Demostraciones de Análisis Matemático II

Facundo Linlaud

Contents

1	Sucesiones 1.1 Si A está acotado superiormente entonces existe una sucesión creciente que 1.2 Si $\{a_n\}$ es una sucesión creciente y acotada superiormente, a_n converge a su 1.3 Si $\{a_n\} \in \mathbb{R}^n \implies$ tiene subsucesión monótona	su supremo
2	Espacios como n-uplas 2.1 Desigualdad de Cauchy-Schwartz 2.2 Conjunto abierto	
3	Conjuntos 3.1 Definiciones	
4	Funciones 4.1 Sucesiones para calcular límites	o/T.V.M.)

1 Sucesiones

1.1 Si A está acotado superiormente entonces existe una sucesión creciente que tiende al supremo

<u>Formalización</u>: Si $s = sup(A) \implies \exists$ sucesión creciente $\{a_n\} \subset A \mid \lim_{n \to \infty} a_n = s$

Observación: Si $s \notin A \implies \{a_n\}$ puede ser elegida estrictamente creciente.

1.2 Si $\{a_n\}$ es una sucesión creciente y acotada superiormente, a_n converge a su supremo

<u>Formalización</u>: Si $\{a_n\}$ creciente y acotada superiormente $\implies \lim_{n\to\infty} a_n = \sup(\{a_n\})$

- **1.3** Si $\{a_n\} \in \mathbb{R}^n \implies$ tiene subsucesión monótona
- **1.4** Si $\{a_n\} \in \mathbb{R}^n$ acotada \Longrightarrow tiene subsucesión convergente (Bolzano-Weierstrass)

1.5 Convergencia de sucesión

Formalización:

- $\{P_n\}_{n\in\mathbb{N}}\subset\mathbb{R}^n$
- $P \in \mathbb{R}^n$
- $\lim P_n = P$

Si y sólo si $\forall \ \epsilon > 0, \exists \ n_0 \in \mathbb{N} \ / \ ||P_n - P|| < \epsilon \ \forall \ n \geq n_0$

1.6 Divergencia de sucesión

Formalización:

- $\{P_n\}_{n\in\mathbb{N}}\subset\mathbb{R}^n$
- $\lim P_n = \infty$

Si y sólo si $||P_n|| > M \forall n \geq n_0$

2 Espacios como n-uplas

2.1 Desigualdad de Cauchy-Schwartz

Formalización: $|\langle P, Q \rangle| \leq ||P|| * ||Q||$

2.2 Conjunto abierto

Un conjunto C es abierto si para cada punto $P \in C, \exists$ bola abierta $B_r(P)$ / $B_r(P) \subset C$

2.3 Bola abierta es un conjunto abierto

Formalización: Sea $B_r(P)$ una bola abierta en $\mathbb{R}^n, \forall \ Q \in B_r(P), \exists t > 0 \ / \ B_t(Q) \subset B_r(P)$.

Observación: En particular, una bola abierta es un conjunto abierto.

2.4 Punto interior

Formalización: Un punto $P \in C \subset \mathbb{R}^n$ es interior si $\exists r > 0$ / $B_r(P) \subset C$.

<u>Observación</u>: El conjunto de todos los puntos interiores de C se denomina interior de \mathbf{C} y se denota C^0 .

2.5 Punto de acumulación

Formalización: Si existe $\{P_n\} \subset C / \lim P_n = P \implies P$ es un punto de acumulación de C.

 $\underline{\mathbf{Observación}} \text{: El conjunto de todos los puntos de acumulación de } C \text{ se denomina } \mathbf{clausura} \text{ de } \mathbf{C} \text{ y se denota}$

2.6 Conjunto cerrado

Formalización: $C \subset \mathbb{R}^n$ es cerrado \iff $(\forall \{P_n\} \subset C \implies \lim P_n = P \in C)$

2.7 $C \subset \mathbb{R}^n$ cerrado $\iff C^c$ abierto

3 Conjuntos

3.1 Definiciones

3.1.1 Compacto

Formalización: Un conjunto $A \subset \mathbb{R}^n$ es **compacto** si:

- · es cerrado y
- · es acotado

3.1.2 Arcoconexo

Formalización: Un conjunto $A \subset \mathbb{R}^n$ es arcoconexo si dados $P,Q \in A$ existe una curva continua $\alpha:[0,1] \to A$ / $\alpha(0)=P$ y $\alpha(1)=Q$.

4 Funciones

4.1 Sucesiones para calcular límites

Formalización: Sea

- $F:A\subset\mathbb{R}^n\to\mathbb{R}^m$
- $P \in \bar{A}$
- $L \in \mathbb{R}^m$

Tenemos que:

$$\lim_{X \to P} F(X) = L \qquad \iff \qquad \begin{array}{c} \forall P_n \subset A : P_n \neq P \\ P_n \to P \end{array} \tag{1}$$

4.2 Propiedades de funciones continuas

4.2.1 Si f cont. y $P_n \subset A / \forall n \in \mathbb{N} : f(P_n) \ge 0 \implies \lim f(P) \ge 0$

Formalización: si

- f contínua
- $\{P_n\}\subset A\ /\ P_n\to P$
- $\forall n \in \mathbb{N} : f(P_n) \ge 0$
- $\implies f(P) \ge 0$

Observación: El caso \leq es análogo.

<u>Idea</u>: Por absurdo. Elegir un ϵ cualquiera para la sucesión, plantear el módulo de la definición, splittear el módulo y concluir que f(P) no puede ser negativo.

4.2.2 Si f cont. y $f(P) > 0 \implies f$ es mayor a 0 en un entorno de P

Formalización: si

- f contínua
- f(P) > 0
- $\implies \exists \ r > 0 \ / \ \forall \ X \in U : f(X) > 0$, siendo $U = B_r(P) \cap A$

Observación: El caso < es análogo.

<u>Idea</u>: Por absurdo. Sea $\{a_n\}$ la sucesión que tiende a P pero que $\forall n \in \mathbb{K} : f(a_n) \leq 0$, por el teorema 4.2.1, f(P) tiene el mismo signo (o a lo sumo se nula) que la sucesión, lo cual contradice la hipótesis.

4.2.3 Si f cont. en [a, b] / $f(a)f(b) < 0 \implies \exists c \in (a,b)$ / f(c) = 0 (Bolzano/T.V.M.)

Formalización: si

- $f:[a,b] \to \mathbb{R}$ continua
- f(a)f(b) < 0
- $\implies \exists c \in (a,b) / f(c) = 0.$

Idea:

- 1. Sea $A = \{x \in [a, b] / f(x) > 0\}$
- 2. Como ${\cal A}$ acotado y no nulo existe sucesión convergente ${\cal S}_n$ a su supremo s
- 3. S_n satisface $f(S_n) \geq 0$ (4.2.1) entonces $\lim f(s) \geq 0$
- 4. Si f(s) > 0 entonces f tiene un entorno en s positivo (4.2.2)
- 5. $s + \epsilon$ es más grande que s como $f(s + \epsilon) > 0 \implies f + \epsilon \in A$
- 6. Luego s no es supremo, con lo cual se llega al absurdo. Luego f(s)=0

4.2.4 Si f cont. y su dominio arcoconexo / $f(P)f(Q) < 0 \implies \exists R \in (a,b)$ / f(R) = 0 (Bolzano \mathbb{R}^n /T.V.M.)

Formalización: si

- $f:A\subset\mathbb{R}^n\to\mathbb{R}$
- f contínua
- A arcoconexo
- $\exists P, Q \in A / f(P)f(Q) < 0$
- $\implies \exists R \in A / f(R) = 0.$

Idea:

- 1. Como el dominio de la función es arcoconexo, puedo caminar desde P a Q con una curva contínua α tal que:
 - $\alpha(0) = P$
 - $\alpha(1) = Q$
- 2. Sea $g = f \circ \alpha$
 - Es contínua en $\left[0,1\right]$ porque composición de contínuas
 - g(0) * g(1) < 0 porque $\alpha(0) = P$ y $\alpha(1) = Q$
- 3. Luego, por Bolzano en $\mathbb R$ sobre g, existe c tal que g(c)=0
- 4. Finalmente, el R que buscábamos para f es $\alpha(c)$, donde allí se anula

4.2.5 Si f cont. y su dominio compacto $\implies f$ está acotada y tiene máximo y mínimo (Weierstrass)

Formalización: si

$$\begin{array}{ll} f:A\subset\mathbb{R}^n\to\mathbb{R} \\ f \ \text{continua} \\ A \ \text{compacto} \end{array} \implies \begin{array}{ll} a) \ \exists \ m,M\in\mathbb{R} \ / \ m \leq f(X) \leq M, \forall X\in A \\ b) \ \exists \ P_m,P_M\in A \ / \ f(P_m)=m \land f(P_M)=M \end{array} \tag{2}$$

Idea:

- 1. La imagen está acotada
 - (a) Supongamos que no está acotada superiormente, luego $\exists \{a_n\} \subset A / \forall n \in \mathbb{N} : f(a_n) > n$
 - (b) Como esta sucesión $\{a_n\}$ está en A y A es un conjunto acotado, entonces puedo extraer de ella una subsucesión $\{a_{n_k}\}$ convergente a un punto P, luego $f(a_{n_k}) \to f(P)$
 - (c) Pero por (a) se tiene que $\forall n_k \in \mathbb{N} : f(a_{n_k}) > n_k$, y por hipótesis f es contínua en P, o sea, la función no diverge ni pega saltos ahí
 - (d) Finalmente, f debe estar acotada superiormente
- 2. El máximo y mínimo se alcanzan
 - (a) Supongamos que el máximo no se alcanza
 - (b) Por (1), sabemos que la imagen está acotada, por lo tanto puedo extraer de allí una sucesión creciente y convergente al supremo $\{y_n\} \subset Im(f) \ / \ y_n \to sup(Im(f)) = M$
 - (c) Como $\{y_n\}\subset Im(f)$, entonces debe existir una sucesión $\{x_n\}\subset A$ / \forall $n\in\mathbb{N}:y_n=f(x_n)$
 - O sea: $\lim f(x_n) = \lim y_n = M$
 - (d) Como $\{x_n\}$ acotada, extraemos una sucesión convergente $\{x_{n_k}\}$
 - (e) Luego $\lim x_{n_k} = P_M \in A$ porque A (donde vive esta sucesión) es cerrado, jy todo punto "tendible" en A es llegable (o sea, pertenece a A) por definición de punto de acumulación!
 - (f) Finalmente, como f es contínua, $f(P_M) = M$

Observación: El caso m y P_m es análogo.

4.2.6 Si f cont. y su dominio compacto \implies su imagen también lo es

Formalización: Si $F:A\subset\mathbb{R}^n\to\mathbb{R}^m$ contínua $\wedge A$ compacto $\implies F(A)\subset\mathbb{R}^n$ compacto