Simulacijske metode u izračunu raspoloživosti sustava

Ozren Lapčević Fakultet elektrotehnike i računarstva Zavod za telekomunikacije

Sadržaj predavanja

- Raspoloživost analitički pristup
- Raspoloživost simulacijski pristup
- Usporedba analitičkog i simulacijskog pristupa
- Monte Carlo simulacija
- Primjena Monte Carlo simulacije u proračunu raspoloživosti mreže
- Zadatak

Raspoloživost

Raspoloživost A(t) je vjerojatnost da sustav ispravno radi u trenutku t.

$$A(t) = \frac{\mu}{\lambda + \mu} + \frac{\lambda}{\lambda + \mu} e^{-(\lambda + \mu)t} = A_s + A_{tr}(t)$$

Pouzdanost

Pouzdanost R(t) je vjerojatnost da sustav ispravno radi u periodu vremena t pod definiranim uvjetima okoline.

$$R(t) = e^{-\lambda_0 t}$$

$$(\lambda = \lambda_0 = const.)$$

Raspoloživost

$$A(t) = \frac{\mu}{\lambda + \mu} + \frac{\lambda}{\lambda + \mu} e^{-(\lambda + \mu)t} = A_s + A_{tr}(t)$$

$$A_s = \frac{\mu}{\lambda + \mu} = \frac{\frac{1}{MTTR}}{\lambda + \frac{1}{MTTF}} = \frac{1}{\lambda \cdot MTTR + 1}$$

$$A_s = \frac{\mu}{\lambda + \mu} = \frac{\frac{1}{MTTR}}{\frac{1}{MTTR}} + \frac{1}{MTTF} = \frac{MTTF}{MTTF + MTTR}$$

$$U_s = 1 - A_s = \frac{\lambda \cdot MTTR}{\lambda \cdot MTTR + 1} \approx \lambda \cdot MTTR \quad \text{Za} \quad \lambda \cdot MTTR < < 1$$

Markovljev model raspoloživosti za komponentu (sustav)

Markovljev model raspoloživosti za neredundantnu strukturu

 λ – intenzitet kvarova [1/h] μ - intenzitet popravaka [1/h]

$$A_{s} = \frac{\sum T_{up}}{T_{TOTAL}}$$

A_s – stacionarna raspoloživost (steady-state (asymptotic) availability)

Simulacija

□ definicija:

Simulacija je proces oblikovanja modela stvarnog ili zamišljenog sustava te provođenja eksperimenata nad tim modelom

■ model sustava:

- pretpostavke o sustavu
- matematički algoritmi i odnosi koji opisuju te pretpostavke

Simulacija sustava

- Jednostavan sustav
 - model može biti predstavljen i riješen analitički:
 - s = v * t [udaljenost = brzina * vrijeme]
 analitičko rješenje koje predstavlja udaljenost koji
 prijeđe objekt konstantne brzine u danom periodu
 vremena
- □ Složen sustav
 - ne postoji jednostavan matematički model koji bi opisao takav sustav
 - ponašanje sustava može biti procijenjeno simulacijom
 - model je rijetko potpuno istovjetan originalu
 - prihvaćaju se aproksimacije koje bitno ne mijenjaju konačni rezultat

Modeli sustava

- modeli su stvoreni za gotovo svaki sustav koji se može zamisliti
 - tvornice
 - komunikacijske i računalne mreže
 - integrirane krugove
 - zrakoplove (letna dinamika)
 - nacionalne ekonomije
 - socijalne interakcije
 - prometne sustave
 - imaginarne svjetove

Modeli sustava

- model i simulacija su u svakom od navedenih primjera
 - jeftiniji
 - bezopasniji
 - brži
 - općenito praktičniji od eksperimentiranja nad stvarnim sustavom

Vrste simulacija

- općenita podjela ovisno o načinu na koji se varijable koje opisuju stanje sustava mijenjaju
 - diskretne (discrete event simulation, DES)
 - varijable stanja se mijenjaju u određenim vremenskim trenucima
 - kontinuirane (continuous)
 - varijable stanja se mijenjaju kontinuirano, obično kroz funkciju u kojoj je vrijeme varijabla

Vrste simulacija

Simulacija diskretnih događaja

- varijable stanja simulacije mijenjaju se u specifičnim vremenskim točkama
 - vrijeme nije kontinuirano
- varijabla vremena vezana je uz događaje
- vremena između vremenskih točaka (događaja) se zanemaruju
- primjena u simulaciji telekomunikacijskih mreža

Vrste simulacija

Simulacija diskretnih događaja

- Događaji
 - aktivnost koja utječe na promjenu stanja dijela sustava ili cijelog sustava (npr. kvar ili popravak elementa sustava)
 - generiraju ih elementi sustava
 - izvršavanje događaja
 - odmah, u trenutku t, ili potaknuto izvršavanjem drugog događaja
 - hijerarhijski uređena struktura (npr. stog) sortirana prema vremenu izvršavanja događaja

Ograničenja simulacija

- model obično sadrži samo detalje koji su relevantni za cilj simulacije
 - pojednostavljen opis stvarnog sustava
- podaci potrebni za opis sustava često su nedostupni (npr. podaci za raspoloživost/pouzdanost)
- simulacija daje aproksimativne rezultate

Usporedba analitičkog i simulacijskog pristupa

- analitički
 - + točnost
 - fleksibilnost
 - ograničena složenost sustava
- simulacijski
 - + fleksibilnost
 - + velika složenost sustava
 - aproksimativni rezultati pogreška simulacije

Monte Carlo metoda - povijest

- nazvana prema gradu u Monacu zbog rouletta (naziv za generator slučajnih brojeva)
- □ 1944. g. ime i sustavan razvoj metode
- \square 19. st. račun vrijednosti broja π bacanjem igle na slučajan način na ploču s paralelnim ravnim crtama
- □ 1899. g. Lord Rayleigh jednodimenzionalan slučajan hod bez barijera može pružiti približno rješenje paraboličnih diferencijalnih jednadžbi
- 1931. g. Kolmogorov je pokazao vezu između Markovljevih stohastičkih procesa i nekih integrodiferencijalnih jednadžbi

Monte Carlo metoda - povijest

- □ 1908. g. Student (W. S. Gosset)
 - eksperimentalno uzorkovanje kao pomoć u otkriću razdiobe korelacijskog koeficijenta
 - uzorkovanje kao potpora t-razdiobe razvijene neutemeljenim i nedovršenim teorijskim razmatranjima
- ☐ 2. svjetski rat
 - rad na atomskoj bombi izravna simulacija problema vezanih uz slučajnu difuziju neutrona u fisijskom materijalu
 - von Neumann i Ulam počistili i usavršili korištene metode "ruskog rouletta" i "dijeljenja" (splitting)

Monte Carlo simulacija

- □ tri koraka
 - definiranje mogućeg skupa ulaznih podataka
 - ☐ definiraju se PDF funkcije koje opisuju ponašanje sustava ili njegovih dijelova
 - uzorkovanje PDF funkcija
 - uzorkovanje na temelju generiranih slučajnih brojeva
 - ☐ iteracija simulacije odgovara jednom uzorkovanju PDF funkcije
 - velik broj iteracija simulacije milijuni
 - agregacija podataka iz svake iteracije u konačni rezultat

- □ Osnovna ideja:
 - simulirati životni ciklus svakog jednostavnog entiteta u mreži, a time i onih složenijih
 - životni vijek svakog entiteta sastoji se od simulacijskih događaja: kvarova i popravaka

- □ Vremena do kvarova (time to failure TTF) i vremena do popravaka (time to repair – TTR) generiraju se za svaku komponentu u mreži prema funkciji gustoće vjerojatnosti (probability density function – PDF)
- utjecaj generiranog kvara ili popravka promatra se na razini mreže prema modelu raspoloživosti i zaštnim mehanizmima i mehanizmima obnavljanja
- ako generirani kvar ili popravak ima utjecaj na određenu instancu mreže (npr. put između dva čvora), stanje te instance se mijenja
- računaju se kumulativna vremena T_{up} i T_{down} za instancu mreže koja predstavljaju vrijeme koje je instanca provela u ispravnom odnosno neispravnom stanju
- stacionarna raspoloživost i neraspoloživost računaju se prema sljedećim formulama:

$$A = \frac{T_{up}}{T_{up} + T_{down}} \qquad U = \frac{T_{down}}{T_{up} + T_{down}}$$

- generiranje vremena do kvara/popravka
 - slučajno, prema eksponencijalnoj razdiobi
 - □ za svaku iteraciju simulacije, generira se slučajan broj prema uniformnoj razdiobi iz intervala [0, 1]
 - na temelju generiranog slučajnog broja, uzorkuje se PDF funkcija i dobiva se vrijeme do kvara/popravka koje odgovara eksponencijalnoj razdiobi – pretvorba uniformne razdiobe u eksponencijalnu
 - generirana vremena do kvara/popravka tretiraju se kao da su proizašla iz promatranja stvarnog sustava!

- □ na početku...
 - svi entiteti su u ispravnom stanju
 - generiraju se vremena do kvarova (TTF) za svaki entitet (prema zadanoj distribuciji, npr. eksponencijalna, Rayleighova, Weibullova, ...)
- stog simulacije brine se da se događaji poredaju prema vremenu izvođenja
- događaji
 - predstavljaju promjenu stanja jednostavnih entiteta (iz ispravnog stanja u neispravno stanje i obrnuto)
 - događaji mogu i ne moraju utjecati na promjenu stanja strukture koja se sastoji od entiteta

- □ izvođenje događaja
 - stanje entiteta se mijenja
 - generira se sljedeći događaj za entitet
 - ako je entitet neispravan, generira se vrijeme do popravka
 - □ ako je entitet ispravan, generira se vrijeme do kvara
 - proračun stanja promatrane strukture koja sadrži entitet
 - potrebno je ustvrditi da li se stanje strukture promijenilo s promjenom stanja entiteta
 - ako jest, vrijeme od prethodne promjene stanja strukture do "sada" se dodaje varijabli:
 - T_{up} ako je novo stanje sustava neispravno
 - T_{down} ako je novo stanje sustava ispravno

Pouzdanost strukture sa slike ($\lambda_1 = 10^{-6}$, $\lambda_2 = 5 \cdot 10^{-6}$, $\lambda_3 = 5 \cdot 10^{-7}$ kvarova/sat) određuje se Monte Carlo simulacijom.

Računalo je generatorom slučajnih brojeva (po jednolikoj razdiobi iz intervala [0, 1]) generiralo sljedeća tri niza brojeva:

za element 1: 0.02, 0.98, 0.86, 0.54, 0.36 za element 2: 0.77, 0.18, 0.73, 0.88, 0.34

za element 3: 0.93, 0.44, 0.05, 0.11, 0.51

- a) Odredite pet simuliranih vremena ispada strukture pouzdanosti ako pretpostavimo eksponencijalnu razdiobu vremena kvarova.
- b) Izračunajte srednje vrijeme do prvog ispada *MTTF* strukture koristeći simulirane podatke.

Generirani slučajni brojevi po elementima:

element 1	element 2	element 3	br. iteracije
0.02	0.77	0.93	1
0.98	0.18	0.44	2
0.86	0.73	0.05	3
0.54	0.88	0.11	4
0.36	0.34	0.51	5

U tablici se nalaze slučajni brojevi iz uniformne razdiobe iz intervala [0, 1]. Kako bismo odredili vremena u kojima nastaju kvarovi elemenata potrebno je vrijednosti iz tablice transformirati koristeći sljedeću formulu (x) je vrijednost iz tablice, a λ intenzitet kvarova pojedinog elementa):

$$t = -\frac{1}{\lambda} \ln(1 - x) \text{ (slijedi iz } x = 1 - e^{-\lambda_0 t})$$

Vremena kvarova elemenata ($x10^{5}[h]$):

element 1	element 2	element 3	br. iteracije
0.202	2.939	53.185	1
39.120	0.369	11.596	2
19.661	2.618	1.025	3
7.765	4.240	2.330	4
4.462	0.831	14.267	5

Sljedeći korak je svaku iteraciju simulacije (redak u tablici) sortirati prema vremenima kvarova pojedinih elemenata.

Sortirana vremena kvarova elemenata (x10⁵[h]) po pojedinim iteracijama:

Iteracija 1

Element	Vrijeme kvara
1	0.202
2	2.939
3	53.185

Iteracija 2

Element	Vrijeme kvara	
2	0.369	
3	11.596	
1	39.120	

Iteracija 3

Element	Vrijeme kvara
3	1.025
2	2.618
1	19.661

Iteracija 4

Element	Vrijeme kvara
3	2.330
2	4.240
1	7.765

Iteracija 5

Element	Vrijeme kvara
2	0.831
1	4.462
3	14.267

Sljedeći korak je odrediti trenutak ispada sustava za svaku iteraciju. Sustav je ispravan ako je ispravan element 3 i još barem jedan element.

Trenutci ispada sustava (x10⁵[h]) za svaku iteraciju označeni su crvenom bojom i predstavljaju rješenje a) dijela zadatka:

Iteracija 1

Element	Vrijeme kvara
1	0.202
2	2.939
3	53.185

Iteracija 2

Element	Vrijeme kvara
2	0.369
3	11.596
1	39.120

Iteracija 3

Element	Vrijeme kvara
3	1.025
2	2.618
1	19.661

Iteracija 4

Element	Vrijeme kvara
3	2.330
2	4.240
1	7.765

Iteracija 5

Element	Vrijeme kvara
2	0.831
1	4.462
3	14.267

b) MTTF strukture:

MTTF =
$$(2.939 + 11.596 + 1.025 + 2.330 + 4.462) 10^{-5}/5$$

MTTF = $447 040 h$