#### Econ 330: Urban Economics

#### Lecture 6

John Morehouse 23 January, 2020

### Lecture 6: Land-Use Patterns

#### Schedule

#### Today

- 1. Hand in HW and Admin
- 2. Von Thunen Rings
- 3. Monocentric City

### **Upcoming**

• **Reading** (Chapter IV *ToTC*)



#### Admin

- I will post the ToTC book report instructions on Canvas after class. Due
   end of week 9
  - I will give you another reminder around week 6
  - Feel free to turn it in earlier
- 1000 words (roughly 2 to 2.5 pages single spaced)
- This must be your own work. You can discuss ideas with your friends but the writing must be your own
  - A Plagiarism will be dealt with harshly 4.

#### Admin

1. The next 3 weeks or so of this class are probably the most algebra intensive of the term 1.

- For many of you, this means the difficulty of the course will ramp up a bit
- If you have anxiety about math, come see me. I am happy to help 😃

### Checklist

- 2) Turn in HW & Admin 🗸
- 2) Von Thunen Model
- 3) Manufacturing Bid Rent

#### Rents

- Last time: we looked at rents across cities and the consumer bid rent curve.
  - Consumer bid rent: Informs how prices for urban rental/housing units change with distance to center
- Today:
  - Von Thunen Model: (urban rural interface)
  - Manufacturing bid rent (different assumptions)
- Next Class
  - A small note on Office rents and neighborhood choice part 1

## Von Thunen Rings

1826: Johann Heinrich von Thunen writes The Isolated State

- Foundational model of Human Geography
- Model describes interaction between cities and landscapes
- Uses basic economic principles to predict changes in land-use

What we will do: use the model to inform agricultural rents and predict physical size of cities

#### Von Thunen Model

Why do we care about a model developed in 1826?

- Current theories usually aim to explain the world as it is, or will be in the future
- The question of city location can be better understood via economics, history, and geography
- Factors that influence the urban rural interface still largely relevant today

#### Von Thunen Model

#### **Assumptions**

- 1) City is located in the center of a wilderness area
- 2) Farm land is equally productive throughout the city
- 3) Farmers behave rationally to maximize profit
- 4) Farmers transport their goods to a central location in the city

## Von Thunen: Rings



- Black Dot: the city
- White circle: Dairy Products
- Forest for fuel
- Grain and crops
- Ranching

#### What do you notice?

• The rings go out from the center in order of transit cost. **Dairy**: spoils quickly and heavy. **Trees**: heavy. **Grain**, easier to transport, but still heavy. **Ranching**: land intensive

#### Von Thunen Model: Math

Von - Thunen (rural) rents are derived from the **zero profit condition**. We will work with a simple version, for now, where there is only one "ring" (we can call this agriculture)

$$\pi = TR - TC$$

- TR = P \* Q
- TC(x) = F(x) + C + R(x)

- R(X): Land rents
- Q, P: price and quantity
- C: intermediate goods cost

#### Von Thunen Model: Math

Von - Thunen (rural) rents are derived from the **zero profit condition**. We will work with a simple version, for now, where there is only one "ring" (we can call this agriculture)

$$\pi = TR - TC$$

- TR = P \* Q
- TC(x) = F(x) + C + R(x)

- R(x): Land rents
- Q, P: price and quantity
- C: product expense per unit of commodity
- F(x) transit cost x mi from center

## Von Thunen Equation

Profit equation is given by:

$$\pi = P * Q - F(x) - C - R(x)$$

Zero profits imply:

$$P*Q - F(x) - C - R(x) = 0$$

Solving for R(x):

$$R(x) = (P * Q - F(x) - C)$$

## Von Thunen Equation

So the **agriculturual bid rent** or **von thunen bid rent** curve is summarised by:

$$R(x) = (P * Q - F(x) - C)$$

In words, what does this equation say? Discuss

- Higher Revenue ( P\*Q ) ⇒ higher rents (why?)
- Higher Freight cost  $(F(x)) \implies lower rents$
- Higher Intermediate goods cost (C)  $\implies$  lower rents

## Von Thunen Model: Example

Using

$$R(x) = (P * Q - C - F(x))$$

Find the radius of arable land when freight costs are given by: F(x) = B \* x

- ullet That is, find the distance from the city where R(x)=0
- Set R(x) = 0 and solve for x

## Von Thunen Model: Example

Using

$$R(x) = (P * Q - C - F(x))$$

Find the radius of arable land when freight costs are given by: F(x) = B \* x

- ullet That is, Find the distance from the city where R(x)=0
- Set R(x) = 0 and solve for x

$$0 = (P * Q - C - B * x)$$
$$C - P * Q = -B * x$$

## Von Thunen Model: Example

Using

$$R(x) = (P * Q - C - F(x))$$

Find the radius of arable land when freight costs are given by: F(x) = B \* x

- ullet That is, Find the distance from the city where R(x)=0
- Set R(x) = 0 and solve for x

$$0 = (P * Q - C - B * x)$$

$$C - P * Q = -B * x$$

$$\frac{P * Q - C}{B} = x$$

## Interpretation

What does the equation  $\frac{P*Q-C}{B}=x$  tell us?

- 1. If the freight rate B, increases, will the agricultural area surrounding the city get smaller or larger?
- Smaller,  $\frac{1}{10} < \frac{1}{5}$
- Interpret this

As it becomes more expensive to ship goods, the oppurtunity cost of living further from the city center (where the exchange occurs) increases. Thus, the urban-rural area shrinks in radius

## Von Thunen: Multiple Sectors

Now consider a version of the model in which we have 2 sectors and **no transit costs**. Profit in each sector is given by

$$\pi_1 = P_1 * Q_1 - R(x_1) \ \pi_2 = P_2 * Q_2 - R(x_2)$$

Assume the following:

- $P_1 * Q_1 > P_2 * Q_2$  (rev in sector one is greater than sector 2)
- R(x) = 20 x

**task**: Show that industry 2 is further away from the center and they pay lower rents. Hint: use the *radius of arable land* idea from above

## Von Thunen Example

#### Von Thunen Model: So What?

The model is a bit dated, but still useful

- Transportation costs have, and have always had heavy influence on land prices
- These constraints were larger in the past; still might be useful in explaining urban form of certain cities
- Radius of arable land can give predictions on urban-rural size
- City and agricultural area are intimately linked (Read Cronon's *Natures Metropolis*!)

**Thoughts on the model?** What assumptions do you like? What do you not like? **Discuss** 

#### Checklist

- 1) Turn in HW & Admin 🗸
- 2) Von Thunen Model 🗸
  - Von Thunen Rents
  - The radius of arable land
- 3) Manufacturing Bid Rent

## Manufacturing Bid Rent

WTP for land from manufacturing firms is a function of the land's accessibility (similar to consumers)

- Fact: Urban manufacturing employment is largely decentralized and disperesed
  - Most firms locate close to the highway. Why? This has not always been the case
- Firms are balancing freight and labor costs
  - Further from labor 

     higher wage (to compensate for increased commuting cost)
  - ∘ Further from shipping center ⇒ higher freight cost

## Manufacturing Bid Rent

Let's start with a simple model<sup>™</sup>. **Assumptions** 

- 1) Input & Output prices & quantities are fixed
  - Firm only decides location
- 2) Firms import intermediate goods and export output to other cities via a **central terminal** (train)
- 3) Wage paid is to compensate workers for commuting. Workforce is suburban so wage is highest at center
- 4) Firms use horse carts to transport inputs and output to the **central terminal** 
  - We will relax this one soon

#### Firm's Bid Rent

What do we use to get the firm's bid - rent equation?

**Axiom 5**: Competition generates zero economic profit

Recall the profit equation:

$$\pi = TR - TC$$

In this model:

- TR = P \* Q (fixed, exogenous)
- TC is a function of freight cost, labor cost, and intermediate goods cost:

$$TC(x) = \text{Freight Cost}(x) + \text{Labor Cost}(x) + \text{Land Cost}(x) +$$

$$\text{Intermediate Input Cost}$$

#### Firm Bid Rent

From here on out, let's call  ${f Intermediate\ Input\ Cost}=ar{I}$ 

• Invoking zero economic profit, from the last slide we can write:

$$TR - (\operatorname{Freight} \operatorname{Cost}(x) + \operatorname{Labor} \operatorname{Cost}(x) + \operatorname{Land} \operatorname{Cost}(x) + \bar{I}) = 0$$

• **In words**: The most a firm would be willing to pay for land then is revenue net of non land cost. Rearranging:

$$\operatorname{Land} \operatorname{Cost}(x) = TR - \operatorname{Freight} \operatorname{Cost}(x) - \operatorname{Labor} \operatorname{Cost}(x) - \bar{I}$$

**Note**: Land Cost =  $P(x) * L_m$ , where:

- P(x) is the price of land at x miles away from the center
- $L_m$  is the amount of land the manufacturer uses in production (fixed input at  $L_m$ )

## Firm Bid Rent: Equation

We can replace land cost with  $P(x) st L_m$  to get the equation for the **manufacturing bid rent** curve

$$P(x)*L_m = TR - \text{Freight Cost}(x) - \text{Labor Cost}(x) - \bar{I}$$

## Firm Bid Rent: Equation

We can replace land cost with  $P(x) st L_m$  to get the equation for the **manufacturing bid rent** curve

$$P(x)*L_m = TR - ext{Freight } ext{Cost}(x) - ext{Labor } ext{Cost}(x) - ar{I} \ P(x) = rac{TR - ext{Freight } ext{Cost}(x) - ext{Labor } ext{Cost}(x) - ar{I}}{L_m}$$

**In words**, this equation says:

- Higher revenues  $\implies$  higher land prices for every distance x
- ullet An increase in freight costs, labor costs, or intermediate input costs will **decrease** the price for every distance x

**Note**: If Freight Cost(x) and Labor Cost(x) are linear, then the firm bid rent curve is also linear.

## Manufacturing Graph

## Back to Reality

Why would it be the case that  $b_1>b_2$  (freight rate relative to cost of moving people)

#### **Transportation Innovations:**

- Omnibus (1827)
- Cable Cars (1873)
- Electric Trolley (1886)
- Subways (1895)

In our model, what do these innovations do?

## More History

- The *intracity* truck (1910): twice as fast and half as costly as the horse-drawn wagon<sup>†</sup>
- Truck decreased the cost of moving output relative to the cost of moving workers
- Manufacturing Firms moved closer to low-wage suburbs

The *intercity* truck (1930): alternative to ships and rail<sup>††</sup>

- Highways: orientation shifted from ports and railroad terminals to roads
- Modern cities: manufacturers oriented toward highways and beltways

## Decentralization of Manufacturing

## Wrapping Up

So we had two models, the Von Thunen Model (rural bid rent) and the manufacturing bid rent

- Both derived bid rent curves from zero economic profit
- Bid rent curves are different because costs faced by agriculture and manufacturing firms are different
- But the story and derivation behind them is pretty similar

#### Checklist

- 1) Turn in HW & Admin 🗸
- 2) Von Thunen Model 🗸
  - Von Thunen Rents
  - The radius of arable land
- 3) Manufacturing Bid Rent 🗸
  - Deriving the manufacturing bid rent curve
  - Decentralization of manufacturing