

# EE2211 Pre-Tutorial 12

Dr Feng LIN feng\_lin@nus.edu.sg

## Agenda

- Recap
- Self-learning
- Tutorial 12

### Recap

- Introduction to Neural Networks
  - Perceptron
  - Activation Functions
  - Multi-layer Perceptron
- Training and Testing of Neural Networks
  - Training: Forward and Backward
  - Testing: Forward
- Convolutional Neural Networks

### Perceptron



$$\mathbf{X} = \begin{bmatrix} 1 \\ x_1 \\ x_2 \\ x_3 \end{bmatrix}$$



Output of Neuron:  $\sigma(X^TW)$  or  $\sigma(\Sigma w_i x_i)$ 

Activation Function: non-linear function to introduce non-linearity into the neural networks!

Goal of training: to learn W!

### **Activation Functions**

### **Sigmoid Activation Function**

$$\sigma(a) = \frac{1}{1 + e^{-\beta a}},$$



### **Activation Functions**

### **ReLU Activation Function**

$$\sigma(a) = \max(0, a)$$

**Rectified Linear Unit** (ReLU)



### Goal of Neural Network Training: to Learn W

$$X = \begin{bmatrix} 0.6 \\ 0.5 \\ 0.7 \end{bmatrix}$$

$$0.6 \times \frac{w_{1,1}^{1}}{\sigma_{1}} = \begin{bmatrix} 0.6 \\ 0.5 \\ 0.7 \end{bmatrix}$$

$$0.5 \times \frac{w_{2,1}^{1}}{\sigma_{1}} = \begin{bmatrix} 0.6 \\ 0.5 \\ 0.7 \end{bmatrix}$$

$$0.7 \times \frac{w_{2,1}^{1}}{\sigma_{1}} = \begin{bmatrix} 0.7 \\ 0.1 \\ 0.7 \end{bmatrix}$$

$$0.7 \times \frac{w_{2,1}^{1}}{\sigma_{1}} = \begin{bmatrix} 0.7 \\ 0.1 \\ 0.7 \end{bmatrix}$$

$$0.7 \times \frac{w_{2,1}^{1}}{\sigma_{1}} = \begin{bmatrix} 0.7 \\ 0.1 \\ 0.7 \end{bmatrix}$$

$$0.7 \times \frac{w_{2,1}^{1}}{\sigma_{1}} = \begin{bmatrix} 0.7 \\ 0.1 \\ 0.7 \end{bmatrix}$$

$$0.7 \times \frac{w_{2,1}^{1}}{\sigma_{1}} = \begin{bmatrix} 0.7 \\ 0.1 \\ 0.7 \end{bmatrix}$$

layer 2

layer n-1

layer n
Output layer

Specifically, W is learned through

layer 1

- 1. Random initialization
- 2. Backpropagation

layer 0

Input layer

### Neural Network Training: Backpropagation

#### Assume we train a NN for 3-class classification



Forward: (weights are fixed)
 To compute network responses
 To compute the errors at each output

2. Backward: (weights are updated)
To pass back the error from the output to the hidden layers
To update all weights to optimize the network

### A loss function for a single sample:

$$\begin{aligned} & \min_{\mathbf{w}} \ \sum_{i=1}^{C} (\hat{y}_i - y_i)^2 \\ & \text{or} \\ & \min_{\mathbf{w}} \ ||\hat{y} - y||^2 \end{aligned}$$

Update W!

### Neural Network Training: Backpropagation

- Recall that the parameters W are randomly initialized.
- We use Backpropagation to update W.
- In essence, Backpropagation is gradient descent!
- Assume we have N samples, each sample denoted by  $X^j$  and the output of NN by  $\hat{y}^j$ , loss function is then

$$J = \sum_{j=1}^{N} \|\hat{y}^{j} - y^{j}\|^{2}, \quad \min_{\mathbf{w}} J$$
Recall gradient descent in Lec 8:  $\mathbf{w} \leftarrow \mathbf{w} - \eta \nabla_{\mathbf{w}} J$ 

- We would therefore like to compute ∇<sub>w</sub>J!
  - -J is a function of  $\hat{y}$ , and  $\hat{y}$  is a function of  $\mathbf{w}$ , i.e.,  $\hat{y} = F_{\mathbf{w}}(X)$
  - Use gradient descent and chain rule!

Being aware of the basic concept is sufficient for exam. No calculation needed.

## **Neural Network Testing**

Once all network is trained and parameters are updated, we may conduct testing.





Illustration of a Neural Network consisting of a single Neuron.

https://datamapu.com/posts/deep\_learning/backpropagation/

© Copyright National University of Singapore, All Rights Reserved.

#### **Training Data**

We consider the most simple situation with one-dimensional input data and just one sample x=0.5 and labels y=1.5

#### **Activation Function**

As activation function, we use the Sigmoid function

$$\sigma(x) = \frac{1}{1 + e^{-x}}.$$

#### Loss Function

As loss function, we use the Sum of the Squared Error, defined as

$$L(y,\hat{y}) = rac{1}{2} \sum_{p=1}^{n} (y_p - \hat{y}_p)^2,$$

with  $y_i = (y_1, \ldots, y_n)$  the labels and  $\hat{y} = (\hat{y}_1, \ldots, \hat{y}_n)$  the predicted labels, and n the number of samples. In the examples considered in this post, we are only considering one-dimensional data, which means n = 1 and the formula simplifies to

$$L(y,\hat{y})=rac{1}{2}(y-\hat{y})^2.$$



To illustrate how backpropagation works, we start with the most simple neural network, which only consists of one single neuron.

In this simple neural net,  $z(x) = w \cdot x + b$  represents the linear part of the neuron and a the activation function, which we chose to be the sigmoid function, i.e.  $a = \sigma(z) = \frac{1}{1+e^{-z}}$ . For the following calculations, we assume the initial weight w = 0.3 and the initial bias b = 0.1. Further, the learning rate is set to  $\alpha = 0.1$ . These values are chosen arbitrarily for illustration purposes.

Illustration of a Neural Network consisting of a single Neuron.



#### The Forward Pass

We can calculate the forward pass through this network as

$$\hat{y}=\sigma(z)$$
  $\hat{y}=\sigma(wx+b),$   $\hat{y}=rac{1}{1+e^{-(wx+b)}}$ 

Using the weight, and bias defined above, we get for x=0.5

$$\hat{y} = \frac{1}{1 + e^{-(0.3 \cdot 0.5 + 0.1)}} = \frac{1}{1 + e^{-0.25}} \approx 0.56$$

The error after this forward pass can be calculated as

$$L(1.5, 0.56) = \frac{1}{2}(1.5 - 0.56)^2 = 0.44.$$





Illustration of backpropagation in a neural of Copyright National University of Singapore, All Rights Reserved. network consisting of a single neuron.

#### The Backward Pass

To update the weight and the bias we use **Gradient Descent**, that is

$$w_{new} = w - lpha rac{\delta L}{\delta w}$$

$$b_{new} = b - lpha rac{\delta L}{\delta b},$$

with  $\alpha=0.1$  the learning rate. That is we need to calculate the partial derivatives of L with respect to w and b to get the new weight and bias. This can be done using the chain rule and is illustrated in the plots below.

$$rac{\delta L}{\delta w} = rac{\delta L}{\delta \hat{y}} rac{\delta \hat{y}}{\delta z} rac{\delta z}{\delta w}$$

$$\frac{\delta L}{\delta b} = \frac{\delta L}{\delta \hat{y}} \frac{\delta \hat{y}}{\delta z} \frac{\delta z}{\delta b}$$

$$egin{aligned} rac{\delta L}{\delta w} &= rac{\delta L}{\delta \hat{y}} rac{\delta \hat{y}}{\delta z} rac{\delta z}{\delta w} \ & rac{\delta L}{\delta b} &= rac{\delta L}{\delta \hat{y}} rac{\delta \hat{y}}{\delta z} rac{\delta z}{\delta b} \end{aligned}$$

We can calculte the individual derivatives as

we can calculte the in 
$$\frac{\delta L}{\delta \hat{u}}$$

$$rac{\delta L}{\delta \hat{y}} = rac{\delta}{\delta \hat{y}} rac{1}{2} (y - \hat{y})^2 = -(y - \hat{y}),$$
  $\delta \hat{y}$ 

$$rac{\delta \hat{y}}{\delta \hat{y}}=$$

$$rac{\delta \hat{y}}{\delta z} = rac{\delta}{\delta z} \sigma(z) = \sigma(z) \cdot ig(1 - z)$$

$$egin{align} rac{\delta \hat{y}}{\delta z} &= rac{\delta}{\delta z} \sigma(z) = \sigma(z) \cdot ig(1 - \sigma(z)ig), \ & rac{\delta z}{\delta w} = rac{\delta}{\delta w} (w \cdot x + b) = x, \ & rac{\delta z}{\delta b} = rac{\delta}{\delta b} (w \cdot x + b) = 1. \end{aligned}$$

 $\sigma'(x) = \sigma(x) \cdot (1 - \sigma(x)).$ 

Tutorial 8, Question 4

The second equation leads to

$$rac{\delta \hat{y}}{\delta z}$$

and finally

$$\delta z = \delta(z)$$
 $\delta \hat{y} = 1$ 

$$\frac{\delta \hat{y}}{\delta z} = rac{1}{1 + e^{-0.25}} \Big( 1 - rac{1}{1 + e^{-0.25}} \Big) = 0.56 \cdot 0.44 = 0.000$$

 $\frac{\delta \hat{y}}{\delta z} = \frac{1}{1 + e^{-0.25}} \left( 1 - \frac{1}{1 + e^{-0.25}} \right) = 0.56 \cdot 0.44 = 0.25,$ 

tion leads to 
$$rac{\delta \hat{y}}{\delta z} = \sigma(z) \cdot ig(1 - \sigma(z)ig)$$

 $\frac{\delta L}{\delta \hat{x}} = -(y - \hat{y}) = -(1.5 - 0.56) = -0.94.$ 

$$\frac{1}{e^{-0.25}} \left( 1 - \frac{1}{1 + e^{-0.25}} \right) = 0.56 \cdot 0.44$$

$$rac{1}{e^{-0.25}}\Big(1-rac{1}{1+e^{-0.25}}\Big)=0.56\cdot 0.44=$$

$$1 + e^{-0.25}$$
 (  $1 + e^{-0.25}$  )

$$\delta z$$

$$rac{\delta z}{s}=x=0.5,$$

 $\frac{\delta z}{\delta b} = 1.$ 

$$rac{\delta z}{\delta w}=x=0.5,$$



Putting the equations back together, we get

$$\frac{\delta L}{\delta w} = -0.94 \cdot 0.25 \cdot 0.5 = -0.118$$

$$\frac{\delta L}{\delta b} = -0.94 \cdot 0.25 \cdot 1 = -0.235$$

The calculation for  $\frac{\delta L}{\delta w}$  is illustrated in the plot below.

The weight and the bias then update to

$$w_{new} = 0.3 - 0.1 \cdot (-0.118) = 0.312,$$

$$b_{new} = 0.1 - 0.1 \cdot (-0.235) = 0.125.$$

Backpropagation for the weight w.

- A convolutional neural network (CNN) is a special type of neural network that significantly reduces the number of parameters in a deep neural network.
- Very popular in image-related applications
- Each image is stored as a matrix in a computer





- If we model all matrix entries as inputs all at once
  - Assume we have an image/matrix size of 200x200
  - Assume we have 10K neuros in the first layer
  - We already have 200x200x10K=400 Million parameters to learn!



- Hence, we introduce CNN to reduce the number of parameters.
- Works in a sliding-window manner!













We take a filter/kernel(3×3 matrix) and apply it to the input image to get the convolved feature. This convolved feature is passed on to the next layer.

| 1,                     | 1,0  | 1,  | 0 | 0 |
|------------------------|------|-----|---|---|
| 0,0                    | 1,   | 1,0 | 1 | 0 |
| <b>0</b> <sub>×1</sub> | 0,×0 | 1,  | 1 | 1 |
| 0                      | 0    | 1   | 1 | 0 |
| 0                      | 1    | 1   | 0 | 0 |

| 4 |  |
|---|--|
|   |  |
|   |  |

| 1 | 0 | 1 |
|---|---|---|
| 0 | 1 | 0 |
| 1 | 0 | 1 |

Filter/kernel

**Image** 

Convolved Feature

### Summary

- Introduction to Neural Networks
  - Multi-layer perceptron
  - Activation Functions
- Training and Testing of Neural Networks
  - Training: Forward and Backward
  - Testing: Forward
- Convolutional Neural Networks

### **THANK YOU**