Some Lisp Programming

Conditional Evaluation and Predicates

The basic Lisp conditional evaluation construct is **cond**.

Several simplified versions exist, including if, unless and when

```
(defun my-abs (x) (if (>= x 0) x (-x)))
```

Another simplified version of cond is case:

Logical expressions can be combined using and, or, and not.

```
> (defun in-range (x) (and (< 3 x) (< x 5)))
IN-RANGE
> (in-range 2)
NIL
> (in-range 4)
Τ
> (defun not-in-range (x)
    (or (>= 3 x) (>= x 5)))
NOT-IN-RANGE
> (not-in-range 2)
Τ
> (defun in-range (x) (< 3 x 5))
IN-RANGE
> (in-range 2)
NIL
> (in-range 4)
> (defun not-in-range (x) (not (in-range x)))
NOT-IN-RANGE
```

More on Functions

Function as Data

Suppose we want a function **num-deriv** to compute a numerical derivative.

If we define

```
(defun f (x) (+ x (^ x 2)))
then we want to get
> (num-deriv #'f 1)
3
```

Defining num-deriv as

will not work – our function is the value of fun, not its function definition:

```
> (num-deriv #'f 1)
error: unbound function - FUN
```

We need a function that calls the value of **fun** with an argument:

```
> (funcall #'+ 1 2)
3
```

A correct definition of num-deriv is

Another useful function is apply:

```
> (apply #'+ '(1 2 3))
6
> (apply #'+ 1 2 '(3 4))
10
> (apply #'+ 1 '(2 3))
6
```

Anonymous Functions

Defining and naming throw-away functions like **f** is awkward.

The same problem exists in mathematics.

Logicians developed the *lambda calculus*:

$$\lambda(x)(x+x^2)$$

is "the function that returns $x + x^2$ for the argument x."

Lisp uses this idea:

$$(lambda (x) (+ x (^ x 2)))$$

is a *lambda expression* for our function.

Lambda expressions are not yet Lisp functions.

To make them into functions, you need to use function or #':

$$\#$$
'(lambda (x) (+ x (^ x 2)))

To take our derivative:

To plot $2x + x^2$ over the range [-2, 4],

Functions can also use lambda expressions to make new functions and return them as the value of the function.

We will see a few examples of this a bit later.

Local Variables and Environments

Variables and Scoping

A pairing of a variable symbol with a value is called a binding

Collections of bindings are called an *environment*.

Bindings can be global or they can be local to a group of expressions.

let and let* expressions and function definitions set up local bindings.

Consider the lambda expression

(lambda (x) (+ x a))

The meaning of \mathbf{x} in the body is clear – it is bound to the calling argument.

The meaning of \mathbf{a} is not so clear – it is a *free* variable.

We need a convention for determining the bindings of free variables.

This is the reason we need to use **function** on lambda expressions:

Free variables in a function are bound to their values in the environment where the function is created

This is called the *lexical* or *static* scoping rule.

Other scoping rules are possible.

An example: making a derivative function:

Another example: making a normal log likelihood:

The log likelihood of a sample from a normal distribution is

$$-\frac{n}{2} \left[\log \sigma^2 + \frac{(\overline{x} - \mu)^2}{\sigma^2} + \frac{s^2}{\sigma^2} \right]$$

A function for evaluating this expression as a function of μ and σ^2 is returned by

The result returned by this function can be maximized, or it can be plotted with spin-function or contour-function.

Local Functions

It is also possible to set up local functions using flet:

flet sets up bindings in parallel, like let

flet cannot be used to define local recursive functions.

labels is like flet but allows mutually recursive function definitions.

Optional, Keyword and Rest Arguments

A number of functions used so far take optional arguments, keyword arguments, or variable numbers of arguments.

A function taking an optional argument is defined one of three ways:

```
(defun f (x &optional y) ...)
(defun f (x &optional (y 1)) ...)
(defun f (x &optional (y 1 z)) ...)
```

In the second and third forms, the default value is 1; in the first form it is nil

In the third form, **z** is **t** if the optional argument is supplied; otherwise **z** is **nil**.

We can add an optional argument for the step size to num-deriv:

Keyword arguments are defined similarly to optional arguments:

```
(defun f (x &key y) ...)
(defun f (x &key (y 1)) ...)
(defun f (x &key (y 1 z)) ...)
```

The function is then called as

```
(f 1 : y 2)
```

Using a keyword argument in num-deriv:

With a keyword argument, num-deriv is called as

```
(num-deriv #'f 1 :h 0.001)
```

A function with a variable number of arguments is defined as

```
(defun f (x &rest y) ...)
```

All arguments beyond the first are made into a list and bound to **y**.

For example:

```
> (defun my-plus (&rest x) (apply #'+ x))
MY-PLUS
> (my-plus 1 2 3)
6
```

If more than one of these modifications is used, they must appear in the order &optional, &rest, &key.

There is an upper limit on the number of arguments a function can receive.

Mapping

Mapping is the process of applying a function elementwise to a list.

The primary mapping function is mapcar:

```
> (setf x (normal-rand '(2 3 2)))
((0.27397 3.5358) (-0.11065 1.2178 1.050)
  (0.78268 0.95955))
> (mapcar #'mean x)
(1.904895 0.71913 0.8711149)
```

Mapcar can take several lists as arguments:

```
> (mapcar #'+ '(1 2 3) '(4 5 6))
(5 7 9)
```

Using mapcar, we can define a simple numerical integrator for functions on [0, 1]:

More on Compound Data

<u>Lists</u>

Lists are the most important compound data type. Lists can be empty:

```
> (list)
NIL
> '()
NIL
> ()
NIL
```

They can be used to represent sets:

```
> (union '(1 2 3) '(3 4 5))
(5 4 1 2 3)
> (intersection '(1 2 3) '(3 4 5))
(3)
> (set-difference '(1 2 3) '(3 4 5))
(2 1)
```

In addition to using **select**, you can get pieces of a list with

```
> (first '(1 2 3))
1
> (second '(1 2 3))
2
> (rest '(1 2 3))
(2\ 3)
Two other useful functions are
remove-duplicates
> (remove-duplicates '(1 1 2 3 3))
(1 2 3)
and count:
> (count 2 '(1 2 3 4) :test #'=)
> (count 2 '(1 2 3 4) :test #'<=)</pre>
3
```

remove-duplicates also accepts a :test argument.

<u>Vectors</u>

Vectors are a second form of compound data.

A vector is constructed with the **vector** function

```
> (vector 1 2 3)
#(1 2 3)
```

or by typing its printed representation:

```
> (setf x '#(1 2 3))
#(1 2 3)
> x
#(1 2 3)
```

Elements of vectors can be extracted and changed with select:

```
> (select x 1)
2
> (setf (select x 1) 5)
5
> x
#(1 5 3)
```

Vectors can be copied with copy-vector.

Vectors are usually stored more efficiently than lists, and their elements can be accessed more rapidly.

But there are fewer functions for operating on vectors than on lists:

```
> (first x)
error: bad argument type - #(1 5 3)
> (rest x)
error: bad argument type - #(1 5 3)
```

Sequences

Lists, vectors, and strings are sequences.

Several functions operate on any sequence:

```
> (length '(1 2 3))
3
> (length '#(1 2 3))
3
> (length "abc")
3
> (select '(1 2 3) 0)
1
> (select '#(1 2 3) 0)
1
> (select "abc" 0)
#\a
```

Sequences can be coerced to different types with coerce:

```
> (coerce '(1 2 3) 'vector)
#(1 2 3)
> (coerce "abc" 'list)
(#\a #\b #\c)
```

Arrays

The matrix function constructs a two-dimensional array:

```
> (matrix '(2 3) '(1 2 3 4 5 6))
#2A((1 2 3) (4 5 6))
```

Again you can type the printed representation

```
> (setf m '#2A((1 2 3) (4 5 6)))
#2A((1 2 3) (4 5 6))
```

and select extracts and modifies elements:

```
> (select m 1 1)
5
> (select m 1 '(0 1))
#2A((4 5))
> (select m '(0 1) '(0 1))
#2A((1 2) (4 5))
> (setf (select m 1 1) 'a)
A
> m
#2A((1 2 3) (4 A 6))
```

Format

format is a very flexible output function.

It prints to *output streams* or to strings.

The default output stream is *standard-output*; it can be abbreviated to t:

```
> (format *standard-output* "Hello~%")
Hello
NIL
> (format t "Hello~%")
Hello
NIL
> (format nil "Hello")
"Hello"
```

^{~%} is the format directive for a new line.

Other useful format directives are "a and "s:

```
> (format t "Examples: ~a ~s~%" '(1 2) '(3 4))
Examples: (1 2) (3 4)
NIL
> (format t "Examples: ~a ~s~%" "ab" "cd")
Examples: ab "cd"
```

These two directives differ in their handling of escape characters.

There are many other format directives.

Some Statistical Functions

Some Basic Functions

```
> (difference '(1 3 6 10))
(2 3 4)
> (pmax '(1 2 3) 2)
(2 2 3)
> (split-list '(1 2 3 4 5 6) 3)
((1 2 3) (4 5 6))
> (cumsum '(1 2 3 4))
(1 3 6 10)
> (accumulate #'* '(1 2 3 4))
(1 2 6 24)
```

Sorting Functions

```
> (sort-data '(14 10 12 11))
(10 11 12 14)
> (rank '(14 10 12 11))
(3 0 2 1)
> (order '(14 10 12 11))
(1 3 2 0)
```

Interpolation and Smoothing

```
(spline x y :xvals xv)
(lowess x y)
(kernel-smooth x y :width w)
(kernel-dens x)
```

Linear Algebra Functions

```
(identity-matrix 4)
(diagonal '(1 2 3))
(diagonal '#2a((1 2)(3 4)))
(transpose '#2a((1 2)(3 4)))
(transpose '((1 2)(3 4)))
(matmult a b)
(make-rotation '(1 0 0) '(0 1 0) 0.05)
(lu-decomp a)
(inverse a)
(determinant a)
(chol-decomp a)
(qr-decomp a)
(sv-decomp a)
```

Odds and Ends

Errors

The **error** functions signals an error:

```
> (error "bad value")
```

error: bad value

> (error "bad value: ~s" "A")

error: bad value: "A"

Debugging

Several debugging functions are available:

debug/nodebug – toggle debug mode; in debug mode, an error puts you into a break loop.

break - called within a function to enter a break
loop

baktrace – prints traceback in a beak loop.

step - single steps through an evaluation.

Example

Estimating a Survival Function

Suppose the variable **times** contains survival times and **status** contains status values, with 1 representing death and 0 censoring.

To compute a Kaplan-Meier or Fleming-Harrington estimator, we first need the death times and the unique death times:

Next, we need the number of deaths and the number at risk at each death time:

Using these values, we can compute the Kaplan-Meier estimator at the death times as

```
(setf km (accumulate \#'* (/ (- r d) r)))
```

The Fleming-Harrington estimator is

```
(setf fh (exp (- (cumsum (/ d r)))))
```

Greenwood's formula for the variance is

```
(* (^ km 2) (cumsum (/ d r (pmax (- r d) 1))))
```

The pmax expression prevents a division by zero.

Tsiatis' formula leads to

```
(* (^ km 2) (cumsum (/ d (^ r 2))))
```

To construct a plot we need a function that builds the consecutive corners of a step function:

Then

```
(plot-lines (make-steps udt km))
```

produces a plot of the Kaplan-Meier estimator.

Weibull Regression

Suppose times are survival times, status contains death/censoring indicators, and x contains a matrix of covariates, including a column of ones.

A Weibull model for these data has a log likelihood of the form

$$\sum s_i \log \alpha + \sum (s_i \log \mu_i - \mu_i)$$

where

$$\log \mu_i = \alpha \log t_i + \eta_i$$
$$\eta_i = x_i \beta$$

and α is the Weibull exponent, β is a vector of parameters.

A function to compute this log likelihood is

Reasonable initial estimates for the parameters might be $\alpha = 1$,

$$\beta_0 = \frac{\sum s_i}{\sum t_i}$$

for the constant term, and $\beta_i = 0$ for all other i. For a single covariate: