Practical No.2

1. Create Pandas DataFrame to enter employee database which includes Sr No, Name, Mobile No, City

Implementation:

• Program:

• Output:

2. Use Iris Dataset from Github and perform all basic operations on Iris Dataset

Implementation:

• Program:

```
url='https://gist.githubusercontent.com/curran/a08a1080b88344b0c8a7/raw
/0e7a9b0a5d22642a06d3d5b9bcbad9890c8ee534/iris.csv'
iris2=pd.read_csv(url)
iris2.head()
```

• Output:

	sepal_length	sepal_width	petal_length	petal_width	species
0	5.1	3.5	1.4	0.2	setosa
1	4.9	3.0	1.4	0.2	setosa
2	4.7	3.2	1.3	0.2	setosa
3	4.6	3.1	1.5	0.2	setosa
4	5.0	3.6	1.4	0.2	setosa

• Program:

url='https://gist.githubusercontent.com/curran/a08a1080b88344b0c8a7/raw
/0e7a9b0a5d22642a06d3d5b9bcbad9890c8ee534/iris.csv'
iris3=pd.read_csv(url)
iris3.tail()

• Output:

species	petal_width	petal_length	sepal_width	sepal_length	
virginica	2.3	5.2	3.0	6.7	145
virginica	1.9	5.0	2.5	6.3	146
virginica	2.0	5.2	3.0	6.5	147
virginica	2.3	5.4	3.4	6.2	148
virginica	1.8	5.1	3.0	5.9	149

• Program:

iris2.shape

• Output:

(150, 5)

• Program:

iris2.describe()

• Output:

	sepal_length	sepal_width	petal_length	petal_width
count	150.000000	150.000000	150.000000	150.000000
mean	5.843333	3.054000	3.758667	1.198667
std	0.828066	0.433594	1.764420	0.763161
min	4.300000	2.000000	1.000000	0.100000
25%	5.100000	2.800000	1.600000	0.300000
50%	5.800000	3.000000	4.350000	1.300000
75%	6.400000	3.300000	5.100000	1.800000
max	7.900000	4.400000	6.900000	2.500000

• Program:

iris1.iloc[5:10,2:]

• Output:

1.4 0.2 Iris-setosa

5	1.4	0.3	Iris-setosa
6	1.5	0.2	Iris-setosa
7	1.4	0.2	Iris-setosa
8	1.5	0.1	Iris-setosa
9	1.5	0.2	Iris-setosa

• Program:

iris2.iloc[5:10,1:]

• Output:

	sepal_width	petal_length	petal_width	species
5	3.9	1.7	0.4	setosa
6	3.4	1.4	0.3	setosa
7	3.4	1.5	0.2	setosa
8	2.9	1.4	0.2	setosa
9	3.1	1.5	0.1	setosa

• Program:

iris2.iloc[5:9,3:]

• Output:

		_
netal	width	species

5	0.4	setosa
6	0.3	setosa
7	0.2	setosa
8	0.2	setosa

• Program:

iris2.loc[0:4,"sepal_width"]

• Output:

0 3.5

1 3.0

2 3.2

3 3.1

4 3.6

Name: sepal_width, dtype: float64

• Program:

iris2.loc[0:3,"petal width"]

• Output:

0 0.2

1 0.2

2 0.2

3 0.2

Name: petal_width, dtype: float64

• Program:

iris2.drop('species',axis=1)

• Output:

	sepal_length	sepal_width	petal_length	petal_width
0	5.1	3.5	1.4	0.2
1	4.9	3.0	1.4	0.2
2	4.7	3.2	1.3	0.2
3	4.6	3.1	1.5	0.2
4	5.0	3.6	1.4	0.2
145	6.7	3.0	5.2	2.3
146	6.3	2.5	5.0	1.9
147	6.5	3.0	5.2	2.0
148	6.2	3.4	5.4	2.3
149	5.9	3.0	5.1	1.8

150 rows × 4 columns

• Program:

iris2['species'].value_counts()

• Output:

```
setosa 50
versicolor 50
virginica 50
Name: species, dtype: int64
```

3. Use matplotlib to plot bar chart using dictionary

Implementation:

• Program:

```
import matplotlib.pyplot as plt
data=[5.,25.,50.,20.]
plt.bar(range(len(data)),data)
plt.show()
```

• Output:

4. Use matplotlib to scatter graph and histogram

Implementation:

• Program:

```
x=[1,2,3,4,5,6,7]
y=[2,3,4,1,7,8,9]
plt.scatter(x,y)
plt.show()
```

• Output:

• Program:

```
import matplotlib.pyplot as plt
import numpy as np

x = np.random.normal(170, 10, 250)

plt.hist(x)
plt.show()
```

• Output:

