VBC

Projekt 1 - Golobal optimization toolbox

Zadání projektu

Biologicky inspirované výpočty (VBC)

Pro definované úlohy nalezněte optimální řešení s využitím následujících metaheuristik:

Genetic Algorithm: experimentujte s velikostí populace, selekcí a mutací vs. rychlost konvergence k přijatelnému řešení, inicializace populace bude náhodná, vs. ekvidistantní grid.

Simulated Annealing: pracujte pouze s default nastavením.

Práci realizujete v prostředí Matlab / GOTbx. Výsledky vyhodnoťte s využitím statistiky a vytvořte protokol. Minimální počet restartů RUNs = 1000. Ukončovací kritérium zvolte přesnost. Vyhodnoťte rovněž počet evaluací fitness. Zvolte vlastní parametrizace řešičů, volbu zdůvodněte. Komparativní výsledky budou nejlepší řešení a jejich robustnost. Vždy uveďte pro jaká nastavení algoritmu jsou daná řešení prezentována. Časové hledisko / počet generací.

 F5: De Jong Function No.5: 2D, nalezení optima, vizualizace řešení, průběhu řešení https://www.sfu.ca/~ssurjano/dejong5. html

• F6: Rastrigin's function: 2D, 5D, 10D, 50D, 100D, nalezení optima, vizualizace řešení, průběhu řešení https://www.sfu.ca/~ssurjano/rastr.html

$$f(\mathbf{x}) = 10d + \sum_{i=1}^{d} \left[x_i^2 - 10\cos(2\pi x_i) \right]$$

• F2: Rosenbrock function: 2D, 5D, 10D, 50D, 100D, nalezení optima, vizualizace řešení, průběhu řešení https://www.sfu.ca/~ssurjano/rosen.htm

$$f(\mathbf{x}) = \sum_{i=1}^{d-1} \left[100(x_{i+1} - x_i^2)^2 + (x_i - 1)^2
ight]$$

De Jongova funkce No. 5:

Rastriginova funkce:

$$f(\mathbf{x}) = 10d + \sum_{i=1}^{d} \left[x_i^2 - 10\cos(2\pi x_i) \right]$$

Rosenbrockova funkce:

$$f(\mathbf{x}) = \sum_{i=1}^{d-1} \left[100(x_{i+1} - x_i^2)^2 + (x_i - 1)^2 \right]$$

```
% parametry
max_gen = 1000; % Maximální počet generací pro GA
pop_size = 1000; % Velikost populace pro GA
mutation_rate = 0.1; % Míra mutace pro GA
crossover_rate = 0.8; % Míra křížení pro GA
max_iter = 1000; % Maximální počet iterací pro SA
T0 = 1000; % Počáteční teplota pro SA
```

Obrázek 1 - GA (genetický algoritmus), SA (simulated aneeling)

Obrázek 2 - výsledky po 1000ci opakováních pro 2D problémy

Nastavení algoritmů

Genetický algoritmu

```
options = optimoptions('ga', 'MaxGenerations', max_gen, ...
    'PopulationSize',pop_size, 'CrossoverFraction',crossover_rate,...
    'MutationFcn', {@mutationuniform, mutation_rate});%,'Display','iter');
```

Simulované žíhání – základní nastavení

Počáteční parametry a nastavení algoritmů byly nastaveny podle doporučených nastavení která jsem našel.

Výstupní data

Pro výpočty bylo použito příkazu rng(,default')

Tabulka průměrných výsledků fvals přes n RUNs pro každou funkci, nD a algoritmus

Dims/	De Jong	De Jong	Rastrigin	Rastrigin	Rosenbrock	Rosenbrock
RUNs	(GA)	(SA)	(GA)	(SA)	(GA)	(SA)
2/1000	2,9916e-9	4,7235e-9	0,003986	0,99496	0,0040956	9,5306e-8
5/1000			0,024094	5,9698	0,0050089	0,00018915
10/1000			0,01957	3,9804	0,0050089	0,0092084
50/100			2,1158	31,905	0,0043268	3,3195e-5
100/50			16,144	69,818	0,0043405	1,7808e-6

Tabulka času průběhu

Dims/ RUNs	De Jong (GA)	De Jong (SA)	Rastrigin (GA)	Rastrigin (SA)	Rosenbrock (GA)	Rosenbrock (SA)
2/1000	0:54	0:56	1:20	1:30	1:28	1:08
5/1000			2:54	2:26	0:53	2:41
10/1000			5:45	5:57	1:01	5:41
50/100			3:33	5:11	0:19	3:10
100/50			3:28	10:56	0:12	3:30

Vyhodnocení:

Z testů je jednoznačné že algoritmus simulovaného žíhání (GA) při tomto nastavení je výrazně rychlejší než genetický algoritmus (SA), a to nejvýrazněji u Rastriginovy funkce u vysokých dimenzí.