АЗОТ И ЕГО СОЕДИНЕНИЯ ТИПЫ РЕАКЦИЙ

окислитель + восстановитель (+ среда) - ОВР примеры: 1) Fe + Cl, = FeCl,

2) Na,SO, + H,O, = Na,SO, + H,O

более сильный ВЫТЕСНЯЕТ более слабого - вытеснение примеры:

основное + кислотное = соль - основно-кислотные взаимодействия ПРИМЕРЫ:

электролит + электролит (р-р) = газ/осадок/сл.электролит - РИО примеры:

- 1) NaOH + HCl = NaCl + H₂O
- 2) KCl + AgNO, = KNO, + AgI

ФИЗИЧЕСКИЕ СВОЙСТВА

газ без цвета, без запаха,

без вкуса, мало раств. в Н₂О,

основной компонент

атмосферы (около 78%)

ПОЛУЧЕНИЕ - В ЛАБОРАТОРИИ

1) Термическое разложение некоторых соединений азота (t): NH4Cl + NaNO, (t) = NaCl + N, + 2H,O $(NH_{L}), Cr, O, (t) = N, + Cr, O, + 4H, O$ 2) Восстановление оксида меди (II) аммиаком (t): $3CuO + 2NH_{1}(t) = N_{1} + 3Cu + 3H_{2}O$

ПОЛУЧЕНИЕ - В ПРОМЫШЛЕННОСТИ сжижение и ректификация воздуха

ОБЩИЕ СВЕДЕНИЯ

Нахождение в ПС: VA-группа, 2 период

Строение атома: 1s²2s²2p³

Степени окисления: от низшей (-3) до высшей (+5) Соединения: NH, - аммиак, соли NH, - соли аммония, NH, OH (NH, *H, O) - аммиачная вода/нашатырный спирт, NH, NO, - аммиачная селитра, Ва(NO,), - баритовая селитра, NO, - бурый газ ("лисий хвост"), N,O - веселящий газ, FeNH, (SO,),*12H,O - железоаммонийные квасцы, K,[Fe(CN),]*3H,О - жёлтая кровяная соль, K,[Fe(CN),] красная кровяная соль, КОО, - калиевая (индийская) селитра, NaNO, - натриевая (чилийская) селитра, Ca(NO,), кальциевая селитра, AgNO, - ляпис, NH, Cl - нашатырь.

ХИМИЧЕСКИЕ СВОЙСТВА

N, + Me (акт/сред. акт.) (t) = нитрид Me, с Li - без t!!! , Ca,N, + H,O = N, + Ca (t) = , Mg, N, + HCl = $N_1 + Mg(t) =$ 2) N2 + неМе (t) = бинарное соединение $N_1 + O_2 = 0$, NO + O₂ = $\hat{N}_2 + \hat{F}_2 = \frac{1}{2}$, с другими Hal, не реагирует!

AMMUAK NH,

NH, - бесцветный ядовитый газ с резким характерным запахом нашатырного спирта, хорошо растворим в воде, легко сжижается.

ПОЛУЧЕНИЕ

- 1) Реакции солей аммония со шелочами:
- NH,Cl + NaOH = NaCl + NH, + H,O
- 2) Синтез из простых в-в (в промышленности):
 - $N_1 + 3H_2$ (Pt, t) = $2NH_1$ химические свойства
- 1) NH₁ + H⁺ (реагирует с кислотамии с водой);
- 2) образует комплексы с соединениями Cu²⁺, Ag⁺
- 3) явл. восстановителем реагирует с окислителями
- 4) **Me(акт)** + NH_, = амид/нитрид
- NH, + H,O = NH, + HCl = NH, + HNO, = NH, + CuSO, = NH, + AgCl = $NH_{1} + O_{2}(t) =$ $NH_1 + O_1(t, kat) =$ NH, + CuO = NH, + H,O, =
- NH,*H,O + KMnO, =
- NH, + Na =
 - NH, + Mg =
 - NH, + Ca = NaNH, + H,O =
 - $Ca_3N_2 + HCl =$

соли аммония NH,*

Соли аммония - кристаллические вещества, очень часто хорошо растворимые в воде; АЗОТ - В СТЕПЕНИ ОКИСЛЕНИЯ -3.

ПОЛУЧЕНИЕ

- 1) Реакции NH, с кислотами: NH, + HCl = NH4Cl
- 2) Реакции ионного обмена: (NH,),SO, + BaCl, = BaSO, + 2NH,Cl

химические свойства

- 1) типичные соли: вступают в РИО с кислотами, с основаниями, с другими солями;
- 2) являются восстановителями за счёт N⁻³, поэтому реагируют с окислителями;
- 3) разлагаются при нагревании (иногда очень необычно)

- $(NH_{i})_{j}CO_{j}(t) =$ $NH_{i}HCO_{i}(t) =$
- $NH_1H_2PO_1(t) =$
- $(NH_{\lambda})_{\lambda}HPO_{\lambda}(t) =$
- $(NH_{\lambda})_{3}PO_{\lambda}(t) =$
- NH,Cl(t) =
- **NH**, **Br** (t) =
- NH, I (t) =
- $(NH_{i})_{i}S(t) =$
- $(NH_{\lambda})_{3}SO_{\lambda}(t) =$
- $(NH_{i})_{,}Cr_{,}O_{,}(t) =$ NH,MnO,(t) =
- $NH_{L}NO_{T}(t) =$
- $NH_{\mu}NO_{3}(t) =$
- $NH_{cl} + ZnO(t) =$

ОКСИДЫ АЗОТА

Азот имеет следующие положительные степени окисления: +1, +2, +3, +4, +5,а значит, имеет пять оксидов: N_2O_1 , N_2O_2 , N_2O_3 , N_2

Следует запомнить, что ВСЕ ОКСИДЫ АЗОТА ЯВЛЯЮТСЯ СИЛЬНЫМИ ОКИСЛИ-ТЕЛЯМИ, А ПОЭТОМУ ВСТУПАЮТ В ОВР С ВОССТАНОВИТЕЛЯМИ!

ОКСИД АЗОТА (I) N₂O - ВЕСЕЛЯЩИЙ ГАЗ

Газ без цвета со слабеньким приятным запахом, мало растворим в воде, применяется в наркозе.

ПОЛУЧЕНИЕ

- 1) Разложение нитрата аммония: NH,NO, (t) = N,O + 2H,O
- 2) Взаимодействие активных металлов с HNO3: 4Ca + 10HNO,(конц) = N,O + 4Ca(NO,), + 5H,O

СВОЙСТВА - СИЛЬНЫЙ ОКИСЛИТЕЛЬ

ОКСИД АЗОТА (II) NO

Газ без цвета, без запаха, ядовитый, плохо растворимый в воде.

ПОЛУЧЕНИЕ

- 1) Разложение нитрата аммония: 4NH₃ + 5O₂ (Pt, t) = 4NO + 6H₂O
- 2) Взаимодействие неактивных Ме с HNO,(p):
- 3Cu + 8HNO₃(p) = 3Cu(NO₃)₂ + 2NO + 4H₂O
- 3) Об-е из простых веществ при воз-и эл.тока: N, + O, (эл.ток) = 2NO

СВОЙСТВА - СИЛЬНЫЙ ОКИСЛИТЕЛЬ

ОКСИД АЗОТА (IV) NO, - БУРЫЙ ГАЗ

Газ, бурого цвета ("лисий хвост"), ядовит, хорошо растворим в воде.

ПОЛУЧЕНИЕ

- 1) Окисление оксида азота (II): 2NO + O, = 2NO,
- 2) Взаимодействие неактивных Ме с HNO₃(к):
 - $Cu + 4HNO_3(\kappa) = Cu(NO_3)_2 + 2NO + 2H_2O$ 3) Разложение нитратов некоторых Ме: $2Cu(NO_3)_1$ (t) = $2CuO + 4NO_3 + O_3$

СВОЙСТВА - СИЛЬНЫЙ ОКИСЛИТЕЛЬ ТИПИЧНЫЙ КИСЛОТНЫЙ ОКСИД

2NO, = N,O, (ДИМЕРИЗАЦИЯ)

ОКСИД АЗОТА (V) N,O,

Бесцветное неустойчивое кристаллическое в-во, хорошо растворимое в воде.

ПОЛУЧЕНИЕ

1) Реакция азотной кислоты с P_2O_5 : 2HNO₃(безводн) + P_2O_5 = N_2O_5 + 2HPO₃ 2) Окисление NO_2 озоном: $2NO_3$ + O_3 = N_2O_5 + O_5

СВОЙСТВА - ОЧЕНЬ СИЛЬНЫЙ ОКИСЛИТЕЛЬ ТИПИЧНЫЙ КИСЛОТНЫЙ ОКСИД

$N_2O_5 + H_2O =$	
N ₂ O ₅ + BaO =	
N ₂ O ₅ + NaOH =	
N ₂ O ₅ + Cu =	
N ₂ O ₅ + KI =	
N,O, + H,S =	
N₂O₅ (лё́гко́е на́гревание)	

АЗОТНАЯ КИСЛОТА НОО,

"Фишка" азотной кислоты заключается в том, что она (и в разбавленном, и в концентрированном виде) является кислотой-окислителем, т.е. реагирует с металлами по-особому: вступает с ними не в обычную реакцию вытеснения, а в сложную ОВР, в результате которой образуется всегда три продукта: нитрат металла в тах степени окисления, вода и продукт восстановления азота X.

бесцветная жидкость с едким запахом, на воздухе "дымит" и желтеет из-за разложения

КИСЛОТА - ОБЛАДАЕТ ВСЕМИ СВОЙСТВАМИ КИСЛОТ:

реагирует с основаниями, с основными оксидами, с амф. оксидами и гидроксидами с образованием солей; вступает в РИО с солями.

РАЗЛАГАЕТСЯ ПРИ ЛЁГКОМ t!

КИСЛОТА-ОКИСЛИТЕЛЬ: реагирует с металлами по-особому, реагирует с восстановителями и неМе (C, P, S, I_2), при этом:

 HNO_3 (конц) даёт NO_2 , HNO_3 (разб) - NO_2

6		,
	6	

Степень окисления азота: +5 Валентность: IV Почему?? Да потому что полуторные связи!

HNO, + CaO =	
HNO, + CuO =	
HNO, + Zn(OH), =	
HNO, + Fe(OH), =	
HNO, + Fe(OH), =	
HNO, + CH, COOK =	
HNO, + KHCO, =	
HNO ₃ (t) =	
C + HNO ₃ (K) =	
P + HNO ₃ (K) =	
P + HNO ₃ (p) =	
S + HNO ₃ (K)=	
S + HNO ₃ (p) =	
I ₂ + HNO ₃ (к) =	
HNO + H O + Dakwic =	

ВЗАИМОДЕЙСТВИЕ АЗОТНОЙ КИСЛОТЫ С МЕТАЛЛАМИ

 $HNO_3(\kappa/p) + Me = Me^{max+}NO_3 + H_2O + X$

HNO₃(к/р) + Me = Me^{max+}NO₃ + H₂O + X

+5
HNO₃ + Me NO₂ NO N₂ O N₂ NH₄NO₃

Ме правее Fе
редко (ждём намёк)
щел Ме, щел-зем Ме, Al, Zn

Al, Fe, Cr, Co, Ni - пассивируются; Au, Pt, Pd - не реагируют
КОНЦЕТРИРОВАННАЯ АЗОТНАЯ КИСЛОТА 4

бесцветная жидкость с едким запахом, на воздухе "дымит" и желтеет из-за разложения

КИСЛОТА - ОБЛАДАЕТ ВСЕМИ СВОЙСТВАМИ КИСЛОТ:

реагирует с основаниями, с основными оксидами, с амф. оксидами и гидроксидами с образованием солей; вступает в РИО с солями.

РАЗЛАГАЕТСЯ ПРИ ЛЁГКОМ t!

КИСЛОТА-ОКИСЛИТЕЛЬ: реагирует с металлами по-особому, реагирует с восстановителями и неМе (C, P, S, I,), при этом:

 HNO_3 (конц) даёт NO_2 , HNO_3 (разб) - NO_2

4	
	5

Степень окисления азота: +5 Валентность: <mark>IV</mark>

Валентно	сть: IV		
Почему??	Да потому	что полуторные	связи

Ca + HNO, (к) =	
Mg + HNO, (p) =	
Al + HNO, (K) =	
Cu + HNO ₃ (k) =	
Fe + HNO, (κ) =	
Cu + HNO๋¸ (p) =	
H,S + HNO, (к) =	
Na,S + HNO, (ĸ) =	
CuS + HNO, (k) =	
KI + HNO ₃ (ĸ) =	
KI + HNO, (p) =	
Fe(OH), + HNO, (к)=	
SO ₂ + HNO ₃ (p) =	
FeÕ + HNÖ́, (к) =	
Fe¸O¸ + HNO¸ (к) =	

СОЛИ АЗОТНОЙ КИСЛОТЫ MeNO₃ - НИТРАТЫ

НИТРАТЫ - ТИПИЧНЫЕ СОЛИ: вступают в РИО с кислотами, основаниями, солями; вступают с Ме в реакции вытеснения; разлагаются при нагревании.

НИТРАТЫ АКТИВНЫХ МЕ - ХОРОШИЕ ОКИСЛИТЕЛИ: реагируют с восстановителями (при этом азот восстанавливается чаще всего до №30° или №20 (в реакции с КІ), но с МЕГАсильными восстановителями (атомарным Н, например) - до №3Ң,).

KNO ₃ + KI + H ₂ SO ₄ =
KNO ₃ + Al + KOH =
$KNO_3 + Mg + H_2O(t) =$
KNO ₃ + Fe + KOH =
KNO ₃ + Cr ₂ O ₃ + KOH =
KNO ₃ + Pb (t) =
KNO ₃ (t) =
Lino ₃ (t) =
$Ca(NO_3)_2(t) =$
$Cu(NO_3)_2(t) =$
$Mg(NO_3)_2(t) =$
$Fe(NO_3)_2(t) =$
AgNO ₃ (t) =
$Hg(NO_3)_2(t) = $
$Zn(NO_3)_2(t) = $