ECON3113 Microeconomic Theory I

Tutorial #7: (i) Summary of Demand Analysis

(ii) Online Assessment #2

Today's tutorial

- Summary of Demand Analysis
- Online Assessment #2

Constrained utility maximisation: the framework

- Superposing the budget line with the indifference curves.
- Look for the bundle/point in the budget set that lies on the indifference curve with the highest utility.

- We have:
 - U(x,y)
 - $I = P_x x + P_y y$
- Affordable bundles on or inside the budget constraint
- Tangency at: $MRS = \frac{P_x}{P_y}$
- Note: Limitations of this approach in lecture notes:
 - Corner solutions
 - Tangency not always optimal

Constrained utility maximisation: the framework

- Intuition of why the tangency condition works
- What bundle would make the consumer willing to stay put?
- Start with any bundle $(x_1, x_2) > (0, 0)$. If she wants to increase his consumption of goods 1 by one unit,
 - the amount of goods 2 she is willing to give up is MRS;
 - the amount of goods 2 she has to give up is $p_1 imes \frac{1}{p_2}$
- She wants to consume more of goods 1 if $\frac{p_1}{p_2} < MRS$.

The homogeneity of demand functions

Theorem

The demand functions are **homogeneous of degree zero**. That is, $x_i(\lambda p_1,...,\lambda p_n,\lambda I) = x_i(p_1,...,p_n,I)$ for all $\lambda > 0$.

Examples:

- For given I, P_x, P_y :
- Cobb Douglas $U(x,y) = x^{\alpha}y^{1-\alpha}$

$$x^* = \alpha \frac{I}{P_x} \qquad \qquad y^* = (1 - \alpha) \frac{I}{P_y}$$

- x^* , y^* invariant to scaling P_x , P_y , I by λ
- Quasi-Linear $U(x, y) = y + \ln(x)$

$$x^* = \frac{P_y}{P_x} \qquad \qquad y^* = \frac{I}{P_y} - 1$$

• x^*, y^* invariant to scaling P_x, P_y, I by λ

Sensitivity of demand to changes in prices and income

Decrease in price of x₁

Increase in income

Decomposing a price change into income and substitution effect

- Given a fall in the price of x₁ from p₁ to p₁':
- · Equilibrium moves from A to B
- We can de-compose the move into two parts:
 - Rotate the budget constraint around existing indifference curve
 - From A to A'
 - The substitution effect
 - With DMRS the substitution effect is always negative
 - Shift the budget constraint to the new budget constraint
 - from A' to B
 - The income effect

Compensated and Uncompensated demand curves

Normal Good

Inferior Good

Definitions: Own and Cross Price Elasticities of Demand

Definition

Price elasticity of demand of a goods is the percentage change in its quantity demanded in response to a unit percentage change in its price. In notation,

$$\varepsilon_{x_1,p_1} = \frac{\triangle x_1/x_1}{\triangle p_1/p_1} = \frac{\triangle x_1}{\triangle p_1} \frac{p_1}{x_1} = \frac{\partial x_1(p_1,p_2,I)}{\partial p_1} \frac{p_1}{x_1}.$$

Definition

Cross-price elasticity of demand of a goods is the percentage change in its quantity in response to a unit percentage change in the price of some other good. In notation,

$$\varepsilon_{x_1,p_2} = \frac{\triangle x_1/x_1}{\triangle p_2/p_2} = \frac{\triangle x_1}{\triangle p_2} \frac{p_2}{x_1} = \frac{\partial x_1(p_1,p_2,I)}{\partial p_2} \frac{p_2}{x_1}.$$

Definitions: Income Elasticity of Demand

Definition

Income elasticity of demand of a goods is the percentage change in its quantity demanded in response to a unit percentage change in income. In notation,

$$\varepsilon_{x_1,I} = \frac{\triangle x_1/x_1}{\triangle I/I} = \frac{\triangle x_1}{\triangle I} \frac{I}{x_1} = \frac{\partial x_1(p_1, p_2, I)}{\partial I} \frac{I}{x_1}.$$

Definitions: Two conditions relating to price and income elasticities

• For a good x the sum of own and cross-price elasticities of demand plus income elasticity of demand = 0

$$\frac{\partial x_1}{\partial p_1} \times p_1 + \frac{\partial x_1}{\partial p_2} \times p_2 + \frac{\partial x_1}{\partial I} \times I = 0.$$

$$\Rightarrow$$
 $\varepsilon_{x_1,p_1} + \varepsilon_{x_1,p_2} + \varepsilon_{x_1,I} = 0.$

• For goods in the choice set, x_1 and x_2 , the sum income elasticities of demand weighted by share of income spent on the good =1

$$s_1 \varepsilon_{\mathsf{x}_1,\mathsf{I}} + s_2 \varepsilon_{\mathsf{x}_2,\mathsf{I}} = 1.$$

• In which:

$$s_i = p_i x_i / I$$

Gross Substitutes and Gross Complements

- Note the limitations of this definition: sometimes a good's price will depend on another good's price, but not vice versa eg quasi-linear demand functions:
 - $\chi = \frac{P_y}{P_x}$

$$y = \frac{I}{P_y} - 1$$

Welfare Analysis: Consumer Surplus

- In order to have access to good 1, the consumer would pay at most T and reduce consumption of x_2 by $\frac{T}{P_2}$ in order to consume x_1^* of x_1
- This amount is equivalent to the area under the compensated demand curve for x_1 , lying above P_1 between 0 and x_1^{\ast}

- Online Assessed Quiz #2
- Online Assessed Quiz #2 is available in Canvas/Quizzes
- You have 20 minutes to complete the quiz
- 6 questions on Lecture Notes #6
- Any problems during the quiz, let me know
- Good luck!