Assignment2

2025-02-07

```
flint <- read.csv(file = "flint.csv")</pre>
#1b
mean(flint$Pb >= 15)
## [1] 0.04436229
#1c
mean(flint$Cu[flint$Region == "North"])
## [1] 44.6424
#1d
mean(flint$Cu[flint$Pb >= 15])
## [1] 305.8333
#1e
mean(flint$Pb)
## [1] 3.383272
mean(flint$Cu)
## [1] 54.58102
#1f
boxplot(flint$Pb,
        main="Lead levels in Flint, Michigan",
        xlab="lead levels (PPB)",
        col="lightblue",
        border="darkblue", outline=TRUE, horizontal=TRUE)
```

Lead levels in Flint, Michigan

Lead levels in Flint, Michigan


```
#1g
# As we can see in the boxplot the data contains a lot of outliers, i.e. areas
# with a much higher lead level so the mean might not be suitable way to
# measure the data. For skewed data distributions such as this the median tends
# to be a better measure to see the center of the data

#2
life <-read.table(
   "https://ucla.box.com/shared/static/rqk4lc030pabv30wknx2ft9jy848ub9n.txt",
   header = TRUE)
library(ggplot2)

#2a
ggplot(life, aes(x=Income, y=Life)) + geom_point()</pre>
```


as expected as income increases initially, life expectancy rises very rapidly
but at a certain point the rate of increase plateaus and as income increases
life expectancy increases at a much slower rate (this is almost an
exponential growth)

#2b

Per capita Income in 1970s


```
boxplot(life$Income,
    main="Per capita Income in 1970s",
    xlab="Income (1974 dollars)",
    col="lightblue",
    border="darkblue", outline=TRUE, horizontal=TRUE)
```

Per capita Income in 1970s

Life vs Income (Income < \$1000)

correlation <- cor(income_below_1000\$Income, income_below_1000\$Life)
correlation</pre>

```
## [1] 0.752886
```

```
#3
maas <- read.table(
  "https://ucla.box.com/shared/static/tv3cxooyp6y8fh6gb0qj2cxihj8klg1h.txt",
  header = TRUE)

#3a
summary(maas$lead)</pre>
```

```
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 37.0 72.5 123.0 153.4 207.0 654.0
```

summary(maas\$zinc)

```
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 113.0 198.0 326.0 469.7 674.5 1839.0
```

```
#3b
hist(maas$lead, xlab="Conc. of lead (ppm)",
    main="Lead concentration distribution")
```

Lead concentration distribution

Log(Lead levels) distribution

Log(Lead Levels) vs Log(Zinc Levels)

Lead Concentration at Maas River Locations


```
#4
LA <- read.table(
   "https://ucla.box.com/shared/static/d189x2gn5xfmcic0dmnhj2cw94jwvqpa.txt",
   header=TRUE)
library(maps)
library(mapdata)

#4a
#install.packages("maps")
#library(maps)

plot(x = LA$Longitude, y = LA$Latitude, pch=19,
        xlab="Longitude", ylab="Latitude",
        main="Neighborhoods in LA County",
        col="blue")
map("county", "california", add = TRUE)</pre>
```

Neighborhoods in LA County

Num of schools vs Avg Neighbourhood Income


```
# There's a moderate positive linear relationship between income and LA school
# performance. That means that neighbourhoods with higher incomes tend to have
# better performing schools.

#5
customer_data <- read.csv(
   "https://ucla.box.com/shared/static/y2y8rcie7mjw2h5t92x9dfcp133tc90h.csv")

#5a
colSums(is.na(customer_data))</pre>
```

```
## cust_id age gender income education
## 0 10 0 5 0
## marital_status purchase_amt
## 0 7
```

```
# there are 22 missing values
# age, income, and purchase_amt have missing values 10, 5, and 7 respectively
#5b
class(customer_data$cust_id) #character
```

```
## [1] "character"
```

```
class(customer_data$age) #integer
```

06/02/2025, 23:36

Assignment2 ## [1] "integer" class(customer_data\$gender) #character ## [1] "character" class(customer_data\$income) #integer ## [1] "integer" class(customer_data\$education) #character ## [1] "character" class(customer_data\$marital_status) #character ## [1] "character" class(customer_data\$purchase_amt) #integer ## [1] "integer" # as gender, education, and marital_status have limited options as to what # they could be it might be better to convert them to factor customer_data\$gender <- as.factor(customer_data\$gender)</pre> customer_data\$education <- as.factor(customer_data\$education)</pre> customer_data\$marital_status <- as.factor(customer_data\$marital_status)</pre> #5c summary(customer_data\$age) ## Min. 1st Qu. Median Mean 3rd Qu. NA's Max. 44.00 ## 20.00 32.00 44.99 56.75 70.00 10 hist(customer_data\$age)

Histogram of customer_data\$age

a pretty even spread with seemingly no outliers
summary(customer_data\$income)

Min. 1st Qu. Median Mean 3rd Qu. Max. NA's ## 23798 55320 99637 103425 150030 198808 5

hist(customer_data\$income)

Histogram of customer_data\$income

boxplot(customer_data\$income)

a pretty even spread with seemingly no outliers
summary(customer_data\$purchase_amt)

```
## Min. 1st Qu. Median Mean 3rd Qu. Max. NA's
## 72.0 211.0 325.0 356.2 466.0 791.0 7
```

hist(customer_data\$purchase_amt)

Histogram of customer_data\$purchase_amt

boxplot(customer_data\$purchase_amt)

the histogram shows us there are some gaps in the distribution but
the boxplot shows us that there are no outliers and all the values lie within
1.5IQR above and below the 3rd and 1st upper quartile