

Big Data

Tutorial #2

Isabelle Kuhlmann 2020-05-08

Outline

- 1) Lecture Recap
- 2) Exercise Discussion
- 3) Spark Introduction (Part 2)
- 4) Homework Exercise

What previously happened...

Lecture Recap

What is Spark?

- Functional programming
- Lazy transformations & eager actions
- Immutable DataFrames
 - Transformations return new (modified) DataFrames
- Provenance
 - It's always clear where a value comes from and how it has been computed
- On computer clusters

Lineage & Optimization

- Using .explain(), we can look at the physical plan
 Spark created
- Spark internally optimizes this plan
 - Wide transformations are pushed to the end of the execution pipeline
 - Example: If we want to filter and sort some data, the filter operation (narrow) is executed before the sort operation (wide)
 - Principle: If $f \circ g = g \circ f$ And $efforts(f \circ g) > efforts(g \circ f)$ Then re-order

Provenance

- Data is distributed to multiple nodes
 - What to do if one of the nodes fails?
- Distributivity:
 - $f(x \cup y) = f(x) \cup f(y)$
 - $g \circ f(x \cup y) = g(f(x)) \cup g(f(y))$
- Homomorphism:
 - $f(x \cup y) = f(x) \otimes f(y)$
 - $g \circ f(x \cup y) = g(f(x)) \otimes g(f(y))$

Distributivity & Homomorphism – Example

```
count \circ filter(df<sub>1</sub> \cup df<sub>2</sub>\cup df<sub>3</sub>) =
        = count(filter(df_1) \cup filter(df_2) \cup filter(df_3)) =
= count(filter(df_1))+ count(filter(df_2) + count(filter(df_3))
```

Isabelle Kuhlmann Big Data Tutorial 7

Word count of Alice in Wonderland

Exercise Discussion

Homework Assignment – Discussion

- Calculate the frequency of each word in Alice in Wonderland again, but this time, consider the following aspects:
 - Handle capitalized words.
 - Words cannot be empty.
 - Remove punctuation.
 - How do you handle terms like "don't", "she's", etc.?
 (Those are actually comprised of two words)
- Demo

More on DataFrames

Spark Introduction (Part 2)

Adding New Columns

- You can use
 - withColumn (colName, col) or
 - select(*cols)
- Example: Demo

Statistics

- Spark offers a variety of statistical functions, e.g.:
 - Mean
 - Standard deviation
 - Variance
 - Min/max
 - Covariance
 - Correlation
- Example: Demo

Grouping and Aggregating

- Grouping: groupBy (*cols)
 - Groups a DataFrame using the specified columns, so we can run aggregations on them
- Aggregation: agg (*exprs)
 - The following aggregate functions are available:
 - avg
 - max
 - min
 - sum
 - count
- Example: Demo

Save Data as .csv File

- The data might be partitioned, and thus, written to several output files
 - Use coalesce() to "merge" the data
- Use the write operation to actually write a DataFrame to a file
 - For a .csv file, use write.format("csv")
- Example: Demo

Now it's your turn!

Homework Exercise

Exercise

- Load the Retail dataset, it can be found under data/retail-data/all/online-retail-dataset.csv (Link). Answer the following questions/complete the following tasks using Spark:
 - Which item was bought most (total)? Which one was bought most in the USA?
 - Which was the lowest invoice (>0), which one the highest?
 - Add a column which displays whether an item was purchased in Germany.
 - Add a column which shows the total amount of the corresponding invoice.
 - How many German customers spent more than \$10?
 - Sort the German customers with respect to their total invoice in descending order.

Thank you for your Attention!

