Tools for perturbation theory in MCNP6

Jeffrey Seifried Postdoctoral Researcher Department of Nuclear Engineering University of California, Berkeley

Neutronics/Computational Methods Research Group

September, 24, 2013

The MCNP PERT and KPERT cards quantify the linear reactivity response due to perturbations

- You may perturb a cell's ...
 - Material density (e.g., voiding)
 - Material number (e.g., composition, data library, temperature)
- Effects can be binned by ...
 - Nuclear reaction type
 - Energy bin
 - Isotope (KPERT only)
- Individual perturbations can be combined
- Many independent perturbations can be considered at once with a single neutron transport calculation!

The MCNP KPERT cards can efficiently estimate local void coefficients of reactivity

PERT is faster than KPERT, but less accurate

Material density perturbation w/ PERT and KPERT: $\rho_m \times =1.1$

```
Godiva Solid Bare HEU sphere HEU-MET-FAST-001
1 1 4.7984e-02 -1 imp:n=1
2 0
               +1 imp:n=0
1 so 8.7407
kcode 5000 1 50 250
sdef 0 0 0
m1 92234.70c +4.9184e-04 92235.70c +4.4994e-02
   92238.70c +2.4984e-03
kpert1:n cell=1 rho=5.27824e-2
pert2:n cell=1 rho=5.27824e-2 method=2
```

-UC Berkeley

Data library perturbation w/ energy binning: ENDF/B-VII.0→ENDF/B-VI.8

```
Godiva Solid Bare HEU sphere HEU-MET-FAST-001
1 1 4.7984e-02 -1 imp:n=1
2 0
               +1 imp:n=0
1 so 8.7407
kcode 5000 1 50 250
sdef 0 0 0
m1 92234.70c +4.9184e-04 92235.70c +4.4994e-02
   92238.70c +2.4984e-03
m2 92234.62c +4.9184e-04 92235.62c +4.4994e-02
   92238.62c +2.4984e-03
kpert1:n cell=1 mat=2 erg=0 1e-6 0.1 20
         iso=92234 92235 92238
                                          -UC Berkelev
```

Isotopic composition perturbation w/ reaction binning: $N_{Li-7} \times = 0.9$

-UC Berkeley

KSEN estimates k_{eff} sensitivity coefficients

• Sensitivities quantify the relative linear reactivity response due to a relative change in some parameter

$$S_{k,p} \equiv \frac{\partial k}{\partial p} \frac{p}{k} \approx \frac{\delta k}{k} \frac{p}{\delta p}$$

- Parameters can be the (space independent) ...
 - abundance of an isotope
 - cross-section for an isotope for a given reaction at a given energy
- Sensitivity coefficients ...
 - are typically estimated as distributions over space, energy, isotope, region, direction;
 - can be collapsed and used to derive PERT and KPERT estimates

Sensitivity of k_{eff} to number densities and nuclear data

```
Godiva Solid Bare HEU sphere HEU-MET-FAST-001
1 1 4.7984e-02 -1 imp:n=1
2 0
               +1 imp:n=0
1 so 8.7407
kcode 5000 1 50 250
sdef 0 0 0
m1 92234.70c +4.9184e-04 92235.70c +4.4994e-02
   92238.70c +2.4984e-03
ksen1:n xs iso=92234.70c 92235.70c 92238.70c
        rxn=1 2 4 18 102 erg=0 1e-6 1e-3 1 10 20
```

Conclusions

- PERT and KPERT are for perturbations (few Δ 's); KSEN is for sensitivity (many Δ 's)
- With some creativity, perturbation theory can do useful things:
 - Assess coefficients of reactivity
 - Assess the impact of (some) modeling assumptions
 - Optimize position of control worth
 - Propagate nuclear data uncertainties (KSEN)
 - Quantify the impact of impurities upon reactivity (KSEN)
- KPERT and KSEN are only available in MCNP6
- You should switch to MCNP6