BINARY GENETIC ALGORITHM EXAMPLE

Soft Computing

PROBLEM

Find the minimum value of this function $f(x) = x^2 - 4x + 10$

How to solve it using Genetic Algorithm (GA)?

GIVENS & REQUIREMENTS

Givens:

- $x \in [0,127]$
- Population size (pS) = 6
- Probability of Crossover (Pc) = 0.7
- Probability of Mutation (Pm) = 0.02
- Number of selected Chromosomes (N) = 4

Requirements:

- Use Rank Selection
- Use 2-point Crossover
- Use Elitist Replacement

Objective:

→ Minimize the value of the function

 \rightarrow min. f(x), where $f(x) = x^2 - 4x + 10$

SOLUTION STEPS

→You must decide the representation of the Chromosomes first and determine the problem objective

Initial steps to solve any problem with GA:

- 1. Find the representation/encoding of the chromosomes
- 2. Decide the Objective & Fitness Function
- 3. Apply GA

SOLUTION STEPS

SOLUTION STEPS

SOLUTION

- 1. Solution Representation/encoding:
- Choose Binary representation of the x value
- \rightarrow Each chromosome represented as an array of binary bits, with size = 7

Chromosome: 1 0 1 1

- 2. Find Objective:
- → Minimize the function value. (already specified in the problem)

1. Randomly Initialize the population:

Population size = $6 \rightarrow$ generate 6 random chromosomes:

2. Fitness Evaluation: $f(x) = x^2 - 4x + 10$

C1: 0 0 0 0 1 1 1

Phenotype: x = 7

Fitness: $7^2 - 4 * 7 + 10 = 31$

C2: 0 0 1 1 0 0 0

Phenotype: x = 24

Fitness: $24^2 - 4 * 24 + 10 = 490$

C3: 0 1 1 0 0 1 1

Phenotype: x = 51

Fitness: $51^2 - 4 * 51 + 10 = 2407$

C4: 1 0 0 0 0 0 0

Phenotype: x = 64

Fitness: $64^2 - 4 * 64 + 10 = 3850$

C5: 1 0 0 0 1 1 1

Phenotype: x = 71

Fitness: $71^2 - 4 * 71 + 10 = 4767$

C6: 0 0 1 1 0 1 1

Phenotype: x = 27

Fitness: $27^2 - 4 * 27 + 10 = 631$

3. Selection (Rank Selection):

	Fitness	Rank	Normalized	Cumulative			
C1	31	6	⁶ / ₂₁	$\frac{6}{21} = 0.285$			
C2	490	5	⁵ / ₂₁	$^{11}/_{21} = 0.523$			
C3	2407	3	3/21	$^{14}/_{21} = 0.666$			
C4	3850	2	² / ₂₁	$^{16}/_{21} = 0.761$			
C5	4767	1	1/21	$\frac{17}{21} = 0.809$			
C6	631	4	4/21	1			

3. Selection (Rank Selection):

Generate N Random Numbers (r), where $r \in [0,1]$

r	Selected Chromosome
0.1	C1
0.5	C2
0.8	C5
0.23	C1

4. Crossover (2-point crossover): $P_c = 0.7$

Apply crossover on C1 & C2

- $r = 0.2 \rightarrow apply crossover$
- Generate 2 random numbers \in [1, 6] $x_1 = 1, x_2 = 4$
 - C1: 0 0 0 0 1 1 1
 - C2: 0 0 1 1 0 0 0
 - O1: 0 0 1 1 1 1 1
 - O2: 0 0 0 0 0 0 0

Apply crossover on C5 & C1

• $r = 0.8 \rightarrow no \ crossover$

C5: 1 0 0 0 1 1 1

C1: 0 0 0 0 1 1 1

O3: 0 0 0 1 1 1

O4: 1 0 0 0 1 1 1

5. Mutation: $P_m = 0.02$

Generate random number $r_{i,j} \in [0,1]$, where i is number of chromosome, j=index of bit

Applying on O1

$$r_{1,0} = 0.1$$
 $r_{1,1} = 0.01$ $r_{1,2} = 0.7$ $r_{1,3} = 0.65$ $r_{1,4} = 0.008$ $r_{1,5} = 0.247$ $r_{1,6} = 0.7676$

Doing the same on O2, O3, O4

6. Replacement (Elitist Strategy):

First, evaluate the parents and offsprings using fitness function

Second, sort and choose first **pS** chromosomes

New generation: 03, C1, O2, C2, C6, C3

RANK VS ROULETTE WHEEL SELECTION

Soft Computing

Selection Method

Minimization Problem

- → Give the chromosome with smallest fitness, largest rank (pop_size)
- → Apply Rank Selection

Maximization Problem

Rank

- → Give the chromosome with highest fitness, largest rank (pop_size)
- → Apply Rank Selection

Roulette Wheel

Minimization Problem

- → Take the <u>inverse</u> of Fitness values
- → Apply Roulette wheel

Maximization Problem

- → Take Fitness values as it is
- → Apply Roulette wheel

	Fitness	Rank	Norm	Cum.		Fitness	Rank	Norm	Cum.		Fitness	Norm	Cum.		Fitness	Norm	Cum.
C1	2	4	4/10	4/10	C1	2	1	1/10	1/10	C1	1/2	10/17	10/17	C1	2	2/37	2/37
C2	20	1	1/10	5/10	C2	20	4	4/10	5/10	C2	1/20	1/17	11/17	C2	20	20/37	22/37
C3	10	2	2/10	7/10	C3	10	3	3/10	8/10	C3	1/10	2/17	13/17	C3	10	10/37	32/37
C4	5	3	3/10	1	C4	5	2	2/10	1	C4	1/5	4/17	1	C4	5	5/37	1

Selection Method

Rank

Minimization Problem

- → Give the chromosome with smallest fitness, largest rank (pop_size)
- → Apply Rank Selection

Maximization Problem

- → Give the chromosome with highest fitness, largest rank (pop_size)
- → Apply Rank Selection

Roulette Wheel

Minimization Problem

- → Take the <u>inverse</u> of Fitness values
- → Apply Roulette wheel

Maximization Problem

- → Take Fitness values as it is
- → Apply Roulette wheel

