ELL409: MACHINE LEARNING

ASSIGNMENT 3

Support Vector Regression

Vivek Muskan 2017MT10755

Dataset is Boston House Pricing Data, consisting of 506 rows and 13 features and a class containing the Median value of owner-occupied homes to be predicted later.

First will look after SVR implementation using CVXOPT

Theory and Algorithm

We need to solve a dual problem in this, as discussed in the class. (From Bishop Book)

$$\widetilde{L}(\mathbf{a}, \widehat{\mathbf{a}}) = -\frac{1}{2} \sum_{n=1}^{N} \sum_{m=1}^{N} (a_n - \widehat{a}_n)(a_m - \widehat{a}_m)k(\mathbf{x}_n, \mathbf{x}_m)$$

$$-\epsilon \sum_{n=1}^{N} (a_n + \widehat{a}_n) + \sum_{n=1}^{N} (a_n - \widehat{a}_n)t_n$$

We need to maximize this equation with respect to constraints

$$\sum_{n=1}^{N} (a_n - \widehat{a}_n) = 0$$

$$0 \leqslant a_n \leqslant C$$

 $0 \leqslant \widehat{a}_n \leqslant C$

Where C and epsilon are hyperparameters.

Using the value of "a" and "a n " found we can find the value of y(x), which is as follows:

$$y(\mathbf{x}) = \sum_{n=1}^{N} (a_n - \widehat{a}_n)k(\mathbf{x}, \mathbf{x}_n) + b$$

Where b is

$$b = t_n - \epsilon - \mathbf{w}^{\mathrm{T}} \boldsymbol{\phi}(\mathbf{x}_n)$$

$$= t_n - \epsilon - \sum_{m=1}^{N} (a_m - \widehat{a}_m) k(\mathbf{x}_n, \mathbf{x}_m)$$

Then we took the average of all the b for which points are support vectors.

The above dual problem is solved using a QP Solver, whose standard form is given below:

$$\min_{x} \quad \frac{1}{2}x^{\top}Px + q^{\top}x$$
subject to
$$Gx \leq h$$

$$Ax = b$$

We can get the value of x using the following equations:

Hence, we need to convert our dual problem in the above form. So, took x as a matrix of $[a, a^{\wedge}]$ and then changes each equation accordingly, which is shown below.

Implemented SVR

 At first Data framing and Normalization has been done and then in Order to frame optimization problem into Standard form, Kernel Function is defined. The different kernel function is introduced as:

$$k(\mathbf{x_i}, \mathbf{x_j}) = (\mathbf{x_i} \cdot \mathbf{x_j} + 1)^d \quad k(\mathbf{x_i}, \mathbf{x_j}) = \exp(-\gamma ||\mathbf{x_i} - \mathbf{x_j}||^2)$$

Polynomial kernel equation Gaussian radial basis function (RBF)

```
[ ] def Kernel(name, x, y, gamma):
    if name == 'linear':
        return np.dot(x,y)

    elif name == 'rbf':
        #gamma = 1/(np.var(x) + np.var(y))
        return np.exp(-gamma*np.matmul((x-y).transpose(),(x-y)))

    elif name == 'poly':
        return (np.dot(x,y)+1)**(2) # Quadratic Kernel

    else:
        print("Please Enter - 'linear' or 'poly' or 'rbf' ")
```

 After that predictor function which will help in predicting the median using the equation of Hyperplane as y(x):

$$y(\mathbf{x}) = \sum_{n=1}^{N} (a_n - \widehat{a}_n)k(\mathbf{x}, \mathbf{x}_n) + b$$

```
[ ] def predictor(X_train,x,Alpha,B,s, gamma):
    ans = 0
    N = int(len(Alpha)/2)
    for i in range(N):
        ans += (Alpha[i]-Alpha[N+i])*Kernel(s,x,X_train[i], gamma)
    return ans
```

• Then we splitted data into Training and Test dataset for K-Fold Cross Validation and Extracted (X,y) for both Training and Testing.

```
k fold size = 101
no of fold = int(len(data)/k fold size)
MSE = 0
for i in range(no_of_fold):
    count+=1
    print("Validation No : ",count," -
    X_test = np.array([data[j][:-1] for j in range(i*k_fold_size,(i+1)*k_fold_size)])
    Y test = np.array([data[j][-1] for j in range(i*k fold size,(i+1)*k fold size)])
    X_train = []
    Y_train = []
    for j in range(len(data)):
        if (j<i*k_fold_size) or (j>(i+1)*k_fold_size):
            X_train.append(data[j][:-1])
            Y_train.append(data[j][-1])
    X_train = np.array(X_train)
    Y train = np.array(Y train)
```

• After that I fixed Hyper-parameters and then conversion of optimization equation into standard Matrix form. This was the crux of all steps.

<u>IDEA</u>: Equation consist (a, a^) as variable so take them as single vector [a a^] and then from dimension of P and backtracking summation I got following equation for every Matrix:

$$P = \begin{bmatrix} K - K \\ -K \end{bmatrix} \qquad Q = \begin{bmatrix} y - E \\ -y - E \end{bmatrix} \qquad \text{In } xxx - \text{Identity}$$

$$C_1 = \begin{bmatrix} -L & O \\ O & -I \\ I & O \end{bmatrix} \qquad C_1 = \begin{bmatrix} O \\ O & I \end{bmatrix} \qquad C_1 = \begin{bmatrix} O \\ O \\ O & I \end{bmatrix} \qquad C_1 = \begin{bmatrix} O \\ O \\ O & I \end{bmatrix} \qquad C_2 = \begin{bmatrix} O \\ O \\ O & I \end{bmatrix}$$

$$A = \begin{bmatrix} I - I \end{bmatrix} \qquad D = \begin{bmatrix} O \\ O \end{bmatrix}$$

```
epsilon = 0.1
C = 100
ker - 'linear'
gamma = 0.1
# Optimization COnversion
K - []
for x1 in X_train:
  row = []
  for x2 in X train:
    row.append(Kernel(ker,x1,x2,gamma))
  K.append(row)
N = len(X_train)
K = matrix(np.array(K),tc='d')
I = matrix(np.eye(N),tc='d')
O = matrix(np.zeros([N,N]),tc='d')
Ones_N_1 = matrix(np.ones([N,1]),tc='d')
Zeros_N_1 = matrix(np.zeros([N,1]),tc='d')
y = matrix(Y_train,tc='d')
# Transformation into Standard Form
P = (1/2)^* matrix([[K,-K],[-K,K]],tc='d')
q = matrix([(y-epsilon*Ones_N_1), -(y+epsilon*Ones_N_1)],tc='d')
G = matrix([[-I,0,I,0],[0,-I,0,I]],tc='d')
h = matrix([Zeros_N_1,Zeros_N_1,C*Ones_N_1,C*Ones_N_1],tc='d')
A = matrix([[matrix(1,(1,N),tc='d')],[matrix(-1, (1,N),tc='d')]],tc='d')
b = matrix([0],tc='d')
```

All the useful matrices like Identity, Zeros, Ones and Kernel etc. is defined under Sub-matrices section of the code.

- Then Using CVXOPT, this problem has been solved to get [a, a^] and then B has been obtained.
- Then Using prediction on test data, I calculated the MSE keeping a margin of epsilon.

```
sol = solvers.qp(P,q,G,h,A,b)
x = sol['x']
B = matrix(1,(1,N),tc^{-1}d')*(matrix([[K],[-K]],tc^{-1}d')*x + matrix([(Y-epsilon*Ones_N_1)]))
# Prediction Stage
Y predicted = []
sq err - 0
for t,y in zip(X_test,Y_test):
 fx = predictor(X_train, t, x, B, ker,gamma)
 Y_predicted.append(fx)
 if(abs(y-fx) > epsilon):
    sq_err += (abs(y-fx)-epsilon)**2
Y predicted = np.array(Y predicted)
MSE += sq_err
#print("Squared Err from ",count,"th fold = ",sq err)
# Data Visualisation
plt.scatter(X test[:,0], Y predicted, color = 'm',label = "Predicted")
plt.scatter(X_test[:,0], Y_test, color - 'g', label - "Actual")
plt.xlabel("15t Column of x")
plt.ylabel("Median Val")
plt.title("Validation Fold No : %d\nKernel=%s, C=%d, epsilon=%f, Gamma=%f\n MSE=%f"%(i+1,ker,C,epsilon,gamma,sq_err))
plt.legend()
plt.show()
```

• I took average of MSE over all folds and a scatter plot of predicted values (PINK) has been plotted versus 1st column of test data along with actual label (GREEN) to observe the deviation of prediction from actual value.

 Keeping all other aspect same, using Sci-kit learn, SVR has been used to plot similar graphs to compare.

Comparative Graph Plotting

Implemented SVR

SK-learn

Kernel: Linear

Kernel: RBF

Kernel: Poly 2nd Degree

C = 10

C = 100

C = 1000

Epsilon = 0.1

Epsilon = 0.5

Best Parameters came out to be:

Kernel: Linear

C = 100, Epsilon = 0.5

So, here is a plot of each validation fold for above parameters:

Implemented SVR

SK-Learn

