# 18-量化与编码

- 1、均匀量化
- 2、对数量化与PCM编码
- 3、时分复用和多路数字电话系统

#### 1、均匀量化

#### (1)量化的基本原理



$$y = Q(x) = y_k, x \in (x_{k-1}, x_k), k = 1, 2, ..., M$$

$$-\frac{y_1}{-\infty} - \frac{y_1}{X_1} - \frac{y_k}{X_{k-1}} - \frac{y_{k+1}}{X_k} - \frac{y_M}{X_{k+1}} - \frac{x}{X_{M-1}} - \frac{x}{X_{M-$$

#### (1) 量化的基本原理



#### (1) 量化的基本原理

■ 量化噪声

$$e_q = x - y_k = x - Q(x)$$
  $x \in (x_{k-1}, x_k), k = 1, 2, ..., M$ 

■ 量化噪声功率

$$N_q = E[e_q^2] = \int_{-\infty}^{\infty} (x - y_k)^2 p(x) dx = \sum_{k=1}^{M} \int_{x_{k-1}}^{x_k} (x - y_k)^2 p(x) dx$$

■ 量化器输入信噪比

$$\frac{S}{N_q} = \frac{E[x^2]}{E[e_q^2]} = \frac{\int_{-\infty}^{\infty} x^2 p(x) dx}{\sum_{k=1}^{M} \int_{x_{k-1}}^{x_k} (x - y_k)^2 p(x) dx}$$

量化间隔相等,且

$$\Delta_{k} = \Delta = \frac{V - (-V)}{M}$$

其中量化器量化范围为[-V,V],量化电平数为 M

量化电平

$$y_k = \frac{x_k + x_{k-1}}{2}$$

- ☀ 量化误差
  - 量化范围内 |x-y<sub>k</sub>|≤0.5Δ
  - > 过载  $|x-y_k| > 0.5\Delta$

ightharpoonup 对于量化电平为M的均匀量化器,若其输入信号在区间[-V,V] 具有均匀概率密度函数 p(x)=1/2V,其量化误差为

$$y_{k} = \frac{x_{k} + x_{k-1}}{2} \qquad \Delta = \frac{2V}{M} \qquad x_{k} = -V + k\Delta, k = 1, 2 \cdots M$$

$$\sigma_{q}^{2} = \int_{-V}^{V} [x - Q(x)]^{2} \left(\frac{1}{2V}\right) dx = \frac{1}{2V} \sum_{k=1}^{M} \int_{x_{k-1}}^{x_{k}} [x - Q(x)]^{2} dx$$

$$= \frac{1}{2V} \sum_{k=1}^{M} \int_{-V + (k-1)\Delta}^{-V + k\Delta} \left(x + V - k\Delta + \frac{\Delta}{2}\right)^{2} dx$$

$$= \frac{1}{2V} \sum_{k=1}^{M} \left\{ \frac{1}{3} \left(x + V - k\Delta + \frac{\Delta}{2}\right)^{3} \right|_{-a + (k-1)\Delta}^{-a + k\Delta} \right\} = \frac{1}{6V} \sum_{k=1}^{M} \left\{ \left(\frac{\Delta}{2}\right)^{3} - \left(-\frac{\Delta}{2}\right)^{3} \right\}$$

$$= \frac{M(\Delta)^{3}}{24V} \xrightarrow{M \cdot \Delta = 2V} \frac{\Delta^{2}}{12}$$

#### ■ 均匀量化器的平均信噪比

$$S = E[x^{2}] = \int_{-\infty}^{\infty} x^{2} p(x) dx = x_{\text{rms}}^{2}$$

$$\left(\frac{S}{N}\right)_{q} = \frac{x_{\text{rms}}^{2}}{\sigma_{q}^{2}} = \frac{V^{2}}{\sigma_{q}^{2}} \times \left(\frac{x_{\text{rms}}}{V}\right)^{2} = \frac{V^{2}}{\sigma_{q}^{2}} \times D^{2} \qquad D = \frac{x_{\text{rms}}}{V}$$

$$\sigma_{q}^{2} = \frac{\Delta^{2}}{12} = \frac{1}{12} \left(\frac{2V}{M}\right)^{2} = \frac{1}{12} \left(\frac{2V}{2^{n}}\right)^{2} = \frac{1}{3} \times 2^{-2n} V^{2}$$

$$\left(\frac{S}{N}\right)_{q} = 3 \times 2^{2n} \times D^{2}$$

$$\left(\frac{S}{N}\right)_{q,dB} = 6.02n + 4.77 + 20 \lg D$$

#### 均匀量化器信噪比特性



【例】分析输入信号为均匀分布与正弦信号时,量化器不过载时允许的最大信号幅度与相应的量化信噪比。

(1)均匀分布,信号分布[-V,V]上,此时信号功率为

$$P_{s} = \frac{1}{2V} \int_{-V}^{V} x^{2} dx = \frac{1}{2V} \times \frac{x^{3}}{3} \Big|_{-V}^{V} = \frac{V^{2}}{3}$$

$$x_{\rm rms} = \sqrt{P_s}, D = \frac{\sqrt{P_s}}{V} = \frac{\sqrt{3}}{3}$$

$$\left(\frac{S}{N}\right)_{q,dB} = 6.02n + 4.77 - 4.77 = 6.02n(dB)$$

(2) 正弦信号,最大幅度[-V,V]上,此时信号平均功率为

$$P_s = \frac{V^2}{2}, x_{\text{rms}} = \frac{\sqrt{2}}{2}V, D = \frac{\sqrt{2}}{2}$$

$$\left(\frac{S}{N}\right)_{q,dB} = 6.02n + 4.77 - 3.01 = 6.02n + 1.76(dB)$$

#### ■ 均匀量化的特点

- 在固定量化间隔  $\Delta = \frac{2V}{M}$  时,均匀量化时的量化噪声功率与输入的抽样值大小无关
- ◆ 如果输入信号在[-V,V]区间上均匀分布,均匀量化信号信噪 比只与量化电平数M有关
- 在固定量化间隔  $\Delta = \frac{2V}{2}$  时,弱信号的量化信噪比较低,而强信号的量化信噪比较高

- 电话信号采用均匀量化主要缺点
  - ▶ 电话信号的动态范围40dB~50dB
    - >发话人的音量、习惯、情绪等因素,约30dB
    - >线路损耗: 25~30dB
  - ▶ 电话信号要求的信噪比应大于28dB
  - 如果采用均匀量化器所需的编码位数*n*≥12
  - ◆ 语音信号取小信号的概率大,而均匀量化时小信号量化 信噪比远远小于大信号

#### 语音信号线性PCM编码时的信噪比特性



# 正弦信号µ律信噪比特性



#### 非均匀量化

根据信号的不同取值区间来确定量化间隔 信号取值较小→Δ较小 信号取值较大→Δ较大

#### ■ 优点:

- 当输入信号具有非均匀分布的概率密度时,量化器输出具有较高的平均量化信噪比
- 量化噪声对大、小信号影响大致相同,改善了小信号时的 信噪比



#### 对数量化及其折线近似

- μ压缩律
  - μ律近似对数压缩特性

$$c(x) = \frac{\ln(1+\mu x)}{\ln(1+\mu)}, 0 \le x \le 1$$



- A压缩律
  - ★ A律对数压缩特性, A=87.6

$$c(x) = \begin{cases} \frac{Ax}{1 + \ln A}, & 0 < x \le \frac{1}{A} \\ \frac{1 + \ln Ax}{1 + \ln A}, & \frac{1}{A} \le x \le 1 \end{cases}$$



|        | У                | ( | )  | 1/8             | 2/             | 8 | 3/8     | 3  | 4/8      | 3 | 5/8       | 6             | /8      | 7/8             | 8 | 1    |
|--------|------------------|---|----|-----------------|----------------|---|---------|----|----------|---|-----------|---------------|---------|-----------------|---|------|
| A=87.6 | <b>x</b> 准<br>确值 | ( | )  | $\frac{1}{128}$ | $\frac{1}{60}$ |   | 1<br>30 | .6 | 1<br>15. | 4 | 1<br>7.79 | $\frac{1}{3}$ | 1<br>93 | $\frac{1}{1.9}$ | 8 | 1    |
|        | <b>x</b> 近似值     | ( | )  | 2-7             | 2-             | 6 | 2-      | 5  | 2-4      |   | 2-3       | 2             | -2      | 2-              | 1 | 20   |
|        | 段号               |   | 1  |                 | 2              | , | 3       | 4  | 1        | 5 | 5         | 6             |         | 7               |   | 8    |
|        | 斜率               |   | 16 | 6               | 16             |   | 8       | 4  | 1        | 2 | 2         | 1             | 0       | .5              | ( | ).25 |



#### ■常用二进码型

| 样值脉冲 极性 | 自然二进码                                                        | 折叠二进码                                                        | 格雷码                                                         | 量化级                                  |
|---------|--------------------------------------------------------------|--------------------------------------------------------------|-------------------------------------------------------------|--------------------------------------|
| 正极性部分   | 1111<br>1110<br>1101<br>1100<br>1011<br>1010<br>1001<br>1000 | 1111<br>1110<br>1101<br>1100<br>1011<br>1010<br>1001<br>1000 | 1000<br>1001<br>1011<br>1010<br>1110<br>1111<br>1101<br>110 | 15<br>14<br>13<br>11<br>10<br>9<br>8 |
| 负极性部分   | 0111<br>0110<br>0101<br>0100<br>0011<br>0010<br>0001<br>0000 | 0000<br>0001<br>0010<br>0011<br>0100<br>0101<br>0110<br>0111 | 0100<br>0101<br>0111<br>0110<br>0010<br>0011<br>0001<br>000 | 76543210                             |

■ 编码位数的选择

$$n = \log_2(M)$$

可懂: 3~4位非线性编码

理想: 7~8位非线性编码

- A律13折线编码规则
  - ☀ 8位码

| 段号 |                | 段落码         |   | 起始值                   | 段内间距 |  |
|----|----------------|-------------|---|-----------------------|------|--|
| 权为 | b <sub>2</sub> | $b_3$ $b_4$ |   | (Δ)                   | 权内内此 |  |
| 1  | 0              | 0           | 0 | 0                     | Δ    |  |
| 2  | 0              | 0           | 1 | 24                    | Δ    |  |
| 3  | 0              | 1           | 0 | 2 <sup>5</sup>        | 2 Δ  |  |
| 4  | 0              | 1           | 1 | 2 <sup>6</sup>        | 4Δ   |  |
| 5  | 1              | 0           | 0 | 2 <sup>7</sup>        | 8Δ   |  |
| 6  | 1              | 0           | 1 | 2 <sup>8</sup>        | 16∆  |  |
| 7  | 1              | 1           | 0 | <b>2</b> <sup>9</sup> | 32∆  |  |
| 8  | 1              | 1           | 1 | 2 <sup>10</sup>       | 64∆  |  |

量化单位=
$$\frac{1}{4096}$$
; 最小量化间隔= $\frac{1}{2048}$ 

| 量化级 | 段内码<br>b <sub>5</sub> b <sub>6</sub> b <sub>7</sub> b <sub>8</sub> | 量化级 | 段内码<br>b <sub>5</sub> b <sub>6</sub> b <sub>7</sub> b <sub>8</sub> |
|-----|--------------------------------------------------------------------|-----|--------------------------------------------------------------------|
| 15  | 1111                                                               | 7   | 0111                                                               |
| 14  | 1110                                                               | 6   | 0110                                                               |
| 13  | 1101                                                               | 5   | 0101                                                               |
| 12  | 1100                                                               | 4   | 0100                                                               |
| 11  | 1011                                                               | 3   | 0011                                                               |
| 10  | 1010                                                               | 2   | 0010                                                               |
| 9   | 1001                                                               | 1   | 0001                                                               |
| 8   | 1000                                                               | 0   | 0000                                                               |

#### 编段落码子流程



#### 编段内码子流程



$$x_i = \begin{cases} 0, i = 1 \\ 2^{i+2}, i > 1 \end{cases}$$

$$D_i = \begin{cases} 1, i = 1 \\ 2^{i-2}, i > 1 \end{cases}$$

- 〔例〕某A律13折线PCM编码器的设计输入范围是[-6 6]V。若采样脉冲幅 度x=-2.4V,设输入信号归一化后的量化器的最小量化间隔 $\Delta$ 为2个量化单位, 1个量化单位为1/4096,量化器的最大分层电平为4096个量化单位。
  - (1) 求编码器的输出码组;
  - (2) 求解码器输出的量化电平
  - (3) 写出对应于对数PCM码组的线性PCM的13位码组。

「解答」 
$$\frac{-2.4V}{6V}$$
 =  $-0.4 \Rightarrow -0.4/(1/4096) = -1638.4$ 个量化单位—819.2 $\Delta$ 

\*编极性码 :: 
$$x = -819.2 \Delta < 0$$
, ::  $b_1 = 0$ 

•编段落码

$$\therefore$$
 | x |= 819.2△ > 2<sup>7</sup> △, ∴ b<sub>2</sub> = 1

$$|x| = 819.2 \Delta > 2^9 \Delta, : b_3 = 1$$

$$|x| = 819.2\Delta < 2^{10}\Delta, |b_4| = 0$$

# 例

#### \*编段内码

>段起始值 
$$x_i = 2^{i+2} \Delta = 512 \Delta$$

>量化间隔 
$$D_i = 2^{i-2} \Delta = 32\Delta$$

- \*输出码字 (01101001)
- \*量化电平 e=-1632-(-1638.4)=6.4个量化单位
- \*量化误差  $\frac{6}{4096} \times 6.4 = 0.009375$ V
- \*13位线性编码0011001100000

#### 3、时分复用和多路数字电话系统

#### ■ TDM基本原理





#### 3、时分复用和多路数字电话系统

■ 时分多路数字电话通信系统组成



# 数字复接等级

|        | 北美,                       | 日本      | 欧洲,中国    |      |  |  |  |  |
|--------|---------------------------|---------|----------|------|--|--|--|--|
|        | 信息速率kb/s                  | 路数      | 信息速率kb/s | 路数   |  |  |  |  |
| 基群     | 1, 544                    | 24      | 2,048    | 30   |  |  |  |  |
| 二次群    | 6,312                     | 96      | 8,448    | 120  |  |  |  |  |
| 三次群    | 32,064或44,736             | 480或672 | 34,368   | 482  |  |  |  |  |
| 四次群    |                           |         | 139,264  | 1920 |  |  |  |  |
| STM-1  | CCITT G.707-G.709 155,520 |         |          |      |  |  |  |  |
| STM-4  | 622,080                   |         |          |      |  |  |  |  |
| STM-16 | 2,488,320                 |         |          |      |  |  |  |  |

# E1

#### ■ 基本特性

话路数目: 30路

抽样频率: 8kHz

● 压扩特性: A=87.6/13折线压扩律,编码8位,输出为折叠二

进制码

时隙数/帧:32

☀ 总传输速率: 8×32×8000=2048kb/s

• 每帧宽度: 1/8000=125μs

#### 课后作业

教材p.261~262

7.7、7.8、7.9、7.12、7.13、7.14、7.16、7.17