

LECTURE 8

- DATA QUALITY PROBLEMS
 - NOISE
 - OUTLIER
 - MISSING VALUES
 - DUPLICATE DATA
- WHAT IS DATA PREPROCESSING?
- WHY DATA PREPROCESSING?
- MEASURE OF DATA QUALITY
- MAJOR TASKS IN DATA PREPROCESSING
- DATA CLEANING

DATA QUALITY

- WHAT KINDS OF DATA QUALITY PROBLEMS?
- HOW CAN WE DETECT PROBLEMS WITH THE DATA?
- WHAT CAN WE DO ABOUT THESE PROBLEMS?
- EXAMPLES OF DATA QUALITY PROBLEMS:
 - NOISE AND OUTLIERS
 - MISSING VALUES
 - DUPLICATE DATA

NOISE

- NOISE REFERS TO MODIFICATION OF ORIGINAL VALUES
 - EXAMPLES: DISTORTION OF A PERSON'S VOICE WHEN TALKING ON A POOR PHONE AND "SNOW" ON TELEVISION SCREEN

Two Sine Waves

Two Sine Waves + Noise

OUTLIERS

• OUTLIERS ARE DATA OBJECTS WITH CHARACTERISTICS THAT ARE CONSIDERABLY DIFFERENT THAN MOST OF THE OTHER DATA OBJECTS IN THE DATA SET

MISSING VALUES

- REASONS FOR MISSING VALUES
 - INFORMATION IS NOT COLLECTED
 (E.G., PEOPLE DECLINE TO GIVE THEIR AGE AND WEIGHT)
 - ATTRIBUTES MAY NOT BE APPLICABLE TO ALL CASES (E.G., ANNUAL INCOME IS NOT APPLICABLE TO CHILDREN)
- HANDLING MISSING VALUES
 - ELIMINATE DATA OBJECTS
 - ESTIMATE MISSING VALUES
 - IGNORE THE MISSING VALUE DURING ANALYSIS
 - REPLACE WITH ALL POSSIBLE VALUES (WEIGHTED BY THEIR PROBABILITIES)

DUPLICATE DATA

- DATA SET MAY INCLUDE DATA OBJECTS THAT ARE DUPLICATES, OR ALMOST DUPLICATES OF ONE ANOTHER
 - MAJOR ISSUE WHEN MERGING DATA FROM HETEROGEOUS SOURCES
- EXAMPLES:
 - SAME PERSON WITH MULTIPLE EMAIL ADDRESSES
- DATA CLEANING
 - PROCESS OF DEALING WITH DUPLICATE DATA ISSUES

WHAT IS PREPROCESSING?

• DATA PREPROCESSING DESCRIBES ANY TYPE OF PROCESSING PERFORMED ON <u>RAW DATA</u> TO PREPARE IT FOR ANOTHER PROCESSING PROCEDURE.

 COMMONLY USED AS A PRELIMINARY <u>DATA MINING</u> PRACTICE, DATA PREPROCESSING TRANSFORMS THE DATA INTO A FORMAT THAT WILL BE MORE EASILY AND EFFECTIVELY PROCESSED FOR THE PURPOSE OF THE USER

WHY DATA PREPROCESSING?

- DATA IN THE REAL WORLD IS DIRTY
 - INCOMPLETE: LACKING ATTRIBUTE VALUES, LACKING
 CERTAIN ATTRIBUTES OF INTEREST, OR CONTAINING ONLY
 AGGREGATE DATA
 - NOISY: CONTAINING ERRORS OR OUTLIERS
 - INCONSISTENT: CONTAINING DISCREPANCIES IN CODES OR NAMES
- NO QUALITY DATA, NO QUALITY MINING RESULTS!
 - QUALITY DECISIONS MUST BE BASED ON QUALITY DATA
 - DATA WAREHOUSE NEEDS CONSISTENT INTEGRATION OF QUALITY DATA

DATA QUALITY

- Measures for data quality: A multidimensional view
 - Accuracy: correct or wrong, accurate or not
 - Completeness: not recorded, unavailable, ...
 - Consistency: some modified but some not, dangling, ...
 - Timeliness: timely update?
 - Believability: how trustable the data are correct?
 - Interpretability: how easily the data can be understood?

MAJOR TASKS IN DATA PREPROCESSING

DATA CLEANING

 FILL IN MISSING VALUES, SMOOTH NOISY DATA, IDENTIFY OR REMOVE OUTLIERS, AND RESOLVE INCONSISTENCIES

DATA INTEGRATION

INTEGRATION OF MULTIPLE DATABASES, DATA CUBES, OR FILES

DATA TRANSFORMATION

NORMALIZATION AND AGGREGATION

DATA REDUCTION

 OBTAINS REDUCED REPRESENTATION IN VOLUME BUT PRODUCES THE SAME OR SIMILAR ANALYTICAL RESULTS

DATA DISCRETIZATION

 PART OF DATA REDUCTION BUT WITH PARTICULAR IMPORTANCE, ESPECIALLY FOR NUMERICAL DATA

FORMS OF DATA PREPROCESSING

Data Integration

Data Transformation

-2, 32, 100, 59, 48

-0.02, 0.32, 1.00, 0.59, 0.48

Data Reduction

DATA CLEANING

- DATA CLEANING TASKS
 - FILL IN MISSING VALUES
 - IDENTIFY OUTLIERS AND SMOOTH OUT NOISY DATA
 - CORRECT INCONSISTENT DATA

MISSING DATA

- DATA IS NOT ALWAYS AVAILABLE
 - E.G., MANY TUPLES HAVE NO RECORDED VALUE FOR SEVERAL ATTRIBUTES, SUCH AS CUSTOMER INCOME IN SALES DATA
- MISSING DATA MAY BE DUE TO
 - EQUIPMENT MALFUNCTION
 - INCONSISTENT WITH OTHER RECORDED DATA AND THUS DELETED
 - DATA NOT ENTERED DUE TO MISUNDERSTANDING
 - CERTAIN DATA MAY NOT BE CONSIDERED IMPORTANT AT THE TIME OF ENTRY
 - NOT REGISTER HISTORY OR CHANGES OF THE DATA
- MISSING DATA MAY NEED TO BE INFERRED.

MISSING DATA EXAMPLE BANK ACCT TOTALS - HISTORICAL

Name	SSN	Address	Phone #	Date	Acct Total
John Doe	111-22-3333	1 Main St	111-222-3333	2/12/1999	2200.12
		Bedford, Ma			
John W. Doe		Bedford, Ma		7/15/2000	12000.54
John Doe	111-22-3333			8/22/2001	2000.33
James Smith	222-33-4444	2 Oak St	222-333-4444	12/22/2002	15333.22
		Boston, Ma			
Jim Smith	222-33-4444	2 Oak St	222-333-4444		12333.66
		Boston, Ma			
Jim Smith	222-33-4444	2 Oak St	222-333-4444		
		Boston, Ma			

HOW SHOULD WE HANDLE THIS?

HOW TO HANDLE MISSING DATA?

- IGNORE THE TUPLE: USUALLY DONE WHEN CLASS LABEL IS MISSING
 (ASSUMING THE TASKS IN CLASSIFICATION—NOT EFFECTIVE WHEN THE
 PERCENTAGE OF MISSING VALUES PER ATTRIBUTE VARIES CONSIDERABLY.
- FILL IN THE MISSING VALUE MANUALLY: TEDIOUS + INFEASIBLE?
- USE A GLOBAL CONSTANT TO FILL IN THE MISSING VALUE: E.G., "UNKNOWN",
 A NEW CLASS?!
- USE THE ATTRIBUTE MEAN TO FILL IN THE MISSING VALUE
- USE THE ATTRIBUTE MEAN FOR ALL SAMPLES BELONGING TO THE SAME CLASS
 TO FILL IN THE MISSING VALUE: SMARTER
- USE THE MOST PROBABLE VALUE TO FILL IN THE MISSING VALUE: INFERENCE-BASED SUCH AS BAYESIAN FORMULA OR DECISION TREE

NOISY DATA

- NOISE: RANDOM ERROR OR VARIANCE IN A MEASURED VARIABLE
- INCORRECT ATTRIBUTE VALUES MAY BE DUE TO
 - FAULTY DATA COLLECTION INSTRUMENTS
 - DATA ENTRY PROBLEMS
 - DATA TRANSMISSION PROBLEMS
 - TECHNOLOGY LIMITATION
 - INCONSISTENCY IN NAMING CONVENTION
- OTHER DATA PROBLEMS WHICH REQUIRES DATA CLEANING
 - DUPLICATE RECORDS
 - INCOMPLETE DATA
 - INCONSISTENT DATA

NOISY DATA EXAMPLE BANK ACCT TOTALS - HISTORICAL

Name	SSN	Address	Phone #	Date	Acct Total
John Doe	111-22-3333	1 Main St Bedford, Ma	111-222-3333	2/12/1999	2200.12
John Doe	111-22-3333	1 Main St Bedford, Ma	111-222-3333	2/12/1999	2233.67
James Smith	222-33-4444	2 Oak St Boston, Ma	222-333-4444	12/22/2002	15333.22
James Smith	222-33-4444	2 Oak St Boston, Ma	222-333-4444	12/23/2003	15333000.00

HOW SHOULD WE HANDLE THIS?

HOW TO HANDLE NOISY DATA?

- BINNING METHOD:
 - FIRST SORT DATA AND PARTITION INTO (EQUI-DEPTH) BINS
 - THEN ONE CAN SMOOTH BY BIN MEANS, SMOOTH BY BIN MEDIAN, SMOOTH BY BIN BOUNDARIES, ETC.
- CLUSTERING
 - DETECT AND REMOVE OUTLIERS
- COMBINED COMPUTER AND HUMAN INSPECTION
 - DETECT SUSPICIOUS VALUES AND CHECK BY HUMAN
- REGRESSION
 - SMOOTH BY FITTING THE DATA INTO REGRESSION FUNCTIONS

DISCRETIZATION

- THREE TYPES OF ATTRIBUTES
 - NOMINAL—VALUES FROM AN UNORDERED SET, E.G., COLOR, PROFESSION
 - ORDINAL—VALUES FROM AN ORDERED SET, E.G., MILITARY OR ACADEMIC RANK
 - NUMERIC—REAL NUMBERS, E.G., INTEGER OR REAL NUMBERS
- DISCRETIZATION: DIVIDE THE RANGE OF A CONTINUOUS ATTRIBUTE INTO INTERVALS
 - INTERVAL LABELS CAN THEN BE USED TO REPLACE ACTUAL DATA VALUES
 - REDUCE DATA SIZE BY DISCRETIZATION
 - SUPERVISED VS. UNSUPERVISED
 - SPLIT (TOP-DOWN) VS. MERGE (BOTTOM-UP)
 - DISCRETIZATION CAN BE PERFORMED RECURSIVELY ON AN ATTRIBUTE
 - PREPARE FOR FURTHER ANALYSIS, E.G., CLASSIFICATION

DATA DISCRETIZATION METHODS

- TYPICAL METHODS: ALL THE METHODS CAN BE APPLIED RECURSIVELY
 - BINNING
 - TOP-DOWN SPLIT, UNSUPERVISED
 - HISTOGRAM ANALYSIS
 - TOP-DOWN SPLIT, UNSUPERVISED
 - CLUSTERING ANALYSIS (UNSUPERVISED, TOP-DOWN SPLIT OR BOTTOM-UP MERGE)
 - DECISION-TREE ANALYSIS (SUPERVISED, TOP-DOWN SPLIT)
 - CORRELATION (E.G., χ^2) ANALYSIS (UNSUPERVISED, BOTTOM-UP MERGE)

SIMPLE DISCRETIZATION METHODS: BINNING

- EQUAL-WIDTH (DISTANCE) PARTITIONING:
 - IT DIVIDES THE RANGE INTO N INTERVALS OF EQUAL SIZE: UNIFORM GRID
 - IF A AND B ARE THE LOWEST AND HIGHEST VALUES OF THE ATTRIBUTE, THE WIDTH OF INTERVALS WILL BE: W = (B A)/N.
 - THE MOST STRAIGHTFORWARD
 - BUT OUTLIERS MAY DOMINATE PRESENTATION
 - SKEWED DATA IS NOT HANDLED WELL.
- EQUAL-DEPTH (FREQUENCY) PARTITIONING:
 - IT DIVIDES THE RANGE INTO N INTERVALS, EACH CONTAINING APPROXIMATELY SAME NUMBER OF SAMPLES
 - GOOD DATA SCALING
 - MANAGING CATEGORICAL ATTRIBUTES CAN BE TRICKY.

BINNING METHODS FOR DATA SMOOTHING

- * SORTED DATA FOR PRICE (IN DOLLARS): 4, 8, 9, 15, 21, 21, 24, 25, 26, 28, 29, 34
- * PARTITION INTO (EQUI-WIDTH) BINS:
 - BIN 1 (4-14): 4, 8, 9
 - BIN 2(15-25): 15, 21, 21, 24
 - BIN 3(25-34): 25, 26, 28, 29, 34
- * SMOOTHING BY BIN MEANS:
 - BIN 1: 7, 7, 7
 - BIN 2: 20, 20, 20, 20
 - BIN 3: 28, 28, 28, 28, 28
- * SMOOTHING BY BIN BOUNDARIES:
 - BIN 1: 4, 4, 4
 - BIN 2: 15, 24, 24, 24
 - BIN 3: 25, 25, 25, 25, 34

BINNING METHODS FOR DATA SMOOTHING (CONTINUED)

- * SORTED DATA FOR PRICE (IN DOLLARS): 4, 8, 9, 15, 21, 21, 24, 25, 26, 28, 29, 34
- * PARTITION INTO (EQUI-DEPTH) BINS:
 - BIN 1: 4, 8, 9, 15
 - BIN 2: 21, 21, 24, 25
 - BIN 3: 26, 28, 29, 34
- * SMOOTHING BY BIN MEANS:
 - BIN 1: 9, 9, 9, 9
 - BIN 2: 23, 23, 23, 23
 - BIN 3: 29, 29, 29, 29
- * SMOOTHING BY BIN BOUNDARIES:
 - BIN 1: 4, 4, 4, 15
 - BIN 2: 21, 21, 25, 25
 - BIN 3: 26, 26, 26, 34

REFERENCES

- 1. Pang-Ning Tan, Vipin Kumar, Michael Steinbach: Introduction to Data Mining, chapter 2, Pearson, 2012.
- 2. Jiawei Han and Micheline Kamber: **Data Mining Concepts and Techniques, chapter 3,** 3rd Edition, MorganKaufmann Publisher, 2014