

Contents

1	Interrogación N°1													2							
	1.1	Ayudantía 1 $(12/08)$																			2
	1.2	Ayudanía $2(19/08)$.																			4

Chapter 1

Interrogación N°1

1.1 Ayudantía 1 (12/08)

- 1. Sea X un conjunto infinito.
 - (a) Sea $p \in X$ un punto arbitrario en X, demuestre que

$$\tau_1 = \{ U \subset X : U = \emptyset \text{ o } p \in U \}$$

es una topología en X. Esta es conocida como topología del punto particular.

Demostración.

- Claramente $\emptyset, X \in \tau_1$.

• Charamente
$$\varnothing$$
, $X \in \tau_1$.
• $U_{\alpha} \in \tau_1 \Rightarrow p \in U_{\alpha} \Rightarrow p \in \bigcup_{\alpha \in I} U_{\alpha} \Rightarrow \bigcup U_{\alpha} \in \tau_1$.
• $U_1, \dots, U_n \in \tau_1 \Rightarrow p \in U_i \Rightarrow p \in \bigcap_{i=1}^n U_i \Rightarrow \bigcap_{i=1}^n U_i \in \tau_1$.

(b) Sea $p \in X$ un punto arbitrario en X, demuestre que

$$\tau_2 = \{ U \subset X : U = X \text{ o } p \notin U \}$$

es una topología en X. Esta es conocida como topología del punto excluido.

Demostración.

- Claramente $\varnothing, X \in \tau_2 \ (p \notin \varnothing)$.

• Claramente
$$\varnothing, X \in \tau_2 \ (p \notin \varnothing)$$
.
• $U_\alpha \in \tau_2 \Rightarrow p \notin U_\alpha \Rightarrow p \notin \bigcup U_\alpha \Rightarrow \bigcup U_\alpha \in \tau_2$.
• $U_1, \dots, U_n \in \tau_2 \Rightarrow p \notin U_i \Rightarrow p \notin \bigcap_{i=1}^n U_i \Rightarrow \bigcap_{i=1}^n U_i \in \tau_2$.

(c) Determine cuando

$$\tau_3 = \{ U \subset X : U = X \text{ o } X \setminus U \text{ es infinito} \}$$

es una topología en X.

Demostración. Si $p \in X \Rightarrow \{p\}^c$ es infinito $\Rightarrow \{p\}$ es abierto. Si τ_3 es topología y $q \in X$, entonces

$$\bigcup_{p\neq q}\{p\}=X\setminus\{q\}\Rightarrow (X\setminus\{q\})^c=\{q\}$$

es infinito. Contradicción! ** Es decir, τ_3 no es topología. $\hfill\Box$

2. Sea $K = \{\frac{1}{n} : n \in \mathbb{N}\}$ y \mathcal{B}_K la colección de intervalos abiertos $(a, b) \subset \mathbb{R}$ y de conjuntos de la forma (a, b) - K. Es decir,

$$\mathcal{B}_K = \{(a,b) : a, b \in \mathbb{R}\} \cup \{(a,b) - K\}.$$

(a) Pruebe que \mathcal{B}_K es una base para X. Denotamos por \mathbb{R}_K la topología generada.

Demostración.

- $t \in \mathbb{R}$, $\exists (a,b) \subset \mathbb{R} : t \in (a,b) \subset \mathcal{B}_K$;
- Notar que la intersección de elementos de la base es un elemento de la base

$$(a,b) \cap (c,d) = (c,b)$$

 $(a,b) - K \cap (c,d) = (c,b) - K$
 $(a,b) - K \cap (c,d) - K = (c,b) - K$.

(b) Considere las siguientes topologías en \mathbb{R} :

 $\tau_1 = \text{topología estándar en } \mathbb{R}$

 $au_2 = ext{ topología } \mathbb{R}_K$

 $\tau_3 = \text{topología cofinita en } \mathbb{R}$

 $\tau_4 = \text{topología con } (-\infty, a) = \{x : x < a\} \text{ como base.}$

Determine, para cada una de estas topologías, cual de las otras contiene.

3. Se
aX conjunto, denotamos por $\tau_{\rm cof}(X)$ a la topología co
finita en X. Demuestre que

$$\tau_{\rm cof}(X \times Y) \subseteq \tau_{\rm cof}(X) \times \tau_{\rm cof}(Y),$$

es decir, la topología producto de las topologías cofinitas es más finita que la topología cofinita en $X\times Y$. De un ejemplo en que estas topologías no son iguales.

CHAPTER 1. INTERROGACIÓN N°1

Demostración. Sea $U \in \tau_{cof}(X \times Y)$ Entonces,

$$U = X \times Y - \{(a_1, b_1), \dots, (a_n, b_n)\} = \bigcap_{i=1}^n X \times Y - \{(a_i, b_i)\}.$$

Queremos ver que $X \times Y - \{(a,b)\}$ es abierto en $\tau_{\rm cof}(X) \times \tau_{\rm cof}(Y)$. Notar que $\mathcal{B} = \{U \times V : U \in \tau_{\rm cof}(X), V \in \tau_{\rm cof}(Y)\}$ es una base para $\tau_{\rm cof}(X) \times \tau_{\rm cof}(Y)$. Sea $(c,d) \in X \times Y - \{(a,b)\}$. Supongamos que $c \neq a$.

$$(c,d) \in \underbrace{X \setminus \{a\}}_{\in \tau_{\mathrm{cof}}(X)} \times \underbrace{Y}_{\in \tau_{\mathrm{cof}}(Y)} \subseteq X \times Y - \{(a,b)\}.$$

X infinito. Luego,

$$W = X \times Y \setminus \{a\} \in \tau_{cof}(X) \times \tau_{cof}(Y).$$

Pero $W^c = X \times \{a\}$ no es finito. Por lo tanto $W \in \tau_{\text{cof}}(X \times Y)$. Entonces $\tau_{\text{cof}}(X \times Y) \subsetneq \tau_{\text{cof}}(X) \times \tau_{\text{cof}}(Y)$.

1.2 Ayudanía 2 (19/08)

1. Considere $W \subseteq Y \subseteq X$, τ topología en X, τ' topología inducida en X. Pruebe que las topologías inducidas por τ y τ' sen W son iguales.

Demostración.
$$U$$
 abierto en $\tau|_W \Leftrightarrow U = U_X \cap W$.

 U abierto en $\tau'|_W \Leftrightarrow U = \overbrace{(U_X \cap Y)}^{\text{abierto en }\tau'} \cap W$

$$\Leftrightarrow U_X \cap W.$$

2. Considere \mathbb{Z} con la topología profinita y $H \leq \mathbb{Z}$. Pruebe que la topología inducida en H es igual a la topología profinita en H.

Observación. Topología profinita: $G, \ \tau(G). \ \mathcal{B} = \{gH : \ H \lhd G, \ [G:H] < \infty\}.$

Caso de Z: si $a, b \in \mathbb{Z}$, $b \neq 0$, entonces $S(a, b) = \{a + bn : n \in \mathbb{Z}\}$. Luego, $G = \mathbb{Z}$, H = (b), $b \neq 0$.

$$\mathcal{B} = \{a(b) : b \neq 0\}$$

= \{a + bn : n \neq 0\}
= \{S(a,b)\}.

Demostración. $\tau(\mathbb{Z})=$ topología profinita en \mathbb{Z} . Si $H\leq \mathbb{Z},\ H=(m),\ m\neq 0,1$. Notar que se debe demostrar $\tau(H)=\tau(\mathbb{Z})|_H$. (Afirmamos que $\mathcal{B}(H)=\{S(sm,tm)\ :\ t\neq 0\}$ es base de $\tau(H)$ y que $\underline{\mathcal{B}(Z)}\cap H$ es base de $\tau(\mathbb{Z})|_H$)

 \supseteq Sea $x \in B \in \mathcal{B}(\mathbb{Z}) \cap H$, $B = S(a,b) \cap (m)$. Luego, $x = a + bn \in$

$$(m). \ x \in S(x,bm) \subseteq S(a,b) \cap (m). \ \text{Si} \ y \in S(x,bm), \text{ entonces}$$

$$y = x + bmk$$

$$= a + bn + bmk$$

$$= a + b(n + mk) \in S(a, b).$$

 \subseteq Sea $B \in \mathcal{B}(H)$. Luego $B = S(tm, sm), s \neq 0$. Notar que B es un abierto de la base de $\tau(\mathbb{Z})$ y que $B \subseteq H = (m)$. Entonces, $B \in \tau(\mathbb{Z})|_{H}$.

3. X espacio topológico, $A \subseteq X$. Definimos la frontera de A por

$$\partial A := \overline{A} \cap \overline{X \setminus A}.$$

- (a) $\partial A = \overline{A} \setminus int(A)$;
- (b) Demuestre que int(A), ∂A son disjuntos y $\overline{A} = int(A) \cup \partial A$;
- (c) $\partial A = \emptyset \Leftrightarrow A$ abierto y cerrado;
- (d) U abierto $\Leftrightarrow \partial U = \overline{U} \setminus U$;
- (e) U abierto $U = int(\overline{U})$?

Demostración. (a) Notar que

$$\overline{A} \setminus int(A) = \overline{A} \cap int(A)^c$$
.

Basta ver que $int(A)^c = \overline{X \setminus A}$.

$$\begin{split} x \in int(A)^c &\Leftrightarrow \forall \ U(X), \ U(X) \not\subseteq A \\ &\Leftrightarrow \forall \ U(X), \ U(X) \cap (X-A) \neq \varnothing. \\ x \in \overline{X \setminus A} &\Leftrightarrow \forall \ U(X), \ U(X) \cap (X \setminus A) \neq \varnothing.. \end{split}$$

- (b) $\partial A = \overline{A} \setminus int(A) \Rightarrow \partial A \cap int(A) = \emptyset$. Luego, $(\bigcup int(A))$, $partialA \cup int(A) = \overline{A}$.
- (c) $\partial A = \emptyset \Leftrightarrow A$ abierto y cerrado.
 - \implies Basta ver que

$$\begin{split} \partial A &= \overline{A} \cap \overline{X \setminus A} \\ &= A \cap X \setminus A \\ &= \varnothing. \end{split}$$

Œ Basta ver que

$$\partial A = \varnothing = \overline{A} \setminus int(A) \Rightarrow int(A) = \overline{A} \quad (int(A) \subseteq A \subseteq \overline{A})$$

 $\Rightarrow A = \overline{A} = int(A)$
 $\Rightarrow A \text{ abierto y cerrado.}$

(d) U abierto $\Leftrightarrow \partial U = \overline{U} \setminus U$

$$\begin{array}{ll} \Longrightarrow \partial U = \overline{U} \setminus int(U) = \overline{U} \setminus U. \\ & \rightleftarrows \overline{U} = int(U) \cup \partial U = int(U) \cup (\overline{U} \setminus U). \ \overline{U} \cap (\overline{U} \cap U^c)^c = \\ & \overline{U} \setminus (\overline{U} \setminus U) = int(U). \ (\text{terminar dem}) \end{array}$$

(e) La igualdad es falsa, pero una de las contenciones es real.