Embedded Systems / Eingebettete Systeme

Studiengang Informatik Campus Minden

Matthias König

FH Bielefeld University of Applied Sciences

Beispiel einer Anwendung: Blumentopf

- Intelligenter Blumentopf, hier: "Click and Grow"
 - Feuchtigkeitsmesser
 - Pumpe
 - Chip mit Pflanzenklasse
 - LED-Anzeige
 - Mikrocontroller

[Quelle:http://cdn.shopify.com/s/files/1/0156/0137/products/chili-pepper-smartpot_1024x1024.jpg?v=1375114838]

WIEDERHOLUNG

Hardware in a loop

Beispiel: Einschalten der LED

[Quelle: White, Making Embedded Systems]

```
P2DIR |= (1 << 2); // set to output
P2OUT |= (1 << 2); // turn on
```

MIKROCONTROLLER-PROGRAMMIERUNG AM BEISPIEL DES ATMEGA328P

Am Beispiel des Mikrocontrollers Atmega

- Lesen eines Datenblatts
 - Aufbau des Mikrocontrollers
- Programmierung des Mikrocontrollers
 - Assembler

in aller Kürze

Features

- High Performance, Low Power AVR® 8-Bit Micros
 Advanced RISC Architecture
- 131 Powerful Instructions Most Single Clock Cycle Execution
- 32 x 8 General Purpose Working Re
- Fully Static Operation
- Up to 20 MIPS Throughput at 20 MHz
- On-chip 2-cycle Multiplier
- 4/8/16/32K Bytes of In-System Self-Programmable Flash progam (ATmega48PA/88PA/168PA/328P)
- 256/512/512/1K Bytes EEPROM (ATmega48PA/88PA/168PA/328P)
- 512/1K/1K/2K Bytes Internal SRAM (ATmega48PA/88PA/168PA/328P)
- Write/Erase Cycles: 10.000 Flash/100.000 EEPROM Data retention: 20 years at 85°C/100 years at 25°C
- Optional Boot Code Section with Indep In-System Programming by On-chip Boot Program True Read-While-Write Operation
- Programming Lock for Software Security
- Two 8-bit Timer/Counters with Separate Prescaler and Compare Mode
- Real Time Counter with Separate Oscillator
- 8-channel 10-bit ADC in TQFP and QFN/MLF package
- Temperature Measurement

 6-channel 10-bit ADC in PDIP Package
- Programmable Serial USART
 Master/Slave SPI Serial Interface
- Byte-oriented 2-wire Serial Interface (Philips I²C compatible Programmable Watchdog Timer with Separate On-chip Oscillator
- On-chip Analog Compara
- Interrupt and Wake-up on Pin Change
- Power-on Reset and Programmable Brown-out Detection
- External and Internal Interrunt Source
- Six Sleep Modes: Idle, ADC Noise Reduction, Power-save, Power-down, Standby and Extended Standby
- I/O and Packages
- 23 Programmable I/O Lines
 28-pin PDIP, 32-lead TQFP, 28-pad QFN/MLF and 32-pad QFN/MLF Operating Voltage: - 1.8 - 5.5V for ATmega48PA/88PA/168PA/328F

- -40°C to 85°C
- 0 20 MHz @ 1.8 5.5V
- Low Power Consumption at 1 MHz, 1.8V, 25°C for ATmega48PA/88PA/168PA/328P: - Active Mode: 0.2 mA
- Power-save Mode: 0.75 μA (Including 32 kHz RTC)

8-bit **AVR**® Microcontroller with 4/8/16/32K **Bytes In-System Programmable** Flash

ATmega48PA ATmega88PA ATmega168PA ATmega328P

Datenblatt: 448 Seiten

Datenblatt Atmega: Inhalt

- I. Pin Configuration
- 2. Overview
- 3. Resources
- 4. Data Retention
- 5. About Code Example
- 6. AVR CPU Core
- 7. AVR Memories
- 8. System Clock
- 9. Power Management
- 10. System Control & Reset
- 11.Interrupts

- 12. External Interrupts
- 13.1/O Ports
- 14.8-Bit Timer
- 15.16-Bit Timer
- 16.8-Bit-Timer with PWM
- 17. 16-Bit Timer with PWM
- 18. Serial Peripheral Interface
- 19. USARTO
- 20. USART in SPI Mode
- 21.2-wire Serial Interface
- 22. Analog Comparator

- 23. Analog-to-Digital Converter
- 24. debugWIRE
- 25. Self-Programming the Flash
- 26. Boot Loader Support
- 27. Memory Programming
- 28. Electrical Characteristics
- 29. Typical Characteristics
- 30. Register Summary
- 31. Instruction Set Summary
- 32.-33 Ordering, Packaging, Errata, Revision

Pin Configurations

Figure 1-1. Pinout ATmega48PA/88PA/168PA/328P

Datenblatt Seite 2

PA/88PA/168PA/328P

Pin Configurations

Arduino nutzt
Atmega mit DIP
(dual in-line package)

MLF Top View

C) 7) 6) IT14) CINT13) CINT12) 32 MLF Top View

18) 17) 16) NT14) PCINT13) PCINT12) T11) Datenblatt Seite 2

[Quelle: Atmel, 8-bit AVR Microcontroller]

Blockdiagramm eines ATmegas

Datenblatt Seite 5

Speichergröße

Table 2-1. Memory Size Summary

Device	Flash	EEPROM	RAM	Interrupt Vector Size
ATmega48PA	4K Bytes	256 Bytes	512 Bytes	1 instruction word/vector
ATmega88PA	8K Bytes	512 Bytes	1K Bytes	1 instruction word/vector
ATmega168PA	16K Bytes	512 Bytes	1K Bytes	2 instruction words/vector
ATmega328P	32K Bytes	1K Bytes	2K Bytes	2 instruction words/vector

ATmega Kern

Datenblatt Seite 8

[Quelle: Atmel, 8-bit AVR Microcontroller]

"Wichtigste" Register

- Program Counter PC
- Status Register SREG
- General Purpose Register R0 bis R3 I
- Address Register X,Y,Z (R26-R31)
- Stack Pointer SPH und SPL
- MCU Control Register
- Watchdog Timer Control Register

General Purpose Register

Figure 6-2. AVR CPU General Purpose Working Registers

General Purpose Working Registers

R0	7	0 Addr.	
R2 0x02 0x0D R13 0x0E R14 0x0E R15 0x0F R16 0x10 R17 0x11 R26 0x1A X-register Low Byte R27 0x1B X-register High Byte R28 0x1C Y-register Low Byte R29 0x1D Y-register High Byte R30 0x1E Z-register Low Byte	R0	0x00	
R13	R1	0x01	
R13 0x0D R14 0x0E R15 0x0F R16 0x10 R17 0x11 R26 0x1A X-register Low Byte R27 0x1B X-register High Byte R28 0x1C Y-register Low Byte R29 0x1D Y-register High Byte R30 0x1E Z-register Low Byte	R2	0x02	
R14 0x0E R15 0x0F R16 0x10 R17 0x11 R26 0x1A X-register Low Byte R27 0x1B X-register High Byte R28 0x1C Y-register Low Byte R29 0x1D Y-register High Byte R30 0x1E Z-register Low Byte			
R15 0x0F R16 0x10 R17 0x11 R26 0x1A X-register Low Byte R27 0x1B X-register High Byte R28 0x1C Y-register Low Byte R29 0x1D Y-register High Byte R30 0x1E Z-register Low Byte	R13	0x0D	
R16 0x10 R17 0x11 R26 0x1A X-register Low Byte R27 0x1B X-register High Byte R28 0x1C Y-register Low Byte R29 0x1D Y-register High Byte R30 0x1E Z-register Low Byte	R14	0x0E	
R17 0x11 0x1A X-register Low Byte R26 0x1A X-register Low Byte R27 0x1B X-register High Byte R28 0x1C Y-register Low Byte R29 0x1D Y-register High Byte R30 0x1E Z-register Low Byte	R15	0x0F	
R26 0x1A X-register Low Byte R27 0x1B X-register High Byte R28 0x1C Y-register Low Byte R29 0x1D Y-register High Byte R30 0x1E Z-register Low Byte	R16	0x10	
R26 0x1A X-register Low Byte 0x1B X-register High Byte 0x1C Y-register Low Byte 0x1D Y-register High Byte 0x1D Y-register High Byte 0x1E Z-register Low Byte	R17	0x11	
R27 0x1B X-register High Byte 0x1C Y-register Low Byte 0x1D Y-register High Byte 0x1D Y-register High Byte 0x1D Z-register Low Byte			
R28 0x1C Y-register Low Byte Compared to the second of the	R26	0x1A	X-register Low Byte
R29 0x1D Y-register High Byte 0x1E Z-register Low Byte	R27	0x1B	X-register High Byte
R30 0x1E Z-register Low Byte	R28	0x1C	Y-register Low Byte
	R29	0x1D	Y-register High Byte
R31 0x1F Z-register High Byte	R30	0x1E	Z-register Low Byte
	R31	0x1F	Z-register High Byte

Address-Register

Figure 6-3. The X-, Y-, and Z-registers

Stack Pointer

Bit	15	14	13	12	11	10	9	8	
0x3E (0x5E)	SP15	SP14	SP13	SP12	SP11	SP10	SP9	SP8	SPH
0x3D (0x5D)	SP7	SP6	SP5	SP4	SP3	SP2	SP1	SP0	SPL
	7	6	5	4	3	2	1	0	
Read/Write	R/W								
	R/W								
Initial Value	RAMEND								
	RAMEND								

Status-Register

Bit	7	6	5	4	3	2	1	0	
0x3F (0x5F)	I	T	Н	S	V	N	Z	С	SREG
Read/Write	R/W								
Initial Value	0	0	0	0	0	0	0	0	

I: Global Interrupt Enable

T: Bit Copy Storage

H: Half Carry Flag

S: Sign Bit

V:Two's Complement Overflow Flag

N: Negative Flag

Z: Zero Flag

C: Carry Flag

Datenblatt Seite 10

Speicherstruktur

Data Memory Map

.data (init. data)
.bss (uninit. data)
heap ↓
stack ↑

Datenblatt Seiten 17-18

Table 11-6. Reset and Interrupt Vectors in ATmega328P

VectorNo.	Program Address ⁽²⁾	Source	Interrupt Definition
1	0x0000 ⁽¹⁾	RESET	External Pin, Power-on Reset, Brown-out Reset and Watchdog System Reset
2	0x0002	INT0	External Interrupt Request 0
3	0x0004	INT1	External Interrupt Request 1
4	0x0006	PCINT0	Pin Change Interrupt Request 0
5	0x0008	PCINT1	Pin Change Interrupt Request 1
6	0x000A	PCINT2	Pin Change Interrupt Request 2
7	0x000C	WDT	Watchdog Time-out Interrupt
8	0x000E	TIMER2 COMPA	Timer/Counter2 Compare Match A
9	0x0010	TIMER2 COMPB	Timer/Counter2 Compare Match B
10	0x0012	TIMER2 OVF	Timer/Counter2 Overflow
11	0x0014	TIMER1 CAPT	Timer/Counter1 Capture Event
12	0x0016	TIMER1 COMPA	Timer/Counter1 Compare Match A
13	0x0018	TIMER1 COMPB	Timer/Coutner1 Compare Match B
14	0x001A	TIMER1 OVF	Timer/Counter1 Overflow
15	0x001C	TIMER0 COMPA	Timer/Counter0 Compare Match A
16	0x001E	TIMER0 COMPB	Timer/Counter0 Compare Match B
17	0x0020	TIMER0 OVF	Timer/Counter0 Overflow
18	0x0022	SPI, STC	SPI Serial Transfer Complete
19	0x0024	USART, RX	USART Rx Complete
20	0x0026	USART, UDRE	USART, Data Register Empty
21	0x0028	USART, TX	USART, Tx Complete
22	0x002A	ADC	ADC Conversion Complete
23	0x002C	EE READY	EEPROM Ready
24	0x002E	ANALOG COMP	Analog Comparator
25	0x0030	TWI	2-wire Serial Interface
26	0x0032	SPM READY	Store Program Memory Ready

Interrupt Vectors

Datenblatt Seiten 65-66 Notes: 1. When the BOOTRST Fuse is programmed, the device will jump to the Boot Loader address at reset, see "Boot Loader Support – Read-While-Write Self-Programming, ATmega88PA, ATmega168PA and ATmega328P" on page 277.

2. When the IVSEL bit in MCUCR is set, Interrupt Vectors will be moved to the start of the Boot Flash Section. The address of each Interrupt Vector will then be the address in this table added to the start address of the Boot Flash Section.

Address Labels	s Code		Comments
0x0000	jmp	RESET	; Reset Handler
0x0002	jmp	EXT_INT0	; IRQ0 Handler
0x0004	jmp	EXT_INT1	; IRQ1 Handler
0x0006	jmp	PCINT0	; PCINTO Handler
0x0008	jmp	PCINT1	; PCINT1 Handler
0x000A	jmp	PCINT2	; PCINT2 Handler
0x000C	jmp	WDT	; Watchdog Timer Handler
0x000E	jmp	TIM2_COMPA	; Timer2 Compare A Handler
0x0010	jmp	TIM2_COMPB	; Timer2 Compare B Handler
0x0012	jmp	TIM2_OVF	; Timer2 Overflow Handler
0x0014	jmp	TIM1_CAPT	; Timer1 Capture Handler
0x0016	jmp	TIM1_COMPA	; Timer1 Compare A Handler
0x0018	jmp	TIM1_COMPB	; Timer1 Compare B Handler
0x001A	jmp	TIM1_OVF	; Timer1 Overflow Handler
0x001C	jmp	TIMO_COMPA	; TimerO Compare A Handler
0x001E	jmp	TIM0_COMPB	; TimerO Compare B Handler
0x0020	jmp	TIMO_OVF	; Timer0 Overflow Handler
0x0022	jmp	SPI_STC	; SPI Transfer Complete Handler
0x0024	jmp	USART_RXC	; USART, RX Complete Handler
0x0026	jmp	USART_UDRE	; USART, UDR Empty Handler
0x0028	jmp	USART_TXC	; USART, TX Complete Handler
0x002A	jmp	ADC	; ADC Conversion Complete Handler
0x002C	jmp	EE_RDY	; EEPROM Ready Handler
0x002E	jmp	ANA_COMP	; Analog Comparator Handler
0x0030	jmp	TWI	; 2-wire Serial Interface Handler
0x0032	jmp	SPM_RDY	; Store Program Memory Ready Handler
;			
0x0033RESET:	ldi	r16, high(RAM	END); Main program start
0x0034	out	SPH,r16	; Set Stack Pointer to top of RAM
0x0035	ldi	r16, low(RAME	ND)
0x0036	out	SPL,r16	
0x0037	sei		; Enable interrupts
0x0038	<inst< td=""><td>r> xxx</td><td></td></inst<>	r> xxx	

Interrupt Vectors Datenblatt

Seiten 66-67

Reset des Atmega

- Beim Reset werden
 - alle Register auf initiale Werte gesetzt,
 - alle I/O Ports auf initialen Zustand gesetzt,
 - das Programm vom Reset Vector gestartet.
- Resetquellen:
 - Power-On
 - Extern (Pins)
 - Watchdog
 - Brown-Out (mittels Eingangsspannung unter definierten Pegel)

Reset des Atmega

Figure 10-1. Reset Logic

Datenblatt Seite 47

MCU-Status-Register

Bit	7	6	5	4	3	2	1	0	
0x35 (0x55)	-	-	-	-	WDRF	BORF	EXTRF	PORF	MCUSR
Read/Write	R	R	R	R	R/W	R/W	R/W	R/W	
Initial Value	0	0	0	0		See Bit D	escription		

WDRF: Watchdog System Reset Flag

BORF: Brown-out Reset Flag

EXTRF: External Reset Flag

PORF: Power-on Reset Flag

Atmega Watchdog

Figure 10-7. Watchdog Timer

Watchdog Timer Control-Register

Bit	7	6	5	4	3	2	1	0	
(0x60)	WDIF	WDIE	WDP3	WDCE	WDE	WDP2	WDP1	WDP0	WDTCSR
Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
Initial Value	0	0	0	0	X	0	0	0	

WDIF: Watchdog Interrupt Flag

WDIE: Watchdog Interrupt Enable Flag

WDTON ⁽¹⁾	WDE	WDIE	Mode	Action on Time-out
1	0	0	Stopped	None
1	0	1	Interrupt Mode	Interrupt
1	1	0	System Reset Mode	Reset
1	1	1	Interrupt and System Reset Mode	Interrupt, then go to System Reset Mode
0	х	x	System Reset Mode	Reset

Note: 1. WDTON Fuse set to "0" means programmed and "1" means unprogrammed.

Datenblatt Seiten 54-56

Watchdog Timer Control-Register

Bit	7	6	5	4	3	2	1	0	
(0x60)	WDIF	WDIE	WDP3	WDCE	WDE	WDP2	WDP1	WDP0	WDTCSR
Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
Initial Value	0	0	0	0	X	0	0	0	

Table 10-2. Watchdog Timer Prescale Select

WDP2	WDP1	WDP0	Number of WDT Oscillator Cycles	Typical Time-out at $V_{CC} = 5.0V$
0	0	0	2K (2048) cycles	16 ms
0	0	1	4K (4096) cycles	32 ms
0	1	0	8K (8192) cycles	64 ms
0	1	1	16K (16384) cycles	0.125 s
1	0	0	32K (32768) cycles	0.25 s
1	0	1	64K (65536) cycles	0.5 s
1	1	0	128K (131072) cycles	1.0 s
	0 0 0	0 0 0 0 0 1 0 1 1 0 1 0	0 0 0 0 1 0 0 1 1 0 1 0 1 0 1 0 1 0	WDP2 WDP1 WDP0 Cycles 0 0 0 2K (2048) cycles 0 0 1 4K (4096) cycles 0 1 0 8K (8192) cycles 0 1 1 16K (16384) cycles 1 0 0 32K (32768) cycles 1 0 1 64K (65536) cycles

. . .

Power Management

- Sechs Sleep Modes
- · Ablauf:
 - SE bit in SMCR to logic one
 - SLEEP instruction
- SMCR Register Bits geben Modus an.
- Genaueres s. Datenblatt

Power Management

Table 9-1. Active Clock Domains and Wake-up Sources in the Different Sleep Modes.

	A	Active Clock Domains				Oscil	lators			Wake-up	Sources				
Sleep Mode	clk _{CPU}	CIKFLASH	clk _{IO}	clk _{ADC}	clk _{ASY}	Main Clock Source Enabled	Timer Oscillator Enabled	INT1, INT0 and Pin Change	TWI Address Match	Timer2	SPM/EEPROM Ready	ADC	WDT	Other I/O	Software BOD Disable
Idle			Х	X	Х	Х	X ⁽²⁾	X	Χ	X	Х	Х	X	Х	
ADC Noise Reduction				х	Х	Х	X ⁽²⁾	X ⁽³⁾	Х	X ⁽²⁾	х	Х	Х		
Power-down								X ⁽³⁾	Х				Х		Х
Power-save					Х		X ⁽²⁾	X ⁽³⁾	Х	Х			Х		Х
Standby ⁽¹⁾						Х		X ⁽³⁾	Х				X		Х
Extended Standby					X ⁽²⁾	Х	X ⁽²⁾	X ⁽³⁾	Х	х			х		Х

Notes:

- 1. Only recommended with external crystal or resonator selected as clock source.
- 2. If Timer/Counter2 is running in asynchronous mode.
- 3. For INT1 and INT0, only level interrupt.

SMCR: Sleep Mode Control Register

MCUCR: MCU Control Register

PRR: Power Reduction Register

Datenblatt Seite 39

Bit 3

30. Register Summary

8161D-AVR-10/09

	Mana	Dia M	Div. A	B 1 5	Dir.	D11.0	Dir o	Dis.4	Dir. c	
Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Page
(bxFF)	Reserved	-	-	-	-	-	-	-	-	
(DeFE)	Reserved	-	-	-	-	-	-	-	-	
(0xFD)	Reserved	-	-	-	-	-	-	-	-	
(0xFC)	Reserved	-	-	-	-	-	-	-	-	
(DxF8)	Reserved	-	-	-	-	-	-	-	-	
(DxFA) (DxF9)	Reserved	-	-	-	-	-	-	-	-	
(OxF8)	Reserved	-	-	-	-	-	-	-	-	
(0xF7)	Reserved	-	-	-	-	-	-	-	-	
(OxF6)	Reserved	-	-	-	-	-	-	-	-	
(0xF5)	Reserved	_	-	-	-	-	-	-	-	
(0xF4)	Reserved	-	-	-	-	-	-	-	-	
(0xF3)	Reserved	-	-	-	-	-	-	-	-	
(0xF2)	Reserved	-	-	-	-	-	-	-	-	
(0xF1)	Reserved	-	-	-	-	-	-	-	-	
(OxFO)	Reserved	-	-	-	-	-	-	-	-	
(bxEF)	Reserved	-	-	-	-	-	-	-	-	
(0xEE)	Reserved	-	-	-	-	-	-	-	-	
(0xEO)	Reserved	-	-	-	-	-	-	-	-	
(0xEC)	Reserved	-	-	-	-	-	-	-	-	
(0xEA)	Reserved	-	-	-	-	-	-	-	-	
(0xE9)	Reserved	-	-	-	-	-	-	-	-	
(DxD8)	Reserved	-	-	-	-	-	-	-	-	
(0xE7)	Reserved	_	-	-	-	-	-	-	_	
(0x66)	Reserved	-	-	-	-	-	-	-	-	
(0xE5)	Reserved	-	-	-	-	-	-	-	-	
(0xE4)	Reserved	-	-	-	-	-	-	-	-	
(0xE3)	Reserved	-	-	-	-	-	-	-	-	
(0xE2)	Reserved	-	-	-	-	-	-	-	-	
(0xE1)	Reserved	-	-	-	-	-	-	-	-	
(0xE0)	Reserved	-	-	-	-	-	-	-	-	
(0xDF)	Reserved	-	-	-	-	-	-	-	-	
(0×0E)	Reserved	-	-	-	-	-	-	-	-	
(0x00)	Reserved	-	-	-	-	-	-	-	-	
(0xD6)	Reserved	-	-	-	-	-	-	-	-	
(0xDA)	Reserved		-	-	-	-	-	-	-	
(DxD9)	Reserved	_	_	-	-	-	-	-	_	
(0xD8)	Reserved	-	-	-	-	-	-	-	-	
(0x07)	Reserved	-	-	-	-	-	-	-	-	
(0x06)	Reserved	-	-	-	-	-	-	-	-	
(DxD5)	Reserved	-	-	-	-	-	-	-	-	
(DxD4)	Reserved	-	-	-	-	-	-	-	-	
(0x03)	Reserved	-	-	-	-	-	-	-	-	
(DxD2)	Reserved	-	-	-	-	-	-	-	-	
(0x01)	Reserved	-	-	-	-	-	-	-	-	
(0x00)	Reserved	-	-	-	-	-	-	-	-	
(0xCF)	Reserved	-	-	-	-	-	-	-	-	
(0xCE)	Reserved	-	-	-	-	-	-	-	-	
(0x00)	Reserved	-	-	-	-	-	-	-	-	
(0xC8)	Reserved	-	-	-	-	-	-	-	-	
(0xCA)	Reserved	-	-	-	-	-	-	-	-	
(DxC9)	Reserved	-	-	-	-	-	-	-	-	
(0xO8)	Reserved	-	-	-	-	-	-	-	-	
(0xC7)	Reserved	-	-	-	-	-	-	-	-	
(0x06)	UDRO				USART IO	Data Register				195
(0xC5)	UBRROH							late Register High		199
(9xC4)	UBRROL					late Register Low				199
(0xC3)	Reserved	-	-	-	-	-	-	-	-	
(0×C2)	UCSROC	UMSEL01	UMISELOO	UPM01	UPMOD	U8880	U05291 ADDMOS	UCSBETUCPHAR	UCPOLO	197/212
(BxC1)	UCSROB	FOXCIED	TXCIEO	UDMED	FOCENO	TXENO	UC8202	POCESSO	TXBB0	196
(9xC0)	UCSROA	RXCO	TXIDO	UDRED	FE0	DORO	UPED	U2X0	MPCM0	195

ATMEL

423

(0x80)	TWAMB	TWANS	TWANS	TWAM	TWANE	TWAM2	TWAMI	TWAMO		244
									2000	
(0x8C)	TWOR	TWINT	TWEA	TWSTA	TWSTO	TWWC	TWEN	-	TWIE	241
(2x80)	TWOR				2-wire Serial Inte					243
(0x8A)	TWAR	TWA6	TWAS	TWAS	TWA3	TWA2	TWA1	TWAO	TWOCE	244
(0x(99)	TWSR	TWS7	TWS6	TWSs	TW\$4	TWS3	-	TWPS1	TWP50	243
(0x88)	TWBR				2-wire Serial Interfa	sce Bit Flate Regi	ster			241
(0x97)	Reserved	-		-	-	-	-	-	-	
(DxB6)	ASSR	-	EXCLK	A52	TONZUB	OCFIZAUB	OCREBUB	TCR2AUB	TORESUB	164
(Dx85)		-	-	-	-		-	-	-	-
	Reserved	_	_				-	_	_	
(DxB4)	OCR26				mer/Counter2 Outp					162
(0483)	OCREA			Ti	mer Counter 2 Outp	ut Compare Regi	oter A			162
(0x82)	TCNT2				Timer/Co.	rter2 (8-bit)				162
(0x81)	TCCR28	FOC2A	FOC2B	-	-	WGM22	C822	C821	C820	161
(0x90)	TCCR2A	COM2A1	COMBAO	COM281	COM290	-	-	WGMQ1	WGMBD	158
(DxAF)	Reserved	-	-	-	-	-	-	-	-	
(DxAE)	Reserved	-	-	-	-	-	-	-	-	
			_	_	_	_	_	_	_	
(9xAD)	Reserved	-	-	-	-	-	-	-	-	
(0xAC)	Reserved	-	-	-	-	-	-	-	-	
(2xA3)	Reserved	-	-	-	-	-	-	-	-	
(DxAA)	Reserved	-	-	-	-	-	-	-	-	
(DxA9)	Reserved	-	-	-	-	-	-	-	-	
(DxA8)	Reserved	-	-	-	-	-	-	-	-	
(DxA7)	Reserved	-	-	-	-	-	-	-	-	
		-	-	-	-	-	-	-	-	
(DxA6)	Reserved									
(DsA5)	Reserved	-	-	-	-	-	-	-	-	
(DsA4)	Reserved	-	-	-	-	-	-	-	-	
(0xA3)	Reserved	-	-	-	-	-	-	-	-	
(0xA2)	Reserved	-	-	-	-	-	-	-	-	
(DsA1)	Reserved	-	_	-	-	-	-	-	-	
(0xA0)	Reserved	-	-					_		
		-	-		-	-	-		-	
(OvSF)	Reserved			-				-		
(De9E)	Reserved	-	-	-	-	-	-	-	-	
(0×90)	Reserved	-	-	-	-	-	-	-	-	
(2x9C)	Reserved	-	-	-	-	-	-	-	-	
(0x98)	Reserved	-	-	-	-	-	-	-	-	
(Dx9A)	Reserved	-	-	-	-	-	-	-	-	
(Ox99)	Reserved	-	-	-	-	-	-	-	-	
		-	-	-	-	-	-	-	-	
(0x98)	Reserved	_			_		_	_		
(0x97)	Reserved	-	-	-	-	-	-	-	-	
(0x96)	Reserved	-	-	-	-	-	-	-	-	
(0x95)	Reserved	-	-	-	-	-	-	-	-	
(0x94)	Reserved	-	-	-	-	-	-	-	-	
(0x93)	Reserved	-	-	-	-	-	-	-	-	
(0x92)	Reserved	-	-	-	-	-	-	-	-	
(0x91)		-	-	-	-	-	-	-	-	
-	Reserved									
(0x90)	Reserved	-	-	-	-	-	-	-	-	
(OHBF)	Reserved	-	-	-	-	-	-	-	-	
(DuBE)	Reserved	-	-	-	-	-	-	-	-	
(0x6O)	Reserved	-	-	-	-	-	-	-	-	
(0x8C)	Reserved	-	-	-	-	-	-	-	-	
(0x88)	OCR18H			TimeriC	ourner1 - Output Co	omnare Banister I	B. Hinth Bute			138
(Dx8A)	OCR18L									138
_					ounter1 - Output C					
(Ox89)	OCRIAN				ounter1 - Output Co					138
(0x88)	OCR1AL	_			ounter1 - Output C					138
(Ox87)	ICR1H			Times	Counter1 - Input C	lapture Register i	sigh Byte			138
(Ox86)	ICRIL			Times	Counter1 - Input 0	apture Register L	.ow Byte			138
(Ox85)	TCNT1H				ner/Counter1 - Cou					138
(0x84)	TONTIL				mer/Counter1 - Cou					138
						The second second	-1-			1.00
(0x83)	Reserved	-	-		-		_	-	-	
(0x82)	TOORIO	FOCIA	FOC1B	-	-	-	-	-	-	137
(0x81)	TCCRIB	ICNC1	ICES1	-	WGM13	WGM12	C812	C811	C810	136
(0x80)	TOORIA	COMIAI	COMHAG	COM181	COM180	-	-	WGM11	WGM10	134
(0x7F)	DIDRI	-	-	-	-	-	-	AIN1D	AINOD	249
(Dy ZE)	DiDBo	_	_	ADDSD	ADDAD	ADCSO	A0000	ADCID	A0000	966

Bit 5

8161D-AVR-10/0

42

Register-Summary

Datenblatt Seite 423-425

ATmega48PA/88PA/168PA/328P

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Page
(0x70)	Reserved	-	-	-	-	-	-	-	-	
(0x7C)	ADMUX	RDFS1	REFSO	ADLAR	-	MUX3	MU02	MUX1	MUND	262
(0x78)	ADCSRB	-	ACME	-	-	-	ADTS2	ADTS1	ADTS0	265
(0x7A)	ADCSPA	ADEN	ADSC	ADATE	ADIF	ADIE	ADPS2	AOPS1	ADPS0	263
(0x79)	ADCH				ADC Data Reg	gister High byte				265
(0x78)	ADOL				ADC Data Re	gister Low byte				265
(0x77)	Reserved	-	-	-	-	-	-	-	-	
(0x76)	Reserved	-	-	-	-	-	-	-	-	
(0x75)	Reserved	-	-	-	-	-	-	-	-	
(0x74)	Reserved	-	-	-	-	-	-	-	-	
(0x73)	Reserved	-	-	-	-	-	-	-	-	
(0x72)	Reserved	-	-	-	-	-	-	-	-	
(0x71)	Reserved	-	-	-	-	-	-	-	-	
(0x70)	TIMSK2	-	-	_	-	-	OCIE28	OCIE2A	TOE2	163
(0x6F)	TIMSK1	-	-	ICIE1	-	-	OCIE18	OCIE1A	TOIE1	139
(Ox6E)	TIMSKO	-	-	-	-	-	OCIE08	OCIEOA	TOIE0	111
(0x60)	PCMSK2	PCINT23	POINTEE	POINT21	PCINT20	PCINT19	PCINT18	PCINT17	PCINT16	74
(0x9C)	PCMSK1	-	PCINT14	PCINT13	PONT12	PCINT11	PCINT10	PCINT9	PONTS	74
(0x88)	PCM8K0	PCINT7	PONTS	PCINTS	PCINT4	PCINTS	POINTS	PCINT1	PONTO	74
(0x6A)	Reserved	-	-	-	-	-	-	-	-	
(0x09)	EICRA	-	-	-	-	19011	ISC10	19001	19000	71
(0×68)	POICE	-	-	-	-	-	PCIEZ	PCIE1	PCIED	
(0x67)	Reserved	-	-	-	-	-	-	-	-	
(0x66)	OSCCAL				Oscillator Calif	bration Register				37
(0x66)	Reserved	-	-	-	-	-	-	-	-	
(0x64)	PRR	PRTWI	PRTIME	PRTIMO	-	PRTM1	PRSPI	PRUSARTO	PRACC	42
(0x63)	Reserved	-	-	-	-	-	-	-	-	
(0x62)	Reserved	-	-	-	-	-	-	-	-	
(0x61)	CLKPR	CLKPCE	-	-	-	CUXP53	CLKP52	CLKPS1	CLKP50	37
(0x00)	WOTCSR	WDIF	WDIE	WDP3	WDCE	WDE	WDP2	WOP1	WDP0	54
0x3F (0x5F)	SPEG	1	T	н	5	V	N	Z	C	9
Ox3E (Dx5E)	SPH	-	-	-	-	-	(SP10) ¹	SP9	SPB	12
0x30 (0x50)	SPL	5P7	SP6	SPS	5P4	SP3	5P2	SP1	SPO	12
0x3C (0x5C)	Reserved	-	-	-	-	-	-	-	-	-
0x38 (0x58)	Reserved	-	-	-	-	-	-	-	-	
0x3A (0x5A)	Reserved	-	-	_	-	_	-	-	-	
0x39 (0x59)	Reserved	-	-	-	-	-	-	-	-	
0x38 (0x58)	Reserved	-	-	-	-	-	-	-		
0x37 (0x57)	SPMCSR	SPME	(RWWS8)*	-	(RWWSRE)*	BUBBET	POWRT	POERS	SELFPROEN	292
0x36 (0x56)	Reserved	-	y	-	p		-	-	-	
0x36 (0x56)	MCUCR	-	8008	80086	810	-	-	N/86L	MCE	44/98/92
0x34 (0x64)	MCUSR	-		-	PUD	WORF	BORF	EXTRE	PORF	64
			-	-	-					
0x33 (0x53)	SMCR	-	-	-	-	8M2	8M1	8M0	86	40
0x32 (0x62)	Reserved					-	-	-	-	
0x31 (0x51)	Reserved	400	4090	400	401	ACC.	400	AC101	4000	947
0x30 (0x50)	ACSR Descend	ACO	AC8G	ACO	ACI	ACIE	ACIC	ACIS1	ACIS0	247
0x2F (0x4F)	Reserved	-	-	-	6010-0	- Charleton	-	-	-	175
0x2E (0x4E)	SPOR	0045	woo			Register		_	- ADVIV	175
0x20 (0x40)	SPSR	SPIF	WCOL	2000	METER	-	CONA	-	SP(2X	174
0x2C (0x4C)	SPCR	SPIE	SPE	DORD	MSTR	CPOL	CPHA	SPR1	SPRO	173
0x28 (0x48)	GPIOR2					se I/O Register 2				25
0x2A (0x4A)	GPIOR1	_				se I/O Register 1				25
0x29 (0x49)	Reserved	-	-	-	-	-	-	-	-	
0x28 (0x48)	OCROB				mer/Counter® Outp					
0x27 (0x47)	OCROA			Ti	mer/Counter© Outp		ster A			
0x26 (0x46)	TCNTO				TimeriCou	riterO (8-bit)		40.00		
0x25 (0x45)	TOCAGE	FOCEA	FOCUS	-	-	WGM02	C502	C561	C500	
0x24 (0x44)	TOCREA	COM0A1	COMBAD	COM081	COMOBO	-	-	WGM01	WGM00	
0x23 (0x43)	GTOCR	TSM	-	-	-	-	-	PSRASY	PSRSYNC	143/165
0x22 (0x42)	THE ARREST				EEPROM Address	Register High Byt	e) ⁵ .			21
	EEARH									
0x21 (0x41)	EEARL				EEPROM Address	Register Low By	te			21
					EEPROM Address EEPROM 0	Register Low By lets Register				21
0x21 (0x41)	EEARL	-	-	EEPW1	EEPROM Address		te EEMPE	EEPE	EERE	
0x21 (0x41) 0x20 (0x40)	EEARL EEDR	-	-		EEPROM C EEPROM C EEPRO	lata Register		EEPE	EEPE	21
0x21 (0x41) 0x20 (0x40) 0x1F (0x3F)	EEARL EEDR EECR	-	-		EEPROM C EEPROM C EEPRO	eta Register EERIE		EEPE	EERE	21

ATMEL

8161D-AVR-1009

425

ATmega48PA/88PA/168PA/328P

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Page
Ox18 (0x36)	POFR	-	-	-	-	-	PCIF2	PCIF1	PCIFO	
Ox1A (0x3A)	Reserved	-	-	-	-	-	-	-	-	
0x19 (0x39)	Reserved	-	-	-	-	-	-	-	-	
0x18 (0x36)	Reserved	-	-	-	-	-	-	-	-	
0x17 (0x37)	TIFFQ	-	-	-	-	-	OCF28	OCF2A	TOV2	163
0x16 (0x36)	TIFRI	-	-	ICF1	-	-	OCF18	OCF1A	TOV1	139
0x15 (0x35)	TIFFIO	-	-	-	-	-	OCF08	OCF0A	TOVO	
0x14 (0x34)	Reserved	-	-	-	-	-	-	-	-	
0x13 (0x33)	Reserved	-	-	-	-	-	-	-	-	
0x12 (0x32)	Reserved	-	-	-	-	-	-	-	-	
0x11 (0x31)	Reserved	-	-	-	-	-	-	-	-	
0x10 (0x30)	Reserved	-	-	-	-	-	-	-	-	
OxDF (0x2F)	Reserved	-	-	-	-	-	-	-	-	
0x0E (0x2E)	Reserved	-	-	-	-	_	-	-	-	
0x00 (0x20)	Reserved	-	-	-	-	-	-	-	-	
DIOC (DIZC)	Reserved	-	-	-	-	-	-	-	-	
0x08 (0x28)	PORTD	PORTO7	PORTOS	PORTO5	PORTD4	PORTDS	PORTOS	PORTD1	PORTOE	93
OxOA (Dx2A)	DORD	1000	0006	0006	0004	DDDS	00002	0001	0000	93
0x09 (0x29)	PIND	PIND7	PIND6	PIND5	PIND4	PNDS	PINDS	PIND1	PINDO	93
0x08 (0x28)	PORTC	-	PORTOS	PORTOS	PORTO4	PORTCS	PORTC2	PORTC1	PORTCO	92
0x07 (0x27)	DORC	-	0006	DOCS	DDC4	DDCa	0002	DDC1	0000	92
0x06 (0x26)	PINC	-	PINOS	PINCS	PINC4	PINC3	PINCS	PINC1	PINCO	92
0x05 (0x25)	PORTB	PORTB7	PORT86	PORTBS	PORTB4	PORTBB	PORTB2	PORTB1	PORTSO	92
0x04 (0x24)	DORB	0087	0086	0085	D084	0083	0002	0081	0000	92
0x03 (0x23)	PN9	PINBT	PN96	PIN95	PIN94	PINB3	PIN92	PINB1	PINSO	92
0x02 (0x22)	Reserved	-	-	-	-	-	-	-	-	
0x01 (0x21)	Reserved	-	-	-	-	-	-	-	-	
Ow0 (0x20)	Reserved	-	-	-	-	-	-	-	-	

 For compatibility with future devices, reserved bits should be written to zero if accessed. Reserved I/O memory addresses should never be written.

I/O Registers within the address range 0x00 - 0x1F are directly bit-accessible using the SBI and CBI instructions. In these registers, the value of single bits can be checked by using the SBIS and SBIC instructions.

Some of the Status Flags are cleared by writing a logical one to them. Note that, unlike most other AVRs, the CBI and SBI instructions will only operate on the specified bit, and can therefore be used on registers containing such Status Flags. The CBI and SBI instructions work with registers 0x00 to 0x1F only.

4. When using the I/O specific commands IN and OUT, the I/O addresses 0x00 - 0x3F must be used. When addressing I/O Registers as data space using LD and ST instructions, 0x20 must be added to these addresses. The ATmega48PA/88PA/168PA/328P is a complex microcontroller with more peripheral units than can be supported within the 64 location reserved in Opcode for the IN and OUT instructions. For the Extended I/O space from 0x60 - 0xFF in SRAM, only the ST/STS/STD and LD/LDS/LDD instructions can be used.

Only valid for ATmega88PA/168PA.

AIMEL

426

8161D-AVR-10/09

Mnemonics	Operands	Description	Operation	Flags	#Clocks
ARITHMETIC AND I	LOGIC INSTRUCTION	S			
ADD	Rd, Rr	Add two Registers	Rd ← Rd + Rr	Z,C,N,V,H	1
ADC	Rd, Rr	Add with Carry two Registers	Rd ← Rd + Rr + C	Z,C,N,V,H	1
ADIW	RdI,K	Add Immediate to Word	Rdh:Rdl ← Rdh:Rdl + K	Z,C,N,V,S	2
SUB	Rd, Rr	Subtract two Registers	Rd ← Rd - Rr	Z,C,N,V,H	1
SUBI	Rd, K	Subtract Constant from Register	Rd ← Rd - K	Z,C,N,V,H	1
SBC	Rd, Rr	Subtract with Carry two Registers	Rd ← Rd - Rr - C	Z,C,N,V,H	1
SBCI	Rd, K	Subtract with Carry Constant from Reg.	Rd ← Rd - K - C	Z,C,N,V,H	1
SBIW	RdI,K	Subtract Immediate from Word	Rdh:Rdl ← Rdh:Rdl - K	Z,C,N,V,S	2
AND	Rd, Rr	Logical AND Registers	Rd ← Rd • Rr	Z,N,V	1
ANDI	Rd, K	Logical AND Register and Constant	Rd ← Rd • K	Z,N,V	1
OR	Rd, Rr	Logical OR Registers	Rd ← Rd v Rr	Z,N,V	1
ORI	Rd, K	Logical OR Register and Constant	Rd ← Rd v K	Z,N,V	1
EOR	Rd, Rr	Exclusive OR Registers	Rd ← Rd ⊕ Rr	Z,N,V	1
COM	Rd	One's Complement	Rd ← 0xFF – Rd	Z,C,N,V	1
NEG	Rd	Two's Complement	Rd ← 0x00 – Rd	Z,C,N,V,H	1
SBR	Rd,K	Set Bit(s) in Register	Rd ← Rd v K	Z,N,V	1
CBR	Rd,K	Clear Bit(s) in Register	Rd ← Rd • (0xFF - K)	Z,N,V	1
INC	Rd	Increment	Rd ← Rd + 1	Z,N,V	1
DEC	Rd	Decrement	Rd ← Rd – 1	Z,N,V	1
TST	Rd	Test for Zero or Minus	Rd ← Rd • Rd	Z,N,V	1
CLR	Rd	Clear Register	Rd ← Rd ⊕ Rd	Z,N,V	1
SER	Rd	Set Register	Rd ← 0xFF	None	1
MUL	Rd, Rr	Multiply Unsigned	R1:R0 ← Rd x Rr	Z,C	2
MULS	Rd, Rr	Multiply Signed	R1:R0 ← Rd x Rr	Z,C	2
MULSU	Rd, Rr	Multiply Signed with Unsigned	R1:R0 ← Rd x Rr	Z,C	2
FMUL	Rd, Rr	Fractional Multiply Unsigned	R1:R0 ← (Rd x Rr) << 1	Z,C	2
FMULS	Rd, Rr	Fractional Multiply Signed	R1:R0 ← (Rd x Rr) << 1	Z,C	2
FMULSU	Rd, Rr	Fractional Multiply Signed with Unsigned	R1:R0 ← (Rd x Rr) << 1	Z,C	2

BRANCH INST	TRUCTIONS				
RJMP	k	Relative Jump	PC ← PC + k + 1	None	2
IJMP		Indirect Jump to (Z)	PC ← Z	None	2
JMP ⁽¹⁾	k	Direct Jump	PC ← k	None	3
RCALL	k	Relative Subroutine Call	PC ← PC + k + 1	None	3
ICALL		Indirect Call to (Z)	PC ← Z	None	3
CALL ⁽¹⁾	k	Direct Subroutine Call	PC ← k	None	4
RET		Subroutine Return	PC ← STACK	None	4
RETI		Interrupt Return	PC ← STACK	1	4
CPSE	Rd,Rr	Compare, Skip if Equal	if (Rd = Rr) PC ← PC + 2 or 3	None	1/2/3
CP	Rd,Rr	Compare	Rd – Rr	Z, N,V,C,H	1
CPC	Rd,Rr	Compare with Carry	Rd – Rr – C	Z, N,V,C,H	1
CPI	Rd,K	Compare Register with Immediate	Rd – K	Z, N,V,C,H	1
SBRC	Rr, b	Skip if Bit in Register Cleared	if (Rr(b)=0) PC ← PC + 2 or 3	None	1/2/3
SBRS	Rr, b	Skip if Bit in Register is Set	if (Rr(b)=1) PC ← PC + 2 or 3	None	1/2/3
SBIC	P, b	Skip if Bit in I/O Register Cleared	if (P(b)=0) PC ← PC + 2 or 3	None	1/2/3
SBIS	P, b	Skip if Bit in I/O Register is Set	if (P(b)=1) PC ← PC + 2 or 3	None	1/2/3
BRBS	s, k	Branch if Status Flag Set	if (SREG(s) = 1) then PC←PC+k + 1	None	1/2
BRBC	s, k	Branch if Status Flag Cleared	if (SREG(s) = 0) then PC←PC+k + 1	None	1/2
BREQ	k	Branch if Equal	if (Z = 1) then PC ← PC + k + 1	None	1/2
BRNE	k	Branch if Not Equal	if (Z = 0) then PC ← PC + k + 1	None	1/2
BRCS	k	Branch if Carry Set	if (C = 1) then PC ← PC + k + 1	None	1/2
BRCC	k	Branch if Carry Cleared	if (C = 0) then PC ← PC + k + 1	None	1/2
BRSH	k	Branch if Same or Higher	if (C = 0) then PC ← PC + k + 1	None	1/2
BRLO	k	Branch if Lower	if (C = 1) then PC ← PC + k + 1	None	1/2
BRMI	k	Branch if Minus	if (N = 1) then PC ← PC + k + 1	None	1/2
BRPL	k	Branch if Plus	if (N = 0) then PC ← PC + k + 1	None	1/2
BRGE	k	Branch if Greater or Equal, Signed	if (N ⊕ V= 0) then PC ← PC + k + 1	None	1/2
BRLT	k	Branch if Less Than Zero, Signed	if (N ⊕ V= 1) then PC ← PC + k + 1	None	1/2
BRHS	k	Branch if Half Carry Flag Set	if (H = 1) then PC ← PC + k + 1	None	1/2
BRHC	k	Branch if Half Carry Flag Cleared	if (H = 0) then PC ← PC + k + 1	None	1/2
BRTS	k	Branch if T Flag Set	if (T = 1) then PC ← PC + k + 1	None	1/2
BRTC	k	Branch if T Flag Cleared	if (T = 0) then PC ← PC + k + 1	None	1/2
BRVS	k	Branch if Overflow Flag is Set	if (V = 1) then PC ← PC + k + 1	None	1/2
BRVC	k	Branch if Overflow Flag is Cleared	if (V = 0) then PC ← PC + k + 1	None	1/2
BRIE	k	Branch if Interrupt Enabled	if (I = 1) then PC ← PC + k + 1	None	1/2
BRID	k	Branch if Interrupt Disabled	if (I = 0) then PC ← PC + k + 1	None	1/2

BIT AND BIT-	TEST INSTRUCTIONS	· · · · · · · · · · · · · · · · · · ·			
SBI	P,b	Set Bit in I/O Register	I/O(P,b) ← 1	None	2
CBI	P,b	Clear Bit in I/O Register	I/O(P,b) ← 0	None	2
LSL	Rd	Logical Shift Left	$Rd(n+1) \leftarrow Rd(n), Rd(0) \leftarrow 0$	Z,C,N,V	1
LSR	Rd	Logical Shift Right	$Rd(n) \leftarrow Rd(n+1), Rd(7) \leftarrow 0$	Z,C,N,V	1
ROL	Rd	Rotate Left Through Carry	$Rd(0)\leftarrow C,Rd(n+1)\leftarrow Rd(n),C\leftarrow Rd(7)$	Z,C,N,V	1
ROR	Rd	Rotate Right Through Carry	$Rd(7)\leftarrow C,Rd(n)\leftarrow Rd(n+1),C\leftarrow Rd(0)$	Z,C,N,V	1
ASR	Rd	Arithmetic Shift Right	Rd(n) ← Rd(n+1), n=06	Z,C,N,V	1
SWAP	Rd	Swap Nibbles	Rd(30)←Rd(74),Rd(74)←Rd(30)	None	1
BSET	s	Flag Set	SREG(s) ← 1	SREG(s)	1
BCLR	s	Flag Clear	SREG(s) ← 0	SREG(s)	1
BST	Rr, b	Bit Store from Register to T	T ← Rr(b)	T	1
BLD	Rd, b	Bit load from T to Register	Rd(b) ← T	None	1
SEC		Set Carry	C←1	С	1
CLC		Clear Carry	C←0	С	1
SEN		Set Negative Flag	N ← 1	N	1
CLN		Clear Negative Flag	N ← 0	N	1
SEZ		Set Zero Flag	Z←1	Z	1
CLZ		Clear Zero Flag	Z ← 0	Z	1
SEI		Global Interrupt Enable	I←1	1	1
CLI		Global Interrupt Disable	1←0	1	1
SES		Set Signed Test Flag	8←1	S	1
CLS		Clear Signed Test Flag	8←0	S	1
SEV		Set Twos Complement Overflow.	V ← 1	V	1
CLV		Clear Twos Complement Overflow	V ← 0	V	1
SET		Set T in SREG	T←1	Т	1
CLT		Clear T in SREG	T ← 0	Т	1
SEH		Set Half Carry Flag in SREG	H ← 1	н	1
CLH		Clear Half Carry Flag in SREG	H ← 0	Н	1

MOV	Rd, Rr	Move Between Registers	Rd ← Rr	None	1
MOVW	Rd, Rr	Copy Register Word	Rd+1:Rd ← Rr+1:Rr	None	1
LDI	Rd, K	Load Immediate	Rd ← K	None	1
LD	Rd, X	Load Indirect	Rd ← (X)	None	2
LD	Rd, X+	Load Indirect and Post-Inc.	$Rd \leftarrow (X), X \leftarrow X + 1$	None	2
LD	Rd, - X	Load Indirect and Pre-Dec.	$X \leftarrow X - 1$, $Rd \leftarrow (X)$	None	2
LD	Rd, Y	Load Indirect	Rd ← (Y)	None	2
LD	Rd, Y+	Load Indirect and Post-Inc.	$Rd \leftarrow (Y), Y \leftarrow Y + 1$	None	2
LD	Rd, - Y	Load Indirect and Pre-Dec.	$Y \leftarrow Y - 1$, $Rd \leftarrow (Y)$	None	2
LDD	Rd,Y+q	Load Indirect with Displacement	Rd ← (Y + q)	None	2
LD	Rd, Z	Load Indirect	Rd ← (Z)	None	2
LD	Rd, Z+	Load Indirect and Post-Inc.	$Rd \leftarrow (Z), Z \leftarrow Z+1$	None	2
LD	Rd, -Z	Load Indirect and Pre-Dec.	$Z \leftarrow Z - 1$, $Rd \leftarrow (Z)$	None	2
LDD	Rd, Z+q	Load Indirect with Displacement	Rd ← (Z + q)	None	2
LDS	Rd, k	Load Direct from SRAM	Rd ← (k)	None	2
ST	X, Rr	Store Indirect	(X) ← Rr	None	2
ST	X+, Rr	Store Indirect and Post-Inc.	(X) ← Rr, X ← X + 1	None	2
ST	- X, Rr	Store Indirect and Pre-Dec.	X ← X - 1, (X) ← Rr	None	2
ST	Y, Rr	Store Indirect	(Y) ← Rr	None	2
ST	Y+, Rr	Store Indirect and Post-Inc.	(Y) ← Rr, Y ← Y + 1	None	2
ST	- Y, Rr	Store Indirect and Pre-Dec.	Y ← Y - 1, (Y) ← Rr	None	2
STD	Y+q,Rr	Store Indirect with Displacement	(Y + q) ← Rr	None	2
ST	Z, Rr	Store Indirect	(Z) ← Rr	None	2
ST	Z+, Rr	Store Indirect and Post-Inc.	(Z) ← Rr, Z ← Z + 1	None	2
ST	-Z, Rr	Store Indirect and Pre-Dec.	Z ← Z - 1, (Z) ← Rr	None	2
STD	Z+q,Rr	Store Indirect with Displacement	(Z + q) ← Rr	None	2
STS	k, Rr	Store Direct to SRAM	(k) ← Rr	None	2
LPM		Load Program Memory	R0 ← (Z)	None	3
LPM	Rd, Z	Load Program Memory	Rd ← (Z)	None	3
LPM	Rd, Z+	Load Program Memory and Post-Inc	$Rd \leftarrow (Z), Z \leftarrow Z+1$	None	3
SPM		Store Program Memory	(Z) ← R1:R0	None	
IN	Rd, P	In Port	Rd ← P	None	1
OUT	P, Rr	Out Port	P ← Rr	None	1
PUSH	Rr	Push Register on Stack	STACK ← Rr	None	2
POP	Rd	Pop Register from Stack	Rd ← STACK	None	2

Register-Summary

MCU CONTROL INS	MCU CONTROL INSTRUCTIONS										
NOP		No Operation		None	1						
SLEEP		Sleep	(see specific descr. for Sleep function)	None	1						
WDR		Watchdog Reset	(see specific descr. for WDR/timer)	None	1						
BREAK		Break	For On-chip Debug Only	None	N/A						

Note:

- For compatibility with future devices, reserved bits should be written to zero if accessed. Reserved I/O memory addresses should never be written.
- I/O Registers within the address range 0x00 0x1F are directly bit-accessible using the SBI and CBI instructions. In these registers, the value of single bits can be checked by using the SBIS and SBIC instructions.
- Some of the Status Flags are cleared by writing a logical one to them. Note that, unlike most other AVRs, the CBI and SBI
 instructions will only operate on the specified bit, and can therefore be used on registers containing such Status Flags. The
 CBI and SBI instructions work with registers 0x00 to 0x1F only.
- 4. When using the I/O specific commands IN and OUT, the I/O addresses 0x00 0x3F must be used. When addressing I/O Registers as data space using LD and ST instructions, 0x20 must be added to these addresses. The ATmega48PA/88PA/168PA/328P is a complex microcontroller with more peripheral units than can be supported within the 64 location reserved in Opcode for the IN and OUT instructions. For the Extended I/O space from 0x60 0xFF in SRAM, only the ST/STS/STD and LD/LDS/LDD instructions can be used.
- Only valid for ATmega88PA/168PA.

8-Bit AVR Instruction Set

Registers and Operands

Rd: Destination (and source) register in the Register File

Rr: Source register in the Register File

R: Result after instruction is executed

K: Constant data

k: Constant address

b: Bit in the Register File or I/O Register (3-bit)

s: Bit in the Status Register (3-bit)

X,Y,Z: Indirect Address Register

(X=R27:R26, Y=R29:R28 and Z=R31:R30)

A: I/O location address

q: Displacement for direct addressing (6-bit)

8-Bit AVR Instruction Set

RAMPX, RAMPY, RAMPZ

Registers concatenated with the X-, Y-, and Z-registers enabling indirect addressing of the whole data space on MCUs with more than 64K bytes data space, and constant data fetch on MCUs with more than 64K bytes program space.

RAMPD

Register concatenated with the Z-register enabling direct addressing of the whole data space on MCUs with more than 64K bytes data space.

EIND

Register concatenated with the Z-register enabling indirect jump and call to the whole program space on MCUs with more than 64K words (128K bytes) program space.

Stack

STACK: Stack for return address and pushed registers

SP: Stack Pointer to STACK

Flags

⇔: Flag affected by instruction

0: Flag cleared by instruction

1: Flag set by instruction

-: Flag not affected by instruction

Addressing Modes

AVR Instruction Set

The Program and Data Addressing Modes

The AVR Enhanced RISC microcontroller supports powerful and efficient addressing modes for access to the Program memory (Flash) and Data memory (SRAM, Register file, I/O Memory, and Extended I/O Memory). This section describes the various addressing modes supported by the AVR architecture. In the following figures, OP means the operation code part of the instruction word. To simplify, not all figures show the exact location of the addressing bits. To generalize, the abstract terms RAMEND and FLASHEND have been used to represent the highest location in data and program space,

Note: Not all addressing modes are present in all devices. Refer to the device spesific instruction summary.

Register Direct, Single Register Rd

Figure 1. Direct Single Register Addressing

The operand is contained in register d (Rd).

Register Direct, Two Registers Rd and Rr

Figure 2. Direct Register Addressing, Two Registers

Operands are contained in register r (Rr) and d (Rd). The result is stored in register d (Rd).

I/O Direct

Figure 3. I/O Direct Addressing

Operand address is contained in 6 bits of the instruction word, n is the destination or source register address.

Note: Some complex AVR Microcontrollers have more peripheral units than can be supported within the 64 locations reserved in the opcode for I/O direct addressing. The extended I/O memory from address 64 to 255 can only be reached by data addressing,

Data Direct

Figure 4. Direct Data Addressing

A 16-bit Data Address is contained in the 16 LSBs of a two-word instruction. Rd/Rr specify the destination or source

AVR Instruction Set ———

08561-AV9-07/10

Addressing Modes

AVR Instruction Set

Data Indirect with Displacement

Figure 5. Data Indirect with Displacement

Operand address is the result of the Y- or Z-register contents added to the address contained in 6 bits of the instruction word. Rd/Rr specify the destination or source register.

Data Indirect

Figure 6. Data Indirect Addressing

Operand address is the contents of the X-, Y-, or the Z-register. In AVR devices without SRAM, Data Indirect Addressing is called Register Indirect Addressing. Register Indirect Addressing is a subset of Data Indirect Addressing since the data space form 0 to 31 is the Register File.

Data Indirect with Pre-decrement

Figure 7. Data Indirect Addressing with Pre-decrement

The X,- Y-, or the Z-register is decremented before the operation. Operand address is the decremented contents of the X-, Y-, or the Z-register.

Data Indirect with Post-increment

Figure 8. Data Indirect Addressing with Post-increment

The X-, Y-, or the Z-register is incremented after the operation. Operand address is the content of the X-, Y-, or the Z-register prior to incrementing.

AVR Instruction Set —

0856I-AVR-07/10

08561-AVR-07/10

Addressing Modes

AVR Instruction Set

Program Memory Constant Addressing using the LPM, ELPM, and SPM Instructions

Figure 9. Program Memory Constant Addressing

Constant byte address is specified by the Z-register contents. The 15 MSBs select word address. For LPM, the LSB selects low byte if cleared (LSB = 0) or high byte if set (LSB = 1). For SPM, the LSB should be cleared. If ELPM is used, the RAMPZ Register is used to extend the Z-register.

Program Memory with Post-increment using the LPM Z+ and ELPM Z+ Instruction

Figure 10. Program Memory Addressing with Post-increment

Constant byte address is specified by the Z-register contents. The 15 MSBs select word address. The LSB selects low byte if cleared (LSB = 0) or high byte if set (LSB = 1). If ELPM Z+ is used, the RAMPZ Register is used to extend the Z-register.

Direct Program Addressing, JMP and CALL

Figure 11. Direct Program Memory Addressing

Program execution continues at the address immediate in the instruction word.

Indirect Program Addressing, IJMP and ICALL

Figure 12. Indirect Program Memory Addressing

Program execution continues at address contained by the Z-register (i.e., the PC is loaded with the contents of the Zregister).

AVR Instruction Set

0856I-AVR-07/10

0856I-AVR-07/10

Addressing Modes und Branch Condition

AVR Instruction Set

Relative Program Addressing, RJMP and RCALL

Figure 13. Relative Program Memory Addressing

Program execution continues at address PC + k + 1. The relative address k is from -2048 to 2047.

Conditional Branch Summary

Test	Boolean	Mnemonic	Complementary	Boolean	Mnemonic	Comment
Rd > Rr	Z+(N ⊕ V) = 0	BRLT ⁽¹⁾	Rd≤Rr	Z+(N @ V) = 1	BAGE*	Signed
Rd Rr	(N ⊕ V) = 0	BAGE	Rd < Rr	(N ⊕ V) = 1	BRLT	Signed
Rd = Rr	Z = 1	BREQ	Rd ≠ Rr	Z = 0	BRNE	Signed
Rd ≤ Rr	Z+(N @ V) = 1	BRGE ⁽¹⁾	Rd > Rr	$Z \bullet (N \otimes V) = 0$	BRLT*	Signed
Rd < Rr	(N ⊕ V) = 1	BRLT	Rd ≥ Rr	(N ⊕ V) = 0	BRGE	Signed
Rd > Rr	C+Z=0	BRLO ⁽¹⁾	Rd ≤ Rr	C+Z=1	BRSH*	Unsigned
Rd □ Rr	C = 0	BRSH/BRCC	Rd < Rr	C=1	BRLO/BRCS	Unsigned
Rd = Rr	Z = 1	BREQ	Rd ≠ Rr	Z = 0	BRNE	Unsigned
Rd≤Rr	C+Z=1	BRSH ⁽¹⁾	Rd > Rr	C + Z = 0	BRLO*	Unsigned
Rd < Rr	C = 1	BRLO/BRCS	Rd ≥ Rr	C = 0	BRSH/BRCC	Unsigned
Carry	C = 1	BACS	No carry	C = 0	BRCC	Simple
Negative	N = 1	BRMI	Positive	N = 0	BRPL	Simple
Overflow	V = 1	BRVS	No overflow	V = 0	BRVC	Simple
Zero	Z = 1	BREQ	Not zero	Z=0	BRNE	Simple

Note: 1. Interchange Rd and Rr in the operation before the test, i.e., CP Rd,Rr → CP Rr,Rd

AVR Instruction Set =

0856I-AVR-07/10

AVR-Assembler-Beispielbefehl

ADC - Add with Carry

Description

Adds two registers and the contents of the C Flag and places the result in the destination register Rd.

Operation:

(i) Rd ← Rd + Rr + C

Syntax:
(i) ADC Rd.Rr

Operands: 0 ≤ d ≤ 31, 0 ≤ r ≤ 31 **Program Counter:**

 $PC \leftarrow PC + 1$

16-bit Opcode:

0001 11rd dddd rrrr

Status Register (SREG) Boolean Formula:

1	т	н	s	v	N	Z	C
-	-	⇔	⇔	⇔	⇔	⇔	⇔

- H: Rd3+Rr3+Rr3+R3+R3+Rd3
- Set if there was a carry from bit 3; cleared otherwise
- S: N ⊕ V, For signed tests.
- V: Rd7+Rr7+R7+Rd7+Rr7+R7

Set if two's complement overflow resulted from the operation; cleared otherwise.

Set if there was carry from the MSB of the result; cleared otherwise.

N: R7

Set if MSB of the result is set; cleared otherwise.

- Z: R7 R6 •R5 R4 •R3 •R2 •R1 •R0 Set if the result is \$00: cleared otherwise.
- C: Bd7+Br7+Br7+B7+Bd7
- R (Result) equals Rd after the operation.

Example:

: Add R1:R0 to R3:R2

add r2,r0 ; Add low byte

adc r3,r1 ; Add with carry high byte

Words: 1 (2 bytes) Cycles: 1

AVR Instruction Set

0856I-AVR-07/10

AVR Instruction Set

ADD – Add without Carry

Description

Adds two registers without the C Flag and places the result in the destination register Rd.

Operation:

(i) Rd ← Rd + Rr

 Syntax:
 Operands:

 ADD Rd,Rr
 0 ≤ d ≤ 31, 0 ≤ r ≤ 31

Program Counter:

PC ← PC + 1

16-bit Opcode:

0000	lird	dddd	rrrr

Status Register (SREG) and Boolean Formula:

1	т	н	s	v	N	Z	C
-	-	⇔	⇔	⇔	⇔	⇔	⇔

f: Rd3•Rr3+Rr3•R3+R3•Rd3

Set if there was a carry from bit 3; cleared otherwise

- S: N

 V, For signed tests.
- V: Rd7+Rr7+Rd7+Rd7+Rr7+R7

Set if two's complement overflow resulted from the operation; cleared otherwise.

N: R7

Set if MSB of the result is set; cleared otherwise.

- Z: R7• R6 •R5• R4 •R3 •R2 •R1 •R0
 Set if the result is \$00: cleared otherwise.
- C: Rd7 •Rr7 +Rr7 •R7+ R7 •Rd7

Set if there was carry from the MSB of the result; cleared otherwise.

R (Result) equals Rd after the operation.

Exampl

add r1.r2 ; Add r2 to r1 (r1=r1+r2) add r28.r28 ; Add r28 to itself (r28=r28+r28)

Words: 1 (2 bytes) Cycles: 1

08561-AVR-07710

<u>Almei</u>

17

AVR-Assembler-Beispielbefehl

AVR Instruction Set

ADD – Add without Carry

Description:

er Rd.

Adds two registers without the C Flag and places the result in the destination register Rd.

Operation:

(i) Rd ← Rd + Rr

Syntax:

Operands:

Program Counter:

(i) ADD Rd,Rr

 $0 \le d \le 31, 0 \le r \le 31$

 $PC \leftarrow PC + 1$

16-bit Opcode:

0000	11rd	dddd	rrrr
------	------	------	------

Status Register (SREG) and Boolean Formula:

1	Т	н	S	V	N	Z	С
_	-	⇔	⇔	⇔	⇔	⇔	⇔

H: Rd3•Rr3+Rr3•R3+R3•Rd3

Set if there was a carry from bit 3; cleared otherwise

- S: N ⊕ V, For signed tests.
- V: Rd7•Rr7•R7+Rd7•Rr7•R7 Set if two's complement overflow resulted from the operation; cleared otherwise.
- N: R7
 Set if MSB of the result is set; cleared otherwise.
- Z: R7• R6 •R5• R4 •R3 •R2 •R1 •R0
 Set if the result is \$00; cleared otherwise.

Datenblatt Seite 6-17
[Quelle: 8-bit AVR Instruction Set]

er Rd.

Adds two registers without the C Flag and places the result in the destination register Rd.

Operation:

(i) Rd ← Rd + Rr

Description:

Syntax:

Operands:

Program Counter:

i) ADD Rd,Rr

 $0 \le d \le 31, 0 \le r \le 31$

 $PC \leftarrow PC + 1$

16-bit Opcode:

0000	11rd	dddd	rrrr
------	------	------	------

Status Register (SREG) and Boolean Formula:

- 1	Т	н	S	V	N	Z	С
_	-	⇔	⇔	⇔	⇔	⇔	⇔

H: Rd3•Rr3+Rr3•R3+R3•Rd3

Set if there was a carry from bit 3; cleared otherwise

- S: N ⊕ V, For signed tests.
- V: Rd7•Rr7•R7+Rd7•Rr7•R7

Set if two's complement overflow resulted from the operation; cleared otherwise.

N: R7

Set if MSB of the result is set; cleared otherwise.

Z: R7• R6 •R5• R4 •R3 •R2 •R1 •R0

Set if the result is \$00; cleared otherwise.

C: Rd7 •Rr7 +Rr7 •R7 •Rd7

Set if there was carry from the MSB of the result; cleared otherwise.

R (Result) equals Rd after the operation.

Example:

Words: 1 (2 bytes)

Cycles: 1

Arduino - AVR-Assembler

- Hinweise zu Assembler mit der AVR Toolchain:
 - http://www.nongnu.org/avr-libc/user-manual/assembler.html

- Assembler-Programm enthält
 - AVR-Befehle und
 - Anweisungen für Linker, z.B. .section, global, .end.

Arduino - Blink in AVR-Assembler

34 Byte

```
.global .main
main:
   cli
                   ; no interrupts
   sbi 0x04, 5
                   ; set bit 5 of i/o reg 0x04 (portB5 output)
loop:
                   ; set bit 5 of 0x05 (portB5=led on)
   sbi 0x05, 5
   rcall wait
                   : wait
                   ; clear bit 5 of 0x05 (portB5=led off)
   cbi 0x05, 5
   rcall wait
                   : wait
                   ; jump back, endless loop
   rjmp loop
wait:
                   ; just waiting
                  ; clear r24, r25, r26
   clr r26
                   ; inner wait loop
waitCount:
   clr r24
   clr r25
waitLoop:
   adiw r24, 1
              ; inc word r24,25
                 : branch to next if overflow
   brvs waitNext
   rjmp waitLoop
                  ; otherwise to waitLoop
waitNext:
   inc r26
                  : inc r26
   cpi r26, 0x40 ; compare with 0x40
   brlo waitCount ; branch to waitCount if lower (inner loop)
waitEnd:
                   : return from sub function
   ret
   .end
```

.section .text

Arduino - Blink in C

```
368 Byte
// Arduino Uno PIN 13 is connected to PortB5 of ATMega328P
                                                                   gcc mit Option -OI
typedef unsigned char uint8_t; // set type for unsigned int 8
void simpleDelay(unsigned int f_iterations) {
    // loop with nop for delay
    for (unsigned long i = 0; i < f_iterations; ++i) {</pre>
        for (volatile unsigned long j = 0; j < 1000; ++j);
int main() {
    // set direction of DDRB5
    uint8_t *portAdd = (uint8_t*) 0x24; // DDRB address
    *portAdd |= 0x20; // set bit 5
    for (;;) { // infinite loop
        uint8_t *portB = (uint8_t*) 0x25; // PortB address
                                                                 ldi r28, 0x25
        *portB |= 0x20; // set bit 5 ---
        simpleDelay(1000);
                                                                 ldi r29, 0x00
        *portB &= 0xDF; // clear bit 5
                                                                 ld r24, Y
        simpleDelay(1000);
                                                                 ori r24, 0x20
                                                                 st Y, r24
```

Arduino - Inline-Assembler

```
// Arduino Uno PIN 13 is connected to PortB5 of ATMega328P
typedef unsigned char uint8_t; // set type for unsigned int 8
void simpleDelay(unsigned int f_iterations) {
    // loop with nop for delay
    for (unsigned long i = 0; i < f_iterations; ++i) {</pre>
        for (volatile unsigned long j = 0; j < 1000; ++j);
    }
int main() {
    // set direction of DDRB5
    uint8_t *portAdd = (uint8_t*) 0x24; // DDRB address
    *portAdd |= 0x20; // set bit 5
    for (;;) { // infinite loop
        uint8_t *portB = (uint8_t*) 0x25; // PortB address
        *portB |= 0x20; // set bit 5
        simpleDelay(1000);
        asm volatile("cbi 0x5, 5\n\t"); // clear bit 5
        simpleDelay(1000);
```

Zusammenfassung

- Lesen eines Datenblatts
 - Aufbau des Mikrocontrollers
- Programmierung des Mikrocontrollers
 - Assembler
 - C

in aller Kürze

Beispiel einer Anwendung: Bratenthermometer

- Bratenthermometer mit Bluethoot, hier "iGrill"
 - Temperaturmesser
 - Bluetooth
 - Mikrocontroller

[Quelle: http://idevicesinc.com/igrill/images/sections/igrill_family/sect2_imgl.jpg]

Literatur / Quellen

- Atmel, 8-bit AVR Instruction Set, 2010
- Atmel, 8-bit AVR Microcontroller with 4/8/16/32K Bytes In-System Programmable Flash, 2009
- Click and Grow, Smart Pot mit Chili Peper, URL: http://www.clickandgrow.com/collections/general/products/starter-kit-with-chili-pepper
- iDevices Inc, iGrill, URL: http://idevicesinc.com/igrill/
- Stand aller Internetquellen: 03.03.2014