

Patent Attorney's Docket No. 019519-28

THE UNITED STATES PATENT AND TRADEMARK OFFICE

In re Patent Application of)
Koichi KAWAMURA) Group Art Unit: 1774
Application No.: 09/764,128) Examiner: L. Ferguson
Filed: January 19, 2001) Confirmation No.: 8099
For: DIRECT IMAGING LITHOGRAPHIC PRINTING PLATE	RECEIVED
CLAIM FOR CONVI	ENTION PRIORITY TC 1>00
Assistant Commissioner for Patents	,00

CLAIM FOR CONVENTION PRIORITY

Assistant Commissioner for Patents Washington, D.C. 20231

Sir:

The benefit of the filing date of the following prior foreign applications in the following foreign country is hereby requested, and the right of priority provided in 35 U.S.C. § 119 is hereby claimed:

Japan - Patent Application No. 2000-011961

Filed: January 20, 2000;

Japan - Patent Application No. 2000-011962

Filed: January 20, 2000; and

Japan - Patent Application No. 2000-132282

Filed: May 1, 2000.

In support of this claim, enclosed are certified copies of said prior foreign applications. Said prior foreign applications were referred to in the oath or declaration. Acknowledgment of receipt of the certified copies is requested.

Respectfully submitted,

BURNS, DOANE, SWECKER & MATHIS, L.L.P.

Date: December 27, 2002

Robert G. Mukai

Registration No. 28,531

P.O. Box 1404 Alexandria, Virginia 22313-1404 (703) 836-6620

日本国特許庁

PATENT OFFICE JAPANESE GOVERNMENT

別紙添付の書類に記載されている事項は下記の出願書類に記載されている事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office.

出願年月

Date of Application: DEC 2 7 2002

2000年 1月20日

出 願 番 貝 Application Number:

特願2000-011961

出 類 人 Applicant (s):

富士写真フイルム株式会社

RECEIVED VAN - 2 2003 TC 1700

2001年 4月13日

特 許 庁 長 官 Commissioner, Patent Office

川耕

【書類名】

特許願

【整理番号】

P-33906

【提出日】

平成12年 1月20日

【あて先】

特許庁長官殿

【国際特許分類】

B41C 1/10

B41M 1/06

【発明者】

【住所又は居所】

静岡県榛原郡吉田町川尻4000番地 富士写真フイル

ム株式会社内

【氏名】

川村 浩一

【特許出願人】

【識別番号】

000005201

【氏名又は名称】

富士写真フイルム株式会社

【代理人】

【識別番号】

100073874

【弁理士】

【氏名又は名称】

萩野 平

【電話番号】

03-5561-3990

【選任した代理人】

【識別番号】

100093573

【弁理士】

【氏名又は名称】

添田 全一

【電話番号】

03-5561-3990

【選任した代理人】

【識別番号】

100105474

【弁理士】

【氏名又は名称】

本多 弘徳

【電話番号】

03-5561-3990

【選任した代理人】

【識別番号】

100090343

【弁理士】

【氏名又は名称】 栗宇 百合子

【電話番号】

03-5561-3990

【手数料の表示】

【予納台帳番号】 008763

【納付金額】

21,000円

【提出物件の目録】

【物件名】

明細書 1

【物件名】

図面 1

【物件名】

要約書 1

【包括委任状番号】 9723355

【プルーフの要否】 要

【書類名】 明細書

【発明の名称】 直描型平版印刷版

【特許請求の範囲】

【請求項1】 支持体上に、支持体表面と直接化学的に結合し、かつ親水性官能基を有する高分子化合物からなる親水性である画像受理層を有することを特徴とする直描型平版印刷版。

【請求項2】 前記画像受理層が親水性官能基を有する高分子化合物からなり、 かつ該高分子化合物が高分子鎖の末端で直接化学的に支持体表面に結合されてい る親水性官能基を有する直鎖状高分子化合物であるか、または支持体表面に化学 的に結合されている幹高分子化合物と該幹高分子化合物に高分子鎖の末端で結合 されている親水性官能基を有する直鎖状高分子化合物とからなる高分子化合物で あることを特徴とする請求項1に記載の直描型平版印刷版。

【請求項3】 支持体上に、支持体表面と直接化学的に結合し、かつ親水性官能基を有する高分子化合物からなる親水性である画像受理層を有する直描型平版印刷版上に油性インクで直接に画像を形成させた平版印刷版。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】

本発明は、直描型平版印刷版に関し、更に詳しくは、地汚れのない鮮明な画像の印刷物を多数枚印刷可能とする平版印刷版を与える直描型平版印刷版に関する

[0002]

【従来の技術】

最近の事務機器の発達とOA化の発展に伴い、印刷分野において、直描型平版 印刷版に電子写真式プリンター、感熱転写プリンター、インクジェットプリンタ ー等の種々の方法で製版(即ち画像形成)を行い、印刷版とするための特定の処 理をすることなく直接に印刷版を作成するオフセット平版印刷方式が望まれてい る。

[0003]

従来の直描型平版印刷版は、紙等の支持体の両面に裏面層及び中間層を介して画像受理層となる表面層が設けられている。裏面層または中間層はPVAや澱粉等の水溶性樹脂及び合成樹脂エマルジョン等の水分散性樹脂と顔料で構成されている。画像受理層は通常、無機顔料、水溶性樹脂及び耐水化剤で構成される。

[0004]

しかしながら、この様にして得られた従来の印刷版は、印刷耐久性を向上する ために耐水化剤の添加量を多くしたり疎水性樹脂を使用したりして疎水性を増大 させると、耐刷性は向上するが親水性が低下して印刷汚れが発生し、他方親水性 を良くすると耐水性が劣化し耐刷性が低下するという問題があった。

特に30℃以上の高温での使用環境下では、オフセット印刷に使用する浸し水に表面層が溶解し、耐刷性の低下及び印刷汚れの発生など欠点があった。更に、直描型平版印刷版の場合、油性インキ等を画像部として画像受理層に描画するものであり、直描型平版印刷版の受理層と油性インキの接着性が良くなければ、たとえ非画像部の親水性が充分で上記の如き印刷汚れが発生しなくても、印刷時に画像部の油性インキが欠落してしまい、結果として耐刷性が低下してしまうという問題が未だ充分に解決される所まで至っていない。

[0005]

他方、画像受理層として酸化チタンとポリビニルアルコールそして加水分解したテトラメトキシシラン(又はテトラアルコキシシラン)を含有する親水層から成る版(例えば特開平3-42679号、特開平10-268583号等)が挙げられる。しかし、実際に製版して印刷版として印刷してみると、画像の耐刷性が不充分であった。

[0006]

【発明が解決しようとする課題】

本発明は前記の様な従来の直描型平版印刷版の有する問題点を解決するものである。

従って、本発明の目的は、オフセット印刷版として全面一様な地汚れはもちろん、点状の地汚れも発生させない優れた直描型平版印刷版を提供することである

本発明の他の目的は、画像の欠落・歪み等のない鮮明な画像の印刷物を多数枚 印刷可能とする平版印刷版を与える直描型平版印刷版を提供することにある。

[0007]

【課題を解決するための手段】

本発明者らは、上記目的を達成すべく、直描型平版印刷版について、鋭意検討した結果、化学的に結合しうる官能基やラジカルなどの活性種を発生しうる支持体基板の表面にグラフトした親水性ポリマーを使用することを特徴とした画像受理層を使用することで問題を解決できることを見出し、本発明に到達した。

すなわち、本発明は以下の通りである。

- (1)支持体上に、支持体表面と直接化学的に結合し、かつ親水性官能基を有する る高分子化合物からなる親水性である画像受理層を有することを特徴とする直描 型平版印刷版。
- (2)前記画像受理層が親水性官能基を有する高分子化合物からなり、かつ該高分子化合物が高分子鎖の末端で直接化学的に支持体表面に結合されている親水性官能基を有する直鎖状高分子化合物であるか、または支持体表面に化学的に結合されている幹高分子化合物と該幹高分子化合物に高分子鎖の末端で結合されている親水性官能基を有する直鎖状高分子化合物とからなる高分子化合物であることを特徴とする前記(1)に記載の直描型平版印刷版。
- (3)支持体上に、支持体表面と直接化学的に結合し、かつ親水性官能基を有する 高分子化合物からなる親水性である画像受理層を有する直描型平版印刷版上に 油性インクで直接に画像を形成させた平版印刷版。

[0008]

従来から画像受理層の親水性を上げるためには画像受理層中の保水量を高めれば良いことが分かっている。しかし、従来の画像受理層では保水量を高めようとすると、膜の膨潤性が大きくなり膜の構造が弱くなり膜強度が低下する、もしくは支持体と画像受理層との密着性が悪くなることが問題であった。

親水性官能基を有する高分子化合物が支持体表面に直接化学的に結合した画像 受理層として、本発明の特徴である表面親水性グラフトポリマーの形態を採用し た場合、該ポリマー鎖は支持体表画に結合した以外は束縛のない構造をしており

、水が入り込みやすく保水量が大きい特徴を有する。実際、文献などでは表面親水性グラフトポリマーは水を多く吸収し大きく膨潤することが報告されている。また一方、表面親水性グラフトポリマーはポリマー鎖が支持体表画に直接化学結合にて結合しているため膨潤しても支持体との密着性が悪くなることは無い。このようにして、従来の技術ではトレードオフの関係にあった保水性と密着性の関係を解決することにより本発明の効果が発揮されたものと考えられる。

[0009]

上記直描型平版印刷版に、油性インキ、電子写真式プリンター、感熱転写プリンター、インクジェットプリンター等の種々の方法で直接に画像形成を行い、画像部がインク受容領域を形成し、非画像部の画像受理層表面がインクを受容しない平版印刷画面が形成され、直接に印刷面を構成させることができる。

従って、本発明の直描型平版印刷版は、画像受理層に画像形成後直ちに平版印刷版として印刷機に装着して印刷することが可能である。

また、オフセット印刷版として全面一様な地汚れはもちろん、点状の地汚れも 発生せず、画像の欠落・歪み等のない鮮明な画像の印刷物を多数枚印刷可能とす る優れた平版印刷版を与える直描型平版印刷版を得ることができる。

[0010]

【発明の実施の形態】

以下、本発明の実施の形態について詳細に説明する。

本発明の直描型印刷版は、耐水性支持体上に設けられた画像受理層に、油性インキ、油性インクを吐出するインクジェット記録法、電子写真記録法、感熱転写記録等の種々の方法で直接に画像形成を行い、無処理で直接に平版印刷版となるものである。

[0011]

〔直描型平版印刷版の画像受理層(親水性層)の説明〕

本発明の直描型平版印刷版の特徴である、支持体表面と直接化学的に結合しかつ親水性官能基を有する画像受理層の構成としては、特に限定されないが、具体的には、親水性官能基を有する高分子鎖の末端が直接化学的に支持体表面に結合された画像受理層、又は支持体表面に化学的に結合されている幹高分子化合物と

該幹高分子化合物に高分子鎖の末端で結合されている直鎖状高分子化合物とからなる画像受理層の構成が挙げられる。

上記の具体的な画像受理層は、一般的に表面グラフト重合と呼ばれる手段を用いて作製される。

[0012]

(表面グラフト重合についての説明)

グラフト重合とは高分子鎖上に活性種を与え、これによって開始する別の単量体を重合し、グラフト(接ぎ木)重合体を合成する方法で、特に活性種を与える高分子鎖が固体表面の時には表面グラフト重合と呼ばれる。

本発明を実現するための表面グラフト重合法としては文献記載の公知の方法をいずれも使用することができる、たとえば、新高分子実験学10、高分子学会編、1994年、共立出版(株)発行、P135、には表面グラフト重合法として光グラフト重合法、プラズマ照射グラフト重合法、が記載されている。また吸着技術便覧 NTS(株)、竹内監修、1999.2発行、p203、p695にはγ線、電子線などの放射線照射グラフト重合法が記載されている。

光グラフト重合法の具体的方法としては特開平10-296895号公報および特開平1 1-119413号公報に記載の方法を使用することができる。

[0013]

本発明の直描型平版印刷版の特徴である高分子化合物鎖の末端が直接に化学的に結合された表面を作成するための手段としてはこれらの他、高分子化合物鎖の末端にトリアルコキシシリル基、イソシアネート基、アミノ基、水酸基、カルボキシル基などの反応性官能基を付与し、これと直描型平版印刷版の支持体表面官能基とのカップリング反応により形成することもできる。

なお、直描型平版印刷版の支持体表面とは、その表面に高分子化合物の末端が直接または幹高分子化合物を介して化学的に結合する表面を示すものであり、本発明の直描型平版印刷版の支持体表面自体であってもよく、また該支持体上に別途に設けた層の表面であってもよい。

[0014]

また、支持体表面に化学的に結合されている幹高分子化合物と該幹高分子化合

物に高分子鎖の末端で結合されている直鎖状高分子化合物とからなる親水性画像 受理層を作製するための手段としては、支持体表面官能基とカップリング反応し うる官能基を幹高分子の側鎖に付与し、グラフト鎖として親水性官能基を有する 高分子化合物鎖を組み込んだグラフト型高分子化合物を合成し、この高分子と支 持体表面官能基とのカップリング反応により形成することもできる。

[0015]

上記の光グラフト重合法、プラズマ照射グラフト重合法、放射線照射グラフト 重合法、カップリング法のうち製造適性の点からはプラズマ照射グラフト重合法 、放射線照射グラフト重合法、が特に優れている。

[0016]

(親水性官能基の説明)

親水性官能基としては、カルボン酸基、スルホン酸基、スルフィン酸基、ホスホン酸基、アミノ基およびそれらの塩、アミド基、水酸基、エーテル基、ポリオキシエチレン基などおよびアセチルアセトナートなどの電子吸引性基に隣接した炭素に結合した酸性水素原子を有する活性メチレン基もしくはその塩などを挙げることができる。

[0017]

〔表面グラフト親水性高分子を有する画像受理層の具体的作成方法〕

プラズマ照射グラフト重合法、放射線照射グラフト重合法においては上記記載の文献、およびY.Ikada et al., Macromolecules vol.19, page 1804 (1986)などの記載の方法にて作成することができる。具体的にはPETなどの高分子表面をプラズマ、もしくは電子線にて処理し、表面にラジカルを発生させ、その後、その活性表面と親水性官能基を有するモノマーとを反応させることにより画像受理層を得ることができる。

本発明において特に有用な親水性官能基を有する親水性モノマーの具体例としては、(メタ)アクリル酸もしくはそのアルカリ金属塩およびアミン塩、イタコン酸もしくはそのアルカリ金属塩およびアミン酸塩、2ーヒドロキシエチル(メタ)アクリレート、(メタ)アクリルアミド、Nーモノメチロール(メタ)アクリルアミド、アリルアミンもしくは

そのハロゲン化水素酸塩、3ービニルプロピオン酸もしくはそのアルカリ金属塩およびアミン塩、ビニルスルホン酸もしくはそのアルカリ金属塩およびアミン塩、ビニルスチレンスルホン酸もしくはそのアルカリ金属塩およびアミン塩、2ースルホエチレン(メタ)アクリレート、3ースルホプロピレン(メタ)アクリレートもしくはそのアルカリ金属塩およびアミン塩、ポリオキシエチレングリコールモノ(メタ)アクリレート、2ーアクリルアミドー2ーメチルプロパンスルホン酸もしくはそのアルカリ金属塩およびアミン塩、アシッドホスホオキシポリオキシエチレングリコールモノ(メタ)アクリレート、アリルアミンもしくはそのハロゲン化水素酸塩等の、カルボキシル基、スルホン酸基、リン酸、アミノ基もしくはそれらの塩、2ートリメチルアミノエチル(メタ)アクリレートもしくはそのハロゲン化水素酸塩等の、カルボキシル基、スルホン酸基、リン酸、アミノ基もしくはそれらの塩、などを使用することができる。

[0018]

[直描型平版印刷版の構成の説明]

本発明による直描型平版印刷版の構成は支持体上に、支持体表面と直接化学的に結合しかつ親水性官能基を有する高分子化合物を含有する画像受理層を有する。直描型平版印刷版の支持体表面とは、その表面に親水性官能基を有する高分子化合物の末端が直接または幹高分子化合物を介して化学的に結合しうる官能基を有するか、もしくはプラズマ、電子線、紫外線、可視光線照射などの処理によりラジカルもしくは過酸化物などの活性種を発生しうる表面を示すものである限りどのようなものでも使用することができる。具体的には本発明の直描型平版印刷版の支持体自体であってもよく、また該支持体上に別途に設けた層であってもよい。

[0019]

(支持体表面の説明)

該支持体表面とは、本発明の親水性官能基を有する高分子化合物(親水性ポリマー)を表面グラフト化するのに適した表面を意味し、この機能を発現する限りどのような形態でも可能である。例えば、支持体表面は無機、有機のどちらでも良い。また支持体表面の極性は親水性であってもまた疎水性であっても良い。ま

た支持体表面が支持体の一部となっていても良く、この場合には支持体表面と支持体とを一つにすることができる。また支持体表面としては支持体の表面処理をすることでも本発明の支持体表面の機能を発揮することができ、この場合には表面処理した支持体を支持体表面を含む支持体として使用することができる。

[0020]

無機、有機の内、特に、光グラフト重合法、プラズマ照射グラフト重合法、放射線照射グラフト重合法により本発明のポリマーを合成する場合には、有機表面であることが好ましく、特に有機ポリマーの表面であることが好ましい。また有機ポリマーとしてはエポキシ樹脂、アクリル樹脂、ウレタン樹脂、フェノール樹脂、スチレン系樹脂、ビニル系樹脂、ポリエステル樹脂、ポリアミド系樹脂、メラミン系樹脂、フォルマリン樹脂などの合成樹脂、ゼラチン、カゼイン、セルロース、デンプンなどの天然樹脂のいずれも使用することができるが、光グラフト重合法、プラズマ照射グラフト重合法、放射線照射グラフト重合法などではグラフト重合の開始が有機ポリマーの水素の引き抜きから進行するため、水素が引き抜かれやすいポリマー、特にアクリル樹脂、ウレタン樹脂、スチレン系樹脂、ビニル系樹脂、ポリエステル樹脂、ポリアミド系樹脂、エポキシ樹脂などを使用することが、特に製造適性の点で好ましい。

またこれらの内、支持体を兼ねるという観点から、特にアクリル樹脂、ウレタン樹脂、スチレン系樹脂、ポリエステル樹脂、ポリアミド系樹脂、エポキシ樹脂などが特に好ましい。

[0021]

(画像受容層の膜厚)

画像受容層の膜厚は $0.01\,\mathrm{g/m}^2\sim 10\,\mathrm{g/m}^2$ の範囲であり、好ましくは $0.1\,\mathrm{g/m}^2\sim 5\,\mathrm{g/m}^2$ の範囲である。 $0.01\,\mathrm{g/m}^2$ 未満では耐刷性が低下し、 $10\,\mathrm{g/m}^2$ を超えて多くなると印刷物の細線再現性が悪くなり、共に不適である。

[0022]

〔画像形成方式〕

本発明の直描型平版印刷版用原版に、感熱転写記録方式、電子写真記録方式あるいはインクジェット記録方式等で画像形成を行ない製版が行われる。

[0023]

電子写真記録方法としては、従来公知の記録方式のいずれをも用いることができる。例えば電子写真学会編「電子写真技術の基礎と応用」(株)コロナ社刊、(1988年)、江田研一、電子写真学会誌27,113(1988)、川本晃生、同33,149(1994)、川本晃生、同32,196(1993)等に記載の方法あるいは市販のPPC複写機等が挙げられる。

デジタル情報に基づいて露光するレーザー光によるスキャニング露光方式及び 液体現像剤を用いる現像方式の組合せが、高精細な画像を形成できることから有 効なプロセスである。その一例を以下に示す。

[0024]

まず、感光材料をフラットベット上にレジスターピン方式による位置決めを行った後背面よりエアーサクションにより吸引して固定する。次いで、例えば上記「電子写真技術の基礎と応用」212頁以降に記載の帯電デバイスにより感光材料を帯電する。コロトロン又はスコトロン方式が一般的である。この時感光材料の帯電電位検出手段からの情報に基づき、常に所定の範囲の表面電位となるようフィードバックをかけ、帯電条件をコントロールすることも好ましい。その後例えば同じく上記引用資料の254頁以降に記載の方式を用いてレーザー光源による走査露光を行う。

[0025]

次いで液体現像剤を用いてトナー画像の形成を行う。フラットベット上で帯電、露光した感光材料は、そこからはずして同上引用資料の275頁以降に示された湿式現像法を用いることができる。この時の露光モードは、トナー画像現像モードに対応して行われ、例えば反転現像の場合はネガ画像、即ち画像部にレーザー光を照射し、感光材料を帯電した時の電荷極性と同じ電荷極性を持つトナーを用い、現像バイアス電圧を印加して露光部にトナーが電着するようにする。原理の詳細は同上引用資料の157頁以降に説明がある。

[0026]

現像後に余剰の現像液を除くために、同資料283頁に示されるようなゴムローラ、ギャップローラ、リバースローラ等のスクイーズ、コロナスクイーズ、エ

アスクイーズ等のスクイーズを行う。スクイーズ前に現像剤の担体液体のみでリンスをすることも好ましい。

次に感光体上に上記の様にして形成されたトナー画像を被転写材である直描型 平版印刷版上に転写・定着する、または中間転写体を経由して直描型平版印刷版 に転写・定着するものである。

[0027]

インクジェット記録方法としては、従来公知の記録方式のいずれでもよい。また使用するインクの種類も水性でもよく、油性でもよい。またインクに含まれる組成物中に金属イオンが添加されていても良い。水性、油性インクのなかではインク画像の乾燥・定着性、インクのつまり難さ等から油性インクが好ましく且画像滲みを生じ難い静電吐出型インクジェット方式が好ましい。ホットメルトインクを用いたソリッドジェット方式も好ましく用いられる。

[0028]

静電吐出型インクジェット記録は、国際特許WO93/11866号、同97/27058号、同97/27060号等に記載の記録装置が用いられる。用いる油性インクは好ましくは電気抵抗10⁹Ω・cm以上かつ誘電率3.5以下の非水溶媒を分散媒とし、少なくとも常温(15℃~35℃)で固体かつ疎水性の樹脂粒子が分散されたものである。このような分散媒を用いることによって、油性インクの電気抵抗が適正に制御されて電界によるインクの吐出が適正となり画質が向上する。また、上記のような樹脂粒子を用いることによって画像受理層との親和性が増し、良好な画質が得られるとともに耐刷性が向上する。

具体的には、特願平9-148624号、同9-154509号、同9-35 1563号、同9-21011号、同9-21017号、同9-148623号 等に記載の油性インクが挙げられる。

[0029]

また、ソリッドジェット方式としては、Solid Inkjet Platemaker SJ02A(日立工機(株)製)、MP-1200Pro(Dynic(株)製)等の市販されたプリントシステムが挙げられる。

[0030]

インクジェット記録方法を用いた製版方法を図を用いてより具体的に説明する

図1に示す装置系は油性インクを使用するインクジェット記録装置1を有する ものである。

[0031]

図1のように、まず、マスター(直描型平版印刷版)2に形成すべき画像(図形や文章)のパターン情報を、コンピュータ3のような情報供給源から、バス4のような伝達手段を通し、油性インクを使用するインクジェット記録装置1に供給する。記録装置1のインクジェット記録用ヘッド10は、その内部に油性インクを貯え、記録装置1内にマスター2が通過すると、前記情報に従い、インクの微小な液滴をマスター2に吹き付ける。これにより、マスター2に前記パターンでインクが付着する。

こうしてマスター2に画像を形成し、製版マスター(平版印刷版)を得る。

[0032]

図1の装置系に用いられるインクジェット記録装置の例を図2および図3に示す。図2および図3では図1と共通する部材は共通の符号を用いて示している。

図2はこのようなインクジェット記録装置の要部を示す概略構成図であり、図3はヘッドの部分断面図である。

[0033]

インクジェット記録装置に備えられているヘッド10は、図3に示されるように、上部ユニット101と下部ユニット102とで挟まれたスリットを有し、その先端は吐出スリット10aとなっており、スリット内には吐出電極10bが配置され、スリット内には油性インク11が満たされた状態になっている。

[0034]

ヘッド10では、画像のパターン情報のデジタル信号に従って、吐出電極10 bに電圧が印加される。図2に示されるように、吐出電極10bに対向する形で 対向電極10cが設置されており、対向電極10c上にはマスター2が設けられ ている。電圧の印加により、吐出電極10bと、対向電極10cとの間には回路 が形成され、ヘッド10の吐出スリット10aから油性インク11が吐出され対

向電極10c上に設けられたマスター2上に画像が形成される。

[0035]

吐出電極 1 0 b の幅は、高画質の画像形成を行うためにその先端はできるだけ 狭いことが好ましい。

例えば油性インクを図3のヘッド10に満たし、先端が20μm 幅の吐出電極10bを用い、吐出電極10bと対向電極10cの間隔を1.5mmとして、この電極間に3KVの電圧を0.1ミリ秒印加することで40μm のドットの印字をマスター2上に形成することができる。

[0036]

更に、他のインクジェット記録装置の構成例を図4および図5に示す。

図4は説明のためヘッドの一部分のみを示した概略図である。インクジェット記録ヘッド13は図4に示すように、プラスチック、セラミック、ガラス等の絶縁性材料から作成されたヘッド本体14とメニスカス規制板15、16からなる。図中、17は吐出部に静電界を形成するために電圧印加を行う吐出電極である。

[0037]

さらにヘッドから規制板15、16を取り除いた図5によりヘッド本体について詳述する。ヘッド本体14にはヘッド本体のエッジに垂直に、インクを循環させるためのインク溝18が複数設けてある。このインク溝18の形状は均一なインクフローを形成できるように毛細管力が働く範囲に設定されていればよいが、特に望ましくは幅は10~200μm、深さは10~300μmである。インク溝18の内部には吐出電極17が設けられている。この吐出電極17は、絶縁性材料からなるヘッド本体14上にアルミニウム、ニッケル、クロム、金、白金などの導電性材料を使って、公知の方法により形成され、インク溝18内全面に配置してもよいし、一部分のみに形成してもよい。なお吐出電極間は電気的に独立している。

[0038]

隣り合う2つのインク溝は1つのセルを形成し、その中心にある隔壁19の先端部には吐出部20、20′を設けている。吐出部20、20′では隔壁は他の隔壁部分19に比べ薄くなっており、尖鋭化されている。なお吐出部は20′の

様に先端をわずかに面取りされていても良い。このようなヘッド本体は絶縁性材料ブロックの機械加工、エッチング、あるいはモールディング等公知の方法により作成される。吐出部での隔壁の厚さは望ましくは5~100μmであり、尖鋭化された先端の曲率半径は5~50μmの範囲であることが望ましい。図中には2つのセルのみを示しているが、セルの間は隔壁21で仕切られ、その先端部22は吐出部20、20′よりも引っ込むように面取りされている。

[0039]

このヘッドに対し、図示されないインク供給手段により I 方向からインク溝を通してインクを流し、吐出部にインクを供給する。さらに図示されないインク回収手段により余剰なインクは〇方向に回収され、その結果、吐出部には常時、新鮮なインクが供給される。 L の様に吐出部付近のインクに光照射を行った状態で、吐出部に対向する形で設けられ、その表面に直描型平版印刷版を保持した図示されない対向電極に対して、吐出電極に画像データに応じた信号電圧を印加することにより、吐出部からインクが吐出され直描型平版印刷版上に画像が形成される。

[0040]

以上のようにして、直描型印刷版上に、油性インクを使用したインクジェット 方式で画像形成して製版マスター(平版印刷版)が得られる。

[0041]

【実施例】

以下に本発明を実施例によって更に具体的に説明するが、勿論本発明の範囲は これらによって限定されるものではない。

〔実施例1〕油性インクを使用したインクジェット方式で画像形成 (直描型平版印刷版の作成)

支持体として膜厚188μmの2軸延伸ポリエチレンテレフタレートフィルム(A4 100、東洋紡(株)社製)を用い、グロー処理として平版マグネトロンスパッタリング装置(芝浦エレテック製CFS-10-EP70)使用を使用し、下記の条件で酸素グロー処理を行った。

[0042]

(酸素グロー処理条件)

初期真空 : 1. 2×10⁻³Pa

アルゴン圧力 : 0.9 Pa

RFグロー : 1.5KW

処理時間 : 60 s e c

[0043]

次に、グロー処理したフィルムを窒素バブルしたアクリル酸水溶液(20Wt%)に60℃にて3時間浸漬した.浸漬した膜を流水にて10分間洗浄しすることによるアクリル酸が表面にグラフトポリマー化された親水性の直描型平版印刷版を得た

画像受理層の重量(グラフト量)を重量法で測定したところ、 $0.3g/m^2$ であった。

[0044]

<油性インク(IK-1)の作製>

(樹脂粒子の製造例)

ポリ(ドデシルメタクリレート)14g、酢酸ビニル100g、オクタデシルメタクリレート4.0gおよびアイソパーHを286gの混合溶液を、窒素気流下攪拌しながら温度70℃に加温した。重合開始剤として2,2′ーアゾビス(イソバレロニトリル)(略称A.I.V.N.)を1.5g加え、4時間反応した。更に、2,2′ーアゾビス(イソブチロニトリル)(略称A.I.B.N.)を0.8gを加えた後、温度80℃に加温して2時間反応し、続けてA.I.B.N.を0.6g加えて2時間反応した。その後、温度を100℃に上げそのまま1時間攪拌し未反応のモノマーを留去した。冷却後200メッシュのナイロン布を通し、得られた白色分散物は重合率93%で平均粒径0.35μmのラテックスであった。粒径はCAPA-500(堀場製作所(株)製)で測定した。

[0045]

(インクの作製)

ドデシルメタクリレート/アクリル酸共重合体(共重合比:98/2重量比) 10g、アルカリブルー10gおよびシェルゾール71、30gをガラスビーズ とともにペイントシェーカー(東洋精機(株)製)に入れ、4時間分散し、アルカリブルーの微小な青色分散物を得た。

上記の樹脂粒子50g(固形分量として)、上記の青色分散物5g(固形分量) およびオクタデセンー半マレイン酸オクタデシルアミド共重合体0.08gをアイソパーGの1リットルに希釈することにより青色油性インク(IK-1)を作成した。

[0046]

前記で得られた原版を用いて、パソコン出力を描画できるグラフテック社製サーボ・プロッターDA8400を改造し、ペン・プロッター部に図2に示したインク吐出ヘッドを装着し、1.5mmの間隔をおいた対向電極上に設置された直描型平版印刷版に上記油性インク(IK-1)を用いて印字を行ない製版した。製版に際しては、直描型平版印刷版の画像受理層直下に設けられたアンダー層と対向電極を、銀ペーストを用いて電気的に接続した。

製版された版を、版面温度70℃となる様に調整し10秒間リコーフュザー(リコー(株)製)でインク画像を定着した。

得られた製版物(平版印刷版)の描画画像を光学顕微鏡により、200倍の倍率で観察して評価した。細線・細文字等の滲みや欠落のない鮮明な画像であった

[0047]

次に、上記の様にして作成した平版印刷版を、印刷機として、オリバー94型 ((株)桜井製作所製)を用い、湿し水として、EU-3(富士写真フイルム(株)製)を蒸留水で100倍に希釈した溶液を、湿し水受け皿部に入れ、オフセット印刷用墨インキを用い、印刷紙に平版印刷版を通して印刷を行なった。

印刷10枚目の印刷物の印刷画像を20倍のルーペを用いて目視評価した所、 非画像部の印刷インク付着による地汚れは見られず、又ベタ画像部の均一性は良 好であった。更に200倍の光学顕微鏡観察で、細線・細文字の細り・欠落等は 認められず、良好な画質であった。

これと同等の印刷画質の印刷物が4000枚得られた。

[0048]

[実施例2-4]油性インクを使用したインクジェット方式で画像形成

親水性モノマーとして下記の表1に示すモノマーを使用した以外、実施例1と 同様の操作を行い、親水性モノマーをグラフトした画像受理層を有する直描型平 版印刷版を作製し、実施例1と同様に画像を形成および印刷性を評価した。評価 結果を表1に示す。

[0049]

【表1】

実施例	親水性モノマー	親水性層の重量 (グラフト量)	印刷性能 (4000 枚での汚れ)
2	アクリルアミド	1.0g/m²	汚れ無し
3	2-アクリルアミド-2-メチル プロパンスルホン酸	0.8g/m²	汚れ無し
4	4-スチレンスルホン酸 Na	0.5g/ π ²	汚れ無し
5	2-ヒドロキシエチルアクリレート	$0.6 \mathrm{g/m^2}$	汚れ無し

[0050]

本発明にかかわる各実施例の直描型平版印刷版はいずれも、非画像部に地汚れのない良好な印刷物が4000枚以上得られ、満足すべき結果を得た。

[0051]

【発明の効果】

以上説明したように、本発明の直描型平版印刷版は、支持体上に、支持体表面と直接化学的に結合し、かつ親水性官能基を有する高分子化合物からなる画像受理層を設けることにより、画像受理層の親水性が高くかつ支持体との結合力が優れている。

電子写真式プリンター、感熱転写プリンター、インクジェットプリンター等の種々の方法で直接に画像形成を行い、画像部がインク受容領域を形成し、非画像部の画像受理層表面がインクを受容しない平版印刷画面が形成され、直ちに平版印刷版として印刷機に装着して印刷することが可能である。

また、オフセット印刷版として全面一様な地汚れはもちろん、点状の地汚れも 発生せず、画像の欠落・歪み等のない鮮明な画像の印刷物を多数枚印刷可能とす る優れた平版印刷版を与える直描型平版印刷版を得ることができるという効果を 奏する。

【図面の簡単な説明】

【図1】

本発明の直描型平版印刷版の画像形成に用いることのできる装置系の一例を示す概略構成図である。

【図2】

本発明の直描型平版印刷版の画像形成に用いることのできるインクジェット記録装置の要部を示す概略構成図である。

【図3】

本発明の直描型平版印刷版の画像形成に用いることのできるインクジェット記録装置のヘッドの部分断面図である。

【図4】

本発明の直描型平版印刷版の画像形成に用いることのできる他のインクジェット記録装置のヘッド要部の概要図である。

【図5】

図4で示したインクジェット記録装置実施例のヘッドの説明用概要図である。

【符号の説明】

- 1 インクジェット記録装置
- 2 マスター(直描型平版印刷版)
- 3 コンピューター
- 4 バス
- 10 ヘッド
- 10a 吐出スリット
- 10b 吐出電極
- 10c 対向電極
- 11 油性インク
- 101 上部ユニット
- 102 下部ユニット
 - 13 インクジェット記録用ヘッド

- 14 ヘッド本体
- 15、16 メニスカス規制板
- 17 吐出電極
- 18 インク溝
- 19 隔壁
- 20、20′ 吐出部
- 21 隔壁

【書類名】

図面

【図1】

【図2】

【図3】

【図4】

【図5】

【書類名】 要約書

【要約】

【課題】 オフセット印刷版として全面一様な地汚れはもちろん、点状の地汚れ も発生させない優れた直描型平版印刷版が得られ、更に、画像の欠落・歪み等の ない鮮明な画像の印刷物を多数枚印刷可能とする平版印刷版を与える直描型平版 印刷版を提供する。

【解決手段】 支持体上に、支持体表面と直接化学的に結合し、かつ親水性官能基を有する高分子化合物からなる親水性である画像受理層を有することを特徴とする直描型平版印刷版であり、前記画像受理層上に油性インクで直接に画像を形成することを特徴とする。

【選択図】 なし

出願人履歴情報

識別番号

[000005201]

1. 変更年月日

1990年 8月14日

[変更理由]

新規登録

住 所

神奈川県南足柄市中沼210番地

氏 名

富士写真フイルム株式会社