Process Mining: Data Science in Action

Applying Decision Trees

prof.dr.ir. Wil van der Aalst www.processmining.org

Where innovation starts

Decision tree learning

$$E = -\sum_{i=1}^{k} p_i \log_2(p_i)$$

Iteratively reduce the overall level of uncertainty (entropy) using label splitting until no significant information gain is possible.

Example: 160 students (100 pass, 60 fail)

What matters?

attending lectures?

gender?

smoking?

Question: What is the information gain?

Answer: Entropy of root node

Answer: Entropy of smokers

Answer: Entropy of non-smokers

Answer: No information gain

Question: What is the information gain?

Answer: Entropy of male students

(80/10)

(80/30)

Answer: Entropy of female students

pass (80/10

fail

Answer: Information gain

 $E = \frac{160}{160} \times 0.9544 = 0.9544$

information gain = 0.2054

#pass=30 #female sex female pass [80/30]
$$k$$

$$E = \frac{80}{160} \times 0.9544 + \frac{80}{160} \times 0.5436 = 0.7490$$

$$E = -\sum_{i=1}^{k} p_i \log_2(p_i)$$

$$= -\left(\frac{30}{80}\log_2(\frac{30}{80}) + \frac{50}{80}\log_2(\frac{50}{80})\right) = -\left(\frac{70}{80}\log_2(\frac{70}{80}) + \frac{10}{80}\log_2(\frac{10}{80})\right)$$

$$= 0.9544$$

$$= 0.5436$$

Question: What is the information gain?

Answer: Entropy of missing students

$$E = -\sum_{i=1}^{k} p_i \, \log_2(p_i)$$

$$= -(\frac{100}{160} \log_2(\frac{100}{160}) + \frac{60}{160} \log_2(\frac{60}{160}))$$

$$= 0.9544$$

$$= -(\frac{20}{80} \log_2(\frac{20}{80}) + \frac{60}{80} \log_2(\frac{60}{80}))$$

#pass=80

#fail=0

fail

#fail=60

I lectures

pass (80/0)

Answer: Entropy of attending students

$$E = -\sum_{i=1}^{k} p_i \log_2(p_i) \\ = -(\frac{100}{160} \log_2(\frac{100}{160}) + \frac{60}{160} \log_2(\frac{60}{160})) \\ = 0.9544$$

$$E = -\sum_{i=1}^{k} p_i \log_2(p_i) \\ \text{#pass=100} \\ \text{#fail=60} \text{ pass} \\ \text{(160/60)} \text{ split on attribute "attended all lectures"}}$$

$$E = -\sum_{i=1}^{k} p_i \log_2(p_i) \\ = -(\frac{80}{80} \log_2(\frac{80}{80})) \\ = -(\frac{80}{80} \log_2(\frac{80}{80})) \\ = 0$$

Answer

split on attribute "attended

all lectures"

information gain = 0.5488

$$E = \frac{80}{160} \times 0.8113 + \frac{80}{160} \times 0 = 0.4056$$

$$E = -\sum_{i=1}^{k} p_i \log_2(p_i)$$

$$= -\left(\frac{20}{80}\log_2(\frac{20}{80}) + \frac{60}{80}\log_2(\frac{60}{80})\right) = -\left(\frac{80}{80}\log_2(\frac{80}{80})\right)$$

$$= 0.8113$$

$$= 0$$

Comparing information gains

information gain = 0

information gain = 0.2054

information gain = 0.5488

Iterate until no significant gain is possible

RapidMiner (installation is optional)

- An integrated extendible environment for machine learning, data mining, text mining, and predictive analytics.
- RapidMiner Marketplace also provides a ProM extension for process mining.
- Commercial and open-source versions of the software.

Decision trees in RapidMiner

gender	age	smoker	car brand	claim		
female	47	yes	Volvo	no		
male	31	no	Alfa Romeo	yes		
ma CSV file contains information about 999						
ma customers of an insurance company.						
male	44	no	RMW	nο		
fema	The company wants to know which					
ma	customers claim insurance.					

Decision trees in RapidMiner

gender	age	smoker	car brand	claim
female	47	yes	Volvo	no
male	31	no	Alfa Romeo	yes
male	59	no	Alfa Romeo	yes
male	28	no	Fiat	no
			5.0.4.4	

Response variable (dependent variable): claim.

Predictor variables (independent variables): gender, age, smoker, car brand.

Data in RapidMiner

no

no

no

no

no

yes

no

no

no

Subaru

Volkswagen

Alfa Romeo

Alfa Romeo

BMW

Fiat

Fiat

BMW

BMW

Fiat

Nissan

Nissan

BMW

Fiat

Volkswagen

Alfa Romeo

43

25

39

37

30

24

26

43

46

25

27

31

42

26

27

male

male

male

male

female

female

male

male

male

female

female

female

male

male

male

male

no

yes

no

yes

no

no

ves

no

no

no

no

no

no

ves

no

ves

12

13

16

18

19

20

21

22

23

24

Data is stored in repository.

Now we can apply an analysis workflow to it.

yes	0.275	0.725	yes	male	35	no	Subaru
no	0.275	0.725	yes	male	43	no	Subaru
yes	0.771	0.229	no	male	25	no	BMW
no	0.740	0.260	no	male	39	no	Volkswagen

no

ves.

gender

male

male

age

39

37

ExampleSet (999 examples, 4 special attributes, 4 regular attributes)

0.771

0.044

confidence(... confidence(... prediction(c...

0.229

0.956

Row No.

10

12

13

14

claim.

no

yes

View Filter (999 / 999

BMW

car brand

Alfa Romeo

smoker

no

no

Which instances are classified incorrectly?

11: A male 43-year old non-smoking Subaru driver was predicted to claim but did not.

12: A male 25-year old non-smoking BMW driver was predicted to not claim, but actually did claim insurance.

pred. yes 85.88% 24 146 96.94% 68.22% class recall

Decision tree indicates that a combination of pizzas marinara and beer caused sickness.

not sick

≤ 1.500

> 1.500

birra

 $> 0.500 \le 0.500$

not sick

very sick

marinara and that drank beer got very sick

did not get sick

parties that did not drink beer did not get sick

blue = not sick red = very sick green = nauseous

partie

multip

307 of the 313 parties that were nauseous were classified as "not sick"

al information gain = 0.1

The decision tree does not explain why some parties were nauseous.

green = nauseous

blue

red =

pizza marinara

≤ 1.500

≤ 0.500

not sick

not sick

accuracy: 93.30%

pred, not sick

pred, very sick class recall

pred nauseous

true not sick

4193

24

99.43%

not sick

> 1.500

≤ 0.500

> 0.500

pizza romana

> 1.500

vino bianco

≤ 1.500

pizza capricciosa

> 1.500 ≤ 1.500

nauseous

pizza margherita

> 1.50(≤ 1.500

not sick

> 1.500

not sick

vino rosso

≤ 1.500

birra

> 0.500

very sick

Extremely small improvement at the cost of overfitting. true nauseous true very sick class precision 305 93.22% 100.00% 470 94 00% 0.64% 100.00%

underfitting

accuracy: 84.34%

	true not sick	true nauseous	true very sick	class precision
pred. not sick	4217	313	470	84.34%
pred. nauseous	0	0	0	0.00%
pred. very sick	0	0	0	0.00%
class recall	100.00%	0.00%	0.00%	

overfitting

accuracy: 93.48%

	true not sick	true nauseous	true very sick	class precision		
pred. not sick	4190	293	0	93.46%		
pred. nauseous	3	14	0	82.35%		
pred. very sick	24	6	470	94.00%		
class recall	99.36%	4.47%	100.00%			

- Reasonable balance between underfitting and overfitting.
- Can be used to understand what is happening.
- Can be used for predictions and recommendations.

Next

Part I: Introduction

Chapter 1 Data Science in Action

Chapter 2 Process Mining: The Missing Link

Part II: Preliminaries

Chapter 3 Process Modeling and Analysis

Chapter 4 Data Mining

Part III: From Event Logs to Process Models

Chapter 5 Getting the Data

Chapter 6 Process Discovery: An Introduction

Chapter 7 Advanced Process Discovery Techniques

Part IV: Beyond Process Discover,

Chapter 8 Conformance Checking

Chapter 9 Mining Additional Perspectives

Chapter 10 **Operational Support**

Part V: Putting Process Mining to Work

Chapter 11 **Process Mining**

Software

Chapter 12

Process Mining in the Large

Chapter 13 Analyzing "Lasagna Processes"

Chapter 14 Analyzing "Spaghetti Processes"

Process Mining

Wil van der Aalst

Data Science in Action Second Edition

Part VI: Reflection

Chapter 15 Cartography and **Navigation**

Chapter 16 **Epilogue**

