МИНОБРНАУКИ РОССИИ САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭЛЕКТРОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ЛЭТИ» ИМ. В.И. УЛЬЯНОВА (ЛЕНИНА) Кафедра МО ЭВМ

ОТЧЕТ

по лабораторной работе №2 по дисциплине «Организация ЭВМ и систем» Тема: Изучение режимов адресации и формирования исполнительного адреса(Вариант 2).

Студент гр. 1303	Герасименко Я.Д.
Преподаватель	Ефремов М.А.

Санкт-Петербург 2022

Цель работы.

Изучить режимы адресации и формирования исполнительного адреса

Задание.

Лабораторная работа 2 предназначена для изучения режимов адресации, использует готовую программу lr2_comp.asm на Ассемблере, которая в автоматическом режиме выполняться не должна, так как не имеет самостоятельного функционального назначения, а только тестирует режимы адресации. Поэтому ее выполнение должно производиться под управлением отладчика в пошаговом режиме.

В программу введен ряд ошибок, которые необходимо объяснить в отчете по работе, а соответствующие команды закомментировать для прохождения трансляции.

Ход работы.

- 1. Изменение набора значений исходных данных (массивов) vec1, vec2 и matr из файла lr2.dat, согласно своему варианту.
- 2. Трансляция программы с созданием файла диагностических сообщений. Объяснение обнаруженных ошибок и предупреждений и закомментирование операторов с ошибками в тексте программы.

• Ошибка l2.asm(42): error A2052: Improper operand type (Неверный тип операнда)

Строка: mov mem3,[bx]

Нельзя одновременно читать из памяти и писать в память. Нужно сначала перенести данные из памяти в регистр, а уже потом из регистра в необходимый сегмент.

- Предупреждение lr2_comp.asm(45) : Extra characters on line
- Предупреждение l2.asm(52): warning A4031: Operand types must match (Несоответствие типов операндов)

Строка: mov cx, vec2[di]

Типы операндов должны совпадать, а в данном случае, cx-1 слово, элемент vec2-1 байт.

• Предупреждение l2.asm(56): warning A4031: Operand types must match (Несоответствие типов операндов)

Строка: mov cx, matr[bx][di]

Типы операндов должны совпадать, а в данном случае, cx-1 слово, элемент matr-1 байт.

• Ошибка l2.asm(57): error A2055: Illegal register value (Незаконное использование регистра)

Строка: mov ax,matr[bx*4][di]

В данном случае используется базово-индексная адресация. В таких случаях в регистре хранится адрес начала структуры данных, а доступ осуществляется к какому-нибудь элементу этой структуры. При данном типе адресации надо сначала изменить значение регистра, а уже потом переводить информацию.

• Ошибка l2.asm(76): error A2046: Multiple base registers (несколько базовых регистров)

Строка: mov ax,matr[bp+bx]

Регистры bp и bx базовые, поэтому сначала складываются значения регистров, а уже затем данные передается указателю одного из регистров. Таким образом, сначала нужно в регистр bp занести общую сумму, а потом производить смещение.

• Ошибка l2.asm(77): error A2047: Multiple index registers (несколько индексных регистров)

Строка: mov ax,matr[bp+di+si]

Регистры di и si индексные, поэтому сначала складываются их значения, а потом данные передаются указателю из одного регистра. Сначала в регистр di заносится общая сумма, а потом производится смещение.

• Ошибка l2.asm(84): error A2006: Phase error between passes

Строка: Main ENDP

Данная ошибка свидетельствует о том, что в функции main содержатся ошибки.

3. Повторная трансляция программы и компоновка загрузочного модуля.

```
DOSBOX 0.74-3, Cpu speed: 3000 cycles, Frameskip 0, Program: DOSBOX — C:\DOS\TOOLS>AFDPRO.EXE LRZ_COMP.EXE

AFD-Pro is done

C:\DOS\TOOLS>MASM.EXE LRZ_COMP.ASM
Microsoft (R) Macro Assembler Version 5.10
Copyright (C) Microsoft Corp 1981, 1988. All rights reserved.

Object filename [LRZ_COMP.OBJ]:
Source listing [NUL.LST]:
Cross-reference [NUL.CRF]:
LRZ_COMP.ASM(45): warning A4001: Extra characters on line
LRZ_COMP.ASM(52): warning A4031: Operand types must match
LRZ_COMP.ASM(56): warning A4031: Operand types must match

49874 * 459436 Bytes symbol space free

3 Warning Errors
0 Severe Errors

C:\DOS\TOOLS>AFDPRO.EXE LRZ_COMP.EXE

AFD-Pro is done

C:\DOS\TOOLS>
```

4. Выполнение программы в пошаговом режиме под управлением отладчика с фиксацией содержимого используемых регистров и ячеек памяти до и после выполнения команды.

Изначальные значения:

SP = 0018

IP = 0000

DS = 19F5

CX = 00B0

Адрес команды	Символьный код команды	16-ричный код команды	Содержимое регистров и ячеек памяти	
			До выполнения	После выполнения
			(SP)=0018	(SP)=0016
0000	PUSH DS	1E	(IP)=0000	(IP)=0001
			STACK +0 = 0000	STACK +0 = 19F5
0001	SUB AX, AX	2BC0	(IP)=0001	(IP)=0003
0001	JUD AA, AA	2000		
			(SP) = 0016	(SP)= 0014
0003	PUSH AX	50	(IP) = 0003	(IP) = 0004
			STACK +0 = 19F5	STACK + 0 = 0000
			STACK +2 = 0000	STACK +2 = 19F5
0004	MOV AX, 1A07	B8071A	(AX)=0000	(AX)= 1A07
			(IP)=0004	(IP)=0007
0007	MOV DS,AX	8ED8	(DS)=19F5	(DS)=1A07

			(IP)= 0007	(IP)= 0009
0009	MOV AX, 01F4	B8F401	(AX)=1A07 (IP)=0009	(AX)= 01F4 (IP)= 000C
000C	MOV CX,AX	8BC8	(IP)=000C (CX)=00B0	(IP)=000E (CX)=01F4
000E	MOV BL,24	B324	(BX)=0000 (IP)=000E	(BX)=0024 (IP)=0010
0010	MOV BH,CE	B7CE	(BX)=0024 (IP)=0010	(BX)=CE24 (IP)=0012
0012	MOV [0002],FFCE	C7060200CEF F	(IP)=0012	(IP)=0018
0018	MOV BX,0006	BB0600	(BX)=CE24 (IP)=0018	(BX)=0006 (IP)=001B
001B	MOV [0000],AX	A30000	(IP)=001B	(IP)=001E
001E	MOV AL,[BX]	8A07	(AX)=01F4 (IP)=001E	(AX)=0105 (IP)=0020
0020	MOV AL, [BX+03]	8A4703	(IP) = 0020 $(AX) = 0105$	(IP)= 0023 $(AX) = 0108$
0023	MOV CX, [BX+03]	8B4F03	(CX) = 01F4 (IP) = 0023	(CX) = 0C08 (IP) = 0026
0026	MOV DI, 0002	BF0200	(DI) = 0000 (IP) = 0026	(DI) = 0002 (IP) = 0029
0029	MOV AL, [DI+ 000E]	8A850E00	(AX) = 0108 (IP) = 0029	(AX)= 0114 (IP)= 002D
002D	MOV CX, [000E+DI]	8B8D0E00	(IP) = 002D $CX = 0C0B$	(IP) = 0030 CX = 1E14
0031	MOV BX, 0003	BB0300	(IP) = 0031 $(BX) = 0006$	(IP) = 0034 $(BX) = 0003$

	MOV AL,		(AX) = 0114	(AX) = 0103
0034	[0016+BX+DI]	8A811600	(IP)= 0034	(IP)= 0037
0038	MOV CX,	0D001C00	(CX) = 0C0B	(CX) = 0203
	[0016+BX+DI]	8B891600	(IP)= 0038	(IP)= 003C
003C	MOV AX, 1A07	B8071A	(AX) = 0103	(AX)= 1A07
003C	WOV AX, 1A07	D00/1A	(IP) = 003C	(IP) = 003F
		8EC0	(ES) = 19F5	(ES)= 1A07
003F	MOV ES, AX		(IP)= 003F	
				(IP)= 0041
	MONANTO		(IP)= 0041	(IP)= 0044
0041	MOV AX,ES: [BX]	268B07	AX = 0114	
	[571]			AX = 00FF
224	MOVANA	000000	(ID) 05:::	(77)
0044	MOV AX,0000	8B80000	(IP)= 0044	(IP)= 0043
			AX = 00FF	AX = 0000
	MOV CX, ES:		(CX) = 120E	(CX)= FFCE
0047	[BX—01]	268B4FFF	(IP) = 0043	(IP)= 0047
			(AX) = 0000	(AX) = FFCE
0047	XCHG AX, CX	91	(CX) = FFCE	(CX) = 0000
0047	ACHG AA, CA	<i>3</i> 1		
			(IP)=0047	(IP)=0048
00.4=		27.00	(ES) = 1A07	(ES)= 0000
0047	MOV ES, AX	8EC0	(IP)= 0047	(IP)= 0049
				(ID) 0044
0049	PUSH DS	1E	(IP) = 0049	(IP) = 004A
			(IP) = 004A	(IP) = 004B
004A	POP ES	07	ES = 0000	ES = 1A07
			(IP) = 004B	(IP) = 004F
004B	MOV CX,ES:	268B4FF	CX = 0203	CX = FFCE
OU-D	004B [BX-01]	200D 4 ΓΓ	G2X 0200	OA HOL
		91	(IP) = 004F	(IP) = 0050AX =
004F	XCHG AX,CX		AX = 0000	FFCE

0050	MOV DI,0002	BF0200	(IP) = 0050	(IP) = 0053
0053	MOX ES: [BX+DI],AX	268901	(IP) = 0053 B	(IP) = 0056
0056	MOV BP,SP	8BEC	(IP) = 0056 BP = 0000	(IP) = 0058 BBP = 0014
0058	PUSH[0000]	FF360000	(IP) = 0058 STACK + 0 000 +2 19F5 +4 0000 +6 0000	(IP) = 005C STACK +0 01F4 +2 0000 +4 19F5 +6 0000
005C	PUSH[0002]	FF36200	(IP) = 005C SP = 0012	(IP) = 0060 SP = 0010
0060	MOV BP,SP	8BEC	(IP) = 0060 $(BP) = 0014$	(IP) = 0062 $BP = 0010$
0062	MOV DX, [BP+02]	8B5602	(IP) = 0062 DX = 0000	(IP) = 0065 DX = 01F4
0065	RET	FAR 0002	(IP) = 0065 (CS) = 1A0A STACK +0 FFCE +2 01F4 +4 0000 +6 19F5	(IP) = 0068 (CS) = 01F4 STACK +0 19F5 +2 0000 +4 0000 +6 0000

Выводы.

В ходе выполнения лабораторной работы были изучены основные режимы адресации памяти.

Приложение А. Код программы LB2.asm

```
; Программа изучения режимов адресации процессора IntelX86
EOL EQU '$'
ind EQU 2
n1 EQU 500
n2 EQU -50
; Стек программы
AStack SEGMENT STACK
DW 12 DUP(?)
AStack ENDS
; Данные программы
DATA SEGMENT
; Директивы описания данных
mem1 DW 0
mem2 DW 0
mem3 DW 0
vec1 DB 5,6,7,8,12,11,10,9
vec2 DB -20, -30, 20, 30, -40, -50, 40, 50
matr DB-5, -6, -7, -8, 4, 3, 2, 1, -1, -2, -3, -4, 8, 7, 6, 5
DATA ENDS
; Код программы
CODE SEGMENT
ASSUME CS:CODE, DS:DATA, SS:AStack
; Головная процедура
Main PROC FAR
push DS
sub AX, AX
push AX
mov AX, DATA
mov DS, AX
; ПРОВЕРКА РЕЖИМОВ АДРЕСАЦИИ НА УРОВНЕ СМЕЩЕНИЙ
; Регистровая адресация
mov ax, n1
mov cx, ax
mov bl, EOL
mov bh, n2
```

```
; Прямая адресация
mov mem2, n2
mov bx, OFFSET vec1
mov mem1,ax
; Косвенная адресация
mov al,[bx]
;mov mem3,[bx]
; Базированная адресация
mov al, [bx]+3
mov cx,3[bx]
; Индексная адресация
mov di,ind
mov al, vec2[di]
mov cx, vec2[di]
; Адресация с базированием и индексированием
mov bx,3
mov al,matr[bx][di]
mov cx,matr[bx][di]
;mov ax,matr[bx*4][di]
; ПРОВЕРКА РЕЖИМОВ АДРЕСАЦИИ С УЧЕТОМ СЕГМЕНТОВ
; Переопределение сегмента
; ----- вариант 1
mov ax, SEG vec2
mov es, ax
mov ax, es:[bx]
mov ax, 0
; ----- вариант 2
mov es, ax
push ds
pop es
mov cx, es:[bx-1]
xchg cx, ax
; ----- вариант 3
mov di,ind
mov es:[bx+di],ax
; ----- вариант 4
```

```
mov bp,sp
;mov ax,matr[bp+bx]
;mov ax,matr[bp+di+si]
; Использование сегмента стека
push mem1
push mem2
mov bp,sp
mov dx,[bp]+2
ret 2
Main ENDP
CODE ENDS
END Main
```

Приложение Б. Листинг успешной трансляции программы с закомментированными ошибочными операторами

```
#Microsoft (R) Macro Assembler Version 5.10
                                                                      10/22/22
20:26:2
                                                                            1-1
                                                                  Page
                       ; Программа изучения режиЙ
                       4 ов адресации процессора I
                       ntelX86
                             EOL EQU '$'
 = 0024
                             ind EQU 2
 = 0002
 = 01F4
                             n1 EQU 500
 =-0032
                             n2 EQU -50
                       ; Стек программы
 0000
                       AStack SEGMENT STACK
                             DW 12 DUP(?)
 0000
       000CT
         ????
                  ]
 0018
                       AStack ENDS
                       ; Данные программы
 0000
                       DATA SEGMENT
                       ; Директивы описания даннэ
 0000
       0000
                             mem1 DW 0
 0002
       0000
                             mem2 DW 0
 0004
       0000
                             mem3 DW 0
 0006
       05 06 07 08 0C 0B
                             vec1 DB 5,6,7,8,12,11,10,9
       0A 09
                             vec2 DB -20, -30, 20, 30, -40, -50, 40, 50
 000E
       EC E2 14 1E D8 CE
       28 32
      FB FA F9 F8 04 03
                             matr DB-5, -6, -7, -8, 4, 3, 2, 1, -1, -2, -3, -4, 8, 7, 6, 5
 0016
```

```
02 01 FF FE FD FC
       08 07 06 05
 0026
                      DATA ENDS
                      ; Код программы
 0000
                      CODE SEGMENT
                      ASSUME CS:CODE, DS:DATA, SS:AStack
                      ; Головная процедура
 0000
                      Main PROC FAR
 0000
       1E
                      push DS
 0001
       2B C0
                            sub AX, AX
 0003
       50
                      push AX
 0004
       B8 ---- R
                      mov AX, DATA
       8E D8
 0007
                            mov DS, AX
                      ; ПРОВЕРКА РЕЖИМОВ АДРЕСАЙ
                      ¦ИИ НА УРОВНЕ СМЕЩЕНИЙ
                      ; Регистровая адресация
 0009
       B8 01F4
                            mov ax, n1
       8B C8
 000C
                            mov cx, ax
 000E
       B3 24
                            mov bl, EOL
 0010
       B7 CE
                            mov bh, n2
                      ; Прямая адресация
       C7 06 0002 R FFCE
                            mov mem2, n2
 0012
 0018
      BB 0006 R
                      mov bx, OFFSET vec1
 001B
      A3 0000 R
                      mov mem1, ax
                      ; Косвенная адресация
 001E
      8A 07
                            mov al,[bx]
                      ;mov mem3,[bx]
                      ; Базированная адресация
#Microsoft (R) Macro Assembler Version 5.10
                                                                    10/22/22
20:26:2
                                                                Page
                                                                         1-2
LR2_COMP.ASM(45): warning A4001: Extra characters on line
 0020
       8A 47 03
                            mov al, [bx]+3
 0023
       8B 4F 03
                            mov cx, 3[bx]
                       Индексная адресация
       BF 0002
 0026
                            mov di,ind
 0029
       8A 85 000E R
                            mov al, vec2[di]
       8B 8D 000E R
 002D
                            mov cx, vec2[di]
LR2_COMP.ASM(52): warning A4031: Operand types must match
                      ; Адресация с базированиеЙ
                      ¼ и индексированием
 0031
       BB 0003
                            mov bx,3
 0034
       8A 81 0016 R
                            mov al, matr[bx][di]
                            mov cx,matr[bx][di]
 0038
      8B 89 0016 R
LR2_COMP.ASM(56): warning A4031: Operand types must match
                      ;mov ax,matr[bx*4][di]
                       ПРОВЕРКА РЕЖИМОВ АДРЕСАЙ
                       !ИИ C УЧЕТОМ СЕГМЕНТОВ
                      ; Переопределение сегмент
                      ; ----- вариант 1
 003C
                      mov ax, SEG vec2
       B8 ---- R
 003F
       8E C0
                            mov es, ax
```

```
mov ax, es:[bx]
0041 26: 8B 07
0044 B8 0000
                     mov ax, 0
                     ; ----- вариант 2
mov es, ax
0047
      8E C0
0049
      1E
                     push ds
004A
      07
                     pop es
004B
      26: 8B 4F FF
                          mov cx, es:[bx-1]
004F
      91
                     xchg cx,ax
                     ; ----- вариант 3
mov di,ind
      BF 0002
0050
                     mov es:[bx+di],ax
0053
      26: 89 01
                     ; ----- вариант 4
mov bp,sp
0056 8B EC
                     ;mov ax,matr[bp+bx]
                     ;mov ax,matr[bp+di+si]
                     ; Использование сегмента э
                     )тека
0058 FF 36 0000 R
                           push mem1
     FF 36 0002 R
005C
                           push mem2
0060
      8B EC
                           mov bp, sp
0062
      8B 56 02
                           mov dx,[bp]+2
      CA 0002
                           ret 2
0065
                     Main ENDP
0068
0068
                     CODE ENDS
                     END Main
```

Symbols-1

Segments and Groups:

N a m e Lengt	th Align Combine Class
ASTACK	0018 PARA STACK 0068 PARA NONE 0026 PARA NONE
Symbols:	
N a m e Type	Value Attr
EOL	NUMBER 0024
IND	NUMBER 0002
MAIN	F PROC 0000 CODE Length = 0068 L BYTE 0016 DATA L WORD 0000 DATA L WORD 0002 DATA L WORD 0004 DATA
N1	NUMBER 01F4 NUMBER -0032
VEC1	L BYTE 0006 DATA L BYTE 000E DATA
@CPU	TEXT 0101h TEXT LR2_COMP TEXT 510

- 86 Source Lines
- 86 Total Lines
- 19 Symbols

47792 + 459468 Bytes symbol space free

- 3 Warning Errors 0 Severe Errors