

SEQUENCE LISTING

<110> Kim, Kyung Jin
Chuntharapai, Anan
Lu, Ji

<120> Monoclonal Antibodies to IFNAR2

<130> A-67640-1/RFT/DCF

<140> 09/166,298

<141> 1998-10-05

<150> 60/061,185

<151> 1997-10-06

<160> 26

<170> PatentIn Ver. 2.0

<210> 1

<211> 30

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Synthetic

<400> 1

gatcggggaaa gggaaaccga aactgaagcc

30

<210> 2

<211> 30

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Synthetic

<400> 2

gatcggcttc agtttcgggtt tccctttccc

30

<210> 3

<211> 5

<212> PRT

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Synthetic

<400> 3

Asp Tyr Thr Asp Glu

1

5

<210> 4

<211> 5

<212> PRT

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Synthetic

<400> 4

Ala Tyr Thr Ala Ala

1

5

<210> 5

<211> 5

<212> PRT

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Synthetic

<400> 5

Glu Leu Lys Asn His

1

5

<210> 6

<211> 5

<212> PRT

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Synthetic

<400> 6

Ala Leu Ala Asn Ala

1

5

<210> 7

<211> 6

ARTIFICIAL SEQUENCES

PDB ID: 3D42

<212> PRT
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic

<400> 7
Lys Pro Glu Asp Leu Lys
1 5

<210> 8
<211> 6
<212> PRT
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic

<400> 8
Ala Pro Ala Ala Leu Ala
1 5

<210> 9
<211> 5
<212> PRT
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic

<400> 9
Asp Leu Thr Asp Glu
1 5

<210> 10
<211> 5
<212> PRT
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic

<400> 10
Ala Leu Thr Ala Ala
1 5

0000000000000000

<210> 22
<211> 5
<212> PRT
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic

<400> 22
Ala Ile Ala Gly Asn
1 5

<210> 23
<211> 6
<212> PRT
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic

<400> 23
Glu His Ser Asp Glu Ala
1 5

<210> 24
<211> 6
<212> PRT
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic

<400> 24
Ala Ala Ser Ala Ala Gln
1 5

<210> 25
<211> 6152
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic

<400> 25

gaattcctaa aaatagcaa gatgctttt agccagaatg ccttcatcg t cagatcaactt 60
aatttggttc tcatacggtat tatacgccgc gtgtttggta tttcatatga ttccgcctgat 120
tacacagatg aatcttgcac tttcaagata tcattgcgaa atttccggc catcttatca 180
tgggaattaa aaaaccactc cattgtacca actcaactata cattgtcgta tacaatcatg 240
agtaaaccag aagatttga ggtggtaag aactgtgaa ataccacaag atcattttgt 300
gacctcacag atgagtggag aagcacacac gaggcctatg tcaccgtcct agaaggattc 360
agcggaaaca caacgttgc cagttgctca cacaatttct ggctggccat agacatgtct 420
tttgaaccac cagagttga gattgttggt tttaccaacc acattaatgt gatggtaaaa 480
tttccatcta ttgttgagga agaattacag tttgatttat ctctcgcat tgaagaacag 540
tcagagggaa ttgttaagaa gcataaaaccc gaaataaaag gaaacatgag tggaaatttc 600
acctatatca ttgacaaggaa aattccaaac acgaactact gtgtatctgt ttattnagag 660
cacagtgtg agcaaggcgt aataaagtct cccttaaaat gcaccctcct tccacctggc 720
caggaatcag aatcagcaga atctgccac aaaactcaca catgcccacc gtgcccagca 780
cctgaactcc tggggggacc gtcagtcttc ctctccccca caaaacccaa ggacaccctc 840
atgatctccc ggacccctga ggtcacatgc gtgggtggg acgtgagcca cgaagaccct 900
gaggtaagt tcaactggta cgtggacggc gtggaggtgc ataatgcca gacaaagccg 960
cgggaggagc agtacaacag cacgtaccga gtggtcagcg tcctcaccgt cctgcaccag 1020
gactggctga atggcaagga gtacaagtgc aaggcttcca acaaagccct cccagcccc 1080
atcgagaaaa ccatctccaa agccaaaggg cagccccgg aaccacaggt gtacaccctg 1140
cccccatccc gggaaagagat gaccaagaac caggtcagcc tgacctgcct ggtcaaaggc 1200
ttctatccca ggcacatgc cgtggagtgg gagagcaatg ggcagccgga gaacaactac 1260
aagaccacgc ctcccgtgct ggactccgac ggctccttct tcctctacag caagctcacc 1320
gtggacaaga gcaggtggca gcaggggaac gtcttctcat gtcctgtat gcatgaggct 1380
ctgcacaacc actacacgcga gaagacgcctc tccctgtctc cggtaaatg agtgcgacgg 1440
cccttagagtc gacctgcaga agcttagaac cgagggccg ccatggccca acttggattat 1500
tgcagcttat aatggttaca aataaagcaa tagcatcaca aatttcacaa ataaagcatt 1560
tttttactg cattcttagt gtgggttgat ccaaactcatc aatgtatctt atcatgtctg 1620
gatcgatcgga attaaattc ggcgcacgcac catggctga aataacctct gaaagaggaa 1680
cttggtagg taccttctga ggcggaaaga accagctgtg gaatgtgtgt cagtttaggt 1740
gtggaaagtc cccaggctcc ccagcaggca gaagtatgca aagcatgcat ctcaattagt 1800
cagcaaccag gtgtggaaag tccccaggct cccagcagg cagaagtatg caaagcatgc 1860
atctcaattt gtcagcaacc atagtcccgc ccctaactcc gcccatcccg cccctaactc 1920
cccccaggatc cggccattct cggccccatg gctgactaat ttttttatt tatgcagagg 1980
ccgaggccgc ctcggcctct gagctattcc agaagtagtg aggaggctt tttggaggcc 2040
taggcttttgc caaaaagctg ttaacagctt ggcactggcc gtcgtttac aacgtcgatg 2100
ctggggaaaac cctggcgatc cccaaacttac tgccttgcgc gcacatcccc ccttcggcc 2160
ctggcgtaat agcgaagagg cccgcacgcga tgccttgcgc caacagttgc gtagcctgaa 2220
tggcgatgg cgcctgtatgc ggtattttct cttacgcgtat ctgtcggtat tttcacaccg 2280
catacgtaa agcaaccata gtacgcgcgc ttagcgccgc cattaaacgcgc ggcgggtgtg 2340
gtggttacgc gcagcgtgac cgctacactt gccagcgccc tagcgccgc tccttcgct 2400
ttttccctt ctttctcgcc cacgttcgccc ggctttcccc gtcaagctct aaatcggggg 2460
ctccctttag ggttccgatt tagtgcattt cggcacctcg accccaaaaa acttgatttg 2520
ggtgatgggtt cacgtatgtgg gccatcgccc tgatagacgg ttttcggcc tttgacgttg 2580
gagtccacgt tctttatag tggactcttg ttccaaactg gaacaacact caaccctatc 2640
tcgggttattt cttttgattt ataaggattt ttgcgcattt cggcctattg gttaaaaaat 2700
gagctgattt aacaaaaattt taacgcgaat tttaacaaaa tattaaacgtt tacaatttt 2760
tggtgactc tcagtcataat ctgtctgtat ggcgcataatg taagccaact ccgcgtatcgc 2820

H08533988-B747908

Gly Asn Met Ser Gly Asn Phe Thr Tyr Ile Ile Asp Lys Leu Ile Pro
165 170 175

Asn Thr Asn Tyr Cys Val Ser Val Tyr Leu Glu His Ser Asp Glu Gln
180 185 190

Ala Val Ile Lys Ser Pro Leu Lys Cys Thr Leu Leu Pro Pro Gly Gln
195 200 205

Glu Ser Glu Ser Ala Glu Ser Ala Asp Lys Thr His Thr Cys Pro Pro
210 215 220

Cys Pro Ala Pro Glu Leu Leu Gly Gly Pro Ser Val Phe Leu Phe Pro
225 230 235 240

Pro Lys Pro Lys Asp Thr Leu Met Ile Ser Arg Thr Pro Glu Val Thr
245 250 255

Cys Val Val Val Asp Val Ser His Glu Asp Pro Glu Val Lys Phe Asn
260 265 270

Trp Tyr Val Asp Gly Val Glu Val His Asn Ala Lys Thr Lys Pro Arg
275 280 285

Glu Glu Gln Tyr Asn Ser Thr Tyr Arg Val Val Ser Val Leu Thr Val
290 295 300

Leu His Gln Asp Trp Leu Asn Gly Lys Glu Tyr Lys Cys Lys Val Ser
305 310 315 320

Asn Lys Ala Leu Pro Ala Pro Ile Glu Lys Thr Ile Ser Lys Ala Lys
325 330 335

Gly Gln Pro Arg Glu Pro Gln Val Tyr Thr Leu Pro Pro Ser Arg Glu
340 345 350

Glu Met Thr Lys Asn Gln Val Ser Leu Thr Cys Leu Val Lys Gly Phe
355 360 365

Tyr Pro Ser Asp Ile Ala Val Glu Trp Glu Ser Asn Gly Gln Pro Glu
370 375 380

Asn Asn Tyr Lys Thr Thr Pro Pro Val Leu Asp Ser Asp Gly Ser Phe
385 390 395 400

Phe Leu Tyr Ser Lys Leu Thr Val Asp Lys Ser Arg Trp Gln Gln Gly
405 410 415

409653302 044700

tacgtgactg ggtcatggct gcgcggcggac acccgccaaac acccgctgac gcgcctgac 2880
gggcttgcgt gctccggca tccgcttaca gacaagctgt gaccgtctcc gggagctgca 2940
tgtgtcagag gttttcacccg tcatacaccga aacgcgcggag gcagtattct tgaagacgaa 3000
agggcctcggt gatacgccta ttttatagg ttaatgtcat gataataatg gtttcttaga 3060
cgtcaggtgg cactttcgg ggaaatgtgc gcggAACCC tatttgttta ttttctaaa 3120
tacattcaaa tatgtatccg ctcatacgac aataaccctg ataaatgctt caataatatt 3180
gaaaaaggaa gagtatgagt attcaacatt tccgtgtcgc ctttattccc tttttgcgg 3240
catttgccct ccctgtttt gctcacccgg aaacgctggt gaaagtaaaa gatgctgaag 3300
atcagttggg tgcacgagtg gtttacatcg aactggatct caacagcggg aagatcctt 3360
agagtttcg ccccaagaaga ctgtttccaa tgatgagcac ttttaaagtt ctgctatgt 3420
gcgcggattt atccccgtat gacgcggggc aagagcaact cggtcgccgc atacactatt 3480
ctcagaatga cttgggttag tactcaccag tcacagaaaa gcatcttacg gatggcatga 3540
cagtaagaga attatgcagt gctgccataa ccatgagtgta taacactgcg gccaaacttac 3600
ttctgacaac gatcgaggaa ccgaaggagc taaccgcctt tttgcacaac atgggggatc 3660
atgttaactcg ctttgcgtt tggaaaccgg agctgaatga agccatacca aacgacgagc 3720
gtgacaccac gatgccagca gcaatggcaa caacgttgcg caaactatta actggcgaac 3780
tacttactct agcttcccg caacaattaa tagactggat ggaggcggat aaagttgcag 3840
gaccacttct ggcgtcgccc cttccggctg gctggtttat tgctgataaa tctggagccg 3900
gtgagcgtgg gtctcgccgt atcattgcag cactggggcc agatggtaag ccctcccgta 3960
tcgttagttat ctacacgacg gggagtcagg caactatggta tgaacgaaat agacagatcg 4020
ctgagatagg tgcctcactg attaagcatt ggttaactgtc agaccaagtt tactcatata 4080
tacttttagat tgatttaaaa cttcattttt aatttaaaag gatcttagtg aagatcctt 4140
ttgataatct catgaccaaa atcccttaac gtgagtttc gttccactga gcgtcagacc 4200
ccgtagaaaa gatcaaaggaa tcttcttgag atcctttttt tctgcgcgtatctgct 4260
tgcaaaacaaa aaaaccaccg ctaccagcgg tggtttggg gccggatcaa gagctaccaa 4320
ctcttttcc gaaggtaact ggcttcagca gagcgcagat accaaatact gtccttcgt 4380
tgtagccgtat gttaggccac cacttcaaga actctgtacg accgcctaca tacctcgctc 4440
tgctaattctt gttaccagt gctgtgcctt gttccgtt acgggggttgg 4500
actcaagacg atagttaccg gataaggcgc agcggcggg ctgaacgggg ggttcgtgca 4560
cacagcccgat cttggagcga acgacctaca ccgaactgag atacctacag cgtgagcatt 4620
gagaaagcgc cacgcttccc gaaggagaa aggccggacag gtatccggta agcggcagg 4680
tcggaacagg agagcgcacg agggagctt cagggggaaa cgcctggat ctttatacg 4740
ctgtcgggtt tcgcccaccc tgacttgagc gtcgattttt gtgatgctcg tcagggggc 4800
ggagcctatg gaaaaacggc agcaacgcgg ctttttacg gttccctggcc ttttgcgttgc 4860
cttttgcgtca catgttctt cctgcgttat cccctgattc tgtggataac cgtattaccg 4920
cctttgatgtg agctgatacc gctgcggca gccgaacgac cgagcgcagc gagtcagtga 4980
gcggaggaaagc ggaagagcgc ccaatacgca aaccgcctt ccccgccgt tggccgattc 5040
attaatccag ctggcacgac aggttcccg actggaaagc gggcgttgcg cgcacgca 5100
ttaatgttag ttacctcact cattaggcac cccaggctt acactttatg cttccggctc 5160
gtatgttgc tggaaattgtg agcggataac aatttcacac agaaacagc tatgaccatg 5220
attacgaatt aattcgagct cgcccgacat tgattattga ctatgttata atgtaatca 5280
attacgggtt cattagttca tagcccatat atggagttcc gcgttacata acttacggta 5340
aatggcccgcc ctggctgacc gcccacgac ccccgcccat tgacgtcaat aatgacgtat 5400
gttcccatag taacgccaat agggacttcc cattgacgtc aatgggtgga gtatgttgc 5460
taaaactgccc acttggcagt acatcaagtg tatcatatgc caagtgcc ccctattgac 5520
gtcaatgacg gtaaatggcc cgcctggcat tatgcccagt acatgacctt atgggacttt 5580
cctacttggc agtacatcta cgtattagtc atcgcttata ccatgggtgat gcggttttgg 5640
cagtacatca atgggcgtgg atagcggtt gactcacggg gatttccaag tctccacccc 5700

attgacgtca atggagttt gtttggcac caaatcaac gggacttcc aaaatgcgt 5760
aacaactccg ccccattgac gcaaatggc gtaggcgtg tacggggaa ggtctatata 5820
agcagagctc gtttagtcaa ccgtcagatc gcctggagac gccatccacg ctgtttgac 5880
ctccatagaa gacaccggaa ccgatccagc ctccgcggcc gggAACGGTG cattggAACG 5940
cggattcccc tgcccaagag tgacgtaagt accgcctata gagtctatag gcccaccccc 6000
ttggctcgaa agaacgcggc tacaattaat acataacctt atgtatcata cacatacgat 6060
ttaggtgaca ctatagaata acatccactt tgccttc tccacaggtg tccactccca 6120
ggtccaactg caggccatgg cgccatcgaa tt 6152

<210> 26

<211> 443

<212> PRT

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Synthetic

<400> 26

Ile Ser Tyr Asp Ser Pro Asp Tyr Thr Asp Glu Ser Cys Thr Phe Lys
1 5 10 15

Ile Ser Leu Arg Asn Phe Arg Ser Ile Leu Ser Trp Glu Leu Lys Asn
20 25 30

His Ser Ile Val Pro Thr His Tyr Thr Leu Leu Tyr Thr Ile Met Ser
35 40 45

Lys Pro Glu Asp Leu Lys Val Val Lys Asn Cys Ala Asn Thr Thr Arg
50 55 60

Ser Phe Cys Asp Leu Thr Asp Glu Trp Arg Ser Thr His Glu Ala Tyr
65 70 75 80

Val Thr Val Leu Glu Gly Phe Ser Gly Asn Thr Thr Leu Phe Ser Cys
85 90 95

Ser His Asn Phe Trp Leu Ala Ile Asp Met Ser Phe Glu Pro Pro Glu
100 105 110

Phe Glu Ile Val Gly Phe Thr Asn His Ile Asn Val Met Val Lys Phe
115 120 125

Pro Ser Ile Val Glu Glu Leu Gln Phe Asp Leu Ser Leu Val Ile
130 135 140

Glu Glu Gln Ser Glu Gly Ile Val Lys Lys His Lys Pro Glu Ile Lys
145 150 155 160

FBI LABORATORY

Asn Val Phe Ser Cys Ser Val Met His Glu Ala Leu His Asn His Tyr
420 425 430

Thr Gln Lys Ser Leu Ser Leu Ser Pro Gly Lys
435 440

AMINO ACID SEQUENCES

<210> 11
<211> 5
<212> PRT
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic

<400> 11
Arg Ser Thr His Glu
1 5

<210> 12
<211> 5
<212> PRT
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic

<400> 12
Ala Ser Thr Ala Ala
1 5

<210> 13
<211> 5
<212> PRT
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic

<400> 13
Asp Met Ser Phe Glu
1 5

<210> 14
<211> 5
<212> PRT
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic

MESSAGE-DATA

<400> 14
Ala Met Ser Phe Ala
1 5

<210> 15
<211> 7
<212> PRT
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic

<400> 15
Glu Glu Glu Leu Gln Phe Asp
1 5

<210> 16
<211> 7
<212> PRT
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic

<400> 16
Ala Ala Ala Leu Gln Phe Ala
1 5

<210> 17
<211> 5
<212> PRT
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic

<400> 17
Glu Glu Gln Ser Glu
1 5

<210> 18
<211> 5
<212> PRT

DRAFT

<213> Artificial Sequence
<220> .
<223> Description of Artificial Sequence: Synthetic

<400> 18
Ala Ala Gln Ser Ala
1 5

<210> 19
<211> 5
<212> PRT
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic

<400> 19
Lys Lys His Lys Pro
1 5

<210> 20
<211> 5
<212> PRT
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic

<400> 20
Ala Ala His Ala Pro
1 5

<210> 21
<211> 5
<212> PRT
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic

<400> 21
Glu Ile Lys Gly Asn
1 5