兰州大学信息科学与工程学院实验报告

实验成绩:		
学生姓名:		杨添宝
学	클:	320170941671
年级专业	上:	2017 级计算机基地班
指导老师:		赵继平

实验课程: 计算机组成原理实验 实验题目: 综合实验的调试 3

一、实验目的

- (1) 通过使用软件 LCACPT, 了解程序编译、加载的过程。
- (2) 通过微单步、单拍调试,理解模型机中的数据流向。

二、实验连线

各模块控制信号连接表:(或者使用提供的连接板)

(1) 总线和内存单元:

M21
M21
M22
PLS4
ALU-IN
ALU-OUT
R-IN
R-OUT
RA-IN
RA-OUT
PC-IN
PC-OUT

(2) 微程序控制单元:

MLD	M23
MCK	PLS1
MOCK	PLS3
MD0	VCC
MD1	VCC
MD2	I4
MD3	I5

MD4	I6
MD5	I7
MD6	GND
MD7	GND

(3) 寄存器组单元:

SA	10
SB	I1
RR	M15
WR	M14
RCK	PLS4
X0	M12
X1	M11
ERA	M10
RA-O	M9
RACK	PLS4

(4) 算术逻辑单元:

EDR1	M8
EDR2	M7
ALU-O	M6
CN	M5
M	M4
S3	M3
S2	M2
S1	M1
S0	M0
D2CK	PLS4

D1CK	PLS4
CCK	PLS4
ZD	JZ
CY	JC

(5) 指令寄存器:

EIR1	M20
EIR2	M19
IR1CK	PLS4
IR2CK	PLS4
IR2-O	M18
PC-O	M17
ELP	M16
PCCK	PLS2
JZ	ZD
JC	CY
JS0	I2
JS1	13

(6) 启停单元:

НСК	PLS2	
HALT	M13	

三、指令系统

指令助记符	指令功能	指令编码	微周期	微操作
取指微指令			Т0:	PC->地址总线->RAM
				RAM->数据总线->IR1
ADD A,R0	(A)+(Ri)->A	0C	Т0:	A->数据总线->DR1
ADD A,R1		0D	T1:	Ri->数据总线->DR2

ADD A,R2		0E	T2:	ALU->数据总线->A、置 CY
ADD A,R3		0F	Т3:	取指微指令
SUB A,R0	(A)-(Ri)->A	1C	то:	A->数据总线->DR1
SUB A,R1		1D	T1:	Ri->数据总线->DR2
SUB A,R2		1E	T2:	ALU->数据总线->A、置 CY
SUB A,R3		1F	Т3:	取指微指令
MOV A,@R0	(Ri)->A	2C	Т0:	Ri->数据总线->IR2
MOV A,@R1		2D	T1:	IR2->地址总线->RAM->A
MOV A,@R2		2E	T2:	取指微指令
MOV A,@R3		2F		
MOV A,R0	(Ri)->A	3C	то:	Ri->数据总线->A
MOV A,R1		3D	T1:	取指微指令
MOV A,R2		3E		
MOV A,R3		3F		
MOV R0,A	(A)->Ri	4C	Т0:	A->数据总线->Ri
MOV R1,A		4D	T1:	取指微指令
MOV R2,A		4E		
MOV R3,A		4F		
MOV A,#data	Data->A	5F	T0:	RAM->数据总线->A
			T1:	取指微指令
MOV R0,#data	Data->Ri	6C	Т0:	RAM->数据总线->A
MOV R1,#data		6D	T1:	取指微指令
MOV R2,#data		6E		
MOV R3,#data		6F		
LDA addr	(addr)->A	7F	Т0:	RAM->数据总线->IR2
			T1:	IR2->地址总线,RAM->A
			T2:	取指微指令
STA addr	(A)->addr	8F	Т0:	RAM->数据总线->IR2
L	1	1	i .	ı

			1	<u> </u>
			T1:	IR2->地址总线,A->RAM
			T2:	取指微指令
RLC A	C、A 左移 1 位	9F	Т0:	A<<1、置 CY
			T1:	取指微指令
RRC A	C、A 右移 1 位	AF	то:	A>>1、置 CY
			T1:	取指微指令
JZ addr	A=0 ,	В3	Т0:	条件成立: RAM->PC
	Addr->PC		T1:	取指微指令
JC addr	Су=0,	В7	Т0:	条件成立: RAM->PC
	Addr->PC		T1:	取指微指令
JMP addr	Addr->PC	BF	то:	RAM->PC
			T1:	取指微指令
ORL A,#data	(A)或 data->A	CF	Т0:	A->数据总线->DR1
			T1:	RAM->数据总线->DR2
			T2:	ALU->数据总线->A
			Т3:	取指微指令
ANL A,#data	(A) 与 data->A	DF	Т0:	A->数据总线->DR1
			T1:	RAM->数据总线->DR2
			T2:	ALU->数据总线->A
			T3:	取指微指令
HALT	停机	FF	Т0:	停机

四、微指令表

指令助记符		23	22	21	20	19	18	17	16	15	14	13 12	11	10	9 8	7	6 5 4	3	2	1 ()
	微地址	MLD V	VM]	RM I	EIR1	EIR2 I	R2-O P0	С-О Е	LP	RR '	WR H	ALT X0	X1	ERA RA	A-O EDR1	EDR2 A	LU-O CN M	S3	S2 S	S1 S0	16 进制
	有效值	0	0	0	0	0	0	0	0	0	0	0 *	*	0	0 0	0	0 * *	*	* *	*	
	00H	0	1	0	0	1	1	0	0	1	1	1 1	1	1	1 1	1	1 1 1	1	1	1 1	4DFFFF
取指微指令	01H																				
	02H																				
ADD A,RI	03H	1	1	1	1	1	1	1	1	1	1	1 1	1	1	0 0	1	1 1 1	1	0	0 1	FFFCF9
	04H	1	1	1	1	1	1	1	1	0	1	1 1	1	1	1 1	0	1 1 1	1	0	0 1	FF7F79
	05H	1	1	1	1	1	1	1	1	1	1	1 1	1	0	1 1	. 1	0 1 0	1	0	0 1	FFFBA9
	06H	0	1	0	0	1	1	0	1	1	1	1 1	1	1	1 1	1	1 1 1	1	1	1 1	4DFFFF
SUB A,RI	07H	1	1	1	1	1	1	1	1	1	1	1 1	1	1	0 0	1	1 0 1	0	1	1 (FFFCD6
	08H	1	1	1	1	1	1	1	1	0	1	1 1	1	1	1 1	. 0	1 0 1	0	1	1 (FE7F56
	09H	1	1	1	1	1	1	1	1	1	1	1 1	1	0	1 1	1	0 0 0	0	1	1 (FFFB86
	0AH	0	1	0	0	1	1	0	1	1	1	1 1	1	1	1 1	1	1 1 1	1	1	1 1	4DFFFF
MOV A,@RI	0BH	1	1	1	1	0	1	1	1	0	1	1 1	1	1	1 1	1	1 1 1	1	1	1 1	F77FFF
	0CH	1	1	0	1	1	0	1	1	1	1	1 1	1	0	1 1	1	1 1 1	1	1	1 1	DBFBFF
	0DH	0	1	0	0	1	1	0	1	1	1	1 1	1	1	1 1	. 1	1 1 1	1	1	1 1	4DFFFF
	0EH																				
MOV A,RI	0FH	1	1	1	1	1	1	1	1	0	1	1 1	1	0	1 1	1	1 1 1	1	1	1 1	FF7BFF
	10H	0	1	0	0	1	1	0	1	1	1	1 1	1	1	1 1	. 1	1 1 1	1	1	1 1	4DFFFF
	11H																				
	12H																				
MOV RI,A	13H	1	1	1	1	1	1	1	1	1	0	1 1	1	1	0 1	. 1	1 1 1	1	1	1 1	7FBDFF
	14H	0	1	0	0	1	1	0	1	1	1	1 1	1	1	1 1	. 1	1 1 1	1	1	1 1	4DFFFF
	15H																				
	16H																				

指令助记符		23	22	21	20	19	18	17	16	15	14	13 12	11	10	9	8	7	6	5 4	3	2	1 (
	微地址	MLD V	VM I	RM E	EIR1	EIR2 II	R2-O PC	C-O E	LP	RR V	WR F	HALT X0	X1	ERA RA	A-O EDF	R1 ED	R2 ALU	J -O (CN M	S3	S2	S1 S0	16 进制
	有效值	0	0	0	0	0	0	0	0	0	0	0 *	*	0	0	0	0	0	* *	*	*	* :	*
MOV A,#data	17H	1	1	0	1	1	1	0	1	1	1	1 1	1	0	1	1	1	1	1 1	. 1	1	1	1 DDFBFF
	18H	0	1	0	0	1	1	0	1	1	1	1 1	1	1	1	1	1	1	1 1	. 1	1	1	1 4DFFFF
	19H																						
	1AH																						
MOV Ri,#data	1BH	1	1	0	1	1	1	0	1	1	0	1 1	1	1	1	1	1	1	1 1	. 1	1	1	1 DDBFFF
	1CH	0	1	0	0	1	1	0	1	1	1	1 1	1	1	1	1	1	1	1 1	. 1	1	1	1 4DFFFF
	1DH																						
	1EH																						
LDA A,addr	1FH	1	1	0	1	0	1	0	1	1	1	1 1	1	1	1	1	1	1	1 1	. 1	1	1	D5FFFF
	20H	1	1	0	1	1	0	1	1	1	1	1 1	1	0	1	1	1	1	1 1	. 1	1	1	DBFBFF
	21H	0	1	0	0	1	1	0	1	1	1	1 1	1	1	1	1	1	1	1 1	. 1	1	1	1 4DFFFF
	22H																						
STA addr	23H	1	1	0	1	0	1	0	1	1	1	1 1	1	1	1	1	1	1	1 1	. 1	1	1	D5FFFF
	24H	1	0	1	1	1	0	1	1	1	1	1 1	1	1	0	1	1	1	1 1	. 1	1	1	BBFDFF
	25H	0	1	0	0	1	1	0	1	1	1	1 1	1	1	1	1	1	1	1 1	. 1	1	1	1 4DFFFF
	26H																						
RRC	27H	1	1	1	1	1	1	1	1	1	1	1 1	0	0	0	1	1	1	1 (1	1	1	1 FFF1EF
	28H	0	1	0	0	1	1	0	1	1	1	1 1	1	1	1	1	1	1	1 1	. 1	1	1	1 4DFFFF
	29H																						
	2AH																						
RLC	2BH	1	1	1	1	1	1	1	1	1	1	1 0	1	0	0	1	1	1	1 (1	1	1	1 FFE9EF
	2CH	0	1	0	0	1	1	0	1	1	1	1 1	1	1	1	1	1	1	1 1	1	1	1	CDFFFF
	2DH																						
	2EH																						

指令助记符		23	22	21	20	19	18	17	16	15	14	13 1	2 1	1 10	9	8	7	6	5	4 3	2	1	0
, , , , , = , ,	微地址	MLD V			EIR1	EIR2 II	R2-O	PC-O F	ELP	RR	WR F			1 ERAR	A-O F	DR1	EDR2 AI						0 16 进制
	有效值	0	0	0	0		0	0	0			0		* 0	0	0		0		* *		*	*
JZ addr	2FH	1	1	0	1	0	1	0	0		1	1		1 1	1	1	1	1	1	1 1	1	1	1 D4FFFF
JC addr	30H	0	1	0	0		1	0	1	1	1	1		1 1	1	1	1	1	1				1 4DFFFF
JMP addr	31H								-	-							-						1,2111
	32H																						
ORL A,#data	33H	1	1	1	1	1	1	1	1	1	1	1		1 1	0	0	1	1	1	1 1	1	1	0 FFFCFE
	34H	1	1	0	1	1	1	0	1	1	1	1		1 1	1	1	0	1	1	1 1	1	1	0 DDFF7E
	35H	1	1	1	1	1	1	1	1	1	1	1		1 0	0	1	1	0	1	1 1	1	1	0 FFFBBE
	36H	0	1	0	0	1	1	0	0	1	1	1		1 1	1	1	1	1	1	1 1	1	1	1 4DFFFF
ANL A,#data	37H	1	1	1	1	1	1	1	1	1	1	1		1 1	0	0	1	1	1	1 1	0	1	1 FFFCFB
	38H	1	1	0	1	1	1	0	1	1	1	1		1 1	1	1	0	1	1	1 1	0	1	1 DDFF7B
	39H	1	1	1	1	1	1	1	1	1	1	1		1 0	0	1	1	0	1	1 1	0	1	1 FFFBBB
	3AH	0	1	0	0	1	1	0	0	1	1	1		1 1	1	1	1	1	1	1 1	1	1	1 4DFFFF
	3BH																						
	3СН																						
	3DH																						
	3ЕН																						
HALT	3FH	1	1	1	1	1	1	1	1	1	1	0		1 1	1	1	1	1	1	1 1	1	1	1 FFDFFF

五、程序调试

实验、带进位运算的模型机

本实验提供了 4 条带进位的运算指令: RRC (带进位的右移), RLC (带进位的左移), ADDA, Ri (加法指令,可有进位溢出), JC addr (条件跳转), JMP addr (无条件跳转)。

RRC A 将 A 寄存器中的内容带进位位一起循环右移。

RLC A 将A寄存器中的内容带进位位一起循环左移

ADD A, Ri 将 A 寄存器的内容与 Ri 的内容相加, 如果加法溢出将进位到 CY。

JC addr 条件跳转指令,如果进位位 CY 溢出,跳转到 addr。

JMP addr 无条件跳转指令, 跳转到 addr

本实验的指令如下:

MOV A, #81 立即数 81H->A

RRCA (A) >>1

MOV A, #18 (A)->RAM(21H)

MOV R0,#40 立即数->寄存器 R0

MOV A,#18 立即数-> A

RLC A (A) << 1

ADD A, R0 (A)+(R0)-A

JC 10 CY 有进位, 跳转到 10H

JMP 0A 跳转到 0AH

STA 20 (A)->RAM

HALT 停机

用软件 LCACPT 来编辑、编译、加载实验机,或通过键盘(键盘使用方法见第四章)把以下程序以 16 进制输入程序存储器,在调试时请关注进位位 CY、A 寄存器中的值。

内存地址 指令助记符	指令码	说明	
------------	-----	----	--

00H	MOV A,#81	5FH	立即数 81H->A
01H		81H	
02H	RRC A	9FH	A>>1
03H	MOV A,#18	5FH	立即数 18H-> A
04H		18H	
05H	RLC A	AFH	A<<1
06H	MOV R0,#40	6СН	立即数 40H->寄存器 R0
07H		40H	
08H	MOV A,#18	5FH	立即数 18H-> A
09H		18H	
0AH	RLC A	AFH	A<<1
0BH	ADD A,R0	0СН	(A)+(R0)->A
0СН	JC 10	В7Н	CY 有进位 跳转到 0FH
0DH		10H	
0EH	JMP 0A	BFH	跳转到 0AH
0FH		0AH	
10H	STA 20	8FH	将 A 内容写入 RAM 地址 20H
11H		20H	
12H	HALT	FFH	停机

运行结果为: RAM 20H 单元中的内容为 20H

运行程序:

通过软件 LCACPT 的微单步功能可观察各个变量的变化。

微单步运行过程显示如下:

微地址	数据流程	数据总线	地址总	操作寄存器
			线	
00H	取指微指令	5FH	00H	IR1=5FH
	RAM->BUS->IR1			
MOV A,#81				

17H	BUS-> A	81H	01H	A=81H
18H	取指微指令	9FH	02H	IR1=9FH
	RAM->BUS->IR1			
RRC A				
27H	A>>1	40H	无效	A=40, CY 溢
				出
28H	取指微指令	5FH	03H	IR1=0CH
	RAM->BUS->IR1			
MOV A,#	18			
17H	BUS-> A	18H	04H	A=18H
18H	取指微指令	AFH	05H	IR1=AFH
	RAM->BUS->IR1			
RLC A				
2BH	A<<1	31H	无效	A=31H CY 无
				溢出
2CH		取指微指令	6СН	06H
		RAM->BUS->IR1		
MOV				
R0,#40				
1BH	BUS->寄存器 R0	40H	07H	R0=40H
1CH		取指微指令	5FH	08H
		RAM->BUS->IR1		
MOV				
A, #18				
2BH	BUS-> A	18H	09H	A=18H
2CH	取指微指令	AFH	0AH	IR1=AFH
	RAM->BUS->IR1			
RLC A				

2BH		(A)<<1		30H		无效
2CH	取指微指令	0СН		0BH		IR1=0CH
	RAM->BUS->IR1					
ADD						
A,R0						
03H	A->锁存器 DR1	30H		无效		DR1=30H
04H		寄存器 R0->锁	存	40H		无效
		器 DR2				
05H	ALU-> A	70H		无效		ALU=70 CY 无
						溢出
06H	取指微指令	В7Н		0СН		IR1=B7H
	RAM->BUS->IR1					
JC 0F					ı	
2FH	RAM->BUS->IR2	10H	0D	Н	IR	R2=10H
30H	取指微指令 RAM->BUS->IR1	BFH	0E	Н	C	Y 无溢出
JMP 0A					ı	
2FH	RAM->BUS->IR2	0AH	0F	Н	IR	R2=0AH
30H	取指微指令 RAM->BUS->IR1	AFH	0A	Н	跳	站转 0AH
RLC A					ı	
2BH	(A)<<1	Е0Н	无	效	A	=E0H
2CH	取指微指令 RAM->BUS->IR1	0СН	0B	Н	IR	R1=0CH
ADD A,R	3.0				ı	
03H	A->锁存器 DR1	Е0Н	无	效	D	R1=E0H
04H	寄存器 R0->锁存器 DR2	40H	无	效	D	R2=40H
05H	ALU-> A	20H	无	效	A	LU=70 CY 有溢
					出	
06H	取指微指令 RAM->BUS->IR1	BFH	0C	Н	IR	R1=B7H
JC 0F						

2FH	RAM->BUS->IR2	10H	0DH	IR2=10H
30H	取指微指令 RAM->BUS->IR1	8FH	10H	CY 有溢出
STA 20				
23H	RAM->BUS->IR2	20H	11H	IR2=20H
24H	A->RAM(20H)	20H	20H	RAM (20) =20
25H	取指微指令 RAM->BUS->IR1	FFH	12H	IR1=FFH
HALT				
3FH	置模型机为停止状态	无效	无效	置停止状态

如果在运行微单步时,发现有错误或对微单步中的时序过程不清楚,可用时序单元中的按钮来手动给出4个节拍。

微周期	数据流程	节拍	数据总	地址总	操作寄存器
			线	线	
Т0:	取指微指令	PLS1: 微地址清零	无效	无效	微地址: 00H
	RAM->BUS->IR1	PLS2: 置模型机运行	无效	无效	PC=00H
		PLS3: 取指微指令输出	5FH	00H	锁存微指令
		PLS4: BUS->IR1	5FH	00H	IR=5FH
MOV A,#81					
Т0:	BUS-> A	PLS1: 置微地址	5FH	00H	微地址: 17H
		PLS2: PC+1	5FH	00H	PC=01H
		PLS3: 微指令输出	81H	01H	锁存微指令
		PLS4: BUS-> A	81H	01H	A=81H
T1:	取指微指令	PLS1: 微地址+1	55H	01H	微地址: 18H
	RAM->BUS->IR1	PLS2: PC+1	55H	01H	PC=02H
		PLS3: 取指微指令输出	9FH	02H	锁存微指令
		PLS4: BUS->IR1	9FH	02H	IR1=9FH
RRC A					
Т0:	A>>1	PLS1: 置微地址	9FH	03H	微地址: 27H
		PLS2: PC+1	9FH	03H	PC=03H

		PLS3: 微指令输出	无效	无效	锁存微指令
		PLS4: BUS->寄存器 R0	无效	无效	A=40H CY=1
T1:	取指微指令	PLS1: 微地址+1	无效	无效	微地址: 28H
	RAM->BUS->IR1	PLS2: PC+1	无效	无效	PC=03H
		PLS3: 取指微指令输出	5FH	03H	锁存微指令
		PLS4: BUS->IR1	5FH	03H	IR1=5FH
MOV A, #18					
то:	RAM->BUS->A	PLS1: 置微地址	5FH	03Н	微地址: 17H
		PLS2: PC+1	5FH	03H	PC=04H
		PLS3: 取指微指令输出	18H	04H	锁存微指令
		PLS4: BUS->锁存器	18H	04H	A=18H
		DR1			
T1:	取指微指令	PLS1: 微地址+1	18H	04H	微地址: 18H
	RAM->BUS->IR1	PLS2: PC+1	18H	04H	PC=05H
		PLS3: 微指令输出	AFH	05H	锁存微指令
		PLS4: BUS->锁存器	AFH	05H	IR1=AFH
		DR2			
RLC A					
T0:	A<<1	PLS1: 置微地址	AFH	05H	微地址: 2BH
		PLS2: PC+1	AFH	05H	PC=06H
		PLS3: 微指令输出	无效	无效	锁存微指令
		PLS4: BUS->IR1	无效	无效	A=31H
T1:	取指微指令	PLS1: 微地址+1	无效	无效	微地址: 2CH
	RAM->BUS->IR1	PLS2: PC 不变	无效	无效	PC=06H
		PLS3: 微指令输出	6СН	06H	锁存微指令
		PLS4: BUS->IR1	6СН	06H	IR1=6CH
MOV R0,#40					
Т0:	RAM->BUS->寄存	PLS1: 置微地址	6СН	06Н	微地址: 1BH
-			-		

	器 R0	PLS2: PC+1	6СН	06H	PC=07H
		PLS3: 微指令输出	40H	07H	锁存微指令
		PLS4: BUS->DR1	40H	07H	A=40H
T1:	取指微指令	PLS1: 微地址+1	40H	07H	微地址: 1CH
	RAM->BUS->IR1	PLS2: PC+1	40H	07H	PC=08H
		PLS3: 微指令输出	5FH	08H	锁存微指令
		PLS4: BUS->DR2	5FH	08H	IR1=5FH
MOV A,#18					
T0:	RAM->BUS-> A	PLS1: 置微地址	8FH	08H	微地址: 17H
		PLS2: PC+1	8FH	08H	PC=09H
		PLS3: 微指令输出	18H	09H	锁存微指令
		PLS4: BUS->A	18H	09H	A=18H
T1:	取指微指令	PLS1: 微地址+1	18H	09H	微地址: 18H
	RAM->BUS->IR1	PLS2: PC+1	18H	09H	PC=0AH
		PLS3: 微指令输出	AFH	0AH	锁存微指令
		PLS4: BUS->RAM	AFH	0AH	IR1=AFH
RLC A				•	
то:	A>>1	PLS1: 置微地址	AFH	0AH	微地址: 2BH
		PLS2: PC+1	AFH	0AH	PC=0BH
		PLS3: 微指令输出	无效	无效	锁存微指令
		PLS4: BUS->A	无效	无效	A=30H
T1:	取指微指令	PLS1: 微地址+1	无效	无效	微地址: 2CH
	RAM->BUS->IR1	PLS2: PC 不变	无效	无效	PC=0BH
		PLS3: 微指令输出	0СН	0BH	锁存微指令
		PLS4: BUS->RAM	0СН	0BH	IR1=0CH
ADD A,R0					
Т0:	A->BUS->锁存器	PLS1: 置微地址	0СН	0BH	微地址: 03H
	DR1	PLS2: PC+1	0СН	0BH	PC=0CH
	•				

		PLS3: 微指令输出	30H	无效	锁存微指令
		PLS4: BUS->A	30H	无效	DR1=30H
T1:	R0->BUS->锁存器	PLS1: 微地址+1	30H	无效	微地址: 04H
	DR2	PLS2: PC+1	30H	无效	PC=0CH
		PLS3: 微指令输出	40H	无效	锁存微指令
		PLS4: BUS->RAM	40H	无效	DR2=40H
T2:	ALU->BUS->A	PLS1: 置微地址	40H	无效	微地址: 05H
		PLS2: 停机	40H	无效	PC=0CH
		PLS3: 微指令输出	70H	无效	锁存微指令
		PLS4: BUS->IR2	70H	无效	A=70 CY=0
T3:	取指微指令	PLS1: 微地址+1	70H	无效	微地址: 06H
	RAM->BUS->IR1	PLS2: PC 不变	70H	无效	PC=0CH
		PLS3: 微指令输出	В7Н	0СН	锁存微指令
		PLS4: BUS->RAM	В7Н	0СН	A=70 CY=0
JC 10					
T0:	RAM->BUS->IR2	PLS1: 置微地址	В7Н	0СН	微地址: 2FH
		PLS2: PC+1	В7Н	0СН	PC=0DH
		PLS3: 微指令输出	10H	0DH	锁存微指令
		PLS4: BUS->IR2	10H	0DH	IR2=10H
T1:	因 CY=0 不跳转	PLS1: 置微地址	10H	0DH	微地址: 30H
	取指	PLS2: PC+1	10H	0DH	PC=0EH
		PLS3: 微指令输出	BFH	0EH	锁存微指令
		PLS4: BUS->A	BFH	0EH	无操作
JMP 0A					
Т0:	RAM->BUS->IR2	PLS1: 置微地址	BFH	0EH	微地址: 2FH
		PLS2: PC+1	В7Н	0EH	PC=0FH
		PLS3: 微指令输出	0AH	0FH	锁存微指令
		PLS4: BUS->IR2	0AH	0FH	IR2=0AH
	•				

T1:	取指微指令	PLS1: 置微地址	0AH	0FH	微地址: 30H	
	RAM->BUS->IR1	PLS2: PC+1	0AH	0FH	PC=0AH	
		PLS3: 微指令输出	AFH	0AH	锁存微指令	
		PLS4: BUS->IR2	AFH	0AH	IR1=AFH	
RLC A						
T1:	A<<1	PLS1: 置微地址	0AH	0FH	微地址: 2BH	
		PLS2: PC+1	0AH	0FH	PC=0BH	
		PLS3: 微指令输出	AFH	0AH	锁存微指令	
		PLS4: BUS->IR2	AFH	0AH	IR1=E0H	
T2:	取指微指令	PLS1: 微地址+1	70H	无效	微地址: 2CH	
	RAM->BUS->IR1	PLS2: PC 不变	70H	无效	PC=0BH	
		PLS3: 微指令输出	В7Н	0СН	锁存微指令	
		PLS4: BUS->RAM	В7Н	0СН	A=70 CY=0	
ADD A,R0						
T0:	A->BUS->锁存器	PLS1: 置微地址	0СН	0BH	微地址: 03H	
	DR1	PLS2: PC+1	0СН	0BH	PC=0CH	
		PLS3: 微指令输出	30H	无效	锁存微指令	
		PLS4: BUS->A	30H	无效	DR1=E0H	
T1:	R0->BUS->锁存器	PLS1: 微地址+1	30H	无效	微地址: 04H	
	DR2	PLS2: PC+1	30H	无效	PC=0CH	
		PLS3: 微指令输出	40H	无效	锁存微指令	
		PLS4: BUS->RAM	40H	无效	DR2=40H	
T2:	ALU->BUS->A	PLS1: 置微地址	40H	无效	微地址: 05H	
		PLS2: 停机	40H	无效	PC=0CH	
		PLS3: 微指令输出	70H	无效	锁存微指令	
		PLS4: BUS->IR2	70H	无效	A=20 CY=1	
Т3:	取指微指令	PLS1: 微地址+1	70H	无效	微地址: 06H	
	RAM->BUS->IR1	PLS2: PC 不变	70H	无效	PC=0CH	

		PLS3: 微指令输出	В7Н	0СН	锁存微指令		
		PLS4: BUS->RAM	В7Н	0СН	A=70 CY=0		
JC 10							
то:	RAM->BUS->IR2	PLS1: 置微地址	В7Н	0СН	微地址: 2FH		
		PLS2: PC+1	В7Н	0СН	PC=0DH		
		PLS3: 微指令输出	10H	0DH	锁存微指令		
		PLS4: BUS->IR2	10H	0DH	IR2=10H		
T1:	因 CY=1 跳转	PLS1: 置微地址	10H	0DH	微地址: 30H		
	取指	PLS2: PC+1	10H	0DH	PC=10H		
		PLS3: 微指令输出	8FH	10H	锁存微指令		
		PLS4: BUS->A	8FH	10H	无操作		
STA 20			•				
то:	RAM->BUS->IR2	PLS1: 置微地址	В7Н	10H	微地址: 13H		
		PLS2: PC+1	В7Н	10H	PC=11H		
		PLS3: 微指令输出	20H	11H	锁存微指令		
		PLS4: BUS->IR2	20H	11H	IR2=10H		
T1:	A->BUS->RAM(20)	PLS1: 置微地址	10H	0DH	微地址: 14H		
		PLS2: PC+1	10H	0DH	PC=12H		
		PLS3: 微指令输出	20H	20H	锁存微指令		
		PLS4: BUS->A	20H	20H	A->RAM(20)		
T3:	取指微指令	PLS1: 微地址+1	20H	20H	微地址: 15H		
	RAM->BUS->IR1	PLS2: PC 不变	20H	20H	PC=12H		
		PLS3: 微指令输出	В7Н	0СН	锁存微指令		
		PLS4: BUS->RAM	В7Н	0СН	IR1=FFH		
HALT							
Т0:	置模型机为停止状	PLS1: 置微地址	FFH	12H	微地址: 3FH		
	态	PLS2: PC+1	无效	无效	PC=13H		
		PLS3: 微指令输出					

		PLS4: BUS->IR2		
T1:	置模型机为停止状			
	态			

六、实验思考

计算[(A+R0)加 A]减 R1 的值

程序:

MOV A, #data1

MOV R0, #data2

ORADDA, R0(要求一步实现)

MOV R1, #data3

SUBA, R1

STA 20

HALT

1. 试写出两种以上实现方式。

方式一:将R0中的数据与A进行或运算,运算的结果与A作加运算,即:

ORLA, #data2

ADD A, R0

方式二:通过微程序实现,微程序如下:

3B FFFCED

3C FF7F6D

3D FFFBAD

3E 4DFFFF

微程序指令编码为 EC,指令助记符为 ORADD A,RO。

2. 编写对应的可执行微程序(data1-data7 自选)。

写出对应的微程序并通过键盘输入,记录运行结果。

MOVA, 19H

MOV R0, 52H

ORADDA, R0

MOV R1, DDH

SUBA, R1

STA 20

HALT

运行结果: A0H

3. 记录微单步运行过程。

微单步运行过程显示如下:

微地址	数据流程	数据总线		地址总线	操作智	寄存器	
00H	取指微指令	5FH		00Н	IR1=5	FH	
	RAM->BUS->IR1						
MOV A,#	19						
17H	BUS-> A	19H		01H	A=191	Н	
18H	取指微指令	6СН		02H	IR1=6	6СН	
	RAM->BUS->IR1						
MOV R0,	#52						
1BH	RAM->寄存器 R0	52H		03H	R0=52	2H	
1CH	取指微指令	ЕСН		04H	IR1=E	ЕСН	
	RAM->BUS->IR1						
ORADD	A,R0						
3ВН	A->锁存器 DR1	19H		无效	DR1=	19H	
3СН	R0->锁存器 DR2	52H		无效	DR2=	DR2=52H	
3DH	ALU->锁存器 DR1	5BH		无效	DR1=	DR1=5BH	
3ЕН	ALU-> A	ADH		无效	A=AD	A=ADH	
3FH	取指微指令	60H		05H	IR1=6	60H	
	RAM->BUS->IR1						
MOV R1,#0D							
1BH	BH RAM->寄存器 R1 0DH 06			Н	R1=0DH		

1CH	取指微指令 RAM->BUS->IR1	1DH	07H	IR1=1DH				
SUB A,R	SUB A,R1							
07H	A->锁存器 DR1	ADH	无效	DR1=ADH				
08H	寄存器 R1->锁存器 DR2	0DH	无效	DR2=0DH				
09H	ALU-> A	АОН	无效	A=A0H				
10H	取指微指令 RAM->BUS->IR1	8FH	08H	IR1=8FH				
STA 20	STA 20							
23H	RAM->BUS->IR2	20H	11H	IR2=20H				
24H	A->RAM(20H)	АОН	10H	RAM (20) =A0				
25H	取指微指令 RAM->BUS->IR1	FFH	0AH	IR1=FFH				
HALT								
3FH	置模型机为停止状态	无效	无效	置停止状态				

4. 描述提纲式实验步骤。

- (1) 补充实验程序, 写出指令码
- (2) 连接好模型机
- (3) 通过键盘输入微程序并运行,记录运行结果
- (4) 进行微单步跟踪并记录微单步运行过程

5. 在模型机逻辑框图中标示正确的数据流并描述。

将指令进行译码,形成微地址