

Data Visualization

Dr. Arulalan Rajan,

Founder & Director, vidyākośā, Bangalore.

Faculty, Proficience Programme, CCE, IISc, Bangalore.

Adjunct Professor, Dept of AIML, RVCE, Bangalore.

January 1, 2024

Topics to be covered¹

- Exploring the data distribution
 - Percentiles and boxplots
 - Frequency tables and histograms
 - Density Plots and Estimates
- Exploring Binary and Categorical Data
 - Mode
 - Expected Value
 - Probability
 - ► Correlation
 - Scatterplots
- Exploring two or more variables
 - Hexagonal Binning and Contours
 - ► Two categorical variables
 - Categorical and Numeric Data
 - Visualizing multiple variables

¹The Instructor acknowledges authors of various articles available on the web and other resources from which some of the materials presented here are taken

Exploring Data Distribution

Here is some interesting Statistics - Tennis this time, folks!!!

Table: Grand Slam Titles

Rafa	Djoko	Fedex	Pete	Borg	Connors	Lendl	Agassi
22	22	20	14	11	8	8	8

Grand Slam Court Surface

Finer details of Grand Slam Titles

Data Visualization

- Distribution of data
- Better presentation of data
- Inclusion of finer details
- Drawing conclusions and inferences!
- Analyze
 - Identify Patterns, Trends, etc.,
 - ► Formulate/Test Hypothesis
- Provides evidence and support!

Frequency Table

- Tally of the count of numeric data values falling into a set of intervals/bins
- Divides up the variable range into equally spaced segments or individual data set
- ► Tells us how many values fall within each segment!

Frequency Table - Examples!

Letter	Percentage				
a	8.2				
a b	1.5				
C	2.8				
d	4.3				
e	12.7				
f	2.2				
e f g h	2.0				
Й	6.1				
i	7.0				
i	0.2				
j k	0.8				
I	4.0				
m	2.4				

Letter	Percentage				
n	6.7				
0	7.5				
p	1.9				
q	0.1				
r .	6.0				
S	6.3				
t	9.1				
u	2.8				
V	1.0				
W	2.4				
X	0.2				
y	2.0				
Z	0.1				

Based on passages taken from newspapers and novels, and total sample of 100,362 alphabetic characters. *Beker and Piper, 1982*

Frequency Table - Examples!

Grades	A +	A	B+	В	C	D	F	Drop-outs	Total
10 Points	85+	75-84	65-74	55-64	45-54	35-44	< 35		
Total	3	3	5	5	2	1	1	5	23

Figure: Grades in a course on Statistics

- Observe the bin size
- ► Bin size too large Consequence?
- ▶ Bin size too small -Consequence?

Types of Frequency Distribution

- Grouped Frequency Distribution Divide the observations between different intervals (*class intervals* and count the frequencies for each class interval - Large Data set
- Ungrouped Frequency Distribution List all distinct observations and count individually - Small Data set
- Relative Frequency Distribution Displays proportion of observations in different intervals; Relative Frequency - You know this already!!!
- Cumulative Frequency Distribution ≤ (sum all the frequencies before the current interval or ≥ (sum all the frequencies after the current interval)

Histogram

- Visualize a frequency table
- ▶ Bins on the *x*-axis and data count on the *y*-axis

Histogram

Skewness and Kurtosis - Discovered through visual displays of data Courtesy: https://asq.org/quality-resources/histogram

Boxplots

- Percentiles measure spread of data
- Quartiles and Deciles
- Boxplots Based on percentiles
- Distribution of data based on a five number summary Minimum score, First Quartile, Median, Third Quartile and Maximum score
- Can also tell about outliers and their values

Image Courtesy: https://www.simplypsychology.org/wp-content/uploads/box-whisker-plot.jpg

Boxplots

Image Source: https://www.simplypsychology.org/boxplots.html

Boxplots

Image Source: https://www.simplypsychology.org/boxplots.html

Density plots and Estimates

- Distribution of data values as a continuous line
- Kind of smoothened histogram
- Recall: The total area under the density curve is 1
- y- axis of histogram Frequency; y- axis of density plot -Proportion!
- Area under the density curve between any two values x_1 and x_2 Proportion of the distribution lying between the two points!

Histogram and Density Plots

Figure: Density of weights across 400 samples, 200 F + 200 M

Exploring Binary and Categorical Data

- Takes on fixed and limited number of possible values
- Example: Musical Instruments, Blood Group type, Trains type etc.,
- Logical order and categorical order are not the same
- However, sorting uses logical order
- Allows assignment of categories, but cannot let you order the categories

Terms for Exploring Categorical Data

Mode

Most commonly occurring category or value in a dataset

Expected Value

Associating the categories with numerical values, E[X] gives the average based on the probability of occurrence of the category

$$E[X] = \sum_{x=1}^{n} p(x)x$$

where x is the category and p(x) is the probability of occurrence of the category

Terms for Exploring Categorical Data - Bar Chart

Frequency or Proportion for each category plotted as bars

Figure: RVCE Placement Bar Chart²

²Courtesy: RVCE Placement Webpage

Terms for Exploring Categorical Data - Pie Chart

Frequency or Proportion for each category plotted as wedges in a pie!

Figure: Time Spent on Smartphones and Tablets³

Terms for Exploring Categorical Data - Bar Chart

Frequency or Proportion for each category plotted as bars

Figure: RVCE Placement Bar Chart⁴

⁴Courtesy: RVCE Placement Webpage

Terms for Exploring Categorical Data - Probability

Already done in class!!! So u guys escape!!!!

Terms for Exploring Categorical Data - Correlation

- Statistical relationship between two entities
- Extent to which the variables are linearly related
- Positively Correlated
- Negatively corelated

► Correlation Coefficient :
$$r = \frac{\sum\limits_{i=1}^{n}(x_i - \overline{x})(y_i - \overline{y})}{(n-1)s_x s_y}$$

- ▶ $-1 \le r \le 1$,
- ightharpoonup r = 0 indicates no correlation
- ightharpoonup Non linear relation cannot be captured by r

Terms for Exploring Categorical Data - Scatter Plot

Figure: Correlation Examples

Terms for Exploring Categorical Data - Interpretation

US spending on science, space, and technology correlates with

Suicides by hanging, strangulation and suffocation

Something Interesting!

Exploring 2 or more variables - Contingency Tables

- Tabular representation of categorical data
- ► Tally of counts between two or more categorical variables
- Portraying data that can facilitate calculating probabilities
- Helps in determining conditional probabilities

Table: Gender and Preferred Category of Coffee ... It was beer!!!

	Light	Regular	Dark	Total
Male	20	40	50	110
Female	50	20	20	90
Total:	70	60	70	200

Used in marketing research etc

Exploring 2 or more variables - Hexagonal Binning

- Scatter plots Get dense with very large number of data
- Bivariate histogram for visualising structure in datasets with large
- ▶ Plots density rather than points
- xy plane over the set (range(x), range(y) is tessellated by grid of hexagons
- Number of points falling in each hexagon are counted and stored in a data structure
- ► Hexagons with count > 0 are plotted using color ramp or varying the radius of the hexagon in proportion to the counts

Hexagonal Binning

Contour Plots

- Portray data for 3 variables in 2D
- ▶ Each contour line has a constant value on a 3rd variable
- Each band represents a specific density of points, increasing as one nears a peak

Contour Plot - Example⁵

Calories as a function of fats and carbohydrates

⁵https://onlinestatbook.com/2/advanced_graphs/contour.html

Categorical and Numerical Data - Violin Plots

- ► Box plot with additional plot of density estimate with density on the *y* axis
- Density is mirrored and flipped over and resulting shape is filled in - creating an image similar to a violin
- ▶ Shows nuances in the distribution that are not found in boxplot

Violin Plot

Violin Plot

