

This Page Is Inserted by IFW Operations
and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents *will not* correct images,
please do not report the images to the
Image Problem Mailbox.

6/9/1 DIALOG(R)File 351:Derwent WPI (c) 2002 Thomson Derwent. All rts. reserv.

008852104

WPI Acc No: 1991-356125/199149

Related WPI Acc No: 1991-045993; 1992-058801

XRAM Acc No: C91-153490

**Thermally and acoustically insulating mineral fibres -
comprises oxide(s) of silicon, aluminium, calcium, magnesium,
phosphorous, iron, sodium and potassium, in specified amt.**

Patent Assignee: ISOVER SAINT-GOBAIN (COMP); THELOHAN S (THEL-I);
ISOVER-SAINT GOBAIN (COMP)

Inventor: DE MERINGO A; FURTAK H; HOLSTEIN W; THELOHAN S; DEMERINGO A;
FURTAX H

Number of Countries: 031 Number of Patents: 028

Patent Family:

Patent No	Kind	Date	Applicat No	Kind	Date	Week	
EP 459897	A	19911204	EP 91401394	A	19910530	199149	B
AU 9177318	A	19911205				199205	
NO 9102090	A	19911202				199205	
BR 9102232	A	19920107				199206	
FR 2662688	A	19911206	FR 906841	A	19900601	199208	
CA 2043699	A	19911202				199209	
FI 9102634	A	19911202				199211	
PT 97824	A	19920228				199213	
ZA 9104026	A	19920325	ZA 914026	A	19910528	199217	
CS 9101625	A2	19920115	CS 911625	A	19910530	199233	
JP 4228455	A	19920818	JP 91126439	A	19910530	199240	
CN 1059135	A	19920304	CN 91104364	A	19910531	199243	
HU 61509	T	19930128	HU 911833	A	19910531	199309	
NZ 238315	A	19930225	NZ 238315	A	19910529	199312	
US 5250488	A	19931005	US 90565282	A	19900809	199341	
			US 91708661	A	19910531		
			US 92982136	A	19921125		
AU 642493	B	19931021	AU 9177318	A	19910527	199349	
EP 459897	B1	19950419	EP 91401394	A	19910530	199520	
DE 69108981	E	19950524	DE 608981	A	19910530	199526	
			EP 91401394	A	19910530		
ES 2073136	T3	19950801	EP 91401394	A	19910530	199537	
IE 68877	B	19960724	IE 911846	A	19910530	199644	
CZ 282135	B6	19970514	CS 911625	A	19910530	199726	
US 35557	E	19970708	US 91708661	A	19910531	199733	
			US 92982136	A	19921125		
			US 95432000	A	19950501		
HU 212280	B	19960429	HU 911833	A	19910531	199742	
SK 280187	B6	19990910	CS 911625	A	19910530	199950	
KR 198907	B1	19990615	KR 919165	A	19910601	200059	
JP 3121374	B2	20001225	JP 91126439	A	19910530	200102	
CA 2043699	C	20010417	CA 2043699	A	19910531	200128	
NO 310184	B1	20010605	NO 912090	A	19910530	200134	

Priority Applications (No Type Date): FR 906841 A 19900601; FR 8910834 A 19890811; FR 901497 A 19900209; FR 906840 A 19900601

Cited Patents: 3.Jnl.Ref; EP 247817; EP 9418; FI 56820; SU 525634; SU 947112; US 2663051

Patent Details:

Patent No Kind Lan Pg Main IPC Filing Notes

EP 459897 A

Designated States (Regional): AT BE CH DE ES FR GB GR IT LI LU NL SE

ZA 9104026	A	16	
CS 9101625	A2	C03B-037/01	
JP 4228455	A	4 C03C-013/06	
CN 1059135	A	C03C-013/06	
HU 61509	T	C03C-013/06	
NZ 238315	A	C03C-013/06	
US 5250488	A	4 C03C-013/06	CIP of application US 90565282 Cont of application US 91708661 CIP of patent US 5108957
AU 642493	B	C03C-013/06	Previous Publ. patent AU 9177318
EP 459897	B1 F	9 C03C-013/06	
Designated States (Regional): AT BE CH DE DK ES FR GB GR IT LI LU NL SE			
DE 69108981	E	C03C-013/06	Based on patent EP 459897
ES 2073136	T3	C03C-013/06	Based on patent EP 459897
IE 68877	B	C03C-013/06	
CZ 282135	B6	C03C-013/06	Previous Publ. patent CS 9101625
US 35557	E	4 C03C-013/06	Cont of application US 91708661 Reissue of patent US 5250488
HU 212280	B	C03C-013/06	Previous Publ. patent HU 61509
SK 280187	B6	C03C-013/06	Previous Publ. patent CS 9101625
KR 198907	B1	C03C-013/06	
JP 3121374	B2	4 C03C-013/06	Previous Publ. patent JP 4228455
CA 2043699	C F	C03C-013/00	
NO 310184	B1	C03C-013/06	Previous Publ. patent NO 9102090

Abstract (Basic): EP 459897 A

Novel fibres, which decompose in the presence of a physiological medium, have the compsn. (by wt) 37-58% SiO₂, 4-14% Al₂O₃, 7-40% CaO, 4-16% MgO, 1-10% P₂O₅, 0-15% total Fe (expressed as Fe₂O₃) less than 7% Na₂O+K₂O and max. 3% impurities the sum of CaO+MgO+Fe₂O₃ being greater than 25%.

Also claimed is a thermally and/or acoustically insulating prod. formed (partially) from the fibres.

ADVANTAGE - The fibres degrade rapidly on contact with a physiological medium, thus avoiding health risks on inhalation. (7pp Dwg.No.0/0)

Abstract (Equivalent): EP 459897 B

Mineral fibre which can decompose in the presence of a physiological medium, characterised in that, in addition to impurities of which the total weight content is less than or equal to approximately 3%, it comprises the following constituents according to the following weight proportions: SiO₂ 37 to 58%, Al₂O₃ 3 to 14%, CaO to 40%, MgO 4 to 16%, P₂O₅ 1 to 10%, Fe₂O₃ 0 to 15% (total iron expressed in this form) the amount of CaO + MgO + Fe₂O₃ being greater than 25%, and the oxides Na₂O and K₂O, of which the total percentage is less than 7%.

(Dwg.0/0)

Title Terms: THERMAL; ACOUSTIC; INSULATE; MINERAL; FIBRE; COMPRISE; OXIDE; SILICON; ALUMINIUM; CALCIUM; MAGNESIUM; PHOSPHOROUS; IRON; SODIUM; POTASSIUM; SPECIFIED; AMOUNT

Derwent Class: F01; L01; Q43

International Patent Class (Main): C03B-037/01; C03C-013/00; C03C-013/06

International Patent Class (Additional): C03C-003/062; C03C-003/078; C03C-003/08; C03C-003/087; C03C-003/097; E04B-001/74

File Segment: CPI; EngPI

Manual Codes (CPI/A-N): F01-D09; F04-E06; L01-A03A; L01-A03C; L01-A04; L01-A07A; L01-L01

© 2002 The Dialog Corporation

Europäisches Patentamt
European Patent Office
Office européen des brevets

⑪ Numéro de publication : 0 459 897 A1

⑫

DEMANDE DE BREVET EUROPEEN

⑬ Numéro de dépôt : 91401394.1

⑮ Int. Cl.⁵ : C03C 13/06, C03C 3/087,
C03C 3/097

⑭ Date de dépôt : 30.05.91

⑯ Priorité : 01.06.90 FR 9006841

⑰ Inventeur : Thelohan, Sylvie
5, rue Georges Saché
F-75014 Paris (FR)
Inventeur : De Meringo, Alain
9, rue Pernonnet
F-75010 Paris (FR)
Inventeur : Furtak, Hans
Im Oberkämmerer 35
W-Speyer am Rhein (DE)
Inventeur : Holstein, Wolfgang
Hoderstrasse 2
W-6313 Homberg (DE)

⑯ Date de publication de la demande :
04.12.91 Bulletin 91/49

⑰ Mandataire : Breton, Jean-Claude et al
SAINT-GOBAIN RECHERCHE 39, quai Lucien
Lefranc
F-93300 Aubervilliers Cedex (FR)

⑯ Etats contractants désignés :
AT BE CH DE DK ES FR GB GR IT LI LU NL SE

⑯ Demandeur : ISOVER SAINT-GOBAIN
Les Miroirs 18, avenue d'Alsace
F-92400 Courbevoie (FR)

⑯ Fibres minérales susceptibles de se décomposer en milieu physiologique.

⑯ La présente invention concerne des compositions de fibres minérales susceptibles de se dégrader au contact d'un milieu physiologique.

Des compositions avantageuses comprennent les constituants suivants, selon des proportions pondérales définies ci-après :

SiO ₂	37	à 58 %
Al ₂ O ₃	4	à 14 %
CaO	7	à 40 %
MgO	4	à 16 %
P ₂ O ₅	1	à 10 %
Fe ₂ O ₃	0	à 15 % (fer total exprimé sous cette forme)

la somme CaO + MgO + Fe₂O₃ demeurant supérieure à 25 %, ainsi que les oxydes Na₂O et K₂O, dont la somme des pourcentages reste inférieure à 7 %.

EP 0 459 897 A1

La présente invention concerne le domaine des fibres minérales ; elle vise plus précisément des fibres minérales dont la composition est telle qu'elles se dégradent dès qu'elles sont en contact d'un milieu physiologique.

L'isolation thermique et acoustique des bâtiments est souvent réalisée à partir de produits constitués pour l'essentiel de laine minérale, telle que la laine de roche. La configuration particulière des lieux à isoler conduit souvent les personnes chargées de la pose de ces produits à les découper sur place. Cette opération provoque la rupture des fibres et, éventuellement, la dispersion de certaines d'entre elles dans l'atmosphère. Il s'ensuit que, parfois, une fibre peut être inhalée accidentellement.

Bien que la nocivité des fibres inhalées n'ait pas été démontrée, le besoin se fait sentir de rassurer les utilisateurs en leur proposant un produit susceptible de se dissoudre facilement dans un milieu physiologique.

Le but de la présente invention est de proposer des fibres minérales dont la composition est telle qu'elles se dégradent rapidement en contact d'un milieu physiologique.

La présente invention a notamment pour objet des fibres susceptibles d'être obtenues par les techniques traditionnelles de centrifugation externe.

Ces techniques sont utilisées pour fibrer des verres obtenus par fusion de matières premières telles que des basaltes ou des laitiers de haut fourneau. Certaines de ces techniques, dites encore de centrifugation libre, consistent à déverser un filet de verre fondu sur la bande périphérique d'une roue de centrifugation, tournant à grande vitesse autour d'un axe perpendiculaire à la direction du filet de verre. Sous l'effet de la force centrifuge, une partie du verre est transformée en fibres, le reste étant renvoyé vers une autre roue où le même phénomène se produit ; trois ou quatre roues peuvent être ainsi interposées sur le trajet du verre fondu.

Les buts de l'invention sont atteints en modifiant des compositions verrières connues utilisées dans les techniques de centrifugation libre. A partir de telles compositions, comprenant pour l'essentiel de la silice, de l'alumine, des oxydes alcalino-terreux, les inventeurs ont découvert que l'addition de pentoxyde de phosphore permet d'obtenir des verres qui, sous forme de fibres, se dégradent rapidement en milieu physiologique.

Les verres selon l'invention possèdent par ailleurs des propriétés qui, pour les principales d'entre elles, sont proches de celles des verres connus. C'est ainsi qu'ils peuvent être transformés en fibres en utilisant les roues de centrifugation classiques.

Les fibres minérales selon l'invention présentent une composition qui renferme les constituants ci-après, dans les proportions pondérales définies par les limites suivantes :

30

	SiO ₂	37	à 58 %
	Al ₂ O ₃	4	à 14 %
	CaO	7	à 40 %
35	MgO	4	à 16 %
	P ₂ O ₅	1	à 10 %
	Fe ₂ O ₃	0	à 15 %

40

la somme CaO + MgO + Fe₂O₃ demeurant supérieure à 25 %, ainsi que les oxydes Na₂O et K₂O dont la somme demeure inférieure à environ 7 %. La totalité du fer contenu dans la composition selon l'invention est exprimée sous forme d'oxyde ferrique.

Les compositions ainsi définies peuvent être élaborées à partir de constituants purs, mais sont généralement obtenues par fusion d'un mélange de matières premières vitrifiables apportant éventuellement d'autres oxydes tel que l'oxyde de titane et l'oxyde de manganèse, considérés dans le cadre de l'invention comme des impuretés. La teneur totale de ces impuretés demeure inférieure ou égale à environ 3 % en poids.

Pour pouvoir être utilisées dans les techniques de centrifugation externe, les compositions selon l'invention présentent avantageusement une viscosité adéquate à une température relativement basse. Ceci dépend en grande partie de la somme totale des oxydes SiO₂ et Al₂O₃. Dans le cadre de l'invention, la somme de ces oxydes est généralement égale ou supérieure à environ 50 % en poids.

D'autre part, la production des fibres est conditionnée par la plus ou moins grande aptitude du verre à développer des cristaux dans sa masse. Ce phénomène, dit de dévitrification, est caractérisé par plusieurs températures : celle à laquelle la vitesse de croissance des cristaux est maximale et celle à laquelle cette vitesse de croissance devient nulle (liquidus).

Pour une large part, ce phénomène est plus ou moins accentué en fonction de la somme totale des oxydes alcalino-terreux. Dans le cadre de l'invention, cette somme demeure inférieure à environ 40 % en poids.

Pour assurer une bonne tenue des fibres à la chaleur, il est souhaitable que la somme CaO + MgO + Fe₂O₃

demeure supérieure à environ 25 % en poids.

Le domaine des compositions préférées selon l'invention est délimité par les proportions pondérales suivantes:

5	SiO ₂	45	à	57	%
	Al ₂ O ₃	3	à	6	%
	CaO	20	à	30	%
10	MgO	6	à	16	%
	Fe ₂ O ₃	0,1	à	4	%
	P ₂ O ₅	1	à	7	%
15	Na ₂ O + K ₂ O	0,1	à	5	%
	impuretés	≤	3	≤	%

Un autre domaine des compositions selon l'invention est défini par les proportions pondérales suivantes :

20	SiO ₂	39	à	50	%
	Al ₂ O ₃	7	à	13	%
	CaO	20	à	30	%
25	MgO	6	à	16	%
	Fe ₂ O ₃	0,1	à	4	%
	P ₂ O ₅	3	à	9	%
30	Na ₂ O + K ₂ O	0,1	à	5	%
	impuretés	≤	3	≤	%

Les avantages de l'invention sont mis en évidence dans la description ci-après, illustrée de quelques exemples non limitatifs.

Les mesures du degré de décomposition en milieu physiologique ont été effectuées sur des fibres dont le diamètre est constant et égal à environ 10 micromètres.

Ces fibres sont plongées dans une solution qui simule un fluide extracellulaire et dont la composition est la suivante (exprimée en g/l) :

40	MgCl ₂ .6H ₂ O	0,212
	NaCl	6,415
	Na ₂ HPO ₄	0,148
45	Na ₂ SO ₄ .2H ₂ O	0,179
	CaCl ₂ .4H ₂ O	0,313
	NaHCO ₃	2,703
50	(Na ₂ tartrate).2H ₂ O	0,180
	(Na ₃ citrate).5.5H ₂ O	0,186
	Na lactate	0,175
55	Na pyruvate	0,172
	Glycine	0,118

Les conditions expérimentales choisies pour déterminer le degré de décomposition des fibres de verre dans cette solution sont les suivantes : deux cents milligrammes de fibres sont placées entre deux disques perforés, séparés par une bague circulaire. Ces deux disques, d'un diamètre de 4,3 centimètres, sont recouverts d'un filtre en polycarbonate. Cet ensemble constitue une cellule de mesure à travers laquelle circule la solution dont le débit est réglé par une pompe péristaltique. Ce débit est de 40 millilitres par jour, la durée du test étant de 20 jours. La cellule et le flacon contenant la solution d'attaque sont maintenus à 37° C. Après avoir traversé la cellule, la solution d'attaque est recueillie dans des bouteilles pour être analysée ultérieurement.

Par analyse on mesure la quantité de silice passée en solution ; le poids de silice dissoute rapporté au poids de silice initialement présente dans la fibre donne un résultat en pourcent, qui est un bon indicateur de la capacité de la fibre testée à se dégrader en milieu physiologique.

Les compositions testées et les résultats obtenus sont exposés dans les tableaux n° 1 et 2 en annexe.

Dans le tableau 1 figurent des compositions illustrant l'invention et deux compositions connues servant de référence (verre n° 1 et 4).

La présence de pentoxyde de phosphore, dans les compositions selon l'invention, a toujours pour conséquence une augmentation de la quantité de silice dissoute dans la solution d'attaque des fibres obtenues à partir desdites compositions, comparativement aux fibres dont la composition ne renferme pratiquement pas de phosphore.

Le tableau 2 rassemble quelques résultats expérimentaux à l'appui de cette affirmation.

La comparaison entre les verres n° 1 et 3 d'une part, et les verres n° 4 et 6 d'autre part, montre que la diminution de l'alumine au profit de la silice a pour effet de favoriser la décomposition des fibres testées.

La comparaison entre les verres n° 2 et 3, ainsi qu'entre les verres n° 5 et 6, montre que dans des verres dont le degré de décomposition n'est pas négligeable, la substitution du pentoxyde de phosphore à la silice provoque une augmentation remarquable du degré de décomposition des fibres testées.

L'influence du pentoxyde de phosphore sur le degré de décomposition des fibres reste encore tout à fait appréciable dans un verre à forte teneur en alumine ainsi que le montre les verres n° 4 et 7.

Le phosphore est apporté dans le mélange vitrifiable sous forme, par exemple, de phosphate disodique ou de phosphate de calcium. Lorsque la quantité de phosphate introduite dans le mélange vitrifiable est relativement importante, sa fusion peut être parfois difficile. C'est la raison pour laquelle la teneur en pentoxyde de phosphore, dans les compositions demeure égale ou inférieure à environ 10 % en poids.

Les compositions selon l'invention, qui présentent à la fois des caractéristiques de viscosité et de dévitrification appropriées au procédé de fibrage par centrifugation externe, et, à l'état de fibres, une grande vitesse de décomposition en milieu physiologique, comprennent environ moins de 7 % en poids d'oxydes alcalins.

Les fibres minérales selon l'invention exposées dans le tableau n° 1 sont toutes résistantes à une température d'environ 700°C. Il a été trouvé que des échantillons cubiques de ces fibres (100 kg/m³) chauffés dans un four pendant 30 minutes présentent un affaissement inférieur à 10 % à 700°C.

Les verres selon l'invention peuvent être transformés en fibres à partir de dispositifs de centrifugation externe connus, comme ceux décrits par exemple dans les brevets US-A-2.863.051, EP-A-0.187.508 ou FR-A-2.609.708.

Les fibres ainsi obtenues permettent d'obtenir des produits fibreux d'excellente qualité aptes à de nombreuses applications. Ainsi, par exemple, les fibres selon l'invention sont avantageusement utilisées sous la forme de panneaux géométriquement bien définis, rigidifiés par un liant polymérisé, ou sous la forme de produits tubulaires destinés à isoler les canalisations. Les fibres selon l'invention peuvent être utilisées également sous forme de matelas cousus sur du carton ou du grillage métallique, sous forme de bourrelet, ou même en vrac par remplissage.

TABLEAU N° 1

Compositions en pourcentages pondéraux

5	: Consti- :Verre:Verre:Verre:Verre:Verre:Verre:Verre:
	: tuants : n°1 : n°2 : n°3 : n°4 : n°5 : n°6 : n°7 : n°8 :
10	-----
	: SiO ₂ : 47,1: 49,9: 56,4: 45,7: 49,7: 52,7: 39,7: 44,9:

	: Fe ₂ O ₃ : 12,9: 12,9: 12,9: 2,1: 2,1: 2,1: 2,1: 10 :
15	-----
	: Al ₂ O ₃ : 13,8: 4,5: 4,5: 11,5: 4,5: 4,5: 11,5: 4,5:

20	: CaO : 10,3: 10,3: 10,3: 29,5: 29,5: 29,5: 29,5: 29,5:

	: MgO : 9,1: 9,1: 9,1: 7,4: 7,4: 7,4: 7,4: 7,4:
25	-----
	: Na ₂ O : 2,7: 2,7: 2,7: 1,4: 1,4: 1,4: 1,4: 1,4:

	: K ₂ O : 1,2: 1,2: 1,2: 1,3: 1,3: 1,3: 1,3: 1,3:
30	-----
	: P ₂ O ₅ : 0,3: 6,5: 0,3: 0,1: 3 : 0,2: 6 : 3 :

35	: impuretés: 2,6: 2,9: 2,6: 1 : 1,1: 0,9: 1,1: 0,7:
	=====

TABLEAU N° 2Résistance chimique en milieu physiologique
Quantité de SiO₂ dissoute (en pourcent)

40	: temps :Verre:Verre:Verre:Verre:Verre:Verre:Verre:
45	:d'attaque: n°1 : n°2 : n°3 : n°4 : n°5 : n°6 : n°7 : n°8 :

	:20 jours : 0,7 : 5,1 : 2,5 : 0,9 : 11,4: 5,2 : 2,6 : 5,3 :
50	=====

55

Claims

1. Fibre minérale susceptible de se décomposer en présence d'un milieu physiologique, caractérisée en

ce qu'elle comprend, outre des impuretés dont la teneur pondérale globale est inférieure ou égale à environ 3 %, les constituants suivants selon les proportions pondérales suivantes:

5	SiO ₂	37	à 58 %
	Al ₂ O ₃	4	à 14 %
	CaO	7	à 40 %
10	MgO	4	à 16 %
	P ₂ O ₅	1	à 10 %
	Fe ₂ O ₃	0	à 15 % (fer total exprimé sous cette forme)

15 la somme CaO + MgO + Fe₂O₃ demeurant supérieure à 25 %, ainsi que les oxydes Na₂O et K₂O dont la somme des pourcentages reste inférieure à 7 %.

- 20 2. Fibre minérale selon la revendication 1, caractérisée en ce que la somme de SiO₂ + Al₂O₃ est supérieure à environ 50 %.
- 3. Fibre minérale selon l'une des revendications 1 et 2, caractérisée en ce que la somme de CaO + MgO demeure inférieure à environ 40 %.
- 25 4. Fibre minérale selon l'une des revendications précédentes, caractérisée en ce qu'elle comprend :

30	SiO ₂	45	à 57 %
	Al ₂ O ₃	3	à 6 %
	CaO	20	à 30 %
	MgO	6	à 15 %
35	Fe ₂ O ₃	0,1	à 4 %
	P ₂ O ₅	1	à 7 %
	Na ₂ O+K ₂ O	0,1	à 5 %

- 40 5. Fibre minérale selon l'une des revendications 1 à 3, caractérisée en ce qu'elle comprend :

45	SiO ₂	37	à 58 %
	Al ₂ O ₃	4	à 14 %
	CaO	7	à 40 %
	MgO	4	à 16 %
50	P ₂ O ₅	1	à 10 %
	Fe ₂ O ₃	0	à 15 % (fer total exprimé sous cette forme)

- 55 6. Produit destiné à l'isolation thermique et/ou acoustique et constitué au moins en partie de fibres minérales, caractérisé en ce que lesdites fibres présentent une composition chimique telle que définie par l'une quelconque des revendications précédentes.

Office européen
des brevets

RAPPORT DE RECHERCHE EUROPEENNE

Numéro de la demande

EP 91 40 1394

DOCUMENTS CONSIDERES COMME PERTINENTS			CLASSEMENT DE LA DEMANDE (Int. CLS)
Catégorie	Citation du document avec indication, en cas de besoin, des parties pertinentes	Revendication concernée	
X	EP-A-247817 (PFIZER INC) * revendications 8-10 *---	1-3, 6	C03C13/06 C03C3/087 C03C3/097
A	EP-A-9418 (OY PARTEK AB) * revendication 1 *---	1-3, 6	
A	CHEMICAL ABSTRACTS, vol. 92, no. 8, juin 1980 Columbus, Ohio, USA page 259; colonne de gauche; ref. no. 202476V & FI-A-56820 (PARAISTEN KALKKI OY ET AL) 31.12.1979 * abrégé *---	1-3, 6	
A	DERWENT PUBLICATIONS, LTD., LONDON, GB; DATABASE WPI, ACCESSION No. 83-58282K, DW8324; & SU-A-947112 (HEAT INSUL ACOUSTIC) 30.07.1982 * le document entier *---	1-3, 6	
A	DERWENT PUBLICATIONS, LTD., LONDON, GB; DATABASE WPI, ACCESSION No. 77-41204Y, DW7723; & SU-A-525634 (GRUZNISTROM COMBIN) 26.10.1976 * le document entier *---	1	DOMAINES TECHNIQUES RECHERCHES (Int. CLS)
D,A	US-A-2663051 (B.A. GRAYBEAL) * le document en entier *----	1-6	C03C
Le présent rapport a été établi pour toutes les revendications			
Lieu de la recherche	Date d'entrevue de la recherche	Transmettre	
BERLIN	13 SEPTEMBRE 1991	KUEHNE H.C.	
CATÉGORIE DES DOCUMENTS CITÉS			
X : particulièrement pertinents à tel sens	T : théorie ou principe à la base de l'invention		
Y : particulièrement pertinents en combinaison avec un autre document de la même catégorie	E : document de brevet antérieur, mais publié à la date de dépôt ou après cette date		
A : arrêté-plan technologique	D : cité dans la demande		
O : invention non brevétée	I : cité pour d'autres raisons		
P : document intercalaire	A : membre de la même famille, document correspondant		

EPO FORM 1500-02-02 (FRENCH)