A Brief Tour of Classification Algorithms

Vanessa Rivera Quinones

ML Pipeline

Logistic Regression

Logistic Regression

Linear Regression Vs Logistic Regression

Linear Regression

- · Aim is to predict continuous valued output.
- Output value can be any possible integer number.

Logistic Regression

- Aim is to predict the label for input data.
- · Output is categorical (Binary) i.e. 0/1, True/False, etc.

KNN

0. Look at the data

Say you want to classify the grey point into a class. Here, there are three potential classes - lime green, green and orange.

1. Calculate distances

Start by calculating the distances between the grey point and all other points.

2. Find neighbours

Point Distance

Next, find the nearest neighbours by ranking points by increasing distance. The nearest neighbours (NNs) of the grey point are the ones closest in dataspace.

3. Vote on labels

Vote on the predicted class labels based on the classes of the k nearest neighbours. Here, the labels were predicted based on the k=3 nearest neighbours.

Source: How to find the optimal value of K in KNN?

Decision Trees

Random Forest

Metrics

Metric	Measures	In Scikit-learn
Precision	How many selected are relevant?	from sklearn.metrics import precision_score
Recall	How many relevant were selected?	from sklearn.metrics import recall_score
F1	Weighted average of precision & recall	from sklearn.metrics import f1_score
Confusion Matrix	True positives, true negatives, false positives, false negatives	from sklearn.metrics import confusion_matrix
ROC	True positive rate vs. false positive rate, as classification threshold varies	from sklearn.metrics import roc
AUC	Aggregate accuracy, as classification threshold varies	from sklearn.metrics import auc

Metrics

Metrics in Context

Bad Loan = 1

1 BANK

Cost of FN > Cost of FP

Good Loan = 0

Accuracy: Out of the total prediction made, how many did we predict correctly?

Accuracy =
$$\frac{TP + TN}{TP + TN + FP + FN}$$

Accuray = (559+22)/(559+22+33+0) = 95%

Actual

Pro	he	ict

		Bad Loan (1)	Good Loan (0)
dict -	Bad Loan (1)	✓ TP - 559	¥FP-0 Ğ
	Good Loan (0)	X FN - 33 €	√ TN - 22 €

Precision: Out of the loan that is predicted as a bad loan, how many did we classify correctly?

Precision =
$$\frac{TP}{TP + FP}$$

Recall: Out of the **actual** bad loan, how many did we correctly predict as a bad loan?

Recall =
$$\frac{TP}{TP + FN}$$

Instead of using accuracy,we should evaluate recall. If we can decrease FN, the recall will increase.

$$Recall = 559/(559+33) = 94.5\%$$

Precision vs. Accuracy

ROC

- A perfect classifier has 0 false positives (0.0 rate) and correctly predicts all true positives (1.0 rate)
- If you flip a coin (random classifier), your rates will be roughly the same.

Interesting Resources

- https://www.kaggle.com/
- https://www.drivendata.org/