Basic Statistics Basic Graphs

Objectives

At the end of this module, the participant will be able to:

- Use graphs to visually represent variation
- Assess normality using the probability plot
- Describe a variable's distribution using graphs as well as shape, center, and spread metrics
- Use the normal distribution to calculate the probability of an outcome

Traditional View of Performance

Our primary concern <u>WILL NO LONGER BE</u> "Are we in spec?"

Cost of Variation when On Target

Cost of Variation when Off Target

How to Assess Performance

- From now on, we will be concerned with the center and spread of the critical parameters ... not only whether it's in spec or out of spec!
- We will assess product performance by
 - studying how the mean and variance (voice of the design) compare to the specification limits (voice of the customer).
 - use the mean of the distribution to determine if the response is on target & has sensitivity to noise
 - use the standard deviation of the distribution to determine variability & sensitivity to noise

Sample Statistics vs Population Parameters

The Normal Distribution

- Property 1: A normal distribution can be described completely by knowing only the:
 - mean and standard deviation

What is the difference between these normal distributions?

The Normal Curve and Probability Areas Associated with the Standard Deviation

Property 2: The area under the curve can be used to estimate the probability of certain "events" occurring

Study Shape: Normal Data

Study Shape: Non-Normal Data

Measures of Center

- Mean: arithmetic average of a set of values
 - reflects the influence of all values
 - strongly influenced by extreme values
 Sample

$$\hat{\mu} = \bar{x} = \frac{\sum_{i=1}^{n} x_i}{n}$$

$$\mu = \frac{\sum_{i=1}^{N} X_{i}}{\sum_{i=1}^{N} X_{i}}$$

Population

- Median: center number after a set of numbers has been sorted
 - is the 50% rank
 - is "robust" to extreme scores

When to use which measure?

Measures of Spread

- Range: distance between the extreme values of a data set (highest - lowest). The range is sensitive to extreme values.
- Variance: average squared deviation of each data point from the mean, Variance = s^2 or σ^2
- Standard Deviation: square root of the variance

Sample

$$\overset{\wedge}{\sigma} = s = \sqrt{\frac{\sum_{i=1}^{n} (x_i - \overline{x})^2}{n-1}}$$

Population

$$\sigma = \sqrt{\frac{\sum_{i=1}^{N} (x_i - \mu)^2}{N}}$$

When to use which measure?

A Simple Example

Calculate the standard deviation for the data: 2 1 3 5 4

	X	$X - \overline{X}$	$(X - \overline{X})^2$	2
1	2	-1	1	
2	1	-2	4	
3	3	0	0	
4	5	2	4	n
5	4	1	1	$\sum_{i}^{11} (X_i - \overline{X})^2$
Σ	15		10	$\frac{\sum_{i=1}^{n} (X_i - \overline{X})^2}{n-1}$
Mean	3			11-1
s-square			2.5	
S			1.58 👡	$\sum_{i=1}^{n} (x_i - \overline{x}_i)^2$
				$\sqrt{\frac{\sum_{i=1}^{n} (X_i - \overline{X})^2}{}}$
				V n-1

Exercise: Turbocharger Data

- CFR: Variable Geometry Turbine Efficiency (%)
- Sample: 100 turbos measured in the Charleston test cell
- Objective: Study shape, center, spread, outliers
- Question: What is the % of turbos with efficiency 62% or higher?
- Project File : Basic Statistics.mpj
- Worksheet: data for exercises, Column 1

Exploratory Data Analysis (EDA)

- In general, data analysis should follow some basic steps:
 - Take a practical look at the raw data to identify any abnormalities (errors, unexpected values)
 - Explore the data graphically to get a visual sense of the data
 - Analyze the data statistically to get a numerical sense of the data (we'll learn how to do this in future modules)

P - Practical

G - **Graphical**

A - Analytical

Basic Analysis Steps ... We'll do!

- Practical take a visual look at data in worksheet
- Graphical

```
Graph > Histogram
```

Graph > Dotplot

Graph > Boxplot

Graph > Probability Plot

Stat > Basic Statistics > Normality Test

Analytical

Stat > Basic Statistics > Display Descriptive Statistics

Stat > Basic Statistics > Graphical Summary

Calc > Probability Distributions > Normal (see next page)

How to Use the Probabilities: Example

Calc > Probability Distributions > Normal

Normal with mean = 60.206 and standard deviation = 1.134

$$x P(X \le x)$$

52 0.9432

How to Use the Probabilities: Reality Check

Does 5.7% make sense? How would you check it?

$$\overline{X}$$
 + 1s = 60.206 + 1(1.134) = 61.34 => 16% above

$$\overline{X}$$
 + 2s = 60.206 + 2(1.134) = 62.474 => 2.5% above

$$\overline{X}$$
 + 3s = 60.206 + 3(1.134) = 63.608 => 0.15% above

MINITAB "Getting Around My File" Tips

Project Manager Tool Bar

- Open MINITAB file: Basic Statistics.mpj
 - Worksheet: xxxxxxxxx
- A Project Manager toolbar allows quick & easy access to everything in your MINITAB project

Session Folder

- Go to session folder by clicking this button once
- Double-clicking on a specific item takes you to that analysis in the session window
- right-mouse menu (edit title, delete, print, open StatGuide, etc.)

Session Folder Example

Worksheets Folder

- Go to worksheet folder by clicking this button once
- Double-clicking on a specific worksheet brings it to the front, for analysis
- right-mouse menu (tile, print, save, close, rename, description, etc.)

Worksheets Folder Example

Graphs Folder

- Go to graph folder by clicking this button once
- Double-clicking on a specific graph brings it to the front
- right-mouse menu (tile, print, save, close, rename, copy, etc.)

Graphs Folder Example

StatGuide

- Provides statistical guidance on your analysis after you run a STAT procedure
- The tone is informal and practical, not like a textbook

StatGuide Layout

Breakout Exercise: Dominoes

CFR: Thickness of dominoes

Sample : a box of dominoes

Objective: Study shape, center, spread, outliers of the box of dominoes you measure

How to estimate spread with a complex Y (variance components)

- What if the response is a function of several random variables?
- Suppose the critical parameter is Y = BSNOx + BSHC
- How can the parameters of Y be estimated?
- Mean(Y) = Mean(BSNOx) + Mean(BSHC)

- Do we add standard deviations? NO!
- Standard deviations do not add
- Need to add Variances $(\sigma^2)!$

$$\hat{\sigma}_Y^2 = \hat{\sigma}_{BSNOx}^2 + \hat{\sigma}_{BSHC}^2$$

$$\hat{\sigma}_Y = \sqrt{\hat{\sigma}_{BSNOx}^2 + \hat{\sigma}_{BSHC}^2}$$

Graphs: Priorities

- This is the case where we have data in categories and frequency within each category
 - test cell data on type of failure modes and how many
 - RPN's of potential causes of failure in an FMEA
- Use graphs to :
 - determine how to prioritize the work
 - look for trends or systematic issues with the data
- The graphs we use to study this type of data are :
 - pareto chart

- Critical Parameter : Counts by Failure Mode
- Objective: To identify failure modes which account for 80% of the failures
- Question: What failure modes need to be addressed?
- Open worksheet "Pareto Data"

Stat > Quality Tools > Pareto Chart use defect table (C1 & C2)

Failure Mode	Counts
Missing Screws	274
Missing Clips	59
Defective Housing	g 19
Leaky Gasket	43
Scrap	4
Unconnected Wire	e 8
Missing Studs	6
Incomplete Part	10

- Critical Parameter : Defect Count
- Objective : Determine if there are any systematic issues in the data that need to be addressed
- Question: Is there an effect due to Time?
- Open worksheet "Pareto Data"

Stat > Quality Tools > Pareto Chart use defect data (C4 & C5)

Example Summary: Priorities

For the Failure Mode data

- need to eliminate missing screws & missing clips
- perhaps these can go to zero
- typically never fix a failure mode 100% unless you remove the component
- would probably want to address the 3rd failure mode as well to ensure 80% reduction

For the Defect data by Time

- weekend had no scratches WHY?
- would want to identify what in the process is different
- a watch-out is that the counts aren't normalized by opportunity (don't know total production by time)

Objectives Revisited

Should be able to:

- Use graphs to visually represent variation
- Assess normality using the probability plot
- Describe a variable's distribution using graphs as well as shape, center, and spread metrics
- Use the normal distribution to calculate the probability of an outcome