Parte I

En esta primera parte, cada vez que se pida determinar una derivada, es necesario usar la definición y no las reglas usuales de derivación.

- 1. (a) Demostrar que si f(x) = 1/x, entonces $f'(a) = -1/a^2$ para $a \neq 0$.
 - (b) Demostrar que la recta tangente a la gráfica de f en (a, 1/a) no corta la gráfica de f más que en el punto (a, 1/a).
 - (c) Demostrar que si $h(x) = \sqrt{x}$, entonces $h'(a) = a^{-1/2}/2$ para a > 0.
 - (d) Si f(x) = |x|, hallar f' donde sea posible.
- **2.** Sea f una función derivable en el intervalo abierto (a,b) y $c \in \mathbb{R}$. En cada caso hallar g' en su respectivo dominio.

(a)
$$g(x) = f(x+c)$$
. (b) $g(x) = f(cx)$. (c) $g(x) = f(x)^2$.

3. Sea f una función derivable en a. Demostrar que $f'(a) = \lim_{x \to a} \frac{f(x) - f(a)}{x - a}$.

Parte II

A partir de ahora sí es posible usar las reglas usuales, aunque en algunos casos será necesario usar también la definición.

4. Calcular f', donde f(x) viene dada por cada una de las siguientes expresiones.

(a)
$$3x^4 + 5x^3 - \pi x$$
.
(b) $(x^3 + 3)(2x^2 - 1)$.
(c) $\frac{x^3}{x^2 + 1}$.
(d) $\tan(x)$.
(e) $(x^3 - 2x + 1)^8$.
(f) $x^2 \cos(1/x)$.
(g) $(\tan(4x^2 + 1))^{\frac{4}{3}}$.
(h) $\cos(x \sin(x))$.
(i) $\cos(\sqrt{x^4 + 7})$.
(j) $\frac{1 + \sqrt{\sin(3x)}}{1 - x + x^5}$
(k) $\frac{\sin(\sin^7(x))}{x}$.
(l) $\frac{1}{x + \sqrt{x^2 + 1}}$.

- 5. (a) Sea h una función tal que $|h(x)| \le x^2$ para todo x. Demostrar que h es derivable en 0 y calcular h'(0).
 - (b) Probar que la función

$$g(x) = \begin{cases} x^2 \operatorname{sen}(1/x) & \text{si } x \neq 0, \\ 0 & \text{si } x = 0, \end{cases}$$

es derivable en todo $\mathbb{R}.$ Además, calcular g' y probar que no es continua en 0.

6. Calcular $f^{(n)}(x)$ para todo $n \in \mathbb{N}$ de las siguientes funciones.

(a)
$$f(x) = x^{10}$$
. (b) $f(x) = \cos(x)$. (c) $f(x) = 1/x$. (d) $f(z) = \sqrt{z}$.

7. En cada uno de los siguientes casos encontrar la ecuación de la recta tangente a la curva dada en el punto (x_0, y_0) indicado.

(a)
$$\begin{cases} y = 1 - 2x - 3x^2, \\ (x_0, y_0) = (-2, -7). \end{cases}$$
 (b)
$$\begin{cases} y = \frac{1}{\sqrt{x}}, \\ (x_0, y_0) = (1, 1). \end{cases}$$
 (c)
$$\begin{cases} y = \frac{x}{1 - x}, \\ (x_0, y_0) = (0, 0). \end{cases}$$

Primer Cuatrimestre — 2024, FaMAF - UNC

8. Decir en qué puntos es derivable la función

$$f(x) = \begin{cases} 0 & \text{si } x \le -1, \\ x^2 & \text{si } |x| < 1, \\ 2x + 1 & \text{si } 1 \le x \le 2, \\ 7 - x & \text{si } x > 2. \end{cases}$$

- 9. (a) Supongamos que f(x) = xg(x) para alguna función g que es continua en 0. Demostrar que f es derivable en 0, y hallar f'(0) en términos de g.
 - (b) Supongamos que f es derivable en 0, y que f(0) = 0. Demostrar que f(x) = xg(x) para alguna función g continua en 0.
- 10. Decir si las siguientes afirmaciones son verdaderas o falsas. Justificar.
 - (a) Si f + g es derivable en a, entonces f y g son derivables en a.
 - (b) Si fg es derivable en a, entonces f y g son derivables en a.
 - (c) Si f es derivable en a y $f(a) \neq 0$, entonces |f| es derivable en a.
 - (d) Existe una función continua en R que no es derivable en una cantidad infinita de puntos.
 - (e) Existe una función continua en \mathbb{R} que es derivable en 0 y no lo es en cualquier intervalo abierto que contiene al 0.
 - (f) Dados a < b, toda función continua en [a,b] y derivable en (a,b), se extiende a una función derivable en todo \mathbb{R} . (Para este ítem, considere continuidad lateral en los bordes, i.e. $\lim_{x \to a} f(x) = f(a)$ y $\lim_{x \to b} f(x) = f(b)$).
- 11. Determinar $(f^{-1})'(d)$ en los siguientes casos.
 - (a) $f(x) = x^5 + 2$, d = 1.
 - (b) $f(x) = \sqrt{4-x}$, d = 3.
 - (c) $f(x) = \tan(2x)$, $-\frac{\pi}{4} < x < \frac{\pi}{4}$, d = 1.
- 12. (a) Se define la función $\arcsin(s): [-1,1] \mapsto [-\pi/2,\pi/2]$ como la inversa de la función $\sin(x)$ restringida al intervalo $[-\pi/2,\pi/2]$. Demuestre que $\arcsin'(s) = \frac{1}{\sqrt{1-s^2}}$.
 - (b) Análogamente se define $\arccos(s): [-1,1] \mapsto [0,\pi]$. Demuestre que $\arccos'(s) = \frac{-1}{\sqrt{1-s^2}}$.
 - (c) Se define ahora $\arctan(s): \mathbb{R} \mapsto [-\pi/2, \pi/2]$ como la inversa de la función $\tan(x)$ restringida al intervalo $[-\pi/2, \pi/2]$. Demuestre que $\arctan'(s) = \frac{1}{1+s^2}$.

PARTE III

En esta parte hay problemas que utiliza la derivada y su significado con aplicaciones a la física y la economía.

- 13. El desplazamiento en metros de una partícula que se mueve en línea recta está dado por la ecuación de movimiento $s=4t^3+6t+2$, en donde t se mide en segundos. Encuentre la velocidad de la partícula en los tiempos $t=a,\ t=1,\ t=2$ y t=3.
- 14. El costo (en pesos) de producción de cierto artículo es $c(x) = 5000 + 10x + 0,05x^2$.
 - (a) Encuentre la razón de cambio medio de c respecto de x cuando el nivel de producción cambia de la siguiente manera:

- (I) de x = 100 a x = 105.
- (II) de x = 100 a x = 101.
- (b) Encuentre la razón de cambio instantánea de c respecto de x cuando x = 100. (A esta razón se la llama costo marginal.)
- 15. Si se lanza una pelota verticalmente hacia arriba con una velocidad de 80 metros/seg, entonces su altura después de t segundos es $s = 80t 16t^2$.
 - (a) ¿Cuál es la altura máxima alcanzada por la pelota?
 - (b) ¿Cuál es la velocidad de la pelota cuando se encuentra a una altura de 96 metros sobre el nivel del suelo y se dirige hacia arriba? Idem si se dirige hacia abajo.

PARTE IV: EJERCICIOS EXTRA

- **16.** (a) Demostrar usando la definición de derivada que si $g(x) = 1/x^2$, entonces $g'(a) = -2/a^3$ para $a \neq 0$.
 - (b) Demostrar que la tangente a la gráfica de g en $(a,1/a^2)$ corta a la gráfica de g en otro punto.
- 17. Encontrar un polinomio P de segundo grado tal que P(2) = 5, P'(2) = 3 y P''(2) = 2.
- **18.** Considerar la función biyectiva $f: \mathbb{R} \to \mathbb{R}$ dada por $f(x) = 6 x x^3$. Hallar la pendiente de la recta tangente a la gráfica de f^{-1} en el punto (-4, 2).