Exercise 1.a)

n = 1'000'000

${\bf Observed}$	Agatha	not Agatha	total
Christie	20	97	117
not $Christie$	10	999'873	999'883
total	30	999970	1'000'000

Probabilites	Agatha	not Agatha	total
Christie	0.00002	0.000097	0.000177
not $Christie$	0.00001	0.999873	0.999883
total	0.00003	0.99997	1

Our hypothesis is that the words *Agatha* and *Christie* are independent. Following this assumption, we have

$$P(Agatha\ Christie) = P(Agatha) \cdot P(Christie) = 0.00003 \cdot 0.000177 = 0.5 \cdot 10^{-8}.$$

The direct estimation from the table above gives

$$P(\textit{Agatha Christie}) = \frac{20}{1'000'000} = 0.2 \cdot 10^{-4}.$$

Based on the observed data we can build a Bernoulli model with parameters

$$\bar{x} = p = 0.2 \cdot 10^{-4},$$

 $\sigma^2 = p(1-p) \approx 0.2 \cdot 10^{-4}.$

Comparing the two models we get

$$t_{obs} = \sqrt{n} \, \frac{\bar{x} - \mu}{\sigma} = 1000 \cdot \frac{0.2 \cdot 10^{-4} - 0.5 \cdot 10^{-8}}{\sqrt{0.2 \cdot 10^{-4}}} \approx 4.471.$$

From the normal table, with a significance level of 1% and $dof^1 = \infty$, we can get the critical value $t_{lim} = 2.576$. The fact that $t_{obs} > t_{lim}$ means that the hypothesis from above is rejected. Therefore, the words Agatha and Christie are **not** independent.

 $^{^{1}}$ dof = degrees of freedom