编者按: 课程的开发非一日之功, 需要日积月累的摸索。如何在已有课程基础上, 生发新的创造力, 使教学更上一层楼, 使学习更有成效,值得每一位教育者深思。

'物联网与大数据创意实验" 课程的 设计和实施

谢作如 刘正云 浙江省温州中学

● 缘起

通俗地讲,物联网就是"物物相连的因特网",其目标是让 万物沟通对话。在众多媒体的宣传下,物联网成为当前最热门 的信息技术发展趋势之一。2012年,我无意中听说无锡已经有 老师开发了物联网技术方面的课程,深入了解后才知道,江苏 省已经在义务教育信息技术课程指导纲要中,把"物联网技 术"作为拓展模块在全省推行。

在惊讶之余,我通过江苏的老师找到了小学和初中的《物 联网技术》教材。细读了教材后,难免有些失望。比如,教材采 用扫盲的形式,向学生介绍物联网的神奇应用,然后逐一介绍 各种传感器、RFID设备等,学生却没有机会真正使用这些设 备,哪怕学习了整个课程,学生也只能了解物联网技术的皮毛, 更不用说自己动手去设计或者搭建一个简单的物联网应用了。

那么,能不能设计一门和物联网技术相关,并着眼于学生 的实践能力,让学生能真正动手完成各种实验的物联网课程? 同样,物联网产生大数据,要研究物联网技术,就要对数据处 理方面有一定的了解。于是,就有了这一门课程——物联网与 大数据创意实验。

●设计

1.课程目标

本课程以动手完成实验为主,通过搭建各种应用实验, 简单修改代码,实现各种物联网功能。学生不仅对物联网的应 用有比较深入的体验,还能将各种传感器的数据采集到电脑 中进行分析,能初步认识感知系统和传输系统等物联网核心 技术。

2.课程思路

支撑物联网发展的三大关键技术分别为:感知、传输、计 算,其应用流程如下图所示。传感器感知外界信息,这些信息 经过自身的智能筛选以后,通过网络介质传输到服务器,服务 器以实现预设的规则处理并分析信息,命令执行器执行相关 动作,实现如智能家居之类的功能。而传感器和执行器都是控 制器(单片机)来管理的。

所以,我们将本课程的教学内容分为信息感知、信息传 输、信息分析、智能应用等四个方面。

3.教学内容

因为授课对象是高中学生,相对而言,我们设计的内容比 江苏的物联网技术模块要难一些。例如,在"信息感知"环节 中,加入了"智能感知"概念,在数据传输到服务器之前,我们 希望控制器本身可以对信息作部分筛选,智能判断相关信息 是否有效,然后决定是否上传。又如,在"信息分析"环节,我们 加入了数据库管理和分析方面的一些知识,让学生真正体验 到真实的"大数据"。而整个课程的教学则围绕着让学生设计

我们给这一课程设计了18课时,其实从其涵盖内容的复 杂度来看,即使安排36课时,甚至72课时都是可以的。因为 仅设计了18课时,基本上避开了复杂的Arduino代码,以体 验为主。

内容	设计意图	课时
信息感知	1.了解物联网的相关概念、特征及关键技术	5
	2.了解感知物体信息的技术	
	3.了解对物体信息的标识技术	
	4.了解常见传感器的类型功能和原理	
	5.能根据需求,正确选择传感器,能根据使用说明,正确采集信息	
	6.体验智能采集,能根据信息的变化,改变采集的速度	
	7.能将信息显示在LCD液晶屏上	
信息传输	1.了解射频识别(RFID)技术	4
	2.了解基于串口的数据传输技术,能使用串口工具正确采集信息	
	3.了解信息传输过程中常见的组网技术,如蓝牙、Zigbee、2.4G等	
	4.了解常见的总线传输技术,如I2C,DHII等	
信息分析	1.了解数据库技术,体验传感器采集得到的"大"数据	4
	2.能够根据需求筛选有用的数据	
	3.能够根据数据绘制出各类图表,并进行分析	
智能应用	1.了解并体验智能家居技术	5
	2.能够从生活中发现物联网技术的应用	
	3.能够利用现有的物联网系统进行体验性实践	
	4.能够利用实验器材,设计并制作简易的物联网系统	
	5.能够从日常生活中发现可以借助物联网技术解决的问题,分析任务需求,选	
	择合适的信息感知和传输技术,设计富有创意的解决方案	

● 实施

目前,"物联网与大数据创意实验"课程已经实施了一轮, 在教学过程中我们不断修改教学器材和教学纲要,最终目标 是希望在学生能够接受的前提下,尽可能贴近生活,让学生应 用物联网技术做出有创意的应用来。

1.教学(实验)器材配置

"物联网与大数据创意实验"课程涉及很多方面的技术, 其中实验器材的选择非常关键。用厂家成型的物联网体验产 品,还是用开源的Arduino系列模块一度成为困扰我们的难 题。经过多次比较,我们最终选择了Arduino。教学器材包括 Arduino UNO, V7扩展板, Bluno扩展板, 光线、声音、灰尘、

加速度等传感器, 舵机(带云台), 移动电源等。演示器材包括 Yeelight系列产品、Broadlink系列产品、Arduino Bluno、网 络扩展板、Arduino yun\PCduino等。这些器材都能通过淘 宝网购买。

2.物联网应用平台选择

为方便物联网爱好者和行业 用户开发基于物联网的应用,国内 有多家公司提供了物联网应用平 台,如Yeelink和乐联网。经过比较, 发现这两个平台还存在某些问题, 如它们都不支持局域网版本,基于 公网的数据服务,将导致课堂教学 存在很多不确定因素。而且,平台 的部分操作过于麻烦,而这一课程 的学习还是以简单的体验为主。

为此,我们在北京师范大学教 育技术学院傅骞老师的支持下,设 计了能支持局域网的物联网应用平 台。该平台的基本功能和Yeelink、 乐联网类似,可以把某个、某组的传 感器上传汇总到网络数据库,再根 据需求显示图表,或者根据某一规 则,执行某一预设的动作。

3.教学案例:智能手环

(1) 教材分析

《智能手环:加速度传感器》是《物联网与大数据》的第四 课。通过前面一课的学习,学生已经初步认识了各种传感器, 模拟输入以及数字输入,学会了多传感器输入。本节课将了解 加速度传感器的原理及应用,根据数值判断当前运动状态,分 析传感器数值。

(2) 教学目标

①初步认识智能手环。②了解加速度传感器原理。③分析 加速度传感器数值,判断运动状态。④认识分支语句。

(3)教学重点

了解加速度传感器原理以及智能手环。

(4) 教学难点

分析传感器数值,判断相应状态。

(5) 教学过程

◇引入新课。

教师播放智能手环宣传片(索尼SmartBand智能手环宣 传片)。

◇讲解智能手环相关知识。

教师向学生解释智能手环是一款穿戴式智能设备。用户 通过其可以记录日常生活中锻炼、睡眠和饮食等的实时数据, 并将这些数据与iPhone、iPad和iPod touch同步,起到通过数 据指导健康生活的作用。并以提问的形式引导学生思考智能 手环是通过什么来感知运动状态的。

学生上网搜索智能手环,了解其功能、原理等。

◇讲解加速度传感器工作原理。

加速度传感器是一种能够测量物体在加速过程中作用 在物体上的力的电子设备,主要用于了解物体在运动过程中 的运动状态。其工作原理是:传感器里的敏感元件因为受到外 力的作用导致发生形变,可以利用仪器测量它的变形量,接着 利用相关的电路把变形量转换成电压输出,这样就可以得到 对应的加速度的信号,可以据此测量加速度。

教师提问:加速度传感器还可以有哪些应用?

学生回忆手机里的加速度传感器,上网查找本次实验用 到的三轴加速度传感器,了解其芯片。还可以做进一步的拓 展,简单罗列常见的加速度芯片,进行比较。

◇教师演示加速度传感器实验。

教师通过视频演示(Arduino LED点阵、加速度传感 器),让学生观察加速度传感器的方向与X、Y、Z的对应关系。

学生观察加速度传感器变化方向对应的LED亮灭,推测 加速度传感器的方向与X、Y、Z的对应关系。

◇学生实验:加速度传感器。

教师讲解实验内容、器材和要求。实验内容是:加速度传 感器与Arduino板子的数字针脚相连,在串口监视器中显示传 感器的值。实验器材包括: 主板Arduino Uno xl、Arduino扩 展板xl、连接线USB数据线xl及传感器加速度传感器xl。特别 需要注意的是实验中应主要引导学生通过改变加速度传感器 状态,读取X、Y、Z的变化。

学生从实验器材盒子找出加速度传感器。并且按照 PPT提示的接线接法,将加速度传感器接到相应的数字口 $(X\rightarrow A0, Y\rightarrow A1, Z\rightarrow A2)$,学生自己通过串口输出相应的值,分 析数值判断加速度传感器对应状态。

◇课堂总结。

学生初步认识了智能手环:了解了加速度传感器原理:学 会了分析加速度传感器的数值,能够判断运动状态;能理解分 支语句的运用。

◇布置作业。

利用网络查找更多加速度传感器应用的例子,作进一步 了解。e

编者按:学习知识→将知识内化为技能→通过实践操作深化对知识的理解→实现创新,如大多数教育者和学习者都 可将这一过程无限循环下去,那么文化迁移之后必将会引领中国制造业创造更大的价值。

"室内激光测距测高仪" 的设计

张禄 南京师范大学教育科学学院

目前,激光测距仪广泛应用于农业、地质、气象、军事、建 筑、机器人等多个领域,具有重量轻、体积小、操作简单、快速 准确等优点。但由于自身工作原理或者复杂的结构,也导致了 激光测距仪有着明显的不足,如设计复杂,成本昂贵,易产生