- (a) $|V \cdot W| \le ||V|| ||W||$;
- (b) $||V+W|| \le ||V|| + ||W||$; (Sugestão: mostre que $||V+W||^2 = (V+W) \cdot (V+W) \le (||V|| + ||W||)^2$, usando o item anterior)
- (c) $|||V|| ||W|| | \le ||V W||$. (Sugestão: defina U = V W e aplique o item anterior a U e W)
- 3.2.21. Sejam U_1 , U_2 e U_3 três vetores unitários mutuamente ortogonais. Se $A = [U_1, U_2, U_3]$ é uma matriz 3×3 cujas colunas são os vetores U_1 , U_2 e U_3 , então A é invertível e $A^{-1} = A^t$. (Sugestão: mostre que

3.3 Produtos Vetorial e Misto

3.3.1 Produto Vetorial

Vamos, agora, definir um produto entre dois vetores, cujo resultado é um vetor. Por isso, ele é chamado **produto vetorial**. Este produto tem aplicação, por exemplo, em Física: a força exercida sobre uma partícula com carga unitária mergulhada num campo magnético uniforme é o produto vetorial do vetor velocidade da partícula pelo vetor campo magnético.

V, de V, W_1 e $V - W_1$ e $V - W_1$, V - W e é agudo e à direita é obtuso. Figura 3.20. Triângulos formados por representantes de V, W e V $W-W_1$, em que $W_1=\operatorname{proj}_W V$. A esquerda o angulo entre V e W

Figura 3.21. Área de um paralelogramo determinado por dois vetores

Reginaldo J. Santos Julho 2014

Sejam V e W dois vetores no espaço. Se os vetores forem não nulos, definimos o **produto vetorial**, $V \times W$, como sendo o vetor com as seguintes características:

(a) Tem comprimento dado numericamente por

$$||V \times W|| = ||V|| ||W|| \operatorname{sen} \theta,$$

ou seja, a norma de $V \times W$ é numericamente igual à área do paralelogramo determinado por V e W.

- (b) Tem direção perpendicular a V e a W.
- (c) Tem o sentido dado pela regra da mão direita (Figura 3.22): Se o ângulo entre V e W é θ , giramos o vetor V de um ângulo θ até que coincida com W e acompanhamos este movimento com os dedos da mão direita, então o polegar vai apontar no sentido de $V \times W$.

Se um dos vetores for o vetor nulo, o produto vetorial, $V \times W$, é definido como sendo o vetor nulo.

3.3 Produtos Vetorial e Misto

Figura 3.22. Regra da mão direita

Julho 2014

Da forma como definimos o produto vetorial é difícil o seu cálculo, mas as propriedades que apresentaremos a seguir possibilitarão obter uma fórmula para o produto vetorial em termos das componentes dos vetores.

leorema 3.5. Sejam U, V e W vetores no espaço e α um escalar. São válidas as seguintes propriedades:

- (a) $V \times W = -(W \times V)$ (anti-comutatividade).
- (b) $V \times W = \overline{0}$ se, e somente se, $V = \alpha W$ ou $W = \alpha V$.
- (c) $(V \times W) \cdot V = (V \times W) \cdot W = 0$.
- (d) $\alpha(V \times W) = (\alpha V) \times W = V \times (\alpha W)$.
- (e) $V \times (W + U) = V \times W + V \times U$ e $(V + W) \times U = V \times U + W \times U$ (Distributividade em relação a soma de vetores).

Demonstração. (a) Pela definição do produto vetorial $V \times W$ e $W \times V$ têm o mesmo comprimento e a mesma direção. Além disso trocando-se V por W troca-se o sentido de $V \times W$ (Figura 3.22).

- $||V \times W|| = 0$ se, e somente se, um deles é o vetor nulo ou sen $\theta = 0$, em que θ é o ângulo entre V e W, ou seja, V e W são paralelos. Assim, $V \times W = \overline{0}$ se, e somente se, $V = \alpha W$ ou $W = \alpha V$.
- Segue-se imediatamente da definição do produto vetorial.

(d) Segue-se facilmente da definição do produto vetorial, por isso deixamos como exercício para o leitor.

(e) Este item será demonstrado no Apêndice III na página 203.

Reginaldo J. Santos

Julho 2014

Os vetores canônicos

$$\vec{i} = (1,0,0), \qquad \vec{j} = (0,1,0) \quad e \quad \vec{k} = (0,0,1)$$

são vetores unitários (de norma igual a um) paralelos aos eixos coordenados. Todo vetor

$$V=(v_1,v_2,v_3)$$

pode ser escrito como uma soma de múltiplos escalares de \vec{i}, \vec{j} e \vec{k} (combinação linear), pois

$$V = (v_1, v_2, v_3) = (v_1, 0, 0) + (0, v_2, 0) + (0, 0, v_3) =$$

$$= v_1(1, 0, 0) + v_2(0, 1, 0) + v_3(0, 0, 1) =$$

$$= v_1\vec{i} + v_2\vec{j} + v_3\vec{k}. \tag{3.9}$$

Da definição de produto vetorial podemos obter facilmente as seguintes relações:

$$\begin{split} \vec{i} \times \vec{i} &= \vec{0}, \quad \vec{j} \times \vec{j} = \vec{0}, \quad \vec{k} \times \vec{k} = \vec{0}, \\ \vec{i} \times \vec{j} &= \vec{k}, \quad \vec{j} \times \vec{k} = \vec{i}, \quad \vec{k} \times \vec{i} = \vec{j}, \\ \vec{j} \times \vec{i} &= -\vec{k}, \quad \vec{k} \times \vec{j} = -\vec{i}, \quad \vec{i} \times \vec{k} = -\vec{j}. \end{split}$$

Agora, estamos prontos para obter uma fórmula que dê o produto vetorial de dois vetores em termos das suas componentes.

Teorema 3.6. Sejam $V=(v_1,v_2,v_3)$ e $W=(w_1,w_2,w_3)$ vetores no espaço. Então o produto vetorial $V\times W$ é dado

$$V \times W = \left(\det \begin{bmatrix} v_2 & v_3 \\ w_2 & w_3 \end{bmatrix}, -\det \begin{bmatrix} v_1 & v_3 \\ w_1 & w_3 \end{bmatrix}, \det \begin{bmatrix} v_1 & v_2 \\ w_1 & w_2 \end{bmatrix} \right). \tag{3.10}$$

emonstração. De (3.9) segue-se que podemos escrever

$$V = v_1 \vec{i} + v_2 \vec{j} + v_3 \vec{k}$$
 e $W = w_1 \vec{i} + w_2 \vec{j} + w_3 \vec{k}$.

Assim, pela distributividade do produto vetorial em relação a soma, temos que

$$V \times W = (v_1 \vec{i} + v_2 \vec{j} + v_3 \vec{k}) \times (w_1 \vec{i} + w_2 \vec{j} + w_3 \vec{k})$$

$$= v_1 w_1 (\vec{i} \times \vec{i}) + v_1 w_2 (\vec{i} \times \vec{j}) + v_1 w_3 (\vec{i} \times \vec{k}) +$$

$$+ v_2 w_1 (\vec{j} \times \vec{i}) + v_2 w_2 (\vec{j} \times \vec{j}) + v_2 w_3 (\vec{j} \times \vec{k}) +$$

$$+ v_3 w_1 (\vec{k} \times \vec{i}) + v_3 w_2 (\vec{k} \times \vec{j}) + v_3 w_3 (\vec{k} \times \vec{k})$$

$$= (v_2 w_3 - v_3 w_2) \vec{i} + (v_3 w_1 - v_1 w_3) \vec{j} + (v_1 w_2 - v_2 w_1) \vec{k}$$

$$= \det \begin{bmatrix} v_2 & v_3 \\ w_2 & w_3 \end{bmatrix} \vec{i} - \det \begin{bmatrix} v_1 & v_3 \\ w_1 & w_3 \end{bmatrix} \vec{j} + \det \begin{bmatrix} v_1 & v_2 \\ w_1 & w_2 \end{bmatrix} \vec{k}$$

$$= \left(\det \begin{bmatrix} v_2 & v_3 \\ w_2 & w_3 \end{bmatrix} \cdot - \det \begin{bmatrix} v_1 & v_3 \\ w_1 & w_3 \end{bmatrix} \right) \cdot \det \begin{bmatrix} v_1 & v_2 \\ w_1 & w_2 \end{bmatrix} \right).$$

Para obter as componentes do produto vetorial $V \times W$ procedemos como se segue:

• Escreva a matriz:

$$\left[\begin{array}{cc}V\\W\end{array}\right] = \left[\begin{array}{cc}v_1 & v_2 & v_3\\w_1 & w_2 & w_3\end{array}\right];$$

• Para calcular a primeira componente de $V \times W$, elimine a primeira coluna da matriz acima e calcule o determinante da sub-matriz resultante. A segunda componente é obtida, eliminando-se a segunda coluna e calculando-se o determinante da sub-matriz resultante com o *sinal trocado*. A terceira é obtida como a primeira, mas eliminando-se a terceira coluna.

Exemplo 3.11. Sejam $V=\vec{i}+2\vec{j}-2\vec{k}$ e $W=3\vec{i}+\vec{k}$. Vamos determinar o produto vetorial $V\times W$. Como

$$\left[\begin{array}{c}V\\W\end{array}\right] = \left[\begin{array}{ccc}1&2&-2\\3&0&1\end{array}\right]'$$

ntão

$$V \times W = \left(\det \left[\begin{array}{cc} 2 & -2 \\ 0 & 1 \end{array} \right], -\det \left[\begin{array}{cc} 1 & -2 \\ 3 & 1 \end{array} \right], \det \left[\begin{array}{cc} 1 & 2 \\ 3 & 0 \end{array} \right] \right) = (2, -7, -6).$$

Usando os vetores \vec{i},\vec{j} e \vec{k} o produto vetorial $V \times W$, pode ser escrito em termos do "determinante"

$$V \times W = \det \begin{bmatrix} \overrightarrow{i} & \overrightarrow{j} & \overrightarrow{k} \\ v_1 & v_2 & v_3 \\ w_1 & w_2 & w_3 \end{bmatrix} = \det \begin{bmatrix} v_2 & v_3 \\ w_2 & w_3 \end{bmatrix} \overrightarrow{i} - \det \begin{bmatrix} v_1 & v_3 \\ w_1 & w_3 \end{bmatrix} \overrightarrow{j} + \det \begin{bmatrix} v_1 & v_2 \\ w_1 & w_2 \end{bmatrix} \overrightarrow{k}.$$

3.3 Produtos Vetorial e Misto

Figura 3.23. Área do triângulo PQR

Julho 2014

Vetores no Plano e no Espaço

Exemplo 3.12. Vamos calcular a área do triângulo PQR em que (Figura 3.23)

$$P = (3,2,0), Q = (0,4,3)$$
e $R = (1,0,2).$

Sejam

$$V = RP = (3 - 1, 2 - 0, 0 - 2) = (2, 2, -2)$$

$$W = \overrightarrow{RQ} = (0 - 1, 4 - 0, 3 - 2) = (-1, 4, 1).$$

Então,

$$V \times W = (10, 0, 10) = 10(1, 0, 1).$$

A área do triângulo PQR é a metade da área do paralelogramo com lados determinados por V e W. Assim,

Area =
$$\frac{1}{2}||V \times W|| = 5\sqrt{2}$$
.

3.3.2 Produto Misto

O produto $(V \times W) \cdot U$ é chamado **produto misto** de U, V e W. O resultado abaixo mostra como calcular o produto misto usando as componentes dos vetores.