

ROOF DRAIN TECHNICAL DATA SECTION

DEFINITION - ORIGIN - USAGE

The modern roof drain is designed to drain off rainwater in the most effective manner possible while maintaining an aesthetic appeal because in many instances it is placed in full view of the public.

Through the years, Smith has attempted to satisfy both the artistic eye of the architect and the calculating mind of the engineer, concluding the properly designed roof drain must have the following features:

- Pleasing dome shape with a low profile and adequate free drainage area
- Corrosion-resisting dome material
- Effective debris protection
- Overflow drainage to allow drainage during debris build-up
- Gravel stop
- Positive Flashing Clamp
- Seepage control channels
- Sump designed to minimize air entrapment
- Flexibility to meet all construction requirements

Smith roof drains include all of these features.

TYPICAL SMITH ROOF DRAINS

ROOF DRAIN PARTS LIST

NO.	DESCRIPTION	NO.	DESCRIPTION
1	High Density Polyethylene Dome	7	Drain Body
2	Combined Cast Iron Flashing Clamp and Gravel Stop	8	Sump Receiver
3	Secured Square Hole Grate	9	Underdeck Clamp
4	Flashing Clamp for Square Grate	10	Adjustable Extension Sleeve
5	Fixed Extension	11	O-Ring Gasket
6	Fixed Extension Gasket	12	Reversible Collar
		13	Neoprene Gasket

SELECTING A ROOF DRAIN

To select the proper roof drain, the following information must be determined by the designer/specifier.

- Type of roof construction
- · Roof pitch
- Maximum volume of expected rainfall and storm design criteria (This information must be obtained from your local weather bureau and/or local code authority)
- · Desired rate of drainage
- · Safety overflow requirements (Emergency/secondary overflow roof drains are recommended. Local codes vary but it is recommended to provide a 1 to 1 ratio)
- Roof load (The maximum possible rainwater [build-up] load should be determined and provided to the structural engineer for inclusion in the roof structure design)
- Location of drains (Consult your local code requirements)
- Size
- · Vandal-proofing
- NOTE: ALWAYS CONSULT YOUR LOCAL CODE FOR SIZING AND DESIGN CRITERIA WHEN DESIGNING THE ROOF DRAIN SYSTEM. LOCAL CODE REQUIREMENTS TAKE PRECEDENCE OVER CATA-LOG INFORMATION.
- DATA SHOWN IN TABLES 1 AND 2 BELOW ARE TAKEN FROM THE UNIFORM PLUMBING CODE (UPC) - 2006 EDITION.

SUGGESTED STEPS FOR SELECTING PROPER ROOF DRAIN LEADER SIZES AND NUMBER REQUIRED FOR A GIVEN ROOF

1. Calculate the total roof area.

- 2. Determine the maximum hourly rainfall in inches. (The figure can be acquired from your local weather bureau and/or local code authority.)
- 3. Select leader size.
- 4. From Table 1, determine the number of square feet that can be drained by one roof leader at the local maximum rainfall rate.
- 5. Divide the total roof area by the area that one leader will handle. The above result is the number of roof drains required for the building. If the result is a fraction less, use the next higher number.

Example: Using a 4" Vertical Leader

- 1. Total roof area 500' by 200' = 100,000 sq. ft.
- 2. Determine rate of rainfall for this example use 4".
- 3. After studying building plan and physical arrangement, assume that 4" leaders are required for this project.
- 4. From Table 1 one 4" leader at 4" rate of rainfall will take care of 3,460 sq. ft. of roof area.
- 5. Number of roof leaders required is 29 (100,000 sq. ft. divided by 3,460 sq. ft.), Therefore 29 roof drains would be required.

Example: Using a 6" Vertical Leader

- 1. Total roof area 500' by 200' = 100,000 sq. ft.
- 2. Determine rate of rainfall for this example use 4".
- 3. After studying building plan and physical arrangement, assume that 6" leaders are required for this project.
- 4. From Table 1 one 6" leader at 4" rate of rainfall will take care of 10,200 sq. ft. of roof area.
- 5. Number of roof leaders required is 10 (100,000 sq. ft. divided by 10,200 sq. ft.), Therefore 10 roof drains would be required.

TABLE 1 ROOF DRAIN VERTICAL LEADER REQUIREMENTS FOR HORIZONTAL ROOF AREAS AT VARIOUS RAINFALL RATES

[2] [4] Pipe Size	Open Area	Maximum Allowable Horizontal Projected Roof Area Square Feet at Various Rainfall Rates [1]										
Inches	SQ. In.	1 IN./HR.	2 IN./HR.	3 IN./HR.	4 IN./HR.	5 IN./HR.	6 IN./HR.					
02	3.14	2,176	1,088	725	544	435	363					
03	7.06	6,440	3,220	2,147	1,610	1,288	1,073					
04	12.56	13,840	6,920	4,613	3,460	2,768	2,307					
05	19.60	25,120	12,560	8,373	6,280	5,024	4,187					
06	28.30	40,800	20,400	13,600	10,200	8,160	6,800					
08	50.25	88,000	44,000	29,333	22,000	17,600	14,667					

TABLE 1 IS BASED ON TABLE 11-1 FROM THE UNIFORM PLUMBING CODE (UPC) - 2006 EDITION

[1] For rainfall rates other than those listed, determine the allowable roof area by dividing the area given in the 1 in./hr. column by the desired rainfall rate.

	TABLE 2									
Α	ALLOWABLE FLOW FOR VERTICAL LEADERS									
	AND HORIZONTAL STORM DRAINS									
	ALLOWABLE FLOW IN G.P.M. [2] [3]									
	[2] [4]		NTAL STORM							
PIPE	VERTICAL	SL	<u>OPE PER FO</u>	OT						
SIZE	LEADER	1/8"[3]	1/4"[3]	1/2"[3]						
02	23									
03	67	67 34 48 68								
04	144	78	110	156						
05	261	139	196	278						
06	424	222	314	445						
08	913	478	677	956						
10	_	860	1214	1721						
12	_	1384	1953	2768						
15	_	2473	3491	4946						

TABLE 2 IS BASED ON TABLE 11-2 FROM THE UNIFORM PLUMBING

CODE (UPC) - 2006 EDITION.

- [2] The sizing data for vertical conductors, leaders, and drains are based on the pipes flowing 7/24 full. Head of water over drain will determine exact flow rates.
- [3] The sizing for the horizontal piping is based on the pipes flowing full.
 [4] To avoid severe hydraulic jump and/or backpressure, good engineering practice requires the vertical leader transition into a larger size horizontal storm drain per the GPM flow indicated in Table 2 for 1/8" and 1/4" sloped storm drains.

STEPS FOR CALCULATING DRAINAGE REQUIREMENTS FOR ABOVE EXAMPLE USING G.P.M.

1. Use the following formula to determine G.P.M.:

 $G.P.M. = .0104 \times R \times A$

G.P.M. = Gallons per minute

R = Rainfall intensity - inches/hour

A = Roof area - square feet

.0104 = Conversion factor - G.P.M./sq. ft. for 1" (one) inch/hr. rainfall

2. Example:

A. 4" rainfall inches/hr.

B. 100,000 sq. ft. roof area

C. G.P.M. = $.0104 \times 4'' \times 100,000 \text{ sq. ft.} = 4,160 \text{ G.P.M.}$

3. Refer to table 2: a 4" leader [2] will handle 144 G.P.M. 4,160 G.P.M/ ÷ 144 = (28.8) 29 - 4" vertical leaders required.

Refer to Table 2: a 6" leader [2] will handle 424 G.P.M. 4, 160 G.P.M. ÷ 424 = (9.8) 10 - 6" vertical leaders required.

OVERFLOW DRAINS

Overflow drains should be specified to prevent the overloading of roofs where the building code calls for a specific maximum water build-up depth. This is where parapet scuppers are not used. Parapet scuppers have fallen into some disfavor because they create unsightly streaks on the building face. Certain codes call for the overflow system to remain independent of the primary leader system to the exterior of the building. In those systems the overflow drains remain inactive until the water level reaches the overflow level.

The exterior water dam type overflow drain, Fig. 1080, is usually preferred to the interior standpipe overflow drain, Fig. 1070, because the dam keeps debris away from the dome and accommodates more overflow drainage with less head build-up than the standpipe.

NOTE: Fig. No. 1070 and 1080 drains are special purpose drains used in conjunction with the conventional roof drainage system. These drains should never be used unless special structural and architectural considerations have been provided.

RAINTROL® ROOF DRAIN

Metered flow rate roof drains should be specified to control rainwater runoff from roofs where uncontrolled run-off would overburden storm drainage systems. Such control, with temporary retention of rainwater on the roof until the storm abates, provides relief for the drainage system. Roofs for which metered flow drainage is planned must be structurally designed to support and retain the rainwater load during the prolonged drainage period.

Smith RAINTROL® metered flow rate roof drains are designed to provide this control. Sizing, quantity and location of RAINTROL® roof drains are separate and distinct procedures from those for regular roof drains.

VANDAL PROOFING

All roof openings, whether they are at the roof drain or at the vent stack, should be protected from vandalism. It is recommended that all vent stacks be furnished with vandal proof vent caps. Vandal proof roof drain domes and vent caps protect the roof leaders and vent stacks from vandalism prohibiting foreign objects being either carelessly or maliciously placed in the pipes.

VANDAL PROOF VENT CAPS add to the finished look of any roof and are designed with a vent open area to pipe area ratio of 3 to 1.

ROOF DECK INDIRECT WASTE RECEPTORS

ROOF-CEPTORS® are indirect waste receptors designed specifically for roofs. These units are recommended for use in roof areas to receive wastewater from air conditioning units, cooling towers and other mechanical equipment installed on the roof. The 2 1/2" high solid water dam prevents normal rainwater from entering the waste line. The large vandal proof dome bottom strainer provides ample drainage and prevents entry of debris. All accessories necessary to install roof drains are available with these receptors.

PREFIX DX

Designates a wide flange that can be added to certain Smith roof drains. This flange receives and serves as a bonding base for the membranes and coatings of waterproof roof deck covering systems. These coverings consist of thin elastomeric coatings which are applied in a series of trowel coats. The covering forms its own membrane, flashing and durable traffic surface. The DX flange is regularly furnished 4" in width. The usual covering is approximately 3/16" thick and may be applied over many subsurfaces such as concrete, gypsum or wood decks. Such coverings are particularly adaptable to flat roofs, used for recreational purposes, balconies, area ways, plazas, sun decks, floors and corridors.

When the DX flange is required on drains other than those shown in this section, the prefix DX must be used with the figure number. The regular flange will have a minimum 4" width with a 3/16" lip at drain body. If water-proof deck covering thickness is greater (or less) than 3/16", lip dimension must be specified. Roughing dimensions of the body must be adjusted accordingly. Drain body should be set low enough to permit "dimpling" of area surrounding drain.

SIPHONIC ROOF DRAIN

COMPONENTS OF A SIPHONIC ROOF DRAIN

A siphonic roof drain looks much like a traditional roof drain. The distinguishing feature of a siphonic roof drain is the air baffle. This air baffle is engineered and tested to prevent air from entering the piping system at peak flows.

Other than the baffle, a siphonic roof drain has the same features as a traditional roof drain including a drain body, flashing ring, dome strainer, and fastening hardware.

In contrast to traditional roof drains, siphonic roof drains are not designed with a large diameter or deep sump bowl because their operation is by means of sub-atmospheric pressure generated at the under side of the baffle and outlet. The depth of water maintained on the roof is dependent only on the resistance value of the drain assembly while

operating under siphonic conditions. Any viscous weir effect of the drain body becomes minor and the flow is determined by simple inertial hydraulic effect of flow from a high pressure (atmospheric pressure at the roof surface) to low pressure (within the piping system).

Unlike a traditional roof drain system, a siphonic system is designed to operate with the piping completely filled with water during a rainstorm. Several drains tie into a horizontal collector that is routed to a convenient point where it transitions into a vertical stack, once it reaches the ground, is piped to a vented manhole or inspection-chamber where the water is discharged at atmospheric pressure and low velocity into the storm system.

PIPE CONNECTIONS

OPTIONAL VARIATIONS

A poor installation occurs when a circular hole has been cut in the roof that ends up off center of the leader pipe. The result is usually a crooked or off-set leader. The Smith square sump receiver allows the hole to be cut oversize and square permitting the drain to be shifted and centered over the pipe. The illustration shows the probable result of not using a sump receiver. The drain body is improperly seated on the deck, causing roofing felts and other roofing materials to create a dam-like effect around the drain, resulting in a puddle in the vicinity of the drain. This problem can always be eliminated with a sump receiver.

SUFFIX -R SUMP RECEIVER should be specified on all but poured-in-place roof drain installations. The sump receiver is a square metal plate with recessed center opening to accept the drain body flange. This eliminates the puddle of water surrounding many roof drain installations due to the flange resting on top of a circular hole cut in the roof.

SUFFIX -C UNDERDECK CLAMP should be specified on all but poured-in-place installations. Roof drains must be firmly secured to the roof with an underdeck clamp, otherwise, due to snow loads, rain loads and regular expansion and contraction, the drain will work in and out of the roofing, causing roofing membranes to flex and fail. Brittle tar will crack and leaks will occur.

An "L" shaped underdeck clamp Suffix -CL is available for use when the regular underdeck clamp is not acceptable. Specify the "L" shaped underdeck clamp when the deck thickness is less than the minimum dimension shown for the regular underdeck clamp. This is particularly applicable for roof drain installations in metal roof decks.

EXTENSION HEIGHT SHOULD BE SPECIFIED 1/2" LESS THAN INSULATION THICKNESS

SUFFIX -E FIXED EXTENSION is specified when insulation is used, it is available in any height from 3/4" (minimum). During construction, prior to installation of insulation, the extension can be removed to eliminate water build-up. The extension is sealed by gasketing. Adjustable type extensions are available. (See Fig. 1015)

SUFFIX -C2 SECONDARY FLASHING CLAMP is specified when an extension is required with a flashing clamp at the bottom of the extension to clamp the flashing at that location in lieu of the upper flashing clamp or it may be used to clamp a secondary flashing.

SPEEDI-SET

OUTLET TYPE L SPEEDI-SET connection consists of a push on outlet with a factory inserted neoprene gasket. This connection can be used with all piping materials, including service weight, extra heavy, "NO-HUB", steel and plastic. **NOTE:** Piping material must be specified.

EXPANSION JOINTS

FIG. 1710 SEPARATE EXPANSION JOINT with internal seal not exposed to the flow drainage passing; however, provisions must be made in installation for access to the outside packing gland adjustment nuts. These units should only be used in a vertical position and with a roof drain.

NOTE: Do not use with speedi-seal and plastic leaders.

DX DRAIN IN WOOD DECK INSTALLATION

NOTE: For concrete deck installation see pg. 1-04.

CONSTRUCTION VARIATIONS

APPLICATIONS AND ACCESSORIES

POURED CONCRETE

Fig. 1010

Drain set in poured roof deck slab. Flashing is secured by a non-puncturing flashing clamp.

Underdeck Clamp -C

Fig. 1010 (-C)

PRECAST DECK

Slab Or Dec

Drain with underdeck clamp -C used where roof drain openings are presleeved in the slab. Underdeck clamp provides positive anchoring of the drain body. May be used in any slab or deck. NOTE: Drain flange rests in a recessed portion of the deck, eliminating sump receiver.

Fig. 1015 (-R-C)

Drain with adjustable extension sleeve, sump receiver -R and underdeck clamp -C. Extension sleeve adjusts for any specified thickness of insulation required above the roof slab or deck. Removal of the extension sleeve permits roof drainage during construction.

Fig. 1410

Promenade deck drain set in finished roof deck. The construction provides for waterproof flashing at the roof slab and topping of tile or any finished roof deck material.

TYPICAL ROOF COUPLING INSTALLATION WITH VANDAL PROOF VENT CAPS

IRMA SYSTEMS (INSULATED ROOF MEMBRANE ASSEMBLY)

The "Insulated Roof Membrane Assembly" design turns conventional roofing upside down.

Conventional Roofing has the waterproof membrane (built-up felts and asphalt) as the top layer, exposed to all outside weather conditions. Insulation, when used, is installed under the membrane (directly on deck or structural slab). Thus, the membrane is continuously exposed to extremes of weather which severely test its performance and durability.

"Insulated Roof Membrane Assembly" (sometimes called "Inverted Membrane") places the waterproofing membrane directly on the structural deck. Rigid foam type insulation from 1" to 3" thick is placed over the membrane layer. A layer of crushed stone or a finished traffic deck is then installed over the insulation. The insulation, placed in this manner, insulates the building roof and also protects the membrane layer from weather and temperature extremes. Proponents state that the insulated roof membrane assembly prolongs roof life, practically eliminating membrane failures.

Some insulated membrane systems use a liquid membrane instead of the built-up felt and asphalt type membrane. Since either of these two membrane materials may be specified, Smith offers a separate body design for each type.

Drain Figure Numbers and Application--For insulated membrane systems:

Built-Up Membrane Type

Uses conventional hot asphalt and felt layers which are clamped to the drain body with our conventional roof drain flashing clamp.

Smith figure numbers are:

Roof Drain - Fig. 1011 - This is similar to the regular Fig. 1010 drain and is regularly furnished with a 4" high perforated stainless steel gravel stop. (see also Fig. 1017)

Deck Drain - Fig. 1409 - This is similar to Fig. 1410 (-E) except a secondary clamping device and extension perforated with seepage holes, are regularly furnished

Liquid Membrane Type

A liquid membrane is a self-adhering liquid polymer which cures to a flexible rubberlike seamless blanket. This material is not clamped to the drain body, but is bonded to a wide flange drain body.

Smith figure numbers are:

Roof Drain - Fig. 1019 - Body has a 20" diameter integral bonding flange to bond the liquid membrane. Drain is regularly furnished with a 4" perforated stainless steel gravel stop. (see also Fig. 1018)

Deck Drain - Fig. 1419 - Body has a 20" diameter integral bonding flange and is regularly furnished with a perforated extension with rows of seepage holes.

RAINTROL® ROOF DRAINS

control flow to sewers reduce material and labor cost

Fig. 1085

RAINTROL® FLOW CONTROL DRAIN

The RAINTROL® roof drain was developed to offer certain advantageous features. Drains, leaders, storm sewers, etc., can be economically sized by controlling the flow of water. This will reflect in significant cost savings, both in material and labor. In addition, by controlling the drain rate, existing facilities can be utilized without overloading, thus, new construction can be undertaken and tied into the present storm drains.

To accomplish the above, the RAINTROL® drain retains water on the roof. The water is allowed to build up to a predetermined height while the excess is drained off at a known maximum rate. The amount of net build-up is a function of rainfall intensity, time, roof area and drain flow rate. Also note that the flow rate is a function of the build-up or head of water, and not the height of the weir. As an example, water at a 2" depth will flow through either the three inch high or six inch high weir at the same rate.

The area rating, flow rate and drain down time are given for various locations, consistent with the rainfall data for the localities. The data has been established for over 200 localities. Use of this data and tables will allow the engineer to lay out an efficient roof drainage system which will result in significant economies. Local codes must be observed to avoid conflict and approval problems.

THE AREA RATING IS THE MAXIMUM AREA WHICH CAN BE HANDLED BY ONE WEIR OPENING. The corresponding flow rate and drain down time are also given. Data is presented for four

conditions of roof slope and four return periods. This provides data for sixteen conditions for each locality. In cases where the area rating would exceed 25,000 sq. ft., the rating is limited to 25,000 sq. ft. with a resulting lower flow rate and drain down time. Depth or build-up, the other limit upon which the table data is based, is as follows: 3" depth for flat roof, 4" for 2" rise, 5" for 4" rise and 6" for 6" rise.

DATA DERIVATIONS

The data presented is the result of extensive computer processing. Rainfall information obtained from isopluvial maps was computer matched with the flow characteristics of the weir. The results were computer plotted and tabulated in the final pages of tables.

The Weather Bureau Technical Bulletin No. 40, contains the isopluvials which provide the information for the Weiss Equations of Rainfall Intensity. This is more representative than other data available for design purposes. It also covers all areas, not just point locations. The weir equations were developed from test data. When the two equations are solved simultaneously, the area ratings in the tables are produced. Because of the methods employed, extreme accuracy was realized. Fig. 1 is an example of an isopluvial map. Cities along the same isopluvial will have similar rainfall. This allows use of the data for locations which are not listed.

100-YEAR 1-HOUR RAINFALL (INCHES)

Fig. 1

ROOF TYPES

The roof to be drained may vary from flat to a slope of 6" rise. Rise is measured, vertically from the low point or valley to the high point or ridge. (Refer to Fig. 2 below.)

Fig. 2

SLOPED ROOF - DOUBLE RISE

RISE

SLOPED ROOF - MULTIPLE RISE

RAINTROL® SPECIFICATIONS

The RAINTROL® drain is offered in two basic designs. The three inch high weir is principally for flat roofs. Though this may be used on sloped roofs, the limited factor is the build up which can not exceed 3". The second design is the six inch weir which can be used on all roofs up to and including a sloped roof with a 6" rise.

NOTE: The roof drains are supplied in increments of weir openings. They are shipped from the factory with the correct weir openings in accordance with the specifications.

However, should some requirements or conditions change, the drain can be adjusted. Vandal proof fasteners prevent unauthorized tampering with the setting.

Included in this section are tables of data for a number of localities. For locations not listed, use values for similar or nearby locations. For specific conditions which require more information, contact Jay R. Smith Mfg. Co.®, Montgomery, Alabama.

DRAIN SYSTEMS

The engineer should lay out the roof drain system consistent with the structural design strength of the roof. Normally for a flat roof with a 30 lb. sq. ft. design load, the water depth or build-up would be limited to 3". This will keep the load down to approximately 15 lbs. per square foot. For sloped roofs, the allowed water depth can be greater, but only to the point where the stresses will be within the design limitations. This will be up to the discretion of the engineer.

The roof drainage design can be based on a number of factors. The prime consideration could be economy, using minimum leaders and storm sewers. The allowable roof load or build-up could limit the design. Or possibly, drain down time could be the limiting design criteria. In any case, knowing the maximum flow rates, which are controlled, the engineer can properly size leaders and storm sewers economically consistent with his selected design criteria.

DESIGN CONSIDERATIONS

When designing the roof drain system, the engineer must remember that the roof is being utilized as a temporary reservoir to retain some water. Flashing and waterproofing should be high enough to prevent any leakage. The engineer must also provide adequate strength for structural safety. In addition, the following considerations should be observed:

- a. On all roofs, use minimum of two drains, if possible.
- b. On larger roofs, use a greater number of drains as dictated by design layout.
- c. Limit roof area to 25,000 sq. ft. per weir opening.
- d. Recommended maximum distance from roof edge to drain is 50 ft. (flat roofs).
- e. Recommended maximum distance from end of valley to drain is 50 ft. (sloped roofs).
- f. Recommended maximum distance between drains is 200 ft.
- g. Provide adequate flashing at parapets, openings, walls, joints, etc.
- h. Limit parapet walls or provide overflow scuppers. These should be located at the anticipated maximum water depth (build-up). If located in a higher position which could result in a greater flow rate, piping must be sized accordingly.
- Consider wind effect in locating the drains, and the number of drains.
- Possible roof deflection due to load. This could create low spots and adversely affect drainage and/or structural safety.

These are not absolute requirements, but are suggestions to be considered. The final design is at the discretion of the design engineer and should be consistent with the roof requirements.

SPECIFYING AND SIZING

A convenient worksheet (Form No. 2052) is available for sizing and determining RAINTROL® requirements. Refer to page 19 for sample.

Specifying can be done quickly and easily.

- Determine roof area to be drained. Each area that is bounded by expansion joints, ridges and any enclosure is considered a separate roof area.
- Divide the roof area by the area rating from the Table of Area Ratings (Table 1) to obtain the total number of weir openings.
- 3. Determine the number of roof drains. This is determined by the engineer and/or roof layout, using the above design consideration as a guide.
- 4. Divide the number of drains into the number of weir openings to obtain the number of weir openings per drain. It is not necessary that all drains have the same number of weir openings. As an example, a roof may require eight weir openings, but only six drains. In this case, four drains could have one weir opening and two drains would have two weir openings.

NOTE: There is a minimum of one weir opening per drain.

Table 1, from which the area rating is selected, also lists the corresponding flow rate and drain down time. With this data, the engineer can select the proper leader and storm sewer to accommodate the flow (Table 3). Scupper or overflow protection must be set at the depth corresponding to the flow rate (Tables 1 and 2). This would limit the potential build-up, flow rate and roof loading. The weir height is the maximum potential build-up. If the scuppers are set at a higher level, the potential build-up would be greater. Leaders and storm sewers would have to be sized for the higher flow rates which correspond to the greater build-up. Also, a greater load might be placed on the roof. Refer to Table 3 on page 1-30 for allowable flow rates. Select leaders and storm sewers, which will accommodate the maximum potential flow.

Local codes may be the determining criteria and deviation must be approved.

TABLES

Table 1 on pages 11 thru 15 is the area rating table for one weir and contains the principal data. It is arranged in alphabetical order by states and cities. The data is divided according to roof type. Example: Flat, 2" 4" or 6" rise. Then four return periods are listed under each roof type. Each block shows three values. The top figure is the area rating, the lower left is the maximum flow rate for the particular area, and the lower right figure gives the corresponding drain down time. The drain down time is based on draining from the maximum depth to a depth of one half inch, which is the practical minimum. (Refer to Fig. 3 below).

For values not shown in Table 1, straight line interpolation will give acceptable figures. Using this table will provide practical solutions. For necessary data not listed, the factory should be contacted. The limits on which Table 1 is based are allowable build-up and maximum area. The build-up limit is 3" for flat roofs, 4" for 2" rise, 5" for 4" rise and 6" for 6"

rise. The area ratings are the square foot areas that will produce the above build-ups. However, if the area rating would exceed 25,000 sq. ft., the area rating was limited to 25,000 and the corresponding maximum flow rate and drain down time recorded. The corresponding build-up can be obtained from Table 2 on page 1-30. Interpolate between values shown when intermediate values are desired.

Table 2 lists flow rates for various heads in 1 inch increments.

Table 3 lists the allowable flow rates for various pipe sizes. Rates are given for vertical leaders, and horizontal storm drains installed at three different slopes. These values are consistent with the National Plumbing Code, and values obtained using Mannings formula.

EXPLANATION OF AREA RATING TABLE 1

AREA RATING TABLE 1

	TYPE ROOF ➤		FLA	\T		An	2" R		vG I	ABL	■ 4" RI	CE.			6" D	ICE .	
\vdash	TYPE ROOF >	_	REA RATIN			Δ	REA RATII			,	REA RATIN			<u> </u>	6" R REA RATII		
		FLOW		DRAIN	DOWN	FLOW		DRAIN	DOWN	FLOW		DRAIN	DOWN	FLOW		DRAIN	
\perp		G.P.M.		HR	s.	G.P.M.		HR	S.	G.P.M.		HR	S.	G.P.M.		HR	S.
	RETURN PERIOD>	10 Yr.	25 Yr.	50 Yr.	100 Yr.	10 Yr.	25 Yr.	50 Yr.	100 Yr.	10 Yr.	25 Yr.	50 Yr.	100 Yr.	10 Yr.	25 Yr.	50 Yr.	100 Yr.
	BIRMINGHAM	7500 28 15	4200 28 9	3000 28 6	2200 28 5	11600 39 19	6600 39 11	4600 39 7	3500 39 6	14900 49 18	8400 49 10	6000 49 7	4500 49 6	18500 60 19	10300 60 10	7300 60 7	5400 60 5
	DOTHAN	4200	2600	1900	1500	6500	4000	3000	2300	8200	5200	3900	3100	9900	6200	4700	3700
ALABAMA	HUNTSVILLE	28 9 11000	28 5 6000	28 4 4100	3000	39 10 17200	39 6 9400	39 5 6500	39 4 4600	49 10 22700	49 6 12100	49 5 8400	49 4 6000	60 10 25000	60 6 15300	10300	7300
ALA	TIOIVIOVILLE	28 22	28 12	28 8	28 6	39 28	39 15	39 10	39 7	49 28	49 15	49 10	49 7	59 25	60 15	60 10	60 7
`	MOBILE	2500 28 5	1700 28 3	1400 28 3	1100 28 2	3800 39 6	2600 39 4	2100 39 3	1700 39 3	5000 49 6	3500 49 4	2800 49 3	2300 49 3	6000 60 6	4100 60 4	3300 60 3	2800 60 3
	MONTGOMERY	5300 28 11	3200 28 6	2400 28 5	1800 28 4	8300 39 13	4900 39 8	3600 39 6	2800 39 4	10700 49 13	6400 49 8	4700 49 6	3700 49 5	13600 60 14	7900 60 8	5700 60 6	4400 60 4
	ANCHORAGE	25000	25000	25000	25000	39 13 25000	25000	25000	25000	49 13 25000	25000	25000	25000	25000	25000	60 6 25000	25000
١.		14 32 25000	18 38 25000	21 42 25000	23 45 25000	20 23 25000	23 27 25000	26 30 25000	29 33 25000	26 16 25000	30 19 25000	33 20 25000	35 22 25000	30 13 25000	35 15 25000	38 16 25000	42 18 25000
ALASKA	FAIRBANKS	13 30	16 36	19 39	21 43	20 23	23 26	25 29	27 31	26 16	30 18	32 20	35 22	31 13	35 15	38 16	41 17
ALA	JUNEAU	25000 24 46	25000 28 50	19000 28 38	14500 28 29	25000 29 33	25000 34 37	25000 37 39	22100 39 36	25000 35 22	25000 40 25	25000 43 27	25000 46 29	25000 41 17	25000 46 19	25000 50 21	25000 53 22
	KETCHIKAN	10000	7700	6600	5600	15400	11700	10000	8500	21100	16000	13300	11300	25000	20900	17600	15000
\vdash		28 20 25000	28 16 25000	28 13	28 11 12300	39 25 25000	39 19 25000	39 16 25000	39 14 19500	49 26 25000	49 19 25000	49 16 25000	49 14 25000	59 25 25000	60 21 25000	60 18 25000	25000
ARIZ.	PHOENIX	21 42	26 48	28 42	28 25	28 32	33 36	37 39	39 31	36 23	41 26	45 28	49 30	44 18	50 21	54 23	58 24
₹	TUCSON	25000 22 44	25000 28 50	12400 28 25	5400 28 11	25000 30 34	25000 36 38	20400 39 33	9000 39 15	25000 39 25	25000 45 28	25000 49 30	12200 49 15	25000 48 20	25000 54 23	25000 59 25	14400 60 14
	ELDORADO	5300	3100	2200	1700	8300	4700	3400	2600	10800	6200	4500	3400	13700	7500	5400	4100
AS	FAVETTEVILLE	28 11 6500	28 6 3500	28 5	28 3 1700	39 13 10400	39 8 5500	39 6 3700	39 4 2600	49 13 13400	7300	49 5 5000	49 4 3500	60 14 17000	8800	60 5 6000	60 4 4300
ANS	FAYETTEVILLE	28 13	28 7	28 5	28 3	39 17	39 9	39 6	39 4	49 16	49 9	49 6	49 4	60 17	60 9	60 6	60 4
ARKANSAS	FORT SMITH	6000 28 12	3200 28 7	2200 28 5	1600 28 3	9400 39 15	5100 39 8	3500 39 6	2500 39 4	12100 49 15	6700 49 8	4600 49 6	3300 49 4	15200 60 15	8000 60 8	5600 60 6	4000 60 4
	LITTLE ROCK	7000 28 14	3900 28 8	2700 28 5	1900 28 4	11200 39 18	6000 39 10	4200 39 7	3000 39 5	14300 49 17	8000 49 10	5600 49 7	4000 49 5	18100 60 18	9600 60 10	6700 60 7	4800 60 5
	ALTURAS	25000	25000	25000	25000	25000	25000	25000	25000	25000	25000	25000	25000	25000	25000	25000	25000
		12 26 25000	14 31 25000	16 35 25000	18 38 25000	18 20 25000	20 24 25000	22 26 25000	24 28 25000	24 14 25000	27 17 25000	29 18 25000	31 19 25000	29 12 25000	32 13 25000	35 15 25000	37 16 25000
	BAKERSFIELD	13 29	17 36	20 41	23 44	20 23	23 27	26 30	29 33	26 16	31 19	34 21	37 23	31 13	36 15	40 17	44 18
	EUREKA	15200 28 31	10600 28 21	8500 28 17	6900 28 14	22900 39 37	16100 39 26	12600 39 20	10200 39 16	25000 46 29	21700 49 26	17000 49 21	13600 49 16	25000 53 22	25000 58 24	22100 60 22	17900 60 18
	FRESNO	25000 12 28	25000 15 33	25000 17 37	25000 19 40	25000 19 22	25000 21 25	25000 23 27	25000 26 30	25000 25 15	25000 29 18	25000 31 19	25000 33 21	25000 30 12	25000 34 14	25000 37 15	25000 39 18
	LOS ANGELES	13700	7500	5300	4000	20600	11200	8100	6100	25000	14700	10300	7700	25000	19600	13700	10100
₹		28 28 25000	28 15 25000	28 11 25000	28 8	39 33 25000	39 18 25000	39 13 25000	39 10 25000	48 30 25000	49 18 25000	49 13 25000	49 9 25000	55 23 25000	60 20 25000	60 14 25000	25000
O.B.	NEEDLES	12 28	15 34	18 38	20 41	20 23	23 27	25 29	27 31	27 16	31 19	33 21	36 23	32 14	37 16	40 17	43 18
CALIFORNIA	RED BLUFF	25000 27 49	18300 28 37	13400 28 27	10200 28 21	25000 33 36	25000 37 39	20200 39 33	15200 39 25	25000 40 25	25000 45 28	25000 48 30	20400 49 25	25000 47 20	25000 52 22	25000 55 23	25000 59 25
ľ	SACRAMENTO	25000	25000	23700	17100	25000	25000	25000	25000	25000	25000	25000	25000	25000	25000	25000	25000
	CAN DIFCO	21 43 25000	26 48 25000	28 48 25000	28 35 16400	27 31 25000	32 35 25000	35 38 25000	38 40 25000	34 22 25000	39 24 25000	42 26 25000	45 28 25000	41 17 25000	46 19 25000	49 21 25000	52 22 25000
	SAN DIEGO	19 40	25 47	28 50	28 33	26 30	31 34	34 37	38 40	33 21	38 24	42 26	46 29	39 17	45 19	49 21	54 23
	SAN FRANCISCO	25000 27 49	18200 28 37	13400 28 27	10200 28 21	25000 33 36	25000 37 39	20200 39 33	15200 39 25	25000 40 25	25000 45 28	25000 48 30	20400 49 25	25000 47 20	25000 52 22	25000 56 23	25000 59 25
	SAN JOSE	17400 28 35	9600 28 19	6900 28 14	5200 28 11	25000 38 40	14300 39 23	10300 39 17	7800 39 13	25000 45 28	19300 49 23	13600 49 17	10000 49 12	25000 52 22	25000 60 25	17800 60 18	13100 60 13
	SUSANVILLE	25000	25000	25000	23900	25000	25000	25000	25000	25000	25000	25000	25000	25000	25000	25000	25000
\vdash		19 39 25000	23 45 25000	26 48 25000	28 48 25000	25 29 25000	29 33 25000	32 35 25000	35 38 25000	32 20 25000	36 23 25000	39 25 25000	42 26 25000	37 16 25000	42 18 25000	46 19 25000	49 21 25000
	DENVER	18 38	22 44	25 47	28 50	25 29	29 33	32 36	36 38	34 21	38 24	41 26	44 28	41 17	46 19	50 21	53 22
8	DURANGO	25000 17 37	25000 21 42	25000 24 46	25000 27 49	25000 24 28	25000 28 32	25000 30 34	25000 33 37	25000 31 20	25000 36 22	25000 38 24	25000 42 26	25000 38 16	25000 43 18	25000 46 20	25000 50 21
NA.	GRAND JCT.	25000	25000	25000	25000	25000	25000	25000	25000	25000	25000	25000	25000	25000	25000	25000	25000
COLORADO	CTEDLING	13 29 25000	16 35 25000	18 38 21000	10500	20 23 25000	23 27 25000	25 29 25000	28 32 17400	28 17 25000	31 19 25000	34 21 25000	36 23 23400	33 14 25000	38 16 25000	41 17 25000	25000
ľ	STERLING	21 43	26 48	28 43	28 21	29 33	33 37	37 39	39 28	38 24	42 27	46 29	49 28	46 19	51 22	56 23	59 25
	TRINIDAD	25000 20 42	25000 25 47	25000 28 50	16100 28 33	25000 28 32	25000 32 35	25000 35 38	25000 38 40	25000 36 23	25000 40 25	25000 44 27	25000 47 29	25000 44 18	25000 49 21	25000 52 22	25000 56 23
ş	HARTFORD	19000 28 38	9800 28 20	6600 28 13	4700 28 9	25000 37 39	15600 39 25	10300 39 17	7200 39 12	25000 45 28	20500 49 25	13100 49 16	9300 49 11	25000 54 23	25000 60 25	16700 60 17	11600 60 12
CONN.	NEW HAVEN	16500	8500	5700	4100	25000	13400	9000	6300	25000	17600	11500	8100	25000	22100	14500	10000
<u> </u>		28 33 14400	28 17 6900	28 12 4500	28 8 3100	38 40 22700	39 22 10900	39 15 7200	39 10 4900	46 29 25000	49 21 14200	49 14 9300	49 10 6400	55 23 25000	60 22 18100	60 15 11500	7800
H	WILMINGTON	28 29	28 14	28 9	28 6	39 37	39 18	39 12	39 8	48 30	49 17	49 11	49 8	56 24	60 18	60 12	60 8
D.C.	WASHINGTON	9700 28 20	4100 28 8	2400 28 5	1500 28 3	16100 39 26	6400 39 10	3800 39 6	2300 39 4	21100 49 26	8500 49 10	5000 49 6	3100 49 4	25000 60 25	10600 60 11	6000 60 6	3700 60 4
	FT. MYERS	3500 28 7	2200 28 5	1700 28 4	1400 28 3	5400 39 9	3400 39 5	2600 39 4	2100 39 3	7000 49 8	4400 49 5	3500 49 4	2800 49 3	8600 60 9	5400 60 5	4200 60 4	3300 60 3
	GAINESVILLE	4900	2900	2100	1600	7800	4400	39 4	2400	10200	49 5 5900	49 4	3300	12500	7100	5200	4000
		28 10 3600	28 6 2200	28 4 1700	28 3 1300	39 13 5500	39 7 3400	39 5 2600	39 4 2000	49 12 7200	49 7 4500	49 5 3400	49 4 2700	60 13 8900	60 7 5500	60 5 4100	60 4 3300
_ĕ	JACKSONVILLE	28 7	28 4	28 3	28 3	39 9	39 6	39 4	39 3	49 9	49 5	49 4	49 3	60 9	60 6	60 4	60 3
FLORIDA	МІАМІ	2000 28 4	1300 28 3	1000 28 2	800 28 2	3000 39 5	2000 39 3	1500 39 3	1200 39 2	3900 49 5	2700 49 3	2100 49 3	1700 49 2	4800 60 5	3200 60 3	2600 60 3	2100 60 2
=	PENSACOLA	2200	1600	1300	1000	3400	2400	1900	1600	4500	3100	2500	2100	5300	3800	3100	2600
		28 5 3800	28 3	28 3 1800	28 2 1400	39 6 6000	39 4 3700	39 3 2800	39 3 2200	49 5 7700	49 4 4800	49 3 3700	49 3 2900	60 5 9700	60 4 5800	60 3 4400	60 3 3600
	TALLAHASSEE	28 8	28 5	28 4	28 3	39 10	39 6	39 5	39 4	49 9	49 6	49 4	49 4	60 10	60 6	60 4	60 4
L	TAMPA	2700 28 6	1700 28 4	1300 28 3	1100 28 2	4200 39 7	2600 39 4	2000 39 3	1600 39 3	5500 49 7	3500 49 4	2700 49 3	2200 49 3	6700 60 7	4200 60 4	3300 60 3	2700 60 3
GA.	ATLANTA	9000	4800 28 10	3300 28 7	2300 28 5	14600 39 24	7600 39 12	5200 39 8	3700 39 6	18800 49 23	9900 49 12	6800 49 8	4900 49 6	23900 60 24	12300 60 12	8300 60 8	5800 60 6
		28 18	28 10	1 02	28 5	UU 24	39 12	39 8	39 6	TU 23	TU 12	49 8	49 6	60 24	60 12	60 8	60 6

_					AREA RATING TABLE 1												
H	YPE ROOF ➤	Δ	FLA REA RATIN			A	2" RI REA RATII			<i>I</i>	4" RI AREA RATIN			-	6" RI AREA RATIN		
		FLOW		DRAIN I		FLOW		DRAIN I		FLOW		DRAIN		FLOW		DRAIN	
F	RETURN PERIOD>	G.P.M. 10 Yr.	25 Yr.	HR: 50 Yr.	5. 100 Yr.	G.P.M. 10 Yr.	25 Yr.	50 Yr.	S. 100 Yr.	G.P.M. 10 Yr.	25 Yr.	HR 50 Yr.	S. 100 Yr.	G.P.M. 10 Yr.	25 Yr.	50 Yr.	S. 100 Yr.
m	AUGUSTA	8800	4700	3300	2400	14300	7500	5100	3700	18400	9800	6700	4900	23500	12100	8200	5900
		28 18 6500	28 10 3600	28 7 2500	28 5 1900	39 23 10200	39 12 5700	39 8 4000	39 6 2900	49 <u>22</u> 13200	49 12 7500	49 8 5300	49 6 3900	60 24 16800	9000	60 8 6400	60 6 4700
GIA	COLUMBUS	28 13	28 7	28 5	28 4	39 16	39 9	39 6	39 5	49 16	49 9	49 6	49 5	60 17	60 9	60 6	60 5
GEORGIA	MACON	7700 28 16	4100 28 8	2800 28 6	2000 28 4	12400 39 20	6500 39 10	4400 39 7	3200 39 5	15900 49 19	8500 49 10	5900 49 7	4300 49 5	20300 60 20	10400 60 10	7200 60 7	5100 60 5
8	SAVANNAH	4000	2400	1800	1400	6200	3700	2700	2100	8100	4900	3600	2800	9900	5900	4400	3400
	VALDOSTA	28 8 5200	28 5 3000	28 4	28 3 1600	39 10 8300	39 6 4700	39 4	39 3 2500	49 10 10800	49 6 6100	49 4	49 3 3300	60 10 13400	7500	5300	4000
H		28 11 900	28 6 600	28 4 500	28 3 500	39 13 1300	39 8 1000	39 5 800	39 4 700	49 13 1700	49 7 1300	49 5 1100	49 4 900	60 14 2200	60 8 1600	60 5 1400	60 4 1200
=	HILO	28 2	28 1	28 1	28 1	39 2	39 2	39 1	39 1	49 2	49 2	49 1	49 1	60 2	60 2	60 1	60 1
HAWAII	HONOLULU	4600 28 9	2900 28 6	2200 28 5	1800 28 4	7000 39 11	4400 39 7	3400 39 6	2700 39 4	8800 49 11	5700 49 7	4400 49 5	3600 49 4	11300 60 11	7000 60 7	5400 60 5	4300 60 4
Ĭ	KAPAA	1700 28 3	1100 28 2	900	800	2500	1700	1400 39 2	1200	3400	2300	1900 49 2	1600 49 2	4000 60 4	2900 60 3	2400	2000
	BOISE	28 3 25000	28 2 25000	28 2 25000	25000	39 4 25000	39 3 25000	39 2 25000	39 2 25000	49 4 25000	49 3 25000	49 2 25000	49 2 25000	25000	25000	25000	25000
		12 28 25000	14 32 25000	15 34 25000	17 36 25000	19 21 25000	20 24 25000	22 25 25000	23 27 25000	25 15 25000	27 17 25000	29 18 25000	31 19 25000	30 12 25000	33 14 25000	35 15 25000	37 16 25000
ІРАНО	IDAHO FALLS	11 25	13 30	15 33	17 36	18 21	20 24	22 26	24 28	25 15	28 17	30 19	32 20	30 12	33 14	36 15	38 16
≙	TWIN FALLS	25000 11 25	25000 13 30	25000 15 33	25000 17 36	25000 18 20	25000 20 23	25000 22 25	25000 23 27	25000 24 14	25000 27 16	25000 29 18	25000 31 19	25000 29 12	25000 32 13	25000 35 14	25000 37 15
	CAIRO	13300	7200	4700	3400	21000	11100	7400	5200 39 8	25000	14500	9800	6900 49 8	25000 57 24	18400	12100	8300
<u>s</u>	CHICAGO	28 27 25000	28 15 16100	10100	6700	25000	25000	15800	10500	25000	25000	21200	13900	25000	25000	25000	60 8 17600
ILLINOIS		27 49 21200	28 32 10400	28 20 6900	28 13 4600	34 37 25000	38 40 16500	39 25 10700	39 17 7200	42 26 25000	47 29 21900	49 26 13800	49 17 9500	51 21 25000	56 23 25000	59 25 17700	60 18 11900
⊒	PEORIA	28 43	28 21	28 14	28 9	37 39	39 27	39 17	39 12	45 28	49 27	49 17	49 12	54 22	59 25	60 18	60 12
	SPRINGFIELD	18100 28 36	9300 28 19	6000 28 12	4300 28 9	25000 38 40	14500 39 23	9600 39 15	6600 39 11	25000 46 29	19000 49 23	12300 49 15	8700 49 11	25000 55 23	24200 60 24	15600 60 16	10700 60 11
П	EVANSVILLE	18500	9600	6500	4500	25000	15300	10100	7000	25000	20000	13000	9200	25000	25000	16600	11400
_	INDIANAPOLIS	28 37 25000	28 19 14300	28 13 9200	28 9 6200	37 40 25000	39 25 22700	39 16 14300	39 11 9700	46 28 25000	49 24 25000	49 16 19300	49 11 12900	55 23 25000	25000	60 17 24400	60 11 16200
INDIANA	INDIANAPOLIS	28 50 25000	28 29 19800	28 19 12300	28 13 8000	35 37 25000	39 37 25000	39 23 19300	39 16 12700	43 27 25000	48 30 25000	49 23 25000	49 16 16700	51 22 25000	57 24 25000	60 25 25000	60 16 21300
	SOUTH BEND	25 48	28 40	28 25	28 16	33 36	37 39	39 31	39 21	41 26	46 28	49 30	49 20	50 21	54 23	58 24	60 21
	TERRE HAUTE	23200 28 47	11600 28 23	7500 28 15	5100 28 10	25000 36 38	18300 39 30	11900 39 19	8000 39 13	25000 44 28	23600 49 29	15500 49 19	10600 49 13	25000 53 22	25000 58 24	19800 60 20	13200 60 13
	BURLINGTON	17300	8500	5500	3700	25000	13500	8700	5900	25000	17500	11100	7800	25000	22300	14200	9500
	DAVENPORT	28 35 20100	28 17 9900	28 11 6400	28 8 4500	38 40 25000	39 22 15600	39 14 10100	39 10 6900	46 29 25000	49 21 20600	49 14 13100	49 9 9100	55 23 25000	25000	60 14 16700	60 10 11200
	DAVENFORT	28 41 16000	28 20 7400	28 13 4600	28 9 3000	37 39 25000	39 25 11600	39 16 7300	39 11 4700	45 28 25000	49 25 15300	49 16 9400	49 11 6300	54 23 25000	60 25 19400	60 17 11900	60 11 7600
IOWA	DES MOINES	28 32	28 15	28 9	28 6	38 40	39 19	39 12	39 8	47 29	49 19	49 11	49 8	56 23	60 19	60 12	60 8
으	DUBUQUE	22400 28 45	10900 28 22	7200 28 15	4800 28 10	25000 36 39	17400 39 28	11200 39 18	7500 39 12	25000 44 28	23100 49 28	14500 49 18	9900 49 12	25000 53 22	25000 59 25	18500 60 19	12300 60 12
	SIOUX CITY	23600	8900	4900	2700	25000	14400	7600	4300	25000	19200	10100	5800	25000	24300	12600	7200
	WATERLOU	28 48 19400	28 18 9400	28 10 5900	28 6 4000	36 39 25000	39 23 14700	39 12 9300	39 7 6200	45 28 25000	49 23 19300	49 12 12000	49 7 8200	54 23 25000	24500	60 13 15300	10100
\vdash	WAILILOO	28 39 14500	28 19 5500	28 12 3000	28 8 1800	37 39 23800	39 24 8600	39 15 5000	39 10 3000	45 28 25000	49 23 11500	49 15 6400	49 10 4000	54 23 25000	60 25 14400	60 15 7800	60 10 4700
	CONCORDIA	28 29	28 11	28 6	28 4	39 38	39 14	39 8	39 5	48 30	49 14	49 8	49 5	57 24	60 14	60 8	60 5
SAS	DODGE CITY	25000 28 50	8500 28 17	4200 28 9	2100 28 4	25000 36 38	13900 39 22	6600 39 11	3400 39 6	25000 45 28	18600 49 23	8800 49 11	4600 49 6	25000 54 23	23100 60 23	10800 60 11	5600 60 6
KANSAS	KANSAS CITY	9800	4700	3000	2000	15800	7500	4700	3200	20800	9800	6300	4200	25000	12200	7700	5100
-	WICHITA	28 20 9100	28 10 4100	28 6 2500	28 4 1600	39 25 14700	39 12 6500	39 8 3900	39 5 2500	49 25 19100	49 12 8500	49 8 5300	49 5 3400	60 25 25000	60 12 10500	600 8	60 5 4100
H	WICHIIA	28 18 23200	28 8 12000	28 5 7800	28 3 5300	39 24 25000	39 10 18700	39 6 12300	39 4 8300	49 23 25000	49 10 24300	49 6 15900	49 4 11000	60 25 25000	60 11 25000	60 7 20300	60 4 13700
KY.	LOUISVILLE	28 47	28 24	28 16	28 11	36 38	39 30	39 20	39 13	44 28	49 29	49 19	49 13	53 22	58 24	60 20	60 14
 	PADUCAH	14600 28 29	7700 28 15	5200 28 11	3600 28 7	23100 39 37	12100 39 20	8100 39 13	5600 39 9	25000 48 29	15700 49 19	10300 49 13	7400 49 9	25000 56 24	19900 60 20	13200 60 13	9100 60 9
	ALEXANDRIA	3700	2300	1800	1400	5800	3600	2700	2100	7400	4700	3600	2900	9200	5700	4400	3400
ΑN	LAKE CHARLES	28 8 2500	28 5 1700	1300	1100	39 9 3900	39 6 2600	2000	39 3 1600	49 9 5100	49 6 3400	49 4 2700	2200	60 9 6200	4100	3200	2700
OUISIANA	LAKE CHARLES	28 5 2200	28 3 1500	28 3 1200	28 2 1000	39 6 3400	39 4 2300	39 3 1800	39 3 1500	49 6 4500	49 4 3100	49 3 2500	49 3 2000	60 6 5400	60 4 3800	60 3 3000	60 3 2500
LOU	NEW ORLEANS	28 5	28 3	28 2	28 2	39 6	39 4	39 3	39 2	49 5	49 4	49 3	49 2	60 5	60 4	60 3	60 3
	SHREVEPORT	4500 28 9	2600 28 5	1900 28 4	1400 28 3	6900 39 11	4000 39 7	2900 39 5	2200 39 4	8800 49 11	5200 49 6	3900 49 5	3000 49 4	11100 60 11	6400 60 6	4700 60 5	3600 60 4
ш	BANGOR	25000	19300	13200	9400	25000	25000	20500	14500	25000	25000	25000	18900	25000	25000	25000	24500
MAINE	PORTLAND	26 48 23300	28 39 12600	28 27 8700	28 19 6300	32 35 25000	37 39 19900	39 33 13400	39 23 9700	40 25 25000	45 28 25000	48 30 17400	49 23 12200	47 20 25000	53 22 25000	56 24 22300	60 25 15900
Ē	_	28 47 13300	28 25 6100	28 18 3900	28 13 2500	35 38 21100	39 32 9600	39 22 6000	39 16 4000	43 27 25000	49 30 12600	49 21 7900	49 15 5300	51 21 25000	57 24 15700	9800	60 16 6300
AND	BALTIMORE	28 27	28 12	28 8	28 5	39 34	39 16	39 10	39 6	48 30	49 15	49 10	49 6	57 24	60 16	60 10	60 6
MARYLAND	HAGERSTOWN	20000 28 40	9500 28 19	6000 28 12	4200 28 8	25000 37 39	14900 39 24	9500 39 15	6400 39 10	25000 45 28	19600 49 24	12100 49 15	8400 49 10	25000 54 23	24600 60 25	15500 60 16	10200 60 10
MA	SALISBURY	9500	4500	2900	1900	15400	7100	4500	3000	20000	9400	6000	4000	25000	11700	7300	4900
H	BOSTON	28 19 19900	11000	28 6 7500	5300	39 25 25000	39 12 17300	39 7 11800	39 5 8300	49 24 25000	49 11 22800	49 7 14800	49 5 10400	60 25 25000	25000	60 7 19500	60 5 13500
MASS.	BOSTON	28 40 22300	28 22 11500	28 15 7600	28 11 5400	36 39 25000	39 28 18000	39 19 12000	39 13 8400	44 28 25000	49 28 24400	49 18 15500	49 13 10500	53 22 25000	59 25 25000	60 20 19700	60 14 13400
≥	SPRINGFIELD	28 45	28 23	28 15	28 11	36 38	39 29	39 19	39 14	44 28	49 30	49 19	49 13	52 22	58 24	60 20	60 13
Ξ	DETROIT	25000 22 44	25000 26 49	21600 28 44	13400 28 27	25000 30 34	25000 34 37	25000 36 39	21800 39 35	25000 38 24	25000 42 27	25000 45 28	25000 48 30	25000 46 20	25000 51 21	25000 54 23	25000 57 24
MICH.	GRAND RAPIDS	25000	25000	17200	11000	25000	25000	25000	17800	25000	25000	25000	23600	25000	25000	25000	25000
ш		23 45	28 50	28 35	28 22	31 34	35 38	38 40	39 29	39 25	43 27	46 29	49 29	47 20	52 22	55 23	59 24

_					AKE	<u>A RA</u>			3LE	<u> </u>	ontin						
	TYPE ROOF ➤	ı A	FLA AREA RATII			A	2" RI REA RATII			,	4" R AREA RATII				6" R AREA RATII		
		FLOW		DRAIN I		FLOW		DRAIN		FLOW		DRAIN		FLOW		DRAIN	
<u></u>	RETURN PERIOD>	G.P.M. 10 Yr.	25 Yr.	50 Yr.	5. 100 Yr.	G.P.M. 10 Yr.	25 Yr.	50 Yr.	S. 100 Yr.	G.P.M. 10 Yr.	25 Yr.	50 Yr.	S. 100 Yr.	G.P.M. 10 Yr.	25 Yr.	50 Yr.	S. 100 Yr.
۳	KALAMAZOO	25000	24900	15100	9500	25000	25000	24000	15100	25000	25000	25000	20400	25000	25000	25000	25000
	RALAWAZOO	24 46 25000	28 50 25000	28 31 25000	28 19 19800	31 35 25000	36 38 25000	39 39 25000	39 24 25000	40 25 25000	44 28 25000	47 29 25000	49 25 25000	48 20 25000	53 22 25000	56 24 25000	60 25 25000
z	MARQUETTE	21 42	25 47	27 49	28 40	28 32	31 35	34 37	37 39	36 23	40 25	42 27	45 28	43 18	47 20	51 21	54 23
MICHIGAN	SAGINAW	25000 22 43	25000 25 47	25000 28 50	16300 28 33	25000 29 33	25000 32 36	25000 35 38	25000 38 40	25000 37 23	25000 41 26	25000 44 28	25000 47 29	25000 45 19	25000 50 21	25000 53 22	25000 56 23
₽	SAULT STE. MARIE	25000	25000	25000	25000	25000	25000	25000	25000	25000	25000	25000	25000	25000	25000	25000	25000
		18 39 25000	21 43 25000	24 46 25000	26 48 19300	25 29 25000	28 32 25000	31 34 25000	33 36 25000	33 21 25000	37 23 25000	39 25 25000	42 26 25000	40 17 25000	44 19 25000	47 20 25000	50 21 25000
	TRAVERSE CITY	21 42	25 47	27 49	28 39	28 32	32 35	34 37	37 39	37 23	40 25	43 27	46 29	44 19	48 20	51 22	55 23
ΔĀ	AUSTIN	23300 28 47	10700 28 22	6600 28 13	4400 28 9	25000 36 39	17100 39 28	10600 39 17	6900 39 11	25000 44 28	22600 49 27	13700 49 17	9200 49 11	25000 53 22	25000 59 25	17500 60 18	11300 60 11
IESC	DULUTH	25000 24 47	22800 28 46	13800 28 28	8900 28 18	25000 32 35	25000 36 39	21800 39 35	14100 39 23	25000 40 25	25000 45 28	25000 48 30	18600 49 23	25000 48 20	25000 53 22	25000 57 24	23800 60 24
MINNESOTA	MINNEAPOLIS	25000	13400	8100	5200	25000	21400	12700	8100	25000	25000	17000	11000	25000	25000	21700	13600
\vdash		27 49 5700	28 27 3400	28 16 2500	1900	34 37 8900	39 34 5300	39 21 3900	39 13 2900	43 27 11700	48 30 6900	49 21 5000	49 13 3800	52 22 14500	57 24 8500	60 22	60 14 4600
	JACKSON	28 12	28 7	28 5	28 4	39 14	39 9	39 6	39 5	49 14	49 8	49 6	49 5	60 15	60 9	60 6	60 5
MISS	GREENVILLE	6200 28 13	3600 28 7	2600 28 5	1900 28 4	9800 39 16	5600 39 9	4000 39 6	2900 39 5	12700 49 15	7300 49 9	5200 49 6	3900 49 5	15900 60 16	9000	6400 60 6	4700 60 5
-	GULFPORT	2400 28 5	1600 28 3	1300 28 3	1000 28 2	3600 39 6	2500 39 4	1900 39 3	1600 39 3	4800 49 6	3300 49 4	2600 49 3	2100 49 3	5800 60 6	3900 60 4	3100 60 3	2600 60 3
	COLUMBIA	12300	6100	4000	2700	19500	9500	6200	4200	25000	12500	8200	5600	60 6 25000	15700	10100	6900
_		28 25 14200	28 12 6900	28 8 4400	28 5 3000	39 31 22600	39 15 10900	39 10 7000	39 7 4600	49 30 25000	49 15 14300	49 10 9200	49 7 6200	58 24 25000	60 16 17900	60 10 11400	60 7 7500
MISSOUR	KIRKSVILLE	28 29	28 14	28 9	28 6	39 36	39 18	39 11	39 8	48 30	49 17	49 11	49 8	57 24	60 18	60 11	60 8
MISS	SPRINGFIELD	8700 28 18	4600 28 9	3000 28 6	2100 28 4	13700 39 22	7100 39 11	4700 39 8	3300 39 5	17800 49 22	9300 49 11	6300 49 8	4400 49 5	22600 60 23	11500 60 12	7600 60 8	5300 60 5
-	ST. LOUIS	13600	7200	4700	3300	21500	11200	7400	5100	25000	14600	9800	6800	25000	18600	12100	8200
\vdash	DILLING.	28 28 25000	28 15 25000	28 10 25000	28 7	39 35 25000	39 18 25000	39 12 25000	39 8 25000	48 30 25000	49 18 25000	49 12 25000	49 8 25000	57 24 25000	60 19 25000	25000	25000
	BILLINGS	15 34 25000	19 39 25000	21 43 25000	24 46 25000	23 26 25000	26 30 25000	28 32 25000	31 34 25000	30 19 25000	34 21 25000	37 23 25000	39 25 25000	36 15 25000	41 17 25000	44 19 25000	47 20 25000
	BUTTE	12 28	15 33	17 37	19 40	20 23	22 26	24 28	26 30	27 16	30 19	32 20	34 22	32 13	36 15	39 16	41 17
ANA	GLENDIVE	25000 19 40	25000 23 45	25000 26 49	25000 28 40	25000 26 30	25000 31 34	25000 34 37	25000 37 39	25000 35 22	25000 39 25	25000 43 27	25000 46 29	25000 43 18	25000 48 20	25000 52 22	25000 55 23
MONTANA	GREAT FALLS	25000	25000	25000	25000	25000	25000	25000	25000	25000	25000	25000	25000	25000	25000	25000	25000
≥	WAVRE	15 34 25000	18 39 25000	21 42 25000	23 45 25000	22 26 25000	25 29 25000	27 32 25000	30 34 25000	30 18 25000	33 21 25000	36 22 25000	25000	35 15 25000	40 17 25000	25000	46 19 25000
		17 36 25000	20 42 25000	23 45 25000	26 48 25000	24 27 25000	27 31 25000	30 34 25000	33 36 25000	31 19 25000	35 22 25000	38 24 25000	41 26 25000	37 16 25000	42 18 25000	46 19 25000	49 21 25000
	MISSOULA	13 30	16 35	18 38	20 41	20 23	23 26	25 29	26 31	27 17	30 19	32 20	35 22	32 14	36 15	39 16	42 18
	CHADRON	25000 21 43	25000 26 48	23100 28 47	12000 28 24	25000 28 32	25000 33 36	25000 36 39	19700 39 32	25000 37 24	25000 42 26	25000 45 28	25000 49 30	25000 45 19	25000 51 21	25000 55 23	25000 59 25
8	GRAND ISLAND	25000 28 50	9000 28 18	4100 28 8	2000 28 4	25000 38 36	13900 39 22	6500 39 10	3300 39 5	25000 44 28	18800 49 23	8800 49 11	4400 49 5	25000 54 23	23800 60 24	10700 60 11	5300 60 5
BRASKA	LINCOLN	16700	6400	3500	2100	25000	10400	5600	3400	25000	13600	7500	4400	25000	17200	9200	5600
NEBF		28 34 25000	28 13 15100	28 7 6200	28 4	38 40 25000	39 17 23700	39 9 9900	39 5 4300	47 29 25000	49 17 25000	49 9 13000	49 5 5600	56 24 25000	60 17 25000	60 9 16400	60 6
-	NORTH PLATTE	25 47	28 31	28 13	28 5	33 36	39 38	39 16	39 7	42 27	48 30	49 16	49 7	51 22	58 24	60 16	60 7
	ОМАНА	16500 28 33	6700 28 14	3900 28 8	2400 28 5	25000 38 40	11000 39 18	6300 39 10	3800 39 6	25000 47 29	14200 49 17	8000 49 10	5100 49 6	25000 56 24	18300 60 18	10100 60 10	6300 60 6
	LAS VEGAS	25000 13 28	25000 15 34	25000 17 37	25000 20 41	25000 20 23	25000 22 26	25000 24 28	25000 27 31	25000 27 16	25000 30 19	25000 33 20	25000 35 22	25000 32 13	25000 36 15	25000 39 16	25000 42 18
NEVADA	RENO WIN-	25000	25000	25000	25000	25000	25000	25000	25000	25000	25000	25000	25000	25000	25000	25000	25000
NE		17 37 25000	20 42 25000	23 45 25000	26 48 25000	23 27 25000	26 31 25000	29 33 25000	32 35 25000	30 19 25000	34 21 25000	36 23 25000	39 25 25000	35 15 25000	40 17 25000	43 18 25000	46 20 25000
\vdash	NEMUCCA	10 21	12 26	13 29	14 32	17 18	18 21	20 23	21 25	22 13	25 15	27 16	28 18	27 11	30 12	32 13	34 14
Ιź	BERLIN	25000 27 50	16000 28 32	11100 28 22	8000 28 16	25000 34 37	25000 38 40	17300 39 28	12300 39 20	25000 41 26	25000 46 29	22900 49 28	15900 49 19	25000 49 21	25000 54 23	25000 58 24	20800 60 21
ż	PORTSMOUTH	22600 28 46	12400 28 25	8600 28 17	6100 28 12	25000 36 38	19900 39 32	13300 39 21	9500 39 15	25000 43 27	25000 49 30	18200 49 21	12100 49 15	25000 51 22	25000 57 24	22300 60 22	15600 60 16
<u></u>	ATLANTIC CITY	11500	5800	3900	2700	18600	9300	6100	4200	24500	12100	8000	5600	25000	15100	9900	6800
JERSEY		28 23 14900	7700	28 8 5200	28 6 3600	39 30 24000	39 15 12200	39 10 8100	39 7 5600	49 30 25000	49 15 15800	49 10 10400	7300	58 24 25000	60 15 19800	60 10 12900	9000
	NEWARK	28 30	28 16	28 11	28 7	39 39	39 20	39 13	39 9	47 29	49 19	49 13	49 9	56 23	60 20	60 13	60 9
NEW	TRENTON	14200 28 29	7200 28 15	4700 28 10	3200 28 7	22900 39 37	11200 39 18	7400 39 12	5000 39 8	25000 48 29	14700 49 18	9600 49 12	6600 49 8	25000 56 24	18600 60 19	11900 60 12	8000 60 8
	ALBUQUERQUE	25000 15 34	25000 19 39	25000 21 43	25000 24 46	25000 23 26	25000 26 30	25000 28 32	25000 31 35	25000 31 19	25000 34 21	25000 37 23	25000 40 25	25000 37 15	25000 41 17	25000 44 19	25000 48 20
MEXICO	ALAMOGORDO	25000	25000	25000	25000	25000	25000	25000	25000	25000	25000	25000	25000	25000	25000	25000	25000
/ ME	FARMINGTON	17 36 25000	25000	23 45 25000	26 48 25000	24 28 25000	28 32 25000	31 34 25000	34 37 25000	32 20 25000	36 23 25000	39 25 25000	42 27 25000	39 16 25000	25000	48 20 25000	51 22 25000
NEW	PARIMINGTON	15 34 25000	19 40 25000	22 43 18600	24 46 10500	23 27 25000	26 30 25000	29 33 25000	31 35 16900	31 19 25000	35 22 25000	37 24 25000	40 25 22500	38 16 25000	42 18 25000	45 19 25000	48 20 25000
	ROSWELL	22 43	27 49	28 34	28 21	29 33	34 37	37 39	39 27	37 23	42 27	46 29	49 27	45 19	51 21	55 23	59 25
	ALBANY	25000 26 48	17600 28 36	11200 28 23	7500 28 15	25000 33 36	25000 38 40	17400 39 28	11700 39 19	25000 41 26	25000 46 29	23700 49 29	15500 49 19	25000 49 21	25000 55 23	25000 59 25	19300 60 19
	BINGHAMTON	25000	18100	11800	8000	25000	25000	18100	12400	25000	25000	24400	16100	25000	25000	25000	20800
쑱	BUFFALO	26 48 25000	28 37 25000	28 24 24700	28 16 15900	33 36 25000	38 40 25000	39 29 25000	39 20 25000	41 26 25000	46 29 25000	49 30 25000	49 20 25000	49 21 25000	54 23 25000	58 24 25000	25000
N YORK	DUFFALU	22 43 25000	26 48 21100	28 50 13600	28 32 9300	29 33 25000	33 36 25000	36 38 21200	39 40 14300	37 23 25000	41 26 25000	44 28 25000	47 29 19000	45 19 25000	49 21 25000	53 22 25000	56 23 24300
NEW	ELMIRA	25 47	28 43	28 28	28 19	32 35	37 39	39 34	39 23	40 25	45 28	48 30	49 23	48 20	53 22	57 24	60 24
	HUNTINGTON	14300 28 29	7700 28 16	5200 28 11	3600 28 7	23000 39 37	12000 39 19	8000 39 13	5600 39 9	25000 47 29	15600 49 19	10400 49 13	7300 49 9	25000 56 24	19700 60 20	13100 60 13	9000 60 9
	JAMESTOWN	25000	25000	21700	14300	25000	25000	25000	22700	25000	25000	25000	25000	25000	25000	25000	25000
		23 44	27 49	28 44	28 29	30 34	33 37	36 39	39 37	38 24	42 26	45 28	48 30	46 19	50 21	53 22	57 24

	AREA RATING TABLE PE ROOF ➤ FLAT 2" RISE							1 (Continued) 4" RISE 6" RISE									
Н'						ING SQ. FT.			AREA RATIN			AREA RATING SQ. FT.					
		FLOW G.P.M.		DRAIN I		FLOW G.P.M.		DRAIN I		FLOW G.P.M.		DRAIN HR		FLOW G.P.M.		DRAIN I	
┝	RETURN PERIOD>	10 Yr.	25 Yr.	50 Yr.	100 Yr.	10 Yr.	25 Yr.	50 Yr.	100 Yr.	10 Yr.	25 Yr.	50 Yr.	5. 100 Yr.	10 Yr.	25 Yr.	50 Yr.	5. 100 Yr.
	NEW YORK CITY	14300	7600	5100	3600	22900	11900	7900	5600	25000	15500	10300	7300	25000	19200	12900	9000
¥		28 29 25000	28 15 25000	28 10 23400	28 7 15300	39 37 25000	39 19 25000	39 13 25000	39 9 24000	47 29 25000	49 19 25000	49 13 25000	49 9 25000	56 24 25000	60 19 25000	60 13 25000	60 9 25000
EW YORK	ROCHESTER	22 44	26 48	28 47	28 31	29 33	33 36	36 38	39 39	37 23	41 26	44 28	47 29	45 19	50 21	53 22	56 24
NEW	SYRACUSE	25000 23 45	25000 27 49	19000 28 38	12500 28 25	25000 30 34	25000 34 37	25000 37 39	20000 39 32	25000 38 24	25000 42 27	25000 45 28	25000 49 30	25000 46 19	25000 51 21	25000 54 23	25000 58 24
-	WATERTOWN	25000 21 43	25000 25 47	25000 28 50	17600 28 36	25000 29 32	25000 32 36	25000 35 38	25000 38 40	25000 37 23	25000 40 26	25000 43 27	25000 46 29	25000 44 19	25000 49 21	25000 52 22	25000 55 23
Н	ASHEVILLE	11500	6000	4100	3000	18300	9500	6500	4600	24200	12300	8300	6000	25000	15600	10400	4800
ΑĀ		28 23 13100	28 12 6500	28 8 4200	28 6 2800	39 29 20700	39 15 10300	39 10 6600	39 7 4400	49 29 25000	49 15 13400	49 10 8800	49 7 5900	58 24 25000	60 16 16800	60 10 10800	7200
CAROLINA	CHARLOTTE	28 26	28 13	28 8	28 6	39 33	39 17	39 11	39 7	48 30	49 16	49 11	49 7	57 24	60 17	60 11	60 7
	ELIZABETH CITY	5400 28 11	2700 28 6	1800 28 4	1300 28 3	8500 39 14	4300 39 7	2800 39 5	2000 39 3	11100 49 14	5700 49 7	3800 49 5	2700 49 3	14000 60 14	6900 60 7	4600 60 5	3300 60 3
NORTH	GREENSBORO	11900 28 24	5900 28 12	3900 28 8	2600 28 5	18800 39 30	9300 39 15	6000 39 10	4100 39 7	24900 49 30	12100 49 15	8100 49 10	5500 49 7	25000 58 24	15400 60 15	9800 60 10	6700 60 7
ž	WILMINGTON	4100	2400	1700	1300	6400	3600	2700	2000	8400	4800	3500	2600	10400	5900	4200	3200
		28 8 25000	28 5 25000	28 4	28 3 11000	39 10 25000	39 6 25000	39 4 25000	39 3 18700	49 10 25000	49 6 25000	49 4 25000	49 3 23900	60 10 25000	60 6 25000	60 4 25000	25000
DAKOTA	BISMARK	21 43 25000	26 48 25000	28 42 14000	28 22 8200	29 33 25000	33 37 25000	37 39 22300	39 30 13000	38 24 25000	42 26 25000	46 29 25000	49 29 17300	46 19 25000	51 22	55 23 25000	59 25 22500
DAK	FARGO	24 45	28 50	28 28	28 17	31 34	36 38	39 36	39 21	39 25	44 28	48 30	49 21	48 20	25000 53 22	57 24	60 23
Š.	WILLISTON	25000 19 40	25000 24 46	25000 27 49	17800 28 36	25000 27 31	25000 31 35	25000 34 37	25000 38 40	25000 35 22	25000 40 25	25000 43 27	25000 46 29	25000 43 18	25000 48 20	25000 52 22	25000 56 23
	CINCINNATI	25000	15400	9900	6600	25000	24400	15500	10400	25000	25000	20900	13800	25000	25000	25000	17400
	CLEVELAND	27 49 25000	28 31 25000	28 20 22600	28 13 13900	34 37 25000	39 39 25000	39 25 25000	39 17 22500	42 27 25000	47 29 25000	49 25 25000	49 17 25000	51 21 25000	56 23 25000	60 25 25000	60 17 25000
	CLEVELAND	22 44 25000	26 48 25000	28 46 16200	28 28 10100	29 33 25000	33 36 25000	36 39 25000	39 36 16600	38 24 25000	42 26 25000	45 28 25000	48 30 21800	46 19 25000	50 21 25000	54 23 25000	57 24 25000
ОНО	COLUMBUS	24 46	28 50	28 33	28 20	31 35	35 38	38 40	39 27	39 25	44 27	47 29	49 26	48 20	53 22	56 23	59 25
ō	DAYTON	25000 26 48	18800 28 38	11800 28 24	7700 28 16	25000 33 36	25000 38 40	18400 39 30	12200 39 20	25000 41 26	25000 46 29	24700 49 30	16000 49 19	25000 50 21	25000 55 23	25000 58 24	20300 60 20
	TOLEDO	25000	25000	18200	11500	25000	25000	25000	18800	25000	25000	25000	24700	25000	25000	25000	25000
	YOUNGSTOWN	23 45 25000	27 49 25000	28 37 21300	28 23 13500	30 34 25000	35 37 25000	37 39 25000	39 30 21700	39 25 25000	25000	46 29 25000	49 30 25000	47 20 25000	52 22 25000	55 23 25000	58 24 25000
$\vdash\vdash$		23 44 6600	27 49 3200	28 43 2100	28 27 1400	30 34 10700	34 37 5000	37 39 3200	39 35 2200	38 24 13800	42 26 6700	45 28 4300	48 30 2900	46 19 17500	51 21 8200	54 23 5200	57 24 3700
OKLA.	OKLAHOMA CITY	28 13	28 6	28 4	28 3	39 17	39 8	39 5	39 4	49 17	49 8	49 5	49 4	60 18	60 8	60 5	60 4
ð	TULSA	6200 28 13	3200 28 6	2100 28 4	1500 28 3	10000 39 16	5000 39 8	3200 39 5	2200 39 4	12900 49 16	6600 49 8	4300 49 5	3100 49 4	16400 60 16	8000 60 5	5200 60 5	3700 60 4
	EUGENE	25000 25 47	23200 28 47	17500 28 35	13200 28 27	25000 31 34	25000 35 38	25000 38 40	20200 39 32	25000 38 24	25000 42 26	25000 45 28	25000 48 30	25000 44 19	25000 49 21	25000 52 22	25000 56 23
	MEDFORD	25000	25000	24400	16900	25000	25000	25000	25000	25000	25000	25000	25000	25000	25000	25000	25000
NO.		21 42 25000	25 47 25000	28 49 25000	28 34 25000	27 31 25000	31 35 25000	35 37 25000	38 40 25000	34 21 25000	38 24 25000	42 26 25000	45 28 25000	40 17 25000	45 19 25000	49 21 25000	53 22 25000
OREGON	ONTARIO	9 21	11 26	13 29	14 32 25000	16 18	18 21	20 23	21 24 25000	22 13	25 15	26 16 25000	28 17 25000	26 11	29 12	32 13	34 14 25000
	PENDLETON	25000 13 29	25000 15 34	25000 17 37	19 40	25000 19 22	25000 22 25	25000 24 28	26 30	25000 26 16	25000 29 18	31 19	33 21	25000 30 13	25000 34 14	25000 37 15	39 17
	PORTLAND	25000 26 48	19000 28 38	14000 28 28	10600 28 22	25000 32 35	25000 37 39	21300 39 34	16100 39 26	25000 39 24	25000 43 27	25000 47 29	22200 49 27	25000 45 19	25000 51 21	25000 54 23	25000 58 24
	ALLENTOWN	18100	9000	6000	4100	25000	14200	9200	6300	25000	18600	12100	8300	25000	23300	15000	10300
	ERIE	28 37 25000	28 18 25000	28 12 23300	28 8 15000	37 40 25000	39 23 25000	39 15 25000	39 10 23700	45 28 25000	49 23 25000	49 15 25000	49 10 25000	54 23 25000	60 23 25000	60 15 25000	60 10 25000
∢	LNIC	22 44 23400	26 48 11300	28 47 7400	28 30 5000	29 33 25000	33 36 17800	36 38 11600	39 38 7900	37 24 25000	41 26 23900	44 28 15000	48 30 10200	45 19 25000	50 21 25000	53 22 18800	56 24 12900
VANI	HARRISBURG	28 47	28 23	28 15	28 10	36 38	39 29	39 19	39 13	44 27	49 29	49 18	49 12	53 22	59 24	60 19	60 13
ISYL	PHILADELPHIA	14200 28 29	7000 28 14	4500 28 9	3100 28 6	22500 39 36	10900 39 18	7100 39 11	4800 39 8	25000 48 30	14200 49 17	9300 49 11	6400 49 8	25000 57 24	18000 60 18	11400 60 11	7600 60 8
PENNSYLVANIA	PITTSBURGH	25000 24 46	25000 28 50	16100 28 33	10600 28 21	25000 31 35	25000 38 40	25000 38 40	17100 39 28	25000 39 25	25000 43 27	25000 47 29	22700 49 27	25000 47 20	25000 52 22	25000 56 23	25000 59 25
	SCRANTON	24600	12400	8100	5500	25000	19200	12500	8500	25000	25000	16200	10800	25000	25000	20800	13900
		28 50 25000	28 25 16900	28 16 11100	28 11 7500	35 38 25000	39 31 25000	39 20 16800	39 14 11600	43 27 25000	49 30 25000	49 20 23000	49 13 15300	52 22 25000	58 24 25000	25000	60 14 19300
H	WILLIAMSPORT	27 49	28 34	28 22	28 15	33 36	38 40	39 27	39 19	41 26	46 29	49 28	49 19	50 21	55 23	59 24 3600	60 19
P.R.	SAN JUAN	3300 28 7	2000 28 4	1500 28 3	1100 28 2	5100 39 8	3000 39 5	2200 39 4	1700 39 3	6500 49 8	4000 49 5	3000 49 4	2300 49 3	8000 60 8	4800 60 5	60 4	60 3
<u></u>	PROVIDENCE	15900 28 32	8600 28 17	5800 28 12	4000 28 8	25000 39 40	13400 39 22	9000 39 15	6300 39 10	25000 47 29	17600 49 21	11500 49 14	8100 49 10	25000 55 23	22400 60 22	14600 60 15	10100 60 10
	CHARLESTON	4200	2400	1800	1400	6400	3800	2800	2100	8400	5000	3700	2900	10300	6100	4400	3400
CAR.	COLUMBIA	9500	28 5 5000	3400	2400	39 10 15400	39 6 8000	39 4 5400	39 3 3800	49 10 20000	49 6 10400	7100	49 4 5100	60 10 25000	13000	8700	6100
SO.0		28 19 8200	28 10 5000	28 7 3700	28 5 2700	39 25 12700	39 13 7700	39 9 5600	39 6 4200	49 24 16900	49 13 10000	49 9 7200	49 6 5500	60 25 21500	60 13 12600	60 9 9100	60 6 6500
Щ	GREENVILLE	28 17	28 10	28 7	28 5	39 20	39 12	39 9	39 7	49 20	49 12	49 9	49 7	60 22	60 13	60 9	60 7
ΑTC	ABERDEEN	25000 24 46	23000 28 47	12000 28 24	6700 28 13	25000 31 35	25000 36 39	19200 39 31	10600 39 17	25000 40 25	25000 45 28	25000 49 30	14200 49 17	25000 49 20	25000 54 23	25000 58 24	17900 60 18
DAKOTA	RAPID CITY	25000 21 42	25000 25 47	25000 28 50	14100 28 28	25000 28 32	25000 32 36	25000 36 38	22900 39 37	25000 37 23	25000 41 26	25000 45 28	25000 48 30	25000 45 19	25000 50 21	25000 54 23	25000 58 24
30. E	SIOUX FALLS	25000	11600	6200	3500	25000	18900	9900	5400	25000	24400	13300	7300	25000	25000	16500	9000
\vdash		27 49 11600	28 24 6400	28 12 4500	28 7 3100	35 38 18700	39 30 10100	39 16 6900	39 9 4900	43 27 24700	49 30 13200	49 16 9100	49 9 6500	53 22 25000	59 24 16600	60 17 11100	7800
<u>بير</u>	CHATTANOOGA	28 23	28 13	28 9	28 6	39 30	39 16	39 11	39 8	49 30	49 16	49 11	49 8	58 24	60 17	60 11	60 8
ESSE	KNOXVILLE	18300 28 37	9300 28 19	6100 28 12	4200 28 9	25000 38 40	14600 39 23	9500 39 15	6500 39 10	25000 46 29	19100 49 23	12200 49 15	8500 49 10	25000 55 23	24300 60 24	15500 60 16	10500 60 11
TENNESSE	MEMPHIS	8600 28 17	4900 28 10	3300 28 7	2400 28 5	13600 39 22	7500 39 12	5200 39 8	3800 39 6	17700 49 21	9800 49 12	6900 49 8	5000 49 6	22200 60 22	12000 60 12	8400 60 8	6000 60 6
-	NASHVILLE	15600	8700	5900	4300	25000	13700	9300	6600	25000	17900	11900	8600	25000	22600	15300	10600
	WITTILL	28 32	28 18	28 12	28 9	39 40	39 22	39 15	39 11	47 29	49 22	49 14	49 10	56 23	60 23	60 15	60 11

_					AKE	ARA			3LE	1 (C	ontin						
尸	YPE ROOF ➤	A	FLA AREA RATIN			1	2" R AREA RATII			,	4" RI AREA RATIN			<i>P</i>	6" R REA RATI		
1		FLOW		DRAIN I		FLOW		DRAIN		FLOW		DRAIN		FLOW		DRAIN	
ا ۔	RETURN PERIOD>	G.P.M. 10 Yr.	25 Yr.	50 Yr.	100 Yr.	G.P.M. 10 Yr.	25 Yr.	50 Yr.	S. 100 Yr.	G.P.M. 10 Yr.	25 Yr.	50 Yr.	S. 100 Yr.	G.P.M. 10 Yr.	25 Yr.	50 Yr.	100 Yr.
H	ABILENE	10100	5000	3300	2300	16300	7800	5100	3500	21200	10100	6700	4700	25000	12500	8200	5700
	ADILLINE	28 20	28 10	28 7 5100	28 5	39 26	39 13	39 8 8200	39 6 4800	49 26	49 12	49 8 10700	49 6 6400	60 25 25000	60 13	60 8	60 6
	AMARILLO	24000 28 49	9100 28 18	28 10	3000 28 6	25000 36 38	14600 39 23	39 13	39 8	25000 44 28	19400 49 23	49 13	49 8	54 23	25000 60 25	13600 60 14	7900 60 8
	BROWNSVILLE	3100 28 6	1700 28 4	1300 28 3	1000 28 2	4800 39 8	2700 39 4	1900 39 3	1500 39 2	6300 49 8	3700 49 4	2600 49 3	2000 49 2	7800 60 8	4400 60 4	3200 60 3	2500 60 3
	CORPUS CHRISTI	3300	1800	1400	1000	5200	2900	2100	1600	6800	3800	2800	2100	8300	4600	3400	2600
		28 7 5000	28 4	28 3 1700	28 2 1200	39 8 7800	39 5 3900	39 3 2600	39 3 1800	49 8 10200	49 5 5200	49 3 3500	49 3 2500	60 8 12700	60 5 6400	60 3 4200	60 3 3100
	DALLAS	28 10	28 5	28 3	28 2	39 13	39 6	39 4	39 3	49 12	49 6	49 4	49 3	60 13	60 6	60 4	60 3
	EL PASO	25000 15 34	25000 19 39	25000 21 42	25000 23 45	25000 23 26	25000 26 30	25000 28 32	25000 31 34	25000 31 19	25000 34 21	25000 37 23	25000 39 25	25000 37 16	25000 42 17	25000 44 19	25000 47 20
TEXAS	HOUSTON	2600 28 5	1600 28 3	1200 28 2	1000 28 2	4000 39 7	2400 39 4	1900 39 3	1500 39 2	5200 49 6	3300 49 4	2500 49 3	2000 49 2	6300 60 6	3900 60 4	3100 60 3	2500
≝	LUBBOCK	21700	9000	5300	3300	25000	14200	39 3 8400	5200	25000	49 4 18600	49 3 10800	7000	60 6 25000	23600	13900	8500
		28 44 25000	28 18 10500	28 11 6300	28 7 4000	36 39 25000	39 23 16700	39 14 9900	39 8 6300	45 28 25000	49 23 22200	49 13 12700	49 9 8300	54 23 25000	60 24 25000	60 14 16300	60 9 10200
	ODESSA	28 50	28 21	28 13	28 8	35 38	39 27	39 16	39 10	44 27	49 27	49 15	49 10	52 22	59 25	60 16	60 10
	SAN ANTONIO	5000 28 10	2600 28 5	1700 28 4	1300 28 3	7800 39 13	4000 39 6	2700 39 4	1900 39 3	10200 49 12	5300 49 6	3600 49 4	2700 49 3	12700 60 13	6500 60 7	4400 60 4	3200 60 3
	TEXARKANA	5100	2900	2000	1500	7900	4400	3200	2400	10200	5800	4200	3200	12900	7600	5100	3800
	VICTORIA	28 10 3200	1900	1300	1000	39 13 5000	39 7 2800	39 5 2000	39 4 1500	49 12 6600	49 7 3800	49 5 2700	49 4 2100	7900	60 8 4500	3300 s	2600
	VICTORIA	28 7 7100	28 4	28 3	28 2 1500	39 8 11500	39 5 5400	39 3 3400	39 3 2300	49 8 14800	49 5 7100	49 3 4500	49 3 3100	60 8 18700	60 5 8600	60 3 5500	60 3 3800
$oxed{oxed}$	WICHITA FALLS	28 14	3500 28 7	28 5	28 3	39 18	39 9	39 6	39 4	49 18	49 9	49 6	49 4	60 19	60 9	60 6	60 4
l _≖	CEDAR CITY	25000 12 28	25000 15 33	25000 17 37	25000 19 40	25000 20 23	25000 22 26	25000 24 28	25000 26 31	25000 27 17	25000 31 19	25000 33 21	25000 35 22	25000 33 14	25000 37 16	25000 40 17	25000 43 18
ПТАН	SALT LAKE CITY	25000	25000	25000	25000	25000	25000	25000	25000	25000	25000	25000	25000	25000	25000	25000	25000
\vdash	BRATTLEBORO	15 33 25000	18 38 14700	9500	22 44 6600	21 25 25000	24 28 23500	27 31 15300	29 33 10200	28 17 25000	32 20 25000	34 21 20200	37 23 13100	33 14 25000	38 16 25000	41 17 25000	44 18 17000
P	BRAITLEBURU	27 49 25000	28 30 25000	28 19 21300	28 13 13800	34 37 25000	39 38 25000	39 25 25000	39 17 21700	42 26 25000	47 29 25000	49 24 25000	49 16 25000	50 21 25000	56 23 25000	60 25 25000	60 17 25000
VERMONT	BURLINGTON	22 44	26 49	28 43	28 28	29 33	33 36	36 39	39 35	37 23	41 26	45 28	48 30	45 19	50 21	53 22	57 24
>	RUTLAND	25000 24 46	24100 28 49	14900 28 30	9800 28 20	25000 31 35	25000 36 38	23300 39 38	15300 39 25	25000 39 25	25000 44 27	25000 47 29	20300 49 25	25000 47 20	25000 52 22	25000 56 23	25000 60 25
П	BRISTOL	25000 28 50	12600 28 25	7700 28 16	4900 28 10	25000 35 38	20100 39 32	12300 39 20	7700 39 12	25000 43 27	25000 49 30	16100 49 19	10300 49 13	25000 52 22	25000 58 24	21100 60 21	12600 60 13
	CHARLOTTESVILLE	9000	5000	3400	2500	13800	7600	5300	3800	18200	9600	6700	5000	23200	12200	8300	6000
ΝΙΑ		28 18 6800	28 10 3300	28 7	28 5 1500	39 22 10800	39 12 5300	39 9 3400	39 6 2300	49 22 14000	7000	49 8 4600	49 6 3100	60 23 17600	60 12 8500	5500 8	3900
VIRGINIA	NORFOLK	28 14	28 7	28 5	28 3	39 18	39 9	39 6	39 4	49 17	49 9	49 6	49 4	60 18	60 9	60 6	60 4
_	RICHMOND	10000 28 20	4300 28 9	2600 28 5	1600 28 3	16000 39 26	6800 39 11	4100 39 7	2600 39 4	21200 49 26	9000 49 11	5500 49 7	3500 49 4	25000 59 25	11000 60 11	6600 60 7	4300 60 4
	ROANOKE	12700 28 26	6600 28 13	4500 28 9	3200 28 6	20300 39 33	10500 39 17	6900 39 11	4800 39 8	25000 48 30	13600 49 16	9100 49 11	6300 49 8	25000 57 24	16900 60 17	11200 60 11	7700 60 8
Г	BELLINGHAM	25000 22 44	25000	22400	16800	25000	25000	25000	25000	25000	25000	25000	25000	25000	25000	25000	25000
	HOQUIAM	13800	9100	7000	28 34 5600	28 32 21000	32 35 13700	35 38 10500	38 40 8400	34 21 25000	38 24 18200	41 26 14100	45 28 10900	40 17 25000	45 19 23800	48 20 18400	52 22 14500
		28 28 18100	28 18 11400	28 14 8700	28 11 6800	39 34 25000	39 22 17000	39 17 12900	39 13 10300	47 29 25000	49 22 23800	49 17 17800	49 13 13800	54 23 25000	60 24 25000	60 19 22900	60 15 18100
اج اج	PORT ANGELES	28 36	28 23	28 18	28 14	37 40	39 27	39 21	39 17	43 27	49 29	49 22	49 17	51 21	57 24	60 23	60 18
WASHINGTON	RICHLAND	25000 9 19	25000 11 24	25000 12 27	25000 13 30	25000 16 18	25000 18 21	25000 20 22	25000 21 24	25000 22 13	25000 25 15	25000 27 16	25000 29 18	25000 27 11	25000 30 12	25000 32 14	25000 35 15
IHS/	SEATTLE	25000 21 42	25000 25 47	24600 28 50	17700 28 36	25000 26 30	25000 31 34	25000 34 37	25000 37 39	25000 33 21	25000 37 23	25000 41 26	25000 44 28	25000 38 16	25000 44 18	25000 48 20	25000 51 22
8	SPOKANE	25000	25000	25000	25000	25000	25000	25000	25000	25000	25000	25000	25000	25000	25000	25000	25000
		13 28 25000	15 33 25000	17 36 25000	19 39 25000	19 22 25000	21 25 25000	23 27 25000	25 29 25000	25 15 25000	28 18 25000	30 19 25000	32 20 25000	30 13 25000	34 14 25000	36 15 25000	39 16 25000
	WENATCHEE	11 25	14 31	16 35	18 38	18 20	20 24	22 26	24 28 25000	24 14 25000	27 17	30 18	32 20	28 12	33 14	35 15	38 16
L	YAKIMA	25000 11 24	25000 13 30	25000 15 34	25000 17 37	25000 17 19	25000 20 23	25000 22 25	24 28	23 14	25000 27 16	25000 29 18	25000 31 19	25000 28 11	25000 32 13	25000 34 14	25000 37 15
×.	CLARKSBURG	25000 25 47	19700 28 40	11900 28 24	7500 28 15	25000 32 36	25000 37 39	18800 39 30	11900 39 19	25000 41 26	25000 46 28	24600 49 30	15700 49 19	25000 49 21	25000 54 23	25000 58 24	20000 60 20
š	HUNTINGTON	25000	21800	13000	8000	25000	25000	20600	12900	25000	25000	25000	17000	25000	25000	25000	21700
\vdash	EAU CLAIRE	25 47 25000	14700	28 26 9200	28 16 6100	32 36 25000	37 39 23400	39 33 14300	39 21 9600	41 26 25000	45 28 25000	48 30 19200	49 21 12700	49 21 25000	54 23 25000	58 24 24500	60 22 16100
	EAU CLAIRE	27 49 25000	28 30 25000	28 19 17700	28 12 11200	34 37 25000	39 38 25000	39 23 25000	39 15 18200	42 27 25000	48 30 25000	49 23 25000	49 15 24100	51 21 25000	56 24 25000	60 25 25000	60 16 25000
_	GREEN BAY	23 45	27 49	28 36	28 23	30 34	35 37	38 40	39 29	39 24	43 27	46 29	49 29	47 20	52 22	55 23	58 24
WISCONSIN	LA CROSSE	25000 28 50	12700 28 26	8000 28 16	5300 28 11	25000 35 38	12600 39 32	8300 39 20	25000 39 13	25000 43 27	16500 49 30	11100 49 20	25000 49 13	25000 52 22	21000 58 24	21000 60 21	13800 60 14
SCC	MADISON	25000 27 49	14600 28 30	9200 28 19	6100	25000 34 37	23300 39 37	14400 39 23	9600	25000 42 27	25000 48 30	19300 49 23	12800 49 16	25000 51 22	25000 56 24	24500 60 25	16200
>	MILWAUKEE	25000	19900	12200	28 12 7900	34 37 25000	25000	19100	39 16 12500	25000	48 30 25000	25000	49 16 16500	51 22 25000	25000	25000	20900
		25 47 25000	28 40 20500	28 25 12700	28 16 8300	32 36 25000	37 39 25000	39 31 20000	39 20 13200	41 26 25000	46 28 25000	49 30 25000	49 20 17400	49 21 25000	54 23 25000	58 24 25000	60 21 22100
_	WAUSAU	25 47	28 41	28 26	28 17	32 36	37 39	39 32	39 21	41 26	45 28	49 30	49 21	49 21	54 23	58 24	60 22
	CASPER	25000 15 34	25000 19 40	25000 22 43	25000 25 47	25000 23 26	25000 26 30	25000 29 33	25000 32 35	25000 31 19	25000 35 22	25000 37 24	25000 40 25	25000 37 15	25000 42 18	25000 45 19	25000 48 20
l (5	CHEYENNE	25000 18 38	25000 22 43	25000 25 47	25000 28 50	25000 25 29	25000 29 33	25000 32 36	25000 35 38	25000 34 21	25000 38 24	25000 41 26	25000 44 28	25000 41 17	25000 46 19	25000 50 21	25000 53 22
WYOMING	CODY	25000	25000	25000	25000	25000	25000	25000	25000	25000	25000	25000	25000	25000	25000	25000	25000
WYC		14 32 25000	17 37 25000	25000	22 44 25000	21 24 25000	24 28 25000	26 30 25000	29 33 25000	28 18 25000	32 20 25000	34 22 25000	37 23 25000	34 14 25000	38 16 25000	41 17 25000	25000
	ROCK SPRINGS	12 28	15 33	17 37	19 40	19 22	22 26	24 28	26 30	26 16	30 18	32 20	35 22	32 13	36 15	39 16	42 18
	SHERIDAN	25000 16 35	25000 20 41	25000 22 44	25000 25 47	25000 23 27	25000 26 31	25000 29 33	25000 32 35	25000 31 19	25000 35 22	25000 38 24	25000 40 25	25000 37 15	25000 42 18	25000 45 19	25000 49 20
_					-												

TABLE 2

FLOW RATE VS. BUILD-UP - ONE WEIR									
Depth - Inches	1	2	3	4	5	6			
Flow - G.P.M.	9.2	18.6	28.4	38.6	49.1	60.0			

TABLE 3

ALLOWABLE FLOW FOR VERTICAL LEADERS AND HORIZONTAL STORM DRAIN

	ALLOWA	ALLOWABLE FLOW IN G.P.M.									
		HORIZO	NTAL STO	RM DRAIN							
PIPE	VERTICAL	SLC	PE PER F	FOOT							
SIZE	LEADER	1/8"	1/4"	1/2"							
2	30	12	17	24							
3	90	36	51	72							
4	192	78	111	157							
5	348	142	201	284							
6	-	231	327	462							
8	-	498	705	996							
10	-	902	1275	1804							
12	-	1467	2076	2934							
15	-	2666	3774	5332							

EXAMPLES

These examples will indicate the potential savings by illustrating material differences, both in size and quantity. Labor savings will follow the same pattern. Because of the many variations throughout the country in labor, materials, organization, etc., it is too difficult to give

dollar values that will be consistent. However, a quick comparison of the examples will show the possible savings available. Each individual can then relate this to their own situation and realize the money saved through the cost reduction.

The following examples illustrate the potential savings and advantages that can be achieved with $\mathsf{RAINTROL}^{\texttt{®}}$ roof drains.

CONDITIONS APPLY TO ALL EXAMPLES 1 THRU 7:

Location	Paducah, Kentucky
Rainfall	4" per hour
Flow Control	10 yr. storm return period
Leaders	Vertical- 20 ft. high
Storm Sewers	1/4" per ft. slope
Roof Size	210' x 580' or 121,800 sq. ft.
Type Roof	Flat Roof or 4" Rise (as indicated)

EXAMPLE 1 - CONVENTIONAL METHOD USING SMITH 4" FIG. 1010 ROOF DRAIN FOR FLAT ROOF

Roof Area/Drain......4,600 sq. ft. (From Table 1, pg. 1-03)

Flow Rate = 4,511 (sq. ft.) x $\frac{4(in/hr)}{12(in/ft)}$ $\frac{1}{x_{60}}$ (min. / hr) x 7.48 (gal/cu. ft.) = 187.5 gpm/drain

PIPE REQUIREMENTS

4" dia. pipe -540'

5" dia. pipe -195'

8" dia. pipe -390'

10" dia. pipe - 585'

12" dia. pipe - 530'

18" dia. pipe - 30'

DRAIN REQUIREMENTS (27) 04" Fig. 1010 roof drains

EXAMPLE 2 - CONVENTIONAL METHOD USING SMITH 5" FIG. 1010 ROOF DRAIN FOR FLAT ROOF

Roof Area/Drain......8,650 sq. ft. (From Table 1, Pg. 1-03)

No. of Drains......121,800 \div 8,650 = 14.1 or 14 drains

Flow Rate = 8,700 (sq. ft.) x $\frac{4}{12}$ x $\frac{1}{60}$ (min. / hr) x 7.48 (gal/cu. ft.) = 361.5 gpm/drain

DRAIN REQUIREMENTS

(14) 05" Fig. 1010 roof drains

PIPE REQUIREMENTS

5" dia. pipe – 280'

6" dia. pipe – 770'

10" dia. pipe - 80'

12" dia. pipe – 80' 15" dia. pipe – 240'

18" dia. pipe - 130'

EXAMPLE 3 - RAINTROL® METHOD - MAXIMUM ECONOMY FOR FLAT ROOF

Roof Area/Drain......14,600 sq. ft./weir opening (From Table 1, Pg. 1-26)

Build up 3" (max)......Drain down time – 29 hours

7 drains with 1 weir opening -WR1

1 drain with 2 weir openings -WR2

Flow Rate = 28 gpm/weir opening @ 3" depth.

3" dia. pipe - 405'

7 drains-28 gpm ea.

1 drain-56 gpm

PIPE REQUIREMENTS DRAIN REQUIREMENTS

2" dia. pipe – 140' (7) 02" Fig. 1083 roof drains with

1 weir opening -WR1

4" dia. pipe – 215' (1) 03" Fig. 1083 roof drain with

5" dia. pipe – 320' 2 weir openings -WR2

6" dia. pipe – 50'

EXAMPLE 4 - RAINTROL® METHOD - LIMIT DRAIN DOWN TIME TO 12 HOURS FOR FLAT ROOF

Build-up 3" (max)......Drain down time – 12 hours (approx.)

4 drains with 2 weir openings -WR2

4 drains with 3 weir openings -WR3

Flow Rate = 28 gpm/weir opening @ 3" depth

4 drains -- 56 gpm ea.

4 drains -- 84 gpm ea.

PIPE REQUIREMENTS	DRAIN REQUIREMENTS

3" dia. pipe - 160' (4) 03" Fig. 1083 roof drains with 2 weir openings -WR2

4" dia. pipe – 600' (4) 03" Fig. 1083 roof drains with 3 weir openings -WR3

6" dia. pipe - 160'

8" dia. pipe - 210'

EXAMPLE 5 - CONVENTIONAL METHOD USING SMITH 6" FIG. 1010 ROOF DRAIN FOR 4" RISE ROOF

Area/Drain......121,800 ÷ 10 = 12,180 sq. ft.

Flow Rate = 12,180 x $\frac{4}{12}$ x $\frac{1}{60}$ x 7.48 = 506.1 gpm/drain

PIPE REQUIREMENTS

6" dia. pipe - 200'

8" dia. pipe - 240'

10" dia. pipe - 240'

12" dia. pipe - 480'

16" dia. pipe - 100'

18" dia. pipe - 50'

DRAIN REQUIREMENTS

(10) 06" Fig. 1010 roof drains

EXAMPLE 6- RAINTROL® METHOD - MAXIMUM - ECONOMY FOR 4" RISE ROOF

Roof Area/Drain.....25,000 sq. ft./weir opening (From Table 1, Pg. 1-26)

Build-up 5" (max for 4" rise)Drain down time -29 hours

Area/Weir Opening......121,800 \div 8 = 15,225 sq. ft. No. of Drains......Use 8 with 1 weir opening each -WR1

*Refer to Design Considerations - Page 1-23, paragraphs (e) and (f).

Flow Rate = 49 gpm/weir opening @ 5" depth

PIPE REQUIREMENTS

3" dia. pipe - 480' 4" dia. pipe - 320'

6" dia. pipe - 420'

8" dia. pipe - 50'

EXAMPLE 7- RAINTROL® METHOD - LIMIT DRAIN DOWN TIME TO 12 HOURS FOR 4" RISE ROOF

Build-up 5" (max for 4" rise)Drain down time -12 hrs. Weir Openings......121,800 ÷10,344 = 11.8 or 12 Area/Weir Opening......121,800 \div 12 = 10,150 sq. ft.

No. of Drains......Use 8 to total 12 weir openings 4 drains with 1 weir opening -WR1 SLOPED ROOF MULTIIPLE RISE 4 drains with 2 weir openings -WR2

Flow Rate = 49 gpm/weir opening @ 5" depth

4 drains – 49 gpm ea. 4 drains – 98 gpm ea.

PIPE REQUIREMENTS

3" dia. pipe - 400'

4" dia. pipe - 80' 5" dia. pipe - 400'

6" dia. pipe - 400'

8" dia. pipe - 50'

DRAIN REQUIREMENTS

(4) 03" Fig. 1085 roof drains with 1 weir opening -WR1

(4) 04" Fig. 1085 roof drains with 2 weir openings -WR2

RAINTROL® FLOW CONTROL ROOF DRAIN SIZING WORKSHEET

(To be used in conjunction with Pages 7 thru 18)

		Date	
		Ву	
DB DATA: PLANT/ENGINEER			
a. Job NameExample No. 6 b. For roof area identified asMain Bl.			
c. Location: City: Paducah		State: <i>Ky</i>	
d. Type Roof: (Circle one)	Flat (Use Fig. 1083) Sloped (Use Fig.	1085) (Indicate rise) 2" Rise	4" Rise 6" R
	10 yr. 25 yr. 50 yr. 100 yr.		
f. Overflow Provisions: Parapet He	sight 24" Scupper or Overflow Heigh		
ZINIC			
ZING a. Area Length: 580 ft.	X Width 210 17.	₌ 121,800	sq.
b. Data from Table 1 for One Weir Opening			
	9 sq. ft. Flow Rate <u>4</u> 9 G	G.P.M. Drain Down Time 29	hr
c. Build-up (Refer to Table 2)			'''
_	t. ÷ Area Rating 25,000 sq. ft. =	49 5	r oneninas required
d Area 121,000 en ft	, , , , , , , , , , , , , , , , ,	140. 01 Well	. Spormigs required
e. Number of Roof Drains 8 (refer to F	Pg. 1-23, (e and f)		
e. Number of Roof Drains 8 (sufer to F	ેડુ. 1-23, (દ and [) ations and Design Considerations. Minimum of (2		
e. Number of Roof Drains 8 (sufer to F) (Determined by Roof Layout, Specifical f. Number Weir Openings 5	2. 1-23, (e and f) ations and Design Considerations. Minimum of (2 : Number of Drains8	= <u>SX8 1</u> w	eir Opening per Dra
e. Number of Roof Drains 8 (sufer to F) (Determined by Roof Layout, Specifical f. Number Weir Openings 5 No. of Drains 8	Pg. 1-23, (e and () ations and Design Considerations. Minimum of (2 + Number of Drains 8 with (1) Weir Opening =	= <u>\$\footnote{\scale}8</u> 1 weight	eir Opening per Dra
e. Number of Roof Drains 8 (sufer to F) (Determined by Roof Layout, Specifical f. Number Weir Openings 5 No. of Drains 8 No. of Drains 9	Pg. 1-23, (e and ()) ations and Design Considerations. Minimum of (2	= <u>SX8 1</u> Wei	eir Opening per Dra r Openings r Openings
e. Number of Roof Drains (Determined by Roof Layout, Specifical f. Number Weir Openings No. of Drains No. of Drains No. of Drains	etions and Design Considerations. Minimum of (2	= <u>SX8 1</u> Wei	eir Opening per Dra
e. Number of Roof Drains (Determined by Roof Layout, Specifical f. Number Weir Openings No. of Drains	Pg. 1-23, (e and ()) ations and Design Considerations. Minimum of (2	= <u>\$\times 8</u> Wein Wein Wein Wein Wein	eir Opening per Dra r Openings r Openings
e. Number of Roof Drains (Determined by Roof Layout, Specifical f. Number Weir Openings No. of Drains No. of Drains No. of Drains No. of Drains	etions and Design Considerations. Minimum of (2	= <u>\$\times \times 1</u> Wein Wein Wein	r Openings r Openings r Openings r Openings r Openings r Openings
e. Number of Roof Drains (Determined by Roof Layout, Specifical f. Number Weir Openings No. of Drains No. of Drains No. of Drains No. of Drains Provided the provided of the provided o	itions and Design Considerations. Minimum of (2 itions and Design Considerations. Min	= <u>\$\times \times 1</u> Wein Wein Wein	r Openings r Openings r Openings r Openings r Openings r Openings
e. Number of Roof Drains (Determined by Roof Layout, Specifical f. Number Weir Openings No. of Drains No. of Drains No. of Drains Selection of Drains No. of Drains No. of Drains No. of Drains Potential Build-up Selection of Drains Selection of Drains Selection of Drains Reserved Selection of Drains Selectio	Ations and Design Considerations. Minimum of (2	= <u>SX8 1</u> Wein Wein Wein 8	r Openings r Openings r Openings r Openings r Openings r Openings
e. Number of Roof Drains (Determined by Roof Layout, Specifical f. Number Weir Openings No. of Drains No. of Drains No. of Drains Selection of Drains No. of Drains No. of Drains No. of Drains Potential Build-up Selection of Drains Selection of Drains Selection of Drains Reserved Selection of Drains Selectio	Ations and Design Considerations. Minimum of (2	= <u>SX8 1</u> Wein Wein Wein 8	r Openings r Openings r Openings r Openings r Openings r Openings
e. Number of Roof Drains (Determined by Roof Layout, Specifical f. Number Weir Openings No. of Drains No. of Drains No. of Drains Selection of Drains No. of Drains No. of Drains Potential Build-up Selection of Drains Potential Build-up	Ations and Design Considerations. Minimum of (2)	= <u>SX8 1</u> Wein Wein Wein 8	r Openings r Openings r Openings r Openings r Openings r Openings
e. Number of Roof Drains (Determined by Roof Layout, Specifical f. Number Weir Openings No. of Drains No. of Drains No. of Drains Section of Drains No. of Drains No. of Drains Potential Build-up Corresponding Flow Rate	Ations and Design Considerations. Minimum of (2)	= SX8 1 Wein Wein Wein Wein 8 Table 1, Scupper Ht. or Weir Ht.)	r Openings r Openings r Openings r Openings r Openings r Openings (Not less than 2
e. Number of Roof Drains (Determined by Roof Layout, Specifical f. Number Weir Openings No. of Drains No. of Drains No. of Drains Selection No. of Drains No. of Drains No. of Drains Selection No. of Drains Corresponding Flow Rate Flow per Drain: No. Weir Openings per	Ations and Design Considerations. Minimum of (2)	=	leir Opening per Dra r Openings r Openings r Openings r Openings r Openings(Not less than 2-
e. Number of Roof Drains (Determined by Roof Layout, Specifical f. Number Weir Openings No. of Drains No. of Drains No. of Drains Selection No. of Drains No. of Drains No. of Drains Selection No. of Drains Corresponding Flow Rate Flow per Drain: No. Weir Openings per	Ations and Design Considerations. Minimum of (2)	= <u>\$\times \times 8</u> Wein Wein Wein Wein Wein Wein Wein Wein	leir Opening per Dra r Openings r Openings r Openings r Openings r Openings(Not less than 2-
e. Number of Roof Drains (Determined by Roof Layout, Specifical f. Number Weir Openings No. of Drains No. of Drains No. of Drains No. of Drains Potential Build-up Corresponding Flow Rate 1	Ations and Design Considerations. Minimum of (2)	= <u>SX8 1</u> Wein Wein Wein Wein Wein Wein Wein Wein	leir Opening per Dra r Openings r Openings r Openings r Openings r Openings(Not less than 2-
e. Number of Roof Drains (Determined by Roof Layout, Specifical f. Number Weir Openings No. of Drains No. of Drains No. of Drains Service of Drains No. of Drains No. of Drains No. of Drains Service of Drains In Leader Sizing Potential Build-up Corresponding Flow Rate I. Flow per Drain: No. Weir Openings per	Ations and Design Considerations. Minimum of (2)	= <u>\$\times \times 8</u> Wein Wein Wein Wein Wein Wein Wein Wein	leir Opening per Dra r Openings r Openings r Openings r Openings r Openings(Not less than 2-

JAY R. SMITH MFG. CO.®