1. Постановка задачи

Задача коммивояжера является одной из самых известных задач комбинаторной оптимизации. Изначально у нас имеется полный взвешенный граф, который является математической моделью для некоторых городов и расстояний между ними, где вершина графа это город, а ребра графа - это путь, пролегающий между городами. Вес ребра это длина пути или же стоимость проезда. Задача: найти путь минимальной стоимости, то есть найти гамильтонов цикл минимального веса. Гамильтоновым циклом в графе называется цикл, в который каждая вершина графа включена ровно один раз. Данная задача относится к классу NP-трудных задач. По этой причине для этой задачи актуально исследование приближенных алгоритмов с целью получения приемлемого решения за более короткий промежуток времени.

Одним из алгоритмов, находящих некое решение за приемлемое количество операций, $O(n^2)$, где n - количество вершин, является жадный алгоритм с выбором ближайшей вершины. Суть алгоритма заключается в том, что на каждом шаге мы просматриваем все непосещенные вершины в которые можно попасть из текущей вершины, и выбираем ту, расстояние до которой минимально. Оценку времени работы алгоритма получить нетрудно: на каждом шаге мы просматриваем не более п вершин и выбираем одну из них. Всего у нас n вершин, значит будет n шагов. Получаем оценку $O(n^2)$. В общем случае данный алгоритм может работать сколь угодно плохо относительно оптимального решения. На изображении ниже представлен пример на котором жадный алгоритм, запущенный из любой точки будет работать сколь угодно плохо в зависимости от веса ребра. *здесь будет пример плохой работы алгоритма* Однако, если мы наложим дополнительные условия на веса ребер или сам граф мы можем получить более точный результат. Например, если граф метрический, у нас появляются верхняя и нижняя оценки оптимальности работы жадного алгоритма.

Для маршрута коммивояжера с n вершинами справедлива теорема:

Теорема 1. Веерхняя оценка оптимальности:

$$\left(\frac{Greedy}{Optimal}\right) \le \frac{1}{2}\lceil \lg n \rceil + \frac{1}{2} \tag{1}$$

Где Greedy - вес пути, найденного жадным алгоритмом, Optimal - вес наиболее оптимального пути.

Доказательство:

Лемма 1: Допустим существует отображение вершины p в число l_p такое, что:

1)
$$d(p,q) \ge \min(l_p, l_q) \ \forall \ p, q$$

$$2) l_p \le \frac{1}{2} OPT \ \forall \ p$$

Тогда

$$\sum l_p \le \frac{1}{2} (\lceil lg(n) \rceil + 1) Optimal \tag{2}$$

Доказательство. Допустим Б.О.О., что N такое, что i] 1 <= i <= n и $l_i \ge l_j$ если $i \le j$ Докажем, что

$$Optimal \ge \sum_{i=k+1}^{min(2k,n)} l_i \tag{3}$$

для любого k такого что $l \le k \le$ n Пусть H полный подграф, определенный на множестве узлов

$$\{i|1 \le i \le \min(2k,n)\}\tag{4}$$

Пусть T - это маршрут коммивояжера в H, который посещает вершины H в том же порядке, что и эти узлы посещаются при оптимальном обходе исходного графа. Обозначим длину маршрута T как LENGTH. По неравенству треугольника каждое ребро (b, c) графа T должно иметь длину меньше или равную длине пути от b до c, вычисленного в оптимальном пути коммивояжера. Так как ребра T суммируются в LENGTH, а сумма ребер оптимального пути равна OPTIMAL мы заключаем что

$$Optimal \ge LENGTH \tag{5}$$

По условию 1) Леммы для каждого (i,j) в пути Т $d(i,j) >= min(\mathbf{l}_i,\mathbf{l}_j)$. Следовательно,

$$LENGTH \ge \sum_{(i,j)\in T} min(l_i, l_j) = \sum_{i\in H} \alpha_i l_i$$
 (6)

где a_i - количество ребер (i,j) в T, для которых i>j (и, следовательно, $l_i=min(l_i,l_j)$). Мы хотим получить нижнюю оценку правой части 6. Заметьте, что каждое a_i не превосходит 2 (потому что i это конечная точка только двух ребер в маршруте T) и что сумма a_i равна количеству ребер в T. Поскольку k составляет не менее половины количества ребер в T, мы заведомо получим нижнюю оценку правой части 6, если мы предположим, что k наибольших l_i имеют $a_i=0$, а остальные min(2k,n)-k из l_i имеют $a_i=2$. По предположению, k наибольших $\{l_i|1\leq i\leq k\}$, поэтому оценка нижней границы:

$$\sum_{i \in H} a_i l_i \ge 2 \sum_{i=k+1}^{\min(2k,n)} l_i \tag{7}$$

Таким образом мы доказали неравенство 3

Теперь просуммируем неравенства 3 для всех k равных степени двойки меньшей n, то есть:

$$\sum_{j=0}^{\lfloor \lg(n)\rfloor - 1} OPT \ge \sum_{j=0}^{\lfloor \lg(n)\rfloor - 1} 2 * \sum_{i=2^{j} + 1}^{\min(2^{j+1}, n)} l_i$$
 (8)

Это можно упростить до

$$\lceil lg(n) \rceil OPT \ge 2 * \sum_{i=2}^{n} l_i$$
 (9)

По условию 2) Леммы

$$OPT \ge 2 * l_1 \tag{10}$$

Два данных неравенства доказывают лемму

Доказательство Теоремы 1. Для каждой вершины p положим, что l_p это длина ребра, выходящего из p и идущего p вершину, которая выбирается жадным алгоритмом. Мы хотим показать, что l_p удовлетворяет условиям Леммы 1. Если вершина p была выбрана жадным алгоритмом до вершины q, тогда вершина q была кандидатом на ближайшую невыбранную вершину для вершины p. Это значит, что ребро (p,q) не короче чем выбранное ребро, то есть

$$d(p,q) \ge l_p \tag{11}$$

И наоборот, если вершина q была выбрана до p, тогда

$$d(p,q) \ge l_q \tag{12}$$

Так как одна из вершин была выбрана раньше другой, одно из двух последних неравенств должно выполняться, вследствие чего условие 1) Леммы 1 выполняется. Для доказательства условия 2) достаточно доказать, что для любого ребра (p,q)

$$d(p,q) \le \frac{1}{2}OPT \tag{13}$$

Мы можем рассмотреть оптимальный маршрут как объединение двух частей маршрута, каждый из которых это путь между p и q. Из неравенства треугольника получаем, что длина любого пути между p и q не может быть меньше, чем d(p,q), что доказывает неравенство выше. Так как l_p это длины всех пар, составляющих маршрут T

$$\sum l_p = GREEDY \tag{14}$$

Данное равенство вместе с Леммой 1 доказывают неравенство из Теоремы 1. **Теорема 2. Верхняя оценка оптимальности:**

$$\left(\frac{Greedy}{Optimal}\right) > \frac{1}{3}\lg(n+1) + \frac{4}{9} \tag{15}$$

Доказательство: Для каждого $i \ge 1$ построим неполный взвешенный граф F с тремя особыми вершинами: левая вершина, центральная вершина и правая вершина. Эти графы строятся рекурсивно как показано на рис.1 (TODO нарисовать и вставить) где левая вершина располагается слева, правая - справа и центральная посередине. Каждый граф F имеет путь P, соединяющий левую вершину и центральную, в который входят все вершины графа. Путь P также строится рекурсивно как на рис.1.

Граф F_1 состоит из трех вершин, между каждыми двумя из которых проведено ребро веса 1. Путь Р состоит из двух ребер: между левой и правой вершиной, между правой и центральной вершиной. Для построения графа F_{i+1} возьмем две копии графа F, назовем одну копию левой, а другую правой. Добавим дополнительную вершину которая впоследствии станет центральной для F_{i+1} . На рис.1 эта вершина обозначена D. Она соединяется с правой вершиной левой копии (вершина C) и левой вершиной правой копии (вершина E) ребрами длины 1. Дополнительная вершина D также соединяется с центральной вершиной правой копии (вершина F) ребром веса l_i , который будет определен ниже. Наконец, центральная вершина левой копии (вершина B) соединяется с левой вершиной правой копии (вершина E) ребром веса l_i . Левая вершина F_{i+1} определяется как левая вершина левой копии (вершина A), правая вершина F_{i+1} определяется как правая вершина правой копии (вершина G). Путь P_{i+1} состоит из двух копий пути P_i и ребер (B,E), (F,D) длины l_i . Длина l_i данных ребер определяется по формуле

$$l_i = \frac{1}{6}(4 * 2^i - (-1)^i + 3) \tag{16}$$

Пусть L_i - длина пути P_i . Для длины L_i есть рекуррентное соотношение:

$$L_{i+1} = 2 * L_i + 2 * l_i (17)$$

Так как P_{i+1} состоит из двух копий P_i и двух ребер веса l_i При условии что $L_1 = 2$, решение данного уравнения:

$$L_i = \frac{1}{9}(6i * 2^i + 8 * 2^i + (-1)^i - 9)$$
 (18)

Для каждого F мы определяем граф G_i , который получается из F путем соединения левой вершины и правой вершины графа ребром веса 1 и соединением центральной вершины с левой вершиной ребром веса $l_i - 1$. Левая вершина графа F считается начальной вершиной графа G_i . На рисунке изображен граф

 G_4 Определим \bar{G}_i как полный граф на вершинах G_i . Длина ребер в данном графе будет равна длине наименьшего пути в G_i между двумя вершинами, которые соединяет ребро. Таким образом \bar{G}_i будет удовлетворять неравенству треугольника.

Граф \bar{G}_i имеет два важных свойства:

- 1) Ребра графа G_i имеют в графе \bar{G}_i такие же длины как и в G_i
- 2) Если жадный алгоритм начинает свою работу с начальной вершины графа G_i то при подходящем выборе меджу несколькими возможными путями в алгоритме метод может найти путь P_i , который будет следовать за ребром длины l_i-1 , проведенным из центральной вершины (последняя в пути P_i) в начальную вершину.

Мы вернемся к доказательству этих свойств после завершения доказательства основной теоремы. Каждый граф \bar{G}_i имеет оптимальный маршрут, состоящий из ребер единичного веса, с, соответственно весом пути равным n, где n - это количество вершин $(2^{i+1}-1)$. Данный путь начинается в начальной вершине и далее посещаются все вершины слева направо, после чего происходит возврат в начальную вершину. Примером, удовлетворяющим теореме является граф \bar{G}_{m-1} Соотношение для него:

$$\frac{GREEDY}{OPTIMAL} = (L_i + l_i - 1)/n, \ i = lg(n+1) - 1$$
 (19)

Данное соотношение больше чем соотношение в теореме. Остается доказать свойства 1) и 2). Рассмотрим рис.1 ТООО нумерация Покажем что для каждого F_{i+1}

$$\overline{AB} = \overline{BC} = \overline{EF} = \overline{FG} = l_i - 1 \tag{20}$$

$$\overline{AC} = \overline{EG} = l_{i+1} - 2 \tag{21}$$

$$\overline{BE} = \overline{DF} = l_i \tag{22}$$

$$\overline{AD} = \overline{DG} = l_{i+1} - 1 \tag{23}$$

$$\overline{AG} = l_{i+2} - 2 \tag{24}$$

Запись \overline{XY} означает длину кратчайшего пути между X и Y в графе F_{i+1} . Данные равенства тривиально доказываются для і=1. Далее будем вести доказательство по индукции. Предположим что равенства верны для $i \leq I - 1$, например для F_I На рис.3а изображены связанные вершины графа F_{I+1} до объединения двух копий F_I в F_{I+1} . Веса ребер графа равны кратчайшему пути между ними в F_I . Эти веса определены в предположении индукции. Например, ребро (A,B) на рис. За соединяет левую и центральную вершины F_I и, как следует из 23, длина кратчайшего пути между этими вершинами равна l_i – 1. На рис.36 TODO мы можем увидеть фигуры с рис.3а TODO с ребрами, которые были добавлены при построении F_{I+1} . Так как каждый вес ребра между двумя вершинами на рис. За равен кратчайшему пути между этими вершинами, то применяя формулу 16 для l_I ко всем возможным путям в F_{i+1} мы можем найти, что вес каждого ребра на рис. 36 действительно является длиной кратчайшего пути между двумя вершинами, которые соединяет ребро. Это доказывает равенства 20-22 для F_{I+1} . Равенства 23, 24 доказываются аналогичными рассуждениями для всех путей на TODO рис. 36. Путем длины l_{i+1} – 2 из A в G является путь ABEG.

Объектом исследований данной работы являются оценки оптимальности решения задачи, найденного жадным алгоритмом при случае когда веса ребер являются случайными величинами и распределены по некоторому закону распределения.

2. Некоторые определения и вспомогательные теоремы

2.1 Определения

Алгоритм \mathcal{A} будем называть ассимптотически оптимальным если существуют такие $\epsilon_n \to 0$, $\delta_n \to 0$ при $n \to \infty$ что применение алгоритма \mathcal{A} дает значение $\mathcal{Z}_{\mathcal{A}}$, удовлетворяющее неравенству

$$P\{Z_{\mathcal{A}} \le (1 + \epsilon_n)Z\} \ge 1 - \delta_n \tag{25}$$

где $\mathcal{Z}_{\mathcal{A}}$ - решение, найденное алгоритмом, \mathcal{Z} - минмальное решение. Это определение при $\epsilon_n \equiv 0$ совпадает с понятием алгоритма, который почти всегда приводит к точному решению.

2.2 Неравенство Чебышева

Пусть случайная величина $X:\Omega\to\mathbb{R}$ определена на вероятностном пространстве ($\Omega,\mathcal{F},\mathbb{P}$) , а её математическое ожидание μ и дисперсия σ^2 конечны. Тогда

$$\mathbb{P}\left(|X - \mu| \ge a\right) \le \frac{\sigma^2}{a^2} \tag{26}$$

, где a>0.

2.3 Теорема Петрова

Пусть X1,...,Xn — независимые случайные величины и существуют положительные постоянные g1,...,gn и T такие, что для b всех b d d d d d d

$$\mathbb{E}e^{tX_k} \le e^{\frac{1}{2}g_k t^2} \tag{27}$$

Положим $S = \sum_{k=1}^n X_k$ и $G = \sum_{k=1}^n g_k$. Тогда

$$P\{S > x\} \le \begin{cases} exp(-\frac{x^2}{2G}), \ 0 \le x \le GT \\ exp(-\frac{Tx}{2}), \ x \ge GT \end{cases}$$
 (28)

3. Условия асимптотической оптимальности жадного алгоритма

Найдем условия, при выполнении которых жадынй алгоритм является асимптотически оптимальным, то есть

$$P\{Z_{\mathcal{A}'} > (1 + \epsilon_n)Z\} \le \delta_n \tag{29}$$

где $\epsilon_n \to 0, \delta_n \to 0 \ n \to \infty$

Оценим сверху левую часть данного неравенства. Так как a>0, то $Z \ge na$ и

$$P\{\mathcal{Z}_{\mathcal{A}'} > (1 + \epsilon_n)\mathcal{Z}\} \le P\{\mathcal{Z}_{\mathcal{A}'} > (1 + \epsilon_n)na\}$$
(30)

Обозначим через $\mathbb{Z}_{\mathcal{A}'}^*$, и $\mathcal{D}_{\mathcal{A}'}^*$ верхние оценки соответственно математического ожидания $\mathrm{E}(\mathbb{Z}_{\mathcal{A}'})$ и дисперсии $\mathrm{D}(\mathbb{Z}_{\mathcal{A}'})$ случайной величины $\mathbb{Z}_{\mathcal{A}'}$. Обозначим $\Delta_n = (1+\epsilon_n)na - \mathbb{Z}_{\mathcal{A}'}^*$. Получаем:

$$P\{\mathcal{Z}_{\mathcal{A}'} > (1+\epsilon_n)na\} = P\{\mathcal{Z}_{\mathcal{A}'} > \mathcal{Z}_{\mathcal{A}'}^* + [(1+\epsilon_n)na - \mathcal{Z}_{\mathcal{A}'}^*]\} \le P\{\mathcal{Z}_{\mathcal{A}'} > E(\mathcal{Z}_{\mathcal{A}'})) + \Delta_n\}$$
(31)

Пусть $\epsilon_n = k(\frac{Z_{\mathcal{H}'}^*}{na} - 1), k > 1$. Тогда $\Delta_n = (k-1)(Z_{\mathcal{H}'}^* - na) \ge 0$. Продолжим неравенство 31 применив неравенство Чебышева.

$$P\{\mathcal{Z}_{\mathcal{A}'} > E(\mathcal{Z}_{\mathcal{A}'}) + \Delta_n\} \leq P\{|\mathcal{Z}_{\mathcal{A}'} - E(\mathcal{Z}_{\mathcal{A}'})| \geq \Delta_n\} \leq \frac{D(\mathcal{Z}_{\mathcal{A}'})}{\Delta_n^2} \leq \frac{\mathcal{D}_{\mathcal{A}'}^*}{\Delta_n^2} = \frac{\mathcal{D}_{\mathcal{A}'}^*}{(k-1)^2(\mathcal{Z}_{\mathcal{A}'}^* - na)^2}$$
(32)

Так как k - константа, k>1, то из данной цепочки неравенств следует, что условие ассимптотической оптимальности жадного алгоритма будет выполнено если мы покажем, что $\epsilon_n = k(\frac{\mathcal{Z}_{\mathcal{A}'}^*}{na}-1) \to 0$ и $\delta_n = \frac{\mathcal{D}_{\mathcal{A}'}^*}{(k-1)^2(\mathcal{Z}_{\mathcal{A}'}-na)^2} \to 0$ при

Вычисление верхних оценок $\mathcal{Z}_{\mathcal{A}'}^*$ и $\mathcal{D}_{\mathcal{A}'}^*$

Математическое ожидание $E(\mathcal{Z}_{\mathcal{A}'})$ равно сумме матожиданий величин $a_{i_k i_{k+1}}$ минимальных элементов матрицы, выбираемых на k-м шаге алгоритма \mathcal{A}' . В целях удобства дальнейших вычислений пронормируем случайную величину ξ значений элементов a_{ij} матрицы A, положив $\xi' = \frac{\xi-a}{b-a}$. Обозначим через l_k значение матожидания нормированной случайной величины $l_k = a'_{i_k i_{k+1}}$. На k-ом шаге алгоритма выбирается минимум из n-k элементов. В силу независимости этих элементов вероятность $\Phi_k(x)$ того, что величина l_k минимального из этих элементов не превышает величины х равна

$$\Phi_k(x) = P\{l_k \le x\} = 1 - (1 - F(x))^{n-k} \tag{33}$$

, где

$$F_k(x) = P\{\xi' \le x\}, 0 \le x \le 1 \tag{34}$$

Тогда величина $E(l_k)$ равна

$$E(l_k) = \begin{cases} \int_0^1 x d\Phi_k(x), k = 1, 2, ... n - 1\\ E(l_{n-1}), k = n \end{cases}$$
 (35)

откуда получим

$$E(l_k) = x\Phi_k(x)|_0^1 - \int_0^1 \Phi_k(x)dx =$$

$$= 1 - \int_0^1 [1 - (1 - F(x))^{n-k}]dx = \int_0^1 (1 - F(x))^{n-k}]dx$$

$$k = \overline{1, n-1}$$
(36)

В силу нормировки минимальный элемент $a_{i_{k-1}i_{k}}$ связан с величиной l_{k} соотношением $a_{i_{k}i_{k+1}}=a+(b-a)l_{k}$. Поэтому

$$E(\mathcal{Z}_{\mathcal{A}'}) = \sum_{k=1}^{n} [a + (b - a)E(l_k)]$$
 (37)

. Откуда с учетом 36 имеем:

$$E(\mathcal{Z}_{\mathcal{A}'}) = na + (b - a) \left[\int_{0}^{1} \sum_{k=1}^{n-1} (1 - F(x))^{n-k} dx + \int_{0}^{1} (1 - F(x)) dx \right] =$$

$$= na + (b - a) \int_{0}^{1} \frac{\left[1 - F(x) \right] \left[1 - (1 - F(x))^{n-1} + F(x) \right]}{F(x)} dx \le$$

$$\leq na + (b - a) \int_{0}^{1} \frac{1 - (1 - F(x))^{n}}{F(x)} dx =$$

$$= na + (b - a) \left[\int_{0}^{\gamma_{n}} \frac{1 - (1 - F(x))^{n}}{F(x)} dx + \int_{\gamma_{n}}^{1} \frac{1 - (1 - F(x))^{n}}{F(x)} dx \right]$$
(38)

где γ_n - корень уравнения $F(\gamma) = \frac{1}{n}$, то есть $\gamma_n = F^{-1}(\frac{1}{n})$. Учитывая что при $0 \le Z \le 1$ справедливо неравенство $\frac{1-(1-Z)^n}{Z} \le n$, оценку $E(\mathcal{Z}_{\mathcal{H}'})$ можем продолжить следующим образом

$$E(\mathcal{Z}_{\mathcal{A}'}) \le \mathcal{Z}_{\mathcal{A}'}^* = na + (b - a)\left[\gamma_n * n + \int_{\gamma_n}^1 \frac{dx}{F(x)}\right]$$
(39)

Перейдем к вычислению верхней оценки $\mathcal{D}_{\mathcal{A}}^*$. Дисперсия d_k случайной нормированной величины l_k на k-ом шаге равна

$$d_k = \int_0^1 (x - E(l_k))^2 d\Phi_k(x) = \int_0^1 x^2 d\Phi_k(x) - (E(l_k))^2 < \int_0^1 x d\Phi_k(x) = E(l_k)$$
(40)

Тогда с учетом того, что дисперсия минимального элемента $a_{i_k i_{k+1}}$ равна $(b-a)^2 d_k$, дисперсия случайной величины $\mathcal{Z}_{\mathcal{A}'}$ с учетом 37 оценивается следующим образом:

$$\mathcal{D}(\mathcal{Z}_{\mathcal{H}'}) = \sum_{k=1}^{n} (b-a)^2 d_k < (b-a)^2 \sum_{k=1}^{n} E(l_k) = (b-a)^2 * \frac{E(\mathcal{Z}_{\mathcal{H}'}) - na}{(b-a)} \le (b-a)(\mathcal{Z}_{\mathcal{H}'}^* - na)$$
(41)

Окончательно с учетом 39 получаем верхнюю оценку для $\mathcal{D}(\mathcal{Z}_{\mathcal{A}'})$

$$\mathcal{D}(\mathcal{Z}_{\mathcal{H}'}) < \mathcal{D}_{\mathcal{H}'}^* = (b - a)^2 \left[\gamma_n * n + \int_{\gamma_n}^1 \frac{dx}{F(x)} \right] \tag{42}$$

Вернемся к неравенству 32. Имея в виду получение оценки 39 и 42, выражения для ϵ_n и δ_n можно записать в следующем виде:

$$\epsilon_n = K(\frac{b}{a} - 1)\left[\gamma_n + \frac{1}{n} \int_{\gamma_n}^1 \frac{dx}{F(x)}\right] \tag{43}$$

$$\delta_n = \frac{1}{(K-1)^2 \left[\gamma_n * n + \int_{\gamma_n}^1 \frac{dx}{F(x)} \right]}$$
(44)

Обозначим $I_{\mathcal{K}} = \int_{\gamma_n}^1 \frac{dx}{F(x)}$, TODO (большая K, а мальенкая в mathcal не отрисовывается) $\Psi(n)$ - произвольная растущая от n функция, $\lim_{x\to\infty} \Psi(n) = \infty$

Теорема 1

Алгоритм \mathcal{A}' является асимптотически оптимальным при выполнении условий $\lim_{n\to\infty} I_n = \infty$ и

$$\frac{b}{a} \le \frac{1}{\Psi(n)} \min\{\frac{1}{\gamma_n}, \frac{n}{I_n}\}\tag{45}$$

Доказательство. Покажем, что при выполнении условий теоремы $\epsilon_n \to 0$ и $\delta_n \to 0$ с ростом п. Действительно, при K>1 имеем:

$$\delta_{n} = \frac{1}{(\gamma_{n}n + I_{n})(K - 1)^{2}} \leq \frac{1}{I_{n} * (K - 1)^{2}} \rightarrow 0$$

$$\epsilon_{n} = K(\frac{b}{a} - 1)(\gamma_{n} + \frac{1}{n}I_{n}) \leq K * \frac{b}{a}(\gamma_{n} + \frac{1}{n}I_{n}) \leq$$

$$\leq \frac{K}{\Psi(n)}min(\frac{1}{\gamma_{n}}, \frac{n}{I_{n}}) =$$

$$= \frac{K}{\Psi(n)}min(1 + \frac{I_{n}}{n\gamma_{n}}, 1 + \frac{n\gamma_{n}}{I_{n}}) \leq \frac{2K}{\Psi(n)} \rightarrow 0$$

$$(46)$$

при $n \to \infty$. Теорема 1 доказана.

Замечание. Как было показано выше, для своей работы алгоритм \mathcal{A}' требует $O(n^2)$ операций, что сравнимо с трудоемкостью записи исходной информации о задаче коммивояжера. Отсюда получаем, что при выполнении условий теоремы 1 алгоритм \mathcal{A}' является статистически эффективным.

Равномерное распределение.

Определены условия асимптотической оптимальности алгоритма \mathcal{A}' для случая, когда элементы a_{ij} матрицы A могут быть выбраны равновероятно из отрезка [a,b], a>0. В этом случае нормированная интегральная функция распределения имеет вид $F(x) = x, 0 \le x \le 1, \gamma_n = F(\frac{1}{n}) = \frac{1}{n}$ и

$$I_n = \int_{\gamma_n}^1 \frac{dx}{F(x)} = \int_{\frac{1}{n}}^1 \frac{dx}{x} = \ln(n)$$
 (47)

Тогда из теоремы 1 непосредственно получаем результат, который может быть сформулирован как:

Теорема 2

Если элементы aij матрицы A принимают значения равновероятно из отрезка [a,b], то алгоритм \mathcal{A}' является асимптотически оптимальным при выполнении следующего условия:

$$\frac{b}{a} \le \frac{n}{\ln(n)} \frac{1}{\Psi(n)} \tag{48}$$

Представляет интерес оценить величины ϵ_n и δ_n , фигурирующие в соотношении 25.

Учитывая специфику равномерного распределения можно получить более точные оценки для этих величин по сравнению с общим случаем. Выведем условия асимптотической оптимальности алгоритма \mathcal{A}' в случае равномерного распределения, проведя в сокращенном виде вычисления оценок для $E(\mathcal{Z}_{\mathcal{A}'})$ и $\mathcal{D}(\mathcal{Z}_{\mathcal{A}'})$ и $P\{\mathcal{Z}_{\mathcal{A}'} \leq (1 + \epsilon_n)\mathcal{Z}\}$. Согласно 36 нумерация

$$E(l_k) = \int_0^1 (1-x)^{n-k} dx = \int_0^1 x^{n-k} dx = \frac{1}{n-k+1}$$
 (49)

$$k = 1, 2, ...n - k; E(l_n) = E(l_n - 1) = \frac{1}{2}$$

С учетом 37

$$E(\mathcal{Z}_{\mathcal{A}'}) = \sum_{k=1}^{n} [a + (b-a)E(l_k)] = na + (b-a)(\frac{1}{2} + \sum_{k=1}^{n-1} \frac{1}{n-k+1}) \le$$

$$\le na + (b-a)(\frac{1}{2} + ln(n)) = \mathcal{Z}_{\mathcal{A}'}^*$$
(50)

Оценим дисперсию $d_k = \int_0^1 (x - E(l_k))^2 d\Phi_k(x)$ случайной величины l_k с учетом того, что для равномерного распределения $\Phi_k(x) = 1 - (1-x)^{n-k}$ Используя 49, имеем

$$d_{k} = \int_{0}^{1} x^{2} d\Phi_{k}(x) - E(l_{k}^{2}) = x^{2} \Phi_{k}(x) |_{0}^{1} - 2 \int_{0}^{1} x \Phi_{k}(x) dx - E(l_{k}^{2}) =$$

$$= 1 - 2 \int_{0}^{1} x [1 - (1 - x)^{n - k}] dx - E(l_{k}^{2}) =$$

$$= \frac{2}{n - k + 1} - \frac{2}{n - k + 2} - \frac{1}{(n - k + 1)^{2}},$$

$$k = 1, 2, ..., n - 1; d_{n} = d_{n - 1} = \frac{1}{12}$$
(51)

Отсюда с учетом определения дисперсии величины $\mathcal{Z}_{\mathcal{A}'}$, получим

$$\frac{1}{(b-a)^2} D(\mathcal{Z}_{\mathcal{A}'}) = \sum_{k=1}^{n} d_k = \frac{1}{12} + \sum_{k=1}^{n-1} \left(\frac{2}{n-k+1} - \frac{2}{n-k+2} - \frac{1}{(n-k+1)^2} \right) =
= \frac{1}{12} - \frac{2}{n+1} + 1 - \sum_{k=1}^{n-1} \frac{1}{(n-k+1)^2} \le \frac{13}{12} - \frac{2}{n+1} - \frac{1}{4} - \int_{3}^{n+1} \frac{dx}{x^2} =
= \frac{13}{12} - \frac{2}{n+1} - \frac{1}{4} + \frac{1}{n+1} - \frac{1}{3} < 0.417 = \frac{\mathcal{D}_{\mathcal{A}'}^*}{(b-a)^2} \tag{52}$$

Приведем оценку вероятности невыполнения соотношения 25 для случая равномерного распределения:

$$P\{Z_{\mathcal{A}'} > (1 + \epsilon_{n})Z\} \leq P\{Z_{\mathcal{A}'} > (1 + \epsilon_{n})na\} \leq$$

$$\leq P\{Z_{\mathcal{A}'} + Z_{\mathcal{A}'}^{*} - E(Z_{\mathcal{A}'}) > (1 + \epsilon_{n})na\} =$$

$$= P\{Z_{\mathcal{A}'} - E(Z_{\mathcal{A}'}) > (1 + \epsilon_{n})na - Z_{\mathcal{A}'}^{*}\} \leq$$

$$\leq P\{|Z_{\mathcal{A}'} - E(Z_{\mathcal{A}'})| > (1 + \epsilon_{n})na - Z_{\mathcal{A}'}^{*}\} \leq$$

$$\leq \frac{D(Z_{\mathcal{A}'})}{[1 + \epsilon_{n})na + Z_{\mathcal{A}'}^{*}]^{2}} \leq$$

$$\leq \frac{0.417(b - a)^{2}}{[1 + \epsilon_{n})na - (nu + (b - a)(\frac{1}{2} + lnn))]^{2}} =$$

$$= \frac{0.417}{[\frac{n\epsilon_{n}}{b} - 1 - lnn - \frac{1}{2}]^{2}}$$

Положим $\epsilon_n = \frac{c}{\Psi(n)}$, константа c>1, и пусть $\frac{a}{b} \leq \frac{n}{lnn} \frac{1}{\Psi(n)}$. Тогда 53 может быть продолжено следующим образом:

$$\frac{0.417}{\left[\frac{n\frac{c}{\Psi(n)}}{\left(\frac{b}{a}-1\right)} - \frac{1}{2} - lnn\right]} \le \frac{0.417}{\left[\frac{c\frac{b}{a}lnn}{\left(\frac{b}{a}-1\right)} - \frac{1}{2} - lnn\right]^2} = \frac{0.417}{\left[(c-1)lnn - \frac{1}{2}\right]^2} = \delta_n \tag{54}$$

Таким образом, окончательная оценка для вероятности выполнения соотношения 25 примет вид:

$$P\{Z_{\mathcal{H}'} \le (1 + \epsilon_n)Z\} \ge 1 - \frac{0.417}{[(c-1)lnn - \frac{1}{2}]^2}$$
 (55)

Нетрудно заметить, что эта величина, характеризующая точность получаемого решения, улучшается с ростом $\Psi(n)$, но при этом ухудшается оценка для величины $\frac{b}{a}$. Выберем функцию $\Psi(n)$ таким образом, чтобы произведение верхних оценок для ϵ_n и $\frac{b}{a}$ стремилось к 25 с ростом п. Такому условию отвечает функция $\Psi(n) = \sqrt{\frac{cn}{lnn}}$. При этом оценки для ϵ_n и $\frac{b}{a}$ принимают вид:

$$\frac{b}{a} \le \sqrt{\frac{n}{clnn}} \tag{56}$$

$$\epsilon_n \le \sqrt{\frac{clnn}{n}}$$
 (57)

Анализ соотношений 55-57, полученных для равномерного распределения показывает, что уменьшение константы с "улучшает" оценки для $\frac{b}{a}$ и ϵ_n и "ухудшает" оценку вероятности $P\{Z_{\mathcal{R}'} \leq (1+\epsilon_n)\mathcal{Z}\}$

 β - распределение. Очень часто в опытно-конструкторских разработках в промышленности и научно-исследовательских проектах длительности a_{ij} отдельных операций предполагается распределенными по следующему закону / β - распределение /:

$$f(\xi) = \begin{cases} \frac{(\xi - a)^{\alpha} * (b - \xi)^{\gamma}}{(b - a)^{\alpha + \gamma + 1} \beta (\alpha + 1, \gamma + 1)} & \xi \in [a, b] \\ 0 & \xi \notin [a, b] \end{cases}$$
(58)

где

$$\beta(\alpha, \gamma) = \int_0^1 x^{\alpha - 1} (1 - x)^{\gamma - 1} dx = \frac{\Gamma(\alpha)\Gamma(\gamma)}{F(\alpha + \gamma)}$$
 (59)

где α и γ - параметры распределения. В нормированном виде функция плотности $f(\xi)$ запишется следующим образом:

$$f(\xi') = \begin{cases} \frac{(\xi)^{\alpha} (1-\xi)^{\gamma}}{\beta(\alpha+1,\gamma+1)} \ \xi' \in [0,1] \\ 0 \ \xi' \notin [0,1] \end{cases}$$
(60)

Рассмотрим частный случай β - распределения, когда $\gamma=0, \alpha>0.$ В этом случае интегральная функция распределения равна

$$F(x) = \int_0^x f(\xi')d\xi' = \int_0^x \frac{x}{\beta(\alpha+1,1)} = x^{\alpha+1}$$
 (61)

Вычислим величину γ_n , фигурирующую в условиях теоремы 1:

$$\gamma_n = F^{-1}(\frac{1}{n}) = \frac{1}{\alpha + \sqrt[4]{n}} \tag{62}$$

Тогда первое из условий теоремы 1 выполняется в силу $\alpha > 0$

$$I_n = \int_{\gamma_n}^1 \frac{dx}{F(x)} = \int_{\gamma_n}^1 \frac{dx}{x^{\alpha+1}} = \frac{1}{\alpha} (n^{\frac{\alpha}{\alpha+1}} - 1) \to \infty, \quad n \to \infty$$
 (63)

Второе условие принимает вид:

TODO здесь могут быть неточности (они есть)

$$\frac{b}{a} \le \frac{1}{\Psi(n)} \min\left(\sqrt[\alpha+1]{n}, \frac{\alpha n}{\frac{\alpha}{\alpha+1}}\right) \tag{64}$$

Учитывая, что

$$min(1, \frac{\alpha}{1 - n^{\frac{\alpha}{\alpha + 1}}} \ge min(1, \alpha)$$
 (65)

Получаем следующее условие асимптотической оптимальности алгоритма \mathcal{A}' для β - распределения в частном случае $\gamma=0,\,\alpha>0$:

$$\frac{b}{a} \le \frac{\alpha \sqrt[4]{n}}{\Psi(n)} min(1, \alpha) \tag{66}$$

- 4. Оптимальность жадного алгоритма для графов с случайным распределением весов ребер.
- 4.1. Граф с равномерным распределением весов ребер на промежутке. Оценка оптимальности жадного алгоритма.

Список использованных источников и литературы.

Статьи из журнала:

- 1. Э. Х. Гимади, А. Ле Галлу, А. В. Шахшнейдер, "Вероятностный анализ одного алгоритма приближённого решения задачи коммивояжёра на неограниченных сверху входных данных", Дискретн. анализ и исслед. опер., 15:1 (2008), 23–43; J. Appl. Industr. Math., 3:2 (2009), 207–221
- 2. Rosenkrantz, Daniel J.; Stearns, Richard E.; Lewis, II, Philip M An Analysis of Several Heuristics for the Traveling Salesman Problem. September 1977 SIAM Journal on Computing 6(3):563-581
- 3. Э. Х. Гимади, В. А. Перепелица, "Асимптотический подход к решению задачи коммивояжера", Управляемые системы, 1974, № 12, 35–45