation can be confusing in reading results. I turn off scientific notation by setting a penalty for its use: options(scipen = 999).

```
library(lmerTest)
Attaching package: 'lmerTest'
The following object is masked from 'package:lme4':
    lmer
The following object is masked from 'package:stats':
```

```
options(scipen = 999)
fit4A <- lmer(outcome ~ (1 | UNregion/country/id),</pre>
            data = df4)
summary(fit4A)
Linear mixed model fit by REML. t-tests use Satterthwaite's method [
lmerModLmerTest]
Formula: outcome ~ (1 | UNregion/country/id)
  Data: df4
REML criterion at convergence: 58121.4
Scaled residuals:
            1Q Median
    Min
                            3Q
                                   Max
-3.7850 -0.6064 -0.0047 0.6020 3.4399
Random effects:
 Groups
                      Name
                                  Variance Std.Dev.
 id:(country:UNregion) (Intercept) 11.724 3.424
 country:UNregion
                      (Intercept) 2.842 1.686
 UNregion
                       (Intercept) 5.478 2.340
 Residual
                                  28.234 5.314
Number of obs: 9000, groups:
id:(country:UNregion), 3000; country:UNregion, 30; UNregion, 5
Fixed effects:
           Estimate Std. Error
                                  df t value Pr(>|t|)
                        1.112 3.777 48.6 0.00000201 ***
(Intercept) 54.061
Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
Conditional Model
fit4B <- lmer(outcome ~ t + warmth + physical_punishment +</pre>
               identity + intervention + HDI +
                (1 | UNregion/country/id),
             data = df4)
summary(fit4B)
```

```
Linear mixed model fit by REML. t-tests use Satterthwaite's method [
lmerModLmerTest]
Formula:
outcome ~ t + warmth + physical_punishment + identity + intervention +
    HDI + (1 | UNregion/country/id)
   Data: df4
REML criterion at convergence: 57026.4
Scaled residuals:
    Min
            1Q Median
                            3Q
                                   Max
-3.6846 -0.6096 -0.0038 0.6138 3.6850
Random effects:
 Groups
                      Name
                                  Variance Std.Dev.
 id:(country:UNregion) (Intercept)
                                   8.438 2.905
 country:UNregion
                       (Intercept) 2.979
                                           1.726
 UNregion
                       (Intercept) 6.178
                                           2.486
 Residual
                                  26.036
                                           5.103
Number of obs: 9000, groups:
id:(country:UNregion), 3000; country:UNregion, 30; UNregion, 5
Fixed effects:
                     Estimate Std. Error
                                                 df t value
                     50.11857 1.78086
(Intercept)
                                           15.79112 28.143
                                 0.06588 5998.37756 14.321
t
                      0.94338
warmth
                      0.91406 0.03793 4745.28492 24.096
physical_punishment
                     -1.00876 0.04980 6483.46337 -20.257
                      -0.13324 0.15173 2969.00938 -0.878
identity1
intervention1
                      0.85872
                                 0.15205 2971.85430
                                                      5.648
HDI
                      0.01560
                                 0.02006
                                           24.39852 0.778
                               Pr(>|t|)
                    0.0000000000000641 ***
(Intercept)
                    < 0.000000000000000 ***
                    < 0.00000000000000000000 ***
warmth
physical_punishment < 0.0000000000000000 ***
identity1
                                  0.380
intervention1
                    0.0000001780521096 ***
HDI
                                  0.444
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

Correlation of Fixed Effects:

```
(Intr) t warmth physc_ idntt1 intrv1 t -0.073 warmth -0.071 -0.002 physcl_pnsh -0.073 -0.007 -0.012 identity1 -0.040 0.000 -0.013 -0.003 interventn1 -0.045 0.000 0.039 0.019 -0.018 HDI -0.738 0.000 -0.005 0.005 -0.001 0.001
```

Julia

Get The Data

```
using Tables, MixedModels, StatFiles, DataFrames, CategoricalArrays, DataFramesMeta
df4 = DataFrame(load("fourlevel.dta"))
```

Change Some Variables To Categorical

```
@transform!(df4, :country = categorical(:country))
@transform!(df4, :UNregion = categorical(:UNregion))
@transform!(df4, :identity = categorical(:identity))
@transform!(df4, :intervention = categorical(:intervention))
```

Unconditional Model

Conditional Model

Interpretation

Cross-Classified Models

The Data

I use the *cross-sectional* data from *Multilevel Thinking* to which I have added an extra level of a hypothetical language.

The Equation

$$outcome_{itj} = \beta_0 + \beta_1 parental warmth_{itj} + \beta_2 physical punishment_{itj} + \beta_3 time_{itj} + (2)$$

$$\beta_4 \mathrm{identity}_{itj} + \beta_5 \mathrm{intervention}_{itj} + \beta_6 \mathrm{HDI}_{itj} +$$

$$u_{0j} + m_{0m} + e_{ijm}$$

Here u_{0j} (country) and m_{0m} (language) are not nested hierarchically, but are cross classified.

Run The Models

Stata

Get The Data

```
use "crossclassified.dta", clear
```

Unconditional Model

```
mixed outcome | | _all: R.country | | _all: R.language
Performing EM optimization ...
Performing gradient-based optimization:
Iteration 0: Log likelihood = -9835.8123
Iteration 1: Log likelihood = -9835.8111
Iteration 2: Log likelihood = -9835.8111
Computing standard errors ...
                                   Number of obs =
Mixed-effects ML regression
                                                 3,000
Group variable: _all
                                   Number of groups =
                                   Obs per group:
                                            min = 3,000
                                            avg = 3,000.0
                                           max = 3,000
                                   Wald chi2(0)
                                   Prob > chi2
Log likelihood = -9835.8111
     outcome | Coefficient Std. err. z P>|z| [95% conf. interval]
-----
                    .3590214 146.04 0.000 51.7282
      cons | 52.43187
______
 Random-effects parameters | Estimate Std. err. [95% conf. interval]
______
_all: Identity
        var(R.country) | 3.177791 .9244633 1.796798 5.620198
_all: Identity
       var(R.language) | .9566314 .3284087 .4881235 1.87482
______
         var(Residual) | 39.62877 1.045619
                                       37.63148 41.73206
______
LR test vs. linear model: chi2(2) = 180.84
                                       Prob > chi2 = 0.0000
```

Note: LR test is conservative and provided only for reference.

Conditional Model

```
mixed outcome warmth physical_punishment i.identity i.intervention HDI || _all: R.country ||
Performing EM optimization ...
Performing gradient-based optimization:
Iteration 0: Log likelihood = -9663.2195
Iteration 1: Log likelihood = -9663.2194
Computing standard errors ...
Mixed-effects ML regression
                                       Number of obs = 3,000
                                       Number of groups = 1
Group variable: _all
                                       Obs per group:
                                                min = 3,000
                                                avg = 3,000.0
                                                max = 3,000
                                       Wald chi2(5) = 367.04
                                       Prob > chi2 = 0.0000
Log likelihood = -9663.2194
_____
        outcome | Coefficient Std. err. z P>|z| [95% conf. interval]
_______
                                               .7195052
         warmth | .8331461 .0579811 14.37 0.000
                                                          .946787
physical_punishment | -.9979749 .080268 -12.43 0.000 -1.155297 -.8406525
      1.identity | -.2922428 .2191421 -1.33 0.182 -.7217534 .1372678
   1.intervention | .6097458 .2195139 2.78 0.005 .1795064 1.039985
           HDI | -.0015879 .0204157 -0.08 0.938 -.0416021 .0384262
          _cons | 51.92255 1.411069 36.80 0.000
                                               49.15691
                                                          54.6882
 Random-effects parameters | Estimate Std. err. [95% conf. interval]
all: Identity
         var(R.country) | 3.361218 .9603072 1.920024 5.884192
_all: Identity
         var(R.language) | 1.121946 .3269535 .6337502 1.986214
_____
           var(Residual) | 35.11959 .9263999 33.35002 36.98306
```

LR test vs. linear model: chi2(2) = 227.02

Prob > chi2 = 0.0000

Note: LR test is conservative and provided only for reference.

R

Get The Data

```
library(haven)

dfCC <- read_dta("crossclassified.dta")</pre>
```

Change Some Variables To Categorical

```
dfCC$identity <- factor(dfCC$identity)

dfCC$intervention <- factor(dfCC$intervention)</pre>
```

Unconditional Model

```
Linear mixed model fit by REML. t-tests use Satterthwaite's method [
lmerModLmerTest]
Formula: outcome ~ (1 | country) + (1 | language)
   Data: dfCC
```

```
REML criterion at convergence: 19671.8
Scaled residuals:
   Min
            1Q Median
                            ЗQ
                                   Max
-3.3899 -0.6602 -0.0104 0.6798 3.6924
Random effects:
Groups Name
                     Variance Std.Dev.
language (Intercept) 0.9604 0.980
country (Intercept) 3.2919 1.814
                     39.6276 6.295
Residual
Number of obs: 3000, groups: language, 100; country, 30
Fixed effects:
           Estimate Std. Error
                                    df t value
                                                         Pr(>|t|)
(Intercept) 52.4319 0.3643 33.4284 143.9 <0.00000000000000000 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

Conditional Model

Error in model.frame.default(data = dfCC, drop.unused.levels = TRUE, formula = outcome ~ : is

```
summary(fitCC_B)
```

Error in h(simpleError(msg, call)): error in evaluating the argument 'object' in selecting a

Julia

Get The Data

```
using Tables, MixedModels, StatFiles, DataFrames, CategoricalArrays, DataFramesMeta
dfCC = DataFrame(load("crossclassified.dta"))
```

Change Some Variables To Categorical

```
@transform!(dfCC, :country = categorical(:country))
@transform!(dfCC, :language = categorical(:language))
@transform!(dfCC, :identity = categorical(:identity))
@transform!(dfCC, :intervention = categorical(:intervention))
```

Unconditional Model

```
mCCA = fit(MixedModel, @formula(outcome ~
                                (1 | country) +
                                (1 | language)), dfCC)
Linear mixed model fit by maximum likelihood
 outcome ~ 1 + (1 | country) + (1 | language)
          -2 logLik
   logLik
                         AIC
                                   AICc
                                              BIC
 -9835.8111 19671.6222 19679.6222 19679.6356 19703.6477
Variance components:
           Column Variance Std.Dev.
language (Intercept) 0.956631 0.978075
country (Intercept) 3.177768 1.782629
Residual
                     39.628773 6.295139
 Number of obs: 3000; levels of grouping factors: 100, 30
 Fixed-effects parameters:
              Coef. Std. Error
                                      z Pr(>|z|)
(Intercept) 52.4319
                        0.35902 146.04
                                          <1e-99
```

Conditional Model

```
HDI +
(1 | country) +
(1 | language)), dfCC)
```

```
Linear mixed model fit by maximum likelihood
outcome ~ 1 + warmth + physical_punishment + identity + intervention + HDI + (1 | country) +
logLik -2 logLik AIC AICc BIC
-9663.2194 19326.4388 19344.4388 19344.4990 19398.4962
```

Variance components:

Column Variance Std.Dev. language (Intercept) 1.12193 1.05921 country (Intercept) 3.36119 1.83335 Residual 35.11960 5.92618

Number of obs: 3000; levels of grouping factors: 100, 30

Fixed-effects parameters:

	Coef.	Std. Error	Z	Pr(> z)
(Intercept)	51.9226	1.41106	36.80	<1e-99
warmth	0.833146	0.0579811	14.37	<1e-46
<pre>physical_punishment</pre>	-0.997975	0.080268	-12.43	<1e-34
identity	-0.292243	0.219142	-1.33	0.1823
intervention	0.609746	0.219514	2.78	0.0055
HDI	-0.00158794	0.0204156	-0.08	0.9380

Interpretation

Arel-Bundock, Vincent, Nils Enevoldsen, and CJ Yetman. 2018. "Countrycode: An r Package to Convert Country Names and Country Codes." *Journal of Open Source Software* 3 (28): 848. https://doi.org/10.21105/joss.00848.