IS-664 Database Programming Fall 2022

Advanced SQL

hlocklear@pace.edu

Data Analysis Exercise 1

USE OF JUPYTER LAB WITH MYSQL

Task 1

 Within your Jupyter Notebook, create the stored procedure calculateStrategic which accepts only a country abbreviation, creates the table strategicAnalysis as shown

below, and display the first 20 rows of the table.

MySQL 8.0 Con	nmand Line Cli × H	+ ~			-	0	×	
mysql> describe strategicAnalysis;								
Field	-	Null	Кеу	Default	Extra	Ĭ		
A_DESG A_Chromium A_Cobalt A_Tungsten A_Uranium A_Country A_AType A_AType Tows in set	varchar(20) decimal(10,2) decimal(10,2) decimal(10,2) decimal(10,2) varchar(20) varchar(20) 	NO	PRI	NULL NULL NULL NULL NULL NULL				
All data retrieval must be done using one or more cursors.								

[173]:	A_DESG	A_Chromium	A_Cobalt	A_Tungsten	A_Uranium	A_Country	A_AType
	C-a1872-I	3.75	9.90	0.17	0.68	US	Carboneous
	С-е4604-р	1.36	8.52	1.55	0.73	US	Carboneous
	C-f2261-k	6.62	7.85	1.72	0.03	US	Carboneous
	C-f3770-k	1.88	2.52	5.37	2.38	US	Carboneous
	C-g1438-I	11.38	4.15	0.95	0.03	US	Carboneous
	C-g46-n	1.34	2.02	6.87	2.43	US	Carboneous
	C-h1552-p	11.72	2.14	0.23	0.14	US	Carboneous
	M-b4912-I	13.94	0.71	0.03	0.01	US	Metallic
	M-e260-n	6.93	1.45	6.69	2.74	US	Metallic
	M-h3007-m	5.04	10.61	1.38	0.15	US	Metallic
	M-h305-n	13.65	0.17	0.47	0.45	US	Metallic
	M-h4498-j	12.66	1.70	0.74	0.19	US	Metallic
	S-d4458-p	14.63	7.24	0.62	0.00	US	Silicaceous
	S-e1633-n	4.72	4.43	5.35	0.30	US	Silicaceous
	S-e4295-p	2.99	4.85	0.38	1.20	US	Silicaceous
	S-f120-n	3.84	1.85	1.14	1.83	US	Silicaceous
	S-f2688-m	3.73	8.50	1.84	1.52	US	Silicaceous
	S-h2054-k	1.40	4.61	1.32	7.44	US	Silicaceous
	S-h2242-q	3.08	8.05	4.40	1.39	US	Silicaceous
	S-h4510-j	11.35	4.62	2.63	0.03	US	Silicaceous

Task 2

Store the output of the calculateStrategic procedure, using 'US' as the argument, into a Pandas data frame.

	A_DESG	A_Chromium	A_Cobalt	A_Tungsten	A_Uranium	A_Country	A_AType
0	C-a1872-I	3.75	9.90	0.17	0.68	US	Carboneous
1	C-e4604-p	1.36	8.52	1.55	0.73	US	Carboneous
2	C-f2261-k	6.62	7.85	1.72	0.03	US	Carboneous
3	C-f3770-k	1.88	2.52	5.37	2.38	US	Carboneous
4	C-g1438-I	11.38	4.15	0.95	0.03	US	Carboneous
5	C-g46-n	1.34	2.02	6.87	2.43	US	Carboneous
6	C-h1552-p	11.72	2.14	0.23	0.14	US	Carboneous
7	M-b4912-I	13.94	0.71	0.03	0.01	US	Metallic
8	M-e260-n	6.93	1.45	6.69	2.74	US	Metallic
9	M-h3007-m	5.04	10.61	1.38	0.15	US	Metallic
10	M-h305-n	13.65	0.17	0.47	0.45	US	Metallic
11	M-h4498-j	12.66	1.70	0.74	0.19	US	Metallic
12	S-d4458-p	14.63	7.24	0.62	0.00	US	Silicaceous
13	S-e1633-n	4.72	4.43	5.35	0.30	US	Silicaceous
14	S-e4295-p	2.99	4.85	0.38	1.20	US	Silicaceous
15	S-f120-n	3.84	1.85	1.14	1.83	US	Silicaceous
16	S-f2688-m	3.73	8.50	1.84	1.52	US	Silicaceous
17	S-h2054-k	1.40	4.61	1.32	7.44	US	Silicaceous
18	S-h2242-q	3.08	8.05	4.40	1.39	US	Silicaceous
19	S-h4510-j	11.35	4.62	2.63	0.03	US	Silicaceous

Task 3

Utilizing the Pandas data frame, you created, <u>calculate the average</u> of each strategic metal utilizing <u>NumPy</u> arrays and display as shown below.

```
Strategic Metal Averages

Average Chromium: 6.8

Average Cobalt: 4.79

Average Tungsten: 2.19

Average Uranium: 1.18
```