

SECOND SEMESTER 2022-2023 (COURSE HANDOUT PART II)

Dated: 08-01-2023

In addition to Part-I (General Handout for all courses appended to the timetable) this portion gives specific details regarding the course.

Course No. : DE G513
Course Title : Tribology

Instructor-in-charge : Dr. Prabakaran Saravanan (PS)

Course Description:

Introduction, lubricants and lubrication, surface texture, bearing materials, fundamentals of viscous flow, Reynolds equation and applications, thrust bearings, journal bearings, squeeze-film bearings, hydrostatic bearings, gas bearings, dry and starved bearings, selecting bearing type and size, principles and operating limits, friction, wear and lubrication.

Scope and Objective of the Course:

This course will give you the basic principles, concepts and practice of friction, wear and lubrication in an industrial context. This course addresses the design of tribological systems: the interfaces between two or more bodies in relative motion. Fundamental topics include: geometric, chemical, and physical characterization of surfaces; friction and wear mechanisms for metals, polymers, and ceramics, including abrasive wear, delamination theory, tool wear, erosive wear, wear of polymers and composites; and boundary lubrication and solid-film lubrication.

Learning outcome: On successful completion of this course, students will be able to:

- Explain about the fundamentals of friction, wear and lubrication.
- Explain about the wear types, lubrication types and applications elaborately
- Demonstrate how to approach a tribological problem from design perspective
- Understating on different types of bearings and fundamental governing equations.
- Explain key issues and recent developments in the area of tribology.

Textbooks

- 1. Stachowiak G. W. and Batchelor A. W., Engineering Tribology, 3rd Edition (Indian), Butterworth-Heinnmann (Elsevier), 2010.
- 2. Prasanta Sahoo, Engineering tribology, PHI Learning Pvt. Ltd., 2005.

Reference Books

- 1. Bharat Bhushan, Introduction to Tribology, John Wiley & Sons, 2002.
- 2. S. K. Basu, S. N. Sengupta, B. B. Ahuja, Fundamentals of Tribiology, PHI Learning Pvt. Ltd., 2005.
- 3. Sushil Kumar Srivastava, Tribology in Industries: Textbook for Undergraduate, Graduate and Postgraduate Students, S. Chand Limited, 2004.

Course Plan:

Topic	Learning Objectives	No of Lectures	Text Book
Introduction	Meaning of tribology; friction, wear and Lubrication; Cost of friction and wear;	2	T1& T2
Friction, wear and lubrication.	Origin of friction; history, adhesion, deformation; Laws of friction; Theories of friction; Types of wear; Factors affecting the wear; Basic modes of lubrication	4	T1& T2
Lubricants and lubrication	Introduction, Properties of lubricants; Types of lubricants; Viscosity: effect of temperature, pressure and shear rates on viscosity; viscosity measurement; Other Properties; Additives;	5	T1& T2
Surface textures	Introduction, Measurement Methods: surface profilometer, optical microscopy, electron microscopy, Statistical Description: centre line average(CLA), root mean square (RMS) roughness, abbott bearing area curve, probability distribution function (ACF), slope and curvature, power spectral density function (PSDF), Fractal Description,	5	T1& T2
Bearing materials and fundamentals of viscous flow	Introduction and different types of bearing materials; Introduction to fundamentals of viscous flow: Reynolds equation, Navier-Stroke equations; Laws of viscous flow	3	T1& T2
Thrust bearings	Introduction, Pressure Development Mechanism, Plane Slider Bearing with Experimental Film profile, Fixed Inclination Slider Bearing, Parallel Step Slider Bearing, Design Procedure	2	T1& T2
Journal bearings	Introduction, Infinite long journal bearing: full-sommerfeld boundary condition, half-sommerfeld boundary condition, reynolds boundary condition, Effective temperature of lubricants, Design procedure, Hydrodynamic instability, Oil supply grooves	4	T1& T2
Hydrostatic bearings; Gas bearings	Introduction, Circular step thrust bearings, Annular thrust bearings, Rectangular thrust bearings, Hydrostatic journal bearings Introduction, Governing equation: extremely low velocity, extremely high velocity, slip flow, surface roughness effects, Squeeze film lubrication, Instabilities in gas-lubricated bearings.	4	T1& T2
Dry and starved bearings; Selecting bearing	Introduction and different types of dry and starved bearings. Bearing type and size, principles and operating limit		T1& T2
type and size, principles and operating limits; Coating Tribology	Tribology of coating (soft coatings, Lamellar coatings, Hard coatings, carbon and carbon based coatings, combined coatings), Coating characterization and evaluation, coating selection.	4	

Topic	Learning Objectives	No of Lectures	Text Book
Tribology of Polymeric materials	Friction and sliding wear of polymers; Transfer layers; Influence of counerface properties on polymer tribology; PV limit; Friction and wear trends of polymer composites; Other related topics.	4	T1& T2
Introduction to Nano and micro tribology	Introduction; Difference between nano and macro tribology; Bridging the gap between the scales; Characterization techniques;	3	T1& T2

Evaluation Scheme and Schedule:

Evaluation component	Duration	Weightage	Date/Time/Venue	Evaluation type
Quiz 1	30 min	10 %	Feb	Open book
Mid-Semester Test	90 min	25 %	16 th March, 11:30 – 13:00 PM	Closed book
Quiz 2	30 min	15 %	April	Open book
Comprehensive Examination	180 min	35 %	15 th May (AN)	Closed book
Lab (11 experiments)		15 %	Jan - May	Open book

Chamber Consultation Hour: To be announced in the class.

Notices concerning the course: All notices concerning this course will be displayed on Mechanical Engineering Department Notice Board/ CMS. Besides this, students are advised to visit regularly CMS (institute's web based course management system) for latest updates

Make-up Policy: Make-up for Mid-semester exam and Comprehensive will be granted for genuine reasons, only when prior-permission is obtained from Instructor-in-charge.

Academic Honesty and Integrity Policy: Academic honesty and integrity are to be maintained by all the students throughout the semester and no type of academic dishonesty is acceptable.

Instructor-In-Charge DE G513