Para ser submetido até as 23h59 do dia 2/12.

- 1. Apresente uma análise ao desempenho dos algoritmos NaiveBayes, BayesNet, J48 e AdaBoost sobre NB, Bagging sobre J48 no dataset *ionosphere*. Considere as seguintes alienas:
 - 1.1.Usando a decomposição *bias-variance* estude o evoluir da complexidade da árvore j48 (por aplicação de diferentes níveis de pruning) e o efeito no erro e suas componentes.
 - 1.2. Apresente os resultados do erro por validação cruzadas dos cinco modelos referidos. Elabore uma justificação para cada resultado obtido.
 - 1.3. Para a classe b e considerando os cinco modelos referidos:
 - qual seria o melhor modelo a recuperar os casos desta classe?
 - E o modelo com melhor qualidade de previsão nesta classe?

Justifique as suas respostas.

2. Que tipo de benefícios esperaria da aplicação de Bagging sobre Naive Bayes num dataset <u>específico</u>, sabendo que o resultado do modelo individual Naive Bayes nesse dataset é erro = 0.005. Justifique.

3. Para um determinado conjunto de teste com 10 exemplos, a seguinte tabela representa as previsões obtidos com os modelos **M1** e **M2** para a classe *A*. Os modelos são classificadores binários por definição de *threshold*. O valor de *threshold* usado é 0.9. A coluna **Class** indica a classe efetiva de cada caso de teste.

M1			M2		
#	Score	Class	#	Score	Class
1	0.996	A	1	0.999	A
2	0.995	A	2	0.998	A
3	0.977	A	3	0.997	В
4	0.951	A	4	0.979	A
5	0.915	В	5	0.931	A
6	0.895	В	6	0.920	A
7	0.881	В	7	0.915	В
8	0.795	В	8	0.812	В
9	0.786	A	9	0.775	В
10	0.675	В	10	0.771	В

- a) Apresente o valor de rácio de erro para os dois modelos.
- b) Qual devia ser o modelo escolhido para esta classe? Justifique.
- c) Sabendo que *precision* =TP/(TP+FP) e *FPR* =FP/(FP+TN) calcule precision(M1) e FPR(M2) para a classe A e interprete os valores obtidos (nota: FPR = *false positive rate*).