BCNF and 3NF

CISC637 Lecture #10 Ben Carterette

Copyright © Ben Carterette

24

Determining BCNF

- You have a set of FDs and one or more relations
- You want to know if each relation is in BCNF
- Procedure: For each relation:
 - 1. Determine its candidate key(s)
 - 2. Identify any relevant FDs from the set
 - The FDs where all fields are part of the relation, or such FDs that can be derived from others
 - 3. For each of the relevant FDs, ask:
 - A. Is it trivial? If so, go to the next FD
 - B. Is the left side one of the candidate keys from #1?
 - If so, go to the next FD
 - If not, the FD violates BCNF the relation is NOT in BCNF

Copyright © Ben Carterette

Power to Capture Requirements

- We can compare models in terms of their power to capture requirements
- Example:
 - E-R diagrams can capture requirements related to total participation of entity sets; relational databases sometimes cannot
 - Relational databases *lack power* to capture total participation requirements in all cases
- Relational databases' power to capture requirements relies on normal forms of its relations

Copyright © Ben Carterette

27

BCNF's Power to Capture Reg's

- Change to university requirements:
 - Each instructor is an advisor for at most one department
 - Students can have majors in more than one department
 - Students can have multiple advisors, but at most one advisor per department
- FDs to capture these requirements:
 - 1. $i_{ID} \rightarrow name$, salary
 - 2. $i ID \rightarrow dept name$
 - 3. s ID \rightarrow name, tot cred
 - 4. s_{ID} , dept_name \rightarrow i ID
 - given student ID and department, there is at most one possible advising instructor

Copyright © Ben Carterette

- Possible relational schema #1:
 - Student(<u>s ID</u>, name, tot_cred)
 - Instructor(<u>i ID</u>, name, salary, dept_name)
 - DeptAdvisor(s ID, dept name, i_ID)
- Are all relations in BCNF?

Copyright © Ben Carterette

29

Possible Relational Schema

- Possible relational schema #1:
 - Student(s ID, name, tot cred)
 - Instructor(<u>i ID</u>, name, salary, dept_name)
 - DeptAdvisor(<u>s ID</u>, <u>dept name</u>, i_ID)
- Are all relations in BCNF?
 - No!
 - Notice that i_ID → dept_name holds on two separate tables
 - Implies redundancy
 - On DeptAdvisor, that FD is non-trivial, and i ID is not a key

Copyright © Ben Carterette

- Possible relational schema #2:
 - Student(<u>s_ID</u>, name, tot_cred)
 - StudentDept(s_ID, dept_name)
 - Instructor(i_ID, name, salary, dept_name)
 - Advisor(<u>s_ID</u>, <u>i_ID</u>)
- Are all relations in BCNF?

Copyright © Ben Carterette

31

Possible Relational Schema

- Possible relational schema #2:
 - Student(<u>s_ID</u>, name, tot_cred)
 - StudentDept(s_ID, dept_name)
 - Instructor(<u>i_ID</u>, name, salary, dept_name)
 - Advisor(s ID, i ID)
- Are all relations in BCNF?
 - Yes!
- Are FDs preserved?

t

Copyright © Ben Carterette

- Possible relational schema #2:
 - Student(s ID, name, tot cred)
 - StudentDept(s ID, dept name)
 - Instructor(<u>i_ID</u>, name, salary, dept_name)
 - Advisor(s_ID, i_ID)
- · Are all relations in BCNF?
 - Yes!
- Are FDs preserved?
 - No!
 - s_ID, dept_name → i_ID does not hold on any one relation
 - Three-table join required to check that the advisor is in one of the departments the student is in
 - Cannot easily check that a student has at most one advisor from each department

Copyright © Ben Carterette

33

BCNF Tradeoff

- We can have relations in BCNF (which is good) but lose some of the required dependencies (which is bad)
- We can preserve all of the dependencies (good) but have relations that are not in BCNF (bad)
- We can't always have it both ways

Copyright © Ben Carterette

Third Normal Form

- Third Normal Form (3NF) provides a way to retain FDs that cannot be captured in BCNF
 - With minimal additional redundancy
- Checking for 3NF:
 - List all functional dependencies that hold on R
 - Each FD should meet one of the following criteria:
 - · FD is trivial, or
 - FD is a superkey/candidate key, or
 - FD has at least one field on the right side that is *part of* some candidate key for R (and that is not on the left side of the same FD)
 - If any FD violates all three criteria, relation is not in 3NF

Copyright © Ben Carterette

35

Possible Relational Schema

- Possible relational schema #1:
 - Student(s ID, name, tot_cred)
 - Instructor(<u>i ID</u>, name, salary, dept_name)
 - DeptAdvisor(s ID, dept name, i ID)
- Are all relations in 3NF?

Copyright © Ben Carterette

- Possible relational schema #1:
 - Student(s ID, name, tot cred)
 - Instructor(<u>i ID</u>, name, salary, dept_name)
 - DeptAdvisor(s ID, dept name, i ID)
- Are all relations in 3NF?
 - Yes! Student and Instructor are in BCNF, therefore in 3NF by definition
 - What about DeptAdvisor, which is not in BCNF?
 - i_ID → dept_name holds on DeptAdvisor
 - dept_name on the right is part of candidate key
 s_ID, dept_name → s_ID, dept_name, i_ID

Copyright © Ben Carterette

37

Another Example

- Employees and managers
 - Employees have ID numbers, names, and salaries
 - An employee can split time between different departments
 - An employee is managed by exactly one manager in each department
 - A manager only manages employees in one department
- Some FDs:
 - empID → name, salary
 - mgrID → dept
 - empID, dept → mgrID, time
- Employee(empID, name, salary) is in BCNF
- Is schema EmpMgr(empID, dept, mgrID, time) in 3NF?
- Is schema EmpMgr(empID, dept, mgrID, time) in 3NF?

Copyright © Ben Carterette

Another Example

· Employees and managers

- Employees have ID numbers, names, and salaries
- An employee can split time between different departments
- An employee is managed by exactly one manager in each department
- A manager only manages employees in one department

• FDs:

- empID → name, salary
- mgrID → dept
- empID, dept → mgrID, time

Possible schema:

- Employee(empID, name, salary, dept, mgrID, time), with mgrID NOT NULL
- 3NF?

Copyright © Ben Carterette

39

Another Example

· Employees and managers

- Employees have ID numbers, names, and salaries
- An employee can split time between different departments
- An employee is managed by exactly one manager in each department
- A manager only manages employees in one department

• FDs:

- empID → name, salary
- mgrID → dept
- empID, dept → mgrID, time

· Possible schema:

- Employee(empID, name, salary, dept, mgrID, time), with mgrID NOT NULL
- 3NF?
 - No: empID alone is not a candidate key, so empID → name, salary violates BCNF
 - its right-hand fields are not part of any candidate key, which violates 3NF

Copyright © Ben Carterette

Another Example

- New university requirement
 - All students must have exactly one advisor
 - All instructors must advise exactly one student
 - Student and instructor in same department
- FDs:
 - s ID → name, tot cred
 - i ID → name, salary
 - $s ID \rightarrow i ID$
 - $i ID \rightarrow s ID$
 - s_ID, i_ID → dept
- · Possible schema:
 - StudentInstructor(s ID, s_name, tot_cred, i_ID, i_name, salary, dept)
 ... or StudentInstructor(s ID, s name, tot cred, i ID, i name, salary, dept)
 - 3NF? Yes to both! BCNF? Yes to both! Good design? Probably not.

Copyright © Ben Carterette

41

Database Design Recap So Far

- Redundancy in data: bad
 - Introduces possibility of invalid or inconsistent data
- Incompleteness in capturing requirements: bad
 - Database that doesn't capture requirements shifts work to application designers, users
- · Functional dependencies are a formal way to state requirements
 - Requirements -> functional dependencies
 - An FD is true iff it correctly capture some requirement
 - The truth of an FD has nothing to do with relational schema
 - An FD may or may not hold on a relation
- Normal forms are a formal way to talk abt redundancy/possibility for inconsistency
 - 1NF -> lots of potential for redundancy, but at least we can maintain referential integrity
 - 3NF -> a little bit of redundancy so that some non-candidate key FDs can hold
 - BCNF -> [almost] no redundancy, FDs that hold are key FDs
- Tradeoff (illustrated in university advising example):
 - We can avoid redundancy, but not all FDs hold
 - We can ensure all FDs hold, but have possibility of redundancy