The Word Powerful Mathematics The Wo

STEP1 교과서를 정복하는 핵심유형

핵심 01 평행사변형의 뜻과 성질

97. 오른쪽 그림과 같은 평행사변형ABCD에서A,D이 이등분선이BC와 만나는 점을 각각 E, F라고 하자.AB=5cm, AD=7cm일 때, EF의길이를 구하시오.

98. 오른쪽 그림과 같이 평행사변형

 ABCD를 대각선 BD를 따라 점 C가 점

 E에 오도록 접었다. AB, ED의 연장선의

 교점을 F라 하고 AFE = 85°일 때,

 x의 크기를 구하시오.

99. 오른쪽 그림과 같이 평행사변형ABCD에서 두 대각선의 교점을 O라고 11 cm하자. AB=11cm이고 ΔΟΑΒ의둘레의 길이가 26 cm 일 때, 평행사변형ABCD의 두 대각선의 길이의 합을 구하시오.

 100. 오른쪽 그림과 같은 평행사변형

 ABCD에서 AD의 중점을 E라 하고

 BE의 연장선이 CD의 연장선과 만나는

 점을 F라고 하자.

 $\overline{AB} = 8 \, \mathrm{cm}, \ \overline{BC} = 13 \, \mathrm{cm}$ 일 때, \overline{CF} 의 길이를 구하시오.

101. 오른쪽 그림과 같은 평행사변형 ABCD에서 A의 이동분선이 CD와 마나는 저의 F 꼭지저 R에서 AF에

만나는 점을 E, 꼭짓점 B에서 \overline{AE} 에 내린 수선의 발을 F라고 하자.

C = 130°일 때, x의 크기를 구하시오.

핵심 02 평행사변형이 되기 위한 조건

102. 다음 중 ABCD가 평행사변형이 되지 <u>않는</u> 것은?

(단, 점 0는 두 대각선의 교점이다.)

- \bigcirc AB \overline{DC} , AD = BC
- ② $\overline{OA} = \overline{OC}$, $\overline{OB} = \overline{OD}$
- 4 DAC = ACB, ABD = BDC
- $\overline{AD} = \overline{BC}, \quad A + D = 180^{\circ}$

103. 오른쪽 그림에서 □ABCD와 □OCDE는 모두 평행사변형이다. AB=14, BC=18일 때, AF+OF의 길이를 구하시오.

(단, 점 O는 두 대각선의 교점이다.)

104. 오른쪽 그림과 같은 \triangle ABC에서 \overline{AD} 는 A의 이동분선이고, EF $/\!\!/ \overline{BC}$, \overline{ED} $/\!\!/ \overline{AC}$ 이다. $\overline{FC} = 10 \, \mathrm{cm}$ 일 때, \overline{AE} 의 길이를 구하시오.

발전 03 평행사변형이 되기 위한 조건의 응용

105. 오른쪽 그림과 같은

평행사변형 ABCD에서 두 대각선의 교점을 O라 하고

 \overline{OA} , \overline{OB} , \overline{OC} , \overline{OD} 의 중점을 각각 P, Q, R, S라고 하자. 다음 중

- \square PQRS가 평행사변형이 되는 조건으로 가장 알맞은 것은?
- ① 두 쌍의 대변이 각각 평행하다.
- ② 두 쌍의 대변의 길이가 각각 같다.
- ③ 두 쌍의 대각의 크기가 각각 같다.
- ④ 두 대각선이 서로 다른 것을 이등분한다.
- ⑤ 한 쌍의 대변이 평행하고 그 길이가 같다.

106. 오른쪽 그림과 같은 평행사변형
ABCD에서 A, C의 이등분선이
BC, AD와 만나는 점을 각각 E, F라고
하자. AB=8cm, AD=12cm 일 때,
□ AECF의 둘레의 길이를 구하시오.

The Wost Powerful Wethemades The Wost Powerfu

107. 오른쪽 그림과 같은 평행사변형 ABCD에서 BE DF이고, 점 O는 두 대각선 AC, BD의 교접이다.

EAO = 30°, ECO = 36°일 때, AFC의 크기는?

- ① 110°
- ② 112°
- 4 116° 5 118°

③ 114°

109. 오른쪽 그림과 같은 평행사변형 ABCD의 내부의 한 점 P에 대하여 \triangle PAB : \triangle PCD = 5 : 2이다.

ABCD의 넓이가 $112\,\mathrm{cm}^2$ 일 때, ΔPAB 의 넓이를 구하시오.

핵심 04 평행사변형과 넓이

108. 오른쪽 그림과 같은 평행사변형 ABCD의 내부의 한 점 P에 대하여 Δ PAB의 넓이가 $12\,\mathrm{cm}$ 일 때, Δ PCD의 넓이를 구하시오.

110. 오른쪽 그림과 같은 평행사변형 ABCD에서 두 대각선의 교점 O를 지나는 직선이 AB, CD와 만나는 점을 보각 E, F라고 하자. □ABCD의 넓이가 B 76 cm²일 때, △OEB와 △OCF의 넓이의 합을 구하시오.

111. 오른쪽 그림과 같은 평행사변형 ABCD에서 BC와 DC의 연장선 위에 각각 BC= CE, DC= CF가 되도록 두 B점 E, F를 잡았다. △ABO의 넓이가 8 cm²일 때, □BFED의 넓이를 구하시오.

STEP2 실전문제 체화를 위한

시치으첨

크기를 구하시오.

유형 01 평행사변형의 뜻과 성질

112. 오른쪽 그림과 같은 평행사변형 ABCD에서 BAC = 75°, EBC = 24°, CFD = 80°, FCD = 32°일 때, AEB + ACF의

 113. 오른쪽 그림과 같은 평행사변형

 ABCD에서 BE, CF는 각각 B,

 C의 이등분선이고, 점 H는 BA의

 연장선과 CF의 연장선의 교점이다.

 H = 58°일 때, x의 크기를

 구하시오.

114. 오른쪽 그림과 같은 평행사변형 ABCD에서 A와 C의 외각의 이등분선의 교점을 F라고 할 때, AFC의 크기를 구하시오.

 115. 오른쪽 그림과 같은 평행사변형

 ABCD의 두 대각선의 교점을 O라 하고,

 BC의 연장선 위에 BC = BE가 되도록

 점 E를 잡았다. EOA = 90°,

 AEO = OEC = 32일 때. DAC의

크기를 구하시오.

구하시오.

 116. 오른쪽 그림과 같은 평행사변형

 ABCD에서 DE는 D의 이등분선이고 AF DE이다. AB=6cm, AD=10cm일 때, EF의 길이를

유형 02 평행사변형이 되기 위한 조건

117. 오른쪽 그림과 같이

AB= AC=5 cm인 이등변삼각형 ABC에서 AB // RP, AC // QP일 때, AQPR의 둘레의 길이를 구하시오.

118. 오른쪽 그림에서

크기를 구하시오.

ABCD는 평행사변형이고 두 점 H F는 각각 AD, BC의 중점이다. EBF = 34°, EAH = 61°일 때, HGF의

121. 오른쪽 그림의 □ABCD에서

 $AB \slash \overline{DDC}$, $\overline{AD} \slash \overline{BC}$ 이고 네 점 P, Q, R, S는 각 변의 중점이다. \overline{PC} 가 \overline{AQ} , \overline{SQ} 와 만나는 점을 각각 L, M이라

하고 \overline{AR} 가 \overline{SQ} , SC와 만나는 점을 각각 N, O라고 할 때, 평행사변형은 모두 몇 개인지 구하시오.

119. 오른쪽 그림에서

 ΔDBA , ΔEBC , ΔFAC 는 ΔABC 의 세 변을 각각 한 변으로 하는 정삼각형이다. $BAC = 110^{\circ}$ 일 때, DEF의 크기를 구하시오.

유형 03 평행사변형이 되기 위한 조건의 응용

122. 오른쪽 그림과 같이 평행사변형
ABCD의 두 꼭짓점 B, D에서 대각선
AC에 내린 수선의 발을 각각 P, Q라고 B
하자. DPQ = 39°일 때, x의 크기를 구하시오.

120. 좌표평면 위에 세 점 A 0, 0), B(5, 1), C(3, 6)이 주어졌을 때, \square ABCD가 평행사변형이 되도록 하는 점 D의 좌표를 (a, b)라고 하자. 이때 a+b의 값을 구하시오.

(단, 점 D는 제2사분면 위에 있다.)

123. 오른쪽 그림과 같이

 AB=50 cm 인 평행사변형

 ABCD에서 점 P는 점 A에서 점

 B까지 매초 3 cm 의 속력으로, 점

Q는 점 C에서 점 D까지 매초 4cm의 속력으로 움직이고 있다. 점 P가 점 A를 출발한 지 2초 후에 점 Q가 점 C를 출발한다면 AQ $/\!\!\!/ PC$ 가 될 때는 점 Q가 출발한 지 몇 초 후인지 구하시오. The Wost Powerful Wathematics The Wost P

124. 오른쪽 그림과 같이 평행사변형

ABCD에서 B의 이등분선과 ACB의 이등분선의 교점을 E, DAC의 이등분선과 DCA의

이등분선의 교점을 F라고 할 때, 다음 보기에서 옳은 것을 모두 고르시오.

-[보 기]─

¬. AE ∥EC

 \bot AF= \overline{FC}

 \sqsubseteq . AEC = AFC

=. FAC = ECA

127. 오른쪽 그림과 같이

평행사변형 ABCD의 내부에 한 점 P를 잡고. \overline{AP} 의 연장선과 \overline{BC} 의 교점을 Q라고 하자.

 $\triangle PQD = 3\triangle PDAP$

 $\Delta PBC = 18 \, \mathrm{cm}^2$ 일 때, 평행사변형 ABCD의 넓이를 구하시오.

유형 04 평행사변형과 넓이

125. 오른쪽 그림과 같은 평행사변형 ABCD의 내부의 한 점 P에 대하여 $\Delta PAB = 28 \, \text{cm}$, $\Delta PBC = 15 \, \text{cm}^2$ 일 때, △PDB의 넓이는?

② $13 \, \text{cm}^2$

128. 오른쪽 그림과 같이 평행사변형

ABCD에서 $2\overline{AB} = \overline{AD}$, $\overline{FD} = \overline{DC} = \overline{CE}$ 이고 $\triangle ABH = 20 \text{ cm}^2$ 일 때, ΔPEF의 넓이를 구하시오.

 $40 15 \, \text{cm}^2$

 $5 16 \, \text{cm}^2$

129. 오른쪽 그림과 같이

AB=7cm, AD=12cm인 평행사변형 ABCD에서 \overline{AE} 와 \overline{BF} 는 각각 A, B의 이등분선이고 <u>AE</u>와 <u>BF</u>의 교점을 G라고 하자.

 $\Delta GBE = 14 \text{ cm}^2$ 일 때, ABCD의 넓이를 구하시오.

126. 오른쪽 그림과 같은 평행사변형 ABCD에서 AD의 삼등분점을 P, Q라고 하고 BC의 삼등분점을 R, S라고 하자. 평행사변형 ABCD의 B^L 넓이가 45일 때, 색칠한 부분의 넓이를 구하시오.

STEP3 최상위권 굳히기를 위한 최고난도 유형

130. 오른쪽 그림에서

AP = 4 cm, DQ = 7 cm,

ABCD는 평행사변형이고 네 점 A B, C, D에서 직선 l에 내린 수선의 발을 각각 P, R, S, Q라고 하자.

6 cm 7 cm $4 \, \mathrm{cm}$ ₹Q`5 cm R

D

 $CS = 6 \text{ cm}, \overline{PQ} = 2 \text{ cm},$

QR=5cm일 때, □ABCD의 넓이를 구하시오.

131. 오른쪽 그림과 같이

평행사변형 ABCD에서 꼭짓점 A가 점 C에 오도록 EF를 접는 선으로 하여 접었더니 정오각형 CDEFG가 만들어졌다. 이때 x의 크기를 구하시오.

 $\overline{\text{ABCD}}$ 에서 $\overline{\text{CD}}$ 의 중점을 E라 하고, 점 B에서 \overline{AE} 에 내린 수선의 발을 F라고

132. 오른쪽 그림과 같이 평행사변형

하자. FBC = 64°일 때, x의 크기를 구하시오.

133. 오른쪽 그림과 같이

 $\overline{AB} = 4 \text{ cm}, \overline{AD} = 7 \text{ cm},$

AC=10 cm 인 평행사변형

ABCD에서 점 P는 점 B에서 점

 C 까지 BC 위를 움직인다. PAD 의 이등분선이 $\overline{\mathsf{BC}}$ 또는 $\overline{\mathsf{BC}}$ 의 연장선과 만나는 점을 Q라고 할 때, 점 Q가 움직인 거리를 구하시오.

134. 오른쪽 그림과 같이

AD // BC인 사다리꼴 ABCD에서 CD의 중점을 M 점 M에서 \overline{BA} 의 $5 \, \mathrm{cm}$ 연장선에 내린 수선의 발을 E라고 하자. $\overline{AB} = 5 \, \text{cm}$, $EM = 9 \, \text{cm}$ 일 때, ABCD의 넓이를 구하시오.

136. 오른쪽 그림과 같이 합동인 두 평행사변형 ABCD와 CEFG가 있다.

ABC = 60° 이고 $\overline{AB} = 2 \text{ cm}$. BC=4cm일 때, □ABCD와 □BEFG의 넓이의 비를 가장 간단한 자연수의 비로 나타내시오.

(단, 점 D는 CG 위에 있다.)

135. 오른쪽 그림과 같이 평행사변형

ABCD의 네 변 위에 $\overline{AE} = BF$, GF // EH가 되도록 네 점 E, F, G, H를 각각 잡았다. □ABCD의 넓이가 48 cm 일 때.

□EGFH의 넓이를 구하시오.

137. 오른쪽 그림과 같이 평행사변형 A₁B₁C₁D₁의 각 변의 중점을 연결하여 작은 사각형 A₂B₂C₂D₂를 만들었다. 이와 같은 과정을 반복하여 만든 □A₁₀B₁₀C₁₀D₁₀의 넓이가 1 cm²일 때,

 $\square A_1B_1C_1D_1$ 의 넓이를 구하시오.

창의 융합 유형

138. 교내 운동회에서 댄스 동아리회원 0명이 음악에 맞춰 춤을 추기로 하였다. 오른쪽 그림과 같이 운동장 한가운데에 커다란 원을 그리고 그 원의 E에들레를 10등분하는 지점에 회원들을 배치하였다. A 지점과 B 지점 사이의거리와 E 지점과 F 지점 사이의거리를 측정하였더니 각각 am,

bm이었을 때, $\mathbb C$ 지점과 $\mathbb D$ 지점 사이의 거리를 $a,\ b$ 를 사용하여 나타내시오.

139. 다음 그림과 같이 내각의 크기는 각각 같고 변의 길이는 서로 다른 세 종류의 평행사변형 P, Q, R가 각각 1개, 2개, 3개 있다. 이 6개의 평행사변형을 서로 겹치지 않게 빈틈없이 붙여서 넓이가 72인 평행사변형 ABCD를 만든다고 할 때, 물음에 답하시오.

- (1) 평행사변형 ABCD의 서로 다른 두 변의 길이를 각각 구하시오.
- (2) 평행사변형 ABCD의 꼭짓점 A에서 마주보는 변 또는 그 연장선 위에 내린 수선의 발을 각각 l , l_2 라고 할 때, l_1+l_2 의 길이를 구하시오. (단, l_1 l_2)

The Wost Powerful Wathematics The Wost

중단원 TEST

03 평행사변형

1. 오른쪽 그림과 같은 평행사변형

ABCD에서

ADE: EDC = 2:)이고 $B = 57^{\circ}$, AED = 64° 일 때, AEB의 크기는?

① 72°

② 74°

4 78°

⑤ 80°

2. 오른쪽 그림과 같이 평행사변형 ABCD를 대각선 BD를 접는 선으로 하여 점 C가 점 E에 오도록 접었다. BA, DE의 연장선의 교점을 F라 하고 BDC = 35°일 때. AFE의 크기를 구하시오.

3 76°

3. 오른쪽 그림과 같은 평행사변형 ABCD의 두 대각선의 교점 O를 지나는 직선이 \overline{AB} , \overline{CD} 와 만나는 점을 각각 P, Q라고 하자. PB=5cm, $\overline{PO} = 4 \text{ cm}, \overline{DC} = 8 \text{ cm}$ 이고

APO = 90°일 때, $\triangle OCQ$ 의 넓이를 구하시오.

4. 오른쪽 그림과 같은 평행사변형 ABCD에서 PAB = PAD이고 D = 72°, APB = 90°일 때, PBC의 크기를 구하시오.

5. 오른쪽 그림과 같이 좌표평면 위의 네 점 A, B, C, D를 연결하여 만든 평행사변형 ABCD에서 두 점 B, D를 지나는 직선을 그래프로 하는 일차함수의 식을 구하시오.

6. 다음 중 오른쪽 그림의 ABCD가 평행사변형이 되는 조건은?

(단, 점 0는 두 대각선의 교점이다.)

- ① $A = 100^{\circ}$, $B = 100^{\circ}$, $C = 80^{\circ}_{BA}$
- ② AD $/\!\!/ \overline{BC}$, $\overline{AB} = 7 \text{ cm}$, $\overline{DC} = 7 \text{ cm}$
- $\overline{OA} = 6 \text{ cm}, \overline{OB} = 6 \text{ cm}, \overline{OC} = 4 \text{ cm}, \overline{OD} = 4 \text{ cm}$
- 4 A + B = 180°, $\overline{AD} = 5 \text{ cm}$, $\overline{BC} = 5 \text{ cm}$
- \overline{S} C = D, $\overline{AB} = 9 \text{ cm}$, $\overline{CD} = 9 \text{ cm}$

The Wost Powerful Wethemedes The Wost Powerfu

7. 오른쪽 그림과 같은 평행사변형

ABCD에서 AC의 중점을 O라 하고, OCDE가 평행사변형이 되도록 점
E를 잡았다. AB 8 cm, BC=14 cm일 때, FD+FO의 길이를 구하시오.

10. 오른쪽 그림과 같은 평행사변형 ABCD의 대각선 AC 위의 점 P에 대하여 $\Delta PAB = 19 \, \mathrm{cm}$,

 \square ABCD = 86 cm^2 일 때, \triangle PDA의 넓이를 구하시오.

 8. 오른쪽 그림과 같은 평행사변형

 ABCD에서 두 대각선의 교점을 O라하고 BO, DO의 중점을 각각

 E, F라고 할 때, 다음 중 옳지 않은 정은?

 $\overline{AE} = \overline{AF}$

 $\textcircled{4} \ \overline{OE} = \overline{OF}$

 \bigcirc OAE = OCF

11. 오른쪽 그림에서 평행사변형 ABCD의 A 넓이는 100 cm² 이고 ΔPAB = 35 cm²이다. EF // DC, ED // PG일 때, ΔPDE와 ΔPFC의 넓이의 합을 구하시오.

9. 오른쪽 그림과 같이 평행사변형 ABCD의 두 꼭짓점 A, C에서 대각선 BD에 내린 수선의 발을 각각 E, F라고 할 때, 다음 중 옳지 않은 것은?

 $\begin{array}{c}
\sqrt{CE} \\
\sqrt{AF} = \overline{CE}
\end{array}$

 \bigcirc $\overline{AE} = CF$

4 ABD = ADB

 \bigcirc EAF = FCE

12. 오른쪽 그림과 같이 평행사변형 ABCD에서 AD, BC의 중점을 각각 E, F라 하고 □ABFE, □EFCD의 두 대각선의 교점을 각각 P, Q라고 하자. □ABCD의 넓이가 52 cm²일 때, □EPFQ의 넓이를 구하시오.

정답 및 해설

97. 정답 cm

BEA = DAE(엇각)이므로 BAE = BEA

즉 $\triangle ABE는$ 이동변삼각형이므로 BE = AB = 5 (cm)

또. CFD = ADF(엇각)이므로 CDF = CFD

즉 $\triangle DFC$ 는 이등변삼각형이므로 $CF = \overline{CD} = \overline{AB} = 5$ (cm)

이때 $\overline{BC} = AD = 7 \text{ (cm)}, \overline{BF} = \overline{BC} - \overline{CF} = 7 - 5 = 2 \text{ (cm)}$ 이므로

 $\overline{\text{EF}} = \overline{\text{BE}} - \overline{\text{BF}} = 5 - 2 = 3 \text{ (cm)}$

98. 정답 47.5°

FDB = BOC = a(접은 각)

AB // DIC이므로 FBD = BDC = a(엇각)

따라서 Δ FBD에서 $85^{\circ}+$ x+ $x=180^{\circ}$ 이므로

 $2 \quad x = 95^{\circ} \qquad \qquad x = 47.5^{\circ}$

99. 정답 30 cm

△OAB의 둘레의 길이가 26 cm 이므로

 $\overline{OA} + 11 + \overline{OB} = 26$

 $\overline{OA} + \overline{OB} = 15 \text{ (cm)}$

 $\overline{AC} + \overline{BD} = 2\overline{OA} + 2\overline{OB}$

 $= 2 \overline{OA} + \overline{OB}$

 $= 2 \times 15 = 30 \text{ (cm)}$

100. 정답 16 cm

△ABE와 △DFE에서

 $\overline{AE} = \overline{DE}$, A = EDR()었다).

AEB = DEF(맞꼭지각)이므로 ΔABE ΔDFE (ASA 합동)

 $\overline{DF} = \overline{AB} = 8 \text{ (cm)}$

이때 $\overline{CD} = \overline{AB} = 8 \text{ (cm)}$ 이므로

 $\overline{CF} = \overline{CD} + \overline{DF} = 8 + 8 = 16 \text{ (cm)}$

101. 정답 25°

BAD = C = 130°이므로

BAF = $\frac{1}{2}$ BAD = $\frac{1}{2} \times 130^{\circ} = 65^{\circ}$

 $\triangle ABF$ 에서 $ABF = 180^{\circ} - 65^{\circ} - 90^{\circ}) = 25^{\circ}$

ABC + C = 180°이므로 ABC = 180° - 130° = 50°

 $x = ABC - ABF = 50^{\circ} - 25^{\circ} = 25^{\circ}$

102. 정답 ⑤

① 두 쌍의 대변의 길이가 각각 같으므로 평행사변형이다.

② 두 대각선이 서로 다른 것을 이등분하므로 평행사변형이다.

③ 한 쌍의 대변이 평행하고 그 길이가 같으므로 평행사변형이다.

④ 두 쌍의 대변이 각각 평행하므로 평행사변형이다.

따라서 ABCD가 평행사변형이 되지 않는 것은 ⑤이다.

103. 정답 16

 \square AODE에서 \overline{AO} // \overline{ED} , $\overline{OA} = \overline{OC} = \overline{ED}$ 이므로 \square AODE는 평행사변형이다.

즉 $\overline{AF} = \overline{FD}$, $\overline{OF} = \overline{FE}$ 이므로

$$\overline{AF} = \frac{1}{2}\overline{AD} = \frac{1}{2}\overline{BC} = \frac{1}{2} \times 18 = 9$$

$$\overline{OF} = \frac{1}{2}\overline{OE} = \frac{1}{2}\overline{CD} = \frac{1}{2}\overline{AB} = \frac{1}{2} \times 14 = 7$$

$$\overline{AF} + \overline{OF} = 9 + 7 = 16$$

104. 정답 10cm

 $\overline{\mathrm{EF}} \ /\!\!/ \, \overline{\mathrm{DC}}, \ \overline{\mathrm{ED}} \ /\!\!/ \, \overline{\mathrm{EC}}$ 이므로 $\Box \mathrm{EDCF}$ 는 평행사변형이다.

 $\overline{ED} = \overline{FC} = 10 \text{ (cm)}$

ED // ADC이므로 EDA = CAD(엇각)

따라서 EDA = EAD이므로 ΔEDA 는 이등변삼각형이다.

 $\overline{AE} = \overline{ED} = 10 \text{ (cm)}$

105. 정답 ④

 \square ABCD에서 $\overline{OA} = \overline{OC}$, $\overline{OB} = \overline{OD}$ 이므로

$$\overline{OP} = \frac{1}{2}\overline{OA} = \frac{1}{2}\overline{OC} = \overline{OR}, \overline{OQ} = \frac{1}{2}\overline{OB} = \frac{1}{2}\overline{OD} = \overline{OS}$$

따라서 □PQRS는 두 대각선이 서로 다른 것을 이등분하므로 평행사변형이다.

106. 정답 24cm

□ABCD에서 BAD = BCD이므로

$$FAE = \frac{1}{2}$$
 $BAD = \frac{1}{2}$ $BCD = ECF$

AEB = FAE(엇각), CFD = ECF(엇각)이므로

AEB = CFD

 $AEC = 180^{\circ} - AEB = 180^{\circ} - CFD = CFA$

따라서 □AECF는 두 쌍의 대각의 크기가 각각 같으므로 평행사변형이다.

 $\triangle ABE에서$ BAE = BEA이므로 $\overline{BA} = \overline{BE}$

이때 $B = 60^{\circ}$ 이므로 $\triangle ABE$ 는 정삼각형이다.

 $\overline{BE} = \overline{AE} = \overline{AB} = 8 \text{ (cm)}$ 이므로

 $\overline{EC} = \overline{BC} - \overline{BE} = 12 - 8 = 4 \text{ (cm)}$

따라서 $\overline{AF} = \overline{EC} = 4 \text{ (cm)}, \overline{FC} = \overline{AE} = 8 \text{ (cm)}$ 이므로

(□AECF의 둘레의 길이)=8+4+8+4=24(cm)

107. 정답 ③

 \square ABCD는 평행사변형이므로 $\overline{OA} = \overline{OC}$, $\overline{OB} = \overline{OD}$

이때 $\overline{BE} = \overline{DF}$ 이므로

The Most Powerful Mathematics The Mo

The Word Powerful Mathematics The Wo

OE $\overline{OB} - BE = OD - \overline{DF} = \overline{OF}$

즉 AECF는 두 대각선이 서로 다른 것을 이등분하므로 평행사변형이다.

$$\triangle$$
AEC에서 $AEC=180^{\circ}-30^{\circ}+36^{\circ})=114^{\circ}$ 이므로 $AFC=AEC=114^{\circ}$

108. 정답 15cm

 $\square ABCD = 9 \times 6 = 54 \text{ cm}^2$)이므로

$$\triangle PAB + \triangle PCD = \frac{1}{2} \Box ABCD = \frac{1}{2} \times 54 = 27 (cm^2)$$

 $\triangle PCD = 27 - \triangle PAB = 27 - 12 = 15 (cm^2)$

109. 정답 40 cm²

$$\Delta PAB + \Delta PCD = \frac{1}{2} \Box ABCD = \frac{1}{2} \times 112 = 56 \text{ (cm}^2\text{)}$$

이때 ΔPAB : ΔPCD = 5 : 2이므로

$$\Delta PAB = \frac{5}{7} \times 56 = 40 \, (cm^2)$$

110. 정답 19 cm²

 Δ OAE와 Δ OCF에서

 $\overline{OA} = \overline{OC}$, EAO = FCQ() 어구), AOE = COF() 맞꼭지각) 이므로

ΔΟΑΕ ΔΟCF(ASA 합동)

따라서 $\triangle OAE = \triangle OCF$ 이므로

 $\triangle OEB + \triangle OCF = \triangle OEB + \triangle OAE = \triangle OAB$

$$= \frac{1}{4} \square ABCD = \frac{1}{4} \times 76 = 19 (cm^2)$$

111. 정답 64 cm²

 $\triangle ABO = 8 \text{ cm}^2$ 이므로

 $\triangle BCD = 2\triangle ABO = 2 \times 8 = 16 \text{ (cm}^2\text{)}$

이때 $\overline{BC} = \overline{CE}$, $\overline{DC} = CF$ 이므로 $\square BFED$ 는 평행사변형이다.

 \square BFED = $4\triangle$ BCD = $4\times16 = 64$ (cm²)

112. 정답 104°

$$\triangle$$
EBC에서 $AEB = 24^{\circ} + 37^{\circ} = 61^{\circ}$

$$AEB + ACF = 61^{\circ} + 43^{\circ} = 104^{\circ}$$

113. 정답 148°

$$ABC + BCD = 180$$
이므로 $GBC + GCB = 90^{\circ}$

$$BGC = 90^{\circ}$$

HGB = 90°이므로 △HBG에서

$$HGB = 180^{\circ} - (58^{\circ} + 90^{\circ}) = 32^{\circ}$$

$$x = 180^{\circ} - 32^{\circ} = 148^{\circ}$$

114. 정답 90°

$$DAF = a$$
라고 하면 $BAD = 2$ a 이므로

ADC = DCE =
$$180^{\circ} - 2$$
 여었다)

$$DCF = \frac{1}{2}$$
 $DCE = \frac{1}{2} \times (180^{\circ} - 2 \ a) = 90^{\circ} - a$

$$a + (180^{\circ} - 2 \quad a) = (90^{\circ} - \quad a) + \quad AFC$$

 $AFC = 90^{\circ}$

115. 정답 58°

 \square ABCD가 평행사변형이므로 $\overline{OA} = \overline{OC}$

 ΔAEC 에서 E의 이등분선이 \overline{AC} 를 이등분하므로 ΔAEC 는

EA = EC인 이등변삼각형이다.

$$ECA = EAC = \frac{1}{2} \times (180^{\circ} - 64^{\circ}) = 58^{\circ}$$
] 므로

116. 정답 2cm

$$CED = CDE$$

즉 $\triangle CDE$ 는 이등변삼각형이므로 $\overline{CE} = \overline{CD} = \overline{AB} = 6$ (cm)

오른쪽 그림과 같이 AF와 DE가

만나는 점을 H라 하고, AF의 연장선이 6 cm DC의 연장선과 만나는 점을 G라고 D

하면

$$=90^{\circ}$$
 - ADH = DAH

즉 $\Delta \mathrm{DAG}$ 는 이등변삼각형이므로 $\overline{\mathrm{DG}} = \overline{\mathrm{DA}} = 10 \, \mathrm{(cm)}$

$$\overline{CG} = \overline{DG} - \overline{DC} = 10 - 6 = 4 \text{ (cm)}$$

$$CFG = CGF$$

즉 $\triangle CFG$ 는 이등변삼각형이므로 $\overline{CF} = \overline{CG} = 4$ (cm)

$$\overline{EF} = \overline{CE} - \overline{CF} = 6 - 4 = 2$$
 (cm)

117. 정답 10cm

$$\triangle ABC$$
가 $\overline{AB} = \overline{AC}$ 인 이등변삼각형이므로 $B = C$

$$B = QPB$$

즉 ΔQBP 는 QB \overline{QP} 인 이등변삼각형이다.

이때 $AQ /\!\!/ RP$, $\overline{AR} /\!\!/ \overline{QP}$ 에서 AQPR는 평행사변형이므로 $(\Box AQPR$ 의 둘레의 길이)= $2\overline{AQ}+\overline{QP}$)= $2(\overline{AQ}+\overline{QB})$ = $2\overline{AB}=2\times 5=10$ cm)

118. 정답 95°

 \square ABCD가 평행사변형이므로 \overline{AD} $/\!\!/\overline{BC}$, \overline{AD} = \overline{BC} \overline{AH} = \overline{HD} = \overline{BF} = \overline{FC}

AH // EC, AH = FC이므로 □AFCH는 평행사변형이다. 또. HD // BF, HD = BF이므로 □HBFD는 평행사변형이다.

또, $HD /\!\!\!/ \mathbf{br}$, $HD = \mathbf{br}$ 이므로 $\square \mathbf{EFGH}$ 는 평행사변형이다. 따라서 $\overline{\mathbf{EF}} /\!\!\!/ \overline{\mathbf{HG}}$, $\overline{\mathbf{EH}} /\!\!\!/ \overline{\mathbf{EG}}$ 이므로 $\square \mathbf{EFGH}$ 는 평행사변형이다.

 $AFB = HA = 61^{\circ}(었각)$ 이므로 ΔBFE 에서

 $HEF = 34^{\circ} + 61^{\circ} = 95^{\circ}$

 $HGF = HEF = 95^{\circ}$

119. 정답 130°

△DBE와 △ABC에서

 $\overline{DB} = \overline{AB}$, $\overline{BE} = \overline{BC}$, $DBE = 60^{\circ} - EBA = ABQ므로$ $\Delta DBE \quad \Delta ABQSAS 합동)$

또, △FEC와 △ABC에서

 $\overline{FC} = \overline{AC}$, $\overline{EC} = \overline{BC}$, $FCE = 60^{\circ} - ECA = AC템으로$ $<math>\triangle FEC \quad \triangle ABC(SAS \text{ 합동})$

즉 $\overline{DE} = \overline{AC} = \overline{AF}$, $\overline{DA} = \overline{AB} = \overline{EF}$ 이므로 $\square DAFE$ 는 평행사변형이다.

DAB = 60°, FAC = 60°이므로

 $DAF = 360^{\circ} - (60^{\circ} + 110^{\circ} + 60^{\circ}) = 130^{\circ}$

 $DEF = DAF = 130^{\circ}$

120. 정답 3

□ABCD가 평행사변형이 되려면

DC // AB이어야 하므로

$$\frac{6-b}{3-a} = \frac{1-0}{5-0} = \frac{1}{5}$$

즉
$$3-a=5(6-b)$$
이므로

$$a - 5b = -27$$

 \bigcirc

또. DA // CB이어야 하므로

$$\frac{b-0}{a-0} = \frac{6-1}{3-5} = -\frac{5}{2}$$

 $\stackrel{>}{\lnot} 5a = -2b$

1

①, ⓒ을 연립하여 풀면 a=-2, b=5 a+b=-2+5=3

AB // DIC, AD // BIC이므로 □ABCD는 평행사변형이다.

 $\overline{AS} / \overline{BQ}$, $\overline{AS} = \overline{BQ}$ 이므로 $\Box ABQS$ 는 평행사변형이다.

 $\overline{SD} / \overline{QDC}$, $\overline{SD} = \overline{QC}$ 이므로 $\Box SQCD$ 는 평행사변형이다.

 $\overline{AS} / \overline{QC}$, $\overline{AS} = \overline{QC}$ 이므로 $\Box AQCS$ 는 평행사변형이다.

 $\overline{AP} / \overline{RC}$, $\overline{AP} = \overline{RC}$ 이므로 $\Box APCR$ 는 평행사변형이다.

AP // NIM. AN // PIM이므로 □APMN은 평행사변형이다.

NM // RC, NR // MC이므로 □NMCR는 평행사변형이다.

AL // (□C), AO // □C이므로 □ALCO는 평행사변형이다. 따라서 평행사변형은 모두 8개이다.

122. 정답 51°

△ABP와 △CDQ에서

 $\overline{AB} = \overline{CD}$, $APB = CQD = 90^{\circ}$, BAP = DCQ(엇각)이므

△ABP △CDQRHA 합동)

 $\overline{BP} = \overline{DQ}$

 \bigcirc

또, Δ APD와 Δ CQB에서

 $\overline{AD} = \overline{CB}$, DAP = BCQ엇각), $\overline{AP} = \overline{CQ}$ 이므로

△APD △CQB(SAS 합동)

 $\overline{\mathrm{DP}} = \overline{\mathrm{BQ}}$

(L)

○ , ○에서 □PBQD는 평행사변형이므로
 x = 180° - BPD = 180° - (90° + 39°) = 51°

123. 정답 6초후

AP // CQ이므로 AQ // PC가 되려면 □APCQ는

평행사변형이어야 한다.

즉 $\overline{AP} = \overline{CQ}$ 가 되어야 한다.

점 Q가 점 C를 출발한 지 x초 후에 두 점 P, Q가 움직인 거리는

 $\overline{AP} = 3(x+2), \ \overline{CQ} = 4x$

3(x+2)=4x이어야 하므로

3x + 6 = 4x

x = 6

따라서 \overline{AQ} // \overline{PC} 가 될 때는 점 Q가 출발한 지 6초 후이다.

124. 정답 ㄱ, ㄷ, ㄹ

AB // DIC이므로 BAC = DCA(엇각)

점 E는 \triangle ABC의 내심이므로 BAC = 2 EAC

또, DCA=2 FCA이므로 EAC= FCA

AE // EC

AD // BC이므로 DAC = BCA(엇각)

DAC = 2 FAC, BCA = 2 ECA이므로

FAC = ECA

AF // EC

즉 두 쌍의 대변이 각각 평행하므로 □AECF는 평행사변형이다.

AEC = AFC

따라서 옳은 것은 ㄱ, ㄷ, ㄹ이다.

125. 정답 ②

 $\triangle ABD = \frac{1}{2} \Box ABCD \circ \Box$

The Wost Powerful Wethematics The Wo

126. 정답 15

 $AD = \overline{BC}$ 이므로

 $\overline{AP} = \overline{PQ} = \overline{QD} = \overline{BR} = \overline{RS} = \overline{SC}$

즉 한 쌍의 대변이 평행하고 그 길이가 같으므로 □ABRP, □PRSQ, □QSCD는 모두 평행사변형이고 세 평행사변형은 합동이다.

(색칠한 부분의 넓이)

$$\begin{split} &= \triangle PER + \triangle PRF + \triangle QFS + \triangle QSG \\ &= \frac{1}{4} \Box ABRP + \frac{1}{4} \Box PRSQ + \frac{1}{4} \Box PRSQ + \frac{1}{4} \Box QSCD \\ &= 4 \times \frac{1}{4} + \frac{1}{3} \Box ABCD = \frac{1}{3} \Box ABCD \\ &= \frac{1}{3} \times 45 = 15 \end{split}$$

127. 정답 48 cm²

 $\triangle PDA = x \text{ cm}^2$ 라고 하면 $\triangle PQD = 3x \text{ cm}^2$ 이므로

$$\triangle AQD = \triangle PDA + \triangle PQD = x + 3x = 4x \text{ (cm}^2)$$

$$\Box ABCD = 2\triangle AQD = 2 \times 4x = 8x \text{ (cm}^2\text{)}$$

그런데
$$\triangle PDA + \triangle PBC = \frac{1}{2} \square ABCD$$
이므로

$$x+18 = \frac{1}{2} \times 8x$$
, $3x = 18$ $x = 6$

$$\Box ABCD = 8x = 8 \times 6 = 48 \text{ (cm}^2)$$

128. 정답 90 cm²

△ABG와 △DFG에서

 $\overline{AB} = \overline{DF}$, BAG = FDQ 엇각), ABG = F(엇각)이므로 $\triangle ABG = \Delta DFQ(ASA 합동)$

$$\overline{AG} = \overline{DG} = \frac{1}{2}\overline{AD} = \overline{AB}$$

△ABH와 △ECH에서

 $\overline{AB} = \overline{EC}$, BAH = E(엇각), ABH = ECH(닷각)이므로 $<math>\triangle ABH \triangle ECH(ASA 함동)$

$$\overline{BH} = \overline{CH} = \frac{1}{2}\overline{BC} = \overline{AB}$$

즉 \overline{AG} $/\!\!/ \overline{BH}$, $\overline{AG} = \overline{BH}$ 이므로 $\square ABHG$ 는 평행사변형이다.

이때 $\triangle ABH = 20 \text{ cm}^2$ 이므로 $\triangle DFG = \triangle ECH = 20 \text{ (cm}^2)$

$$\Box$$
GHCD = \Box ABHG = $2\triangle$ ABH = $2\times20 = 40$ (cm²)

$$\triangle PHG = \frac{1}{4} \square ABHG = \frac{1}{4} \times 40 = 10 \text{ (cm}^2\text{)}$$

$$\triangle PEF = \triangle PHG + \Box GHCD + \triangle ECH + \triangle DFG$$

= $10 + 40 + 20 + 20 = 90 \text{ (cm}^2\text{)}$

129. 정답 96 cm²

오른쪽 그림과 같이 $\overline{\text{FE}}$ 를 그으면

AFB = EBF = ABF이므로

△ABF는 이등변삼각형이다.

$$\overline{AF} = \overline{AB} = 7 \text{ (cm)}$$

또, BEA = FAE = BAE이므로

△ABE는 이듯변삼각형이다

$$\overline{BE} = \overline{AB} = 7 \text{ (cm)}$$

따라서 $\overline{AF} /\!\!/ \overline{BE}$, $\overline{AF} = \overline{BE}$ 이므로 $\square ABEF$ 는 평행사변형이다.

$$\Box$$
ABEF = $4\triangle$ GBE = $4\times14 = 56$ (cm²)

한편. □ABEF : □ABCD = 7 : 12이므로

$$56: \Box ABCD = 7:12$$

$$\Box ABCD = 96 (cm^2)$$

130. 정답 23 cm²

오른쪽 그림과 같이 두 점 A, B에서

E, F라고 하면

$$\overline{EQ} = \overline{AP} = 4 \text{ (cm)}$$

 Δ DAE와 Δ CBF에서 $\overline{DA} = \overline{CB}$,

$$AED = BFC = 90^{\circ},$$

DAE = CBF이므로 △DAE △CBF(RHA 합동)

$$\overline{CF} = \overline{DE} = \overline{DQ} - \overline{EQ} = 7 - 4(cm)$$
.

$$\overline{BF} = \overline{AE} = \overline{PQ} = 2 \text{ (cm)}$$

이때 $\overline{BR} = FS = \overline{CS} - \overline{CF} = 6 - 3 = 3$ (cm),

RS= BF=2(cm)이므로

 $\square ABCD = \square APQD + \square DQSC - \square APRB - \square BRSC$

$$= \frac{1}{2} \times (4+7) \times 2 + \frac{1}{2} \times (7+6) \times (5+2)$$
$$-\frac{1}{2} \times (4+3) \times (2+5) - \frac{1}{2} \times (3+6) \times 2$$

$$=11+\frac{91}{2}-\frac{49}{2}-9$$

$$=23 (cm^2)$$

131. 정답 18°

AEF =
$$\frac{360^{\circ}}{5}$$
 = 72° 이므로

$$AEC = 72^{\circ} + 72^{\circ} = 144^{\circ}$$

또, ΔEAC 는 EA = EC인 이등변삼각형이므로

$$EAC = \frac{1}{2} \times 180^{\circ} - 144^{\circ}) = 18^{\circ}$$

 $x = EAC = 18^{\circ}$

132. 정답 26°

아래 그림과 같이 \overline{AE} 의 연장선이 \overline{BC} 의 연장선과 만나는 점을 \overline{G} 하고 하자.

 \triangle BGF에서 BGF = $180^{\circ} - (90^{\circ} + 64^{\circ}) = 26^{\circ}$

AD // BIG이므로 DAE = BGE = 26(영각)

△AED와 △GEC에서

 $\overline{DE} = \overline{CE}$, ADE = GCE엇각), AED = GE(C맞꼭지각) 이므로

ΔAED ΔGEC(ASA 합동)

$$\overline{AD} = \overline{GC}$$

즉 $\overline{BC} = \overline{GC}$ 이므로 점 C는 직각삼각형 BGF의 외심이다.

$$CF = \overline{CG}$$

따라서 ΔCGF 는 이등변삼각형이므로

$$x = CGE = 26^{\circ}$$

133. 정답 13cm

(i) 점 P가 점 B에 있을 때

오른쪽 그림과 같이 PAD, 즉 BAD의 이등분선이 \overline{BC} 와 만나는 점을 Q 이라고 하면

 $BAQ_1 = DAQ_1,$

 $BQ_1A = DAQ_1()$ 이므로 $BAQ_1 = BQ_1A$

따라서 $\triangle ABQ_1$ 은 $\overline{BA} = BQ_1$ 인 이등변삼각형이므로

$$\overline{BQ_1} = \overline{BA} = 4 \text{ (cm)}$$

(ii) 점 P가 꼭짓점 C에 있을 때

위의 그림과 같이 PAD, 즉 CAD의 이등분선이 \overline{BC} 의 연장선과 만나는 점을 Q_2 라고 하면

$$CAQ_2 = DAQ_2$$
, $CQ_2A = DAQ_2$ 엇각)이므로

$$CAQ_2 = CQ_2A$$

따라서 ΔACQ_2 는 $\overline{CA} = \overline{CQ_2}$ 인 이등변삼각형이므로

$$\overline{CQ_2} = \overline{CA} = 10 \text{ (cm)}$$

$$\overline{BQ_2} = \overline{BC} + \overline{CQ_2} = 7 + 10 = 17 \text{ (cm)}$$

(i), (ii)에서 점 Q가 움직인 거리는 Q₁Q₂= $\overline{BQ_2}$ - $\overline{BQ_1}$ = 17-4=13(cm)

134. 정답 45 cm²

오른쪽 그림과 같이 점 M을 지나고 AB에 평행한 직선이 BC와 만나는 점을 F, AD의 연장선과 만나는 점을 5 cn G라고 하자.

△MGD와 △MFC에서

DM=CM, MDG= MCF(엇각),

DMG = CMF(맞꼭지각)이므로

△MGD △MFC(ASA 합동)

따라서 $\Delta MGD = \Delta MFC$ 이고 ABFG는 평행사변형이므로

 $\Box ABCD = \Box ABFG = 5 \times 9 = 45 \text{ cm}^2$

135. 정답 24 cm²

오른쪽 그림과 같이 \overline{EF} 를 긋고 두 점 G, H를 각각 지나고 \overline{AD} 에 평행한 직선이 \overline{EF} 와 만나는 점을 각각 P, Q라고 하면

 $\overline{AB} / \overline{EF} / \overline{DC}$.

AD // GP // QH // BC이므로 □AGPE, □GBFP,□EQHD,

□QFCH는 모두 평행사변형이다.

 \Box EGFH= \triangle PEG+ \triangle PGF+ \triangle QFH+ \triangle QHE

$$= \frac{1}{2} \Box AGPE + \frac{1}{2} \Box GBFP + \frac{1}{2} \Box QFCH + \frac{1}{2} \Box EQHD$$
$$= \frac{1}{2} \Box ABCD = \frac{1}{2} \times 48 = 24 (cm^2)$$

136. 정답 2:5

 $BCD = 180^{\circ} - ABC = 180^{\circ} - 60^{\circ} = 120^{\circ}$

□ABCD과 □CEFG가 합동이므로 DCE = 120°

 $BCE = 360^{\circ} - (120^{\circ} + 120^{\circ}) = 120^{\circ}$

오른쪽 그림과 같이 \overline{BD} 를 그으면 ΔBCD 와 ΔBCE 에서 \overline{BC} 는 공통,

 $BCD = BCE, \overline{CD} = \overline{CE}$ 이므로 $\Delta BCD \quad \Delta BCRSAS$ 합동)

 $\triangle BCE = \triangle BCD = \frac{1}{2} \square ABCD$

또, \overline{AB} 의 연장선과 \overline{AB} 등 지나면서 \overline{AD} 와 평행한 직선이 만나는 점을 H라고 하면 \overline{HB} // \overline{GC} , \overline{HG} // \overline{BC} 이므로 \Box BCGH는 평행사변형이다.

이때 □ABCD와 □HADG는 합동인 평행사변형이므로

$$\triangle BCG = \frac{1}{2} \square BCGH = \square ABCD$$

 $\Box BEFG = \triangle BCG + \triangle BEC + \Box CEFG$

$$\label{eq:abcd} \begin{split} & \operatorname{ABCD+} \frac{1}{2} \ \Box \operatorname{ABCD+} \Box \operatorname{ABCD} \\ &= \frac{5}{2} \ \Box \operatorname{ABCD} \end{split}$$

$$\square$$
ABCD: \square BEFG = 1: $\frac{5}{2}$ = 2: 5

137. 정답 512cm

 $\Delta A_1B_2A_2$ 와 $\Delta C_1D_2C_2$ 에서

$$A_1 = C_1$$
, $A_1A_2 = C_1C_2$, $A_1B_2 = \overline{C_1D_2}$ 이므로

 $\Delta A_1 B_2 A_2$ $\Delta C_1 D_2 C_2 (SAS 합동)$

$$\overline{A_2B_2} = \overline{C_2D_2}$$

같은 방법으로 $\Delta B_1 C_2 B_2$ $\Delta D_1 A_2 D_2 (SAS 합동)$ 이므로

$$\overline{B_2C_2} = \overline{D_2A_2}$$

즉 $\square A_2B_2C_2D_2$ 는 두 쌍의 대변의 길이가 각각 같으므로 평행사변형이고, 평행사변형의 각 변의 중점을 연결하여 만든 사각형은 모두 평행사변형이다.

오른쪽 그림에서

$$\square A_2B_2C_2D_2 = \frac{1}{2}\square A_1B_1C_1D_1$$

같은 방법으로

$$\Box A_{3}B_{3}C_{3}D_{3} = \frac{1}{2} \Box A_{2}B_{2}C_{2}D_{2}$$
$$= \frac{1}{2^{2}} \Box A_{1}B_{1}C_{1}D_{1}$$

$$\Box A_4 B_4 C_4 D_4 \!\!=\! \frac{1}{2^3} \Box A_1 B_1 C_1 D_1$$

:

$$\Box A_{10}B_{10}C_{10}D_{10} = \frac{1}{2^9}\Box A_1B_1C_1D_1$$

$$\Box A_1 B_1 C_1 D_1 = 2^9 \Box A_{10} B_{10} C_{10} D_{10} = 2^9 \times 1 = 512 \text{ cm}^2$$

138. 정답
$$\frac{2a+b}{2}$$
 m

오른쪽 그림과 같이 원의 중심을 〇라

하고 CD와 BE의 교점을 K라고 하자. □ACDB에서 ACD = BD©이고

BAC = ABD이므로

 $BAC + ACD = 180^{\circ}$

 $\overline{AB} / \overline{CD}$

같은 방법으로 □CEFD에서

CD // GD이다

즉 □ACKB, □KEOD는 모두 두 쌍의 대변이 각각 평행하므로 평행사변형이다.

따라서 $\overline{AB} = \overline{CK}$, $\overline{KD} = \overline{EO}$ 이므로

$$\overline{\text{CD}} = \overline{\text{CK}} + \overline{\text{KD}} = \overline{\text{AB}} + \overline{\text{EO}} = a + \frac{b}{2} = \frac{2a + b}{2} \text{ m}$$

139. 정답 (1) 9, 12 (2) 14

(1) 6개의 평행사변형을 붙여서 만든 평행사변형 ABCD는 오른쪽 그림과 같다.

따라서 평행사변형 ABCD의 서로 ¹ 다른 두 변의 길이는 각각 9, 12이다

(2) l_1 과 l_2 를 나타내면 오른쪽 그림과 같다.

평행사변형 ABCD의 넓이가 72이므로

$$12 \times l_1 = 9 \times l_2 = 72$$

따라서
$$l_1 = 6$$
, $l_2 = 8$ 이므로 $l_1 + l_2 = 6 + 8 = 14$

1. 정답 ④

ADE =
$$\frac{2}{3}$$
 ADC = $\frac{2}{3} \times 57^{\circ} = 38^{\circ}$

이때
$$\overline{\mathrm{AD}} \slash\hspace{-0.4em} / \overline{\mathrm{BC}}$$
이므로 $\mathrm{DEC} = \mathrm{ADE} = 38 (엇각)$

$$AEB = 180^{\circ} - (64^{\circ} + 38^{\circ}) = 78^{\circ}$$

2. 정답 110°

$$AFE = 180^{\circ} - (35^{\circ} + 35^{\circ}) = 110^{\circ}$$

3. 정답 6 cm²

△OAP와 △OCQ에서

$$APO = CQO = 90$$
(엇각), $\overline{OA} = \overline{OC}$,

△OAP △OCQ(RHA 합동)

이때
$$\overline{AP} = \overline{AB} - \overline{BP} = \overline{DC} - \overline{BP} = 8 - 5 = 3$$
 (cm) 므로

$$\triangle OCQ = \triangle OAP = \frac{1}{2} \times 3 \times 4 = 6 \text{ (cm}^2)$$

4. 정답 36°

BAP =
$$\frac{1}{2}$$
 BAD = $\frac{1}{2} \times 108^{\circ} = 54^{\circ}$

 $\triangle ABP에서 ABP = 180^{\circ} - (54^{\circ} + 90^{\circ}) = 36^{\circ}$

$$PBC = ABC - ABP = 72^{\circ} - 36^{\circ} = 36^{\circ}$$

5. 정답
$$y = \frac{1}{2}x + \frac{3}{2}$$

 \Box ABCD가 평행사변형이므로 \overline{AD} // \overline{BC} , \overline{AD} = \overline{BC} 이다.

이때
$$\overline{AD} = \overline{BC} = 4 - (-3) = 7$$
이므로 점 D의 좌표는 $(7, 5)$ 이다.

두 점 B 3, 0), D(7, 5)를 지나는 직선의 기울기는

$$\frac{5-0}{7-(-3)} = \frac{1}{2}$$

구하는 일차함수의 식을 $y=\frac{1}{2}x+b$ 라 하고 $x=-3,\ y=0$ 을

대입하면

$$0 = \frac{1}{2} \times (-3) + b$$

$$b = \frac{3}{2}$$

따라서 구하는 일차함수의 식은 $y=\frac{1}{2}x+\frac{3}{2}$

6. 정답 ④

④ 한 쌍의 대변이 평행하고 그 길이가 같으므로 평행사변형이다.

7. 정답 11 cm

오른쪽 그림과 같이 AE, \overline{CD} 를 그으면

 $AO = \overline{OC} = \overline{ED}, \overline{AO} / / \overline{ED}$ 이므로

AODE는 평행사변형이다.

이때 $\overline{\rm AD} = BC = 14 (cm)$ 이므로

$$\overline{\text{FD}} = \frac{1}{2} \overline{\text{AD}} = \frac{1}{2} \times 14 = 7 \text{ (cm)}$$

또. $\overline{EO} = \overline{DC} = \overline{AB} = 8$ (cm)이므로

$$\overline{FO} = \frac{1}{2}\overline{EO} = \frac{1}{2} \times 8 = 4 \text{ (cm)}$$

$$\overline{FD} + \overline{FO} = 7 + 4 = 11 \text{ (cm)}$$

 \square ABCD가 평행사변형이므로 $\overline{OA} = \overline{OC}$, $\overline{OB} = \overline{OD}$

두 점 E, F가 각각 \overline{OB} , \overline{OD} 의 중점이므로

$$\overline{OE} = \frac{1}{2}\overline{OB} = \frac{1}{2}\overline{OD} = \overline{OF}$$

즉 $\overline{OA} = \overline{OC}$, $\overline{OE} = \overline{OP}$ 이므로 $\square AECF$ 는 평행사변형이다.

 $\overline{AF} /\!\!/ \overline{EC}$, OAE = OCF

따라서 옳지 않은 것은 ②이다.

9. 정답 ④

△AED와 △CFB에서

 $AED = CFB = 90^{\circ}$

 $\overline{AD} = \overline{CB}$, ADE = CBF()이므로

 \triangle AED \triangle CFB(RHA 합동)

 $\overline{AE} = CF$

이때 AED = CFB = 90(엇각)이므로 AE // CF

즉 □AECF는 한 쌍의 대변이 평행하고 그 길이가 같으므로

평행사변형이다. $\overline{AF} = \overline{CE}$, EAF = FCE

따라서 옳지 않은 것은 ④이다.

10. 정답 19 cm

$$\triangle ABC = \frac{1}{2} \square ABCD = \frac{1}{2} \times 86 = 43 \text{ cm}^2$$
이므로

$$\triangle PBC = \triangle ABC - \triangle PAB = 43 - 19 = 24 \text{ (cm}^2\text{)}$$

이때
$$\triangle PDA + \triangle PBC = \frac{1}{2} \square ABC$$
이므로

$$\triangle PDA + 24 = 43$$
 $\triangle PDA = 19 (cm^2)$

11. 정답 15 cm²

$$\triangle PAB + \triangle PCD = \frac{1}{2} \square ABCD$$
이므로

$$35 + \Delta PCD = \frac{1}{2} \times 100$$

$$\Delta PCD = 15 (cm^2)$$

EF // DDC, ED // PEG // FEG | 므로 □EPGD, □PFC C는 모두 평했사변형이다.

따라서 $\triangle PDE = \triangle PGD$, $\triangle PFC = \triangle PCG$ 이므로

$$\triangle PDE + \triangle PFC = \triangle PGD + \triangle PCG$$

$$= \Delta PCD = 15 (cm^2)$$

12. 정답 13 cm²

 \Box ABCD가 평행사변형이므로 $\overline{AD} = \overline{BC}$

$$\overline{AE} = \overline{ED} = \overline{BF} = \overline{FC}$$

즉 한 쌍의 대변이 평행하고 그 길이가 같으므로 □ABFE와

□EFCD는 모두 평행사변형이고 합동이다.

$$\Box \text{EPFG} = \frac{1}{4} \Box \text{ABFE} + \frac{1}{4} \Box \text{EFCD}$$

$$= \frac{1}{4} \times (\Box \text{ABFE} + \Box \text{EFCD})$$

$$= \frac{1}{4} \Box \text{ABCD} = \frac{1}{4} \times 52 = 13 \text{ (cm}^2)$$