Integers & Algorithms base 10 _ evoyday use - Representations in different bases octal/hexadecimal - Base conversion - Algorithms for Unteger operations The Let $b \in \mathcal{I}_{>1}$, $n \in \mathbb{Z}_{+}$, n can be represented uniquely in the form: n = a, b + a = b + 1 + + a, b + a. where L € Z ≥0 $0 \le ai < b$ for each i = 0, ..., k and $a_k \ne 0$ =) b is the base of the representation \Rightarrow $a_o = n \mod b$ "base b exponsion of n" (a_ka_{k-1} ----a, a_o)_b

ex= $(10110)_2$ decimal exponsion = $0.2^\circ + 1.2^! + 1.2^2 + 0.2^3 + 1.2^4$ = 2 + 4 + 16 = 22(43 B) 16 decimal exposion 0 1 2 --- 9 A B C D E F 10 12 13 14 15 11 + $3.16 + 4.16^2 = 1083$ binary exponsion $(1000111011)_2$

an algorithm for constructing bose b Bose conversion exposion of on inteper n n= b. 90 + a0 a0 16 90 = 6.9, + QL (Q = Q = - - Q o) h continue till the quotient is 0 9 = b = 0 + a & ex 1083 what is the octal expossion of 1083 1083 8 -8 -8 -8 -135 -3 -3 1083 = 8. 135 + 3 135 = 8.16 + 7 135 18 16 = 8.2 + 9 2 = 8.0 + 2 $\Rightarrow (2073)_8$ of 13 exposion

(1101)2

13 = 2.6 + 1

6 = 2.3 + 0 3 = 2.1 + 1 1 = 2.0 + 1

Algorithms for integer operations

multiply (a,b)
$$p = 0$$
for $j = 0$ to $n-1$

$$f$$

$$f$$

$$c = a \text{ shifted } j \text{ places}$$

$$p = p + c \quad j \quad O(n)$$
end
end
return p

how may shifts?

how may bit operations?

$$0 \pm 2 - n \pm 1$$
 n^2
 $0(n^2)$ shifts
 $0(n^2)$ bit operations

Modulor Exponentiation

How to efficiently compile
$$b^n \mod m$$
?

 $a_{n-1} = a_{n-1} + a_{n-2} + a_{n-2} + a_{n-1} + a_{n-2} + a$

$$= (5^{24} \mod 11) (5^{28} \mod 11) (5^{28} \mod 11)$$

$$= 5 \cdot 4 \cdot 3 \mod 11$$

$$= 5$$

$$= 5^{28} \pmod 11 = 3$$

$$= 5^{28} \mod 11 = 9$$

$$= (5^{28} \mod 11) (5^{28} \mod 11) = 9$$

$$= (5^{28} \mod 11) (5^{28} \mod 11) = 9$$

$$= (5^{28} \mod 1$$

b mod m, $n = Q_{k-1} 2^{k-1} + Q_{k-2} 2^{k-2} + Q_{0}$ modular exponentiation (b' mod m) X = 1 $P = 0 \mod m$ for $i = 0 \mod m$ $P = (p, p) \mod m$ return X