The first order system for convection-diffusion can be written in a variety of ways. For $a, b \in [0, 1]$, we can distribute the ϵ factor

$$\nabla \cdot (\beta u - \epsilon^a \sigma) = f$$
$$\frac{1}{\epsilon^b} - \epsilon^{(1-a-b)} \nabla u = 0.$$

a controls the distribution of ϵ into the conservation equation, while b determines the distribution of ϵ onto either the σ or ∇u term in the stress equation.

Demkowicz and Heuer use a=0, b=1, while Broersen and Stevenson use the choice of a=1/2 and b=0, noting that, as $\epsilon \to 0$, the first order system decouples into the pure convection equation for u and a trivial equation for σ .

So long as a+b>0, then the trace of u resulting from integration by parts of $\epsilon^{(1-a-b)}\nabla u$ will carry with it a power of ϵ , such that, as $\epsilon \to 0$, the outflow boundary condition will release in the limit.