

Lecture 1.4 - Probability Theory - Bayes

Theorem

Erik Bekkers

(Bishop 1.2.0 - 1.2.1)

Probability theory

Probability theory (Bishop)

Provides a consistent framework for the quantification and manipulation of uncertainty.

Uncertainty in pattern recognition

- Noise on measurements.
- Finite size datasets.

Probability theory

Frequentist interpretation

 Probability of event: fraction of times event occurs in experiment

Bayesian approach

 Probability: quantification of plausibility or the strength of the belief of an event.

Random variables

Random variable X

- Stochastic variable sampled from a set of possible outcomes
- Discrete or continuous
- Probability distribution p(X).

$$p(x) \ge 0$$
, $x \in X$

Examples of discrete random variables:

• Throwing a dice: X=[1,2, _,6]

Two discrete random variables (I)

X = {x, - x5} 2 random variables $Y = \{y_1, y_2, y_3\}$

N trials: sample both X and Y.

Joint probability

Figure: 2 random variables (Bishop 1.10)

$$p(X = x_i, Y = y_j) = N$$

Marginal probability of X: $p(X = x_i) = \frac{C}{2} / M^2$

$$p(X = x_i) =$$

$$c_i = \sum_{j=1}^{3} n_{ij}$$

$$n_{ij} = P(X = X_i, Y = y_i) \cdot N$$

Two discrete random variables (II)

X, Y

2 random variables

Conditional probability of Y given X:

P(
$$Y = y_i$$
) $X = x_i$) = $\frac{c_i}{N}$ Figure: 2 random variables (Bishop 1.10)

$$p(X = x_i, Y = y_j) = \frac{n_{ij}}{N} = \frac{P(Y = y_i) / X = x_i}{N}$$

Continuous Random Variables

- Probability of $x \in \mathbb{R}$ falling in the interval (x, x + dx) is given by p(x) dx
- p(x): probability density over x
- Probability over finite interval $p(x \in (a,b)) = \int p(x) dx$
- Positivity: $p(x) \ge 0$

Normalization:
$$\int \rho(x) dx = 1$$

• Change of variables x = g(y), probabilities in (x, x + dx)must be transformed to (y, y + dy) $p_{x}(x)dx = p_{y}(y)dy \qquad \longrightarrow \qquad p_{y}(y) = P_{x}(x) \left[\frac{dx}{dy} \right]$

$$p_{x}(x)dx = p_{y}(y)dy$$

$$p_{y}(y) = P_{x}(x)$$

Continuous Random Variables

Figure: probability density and cumulative distribution function (Bishop 1.12)

The Rules of Probability Theory

For random variables $X \in X$ and $Y \in Y$:

	Discrete	Continous
Additivity	$p(X \in A) = \sum_{x \in A} p(x)$	p(ocolanb))= sp(x)dx
Positivity	$p(x) \ge 0$	$p(x) \ge 0$
Normalization	$\sum_{x \in X} p(x) = 1$	$\int_{\mathcal{X}} p(x)dx = 1$
Sum Rule	$p(x) = \sum_{y \in \mathcal{Y}} p(x, y)$	$p(x) = \int p(x, y) dy$ $p(x, y) = p(x y)p(y)$
Product Rule	p(x,y) = p(x y)p(y)	p(x,y) = p(x y)p(y)

Bayes Theorem

- Product rule p(x,y) = p(x|y)p(y)
- Symmetry property p(y,x) = p(y|x) p(x)
- Bayes rule $p(y/x) = \frac{p(x/y) \cdot p(y)}{p(x/y)}$
- Denominator: $\sum_{y \in Y} p(y|x) = 0$

$$\frac{1}{p(x)} \leq p(x|y)p(y) = 1 \Leftrightarrow p(x) = \frac{1}{yer} p(x|y)p(y)$$

Bayes Theorem

Bayes rule

- p(y): the prior probability of Y = y prior before observing
- $p(y \mid x)$: the posterior probability of Y = y when observing x
- $p(x \mid y)$: the likelihood of X = x given Y = y
- p(x): the evidence for X = x