MATD11 OVERVIEW

A. Wortschöpfer

March 10, 2018

1 Hilbert Space Preliminaries

1.1 Normed Linear Spaces

Definition. Let X be a vector space over either the scalar field \mathbb{R} of real numbers or the scalar field \mathbb{C} of complex numbers. Suppose we have a function $\|\cdot\|: X \to [0,\infty)$ such that

- 1. ||x|| = 0 if and only if x = 0.
- 2. $||x + y|| \le ||x|| + ||y||$ for all $x, y \in X$, and
- 3. $\|\alpha x\| = |\alpha| \|x\|$ for all scalars α and vectors x.

We call $(X, \|\cdot\|)$ a normed linear space.

From property 2, we can derive the reverse triangle inequality

$$||x + y|| > ||x|| - ||y|||$$

Example 1. Let $X = \mathbb{C}^n$ with $||(z_1, z_2, \dots, z_n)|| = (\sum_{j=1}^{\infty} |z_j|^2)^{1/2}$; this is called the **Euclidean norm**. The Euclidean space \mathbb{R}^n is similarly defined.

Example 2. Let
$$X = \mathbb{C}^n$$
 with $||(z_1, z_2, \dots, z_n)|| = \max\{|z_j| : 1 \le j \le n\}$.

Example 3. Let Y = [0, 1], or more generally any compact Hausdorff space, and let C(Y) be the vector space of continuous, complex-valued functions on Y, under pointwise addition and scalar multiplication. Define a norm on C(Y) by $||f|| = \max\{|f(y)| : y \in Y\}$.

Example 4. Choose a value $p \geq 1$, and let $\ell^p = \ell^p(\mathbb{N})$ denote the set of all sequences $\{a_n\}_1^{\infty}$ of all complex numbers for which $\sum_1^{\infty} |a_n|^p < \infty$. Define the norm of $\{a_n\} \in \ell^p$ by

$$\|a_n\|_p = (\sum_{1}^{\infty} |a_n|^p)^{1/p}$$

We can include the choice $p = \infty$ by saying:

$$\ell^{\infty} = \{\{a_n\}_1^{\infty} : \sup_n |a_n| < \infty\}, \quad ||a_n|| = \sup_n |a_n|$$

The triangle inequality for 1 is non trivial and is called**Minkowski's inequality**:

$$\left(\sum_{1}^{n} |a_{j} + b_{j}|^{p}\right) 1/p \le \left(\sum_{1}^{n} |a_{j}|^{p}\right)^{1/p} + \left(\sum_{1}^{n} |b_{j}|^{p}\right)^{1/p}$$

which is proven from Hölder's inequality:

$$\left(\sum_{1}^{n} |a_{i}b_{i}|^{p}\right) \leq \left(\sum_{1}^{n} |a_{i}|^{p}\right)^{1/p} \left(\sum_{1}^{n} |b_{i}|^{q}\right)^{1/q}$$

where p and q are **conjugate indicies** i.e. 1/p + 1/q = 1.

Example 5. We can generalize ℓ^p spaces as follows. Consider a positive measure space (Y, M, μ) , where Y is a non-empty set, M is a σ -algebra of Y and μ is a positive measure. Choose $1 \leq p < \infty$ and denote $L^p(Y, \mu)$ the collection of μ -measurable functions such that $\int_Y |f|^p d\mu < \infty$ and its norm is given by

$$||f||_p = (\int_V |f|^p d\mu)^{1/2}$$

We can also define $L^{\infty}(X, \mu)$ of **essentially bounded functions**. We say that a measurable function is essentially bounded if there exists $M < \infty$ such that $\mu(\{x : |f(x)| > M\}) = 0$. To prove the triangle inequality for 1 , we need Minkowski's inequality:

$$\left(\int_{Y} |f+g|^{p} d\mu\right)^{1/p} \le \left(\int_{Y} |f|^{p} d\mu\right)^{1/p} + \left(\int_{Y} |g|^{p} d\mu\right)^{1/p}$$

which follows from Hölder's inequality

$$\left(\int_{Y} |fg|d\mu\right) \le \left(\int_{Y} |f|^{p} d\mu\right)^{1/p} \left(\int_{Y} |g|^{q} d\mu\right)^{1/q}$$

for conjugate indices p, q.

Example 6. Let $X = \mathbb{N}$, $M = \mathcal{P}(\mathbb{N})$, and let μ assign to each finite subset of \mathbb{N} its cardinality, and to each infinite subset of \mathbb{N} , the value ∞ . This is called the **counting measure** on the positive integers. With the convention $a + \infty = \infty + a$, we have countable additivity.

The L^p spaces then generalize ℓ^p spaces as follows: Choose $Y = \mathbb{N}$ and $\mu =$ counting measure on \mathbb{N} . Then $L^p(\mathbb{N}, \mathcal{P}(\mathbb{N}), \mu) = \ell^p(\mathbb{N})$.

Definition. A **metric space** is a set X with a function $d(\cdot, \cdot): X \to [0, \infty)$ satisfying for $x, y, z \in X$:

- 1. d(x,y) = 0 if and only if x = y
- 2. d(x, y) = d(y, x)

3. $d(x,y) + d(y,z) \ge d(x,z)$

On every normed linear space, we can define a metric via d(x,y) = ||x-y||.

Definition. A metric space is said to be **complete** if every Cauchy sequence in X converges in X.

Definition. Let X be a normed space. If X is complete in the metric d defined by the norm d(x,y) = ||x-y||, we call X a **Banach space**.

Theorem 1 (Riesz-Fischer Theorem). For every positive measure μ and $1 \le p \le \infty$, $L^p(\mu)$ is a Banach space.

C(Y) and \mathbb{C}^n with the max and Euclidean norm are also complete.

Definition. Let X be a vector space over \mathbb{C} . An **inner product** is a map $\langle \cdot, \cdot \rangle : X \times X \to \mathbb{C}$ satisfying, for $x, y \in X$ and $z \in X$ and scalars $\alpha \in \mathbb{C}$:

- 1. $\langle x, y \rangle = \overline{\langle y, x \rangle}$
- 2. $\langle x, x \rangle \geq 0$ with $\langle x, x \rangle = 0$ if and only if x = 0
- 3. $\langle x + y, z \rangle = \langle x, z \rangle + \langle y, z \rangle$
- 4. $\alpha \langle x, y \rangle = \langle \alpha x, y \rangle$

The bar denotes complex conjugation.

Example 7. Define an inner product on $L^2(X,\mu)$ for a positive measure space (X,μ) by

$$\langle f, g \rangle = \int_{X} f \overline{g} d\mu$$

On \mathbb{C}^n , we have:

$$\langle z = (z_1, \dots, z_n), w = (w_1, \dots, w_n) \rangle = \sum_{1}^{n} z_j \overline{w_j}$$

On ℓ^2 :

$$\langle z, w \rangle = \sum_{1}^{\infty} z_j \overline{w_j}$$

Proposition 1 (Cauchy-Schwarz Inequality). If $\langle \cdot, \cdot \rangle$ is an inner product on a vector space X, then for all $x, y \in X$, we have

$$|\langle x, y \rangle|^2 \le \langle x, x \rangle \langle y, y \rangle$$

Proof. For all $t \in \mathbb{R}$ and $\xi \in \mathbb{C}$, with $|\xi| = 1$ compute $\langle x + t\xi y, x + t\xi y \rangle$ to get a polynomial of order $2 p(t) = \langle x, x \rangle + 2t |\langle x, y \rangle| + t^2 \langle y, y \rangle$

Argue p(t) > 0 and p(0) = 0 and show this implies the discriminant is,

$$(2t|\langle x,y\rangle|)^2 - 4t^2\langle y,y\rangle\langle x,x\rangle \le 0$$

From this, derive the inequality.

Proposition 2. If $\langle \cdot, \cdot \rangle$ is an inner product on a vector space X, then

$$||x||^2 = \langle x, x \rangle$$

is a norm on X.

Proof. Expand $||x + y||^2$ to prove the triangle inequality.

Definition. A (complex) **Hilbert space** \mathcal{H} is a vector space over \mathbb{C} with an inner product such that \mathcal{H} is complete in the metric,

$$d(x,y) = ||x - y|| = \langle x - y, x - y \rangle^{1/2}$$

Example 8. $L^2(X,\mu)$ is a Hilbert space, thus so is \mathbb{C}^n and ℓ^2 .

1.2 Orthogonality

Definition. Given vectors f, g in a Hilbert space \mathcal{H} , we say that f is **orthogonal** to g written $f \perp g$, if $\langle f, g \rangle = 0$. For sets A, B in \mathcal{H} we write $A \perp B$ if $\langle f, g \rangle = 0$ for all $f \in A$ and $g \in B$. Finally, A^{\perp} is the set of all vectors of $f \in \mathcal{H}$ such that $f \perp g$ for all $g \in A$; for any set A this is always a subspace of \mathcal{H} , moreover $A^{\perp} = \bigcap_{a \in A} \{a\}^{\perp}$, A^{\perp} is a closed subspace by continuity of the inner product.

We have $A \cap A^{\perp} = \{\emptyset\}.$

Example 9. An example of a subspace which is not closed: In ℓ^2 , the set of all sequences with finitely many non-zero terms.

Proposition 3. In f_1, f_2, \ldots, f_n are pairwise orthogonal vectors in a Hilbert space, then

$$||f_1 + f_2 + \ldots + f_n||^2 = ||f_1||^2 + \ldots + ||f_n||^2$$

In general, for any vectors f and q in a Hilbert space, we have

$$||f + g||^2 = ||f||^2 + 2\text{Re}\langle f, g \rangle + ||g||^2$$

and

$$||f - g||^2 = ||f||^2 - 2\text{Re}\langle f, g \rangle + ||g||^2$$

The $\bf Parallelogram\ equality$ is then obtain:

$$||f + g||^2 + ||f - g||^2 = 2 ||f||^2 + 2 ||g||^2$$

In any inner product space, the inner product can be recovered from the norm:

$$\langle f, g \rangle = 1/4 \sum_{1}^{3} i^{k} \left\| f + i^{k} g \right\|^{2}$$

which is called the **polarization identity**.

Given a normed linear space in which the parallelogram equality holds, there is an inner product that gives the norm.

1.3 Hilbert Space Geometry

A **convex set** in a vector space V is a subset S of V with the property that whenever a, b are in S, so is ta + (1 - t)b for any $0 \le t \le 1$. Clearly every subspace is convex, every ball in a normed linear space is also convex, and any translate x + S of a convex set is also convex.

Theorem 2 (Nearest Point Property). Every nonempty, closed convex set K in a Hilbert space \mathcal{H} contains a unique element of smallest norm. Moreover, given any $h \in \mathcal{H}$, there is a unique k_0 in K such that

$$||h - k_0|| = \operatorname{dist}(h, K) = \inf\{||h - k|| : k \in K\}$$

Proof. Let $d = \inf\{||y|| : y \in K\}$ so that $||x_n|| \to d$ for $x_n \in K$. Then, by parallelogram equality:

$$||x_n - x_m/2||^2 = ||x_n/2||^2 + ||x_m/2||^2 - ||x_n + x_m/2||^2$$

for n, m. Show $1/2(x_n + x_m)$ is in K and thus, it implies

$$||x_n + x_m/2||^2 \ge d^2$$

and,

$$0 \le ||x_n - x_m||^2 \le 2(||x_n||^2 + ||x_m||^2) - 4d^2$$

so that $\{x_n\}$ is a Cauchy sequence and thus it converges to some $x \in H$ and importantly, it converges to some $x \in K$. Show d = ||x||. Continuity says that if $x_n \to x$, then $||x_n|| \to ||x||$ so that ||x|| = d. Now, prove uniqueness by using parallelogram equality again i.e. for ||x|| = ||z||, take $||x + z/2||^2$ and show $d^2 - ||x + z/2||^2 \le 0$.

Second part, find the point x of smallest norm in K-h for any $h \in H$. Then x+h has the smallest norm in K, so that ||x+h-h|| = ||x|| is the closest point to h.

Theorem 3 (Projection Theorem). Let M be a closed subspace of a Hilbert space \mathcal{H} . There is a unique pair of mappings $P:\mathcal{H}\to M$ and $Q:\mathcal{H}\to M^\perp$ such that x=Px+Qx for all $x\in\mathcal{H}$. Furthermore, P and Q have the following additional properties:

- 1. $x \in M \implies Px = x \text{ and } Qx = 0.$
- 2. $x \in M^{\perp} \implies Px = 0$ and Qx = x.
- 3. Px is the closest vector in M to x.
- 4. Qx is the closest vector in M^{\perp} to x.
- 5. $||Px||^2 + ||Qx||^2 = ||x||^2$ for all x.
- 6. P and Q are linear maps.

Proof. Let Px be the closest point to x in M. Let Qx = x - Px.

Corollary 1. If M is a closed, proper, subspace of \mathcal{H} , then there exists a non-zero vector $y \in \mathcal{H}$ with $y \perp M$.

1.4 Linear Functionals

Definition. If X is a normed linear space over \mathbb{C} , a **linear functional** on X is a map $\Lambda: X \to \mathbb{C}$ satisfying $\Lambda(\alpha x + \beta y) = \alpha \Lambda(x) + \beta \Lambda(y)$ for all vectors x and y in X and all scalars α and β .

Definition. A bounded linear functional on a normed linear space X is a linear functional $\Lambda: X \to \mathbb{C}$ for which there exists a finite constant C satisfying $|\Lambda(x)| \le C ||x||$ for all $x \in X$.

Example 10. The set of all bounded linear functionals on X forms a normed linear space with norm

$$\|\Lambda\| = \sup\{|\Lambda(x)| : \|x\| \le 1\}$$

Proposition 4. If X is a normed linear space, and $\Lambda: X \to \mathbb{C}$ is a linear functional, then the following are equivalent:

- 1. Λ is continuous
- 2. Λ is continuous at 0
- 3. Λ is bounded

Theorem 4 (Riesz Representation Theorem). Every bounded linear functional Λ on a Hilbert space \mathcal{H} is given by inner product with a (unique) fixed vector h_0 in \mathcal{H} : $\Lambda(h) = \langle h, h_0 \rangle$. Moreover, the norm of the linear functional is $||h_0||$.

Proof. 1. Handle the case for $\Lambda = 0$.

- 2. Consider the kernel of M and choose some non-zero vector from the orthogonal of the kernel (why should one exist?)
- 3. Argue that $\Lambda(h)z h$ is perpendicular to z for any $h \in \mathcal{H}$.
- 4. Derive $\Lambda(h) = \langle h, z/||z||^2 \rangle$ and choose an appropriate h_0 from this.
- 5. Argue uniqueness.

Example 11. The dual space of $L^p[a, b]$ for $1 \le p < \infty$ is $L^q[a, b]$ where p and q are conjugate indices. If p = 1, we set $q = \infty$. There are no continuous linear functionals on $L^p[a, b]$ for 0 .

Lemma 1. Let $P: \mathcal{H} \to M$ be the orthogonal projection of a Hilbert space \mathcal{H} onto a closed subspace M of \mathcal{H} . We have $\langle f, Pg \rangle = \langle Pf, g \rangle$ for all vectors f and g in \mathcal{H} .

1.5 Orthonormal Bases

Definition. An **orthonormal set** in a Hilbert space \mathcal{H} is a set ϵ with the properties:

- 1. for every $e \in \epsilon$, ||e|| = 1, and
- 2. for distinct vectors e and f in ϵ , $\langle e, f \rangle = 0$.

Definition. An **orthonormal basis** for a Hilbert space \mathcal{H} is a maximal orthonormal set; that is, an orthonormal set that is not properly contained in any orthonormal set.

Example 12. For the Hilbert space ℓ^2 , take the set of all vectors $\{e_j : j \geq 1\}$ where e_j has 1 in the jth coordinate and zeros elsewhere. As a second example, consider the Hilbert space $L^2[0,2\pi]$, with respect to normalized Lebesgue measure $dt/(2\pi)$. The collection of functions e^{int} for any integer n forms an orthonormal set in this Hilbert space.

It is a fact that every Hilbert space has an orthonormal basis.

Given a linearly independent sequence $\{f_n\}_1^{\infty}$ in a Hilbert space \mathcal{H} , there always exists an orthonormal sequence $\{e_n\}_1^{\infty}$ such that

$$\operatorname{span}\{f_1,\ldots,f_k\} = \operatorname{span}\{e_1,\ldots,e_k\}$$

for each positive integer k.

Theorem 5 (Bessel's inequality). When $\{e_k\}$ is a finite or countably infinite orthonormal set in \mathcal{H} , then for every vector $h \in \mathcal{H}$ we have

$$\sum |\langle h, e_k \rangle|^2 \le ||h||^2$$

Proof. Let $r_n = x - \sum_{1}^{n} \langle x, e_k \rangle e_k$ and compute $\langle r_n, e_j \rangle = \langle x - \sum_{1}^{n} \langle x, e_k \rangle e_k, e_j \rangle$ and show it is equal to 0 for all $j \in \mathbb{N}$.

Write $x = r_n + (\sum_{1}^{n} \langle x, e_k \rangle e_k)$ and compute the squared norm of both sides and conclude the inequality holds.

Theorem 6. If $\{e_n\}_1^{\infty}$ is an orthonormal sequence in a Hilbert space \mathcal{H} , then the following conditions are equivalent:

- 1. $\{e_n\}_1^{\infty}$ is an orthonormal basis
- 2. If $h \in \mathcal{H}$ and $h \perp e_n$ for all n, then h = 0.
- 3. For every $h \in \mathcal{H}$, $h = \sum_{1}^{\infty} \langle h, e_n \rangle e_n$
- 4. For every $h \in \mathcal{H}$, there exist complex numbers a_n so that $h = \sum_{1}^{\infty} a_n e_n$.

- 5. For every $h \in \mathcal{H}$, $\sum_{1}^{\infty} |\langle h, e_n \rangle|^2 = ||h||^2$.
- 6. For all h and g in \mathcal{H} , $\sum_{1}^{\infty} \langle h, e_n \rangle \langle e_n, g \rangle = \langle h, g \rangle$.

Proof. Equivalence of (1) and (2) follows from the fact that if $0 \neq h$ and $h \perp e_n$ for all n, then $\{e_n\} \cup \{h/\|h\|\}$ is an orthonormal sequence.

2 Operator Theory Basics

2.1 Bounded Linear Operators

Definition. If X and Y are normed linear spaces, a map $T: X \to Y$ is **linear** if

$$T(\alpha x_1 + \beta x_2) = \alpha T(x_1) + \beta T(x_2)$$

for all x_1, x_2 in X and scalars α and β . We say the linear map T is **bounded** linear operator from X to Y if there is a finite constant C such that $||Tx||_Y \leq C ||x||_X$ for all $x \in X$.

Proposition 5. If $T: X \to Y$ is a linear map from a normed linear space X to a normed linear space Y, the following are equivalent:

- 1. T is bounded
- 2. T is continuous
- 3. T is continuous at 0

Proposition 6. The collection $\mathcal{B}(X,Y)$ of all bounded linear operators from a normed linear space X to a Banach space Y forms a Banach space with norm

$$||T|| = \sup\{||Tx||_{Y} : ||x||_{Y} \le 1\}$$

Example 13. Suppose M is a closed subspace in a Hilbert space \mathcal{H} . Let $P_M: \mathcal{H} \to M$ be the orthogonal projection of \mathcal{H} onto M. This is a bounded linear operator with norm 1.

Example 14. The forward shift is a bounded linear operator $S:\ell^2\to\ell^2$ with

$$S(x_1, x_2, \ldots) = (0, x_1, x_2, \ldots)$$

This has norm 1 and is clearly linear. In fact, it is an isometry with ||Sx|| = ||x||. The **backward shift** is the operator ℓ^2 to ℓ^2 which takes $(x_1, x_2, ...) \mapsto (x_2, x_3, ...)$. It has norm 1 but is not an isometry.

Definition. If \mathcal{H} and \mathcal{K} are both Hilbert spaces, a **sesquilinear form** $u: \mathcal{H} \times \mathcal{K} \to \mathbb{C}$ is a mapping satisfying

- 1. $u(\alpha h + \beta g, k) = \alpha u(h, k) + \beta u(g, k)$, and
- 2. $u(h, \alpha k + \beta f) = \overline{\alpha}u(h, k) + \overline{\beta}u(h, f)$

for all $h, g \in \mathcal{H}$, all $k, f \in \mathcal{K}$ and all scalars α and β . A sesquilinear form u is bounded if there is a finite constant M such that $|u(h, k)| \leq M ||h|| ||k||$ for all $h \in \mathcal{H}$ and $k \in \mathcal{K}$.

Theorem 7. Let \mathcal{H} and \mathcal{K} be Hilbert spaces and suppose that $u: \mathcal{H} \times \mathcal{K} \to \mathbb{C}$ is a bounded sesquilinear form. There exists a unique $A \in \mathcal{B}(\mathcal{H}, \mathcal{K})$ such that

$$u(h,k) = \langle Ah, k \rangle_{\mathcal{K}}$$

for all $h \in \mathcal{H}$ and $k \in \mathcal{K}$.

Theorem 8. Given Hilbert spaces \mathcal{H} and \mathcal{K} and $A \in \mathcal{B}(\mathcal{H}, \mathcal{K})$, there is a unique $A^* \in \mathcal{B}(\mathcal{K}, \mathcal{H})$ so that

$$\langle Ah, k \rangle_{\mathcal{K}} = \langle h, A^*k \rangle_{\mathcal{H}}$$

for all $h \in \mathcal{H}$ and $k \in \mathcal{K}$.

Proof. Claim that $\langle k, Ah \rangle$ is a sesquilinear form. Use the previous theorem to claim that the sesquilinear form is equal to $\langle A^*k, h \rangle$. Thus, $\langle k, Ah \rangle = \langle A^*k, h \rangle$ and take conjugates.

Proposition 7. For A and B in $\mathcal{B}(\mathcal{H})$ we have

- 1. $A^{**} = A$ where $A^{**} = (A^*)^*$.
- 2. $(A+B)^* = A^* + B^*$
- 3. $(\alpha A)^* = \overline{\alpha} A^*$ for $\alpha \in \mathbb{C}$
- 4. $(AB)^* = B^*A^*$

Proof. 1. Combine $\langle A^*x,y\rangle=\langle x,A^{**}y\rangle$ and $\langle Ay,x\rangle=\langle y,A^*x\rangle$ so that $\langle x,A^{**}y\rangle=\langle x,Ay\rangle$ which shows that for all $x,y\colon \langle x,A^{**}y-Ay\rangle=0$. Choose $x=A^{**}y-Ay$, so that we get $A^{**}y=A^*y$ as wanted.

Proposition 8. If $A \in \mathcal{B}(\mathcal{H})$, then $||A|| = ||A^*||$ and $||A^*A|| = ||A||^2$.

Proof.

$$\left\|Ah\right\|^2 = \left\langle Ah, Ah \right\rangle = \left\langle h, A^*Ah \right\rangle \leq \left\|h\right\| \left\|A^*Ah\right\| \leq \left\|A^*A\right\| \leq \left\|A\right\| \left\|A^*\right\|$$

This shows $\|A\|^2 \le \|A*\| \|A\|$ which shows $\|A\| \le \|A^*\|$. Then, apply this for the operator $\|A*\|$ to get, $\|A*\| \le \|A^{**}\| = \|A\|$ to get that $\|A\| = \|A^*\|$. We know, $\|AA^*\| \le \|A\| \|A^*\| = \|A\| \|A\| = \|A\|^2$ already.

Definition. An operator A in $\mathcal{B}(\mathcal{H})$ is **normal** if $AA^* = A^*A$, and **self adjoint** if $A = A^*$. If $U : \mathcal{H} \to \mathcal{K}$ is a linear surjection that preserves inner products i.e. $\langle Uh_1, Uh_2 \rangle = \langle h_1, h_2 \rangle$ for all h_1, h_2 in \mathcal{H} , we say that U is a **Hilbert space isomorphism**.

Proposition 9. If $U: \mathcal{H} \to \mathcal{H}$ is an isomorphism, then $U^*U = I_{\mathcal{H}}$ and $UU^* = I_{\mathcal{K}}$.

Definition. An operator A in $\mathcal{B}(\mathcal{H}, \mathcal{K})$ is said to be **invertible** if there exists B in $\mathcal{B}(\mathcal{K}, \mathcal{H})$ with $AB = I_{\mathcal{K}}$ and $BA = I_{\mathcal{H}}$. We write $B = A^{-1}$.

We can then rephrase the last proposition as: If U is an isomorphism, then $U^* = U^{-1}$.

Definition. If H and K are Hilbert spaces and if $U:H\to K$ is bijective linear map with

$$\langle Uh_1, Uh_2 \rangle_K = \langle h_1, h_2 \rangle$$

for all h_1 and h_2 in H, then U is said to be a **Unitary operator**.

A linear and surjective isometry is always unitary.

Proposition 10. If A is invertible, then so is A^* , and $(A^*)^{-1} = (A^{-1})^*$.

Proposition 11. If $U \in \mathcal{B}(H,K)$ with U invertible and $U^{-1} = U^*$, then U is an isomorphism.