Differential Expression Analysis Techniques for Single-Cell RNA-seq Experiments

for the Computational Biology Doctoral Seminar (CMPBIO 293), organized by N. Yosef & T. Ashuach, Spring 2018, UC Berkeley

Kevin Benac and Nima Hejazi

Group in Biostatistics, University of California, Berkeley

11 April 2018

Introduction

Data

Objective

Methodology

ZINB-WaVE

DropLasso (Nima)

Comparison

Conclusions

The Data: Single-Cell RNA-seq

- scRNA-seq fast growing approach to measure the genome-wide transcriptome of many individual cells in parallel (Kolodziejczyk et al., 2015).
- Major advance compared to standard "bulk" RNA sequencing to investigate complex heterogeneous tissues,
- Access to cell-to-cell variability: better accuracy.

The Data: Single-Cell RNA-seq

- However, analysis of scRNA-seq data challenging.
- In one cell, only a tiny amount of RNA is present and large fraction of polyadenylated RNA can be stochastically lost during sample preparation steps (cell lysis, reverse transcription or amplification).
 - \implies Many genes fail to be detected although they are expressed!
- ▶ In practice, not uncommon to end up with a matrix of read counts where about 80% of the coefficients are zeros.
- ▶ This zeros are called *dropouts*.

The Data: Single-Cell RNA-seq

	Cell1	Cell 2	Cell 3	Cell 4	Cell 5	Cell 6	Cell 7
Xkr4	0	0	0	14	0	0	0
Syt11	1	9	2	2	0	0	0
Cpe	0	0	16	0	0	0	0
Rp1	0	0	0	0	0	0	0
Gm73	0	0	0	0	0	0	0
Gm79	0	0	0	0	0	0	0
Mpl15	8	8	6	1	0	0	0
Gm61	0	0	0	0	0	3	0
Lypla1	1	23	266	1	0	1	0
Tcea1	63	101	18	29	2	34	0

The Data: Single-Cell RNA-seq

- Raises modelling and computational issues.
- Need to detect a signal when most of the values are zeros only because they are missing.
- Traditional methods used for bulk RNA-seq data might not be sensible anymore.

Introduction

Data

Objective

Methodology

ZINB-WaVE

DropLasso (Nima)

Comparison

Conclusions

The Objective: Differential Expression

٠...

The Objective: Differential Expression

٠...

The Objective: Differential Expression

٠...

Introduction

Data

Objective

Methodology

ZINB-WaVE

DropLasso (Nima)

Comparison

Conclusions

Method that leads to low-dimensional representations of the data the same way PCA or tSNE does.

- Method that leads to low-dimensional representations of the data the same way PCA or tSNE does.
- However accounts for zero inflation (dropouts), over-dispersion, and the count nature of the data.
- No need for normalization.

Mathematical set-up:

- n samples (single-cells),
- ▶ J genes,
- ▶ Y_{ij} read counts for gene j in cell i, $1 \leq ... \leq n$, $1 \leq j \leq J$.,
- $\blacktriangleright \pi_{ij}$: probability of dropout,
- $\blacktriangleright \mu$: mean expression level.

Figure 1: The ZINB-WaVE model

- ZINB-WaVE mainly used for normalization and dimensionality reduction but can also be used for DE analysis.
- ▶ Compute weights from the estimated π using Bayes formula.
- If the observed counts are positive, w = 1, otherwise, 0 < w < 1.
- ▶ The higher π , the lower w

- Once we have the weights, fit a negative binomial glm using the weights.
- End-up with a matrix of fitted values.
- Not sparse anymore, look more like bulk RNA-seq data.
 We can use classical tools for differential expression analysis (ex. edgeR or DESeq2 packages in R).

Introduction

Data

Objective

Methodology

ZINB-WaVE

DropLasso (Nima)

Comparison

Conclusions

DropLasso I

- **>** ...
 - ...

DropLasso II

- - ...

DropLasso III

- **...**
 - ...

DropLasso IV

- **...**
- **...**

DropLasso V

- - ...

Introduction

Data

Objective

Methodology

ZINB-WaVE

DropLasso (Nima)

Comparison

Conclusions

ZINB-WaVE v. DropLasso I

- - ٠...

ZINB-WaVE v. DropLasso II

- **...**
 - ...

ZINB-WaVE v. DropLasso III

- **.**..
 - ...

Introduction

Data

Mathadalam

ZINB-WaVE

DropLasso (Nima)

Comparison

Conclusions

- **...**
- **•** ...

References I