AFD AFND ER

Carlos Timóteo, M. Sc. CAPM

Motivação

- Como determinar se uma substring aparece num determinado texto;
- Como determinar se uma expressão foi formada corretamente
 - (5+1) 8 int main(int argc, char* argv){ return 0; }
- Como procurar por uma substring em arquivos de texto no computador;

Definições Iniciais

Grafos dirigidos: composto por arcos e vértices.

$$-G = \{(1,1),(1,2),(1,3),(2,4),(3,2)\}$$

- Relação reflexiva (laços): (n,n)
- Relação simétrica (círculos):
 - (a,b) (b,a)
- Relação anti-simétrica

Definições Iniciais

Relação de Equivalência: Simétrica e reflexiva

- Caminho e comprimento de um caminho:
 - -(a, ..., d) = (a,b,c,d) comp=4
- Conjuntos finitos, infinitos e equinumerosos.

Alfabetos e Linguagens

- Estrela de Kleene: Denotada por L* é o conjunto de todas as strings obtidas pela concatenação de zero ou mais strings de L.
 - Se L={01,0,100}, então 01001100000 pertence a L*
- Linguagem: Conjunto de todas as strings sobre um alfabeto.

• Expressão regular: Descreve uma linguagem finita ou infinita de elementos exclusivamente por meio de símbolos únicos e *. Todas as linguagens regulares sobre um alfabeto podem ser descritas por expressões regulares.

AFD – Definição Formal

Um Autômato Finito Determinístico (AFD) M é uma 5-upla:

$$M = (Q, \Sigma, \delta, q_0, F)$$
, onde

Q: conjunto finito de estados do autômato;

Σ: alfabeto de símbolos de entrada;

δ: função programa ou função de transição (parcial)
δ: Q × Σ → Q. Significa dizer que permanecendo em um estado e lendo um símbolo do alfabeto faz o autômato passar para outro estado ou mesmo ficar no mesmo

 q_0 : estado inicial $(q_0 \in Q)$

F: conjunto de estados finais ou estados de aceitação (F⊆Q)

AFD – Representação Gráfica

AFD – Representação Gráfica

Um autômato finito M₁: (diagrama de estados)

M₁ tem **3 estados**, q₁, q₂, q₃; M₁ **inicia** no estado q₁; M₁ tem um **estado final**, q₂; Os arcos que vão de um estado p/ outro chamam-se <u>transições</u>.

AFD – Exemplo Funcionamento

Exemplo: entrada 1101

- Inicia no estado q₁.
- Lê 1, segue transição de q₁ p/ q₂.
- Lê 1, segue transição de q₂ p/ q₂.
- 4. Lê 0, segue transição de q₂ p/ q₃.
- 5. Lê 1, segue transição de q_3 p/ q_2 .
- Pára c/ saída <u>reconhece</u>.

AFD - Propriedades

- Um AFD nunca entra em loop infinito
- Novos símbolos da entrada são lidos a cada aplicação da função programa, o processo de reconhecimento de qualquer cadeia pára de duas maneiras: aceitando ou rejeitando uma entrada.

Autômatos Finitos Não-Determinísticos

- Adiciona o não-determinismo aos autômatos finitos.
 - Capacidade de mudar de estado de forma apenas parcialmente determinada pelo estado corrente e pelo símbolo de entrada.
 - Podemos ter zero, uma ou mais transições de estado com o mesmo símbolo de entrada.

AFD vs AFND

- Determinístico
 - Transições bem definidas
 - Função de transição leva a um único estado
 - Sequência de estados é única para cada palavra
- Não-determinístico
 - Transições ambíguas
 - Função de transição leva a vários estados alternativos
 - Várias sequência possíveis

Autômatos Finitos Não Determinísticos

- Um estado pode ter zero, um ou mais arcos "saindo" para cada símbolo do alfabeto;
- zero, um ou mais arcos podem sair de cada estado rotulados com λ.

Representações de um AFND

δ	0	1
$\rightarrow q_0$	{q ₀ }	{q ₀ q ₁ }
q,	{q ₂ }	Ø
~ q ₂	Ø	Ø

AFND – Definição Formal

Um Autômato Finito Não-Determinístico (AFND) é uma 5-tupla onde:

- Q é um conjunto finito de estados;
- 2. Σ é um alfabeto finito;
- 3. δ : Q x $\Sigma_{\lambda} \rightarrow P(Q)$ é a função de transição;
- 4. $q_0 \in Q$ é o estado inicial; e
- F ⊆ Q é o conjunto de estados de <u>aceitação</u>.

Uma sequência de entrada a,b,c...d é aceita por um AFND se existe uma sequência de transições, correspondendo a sequencia de entrada, que leva do estado inicial a algum dos estados finais.

Equivalência AFND/AFD

- De um AFD é possível criar um AFND equivalente?
 - Trivial de mostrar
 - Basta criar um AFND cuja função leva a conjuntos unitários
- De um AFND é possível criar um AFD equivalente?
 - Dado M = (T, Q, δ, q₀, F) não-determinístico, construir
 M' determinístico
 - Veremos como fazer...

Para Hoje

- Expressões Regulares
- Transformações
 - AFD -> AFND
 - AFND -> AFD
 - AFND -> AFD -> ER
 - ER -> AFD -> AFND

AFND -> AFD AFD -> AFND

δ	0	1
$\rightarrow q_0$	{q ₀ }	{q ₀ q ₁ }
q,	{q ₂ }	Ø
~ q ₂	Ø	Ø

AFND -> AFD

Transformar de AFND para AFD

AFNDe

- Uma extensão do formalismo AFND
 - A diferença é que permite movimentos vazios
- Movimento vazio (transição ε)
 - Uma transição <u>sem leitura de símbolo</u>
 - Transição não obrigatória
 - A fita não se altera

AFNDe

A diferença para os AFNDs é a função de transição

 Além dos símbolos, agora também está definida para ε (ausência de símbolo)

AFNDe

Exemplo

- ACEITA(M) = $\{w \mid \text{todo } a \text{ antecede todo } b\}$

М:

δ:

	a	b	ε
q0	{q0}	{}	{qf}
qf	{}	{qf}	{}

Linguagens Regulares

- Todos os formalismos reconhecedores foram vistos
 - Autômatos Finitos Determinísticos
 - Autômatos Finitos Não-determinísticos
 - Autômatos Finitos com Movimentos e

 Expressões Regulares é um formalismo denotacional

 As expressões regulares são utilizadas principalmente como descritores de lingaugens, ou seja, a partir destas expressões podemos identificar uma linguagem regular e dada uma linguagem podemos escrevê-la de forma simplificada usando expressões (se a linguagem for regular).

- Utilização
 - Localizar cadeias em um texto
 - Para criar analisadores léxicos, que são componentes fundamentais dos compiladores
- Assim como uma expressão aritmética representa um número natural: (10 + 5) x 7
- Uma expressão regular representa uma linguagem: (0 + 1).0*

- T = {c, d}
- L = {palavra que tem "cc" como subpalavra}

ER

Definição formal: Seja ∑ um alfabeto

- Se a ∈ ∑, então a é uma expressão regular.
- Se λ é a palavra nula, então λ é uma expressão regular.
- Se Ø é o conjunto vazio, então Ø é uma expressão regular.
- Se R₁ e R₂ são expressões regulares, então (R₁ + R₂) e (R₁ • R₂) são expressões regulares.
- Se R₁ é uma expressão regular, então (R₁*) é uma expressão regular.

ER

- Na expressão (0 + 1) ⋅ 0*:

 0 representa o conjunto {0}
 1 representa o conjunto {1}
 (0 + 1) representa o conjunto {0} ∪ {1} = {0, 1}
 0* representa {0}*
- Então (0 + 1) 0* representa a linguagem:
 {uv: u ∈ {0, 1} e v = 0ⁿ, n≥0}

ER - Operadores

União

```
    L = {001, 110} e M= {e, 11, 110}
    L U M = {001, 110, e, 11}
    L(E+F) = L(E) U L(F)
```

Concatenação

```
    L = {001, 110} e M = {e, 11, 110}
    L.M (com um ponto) ou LM (sem ponto), onde LM = {001, 00111, 001110, 110, 11011, 110110}
    L(E.F) = L(E).L(F)
```

• Fechamento de Kleene

```
- L = {00, 11}
- L* = {e, 0011, 001100, 11110011, ...}.
- L(E*) = ( L(E) )*
```