

UNITED STATES PATENT AND TRADEMARK OFFICE

UNITED STATES DEPARTMENT OF COMMERCE
United States Patent and Trademark Office
Address: COMMISSIONER FOR PATENTS
P.O. Box 1450
Alexandria, Virginia 22313-1450
www.uspto.gov

APPLICATION NO.	FILING DATE	FIRST NAMED INVENTOR	ATTORNEY DOCKET NO.	CONFIRMATION NO.
09/712,576	11/14/2000	Ryo Yoshida	JA999144	9735
46369	7590	09/28/2004	EXAMINER	
HESLIN ROTHENBERG FARLEY & MESITI P.C. 5 COLUMBIA CIRCLE ALBANY, NY 12203			BRUCKART, BENJAMIN R	
			ART UNIT	PAPER NUMBER
			2155	

DATE MAILED: 09/28/2004

Please find below and/or attached an Office communication concerning this application or proceeding.

Office Action Summary	Application No.	Applicant(s)	
	09/712,576	YOSHIDA, RYO	
	Examiner Benjamin R Bruckart	Art Unit 2155	

-- The MAILING DATE of this communication appears on the cover sheet with the correspondence address --

Period for Reply

A SHORTENED STATUTORY PERIOD FOR REPLY IS SET TO EXPIRE 3 MONTH(S) FROM THE MAILING DATE OF THIS COMMUNICATION.

- Extensions of time may be available under the provisions of 37 CFR 1.136(a). In no event, however, may a reply be timely filed after SIX (6) MONTHS from the mailing date of this communication.
- If the period for reply specified above is less than thirty (30) days, a reply within the statutory minimum of thirty (30) days will be considered timely.
- If NO period for reply is specified above, the maximum statutory period will apply and will expire SIX (6) MONTHS from the mailing date of this communication.
- Failure to reply within the set or extended period for reply will, by statute, cause the application to become ABANDONED (35 U.S.C. § 133). Any reply received by the Office later than three months after the mailing date of this communication, even if timely filed, may reduce any earned patent term adjustment. See 37 CFR 1.704(b).

Status

- 1) Responsive to communication(s) filed on 18 August 2004.
- 2a) This action is FINAL. 2b) This action is non-final.
- 3) Since this application is in condition for allowance except for formal matters, prosecution as to the merits is closed in accordance with the practice under *Ex parte Quayle*, 1935 C.D. 11, 453 O.G. 213.

Disposition of Claims

- 4) Claim(s) 1-19 is/are pending in the application.
- 4a) Of the above claim(s) _____ is/are withdrawn from consideration.
- 5) Claim(s) _____ is/are allowed.
- 6) Claim(s) 1-19 is/are rejected.
- 7) Claim(s) _____ is/are objected to.
- 8) Claim(s) _____ are subject to restriction and/or election requirement.

Application Papers

- 9) The specification is objected to by the Examiner.
- 10) The drawing(s) filed on _____ is/are: a) accepted or b) objected to by the Examiner.
Applicant may not request that any objection to the drawing(s) be held in abeyance. See 37 CFR 1.85(a).
Replacement drawing sheet(s) including the correction is required if the drawing(s) is objected to. See 37 CFR 1.121(d).
- 11) The oath or declaration is objected to by the Examiner. Note the attached Office Action or form PTO-152.

Priority under 35 U.S.C. § 119

- 12) Acknowledgment is made of a claim for foreign priority under 35 U.S.C. § 119(a)-(d) or (f).
 - a) All b) Some * c) None of:
 1. Certified copies of the priority documents have been received.
 2. Certified copies of the priority documents have been received in Application No. _____.
 3. Copies of the certified copies of the priority documents have been received in this National Stage application from the International Bureau (PCT Rule 17.2(a)).

* See the attached detailed Office action for a list of the certified copies not received.

Attachment(s)

- 1) Notice of References Cited (PTO-892) *
- 2) Notice of Draftsperson's Patent Drawing Review (PTO-948)
- 3) Information Disclosure Statement(s) (PTO-1449 or PTO/SB/08)
Paper No(s)/Mail Date _____.
- 4) Interview Summary (PTO-413)
Paper No(s)/Mail Date. _____.
- 5) Notice of Informal Patent Application (PTO-152)
- 6) Other: _____.

Detailed Action

Claims 1-19 are pending in this Office Action.

Election/Restrictions

Applicant elects group 1 with traverse. In light of applicant's arguments and amendment, the restriction is withdrawn keeping all trees of claims as the same invention. Claim 19 links the divergent elements of groups 2 and 3, to group 1.

Claim Rejections - 35 USC § 103

The following is a quotation of 35 U.S.C. 103(a) which forms the basis for all obviousness rejections set forth in this Office action:

(a) A patent may not be obtained though the invention is not identically disclosed or described as set forth in section 102 of this title, if the differences between the subject matter sought to be patented and the prior art are such that the subject matter as a whole would have been obvious at the time the invention was made to a person having ordinary skill in the art to which said subject matter pertains. Patentability shall not be negated by the manner in which the invention was made.

Claims 1-3, 11-13, 15-18 are rejected under 35 U.S.C. 103(a) as being anticipated by U.S. Patent No 6,061,603 issued to Papadopoulos et al ("Papa") in view of U.S. Patent No 5,904,724 by Margolin.

Regarding claim 1, a remote control system (Papa: col. 1, lines 24, 25; col. 2, lines 41-44) comprising:

a terminal device having a control program (Papa: col. 2, lines 52-54);
a server connected to said terminal device (Papa: col. 3, lines 52-54), for transmitting control data (Papa: col. 3, lines 54-64) registering three-dimensional model data concerning said terminal device (Papa: col. 7, lines 1-4; lines 44- col. 8, line 8; this registering is interpreted as establishing a connection between the device and the server for transmission);

a client connected to said server (Papa: col. 3, lines 33-51), wherein said client performs an additional operation and transmits, to said server, which are obtained by said additional operation, and wherein said server transmits, to said terminal device, said control data based on said update data received from said client (Papa: col. 4, lines 3-10, lines 34-39).

The Papa reference does not explicitly state three-dimensional model data.

The Margolin reference teaches an interactive system capable of receiving information represented by a three-dimensional model data (Margolin: col. 1, lines 42-55); receiving said three-dimensional model data, upon the receipt of specific three-dimensional model data (Margolin: col. 1, lines 49-55), update data for changing a three-dimensional model (Margolin: col. 1, lines 56-60) for a three-dimensional model.

The Margolin reference further teaches the invention provides flexibility in sending high or low-resolution data to the remote pilot and reduces bandwidth being transmitted (Margolin: col. 1, lines 22-39).

Therefore it would have been obvious at the time of the invention to one of ordinary skill in the art to create the remote control system as taught by Papa while employing a remote control system with three-dimensional model data taught by Margolin in order provide flexibility in sending resolution data while reducing bandwidth used.

Claims 2 and 3 are rejected under the same rationale given above. In the rejections set forth, the examiner will address the additional limitations and point to the relevant teachings of Papa and Margolin.

Regarding claim 2, the remote control system according to claim 1, wherein, based on said update data for a three-dimensional model (Margolin: col. 1, lines 56-60) received from said client, said server transmits operation control data to said terminal device (Papa: col. 4, lines 34-39), and said control program of said terminal device interprets said operation control data for said operation of said terminal device (Papa: col. 2, lines 52-54), and transmits, to said server, control data for reflecting said operating results (Papa: col. 4, lines 37-45; response).

Regarding claim 3, the remote control system according to claim 2, wherein, based on said control data received from said terminal device (Papa: col. 4, lines 37-45; response), said server adjusts said three-dimensional model data (Margolin: col. 3, lines 28-49; col. 4, lines 1-16) to reflect the current state of said terminal device (Papa: col. 10, lines 9-13),

and transmits the resultant three-dimensional model data to said client (Papa: col. 4, lines 43-50).

Regarding claim 11, the Papa reference teaches a terminal device control (Papa: col. 2, lines 41-44) method whereby a client (Papa: col. 3, lines 33-37) exercises remote control (Papa: col. 2, lines 41-44; col. 1, lines 24-26) of a terminal device (Papa: col. 2, lines 51-54) comprising the steps of:

designating a web browser (Papa: col. 4, lines 3-10) at said client to designate a URL (Papa: col. 4, lines 11-16) corresponding to said terminal device, and downloading (Papa: col. 4, lines 3-10) data;

and reading a control program that is correlated through the designation of said URL (Papa: col. 3, lines 52-64); and

transmitting operation control data to said terminal device in response to an operation (Papa: col. 4, lines 34-39).

The Papa reference does not explicitly state three dimension model data.

The Margolin reference teaches an interactive system capable of receiving information represented by a three-dimensional model data (Margolin: col. 1, lines 42-55).

The Margolin reference further teaches the invention provides flexibility in sending high or low-resolution data to the remote pilot and reduces bandwidth being transmitted (Margolin: col. 1, lines 22-39).

Therefore it would have been obvious at the time of the invention to one of ordinary skill in the art to create the remote control system as taught by Papa while employing a remote control system with three-dimensional model data taught by Margolin in order to provide flexibility in sending resolution data while reducing bandwidth used.

Claims 12 and 13 are rejected under the same rationale given above. In the rejections set forth, the examiner will address the additional limitations and point to the relevant teachings of Papa and Margolin.

Regarding claim 12, the terminal device control method according to claim 11, wherein said step of transmitting said operation control data (Papa: col. 4, lines 3-10, 34-39) to said terminal device includes the steps of:

transmitting, to a server (Papa: col. 3, lines 42-64), an update value (Papa: col. 4, lines 34-45) of said three-dimensional model data (Margolin: col. 1, lines 42-55) obtained by said client; and

employing said update value to transmit said operation control data from said server to said terminal device (Papa: col. 4, lines 34-45).

Regarding claim 13, the terminal device control method according to claim 11, further comprising the steps of:

transmitting control data for reflecting operating results from said terminal device to said server (Papa: col. 4, lines 43-45; response); and

reflecting said control data to said three-dimensional model data (Papa: col. 9, lines 38-45; Margolin: col. 1, lines 42-55), and transmitting the resultant three-dimensional model data from said server to said client (Papa: col. 4, lines 3-10).

Regarding claim 15, the Papa reference teaches storage media on which a computer stores a computer-readable program (Papa: col. 3, lines 52-64) that permits said computer to perform:

a process of calling for data concerning a terminal device (Papa: col. 4, lines 28-39) connected to a network (Papa: col. 3, lines 42-51);

a process of rendering said data that has been called for (Papa: col. 4, lines 11-16);

a process, of calling for a control file associated with said data (Papa: col. 4, lines 40-45); and

a process of receiving control data from said terminal device (Papa: col. 4, lines 34-39) and of reflecting the received control data to said data (Papa: col. 3, lines 52-64; col. 9, lines 38-45).

The Papa reference does not explicitly state three dimension model data.

The Margolis reference teaches using three-dimensional model data (Margolis: col. 1, lines 42-55).

The Margolin reference further teaches the invention provides flexibility in sending high or low-resolution data to the remote pilot and reduces bandwidth being transmitted (Margolin: col. 1, lines 22-39).

Therefore it would have been obvious at the time of the invention to one of ordinary skill in the art to create the remote control system as taught by Papa while employing a remote control system with three-dimensional model data taught by Margolin in order to provide flexibility in sending resolution data while reducing bandwidth used.

Claim 16 is rejected under the same rationale given above. In the rejections set fourth, the examiner will address the additional limitations and point to the relevant teachings of Papa and Margolin.

Regarding claim 16, storage media according to claim 15, wherein said computer-readable program further comprises: a process of receiving updated values (Papa: col. 4, lines 34-45) of three-dimensional model (Margolis: col. 1, lines 44-55) data from a client (Papa: col. 3, lines 33-37) connected to an external network (Papa: col. 3, lines 42-51), and of transmitting said control data to said terminal device (Papa: col. 4, lines 34-45).

Regarding claim 17, the Papa reference teaches a storage media on which a computer stores a computer-executable program (Papa: col. 3, lines 52-64) that permits said computer to perform:

a process of calling for the transmission, via an external network (Papa: col. 3, lines 42-51), of data concerning a terminal device (Papa: col. 2, lines 45-54);

a process of rendering said data that is called for (Papa: col. 4, lines 3-10);
a process of calling for a control file associated with said data (Papa: col. 4, lines 3-10, 34-39);
a process of reflecting said control file to values of said data (Papa: col. 4, lines 34-39; col. 9, lines 38-45); and
a process of changing the values of said data based on the operation for said data (Papa: col. 4, lines 36-45).

The Papa reference does not explicitly state the use of three dimensional model data.

The Margolis reference teaches a three-dimensional model (Margolis: col. 1, lines 42-55).

The Margolin reference further teaches the invention provides flexibility in sending high or low-resolution data to the remote pilot and reduces bandwidth being transmitted (Margolin: col. 1, lines 22-39).

Therefore it would have been obvious at the time of the invention to one of ordinary skill in the art to create the remote control system as taught by Papa while employing a remote control system with three-dimensional model data taught by Margolin in order to provide flexibility in sending resolution data while reducing bandwidth used.

Regarding claim 18, the Papa reference teaches a program transmission apparatus (Papa: col. 3, lines 52-64) comprising:

storage means for storing a program that executes a process of calling for the transmission (Papa: col. 3, lines 52-64), via an external network (Papa: col. 3, lines 42-51), of data concerning a terminal device (Papa: col. 2, lines 45-54), a process of rendering said data (Papa: col. 3, lines 3-10) that has been called for, a process of calling for a control file associated with said data (Papa: col. 4, lines 34-39), a process of reflecting the values in said control file to the values of said data (Papa: col. 4, lines 3-10,

34-39), and a process of changing the values of said data based an operation performed by a user for said data (Papa: col. 4, lines 34-45); and

transmission means for reading said program from said storage means and for transmitting said program to an external computer (Papa: col. 3, lines 52-64).

The Papa reference does not explicitly state the use three dimensional model data.

The Margolis reference teaches a three-dimensional model (Margolis: col. 1, lines 42-55).

The Margolin reference further teaches the invention provides flexibility in sending high or low-resolution data to the remote pilot and reduces bandwidth being transmitted (Margolin: col. 1, lines 22-39).

Therefore it would have been obvious at the time of the invention to one of ordinary skill in the art to create the remote control system as taught by Papa while employing a remote control system with three-dimensional model data taught by Margolin in order to provide flexibility in sending resolution data while reducing bandwidth used.

Claims 7-10 are rejected under 35 U.S.C. 103(a) as being anticipated by U.S. Patent No 6,061,603 issued to Papadopoulos et al (“Papa”) in view of U.S. Patent No 5,904,724 by Margolin in further view of U.S. Patent No. 6,437,778 by Matsui et al.

Regarding claim 7, the Papa reference teaches a control server (Papa: col. 3, lines 52-54) for a terminal device (Papa: col. 2, lines 52-54) comprising:

a terminal device function control program (Papa: col. 3, lines 54-64), for exchanging control data for a terminal device connected to an internal network (Papa: col. 3, lines 42-51) and controlling the functions of said terminal device (Papa: col. 4, lines 34-39);

device operating data that are received by said terminal device function control program (Papa: col. 3, lines 54-64) and reflect the operating results of said terminal device (Papa: col. 9, lines 38-45; col. 10, lines 9-11).

The Papa reference does not explicitly state three-dimensional model data.

The Margolin reference teaches three-dimensional model, including geometrical data for said terminal device (Margolin: col. 1, lines 42-55); and

The Margolin reference further teaches the invention provides flexibility in sending high or low-resolution data to the remote pilot and reduces bandwidth being transmitted (Margolin: col. 1, lines 22-39).

Neither the Papa or Margolin references teaches a module for recording an operation performed by a user.

The Matsui reference teaches a module, for recording an operation performed by a user as an operation event (Matsui: col. 5, lines 46- col. 6, line 4) and for replaying, as needed, said operation event (Matsui: col. 7, lines 26-32).

The Matsui reference further teaches the invention overcomes problems by shortening wait times (Matsui: col. 4, lines 3-19).

Therefore it would have been obvious at the time of the invention to one of ordinary skill in the art to create the remote control system as taught by Papa while employing three-dimensional model data with geometric data as taught by Margolin in order to provide flexibility in sending resolution data while reducing bandwidth used while employing a module for recording an event as taught by Matsui in order to shorten wait times (Matsui: col. 4, lines 3-19).

Claims 8-10 are rejected under the same rationale given above. In the rejections set forth, the examiner will address the additional limitations and point to the relevant teachings of Papa, Margolin, and Matsui et al.

Regarding claim 8, the control server of claim 7, wherein said module employs recording/replaying software to record (Matsui: col. 5, lines 46-62), as a VRML operation event (Matsui: col. 11, lines 22-26), an operation performed by a user that is generated via a VRML browser (Papa: col. 4, lines 3-10; col. 1, lines 65-67), and replays and displays said VRML operation event via said VRML browser (Matsui: col. 12, lines 24-41).

Regarding claim 9, the control server according to claim 8, wherein an operation performed by said user is represented by the performance of an operation based on VRML contents (Matsui: col. 11, lines 22-26; Papa: col. 34, lines 34-39; Margolin: col. 1, lines 42-55), which are three-dimensional model data written for said VRML browser using a VRML format (Papa: col. 4, lines 1-10; like html).

Regarding claim 10, the control server according to claim 7, further comprising:

a client (Papa: col. 3, lines 33-51) connected to an external network (Papa: col. 3, lines 42-51); and

a module for exchanging an operation event with said client via said external network (Papa: col. 3, lines 52-64; col. 4, lines 25-50).

Claims 4-6 are rejected under 35 U.S.C. 103(a) as being anticipated by U.S. Patent No 6,061,603 issued to Papadopoulos et al (“Papa”) in view of U.S. Patent No 5,904,724 by Margolin in further view of U.S. Publication No. 2002/0136167 by Steele et al.

Regarding claim 4, the Papa reference teaches a server-client (Papa: col. 1, lines 24, 25; col. 2, lines 41-44) system comprising:

a server (Papa: col. 3, lines 52-54), a connected terminal device (Papa: col. 2, lines 52-54);

a first client (Papa: col. 3, lines 33-51) connected to said server via a network (Papa: col. 3, lines 42-51), for calling for and for displaying specific data that are stored in said server (Papa: col. 4, lines 3-10, lines 34-39); and

a second client (Papa: col. 3, lines 33-51; col. 1, lines 42-60) connected to said server via said network (Papa: col. 3, lines 42-51), for employing a web browser (Papa: col. 4, lines 3-10, lines 34-39) to designate a URL (Papa: col. 4, lines 11-15) for said specific data that are called for by said first client (Papa: col. 4, lines 3-10, lines 34-39), and for downloading (Papa: col. 4, lines 3-10, lines 34-39) and displaying (Papa: col. 4, lines 3-10, lines 34-39) said specific data received from said server so as to share said specific data with said first client (Papa: col. 4, lines 3-10, lines 34-39);

consisting of a Java program file concerning specific three-dimensional model (Papa: col. 1, lines 65- col. 2, line 4).

The Papa reference does not explicitly state three-dimensional model data.

The Margolin reference teaches an interactive system capable of receiving information represented by a three-dimensional model data (Margolin: col. 1, lines 42-55).

The Margolin reference further teaches the invention provides flexibility in sending high or low-resolution data to the remote pilot and reduces bandwidth being transmitted (Margolin: col. 1, lines 22-39).

The Papa and Margolin references do not explicitly state a second client.

The Steele reference teaches a second client a second client (Steele: page 1, para 5) connected to said server via said network (Steele: page 1, para 6), for employing a web browser to designate a URL (Steele: page 1, para 8) for said specific data that are called for by said first client (Steele: page 1, para 5), and for downloading and displaying said specific data received from said server so as to share said specific data with said first client (Steele: page 1, para 5-7);

The Steele reference further teaches the invention allows two or more parties to exchange information over the internet to allow collaboration and provide enhanced customer services and support (Steele: page 1, para 3-4).

Therefore it would have been obvious at the time of the invention to one of ordinary skill in the art to create the remote control system as taught by Papa while employing a remote control system with three-dimensional model data taught by Margolin while employing a second client in a collaborative setting as taught by Steele in order to provide flexibility in sending resolution data while reducing bandwidth (Margolin: col. 1, lines 22-39) used for enhanced collaboration and customer services and support (Steele: page 1, para 3-4).

Claims 5 and 6 are rejected under the same rationale given above. In the rejections set forth, the examiner will address the additional limitations and point to the relevant teachings of Papa, Margolin, and Steele.

Regarding claim 5, the server-client system (Papa: col. 1, lines 24, 25; col. 2, lines 41-44) according to claim 4, wherein said three-dimensional model data (Margolin: col. 1, lines 42-55), which consists of said Java program file stored in said server (Papa: col. 1, lines 65- col. 2, line 4), includes a program for controlling said terminal device (Papa: col. 3, lines 54-64), and said first and said second clients display the values (Papa: col. 3, lines 65- col. 4, line 10) of said three-dimensional model data to reflect the current control state of said terminal device (Papa: col. 9, lines 38-45; col. 10, lines 9-11).

Regarding claim 6, the server-client system according to claim 4, wherein one of said first and said second clients is a computer at a customer support center that supports said terminal device (Steele: page 1, para 5; page 2, para 28).

Claim 14 is rejected under 35 U.S.C. 103(a) as being anticipated by U.S. Patent No 6,061,603 issued to Papadopoulos et al (“Papa”) in view of U.S. Publication No. 2002/0136167 by Steele et al.

Regarding claim 14,

The Para reference teaches a terminal device sharing method, for sharing among a plurality of clients (Papa: col. 3, lines 33-37; col. 1, lines 52-59) information concerning a terminal device (Papa: col. 2, lines 45-54), comprising the steps of:

employing a web browser (Papa: col. 4, lines 3-10) at a first client to designate a URL (Papa: col. 4, lines 11-16) corresponding to said terminal device, and downloading model data (Papa: col. 4, lines 3-10);

rendering said model data that are downloaded (Papa: col. 4, lines 3-10);

preparing shared data by operating said model data that are rendered by said first client, and transmitting said data used in common (Papa: col. 3, lines 52-64).

The Para reference does not explicitly state the use of a second client.

The Steele reference employs a web browser (Steele: 1, para 8) of a second client (Steele: page 1, para 5) to designate a URL corresponding to said terminal device, and downloading (Steele: page 1, para 5-7) model data; and

receiving said data used in common from said first client (Steele: page 1, para 5-8) and employing said data used in common to update said values of said model data (Steele: page 1, para 5-8).

The Steele reference further teaches the invention allows two or more parties to exchange information over the internet to allow collaboration and provide enhanced customer services and support (Steele: page 1, para 3-4).

Therefore it would have been obvious at the time of the invention to one of ordinary skill in the art to create the remote control system as taught by Papa while employing a second client in a collaborative setting as taught by Steele in order to enhanced collaboration and customer services and support (Steele: page 1, para 3-4).

Claim 19 is rejected under 35 U.S.C. 103(a) as being anticipated by U.S. Patent No 6,061,603 issued to Papadopoulos et al (“Papa”) in view of U.S. Patent No 5,904,724 by Margolin in further view of U.S. Publication No. 2002/0136167 by Steele et al in further view of U.S. Patent No. 6,437,778 by Matsui et al.

Regarding claim 19,

The Papadopolous and Margolin references teach the remote control system with three dimension data of claim 1.

The Papadopolous and Margolin references references do not explicitly state a second client.

The Steele reference teaches a second client connected to said server (Steele: page 1, para 5-6), for employing a web browser to designate a URL for said specific data (Steele: page 1, para 5-8), and for downloading said specific data so as to share said specific data with said client (Steele: page 1, para 5-8).

The Steele reference further teaches the invention allows two or more parties to exchange information over the internet to allow collaboration and provide enhanced customer services and support (Steele: page 1, para 3-4).

The Papa, Margolin and Steele references do not explicitly state a recording model.

Art Unit: 2155

The Matsui reference teaches a module, for recording an operation performed by a user as an operation event (Matsui: col. 5, lines 46- col. 6, line 4) and for replaying, as needed, said operation event (Matsui: col. 7, lines 26-32).

The Matsui reference further teaches the invention overcomes problems by shortening wait times (Matsui: col. 4, lines 3-19).

Therefore it would have been obvious at the time of the invention to one of ordinary skill in the art to create the remote control system with three dimensional data as taught by Papa and Margolin while employing a second client in a collaborative setting as taught by Steele in order to enhanced collaboration and customer services and support (Steele: page 1, para 3-4) with storing and replay as taught by Matsui in order to overcome problems by shortening wait times (Matsui: col. 4, lines 3-19).

Conclusion

Any inquiry concerning this communication or earlier communications from the examiner should be directed to Benjamin R Bruckart whose telephone number is (703) 305-0324 until 10/27/2004 and 571-272-3982 after. The examiner can normally be reached on 8:00-5:30 PM with every other Friday off.

If attempts to reach the examiner by telephone are unsuccessful, the examiner's supervisor, Hosain Alam can be reached on (703) 308-6662 until 10/27/2004 and 571-272-3978 after. The fax phone numbers for the organization where this application or proceeding is assigned are (703) 872-9306 for regular communications and After Final communications.

Any inquiry of a general nature or relating to the status of this application or proceeding should be directed to the receptionist whose telephone number is (703) 305-0324 until 10/27/2004 and 571-272-3982 after.

Benjamin R Bruckart
Examiner
Art Unit 2155
brb
September 20, 2004

bmb *MK*
HOSAIN ALAM
SUPERVISORY PATENT EXAMINER