Integrated Sensing and Communications

Lecturer: Dr. Rui Wang

Sensing

• To detect the location, motion of mobile devices, vehicles or human

Sensing may improve the communication efficiency

Sensing may also provide services other than communications

Week 2

IEEE 802.11bf

• "802.11bf is a new Task Group about WLAN sensing within the IEEE 802.11 working group."

• "WLAN sensing is the use, by a WLAN sensing capable STA(s), of received WLAN signals to detect feature(s) of an intended target(s) in a given environment."

IEEE 802.11bf

WLAN sensing

Use case example 1

- Multiple devices diversity: Makes use of 802.11 devices found in various locations inside the house
 - Different rooms/floors could be "sensed"
 - High level of device diversity, wide coverage
- · Applications
 - Home security and safety
 - Energy management and control
 - · HVAC, light, device power save
 - Home elderly care and assisted living

Use case example 2

- mmWave: 60 GHz 802.11 technology offers better performance to detect/track movement
 - Higher resolution
 - Higher accuracy
- Applications
 - More than just a teleconferencing tool to speak with your physician, upon consent, your laptop could also be able to provide your physician with vital data, both historical and in real time

IEEE 802.11bf

Sensing in 3GPP

- Currently, 5G is not so successful in applications
- Industry tries to define new application scenarios for cellular systems

Huawei: 5.5G

Sensing Modes and Parameters

- Distance to the BS or mobile devices
- Angles
- Velocity
- Motion

Proactive and passive

Data Signals

- ß is due to the pathloss of echo path + radar cross-section (RCS)
- f is the Doppler frequency = $\frac{2vf_c}{c}$

x(t)

• Define
$$Cor(c,d) = \int x(t-2c)e^{j2\pi dt}y^*(t) dt$$

• The estimation of (τ, f) :

$$(\hat{\tau}, \hat{f}) = \underset{c,d}{arg \max} Cor(c, d)$$

Proactive Sensing: Analysis

$$y(t) = \alpha \beta x(t - 2\tau)e^{j2\pi ft}$$

- If is τ known, $Cor(\tau, d) = \int x(t 2\tau)e^{j2\pi dt}y^*(t) dt$
- The estimation of f:

$$\hat{f} = \arg \max_{d} Cor(\tau, d)$$

$$= \arg \max_{d} \int x(t - 2\tau)e^{j2\pi dt} \alpha^* \beta^* x(t - 2\tau)^* e^{-j2\pi ft} dt$$

$$= \arg \max_{d} \alpha^* \beta^* \int |x(t - 2\tau)|^2 e^{j2\pi (d - f)t} dt$$

Proactive Sensing: Analysis

- If is f known, $Cor(c, f) = \int x(t 2c)e^{j2\pi ft}y^*(t) dt$
- The estimation of τ :

$$\hat{\tau} = \arg \max_{c} Cor(c, f)$$

$$= \arg \max_{c} \int x(t - 2c)e^{j2\pi ft} \alpha^* \beta^* x(t - 2\tau)^* e^{-j2\pi ft} dt$$

$$= \arg \max_{c} \alpha^* \beta^* \int x(t - 2c)x(t - 2\tau)^* dt$$

$$y(t) = \alpha \beta x(t - 2\tau)e^{j2\pi ft}$$

Proactive Sensing: Full Duplexing

$$y(t) = \alpha \beta x(t - 2\tau)e^{j2\pi ft}$$

- The BS should knows y(t)
- BS is sending x(t) => It must be full duplex
- Full duplex is currently a huge challenge for data transceiver design

Proactive Sensing: TDMA

$$y(t) = \alpha \beta x(t - 2\tau)e^{j2\pi ft}$$

- The BS sends the radar and data waves in different time
- Radar wave: Frequency Modulated Continuous Wave (FMCW)
- Only require full duplexing in FMCW transmission –
 Easy-peasy

