

Pankaj Pandey <pankaj.25257@lpu.co.in>

CA-2: MTH302

Google Forms <forms-receipts-noreply@google.com> To: pankaj.25257@lpu.co.in

Thu, Feb 25, 2021 at 2:03 PM

Thanks for filling out CA-2: MTH302

Here's what we got from you:

CA-2: MTH302

Student will be responsible for wrong registration number (Sheet will not be evaluate in case wrong entries filled)

Email address *

pankaj.25257@lpu.co.in

Name

Pankaj Pandey

Roll Number

00

Registration Number

00

Section

00

Question Paper

There is negative Marking of 25%

1 MARKS QUESTION

The expectation of a continuous random variable is defined by

- (a) $\sum_{x}^{\square} f(x)$ (b) $\int_{-\infty}^{\infty} f(x) dx$ (c) $\int_{-\infty}^{\infty} x f(x) dx$ (d) $\sum_{x}^{\square} x f(x)$

- D

1 MARKS QUESTION

If the expectation E(|X|) exist then the expectation E(X)

- Exist always (a)
- Exist only for some values of random variable (b)
- (c) Never exist
- No such expectation can be defined (d)

A	
ОВ	
O 0	
O D	

The expectation E(1) is equal to

- (a) 0
- (b) 1
- (c) -1 (d) ∞

D

1 MARKS QUESTION

The expectation E(XY) = E(X)E(Y) is

- (a) valid for all X, Y
- (b) only if X and Y are dependent
- (c) only if X and Y are independent
- (d) None of the above

- D

Select the correct statement

- (i) $E\left(\frac{1}{X}\right) = \frac{1}{E(X)}$
- (ii) $E\left(\frac{1}{X}\right) = E(X)$
- (a) Statements (i) and (ii) are correct
- (b) Statements (i) and (ii) both are not correct
- (c) Only statements (i) is correct
- (d) Only statements (ii) is correct

1 MARKS QUESTION

Select the correct option for expectation E

(a) $E(\sqrt{X}) = \sqrt{E(X)}$

- (b) $E(X^2) = E(X)^2$
- (c) Both optons are correct
- (d) Both optons are not correct

If f(x) denotes the pdf then

- (a) $\int_{-\infty}^{\infty} f(x)dx = 0$ (b) $\int_{-\infty}^{\infty} f(x)dx = 1$ (c) $\sum_{-\infty}^{\infty} x f(x) = 0$ (d) $\sum_{-\infty}^{\infty} x f(x) = 1$

1 MARKS QUESTION

Consider the statements for expectation

- (e) $|E(X)| \le E(|X|)$ (ii) $E(|X|) \ge |E(X)|$
- (a) Only statement (i) is correct
- (b) Only statement (ii) is correct
- (c) Both statement (i) and (ii) are correct
- (d) Both statements (i) and (ii) are not correct
- Α

Consider the statements for binomial distribution:

- (i) Mean = 1, Variance = 0
- (ii) E(X) = 1, Variance = 0
- (iii) $\mu'_1 = 1, Variance = 0$
- (e) Statement (i) and (ii) are correct but not (iii)
- (f) Statement (ii) and (iii) are correct but not (i)
- (g) Statement (i) and (iii) are correct but not (ii)
- (h) All the statements (i), (ii) and (iii) are correct

1 MARKS QUESTION

Select the best possible option

- First order moment at origin are equal to First order expectation (i)
- (ii) First order moment at origin are equal to mean
- (a) Only statement (i) is correct
- (b) Only statement (ii) is correct
- (c) Both statements (i) and (ii) are correct
- (d) Both statement (i) and (ii) are not correct

If mean and variance are 4 and 3 then mode of binomial distribution is

- (a) 4.25
- (b) 4 (c) 4 and 4.25 both
- (d) none of the above

2 MARKS QUESTION

If the probability function is defined by $P\left(X = \frac{e^{-1}}{x!}\right)$, $x = 0, 1, 2, \dots, \infty$ then expectation is

- (a) Exist and E(X) = 1
- (b) Exist and $E(X) = e^{-1}$
- (c) Exist and E(X) = e
- (d) Expectation not exist

The expectation E(X + Y) = E(X) + E(Y) is

- (a) valid for all X, Y
- (b) valid if and only if X and Y are independent
- (c) only if X and Y are independent
- (d) None of the above

- D

2 MARKS QUESTION

Select the correct option for the expectation E and constant a

(a)
$$E(a+1) = a+1$$

(b)
$$E(a+1) = E(a) + 1$$

(c)
$$E(a+1) = a + E(1)$$

- (d) All above are correct

From the below data the value of Expectation E(2X + 1) is

	X = x	-3	6	9
ŀ	p(x)	1/6	1/2	1/3

- (a) 11
- (b) 11
- (c) 12 (d) 12

2 MARKS QUESTION

Consider the statements for two random variables such that X < Y

- (i)
- $E(X) \le E(Y)$ (ii) E(X) < E(Y)
- (a) Only statement (i) is correct
- (b) Only statement (ii) is correct
- (c) Both statement (i) and (ii) are correct
- (d) Both statements (i) and (ii) are not correct

- D

The statements: (i) Variance $V(\pi) = -\pi$	(ii) Variance $V(\pi)=\pi$			
(a) Only statement (i) is correct				
(b) Only statement (ii) is correct				
(c) Both statement (i) and (ii) are correct				
(d) Both statements (i) and (ii) are not correct				
<u></u> А				
О В				
O C				
D				

The expectation of number of tosses until appear head is

(a) 1

(b) 2

(c) 1/2

(d) ∞

The first order moment about origin for $f(x) = \begin{cases} \frac{1}{x(x+1)}, x = 1, 2, 3 \dots \dots \\ 0 & other wise \end{cases}$

- (a) Exist and equal to zero
- (b) Exist and equal to one
- (c) Exist and equal to negative one
- (d) Not exist

2 MARKS QUESTION

Consider the statements for binomial distribution:

- (i) Mean = np
- (ii) Variance = np (iii) E(X) = np

- (a) Statement (i) and (ii) are correct but not (iii)
- (b) Statement (ii) and (iii) are correct but not (i)
- (c) Statement (i) and (iii) are correct but not (ii)
- (d) All the statements (i), (ii) and (iii) are correct

Create your own Google Form