

Assessment Report

on

"Diabetes Prediction"

submitted as partial fulfillment for the award of

BACHELOR OF TECHNOLOGY DEGREE

SESSION 2024-25

in

CSE(AIML)

By

ARCHY MITTAL (202401100400046)

ASHUTOSH KUMAR GUPTA (202401100400058)

AVESH (202401100400060)

AYUSH KUMAR (202401100400064)

ABHAY PRATAP SINGH (202401100400005)

SEC - 'A'

Under the supervision of

"Bikki Gupta Sir"

KIET Group of Institutions, Ghaziabad

1. Introduction

With the rise of digital lending platforms, automating credit risk assessments through data-driven approaches has become essential. This project focuses on predicting loan defaults using **supervised machine learning**. By analyzing borrower data like credit scores, income, and loan history, the goal is to develop a model that assists financial institutions in making informed loan decisions.

2. Problem Statement

The challenge is to predict whether a borrower will default on a loan using available credit and financial history. Such a classification system helps lenders identify high-risk applicants and reduce lending risk.

3. Objectives

- Preprocess the dataset for ML training.
- Train a Logistic Regression model for loan default classification.

- Evaluate performance using metrics like accuracy, precision, recall, and F1-score.
- Visualize classification performance using a confusion matrix heatmap.

4. Methodology

Data Collection:

A CSV dataset is uploaded by the user.

Data Preprocessing:

- Handle missing values (mean/mode imputation).
- One-hot encode categorical data.
- Apply feature scaling with Standard Scaler.

Model Building:

- Split data into training and testing sets.
- Train a Logistic Regression classifier.

Evaluation:

- Measure accuracy, precision, recall, and F1-score.
- Visualize the **confusion matrix** using a heatmap.

• Model Building:

- Splitting the dataset into training and testing sets.
- Training a Logistic Regression classifier.

• Model Evaluation:

- Evaluating accuracy, precision, recall, and F1-score.
- Generating a confusion matrix and visualizing it with a heatmap.

5. Data Preprocessing

Missing numerical values: filled with column-wise mean.

Categorical values: transformed using one-hot encoding.

Feature scaling: done using Standard Scaler.

Train-test split: 80% for training, 20% for testing.

6. Model Implementation

Logistic Regression is selected due to its efficiency in binary classification.

Trained on the preprocessed dataset.

Used to predict loan default status on the test set.

7. Evaluation Metrics

• **Accuracy**: Overall prediction correctness.

- **Precision**: Correctness of predicted defaults.
- Recall: Ability to identify actual defaults.
- **F1 Score**: Balance between precision and recall.
- **Confusion Matrix**: Visualized using Seaborn to show prediction errors.

8. Results and Analysis

- The model demonstrated reasonable performance.
- The confusion matrix helped assess false positives/negatives.
- Precision and recall revealed how effectively the model identified defaults.

9. Conclusion

Logistic Regression successfully predicted loan defaults with acceptable accuracy.

Demonstrated the potential of AI/ML in automating loan decisions and enhancing credit risk analysis.

Future improvements could involve more advanced algorithms and better handling of class imbalance.

#CODE

```
# Import libraries
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.linear_model import LogisticRegression
from sklearn.metrics import accuracy_score, confusion_matrix, ConfusionMatrixDisplay
# Load dataset
df = pd.read_csv("/content/diabetes.csv")
# Basic EDA
print("First 5 rows of dataset:")
df.head()
print("Last 5 rows of dataset:")
df.tail()
# Data Set Info
print("\nDataset Info:")
df.info()
```

Summary Statistics

print("\nSummary Statistics:")
df.describe()

Countplot of target variable

sns.countplot(x="Outcome", data=df)
plt.title("Count of Diabetes Outcome (0: Non-Diabetic, 1: Diabetic)")
plt.show()

Correlation heatmap

plt.figure(figsize=(10, 8))
sns.heatmap(df.corr(), annot=True, cmap="coolwarm", fmt=".2f")
plt.title("Correlation Heatmap of Diabetes Dataset")
plt.show()


```
# Replace 0s with NaN in columns where 0 is not a valid value
```

```
cols_with_zero_invalid = ["Glucose", "BloodPressure", "SkinThickness", "Insulin", "BMI"]
df[cols_with_zero_invalid] = df[cols_with_zero_invalid].replace(0, np.nan)
df.info()
```

Fill missing values with median of each column

```
df.fillna(df.median(numeric_only=True), inplace=True)
df.info()
```

Split into features and target

```
X = df.drop("Outcome", axis=1)
y = df["Outcome"]
```

Train-test split

```
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
```

Standardize features

```
scaler = StandardScaler()

X_train_scaled = scaler.fit_transform(X_train)

X_test_scaled = scaler.transform(X_test)
```

Model Training

```
model = LogisticRegression()
model.fit(X_train_scaled, y_train)
```

Evaluation

```
y_pred = model.predict(X_test_scaled)
accuracy = accuracy_score(y_test, y_pred)
print(f"\nModel Accuracy: {accuracy:.2f}")
```

Confusion Matrix Visualization

```
cm = confusion_matrix(y_test, y_pred)
disp = ConfusionMatrixDisplay(confusion_matrix=cm, display_labels=["Non-Diabetic", "Diabetic"])
disp.plot(cmap=plt.cm.Greens)
plt.title(f"Confusion Matrix (Accuracy: {accuracy:.2f})")
plt.show()
```


10. References

- scikit-learn documentation
- Pandas documentation
- Seaborn visualization library