ARITHMETIC CAPITULO XXIII

5th

Análisis Combinatorio

MOTIVATING STRATEGY

¿Cuántas maneras diferentes se podrá efectuar la compra de una lavadora, una batidora y un TV, si hay 8 modelos de lavadoras, 5 modelos diferentes de batidoras y 7 modelos de TV?

Existen algunas técnicas de conteo para diferentes problemas.

principio aditivo aditivo principio aditivo aditivo

Principios fundamentales del análisis combinatorio

Principio de adición

Evento Evento

Mutuamente

"n"

"m"

excluyentes

maneras maneras

Se podrá ejecutar de

A y B no se dan uno a continuación del otro sino cada uno por Ejm

¿De cuántas maneras se puede elegir una película entre 3 de acción y 5 de comedia?

 N° de maneras = 3 + 5 = 8

Principio de multiplicación Evento Evento No No mutuamente "n" "m" excluyentes maneras maneras

Se podrán realizar de (n x m) maneras

A y B se dan simultáneamente, es decir, uno a continuación del otro

Ejm

Si se lanza un dado y una moneda simultáneamente, ¿cuántos resultados diferentes se obtienen?

3 Permutaciones

$$Sir = n$$

Ejm

$$P_r^n = \frac{n!}{(n-r)!}$$

$$P_r^n = n!$$

Un torneo donde compiten 8 participantes, ¿de cuántas maneras se podrá conformar el podio final?8! 5!x 6 x 7 x 8 3 3 3 3

$$P_{C}(n) = (n-1)!$$

Ejm

¿De cuántas maneras se podrán sentar alrededor de una mesa una familia compuesta por un padre, una madre y 3 hijos?

$$P_{C}(5) = (5-1)! = 4! = 24$$

Permutación con

repetición

$$P_{(n_1;n_2;...;n_k)}^n = \frac{n!}{n_1! \times n_2! \times ... \times n_k!}$$

4 Combinaciones

$$C_r^n = \frac{n!}{(n-r)!x n!}$$

$$0 \le r \le n$$

Ejm

De un grupo de 7 alumnos, se desea formar comisiones de tres personas. ¿De cuántas maneras se podrá lograr este objetivo?! $\frac{7 \times 6 \times 5}{23 \times 3} = \frac{7 \times 6 \times 5}{1 \times 2 \times 3} = \frac{35}{1 \times 2 \times 3}$

Combinaciones con

$$CR_n^m = C_n^{(n+m-1)}$$

Ejm

¿Cuántas son las soluciones enteras no negativas de a + b + c + d = 6 ?

$$CR_6^4 = C_6^{(6+4-1)} = \frac{9!}{6! \times 3!} = 84$$

1.

¿Cuántas palabras con sentido o no, se pueden formar con todas las letras de la palabra AMARRADA?

<u>Resolució</u> <u>n</u> Permutación con repetición

$$P_{4;2}^{8} = \frac{8!}{4! \times 2!}$$

$$= \frac{4! \times 5 \times 6 \times 7 \times 8}{4! \times 2}$$

RPTA: 840

¿Cuántos números de 5 cifras existen, tales que el producto de sus cifras sea un valor impar?

Resolución

3.

¿Cuántos comités de 6 personas se pueden formar con un grupo de 9 personas?

$$c_6^9 = \frac{9!}{6! \times 3!}$$

$$=\frac{6! \times 7 \times 8 \times 9}{6! \times 6}$$

Resolución

como no
interesa el
orden
aplicamos
combinaciones

$$C_k^n = \frac{n!}{(n-k)! \cdot k!}$$

= 84

La cantidad de comités es:

4.

A una reunión de amigos acuden 5 parejas de esposos. ¿De cuántas pueden maneras sentarse alrededor de una mesa redonda de modo que los esposos se sienten siempre juntos? Resolución

PERMUTACIÓN CIRCULAR

5 parejas de esposos (se sientan juntas):

$$P_{C}(5) = 4! = 24$$

cada pareja:

$$(2!)^5 = 32$$

5. En una reunión hay 12 hombres y 7 mujeres, se desea formar grupos de 3 personas. ¿De cuántas maneras podrán hacerlo si deben de haber, por lo menos, 2 mujeres en el grupo?

Resolució

como no interesa el orden aplicamos combinaciones

Del dato tenemos:
Al menos dos mujeres

*
$$C_2' \times C_1^{12}$$

$$\frac{7!}{(7-2)!2!} \times \frac{12!}{(12-1)!.1!}$$

$$\frac{7.8.8!}{2.5!} \times \frac{12.14!}{1.14!} = 252$$
* además: $C_3^7 \times C_0^{12}$

7!
$$\frac{7!}{(7-3).5!} \times \frac{12!}{(12-0).0!} \quad \therefore piden: \quad número de \\
\frac{7.6.5.4!}{2!.4!} \times \frac{12!}{1.12!} = 35$$
RPTA: 28

6. 4 hombres y 3 mujeres deben sentarse en una fila de 7 asientos de modo que ningún hombre ocupe sitio par. ¿De cuántas maneras diferentes podrán sentarse?

Donde:

 $# maneras = 24 \times 6$

Piden: # maneras diferentes

∴ Total = 144 maneras

RPTA: 144

7. Se tiene un estante con capacidad para 9 libros. Si en él se quiere ordenar 4 libros de Física, 3 libros de Química y 2 de Aritmética, ¿de cuántas maneras se podrá utilizar esto si los de Aritmética siempre se ubican a los extremos?

Resolució
Del dato tenemos:
estante para 9 libros

A1

Aritmét. 1

Aritmét.

Donde: Total = 4 física + 3 química

Total = 7 libros

aplicando permutación lineal 7! = 5040

Piden: # maneras diferentes

Total = 504 x 2!

∴ 10080maneras

RPTA: 10080

8. Carlota tiene 8 amigas de confianza y desea hacer una reunión. ¿De cuántas maneras diferentes puede invitar a 5 de ellas si dos de ellas no se llevan bien y no asisten juntas?

Resolució

Del dato tenemos:

De 8 Personas debe invitar a 5; pero las amigas A y B no pueden asistir juntas

aplicando combinación Donde:

$$C_k^n = \frac{n!}{(n-k)! \cdot k!}$$

Casos no deseados (A y B asisten

$$X = \frac{8}{(8!5)!5!} - \frac{6}{(6-3)!3!}$$

$$X = \frac{8}{(8!5)!5!} - \frac{6}{(6-3)!3!}$$

$$X = \frac{8.7.8.5!}{3!.} - \frac{5.5.4.3!}{3!.}$$
Piden: $X = \frac{5}{56} - \frac{20}{3!}$

$$X = \frac{36}{(6-3)!3!}$$