Sygnały akustyczne Laboratorium nr 7

Synteza wybranej samogłoski

- 1) Nagraj wybraną samogłoskę we własnym zakresie. Np. zarejestruj słowo "m-**a**-ma" wydłużając pierwszą samogłoskę do ok. 5 s.
- 2) Wyodrębnij tę samogłoskę np. za pomocą narzędzia do edycji dźwięku.
- 3) Wykonaj spektrogram pliku wynikowego
- 4) Odczytaj częstotliwość podstawową oraz 3 formanty
- 5) Zaprojektuj filtry wg modelu rezonatora Klatta dobierając parametry na podstawie własnej samogłoski, odpowiadające formantom
 - a) W układzie kaskadowym
 - b) W układzie równoległym
- 6) Wykonaj symulację syntetycznej samogłoski stosując wymuszenie impulsowe dla części dźwięcznej, zgodne z rys. 2. Zwróć uwagę, że okres impulsów (T) odpowiada odwrotności częstotliwości podstawowej (F₀) generowanej samogłoski. Porównaj uzyskany efekt z samogłoską oryginalną.

Na rys. 1 F oznacza częstotliwość środkową formantu, T oznacza odwrotność częstotliwości próbkowania, BW – szerokość pasma formantowego (dobrana *a priori*)

Tabela poglądowa z zestawem częstotliwości podstawowych i formantowych wybranych głosek.

TABLE II. Averages of fundamental and formant frequencies and formant amplitudes of vowels by 76 speakers.

Fundamental frequencies (cps)	M W Ch	i 136 235 272	1 135 232 269	ε 130 223 260	æ 127 210 251	α 124 212 256	0 129 216 263	137 232 276	u 141 231 274	130 221 261	3 133 218 261
Formant frequencies (cps) F_1	M	270	390	530	660	730	570	440	300	640	490
	W	310	430	610	860	850	590	470	370	760	500
	Ch	370	530	690	1010	1030	680	560	430	850	560
F_2	M	2290	1990	1840	1720	1090	840	1020	870	1190	1350
	W	2790	2480	2330	2050	1220	920	1160	950	1400	1640
	Ch	3200	2730	2610	2320	1370	1060	1410	1170	1590	1820
$F_{\mathbf{a}}$	M	3010	2550	2480	2410	2440	2410	2240	2240	2390	1690
	W	3310	3070	2990	2850	2810	2710	2680	2670	2780	1960
	Ch	3730	3600	3570	3320	3170	3180	3310	3260	3360	2160
Formant amplitudes (db)	$egin{array}{c} L_1 \ L_2 \ L_3 \end{array}$	$ \begin{array}{r} -4 \\ -24 \\ -28 \end{array} $	-3 -23 -27	-2 -17 -24	-1 -12 -22	-1 -5 -28	$\begin{array}{c} 0 \\ -7 \\ -34 \end{array}$	-1 -12 -34	-3 -19 -43	-1 -10 -27	-5 -15 -20

Gordon Peterson, Harold Barney – "Control Methods Used in a Study of the Vowels", 1952

Rys. 1. Cyfrowy rezonator Klatta

Cyfrowy rezonator Klatta opisany jest przez równanie różnicowe drugiego rzędu posiadający odpowiedź częstotliwościową opisaną zależnością:

$$H(z) = \frac{A}{1 - Bz^{-1} - Cz^{-2}}$$

gdzie:

$$C = -e^{-2\pi \cdot BW \cdot T}$$

 $B = 2e^{-\pi \cdot BW \cdot T} \cos(2\pi \cdot F \cdot T)$
 $A = 1 - B - C$

Praktyczna realizacja sprowadza się do realizacji następującego równania różnicowego:

$$y(n) = Ax(n) + By(n-1) + Cy(n-2)$$

Rys. 2 Schemat wytwarzania mowy. T oznacza okres odpowiadający częstotliwości podstawowej F₀