Artificial Intelligence

Exercise Sheet 2

November 2, 2021

$$W -> K -> L -> B$$


```
function Hill-Climbing(problem):

current ← getInitialState(problem)

while true do:

children ← getChildren(current)

next ← getStateWithHighestValue(children)

if next.value ≤ current.value then

return current.State

current ← next
```

Task 2.2
State the Problems and end points for the following starting points

Start	End	Problem	Solution
В	A/C	undetermined Direction	no
C	C	Plateaus	allow side-steps
D	E	local maxima	allow worsening (Simu-
			lated Annealing)

Task 2.3 Solution for local maxima / minima

- ► Start at multiple different points (Beam-Search)
- ► Random Restart

State a possible scoring function

Number of queens that cannot take another queen

State the transitions between one and another state Move a Queen to an arbitrary free square

...Improving the Search

Assumption: Starting point contains only one queen for each Row / Column

 \rightarrow Swap two columns / Rows

Task 4.1
Complete the Figure

 $Task \ 4.2$ Define the winning / losing / tied states

Task 4.3

Task 4.4

Task 4.5

Min-Max for trees that are to deep

By using a heuristic that estimates the evaluation for the respective state and then calculates with this value.

Task 5 Pruning in Expecti-Min-Max

If the possible rating for one position lies in a interval it is possible to estimate how much the average value can change. With this information a pruning is possible.