

# Serial Peripheral Interface Bus SPI

### What is SPI?



- Serial Peripheral Interface Bus
- Developed by Motorola
- Full duplex synchronous serial data link
- Typically used to communicate between MCU and peripherals
- Master/Slave operation
  - One master many slaves

#### Master - Slave



- SCLK: Clock
- MOSI: Master Out Slave In
- MISO: Master In Slave Out
- SS: Slave Select





# **Receive and Send**





# **Communication Details**





MSB first - sample on rising edge of SCLK Master transmits 0x27 slave transmits 0xD3

# SPI ATmega1280







Figure 21-4. SPI Transfer Format with CPHA = 1









Find details in Datasheet Chapter 21

# **Exercise 1**



 Change your 7-segment display driver to use the SPI Bus to load the shiftregister

Use SPI interrupt

## **Exercise 2**



- Find the datasheet for the TC-72
  Temperature sensor on the M1280 board
- Design and implement a driver for the sensor
- Implement:
   void init\_tc72();
   int tc72\_temperature();
- tc72.h and tc72.c