→ Fonctions de référence : fonctions logarithmes

1 Fonctions logarithmes

1.1 Définitions équivalentes

Définition 1 Les fonctions logarithmes sont les fonction définie sur \mathbb{R}^{+*} par :

$$f(x \times y) = f(x) + f(y) pour x, y > 0 (E)$$

Définition 2 La fonction logarithme népérien est la fonction définie sur \mathbb{R}^{+*} , vérifiant (E), dont la dérivée est $\frac{1}{x}$ et qui s'annule en 1.

Définition 3 La fonction logarithme décimale log(x) est une fonction multiple de la fonction logarithme :

$$\log(x) = \frac{\ln(x)}{\ln(10)}$$

Elle associe son exposant à une puissance de 10.

1.2 Propriétés

Propriétés 1 (Relations fonctionnelles) *Pour x* > 0, y > 0 *et un n un entier relatif* :

$$\ln\left(\frac{x}{y}\right) = \ln(x) - \ln(y)$$

$$\ln\left(\frac{1}{x}\right) = -\ln(x)$$

$$\ln(x^n) = n\ln(x)$$

Propriétés 2 (Dérivées de fonctions logarithmiques) *Soit u une fonction définie sur I à valeurs dans* $\mathbb{R}^{+,*}$.

La fonction ln(u(x)) *est dérivable et* :

$$[\ln(u(x))]' = \frac{u'(x)}{u(x)}$$

Nous résumons les dernières propriétés de la fonction ln(x) par le biais de son tableau de variation :

x	0	e	+∞
$(\ln(x))' = \frac{\frac{1}{x}}{}$		+	
ln(x)	_	_∞ −1	+∞

La valeur e pour laquelle ln(e) = 1 s'appelle nombre d'Euler.

Propriétés 3

$$ln(x) < 0 \Leftrightarrow x < 1$$

 $ln(x) > 0 \Leftrightarrow x > 1$

Propriétés 4 L'équation d'inconnue x :

$$ln(x) = y$$