11.1 Our aim is to estimate the parameters of the simultaneous equations model

$$y_1 = \alpha_1 y_2 + e_1$$
 ___(1)
 $y_2 = \alpha_2 y_1 + \beta_1 x_1 + \beta_2 x_2 + e_2$ ___(2)

We assume that x_1 and x_2 are exogenous and uncorrelated with the error terms e_1 and e_2 .

a. Solve the two structural equations for the reduced-form equation for y_2 , that is, $y_2 = \pi_1 x_1 + \pi_2 x_2 + \nu_2$. Express the reduced-form parameters in terms of the **structural parameters** and the reduced-form error in terms of the structural parameters and e_1 and e_2 . Show that y_2 is correlated with e_1 .

b. Which equation parameters are consistently estimated using OLS? Explain.

兩個結構方程式都不是 reduced-form。兩方程式右 近都有內生變数,因此用 DLS都是 不一致且有偏誤的。

c. Which parameters are "identified," in the simultaneous equations sense? Explain your reasoning.

$$M=2$$
,要缺少 $2-1=1$ 個外生发蚁 程 identified
$$y_1=\alpha_1y_2+e_1 \qquad \qquad \rightarrow \pm 2$$
個 $\rightarrow \text{identified}$
$$y_2=\alpha_2y_1+\beta_1x_1+\beta_2x_2+e_2 \rightarrow \pm 0$$
他 $\rightarrow = \text{identified}$ It is possible to estimate \times , consistently.

d. To estimate the parameters of the reduced-form equation for y_2 using the method of moments (MOM), which was introduced in Section 10.3, the two moment equations are

$$N^{-1} \sum_{i} x_{i1} (y_2 - \pi_1 x_{i1} - \pi_2 x_{i2}) = 0$$

$$N^{-1} \sum_{i} x_{i2} (y_2 - \pi_1 x_{i1} - \pi_2 x_{i2}) = 0$$

Explain why these two moment conditions are a valid basis for obtaining consistent estimators of the reduced-form parameters.

two moment equations mean that
$$V_2$$
 is uncorrelated with $X_1.X_2.$
 $N^{-1} \ge X_1 | V_{11} = 0 \leftarrow E(X_1 | V_{11} | X) = 0$
 $N^{-1} \ge X_1 | V_{12} = 0 \leftarrow E(X_1 | V_{12} | X) = 0$
 $N^{-1} \ge X_1 | V_{12} = 0 \leftarrow E(X_1 | V_{12} | X) = 0$
 $N^{-1} \ge X_1 | V_{12} = 0 \leftarrow E(X_1 | V_{12} | X) = 0$

因 X_1 和 X_2 與 e_1 , e_2 不相関, 故推導可得 X_1 , X_2 和簡化型談差項 V_2 也不相関 reduced - form: $Y_2 = \pi_1 X_1 + \pi_2 X_2 + V_2$

$$= \frac{\beta_1}{1-\alpha_1\alpha_2} \chi_1 + \frac{\beta_2}{1-\alpha_1\alpha_2} \chi_2 + \frac{e_2 + \alpha_2 e_1}{1-\alpha_1\alpha_2} F_{rom}(A)$$

$$E\left[X_{ik}\left(\frac{e_{2}t\alpha_{2}e_{1}}{1-\alpha_{1}\alpha_{2}}\right)\middle|X\right] = E\left[\frac{1}{1-\alpha_{1}\alpha_{2}}X_{ik}e_{2}\middle|X\right] + E\left[\frac{\alpha_{2}}{1-\alpha_{1}\alpha_{2}}X_{ik}e_{1}\middle|X\right] = 0 + 0 = 0$$

$$\mathbb{Z}_{k} = \mathbb{Z}_{k} = \mathbb{Z}_{k} = \mathbb{Z}_{k} = \mathbb{Z}_{k} = \mathbb{Z}_{k}$$

$$\mathbb{Z}_{k} = \mathbb{Z}_{k} = \mathbb{Z}_{k} = \mathbb{Z}_{k}$$

$$\mathbb{Z}_{k} = \mathbb{Z}_{k} = \mathbb{Z}_{k}$$

$$\mathbb{Z}_{k} = \mathbb{Z}_{k} = \mathbb{Z}_{k}$$

errors function for $y_2 = \pi_1 x_1 + \pi_2 x_2 + \nu_2$ and find the first derivatives. Set these to zero and show that they are equivalent to the two equations in part (d).

OLS -SSE $\rightarrow S(\pi_1, \pi_2 \mid y, \chi) = \sum (y_2 - \pi_1 \chi_1 - \pi_2 \chi_2)$ The first derivatives are $M \circ M$

e. Are the MOM estimators in part (d) the same as the OLS estimators? Form the sum of squared

$$\frac{\partial S(\pi_1, \pi_2 | Y_3, x)}{\partial \pi_1} = 2 \underbrace{\sum (Y_2 - \pi_1 X_1 - \pi_2 X_2) X_1 = 0}_{\text{N}^{-1} \underbrace{\sum X_1 V_{11} = 0}_{\text{N}^{-1} \underbrace{\sum X_1 V_{12} = 0}_{\text{N}^{-1} \underbrace{\sum X_2 V_{12} = 0}_{\text{N}^{-1} \underbrace{\sum X_1 V_{12} = 0}_{\text{N}^{-1} \underbrace{\sum$$

f. Using $\sum x_{i1}^2 = 1$, $\sum x_{i2}^2 = 1$, $\sum x_{i1}x_{i2} = 0$, $\sum x_{i1}y_{1i} = 2$, $\sum x_{i1}y_{2i} = 3$, $\sum x_{i2}y_{1i} = 3$, $\sum x_{i2}y_{2i} = 4$, and the two moment conditions in part (d) show that the MOM/OLS estimates of π_1 and π_2 are $\hat{\pi}_1 = 3$ and $\hat{\pi}_2 = 4$.

Two moment conditions are $N^{-1} \ge x_{11}(y_2 - \pi_1 x_{11} - \pi_2 x_{12}) = 0$

$$\sum_{i=1}^{n} \chi_{i} = \pi_{1} \sum_{i=1}^{n} \chi_{i} + \pi_{2} \sum_{i=1}^{n} \chi_{i} = 3 = \hat{\pi}_{1} \times 1 + \hat{\pi}_{2} \times 0 \Rightarrow \hat{\pi}_{1} = 3$$

$$\sum_{i=1}^{n} \chi_{i} = \pi_{1} \sum_{i=1}^{n} \chi_{i} \times 1 + \hat{\pi}_{2} \sum_{i=1}^{n} \chi_{i} + \hat{\pi}_{2} \sum_{i=1}^{n} \chi_{i} + \hat{\pi}_{2} \chi_{i} \Rightarrow \chi_{i} = 1$$

$$\sum_{i=1}^{n} \chi_{i} = \chi_{i} \times 1 + \hat{\pi}_{i} \times 1 \Rightarrow \hat{\pi}_{i} = 1$$

$$\sum_{i=1}^{n} \chi_{i} \times 1 + \hat{\pi}_{i} \times 1 \Rightarrow \hat{\pi}_{i} = 1$$

$$\sum_{i=1}^{n} \chi_{i} \times 1 + \hat{\pi}_{i} \times 1 \Rightarrow \hat{\pi}_{i} = 1$$

$$\sum_{i=1}^{n} \chi_{i} \times 1 + \hat{\pi}_{i} \times 1 \Rightarrow \hat{\pi}_{i} = 1$$

$$\sum_{i=1}^{n} \chi_{i} \times 1 + \hat{\pi}_{i} \times 1 \Rightarrow \hat{\pi}_{i} = 1$$

$$\sum_{i=1}^{n} \chi_{i} \times 1 + \hat{\pi}_{i} \times 1 \Rightarrow \hat{\pi}_{i} = 1$$

$$\sum_{i=1}^{n} \chi_{i} \times 1 + \hat{\pi}_{i} \times 1 \Rightarrow \hat{\pi}_{i} = 1$$

$$\sum_{i=1}^{n} \chi_{i} \times 1 \Rightarrow \hat{\pi}_{i} \times 1 \Rightarrow \hat{\pi}_{i} = 1$$

$$\sum_{i=1}^{n} \chi_{i} \times 1 \Rightarrow \hat{\pi}_{i} \times 1 \Rightarrow \hat{\pi}_{i$$

N = X12(1/2-TL1X11-TL2X12)=0

g. The fitted value $\hat{y}_2 = \hat{\pi}_1 x_1 + \hat{\pi}_2 x_2$. Explain why we can use the moment condition $\sum \hat{y}_{i2} (y_{i1} - \alpha_1 y_{i2}) = 0$ as a valid basis for consistently estimating α_1 . Obtain the IV estimate of α_1 .

The first structural equation is
$$y_1 = \propto_1 y_2 + e_1$$
, 因 \hat{y}_2 定是用外生發軟預測 出來的 y_2 擬仓值,故它和 e_i 不相関,因此 e_i [e_i [e_i] e_i] e_i [e_i] e_i

 $\hat{Z}_{1} = \frac{\sum_{j=2}^{2} \hat{y}_{12}}{\sum_{j=2}^{2} \hat{y}_{12}} = \frac{\sum_{j=2}^{2} (\hat{\pi}_{1} x_{11} + \hat{\pi}_{2} x_{12}) y_{11}}{\sum_{j=2}^{2} (\hat{\pi}_{1} x_{11} + \hat{\pi}_{2} x_{12}) y_{12}} = \frac{\hat{\pi}_{1} \sum_{j=2}^{2} x_{12} y_{11}}{\hat{\pi}_{1} \sum_{j=2}^{2} x_{12} y_{12}} = \frac{3 \times 2 + 4 \times 3}{3 \times 3 + 4 \times 4}$ $= \frac{18}{35}$

h. Find the 2SLS estimate of α_1 by applying OLS to $y_1 = \alpha_1 \hat{y}_2 + e_1^*$. Compare your answer to that in part (g).

$$\widehat{\mathcal{L}}_{1,2SLS} = \frac{\sum \widehat{y_{i2}} y_{ij}}{\sum \widehat{y_{i2}}^2}$$

To prove
$$\hat{\mathcal{L}}_1, 2 \text{ SLS} = \hat{\mathcal{L}}$$
 (by moment condition) #

We need to prove $\sum_{j=1}^{2} = \sum_{j=1}^{2} y_2$ $\hat{\mathcal{L}}_2 = y_2 - \hat{\mathcal{L}}_2 = \sum_{j=1}^{2} y_2 - \sum_{j=1}^{2} y_2 = \sum_{j=1}^{2} y_2 = \sum_{j=1}^{2} y_2 - \sum_{j=1}^{2} y_2 = \sum_{j=1}$

11.16 Consider the following supply and demand model

Demand:
$$Q_i = \alpha_1 + \alpha_2 P_i + e_{di}$$
, Supply: $Q_i = \beta_1 + \beta_2 P_i + \beta_3 W_i + e_{si}$

where Q is the quantity, P is the price, and W is the wage rate, which is assumed exogenous. Data on these variables are in Table 11.7.

Q P W 4 2 2 6 4 3 9 3 1 3 5 1 8 8 3

a. Derive the algebraic form of the reduced-form equations, $Q = \theta_1 + \theta_2 W + \nu_2$ and $P = \pi_1 + \pi_2 W + \nu_1$, expressing the reduced-form parameters in terms of the structural parameters.

$$\frac{\alpha_{1} + \alpha_{2} \beta_{1} + e_{d_{1}}}{\alpha_{2} - \beta_{2}} = \beta_{1} + \beta_{2} \beta_{1} + \beta_{3} w_{1} + e_{s_{1}}}{\alpha_{2} - \beta_{2}}$$

$$\frac{(\alpha_{2} - \beta_{2}) \beta_{1}}{\alpha_{1} - \beta_{2}} + \frac{\beta_{3}}{\alpha_{2} - \beta_{2}} w_{1} + \frac{e_{s_{1}} - e_{d_{1}}}{\alpha_{2} - \beta_{2}}}{\alpha_{2} - \beta_{2}} = \pi c_{1} + \pi c_{2} w + V_{1}$$

$$\frac{\pi}{\Gamma_{1}} = \frac{\beta_{1} - \alpha_{1}}{\alpha_{2} - \beta_{2}} \quad \overline{\Gamma_{2}} = \frac{\beta_{3}}{\alpha_{2} - \beta_{2}} \quad V_{1} = \frac{e_{s_{1}} - e_{d_{1}}}{\alpha_{2} - \beta_{2}}$$

$$Q_{1} = \alpha_{1} + \alpha_{2} \left(\pi_{1} + \pi_{2} w + V_{1}\right) + e_{d_{1}}$$

$$= (\alpha_{1} + \alpha_{2} \pi_{1}) + \alpha_{2} \pi_{2} w + \alpha_{2} v_{1} + e_{d_{1}}$$

$$= (\alpha_{1} + \alpha_{2} \pi_{1}) + \alpha_{2} \pi_{2} w + \alpha_{2} v_{1} + e_{d_{1}}$$

$$= (\alpha_{1} + \alpha_{2} \pi_{2}) + (\alpha_{2} \pi_{2} \frac{\beta_{3}}{\alpha_{2} - \beta_{2}}) + (\alpha_{2} \pi_{2} \frac{e_{s_{1}} - e_{d_{1}}}{\alpha_{2} - \beta_{2}}$$

$$= \frac{\alpha_{1} \beta_{1} - \alpha_{1} \beta_{2}}{\alpha_{2} - \beta_{2}} + \frac{\alpha_{2} \beta_{3}}{\alpha_{2} - \beta_{2}} w + \frac{\alpha_{3} e_{s_{1}} - \beta_{2} e_{d_{1}}}{\alpha_{2} - \beta_{2}}$$

$$= \frac{\alpha_{1} \beta_{1} - \alpha_{1} \beta_{2}}{\alpha_{2} - \beta_{2}} \quad \theta_{2} = \frac{\alpha_{2} \beta_{3}}{\alpha_{2} - \beta_{2}}$$

$$= \frac{\alpha_{3} \beta_{1} - \alpha_{1} \beta_{2}}{\alpha_{2} - \beta_{2}} \quad \theta_{2} = \frac{\alpha_{2} \beta_{3}}{\alpha_{2} - \beta_{2}}$$

$$= \frac{\alpha_{3} \beta_{1} - \alpha_{1} \beta_{2}}{\alpha_{2} - \beta_{2}}$$

$$= \frac{\alpha_{3} \beta_{1} - \alpha_{2} \beta_{2}}{\alpha_{2} - \beta_{2}}$$

$$= \frac{\alpha_{3} \beta_{1} - \alpha_{2} \beta_{$$

b. Which structural parameters can you solve for from the results in part (a)? Which equation is "identified"?

c. The estimated reduced-form equations are $\hat{Q} = 5 + 0.5W$ and $\hat{P} = 2.4 + 1W$. Solve for the identified structural parameters. This is the method of **indirect least squares**.

$$\hat{p} = 2.4 + 1 \mathcal{W} = \pi_1 + \pi_2 \mathcal{W} \qquad \hat{\pi}_1 = 2.4 \quad \hat{\pi}_2 = 1$$

$$\hat{Q} = 5 + 0.5 \mathcal{W} = \theta_1 + \theta_2 \mathcal{W} \qquad \hat{\theta}_1 = 5 \quad \hat{\theta}_2 = 0.5$$

$$5 + 0.5 \mathcal{W} = \mathcal{W}_1 + \mathcal{W}_2(2.4 + 1 \mathcal{W}) = \mathcal{W}_1 + 2.4 \mathcal{W}_2 + \mathcal{W}_2 \mathcal{W}$$

$$\mathcal{W}_2 = 0.5 \# \qquad \mathcal{W}_1 = 3.8 \#$$

d. Obtain the fitted values from the reduced-form equation for *P*, and apply 2SLS to obtain estimates of the demand equation.

$$\widehat{P}_{i} = 2.4 \pm W_{i}$$

$$Q_{i} = \alpha_{1} + \alpha_{2} \widehat{P}_{i} + C_{i}$$

$$\alpha_{2} = \frac{\sum (\widehat{P}_{i} - \overline{P})(\alpha_{i} - \overline{\alpha})}{\sum (\widehat{P}_{i} - \overline{P})^{2}} = \frac{2}{4}$$

$$\overline{Q}_{i} = \alpha_{1} + 0.5 \widehat{P}_{i}$$

X, = 6- 0.5 x4.4 = 3.8

TABLI	E 11.7	Data for Exercise 11.16		P; =4.4	
Q	P	W	Ŷi	P;-P;	Q _i -Q -Z
4	2	2	4.4	D	-2
6	4	3	5.4	1	0
9	3	1	3.4	-1	3
3	5	1	3.4	-1	3
8	8	3	5.4	i	2
				•	_

11.17 Example 11.3 introduces Klein's Model I.

- **a.** Do we have an adequate number of IVs to estimate each equation? Check the necessary condition for the identification of each equation. The necessary condition for identification is that in a system of M equations at least M-1 variables must be omitted from each equation.
- b. An equivalent identification condition is that the number of excluded exogenous variables from the equation must be at least as large as the number of included right-hand side endogenous variables. Check that this condition is satisfied for each equation.
- c. Write down in econometric notation the first-stage equation, the reduced form, for W_{1t} , wages of workers earned in the private sector. Call the parameters π_1, π_2, \dots
- **d.** Describe the two regression steps of 2SLS estimation of the consumption function. This is not a question about a computer software command.
- e. Does following the steps in part (d) produce regression results that are identical to the 2SLS estimates provided by software specifically designed for 2SLS estimation? In particular, will the *t*-values be the same?

Q. M=8 至少要少8-1=9個发积在每个5程式 $CN_{r}=\alpha_{1}+\alpha_{2}(W_{r}+W_{2})+\alpha_{3}P_{1}+\alpha_{4}P_{2}+\alpha_{4}P_{2}+\alpha_{4}}$ 自含L個變數, 省略 10 la 10 identification

 $I_1 = \beta_1 + \beta_2 P_1 + \beta_3 P_{-1} + \beta_4 K_{-1} + e_{2\ell}$ =) 包含5個裝數、省 略 11個 > 7 -> identification $W_{11} = \underline{\gamma}_1 + \gamma_2 \underline{E}_2 + \gamma_3 \underline{E}_{-1} + \gamma_4 TIME_\ell + e_{3\ell}$ =) 包含5個发軟、省略 11個 > 7-> identification

as IVs. The exogenous variables are government spending, G_p public sector wages, W_p , taxes, TX_p , and the time trend variable. $TIME_p$. Another exogenous variable is the constant term, the "intercept" variable in each equation, $X_t \equiv 1$. The predetermined variables are lagged profits, P_{p-1} , the lagged capital stock, K_{p-1} , and the lagged total national product minus public sector wages, E_{p-1} .

每个方程式中被排除的外生发取的友量,必须至少和该方程式中包含的右近八生权量一樣多一另一等危徵引

- C. WIL = T. + T2 Ge + T3 W2+ T4 TX+ + T5 TIME+ + T6 Pt-1 + T4 Kt-1 + T8 Et-1 + V
- d. Obtain fitted values Wit from the estimated reduced form equation in part (c) and similarly obtain Pt. Create Wt = Wit + Wzt. Regress CNt on Wt. Pt and Pt-1 plus a constant by DLS.
- e. The coefficient estimates will be the same. The t-values will not be because the standard errors in part (d) are not correct 2SLS standard errors.