Les identités remarquables

L'égalité (a+b)²=a²+2ab+b² est la **première identité remarquable**.

Exemple: $(7x+1)^2 = (7x)^2 + 2 \times 7x \times 1 + 1^2 = 49x^2 + 14x + 1$

L'égalité (a-b)²=a²-2ab+b² est la **deuxième identité remarquable**.

Exemple: $(3x-4)^2=(3x)^2-2\times 3x\times 4+4^2=9x^2-24x+16$

L'égalité (a+b)(a-b)=a²-b² est la **troisième identité remarquable**.

Exemple: $(2x+3)(2x-3)=(2x)^2-3^2=4x^2-9$

Exercice 1

Quelle est la forme développée de $(x+1)^2$?

Exercice 2

Quelle est la forme développée de $(x-7)^2$?

Exercice 3

Quelle est la forme développée de (3x-4)(3x+4)?

Exercice 4

Quelle est la forme développée de $(5x+2)^2$?

Exercice 5

Quelle est la forme développée de $\left(\frac{5}{2} + \frac{2}{5}x\right)\left(\frac{5}{2} - \frac{2}{5}x\right)$

Exercice 6

Développe puis réduis l'expression $(x-2)^2-(2x+2)(2x-2)$.

Exercice 7

Quelle est la forme factorisée de l'expression 100-x²?

Exercice 8

Quelle est la forme factorisée de 2-x²?

Exercice 9

Factorise l'expression $(x+7)^2-(3x-2)^2$.

Exercice 10

Développe $(n+1)^2-n^2$.

Exercice 11

Factorise l'expression $1-81x^2+1-9x+(1-9x)^2$.

Exercice 12

En utilisant une identité remarquable, écris la forme factorisée de x^2+4x+4 .

Exercice 13

Quelle est la forme factorisée de $x^2 - 4$?

Exercice 14

Ouelle est la forme factorisée de $(1+2x)(1-4x)+1-4x^2$?

Exercice 15

Quelle est la forme factorisée de $4x^2 - 9 - (4x - 9)(2x + 3)$?

Les équations du 1er degré

Méthode de résolution

- 1. On passe les termes contenant des "x" à gauche du = et les termes formés de nombres à droite du =. Lorsqu'on change un terme de côté, on change son signe (le signe qui est devant lui). Par exemple, 4x+5=13+2x devient 4x-2x=13-5.
- **2. On réduit** les expressions littérales obtenues. 4x-2x=13-5 devient 2x=8.
- **3. On divise les deux côtés par le nombre qui est devant** "x", y compris s'il est négatif. Pour notre exemple, on obtient x=8÷2 donc x=4. Si on avait eu -7x=14, on aurait calculé x=14÷(-7).

Exercice 1

-4 est-il solution de l'équation $x^2+x+20=0$?

Exercice 2

Quelle est la solution de l'équation 3x-7=11?

Exercice 3

Quelle est la solution de l'équation -3x+36=96?

Exercice 4

Quelle est la solution de l'équation -3x+27=6x-18?

Exercice 5

Si ax+b=c alors : x=?

Exercice 6

Si -nx+t=-y alors x=?

Exercice 7

Quelle est la solution de l'équation $\frac{2}{3}x + \frac{1}{5} = \frac{3}{4}x + \frac{1}{3}$?

Exercice 8

Quelle est la solution de l'équation $\frac{1+2x}{3} = \frac{4+5x}{6}$

Exercice 9

Quelle est la solution de l'équation 6-5x(2x-4)=2x(-5x-2)+3?

Exercice 10

Quelle est la solution de l'équation (x+1)(x-4)=(x-2)(x-3)?

Exercice 11

Écrire la solution de l'équation 5(2x-4)-3(x-2)=x sous la forme d'une fraction irréductible $x = \frac{a}{b}$

Exercice 12

Résoudre l'équation 7(6x-5)-4(3x-2)²=1-(6x)² puis écris le résultat sous la forme d'une fraction α

irréductible
$$x = \frac{x}{b}$$
.

L'équation-produit

Si un produit est nul, alors au moins un de ses facteurs est nul.

Pour résoudre (2x+4)(3x-9)=0 on doit donc chercher les solutions des équations 2x+4=0 et 3x-9=0.

On obtient deux solutions : x=-2 et x=3.

Exemples:

- Résolution de l'équation 2x²=-3x
 - 1. $2x^2+3x=0$.
 - **2.** x(2x+3)=0.
 - 3. x=0 ou 2x+3=0, donc x=0 ou x=-1,5. On écrit $S=\{-1,5;0\}$.
- Résolution de l'équation x²=9
 - 1. $x^2-9=0$.
 - 2. $x^2-3^2=0$ donc (x+3)(x-3)=0
 - **3.** x+3=0 ou x-3=0, donc x=-3 ou x=3. On écrit $S=\{-3;3\}$.
- Résolution de l'équation (x+4)(2x-5)-(x+4)(x+1)=0
 - 1. (x+4)[(2x-5)-(x+1)]=0.
 - 2. (x+4)(x-6)=0
 - 3. x+4=0 ou x-6=0, donc x=-4 ou x=6. On écrit $S=\{-4;6\}$.

Exercice 1

Factoriser l'expression 2(x+1) - x(x+1) puis résoudre l'équation 2(x+1) - x(x+1) = 0.

Exercice 2

Factoriser l'expression $(x+1)^2 - 9$ puis résoudre l'équation $(x+1)^2 - 9 = 0$.

Exercice 3

Factoriser l'expression $(2x+4)^2 - (x+1)^2$ puis résoudre l'équation $(2x+4)^2 - (x+1)^2 = 0$.

Exercice 4

Quelles sont les solutions de l'équation x²=64?

Exercice 5

Quelles sont les solutions de l'équation $9x^2=64$?

Écrire les résultats sous la forme de fractions.

Exercice 6

Quelles sont les solutions de l'équation $x^2=-5x$?

Exercice 7

Quelles sont les solutions de l'équation $x^2+x+1=1$?

Exercice 8

Quelles sont les solutions de l'équation $(x+5)^2=10x+29$?

Exercice 9

Quelles sont les solutions de l'équation $(x+9)^2=(3x+3)(x+9)$?

Exercice 10

Quelles sont les solutions de l'équation $(x+1)^2=4(3x+3)$?

Exercice 11

Quelles sont les solutions de l'équation $(4x+5)^2=(6x+8)^2$?

Écrire les solutions sous la forme de fractions.