

- Öğretim Elemanı: Dr. Öğretim Üyesi Şeyma PARLATAN
- E-posta: <u>seyma.parlatan@istinye.edu.tr</u>
- Bölüm: Sağlık Hizmetleri Meslek Yüksek Okulu
- Ders: Radyasyon Fiziği
- Dönem: 2021-2022 Eğitim Öğretim Dönemi Bahar Dönemi

Radyasyon ve Tipleri

Radyasyon Tipleri

Elektromanyetik spektrumdaki ışınlar sahip oldukları enerjiye göre iki gruba ayrılır

- 1. İyonlaştırıcı Radyasyon: Parçacık (alfa ve beta radyasyon) veya elektromanyetik dalgalar (X ve γ ışınları)
- 2. İyonlaştırıcı Olmayan Radyasyon: Ortama iyonlaştırıcı etki yapmayan mor ötesi ışınlar, görünür ışık ve kızılötesi (IR) ışınlar ile mikro dalgalar ve radyo frekansı (RF)

Radyoaktif Bozunma ile Salınan Radyasyonlar

- Radyasyon: Dalga ya da parçacık şeklinde uzayda enerji yayınlanmasıdır. Aşağıdakiler örnek olarak verilebilir:
- Dalga şeklinde yayınlananlar:
- Radyo dalgaları
- Görünen ışık
- Isi
- X-ışınları
- Gamma ışınları
- Parçacık şeklinde yayınlananlar:
- Alfa radyasyonu
- Beta radyasyonu
- Nötron radyasyonu

ELEKTROMANYETİK DALGA

- Görünebilir ışık, radyo dalgaları ve ultroviyole ışınları dalga şeklinde yayılan radyasyon biçimleridir. Bunlar elektromanyetik dalga çeşitleridir.
- Elektromanyetik dalgalar (e.m), bir kaynaktan bir alıcıya enerji ve momentum taşırlar ve boşlukta ışık hızıyla yayılırlar:
- λ: Dalga boyu; : v=frekans
- Elektromanyetik dalgalar foton adı verilen enerji kuantumlarından oluşur. Foton enerjisi ise, *E=hv* ile verilir. Burada, *h*, Planck sabitidir.

TÜRK RADYASYON ONKOLOJİSİ DERNEĞİ Radyofizik Kursu 11-12 Haziran 2010

Radyoaktivite; kararsız bazı elementlerin dış etkenler olmaksızın kendiliğinden parçalanmaları sonucu çevrelerine partiküller ya da elektromanyetik radyasyon vererek daha kararlı hale geçmeleridir.

Bu elementlere radyoaktif elementler denir.

Radyoaktivite; ilk defa 1896 yılında Henri Becquerel tarafından keşfedilmiştir. 1898 de ise Pierre ve Marie Curie tarafından yapılan deneylerde radyoaktifliğin varlığı kanıtlanmıştır.

Radyoaktif elementler...

- ** Doğal radyoaktif elementler: (periyodik cetvelin atom numaraları Z=81-92 arasında kalan bölgeleri kapsar) Doğada dört radyoaktif seri bulunmaktadır.
- ** Yapay radyoaktif elementler: Kararlı elementler nükleer reaktörlerde elektromagnetik alan içerisinde hızlandırılmış partiküller ile bombardıman edilerek radyoaktif hale getirilmektedir.

Fiziksel Yarı-Ömür

Fiziksel yarılanma süresi (T_{1/2}), radyoaktif yarı-ömür olarak da anılır. Tanım olarak fiziksel yarı-ömür; başlangıcındaki radyoaktif atomların yarısının parçalanması için geçen süredir.

Doğal Radyoaktif Seriler

		En uzun Ömürlü Üyesi					
Seri Adı	Son Çekirdek (Kararlı)	Çekirdek	Yarı-Ömür (yıl)				
Toryum	²⁰⁸ Pb	²³² Th	1.41 x 10 ¹⁰				
Neptünyum	²⁰⁹ Bi	²³⁷ Np	2.14 x 10 ⁶				
Uranyum	²⁰⁶ Pb	238℃	4.47 x 10 ⁹				
Aktinyum	²⁰⁷ Pb	235℃	7.04 x 10 ⁸				

- Bir radyoaktif ana çekirdekten alfa (α), beta (β) ve gamma (γ) bozunmaları sonucu yavru çekirdekler oluşturan seriler, radyoaktif seriler olarak tanımlanır.
- Radyoaktif seriler U, Th, Ac ve Np serisi şeklinde 4 grup oluşturur
- Her seri, bozunma zincirini tamamladıktan sonra kararlı bir çekirdek haline dönüşür.

Uranyum 238 serisi

NÜKLEER KARARLILIK

- Bu reaksiyonda açığa çıkan enerji reaksiyon sonucu yayınlanan foton tarafından taşınmakta olup 2.224 MeV değerindedir. Bu değer de ürünün (döteronun) bağlanma enerjisidir.
- Çekici özellikteki nükleer kuvvetler p-p, n-n, veya n-p arasında aynı özelliktedir.
- Bir çekirdekte, bu kuvvetler nükleonları birbirine çekerken protonlar da bir birlerini Coulomb kuvvetiyle iterler. Bir çekirdekte Coulomb itmesi nükleer kuvveti aşarsa bu çekirdek kararlıdır.
- Hafif çekirdekler N=Z (kararlılık doğrusu) olduğunda daha kararlıdırlar. Ağır çekirdekler N>Z olduğunda daha kararlıdırlar. İlave Coulomb itmesine karşı koyabilmek için daha çok sayıda nötrona ihtiyaç vardır. Z>83 olan çekirdekler kararsızdırlar.

K, L, M a	tomları	ile i	lgili	aşa	ğıda	aki	bilg	iler	ver	ilmi	ştir.														
	50L, 40 20 ^L , 21										_			_	_			_							
Buna gö	re, K, I	L. M	ato	mla	rini	in c	ekil	rde	klei	rimir	n ka	irar	li wa	ı da	ı ka	rare	317 <i>(</i>	olum	oli	\mathbf{ma}	dukti	arı	ile i	laili	ne
söylenel		,	uto			3			ILI O		1 100	41141	y	ı or	1 100		7112	_.		11104	CHI I'VII			·9	

- Başlangıçtaki kütlesi 128 g olan radyoaktif bir elementin yarılanma ömrü 6 yıldır.
- Buna göre, 48 yıl sonra yarılanmadan kalan madde miktarı kaç gram dır?

Bir X eler					ktan so	hra
bozunma	dan kalar	ı kütlesi	4 g olu	yor.		
Buna gö	re, bu ör	neğin ba	aşlangı	çtaki k	kütlesi	kaç
g dır?						
A) 64	B) 32	C) -	16	D) 8	E)	0,5
•				•		

Nükleer bir tesisle bir laboratuvarın arası 180 km dir. Tesisten alınan ve yarılanma ömrü 30 dk olan bir radyoaktif madde örneğinin en az 9 gramının laboratuvara nakledilmesi gerekmektedir.

Nükleer tesisten alınan örneğin kütlesi 144 g olduğuna göre, nakil için kullanılan aracın ortalama sürati en az kaç km/h olmalıdır?

Yarıömrü 5 saniye olan bir radyoaktif element çekirdeğinin bozunmayan çekirdek sayısı - zaman grafiği şekildeki gibidir.

Buna göre, 20. saniyede bozunmayan çekirdek sayısı kaç No dır?

A)
$$\frac{1}{4}$$

B)
$$\frac{1}{8}$$

A)
$$\frac{1}{4}$$
 B) $\frac{1}{8}$ C) $\frac{1}{12}$ D) $\frac{1}{16}$

D)
$$\frac{1}{16}$$

E)
$$\frac{1}{25}$$

Nükleer tıp tedavisi görmekte olan bir hastaya, insan vücudundaki yarı ömrü 12 gün olan radyoaktif bir maddeden 4 gram veriliyor.

Bu hastanın vücudundaki radyoaktif madde miktarı, kaç gün sonra 500 miligrama düşer?

- A) 6 B) 12 C) 24 D) 36 E) 72

Radyoaktif bir element olan plütonyumun yarı ömrü 6580 yıldır.

Buna göre, 100 gram plütonyumun beş yarılanma ömrü sonunda kaç gramı bozunmadan kalır?

- A) 50,00 B) 25,00 C) 12,50

- D) 6,75 E) 3,125

Tedavi amacıyla bir hastaya verilen radyoaktif madde 20 gün sonra ilk verilen miktarın $\frac{1}{32}$ 'sine düştüğüne göre, bu radyoaktif maddenin insan vücudunda yarılanma ömrü kaç gündür?

A) 1

B) 2

C) 4

D) 8

E) 10

Yarılanma süresi 5 dk olan izotopun 1600 g 'ı 25 dk sonra bozunduğunda na kadarı bozunmadan kalır?

Bir izotopun kütlece % 87.5 i 120 s de bozunuyorsa yarı ömrünü bulunuz.