• Students have either already taken or started taking this quiz, so be careful about editing it. If you change any quiz questions in a significant way, you may want to consider regrading students who took the old version of the quiz.

Points 10 Published

**Details** 

Questions

✓ Show Question Details

## Question 1 1.5 pts

In CFD, we often have to work with sparse matrices. Let us define the sparsity of a matrix as the ratio of zero-valued entries to the total number of entries in the matrix.

We attempt to solve the heat equation  $\frac{\partial u}{\partial t} = \alpha \frac{\partial^2 u}{\partial x^2}$  on a 10-node uniform grid as shown above.

As discussed in class, let us take the semi-discrete form of the heat equation with a **central-difference spatial scheme** for the second-order derivative

$$rac{\partial \overrightarrow{u}}{\partial t} = rac{lpha}{\Delta x^2} igg( \mathbf{A} \overrightarrow{u} + \overrightarrow{\mathbf{BC}} igg)$$

where  $\overrightarrow{u}$  is the solution vector,  $\mathbf{A}$  is the finite difference coefficient matrix and  $\overrightarrow{\mathbf{BC}}$  is the vector of boundary values.

The sparsity of matrix  $\mathbf{A}$  is [numerator]/100.

Show Answers for numerator

ıswer

72

iii Question 2 0.5 pts

The leading truncation error terms in a finite difference approximation of the differential operator  $\frac{\partial u}{\partial x}$  is

$$-(\frac{\partial^2 u}{\partial x^2})_i \frac{\Delta x}{2} - (\frac{\partial^3 u}{\partial x^3})_i \frac{(\Delta x)^3}{6}$$

What is the order of accuracy of the finite difference equation?

ıswer

1

**2** 

**3** 

0.5

## **:** Question 3

3 pts

For the PDE 
$$rac{\partial^2 u(x)}{\partial x^2} + 2u(x) = 1$$

use the Central Difference Scheme to find the values of the solution variable  ${\pmb u}$  at the given points.



Given 
$$\boldsymbol{u_0}$$
 = 0,  $\boldsymbol{u_4}$  = 1 and  $\boldsymbol{\Delta x}$  = 0.5

(fill in the integer values of the numerators. Denominators are fixed at 6)

$$u_1 = [u1]/6$$

$$u_2 = [u2]/6$$

$$u_3 = [u3]/6$$

Show Answers for u1

ıswer

1

Question 4 2 pts

Consider a finite difference solution of the Poisson equation  $u_{xx}+u_{yy}=x+y$  on the unit square using the boundary conditions and the mesh shown in the drawing. Use a second-order accurate, centred finite difference scheme to compute the approximate value of the solution at the centre of the square. (correct to four decimal places).



Note: The boundary conditions are in red. The tuples below them are the cartesian coordinates of the point. Find the solution value at the centre  $(u_{ij})$ .

ıswers

0.4375 (with margin: 0.0005)

## Question 5

|                              | $u_j$         | $u_{j}{'}$              | $u_{j}^{\prime\prime}$             | $u_{j}^{\prime\prime\prime}$        | $u_{j}^{\prime\prime\prime\prime}$   |
|------------------------------|---------------|-------------------------|------------------------------------|-------------------------------------|--------------------------------------|
| $u_{j}^{\prime\prime\prime}$ | 0             | 0                       | 0                                  | 1                                   | 0                                    |
| $\alpha_{-2}u_{j-2}$         | $\alpha_{-2}$ | $-2\Delta x\alpha_{-2}$ | $\frac{4\Delta x^2}{2}\alpha_{-2}$ | $\frac{-8\Delta x^3}{6}\alpha_{-2}$ | $\frac{16\Delta x^4}{24}\alpha_{-2}$ |
| $\alpha_{-1}u_{j-1}$         | $\alpha_{-1}$ | $-\Delta x \alpha_{-1}$ | $\frac{\Delta x^2}{2}\alpha_{-1}$  | $\frac{-\Delta x^3}{6}\alpha_{-1}$  | $\frac{\Delta x^4}{24}\alpha_{-1}$   |
| $\alpha_0 u_j$               | $lpha_0$      | 0                       | 0                                  | 0                                   | 0                                    |
| $\alpha_1 u_{j+1}$           | $lpha_1$      | $\Delta x \alpha_1$     | $\frac{\Delta x^2}{2}\alpha_1$     | $\frac{\Delta x^3}{6}\alpha_1$      | $\frac{\Delta x^4}{24}\alpha_1$      |

Let us approximate the third derivative  $u_j'''$  using the solution variables a **4-point stencil**  $(u_{j-2}, u_{j-1}, u_j)$  and  $u_{j+1}$ .

Proceeding as in class, we determine the coefficients  $\alpha_{-2}$ ,  $\alpha_{-1}$ ,  $\alpha_0$  and  $\alpha_1$  by equating the column-wise sums to zero.

$$\begin{array}{c} \text{column 1 (RHS 1)} \longrightarrow \begin{bmatrix} A_{11} & A_{12} & A_{13} & A_{14} \\ A_{21} & A_{22} & A_{23} & A_{24} \\ \text{column 3 (RHS 3)} \longrightarrow \begin{bmatrix} A_{31} & A_{32} & A_{33} & A_{34} \\ A_{41} & A_{42} & A_{43} & A_{44} \end{bmatrix} \begin{bmatrix} \alpha_{-2} \\ \alpha_{-1} \\ \alpha_{0} \\ \alpha_{1} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ \frac{-6}{\Delta x^{3}} \end{bmatrix}$$

Fill in the missing (correct to one decimal place) values of the elements of the matrix A above.

$$m{A_{11}} = 1; m{A_{12}} = [A12]; m{A_{13}} = [A13]; m{A_{14}} = [A14]$$

$$m{A_{21}}$$
 = [A21];  $m{A_{22}}$  = -1;  $m{A_{23}}$  = [A23];  $m{A_{24}}$  = [A24]

$$A_{31}$$
 = 2;  $A_{32}$  = [A32];  $A_{33}$  = [A33];  $A_{34}$  = [A34]

$$m{A_{41}} = [A41]; m{A_{42}} = [A42]; m{A_{43}} = [A43]; m{A_{44}} = 1$$

Show Answers for A12

ıswer

1

+ New Question + New Question Group

Q Find Questions

☐ Notify users this quiz has changed

**Cancel** 

Save