

Group 2

Lin Baoyu Zhang Yaowen

- Background
- Methodology
- Dose-Time-Response Model
- Simulation
- Clinical Trial
- Evaluations

- Background

Monoclonal Antibodies (mAbs)

Clinical trial: Conventional Drug VS mAbs

- Conventional Drug
 - ♦ Small and fixed interval
 - ♦ Only optimize dose
 - ♦ Fast effect
- * mAabs
 - ♦ Long and Flexible interval
 - ♦ Both dose and time need to be optimized
 - ♦ Slow and Long Term effect

Main Idea

The proposed approach uses nonlinear regression models to describe and predict the timechanging response for complex dosing regimens.

2 Methodology

Methodology

Bayesian Inference

$$P(Model|Data) = \frac{P(Data|Model)P(Model)}{P(Data)}$$

❖ Observed data ⇒ prior probability and Statistical Model ⇒ Posterior probabilitys

Bayesian VS Frequentist

Where is the ringing phone?

- Frequentist Reasoning
 - → Judgment from listening
- Bayesian Reasoning
 - ♦ Judgment from listening
 - ♦ Previous knowledge of phone location

Methodology

Maximum Likelihood

Likelihood Function

$$lik(\theta) = f_D(x_1, \dots, x_n \mid \theta)$$

Bayesian estimation

Posterior Distribution

$$\theta \mapsto \frac{f(x|\theta) g(\theta)}{\int_{\Theta} f(x|\theta') g(\theta') d\theta'}$$

Dose-Time-Response Model

Dose-Time-Response Model

Basic Model

pharmacokinetic-pharmacodynamic (PKPD) model

Dose-Time-Response Model

Direct-Response E_{max}-model

$$g(C(t)) = \theta_5 + \frac{\theta_4 \cdot C(t)}{\theta_3 + C(t)}.$$

The Basic Model

$$y_{ij} = \theta_5 + \frac{\theta_4 D_i \left(e^{-\theta_2 t_j} - e^{-\theta_1 t_j} \right)}{\theta_3 \left(1 - \theta_2 / \theta_1 \right) + D_i \left(e^{-\theta_2 t_j} - e^{-\theta_1 t_j} \right)} + \epsilon_{ij}$$

Simulation

Simulation

To estimate the operating characteristics of the basic model

$$y_{ij} = \theta_5 + \frac{\theta_4 D_i \left(e^{-\theta_2 t_j} - e^{-\theta_1 t_j} \right)}{\theta_3 \left(1 - \theta_2 / \theta_1 \right) + D_i \left(e^{-\theta_2 t_j} - e^{-\theta_1 t_j} \right)} + \epsilon_{ij}$$

- * A mAb is administered by subcutaneous injection
- * 1000 datasets generated using a multivariate normal distribution
- \bullet E_{max} model is used to assess the expected value

Summary of the simulation results

Table I. Summary results of the clinical trial simulations (CI=confidence interval, PI=probability interval).							
		Likelihood analysis		Bayesian analysis			
Parameter	True value	Median of maximum likelihood-estimate	95% CI coverage (in %) *	Median of posterior median	95% PI coverage (in %) *		
θ_1	0.07	0.067	90.7	0.087	94.8		
$\theta_2^{'}$	0.03	0.032	91.2	0.028	97.2		
θ_3^2	10.00	9.67	97.4	13.23	92.1		
θ_4	-80.00	-80.7	99.7	-82.16	92.5		
θ_5	100.00	100.0	91.9	98.92	93.6		
Time							
0	100.00	100.0	91.9	98.92	93.6		
10	28.38	27.9	99.8	26.80	95.3		
50	30.32	30.5	99.9	31.32	94.6		
100	26.18	25.4	100.0	24.44	93.5		
200	57.13	57.0	98.4	57.49	94.3		
300	95.61	94.8	94.6	92.21	90.5		

^{*} Monte Carlo standard error: 0.7%

Simulation results

- Point estimates near to the true parameter values
- ML estimates close to the true values on average
- Acceptable confidence and probability interval coverage
- Slightly better Bayesian probability interval coverage

Parameter	True value	Likelihood analysis		Bayesian analysis	
		Median of maximum likelihood-estimate	95% CI coverage (in %) *	Median of posterior median	95% PI coverage (in %) *
θ_1	0.07	0.067	90.7	0.087	94.8
θ_2	0.03	0.032	91.2	0.028	97.2
θ_3	10.00	9.67	97.4	13.23	92.1
θ_4	-80.00	-80.7	99.7	-82.16	92.5
θ_5	100.00	100.0	91.9	98.92	93.6
Time					
0	100.00	100.0	91.9	98.92	93.6
10	28.38	27.9	99.8	26.80	95.3
50	30.32	30.5	99.9	31.32	94.6
100	26.18	25.4	100.0	24.44	93.5
200	57.13	57.0	98.4	57.49	94.3
300	95.61	94.8	94.6	92.21	90.5

^{*} Monte Carlo standard error: 0.7%

Clinical Trial

Objectives

- * To evaluate the fitness of the dose-time-response model in the clinical trial
- To evaluate the accuracy of the dose-time-response model predictions of the untested treatment regimens response

Dose-time-response models used to analyze the clinical trial

- * The effects of canakinumab subcutaneous injection were examined
- 24 weeks, 400 patients
- Participants randomly divided into seven groups
 - Five groups received single doses (either 25 mg, 50 mg, 100 mg, 200 mg, or 300 mg at day 1)
 - ♦ One group received multiple doses (50 mg at day 1, 50 mg at week 4, 25 mg at week 8, and 25 mg at week 12)
 - ♦ The last group as the placebo
- The logarithm of C-reactive protein (CRP) levels as a proxy of the response
 - ♦ CRP is a biomarker signaling the severeness of the disease

Bayesian analysis for the five single-dose groups

Table II. Bayesian analysis for data from the five single-dose treatment groups.							
	Posterior median	95% probab	oility interval				
θ_1	0.177	0.077	0.293				
θ_2	0.022	0.016	0.031				
θ_3	8.07	3.44	15.19				
θ_4	-1.41	-1.82	-1.06				
θ_5	0.934	0.65	1.29				
θ_6	0.431	0.38	0.53				

 θ_6 is added to the basic model to measure the effect of the baseline CRP levels (X_0)

Comparison of observed values and the fitted Bayesian model

- ♦ Dots: CRP mean
- ♦ Solid curve: CRP median
- ♦ Grey area: 95% posterior probability interval
- ♦ Vertical lines: 95% prediction probability interval
- → Last plot: all posterior median curves relative to their baseline value

Clinical Trial

Accuracy evaluation

With $R^2 = 0.82$, the dose-time-response model describes the single-dose data well

Bayesian prediction for the multiple dose treatment

Clinical Trial

Results of the Bayesian prediction

- All data points within the 95% prediction intervals
- Good accuracy of the dose-time-response model predictions of the response over time for the multiple dose treatment

Dose-time-response model VS Standard E_{max} model

- ♦ Dots: CRP mean
- \diamond Solid line: fitted E_{max} model
- ♦ Dashed line: fitted dose–timeresponse model
- ↓ Light/Dark grey area: respective 95% confidence bands of the expected response

Clinical Trial

Results of Comparison

- Similar fits of data for both models
- More accurate predictions for higher doses in the dose-time-response

Evaluations

Limitations

- * ML methods may not be valid for small samples in the experiments
- * Bayesian framework may cause unintended informative prior problems
- Sample generated using Markov chain Monte Carlo (MCMC) methods are subject to the validity problem

Issues & Challenges

- Challenging to ensure the fitness of nonlinear regression models
- ❖ Bayesian analysis requires MCMC algorithms, which is computer-intensive and time-consuming

Thanks!

Any questions?

Maximum Likelihood

- * Maximum likelihood is the procedure of finding the value of one or more parameters for a given statistic which makes the known likelihood distribution a maximum.
- http://mathworld.wolfram.com/MaximumLikelihood.html
- http://statweb.stanford.edu/~susan/courses/s200/lectures/lect11.pdf

- * Maximum-likelihood estimation (MLE) is a method of estimating the parameters of a statistical model given data.
- In general, for a fixed set of data and underlying statistical model, the method of maximum likelihood selects the set of values of the model parameters that maximizes the likelihood function.

Bayesian Analysis

- * Bayesian analysis is a statistical procedure which endeavors to estimate parameters of an underlying distribution based on the observed distribution
- prior distribution -> observed distribution -> posterior distribution
- Bayesian analysis is somewhat controversial because the validity of the result depends on how valid the prior distribution is, and this cannot be assessed statistically.
- http://mathworld.wolfram.com/BayesianAnalysis.html

Bayesian Inference

- A method of statistical inference in which Bayes' theorem is used to update the probability for a hypothesis as more evidence or information becomes available.
- * Bayesian updating is particularly important in the dynamic analysis of a sequence of data.

$$P(Model|Data) = \frac{P(Data|Model)P(Model)}{P(Data)}$$

Monte Carlo Method

- Any method which solves a problem by generating suitable random numbers and observing that fraction of the numbers obeying some property or properties.
- * The method is useful for obtaining numerical solutions to problems which are too complicated to solve analytically.
- ❖ Monte Carlo methods are mainly used in three distinct problem classes: optimization, numerical integration, and generating draws from a probability distribution.
- http://mathworld.wolfram.com/MonteCarloMethod.html

Monte Carlo Integration

- ❖ In mathematics, Monte Carlo integration is a technique for numerical integration using random numbers.
- * Many algorithms usually evaluate the integrand at a regular grid, Monte Carlo randomly choose points at which the integrand is evaluated. This method is particularly useful for higher-dimensional integrals.

$$\oint f \, dV \approx V \, \langle f \rangle \pm V \, \sqrt{\frac{\langle f^2 \rangle - \langle f \rangle^2}{N}} , \text{ where } \langle f \rangle \equiv \frac{1}{N} \sum_{i=1}^N f(x_i) \quad \langle f^2 \rangle \equiv \frac{1}{N} \sum_{i=1}^N f^2(x_i)$$

http://mathworld.wolfram.com/MonteCarloMethod.html

MCMC Method

- * Markov chain Monte Carlo (MCMC) methods are a class of algorithms for sampling from a probability distribution based on constructing a Markov chain that has the desired distribution as its equilibrium distribution.
- * The state of the chain after a number of steps is then used as a sample of the desired distribution.
- * Markov chain is collection of random variables $\{X_t\}$ (t = 0, 1, ...) having the property that, given the present, the future is conditionally independent of the past. i.e.

$$P(X_t = j | X_0 = i_0, X_1 = i_1, ..., X_{t-1} = i_{t-1}) = P(X_t = j | X_{t-1} = i_{t-1}).$$

Multivariate Normal Distribution

- ❖ A generalization of the one-dimensional (univariate) normal distribution to higher dimensions
- * A random vector is said to be k-variate normally distributed if every linear combination of its k components has a univariate normal distribution
- * The probability density function of the d-dimensional multivariate normal distribution is given by

$$y = f(x, \mu, \Sigma) = \frac{1}{\sqrt{|\Sigma|(2\pi)^d}} e^{-\frac{1}{2}(x-\mu)' \Sigma^{-1}(x-\mu)}$$

http://www.mathworks.com/help/stats/multivariate-normal-distribution.html