Aufgabe 1

(i) Zu zeigen: u ist gleichmäßig stetig.

Beweis per Widerspruch. Angenommen, u ist nicht gleichmäßig stetig. Dann gäbe ein $\epsilon > 0$, sodass es für jedes $n \in \mathbb{N}$ zwei reelle Zahlen x_n, y_n gibt mit

$$|x_n - y_n| < \frac{1}{n}$$
 (*) und $|f(x_n) - f(y_n)| \ge \epsilon$ (**).

Wegen (*) gilt

$$\lim_{n \to \infty} x_n = \lim_{n \to \infty} y_n$$

Sei $\gamma := \lim_{n \to \infty} x_n$. Es gilt $\gamma \in \mathbb{R} \cup \{\infty\}$. Falls $\gamma \in \mathbb{R}$, so gilt

$$\lim_{n \to \infty} f(x_n) = f(\lim_{n \to \infty} x_n) = f(\gamma) = f(\lim_{n \to \infty} y_n) = \lim_{n \to \infty} f(y_n). \tag{*}$$

Falls $\gamma = \infty$, so gilt

$$\lim_{n \to \infty} f(x_n) = f(\lim_{n \to \infty} x_n) = 0 = f(\lim_{n \to \infty} y_n) = \lim_{n \to \infty} f(y_n). \tag{**}$$

Aussage (\star) , $(\star\star)$ stehen im Widerspruch zu $(\star\star)$, da wegen $\lim_{n\to\infty} f(x_n) = \lim_{n\to\infty} f(y_n)$ es einen Index $N \in \mathbb{N}$ geben muss mit

$$f(x_N) - f(y_N) < \epsilon$$
.

Aber $x_N - y_N < \frac{1}{N}$ nach (*). Demnach ist u gleichmäßig stetig.

Zu zeigen: u ist beschränkt.

Beweis. Wegen $\lim_{x\to\pm\infty} u(x) = 0$ gibt es ein $x_0 \in \mathbb{R}$, sodass

$$\forall x \ge x_0 : |u(x)| < 1 \text{ und } |u(-x)| < 1.$$

Zudem ist $u|_{[-x_0,x_0]}$ beschränkt nach Satz von Heine, da u stetig ist und $[-x_0,x_0]$ kompakt. Sei $M := \sup_{x \in [-x_0,x_0]} |u|$ und insbesondere ist $M \in \mathbb{R}$. Dann wird u durch $\max(1,M) \in \mathbb{R}$ beschränkt.

(ii) Zu zeigen: K ist eine Abbildung von X nach X.

Beweis. Sei $u \in X$ beliebig

• Zeige, dass Ku wohldefiniert ist. Es muss insbesondere $\int k(x-y)u(y)dy < \infty$ gelten, damit k(x-y)u(y)dy integrierbar ist. Da $k,u\in L^1$, ist $h_x(y):=u(y)k(x-y)$ messbar. Nun ist u beschränkt durch eine Konstante M, wie in Aufgabe 1(i) gezeigt wurde. Wegen $\int k(y)dy < \infty$ ist Mk eine Majorante von h_x ; es gilt also

$$|h_x| = |uk| \le Mk$$
 für alle $x \in \mathbb{R}$.

Daher ist $|h_x|$ integrierbar (nach der majorisierten Konvergenz) und somit auch h_x . Insbesondere ist

$$\forall x \in \mathbb{R} : (Ku)(x) \le M \int k(x-y)dy < \infty. \tag{1}$$

- Zeige, dass Ku stetig auf \mathbb{R} ist. Da $(Ku)(x) = \int h_x(y)dy$ und $h_x(y)$ für alle $x \in \mathbb{R}$ lebesgue integrierbar ist, ist Ku absolut stetig; daher auch stetig für alle x.
- Zeige, dass $(Ku)(x) \to 0$ für $x \to \pm \infty$. Aus der Analysis III Vorlesung ist bekannt:

$$k \in L^1 \implies k(y) \to 0 \quad \text{für} \quad y \to \pm \infty.$$
 (2)

Nun gibt es für $k_x(y) := k(x - y)$ eine Majorante mit k(y), da

$$\forall x \in \mathbb{R} : k_x(y) = k(x - y) \implies \forall x \in \mathbb{R} : |k_x| \le k.$$

Zudem ist $\lim_{y\to\pm\infty} k_x(y) = 0$ wegen (2). Es gilt nun mit der majorisierten Konvergenz:

$$\lim_{x \to \pm \infty} (Ku)(x) \stackrel{\text{Def.}}{=} \lim_{x \to \pm \infty} \int k(x-y)u(y)dy \stackrel{(1)}{\leq} M \lim_{x \to \pm \infty} \int k_x(y)dy$$
$$= M \int \lim_{x \to \pm \infty} k_x(y)dy$$
$$= M \int 0dy$$
$$= 0.$$

 $Zu\ zeigen:\ K$ ist linear.

Beweis. Sei $v \in X$.

$$\forall x \in \mathbb{R} : (K(u+v))(x) = \int k(x-y)(u+v)(y)dy = \int k(x-y)u(y)dy + \int k(x-y)u(y)dy$$
$$= (Ku)(x) + (Kv)(x).$$

Sei $\lambda \in \mathbb{R}$.

$$\forall x \in \mathbb{R} : K(\lambda u)(x) = \int k(x - y)\lambda u(y)dy = \lambda \int k(x - y)u(y)dy = \lambda (Ku)(x).$$

Zu zeigen: K ist beschränkt.

Beweis. Der lineare Operator $K: X \to X$ ist beschränkt, falls

$$\sup_{\|u\|_{\infty} \le 1} \|Ku\|_{\infty} < \infty.$$

Sei $v \in X$ mit $||v||_{\infty} \le 1$. Damit ist $|v(x)| \le 1$ für alle $x \in \mathbb{R}$. Es gilt

$$(Kv)(x) = \int_{\mathbb{R}} k(x-y)v(y)dy \le \int_{\mathbb{R}} k(x-y)dy = \int_{\mathbb{R}} k(y)dy < \infty.$$

Wir verwenden die Translationsinvarianz des Integrals sowie $k \in L^1$. Damit ist

$$\sup_{\|u\|_{\infty} \le 1} \|Ku\|_{\infty} \le \int_{\mathbb{R}} k(y) dy < \infty.$$

(iii) Zu zeigen: Für ein f hat die Gleichung u - Ku = f genau eine Lösung, falls $\int |k(x)| dx < 1$.

Beweis. Benutze den Banachschen Fixpunktsatz. Wir definieren den Operator $F: X \to X$ mit Fu := Ku + f für ein festes $f \in X$. Der lineare Operator F bildet X nach X ab, da $K: X \to X$ wie in 1(ii) gezeigt wurde und X ein Vektorraum ist, sodass $Ku + f \in X$ für jedes $u \in X$. Wir zeigen als nächstes, dass K eine Kontraktion ist. Es soll also ein $J \in [0,1)$ geben mit

$$\forall u, v \in X : ||Fu - Fv||_{\infty} \le J||u - v||_{\infty}$$

Es gilt für alle $x \in \mathbb{R}$ (im folgenden bezeichne \int immer $\int_{\mathbb{R}}$):

$$|(Fu-Fv)(x)| = |\int k(x-y)u(y) + f(x)dy - \int k(x-y)v(y) - f(x)dy|$$

$$= |\int k(x-y)(u-v)(y)dy|$$
 Dreiecksungleichung
$$\leq \int |k(x-y)(u-v)(y)|dy$$

Es gilt: $\forall x \in \mathbb{R} : (u - v)(x)| \leq ||u - v||_{\infty}$ und somit:

$$\leq \|u - v\|_{\infty} \int |k(x - y)| dy$$
 Translationsinvarianz
$$= \|u - v\|_{\infty} \underbrace{\int |k(y)| dy}_{\leq 1}$$

Daraus folgt, dass $||Fu - Fv||_{\infty} \leq \int |k(y)|dy||u - v||_{\infty}$ mit Kontraktionszahl $\int |k(y)|dy$. Der Banachsche Fixpunktsatz ist anwendbar und besagt, dass es genau ein u mit Fu = u gibt. Damit ergibt sich die Behauptung.

Aufgabe 2

Zeige, dass $u(x) = \alpha \int_a^b \sin(u(y)) dy + f(x)$ eine Lösung $u : \mathcal{C}([a,b]) \to \mathcal{C}([a,b])$ besitzt. Verwende dazu den Satz von Leray und Schauder. Definiere die Abbildung A mit

$$(Au)(x) := \alpha \int_a^b \sin(u(y))dy + f(x), \quad x \in [a, b].$$

Wir zeigen zuerst, dass A eine Abbildung von $\mathcal{C}([a,b])$ nach $\mathcal{C}([a,b])$ ist. Das ist klar, da \int_b^a : $\mathcal{C}([a,b]) \to \mathcal{C}([a,b])$ ein Operator ist, der auf konstante Abbildungen in $\mathcal{C}([a,b])$ abbildet. Da $f \in \mathcal{C}([a,b])$ und $\mathcal{C}([a,b])$ ein Vektorraum ist, gilt: $Au \in \mathcal{C}([a,b])$ für alle $u \in \mathcal{C}([a,b])$.

Wir zeigen weiter, dass A kompakt ist; das heißt, A ist stetig und bildet beschränkte Teilmengen von $\mathcal{C}[a,b]$ nach relativ kompakte Teilmengen von $\mathcal{C}([a,b])$ ab. Um die Stetigkeit von A zu beweisen, muss man nur die Stetigkeit des Integrals $\int_a^b : \mathcal{C}([a,b]) \to \mathcal{C}([a,b])$ und sin $: \mathcal{C}([a,b]) \to \mathcal{C}([a,b])$ zeigen. Das Integral ist stetig in $\mathcal{C}([a,b])$, denn sei $\epsilon > 0$ und sei $(u_k)_{k \in \mathbb{N}} \subset \mathcal{C}([a,b])$ mit

 $u_k \to u$. Wegen $u_k \to u$ gibt es ein $K \in \mathbb{N}$, sodass $||u_k - u||_{\infty} < \epsilon$ für alle $k \ge K$. Also gilt unter Ausnutzung der Dreiecksungleichung für das Integral:

$$\forall k \geq K : \| \int_a^b u_k(y) dy - \int_a^b u(y) dy \|_{\infty} = \| \int_a^b u_k(y) - u(y) dy \|_{\infty} \stackrel{(\triangle)}{\leq} \int_a^b \| u_k(y) - u(y) \|_{\infty} dy < \epsilon.$$

Die Abbildung sin ist stetig in $\mathcal{C}([a,b])$, da sin gleichmäßig stetig in [a,b] ist. Sei $\epsilon > 0$: Es gibt ein $k \geq K$, sodass jede Folge u_k mit $u_k \to u$ gilt:

$$\forall k \ge K : \|u_k - u\|_{\infty} < \epsilon.$$

Jedes einzelne Folgenglied u_k approximiert u auf [a,b] einen Fehler von höchstens ϵ . Also $u_k(x) \approx u(x)$ für jedes $x \in [a,b]$, bzw. $u_k(x) - \epsilon \leq u_k(x) \leq u_k(x) + \epsilon$. Wir machen das jetzt ein wenig informal: Wegen der Stetigkeit von sin ist der Approximationsfehler begrenzt durch ein $\xi \in \mathbb{R}$:

$$\|\sin(u_k(x)) - \sin(u(x))\|_{\infty} \approx \|\sin(u_k(x)) - \sin(u_k(x)) + \xi\|_{\infty} \to 0,$$

falls man nur genau genug approximiert, das heißt K nur genug groß wählt. Wir erhalten: Als Komposition von stetigen Funktionen ist $Au = \alpha \int_a^b \sin(u(y)) dy + f(x)$ stetig.

Nun zeige, dass A beschränkte Teilmengen von $\mathcal{C}([a,b])$ in relativ kompakte Teilmengen von $\mathcal{C}([a,b])$ überführt. Sei $\Phi \subset \mathcal{C}([a,b])$ und beschränkt. Das heißt, für alle $m \in \mathcal{C}([a,b])$ gibt es ein r > 0, sodass $\sup_{u \in \Phi} \|u - m\|_{\infty} < r$. Betrachte dann das Bild $A(\Phi) = \{Au : u \in \Phi\}$. Wir müssen jetzt zeigen, dass $A(\Phi)$ gleichmäßig beschränkt und gleichgradig stetig ist, damit $A(\Phi)$ relativ kompakt ist.

- $A(\Phi)$ ist gleichmäßig beschränkt, denn für die Nullabbildung $v \equiv 0$ gibt es ein r mit $\sup_{u \in \Phi} \|u v\|_{\infty} = \sup_{u \in \Phi} \|u\|_{\infty} < r$. Also ist $A(\Phi)$ relativ beschränkt.
- $A(\Phi)$ ist gleichgradig stetig, denn sei $\epsilon > 0$. Jedes $u \in A(\Phi)$ ist gleichmäßig stetig, da u stetig auf [a, b] ist. Für jedes u gibt es also ein gewissen $\delta(u)$, sodass gilt:

$$\forall x, y \in [a, b] : |x - y| < \delta(u) \implies |u(x) - u(y)| < \epsilon.$$

Definiere $\delta := \inf_{u \in A(\Phi)} \delta(u)$. Es bleibt noch zu zeigen, dass $\delta > 0$. Angenommen, es wäre $\delta = 0$. Dann gäbe es eine Folge von $(u_k)_{k \in \mathbb{N}}$ mit $\delta(u_k) \to 0$ für $k \to \infty$. Sei $l := \lim_{k \to \infty} u_k$. Da $\mathcal{C}([a,b])$ abgeschlossen ist, wäre $l \in \mathcal{C}([a,b])$, aber l ist nicht beschränkt in [a,b]! Widerspruch. Also ist $\delta > 0$ und es gilt

$$\forall u \in A(\Phi), \forall x, y \in [a, b] : |x - y| < \delta \implies |u(x) - u(y)| < \epsilon.$$

A ist eine kompakte Abbildung.

Sei $0 \le t < 1$. Betrachte eine Lösung u für

$$\forall x \in [a,b] : u(x) = t\alpha \int_a^b \sin u(y) dy + tf(x) \le t\alpha \int_a^b 1 dy + tf(x) \le t\alpha \Big((b-a) + f(x) \Big).$$

Nun ist f auf [a, b] beschränkt durch ein $M \in \mathbb{R}$, da $f \in \mathcal{C}([a, b])$. Also gilt für jede Lösung u die Abschätzung:

$$\forall x \in [a, b] : u(x) \le t\alpha ((b - a) + M).$$

Setze $r := \alpha \Big((b-a) + M \Big)$. Dann gilt für jede Lösung u der Gleichung u = tAu mit $t \in [0,1)$, dass $||u||_{\infty} \le r$. Also besitzt u = Au eine Lösung, was zu zeigen war.