





## 唐老狮系列教程

## 透机投票

WELCOME TO THE UNITY SPECIALTY COURSE

STUDY







## 主要讲解内容

WELCOME TO THE UNITY SPECIALTY COURSE STUDY







## 主要讲解内容

- 1. 明确目标
- 2. Unity中透视投影重要参数
- 3. 透视投影变换矩阵

WELCOME TO THE UNITY SPECIALTY COURSE STUDY







## 明确目标

WELCOME TO THE UNITY SPECIALTY COURSE STUDY







## 明确目标

我们这节课的目标就是要得到

将摄像机视锥体的 透视投影 转换到 齐次坐标系 时的 变换矩阵



WELCOME TO THE UNITY SPECIALTY COURSE STUDY



#### 明确目标

我们可以将其分成三步来完成

- 1.将透视视锥体变成一个长方体
- 将该长方体进行正交投影变换的操作
- 2.将视锥体中心位移到观察空间原点中心
- 3.将长方体视锥体的xyz坐标范围映射到(-1,1)长宽高为2的正方体中



tnandmo@163.co







## Unity中透视投影重要参数

WELCOME TO THE UNITY SPECIALTY COURSE STUDY







#### Unity中透视投影重要参数

Projection: 该参数为Perspective时, 为透视摄像机

FOV (Field of View): 决定视锥开口角度

Clipping Planes: 裁剪平面

Near: 近裁剪面离摄像机的距离

Far:远裁剪面离摄像机的距离





WELCOME TO THE UNITY SPECIALTY COURSE STUDY







## Unity中透视投影重要参数

利用已知参数, 获取到远近裁剪面的高度

已知:

Near: 近裁剪面离摄像机的距离

Far: 远裁剪面离摄像机的距离

FOV (Field of View) : 决定视锥开口角度

可得:

近裁剪面高 = 2 \* Near \*  $tan(\frac{FOV}{2})$ 

远裁剪面高 = 2 \* Far \*  $tan(\frac{FOV}{2})$ 





WELCOME TO THE UNITY SPECIALTY COURSE STUDY







## Unity中透视投影重要参数

现在我们已经可以得到

近裁剪面高 = 2 \* Near \*  $tan(\frac{FOV}{2})$ 

远裁剪面高 = 2 \* Far \*  $tan(\frac{FOV}{2})$ 

我们还需要知道远近裁剪面的宽,以便之后进行变换矩阵的推导

可以通过摄像机参数得到Game窗口的宽高比 print(Camera.main.aspect);

Aspect = 宽: 高 = 宽/高

因此可以得到

近裁剪面宽 = Aspect \*近裁剪面高 = Aspect \* 2 \* Near \*  $tan(\frac{FOV}{2})$ 

远裁剪面宽 = Aspect \*远裁剪面高 = Aspect \* 2 \* Far \*  $tan(\frac{FOV}{2})$ 





WELCOME TO THE UNITY SPECIALTY COURSE STUDY







## Unity中透视投影重要参数

因此,通过上面的推导,我们获取到了远近裁剪面的宽高信息

#### 近裁剪面

高 = 2 \* Near \* 
$$tan(\frac{FOV}{2})$$

宽 = Aspect \*高 = Aspect \* 2 \* Near \* tan(
$$\frac{FOV}{2}$$
)

#### 远裁剪面

高 = 2 \* Far \* tan(
$$\frac{\text{FOV}}{2}$$
)

宽 = Aspect \* 高 = Aspect \* 2 \* Far \* 
$$tan(\frac{FOV}{2})$$

#### 有了这些已知参数



WELCOME TO THE UNITY SPECIALTY COURSE STUDY







## 透视投影变换矩阵

WELCOME TO THE UNITY SPECIALTY COURSE STUDY



#### 透视投影变换矩阵

我们已经知道,我们需要通过以下三步来进行矩阵变换

1.将透视视锥体变成一个长方体

将该长方体进行正交投影变换的操作

- 2.将视锥体中心位移到观察空间原点中心
- 3.将长方体视锥体的xyz坐标范围映射到(-1,1)长宽高为2的正方体中









### 透视投影变换矩阵

第一步: 将透视视锥体变成一个长方体

想要从图一变换到图二

我们需要满足3个特性

- 1. 近裁剪面上的所有点保持不变
- 2. 远裁剪面的z值不变,远裁剪面的中心点不变
- 3. 远裁剪面宽高映射成近裁剪面的宽高

我们只需要根据这3个特性得到对应的矩阵变换关系,然后进行推导即可





WELCOME TO THE UNITY SPECIALTY COURSE STUDY



## 透视投影变换矩阵

#### 第一步: 将透视视锥体变成一个长方体

1. 近裁剪面上的所有点保持不变 近裁剪面上的点 (x,y,Near,1) 变换后还是 (x,y,Near,1)



其中,x和y等于o时,相当于就是近裁剪面的中心点,也满足下面的等式

$$0$$
 0  $0$  变换矩阵M \*  $-Near$  =  $-Near$  1







### 透视投影变换矩阵

#### 第一步: 将透视视锥体变成一个长方体

2. 远裁剪面的z值不变,远裁剪面的中心点不变相当于z轴与远裁剪面的
交点(0,0,Far,1)变换后仍为(0,0,Far,1)

$$9$$
 变换矩阵M \*  $0$  =  $0$   $0$   $0$   $-Far$  1









## 透视投影变换矩阵

#### 第一步: 将透视视锥体变成一个长方体

3. 远裁剪面宽高映射成近裁剪面的宽高

这一步相对来说复杂一些,我们需要利用之前学习的知识点

来进行一些推导

#### 回顾知识点:

- 1. 视锥体内顶点和原点连接, 在近裁剪面的交点为投影点
- 2. 相似三角形的对应边成比例

$$a/a' = b/b' = c/c'$$





WELCOME TO THE UNITY SPECIALTY COURSE STUDY







#### 透视投影变换矩阵

#### 3. 远裁剪面宽高映射成近裁剪面的宽高



$$\frac{X'}{X} = \frac{-\text{near}}{Z} \implies X' = X \frac{-\text{Near}}{Z}$$



$$\frac{Y'}{Y} = \frac{-\text{near}}{Z} \implies Y' = Y \frac{-N\text{ear}}{Z}$$



#### 通过此推导我们发现,视锥体内的所有点的x、y坐标

都经过了同样的缩放,缩放因子为:  $\frac{-Near}{Z}$ 

#### 其中 Near是近裁剪面离摄像机的距离, Z为视锥体中点的Z坐标

因此我们已推导出:

变换矩阵M \* 
$$\begin{cases} x \\ y \\ z \\ 1 \end{cases} = \begin{cases} x \frac{-Near}{z} \\ \frac{-Near}{z} \\ + \frac{\pi}{2} \\ 1 \end{cases}$$

WELCOME TO THE UNITY SPECIALTY COURSE STUDY







### 透视投影变换矩阵

#### 第一步: 将透视视锥体变成一个长方体

现在我们得到了三个和变换矩阵有关的等式

$$y$$
 要换矩阵M\*  $y$  =  $y$  —Near 1

1. 近裁剪面上的所有点保持不变



2. 远裁剪面的z值不变,远裁剪面的中心点不变

$$x = \frac{x}{Z}$$
  
文
矩阵M \*  $\frac{-Near}{Z}$   
1 未知

3. 远裁剪面宽高映射成近裁剪面的宽高

WELCOME TO THE UNITY SPECIALTY COURSE STUDY







#### 透视投影变换矩阵

#### 第一步: 将透视视锥体变成一个长方体

我们先从信息最多的等式来进行推导

我们首先对最终的结果进行一次变形

変換矩阵M\* 
$$\frac{x}{z}$$
 =  $\frac{-Near}{z}$    
  $\frac{-Near}{z}$    
  $\frac{-Near}{z}$    
  $\frac{-Near}{z}$    
  $\frac{1}{z}$ 

3. 远裁剪面宽高映射成近裁剪面的宽高

#### 补充知识点:

四维齐次坐标中乘以或者除以一个非零的数(标量),

所映射的三维坐标始终是同一个坐标

$$x \frac{-Near}{Z}$$
  $x \frac{Near}{Z}$   $x \frac{Near}{Z}$   $x Near$   $x Near$ 

WELCOME TO THE UNITY SPECIALTY COURSE STUDY







#### 透视投影变换矩阵

#### 第一步: 将透视视锥体变成一个长方体

我们现在已经得出了变换矩阵的基本构成为

变换矩阵M = 
$$egin{bmatrix} Near & 0 & 0 & 0 \ 0 & Near & 0 & 0 \ ? & ? & ? & ? \ 0 & 0 & -1 & 0 \ \end{bmatrix}$$



也就是说我们只需要推导出该变换矩阵的第三行的构成, 就能够得到我们的目标:

将透视视锥体变成一个长方体的变换矩阵

因此,我们可以假设

变换矩阵M = 
$$egin{bmatrix} Near & 0 & 0 & 0 \ 0 & Near & 0 & 0 \ 0 & 0 & a & b \ 0 & 0 & -1 & 0 \end{bmatrix}$$

其中第三行前两个位置为0,是因为Z和x,y无关

WELCOME TO THE UNITY SPECIALTY COURSE STUDY







#### 透视投影变换矩阵

第一步: 将透视视锥体变成一个长方体

接着,我们可以根据

来进行一些推导

1. 近裁剪面上的所有点保持不变

首先,我们让x,y等于0,相当于近裁剪面的中心点,肯定也是满足这一等式的,我们将变换矩阵M代入进去

$$\begin{bmatrix} Near & 0 & 0 & 0 \\ 0 & Near & 0 & 0 \\ 0 & 0 & a & b \\ 0 & 0 & -1 & 0 \end{bmatrix} * \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & * \\ -Near & = \begin{bmatrix} 0 \\ 0 \\ -Near \end{bmatrix} * \\ 1 & 1 & Near \end{bmatrix} * \begin{bmatrix} 0 & 0 \\ 0 \\ -Near \end{bmatrix} * \begin{bmatrix} 0 & 0 \\ -Near \end{bmatrix} * \begin{bmatrix} 0 & 0 \\ 0 & -Near \end{bmatrix} * \begin{bmatrix} 0 & 0 \\ 0 & -Near \end{bmatrix} * \begin{bmatrix} 0 & 0 \\ -Near \end{bmatrix} * \begin{bmatrix}$$

补充知识点:

变换矩阵M=

四维齐次坐标中乘以或者除以一个非零的数(标量

Near

Near

所映射的三维坐标始终是同一个坐标

我们可以得到一个等式:

 $-aNear + b = -Near^2$ 

WELCOME TO THE UNITY SPECIALTY COURSE STUDY







#### 透视投影变换矩阵

第一步: 将透视视锥体变成一个长方体

接着,我们再可以根据

$$0$$
 0  $0$  变换矩阵M\*  $0$  =  $0$   $-Far$  1

来进行一些推导

2. 远裁剪面的z值不变,远裁剪面的中心点不变

我们将变换矩阵M代入进去

$$\begin{bmatrix} \textbf{Near} & \mathbf{0} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \textbf{Near} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{a} & \mathbf{b} \\ \mathbf{0} & \mathbf{0} & -\mathbf{1} & \mathbf{0} \end{bmatrix} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & -\mathbf{Far} \\ 1 & 1 & \mathbf{Far} \end{bmatrix} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & -\mathbf{Far} \\ 1 & \mathbf{Far} \end{bmatrix}$$

我们可以得到一个等式:

$$-aFar + b = -Far^2$$



补充知识点:

四维齐次坐标中 乘以或者除以一个非零的数(标量 所映射的三维坐标始终是同一个坐标

WELCOME TO THE UNITY SPECIALTY COURSE STUDY







### 透视投影变换矩阵

第一步: 将透视视锥体变成一个长方体

通过

 $-aNear + b = -Near^2$ 

 $-aFar + b = -Far^2$ 

可以推导出a、b的值

 $-aNaer + aFar = Far^2 - Near^2 => a(Far - Near) = (Far + Near)(Far - Near) => a = Far + Near$ 

 $-(Far + Near)Near + b = -Near^2 = > -FarNear - Near^2 + b = -Near^2 = > b = Far * Near$ 

因此变换矩阵为

受換矩阵M = 
$$\begin{bmatrix} Near & 0 & 0 & 0 \\ 0 & Near & 0 & 0 \\ 0 & 0 & Far + Near & Far Near \\ 0 & 0 & -1 & 0 \end{bmatrix}$$

 变换矩阵M =
  $\begin{bmatrix} Near & 0 & 0 & 0 \\ 0 & Near & 0 & 0 \\ 0 & 0 & a & b \\ 0 & 0 & -1 & 0 \end{bmatrix}$ 

WELCOME TO THE UNITY SPECIALTY COURSE STUDY







#### 透视投影变换矩阵

第二步: 将视锥体中心位移到观察空间原点中心



WELCOME TO THE UNITY SPECIALTY COURSE STUDY



## 透视投影变换矩阵

#### 第三步:将长方体视锥体的xyz坐标范围映射到(-1,1)长宽高为2的正方体中

我们可以得到观察空间中的xyz和齐次坐标系中xyz的关系如下图











观察空间Yz



WELCOME TO THE UNITY SPECIALTY COURSE STUDY



(Aspect \* Near \*  $tan(\frac{FOV}{2})$ , -Near \*  $tan(\frac{FOV}{2})$ , -Near)

#### 唐老狮系列教程-透视投影

#### 透视投影变换矩阵

#### 第三步:将长方体视锥体的xyz坐标范围映射到(-1,1)长宽高为2的正方体中

(Aspect \* Near \*  $tan(\frac{FOV}{2})$ , -Near \*  $tan(\frac{FOV}{2})$ , -Near)

我们可以得到观察空间中的xyz和齐次坐标系中xyz的关系如下图







版权所有: 唐老狮 tpandme@163.com

UNITY

STUDY





## 透视投影变换矩阵

#### 第三步:将长方体视锥体的xyz坐标范围映射到(-1,1)长宽高为2的正方体中

因此,根据我们的推论,这一步的变换其实就是一个缩放变换,因此,我们可以根据刚才推导的公式

$$X_{\hat{A}} = \frac{2}{2*Aspect*Near*tan(\frac{FOV}{2})}*X_{\infty}$$
  $Y_{\hat{A}} = \frac{2}{2*Near*tan(\frac{FOV}{2})}*Y_{\infty}$   $Z_{\hat{A}} = \frac{2}{-Near-(-Far)}*Z_{\infty} = > -\frac{2}{Far-Near}*Z_{\infty}$ 

$$Y_{\hat{\pi}} = \frac{2}{2*Near*tan(\frac{FOV}{2})} * Y_{\infty}$$

$$Z_{\tilde{R}} = \frac{2}{-Near - (-Far)} * Z_{M} => -\frac{2}{Far - Near} * Z_{M}$$

$$\frac{1}{\text{Aspect} * \text{Near} * \tan(\frac{\text{FOV}}{2})} \quad \mathbf{0}$$

得到:

$$0 \qquad \frac{1}{\text{Near} * \tan(\frac{\text{FOV}}{2})} \qquad 0 \qquad 0$$

$$0 \qquad -\frac{2}{Far - Near} \qquad 0$$

该矩阵即为我们的目标缩放矩阵

WELCOME TO THE UNITY SPECIALTY COURSE **STUDY** 





#### 透视投影变换矩阵

我们现在得到了三个变换矩阵,我们将其进行乘法计算后,便可以得到

将摄像机视锥体的 透视投影 空间 转换到 齐次坐标裁剪空间 时的 变换矩阵

$$\frac{1}{\text{Aspect} * \text{Near} * \text{tan}(\frac{\text{FOV}}{2})} \quad 0 \qquad 0 \qquad 0 \qquad 1 \quad 0 \quad 0 \qquad 0 \qquad \text{Near} \quad 0 \quad 0 \qquad 0$$

$$0 \qquad \frac{1}{\text{Near} * \text{tan}(\frac{\text{FOV}}{2})} \quad 0 \qquad 0 \qquad * \qquad 0 \quad 1 \quad 0 \quad 0 \qquad * \qquad 0 \quad \text{Near} \quad 0 \qquad 0$$

$$0 \qquad 0 \qquad -\frac{2}{\text{Far} - \text{Near}} \qquad 0 \qquad 0 \quad 1 \qquad \frac{\text{Far} + \text{Near}}{2} \qquad 0 \quad 0 \quad \text{Far} + \text{Near} \quad \text{Far} \, \text{Near}$$

$$0 \qquad 0 \qquad 0 \qquad 1 \qquad 0 \quad 0 \quad 0 \quad 1 \qquad 0 \quad 0 \quad -1 \qquad 0$$

$$\frac{1}{\mathsf{Aspect} * \mathsf{tan}(\frac{FOV}{2})} \quad 0 \quad 0 \quad 0$$

$$0 \quad \frac{1}{\mathsf{tan}(\frac{FOV}{2})} \quad 0 \quad 0$$

$$0 \quad 0 \quad -\frac{Far + Near}{Far - Near} \quad -\frac{2FarNear}{Far - Near}$$

$$0 \quad 0 \quad -1 \quad 0$$

WELCOME TO THE UNITY SPECIALTY COURSE STUDY







总结

WELCOME TO THE UNITY SPECIALTY COURSE STUDY







#### 总结

1. 明确目标

将摄像机视锥体的 透视投影 空间 转换到 齐次坐标裁剪空间 时的 变换矩阵

2. Unity中透视投影重要参数

Near: 近裁剪面离摄像机的距离

Far: 远裁剪面离摄像机的距离

FOV (Field of View) : 决定视锥开口角度

近裁剪面

高 = 2 \* Near \* 
$$tan(\frac{FOV}{2})$$

宽 = Aspect \* 高 = Aspect \* 2 \* Near \* 
$$tan(\frac{FOV}{2})$$

远裁剪面

高 = 2 \* Far \* 
$$tan(\frac{FOV}{2})$$

宽 = Aspect \*高 = Aspect \* 2 \* Far \*  $tan(\frac{FOV}{2})$ 

WELCOME TO THE UNITY SPECIALTY COURSE STUDY



## 总结

- 3. 透视投影变换矩阵 我们通过三个步骤
  - 1.将透视视锥体变成一个长方体
  - 2.将视锥体中心位移到观察空间原点中心
  - 3.将长方体视锥体的xyz坐标范围映射到(-1,1)长宽高为2的正方体中

# $\frac{1}{\text{Aspect} * \tan(\frac{FOV}{2})} \quad 0 \quad 0 \quad 0 \\ 0 \quad \frac{1}{\tan(\frac{FOV}{2})} \quad 0 \quad 0 \\ 0 \quad 0 \quad -\frac{Far + Near}{Far - Near} \quad -\frac{2FarNear}{Far - Near} \\ 0 \quad 0 \quad -1 \quad 0$

#### 得到了最终的变换矩阵

















## 唐老狮系列教程

# 铺排您的第UF

WELCOME TO THE UNITY SPECIALTY COURSE STUDY