Prime Ideals

Definition: Prime

Let R be a commutative ring and P be a proper ideal in R. To say that P is a *prime ideal* in R means $\forall a, b \in R$:

$$ab \in P \implies a \in P \text{ or } b \in P$$

Theorem

Let R be a commutative ring with $1 \neq 0$ and $P \leq R$:

P is a prime ideal $\iff R/P$ is an integral domain

Proof

Since $P \leq R$ and R is commutative with $1 \neq 0$, R/P is a commutative ring with additive identity 0 + P = P and multiplicative identity $1 + P \neq 0 + P$ Furthermore, $a + P = 0 + P = P \iff a \in P$

 \implies Assume P is a prime ideal in R

Assume (a+P)(b+P)=ab+P=0+PSo $ab\in P$ But P is prime so $a\in P$ or $b\in P$

Thus a+P=0+P or b+P=0+P

Therefore R/P is an integral domain.

 $\begin{tabular}{ll} \longleftarrow & {\sf Assume} \; R/P \; {\sf is an integral domain} \\ \end{tabular}$

Assume $a,b\in R$ such that $ab\in P$ ab+P=(a+P)(b+P)=0+P If $a\in P$ then done, so AWLOG: $a\neq P$ So $a+P\notin 0+P$ But R/P is an integral domain, so b+P=0+P Thus $b\in P$

Therefore ${\cal P}$ is prime in ${\cal R}$.

Corollary

Maximal ideals are prime ideals.

Proof

Assume R is a commutative ring with $1 \neq 0$ and $P \leq R$ is maximal So R/I is a field, and thus an integral domain

Therefore P is prime.

Example

Let
$$R = \mathbb{Z}[x]$$

The principal ideal (x) is prime, but it is not maximal:

$$\mathbb{Z}[x]/(x) \simeq \mathbb{Z}$$

But \mathbb{Z} is a ring, not a field.

However, we know that there should be a maximal ideal containing (x). Let $p\in\mathbb{Z}$ be prime.

(p,x)=(p)+(x) is maximal, but not principle:

$$Z[x]/(x,p) \simeq \mathcal{F}_p$$

But \mathcal{F}_p is a field.