

$$= \frac{1}{40} \begin{bmatrix} 40 \\ 80 \\ -40 \end{bmatrix}$$

$$= \begin{bmatrix} 1 \\ 2 \\ -1 \end{bmatrix}$$

Hence, x = 1, v = 2, and z = -1.

Question 14:

Solve system of linear equations, using matrix method.

$$x - y + 2z = 7$$

$$3x + 4y - 5z = -5$$

$$2x - y + 3z = 12$$

The given system of equations can be written in the form of AX = B, where

$$A = \begin{bmatrix} 1 & -1 & 2 \\ 3 & 4 & -5 \\ 2 & -1 & 3 \end{bmatrix}, X = \begin{bmatrix} x \\ y \\ z \end{bmatrix} \text{ and } B = \begin{bmatrix} 7 \\ -5 \\ 12 \end{bmatrix}$$

Now,

$$|A| = 1(12-5)+1(9+10)+2(-3-8)=7+19-22=4 \neq 0$$

Thus, A is non-singular. Therefore, its inverse exists.

Now,
$$A_{11} = 7$$
, $A_{12} = -19$, $A_{13} = -11$
 $A_{21} = 1$, $A_{22} = -1$, $A_{23} = -1$
 $A_{31} = -3$, $A_{32} = 11$, $A_{33} = 7$

Now,
$$A_{11} = 1$$
, $A_{12} = -19$, $A_{13} = -11$
 $A_{21} = 1$, $A_{22} = -1$, $A_{23} = -1$
 $A_{31} = -3$, $A_{32} = 11$, $A_{33} = 7$

$$\therefore A^{-1} = \frac{1}{|A|} (adjA) = \frac{1}{4} \begin{bmatrix} 7 & 1 & -3 \\ -19 & -1 & 11 \\ -11 & -1 & 7 \end{bmatrix}$$

$$\therefore X = A^{-1}B = \frac{1}{4} \begin{bmatrix} 7 & 1 & -3 \\ -19 & -1 & 11 \\ -11 & -1 & 7 \end{bmatrix} \begin{bmatrix} 7 \\ -5 \\ 12 \end{bmatrix}$$

$$\Rightarrow \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \frac{1}{4} \begin{bmatrix} 49 - 5 - 36 \\ -133 + 5 + 132 \\ -77 + 5 + 84 \end{bmatrix}$$
$$= \frac{1}{4} \begin{bmatrix} 8 \\ 4 \\ 12 \end{bmatrix} = \begin{bmatrix} 2 \\ 1 \\ 3 \end{bmatrix}$$

Hence, x = 2, y = 1, and z = 3.

Question 15:

$$A = \begin{bmatrix} 2 & -3 & 5 \\ 3 & 2 & -4 \\ 1 & 1 & -2 \end{bmatrix}, \text{ find } A^{-1}. \text{ Using A}^{-1} \text{ solve the system of equations}$$

$$2x - 3y + 5z = 11$$

2x - 3y + 5z = 11

$$3x + 2y - 4z = -5$$

$$x + y - 2z = -3$$

Answer

$$A = \begin{bmatrix} 2 & -3 & 5 \\ 3 & 2 & -4 \\ 1 & 1 & -2 \end{bmatrix}$$

$$|A| = 2(-4+4)+3(-6+4)+5(3-2)=0-6+5=-1\neq 0$$

Now,
$$A_{11} = 0$$
, $A_{12} = 2$, $A_{13} = 1$

$$A_{21}=-1,\;A_{22}=-9,\;A_{23}=-5$$

$$A_{31} = 2$$
, $A_{32} = 23$, $A_{33} = 13$

$$A_{31} = 2$$
, $A_{32} = 23$, $A_{33} = 13$

$$\begin{bmatrix} 0 & -1 & 2 \end{bmatrix} \begin{bmatrix} 0 & 1 & -2 \end{bmatrix}$$

$$\therefore A^{-1} = \frac{1}{|A|} (adjA) = -\begin{bmatrix} 2 & -9 & 23 \\ 1 & -5 & 13 \end{bmatrix} = \begin{bmatrix} -2 & 9 & -23 \\ -1 & 5 & -13 \end{bmatrix} \qquad \dots (1)$$

Now, the given system of equations can be written in the form of AX = B, where

$$A = \begin{bmatrix} 2 & -3 & 5 \\ 3 & 2 & -4 \\ 1 & 1 & -2 \end{bmatrix}, X = \begin{bmatrix} x \\ y \\ z \end{bmatrix} \text{ and } B = \begin{bmatrix} 11 \\ -5 \\ -3 \end{bmatrix}.$$

The solution of the system of equations is given by $X = A^{-1}B$.

$$X = A^{-1}B$$

$$\Rightarrow \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 0 & 1 & -2 \\ -2 & 9 & -23 \\ -1 & 5 & -13 \end{bmatrix} \begin{bmatrix} 11 \\ -5 \\ -3 \end{bmatrix} \qquad \text{[Using (1)]}$$

$$= \begin{bmatrix} 0 - 5 + 6 \\ -22 - 45 + 69 \\ -11 - 25 + 39 \end{bmatrix}$$

$$= \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$$

Hence, x = 1, y = 2, and z = 3.

Ouestion 16:

The cost of 4 kg onion, 3 kg wheat and 2 kg rice is Rs 60. The cost of 2 kg onion, 4 kg wheat and 6 kg rice is Rs 90. The cost of 6 kg onion 2 kg wheat and 3 kg rice is Rs 70. Find cost of each item per kg by matrix method.

Answer

Let the cost of onions, wheat, and rice per kg be Rs x, Rs y,and Rs z respectively.

Then, the given situation can be represented by a system of equations as:

$$4x + 3y + 2z = 60$$

$$2x + 4y + 6z = 90$$

$$6x + 2y + 3z = 70$$

This system of equations can be written in the form of AX = B, where

$$A = \begin{bmatrix} 4 & 3 & 2 \\ 2 & 4 & 6 \\ 6 & 2 & 3 \end{bmatrix}, X = \begin{bmatrix} x \\ y \\ z \end{bmatrix} \text{ and } B = \begin{bmatrix} 60 \\ 90 \\ 70 \end{bmatrix}$$

$$|A| = 4(12-12)-3(6-36)+2(4-24)=0+90-40=50 \neq 0$$

Now,
$$A_{11} = 0, A_{12} = 30, A_{13} = -20$$

 $A_{21} = -5, A_{22} = 0, A_{23} = 10$
 $A_{31} = 10, A_{32} = -20, A_{33} = 10$

$$adjA = \begin{bmatrix} 0 & -5 & 10 \\ 30 & 0 & -20 \end{bmatrix}$$

$$A_{31} = 10, A_{32} = -20, A_{33} = 10$$

$$AdjA = \begin{bmatrix} 0 & -5 & 10 \\ 30 & 0 & -20 \\ -20 & 10 & 10 \end{bmatrix}$$

$$A^{-1} = \frac{1}{|A|} adjA = \frac{1}{50} \begin{bmatrix} 0 & -5 & 10 \\ 30 & 0 & -20 \\ -20 & 10 & 10 \end{bmatrix}$$

Now,

$$X = A^{-1} B$$

$$\Rightarrow X = \frac{1}{50} \begin{bmatrix} 0 & -5 & 10 \\ 30 & 0 & -20 \\ -20 & 10 & 10 \end{bmatrix} \begin{bmatrix} 60 \\ 90 \\ 70 \end{bmatrix}$$

$$\Rightarrow \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \frac{1}{50} \begin{bmatrix} 0 - 450 + 700 \\ 1800 + 0 - 1400 \\ -1200 + 900 + 700 \end{bmatrix}$$

$$= \frac{1}{50} \begin{bmatrix} 250 \\ 400 \\ 400 \end{bmatrix}$$

$$= \begin{bmatrix} 5 \\ 8 \end{bmatrix}$$

$$\therefore x = 5, y = 8, \text{ and } z = 8.$$

Hence, the cost of onions is Rs 5 per kg, the cost of wheat is Rs 8 per kg, and the cost of rice is Rs 8 per kg.

Miscellaneous Solutions

Prove that the determinant
$$\begin{vmatrix} -\sin\theta & -x & 1 \\ \cos\theta & 1 & x \end{vmatrix}$$
 is independent of θ .

 $\Delta = \begin{vmatrix} x & \sin \theta & \cos \theta \\ -\sin \theta & -x & 1 \\ \cos \theta & 1 & x \end{vmatrix}$

$$= x(x^2 - 1) - \sin\theta(-x\sin\theta - \cos\theta) + \cos\theta(-\sin\theta + x\cos\theta)$$

$$= x^3 - x + x\sin^2\theta + \sin\theta\cos\theta - \sin\theta\cos\theta + x\cos^2\theta$$

$$= x^3 - x + x \left(\sin^2\theta + \cos^2\theta\right)$$

$$=x^3-x+x$$

Answer

= x^3 (Independent of θ)

Hence, Δ is independent of θ .

Question 2:

Without expanding the determinant, prove that

$$\begin{vmatrix} a & a^2 & bc \\ b & b^2 & ca \\ c & c^2 & ab \end{vmatrix} = \begin{vmatrix} 1 & a^2 & a^3 \\ 1 & b^2 & b^3 \\ 1 & c^2 & c^3 \end{vmatrix}$$
Answer
$$L.H.S. = \begin{vmatrix} a & a^2 & bc \\ b & b^2 & ca \\ c & c^2 & ab \end{vmatrix}$$

$$= \frac{1}{abc} \begin{vmatrix} a^2 & a^3 & abc \\ b^2 & b^3 & abc \\ c^2 & c^3 & abc \end{vmatrix}$$

$$= \frac{1}{abc} \cdot abc \begin{vmatrix} a^2 & a^3 & abc \\ b^2 & b^3 & abc \\ c^2 & c^3 & 1 \end{vmatrix}$$

$$= \begin{vmatrix} a^2 & a^3 & 1 \\ b^2 & b^3 & 1 \\ c^2 & c^3 & 1 \end{vmatrix}$$

$$= \begin{vmatrix} a^2 & a^3 & 1 \\ b^2 & b^3 & 1 \\ c^2 & c^3 & 1 \end{vmatrix}$$

$$= \begin{vmatrix} 1 & a^2 & a^3 \\ b^2 & b^3 & 1 \\ c^2 & c^3 & 1 \end{vmatrix}$$

$$= \begin{vmatrix} 1 & a^2 & a^3 \\ b^2 & b^3 & 1 \\ c^2 & c^3 & 1 \end{vmatrix}$$

$$= \begin{vmatrix} 1 & a^2 & a^3 \\ b^2 & b^3 & 1 \\ c^2 & c^3 & 1 \end{vmatrix}$$
[Applying $C_1 \leftrightarrow C_3$ and $C_2 \leftrightarrow C_3$]

******* END ******