Formalité opéradique et homotopie des espaces de configuration

Operadic Formality and Homotopy of Configuration Spaces

Najib Idrissi Kaïtouni Soutenance de thèse – 17 novembre 2017

Introduction

Overall Goal

Study configuration spaces of manifolds:

$$\operatorname{Conf}_k(M) := \{(x_1, \dots, x_k) \in M^k \mid \forall i \neq j, \ x_i \neq x_j\}$$

1

Introduction

Overall Goal

Study configuration spaces of manifolds:

$$Conf_k(M) := \{(x_1, \dots, x_k) \in M^k \mid \forall i \neq j, \ x_i \neq x_j\}$$

Idea

Use "formality of the little disks operads" = results for $Conf_k(\mathbb{R}^n)$.

1

Plan

Little Disks Operads

Swiss-Cheese Operad and Drinfeld Center

The Lambrechts–Stanley Model of Configuration Spaces

Configuration Spaces of Manifolds with Boundary

Little Disks Operads

Boardmann-Vogt, May (70's): little disks operads D_n

Little Disks Operads

Boardmann-Vogt, May (70's): little disks operads $D_n = \{D_n(r)\}_{r \geq 0}$

Little Disks Operads

Boardmann-Vogt, May (70's): little disks operads $D_n = \{D_n(r)\}_{r \geq 0}$

New structure: insertion

One can insert a configuration into a disk:

New structure: insertion

One can insert a configuration into a disk:

 \implies operad structure, cannot be seen on $\mathrm{Conf}_{\bullet}(\mathbb{R}^n)$

Configuration spaces of manifolds

If M is "framed":

$$D_M(k) := \operatorname{Emb}^{\operatorname{fr}}(\mathbb{D}^n \sqcup \cdots \sqcup \mathbb{D}^n, M)$$

Configuration spaces of manifolds

If M is "framed":

$$\mathsf{D}_\mathsf{M}(k) \coloneqq \mathrm{Emb}^{\mathrm{fr}} \big(\mathbb{D}^n \sqcup \cdots \sqcup \mathbb{D}^n, \mathsf{M} \big) \stackrel{\sim}{\longrightarrow} \mathrm{Conf}_k(\mathsf{M})$$

Configuration spaces of manifolds

If M is "framed":

$$D_{M}(k) := \operatorname{Emb}^{\operatorname{fr}}(\mathbb{D}^{n} \sqcup \cdots \sqcup \mathbb{D}^{n}, M) \stackrel{\sim}{\longrightarrow} \operatorname{Conf}_{k}(M)$$

$$\implies$$
 $D_M = \{D_M(k)\}_{k \ge 0}$ is a "right module" over $\overline{D_n}$

Idea

Use this extra structure to study $Conf_k(M)$.

Algebras over D_n in the topological world

An algebra over D_n is a space on which D_n "acts":

$$D_n(k) \times X^k \to X$$

Algebras over D_n in the topological world

An algebra over D_n is a space on which D_n "acts":

$$D_n(k) \times X^k \to X$$

Theorem (Boardmann-Vogt, May 1972)

- If $X = \Omega^n Y$, then D_n acts on X;
- if D_n acts on X (+ grouplike), then $X \simeq \Omega^n Y$ for some Y.

Algebraic world

Operad $D_n\mapsto \text{homology } H_*(D_n)$ ($\vartriangle \text{lose info}$) -

Algebraic world

Operad $D_n \mapsto \text{homology } H_*(D_n)$ (\triangle lose info) -

Theorem (Cohen 1976)

An algebra over $H_*(\mathbf{D}_n)$ is:

• an associative algebra (A, \cdot) for n = 1;

Associativity for $n \ge 1$:

Algebraic world

Operad $D_n \mapsto \text{homology } H_*(D_n)$ (\triangle lose info) -

Theorem (Cohen 1976)

An algebra over $H_*(\mathbf{D}_n)$ is:

- an associative algebra (A, \cdot) for n = 1;
- an *n*-Gerstenhaber algebra $(B, \land, [,])$ for $n \ge 2$.

Commutativity for $n \geq 2$:

Associativity for $n \ge 1$:

Swiss-Cheese Operad and Drinfeld Center

Categorical world

Operad $D_n \mapsto \text{fundamental groupoid } \pi D_n$

Proposition

For $n \in \{1, 2\}$, no loss of information: $\mathbf{D}_n \xrightarrow{\sim} \mathrm{B}(\pi \mathbf{D}_n)$.

Categorical world

Operad $D_n \mapsto \text{fundamental groupoid } \pi D_n$

Proposition

For $n \in \{1, 2\}$, no loss of information: $D_n \xrightarrow{\sim} B(\pi D_n)$.

Theorem (Tamarkin, Fresse)

 $\pi D_n \simeq$ operad whose algebras are:

• monoidal categories (M, \otimes) for n = 1;

Categorical world

Operad $D_n \mapsto \text{fundamental groupoid } \pi D_n$

Proposition

For $n \in \{1, 2\}$, no loss of information: $D_n \xrightarrow{\sim} B(\pi D_n)$.

Theorem (Tamarkin, Fresse)

 $\pi D_n \simeq$ operad whose algebras are:

- monoidal categories (M, \otimes) for n = 1;
- braided monoidal categories (N, \otimes, τ) for n = 2.

Swiss-Cheese operad

Swiss-Cheese operad SC: " D_2 -algebras acting on D_1 -algebras"

Swiss-Cheese operad

Swiss-Cheese operad SC: " D_2 -algebras acting on D_1 -algebras"

Swiss-Cheese operad

Swiss-Cheese operad SC: " D_2 -algebras acting on D_1 -algebras"

Homology vs fundamental groupoid of SC

Theorem (Voronov 1999, Hoefel 2009)

An algebra over $H_*(SC)$ is a triplet (A, B, f) where:

- (A, \cdot) is an associative algebra;
- $(B, \land, [,])$ is a Gerstenhaber algebra;
- $f: B \to Z(A)$ is a central morphism of algebras.

Homology vs fundamental groupoid of SC

Theorem (Voronov 1999, Hoefel 2009)

An algebra over $H_*(SC)$ is a triplet (A, B, f) where:

- (A, \cdot) is an associative algebra;
- $(B, \land, [,])$ is a Gerstenhaber algebra;
- $f: B \to Z(A)$ is a central morphism of algebras.

Theorem

 $\pi SC \simeq$ an operad whose algebras are triplets (M, N, F) where:

- (M, \otimes) is a monoidal category;
- (N, \otimes, τ) is a braided monoidal category;
- $F: \mathbb{N} \to \mathcal{Z}(\mathbb{M})$ is a braided functor to the "Drinfeld center"

Recap

	Topological	Algebraical $H_*(-)$	Categorical $\pi(-)$
D_1	1 3 2	associative (A,\cdot)	monoidal (M,\otimes)
D_2	(1)	Gerstenhaber $(B, \land, [,])$	braided (N,\otimes, au)
sc		$(B, \land, [,]) \xrightarrow{f} Z(A, \cdot)$	$(N,\otimes, au)\stackrel{F}{ o} \mathcal{Z}(M,\otimes)$

Remark

I also build a model $PaP\widehat{CD}_{+}^{\phi} = "PaP \rtimes_{\phi} \widehat{CD}_{+}"$ out of a Drinfeld associator ϕ , following Tamarkin's proof of the formality of D_2 .

The Lambrechts–Stanley Model of Configuration

Spaces

Models

We are interested in rational/real models

 $A\simeq\Omega^*(M)$ "forms on M" (e.g. de Rham, piecewise polynomial...)

where A is an "explicit" CDGA (= Commutative Differential Graded Algebra)

Models

We are interested in rational/real models

$${\sf A} \simeq \Omega^*({\sf M})$$
 "forms on ${\sf M}$ " (e.g. de Rham, piecewise polynomial...)

where A is an "explicit" CDGA (= Commutative Differential Graded Algebra)

M nilpotent of finite type \implies A contains all the rational/real homotopy type of M

Models

We are interested in rational/real models

$$\mathsf{A}\simeq\Omega^*(\mathsf{M})$$
 "forms on M " (e.g. de Rham, piecewise polynomial...)

where A is an "explicit" CDGA (= Commutative Differential Graded Algebra)

M nilpotent of finite type \implies A contains all the rational/real homotopy type of M

We're looking for a CDGA $\simeq \Omega^*(\operatorname{Conf}_{k}(M))$ built from A

Formality of $\operatorname{Conf}_{\mathbb{R}}(\mathbb{R}^n)$

 $\operatorname{Conf}_{\mathbb{R}}(\mathbb{R}^n)$ is a formal space, i.e. [Kontsevich]:

$$H^*(\operatorname{Conf}_k(\mathbb{R}^n)) \simeq \Omega^*(\operatorname{Conf}_k(\mathbb{R}^n))$$

completely determines the rational homotopy type of $\mathrm{Conf}_{\mathtt{k}}(\mathbb{R}^n)$

Formality of $\operatorname{Conf}_k(\mathbb{R}^n)$

 $\operatorname{Conf}_{\mathbb{R}}(\mathbb{R}^n)$ is a formal space, i.e. [Kontsevich]:

$$H^*(\operatorname{Conf}_R(\mathbb{R}^n)) \simeq \Omega^*(\operatorname{Conf}_R(\mathbb{R}^n))$$

completely determines the rational homotopy type of $\mathrm{Conf}_k(\mathbb{R}^n)$

Theorem (Arnold 1969, Cohen 1976)

- $H^*(\operatorname{Conf}_k(\mathbb{R}^n)) = S(\omega_{ij})_{1 \le i \ne j \le k}/I$
- $\cdot \deg \omega_{ij} = n 1$
- $I = (\omega_{ji} = \pm \omega_{ij}, \ \omega_{ij}^2 = 0, \ \omega_{ij}\omega_{jk} + \omega_{jk}\omega_{ki} + \omega_{ki}\omega_{ij} = 0)$

Poincaré duality CDGA (A, ε)

A: finite type connected CDGA;

(example: M is closed & oriented)

(e.g. $(H^*(M), d = 0)$)

Poincaré duality CDGA (A, ε)

- · A: finite type connected CDGA;
- $\varepsilon: A^n \to \mathbb{k}$ such that $\varepsilon \circ d = 0$;

(example: M is closed & oriented)

(e.g.
$$(H^*(M), d = 0)$$
)

(e.g.
$$\int_{M} (-)$$
)

Poincaré duality CDGA (A, ε)

(example: M is closed & oriented)

· A: finite type connected CDGA;

(e.g. $(H^*(M), d = 0)$)

(e.g. $\int_{M} (-)$)

 $\cdot \varepsilon : A^n \to \mathbb{k}$ such that $\varepsilon \circ d = 0$:

- $A^k \otimes A^{n-k} \to \mathbb{k}$, $a \otimes b \mapsto \varepsilon(ab)$ non degenerate. (e.g. $H^k(M) \otimes H^{n-k}(M) \to \mathbb{k}$)

Poincaré duality CDGA (A, ε)

(example: M is closed & oriented)

· A: finite type connected CDGA;

(e.g. $(H^*(M), d = 0)$)

 $\cdot \varepsilon : A^n \to \mathbb{k}$ such that $\varepsilon \circ d = 0$:

- (e.g. $\int_{M} (-)$)
- $A^k \otimes A^{n-k} \to \mathbb{k}$, $a \otimes b \mapsto \varepsilon(ab)$ non degenerate. (e.g. $H^k(M) \otimes H^{n-k}(M) \to \mathbb{k}$)

(e.g.
$$H^k(M) \otimes H^{n-k}(M) \to \mathbb{k}$$
)

Theorem (Lambrechts-Stanley 2004)

Any simply connected manifold has such a model

$$\Omega^*(M) \xleftarrow{\sim} \cdot \xrightarrow{\sim} \exists A$$

$$\downarrow_{\exists \varepsilon}$$

Poincaré duality CDGA (A, ε)

(example: M is closed & oriented)

· A: finite type connected CDGA;

(e.g. $(H^*(M), d = 0)$)

 $\cdot \varepsilon : A^n \to \mathbb{k}$ such that $\varepsilon \circ d = 0$:

- (e.g. $\int_{M} (-)$)
- $A^k \otimes A^{n-k} \to \mathbb{K}$, $a \otimes b \mapsto \varepsilon(ab)$ non degenerate. (e.g. $H^k(M) \otimes H^{n-k}(M) \to \mathbb{K}$)

(e.g.
$$H^k(M) \otimes H^{n-k}(M) \to \mathbb{k}$$
)

Theorem (Lambrechts-Stanley 2004)

Any simply connected manifold has such a model

$$\Omega^*(M) \xleftarrow{\sim} \cdot \xrightarrow{\sim} \exists A$$

$$\downarrow_{A} \qquad \qquad \downarrow_{\exists \varepsilon}$$

Remark

By a result of Longoni–Salvatore (2005), ∃ non simply-connected $L \simeq L'$ but $Conf_k(L) \not\simeq Conf_k(L')$

$$G_A(k)$$
 conjectured model of $Conf_k(M) = M^{\times k} \setminus \bigcup_{i \neq j} \Delta_{ij}$ $\hookrightarrow := \{x_i = x_j\}$

$$G_A(k)$$
 conjectured model of $Conf_k(M) = M^{\times k} \setminus \bigcup_{i \neq j} \Delta_{ij}$

$$:= \{x_i = x_j\}$$

• "Generators": $A^{\otimes k} \otimes S(\omega_{ij})_{1 \leq i \neq j \leq k}$

$$G_A(k)$$
 conjectured model of $Conf_k(M) = M^{\times k} \setminus \bigcup_{i \neq j} \Delta_{ij}$

$$:= \{x_i = x_j\}$$

- "Generators": $A^{\otimes k} \otimes S(\omega_{ij})_{1 \leq i \neq j \leq k}$
- · Relations:
 - Arnold relations
 - $p_i^*(a) \cdot \omega_{ij} = p_j^*(a) \cdot \omega_{ij}$.

$$(\omega_{ji} = \pm \omega_{ij}, \omega_{jj}^2 = \omega_{ij}\omega_{jk} + \omega_{jk}\omega_{ki} + \omega_{ki}\omega_{ij} = 0)$$
$$(p_i^*(a) = 1 \otimes \cdots \otimes 1 \otimes a \otimes 1 \otimes \cdots \otimes 1)$$

$$G_A(k)$$
 conjectured model of $Conf_k(M) = M^{\times k} \setminus \bigcup_{i \neq j} \Delta_{ij}$

$$:= \{x_i = x_j\}$$

- "Generators": $\mathsf{A}^{\otimes k} \otimes \mathsf{S}(\omega_{ij})_{1 \leq i \neq j \leq k}$
- · Relations:
 - Arnold relations

•
$$p_i^*(a) \cdot \omega_{ij} = p_j^*(a) \cdot \omega_{ij}$$
.

$$(\omega_{ji} = \pm \omega_{ij}, \omega_{ij}^2 = \omega_{ij}\omega_{jk} + \omega_{jk}\omega_{ki} + \omega_{ki}\omega_{ij} = 0)$$
$$(\rho_i^*(a) = 1 \otimes \cdots \otimes 1 \otimes a \otimes 1 \otimes \cdots \otimes 1)$$

• $d\omega_{ij} = (p_i^* \cdot p_i^*)(\Delta_A)$ kills the dual of $[\Delta_{ij}]$.

$$G_A(k)$$
 conjectured model of $Conf_k(M) = M^{\times k} \setminus \bigcup_{i \neq j} \Delta_{ij}$

$$:= \{x_i = x_j\}$$

- "Generators": $\mathsf{A}^{\otimes k} \otimes \mathsf{S}(\omega_{ij})_{1 \leq i \neq j \leq k}$
- · Relations:
 - Arnold relations
 - $p_i^*(a) \cdot \omega_{ij} = p_j^*(a) \cdot \omega_{ij}$.

$$(\omega_{jj} = \pm \omega_{ij}, \omega_{ij}^2 = \omega_{ij}\omega_{jk} + \omega_{jk}\omega_{ki} + \omega_{ki}\omega_{ij} = 0)$$
$$(\rho_i^*(a) = 1 \otimes \cdots \otimes 1 \otimes a \otimes 1 \otimes \cdots \otimes 1)$$

• $d\omega_{ij} = (p_i^* \cdot p_i^*)(\Delta_A)$ kills the dual of $[\Delta_{ij}]$.

Theorem (Lambrechts-Stanley 2008)

$$\dim_{\mathbb{Q}} H^i(\operatorname{Conf}_R(M)) = \dim_{\mathbb{Q}} H^i(G_A(R))$$

First part of the theorem

 $G_A(k)$ was known to be a rational model of $Conf_k(M)$ in a few cases:

- M smooth projective complex variety [Kriz];
- k = 2 and M is 2-connected [Lambrechts–Stanley];
- k=2 and $\dim M$ is even [Cordova Bulens]...

First part of the theorem

 $G_A(k)$ was known to be a rational model of $Conf_k(M)$ in a few cases:

- M smooth projective complex variety [Kriz];
- k = 2 and M is 2-connected [Lambrechts–Stanley];
- k=2 and dim M is even [Cordova Bulens]...

Theorem

Let M be a smooth, closed, simply connected manifold of dimension

 \geq 4. Then $G_A(k)$ is a model over \mathbb{R} of $Conf_k(M)$ for all $k \geq 0$.

First part of the theorem

 $G_A(k)$ was known to be a rational model of $Conf_k(M)$ in a few cases:

- M smooth projective complex variety [Kriz];
- k = 2 and M is 2-connected [Lambrechts-Stanley];
- k=2 and dim M is even [Cordova Bulens]...

Theorem

Let M be a smooth, closed, simply connected manifold of dimension

 \geq 4. Then $G_A(k)$ is a model over \mathbb{R} of $Conf_k(M)$ for all $k \geq 0$.

Corollary

The real homotopy type of $\operatorname{Conf}_R(M)$ only depends on the real homotopy type of M:

$$M \simeq_{\mathbb{R}} N \implies \operatorname{Conf}_{k}(M) \simeq_{\mathbb{R}} \operatorname{Conf}_{k}(N).$$

Operads

Ideas & Goals

Adapt the construction for D_n & keep track of the D_n -action whenever it exists

Operads

Ideas & Goals

Adapt the construction for D_n & keep track of the D_n -action whenever it exists

Fulton–MacPherson compactification $\operatorname{Conf}_R(M) \overset{\sim}{\hookrightarrow} \operatorname{\mathsf{FM}}_M(k)$

Understanding FM_M (#1)

Understanding FM_M (#2)

Understanding FM_M (#3)

Compactifying $\operatorname{Conf}_k(\mathbb{R}^n)$

Can also compactify $\operatorname{Conf}_k(\mathbb{R}^n) \xrightarrow{\sim} \operatorname{FM}_n(k)$

Compactifying $\operatorname{Conf}_k(\mathbb{R}^n)$

Can also compactify $\operatorname{Conf}_k(\mathbb{R}^n) \xrightarrow{\sim} \operatorname{Conf}_k(\mathbb{R}^n) / (\mathbb{R}^n \rtimes \mathbb{R}_+^*) \xrightarrow{\sim} \operatorname{FM}_n(k)$

(+ normalization to deal with \mathbb{R}^n being noncompact)

Operads

 $\mathsf{FM}_n = \{\mathsf{FM}_n(k)\}_{k \geq 0}$ is an operad $\simeq \mathsf{D}_n$

$$\mathsf{FM}_n(k) \times \mathsf{FM}_n(l) \xrightarrow{\circ_i} \mathsf{FM}_n(k+l-1), \quad 1 \leq i \leq k$$

Modules over operads

 $M \text{ framed} \implies \mathsf{FM}_M = \{\mathsf{FM}_M(k)\}_{k \geq 0} \text{ is a right } \mathsf{FM}_n\text{-module} \simeq \mathsf{D}_M$

$$\mathsf{FM}_{\mathsf{M}}(k) \times \mathsf{FM}_{\mathsf{n}}(l) \xrightarrow{\circ_{i}} \mathsf{FM}_{\mathsf{M}}(k+l-1), \quad 1 \leq i \leq k$$

Cohomology of FM_n and coaction on G_A

 $H^*(FM_n)$ inherits a Hopf cooperad structure

Cohomology of FM_n and coaction on G_A

 $H^*(FM_n)$ inherits a Hopf cooperad structure

One can rewrite:

$$G_A(k) = (A^{\otimes k} \otimes H^*(FM_n(k))/relations, d)$$

Cohomology of FM_n and coaction on G_A

 $H^*(FM_n)$ inherits a Hopf cooperad structure

One can rewrite:

$$G_A(k) = (A^{\otimes k} \otimes H^*(FM_n(k))/relations, d)$$

Proposition

$$\chi(M)=0 \implies \mathbf{G}_{A}=\{\mathbf{G}_{A}(k)\}_{k\geq 0}$$
 is a Hopf right $H^{*}(\mathbf{F}\mathbf{M}_{n})$ -comodule

Motivation

We are looking for something to put here:

$$G_A(k) \stackrel{\sim}{\longleftarrow} ? \stackrel{\sim}{\longrightarrow} \Omega^*(FM_M(k))$$

Motivation

We are looking for something to put here:

$$\mathsf{G}_{\mathsf{A}}(k) \stackrel{\sim}{\longleftarrow} ? \stackrel{\sim}{\longrightarrow} \Omega^*(\mathsf{FM}_{\mathsf{M}}(k))$$

If true, then hopefully it fits in a diagram like this:

Motivation

We are looking for something to put here:

$$\mathsf{G}_{\mathsf{A}}(k) \stackrel{\sim}{\longleftarrow} ? \stackrel{\sim}{\longrightarrow} \Omega^*(\mathsf{FM}_{\mathsf{M}}(k))$$

If true, then hopefully it fits in a diagram like this:

Already known: formality of the little disks operads

Kontsevich's graph complexes

[Kontsevich] Hopf cooperad $Graphs_n = \{Graphs_n(k)\}_{k \geq 0}$

Kontsevich's graph complexes

[Kontsevich] Hopf cooperad $Graphs_n = \{Graphs_n(k)\}_{k \ge 0}$

Theorem (Kontsevich 1999, Lambrechts-Volić 2014)

$$H^*(\mathsf{FM}_n;\mathbb{R}) \stackrel{\sim}{\longleftarrow} \mathsf{Graphs}_n \stackrel{\sim}{\longrightarrow} \Omega^*_{\mathrm{PA}}(\mathsf{FM}_n)$$
 $\omega_{ij} \longleftarrow j \longmapsto \mathsf{explicit}$ representatives $0 \longleftarrow \emptyset \longmapsto \mathsf{explicit}''$ integrals

Complete version of the theorem

Idea

Build $\operatorname{Graphs}_R^{\mathbf{z}_\varepsilon}$ from Graphs_n similar to how G_A is built from $H^*(\operatorname{FM}_n)$

Complete version of the theorem

Idea

Build $\operatorname{Graphs}_R^{\mathbf{z}_\varepsilon}$ from Graphs_n similar to how \mathbf{G}_A is built from $H^*(\operatorname{FM}_n)$

Theorem (Complete version)

M: closed, simply connected, smooth manifold with $\dim \geq 4$

$†$
 When $\chi({\rm M})=0$

[‡] When *M* is framed

$$A \stackrel{\sim}{\longleftarrow} R \stackrel{\sim}{\longrightarrow} \Omega_{\mathrm{PA}}^*(M)$$

Configuration Spaces of Manifolds with Boundary

Poincaré-Lefschetz duality models

Now: $\partial M \neq \varnothing \implies H^*(M) \cong H_{n-*}(M, \partial M)$ for M oriented

Poincaré-Lefschetz duality models

Now: $\partial M \neq \varnothing \implies H^*(M) \cong H_{n-*}(M,\partial M)$ for M oriented

Poincaré–Lefschetz duality pair $(B \xrightarrow{\lambda} B_{\partial})$:

• $(B_{\partial}, arepsilon_{\partial})$ Poincaré duality CDGA of dimension n-1; (models $\partial M, \int_{\partial M} N$

Poincaré-Lefschetz duality models

Now: $\partial M \neq \varnothing \implies H^*(M) \cong H_{n-*}(M, \partial M)$ for M oriented Poincaré–Lefschetz duality pair $(B \xrightarrow{\lambda} B_{\partial})$:

- $(B_{\partial}, \varepsilon_{\partial})$ Poincaré duality CDGA of dimension n-1;
- B: fin. type connected CDGA;

(models ∂M , $\int_{\partial M}$)

(models M)

28

Now:
$$\partial M \neq \varnothing \implies H^*(M) \cong H_{n-*}(M, \partial M)$$
 for M oriented Poincaré–Lefschetz duality pair $(B \xrightarrow{\lambda} B_{\partial})$:

- $(B_{\partial}, \varepsilon_{\partial})$ Poincaré duality CDGA of dimension n-1;
- B: fin. type connected CDGA;
- $\lambda: B \to B_{\partial}$: surjective CDGA morphism;

(models ∂M , $\int_{\partial M}$)

(models M)

 $(models \partial M \hookrightarrow M)$

28

Now: $\partial M \neq \varnothing \implies H^*(M) \cong H_{n-*}(M, \partial M)$ for M oriented

Poincaré–Lefschetz duality pair $(B \xrightarrow{\lambda} B_{\partial})$:

- $(B_{\partial}, \varepsilon_{\partial})$ Poincaré duality CDGA of dimension n-1; (models $\partial M, \int_{\partial M} J$
- · B: fin. type connected CDGA; (models M)
- \cdot $\varepsilon:B^n o\mathbb{R}$ S.t. $\varepsilon(dy)=\varepsilon_\partial(\lambda(y));$ (models $\int_M(-)$ & Stokes formula)

Now: $\partial M \neq \varnothing \implies H^*(M) \cong H_{n-*}(M, \partial M)$ for M oriented

Poincaré–Lefschetz duality pair $(B \xrightarrow{\lambda} B_{\partial})$:

- $(B_{\partial}, \varepsilon_{\partial})$ Poincaré duality CDGA of dimension n-1; (models ∂M , $\int_{\partial M}$)
- B: fin. type connected CDGA; (models M)
- $\cdot \ arepsilon : B^n o \mathbb{R} \ ext{ s.t. } arepsilon(dy) = arepsilon_\partial(\lambda(y));$ (models $f_{\mathbb{M}}(-)$ & Stokes formula)
- if $K = \ker \lambda$, then $\theta : B \to K^{\vee}[-n]$, $b \mapsto \varepsilon(b \cdot -)$ is a surjective quasi-isomorphism. $(\kappa \simeq \Omega^*(M, \partial M))$

Now: $\partial M \neq \emptyset \implies H^*(M) \cong H_{n-*}(M, \partial M)$ for M oriented

Poincaré–Lefschetz duality pair $(B \xrightarrow{\lambda} B_{\partial})$:

- $(B_{\partial}, \varepsilon_{\partial})$ Poincaré duality CDGA of dimension n-1; (models ∂M , $\int_{\partial M}$)
- B: fin. type connected CDGA; (models M)
- $\lambda:B woheadrightarrow B_{\partial}$: surjective CDGA morphism; (models $\partial M \hookrightarrow M$)
- \cdot $\varepsilon: B^n o \mathbb{R}$ S.t. $\varepsilon(dy) = \varepsilon_\partial(\lambda(y));$ (models $\int_{\mathbb{M}} (-)$ & Stokes formula)
- if $K = \ker \lambda$, then $\theta : B \to K^{\vee}[-n]$, $b \mapsto \varepsilon(b \cdot -)$ is a surjective quasi-isomorphism. $(\kappa \simeq \Omega^*(M, \partial M))$

In this case, $A := B / \ker \theta$ is a model of M, and $\theta : A \xrightarrow{\cong} K^{\vee}[-n]$

Example

If $M = N \setminus \{*\}$ with N closed:

Example

If $M = N \setminus \{*\}$ with N closed: take P a Poincaré duality model of N

$$B = (P \oplus \mathbb{R} V_{n-1}, dV = \operatorname{vol}_P) \twoheadrightarrow B_{\partial} = H^*(S^{n-1}) = (\mathbb{R} \oplus \mathbb{R} V_{n-1}, d = 0)$$

Example

If $M = N \setminus \{*\}$ with N closed: take P a Poincaré duality model of N

$$B = (P \oplus \mathbb{R} \mathsf{v}_{n-1}, d\mathsf{v} = \mathrm{vol}_P) \twoheadrightarrow B_{\partial} = \mathsf{H}^*(\mathsf{S}^{n-1}) = (\mathbb{R} \oplus \mathbb{R} \mathsf{v}_{n-1}, d = 0)$$

Proposition

If M is simply connected, ∂M is simply connected, and $\dim M \geq 7$, then $(M,\partial M)$ admits a PLD model.

Example

If $M = N \setminus \{*\}$ with N closed: take P a Poincaré duality model of N

$$B = (P \oplus \mathbb{R} \mathsf{v}_{n-1}, d\mathsf{v} = \mathrm{vol}_P) \twoheadrightarrow B_{\partial} = \mathsf{H}^*(\mathsf{S}^{n-1}) = (\mathbb{R} \oplus \mathbb{R} \mathsf{v}_{n-1}, d = 0)$$

Proposition

If M is simply connected, ∂M is simply connected, and $\dim M \geq 7$, then $(M,\partial M)$ admits a PLD model.

Remark

Also true if *M* admits a "surjective pretty model", cf. theorems of Cordova Bulens and Cordova Bulens–Lambrechts–Stanley.

The "naïve" dg-module GA

Given a PLD model (B, B_{∂}) and $A = B/\ker \theta$, can build $G_A(R)$ as before.

The "naïve" dg-module GA

Given a PLD model (B, B_{∂}) and $A = B/\ker \theta$, can build $G_A(k)$ as before.

Theorem

$$\dim H^i(\operatorname{Conf}_R(M)) = \dim H^i(G_A(R))$$

The "na"ive" dg-module G_A

Given a PLD model (B, B_{∂}) and $A = B/\ker \theta$, can build $G_A(k)$ as before.

Theorem

$$\dim H^i(\operatorname{Conf}_R(M)) = \dim H^i(\mathsf{G}_A(R))$$

Idea of proof

Combine:

- Techniques of Lambrechts–Stanley to compute homology of spaces of the type $M^k \setminus \bigcup_{i \neq j} \Delta_{ij}$;
- Techniques of Cordova Bulens–L–S to compute homology of M = N \ X where N is a closed manifold and X ⊂ N is a sub-polyhedron.

In general, $G_A(k)$ is not actually a CDGA model for $Conf_k(M)$.

In general, $G_A(k)$ is not actually a CDGA model for $Conf_k(M)$.

Motivation

$$\textit{M} = \textit{S}^1 \times (0,1) \cong \mathbb{R}^2 \setminus \{0\} \implies \mathrm{Conf}_2(\textit{M}) \simeq \mathrm{Conf}_3(\mathbb{R}^2)$$

In general, $G_A(k)$ is not actually a CDGA model for $Conf_k(M)$.

Motivation

$$M = S^1 \times (0,1) \cong \mathbb{R}^2 \setminus \{0\} \implies \operatorname{Conf}_2(M) \simeq \operatorname{Conf}_3(\mathbb{R}^2)$$

Then $A = H^*(M) = \mathbb{R} \oplus \mathbb{R} \eta$. In $G_A(2)$, relation $(1 \otimes \eta)\omega_{12} = (\eta \otimes 1)\omega_{12}$.

In general, $G_A(k)$ is not actually a CDGA model for $Conf_k(M)$.

Motivation

$$M = S^1 \times (0,1) \cong \mathbb{R}^2 \setminus \{0\} \implies \operatorname{Conf}_2(M) \simeq \operatorname{Conf}_3(\mathbb{R}^2)$$

Then $A = H^*(M) = \mathbb{R} \oplus \mathbb{R} \eta$. In $G_A(2)$, relation $(1 \otimes \eta)\omega_{12} = (\eta \otimes 1)\omega_{12}$.

But in $\operatorname{Conf}_3(\mathbb{R}^2)$, Arnold relation: $(1 \otimes \eta)\omega_{12} = (\eta \otimes 1)\omega_{12} \pm (\eta \otimes \eta)$.

In general, $G_A(k)$ is not actually a CDGA model for $Conf_k(M)$.

Motivation

$$M = S^1 \times (0,1) \cong \mathbb{R}^2 \setminus \{0\} \implies \operatorname{Conf}_2(M) \simeq \operatorname{Conf}_3(\mathbb{R}^2)$$

Then $A = H^*(M) = \mathbb{R} \oplus \mathbb{R}\eta$. In $G_A(2)$, relation $(1 \otimes \eta)\omega_{12} = (\eta \otimes 1)\omega_{12}$. But in $Conf_3(\mathbb{R}^2)$, Arnold relation: $(1 \otimes \eta)\omega_{12} = (\eta \otimes 1)\omega_{12} \pm (\eta \otimes \eta)$.

 \implies must define a "perturbed model" $\tilde{G}_A(k)$

Proposition

Isomorphism of dg-modules $G_{\Delta}(k) \cong \tilde{G}_{\Delta}(k)$.

Swiss-Cheese & graphs

M looks like \mathbb{H}^n (locally) \implies Swiss-Cheese operad

Swiss-Cheese & graphs

M looks like \mathbb{H}^n (locally) \implies Swiss-Cheese operad

Swiss-Cheese & graphs

M looks like \mathbb{H}^n (locally) \implies Swiss-Cheese operad

Theorem (Willwacher 2015)

Model $SGraphs_n$ for $SFM_n = \overline{Conf_{\bullet,\bullet}(\mathbb{H}^n)} \simeq SC_n$:

Theorem for manifolds with boundary

Using similar techniques:

Theorem

For M a smooth, compact manifold of dimension at least \geq 7, M and ∂ M simply connected:

Moreover: model $\mathsf{SGraphs}_{R,R_{\partial}}^{\mathsf{C}_{\mathsf{M}},\mathsf{Z}_{\partial}^{\mathsf{S}}}(k,l)$ of $\mathsf{SFM}_{\mathsf{M}}(k,l)$, compatible with the (co)action of $\mathsf{SGraphs}_n$ / SFM_n

