Contents

1	Res	ultados	1
	1.1	Experimento 1 - Bobina primária, sem núcleo	1
		1.1.1 Análise gráfica	1
	1.2	Experimento 2 - Com núcleo, liga Fe-Si	2
		1.2.1 Análise gráfica	2
	1.3	Experimento 3 - Histerese, liga Fe-Si	2
		1.3.1 Análise Gráfica	2
	1.4	Comparação ao caso sem e com material	6
2	Disc	cussão	6
	2.1	Diferenças entre os casos sem e com meio material	6
	2.2	Caso com material e a Histerese	6
	Medir a indução magnética do material vs campo magnético aplicado		
	B =	$= \mu_0 H + \mu_0 M \ M = \chi H$	
	• M	fedida de Indução Magnética (M)	
		- Fluxômetro ou fluxímetro.	
	• G	eração de Campo Magnético (H)	
		- Fonte de corrente.	
		- Bobina grande de cobre.	
		- Núcleo de Fe-Si em forma de U.	
		1. dolo do 10 pi om formo do 01	

1 Resultados

1.1 Experimento 1 - Bobina primária, sem núcleo

Por breviedade e concisão, apresentaremos os gráficos, em escala, justapostos das grandezas físicas plotadas contra o tempo.

1.1.1 Análise gráfica

Existe uma proporcionalidade linearmente depente entre as curvas. Ou seja, para qualquer valor de V(t), B(t) corresponde a multiplicação de uma constate vezes V(t). O qual caracteriza $B(t) \propto V(t)$, e.i., uma relação de proporções.

Figure 1: V(t) vs B(t), sem núcleo

1.2 Experimento 2 - Com núcleo, liga Fe-Si

1.2.1 Análise gráfica

Com Fe-Si, as curvas continuam isomórficas. Isto é, para qualquer par (t_1, t_2) , e qualquer par das funções (V(t), B(t)), a relação isomórfica [?] é satisfeita,

$$V(t_1) < V(t_2) \Leftrightarrow B(t_1) < B(t_2) \tag{1}$$

Porém, a relação não é mais linearmente proporcional. Não existe uma constate que possa ser atribuida a relação de proporção entre V e B. Ademais, há um nível de saturação em B, em $\approx 52, 5$ segundos, no valor de 2, 5V. Nos intervalos simétricos de [0, 1.2]V, em relação ao tempo, existe um aumento de campo em relação ao caso com meio material Ar, Bobina sem núcleo Fe-Si.

1.3 Experimento 3 - Histerese, liga Fe-Si

1.3.1 Análise Gráfica

No caso de Histerese, também observamos a relação de isomorfismo sendo preservado. Em especial, entre os valores não oscilantes de V, em $(t \in [50, 60.5] \text{segundos}) \land (t \in [150.5, 160] \text{segundos})$, observamos perfeitamente uma não-oscilação de B(t).

Figure 2: V(t) vs B(t), meio de Fe-Si

Figure 3: Histerese Fe-Si

Figure 4: Superposição de B(t).

1.4 Comparação ao caso sem e com material

Para qualquer valor de B(t), em qualque t no intervalo, a relação $B_{\text{material}}(t) > B_{\text{sem-material}}(t)$ é verdadeira.

2 Discussão

2.1 Diferenças entre os casos sem e com meio material

Em ambos cenários com e sem materiais existe uma relação isomórfica entre o campo aplicado V e B. No entanto, particularmente, no caso em que essa relação é observada em um meio não-material como o Ar, a relação é linearmente depente, com o fator de proporção sendo uma constante. e.i., os gráficos são matematicamente semelhantes.

Quando adicionamos um corpo material metálico, Fe-Si - o qual reage à diferença de potencial V, e campos elétromagnético, de forma não linear - a relação de isomorfismo é preservada. Assim, demonstrando que o material apenas reage ao campo V, aumentando ou diminuindo a relação de proporção, em diferentes níveis de excitações de campo e consequentes diferentes estados físicos de excitação. E, não existe nenhum outro fator externo o afetando, e.g., gravidade, temperatura, etc. Em particular, essa inexistência de variação decorrente de outros fatore é visível em Análise Gráfica - histerese.

Em voltagens entre $[0,\pm 1.2]V$ o material de Fe-Si possui baixa saturação, e assim, acresce ao valor do campo, em comparação ao caso sem núcleo. Em voltagens maiores, em módulo, do que 1.2V é atingida saturação de excitação do material, e consequentementes, há um fatos de decrescimento da taxa de aumento do campo B, por aumento da tensão V.

2.2 Caso com material e a Histerese

Os sub-experimentos 2 e 3 são, na verdade, experimentos em que o 2 é caso particular de 3. No gráfico da Histerese, os valores percorridos nos intervalos $(t \, \epsilon \, [0,60] \, \text{segundos}) \, \wedge (t \, \epsilon \, [160,220] \, \text{segundos})$ são exatamente os mesmos no sub-experimento 2, no intevalos correspondentes de $t \, \epsilon \, [52.5,105] \, \text{segundos} \wedge t \, \epsilon \, [0,52.5] \, \text{segundos}.$