Name	:			. Stu	dent ID	:						
UNS	W Scho	OL OI	F Матн	EMATIC	S AND	Stat	TISTICS					
MAT	ГН3411	Ini	FORMA	TION	Code	S AN	D CII	PHER	as			
2017 S2				${f T}$	EST	2	VERSION A					
• Tim	ne Allowed	l: 45	minute	es								
eac For	the multiple th multiple the true,	e choi false	ce quest	tion is w	vorth 1 swer qu	marl	k.			r.		
1. Using the LZ78 algorithm a message is encoded as $(0,b)(0,a)(2,a)(3,b)(3,a)$. What is the last dictionary entry after decoding?												
		(a)	aaa	(b) a	aab	(c) <i>a</i>	aba	(d)	baa	(e)	bab	
2.	A 2-symb AS distribution	ol.Ma S19 on p =	$ \begin{array}{c} \text{Those so} \\ Those $	urce has ent). The (ransit Pro (binary)	tion n JC() Mar	natrix Ct E kov en	M = 2	$\begin{pmatrix} 0.7 \\ 0.3 \\ H_M \end{pmatrix}$ is	0.4 1.6 s appr	and eque control eque to the control equal to the control equal to the control equal	ilibrium y
	(a)	0.	ttps);/ø.p	OW (CO	der	.dc) 179 19	9	(e) 0.96	51
	Let $H(x)$ asymmetric noise entrepresent $P(a_1)$	ic bill	$\frac{1}{2} \left(\frac{1}{2} \right) \left(\frac{1}{2} \right)$	=0.4p	th inpu + 0.1 n	at a	DOY With		gd.	5.2+	$B = \{b_1, 0.7p\} \text{ in } 1$	b_2 } has pits and
	((a) (0.29	(b) 0.3	33 ((c) 0	.36	(d)	0.40	(e	0.43	
4. Use Euler's Theorem or otherwise to calculate $5^{2272} \pmod{3411}$. The answer is												
		(8	a) 1	(b) 5	(c)) 25	(d) 12	5	(e) 6	525	
	Use Ferm Then $a -$			on to fa	$\operatorname{ctor} n =$	= 111	3 as a	produ	ict n =	= ab v	where $2 \le$	$\leq b < a$.
	(a	a) 21	(b)	32	(c) 4	42	(d)	53	(e)	None	of these	

6. [5 marks] For each of the following, say whether the statement is true or false, giving a brief reason or showing your working. You will get $\frac{1}{2}$ mark for a correct true/false answer, and if your true/false answer is correct, then you will get $\frac{1}{2}$ mark for a good reason.

Begin each answer with the word "True" or "False".

- i) If arithmetic coding with source symbols a, b and stop symbol \bullet corresponding to the intervals [0,0.3), [0.3,0.7) and [0.7,1) is used, then the message $bb \bullet$ is encoded by 0.55.
- ii) For a 3-symbol source $S = \{s_1, s_2, s_3\}$ with probabilities $p_1 = 4/9$, $p_2 = 2/9$, $p_3 = 1/3$ it is possible to find a **binary** encoding of some extension S^n with average word length per original source symbol less than 1.5.
- iii) For a source $S = \{a, b\}$ with probabilities $P(a) = \frac{3}{4}$ and $P(b) = \frac{1}{4}$, the second shortest codewords in the binary Shannon-Fano code for the fourth extension S^4 have length 7.
- iv) There are 60 primitive elements in the field GF(125).
- v) The number 3 is one of the pseudo-random numbers generated by the linear congruential $x_{i+1} \equiv 2x_i + 5 \pmod{17}$, seeded with $x_0 = 1$. Assignment Project Exam Help
- 7. [5 marks] Let $\mathbb{F} = \mathbb{Z}_3(\alpha)$ where α is a root of the polynomial $x^2 + 1 \in \mathbb{Z}_3[x]$.
 - (i) Express at transformed (expression over \mathbb{Z}_3 of 1 and α .
 - (ii) Find the primitive elements of \mathbb{F} .
 - (iii) Simplify $\frac{A+d}{\gamma^4 + \gamma}$, giving your answer a parlinear combination of 1 and α . Show your working.

Name	e:				. St	udent	ID:							
UNS	W Sci	HOOL	of N	I ATI	HEMATI	CS AN	D ST	ATISTI	CS					
MA	TH34	11 I	NFO	RMA	ATION	Cor	DES A	ND (Сірне	ERS				
2017	' S2				r -	res:	Γ2				-	VER	SION I	3
• Tin	ne Allov	ved: 4	5 m	inut	es									
ea Fo	or the m ch multi or the tr aple eve	iple ch ue/fal	noice se an	ques d wr	tion is ritten a	worth nswer	1 ma	ırk.						
1.	If arith 0.5, 0.4			_		-				_			robabilitie	es.
	(a)	0.0	2	(b)	0.21	(c)	0.36	(d) 0.4	14	(e) I	None o	f these	
2.	A 2-syr A distribu	nbol. SS1 ition	Marko 91 p = -	ov so $\frac{1}{5}$ $\binom{2}{2}$	ource hat ent . The	as trar P1 (bina	nsition OJE ry) M	matri CC arkov	$\overset{\text{ix }M}{\mathbf{E}\mathbf{X}}$ entrop	$\mathop{am}^{=}_{0.3}^{(0.7)}$	0.4\(\frac{1.6}{1.6}\) is app	and e	equilibriun ately	n
	(a) 0	hti	tp	5) / Ø.	90 V	WC(ode	er.e	OM	56	(e) ().971	
3.	asymm noise er	etric l ntropy	biAar H(1		annal v $ annal v$	p+0.1	hita			^a Pd	tout (0.3 +	B = -0.7p	$(a^1 - 1)$. A $\{b_1, b_2\}$ had in bits an eximately	as id
		(a)	0.11	1	(b) 0	0.16	(c)	0.27	(d)	0.38	(e) 0.4	41	
4.	Use Fer Then a				on to f	actor	n = 12	215 as	a prod	duct n	=ab	where	$2 \le b < a$	<i>a</i> .
			(a)	12	(b)	14	(c)	16	(d)	18	(e)	20		
5.	Using I The an			eoren	n or otl	nerwis	e, calc	ulate {	5^{66} (m	od 99)				
			(a)	5	(b)	14	(c)	25	(d)	31	(e)	82		

6. | **5 marks**| For each of the following, say whether the statement is true or false, giving a brief reason or showing your working. You will get $\frac{1}{2}$ mark for a correct true/false answer, and if your true/false answer is correct, then you will get $\frac{1}{2}$ mark for a good reason.

Begin each answer with the word "True" or "False".

- i) Using the LZ78 algorithm a message is encoded as (0,a)(0,b)(2,a)(2,b)(4,a). The last dictionary entry after decoding is aba.
- ii) For a 3-symbol source $S = \{s_1, s_2, s_3\}$ with probabilities $p_1 = 0.6, p_2 = 0.3,$ $p_3 = 0.1$, it is possible to find a **ternary** encoding of some extension S^n with average word length per original source symbol less than 0.82.
- iii) n = 65 is a pseudo-prime to base 8.
- iv) For symbols s_1, s_2, s_3, s_4 with probabilities 0.5, 0.2, 0.1 respectively, the binary Shannon-Fano encoding 01001100 encodes the string of symbols $s_1s_2s_4$.
- v) Given that 5 is a primitive element of \mathbb{Z}_{23} , then 20 is also a primitive element.
- 7. [5 marks] Let $\mathbb{F} = \mathbb{Z}_2(\alpha)$ where α is a root of the polynomial $x^3 + x + 1 \in \mathbb{Z}_2[x]$.

 (i) Express all nonzero elements of \mathbb{F} as powers of α and as linear combinations
 - over \mathbb{Z}_2 of 1, α , and α^2 .
 - (ii) Find the relationship of the contraction of α^6 .
 - Show your working.

Add WeChat powcoder