Digital Signal Processing for Music

Part 11: Discretization 2—Quantization

alexander lerch

sampling and quantization introduction

digital signals can only be represented with a limited number of values

- time discretization: sampling
- amplitude discretization: quantization

sampling and quantization introduction

digital signals can only be represented with a limited number of values

 \Rightarrow

- time discretization: sampling
- amplitude discretization: quantization

sampling and quantization quantization introduction

Georgia Center for Music Tech Technology

quantizer:

continuous \mapsto discrete (pre-defined set of allowed values)

Georgia Center for Music Tech Technology

quantizer characteristic curve:

- plots output amplitude over input amplitude
- given even number of quantization steps, characteristic curve can be either
 - symmetric, or
 - include 0

sampling and quantization basic quantization properties

quantization fundamentals

- quantization is non-linear: signal is distorted
- quantization is irreversible: signal cannot be perfectly restored

sampling and quantization quantization: word length & number of steps

Given a number of quantization steps $\mathcal{M}=16$ what is the required word length (bits)

sampling and quantization quantization: word length & number of steps

zation

Georgia Center for Music Tech (1 Technology Calage of Design

Given a number of quantization steps $\mathcal{M}=16$ what is the required word length (bits)

$$\Rightarrow w = \log_2(16) = 4 \text{ bit}$$

$$w = \log_2(\mathcal{M})$$

 $\mathcal{M} = 2^w$

sampling and quantization quantization: word length examples

W	$\mathcal{M}=2^w$
1	2
2	4
4	16
8	256
12	4096
16	65536
20	1048576
24	16777216

sampling and quantization scaling, ranges, and words

Georgia Center for Music Tech Technology

values are encoded and interpretation is up to the user:

- word can be translated to integer \Rightarrow [-8...7]
- word can be scaled to range of $[-1...1 1/2^{\mathcal{M}-1}]$
 - standard for floating point systems
 - -1/1 means full scale
 - internal representation independent of quantization word length

sampling and quantization quantization error: definition

sampling and quantization quantization error: max. amplitude

What is the maximum amplitude of the quantization error

sampling and quantization quantization error: max. amplitude

What is the maximum amplitude of the quantization error

sampling and quantization quantization error: max. amplitude

Georgia Center for Music Tech Machinology

What is the maximum amplitude of the quantization error

$$|q(i)| \leq \frac{\Delta}{2}$$

Georgia Center for Music Tech Technology

What is the pdf of the quantization error

What is the pdf of the quantization error

assuming $\Delta \ll max(|x(i)|)$

What is the pdf of the quantization error

assuming $\Delta \ll max(|x(i)|)$

it can be shown that the pdf of the quantization error depends (without derivation)

- on the variance of the input signal in relation to the step size
- on the **pdf of the input** signal
- ightarrow will be uniform (and white) for large values of $\frac{\sigma_{\chi}}{\Delta}$

it can be shown that the pdf of the quantization error depends (without derivation)

- on the variance of the input signal in relation to the step size
- on the **pdf of the input** signal
- ightarrow will be uniform (and white) for large values of $\frac{\sigma_X}{\Delta}$

Figure 2.16 (a) PDF of quantization error for different standard deviations of a Gaussian PDF input. (b) Variance of quantization error for different standard deviations of a Gaussian PDF input.

Georgia Center for Music Tech II Technology

how to compute the power $W_{\rm O}$ of the quantization error

how to compute the power $W_{\rm Q}$ of the quantization error

$$W_{\rm Q} = \int_{-\Delta/2}^{\Delta/2} q^2 \cdot \underbrace{p_{\rm Q}(q)}_{1/\Delta} dq$$

how to compute the power $W_{\rm Q}$ of the quantization error

$$W_{Q} = \int_{-\Delta/2}^{\Delta/2} q^{2} \cdot \underbrace{p_{Q}(q)}_{1/\Delta} dq$$
$$= \frac{1}{\Delta} \int_{-\Delta/2}^{\Delta/2} q^{2} dq$$

how to compute the power $W_{\rm Q}$ of the quantization error

$$W_{Q} = \int_{-\Delta/2}^{\Delta/2} q^{2} \cdot \underbrace{p_{Q}(q)}_{1/\Delta} dq$$

$$= \frac{1}{\Delta} \int_{-\Delta/2}^{\Delta/2} q^{2} dq$$

$$= \frac{1}{\Delta} \left[\frac{1}{3} q^{3} \right]_{-\Delta/2}^{\Delta/2}$$

how to compute the power W_{Q} of the quantization error

$$W_{Q} = \int_{-\Delta/2}^{\Delta/2} q^{2} \cdot \underbrace{p_{Q}(q)}_{1/\Delta} dq$$

$$= \frac{1}{\Delta} \int_{-\Delta/2}^{\Delta/2} q^{2} dq$$

$$= \frac{1}{\Delta} \left[\frac{1}{3} q^{3} \right]_{-\Delta/2}^{\Delta/2}$$

$$= \frac{1}{3\Delta} \left(\frac{\Delta^{3}}{8} + \frac{\Delta^{3}}{8} \right)$$

how to compute the power W_{Q} of the quantization error

$$W_{Q} = \int_{-\Delta/2}^{\Delta/2} q^{2} \cdot \underbrace{p_{Q}(q)}_{1/\Delta} dq$$

$$= \frac{1}{\Delta} \int_{-\Delta/2}^{\Delta/2} q^{2} dq$$

$$= \frac{1}{\Delta} \left[\frac{1}{3} q^{3} \right]_{-\Delta/2}^{\Delta/2}$$

$$= \frac{1}{3\Delta} \left(\frac{\Delta^{3}}{8} + \frac{\Delta^{3}}{8} \right)$$

$$= \frac{\Delta^{2}}{12}$$

Georgia Center for Music Tech | Technology

quantization error of a full-scale sinusoidal (2,4,8,12 bits)

intro overview wordlength error **audio** SNR clipping summary ○○ ○○ ○○ ○○ ○○ ○

sampling and quantization quantization:

W	$x_{\mathrm{Q,sine}}(i)$	$q_{ m sine}(i)$	$x_{\mathrm{Q,speech}}(i)$	$q_{ m speech}(i)$	$x_{\mathrm{Q,music}}(i)$	$q_{\mathrm{music}}(i)$
16	((◄ »)	())	((((((
12	◄)))	◄)))	(1)	(1)	(1)	(1)
8	()	◄)))	())	(1)	(1))	(1))
6	()	()	())	())	())	(1)
4	())	())	())	())	())	4))
2	(1)	((())	())	(1))	(1)

sampling and quantization quality assessment of a quantizer: SNR

Signal-to-Noise Ratio (SNR):

power of the signal in relation to power of the (quantization) noise

$$SNR' = rac{ ext{signal energy}}{ ext{noise energy}} = rac{W_{ ext{S}}}{W_{ ext{Q}}}$$

often in decibel

$$SNR = 10 \cdot \log_{10} \left(\frac{W_{\rm S}}{W_{\rm Q}} \right) \ [dB$$

- SNR grows by
 - reducing the noise power
 - increasing the signal power

sampling and quantization quality assessment of a quantizer: SNR

Signal-to-Noise Ratio (SNR):

power of the signal in relation to power of the (quantization) noise

$$SNR' = rac{ ext{signal energy}}{ ext{noise energy}} = rac{W_{ ext{S}}}{W_{ ext{Q}}}$$

often in decibel

$$SNR = 10 \cdot \log_{10} \left(\frac{W_{\rm S}}{W_{\rm Q}} \right) [dB]$$

- SNR grows by
 - reducing the noise power
 - increasing the signal power

sampling and quantization quality assessment of a quantizer: SNR

Signal-to-Noise Ratio (SNR):

power of the signal in relation to power of the (quantization) noise

$$SNR' = rac{ ext{signal energy}}{ ext{noise energy}} = rac{W_{ ext{S}}}{W_{ ext{Q}}}$$

often in decibel

$$SNR = 10 \cdot \log_{10} \left(\frac{W_{\rm S}}{W_{\rm Q}} \right) [dB]$$

- SNR grows by
 - reducing the noise power
 - increasing the signal power

$$SNR = 10 \cdot \log_{10} \left(\frac{W_{\mathrm{S}}}{W_{\mathrm{O}}} \right) \ [dB]$$

use:
$$sin^{2}(t) = \frac{1-cos(2t)}{2}$$

$$\mathit{SNR} = 10 \cdot \mathsf{log}_{10} \left(rac{\mathit{W}_{\mathrm{S}}}{\mathit{W}_{\mathrm{Q}}}
ight) \; [\mathit{dB}]$$

use:
$$sin^{2}(t) = \frac{1 - cos(2t)}{2}$$

$$\mathit{SNR} = 10 \cdot \mathsf{log}_{10} \left(rac{W_{\mathrm{S}}}{W_{\mathrm{Q}}}
ight) \; [\mathit{dB}]$$

use:
$$sin^{2}(t) = \frac{1 - cos(2t)}{2}$$

$$W_{
m S} = rac{A^2}{2} \stackrel{
ightarrow}{
m full-scale} \ W_{
m S} = rac{(\Delta \cdot 2^{w-1})^2}{2}$$
 $W_{
m Q} = rac{\Delta^2}{12}$
 $rac{W_{
m S}}{W_{
m Q}} = rac{3}{2} \cdot 2^{2w}$

$$\mathit{SNR} = 10 \cdot \mathsf{log}_{10} \left(rac{\mathit{W}_{\mathrm{S}}}{\mathit{W}_{\mathrm{O}}}
ight) \; [\mathit{dB}]$$

use:
$$sin^{2}(t) = \frac{1-cos(2t)}{2}$$

$$W_{
m S} = rac{A^2}{2} \stackrel{
ightarrow}{
m full-scale} \ W_{
m S} = rac{(\Delta \cdot 2^{w-1})^2}{2}$$
 $W_{
m Q} = rac{\Delta^2}{12}$
 $rac{W_{
m S}}{W_{
m Q}} = rac{3}{2} \cdot 2^{2w}$

$$\mathit{SNR} = w \cdot 20 \log_{10}\left(2\right) + 10 \cdot \log_{10}\left(\frac{3}{2}\right) \, \left[\mathit{dB}\right]$$

Georgia | Center for Music Tech || Technology

derive the SNR for a full-scale square wave

sampling and quantization quantization: SNR 2/3

College of Design

derive the SNR for a full-scale square wave

$$\textit{SNR} = 10 \cdot \mathsf{log}_{10} \left(rac{W_{\mathrm{S}}}{W_{\mathrm{Q}}}
ight) \; [\textit{dB}]$$

$$egin{array}{lcl} W_{
m S} &=& A^2 & \stackrel{\longrightarrow}{\mbox{full-scale}} W_{
m S} = (\Delta \cdot 2^{w-1})^2 \ W_{
m Q} &=& rac{\Delta^2}{12} \end{array}$$

sampling and quantization quantization: SNR 2/3

derive the SNR for a full-scale square wave

$$\mathit{SNR} = 10 \cdot \log_{10} \left(rac{W_{\mathrm{S}}}{W_{\mathrm{O}}}
ight) \; [\mathit{dB}]$$

$$W_{
m S} = A^2 \stackrel{
ightarrow}{ ext{full-scale}} W_{
m S} = (\Delta \cdot 2^{w-1})^2$$
 $W_{
m Q} = \frac{\Delta^2}{12}$
 $\frac{W_{
m S}}{W_{
m Q}} = 3 \cdot 2^{2w}$

sampling and quantization quantization: SNR 2/3

derive the SNR for a full-scale square wave

$$\mathit{SNR} = 10 \cdot \mathsf{log}_{10} \left(rac{\mathit{W}_{\mathrm{S}}}{\mathit{W}_{\mathrm{Q}}}
ight) \; [\mathit{dB}]$$

$$W_{
m S} = A^2 \stackrel{
ightarrow}{ ext{full-scale}} W_{
m S} = (\Delta \cdot 2^{w-1})^2$$
 $W_{
m Q} = \frac{\Delta^2}{12}$
 $\frac{W_{
m S}}{ ext{ = } 3 \cdot 2^{2w}}$

$$SNR = w \cdot 20 \log_{10}(2) + 10 \cdot \log_{10}(3)$$
 [dB]

sampling and quantization quantization: SNR 3/3

Signal-to-Noise Ratio

$$SNR = 6.02 \cdot w + c_{\rm S}$$
 [dB]

- every additional bit adds app. 6 dB SNR
- lacktriangle constant $c_{
 m S}$ depends on signal (scaling and PDF shape)

SNR for different input signal examples

- square wave (full scale): $c_S = 4.77 \, dB$
- sinusoidal wave (full scale): $c_{\rm S} = 1.76 \, {\rm dB}$
- rectangular PDF (full scale): $c_S = 0 \, dB$
- Gaussian PDF (full scale = $4\sigma_g$): $c_S = -7.27 dB$

sampling and quantization quantization: SNR 3/3

Signal-to-Noise Ratio

$$SNR = 6.02 \cdot w + c_{\rm S}$$
 [dB]

- every additional bit adds app. 6 dB SNR
- $lue{}$ constant $c_{
 m S}$ depends on signal (scaling and PDF shape)

SNR for different input signal examples

- square wave (full scale): $c_S = 4.77 \, dB$
- sinusoidal wave (full scale): $c_{\rm S} = 1.76\,{\rm dB}$
- rectangular PDF (full scale): $c_S = 0 \, dB$
- Gaussian PDF (full scale = $4\sigma_g$): $c_S = -7.27 \, dB$

sampling and quantization quantization: word length and SNR

Georgia Center for Music Tech (1 Technology Callege of Design

w	Δ	Мах. Атр	theo. SNR
8 (Int)	± 1	0255	≈48 dB
16 (Int)	± 1	$-32768 \dots 32767$	$pprox\!96\mathrm{dB}$
20 (Int)	± 1	$-524288 \dots 524287$	pprox120 dB
24 (Int)	± 1	$-16777216 \dots 16777215$	pprox144 dB
32 (Float)	$\pm 1.175 \cdot 10^{-38}$	$\pm 3.403 \cdot 10^{1038}$	1529 dB
64 (Float)	$\pm 2.225 \cdot 10^{-308}$	$\pm 1.798 \cdot 10^{10308}$	12318 dB

sampling and quantization quantization: SNR and auditory sensation area

Georgia CenterforMusic Tech∦Technology

so how many bits do we need

sampling and quantization quantization: SNR and auditory sensation area

Georgia Center for Music Tech Technology

so how many bits do we need

intro overview wordlength error audio SNR clipping summary ○○ ○○ ○○ ○○ ○ ○ ○ ○ ○ ○

sampling and quantization quantization: SNR and auditory sensation area

so how many bits do we need

- to cover the whole range of hearing: 20–24 bit
- practically, a lower range is sufficient as the dynamic range of recordings has to be much lower
- in production with many processing and possible requantization steps, high resolution (if possible floating point) is recommended

ntro overview wordlength error audio SNR clipping summar ○○ ○○ ○○ ○○ ○○ ○○ ○○

sampling and quantization quantization: clipping

Georgia Center for Music Tech ∰ Technology

intro overview wordlength error audio SNR clipping summa ○○ ○○ ○○ ○○ ○○ ○○ ○ ○○○○○ ○ ● ○

sampling and quantization quantization: clipping and SNR

full scale:

- absolute maximum before clipping
- usually 1 (in floating point systems)
- marks 0 dbFS

sampling and quantization quantization: summary

Georgia Center for Music Tech || Technology College of Design

quantization is non-linear & irreversible

- information is lost
- error is introduced
- quantization error
 - power is determined by number of bits (wordlength)
 - is approximately white noise (flat spectrum and uncorrelated to signal) when the signal power is much higher than the quantization step size
 - special severe case: clipping
- **SNR** is used to assess quantizer quality
 - depends on both signal power and quant error power (ratio)
 - each additional bit gains 6 dB SNR
 - different signals with identical maximum amplitude yield different SNRs

■ typical word lengths include

- 8 bit: phone
- 16 bit: consumer audio
- 24 bit and higher: production audio

sampling and quantization quantization: summary

- quantization is non-linear & irreversible
 - information is lost
 - error is introduced
- quantization error
 - power is determined by number of bits (wordlength)
 - is approximately white noise (flat spectrum and uncorrelated to signal) when the signal power is much higher than the quantization step size
 - special severe case: clipping
- **SNR** is used to assess quantizer quality
 - depends on both signal power and quant error power (ratio)
 - each additional bit gains 6 dB SNR
 - different signals with identical maximum amplitude yield different SNRs
- typical word lengths include
 - 8 bit: phone
 - 16 bit: consumer audio
 - 24 bit and higher: production audio

sampling and quantization quantization:

- quantization is non-linear & irreversible
 - information is lost
 - error is introduced
- quantization error
 - power is determined by number of bits (wordlength)
 - is approximately white noise (flat spectrum and uncorrelated to signal) when the signal power is much higher than the quantization step size
 - special severe case: clipping
- SNR is used to assess quantizer quality
 - depends on both signal power and quant error power (ratio)
 - each additional bit gains 6 dB SNR
 - different signals with identical maximum amplitude yield different SNRs
- **typical word lengths** include
 - 8 bit: phone
 - 16 bit: consumer audio
 - 24 bit and higher: production audio

sampling and quantization quantization:

- quantization is non-linear & irreversible
 - information is lost
 - error is introduced
- quantization error
 - power is determined by number of bits (wordlength)
 - is approximately white noise (flat spectrum and uncorrelated to signal) when the signal power is much higher than the quantization step size
 - special severe case: clipping
- SNR is used to assess quantizer quality
 - depends on both signal power and quant error power (ratio)
 - each additional bit gains 6 dB SNR
 - different signals with identical maximum amplitude yield different SNRs
- typical word lengths include
 - 8 bit: phone
 - 16 bit: consumer audio
 - 24 bit and higher: production audio