No caso do semicondutor tipo P os átomos da impureza tendem a extrair l electrão ao átomo vizinho de germânio ou de silício. Este átomo de germânio fica assim com uma lacuna (fica positivo). Por sua vez o átomo onde existe uma lacuna tende a extrair, um electrão de outro átomo vizinho, fazendo assim a lacuna mudar de sítio. Aplicando uma tensão contínua so semicondutor tipo P haverá também passagem de corrente, mas agora diz-se que a corrente se obtêm por deslocação de lacunas. As lacunas são atraídas pelo polo negativo da pilha.

3	1		3,	3
J.	Ŧ	4	₽,	_

Op.	portadores	maioritários	ກນທ	material	tipo	"P"	8 <u>ã</u> o:
-----	------------	--------------	-----	----------	------	-----	---------------

-)	ar tachuar	******************************	X,
b)	os electrões	•••••	
¢)	os neutrões	***************************************	
d)	fotões	* * * * * * * * * * * * * * * * * * * *	

 $\overline{}$

Nota: No material de tipo P existem:

- a) As lacunas que são os portadores (de corrente) maioritários.
- b) Alguna electrões livres que são os portadores minoritário

No material de tipo N existem:

- a) Os electrões livres que são os portadores maioritários
- b) Algumas lacunas que são os portadores minoritários.