Assignment 2 (ELEC 341 L2_LaplaceTransform)

Problem 1:

Find the inverse Laplace transform of the following function using tabulated Laplace transform pairs:

$$F_1(s) = 1/(s+3)^2$$

Solution:

we make use of the frequency shift theorem, Item 4 of Table 2, and the Laplace transform of f(t)=tu(t), Item 3 of Table 1. If the inverse transform of $F(s)=1/s^2$ is tu(t), the inverse transform of $F(s+a)=1/(s+a)^2$ is $e^{-at}tu(t)$. Hence, $f_1(t)=e^{-3t}tu(t)$.

Assignment 2 (ELEC 341 L2_LaplaceTransform)

TABLE 1 Laplace transform table

Item no.	f(t)	F(s)
1.	$\delta(t)$	1
2.	u(t)	$\frac{1}{s}$
3.	tu(t)	$\frac{1}{s^2}$
4.	$t^n u(t)$	$\frac{n!}{s^{n+1}}$
5.	$e^{-at}u(t)$	$\frac{1}{s+a}$
6.	$\sin \omega t u(t)$	$\frac{\omega}{s^2 + \omega^2}$
7.	$\cos \omega t u(t)$	$\frac{s}{s^2 + \omega^2}$

TABLE 2 Laplace transform theorems

Item no.		Theorem	Name
1.	$\mathscr{L}[f(t)] = F(s)$	$f(t) = \int_{0-}^{\infty} f(t)e^{-st}dt$	Definition
2.	$\mathscr{L}[kf(t)]$	=kF(s)	Linearity theorem
3.	$\mathcal{L}[f_1(t) + f_2(t)]$	$[f(s)] = F_1(s) + F_2(s)$	Linearity theorem
4.	$\mathcal{L}[e^{-at}f(t)]$	=F(s+a)	Frequency shift theorem
5.	$\mathscr{L}[f(t-T)]$	$=e^{-sT}F(s)$	Time shift theorem
6.	$\mathcal{L}[f(at)]$	$=\frac{1}{a}F\left(\frac{s}{a}\right)$	Scaling theorem
7.	$\mathscr{L}\!\left[\!rac{df}{dt}\! ight]$	= sF(s) - f(0-)	Differentiation theorem
8.	$\mathscr{L}\left[\frac{d^2f}{dt^2}\right]$	$= s^2 F(s) - sf(0-) - f'(0-)$	Differentiation theorem
9.	$\mathscr{L}\left[\frac{d^n f}{dt^n}\right]$	$= s^{n}F(s) - \sum_{k=1}^{n} s^{n-k} f^{k-1}(0-)$	Differentiation theorem
10.	$\mathscr{L}\left[\int_{0-}^{t} f(\tau)d\tau\right]$ $f(\infty)$	$=\frac{F(s)}{s}$	Integration theorem
11.	$f(\infty)$	$=\lim_{s\to 0} sF(s)$	Final value theorem ¹
12.	f(0+)	$=\lim_{s\to\infty}sF(s)$	Initial value theorem ²

¹ For this theorem to yield correct finite results, all roots of the denominator of F(s) must have negative real parts, and no more than one can be at the origin.

²For this theorem to be valid, f(t) must be continuous or have a step discontinuity at t = 0 (that is, no impulses or their derivatives at t = 0).

Assignment 2 (ELEC 341 L2_LaplaceTransform)

Problem 2:

Find the final value of f(t) for the given F(s) without calculating explicitly f(t)

$$F(s) = \frac{2s + 51}{47s^2 + 67s}$$

Solution:

$$f(\infty) = \lim_{s o 0} sF(s) = \lim_{s o 0} rac{2s + 51}{47s + 67} = rac{51}{67}$$