Deep Generative Models

Lecture 4

Roman Isachenko

Autumn, 2022

Variational lower Bound (ELBO)

$$\log p(\mathbf{x}|oldsymbol{ heta}) = \mathcal{L}(q,oldsymbol{ heta}) + \mathit{KL}(q(\mathbf{z})||p(\mathbf{z}|\mathbf{x},oldsymbol{ heta})) \geq \mathcal{L}(q,oldsymbol{ heta}).$$

$$\mathcal{L}(q, \theta) = \int q(\mathbf{z}) \log \frac{p(\mathbf{x}, \mathbf{z}|\theta)}{q(\mathbf{z})} d\mathbf{z} = \mathbb{E}_q \log p(\mathbf{x}|\mathbf{z}, \theta) - KL(q(\mathbf{z})||p(\mathbf{z}))$$

Log-likelihood decomposition

$$\log p(\mathbf{x}|\boldsymbol{\theta}) = \mathbb{E}_q \log p(\mathbf{x}|\mathbf{z},\boldsymbol{\theta}) - KL(q(\mathbf{z})||p(\mathbf{z})) + KL(q(\mathbf{z})||p(\mathbf{z}|\mathbf{x},\boldsymbol{\theta})).$$

Instead of maximizing incomplete likelihood, maximize ELBO

$$\max_{oldsymbol{ heta}} p(\mathbf{x}|oldsymbol{ heta}) \quad o \quad \max_{oldsymbol{a},oldsymbol{ heta}} \mathcal{L}(oldsymbol{q},oldsymbol{ heta})$$

 Maximization of ELBO by variational distribution q is equivalent to minimization of KL

$$rg \max_{q} \mathcal{L}(q, oldsymbol{ heta}) \equiv rg \min_{q} \mathit{KL}(q(\mathbf{z})||p(\mathbf{z}|\mathbf{x}, oldsymbol{ heta})).$$

EM-algorithm

► E-step

$$q^*(\mathbf{z}) = \argmax_{q} \mathcal{L}(q, \boldsymbol{\theta}^*) = \arg\min_{q} \mathit{KL}(q(\mathbf{z}) || \mathit{p}(\mathbf{z} | \mathbf{x}, \boldsymbol{\theta}^*));$$

M-step

$$\theta^* = rg \max_{oldsymbol{ heta}} \mathcal{L}(q^*, oldsymbol{ heta});$$

Amortized variational inference

Restrict a family of all possible distributions $q(\mathbf{z})$ to a parametric class $q(\mathbf{z}|\mathbf{x}, \phi)$ conditioned on samples \mathbf{x} with parameters ϕ .

Variational Bayes

E-step

$$\phi_k = \phi_{k-1} + \eta \nabla_{\phi} \mathcal{L}(\phi, \theta_{k-1})|_{\phi = \phi_{k-1}}$$

M-step

$$\boldsymbol{\theta}_k = \boldsymbol{\theta}_{k-1} + \eta \nabla_{\boldsymbol{\theta}} \mathcal{L}(\boldsymbol{\phi}_k, \boldsymbol{\theta})|_{\boldsymbol{\theta} = \boldsymbol{\theta}_{k-1}}$$

$$\mathcal{L}(\phi, oldsymbol{ heta}) = \mathbb{E}_{q(\mathbf{z}|\mathbf{x}, \phi)} \left[\log p(\mathbf{x}|\mathbf{z}, oldsymbol{ heta}) - \log rac{q(\mathbf{z}|\mathbf{x}, \phi)}{p(\mathbf{z})}
ight]
ightarrow \max_{\phi, heta}.$$

M-step: $\nabla_{\theta} \mathcal{L}(\phi, \theta)$, Monte Carlo estimation

$$egin{aligned}
abla_{m{ heta}} \mathcal{L}(m{\phi}, m{ heta}) &= \int q(\mathbf{z}|\mathbf{x}, m{\phi})
abla_{m{ heta}} \log p(\mathbf{x}|\mathbf{z}, m{ heta}) d\mathbf{z} pprox \\ &pprox
abla_{m{ heta}} \log p(\mathbf{x}|\mathbf{z}^*, m{ heta}), \quad \mathbf{z}^* \sim q(\mathbf{z}|\mathbf{x}, m{\phi}). \end{aligned}$$

E-step: $\nabla_{\phi} \mathcal{L}(\phi, \theta)$, reparametrization trick

$$\nabla_{\phi} \mathcal{L}(\phi, \boldsymbol{\theta}) = \int r(\epsilon) \nabla_{\phi} \log p(\mathbf{x}|g(\mathbf{x}, \epsilon, \phi), \boldsymbol{\theta}) d\epsilon - \nabla_{\phi} \mathsf{KL}$$

$$pprox
abla_{oldsymbol{\phi}} \log p(\mathbf{x}|g(\mathbf{x}, oldsymbol{\epsilon}^*, oldsymbol{\phi}), oldsymbol{ heta}) -
abla_{oldsymbol{\phi}} \mathsf{KL}$$

Variational assumption

$$egin{aligned} r(\epsilon) &= \mathcal{N}(0, \mathbf{I}); \quad q(\mathbf{z}|\mathbf{x}, \phi) = \mathcal{N}(\mu_{\phi}(\mathbf{x}), \sigma_{\phi}^2(\mathbf{x})). \ &\mathbf{z} = g(\mathbf{x}, \epsilon, \phi) = \sigma_{\phi}(\mathbf{x}) \cdot \epsilon + \mu_{\phi}(\mathbf{x}). \end{aligned}$$

Variational autoencoder (VAE)

- VAE learns stochastic mapping between **x**-space, from $\pi(\mathbf{x})$, and a latent **z**-space, with simple distribution.
- The generative model learns distribution $p(\mathbf{x}, \mathbf{z}|\boldsymbol{\theta}) = p(\mathbf{z})p(\mathbf{x}|\mathbf{z}, \boldsymbol{\theta})$, with a prior distribution $p(\mathbf{z})$, and a stochastic decoder $p(\mathbf{x}|\mathbf{z}, \boldsymbol{\theta})$.
- The stochastic encoder $q(\mathbf{z}|\mathbf{x}, \phi)$ (inference model), approximates the true but intractable posterior $p(\mathbf{z}|\mathbf{x}, \theta)$.

Outline

1. VAE limitations

- 2. Posterior collapse and decoder weakening techniques
- 3. Tighter variational bound
- 4. Normalizing flows

Outline

- 1. VAE limitations
- Posterior collapse and decoder weakening techniques
- Tighter variational bound
- 4. Normalizing flows

VAE limitations

Poor generative distribution (decoder)

$$p(\mathbf{x}|\mathbf{z}, \boldsymbol{\theta}) = \mathcal{N}(\mathbf{x}|\boldsymbol{\mu}_{\boldsymbol{\theta}}(\mathbf{z}), \sigma_{\boldsymbol{\theta}}^2(\mathbf{z})) \quad \text{or } = \mathsf{Softmax}(\boldsymbol{\pi}_{\boldsymbol{\theta}}(\mathbf{z})).$$

Loose lower bound

$$\log p(\mathbf{x}|\boldsymbol{\theta}) - \mathcal{L}(q,\boldsymbol{\theta}) = (?).$$

Poor prior distribution

$$p(\mathbf{z}) = \mathcal{N}(0, \mathbf{I}).$$

Poor variational posterior distribution (encoder)

$$q(\mathsf{z}|\mathsf{x},\phi) = \mathcal{N}(\mathsf{z}|\boldsymbol{\mu}_{\phi}(\mathsf{x}), \sigma_{\phi}^2(\mathsf{x})).$$

Outline

- 1. VAE limitations
- 2. Posterior collapse and decoder weakening techniques
- Tighter variational bound
- 4. Normalizing flows

VAE limitations

Poor generative distribution (decoder)

$$p(\mathbf{x}|\mathbf{z}, \boldsymbol{\theta}) = \mathcal{N}(\mathbf{x}|\boldsymbol{\mu}_{\boldsymbol{\theta}}(\mathbf{z}), \sigma^2_{\boldsymbol{\theta}}(\mathbf{z})) \quad \text{or } = \mathsf{Softmax}(\boldsymbol{\pi}_{\boldsymbol{\theta}}(\mathbf{z})).$$

Loose lower bound

$$\log p(\mathbf{x}|\boldsymbol{\theta}) - \mathcal{L}(q,\boldsymbol{\theta}) = (?).$$

Poor prior distribution

$$p(\mathbf{z}) = \mathcal{N}(0, \mathbf{I}).$$

Poor variational posterior distribution (encoder)

$$q(\mathsf{z}|\mathsf{x},\phi) = \mathcal{N}(\mathsf{z}|\boldsymbol{\mu}_{\phi}(\mathsf{x}), \sigma_{\phi}^2(\mathsf{x})).$$

Posterior collapse

LVM

$$p(\mathbf{x}|\boldsymbol{\theta}) = \int p(\mathbf{x}, \mathbf{z}|\boldsymbol{\theta}) d\mathbf{z} = \int p(\mathbf{x}|\mathbf{z}, \boldsymbol{\theta}) p(\mathbf{z}) d\mathbf{z}$$

ELBO objective

$$\mathcal{L}(\phi, \theta) = \left[\mathbb{E}_{q(\mathbf{z}|\mathbf{x}, \phi)} \log p(\mathbf{x}|\mathbf{z}, \theta) - \mathit{KL}(q(\mathbf{z}|\mathbf{x}, \phi)||p(\mathbf{z})) \right].$$

More powerful $p(\mathbf{x}|\mathbf{z}, \boldsymbol{\theta})$ leads to more powerful generative model $p(\mathbf{x}|\boldsymbol{\theta})$.

Extreme cast

$$p(\mathbf{x}|\boldsymbol{\theta}) \in \mathcal{P} = \{p(\mathbf{x}|\mathbf{z},\boldsymbol{\theta})| \, \forall \mathbf{z}, \boldsymbol{\theta}\}.$$

If the decoder $p(\mathbf{x}|\mathbf{z}, \boldsymbol{\theta})$ is too powerful (it could model $p(\mathbf{x}|\boldsymbol{\theta})$), then ELBO avoids paying any cost $KL(q(\mathbf{z}|\mathbf{x}, \boldsymbol{\phi})||p(\mathbf{z}))$ $(q(\mathbf{z}|\mathbf{x}, \boldsymbol{\phi}) \approx p(\mathbf{z}))$, the variational posterior $q(\mathbf{z}|\mathbf{x}, \boldsymbol{\phi})$ will not carry any information about \mathbf{x} , the latent variables \mathbf{z} becomes irrelevant.

Autoregressive VAE decoder

How to make the generative model $p(\mathbf{x}|\mathbf{z}, \boldsymbol{\theta})$ more powerful? PixelVAE/VLAE

$$p(\mathbf{x}|\mathbf{z},\boldsymbol{\theta}) = \prod_{j=1}^{m} p(x_j|\mathbf{x}_{1:j-1},\mathbf{z},\boldsymbol{\theta})$$

- Global structure is captured by latent variables z.
- Local statistics are captured by limited receptive field of autoregressive context x_{1:j-1}.

PixelVAE/VLAE models use the autoregressive PixelCNN decoder model with small number of layers to limit receptive field.

Decoder weakening techniques

How to force the model encode information about **x** into **z**? KL annealing

$$\mathcal{L}(\phi, \theta, \beta) = \mathbb{E}_{q(\mathbf{z}|\mathbf{x}, \phi)} \log p(\mathbf{x}|\mathbf{z}, \theta) - \beta \cdot \mathit{KL}(q(\mathbf{z}|\mathbf{x}, \phi)||p(\mathbf{z}))$$

Start training with $\beta=$ 0, increase it until $\beta=$ 1 during training.

Free bits

$$\mathcal{L}(\phi, \theta, \lambda) = \mathbb{E}_{q(\mathbf{z}|\mathbf{x}, \phi)} \log p(\mathbf{x}|\mathbf{z}, \theta) - \max(\lambda, KL(q(\mathbf{z}|\mathbf{x}, \phi)||p(\mathbf{z}))).$$

It ensures the use of less than λ bits of information and results in $KL(q(\mathbf{z}|\mathbf{x},\phi)||p(\mathbf{z})) \geq \lambda$.

Bowman S. R. et al. Generating Sentences from a Continuous Space, 2015 Kingma D. P. et al. Improving Variational Inference with Inverse Autoregressive Flow, 2016

Outline

- 1. VAE limitations
- 2. Posterior collapse and decoder weakening techniques
- 3. Tighter variational bound
- 4. Normalizing flows

VAE limitations

Poor generative distribution (decoder)

$$p(\mathbf{x}|\mathbf{z}, \boldsymbol{\theta}) = \mathcal{N}(\mathbf{x}|\boldsymbol{\mu}_{\boldsymbol{\theta}}(\mathbf{z}), \sigma^2_{\boldsymbol{\theta}}(\mathbf{z})) \quad \text{or } = \mathsf{Softmax}(\boldsymbol{\pi}_{\boldsymbol{\theta}}(\mathbf{z})).$$

Loose lower bound

$$\log p(\mathbf{x}|\boldsymbol{\theta}) - \mathcal{L}(q,\boldsymbol{\theta}) = (?).$$

Poor prior distribution

$$p(\mathbf{z}) = \mathcal{N}(0, \mathbf{I}).$$

Poor variational posterior distribution (encoder)

$$q(\mathsf{z}|\mathsf{x},\phi) = \mathcal{N}(\mathsf{z}|\boldsymbol{\mu}_{\phi}(\mathsf{x}), \sigma_{\phi}^2(\mathsf{x})).$$

Importance sampling

LVM

$$p(\mathbf{x}|\boldsymbol{\theta}) = \int p(\mathbf{x}, \mathbf{z}|\boldsymbol{\theta}) d\mathbf{z} = \int \left[\frac{p(\mathbf{x}, \mathbf{z}|\boldsymbol{\theta})}{q(\mathbf{z}|\mathbf{x}, \boldsymbol{\phi})} \right] q(\mathbf{z}|\mathbf{x}, \boldsymbol{\phi}) d\mathbf{z}$$
$$= \int f(\mathbf{x}, \mathbf{z}) q(\mathbf{z}|\mathbf{x}, \boldsymbol{\phi}) d\mathbf{z} = \mathbb{E}_{\mathbf{z} \sim q(\mathbf{z}|\mathbf{x}, \boldsymbol{\phi})} f(\mathbf{x}, \mathbf{z})$$

Here $f(\mathbf{x}, \mathbf{z}) = \frac{p(\mathbf{x}, \mathbf{z}|\theta)}{q(\mathbf{z}|\mathbf{x}, \phi)}$.

ELBO: derivation 1

$$\begin{split} \log p(\mathbf{x}|\boldsymbol{\theta}) &= \mathsf{log} \mathbb{E}_{\mathbf{z} \sim q(\mathbf{z}|\mathbf{x}, \boldsymbol{\phi})} f(\mathbf{x}, \mathbf{z}) \geq \mathbb{E}_{\mathbf{z} \sim q(\mathbf{z}|\mathbf{x}, \boldsymbol{\phi})} \mathsf{log} f(\mathbf{x}, \mathbf{z}) = \\ &= \mathbb{E}_{\mathbf{z} \sim q(\mathbf{z}|\mathbf{x}, \boldsymbol{\phi})} \log \frac{p(\mathbf{x}, \mathbf{z}|\boldsymbol{\theta})}{q(\mathbf{z}|\mathbf{x}, \boldsymbol{\phi})} = \mathcal{L}(q, \boldsymbol{\theta}). \end{split}$$

 $f(\mathbf{x}, \mathbf{z})$ could be any function that satisfies $p(\mathbf{x}|\theta) = \mathbb{E}_{\mathbf{z} \sim q} f(\mathbf{x}, \mathbf{z})$. Could we choose better $f(\mathbf{x}, \mathbf{z})$?

$$p(\mathbf{x}|\boldsymbol{\theta}) = \int \left| \frac{p(\mathbf{x}, \mathbf{z}|\boldsymbol{\theta})}{q(\mathbf{z}|\mathbf{x}, \boldsymbol{\phi})} \right| q(\mathbf{z}|\mathbf{x}, \boldsymbol{\phi}) d\mathbf{z} = \mathbb{E}_{\mathbf{z} \sim q(\mathbf{z}|\mathbf{x}, \boldsymbol{\phi})} f(\mathbf{x}, \mathbf{z})$$

Let define

$$f(\mathbf{x}, \mathbf{z}_1, \dots, \mathbf{z}_K) = \frac{1}{K} \sum_{k=1}^K \frac{p(\mathbf{x}, \mathbf{z}_k | \boldsymbol{\theta})}{q(\mathbf{z}_k | \mathbf{x}, \boldsymbol{\phi})}$$

$$\mathbb{E}_{\mathbf{z}_1, \dots, \mathbf{z}_K \cap g(\mathbf{z} | \mathbf{x}, \boldsymbol{\phi})} f(\mathbf{x}, \mathbf{z}_1, \dots, \mathbf{z}_K) = p(\mathbf{x} | \boldsymbol{\theta})$$

EL BO

$$\begin{split} \log p(\mathbf{x}|\boldsymbol{\theta}) &= \log \mathbb{E}_{\mathbf{z}_{1},\dots,\mathbf{z}_{K} \sim q(\mathbf{z}|\mathbf{x})} f(\mathbf{x},\mathbf{z},\dots,\mathbf{z}_{K}) \geq \\ &\geq \mathbb{E}_{\mathbf{z}_{1},\dots,\mathbf{z}_{K} \sim q(\mathbf{z}|\mathbf{x},\boldsymbol{\phi})} \log f(\mathbf{x},\mathbf{z},\dots,\mathbf{z}_{K}) = \\ &= \mathbb{E}_{\mathbf{z}_{1},\dots,\mathbf{z}_{K} \sim q(\mathbf{z}|\mathbf{x},\boldsymbol{\phi})} \log \left[\frac{1}{K} \sum_{l=1}^{K} \frac{p(\mathbf{x},\mathbf{z}_{k}|\boldsymbol{\theta})}{q(\mathbf{z}_{k}|\mathbf{x},\boldsymbol{\phi})} \right] = \mathcal{L}_{K}(q,\boldsymbol{\theta}). \end{split}$$

VAE objective

$$\log p(\mathbf{x}|oldsymbol{ heta}) \geq \mathcal{L}(q,oldsymbol{ heta}) = \mathbb{E}_{q(\mathbf{z}|\mathbf{x},oldsymbol{\phi})} \log rac{p(\mathbf{x},\mathbf{z}|oldsymbol{ heta})}{q(\mathbf{z}|\mathbf{x},oldsymbol{\phi})}
ightarrow \max_{q,oldsymbol{ heta}}$$

$$\mathcal{L}(q, \theta) = \mathbb{E}_{\mathsf{z}_1, ..., \mathsf{z}_K \sim q(\mathsf{z}|\mathsf{x}, \phi)} \left(\frac{1}{K} \sum_{k=1}^K \log \frac{p(\mathsf{x}, \mathsf{z}_k | \theta)}{q(\mathsf{z}_k | \mathsf{x}, \phi)} \right) o \max_{q, \theta}.$$

IWAE objective

$$\mathcal{L}_{K}(q, \theta) = \mathbb{E}_{\mathsf{z}_{1}, \dots, \mathsf{z}_{K} \sim q(\mathsf{z}|\mathsf{x}, \phi)} \log \left(\frac{1}{K} \sum_{k=1}^{K} \frac{p(\mathsf{x}, \mathsf{z}_{k}|\theta)}{q(\mathsf{z}_{k}|\mathsf{x}, \phi)} \right) \to \max_{q, \theta}.$$

If K = 1, these objectives coincide.

Theorem

- 1. $\log p(\mathbf{x}|\theta) \ge \mathcal{L}_K(q,\theta) \ge \mathcal{L}_M(q,\theta)$, for $K \ge M$;
- 2. $\log p(\mathbf{x}|\boldsymbol{\theta}) = \lim_{K \to \infty} \mathcal{L}_K(q, \boldsymbol{\theta})$ if $\frac{p(\mathbf{x}, \mathbf{z}|\boldsymbol{\theta})}{q(\mathbf{z}|\mathbf{x}, \boldsymbol{\phi})}$ is bounded.

If K > 1 the bound could be tighter.

$$egin{aligned} \mathcal{L}(q, oldsymbol{ heta}) &= \mathbb{E}_{q(\mathbf{z}|\mathbf{x}, oldsymbol{\phi})} \log rac{p(\mathbf{x}, \mathbf{z}|oldsymbol{ heta})}{q(\mathbf{z}|\mathbf{x}, oldsymbol{\phi})}; \ \mathcal{L}_K(q, oldsymbol{ heta}) &= \mathbb{E}_{\mathbf{z}_1, ..., \mathbf{z}_K \sim q(\mathbf{z}|\mathbf{x}, oldsymbol{\phi})} \log \left(rac{1}{K} \sum_{k=1}^K rac{p(\mathbf{x}, \mathbf{z}_k | oldsymbol{ heta})}{q(\mathbf{z}_k | \mathbf{x}, oldsymbol{\phi})}
ight). \end{aligned}$$

- $\blacktriangleright \mathcal{L}_1(q,\theta) = \mathcal{L}(q,\theta);$
- ▶ Which $q^*(\mathbf{z}|\mathbf{x}, \phi)$ gives $\mathcal{L}(q^*, \theta) = \log p(\mathbf{x}|\theta)$?

Objective

$$\mathcal{L}_{\mathcal{K}}(q, oldsymbol{ heta}) = \mathbb{E}_{\mathsf{z}_1, ..., \mathsf{z}_{\mathcal{K}} \sim q(\mathsf{z}|\mathsf{x}, oldsymbol{\phi})} \log \left(rac{1}{\mathcal{K}} \sum_{k=1}^{\mathcal{K}} rac{
ho(\mathsf{x}, \mathsf{z}_k | oldsymbol{ heta})}{q(\mathsf{z}_k | \mathsf{x}, oldsymbol{\phi})}
ight)
ightarrow \max_{oldsymbol{\phi}, oldsymbol{ heta}}.$$

Theorem

Gradient signal of $q(\mathbf{z}|\mathbf{x}, \phi)$ vanishes as K increases:

$$\begin{split} \Delta_K &= \nabla_{\boldsymbol{\theta}, \boldsymbol{\phi}} \mathcal{L}_K(\boldsymbol{q}, \boldsymbol{\theta}); \quad \mathsf{SNR}_K = \frac{\mathbb{E}[\Delta_K]}{\sigma(\Delta_K)}; \\ \mathsf{SNR}_K(\boldsymbol{\theta}) &= O(\sqrt{K}); \quad \mathsf{SNR}_K(\boldsymbol{\phi}) = O\left(\sqrt{K^{-1}}\right). \end{split}$$

- ► IWAE makes the variational bound tighter and extends the class of variational distributions.
- ► Gradient signal becomes really small, training is complicated.
- ► IWAE is a standard quality measure for VAE models.

Outline

- 1. VAE limitations
- Posterior collapse and decoder weakening techniques
- Tighter variational bound
- 4. Normalizing flows

Likelihood-based models so far...

Autoregressive models

$$p(\mathbf{x}|\boldsymbol{\theta}) = \prod_{j=1}^{m} p(x_j|\mathbf{x}_{1:j-1},\boldsymbol{\theta})$$

- tractable likelihood,
- no inferred latent factors.

Latent variable models

$$p(\mathbf{x}|\boldsymbol{\theta}) = \int p(\mathbf{x}, \mathbf{z}|\boldsymbol{\theta}) d\mathbf{z}$$

- latent feature representation,
- intractable likelihood.

How to build model with latent variables and tractable likelihood?

Generative models zoo

Normalizing flows prerequisites

Jacobian matrix

Let $f: \mathbb{R}^m \to \mathbb{R}^m$ is a differentiable function.

$$\mathbf{z} = f(\mathbf{x}), \quad \mathbf{J} = \frac{\partial \mathbf{z}}{\partial \mathbf{x}} = \begin{pmatrix} \frac{\partial z_1}{\partial x_1} & \cdots & \frac{\partial z_1}{\partial x_m} \\ \cdots & \cdots & \cdots \\ \frac{\partial z_m}{\partial x_1} & \cdots & \frac{\partial z_m}{\partial x_m} \end{pmatrix} \in \mathbb{R}^{m \times m}$$

Change of variable theorem (CoV)

Let \mathbf{x} be a random variable with density function $p(\mathbf{x})$ and $f: \mathbb{R}^m \to \mathbb{R}^m$ is a differentiable, **invertible** function (diffeomorphism). If $\mathbf{z} = f(\mathbf{x})$, $\mathbf{x} = f^{-1}(\mathbf{z}) = g(\mathbf{z})$, then

$$p(\mathbf{x}) = p(\mathbf{z})|\det(\mathbf{J}_f)| = p(\mathbf{z})\left|\det\left(\frac{\partial \mathbf{z}}{\partial \mathbf{x}}\right)\right| = p(f(\mathbf{x}))\left|\det\left(\frac{\partial f(\mathbf{x})}{\partial \mathbf{x}}\right)\right|$$
$$p(\mathbf{z}) = p(\mathbf{x})|\det(\mathbf{J}_g)| = p(\mathbf{x})\left|\det\left(\frac{\partial \mathbf{x}}{\partial \mathbf{z}}\right)\right| = p(g(\mathbf{z}))\left|\det\left(\frac{\partial g(\mathbf{z})}{\partial \mathbf{z}}\right)\right|.$$

Jacobian determinant

Inverse function theorem

If function f is invertible and Jacobian matrix is continuous and non-singular, then

$$\mathbf{J}_f = \mathbf{J}_{g^{-1}} = \mathbf{J}_g^{-1}, \quad |\det(\mathbf{J}_f)| = rac{1}{|\det(\mathbf{J}_g)|}$$

- **x** and **z** have the same dimensionality (\mathbb{R}^m) .
- $f(\mathbf{x}, \boldsymbol{\theta})$ could be parametric function.
- Determinant of Jacobian matrix $\mathbf{J} = \frac{\partial f(\mathbf{x}, \boldsymbol{\theta})}{\partial \mathbf{x}}$ shows how the volume changes under the transorfmation.

Fitting flows

MLE problem

$$p(\mathbf{x}|\boldsymbol{\theta}) = p(\mathbf{z}) \left| \det \left(\frac{\partial \mathbf{z}}{\partial \mathbf{x}} \right) \right| = p(f(\mathbf{x}, \boldsymbol{\theta})) \left| \det \left(\frac{\partial f(\mathbf{x}, \boldsymbol{\theta})}{\partial \mathbf{x}} \right) \right|$$
$$\log p(\mathbf{x}|\boldsymbol{\theta}) = \log p(f(\mathbf{x}, \boldsymbol{\theta})) + \log |\det(\mathbf{J}_f)| \to \max_{\boldsymbol{\theta}}$$

Composition of flows

Theorem

Diffeomorphisms are **composable** (If $\{f_k\}_{k=1}^K$ satisfy conditions of the change of variable theorem, then $\mathbf{z} = f(\mathbf{x}) = f_K \circ \cdots \circ f_1(\mathbf{x})$ also satisfies it).

$$p(\mathbf{x}) = p(f(\mathbf{x})) \left| \det \left(\frac{\partial f(\mathbf{x})}{\partial \mathbf{x}} \right) \right| = p(f(\mathbf{x})) \left| \det \left(\frac{\partial f_K}{\partial f_{K-1}} \dots \frac{\partial f_1}{\partial \mathbf{x}} \right) \right| =$$

$$= p(f(\mathbf{x})) \prod_{k=1}^K \left| \det \left(\frac{\partial f_k}{\partial f_{k-1}} \right) \right| = p(f(\mathbf{x})) \prod_{k=1}^K \left| \det(\mathbf{J}_{f_k}) \right|$$

Flows

$$\log p(\mathbf{x}|\boldsymbol{\theta}) = \log p(f(\mathbf{x},\boldsymbol{\theta})) + \log |\det(\mathbf{J}_f)|$$

Definition

Normalizing flow is a *differentiable, invertible* mapping from data \mathbf{x} to the noise \mathbf{z} .

- Normalizing means that the inverse flow takes samples from $\pi(\mathbf{x})$ and normalizes them into samples from the density $p(\mathbf{z})$.
- **Flow** refers to the trajectory followed by samples from p(z) as they are transformed by the sequence of transformations

$$\mathbf{z} = f_K \circ \cdots \circ f_1(\mathbf{x}); \quad \mathbf{x} = f_1^{-1} \circ \cdots \circ f_K^{-1}(\mathbf{z}) = g_1 \circ \cdots \circ g_K(\mathbf{z})$$

Log likelihood

$$\log p(\mathbf{x}|\boldsymbol{ heta}) = \log p(f_K \circ \dots \circ f_1(\mathbf{x})) + \sum_{k=1}^K \log |\det(\mathbf{J}_{f_k})|,$$
 where $\mathbf{J}_{f_k} = rac{\partial \mathbf{f}_k}{\partial \mathbf{f}_{k-1}}.$

Flows

Example of a 4-step flow

Flow log likelihood

$$\log p(\mathbf{x}|\boldsymbol{\theta}) = \log p(f(\mathbf{x},\boldsymbol{\theta})) + \log |\det(\mathbf{J}_f)|$$

What is the complexity of the determinant computation?

What we want

- ► Efficient computation of the Jacobian matrix $\mathbf{J}_f = \frac{\partial f(\mathbf{x}, \boldsymbol{\theta})}{\partial \mathbf{x}}$;
- ▶ Efficient sampling from the base distribution $p(\mathbf{z})$;
- ▶ Efficient inversion of $f(\mathbf{x}, \boldsymbol{\theta})$.

Papamakarios G. et al. Normalizing flows for probabilistic modeling and inference, 2019

Summary

- Standart VAE has several limitations that we will address later in the course.
- More powerful decoder in VAE leads to more expressive generative model. However, too expressive decoder could lead to the posterior collapse.
- The decoder weakening is a set of techniques to avoid the posterior collapse.
- ► The IWAE could get the tighter lower bound to the likelihood, but the training of such model becomes more difficult.
- ► Flow models transform a simple base distribution to a complex one via a sequence of invertible transformations with tractable Jacobian.
- ► Flow models have a tractable likelihood that is given by the change of variable theorem.