Tests for Mixed Paired and Two-Sample

Designs/Classification

My Research I: New Statistics

- Develop new and improved statistical methodology
 - Nonparametric and Robust Methods

Nonparametric and Robust Methods

- e.g., t-test
 - Mathematically exact if data come from normal distribution
 - Otherwise, other methods can work better
 - ► I try to develop such nethods

My Research II: Interdisciplinary Research

- Develop new statistical methodology
- Novel application of existing methodology

Two Topics Today

- New Statistics: Tests for Mixed Paired and Two-Sample Designs
- ► Interdisciplinary: Classification for zooarchaeology

Mixed Paired and Two-Sample Designs

Coyotes.

- ► It was desired to compare two methods (QIAGEN DNeasy Kit, traditional chloroform isoamyl alcohol method) for extracting DNA from coyote blood samples.
- ▶ The response variable (Y) was mean concentration of DNA.
- A total of 30 coyotes were available for the study.
- Ideally, both methods would be used on each coyote
 - Reduced variability, as differences between treatments would be on the same subject
 - Fewer subject (coyotes) required

Mixed Paired and Two-Sample Designs-Coyotes

Due to constraints, however, both methods were used on only 6 coyotes (randomly selected). The kit was randomly assigned to be used for 8 of the remaining coyotes and the traditional method for the remaining 16 coyotes.

Mixed Paired and Two-Sample Designs-Laser Eye Surgery

Clinical trial to compare two methods of laser eye surgery.

- ▶ Patients with both eyes eligible have one eye randomly assigned to each treatment (dependent samples)
- ▶ Patients with only one eye eligible will each have one eye randomly assigned to one treatment (independent samples)

Analysis of Paired Data: Paired t-test

Under the assumptions

- ► The treatment response differences for the 6 coyotes receiving both treatments are independent
- ► The response differences for the population of all coyotes are normally distributed

The statistic

$$t_{paired} = rac{ar{d}}{s/\sqrt{n}} \backsim t(n-1)$$

where

- ightharpoonup n = 6 is the number of paired data points
- $\bar{d} = \bar{x} \bar{y}$ is the mean of the paired differences
- s is the standard deviation of the paired differences
- ▶ t(n-1) is the Student's t-distribution with n-1 degrees of freedom

Analysis of Unpaired Data: Pooled t-test

Under the assumptions

- ▶ The responses for the 24 "unpaired" coyotes are independent
- ► The populations of responses are both normally distributed
- ► The populations of treated and untreated responses have the same variance

The statistic

$$t_{unpaired} = \frac{(X - Y) - (\mu_1 - \mu_2)}{\sqrt{\frac{s_p^2}{n_1} + \frac{s_p^2}{n_2}}} \backsim t(n_1 + n_2 - 2)$$

where

- $ightharpoonup n_1 = 8, n_2 = 16$ are the sizes of the unpaired samples
- ullet $ar{X} ar{Y}$ is the treatment mean difference for the unpaired data
- \triangleright s_1, s_2 are the standard deviations of the unpaired samples
- $s_p^2 = \frac{(n_1-1)s_1^2 + (n_2-1)s_2^2}{n_1+n_2-2}$ is the pooled variance
- ▶ $t(n_1 + n_2 2)$ is the **Student's** *t*-distribution with $n_1 + n_2 2$ degrees of freedom

Nonparametric Alternative: Randomization/Permutation tests

Idea: Compute *p*-value based on the results of all hypothetical experiments

- Assume there is no treatment effect
- "Rerandomize (permute)" the observed data and compute the resulting test statistic
- Repeat for all possible rerandomizations
- Compare the test statistic of the actual randomization to the set all possible results
 - ► If the result looks "unusual", it is likely because the initial assumption is wrong, and there is a treatment effect

Nonparametric Alternative: Rank-based tests

Rank-based analogues to t_{paired} and $t_{unpaired}$ tests:

- ightharpoonup Wilcoxon signed-ranks test (W_{paired})
- ightharpoonup Wilcoxon rank-sum/Mann-Whitney test ($W_{unpaired}$)
- Rank-based methods are resistant to outliers

Can the separate tests be combined to use all of the data in a single test?

Consider the statistic

$$t_{combined} = \lambda t_{paired} + (1 - \lambda) t_{unpaired}$$

Note that $t_{combined} = t_{paired}$ when $\lambda = 1$ and $t_{combined} = t_{unpaired}$ when $\lambda = 0$.

Much of the previous research has been focused on trying to approximate the distribution of $t_{combined}$.

Previous Research: Combined t-tests

- ► Lin & Stivers (1974)
- ▶ Bhoj (1978)
- ▶ Bhoj (1989)

All of these assumed normally distributed data and and derived approximate t-distributions.

Previous Research: Randomization tests

- ► Einsporn & Habtzghi (2013).
- ▶ Investigated randomization/permutation version of Bhoj (1978) test.

Previous Research: Nonparametric tests

- Dubnicka, et. al. (2002); Magel & Fu (2014).
- Proposed combined test based on Wilcoxon statistics.
- ▶ Johnson (2018). Proposed permutation versions of Dubnicka and Magel & Fu tests; performed extensive simulation study to compare various tests.
- Wang (2020(REU)). Investigated confidence intervals based on combined statistics.

Comparison of Approaches

- None of the tests has been shown to be superior under all conditions
- ▶ Bhoj (1989) method best for normally distributed data
- Einsporn & Habtzghi (2013) method best for nonnormal, "light-tailed" data
- Rank methods best for nonnormal "heavy-tailed" data
 - Neither of the rank tests was best in all situations

Zooarchaeology

Zooarchaeology: studies the remains of animals from archaeological sites

Problem

Predict the percent of human vs. carnivore presence based on bone samples from a site

Solution?

- Compiled database of bone characteristics from experiments
 - Human only
 - Carnivore only
- Create a classification algorithm from these data to predict percent of human vs. carnivore presence for a sample from a site with unknown percents

The Classification Problem

- Outcome: Known group label (e.g., human/carnivore)
- ► Features/Predictors: Characteristics of individuals in groups
- Want to be able to "predict" Group membership based on Features

Example: Spam emails

- Email service compiles data on emails reported as spam vs. OK
- ▶ Uses these data to "predict" whether an email is spam

Example algorithm: k-Nearest Neighbor Classifier

References

- ▶ Bhoj, D.S. (1978). Testing equality of means of correlated variates with missing data on both responses. *Biometrika*, 65:225-228.
- ▶ Bhoj, D.S. (1989). On comparing correlated means in the presence of incomplete data. *Biometrical Journal*, 31:279–288.
- Dubnicka, S.R., Blair, R.C., Hettmansperger, T.P. (2002). Rank-based procedures for mixed paired and two-sample designs. *Journal of Modern Applied Statistical Methods*, 1:32-41.
- Einsporn, R.L., Habtzghi, D. (2013). Combining paired and two-sample data using a permutation test. *Journal of Data Science*, 11:767-779.
- ▶ Johnson, E. N. (2018). Permutation Tests for Mixed Paired and Two-Sample Designs.[Unpublished masters' thesis]. University of North Carolina, Greensboro.

References

- ► Lin and Stivers (1974)
- Magel, R.C., Fu, R. (2014). Proposed nonparametric test for the mixed two-sample design. *Journal of Statistical Theory* and Practice, 8:221-237.