M House Rent Prediction – Project Documentation

M Project Overview

This project uses machine learning to predict house rental prices based on features like location, size, number of rooms, and furnishing status. It leverages Python libraries for data preprocessing, visualization, and model training.

II Tech Stack

- Language: Python
- Libraries: Pandas, NumPy, Matplotlib, Seaborn, Scikit-learn
- Model: Linear Regression (can be extended to other regressors)

M Directory Structure

Folder/File	Description
house_rental/	Main working directory
house_rent.csv	Dataset used for training and testing
House_Rent_Prediction.ipynb	Jupyter notebook with EDA and model training

I Dataset Description

The dataset contains rental listings with the following features:

Column Name	Description
ВНК	Number of bedrooms
Size	Area in square feet
Floor	Floor info (e.g., "Ground out of 2")
Area Type	Super/Carpet/Built area
City	City name
Furnishing Status	Furnished / Semi-Furnished / Unfurnished
Tenant Preferred	Family / Bachelors / Company
Bathroom	Number of bathrooms
Rent	Target variable (monthly rent in INR)

- Checked for missing values and data types
- Visualized distributions and correlations
- Encoded categorical variables using Label Encoding
- Normalized numerical features

Model Training

Model Used

 $\verb|```python from sklearn.linear_model import Linear Regression model = Linear Regression() model.fit (X_train, y_train) | Construction of the property of th$