NTEGRACIÓN COMPLEJA

Funciones Complejas Período 2022-II

Práctico 5

Ej. 1 Calcular las siguientes integrales:

1.
$$\int_{1}^{2} \left(\frac{1}{t} - i\right)^{2} dt$$

$$3. \int_{-1}^{1} \frac{dt}{t-i}$$

5.
$$\int_0^{2\pi} \frac{ie^{it}}{2e^{it} - 1} dt$$

1.
$$\int_{1}^{2} \left(\frac{1}{t} - i\right)^{2} dt$$
, 3. $\int_{-1}^{1} \frac{dt}{t - i}$ 5. $\int_{0}^{2\pi} \frac{ie^{it}}{2e^{it} - 1} dt$ 7. $\int_{0}^{2\pi} \frac{2e^{it}}{1 + 4e^{2it}} dt$

2.
$$\int_{0}^{\frac{\pi}{6}} e^{2ti} dt$$
.

4.
$$\int_{2}^{3} \frac{3 + i(5 - 2t)}{5 + i(5 - 2t)} dt$$

6.
$$\int_{-\pi/2}^{\pi/2} ie^{it} \sqrt{e^{it}} dt$$

$$2. \int_{0}^{\frac{\pi}{6}} e^{2ti} dt. \qquad 4. \int_{2}^{3} \frac{3 + i(5 - 2t)}{5 + i(5 - 2t)} dt \qquad 6. \int_{-\pi/2}^{\pi/2} i e^{it} \sqrt{e^{it}} dt \qquad 8. \int_{0}^{e^{\pi}} \exp(i \operatorname{Log}(t)) dt$$

Ej. 2 Mostrar que si m y n son enteros, entonces

$$\int_0^{2\pi} e^{im\theta} e^{-in\theta} d\theta = \begin{cases} 0 & \text{si } m \neq n, \\ 2\pi & \text{si } m = n. \end{cases}$$

Ej. 3 Calcular
$$\int_C \frac{z+2}{z} dz$$
, donde C es:

- 1. la semicircunferencia $z=2e^{it},\,t\in[0,\pi],$ 3. la circunferencia $z=2e^{it},\,t\in[0,2\pi].$

- 2. la semicircunferencia $z=2e^{it}, t\in [\pi,2\pi],$ 4. la semicircunferencia $z=2e^{it}, t\in [-\frac{\pi}{2},\frac{\pi}{2}],$

Ej. 4 Sea $\gamma:[0,\pi]\subseteq\mathbb{R}\to\mathbb{C}$ la curva definida por $\gamma(t)=te^{it}$. Evaluar

1.
$$\int_{\gamma} z dz$$
,

2.
$$\int_{\gamma} \overline{z} dz$$
,

1.
$$\int_{\gamma} z dz$$
, 2. $\int_{\gamma} \overline{z} dz$, 3. $\int_{\gamma} |z| dz$,

4.
$$\int_{\gamma} \sqrt{z} dz$$
.

Ej. 5 Sea C la circunferencia $C = \{z \in \mathbb{C} : |z - z_0| = R\}$, recorrida en sentido antihorario. Mostrar que

$$1. \int_C \frac{dz}{z - z_0} = 2\pi i,$$

2.
$$\int_C (z-z_0)^{n-1} dz = 0 \ (n \in \mathbb{Z} - \{0\}).$$

Ej. 6 (Opcional) Sea $w:[a,b]\subseteq\mathbb{R}\to\mathbb{C}$ una función continua. Demostrar que

$$\left| \int_a^b w(t)dt \right| \le \int_a^b |w(t)|dt.$$

Sea $f:U\subseteq\mathbb{C}\to\mathbb{C}$ una función continua y sea $\gamma:[a,b]\subseteq\mathbb{R}\to U\subseteq\mathbb{C}$ una curva suave. Supongamos que M es una cota superior de $|f \circ \gamma|$. Usar el resultado anterior para deducir (la ML inequality) que

$$\left| \int_{\gamma} f(z) dz \right| \leq M \operatorname{Longitud}(\gamma).$$

Ej. 7 Sea C el arco de la circunferencia |z|=2 que yace en el primer cuadrante. Sin calcular la integral, mostrar que

1.
$$\left| \int_C \frac{z-2}{z^4+1} dz \right| \le \frac{4}{15}\pi,$$

$$2. \left| \int_C \frac{dz}{z^2 - 1} \right| \le \frac{1}{3}\pi,$$

$$3. \left| \int_C \frac{z+4}{z^3-1} dz \right| \le \frac{6}{7}\pi.$$

Ej. 8 Sea r un real positivo y $\gamma:[0,\frac{\pi}{4}]\subseteq\mathbb{R}\to\mathbb{C}$ la curva definida por $\gamma(t)=re^{it}$. Verificar que

$$\left| \int_{\gamma} e^{iz^2} dz \right| \le \frac{\pi (1 - e^{-r^2})}{4r}.$$

Ej. 9 Sea $\gamma:[0,\pi]\subseteq\mathbb{R}\to\mathbb{C}$ la curva definida por $\gamma(t)=e^{1+it}$. Verificar que

$$\left| \int_{\gamma} \frac{1}{\operatorname{Log}(z)} dz \right| \le e \operatorname{Ln}(\pi + \sqrt{\pi^2 + 1})$$

Ej. 10 Mostrar, con ayuda de una primitiva, que para todo camino C que vaya de un punto z_1 a un punto z_2 vale

$$\int_C z^n dz = \frac{1}{n+1} (z_2^{n+1} - z_1^{n+1}).$$

Ej. 11 Sea $\gamma:(-\infty,\infty)\subseteq\mathbb{R}\to\mathbb{C}$ definida por $\gamma(t)=t+(1-t)i.$ Mostrar que

$$\int_{\gamma} \frac{1}{z^2 + 4} dz = \frac{1}{2}\pi$$

Ej. 12 Sea C el cuadrado cuyos lados están determinados por las lineas $x=\pm 2, y=\pm 2$ recorrido en sentido antihorario. Calcular las integrales siguientes:

$$1. \int_C \frac{e^{-z}}{z - \frac{i\pi}{2}} dz,$$

2.
$$\int_C \frac{\cos z}{z(z^2+8)} dz$$
, 3. $\int_C \frac{z}{2z+1} dz$, 4. $\int_C \frac{\cosh z}{z^4} dz$.

$$3. \int_C \frac{z}{2z+1} \, dz,$$

4.
$$\int_C \frac{\cosh z}{z^4} \, dz$$

Ej. 13 Hallar el valor de la integral de g(z) a lo largo del circulo |z-i|=2 recorrido en sentido positivo en los casos:

1.
$$g(z) = \frac{1}{z^2 + 4}$$
,

2.
$$g(z) = \frac{1}{(z^2 + 4)^2}$$
.

 $\bf Ej.~14~Sea~\it C$ la circunferencia |z|=3,recorrida en sentido antihorario. Mostrar que si

$$g(w) = \int_C \frac{2z^2 - z - 2}{z - w} dz, \qquad |w| \neq 3,$$

entonces $g(2) = 8\pi i$. ¿Cuánto vale g(w) cuando |w| > 3?

Ej. 15 Sea la circunferencia unidad $z = e^{i\theta}$, $\theta \in [-\pi, \pi]$.

1. Mostrar que para cualquier $a \in \mathbb{R}$ vale:

$$\int_C \frac{e^{az}}{z} \, dz = 2\pi i.$$

2. Escribir la integral anterior en términos de θ para deducir la fórmula de integración

$$\int_0^{\pi} e^{a\cos\theta} \cos(a\sin\theta) \, d\theta = \pi.$$

Ej. 16 Sea C la circunferencia |z|=4, recorrida en sentido antihorario. Mostrar que

$$\int_C \frac{z}{(z+2)(z-1)} dz = 2\pi i.$$

Ej. 17 Haciendo uso de que $4 + \sin^2(\theta)$ es igual a $(2 + i\sin(\theta))(2 - i\sin(\theta))$, calcular:

$$\int_0^{2\pi} \frac{1}{4 + \sin^2(\theta)} d\theta,$$

Ej. 18 Mostrar que

$$\int_0^\infty \frac{\cos(t)}{t^2 + 1} dt = \frac{1}{2e} \pi.$$

Ej. 19 Sea b un número real positivo. Mostrar que

$$\int_{-\infty}^{\infty}e^{-t^2}\cos(2b\pi t)dt=\frac{\sqrt{\pi}}{e^{b^2\pi^2}}.$$

Ej. 20 Sea f entera y supongamos que u(x,y) = Re(f(x+iy)) está acotada superiormente. Mostrar que f es constante. [Hint: Aplicar el Teorema de Liouville a $g(z) = \exp(f(z))$.]

