Database Programming with JDBC

CS3200: Database Design

CS5200: Database Systems

Database Application

(Usually running on a separate server)

APIs and Drivers

Impedance Mismatch

In this context, refers to several issues that arise when OO language interacts with RDBMS

- Differences in data types
- Query results as row/column
- Limited compile-time error detection w.r.t. SQL

Northeastern University
College of Computer and Information Science

Impedance mismatch problem

Recommended Reading

- Chapter 5. Database Programming (Sections 1-5, 8)
- Freely available through Safari / ProQuest

Typical Programming Sequence

- 1. Connect to DBMS
 - URL, database name, user/pw, driver
 - Sometimes persistent for performance

- 2. Arbitrary interactions
 - Transactions via SQL / JDBC calls

3. Close the connection

Query Sequence

- 1. Generate SQL
 - Could be static or composed of algorithmic/user-contributed parts

2. Execute: ResultSet rs = stmt.execute(sql)

3. Process results while (rs.next() != null) { ... }

Prepared Query Sequence

- 1. Generate parameterized SQL
 - Could be static or composed of algorithmic parts (typically nothing user-contributed)
- 2. Bind values to SQL parameters
 - Could be static or algorithmic/user-contributed
- 3. Execute
- 4. Get results

Stored Programs vs. API-driven Application

	Stored Program	API-Driven Application
Technology Stack	MySQL	MySQL, JDBC, Java
Business Logic	Built-in	Separated out
Schema Change Impact	Store-programs might change but API calls to stored programs unaffected.	API Implementation might need to change, but API <i>interface</i> should be unaffected
Developer Talent	Database developers	Database developers Software developers
Impedance mismatch	Avoided. Everything done inside the DBMS	Must be tackled by the software developers
Vendor lock-in	High: Stored programming dialects vary - may be difficult to migrate to a new vendor	Low: JDBC relies more on SQL statements that are more standard.

Data Science vs. Data Engineering

Data Scientist: Performs descriptive statistics to develop insights, build models, solve a business need.

Data Engineer: Architect large scale data processing systems typically using relational, NoSQL, messaging, and distributed computing platforms.

Data Engineering Data Science Conduct research to answer Develop, construct, test, industry and business questions and maintain architectures (such as databases and large-scale Leverage large volumes of data processing systems) from internal and external Ensure architecture will support sources to answer that business the requirements of the business Employ sophisticated analytics Discover opportunities for data programs, machine learning and statistical methods to acquisition prepare data for use in predictive and prescriptive modeling Develop data set processes for data modeling, mining Explore and examine data to find and production hidden patterns Employ a variety of languages and tools (e.g. scripting languages) Automate work through the use of predictive and prescriptive to marry systems together analytics Recommend ways to improve data reliability, efficiency and quality Tell stories to key stakeholders based on their analysis

Diverse technologies with blurred boundaries

