\mathbf{Ymir}

Contents

Globa	al properties of complex analytic spaces	ļ
1.	Introduction	ļ
2.	Stein spaces	
Biblio	peraphy	,

Global properties of complex analytic spaces

- 1. Introduction
- 2. Stein spaces

Definition 2.1. Let X be a complex analytic space. We say X is holomorphically separable if for any $x, y \in X$ with $x \neq y$, there is $f \in \mathcal{O}_X(X)$ with $f(x) \neq f(y)$.

Here we regard f as a continuous function $X \to \mathbb{C}$. In particular, a holomorphically separable space is Hausdorff.

Definition 2.2. Let X be a complex analytic space. We say X is *holomorphically spreadable* if for any $x \in X$, we can find an open neighbourhood U of x in X such that

$$\{y \in U : f(x) = f(y) \text{ for all } f \in \mathcal{O}_X(X)\} = \{p\}.$$

A holomorphically separable space is clearly holomorphically spreadable.

Definition 2.3. Let X be a complex analytic space. We say X is holomorphically convex if |X| is Hausdorff and for any compact set $K \subseteq X$, the set

$$\hat{K}^X := \left\{ x \in X : |f(x)| \le \sup_{y \in K} |f(y)| \text{ for all } f \in \mathcal{O}_X(X) \right\}$$

is compact.

We say X is weakly holomorphically convex if for any quasi-compact set $K \subseteq X$, the connected components of \hat{K}^X are all quasi-compact.

Proposition 2.4. Let X be a Hausdorff complex analytic space. Consider the following conditions:

- (1) X is holomorphically convex;
- (2) For any sequence $x_i \in X$ $(i \in \mathbb{N})$ without accumulation points, there is $f \in \mathcal{O}_X(X)$ such that $|f(x_i)|$ is unbounded.

Then $(1) \implies (2)$. The converse is true if X is Lindelöf.

PROOF. (1) \implies (2): Recall that a complex analytic space is always first countable. For a first countable Hausdorff space, compactness implies sequential compactness.

(2) \implies (1): For a Lindelöf Hausdorff space, sequential compactness implies compactness. $\hfill\Box$

Definition 2.5. Let X be a complex analytic space. We say X is Stein if it is holomorphically separable and holomorphically convex.

[Stacks]

Bibliography

[Stacks] T. Stacks Project Authors. Stacks Project. http://stacks.math.columbia.edu. 2020.