Curved Yang-Mills gauge theories

based on my preprint arXiv:2210.02924

Simon-Raphael Fischer

30 December 2022

Table of contents

- Curved Yang-Mills gauge theories
 - Motivation
- 2 Integration
 - Principal bundles based on Lie group bundle actions
 - Connections
- 3 Conclusion

Infinitesimal gauge theory

Motivation

Guide: Curved Yang-Mills-Higgs gauge theory

Classical formalism	CYMH GT
Lie algebra $\mathfrak g$ as $M \times \mathfrak g$	Lie algebroid $E o N$
${\mathfrak g} ext{-action }\gamma$	Anchor ρ of E
	& E-connections
Canonical flat connection $ abla^0$	General connection $ abla$ on E
on $M imes \mathfrak{g}$	

Motivation

Guide: Curved Yang-Mills-Higgs gauge theory

Classical formalism	CYMH GT
Lie algebra $\mathfrak g$ as $M \times \mathfrak g$	Lie algebroid $E o N$
$\mathfrak{g}\text{-action }\gamma$	Anchor ρ of <i>E</i> & <i>E</i> -connections
Canonical flat connection $ abla^0$ on $M imes \mathfrak{g}$	General connection ∇ on E

Remarks (Why a "curved theory"?)

Usually, the field strength F is given by (abelian, for simplicity)

$$F := \mathrm{d}A = \mathrm{d}^{\nabla^0}A.$$

 \leadsto We will use a general connection ∇ instead of ∇^0 , and ∇ may not be flat.

	Classical	Curved
Infinitesimal	Lie algebra ${\mathfrak g}$	LAB g
Integrated	Lie group <i>G</i>	LGB¹ 𝒯

$$\begin{array}{c} G \longrightarrow \mathscr{G} \\ \downarrow^{\pi} \\ M \end{array}$$

¹LGB = Lie group bundle

Definition (LGB actions, simplified)

$$\begin{array}{c} \mathscr{G} \\ \downarrow \\ \mathscr{P} \stackrel{\pi}{\rightarrow} M \end{array}$$

 $\mathscr{P} \stackrel{\pi}{\to} M$ a fibre bundle. A **right-action of** \mathscr{G} **on** \mathscr{P} is a smooth map $\mathscr{P} * \mathscr{G} := \pi^* \mathscr{G} = \mathscr{P} \times_M \mathscr{G} \to \mathscr{P}$, $(p,g) \mapsto p \cdot g$, satisfying the following properties:

$$\pi(p \cdot g) = \pi(p), \tag{1}$$

$$(p \cdot g) \cdot h = p \cdot (gh), \tag{2}$$

$$p \cdot e_{\pi(p)} = p \tag{3}$$

for all $p \in \mathscr{P}$ and $g, h \in \mathscr{G}_{\pi(p)}$, where $e_{\pi(p)}$ is the neutral element of $\mathscr{G}_{\pi(p)}$.

Examples

Example

 \mathscr{G} acts canonically on itself:

$$\mathscr{G} * \mathscr{G} \to \mathscr{G},$$

 $(q,h) \mapsto qh.$

Example (Recovering Lie group action)

- Either by $M = \{*\}.$
- ullet Or by $\mathscr{G}\cong M\times G$, then also $\mathscr{P}*\mathscr{G}\cong \mathscr{P}\times G$, and we can define

$$\mathscr{P} \times G \to \mathscr{P},$$

 $(p,g) \mapsto p \cdot g := p \cdot (\pi(p), g),$

which is equivalent to $\mathscr{P} * \mathscr{G} \to \mathscr{P}$.

Examples

Example

 \mathscr{G} acts canonically on itself:

$$\mathscr{G} * \mathscr{G} \to \mathscr{G},$$

 $(q,h) \mapsto qh.$

Example (Recovering Lie group action)

- Either by $M = \{*\}$.
- ullet Or by $\mathscr{G}\cong M\times G$, then also $\mathscr{P}*\mathscr{G}\cong \mathscr{P}\times G$, and we can define

$$\mathscr{P} \times G \to \mathscr{P},$$

 $(p,g) \mapsto p \cdot g := p \cdot (\pi(p), g),$

which is equivalent to $\mathscr{P} * \mathscr{G} \to \mathscr{P}$.

⇒ Think of the "classical" theory as coming from a trivial LGB

Examples

Example

 \mathscr{G} acts canonically on itself:

$$\mathscr{G} * \mathscr{G} \to \mathscr{G},$$

 $(q,h) \mapsto qh.$

Example (Recovering Lie group action)

- Either by $M = \{*\}$.
- ullet Or by $\mathscr{G}\cong M\times G$, then also $\mathscr{P}*\mathscr{G}\cong \mathscr{P}\times G$, and we can define

$$\mathscr{P} \times G \to \mathscr{P},$$

 $(p,g) \mapsto p \cdot g := p \cdot (\pi(p), g),$

which is equivalent to $\mathscr{P} * \mathscr{G} \to \mathscr{P}$.

 \Rightarrow Think of the "classical" theory as coming from a trivial LGB

Definition (Principal bundle)

Still a fibre bundle

$$G \longrightarrow \mathscr{P}$$

$$\downarrow^{\pi}$$
 M

but with \mathscr{G} -action

$$\mathscr{P} * \mathscr{G} \to \mathscr{P}$$
 $\mathscr{P} * \mathscr{G}$

simply transitive on fibres of \mathcal{P} , and "suitable" atlas.

Connections

Connection on \mathcal{P} : Idea

But:

$$r_g: \mathscr{P}_X \to \mathscr{P}_X$$

 $D_p r_g$ only defined on vertical structure

Connection on \mathscr{P} : Idea

But:

$$r_g:\mathscr{P}_{\!\scriptscriptstyle X} o\mathscr{P}_{\!\scriptscriptstyle X}$$
 $\mathrm{D}_p r_g$ only defined on vertical structure

Connection on \mathcal{P} : Idea

Use
$$\sigma \in \Gamma(\mathscr{G}) : r_{\sigma}(p) \coloneqq p \cdot \sigma_{\pi(p)}$$

Connection on \mathcal{P} : Revisiting the classical setup

If \mathscr{P} a typical principal bundle (\mathscr{G} trivial, $\sigma \equiv g$ constant), and H a connection:

Connection on \mathcal{P} : Revisiting the classical setup

If \mathscr{P} a typical principal bundle (\mathscr{G} trivial, $\sigma \equiv g$ constant), and H a connection:

Remarks (Integrated case)

Parallel transport $PT^{\mathscr{P}}_{\alpha}$ in \mathscr{P} :

$$\mathsf{PT}_{\alpha}^{\mathscr{P}}(p\cdot g) = \mathsf{PT}_{\alpha}^{\mathscr{P}}(p)\cdot g$$

where $\alpha: I \to M$ is a base path

Connections

Connection on \mathcal{P} : General case

Remarks (Integrated case)

Ansatz:

$$\mathsf{PT}^{\mathscr{P}}_{\alpha}(p \cdot g) = \mathsf{PT}^{\mathscr{P}}_{\alpha}(p) \cdot \mathsf{PT}^{\mathscr{G}}_{\alpha}(g)$$

Connections

Connection on \mathcal{P} : General case

Remarks (Integrated case)

Ansatz:

$$\mathsf{PT}^{\mathscr{P}}_{\alpha}(p \cdot g) = \mathsf{PT}^{\mathscr{P}}_{\alpha}(p) \cdot \mathsf{PT}^{\mathscr{G}}_{\alpha}(g)$$

Remarks (General situation)

Introduce connection on \mathscr{G} $\Rightarrow \nabla$ on the LAB q of \mathscr{G}

Summary

	Locally	Globally
Curved Yang-Mills	Pre-classical	$\operatorname{ad}(\mathbb{S}^7 o \mathbb{S}^4)$ curved

Remarks (Integrated point of view)

This is probably linked to that an LGB is locally trivial → LGB action locally equivalent to a Lie group action

Hope: Structural Lie groupoids

Gauge theory	Structure
Yang-Mills	Lie group <i>G</i>
Curved Yang-Mills	Lie group bundle ${\mathscr G}$
Curved Yang-Mills-Higgs	Lie groupoid &?

Remarks

- Richer set of principal bundles, containing LGBs.
- May result into obstruction statements for curved Yang-Mills-Higgs gauge theories.

Thank you!