Goldsmith functions

Andreas G.

24th of July 2025

Contents

1	Abstract	3
2	Introduction	4
3	Proceedings	5
	3.1 Inputs	
	3.2 Formulas	5
	3.3 Explonation	
	3.4 Outputs	6
	3.5 Interpretation of outputs	6
	3.6 Examples	6
4	Conlusions	7
5	refrences	8
6	Appendicies	ç

1 Abstract

text (Abstract)

2 Introduction

text (introduction)

3 Proceedings

3.1 Inputs

The formulas have several inputs, while some are used as placeholders in definitions, others have actual meaning in the context of the aplication of the functions.

Definition of Variables (by function):

 $\Xi(v;w;x;y;z)$: All inputs to this function are placeholders. $v,w,x,y,z\in R$ $Rd_n(x)$; $Ex_n(x)$: All inputs to this function are placeholders. $x\in [0;100]$; $n\in \{0;1;\ldots;\infty\}$ $\Theta(r)$; r is a variable which controlls the sensitivety of the Φ_e,Φ_0 and Φ_n functions. $r\in \{-\infty;\ldots;0;\ldots;\infty\}$

 $\Phi_e(c;r); \quad \Phi_0(c;r); \quad \Phi_n(c;r): c \text{ is the main input variable of the } \Phi_e, \Phi_0 \text{ and } \Phi_n \text{ functions.}$ It can be thought of as ,,purity "or other qualities. (see Examples section for more details.) $c \in [0;1]$ (for $\Phi_e \quad c \in [\Theta(r);1]$); r is a variable which controlls the sensitivety of the Φ_e, Φ_0 and Φ_n functions. $r \in \{-\infty; \ldots; 0; \ldots; \infty\}$

 $\Lambda_0(s;r)$; $\Lambda_n(s;r)$: s is the score calculated from c using Φ_0 or Φ_n . $s \in]-\infty;100]$; r is a variable which controlls the sensitivety of the Λ_0 and Λ_n functions. $r \in \{-\infty; \ldots; 0; \ldots; \infty\}$ $\delta(x)$; $\delta_s(x)$: All inputs to this function are placeholders. $x \in [0;1[$ $\chi(x)$: All inputs to this function are placeholders. $x \in [0;\infty[$

3.2 Formulas

$$\Xi(v; w; x; y; z) = \begin{cases} v & \text{for } y > z \\ w & \text{for } y = z \\ x & \text{for } y < z \end{cases}$$
 (1)

$$Rd_n(x) = x \cdot 10^n + 100 \cdot (1 + 10^n) \tag{2}$$

$$Ex_n(x) = Rd_{-n}(x) \tag{3}$$

$$\Theta(r) = (1+10^{-r})^{-9} \tag{4}$$

$$\beta(r) = 9 \cdot \log_{10}(1 + 10^{-r}) \tag{5}$$

$$\Phi_e(c;r) = 100 \cdot \sqrt{1 + \frac{\log_{10}(c)}{\beta(r)}}$$
 (6)

$$\Phi_0(c;r) = \Xi(\Phi_e(c;r); \Phi_e(c;r); 0; c; \Theta(r))$$
(7)

$$\Phi_n(c;r) = Rd_n(\Phi_0(c;r)) \tag{8}$$

$$\Lambda_0(s;r) = 10^{\beta(r) \cdot \left(\left(\frac{s}{100}\right)^2 - 1\right)} \tag{9}$$

$$\Lambda_n(s;r) = \Lambda_0(Ex_n(s);r) \tag{10}$$

$$\delta(x) = -\log_{10}(1 - x) \tag{11}$$

$$\delta_s(x) = -|\log_{10}(1-x)| \tag{12}$$

$$\chi(x) = \sum_{k=1}^{x} \left(\frac{9}{10^k}\right) = 1 - 10^{-x} \tag{13}$$

- 3.3 Explonation
- 3.4 Outputs
- 3.5 Interpretation of outputs
- 3.6 Examples

4 Conlusions

text

5 Refrences

text

6 Appendicies

text