PRUEBAS DE BONDAD DE AJUSTE

1. Prueba Chi-cuadrado

 $H_0: p_1 = p_1^0, p_2 = p_2^0, \dots, p_k = p_k^0$

 $H_a: p_i \neq p_i^0$, para algún $i = 1, 2, \dots, k$

Estadístico de prueba: $\chi^2 = \sum_{i=1}^k \frac{(f_i - f_i^0)^2}{f_i^0}$

Región de rechazo: $RR = \{\chi^2 > \chi^2_{\alpha,k-1}\}$

2. Prueba de Kolmogorov-Smirnov

Esta prueba es válida para funciones de distribución continua

 H_0 : La función de distribución es $F_0(x)$

 H_a : La función de distribución no es $F_0(x)$

Procedimiento del contraste:

- a) Se ordenan los datos muestrales de menor a mayor, y los denotamos (x_1, x_2, \ldots, x_n)
- b) Se calcula $F_n(x)$ de la siguiente manera:
 - Para $x < x_k, F_n(x) = 0.$
 - Para $x_k < x \le x_{k+1}$, $F_n(x) = \frac{k}{n}$ siendo k el número de elementos de la muestra menores o iguales a x, con k = 1, 2, ..., k 1.
 - Para $x > x_k$, $F_n(x) = 1$.
- c) Se calcula $F_0(x)$ para cada dato. Donde $F_0(h) = P(X \le h|H_0)$, si la distribución es $F_0(x)$.
- d) Se calcula el estadístico

$$D_n = \max |F_n(x) - F_0(x)|, \ \forall x$$

e) Región de rechazo: $RR = \{D_n > D_{n;\alpha}\},$ Siendo $D_{n;\alpha}$ tal que $P(D_n > D_{n;\alpha}|H_0$ es verdadera) = α

3. Contraste de Contingencia: Tablas de Contingencia

Esta se usan para estimar si existe o no independencia en las variables aleatorias

	Criterio de Clasificación B					
	B_1	B_2	B_3		B_k	Totales Filas
A_1	n_{11}	n_{12}	n_{13}		n_{1k}	n_1 .
A_2	n_{21}	n_{22}	n_{23}	• • •	n_{2k}	n_2 .
A_3	n_{31}	n_{32}	n_{33}		n_{3k}	n_3 .
i :	:	:	:	٠.	:	:
A_h	n_{h1}	n_{h2}	n_{h3}		n_{hk}	n_h .
Totales Columnas	$n_{\cdot 1}$	$n_{\cdot 2}$	$n_{\cdot 3}$		$n_{\cdot k}$	n

- $\blacksquare H_0: p_{ij} = p_{i.}p_{.j}$
- $\blacksquare H_a: p_{ij} \neq p_{i\cdot}p_{\cdot j}$

Siendo $\hat{p}_i = \frac{n_i}{n}$ y $\hat{p}_i = \frac{n_i}{n}$ los estimadores de máxima verosimilitud de p_i . y $p_{\cdot j}$ respectivamente

1

■ Estadístico de Prueba:

$$\chi^2 = \sum_{i} \sum_{j} \frac{(n_{ij} - f_{ij})^2}{f_{ij}}$$

 $Con f_{ij} = n\hat{p}_{ij}$

- \blacksquare Región de rechazo: $RR = \left\{\chi^2 > \chi^2_{\alpha;[(h-1)(k-1)]}\right\}$
- 4. Coeficiente de Contingencia

El coeficiente de contigencia es:

$$c = \sqrt{\frac{\chi^2}{\chi^2 + n}}$$