南京信息工程大学试券答案

2018 - 2019 学年 第一学期 高等数学理工科 期中试卷 (A卷) 本答案共 4 页; 考试时间 100 分钟; 任课教师 ; 出卷时间 2018 年 11 月

一、填空题 (每小题 3 分, 共 15 分)

1. 函数
$$y = \arcsin\sqrt{\frac{x-2}{3}}$$
 的定义域 [2,5].

2.
$$$$ $$$ $f'(0) = 2,$ $$$ $$$ $\lim_{h \to 0} \frac{f(h) - f(-h)}{h} = \underline{4}.$$$$$$

3. 己知
$$f(x)$$
 可微, 则 $d\left[\ln f(x) + \cos f(x)\right] = \left[\frac{f'(x)}{f(x)} - \sin f(x) \cdot f'(x)\right] dx$.

5. $f(x) = e^{2x}$ 的带拉格朗日型余项的三阶麦克劳林公式为 $e^{2x} = 1 + 2x + 2x^2 + \frac{4}{3}x^3 + \frac{2}{3}e^{2\theta x}x^4, 0 < \theta < 1.$

二、选择题 (每小题 3 分, 共 15 分)

1. 若函数
$$f(x)$$
 满足 $\lim_{x \to x_0} f(x) = 0$, 则有 (B)

(A) 当
$$g(x)$$
 为任意函数时,有 $\lim_{x\to x_0} f(x)g(x) = 0$;

(B) 当
$$g(x)$$
 为有界函数时,有 $\lim_{x\to x_0} f(x)g(x) = 0$;

(C) 仅当
$$g(x)$$
 为常数时, 有 $\lim_{x\to x_0} f(x)g(x) = 0$;

(C) 仅当
$$g(x)$$
 为常数时,有 $\lim_{x \to x_0} f(x)g(x) = 0$;
(D) 仅当 $\lim_{x \to x_0} g(x) = 0$ 时,有 $\lim_{x \to x_0} f(x)g(x) = 0$.

2. 当
$$x \to \infty$$
 时, 函数 e^x , e^{x^2} , e^{-x^2} , $\arctan x$, $\arctan(x^2)$ 中极限存在的个数为 (B)

(C) 3;

3. 当
$$x \to 1$$
 时, $1 - x$ 是 $1 - x^2$ 的

(B) 2;

(D)

(A)

(D) 4.

(A) 高阶无穷小;

(B) 低阶无穷小;

(A) 1;

4. 已知
$$\lim_{x \to \infty} \left(\frac{x^2}{x+1} - ax - b \right) = 0$$
, 其中 a, b 为常数, 则

(C)

(A) a = b = 1;

(B) a = -1, b = 1;

(C) a = 1, b = -1;

(D) a = b = -1.

5. 下列条件中不是函数
$$f(x)$$
 在 x_0 处连续的充分条件的是

(A) $\lim_{x \to x_0^+} f(x) = \lim_{x \to x_0^-} f(x);$ (B) $\lim_{x \to x_0} f(x) = f(x_0);$

(C) $f'(x_0)$ 存在;

(D) f(x) 在 x_0 可微.

三、计算题 (每小题 6 分, 共 30 分)

1.
$$\lim_{x\to 0} (\cos x)^{\frac{1}{\sqrt{1+x^2}-1}}$$
.

解: 原式 =
$$\lim_{x \to 0} \left[(1 + \cos x - 1)^{\frac{1}{\cos x - 1}} \right]^{\frac{\cos x - 1}{\sqrt{1 + x^2 - 1}}}$$

= $e^{\lim_{x \to 0} \frac{\cos x - 1}{\sqrt{1 + x^2 - 1}}}$
= $e^{\lim_{x \to 0} \frac{-\frac{x^2}{2}}{\frac{x^2}{2}}} = e^{-1}$

2.
$$\lim_{x \to 0} \left(\frac{1}{\sin^2 x} - \frac{1}{x^2} \right)$$
.

解: 原式 =
$$\lim_{x \to 0} \frac{x^2 - \sin^2 x}{x^2 \sin^2 x} = \lim_{x \to 0} \frac{x^2 - \sin^2 x}{x^4}$$

$$= \lim_{x \to 0} \frac{2x - \sin 2x}{4x^3} = \lim_{x \to 0} \frac{2 - 2\cos 2x}{12x^2}$$

$$= \lim_{x \to 0} \frac{4\sin 2x}{24x} = \frac{1}{3}.$$

3.
$$y = \ln\left(\frac{x+2}{x+3}\sqrt{\frac{1+x}{1-x}}\right)$$
, $\Re y'$.

M:
$$y = \ln|x+2| - \ln|x+3| + \frac{1}{2}\ln|1+x| - \frac{1}{2}\ln|1-x|$$

 $y' = \frac{1}{x+2} - \frac{1}{x+3} + \frac{1}{2(1+x)} + \frac{1}{2(1-x)}$.

4. 设函数 y = y(x) 由方程 $e^{xy} + \tan(xy) = y$ 确定, 求曲线 y = y(x) 在 x = 0 处的切线方程.

解: 等式两边同时对 x 求导得,

$$e^{xy}(y+xy') + \sec^2(xy)(y+xy') = y'$$

又 $x=0$ 时, $y=1$, 代入上式得 $y'(0)=2$,
所以切线方程为 $y=2x+1$.

5. 设参数方程
$$\begin{cases} x = \arctan t, & \vec{x} \frac{d^2 y}{dx^2} \Big|_{t=1}. \end{cases}$$

解:
$$x'(t) = \frac{1}{1+t^2}$$
, $y'(t) = 3(1+t^2)$,

所以 $\frac{dy}{dx} = 3(1+t^2)^2$,

 $\frac{d^2y}{dx^2} = \frac{d}{dt}(\frac{dy}{dx}) \cdot \frac{1}{\frac{dx}{dt}} = 12t(1+t^2)^2$,

因此 $\frac{d^2y}{dx^2}\Big|_{t=1} = 48$.

四、(本题共 10 分) 讨论函数 $f(x) = \lim_{n \to \infty} \frac{(1 - x^{2n})x}{1 + x^{2n}}$ 的连续性, 若有间断点讨论间断点的类型.

解: 由题意可得 $f(x) = \begin{cases} x, & |x| < 1, \\ 0, & |x| = 1, \\ -x, & |x| > 1. \end{cases}$

当 x = 1 时, $f(1^-) = 1$, $f(1^+) = -1$, 所以 x = 1 为第一类跳跃型间断点;

当 x = -1 时, $f(-1^-) = 1$, $f(-1^+) = -1$, 所以 x = -1 为第一类跳跃型间断点.

五、(本题共10分) 求 a,b 的值, 使函数 $f(x) = \begin{cases} e^{a(x-1)} - 1, & x \leq 1, \\ \ln x + b, & x > 1 \end{cases}$ 在 x = 1 处可导, 并

求 f'(x).

解: 由题意, f(x) 在 x = 1 可导, 则 f(x) 在 x = 1 处连续.

因此 $f(1^+) = f(1) = f(1^-)$, 即 $\lim_{x \to 1^+} (\ln x + b) = 0$, 所以 $b = -\ln 1 = 0$.

由 f(x) 在 x = 1 可导得 $f'_{+}(1) = f'_{-}(1)$,

又因为
$$f'_{+}(1) = \lim_{x \to 1^{+}} \frac{\ln x - 0}{x - 1} = 1,$$

$$f'_{-}(1) = \lim_{x \to 1^{-}} \frac{e^{a(x - 1)} - 1}{x - 1} = a, 所以 a = 1.$$

 $\perp f'(1) = f'_{+}(1) = f'_{-}(1) = 1.$

又当
$$x < 1$$
 时, $f'(x) = e^{x-1}$; 当 $x > 1$ 时, $f'(x) = \frac{1}{x}$.

所以 $f'(x) = \begin{cases} e^{x-1}, & x \le 1, \\ \frac{1}{x}, & x > 1. \end{cases}$

六、(本题共10分) 设 $0 < x_1 < 1, x_{n+1} = x_n(1-x_n)$, 证明: 数列 $\{x_n\}$ 收敛, 并且求 $\lim x_n$.

证: 首先由数学归纳法可证得 $0 < x_n < 1$.

又因为 $x_{n+1} = x_n(1 - x_n) < x_n$, 所以 $\{x_n\}$ 单调减.

由单调有界原理可得 $\{x_n\}$ 收敛.

设 $\lim_{n\to\infty} x_n = A$, 等式 $x_{n+1} = x_n(1-x_n)$ 两边同时取极限得,

$$A = A(1 - A)$$
, 解得 $A = 0$,

所以 $\lim_{n\to\infty} x_n = 0$.

七、(本题共10分) 设函数 f(x) 在 [0,1] 上连续, 在 (0,1) 内可导, 且 f(0) = f(1) = 0, $f(\frac{1}{2}) = 1$, 试证: 至少存在一点 $\xi \in (0,1)$ 使得 $f'(\xi) = 1$.

证: 设 F(x) = f(x) - x, 则 F(x) 在 [0,1] 上连续,

$$\mathbb{H} F(1) = f(1) - 1 = -1 < 0, F\left(\frac{1}{3}\right) = f\left(\frac{1}{3}\right) - \frac{1}{3} = \frac{2}{3} > 0,$$

由零点定理, 存在 $\eta \in (\frac{1}{3}, 1)$, 使得 $F(\eta) = 0$.

由于 F(x) 在 $[0,\eta]$ 上连续, $(0,\eta)$ 内可导, 且 $F(0) = f(0) - 0 = 0 = F(\eta)$,

所以由罗尔定理可知存在 $\xi \in (0, \eta) \subset (0, 1)$, 使得 $F'(\xi) = 0$, 即 $f'(\xi) = 1$.

八、附加题 (本题共 10 分) 设函数 f(x) 在区间 [0,1] 上具有 2 阶导数, 且 f(1) > 0, $\lim_{x\to 0^+} \frac{f(x)}{x} < 0$, 证明:

- (I) 方程 f(x) = 0 在区间 (0,1) 内至少存在一个实根;
- (II) 方程 $f(x)f''(x) + [f'(x)]^2 = 0$ 在区间 (0,1) 内至少存在两个不同实根.

证: (I) 因为 $\lim_{x\to 0^+} \frac{f(x)}{x} < 0$,由极限保号性知,存在 $\delta > 0$,使得当 $x \in (0,\delta)$ 时 $\frac{f(x)}{x} < 0$,从而 f(x) < 0.又由于 f(1) > 0 且 f(x) 在 [0,1] 二阶可导,

则由零点存在定理可知, 至少存在一点 $\xi \in (0,x) \subset (0,1)$ 使得 $f(\xi) = 0$.

即方程 f(x) = 0 在区间 (0,1) 内至少存在一个实根.

(II) 令 F(x) = f(x)f'(x), 则 F(x) 在 [0,1] 上可导, 且 $F'(x) = f(x)f''(x) + [f'(x)]^2$.

曲
$$\lim_{x\to 0^+} \frac{f(x)}{x} < 0$$
 可知, $f(0) = \lim_{x\to 0^+} \frac{f(x)}{x} \cdot x = 0$.

又由 (I) 知, $f(\xi) = 0$, 所以由罗尔定理可得

 $\exists x_0 \in (0,\xi),$ 使得 $f'(x_0) = 0$, 从而 $F(0) = F(x_0) = F(\xi)$.

再由罗尔定理可知, $\exists \xi_1 \in (0, x_0), \xi_2 \in (x_0, \xi)$, 使得 $F'(\xi_1) = F'(\xi_2) = 0$.

也即方程 $f(x)f''(x) + [f'(x)]^2 = 0$ 在 $(0,\xi) \subset (0,1)$ 内有两个不同的实根.