LaPIS Diagnostic Test Workbook - Mathematics

Name : Sharvesh R

Class: 7

Section : C

School : AKV Public School

Login ID : AKV180

Sharvesh R's Performance Report

Score: 23/40 Percentage: 57.5%

Sharvesh R's Study Planner

Date	Topics Planned	Q. Numbers	Teacher Remark	Teacher Sign	Parent Sig
		Teacher's Fe	edback to Student		
	Class Teacher S	 Signature	Princi	pal Signature	

Mensuration

	Topics to be Improved
Area	Area of rectangle

Hi, here in this video you will learn Area

Question: 1

Find which of the shaded portion in the given shape represent it's area.

......

.....

Answer:

Given figure is ______ in shape.

Area is the _____ (inside/ outside/ boundary) of a shape.

Question: 2

Find the area of a rectangular garden whose dimension is 25 ft in length and 20 ft in breadth.

Answer:

The garden is in _____ shape.

Length of garden is _____ and breadth of garden is _____.

Formula for area of the shape = ______.

The area of garden = ____ x ___ = ___ cm^2

 $\underline{Question:\ 3}$

Shade the possible dimension of the door whose area is 500 m^2

$$25 m \times 20 m$$

.....

1	ns	2114	or.
А	ns	wŧ	27.

Door is _____ in shape. Area of the ____ shaped door is ____.

Dimensions	Length	Breadth	Area
$50 \text{m} \times 10 \text{m}$			
$25m \times 25m$			
$25\text{m} \times 20\text{m}$			
$30 \text{m} \times 20 \text{m}$			

Therefore, possible dimension of the door whose area is 500 m^2 is/are _____

Data handling

Topics to be Improved		
Arithmetic mean, mode and median	Mean, Median and Mode	
Chance of probability	Basis of probability, Sample space in probability	

Hi, here in this video you will learn Mean, Median, Mode

Question: 4

Find the mode of the following data: 5, 15, 23, 5, 32, 44, 72, 55, 6, 3, 5, 65, 45, 67, 24, 19 and 98.

Answer:

Mode is the number that occurs _____ (frequently / rarely) in a given list of observations.

Arranging the data in ascending order: _____ occurs most number of times. Then, mode of the given data is _____

Question: 5

Which shape contains median of the given data 3, 5, 6, 2, 7, 9, 6, 4 and 1

Answer:

Median is the _____(first/central/last) value of a data when the data is arranged in ascending or descending order.

Arrange the given data in ascending order: _____ and it is the _____ of a data.

Question: 6

Marks scored	100	90	80	70
Number of students	4	5	2	1

 $Mean = \underline{\hspace{1cm}}$, $Median = \underline{\hspace{1cm}}$ and $Mode = \underline{\hspace{1cm}}$.

Answer:
$Mean = \frac{\text{of all observation}}{\text{number of observation}}.$
Here s sum of all observation = $___$, number of observation = $___$ Therefore, mean = $___$
Arrange the data in ascending order:
Here, $median = \underline{\hspace{1cm}}$, $mode = \underline{\hspace{1cm}}$.
Hi, here in this video you will learn Basics of probability
Question: 7
Identify the sure events and impossible events
(i) The sun rises in the west.
(ii) Water is colourless.
(iii) Clock rotates in clock wise direction.
(iv) Ball is square in shape.
$\underline{Answer:}$
Events that always occur are called (sure/ impossible) events. Events that cannot occur are called (sure/ impossible) events.
Here, The sun rises in the west is event. Water is colourless is event.
Clock rotates in clock wise direction is event. Ball is square in shape is event.
Question: 8
Probability of sure events is (greater / smaller) than probability of impossible events.
Answer:
Probability of sure event = $\underline{\hspace{1cm}}$ (0/ 1/ any number). Probability of impossible event = $\underline{\hspace{1cm}}$ (0/ 1/ any number).
Therefore, Probability of sure event Probability of impossible event.
Question: 9
Raju has pencil, an eraser, a scale, sharpener, colour pencil and protractor in his box. What is the probability of getting a pen from his box.
Answer:
Things Raju have
Does Raju have pen in his box, (Yes/ No). Then probability of getting pen from his box is $(0/1)$

Hi, here in this video you will learn Basics of probability Question: 10

Which of the following contains list of all possible outcomes.

Probability

Sample space

Sure events

.....

Impossible events

Answer:

Probability is the measure of ______ (chance /number) of an events happenings. Sample space consists of _____ (possible/ impossible) outcomes. Sure events always _____ (occurs/don't occurs). Impossible events _____ (occurs/ don't occurs). Therefore, _____ contains list of possible outcomes.

Question: 11

Write the possible outcomes while spinning the given wheel.

Answer:

Outcomes are _____ (possible/impossible) results of an experiment. The possible outcomes while spinning wheel are $\mathbf{\xi}0$, $\mathbf{\xi}10$, _____

Question: 12

A bag contains three balss of colour blue, green and red. Write the possible outcomes if two balls are taken out.

.....

Answer:

A bag contains	, and ball	S.
If one of the ball is	blue in colour, then other ball can be	or
If one of the ball is	green in colour, then other ball can be	_ or
If one of the ball is	red in colour, then other ball can be	or
Therefore, if two ba	alls are taken out then possible outcomes are blue $+$ $_$,
+	+	

Geometry

Topics to be Improved		
Criteria for congruence of triangle	Idenfication of criteria of congruence of triangles	
Transversal angle made by transversal	Basics of Transversal angle	
Right angle triangle and pythagoras property	Basics of Pythagoras property	
Sum of lengths of two sides of a triangle	Sum of two sides of a triangle	
Lines of symmetry for regular polygons	Identification of lines of symmetry	

Hi, here in this video you will learn Criteria of congruence Question: 13 Circle the groups that contain congruent images. Answer: Two geometrical shapes are said to be congruent if they are _____ (identical/non-identical) in shapes and size. Example: Square and Rectangle are ______ (congruent/not congruent). Question: 14 If the three sides of the triangle are equal to the corresponding sides of the other triangle, then two triangles are congruent under _____ (SSS/ASA/SAS) criteria . Answer: Two triangle are _____ (congruent/not congruent) if they are identical in shapes and size. Criteria for congruence of triangles are SSS, ______ and _____. 1. In SSS Congruence criteria - (2/3/5) sides of the triangle are (equal/5)not equal) to the three corresponding sides of the other triangle.

- 2. In SAS Congruence criteria (2/3/5) sides and (one/two) angle between them are equal to the corresponding sides and the included angle of the other triangle.
- 3. In ASA Congruence criteria (2/3/5) angles and (one/two) side between them are equal to the corresponding angles and the included side of the other triangle.

SSS	sides and angles are equal
SAS	sides and angles are equal
ASA	sides and angles are equal

Question: 15

The triangles LNM and PRQ are congruent by SAS criteria. Then find the side PR

 $\underline{Answer:}$

The given two triangles satisfy ______ criteria of congruence. By SAS congruence criteria, MN = _____, ___ and $\angle N$ = _____ The side MN=8 cm in ΔLNM is equal to the side _____ in ΔPRQ The common included angle in Δ LNM and ΔPRQ are _____ The side PR is equal to the side in _____ ΔLNM . Therefore, length of side PR = _____

 Hi , here in this video you will learn $\operatorname{\mathbf{Basics}}$ of $\operatorname{\mathbf{Transversal}}$ angle

Question: 16

In given diagram, \angle 1 and \angle 7 are ______ (alternate / corresponding) angles.

Answer:

A line that intersects two or more lines at distinct points is called a _____ (transversal/Intersecting line).

Angle that lies on different vertices and on the opposite sides of transversal is _____ angles.

Angle that lies on different vertices and on the same sides of transversal is _____ angles. Therefore, $\angle 1$ and $\angle 7$ are _____

Question: 17

Find the transversal, alternate angles and corresponding angles in a given diagram.

Answer:

A line that intersects two or more lines at distinct points is called a _____ (transversal/Intersecting line).

In a given diagram, _____ is a transversal line. (BF/AD/CE)

Alternate angles	Corresponding angles
$\angle a$ and $\angle g$, $\angle b$ and $\angle h$,	\angle a and \angle e, \angle b and \angle f,

Question: 18

Find $\angle e$ and $\angle g$ if $\angle a = 30^{\circ}$.

Answer:

When parallel lines cut by a transversal,

- (i) Alternate angles are _____ (equal / not equal).
- (ii) Corresponding angles are _____ (equal / not equal).

Here, alternate angle of $\angle a$ is _____ and its value is ____. Corresponding angle of $\angle a$ is _____ and its value is _____.

Hi, here in this video you will learn Pythagoras property

Question: 19

In a right angled triangle, square of the _____ = sum of the squares of the legs.

......

Answer:

Pythagoras theorem is only applicable for ______ triangle.

Longest side of the triangle is _____ (hypotenuse/ legs) and other two sides are called _____ (hypotenuse/ legs).

Pythagoras theorem states that _______.

Question: 20

Find the hypotenuse of the triangle ABC if base is $12~\mathrm{m}$ and altitude is $5~\mathrm{m}$.

Answer:

Pythagoras theorem states that square of the _____ = sum of the squares of its

 $Given: Base = \underline{\hspace{1cm}}, Altitude = \underline{\hspace{1cm}},$

Base and altitude are _____ (hypotenuse/legs) of the triangle.

......

Therefore, hypotenuse of the triangle is _____.

Question: 21

Find the length of the rectangle, if breadth is 3 cm and diagonal is 5 cm.

Answer:

Pythagoras theorem states that square on the _____ = sum of the squares on

Is Pythagoras theorem applicable in rectangle? ____ (yes/ no).

Given: breadth = _____, length of diagonal = _____

Therefore, diagonal of the rectangle is _____

Hi, here in this video you will learn Sum of the length of sides of the triangle

Question: 22

Find the greatest distance to reach C from A in the given diagram.

......

The sides of the given triangle are _____.

The possible way to reach point C from point A are _____ and AB then to

Therefore, the greatest distance to reach C from A in the given diagram is ______.

Question: 23

_____ (Sum of / Difference between) the length of any two sides of a triangle is smaller than the length of the third side.

.....

Answer:

There are ______ sides in a triangle.

The sum of the two sides of a triangle is ______ than the other side of the triangle.

The difference of the two sides of a triangle is ______ than the other side of the triangle.

Example: In triangle XYZ,

Question: 24

The lengths of two sides of a triangle are 7 cm and 10 cm. Between which two numbers can length of the third side fall?

.....

Answer:

- 1. The sum of the two sides of a triangle is ______ than the third side of the triangle. Therefore, the third side should be _____ (less/ greater) than sum of other two sides. Here, sum of the two sides = _____ + ___ = ____ Therefore, the length of the third side is less than _____
- 2. The difference of the two sides of a triangle is ______ than the third side of the triangle.

 Therefore, the third side should be _____ (less/ greater) than sum of other two sides.

 Here, difference of the two sides = ____ ___ = ____

 Therefore, the length of the third side is greater than _____

Therefore, length of the third side is greater than ______ but less than _____.

Hi, here in this	video you will learn Sy	mmerty	
Question: 25			
Line of symmetry is identical) halves.	divides any shape into	(one / two)	(identical / non
$\underline{Answer:}$			
Symmetrical image l	s a line that divides any sha nave (identi nmetry is dividing the shap	cal / non identical) parts.	
Question: 26			
How many lines of sy	ymmetry does square have?		
Answer:	· •		
Square have	sides.		
*	re and all a	ngles are	
	Mark the lines	s of symmetry.	
Thorofore garage ha	lines of symmetry		
Therefore, square na	s lines of symmetry	'.	
0 0			
· ·	g based on the symmetry.		• 1
Letter S,	scalene triangle, Letter K,	Rhombus, Number 8, and c	eircle.
$\underline{Answer:}$			
	s a line that divides the shap		
	(symmetrical / a	symmetrical) and have	lines of
symmetry.	,		
=	(symmetrical	/ asymmetrical) and have $_$	lines of
symmetry.	(1 /	1)	1. <i>c</i>
	(symmetrical / a	asymmetrical) and have	lines of
symmetry.	(gymmatrical / agym	amotrical) and have	lines of
symmetry.	(symmetrical / asyn	imetricar) and nave	imes of
v	_ (symmetrical / asymmetrical	rical) and have	lines of symmotry
	(symmetrical / asymmetrical / asymmetrical /		
~ (WID 10		orrani, min ilmvo	inico or symmetry.

Number system

Topics to be Improved		
Positive and negative rational numbers	Identification of positive rational numbers	
Exponents	Solving exponents	
Operations on rational numbers	Division of rational numbers	

Hi, here in this video you will learn **Positive and Negative rational numbers**

Question: 28

Segregate positive and negative rational number.

.....

Answer:

- If both the numerator and the denominator of a rational number are ______ (positive/negative), then it is positive rational number.
- If either the numerator and the denominator of a rational number are negative, then it is _____ (positive/negative) rational number.

In the given circle, positive rational numbers are _____ and negative rational numbers are

Question: 29

 $\frac{-3}{-4}$ is a _____ (positive / negative / neither positive nor negative) rational number.

Answer:
-3 is a number, -4 is a number.
-3 is a number, -4 is a number. Division of $\frac{-3}{-4} = \boxed{}$ and this rational number.
(Positive / Negative / Neither positive nor negative rational number)
<i>Question:</i> 30
The product of a positive rational number and a negative rational number isrational number. (Positive/ Negative/ neither positive nor negative)
Answer:
Examples for positive rational numbers: Examples for negative rational numbers: Positive rational number × Negative rational number = × = and this is rational number
Hi, here in this video you will learn Exponents and power
Question: 31
Find the exponential form of 1000.
Answer:
(Exponents/Base) tells us how many times a number should be multiplied by itsel to get the desired result. Exponents is also called as (Base / Power).
1000 can be written as = $10 \times $
10 is raised to the power of $\underline{} = (10)^{\underline{}}$
Question: 32
Find the value of $(-2)^3$.
Answer:
(Exponents/Base) tells us how many times a number should be multiplied by itsel to get the desired result.
In this exponential form $(-2)^3$, base =, power = $(-2)^3 = \underline{\qquad} \times \underline{\qquad} \times \underline{\qquad} = \underline{\qquad}.$
Question: 33

- (i) Tenth power of 100 is $((10)^{100})$ or $(100)^{10}$.
- (ii) k is raised to the power of 5 is $((k)^5)$ or $(5)^k$.

Answer:

Exponential form = (Base)—

- (i) Tenth power of 100: Base = ____, Power/Exponents = ____, exponential form = ____.
- (ii) k is raised to the power of 5: Base = ____, Power/Exponent = ____, exponential form = ____.

Hi, here in this video you will learn **Operation on rational numbers**

Question: 34

Fill in the boxes to make the given expression correct.

$$\frac{1}{5} \div \frac{14}{15} = \frac{1}{\square} \times \square$$

Answer:

When any fraction is divided by a fraction, we multiply the dividend by the _____ (same/reciprocal) of the divisor.

Here, dividend = _____ and divisor = _____

$$\frac{1}{5} \div \frac{14}{15} = \frac{1}{\square} \times \square = \square$$

Question: 35

Solve: $\frac{18}{7} \div 0.6$

Answer:

Fraction form of $0.6 = \underline{\hspace{1cm}}$

when any fraction is divided by a fraction, we multiply the dividend by the ______ (same/reciprocal) of the divisor. Here, dividend = _____ and divisor = _____.

$$\frac{18}{7} \div \boxed{\square} = \frac{18}{7} \times \boxed{\square} = \boxed{\square}$$

Question: 36

Find the missing number in the expression $\frac{8}{3} \div \frac{16}{\square} = 2$

Answer:

$$\frac{8}{3} \div \frac{16}{\square} = 2$$

$$\frac{8}{3} \times \frac{\square}{16} = 2$$

Transposing 8/3 to RHS,

$$\frac{\square}{16} = 2 \square \frac{8}{3}$$

$$\frac{\square}{16} = 2 \times \boxed{\square}$$

$$\frac{\square}{16} = \frac{\square}{\square}$$

Transposing 16 to other side, the result is _____

Comparing Quantities

	Topics to be Improved	
Percentage	Basic of percentage	
Hi, here in this video you	ı will learn Basics of percentage	— •
$Question: 37 \dots$		
2% can be written as		
Answer:		
Percentages are numerators of	fractions with denominator $2\% = \frac{\Box}{\Box}$	
Question: 38		
Arun attended the LaPIS test Arun?	for 100 marks and got 75% marks. What is the	e mark scored by
Answer:		
Arun attended LaPIS test for .	marks. He got	marks.
75 % can be written in fraction	n form ———	
Then the mark scored by Arun	$n = \text{Total mark} \times 75\% = \underline{\qquad} \times \underline{\qquad}$	=
Question: 39		
There are 25 apples in a basket apples.	t in which 10 of them are rotten. Find the perc	entage of rotten
Answer:		
There are apples in a Number of rotten apples are _		

Fraction form of rotten apples in	n a basket	=	
Convert it into a percent=	x	% =	

Algebra

Topics to be Improved		
Addition and subtraction of algebraic expressions	Like terms and Unlike terms	
Monomials, binomials, trinomials and polynomials	Types of algebraic expression	
subtraction of algebraic expressions	subtraction of algebraic expressions	
Basics of simple equation	Solving of simple equation	

Hi, here in this video you will learn Addition on expression

Question: 40

Shade the like terms.

Answer:

Given terms are ______

Two or more term have _____ (same/ different) variables is called like terms.

Here, like terms are _____

Question: 41

Complete the expression $7r^2 + r \Box - 2 \Box = \underline{} r^2$

Answer:

_____ (Like / Unlike) terms can be added or subtracted.

$$_{7r^2+ r} \square_{-2} \square = (_{7} + \underline{ } - 2)_{r^2} = \underline{ }$$

Question: 42

Sam have 3a chocolates and 9y icecream. Ram have 7a chocolates and 5y icecream.

(ii) How many icecreams Sam have more than Ram: ______.

Answer:

	Chocolates	Icecream
Sam		
Ram		

(i) Total chocolates Ram and Sam hav	е	
--------------------------------------	---	--

 $Ram's chocolate + Sam's chocolates = ____ + ___ = ___$

(ii) How many icecreams Sam have more than Ram:

_____ icecream - ____ icecream = ____ - __ = ___

......

.....

Hi, here in this video you will learn **Types of expression**

Question: 43

There are _____ terms in the expression 7x + 3y + m + 5.

Answer:

In algebraic expression, _____ (variables/ terms) are connected together with operations of addition.

The terms in the expression are ______, _____, and ______.

Therefore, there are ______ terms in the expression.

Question: 44

Classify the following expression into monomial, binomial and polynomial.

- 1. 7m + n + 2
- 2. $8x^2 + 0$
- 3. 7xy + 4m

Answer:

- 1. The terms in expression $8x^2 + 0$ are _____. Here, expression has _____ term and it is a _____.
- 2. The terms in expression 7xy + 4m are _____. Here, expression has _____ term and it is a _____.

•	ression $7m + n + 2$ ar has term and it is			
Question: 45				
$5m^2 + m + 0$ is a	expression	. (Monomial/	Binomial/ Trinomial))
Answer:				
The terms in expression have the expression have				_ expression.
Hi, here in this vie	deo you will learn	Subtractio	on on expression	
Question: 46				
Find the sum of two ex	expressions $a + b + c \epsilon$	and $b + c + d$		
$\underline{Answer:}$				
The given two expressi The two terms will get The sum of two expres The answer is	added only if they ar	e(Lik	ke/ Unlike) terms.	
$Question: 47 \dots$				
		School A	School B	
	Number of boys	100b	250b	
	Number of girls	150g	200g	
	Number of teachers	25t	45t	
(i) Total number of	boys in school A and	B is		
(ii) Total number of	students in school B i	s		
(iii) How many more	teachers are there in s	school B than	school A?	
$\underline{Answer:}$				
Number of boys	in school A = in school B = boys in school A and	-•	+ =	·

(ii) Number of boys in school $B = \underline{\hspace{1cm}}$ Number of girls in school $B = \underline{\hspace{1cm}}$.

Total number of students in school B is $___$ + $___$ = $___$.

(iii) Number of teachers more in school B than school A = Teachers in school B - Teachers in school $A = \underline{\hspace{1cm}}$.

...... Question: 48

Solve the following:

$$\begin{array}{c}
 13x + \underline{\hspace{1cm}} \\
 (+) \ 12x + 10y \\
 \underline{\hspace{1cm}} + 25y
 \end{array}$$

$$\begin{array}{r}
 3a - 5b \\
 \hline
 (-) \quad 5a - 7b \\
 \hline
 -2a - \underline{\hspace{1cm}}
 \end{array}$$

Answer:

The two terms will get added only if they are _____ (like/unlike) terms.

$$\begin{array}{c|c}
13x + \underline{\hspace{1cm}} \\
(+) & 12x + 10y \\
\underline{\hspace{1cm}} + 25y
\end{array}$$

$$\begin{array}{r}
 3a - 5b \\
 \hline
 (-) \quad 5a - 7b \\
 \hline
 -2a - \underline{\hspace{1cm}}
 \end{array}$$

.....

Hi, here in this video you will learn **Solving an equation**

Question: 49

If ©=5, then 5 © +5 =

Answer:

The value of the given smiley \odot is _____.

Substituting the value in the expression $= 5(\underline{\hspace{1cm}}) + 5 = \underline{\hspace{1cm}} + \underline{\hspace{1cm}} = \underline{\hspace{1cm}}$.

Question: 50

Which of the following number can be placed in the box to make the equation correct (-2, -1, 0, 1,

$$7 \boxed{ } + 3 = -4$$

Answer:

The given equation is 7 = -4 Substitute the values (-2, -1, 0, 1, 2) in the circle,

$$7 \times \underline{\hspace{1cm}} + 3 = \underline{\hspace{1cm}}$$

$$7 \times \underline{\hspace{1cm}} + 3 = \underline{\hspace{1cm}}$$

Therefore, _____ is the number that can be placed in a box to make the equation correct.

Question: 51 Arrange the terms in the descending order when the value of x is 2. 2x $5x \times 1$ x + 3 2x - 4 $\frac{1}{2}x$

Answer:

The given expression are _____.

The value of x is _____.

substituting value of x

$$2x = 2 \times \underline{\hspace{1cm}} = \underline{\hspace{1cm}} 2x - 4 = 2 \times \underline{\hspace{1cm}} - 4 = \underline{\hspace{1cm}}$$
 $x + 3 = \underline{\hspace{1cm}} = \underline{\hspace{1cm}}$
 $5x \times 1 = 5 \times \underline{\hspace{1cm}} \times 1 = \underline{\hspace{1cm}}$

Arranging in descending order: $__$, $__$, $__$, $__$, $__$. Their respective algebraic terms are $__$, $__$, $__$, $__$, $__$.