

SMQ기반의 이종 엣지 디바이스 데이터 고속 처리 기술

(GS-Broker)

2020,12,10

GEdge Platform 코어 개발자 김현우(hwkim@keti.re.kr)

"The First talk of Edge Computing with Clouds"

- GEdge Platform 커뮤니티 멤버들의 첫번째 이야기 -

GEdge Platform Community 1st Conference

Contents

- GS-Broker 개요
- Ⅲ GS-Broker의 필요성
- Ⅲ GS-Broker 구조
- Ⅳ GS-Broker 21년도 개발 계획

이번 세션은 …

GS-Broker 개요

>>>

GEdge Platform은 Edge서버 외부로부터 수집되는 다양한 엣지 디바이스를 지원하는 서비스 플

<u>랫폼</u>!!

엣지 디바이스별 상이한 메시지 프로토콜은 플랫폼의 복잡성 증가

신규 엣지 디바이스 or 메시지 프로토콜 추가시 유연한 확장의 어려움

<플랫폼의 유연한 확장이 어려운 메시지 브로커 구조>

GS-Broker의 필요성

센서 니바이스의 소형화/고노화 및 5G Enabling Biz 의 확산에 따른 산업현상 수요 폭

》》증

⇒ 산업 현장에 따라 요구되는 Use-Case 타입이 상이한 구조(Time Critical/Non-Time

Pitical/../Connected)

산업 현장의 기술적 특성에 따른 엣지 디바이스 추가가 요구됨

5G Use-Case	5G 적용 가능 Biz.	Latency	Reliability	Coverage	Security
Time Critical process optimization	Collaborative Robot Wearables Adoption(3D AR4) 3D Scanning	Ultra-Low	Ultra-High	Indoor	Critical
Non Time Critical optimization	• Assets/Object 인식/Tracking • 대량의 Near Real-time Data 수집 • 생산 Simulation/Forecast	Less Critical	High	Indoor, On-site Outdoor	Critical
Remote maintenance and optimizing	Remote Quality Inspection Remote Diagnostics Remote Virtual Back-Office	Less Critical	High	Wide Area	Critical
Seamless intra-/inter- enterprise communication	Identification & Tracking of Goods Reliable & Secure interconnection Simulation & Design Data Exchange	Low	High	Wide Area, On-site Outdoor	Critical
Connected Goods	• Product Life-cycle Management • New Products & Service 기획 • Data Driven Computer-Aided Design	Less Critical	Low	Wide Area	Important

¹⁾ eMBB: Enhanced Mobile Broadband 2) mMTC: massive Machine Type Communications 3) uRLLC: Ultra-Reliable and Low-Latency Communications

4) AR: Augmented Reality

GS-Broker의 필요성

(Time Classify) 동일한 디바이스 내에서도 Task별로 요구되는 Time Limitation이 서로 다름.

동일 디바이스(로봇) 내에서도 Latency Critical Point가 다름(30ms, 5ms, 1ms, etc)
Time Critical Point 조건에 부합하는 GS-Broker가 요구됨

GS-Broker의 필요성

- >>> (Industry Classify) 산업군별로 요구되는 Time Limitation이 서로 다름.
 - ⇒ 산업군별로 사용되거나 활용되는 엣지 디바이스가 다르고, 요구되는 Sampling Rate이 상이함
 - Industrial Critical Point 조건에 부합하는 GS-Broker가 요구됨

GS-Broker의 필요성

>>>

(Acquisition Data Classify) Data Hub 모형에 따른 Data Source Layer의 구성이 다 알함.

복합적인 응용 서비스 구성을 위해서는 기존 Legacy Platform을 지원하면서, 새로운 Massive

_ loT Edge Data 수집이 요구됨.

- >>> SMQ* 기반의 이종 엣지 디바이스 데이터 고속 처리 기술
 - ➡ GEdge Platform 중심의 엣지 서비스와 IoT 디바이스 간 메시지 중개 프로토콜
 - → MQTT(Message Queuing telemetry Transport)와 REST(Representational State Transfer)의 프로토콜 지원
 - ⇒ gRPC를 활용한 엣지 서비스로의 저지연 메시지 전달 기술 적용

- Msg subscription : MQTT**와** REST 기반 엣지 메시지를 구독하는 주체
- Msg Broker : 저지연 메시지 전달을 위해 gRPC로 메시지 전환
- · Msg Publication: 엣지 서비스 핸들러(메시지 처리기)로 메시지 전달

Google Remote Procedure Call

프로토콜 버퍼^(Protobuf)를 사용하여 엣지 디바이스와 서비스 핸들러 간 **저지연 메시지 통신을 가능**하게 하는 원격 프로시저 호출 시스템

<GEdge Platform의 이종 엣지 메시지 브로커 구조>

*SMQ: Shared Message Queue

- » SMQ를 활용한 엣지 서비스 핸들러 간 메시지 공유
 - ⇒ 메시지 전송, 수신, 정책 등 SMQ-API(Application Programming Interface) 제공
 - SMQ Library를 활용한 엣지 서비스 핸들러 구성 기술 적용
 - 메시지 브로커를 활용한 분산 메시지 처리 환경 제공
 - → 유연한 확장이 가능한 메시지 브로커

- ≫ SMQ를 활용한 패킷 처리와 메시지 공유
 - ⇒ 큐잉(Queueing) 중심 엣지 데이터 처리 모듈
 - ➡ Kubernetes의 PV를 활용한 메시지 프로토콜 처리 기능 제공

<SMQ 기반 확장형 메시지 브로커 및 엣지 데이터 처리>

- ≫ GS-Broker 기초 기능 검증
 - **⇒** gRPC를 활용한 저지연 메시지 전송 기능 검증 : gRPC + K8S Pods
 - ⇒ 설계된 GS-Broker의 기초 기능 검증 수행 (MQTT, REST, JSON)

<GS-Broker 기초 기능 검증 구조 및 실험 환경

```
import datetime
import json
import os
import paho.mqtt.client as mqtt
import requests
topic name = os.getenv("topic", "sensor-readings")
gateway url = os.getenv("gateway url", "http://127.0.0.1:8080")
print("Using gateway {} and topic {}".format(gateway url,
topic name))
def on connect(client, userdata, flags, rc):
print("Connected with result code "+str(rc))
# Subscribing in on connect() means that if we lose the
connection and
# reconnect then subscriptions will be renewed.
client.subscribe(topic name)
# The callback for when a PUBLISH message is received from the
def on message(client, userdata, msg):
with open("./samples.txt", "a") as f:
r = json.loads(str(msg.payload))
r["created at"] = str(datetime.datetime.now())
f.write(json.dumps(r) + "\n")
f.close()
print(msq.topic+" "+json.dumps(r))
res = requests.post(gateway url + "/function/accept-sample",
print ("Log reading with function: ", res.status code)
client = mqtt.Client()
client.on_connect = on_connect
client.on message = on message
client.connect("test.mosquitto.org", 1883, 60)
# Blocking call that processes network traffic, dispatches
callbacks and
# handles reconnecting.
# Other loop*() functions are available that give a threaded
interface and a
# manual interface.
client.loop forever()
```


- ≫ GS-Broker 테스트 환경 구성을 통한 기능 검증
 - ➡ MQTT Broker 데이터 송수신 모듈을 통한 GS-Broker 테스트 환경
 - THITPS 데이터 송수신 모듈을 통한 GS-Broker 테스트 환경(JSON)

GS-Broker 21년도 개발 계획

- **>>>** GS-Broker **프로토타입 기능 개발** (최종 목표 8종 이상)
 - ⇒이종 메시지 프로토콜(3종)을 지원하는 GS-Broker 프로토타입 기능 개발
 - 이종 메시지 프로토콜(3종)의 쉬운 연동 기능을 지원하는 플러그인 구조 설계 (기능 고도화)

GS-Broker 21년도 개발 계획

- **>>> 개발 결과물 공개를 위한** GitHub 활용 계획
 - ⇒ GEdge Platform 내 GS-Broker를 통하여 결과물 공유 예정
 - ⇒ Message Broker 기능 고도화 및 다종 프로토콜 연동 및 gRPC 기능검증

감사합니다.

http://gedge-platform.github.io

GEdge Platform 코어 개발자 김현우(hwkim@keti.re.kr)

Welcome to GEdge Platform

An Open Cloud Edge SW Plaform to enable Intelligent Edge Service

GEdge Platform will lead Cloud-Edge Collaboration