Approved For Release STAT 2009/08/31 :

CIA-RDP88-00904R000100130

Approved For Release 2009/08/31 :

CIA-RDP88-00904R000100130

Вторая Международная конференция Организации Объединенных Наций по применению атомной энергии в миряых целях

A/CONF/15/P 2476 USSR ORIGINAL: RUSSIAN

Не подлежит оглашению до официального сообщения на Конференции

ИЗЛУЧЕНИЯ НА ЯДРА ЗАРОДЫШЕВЫХ КЛЕТОК ОБЯЗЬЯН

Г.Г.Тиняков и М.Л.Арсеньева

Введение

Повышение фона радиации, являющееся следствием использования атомной энергии, поставило перед современной наукой задачу первостепенной важности: определить, какой вред может быть причинен в связи с этим современному и будущим поколениям человечества.

На Женевской конференции по мирному использованию атомной энергии в 1955 г. вопросы радиогенетического эффекта на человека рассматривались в докладах Меллера, Картера, Расселла и Уоллеса (1

Одним из требующих особенно пристального изучения является вопрос о потенциальной опасности постоянного облучения малыми дозами. В настоящее время имеется уже ряд данных о том, что вызванные облучением изменения генетического материала служат причиной ряда аномалий у млекопитающих, как то: стерильности, появления уродств, гибели эмбрионов, понижения жизнеспособности и т.д.

Изменения, возникающие под влиянием облучения в соматических клетках, могут привести к таким тяжелым последствиям, как лейке-мия и элокачественные опухоли.

На важность разработки всех этих проблем указывают Всемирная организация здравоохранения, а также специальные работы ряда ученых (2-4).

В настоящее время накоплены значительные данные о механизме воздействия ионизирующих излучений на ядро, на хромосомный аппарат дрозофилы, некоторых животных и растений. Все современные расчеты о действии радиации на наследственность человека основы-

25 YEAR RE-REVIEW

ваются на данных по радиогенетике мышей. Известно, что зародышевые клетки у мышей по количеству мутаций в IO-15 раз чувствительнее, чем у дрозофил. Встает вопрос, не является ли человек и некоторые животные, стоящие ближе к челсвеку, более радиочувствительными, чем мыши.

При изучении этого вопроса большое значение должно иметь исследование эффектов воздействия ионизирующих излучений на обезьян, а также на клетки самого человека при номощи культур тканей. Необходимо точно установить характер и тип изменений, возникающих при облучении в ядрах жлеток семенников и яичников у обезьян, определить, какой тип изменений встречается чаще, на какой стадии сперматогенеза и овогенеза.

В данном сообщении приводятся материалы, вскрывающие действие радиации на ядерные структуры в зародышевых клетках обезьян на разных стадиях сперматогенеза, а также сравнительные данные по этому вопросу, полученные на мышах.

Материал и метод

В качестве материала для исследования были взяты обезьяны (Macaca mulatta). Семенники нормальных и облученных обезьян были получены при вскрытии животных на Сухумской медико-биологической станции АМН СССР.

Всего было исследовано семь семенников от нормальных контрольных животных в возрасте от 4 до 7 лет и шесть семенников от облученных рентгеновыми лучами оссбей в возрасте от 2 до 9 лет (табл. 1).

Облучение обезьян проводили рентгеновыми лучами при следующих условиях: 190 кв, 15^{MG} , фильтры: $0,5^{MM}$ ($u+1_{MM}$ AP на расстоянии, равном двойной длине туловища животного. Доза воздействия 150-500 р. Семенники переносили в первые 10-20 мин. после забоя животных в фиксаторы(Карнуа и Буэн).

Препараты были приготовлены двумя способами.

- 1. При помощи обычной парафиновой заливки с последующей окраской железным гематоксилином, а также при использовании фельгеновской реакции.
 - 2. Тотальным ацетокарминовым методом.

Для исследования **жромосомных** реорганизаций в зародышевых клетках белых мышей были использованы самцы лабораторной популяции в возрасте 30 - 40 дней, средний вес которых составлял около25₂. животные подвергались облучению рентгеновыми лучами при условиях: 190 кв, 15 ма, фильтр 0,5 мм Си+1 мм Al, расстояние 23 см. Доза воздействия в опытах составляла 400 р. животные были забиты спустя II суток и через 40 дней после облучения. Одновременно в каждый из этих сроков забивались необлученные, контрольные животные. Семенники фиксировали в Карнуа с последующей окраской ацетокармином.

Характеристика нормального набора хромосом, особенности структуры и поведения хромосом в мейозе у облученных обезьян

Хромосомный набор у обезьян Масаса mulatta впервые был обследован в 1924 г. Пайнтером. Он установил, что в клетках семенника этого вида диплоидный хромосомный набор состоит из 48 элементов.

Наши исследования кариотипа в семенниках того же вида обезьян совпадают с этими данными Пайнтера. Это подтверждается также подсчетами в гаплоидном наборе в экваториальных пластинках П мейотического деления (рис. 1 а, 5). В метафазных пластинках сперматогоний более крупные хромосомы всегда располагаются по периферии комплекса, а более мелкие — в центре. В пластинках мейотических делений, по-видимому, наолюдается строгая упорядоченность, при которой почти все хромосомы занимают периферическое положение вокруг веретена, образуя фигуры довольно стройных колец (рис.16).

В проведенном ранее гистологическом исследовании (5) семенников облученных обезьян было установлено:

- I. Наличие большого количества пикнотических ядер и разрушенного хроматинового материала дегенерировавших клеток.
- 2. Асинхронность в развитии отдельных семенных канальцев и более медленный ход сперматогенеза у обезьян, облученных в 2-лет нем возрасте.

Таблица 1

MUBOT-	Возраст к момен- ту облу- чения	Возраст к моменту гибели или забоя	Доза облу- чения, р	Состояние спермато- генеза	Причина гибели
2	2 года	4 года	450	Асинхронность, инфантильность	Забит
6	2 года	4 года	300	Стерильность	n
4	З года	5 лет	450	Несколько замедленный ход спер- матогенеза	"
23	4 г.4мес.	4г.4м.11дн.	400	Внешне нормаль- ный спермато- генев	**
1	8 лет	10 лет	150	Внешне нормаль- ный спермато- генез	**
9	9 лет	10 лет	500	Стерильность	Погиб от обострения хронической дизентерии

В семенных канальцах пятилетней (№ 4) и десятилетней (№ 1) облученных обезьян протекает внешне нормальный сперматогенез, образуется много сперматозоидов. Встречается много митотических фигур и разные стадии мейсза. Однако при более детальном рассмотрении материала удается установить ряд клеточных нарушений, которые не встречаются в контрольном материале.

- **1.** Распад ядер на несколько мелких кариосом или на более крупные глыбки хроматина (рис. $2 \, \theta$).
- 2. Слипание хроматинового ядерного материала в беспорядочние глибки, напоминающие фигуры диакинеза.
- З. Неправильное расхождение групп хромосом в мейозе, в результате чего к одному полюсу веретена отходит большее количество хромосомного материала (рис. 2 а).
 - 4. Наличие двух- и четырехядерных клеток.
- 5. Наличие трехполюсных митозов в результате нарушения аппарата веретена (рис.2 б).
 - 6. Структурные нарушения хромосом.

Данная категория изменений заслуживает особого внимания, так

как представляет собой необратимые цитогенетические перестройки ядерного материала. К числу часто встречающихся отклонений этого типа следует отнести хромосомные мосты в анафазах и телофазах мейотического деления, нарушения при расхождении, появление ацетрических фрагментов хромосом и т.д. (табл. 2).

При рассмотрении таол. 2, где приведены данные по трем обезьянам, отмечается следующее интересное явление. В семенниках обезьяны № I, облученной дозой 150
ho и заоитой спустя 2 года, обнаруживается до 5% измененных анафаз (анафазы с одним, двумя и четырьмя хромосомными мостами и ацентрическими фрагментами).

В семенниках обезьяны № 4, облученной 450 ρ и заситой также спустя 2 года, общий процент нарушений достигает 10,6%. В то же время у обезьяны № 23, облученной примерно той же дозой (400 ρ), но заситой спустя 11 дней после облучения, общий процент нарушенных анафаз достигает 65%.

Особенно много нарушений отмечено при расхождении хромосом: комковатость и нечеткость их фигур, отставание отдельных хромосом и фрагментов.

Наличие такого огромного числа измененных анафаз указывает на то, что данная дозг воздействия вызывает большое количество хромосомных нарушений. Через 2 года отбором из них элиминируются наиболее вредные и грубые нарушения, тогда как менее вредные способны размножаться в последующих клеточных генерациях сперматогений, сохраняться и выявляться в количестве до 10%.

Среди обнаруженных изменений наиболее часто встречаются анафазы с одинарными мостами (табл. 2 и рис. 3 а,б), реже - с двумя и тремя мостами и т.д. (рис. 3 в-д).

Иногда отдельные мосты оказываются разорванными в результате естественного растяжения хромосом.

Наличие 2-4-хромосомных мостов в анафазах указывает на высокую концентрацию хромосомных перестроек, возникших под воздействием ионизирующего излучения.

Из других видов хромосомных нарушений следует отметить отстающие и задерживающиеся на экваторе веретена хромосомные фрагменты, которые представляют собой ацентрические хромосомы (рис.3 е-ж).

факт наличия хромосомных мостов в анафазах и телофазах еще не позволяет точно определить категорию возникших хромосомных

Таблица 2

Частота ядерных нарушений, обнаруженных в зародышевых клетках обезьян, облученных разными дозами и забитых в разные сроки после облучения

Типы изменений в анафазах	Обезьян 10 лет, 150 р. З спустя	до за Забита	Обезьяна № 4, 5 лет, доза 450 р. Забита спустя 2 года		Обезьяна № 23, 4г.4мес., доза 400 р. Забита на 41-й день	
	абс. число	%	абс. число	%	абс. число	%
Аномалии митоза (комковатость и неправильное рас- хождение хромо-					202	rT 00
COM)	-		33	5 , I	626	51,96
миндо с одним мотом	9	3,19	20	3,08	52	4,3I
Анафазы с двумя мостами	2	0,71	9	I,38	12	I,00
Анафазы с тремя мостами	_	-	3	0,46	I	0,08
Анафазы с четырьмя мостами	I	0,35	_	_	_	-
Анафазы с ацент- рическими фраг- ментами	2	0,71	4	0,62	100	8,30
Анафазы с мостом и фрагментами	_	_	-	-	3	0,25
Всего анафаз с изменением	14	4,96	69	10,64	794	65,90
Из них анафаз с мостами и _ж) фрагментами ^ж)	14	4,96	36	5,85	168	28,66
Количество нор- мальных анафаз	268	95,04	579	89,36	418	34,49
Общее число всех анафаз	282	_	648		1212	-

ж) Процент вычислен без учета количества анафаз, указанного в 1 пункте таблицы.

перестроек. Что касается метафазных хромосом, то наличие большого количества мелких и мало различимых между собой хромосом не позволяет на этой стадии ядерного цикла идентифицировать разные типы хромосомных перестроек.

В связи с этим было обращено внимание на исследование разных типов хромосомных аберраций в синаптирующих профазных хромосомах мейоза. При исследовании таких ядер удалось обнаружить картину, напоминающую конфигурацию инверсий. Более тщательный анализ первого случая показал, что обнаруженное хромосомное изменение представляло собой двойную инверсию (рис.4а,б).

Хромосома, содержащая две инверсии, была выброшена из профазного клубка синаптирующих хромосом и в значительной степени расправлена, что и позволило установить характер аберрации. На дистальном конце этой пары синаптирующих хромосом четко выявилась конфигурация простой инверсии с ромбиком расходящихся гаплоидных нитей. На проксимальном конце той же пары синаптирующих хромосом находилась вторая простая инверсия, которую также было легко идентифицировать по наличию гаплоидных расходящихся нитей (рис. 4 б).

Кроме этого случая, были обнаружены еще три инверсии: одна из них была также на дистальном конце одной из пар синаптирующих хромосом; другая находилась в составе более сложной аберрации, а третья, одиночная инверсия, располагалась в середине синаптирующей пары хромосом.

Все обнаруженные нами инверсии всегда располагались в выброшенных из профазного клубка конъюгирующих парах хромосом. Все эти хоомосомы находилизь на стадии пахитены.

Полученные материалы об эффектах воздействия рентгеновых лучей на обезьян показывают, что общее облучение обезьян дозой 150 - 450 р вызывает, наряду с гистологическими отклонениями, резкие цитологические нарушения семенников. Наличие дегенерирующих и пикнотических ядер, обнаруженных в гистологическом материале, а также наличие большого количества хромосомных перестроек указывают на длительный и постоянно идущий процесс разрушения ядерного вещества, вызванный однократным облучением рентгеновыми лучами. Наблюдавшиеся многочисленные изменения ядра возникли не сразу; распад ядер явился следствием серии последовательных нару-

шений в аппарате клеточного и хромосомного деления после облучения.

Встречающиеся мосты в анафазах всегда являются показателями наличия хромосомных аберраций. Такие мосты могут быть вызваны как инверсиями, так и транслокациями. Поскольку в наших материалах из всех типов хромосомных перестроек пока обнаружены только инверсии и поскольку хромосомные мосты сопровождаются иногда ацентрическими фрагментами, можно сделать вывод, что через 2 года после облучения из хромосомных перестроек в основном останутся инверсии.

Однако не исключена возможность, что в отдельных случаях, наряду с мостами, вызываемыми инверсиями, могут быть мосты, возникающие и в результате трацслокаций, тем более, что наблюдались как двухроматидные, так и однохроматидные мосты. Двухроматидные мосты могут возникать в результате инверсий на основе кроссинговера в синаптирующей паре хромосом. Однохроматидные мосты (в связи с наличием дицентрических хромосом) могут быть следствием как инверсий, так и транслокаций, возникших значительно раньше данного деления клетки.

Так как с момента облучения двух обезьян прошло 2 года и все клетки, облучение на более поздних стадиях развития, были либо элиминированы отбором, либо выброшены в виде зрелых сперматозоидов, то естественно, что необходимые теперь хромосомные перестройки могли возникнуть лишь в ранних генерациях клеток, т.е. сперматогониях. Аберрации, оказавшиеся более жизнеспособными, и теперь
обнаруживаются на разных стадиях мейоза. Следовательно, неверно,
что по истечении длительного срока после облучения расходование
зрелых половых клеток и гибель клеток с хромосомными перестройками, возникшими на разных стадиях гаметогенеза, полностью восстанавливают нормальную плодовитость и снимают цитогепетический
эффект облучения.

Из приведенных материалов видно, что хромосомные перестройки, обнаруженные в семенниках обезьян и возникшие под воздействием ионизирующего излучения, оказались аналогичными тем, которые уже значительно раньше вызывались рентгеновыми лучами у дрозофилы, растений и мышей.

Обращает на себя внимание тот факт, что у обезьян однократная

доза 450 р вызивает сразу очень большое количество хромосоминх перестроек на всех стадиях сперматогенеза, в том числе и в сперматогониях.

Сравнительный апализ эффекта воздействия ионизирующей радиации на зародышевые клетки обезьян и мышей

Исследование генетического эффекта воздействия излучений на гонади мышей было проведено рядом авторов и дало представление о влиянии облучения на различные стадии сперматогенеза, на возникновение генних мутаций и хромосомных перестроек, в частности транслокаций (6-12). На основании полученных данных по частоте мутаций в сперматогониях мышей было проведено сравнение с данными по частоте мутаций у дрозофилы (13). Анализ показал более высокую генетическую радиочувствительность мышей по сравнению с дрозофилом.

метод учета хромосомных перестроек по числу анафазных мостов в разные сроки после облучения позволяет судить о количестве возникающих под влиянием излучений и сохраняющихся жромосомных перестроек среди размножающихся зародышевых клеток. Такой цито-генетический метод позволяет провести сравнительный анализ в отношении частоты индуцированных хромосомных перестроек у различных кивотных. Полученные сравнительные данные могут послужить критерием для оценки дитогенетической радиочувствительности разных животных к облучению.

Среди исследованных облученных обезьян одна обезьяна (#23) была забита на 11-й день после облучения рентгеновыми лучами дозой 400 р. При сохранении, по возможности, идентичных физических условий опыта были проведены облучения мышей той же дозой рентгеновых лучей. Животные были забиты спустя 11 суток и 40 дней после облучения. Обнаруженные цитологические изменения в зародышевых клетках мышей были аналогичны изменениям, наблюдавшимся в зародышевых клетках обезьян. Различия отмечались лишь в отношении частоты того или иного нарушения (табл. 3).

Из таблицы З видно, что у мышей встречаются чаще одинарные хромосомные мосты, на 11-й день они обнаруживаются в 3,63% случаев. Примерно с такой же частотой отмечаются анафазы с ацентрическими фрагментами (4,65%). Меньше возникает анафаз с двумя мостами (0,37%) и еще реже встречаются анафазы с тремя мостами

1.097

-10-

(рис.5). В клетках семенников контрольных животных было обнаружено только два случая анафазных мостов из 851 просмотренной анафазы, что составляет 0,23%.

Однако следует отметить, что картина общих нарушений, обнаруженных в семенниках обезьян, остается аналогичной и у мышей. Такие нарушения, как появление многоядерных клеток, нарушение аппарата веретена (трехполюсные митозы), кариорексис, слипание хромосом и другие изменения, встречаются как у обезьян, так и у мышей (рис.5).

Представляет интерес провести сравнительный анализ частоты возникновения хромосомных реорганизаций у мышей и обезьян при одинаковой дозе и в один и тот же срок после оолучения. Необходи-мо, конечно, иметь в виду различия в темпе клеточного деления в сперматогенезе у этих животных.

При рассмотрении сравнительных данных на табл. З можно констатировать, что темп мутационного процесса, вызванного облучением, у обезьян на 11-й день значительно выше, чем на тот же день при той же дозе у мышей. У обезьян на 11-й день общий процент всех изменений анафаз (65,9%) более чем в 2 раза выше, нежели у мышей (29,94%). Если для более точного сравнения не принимать в расчет группу общих нарушений и ограничиться лишь подсчетом анафаз с мостами и фрагментами, то частота обнаруживаемых хромосомных перестроек у обезьян оказывается в 2,6 раза выше, чем у мышей (табл. 3).

Таблица З

Частота ядерных нарушений, обнаруженных в зародышевых клетках обезьяны и мыши, забитых на 11-й день после облучения дозой 400 P

Типы изменений в ана- фазах	Обезьяна Забита на день, доз	11-X	Мыши № 3, № 4. Забиты на 11-и день доза 400 р		
	абс. число	Я	абс. число	%	
4	2	3	4	5	
Аномалии митоза (комко- ватость фигур и непра- вильное расхождение хро- мосом	626	51,96	227	21,11	

1	2	3	4	5
Анафазы с одним мостом	52	4,3I	39	3,63
Анафазы с двумя мостами	12	1,00	4	0,37
Анафазы с тремя мостами	1	0,08	1	0,09
Анафазы с мостом и фраг- ментом	3	0,25	1	0,09
Анафазы с адентрически ми	100	8,30	50	4,65
Общее количество анафаз с изменениями	794	65,90	322	29,94
Количество анафаз с мостами и фрагментами из общего числа анафаз с изменениями	168	28,66	95	11,12
Количество нормальных анафаз	418	34,49	759	70,06
Общее число всех анафаз	1212	-	1081	-

В связи с этим представляет интерес сравнить частоту обнаруживаемых хромосомных перестроек у обезьяны, забитой через 2 года после облучения дозой $150\,\rho$, с частотой хромосомных перестроек, находимых у мышей на 40-й день после облучения дозой $400\,\rho$

Таблица 4 Частота ядерных нарушений, обнаруженных в зародышевых клетках обезьян и мышей

Типы изменений в анафазах	Обезьяна № 1, доза I50 р. Забита через 2 года		Обезьяна № 4, доза 450р. Забита через 2 года		Мышь № 8, доза 400 р. Забита на 40-й день		
	абсол. число	%	абсол. число	%	абсол. число	K	
1	2	3	4	5	6	7	
Аномалии мито за (комковатость фи- гур и неправиль- ное расхождение хромосом)	_	•	33	5,1	95	17,89	
Анафазы с одним мостом	9	3,19	20	3,08	9	1,69	
Анафазы с двумя мостами	2	0,71	9	1,38	1	0,188	

í	2	3	4	5	6	7
Анафазы с тремя мостами	44	•	3	0,46	-	
Анафазы с четырьмя мостами	1	0,35	_	-	_	-
Анафазы с мостом и фрагментом	-	-	_	-	-	-
Анафазы с ацентриче- скими фрагментами	2	0,71	4	0,62	1	0,188
Количество анафаз с изменениями	14	4,96	69	10,64	106	19,96
Количество анафаз с мостами и фрагмен- тами из общего числа анафаз с изменениями	14	4,96	36	5,85	11	2,52
Количество нормальных анафаз	268	95,04	579	89,36	425	80,037
Общее число всех анафаз	282	-	648	_	53I	-

Несмотря на различия в дозе и времени, прошедшем после оолучения, частота хромосомных перестроек у обезьян выше почти в 2 раза (табл. 4). Обращает на сеоя внимание тот факт, что у обезьяны отсутствуют такие нарушения митоза, как комковатость фигур и не-правильное расхождение хромосом, что указывает на их полную элиминацию в течение 2 лет, в то время как у мышей процесс элиминации аномалий митоза на 40-й день еще не завершен: в семенниках мышей обнаруживается до 18% таких нарушений. Более повышенная радисчувствительность зародышевых клеток обезьян к облучениь доказывается также сравнением частоты изменений на стадии анафазы у обезьяны № 4, забитой через 2 года после облучения дозой 450р (табл. 4), с частотой изменений у мышей, забитых на 40-й день после облучения дозой 400 р. В этом случае количество анафаз с мостами и фрагментами у обезьяны равно 5,85%, а у мышей только 2,52%.

В настоящее время отсутствуют данные по частоте общего мутационного процесса у обезьян как спонтанного, так и индуцированного ионизирующим излучением. Тем не менее на основании приведенных выше данных о частоте возникновения и обнаружения хромосоменх реорганизаций можно говорить о более высокой цитогенетической радиочувствительности обезьян по сравнению с мышами.

Выводы

- 1. Общее облучение обезьян рентгеновыми лучами (дозы от $150\,p$ до $450\,p$) вызывает крупные повреждения ядра на разных стадиях сперматогенеза.
- 2. К числу нарушений и отклонений от нормы относятся:
 а) пикноз и дегенерация ядер; б) слипание хромосом; в) распад
 ядер на кариосомы и глыбки; г) образование двух- и четырехядерных клеток; д) нарушение аппарата веретена; е) анафазные мосты;
 ж) ацентрические фрагменты.
- 3. Оонаружени инверсии в синаптирующих хромосомах на стадии профази в зародышевых клетках обезьян.
- 4. В мейозе у обезьян обнаружены однохроматидные и двухроматидные анафазные мосты. Одни из них являются следствием кроссинговера в инверсиях, а другие - результатом возникших транслокаций.
- 5. Возникшие инверсионные и транслокационные мосты, вновь дающие мосты при дальнейшем делении клеток, приводят, в конце концов, к элиминации из ядра целых хромосомных элементов. Это в свою очередь вызывает дегенерацию отдельных ядер или их генетическую неполноценность в составе зрелых половых клеток.
- 6. Общая однократная доза ионизирующего облучения в 150-400 р оставляет вредный цитогенетический эффект в некоторых размножаю— щихся клетках половой железы животного, по крайней мере в течение 2 лет. а. возможно, и на всю его последующую жизнь.
- 7. Экспериментальные данные по влиянию радиации на наследственные структуры обезьян и мышей показали более высокую радиочувствительность этих структур у обезьян.
- 8. Представление о том, что гибель клеток в гаметогенезе за счет несбалансированных ядер спустя длительное время после облучения приводит к снятию цитогенетического эффекта при воздействии ионизирующего излучения, оказалось неверным.
- 9. Установленное различие в радиочувствительности обезьян по сравнению с мышами необходимо учитывать при современных расчетах радиогенетического эффекта на человека.

709

-I4-

Литература

- I. Proc.Int.Conf.Peaceful Uses of Atomic Energy.Geneva, 1955, 2
- 2. Effect of radiation on human heredity. Chronicle Word Health Organiz, 1957, 2, Nº 8, 237-244
- 3. The responsibilities of the medical profession in the use of X-rays and other ionizing radiation. United Nations Scientific Comittee on the Effect of atomic Radiation. Amer.J. Human Genetics, 1957, 9,NF2, 93-97
- 4. Дубинин Н.П. Ионизирующее излучение и наследственность человека, Изв. АН СССР. Сер.биол., 1957, № 6.
- 5. Тиняков Г.Г., Арсеньева М.А., Бочаров Ю.С. Гистологическая структура нормальных обезьян и облученных рентгеновыми лучами (в печати), 1957.
- 6. Russell W.G. Genetic effect of radiation in mammals in Radiation Biology.Ed.by A.Hollaender, 1,825-859.M.C.Graw Hill, New-York, 1954
- 7. Carter T.C., Lyon N., Phillips R. Induction of mutations in mice by chronic gamma irradiation, Brit.J. Radiology, 1956, 29, 338, 106-109
- 8. Snell G.D. X-ray sterility in the male house mouse, J.Exptl. Zool., 1933, 65, 421-441
- 9. Russell W.G. X-ray induced mutations in mice, Cold Spr. Harb.Symp.quant.Biol., 1956, 16, 327
- 10. Auerbach C., Slizynski B. Sensitivity of the mouse testis to the mutagenic action of X-rays, Nature, 1956, 177, Nº4504, 376-377
- 11. Нуждин Н.И., Шапиро Н.И., Петрова О.Н. Стерилизующее действие ионизирующей радиации на млекопитающих, Сб.работ по радио-биологии, 83-II2. М., Изд-во АН СССР, 1955.
- 12. Нуждин Н.И., Шапиро Н.И., Петрова О.Н., Нечаев Н.А. Стерилизующее действие ионизирующей радиации на млекопитающих, Сб.работ по радиобиологии, I50-I59. М., Изд-во АН СССР, 1955
- 13. Арсеньева М.А., Бельговский М.Л. и др. Радиационная генетика. Итоги науки. Биол. науки. І. Радиобиология, 329-379, М., Изд-во АН СССР, 1957

Рис.2.

Рис.3. Структурные нарушения хромосом в мейозе у обезьян. а-б — анафаза с одним хромосомным мостом х 600; в — анафаза с двумя хромосомными мостами х 600; г — анафаза с четырьмя мостами х 900 (три хромосомных, один хроматидный); д — рисунок анафазы, изображенной на микрофото г; е — анафаза с ацентрическим фрагментом х 900; ж — рисунок анафазы, изображенной на микрофото е

Рис.4. Две инверсии в синаптирующей паре хромосом. а — микрофото х 900; о — рисунок инверсий, изображенных на микрофото а х 1350

Рис.5. Структурные нарушения хромосом в мейозе у мышей. а — анафаза с одним хроматид— ным мостом х 400; б — анафаза с двумя хромосомными мостами х 400; в — анафаза с одним хромосомным и одним хроматидным мостом х 400; г — анафаза с мостом и фрагментами х 400; д — анафаза с фраг—ментами х 400; е — трехполюсный митоз х 400