Βιομηχανική επιχείρηση μελετά τις ακόλουθες δυνατότητες επένδυσης για την επόμενη δεκαετία.

- Δράση α₁: Ολοκληρωμένη παρέμβαση στο παραγωγικό σύστημα με αποτέλεσμα μεγάλη εξοικονόμηση ενέργειας (ΕΞΕΝ)
- Δράση α₂: Επιμέρους επεμβάσεις με αποτέλεσμα μικρότερη ΕΞΕΝ
- Δράση α3: Μη ενεργειακή επένδυση

Η απόδοση των επενδύσεων όπως εκφράζεται μέσω του Εσωτερικού Συντελεστή Απόδοσης εξαρτάται από την εξέλιξη των τιμών των καυσίμων στην επόμενη δεκαετία. Το τμήμα μελετών εκτιμά ότι: Καταστάσεις της φύσης

- Κατάσταση S_1 : Μεγάλος ετήσιος ρυθμός αύξησης της τιμής: $P(S_1)=0.40$
- Κατάσταση S_2 : Μικρός ετήσιος ρυθμός αύξησης της τιμής: $P(S_2)$ =0.35
- Κατάσταση S_3 : Σταθερές τιμές καυσίμων: $P(S_3)=0.25$

Δυνατές Δράσεις	Εξέλιξη της τιμής των καυσίμων			
	S_1	\mathbf{S}_2	S_3	
α_1	35%	7%	-8%	
α_2	24%	18%	0%	
α_3	12%	12%	12%	

^{*} Η απόδοση της α3 είναι ανεξάρτητη της εξέλιξης της τιμής των καυσίμων

ΠΡΟΣΔΟΚΙΤΗ ΤΙΜΗ «ΚΕΡΔΟΥΣ»

 $\Pi TK(\alpha_i) = \sum_j (k_{ij})(P_j)$

 k_{ij} : Κέρδος δράσης α_i για την κατάσταση j

P_j: Πιθανότητα κατάστασης j

KPITHPIO BAYES

Επιλογή της δράσης α_i που μεγιστοποιεί την προσδοκιτή τιμή του κέρδους.

ΠΤΚ
$$(\alpha_1) = 35 * 0.40 + 7 * 0.35 + (-8) * 0.25 = 14.5\%$$

ΠΤΚ $(\alpha_2) = 24 * 0.40 + 18 * 0.35 + 0 * 0.25 = 15.9\%$ ← max
ΠΤΚ $(\alpha_3) = 12\%$

ΔΥΝΑΤΟΤΗΤΑ ΑΠΟΚΤΗΣΗΣ ΠΛΗΡΟΦΟΡΙΑΣ: ΕΚΠΟΝΗΣΗ ΜΕΛΕΤΗΣ ΓΙΑ ΤΗΝ ΠΡΟΒΛΕΨΗ ΤΗΣ ΤΙΜΗΣ ΤΩΝ ΚΑΥΣΙΜΩΝ

Κόστος μελέτης: 1.5%

Πίνακας αξιοπιστίας μελέτης:

A50	Εξέλιξη των τιμών των καυσίμων		
Αποτέλεσμα Μελέτης	S_1	\mathbf{S}_2	S_3
Ε ₁ (Μεγάλη άνοδος)	0.7	0.1	0.1
Ε ₂ (Μικρή άνοδος)	0.2	0.8	0.2
Ε3 (Σταθερότητα)	0.1	0.1	0.7

Ο Πίνακας αξιοπιστίας δίνει την πιθανότητα να γίνει η πρόβλεψη E_j υπό τον όρο ότι θα συμβεί η κατάσταση S_i , δηλαδή υπό συνθήκη πιθανότητα $P(E_i/S_i)$.

ΘΕΩΡΗΜΑ BAYES ΒΕΛΤΙΩΜΕΝΕΣ ΠΙΘΑΝΟΤΗΤΕΣ

$$\begin{array}{c} \text{Arxinkes} \\ \text{Pidanathes} \\ \text{Pidanat$$

ЕФАРМОГН

$$P(S_1/E_1)$$
=\frac{P(E_1/S_1) * P(S_1)}{P(E_1/S_1) * P(S_1) + P(E_1/S_2) * P(S_2) + P(E_1/S_3) * P(S_3)}
= \frac{0.7 * 0.40}{0.7 * 0.40 + 0.1 * 0.35 + 0.1 * 0.25} = 0.82

ΑΝΑΘΕΩΡΗΜΕΝΟ ΔΕΝΤΡΟ ΑΠΟΦΑΣΕΩΝ

Συστήματα Αποφάσεων Εργαστήριο Συστημάτων Αποφάσεων και Διοίκησης

Η ΑΞΙΑ ΤΗΣ ΠΛΗΡΟΦΟΡΙΑΣ

Δύο είδη πληροφορίας

- Δειγματοληπτική
- Πλήρης

Κάθε πληροφορία έχει ένα κόστος και μια προσδοκιτή αξία. Η πληροφορία δεν ζητείται αν το κόστος είναι μεγαλύτερο από την προσδοκιτή αξία.

Προσδοκιτή Αξία Δειγματοληπτικής Πληροφορίας ΠΑΔΠ = ΠΤΚ (με μελέτη) – ΠΤΚ (χωρίς μελέτη) = 19.9 – 15.9 = 4.0%

Προσδοκιτή Αξία Πλήρους Πληροφορίας ΠΑΠΠ = ΠΤΚΠΠ – ΠΤΚ (χωρίς μελέτη) όπου: ΠΤΚΠΠ = $\sum_i P(S_i) * max K_i =$ = 0.40 *0.35 + 0.35*18 + 0.25* 12 = 23,3 Άρα ΠΑΠΠ = 23.3 – 15.9 = 7.4%