COMP 1201 Algorithmics Shortest Path

Hikmat Farhat

Single Source Shortest Path

- Given a graph G = (V, E) with a real-valued weight function $w : E \to \mathbb{R}$ we often ask the question:
- What is the minimal cost (shortest) path from $s \in V$ to all other vertices of the graph.
- We will look at two algorithms that perform that task
 - Bellman-Ford.
 - Oijkstra.
- First we need some definitions and theorems.

- Let G = (V, E) with the associated weight function $w : E \to \mathbb{R}$.
- The total weight of a path $p = (v_0, \dots, v_k)$ is the sum of weights of individual edges:

$$w(p) = \sum_{i=1}^{k} w(v_{i-1}, v_i)$$

ullet The shortest path cost δ

$$\delta(u,v) = \begin{cases} \min_{p} w(p) & \text{if there at least one path from u to v} \\ \infty & \text{otherwise} \end{cases}$$

Negative weights and cycles

- Even if a path contains edges with negative weight a shortest path can still be defined.
- It is undefined if the path contains a negative weight cycle.
- This is because we can "cross" the cycle as many times as we want, every time lower the cost.
- Therefore in the case when there is a negative cycle on a path from u to v then we set $\delta(u,v)=-\infty$ where $\delta(a,b)$ is the shortest path cost from a to b.

Example of Negative Cycles

Figure: from CLRS

- $\delta(s, a) = 3, \delta(s, b) = -1, \delta(s, c) = 5, \delta(s, d) = 11.$
- (e, f) form a negative cycle therefore any node reachable from s through this cycle has $\delta = -\infty$ $\delta(s, e) = \delta(s, f) = \delta(s, g) = -\infty$
- h, i, j are not reachable from s thus $\delta(s, h) = \delta(s, i) = \delta(s, j) = \infty$

Representation of Shortest Paths

- In all the algorithms that we will deal with, we maintain for every vertex v its predecessor v.p (which could be NULL)
- At termination v.p will be the predecessor of v on a shortest path from source s to v.
- We also maintain a value v.d which at termination will be the value of the shortest path cost from source s to v.
- During the execution of the algorithm v.d will be an upper bound on the value of the shortest path cost.

Relaxation

- **Relaxing** an edge (u, v) means testing if we can improve the shortest path cost of v by using the edge (u, v).
- If we can then we update v.d and v.p.

Figure: from CLRS

- In the figure to the left the cost of v was changed to the new cost (7) whereas to the right it was not changed since the new cost (7) is bigger than the current (6).
- What is NOT shown is the change to v.p in the first case.

Initialization and Relaxation

ullet Initially all vertices (except the source) have cost ∞ and no predecessors (including the source).

```
INITIALIZE(G,s)
foreach v \in V do
     v.d \leftarrow \infty
     v.p \leftarrow NULL
s.d \leftarrow 0
```

```
RELAX(u,v)
if v.d > u.d + w(u, v) then
    v.d \leftarrow u.d + w(u, v)
    v.p \leftarrow u
```


Bellman-Ford Algorithm

- The Bellman-Ford algorithm computes the shortest path from a given source to all other nodes in the graph.
- It works with negative weights.
- It can detect negative cycles.
- It uses the previously defined procedure RELAX to compute the shortest path.

Bellman-Ford Pseudo Code

```
BELLMAN-FORD(G,s);
INITIALIZE(G,s)
for i \leftarrow 1 To V-1 do
   foreach (u, v) \in E do
       RELAX(u,v)
foreach (u, v) \in E do
   if v.d > u.d + w(u, v) then
       return FALSE
return TRUE
```

Shortest Path/COMP 1201 Algorithmics

Complexity of Bellman-Ford

- The initialization is O(|V|).
- the double loop is $O(|V| \cdot |E|)$.
- Therefore the total cost of the Bellman-Ford is $O(|V| \cdot |E|)$.

Dijkstra's Algorithm

- Dijkstra's algorithm is another single source shortest path.
- It works when all weights are positive.
- We will see that it is faster than the Bellman-Ford algorithm.
- It maintains a set S of nodes whose shortest paths have been determined
- All other nodes are kept in a min-priority queue to keep track of the next node to process.

a is source

neighbors of a

neighbors of a

neighbors of a

neighbors of a

neighbors of b

neighbors of b

neighbors of b

neighbors of b

neighbors of h

neighbors of h

neighbors of h

neighbors of h

neighbors of c

neighbors of g

neighbors of g

neighbors of g

neighbors of i

neighbors of d

neighbors of d

neighbors of d

neighbors of f

neighbors of f

<u>Done</u>

Complexity

- The running time of Dijkstra's algorithm depends on the implementation of the queue.
- Using a min-heap on a sparse graph gives complexity of $O((V + E) \log V)$.
- This is because the while loop executes V times. The
 extract-min is O(log V) for a cost of V log V. The relax
 includes an key update which means log V. Since each edge is
 relaxed at most once then the total is E with a cost of
 E log V.

And the shortest PATH?

- The algorithm computes the shortest distance from the source to all other nodes.
- But in most situations we are interested in actual shortest path from the source to the destinations.
- This can be done by updating and saving the predecessor of each node.

a is source

neighbors of a

neighbors of a

neighbors of a

neighbors of a

ETC...

<u>Done</u>

Recovering the shortest path

- By iterating backwards over the predecessors we can recover the shortest path.
- For example, consider node e
- e.p = f, f.p = g, g.p = h, h.p = b, b.p = a
- So the shortest path from a to e is a, b, h, g, f, e

Dijkstra Pseudo Code

```
DIJKSTRA(G,s);
INITIALIZE(G,s)
S \leftarrow \emptyset
Q \leftarrow V
while Q \neq \emptyset do
     u \leftarrow \text{EXTRACT-MIN}(Q)
     S \leftarrow S \cup \{u\}
     foreach v \in adj[u] do
          RELAX(u,v)
```

Complexity

Let n = |V| and m = |E| and Q is a min-heap.

```
DIJKSTRA(G,s);
   INITIALIZE(G,s)
                                                                             O(n)
1 S \leftarrow \emptyset
                                                                            O(1)
2 Q \leftarrow V
                                                                            O(n)
3 while Q \neq \emptyset do
                                                                            O(n)
       u \leftarrow \text{EXTRACT-MIN}(Q)
                                                                        O(\log n)
4
       S \leftarrow S \cup \{u\}
                                                                             O(1)
5
       foreach v \in adj[u] do
                                                                      O(|adj[u])
6
                                                                        O(\log n)
            RELAX(u,v)
```

The dominant term comes from the execution of line 7 O(m) times(sum of adjacencies) for a total of $O(m \log n)$.