FCC §1.1310 & §2.1091 –MAXIMUM PERMISSIBLE EXPOSURE (MPE)

Report No.: RSHA180814001-00C

Applicable Standard

According to subpart §2.1091 and subpart §1.1310, systems operating under the provisions of this section shall be operated in a manner that ensures that the public is not exposed to radio frequency energy level in excess of the Commission's guidelines.

Limits for Maximum Permissible Exposure (MPE) (§1.1310, §2.1091)

(B) Limits for General Population/Uncontrolled Exposure											
Frequency Range (MHz)	Electric Field Strength (V/m)			Averaging Time (minutes)							
0.3-1.34	614	1.63	*(100)	30							
1.34-30	824/f	2.19/f	*(180/f ²)	30							
30-300	27.5	0.073	0.2	30							
300-1500	/	/	f/1500	30							
1500-100,000	/	/	1.0	30							

f = frequency in MHz; * = Plane-wave equivalent power density;

According to §1.1310 and §2.1091 RF exposure is calculated.

Calculated Formulary:

Predication of MPE limit at a given distance

 $S = PG/4\pi R^2 = power density (in appropriate units, e.g. mW/cm^2);$

P = power input to the antenna (in appropriate units, e.g., mW);

G = power gain of the antenna in the direction of interest relative to an isotropic radiator, the power gain factor, is normally numeric gain;

R = distance to the center of radiation of the antenna (appropriate units, e.g., cm);

For simultaneously transmit system, the calculated power density should comply with:

$$\sum_{i} \frac{S_{i}}{S_{Limit,i}} \le 1$$

Calculated Data:

Mode	Frequency Range	Antenna Gain		Tune-up Conducted Power		Evaluation Distance	Power Density	MPE Limit	MPE ratio
	(MHz)	(dBi)	(numeric)	(dBm)	(mW)	(cm)	(mW/cm ²)	(mW/cm ²)	
BT 3.0	2402-2480	0.00	1.00	7.50	5.62	20	0.0011	1.0	0.0011
LTE	3652.5-3697.5	14.00	25.12	18.00	63.10	20	0.3153	1.0	0.3153

FCC Part 90 Page 11 of 52

Note:

- 1. The tune-up conducted power was declared by the manufacturer.
- 2. BT and LTE can transmit simultaneously, and the worst condition is as below:

Report No.: RSHA180814001-00C

$$\sum_{i} \frac{S_{i}}{S_{Limit,i}} = 0.0011 + 0.3153 = 0.3164 < 1.0$$

Result: The device meet FCC MPE at 20 cm distance.

FCC Part 90 Page 12 of 52