

Description

The series of devices uses **Super Trench II** technology that is uniquely optimized to provide the most efficient high frequency switching performance. Both conduction and switching power losses are minimized due to an extremely low combination of $R_{\text{DS(ON)}}$ and Q_g . This device is ideal for high-frequency switching and synchronous rectification.

Application

- DC/DC Converter
- •Ideal for high-frequency switching and synchronous rectification

General Features

- V_{DS} =100V, I_D =200A $R_{DS(ON)}$ =2.4m Ω , typical (TO-220)@ V_{GS} =10V $R_{DS(ON)}$ =2.2m Ω , typical (TO-263)@ V_{GS} =10V
- Excellent gate charge x R_{DS(on)} product(FOM)
- Very low on-resistance R_{DS(on)}
- 175 °C operating temperature
- Pb-free lead plating

TO-263

Schematic Diagram

Package Marking and Ordering Information

Device Marking	Device	Device Package	Reel Size	Tape width	Quantity
VST10N022-TC	VST10N022	TO-220C	-	-	-
VST10N022-T3	VST10N022	TO-263	-	-	-

Absolute Maximum Ratings (T_C=25℃unless otherwise noted)

Parameter	Symbol	Limit	Unit	
Drain-Source Voltage	V _{DS}	100	V	
Gate-Source Voltage	V _G s	±20	V	
Drain Current-Continuous	I _D	200	А	
Drain Current-Continuous(T _C =100 °C)	I _D (100℃)	142	Α	
Pulsed Drain Current	I _{DM}	800	А	
Maximum Power Dissipation	P _D	300	W	
Derating factor		2	W/°C	
Single pulse avalanche energy (Note 5)	E _{AS}	2300	mJ	
Operating Junction and Storage Temperature Range	T_{J} , T_{STG}	-55 To 175	$^{\circ}$ C	

Thermal Characteristic

Thermal Resistance,Junction-to-Case ^(Note 2)	$R_{ heta JC}$	0.5	°C/W	
---	----------------	-----	------	--

Electrical Characteristics (T_c=25°Cunless otherwise noted)

Parameter	neter Symbol Condition		Min	Тур	Max	Unit	
Off Characteristics	<u> </u>				•		•
Drain-Source Breakdown Voltage	BV _{DSS}	V _{GS} =0V I _D =250µA		100		-	V
Zero Gate Voltage Drain Current	I _{DSS}	V _{DS} =100V,V _{GS} =0V		-	-	1	μA
Gate-Body Leakage Current	I _{GSS}	V _{GS} =±20V,V _{DS} =0V		-	-	±100	nA
On Characteristics (Note 3)							Į.
Gate Threshold Voltage	$V_{GS(th)}$	$V_{DS}=V_{GS}$, $I_D=250\mu A$		2.0	3.0	4.0	V
Davis Course On Chata Basistan	R _{DS(ON)}	V _{GS} =10V, I _D =100A	TO-220	-	2.4	2.6	mΩ
Drain-Source On-State Resistance			TO-263		2.2	2.6	mΩ
Forward Transconductance	g FS	V _{DS} =5V,I _D =100A			90	-	S
Dynamic Characteristics (Note4)							Į.
Input Capacitance	C _{lss}	- V _{DS} =50V,V _{GS} =0V, - F=1.0MHz		-	14000	-	PF
Output Capacitance	Coss			-	1100	-	PF
Reverse Transfer Capacitance	C _{rss}			-	60	-	PF
Switching Characteristics (Note 4)	-				l		l.
Turn-on Delay Time	t _{d(on)}			-	34	-	nS
Turn-on Rise Time	t _r	$V_{DD} = 50V, I_{D} = 100A$ $V_{GS} = 10V, R_{G} = 1.6\Omega$		-	27	-	nS
Turn-Off Delay Time	t _{d(off)}			-	78	-	nS
Turn-Off Fall Time	t _f			-	30	-	nS
Total Gate Charge	Qg	V _{DS} =50V,I _D =100A, V _{GS} =10V		-	240	-	nC
Gate-Source Charge	Q _{gs}			-	62		nC
Gate-Drain Charge	Q_{gd}			-	73		nC
Drain-Source Diode Characteristics	<u> </u>				•	'	
Diode Forward Voltage (Note 3)	V _{SD}	V _{GS} =0V,I _S =100A		-		1.2	V
Diode Forward Current (Note 2)	Is			-	-	200	Α
Reverse Recovery Time	t _{rr}	T _J = 25°C, I _F = 100A		-	101	-	nS
Reverse Recovery Charge	Qrr	$di/dt = 100A/\mu s^{(Note3)}$		-	280	-	nC

Notes:

- 1. Repetitive Rating: Pulse width limited by maximum junction temperature.
- 2. Surface Mounted on FR4 Board, t ≤ 10 sec.
- 3. Pulse Test: Pulse Width \leq 300 μ s, Duty Cycle \leq 2%.
- 4. Guaranteed by design, not subject to production
- 5. EAS condition : Tj=25 $^{\circ}\text{C}$,V_DD=50V,V_G=10V,L=0.5mH,Rg=25 Ω

Figure 1 Output Characteristics

Figure 2 Transfer Characteristics

Rdson On-Resistance(m 2)

Figure 3 Rdson-Drain Current

Figure 4 Rdson-Junction Temperature

Figure 5 Gate Charge

Figure 6 Source- Drain Diode Forward

Figure 7 Capacitance vs Vds

Figure 9 Power De-rating

Figure 8 Safe Operation Area

Figure 10 Current De-rating

Figure 11 Normalized Maximum Transient Thermal Impedance