Nagar Yuwak Shikshan Sannstha's

Yeshwantrao Chavan College of Engineering
(An Autonomous Institution Affiliated to Rashtrasant Tukadoji Maharaj Nagpur
University)
Hingna Road, Wanadongri, Nagpur.

ODD TERM-2022-23	Mid Semester Exam - II
Semester- III	Date:- 18/01/2023
Subject Code: AIDS2201/AIML2201	Subject : DMGT
Time: 11/2 Hours	Max. Marks: 30

☐ Each Question is Compulsory.

☐ Non-programmable calculators are only allowed.

☐ Assume suitable data wherever it is necessary.

Q.1 (A)	an integral domain.	[5]	CO-3	L3
Q.1 (B)	Prove that the set $S = \{0,1,2,3,4\}$ is a ring w.r.t. the operations of addition and multiplication modulo 5.	[5]	CO-3	L3
Q.2 (A)	For any integer n, let D_n denote the set of all divisor of n. Find the Hasse diagram for $n = 6$, $n = 8$, $n = 20$, $n = 36$ and $n = 75$	[5]	CO-3	L3
Q.2 (B)	Examine whether the set of real numbers of the form $a + b\sqrt{2}$, where a and b are integers is a field?	[5]	CO-3	L3

	Draw the digraphs corresponding to			
	adjacency matrices.		7	
Q.3 (A)	0 1 0 1		-	
	$A = \begin{bmatrix} 1 & 0 & 1 & 1 \\ & & & & \end{bmatrix} B = \begin{bmatrix} 1 & 0 & 1 & 0 \\ & & & & \end{bmatrix}$	[5]		L3
	$A = \begin{bmatrix} 1 & 1 & 0 & 1 \end{bmatrix} B = \begin{bmatrix} 1 & 1 & 0 & 1 \end{bmatrix}$		CO-4	
1	$A = \begin{bmatrix} 1 & 0 & 1 & 1 \\ 1 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 \end{bmatrix} B = \begin{bmatrix} 1 & 0 & 1 & 0 \\ 1 & 1 & 0 & 1 \\ 1 & 1 & 1 & 0 \end{bmatrix}$		2.	
	Prove that diagraphs of A and B are			
	isomorphic.			
	Using Prim's algorithm, find a			
	minimal spanning tree for the given		A STATE OF	
	graph.		100000	
			- 1	
1			23 m - 1	
03				3131
Q.3 (B)		[5]	CO-4	L3
	71. A 6 %			
	140/ \			