UNIVERZA V LJUBLJANI FAKULTETA ZA MATEMATIKO IN FIZIKO

Finančna matematika – 1. stopnja

Delo diplomskega seminarja

Mentor: izred. prof. dr. Jaka Smrekar

Kazalo

1. Uvod	4
2. Posplošeni linearni modeli	4
2.1. Sestavni deli posplošenega linearnega modela	4
2.2. Linearna regresija	5
2.3. Poissonova regresija	5
2.4. Logistična regresija	5
2.5. Probit regresija	6
2.6. Ocenjevanje parametrov	6
3. Numerične metode	6
3.1. Newton – Raphsonova metoda	6
3.2. Fisher-scoring algoritem	6
4. Primeri	6
4.1. Ocenjevanje parametrov v logističnem modelu	6
4.2. Ocenjevanje parametrov v probit modelu	6
Slovar strokovnih izrazov	6
Literatura	6

Iterativne numerične metode v posplošenih linearnih modelih Povzetek

Iterative numerical methods in generalized linear models ${\bf ABSTRACT}$

Math. Subj. Class. (2010): navedi vsaj eno klasifikacijsko oznako – dostopne so na www.ams.org/mathscinet/msc/msc2010.html

Ključne besede: navedi nekaj ključnih pojmov, ki nastopajo v delu

Keywords: angleški prevod ključnih besed

1. Uvod

Posplošeni linearni modeli so ključen del statistične analize. Pomagajo nam bolje razumeti relacije med rezultati meritev in s temi izsledki predvideti trende v prihodnosti. Modeli morajo biti kar se da enostavni, ampak hkrati zagotavljati določeno natančnost. Vsa teorija nam pa v praksi ne koristi, če konkretnih številk ne znamo izračunati.

V dobi ogromne množice podatkov je računska učinkovitost ključni del obdelave. Tu nam pomagajo numerične metode.

V delu bom najprej predstavil posplošene linearne modele in najpriljubljenejše numerične metode, ki se uporabljajo za njihovo obdelavo. Teorijo bom osvetlil tudi s praktičnimi primeri.

2. Posplošeni linearni modeli

- 2.1. **Sestavni deli posplošenega linearnega modela.** Vsak posplošeni linearni model sestavljajo trije deli: *slučajni del* je slučajna spremenljivka Y in njena porazdelitev, *sistematični del* predstavlja relacijo med pojasnjevalnimi spremenljivkami, *povezovalna funkcija* pa transformira Y, da se ta bolje prilega podatkom.
- $2.1.1.\ Slučajni\ del.\ Slučajni\ del\$ privzame porazdelitev slučajnega vektorja Y, pri čemer privzemamo tudi neodvisnost komponent. Porazdelitev Y privzemamo odvisno od podatkov; mnogokrat je "binarna", torej ima dve možni vrednosti "uspeh" ali "neuspeh". Splošneje je lahko izid tudi število uspehov v fiksnem številu poskusov. V takih primerih privzamemo binomsko porazdelitev. Y nam lahko meri tudi števne podatke, naprimer koliko zabav je obiskal študent v preteklem mesecu. Seveda pa lahko Y predstavlja tudi zvezne podatke, v tem primeru lahko privzamemo normalno porazdelitev (ali pa kakšno drugo zvezno porazdelitev).
- 2.1.2. Sistematični del. Sistematična komponenta posplošenega linearnega modela poda relacije med pojasnjevalnimi spremenljivkami $x_{i,j}$. Te nastopajo linearno, torej je sistematični del enak

$$\beta_0 + x_{i,1}\beta_1 + x_{i,2}\beta_2 + \ldots + x_{i,p}\beta_p$$

2.1.3. Povezovalna funkcija. Tretji del posplošenega linearnega modela je povezovalna funkcija, ta nam poda funkcijo $g(\cdot)$ med slučajno komponento in sistematičnim delom. Če označimo $\mu = E(Y)$, je

$$g(\mu) = \beta_0 + x_{i,1}\beta_1 + x_{i,2}\beta_2 + \ldots + x_{i,n}\beta_n$$

Najenostavnejša taka funkcija je kar identiteta, torej $g(\mu) = \mu$. Ta nam torej da linearno povezavo med pojasnjevalnimi spremenljivkami in pričakovano vrednostjo naših slučajnih spremenljivki. To je ena od oblik regresije za zvezne podatke.

Mnogokrat pa linearna relacija ni primerna - fiksna sprememba pojasnjevalnih spremenljivk ima lahko večji vpliv, če je pričakovana vrednost bližje 0, kot če je bližje 1. Recimo, da je π verjetnost, da bo oseba kupila nov avto, ko je njen dohodek enak x. Sprememba v dohodku za $10.000 \in$ ima manjši vpliv, če je dohodek $1.000.000 \in$, kot če je $50.000 \in$.

Takrat je smiselno uporabiti kakšno drugo povezovalno funkcijo, ki dopušča tudi nelinearne kombinacije pojasnjevalnih spremenljivk. Naprimer, $g(\mu) = \log(\mu)$ modelira pričakovano vrednost logaritma. Smiselno jo je uporabiti, če pričakovana

vrednost ne more zavzeti negativnih vrednosti. Takemu modelu rečemo log-linearen model.

Spet druga povezovalna funkcija je logit $(\mu) = \log(\frac{\mu}{1-\mu})$, ki nam modelira logaritem deležev - smiselno jo je uporabiti, ko μ ne zavzame vrednosti izven (0,1), torej ko imamo opravka z verjetnostmi. Takemu modelu rečemo logistični model.

2.2. **Linearna regresija.** Linearna regresija je najenostavnejši primer posplošenega linearnega modela. Enostavno jo lahko zapišemo kot: $Y = X\beta + \varepsilon$ kjer je Y proučevan slučajni vektor, X je matrika pojasnjevalnih slučajnih spremenljivk, β je vektor koeficientov, ki jih želimo oceniti, ε pa slučajna spremenljivka, ki predstavlja napako - pri računanju, meritvah Privzemimo, da je $E(\varepsilon) = 0$. Iz tega sledi $\mu = E(Y) = X\beta$. Model torej pričakovano vrednost slučajne spremenljivke predstavi kot linearno funkcijo pojasnjevalnih spremenljivk. Parametre β ocenimo z metodo najmanjših kvadratov in ob predpostavki polnega ranga za matriko X dobimo $\hat{\beta} = (X^{\top}X)^{-1}X^{\top}Y$.

2.3. Poissonova regresija.

2.4. **Logistična regresija.** Logistična regresija se uporablja za določanje deležev oziroma računanje verjetnosti. V poštev pride, ko imamo odgovore tipa uspehneuspeh oziroma govorimo o prisotnosti ali odsotnosti neke lastnosti.

Spomnimo se Binomske porazdelitve $Y_i \sim B(n_i, p_i)$. Ta pravi, da je

$$P(Y_i = y_i) = \binom{n_i}{y_i} p_i^{y_i} (1 - p_i)^{n_i - y_i}$$

Pričakovana vrednost in varianca sta odvisni le od p_i , in sta enaki $E(Y_i) = p_i \text{in} Var(Y_i) = p_i (1-p_i)$. Poglejmo si sedaj podrobneje logit transformacijo. Če se spomnemo, želimo določiti verjetnost nekega dogodka pri danih podatkih. Ob uporabi identitente transformacije se nam kaj hitro lahko zgodi, da za posamezne verjetnosti dobimo vrednosti izven intervala [0,1]. Ta problem bomo rešili v dveh korakih.

Najprej uvedimo

$$dele\check{\mathbf{z}}_i = \frac{p_i}{1 - p_i}$$

kjer se premaknemo iz verjetnosti v $dele\check{z}e$ – verjetnost dogodka proti verjetnosti, da se ne bo zgodil. Če je p_i enak $\frac{1}{2}$, bo delež enak 1. Vidimo, da so deleži vedno pozitivni in niso omejeni navzgor

V naslednjem koraku pa poglejmo logaritem deležev ali logit verjetnosti

$$\eta_i = \text{logit}(p_i) = \log \frac{p_i}{1 - p_i}$$

s tem pa si odstranimo tudi omejitev navzdol. Opazimo še, da če je $p_i = \frac{1}{2}$, je delež enak 1 in je logaritem 0. Kot funkcija p, je logit strogo naraščajoča, torej imamo inverz. Običajno ga imenujemo antilogit, izrazimo ga z:

$$p_i = \operatorname{logit}(\eta_i) = \frac{\exp \eta_i}{1 + \exp \eta_i}$$

Vse skupaj nam da logistični model, ki za slučajni del vzame binomsko porazdelitev.

2.4.1. Ocenjevanje parametrov. Imamo binomske slučajne spremenljivke in imamo povezovalno funkcijo, $logitp_i = X\beta$, kjer so β neznani parametri. V naslednjem razdelku si bomo ogledali kako zanje izpeljemo enačbe verjetja, ki jih nato uporabimo v numeričnih algoritmih.

Kot v vsakem posplošenem linearnem modelu tudi v tem predpostavimo neodvisnost komponent slučajnega vektorja Y zato

$$P(Y = \vec{y}) = \prod_{i=1}^{n} P(Y_i = y_i)$$
$$= \prod_{i=1}^{n} \binom{n_i}{y_i} p_i^{y_i} (1 - p_i)^{n_i - y_i}$$

Naprej si oglejmo logaritemsko funkcijo verjetja. V nadaljnem računanju bom izpuščal binomski simbol na začetku - je samo konstanta, ki na končen rezultat nima vpliva. Po prejšnjih oznakah je torej

$$\ell(p_i) = \log\{\prod_{i=1}^n p_i^{y_i} (1 - p_i)^{n_i - y_i}\}$$

$$= \sum_{i=1}^n \{y_i \log p_i + (n_i - y_i) \log(1 - p_i)\}$$

$$= \sum_{i=1}^n \{n_i \log 1 - p_i + y_i \log\left(\frac{p_i}{1 - p_i}\right)\}$$
(1)

Po predpostavki logističnega modela je

$$\operatorname{logit}(p_i) = \log\left(\frac{p_i}{1 - p_i}\right) = \beta_0 + x_{i1}\beta_1 + \ldots + x_{ir}\beta_r = x_i^{\top}\beta$$

- 2.5. Probit regresija.
- 2.6. Ocenjevanje parametrov.
 - 3. Numerične metode
- 3.1. Newton Raphsonova metoda.
- 3.2. Fisher-scoring algoritem.
- 4. Primeri
- 4.1. Ocenjevanje parametrov v logističnem modelu.
- 4.2. Ocenjevanje parametrov v probit modelu.

SLOVAR STROKOVNIH IZRAZOV

LITERATURA

- [1] Alan Agresti. An introduction to categorical data analysis. John Wiley & Sons, 2007.
- [2] Erik B. Erhard. Logistic regression and nr. https://statacumen.com/teach/SC1/SC1_11_LogisticRegression.pdf.
- [3] Germán Rodríguez. Lecture notes on generalized linear models. https://data.princeton.edu/wws509/notes/, 2007.