

FIG.I
HPP-CFC (Colony #)

FIG. 2

HPP-CFC (Colony #)

FIG.3

MC/9 CPM ($\times 10^{-3}$) OR EPP-CFC (COL. #)

FIG. 4

MC/9 CPM ($\times 10^{-3}$)

FIG.5

FIG. 6

FIG. 7

MC/9 CPM

FIG. 8

FIG. 9

FIG.10

FIG. II

1 10 20
 P E E I C R N P V T D N V K D I T K L V A N L P N D
 ----- Sequencing after -----
 ----- T-5a -----
 30 40 50
 Y M I T L N Y V A G M D V L P S H C W L R D M V T
 <Glu Aminopeptidase Treatment ----->
 ----- T-5a -----
 ----- CB-6a -----|----- CB-8; CB-10 -----
 60 70
 H L S V S L T T L L D K F S N I S E G L S N Y S I
 ----- Sequencing after Trp Cleavage -----
 80 90 100
 I D K L G K I V D D L V A C M E E N A P K N V K E
 -----> ----- T-3 -----
 ----- CB-14; CB-15; CB-16 -----
 ----- S-1 -----
 110 120
 S L K K P E T R N F T P E E F F S I F N R S I D A
 --- T-1 -----|----- T-4 (N109 nonglyco) -----
 ----- T-7 (N120 glyco); T-8 (N109 nonglyco) -----
 ----- CB-14; CB-15; CB-16 -----
 ----- S-5 or S-6 (N109 nonglyco) -----
 130 140 150
 F K D F M V A S D T S D C V L S S E L G P E K D S
 ----- T-5b -----
 ----- CB-6B -----
 ----- S-5 or S-6 -----
 160
 R V S V E K P F M I P P V A(A)
 ----- T-2 ----- --- --- (Carboxypeptidase)
 ----- CB-6B -----
 ----- S-2 -----

FIG.12A

OLIGO	SEQUENCE	LOCATION
219-21	ACATTCTTGGGATTCCTCCAT G T G T T	393-368
219-22	AAAAGACTCCTCIGGIGTAAATT G T T G G	447-425
219-25	GTTTCNGGTTTTT C C C	420-407
219-26	ATGGGAAAGGGCCCCAAAACGT G G T G T	368-393
222-11	CCNAATGATTATATGATAAC C C C C T	167-186
222-12	GGNGGNAACATAAANGGCTT G G T	566-505
223-6	ACCATAAAATCTTTAAACGATC G G C G G	492-470
224-24	GTATTTCAATAGATCCATGA	450-471
224-25	CCAACTATGTCGCC	190-202
224-27	GTAGTCAAGCTGACTGATAAG	273-251

FIG. 12A cont.

224-28	TAAACCAACATGACTAGGCAA	235-215
225-31	TTCCAGACTCACTGTC	547-562
227-29	GGCAAGCTTGCCTTCTTGAAGAGA	16-35 *
227-30	GGGCCGGGTACGGTACATGAAAGGCTTGTGA	586-561 *
228-30	GATAAAATGCAAGTGATAATCC	45-65
230-25	GGGGTCAACCCGGGAACTTAAAGTCCATGCAACAC	705-685 *
237-19	CACCCCGGGTATGCAACAGGGTACATTAATGG	569-592 *
237-20	CACCCCGGGTAGGCTGCACAGGGGGTACATTA	572-595 *

FIG.I2B

OLIGO	SEQUENCE	LOCATION
231-27	CTTAATGTTGAAGAAACC	703-666
233-13	GATGGTAGTACAATTGTCAGAC	410-431
233-14	GTCTGACAATTGTACTACCATC	431-410
235-29	CAATTTAGTGACGTCTTTACA	302-323
235-30	TTAGATGAGTTTCTTCACGCAC	556-533
235-31	AAATCATTCAAGAGCCAGAACCC	566-589
236-31	AACATCCATCCCGGGGAC	366-383
238-31	CTGGCAATATTTAAGTCTCAAGAAGACC	
241-6	GCGCCGCGGCTCCTATAGGTGCTAATTGG	
254-9	CCTCACCACTGTTGTGCTGGATCGCA	153-179
262-13	GGTGTCTAGACTTGTGCTTCTTCATAAGGA	209-190

FIG.12C

OLIGO	SEQUENCE
201-7	CCCCCCCCGG T A
220-3	TTTTTTTTTTTTTTTTG
220-7	TTTTTTTTTTTTTTTTAG
220-11	TTTTTTTTTTTTTTTCG
221-11	TTCGGCCGATCAGGCCCCCCCC
221-12	TTCGGCCGGATAGGCCTTTTTTTTT
228-28	GGCCGGATAGGCCTCACNNNNNNNT
228-29	GGCCGGATAGGCCTCAC

FIG.13A

FIG. 13B

FIG. 14A

FIG.14B

AAAGTATCTTCTATTGGCGAAGGACATGTTTCC	45
AAACAnACTGTCTGCACATAATAATTATCTTGCTGCCGTAAAGAT	90
TAGGTTAAATTCTGcCTTCGATCTAAAAACACACCCCTGTCAA	135
TCCGAGGAGCAGTGTGCTAGTCTAGAGGTCTAAATGAAGGCTCCT	180
TTCACGGTTGTATTCTGCTCCCCAAATTGTCCACATTTAAAAGG	225
AGAGTGCTTCTTTCAGCCTTAGGCTCTGAATTICATGCATTCT	270
CCATTTCGAGGTCCCccAAAGTGATAATTCTGTTACACGTTG	315
CTACAAGTTCATCCCTAATTGCCGTCAAGAAACTGACTGTAGAAG	360
GCTTACCACAGACGTTGTAACCGACAGTAAAGCCATTGAAAGAGT	405
AATTCAAACAGGATGGAAGCCAGGAGTATTGTTGGCTGTTGCTC	450
TTTTCTTTCAAGTTGGTGAGAGCAGCTGAAATGCTAACATT	495
AAGCCATCAGCTAAAACAAAACAAAACAAAACAAAAACCC	540
CGCTCTGGCATATTGCACTAACACACACGGTATAAGGTGTTAC	585
TGGTTTGCATAGTTCTGGATTTTTTTTTAAAAACTGATGGAC	630
-20	
ThrTyrIleIleThrC	
ACCAAGAAATGTTCTGTTCTTGTAGACTGGATTATCACTT	675
-10	
ysIleTyrLeuGlnLeuLeuLeuPheAsnProLeuValLysThrG	
GCATTATCTCAACTGCTCCTATTAAATCCTCTCGTCAAAACTC	720
1 10	
InGluIleCysArgAsnProValThrAspAsnValLysAspIleT	
AGGAGATCTGCAGGAATCCTGTGACTGATAATGTAAGACATT	765
18	
h=LysLeu	

FIG.14B CONT.'

CAAAACTGGTAAGTAAAGAATGATTTGGCATCTATAAGTCTTCC	810
CTGTGCTTGCTGACCACATAGGTTCAGGGCACTCCCGACAGGAGT	855
TCCCAGCTTCTAAGATAAGGAATCACTGTACGAGTCTGAAGTGC	900
TTCTTCTGGCAAATGGGAGATGCTTAGGTATGGAGGGTTATC	945
TGTATAACTGGCCCTTGACACCAACAAAGTGAUTGGCTT	990
TTGCCTGTTACCTACTG	1007

Intervening sequence of unknown length

TCTCCAGTCCTGGGCATGGTATATACTTAGGCACCCAAGATTGGA	45
TTTACAACCTCAAGCATTATATATTGGACAAACnACGGGGTATGAGA	90
TATTAATGATATGTCAGGTTGGATGGATGAGTTTCTCAAGAAAT	135
19	
Val	
TCTCTTGTATTTACTCACGTTTCATTCTGGTCTCTGTAGGTG	180
30	
AlaAsnLeuProAsnAspTyrMetIleThrLeuAsnTyrValAla	
GCGAACCTTCCAAATGACTATATGATAACCCTCAACTATGTCGCC	225

39	
GlyMetAspValLeu	
GGGATGGATGTTTGGTATGTAGTCCACACACACTTCTGAGTTGCCT	270
TTTAGTAGCTAATGGGTGACCTGTGCTTATTCACATTGAAGACAT	315
TATTTGCTTTGTCGTTTAGATGTTGACCTATAATTTTCCCT	360
TCAAGCTGCTGCTAAGATTATCAGTGAGCATTCACTATGTGTTT	405
TAAGCCTACTCATTAAAAGGAAATGGCTCATCTTAGACGTAGCAA	450

FIG. 14B CONT.'

CCGATGTTAATTTCCCCAGGCATCTCTCAGAGGGACTTGAATG	495
TTAAAATCATGTTAAATTCCTCCTGGCTATGTTATTCATG	540
GCTATGTTATTCCATTCTGTATTCATTTAAAGGGACGGAAATATT	585
TATTGTATTCTGAACCTTTCAAGGCATGCATCCGGGTCTTGAA	630
TAAAAA	635

Intervening sequence of unknown length

CACTAAGACTCCTCTAGTAATGTTGTAATCCTGTCTGTATCGA	45
ATGTCTTGAAAACGCAGTGACTAACGCCATAAAATAATCTTCCACA	90
GAACGTCCAGTGGTCATGAACCTTGTATGTGGGGTGGGGCAAG	135
AATTGTCTCACTATTGGTCAAGGAAGAGAAGGTAAAGGTATGCAAG	180
GGTGGTTAACATCTTCTTCCGTGGAAGGACAAAATCATCTATCATT	225
TCCTCTGATCTCTATGCATTGTTGTTGAACGTAAATCTGACT	270
TGAGCAAGAGTTGGCGTCCTGTGTTCTGAGGAAACTCTTGTCT	315
GCAGTCAGTGACTAAAAGTGCTGAGAGATCTGAAGAGCACTCTGA	360
ATCTGCCATATTTAATAGATGCTTGTCTCTTTGAATTTC	405

40.

50

ProSerHisCysTrpLeuArgAspMetValThrHisLeu	
TTCCAGCCTAGTCATTGTTGGTTACGAGATATGGTAACACACTTA	450

60

SerValSerLeuThrThrLeuLeuAspLysPheSerAsnIleSer	
TCAGTCAGCTTGACTACTCTTCTGGACAAAGTTCAAATATTCCT	495

70

80

GluGlyLeuSerAsnTyrSerIleIleAspLysLeuGlyLysIle	
---	--

FIG.14B CONT.'

GAAGGCTTGAGTAATTATTCCATCATAGACAAACTGGGAAAATA	540
90	96
ValAspAspLeuValAlaCysMetGluGluAsnAlaProLys	
GTGGATGACCTCGTGGCATGTATGGAAGAAAATGCACCTAAGGTA	585
ACTTGGIATTCATCAGAATTATTTCTTACT	619
Intervening sequence of unknown length	
GAGCTCATGATGAGCAATTACAACCACTTGTAAATTCCAGCTCCA	45
GAGGACATTATCCCCTCTTGGATGCCATAGGAATCTGCTCTCAA	90
ATATGTAGATACCACCTCTGCCACCTCAGCACATACATACACATA	135
ATTAAAAAAATAGAAACATTAAAGGAGTTCCAATCAATCCTTATT	180
TTTCTGTATTCACTGATGCCAGATGTAAATTCTAGGAATATGTT	225
TTAAAGGCTAATTCTTATTTGTAAATAAGCAGCTTAAAATTCTT	270
AATTGTTTTTCGGGTCACTTATTGTCCTATTGCCACGACATTG	315
TCCTGTCCCATTGTCGTTATTCCCTCTGTTTGTATTGTTCC	360
CTAGTTACTTGATCATGAGATTGACCTGTTACCCGTTGTTATT	405
TCTGTAGCCATTTGAGTTGTGTCTATTAGAACAGCTGTTAAATT	450
ACTTGAATCATTGAGGACATAGTCATAATCTATTATGCTGATCC	495
AGTCAAGTCTATGAGTTATTGAAAACAGAACATGTTAATTA	540
97	
AsnValLys	
TTTGTGCTTGTGTTGTTATTATTGTCTAGAACATGTTAA	585
100	110
GluSerLeuLysLysProGluThrArgAsnPheThrProGluGlu	

FIG.14B CONT.'

GAATCACTGAAGAAGCCAGAAACTAGAAACTTACTCCTGAAGAA	630
120	
PhePheSerIlePheAsnArgSerIleAspAlaPheLysAspPhe TTCTTTAGTATTTCAATAGATCCATTGATGCCTCAAGGACTTC	675
130	140
MetValAlaSerAspThrSerAspCysValLeuSerSerThrLeu ATGGTGGCATCTGACACTAGTGATTGTGCTCTCTAACATTAA	720
148	
GlyProGluLysA GGTCCTGAGAAAGGTAAAGGCTTTAACGCATTCTTGTAAATGT	765
ACATAGAAAGCCTGAACCTCTGTAAGCCTCTACTGCTGAATCAAC	810
TAAATGTGTTGCTGTAGAAAGAACGTGTGGGTTTCTGATAAAA	855
ACAAAAAGCAAATATCAATGACTACCAATGATTATTATCTAGCTT	900
GAGAGATATGCCCTAACAGACAGCGATTCTCGATATTCTAAATTAA	945
AGAATTGTGATGGTGGCTCACATATTTCTAACTGTGATATT	990
GCCAGGAGAGTAGAATAATGTTATTCTCATCCCCAGAACCTCTA	1035
AGATTTCACGTCTCATGTCCTTCCATAAGGTTCAAACCTCTGAGA	1080
CTTGAGTTCTGAGCCTCAGCAGGTCAATTCTGAATCCCCACTCTCC	1125
CCGAGCTGGGTCCCTATGGGGAACTAACTTCATTGCTTCTTT	1170
AAAACATGACGGAGTTACCAACAGCTCCTCGCTATTATAAACATGT	1215
TCCTAACGCATGTCTGCAATAAGCCTCACTCTACAAGAC	1260
AGTTATGGTGTATCGCTTGACAAAAGTGAGCAGCCAAGCTGAGTA	1305
TGAAATAATAATCTAGACTTGGGAGGCAGACCCAGCACCTACTGT	1350
GATATTGCACCTCGCCTTGGGGACTCTATGATTCAAAAGTTCA	1395

FIG. 14B cont.

	150
	<i>spSezArgV</i>
CCATGTAACACTGACACATTATTGCTTCATTTAGATTCCAGAG	1440
	160
alSerValThzLysProPheMetLeuProProValAlaAlaSerS	1485
TCAGTGTACAAAACCATTATGTTACCCCCCTGTTGCAGCCAGTT	
	170
erLeuA-gAsnAspSerSerSerSerAsn	1530
CCCTTAGGAATGACAGCAGTAGCAGTAATAAGTAAGTACACATATC	
TGATTTACTGCATGCATGGCTCCAAGTATCCTCTATAGGAGTGTT	1575
GCATGGACTTAAAGTTATAAAATCACTACTAATAATGCTGTTCTG	1620
TCACTGTTATTCCCTGTATGGGCTTCCTGACAATTAAATATCTGG	1665
TTTGTAGAACATCGGATCTCCTTAGAGGTTAACGATGACCATGACAAA	1710
ATTAGGCCAATCAACTTCTGCGAAGGTTATTTAAATAAGGCAC	1755
GAAATTAAATTGAAGGAAAAAAATACAAGCAAGGCCTTATTTG	1800
AATCATGGTAGGCTAAAATAGACTTTGTGGAGAACATGTCCTGAT	1845
CAAAGTGGAGTTTCAGATTCAAGTGCATGTGCTAACTCTCCAC	1890
AATGTCAAGGCTATTTCAGTTTGTGTCTCCATATTTACTACTG	1935
CATGTTGGAAATTGCTGATGCTGTTAGATTACCTAACAGAACATGTA	1980
TGTTGAAGAAGAACATGGACTTCTTCCCTAAAATTCTGTCCTCTT	2025
TGcCCAAGAACCCAcGTTCTGGAAAGACTATCTTATTTCATGTC	2070
TGTGCAATGATCATTATAAAGATTATTGAATATACTGGGAATACT	2115
CTGGTTCTGTTTACAGATTCAAAATAGCTTATTCACTCTTAA	2160
AAGAAAAGTTCTCTGAAGTCCATGCTTAAAGAACATGTTCTCTATCAA	2205

FIG.14B CONT.'

AACTTGACCTGGACCTTAAATAAAGCTATATTAGTCTTTTATC	2250
CCTGAAAAATATATTCACAGTGTAGACATTGATATACTACATCTAA	2295
GGGAAGGATGCTGCCAGAACATGCTCGGGCTGGCAGTCTACAAAGTC	2340
CACTGCTCTCAGGATGGACTTCTGAAAGCGGAAATTGTGAAC TGC	2385
ATGCATATAACATATCAGATCCTCGAGC	2413

FIG. 14C

CTGGATGGCAGGCGCTTCTCTTATGAAGAAGACACAAACTGGATTATCACTTGATC
-25 M K K T Q T W I I T C I
-20
Y L Q L L F N P L V K T Q E I C R N P
10 TTATCTTCAGTGCCTTATTAAATCCTCTCGTCAGGAGATCTGCAGGAATCC
1 1
V T D N V K D I T K L V A N L P N D Y H
20 TGTGACTGATAATGTAAGAACATTACAAA
30 GATAACCCTCAACTATGTCGCCCGGATGGATGTTGCCTAGTCATTGTTGGTTACGAGA
40
H V T H L S V S L T T L D K F S N I S
50 TATGGTAACACACTTATCAGTCAGCTTGCACACTCTTCTGGACAAGTTCAAAATTTTC
60
E G L S N Y S I I D K L G K I V D D L V
70 TGAGGCTTGAGTAATTATCCATCATAGACAAACCTGGAAATAAGTGGATGACCTCGT
80
90 A C M E E N A P K N V K E S L K K P E T
GGCATGATGGAAAGAAAAATGCACCTAAAGAATGAAAGAAATCACTGAAGAAGCCAGAAC
100
110 R N F T P E F F S I F N R S I D A F K
120 TAGAAAACCTTACTCCTGAAGAAATTCTTAGTATTTCAAATAGATCCATTGATGCCCTCAA
420 480

FIG. 14C CONT.

130	D F M V A S D T S D C V L S S T L G P E	140
	GGACTTCATGGGGCATCTGACACTAGTGATTGTCTCTCTCAACATTAGGTCTCTGA	
150	K D S R V S V T K P F M L P P V A A S S	160
	GAAGGTTCCAGACTCAGTGTCAACAAACCATTTATGGTTACCCCTGTGGAGGCCACRTG	
170	L R N D S S S N R K A A K S P E D P G	180
	CCTTAGGAATGACAGGAGTAGGCAGTAATAGGAAAGCCCAAAGTCCCCTGAAGACCCAGG	
190	L Q W T A M A L P A L I S L V I G F A F	200
	CCTACAAATGGACAGCAATGGCACTGGCACTGGCGCTCTCATTTGCTTTGGCTTTGCCTT	
210	G A L Y W K R Q S S L T R A V E N I Q	220
	TGGACCCTTATACTGGAAAGAACAGTCAGTCTAACAGGGCAGTTGAMMATAACA	
230	I N E E D N E I S M L Q Q R E R E F Q E	240
	GATTAAATGAGGATAATGAGATTAATGTTGCAACAGAAAGAGAGAGAGTTCAAGA	
248	V	
	GGTGTAAATT	
		849

FIG. 15A

FIG.15B

-21

h=Gln

CACAAAGTGA GTAGGGCGCGCCCGGGAGCTCCCAGGCTCTCCAGGA	45
AAAATCGCGCCCGGTGCCCGGGAGCCGGCGCTCCCTGGGACT	90
TGCAGCTGGGGCGTGCAGGGCTGTGCCTGCCGGGTG	126

Intervening sequence of unknown length

AGATACTACAAAGATAAAATCAGTTGCACAAGTTCTTGAAACTCTA	45
CAGTGTAAATAAGGAAAAATAAGTCATGCATAAAAGCAACTATAAT	90
ACATAATAGAAAATGTTATTTCAAGCCGATGTGTAGGTTATGTG	135
TGTCGAGAGAGAGAGAGAGAGAAGACAGATTACTTCTGCTAGGGT	180
TCAAGAATGCCTTCCTGTTGGCTAAGGAAATATTTCTTAAGTG	225
GCTAAAAAGCTGTGTTCAAAATATTCTTTGATGTCTCACAAAT	270
TCAGTGGAATTCTCTTAGGTCTAAAAATATACATCTCTCACTT	315
TAACTTGGTGTGCTATTGTAGATTATTGGATTAAAGCACTGCTCA	360
GGGATTATGCTGCTTCTTGCCAAGCAGTCTACATTAAAGTAGAA	405
ATAAGATGTTCTTGGTGCCATAAGGTATAACATTATGCATT	450
CTCTAGTTTAAAGATAACCTAAGGGCTAAGTCTTTAACATGC	495
TGCTACAAGTTATTCTAATTGCCATTGGGAAATTGGCTGAAGA	540
AAGTTTTAACAAAAGTTAACAAATATTGTCAATTGAGAGAATAATT	585
CAAAATGGATTTAACTAAAAGCTTTAAAAACTTGGTGAGCAT	630
AGCTTGAATGCGTAATATTAATTGCATTAAAGCCAATAACATAT	675

FIG.15B CONT.'

ATTAGACTGGCTTTGTGCATCAAGGCATTAGATGTTAAAAGT	720
TTGAATGATTACAGATCTTAAC TGATGATCACCAAGCAATTTC	765
-20	
Thr-T=pIleLeuThr-CysIleTy=LeuGlnLe	
TGTTTCATTTAGACTTGGATTCTCACTGCATTTATCTTCAGCT	810
1	
uLeuLeuPheAsnProLeuValLysThrGluGlyIleCysArgAs	
GCTCCTATTTAACCTCTCGTCAAAACTGAAGGGATCTGCAGGAA	855
10 18	
nArgValThrAsnAsnValLysAspValThrLysLeu	
TCGTGTGACTAATAATGTAAAAGACGTCACTAAATTGGTAAGTAA	900
GGAATGCTTACCGTGCTGTGTAAAAAGAGCTGTGGCTTTTT	945
CCTGTGCTTGTGATAAAAGATTAGATTTCTGCCCAAAGT	990
AATGTTTCCTAAAGTGGGGAAAGTAATCACTGGGTTACAATAAA	1035
GGGTTATAGAAAGCAGGTAGTGAGATAATTAGGGTCATGGATAA	1080
TTTGTGGTAAACTGGCTAGTTGCACACCAC TGCTGTGACTGCT	1125
TCTTGTGGCTTCTCCCCATCCTCATAGGCAGTGAAGGACCT	1170
TGGAGAGTTCGCTGTGTGCTGATGGCTTGGCCAGCTTGTCCC	1215
CATAATCTCTCCAGTGGTTCCCAGCATGTTCTATTCCCCCTCA	1260
CATGTCTTCCTACTCTTAAAAAGCCTAACGAAAGGAAATCT	1305
GAAATGGCTATTCTCCAATTCAATCAGCAGGAAGACCCCTGTCAC	1350
ATGTCAGTGGGTGTTGCTCCTCAGGGAACATAGAGAGGTGATT	1395
CATTGCCACATGTTGAAGGGACTCATCTCCCTGGTTGTCACAT	1440
TGAACTCTTCCCTCAGCGAAAGCATTGCATTGCTTCCC	1479

FIG.15B CONT.'

Intervening sequence of unknown length

GAATTCCAAGATCACAGGTGGAAGCTGAAATTCAAGATCATGTTTC	45
CAAAAACTCAGTAGGTTATAACCTAGCCAGGCATAACTGAATTGGAA	90
GTCTAAAAGATCTGTATTATCACTTTTTATTTGAAGGATGCCT	135
TTTGATTACAGAGGGAAATCAAGGATTAAAAATCAATATACATGT	180
AAATATTGAAATTCAATTGGTAACCTTAAAAAGCACAACAGTTTG	225
TGTGCTTTCTCCAAAGCACTACAAATATGATTAATTGATGTATA	270

19	
ValAlaA	
AGAATTTCCTATGGAATTTCCTTGTCTCTGTAGGTGGCAA	315

30	
snLeuProLysAspTyrMetIleThrLeuLysTyrValProGlyM	
ATCTTCCAAAAGACTACATGATAACCCTCAAATATGTCCCCGGGA	360

39	
etAspValLeu	
TGGATGTTGGTATGTAAACTACATTCTGAGTTCTTTAGT	405
AGCTCATAGAAGAAATGGGATCATTCAATTGAGATAGTACACTA	450
GCTGCTATTAGGAGCTTGCTTATTGTCAGGATTGAAGAATTAA	495
TCTTGGAAATTGACTTGCAGGCTTTTCCCCTCTT	535

Intervening sequence of unknown length

CCTGTTACAAGAGTCCCTCCTCCTATTAGAATAGTCCCTCCTCCT	45
CCTGTCACACTAGTCCCTCTTCCCTGTTACAATAACCCCTGTC	90

FIG.15B CONT.'

CTCCTATTACAACATTTAAGTAATGTAATATTAATTTAAAAAT	135
CTGGCCAGGCACGGTGGTCATGCTTGTAAATCCCAGCACATTGGG	180
AAGCTGAGACGGGTGGATCATTTGAGGTAGGAAGTTGAGACAG	225
CCTGGCCAACATGGTGAAACTTCCTCTACTAAAAATAAAAAG	270
TAGCCAGGCATGGTGGCAGGCACTTGTAATCTGAGCTACTCGAGA	315
GGCTGAGGCAGGAGAACACTTGAGTAACTAAAACGATAGCTTG	360
AAGAGTACTCCGAGTTTATGGCACTTACTTATTAAAATAGCTGT	405
40	
ProSerHisCysTrpIleS	
TTTGTCTCTTTTCATATCTTGCAGCCAAGTCATTGTTGGATAA	450
50	60
erGluMetValValGlnLeuSerAspSerLeuThrAspLeuLeuA	
GCGAGATGGTAGTACAATTGTCAGACAGCTGACTGATCTCTGG	495
70	
spLysPheSerAsnIleSerGluGlyLeuSerAsnTyrSerIleI	
ACAAGTTTCAAATATTCCTGAAGGCTTGAGTAATTATTCCATCA	540
80	90
leAspLysLeuValAsnIleValAspAspLeuValGluCysValL	
TAGACAAACTTGTGAATATAGTGGATGACCTTGTGGAGTGCCTGA	585
96	
ysGluAsnSerSerLys	
AAGAAAACATCTAAGGTAACTTGTGTCATTGGGATTATTT	630
TCATTACGCTTCTCTAAAAACCCATGCTTCTGGTGCTGTTGGGG	675
AAAATGAGGCACCTTATTTATGATATTTGATTGTATAAACTTC	720
AAATTTAAAAATCTGTTCAAGATGAGCAAAGAAAACAAGTATTG	765
· CAGTTATACTGCAATACTGAAGTGCACATTG	796

FIG.15B CONT.'

Intervening sequence of unknown length

TTGTGTTCACTGCCCGAGATTCAACTTGTGATCCCACGGGATCA	45
CTACCCCTGCATTACCAATCTGAATTACATACTGTTAAAACAGCCAT	90
CTAAAAGTGTAGTTGTAAGAGTCTAAATACTTGAATCTTGAGA	135
GACATATTTATAGTCCATTATCTTCACCTCAGTTAAGTCTGAAGA	180
	97
	AspLeuLysL
CTATTGAAAAATGTAATCCTATTTTTCTTAGGATCTAAAAA	225
	110
ysSerPheLysSerProGluProArgLeuPheThrProGluP AATCAAGAGGCCAGAACCCAGGCTCTTACTCCTGAAGAAT	270
	120
hePheArgIlePheAsnArgSerIleAspAlaPheLysAspPheV TCTTAGAATTTAATAGATCCATTGATGCCCTCAAGGACTTG	315
	130
alValAlaSerGluThrSerAspCysValValSerSerThrLeuS TAGTGGCATCTGAAACTAGTGATTGTGGTTCTCAACATTAA	360
	140
erProGluLysA	
GTCCTGAGAAAGGTAAAGACATGTAAGCATTCCAGTTCAAATGTA	405
AACAACAAACTAAATCTCCCTATGTAGTAAGAATCTACCTCTG	450
TGTTAAGCTGTAGCAAGATACTGCATGTACGTCTAATAAAAAG	495
CAGATATCAATAGCACAGAAGAAA	519

Intervening sequence of unknown length

FIG.15B CONT.'

CTCTATAACTCATACAAATCACCATATAACACTGACACATTATTG 45
150 spSerArgValSerValThrLysProPheMetL
CTTTCTATTTAGATTCCAGAGTCAGTGTACAAAACCATTATGT 90
160
euProProValAlaAlaSerSerLeuArgAsnAspSerSerSerS
TACCCCCCTGTTGCAGCCAGCTCCCTTAGGAATGACAGCAGTAGCA 135
170
erAsnA
GTAATAGTAAGTACATATATCTGATTTAATGCATGCATGGCTCCA 180
176
ATTAGCACCTATAGGAGTATTGCATGGGCTTCAAGGAAACTTCT 225
ACATTATTATTATTGATACTGTTCTGTTACTGTTATTCCCTTTA 270
TGGTCTTCTTGAGACTTAAGTTGTAGAATTAAATTCCCTAGAG 315
CTGGAGATAATGTTAGAGAATTAGGCCAATAAATT 352

FIG.15C

M K K T Q T W I L T C I Y L Q
AGCTTCCTTATGAAAGACACAAACTTGATTCTCACTGCATTTATCTTCAG 61

L L F N P L V K T E G I C R N R V T N
CTGCTCCTATTAACTCCTCGTCMAAAGTGAAGGGATCTGAGGAATCGTGACTAT 121

N V K D V T K L V A N L P K D Y M I T L
MTGTAAMAGACGTCACTAAATTGGTGGCAAATCTTCCAAAAGACTACATGATAACCCCTC 181

K Y V P G M D V L P S H C W I S E M V V
AAATATGTCCTGGATGGATGGATGGCTCATGGTGGATAAGCGAGATGGTAGTA 241

Q L S D S L T D L L D K F S N I S E G L
CAATTGTCAGACAGCTTGACTGATCTTGACAAGTTCAATATTTCTGAGGGCTTG 301

S N Y S I I D K L V N I V D D L V E C V
AGTAAATTCCATAGACAAACTTGAAATAGTGGATGACCTTGTTGAGTGGCTG 361

K E N S S K D L K S F K S P E P R L F
AAAGAAACTCATCTAAGGATCTAAAGAAATCATTCAAGGCCAGAACCCAGGCTCTT 421

FIG. I5C CONT.

T P E E F F R I F N R S I D A F K D F V	120	130
ACTCCTGAAGAATTCTTACGANTTTAATAGATCCATTGCTTCAGGACTTTGTA		
V A S E T S D C V V S S T L S P E K D S	140	150
G'GGCATCTGAAACTGATTGTGTGGTTCTCAACATTAAGTCCTGAGAAAGATTCC		
R V S V T K P F M L P P V A A S S L R N	160	170
AGAGTCAGTGTCAAAACCATTATGTTACCCCCCTGTTGCAGGCCAGCTCCCTAGGAAAT		
D S S S N S K Y I Y L I	180	183
GACAGCAGTAGCAGTAATAGTMACTACATATATCTGATTAAATGCATGGCTCCAAAT		
TAGCACCTATAGGAGTATGCATGGCCTTCAAGGAAACTTCTACATTATTATGTGA		
TACTGTTCTGTTACTGTTATTCCCTTATGGTCTCTGAGACTTAAGTTGTTAGMATTAA		
AATTCCCCTAGAGCTGAGATAATGTTAGAGATTAGG		

FIG. 15D

GAGCTCCGAGCCCTCTGGGCCgCgAAGTATTTCGTCCTGTnCCCGGGCTGCCAGGTGA 60
GCCCAAGGGATCCGGGGTAAGGTGGACTCTCGCAGGTAGCTGCAGGTACCC 120
AGCTTCGCCCTCTGGTCCCCGGCCCTTCGGGTCTCCGGCAGTGCAGGTCCGGGCC 180
CCCAGGGAGGGACAAAGGTTGGCTAAATCTGCCAAACTTCTGGGCATTACCGTGCTC 240
TGCCCCCTCCGAAATCTCCCTCCGGCCCTTGCCCTGCCTCTCGCCCTACCCCCGGCTC 300
CGGAAAGGAGGGGGCTGGAGGAAAGGGGGGAACTGTATAAGGGGGGGGG 360
CTCACGGAGCCGGCTTCGGCTCGCCGGCTCGGCCAGCACTAGAACGGCTGCGGAGGG 420
GAGCTGGAGAUUGGGCTGGCTCGGGCTACCCAAATGGTGGACTATCTGCCGGCCGCTGT 480
'TCGTCGAAATTCGGAGCTCCAGAAACAGCTAAACCGTCCGCAACCACTGTTGTCGC 540
- 25 - 21
Met Lys Thr Glu
TGTGATCGAAATTCGGCTTTCTCTATGAAAAGACACAAGTGAAGTAGGGGGGGGGGA 600
GCCTCCAGGGCTTCAGGAAATTCGGCCGGTGGCCCTGTCGGGTGAGCAAGGGATGGGGGA 660
GACTTGCAGCTGGGGTGCAGGGCTGTGGCTTGCCGGGTGAGCAAGGGATGGGGGA 720
GGCGGGGTGGTGTGATCCCGAGCCAGCCGAGGAGAAAGGAGACTGGGA 780
GnCTGAGAGGGAGCCAGTGTCAAGTTGGAGCCCTAGGCAAGTTAGTTGAGCTGTCAAG 840
TCGGAACCGTAATTCCGGTCTGGAAAGATTGGCTTnGnCCACGGAAATGTAAGTT 900
ATCAC 905

FIG. 15D CONT.

Intervening sequence of unknown length

FIG. 15D CONT.

	1	10	18
uGly 11eCys Arg Arg Arg Val Thr Leu Ser Val Asp Phe Ile Thr Lys Leu			
AGGGATCTGCAGGAATCGTGTGACTAATTMARGTAAAGACGTCACTAATTGCTMAGTAA	900		
GGATTTACCGTGCTGTGTAAMMAGTAATGTTTCCTAAAGTGGGAAAGTAAATCA	960		
AAAAGATTAGATTAGGGTTATAGAACAGGGTAGTAGTGGAGATAATTAGGGTCATGGTAA	1020		
CTGGGTTACAAATAAGGGTTATAGAACAGGGTAGTAGTGGAGATAATTAGGGTCATGGTAA	1080		
TTTGGTTGGTAAACCTGGCTAGTTGCACACCACTGGCTGTGACTGGCTTCTTGGCTGGCTTC	1140		
TCCCCATCCTCATAGGCAGTGAAAGGACCTTGGAGAGTTCGCTGTGCTGATGGGCTTC	1200		
CCCCAGCTTGTTCCTCCCATAAATCTCCAGGGTTCCCAAGGATGTTCTATTCCTTC	1260		
CATGTCCTCCGACTCTCTTAAAGGCCATTAGGAAAGTCTGAAATGGCTATTTCTC	1320		
CCAAATTCAAATGAGAGAGCCCTGTCACATGTCAGTGGCTGTTGGCTTCAGGGAA	1380		
CATAGAGAGTCATGCCCCACATGTCAGGGAACTCCTCCCTGGTTGCTCACAT	1440		
TGAAAGCTTCCCCTCAGGGAGGCAATTGCAATTGCTTC	1479		

Intervening sequence of unknown length

GAA TCC AAG ATC ACAG GAT CAC AGCT GGAA ATT CAGA TCA GTT CCMA AACT CTAG GCTT	60
TAT ACCT AGCC AGGC ATA ACTG GAAT TGGAG CTAA MAGA TCTG TATT ATCA CTTT TTTA	120
TTTG AAGG ATGCC TTTG ATTAC AGGGAA ATCA AGGATT TAA AAAT CAAT ATAC ATGT	180

FIG. 15D CONT.

AAATATTGAAATTCAATTGGTAACCTTAAAGCACAACAGTTTGTGCTTTCTCCAA 240
AGCACTACAAATTGATTATTGATGTATAAGAAATTCTTATGGAAATTGGATTTTTGT 300

19 30
Val Ile Asn Leu Pro Lys Asp Tyr Met Ile Thr Leu Lys Tyr Val Pro Gly M
CTCTGTAGGTGGCAAATCTTCCAAAGACTACATGATAACCCCTCAAAATTATGTCCCCGGAA 360

39 40
et Asp Val Leu
TGGATTCATTTGGTATGMACTACATTCTGAGTTCAATTAGCTCATAGAGAAA
TGGGATTCATTTGAGATAGTACACTAGCTATTAGGAGCTTGCCTTATTGTCAG 420
GATTGAAAGAAATTCTTGGAAATTGACTTGCAAGGCTTTTCCCCCTCTT 535

Intervening sequence of unknown length

CCTGTTACAAATTCCTCCTATTACAACTAGTCCTCCTCCTGTCACACTAGTC 60
CCCTCTCTTGTACAAATTCCTCCTATTACAACTAGTCCTCCTGTCACACTAGTC
ATTAAATTCTGGCCAGGCACGGTGGTTCATGCTTTGTAATCCCAGCACATTGGG 120
AAGCTGAGACGGGTGGATCATTGAGGTCAAGGAAGTTGAGAACAGCCTGCCAACATGGT 180
GAAACTTCCTCTACTAAAAAAGTAGCCAGGCATGGTGGCAGGCACCTTGTAAAT 240
CTGAGCTACTCGAGGGCTGAGGAGGAATCACTTGAGTAACTAAAGATAAGCTTG 300
AAGAGTACTCCGAGTTTATGGCACTTACTTAAATAAGCTGTTCTCTTTTC 360
420

FIG. 15D CONT.

40 ProSerLisCysTrpIleSerGluMetValValGlnLeuSerAspSerL
ATATCTTGGCCAGTCATTGGATAGCGAGTGTTAGTACATTGTCAAGACAGCT 480

60 eutThrAspLeuAspLysPheSerSerIleSerGluGlyLeuSerAlaSerIleI
TGACTGATCTTCTGGACAAGTTCAAAATATTTCTGAAGGCTTGAGTAATTCCATCA 540

80 LeAspLysLeuValAlaSerIleAspAspLeuValGluCysValLysGluAsnSerL
TGGACAAAATCTGCAATACTGGATATAGTGGATGACCTGTGGAGTGCCTGAAAGAAAATCTCATCA 600

96 Y⁹ AGGTAACTTGTGTTCATGGGATTATTTCATTCGCTTCTCTAAGCCATGCTTC 660

TTGGTGGCTGTTGGGAAATGGGCCCTTTATTATGATATTGATTGTTGATTTGATAAACCTTC 720

AAAATTAAATACTCTGTTCAGATGGCAAAGAAAACAGTATTGCAGTTAATCTGCCAT 780

ACAGAGTCAGCATTC 796

Intervening sequence of unknown length

TTGGTGGCTGCCCAGATTCAACTTGTGATCCCCACTGGGATCACTACCCCTGCATTACC 60

AATCTGAATTAACAGCTAAACAGCCATCTAAAGTGTAGTTGTAAGGTCTAAATA 120

CTTGAATCTTTGAGAGACATATTATAGTCCATTATCTTCAACCTCAGTTAAGTCTGAAGA 180

97 AspLeuLysLysSerPheLysSerP
CTATTTGAAATGTAATCCTTATTTCTAGGATCTAAAGAAATCATTCAAGAGGCC 240

FIG. 15D CONT.

110 rogluProArgLeuPheThrProGluGluPhePheArgIlePheLeuArgSerIleLeuPhe
 CAGAACCCCGGCTCTTACTCTGAAGAAATTCTTGAAATTGATCCCATTGATG 300

130 140 148 140 160 170 176

IaPheLysAspPheValValAlaSerGluThrSerAspCysValValSerThrLeuS
 CCTTCAGGCACTTTGTACTGGCATCTGMACTAGTGATTGCTGGGTTCTMACATTAA
 erProGluLysA GTCCCTGAGAAGGTAAGACATGTAAGCATTTCAGTTCAATTGTMACAACTTAA 420
 TCTTCCTAATGTAGTAAAGAAATCACCTCTGTGTTAAAGCTGTAGCAGATACTGCATGTA 480
 CGTCCTAAAGGAGATATCATTAGCAGAGAACTAAATGATTGTAGATTGTGGG 541

Intervening sequence of unknown length

spS

CTCATTCCTAATCCTCCATATMCACTGACACATTATTGCTTCTATTAGATT 60

150 160 170 176

erArgValSerValThrLysProProMetLeuProProValAlaAlaSerLeuArgA
 CCAGAGTCAGTGTCAACAAAACATTAGTTAACGCTCCCTGTGCAAGGCCAGCTCCCTTAGGA 120

snAspSerSerSerAsnA ATGACAGGACTAGGACTAATAGTAAGTACATATCTGATTAAATGCAATTGCTCCA 180

ATTAGCACCTATAGGAGTATTGCATGGCTTTCAAGGAAACTCTCACATTATATTATT 240

GATACTGTCTGTACTGTTATTCCCTTTATGGCTCTCTTGAGACTTAAGTTGTAGAAT 300

FIG. 15D CONT.

TAAATTCCTAGACGGATATTGTTAGAGMATTAGGCCAATMATTCTGCTGA 360
GGTATTAGCATMATTAAATTAGAAATATGATTAGCCTTTGTTGAA 420
TCATTAACATATA 434

Intervening sequence of unknown length

ACAGAAAACAGTTAAACACACAGCATMAGGAGAAACTTCTAGAAATGCTGTA 60

178
rglyAlaLysSerProProGlyAspSerSerL
TTCACTCAGTGTTGTTCTTAAATTAGGGAGGCCAAMMAATTCCCCCTGGAGAGACTCCAGGCC 120
190
euUisrrpAlaMetAlaLeuProAlaLeuPheSerLeuIleIleGlyPheAlaPheG
TACACTGGGCAACCATGGCATTCGCCAGCATTTGTTCTCTTATAATTGGCTTTGCTTTG 180
213
IysAlaLeuIleIleGly
GAGCCTTAACTGGAGGTAAAGTGGTACCTTCCATTTCCTTAAATTGCTATGTTAC 240
ATTAATTATCATCTTTTCTCAGAAATGATCCTTtAAGAAAACAGTGAATCTACCT
TAGCTTAACTAAACAAAATTAAATTAAATTAAATTAAATTAAATTAAATTAGGAACT 300
GCAATCCCTCTAGCTGATAATTACGGCTTAAAGAATTAGGAACT 360
404

Intervening sequence of unknown length

FIG. 15D CONT.

MAACTGTTATTGGAGTTATTGCCATTAAAGTCCATMMAGATAAGTCCACCTTACCTCTTAA	60
214	
LysArgG	
TATTAGACCATTCAATTGATTTCACGTATTTACAGTATGTCCTTCTTCAGAGAGAC	120
180	
e	
220 220	
lnProSerLeuThrArgAlaValGluAsnIleGlnIleAsnGluGluAspAsnGluIleS	235
AGCCAAAGTCCTAACAGGCAGTTGA	230
230	
GGTATTTGGTTTGCTTAATGTCGCCAATCAGGCATGACATTGCCATTTCACACACTG	240
TGTACCTGCCCATATTGTCCTTAAGAGCTCCTTCACTCATGACAGTAGCTCCATTACAGT	300
GAGTCCCAGCTCTATCCATGTTCTGATGTCTCACTCTCTTC	344
Intervening sequence of unknown length	
GTATGTTGTTGCTTAATGTCGCCAATCAGGCATGACATTGCCATTTCACACACTG	60
AGACAAATTGAACTCTCCCTCTTCCCTATAGTATTAAGGGTAGGGCTCCCCCATTCAT	120
TTTGCAATTCTCTGCTACTATATTACAGMMAGCTGCCTTTACATTGCGGAGATCATG	180
GTGTACCTCAGAATCTCTGACCAAGAGCCATTAGCATTTCAGCTTTCAGTA	240
rM	
237 248	
etLeuGlnGluLygGluArgGluPheGlnGluVal	
TGTTGCCAAGAGAAAG	300
TACTTTGGTACATTGGTAAGTTCTCTTCTCTTCTCTTCTCTTCTCTTCTCTTCTCTT	360

FIG. 15D CONT.

420

CTTTAAGTTCTAGGGTACATGTGCACAAATGCAAGGGTTACGTATGTTAACATGTGC

CATGTT 426

FIG. 6A

5
2
-

Human	MKKRTQTWIIT C1YLQ1LLFN PLVKTEGICR NRVTTNNVVKDV TKLVANLPKD
Monkey	MKKRTQTWIIT C1YLQ1LLFN PLVKTEGICR NRVTTNNVVKDV TKLVANLPKD
Dog	MKKRTQTWIIT C1YLQ1LLFN PLVKTKGICG KRVTDDVKDV TKLVANLPKD
Cat	MKKRTQTWIIT C1YLQ1LLFN PLVKTKGICR NRVTDDVKDV TKLVANLPKD
Cow	MKKRTQTWIIT C1YLQ1LLFN PLVHITQGICS NRVTDDVKDV TKLVANLPKD
Rat	MKKRTQTWIIT C1YLQ1LLFN PLVKTOEICR NPVTDNVVKDI TKLVANLPND
Mouse	MKKRTQTWIIT C1YLQ1LLFN PLVKTEICG NPVTDNVVKDI TKLVANLPND
Chicken	TWIIIT CFCLQ1LLFN PLVKAQSSCG NPVTDDVNNDI AKLVGNLPND
Scfpop	MKKRTQTWIIT CiYLQ1LLFN PLVkt .qicr nrvt.d. vKdV tKLVANLPKD

Human	YMTITKRYPG	MDVLPSICWI	SEMVVQLSDS	LTDLLDKFSN	ISEG . . . LSN
Monkey	YMTITKRYPG	MDVLPSICWI	SEMVVQLSDS	LTDLLDKFSN	ISEG . . . LSN
Dog	YKIALKRYPG	MDVLPSICWI	SVMVEQLSVS	LTDLLDKFSN	ISEG . . . LSN
Cat	YKIALKRYPG	MDVLPSICWI	SVMVEQLSVS	LTDLLDKFSN	ISEG . . . LSN
Cow	YMTITKRYPG	MDVLPSICWI	SEMVQQLSVS	LTDLLDKFSN	ISEG . . . LSN
Rat	YMTITNLYVG	MDVLPSICWL	RDMVTHLGSVS	LTDLLDKFSN	ISEG . . . LSN
Mouse	YMTITNLYVG	MDVLPSICWL	RDMVIQLSLS	LTDLLDKFSN	ISEG . . . LSN
Chicken	YLITLKRYPK	MDSLPNICWL	ILMVPFGRS	LHNLLQKFSD	19DM9DVLSN
Scfped	Ymtlkrypq	MDVLPSICWI	SEMVQQLSVS	Ltdlldkfsn	Iseq . . . LSN

1

Human	Y\$IIIDRLVNI	VDDLVECVKE	NSSKD.	LKKS	FRSPEPRIFT	PEEFFRIENR
Monkey	Y\$IIIDRLVNI	VDDLVECVKE	-NS9KD.	LKKS	FRSPEPRIFT	PEEFFRIENR
Dog	Y\$IIIDRLVNI	VDDLVECTEG	YSFEN.	VKRA	PKSPELRLFT	PEEFFRIENR
Cat	Y\$IIIDRLVNI	VDDLVECVEG	HSEN.	VKKS	SKSPEPRIFT	PEEFFRIENR
Cow	YCIIDRLVNI	VDDLVECMEX	HSEN.	VKKS	SKSPEPROFT	PERFGIFHNR
Rat	Y\$IIIDRLGKI	VDDLVACMEE	NAPKN.	VKES	LKRPETRHFT	PEEFFSIEUR
Mouse	Y\$IIIDKLGKI	VDDLVLCMEE	NAPKN.	IJKS	PKRPETRASFT	PEEFFSIEUR
Chicken	Y\$IIINNLTRI	INDLMACLAF	DKNKDFI	KREN	GILYEEDRFI	PENFFRLFH3
ScfPep	Y\$IIIdlkvI	vDDLveC..ee	neskn.	VKKS	.kspEprift	PEEFFRIENR

25

Human	MKKRTQTWIIT C1YLQ1LLFN PLVKTEGICR NRVTTNNVVKDV TKLVANLPKD
Monkey	MKKRTQTWIIT C1YLQ1LLFN PLVKTEGICR NRVTTNNVVKDV TKLVANLPKD
Dog	MKKRTQTWIIT C1YLQ1LLFN PLVKTKGICG KRVTDDVKDV TKLVANLPKD
Cat	MKKRTQTWIIT C1YLQ1LLFN PLVKTKGLCR NRVTDDVKDV TKLVANLPKD
Cow	MKKRTQTWIIT C1YLQ1LLFN PLVHITQGICS NRVTDDVKDV TKLVANLPKD
Rat	MKKRTQTWIIT C1YLQ1LLFN PLVKTOEICR NPVTDNVVKDI TKLVANLPND
Mouse	MKKRTQTWIIT C1YLQ1LLFN PLVKTKEICG NPVTDNVVKDI TKLVANLPND
Chicken	TWIIIT CFCLQ1LLFN PLVKAQSSCG NPVTDDVNNDI AKLVGNLPND
Scfpop	MKKRTQTWIIT CiYLQ1LLFN PLVkt .qicr nrvt.d. vKdV tKLVANLPKD

Human	YMTITKRYPG	MDVLPSICWI	SEMVVQLSDS	LTDLLDKFSN	ISEG . . . LSN
Monkey	YMTITKRYPG	MDVLPSICWI	SEMVVQLSDS	LTDLLDKFSN	ISEG . . . LSN
Dog	YKIALKRYPG	MDVLPSICWI	SVMVEQLSVS	LTDLLDKFSN	ISEG . . . LSN
Cat	YKIALKRYPG	MDVLPSICWI	SVMVEQLSVS	LTDLLDKFSN	ISEG . . . LSN
Cow	YMTITKRYPG	MDVLPSICWI	SEMVQQLSVS	LTDLLDKFSN	ISEG . . . LSN
Rat	YMTITNLYVG	MDVLPSICWL	RDMVTHLGSVS	LTDLLDKFSN	ISEG . . . LSN
Mouse	YMTITNLYVG	MDVLPSICWL	RDMVIQLSLS	LTDLLDKFSN	ISEG . . . LSN
Chicken	YLITLKRYPK	MDSLPNICWL	ILMVPFGRS	LHNLLQKFSD	19DM9DVLSN
Scfped	Ymtlkrypq	MDVLPSICWI	SEMVQQLSVS	Ltdlldkfsn	Iseq . . . LSN

12

Human	Y\$IIIDRLVNI	VDDLVECVKE	NSSKD.	LKKS	FRSPEPRIFT	PEEFFRIENR
Monkey	Y\$IIIDRLVNI	VDDLVECVKE	-NS9KD.	LKKS	FRSPEPRIFT	PEEFFRIENR
Dog	Y\$IIIDRLVNI	VDDLVECTEG	YSFEN.	VKRA	PKSPRELFT	PEEFFRIENR
Cat	Y\$IIIDRLVNI	VDDLVECVEG	HSEN.	VKKS	SKSPEPRIFT	PEEFFRIENR
Cow	YCIIDRLVNI	VDDLVECMEX	HSEN.	VKKS	SKSPEPROFT	PERFGIFHNR
Rat	Y\$IIIDRLGKI	VDDLVACMEE	NAPKN.	VKES	LKRPETRHFT	PEEFFSIEUR
Mouse	Y\$IIIDKLGKI	VDDLVLCMEE	NAPKN.	IJKS	PKRPETRASFT	PEEFFSIEUR
Chicken	Y\$IIINNLTRI	INDLMACLAF	DKNKDFI	KREN	GILYEEDRFI	PENFFRLFH3
ScfPep	Y\$IIIdlkvki	vDDLveC..ee	neskn.	VKKS	.kspEprift	PEEFFRIENR

FIG.16B

122

Human	SIDAFKDF.V	VASETSDCVV	SSTL.SPEKD	SRVSVTKPFM	LPPVMASSLR
Monkey	SIDAFKDF.A	VASETSDCVV	SSTL.SPEKD	SRVSVTKPFM	LPPVMASSLR
Dog	SIDAFKDFLET	VASKSSECVV	SSTL.SPDKD	SRVSVTKPFM	LPPVMASSLR
Cat	SIDAFKDFLEM	VASKTSECVV	SSTL.SPERD	SRVSVTKPFM	LPPVMASSLR
Cow	SIDAFKDFI	VASKMSECVI	SSTL.SPEKD	SRVSVTKPFM	LPPVMASSLR
Rat	SIDAFKDF.M	VASDTSDCVL	SSTL.GPEKD	SRVSVTKPFM	LPPVMASSLR
Mouse	SIDAFKDF.M	VASDTSDCVL	SSTL.GPEKD	SRVSVTKPFM	LPPVMASSLR
Chicken	TIEVYKEFAD	SLDK.NDCIM	PSTVETPEND	SRVAVTKTIS	FPPVMASSLR
Scfpep	sidafkdf.m	vasktsdcvv	sst1.spekd	SRVSVTKPFM	1PPVMASSLR

170

Human	NDSSSSNRKA	KNPPGD.....	...SSLWAMM	ALPALSLLI	GFAFGALYWK
Monkey	NDSSSSNRKA	KNPTGD.....	...SSLWAMM	ALPAFFSLII	GFAFGALYWK
Dog	NDSSSSNRKA	SNSIGD.....	...SNLQWAMM	ALPAFFSLVI	GFAFGALYWK
Cat	NDSSSSNRKX	TNPIED.....	...SSIQWAMM	ALPACFSLVI	GFAFGAFYWK
Cow	NDSSSSNRKA	SHSIED.....	...SSLQWAMV	ALPAFFSLVI	GFAFGAFYWK
Rat	NDSSSSNRKA	AKSPED.....	...PGLQWTAM	ALPALISLVI	GFAFGALYWK
Mouse	NDSSSSNRKA	AKAPED.....	...SGLQWTAM	ALPALISLVI	GFAFGALYWK
Chicken	ND9IGSNTSS	NSNKEALGFI	SSSSLGISI	ALTSLILLI	GFLGAIYWK
Scfpep	NDSSSSNRKA	.n.ed....	...ss1qwaam	ALPALSLLI	GFAFGALYWK

169

Human	SRVSVTKPFM	LPPVMASSLR	...SSLWAMM	ALPALSLLI	GFAFGALYWK
Monkey	SRVSVTKPFM	LPPVMASSLR	...SSLWAMM	ALPAFFSLII	GFAFGALYWK
Dog	SRVSVTKPFM	LPPVMASSLR	...SNLQWAMM	ALPAFFSLVI	GFAFGALYWK
Cat	SRVSVTKPFM	LPPVMASSLR	...SSIQWAMM	ALPACFSLVI	GFAFGAFYWK
Cow	SRVSVTKPFM	LPPVMASSLR	...SSLQWAMV	ALPAFFSLVI	GFAFGAFYWK
Rat	SRVSVTKPFM	LPPVMASSLR	...PGLQWTAM	ALPALISLVI	GFAFGALYWK
Mouse	SRVSVTKPFM	LPPVMASSLR	...SGLQWTAM	ALPALISLVI	GFAFGALYWK
Chicken	SRVSVTKPFM	LPPVMASSLR	SSSSLGISI	ALTSLILLI	GFLGAIYWK
Scfpep	SRVSVTKPFM	LPPVMASSLR	...ss1qwaam	ALPALSLLI	GFAFGALYWK

214

Human	KRQPSLTRAV	ENIQIN...E	EDNEISMLQE	KEREFOEV
Monkey	KRQPSLTRAV	ENIQIN...E	DDNEISMLQE	KEREFOEV
Dog	KKQPNLRTV	ENIQIN...E	EDNEISMLQE	KEREFOEV
Cat	KKQPNLRTV	ENIQIN...E	EDNEISMLQE	KEREFOEV
Cow	KKQPNLRTV	ENIQIN...E	EDNEISMLQE	KEREFOEV
Rat	KKQSSLTRAV	ENIQIN...E	EDNEISMLQQ	KEREFOEV
Mouse	KKQSSLTRAV	ENIQIN...E	EDNEISMLQQ	KEREFOEV
Chicken	KTHPKSRPES	NETIOCHGCQ	EENEISMLQQ	KEREHLOV
Scfpep	Kkqpsltrav	eniqin...e	edneismlqe	KEREfqeV

213

Human	KRQPSLTRAV	ENIQIN...E	EDNEISMLQE	KEREFOEV
Monkey	KRQPSLTRAV	ENIQIN...E	DDNEISMLQE	KEREFOEV
Dog	KKQPNLRTV	ENIQIN...E	EDNEISMLQE	KEREFOEV
Cat	KKQPNLRTV	ENIQIN...E	EDNEISMLQE	KEREFOEV
Cow	KKQPNLRTV	ENIQIN...E	EDNEISMLQE	KEREFOEV
Rat	KKQSSLTRAV	ENIQIN...E	EDNEISMLQQ	KEREFOEV
Mouse	KKQSSLTRAV	ENIQIN...E	EDNEISMLQQ	KEREFOEV
Chicken	KTHPKSRPES	NETIOCHGCQ	EENEISMLQQ	KEREHLOV
Scfpep	Kkqpsltrav	eniqin...e	edneismlqe	KEREfqeV

FIG. 16C

FIG. 16D

EcoRI

ta a t t taa tt c g t a
GAATTCTTCCGTATCTCAACCGTTCCATCGACGCTTCAAAGACTTCGTT
E F F R I F N R S I D A F K D F V

g a t tagt t t g t a at a ag t g
GTTGCTTCCGAAACCTCCGACTGCGTTGTTCTCCACCCCTGTCTCCGGAA
V A S E T S D C V V S S T L S P E

BstEII

t a a c a g t c a a t t a c t . a
AAAGACTCCCGTGTTCGGTACCAAACCGTTCATGCTGCCGCCGGTTGCT
K D S R V S V T K P F M L P P V A

c a g tagt ag ag tag ag t tagt g a t
GCTTCCTCCCTGCGAACGACTCCTCCTCCAACTCCAAATACATCTAC
A S S L R N D S S S S N S K Y I Y

BamHI

^t
CTGATCTAATAGGATCC
L I . .

FIG. 16E

FIG. 17

FIG.18

FIG. 19

FIG.20A

FIG. 20B

FIG. 21

FIG. 22

FIG. 22A

FIG. 23

FIG. 24A

FIG. 24B

FIG. 25

FIG. 26

FIG. 27

FIG. 28

FIG. 29A

FIG. 29B

FIG.30A

FIG. 30B

FIG. 31A

FIG. 31B

FIG. 31C

FIG. 32A

97.4 —

66.2 —

42.7 —

31.1 —

21.5 —

14.4 —

FIG. 32B

97.4 —

66.2 —

42.7 —

31.1 —

21.5 —

14.4 —

FIG. 33

NaCl (mM) -----

FIG. 34A

FIG. 34B

FIG. 36
MC/9 CPM ($\times 10^{-3}$)

FIG. 37

MC/9 CPM ($\times 10^{-3}$)

FIG. 38

FIG. 39

FIG. 40A

FIG. 40B

FIG. 4

FIG. 42A

CCGCCTGGCGGAGACTAGAAGCGCTGGGAAAGCAGGGCTGGAGGGCTGGCGC 61

TCGGGCTACCCAAATGGCGTGGACTATCTGCCGCCGCTGTCTGCAATATGCTGGAGGCTCCAA 122

GAACAGCTAAACGGAGTGGCCACACCACTGTTGTGCTGGATGCCAGGCCTTCCTT 183

-25 -20
Met Lys Lys Thr Gln Thr Trp Ile Leu Thr Cys Ile Tyr Leu Gln
ATG MAG AGA CAA ACT TGG ATT CCT CTC ACT TGC ATT TAT CTT CAG 228

-10 1
Leu Leu Leu Phe Asn Pro Leu Val Lys Thr Glu Gly Ile Cys Arg
CTG CTC CTA TTT ATT CCT CTC GTC AAA ACT GAA GGG ATC TGC AGG 273

10 20
Asn Arg Val Thr Asn Asn Val Lys Asp Val Thr Lys Leu Val Ala
ATT CGT GTG ACT ATT ATT GTA AAA GAC GTC ACT AAA TTG GRG GCA 318

30
Asn Leu Pro Lys Asp Tyr Met Ile Thr Leu Lys Tyr Val Pro Gly
AAT CTT CCA AAA GAC TAC ATG ATA ACC CTC AAA TAT GTC CCC GGG 363

40 50
Met Asp Val Leu Pro Ser His Cys Trp Ile Ser Glu Met Val Val
ATG GAT GTG TTG CCA AGT CAT TGT TGG ATA AGC GAG ATG GTA GTA 408

60
Gln Leu Ser Asp Ser Leu Thr Asp Leu Asp Lys Phe Ser Asn
CAA TTG TCA GAC AGC TTG ACT GAT CTT CTG GAC AAG TTT TCA ATT 457

FIG. 428

FIG. 42 C

Lys	Pro	Phe	Met	Leu	Pro	Pro	Val	Ala	Ala	Ser	Ser	Leu	Arg	Asn	160
AAA	CCA	TTT	ATG	TTA	CCC	CCT	GTT	GCA	GCC	AGC	TCC	CTT	AGG	AAU	768
Asp	Ser	Ser	Ser	Asn	Arg	Lys	Ala	Lys	Asn	Pro	Pro	Gly	Asp	170	
GAC	AGC	AGT	AGC	AGT	ATT	AGG	AGG	GGC	AAA	AAA	CCC	CCT	GGA	GAC	813
Ser	Ser	Leu	Ile	Trp	Ala	Ala	Met	Ala	Leu	Pro	Ala	Leu	Phe	Ser	180
TCC	AGC	CTA	CAC	TGG	GCA	GCC	ATG	GCA	TTG	CCA	GCA	TTG	TTT	TCT	858
Leu	Ile	Ile	Gly	Phe	Ala	Phe	Gly	Ala	Leu	Tyr	Trp	Lys	Arg	200	
CTT	ATA	ATT	GGC	TTT	GCT	TTT	GGA	GCC	TTC	TAC	TGG	AAA	AGG	AGA	200
Gln	Pro	Ser	Leu	Thr	Arg	Ile	Val	Glu	Asn	Ile	Gln	Ile	Asn	Glu	210
CAG	CCA	AGT	CCT	ACA	AGG	GCA	GTT	GAA	MAT	ATA	CAA	ATT	ATT	GAA	903
Glu	Asp	Asn	Glu	Ile	Ser	Met	Leu	Gln	Glu	Lys	Glu	Arg	Glu	220	
GAG	GAT	AAT	GAG	ATA	AGT	ATG	TTG	CAA	GAG	AAA	GAG	AGA	GNG	TTT	948
Gln	Glu	Glu	Vall	End										248	
CAA	GAA	GAG	GIG	TAA										TTGTGGCTTGATCAACACTGTTACTTGTACATTTGGCC	1044

FIG. 42D

TGGTAAACAGTCATGTTGCTTCATMAGCAGCTTAAACMAATTCAATTCTGTC 1104
TGGAGTGACAGCCACATCTTATCTGTCTTGCTTACCCATGACTTATATGGATGTC 1164
AGAAATGGAAACAGAAATGTTTACTGTGAAACTGGCACTGAATTAAATCATCTATAAAGAA 1224
GAACTTGGCATGGAGGAGCTTATTTAGGACTCTGGGGACTTGGGTCTCATTTAGAAC 1284
TTGCAGCTGATGTTGGAAAGAGCACGTGTCTCAGACTGCATGTACCATTTGCATGGC 1344
TCCAGAAATGTCTAAATGCTGMAAAAACACCTAGCTTATTCTCAGATAACAAACTGCAG 1404

FIG. 43

FIG. 44A

AGCAGGGACAGTGGAGGGGGCTGCTGGCATATGCTGGAGCTCCAG	90
AACAGCTAACCGAAGTCGCCAACCAACTGTTGTGGATCGCAGGCCCTTCCTT	150
GGGCTACCCATTGCGTGGACTATCTGCCGCCGGTGTCTGCATATGGCTGGCTGGCT	30
-25 Met Lys Lys Thr Gln Thr Trp Ile Leu Thr Cys Ile Tyr Leu Gln	-20
ATG AAG AAG ACA CAA ACT TGG ATT CTC ACT TGC ATT TAT CTT CAG	195
-10 Leu Leu Leu Phe Asn Pro Leu Val Lys Thr Glu Gly Ile Cys Arg	1
CTG CTC CTA TTT AAT CCT CTC GTC AAA ACT GAA GGG ATC TGC AGG	240
Asn Arg Val Thr Asn Asn Val Lys Asp Val Thr Lys Leu Val Ala	10 20
AAT CGT GTG ACT AAT AAT GTA AAA GAC GTC ACT AAA TTG GTG GCA	205
Asn Leu Pro Lys Asp Tyr Met Ile Thr Leu Lys Tyr Val Pro Gly	30
AAT CTT CCA AAA GAC TAC ATG ATA ACC CTC AAA TAT GTC CCC GGG	330
Met Asp Val Leu Pro Ser His Cys Trp Ile Ser Glu Met Val Val	40 50
ATG GAT GTT TTG CCA AGT CAT TGT TGG ATA AGC GAG ATG GAA GAA	375

FIG. 44B

Gln	Leu	Ser	Asp	Ser	Leu	Thr	Asp	Leu	Leu	Asp	Lys	Phe	Ser	Asn			
CAA	TTC	TCA	GAC	AGC	TTC	ACT	GAT	CTT	CTG	GAC	AGC	TTT	TCA	AAT	420		
Ile	Ser	Glu	Gly	Leu	Ser	Asn	Tyr	Ser	Ile	Ile	Asp	Lys	Leu	Val	80		
ATT	TCT	GAA	GGC	TTG	AGT	AAT	TAT	TCC	ATC	ATA	GAC	AAA	CTT	GTG	465		
Asn	Ile	Val	Asp	Asp	Leu	Val	Glu	Cys	Val	Lys	Glu	Asn	Ser	Ser	90		
AAT	ATA	GTG	GAT	GAC	CTT	GTG	GAG	TGC	GTG	AAA	GAA	AAC	TCA	TCT	510		
Lys	Asp	Leu	Lys	Lys	Ser	Phe	Lys	Ser	Pro	Glu	Pro	Arg	Leu	Phe	100		
AAG	GAT	CTA	AAA	AAA	TCA	TTC	AAG	AGC	CCA	GAA	CCC	AGG	CTC	TTT	555		
Thr	Pro	Glu	Glu	Phe	Phe	Arg	Ile	Phe	Asn	Arg	Ser	Ile	Asp	Ala	110		
ACT	CCT	GAA	GAA	TTC	TTT	AGA	ATT	TTT	AAT	AGA	TCC	ATT	GAT	GCC	600		
Phe	Lys	Asp	Phe	Val	Val	Ala	Ser	Glu	Thr	Ser	Asp	Cys	Val	Val	130		
TTG	AAG	GAC	TTT	GTA	GTG	GCA	TCT	GAA	ACT	AGT	GAT	TGT	GTG	GTT	140		
Ser	Ser	Thr	Leu	Ser	Pro	Glu	Lys	Gly	Lys	Ala	Lys	Asn	Pro	Pro	150		
TCT	TCA	ACA	ACA	TTA	AGT	CCT	GAG	AAA	GGG	GGG	AGG	GCC	AAA	AAT	CCC	CCT	690

FIG. 44C

FIG. 45

FIG. 46

FIG. 47

FIG. 48

SCF RADIOPROTECTION (1163 RAD)

Normal Female BDF1 mice, n=30

FIG. 49

SCF RADIOPROTECTION (1159 RAD)
Normal Female BDF1 mice

FIG. 50

FIG. 51

FIG. 52

FIG. 53

in vivo Administration of SCF-Platelet Counts

FIG. 54

Dose/Response of rrSCF-PEG on Platelet Counts

FIG. 55

Effect of 5-FU on platelet levels

FIG. 56

5-FU Effect on ACH+ Cells in Marrow

5-FU Effect on ACH+ Cells in Spleen

FIG. 57

FIG. 58

FIG. 59

FIG. 60

FIG. 61

FIG. 62

EFFECT OF SCF ON AZT SUPPRESSION OF BMC

FIG. 63

EFFECT OF SCF ON AZT SUPPRESSION OF BMC

FIG. 64

EFFECT OF SCF ON GANCICLOVIR SUPPRESSION OF BMC

FIG. 65

EFFECT OF SCF ON GANCICLOVIR SUPPRESSION OF BMC

FIG. 66

Effects of SCF on CFU-S Number

FIG. 67

EFFECTS OF SCF ON SHORT TERM REPOPULATING ABILITY (35 DAYS)

FIG. 68

FIG. 69A

FIG. 69B

FIG. 70

