

(Z_n^*) n گروه ضربی اعداد به پیمانه

پارسا تسبیح گو، صالح مستانی، محمدرضا معتبر ۲۸ تیر ۱۴۰۱

چکیده

در این متن به بررسی ساختار و خواص گروه Z_n^* به ویژه در حالتی که این گروه دوری است میپردازیم. در ادامه مسائل مربوط و کاربردهایی از گروه Z_n^* را مطرح میکنیم و تاثیر این گروه در رمزنگاری را تحلیل میکنیم.

۱ مقدمه

تعریف ۱. اگر n عدد طبیعی باشد آنگاه گروه Z_n^* را چنین تعریف می کنیم:

$$Z_n^* = \{a \in Z_n^+ | \gcd(a,n) = \mathbf{1}\}$$

اکنون ثابت می کنیم Z_n^* در اصول موضوعه صادق است.

دارای عضو خنثی است. Z_n^* . ۱

برهان. میدانیم ۱ $\gcd(1,n)=1$ ، لذا $\gcd(1,n)=1$ و طبق تعریف ضرب روی اعداد طبیعی ۱ همواره عضو خنثی میباشد.

سته است. جمل معرفی شده (از حالاً با · نمایش می دهیم) بسته است. Z_n^* . ۲

برهان. دو عضو دلخواه a و d در Z_n^* را در نظر بگیرید اگر Z_n^* بیس a ، پس a ی و می و برهان. دو عضو دلخواه a و a در a در نظر بگیرید اگر a و عضو دلخواه a و a در نتیجه عدد اول a چنان وجود دارد که a و مطابق تعریف a میتوان گفت a یا a بدون از دست دادن کلیات a مسئله فرض کنیم a و میتوان می دانیم چون a پس a و a با فرض کنیم a و نقو با فرض خلف باطل و a و a و a و نقو باطل و a و a و نقو باطل و باطل و a و نقو باطل و ب

٣. عمل . شركت يذير است.

برهان. از تعریف ضرب روی اعداد طبیعی نتیجه می شود ، · شرکت پذیر است.

۴. هر عضو در Z_n^* دارای وارون میباشد.

 $\gcd(a,n)=1$ عضو a را به طور دلخواه از Z_n^* انتخاب می کنیم، میتوان گفت

حال طبق لم بزو اعداد x و y چنان موجود هستند که 1 + ny = 1 این معادله به پیمانه n نیز باید برقرار باشد، در نتیجه 1 + ax + ny = 1 همچنین ادعا می کنیم 1 + ax + ny = 1 نتیجه 1 + ax + ny = 1 همچنین ادعا می کنیم 1 + ax + ny = 1 اول است زیرا:

فرض کنیم d(ax'+n'y)=1 ، آنگاه چون ax+ny=1 میتوان گفت $\gcd(x,n)=d$ پس $\gcd(x,n)=d$ از آنجا که A عددی صحیح است پس ۱ مضربی صحیح از d است، لذا تنها حالت ممکن برای d ، برابر بودنش با ۱ است.

. $ax\stackrel{n}{\equiv}$ ۱ و $x\in Z_n^*$ در نتیجه

نشان دادیم \mathbb{Z}_n^* در اصول موضوعه گروه صادق است ، در نتیجه \mathbb{Z}_n^* گروه است.

 $an+bm=\gcd(n,m)$ فرض کنیم $n,m\in\mathbb{N}$ آنگاه $a,b\in\mathbb{Z}$ چنان موجود هستند که

 $S = \{an + bm \mid a,b \in \mathbb{Z} \wedge an + bm > ullet \}$ برهان. تعریف می کنیم

طبق اصل خوش ترتیبی می دانیم S دارای کوچکترین عضو می باشد ، آن را d می نامیم، (S ناتهی است زیرا دست کم a یا a عضو a است)،

d|m و d|n عنيم d|n الم ثابت مي كنيم d

طبق الگوریتم تقسیم می دانیم $n = dq + r(\cdot \leq r < d)$ همچنین داریم:

$$r=n-dq=n-(an+bm)q=n({\bf 1}-aq)+m(bq)$$

d|m یا $r \in S$ یا $r \in S$ یا $r \in S$ پس با $t \in S$ پس می کند $t \in S$ یا $t \in S$ یا $t \in S$ یا $t \in S$ یا راحت می کند

مثل t ، کمتر مساوی d است. t . ثابت می کنیم هر مقسوم علیه مشترک n و m

فرض کنیم m=tv و m=tu در نتیجه

$$d = tua + tvb = t(ua + vb)$$

 $t \leq d$ پس $t \mid d$

به این ترتیب حکم ثابت می شود.

۲ قضایا

قضیه ۱. Z_n^* گروه آبلی است.

اثبات ۱. طبق تعریف ضرب روی اعداد طبیعی ، ضرب جابهجایی میباشد، در نتیجه · نیز جابهجایی است.

 Z_{Λ}^* مثال. جدول ضرب

٧	۵	٣	١	
٧	۵	٣	١	١
۵	٧	١	٣	٣
٣	١	٧	۵	۵
١	٣	۵	٧	٧

حال تعداد اعضای گروه Z_n^* را بررسی می کنیم.

تعریف ۰۲. تابع اویلر را با $\varphi(n)$ نمایش می دهیم و به این شکل تعریف می کنیم:

$$\varphi: \mathbb{N} \to \mathbb{N}$$

$$\varphi(n) = |Z_n^*|$$

این تابع را تابع اویلر گویند از آن جهت که نخستین بار اویلر در سال ۱۷۶۳ میلادی آن را معرفی کرد و آن را با π نمایش می دهند.

اما صورت امروزی آن توسط گاوس در سال ۱۸۰۱ میلادی معرفی شد.

لازم به ذکر است تابع φ نخستین بار برای بیان تعداد اعداد طبیعی کوچکتر از n که نسبت به آن اول هستند معرفی شد.

قضیه ۲۰. اویلر برای محاسبه $\varphi(n)$ فرمول زیر را ارائه کرد:

$$\varphi(n) = n \prod_{p|n} (1 - \frac{1}{p})$$

اثبات ۲. فرض کنیم $n=\prod_{i=1}^r p_i^{lpha_i}$ ، به ازای هر $1\leq i\leq r$ ، قرار دهیم $n=\prod_{i=1}^r p_i^{lpha_i}$ فرض کنیم شمول داریم:

$$\varphi(n) = n - |\bigcup_{i=1}^r A_i|$$

 p_i اعضای $A_i \cap A_j$ مضارب p_i مضارب $A_i = \frac{n}{p_i}$ ، همچنین به ازای هر $i \neq j$ اعضای A_i مضارب A_i مضارب $A_i = \frac{n}{p_i}$ مضارب $A_i = \frac{n}{p_i}$ داریم $A_i = \frac{n}{p_i}$ هستند لذا $A_i \cap A_j = \frac{n}{p_i}$ ، به همین ترتیب برای هر $A_i = \frac{n}{p_i}$ داریم $A_i = \frac{n}{p_i}$ داریم $A_i = \frac{n}{p_i}$ بس:

$$\varphi(n) = n(1 - \frac{1}{p_1}) \cdots (1 - \frac{1}{p_r})$$

 $.arphi(n imes m)=arphi(n) imesarphi(m) imesrac{\gcd(n,m)}{arphi(\gcd(n,m))}$. ۱ نتیجه.

$$\varphi(p^k) = p^{k-1}(p-1) \cdot \mathbf{Y}$$

در قضیه ۱ نشان دادیم Z_n^* آبلی است، اما برای شناخت بهتر Z_n^* باید بدانیم آیا Z_n^* دوری است؟ پیش از بررسی دوری بودن Z_n^* خوب است به مفهومی معادل در نظریه اعداد بپردازیم.

تعریف ۳. اگر n عددی طبیعی فرض کنیم اعداد $\{ \cdot, 1, 1, \dots, n-1 \}$ توسط رابطه R_n که به این شکل تعریف میشود:

$$a R_n b \iff a \stackrel{n}{\equiv} b$$

به تعدادی کلاس هم ارزی افراز میشود.

تعریف ۴. اگر n را عددی طبیعی فرض کنیم g را یک ریشه اولیه برای n گوییم هرگاه $[\cdot]_{R_n} \neq [\cdot]_{R_n}$ و برای هر x < n که x < n که x < n و x < n عدد طبیعی x < n چنان موجود باشد که x < n

این مفهوم توسط اویلر معرفی شد و گاوس در کتاب ۱۸۰۱ به طور گسترده به آن پرداخته است.

تعریف ۵. میدانیم همه گروههای دوری مرتبه n یکریخت هستند.

گروه دوری مرتبه n را در حالت کلی با C_n نمایش میدهیم و عمل آن st است.

تعریف ۶. گروه چهارتایی کلاین را با K_{ϵ} نمایش میدهیم.

قضیه ۳. برای هر عدد n طبیعی C_n به ازای هر d < n که $d \mid d < d$ دقیقا یک زیر گروه d عضوی دارد، همچنین زیرگروه دیگری ندارد.

. انگاه d|n باشد d ویرگروه d عضوی داشته باشد $H \leq C_n$ آنگاه $H \leq C_n$ ویرگروه d عضوی داشته باشد d

حال ثابت می کنیم برای هر d < n که $d \mid d$ دقیقا یک زیرگروه d عضوی داریم.

 $|\langle g^{rac{n}{d}} \rangle \leq C_n$ میدانیم اگر $|\langle g^{rac{n}{d}} \rangle| = d$ آنگاه $|\langle g^{rac{n}{d}}
angle|$ و

حال ثابت می کنیم $\langle g^{rac{n}{d}} \rangle$ تنها زیرگروه d عضوی است.

فرض کنیم $\langle g^{lpha} \rangle$ زیر گروهی d عضوی باشد. طبق الگوریتم تقسیم میتوان گفت $\alpha = \frac{n}{d}q + r \quad (r < \frac{n}{d})$ در نتیجه rd < n

$$(g^{\alpha})^d = (g^{\frac{n}{d}q+r})^d = g^{qn} * g^{rd} = e$$

:چون $g^{qn}=e$ پس

$$e * g^{rd} = e$$

:يسrd < n يس

 $rd = \cdot$

=چون $q \neq 0$ پس:

 $r = \cdot$

 $g^{lpha} \in \langle g^{rac{n}{d}}
angle$ درنتیجه $g^{lpha} = g^{rac{n}{d}q}$ و فرنتیجه نهایتا:

$$\langle g^{\alpha} \rangle = \langle g^{\frac{n}{d}} \rangle$$

قضیه ۴. اگر فرض کنیم G یک گروه متناهی باشد ، $H \leq G$ موجود باشد طوری که $H \cong K_{\mathfrak{k}}$ آنگاه G دوری نیست.

اثبات ۴. فرض کنیم $G \cong C_n$ مطبق قضیه ۳ ، G تنها یک زیر گروه مرتبه ۲ ممکن است داشته باشد، اما از آنجایی که $G \cong C_n$ فرض کنیم $G \cong C_n$ مطبق قضیه $G \cong C_n$ تنها یک زیر گروه مرتبه ۲ در نتیجه $G \cong C_n$ در نتیجه در نتیجه $G \cong C_n$ در نتیجه در نتی

تعریف ۷. اگر G را گروه فرض کنیم، تابع ψ_G را چنین تعریف می کنیم:

$$\psi_G: \mathbb{N} \to \mathbb{N}$$

$$\psi_G(m) = |\{x \in G| ord(x) = m\}|$$

. $\sum_{d|n} \psi_G(d) = n$. قضیه ۵

اثبات ۵. را در نظر بگیریم ، هر عضو C_n مرتبه مشخصی دارد که طبق قضیه لاگرانژ n را میشمارد. در نتیجه در حاصل جمع فوق هر عضو دقیقا یکبار شمارش شده و تعداد اعضا n است پس حاصل جمع فوق برابر n است.

دارد. وقیقا $\varphi(n)$ دقیقا C_n هازنده دارد.

است. $\varphi(n)$ است. کمتر یا مساوی $\varphi(n)$ است.

فرض کنیم $ord(g^k)=n$ همچنین فرض کنیم $g^k(k< n)$ اگر $g^k(k< n)$ اگر نیز یک سازنده برای $g^k(k< n)$ باشد در نتیجه $\gcd(k,n)=d$

$$(g^k)^{\frac{n}{d}} = (g^n)^{\frac{k}{d}} = e^{\frac{k}{d}} = e$$

d=1 پس $n\leq rac{n}{d}$ در نتیجه $ord(g^k)\leq rac{n}{d}$

پس توان هر سازنده C_n نسبت به n اول است.

 $\operatorname{cord}(g^k) = n$ حال ثابت می کنیم اگر ۱ $\operatorname{gcd}(k,n) = 1$

 $n \leq m$ پس $m \mid m$ پس $\gcd(k,n) = 1$ از آنجا که $n \mid km$ پس $g^{km} = e$ پس $ord(g^k) = m$ پس $ord(g^k) = m = n$ در نتیجه $m \leq m$ در نتیجه $m \leq m$ در نتیجه $m \leq m$ در $m \leq m$ در $m \leq m$ در نتیجه $m \leq m$ در $m \leq m$ در m

به این ترتیب حکم ثابت شد.

 $\sum_{d|n} \varphi(d) = n$. قضیه

اثبات ۱۰ را در نظر بگیریم، هر عضو آن مثل x زیر گروهی مثل $\langle x \rangle$ تولید می کند که یکتاست.

طبق قضیه لاگرانژ (یا قضیه ۳) می دانیم n از این به بعد زیر گروه t عضوی t این به بعد زیر گروه t عضوی t می نامیم و می دانیم t یکتا است، طبق قضیه t و برای هر t از این به بعد زیر گروه t عضوی t می نامیم و می دانیم t یکتا است، طبق قضیه t از این به بعد زیر گروه t عضوی t می نامیم و می دانیم t یکتا است، طبق قضیه t سازنده دارد پس هر سازنده دارد، از آنجا کا با ازای هر t و برای هر t و برای هر t که t از آنجا کا با ازای هر t و برای هر t و برای هر t عضو موجود است، لذا t داره و برای بار شمارش شده و همچنین t عضو موجود است، لذا t

نتیجه. از قضیه ۵ و ۷ نتیجه می گیریم:

$$\sum_{d|n} \psi(d) = \sum_{d|n} \varphi(d)$$

قضیه ۸. اگر $k\in\mathbb{N}$ و k>1 و k>1 و تنگاه Z_n^* دوری نیست.

اثبات ۸. گروه G را چنین تعریف می کنیم $G = \{1, -1, 1^{k-1} - 1, 1^{k-1} + 1\}$ توجه کنید که $G = \{1, -1, 1^{k-1} - 1, 1^{k-1} + 1\}$ ممان $G \subseteq K_{\mathfrak{f}}$ است. روشن است که $G \subseteq Z_n^*$ محالاً نشان می دهیم $G \subseteq K_{\mathfrak{f}}$ است.

$$(\mathbf{Y}^{k} - \mathbf{1})^{\mathsf{T}} \equiv \mathbf{Y}^{\mathsf{T}k} - \mathbf{Y} \times \mathbf{Y}^{k} + \mathbf{1} \equiv \cdot - \cdot + \mathbf{1} \equiv \mathbf{1} \mod n$$

$$(\mathbf{Y}^{k-1} - \mathbf{1})^{\mathsf{T}} \equiv \mathbf{Y}^{\mathsf{T}k-\mathsf{T}} - \mathbf{Y}^{k} + \mathbf{1} \equiv \mathbf{Y}^{k} \times \mathbf{Y}^{k-\mathsf{T}} - \mathbf{Y}^{k} + \mathbf{1} \equiv \cdot - \cdot + \mathbf{1} \equiv \mathbf{1} \mod n$$

$$(\mathbf{Y}^{k-1} + \mathbf{1})^{\mathsf{T}} \equiv \mathbf{Y}^{\mathsf{T}k-\mathsf{T}} + \mathbf{Y}^{k} + \mathbf{1} \equiv \mathbf{Y}^{k} \times \mathbf{Y}^{k-\mathsf{T}} + \mathbf{Y}^{k} + \mathbf{1} \equiv \cdot - \cdot + \mathbf{1} \equiv \mathbf{1} \mod n$$

حال طبق قضیه γ می توان نتیجه گرفت Z_n^* دوری نیست.

 $.\psi(d)=arphi(d)$ یا $\psi(d)=\cdot$ هر d داریم Z_p^* به ازای هر d

 $.\psi(d)=ullet$ بس ord(a)=d موجود نباشد که $a\in Z_p^*$ پس $a\in Z_p^*$

حال فرض می کنیم $a\in Z_p^*$ و $a\in Z_p^*$ از آنجا که معادله $a\in Z_p^*$ حداکثر a جواب دارد و همه $a\in Z_p^*$ متفاوت هستند و a^i a^i a (خاصیت زیرگروه دوری) لذا تمامی جوابهای معادله a در میان دنباله a هستند، در نتیجه هر عضو a a که a که a که a a میتوان نتیجه گرفت a و a

از تعریف دنباله D روشن است که اعضا D همان اعضا a همان اعضا $b \in Z_p^*$ هستند و لذا D همچنین هر عضو مثل D همچنین هر وشن است که اعضا D همان اعضا D هستند و لذا D همچنین هر عضو مثل D سازنده دارد در نتیجه در کل C سازنده برای C است، با توجه به قضیه D میتوان گفت C سازنده دارد در نتیجه در کل D عضو از D موجود است ، پس D عضو از D عضو از D عضو از مرتبه D موجود است ، پس D عضو از مرتبه D موجود است ، پس D عضو از مرتبه D عضو از مرتبه D موجود است ، پس D عضو از عربه به قضیه D میتوان گفت D میتوان گفت D میتوان گفت D میتوان گفت D سازنده دارد در نتیجه در کل میتوان گفت D میتوان گفت D سازنده دارد در نتیجه در کل میتوان گفت D میتوان گفت D سازنده دارد در نتیجه در کل میتوان گفت D سازنده بازی میتوان گفت D میتوان گفت D سازنده دارد در نتیجه در کل میتوان گفت D سازنده دارد در نتیجه در کل میتوان گفت D سازنده بازی میتوان گفت D سازنده دارد در نتیجه در کل میتوان گفت D سازنده بازی میتوان گفت D سازنده دارد در نتیجه در کل میتوان گفت D سازنده بازی میتوان که میتوا

 $\psi(d) = \varphi(d)$ ، $d \big| |Z_p^*|$ به ازای هر d که $|Z_p^*|$ به ازای هر $\psi(d) = \varphi(d)$ ، $\psi(d) = \varphi(d)$.

- [1] Gauss, Carl Friedrich. Disquisitiones arithmeticae. Translated by Arthur A. Clarke. Springer, 1986
- [2] Shoup, Victor. A computational introduction to number theory and algebra. Cambridge university press, 2009.
- [3] Witno, Amin. The primitive root theorem. (www.witno.com/numbers/chap5.pdf)

شکل ۱: Carl Friedrich Gauss