

# Crowd-Sourced Annotation of Extreme Weather Events

Andre Graubner<sup>1,2</sup>, Lukas Kapp-Schwoerer<sup>1</sup>, Sol Kim<sup>3</sup>, Karthik Kashinath<sup>4</sup>, Konrad Schindler<sup>1</sup>
<sup>1</sup>ETH Zurich, <sup>2</sup>Tsinghua University, <sup>3</sup>University of Chicago, <sup>4</sup>Nvidia Corporation

### 1 Introduction

We present the world's largest annotated dataset of extreme weather events, including Tropical Cyclones, Atmospheric Rivers and Blocking Events, compiled using crowd workers under expert guidance.

## 2 Data Set

- Human annotators segmented 10,000 time-steps of ERA5 reanalysis data into pixel-level segmentation masks for individual events
  - Annotated samples span a time range of 40 years and represent a diverse set of different atmospheric conditions
- Iterative feedback using detailed annotation guides ensures high annotation quality
- Each timestep is annotated by 2 annotators to provide redundancy and help with the estimation of uncertainty

# 3 Probabilistic Segmentation of Extreme Weather

- How to provide probabilistic detection of extreme weather events without hand-crafted heuristics?
- We train conditional diffusion models [1] that predict segmentation masks from atmospheric states
  - Aggregating multiple samples enables uncertainty estimation

Example AR (•) and TC (•) annotations

To be a summary of the control of the cont



# 4 Next Steps

- Extend segmentation model to support blocking events
- Run extensive evaluation on different modalities (observational data and climate model output) to investigate the robustness and reliability of our methods as compared to previous work [2, 3]



#### References

- 1. Wu, Junde, et al. "Medsegdiff: Medical image segmentation with diffusion probabilistic model." arXiv preprint arXiv:2211.00611 (2022).
- Kashinath, Karthik, et al. "ClimateNet: An expert-labeled open dataset and deep learning architecture for enabling high-precision analyses of extreme weather." Geoscientific Model Development 14.1 (2021): 107-124.
- Kapp-Schwoerer, Lukas, et al. "Spatio-temporal segmentation and tracking of weather patterns with light-weight Neural Networks." (2020).

Partner/Sponsor:



Ф-lab

