Midterm Review

DSC 100

Generated on May 8, 2025

Questions

1. Definitions: F	Provide formal definitions.
(a) Define a <i>I</i>	Pata Model.
(b) Define Fir	est Normal Form (1NF).
2. SQL Basics:	Write SQL queries.
(a) Retrieve t	he names and genres of all movies.
(b) Find all m	ovies released after the year 2000.
3. Joins: Use app	propriate JOINs.
(a) List all ge	nres of movies that "Marlon Brando" has acted in.

(b) Show each employee's name alongside their manager's name using a self-join.

(c)	Retrieve all movies and their actors, including movies with no actors.
4. Agg	regation and Grouping:
(a)	Count the total number of movies in the Movie table.
(b)	Compute total revenue by genre for movies after 2008.
(c)	List genres with total profit (revenue - budget) in descending order.
5. Set	Operations:
(a)	Retrieve actors who have acted in at least one 'Crime' or 'Horror' movie.
(b)	Retrieve actors who have acted in both 'Crime' and 'Horror' movies.

(c)	Retrieve actors in 'Action' movies but not in 'Drama'.
6. Nest	ted Queries:
(a)	For each actor, return the genre of the movie they acted in using a subquery.
(b)	Find actors in any 'Sci-Fi' movie using EXISTS.
(c)	List movies where all actors earn more than 100,000.
7. Rela	ational Algebra: For each of the following, write a relational algebra expression:
(a)	Select movies released after 2010.
(b)	Project names and genres from Movie.

(c)	Find intersection of actors in 'Crime' and 'Horror' movies.
Rela	ational Calculus:
(a)	Write a tuple relational calculus expression to retrieve movie names rated above 8.
(b)	Write a domain relational calculus expression to retrieve actor names in 'Sci-Fi' gen
(0)	
(6)	

Answer Key

1. Definitions:

- (a) Data Model: An abstraction comprising structure, constraints, and manipulation operations.
- (b) 1NF: A relation where all attributes are atomic (no nested or repeating groups).

2. SQL Basics:

- (a) SELECT name, genre FROM Movie;
- (b) SELECT * FROM Movie WHERE year > 2000;

3. Joins:

- (a) SELECT DISTINCT m.genre FROM Movie m JOIN ActedIN a ON m.name = a.moviename WHERE a.actorname = 'Marlon Brando';
- (b) SELECT e1.Name AS Employee, e2.Name AS Manager FROM Employees e1 JOIN Employees e2 ON e1.ManagerID = e2.ID;
- (c) SELECT m.name, a.actorname FROM Movie m LEFT JOIN ActedIN a ON m.name = a.moviename;

4. Aggregation:

- (a) SELECT COUNT(*) FROM Movie;
- (b) SELECT genre, SUM(revenue) AS TotalRevenue FROM Movie WHERE year > 2008 GROUP BY genre;
- (c) SELECT genre, SUM(revenue budget) AS TotalProfit FROM Movie GROUP BY genre ORDER BY TotalProfit DESC;

5. Set Operations:

- (a) SELECT DISTINCT actorname FROM Movie m JOIN ActedIN a ON m.name=a.moviename WHERE m.genre IN ('Crime', 'Horror');
- (b) SELECT actorname FROM ActedIN WHERE moviename IN (SELECT name FROM Movie WHERE genre='Crime') INTERSECT SELECT actorname FROM ActedIN WHERE moviename IN (SELECT name FROM Movie WHERE genre='Horror');
- (c) SELECT DISTINCT actorname FROM Movie m JOIN ActedIN a ON m.name=a.moviename WHERE m.genre='Action' EXCEPT SELECT DISTINCT actorname FROM Movie m JOIN ActedIN a ON m.name=a.moviename WHERE m.genre='Drama';

6. Nested Queries:

- (a) SELECT a.actorname, (SELECT m.genre FROM Movie m WHERE m.name=a.moviename) AS genre FROM ActedIN a;
- (b) SELECT DISTINCT a.actorname FROM ActedIN a WHERE EXISTS (SELECT 1 FROM Movie m WHERE m.name=a.moviename AND m.genre='Sci-Fi');
- (c) SELECT m.name FROM Movie m WHERE 100000 < ALL (SELECT a.salary FROM ActedIN a WHERE a.moviename = m.name);

7. Relational Algebra:

- (a) $\sigma_{year>2010}(Movie)$
- (b) $\pi_{name,genre}(Movie)$
- (c) $\pi_{actorname}(\sigma_{genre='Crime'}(\text{Movie}) \bowtie \text{ActedIN}) \cap \pi_{actorname}(\sigma_{genre='Horror'}(\text{Movie}) \bowtie \text{ActedIN})$

8. Relational Calculus:

- (a) $\{m.name \mid m \in Movie \land m.rating > 8\}$
- (b) $\{a \mid \exists m (m \in Movie \land m.genre =' Sci Fi' \land (m.name, a) \in ActedIN)\}$