Relations

Problem 1

True or false:

- (a) If a set Σ is totally ordered, then the corresponding lexicographic partial order on Σ^* must also be totally ordered.
- (b) If a set Σ is totally ordered, then the corresponding lenlex order on Σ^* must also be totally ordered.
- (c) Every finite poset has a Hasse diagram.
- (d) Every finite poset has a topological sorting.
- (e) Every finite poset has a minimum element.
- (f) Every finite totally ordered set has a maximum element.
- (g) An infinite poset cannot have a maximum element.

Problem 2

Give an example of a relation which is:

- (a) Symmetric, transitive, not reflexive, and not antireflexive
- (b) Antisymmetric and antireflexive
- (c) Reflexive, Antisymmetric, not transitive.

Problem 3

Let *S* be a set, and let $I = \{(x, x) : x \in S\}$ be the equality relation on *S*. Show that a binary relation $R \subseteq S \times S$ is both symmetric and antisymmetric if, and only if $\emptyset \subseteq R \subseteq I$.

Problem 4

Prove, or provide a counterexample to disprove, that for all sets S and all binary relations $R_1, R_2 \subseteq S \times S$:

- (a) If R_1 and R_2 are transitive, then $R_1 \cup R_2$ is transitive.
- (b)[†] If R_1 and R_2 are partial orders, then $R_1 \cap R_2$ is a partial order. (18S2)
- (c)[†] If R_1 and R_2 are symmetric, then $R_1 \setminus R_2$ is symmetric. (19T₃)

[†] indicates a previous exam question

^{*} indicates a difficult/advanced question.

Problem 5^{\dagger} (20T2)

Let (B, \preceq) be a partially ordered set, A be a set, and $f : A \to B$ a function from A to B. Define $R \subseteq A \times A$ as follows:

$$(a,b) \in R$$
 if and only if $f(a) \leq f(b)$

- (a) Give a counterexample to show that in general *R* is not a partial order.
- (b) (i) State a restriction on f that will ensure R is a partial order, and
 - (ii) Prove that under that restriction R is a partial order.
- (c) Prove that $R \cap R^{\leftarrow}$ is an equivalence relation.

Problem 6^{\dagger} (17S2)

Let $\Sigma = \{0,1\}$. We define the *prefix relation*, \preceq , on Σ^* as follows: $w \preceq w'$ if, and only if, w' = wv for some $v \in \Sigma^*$.

- (a) Show \leq is a partial order on Σ^* .
- (b) Draw the Hasse diagram for the poset $(\Sigma^{\leq 2}, \preceq)$.
- (c) (i) What is lub(010101,011011) (if it exists)?
 - (ii) What is glb(010101,011011) (if it exists)?
- (d) Is a sorting of Σ^* by the
 - (i) lexicographic order
 - (ii) lenlex order

a topological sort of (Σ^*, \preceq) ?

Problem 7*

Consider the poset $(\mathbb{N}, |)$. Show that for all $x, y \in \mathbb{N}$:

- (a) gcd(x, y) = glb(x, y)
- (b) lcm(x,y) = lub(x,y)