Lipid-selective antioxidants and their preparation and use

Patent Number:

US5318987

Publication

date:

1994-06-07

Inventor(s):

WEITHMANN KLAUS-ULRICH (DE); WESS GUENTHER (DE); SEIFFGE

DIRK (DE)

Applicant(s):

HOECHST AG (DE)

Requested

Patent:

EP0436936, A3

Application

Number:

US19910638321 19910107

Priority

Number(s):

DE19904000397 19900109

IPC

Classification:

A61K31/35

EC

C07F9/655M, C07J9/00, C07J9/00B, C07J17/00, C07J31/00C, C07J33/00B,

Classification:

C07J41/00C8, C07J41/00C8A, C07D311/66, C07D319/06, C07D339/08,

C07F9/6558C

EC

C07F9/655M; C07J9/00; C07J9/00B; C07J17/00; C07J31/00C; C07J33/00B; C07J41/00C8; C07J41/00C8A; C07D311/66; C07D319/06; C07D339/08;

Classification: C07F9/6558C

Equivalents:

AU6189294, AU652928, AU660248, AU6921791, CA2033755,

DE4000397, HU58757, IE910059, I

JP4331284. NO910075.

NZ236709. ¹

PT96438, ZA9100132

Abstract

Lipid-selective antioxidants of the formula I (A)a(L)(X)a,(I), in which A=an antioxidative component, L=a bridging member, X=a lipophilic component a and a'=independently of one another the numbers 1 or 2. The compounds are used for the protection of lipid-containing substances against oxidation and in pharmaceuticals for the prophylaxis and treatment of diseases in which bioradicals are involved, in particular of coronary, circulatory and vascular diseases.

Data supplied from the esp@cenet database - I2

Europäisches Patentamt **European Patent Offic** Office européen des brevets

(1) Veröffentlichungsnummer: 0 436 936 A2

(12)

EUROPÄISCHE PATENTANMELDUNG

(21) Anmeldenummer: 90125641.2

2 Anmeldetag: 28.12.90

(1) int. Ci.5: C07J 41/00, C07J 9/00,

C07J 33/00, C07J 31/00, C07J 17/00, C07F 9/655, C07F 9/6558, C07D 311/66, C07D 339/00, C07D 319/06, C07C 69/88

- Priorität: 09.01.90 DE 4000397
- O Veröffentlichungstag der Anmeldung: 17.07.91 Patentblatt 91/29
- Benannte Vertragsstaaten: AT BE CHIDE DK ES FRIGBIGRIT LI LU NL SE
- 1 Anmelder: HOECHST AKTIENGESELLSCHAFT Postfach 80 03 20 W-6230 Frankfurt am Main 80(DE)
- 2 Erfinder: Weithmann, Klaus-Ulrich, Dr. Am Domherrenwald 18 W-6238 Hofhelm am Taunus(DE) Erfinder: Wess, Günther, Dr. Langenselbolder Weg 35 W-6455 Erlensee(DE) Erfinder: Selffge, Dirk, Dr. Kosthelmer Landstrasse 11 W-6602 Mainz(DE)
- Lipidselektive Antioxidantien sowie deren Herstellung und Verwendung.
- D Lipidselektive Antioxidantien der allgemeinen Formel I

 $(A)_a(L)(X)_{a'}$

worin

A = antioxidative Komponente,

L = Brückenglied,

X =lipophile Komponente

a und a' = unabhängig voneinander die Zahlen 1 oder 2.

Die Verbindungen werden verwendet zum Schutz von lipidhaltigen Substanzen gegen Oxidation sowie in Arzneimitteln zur Prophylaxe und Theraple von Krankheiten, bei denen Bioradikale Involviert sind, insbesondere von Herz-Kreislauf- und Gefäßkrankheiten.

LIPIDSELEKTIVE ANTIOXIDANTIEN SOWIE DEREN HERSTELLUNG UND VERWENDUNG

Antioxidantien werden in der Lebensmittelindustrie als Konservierungszusätze verwendet; denn Nahrungsmittel können beim Aufbewahren unerwünschte oxidative Veränderungen erfelden. Es ist auch bekannt, daß die Lipidbestandteite der Lebensmittel besonders oxidationsempfindlich sind und bei Lagerung an der Luft ranzig werden, weil sich chemisch über tellweise radikalische Zwischenstufen Peroxide und ungesättigte Aldehyde bilden. Ähnliche unerwünschte Prozesse spielen sich auch bei der Alterung von Stoffen ab, die aus längeren Kohlenstoffketten bestehen, z.B. Kautschuk, Plastik und Mineralöl. Bekanntlich werden z.B. das lipidlösliche BHA (butyliertes Hydroxyanlsol, vgl. Merck-Index, tenth edition, Rahway, USA, 1983 Nr. 1521 Seite 215), das noch besser lipidlösliche BHT (butyliertes Hydroxytoluol, lbld, Nr. 1520), und das ebenfalls lipidlösliche, aber unstabile, temperatur- und lichtempfindliche Vitamin E (lbid, Nr. 9832, Seite 1437) sowle die lipidunlösliche Ascorbinsäure (ibid, Nr. 846 Seite 120) als Konservierungsmittel verwendet.

Gegenstand der vorliegenden Erfindung sind nun neue Antioxidantien mit besonders vorteilhaften Wirkungen in lipophilem Milieu. Es handelt sich um Verbindungen der allgemeinen Formel I

 $(A)_{a}(L)(X)_{a'}$ (I),

worin

75

25

30

35

40

a, a', A, L und X die folgende Bedeutung besitzen:
a und a' = unabhängig voneinander die Zahlen 1 oder 2,
A = antioxidative Komponente aus der Gruppe

A1 - Chromanteilstruktur des Vitamins E

worln Q in dieser und allen folgenden Formeln eine freie Valenz (kovalente Enfachbindung) darstellt, A2 - alkylsubstitulerter Mono-, Di- oder Tri-Phenol-Rest

(OH)_m

worin m = 1 oder 2, n = 1 oder 2, und

m + n = 3 oder 4,

R1 = Alkylrest und/oder Alkoxyrest

und die Gesamtzahl der C-Atome des Alkyl- bzw. Alkoxyrestes

bzw. der Alkyl- und Alkoxyreste = maximal 8 ist;

A₃ - Reductonrest

50

worin

10

15

20

25

30

 R^2 = H oder niederer Alkylrest (vorzugsweise C_1-C_4) und

 $R^3 = H_1 COOR^4, CH_2OR^4$

 R^4 = H oder niederer Alkylrest (vorzugswelse C_1-C_4)

A₄ - 1,2-Dithlacycloalkyl oder 1,2-Dithlacycloalkenyl-Rest mit 2 - 6, vorzugsweise 2 - 4 C-Atomen Im Ring und die durch Hydrogenierung reduzierte Dithlolform dieser Reste

As - Ascorbinsäure(-Derivat)-Rest

worin

E = O, S oder NR9

R5 = H, EH, EQ oder Q

 R^{6} = H, EH, EQ-(L-X₁) oder Q-(L-X₁)

R7 = H, EH, EQ, Q oder einer der unter A2 und A2 genannten Reste,

 $R^8 = H, EH, Q-(L-X_1) oder -PO(OR^9)_2$.

R⁹ = H, niederer Alkylrest (vorzugswelse C₁-C₄) oder Q,

und nur 1 oder 2 - bevorzugt 1 - der Reste R5 -R8 gleich Q sind bzw. Q enthalten,

L = Brückenglied und

X₁ = lipophile Komponente wie nachstehend definiert;

L = Brückenglied,

35 bestehend aus einem oder mehreren der Bausteine

world

 $O = R^{10}$, R^{11} , $R^{12} = H$, niederer Alkylrest (vorzugsweise $C_1 - C_4$) oder Q,

R11 darüber hinaus auch noch -CO_aR10 sein kann (mit a = 1 oder 2),

und 2 Reste der Art -O-, -S- und/oder -NR¹⁰- durch mindestens 1 C- oder P-Atom voneinander getrennt sind:

X =lipophile Komponente aus der Gruppe

X₁ - Cholanderivat-Reste

10

15

5

worin

 R^{13} = sec. C_4H_9 (= Cholestan), R^{11} (s. bei L) oder Q,

E = O, S, NR¹⁰ (R¹⁰ s. bei L), $(\alpha,\beta$ -OH,H) oder $(\alpha,\beta$ -Q, H)

und in 4,5- bzw. 5,6- bzw. 7,8-Position eine Doppelbindung vorhanden sein kann, und

X₂ - Alkyl- oder Cycloalkylrest oder Fettsäurederivat-Rest mit bis zu 24 C-Atomen.

Unter den Komponenten A, L und X sind folgende Reste bevorzugt:

für 🗛:

ein Rest der folgenden Formeln in der Dithiaform (gemäß den Formeln) oder in der durch Hydrogenierung reduzierten Dithiolform:

A4.1

25

H R¹⁵
s - C
s - C
s - C

30

A4.2

35

40

45

S CH₂

worin

R¹⁴ = H odor niederer Alkylrest (vorzugsweise C₁-C₄), und

 $R^{15} = -(CH_2)_b-Q$

b = 0 - 12, vorzugsweise 0 - 4.

Im Fall A42 ist besonders bevorzugt:

R14 = H und

 $R^{15} = -(CH_2)_4-Q$

(= Decarboxy-Liponsäure- bzw. -Dihydroliponsäure-Teilstruktur).

50

A4.3

5

70

H R¹⁹
S CH-R¹⁸
S CH-R¹⁷

worin

R¹⁶ und R¹⁹ = unabhängig voneinander = H oder niederer Alkylrest (vorzugsweise C₁-C₄)

 $R^{17} = Q \text{ und}$

R¹⁸ = H, niederer Alkylrest (vorzugsweise C₁-C₄), Acylrest OCOR¹⁹ oder OR¹⁹

 $R^{19} =$ niederer Alkylrest (vorzugsweise $C_1 - C_4$) oder Q.

A4.4 Dithiothreit- oder Dithioerythrit-Teilstruktur

25

20

CH-QCH-OR19

30

worin

R19 die gleiche Bedeutung wie bei 4.3 besitzt.

35

A4.5

y s— CH - C - OR²⁰ s— CH - (CH₂)_{0 oder 1} - Ω

40

worin

R²⁰ = H oder niederer Alkylrest (vorzugsweise C₁-C₄) und

 $Y = H_2$ oder O.

für As:

45 E = 0

R⁵, R⁶ und R⁷ = unabhängig voneinander = OH oder OQ,

 $\mathbb{R}^8 = H \text{ oder } \mathbb{Q}$,

wobei nur 1 oder 2 Reste R⁵ - R⁸ Q enthalten bzw. gleich Q sind (= Ascorbinsäurerest).

Weitere besonders bevorzugte Reste A sind:

50

$$C_{\mathfrak{g}}H_{\mathfrak{g}}$$
 (tert.)

$$C_{\mathfrak{g}}H_{\mathfrak{g}}$$
 (tert.)

6

10

L ist ein hinsichtlich der antioxidativen Wirkung Inertes, chemisch stabiles Brückenglied zur Verknüpfung von A und X. Brückenglieder L, welche eine Esterbindung enthalten, sind etwas hydrolyseempfindlicher als Brückenglieder ohne Esterkomponente. Dies muß bedacht werden, wenn die stabilisierenden Lipide
mit Säuren oder Laugen in Berührung kommen. Z.B. bei der Verwendung als Arzneimittel kann die Spaltung
der Esterbindung durch Enzyme am pharmakologischen Wirkort aber auch Vortsile bieten, indem die
antioxidative Komponente genau am Wirkort abgespalten und aufkonzentriert wird.

L besitzt vorzugsweise die folgende allgemeine Formel:

$$L = M_{p}\{[-(CH_{2})_{\forall}-(G_{1})_{x}-(G_{2})]_{\forall}-(CH_{2})_{y}-(G_{3})_{z}-(G_{4})_{p+1}\}M_{p}$$

55 worin

p, x und z unabhängig voneinander = 0 oder 1, v, w und y unabhängig voneinander = 0 - 4, und v+w+y+z = 0 - 10,

G₁, G₂, G₃ und G₄ unabhängig voneinander = -O-, -S-, -NR¹⁰-,

O -C- , -CHOR¹⁰- oder -CH(CH₂-OR¹⁰)- ,

wobel R¹⁰ die vorher genannte Bedeutung besitzt (= H, niederer Alkytrest oder Q) und 2 der Reste -O-, -S-, und/oder •NR¹⁰- durch mindestens 1 C-Atom vonelnander getrennt sind. Besonders bevorzugt ist L ein Rest aus der Gruppe:

L₁: Q-O-(CH₂)_r-O-CO-Q

L2: Q-CO-NH-(CH2)q-NH-CO-Q

20 L3: Q-O-(CH2-),-NH-CO-Q

Ls : Q-(CH2-),(-O-),-Q

5

10

30

40

Ls : Q-(CH2-)5-O-(CH2-),-O-Q

L₅ : Q-(CH₂-)₅-NH-(CH₂-)_r-O-Q

L7: Q-CQ-NH-(CH2-CH2),-O-Q

25 La: Q-O-(CH₂-)₈-CHOH-(CH₂-)₅-O-(CH₂-)₅-Q

$$L_g : Q-(CH_2-)_g-CH < CH_2-Q$$

L10: Q-(CH2-)q-Q

L11: Q-(CH2-)s-CHCO2R10-CHOH-Q

35 L₁₂: Q-CH = C(CO₂R¹⁰)-CO-Q

L13: Q-CO-NH-(CH2-)q-NH-CO-Q

L14: Q-(CH2-)3-O-(CH2-)2-O-

46 L₁₆: [Q-(CH₂-)₂-O-(CH₂)_x]₂CH-Q

 L_{17} : Q-O-(CH₂-)₀-CHOH-O-(CH₂-)₅-Q

L₁₈: Q-O-(CH₂-)₂-CH(CH₂-OH)-O-CO-Q

 L_{13} : Q-O-(CH₂-)₅-CHOH-(CH₂-)₈-O-CO-O

L20: Q-CO-NR10-Q

50 L21: Q-CO(O)x-Q

L22: Q-CH2-N[CH(CH3)2]-(CH2),-CHOHCH2CHOHCH2-CO(O),-Q

L23: Q-(CH2)5-Q

L24: Q-NR10-Q

L25: Q-O-Q

55 L25: Q-(CH2)3-CHCO2R10-COQ

e worin

 R^{21} = Benzyl- oder R^{10}

L₂₈: -CH [C(CH₃)₂]_x-T CH-

16 worin

T = 0 oder S x = 0, 1 a = 1, 2;

20 q = 1 - 5, bevorzugt 3 r = 1 - 5, bevorzugt 2

n = 1 = 5, pevorzugt 2

s = 1 - 5, bevorzugt 1 bedeuten,

und R^{10} die oben genannte Bedeutung besitzt

(H, niederer Alkylrest oder Q).

Ganz besonders bevorzugte Brückenglieder L sind:

Q-CO-O-Q Q-CO-NH-Q

Q-CO-NH-CH2-CH2+O-Q

Q-CH₂-CH₂-0-PO-O-CH₂-CH₂-Q

Q-CO-NH-(CH2)3-NH-CO-Q

18

 $Q-O-CH_2-CH_2-O-CH_2-CH_2-O-CH_2-O-Q$

40 Q-CO-Q Q-CO-NH-(CH₂)₃-NH-CO-Q Q-CH₂-O-CH₂-CH₂-O-Q

50

45

30

X_{2.4} Q-C=C-(CH₂)₅-CH₂ X_{3.5} R¹⁰-CO₂-(CH₂)₄-Q

4 - 6

d =

t = 3 - 24, vorzugsweise 6 - 18.

z = 0 oder 1

Besonders bevorzugte Reste X₁ sind:

besonders bevorzugte Reste X2:

CH2-(CH2)15-Q

10

16

25

30

CH2-(CH2)17-Q

CH₈-(CH₂)₁₈-Q

CH₄-C(CH₂)₂-Q

CH2-(CH2)5-C=C-Q.

Herstellung der Verbindungen der Formel i:

Die Herstellung der Verbindungen erfolgt nach Verfahren, die allgemein bekannt sind. Die Einzelkomponenten A und X werden frei oder geschützt eingesetzt, gegebenenfalls in Form reaktiver Derivate. Die Verknüpfung mit L erfolgt über ein reaktives Derivat von L. Im Falle der geschützten Verbindungen werden die Schutzgruppen im Anschluß an die Verknüpfung wieder abgespatten.

Das Verfahren stellt sich konkreter wie Im experimentellen Teil beschrieben dar.

Die erfindungsgemäßen Verbindungen der Formel I können als Antioxidantien z.B. in der Fett, Öl, Plastik und Kautschuk verarbeitenden Industrie (wie der Lebensmittel-, Kosmetik-, Pharma-, Gummi- und Mineralöl-Industrie), als Konservierungsmittel für Fettstoffe (Lipide) bzw. für polymere langkettige Kohlenstoffverbindungen verwendet werden.

Wie nachstehend ausgeführt, hat auch die in vivo Oxidation von Lipidbestandteilen (z.B. von Blutfetten oder von Lipiden der Biomembranen) des menschlichen oder tierischen Körpers unerwünschte Folgen: Im Blut werden wichtige Lipide, insbesondere das Cholesterol, mit Hilfe des Low Density Lipoprotein (LDL) transportiert. Unter physiologischen Bedingungen steht das LDL mit dem Blutgefäßsystem in kontrolllener Wechselwirkung. Es wird über spezifische Rezeptoren in einem regulierten Prozeß in die Gefäßwand aufgenommen und stellt dort seine Lipidanteile als Energieträger oder als Zellbausteine zur Verfügung. Wenn nun keine ausreichende antioxidative Schutzwirkung vorhanden ist, z.B. Insbesondere unter hyperlipidärnischen Bedingungen, kann es zur Oxidation der Blutfette kommen. Die oxidierten Blutfette, bzw. LDL. werden dann unter Umgehung der spezifischen LDL-Rezeptoren ungehindert von den Gefäßwänden aufgenommen, d.h. der kontrollierte Prozeß der Rezeptor-Regulation entgleist. Im Verlauf dieser toxischen Prozesse, an denen Insbesondere radikalische Zwischenstufen beteiligt sind, entstehen z.B. Oxidationsprodukte des Cholesterols mit mutagenen und zeiltoxischen Eigenschaften (Proc. Natl. Acad. Sci. USA 81 (1984) 4198-4202), während die ungesättigten Fettsäurereste bls zu z.B. Hydroxyalkenalen mit starken blockden Wirkungen oxidativ abgebaut werden. Im weiteren Verlauf der Krankheit werden die befallenen Gefäßbezirke durch die sogenannte Schaumzellbildung unter Beteiligung von Makrophagen erheblich geschädigt. Es kommt zur Proliferation der glatten Gefäßmuskulatur und schließlich zur Ausbildung von atherosklerotischen Plaques, die die Blutbahn verengen. Dort können sich Blutgerinnsel festsetzen und schließlich kann ein Infarkt zu bleibenden Schäden oder zum Tode des Patienten führen. Diese pathologischen Prozesse können allein durch diätetische Waßnahmen zur Reduktion des Blut-Lipidspiegels nicht vollständig verhindert werden. Die medikamentöse Senkung der Blut-Lipidspiegel ist zwar Stand der Technik, hat aber den Nachteil, daß sie in die komplexen Lipid-Stoffwechselvorgänge eingreift. Unter physiologischen Bedingung in stehen diese Stoffwechselvorgäng in Inem genau ausg wog nen Gleichgewicht. Eine Beeinflussung dieses Gleichgewichtes, Insbesondere über einen längeren Zeitraum hinweg, wird zwangsläufig auch zu unerwünschten biologisch n Reaktionen führen. Unerwünschte N benwirkungen von

lipidsenkenden Medikamenten, wie Clofibrat oder Nikotinsäure, sind z.B. in Meyler's Side Effects of Drugs, 10. Auflage, 1984, Elsevier Amsterdam - New York - Oxford aufgeführt.

Wegen ihrer in den Lipiden kompartimentierten Schutzwirkung eignen sich die erfindungsgemäßen lipidlöslichen Antioxidatien vorteilhaft zur Vorbeugung und Behandlung von Erkrankungen, bei denen (z.B. radikalische) Oxidationsprozesse im Lipidmilleu eine Rolle sptelen, insbesondere für die Vorbeugung und Behandlung der beschriebenen Vorgänge bei Erkrankungen der Gefäßwand. Aufgrund ihrer insbesondere antioxidativen Eigenschaften können die erfindungsgemäßen Stoffe auch bei anderen medizinischen Problemen, bei denen Bioradikale involviert sind, angewendet werden. Dazu zählen beispielsweise Entzündungsprozesse, insbesondere chronische Entzündungen wie Rheuma oder Arthritis, Mangeldurchblutung durch z.B. cerebrale Schädigungen, wie Schlaganfall, und Tod von Nervenzellen (Alzheimer'sche Krankheif), periphere Gefäßkrankheiten, wie Thrombosen und Atherosklerose, aber auch unerwünschte mutagene, zelltoxische und cancerogene Wirkungen durch Licht oder Stahlen bzw. durch Chemikalien, z.B. Krebstherapeutika, wie Adriamycin, ebenso wie Peperfusionsschädigungen, die nach dem Öffnen von Gefäßverschildssen, aber auch nach Organ- und Gewebetransplantationen, bzw. nach der Überwindung hypoxischer Bedingungen, z.B. in der Neonatalmedizin, auftreten können. Ferner sind die erfindungsgemäßen Verbindungen auch zur Heilung von Leberschädigungen geeignet.

Für die klinisch-therapeutische Anwendung können die erfindungsgemäßen Antioxidantien auch in Form von Prodrugs, z.B. in Form ihrer Salze vorliegen, aus denen sich dann erst in vivo der Wirkstoff bildet. Als Metallkationen können z.B. solche der Alkalimetalle wie Lithium, Natrium und Kalium, und der Erdalkalimetalle wie Magnesium und Calcium, aber auch kationische Formen, deren Metalle, wie Aluminium, Zink und Eisen verwendet werden, gegebenenfalls chelatisiert mit Zitronensäure oder Ethylendiamintetraessigsäure und dergleichen. Aminkationen sind solche von primären, sekundären oder tertiären Aminen wie der Alkylamine, z.B. Mono-, Di- und Trimethyl; bzw. -ethyl-, -propyl-, -isopropyl-, -butyl-, -isobutyl-, -t-butyl-, sowie N(Methylhexyl)-)-, N-Methyl-hexyl-, Benzyl-β-phenyl-ethylamin, Ethyldiethanolamin, Diethylentriamin, Pyrrolidin, Piperidin, Morpholin, Piperazin, Mono-, Di- und Triethanolamin, Ethyldiethanolamin, N-Butylethanolamin, Tris-(hydroxymethyl)-aminomethan, und dergleichen. Geeignete Aminsalze sind z.B. die des Tryptamins, Cysteins sowie die basischen Aminsalze des Lysins und des Arginins. Geeignete quaternäre Ammoniumkationen sind z.B. das Tetramethylammonium und das Benzyltrimethylammonium. Diese Kationen können auch zur Salzbildung der anlonischen Formen der erfindungsgemäßen Verbindungen verwendet werden, wohlngegen zur Salzbildung bei den kationischen Formen Chlorid und Fluorid bevorzugt sind.

Zubereitung von antioxidativen Zusammensetzungen und von Arzneimitteln

Die erfindungsgemäßen Verbindungen werden den zu schützenden Lipiden in üblicher Weise zugesetzt. Die zugesetzte Menge des erfindungsgemäßen Antioxidans kann in welten Bereichen schwanken. Wie im experimentellen Teil ausgeführt wird, können Insbesondere hoch konzentrierte Antioxidans/Lipid-Lösungen hergestellt werden. Derart stabilisierte Zubereitungen können dann in verschiedenster Welse, z.B. an Luft, prozessiert werden und anschließend wieder verdünnt werden. Nach dem Verdünnen enthalten Kautschuk, Gummi, Plastik, Fette und Öle Im allgemeinen bis zu 1 Gewichtsprozent oder mehr der oben beschriebenen Anticoddatien, wenngleich auch ein Zusatz von 0,1 % ausreichend sein kann. Bei Fetten und Ölen, die der menschlichen Emährung dienen, werden bis 0,5 Gewichtsprozent, vorzugsweise 0,005 - 0,03 Gewichtsprozent des erfindungsgemäßen Antioxidans angewendet. Die genannten Mischverhältnisse sind auch bei der Herstellung von Liposomen anwendbar. Bei der Verwendung als Arzneimittel zur Prophylaxe und zur Behandlung von hyperlipidärnischen und thrombotischen peripheren und cerebralen Krankheiten, insbesondere Gefäßkrankheiten bei Mensch und Tier, hängt die erforderliche Dosierung von der Art und Schwere der Erkrankung, bzw. von der zu behandelnden Tierspezies, aber auch von Alter, Gewicht und Gesundheitszustand des Patienten, eb. Bei Menschen kann eine Dosierung von 0,05 mg oder 1 mg bis 100 mg/Tag, insbesondere bei intramuskulärer und intravenöser Dosierung, schon ausreichend sein, wobei aber die Anwendung von bls zu 200 mg oder 500 mg/Tag zu einer höheren Wirkstärke führt. Besonders einfach ist die orale, perorale, rektale oder (trans-)dermale Applikation, die allerdings wesentlich höhere Dosierungen bis über 2,5 g/Tag erforderlich machen kann, wenngleich in der Regel 50 mg bis 800 mg/Tag ausreichend sind. Die genannten Dosierungen können sowohl als Einmaldosis pro Tag, aber auch zweimal oder dreimal bis achtmal täglich in entsprechend reduzierten Dosiseinheiten verabreicht werden.

Die galenischen Zubereitungen für die genannten Applikationen werden gemäß dem Stand der Technik hergestellt. Die erfindungsgemäßen Wirkstoffe können als Pulver, Gel, Emulsion, Dispersion oder Lösung vorliegen und z.B. tropfen- oder löffelweise portioniert werden, bzw. als Inhalt von Kapseln (einschließlich Mikrokapseln und Liposomen) wobei aber bei Verwendung von Kapseln oder Liposomen auch die Hülle die Funktion des Wirkstoffträgers annehm n kann. Dosiseinheiten in Form von festen Arzneiformen, wi

Tabletten (einschließlich Dragees und Pillen), oder Zäpfchen können nach üblichen Verfahren wie Preß-, Tauch- oder Wirbelbettverfahren, oder Kesseldraglerung hergestellt werden und enthalten Träger und andere übliche Hilfsstoffe, wie Gelatine, Agarose, Stärke, z.B. Kartoffel, Mais- oder Weizenstärke, Cellulose, wie Ethylcellulose, Siliziumdioxid, verschiedene Zucker, wie Milchzucker, Magnesiumcarbonat und/oder Kalziumphosphate. Die Dragierlösung besteht gewöhnlich aus Zucker und/oder Stärkesirup und enthält meistens noch Gelatine, Gummi arabicum, Polyvinylpyrrolidon, synthetische Celluloseester, oberflächenaktive Substanzen, Welchmacher, Pigmente und ähnliche Zusätze entsprechend dem Stand der Technik. Zur Herstellung der Arzneiformen kann jedes übliche Fließregulienungs-, Schmier- bzw. Gleitmittel wie Magnesiumstearat und Trennmittel verwendet werden. Auch können die Wirkstoffe beispielsweise an Ionenaustauscher (z.B. Polystyrol-divinyl-benzol-sulfonsäure) gebunden oder an Retardierungsmaterial adsorblert bzw. im Retardierungsmaterial (z.B. solche auf Cellulose- oder Polystyrolharzbasis, z.B. Hydroxyethylcellulose) eingeschlossen sein. Eine verzögerte Freisetzung der Wirkstoffe kann auch erreicht werden, Indem die betreffende Schicht mit üblichen magensaftunlöslichen Überzügen versehen wird.

Die hervorragenden antioxidativen Eigenschaften der erfindungsgemäßen lipophilen Verbindungen sind im experimentellen Tell aufgeführt, insbesondere auch im Vergleich zu Antioxidantien gemäß dem Stand der Technik.

Herstellungsbeispiele:

20

25

30

35

Die folgenden Verbindungen der Formel I wurden hergestellt; falls in den einzelnen Verbindungsformeln an den C-Atomen nichts bzw. nichts anderes steht, sind die etwalgen freien Valenzen mit Wasserstoffatomen abgesättigt:

1) N-<3-(6-Hydroxy-2,5,7,8-tetramethylchroman-2-carbamoyl)-propyl>-cholsäursamid

2) N-<3-(8-Hydroxy-2,5,7,8-tetramethylchroman-2-carbamoyl)-propyl>-desoxycholsäureamid

3) (30)-2-[N-(6-Hydroxy-2,5,7,8-tetramethylchroman-2-carbamoyl)aminoethyl]-3,6,7 α ,12 α -choisäure

55

TO CH₃ CH

4) N-Hexyl-6-hydroxy-2,5,7,8-tetramethylchroman-2-carboxamid

15

20

25

30

35

40

45

50

55

5) N-(3-Heptanamidopropyl)-6-hydroxy-2,5,7,8-tetramethylchroman-2-carboxamid

6) N-Octadecyl-6-hydroxy-2,5,7,8-tetramethylchroman-2-carboxamid

7) N-(3-Hexadecanamidopropyl)-6-hydroxy-2,5,7,8-tetramethylchroman-2-carboxamid

8) Cyclohexyl-6-hydroxy-2,5,7,8-tetramethylchroman-2-carboxamid

9) N-(3-Octadecanamidopropyi)-4-hydroxy-3-isopropyi-5-tert-butyi-carboxamid

5

10

15

20

SO

65

10) 4-[2-(5-Cholesten-3 β -yloxy)-athoxycarbony[]-2,6-dl-tert-butylphenol

11) 3-[2-(5-Cholesten-3 β -yloxy)ethoxycarbany[]-1,5-dlhydroxy-6-methoxy-phenol

12) 4-[2-(5-Cholesten-3β-yloxy)-ethoxycarbonyl]-2,6-dihydroxy-1-methoxy-phenol

13) 4~2-(5-Cholesten-3β-yloxy)-ethoxymethy⊳-2,6-di-tert.-butylphenol

5

40

14) 4-[2-(Cholestan-3β-yloxy)-ethoxymethyl]-2,6-di-tert-butyl-phonol

15) 4-[2-(Cholestan-3β-yloxy)-ethoxymethy[]-2-tert-butyl-6-methyl-phenol

16) 4-[2-(7α,12α-Trihydroxy-5β-cholansäure-3β-yloxy)-sthoxymethyl]-2,6-di-isopropyl-phenol

17) 2,6-Di-tert-butyl-4-<7-noninoyl>-phenol

30

45

18) 2-(3,5-Di-tert,-butyl-4-hydroxybenzyl)-3-oxo-docosansäure-ethylester

19) 5-[2-(3,5-di-tert-butyl-4-hydroxyphenyl)-1,3-dithlan-4-yl]-valeriansäure

20) 6,8-bis-((3,5-di-tert-butyl-4-hydroxy-phenyl)-methylthio)-octansăure-tert-butylester

21) (2RS)-1-O-(3,5-di-tert.-butyi-4-hydroxybenzyi)-3-O-octadecyigiycerin

22) (2RS)-2-0-(3,5-di-tert-butyl-4-hydroxybenzoyl)-1-0-octadecylgiycerin

23) (2RS)-1-0-(3,5-di-tert.-butyl-4-hydoxybenzoyl)-3-0-octadecyl-glyoerin

24) 2-(3,5-Di-tert.-butyl-4-hydroxybenzyl)-3-hydroxydocosansäure-ethylester

55

25) 1,3-Dihydroxy-2-(3,5-di-tert-butyl-4-hydroxybenzyl)-docosan

26) 5(RS)-(3,6-Di-tert-butyl-4-hydroxybenzyl)-2,2-dimethyl-6(R,S)-nonadecyl-1,3-dioxolan

27) 2-(3,5-Di-tert-butyl-4-hydroxybenzyl)-3-hydroxydocosansäure-ethylester

65

50

28) (E,Z)-2-(3,5-Di-tert.-butyl-4-hydroxybenzyliden)-3-oxo-docosansäure-ethylester

29) 2-O-Octadecyl-3-O-(3,5-di-tert-butyl-4-hydroxyphenylmethyl)-ascorbinsäure

30) 2-Cholersteryloxyethyl-(3'-keto-4',5'-dīhydroxy-1',2',6'-trihydrobenzoat)

31) 4-Octadecoxy-5-hydroxy-3-keto-4,5-dehydrocyclohexancarbonsäure

32) Octadecyl-3-keto-4,5-dlhydroxy-1,2,6-trlhydrobenzoet

33) 2-O-(2-Cholesteryloxyethyl)-ascorbinsäure

20

50

55

25

$$CH_2-CH_2-CH_2-CH_2-CH_2-CH_3$$
 CH_2-OH
 CH_3
 CH_2-OH
 CH_3
 C

34) 6-O-Octadecanoyl-2-O-(O°,O°-dlathylphosphoryl)-ascorbins&ure

35) 5-O,6-O-Dioctadecanoyi-2-O-(O',O'-diethylphosphoryl)-ascorbinsaure

$$\begin{array}{c} \text{CH}_2\text{-O-CO-}(\text{CH}_2)_{16}\text{-CH}_3 \\ \text{CH}_2\text{-O-CO-}(\text{CH}_2)_{16}\text{-CH}_3 \\ \text{C} \\ \text{C}$$

36) 1,3-Bis<2-(2-O-ascorbyloxy)ethoxy>-2-octadecyipropan

5

10

30

35

40

37) Octadecylphosphonsäuredi-(2-O-ascorbyl)ester

38) 4,5-Dithiacyclohexyl-1,2-distearat

39) 4,5-Dithiacyclohexyl-1,2-distearat, reduziert

40) 4,5-Dithia-2-hydroxy-cyclohexylstearat

41) 4,5-Dithia-2-hydroxy-cyclohexyl-stearat, reduziert

42) 2-Hydroxy-4,5-dithia-cyclohexyl-urso-desoxycholat

43) 2-Hydroxy-4,5-dithla-cyclohexyl-desoxy-cholat, reduziert

44) Bis-(Cholesterin-6(R,S)-(2',3'-dimercapto-succinat), oxidlert

46) Cholesterin-6(R,S)-(2',3'-dimercaptoethylsuccinat)

46) Cholesterin-6(R,S)-dihydrollpoat

15 47) N-2-(5-Cholesten-3a-yloxy)ethyldihydroliponsäureemid

$$R = -(CH_{2})_{3} - CH$$

$$CH_{3}$$

$$CH_{3}$$

$$CH_{2} - CH_{2} - CH_$$

48) N≺3-(6,8-Dimercaptooctanoylamino)propyl>-desoxychosäure

49) N-Octadecyl-DL-dihydroliponsăureamid

30

45

50

50) DL-Dihydrollponsäure-octadecylester

66
 $^{\text{H}_2\text{C}}$ $^{\text{CH}_2)_4\text{-CO-O-}}$ $^{\text{CH}_2)_{17}\text{-CH}_3}$ $^{\text{CH}_2}$ $^{\text{CH}_2}$ $^{\text{SH}}$ $^{\text{SH}}$

51) DL-α-Liponsäure-octadecylester

52) N-Octadecyl-DL-a-Liponsäureemid

 $C (CH_2)_4$ -CO-NH- $(CH_2)_{17}$ -CH₃ C C S - S

53) Cholesterin-6(R,S)-lipoat

25

H₃C (CH₂)₃-CH

CH₃

Die Herstellung dieser Verbindungen ist nun im folgenden beschrieben; Ausgangs- und Zwischenprodukte sind mit Nummern ab 70 aufwärts bezeichnet.

Beispiel 1

40

45

50

55

5

10

15

a) 1,0 g (4,0 mmol) 6-Hydroxy-2,5,7,8-tetramethyl-chroman-2-carbonsäure (Aldrich) wurde in 50 ml THF/2,8 ml Triethylamin gelöst und bei 0 °C mit 0,77 ml (8,0 mmol) Chlorameisensäureethylester versetzt. Es wurde 15 min bei 0 °C und 30 min bei Zimmertemperatur gerührt. Anschließend wurden 1,88 g (4,0 mmol) festes Amin 70 [hergestellt durch Urnsetzung von Chlorsäuremethylester mlt 1,3-Diaminopropan (im Überschuß ohne Lösungsmittel), 5 h, Rückfluß] zugegeben und 3 h bei Zimmertemperatur gerührt. Das Aeaktionsgemisch wurde auf Wasser gegossen, mit Essigester extrahlert (3x) und die vereinigten organischen Phasen getrocknet (MgSO₄) und eingedampft. Chromatographie auf Kieselgel (Essigester/Methanol = 10:1) ergab 2,11 g eines weißen Feststoffes. Fp. 102-105 °C.

b) Zur Freisetzung des Phenols wurden 2,11 g (2,74 mmol) des nach a) erhaltenen Produktes in 50 ml Methanol gelöst und mit 3,8 g (27 mmol) Kaliumcarbonat versetzt. Es wurde 1 h unter Rückfluß erhitzt und das Lösungsmittel weitgehend eingedampft. Der Rückstand wurde mit Wasser ausgerührt und das Produkt abgesaugt. Chromatographie auf Kleseigel (CH₂Cl₂/MeOH = 10:1,5) ergab 1,5 g (79 %) Beispiel 2 Fp. 135-140 °C.

 $C_{41}H_{64}N_{207}$ (696), Ms¹⁾ (FAB²⁾), S-NBA³⁾/LiJ): 703 (M⁴⁾ + Li^{*} Dem Fachmann geläufige Abklirzungen:

¹⁾ Ms = Massenspektrum ²⁾ FAB = Fast Atom Bombardment

a) 3-NBA ==

25

30

35

40

48

50

55

¶ M = Molekülion

Völlig analog zu Beispiel 1 wurden die Beispiele der Tabelle 1 erhalten.

Fortsetzung Tabelle 1

5	Beispiel	R	Ms
	6	-(CH ₂) ₁₇ -CH ₃	C32H55O3N (501)
10			Ms (DCI): 502
		Q	
	7	(CH ₂) ₃ NH-C-(CH ₂) ₁₄ -CH ₃	C33H56N2O4 (544)
15			Ms (DCI): 545
	8	\prec (H) \rangle	C20H29NO3 (331)
			Ms (DCI): 332
20			

Beispiel 13

60

58

25

HO
$$\downarrow$$
 0 \downarrow HI \downarrow HO \downarrow 72

HO \downarrow 0 \downarrow HI \downarrow HI

Zu 61 mg (1,27 mmol) Natriumhydrid in 5 ml THF/5 ml DMF tropfite man 500 mg (1,16 mmol) Steroldalkohol 71 (J. Med. Chem. 1980, 1185) in wenig THF gelöst. Anschließend erwärmte man 30 min auf 50 -80° C. Bei 0° C wurden anschließend 180 mg (0,6 mmol) Bromid 72 fest zugegeben. Nach 1 h bei Raumtemperatur wurden nochmals 80 mg Bromid zugegeben. Man ließ sich nach 1 h bei Raumtemperatur rühren, goß auf Wasser, säuerte die wäßrige Phase mit 1n HCl an und extrahierte mit Ether (3x). Die vereinigten Etherphasen wurden mit ges. NaHCO₃ Lösung gewaschen und getrocknet (MgSO₄). Eindampten und Chromatographie auf Kleselgel (Cyclohexan/Essigester = 9:1) gab nach Kristallisation aus Methanol 240 mg Beispiel 13. Fp. 108-110° C.

C44H72O3 (648), Ms (FAB, 3-NBA/LiJ): 655 (M+U*)

In Analogie zu Beispiel 13 wurden die Beispiele der Tabelle 2 durch Alkylierung der entsprechenden Alkohole (Darst. s. unten) mit dem Bromid 72 erhalten.

Tabelle 2

5 Beispiel

R

Ms

10 21

15

50

25

H₂C-O-(CH₂)₁₇-CH₃ HC-OH H₂C- C36H66O4 (562) Ms (DCI): 563

 $(M+H^+)$

Ausgangsmaterial: Helv. Chimica Acta 71, 274 (1988)

29

0+ (CH2)17-C

С39Н6507 (645)

Ms (DCI): 646

(M+H+)

Ausgangsmaterial: Vgl. J. Med. Chem. 31, 793 (1988)

30

Beispiel 20

35

S CO2 +

40

In gleicher Weise wurde Beispiel 20 aus Dihydroffponsäure-t-butylester und 2 Äquivalenten Bromid 72 erhalten. Dihydroffponsäure-t-butylester wurde nach Beispiel 46-50 gewonnen, Liponsäure-t-butylester nach Beispiel 53 und 51.

G42H68S2O04 (700), Ms (DCI): 701 (M+H*)

50 Beispiel 17

a) Zu einer Lösung von 5 ml (33,8 mmol) n-Octin wurden unter Argonatmosphäre zwischen -20°C und -40°C 21 ml (33,6 mmol) n-BuLi (Hexan) getropft. Nach 1 h tropfte man 2,8 g (12 mmol) 3,5-Dl-tert.-butyl-4-hydroxybenzaldehyd (Aldrich), gelöst in wenig THF, zu. Man tieß über Nacht bei Zimmertemperatur rühren. Das Reaktionsgemisch wurde auf 2n HCl/Eis gegossen und mit Ether extrahlert (3x). Die vereinigten organischen Phasen wurden mit gesättigter Natriumhydrogencarbonatiösung gewaschen (2x) und getrocknet (MgSO₄). Eindampfen ergab 4,96 g (quant), das nach b) weiter umgesetzt wurde. b) 4,96 g des nach a) erhaltenen Alkohols wurden in 45 ml Dichlormethan gelöst und mit 4,66 g (21 mmol) Pyridiniumchlorochromat versetzt. Nach 2 h bel Raumtemperatur wurde mit Ether verdünnt und abdekantiert. Filtration über Kleselgel (Cyclohexan/Essigester = 3:1) ergab 2,82 g (57 %) Beispiel 17. Fp. 63-65°C.

Beispiel 72

44,8 g (0,2 mol) 2,6-Di-tert.-butyl-p-kresol, 35,6 g (0,2 mol) NBS und 400 mg AlBN wurden in 500 ml Tetrachlorkohlenstoff 2 h unter Rückfluß erhitzt. Nach dem Erkalten wurde abfiltriert und eingedampft. Ausbeute 63,9 g (quantitativ) Beispiel 72.

Beispiel 18

Zu 1,09 g (25 mmol) Natriumhydrid in 5 ml THF wurden bei 0°C unter Stickstoff 3,82 g (10 mmol) Keto-Ester 73 [Keto Ester 73 wurde durch Dianionalkyllerung von Acetessigeäurethylester mlt Octadecyljodid erhalten. Als Basen wurden NaH und Bull verwendet] in 15 ml THF getropft. Man Ileå 30 mln bei 0°C rühren und gab anschließend b i dieser Temperatur 3,0 g (10 mmol) Bromid 72, g löst in 10 ml THF zu. Nach 2 Tagen bei Raumtemp ratur wurd das Reaktionsgemisch auf kalte gesättigte Ammoniumchloridlösung gegossen und mit Ether extrahiert (3x). Di vereinigten organischen Phasen wurden getrocknet

(MgSO₄) und eingedampft. Präp. HPLC (Cyclohexan/Ethylacetat = 12:1) ergab 3,9 g (65 %) Beispiel 18. C39H68O4 (600), Ms (DCI): $601 (M + H^{*})$

Beispiel 19

5

20

25

0H a) S - S OH a) OH

a) 100 mg (0,48 mmol) DL-α-Liponsäure wurde in 2 ml 0,25 n wäßrige Natriumhydrogencarbonatiösung gelöst und mit 20 mg Natriumborhydrid versetzt. Man ließ 30 min bei 0°C rühren, gab 2 ml Toluol zu und stellte mit 2 n Salzsäure auf pH 1. Die organische Phase wurde abgetrennt und eingedampft.
b) der nach a) erhaltene Rückstand wurde in 5 ml Dichlormethan aufgenommen und mit 114 mg (0,48 mmol) 3,5-Di-tert.-butyl-4-hydroxybenzaldehyd versetzt. Anschließend gab man 60 μl (0,48 mmol) Bortrifluoridetherat zu und ließ 1 h bei Zimmertemperatur rühren. Das Reaktionsgemisch wurde zwischen Wasser und Essigester verteilt. Die organische Phase wurde abgetrennt, getrocknet (MgSO₄) und eingedampft. Chromatographie auf Kieselgel (Cyclohexan/Essigester = 2:1) ergab 135 mg (88 %) Beispiel 19. Fp. 67-68°C.

Beispiel 24

500 mg (0,83 mmol) Beispiel 18 wurden in 15 ml Ethanol gelöst und bei 0° C mlt 112 mg (2,5 mmol) Natriumborhydrid versetzt. Nach 1,5 h Rühren bei 0° C wurde das Reaktionsgemisch auf 50 ml kalte, gesättigte Ammonlumchloridlösung gegossen und mlt Ether extrahiert (3x). Die vereinigten Etherphasen wurden getrocknet (MgSO₊) und eingedampft. Chromatographie auf Kieselgel (Cyclohexan/Essigester = 4:1) ergab 480 mg (95 %) Beispiel 24.
C39H70O4 (602), Ms (FAB, 3-NBA/LIJ): 609 (M+LI*)

Beispiel 25

55

50

$$H_3C-(CH_2)_{17}-C-CH-CO_2C_2H_5$$
 CH_2
 CH_2

Unter Stickstoff wurden zu 65 mg (1,67 mmol) Lithlurnaluminlumhydrld in 10 ml THF bel 0°C 500 mg (0,83 mmol) Beispiel 18, gelöst in 5 ml THF, getropft. Man ließ 2 h bei Raumtemperatur rühren. Das Reaktionsgemisch wurde auf gesättigte wäßrige Ammoniumchloridösung gegossen und mit Ether extrahiert (3x). Die vereinigten Etherphasen wurden getrocknet (MgSO₄) und eingedampft. Chromatographie auf Kieselgel (Cyclohexan/Essigester = 1:1) ergab 480 mg Belspiel 25. Fp. 77-78°C.

20 Beispiel 26

5

10

168 mg (0,3 mmol) Belspiel 25 wurden in 10 ml Aceton gelöst und bei Zimmertemperatur mlt 0,5 ml Acetylchlorid versetzt. Man ließ 1 h bei Zimmertemperatur rühren, versetzte mit Ether und wusch die Lösung mit gesättigter wäßriger Natriumhydrogencarbonatiösung. Trocknen (MgSO₄), Eindampfen und Chromatographie des Rückstandes auf Kleseigel (Cyclohexan/Essigester = 5:1) argab 164 mg (91 %) Beispiel 26.

C40H72O3 (600), Ms (DCI): 600 (M+).

Beispiel 27

35

50

55

150 mg (0,25 mmol) Belspiel 24 wurden in 5 ml Ethanol g löst und mit 5,0 ml 0,1 n Natronlauge versetzt. Es wurde 8 h unter Rückfluß g kocht. Das Reaktionsgemisch wurde auf Els/HCi g gossen und mit Ether extrahiert (3x). Die vereinigten organischen Phasen wurden mit gesättigter Natriumchloridlösung

gewaschen (1x) und getrocknet. Eindampfen ergab die freie Säure. 131 mg der freien Säure wurden in Ethanol gelöst und mit 2,23 ml 0,1 n wäßriger Natronlauge versetzt. Die Lösung wurde mehrmals unter Zusatz von Toluol eingedampft. Man erhielt 130 mg Natriumsalz Belspiel 27.

s Beispiel 28

1,0 g (2,61 mmol) Keto-Ester 73, 613 mg (2,61 mmol) 3,5-DI-tert.-butyl-4-hydroxybenzaldehyd (Aldrich) wurden in 10 ml Pyridin unter Zusatz von 93 µl (1,2 mmol) Eisessig und 10 µl (0,1 mmol) Piperidin 3 Tage unter Rückfluß erhitzt. Es wurde mit Toluol verdünnt und mit halbgesättigter Kochealzlösung gewaschen und getrocknet (Na₂SO₄). Eindampfen und Chromatographie auf Kleselgel (Cyclohexan/Essigester = 7:1) ergab 740 mg (47 %) Beispiel 28. C39H66O4 (598), Ms (DCI): 599 (M+H^{*})

Beispiel 33

25

30

36

In Analogie zu Beispiel 82,75 (Vorschrift b) und 34 wurde 33 aus Beispiel 74 und 71 hergestellt. C35H56O7 (588), Ms (FAB): $601 \, (M+2Li-H)$, Fp. $> 160^{\circ} \, (Zers.)$

Beisplel 75

a) 44,9 g (0,148 mol) Alkohol 74 wurden in 300 ml Dichlormethan gelöst und bei 0°C mlt 103 ml (0,733 mol) Triethylamin versetzt. Bei 0°C tropfte man 23,2 ml (0,181 mol) Phosphorsäurediaethylesterchloridzu und ließ 3 h bei 0°C rühren. Das Reaktionsgemisch wurde auf gesättigte wäßrige Ammonlumchloridlösung gegossen und mit Ether extrahlert (3x). Die vereinigten organischen Phasen wurden getrocknet (MgSO₄) und eing dampft. Chromatographi auf Kieselgei (Cyclohexan/Essigester = 3:2) rgab 18,1 g (28 %). Rf (Cyclohexan/Essigester = 1:1): 0,20.

b) Zur Spaltung des Acetonids wurden die nach a) erhaltenen 18,1 g gelöst in 50 ml Ethanol zu 170 ml ethanolischer HCl [hergestellt durch Zutropfen von 3,0 ml Acetylchlorid zu 167 ml Ethanol] gegeben und 2 h unter Rückfluß erhitzt. Das Lösungsmittel wurde eingedampft und der Rückstand über Florisil filtriert (Ethylacetat). Nach Eindampfen erhielt man 14,1 g (85 %) Diol 75. Rf (Essigester): 0,33.

5 Beispiel 76 und 77

Beispiel 76

25

2,01 g (5 mmol) Diol 75 wurden in 20 ml Pyridin gelöst und bei Baumtemperatur mit 4,8 g (15 mmol) Stearinsäurechlorid versetzt. Man ließ 30 min rühren, goß auf kalte 2 n Salzsäure, und saugte das Produkt ab. Chromatographie auf Kieselgel (Cyclohexan/Essigester = 7:3) ergab 4,11 g (88 %) Beispiel 76.

30 Belspiel 77

Völlig analog zu 76 wurde mit einem Äquivalent Stearinsäure Beispiel 77 erhalten.

Beisplel 34

540 mg (0,81 mmol) Beispiel 77 wurden in 10 ml Ethanol mit 100 mg Pd/C (10 %) bei Normaldruck und Zimmertemperatur hydriert. Der Katalysator wurde abfiltriert, das Filtrat eingedampft und der Rückstand mit n-Pentan verrieben. Ausbeute 335 mg (71 %) Beisplel 34. Fp. 84-85 °C. C28H51O10P (578): Ms (FAB, 3-NBA/LiJ): 585 (M+Li*), 591 (M+2Li-H).

Beispiel 35

Völlig analog zu Beispiel 34 wurde Beispiel 35 erhalten. Fp. 88-90 $^{\circ}$ C. C46H85O11 (845), Ms (FAB, 3-NBA/LiJ): 851 (M+Li $^{\circ}$), 857 (M+2Li-H).

16 Beispiel 78

10

30

50

55

$$R = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

 $_{\rm H_3C^-(CH_2)_{17}^-CH(-CH_2OCH_2CH_2^-OR)_2}$

Ausgangsmaterial

H₃C-(CH₂)₁₇-CH(-CH₂OCH₂CH₂OH)₂

J. Skarzewski, J. Mlochowski

Tetrahedron 39, 309-312 (1983)

80

a)

H-H₃C₁₈-CH

Herstellung

J. Med. Chem.

31, 793-798

(1988)

THF = 0

THF = 0

Beispiel 81 aus 80)

5 g (0,012 mol) Diol 81 wurden in 25 ml Dichlormethan gelöst und mlt 1,1 ml (0,012 mol) Dihydropyran und 500 mg Pyridinium-p-tokuolsulfonat versetzt. Nach 6 h Rühren bei Raumtemperatur wurde mit 100 ml Ether verdünnt und mit gesättigter Natriumchlorldlösung gewaschen (2x). Die organische Phase wurde getrocknet und eingedampft. Chromatographie auf Kieselgel (Essigester/Cyclohexan = 1:1) ergab 3,1 g (52 %) Beispiel 81 neben 1,53 g Bis-THP-Ether und 1,0 g Ausgangsmaterial.

Beispiel 82 aus 81 b)

70

15

2,75 g (5,5 mmol) Beispiel 81, 1,68 g (5,5 mmol) 74, 1,44 g (5,5 mmol) Triphenylphosphin und 1,1 ml (5,5 mmol) Diisopropylazodicarboxylat wurden in 25 ml THF 1 h bei Raumtemperatur gerührt. Nach dem Eindampfen wurde auf Kieselgel chromatographlert (Essigester/Cyclohexan = 1:2). Ausbeute 2,3 g (53 %) Beispiel 82.

Beispiel 83 aus 82 c)

2.2 g (2,8 mmol) Belspiel 82 wurden in 50 ml Ethanol bel Raumtemperatur mit 70 mg Pyridinlum-p-Toluolsulfonat versetzt und 4 h bei 50 °C gerührt. Das Reaktionsgemisch wurde eingedampft und der Rückstand zwischen Ether und halbgesättigter NaCl-Lösung verteilt. Trocknen der organischen Phase (MgSO₄) und Eindampfen ergab nach Chromatographie auf Kieselgel (Cyclohexan/Essigester = 1:1) 1,3 g (67 %) Belspiel 83.

Beispiel 78 aus 83(d) analog zu Beispiel 82(b).

Beispiel 79

$$H_{3}C-(CH_{2})_{17}-P-OR$$

$$H_{3}C-(CH_{2})_{16}-CH_{2}J$$

$$H$$

Beispiel 84 a)

17,5 g (46 mmol) Octadecyljodid und 8,0 ml (46 mmol) Triethylphosphit wurden 2 h unter Rückfluß gekocht. Chromatographie auf Kleselgel (Essigester) ergab 12,2 g (31 mmol, 68 %) Beispiel 84.

Beispial 85 b)

6

10

15

Die Verselfung von 84 zu 85 wurde durch mehrstündiges Kochen (DC-Kontrolle) mit konzentrierter Salzsäure durchgeführt und in der üblichen Weise aufgearbeitet.

Beisplel 86 (c)

1 g Säure Beispiel 85 wurde in 20 ml Thionylchlorid unter Zusatz eines Tropfens DMF 2 h unter Rückfluß gekocht. Eindampfen und mehrmaliges Abrauchen mit Toluol ergab das Säurechlorid 86.

Beispiel 79 d)

Die Reaktion wurde analog Belspiel 75 (Vorschrift a) durchgeführt (2 Äquivalente 74). Extraktive Aufarbeitung und Chromatographie auf Kieselgel (Cyclohexar/Eesigester = 3:2, 1:1) ergab Beisplel 79. Ausbeute 54 %.

20 Belspiel 36 und 37

In Analogie zu Beispiel 75 (Vorschrift b) und Beispiel 34 erhielt man aus Beispiel 78 Beispiel 36 und aus Beispiel 79 Beispiel 37.

25 Beispiel 36

N = HO E O

H₂C-(CH₂)₁₇-CH-(CH₂OCH₂CH₂-OR)² Fp. > 120 °C (Zers.) C37H64O14 (732), Ms (FAB, 3-NBA/LiJ): 751 (M+3Li-2H)

Beispiel 37

40

30

45

50

58

Fp. 72-75 °C C30H51O13P (650), Ms (DCI): 651 (M+H °)

Belspiel 46 - 55

a) Herstellung von Liponsäureestern

Liponsäure und entsprechender Alkohol werden im molaren Verhältnis von 1:1 in Dichlormethan vorgelegt. Bei Zimmertemperatur gibt man 1 Äquivalent 4-Dimethylaminopyridin und anschließend 1 Äquivalent Dicyclohexylcarbodiimid zu. Man läßt 2-5 h bei Zimmertemperatur rühren, dampft ein, nimmt das Produkt in einem geeigneten Lösungsmittel auf (der Harnstoff bleibt meist größtenteils ungelöst zurück) und chromatographiert auf Kleselgel.

Nach dem Verfahren wurden die in Tabelle 3 aufgeführten Liponsäureester erhalten.

Tabelle 3

δ

15

20

26

30

50

85

Beispiel R Ms

53

C35H5802S2 (574)

Ms (DCI): 575

(HoH)

35 - (CH₂)₁₇CH₃ C26H50O2S2 (458) MB (DCI): 458

b) Herstellung von Liponsäureamiden

Liponsäure und entsprechendes Amin werden im molaren Verhältnis von 2:1 oder 1:1 in Dichlormethan vorgelegt. Bei Zimmertemperatur gibt man 1 Äquivalent 4-Dimethylaminopyridin und anschließend 1 Äquivalent Dicyclohexylcarbodilmid zu. Man läßt 2-5 h bei Zimmertemperatur rühren, dampft ein, nimmt das Produkt in einem geelgneten Lösungsmittel auf (der Hamstoff bleibt meist größtentells ungelöst zurück) und chromatographiert auf Kieselgel.

Nach diesem Verfahren wurden die in Tabelle 4 aufgeführten Liponsäureamide erhalten.

Tabelle &

Beispiel R Ms

5

10

15

20

50

(Ausgangsamin durch Gabriel-Synthese aus 71 über das entsprechende Jodid)

c) Reduktion von Liponsäurederivaten zu Dihydroliponsäurederivaten

1 Tell Liponsäurederlyat wird in Methanol/THF-Gemischen bevorzugt 1:2) vorgelegt und unter Stickstoffatmosphäre bei 0 °C mit 2-3 Äquivalenten Natriumborhydrid versetzt. Nach 2-3 h Rühren bei 0 °C wird auf halbgesättigte wäßrige Ammoniumchloridiösung gegossen und mit Essigester extrahiert (2x). Die vereinigten organischen Phasen werden getrocknet (MgSO₄) und eingedampft. Das Produkt wird im Hochvakuum getrocknet.

Nach diesem Verfahren wurden die Beispiele der Tabelle 5 h rgestellt.

Tabelle 5

-(CH₂)₁₇CH₃

49

65

C26H53NOS2 (459)

Ms (DCI): 460

(%+H[♦])

Lipophil und anti xidative Elg nachaften

Methode I

Antioxidative Radikalfänger-Eigenschaften nach der Diphenylpicrylhydrazin-(DPPH)-Methode:
Die Bestimmung erfolgte spektralphotometrisch (PMQ4 der Fa. Zeiss, Oberkochen, FRG) nach der in Smith und Reeves, Blochemical Pharmacology 36 (1987) S. 1457-1460 beschriebenen Methode. Die antioxidativen Wirkungen der geprüften Präparate sind in Tabelle 1 aufgeführt. Maß ist die in bekannter Weise graphisch (Konzentration versus Umsatzrate) bestimmte Geschwindigkeitskonstante, gemessen in absolutem Ethanol. Mit Ausnahme der oxidierten Mercaptane zeigten alle untersuchten Präparate eine zwar verschieden ausgeprägte, aber deutliche antioxidative Wirkung.

Methode II

Verwendung als Zusatz bei Bratfett:

Proben handelsüblicher Deutscher Markenbutter wurden geschmolzen und jeweils mit 1 % (Gewicht/Gewicht) BHT (= butyllertes Hydroxytoluol) bzw. 2,6-Di-tert.-butyl-4-(7-noninoyl)-phenol [= Verbindung gemäß Beispiel 17] bzw. 2-(3,5-Di-tert,-butyl-4-hydroxybenzyl)3-oxo-docosansäureethylester[= Verbindung gemäß Beispiel 18] bzw. N-Octadecyl-DL-α-llponsäuramid [= Verbindung gemäß Beispiel 52], versetzt und in üblicher Weise als Bratfett verwendet. Nach dem Bratvorgang war die mit BHT versetzte Probe in eine zähflüssige, dunkelbraune Masse übergegangen, während der Einsatz der genannten Vergleichspräparate zu einer wesentlich geringeren Farbveränderung führte. Die bessere Schutzwirkung der Vergleichspräparate kommt vermutilch aufgrund ihrer lipophilen Seitenketten und deshalb verbesserter lipophiler Wechselwirkung zustande. Besonders überraschend ist die vorteilhafte Wirkung von N-Octadecyl-DL-α-liponsäureamid, obwohl dieses Präparat keine erkennbare antioxidative Komponente besitzt.

Methode III

Lipidlöslichkeit der Verbindungen und Schutzwirkung.

a) Herstellung von Olivenöl- bzw. wäßrigen Lösungen. 1 mg bzw. 10 mg bzw. 50 mg der jeweiligen Verbindung wurden bei 37°C mlt 1 ml Olivenöl bzw. mlt 1 ml bidestilliertem Wasser (bzw. verdünnter NaOH pH = 7,6) versetzt und überprüft, ob eine klare Lösung erhalten wurde. Die gegebenenfalls zentrifugierten und dekantierten Olivenöllösungen wurden 5 Minuten mit dem Bunsenbrenner erhitzt und der Bräunungsgrad des Olivenöls festgestellt. Unter diesen Bedingungen wird das Öl ohne Zusatz und ohne Schutzwirkung deutlich dunkelbraun. Nach Zusatz von Antioxidans und bei guter Schutzwirkung wird das Öl nur dunkelgelb bis heilbraun. Proben mit schlechter Schutzwirkung sind in der Tabelle (s.u.) mlt (*) versehen.

Vorteilhaft ist auch die extrem hohe Löslichkeit (>1:1) der erfindungsgemäßen Antioxidantien in geschmolzenem Cholesterolpalmitat bei 85°C.

40

45

60

65

30

Tabelle 1: Ergebnis

35

5		Methode I Reaktion	Methode III Löslichkeit (mg/ml)
		mit DPPH	Wasser Olivenöl
		(Geschwin-	
	Geprüfte	digkeits-	
10	Verbindungen:	konstante)	
	Vitamin E-Analoga	•	
	6-Hydroxy-2,5,7,8-tetra-		
15	methylchroman-2-		•
	carbonsaure (1)	2.65	>10.0 < 0.1
	Vitamin E (1)	2.90	< 0.1 >10.0
20	Vbg. gem. Bsp. 1	0.681	> 0.1 >10.0
	# 4 H 2	0.528	> 0.1 >10.0
	и и и 3		< 0.1 > 1.0

	Tabell	e 1:	Ergel	onis			
					Methode I	Method	le III
5					Reaktion	Löslichka	it (mg/ml)
					mit DPPH	Morect	Olivenöl
					(Geschwin-		
	Geprüf	te			digkeits-		
10	Verbin	dung	en:		konstante)		
	Vitami	n E-	Analo	<u>ga</u>			
				,8-totra-			
15	methyl	chro	man-2	<u>:</u>			
	carbon				2.65	>10.0	< 0.1
	Vitami				2.90	< 0.1	0.0f<
20	Vbg. g	em.	Bsp.	4		> 0.1	>10.0
سط	11	11	π .	5		< 0.1	>10.0
	u	99	#	6	0.254	< 0.1	>10.0
	п	n	14	7	0.355	< 0.1	>10.0
25	ti	11	es .	. 8	•	< 0.1	>10.0
	Phenol	. 8			•		
30	Gallus	säu:	re (1)			>10.0	< 0.1
•	BHT (1					< 0.1	>10;0
	Vbg. g	em.	Bsp.	13	0.061	< 0.1	>50.0
	π	Ħ	₹1	17	0.004	< 0.1	>50.0
35	n	99	#	18		< 0.1	·>50.0
	Ħ	21	FT	19	0.268	< 0.1	>50.0
	0	17	47	20		< 0.1	>50.0
40	Ħ	##	W	21	0.236	< 0.1	>50. 0
	11	87	п .	22	0.004	< 0.1	>50.0
	91	77	Ħ	23	0.006	< 0.1	>50.0
	M	47	n.	24	0.054	< 0.1	·>50 .0
45	99	77	97	25	0.052	< 0.1	>50.0
	Ø	27	77	26	0.065	<_0.1	>50.0

56

0.711

27

28

29

>10.0

< 0.1

> 1.0

> 1.0

>50.0

>10.0

Tabelle 1: Ergebnis

	·	Methode I	Method	ie III
5		Reaktion	Löslichke	eit (mg/ml)
		mit DPPH	Wasser	Olivenöl
	·	(Geschwin-		
	Geprüfte	digkeits-		
10	Verbindungen:	konstante)		
	<u>Ascorbinsäure-Analoga</u>			
	Ascorbinsăure (1)	2.99	>10.0	< 0.1
15	Ascorbylpalmitat (1)		< 0.1	> 1.0
	Vbg. gem. Bsp. 34	0.052	< 0.1	> 1.0
	" " " 35	0.053	< 0.1	> 1.0
20	т II 1 1 37	1.13	>10.0	> 1.0
20	" " " 33		< 0.1	> 1.0
	ч п п 36	0.242	>10.0	>10.0
25	<u>Mercaptan</u> e			
	Dihydroliponsäure,			
	Na-Salz (1)	3.147	>10.0	< 0.1*
30	Dithiothreitol (1)	5.632	>10.0	< 0.1
	Dithioerythrit $^{(1)}$		>10.0	< 0.1
	2,3-Mercaptobernsteinsä	iure ⁽¹⁾	>10.0	< 0.1
	Vbg. gem. Bsp. 46	0.440	< 0.1	>50.0
35	n u u 47	0.075	< 0.1	>50.0
	" " 48	0.337	< 0.1	>50.0
	" " " 49	0.243	< 0.1	>10.0
40	π π π 50	0.248	< 0.1	>50.0
	Oxid. Mercaptane			
45	Liponsäure, Na-Salz (1)	0.0	>10.0	< 0.1*
	Vbg. gem. Bsp. 51	0.0	< 0.1	>50.0
	n n 1 52	0.0	< 0.1	>10.0
	n n n 53		< 0.1	>50.0
60				

1) = nicht erfindungsgemäß

65 Ergebnis:

Die Befunde der Tabelle 1 wurden ergänzt durch die experimentelle B stimmung des Verteilungskoeffizienten K_d (Butanol/Wasser-Methode nach Carney und Graham, Arzneim.-Forschung 35 (1985) 228-233), der die Lipophilie der Verbindungen bestätigte.

Experimentell konnten die erfindungsgemäßen Verbindungen auch durch Octanol aus wäßrigen Lösungen bzw. Suspensionen (bestehend aus 1 mg Antioxidans/ml physiologische Kochsalzlösung pH = 7.6) praktisch vollständig (zu ca. 100 %) extrahiert werden.

Die Verbindung gemäß Beispiel 36 ist aufgrund ihrer Löslichkeitseigenschaften hervorragend zur Verwendung in wäßrigen Ölemulsionen geeignet.

o Methode IV

Inhiblerung der Oxidation von humanphysiologischen Lipiden.

Oxidation von 1-Stearoyl-2-arachidonoyl-phosphatidylcholin (SA-PC) in Cyclohexan (37°C). 100 mcl einer SA-PC-Lösung (10 mg/ml CHCl₂) wurden verblasen (Argon) und der Rückstand in 1 ml Cyclohexan aufgenommen. Nach Hinzufügen einer solchen Menge Antioxidans, die sich auch in Olivenöl lösen würde (vgl. Tabelle 1), wurde die Extinktion bei 234 nm (Spektralphotometer Perkin Elmer 5528, Überlingen, FRG) gemessen und anschließend das Lösungsmittel mlt Luft verblasen. Nach welteren 24 Stunden Stehen Im offenen Gefäß wurde der Rückstand wieder in 1 ml Cyclohexan gelöst und die Extinktion bei 234 nm als Maß des oxidierten SA-PC gemessen.

Ergebnis:

Wegen ihrer guten Upldlöslichkeit konnte die Oxidation des SA-PC mit jeweils 1 mg bis 10 mg/ml der erfindungsgemäßen Antioxidatien praktisch vollständig unterdrückt werden. Die Oxidation des SA-PC konnte mit den erfindungsgemäßen reduzierten Dithlolverbindungen (Beispiele 49 und 50) Überraschenderweise ebenso wirkungsvoll verhindert werden wie mit den entsprechenden oxidierten Dithlo-Verbindungen (Beispiele 51 und 62 ohne freie SH-Gruppen).

30 Methode V

Inhibierende Wirkung auf die Fettsäureoxidation in Rattenmitochondrien

(Malonaldehyd-Bestimmung nach der Thiobarbitumethode gemäß Ottolenghl, Arch. Biochem. Biophys. 79 (1959 S. 355 ff.). Die Bestimmung erfolgte spektralphotometrisch in Mitochondrialhomogenaten der Ratte. Die Inhibierung der Fettsäureoxidation durch die erfindungsgemäßen Präparate war praktisch vollständig.

Methode VI

Inhibierung der Lipidoxidation in liposomalen Blomembranen

Eine wäßrige Lösung von Uposomen (Fa. Nattermann, Köln/Deutschland) wurde mit aqua bidest verdünnt, bis die im Spektralphotometer (PMQ II der Firma zelss, Oberkochen/Deutschland) bei 234 nm gegen Luft gemessene Extinktion zwischen 0.25 und 0,35 lag (entspricht etwa 0.1 mg Liposomen/ml). Diese Liposomensuspension wurde sodann mit 50 mcmol/l Cumolhydroperoxid und 12 mcmol Hämatin versetzt (Gesamtvolumen 1 ml) und die Zunahme der Extinktion bei 234 nm als Maß für die Geschwindigkeit der Liposomen-Oxidation zeitlich verfolgt.

Durch Zusatz der erfindungsgemäßen Antioxidantien konnte die Oxidation der Liposomen unterdrückt werden. Die folgende Tabelle zeigt die durchschnittliche Zunahme von ΔΕ₂₃₄/min in Ansätzen mit und ohne Antioxidans nach 25 min bel 25° C.

Tabelle:

ohne Zusatz von Antioxidans mit Zusatz von 100 nmol/l	4	AE ₂₃₄ /min 0,035
Antioxidantien		0,005
,	bis	0.015

Noch bessere Ergebnisse werden erzielt, wenn die lipophilen Antioxidantien bei der Herstellung der Liposomen als Bestandteile derselben mit eingebaut werden.

Methode VII

5

10

15

20

30

Inhibierung der LDL-Oxidation nach El-Saadani et al., Journal of Lipid Research 30 (1989) Seite 627

Analog zu Methode VI schützen die lipophilen Antioxidantien auch "Low Density Lipoprotein" (Fa. Sigma, St. Louis, USA) vor Oxidation.

Methode VIII

Laser-Induzierte Thrombose in Ratten in vivo.

Die experimentelle Durchführung erfolgte in allen Einzelheiten wie in der US-Patentschrift 4 894 024 beschrieben. Die Laser-Induktion erfolgte 60 min nach oraler Applikation der Antioxidantien. Nach oraler Gabe der erfindungsgemäßen Antioxidatien (30 mg/kg) war eine signifikante höhere Anzahl von Laserschüssen erforderlich als in den Vergleichsexperimenten, d.h. die thrombosehemmende Widerstandskraft der Tiere war nach Gabe der erfindungsgemäßen Antioxidantien höher.

30						
					Reduktion de	gaublidandana re
	Verbindung	gem.	Beispiel	13	17 9	6
	Ħ	13	. 61	52	14 9	\$
35	81	Ħ	Ø	49	20 %	6
	81	π	97	47	15 9	\$
	. **	to to	94	3	11 9	٠ •
40	79	74	24	2	14 9	6
	88	W	(A)	1	16 9	វ
	교	93	প	36	27 9	ξ
45	29	Ħ	묘	33	13	Ķ
	(4,4'-(Iso	propy	lidene~			
	dithio)bis	-[2,6	-di-tert.	-		
50	butylpheno	1]			6	
	Vitamin E	_		,	· . 5	*

s Wethode D

Photochemisch induzierte Thrombusbildung in Ratten in vivo. Die Messungen wurden an Mesenterialarteriolen durchgeführt. Dazu wurden 0,3 ml ein r Lösung von

Fluorescein-Isothiocyanat-Dextran-70 (FITC-Dextran, Fa. Sigma, Seld nhofen, FRG) injiziert, und daraufhin die Arterlolen im Beobachtungsf id mit Licht (490 nm) bestrahlt. Die sich daraufhin bildenden Thromben wurden vitalmikroskopisch quantifiziert, wie unter Methode VIII beschrieben. Mit rfindungsgemäßen Antioxidantien konnte die Thrombusbildung eine Stunde nach oraler Gabe von 50 mg/kg Körpergewicht Ratte bis zu 20 % inhibiert werden.

Methode X

Arachidonsäure-induzierte Thrombozytenaggregation nach Ruppert und Weithmann, Life Sciences 31 10 (1982) 2037 f.

Die antithrombotische Wirkung der erfindungsgemäßen Substanzen kommt nicht durch eine Hemmung der Trombozytenaggregation zustande, denn bis 10 mcmol/l der erfindungsgemäßen Substanzen war keine signifikante Hemmwirkung nachzuweisen. Eine erhöhte Blutungsneigung von Patienten, die mit diesen Substanzen behandelt werden, ist also nicht zu erwarten.

Methode XI

15

45

50

55

Wirkung der erfindungsgemäßen Verbindungen bei Langzeitgabe an der hyperlipidämischen Infarktempfindlichen Ratte:

Männliche infarktempfindliche, etwa 200 g schwere Tiere (Möllegaard, Elby, Dänemark) wurden einmal täglich per os mit 1 ml/100 g Körpergewicht einer Standarddiät (100 g Cholsäure, 100 g Cholesterin, 30 g Propylthiourecil ad 1 l Sesamöl) behandelt. Während der Kontrollgruppe I (vgl. nachfolgende Tabelle) keine Prüfsubstanz verabfolgt wurde, enthielt die Standarddiät in den Verumexperlmenten II - IV zusätzlich 50 mg/kg Körpergewicht der in der nachstehenden Tabelle angegebenen Prüfsubstanzen. Nach 9 Tagen wurden die Ratten, wie oben beschrieben, in der Laser induzierten Thrombose untersucht, sowie der Gesamtcholesteringehalt des Serums bestimmt. Aus der nachfolgenden Tabelle geht hervor, daß die Thromboseneigung der im Vergleich zu gesunden Ratten (<100 mg Cholesterin/dl) hyperlipidämischen Infarktempfindlichen Ratten mit den erfindungsgemäßen Substanzen überraschenderweise erfolgreicher behandelt werden können als mit Vitamin E. Darüber hinaus übten die erfindungsgemäßen Substanzen eine vorteilhafte lipidsenkende Wirkung aus.

35		Gruppe	Zahl der Tiere n =	Gesamtchole- sterin mg/dl	Reduktion der Thrombose-Neigung vs. Kontrolle (%)
40	I	Kontrolle	5	286	
40	II	Vitamin E	6	278	26

s			Zahl der Tiere n =	Gesamtchole- sterin mg/dl	Reduktion der Thrombose-Neigung vs. Kontrolle (%)
10	III	Verbindung gemäß Beispiel 2	4	270	50
15	IV	Verbindung gemäß Beispiel 49		259	34

20 Patentansprüche

t. Verbindungen der allgemeinen Formel I

 $(A)_{a}(L)(X)_{a'} \qquad (1),$

25

worth a, a', A, L und X die folgende Bedeutung besitzen: a und a' = unabhängig voneinander die Zahlen 1 oder 2, A = antioxidative Komponente aus der Gruppe A₁ - chromanteilstruktur des Vitamins E

30

35

40

45

CH3 CH3 CH3

worin Q in dieser und allen folgenden Formeln eine freie kovalente Einfachbindungs-Valenz darstellt, Az - alkylsubstitulerter Mono-, Di- oder Tri-Phenol-Rest

(OH)_m

50

55

worin

m = 1 oder 2, n = 1 oder 2 undm+n = 3 oder 4,

R¹ = Alkylrest und/oder Alkoxyrest

und die Gesamtzahl der C-Atome des Alkyl - bzw. Alkoxyrestes bzw. der Alkyl- und Alkoxyreste = maximal 8;

As - Reductonrest

worln

6

10

15

20

25

30

40

50

55

 H^2 = H oder niederer Alkylrest (vorzugsweise C_1 - C_4) und

 $H^3 = H_1 COOR^4, CH_2OR^4$

 $R^4 = H$ oder niederer Alkylrest (vorzugsweise $C_1 - C_4$)

A₄ - 1.2-Dithiacycloalkyl- oder 1,2-Dithiacycloalkenyl-Rest mlt 2 - 6, vorzugsweise 2 - 4 C-Atomen im Ring und die durch Hydrogenierung reduzierte Dithiolform dieser Reste

As - Ascorbinsäure(-Derivat)-Rest

worln

E = O, S oder NR9

 $R^5 = H, EH, EQ oder Q$

 R^6 = H, EH, EQ-(L-X₁) oder Q-(L-X₁)

R7 = H, EH, EQ, Q oder einer der unter A2 und A4 genannten Reste,

 R^8 = H, EH, Q-(L-X₁) oder -PO(OR⁹)₂,

R⁹ = H, niederer Alkylrest (vorzugsweise C₁-C₄) oder Q,

und nur 1 oder 2 - bevorzugt 1 - der Reste R5 -R9 gleich Q stnd bzw. Q enthalten,

L = Brückenglied und

X₁ = lipophile Komponeten wie nachstehend definiert;

L = Brückenglied,

ss bestehend aus einem oder mehreren der Bausteine

worin

 R^{10} , R^{11} , R^{12} = H, niederer Alkylrest (vorzugswelse C_1 -C₄) oder Q, R^{11} darüber hinaus auch noch - CO_aR^{10} sein kann (mit a = 1 oder 2),

und 2 Reste der Art -O-, -S- und/oder -NR¹º- durch mindestens 1 C- oder P-Atom voneinander getrenmt sind;

X = Tipophile Komponente aus der Gruppe

X₁ - Cholanderivat-Reste

worin

5

10

15

25

30

35

 R^{13} = sec. C_4H_3 (= Cholestan), R^{11} (s. bei L) oder Q,

E = O, S, NR¹⁰ (R¹⁰ s. bei L), $(\alpha,\beta$ -OH,H) oder $(\alpha,\beta$ -Q, H)

und in 4,5- bzw. 5,6- bzw. 7,8-Position eine Doppelbindung vorhanden sein kann, und X₂ - Alkyl- oder Cycloalkylrest oder Fettsäurederlyat-Rest mit bis zu 24 C-Atomen.

Verbindungen der Formel I gemäß Anspruch 1, dadurch gekennzeichnet, daß die Komponente
 A4 ein Rest der folgenden Formeln in der Dithlaform (gemäß den Formeln) oder in der durch
 Hydrogenlerung reduzierten Dithloform ist:

A4.1

A_{4.2}

40

wortn

R16 = H oder niederer Alkytrest (vorzugsweise C1-C4), und

 $R^{15} = -(CH_2)_b - Q$

45 b □ 0 - 12, vorzugsweise 0 - 4,

A4.3

50

S CH-R¹⁸
CH-R¹⁸
S CH-R¹⁸

worln R^{16} und R^{19} = unabhängig voneinander = H oder ni der r Alkylrest (vorzugsweise C_1 -- C_4) R^{17} = Q und R^{18} = H, niederer Alkylrest (vorzugsweise C_1 -- C_4), Acylrest OCOR¹⁹ oder OR¹⁹ R^{19} = niederer Alkylrest (vorzugsweise C_1 -- C_4) oder Q.

A4.4 Dithiothreit- oder Dithio@rythrit-Teilstruktur

S CH-Q
S CH-OR

20 worin R¹9 die gleiche Bedeutung wie bei 4.3 besitzt,

10

15

50

55

 $^{A}_{4.5}$ S CH - C - C C O O O O

worth so $R^{20} = H$ oder niederer Alkylrest (vorzugsweise $C_1 - C_4$) und $Y = H_2$ oder O.

3. Verbindungen der Formel I gemäß Anspruch 2, dadurch gekennzeichnet, daß die Komponente

ss A_{4,2}
R¹⁶ = H und
R¹⁵ = -(CH₂)₄-Q
(= Decarboxy-Liponsäure- bzw. Dihydroliponsäure-Teilstruktur).

40 4. Verbindungen der Formel I gemäß Anspruch 1. dadurch gekennzeichnet, daß In dem Strukturrest

 A_5 R^7 = $C_6 H_9$ (tert.) $C_6 H_9$ (tert.)

Verbindungen der Formel I gemäß Anspruch 1, dadurch gekennzeichnet, daß im Strukturrest
As
E

■ O

R⁵, R⁵ und R⁷ = unabhāngig voneinander = OH oder OQ, R⁸ = H oder Q, wobei nur 1 oder 2 der Reste R⁵ - R⁸ Q enthalten bzw. gleich Q ist (= Ascorbinsäurerest).

6. Verbindungen der Formel I gemäß einem oder mehreren der Ansprüche 1 - 5, dadurch gek nnzeichn t, daß das Brückenglied L die folgende allgemeine Formel besitzt:

$$L = M_p\{[-(CH_2)_{w'}(G_1)_{x'}(G_2)]_{y'}(CH_2)_{y'}(G_3)_{z'}(G_4)_{p+1}\}M_p$$

worin

p, x und z unabhängig voneinander = 0 oder 1, v, w und y unabhängig voneinander = 0 - 4, und v+w+y+z = 0 - 10,

70

15

6

G1. G2, G3 und G4 unabhängig voneinander = -O-, -S-, -NR10-.

20

25

35

60

wobel R¹º die vorher genannte Bedeutung besitzt (= H, niederer Alkylrest oder Q) und 2 der Reste -O-, -S-, und/oder -NR¹º- durch mindestens 1 C-Atom vonelnander getrennt sind.

Verbindungen der Formel I nach einem oder mehreren der Ansprüche 1 - 6, dadurch gekennzeichnet,
 daß das Brückenglied L ein Rest ist aus der Gruppe:

L1: Q-O-(CH2),-O-CO-Q

 L_2 : Q-CO-NH-(CH₂)_q-NH-CO-Q

Ls: Q-O-(CH2-),-NH-CO-Q

L4: Q-(CH2-),(-O-)b-Q

Ls: Q-(CH2-),-O-(CH2-),-O-Q

Ls : Q-(CH2-)e-NH-(CH2-)--O-Q

L7 : Q-CO-NH-(CH2-CH2),-O-Q

 $L_8: Q-O-(CH_2-)_s-CHOH-(CH_2-)_s-O-(CH_2-)_s-Q$

$$L_9: Q-(CH_2-)_8-CH$$
 CH_2-Q

46

55

L10: Q-(CH2-)q-Q

L11: Q-(CH2-)g-CHCO2R10-CHOH-Q

 L_{12} : Q-CH = C(CO₂R¹⁰)-CO-Q

L₁₃: Q-CO-NH-(CH₂-)q-NH-CO-Q

50 L₁₄: Q-(CH₂-)_s-O-(CH₂-)_r-O-

$$L_{15}$$
: $Q-(CH_2-)_r-0-PO(CH_2-)_r-Q$

L₁₆: [Q-(CH₂-)₂-Q-(CH₂)₈]₂CH-Q

L17: Q-O-(CH2-),-CHOH-O-(CH2-),-Q Lta: Q-O-(CH2-)2-CH(CH2-OH)-O-CO-Q L19: Q-O-(CH2-)8-CHOH-(CH2-)2-Q-QO-Q L20: Q-CO-NR10-Q L21: Q-CO(O)x-Q δ $\mathsf{L}_{22} \colon \mathsf{Q}\text{-}\mathsf{CH}_2\text{-}\mathsf{N}[\mathsf{CH}(\mathsf{CH}_3)_2]\text{-}(\mathsf{CH}_2)_r\text{-}\mathsf{CHOHCH}_2\mathsf{CHOHCH}_2\text{-}\mathsf{CO}(\mathsf{O})_{\mathsf{X}}\text{-}\mathsf{Q}$ L28: Q-(CH2)9-Q L20: Q-NR10-Q Les: Q-O-Q L26: Q-(CH2)s-CHCO2R10-SOQ 10

> L_{27} : Q-CH-Q NH-O-R²¹ worin R²¹ = Benzyl- oder R¹⁰ L₂₈: -CH [C(CH₃)₂]_x-T CH-

worin

75

20

25

30

50

55

. T = O oder S 0, 1 x = 1, 2 und q = 1 - 5, bevorzugt 3 r = 1 - 5, bevorzugt 2 s = 1 - 5, bevorzugt 1 bedeuten, und R^{10} die oben genannte Bedeutung besitzt

(= H, niederer Alykirest oder Q).

- Verbindungen der Formel I nach einem oder mehreren der Ansprüche 1 7, dadurch gekennzeichnet, daß die lipophile Komponente X ein Rest aus der folgenden Gruppe ist:
- 35 X_{1.1} Cholesterol
 - X_{1,2} Cholestanol
 - X_{1.3} Cholsäure
 - X_{1,4} Desoxycholsäure
 - X_{1.5} Ursodesoxycholsāure
- 40 X_{1.6} Chenodesoxycholsäure.
 - Verbindungen der Formel I nach einem oder mehreren der Ansprüche 1 7, dadurch gekennzeichnet, daß die lipophile Komponente X ein Rest aus der folgenden Gruppe ist:
 - X21 CH8-(CH2)1-Q
- 45 X22 Q-C(CH3)3
 - X23 Q-CH(CH2)d
 - X24 Q-C=C-(CH2)5-CH8
 - X_{2.5} R¹⁰-CO₂-(CH₂)_z-Q
 - d = 4 - 6
 - 3 24, vorz. 6 18 t =
 - 0 oder 1.
 - 10. Verfahren zur Herstellung einer Verbindung der Formel I gemäß der Definition in einem oder mehreren der Ansprüche 1 - 9, dadurch gekennzeichnet, daß man die Einzelkomponenten A und X in freier oder geschützter Form oder auch in Form reaktiver Derivate mit einem reaktiven Derivat von Lumsetzt und anschließend gegebenenfall vorhandene Schutzgruppen abspaltet.
 - 11. V rwendung der Verbindungen der Formel I gemäß der Definition in einem oder mehreren der

Ansprüche 1 - 9 als Antioxidantien.

- 12. Ausführungsform gemäß Anspruch 11, dadurch gekennzelchnet, daß die Verbindungen als Antioxidantien in der Lebensmittel- und Kosmetikindustrie verwendet werden.
- 13. Verwendung der Verbindungen der Formel I gemäß der Definition in einem oder mehreren der Ansprüche 1 9 als Heilmittel, vorzugsweise für Krankhelten, bei denen Bioradikale involviert sind.
- Ausführungsform gemäß Anspruch 13, dadurch gekennzeichnet, daß die Verbindungen als Heilmittel für
 Herz-Kreislauf- und Gefäßkrankheiten verwendet werden.
 - 15. Arzneimittel, gekennzeichnet durch einen Gehalt an einer wirksamen Menge einer Verbindung der Formel I gemäß der Definition in einem oder mehreren der Ansprüche 1 9, neben üblichen pharmakologisch verträglichen Träger- und/oder Zusatzstoffen.

Patentansprüche für folgende Vertragsstaaten: ES, GR,

- 1. Verfahren zur Herstellung einer Verbindungen der allgemeinen Formel I
- 20 $(A)_a(L)(X)_{a}$. (I).

worin a, a', A, L und X die folgende Bedeutung besitzen: a und a' = unabhängig voneinander die Zahlen 1 oder 2, A = antioxidative Komponente aus der Gruppe

A₁ - chromanteilstruktur des Vitamins E

35

45

50

5

15

25

30

worin Q in dieser und allen folgenden Formeln eine freie kovalente Einfachbindungs-Valenz darstellt, Az - alkylsubstitulerter Mono-, Di- oder Tri-Phenol-Rest

40

worln

m = 1 oder 2, n = 1 oder 2 und m+n = 3 oder 4,

R1 = Alkylrest und/oder Alkoxyrest

und die Gesamtzahl der C-Atome des Alkyl- bzw. Alkoxyrestes bzw. der Alkyl- und Alkoxyreste = maximal 8;

65 A_a - Reductonrest

worin

5

10

15

20

30

40

50

55

R² = H oder niederer Alkylrest (vorzugsweise C₁ -C₄) und

R3 = H, COOR4, CH2OR4

 R^4 = H oder niederer Alkylrest (vorzugsweise $C_1 - C_4$)

A₄ - 1,2-Dithiacycloalkyl- oder 1,2-Dithiacycloalkenyl-Rest mit 2 - 6, vorzugsweise 2 - 4 C-Atomen Im Ring und die durch Hydrogenierung reduzierte Dithiolform dieser Reste

As - Ascorbinsäure(-Derivat)-Rest

25 worln

E = 0, S oder NR⁹

Rs = H, EH, EQ oder Q

 $R^6 = H_1 EH_1 EQ-(L-X_1)$ oder $Q-(L-X_1)$

R7 = H, EH, EQ, Q oder einer der unter A2 und A3 genannten Reste,

 $R^8 = H$, EH, Q-(L-X₁) oder -PO(OR⁹)₂,

R⁹ = H, niederer Alkylrest (vorzugsweise C₁-C₄) oder Q,

und nur 1 oder 2 - bevorzugt 1 - der Reste R5 -R8 gleich Q sind bzw. Q enthalten,

L = Brückenglied und

X₁ = lipophile Komponeten wie nachstehend definiert;

ss L = Brückenglied,

bestehend aus einem oder mehreren der Bausteine

$$R^{10}$$
 O OR^{10} C^{10} C^{10

46
 -0- , -s- , $-NR^{10}$ - und $-P$ - O_R^{10}

worin

 R^{10} , R^{11} , $R^{12} = H$, niederer Alkylrest (vorzugsweise $C_1 - C_4$) oder Q,

 R^{11} darüber hinaus auch noch - CO_aR^{10} sein kann (mit a = 1 oder 2),

und 2 Reste der Art -O-, -S- und/oder -NR¹º- durch mindestens 1 C- oder P-Atom voneinander getrennt sind:

X = lipophile Komponente aus der Gruppe

X₁ - Cholanderivat-Reste

10

15

20

5

worln

R¹³ = sec. C₄H₂ (= Cholestan), R¹¹ (s. bei L) oder Q.

 $E = O, S, NR^{10} (R^{10} s. bei L), (\alpha, \beta-OH H) oder (\alpha, \beta-Q, H)$

und in 4,5- bzw. 5,6- bzw. 7,8-Position eine Doppelbindung vorhanden sein kann, und

X2 - Alkyl- oder Cycloalkylrest oder

Fettsäurederivat-Rest mit bis zu 24 C-Atomen,

dadurch gekennzeichnet, daß man die Einzelkomponenten A und X in freier oder geschützter Form oder auch in Form reaktiver Derivate mit einem reaktiven Derivat von L umsetzt und anschließend gegebenenfalls vorhandene Schutzgruppen abspaltet.

2. Verfahren gemäß Anspruch 1, dadurch gekennzelchnet, daß die Komponente A4 ein Rest der folgenden Formein in der Dithiaform (gemäß den Formein) oder in der durch Hydrogenierung reduzierten Dithiolform ist:

25

35

30

A4.2

R¹⁵
C
CH₂

45

40

worin

 R^{14} = H oder niederer Alkytrest (vorzugsweise C_1-C_4), und

 $R^{15} = (CH_2)_b-Q$

b = 0 - 12, vorzugsweise 0 - 4,

60

A_{4.3}

H
C
C
S
CH-R¹
S
CH-R¹

10

6

worin

20

A4.4 Dithiothreit- oder Dithioerythrit-Teilstruktur

25

30

36

40

45

worin

R19 die gleiche Bedeutung wie bei 4.3 besitzt,

^A4.

$$S - CH - C - OR^{20}$$

 $S - CH - (CH2)0 oder 1 - Q$

worin

 H^{20} = H oder niederer Alkylrest (vorzugsweise C_1-C_4) und Y = H_2 oder O ist, hergestellt wird,

3. Verfahren gemäß Anspruch 2, dadurch gekennzeichnet, daß die Komponente

A_{4.2}
50 R¹⁴ = H und
R¹⁵ = -(CH₂)₄-Q
(= Decarboxy-Liponsäure- bzw. Dihydroliponsäure-Teilstruktur) hergestellt wird.

Verfahren gemäß Anspruch 1, dadurch gekennzeichnet, daß man den Strukturrest As,
 wobei R⁷ für

steht, herstellt.

5. Verfahren gemäß Anspruch 1, dadurch gekennzeichnet, daß man den Strukturrest As, wobei E = O R⁵, R⁶ und R⁷ = unabhängig voneinander = OH oder OQ, R⁸ = H oder Q,

wobei nur 1 oder 2 der Reste R5 - R5 Q enthalten bzw. gleich Q ist (= Ascorbinsäurerest), herstellt.

 Verfahren gemäß einem oder mehreren der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß man das Brückenglied L mit folgender allgemeiner Formel:

$$L = M_{p}\{[-(CH_{2})_{w}-(G_{1})_{x}-(G_{2})]_{v}-(CH_{2})_{y}-(G_{3})_{x}-(G_{4})_{p+1}\}M_{p}$$

world

p, x und z unabhängig voneinander = 0 oder 1, v, u und y unabhängig voneinander = 0 - 4, und v+w+y+z=0-10,

25

30

35

45

δ0

5

10

15

20

 G_1 , G_2 , G_3 und G_4 unabhängig voneinander = -0-, -S-, -NR¹⁰-,

- wobel R¹º die vorher genannte Bedeutung besitzt (= H, niederer Alkylrest oder Q) und
 2 der Reste -O-, -S-, und/oder -NR¹º- durch mindestens 1 C-Atom voneinander getrennt sind, herstellt.
 - Verfahren nach einem oder mehreren der Ansprüche 1 bis dadurch gekennzeichnet, daß man das Brückenglied L mit einem Rest aus der Gruppe;

L1: Q-O-(CH2),-O-CO-Q

L2: Q-CO-NH-(CH2)q-NH-CO-Q

La : Q-O-(CH2-),-NH-CO-Q

La: Q-(CH2-),(-O-)b-Q

Ls: Q-(CH2-)5-O-(CH2-)6-O-Q

L₆: Q-(CH₂-)₈-NH-(CH₂-)₆-O-Q

L7: Q-CO-NH-(CH2-CH2),-O-Q

 $L_8: Q-O-(CH_2-)_s-CHOH-(CH_2-)_s-Q-(CH_2-)_s-Q$

L10: Q-(CH2-)q-Q L11: Q-(CH2-)9-CHCO2R10-CHOH-Q

L12: Q-CH = C(CO2R10)-CO-Q L18: Q-CO-NH-(CH2-)4-NH-CO-Q

L14: Q-(CH2-)5-O-(CH2-)7-O-5

L16: [Q-(CH2-)2-O-(CH2)82CH-Q

L₁₇; Q-O-(CH₂-)_s-CHOH-O-(CH₂-)_s-Q

L₁₈: Q-O-(CH₂-)_s-CH(CH₂-OH)-O-CO-Q 15

L₁₅: Q-O-(CH₂-)_s-CHOH-(CH₂-)_s-O-CO-O

L20: Q-CO-NR10-Q

L21; Q-CO(O)x-Q

L22: Q-CH2-N[CH(CH2)2]-(CH2),-CHOHCH2CHOHCH2-CO(0),-Q

L23; Q-(CH2),-Q 20

10

26

30

40

L24: Q-(NR10-Q

L25: Q-Q-Q

L25: Q-(CH2)5-CHCO2R10-SOQ

L27: Q-CH-Q

NH-O-R21

worln

H21 = Benzyl- oder R10

$$L_{28}: -CH \begin{bmatrix} C(CH_3)_2 \\ CH_2 \end{bmatrix}_{a} - T$$
 CH-

35 worin

O oder S T =

0, 1 χ=

1, 2 und

q = 1 - 5, bevorzugt 3

r = 1 - 5, bevorzugt 2

s = 1 - 5, bevorzugt 1 bedeuten,

und R10 die oben genannte Bedeutung besitzt (= H, niederer Alykirest oder Q), herstellt.

Verfahren nach einem oder mehreren der Ansprüche 1 bis 7,

dadurch gekennzeichnet, daß man die lipophile Komponente X mit einem Rest aus der folgenden 45 Gruppe:

X_{1.1} Cholesteroi

X_{1.2} Cholestanol

X_{1,3} Choisăure

X_{1,4} Desoxycholsäure 50

X_{1.5} Ursodesoxycholsäure

X_{1.6} Chenodesoxycholsaure, herstellt.

9. Verfahren nach einem oder mehreren der Ansprüche 1 bis 7, dadurch gekennzeichnet, daß man die lipophile Komponente X mit einem Rest aus der folgenden Gruppe: 55

Xe1 CH2-(CH2),-Q

X_{2,2} Q-C(CH₈)₃

X22 Q-CH(CH2)d

 $X_{2,4}$ Q-C=C-(CH₂)₅-CH₃ $X_{2,5}$ R¹⁰-CO₂-(CH₂)_z-Q d = 4 - 8 t = 3 - 24, vorg. 6 - 18 z = 0 oder 1, herstellt.

- Verwendung der Verbindungen der Formel I gemäß der Definition in einem oder mehreren der Ansprüche 1 - 9 als Antioxidantien.
- 11. Verwendung der Verbindung der Formel i gemäß Anspruch 10, als Antioxidantien in der Lebensmittelund Kosmetikindustrie.
 - 12. Verwendung der Verbindungen der Formel I gemäß der Defintion in einem oder mehreren der Ansprüche 1 9 zur Herstellung eines Arzneimittels zur Behandlung von Krankheiten, bei denen Bioradikale involviert sind.
 - 13. Verwendung der Verbindungen der Formel I, gemäß Anspruch 12 zur Herstellung eines Arzneimittels zur Behandlung von Herz-Kreislauf- und Gefäßkrankheiten.
- 14. Verfahren zur Herstellung eines Arzneimittels, dadurch gekennzeichnet, daß man mindestens eine Verbindung der Formel I gemäß der Definition in einem oder mehreren der Ansprüche 1 9, neben üblichen pharmakologisch verträglichen Träger- und/oder Zusatzstoffen in eine geeignete Darreichungsform bringt.

25

5

15

30

36

40

46

5D

Europäisches Patentamt
European Patent Office
Office européen des brevets

① Veröffentlichungsnummer: 0 436 936 A3

ন্ত

EUROPÄISCHE PATENTANMELDUNG

- ② Anmeldenummer: 90125641.2
- (2) Anmeldetag: 28.12.90

(a) Int. CI.5: CO7J 41/00, A61K 31/00, C07J 9/00, C07J 33/00, C07J 31/00, C07J 17/00, C07F 9/655, C07F 9/6558, C07D 311/66, C07D 339/00, C07D 319/06, C07D 339/08

- Priorität: 09.01-90 DE 4000397
- Veröffentlichungstag der Anmeldung: 17.07.91 Patentblatt 91/29
- Benannte Vertragsstaaten:
 AT BE CH DE DK ES FR GB GR IT LI LU NL SE
- Weröffentlichungstag des später veröffentlichten Recherchenberichts; 27.04.94 Patentblatt 94/17
- Anmelder: HOECHST AKTIENGESELLSCHAFT

D-65926 Frankfurt(DE)

- ② Erfinder: Welthmann, Klaus-Ulrich, Dr.
 Am Domherrenwald 18
 W-6238 Hofhelm am Taunus(DE)
 Erfinder: Wess, Günther, Dr.
 Langenselbolder Weg 35
 W-6455 Erlensee(DE)
 Erfinder: Selfige, Dirk, Dr.
 Kosthelmer Landstrasse 11
 W-6502 Wainz(DE)
- (S) Lipidselektive Antioxidantien sowie deren Hersteilung und Verwendung.
- Lipidselektive Antioxidantien der allgemeinen Formel I

 $(A)_a(L)(X)_{a'}$ (I).

worin

A = antioxidative Komponente,

L = Brückenglied,

X = lipophile Komponente

a und a' = unabhängig voneinander die Zah-

len 1 oder 2.

Die Verbindungen werden verwendet zum Schutz von lipidhaltigen Substanzen gegen Oxidation sowie In Arzneimitteln zur Prophylaxe und Therapie von Krankheiten, bei denen Bioradikale involviert sind, insbesondere von Herz-Kreislauf- und Gefäßkrankheiten.

ip o 436 936 A3

		ge dokumente		
cinegrate2	Kowanickmung der Dolum der mußgehi	ents mit Angele, soweit erforderlich, ichen Teile	Botrifft Austruck	RIASSIFICATION DEA ANMELDUNG (Lot.CLS)
x	EP-A-0 339 486 (TA LTD) * das ganze Dokume	KEDA CHEMICAL INDUSTRIE	1,5-8, 10,11, 13-15	C07J41/00 A61K31/00 C07J9/00 C07J33/00
K	LIPIDS Bd. 24, Nr. 1 , 19: Seiten 56 - 60 C. SUARNA ET AL 'E' The Oxidation of TI Compound 2,2,5,7,8-Pentametl das ganze Dokume	ffects of Alcohols on he Vitamin E Model nyl-6-Chromanol	1,6-8,	C07J31/00 C07J17/00 C07F9/655 C07F9/6558 C07D311/66 C07D339/00 C07D319/06 C07D339/08
Y	US Seiten 326 - 330 T. TAKAGI ET AL 'Ar	ctober 1980 , CHAMPAIGN		
	<pre>P Seite 328; Tabell P Seite 329; Tabell</pre>	Esters of Caffeic Acid le III * le IV *		ENCHISPICHIERTE (M. C.S) CO7J A61K CO7D
Y	Milk Powder During	nbus, Ohio, US; i, i, i, i, i, i, i, ivor Changes in Whole Storage. II. The mation of Volatile Fat and Other Volatile ; ; i i i i i i i i i i i i i i i i i	1,6-8, 10-15	C07F
Der voi	nicecude Recherchenhericht wur	-/ te for plie Patestonspritch: crisesti		
	B-C-returned	Absolution & Bodards	ــــــــــــــــــــــــــــــــــــــ	Proces
	DEN HAAG	1. März 1994	Hat	chorn, P
X: von H: von Dedo A: tech O: pich	ATEGORIE DER GENANNTEN I bestreierer Bedeutung allein betrach betreiter Bedeutung im Verhindung von Veröffentlichung imselben Ente nichtliche Offenharung eschriftliche Offenharung	tet Brown Present tet met dec Ann gerie D: in der Annece gerie L: mas medern Cr	liselen magafilikasa) didelminin valtifim sagafilikasa De	graecos appropriesa po

IPO PORM MEI CLUZ (POLOTI)

	GEBÜHRENPFLICHTIGE PATENTANSPRÜCHE	_
		_
Dig ve	varliegende europálacho Patentanmoldung enthiait bol ihrer Enreichting mehr ats zahn Patentansprächa.	
	Allo Anspruchagebühren wurden innerhalb der vorgaschriebanan Frist entrichtet. Der vorliegends ouropülsche Recherchenbarkcht burde für alle Patemansprüche erstellt.	
[Nur ein Teil der Anspruchsgebühren wurde Innerhalt der vergeschriebenen Frist entrichtet. Der verliegende auropälache Recherchenbarkent wurde für die orsten zehn sowie für jene Patantamsprüche erstellt für die Anspruchsgebühren anniehtet wurden.	
	កដីការ៉ាន់កាំ Patantanaprüche:	
C	Koho der Anstruchsgebühren wurde innerheib der vorgeschriebenan Frist antrichtet. Der vorliegende eure- pnische Rocherchanbericht wurde ittr die ersten zehn Pasentensprüche crateat.	
	MANGELNDE EINHEITLICHKEIT DER ERFINDUNG	1
Nach	Auflassung dar Rocherchenabteilung ontspricht die verlagende europalische Potentanmeldung nicht den Anforde-	1
rungei namic	n an die Einheitikrikeit der Erfindung; sie onthält mehrore Erfindungen oder Gruppen von Erfindungen.	I
	Siehe Blatt -B-	
	Allo workeren Recharchongobühren wurden innerhalb der gesetzten Frist entrichtet. Der vorliegende gura- päische Recharchonbericht wurde für alle Patentansprüche erstellt.	
X	Nur ein Teil der weiteren Recherchangobühren wurde innerhalb der gedelzten Friet entrichtet. Der verbogende suropälache Rechorchenbericht wurde für die Teile der Anmeldung orstellt. die alch auf Erfändungen beziehen. Kir die Rechorchengebühren entrichtet worden eind.	
	nämilch Palentansprüche: Gruppen 2,3,5 Kaine der weiteren Recherchengebühren ausde innerhalb der gesotzten Frist omrichtet. Der vorßegende ausopäische Recherchenbericht wurde für die Talle der Anmeldung enstellt, die sich auf die zuerst in den Patentansprüchen erwährte Erlindung beziehen.	

CHEMICAL ABSTRACTS, vol. 73, no. 3, 20. Juli 1970, Columbus, Ohio, US; abstract no. 15129, K. SUGA ET AL 'Cholesterol Derivatives' Seite 393; Spalte 2;	Sertegorie	Karanichanog ém Dah	IGE DOKUMENTE	Betriit Armorusia	MASSIFINATION DET ANMITLDUNG (Int.CLS)
10. April 1989, Columbus, Ohio, US; abstract no. 128615, H. SCHOLICH ET AL 'Antioxidant Activity of Dihydrolipoate against Microsomal Lipid Peroxidation and its Dependence on alpha-Tocopherol' Seite 76; Spalte 2; "Zusammenfassung "& BIOCHIM. BIOPHYS. ACTA Bd. 1001, Nr. 3, 1989 Seiten 256 - 261 Y CHEMICAL ABSTRACTS, vol. 110, no. 25, 19. Juni 1989, Columbus, Ohio, US; abstract no. 224834, E. ROLDAN ET AL 'Fundamentals and Applications of the Antioxidative Properties of Thioctic Acid' Seite 2; Spalte 1; "Zusammenfassung "& MEDICINA Bd. 48, Nr. 5 , 1988 , BUENOS AIRES, ARGENTINA Seiten 525 - 529 MO-A-80 02027 (Z-L LIMITED PARTNERSHIP) "das ganze Dokument " -/ Der vertiepasce Rentwick-aboritats wurdt für olle Protestonsproche eratelit	A	CHEMICAL ABSTRACT 20. Juli 1970, Co abstract no. 1512 K. SUGA ET AL 'Ch Seite 393 ;Spalte " Zusammenfassung	S, vol. 73, no. 3, lumbus, Ohio, US; 9, olesterol Derivatives' 2;		
CHEMICAL ABSTRACTS, vol. 110, no. 25, 19. Juni 1989, Columbus, Ohio, US; abstract no. 224834, E. ROLDAN ET AL 'Fundamentals and Applications of the Antioxidative Properties of Thioctic Acid' Seite 2; Spalte 1; Zusammenfassung & MEDICINA Bd. 48, Nr. 5, 1988, BUENOS AIRES, ARGENTINA Seiten 525 - 529 A WO-A-80 02027 (Z-L LIMITED PARTNERSHIP) as ganze Dokument & -/	Y	10. April 1989, C abstract no. 1286 H. SCHOLICH ET AL Dihydrolipoata ag Peroxidation and alpha-Tocopherol' Seite 76 ;Spalte Zusammenfassung & BIOCHIM. BIOPHY Bd. 1001, Nr. 3,	olumbus, Ohio, US; 15, 'Antioxidant Activity of ainst Microsomal Lipid its Dependence on 2; S. ACTA	10-15	
Dr verliegests Resourch aborish were für alls Potentagerücks erstellt	Y	19. Juni 1989, Co abstract no. 2248 E. ROLDAN ET AL ' Applications of t Properties of Thi Seite 2 ;Spalte 1 Zusammenfassung & MEDICINA Bd. 48, Nr. 5 , 1 ARGENTINA	lumbus, Ohio, US; 34, Fundamentals and he Antioxidative octic Acid'		ENCHENCHERTE SACHGREETE (SECLS)
Der vortiesende Kanderchendericht wurde für alls Pedantansprücks arnhelb	А			1,11	
		dinasta Barbarahar karinta T			
MACHINE MACHIN MACHINE MACHINE MACHINE MACHINE MACHINE MACHINE MACHINE MACHINE	Tritt All			1	Sec-4-
DEN HAAG \ \ 1. März 1994 \ Watchorn, P			.		

APD PORM 1500 OLEH (PC:ICM)

<sup>Y: was houselver bedeuting in Verbinding mit einer materen Verbfichtlichung derselber Kategorio
A: technologischer Hintergrand
O: alchechritische Offenbrung
P: Zeischellstrahe</sup>

D : in der Anmeidung ungeführtes Detument L : mis andern Gründen ungeführtes Detumert

A: Mitglind der gleichte Passanianille, übereinsterungseles Dettyment

Europäischen EUROPÄISCHER RECHERCHENBERICHT

Number der Amerikans EP 90 12 5641

		E DOKUMENTE		+	
irogata?	Commission of Defining	ente meit Augusto, conscit criorduri han Toda	inh, Bou		NI ASSIFIKATION DER ANMELDUNG (belcls)
A	US-A-4 232 122 (F. ☆ das ganze Dokumen	H. ZILLIKEN)	1,11		
A	US-A-4 157 984 (F. ≈ das ganze Dokumen	W. ZILLIKEN)	1,11		
A	STEROIDS Bd. 51, Nr. 5/6 , 1 Seiten 465 - 469 G. AUZOU ET AL 'Syn Fluorescent Spirola Determination of Th Aldosterone Receptor	thesis of New ctone Derivatives: eir Affinities for rs'	US 1		
A	US-A-3 910 888 (J. ™ das ganze Dokumen		1		
					DECHERCHEURIE SACISCEIDETE (ISLOLS)
Der v	orlingual Replication with with	de für alla Prinstamprödict erst	rege		
	Endadorii I	Absolution & Bod.	arts		Broco .
	DEN HAAG	1. März 199			chorn, P
Y: V0	EATECOREE DES CENANTEN a besseziere Bedeuteng allele betree a besseziere Bedeuteng in Verbirdur deren Veröffendlichung Gerselben Ein	og mit claur D: in der L: unn ce	i Phichelicani Ican Anaschichte Anaschiene angel Ber Greeken angel	writte brist D	ohumost Dehmost
O: 14	dandogischer Misscrefund ichtschriftliche Officharung Alschealternius	Δ: Mitel Docu	ind der gloden Pr mont	a-nefer	io, the the steemed is

MANGELNDE EINHEITLICHKEIT DER ERFINDUNG

Nech Auffabung der Rechtschnappostung erstatten die vorliegende europaismo Psechlänmeldung necht ach Ameriterungen an die Eintheitlichtisch der Erfindung; sie annah mahrere Erfindungen oder Gruppen von Eribidungen.

- 1. Patentanagrüche: 1,4-3,10-15 (alla teilweise). Sterbidverbindungen, die mit Ascorbinsäure oder ihren Derivaten derivatisiert sind. Ein Verfahren zu deren Horstellung sowie ihre Verwendung als Antioxidans und pharmazeutische Präparate davon.
- 2. Patentansprüche: 1,6-3,10-15 (alle teilweise). Steroidverbindungen, die mit Vitmain E derivatiziont eind. Ein Verfahren zu deren Herstellung sowie ihre Verwendung als Antickidens und pharmaszutische Präparate davon.
- 3. Patentansprüche: 1,6-3,10-15 (alle teilweise) Steroidvorbindungen, die mit einem Phenylrest, der 3 der 4 andere Substituenten trägt, derivatisiert sind. Ein Verfahren zu deren Herstellung sowie ihre Verwendung als Antioxidans und pharmazeutische Präparate davon.
- 4. Patentansprüche: 1,6-3,10-15 (alle teilweise)
 Staroidvergindungen, die mit einem Reduktonrest
 derivatisiert aind. Ein Verfahren zu deren
 Herstellung sowie ihre Verwendung als
 Antioxidans und pharmaieutische Präparate davon.
- 5. Patentansprüche: 1-3,4-8,10-15 (alle teilweise). Steroidverbindungen, die mit einem 1,2 dithiaheterozyklischen Rest oder die gurch Hydrogenierung reduzierte Form dieses Rest derivatisiert sind. Ein Vorfahren zu deren Herstellung sowie ihre Verwendung als Antioxidens und pharmazeutische Präparate davon.
- 6. Patentansprüche: 1-7,10-15 (alle teilweisa)
 9 (insgesamt)
 Fettsäuren, Alkyl oder Zykloalkylvarbindungen, die mit ainer Antiomidansverbindung derivatismert sind.
 Ein Verfahren zu deren Horstellung sowie deren Verwendung als Antioxidans und pharmazeutische Präparate davon.