

# Clifford Tableaus and the Stabilizer Algorithm

#### **Leonard Uscinowicz**

Technical University of Munich

December 20th, 2024



#### **Outline**



- Preliminary Definitions
- Stabilizer Formalism

#### **Pauli Matrixes**



$$I = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \qquad X = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \qquad Y = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix} \qquad Z = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

#### **Products of Pauli matrices:**

$$I^2 = X^2 = Y^2 = Z^2 = I$$

$$IX = XI = X \qquad IY = YI = Y \qquad IZ = ZI = Z$$

$$XY = iZ \qquad YX = -iZ$$

$$YZ = iX \qquad ZY = -iX$$

$$ZX = iY \qquad XZ = -iY$$

[1] Scott Aaronson and Daniel Gottesman. "Improved simulation of stabilizer circuits". In: *Physical Review A—Atomic, Molecular, and Optical Physics* 70.5 (2004), p. 052328

### **Group Theory**



**Group**  $(G,\cdot)$  is a non-empty set G with a binary group multiplication operation "  $\cdot$  " with the properties:

- Closure:  $\forall g_1, g_2 \in G \Longrightarrow g_1 \cdot g_2 \in G$
- **Associativity:**  $\forall g_1, g_2, g_3 \in G \Longrightarrow g_1 \cdot (g_2 \cdot g_3) = (g_1 \cdot g_2) \cdot g_3$
- Identity:  $\exists e \in G$  such that  $\forall g \in G \Longrightarrow e \cdot g = g \cdot e = g$
- Inverse:  $\forall g \in G \Longrightarrow \exists g^{-1} \in G \text{ such that } g \cdot g^{-1} = g^{-1} \cdot g = e$
- [2] Michael A Nielsen and Isaac L Chuang. *Quantum computation and quantum information*. Cambridge university press, 2010

### **Pauli Group**



**Pauli Group**  $\mathcal{P}_n$  is defined as the group of n-qubit Pauli operators. It consists of all tensor products of n Pauli matrices, together with a phase factor of  $\pm 1$  or  $\pm i$ .

$$\mathcal{P}_{1} = \{ \pm I, \pm iI, \pm X, \pm iX, \pm Y, \pm iY, \pm Z, \pm iZ \}$$

$$\mathcal{P}_{n} = \left\{ i^{m} \bigotimes_{j=1}^{n} \sigma_{k_{j}} \middle| m, k_{j} \in \{0, 1, 2, 3\}, \sigma_{0} = I, \sigma_{1} = X, \sigma_{2} = Y, \sigma_{3} = Z \right\}$$

Size of a Pauli Group:  $|\mathcal{P}_n| = 4^{n+1}$ 

[1] Scott Aaronson and Daniel Gottesman. "Improved simulation of stabilizer circuits". In: *Physical Review A—Atomic, Molecular, and Optical Physics* 70.5 (2004), p. 052328

## **Pauli Group Operation**



Given two Pauli operators  $P=i^{m_P}\bigotimes_{j=1}^n P_j$  and  $Q=i^{m_Q}\bigotimes_{j=1}^n Q_j$ , their product, as necessitated by Group Definition, is:

$$P \cdot Q = i^{m_P + m_Q} \bigotimes_{j=1}^n P_j Q_j$$

P commutes with Q if the number of indices j such that  $P_j$  anti-commutes with  $Q_j$  is even.

[1] Scott Aaronson and Daniel Gottesman. "Improved simulation of stabilizer circuits". In: *Physical Review A—Atomic, Molecular, and Optical Physics* 70.5 (2004), p. 052328

### **Group Generators**



A set of l elements  $\{g_i\}_{1 \leq i \leq l}$  generates a group G if every element  $g \in G$  can be written as a product of the generators.

In this case, the group  ${\cal G}$  can be written in terms of its generators:

$$G = \langle g_i \mid i \in \mathbb{N}, 1 \leq i \leq l \rangle$$
 Examples: 
$$\begin{aligned} \mathcal{P}_1 &= \langle X, Z, iI \rangle \\ \langle X \rangle &= \{I, X\} \end{aligned}$$

#### **Outline**



- Preliminary Definitions
- Stabilizer Formalism

# Stabilizer Groups Definitions



- Element  $g \in \mathcal{P}_n$  stabilizes  $|\psi\rangle$  iff  $g |\psi\rangle = |\psi\rangle$ .  $|\psi\rangle$  is eigenstate of g with eigenvalue +1.
- $S \cong$  Subgroup of the Pauli Group  $\mathcal{P}_n$ :  $S \subseteq \mathcal{P}_n$ .
- $V_S =$ Set of n-qubit states stabilized by S:

$$V_S = \{ |\psi\rangle \mid S \subseteq \mathcal{P}_n, \forall g \in S \text{ holds: } g |\psi\rangle = |\psi\rangle \}$$

# Stabilizer Groups Properties



Not just any subgroup S of the Pauli group can be used as the stabilizer for a non-trivial vector space  $V_S$ .

Conditions for S such that  $V_S$  not trivial:

- **Commutativity:**  $\forall g_1, g_2 \in S$  holds:  $g_1g_2 = g_2g_1$
- Strict Identity:  $-I \notin S$ ,  $iI \notin S$ ,  $-iI \notin S$ ,

# Stabilizer Conditions Commutativity Proof



Let  $V_S$  be non-trivial.

Let  $g_1, g_2 \in S$ .

- $\implies$   $g_1$  and  $g_2$  are tensor products of Pauli matrices.
- $\implies$   $g_1$  and  $g_2$  must either commute or anti-commute.

Suppose  $g_1$  and  $g_2$  anti-commute:

$$|\psi
angle = g_1g_2\,|\psi
angle = -g_2g_1\,|\psi
angle = -\,|\psi
angle \quad\Longleftrightarrow\quad |\psi
angle = \vec{0}\quad\Longrightarrow\quad V_S \ \mbox{is trivial}.$$

- $\implies$   $g_1$  and  $g_2$  anti-commuting leads to a contradiction.
- $\Longrightarrow g_1$  and  $g_2$  commute.
- [2] Michael A Nielsen and Isaac L Chuang. *Quantum computation and quantum information*. Cambridge university press, 2010

#### Refernces



- [1] Scott Aaronson and Daniel Gottesman. "Improved simulation of stabilizer circuits". In: *Physical Review A—Atomic, Molecular, and Optical Physics* 70.5 (2004), p. 052328.
- [2] Michael A Nielsen and Isaac L Chuang. *Quantum computation and quantum information*. Cambridge university press, 2010.