DataStar Machine Learning

Modules

- 01. Introduction
- 02. Regression
- 03. Classification
- 04. Ensemble Methods & Cross-Validation
- 05. Machine Learning Algorithms
- 06. Regularization Techniques
- 07. Introduction to Unsupervised ML
- 08. Dimensionality Reduction Techniques
- 09. Clustering Techniques
- 10. Introduction to Natural Language Processing

Session 2: Regression

15 Sept 2017

What is Regression?

What is Regression?

From features to predictions

Stock prediction

- Predict the price of a stock (y)
- Depends on $\mathbf{x} =$
 - Recent history of stock price
 - News events
 - Related commodities

Tweet Popularity

How many people will retweet your tweet? (y)

• Depends on **x** = # followers, # of followers of followers, features of text tweeted, popularity of hashtag, # of past retweets,...

Reading Your Mind

Case Study: Predicting House Prices

Simple Regression

Linear regression with one input

How much is my house worth?

Look at recent sales in my neighborhood

How much did they sell for?

Regression fundamentals

Data, Model, Task

Data

$$(x_2 = sq.ft., y_2 = \$)$$

$$(x_3 = sq.ft., y_3 = \$)$$

$$(x_4 = sq.ft., y_4 = \$)$$

$$(x_5 = \text{sq.ft.}, y_5 = \$)$$

Input vs. Output:

- **y** is the quantity of interest
- assume y can be predicted from x

Regression fundamentals

Data, Model, Task

Regression fundamentals

Data, Model, Task

Task

Which model f(x) is the best fit?

From the model that we estimate, we can do a lot more other tasks

How this works

Simple linear regression

What's the equation of a line?

"Cost" of using a given line

Find the "best" line

Model vs. Fitted line

Let's say

 $w_0 = -44850$

 $w_1 = 280.76$

Regression model:

$$y_i = w_0 + w_1 x_i + \varepsilon_i$$

Seller: Predicting house price

Buyer: Predicting size of house

A concrete example

Making sense of the coefficients

Making sense of the coefficients

W₁

Predicted change in the output per unit change in input

What-ifs

What if...

- 1. What if house was measured in square meters?
- 2. Price was measured in RM? Euros?

The Algorithm

Find "best" line

Find "best" line

Minimizing a cost function

The idea of gradients

Finding the max and min analytically

Work out how to find that minimum point!

Gradient example

$$g(w) = 5w_0 + 10w_0w_1 + 2w_1^2$$

$$\nabla g(w) =$$

Descending the hill

What we want is to get w which minimizes the cost function g(w)

The value of w needs to be iteratively updated by "descending" the gradient ⇒ Gradient Descent

Will it ever converge at 0?

For convex functions, optimum occurs when | da |

 $\left| \frac{dg}{dw} \right| = 0$

In practice, stop when

$$\frac{\mathrm{dg}}{\mathrm{dw}} < \varepsilon$$

Is a fixed step size desirable?

Compute the gradient of RSS

RSS(w₀,w₁) =
$$\sum_{i=1}^{N} (y_i - [w_0 + w_1 x_i])^2$$

Taking the derivative w.r.t. w₁ and w₂

Putting it together:

$$\nabla RSS(w_0, w_1) = \begin{bmatrix} -2 \sum_{i=1}^{N} [y_i - (w_0 + w_1 x_i)] \\ -2 \sum_{i=1}^{N} [y_i - (w_0 + w_1 x_i)] x_i \end{bmatrix}$$

Method 1: Set gradient = 0

$$\nabla RSS(w_0, w_1) = \begin{bmatrix} -2\sum_{i=1}^{N} [y_i - (w_0 + w_1 x_i)] \\ -2\sum_{i=1}^{N} [y_i - (w_0 + w_1 x_i)] \\ -2\sum_{i=1}^{N} [y_i - (w_0 + w_1 x_i)] x_i \end{bmatrix} = 0$$

Can you solve these 2 equations to get a closed-form solution?

Method 2: Gradient Descent

Interpreting the gradient:

$$\nabla RSS(w_0, w_1) = \begin{bmatrix} -2\sum_{i=1}^{N} [y_i - (w_0 + w_1 x_i)] \\ -2\sum_{i=1}^{N} [y_i - (w_0 + w_1 x_i)] x_i \end{bmatrix} = \begin{bmatrix} -2\sum_{i=1}^{N} [y_i - \hat{y}_i(w_0, w_1)] \\ -2\sum_{i=1}^{N} [y_i - (w_0 + w_1 x_i)] x_i \end{bmatrix}$$

So plug this back to the Gradient Descent formula

$$w^{(t+1)} \leftarrow w^{(t)} - \eta \frac{dg}{dw}\Big|_{w^{(t)}}$$

Gradient descent relies on choosing step size and convergence criteria

Multiple Regression

Linear regression with multiple features

Fit with a line or...?

How about a quadratic function?

Or even higher order polynomials?

Polynomial Regression

Model:

$$y_i = w_0 + w_1 x_i + w_2 x_i^2 + ... + w_p x_i^p + \varepsilon_i$$

treat as different features

```
feature 1 = 1 (constant) parameter 1 = w_0

feature 2 = x

feature 3 = x^2

parameter 2 = w_1

parameter 3 = w_2

...

feature p+1=x^p

parameter p+1=w_p
```


Generic basis expansion

Model:

$$y_{i} = w_{0}h_{0}(x_{i}) + w_{1}h_{1}(x_{i}) + ... + w_{D}h_{D}(x_{i}) + \epsilon_{i}$$

$$= \sum_{j=0}^{D} w_{j}h_{j}(x_{i}) + \epsilon_{i}$$

$$j^{th} feature$$

$$j^{th} regression coefficient$$
or weight
$$feature 1 = h_{0}$$

$$feature 2 = h_{1}$$

feature
$$1 = h_0(x)$$
...often 1 (constant)
feature $2 = h_1(x)$... e.g., x
feature $3 = h_2(x)$... e.g., x^2

...

feature $D+1 = h_D(x)... e.g., x^p$

No longer a single input

Big house, but...

Add more inputs

Planes and Hyperplanes

Model:

$$y_i = w_0 + w_1 x_i[1] + ... + w_d x_i[d] + \varepsilon_i$$

feature 1 = 1

feature 2 = x[1] ... e.g., sq. ft.

feature $3 = x[2] \dots e.g.$, #bath

...

feature $d+1 = \mathbf{x}[d]$... e.g., lot size

Generically...a D-dimensional curve

```
Model:

y_i = \underset{D}{w_0} h_0(\mathbf{x}_i) + \underset{1}{w_1} h_1(\mathbf{x}_i) + \dots + \underset{1}{w_D} h_D(\mathbf{x}_i) + \epsilon_i
= \sum_{j=0}^{D} w_j h_j(\mathbf{x}_i) + \epsilon_i
```

```
feature 1 = h_0(\mathbf{x}) ... e.g., 1

feature 2 = h_1(\mathbf{x}) ... e.g., \mathbf{x}[1] = \mathrm{sq.} ft.

feature 3 = h_2(\mathbf{x}) ... e.g., \mathbf{x}[2] = \mathrm{#bath}

or, \log(\mathbf{x}[7]) \mathbf{x}[2] = \log(\mathrm{#bed}) x \mathrm{#bath}

...

feature D+1 = h_D(\mathbf{x}) ... some other function of \mathbf{x}[1],..., \mathbf{x}[d]
```


Some common notations

```
# observations (\mathbf{x}_i, y_i): N
# inputs \mathbf{x}[j]: d
# features h_j(\mathbf{x}): D
```


Interpreting the coefficients

Interpreting the coefficients

For multiple linear features

Fitting D-dimensional curves

Rewrite in matrix notation

For observation i

$$y_i = \sum_{j=0}^{D} w_j h_j(\mathbf{x}_i) + \varepsilon_i$$

Fitting D-dimensional curves

For all observations together

$$y = Hw + \varepsilon$$

Recap: Cost of using a line

RSS for multiple regression

RSS in matrix notation

$$RSS(\mathbf{w}) = \sum_{i=1}^{N} (y_i - h(\mathbf{x}_i)^T \mathbf{w})^2$$
$$= (\mathbf{y} - \mathbf{H} \mathbf{w})^T (\mathbf{y} - \mathbf{H} \mathbf{w})$$

Why?

$residual_1$	residual ₂	residual ₃	 residual _N	residual ₁
9				residual ₂
				residual ₃
				residual _N

Gradient of RSS

$$\nabla$$
RSS(w) = ∇ [(y-Hw)^T(y-Hw)]
= -2H^T(y-Hw)

Why? By analogy to 1D case:

Approaches to get w

Approach 1: Set gradient = 0 and solve it to get closed-form solution

Answer: $\hat{\mathbf{w}} = (\mathbf{H}^T \mathbf{H})^{-1} \mathbf{H}^T \mathbf{y}$

Gradient Descent

Approach 2: Use Gradient Descent to optimize value of w

while not converged
$$\mathbf{w}^{(t+1)} \leftarrow \mathbf{w}^{(t)} - \mathbf{\eta} \nabla RSS(\mathbf{w}^{(t)})$$

$$-2\mathbf{H}^{T}(\mathbf{y} - \mathbf{H}\mathbf{w})$$

Summary of GD for multiple regression


```
init \mathbf{w}^{(1)} = 0 (or randomly, or smartly), t = 1

while ||\nabla RSS(\mathbf{w}^{(t)})|| > \epsilon

for j = 0,...,D

partial[j] = -2\sum_{i=1}^{N} h_{j}(\mathbf{x}_{i})(y_{i} - \hat{y}_{i}(\mathbf{w}^{(t)}))

\mathbf{w}_{j}^{(t+1)} \leftarrow \mathbf{w}_{j}^{(t)} - \mathbf{\eta} partial[j]

t \leftarrow t + 1
```


Evaluating overfitting via training/test split

Do you believe this fit?

What about a quadratic function?

How to choose model order/complexity

- Want good predictions, but can't observe future
- Simulate predictions
- 1. Remove some houses
- 2. Fit model on remaining
- 3. Predict heldout houses

Training/test split

Terminology: – training set

- test set

Training error

Terminology: – training set

- test set

Go To Exercises

Anyone tried Kaggle?

