

COPY OF PAPERS
ORIGINALLY FILED

#6

SEQUENCE LISTING

<110> Mo Jeffrey G

<120> Compositions and Methods for Protecting Tissues and Cells from Damage, and For Repairing Damaged Tissues

<130> 108236.130

<140> 10/083,936

<141> 2002-02-27

<150> US 60/271,666; US 60/302,716

<151> 2001-02-27; 2001-07-03

<160> 10

<170> PatentIn Ver. 2.1

<210> 1

<211> 939

<212> DNA

<213> Dolichos lablab

<400> 1

gcacagtcat tgtcatttag tttcaccaag tttgatccta accaagagga tccttatcttc 60
caaggtcatg ccacttctac aaacaatgtc ttacaagtca ccaagttaga cagtgcagga 120
aaccctgtga gttctagtgc gggaaagatg ttatattctg caccattgcg cccttggaa 180
gactctgcgg tattgacaag ctttgacacc attatcaact ttgaaatctc aacaccttac 240
acttctcgta tagctgatgg ctggcccttc ttcattgcac cacctgactc tgcatcagt 300
tatcatggtg gtttcttgg actctttccc aacgcaaaca ctctcaacaa ctcttccacc 360
tctgaaaacc aaaccaccac taaggctgca tcaagcaacg ttgttgcgt tgaatttgac 420
acatatctta atcccgatta tggatcca aactacatac acatcggaaat tgacgtcaac 480
tctatttagat ccaaggtaac tgctaagtgg gactggcaa atggaaaat agccactgca 540
cacatttagt ataactctgt ctctaaaaga ctatctgtta ctatgttata tgctgggagt 600
aaacctgcga ctctctccta tgatatttag ttacatacag tgcttcctga atgggtcaga 660
gtagggttat ctgcttcaac tggacaagat aaagaaaagaa ataccgttca ctcatggtct 720
ttcacttcaa gctgtggac caatgtggcg aagaaggaga atgaaaacaa gtatattaca 780
agaggcgttc tgtatgata tatgtgtatc aatgatttc tatgttataa gcatgtaatg 840
tgcatgatgact caataatcac aagtacagtg tagtacttgt atgatgtttg tgtaagatc 900
agtttgcatt taataataac aagtgcagtt agtacttgt 939

<210> 2

<211> 264

<212> PRT

<213> Dolichos lablab

<400> 2

Ala Gln Ser Leu Ser Phe Ser Phe Thr Lys Phe Asp Pro Asn Gln Glu
1 5 10 15

Asp Leu Ile Phe Gln Gly His Ala Thr Ser Thr Asn Asn Val Leu Gln
20 25 30

Val Thr Lys Leu Asp Ser Ala Gly Asn Pro Val Ser Ser Ala Gly
35 40 45

Arg Val Leu Tyr Ser Ala Pro Leu Arg Leu Trp Glu Asp Ser Ala Val
50 55 60

Leu Thr Ser Phe Asp Thr Ile Ile Asn Phe Glu Ile Ser Thr Pro Tyr
 65 70 75 80
 Thr Ser Arg Ile Ala Asp Gly Leu Ala Phe Phe Ile Ala Pro Pro Asp
 85 90 95
 Ser Val Ile Ser Tyr His Gly Gly Phe Leu Gly Leu Phe Pro Asn Ala
 100 105 110
 Asn Thr Leu Asn Asn Ser Ser Thr Ser Glu Asn Gln Thr Thr Lys
 115 120 125
 Ala Ala Ser Ser Asn Val Val Ala Val Glu Phe Asp Thr Tyr Leu Asn
 130 135 140
 Pro Asp Tyr Gly Asp Pro Asn Tyr Ile His Ile Gly Ile Asp Val Asn
 145 150 155 160
 Ser Ile Arg Ser Lys Val Thr Ala Lys Trp Asp Trp Gln Asn Gly Lys
 165 170 175
 Ile Ala Thr Ala His Ile Ser Tyr Asn Ser Val Ser Lys Arg Leu Ser
 180 185 190
 Val Thr Ser Tyr Tyr Ala Gly Ser Lys Pro Ala Thr Leu Ser Tyr Asp
 195 200 205
 Ile Glu Leu His Thr Val Leu Pro Glu Trp Val Arg Val Gly Leu Ser
 210 215 220
 Ala Ser Thr Gly Gln Asp Lys Glu Arg Asn Thr Val His Ser Trp Ser
 225 230 235 240
 Phe Thr Ser Ser Leu Trp Thr Asn Val Ala Lys Lys Glu Asn Glu Asn
 245 250 255
 Lys Tyr Ile Thr Arg Gly Val Leu
 260

<210> 3
 <211> 1005
 <212> DNA
 <213> Dolichos lablab

<400> 3
 atggcttcct ccaacttact caccctagcc ctcttccttg tgcttctcac ccacgcaaac 60
 tcagccgcac agtcattgtc atttagttc accaagtttgc atcctaacca agaggatctt 120
 atcttccaag gtcatgccac ttctacaaac aatgtcttac aagtccacaa gtttagacagt 180
 gcaggaaacc ctgtgagttc tagtgccgga agagtgttat attctgcacc attgcgcctt 240
 tgggaagact ctgcggattt gacaagctt gacaccatta tcaacttta aatctcaaca 300
 ccttacacct ctcgtatagc ttagtggctt gccttcttca ttgcaccatt tgactctgtc 360
 atcagttatc atggtggttt tcttggactc ttcccacaa caaacactct caacaactct 420
 tccacctctg aaaaccaaac caccactaag gtcgcatcaa gcaacgttgt tgctgtgaa 480
 tttgacacact atcttaatcc cgattatggt gatccaaact acatacacat cggaaattgac 540
 gtcaactcta ttagatccaa ggtaactgct aagtggact ggcaaaatgg gaaaatagcc 600
 actgcacaca ttagctataa ctctgtctt aaaaagactat ctgttacttag ttattatgtc 660
 gggagtaaac ctgcgactct ctccatgtat attgagttac atacagtgtc tcctgaatgg 720
 gtcagagtag ggttatctgc ttcaactgga caagataaaag aaagaaatac cgttcaactca 780
 tggctttca ctcaagctt gtggaccaat gtggcagaaga aggagaatga aaacaagtat 840
 attacaagag gcggtctgtg atgatatatg tgtatcaatg attttctatg ttataagcat 900

gtaatgtgcg atgagtcaat aatcacaagt acagtgtagt acttgtatgt tgtttgtgt 960
agagtcagtt tgctttaat aataacaagt gcagtttagta cttgt 1005

<210> 4
<211> 22
<212> PRT
<213> Dolichos lablab

<400> 4
Met Ala Ser Ser Asn Leu Leu Thr Leu Ala Leu Phe Leu Val Leu Leu
1 5 10 15
Thr His Ala Asn Ser Ala
20

<210> 5
<211> 914
<212> DNA
<213> Phaseolus vulgaris

<400> 5
gctcagtc tatctttaa ctaccagg tttgatctt accaaaaaga tcttatcttc 60
caaggatcg ccacttctac aaacaatgtc ttacaactca ctaagttaga cagtggagga 120
aaccctgtgg gtgctagtgt gggaaagatgt ttattctctg caccattca tctttgggaa 180
aactctatgg cagtgtaag ctttgcactt aatctcacca ttcaaatctc aacacccac 240
ccttattatg cagctgtatgg ctttgccttc ttccctgcac cacatgacac tgtcatccct 300
ccaaattctt gggcaattt ctttgcactc tactcaaacg ttttcagaaa ctccccacc 360
tctgaaaacc aaagcttgg tggatgtcaat actgactcaa gagttgtgc tgcgaattt 420
gacaccccttcc ctaatgccaa tattgatcca aattacagac acattggaaat cgatgtgaac 480
tctattaagt ccaaggaaac tgcttaggtgg gaggccaaa atgggaaaac ggccactgca 540
cgcatcaacttataactctgc ctctaaaaaa tcaactgtta ctacgtttt tcctgggatg 600
gaagttgtgg ctctctccca tggatgtgc ttacatgcag agcttcctga atgggttaga 660
gttagggttat ctgctcaac tggagaggag aaacaaaaaaaaa ataccattat ctcatggct 720
ttcacttcaa gcttgaagaa caacgggtg aaggagccga aagaagacat gtatattgca 780
aacgttgc gatcatatac atggatcaat gacgttctat cttatataag caataaataaa 840
atgtatgtatg cactcaataa taatcacaag tacgtacggt gtgtacttg tatgttgttt 900
atgaaaaaaaaaaa aaaa 914

<210> 6
<211> 304
<212> PRT
<213> Phaseolus vulgaris

<400> 6
Ala Gln Ser Leu Ser Phe Asn Phe Thr Lys Phe Asp Leu Asp Gln Lys
1 5 10 15

Asp Leu Ile Phe Gln Gly Asp Ala Thr Ser Thr Asn Asn Val Leu Gln
20 25 30

Leu Thr Lys Leu Asp Ser Gly Gly Asn Pro Val Gly Ala Ser Val Gly
35 40 45

Arg Val Leu Phe Ser Ala Pro Phe His Leu Trp Glu Asn Ser Met Ala
50 55 60

Val Ser Ser Phe Glu Thr Asn Leu Thr Ile Gin Ile Ser Thr Pro His
65 70 75 80

Pro Tyr Tyr Ala Ala Asp Gly Phe Ala Phe Phe Leu Ala Pro His Asp
 85 90 95
 Thr Val Ile Pro Pro Asn Ser Trp Gly Lys Phe Leu Gly Leu Tyr Ser
 100 105 110
 Asn Val Phe Arg Asn Ser Pro Thr Ser Glu Asn Gln Ser Phe Gly Asp
 115 120 125
 Val Asn Thr Asp Ser Arg Val Val Ala Val Glu Phe Asp Thr Phe Pro
 130 135 140
 Asn Ala Asn Ile Asp Pro Asn Tyr Arg His Ile Gly Ile Asp Val Asn
 145 150 155 160
 Ser Ile Lys Ser Lys Glu Thr Ala Arg Trp Glu Trp Gln Asn Gly Lys
 165 170 175
 Thr Ala Thr Ala Arg Ile Ser Tyr Asn Ser Ala Ser Lys Lys Ser Thr
 180 185 190
 Val Thr Thr Phe Tyr Pro Gly Met Glu Val Val Ala Leu Ser His Asp
 195 200 205
 Val Asp Leu His Ala Glu Leu Pro Glu Trp Val Arg Val Gly Leu Ser
 210 215 220
 Ala Ser Thr Gly Glu Glu Lys Gln Lys Asn Thr Ile Ile Ser Trp Ser
 225 230 235 240
 Phe Thr Ser Ser Leu Lys Asn Asn Glu Val Lys Glu Pro Lys Glu Asp
 245 250 255
 Met Tyr Ile Ala Asn Val Val Arg Ser Tyr Thr Trp Ile Asn Asp Val
 260 265 270
 Leu Ser Tyr Ile Ser Asn Lys * Met Tyr Asp Ala Leu Asn Asn Asn
 275 280 285
 His Lys Tyr Val Arg Cys Ser Thr Cys Met Leu Phe Met Lys Lys Lys
 290 295 300

<210> 7
 <211> 678
 <212> DNA
 <213> Sphenostylis stenocarpa

<400> 7
 acgaaggatcg acagcgacca aaaggatctt atgttccaag gtcataccat ttcttagcagc 60
 aatgtcatac aactcaccaa gttagacagt aatggaaacc ctgtgagttac cagtgtggga 120
 agagtgttat actctgcacc attgcgcctt tggaaaagct ctacagttagt gtcaaccctt 180
 gagaccacctt tcacctttca aatctcaaca ccttacacta gtcctcctgg tgatgggctc 240
 gccttcttcc ttgcaccata tgacactgtc atccctccaa attctgtgg caatcttctt 300
 ggactctttc ctaacttaaa tgctttaaga aactccacca ccagtaaaga aaccactatt 360
 gatgtcaatg ctgcacatctaa caacgttggtt gccgttgaat ttgacacacta ccctaacgac 420
 aatattggtg atccaagata caaacacatt ggaatcgatg tcaactctat caggtccaag 480
 gcaactgtg cgtggactg gaaaaatggg aaaacagcca ctgcacacat cagctataaac 540
 tctgcctcta aaagactatac tgttactact tttatcctg gggtaaagc tgtgagtctt 600
 tcccattgacg ttgagctcac tcaagtgtt cctcaatggaa ttagagtagg gttctctgct 660

tcaacaggat tagagaaa

678

<210> 8
<211> 234
<212> PRT
<213> Sphenostylis stenocarpa

<400> 8
Ala Gln Ser Val Ser Phe Thr Phe Thr Lys Phe Asp Ser Asp Gln Lys
1 5 10 15
Asp Leu Met Phe Gln Gly His Thr Ile Ser Ser Ser Asn Val Ile Gln
20 25 30
Leu Thr Lys Leu Asp Ser Asn Gly Asn Pro Val Ser Thr Ser Val Gly
35 40 45
Arg Val Leu Tyr Ser Ala Pro Leu Arg Leu Trp Glu Ser Ser Thr Val
50 55 60
Val Ser Thr Phe Glu Thr Thr Phe Thr Phe Gln Ile Ser Thr Pro Tyr
65 70 75 80
Thr Ser Pro Pro Gly Asp Gly Leu Ala Phe Phe Leu Ala Pro Tyr Asp
85 90 95
Thr Val Ile Pro Pro Asn Ser Ala Gly Asn Leu Leu Gly Leu Phe Pro
100 105 110
Asn Leu Asn Ala Leu Arg Asn Ser Thr Thr Ser Lys Glu Thr Thr Ile
115 120 125
Asp Val Asn Ala Ala Ser Asn Asn Val Val Ala Val Glu Phe Asp Thr
130 135 140
Tyr Pro Asn Asp Asn Ile Gly Asp Pro Arg Tyr Lys His Ile Gly Ile
145 150 155 160
Asp Val Asn Ser Ile Arg Ser Lys Ala Thr Val Ala Trp Asp Trp Gln
165 170 175
Asn Gly Lys Thr Ala Thr Ala His Ile Ser Tyr Asn Ser Ala Ser Lys
180 185 190
Arg Leu Ser Val Thr Thr Phe Tyr Pro Gly Gly Lys Ala Val Ser Leu
195 200 205
Ser His Asp Val Glu Leu Thr Gln Val Leu Pro Gln Trp Ile Arg Val
210 215 220
Gly Phe Ser Ala Ser Thr Gly Leu Glu Lys
225 230

<210> 9
<211> 15
<212> PRT
<213> Sphenostylis stenocarpa

<400> 9

Ala Gln Ser Val Ser Phe Thr Phe Thr Lys Phe Asp Ser Asp Gln
1 5 10 15

<210> 10
<211> 16
<212> PRT
<213> Sphenostylis stenocarpa

<400> 10
Ala Ala Ser Asn Asn Val Val Ala Val Glu Phe Asp Thr Xaa Pro Asn
1 5 10 15