то матрица A и преобразование (1) называются вырожденными. Это преобразование не будет взаимно однозначным.

Докажем это. Рассмотрим два возможных случая:

- 1) Если $a_{11} = a_{12} = a_{21} = a_{22} = 0$, то при любых x_1 и x_2 будут $y_1 = 0$, $y_2 = 0$. В этом случае любая точка $(x_1; x_2)$ плоскости x_1Ox_2 переходит в начало координат плоскости y_1Oy_2 .
- 2) Пусть хотя бы один из коэффициентов преобразования отличен от нуля, например $a_{11} \neq 0$.

Умножая первое из уравнений (1) на a_{21} , второе на a_{11} и производя вычитание, получим с учетом равенства (5)

$$\begin{array}{c|c}
a_{21} & y_1 = a_{11}x_1 + a_{12}x_2 \\
a_{11} & y_2 = a_{21}x_1 + a_{22}x_2 \\
\hline
a_{21}y_1 - a_{11}y_2 = 0
\end{array}$$
(6)

Итак, при любых x_1 , x_2 для значений y_1 и y_2 получаем равенство(6), т. е. соответствующая точка плоскости x_1Ox_2 попадает на прямую (6) плоскости y_1Oy_2 . Очевидно, что это отображение не является взаимно однозначным, так как каждой точке прямой (6) плоскости y_1Oy_2 соответствует совокупность точек плоскости x_1Ox_2 , лежащих на прямой $y_1 = a_{11}x_1 + a_{12}x_3$

В обоих случаях отображение не является взаимно однозначным.

Пример 1. Преобразование

$$y_1 = 2x_1 + x_2, \quad y_2 = x_1 - x_2$$

является взаимно однозначным, так как определитель $\Delta(A)$ матрицы преобразования A отличен от нуля:

$$\Delta(A) = \begin{vmatrix} 2 & 1 \\ 1 & -1 \end{vmatrix} = -3.$$

Обратное преобразование будет

$$x_1 = \frac{1}{3}y_1 + \frac{1}{3}y_2, \quad x_2 = \frac{1}{3}y_1 - \frac{2}{3}y_2$$

Матрица обратного преобразования, в соответствии с формулой (4) будет

$$A^{-1} = \left\| \frac{1}{3} \quad -\frac{1}{3} \right\|.$$

Пример 2. Линейное преобразование

$$y_1 = x_1 + 2x_2, \quad y_2 = 2x_1 + 4x_2$$

является вырожденным, так как определитель матрицы преобразования

$$\Delta(A) = \begin{vmatrix} 1 & 2 \\ 2 & 4 \end{vmatrix} = 0.$$

Это преобразование переводит все точки плоскости (x_1, x_2) в прямую $y_2 - 2y_1 = 0$ плоскости (y_1, y_2) .

§4 Действия над матрицами. Сложения матриц

Определение 1. Суммой двух матриц $||a_{ij}||$ и $||b_{ij}||$ с одинаковым количеством строк и одинаковым количеством столбцов называется матрица $||c_{ij}||$, у которой элементом c_{ij} является сумма $a_{ij} + b_{ij}$ соответствующих элементов матриц $||a_{ij}||$ и $||b_{ij}||$, т. е.

$$||a_{ij}|| + ||b_{ij}|| = ||c_{ij}||,$$
если (1)

$$a_{ij} + b_{ij} = c_{ij} \quad (i = 1, 2, ..., m; \ j = 1, 2, ..., n).$$

$$\Pi \text{ pumep 1.} \quad \begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix} + \begin{vmatrix} b_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix} = \begin{vmatrix} a_{11} + b_{11} & a_{12} + b_{12} \\ a_{21} + b_{21} & a_{22} + b_{22} \end{vmatrix}.$$

$$(2)$$

Аналогичным образом определяется *разность* двух матриц. Целесообразность такого определения суммы двух матриц, в частности, следует из представления вектора как столбцевой матрицы:

Умножение матрицы на число. Чтобы умножить умножить матрицу на число λ , нужно умножить на это число каждый элемент матрицы:

$$\lambda \|a_{ij}\| = \|\lambda a_{ij}\| \tag{3}$$

Если λ целое, то формула (3) получается как следствие правила сложения матриц.

Пример 2.
$$\lambda \begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix} = \begin{vmatrix} \lambda a_{11} & \lambda a_{12} \\ \lambda a_{21} & \lambda a_{22} \end{vmatrix}$$
.

Произведение двух матриц. Пусть имеем линейное преобразование плоскости x_1Ox_2 на плоскость y_1Oy_2 :

$$y_1 = a_{11}x_1 + a_{12}x_2, \quad y_2 = a_{21}x_1 + a_{22}x_2$$
 (4)

с матрицей преобразования

$$A = \begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix} . \tag{5}$$

Пусть, далее, произведено линейное преобразование плоскости y_1Oy_2 на плоскость z_1Oz_2 :

$$z_1 = b_{11}y_1 + b_{12}y_2, \quad z_2 = b_{21}y_1 + b_{22}y_2$$
 (6)

с матрицей преобразования

$$B = \begin{vmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \end{vmatrix} . \tag{7}$$

Требуется определить матрицу преобразования плоскости x_1Ox_2 на плоскость z_1Oz_2 . Подставляя выражение (4) в равенства (6), получаем

$$z_1 = b_{11}(a_{11}x_1 + a_{12}x_2) + b_{12}(a_{12}x_1 + a_{22}x_2),$$

$$z_2 = b_{21}(a_{11}x_1 + a_{12}x_2) + b_{22}(a_{12}x_1 + a_{22}x_2),$$