Identification of Informative and Uninformative Features

Nate Olson 2017-04-11

Objective

Identification of informative and uninformative features. Informative features defined as features with observed counts in all pre-treatment samples and all titration samples and all or none of the post-treatment replicates.

Feature Categories

• Null - features not present in more than one PCR replicate for any sample of a biological replicate, and pipeline.

Informative

- Full features present all PCR replicates for all samples (unmixed and titrations) for a biological replicate.
- Pre present in all PCR replicates for unmixed pre-treatment samples, not observed in any PCR replicates of the unmixed post treatment samples, and present in all titration PCR replicates.
- Post present in all PCR replicates for the unmixed post-treatment samples, not observed in any PCR replicates of the unmixed pre-treatment samples, and present all titration PCR replicates.

Characterization of low abundance features * Mix - features present in mixed samples but not observed in any of the unmixed sample PCR replicates.

```
## Extracting a tidy dataframe with count values from MRexpiment objects
get_count_df <- function(mrobj, agg_genus = FALSE){</pre>
      if(agg_genus){
            mrobj <- aggregateByTaxonomy(mrobj, lvl = "Rank6",</pre>
                                          norm = FALSE, log = FALSE, sl = 1)
      }
      mrobj <- cumNorm(mrobj, p = 0.75)</pre>
      mrobi %>%
            # not sure whether or not to normalize counts prior to analysis
            MRcounts(norm = TRUE, log = FALSE, sl = 1000) %>%
            as.data.frame() %>%
            rownames_to_column(var = "feature_id") %>%
            gather("id","count", -feature id)
}
get_rep_info <- function(count_df){</pre>
      count_replicate_df <- count_df %>%
            mutate(detect = if_else(count > 1, 1, 0)) %>%
            group_by(pipe, biosample_id, titration, t_fctr, feature_id) %>%
            summarise(total_detect = sum(detect),
                      n_replicates = n(),
                      avg_non0_count = sum(count)/total_detect) %>%
            mutate(detect_prop = total_detect/n_replicates) %>%
```

```
select(-total_detect)
      count_replicate_df %>% ungroup() %>%
      mutate(t_fctr = paste0("T",t_fctr)) %>%
      select(pipe, biosample_id, feature_id, t_fctr, detect_prop)
}
assign_cat <- function(rep_info){</pre>
     prop_summary <- rep_info %>%
            group_by(pipe, biosample_id, feature_id) %>%
            summarise(prop_max = max(detect_prop),
                      prop_min = min(detect_prop),
                      prop_sum = sum(detect_prop))
      unmix_prop <- rep_info %>%
            filter(t_fctr %in% c("T0","T20")) %>%
            spread(t_fctr, detect_prop)
      left_join(prop_summary, unmix_prop) %>%
            mutate(cat_null = if_else(prop_max == 0, 1, 0),
                   cat_full = if_else(prop_min == 1, 1, 0),
                   cat_near_full = if_else(prop_min == 0.75, 1, 0),
                   cat_mix = if_else(prop_max == 1 & T0 == 0 & T20 == 0, 1, 0),
                   ## Post prop 5 - expected at least three replicates for titrations 4, 5, 10, and 15
                   ## Pre prop 3 - expected at least three replicates for titrations 1, 2, 3, and 4
                   ## titration 4, is ~94% post
                   ## titration 4, is ~94% post
                   cat_pre = if_else(T20 == 1 & T0 == 0 & prop_sum == 8, 1, 0),
                   cat_post = if_else(T0 == 1 & T20 == 0 & prop_sum == 8, 1, 0),
                   cat_none = if_else(cat_null + cat_full + cat_near_full + cat_mix + cat_pre + cat_pos
}
```

Feature Level Category Assignments

```
count_df <- mrexp %>% map_df(get_count_df, .id = "pipe") %>%
    left_join(pData(mrexp$dada2)) #%>%
    # filter(biosample_id != "NTC")

#count_df
rep_info <- get_rep_info(count_df)

#rep_info
feature_info <- assign_cat(rep_info)

feature_cat <- feature_info %>%
    select(-prop_max, -prop_min, -prop_sum, -T0, -T20) %>%
    gather(cat, value, -pipe, -biosample_id, -feature_id) %>%
    filter(value == 1) %>% select(-value)
feature_cat %>% saveRDS(".../data/feature_categories_df.rds")
```

Category Sanity Check

```
cat_check <- feature_cat %>%
      group_by(pipe, biosample_id, feature_id) %>%
      summarise(n cat = n())
cat_check %>% filter(n_cat != 1)
## Source: local data frame [0 x 4]
## Groups: pipe, biosample_id [0]
##
## # ... with 4 variables: pipe <chr>, biosample_id <chr>, feature_id <chr>,
## # n cat <int>
# cat_check <- feature_info %>%
       select(-prop_max, -prop_min, -prop_sum, -TO, -T20) %>%
#
        gather(cat, value, -pipe, -biosample_id, -feature_id) %>%
#
        group_by(pipe, biosample_id, feature_id) %>%
       mutate(n_cat = sum(value)) %>%
#
       filter(n cat != 1, value != 0)
# cat_check %>% arrange(feature_id)
     prop_summary <- rep_info %>%
            group_by(pipe, biosample_id, feature_id) %>%
            summarise(prop_max = max(detect_prop),
                     prop_min = min(detect_prop),
                      prop_sum = sum(detect_prop))
```

Informative Features

```
feature_cat %>% filter(cat != "cat_null", cat != "cat_none", cat != "cat_mix") %>%
    ggplot() + geom_bar(aes(x = cat)) +
    facet_grid(pipe ~ biosample_id, scales = "free_y") +
    theme_bw() + theme(axis.text.x = element_text(angle = 90))
```


Recovering Semi-Informative Features

```
cat_none_df <- feature_cat %>% left_join(rep_info) %>% filter(cat == "cat_none")
total_prop_cat_none <- cat_none_df %>% group_by(pipe, biosample_id, feature_id) %>%
summarise(total_prop = sum(detect_prop))
```

Most of the uncategorized features were observed in less than 4 PCR replicates

```
total_prop_cat_none %>% mutate(total_prop = floor(total_prop)) %>%
   group_by(pipe, total_prop) %>% summarise(count = n()) %>%
   spread(pipe, count) %>% knitr::kable()
```

total_	_prop	dada2	mothur	qiime
	0	926	29239	14458
	1	405	1090	2473
	2	93	337	877
	3	75	201	447
	4	82	148	298
	5	87	140	270
	6	98	156	189
	7	186	168	310
	8	64	103	113

Assuming 4 PCR replicates for all samples. Using proportions if samples are excluded from analysis, for example samples with few reads compared to the rest of the samples.

```
cat_none_df %>% filter(!(detect_prop %in% c(0,0.25,0.5,0.75,1)))
## Source: local data frame [410 x 6]
## Groups: pipe, biosample_id [3]
##
##
       pipe biosample_id feature_id
                                          cat t_fctr detect_prop
##
      <chr>
                   <chr>
                               <chr>
                                        <chr> <chr>
                                                            <dbl>
## 1 dada2
                     NTC
                                                 TNA 0.45454545
                                 SV1 cat_none
## 2
     dada2
                     NTC
                             SV1024 cat_none
                                                 TNA 0.09090909
## 3
     dada2
                     NTC
                               SV106 cat none
                                                 TNA 0.09090909
## 4
     dada2
                     NTC
                               SV11 cat_none
                                                 TNA 0.09090909
## 5
     dada2
                     NTC
                               SV113 cat none
                                                 TNA 0.09090909
## 6
     dada2
                                                 TNA 0.09090909
                     NTC
                               SV118 cat_none
## 7
      dada2
                     NTC
                              SV1189 cat_none
                                                 TNA 0.09090909
## 8
     dada2
                     NTC
                                                 TNA 0.18181818
                                SV12 cat_none
## 9
     dada2
                     NTC
                              SV1371 cat_none
                                                 TNA 0.09090909
## 10 dada2
                     NTC
                               SV141 cat_none
                                                 TNA 0.09090909
## # ... with 400 more rows
What is the detect proportions for samples with total prop < 2.
cat_none_low <- cat_none_df %>% group_by(pipe, biosample_id, feature_id) %>%
    mutate(total_prop = sum(detect_prop)) %>% filter(total_prop > 0, total_prop < 2)</pre>
Most of the low total detect proportion features were only observed in one PCR replicate.
cat none low %>%
    ggplot() + geom_bar(aes(x = total_prop, fill = biosample_id),
                        position = "dodge") +
    facet_wrap(~pipe, scales = "free_y") + theme_bw()
```


cat_none_low %>% filter(total_prop > 0.5) %>% spread(t_fctr, detect_prop) %>% arrange(total_prop)

Most of the low detect features are only present in 1 sample

Open Question Are low detect features due to random sampling or bioinformatic/ experimental artifact. *Approach - average counts by number of PCR replicates and number of samples with observed counts.

X-axis: Number of samples out of the 2 unmixed and 7 titrations with at least one of the four PCR replicates with observed counts Y-axis: Mean counts for PCR replicates with non-zero count values Color: Of the sample (either unmixed or titration) proportion of PCR replicates with observed counts

```
count_replicate_pa_df %>% ggplot() +
    geom_boxplot(aes(y = avg_non0_count + 1, x = factor(sample_detect), color = factor(detect_prop))) +
    scale_y_log10() + facet_wrap(~pipe, ncol = 1) + theme_bw()
```


Extracting additional informative features

Feature assigned to both groups if present in the same number of PCR replicates for all samples

pre_post_titrate %>% mutate(t_sum = pre_titration + post_titration) %>% filter(t_sum > 1)

```
## Source: local data frame [0 x 17]
## Groups: pipe, biosample_id [0]
##
## # ... with 17 variables: pipe <chr>, biosample_id <chr>, feature_id <chr>,
## # cat <chr>, T0 <dbl>, T1 <dbl>, T10 <dbl>, T15 <dbl>, T2 <dbl>,
## # T20 <dbl>, T3 <dbl>, T4 <dbl>, T5 <dbl>, TNA <dbl>,
## # pre_titration <dbl>, post_titration <dbl>, t_sum <dbl>
```

```
pre_post_titrate %>% mutate(t_sum = pre_titration + post_titration) %>% filter(t_sum == 1) %>%
    mutate(titrate = if_else(pre_titration == 1, "pre", "post")) %>%
    ggplot() + geom_bar(aes(x = titrate, fill = biosample_id)) + facet_wrap(~pipe) + theme_bw()
```



```
total_prop_titrate <- pre_post_titrate %>% mutate(t_sum = pre_titration + post_titration) %>% filter(t_
    mutate(titrate = if_else(pre_titration == 1, "pre", "post")) %>%
    select(pipe, biosample_id, feature_id, titrate) %>% left_join(cat_none_df) %>%
    group_by(pipe, biosample_id, feature_id,titrate) %>% mutate(total_prop = sum(detect_prop))

total_prop_titrate %>% ggplot() + geom_bar(aes(x = total_prop)) + facet_grid(titrate~pipe)
```


Summary Figures

```
feature_cat %>% filter(cat != "cat_null", cat != "cat_none") %>%
    ggplot() + geom_bar(aes(x = cat)) +
    facet_grid(pipe ~ biosample_id, scales = "free_y") +
    theme_bw() + theme(axis.text.x = element_text(angle = 90))
```


Genus Level Category Assignments

Category Sanity Check

```
cat_check <- feature_cat %>%
    group_by(pipe, biosample_id, feature_id) %>%
```

```
summarise(n_cat = n())
cat_check %>% filter(n_cat != 1)
## Source: local data frame [0 x 4]
## Groups: pipe, biosample_id [0]
##
## # ... with 4 variables: pipe <chr>, biosample_id <chr>, feature_id <chr>,
     n_cat <int>
# cat_check <- feature_categories %>%
        select(pipe, biosample_id, feature_id,
#
               cat_null, cat_full, cat_mix, cat_pre, cat_post, cat_none) %>%
#
#
        gather(cat, value, -pipe, -biosample_id, -feature_id) %>%
#
        group_by(pipe, biosample_id, feature_id) %>%
#
        mutate(n_cat = sum(value)) %>%
        filter(n_cat != 1, value != 0)
# cat_check %>% arrange(feature_id)
```

Summary Figures

Larger proportion of full category features and fewer mix specific features when aggregating to the genus level compared to unaggregated features.

```
feature_cat %% filter(cat != "cat_null") %>%
    ggplot() + geom_bar(aes(x = cat)) +
    facet_grid(pipe ~ biosample_id, scales = "free_y") +
    theme_bw() + theme(axis.text.x = element_text(angle = 90))
```


While there are a large number of unclassified features, few are potentially informative. Ones that stand out are features detected in 4 T0 (pre-treatment features) with prop sum value close to 8.

Alternative Characterization

##

8

8

2

6

prop_sum

8 2

4

```
##
           idx
                 pipe count
##
         <dbl>
                <chr> <int>
     44444444
                dada2 1467
## 1
## 2
     44444444 mothur
                       1431
## 3
     44444444
                qiime
                        738
## 4 44444440 dada2
                        261
## 5 44444440 mothur
                        216
## 6 44434444 dada2
                        135
## 7
     444434444
                dada2
                        117
## 8 44444440
                qiime
                         99
## 9 44444441
                dada2
                         99
## 10 444344440
                         90
                dada2
## # ... with 338 more rows
```

Appendix

Table with the total proportion of PCR replicates by biosample and pipeline.

```
total_prop_cat_none %>% mutate(total_prop = floor(total_prop)) %>%
    group_by(pipe, biosample_id, total_prop) %>% summarise(count = n()) %>%
    spread(biosample_id, count) %>% knitr::kable()
```

pipe	$total_prop$	E01JH0004	E01JH0011	E01JH0016	E01JH0017	E01JH0038	NTC
dada2	0	169	182	150	159	217	49
dada2	1	86	85	95	90	49	NA
dada2	2	14	18	18	20	23	NA
dada2	3	17	9	17	15	17	NA
dada2	4	15	12	17	20	18	NA
dada2	5	14	13	20	19	21	NA
dada2	6	9	12	26	19	32	NA
dada2	7	24	21	71	46	24	NA
dada2	8	13	7	9	14	21	NA
mothur	0	9266	7982	3125	3893	4729	244
mothur	1	284	270	136	218	182	NA
mothur	2	99	62	44	53	79	NA
mothur	3	51	41	25	33	51	NA
mothur	4	25	27	25	36	35	NA
mothur	5	27	24	26	22	41	NA
mothur	6	29	20	30	36	41	NA
mothur	7	24	21	57	35	31	NA
mothur	8	20	22	12	23	26	NA
$_{ m qiime}$	0	3070	2801	3075	3351	2044	117
$_{ m qiime}$	1	539	522	531	489	392	NA
qiime	2	174	205	181	163	154	NA
qiime	3	87	107	88	78	87	NA
qiime	4	61	70	53	59	55	NA
qiime	5	51	49	60	50	60	NA
$_{ m qiime}$	6	42	49	36	33	29	NA
qiime	7	56	57	81	69	47	NA
$_{ m qiime}$	8	21	29	15	22	26	NA

Session information

package	version	date	source
bbmle	1.0.18	2016-02-11	CRAN (R 3.3.2)
Biobase	2.34.0	2016-11-07	Bioconductor
BiocGenerics	0.20.0	2016 - 11 - 07	Bioconductor
BiocParallel	1.8.1	2016 - 11 - 07	Bioconductor
Biostrings	2.42.1	2016-12-19	Bioconductor
DESeq	1.26.0	2016-11-28	Bioconductor
DESeq2	1.15.28	2017-02-02	bioc (readonly/DESeq2@125913)
dplyr	0.5.0	2016-06-24	CRAN (R 3.3.2)
edgeR	3.16.5	2017-02-02	Bioconductor
forcats	0.2.0	2017 - 01 - 23	CRAN (R 3.3.2)
foreach	1.4.3	2015-10-13	CRAN (R 3.3.1)
GenomeInfoDb	1.10.3	2017-03-28	Bioconductor
GenomicAlignments	1.10.1	2017-03-28	Bioconductor
GenomicRanges	1.26.4	2017-03-28	Bioconductor
ggplot2	2.2.1	2016-12-30	CRAN (R 3.3.2)
glmnet	2.0-5	2016-03-17	CRAN (R 3.3.1)
IRanges	2.8.2	2017-03-28	Bioconductor
knitr	1.15.1	2016 - 11 - 22	CRAN (R 3.3.2)
lattice	0.20 - 34	2016-09-06	CRAN (R 3.3.3)
limma	3.30.13	2017-03-28	Bioconductor
locfit	1.5 - 9.1	2013-04-20	CRAN (R 3.3.1)
Matrix	1.2-8	2017-01-20	CRAN (R 3.3.3)
metagenomeSeq	1.16.0	2016 - 11 - 07	Bioconductor
modelr	0.1.0	2016-08-31	cran (@0.1.0)
permute	0.9 - 4	2016-09-09	CRAN (R 3.3.1)
phyloseq	1.19.1	2017-01-04	Bioconductor
ProjectTemplate	0.7	2016-08-11	CRAN (R 3.3.1)
purrr	0.2.2	2016-06-18	CRAN (R 3.3.1)
RColorBrewer	1.1-2	2014 - 12 - 07	CRAN (R 3.3.1)
readr	1.1.0	2017 - 03 - 22	CRAN (R 3.3.2)
readxl	0.1.1	2016-03-28	cran (@0.1.1)
Rqc	1.8.0	2016 - 11 - 07	Bioconductor
Rsamtools	1.26.1	2016 - 11 - 07	Bioconductor
S4Vectors	0.12.2	2017-03-28	Bioconductor
sads	0.3.1	2016-05-13	CRAN (R 3.3.2)
savR	1.12.0	2016-11-07	Bioconductor

package	version	date	source
ShortRead	1.32.1	2017-03-28	Bioconductor
stringr	1.2.0	2017-02-18	CRAN (R 3.3.2)
SummarizedExperiment	1.4.0	2016-11-07	Bioconductor
tibble	1.3.0	2017-04-01	CRAN (R 3.3.3)
tidyr	0.6.1	2017-01-10	CRAN (R 3.3.2)
tidyverse	1.1.1	2017 - 01 - 27	CRAN (R 3.3.2)
vegan	2.4 - 3	2017-04-07	CRAN (R 3.3.3)
XVector	0.14.1	2017-03-28	Bioconductor