

CHAIN: Enhancing Generalization in Data-Efficient GANs via lips *CH*itz continuity constr*AI* ned Normalization

Yao Ni[†] Piotr Koniusz^{§,†}

†The Australian National University §Data61♥CSIRO

CVPR 2024

Challenges in Data-Efficient GANs:

- Discriminator overfitting.
- Training instability.

Challenges in Data-Efficient GANs:

- Discriminator overfitting.
- Training instability.

Advantages of Batch Normalization (BN):

- aids generalization by aligning training and test distributions and reducing sharpness of loss landscape.
- stabilizes training process by mitigating internal covariate shift.

Challenges in Data-Efficient GANs:

- Discriminator overfitting.
- Training instability.

Advantages of Batch Normalization (BN):

- aids generalization by aligning training and test distributions and reducing sharpness of loss landscape.
- stabilizes training process by mitigating internal covariate shift.

BN appears to benefit the discriminator, but is rarely used as it impairs performance.

Challenges in Data-Efficient GANs:

- Discriminator overfitting.
- Training instability.

Advantages of Batch Normalization (BN):

- aids generalization by aligning training and test distributions and reducing sharpness of loss landscape.
- stabilizes training process by mitigating internal covariate shift.

BN appears to benefit the discriminator, but is rarely used as it impairs performance.

Goal: Integrate BN into discriminator for improved generalization.

Lemma 3.1 (GAN generalization error on function set):

$$\epsilon_{\text{gan}} \leq 2 d_{\mathcal{H}}(\mu, \hat{\mu}_n) + 2 d_{\mathcal{H}}(\nu_n^*, \hat{\nu}_n)$$

 $d_{\mathcal{H}}$: discrepancy over discriminator set. $\mu, \hat{\mu}_n$: unseen/seen real data. $\nu_n^*, \hat{\nu}_n$: ideal/seen fake.

Lemma 3.1 (GAN generalization error on function set):

$$\epsilon_{\text{gan}} \leqslant 2 d_{\mathcal{H}}(\mu, \hat{\mu}_n) + 2 d_{\mathcal{H}}(\nu_n^*, \hat{\nu}_n)$$

 $d_{\mathcal{H}}$: discrepancy over discriminator set. $\mu, \hat{\mu}_n$: unseen/seen real data. $\nu_n^*, \hat{\nu}_n$: ideal/seen fake.

 $\nu_n^* \approx \hat{\mu}_n \implies$ Lowering real/fake discrepancy aids generalization

Lemma 3.1 (GAN generalization error on function set):

$$\epsilon_{\text{gan}} \leq 2 \frac{d_{\mathcal{H}}(\mu, \hat{\mu}_n)}{d_{\mathcal{H}}(\nu_n^*, \hat{\nu}_n)} + 2 \frac{d_{\mathcal{H}}(\nu_n^*, \hat{\nu}_n)}{d_{\mathcal{H}}(\nu_n^*, \hat{\nu}_n)}$$

 $d_{\mathcal{H}}$: discrepancy over discriminator set. $\mu, \hat{\mu}_n$: unseen/seen real data. $\nu_n^*, \hat{\nu}_n$: ideal/seen fake.

 $\nu_n^* pprox \hat{\mu}_n \implies$ Lowering real/fake discrepancy aids generalization

 μ is inaccessible. We need further analyze $d_{\mathcal{H}}(\mu, \hat{\mu}_n)$.

Prop 3.1 (GAN generalization error on neural network):

$$\epsilon_{\text{gan}}^{\text{nn}} \leqslant 2\omega \left(\| \nabla_{\boldsymbol{\theta}_d} \|_2 + \| \widetilde{\nabla}_{\boldsymbol{\theta}_d} \|_2 \right) + 4R \left(\frac{\| \boldsymbol{\theta}_d \|_2^2}{\omega^2}, \frac{1}{n} \right) + \omega^2 \left(|\lambda_{\text{max}}^{\boldsymbol{H}}| + |\lambda_{\text{max}}^{\widetilde{\boldsymbol{H}}}| \right)$$

 $\epsilon_{\mathrm{gan}}^{\mathrm{nn}}$: ϵ_{gan} on neural networks, $\omega > 0$. $\boldsymbol{\theta}_d$: D's weights. $\boldsymbol{\nabla}_{\!\boldsymbol{\theta}_d}, \lambda_{\mathrm{max}}^{\boldsymbol{H}}$: real gradient, top Hessian eigenvalue. $\widetilde{\boldsymbol{\nabla}}_{\!\boldsymbol{\theta}_d}, \lambda_{\mathrm{max}}^{\boldsymbol{H}}$: fake versions. R: related to $\|\boldsymbol{\theta}_d\|_2^2$ and data size n.

Prop 3.1 (GAN generalization error on neural network):

$$\epsilon_{\text{gan}}^{\text{nn}} \leqslant 2\omega \left(\|\nabla_{\boldsymbol{\theta}_d}\|_2 + \|\widetilde{\nabla}_{\boldsymbol{\theta}_d}\|_2 \right) + 4R \left(\frac{\|\boldsymbol{\theta}_d\|_2^2}{\omega^2}, \frac{1}{n} \right) + \omega^2 \left(|\lambda_{\text{max}}^{\boldsymbol{H}}| + |\lambda_{\text{max}}^{\widetilde{\boldsymbol{H}}}| \right)$$

 $\epsilon_{\rm gan}^{\rm nn}$: $\epsilon_{\rm gan}$ on neural networks, $\omega > 0$. $\boldsymbol{\theta}_d$: D's weights. $\boldsymbol{\nabla}_{\boldsymbol{\theta}_d}, \lambda_{\rm max}^{\boldsymbol{H}}$: real gradient, top Hessian eigenvalue. $\widetilde{\boldsymbol{\nabla}}_{\boldsymbol{\theta}_d}, \lambda_{\rm max}^{\boldsymbol{H}}$: fake versions. R: related to $\|\boldsymbol{\theta}_d\|_2^2$ and data size n.

Reducing weight gradient norms of discriminator aids generalization.

Better generalization on GANs requires:

- Lowering real-fake discrepancy
- Reducing weight gradient norms of discriminator

Better generalization on GANs requires:

- Lowering real-fake discrepancy
- Reducing weight gradient norms of discriminator

Motivation of BN

Better generalization on GANs requires:

- Lowering real-fake discrepancy
- Reducing weight gradient norms of discriminator

Motivation of BN

Applying BN separately on real/fake batches

Better generalization on GANs requires:

- Lowering real-fake discrepancy
- Reducing weight gradient norms of discriminator

Motivation of BN

Applying BN separately on real/fake batches

Better generalization on GANs requires:

- Lowering real-fake discrepancy
- Reducing weight gradient norms of discriminator

Motivation of BN

Applying BN **separately** on real/fake batches reduces the fake-real discrepancy via standardization.

Better generalization on GANs requires:

- Lowering real-fake discrepancy
- Reducing weight gradient norms of discriminator

Motivation of BN

Applying BN **separately** on real/fake batches reduces the fake-real discrepancy via standardization.

But incorporating BN risks gradient explosion issues.

Methods: Gradient Issues of BN

Linear transformation: Y = AW

Standardization in BN: Centering: $\overset{c}{m{Y}} = m{Y} - m{\mu}$

Scaling: $\mathbf{\mathring{Y}} = \mathbf{\mathring{Y}}/\boldsymbol{\sigma}$.

Methods: Gradient Issues of BN

Linear transformation: Y = AW

Standardization in BN: Centering: $\overset{c}{m{Y}} = m{Y} - m{\mu}$

Scaling: $\mathbf{\mathring{Y}} = \mathbf{\mathring{Y}}/\boldsymbol{\sigma}$.

Theorem 3.1 (Issue in centering, similarity dropping causes feature divergence):

$$\mathbb{E}_{\boldsymbol{y}_1,\boldsymbol{y}_2}\big[\cos(\boldsymbol{y}_1,\boldsymbol{y}_2)]\geqslant \mathbb{E}_{\boldsymbol{\hat{y}}_1,\boldsymbol{\hat{y}}_2}\big[\cos(\boldsymbol{\hat{y}}_1,\boldsymbol{\hat{y}}_2)\big]=0$$

 $y_1, \overset{c}{y}_1$: pre- & post-centering features. Features similar in early layers diverge in later layers.

Methods: Gradient Issues of BN

Linear transformation: Y = AW

Standardization in BN: Centering: $\overset{c}{m{Y}} = m{Y} - m{\mu}$

Scaling: $\mathbf{\mathring{Y}} = \mathbf{\mathring{Y}}/\boldsymbol{\sigma}$.

Theorem 3.1 (Issue in centering, similarity dropping causes feature divergence):

$$\mathbb{E}_{\boldsymbol{y}_1,\boldsymbol{y}_2}\big[\cos(\boldsymbol{y}_1,\boldsymbol{y}_2)] \geqslant \mathbb{E}_{\boldsymbol{\hat{y}}_1,\boldsymbol{\hat{y}}_2}\big[\cos(\boldsymbol{\hat{y}}_1,\boldsymbol{\hat{y}}_2)\big] = 0$$

 $y_1, \overset{c}{y}_1$: pre- & post-centering features. Features similar in early layers diverge in later layers.

Theorem 3.2 (Issue in scaling, unbounded Lipschitz causes gradient explosion):

$$\left\|\operatorname{diag}\left(\frac{1}{\sigma}\right)\right\|_{\operatorname{lc}} = \frac{1}{\sigma_{\min}}$$

Lipschitz constant (lc) is large when $\sigma_{\min} = \min_c \sigma_c$, is small.

Method: CHAIN replaces centering/scaling with 0MR/ARMS

mean μ and root mean square ψ :

$$\mu_c = \frac{1}{B \times H \times W} \sum_{b,h,w} Y_{b,c,h,w}$$

$$\psi_c = \sqrt{\left(\frac{1}{B \times H \times W} \sum_{b,h,w} Y_{b,c,h,w}^2\right) + \epsilon}$$

Method: CHAIN replaces centering/scaling with 0MR/ARMS

mean μ and root mean square ψ :

$$\mu_c = \frac{1}{B \times H \times W} \sum_{b,h,w} Y_{b,c,h,w}$$

$$\psi_c = \sqrt{\left(\frac{1}{B \times H \times W} \sum_{b,h,w} Y_{b,c,h,w}^2\right) + \epsilon}$$

0-mean regularization:

$$\ell^{\text{OMR}}(\boldsymbol{Y}) = \lambda \cdot p \cdot \|\boldsymbol{\mu}\|_2^2$$

Pytorch-style pseudo code for CHAIN_{batch}

```
# Y:B \times d \times H \times W size; lbd:hyperparameter \lambda def CHAIN_batch(Y, p, lbd, eps=1e-5): reg=Y.mean([0,2,3]).square().sum()*(p*lbd)
```

 $\psi_{\min} = \min_c \psi_c$. $\epsilon = 10^{-5}$. λ : a hyperparameter. $p \in [0, 1]$ controls ℓ^{OMR} and Bernoulli mask $M \sim \mathcal{B}(p)$

Method: CHAIN replaces centering/scaling with 0MR/ARMS

mean μ and root mean square ψ :

$$\mu_c = \frac{1}{B \times H \times W} \sum_{b,h,w} Y_{b,c,h,w}$$

$$\psi_c = \sqrt{\left(\frac{1}{B \times H \times W} \sum_{b,h,w} Y_{b,c,h,w}^2\right) + \epsilon}$$

0-mean regularization:

$$\ell^{\text{OMR}}(\boldsymbol{Y}) = \lambda \cdot p \cdot \|\boldsymbol{\mu}\|_2^2$$

Adaptive RMS normalization:

$$\begin{aligned} & \text{ARMS}(\boldsymbol{Y}) = (1 - \boldsymbol{M}) \odot \boldsymbol{Y} + \boldsymbol{M} \odot \frac{\boldsymbol{Y}}{\boldsymbol{\psi}} \cdot \psi_{\text{min}} \\ & \psi_{\text{min}} = \text{min}_c \psi_c. \ \epsilon = 10^{-5}. \ \lambda: \ \text{a hyperparameter.} \ p \in [0, 1] \ \text{controls} \ \ell^{\text{OMR}} \ \text{and Bernoulli} \\ & \text{mask} \ \boldsymbol{M} \sim \mathcal{B}(p) \end{aligned}$$

Pytorch-style pseudo code for CHAIN_{batch}

```
# Y:B \times d \times H \times W size: lbd:hyperparameter \lambda
def CHAIN_batch(Y, p, lbd, eps=1e-5):
  reg=Y.mean([0,2,3]).square().sum()*(p*lbd)
 M= (torch.rand(*Y.shape[:2], 1, 1)<p)*1.0
 psi_s=Y.square().mean([0,2,3],keepdim=True)
 psi = (psi_s + eps).sqrt()
 psi_min = psi.min().detach()
  Y_{arms} = (1 - M) * Y + M * (Y/psi*psi_min)
  return Y_arms, req
```

$$\|\Delta \boldsymbol{y}_{c}\|_{2}^{2} \leq \|\Delta \dot{\boldsymbol{y}}_{c}\|_{2}^{2} \left(\frac{(1-p)\psi_{c}+p\psi_{\min}}{\psi_{c}}\right)^{2} - \frac{2(1-p)p\psi_{\min}}{B\psi_{c}} (\Delta \dot{\boldsymbol{y}}_{c}^{T} \boldsymbol{\check{y}}_{c})^{2}$$
$$\|\Delta \boldsymbol{w}_{c}\|_{2}^{2} \leq \lambda_{\max}^{2} \|\Delta \boldsymbol{y}_{c}\|_{2}^{2}$$

 $\Delta y_c, \Delta \dot{y}_c$: c-th column of gradient for CHAIN input/output Y, \dot{Y} . λ_{\max} : top eigenvalue of A. \check{y}_c : c-th column of $\check{Y} = Y/\psi$. Δw_c : c-th column of grad for W. $p \in [0,1]$

$$\|\Delta \boldsymbol{y}_{c}\|_{2}^{2} \leq \|\Delta \dot{\boldsymbol{y}}_{c}\|_{2}^{2} \left(\frac{(1-p)\psi_{c}+p\psi_{\min}}{\psi_{c}}\right)^{2} - \frac{2(1-p)p\psi_{\min}}{B\psi_{c}} (\Delta \dot{\boldsymbol{y}}_{c}^{T} \check{\boldsymbol{y}}_{c})^{2}$$
$$\|\Delta \boldsymbol{w}_{c}\|_{2}^{2} \leq \lambda_{\max}^{2} \|\Delta \boldsymbol{y}_{c}\|_{2}^{2}$$

 $\Delta \pmb{y}_c, \Delta \dot{\pmb{y}}_c$: c-th column of gradient for CHAIN input/output $\pmb{Y}, \dot{\pmb{Y}}$. λ_{\max} : top eigenvalue of \pmb{A} . $\check{\pmb{y}}_c$: c-th column of $\check{\pmb{Y}} = \pmb{Y}/\psi$. $\Delta \pmb{w}_c$: c-th column of grad for \pmb{W} . $p \in [0,1]$

$$\frac{(1-p)\psi_c + p\psi_{\min}}{\psi_c} \leqslant 1$$

$$\|\Delta \boldsymbol{y}_{c}\|_{2}^{2} \leq \|\Delta \dot{\boldsymbol{y}}_{c}\|_{2}^{2} \left(\frac{(1-p)\psi_{c}+p\psi_{\min}}{\psi_{c}}\right)^{2} - \frac{2(1-p)p\psi_{\min}}{B\psi_{c}} (\Delta \dot{\boldsymbol{y}}_{c}^{T} \boldsymbol{\check{y}}_{c})^{2}$$
$$\|\Delta \boldsymbol{w}_{c}\|_{2}^{2} \leq \lambda_{\max}^{2} \|\Delta \boldsymbol{y}_{c}\|_{2}^{2}$$

 $\Delta \pmb{y}_c, \Delta \dot{\pmb{y}}_c$: c-th column of gradient for CHAIN input/output $\pmb{Y}, \dot{\pmb{Y}}$. λ_{\max} : top eigenvalue of \pmb{A} . $\check{\pmb{y}}_c$: c-th column of $\check{\pmb{Y}} = \pmb{Y}/\psi$. $\Delta \pmb{w}_c$: c-th column of grad for \pmb{W} . $p \in [0,1]$

$$\frac{(1-p)\psi_c + p\psi_{\min}}{\psi_c} \leqslant 1 \quad (\Delta \dot{\boldsymbol{y}}_c^T \check{\boldsymbol{y}}_c)^2 \geqslant 0$$

$$\|\Delta \boldsymbol{y}_{c}\|_{2}^{2} \leq \|\Delta \dot{\boldsymbol{y}}_{c}\|_{2}^{2} \left(\frac{(1-p)\psi_{c}+p\psi_{\min}}{\psi_{c}}\right)^{2} - \frac{2(1-p)p\psi_{\min}}{B\psi_{c}} (\Delta \dot{\boldsymbol{y}}_{c}^{T} \boldsymbol{\check{y}}_{c})^{2}$$
$$\|\Delta \boldsymbol{w}_{c}\|_{2}^{2} \leq \lambda_{\max}^{2} \|\Delta \boldsymbol{y}_{c}\|_{2}^{2}$$

 $\Delta y_c, \Delta \dot{y}_c$: c-th column of gradient for CHAIN input/output Y, \dot{Y} . λ_{\max} : top eigenvalue of A. \check{y}_c : c-th column of $\check{Y} = Y/\psi$. Δw_c : c-th column of grad for W. $p \in [0,1]$

$$\frac{(1-p)\psi_c + p\psi_{\min}}{\psi_c} \leqslant 1 \quad (\Delta \dot{\boldsymbol{y}}_c^T \check{\boldsymbol{y}}_c)^2 \geqslant 0 \Longrightarrow \text{ CHAIN reduces } \|\Delta \boldsymbol{y}_c\|_2 \text{ and } \|\Delta \boldsymbol{w}_c\|_2.$$

Discriminator with CHAIN

$$x \rightarrow B_1 \rightarrow B_2 \rightarrow \cdots \rightarrow B_L \rightarrow \text{head} \rightarrow D \text{ loss}$$

 \boldsymbol{x} : Real image. B_l : l-th block. D: Discriminator.

Discriminator with CHAIN

x: Real image. B_l : l-th block. D: Discriminator. C_S : Convolution in skip branch.

Discriminator with CHAIN

x: Real image. B_l : l-th block. D: Discriminator. C_S : Convolution in skip branch.

x: Real image. B_l : l-th block. D: Discriminator. C_S : Convolution in skip branch. \mathcal{B} : Bernoulli noise. p: Bernoulli probability and ℓ^{0MR} strength. λ : A hyperparameter.

CHAIN: 0MR & ARMS

<u>0-Mean Regularization loss:</u>

$$\ell^{\text{OMR}}(Y) = \lambda \cdot p \cdot ||\boldsymbol{\mu}||_2^2$$

 \underline{A} daptive \underline{R} oot \underline{M} ean \underline{S} quare normalization:

$$ARMS(Y) = (1 - M) \odot Y + M \odot \frac{Y}{\psi} \cdot \psi_{min}$$

 $M \sim \mathcal{B}(p)$. μ, ψ are mean and root mean square of feature map Y.

x: Real image. B_l : l-th block. D: Discriminator. C_S : Convolution in skip branch. \mathcal{B} : Bernoulli noise. p: Bernoulli probability and ℓ^{0MR} strength. λ : A hyperparameter. τ : A predefined threshold. Δ_p : A small value.

Control
$$p$$
: $r(\boldsymbol{x}) = \mathbb{E}[\operatorname{sign}(D(\boldsymbol{x}))], p_{t+1} = p_t + \Delta_p \cdot \operatorname{sign}(r(\boldsymbol{x}) - \tau).$

CHAIN: 0MR & ARMS

<u>0-Mean Regularization loss:</u>

$$\ell^{0MR}(\mathbf{Y}) = \lambda \cdot p \cdot ||\boldsymbol{\mu}||_2^2$$

 $\underline{\mathbf{A}}$ daptive $\underline{\mathbf{R}}$ oot $\underline{\mathbf{M}}$ ean $\underline{\mathbf{S}}$ quare normalization:

$$ARMS(Y) = (1 - M) \odot Y + M \odot \frac{Y}{\psi} \cdot \psi_{min}$$

 $M \sim \mathcal{B}(p)$. μ, ψ are mean and root mean square of feature map Y.

x: Real image. B_l : l-th block. D: Discriminator. C_S : Convolution in skip branch. \mathcal{B} : Bernoulli noise. p: Bernoulli probability and ℓ^{0MR} strength. λ : A hyperparameter. τ : A predefined threshold. Δ_p : A small value.

Control
$$p$$
: $r(\boldsymbol{x}) = \mathbb{E}[\operatorname{sign}(D(\boldsymbol{x}))], p_{t+1} = p_t + \Delta_p \cdot \operatorname{sign}(r(\boldsymbol{x}) - \tau).$

CHAIN is applied separately to real and fake data batches.

Experiments: Analysis of gradient issue in centering

0C: centering. A0C: adaptive centering. On 10% CIFAR-10.

Experiments: Analysis of gradient issue in centering

OC: centering. AOC: adaptive centering. On 10% CIFAR-10. Centering reduces similarity and raises gradient.

Experiments: Analysis of gradient issue in scaling

−LC: without Lipschitz constraint. On 10% CIFAR-10.

Experiments: Analysis of gradient issue in scaling

−LC: without Lipschitz constraint. On 10% CIFAR-10.

CHAIN reduces latent gradients

Experiments: Analysis of gradient issue in scaling

−LC: without Lipschitz constraint. On 10% CIFAR-10.

CHAIN reduces latent gradients while removing LC raises gradient and impairs feature eRank.

Experiments: Analysis of generalization of CHAIN

D(x): discriminator output. On 10% CIFAR-10.

Experiments: Analysis of generalization of CHAIN

D(x): discriminator output. On 10% CIFAR-10.

CHAIN reduces discrepancies among real/fake/testing data

Experiments: Analysis of generalization of CHAIN

D(x): discriminator output. On 10% CIFAR-10.

CHAIN reduces discrepancies among real/fake/testing data and D's weight gradients.

Experiments: Comparison with state of the arts

		CIFAR-10						CIFAR-100					
Method	10%	10% data		20% data		100% data		10% data		20% data		100% data	
	IS↑	tFID↓	IS↑	tFID↓	IS↑	tFID↓	IS↑	tFID↓	IS↑	tFID↓	IS↑	tFID↓	
BigGAN	8.24	31.45	8.74	16.20	9.21	5.48	7.58	50.79	9.94	25.83	11.02	7.86	
+CHAIN	8.63	12.02	8.98	8.15	9.49	4.18	10.04	13.13	10.15	11.58	11.16	6.04	
LeCam+DA	8.81	12.64	9.01	8.53	9.45	4.32	9.17	22.75	10.12	15.96	11.25	6.45	
+CHAIN	8.96	8.54	9.27	5.92	9.52	3.51	10.11	12.69	10.62	9.02	11.37	5.26	
OmniGAN+ADA	7.86	40.05	9.41	27.04	10.24	4.95	8.95	44.65	12.07	13.54	13.07	6.12	
+CHAIN	10.10	6.22	10.26	3.98	10.31	2.22	12.70	9.49	12.98	7.02	13.98	4.02	
Method (FID↓)	Shells	Skul	ls An	imeFac	e Bre	CaHAl	D Mes	sidorS	et1 Po	kemon	ArtPa	inting	
Method (FID)	64 imgs	97 im	igs 12	20 imgs	s 16	52 imgs	40	00 imgs	s 83	3 imgs	1000	imgs	
FastGAN	138.50	97.8	7	54.05	(63.83		38.33	2	15.70	43	.21	
FreGAN	123.75	84.5	8	49.09		57.87		34.61		39.09		43.14	
FastGAN-D _{big}	171.35	165.6	54	76.02		68.63		37.38	4	53.48	43	.04	
+CHAIN	78.62	82.4	7	46.27		58.98		28.76	3	31.94	38	.83	

Experiments: Comparison with state of the arts

Method	2.	5% Image	Net	59	% Imagel	Net	10% ImageNet			
	IS↑	tFID↓	vFID↓	IS↑	tFID↓	vFID↓	IS↑	tFID↓	vFID↓	
BigGAN	8.61	101.62	100.09	6.27	90.32	88.01	12.44	50.75	49.84	
+CHAIN	14.68	30.66	29.32	17.34	21.13	19.95	20.45	14.70	13.84	
ADA	7.93	67.84	66.55	11.56	47.56	46.25	14.82	31.75	30.68	
+CHAIN	16.57	23.01	21.90	19.15	16.14	15.17	22.04	12.91	12.17	

Method (FID↓)		100-shot	Animal Face		
Method (MD)	Obama	GrumpyCat	Panda	Cat	Dog
StyleGAN2	80.20	48.90	34.27	71.71	131.90
+CHAIN	28.72	27.21	9.51	38.93	53.27
AdvAug	52.86	31.02	14.75	47.40	68.28
DA	46.87	27.08	12.06	42.44	58.85
InsGen	32.42	22.01	9.85	33.01	44.93
FakeCLR	26.95	19.56	8.42	26.34	42.02
KDDLGAN	29.38	19.65	8.41	31.89	50.22
AugSelfGAN	26.00	19.81	8.36	30.53	48.19
DA+CHAIN	22.87	17.57	6.93	19.58	30.88

Generated Images and Conclusions

Generated Images and Conclusions

Conclusions:

- CHAIN reduces real-fake discrepancy and discriminator weight gradients, improving generalization.
- CHAIN lowers latent feature gradients in discriminator, enhancing stability.