
Sequence Listing was accepted.

If you need help call the Patent Electronic Business Center at (866) 217-9197 (toll free).

Reviewer: Durreshwar Anjum

Timestamp: [year=2009; month=9; day=23; hr=14; min=11; sec=26; ms=440;]

Validated By CRFValidator v 1.0.3

Application No: 10554387 Version No: 3.0

Input Set:

Output Set:

Started: 2009-09-22 13:22:09.739 **Finished:** 2009-09-22 13:22:11.086

Elapsed: 0 hr(s) 0 min(s) 1 sec(s) 347 ms

Total Warnings: 11
Total Errors: 0

No. of SeqIDs Defined: 14

Actual SeqID Count: 14

Error code		Error Descript	ion								
W	213	Artificial	or	Unknown	found	in	<213>	in	SEQ	ID	(1)
W	213	Artificial	or	Unknown	found	in	<213>	in	SEQ	ID	(2)
W	213	Artificial	or	Unknown	found	in	<213>	in	SEQ	ID	(3)
W	213	Artificial	or	Unknown	found	in	<213>	in	SEQ	ID	(4)
W	213	Artificial	or	Unknown	found	in	<213>	in	SEQ	ID	(5)
W	213	Artificial	or	Unknown	found	in	<213>	in	SEQ	ID	(6)
W	213	Artificial	or	Unknown	found	in	<213>	in	SEQ	ID	(10)
W	213	Artificial	or	Unknown	found	in	<213>	in	SEQ	ID	(11)
W	213	Artificial	or	Unknown	found	in	<213>	in	SEQ	ID	(12)
W	213	Artificial	or	Unknown	found	in	<213>	in	SEQ	ID	(13)
W	213	Artificial	or	Unknown	found	in	<213>	in	SEQ	ID	(14)

SEQUENCE LISTING

```
<110> Protalix Ltd.
      Shaaltiel, Yoseph
      Baum, Gideon
      Hashmueli, Sharon
      Lewkowicz, Ayala
      Bartfeld, Daniel
<120> PRODUCTION OF HIGH MANNOSE PROTEINS IN PLANT CULTURE
<130> 30570
<140> 10554387
<141> 2005-10-25
<150> IL 155588
<151> 2003-04-27
<150> PCT/IL2004/000181
<151> 2004-02-24
<160> 14
<170> PatentIn version 3.5
<210> 1
<211> 22
<212> PRT
<213> Artificial sequence
<220>
<223> ER signal peptide
<400> 1
Met Lys Thr Asn Leu Phe Leu Phe Leu Ile Phe Ser Leu Leu Leu Ser
              5
                              10
Leu Ser Ser Ala Glu Phe
           20
<210> 2
<211> 7
<212> PRT
<213> Artificial sequence
<220>
<223> Vacuolar targeting signal from Tobacco chitinase A
<400> 2
Asp Leu Leu Val Asp Thr Met
1
               5
```

```
<210> 3
<211> 21
<212> DNA
<213> Artificial sequence
<220>
<223> Single strand DNA oligonucleotide
<400> 3
                                                                       21
cagaattcgc ccgcccctgc a
<210> 4
<211> 22
<212> DNA
<213> Artificial sequence
<220>
<223> Single strand DNA oligonucleotide
<400> 4
                                                                       22
ctcagatctt ggcgatgcca ca
<210> 5
<211> 19
<212> DNA
<213> Artificial sequence
<220>
<223> Single strand DNA oligonucleotide
<400> 5
ctcagaagac cagagggct
                                                                       19
<210> 6
<211> 17
<212> DNA
<213> Artificial sequence
<220>
<223> Single strand DNA oligonucleotide
<400> 6
                                                                       17
caaagcggcc atcgtgc
<210> 7
<211> 1491
<212> DNA
<213> Homo sapiens
<400> 7
gcccgcccct gcatccctaa aagcttcggc tacagctcgg tggtgtgtt ctgcaatgcc
                                                                       60
```

acatactgtg actcctttga	ccccccgacc	tttcctgccc	ttggtacctt	cagccgctat	120
gagagtacac gcagtgggcg	acggatggag	ctgagtatgg	ggcccatcca	ggctaatcac	180
acgggcacag gcctgctact	gaccctgcag	ccagaacaga	agttccagaa	agtgaaggga	240
tttggagggg ccatgacaga	tgctgctgct	ctcaacatcc	ttgccctgtc	accccctgcc	300
caaaatttgc tacttaaatc	gtacttctct	gaagaaggaa	tcggatataa	catcatccgg	360
gtacccatgg ccagctgtga	cttctccatc	cgcacctaca	cctatgcaga	cacccctgat	420
gatttccagt tgcacaactt	cagcctccca	gaggaagata	ccaagctcaa	gatacccctg	480
attcaccgag ccctgcagtt	ggcccagcgt	cccgtttcac	tccttgccag	cccctggaca	540
tcacccactt ggctcaagac	caatggagcg	gtgaatggga	aggggtcact	caagggacag	600
cccggagaca tctaccacca	gacctgggcc	agatactttg	tgaagttcct	ggatgcctat	660
gctgagcaca agttacagtt	ctgggcagtg	acagctgaaa	atgagccttc	tgctgggctg	720
ttgagtggat accccttcca	gtgcctgggc	ttcacccctg	aacatcagcg	agacttcatt	780
gcccgtgacc taggtcctac	cctcgccaac	agtactcacc	acaatgtccg	cctactcatg	840
ctggatgacc aacgcttgct	gctgcccac	tgggcaaagg	tggtactgac	agacccagaa	900
gcagctaaat atgttcatgg	cattgctgta	cattggtacc	tggactttct	ggctccagcc	960
aaagccaccc taggggagac	acaccgcctg	ttccccaaca	ccatgctctt	tgcctcagag	1020
gcctgtgtgg gctccaagtt	ctgggagcag	agtgtgcggc	taggctcctg	ggatcgaggg	1080
atgcagtaca gccacagcat	catcacgaac	ctcctgtacc	atgtggtcgg	ctggaccgac	1140
tggaaccttg ccctgaaccc	cgaaggagga	cccaattggg	tgcgtaactt	tgtcgacagt	1200
cccatcattg tagacatcac	caaggacacg	ttttacaaac	agcccatgtt	ctaccacctt	1260
ggccacttca gcaagttcat	tcctgagggc	tcccagagag	tggggctggt	tgccagtcag	1320
aagaacgacc tggacgcagt	ggcactgatg	catcccgatg	gctctgctgt	tgtggtcgtg	1380
ctaaaccgct cctctaagga	tgtgcctctt	accatcaagg	atcctgctgt	gggcttcctg	1440
gagacaatct cacctggcta	ctccattcac	acctacctgt	ggcatcgcca	g	1491

<210> 8

Ala Arg Pro Cys Ile Pro Lys Ser Phe Gly Tyr Ser Ser Val Val Cys

<211> 497

<212> PRT

<213> Homo sapiens

<400> 8

Val Cys Asn Ala Thr Tyr Cys Asp Ser Phe Asp Pro Pro Thr Phe Pro 20 25 30

Ala Leu Gly Thr Phe Ser Arg Tyr Glu Ser Thr Arg Ser Gly Arg Arg 35 40 45

Met Glu Leu Ser Met Gly Pro Ile Gln Ala Asn His Thr Gly Thr Gly 50 55 60

Leu Leu Chr Leu Gln Pro Glu Gln Lys Phe Gln Lys Val Lys Gly 70 75 80

Phe Gly Gly Ala Met Thr Asp Ala Ala Leu Asn Ile Leu Ala Leu 85 90 95

Ser Pro Pro Ala Gln Asn Leu Leu Leu Lys Ser Tyr Phe Ser Glu Glu 100 105 110

Gly Ile Gly Tyr Asn Ile Ile Arg Val Pro Met Ala Ser Cys Asp Phe 115 120 125

Ser Ile Arg Thr Tyr Thr Tyr Ala Asp Thr Pro Asp Asp Phe Gln Leu 130 135 140

Ile His Arg Ala Leu Gln Leu Ala Gln Arg Pro Val Ser Leu Leu Ala 165 170 175

Ser Pro Trp Thr Ser Pro Thr Trp Leu Lys Thr Asn Gly Ala Val Asn 180 185 190

Gly Lys Gly Ser Leu Lys Gly Gln Pro Gly Asp Ile Tyr His Gln Thr 195 200205

Trp Ala Arg Tyr Phe Val Lys Phe Leu Asp Ala Tyr Ala Glu His Lys 210 215 220

Leu Gln Phe Trp Ala Val Thr Ala Glu Asn Glu Pro Ser Ala Gly Leu 225 230 235 240

Leu	Ser	Gly	Tyr	Pro 245	Phe	Gln	Суз	Leu	Gly 250	Phe	Thr	Pro	Glu	His 255	Gln
Arg	Asp	Phe	Ile 260	Ala	Arg	Asp	Leu	Gly 265	Pro	Thr	Leu	Ala	Asn 270	Ser	Thr
His	His	Asn 275	Val	Arg	Leu	Leu	Met 280	Leu	Asp	Asp	Gln	Arg 285	Leu	Leu	Leu
Pro	His 290	Trp	Ala	Lys	Val	Val 295	Leu	Thr	Asp	Pro	Glu 300	Ala	Ala	Lys	Tyr
Val 305	His	Gly	Ile	Ala	Val 310	His	Trp	Tyr	Leu	Asp 315	Phe	Leu	Ala	Pro	Ala 320
Lys	Ala	Thr	Leu	Gly 325	Glu	Thr	His	Arg	Leu 330	Phe	Pro	Asn	Thr	Met 335	Leu
Phe	Ala	Ser	Glu 340	Ala	Cys	Val	Gly	Ser 345	Lys	Phe	Trp	Glu	Gln 350	Ser	Val
Arg	Leu	Gly 355	Ser	Trp	Asp	Arg	Gly 360	Met	Gln	Tyr	Ser	His 365	Ser	Ile	Ile
Thr	Asn 370	Leu	Leu	Tyr	His	Val 375	Val	Gly	Trp	Thr	Asp 380	Trp	Asn	Leu	Ala
Leu 385	Asn	Pro	Glu	Gly	Gly 390	Pro	Asn	Trp	Val	Arg 395	Asn	Phe	Val	Asp	Ser 400
Pro	Ile	Ile	Val	Asp 405	Ile	Thr	Lys	Asp	Thr 410	Phe	Tyr	Lys	Gln	Pro 415	Met
Phe	Tyr	His	Leu 420	Gly	His	Phe	Ser	Lys 425	Phe	Ile	Pro	Glu	Gly 430	Ser	Gln
Arg	Val	Gly 435	Leu	Val	Ala	Ser	Gln 440	Lys	Asn	Asp	Leu	Asp 445	Ala	Val	Ala
Leu	Met	His	Pro	Asp	Gly	Ser	Ala	Val	Val	Val	Val	Leu	Asn	Arg	Ser

450 455 460

Ser Lys Asp Val Pro Leu Thr Ile Lys Asp Pro Ala Val Gly Phe Leu 465 475 480 Glu Thr Ile Ser Pro Gly Tyr Ser Ile His Thr Tyr Leu Trp His Arg 485 490 Gln <210> 9 <211> 338 <212> DNA <213> Cauliflower mosaic virus <400> 9 ttttcacaaa gggtaatatc gggaaacctc ctcggattcc attgcccagc tatctgtcac 60 ttcatcgaaa ggacagtaga aaaggaaggt ggctcctaca aatgccatca ttgcgataaa 120 ggaaaggcta tcgttcaaga tgcctctacc gacagtggtc ccaaagatgg acccccaccc 180 acgaggaaca tcgtggaaaa agaagacgtt ccaaccacgt cttcaaagca agtggattga 240 tgtgatatct ccactgacgt aagggatgac gcacaatccc actatccttc gcaagaccct 300 tcctctatat aaggaagttc atttcatttg gagaggac 338 <210> 10 <211> 66 <212> DNA <213> Artificial sequence <220> <223> Nucleic acid sequence encoding the ER signal peptide <400> 10 atgaagacta atcttttct ctttctcatc ttttcacttc tcctatcatt atcctcggcc 60 66 gaattc <210> 11 <211> 21

<210> 11
<211> 21
<212> DNA
<213> Artificial sequence
<220>
<223> Nucleic acid sequence encoding the vacuolar targeting sequence
<400> 11

```
<210> 12
<211> 167
<212> DNA
<213> Artificial sequence
<220>
<223> Nucleic acid sequence of the Agrobacterium tumefaciens terminator
<220>
<221> misc_feature
<222> (162)..(162)
<223> n is a, c, g, or t
<400> 12
taatttcatg atctgttttg ttgtattccc ttgcaatgca gggcctaggg ctatgaataa
                                                                        60
agttaatgtg tgaatgtgtg aatgtgtgat tgtgacctga agggatcacg actataatcg
                                                                       120
tttataataa acaaagactt tgtcccaaaa acccccccc cngcaga
                                                                       167
<210> 13
<211> 2186
<212> DNA
<213> Artificial sequence
<220>
<223> nucleic acid sequence encoding high mannose human
      glucocerebrosidase (GCD)
<220>
<221> misc_feature
<222> (2181)..(2181)
<223> n is a, c, g, or t
<400> 13
ttttcacaaa gggtaatatc gggaaacctc ctcggattcc attgcccagc tatctgtcac
                                                                        60
ttcatcgaaa ggacagtaga aaaggaaggt ggctcctaca aatgccatca ttgcgataaa
                                                                       120
ggaaaggcta tcgttcaaga tgcctctacc gacagtggtc ccaaagatgg acccccaccc
                                                                       180
acgaggaaca tcgtggaaaa agaagacgtt ccaaccacgt cttcaaagca agtggattga
                                                                       240
tgtgatatet ceactgacgt aagggatgac geacaateee actateette geaagaceet
                                                                       300
                                                                       360
tcctctatat aaggaagttc atttcatttg gagaggacag gcttcttgag atccttcaac
aattaccaac aacaacaac aacaacaac attacaatta ctatttacaa ttacagtcga
                                                                       420
gggatccaag gagatataac aatgaagact aatctttttc tctttctcat cttttcactt
                                                                       480
                                                                       540
ctcctatcat tatcctcggc cgaattcgcc cgccctgca tccctaaaaag cttcggctac
```

agctcggtgg	tgtgtgtctg	caatgccaca	tactgtgact	cctttgaccc	cccgaccttt	600
cctgcccttg	gtaccttcag	ccgctatgag	agtacacgca	gtgggcgacg	gatggagctg	660
agtatggggc	ccatccaggc	taatcacacg	ggcacaggcc	tgctactgac	cctgcagcca	720
gaacagaagt	tccagaaagt	gaagggattt	ggaggggcca	tgacagatgc	tgctgctctc	780
aacatccttg	ccctgtcacc	ccctgcccaa	aatttgctac	ttaaatcgta	cttctctgaa	840
gaaggaatcg	gatataacat	catccgggta	cccatggcca	gctgtgactt	ctccatccgc	900
acctacacct	atgcagacac	ccctgatgat	ttccagttgc	acaacttcag	cctcccagag	960
gaagatacca	agctcaagat	acccctgatt	caccgagccc	tgcagttggc	ccagcgtccc	1020
gtttcactcc	ttgccagccc	ctggacatca	cccacttggc	tcaagaccaa	tggagcggtg	1080
aatgggaagg	ggtcactcaa	gggacagccc	ggagacatct	accaccagac	ctgggccaga	1140
tactttgtga	agttcctgga	tgcctatgct	gagcacaagt	tacagttctg	ggcagtgaca	1200
gctgaaaatg	agccttctgc	tgggctgttg	agtggatacc	ccttccagtg	cctgggcttc	1260
acccctgaac	atcagcgaga	cttcattgcc	cgtgacctag	gtcctaccct	cgccaacagt	1320
actcaccaca	atgtccgcct	actcatgctg	gatgaccaac	gcttgctgct	gccccactgg	1380
gcaaaggtgg	tactgacaga	cccagaagca	gctaaatatg	ttcatggcat	tgctgtacat	1440
tggtacctgg	actttctggc	tccagccaaa	gccaccctag	gggagacaca	ccgcctgttc	1500
cccaacacca	tgctctttgc	ctcagaggcc	tgtgtgggct	ccaagttctg	ggagcagagt	1560
gtgcggctag	gctcctggga	tcgagggatg	cagtacagcc	acagcatcat	cacgaacctc	1620
ctgtaccatg	tggtcggctg	gaccgactgg	aaccttgccc	tgaaccccga	aggaggaccc	1680
aattgggtgc	gtaactttgt	cgacagtccc	atcattgtag	acatcaccaa	ggacacgttt	1740
tacaaacagc	ccatgttcta	ccaccttggc	cacttcagca	agttcattcc	tgagggctcc	1800
cagagagtgg	ggctggttgc	cagtcagaag	aacgacctgg	acgcagtggc	actgatgcat	1860
cccgatggct	ctgctgttgt	ggtcgtgcta	aaccgctcct	ctaaggatgt	gcctcttacc	1920
atcaaggatc	ctgctgtggg	cttcctggag	acaatctcac	ctggctactc	cattcacacc	1980
tacctgtggc	atcgccaaga	tcttttagtc	gatactatgt	aatttcatga	tctgttttgt	2040
tgtattccct	tgcaatgcag	ggcctagggc	tatgaataaa	gttaatgtgt	gaatgtgtga	2100
atgtgtgatt	gtgacctgaa	gggatcacga	ctataatcgt	ttataataaa	caaagacttt	2160
gtcccaaaaa	cccccccc	ngcaga				2186

```
<210> 14
<211> 526
<212> PRT
<213> Artificial sequence
<220>
<223> High mannose human glucocerebrosidase (GCD)
<400> 14
Met Lys Thr Asn Leu Phe Leu Phe Leu Ile Phe Ser Leu Leu Ser
      5
                   10
Leu Ser Ser Ala Glu Phe Ala Arg Pro Cys Ile Pro Lys Ser Phe Gly
       20
                25 30
Tyr Ser Ser Val Val Cys Val Cys Asn Ala Thr Tyr Cys Asp Ser Phe
            40
Asp Pro Pro Thr Phe Pro Ala Leu Gly Thr Phe Ser Arg Tyr Glu Ser
            55
Thr Arg Ser Gly Arg Arg Met Glu Leu Ser Met Gly Pro Ile Gln Ala
65 70 75 80
Asn His Thr Gly Thr Gly Leu Leu Thr Leu Gln Pro Glu Gln Lys
           85
                          9.0
Phe Gln Lys Val Lys Gly Phe Gly Gly Ala Met Thr Asp Ala Ala Ala
       100 105 110
Leu Asn Ile Leu Ala Leu Ser Pro Pro Ala Gln Asn Leu Leu Lys
     115
                    120
Ser Tyr Phe Ser Glu Glu Gly Ile Gly Tyr Asn Ile Ile Arg Val Pro
  130 135 140
Met Ala Ser Cys Asp Phe Ser Ile Arg Thr Tyr Thr Tyr Ala Asp Thr
                      155
145
       150
Pro Asp Asp Phe Gln Leu His Asn Phe Ser Leu Pro Glu Glu Asp Thr
           165
                      170
                                    175
```

Lys Leu Lys Ile Pro Leu Ile His Arg Ala Leu Gln Leu Ala Gln Arg
180 185 190

Pro Val Ser Leu 195	Leu Ala Ser	Pro Trp Thr 200	Ser Pro Thr 205	Trp Leu Lys
Thr Asn Gly Ala 210	Val Asn Gly 215		Leu Lys Gly 220	Gln Pro Gly
Asp Ile Tyr His 225	Gln Thr Trp 230	Ala Arg Tyr	Phe Val Lys 235	Phe Leu Asp 240
Ala Tyr Ala Glu	His Lys Leu 245	Gln Phe Trp 250	Ala Val Thr	Ala Glu Asn 255
Glu Pro Ser Ala 260	Gly Leu Leu	Ser Gly Tyr 265	Pro Phe Gln	Cys Leu Gly 270
Phe Thr Pro Glu 275	His Gln Arg	Asp Phe Ile 280	Ala Arg Asp 285	Leu Gly Pro
Thr Leu Ala Asn 290	295		300	
Asp Gln Arg Leu 305	Leu Leu Pro 310	His Trp Ala	Lys Val Val 315	Leu Thr Asp 320
Pro Glu Ala Ala	325	330		335
Asp Phe Leu Ala	-	345	-	350
Phe Pro Asn Thr		360	365	
Phe Trp Glu Gln 370	375	-	380	-
Tyr Ser His Ser	390		395	400
Thr Asp Trp Asn	Leu Ala Leu 405	Asn Pro Glu 410	GIY GIY Pro	Asn Trp Val 415