

Typology-based Semantic Labeling of Numeric Tabular Data

Ahmad Alobaid, Emilia Kacprzak and Oscar Corcho Ontology Engineering Group Universidad Politécnica de Madrid, Spain

1003, block 1, Montegancedo

Semantic Labeling

Different Types of Numerical Data are treated the same

Levels of Measurement

Measurement error

Stanley Smith Stevens

Nominal

Ordinal

Interval

http://braintour.harvard.edu/wp-content/uploads/2016/05/tile TT_SmittyStevens.jpg

https://www.istockphoto.com/es/fotos/half-full-bottle-full-empty?sort=mostpopular&mediatype=photography&phrase=half%20full%20bottle%20full%20empty

https://en.wikipedia.org/wiki/Conversion_of_units_of_temperature#Comparison_of_temperature_scales

https://en.wikipedia.org/wiki/List_of_2014_Winter_Olympics_medal_winners

https://commons.wikimedia.org/wiki/File:TapeMeasure.png

Example of Interval Type

Comparison of temperature scales

Comment	Kelvin	Celsius	Fahrenheit	Rankine	Delisle	Newton	Réaumur	Rømer
Absolute zero	0.00	-273.15	-459.67	0.00	559.73	-90.14	-218.52	-135.90
Lowest recorded surface temperature on Earth ^[1]	184	-89.2 ^[1]	-128.6 ^[1]	331	284	-29	-71	-39
Fahrenheit's ice/salt mixture	255.37	-17.78	0.00	459.67	176.67	-5.87	-14.22	-1.83
Ice melts (at standard pressure)	273.15	0.00	32.00	491.67	150.00	0.00	0.00	7.50
Triple point of water	273.16	0.01	32.018	491.688	149.985	0.0033	0.008	7.50525
Average surface temperature on Earth	288	15	59	519	128	5	12	15
Average human body temperature*	310	37	98	558	95	12	29	27
Highest recorded surface temperature on Earth ^[2]	331	58[2]	136.4 ^[2]	596	63	19	46	38
Water boils (at standard pressure)	373.1339	99.9839	211.97102 ^[3]	671.64102 ^[3]	0.00	33.00	80.00	60.00
Titanium melts	1941	1668	3034	3494	-2352	550	1334	883
The surface of the Sun	5800	5500	9900	10400	-8100	1800	4400	2900

Stanley Smith Stevens

Nominal

Ordinal

Interval

Comm	
Absolute zero	Comment
Lowest recorded surface to	Absolute zero
Fahrenheit's ice/salt mixtu	Lowest recorded surface temperature on Earth[1]
Ice melts (at standard pres	Fahrenheit's ice/salt mixture
Triple point of water	Ice melts (at standard pressure)
Average surface temperat	Triple point of water
Average human body tem	Average surface temperature on Earth
Highest recorded surface t	Average human body temperature*
Water boils (at standard pr	Highest recorded surface temperature on Earth[2
Titanium melts	Water boils (at standard pressure)
The surface of the Sun	Titanium melts
	The surface of the Sun

Ratio

http://braintour.harvard.edu/wp-content/uploads/2016/05/tile TT_SmittyStevens.jpg

https://www.istockphoto.com/es/fotos/half-full-bottle-full-empty_?sort=mostpopular&mediatype=photography&phrase=half%20full%20bottle%20full%20empty

https://en.wikipedia.org/wiki/Conversion of units of temperat ure#Comparison of temperature scales

https://en.wikipedia.org/wiki/List_of_2014_Winter_Olympics_medal_winners

https://commons.wikimedia.org/wiki/File:TapeMeasure.png

Stanley Smith Stevens

Nominal

Sequential

http://braintour.harvard.edu/wp-content/uploads/2016/05/tile TT_SmittyStevens.jpg

https://pbs.twimg.com/media/DICH9C9XsAYGaLG.jpg https://s3.envato.com/files/186945900/008(basket04_4color_a_noles).jpg

https://www.ft.com/content/64d6dbc0-5275-11e6-9664-e0bdc1 3c3bef

https://www.guru99.com/images/MongoDB/112115_0607_Introductio11.png

https://upload.wikimedia.org/wikipedia/commons/0/03/PD_soci al_security_card.png

HISTORICAL ARCHIVE: STARFLEET PERSONNEL

STARFLEET PERSONNEL FILE: SATO, HOSHI SERIAL NUMBER: SA-037-0198-CL

Rank at retirement: Lieutenant Commander

Former Assignment: Communications and Protocol officer,

Enterprise NX-01

Birthplace: Kyoto, Japan, Earth

Hoshi Sato served as translator, and protocol and communications officer on Starfleet's first warp five starship, Enterprise NX-01. Born in Kyoto, Japan on July 9th, 2129, she was the second child in a family of three. After leaving Starfleet in her late thirties, Sato created the linguacode translation matrix, which is still in use aboard Federation starships today.

PSYCHOLOGICAL PROFILE

Hoshi was a spirited, intelligent woman with an extraordinary gift for alien languages who also served as translator aboard the Starship Enterprise NX-01 — a vital role when making first contact. A "white-knuckle" space-farer, Hoshi reluctantly gave up her teaching job after being convinced by Captain Jonathan Archer to join Starfleet.

BIOGRAPHICAL OVERVIEW

Hoshi has also formed bonds with several of her crewmates, particularly Dr. Phlox, who she says has taken care of her on many occasions. Phlox is currently teaching her Denobulan — according to his wife Feezal, Hoshi's accent is very good. When Phlox was infected by the mysterious nanoprobes from hostile cybernetic beings, Hoshi offered to keep him company while he worked on a cure.

As Hoshi continued her tenure aboard Enterprise, she almost mirrored humankind in taking the initial steps into the intergalactic community: tentative and concerned at first, but more and more sure of herself as time goes on. While ready to take whatever action is necessary to help the crew and Starfleet, her accomplishments in communication also provide an example of how tense situations can be diffused through diplomatic means.

Tragically, Hoshi and her family were among the four thousand people who died on Tarsus Four in 2246 when a food shortage caused by an exotic fungus threatened the colony's population. Governor Kodos ordered the deaths of Sato and the others in order to save the rest of the colony. She was buried in Kyoto with her husband, Takashi Kimura.

Stanley Smith Stevens

Nominal

Sequential

White a sequential was designed as the se

http://braintour.harvard.edu/wp-content/uploads/2016/05/tile TT_SmittyStevens.jpg

https://pbs.twimg.com/media/DICH9C9XsAYGaLG.jpg https://s3.envato.com/files/186945900/008(basket04_4color_a_noles).jpg

https://www.ft.com/content/64d6dbc0-5275-11e6-9664-e0bdc1 3c3bef

https://www.guru99.com/images/MongoDB/112115_0607_Introductio11.png

https://upload.wikimedia.org/wikipedia/commons/0/03/PD_soci al_security_card.png

Keep this card. It shows the account number used in keeping records of your Social Security Benefit rights under Federal and State Laws. Keep a record of this number as you might ipse the card. Mention the number in all letters regarding your account.

Address inquiries concerning Unemployment Compensation (if there is a law in your State) to the State agency administering such law. Address inquiries concerning Federal Old-Age Retirement Benefits (not State Old-Age Assistance or Pensions) to the nearest office of the Social Security Board.

SIGN THIS CARD IMMEDIATELY AND REPORT THE NUMBER TO YOUR EMPLOYER.

Stanley Smith Stevens

http://braintour.harvard.edu/wp-content/uploads/2016/05/tile TT_SmittyStevens.ipg

https://pbs.twimg.com/media/DICH9C9XsAYGaLG.jpg https://s3.envato.com/files/186945900/008(basket04_4color_apples).jpg

https://www.ft.com/content/64d6dbc0-5275-11e6-9664-e0bdc1 3c3bef

https://www.guru99.com/images/MongoDB/112115_0607_Introductio11.png

https://upload.wikimedia.org/wikipedia/commons/0/03/PD_soci al security card.png

	Α	В	С	D	E	F	G	Н	Ĭ.	J
3	Age	Party	Gender	Income		Age	Party 1	Party 2	Gender 1	Income
4	20	Rep	Male	45000		20	1	0	1	45000
5	25	Dem	Male	39000		25	0	1	1	39000
6	45	Ind	Male	56000		45	0	0	1	56000
7	35	Rep	Female	49000		35	1	0	0	49000
8	50	Dem	Female	41000		50	0	1	0	41000
9	55	Ind	Female	42000		55	0	0	0	42000
10	39	Rep	Male	58000		39	1	0	1	58000
11	48	Dem	Male	55000		48	0	1	1	55000
12	30	Ind	Male	46000		30	0	0	1	46000
13	27	Rep	Female	42000		27	1	0	0	42000
14	47	Dem	Female	37000		47	0	1	0	37000
15	21	Ind	Female	25000		21	0	0	0	25000
16	48	Rep	Male	75000		48	1	0	1	75000
17	24	Ind	Male	43000		24	0	0	1	43000
18	28	Ind	Female	40000		28	0	0	0	40000
19	40	Dem	Female	31000		40	0	1	0	31000

Stanley Smith Stevens

http://braintour.harvard.edu/wp-content/uploads/2016/05/tile TT SmittyStevens.jpg

https://pbs.twimg.com/media/DICH9C9XsAYGaLG.jpg https://s3.envato.com/files/186945900/008(basket04_4color_a_noles).jpg

https://www.ft.com/content/64d6dbc0-5275-11e6-9664-e0bdc1 3c3bef

https://www.guru99.com/images/MongoDB/112115_0607_Introductio11.png

https://upload.wikimedia.org/wikipedia/commons/0/03/PD_social_security_card.png

Stanley Smith Stevens

http://braintour.harvard.edu/wp-content/uploads/2016/05/tile_TT_Sm ittyStevens.jpg

https://pbs.twimg.com/media/DICH9C9XsAYGaLG.jpg

https://s3.envato.com/files/186945900/008(basket04_4color_apples).j

https://www.ft.com/content/64d6dbc0-5275-11e6-9664-e0bdc13c3bef https://www.guru99.com/images/MongoDB/112115_0607_Introductio1_1 png_

https://upload.wikimedia.org/wikipedia/commons/0/03/PD social security card.png

https://thumbs.dreamstime.com/z/numbers-pedestal-sport-winners-gol den-silver-bronze-marble-podium-first-second-third-place-isolated-white-49129110.jpg

Types Breakdown:

Nominal

- -Sequential: 7000 to 9000
- -Hierarchical: 2-88-12-3-1-1234
- -Categorical: 1,1,1,2,2
- -Random: 1239231,209,938423

Ordinal:

-Ordinal: 1,2,3,4

Interval-Ratio:

- -Counts: 1,5,14,124
- -Other: 169,173,181

Detection Order:

1-Ordinal: 1,2,3,4

2-Categorical: 1,1,1,2,2

3-Sequential: 7000 - 9000

4-Hierarchical: 2-88-12-3-1-1234

5-Counts: 1,5,14,124

6-Other: 169,173,181

?-Random: 1239231,209,938423

X = input data

Y = 1, 2, ... Max(X).

 $||X \cap Y|| > \sqrt{||Y||}$

Detection Order:

1-Ordinal: 1,2,3,4

2-Categorical: 1,1,1,2,2

3-Sequential: 7000 - 9000

4-Hierarchical: 2-88-12-3-1-1234

5-Counts: 1,5,14,124

6-Other: 169,173,181

?-Random: 1239231,209,938423

Detection Order:

- 1-Ordinal: 1,2,3,4
- 2-Categorical: 1,1,1,2,2
- 3-Sequential: 7000 9000
- 4-Hierarchical: 2-88-12-3-1-1234
- 5-Counts: 1,5,14,124
- 6-Other: 169,173,181
- ?-Random: 1239231,209,938423

Detection Order:

1-Ordinal: 1,2,3,4

2-Categorical: 1,1,1,2,2

3-Sequential: 7000 - 9000

4-Hierarchical: 2-88-12-3-1-1234

5-Counts: 1,5,14,124

6-Other: 169,173,181

?-Random: 1239231,209,938423

X = input data Y = Min(X),Min(X)+c, ...,Max(X) c = constant $||X \cap Y|| > \sqrt{||Y||}$

Detection Order:

1-Ordinal: 1,2,3,4

2-Categorical: 1,1,1,2,2

3-Sequential: 7000 - 9000

4-Hierarchical: 2-88-12-3-1-1234

5-Counts: 1,5,14,124

6-Other: 169,173,181

?-Random: 1239231,209,938423

X = input data $num_of_digits(x_i) = num_of_digits(x_{i+1})$ $\forall x_i \in X$

Detection Order:

1-Ordinal: 1,2,3,4

2-Categorical: 1,1,1,2,2

3-Sequential: 7000 - 9000

4-Hierarchical: 2-88-12-3-1-1234

5-Counts: 1,5,14,124 ————

6-Other: 169,173,181

?-Random: 1239231,209,938423

$$1.5 * (Q_3 - Q_1) + Q_3 \leqslant P_{95}$$
$$\frac{(P_{95} - Q_2)}{O_2} \geqslant 2$$

 P_a : ath percentile

 Q_b : bth Quartile

Detection Order:

1-Ordinal: 1,2,3,4

2-Categorical: 1,1,1,2,2

3-Sequential: 7000 - 9000

4-Hierarchical: 2-88-12-3-1-1234

5-Counts: 1,5,14,124

6-Other: 169,173,181 -----

Everything else

?-Random: 1239231,209,938423

Labeling Workflow

1. Get properties

```
SELECT distinct ?property WHERE {
?subject a <classURI>. ?subject ?property [].
} GROUP BY ?property
```

2. Filter numeric properties

If > 50% are numeric

(Sub-)Type	Features
Ordinal	tri-mean, tstd
Sequential	tri-mean, tstd
Categorical	num of categories, percentages of each (ordered)
Hierarchical	-
Counts	tri-mean, tstd (of re-expressed data)
Other	tri-mean, tstd

$$trimean = \frac{Q1 + 2 * Q2 + Q3}{4}$$

$$tstd = \sqrt{\frac{1}{N} \sum_{i=1}^{N} (x_i - trimean)^2}$$

Long-tail problem

How to fix this?

Data re-expression

Long-tail problem

$$\sqrt{x_i} \ \forall x_i \in X$$

https://github.com/oeg-upm/property_cake

Features

	(Sub-)Type	Features
	Ordinal	tri-mean, tstd
	Sequential	tri-mean, tstd
/	Categorical	num of categories, percentages of each (ordered)
	Hierarchical	-
/ [Counts	tri-mean, tstd (of re-expressed data)
	Other	tri-mean, tstd

$$trimean = \frac{Q1 + 2 * Q2 + Q3}{4}$$

$$std = \sqrt{\frac{1}{N} \sum_{i=1}^{N} (x_i - trimean)^2}$$

Property URI	Numeric Type/Sub-type	Features
/military-service-number	sequential	95000,
/height	other	192.4,
	••••	

https://github.com/oeg-upm/fuzzy-c-means https://pypi.org/project/fuzzycmeans/

Labeling Workflow

Hypothesis:

"Semantic labeling yields a higher precision score when taking the typology of the numeric values into account than using a general technique"

Data: T2Dv2 (We manually typed and annotated)

http://webdatacommons.org/webtables/goldstandardV2.html

Typology in T2Dv2 dataset

Numeric Type	Sub-type	Percentage
Nominal	Sequential	0.008
Nominal	Hierarchical	0.0
Nominal	Categorical	0.0
Nominal	Random	0.048
Nominal	combined	0.056
Ordinal	-	0.04
Ratio-Interval	Count	0.387
Ratio-Interval	Other	0.234
Ratio-Interval	combined	0.621
Year	-	0.282

Detection Score

Typology Detection Scores

Numeric Type	Sub-type	Precision	Recall	F1
Nominal	Sequential	0.0	0.0	N/A
Nominal	Hierarchical	N/A	N/A	N/A
Nominal	Categorical	N/A	N/A	N/A
Nominal	Random	N/A	N/A	N/A
Ordinal		0.8	1.0	0.889
Ratio-Interval	Count	0.792	0.809	0.8
Ratio-Interval	Other	0.552	0.516	0.533

Labeling Score

Compare Labeling Scores

k	Approach	Precision	Recall	F1
	TTLA	0.687	0.892	0.776
1	FCM	0.34	-	-
	Random	0.0004	-	-
	TTLA	0.94	0.892	0.915
3	FCM	0.55	-	-
	Random	0.0012	-	-
	TTLA	0.976	0.892	0.932
5	FCM	0.83	-	-
	Random	0.002	-	-
	TTLA	1.0	0.892	0.943
10	FCM	0.91	-	-
	Random	0.004	-	-

Conclusion

- Under-represented types in current benchmarks
- Taking into account typology yields a higher

precision

Computing membership

Clustering

Hard Clustering

Membership

Membership Matrix

