Geometrische Grundlagen der Linearen Optimierung

Martin Henk & Martin Skutella

 $\begin{array}{c} {\rm TU~Berlin} \\ {\rm Winter~semester~2015/16} \end{array}$

Webpage TU Berlin Isis

Sunday 29^{th} November, 2015 at 17:57

CONTENTS

Contents

WS	2015	/16

	·	
1	Basic and convex facts	1
2	Support and separate	7
3	A rough guide to polytopes	11
4	Walking on polytopes	17
	Index	19

1 Basic and convex facts

- **1.1 Notation.** $\mathbb{R}^n = \{ \boldsymbol{x} = (x_1, \dots, x_n)^{\mathsf{T}} : x_i \in \mathbb{R} \}$ denotes the n-dimensional Euclidean space equipped with the Euclidean inner product $\langle \boldsymbol{x}, \boldsymbol{y} \rangle = \boldsymbol{x}^{\mathsf{T}} \boldsymbol{y} = \sum_{i=1}^n x_i y_i, \, \boldsymbol{x}, \boldsymbol{y} \in \mathbb{R}^n$, and the Euclidean norm $\|\boldsymbol{x}\| = \sqrt{\langle \boldsymbol{x}, \boldsymbol{x} \rangle}$.
- **1.2 Definition** [Linear, affine, positive and convex combination]. Let $m \in \mathbb{N}$ and let $\mathbf{x}_i \in \mathbb{R}^n$, $\lambda_i \in \mathbb{R}$, $1 \leq i \leq m$.
 - i) $\sum_{i=1}^{m} \lambda_i x_i$ is called a linear combination of x_1, \ldots, x_m .
 - ii) If $\sum_{i=1}^{m} \lambda_i = 1$ then $\sum_{i=1}^{m} \lambda_i x_i$ is called an affine combination of x_1 , ..., x_m .
 - iii) If $\lambda_i \geq 0$ then $\sum_{i=1}^m \lambda_i x_i$ is called a positive combination of x_1, \ldots, x_m .
 - iv) If $\lambda_i \geq 0$ and $\sum_{i=1}^m \lambda_i = 1$ then $\sum_{i=1}^m \lambda_i \, \boldsymbol{x}_i$ is called a convex combination of $\boldsymbol{x}_1, \ldots, \boldsymbol{x}_m$.
 - v) Let $X \subseteq \mathbb{R}^n$. $\boldsymbol{x} \in \mathbb{R}^n$ is called linearly (affinely, positively, convexly) dependent of X, if \boldsymbol{x} is a linear (affine, positive, convex) combination of finitely many points of X, i.e., there exist $\boldsymbol{x}_1, \ldots, \boldsymbol{x}_m \in X$, $m \in \mathbb{N}$, such that \boldsymbol{x} is a linear (affine, positive, convex) combination of the points $\boldsymbol{x}_1, \ldots, \boldsymbol{x}_m$.
- **1.3 Definition** [Linearly and affinely independent points]. $x_1, \ldots, x_m \in \mathbb{R}^n$ are called linearly (affinely) dependent, if one of the x_i is linearly (affinely) dependent of $\{x_1, \ldots, x_m\} \setminus \{x_i\}$. Otherwise x_1, \ldots, x_m are called linearly (affinely) independent.
- 1.4 Proposition. Let $x_1, \ldots, x_m \in \mathbb{R}^n$.
 - i) x_1, \ldots, x_m are affinely dependent if and only if $\binom{x_1}{1}, \ldots, \binom{x_m}{1} \in \mathbb{R}^{n+1}$ are linearly dependent.
 - ii) x_1, \ldots, x_m are affinely dependent if and only if there exist $\mu_i \in \mathbb{R}$, $1 \le i \le m$, with $(\mu_1, \ldots, \mu_m) \ne (0, \ldots, 0)$, $\sum_{i=1}^m \mu_i = 0$ and $\sum_{i=1}^m \mu_i x_i = \mathbf{0}$.
 - iii) If $m \ge n+1$ then x_1, \ldots, x_m are linearly dependent.
 - iv) If $m \geq n+2$ then x_1, \ldots, x_m are affinely dependent.
- 1.5 Definition [Linear subspace, affine subspace, (convex) cone and convex set].

 $X \subseteq \mathbb{R}^n$ is called

- i) linear subspace (set) if it contains all $x \in \mathbb{R}^n$ which are linearly dependent of X.
- ii) affine subspace (set) if it contains all $x \in \mathbb{R}^n$ which are affinely dependent of X,

- iii) (convex) cone if it contains all $x \in \mathbb{R}^n$ which are positively dependent of X,
- iv) convex set if it contains all $x \in \mathbb{R}^n$ which are convexly dependent of X.
- **1.6 Theorem.** $K \subseteq \mathbb{R}^n$ is convex if and only if

$$\lambda x + (1 - \lambda) y \in K$$
, for all $x, y \in K$ and $0 \le \lambda \le 1$.

1.7 Example.

- i) The closed n-dimensional ball $B_n(\boldsymbol{a},\rho) = \{\boldsymbol{x} \in \mathbb{R}^n : \|\boldsymbol{x} \boldsymbol{a}\| \leq \rho\}$ with centre a and radius $\rho > 0$ is convex. The boundary of $B_n(\boldsymbol{a},\rho)$, i.e., $\{\boldsymbol{x} \in \mathbb{R}^n : \|\boldsymbol{x} \boldsymbol{a}\| = \rho\}$ is non-convex. In the case $\boldsymbol{a} = \boldsymbol{0}$ and $\rho = 1$ the ball $B_n(\boldsymbol{0},1)$ is abbreviated by B_n and is called n-dimensional unit ball.
- ii) Let $\mathbf{a} \in \mathbb{R}^n$, $\alpha \in \mathbb{R}$. The closed halfspaces $H^+(\mathbf{a}, \alpha)$, $H^-(\mathbf{a}, \alpha) \subset \mathbb{R}^n$ given by

$$H^+(\boldsymbol{a},\alpha) = \{ \boldsymbol{x} \in \mathbb{R}^n : \langle \boldsymbol{a}, \boldsymbol{x} \rangle \ge \alpha \}, \quad H^-(\boldsymbol{a},\alpha) = \{ \boldsymbol{x} \in \mathbb{R}^n : \langle \boldsymbol{a}, \boldsymbol{x} \rangle \le \alpha \}$$

are convex, as well as the hyperplane $H(\boldsymbol{a}, \alpha)$ defined by

$$H(\boldsymbol{a}, \alpha) = \{ \boldsymbol{x} \in \mathbb{R}^n : \langle \boldsymbol{a}, \boldsymbol{x} \rangle = \alpha \}.$$

- **1.8 Corollary.** Let $K_i \subseteq \mathbb{R}^n$, $i \in I$, be convex. Then $\bigcap_{i \in I} K_i$ is convex.
- 1.9 Definition [Linear, affine, positive and convex hull, dimension]. Let $X \subseteq \mathbb{R}^n$.
 - i) The linear hull $\lim X$ of X is defined by

$$\lim X = \bigcap_{\substack{L \subseteq \mathbb{R}^n, \ L \ linear, \\ X \subset L}} L.$$

ii) The affine hull aff X of X is defined by

$$\operatorname{aff} X = \bigcap_{\substack{A \subseteq \mathbb{R}^n, \ A \ \text{affine}, \\ X \subseteq A}} A.$$

iii) The positive (conic) hull pos X of X is defined by

$$\operatorname{pos} X = \bigcap_{\substack{C \subseteq \mathbb{R}^n, \ C \ \text{convex cone,} \\ X \subseteq C}} C.$$

iv) The convex hull conv X of X is defined by

$$\operatorname{conv} X = \bigcap_{\substack{K \subseteq \mathbb{R}^n, K \text{ convex,} \\ X \subset K}} K.$$

- v) The dimension dim X of X is the dimension of its affine hull, i.e., dim aff X.
- **1.10 Theorem.** Let $X \subseteq \mathbb{R}^n$. Then

$$\operatorname{conv} X = \left\{ \sum_{i=1}^{m} \lambda_i \, \boldsymbol{x}_i : m \in \mathbb{N}, \boldsymbol{x}_i \in X, \lambda_i \ge 0, \sum_{i=1}^{m} \lambda_i = 1 \right\}.$$

1.11 Remark.

- i) conv $\{x, y\} = \{\lambda x + (1 \lambda) y : \lambda \in [0, 1]\}.$
- ii) $\lim X = \{ \sum_{i=1}^m \lambda_i \boldsymbol{x}_i : \lambda_i \in \mathbb{R}, \, \boldsymbol{x}_i \in X, \, m \in \mathbb{N} \}.$
- iii) aff $X = \{\sum_{i=1}^m \lambda_i x_i : \lambda_i \in \mathbb{R}, \sum_{i=1}^m \lambda_i = 1, x_i \in X, m \in \mathbb{N}\}.$
- iv) pos $X = \{\sum_{i=1}^{m} \lambda_i \boldsymbol{x}_i : \lambda_i \in \mathbb{R}, \lambda_i \geq 0, \, \boldsymbol{x}_i \in X, \, m \in \mathbb{N} \}.$
- **1.12 Definition** [Linear, affine, convex function]. A function $f: \mathbb{R}^n \to \mathbb{R}$ is called
 - i) linear if $f(\lambda x + \mu y) = \lambda f(x) + \mu f(y)$ for all $x, y \in \mathbb{R}^n$ and $\lambda, \mu \in \mathbb{R}$.
 - ii) affine if $f(\lambda x + (1 \lambda)y) = \lambda f(x) + (1 \lambda) f(y)$ for all $x, y \in \mathbb{R}^n$ and $\lambda \in \mathbb{R}$.
 - iii) convex if $f(\lambda x + (1 \lambda)y) \le \lambda f(x) + (1 \lambda) f(y)$ for all $x, y \in \mathbb{R}^n$ and $\lambda \in [0, 1]$.
 - iv) concave if $f(\lambda x + (1 \lambda)y) \ge \lambda f(x) + (1 \lambda) f(y)$ for all $x, y \in \mathbb{R}^n$ and $\lambda \in [0, 1]$, i.e., -f is convex.
- **1.13 Theorem.** Let $X \subset \mathbb{R}^n$ be convex and let $f: X \to \mathbb{R}$ be a convex function. Let $\tilde{x} \in X$ be a local minimum of f on X, i.e., there exists an $\epsilon \in \mathbb{R}_{>0}$ with

$$f(x) \ge f(\widetilde{x})$$
 for all $x \in X$ with $||x - \widetilde{x}|| \le \epsilon$.

Then \tilde{x} is a global minimum, i.e.,

$$f(\boldsymbol{x}) \geq f(\widetilde{\boldsymbol{x}}) \text{ for all } \boldsymbol{x} \in X.$$

- 1.14 Definition [Interior and boundary point]. Let $X \subseteq \mathbb{R}^n$.
 - i) $x \in X$ is called an interior point of X if there exists a $\rho > 0$ such that $B_n(x,\rho) \subseteq X$. The set of all interior points of X is called the interior of X and is denoted by int X.
 - ii) $x \in \mathbb{R}^n$ is called boundary point of X if for all $\rho > 0$, $B_n(x, \rho) \cap X \neq \emptyset$ and $B_n(x, \rho) \cap (\mathbb{R}^n \setminus X) \neq \emptyset$. The set of all boundary points of X is called the boundary of X and is denoted by $\mathrm{bd} X$.

- **1.15 Lemma.** Let $K \subseteq \mathbb{R}^n$ be convex with dim K = n, and let $\mathbf{x} \in \text{int } K$ and $\mathbf{y} \in K$. Then $(1 \lambda)\mathbf{x} + \lambda \mathbf{y} \in \text{int } K$ for all $\lambda \in [0, 1)$.
- **1.16 Corollary.** Let $K \subseteq \mathbb{R}^n$ be convex, closed and dim K = n. Let $\mathbf{x} \in \text{int } K$ and $\mathbf{y} \in \mathbb{R}^n \setminus K$. Then the segment conv $\{\mathbf{x}, \mathbf{y}\}$ intersects bd K in precisely one point.
- **1.17 Definition** [Polytope and simplex]. Let $X \subset \mathbb{R}^n$ of finite cardinality, i.e., $\#X < \infty$.
 - i) conv X is called a (convex) polytope.
 - ii) A polytope $P \subset \mathbb{R}^n$ of dimension k is called a k-polytope.
 - iii) If X is affinely independent and $\dim X = k$ then $\operatorname{conv} X$ is called a k-simplex.
- **1.18 Notation.** $\mathcal{P}^n = \{P \subset \mathbb{R}^n : P \text{ polytope}\}\$ denotes the set of all polytopes in \mathbb{R}^n .
- 1.19 Notation.
 - i) For two sets $X, Y \subseteq \mathbb{R}^n$ the vectorial addition

$$X + Y = \{ \boldsymbol{x} + y : \boldsymbol{x} \in X, \, \boldsymbol{y} \in Y \}$$

is called the Minkowski ¹ sum of X and Y. If X is just a singleton, i.e., $X = \{x\}$, then we write x + Y instead of $\{x\} + Y$.

ii) For $\lambda \in \mathbb{R}$ and $X \subseteq \mathbb{R}^n$ we denote by λX the set

$$\lambda X = \{\lambda x : x \in X\}.$$

For instance, $B_n(\boldsymbol{a}, \rho) = \boldsymbol{a} + \rho B_n$.

1.20 Theorem [Carathéodory]. 2 Let $X \subseteq \mathbb{R}^n$. Then

conv
$$X = \left\{ \sum_{i=1}^{n+1} \lambda_i \, x_i : \lambda_i \ge 0, \sum_{i=1}^{n+1} \lambda_i = 1, x_i \in X, i = 1, \dots, n+1 \right\}.$$

- **1.21 Corollary.** A polytope is the union of simplices.
- **1.22 Corollary.** The convex hull of a compact set is compact.
- **1.23 Theorem [Radon].** ³ Let $X \subset \mathbb{R}^n$. If $\#X \geq n+2$ then there exist $X_1, X_2 \subset X$ with $X_1 \cap X_2 = \emptyset$ and conv $X_1 \cap \operatorname{conv} X_2 \neq \emptyset$.

¹Hermann Minkowski, 1864–1909

²Constantin Carathéodory, 1873 - 1950

³Johann Karl August Radon, 1887–1956

1.24 Theorem [Helly]. ⁴ Let $K_1, \ldots, K_m \subseteq \mathbb{R}^n$, $m \ge n+1$, be convex. If for each (n+1)-index set $I \subseteq \{1, \ldots, m\} = [m]$

$$\bigcap_{i\in I} K_i \neq \emptyset,$$

then all sets K_i have a point in common, i.e., $\bigcap_{j=1}^m K_i \neq \emptyset$.

- **1.25 Corollary.** Let $\mathbf{a}_i \in \mathbb{R}^n$, $b_i \in \mathbb{R}$, $1 \le i \le m$, and let $P = \{\mathbf{x} \in \mathbb{R}^n : \langle \mathbf{a}_i, \mathbf{x} \rangle \le b_i, 1 \le i \le m\}$. Then $P \ne \emptyset$ if and only if $P_I = \{\mathbf{x} \in \mathbb{R}^n : \langle \mathbf{a}_i, \mathbf{x} \rangle \le b_i, i \in I\} \ne \emptyset$ for all (n+1)-index sets $I \subseteq [m]$.
- **1.26 Theorem*** [Doignon, Scarf, Bell]. Let $K_1, \ldots, K_m \subseteq \mathbb{R}^n$, $m \geq 2^n$, be convex. If for each 2^n -index set $I \subseteq \{1, \ldots, m\} = [m]$

$$\bigcap_{i\in I} (K_i \cap \mathbb{Z}^n) \neq \emptyset,$$

then all sets K_i have an integral point in common, i.e., $\bigcap_{i=1}^m (K_i \cap \mathbb{Z}^n) \neq \emptyset$.

1.27 Corollary. Let $a_i \in \mathbb{R}^n$, $b_i \in \mathbb{R}$, $1 \le i \le m$, and let $P = \{x \in \mathbb{Z}^n : \langle a_i, x \rangle \le b_i, 1 \le i \le m\}$. Then $P \ne \emptyset$ if and only if $P_I = \{x \in \mathbb{Z}^n : \langle a_i, x \rangle \le b_i, i \in I\} \ne \emptyset$ for all 2^n -index sets $I \subseteq [m]$.

⁴Eduard Helly, 1884–1943

2 Support and separate

2.1 Definition [Supporting hyperplane]. Let $X \subset \mathbb{R}^n$. A hyperplane $H(\boldsymbol{a}, \alpha) \subset \mathbb{R}^n$ is called supporting hyperplane of X if:

i)
$$H(\boldsymbol{a}, \alpha) \cap X \neq \emptyset$$
 and ii) $X \subseteq H^{-}(\boldsymbol{a}, \alpha)$.

 \boldsymbol{a} is called outer normal vector of X and if, in addition, $\|\boldsymbol{a}\| = 1$ then it is called outer unit normal vector of X.

2.2 Proposition. Let $X \subset \mathbb{R}^n$ and let $H(\boldsymbol{a}, \alpha)$ be a supporting hyperplane of X. Then $H(\boldsymbol{a}, \alpha)$ is a supporting hyperplane of conv X and

$$H(\boldsymbol{a}, \alpha) \cap \operatorname{conv} X = \operatorname{conv} (H(\boldsymbol{a}, \alpha) \cap X).$$

Figure 1: A strictly separating hyperplane of two compact convex sets

2.3 Theorem [Separation theorem]. Let $K_1, K_2 \subset \mathbb{R}^n$ be convex with $K_1 \cap K_2 = \emptyset$. Then there exists a separating hyperplane $H(\boldsymbol{a}, \alpha)$ of K_1 and K_2 , i.e., $K_1 \subseteq H^+(\boldsymbol{a}, \alpha)$ and $K_2 \subseteq H^-(\boldsymbol{a}, \alpha)$.

If K_1 is closed and K_2 is compact, then there exists even a strictly separating hyperplane $H(\boldsymbol{a},\alpha)$ of K_1 and K_2 , i.e., $K_1 \subset \operatorname{int} H^+(\boldsymbol{a},\alpha)$ and $K_2 \subset \operatorname{int} H^-(\boldsymbol{a},\alpha)$.

2.4 Corollary [Farkas' Lemma]. ${}^5Let \ A \in \mathbb{R}^{m \times n}$ and $b \in \mathbb{R}^m$. There exists a non-negative $x \in \mathbb{R}^n_{\geq 0}$ with Ax = b if and only if $\langle b, y \rangle \geq 0$ for all $y \in \mathbb{R}^m$ satisfying $A^{\mathsf{T}}y \geq 0$, i.e.,

$$P = \{ \boldsymbol{x} \in \mathbb{R}^n_{\geq \boldsymbol{0}} : A\boldsymbol{x} = \boldsymbol{b} \} \neq \emptyset \Leftrightarrow \inf \{ \langle \boldsymbol{b}, \boldsymbol{y} \rangle : \boldsymbol{y} \in \mathbb{R}^m \text{ with } A^\intercal \boldsymbol{y} \geq \boldsymbol{0} \} \geq 0.$$

- **2.5 Corollary.** Let $K \subset \mathbb{R}^n$ be convex and closed, dim K = n, and let $\mathbf{x} \in \operatorname{bd} K$. Then there exists a supporting hyperplane $H(\mathbf{a}, \alpha)$ of K containing \mathbf{x} .
- **2.6 Theorem.** Let $K \subset \mathbb{R}^n$, $K \neq \mathbb{R}^n$, be convex and closed, dim K = n. Then

$$K = \bigcap_{\substack{H(\boldsymbol{a},\alpha) \text{ supporting} \\ \text{hyperplane of } K}} H^{-}(\boldsymbol{a},\alpha),$$

i.e., K is the intersection of all its "supporting halfspaces".

⁵Gyula Farkas, 1847–1930

2.7 Definition [Support function]. Let $K \subset \mathbb{R}^n$ be convex, $K \neq \emptyset$. The function $h(K, \cdot) : \mathbb{R}^n \to \mathbb{R}$ given by

$$h(K, \boldsymbol{u}) = \sup\{\langle \boldsymbol{u}, \boldsymbol{x} \rangle : \boldsymbol{x} \in K\}$$

is called support function of K.

2.8 Proposition. Let $K \subset \mathbb{R}^n$, $K \neq \emptyset$ be convex and compact. Then

$$K = \bigcap_{\boldsymbol{u} \in B_n, \|\boldsymbol{u}\| = 1} \{ \boldsymbol{x} \in \mathbb{R}^n : \langle \boldsymbol{u}, \boldsymbol{x} \rangle \le h(K, \boldsymbol{u}) \}.$$

2.9 Definition. Let $K \subseteq \mathbb{R}^n$ be convex and closed. The set

$$\operatorname{rec} K = \{ \boldsymbol{u} \in \mathbb{R}^n : K + \boldsymbol{u} \subseteq K \}$$

is called the recession cone of K.

2.10 Proposition. Let $K \subseteq \mathbb{R}^n$ be convex and closed, and let $x \in K$. Then

$$rec(K) = \{ \boldsymbol{u} \in \mathbb{R}^n : \boldsymbol{x} + \lambda \boldsymbol{u} \in K \text{ for all } \lambda \in \mathbb{R}_{>0} \}$$

In particular, rec(K) is a closed convex cone.

2.11 Theorem. Let $K \subseteq \mathbb{R}^n$ be convex and closed. Then K can be represented

$$K = \overline{K} \oplus L$$
,

where $L \subseteq \mathbb{R}^n$ is a linear subspace and $\overline{K} \subset \overline{L}$ is a line-free convex set contained in a complementary linear subspace \overline{L} of L.

2.12 Definition [Polar set]. Let $X \subseteq \mathbb{R}^n$.

$$X^* = \{ \boldsymbol{y} \in \mathbb{R}^n : \langle \boldsymbol{x}, \boldsymbol{y} \rangle \le 1 \text{ for all } \boldsymbol{x} \in X \}$$

is called the polar set of X.

2.13 Proposition.

- i) X^* is a convex and closed set and $\mathbf{0} \in X^*$.
- ii) If $X_1 \subseteq X_2$ then $X_2^* \subseteq X_1^*$.
- iii) Let M be a regular $n \times n$ matrix. Then $(MX)^* = M^{-\intercal}X^*$.
- iv) Let $X_i \subseteq \mathbb{R}^n$, $i \in I$. Then $\left(\bigcup_{i \in I} X_i\right)^* = \bigcap_{i \in I} X_i^*$.
- v) $X \subseteq (X^*)^*$.
- vi) Let $X \subset \mathbb{R}^n$. Then $X = X^*$ if and only if $X = B_n$.

- **2.14 Lemma.** Let $K \subset \mathbb{R}^n$ be convex and closed with $\mathbf{0} \in K$. Then $(K^*)^* = K$.
- 2.15 Proposition.
 - i) Let $P = \text{conv}\{\boldsymbol{x}_1, \dots, \boldsymbol{x}_m\} \subset \mathbb{R}^n$. Then

$$P^{\star} = \{ \boldsymbol{y} \in \mathbb{R}^n : \langle \boldsymbol{x}_i, \boldsymbol{y} \rangle \le 1, 1 \le i \le m \}.$$

ii) Let $P = \{ \boldsymbol{x} \in \mathbb{R}^n : \langle \boldsymbol{a}_i, \boldsymbol{x} \rangle \leq 1, 1 \leq i \leq m \}$ with $\boldsymbol{a}_i \in \mathbb{R}^n$. Then

$$P^{\star} = \operatorname{conv} \{ \mathbf{0}, \boldsymbol{a}_1, \dots, \boldsymbol{a}_m \}.$$

2.16 Proposition. Let $K \subseteq \mathbb{R}^n$ be a convex cone. Then

$$K^* = \{ \boldsymbol{y} \in \mathbb{R}^n : \langle \boldsymbol{x}, \boldsymbol{y} \rangle \le 0 \text{ for all } \boldsymbol{x} \in K \}.$$

3 A rough guide to polytopes

- **3.1 Definition** [Polyhedron]. The intersection of finitely many closed halfspaces is called a polyhedron.
- 3.2 Theorem [Minkowski, Weyl]. ^{6,7}
 - i) A bounded polyhedron is a polytope.
 - ii) A polytope is a bounded polyhedron.
- **3.3 Notation** [\mathcal{V} -Polytope, \mathcal{H} -Polytope]. A polytope given as the convex hull of finitely many points is called a \mathcal{V} -polytope. If it is given as the bounded intersection of finitely many closed halfspaces, then it is called an \mathcal{H} -polytope.
- **3.4 Corollary.** Let $P \in \mathcal{P}^n$.
 - i) Let $A \in \mathbb{R}^{m \times n}$ and $\mathbf{t} \in \mathbb{R}^m$. Then $AP + \mathbf{t}$ is a polytope.
 - ii) Let $U \subset \mathbb{R}^n$ be an affine subspace. Then $P \cap U$ is a polytope.
- **3.5 Definition** [Faces]. Let $K \in \mathcal{C}^n$ be closed and let H be a supporting hyperplane of K. If $j = \dim(K \cap H)$, then $K \cap H$ is called a j-face of K. Moreover, K itself is regarded as a $(\dim K)$ -face and the empty set \emptyset as (-1)-face of K.
- **3.6 Notation** [Vertices, exposed points, edges, facets]. A 0-face of $K \in \mathbb{C}^n$, K closed, is called an exposed point or in the case of polyhedra a vertex, a 1-face of a polytope is called edge and a $(\dim K 1)$ -face of K is called facet of K. K itself and the empty set are called improper faces, whereas the remaining faces are called proper faces of K.

The set of all vertices of a polyhedra P is denoted by vert P.

3.7 Remark.

- i) Let $K \in \mathcal{C}^n$ be closed. Every (relative) boundary point of K lies in a suitable j-face, $0 \le j \le \dim K 1$ (cf. Corollary 2.5).
- ii) Let $K \in \mathcal{C}^n$, dim K = n. Let F be a facet of K and H a supporting hyperplane of K with $F = K \cap H$. Then H = aff F.
- iii) A point $v \in K$, $K \in C^n$, is called an extreme point of K, if it can not be written as a convex combination of two other points in K.
- iv) Exposed points are extreme: Let $\mathbf{v} \in K$ be exposed, i.e., let $H(\mathbf{a}, \alpha)$ be a supporting plane of K at \mathbf{v} . Then we have $\langle \mathbf{a}, \mathbf{v} \rangle = \alpha$ and $\langle \mathbf{a}, \mathbf{x} \rangle < \alpha$ for all $\mathbf{x} \in K \setminus \{\mathbf{v}\}$. Hence we cannot write $\mathbf{v} = \lambda \mathbf{x}_1 + (1 \lambda) \mathbf{x}_2$ with $\mathbf{x}_i \in K \setminus \{\mathbf{v}\}, \ \lambda \in [0, 1]$.

⁶Hermann Minkowski, 1864–1909

⁷Hermann Klaus Hugo Weyl, 1885 – 1955

3.8 Proposition. Every face of a polytope is a polytope, and a polytope has only finitely many faces.

3.9 Definition [f-vector]. For $P \in \mathcal{P}^n$ let $f_i(P)$ be the number of i-faces of $P, -1 \le i \le \dim P$. Furthermore, let $f_i(P) = 0$ for dim $P + 1 \le i \le n$. The vector f(P) with entries $f_i(P), -1 \le i \le n$, is called the f-vector of P.

3.10 Remark. Let T_n be an n-dimensional simplex. Then $f_i(T_n) = \binom{n+1}{i+1}$, i.e., any (i+1) subset of the vertices are the vertices of an i-face.

3.11 Lemma. Let $P \in \mathcal{P}^n$. Then P = conv(vert P) and for any set $W \subset \mathbb{R}^n$ with P = conv W it is vert $P \subseteq W$.

3.12 Lemma. Let $P \in \mathcal{P}^n$ be an n-polytope with $\mathbf{0} \in \text{int } P$. For a proper face F of P let

$$F^{\diamond} = \{ \boldsymbol{y} \in P^{\star} : \langle \boldsymbol{x}, \boldsymbol{y} \rangle = 1 \text{ for all } \boldsymbol{x} \in F \}.$$

Then

- i) F^{\diamond} is a face of P^{\star} .
- ii) $F = (F^{\diamond})^{\diamond}$.
- iii) If G is a face of P and $F \subseteq G$, then $G^{\diamond} \subseteq F^{\diamond}$.
- iv) dim $F^{\diamond} = n 1 \dim F$.

3.13 Theorem. Let $P \in \mathcal{P}^n$ be an n-polytope with $\mathbf{0} \in \text{int } P$. Then

$$f_{n-1-i}(P^*) = f_i(P), -1 \le i \le n.$$

3.14 Theorem. Let $P \in \mathcal{P}^n$ be an n-polytope with facets F_1, \ldots, F_m and let $H(\boldsymbol{a}_i, \alpha_i), 1 \leq i \leq m$, be the supporting hyperplanes of $F_i, 1 \leq i \leq m$. Then

$$P = \bigcap_{i=1}^{m} H^{-}(\boldsymbol{a}_{i}, \alpha_{i}).$$

- **3.15 Theorem.** Let $P \in \mathcal{P}^n$ be an n-polytope.
 - i) The boundary of P is the union of all its facets.
 - ii) A k-face is the intersection of (at least) (n-k) facets.
 - iii) An (n-2)-face is contained in exactly two facets.
 - iv) If F, G are faces of P with $F \subseteq G$, then F is a face of G.
 - v) A face of P is also a face of a facet of P.

- **3.16 Theorem.** Let $P \in \mathcal{P}^n$ be an n-polytope.
 - i) Let G be a face of P and let F be a face of G. Then F is a face of P.
 - ii) Let F_j be a j-face of P and let F_k be a k-face of P with $F_j \subset F_k$. There exist i-faces F_i of P, j < i < k, such that

$$F_j \subset F_{j+1} \subset \cdots \subset F_{k-1} \subset F_k$$
.

- **3.17 Remark.** For any n-polytope $P \in \mathcal{P}^n$ we have $f_i(P) \geq \binom{n+1}{i+1}$, $1 \leq i \leq n-1$, with equality if and only if P is an n-simplex. In particular, we have $\sum_{i=-1}^n f_i(P) \geq 2^{n+1}$ with equality if and only if P is an n-simplex.
- **3.18 Proposition.** Let v_0 be a vertex of an n-polytope P and let $\{v_1, \ldots, v_r\}$ be all adjacent vertices of v_0 , i.e., conv $\{v_0, v_i\}$ is an edge of P. In other words, $\{v_1, \ldots, v_r\}$ are the neighbours of v_0 . Then
 - i) $P \subset v_0 + pos\{v_1 v_0, \dots, v_r v_0\}$.
 - ii) Let $c \in \mathbb{R}^n$ with $\langle c, v_0 \rangle \geq \langle c, v_i \rangle$, $1 \leq i \leq r$. Then

$$\max\{\langle \boldsymbol{c}, \boldsymbol{x} \rangle : \boldsymbol{x} \in P\} = \langle \boldsymbol{c}, \boldsymbol{v}_0 \rangle.$$

3.19 Theorem [Euler-Poincaré formula]. ^{8 9} Let $P \in \mathcal{P}^n$. Then

$$\sum_{i=-1}^{n} (-1)^{i} f_{i}(P) = 0.$$
(3.19.1)

In particular, in the 3-dimensional case, i.e., dim P=3, it holds $f_0-f_1+f_2=2$.

- **3.20 Proposition.** The Euler-Poincaré formula is the only linear equation satisfied by the f-vector, i.e., let $\lambda_i \in \mathbb{R}$, such that $\sum_{i=-1}^n \lambda_i f_i(P) = 0$ for all $P \in \mathcal{P}^n$. Then there exists a constant $\gamma \in \mathbb{R}$, such that $\lambda_i = \gamma (-1)^i$.
- **3.21 Definition** [Simple and simplicial polytopes]. Let $P \in \mathcal{P}^n$.
 - i) P is called simplicial if all proper faces are simplices.
 - ii) P is called simple if every vertex is contained in exactly dim P many facets.
- **3.22 Lemma.** Let $P \in \mathcal{P}^n$ be an n-polytope with $\mathbf{0} \in \text{int } P$. The following statements are equivalent:
 - i) P is simplicial.

⁸Leonhard Euler,1707–1783

⁹Henri Poincaré, 1854–1912

- ii) All facets of P are simplices.
- iii) P^* is simple.
- iv) Every k-face of P^* is contained in exactly n-k facets for $k=0,\ldots,n-1$.
- **3.23 Theorem.** Let $P \in \mathcal{P}^n$ be a simple n-polytope. Then
 - i) Every vertex is contained in exactly $\binom{n}{k}$ k-faces of $P, k = 0, \ldots, n-1$.
 - ii) The intersection of k facets containing a common vertex is an (n-k)-face of P.
 - iii) Let v_1, \ldots, v_n be the neighbours of a vertex v_0 of P. For each subset of k neighbours v_{i_1}, \ldots, v_{i_k} there exists a unique k-face F of P containing $v_0, v_{i_1}, \ldots, v_{i_k}$.
 - iv) A face of a simple polytope is simple.
 - v) Every j-face of P is contained in exactly $\binom{n-j}{k-i}$ k-faces of P.
- **3.24 Theorem.** Let $P \in \mathcal{P}^n$ be a simple n-polytope.
 - i) $n f_0(P) = 2 f_1(P)$.
 - ii) $\sum_{k=0}^{n} f_k(P) \leq 2^n f_0(P)$.
 - iii) $f_0(P) \leq 2f_{\lceil n/2 \rceil}(P)$.
- **3.25 Corollary.** Let P be a simple n-polytope with m facets. Then

$$f_0(P) \le 2 \binom{m}{\lfloor n/2 \rfloor}$$
 and $\sum_{k=0}^n f_k(P) \le 2^{n+1} \binom{m}{\lfloor n/2 \rfloor}$.

Or equivalently: Let P be a simplicial n-polytope with m vertices. Then

$$f_{n-1}(P) \le 2 \binom{m}{\lfloor n/2 \rfloor}$$
 and $\sum_{k=0}^{n} f_k(P) \le 2^{n+1} \binom{m}{\lfloor n/2 \rfloor}$.

- **3.26 Lemma*.** Let P be an n-polytope.
 - i) There exists a simple n-polytope Q with the same number of facets as P and $f_i(P) \leq f_i(Q), 0 \leq i \leq n-2$.
 - ii) There exists a simplical n-polytope Q^* with the same number of vertices as P and $f_i(P) \leq f_i(Q^*)$, $1 \leq i \leq n-1$.

3.27 Corollary. Let P be an n-polytope with m facets. Then

$$f_0(P) \le 2 \binom{m}{\lfloor n/2 \rfloor}.$$

Or equivalently: Let P be an n-polytope with m vertices. Then

$$f_{n-1}(P) \le 2 \binom{m}{\lfloor n/2 \rfloor}.$$

- **3.28 Definition** [Cyclic polytopes]. The curve $\gamma: \mathbb{R} \to \mathbb{R}^n$ given by $\gamma(t) = (t, t^2, t^3, \dots, t^n)^{\mathsf{T}}$ is called moment curve. The convex hull of m points on the moment curve is called a cyclic polytope with m vertices and is denoted by C(n, m).
- **3.29 Proposition.** Any n + 1 points on the moment curve are affinely independent. In particular, cyclic polytopes are simplicial polytopes.
- **3.30 Proposition** [Gale's evenness condition]. Let $t_i \in \mathbb{R}$, $1 \le i \le m$, $t_1 < t_2 < \cdots < t_m$, $\gamma(t_i) = (t_i, t_i^2, t_i^3, \dots, t_i^n)^\intercal$, $1 \le i \le m$, and let $S \subset \{1, \dots, m\}$ be a subset of cardinality n. $F_S = \text{conv}\{\gamma(t_s) : s \in S\}$ is a facet of C(n, m) if and only if $\#\{s \in S : i < s < j\}$ is even for all $i, j \in \{1, \dots, m\} \setminus S$.
- **3.31 Remark.** All points $\gamma(t_i)$ are vertices of C(n,m) and the number of i-faces of C(n,m) is independent of the choice of the m-points on the moment curve. In fact, for any choice of m points on $\gamma(t)$ the cyclic polytopes are combinatorial isomorphic.
- **3.32 Proposition.** The cyclic polytope C(n,m) is $\lfloor n/2 \rfloor$ -neighborly, i.e., the convex hull of any subset of the vertices of cardinality less than or equal n/2 is a face.
- **3.33 Theorem*** [McMullen's Upper Bound Theorem, 1971]. 10 Let P be an n-polytope with m vertices. Then

$$f_i(P) \le f_i(C(n,m)) = \begin{cases} \sum_{j=0}^{(n-1)/2} \frac{i+2}{m-j} {m-j \choose j+1} {j+1 \choose i+1-j}, & n \text{ odd,} \\ \sum_{j=1}^{n/2} \frac{m}{m-j} {m-j \choose j} {j \choose i+1-j}, & n \text{ even.} \end{cases}$$

In particular,

$$f_{n-1}(P) \le f_{n-1}(C(n,m)) = \begin{cases} 2\binom{m - \lfloor n/2 \rfloor - 1}{\lfloor n/2 \rfloor}, & n \text{ odd,} \\ \binom{m - \lfloor n/2 \rfloor}{\lfloor n/2 \rfloor} + \binom{m - \lfloor n/2 \rfloor - 1}{\lfloor n/2 \rfloor - 1}, & n \text{ even.} \end{cases}$$

For fixed n the right hand sides are of order $m^{\lfloor n/2 \rfloor}$.

¹⁰Peter McMullen, born 1942

3.34 Theorem* [Barnette's Lower Bound Theorem, 1973]. ¹¹ Let P be a simplicial n-polytope with m vertices. P has at least as many i-faces as the so called stacked polytopes P(n,m) with m vertices for which

$$f_i(P(n,m)) = \begin{cases} m\binom{n}{i} - i\binom{n+1}{i+1}, & 0 \le i \le n-2, \\ n+1 + (m-(n+1))(n-1), & i = n-1. \end{cases}$$

P(n, n+1) is an n-simplex, and for $m \ge n+2$ an m-vertex stacked n-polytope P(n, m) is the convex hull of an (m-1)-vertex stacked polytope with an additional point that is beyond exactly one facet.

3.35 Theorem [Dehn-Sommerville equations, 1905, 1927]. Let P be a simple n-polytope. Then

$$f_i(P) = \sum_{j=0}^{i} (-1)^j \binom{n-j}{n-i} f_j(P), \quad i = 0, \dots, n,$$

Or equivalently: Let P be a simplicial n-polytope. Then

$$f_{i-1}(P) = \sum_{j=i}^{n} (-1)^{n-j} {j \choose i} f_{j-1}(P), \quad i = 0, \dots, n.$$

- **3.36 Remark.** For any n-polytope $P \in \mathcal{P}^n$ we have $nf_0(P) \leq 2 f_1(P)$ with equality iff P simple and $n f_{n-1}(P) \leq 2 f_{n-2}(P)$ with equality iff P simplicial.
- **3.37 Theorem** [Steinitz, 1906]. ¹² A non-negative integral vector (f_0, f_1, f_2) is the f-vector of a 3-polytope if and only if i) $f_0 f_1 + f_2 = 2$, ii) $3 f_0 \le 2 f_1$, and iii) $3 f_2 \le 2 f_1$.
- **3.38 Conjecture** [Kalai, 1989]. ¹³ Let $P \in \mathcal{P}^n$ be a 0-symmetric n-polytope. Then

$$\sum_{i=0}^{n} f_i(P) \ge 3^n.$$

Here we have equality, for instance, for the cube C_n and its polar, the cross-poyltope C_n^{\star} , or, more generally, for the class of Hanner-polytopes. In 2007 the conjecture has been verified for all $n \leq 4$ (see http://front.math.ucdavis.edu/0708.3661).

 $^{^{11}\}mathrm{David}$ W. Barnette

¹²Ernst Steinitz, 1871 – 1928

¹³Gil Kalai, born 1955

4 Walking on polytopes

- **4.1 Definition** [Graph, combinatorial diameter]. Let $P \subset \mathbb{R}^n$ be a polyhedron.
 - i) The graph (1-skeleton) G(P) of P consists of the vertices and edges of P.
 - ii) The distances $\delta_P(\boldsymbol{v}, \boldsymbol{w})$ between two vertices $\boldsymbol{v}, \boldsymbol{w} \in P$ (or in G(P)) is the minimum length of an "edge" path connecting \boldsymbol{v} and \boldsymbol{w} in G(P).
 - iii) $\delta(P) = \max\{\delta_P(\boldsymbol{v}, \boldsymbol{w}) : \boldsymbol{v}, \boldsymbol{w} \in \text{vert } P\}$ is called the (combinatorial) diameter of P.
- **4.2 Theorem** [Balinski, 1961]. Let $P \in \mathcal{P}^n$ be an n-polytope. The graph G(P) of P is n-connected, i.e., the graph is still connected if n-1 vertices and their incident edges are removed.
- **4.3 Example.** $\delta(T_n) = 1 = (n+1) n$, $\delta(C_n) = n = 2n n$ and $\delta(C_n^*) = 2 \le 2^n n$.
- **4.4 Definition.** For integers n, m let

 $\Delta(n,m) = \max \{ \delta(P) : P \subset \mathbb{R}^n \text{ polyhedron, dim } P = n \text{ and } f_{n-1}(P) = m \}.$

- **4.5 Remark.** In 1957 Hirsch ¹⁴conjectured $\Delta(n,m) \leq m-n$. It is known that
 - i) the conjecture is true if $n \leq 3$ or $m \leq n+5$. For unbounded polyhedra the conjecture is false, namely, for $m \geq 2n$ it is $\Delta(n,m) \geq m-n+\lfloor n/4 \rfloor$. (Klee&Walkup, 1961/1965),
 - ii) $\Delta(n,m) \leq m 2^{n-3}$, (Barnette, 1969; Larman, 1970),
 - iii) Disproof of the Hirsch conjecture for polytopes by Francisco Santos, 2010, see http://front.math.ucdavis.edu/1006.2814
- 4.6 Theorem [Kalai, 1992; Kalai&Kleitman, 1992]. 15

$$\Delta(n,m) \le m^{\log n + 2}.$$

¹⁴Warren M. Hirsch

¹⁵Daniel J. Kleitman, born 1934

- **4.7 Definition** [0/1-polytope]. Let $[0,1]^n$ be the n-dimensional unit cube with vertices $\{0,1\}^n = \{(x_1,\ldots,x_n)^{\mathsf{T}} : x_i \in \{0,1\}\}$. $P \in \mathcal{P}^n$ is called 0/1-polytope if vert $P \subset \{0,1\}^n$.
- **4.8 Lemma.** Let $P \in \mathcal{P}^n$ be a 0/1-polytope and let dim $P \leq n-1$. Then there exists a 0/1-polytope $\widetilde{P} \in \mathcal{P}^{n-1}$ affinely isomorphic to P, i.e., there exists a bijective affine map between P and \widetilde{P} .
- 4.9 Theorem [Naddef, 1989].
 - i) Let P be a 0/1-polytope. Then $\delta(P) \leq \dim P$.
 - ii) Let $P \in \mathcal{P}^n$ be an n-dimensional 0/1-polytope with m facets. Then $\delta(P) \leq m n$.
- **4.10 Corollary.** Let $P \in \mathcal{P}^n$ be an n-dimensional 0/1-polytope with m facets. Then $\delta(P) \leq m n$.
- 4.11 Remark.
 - i) $f_{n-1}(P) \leq 2 n!$ for a 0/1-polytope $P \in \mathcal{P}^n$.
 - ii) There exist 0/1-polytopes $P \in \mathcal{P}^n$ with

$$f_{n-1}(P) \ge \left(\frac{c \, n}{\log^2 n}\right)^{\frac{n}{2}},$$

where c is a universal constant (Gatzouras, Giannopoulos, Markoulakis, 2004).

INDEX 19

Index

0/1-polytope, 18	combination, 1
C(n,m), 15	hull, 2
F ^{\(\dagger\)} , 12	set , 2
$H(\boldsymbol{a}, \alpha), \frac{2}{2}$	convexly dependent, 1
$H^+(\boldsymbol{a},\alpha), H^-(\boldsymbol{a},\alpha), \frac{2}{2}$	cyclic polytope, 15
\mathcal{P}^n , 4	Dehn-Sommerville equations, 16
\mathbb{R}^n , 1	dimension, 3
$\operatorname{aff} X$, 2	Doignon, Jean-Paul, 5
$B_n, \frac{2}{3}$	Dolghon, Jean-1 aui, J
$B_n(\boldsymbol{a},\rho), \boldsymbol{2}$	edge, 11
$\operatorname{bd} X$, 3	Euclidean
$\operatorname{conv} X, \frac{2}{2}$	inner product, 1
$\dim X$, 3	norm, 1
$\ x\ $, 1	space, 1
$\operatorname{int} X$, 3	Euler, Leonhard, 13
$\lim X$, 2	Euler-Poincaré formula, 13
\mathcal{H} -polytope, 11	exposed point, 11
V-polytope, 11	extreme point, 11
pos X, 2	•
$\operatorname{vert} K$, 11	faces, 11
$x^{\intercal}y, 1$	facet, 11
f -vector, $\frac{12}{}$	family of polytopes, 4
adjacent vertex, 13	Farkas, Gyula, 7
affine	Crark 17
combination, 1	Graph, 17
hull, 2	halfspace, 2
subspace, 1	Helly, Eduard, 5
affine isomorphic, 18	Hirsch conjecture, 17
affinely	Hirsch, Warren M., 17
dependent, 1	hyperplane, 2
independent, 1	Separating, 7
	Supporting, 7
ball, 2	11 0/
Barnette's Lower Bound Theorem, 16	improper faces, 11
Barnette, David, 16	interior, 3
Bell, David E., 5	point, 3
boundary, 3	TZ 1 ·
point, 3	Kalai
Carathéodory, Constantin, 4	Gil, 17
Combinatorial diameter, 17	Kalai, Gil, 16
cone, 2	Kleitman, Daniel J., 17
recession, 8	line-free, 8
convex	linear
· · · · · · · · · · · · · · · · · ·	

20 INDEX

combination, 1 hull, 2 subspace, 1	of Radon, 4 theorem of Separation, 7
$\begin{array}{c} \text{linearly} \\ \text{dependent, } 1 \\ \text{independent, } 1 \end{array}$	unit ball, 2 unit cube, 18
McMullen's Upper Bound Theorem, 15	vertex, 11
McMullen, Peter, 15 Minkowski sum, 4 Minkowski, Hermann, 4, 11 moment curve, 15	Weyl, Hermann, 11
neighbour, 13 neighbours, 13	
outer normal vector, 7 outer unit normal vector, 7	
Poincaré, Henri, 13 polar set, 8 polyhedron, 11 polytope k-polytope, 4 positive combination, 1 hull, 2 positively dependent, 1	
proper faces, 11	
Radon, Johann, 4 recession cone, 8	
Scarf, Herbert, 5 separating hyperplane, 7 simple polytopes, 13 simplex k-simplex, 4 simplicial polytopes, 13 stacked polytopes, 16 Steinitz's theorem, 16 Steinitz, Ernst, 16 support function, 8 supporting hyperplane, 7	
Theorem of Carathéodory, 4 of Doignon, Sacrf, Bell, 5 of Helly, 5	