IEEE-830

16 de marzo de 2022

Historial de cambios

crear tabla de el versionado de los cambios

 $\acute{I}NDICE$

Índice

1.	Intr	Introducción 3			
	1.1.	Propósito	3		
	1.2.	Ámbito del sistema	3		
	1.3.	Definiciones, Acrónimos y Abreviaturas	3		
	1.4.	Referencias	3		
	1.5.	Visión general del documento	3		
2.	Descripción general del documento				
	2.1.	Perspectiva del producto	3		
	2.2.	Funciones del producto	3		
	2.3.	Características de los usuarios	4		
	2.4.	Restricciones	4		
	2.5.	Suposiciones y dependencias	4		
	2.6.	Requisitos futuros	4		
3.	Req	uisitos específicos	5		
	3.1.	Interfaces externas	5		
	3.2.	Funciones	5		
	3.3.	Control de posición	5		
	3.4.	Servidor Web embebido	6		
	3.5.	Conexión con software externo	6		
	3.6.	Entorno de operación y mantenimiento	6		
	3.7.	Requisitos de rendimiento	6		
	3.8.	Restricciones de diseño	7		
	3.0	Atributes del sistema	7		

1. Introducción

1.1. Propósito

Este documento presenta una especificación de requerimientos de software para unsistema de posicionamiento de antena. Este dispositivo generalmente se conoce como rotador. Este tiene dos ejes, uno denominado azimuth, y el otro altura o elevación.

Esta dirigido a técnicos, profesionales y operarios que intervengan en los sistemas de apuntamiento que posee el IAR.

1.2. Ámbito del sistema

Este sistema, se desarrolla como un subsistema del interferómetro MIA(https://www.iar.unlp.edu.ar/slicy el proyecto de construcción de estaciones terrenas. Se utilizar para realizar el apuntamiento de radiofuentes, y el seguimiento de satelites en forma automática. El nombre del sistema rotador sera ROT_IAR. Adicionalmente, tiene espectativas de escalar, y realizar una producción en serie.

1.3. Definiciones, Acrónimos y Abreviaturas

ver los acrónimos al terminar el documento

1.4. Referencias

ver tesis, y plan de trabajo!

1.5. Visión general del documento

Este documento se realiza siguiendo el estándar IEEE Std. 830-1998

2. Descripción general del documento

2.1. Perspectiva del producto

El software es parte de un sistema mayor, denominado interferómetro MIA y estaciones terrenas. Este sistema de apuntamiento, se adicionara al sistema mecánico de la antena que esta en fase de construcción. Este sistema, realizará el apuntamiento de antena, y este según el proyecto(MIA o estaciones terrenas) es automático o manual. El diagrama en bloques del sistema se muestra en la figura 1.

El presente documento describe los requerimientos de software del bloque single board computer, y las interfaces del sistema que se observa en la figura 1.

2.2. Funciones del producto

- 1. control de posición
- 2. Servidor web embebido
- 3. Compatible con el software Gpredict y Stellarium, y scripts de antenas principales
- 4. Reinicio del en forma remota

Figura 1: Diagrama en bloques del sistema

- 5. Interrupción de operación en caso de condiciones climáticas adversas.
- 6. información de la operación y estado actual del sistema (tracking, untracked, y cenit).

2.3. Características de los usuarios

Los usuarios serán técnicos, operarios y profesionales con conocimiento y experiencia en los sistemas de apuntamiento y manejo de rotadores.

2.4. Restricciones

- Lenguaje python3 por cuestiones de compatibilidad de scripts de manejo principal de las antenas.
- El software debe estar bajo control de versiones.

2.5. Suposiciones y dependencias

Se supone que se cuenta con los scripts del manejo de las antenas principales Se cuenta con los encoders y motores seleccionados.

2.6. Requisitos futuros

El sistema posea control de velocidad

El diseño electrónico escalable, y realizable en una cadena de producción.

El sistema debe poseer autocalibración en base al sol o la luna (esto dependerá del horario en que se realice la autocalibración).

El sistema tendra que identificarse mediante algún código alfanumérico

3. Requisitos específicos

3.1. Interfaces externas

- El sistema se comunicara con una red local mediante cable ethernet con conector RJ45
- El sistema se conecta con un sensor de temperatura DHT11 mediante onewire.
- El sistema se conecta con los drivers de los motores mediante puertos que posean salida PWM.
- Los encoders serán conectados en un puerto analógico digital.
- El sistema de medición del viento se realizará con un anemómetro, y se conectará a un puerto analógico digital
- Se realizará un PCB que se acople al single board computer mecánicamente con borneras, donde se indique mediante serigrafia donde se conecta. Esta serigrafia será:
 - EP1: motor de azimuth
 - EP2: motor de altura
 - ENC1: encoder de azimuth
 - ENC2: encoder de altura
 - VTO: anemómetro

3.2. Funciones

3.3. Control de posición

- 1. El sistema debe realizar un control a lazo cerrado mediante la lectura de los encoders cada 100 ms, mientras se encuentre encendido.
- 2. Debe poder manejar el sistema de coordenadas ecuatorial y altacimutal, y realizar las transformaciones matemáticas correspondientes
- 3. El control se realiza mediante un control on/off.
- 4. El sistema tiene tres estados:
 - a) TRACKING: seguimiento de satelite o radiofuente. Debe ser independiente del tipo de objeto estelar a seguir
 - b) UNTRACKING: no se esta realizando ningún tipo de seguimiento
 - c) CENIT: posición de reposo de la antena

3.4. Servidor Web embebido

- El servidor informa del estado estado actual(TRACKING, UNTRACKING, CENIT).
 Además informa el estado de corriente en ampere, tensión de operación en volts, viento en km/h y temperatura en grados centigrados
- 2. Debe realizar movimientos de la antena a demanda del operador
- 3. Debe poseer una función de calibración para los encoders e informar su lectura
- 4. Debe poseer mecanismo de POST/GET para consulta de estados mediante consola.
- 5. Se deben utilizar los scripts de las antenas principales. Esto implica la realización en python del servidor web embebido
- 6. Debe poseer mecanismo para realizar el gráfico de tensión, corriente, viento y temperatura, durante los últimos 10 minutos y verse en pantalla.

3.5. Conexión con software externo

- Debe usarse Stellarium y Gpredict para realizar seguimientos de radiofuentes o satelites
- Se deben utilizar sockets y configuraciones especificas para cada software.

3.6. Entorno de operación y mantenimiento

- 1. El sistema debe realizar la medición de temperatura y viento cada 2 minutos
- 2. Si la velocidad supera los 50 km/h durante diez, debe llevar la antena a su posición de cenit, independientemente de su estado actual. Si estaba en cenit, debe quedarse alli hasta que la velocidad del viento sea inferior a 50 km/h.
- 3. Debe almacenar los datos desde las 5AM de un dia, hasta las 5AM del dia siguiente, y enviar la información a un servidor dentro de la institución. Estos datos tienen el siguiente formato:
 - timestamp , tensión[V], corriente[A], temperatura[°C] , viento[KM/H], ESTADO, posición azimuth,posición altura

La hora de envio será las 5 AM de cada dia. El nombre del archivo enviado es en formato txt, y posee el siguiente formato de nombre:

- IAR MIA FECHA ANTENA.txt
- 4. El archivo debe ser procesado y almacenado en un directorio dentro del repositorio de la institución mediante un script y realizar un analisis de los parámetros que reciben. En caso de anomalia, debe alertar a los operadores mediante el envio de un SMS o mail.

3.7. Requisitos de rendimiento

El sistema, debe soportar hasta 20 conexiones simultaneamente. Si esta en estado TRAC-KING, al conectarse simultaneamente otro operador, debe informarsele que debe esperar que finalice la operación.

3.8. Restricciones de diseño

Se debe realizar el servidor web embebido en python, para tener compatibilidad con los scripts de manejo de las antenas principales de la institución.

3.9. Atributos del sistema

Debe tener la capacidad de actualizar el software manualmente mediante red local, si se desea agregar otro software aparte de Gpredict y Stellarium (por ejemplo orbitron)