CS-663 Assignment 4 Q3

Soham Naha (193079003) Akshay Bajpai (193079002) Mohit Agarwala (19307R004)

November 6, 2020

3

Consider a matrix A of size $m \times n, m \le n$. Define $P = A^T A$ and $Q = AA^T$. (Note: all matrices, vectors and scalars involved in this question are real-valued).

- Prove that for any vector y with appropriate number of elements, we have $y^t P y \ge 0$. Similarly show that $z^t Q z \ge 0$ for a vector z with appropriate number of elements. Why are the eigenvalues of P and Q non-negative?
- If u is an eigenvector of P with eigenvalue λ , show that Au is an eigenvector of Q with eigenvalue λ . If v is an eigenvector of Q with eigenvalue μ , show that A^Tv is an eigenvector of P with eigenvalue μ . What will be the number of elements in u and v?
- If v_i is an eigenvector of Q and we define $u_i \triangleq \frac{A^T v_i}{\|A^T v_i\|_2}$. Then prove that there will exist some real, non-negative γ_i such that $Au_i = \gamma_i v_i$.
- It can be shown that $u_i^T u_j = 0$ for $i \neq j$ and likewise $v_i^T v_j = 0$ for $i \neq j$ for correspondingly distinct eigenvalues.¹. Now, define $U = [v_1|v_2|v_3|...|v_m]$ and $V = [u_1|u_2|u_3|...|u_m]$. Now show that $A = U\Gamma V^T$ where Γ is a diagonal matrix containing the non-negative values $\gamma_1, \gamma_2, ..., \gamma_m$. With this, you have just established the existence of the singular value decomposition of any matrix A. This is a key result in linear algebra and it is widely used in image processing, computer vision, computer graphics, statistics, machine learning, numerical analysis, natural language processing and data mining. [5+5+5+5=20 points]
- (a) Given $P = A^T A$ n*n and $Q = AA^T \in \mathbb{R}^{m*m}$, and $y \in \mathbb{R}^{n*1}$, we have (given the correct dimension of real-valued y):

$$y^T P y = y^T A^T A y$$
$$= (Ay)^T (Ay)$$

Now let $Ay = w \in \mathbb{R}^{n*1}$. Hence, we have:

$$(Ay)^{T}(Ay) = w^{T}w = ||w||^{2} \ge 0$$
$$y^{T}Py \ge 0, \forall y$$

Similarly, for a real-valued m * 1 vector z, we have (given the correct dimension of real-valued z):

$$z^{T}Qy = z^{T}AA^{T}z$$
$$= (A^{T}z)^{T}(A^{T}z)$$

Now let $A^Tz = u \in \mathbb{R}^{m*1}$. Hence, we have:

$$(A^T z)^T (A^T z) = u^T u = ||u||^2 \ge 0$$
$$z^T Q z \ge 0, \forall z$$

Proof of non-negative eigenvalues of P and Q: For P, let the non-zero eigen vector be v with corresponding eigenvalue λ :

$$Pv = \lambda v$$

This follows because \boldsymbol{P} and \boldsymbol{Q} are symmetric matrices. Consider $\boldsymbol{P}\boldsymbol{u}_1 = \lambda_1\boldsymbol{u}_1$ and $\boldsymbol{P}\boldsymbol{u}_2 = \lambda_2\boldsymbol{u}_2$. Then $\boldsymbol{u}_2^T\boldsymbol{P}\boldsymbol{u}_1 = \lambda_1\boldsymbol{u}_2^T\boldsymbol{u}_1$. But $\boldsymbol{u}_2^T\boldsymbol{P}\boldsymbol{u}_1$ also equal to $(\boldsymbol{P}^T\boldsymbol{u}_2)^T\boldsymbol{u}_1 = (\boldsymbol{P}\boldsymbol{u}_2)^T\boldsymbol{u}_1 = (\lambda_2\boldsymbol{u}_2)^T\boldsymbol{u}_1 = \lambda_2\boldsymbol{u}_2^T\boldsymbol{u}_1$. Hence $\lambda_2\boldsymbol{u}_2^T\boldsymbol{u}_1 = \lambda_1\boldsymbol{u}_2^T\boldsymbol{u}_1$. Since $\lambda_2 \neq \lambda_1$, we must have $\boldsymbol{u}_2^T\boldsymbol{u}_1 = 0$.

Pre-multiplying both sides by v^T , we get,

$$v^T P v = \lambda v^T v = \lambda ||v||^2$$

 $\Longrightarrow \lambda = \frac{v^T P v}{||v||^2}$

Now, $||v||^2$ is always positive (by-definition). Also, $v^T P v \ge 0$ (proved earlier). Hence, value of λ is always non-negative. Since we made no assumptions for v or λ , the condition holds for all eigenvalues of P. Similarly, for Q, let:

$$Qv = \lambda \iota$$

Pre-multiplying both sides by v^T , we get,

$$v^{T}Qv = \lambda v^{T}v = \lambda ||v||^{2}$$

$$\Longrightarrow \lambda = \frac{v^{T}Qv}{||v||^{2}}$$

Now, $||v||^2$ is always positive (by-definition). Also, $v^TQv \ge 0$ (proved earlier). Hence, value of λ is always non-negative. Since we made no assumptions for v or λ , the condition holds for all eigenvalues of Q.

(b) u is an eigenvector of P with eigenvalue λ . Now,

$$A \in \mathbb{R}^{m*n} \Longrightarrow A^T A = P \in \mathbb{R}^{n*n} \Longrightarrow u \in \mathbb{R}^n$$
 and

$$Pu = \lambda u$$

Pre-multiplying both sides with A, we get

$$APu = \lambda Au$$

Using $P = A^T A$, we simplify this to,

$$AA^TAu = (AA^T)Au = \lambda Au$$

Simplify $AA^T = Q$, and $Au = v \in \mathbb{R}^m$ to get,

$$Q(Au) = Qv = \lambda(Au) = \lambda v$$

Hence, Au is an eigenvector of Q with eigenvalue λ .

Similarly to prove for Q, we assume an eigenvector v with eigenvalue μ . Now,

$$A \in \mathbb{R}^{m*n} \Longrightarrow AA^T = Q \in \mathbb{R}^{m*m} \Longrightarrow v \in \mathbb{R}^m$$
 and

$$Qv = \mu v$$

Pre-multiplying both sides with A, we get

$$A^T Q v = \mu A^T v$$

Using $Q = AA^T$, we simplify this to,

$$A^T A A^T v = (A^T A) A^T v = \mu A^T v$$

Simplify $A^T A = P$, and $A^T v = w \in \mathbb{R}^n$ to get,

Hence, $A^T v$ is an eigenvector of P with eigenvalue μ .

(c) We are given that v_i is an eigenvector of Q (with eigenvector α_i). Which gives us the first equation

$$Qv_i = AA^Tv_i = \alpha_i v_i$$

Now, given

$$u_i = \frac{A^T v_i}{||A^T v_i||_2}$$

We have

$$Au_i = \frac{AA^Tv_i}{||A^Tv_i||_2}$$

$$\Longrightarrow Au_i = \frac{Qv_i}{||A^Tv_i||_2} = \frac{\alpha_i v_i}{||A^Tv_i||_2} = \left(\frac{\alpha_i}{||A^Tv_i||_2}\right) v_i$$

Substitute $\frac{\alpha_i}{||A^T v_i||_2} = \gamma_i$ to get the required equation.

$$Au_i = \gamma_i v_i$$

Now, α_i is non-negative since it's an eigenvalue of Q (proved earlier), and $||A^T v_i||_2$ is positive by definition, the value of γ_i i is non-negative. There exists a non-negative γ_i for which the given equation holds.

(d) We know as a result that

$$u_i^T u_j = 0$$
 for $i \neq j$

and for

$$u_i^T u_i = \frac{(A^T v_i)^T (A^T v_i)}{||A^T v_i||^2} = 1$$

So, the matrix $V=[u_1|u_2|...|u_n]$ is orthonormal because $VV^T=V^TV=I_n$ Similarly, for $U=[v_1|v_2|...|v_m], UU^T=U^TU=I_m$ because $v_i^Tv_j=0$ for $i\neq j$ and $v_i^Tv_j=1$ (because v_i and v_j are eigen-vectors of P, and which can be assumed to be of unit length for consistency. Given these results, the value of U^TAV

$$= U^TAV = U^TA[u_1|u_2|...|u_n] = \begin{bmatrix} v_1^T \\ v_2^T \\ \vdots \\ v_m^T \end{bmatrix} A[u_1|u_2|...|u_n]$$

From the previous results, we have $Au_i = \gamma_i v_i$

$$= \begin{bmatrix} v_1^T \\ v_2^T \\ \vdots \\ v_m^T \end{bmatrix} [\gamma_1 v_1 | \gamma_2 v_2 | \dots | \gamma_n v_n]$$

$$= [\Gamma_{i_j}^T]_m * n$$

Where

$$\Gamma_i j = v_i^T \gamma_j v_j = \begin{cases} 0 & \text{if } i \neq j \\ \gamma_j & \text{otherwise} \end{cases}$$

Hence, $U^T A V = \Gamma$ where T is a diagonal matrix, with $i^t h$ diagonal element = γ_i

$$\Longrightarrow (UU^T)A(VV^T) = U\Gamma V^T \Longrightarrow A = U\Gamma V^T$$

This holds since U and V are orthonormal. Hence, proved.