- **1.** [punti 4.5] Tracciare i diagrammi di Bode ed il diagramma polare di una rete ritardatrice determinando in particolare il ritardo massimo di fase e la corrispondente pulsazione.
- 2. [punti 4.5] Sia assegnato il sistema meccanico vibrante di figura

caratterizzato da due molle di costante elastica k e due corpi di massa m. Il corpo di destra sia soggetto ad una forza f e le posizioni delle due masse siano descritte dalle variabili x_1 e x_2 (quando il sistema è in quiete con le molle a riposo $x_1 = x_2 = 0$). Si consideri il sistema dinamico Σ orientato da f ad x_1 (posizione del corpo di sinistra).

- a) Determinare l'equazione differenziale che descrive il sistema Σ .
- b) Determinare la funzione di trasferimento T(s) di Σ .
- c) Determinare i modi di Σ .
- **3. [punti 4.5]** Dato un sistema con funzione di trasferimento $G(s) = \frac{10}{s+3}$ determinare la risposta forzata $y(t), t \in (0, +\infty)$ al segnale di ingresso definito in figura:

4. [punti 4.5]

Presentare e dedurre la funzione di trasferimento a tempo discreto $P_d(z)$ di un sistema a tempo continuo P(s) con all'ingresso un mantenitore D/A di ordine zero e all'uscita un campionatore A/D sincronizzati con periodo T.

5. [punti 4.5] Sia dato il sistema retroazionato di figura dove $L(s) = 10 \frac{(s+1)(s+2)}{s^3}$.

- a. Tracciare il diagramma di Nyquist di $L(j\omega)$ determinando le eventuali intersezioni con l'asse reale negativo.
- b. Studiare la stabilità del sistema retroazionato applicando il Criterio di Nyquist.
- **6.** [punti 4.5] Sia assegnato il seguente sistema retroazionato dove $P(s) = \frac{s+4}{s^2(s+2)^2}$.

Tracciare il luogo delle radici relativo all'equazione caratteristica 1 + KP(s) = 0 per K > 0. Determinare in particolare gli asintoti, le eventuali radici doppie e gli angoli di partenza dai poli di P(s).

7. [punti 4.5] Sia dato il sistema in retroazione di figura

dove $P(s) = \frac{10}{(s-1)^2}$. Progettare un controllore di struttura $C(s) = \frac{b_2 s^2 + b_1 s + b_0}{s(s+20)}$ affinché il

sistema retroazionato sia stabile asintoticamente con poli dominanti in $-1 \pm j\frac{1}{2}$ e abbia costante di velocità $K_{\nu} = 4$. Per tale controllore determinare inoltre tutti i poli del sistema retroazionato.

8. [punti 4.5] Determinare la risposta forzata y(k) all'ingresso $u(k) = k \cdot 1(k)$ (rampa unitaria) di un sistema a tempo discreto descritto dall'equazione alle differenze

$$y(k) + y(k-1) + \frac{1}{4}y(k-2) = u(k) + 4u(k-1) + 4u(k-2)$$
.