

SigmaStar High Performance IPCAM/PCCAM System-on-Chip

AE/AWB/AF Interface Version 1.2

© 2019 SigmaStar Technology Corp. All rights reserved.

SigmaStar Technology makes no representations or warranties including, for example but not limited to, warranties of merchantability, fitness for a particular purpose, non-infringement of any intellectual property right or the accuracy or completeness of this document, and reserves the right to make changes without further notice to any products herein to improve reliability, function or design. No responsibility is assumed by SigmaStar Technology arising out of the application or use of any product or circuit described herein; neither does it convey any license under its patent rights, nor the rights of others.

SigmaStar is a trademark of SigmaStar Technology Corp. Other trademarks or names herein are only for identification purposes only and owned by their respective owners.

REVISION HISTORY

Revision No.	Description	Date
1.0	Formal release	02/19/2019
1.1	Added 3A RegInterface	03/06/2019
1.2	Updated AF Windows Description	03/14/2019

Signastar Confidential

TABLE OF CONTENTS

RE\	/ISION HISTORY	i
TAE	BLE OF CONTENTS	ii
1.	系統架構	1
2.	AE/AWB 運作流程	2
3.	AE/AWB STATISTIC FORMAT	3
4.	AF STATISTIC FORMAT	4
	4.1. 各 AF Filter 說明	5
5.	AE RESULT	10
6.	AWB RESULT	11
7.	AF RESULT	12
8.	AE,AWB,AF 庫介面	13
	AE 回檔介面	
	AE 資料結構	
11.	AWB 回檔介面	21
12.	AWB 資料結構	23
	AF 回檔介面	
	AF 資料結構	
	SAMPLE CODE	
16.	MI_ISP 設置 AE BLOCK NUMBER	42
	MI_ISP 設置 AE HISTOGRAM WINDOW	
	MI_ISP 設置 AWB SAMPLING	
	MI_ISP 設置 AF FILTER	
	MI_ISP 設置 AF FILTER SQUARE	
21.	MI_ISP 設置 AF ROI MODE	54
22.	MI_ISP 設置 AF WINDOW	57
23	TWINKIF/PRETZEL/MACARON 支援美異別表	61

1. 系統架構

ISP 架構,除主要 ISP 核心外,另外可外掛三種模組。AWB/AE 演算法庫提透過 AWB/AE Interface 與 ISP 連結,客戶可自行開發演算法,ISP 透過 AWB/AE Interface 提供硬體統計值給演算法,演算法回報對應的結果給 ISP, ISP 核心將結果透過適當的方式寫入硬體。Sensor 驅動透過 Sensor Interface 與 ISP 連結,不同型號的 Sensor 必 須實作對應的 Sensor 驅動。

2. AE/AWB 運作流程

客戶程式必須在 MI_SYS_Init()之前透過 CUS3A_RegInterface()註冊演算法庫(callback function),之後 ISP 初始 化階段,ISP 核心透過 init()通知演算法進行初始化工作。當前端 Sensor 開始取影像,ISP 核心會在每偵影像中斷時呼叫演算法 run(),並且將硬體統計值帶入演算法中。當 ISP 關閉時,透過 release()通知演算法釋放所有資源。

流程圖中紅色字體為演算法必須提供的 callback function。

3. AE/AWB STATISTIC FORMAT

AE/AWB 統計值在程式碼中定義如下,每張影像均會產生 128*90 筆取樣資料。 在 Macaron 中,AE 統計值,每張影像只會產生 32*32 筆取樣資料。

```
(128) /**< number of 3A statistic blocks in a row
#define isp 3A ROW
*/
#define isp_3A_COL (90) /**< number of 3A statistic blocks in a
column */ @brief Single AE HW statistics data*/
typedef struct
   U8 r; /** < block pixel R average , <math>0 \sim 255*/
   U8 g;
            /**< block pixel G average , 0\sim255, g=(Gr+Gb+1)>>1*/
            /**< block pixel B average , 0~255*/
   U8 y; /**< block pixel Y average , 0~255, ✓
        y=(Ravg*9 + Gavg*19 + Bavg*4 + 16)>>5 */
} attribute ((packed, aligned(1))) ISP AE SAMPLE;
/*! @brief Single AWB HW statistics data*/
typedef struct
   U8 r; /**<center pixel R value , 0~255
   U8 g; /**<center pixel G value , 0~255
            /**<center pixel B value , 0~255
   U8 b;
} attribute ((packed, aligned(1))) ISP AWB SAMPLE;
```

ISP 會在每次 Frame End 將 AE/AWB 統計值傳給演算法端,資料排列方式如下表。ISP 將影像切為 isp_3A_ROW x isp_3A_COL 區域,並計算每個區域統計值填入

ISP_AWB_INFO::data[isp_3A_ROW*isp_3A_COL]

ISP_AE_INFO::data[isp_3A_ROW*isp_3A_COL]

0	1	2	3	 isp_3A_ROW-1
isp_3A_ROW	isp_3A_ROW +1	isp_3A_ROW +2	isp_3A_ROW +3	 isp_3A_ROW*2-1
isp_3A_ROW*2				
isp_3A_ROW*	isp_3A_ROW*			isp_3A_ROW*
(isp_3A_COL-1)	(isp_3A_COL-1)+1			isp_3A_COL-1

4. AF STATISTIC FORMAT

設置 AF 統計 window(ISP_AF_RECT),提供 16*n(n = 1~16)個 window 可供設置(af_stats_win[16]),每禎會將統計結果 output, output 結構如 ISP_AF_STATS,每個 Window 會 output 6 種 filter 的統計值-

各 filter bit 數表示如下

Filter Bit & Chip Type	Twinkie	Pretzel	Macaron
IIR / Sobel	34	35	35
Luma	34	32	32
YSat	24	22	22

AF ROI Mode = AF_ROI_MODE_NORMAL: 只看CusAFStats_t.stParaAPI[0]
AF ROI Mode = AF_ROI_MODE_MATRIX: 可看CusAFStats t.stParaAPI[0~15]


```
typedef struct {
    MI_U32 u32StartX; /*range : 0~1023*/
    MI_U32 u32StartY; /*range : 0~1023*/
    MI U32 u32EndX;
                      /*range : 0~1023*/
    MI_U32 u32EndY;
                        /*range : 0~1023*/
} AF_WINDOW_PARAM_t;
typedef struct {
   MI U8 u8WindowIndex;
   AF_WINDOW_PARAM_t stParaAPI;
} CusAFWin_t;
                                            typedef struct{
typedef struct{
   MI_U8 high_iir[5*16];
                                                MI_U8 high_iir[6*16];
   MI U8 low iir[5*16];
                                                MI_U8 low_iir[6*16];
   MI_U8 luma[4*16];
                                                MI_U8 luma[6*16];
                                                MI U8 sobel v[6*16];
   MI U8 sobel v[5*16];
                                                MI_U8 sobel_h[6*16];
   MI_U8 sobel_h[5*16];
   MI_U8 ysat[3*16];
                                                MI_U8 ysat[3*16];
                                            } AF STATS PARAM t;
} AF STATS PARAM t;
typedef struct{
                                            typedef struct{
   AF STATS PARAM t stParaAPI[16];
                                                AF STATS PARAM t
stParaAPI;
} CusAFStats_t;
                                            } CusAFStats_t;
```

4.1. 各 AF Filter 說明

參數名稱	描述	輸出/輸入
IIR_1	分區間統計的 AF 水準方向 IIR 濾波器統計值	輸出
IIR_2	分區間統計的 AF 水準方向 IIR 濾波器統計值	輸出
Luma	分區間統計的 AF 亮度統計值	輸出
FIR_H	分區間統計的 AF 水準方向 FIR 濾波器統計值	輸出
FIR_V	分區間統計的 AF 垂直方向 FIR 濾波器統計值	輸出
YSat	分區間統計的 AF FIR 濾波器, 大於 YThd 的統計值個數	輸出

資料範例:

一般場景遠焦:

一般場景近焦:

低亮度場景遠焦:

低亮度場景遠焦+燈源:

5. AE RESULT

當 ISP 呼叫 AE 演算法 run()後,AE 演算法必須提供相對應的結果給 ISP,格式如下。

```
/*! @brief ISP ae algorithm result*/
typedef struct
{
   U32 Size;
                 /**< struct size*/
   U32 Change;
                 /**< if true, apply this result to hw register*
   U32 Shutter; /**< Shutter in us */
   U32 SensorGain; /**< Sensor gain, 1X = 1024 */
   U32 IspGain;
                  /**< ISP gain, 1X = 1024 */
   U32 ShutterHdrShort; /**< Shutter in us */
   U32 SensorGainHdrShort; /**< Sensor gain, 1X = 1024
   U32 IspGainHdrShort; /**< ISP gain, 1X = 1024 */
   U32 u4BVx16384; /**< Bv * 16384 in APEX system, EV = Av + Tv = Sv + Bv */
   U32 AvgY;
                  /**< frame brightness */
   U32 HdrRatio; /**< hdr ratio, 1X = 1024 */
}_attribute__((packed, aligned(1))) ISP_AE_RESULT;
```

Size: ISP_AE_RESULT 長度,用於處理版本向下相容問題。

Change: 若該值為 1, ISP 將此次設定值寫人硬體, 若為 0 ISP 會忽略此次的結果。

Shutter: 設定 Sensor 曝光時間。

SensorGain: 設定 Sensor gain, Digital/Analog gain 分配率由 Sensor 驅動決定。

IspGain: 設定 ISP digital gain。

ShutterHdrShort: 設定短曝 Sensor 曝光時間。

SensorGainHdrShort: 設定短曝 Sensor gain, Digital/Analog gain 分配率由 Sensor 驅動決定。

IspGainHdrShort: 設定短曝 ISP digital gain。

u4BVx16384: 目前場景的亮度值,此處計算公式比照 APEX。此設定值將會被 IQ 演算法參考。

AvgY:此張影像的平均灰階亮度,此設定值將會被 IQ 演算法參考。

HdrRatio:此張影像的 HDR 長短曝比例,此設定值將會被 IQ 演算法參考。

AE/AWB/AF Interface Version 1.2

6. AWB RESULT

當 ISP 呼叫 AWB 演算法 run()後,AWB 演算法必須提供相對應的結果給 ISP,格式如下。

Size: ISP_AWB_RESULT 長度,用於處理版本向下相容問題。

Change: 若該值為 1, ISP 將此次設定值寫入硬體, 若為 0, ISP 會忽略此次的結果。

R_gain: R channel 增益。 G_gain: G channel 增益。 B_gain: B channel 增益。 ColorTmp: 目前場景色溫。

7. AF RESULT

當 ISP 呼叫 AF 演算法 run()後,AF 演算法必須提供相對應的結果給 ISP,格式如下。

```
/*! @brief AF algorithm result*/
typedef struct
                 /**< if true, apply this result to hw*/
   U32 Focal_pos; /**< Focal position*/
}__attribute__((packed, aligned(1))) ISP_AF_RESULT;
```

Change: 若該值為 1,通知 AF 演算出的焦距(Focal_pos)生效

Focal_pos: AF 演算法算出的焦距結果。

3/14/2019

8. AE,AWB,AF 庫介面

int CUS3A_RegInterface(U32 nCh, ISP_AE_INTERFACE *pAe, ISP_AWB_INTERFACE *pAwb, ISP_AF_INTERFACE *pAf)

int CUS3A_AERegInterface(u32 nCh,ISP_AE_INTERFACE *pAE); int CUS3A_AWBRegInterface(u32 nCh,ISP_AWB_INTERFACE *pAWB); int CUS3A_AFRegInterface(u32 nCh,ISP_AF_INTERFACE *pAF);

說明:

ISP 提供 AE,AWB,AF 庫註冊介面 可使用 *CUS3A_RegInterface* - 次註冊 AE, AWB, AF 或使用 *CUS3A_AERegInterface* • *CUS3A_AWBRegInterface* • *CUS3A_AFRegInterface* 來分別註冊 AE, AWB, AF

參數:

參數名稱	描述	輸出/輸入
nCh	nCh = 0	輸入
рАе	演算法實作端提供 AE 庫指針,若不需註冊,則填 NULL	輸入
pAwb	演算法實作端提供 AWB 庫指針,若不需註冊,則填 NULL	輸入
pAf	演算法實作端提供 AF 庫指針,若不需註冊,則填 NULL	輸入

返回值:

返回值	描述
0	註冊成功
<0	註冊失敗

9. AE 回檔介面

int (*init)(void* pdata,ISP_AE_INIT_PARAM *init_state)

說明:

ISP 透過此介面通知 AE 庫進行初始化

參數:

		
参數名稱	描述	輸出/輸入
pdata	演算法私有資料指標	輸入
init_state	AE 初始值	輸入

返回值:

返回值	描述	
0	初始化成功	
-1	初始化失敗	

void (*release)(void* pdata)

說明:

ISP 透過此介面通知 AE 庫進行釋放程式

參數:

参數名稱	描述	輸出/輸入
pdata	演算法私有資料指標	輸入

void (*run)(void* pdata,const ISP_AE_INFO *info,ISP_AE_RESULT *result)

說明:

ISP 透過此介面呼叫 AE 庫進行運算

參數:

参數名稱	描述	輸出/輸入
pdata	演算法私有資料指標	輸入
info	ISP AE 統計值資料結構指標	輸入
result	ISP AE 計算結果資料結構指標	輸出

int (*ctrl)(void* pdata,ISP_AE_CTRL_CMD cmd,void* param)

說明:

ISP 透過此介面控制 AE 參數

參數:

参數名稱	描述	輸出/輸入
pdata	演算法私有資料指標	輸入
cmd	AE 控制指令	輸入
param	AE 控制指令參數	輸入

10. AE 資料結構

ISP_AE_INTERFACE

說明:

AE 庫註冊結構體,演算法需實作並且填寫 init,release,run,ctrl 回檔指針,供 ISP 呼叫。

宣告:

```
/**@brief ISP AE interface*/
typedef struct
{
    void *pdata; /**< Private data for AE algorithm.*/
    int (*init)(void* pdata, ISP_AE_INIT_PARAM *init_state);
    void (*release)(void* pdata);
    void (*run)(void* pdata, const ISP_AE_INFO *info, ISP_AE_RESULT *result);
    int (*ctrl)(void* pdata, ISP_AE_CTRL_CMD cmd, void* param);
} ISP_AE_INTERFACE;</pre>
```

名稱	描述
pdata	AE 庫私有數據指標
init	AE 庫初始化回檔指標
release	AE 庫釋放回檔指針
run	AE 庫計算回檔指標,當 ISP 收到一偵影像統計值時,透過該指標要求 AE 演算法進行計算。
ctrl	AE 庫控制回檔指標

ISP_AE_INIT_PARAM

說明:

ISP 透過此結構,告知 AE 演算法相關硬體初始狀態

宣告:

```
typedef struct
{
   U32 Size;
                                /**< struct size*/
                                    /**< sensor module id*/</pre>
   char sensor_id[32];
   U32 shutter;
                                /**< shutter Shutter in us*/
   U32 shutter_step;
                                /**< shutter Shutter step <a href="mailto:ns">ns</a>*/
   U32 shutter_min;
                                /**< shutter Shutter min us*/
   U32 shutter_max;
                                /**< shutter Shutter max us*/
   U32 sensor_gain;
                                /**< sensor_gain Sensor gain, 1X = 1024*/
                                /**< sensor_gain_max Maximum Sensor gain, 1X = 1024*/</pre>
   U32 sensor_gain_max;
   U32 isp_gain;
                                /**< isp_gain <u>Isp</u> digital gain , 1X = 1024 */
   U32 isp_gain_max;
                                /**< isp_gain Maximum Isp digital gain , 1X = 1024 */</pre>
                                /**< F number * 10*/
   U32 FNx10;
   U32 fps;
                                /**< initial frame per second*/
}ISP_AE_INIT_PARAM;
```

参數名稱	描述	輸出/輸入
Size	ISP_AE_INIT_PARAM 結構長度	輸入
sensor_id[32]	Image sensor 名稱	輸入
shutter	曝光時間初始值 us	輸入
shutter_step	曝光時間步距 ns	輸入
shutter_min	最小曝光時間 us	輸入
shutter_max	最長曝光時間 us	輸入
sensor_gain	Sensor 增益初始值	輸入
sensor_gain_max	Sensor 增益最大值	輸入
isp_gain	lsp 增益初始值	輸入
isp_gain_max	Isp 增益最大值	輸入
FNx10	光圈值*10	輸入
fps	每秒影像偵數	輸入

ISP_AE_INFO

說明:

ISP AE 硬體統計值

宣告:

```
/*! @brief ISP report to AE, hardware statistic */
typedef struct
                 /**< <u>struct</u> size*/
   U32 Size;
   ISP_HIST *hist1; /**< HW statistic histogram 1*/</pre>
   ISP_HIST *hist2; /**< HW statistic histogram 2*/</pre>
   U32 AvgBlkX; /**< HW statistics average block number*/
   U32 AvgBlkY; /**< HW statistics average block number*/
   ISP_AE_SAMPLE *avgs; /**< HW statistics average block data*/</pre>
                                  /**< Current shutter in us*/
   U32 Shutter;
   U32 SensorGain;
                                /**< Current Sensor gain, 1X = 1024 */
   U32 IspGain;
                                  /**< Current ISP gain, 1X = 1024*/
                                 /**< Current shutter in us*/
   U32 ShutterHDRShort;
   U32 SensorGainHDRShort;
                                /**< Current Sensor gain, 1X = 1024 */
   U32 IspGainHDRShort;
                                  /**< Current ISP gain, 1X = 1024*/
} __attribute__((packed, aligned(1))) ISP_AE_INFO;
```

参數名稱	描述	輸出/輸入
Size	ISP_AE_INFO 結構長度	輸入
hist1	Histogram 1	輸入
hist2	Histogram 2 (Macaron not support)	輸入
AvgBlkX	横向切割數量	輸入
AvgBlkY	縱向切割數量	輸入
avgs	區塊亮度統計值	輸入
Shutter	統計值發生時的曝光時間 us	輸入
SensorGain	統計值發生時的 Sensor Gain 1X=1024	輸入
IspGain	統計值發生時的 Isp Gain 1X=1024	輸入
ShutterHDRShort	統計值發生時的曝光時間 us (HDR short)	輸入
SensorGainHDRShort	統計值發生時的 Sensor Gain 1X=1024 (HDR short)	輸入
IspGainHDRShort	統計值發生時的 Isp Gain 1X=1024 (HDR short)	輸入

ISP_AE_RESULT

說明:

ISP AE 演算法計算結果

宣告:

```
/*! @brief ISP ae algorithm result*/
typedef struct
                         /**< <pre>struct size*/
      U32 Size;
      U32 Change;
                               /**< if true, apply this result to <a href="https://www.negister*/">hw register*/</a>
      U32 Shutter;
                             /**< Shutter in us */
                             /**< Sensor gain, 1X = 1024 */
      U32 SensorGain;
      U32 IspGain;
                             /**< ISP gain, 1X = 1024 */
      U32 ShutterHdrShort;
                                  /**< Shutter in us */
      U32 SensorGainHdrShort; /**< Sensor gain, 1X = 1024 */
      U32 IspGainHdrShort; /**< ISP gain, 1X = 1024 */
                             /**< \underline{Bv} * 16384 in APEX system, \underline{EV} = \underline{Av} + \underline{Tv} = \underline{Sv} + \underline{Bv} */
      U32 u4BVx16384;
                             /**< frame brightness */
      U32 AvgY;
      U32 HdrRatio; /**< hdr ratio, 1X = 1024 */
}_attribute_((packed, aligned(1))) ISP_AE_RESULT;
```

參數名稱	描述	輸出/輸入
Size	ISP_AE_RESULT 結構長度	輸入
Change	通知 ISP 此次計算結果是否要套用到硬體	輸出
Shutter	AE 演算法回報曝光時間 us	輸出
SensorGain	AE 演算法回報 Sensor 增益 1X=1024	輸出
IspGain	AE 演算法回報 ISP 增益 1X=1024	輸出
ShutterHdrShort	AE 演算法回報曝光時間 us (HDR Short)	輸出
SensorGainHdrShort	AE 演算法回報 Sensor 增益 1X=1024 (HDR Short)	輸出
IspGainHdrShort	AE 演算法回報 ISP 增益 1X=1024 (HDR Short)	輸出
u4Bvx16384	AE 演算法回報目前場景亮度估測值	輸出
AvgY	AE 演算法回報目前影像平均亮度	輸出
HdrRatio	AE 演算法回報目前影像 HDR 長短曝比例 1x=1024	輸出

ISP_AE_CTRL_CMD

說明:

AE 控制指令,ISP 透過回檔介面 int (*ctrl)(void* pdata,ISP_AE_CTRL_CMD cmd,void* param) 設定 AE 參數,參數 param 型態隨不同的控制命令改變。

宣告:

```
typedef enum
{
     ISP_AE_FPS_SET, /**< ISP notify AE sensor FPS has changed*/
}ISP_AE_CTRL_CMD;</pre>
```

數值:

名稱	描述	參數型態
ISP_AE_FPS_SET	ISP 通知 AE 庫目前的 FPS 更動	U32

11. AWB 回檔介面

int (*init)(void* pdata)

說明:

ISP 透過此介面通 AWB 庫進行初始化

參數:

參數名稱	描述	輸出/輸入
pdata	演算法私有資料指標	輸入

返回值:

返回值	描述	
0	初始化成功	
-1	初始化失敗	

void (*release)(void* pdata)

說明:

ISP 透過此介面通知 AWB 庫進行釋放程式

參數:

参數名稱	描述	輸出/輸入
pdata	演算法私有資料指標	輸入

3/14/2019

void (*run)(void* pdata,const ISP_AWB_INFO *awb_info,const ISP_AE_INFO *ae_info,ISP_AWB_RESULT *result)

說明:

ISP 透過此介面呼叫 AWB 庫進行運算

參數:

参數名稱	描述	輸出/輸入
pdata	演算法私有資料指標	輸入
awb_info	ISP AWB 統計值資料結構指標	輸入
ae_info	ISP AE 統計值資料結構指標	輸入
result	ISP AWB 計算結果資料結構指標	輸出

int (*ctrl)(void* pdata,ISP_AWB_CTRL_CMD cmd,void* param)

說明:

ISP 透過此介面控制 AWB 參數

返回值:

返回值	描述
0	控制指令成功
<0	註冊失敗

參數:

参數名稱	描述	輸出/輸入
pdata	演算法私有資料指標	輸入
cmd	AWB 控制指令	輸入
param	AWB 控制指令參數	輸入

12. AWB **資料結構**

ISP_AWB_INTERFACE

說明:

AWB 庫註冊結構體,演算法需實作並且填寫 init,release,run,ctrl 回檔指針,供 ISP 呼叫。

宣告:

```
typedef struct
{
    void *pdata; /**< Private data for AE algorithm.*/
    int (*init)(void *pdata);
    void (*release)(void *pdata);
    void (*run)(void *pdata, const ISP_AWB_INFO *awb_info, const ISP_AE_INFO *ae_info,
    ISP_AWB_RESULT *result);
    int (*ctrl)(void *pdata, ISP_AWB_CTRL_CMD cmd, void* param);
} ISP_AWB_INTERFACE</pre>
```

名稱	描述
pdata	AWB 庫私有數據指標
init	AWB 庫初始化回檔指標
release	AWB 庫釋放回檔指針
run	AWB 庫計算回檔指標,當 ISP 收到一偵影像統計值時,透過該指標要求 AWB 演算法進行計算。
ctrl	AWB 庫控制回檔指標

ISP_AWB_INFO

說明:

ISP AWB 硬體統計值

宣告:

```
/*! @brief AWB HW statistics data*/
typedef struct
{
     U32 AvgBlkX;
     U32 AvgBlkY;
     U32 CurRGain;
     U32 CurGGain;
     U32 CurBGain;
     ISP_AWB_SAMPLE *avgs;
}_attribute__((packed, aligned(1))) ISP_AWB_INFO;
```

参數名稱	描述	輸出/輸入
AvgBlkX	横向切割數量	輸入
AvgBlkY	縱向切割數量	輸入
avgs	ISP AWB 區塊 RGB 統計值	輸入

ISP_AWB_RESULT

說明:

ISP AWB 演算法計算結果

宣告:

```
/*! @brief AWB algorithm result*/
typedef struct
{
    U32 Size;     /**< struct size*/
    U32 Change;     /**< if true, apply this result to hw register*/
    U32 R_gain;     /**< AWB gain for R channel*/
    U32 G_gain;     /**< AWB gain for G channel*/
    U32 B_gain;     /**< AWB gain for B channel*/
    U32 ColorTmp;     /**< Return color temperature*/
} ISP_AWB_RESULT;</pre>
```

参數名稱	描述	輸出/輸入
Size	ISP_AWB_RESULT 結構長度	輸入
Change	通知 ISP 此次計算結果是否要套用到硬體	輸出
R_gain	AWB 演算法回報 AWB R 增益 1X = 1024	輸出
G_gain	AWB 演算法回報 AWB G 增益 1X = 1024	輸出
B_gain	AWB 演算法回報 AWB B 增益 1X = 1024	輸出
ColorTmp	AWB 演算法回報目前場景色溫 K	輸出

ISP_AWB_CTRL_CMD

說明:

AWB 控制指令, ISP 透過回檔介面 int (*ctrl)(void* pdata,ISP_AWB_CTRL_CMD cmd,void* param) 設定 AE 參數,參數 param 型態隨不同的控制命令改變。

宣告:

```
typedef enum
   ISP_AWB_MODE_SET,
}ISP_AWB_CTRL_CMD;
```

數值

名稱	描述	K)		參數型態
ISP_AWB_MODE_SET	ISP 通知 AWB 庫目前的 AWB 模式更動		>	U32

13. AF 回檔介面

int (*init)(void* pdata, ISP_AF_INIT_PARAM *param)

說明:

ISP 透過此介面通 AF 庫進行初始化

參數:

参數名稱	描述	輸出/輸入
pdata	演算法私有資料指標	輸入
param	AF 初始設定	輸入/出

返回值:

返回值	描述	
0	初始化成功	0
-1	初始化失敗	

void (*release)(void* pdata)

說明:

ISP 透過此介面通知 AF 庫進行釋放程式

參數:

参數名稱	描述	輸出/輸入
pdata	演算法私有資料指標	輸入

void (*run)(void* pdata,const ISP_AF_INFO *af_info ,ISP_AF_RESULT *result)

說明:

ISP 透過此介面呼叫 AF 庫進行運算

參數:

參數名稱	描述	輸出/輸入
pdata	演算法私有資料指標	輸入
af_info	ISP AF 統計值資料結構指標	輸入
result	ISP AF 計算結果資料結構指標	輸出

int (*ctrl)(void* pdata,ISP_AF_CTRL_CMD cmd,void* param) (Reserve)

說明:

ISP 透過此介面控制 AF 參數

返回值:

返回值	描述	
0	控制指令成功	
<0	註冊失敗	

參數:

参數名稱	描述	輸出/輸入
pdata	演算法私有資料指標 (Reserve)	輸入
cmd	AF 控制指令 (Reserve)	輸入
param	AF 控制指令參數 (Reserve)	輸入

14. AF 資料結構

ISP AF INTERFACE

說明:

AF 庫註冊結構體,演算法需實作並且填寫 init,release,run,ctrl 回檔指針,供 ISP 呼叫。

宣告:

```
typedef struct isp_af_interface
{
    void *pdata; /**< Private data for AF algorithm.*/
    int (*init)(void *pdata);
    void (*release)(void *pdata);
    void (*run)(void *pdata,const ISP_AF_INFO *af_info, ISP_AF_RESULT *result);
    int (*ctrl)(void *pdata,ISP_AF_CTRL_CMD cmd,void* param);
}ISP_AF_INTERFACE;</pre>
```

名稱	描述
pdata	AF 庫私有數據指標
init	AF 庫初始化回檔指標
release	AF 庫釋放回檔指針
run	AF 庫計算回檔指標,當 ISP 收到一偵影像統計值時,透過該指標要求 AF 演算法進行計算。
ctrl	AF 庫控制回檔指標

ISP_AF_INFO

說明:

ISP AF 硬體統計值

宣告:

```
/*! @brief AF HW statistics data*/
typedef struct
{

U32 Size; /**< struct size*/
ISP_AF_STATS af_stats; /**< AF statistic*/
} attribute ((packed, aligned(1))) ISP AF INFO;
```

成員:

參數名稱	描述	輸出/輸入
Size	ISP_AF_INFO 資料結構長度	輸入
af_stats	ISP AF 統計值	輸出

ISP_AF_STATS

說明:

ISP AF 硬體統計值

宣告:

```
typedef struct{
     U32 iir_1[16]; /*AF horizontal IIR filter statistic*/
     U32:32;
     U32:32;
     U32 iir_2[16]; /*AF horizontal IIR filter statistic*/
     U32:32;
     U32:32;
     U32 luma[16]; /*AF luma statistic*/
     U32:32;
     U32:32;
     U32 FIR_v[16]; /*AF FIR vertical filter statistic*/
     U32:32;
     U32:32;
     U32 FIR_h[16]; /*AF FIR horizontal filter statistic*/
     U32:32;
     U32:32;
}ISP_AF_STATS;
```


成員:

參數名稱	描述	輸出/輸入
IIR_1	分區間統計的 AF 水準方向 IIR 濾波器統計值	輸出
IIR_2	分區間統計的 AF 水準方向 IIR 濾波器統計值	輸出
Luma	分區間統計的 AF 亮度統計值	輸出
FIR_h	分區間統計的 AF 水準方向 FIR 濾波器統計值	輸出
FIR_v	分區間統計的 AF 垂直方向 FIR 濾波器統計值	輸出
YSat	分區間統計的 AF FIR 濾波器,大於 YThd 的統計值個數	輸出

- * IIR 1 default 為 IIR Low, IIR 2 default 為 IIR High
- * 每個 filter 都是 16 組,前面九個預設對應畫面的九宮格分割位置,第 16 個是自訂使用的,通常是拿來做 touch AF。
- * IIR FIR 數值越高代表畫面就越清晰。Luma 表示亮度。

使用參考:

區間加權權重: 建議"中央權重"。

統計值: 建議常時使用 IIR_1 (IIR Low)。

IIR_2 (IIR High) 在清晰時會有明顯變化,但模糊時幾乎不變動,適合做最清晰位置判斷。

FIR 會有偏性,僅適合做強度變化參考。

ISP_AF_RESULT

說明:

ISP AF 演算法計算結果

宣告:

```
/*! @brief AF algorithm result*/
typedef struct
{

U32 Change; /**< if true, apply this result to hw*/
U32 Focal_pos; /**< Focal position*/
}__attribute__((packed, aligned(1))) ISP_AF_RESULT;
```

参數名稱	描述	輸出/輸入
Change	通知 ISP 此次計算結果是否要套用到硬體	輸出
Focal_pos	AF 演算法演算出的對焦 position	輸出

15. SAMPLE CODE

```
#include <mi_isp.h>
//// AE INTERFACE TEST ////
int ae_init(void* pdata, ISP_AE_INIT_PARAM *init_state)
   printf("*****
ae_init ,shutter=%d,shutter_step=%d,sensor_gain_min=%d,sensor_gain_max=%d *******\n",
          (int)init state->shutter,
          (int)init_state->shutter_step,
          (int)init_state->sensor_gain,
          (int)init_state->sensor_gain_max
         );
   return 0;
}
void ae_run(void* pdata, const ISP_AE_INFO *info, ISP_AE_RESULT *result)
#define log_info 1
   // Only one can be chosen (the following three define)
#define shutter_test 0
#define gain test 0
#define AE sample 1
#if (shutter_test) || (gain_test)
   static int AE_period = 4;
#endif
   static unsigned int fcount = 0;
   unsigned int max = info->AvgBlkY * info->AvgBlkX;
   unsigned int avg = 0;
   unsigned int n;
#if gain_test
   static int tmp = 0;
   static int tmp1 = 0;
#endif
                               = 0;
   result->Change
   result->u4BVx16384
                               = 16384;
                               = 10; //infinity5 //TBD //10 * 1024; //user define hdr
   result->HdrRatio
exposure ratio
   result->IspGain
                               = 1024;
   result->SensorGain
                               = 4096;
                               = 20000;
   result->Shutter
   result->IspGainHdrShort
                               = 1024;
   result->SensorGainHdrShort = 1024;
   result->ShutterHdrShort
                               = 1000;
   //result->Size
                          = sizeof(CusAEResult_t);
```



```
for(n = 0; n < max; ++n)
       avg += info->avgs[n].y;
   }
   avg /= max;
   result->AvgY
                        = avg;
#if shutter_test // shutter test under constant sensor gain
   int Shutter_Step = 100; //per frame
   int Shutter_Max = 33333;
   int Shutter_Min = 150;
   int Gain Constant = 10240;
   result->SensorGain = Gain_Constant;
   result->Shutter = info->Shutter;
   if(++fcount % AE_period == 0)
   {
       if (tmp == 0)
       {
           result->Shutter = info->Shutter + Shutter_Step * AE_period;
           //printf("[shutter-up] result->Shutter = %d \n", result->SensorGain);
       }
       else
           result->Shutter = info->Shutter - Shutter_Step * AE_period;
           //printf("[shutter-down] result->Shutter = %d \n", result->SensorGain);
       if (result->Shutter >= Shutter_Max)
           result->Shutter = Shutter_Max;
           tmp = 1;
       if (result->Shutter <= Shutter_Min)</pre>
           result->Shutter = Shutter Min;
           tmp = 0;
       }
   }
#if log_info
   printf("fcount = %d, Image avg = 0x%X \n", fcount, avg);
   printf("tmp = %d, Shutter: %d -> %d \n", tmp, info->Shutter, result->Shutter);
#endif
#endif
#if gain_test // gain test under constant shutter
   int Gain Step = 1024; //per frame
   int Gain_Max = 1024 * 100;
   int Gain Min = 1024 * 2;
   int Shutter_Constant = 20000;
   result->SensorGain = info->SensorGain;
   result->Shutter = Shutter_Constant;
```



```
if(++fcount % AE period == 0)
       if (tmp1 == 0)
           result->SensorGain = info->SensorGain + Gain_Step * AE_period;
           //printf("[gain-up] result->SensorGain = %d \n", result->SensorGain);
       }
       else
       {
           result->SensorGain = info->SensorGain - Gain_Step * AE_period;
           //printf("[gain-down] result->SensorGain = %d \n", result->SensorGain);
       if (result->SensorGain >= Gain_Max)
           result->SensorGain = Gain Max;
           tmp1 = 1;
       if (result->SensorGain <= Gain_Min)</pre>
           result->SensorGain = Gain_Min;
           tmp1 = 0;
       }
   }
#if log_info
   printf("fcount = %d, Image avg = 0x%X \n", fcount, avg);
   printf("tmp = %d, SensorGain: %d -> %d \n", tmp, info->SensorGain, result-
>SensorGain);
#endif
#endif
#if AE_sample
   int y_lower = 0x28;
   int y_{upper} = 0x38;
   int change_ratio = 10; // percentage
   int Gain_Min = 1024 * 2;
   int Gain_Max = 1024 * 1000;
   int Shutter_Min = 150;
   int Shutter Max = 33333;
   result->SensorGain = info->SensorGain;
   result->Shutter = info->Shutter;
   if(avg < y_lower)</pre>
       if (info->Shutter < Shutter Max)</pre>
           result->Shutter = info->Shutter + (info->Shutter * change_ratio / 100);
           if (result->Shutter > Shutter_Max) result->Shutter = Shutter_Max;
       }
       else
           result->SensorGain = info->SensorGain + (info->SensorGain * change_ratio /
100);
           if (result->SensorGain > Gain_Max) result->SensorGain = Gain_Max;
       result->Change = 1;
```



```
else if(avg > y_upper)
       if (info->SensorGain > Gain Min)
           result->SensorGain = info->SensorGain - (info->SensorGain * change_ratio /
100);
           if (result->SensorGain < Gain_Min) result->SensorGain = Gain_Min;
       }
       else
       {
           result->Shutter = info->Shutter - (info->Shutter * change_ratio / 100);
           if (result->Shutter < Shutter_Min) result->Shutter = Shutter_Min;
       result->Change = 1;
   }
#if 0 //infinity5 //TBD
   //hdr demo code
   result->SensorGainHdrShort = result->SensorGain;
   result->ShutterHdrShort = result->Shutter * 1024 / result->HdrRatio;
#endif
#if log_info
   printf("fcount = %d, Image avg = 0x%X \n", fcount, avg);
   printf("SensorGain: %d -> %d \n", (int)info->SensorGain, (int)result->SensorGain);
   printf("Shutter: %d -> %d \n", (int)info->Shutter, (int)result->Shutter);
#endif
#endif
}
void ae release(void* pdata)
{
   printf("******** ae release *********\n");
}
//// AWB INTERFACE TEST ////
int awb_init(void *pdata)
{
   printf("******** awb init ********\n");
   return 0;
}
```



```
void awb run(void* pdata, const ISP AWB INFO *info, ISP AWB RESULT *result)
#define log_info 1
   static u32 count = 0;
   int avg_r = 0;
   int avg_g = 0;
   int avg_b = 0;
   int tar_rgain = 1024;
   int tar_bgain = 1024;
   int x = 0;
   int y = 0;
   result->R gain = info->CurRGain;
   result->G_gain = info->CurGGain;
   result->B_gain = info->CurBGain;
   result->Change = 0;
   result->ColorTmp = 6000;
   if (++count % 4 == 0)
   {
       //center area YR/G/B avg
       for (y = 30; y < 60; ++y)
       {
           for (x = 32; x < 96; ++x)
               avg_r += info->avgs[info->AvgBlkX * y + x].r;
               avg_g += info->avgs[info->AvgBlkX * y + x].g;
               avg_b += info->avgs[info->AvgBlkX * y + x].b;
           }
       }
       avg_r /= 30 * 64;
       avg_g /= 30 * 64;
       avg_b /= 30 * 64;
       if (avg_r < 1)
           avg_r = 1;
       if (avg g < 1)
           avg_g = 1;
       if (avg_b < 1)
           avg_b = 1;
#if log info
       printf("AVG R / G / B = %d, %d, %d \n", avg_r, avg_g, avg_b);
#endif
       // calculate <a href="Rgain">Rgain</a>, <a href="Bgain">Bgain</a>
       tar_rgain = avg_g * 1024 / avg_r;
       tar_bgain = avg_g * 1024 / avg_b;
       if (tar_rgain > info->CurRGain)
           if (tar_rgain - info->CurRGain < 384)</pre>
               result->R_gain = tar_rgain;
               result->R gain = info->CurRGain + (tar rgain - info->CurRGain) / 10;
```



```
}
       else
       {
           if (info->CurRGain - tar_rgain < 384)</pre>
              result->R_gain = tar_rgain;
           else
               result->R_gain = info->CurRGain - (info->CurRGain - tar_rgain) / 10;
       }
       if (tar_bgain > info->CurBGain)
           if (tar_bgain - info->CurBGain < 384)</pre>
               result->B_gain = tar_bgain;
           else
               result->B_gain = info->CurBGain + (tar_bgain - info->CurBGain) / 10;
       }
       else
       {
           if (info->CurBGain - tar_bgain < 384)</pre>
               result->B_gain = tar_bgain;
           else
               result->B_gain = info->CurBGain - (info->CurBGain - tar_bgain) / 10;
       }
       result->Change = 1;
       result->G gain = 1024;
#if log info
       printf("[current] r=%d, g=%d, b=%d \n", (int)info->CurRGain, (int)info->CurGGain,
(int)info->CurBGain);
       printf("[result] r=%d, g=%d, b=%d \n", (int)result->R_gain, (int)result->G_gain,
(int)result->B gain);
#endif
   }
}
void awb release(void *pdata)
{
   printf("******** awb release ********\n");
}
//// AF INTERFACE TEST ////
int af_init(void *pdata, ISP_AF_INIT_PARAM *param)
{
   MI U32 u32ch = 0;
   MI_U8 u8win_idx = 16;
   CusAFRoiMode_t taf_roimode;
   CusAFWin_t taf_win;
   printf("******** af init ********\n");
#if 0
   //Init Normal mode setting
   taf_roimode.mode = AF_ROI_MODE_NORMAL;
   taf_roimode.u32_vertical_block_number = 1;
```



```
MI ISP CUS3A SetAFRoiMode(u32ch, &taf roimode);
   static CusAFWin t afwin[16] =
                      0, 255,
                               255}},
       { 0, {
                0,
                      0, 511,
       { 1, { 256,
                                255}},
       { 2, { 512,
                      0, 767,
                                255}},
                      0, 1023,
       { 3, { 768,
                                255}},
       { 4, {
               0,
                    256,
                         255,
                                511}},
       { 5, { 256,
                    256, 511,
                                511}},
       { 6, { 512,
                    256, 767,
                                511}},
                    256, 1023,
       { 7, { 768,
                                511}},
                    512, 255,
       { 8, {
                0,
                                767}},
                                767}},
       { 9, { 256,
                    512,
                         511,
       {10, {512,
                    512, 767,
                                767}},
                    512, 1023, 767}},
       {11, { 768,
       {12, {
              0,
                    768, 255, 1023}},
       {13, { 256,
                    768, 511, 1023}},
                    768, 767, 1023}},
       {14, {512,
                    768, 1023, 1023}}
       {15, { 768,
   };
   for(u8win_idx = 0; u8win_idx < 16; ++u8win_idx){</pre>
       MI_ISP_CUS3A_SetAFWindow(u32ch, &afwin[u8win_idx]);
   }
#else
   //Init Matrix mode setting
   taf roimode.mode = AF ROI MODE MATRIX;
   taf_roimode.u32_vertical_block_number = 16; //16xN, N=16
   MI_ISP_CUS3A_SetAFRoiMode(u32ch, &taf_roimode);
   static CusAFWin_t afwin[16] =
   {
       #if 1
       //full image, equal divide to 16x16
       \{0, \{0, 0, 63, 63\}\},\
       {1, {64, 64, 127, 127}},
       {2, {128, 128, 191, 191}},
       {3, {192, 192, 255, 255}},
       {4, {256, 256, 319, 319}},
       {5, {320, 320, 383, 383}},
       {6, {384, 384, 447, 447}},
       {7, {448, 448, 511, 511}},
       {8, {512, 512, 575, 575}},
       {9, {576, 576, 639, 639}},
       {10, {640, 640, 703, 703}},
       {11, {704, 704, 767, 767}},
       {12, {768, 768, 831, 831}},
       {13, {832, 832, 895, 895}},
       {14, {896, 896, 959, 959}},
       {15, {960, 960, 1023, 1023}}
       #else
       //use two row only => 16x2 win
       {0, {0, 0, 63, 63}},
       {1, {64, 64, 127, 127}},
       {2, {128, 0, 191, 2}},
                                   //win2 v str, v end doesn't use, set to (0, 2)
```



```
{3, {192, 0, 255, 2}},
       {4, {256, 0, 319, 2}},
       {5, {320, 0, 383, 2}},
       \{6, \{384, 0, 447, 2\}\},\
       {7, {448, 0, 511, 2}},
       {8, {512, 0, 575, 2}},
       {9, {576, 0, 639, 2}},
       {10, {640, 0, 703, 2}},
       {11, {704, 0, 767, 2}},
       {12, {768, 0, 831, 2}},
       {13, {832, 0, 895, 2}},
       {14, {896, 0, 959, 2}},
       {15, {960, 0, 1023, 2}}
       #endif
   };
   for(u8win_idx = 0; u8win_idx < 16; ++u8win_idx){</pre>
       MI_ISP_CUS3A_SetAFWindow(u32ch, &afwin[u8win_idx])
#endif
   static CusAFFilter_t affilter =
       //filter setting with sign value
       //{63, -126, 63, -109, 48, 0, 320, 0, 1023},
       //{63, -126, 63, 65, 55, 0, 320, 0, 1023}
       //convert to hw format (sign bit with msb)
       63, 126+1024, 63, 109+128, 48, 0, 320, 0, 1023,
       63, 126+1024, 63, 65, 55, 0, 320, 0, 1023,
   };
   MI_ISP_CUS3A_SetAFFilter(0, &affilter);
   return 0;
}
void af_run(void *pdata, const ISP_AF_INFO *af_info, ISP_AF_RESULT *result)
   #define af_log_info 1
#if af_log_info
   int i=0, x=0;
   printf("\n\n");
   //print row0 16wins
   x=0;
   for (i=0; i<16; i++){
       printf("[AF]win%d-%d iir0: 0x%02x%02x%02x%02x, iir1:0x%02x%02x%02x%02x,
luma:0x%02x%02x%02x, sobelh:0x%02x%02x%02x%02x%02x, sobelv:0x%02x%02x%02x%02x
ysat:0x%02x%02x%02x\n",
           af_info->af_stats.stParaAPI[x].high_iir[4+i*5],af_info-
>af_stats.stParaAPI[x].high_iir[3+i*5],af_info-
>af_stats.stParaAPI[x].high_iir[2+i*5],af_info-
```



```
>af_stats.stParaAPI[x].high_iir[1+i*5],af_info->af_stats.stParaAPI[x].high_iir[0+i*5],
           af_info->af_stats.stParaAPI[x].low_iir[4+i*5],af_info-
>af stats.stParaAPI[x].low iir[3+i*5],af info-
>af stats.stParaAPI[x].low iir[2+i*5],af info-
>af_stats.stParaAPI[x].low_iir[1+i*5],af_info->af_stats.stParaAPI[x].low_iir[0+i*5],
           af_info->af_stats.stParaAPI[x].luma[3+i*4],af_info-
>af_stats.stParaAPI[x].luma[2+i*4],af_info->af_stats.stParaAPI[x].luma[1+i*4],af_info-
>af_stats.stParaAPI[x].luma[0+i*4],
           af_info->af_stats.stParaAPI[x].sobel_h[4+i*5],af_info-
>af_stats.stParaAPI[x].sobel_h[3+i*5],af_info-
>af_stats.stParaAPI[x].sobel_h[2+i*5],af_info-
>af_stats.stParaAPI[x].sobel_h[1+i*5],af_info->af_stats.stParaAPI[x].sobel_h[0+i*5],
          af_info->af_stats.stParaAPI[x].sobel_v[4+i*5],af_info-
>af stats.stParaAPI[x].sobel v[3+i*5],af info-
>af_stats.stParaAPI[x].sobel_v[2+i*5],af_info-
>af_stats.stParaAPI[x].sobel_v[1+i*5],af_info->af_stats.stParaAPI[x].sobel_v[0+i*5],
           af_info->af_stats.stParaAPI[x].ysat[2+i*3],af_info-
>af_stats.stParaAPI[x].ysat[1+i*3],af_info->af_stats.stParaAPI[x].ysat[0+i*3]
   }
   //print row15 16wins
   x=15;
   for (i=0; i<16; i++){
       printf("[AF]win%d-%d iir0: 0x%02x%02x%02x%02x, iir1:0x%02x%02x%02x%02x,
luma:0x\%02x\%02x\%02x\%02x, sobelh:0x\%02x\%02x\%02x\%02x, sobelv:0x\%02x\%02x\%02x\%02x
vsat:0x%02x%02x%02x\n",
          x, i,
           af_info->af_stats.stParaAPI[x].high_iir[4+i*5],af_info-
>af_stats.stParaAPI[x].high_iir[3+i*5],af_info-
>af_stats.stParaAPI[x].high_iir[2+i*5],af_info-
>af_stats.stParaAPI[x].high_iir[1+i*5],af_info->af_stats.stParaAPI[x].high_iir[0+i*5],
           af_info->af_stats.stParaAPI[x].low_iir[4+i*5],af_info-
>af_stats.stParaAPI[x].low_iir[3+i*5],af_info-
>af_stats.stParaAPI[x].low_iir[2+i*5],af_info-
>af_stats.stParaAPI[x].low_iir[1+i*5],af_info->af_stats.stParaAPI[x].low_iir[0+i*5],
           af_info->af_stats.stParaAPI[x].luma[3+i*4],af_info-
>af stats.stParaAPI[x].luma[2+i*4],af info->af stats.stParaAPI[x].luma[1+i*4],af info-
>af stats.stParaAPI[x].luma[0+i*4],
           af info->af stats.stParaAPI[x].sobel h[4+i*5],af info-
>af_stats.stParaAPI[x].sobel_h[3+i*5],af_info-
>af_stats.stParaAPI[x].sobel_h[2+i*5],af_info-
>af_stats.stParaAPI[x].sobel_h[1+i*5],af_info->af_stats.stParaAPI[x].sobel_h[0+i*5],
           af_info->af_stats.stParaAPI[x].sobel_v[4+i*5],af_info-
>af_stats.stParaAPI[x].sobel_v[3+i*5],af_info-
>af_stats.stParaAPI[x].sobel_v[2+i*5],af_info-
>af_stats.stParaAPI[x].sobel_v[1+i*5],af_info->af_stats.stParaAPI[x].sobel_v[0+i*5],
           af_info->af_stats.stParaAPI[x].ysat[2+i*3],af_info-
>af_stats.stParaAPI[x].ysat[1+i*3],af_info->af_stats.stParaAPI[x].ysat[0+i*3]
          );
   }
#endif}
void af_release(void *pdata)
{
   printf("******* af_release ********\n");
```



```
}
int main(int argc,char** argv)
    //TO DO: Register 3rd party AE/AWB library
    ISP_AE_INTERFACE tAeIf;
    ISP AWB INTERFACE tAwbif;
    CUS3A_Init();
    /*AE*/
    tAeIf.ctrl = <u>NULL</u>;
    tAeIf.pdata = NULL;
    tAeIf.init = <u>ae init</u>;
    tAeIf.release = <u>ae release</u>;
    tAeIf.run = <u>ae_run</u>;
    /*AWB*/
    tAwbIf.ctrl = NULL;
    tAwbIf.pdata = NULL;
    tAwbIf.init = <u>awb_init</u>;
    tAwbIf.release = <u>awb release</u>;
    tAwbIf.run = <u>awb run;</u>
    CUS3A_RegInterface(0,&tAeIf,&tAwbIf,NULL);
    // or use below reginterface
    //CUS3A_AERegInterface(0,&tAeIf);
    //CUS3A_AWBRegInterface(0,&tAwbIf);
    //TO DO: Open MI
    MI_SYS_Init();
    while(1)
    {
    usleep(5000);
}
```


16. MI_ISP 設置 AE BLOCK NUMBER

MI_ISP_CUS3A_SetAEWindowBlockNumber

【目的】

設定 AE 的區塊數量

【語法】

MI_RET MI_ISP_CUS3A_SetAEWindowBlockNumber(U32 nChannel, MS_CUST_AE_WIN_BLOCK_NUM_TYPE_e eBlkNum);

【描述】

調用此介面設置 AE 區塊數量

【參數】

参數名稱	描述
nChannel	視訊輸入通道號碼(一般為 O)
eBlkNum	區塊個數,將整張照片切割成 X*Y 格

【返回值】

返回值	描述
MI_RET_SUCCESS	成功
MI_RET_FAIL	失敗

【需求】

header file: mi_isp_twinkie.h / mi_isp_pretzel.h / mi_isp.h (for Macaron)
.so: libmi_isp_twinkie.so / libmi_isp_pretzel.so / libmi_isp.so (for Macaron)

MS_CUST_AE_WIN_BLOCK_NUM_TYPE_e

【說明】AE區塊

【定義】

typedef enum {

 $AE_16x24 = 0,$

AE_32x24,

AE_64x48,

AE_64x45,

AE_128x80,

AE_128x90

} AeWinBlockNum_e;

【成員】

参數名稱	描述
AE_16x24	畫面分割成16*24塊
AE_32x24	畫面分割成32*24塊
AE_64x48	畫面分割成64*48塊
AE_64x45	畫面分割成64*45塊
AE_128x80	畫面分割成128*80塊
AE_128x90	畫面分割成128*90塊

AE Block Number 說明圖示

Image resolution = Width * Height
Block_size_X = Width / Block_Number_x
Block_size_Y = Height / Block_Number_y

【備註】

Macaron 不支援這支 API,畫面強制分割成 32*32 塊。

17. MI_ISP 設置 AE HISTOGRAM WINDOW

MI_ISP_CUS3A_SetAEHistogramWindow

【目的】

AE 亮度分佈統計值的視窗區域設定

【語法】

MI_RET MI_ISP_CUS3A_SetAEHistogramWindow(MI_U32 Channel, CusAEHistWin_t *data);

【描述】

調用此介面設置 AE 亮度分佈統計值的視窗區域位置及大小

【成員】

参數名稱	描述	
nChannel	視訊輸入通道號碼(一般為 0)	
data	亮度分佈統計值的視窗區域位置及 或 1)	大小,視窗編號(0

【返回值】

返回值	描述	
MI_RET_SUCCESS	成功	
MI_RET_FAIL	失敗	

【需求】

header file: mi_isp_twinkie.h / mi_isp_pretzel.h / mi_isp.h (for Macaron)
.so: libmi_isp_twinkie.so / libmi_isp_pretzel.so / libmi_isp.so (for Macaron)

【注意】

目前只能支援同時設定兩個視窗(0/1)。視窗區域可以重迭。

HistWin_t

【說明】AE 亮度分佈統計值的視窗區域設定

【定義】

typedef struct {
 MI_U16 u2Stawin_x_offset;
 MI_U16 u2Stawin_x_size;
 MI_U16 u2Stawin_y_offset;
 MI_U16 u2Stawin_y_size;
 MI_U16 u2WinIdx;
} CusAEHistWin_t;

【成員】

参數名稱	描述
u2Stawin_x_offset	窗口起始座標 x 軸偏移
u2Stawin_x_size	x 軸方向窗口大小
u2Stawin_y_offset	窗口起始座標 y 軸偏移
u2Stawin_y_size	y軸方向窗口大小
u2WinIdx	窗□編號(0 或 1)

【參數範圍】

X 軸偏移: 0~127 Y 軸偏移: 0~89

X 軸(偏移+大小) <= 128

Y軸(偏移+大小) <= 90

【備註】

在 Macaron 中,參數範圍如下。

X 軸偏移: 0~31 Y 軸偏移: 0~31

X軸(偏移+大小) <= 32

Y軸(偏移+大小) <= 32

Histogram window setting

Image Rectangle Block size X(pixels) Block_size_y Block u2Stawin_y_offset (pixels) u2Stawin u2Stawin_y_size Height _x_offset Block_Number_y (pixels) = 90 Window0 Window1 u2Stawin_x_size Block_Number_x = 128

Width(pixels)

Image Size = Width * Height Block_size_X = Width / 128

Block_size_Y = Height / 90

18. MI_ISP 設置 AWB SAMPLING

MI_ISP_CUS3A_SetAwbSampling

【目的】

設定 AWB 取樣大小

【語法】

MI_RET MI_ISP_CUS3A_SetAwbSampling(U32 nChannel, CusAWBSample_t *data)

【描述】

調用此介面設置 AWB 取樣大小

【成員】

参數名稱	描述
nChannel	視訊輸入通道號碼(一般為 O)
SizeX	X軸上取多少個取樣點
SizeY	Y軸上取多少個取樣點
IncRatio	對統計值乘上一個比例

【返回值】

返回值	描述
MI_RET_SUCCESS	成功
MI_RET_FAIL	失敗

【需求】

header file: mi_isp_twinkie.h / mi_isp_pretzel.h / mi_isp.h (for Macaron)
.so: libmi_isp_twinkie.so / libmi_isp_pretzel.so / libmi_isp.so (for Macaron)

【注意事項】

整張照片已經切割成 128*90 格,每個格子中取其中 SizeX * SizeY 個 pixels 做 AWB 取樣。

SizeX : SizeX >=4 && SizeX <= Block_size_X SizeY : SizeY >=2 && SizeY <= Block_size_Y

當 AE 亮度很低的時候,可將統計值乘上一個比例(IncRatio),避免統計值為 0

Image resolution = Width * Height Block_size_X = Width / 128 Block_size_Y = Height / 90

19. MI_ISP 設置 AF FILTER

MI_ISP_CUS3A_SetAFFilter

【目的】

設定 AF Filter 參數

【語法】

MI_RET MI_ISP_CUS3A_SetAFFilter (MI_U32 Channel, CusAFFilter_t *data);

【描述】

調用此介面設置 AF Filter 參數

【參數】

参數名稱	描述
nChannel	視訊輸入通道號碼(一般為 0)
data	AF Filter 參數

【返回值】

返回值	描述
MI_RET_SUCCESS	成功
MI_RET_FAIL	失敗

CusAFFilter_t

【說明】ISP AF 硬體統計值

【定義】

```
typedef struct
   MI_U16 u16IIR1_a0;
   MI_U16 u16IIR1_a1;
   MI_U16 u16IIR1_a2;
   MI_U16 u16IIR1_b1;
   MI_U16 u16IIR1_b2;
   MI_U16 u16IIR1_1st_low_clip;
   MI_U16 u16IIR1_1st_high_clip;
   MI_U16 u16IIR1_2nd_low_clip;
   MI_U16 u16IIR1_2nd_high_clip;
   MI_U16 u16IIR2_a0;
   MI_U16 u16IIR2_a1;
   MI_U16 u16IIR2_a2;
   MI_U16 u16IIR2_b1;
   MI_U16 u16IIR2_b2;
   MI_U16 u16IIR2_1st_low_clip;
   MI_U16 u16IIR2_1st_high_clip;
   MI_U16 u16IIR2_2nd_low_clip;
   MI_U16 u16IIR2_2nd_high_clip;
} CusAFFilter_t;
```

【成員】

IIR參數如下

名稱	bit 表示	描述	IIR1 default	IIR2 default
a0	S+9	a0 乘法器	63	63
a1	S+10	a1 乘法器	-126	-126
a2	S+9	a2 乘法器	63	63
b1	S+7	b1 乘法器	65	-109
b2	S+7	b2 乘法器	55	48
1st_low_clip	10	X(n) input low clip	0	0
1st_high_clip	10	X(n) input high clip	320	320
2nd_low_clip	10	Y(n) output low clip	0	0
2nd_high_clip	10	Y(n) output high clip	1023	1023

^{**} IIR1 default 為 IIR High, IIR2 default 為 IIR Low

IIR 係數,架構圖如下:

【需求】

header file: mi_isp_twinkie.h / mi_isp_pretzel.h / mi_isp.h (for Macaron) .so: libmi_isp_twinkie.so / libmi_isp_pretzel.so / libmi_isp.so (for Macaron)

20. MI_ISP 設置 AF FILTER SQUARE

MI_ISP_CUS3A_SetAFFilterSq

【目的】

設定 AF Filter Square 參數

【語法】

MI_RET MI_ISP_CUS3A_SetAFFilterSq (MI_U32 Channel, CusAFFilterSq_t *data);

【描述】

調用此介面設置 AF Filter Square 參數

【參數】

参數名稱	描述
nChannel	視訊輸入通道號碼(一般為 0)
data	AF Filter Square 參數

【返回值】

返回值	描述
MI_RET_SUCCESS	成功
MI_RET_FAIL	失敗

CusAFFilterSq_t

【說明】ISP AF Square 硬體統計值

【定義】

```
typedef struct
{
    MI_BOOL bFIRYSatEn;
    MI_U16 u16FIRYThd;

    MI_BOOL bIIRSquareAccEn;
    MI_BOOL bFIRSquareAccEn;

    MI_U16 u16IIR1Thd;
```

MI U16 u16IIR2Thd;

MI_U16 u16FIRHThd; MI_U16 u16FIRVThd; MI_U8 u8AFTbIX[12]; MI_U16 u16AFTbIY[13];

} CusAFFilter_t;

【成員】

名稱	描述
bFIRYSatEn	FIR Filter Y 閥值控制
u16FIRYThd	If bFIRYSatEn = 1 則 pixel 亮度小於 u16FIRYThd 時,就會列入 fir filter 計算中,且回傳大於 u16FIRYThd 的 pixel 個數(於 AF 統計值中),數值範圍: 0 ~ 1023。
bIIRSquareAccEn	IIR Filter 增強控制
bFIRSquareAccEn	FIR Filter 增強控制
u16IIR1Thd	IIR Filter Output = IIR Filter Output - IIRThd。數值範圍: 0 ~ 1023。
u16IIR2Thd	IIR Filter Output = IIR Filter Output - IIRThd。數值範圍: 0 ~ 1023。
u16FIRHThd	FIR Filter Output = FIR Filter Output - FIR Thd。數值範圍: 0 ~ 1023。
u16FIRVThd	FIR Filter Output = FIR Filter Output - FIR Thd。數值範圍: 0 ~ 1023。
u8AFTbIX[12]	針對 IIR 與 FIR Filter,做一個 non-linear 的 mapping u8AFTbIX 為橫軸,節點為二的幕次方累加,累加起來需大於 1024。數值範圍: 0 ~ 15。
u16AFTblY[13]	針對 IIR 與 FIR Filter,做一個 non-linear 的 mapping u8AFTbIY 為縱軸,數值範圍: 0 ~ 8191。

SquareACC 使用時機,針對中高對比的粗邊反差,做放大的動作。且低於 Thd 的值,會砍為 0,用來抗低照下的噪點。

參考設定 (統計值放大效果)

u8AFTbIX = 6,7,7,6,6,6,7,6,6,7,6,6

u16AFTbIY = 0,154,486,1178,1638,2099,2560,3635,4198,4813,6451,7270,8191

參考設定 (統計值保持原狀)

u8AFTbIX = 6,7,7,6,6,6,7,6,6,7,6,6

u16AFTbIY = 0,64,192,320,384,448,512,640,704,768,896,960,1023

【需求】

header file: mi_isp_twinkie.h / mi_isp_pretzel.h / mi_isp.h (for Macaron)
.so: libmi_isp_twinkie.so / libmi_isp_pretzel.so / libmi_isp.so (for Macaron)

【備註】

Twinkie 不支援這支 API。

21. MI_ISP 設置 AF ROI MODE

MI_ISP_CUS3A_SetAFRoiMode

【目的】

設定 AF 統計值的模式

【語法】

MI_RET MI_ISP_CUS3A_SetAFRoiMode (U32 nChannel, CusAFRoiMode_t *data);

【描述】

調用此介面設置 AWB 統計值來源

【參數】

参數名稱	描述
nChannel	視訊輸入通道號碼(一般為 O)
data	AF 統計值的模式

【返回值】

返回值	描述
MI_RET_SUCCESS	成功
MI_RET_FAIL	失敗

CusAFRoiMode_t

【描述】

設定 AF 統計值的模式

【定義】

```
typedef enum __attribute__ ((aligned (1)))
{
         AF_ROI_MODE_NORMAL,
         AF_ROI_MODE_MATRIX
} ISP_AF_ROI_MODE_e;

typedef struct
{
         ISP_AF_ROI_MODE_e mode;
         MI_U32 u32_vertical_block_number;
} CusAFRoiMode_t;
```

【成員】

名稱	描述
mode	AF_ROI_MODE_NORMAL: 可切為 16 組 ROI, window size 與位置可隨意分割,預設為此模式。 AF_ROI_MODE_MATRIX: 可切為16 * N組ROI, window size與位置稍有限制,但可切較多區塊。(N= u32_vertical_block_number)
u32_vertical_block_number	If mode = AF_ROI_MODE_MATRIX 可切為 16 * N 組 ROI。(N= u32_vertical_block_number, 1~16)

AF_ROI_MODE_NORMAL: AF ROI切割方式

AF_ROI_MODE_MATRIX: AF ROI切割方式

橫軸,固定有16個

縱軸,會依據u32_vertical_block_number,來決定有幾組16個ROI,上圖為u32_vertical_block_number=16,就有 16*16 組ROI

【需求】

header file: mi_isp_twinkie.h / mi_isp_pretzel.h / mi_isp.h (for Macaron)
.so: libmi_isp_twinkie.so / libmi_isp_pretzel.so / libmi_isp.so (for Macaron)

【備註】

Twinkie 不支援這支 API。

22. MI_ISP 設置 AF WINDOW

MI_ISP_CUS3A_SetAFWindow

【目的】

設定 AF Window

【語法】

MI_RET MI_ISP_CUS3A_SetAFWindow (U32 nChannel, CusAFWin_t *data);

【描述】

AF window 在 AF_Init 階段設置,將 CMOS sensor image 切成 1024*1024 座標格來設置 AF window

座標與實際 crop range 換算公式:

Image width * X /1024 = 真實 X 座標 Image_height * Y/1024 = 真實 Y 座標

Fx:

AF window 設置為:

 $Start_X = 458$

 $End_X = 566$

 $Start_Y = 418$

 $End_Y = 606$

則在 1920x1080 的 CMOS sensor 下設置的 AF window 座標即為:

Real_Start_X = 1920 *458/1024 = 858 Real_End_X = 1920 *566/1024 = 1061 Real_Start_Y = 1080 *418/1024 = 440 Real_End_Y = 1080 *606/1024 = 639

【參數】

参數名稱	描述	
nChannel	視訊輸入通道號碼(一般為 0)	
data	AF Window 設置	

【返回值】

返回值	描述	
MI_RET_SUCCESS	成功	
MI_RET_FAIL	失敗	

【參數】

参數名稱	描述		
u8WindowIndex	AF ROI Index (0~15), for NORMAL & MARIX		
	mode		
stParaAPI	AF ROI position		

【描述】

在 AF ROI Mode = AF_ROI_MODE_NORMAL 時, StrX, StrY, EndX, EndY 就是代表該 Window Index 的位置

在 AF ROI Mode = AF_ROI_MODE_MATRIX時, StrX, EndX,就是代表橫軸window切割的位置, StrY, EndY就是代表縱軸切割的位置

使用限制:

AF ROI Mode = AF_ROI_MODE_NORMAL

- 各自 window 寬高設置上,可互相重迭
- h/v end > h/v start

 $AF ROI Mode = AF_ROI_MODE_MATRIX$

- 各自 window 寬設置上,可互相重迭,但高不可重迭
- h/v end > h/v start
- win0_v_start < win0_v_end < win1_v_start < win1_v_end < win2...
- win(0,0), win(1,0), ..., win(15,0) 使用共同的 h_start, h_end 設定,由 af0_h_start, h_end 決定
- win(0,1), win(1,1), ..., win(15,1) 使用共同的 h_start, h_end 設定,由 af1_h_start, h_end 決定,其他以此推論
- win(0,0), win(0,1), ..., win(0,15) 使用共同的 v_start, v_end 設定,由 af0_v_start, v_end 決定
- win(1,0), win(1,1), ..., win(1,15) 使用共同的 v_start, v_end 設定,由 af1_v_start, v_end 決定,其他以此推論

【需求】

header file: mi_isp_twinkie.h / mi_isp_pretzel.h / mi_isp.h (for Macaron)
.so: libmi_isp_twinkie.so / libmi_isp_pretzel.so / libmi_isp.so (for Macaron)

Signastar Confidential

23. TWINKIE/PRETZEL/MACARON 支援差異列表

此章節描述 Twinkie, Pretzel 與 Macaron 所支援的功能列表

参數名稱	Twinkie	Pretzel	Macaron
AE 統計值	128*90	128*90	32*32
AE hist2	支援	支援	不支援
AF 統計值	IIR(34), FIR(34), Luma(34), YSat(24)	IIR(35), FIR(35), Luma(32), YSat(22)	IIR(35), FIR(35), Luma(32), YSat(22)
MI_ISP_CUS3A_SetAEWindowBlock Number	支援	支援	不支援
MI_ISP_CUS3A_SetAEHistogramWindow	偏移+大小限制: 最大 128*90	偏移+大小限制: 最大 128*90	偏移+大小限制: 最大 32*32
MI_ISP_CUS3A_SetAFFilter	支援	支援	支援
MI_ISP_CUS3A_SetAFFilterSq	不支援	支援	支援
MI_ISP_CUS3A_SetAFRoiMode	不支援	支援	支援