Akademickie Mistrzostwa Polski w Programowaniu Zespołowym

Prezentacja rozwiązań zadań

ADWOKAT

Autor zadania: Jakub Łącki

Zgłoszenia: 118 z 857 (13%) Zaakceptowane przez 52 z 57 drużyn (91%)

ADWOKAT

Mamy dane n odcinków na prostej. Należy znaleźć dwa odcinki, które się nie przecinają (lub stwierdzić, że takowych nie ma).

► Znajdujemy odcinek o minimalnym prawym końcu oraz odcinek o maksymalnym lewym końcu. Jeśli te dwa odcinki się nie przecinają, to jest to rozwiązanie.

Czas działania O(n).

Dzielniki

Autor zadania: Jakub Radoszewski

Zgłoszenia: 186 z 857 (21%) Zaakceptowane przez 44 z 57 drużyn (77%)

Dzielniki

Dla danego ciągu a_1, \ldots, a_n ($a_i \leq M$) chcemy znaleźć liczbę par (i,j) takich, że a_i jest dzielnikiem a_j .

- Niech c[i] oznacza liczbę wystąpień i w ciągu; wyznaczamy to w czasie O(n+M).
- ▶ Dla każdego $i \leq M$ rozpatrujemy wszystkie jego wielokrotności $j \leq M$ i dodajemy do wyniku $c[i] \cdot c[j]$. Wielokrotności i jest O(M/i), zatem ta faza działa w czasie $O(M + \frac{M}{2} + \frac{M}{3} + \ldots + \frac{M}{M}) = O(M \log M)$.

Ostateczna złożoność to $O(n + M \log M)$.

CENY

Autor zadania: Jakub Radoszewski

Zgłoszenia: 90 z 857 (10%) Zaakceptowane przez 27 z 57 drużyn (47%)

CENY

Chcemy kupić $m \leq 16$ produktów, mamy do dyspozycji $n \leq 100$ hurtowni. Znamy cenę każdego produktu w każdej hurtowni oraz koszt dojazdu do hurtowni. Jaki jest najtańszy koszt wszystkich zakupów?

- Dla każdego podzbioru produktów znajdujemy najtańszy sklep, w którym możemy zakupić ten podzbiór. W tym celu rozważamy każdy podzbiór produktów w każdej hurtowni. Koszt czasowy O(nm2^m) lub O(n2^m).
- ▶ Dla każdego podzbioru produktów znajdujemy najtańszy koszt zakupu tych produktów. W tym celu rozważamy każdy podzbiór tego podzbioru i zakładamy, że został on kupiony w jednej hurtowni. Jest to standardowe programowanie dynamiczne po podzbiorach działające w czasie O(3^m).

To daje złożoność $O(n2^m + 3^m)$.

CENY

- ▶ Dla każdego podzbioru produktów S znajdujemy c[i][S] – najtańszy koszt zakupu tych produktów w hurtowniach 1,..., i.
- Dodajemy hurtownię i + 1: dla każdego podzbioru produktów S sprawdzamy, czy opłaca nam się jechać do tej hurtowni i wymienić część produktów na tańsze. Korzystamy z faktu, że dotychczasowy minimalny koszt zakupu j-tego produktu to c[i][S] c[i][S \ {j}].

Złożoność czasowa to $O(nm2^m)$.

KAPITAN

Autor zadania: Jakub Łącki

Zgłoszenia: 105 z 857 (12%) Zaakceptowane przez 28 z 57 drużyn (49%)

Kapitan

Danych jest n punktów na płaszczyźnie. Koszt przejazdu bezpośrednio między punktami (x_A, y_A) oraz (x_B, y_B) to $\min(|x_A - x_B|, |y_A - y_B|)$. Znaleźć minimalny koszt przejazdu pomiędzy dwoma zadanymi punktami.

- ▶ Jeśli mamy trzy punkty (x_A, y_A) , (x_B, y_B) , (x_C, y_C) , $x_A \le x_B \le x_C$ i bezpośredni koszt przejazdu z A do C wynosi $x_C x_A$, to koszt przejazdu nie zwiększy się, jeśli po drodze odwiedzimy punkt B.
- Z tego wynika, że z danego punktu wystarczy rozważać przejście do najbliższego punktu w każdym z czterech kierunków. Aby znaleźć punkty najbliższe wystarczy dwa razy posortować listę punktów – raz względem współrzędnej x i raz względem współrzędnej y.

Minimalny koszt znajdujemy algorytmem Dijkstry w grafie o n wierzchołkach i co najwyżej 4n krawędziach w czasie $O(n \log n)$.

EUKLIDESOWY NIM

Autor zadania: Tomasz Idziaszek

Zgłoszenia: 98 z 857 (11%) Zaakceptowane przez 22 z 57 drużyn (38%)

EUKLIDESOWY NIM

Na stole leży stos n kamieni. Gracze p i q grają w grę, wykonując naprzemiennie ruchy. Ruch gracza x polega na zabraniu wielokrotności kamieni x lub (jeśli nie może tego zrobić) na dołożeniu x kamieni. Wygrywa gracz opróżniający stos; wyznaczyć który.

- ▶ Jeśli n nie jest podzielne przez d = NWD(p, q) to gra toczy się w nieskończoność. W przeciwnym przypadku dzielimy wszystkie liczby przez d i możemy założyć, że p i q są względnie pierwsze.
- ightharpoonup Załóżmy, że p < q (ale rozważamy jako pierwszego zarówno gracza p jak i gracza q).

EUKLIDESOWY NIM

- (A) Jeśli zaczyna q i n < q, to przegrywa. (Bo p za każdym razem doprowadza do sytuacji n < p, a q musi dołożyć q. Ponieważ $p \perp q$, to w pewnym momencie dołożenie q spowoduje, że n jest podzielne przez p.)
- (B) Zatem jeśli zaczyna p i $n \geq p$, to wygrywa, bo doprowadza do sytuacji (A).
- (C) Jeśli zaczyna p i n < p, to musi dołożyć p i albo wygrywa bo doprowadza do (A) albo $n + p \ge q$ i q musi usunąć q, co sumarycznie powoduje zmniejszenie n o q p. Zatem p przegrywa wtw, gdy n jest podzielne przez q p.
- (D) Jeśli zaczyna q i $n \geq q$, to dla $z = n \mod q$, z podzielne przez q p i z < p, wygrywa doprowadzając do (C). W przeciwnym przypadku przegrywa, bo dowolny ruch prowadzi do (B).

BENZYNA

Autor zadania: Jakub Łącki

Zgłoszenia: 51 z 857 (5%) Zaakceptowane przez 15 z 57 drużyn (26%)

Benzyna

Mamy nieskierowany ważony graf G o n wierzchołkach, m krawędziach i podzbiór wierzchołków (stacji). Mamy odpowiedzieć na q zapytań postaci "czy da się przejechać pomiędzy dwoma stacjami tak, by maksymalna odległość pomiędzy pośrednimi stacjami była nie większa niż δ ".

- ▶ Dla każdego wierzchołka x w G znajdujemy najbliższą mu stację s_x i odległość do niej $d(s_x, x)$. Używamy do tego algorytmu Dijkstry w czasie $O(m \log n)$.
- ▶ Dla ustalonej krawędzi xy w G cysterna o baku δ może nią przejechać, gdy $w^*(xy) = d(s_x, x) + w(xy) + d(y, s_y) \leq \delta$.
- lacktriangle Sortujemy krawędzie względem w^* i zapytania względem δ .
- Dodajemy krawędzie do grafu, utrzymując podział na spójne składowe.

Złożoność to $O(m \log m + q \log q)$.

GLOBALNE OCIEPLENIE

Autorzy zadania: Jacek Tomasiewicz i Tomasz Idziaszek

Zgłoszenia: 140 z 857 (16%) Zaakceptowane przez 10 z 57 drużyn (17%)

GLOBALNE OCIEPLENIE

W ciągu a_1, \ldots, a_n chcemy znaleźć najdłuższy przedział zawierający jedno minimum i jedno maksimum.

Dla każdego elementu i chcemy w czasie stałym wyznaczyć najdłuższy przedział, który zawiera ten element jako jedyne minimum. Granice tego przedziału wyznaczają l_1 , r_1 będące najbliższymi elementami $\leq a_i$.

Niech l_3 , l_2 , r_2 , r_3 będą maksymalnymi elementami w przedziale (l_1, r_1) najbliższymi do i. Kandydatami na szukany przedział są (l_3, r_2) i (l_2, r_3) .

GLOBALNE OCIEPLENIE

- Osobno trzeba rozważyć przypadki, gdy któryś z indeksów l₃, l₂, r₂, r₃ nie istnieje.
- ▶ Wyznaczanie indeksów można zrobić na drzewie przedziałowym w sumarycznym czasie $O(n \log n)$ lub korzystając ze stosu w czasie O(n).

JASKINIA

Autor zadania: Tomasz Idziaszek

Zgłoszenia: 19 z 857 (2%) Zaakceptowane przez 5 z 57 drużyn (8%)

JASKINIA

Dane jest drzewo o n wierzchołkach i m poddrzew: S_i składa się z wierzchołków, których suma odległości do a_i i b_i wynosi co najwyżej d_i . Należy znaleźć wierzchołek należący do przecięcia $S=\bigcap S_i$, lub stwierdzić że jest ono puste.

- Dla ustalonego wierzchołka v możemy w czasie O(n + m) wyznaczyć do niego odległości i stwierdzić, czy należy on do S.
- ▶ Znajdujemy w drzewie wierzchołek v, którego wszystkie poddrzewa mają rozmiar nie większy niż $\frac{2}{3}n$. Stwierdzamy, że albo v należy do S, albo istnieje poddrzewo v zawierające S, albo S jest puste.

Wykonamy $O(\log n)$ zejść rekurencyjnych, zatem złożoność algorytmu to $O(n + m \log n)$.

Jaskinia

Można szybciej:

ightharpoonup Odległością v od S_i jest

$$\max(0,\lceil(d(v,a_i)+d(v,b_i)-d_i)/2\rceil).$$

Odległości z v do wszystkich S_i możemy wyznaczyć w czasie O(n+m).

- ightharpoonup Znajdujemy odległości z wierzchołka 1, a następnie S_i najdalsze od tego wierzchołka.
- Niech x będzie wierzchołkiem z S_i leżącym najbliżej 1. Jeśli S jest niepuste, to zawiera x.

Złożoność czasowa to O(n+m).

Inscenizacja

Autor zadania: Adam Karczmarz

Zgłoszenia: 27 z 857 (3%) Zaakceptowane przez 2 z 57 drużyn (3%)

Inscenizacja

W strzelaninie uczestniczy n gangsterów; i-ty z nich odda strzał do p_i -tego. Ilu gangsterów pozostanie przy życiu dla ustalonej kolejności strzelania, oraz po każdej z q zmian w tej kolejności?

- ▶ Rozkładamy permutację p_1, \ldots, p_n na cykle i każdy z nich rozpatrujemy osobno.
- Przenumerujmy gangsterów na ustalonym cyklu oraz rozwińmy ten cykl 2 razy. Jeśli i strzela pierwszy w cyklu, to i + 1 na pewno zginie i pytamy się ilu gangsterów z przedziału [i + 1, i + n] przeżyje.
- ▶ Tworzymy drzewo przedziałowe, w którym operację zmiany zrealizujemy w czasie $O(\log n)$, czyli rozwiązanie będzie działać w $O((n+q)\log n)$.

Inscenizacja

▶ Dla przedziału gangsterów [x, y] o długości 2^k pamiętamy informację ilu gangsterów z tego przedziału przeżyje oraz co się stanie z gangsterem y w zależności od tego, czy gangster x odda strzał.

▶ Dla przedziału $[x,y] = [x,y_s] \cup [x_s,y]$ uaktualniamy to w czasie stałym. Kluczowa jest obserwacja, że gangster x_s odda strzał jeśli $t_{x_s} < t_{y_s}$ lub gangster y_s nie przeżyje:

$$egin{aligned} c[x,y,i] &= c[x,y_s,i] + c[x_s,y,t_{x_s} < t_{y_s} \lor p[x,y_s,i] = 0] \ p[x,y,i] &= p[x_s,y,t_{x_s} < t_{y_s} \lor p[x,y_s,i] = 0] \end{aligned}$$

Inscenizacja

Można prościej:

- ▶ Gangster i jest pewniakiem, jeśli $t_i < t_j$ oraz $p_j = i$.
- Jeśli odległość na cyklu do następnego pewniaka wynosi d, to przeżyje tam \[d/2\] gangsterów.
- Wystarczy utrzymywać zbiór pewniaków i po każdej zmianie t_i uaktualniać gangsterów i oraz p_i .

Złożoność to $O((n+q)\log n)$.

Autorzy zadania: Jakub Radoszewski i Tomasz Idziaszek

Zgłoszenia: 18 z 857 (2%) Zaakceptowane przez 1 z 57 drużyn (1%)

FILARY

Z prostokąta o parzystych wymiarach $n \times m$ wycięto f kwadratów 2×2 tak, że środki każdych dwóch kwadratów są oddalone o co najmniej 6, a ponadto środek każdego kwadratu jest oddalony o co najmniej 3 od brzegu prostokąta. Znaleźć cykl przechodzący po wszystkich niewyciętych polach.

FILARY

- ▶ Na początek wypełniamy pusty prostokąt cyklem.
- Następnie wycinamy kolejne kwadraty, lokalnie poprawiając cykl (rozważamy trzy przypadki).

Złożoność O(nm + f).

HIT SEZONU

Autorzy zadania: Tomasz Kociumaka, Jakub Radoszewski, Wojciech Rytter i Tomasz Waleń

> Zgłoszenia: 5 z 857 (0%) Zaakceptowane przez 0 z 57 drużyn (0%)

HIT SEZONU

Dana jest słowo długości $n \leq 3000$ nad alfabetem RGB* zawierające $k \leq 19$ symboli *. Należy je pokryć jak najkrótszym słowem nad RGB, przy czym * pasuje do wszystkiego.

- ▶ Wszystkie matryce dłuższe niż n/2 sprawdzamy w sumarycznym czasie $O(n^2)$.
- Rozważając krótszą matrycę będziemy zgadywać *
 (albo w pierwszej albo w drugiej połówce słowa będzie ich
 co najwyżej k/2).
- ▶ Robimy to rekurencyjnie, utrzymując zbiór wystąpień matrycy w słowie oraz największy odstęp pomiędzy dwoma kolejnymi wystąpieniami. Jeśli odstęp nie przekracza długości matrycy, to jest ona poprawna. Uaktualnienie zbioru dla * wykonujemy w czasie O(n).

Czas działania to $O(n^2 + 3^{k/2}n)$.

HIT SEZONU

Aby efektywnie utrzymywać zbiór wystąpień matrycy na początek wyliczamy w czasie $O(n^2)$ dla pierwszej połówki słowa P:

- ▶ Najdłuższe dopasowanie P w każdym możliwym miejscu.
- Dla każdej litery i każdej * z P, wszystkie przyłożenia P, które przestają być poprawne po zastąpieniu * przez tę literę.

