Lesson 6. Introduction to Stochastic Processes

Course standards covered in this lesson: C2 - Constructing and interpreting stochastic process models.

1 Overview

- A **stochastic process** is a sequence of random variables ordered by an index set
- Examples:
 - $\{S_n; n = 0, 1, 2, ...\} = \{S_0, S_1, S_2, ...\}$ with discrete index set $\{0, 1, 2, ...\}$
 - ∘ $\{Y_t; t \ge 0\}$ with continuous index set $\{t \ge 0\}$
- The indices *n* and *t* are often referred to as "time"
 - $\{S_n; n = 0, 1, 2, ...\}$ is a discrete-time process
 - ∘ $\{Y_t; t \ge 0\}$ is a **continuous-time process**
- The **state space** of a stochastic process is the range (possible values) of its random variables
 - State spaces can be discrete or continuous
 (i.e. the random variables of a stochastic process can be discrete or continuous)
- A stochastic process can be described by the joint distribution of its random variables
- Working with joint distributions can be difficult
- Instead, we can describe a stochastic process via an algorithm for generating its sample paths
- Recall: a **sample path** is a record of the time-dependent behavior of a system
- A stochastic process generates sample paths
 - \circ e.g. a sequence of random variates of S_0, S_1, S_2, \dots
- This lesson: an example

2 The Case of the Leaky Bit Bucket

Bit Bucket Computers specializes in installing and maintaining highly reliable computer systems. One of its standard configurations is to install a primary computer, an identical backup computer that is idle until needed, and provide a service contract that guarantees complete repair of a failed computer within 48 hours. If it has not fixed a computer within 48 hours, then it replaces the computer.

Computer systems are rated in terms of their "time to failure" (TTF). The engineers at Bit Bucket Computers have developed a probability distribution for the TTF of the individual computers and a probability distribution for the time required to complete repairs. They would like to have a TTF rating for the entire system. A failure of the system is when both computers are down simultaneously.

Some additional details from the engineers:

• TTF for a computer:

- \circ Let X_i represent the TTF of the *i*th computer in service
- $\circ X_1, X_2, \dots$ are independent and **time-stationary** (i.e. identically distributed)
 - ⇒ A new computer and a computer that has just been repaired have the same TTF
- $\circ X_1, X_2, \dots$ have common cdf F_X
- F_X is the Weibull distribution with parameters $\alpha = 2$, $\beta = 812$
 - ⇒ Expected TTF is 720 hours (30 days) with standard deviation 376 hours (16 days)
 - ♦ Due to their flexible nature, Weibull distributions are commonly used for failure times

• Service time:

- Let R_i denote the time required to repair the *i*th computer failure
- \circ R_1, R_2, \dots are independent and time-stationary
- \circ R_1, R_2, \dots have common cdf F_R
- \circ Based on service records, F_R is the uniform distribution on [4, 48]
- X_1, X_2, \ldots and R_1, R_2, \ldots are independent
 - ⇒ Repair time of a computer is not affected by its TTF or the number of times it has been repaired

• System logic:

- After a system is installed, the primary computer is started
- When it fails, the backup computer is immediately started and a service call is made to Bit Bucket
- If the primary computer is repaired before the backup computer fails, then the primary computer becomes the backup computer, and the former backup computer remains the primary computer
- If at any time neither computer is available, the entire system fails
- o Only one computer can be repaired at a time, and are repaired first-come-first-served

3 Simulating the Leaky Bit Bucket

• We're interested in <i>D</i> , the time the entire system fails
• <i>D</i> is a random variable
• <i>D</i> is a a (complex) function of random variables X_1, X_2, \ldots and R_1, R_2, \ldots
• Let's generate values of X_1, X_2, \ldots and R_1, R_2, \ldots and use these to <u>simulate values of D</u>
• We can describe this simulation <u>algorithmically</u> as follows
• System events of interest
o e1 =
o <i>e</i> ₂ =
• State of the system: the critical variable that characterizes system status
State space:
• The clock time C_i of system event e_i is the time the next system event of type e_i occurs
• When no type e_i event is pending, $C_i \leftarrow \infty$
• The n th event epoch T_n is the time at which the n th system event occurs
• At T_{n+1} , the time of the $(n+1)$ st event, two things can happen:
The system state can change
The clocks can be reset
• How exactly? We need to describe subroutines for the system events
• Let random() be a function that generates variates for Uniform[0,1]
• Subroutine for system event e_1 :

•	Subroutine	for	system	event	e_2 :
•	Subroutine	for	system	event	e_2 :

• Let's also create an "initial" system event e_0 representing the installation of the computer system:

$$e_0()$$
:
1: $S_0 \leftarrow 0$ (initially no computers down)
2: $C_1 \leftarrow F_X^{-1}(\text{random}())$ (set clock for first computer TTF)
3: $C_2 \leftarrow +\infty$ (no pending repair)

• Putting this all together:

algorithm BitBucketSimulation:

1:
$$n \leftarrow 0$$
 (initialize system event counter)
2: $T_0 \leftarrow 0$ (initialize event epoch)
3: $e_0()$ (execute initial system event)
4: $T_{n+1} \leftarrow \min\{C_1, C_2\}$ (advance time to next pending system event)
5: $I \leftarrow \arg\min\{C_1, C_2\}$ (find index of next system event)
6: $C_I \leftarrow \infty$ (event I no longer pending)
7: $e_I()$ (execute system event I)
8: $n \leftarrow n + 1$ (update event counter)
9: go to line 4

Example 1. Suppose the first three values generated by $F_X^{-1}(\text{random}())$ are 612, 36, and 975. In addition, suppose the first two values generated by $F_R^{-1}(\text{random}())$ are 39 and 9. Generate the sample path using the algorithm BitBucketSimulation.

Event counter	System event	Time	State	Failure clock	Repair clock C_2
n	I	T_n	S_n	C_1	C_2
0					
1					
2					
3					
4					

• Recall:	
$\circ S_r$	n is the number of down computers when the n th system event occurs
o T ₁	$\frac{1}{n}$ is the time of the n th system event
• Let's co	ombine these:
	Y_t = number of down computers at time t for $t \ge 0$
or equi	valently,
• The tim	ne average of Y_t up to the n th event epoch is
Example 2. U	Using your simulated sample path from Example 1, graph Y_t . What is the time average of Y_t up to
he 4th event	epoch?
Y_t	
†	
2	
1	
1	
• Recall:	we're interested D , the time of total system failure, which is:

Example 3. Modify the algorithm BitBucketSimulation to record the value D generated by the simulation.

- To get information about the distribution of D, we run this simulation many times, say m = 500:
 - 1: **for** r = 1 to m **do**
 - 2: algorithm BitBucketSimulation
 - 3: end for
- Sample results:
 - ∘ Average of generated values of *D*: 551606 hours ≈ 63 years
 - Histogram of generated values of *D*:

- \circ 2% of the generated values of *D* are less than 2 years
- Is this acceptable or unacceptable?