International TOR Rectifier

INSULATED GATE BIPOLAR TRANSISTOR

IRG4BC40WS

Features

- Designed expressly for Switch-Mode Power Supply and PFC (power factor correction) applications
- Industry-benchmark switching losses improve efficiency of all power supply topologies
- 50% reduction of Eoff parameter
- · Low IGBT conduction losses
- Latest-generation IGBT design and construction offers tighter parameters distribution, exceptional reliability

Benefits

- Lower switching losses allow more cost-effective operation than power MOSFETs up to 150 kHz ("hard switched" mode)
- Of particular benefit to single-ended converters and boost PFC topologies 150W and higher
- Low conduction losses and minimal minority-carrier recombination make these an excellent option for resonant mode switching as well (up to >>300 kHz)

IRG4BC40WS

TO-262 IRG4BC40WL

Absolute Maximum Ratings

	Parameter	Max.	Units	
V _{CES}	Collector-to-Emitter Breakdown Voltage	600	V	
I _C @ T _C = 25°C	Continuous Collector Current	40		
I _C @ T _C = 100°C	Continuous Collector Current	20	Α	
I _{CM}	Pulsed Collector Current ①	160		
I _{LM}	Clamped Inductive Load Current ②	160		
V_{GE}	Gate-to-Emitter Voltage	± 20	V	
E _{ARV}	Reverse Voltage Avalanche Energy 3	160	mJ	
P _D @ T _C = 25°C	Maximum Power Dissipation	160	w	
P _D @ T _C = 100°C	Maximum Power Dissipation	65		
T _J	Operating Junction and	-55 to + 150		
T _{STG}	Storage Temperature Range		°C	
	Soldering Temperature, for 10 seconds	300 (0.063 in. (1.6mm) from case)		

Thermal Resistance

	Parameter	Тур.	Max.	Units
$R_{\theta JC}$	Junction-to-Case		0.77	
$R_{\theta CS}$	Case-to-Sink, Flat, Greased Surface	0.5		°C/W
$R_{\theta JA}$	Junction-to-Ambient (PCB Mounted steady-state)		40	
Wt	Weight	2.0 (0.07)		g (oz)

Electrical Characteristics @ T_J = 25°C (unless otherwise specified)

	Parameter	Min.	Тур.	Max.	Units	Conditions	
$V_{(BR)CES}$	Collector-to-Emitter Breakdown Voltage	600	—	—	V	$V_{GE} = 0V$, $I_{C} = 250 \mu A$	
V _{(BR)ECS}	Emitter-to-Collector Breakdown Voltage 4	18	—	_	V	$V_{GE} = 0V, I_{C} = 1.0A$	
$\Delta V_{(BR)CES}/\Delta T_J$	Temperature Coeff. of Breakdown Voltage	_	0.44	_	V/°C	$V_{GE} = 0V, I_{C} = 1.0mA$	
		_	2.05	2.5		I _C = 20A	V _{GE} = 15V
$V_{CE(ON)}$	Collector-to-Emitter Saturation Voltage	_	2.36	_	V	I _C = 40A	See Fig.2, 5
		_	1.90	_		I _C = 20A , T _J = 150°C	
$V_{GE(th)}$	Gate Threshold Voltage	3.0	—	6.0		$V_{CE} = V_{GE}, I_{C} = 250 \mu A$	
$\Delta V_{GE(th)}/\Delta T_{J}$	Temperature Coeff. of Threshold Voltage	_	13	_	mV/°C	$V_{CE} = V_{GE}, I_{C} = 250 \mu A$	
g fe	Forward Transconductance ©	18	28	_	S	$V_{CE} = 100 \text{ V}, I_{C} = 20 \text{A}$	
I _{CES}	Zero Gate Voltage Collector Current	_	_	250	μA	V _{GE} = 0V, V _{CE} = 600V	
		_	_	2.0		V _{GE} = 0V, V _{CE} = 10V, T,	J = 25°C
		_	—	2500		V _{GE} = 0V, V _{CE} = 600V,	T _J = 150°C
I _{GES}	Gate-to-Emitter Leakage Current	_	—	±100	nA	$V_{GE} = \pm 20V$	

Switching Characteristics @ T_J = 25°C (unless otherwise specified)

	Parameter	Min.	Тур.	Max.	Units	Conditions
Qg	Total Gate Charge (turn-on)	T -	98	147		I _C =20A
Q _{ge}	Gate - Emitter Charge (turn-on)		12	18	nC	V _{CC} = 400V See Fig.8
Q _{gc}	Gate - Collector Charge (turn-on)	—	36	54		V _{GE} = 15V
t _{d(on)}	Turn-On Delay Time		27	_		
t _r	Rise Time	_	22	_	ns	T _J = 25°C
t _{d(off)}	Turn-Off Delay Time		100	150	113	I _C = 20A, V _{CC} = 480V
t _f	Fall Time	_	74	110		V_{GE} = 15V, R_G = 10 Ω
Eon	Turn-On Switching Loss		0.11	_		Energy losses include "tail"
E _{off}	Turn-Off Switching Loss		0.23	_	mJ	See Fig. 9,10, 14
E _{ts}	Total Switching Loss		0.34	0.45		
t _{d(on)}	Turn-On Delay Time		25	_		T _J = 150°C,
t _r	Rise Time	_	23	_	ns	I _C = 20A, V _{CC} = 480V
t _{d(off)}	Turn-Off Delay Time		170	_	113	V_{GE} = 15V, R_G = 10 Ω
t _f	Fall Time	_	124	_		Energy losses include "tail"
Ets	Total Switching Loss	_	0.85	_	mJ	See Fig. 10,11, 14
LE	Internal Emitter Inductance	_	7.5	_	nΗ	Measured 5mm from package
C _{ies}	Input Capacitance	-	1900	_		V _{GE} = 0V
Coes	Output Capacitance		140	_	pF	V _{CC} = 30V See Fig. 7
C _{res}	Reverse Transfer Capacitance		35	—		f = 1.0MHz

Notes:

- ① Repetitive rating; V_{GE} = 20V, pulse width limited by max. junction temperature. (See fig. 13b)
- $^{\circ}$ V_{CC} = 80%(V_{CES}), V_{GE} = 20V, L = 10μH, R_G = 10Ω, (See fig. 13a)
- ③ Repetitive rating; pulse width limited by maximum junction temperature.
- ⑤ Pulse width 5.0µs, single shot.

Fig. 1 - Typical Load Current vs. Frequency (Load Current = I_{RMS} of fundamental)

Ty = 150 °C

Ty = 150 °C $V_{CC} = 50V$ $V_{CE} =$

Fig. 2 - Typical Output Characteristics

Fig. 3 - Typical Transfer Characteristics

3

Fig. 4 - Maximum Collector Current vs. Case Temperature

Fig. 5 - Typical Collector-to-Emitter Voltage vs. Junction Temperature

Fig. 6 - Maximum Effective Transient Thermal Impedance, Junction-to-Case

International **TOR** Rectifier

$\begin{array}{c} 4000 \\ \hline \\ V_{GE} = 0V, & f = 1 MHz \\ C_{ies} = C_{ge} + C_{gc}, & C_{ce} & SHORTED \\ \hline \\ C_{res} = C_{ge} \\ C_{ces} = C_{ce} + C_{gc} \\ \hline \\ C_{oes} =$

Fig. 7 - Typical Capacitance vs. Collector-to-Emitter Voltage

Fig. 9 - Typical Switching Losses vs. Gate Resistance

IRG4BC40WS/L

Fig. 8 - Typical Gate Charge vs. Gate-to-Emitter Voltage

Fig. 10 - Typical Switching Losses vs. Junction Temperature

International

Rectifier

Fig. 12 - Turn-Off SOA

International TOR Rectifier

IRG4BC40WS/L

* Driver same type as D.U.T.; Vc = 80% of Vce(max)
* Note: Due to the 50V power supply, pulse width and inductor will increase to obtain rated ld.

 $R_{L} = \frac{480V}{4 \times I_{C}@25^{\circ}C}$

Fig. 13a - Clamped Inductive Load Test Circuit

Fig. 13b - Pulsed Collector Current Test Circuit

Fig. 14a - Switching Loss Test Circuit

* Driver same type as D.U.T., VC = 480V

Fig. 14b - Switching Loss Waveforms

D²Pak Package Outline

Dimensions are shown in millimeters (inches)

D²Pak Part Marking Information

International **TOR** Rectifier

IRG4BC40WS/L

TO-262 Package Outline

Dimensions are shown in millimeters (inches)

TO-262 Part Marking Information

D²Pak Tape & Reel Information

Dimensions are shown in millimeters (inches)

- NOTES:

 1. COMFORMS TO EIA-418.

 2. CONTROLLING DIMENSION: MILLIMETER.

 3. DIMENSION MEASURED @ HUB.

 3. INCLUDES FLANGE DISTORTION @ OUTER EDGE.

International IOR Rectifier

IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903

Visit us at www.irf.com for sales contact information. 4/04

Note: For the most current drawings please refer to the IR website at: http://www.irf.com/package/