Talan D	09/26/2021
Jaien Powell Comp 3240	09/26/2021
comp 020	Hw 5
a many	
# 5.1.1 a) {a,b,c,d,e}	
a.11 a, b, c, a, es	
67{w, x, y, 2}	
c.) { w, y, z}	
#5.1.2	
$B = \{0, 1\} \cdot \{0\}$ $= \{0, 1\} \cdot \{0\}$	omain
= {(0,0),(0,1),(1,0),(1,1)3
0) (0,0)	PUI
(0,1)	7(0,1)
(1,0)	1(1,0)
((,1)	(0,0)
) f = { (11), (0,1	1),(1,0),(0,0)} (ronge)

5.2.3 0) [-3.7] = -4 6) [-4.2] = -4 c) [2]=2 a) [[3.5]-4.3] = [3-4.3] = [-1.3] = -2 e.) [3/2+[1/8]]=[1.5+[0.33]]=[1.5+1]=[2.5]=2 # 5.3.2 a.) f(x) is not one to one function (5, -5 ER (domain)) f(x) is not onto function (no element f-1 (-a) & R(domain) b.) R > R is both one to one function c.) h(x) is not onto function (2=x3=x=3/2 EZ e.) This is one to one function, for every value we get a single value A=1 F(x)=1 A=2 f(x)=2 A=3 f(x)=3 A=4 f(x)=4 A=5 P(x)=5 A = 6 f(x) = 6A = 7 f(x) = 7A=8 f(x)=8

46113
#5.4.2
a) $f = 7 \rightarrow 7$, $f(x) = x + 3$
f-1(x)=y x & Z
$x = f^{-1}(x)$
x = y + 3
$y = x-3$ $f^{-1}(x) = well defined$
$f^{-1}(x) = x - 3$
b.) f. 2 + 7, f(x) = 2x+3
$f^{-1}(x)=y$
x = f(y)
Y = 2y+3
y = x - 3 $y = x - 3 + 2 + 6 + 15 + 16 + 10 + 10 + 10 + 10 + 10 + 10 + 10$
y=x-3 \$2 ft is not well defined
C.) R > R, F(x) = 2x+3
f-1 (x) = y
X = f(y)
x = 2y+3
$y = x - 3$ EIR $f^{-1}(x) = x - 3$ is well defined
2 2

5.5.2 a) $f \circ q(0) = f(g(0)) = f(2^{\circ}) = f(1) = 1^{2} = 1$ b.) fon (52) = f(n(52)) = f([54]) = f(1) = 1/2 = 121 $C)gohof(u)=g(n(f(u)))=g(n(u^2))=g(n(u^3))$ = $g(['''_5])=g(3)=2^3=8$ hof = h(f(x)) = h(x2) = [x2/4] e.) fog = f(g(x))=f(zx)-(2x)2=22x Ordered poirs { (1,2), (2,1), (3,3) } {(1,1),(1,2),(3,2),(3,3)} {(1,1),(2,2),(3,3)} $\rightarrow 3$ $\{(1,1),(1,2),(1,3)\}$ {(41), (14), (23) (3,2) (4,2) (4,4)} AC(3) (1,3),(2,3)(3,3)(3,4)} f.) (D.

a) M=	7.2 1 1 1 { (1,1), (1,2), (1,3) } 0 0 0 0
b.) M =	(1 0 1 {(1,1), (1,3), (2,2), (2,3)} 0 1 1 0 0 0
C.) M = [0 1 0 {(1,2),(2,1),(3,1),(3,2)} 1 0 0
d.) M =	0 1 6 0 {(1,2), (2,3), (3,4), (4,1)}
e.) M=	$\begin{bmatrix} 1 & 0 & 0 & 6 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0$
f.) M=	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

5.8.3 a) No, it isn't possible. The reflexive relation on {a,b,c} must contain the three pairs (a,a) (b,b) (c,c) b. Yes, a relation on Ea, b, c) can be both symmetric and anti-symmetric. One example is {(a,a)(b,b)(c,c)} C.) Yes, a relation on Ea,b,c3 con neither symmetric and anti-symmetric. One example is {(a,b), (b,c)} d. Yes, a relation on {a,b,c} can be both symmetric and transitive but not reflexive. One example is { (a,a), (a,b), (b,a), (b,b) }

(a)	The indegree is number of edges coming on
	vertices, d is 2.
1.	
6.	The out degree of vertices is the number of
	outgoing edge on that vertices for C is 3
C.)	The head of edge is C
4.	The tail of edge is a
0.0	The tail of edge is g.
£	No, there is no edge from f to c. No walk, no
	poth, no trail
9	Yes, it is a walk. Yes, it is a trail, and also
	a path
h.	Yes, it is a circuit in the graph and its acycle.
e.	(b, c,d), (c,f,e), (c,g,f,e), (c,f,d,b)