2) Utilizando os dados da tabela e informação mostrada na figura determine as derivadas numéricas.

Tabela-1 Gráfico de F(x) versos x

Х	f(x)=(x-10)^2	df/dx=2(x-10)
0	100	-20
1	81	-18
2	64	-16
3	49	-14
4	36	-12
5	25	-10
6	16	-8
7	9	-6
8	4	-4
9	1	-2
10	0	0
11	1	2
12	4	4
13	9	6
14	16	8
15	25	10
16	36	12
17	49	14
18	64	16
19	81	18
20	100	20

figura-1 dados da função F(x)

O valor atual do incremento em x mostrado na tabela-1 é igual a DX=1. Baseado na função analítica de x e na sua derivada. Calcule o Erro relativo $\varepsilon = \frac{Valor\ Analitico-Valor\ Numerico}{Valor\ Analitico}$ para as derivadas numéricas com diferentes erros de truncamento no ponto (x=5) e para diferentes incremento em x (DX=1, DX=0.5, DX=0.25 e DX=0.1).

Formulas for the first derivatives:

a)
$$f'(x) = \frac{f(x + \Delta x) - f(x)}{\Delta x} + O(\Delta x)$$
, (forward difference)

b)
$$f'(x) = \frac{f(x + \Delta x) - f(x - \Delta x)}{2\Delta x} + O(\Delta x^2),$$
 (2nd-order centered difference)

c)
$$f'(x) = \frac{-f(x+2\Delta x)+4f(x+\Delta x)-3f(x)}{2\Delta x}+O(\Delta x^2),$$

a)
$$f'(x) = \frac{f(x + \Delta x) - f(x)}{\Delta x} + O(\Delta x)$$
, (forward difference)
b) $f'(x) = \frac{f(x + \Delta x) - f(x - \Delta x)}{2\Delta x} + O(\Delta x^2)$, (2nd-order centered difference)
c) $f'(x) = \frac{-f(x + 2\Delta x) + 4f(x + \Delta x) - 3f(x)}{2\Delta x} + O(\Delta x^2)$,
d) $f'(x) = \frac{-f(x + 2\Delta x) + 8f(x + \Delta x) - 8f(x - \Delta x) + f(x - 2\Delta x)}{12\Delta x} + O(\Delta x^4)$. (4th-order centered difference)

DX=1 no ponto x=5 use =>f(x)=(x-10)^2 e df/dx=			
Erro relativo de (a)	Erro relativo de (b)	Erro relativo de (c)	Erro relativo de (d)

DX=0.5 no ponto x=5 use => $f(x)=(x-10)^2$ e df/dx=			
Erro relativo de (a)	Erro relativo de (b)	Erro relativo de (c)	Erro relativo de (d)

DX=0.25 no ponto x=5 use => $f(x)=(x-10)^2$ e df/dx=			
Erro relativo de (a)	Erro relativo de (b)	Erro relativo de (c)	Erro relativo de (d)

DX=0.1 no ponto x=5 use => $f(x)=(x-10)^2$ e df/dx=			
Erro relativo de (a)	Erro relativo de (b)	Erro relativo de (c)	Erro relativo de (d)

O que ocorre com o aumento da ordem do erro de truncamento?

3) Usando a equação de advecção centrada no tempo e centrada no espaço (CTCS) verifique o impacto da inclusão do termo de difusão computacional na advecção da onda.

$$\frac{u_i^{\tau+1} - u_i^{\tau-1}}{2\Delta t} + U_0 \frac{u_{i+1}^{\tau} - u_{i-1}^{\tau}}{2\Delta x} = 0 U_0 = cte > 0$$

$$\frac{u_i^{\tau+1} - u_i^{\tau-1}}{2\Delta t} = -U_0 \frac{u_{i+1}^{\tau} - u_{i-1}^{\tau}}{2\Delta x} + v_0 \frac{u_{i+1}^{\tau} - 2u_i^{\tau} + u_{i-1}^{\tau}}{\Delta x^2} \qquad \qquad U_0 = cte > 0 \quad e v_0 = ?$$

R: