# МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное автономное образовательное учреждение высшего образования

# «Национальный исследовательский Нижегородский государственный университет им. Н.И. Лобачевского» (ННГУ)

## Институт информационных технологий, математики и механики

Направление подготовки: «Фундаментальная информатика и информационные технологии»

Магистерская программа: «Инженерия программного обеспечения»

## ОТЧЕТ

по лабораторной работе «Блочное LU – разложение для квадратной матрицы»

| <b>Выполнил:</b> студент группы 38200<br>1м |                      |  |  |  |
|---------------------------------------------|----------------------|--|--|--|
|                                             | А.А. Солуянов        |  |  |  |
| Проверил:                                   |                      |  |  |  |
| к.фм. н., доц                               | д., доцент каф. МОСТ |  |  |  |
|                                             | К.А. Баркалов        |  |  |  |

## Оглавление

| Введение                             | 3  |
|--------------------------------------|----|
| Постановка задачи                    | 4  |
| Описание метода                      | 4  |
| Трудоемкость                         | 5  |
| Реализация                           |    |
| Описание алгоритма                   | 6  |
| Схема распараллеливания              |    |
| Подтверждение корректности алгоритма | 8  |
| Результаты                           | 10 |
| Тестовая инфраструктура              | 10 |
| Эксперименты                         | 10 |
| Заключение                           | 13 |
| Литература                           | 14 |

### Введение

Решение систем линейных алгебраических уравнений (СЛАУ) является достаточно важной вычислительной задачей (примерно 75% всех расчетных математических задач приходится на их решение). С решением СЛАУ связаны такие задачи, как вычисление определителей, обращение матриц, вычисление собственных значений и собственных векторов матриц, интерполирование, аппроксимация по методу наименьших квадратов, решение систем дифференциальных уравнений и многие другие. Современная вычислительная математика располагает большим арсеналом методов решения СЛАУ, а математическое обеспечение ЭВМ — многими пакетами программ и программными системами, позволяющими решать СЛАУ.

Методы решения СЛАУ можно разделить на две группы:

- 1. Прямые методы позволяют найти точное решение системы (метод Крамера, разложение Холецкого, метод Гаусса, LU разложение и т.д.)
- 2. Итерационные позволяют получить решение в результате последовательных приближений (методы Зейделя и Якоби,

Очень важно знать методы решения СЛАУ и уметь их применять.

В данной работе рассматривается прямой метод решения СЛАУ – метод LU – разложения.

### Постановка задачи

#### Описание метода

LU-разложение — это представление матрицы A в виде A = LU, где L — нижнетреугольная матрица с единичной диагональю, а U — верхнетреугольная матрица. LU — разложение является модификацией метода Гаусса.

LU-разложение существует только в том случае, когда матрица A обратима, а все ведущие (угловые) главные миноры матрицы A невырождены.

Недостаток стандартного алгоритма LU-разложения обусловлен тем, что его вычисления плохо соответствует правилам использования кэш-памяти — быстродействующей дополнительной памяти компьютера, используемой для хранения копии наиболее часто используемых областей оперативной памяти.

Это связано с тем, что при больших размерах матрицы во время арифметических операций над матрицами зачастую приходится обращаться к элементам, не лежащим вблизи в памяти, что приводит к неэффективному использованию кэша. Возможный способ улучшения ситуации — укрупнение вычислительных операций, приводящее к последовательной обработке некоторых прямоугольных подматриц матрицы *A*.

LU-разложение можно организовать так, что матричные операции (реализация которых допускает эффективное использование кэш-памяти) станут основными. Для этого представим матрицу  $A \in \mathbb{R}^{n \times n}$  в блочном виде

$$A = \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix} n - r,$$

$$r \quad n - r$$

где r – блочный параметр,  $A_{11}$  – подматрица матрицы A размера  $r \times r$ ,  $A_{12}$  – размера  $r \times (n-r)$ ,  $A_{21}$  – размера  $(n-r) \times r$ ,  $A_{22}$  – размера  $(n-r) \times (n-r)$ . Компоненты L и U искомого разложения также запишем в блочном виде

$$L = \begin{bmatrix} L_{11} & 0 \\ L_{21} & L_{22} \end{bmatrix} n - r, U = \begin{bmatrix} U_{11} & U_{12} \\ 0 & U_{22} \end{bmatrix} n - r,$$

$$r \quad n - r \qquad r \quad n - r$$

де  $L_{11}$ ,  $L_{21}$ ,  $L_{22}$ ,  $U_{11}$ ,  $U_{12}$ ,  $U_{22}$  — соответствующего размера подматрицы матриц L и U. Рассмотрим теперь связь между исходной матрицей и ее разложением в блочном виде.

$$\begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix} = \begin{bmatrix} L_{11} & 0 \\ L_{21} & L_{22} \end{bmatrix} \cdot \begin{bmatrix} U_{11} & U_{12} \\ 0 & U_{22} \end{bmatrix} = \begin{bmatrix} L_{11}U_{11} & L_{11}U_{12} \\ L_{21}U_{11} & L_{21}U_{12} + L_{22}U_{22} \end{bmatrix}$$

Блоки  $L_{11}$  и  $U_{11}$  можно найти, применив стандартный метод Гаусса .Затем, решая треугольные системы с несколькими правыми частями будет получено решение для блоков  $L_{21}$  и  $U_{12}$ .

Следующий шаг алгоритма состоит в вычислении редуцированной матрицы  $\widetilde{A}_{22}$ , в процессе которого используются ставшие известными блоки  $L_{21}$  и  $U_{12}$  и соотношение  $A_{22}=L_{21}U_{12}+L_{22}U_{22}$ .

$$\widetilde{A}_{22} = A_{22} - L_{21}U_{12} = L_{22}U_{22}$$

Как следует из данной формулы, LU-разложение редуцированной матрицы  $\widetilde{A}_{22}$  совпадает с искомыми блоками  $L_{22}$ ,  $U_{22}$  матрицы A, и для его нахождения можно применить описанный алгоритм рекурсивно.

#### Трудоемкость

Приведенная блочная схема требует порядка  $2/3n^3$  операций. Оценим долю матричных операций.

Пусть размер матрицы кратен размеру блоку, т.е. n = rN.

Операции, не являющиеся матричными, используются при выполнении разложения матрицы A на L и U и требуют  $2/3r^3$  операций.

В процессе блочного разложения потребуется решать N подобных систем, поэтому доля матричных операций можно оценить как

$$1 - \frac{\frac{N2r^3}{3}}{\frac{2n^3}{3}} = 1 - \frac{1}{N^2}$$

### Реализация

#### Описание алгоритма

Входными параметрами алгоритма является указатель на массив, в котором по строкам хранится матрица A и размерность матрицы n.

Формат выхода должен выглядеть как два указателя на массивы, в которых по строкам записаны матрицы L и U.

Весь итерационный процесс можно условно разделить на 4 секции:

- 1. Подсчет матриц  $L_{ii}$  и  $U_{ii}$  для блоков, располагающихся на диагонали.
- 2. Вычисление подматрицы  $U_{12}$ , решая верхнюю систему уравнений.
- 3. Вычисление подматрицы  $L_{21}$ , решая нижнюю систему уравнений.
- 4. Вычисление редуцированной матрицы  $\widetilde{A}_{22}$ .

Поэтому удобно выделить эти пункты в отдельные функции (Листинг 1-4).

```
void DiagonalMatrixDecomposition(int offset, int size, int &N, double* A, double* L, double*
U) {
    for (int i = 0; i < size; i++) {
        for (int j = 0; j < size; j++) {</pre>
            U[N * (offset + i) + offset + j] = A[N * (offset + i) + offset + j];
    }
    for (int i = 0; i < size; i++) {</pre>
        L[N * (offset + i) + offset + i] = 1;
        for (int k = i + 1; k < size; k++) {</pre>
             double mu = U[N * (offset + k) + offset + i] / U[N * (offset + i) + offset + i];
             for (int j = i; j < size; j++) {</pre>
                 U[N * (offset + k) + offset + j] -= mu * U[N * (offset + i) + offset + j];
            L[N * (offset + k) + offset + i] = mu;
            L[N * (offset + i) + offset + k] = 0;
        }
    }
    for (int i = 1; i < size; i++) {</pre>
        for (int j = 0; j < i; j++) {</pre>
            U[N * (offset + i) + offset + j] = 0;
        }
    }
}
```

Листинг 1. Выполнение разложения для диагональных блоков

```
void SolveUpper(int offset, int size, int& N, double* A, double* L, double* U) {
    int row_num;
    int col_num;
#pragma omp parallel for private(row_num, col_num)
    for (int k = 0; k < N - offset - BLOCK_SIZE; k++) {</pre>
        row_num = offset * N;
        col_num = offset + BLOCK_SIZE;
        U[row_num + col_num + k] = A[row_num + col_num + k];
        for (int i = 1; i < size; i++) {</pre>
             \label{eq:compum} \mbox{$\cup$ [row_num + i * N + col_num + k] = A[row_num + i * N + col_num + k];}
             for (int j = 0; j < i; j++) {
                 U[row_num + i * N + col_num + k] -= L[row_num + i * N + j + offset] *
U[row_num + j * N + col_num + k];
        }
    }
}
```

Листинг 2. Решение верхней системы уравнений

```
void SolveLower(int offset, int size, int& N, double* A, double* L, double* U) {
    int row_num;
    int col_num;
#pragma omp parallel for private(row_num, col_num)
    for (int k = 0; k < N - offset - BLOCK_SIZE; k++) {</pre>
        row_num = (offset + BLOCK_SIZE + k) * N;
        col num = offset;
        L[row_num + col_num] = A[row_num + col_num] / U[offset * N + col_num];
        for (int i = 1; i < size; i++) {
            L[row_num + col_num + i] = A[row_num + col_num + i];
            for (int j = 0; j < i; j++) {
                L[row_num + col_num + i] -= L[row_num + j + offset] * U[(offset + j) * N +
col_num + i];
            L[row_num + col_num + i] /= U[(offset + i) * N + col_num + i];
        }
    }
}
```

Листинг 3. Решение нижней системы уравнений

Листинг 4. Вычисление редуцированной матрицы

В конечном счете целевую функцию можно определить последовательным вызовом всех 4 функций N раз.

#### Схема распараллеливания

Так как большая часть алгоритма состоит циклов по обходу матриц, целесообразно применить механизма их распараллеливания.

Для этого была использована библиотека OpenMP, а именно директива «#pragma omp parallel for», с помощью которой циклы были поделены между несколькими потоками для независимого исполнения.

#### Подтверждение корректности алгоритма

Для проверки корректности рабы блочного LU — разложения был разработан метод, сравнивающий модуль разности соответствующих значений матрицы A и результата перемножения матриц L и U с некоторой малой константой (Листинг 5).

```
#define num(row,col) ((col) + (row) * size)
void IsCorrect(double* A, double* L, double* U, int size, double eps) {
    for (int i = 0; i < size; ++i)</pre>
        for (int j = 0; j < size; ++j)</pre>
             double sum = 0.;
             for (int k = 0; k < size; ++k)
                 sum += L[num(i, k)] * U[num(k, j)];
             if (abs(A[num(i, j)] - sum) \leftarrow eps) {
                 continue;
             }
             else {
                 std::cout << "LU decomposition isn't correct (Error > eps)" <</pre>
std::endl;
                 return;
             }
    std::cout << "Correct!" << std::endl;</pre>
}
```

Листинг 5. Проверка корректности алгоритма

## Результаты

## Тестовая инфраструктура

Вычислительные эксперименты проводились с использованием следующей инфраструктуры (Таблица 1).

Таблица 1. Тестовая инфраструктура

| Процессор            | 4 ядра, Intel(R) Core(TM) i7-8550U |
|----------------------|------------------------------------|
|                      | CPU @ 1.80GHz 1.99 GHz             |
|                      |                                    |
| Память (RAM, Cache)  | 8,00 ΓБ, L1 – 256 Kb, L2 – 1 Mb,   |
|                      | L3 – 8 Mb                          |
| Операционная система | Windows 10                         |
| Среда разработки     | Visual Studio 2019                 |
| Компилятор           | Intel(R) oneAPI DPC++/C++          |
|                      | Compiler 2021.1                    |
| Библиотеки           | OpenMP                             |

### Эксперименты

Опытным путем было установлено для данной тестовой инфраструктуры оптимальным значением размером блока является значение 128 (Таблица 2).

Далее с этим значением были проведены испытания (Таблица 3) зависимости времени выполнения алгоритма с разным числом потоков (от 1 до 4 по числу имеющихся физических ядер).

|      | 16      | 32       | 64       | 128      | 256      | 512      |
|------|---------|----------|----------|----------|----------|----------|
| 1000 | 0,2375  | 0,120495 | 0,107233 | 0,110736 | 0,100439 | 0,156114 |
| 2000 | 1,1369  | 1,12101  | 1,09944  | 1,02716  | 1,14272  | 1,45883  |
| 3000 | 3,28771 | 3,33355  | 3,2762   | 3,09814  | 3,90548  | 5,10591  |
| 4000 | 8,04812 | 8,02063  | 8,0707   | 7,4997   | 10,7184  | 16,7397  |
| 5000 | 19,5974 | 15,3946  | 15,9139  | 14,8915  | 22,6361  | 28,9361  |

Таблица 2. Зависимость времени алгоритма от размера блока



Рисунок 1. Зависимость времени алгоритма от размера блока

|      | 1       | 2        | 3        | 4        |
|------|---------|----------|----------|----------|
| 1000 | 0,43813 | 0,290818 | 0,214973 | 0,168785 |
| 2000 | 3,22723 | 1,80779  | 1,54497  | 1,46131  |
| 3000 | 10,3489 | 5,89579  | 4,83923  | 3,95649  |
| 4000 | 25,7261 | 13,6968  | 11,9213  | 11,46    |
| 5000 | 51,8605 | 33,5792  | 25,7835  | 21,5718  |

Таблица 3. Зависимость времени алгоритма от числа потоков при размере блока 128



Рисунок 2. Зависимость времени алгоритма от числа потоков при размере блока 128

### Заключение

В ходе данной лабораторной работы был изучен прямой метод решения СЛАУ - алгоритм блочного LU — разложения, применяемый к обратимой матрице A с невырожденными главными минорами.

В отличие от стандартного алгоритма LU – разложения, его модификация путем применения блочного разбиения позволила ускорить время работы программы за счет более эффективного использования кэш – памяти и удобного процесса распараллеливания вычислений.

В результате анализа производительности параллельной версии блочного разложения по сравнению с последовательной отмечается ее рост, что говорит об эффективности применяемой схемы.

# Литература

- 1. Баркалов К.А. Образовательный комплекс «Параллельные численные методы». Н.Новгород, Изд-во ННГУ 2011.
- 2. Самарский А.А., Гулин А.В. Численные методы. М.: Наука, 1989.
- **3.** Белов С.А., Золотых Н.Ю. Численные методы линейной алгебры. Н.Новгород, Издво ННГУ, 2005
- 4. Вербицкий В.В., Реут В.В. Введение в численные методы алгебры: учебное пособие/ В.В. Вербицкий, В.В. Реут. Одесса: Одесский национальный университет имени И.И. Мечникова, 2015. 165 с