HAI507I Calcul formel et scientifique

« Structures mathématiques »

Pascal Giorgi

1. Les entiers modulaires		
2. Anneaux, corps et groupes		

Calcul dans \mathbb{R} , \mathbb{Q} , \mathbb{Z}

Opérations de base

- \blacksquare \mathbb{Z} : 3 + 4 = 7; 6 × (-4) = -24; 3 8 = -5
- $\mathbb{Q}: \frac{2}{3} + \frac{4}{5} = \frac{22}{15}; \quad \frac{7}{4} \times \frac{5}{6} = \frac{35}{24}; \quad \frac{2}{5} / \frac{11}{9} = \frac{18}{55}$
- \mathbb{R} : 2.35 + (-3.567) = -1.217; 6.43 × 12.2 = 78.446; $\pi/e = 1.15572...$

Pourquoi pas de division dans \mathbb{Z} ?

⇒ on ne parle pas de division Euclidienne (pour l'instant)

Calcul dans \mathbb{R} , \mathbb{Q} , \mathbb{Z}

Opérations de base

- \blacksquare \mathbb{Z} : 3 + 4 = 7; 6 × (-4) = -24; 3 8 = -5
- $\mathbb{Q}: \frac{2}{3} + \frac{4}{5} = \frac{22}{15}; \quad \frac{7}{4} \times \frac{5}{6} = \frac{35}{24}; \quad \frac{2}{5} / \frac{11}{9} = \frac{18}{55}$
- \mathbb{R} : 2.35 + (-3.567) = -1.217; 6.43 × 12.2 = 78.446; $\pi/e = 1.15572...$

Pourquoi pas de division dans \mathbb{Z} ?

⇒ on ne parle pas de division Euclidienne (pour l'instant)

Loi interne

- une opération est interne si le résultat reste dans le même ensemble que les entrées
 - $ightharpoonup \mathbb{Z}: +, -, \times$ sont internes, mais / ne l'est pas!!!
 - $ightharpoonup \mathbb{Q}, \mathbb{R}: +, -, \times, / \text{ sont toutes internes}$

Une opération et son inverse

Naturellement, + va avec - et \times avec /

⇒ pourquoi?

Une opération et son inverse

Naturellement, + va avec - et \times avec /

⇒ pourquoi?

Opération inverse

$$c = a + b \Leftrightarrow a = c - b$$

$$\blacksquare f = d \times e \Leftrightarrow d = f/e \text{ ssi } e \neq 0$$

Une opération et son inverse

Naturellement, + va avec - et \times avec /

⇒ pourquoi?

Opération inverse

$$c = a + b \Leftrightarrow a = c - b$$

$$\blacksquare f = d \times e \Leftrightarrow d = f/e \text{ ssi } e \neq 0$$

- ⇒ L'opération inverse permet d'annuler l'opération :
 - (a+b)-b=a
 - $(d \times e)/e = d$

Élément inverse

- L'inverse de a pour **l'addition** est l'unique élément b tel que a + b = 0
 - ► On le note -a; et on dit que 0 est le neutre pour l'addition $\Rightarrow a + 0 = a$
- L'inverse de a pour **la multiplication** est l'unique élément b tel que $a \times b = 1$
 - ▶ on le note : a^{-1} , et on dit que 1 est le neutre pour la multiplication = $\hookrightarrow a \times 1 = a$
 - ► on dit simplement inverse

Division euclidienne dans $\mathbb Z$

Division de a par $b \Rightarrow$ quotient q et reste r tels que

$$a = b \times q + r$$

■
$$0 \le r < b$$

Écriture unique : si a < 0 on impose que $r \ge 0$

Division euclidienne dans $\mathbb Z$

Division de a par $b \Rightarrow$ quotient q et reste r tels que

$$a = b \times q + r$$

$$\blacksquare 0 \le r < b$$

Écriture unique : si a < 0 on impose que $r \ge 0$

Exemple : $123/37 = \dots$ et $-107/37 = \dots$

Calcul modulo n

Réduction modulo n

- \blacksquare La réduction de <u>a modulo</u> <u>n</u> correspond au reste de la division euclidienne de a par n
- on note cette opération : $a \mod n$ ou a % n (en sage)

exemple : $18 \mod 5 = 3$ ou $-18 \mod 5 = 2$

Calcul modulo n

Réduction modulo n

- \blacksquare La réduction de <u>a modulo</u> <u>n</u> correspond au reste de la division euclidienne de a par n
- on note cette opération : $a \mod n$ ou a % n (en sage)

```
exemple : 18 \mod 5 = 3 ou -18 \mod 5 = 2
```

Opérations modulo n

- L'addition modulo n de a et b est : $(a + b) \mod n$
- L'opposé modulo n de a est : (-a) mod n
- La multiplication modulo n de a et b est : $(a \times b) \mod n$

L'ensemble des entiers $\mathbb{Z}/n\mathbb{Z}$

 $\mathbb{Z}/n\mathbb{Z}$ est l'ensemble des entiers $\{0,1,2,\ldots,n-1\}$ muni des opérations modulo n

On parle d'arithmétique modulaire (on note les opérations sans le modulo) :

L'ensemble des entiers $\mathbb{Z}/n\mathbb{Z}$

 $\mathbb{Z}/n\mathbb{Z}$ est l'ensemble des entiers $\{0,1,2,\ldots,n-1\}$ muni des opérations modulo n

On parle d'arithmétique modulaire (on note les opérations sans le modulo) :

ex :
$$\mathbb{Z}/10\mathbb{Z} = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$$

- **■** 7+5=2
- **■** 7*4=8
- **■** 3-7=6

L'ensemble des entiers $\mathbb{Z}/n\mathbb{Z}$

 $\mathbb{Z}/n\mathbb{Z}$ est l'ensemble des entiers $\{0,1,2,\ldots,n-1\}$ muni des opérations modulo n

On parle d'arithmétique modulaire (on note les opérations sans le modulo) :

$$\textbf{ex}: \mathbb{Z}/10\mathbb{Z} = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$$

- **■** 7+5=2
- **■** 7*4=8
- **■** 3-7=6

Autres exemples : $\mathbb{Z}/3\mathbb{Z}$ et $\mathbb{Z}/24\mathbb{Z}$

La division est une conséquence de l'inversion : $a/b = a \times (1/b) = a \times b^{-1}$

L'inverse de a dans $\mathbb{Z}/n\mathbb{Z}$ est l'unique $b\in\mathbb{Z}/n\mathbb{Z}$ tel que $a\times b=1$

La division est une conséquence de l'inversion : $a/b = a \times (1/b) = a \times b^{-1}$

L'inverse de a dans $\mathbb{Z}/n\mathbb{Z}$ est l'unique $b\in\mathbb{Z}/n\mathbb{Z}$ tel que $a\times b=1$

Exemple

■ $\mathbb{Z}/10\mathbb{Z}$: $3^{-1} = ?$

La division est une conséquence de l'inversion : $a/b = a \times (1/b) = a \times b^{-1}$

L'inverse de a dans $\mathbb{Z}/n\mathbb{Z}$ est l'unique $b\in\mathbb{Z}/n\mathbb{Z}$ tel que $a\times b=1$

Exemple

 \blacksquare $\mathbb{Z}/10\mathbb{Z}$: $3^{-1} = ? \rightarrow 3^{-1} = 7$ car $3 \times 7 = 1 \mod 10$

La division est une conséquence de l'inversion : $a/b = a \times (1/b) = a \times b^{-1}$

L'inverse de a dans $\mathbb{Z}/n\mathbb{Z}$ est l'unique $b\in\mathbb{Z}/n\mathbb{Z}$ tel que $a\times b=1$

- $\mathbb{Z}/10\mathbb{Z}: 3^{-1} = ? \to 3^{-1} = 7 \text{ car } 3 \times 7 = 1 \text{ mod } 10$
- $\mathbb{Z}/10\mathbb{Z}$: $5^{-1} = ?$

La division est une conséquence de l'inversion : $a/b = a \times (1/b) = a \times b^{-1}$

L'inverse de a dans $\mathbb{Z}/n\mathbb{Z}$ est l'unique $b\in\mathbb{Z}/n\mathbb{Z}$ tel que $a\times b=1$

- $\mathbb{Z}/10\mathbb{Z}$: $3^{-1} = ? \rightarrow 3^{-1} = 7$ car $3 \times 7 = 1$ mod 10
- $\mathbb{Z}/10\mathbb{Z}$: $5^{-1}=? o$ pas d'inverse, il n'existe aucun $b\in\mathbb{Z}/10\mathbb{Z}$ tel que $5\times b=1$

La division est une conséquence de l'inversion : $a/b = a \times (1/b) = a \times b^{-1}$

L'inverse de a dans $\mathbb{Z}/n\mathbb{Z}$ est l'unique $b\in\mathbb{Z}/n\mathbb{Z}$ tel que $a\times b=1$

- $\mathbb{Z}/10\mathbb{Z}: 3^{-1} = ? \to 3^{-1} = 7 \text{ car } 3 \times 7 = 1 \text{ mod } 10$
- lacksquare $\mathbb{Z}/10\mathbb{Z}:5^{-1}=? o$ pas d'inverse, il n'existe aucun $b\in\mathbb{Z}/10\mathbb{Z}$ tel que 5 imes b=1
- \Rightarrow dans $\mathbb{Z}/n\mathbb{Z}$ tous les éléments ne sont pas inversibles

La division est une conséquence de l'inversion : $a/b = a \times (1/b) = a \times b^{-1}$

L'inverse de a dans $\mathbb{Z}/n\mathbb{Z}$ est l'unique $b\in\mathbb{Z}/n\mathbb{Z}$ tel que $a\times b=1$

- $\mathbb{Z}/10\mathbb{Z}$: $3^{-1} = ? \rightarrow 3^{-1} = 7$ car $3 \times 7 = 1$ mod 10
- $\mathbb{Z}/10\mathbb{Z}$: $5^{-1}=? o$ pas d'inverse, il n'existe aucun $b\in\mathbb{Z}/10\mathbb{Z}$ tel que 5 imes b=1
- \Rightarrow dans $\mathbb{Z}/n\mathbb{Z}$ tous les éléments ne sont pas inversibles

```
\mathbb{Z}/11\mathbb{Z}:

1^{-1} = 1; 2^{-1} = 6; 3^{-1} = 4; 4^{-1} = 3; 5^{-1} = 9; 6^{-1} = 2;

7^{-1} = 8; 8^{-1} = 7; 9^{-1} = 9; 10^{-1} = 10; 0^{-1} = X;
```

La division est une conséquence de l'inversion : $a/b = a \times (1/b) = a \times b^{-1}$

L'inverse de a dans $\mathbb{Z}/n\mathbb{Z}$ est l'unique $b \in \mathbb{Z}/n\mathbb{Z}$ tel que $a \times b = 1$

- $\mathbb{Z}/10\mathbb{Z}$: $3^{-1} = ? \rightarrow 3^{-1} = 7$ car $3 \times 7 = 1$ mod 10
- $\mathbb{Z}/10\mathbb{Z}$: $5^{-1}=? o$ pas d'inverse, il n'existe aucun $b\in\mathbb{Z}/10\mathbb{Z}$ tel que 5 imes b=1
- \Rightarrow dans $\mathbb{Z}/n\mathbb{Z}$ tous les éléments ne sont pas inversibles

```
\mathbb{Z}/11\mathbb{Z}:

1^{-1} = 1; 2^{-1} = 6; 3^{-1} = 4; 4^{-1} = 3; 5^{-1} = 9; 6^{-1} = 2; 7^{-1} = 8; 8^{-1} = 7; 9^{-1} = 9; 10^{-1} = 10; 0^{-1} = X; \Rightarrow 0 n'est jamais inversible!!!
```

Quels sont les inversibles dans $\mathbb{Z}/n\mathbb{Z}$

$$a \in \mathbb{Z}/n\mathbb{Z}$$
 est inversible si et seulement si $pgcd(a,n) = 1$

Démonstration.

via théorème Bezout : si pgcd(a,b) = g alors il existe u,v tels que $a \times u + b \times v = g$

Comme $pgcd(a, n) = 1 \Rightarrow a \times u + n \times v = 1 \text{ donc } u = a^{-1} \text{ mod } n$

Quels sont les inversibles dans $\mathbb{Z}/n\mathbb{Z}$

$$a \in \mathbb{Z}/n\mathbb{Z}$$
 est inversible si et seulement si $pgcd(a,n) = 1$

Démonstration.

via théorème Bezout : si
$$pgcd(a, b) = g$$
 alors il existe u, v tels que $a \times u + b \times v = g$
Comme $pgcd(a, n) = 1 \Rightarrow a \times u + n \times v = 1$ donc $u = a^{-1}$ mod n

L'algorithme EuclideEtendu(a,b) permet de calculer (g,u,v) tels que :

- \blacksquare g = pgcd(a, b)
- \blacksquare au + bv = g (coefficients de Bézout)

On considère deux entiers a > b

EUCLIDEETENDU(a,b)

- 1. Si b = 0: renvoyer (a, 1, 0)
- 2. (q, r) = DIVISIONEUCLIDIENNE(a, b)
- 3. $(d_1, u_1, v_1) = \text{EuclideEtendu}(b, r)$
- 4. Renvoyer $(d_1, v_1, u_1 qv_1)$

Idées générale : pgcd(a, b) = pgcd(b, a - qb)

On considère deux entiers a > b

EUCLIDEETENDU(a,b)

- 1. Si b = 0: renvoyer (a, 1, 0)
- 2. (q, r) = DIVISIONEUCLIDIENNE(a, b)
- 3. $(d_1, u_1, v_1) = \text{EuclideEtendu}(b, r)$
- 4. Renvoyer $(d_1, v_1, u_1 qv_1)$

$$\mathsf{Id\acute{e}es}\ \mathsf{g\acute{e}n\acute{e}rale}: \mathit{pgcd}(\mathit{a},\mathit{b}) = \mathit{pgcd}(\mathit{b},\mathit{a}-\mathit{qb})$$

lacksquare comme r=a-qb on a $d_1=u_1b+v_1(a-qb)$

On considère deux entiers a > b

EUCLIDEETENDU(a,b)

- 1. Si b = 0: renvoyer (a, 1, 0)
- 2. (q, r) = DIVISIONEUCLIDIENNE(a, b)
- 3. $(d_1, u_1, v_1) = \text{EuclideEtendu}(b, r)$
- 4. Renvoyer $(d_1, v_1, u_1 qv_1)$

Idées générale :
$$pgcd(a,b) = pgcd(b,a-qb)$$

- lacksquare comme r=a-qb on a $d_1=u_1b+v_1(a-qb)$
- lacksquare qui se réécrit $d_1=v_1a+(u_1-qv_1)b$

On considère deux entiers a > b

EUCLIDEETENDU(a,b)

- 1. Si b = 0: renvoyer (a, 1, 0)
- 2. (q, r) = DIVISIONEUCLIDIENNE(a, b)
- 3. $(d_1, u_1, v_1) = \text{EuclideEtendu}(b, r)$
- 4. Renvoyer $(d_1, v_1, u_1 qv_1)$

Idées générale :
$$pgcd(a,b) = pgcd(b,a-qb)$$

- lacksquare comme r=a-qb on a $d_1=u_1b+v_1(a-qb)$
- lacksquare qui se réécrit $d_1 = v_1 a + (u_1 q v_1) b$
- \Rightarrow La complexité de l'algorithme est de $O(\log^3(a))$

$\mathbb{Z}/n\mathbb{Z}$ et $\mathbb{Z}/p\mathbb{Z}$

Cas p premier

Si p est premier, pgcd(a, p) = 1 pour tout 0 < a < p

- lacktriangle tous les éléments non nuls de $\mathbb{Z}/p\mathbb{Z}$ sont inversibles
- lacksquare on calcule dans $\mathbb{Z}/p\mathbb{Z}$ « comme dans \mathbb{Q} », même structure (un corps)

$\mathbb{Z}/n\mathbb{Z}$ et $\mathbb{Z}/p\mathbb{Z}$

Cas p premier

Si p est premier, pgcd(a, p) = 1 pour tout 0 < a < p

- \blacksquare tous les éléments non nuls de $\mathbb{Z}/p\mathbb{Z}$ sont inversibles
- \blacksquare on calcule dans $\mathbb{Z}/p\mathbb{Z}$ « comme dans \mathbb{Q} », même structure (un corps)

Cas *n* non premier

Si k divise n, pgcd(k, n) = k

- lacktriangle tous les élts de $\mathbb{Z}/n\mathbb{Z}$ ayant un diviseur commun non trivial avec n ne sont pas inversibles
- lacksquare on ne peut calculer dans $\mathbb{Z}/p\mathbb{Z}$ que « comme dans \mathbb{Z} », même structure (un anneau)

Récapitulatif

Opérations et possibles inverses

- \blacksquare \mathbb{Z} : addition, multiplication, opposé, inverse
- lacksquare $\mathbb Q$: addition, multiplication, opposé, inverse
- \blacksquare \mathbb{R} : addition, multiplication, opposé, inverse
- $\mathbb{Z}/n\mathbb{Z}$: addition, multiplication, opposé, inverse (n non premier)
- $\mathbb{Z}/p\mathbb{Z}$: addition, multiplication, opposé, inverse (p premier)
- ⇒ Quand il n'y a pas d'inverse on parle de structure d'anneau, sinon c'est un corps

1. Les entiers modulaires

2. Anneaux, corps et groupes

Structures algébriques de base

Definition

Un anneau est un ensemble ${\mathcal A}$ dans lequel

- lacktriangle on dispose de deux opérations internes : addition(+) et multiplication(imes)
- tout élément possède un opposé
- plus des conditions (commutativité, associativité, distributivité) :

$$a+b=b+a$$
; $(a \times b) \times c = a \times (b \times c)$, $a \times (b+c) = a \times b + a \times c$; $(a+b) \times c = a \times c + b \times c$

Structures algébriques de base

Definition

Un anneau est un ensemble ${\mathcal A}$ dans lequel

- lacktriangle on dispose de deux opérations internes : addition(+) et multiplication(imes)
- tout élément possède un opposé
- plus des conditions (commutativité, associativité, distributivité) :

$$a+b=b+a$$
; $(a \times b) \times c = a \times (b \times c)$, $a \times (b+c) = a \times b + a \times c$; $(a+b) \times c = a \times c + b \times c$

Definition

un corps est un ensemble ${\mathcal K}$ pour lequel

- \blacksquare $(\mathcal{K}, +, \times)$ est un anneau
- lacktriangle tout élément non-nul de $\mathcal K$ possède un inverse
- ⇒ le neutre pour la multiplication doit être différent du neutre pour l'addition

Exemples d'anneau est de corps

Anneaux

- \blacksquare \mathbb{Z}
- $\mathbb{Z}/n\mathbb{Z}$ (n non premier)
- \blacksquare $\mathbb{R}[X]$: polynômes à coeffs réel
- $lacksquare \mathcal{A}[X]$: polynômes à coeffs dans l'anneau \mathcal{A}
- $\blacksquare \mathcal{M}_n(\mathbb{Z})$: matrices à coeffs entiers

$$\begin{bmatrix} 1 & 2 \\ 2 & 4 \end{bmatrix} + \begin{bmatrix} 3 & 2 \\ 1 & 0 \end{bmatrix} = \begin{bmatrix} 4 & 4 \\ 3 & 4 \end{bmatrix}$$

Corps

- $\mathbb{Z}/7\mathbb{Z}$ et $\mathbb{Z}/p\mathbb{Z}$ avec p premier
- \blacksquare \mathbb{R} , \mathbb{C}
- \blacksquare \mathbb{Q} : les rationnels
- \blacksquare $\mathbb{R}(X)$: fract rationnelles à coeffs réels

$$\frac{1.2+3X}{2X} + \frac{2}{1+X} = \frac{1.5X^3 + 2.1X^2 + 0.6X + 2}{X+1}$$

 $\,\blacksquare\,\, \mathcal{K}(X)$: fract rationnelles à coeff dans \mathcal{K}

Exemples d'anneau est de corps

Anneaux

- \blacksquare \mathbb{Z}
- $\mathbb{Z}/n\mathbb{Z}$ (n non premier)
- \blacksquare $\mathbb{R}[X]$: polynômes à coeffs réel
- $lacksquare \mathcal{A}[X]$: polynômes à coeffs dans l'anneau \mathcal{A}
- lacktriangle $\mathcal{M}_n(\mathbb{Z})$: matrices à coeffs entiers

$$\begin{bmatrix} 1 & 2 \\ 2 & 4 \end{bmatrix} + \begin{bmatrix} 3 & 2 \\ 1 & 0 \end{bmatrix} = \begin{bmatrix} 4 & 4 \\ 3 & 4 \end{bmatrix}$$

Corps

- $\blacksquare \mathbb{Z}/7\mathbb{Z}$ et $\mathbb{Z}/p\mathbb{Z}$ avec p premier
- \blacksquare \mathbb{R} , \mathbb{C}
- \blacksquare \mathbb{Q} : les rationnels
- \blacksquare $\mathbb{R}(X)$: fract rationnelles à coeffs réels

$$\frac{1.2+3X}{2X} + \frac{2}{1+X} = \frac{1.5X^3 + 2.1X^2 + 0.6X + 2}{X+1}$$

 $lackbox{}{\mathbb{L}}(X)$: fract rationnelles à coeff dans \mathcal{K}

Attention:

- N n'est ni un anneau ni un corps
- $GL_n(\mathbb{Q})$: les matrices inversibles $n \times n$ sur \mathbb{Q} ne forment ni un anneau ni un corps

Retour à $\mathbb{Z}/n\mathbb{Z}$ avec n non premier

Propriété : si a,b sont inversibles dans $\mathbb{Z}/n\mathbb{Z}$ alors $a \times b$ aussi

$$\Rightarrow (a \times b)^{-1} = a^{-1} \times b^{-1}$$

Retour à $\mathbb{Z}/n\mathbb{Z}$ avec n non premier

Propriété : si a,b sont inversibles dans $\mathbb{Z}/n\mathbb{Z}$ alors $a \times b$ aussi

$$\Rightarrow$$
 $(a \times b)^{-1} = a^{-1} \times b^{-1}$

Conséquences

Soit $(\mathbb{Z}/n\mathbb{Z})^*$ l'ensemble des inversibles de $\mathbb{Z}/n\mathbb{Z}$

- \blacksquare × est une opération interne de $(\mathbb{Z}/n\mathbb{Z})^*$
- lacktriangle × est une opération inversible dans $(\mathbb{Z}/n\mathbb{Z})^*$
- + n'est pas une opération interne!!!

Exemple : $(\mathbb{Z}/10\mathbb{Z})^* = \{1, 3, 7, 9\}$

Groupe multiplicatif

Definition

Un groupe multiplicatif est un ensemble ${\it G}$ dans lequel

- lacksquare on dispose d'une loi interne imes
- tout élément possède un inverse

```
\Rightarrow (\mathbb{Z}/n\mathbb{Z})^* est donc un groupe multiplicatif!!!
```

Groupe multiplicatif

Definition

Un groupe multiplicatif est un ensemble G dans lequel

- on dispose d'une loi interne ×
- tout élément possède un inverse

```
\Rightarrow (\mathbb{Z}/n\mathbb{Z})^* est donc un groupe multiplicatif!!!
```

Remarques:

- 0 ne peut pas appartenir à un groupe multiplicatif
- Définition similaire d'un groupe additif (avec + comme loi interne)

Exemple de groupes multiplicatifs : $\{-1,1\}$, $\mathbb{Q}^* = \mathbb{Q}/\{0\}$,

Groupe multiplicatif

Definition

Un groupe multiplicatif est un ensemble G dans lequel

- on dispose d'une loi interne ×
- tout élément possède un inverse

```
\Rightarrow (\mathbb{Z}/n\mathbb{Z})^* est donc un groupe multiplicatif!!!
```

Remarques:

- 0 ne peut pas appartenir à un groupe multiplicatif
- Définition similaire d'un groupe additif (avec + comme loi interne)

Exemple de groupes multiplicatifs : $\{-1,1\}$, $\mathbb{Q}^* = \mathbb{Q}/\{0\}$, et plein d'autres, des idées ?

Retour à $\mathbb{Z}/n\mathbb{Z}$

Definition

La fonction indicatrice d'Euler $\phi: \mathbb{N}^* \to \mathbb{N}^*$ associe à un entier naturel non-nul n, le nombre d'entiers plus petit que n qui sont premiers avec lui.

$$\phi(n) = card\{x \in \mathbb{N}^*/x < n \text{ et } \gcd(x, n) = 1\}$$

Remarques:

- $lack \phi(n)$ donne la taille du groupe multiplicatif $(\mathbb{Z}/n\mathbb{Z})^*$
- lacksquare quand p est premier $\phi(p) = p 1$
- lacksquare quand n=p imes q avec p,q premiers $\phi(n)=(p-1) imes (q-1)$

Retour à $\mathbb{Z}/n\mathbb{Z}$

Definition

La fonction indicatrice d'Euler $\phi: \mathbb{N}^* \to \mathbb{N}^*$ associe à un entier naturel non-nul n, le nombre d'entiers plus petit que n qui sont premiers avec lui.

$$\phi(n) = card\{x \in \mathbb{N}^*/x < n \text{ et } \gcd(x, n) = 1\}$$

Remarques:

- $lack \phi(n)$ donne la taille du groupe multiplicatif $(\mathbb{Z}/n\mathbb{Z})^*$
- lacksquare quand p est premier $\phi(p) = p 1$
- lack q quand n=p imes q avec p,q premiers $\phi(n)=(p-1) imes (q-1)$
- \Rightarrow $(\mathbb{Z}/n\mathbb{Z})^*$ est un groupe cyclique : $\forall \alpha \in (\mathbb{Z}/n\mathbb{Z})^*, \alpha^{\phi(n)} = 1$

Méthode utilisant une clé publique (connue de tous) pour chiffrer et une clé privée (connue uniquement par son propriéraire) pour déchiffrer.

⇒ protocole cryprographique utilisé dans les cartes bancaires ou https

Méthode utilisant une clé publique (connue de tous) pour chiffrer et une clé privée (connue uniquement par son propriéraire) pour déchiffrer.

⇒ protocole cryprographique utilisé dans les cartes bancaires ou https

Principe:

- Génération des clés
 - 1. On choisit 2 premiers p, q aleatoires et on calcule $N = p \times q$ et $\phi(N) = (p-1) \times (q-1)$
 - 2. On choisit un entier e < N aléatoire tq $gcd(e, \phi(N) = 1 \longrightarrow clé publique <math>(e, N)$
 - 3. On calcule $d = e^{-1} \in (\mathbb{Z}/\phi(N)\mathbb{Z})^* \longrightarrow \mathsf{cl\acute{e}}$ privée (d)

Méthode utilisant une clé publique (connue de tous) pour chiffrer et une clé privée (connue uniquement par son propriéraire) pour déchiffrer.

⇒ protocole cryprographique utilisé dans les cartes bancaires ou https

Principe:

- Génération des clés
 - 1. On choisit 2 premiers p, q aleatoires et on calcule $N = p \times q$ et $\phi(N) = (p-1) \times (q-1)$
 - 2. On choisit un entier e < N aléatoire tq $gcd(e, \phi(N) = 1 \longrightarrow clé publique <math>(e, N)$
 - 3. On calcule $d = e^{-1} \in (\mathbb{Z}/\phi(N)\mathbb{Z})^* \longrightarrow \mathsf{cl\acute{e}}$ privée (d)
- chiffrement d'un message clair $m \in \mathbb{Z}/N\mathbb{Z}$: $c \leftarrow m^e \mod N$

Méthode utilisant une clé publique (connue de tous) pour chiffrer et une clé privée (connue uniquement par son propriéraire) pour déchiffrer.

⇒ protocole cryprographique utilisé dans les cartes bancaires ou https

Principe:

- Génération des clés
 - 1. On choisit 2 premiers p, q aleatoires et on calcule $N = p \times q$ et $\phi(N) = (p-1) \times (q-1)$
 - 2. On choisit un entier e < N aléatoire tq $gcd(e, \phi(N) = 1 \longrightarrow clé publique <math>(e, N)$
 - 3. On calcule $d = e^{-1} \in (\mathbb{Z}/\phi(N)\mathbb{Z})^* \longrightarrow \mathsf{cl\acute{e}}$ privée (d)
- chiffrement d'un message clair $m \in \mathbb{Z}/N\mathbb{Z}$: $c \leftarrow m^e \mod N$
- lacksquare déchiffrement d'un message chiffré $c:m'\leftarrow c^d \mod N$

Méthode utilisant une clé publique (connue de tous) pour chiffrer et une clé privée (connue uniquement par son propriéraire) pour déchiffrer.

⇒ protocole cryprographique utilisé dans les cartes bancaires ou https

Principe:

- Génération des clés
 - 1. On choisit 2 premiers p, q aleatoires et on calcule $N = p \times q$ et $\phi(N) = (p-1) \times (q-1)$
 - 2. On choisit un entier e < N aléatoire tq $gcd(e, \phi(N) = 1 \longrightarrow clé publique <math>(e, N)$
 - 3. On calcule $d = e^{-1} \in (\mathbb{Z}/\phi(N)\mathbb{Z})^* \longrightarrow \mathsf{cl\acute{e}}$ privée (d)
- chiffrement d'un message clair $m \in \mathbb{Z}/N\mathbb{Z}$: $c \leftarrow m^e \mod N$
- lacksquare déchiffrement d'un message chiffré $c:m'\leftarrow c^d \mod N$

Remarque:

les clés vivent dans $(\mathbb{Z}/\phi(N)\mathbb{Z})^*$ alors que les messages sont dans $(\mathbb{Z}/N\mathbb{Z})^*$

Justification de RSA

Pourquoi ça marche?

- $\blacksquare \ m' = (m^e)^d \in \mathbb{Z}/N\mathbb{Z} \Longrightarrow m' = m^{1+k\phi(N)} = m \text{ car } ed = 1 \text{ mod } \phi(N) \text{ et } m^{\phi(N)} = 1 \text{ mod } N$
- lacktriangle le calcul de $c=m^e$ et $m'=c^d$ dans $\mathbb{Z}/n\mathbb{Z}$ est facile : $O(\log^3 N)$ opérations sur les bits

Justification de RSA

Pourquoi ça marche?

- $\blacksquare \ m' = (m^e)^d \in \mathbb{Z}/N\mathbb{Z} \Longrightarrow m' = m^{1+k\phi(N)} = m \text{ car } ed = 1 \text{ mod } \phi(N) \text{ et } m^{\phi(N)} = 1 \text{ mod } N$
- lacktriangle le calcul de $c=m^e$ et $m'=c^d$ dans $\mathbb{Z}/n\mathbb{Z}$ est facile : $O(\log^3 N)$ opérations sur les bits

Pourquoi c'est sûr?

- un attaquant ne connaît que e, N et c et il doit trouver un m tq $c = m^e$ dans $\mathbb{Z}/N\mathbb{Z}$
 - \hookrightarrow Pb du logarithme discret (très difficile) : $m = \log_e(c) \mod N$

Justification de RSA

Pourquoi ça marche?

- $\blacksquare \ m' = (m^e)^d \in \mathbb{Z}/N\mathbb{Z} \Longrightarrow m' = m^{1+k\phi(N)} = m \text{ car } ed = 1 \text{ mod } \phi(N) \text{ et } m^{\phi(N)} = 1 \text{ mod } N$
- lacktriangle le calcul de $c=m^e$ et $m'=c^d$ dans $\mathbb{Z}/n\mathbb{Z}$ est facile : $O(\log^3 N)$ opérations sur les bits

Pourquoi c'est sûr?

- un attaquant ne connaît que e, N et c et il doit trouver un m tq $c = m^e$ dans $\mathbb{Z}/N\mathbb{Z}$
 - \hookrightarrow Pb du logarithme discret (très difficile) : $m = \log_e(c) \mod N$
- idées d'attaque :
 - ▶ brute force : on teste tous les $m \in \mathbb{Z}/N\mathbb{Z}$: trop couteux, complexité de O(N)
 - ▶ factoriser N pour trouver $\phi(N)$ puis la clé secrète d : trop couteux, complexité de $O(\sqrt{N})$
- ⇒ toutes les attaques ont une complexité exponentielle ou sous-exponentielle

Conclusion

Groupe, anneau, corps

- Groupe multiplicatif : multiplication interne et tous les éléments sont inversibles
- Anneau : addition/multiplication internes et tous les éléments ont un opposé
- Corps : anneau dans lequel tous les éléments non-nul sont inversibles

Remarques

- un corps privé de 0 est un groupe multiplicatif
- $\mathbb{Z}/n\mathbb{Z}$ est un anneau pour tout n, est un corps si n est premier
- Les inversibles de $\mathbb{Z}/n\mathbb{Z}$ forment le groupe multiplicatif $(\mathbb{Z}/n\mathbb{Z})^*$ qui a $\phi(n)$ éléments