CINEMATICA DEL CORPO RIGIDO

VINCOLO DI CARRELLO

IL CARRELLO BLOCCA LA Y MA LASCIA IL CORPO RIGIDO LIBERA DI RVOTARE E TRASLARE

IL TREND DELLE MONTAGNE RUSSE NON PUD STACCARSI DAL BINARIO (UNI VS BILATERO)

CARRELLO SU BINARIO CIRCOLANE ASSUMIAMO CARRELLO PUNTIFORME

VA, DA?

IL PUNTO A IDENTIFICA IL CARRELLO IL CARRELLO E'UN VETTONE CHE RUUTA (SCONNE SU CINCONFENENZA)

$$V_{AX} = -R \approx SINQ$$

 $V_{AY} = +R \approx COSQ$

$$\nabla_{A} = \frac{dR\hat{R}}{dE} = R \frac{d\hat{R}}{dE} = R \frac{d\hat{C}}{dE} = R \frac{d\hat{C}}{dE}$$

$$\partial_{Ax} = - R \dot{v} \left(\sin \alpha + \frac{R \dot{v}}{P} \cos \alpha \right)$$

$$\partial_{Ay} = + R \dot{v} \left(\cos \alpha - \frac{R \dot{v}}{P} \sin \alpha \right)$$

$$\partial_{Ax} = -R \dot{v} \left(\sin v + \frac{R \dot{v}}{P} \cos v \right)$$

$$\partial_{A} = \frac{d \dot{\varepsilon} \dot{t}}{dt} = \ddot{\varepsilon} \dot{t} + \frac{\dot{s}^{2}}{P} \dot{M} = \ddot{x}_{A} \dot{v} + \ddot{y}_{A} \dot{s}$$

$$\partial_{Ay} = + R \dot{v} \left(\cos v - \frac{R \dot{v}}{P} \sin v \right)$$

$$= R \dot{v} \left(-\sin v \dot{v} + \cos v \dot{s} \right) + \frac{R^{2} \dot{v}^{2}}{P} \left(-\cos v \dot{v} - \sin v \dot{s} \right)$$

$$\hat{M} = -\hat{R} = (-\cos \hat{x} \hat{c} - \sin \hat{x} \hat{s})$$

Va, da ?

TEOREMA DI RIVALS

$$V_C = V_A + W \times (C-A)$$

BLOCCO TERNA, MUOVO CORPO RIGIDO V RELATIVA BLOCCO CORPO, MUOVO TERNA

VINCOLO DI CARRELLO IN A C

LA MINEZIONE IN C E SOLO VERTICALE

Vc = yo & INCOGNITA

$$V_A = X_A U + Y_A U$$

RIVALS
$$\rightarrow$$
 $\dot{\chi}_c \hat{\chi}_c = \dot{\chi}_A \hat{\chi}_c + \dot{\chi}_A \hat{\chi}_c + \dot{\beta} \hat{\chi}_c \times c(\cos\beta \hat{\chi}_c + \sin\beta \hat{\chi}_c)$
 $\dot{\chi}_c \hat{\chi}_c = \dot{\chi}_A \hat{\chi}_c + \dot{\chi}_A \hat{\chi}_c + \dot{\beta} c \cos\beta \hat{\chi}_c - \dot{\beta} c \sin\beta \hat{\chi}_c$

$$\overline{\iota} \times \overline{\flat} = \overline{K}$$
 $\overline{K} \times \overline{\iota} = \overline{\flat}$ $\overline{K} \times \overline{\flat} = -\overline{\iota}$

SUDDIVIDO TUTTO PER U) >

i
$$O = XA - BCSINB$$

$$\dot{S} = \frac{XA}{CSINB}$$

$$\dot{S} = \frac{XA}{CSINB}$$

$$\dot{S} = \frac{XA}{CSINB}$$

$$\dot{S} = \frac{XA}{CSINB}$$

PER RICAVARE DC ABBIAMO 2 METODI

1) DERIVO LE EQUAZIONI IN VELOCITÀ

2) TEOREMA DI RIVALS PER LE ACCELERAZIONI

$$\partial c = \partial A + \overline{w} \times (c-A) - w^2(c-A)$$

CENTRO DI ISTANTANEA ROTAZIONE

$$\dot{y}_{c} = \dot{\beta} \hat{k} \times |cP| \hat{c} = \beta |cP| \hat{s} \rightarrow |cP| = \frac{\dot{y}_{c}}{\dot{\beta}}$$

DISTANZA DEL CIR RISPETTO A C

VB 2