MQCPack

Generated by Doxygen 1.8.16

1 Modules Index	1
1.1 Modules List	. 1
2 Data Type Index	3
2.1 Class Hierarchy	. 3
3 Data Type Index	5
3.1 Data Types List	. 5
4 File Index	7
4.1 File List	. 7
5 Module Documentation	9
5.1 mgc algebra Module Reference	. 9
5.1.1 Function/Subroutine Documentation	
5.1.1.1 bin_coeff()	
5.1.1.2 factorial()	
5.1.1.3 matrix_symm2sq_complex()	
5.1.1.4 matrix_symm2sq_integer()	
5.1.1.5 matrix symm2sq real()	
5.1.1.6 mgc allocate matrix()	
5.1.1.7 mqc_allocate_r4tensor()	
5.1.1.8 mqc_allocate_scalar()	. 19
5.1.1.9 mqc_allocate_vector()	. 19
5.1.1.10 mqc_complexscalaradd()	
5.1.1.11 mqc_complexscalardivide()	. 20
5.1.1.12 mqc_complexscalarmultiply()	. 20
5.1.1.13 mqc_complexscalarsubtract()	. 20
5.1.1.14 mqc_complexvectorproduct()	. 20
5.1.1.15 mqc_crossproduct()	. 20
5.1.1.16 mqc_deallocate_matrix()	. 21
5.1.1.17 mqc_deallocate_r4tensor()	. 21
5.1.1.18 mqc_deallocate_scalar()	. 21
5.1.1.19 mqc_deallocate_vector()	. 21
5.1.1.20 mqc_elementmatrixdivide()	. 22
5.1.1.21 mqc_elementmatrixproduct()	. 22
5.1.1.22 mqc_elementvectorproduct()	. 22
5.1.1.23 mqc_givens_matrix()	. 22
5.1.1.24 mqc_input_complex_scalar()	. 22
5.1.1.25 mqc_input_integer_scalar()	. 23
5.1.1.26 mqc_input_real_scalar()	. 24

5.1.1.27 mqc_integergtscalar()	 24
5.1.1.28 mqc_integerlescalar()	 25
5.1.1.29 mqc_integerscalaradd()	 25
5.1.1.30 mqc_integerscalardivide()	 26
5.1.1.31 mqc_integerscalarmultiply()	 26
5.1.1.32 mqc_integerscalarsubtract()	 26
5.1.1.33 mqc_integervectorproduct()	 26
5.1.1.34 mqc_length_vector()	 26
5.1.1.35 mqc_matrix_cast_complex()	 26
5.1.1.36 mqc_matrix_cast_real()	 27
5.1.1.37 mqc_matrix_columns()	 27
5.1.1.38 mqc_matrix_conjugate_transpose()	 27
5.1.1.39 mqc_matrix_copy_complex2int()	 27
5.1.1.40 mqc_matrix_copy_complex2real()	 27
5.1.1.41 mqc_matrix_copy_int2complex()	 27
5.1.1.42 mqc_matrix_copy_int2real()	 28
5.1.1.43 mqc_matrix_copy_real2complex()	 28
5.1.1.44 mqc_matrix_copy_real2int()	 28
5.1.1.45 mqc_matrix_determinant()	 28
5.1.1.46 mqc_matrix_diag2full()	 28
5.1.1.47 mqc_matrix_diag2symm()	 28
5.1.1.48 mqc_matrix_diagmatrix_put_complex()	 29
5.1.1.49 mqc_matrix_diagmatrix_put_integer()	 29
5.1.1.50 mqc_matrix_diagmatrix_put_real()	 29
5.1.1.51 mqc_matrix_diagmatrix_put_vector()	 29
5.1.1.52 mqc_matrix_diagonalize()	 29
5.1.1.53 mqc_matrix_full2diag()	 29
5.1.1.54 mqc_matrix_full2symm()	 30
5.1.1.55 mqc_matrix_generalized_eigensystem()	 30
5.1.1.56 mqc_matrix_havecomplex()	 30
5.1.1.57 mqc_matrix_havediagonal()	 30
5.1.1.58 mqc_matrix_havefull()	 30
5.1.1.59 mqc_matrix_haveinteger()	 30
5.1.1.60 mqc_matrix_havereal()	 31
5.1.1.61 mqc_matrix_havesymmetric()	 31
5.1.1.62 mqc_matrix_identity()	 31
5.1.1.63 mqc_matrix_initialize()	 31
5.1.1.64 mqc_matrix_inverse()	 31
5.1.1.65 mgc matrix isallocated()	 31

5.1.1.66 mqc_matrix_matrix_at()
5.1.1.67 mqc_matrix_matrix_contraction()
5.1.1.68 mqc_matrix_matrix_put()
5.1.1.69 mqc_matrix_norm()
5.1.1.70 mqc_matrix_rms_max()
5.1.1.71 mqc_matrix_rows()
5.1.1.72 mqc_matrix_scalar_at()
5.1.1.73 mqc_matrix_scalar_put()
5.1.1.74 mqc_matrix_set()
5.1.1.75 mqc_matrix_sqrt()
5.1.1.76 mqc_matrix_storagetype()
5.1.1.77 mqc_matrix_svd()
5.1.1.78 mqc_matrix_symm2diag()
5.1.1.79 mqc_matrix_symm2full()
5.1.1.80 mqc_matrix_symm2full_func()
5.1.1.81 mqc_matrix_symmetrize()
5.1.1.82 mqc_matrix_symmmatrix_put_complex()
5.1.1.83 mqc_matrix_symmmatrix_put_integer()
5.1.1.84 mqc_matrix_symmmatrix_put_real()
5.1.1.85 mqc_matrix_symmsymmr4tensor_put_complex()
5.1.1.86 mqc_matrix_symmsymmr4tensor_put_real()
5.1.1.87 mqc_matrix_test_diagonal()
5.1.1.88 mqc_matrix_test_symmetric()
5.1.1.89 mqc_matrix_trace()
5.1.1.90 mqc_matrix_transpose()
5.1.1.91 mqc_matrix_vector_at()
5.1.1.92 mqc_matrix_vector_put()
5.1.1.93 mqc_matrixmatrixdotproduct()
5.1.1.94 mqc_matrixmatrixproduct()
5.1.1.95 mqc_matrixmatrixsubtract()
5.1.1.96 mqc_matrixmatrixsum()
5.1.1.97 mqc_matrixscalarproduct()
5.1.1.98 mqc_matrixvectordotproduct()
5.1.1.99 mqc_outer()
5.1.1.100 mqc_output_complex_scalar()
5.1.1.101 mqc_output_integer_scalar()
5.1.1.102 mqc_output_mqcscalar_scalar()
5.1.1.103 mqc_output_real_scalar()
5.1.1.104 mqc_print_matrix_algebra1()

5.1.1.105 mqc_print_r4tensor_algebra1()
5.1.1.106 mqc_print_scalar_algebra1()
5.1.1.107 mqc_print_vector_algebra1()
5.1.1.108 mqc_r4tensor_at()
5.1.1.109 mqc_r4tensor_havecomplex()
5.1.1.110 mqc_r4tensor_haveinteger()
5.1.1.111 mqc_r4tensor_havereal()
5.1.1.112 mqc_r4tensor_initialize()
5.1.1.113 mqc_r4tensor_put()
5.1.1.114 mqc_realgtscalar()
5.1.1.115 mqc_reallescalar()
5.1.1.116 mqc_realltscalar()
5.1.1.117 mqc_realscalaradd()
5.1.1.118 mqc_realscalardivide()
5.1.1.119 mqc_realscalarmultiply()
5.1.1.120 mqc_realscalarsubtract()
5.1.1.121 mqc_realvectorproduct()
5.1.1.122 mqc_scalar_acos()
5.1.1.123 mqc_scalar_asin()
5.1.1.124 mqc_scalar_atan()
5.1.1.125 mqc_scalar_atan2()
5.1.1.126 mqc_scalar_cmplx()
5.1.1.127 mqc_scalar_complex_conjugate()
5.1.1.128 mqc_scalar_complex_imagpart()
5.1.1.129 mqc_scalar_complex_realpart()
5.1.1.130 mqc_scalar_cos()
5.1.1.131 mqc_scalar_get_abs_value()
5.1.1.132 mqc_scalar_get_intrinsic_complex()
5.1.1.133 mqc_scalar_get_intrinsic_integer()
5.1.1.134 mqc_scalar_get_intrinsic_real()
5.1.1.135 mqc_scalar_get_random_value()
5.1.1.136 mqc_scalar_havecomplex()
5.1.1.137 mqc_scalar_haveinteger()
5.1.1.138 mqc_scalar_havereal()
5.1.1.139 mqc_scalar_isallocated()
5.1.1.140 mqc_scalar_sin()
5.1.1.141 mqc_scalar_sqrt()
5.1.1.142 mqc_scalar_tan()
5.1.1.143 mqc_scalaradd()

5.1.1.144 mqc_scalarcomplexadd()
5.1.1.145 mqc_scalarcomplexdivide()
5.1.1.146 mqc_scalarcomplexexponent()
5.1.1.147 mqc_scalarcomplexmultiply()
5.1.1.148 mqc_scalarcomplexsubtract()
5.1.1.149 mqc_scalardivide()
5.1.1.150 mqc_scalareq()
5.1.1.151 mqc_scalarexponent()
5.1.1.152 mqc_scalarge()
5.1.1.153 mqc_scalargt()
5.1.1.154 mqc_scalargtinteger()
5.1.1.155 mqc_scalargtreal()
5.1.1.156 mqc_scalarintegeradd()
5.1.1.157 mqc_scalarintegerdivide()
5.1.1.158 mqc_scalarintegerexponent()
5.1.1.159 mqc_scalarintegermultiply()
5.1.1.160 mqc_scalarintegersubtract()
5.1.1.161 mqc_scalarle()
5.1.1.162 mqc_scalarleinteger()
5.1.1.163 mqc_scalarlereal()
5.1.1.164 mqc_scalarlt()
5.1.1.165 mqc_scalarItreal()
5.1.1.166 mqc_scalarmatrixproduct()
5.1.1.167 mqc_scalarmultiply()
5.1.1.168 mqc_scalarne()
5.1.1.169 mqc_scalarrealadd()
5.1.1.170 mqc_scalarrealdivide()
5.1.1.171 mqc_scalarrealexponent()
5.1.1.172 mqc_scalarrealmultiply()
5.1.1.173 mqc_scalarrealsubtract()
5.1.1.174 mqc_scalarsubtract()
5.1.1.175 mqc_scalarvectordifference()
5.1.1.176 mqc_scalarvectorproduct()
5.1.1.177 mqc_scalarvectorsum()
5.1.1.178 mqc_set_array2tensor()
5.1.1.179 mqc_set_array2vector_complex()
5.1.1.180 mqc_set_array2vector_integer()
5.1.1.181 mqc_set_array2vector_real()
5.1.1.182 mqc_set_complexarray2matrix()

5.1.1.183 mqc_set_integerarray2matrix()
5.1.1.184 mqc_set_matrix2complexarray()
5.1.1.185 mqc_set_matrix2integerarray()
5.1.1.186 mqc_set_matrix2matrix()
5.1.1.187 mqc_set_matrix2realarray()
5.1.1.188 mqc_set_realarray2matrix()
5.1.1.189 mqc_set_vector2complexarray()
5.1.1.190 mqc_set_vector2integerarray()
5.1.1.191 mqc_set_vector2realarray()
5.1.1.192 mqc_set_vector2vector()
5.1.1.193 mqc_vector2diagmatrix()
5.1.1.194 mqc_vector_abs()
5.1.1.195 mqc_vector_argsort()
5.1.1.196 mqc_vector_cast_complex()
5.1.1.197 mqc_vector_cast_real()
5.1.1.198 mqc_vector_cmplx()
5.1.1.199 mqc_vector_complex_imagpart()
5.1.1.200 mqc_vector_complex_realpart()
5.1.1.201 mqc_vector_conjugate_transpose()
5.1.1.202 mqc_vector_copy_complex2int()
5.1.1.203 mqc_vector_copy_complex2real()
5.1.1.204 mqc_vector_copy_int2complex()
5.1.1.205 mqc_vector_copy_int2real()
5.1.1.206 mqc_vector_copy_real2complex()
5.1.1.207 mqc_vector_copy_real2int()
5.1.1.208 mqc_vector_havecomplex()
5.1.1.209 mqc_vector_haveinteger()
5.1.1.210 mqc_vector_havereal()
5.1.1.211 mqc_vector_initialize()
5.1.1.212 mqc_vector_isallocated()
5.1.1.213 mqc_vector_iscolumn()
5.1.1.214 mqc_vector_maxloc()
5.1.1.215 mqc_vector_maxval()
5.1.1.216 mqc_vector_minloc()
5.1.1.217 mqc_vector_minval()
5.1.1.218 mqc_vector_norm()
5.1.1.219 mqc_vector_pop()
5.1.1.220 mqc_vector_power()
5.1.1.221 mqc_vector_push()

5.1.1.222 mqc_vector_scalar_at()	 80
5.1.1.223 mqc_vector_scalar_increment()	 80
5.1.1.224 mqc_vector_scalar_put()	 80
5.1.1.225 mqc_vector_shift()	 80
5.1.1.226 mqc_vector_sort()	 81
5.1.1.227 mqc_vector_sqrt()	 81
5.1.1.228 mqc_vector_transpose()	 81
5.1.1.229 mqc_vector_unshift()	 81
5.1.1.230 mqc_vector_at()	
5.1.1.231 mqc_vector_put()	 81
5.1.1.232 mqc_vectorcomplexdivide()	 82
5.1.1.233 mqc_vectorcomplexproduct()	 82
5.1.1.234 mqc_vectorintegerdivide()	 82
5.1.1.235 mqc_vectorintegerproduct()	 82
5.1.1.236 mqc_vectormatrixdotproduct()	 82
5.1.1.237 mqc_vectorrealdivide()	 82
5.1.1.238 mqc_vectorrealproduct()	 83
5.1.1.239 mqc_vectorscalardivide()	 83
5.1.1.240 mqc_vectorscalarproduct()	 83
5.1.1.241 mqc_vectorvectordifference()	 83
5.1.1.242 mqc_vectorvectordotproduct()	 83
5.1.1.243 mqc_vectorvectorsum()	 83
5.1.1.244 symindexhash()	 84
5.2 mqc_est Module Reference	 84
5.2.1 Function/Subroutine Documentation	 86
5.2.1.1 gen_det_str()	 86
5.2.1.2 get_one_gamma_matrix()	 86
5.2.1.3 mqc_build_ci_hamiltonian()	 86
5.2.1.4 mqc_eigenvalue_eigenvalue_dotproduct()	 87
5.2.1.5 mqc_eigenvalues_add_name()	 87
5.2.1.6 mqc_eigenvalues_allocate()	 87
5.2.1.7 mqc_eigenvalues_array_name()	 87
5.2.1.8 mqc_eigenvalues_array_type()	 87
5.2.1.9 mqc_eigenvalues_at()	 87
5.2.1.10 mqc_eigenvalues_dimension()	 88
5.2.1.11 mqc_eigenvalues_eigenvalues_multiply()	 88
5.2.1.12 mqc_eigenvalues_has_alpha()	 88
5.2.1.13 mqc_eigenvalues_has_beta()	 88
5.2.1.14 mqc_eigenvalues_integral_multiply()	 88

5.2.1.15 mqc_eigenvalues_isallocated()
5.2.1.16 mqc_eigenvalues_output_array()
5.2.1.17 mqc_eigenvalues_output_block()
5.2.1.18 mqc_eri_integral_contraction()
5.2.1.19 mqc_integral_add_name()
5.2.1.20 mqc_integral_allocate()
5.2.1.21 mqc_integral_array_name()
5.2.1.22 mqc_integral_array_type()
5.2.1.23 mqc_integral_at()
5.2.1.24 mqc_integral_conjugate_transpose()
5.2.1.25 mqc_integral_delete_energy_list()
5.2.1.26 mqc_integral_difference()
5.2.1.27 mqc_integral_dimension()
5.2.1.28 mqc_integral_eigenvalues_multiply()
5.2.1.29 mqc_integral_get_energy_list()
5.2.1.30 mqc_integral_has_alpha()
5.2.1.31 mqc_integral_has_alphabeta()
5.2.1.32 mqc_integral_has_beta()
5.2.1.33 mqc_integral_has_betaalpha()
5.2.1.34 mqc_integral_identity()
5.2.1.35 mqc_integral_initialize()
5.2.1.36 mqc_integral_multiply()
5.2.1.37 mqc_integral_isallocated()
5.2.1.38 mqc_integral_matrix_multiply()
5.2.1.39 mqc_integral_norm()
5.2.1.40 mqc_integral_output_array()
5.2.1.41 mqc_integral_output_block()
5.2.1.42 mqc_integral_output_orbitals()
5.2.1.43 mqc_integral_scalar_multiply()
5.2.1.44 mqc_integral_set_energy_list()
5.2.1.45 mqc_integral_sum()
5.2.1.46 mqc_integral_swap_orbitals()
5.2.1.47 mqc_integral_transpose()
5.2.1.48 mqc_matrix_integral_multiply()
5.2.1.49 mqc_matrix_spinblockghf()
5.2.1.50 mqc_matrix_undospinblockghf_eigenvalues()
5.2.1.51 mqc_matrix_undospinblockghf_integral()
5.2.1.52 mqc_print_eigenvalues()
5.2.1.53 mqc_print_integral()

	5.2.1.54 mqc_print_twoeris()	6
	5.2.1.55 mqc_print_wavefunction()	6
	5.2.1.56 mqc_scalar_integral_multiply()	6
	5.2.1.57 mqc_scf_eigenvalues_power()	6
	5.2.1.58 mqc_scf_integral_contraction()	7
	5.2.1.59 mqc_scf_integral_determinant()	7
	5.2.1.60 mqc_scf_integral_diagonalize()	7
	5.2.1.61 mqc_scf_integral_generalized_eigensystem() 9	7
	5.2.1.62 mqc_scf_integral_inverse()	7
	5.2.1.63 mqc_scf_integral_trace()	7
	5.2.1.64 mqc_scf_transformation_matrix()	8
	5.2.1.65 mqc_twoeris_allocate()	8
	5.2.1.66 mqc_twoeris_at()	8
	5.2.1.67 slater_condon()	8
	5.2.1.68 twoeri_trans()	9
2	Data Type Documentation 10	
0	6.1 mgc algebra::abs Interface Reference	
	6.1.1 Member Function/Subroutine Documentation	
	6.1.1 mqc_scalar_get_abs_value()	
	6.1.1.1 mqc_scalar_get_abs_value()	
	6.2 mqc_algebra::acos Interface Reference	
	6.2.1 Member Function/Subroutine Documentation	
	6.2.1 Member Function/Subroutine Documentation	
	6.3 mqc_algebra::aimag Interface Reference	
	6.3.1 Member Function/Subroutine Documentation	
	6.3.1.1 mqc_scalar_complex_imagpart()	
	6.3.1.2 mgc_vector_complex_imagpart()	
	6.4 mgc algebra::asin Interface Reference	
	6.4.1 Member Function/Subroutine Documentation	
	6.4.1.1 mqc_scalar_asin()	
	6.5 mqc_algebra::assignment(=) Interface Reference	
	6.5.1 Member Function/Subroutine Documentation	
	6.5.1.1 mgc_input_complex_scalar()	
	6.5.1.2 mqc_input_integer_scalar()	
	6.5.1.3 mqc_input_real_scalar()	
	6.5.1.4 mqc_output_complex_scalar()	
	6.5.1.5 mqc_output_integer_scalar()	
	6.5.1.6 mgc_output_mgcscalar scalar()	
	0.7 (0.000, 0.000) (0.00564) (8.444)	

6.5.1.7 mqc_output_real_scalar()	9
6.5.1.8 mqc_set_array2tensor()	0
6.5.1.9 mqc_set_array2vector_complex()	0
6.5.1.10 mqc_set_array2vector_integer()	0
6.5.1.11 mqc_set_array2vector_real()	1
6.5.1.12 mqc_set_complexarray2matrix()	1
6.5.1.13 mqc_set_integerarray2matrix()	1
6.5.1.14 mqc_set_matrix2complexarray()	1
6.5.1.15 mqc_set_matrix2integerarray()	1
6.5.1.16 mqc_set_matrix2matrix()	1
6.5.1.17 mqc_set_matrix2realarray()	2
6.5.1.18 mqc_set_realarray2matrix()	2
6.5.1.19 mqc_set_vector2complexarray()	2
6.5.1.20 mqc_set_vector2integerarray()	2
6.5.1.21 mqc_set_vector2realarray()	2
6.5.1.22 mqc_set_vector2vector()	2
6.6 mqc_est::assignment(=) Interface Reference	3
6.6.1 Member Function/Subroutine Documentation	3
6.6.1.1 mqc_eigenvalues_output_array()	3
6.6.1.2 mqc_integral_output_array()	3
6.7 mqc_algebra::atan Interface Reference	3
6.7.1 Member Function/Subroutine Documentation	3
6.7.1.1 mqc_scalar_atan()	3
6.8 mqc_algebra::atan2 Interface Reference	4
6.8.1 Member Function/Subroutine Documentation	4
6.8.1.1 mqc_scalar_atan2()	4
6.9 mqc_algebra::cmplx Interface Reference	5
6.9.1 Member Function/Subroutine Documentation	5
6.9.1.1 mqc_scalar_cmplx()	5
6.9.1.2 mqc_vector_cmplx()	6
6.10 mqc_algebra::conjg Interface Reference	6
6.10.1 Member Function/Subroutine Documentation	6
6.10.1.1 mqc_scalar_complex_conjugate()	7
6.11 mqc_algebra::contraction Interface Reference	7
6.11.1 Member Function/Subroutine Documentation	7
6.11.1.1 mqc_matrix_matrix_contraction()	7
6.12 mqc_est::contraction Interface Reference	7
6.12.1 Member Function/Subroutine Documentation	7
6.12.1.1 mgc_eri_integral_contraction()	8

6.12.1.2 mqc_scf_integral_contraction()
6.13 mqc_algebra::cos Interface Reference
6.13.1 Member Function/Subroutine Documentation
6.13.1.1 mqc_scalar_cos()
6.14 mqc_algebra::dagger Interface Reference
6.14.1 Member Function/Subroutine Documentation
6.14.1.1 mqc_matrix_conjugate_transpose()
6.14.1.2 mqc_vector_conjugate_transpose()
6.15 mqc_est::dagger Interface Reference
6.15.1 Member Function/Subroutine Documentation
6.15.1.1 mqc_integral_conjugate_transpose()
6.16 mqc_algebra::dot_product Interface Reference
6.16.1 Member Function/Subroutine Documentation
6.16.1.1 mqc_vectorvectordotproduct()
6.17 mqc_est::dot_product Interface Reference
6.17.1 Member Function/Subroutine Documentation
6.17.1.1 mqc_eigenvalue_eigenvalue_dotproduct()
6.18 mqc_algebra::matmul Interface Reference
6.18.1 Member Function/Subroutine Documentation
6.18.1.1 mqc_matrixmatrixdotproduct()
6.18.1.2 mqc_matrixvectordotproduct()
6.18.1.3 mqc_vectormatrixdotproduct()
6.19 mqc_est::matmul Interface Reference
6.19.1 Member Function/Subroutine Documentation
6.19.1.1 mqc_eigenvalues_eigenvalues_multiply()
6.19.1.2 mqc_eigenvalues_integral_multiply()
6.19.1.3 mqc_integral_eigenvalues_multiply()
6.19.1.4 mqc_integral_integral_multiply()
6.19.1.5 mqc_integral_matrix_multiply()
6.19.1.6 mqc_matrix_integral_multiply()
6.20 mqc_algebra::matrix_symm2sq Interface Reference
6.20.1 Member Function/Subroutine Documentation
6.20.1.1 matrix_symm2sq_complex()
6.20.1.2 matrix_symm2sq_integer()
6.20.1.3 matrix_symm2sq_real()
6.21 mqc_algebra::mqc_cast_complex Interface Reference
6.21.1 Member Function/Subroutine Documentation
6.21.1.1 mqc_matrix_cast_complex()
6.21.1.2 mqc_vector_cast_complex()

6.22 mqc_algebra::mqc_cast_real Interface Reference
6.22.1 Member Function/Subroutine Documentation
6.22.1.1 mqc_matrix_cast_real()
6.22.1.2 mqc_vector_cast_real()
6.23 mqc_est::mqc_determinant Type Reference
6.23.1 Member Data Documentation
6.23.1.1 nalpstr
6.23.1.2 nbetstr
6.23.1.3 ndets
6.23.1.4 order
6.23.1.5 strings
6.24 mqc_est::mqc_determinant_string Type Reference
6.24.1 Member Data Documentation
6.24.1.1 alpha
6.24.1.2 beta
6.25 mqc_algebra::mqc_have_complex Interface Reference
6.25.1 Member Function/Subroutine Documentation
6.25.1.1 mqc_matrix_havecomplex()
6.25.1.2 mqc_vector_havecomplex()
6.26 mqc_algebra::mqc_have_int Interface Reference
6.26.1 Member Function/Subroutine Documentation
6.26.1.1 mqc_matrix_haveinteger()
6.26.1.2 mqc_vector_haveinteger()
6.27 mqc_algebra::mqc_have_real Interface Reference
6.27.1 Member Function/Subroutine Documentation
6.27.1.1 mqc_matrix_havereal()
6.27.1.2 mqc_vector_havereal()
6.28 mqc_algebra::mqc_matrix Type Reference
6.28.1 Member Function/Subroutine Documentation
6.28.1.1 at()
6.28.1.2 dagger()
6.28.1.3 det()
6.28.1.4 diag()
6.28.1.5 eigensys()
6.28.1.6 identity()
6.28.1.7 init()
6.28.1.8 initialize()
6.28.1.9 inv()
6.28.1.10 mat()

6.28.1.11 mput()
6.28.1.12 norm()
6.28.1.13 print()
6.28.1.14 put()
6.28.1.15 rmsmax()
6.28.1.16 s_type()
6.28.1.17 set()
6.28.1.18 sqrt()
6.28.1.19 svd()
6.28.1.20 trace()
6.28.1.21 transpose()
6.28.1.22 vat()
6.28.1.23 vput()
6.28.2 Member Data Documentation
6.28.2.1 matc
6.28.2.2 mati
6.28.2.3 matr
6.29 mqc_algebra::mqc_matrix_diagmatrix_put Interface Reference
6.29.1 Member Function/Subroutine Documentation
6.29.1.1 mqc_matrix_diagmatrix_put_complex()
6.29.1.2 mqc_matrix_diagmatrix_put_integer()
6.29.1.3 mqc_matrix_diagmatrix_put_real()
6.29.1.4 mqc_matrix_diagmatrix_put_vector()
6.30 mqc_algebra::mqc_matrix_symmmatrix_put Interface Reference
6.30.1 Member Function/Subroutine Documentation
6.30.1.1 mqc_matrix_symmmatrix_put_complex()
6.30.1.2 mqc_matrix_symmmatrix_put_integer()
6.30.1.3 mqc_matrix_symmmatrix_put_real()
6.31 mqc_est::mqc_matrix_undospinblockghf Interface Reference
6.31.1 Member Function/Subroutine Documentation
6.31.1.1 mqc_matrix_undospinblockghf_eigenvalues()
6.31.1.2 mqc_matrix_undospinblockghf_integral()
6.32 mqc_algebra::mqc_print Interface Reference
6.32.1 Member Function/Subroutine Documentation
6.32.1.1 mqc_print_matrix_algebra1()
6.32.1.2 mqc_print_r4tensor_algebra1()
6.32.1.3 mqc_print_scalar_algebra1()
6.32.1.4 mqc_print_vector_algebra1()
6.33 mgc est::mgc print Interface Reference

6.33.1 Member Function/Subroutine Documentation	39
6.33.1.1 mqc_print_eigenvalues()	39
6.33.1.2 mqc_print_integral()	10
6.33.1.3 mqc_print_twoeris()	10
6.33.1.4 mqc_print_wavefunction()	10
6.34 mqc_est::mqc_pscf_wavefunction Type Reference	10
6.34.1 Member Data Documentation	ļ1
6.34.1.1 nactive	Į1
6.34.1.2 ncore	Į1
6.34.1.3 nfrz	Į1
6.34.1.4 nval	Į1
6.34.1.5 pscf_amplitudes	Į1
6.34.1.6 pscf_energies	12
6.35 mqc_algebra::mqc_r4tensor Type Reference	12
6.35.1 Member Function/Subroutine Documentation	12
6.35.1.1 at()	12
6.35.1.2 init()	12
6.35.1.3 initialize()	12
6.35.1.4 print()	13
6.35.1.5 put()	13
6.36 mqc_algebra::mqc_scalar Type Reference	13
6.36.1 Member Function/Subroutine Documentation	13
6.36.1.1 abs()	13
6.36.1.2 cval()	13
6.36.1.3 ival()	14
6.36.1.4 print()	14
6.36.1.5 random()	14
6.36.1.6 rval()	14
6.37 mqc_est::mqc_scf_eigenvalues Type Reference	14
6.37.1 Member Function/Subroutine Documentation	14
6.37.1.1 addlabel()	15
6.37.1.2 at()	1 5
6.37.1.3 getblock()	1 5
6.37.1.4 getlabel()	15
6.37.1.5 power()	15
6.37.1.6 print()	ł5
6.38 mqc_est::mqc_scf_integral Type Reference	1 6
6.38.1 Member Function/Subroutine Documentation	1 6
6.38.1.1 addlabel()	16

6.38.1.2 deleteelist()	46
6.38.1.3 det()	46
6.38.1.4 diag()	47
6.38.1.5 eigensys()	47
6.38.1.6 getblock()	47
6.38.1.7 getelist()	47
6.38.1.8 getlabel()	47
6.38.1.9 identity()	47
6.38.1.10 init()	47
6.38.1.11 inv()	48
6.38.1.12 norm()	48
6.38.1.13 orbitals()	48
6.38.1.14 print()	48
6.38.1.15 setelist()	48
6.38.1.16 swap()	48
6.38.1.17 trace()	48
6.39 mqc_algebra::mqc_set_array2vector Interface Reference	49
6.39.1 Member Function/Subroutine Documentation	49
6.39.1.1 mqc_set_array2vector_complex()	49
6.39.1.2 mqc_set_array2vector_integer()	49
6.39.1.3 mqc_set_array2vector_real()	49
6.40 mqc_est::mqc_twoeris Type Reference	49
6.40.1 Member Function/Subroutine Documentation	50
6.40.1.1 print()	50
6.41 mqc_algebra::mqc_vector Type Reference	50
6.41.1 Member Function/Subroutine Documentation	51
6.41.1.1 abs()	51
6.41.1.2 argsort()	51
6.41.1.3 at()	51
6.41.1.4 dagger()	51
6.41.1.5 diag()	51
6.41.1.6 init()	52
6.41.1.7 initialize()	52
6.41.1.8 maxloc()	52
6.41.1.9 maxval()	52
6.41.1.10 minloc()	52
6.41.1.11 minval()	52
6.41.1.12 norm()	52
6.41.1.13 pop()	53

	6.41.1.14 power()
	6.41.1.15 print()
	6.41.1.16 push()
	6.41.1.17 put()
	6.41.1.18 shift()
	6.41.1.19 size()
	6.41.1.20 sort()
	6.41.1.21 sqrt()
	6.41.1.22 transpose()
	6.41.1.23 unshift()
	6.41.1.24 vat()
	6.41.1.25 vput()
6.41.2	Member Data Documentation
	6.41.2.1 data_type
	6.41.2.2 length
	6.41.2.3 vecc
	6.41.2.4 veci
	6.41.2.5 vecr
6.42 mqc_es	t::mqc_wavefunction Type Reference
6.42.1	Member Function/Subroutine Documentation
	6.42.1.1 print()
6.42.2	Member Data Documentation
	6.42.2.1 basis
	6.42.2.2 charge
	6.42.2.3 core_hamiltonian
	6.42.2.4 density_matrix
	6.42.2.5 fock_matrix
	6.42.2.6 mo_coefficients
	6.42.2.7 mo_energies
	6.42.2.8 mo_symmetries
	6.42.2.9 multiplicity
	6.42.2.10 nalpha
	6.42.2.11 nbasis
	6.42.2.12 nbeta
	6.42.2.13 nelectrons
	6.42.2.14 overlap_matrix
	6.42.2.15 scf_density_matrix
	6.42.2.16 symmetry
	6.42.2.17 wf_complex

6.42.2.18 wf_type
6.43 mqc_algebra::operator(*) Interface Reference
6.43.1 Member Function/Subroutine Documentation
6.43.1.1 mqc_complexscalarmultiply()
6.43.1.2 mqc_complexvectorproduct()
6.43.1.3 mqc_integerscalarmultiply()
6.43.1.4 mqc_integervectorproduct()
6.43.1.5 mqc_matrixmatrixproduct()
6.43.1.6 mqc_matrixscalarproduct()
6.43.1.7 mqc_realscalarmultiply()
6.43.1.8 mqc_realvectorproduct()
6.43.1.9 mqc_scalarcomplexmultiply()
6.43.1.10 mqc_scalarintegermultiply()
6.43.1.11 mqc_scalarmatrixproduct()
6.43.1.12 mqc_scalarmultiply()
6.43.1.13 mqc_scalarrealmultiply()
6.43.1.14 mqc_scalarvectorproduct()
6.43.1.15 mqc_vectorcomplexproduct()
6.43.1.16 mqc_vectorintegerproduct()
6.43.1.17 mqc_vectorrealproduct()
6.43.1.18 mqc_vectorscalarproduct()
6.44 mqc_est::operator(*) Interface Reference
6.44.1 Member Function/Subroutine Documentation
6.44.1.1 mqc_integral_scalar_multiply()
6.44.1.2 mqc_scalar_integral_multiply()
6.45 mqc_algebra::operator(**) Interface Reference
6.45.1 Member Function/Subroutine Documentation
6.45.1.1 mqc_scalarcomplexexponent()
6.45.1.2 mqc_scalarexponent()
6.45.1.3 mqc_scalarintegerexponent()
6.45.1.4 mqc_scalarrealexponent()
6.46 mqc_est::operator(+) Interface Reference
6.46.1 Member Function/Subroutine Documentation
6.46.1.1 mqc_integral_sum()
6.47 mqc_algebra::operator(+) Interface Reference
6.47.1 Member Function/Subroutine Documentation
6.47.1.1 mqc_complexscalaradd()
6.47.1.2 mqc_integerscalaradd()
6.47.1.3 mqc_matrixmatrixsum()

6.47.1.4 mgc realscalaradd()
6.47.1.5 mgc_scalaradd()
6.47.1.6 mgc_scalarcomplexadd()
6.47.1.7 mqc_scalarintegeradd()
6.47.1.8 mgc_scalarrealadd()
6.47.1.9 mgc scalarvectorsum()
6.47.1.10 mqc_vectorvectorsum()
6.48 mgc est::operator(-) Interface Reference
6.48.1 Member Function/Subroutine Documentation
6.48.1.1 mqc_integral_difference()
6.49 mqc_algebra::operator(-) Interface Reference
6.49.1 Member Function/Subroutine Documentation
6.49.1.1 mqc_complexscalarsubtract()
6.49.1.2 mqc_integerscalarsubtract()
6.49.1.3 mqc_matrixmatrixsubtract()
6.49.1.4 mqc_realscalarsubtract()
6.49.1.5 mqc_scalarcomplexsubtract()
6.49.1.6 mqc_scalarintegersubtract()
6.49.1.7 mqc_scalarrealsubtract()
6.49.1.8 mqc_scalarsubtract()
6.49.1.9 mqc_scalarvectordifference()
6.49.1.10 mqc_vectorvectordifference()
6.50 mqc_algebra::operator(.dot.) Interface Reference
6.50.1 Member Function/Subroutine Documentation
6.50.1.1 mqc_matrixmatrixdotproduct()
6.50.1.2 mqc_matrixvectordotproduct()
6.50.1.3 mqc_vectormatrixdotproduct()
6.50.1.4 mqc_vectorvectordotproduct()
6.51 mqc_algebra::operator(.eq.) Interface Reference
6.51.1 Member Function/Subroutine Documentation
6.51.1.1 mqc_scalareq()
6.52 mqc_algebra::operator(.ewd.) Interface Reference
6.52.1 Member Function/Subroutine Documentation
6.52.1.1 mqc_elementmatrixdivide()
6.53 mqc_algebra::operator(.ewp.) Interface Reference
6.53.1 Member Function/Subroutine Documentation
6.53.1.1 mqc_elementmatrixproduct()
6.53.1.2 mqc_elementvectorproduct()
6.54 mgc algebra::operator(.ge.) Interface Reference

6.54.1 Member Function/Subroutine Documentation
6.54.1.1 mqc_scalarge()
6.55 mqc_algebra::operator(.gt.) Interface Reference
6.55.1 Member Function/Subroutine Documentation
6.55.1.1 mqc_integergtscalar()
6.55.1.2 mqc_realgtscalar()
6.55.1.3 mqc_scalargt()
6.55.1.4 mqc_scalargtinteger()
6.55.1.5 mqc_scalargtreal()
6.56 mqc_algebra::operator(.le.) Interface Reference
6.56.1 Member Function/Subroutine Documentation
6.56.1.1 mqc_integerlescalar()
6.56.1.2 mqc_reallescalar()
6.56.1.3 mqc_scalarle()
6.56.1.4 mqc_scalarleinteger()
6.56.1.5 mqc_scalarlereal()
6.57 mqc_algebra::operator(.lt.) Interface Reference
6.57.1 Member Function/Subroutine Documentation
6.57.1.1 mqc_realltscalar()
6.57.1.2 mqc_scalarlt()
6.57.1.3 mqc_scalarltreal()
6.58 mqc_algebra::operator(.ne.) Interface Reference
6.58.1 Member Function/Subroutine Documentation
6.58.1.1 mqc_scalarne()
6.59 mqc_algebra::operator(.outer.) Interface Reference
6.59.1 Member Function/Subroutine Documentation
6.59.1.1 mqc_outer()
6.60 mqc_algebra::operator(.x.) Interface Reference
6.60.1 Member Function/Subroutine Documentation
6.60.1.1 mqc_crossproduct()
6.61 mqc_algebra::operator(/) Interface Reference
6.61.1 Member Function/Subroutine Documentation
6.61.1.1 mqc_complexscalardivide()
6.61.1.2 mqc_integerscalardivide()
6.61.1.3 mqc_realscalardivide()
6.61.1.4 mqc_scalarcomplexdivide()
6.61.1.5 mqc_scalardivide()
6.61.1.6 mqc_scalarintegerdivide()
6.61.1.7 mqc_scalarrealdivide()

6.61.1.8 mqc_vectorcomplexdivide()	88
6.61.1.9 mqc_vectorintegerdivide()	89
6.61.1.10 mqc_vectorrealdivide()	89
6.61.1.11 mqc_vectorscalardivide()	89
6.62 mqc_algebra::real Interface Reference	89
6.62.1 Member Function/Subroutine Documentation	89
6.62.1.1 mqc_scalar_complex_realpart()	89
6.62.1.2 mqc_vector_complex_realpart()	90
6.63 mqc_algebra::sin Interface Reference	90
6.63.1 Member Function/Subroutine Documentation	90
6.63.1.1 mqc_scalar_sin()	90
6.64 mqc_algebra::sqrt Interface Reference	91
6.64.1 Member Function/Subroutine Documentation	91
6.64.1.1 mqc_scalar_sqrt()	91
6.65 mqc_algebra::tan Interface Reference	92
6.65.1 Member Function/Subroutine Documentation	92
6.65.1.1 mqc_scalar_tan()	92
6.66 mqc_est::transpose Interface Reference	93
6.66.1 Member Function/Subroutine Documentation	93
6.66.1.1 mqc_integral_transpose()	93
6.67 mqc_algebra::transpose Interface Reference	93
6.67.1 Member Function/Subroutine Documentation	93
6.67.1.1 mqc_matrix_transpose()	94
6.67.1.2 mqc_vector_transpose()	94
7 File Documentation	95
7.1 src/mgc algebra.F03 File Reference	
7.2 src/mgc est.F03 File Reference	
7.2 Stortings_ostal oo i lie rieletenoe	ےں
Index 20	05

Modules Index

1.1 Modules List

Here is a list of all modules with brief descriptions:

mqc_algebra								 			 			 				 				9
mgc est	 							 			 			 				 				84

2 Modules Index

Data Type Index

2.1 Class Hierarchy

This inheritance list is sorted roughly, but not completely, alphabetically:

mqc_algebra::abs	101
mqc_algebra::acos	
mqc_algebra::aimag	103
mqc_algebra::asin	
mqc_algebra::assignment(=)	105
mqc_est::assignment(=)	
mqc_algebra::atan	
mqc_algebra::atan2	
mqc_algebra::cmplx	
mqc_algebra::conjg	
mqc_algebra::contraction	117
mqc_est::contraction	117
mqc_algebra::cos	
mqc_algebra::dagger	
mqc_est::dagger	
mqc_algebra::dot_product	
mqc_est::dot_product	121
mqc_algebra::matmul	
mqc_est::matmul	122
mqc_algebra::matrix_symm2sq	
mqc_algebra::mqc_cast_complex	
mqc_algebra::mqc_cast_real	
mqc_est::mqc_determinant	
mqc_est::mqc_determinant_string	
mqc_algebra::mqc_have_complex	
mqc_algebra::mqc_have_int	
mqc_algebra::mqc_have_real	
mqc_algebra::mqc_matrix	130
mqc_algebra::mqc_matrix_diagmatrix_put	
mqc_algebra::mqc_matrix_symmmatrix_put	
mgc est::mgc matrix undospinblockghf	136

Data Type Index

mqc_algebra::mqc_print
mqc_est::mqc_print
mqc_algebra::mqc_r4tensor
mqc_algebra::mqc_scalar
mqc_est::mqc_scf_eigenvalues
mqc_est::mqc_scf_integral
mqc_algebra::mqc_set_array2vector
mqc_est::mqc_twoeris
mqc_algebra::mqc_vector
mqc_est::mqc_wavefunction
mqc_est::mqc_pscf_wavefunction
$mqc_algebra::operator(*) \ \dots $
mqc_est::operator(*)
mqc_algebra::operator(**)
mqc_est::operator(+)
mqc_algebra::operator(+)
mqc_est::operator(-)
mqc_algebra::operator(-)
mqc_algebra::operator(.dot.)
mqc_algebra::operator(.eq.)
mqc_algebra::operator(.ewd.)
mqc_algebra::operator(.ewp.)
mqc_algebra::operator(.ge.)
mqc_algebra::operator(.gt.)
mqc_algebra::operator(.le.)
mqc_algebra::operator(.lt.)
mqc_algebra::operator(.ne.)
mqc_algebra::operator(.outer.)
mqc_algebra::operator(.x.)
mqc_algebra::operator(/)
mqc_algebra::real
mqc_algebra::sin
mqc_algebra::sqrt
mqc_algebra::tan
mqc_est::transpose
mgc algebra::transpose

Data Type Index

3.1 Data Types List

Here are the data types with brief descriptions:

mqc_algebra::abs
mqc_algebra::acos
mqc_algebra::aimag
mqc_algebra::asin
mqc_algebra::assignment(=)
mqc_est::assignment(=)
mqc_algebra::atan
mqc_algebra::atan2
mqc_algebra::cmplx
mqc_algebra::conjg
mqc_algebra::contraction
mqc_est::contraction
mqc_algebra::cos
mqc_algebra::dagger
mqc_est::dagger
mqc_algebra::dot_product
mqc_est::dot_product
mqc_algebra::matmul
mqc_est::matmul
mqc_algebra::matrix_symm2sq124
mqc_algebra::mqc_cast_complex
mqc_algebra::mqc_cast_real
mqc_est::mqc_determinant
mqc_est::mqc_determinant_string
mqc_algebra::mqc_have_complex
mqc_algebra::mqc_have_int
mqc_algebra::mqc_have_real129
mqc_algebra::mqc_matrix
mqc_algebra::mqc_matrix_diagmatrix_put
mqc_algebra::mqc_matrix_symmmatrix_put135
mgc_est::mgc_matrix_undospinblockghf

6 Data Type Index

mqc_algebra::mqc_print
mqc_est::mqc_print
mqc_est::mqc_pscf_wavefunction
mqc_algebra::mqc_r4tensor
mqc_algebra::mqc_scalar143
mqc_est::mqc_scf_eigenvalues
mqc_est::mqc_scf_integral
mqc_algebra::mqc_set_array2vector
mqc_est::mqc_twoeris
mqc_algebra::mqc_vector
mqc_est::mqc_wavefunction
mqc_algebra::operator(*)
mqc_est::operator(*)
mqc_algebra::operator(**)
mqc_est::operator(+)
mqc_algebra::operator(+)
mqc_est::operator(-)
mqc_algebra::operator(-)
mqc_algebra::operator(.dot.)
mqc_algebra::operator(.eq.)
mqc_algebra::operator(.ewd.)
mqc_algebra::operator(.ewp.)
mqc_algebra::operator(.ge.)
mqc_algebra::operator(.gt.)
mqc_algebra::operator(.le.)
mqc_algebra::operator(.lt.)
mqc_algebra::operator(.ne.)
mqc_algebra::operator(.outer.)
mqc_algebra::operator(.x.)
mqc_algebra::operator(/)
mqc_algebra::real
mqc_algebra::sin
mqc_algebra::sqrt
mqc_algebra::tan
mqc_est::transpose
mqc_algebra::transpose

File Index

4.1 File List

Here is a list of all files with brief descriptions:

<pre>src/mqc_algebra.F03</pre>	3													 						 	19)5
src/mgc_est.F03 .														 							20)2

8 File Index

Module Documentation

5.1 mqc_algebra Module Reference

Data Types

- interface abs
- interface acos
- · interface aimag
- · interface asin
- interface assignment(=)
- interface atan
- interface atan2
- interface cmplx
- · interface conjg
- interface contraction
- interface cos
- interface dagger
- interface dot_product
- interface matmul
- interface matrix_symm2sq
- interface mgc cast complex
- interface mqc_cast_real
- interface mqc_have_complex
- interface mqc_have_int
- interface mqc_have_real
- type mqc_matrix
- interface mqc_matrix_diagmatrix_put
- interface mqc_matrix_symmmatrix_put
- interface mqc_print
- type mqc_r4tensor
- type mqc_scalar
- interface mqc_set_array2vector
- type mqc_vector
- interface operator(*)

10 Module Documentation

- interface operator(**)
- interface operator(+)
- interface operator(-)
- interface operator(.dot.)
- interface operator(.eq.)
- interface operator(.ewd.)
- interface operator(.ewp.)
- interface operator(.ge.)
- interface operator(.gt.)
- interface operator(.le.)
- interface operator(.lt.)
- interface operator(.ne.)
- interface operator(.outer.)
- interface operator(.x.)
- interface operator(/)
- interface real
- interface sin
- · interface sqrt
- · interface tan
- interface transpose

Functions/Subroutines

• integer(kind=int64) function factorial (n)

Factorial returns the factorial of an integer

integer(kind=int64) function bin_coeff (N, K)

Bin_Coeff returns the binomial coefficient of (n,k)

• subroutine mqc_allocate_scalar (Scalar, Data_type)

MQC_Allocate_Scalar is used to allocate a scalar type variable of the MQC_Scalar class

subroutine mqc_deallocate_scalar (Scalar)

MQC_Deallocate_Scalar is used to deallocate a scalar type variable of the MQC_Scalar class

logical function mqc_scalar_isallocated (Scalar)

MQC_Scalar_IsAllocated is used to determine the allocation status of an MQC_Scalar

subroutine mqc_input_integer_scalar (ScalarOut, ScalarIn)

MQC_Input_Integer_Scalar is a subroutine is used to set an intrinsic integer to an MQC_Scalar

subroutine mqc_input_real_scalar (ScalarOut, ScalarIn)

MQC_Input_Real_Scalar is a subroutine is used to set an intrinsic real to an MQC_Scalar

subroutine mqc_input_complex_scalar (ScalarOut, ScalarIn)

MQC_Input_Complex_Scalar is a subroutine is used to set an intrinsic complex to an MQC_Scalar

subroutine mqc_output_mqcscalar_scalar (ScalarOut, ScalarIn)

MQC_Output MQCScalar_Scalar is a subroutine used to output an MQC_scalar equal to an MQC_Scalar

• subroutine mqc_output_integer_scalar (ScalarOut, ScalarIn)

MQC_Output_Integer_Scalar is a subroutine used to output an intrinsic integer equal to an MQC_Scalar

• subroutine mqc_output_real_scalar (ScalarOut, ScalarIn)

MQC_Output_Real_Scalar is a subroutine used to output an intrinsic real equal to an MQC_Scalar

subroutine mqc_output_complex_scalar (ScalarOut, ScalarIn)

MQC_Output_Complex_Scalar is a subroutine used to output an intrinsic complex equal to an MQC_Scalar

• subroutine mgc print scalar algebra1 (Scalar, IOut, Header, Blank At Top, Blank At Bottom)

MQC_Print_Scalar_Algebra1 is a subroutine used to print an MQC_Scalar

type(mqc_scalar) function mqc_scalar_cmplx (Scalar1, Scalar2)

MQC_Scalar_Cmplx is a function used to set a complex MQC_Scalar type variable from two other MQC_scalars

type(mqc_scalar) function mqc_scalar_sqrt (Scalar)

MQC_Scalar_Sqrt is a function used to return the square root of an MQC_scalar

type(mqc_scalar) function mqc_scalar_sin (Scalar)

MQC_Scalar_Sin is a function used to return the sine of an MQC_scalar

type(mgc scalar) function mgc scalar cos (Scalar)

MQC_Scalar_Cos is a function used to return the cosine of an MQC_scalar

type(mqc_scalar) function mqc_scalar_tan (Scalar)

MQC_Scalar_Tan is a function used to return the tangent of an MQC_scalar

type(mqc_scalar) function mqc_scalar_asin (Scalar)

MQC_Scalar_ASin is a function used to return the arcsin of an MQC_scalar

type(mqc_scalar) function mqc_scalar_acos (Scalar)

MQC_Scalar_ACos is a function used to return the arccosine of an MQC_scalar

type(mqc_scalar) function mqc_scalar_atan (Scalar)

MQC_Scalar_ATan is a function used to return the arctangent of an MQC_scalar

type(mqc_scalar) function mqc_scalar_atan2 (Scalar)

MQC_Scalar_ATan2 is a function used to return the arctangent of an MQC_scalar accounting for quadrant of Argand diagram

logical function mqc_scalar_havereal (Scalar)

MQC_Scalar_HaveReal is a function that returns TRUE or FALSE indicating whether an MQC_scalar is of type real

logical function mqc_scalar_haveinteger (Scalar)

MQC_Scalar_HaveInteger is a function that returns TRUE or FALSE indicating whether an MQC_scalar is of type integer

logical function mqc_scalar_havecomplex (Scalar)

MQC_Scalar_HaveComplex is a function that returns TRUE or FALSE indicating whether an MQC_scalar is of type complex

real(kind=real64) function mgc scalar get intrinsic real (Scalar)

MQC_Scalar_Get_Intrinsic_Real is a function that returns the MQC_scalar value as an intrinsic real

integer(kind=int64) function mgc scalar get intrinsic integer (Scalar)

MQC_Scalar_Get_Intrinsic_Integer is a function that returns the MQC_scalar value as an intrinsic integer

complex(kind=real64) function mqc scalar get intrinsic complex (Scalar)

MQC_Scalar_Get_Intrinsic_Complex is a function that returns the MQC_scalar value as an intrinsic complex

type(mgc scalar) function mgc scalar get abs value (Scalar)

MQC_Scalar_Get_ABS_Value is a function that returns the absolute value of MQC_scalar variable

subroutine mqc_scalar_get_random_value (Scalar)

MQC_Scalar_Get_Random_Value is a function that returns a random real value from a uniform distribution between zero and one

type(mqc_scalar) function mqc_scalaradd (Scalar1, Scalar2)

MQC_ScalarAdd is a function that sums two MQC_Scalar objects

type(mqc_scalar) function mqc_scalarsubtract (Scalar1, Scalar2)

MQC_ScalarSubtract is a function that subtracts two MQC_Scalar objects

type(mqc_scalar) function mqc_scalarmultiply (Scalar1, Scalar2)

MQC_ScalarMultiply is a function that multiplies two MQC_Scalar objects

type(mqc_scalar) function mqc_scalardivide (Scalar1, Scalar2)

MQC_ScalarDivide is a function that divides two MQC_Scalar objects

12 Module Documentation

- type(mqc_scalar) function mqc_scalarexponent (Scalar1, Scalar2)
- MQC_ScalarExponent is a function that raises one MQC_Scalar to the power of another MQC_Scalar
- type(mgc scalar) function mgc scalarintegerexponent (Scalar, Intln)
 - MQC_ScalarIntegerExponent is a function that raises an MQC_Scalar to the power of an intrinsic integer
- type(mqc_scalar) function mqc_scalarrealexponent (Scalar, RealIn)
 - MQC_ScalarRealExponent is a function that raises an MQC_Scalar to the power of an intrinsic real
- type(mgc scalar) function mgc scalarcomplexexponent (Scalar, Compln)
 - MQC_ScalarComplexExponent is a function that raises an MQC_Scalar to the power of an intrinsic complex
- logical function mgc scalarne (Scalar1, Scalar2)
 - MQC_ScalarNE is a function that returns TRUE if two MQC_Scalar variables are not equal
- logical function mgc scalareg (Scalar1, Scalar2)
 - MQC_ScalarEQ is a function that returns TRUE if two MQC_Scalar variables are equal
- logical function mgc scalarlt (Scalar1, Scalar2)
 - MQC_ScalarLT is a function that returns TRUE if the left MQC_Scalar is less than the right MQC_Scalar
- logical function mgc realltscalar (Realln, Scalar)
 - MQC_RealLTScalar is a function that returns TRUE if an intrinsic real is less than a MQC_Scalar
- logical function mgc scalarItreal (Scalar, RealIn)
 - MQC ScalarLTReal is a function that returns TRUE if a MQC Scalar is less than an intrinsic real
- logical function mgc scalargt (Scalar1, Scalar2)
 - MQC_ScalarGT is a function that returns TRUE if the left MQC_Scalar is greater than the right MQC_Scalar
- logical function mgc integergtscalar (Intln, Scalar)
 - MQC_IntegerGTScalar is a function that returns TRUE if an intrinsic integer is greater than a MQC_Scalar
- logical function mqc scalargtinteger (Scalar, Intln)
 - MQC_ScalarGTInteger is a function that returns TRUE if a MQC_Scalar is greater than an intrinsic integer
- logical function mqc_realgtscalar (RealIn, Scalar)
- logical function mgc scalargtreal (Scalar, RealIn)
- logical function mqc_scalarle (Scalar1, Scalar2)
- logical function mqc reallescalar (Realln, Scalar)
- logical function mgc scalarlereal (Scalar, RealIn)
- logical function mqc_integerlescalar (IntIn, Scalar)
- logical function mqc_scalarleinteger (Scalar, Intln)
- logical function mqc_scalarge (Scalar1, Scalar2)
- type(mqc_scalar) function mqc_scalar_complex_conjugate (ScalarIn)
- type(mqc_scalar) function mqc_scalar_complex_realpart (ScalarIn)
- type(mqc_scalar) function mqc_scalar_complex_imagpart (ScalarIn)
- type(mgc_scalar) function mgc_integerscalarmultiply (IntegerIn, Scalar)
- type(mgc_scalar) function mgc_scalarintegermultiply (Scalar, IntegerIn)
- type(mqc_scalar) function mqc_realscalarmultiply (RealIn, Scalar)
- type(mqc_scalar) function mqc_scalarrealmultiply (Scalar, RealIn)
- type(mqc_scalar) function mqc_complexscalarmultiply (ComplexIn, Scalar)
- type(mgc_scalar) function mgc_scalarcomplexmultiply (Scalar, ComplexIn)
- type(mgc scalar) function mgc integerscalardivide (IntegerIn, Scalar)
- type(mgc_scalar) function mgc_scalarintegerdivide (Scalar, IntegerIn)
- type(mqc_scalar) function mqc_realscalardivide (RealIn, Scalar)
- type(mgc_scalar) function mgc_scalarrealdivide (Scalar, RealIn)
- type(mqc_scalar) function mqc_complexscalardivide (ComplexIn, Scalar)
- type(mqc_scalar) function mqc_scalarcomplexdivide (Scalar, ComplexIn)
- type(mqc scalar) function mqc integerscalaradd (IntegerIn, Scalar)
- type(mqc scalar) function mqc scalarintegeradd (Scalar, IntegerIn)

- type(mqc_scalar) function mqc_realscalaradd (RealIn, Scalar)
- type(mgc scalar) function mgc scalarrealadd (Scalar, Realln)
- type(mqc_scalar) function mqc_complexscalaradd (ComplexIn, Scalar)
- type(mqc_scalar) function mqc_scalarcomplexadd (Scalar, ComplexIn)
- type(mqc_scalar) function mqc_integerscalarsubtract (IntegerIn, Scalar)
- type(mgc scalar) function mgc scalarintegersubtract (Scalar, IntegerIn)
- type(mqc_scalar) function mqc_realscalarsubtract (RealIn, Scalar)
- type(mgc scalar) function mgc scalarrealsubtract (Scalar, RealIn)
- type(mgc scalar) function mgc complexscalarsubtract (ComplexIn, Scalar)
- type(mgc scalar) function mgc scalarcomplexsubtract (Scalar, ComplexIn)
- subroutine mgc allocate vector (N, Vector, Data Type)
- subroutine mgc deallocate vector (Vector)
- integer(kind=int64) function mgc length vector (Vector)
- logical function mgc vector havereal (Vector)
- logical function mqc_vector_haveinteger (Vector)
- logical function mqc_vector_havecomplex (Vector)
- logical function mqc_vector_iscolumn (Vector)
- subroutine mgc vector copy int2real (Vector)
- subroutine mqc_vector_copy_int2complex (Vector)
- subroutine mqc_vector_copy_real2int (Vector)
- subroutine mgc vector copy real2complex (Vector)
- subroutine mqc_vector_copy_complex2int (Vector)
- subroutine mgc vector copy complex2real (Vector)
- type(mqc_scalar) function mqc_vector_scalar_at (Vec, I)
- type(mgc vector) function mgc vector vector at (Vec, I, J)
- subroutine mqc_set_vector2integerarray (ArrayOut, VectorIn)
- subroutine mqc_set_vector2realarray (ArrayOut, VectorIn)
- subroutine mqc_set_vector2complexarray (ArrayOut, VectorIn)
- subroutine mqc_set_array2vector_integer (VectorOut, ArrayIn)
- subroutine mgc set array2vector real (VectorOut, ArrayIn)
- subroutine mgc set array2vector complex (VectorOut, ArrayIn)
- subroutine mgc set vector2vector (VectorOut, VectorIn)
- type(mqc_vector) function mqc_vectorvectorsum (Vector1In, Vector2In)
- type(mqc_vector) function mqc_vectorvectordifference (Vector1In, Vector2In)
- type(mgc_vector) function mgc_scalarvectorsum (ScalarIn, VectorIn)
- type(mgc vector) function mgc scalarvectordifference (ScalarIn, VectorIn)
- type(mgc_vector) function mgc_elementvectorproduct (Vector1In, Vector2In)
- type(mgc_vector) function mgc_vector_transpose (Vector)
- type(mqc_vector) function mqc_vector_conjugate_transpose (Vector)
- type(mqc_scalar) function mqc_vectorvectordotproduct (Vector1, Vector2)
- type(mqc_matrix) function mqc_outer (VA, VB)
- type(mqc_vector) function mqc_crossproduct (Vector1In, Vector2In)
- subroutine mqc_print_vector_algebra1 (Vector, IOut, Header, Verbose, Blank_At_Top, Blank_At_Bottom)
- type(mgc vector) function mgc vector cast real (VA)
- type(mgc vector) function mgc vector cast complex (VA)
- subroutine mqc_vector_scalar_put (Vector, Scalar, I)
- subroutine mqc_vector_scalar_increment (Vector, Scalar, I)
- subroutine mgc vector vector put (Vector, VectorIn, I)
- subroutine mqc_vector_initialize (Vector, Length, Scalar)
- type(mqc_vector) function mqc_scalarvectorproduct (Scalar, Vector)
- type(mgc_vector) function mgc_vectorscalarproduct (vector, scalar)

14 Module Documentation

- type(mqc_vector) function mqc_vectorscalardivide (vector, scalar)
- type(mqc_vector) function mqc_realvectorproduct (RealIn, Vector)
- type(mgc vector) function mgc vectorrealproduct (vector, realln)
- type(mqc_vector) function mqc_vectorrealdivide (vector, realln)
- type(mgc_vector) function mgc_integervectorproduct (intln, Vector)
- type(mgc_vector) function mgc_vectorintegerproduct (vector, intln)
- type(mqc_vector) function mqc_vectorintegerdivide (vector, intln)
- type(mgc vector) function mgc complexvectorproduct (Compln, Vector)
- type(mgc_vector) function mgc_vectorcomplexproduct (vector, compln)
- type(mgc_vector) function mgc_vectorcomplexdivide (vector, compln)
- type(mqc scalar) function mqc vector norm (vector, methodIn)
- logical function mgc vector isallocated (Vector)
- subroutine mgc vector push (Vector, Scalar)
- subroutine mqc_vector_unshift (Vector, Scalar)
- type(mgc scalar) function mgc vector pop (Vector)
- type(mqc_scalar) function mqc_vector_shift (Vector)
- type(mqc_scalar) function mqc_vector_maxval (Vector)
- type(mqc_scalar) function mqc_vector_minval (Vector)
- integer function mgc vector maxloc (Vector)
- integer function mgc vector minloc (Vector)
- type(mgc vector) function mgc vector argsort (Vector)
- subroutine mgc vector sort (Vector, idx)
- subroutine mgc vector sqrt (A)
- type(mgc vector) function mgc vector abs (A)
- subroutine mgc vector power (A, P)
- type(mgc vector) function mgc vector complex realpart (A)
- type(mqc_vector) function mqc_vector_complex_imagpart (A)
- type(mqc_vector) function mqc_vector_cmplx (Vector1, Vector2)
- character(len=64) function mqc matrix storagetype (Matrix)
- subroutine mqc matrix diagonalize (A, EVals, EVecs)
- type(mgc matrix) function mgc matrix cast real (MA)
- type(mqc_matrix) function mqc_matrix_cast_complex (MA)
- type(mqc_scalar) function mqc_matrix_scalar_at (Mat, I, J)
- type(mgc vector) function mgc matrix vector at (Mat, Rows, Cols)
- recursive subroutine mqc_matrix_vector_put (Mat, VectorIn, Rows, Cols)
- type(mgc matrix) function mgc matrix matrix at (Mat, Rows, Cols)

MQC_Matrix_Matrix_At is a function that returns a submatrix of the matrix

- subroutine mqc_matrix_diagmatrix_put_vector (diagVectorIn, mat)
- subroutine mqc_matrix_diagmatrix_put_integer (mat, diagMatrixIn)
- subroutine mqc_matrix_diagmatrix_put_real (mat, diagMatrixIn)
- subroutine mqc_matrix_diagmatrix_put_complex (mat, diagMatrixIn)
- subroutine mqc_matrix_symmmatrix_put_integer (mat, symmMatrixIn)
- subroutine mqc_matrix_symmmatrix_put_real (mat, symmMatrixIn)
- subroutine mqc_matrix_symmmatrix_put_complex (mat, symmMatrixIn)
- recursive subroutine mqc_matrix_matrix_put (Mat, MatrixIn, Rows, Cols)
- integer(kind=int64) function symindexhash (i, j, k, l)
- type(mgc matrix) function mgc elementmatrixproduct (A, B)
- type(mgc matrix) function mgc elementmatrixdivide (A, B)
- logical function mqc_matrix_test_symmetric (Matrix, Option)
- logical function mqc matrix test diagonal (Matrix)

- subroutine mqc_allocate_matrix (M, N, Matrix, Data_Type, Storage)
- subroutine mgc deallocate matrix (Matrix)
- logical function mgc matrix isallocated (Matrix)
- subroutine mqc_set_integerarray2matrix (MatrixOut, ArrayIn)
- subroutine mgc set realarray2matrix (MatrixOut, ArrayIn)
- subroutine mgc set complexarray2matrix (MatrixOut, ArrayIn)
- subroutine mqc_set_matrix2integerarray (ArrayOut, MatrixIn)
- subroutine mgc set matrix2realarray (ArrayOut, MatrixIn)
- subroutine mqc_set_matrix2complexarray (ArrayOut, MatrixIn)
- subroutine mgc set matrix2matrix (MatrixOut, MatrixIn)
- subroutine mqc_print_matrix_algebra1 (Matrix, IOut, Header, Blank_At_Top, Blank_At_Bottom)
- subroutine mgc matrix copy int2real (Matrix)
- subroutine mqc_matrix_copy_int2complex (Matrix)
- subroutine mqc_matrix_copy_real2int (Matrix)
- subroutine mqc_matrix_copy_real2complex (Matrix)
- subroutine mqc_matrix_copy_complex2int (Matrix)
- subroutine mqc_matrix_copy_complex2real (Matrix)
- integer(kind=int64) function mgc matrix rows (Matrix)
- integer(kind=int64) function mqc_matrix_columns (Matrix)
- logical function mqc_matrix_havereal (Matrix)
- logical function mqc_matrix_haveinteger (Matrix)
- logical function mqc_matrix_havecomplex (Matrix)
- logical function mqc_matrix_havefull (Matrix)
- logical function mqc_matrix_havesymmetric (Matrix)
- logical function mqc matrix havediagonal (Matrix)
- type(mqc_matrix) function mqc_matrix_transpose (Matrix)
- type(mqc_matrix) function mqc_matrix_conjugate_transpose (Matrix)
- type(mqc_matrix) function mqc_matrix_symmetrize (Matrix)
- subroutine mgc matrix full2symm (Matrix)
- subroutine mgc matrix symm2full (Matrix, Option)
- subroutine mgc matrix full2diag (Matrix)
- subroutine mgc matrix diag2full (Matrix)
- subroutine mgc matrix symm2diag (Matrix)
- subroutine mqc_matrix_diag2symm (Matrix)
- type(mgc matrix) function mgc matrix symm2full func (Matrix)
- subroutine matrix symm2sq integer (N, I Symm, I Sq)
- subroutine matrix symm2sq real (N, A Symm, A Sq)
- subroutine matrix symm2sg complex (N, A Symm, A Sg)
- type(mqc matrix) function mqc vector2diagmatrix (vector)
- type(mqc matrix) function mqc matrixmatrixsum (MA, MB)
- type(mqc_matrix) function mqc_matrixmatrixsubtract (MA, MB)
- type(mqc_matrix) function mqc_matrixmatrixproduct (MA, MB)
- type(mgc matrix) function mgc matrixmatrixdotproduct (MA, MB)
- type(mgc_vector) function mgc_matrixvectordotproduct (MA, VB)
- type(mgc_vector) function mgc_vectormatrixdotproduct (VA, MB)
- type(mqc_matrix) function mqc_matrixscalarproduct (Matrix, Scalar)
- type(mqc_matrix) function mqc_scalarmatrixproduct (Scalar, Matrix)
- type(mqc_scalar) function mqc_matrix_matrix_contraction (Matrix1, Matrix2)
- subroutine mqc_matrix_scalar_put (Matrix, Scalar, I, J)
- subroutine mqc matrix initialize (Matrix, Rows, Columns, Scalar, Storage)
- subroutine mqc matrix identity (matrix, n, m)

- subroutine mqc_matrix_set (matrix, scalar, storage)
- type(mqc_scalar) function mqc_matrix_norm (matrix, methodIn)
- type(mqc_scalar) function mqc_matrix_determinant (a)
- type(mqc_matrix) function mqc_matrix_inverse (a)
- type(mgc scalar) function mgc matrix trace (matrix)
- subroutine mqc_matrix_generalized_eigensystem (a, bln, eigenvals, reigenvecs, leigenvecs)
- subroutine mgc matrix svd (A, EVals, EUVecs, EVVecs)
- subroutine mgc matrix rms max (A, rms A, max A)
- subroutine mqc_matrix_sqrt (A, eVals, eVecs)
- type(mqc_matrix) function mqc_givens_matrix (m_size, angle, p, q)
- subroutine mgc allocate r4tensor (I, J, K, L, Tensor, Data Type, Storage)
- subroutine mqc_deallocate_r4tensor (Tensor)
- type(mqc_scalar) function mqc_r4tensor_at (Tensor, I, J, K, L)
- subroutine mqc_r4tensor_put (Tensor, Element, I, J, K, L)
- subroutine mgc print r4tensor algebra1 (Tensor, IOut, Header, blank at top, blank at bottom)
- subroutine mgc set array2tensor (TensorOut, ArrayIn)
- subroutine mgc r4tensor initialize (R4Tensor, I, J, K, L, Scalar)
- subroutine mqc_matrix_symmsymmr4tensor_put_real (r4Tensor, symmSymmMatrixIn)
- subroutine mgc matrix symmsymmr4tensor put complex (r4Tensor, symmSymmMatrixIn)
- logical function mqc_r4tensor_haveinteger (R4Tensor)
- logical function mqc_r4tensor_havereal (R4Tensor)
- logical function mgc r4tensor havecomplex (R4Tensor)

5.1.1 Function/Subroutine Documentation

5.1.1.1 bin_coeff()

Bin_Coeff returns the binomial coefficient of (n,k)

Purpose:

Bin_Coeff is a function that returns the binomial coefficient given input integer N and input integer K corresponding to N choose K.

Parameters

in	N	
		N is Integer(kind=int64) The number of objects
in	K	
		K is Integer(kind=int64) The number of permutations

Author

L. M. Thompson

Date

2016

5.1.1.2 factorial()

```
integer(kind=int64) function mqc_algebra::factorial ( integer(kind=int64),\ intent(in)\ n\ )
```

Factorial returns the factorial of an integer

Purpose:

Factorial is a function that returns the factorial of an integer.

Parameters

in	N	
		N is Integer(kind=int64)
		The argument of the factorial function

Author

L. M. Thompson

Date

2016

5.1.1.3 matrix_symm2sq_complex()

```
subroutine mqc_algebra::matrix_symm2sq_complex ( integer(kind=int64),\ intent(in)\ N, \\ complex(kind=real64),\ dimension(:),\ intent(in)\ A\_Symm, \\ complex(kind=real64),\ dimension(n,n),\ intent(out)\ A\_Sq\ )
```

5.1.1.4 matrix_symm2sq_integer()

5.1.1.5 matrix_symm2sq_real()

```
subroutine mqc_algebra::matrix_symm2sq_real (
    integer(kind=int64), intent(in) N,
    real(kind=real64), dimension(:), intent(in) A_Symm,
    real(kind=real64), dimension(n,n), intent(out) A_Sq )
```

5.1.1.6 mqc_allocate_matrix()

```
subroutine mqc_algebra::mqc_allocate_matrix (
    integer(kind=int64), intent(in) M,
    integer(kind=int64), intent(in) N,
    class(mqc_matrix), intent(inout) Matrix,
    character(len=*), intent(in) Data_Type,
    character(len=*), intent(in) Storage)
```

5.1.1.7 mqc_allocate_r4tensor()

```
subroutine mqc_algebra::mqc_allocate_r4tensor (
    integer(kind=int64), intent(in) I,
    integer(kind=int64), intent(in) J,
    integer(kind=int64), intent(in) K,
    integer(kind=int64), intent(in) L,
    type(mqc_r4tensor), intent(inout) Tensor,
    character(len=*), intent(in) Data_Type,
    character(len=*), intent(in) Storage)
```

5.1.1.8 mqc_allocate_scalar()

MQC_Allocate_Scalar is used to allocate a scalar type variable of the MQC_Scalar class

Purpose:

```
MQC_Allocate_Scalar is a subroutine used to allocate a scalar type variable
of the MQC_Scalar class. The following options are available:

1. Data_Type = 'Real' declares the MQC_Scalar variable to be of real type.
2. Data_Type = 'Integer' declares the MQC_Scalar variable to be of integer type.
3. Data_Type = 'Complex' declares the MQC_Scalar variable to be of complex type.
```

Parameters

in,out	Scalar	
		Scalar is Type(MQC_Scalar) The name of the MQC_Scalar variable
in	Data_Type	
		<pre>Data_Type is Character(Len=*) = 'Real': the MQC_Scalar is real = 'Integer': the MQC_Scalar is integer = 'Complex': the MQC_Scalar is complex</pre>

Author

L. M. Thompson

Date

2016

5.1.1.9 mqc_allocate_vector()

5.1.1.10 mqc_complexscalaradd()

5.1.1.11 mqc_complexscalardivide()

5.1.1.12 mqc_complexscalarmultiply()

5.1.1.13 mqc_complexscalarsubtract()

5.1.1.14 mqc_complexvectorproduct()

5.1.1.15 mqc_crossproduct()

5.1.1.16 mqc_deallocate_matrix()

5.1.1.17 mqc_deallocate_r4tensor()

5.1.1.18 mqc_deallocate_scalar()

MQC_Deallocate_Scalar is used to deallocate a scalar type variable of the MQC_Scalar class

Purpose:

 $\texttt{MQC_Deallocate_Scalar}$ is a subroutine used to deallocate a scalar type variable of the $\texttt{MQC_Scalar}$ class.

Parameters

in,out	Scalar	
		Scalar is Type(MQC_Scalar) The name of the MQC_Scalar variable to deallocate

Author

L. M. Thompson

Date

2016

5.1.1.19 mqc_deallocate_vector()

5.1.1.20 mqc_elementmatrixdivide()

5.1.1.21 mqc_elementmatrixproduct()

5.1.1.22 mqc_elementvectorproduct()

5.1.1.23 mqc_givens_matrix()

```
type(mqc_matrix) function mqc_algebra::mqc_givens_matrix (
    integer(kind=int64), intent(in) m_size,
    real(kind=real64), intent(in) angle,
    integer(kind=int64), intent(in) p,
    integer(kind=int64), intent(in) q)
```

5.1.1.24 mqc_input_complex_scalar()

MQC_Input_Complex_Scalar is a subroutine is used to set an intrinsic complex to an MQC_Scalar

Purpose:

MQC_Input_Complex_Scalar is a subroutine is used to set an intrinsic complex to an MQC_Scalar.

Parameters

in,out	ScalarOut	
		ScalarOut is Type(MQC_Scalar) The name of the output variable
in	ScalarIn	
		ScalarIn is Complex(kind=real64) The value of the input variable

Author

L. M. Thompson

Date

2017

5.1.1.25 mqc_input_integer_scalar()

MQC_Input_Integer_Scalar is a subroutine is used to set an intrinsic integer to an MQC_Scalar

Purpose:

 ${\tt MQC_Input_Integer_Scalar} \ \ {\tt is} \ \ {\tt a} \ \ {\tt subroutine} \ \ {\tt is} \ \ {\tt used} \ \ {\tt to} \ \ {\tt set} \ \ {\tt an intrinsic} \ \ {\tt integer} \ \ {\tt to} \ \ {\tt an MQC_Scalar}.$

Parameters

in,out	ScalarOut	
		ScalarOut is Type(MQC_Scalar) The name of the output variable
in	ScalarIn	
		ScalarIn is Integer(kind=int64) The value of the input variable

Author

L. M. Thompson

Date

2016

5.1.1.26 mqc_input_real_scalar()

MQC_Input_Real_Scalar is a subroutine is used to set an intrinsic real to an MQC_Scalar

Purpose:

MQC_Input_Integer_Scalar is a subroutine is used to set an intrinsic real to an MQC_Scalar.

Parameters

in,out	ScalarOut	
		ScalarOut is Type(MQC_Scalar) The name of the output variable
in	ScalarIn	
		ScalarIn is Real(kind=real64) The value of the input variable

Author

L. M. Thompson

Date

2016

5.1.1.27 mqc_integergtscalar()

MQC_IntegerGTScalar is a function that returns TRUE if an intrinsic integer is greater than a MQC_Scalar

Purpose:

 $\ensuremath{\mathtt{MQC_IntegerGTScalar}}$ is a function that returns TRUE if an intrinsic integer is greater than a $\ensuremath{\mathtt{MQC_Scalar}}.$

When dealing with complex numbers, the function returns TRUE if the intrinsic integer is greater than the real part of the MQC_Scalar and FALSE if the intrinsic integer is less than the real part of the MQC_Scalar. If the intrinsic integer is equal to the real part of the MQC_Scalar, the function returns TRUE if the imaginary part of MQC_Scalar is less than zero and FALSE otherwise. Note that this is the same procedure used in python.

Parameters

in	Intln	
		<pre>IntIn is Integer(kind=int64) The intrinsic integer that will be tested.</pre>
in	Scalar	
		Scalar is Type(MQC_Scalar) The MQC_Scalar that will be tested.

Author

L. M. Thompson

Date

2019

5.1.1.28 mqc_integerlescalar()

5.1.1.29 mqc_integerscalaradd()

5.1.1.30 mqc_integerscalardivide()

5.1.1.31 mqc_integerscalarmultiply()

5.1.1.32 mqc_integerscalarsubtract()

5.1.1.33 mqc_integervectorproduct()

5.1.1.34 mgc length vector()

5.1.1.35 mqc_matrix_cast_complex()

5.1.1.36 mqc_matrix_cast_real()

5.1.1.37 mqc_matrix_columns()

5.1.1.38 mqc_matrix_conjugate_transpose()

5.1.1.39 mqc_matrix_copy_complex2int()

5.1.1.40 mqc_matrix_copy_complex2real()

5.1.1.41 mqc_matrix_copy_int2complex()

5.1.1.42 mqc_matrix_copy_int2real()

5.1.1.43 mqc_matrix_copy_real2complex()

5.1.1.44 mqc_matrix_copy_real2int()

5.1.1.45 mqc_matrix_determinant()

5.1.1.46 mqc_matrix_diag2full()

5.1.1.47 mqc_matrix_diag2symm()

5.1.1.48 mqc_matrix_diagmatrix_put_complex()

5.1.1.49 mqc_matrix_diagmatrix_put_integer()

5.1.1.50 mqc_matrix_diagmatrix_put_real()

5.1.1.51 mqc_matrix_diagmatrix_put_vector()

5.1.1.52 mqc_matrix_diagonalize()

5.1.1.53 mqc_matrix_full2diag()

5.1.1.54 mqc_matrix_full2symm()

5.1.1.55 mqc_matrix_generalized_eigensystem()

5.1.1.56 mqc_matrix_havecomplex()

5.1.1.57 mqc_matrix_havediagonal()

5.1.1.58 mgc matrix havefull()

5.1.1.59 mqc_matrix_haveinteger()

5.1.1.60 mqc_matrix_havereal()

5.1.1.61 mqc matrix havesymmetric()

5.1.1.62 mqc_matrix_identity()

5.1.1.63 mqc_matrix_initialize()

5.1.1.64 mqc_matrix_inverse()

5.1.1.65 mqc_matrix_isallocated()

5.1.1.66 mqc_matrix_matrix_at()

MQC_Matrix_Matrix_At is a function that returns a submatrix of the matrix

Parameters

in	Mat	
		Mat is Class(MQC_Matrix)
		Name of the input matrix variable
in	rows	
		Rows is Integer(kind=int64),Dimension(:)
		<pre>If = [A,B]: output is submatrix of rows A to B</pre>
		<pre>If (A,B)>0 row count is from first index If (A,B)<0 row count is from last index</pre>
		If = [0]: submatrix of rows equivalent to [1,-1]
in	Cols	
		Cols is Integer(kind=int64),Dimension(:)
		If = [A,B]: output is submatrix of columns A to B
		If (A,B)>0 column count is from first index
		<pre>If (A,B)<0 column count is from last index If = [0]: submatrix of columns equivalent to [1,-1]</pre>

Author

L. M. Thompson

Date

2017

5.1.1.67 mqc_matrix_matrix_contraction()

5.1.1.68 mqc_matrix_matrix_put()

5.1.1.69 mqc_matrix_norm()

5.1.1.70 mqc_matrix_rms_max()

5.1.1.71 mqc_matrix_rows()

5.1.1.72 mqc_matrix_scalar_at()

5.1.1.73 mqc_matrix_scalar_put()

5.1.1.74 mqc_matrix_set()

5.1.1.75 mqc_matrix_sqrt()

5.1.1.76 mqc_matrix_storagetype()

5.1.1.77 mqc_matrix_svd()

5.1.1.78 mqc_matrix_symm2diag()

5.1.1.79 mqc_matrix_symm2full()

5.1.1.80 mqc_matrix_symm2full_func()

5.1.1.81 mqc matrix symmetrize()

5.1.1.82 mqc_matrix_symmmatrix_put_complex()

5.1.1.83 mqc_matrix_symmmatrix_put_integer()

5.1.1.84 mqc_matrix_symmmatrix_put_real()

5.1.1.85 mqc_matrix_symmsymmr4tensor_put_complex()

5.1.1.86 mqc_matrix_symmsymmr4tensor_put_real()

5.1.1.87 mqc_matrix_test_diagonal()

5.1.1.88 mqc_matrix_test_symmetric()

5.1.1.89 mqc_matrix_trace()

5.1.1.90 mqc_matrix_transpose()

5.1.1.91 mqc_matrix_vector_at()

5.1.1.92 mqc_matrix_vector_put()

5.1.1.93 mqc_matrixmatrixdotproduct()

5.1.1.94 mqc_matrixmatrixproduct()

5.1.1.95 mqc_matrixmatrixsubtract()

5.1.1.96 mqc_matrixmatrixsum()

5.1.1.97 mqc_matrixscalarproduct()

5.1.1.98 mqc_matrixvectordotproduct()

5.1.1.99 mqc_outer()

5.1.1.100 mqc_output_complex_scalar()

MQC Output Complex Scalar is a subroutine used to output an intrinsic complex equal to an MQC Scalar

Purpose:

 ${\tt MQC_Output_Complex_Scalar} \ is \ a \ subroutine \ used \ to \ output \ an \ intrinsic \ complex \ equal \ to \ an \ {\tt MQC_Scalar}.$

Parameters

in,out	ScalarOut	
		ScalarOut is Complex(kind=real64) The name of the output variable
in	ScalarIn	
		ScalarIn is Type(MQC_Scalar) The value of the input variable

Author

L. M. Thompson

Date

2017

5.1.1.101 mqc_output_integer_scalar()

MQC_Output_Integer_Scalar is a subroutine used to output an intrinsic integer equal to an MQC_Scalar

Purpose:

 ${\tt MQC_Output_Integer_Scalar} \ is \ a \ subroutine \ used \ to \ output \ an \ intrinsic \ integer \ equal \ to \ an \ {\tt MQC_Scalar}.$

Parameters

in,out	ScalarOut	
		ScalarOut is Integer(kind=int64) The name of the output variable
in	ScalarIn	
		ScalarIn is Type(MQC_Scalar) The value of the input variable

Author

L. M. Thompson

Date

2016

5.1.1.102 mqc_output_mqcscalar_scalar()

MQC_Output MQCScalar_Scalar is a subroutine used to output an MQC_scalar equal to an MQC_Scalar

Purpose:

 ${\tt MQC_Output_MQCScalar_Scalar} \ \ {\tt is} \ \ {\tt a} \ \ {\tt subroutine} \ \ {\tt used} \ \ {\tt to} \ \ {\tt output} \ \ {\tt an} \ \ {\tt MQC_Scalar}.$

Parameters

in,out	ScalarOut	
		ScalarOut is Type(MQC_Scalar) The name of the output variable
in	ScalarIn	
		ScalarIn is Type(MQC_Scalar) The value of the input variable

Author

L. M. Thompson

Date

2016

5.1.1.103 mqc_output_real_scalar()

MQC_Output_Real_Scalar is a subroutine used to output an intrinsic real equal to an MQC_Scalar

Purpose:

MQC_Output_Complex_Scalar is a subroutine used to output an intrinsic real equal to an MQC_Scalar.

Parameters

in,out	ScalarOut	
		ScalarOut is Real(kind=real64) The name of the output variable
in	ScalarIn	
		ScalarIn is Type(MQC_Scalar) The value of the input variable

Author

L. M. Thompson

Date

2016

5.1.1.104 mqc_print_matrix_algebra1()

5.1.1.105 mqc_print_r4tensor_algebra1()

5.1.1.106 mqc_print_scalar_algebra1()

MQC_Print_Scalar_Algebra1 is a subroutine used to print an MQC_Scalar

Purpose:

 ${\tt MQC_Print_Scalar_Algebra1}$ is a subroutine used to print an ${\tt MQC_Scalar}$. Blank_At_Top and Blank_At_Bottom are optional logical arguments to print blank lines before or after output.

Parameters

in	Scalar	
		Scalar is Class(MQC_Scalar)
		The variable to be printed
in	<i>IOut</i>	
		IOut is Integer(kind=int64)
		The Fortran file number to print to
in	Header	
		Header is Character(Len=*)
		The title to print along with Scalar
in	Blank_At_Top	
		Blank_At_Top is Logical,Optional
		= .True.: print blank line above output
		= .False.: do not print blank line above output
in	Blank_At_Bottom	
		Blank_At_Bottom is Logical,Optional
		<pre>= .True.: print blank line below output = .False.: do not print blank line below output</pre>

Author

L. M. Thompson

Date

2016

5.1.1.107 mqc_print_vector_algebra1()

5.1.1.108 mqc_r4tensor_at()

5.1.1.109 mqc_r4tensor_havecomplex()

```
logical function mqc_algebra::mqc_r4tensor_havecomplex ( type \, (mqc\_r4tensor) \, , \, \, intent \, (in) \, \, \textit{R4Tensor} \, )
```

5.1.1.110 mgc r4tensor haveinteger()

```
logical function mqc_algebra::mqc_r4tensor_haveinteger ( type \, (mqc\_r4tensor) \, , \, \, intent \, (in) \, \, \textit{R4Tensor} \, )
```

5.1.1.111 mqc_r4tensor_havereal()

5.1.1.112 mqc_r4tensor_initialize()

5.1.1.113 mqc_r4tensor_put()

5.1.1.114 mqc_realgtscalar()

5.1.1.115 mqc_reallescalar()

5.1.1.116 mqc_realltscalar()

MQC_RealLTScalar is a function that returns TRUE if an intrinsic real is less than a MQC_Scalar

Purpose:

 $\mbox{MQC_RealLTScalar}$ is a function that returns TRUE if an intrinsic real is less than a $\mbox{MQC_Scalar.}$

When dealing with complex numbers, the function returns TRUE if the intrinsic real is less than the real part of the MQC_Scalar and FALSE if the intrinsic real is greater than the real part of the MQC_Scalar. If the intrinsic real is equal to the real part of the MQC_Scalar, the function returns TRUE if the imaginary part of MQC_Scalar is greater than zero and FALSE otherwise. Note that this is the same procedure used in python.

Parameters

in	Real← In	RealIn is Real(kind=real64) The intrinsic real that will be tested.
in	Scalar	Scalar is Type(MQC_Scalar) The MQC_Scalar that will be tested.

Author

L. M. Thompson

Date

2019

5.1.1.117 mqc_realscalaradd()

5.1.1.118 mqc_realscalardivide()

5.1.1.119 mqc_realscalarmultiply()

5.1.1.120 mqc_realscalarsubtract()

5.1.1.121 mqc_realvectorproduct()

5.1.1.122 mqc_scalar_acos()

MQC_Scalar_ACos is a function used to return the arccosine of an MQC_scalar

Purpose:

```
{\tt MQC\_Scalar\_ACos} is a function used to return the arccosine of an {\tt MQC\_scalar}.
```

Parameters

in	Scalar	
		Scalar is Type(MQC_Scalar)
		The argument of the function

Author

L. M. Thompson

Date

2019

5.1.1.123 mqc_scalar_asin()

MQC_Scalar_ASin is a function used to return the arcsin of an MQC_scalar

Purpose:

 ${\tt MQC_Scalar_ASin}$ is a function used to return the arcsin of an ${\tt MQC_scalar_ASin}$

Parameters

in	Scalar	
		Scalar is Type(MQC_Scalar) The argument of the function

Author

L. M. Thompson

Date

2019

5.1.1.124 mqc_scalar_atan()

MQC_Scalar_ATan is a function used to return the arctangent of an MQC_scalar

Purpose:

 ${\tt MQC_Scalar_ATan}$ is a function used to return the arctangent of an ${\tt MQC_scalar}.$

Parameters

in	Scalar	
		Scalar is Type(MQC_Scalar) The argument of the function

Author

L. M. Thompson

Date

2019

5.1.1.125 mqc_scalar_atan2()

MQC_Scalar_ATan2 is a function used to return the arctangent of an MQC_scalar accounting for quadrant of Argand diagram

Purpose:

 ${\tt MQC_Scalar_ATan2}$ is a function used to return the arctangent of an ${\tt MQC_scalar}$ accounting for quadrant of Argand diagram.

Parameters

in	Scalar	
		Scalar is Type(MQC_Scalar) The argument of the function

Author

L. M. Thompson

Date

2019

5.1.1.126 mqc_scalar_cmplx()

MQC_Scalar_Cmplx is a function used to set a complex MQC_Scalar type variable from two other MQC_scalars

Purpose:

 ${\tt MQC_Scalar_Cmplx}$ is a function used to set a complex ${\tt MQC_Scalar}$ type variable from two other ${\tt MQC_Scalar}$ variables.

Parameters

in	Scalar1	
		Scalarl is Type(MQC_Scalar) The real part of MQC_Scalar_Cmplx
in	Scalar2	
		Scalar2 is Type(MQC_Scalar) The imaginary part of MQC_Scalar_Cmplx

Author

L. M. Thompson

Date

2019

5.1.1.127 mqc_scalar_complex_conjugate()

5.1.1.128 mqc_scalar_complex_imagpart()

5.1.1.129 mqc_scalar_complex_realpart()

```
\label{type mqc_scalar} type (mqc\_scalar) \ function \ mqc\_algebra::mqc\_scalar\_complex\_realpart \ ( \\ type (mqc\_scalar), \ intent(in) \ \textit{ScalarIn} \ )
```

5.1.1.130 mqc_scalar_cos()

MQC_Scalar_Cos is a function used to return the cosine of an MQC_scalar

Purpose:

 ${\tt MQC_Scalar_Cos}$ is a function used to return the cosine of an ${\tt MQC_scalar}$.

Parameters

in	Scalar	
		Scalar is Type(MQC_Scalar) The argument of the function

Author

L. M. Thompson

Date

2019

5.1.1.131 mqc_scalar_get_abs_value()

MQC_Scalar_Get_ABS_Value is a function that returns the absolute value of MQC_scalar variable

Purpose:

 ${\tt MQC_Scalar_Get_ABS_Value}$ is a function that returns the absolute value of ${\tt MQC_scalar}$ variable.

Parameters

in	Scalar	
		Scalar is Class(MQC_Scalar) The MQC_Scalar to be tested

Author

A. Mahler

Date

2018

5.1.1.132 mqc_scalar_get_intrinsic_complex()

MQC_Scalar_Get_Intrinsic_Complex is a function that returns the MQC_scalar value as an intrinsic complex

Purpose:

 ${\tt MQC_Scalar_Get_Intrinsic_Complex}$ is a function that returns the ${\tt MQC_scalar}$ value as an intrinsic complex.

Parameters

in	Scalar	
		Scalar is Class(MQC_Scalar) The MQC_Scalar to be tested

Author

L. M. Thompson

Date

2017

5.1.1.133 mqc_scalar_get_intrinsic_integer()

MQC_Scalar_Get_Intrinsic_Integer is a function that returns the MQC_scalar value as an intrinsic integer

Purpose:

 ${\tt MQC_Scalar_Get_Intrinsic_Integer}$ is a function that returns the ${\tt MQC_scalar}$ value as an intrinsic integer.

Parameters

in	Scalar	
		Scalar is Class(MQC_Scalar) The MQC_Scalar to be tested

Author

L. M. Thompson

Date

2017

5.1.1.134 mqc_scalar_get_intrinsic_real()

Purpose:

 ${\tt MQC_Scalar_Get_Intrinsic_Real}$ is a function that returns the ${\tt MQC_scalar}$ value as an intrinsic real.

Parameters

in	Scalar	
		Scalar is Class(MQC_Scalar) The MQC_Scalar to be tested

Author

L. M. Thompson

Date

2017

5.1.1.135 mqc_scalar_get_random_value()

MQC_Scalar_Get_Random_Value is a function that returns a random real value from a uniform distribution between zero and one

Purpose:

 $\texttt{MQC_Scalar_Get_Random_Value}$ is a function that returns a random real value from a uniform distribution between zero and one.

Parameters

in,out	Scalar	
		Scalar is Class(MQC_Scalar) The MQC_Scalar to be filled

Author

X. Dong

Date

5.1.1.136 mqc_scalar_havecomplex()

MQC_Scalar_HaveComplex is a function that returns TRUE or FALSE indicating whether an MQC_scalar is of type complex

Purpose:

 ${\tt MQC_Scalar_HaveComplex}$ is a function that returns TRUE or FALSE indicating whether an ${\tt MQC_scalar}$ is of type complex.

Parameters

in	Scalar	
		Scalar is Type(MQC_Scalar) The MQC_Scalar to be tested

Author

L. M. Thompson

Date

2017

5.1.1.137 mqc_scalar_haveinteger()

MQC_Scalar_HaveInteger is a function that returns TRUE or FALSE indicating whether an MQC_scalar is of type integer

Purpose:

```
{\tt MQC\_Scalar\_HaveInteger} is a function that returns TRUE or FALSE indicating whether an {\tt MQC\_scalar} is of type integer.
```

Parameters

in	Scalar	
		Scalar is Type(MQC_Scalar) The MQC_Scalar to be tested

Author

L. M. Thompson

Date

2017

5.1.1.138 mqc_scalar_havereal()

MQC_Scalar_HaveReal is a function that returns TRUE or FALSE indicating whether an MQC_scalar is of type real

Purpose:

 $\texttt{MQC_Scalar_HaveReal}$ is a function that returns TRUE or FALSE indicating whether an $\texttt{MQC_scalar}$ is of type real.

Parameters

in	Scalar	
		Scalar is Type(MQC_Scalar) The MQC_Scalar to be tested

Author

L. M. Thompson

Date

5.1.1.139 mqc_scalar_isallocated()

MQC_Scalar_IsAllocated is used to determine the allocation status of an MQC_Scalar

Purpose:

 $\texttt{MQC_Scalar_IsAllocated}$ is a subroutine used to determine the allocation status of an $\texttt{MQC_Scalar.}$

Parameters

in,out	Scalar		
		Scalar is Type(MQC_Scalar) The name of the MQC_Scalar variable to check allocation status	

Author

L. M. Thompson

Date

2017

5.1.1.140 mqc_scalar_sin()

MQC_Scalar_Sin is a function used to return the sine of an MQC_scalar

Purpose:

MQC_Scalar_Sin is a function used to return the sine of an MQC_scalar.

Parameters

in	Scalar	
		Scalar is Type(MQC_Scalar) The argument of the function

Author

L. M. Thompson

Date

2019

5.1.1.141 mqc_scalar_sqrt()

MQC_Scalar_Sqrt is a function used to return the square root of an MQC_scalar

Purpose:

 ${\tt MQC_Scalar_Sqrt}$ is a function used to return the square root of an ${\tt MQC_scalar}$.

Parameters

in	Scalar	
		Scalar is Type (MQC_Scalar)
		The argument of the function

Author

L. M. Thompson

Date

2016

5.1.1.142 mqc_scalar_tan()

MQC_Scalar_Tan is a function used to return the tangent of an MQC_scalar

Purpose:

MQC_Scalar_Tan is a function used to return the tangent of an MQC_scalar.

Parameters

in	Scalar	
		Scalar is Type(MQC_Scalar) The argument of the function

Author

L. M. Thompson

Date

2019

5.1.1.143 mqc_scalaradd()

MQC_ScalarAdd is a function that sums two MQC_Scalar objects

Purpose:

MQC_ScalarAdd is a function that sums two MQC_Scalar objects.

Parameters

in	Scalar1	
		Scalar1 is Type(MQC_Scalar) The first MQC_Scalar to be summed
in	Scalar2	
		Scalar2 is Type(MQC_Scalar) The second MQC_Scalar to be summed

Author

L. M. Thompson

Date

5.1.1.144 mqc_scalarcomplexadd()

5.1.1.145 mqc_scalarcomplexdivide()

5.1.1.146 mqc_scalarcomplexexponent()

MQC_ScalarComplexExponent is a function that raises an MQC_Scalar to the power of an intrinsic complex

Purpose:

 $\texttt{MQC_ScalarComplexExponent}$ is a function that raises an $\texttt{MQC_Scalar}$ to the power of an intrinsic complex.

Parameters

in	Scalar	
		Scalar1 is Type(MQC_Scalar) The base value
in	Comp⊷	
	In	CompIn is Complex(kind=real64) The power value

Author

L. M. Thompson

Date

5.1.1.147 mqc_scalarcomplexmultiply()

5.1.1.148 mqc_scalarcomplexsubtract()

5.1.1.149 mqc_scalardivide()

MQC_ScalarDivide is a function that divides two MQC_Scalar objects

Purpose:

MQC_ScalarDivide is a function that divides MQC_Scalar objects.

Parameters

in	Scalar1	
		Scalar1 is Type(MQC_Scalar) The numerator
in	Scalar2	
		Scalar2 is Type(MQC_Scalar) The denominator

Author

L. M. Thompson

Date

5.1.1.150 mqc_scalareq()

MQC_ScalarEQ is a function that returns TRUE if two MQC_Scalar variables are equal

Purpose:

```
\mbox{MQC\_ScalarEQ} is a function that returns TRUE if two \mbox{MQC\_Scalar} variables are equal.
```

Parameters

in	Scalar1	
		Scalarl is Type(MQC_Scalar) The first MQC_Scalar that will be tested.
in	Scalar2	
		Scalar2 is Type(MQC_Scalar) The second MQC_Scalar that will be tested.

Author

L. M. Thompson

Date

2016

5.1.1.151 mqc_scalarexponent()

MQC_ScalarExponent is a function that raises one MQC_Scalar to the power of another MQC_Scalar

Purpose:

```
{\tt MQC\_ScalarExponent} is a function that raises one {\tt MQC\_Scalar} to the power of another {\tt MQC\_Scalar}.
```

Parameters

in	Scalar1	
		Scalar1 is Type(MQC_Scalar) The base value
in	Scalar2	
		Scalar2 is Type(MQC_Scalar) The power value

Author

L. M. Thompson

Date

2016

5.1.1.152 mqc_scalarge()

5.1.1.153 mqc_scalargt()

MQC_ScalarGT is a function that returns TRUE if the left MQC_Scalar is greater than the right MQC_Scalar

Purpose:

 $\mbox{MQC_ScalarGT}$ is a function that returns TRUE if the left $\mbox{MQC_Scalar}$ is greater than the right $\mbox{MQC_Scalar}.$

When dealing with complex numbers, the function returns TRUE if the left real part is greater than the right real part and FALSE if the left real part is less than the right real part. If the left real part is equal to the right real part, the function returns TRUE if the left imaginary part is greater than the right imaginary part and FALSE otherwise. Note that this is the same procedure used in python.

Parameters

in	Scalar1	
		Scalar1 is Type(MQC_Scalar) The first MQC_Scalar that will be tested.
in	Scalar2	
		Scalar2 is Type(MQC_Scalar) The second MQC_Scalar that will be tested.

Author

L. M. Thompson

Date

2016

5.1.1.154 mqc_scalargtinteger()

MQC_ScalarGTInteger is a function that returns TRUE if a MQC_Scalar is greater than an intrinsic integer

Purpose:

 $\mbox{MQC_ScalarGTInteger}$ is a function that returns TRUE if a $\mbox{MQC_Scalar}$ is greater than an intrinsic integer.

When dealing with complex numbers, the function returns TRUE if the real part of the MQC_Scalar is greater than the intrinsic integer and FALSE if the real part of the MQC_Scalar is less than the intrinsic integer. If the real part of the MQC_Scalar is equal to the intrinsic integer, the function returns TRUE if the imaginary part of MQC_Scalar is greater than zero and FALSE otherwise. Note that this is the same procedure used in python.

Parameters

in	Scalar	
		Scalar is Type(MQC_Scalar) The MQC_Scalar that will be tested.
in	Intln	
		IntIn is Integer(kind=int64) The intrinsic integer that will be tested.

Author

L. M. Thompson

Date

2019

5.1.1.155 mqc_scalargtreal()

5.1.1.156 mqc_scalarintegeradd()

5.1.1.157 mqc_scalarintegerdivide()

5.1.1.158 mqc_scalarintegerexponent()

MQC_ScalarIntegerExponent is a function that raises an MQC_Scalar to the power of an intrinsic integer

Purpose:

 $\mbox{MQC_ScalarIntegerExponent}$ is a function that raises an $\mbox{MQC_Scalar}$ to the power of an intrinsic integer.

Parameters

in	Scalar	
		Scalar1 is Type(MQC_Scalar) The base value
in	Intln	
		IntIn is Integer(kind=int64) The power value

Author

L. M. Thompson

Date

2019

5.1.1.159 mqc_scalarintegermultiply()

5.1.1.160 mqc_scalarintegersubtract()

5.1.1.161 mqc_scalarle()

5.1.1.162 mqc_scalarleinteger()

5.1.1.163 mqc_scalarlereal()

5.1.1.164 mqc_scalarIt()

MQC_ScalarLT is a function that returns TRUE if the left MQC_Scalar is less than the right MQC_Scalar

Purpose:

 ${\tt MQC_ScalarLT}$ is a function that returns TRUE if the left ${\tt MQC_Scalar}$ is less than the right ${\tt MQC_Scalar}$.

When dealing with complex numbers, the function returns TRUE if the left real part is less than the right real part and FALSE if the left real part is greater than the right real part. If the left real part is equal to the right real part, the function returns TRUE if the left imaginary part is less than the right imaginary part and FALSE otherwise. Note that this is the same procedure used in python.

Parameters

in	Scalar1	
		Scalarl is Type(MQC_Scalar) The first MQC_Scalar that will be tested.
in	Scalar2	
		Scalar2 is Type(MQC_Scalar) The second MQC_Scalar that will be tested.

Author

L. M. Thompson

Date

2016

5.1.1.165 mqc_scalarItreal()

MQC_ScalarLTReal is a function that returns TRUE if a MQC_Scalar is less than an intrinsic real

Purpose:

```
{\tt MQC\_ScalarLTReal} is a function that returns TRUE if a {\tt MQC\_Scalar} is less than an intrinsic real.
```

When dealing with complex numbers, the function returns TRUE if the real part of the MQC_Scalar is less than the intrinsic real and FALSE if the real part of the MQC_Scalar is greater than the intrinsic real. If the real part of the MQC_Scalar is equal to the intrinsic real, the function returns TRUE if the imaginary part of MQC_Scalar is less than zero and FALSE otherwise. Note that this is the same procedure used in python.

Parameters

in	Scalar	
		Scalar is Type(MQC_Scalar) The MQC_Scalar that will be tested.
in	Real←	
	In	RealIn is Real(kind=real64) The intrinsic real that will be tested.

Author

L. M. Thompson

Date

2019

5.1.1.166 mqc_scalarmatrixproduct()

5.1.1.167 mqc_scalarmultiply()

MQC_ScalarMultiply is a function that multiplies two MQC_Scalar objects

Purpose:

MQC_ScalarMultiply is a function that multiplies two MQC_Scalar objects.

Parameters

in	Scalar1	
		Scalar1 is Type(MQC_Scalar) The first MQC_Scalar to be multiplied
in	Scalar2	
		Scalar2 is Type(MQC_Scalar) The second MQC_Scalar to be multiplied

Author

L. M. Thompson

Date

2016

5.1.1.168 mqc_scalarne()

MQC_ScalarNE is a function that returns TRUE if two MQC_Scalar variables are not equal

Purpose:

 $\ensuremath{\mathtt{MQC_ScalarNE}}$ is a function that returns TRUE if two $\ensuremath{\mathtt{MQC_Scalar}}$ variables are not equal.

Parameters

in	Scalar1	
		Scalar1 is Type(MQC_Scalar) The first MQC_Scalar that will be tested.
in	Scalar2	
		Scalar2 is Type(MQC_Scalar) The second MOC Scalar that will be tested.

Author

L. M. Thompson

Date

2016

5.1.1.169 mqc_scalarrealadd()

5.1.1.170 mqc_scalarrealdivide()

5.1.1.171 mqc_scalarrealexponent()

MQC_Scalar RealExponent is a function that raises an MQC_Scalar to the power of an intrinsic real

Purpose:

 $\mbox{MQC_ScalarRealExponent}$ is a function that raises an $\mbox{MQC_Scalar}$ to the power of an intrinsic real.

Parameters

in	Scalar	
		Scalarl is Type(MQC_Scalar) The base value
in	Real←	
	In	RealIn is Real(kind=real64) The power value

Author

L. M. Thompson

Date

2019

5.1.1.172 mqc_scalarrealmultiply()

5.1.1.173 mqc_scalarrealsubtract()

5.1.1.174 mqc_scalarsubtract()

MQC_ScalarSubtract is a function that subtracts two MQC_Scalar objects

Purpose:

 ${\tt MQC_ScalarSubtract}$ is a function that subtracts two ${\tt MQC_Scalar}$ objects.

Parameters

in	Scalar1	
		Scalar1 is Type(MQC_Scalar) The first MQC_Scalar from which Scalar2 will be subtracted
in	Scalar2	
		Scalar2 is Type(MQC_Scalar) The second MQC_Scalar which will be subtracted from Scalar1

Author

L. M. Thompson

Date

2016

5.1.1.175 mqc_scalarvectordifference()

5.1.1.176 mqc_scalarvectorproduct()

5.1.1.177 mqc_scalarvectorsum()

5.1.1.178 mqc_set_array2tensor()

5.1.1.179 mqc_set_array2vector_complex()

5.1.1.180 mqc_set_array2vector_integer()

5.1.1.181 mqc_set_array2vector_real()

5.1.1.182 mqc_set_complexarray2matrix()

5.1.1.183 mqc_set_integerarray2matrix()

5.1.1.184 mqc_set_matrix2complexarray()

5.1.1.185 mqc_set_matrix2integerarray()

5.1.1.186 mqc_set_matrix2matrix()

5.1.1.187 mqc_set_matrix2realarray()

5.1.1.188 mqc_set_realarray2matrix()

5.1.1.189 mqc_set_vector2complexarray()

5.1.1.190 mqc_set_vector2integerarray()

5.1.1.191 mqc_set_vector2realarray()

5.1.1.192 mqc_set_vector2vector()

5.1.1.193 mqc_vector2diagmatrix()

5.1.1.194 mqc_vector_abs()

5.1.1.195 mqc_vector_argsort()

5.1.1.196 mqc_vector_cast_complex()

5.1.1.197 mqc vector cast real()

5.1.1.198 mqc_vector_cmplx()

5.1.1.199 mqc_vector_complex_imagpart()

5.1.1.200 mqc_vector_complex_realpart()

5.1.1.201 mqc_vector_conjugate_transpose()

```
\label{type mqc_vector} \mbox{type (mqc_vector) function mqc_algebra::mqc_vector_conjugate\_transpose (} \\ \mbox{class (mqc_vector), intent(in) } \mbox{\it Vector} \mbox{\it )}
```

5.1.1.202 mqc_vector_copy_complex2int()

5.1.1.203 mqc_vector_copy_complex2real()

5.1.1.204 mqc_vector_copy_int2complex()

5.1.1.205 mqc_vector_copy_int2real()

5.1.1.206 mqc_vector_copy_real2complex()

5.1.1.207 mqc_vector_copy_real2int()

5.1.1.208 mqc_vector_havecomplex()

5.1.1.209 mqc_vector_haveinteger()

5.1.1.210 mqc_vector_havereal()

5.1.1.211 mqc_vector_initialize()

5.1.1.212 mqc_vector_isallocated()

5.1.1.213 mqc_vector_iscolumn()

5.1.1.214 mqc_vector_maxloc()

5.1.1.215 mqc_vector_maxval()

5.1.1.216 mqc_vector_minloc()

5.1.1.217 mqc_vector_minval()

5.1.1.218 mqc_vector_norm()

5.1.1.219 mqc_vector_pop()

5.1.1.220 mqc_vector_power()

5.1.1.221 mqc_vector_push()

5.1.1.222 mqc_vector_scalar_at()

5.1.1.223 mqc_vector_scalar_increment()

5.1.1.224 mqc_vector_scalar_put()

5.1.1.225 mqc_vector_shift()

5.1.1.226 mqc_vector_sort()

5.1.1.227 mqc_vector_sqrt()

5.1.1.228 mqc_vector_transpose()

5.1.1.229 mqc_vector_unshift()

5.1.1.230 mqc_vector_vector_at()

5.1.1.231 mqc_vector_vector_put()

5.1.1.232 mqc_vectorcomplexdivide()

5.1.1.233 mqc_vectorcomplexproduct()

5.1.1.234 mqc_vectorintegerdivide()

5.1.1.235 mqc_vectorintegerproduct()

5.1.1.236 mqc_vectormatrixdotproduct()

5.1.1.237 mqc_vectorrealdivide()

5.1.1.238 mqc_vectorrealproduct()

5.1.1.239 mqc_vectorscalardivide()

5.1.1.240 mqc_vectorscalarproduct()

5.1.1.241 mqc_vectorvectordifference()

5.1.1.242 mqc_vectorvectordotproduct()

5.1.1.243 mqc_vectorvectorsum()

5.1.1.244 symindexhash()

```
integer(kind=int64) function mqc_algebra::symindexhash (
    integer(kind=int64), intent(in) i,
    integer(kind=int64), intent(in) j,
    integer(kind=int64), intent(in), optional k,
    integer(kind=int64), intent(in), optional l)
```

5.2 mqc_est Module Reference

Data Types

- interface assignment(=)
- interface contraction
- · interface dagger
- interface dot product
- · interface matmul
- · type mgc determinant
- type mqc_determinant_string
- interface mqc_matrix_undospinblockghf
- interface mqc_print
- type mgc pscf wavefunction
- type mqc_scf_eigenvalues
- type mqc_scf_integral
- type mqc_twoeris
- · type mgc wavefunction
- interface operator(*)
- interface operator(+)
- interface operator(-)
- · interface transpose

Functions/Subroutines

- subroutine mqc_print_wavefunction (wavefunction, iOut, label)
- subroutine mqc_print_integral (integral, iOut, header, blank_at_top, blank_at_bottom)
- subroutine mgc print eigenvalues (eigenvalues, iOut, header, blank at top, blank at bottom)
- subroutine mqc_print_twoeris (twoERIs, iOut, header, blank_at_top, blank_at_bottom)
- · logical function mgc integral isallocated (Integral)
- logical function mqc_eigenvalues_isallocated (Eigenvalues)
- logical function mqc_integral_has_alpha (integral)
- logical function mgc integral has beta (integral)
- logical function mqc_integral_has_alphabeta (integral)
- logical function mqc_integral_has_betaalpha (integral)
- logical function mqc_eigenvalues_has_alpha (eigenvalues)
- logical function mqc_eigenvalues_has_beta (eigenvalues)
- character(len=64) function mgc integral array type (integral)
- character(len=64) function mqc eigenvalues array type (eigenvalues)

- character(len=64) function mqc_integral_array_name (integral)
- character(len=64) function mqc_eigenvalues_array_name (eigenvalues)
- subroutine mqc_integral_add_name (integral, arrayName)
- subroutine mqc_eigenvalues_add_name (eigenvalues, arrayName)
- integer(kind=int64) function mqc_integral_dimension (integral, label, axis)
- integer(kind=int64) function mqc_eigenvalues_dimension (eigenvalues, label)
- subroutine mgc twoeris allocate (twoERIs, storageType, integralType, alpha, beta, alphaBeta, betaAlpha)
- subroutine mqc_integral_allocate (integral, arrayName, arrayType, alpha, beta, alphaBeta, betaAlpha)
- subroutine mqc_eigenvalues_allocate (eigenvalues, arrayName, arrayType, alpha, beta)
- subroutine mqc integral identity (integral, nAlpha, nBeta, label, nAlpha2, nBeta2)
- subroutine mqc_integral_initialize (integral, nAlpha, nBeta, scalar, label, nAlpha2, nBeta2)
- type(mgc matrix) function mgc integral output block (integral, blockName)
- type(mgc scf integral) function mgc integral output orbitals (integral, orbString, alphaOrbsIn, betaOrbsIn, axis)
- type(mgc scf integral) function mgc integral swap orbitals (integral, alphaOrbsIn, betaOrbsIn, axis)
- type(mgc vector) function mgc eigenvalues output block (eigenvalues, blockName)
- subroutine mqc_integral_output_array (matrixOut, integralIn)
- subroutine mgc eigenvalues output array (vectorOut, eigenvaluesIn)
- type(mqc_scf_integral) function mqc_integral_matrix_multiply (integralA, matrixB, label)
- type(mqc_scf_integral) function mqc_matrix_integral_multiply (matrixA, integralB, label)
- type(mqc_scf_integral) function mqc_integral_sum (integralA, integralB)
- type(mqc_scf_integral) function mqc_integral_difference (integralA, integralB)
- type(mqc_scf_integral) function mqc_integral_integral_multiply (integralA, integralB, label)
- type(mqc_scf_integral) function mqc_scalar_integral_multiply (scalar, integral)
- type(mqc_scf_integral) function mqc_integral_scalar_multiply (integral, scalar)
- type(mqc_scf_integral) function mqc_integral_eigenvalues_multiply (integralA, eigenvaluesB, label)
- type(mqc_scf_integral) function mqc_eigenvalues_integral_multiply (eigenvaluesA, integralB, label)
- type(mqc_scf_eigenvalues) function mqc_eigenvalues_eigenvalues_multiply (eigenvaluesA, eigenvaluesB, label)
- type(mgc scalar) function mgc eigenvalue eigenvalue dotproduct (eigenvalueA, eigenvalueB)
- type(mqc_scf_integral) function mqc_integral_transpose (integral, label)
- type(mqc_scf_integral) function mqc_integral_conjugate_transpose (integral, label)
- type(mqc_scalar) function mqc_integral_norm (integral, methodIn)
- subroutine mgc matrix spinblockghf (array, nelec, multi, elist)
- · subroutine mqc matrix undospinblockghf eigenvalues (eigenvaluesIn, vectorOut)
- subroutine mgc matrix undospinblockghf integral (integralIn, matrixOut)
- type(mqc_scalar) function mqc_scf_integral_contraction (integral1, integral2)
- type(mqc scf integral) function mqc eri integral contraction (eris, integral, label)
- subroutine mqc_scf_integral_generalized_eigensystem (integralA, integralB, eVals, rEVecs, IEVecs)
- subroutine mqc_scf_integral_diagonalize (integral, eVals, eVecs)
- type(mqc_scf_integral) function mqc_scf_integral_inverse (integral)
- type(mgc scalar) function mgc scf integral trace (integral)
- type(mgc scalar) function mgc scf integral determinant (integral)
- subroutine mqc_integral_set_energy_list (integral, elist)
- integer(kind=int64) function, dimension(:), allocatable mqc_integral_get_energy_list (integral)
- subroutine mqc_integral_delete_energy_list (integral)
- subroutine mqc_scf_eigenvalues_power (eigenvalues, power)
- type(mqc_scalar) function mqc_twoeris_at (twoERIs, i, j, k, I, spinBlock)
- type(mqc_scalar) function mqc_integral_at (integral, i, j, spinBlock)
- type(mqc_scalar) function mqc_eigenvalues_at (eigenvalues, i, spinBlock)
- subroutine mqc_scf_transformation_matrix (overlap, transform_matrix, nBasUse)
- subroutine gen det str (IOut, IPrint, NBasisIn, NAlphaIn, NBetaIn, Determinants, NCoreIn)

- subroutine twoeri trans (IOut, IPrint, MO Coeff, ERIs, MO ERIs, UHF)
- type(mqc_matrix) function get_one_gamma_matrix (iOut, iPrint, nBasisIn, nState, determinants, ci_amplitudes, nCoreIn, nOrbsIn)

5.2.1 Function/Subroutine Documentation

5.2.1.1 gen det str()

```
subroutine mqc_est::gen_det_str (
    integer(kind=int64) IOut,
    integer(kind=int64) IPrint,
    type(mqc_scalar) NBasisIn,
    type(mqc_scalar) NAlphaIn,
    type(mqc_scalar) NBetaIn,
    type(mqc_determinant) Determinants,
    type(mqc_scalar), optional NCoreIn )
```

5.2.1.2 get_one_gamma_matrix()

5.2.1.3 mqc_build_ci_hamiltonian()

5.2.1.4 mqc_eigenvalue_eigenvalue_dotproduct()

5.2.1.5 mqc_eigenvalues_add_name()

5.2.1.6 mgc eigenvalues allocate()

5.2.1.7 mqc_eigenvalues_array_name()

5.2.1.8 mqc_eigenvalues_array_type()

5.2.1.9 mqc_eigenvalues_at()

88 Module Documentation

5.2.1.10 mqc_eigenvalues_dimension()

5.2.1.11 mqc_eigenvalues_eigenvalues_multiply()

5.2.1.12 mqc_eigenvalues_has_alpha()

5.2.1.13 mqc_eigenvalues_has_beta()

5.2.1.14 mqc_eigenvalues_integral_multiply()

5.2.1.15 mqc_eigenvalues_isallocated()

5.2.1.16 mqc_eigenvalues_output_array()

5.2.1.17 mqc_eigenvalues_output_block()

5.2.1.18 mqc_eri_integral_contraction()

5.2.1.19 mqc_integral_add_name()

5.2.1.20 mqc_integral_allocate()

90 Module Documentation

5.2.1.21 mqc_integral_array_name()

5.2.1.22 mqc_integral_array_type()

5.2.1.23 mqc_integral_at()

5.2.1.24 mqc_integral_conjugate_transpose()

5.2.1.25 mqc_integral_delete_energy_list()

5.2.1.26 mqc_integral_difference()

5.2.1.27 mqc_integral_dimension()

5.2.1.28 mqc_integral_eigenvalues_multiply()

5.2.1.29 mqc_integral_get_energy_list()

5.2.1.30 mqc_integral_has_alpha()

5.2.1.31 mgc integral has alphabeta()

5.2.1.32 mqc_integral_has_beta()

92 Module Documentation

5.2.1.33 mqc_integral_has_betaalpha()

5.2.1.34 mqc integral identity()

5.2.1.35 mqc_integral_initialize()

5.2.1.36 mqc_integral_integral_multiply()

5.2.1.37 mqc_integral_isallocated()

5.2.1.38 mqc_integral_matrix_multiply()

5.2.1.39 mqc_integral_norm()

5.2.1.40 mqc_integral_output_array()

5.2.1.41 mqc_integral_output_block()

5.2.1.42 mqc_integral_output_orbitals()

94 Module Documentation

5.2.1.43 mqc_integral_scalar_multiply()

5.2.1.44 mqc_integral_set_energy_list()

5.2.1.45 mqc integral sum()

5.2.1.46 mgc integral swap orbitals()

5.2.1.47 mqc_integral_transpose()

5.2.1.48 mqc_matrix_integral_multiply()

5.2.1.49 mgc matrix spinblockghf()

5.2.1.50 mqc_matrix_undospinblockghf_eigenvalues()

5.2.1.51 mqc_matrix_undospinblockghf_integral()

5.2.1.52 mgc print eigenvalues()

96 Module Documentation

5.2.1.53 mqc_print_integral()

5.2.1.54 mqc_print_twoeris()

5.2.1.55 mqc_print_wavefunction()

5.2.1.56 mqc_scalar_integral_multiply()

5.2.1.57 mqc_scf_eigenvalues_power()

5.2.1.58 mqc_scf_integral_contraction()

5.2.1.59 mqc scf integral determinant()

5.2.1.60 mqc_scf_integral_diagonalize()

5.2.1.61 mqc_scf_integral_generalized_eigensystem()

5.2.1.62 mqc scf integral inverse()

5.2.1.63 mqc scf integral trace()

98 Module Documentation

5.2.1.64 mqc_scf_transformation_matrix()

5.2.1.65 mqc_twoeris_allocate()

5.2.1.66 mqc twoeris at()

5.2.1.67 slater_condon()

```
type(mqc_scalar) function mqc_est::slater_condon (
    integer(kind=int64), intent(in) IOut,
    integer(kind=int64), intent(in) IPrint,
    type(mqc_scalar), intent(in) NBasisIn,
    type(mqc_determinant), intent(in) Determinants,
    integer(kind=int64), intent(in) L_A_String,
    integer(kind=int64), intent(in) L_B_String,
    integer(kind=int64), intent(in) R_A_String,
    integer(kind=int64), intent(in) R_B_String,
    type(mqc_scf_integral), intent(in) Core_Hamiltonian,
    type(mqc_twoeris), intent(in) ERIs,
    logical, intent(in) UHF)
```

5.2.1.68 twoeri_trans()

100 Module Documentation

Chapter 6

Data Type Documentation

6.1 mqc_algebra::abs Interface Reference

Public Member Functions

- type(mqc_scalar) function mqc_scalar_get_abs_value (Scalar)
 MQC_Scalar_Get_ABS_Value is a function that returns the absolute value of MQC_scalar variable
- type(mqc_vector) function mqc_vector_abs (A)

6.1.1 Member Function/Subroutine Documentation

6.1.1.1 mqc_scalar_get_abs_value()

MQC_Scalar_Get_ABS_Value is a function that returns the absolute value of MQC_scalar variable

Purpose:

```
\mbox{MQC\_Scalar\_Get\_ABS\_Value} is a function that returns the absolute value of \mbox{MQC\_scalar} variable.
```

Parameters

in	Scalar	
		Scalar is Class(MQC_Scalar) The MQC_Scalar to be tested

Author

A. Mahler

Date

2018

6.1.1.2 mqc_vector_abs()

The documentation for this interface was generated from the following file:

• src/mqc algebra.F03

6.2 mqc_algebra::acos Interface Reference

Public Member Functions

type(mqc_scalar) function mqc_scalar_acos (Scalar)
 MQC_Scalar_ACos is a function used to return the arccosine of an MQC_scalar

6.2.1 Member Function/Subroutine Documentation

6.2.1.1 mqc_scalar_acos()

MQC_Scalar_ACos is a function used to return the arccosine of an MQC_scalar

Purpose:

MQC_Scalar_ACos is a function used to return the arccosine of an MQC_scalar.

in	Scalar	
		Scalar is Type(MQC_Scalar) The argument of the function

Author

L. M. Thompson

Date

2019

The documentation for this interface was generated from the following file:

src/mqc_algebra.F03

6.3 mqc_algebra::aimag Interface Reference

Public Member Functions

- type(mqc_scalar) function mqc_scalar_complex_imagpart (ScalarIn)
- type(mqc_vector) function mqc_vector_complex_imagpart (A)

6.3.1 Member Function/Subroutine Documentation

6.3.1.1 mqc_scalar_complex_imagpart()

```
\label{type mqc_scalar} type (mqc\_scalar) \ function \ mqc\_algebra::aimag::mqc\_scalar\_complex\_imagpart \ ( \\ type (mqc\_scalar), \ intent(in) \ \textit{ScalarIn} \ )
```

6.3.1.2 mqc_vector_complex_imagpart()

The documentation for this interface was generated from the following file:

src/mqc_algebra.F03

6.4 mqc_algebra::asin Interface Reference

Public Member Functions

type(mqc_scalar) function mqc_scalar_asin (Scalar)
 MQC_Scalar_ASin is a function used to return the arcsin of an MQC_scalar

6.4.1 Member Function/Subroutine Documentation

6.4.1.1 mqc_scalar_asin()

MQC_Scalar_ASin is a function used to return the arcsin of an MQC_scalar

Purpose:

 $\ensuremath{\mathsf{MQC_Scalar_ASin}}$ is a function used to return the arcsin of an $\ensuremath{\mathsf{MQC_scalar}}.$

Parameters

in	Scalar	
		Scalar is Type(MQC_Scalar) The argument of the function

Author

L. M. Thompson

Date

2019

The documentation for this interface was generated from the following file:

src/mqc_algebra.F03

6.5 mgc algebra::assignment(=) Interface Reference

Public Member Functions

• subroutine mgc input integer scalar (ScalarOut, ScalarIn)

MQC_Input_Integer_Scalar is a subroutine is used to set an intrinsic integer to an MQC_Scalar

• subroutine mgc input real scalar (ScalarOut, ScalarIn)

MQC_Input_Real_Scalar is a subroutine is used to set an intrinsic real to an MQC_Scalar

• subroutine mgc input complex scalar (ScalarOut, ScalarIn)

MQC_Input_Complex_Scalar is a subroutine is used to set an intrinsic complex to an MQC_Scalar

• subroutine mgc output mgcscalar scalar (ScalarOut, ScalarIn)

MQC_Output MQCScalar_Scalar is a subroutine used to output an MQC_scalar equal to an MQC_Scalar

subroutine mqc_output_integer_scalar (ScalarOut, ScalarIn)

MQC_Output_Integer_Scalar is a subroutine used to output an intrinsic integer equal to an MQC_Scalar

subroutine mqc_output_real_scalar (ScalarOut, ScalarIn)

MQC_Output_Real_Scalar is a subroutine used to output an intrinsic real equal to an MQC_Scalar

subroutine mqc_output_complex_scalar (ScalarOut, ScalarIn)

MQC_Output_Complex_Scalar is a subroutine used to output an intrinsic complex equal to an MQC_Scalar

- subroutine mqc_set_vector2vector (VectorOut, VectorIn)
- subroutine mgc set vector2integerarray (ArrayOut, VectorIn)
- subroutine mqc_set_vector2realarray (ArrayOut, VectorIn)
- subroutine mgc set vector2complexarray (ArrayOut, VectorIn)
- subroutine mqc_set_array2vector_integer (VectorOut, ArrayIn)
- subroutine mqc_set_array2vector_real (VectorOut, ArrayIn)
- subroutine mqc_set_array2vector_complex (VectorOut, ArrayIn)
- subroutine mgc set matrix2matrix (MatrixOut, MatrixIn)
- subroutine mqc_set_matrix2integerarray (ArrayOut, MatrixIn)
- subroutine mqc set matrix2realarray (ArrayOut, MatrixIn)
- subroutine mqc_set_matrix2complexarray (ArrayOut, MatrixIn)
- subroutine mgc set integerarray2matrix (MatrixOut, ArrayIn)
- subroutine mqc_set_realarray2matrix (MatrixOut, ArrayIn)
- subroutine mqc_set_complexarray2matrix (MatrixOut, ArrayIn)
- subroutine mqc_set_array2tensor (TensorOut, ArrayIn)

6.5.1 Member Function/Subroutine Documentation

6.5.1.1 mgc input complex scalar()

MQC Input Complex Scalar is a subroutine is used to set an intrinsic complex to an MQC Scalar

Purpose:

 ${\tt MQC_Input_Complex_Scalar} \ \ {\tt is} \ \ {\tt a} \ \ {\tt subroutine} \ \ {\tt is} \ \ {\tt used} \ \ {\tt to} \ \ {\tt set} \ \ {\tt an intrinsic complex} \ \ {\tt to} \ \ {\tt an MQC_Scalar}.$

in,out	ScalarOut	
		ScalarOut is Type(MQC_Scalar) The name of the output variable
in	ScalarIn	
		ScalarIn is Complex(kind=real64) The value of the input variable

Author

L. M. Thompson

Date

2017

6.5.1.2 mqc_input_integer_scalar()

MQC_Input_Integer_Scalar is a subroutine is used to set an intrinsic integer to an MQC_Scalar

Purpose:

 ${\tt MQC_Input_Integer_Scalar} \ \ {\tt is} \ \ {\tt a} \ \ {\tt subroutine} \ \ {\tt is} \ \ {\tt used} \ \ {\tt to} \ \ {\tt set} \ \ {\tt an intrinsic} \ \ {\tt integer} \ \ {\tt to} \ \ {\tt an MQC_Scalar}.$

Parameters

in,out	ScalarOut	
		ScalarOut is Type(MQC_Scalar) The name of the output variable
in	ScalarIn	
		ScalarIn is Integer(kind=int64) The value of the input variable

Author

L. M. Thompson

Date

2016

6.5.1.3 mqc_input_real_scalar()

MQC_Input_Real_Scalar is a subroutine is used to set an intrinsic real to an MQC_Scalar

Purpose:

MQC_Input_Integer_Scalar is a subroutine is used to set an intrinsic real to an MQC_Scalar.

Parameters

in,out	ScalarOut	
		ScalarOut is Type(MQC_Scalar) The name of the output variable
in	ScalarIn	
		ScalarIn is Real(kind=real64) The value of the input variable

Author

L. M. Thompson

Date

2016

6.5.1.4 mqc_output_complex_scalar()

MQC_Output_Complex_Scalar is a subroutine used to output an intrinsic complex equal to an MQC_Scalar

Purpose:

MQC_Output_Complex_Scalar is a subroutine used to output an intrinsic complex equal to an MQC_Scalar.

in,out	ScalarOut	
		ScalarOut is Complex(kind=real64) The name of the output variable
in	ScalarIn	
		ScalarIn is Type(MQC_Scalar) The value of the input variable

Author

L. M. Thompson

Date

2017

6.5.1.5 mqc_output_integer_scalar()

MQC_Output_Integer_Scalar is a subroutine used to output an intrinsic integer equal to an MQC_Scalar

Purpose:

 ${\tt MQC_Output_Integer_Scalar} \ is \ a \ subroutine \ used \ to \ output \ an \ intrinsic \ integer \ equal \ to \ an \ {\tt MQC_Scalar}.$

Parameters

in,out	ScalarOut	
		ScalarOut is Integer(kind=int64) The name of the output variable
in	ScalarIn	
		ScalarIn is Type(MQC_Scalar) The value of the input variable

Author

L. M. Thompson

Date

2016

6.5.1.6 mqc_output_mqcscalar_scalar()

MQC_Output MQCScalar_Scalar is a subroutine used to output an MQC_scalar equal to an MQC_Scalar

Purpose:

 ${\tt MQC_Output_MQCScalar_Scalar} \ \ \text{is a subroutine used to output an MQC_scalar equal to an MQC_Scalar.}$

Parameters

in,out	ScalarOut	
		ScalarOut is Type(MQC_Scalar) The name of the output variable
in	ScalarIn	
		ScalarIn is Type(MQC_Scalar) The value of the input variable

Author

L. M. Thompson

Date

2016

6.5.1.7 mqc_output_real_scalar()

MQC_Output_Real_Scalar is a subroutine used to output an intrinsic real equal to an MQC_Scalar

Purpose:

MQC_Output_Complex_Scalar is a subroutine used to output an intrinsic real equal to an MQC_Scalar.

in,out	ScalarOut	
		ScalarOut is Real(kind=real64) The name of the output variable
in	ScalarIn	
		ScalarIn is Type(MQC_Scalar) The value of the input variable

Author

L. M. Thompson

Date

2016

6.5.1.8 mqc_set_array2tensor()

6.5.1.9 mqc_set_array2vector_complex()

6.5.1.10 mqc_set_array2vector_integer()

6.5.1.11 mqc_set_array2vector_real()

6.5.1.12 mqc_set_complexarray2matrix()

6.5.1.13 mqc_set_integerarray2matrix()

6.5.1.14 mqc_set_matrix2complexarray()

6.5.1.15 mqc_set_matrix2integerarray()

6.5.1.16 mqc_set_matrix2matrix()

6.5.1.17 mqc_set_matrix2realarray()

6.5.1.18 mqc_set_realarray2matrix()

6.5.1.19 mqc_set_vector2complexarray()

6.5.1.20 mqc_set_vector2integerarray()

6.5.1.21 mqc_set_vector2realarray()

6.5.1.22 mqc_set_vector2vector()

The documentation for this interface was generated from the following file:

src/mqc_algebra.F03

6.6 mqc_est::assignment(=) Interface Reference

Public Member Functions

- subroutine mqc_integral_output_array (matrixOut, integralIn)
- subroutine mqc_eigenvalues_output_array (vectorOut, eigenvaluesIn)

6.6.1 Member Function/Subroutine Documentation

6.6.1.1 mqc_eigenvalues_output_array()

6.6.1.2 mgc integral output array()

The documentation for this interface was generated from the following file:

• src/mqc_est.F03

6.7 mqc_algebra::atan Interface Reference

Public Member Functions

• type(mqc_scalar) function mqc_scalar_atan (Scalar)

MQC_Scalar_ATan is a function used to return the arctangent of an MQC_scalar

6.7.1 Member Function/Subroutine Documentation

6.7.1.1 mqc_scalar_atan()

MQC Scalar ATan is a function used to return the arctangent of an MQC scalar

Purpose:

```
\ensuremath{\mathtt{MQC\_Scalar\_ATan}} is a function used to return the arctangent of an \ensuremath{\mathtt{MQC\_scalar}}.
```

in	Scalar	
		Scalar is Type(MQC_Scalar) The argument of the function

Author

L. M. Thompson

Date

2019

The documentation for this interface was generated from the following file:

• src/mqc_algebra.F03

6.8 mqc_algebra::atan2 Interface Reference

Public Member Functions

• type(mqc_scalar) function mqc_scalar_atan2 (Scalar)

MQC_Scalar_ATan2 is a function used to return the arctangent of an MQC_scalar accounting for quadrant of Argand diagram

6.8.1 Member Function/Subroutine Documentation

6.8.1.1 mqc_scalar_atan2()

MQC_Scalar_ATan2 is a function used to return the arctangent of an MQC_scalar accounting for quadrant of Argand diagram

Purpose:

 ${\tt MQC_Scalar_ATan2}$ is a function used to return the arctangent of an ${\tt MQC_scalar}$ accounting for quadrant of Argand diagram.

in	Scalar	
		Scalar is Type(MQC_Scalar) The argument of the function

Author

L. M. Thompson

Date

2019

The documentation for this interface was generated from the following file:

• src/mqc_algebra.F03

6.9 mqc_algebra::cmplx Interface Reference

Public Member Functions

- type(mqc_scalar) function mqc_scalar_cmplx (Scalar1, Scalar2)
 - MQC_Scalar_Cmplx is a function used to set a complex MQC_Scalar type variable from two other MQC_scalars
- type(mqc_vector) function mqc_vector_cmplx (Vector1, Vector2)

6.9.1 Member Function/Subroutine Documentation

6.9.1.1 mqc_scalar_cmplx()

MQC_Scalar_Cmplx is a function used to set a complex MQC_Scalar type variable from two other MQC_scalars

Purpose:

```
{\tt MQC\_Scalar\_Cmplx} is a function used to set a complex {\tt MQC\_Scalar} type variable from two other {\tt MQC\_Scalar} variables.
```

in	Scalar1	
		Scalar1 is Type(MQC_Scalar) The real part of MQC_Scalar_Cmplx
in	Scalar2	
		Scalar2 is Type(MQC_Scalar) The imaginary part of MQC_Scalar_Cmplx

Author

L. M. Thompson

Date

2019

6.9.1.2 mqc_vector_cmplx()

The documentation for this interface was generated from the following file:

• src/mqc_algebra.F03

6.10 mqc_algebra::conjg Interface Reference

Public Member Functions

• type(mqc_scalar) function mqc_scalar_complex_conjugate (ScalarIn)

6.10.1 Member Function/Subroutine Documentation

6.10.1.1 mqc_scalar_complex_conjugate()

The documentation for this interface was generated from the following file:

• src/mqc_algebra.F03

6.11 mqc_algebra::contraction Interface Reference

Public Member Functions

• type(mqc_scalar) function mqc_matrix_matrix_contraction (Matrix1, Matrix2)

6.11.1 Member Function/Subroutine Documentation

6.11.1.1 mqc_matrix_matrix_contraction()

The documentation for this interface was generated from the following file:

src/mqc algebra.F03

6.12 mgc est::contraction Interface Reference

Public Member Functions

- type(mqc_scalar) function mqc_scf_integral_contraction (integral1, integral2)
- type(mqc_scf_integral) function mqc_eri_integral_contraction (eris, integral, label)

6.12.1 Member Function/Subroutine Documentation

6.12.1.1 mqc_eri_integral_contraction()

6.12.1.2 mqc scf integral contraction()

The documentation for this interface was generated from the following file:

src/mqc_est.F03

6.13 mqc_algebra::cos Interface Reference

Public Member Functions

type(mqc_scalar) function mqc_scalar_cos (Scalar)
 MQC_Scalar_Cos is a function used to return the cosine of an MQC_scalar

6.13.1 Member Function/Subroutine Documentation

6.13.1.1 mqc_scalar_cos()

MQC_Scalar_Cos is a function used to return the cosine of an MQC_scalar

Purpose:

 ${\tt MQC_Scalar_Cos}$ is a function used to return the cosine of an ${\tt MQC_scalar}$.

in	Scalar	
		Scalar is Type(MQC_Scalar) The argument of the function

Author

L. M. Thompson

Date

2019

The documentation for this interface was generated from the following file:

src/mqc_algebra.F03

6.14 mgc algebra::dagger Interface Reference

Public Member Functions

- type(mqc_vector) function mqc_vector_conjugate_transpose (Vector)
- type(mqc_matrix) function mqc_matrix_conjugate_transpose (Matrix)

6.14.1 Member Function/Subroutine Documentation

6.14.1.1 mqc_matrix_conjugate_transpose()

6.14.1.2 mqc_vector_conjugate_transpose()

The documentation for this interface was generated from the following file:

src/mqc_algebra.F03

6.15 mqc_est::dagger Interface Reference

Public Member Functions

• type(mqc_scf_integral) function mqc_integral_conjugate_transpose (integral, label)

6.15.1 Member Function/Subroutine Documentation

6.15.1.1 mqc_integral_conjugate_transpose()

The documentation for this interface was generated from the following file:

• src/mqc_est.F03

6.16 mqc_algebra::dot_product Interface Reference

Public Member Functions

type(mqc_scalar) function mqc_vectorvectordotproduct (Vector1, Vector2)

6.16.1 Member Function/Subroutine Documentation

6.16.1.1 mqc_vectorvectordotproduct()

The documentation for this interface was generated from the following file:

src/mqc_algebra.F03

6.17 mgc est::dot product Interface Reference

Public Member Functions

• type(mqc_scalar) function mqc_eigenvalue_eigenvalue_dotproduct (eigenvalueA, eigenvalueB)

6.17.1 Member Function/Subroutine Documentation

6.17.1.1 mqc eigenvalue eigenvalue dotproduct()

The documentation for this interface was generated from the following file:

• src/mgc est.F03

6.18 mqc_algebra::matmul Interface Reference

Public Member Functions

- type(mqc_matrix) function mqc_matrixmatrixdotproduct (MA, MB)
- type(mqc_vector) function mqc_matrixvectordotproduct (MA, VB)
- type(mqc_vector) function mqc_vectormatrixdotproduct (VA, MB)

6.18.1 Member Function/Subroutine Documentation

6.18.1.1 mqc_matrixmatrixdotproduct()

6.18.1.2 mqc_matrixvectordotproduct()

6.18.1.3 mqc_vectormatrixdotproduct()

The documentation for this interface was generated from the following file:

src/mqc algebra.F03

6.19 mqc_est::matmul Interface Reference

Public Member Functions

- type(mqc_scf_integral) function mqc_integral_matrix_multiply (integralA, matrixB, label)
- type(mqc_scf_integral) function mqc_matrix_integral_multiply (matrixA, integralB, label)
- type(mqc_scf_integral) function mqc_integral_integral_multiply (integralA, integralB, label)
- type(mqc_scf_integral) function mqc_integral_eigenvalues_multiply (integralA, eigenvaluesB, label)
- type(mqc_scf_integral) function mqc_eigenvalues_integral_multiply (eigenvaluesA, integralB, label)
- type(mqc_scf_eigenvalues) function mqc_eigenvalues_eigenvalues_multiply (eigenvaluesA, eigenvaluesB, label)

6.19.1 Member Function/Subroutine Documentation

6.19.1.1 mqc_eigenvalues_eigenvalues_multiply()

6.19.1.2 mqc_eigenvalues_integral_multiply()

6.19.1.3 mqc_integral_eigenvalues_multiply()

6.19.1.4 mqc_integral_integral_multiply()

6.19.1.5 mqc_integral_matrix_multiply()

6.19.1.6 mqc_matrix_integral_multiply()

The documentation for this interface was generated from the following file:

src/mqc est.F03

6.20 mqc_algebra::matrix_symm2sq Interface Reference

Public Member Functions

```
• subroutine matrix_symm2sq_integer (N, I_Symm, I_Sq)
```

- subroutine matrix_symm2sq_real (N, A_Symm, A_Sq)
- subroutine matrix_symm2sq_complex (N, A_Symm, A_Sq)

6.20.1 Member Function/Subroutine Documentation

6.20.1.1 matrix symm2sq complex()

```
subroutine mqc_algebra::matrix_symm2sq::matrix_symm2sq_complex (
    integer(kind=int64), intent(in) N,
    complex(kind=real64), dimension(:), intent(in) A_Symm,
    complex(kind=real64), dimension(n,n), intent(out) A_Sq)
```

6.20.1.2 matrix_symm2sq_integer()

6.20.1.3 matrix symm2sq real()

```
subroutine mqc_algebra::matrix_symm2sq::matrix_symm2sq_real (
    integer(kind=int64), intent(in) N,
    real(kind=real64), dimension(:), intent(in) A_Symm,
    real(kind=real64), dimension(n,n), intent(out) A_Sq)
```

The documentation for this interface was generated from the following file:

src/mqc_algebra.F03

6.21 mqc_algebra::mqc_cast_complex Interface Reference

Public Member Functions

- type(mgc vector) function mgc vector cast complex (VA)
- type(mqc_matrix) function mqc_matrix_cast_complex (MA)

6.21.1 Member Function/Subroutine Documentation

6.21.1.1 mqc_matrix_cast_complex()

6.21.1.2 mqc_vector_cast_complex()

```
\label{type mqc_vector} \mbox{type (mqc_vector) function mqc_algebra::mqc_cast_complex::mqc_vector_cast_complex (} \mbox{type (mqc_vector), intent(in) } \mbox{\it VA} \mbox{\it )}
```

The documentation for this interface was generated from the following file:

• src/mqc_algebra.F03

6.22 mqc_algebra::mqc_cast_real Interface Reference

Public Member Functions

- type(mqc_vector) function mqc_vector_cast_real (VA)
- type(mqc_matrix) function mqc_matrix_cast_real (MA)

6.22.1 Member Function/Subroutine Documentation

6.22.1.1 mqc_matrix_cast_real()

6.22.1.2 mqc_vector_cast_real()

```
\label{type (mqc_vector)} $$ function mqc_algebra::mqc_cast_real::mqc_vector_cast_real ( type (mqc_vector), intent(in) $VA$ )
```

The documentation for this interface was generated from the following file:

• src/mqc_algebra.F03

6.23 mqc_est::mqc_determinant Type Reference

Public Attributes

- type(mqc_determinant_string) strings
- character(len=64) order
- integer(kind=int64) ndets
- integer(kind=int64) nalpstr
- integer(kind=int64) nbetstr

6.23.1 Member Data Documentation

6.23.1.1 nalpstr

```
integer(kind=int64) mqc_est::mqc_determinant::nalpstr
```

6.23.1.2 nbetstr

integer(kind=int64) mqc_est::mqc_determinant::nbetstr

6.23.1.3 ndets

integer(kind=int64) mqc_est::mqc_determinant::ndets

6.23.1.4 order

character(len=64) mqc_est::mqc_determinant::order

6.23.1.5 strings

type(mqc_determinant_string) mqc_est::mqc_determinant::strings

The documentation for this type was generated from the following file:

• src/mqc_est.F03

6.24 mqc_est::mqc_determinant_string Type Reference

Public Attributes

- type(mqc_matrix) alpha
- type(mqc_matrix) beta

6.24.1 Member Data Documentation

6.24.1.1 alpha

 $\verb|type(mqc_matrix)| mqc_est::mqc_determinant_string::alpha|\\$

6.24.1.2 beta

type(mqc_matrix) mqc_est::mqc_determinant_string::beta

The documentation for this type was generated from the following file:

src/mqc_est.F03

6.25 mgc algebra::mgc have complex Interface Reference

Public Member Functions

- logical function mqc vector havecomplex (Vector)
- logical function mqc_matrix_havecomplex (Matrix)

6.25.1 Member Function/Subroutine Documentation

6.25.1.1 mqc_matrix_havecomplex()

6.25.1.2 mqc_vector_havecomplex()

The documentation for this interface was generated from the following file:

• src/mqc_algebra.F03

6.26 mqc_algebra::mqc_have_int Interface Reference

Public Member Functions

- logical function mqc_vector_haveinteger (Vector)
- logical function mqc_matrix_haveinteger (Matrix)

6.26.1 Member Function/Subroutine Documentation

6.26.1.1 mqc_matrix_haveinteger()

6.26.1.2 mqc_vector_haveinteger()

The documentation for this interface was generated from the following file:

src/mqc_algebra.F03

6.27 mqc_algebra::mqc_have_real Interface Reference

Public Member Functions

- logical function mqc_vector_havereal (Vector)
- · logical function mgc matrix havereal (Matrix)

6.27.1 Member Function/Subroutine Documentation

6.27.1.1 mqc_matrix_havereal()

6.27.1.2 mqc_vector_havereal()

The documentation for this interface was generated from the following file:

src/mqc_algebra.F03

6.28 mqc_algebra::mqc_matrix Type Reference

Public Member Functions

- Procedure, public print => mqc_print_matrix_algebra1
- Procedure, public initialize => mqc_matrix_initialize
- Procedure, public init => mqc_matrix_initialize
- Procedure, public identity => mgc matrix identity
- Procedure, public set => mqc matrix set
- Procedure, public norm => mgc matrix norm
- Procedure, public transpose => mqc matrix transpose
- Procedure, public dagger => mqc_matrix_conjugate_transpose
- Procedure, public diag => mqc matrix diagonalize
- Procedure, public svd => mqc_matrix_svd
- Procedure, public eigensys => mqc_matrix_generalized_eigensystem
- Procedure, public inv => mqc_matrix_inverse
- Procedure, public det => mqc_matrix_determinant
- Procedure, public trace => mqc_matrix_trace
- Procedure, public rmsmax => mqc matrix rms max
- Procedure, public sqrt => mqc matrix sqrt
- Procedure, public at => mqc_matrix_scalar_at
- Procedure, public vat => mqc_matrix_vector_at
- Procedure, public mat => mqc_matrix_matrix_at
- Procedure, public put => mqc_matrix_scalar_put
- Procedure, public vput => mqc_matrix_vector_put
- Procedure, public mput => mqc_matrix_matrix_put
- Procedure, public s_type => mqc_matrix_storagetype

Public Attributes

- real(kind=real64), dimension(:,:), allocatable matr
- integer(kind=int64), dimension(:,:), allocatable mati
- complex(kind=real64), dimension(:,:), allocatable matc

6.28.1 Member Function/Subroutine Documentation

6.28.1.1 at()

Procedure, public mqc_algebra::mqc_matrix::at ()

6.28.1.2 dagger()

Procedure, public mqc_algebra::mqc_matrix::dagger ()

6.28.1.3 det()

Procedure, public mqc_algebra::mqc_matrix::det ()

6.28.1.4 diag()

Procedure, public mqc_algebra::mqc_matrix::diag ()

6.28.1.5 eigensys()

Procedure, public mqc_algebra::mqc_matrix::eigensys ()

6.28.1.6 identity()

Procedure, public mqc_algebra::mqc_matrix::identity ()

6.28.1.7 init()

Procedure, public mqc_algebra::mqc_matrix::init ()

6.28.1.8 initialize()

Procedure, public mqc_algebra::mqc_matrix::initialize ()

6.28.1.9 inv() Procedure, public mqc_algebra::mqc_matrix::inv () 6.28.1.10 mat() Procedure, public mqc_algebra::mqc_matrix::mat () 6.28.1.11 mput() Procedure, public mqc_algebra::mqc_matrix::mput () 6.28.1.12 norm() Procedure, public mqc_algebra::mqc_matrix::norm () 6.28.1.13 print() Procedure, public mqc_algebra::mqc_matrix::print ()

6.28.1.14 put()

Procedure, public mqc_algebra::mqc_matrix::put ()

6.28.1.15 rmsmax()

Procedure, public mqc_algebra::mqc_matrix::rmsmax ()

6.28.1.16 s_type()

Procedure, public mqc_algebra::mqc_matrix::s_type ()

6.28.1.17 set()

Procedure, public mqc_algebra::mqc_matrix::set ()

6.28.1.18 sqrt()

Procedure, public mqc_algebra::mqc_matrix::sqrt ()

6.28.1.19 svd()

Procedure, public mqc_algebra::mqc_matrix::svd ()

6.28.1.20 trace()

Procedure, public mqc_algebra::mqc_matrix::trace ()

6.28.1.21 transpose()

Procedure, public mqc_algebra::mqc_matrix::transpose ()

6.28.1.22 vat()

Procedure, public mqc_algebra::mqc_matrix::vat ()

6.28.1.23 vput()

Procedure, public mqc_algebra::mqc_matrix::vput ()

6.28.2 Member Data Documentation

6.28.2.1 matc

complex(kind=real64), dimension(:,:), allocatable mqc_algebra::mqc_matrix::matc

6.28.2.2 mati

integer(kind=int64), dimension(:,:), allocatable mqc_algebra::mqc_matrix::mati

6.28.2.3 matr

```
real(kind=real64), dimension(:,:), allocatable mqc_algebra::mqc_matrix::matr
```

The documentation for this type was generated from the following file:

• src/mqc_algebra.F03

6.29 mqc_algebra::mqc_matrix_diagmatrix_put Interface Reference

Public Member Functions

- subroutine mqc_matrix_diagmatrix_put_integer (mat, diagMatrixIn)
- subroutine mqc_matrix_diagmatrix_put_real (mat, diagMatrixIn)
- subroutine mqc_matrix_diagmatrix_put_complex (mat, diagMatrixIn)
- subroutine mqc_matrix_diagmatrix_put_vector (diagVectorIn, mat)

6.29.1 Member Function/Subroutine Documentation

6.29.1.1 mqc_matrix_diagmatrix_put_complex()

6.29.1.2 mgc matrix diagmatrix put integer()

6.29.1.3 mqc_matrix_diagmatrix_put_real()

6.29.1.4 mqc_matrix_diagmatrix_put_vector()

The documentation for this interface was generated from the following file:

• src/mqc_algebra.F03

6.30 mqc_algebra::mqc_matrix_symmmatrix_put Interface Reference

Public Member Functions

- subroutine mqc_matrix_symmmatrix_put_integer (mat, symmMatrixIn)
- subroutine mqc_matrix_symmmatrix_put_real (mat, symmMatrixIn)
- subroutine mqc_matrix_symmmatrix_put_complex (mat, symmMatrixIn)

6.30.1 Member Function/Subroutine Documentation

6.30.1.1 mqc_matrix_symmmatrix_put_complex()

6.30.1.2 mqc_matrix_symmmatrix_put_integer()

6.30.1.3 mqc_matrix_symmmatrix_put_real()

The documentation for this interface was generated from the following file:

• src/mqc_algebra.F03

6.31 mqc_est::mqc_matrix_undospinblockghf Interface Reference

Public Member Functions

- subroutine mgc matrix undospinblockghf eigenvalues (eigenvaluesIn, vectorOut)
- subroutine mqc_matrix_undospinblockghf_integral (integralIn, matrixOut)

6.31.1 Member Function/Subroutine Documentation

6.31.1.1 mqc_matrix_undospinblockghf_eigenvalues()

```
subroutine mqc_est::mqc_matrix\_undospinblockghf::mqc_matrix\_undospinblockghf_eigenvalues ( type(mqc_scf_eigenvalues), intent(in) eigenvaluesIn, type(mqc_vector), intent(out) vectorOut)
```

6.31.1.2 mqc_matrix_undospinblockghf_integral()

The documentation for this interface was generated from the following file:

src/mqc est.F03

6.32 mqc_algebra::mqc_print Interface Reference

Public Member Functions

- subroutine mqc_print_scalar_algebra1 (Scalar, IOut, Header, Blank_At_Top, Blank_At_Bottom)

 MQC_Print_Scalar_Algebra1 is a subroutine used to print an MQC_Scalar
- subroutine mqc_print_vector_algebra1 (Vector, IOut, Header, Verbose, Blank_At_Top, Blank_At_Bottom)
- subroutine mqc_print_matrix_algebra1 (Matrix, IOut, Header, Blank_At_Top, Blank_At_Bottom)
- subroutine mqc_print_r4tensor_algebra1 (Tensor, IOut, Header, blank_at_top, blank_at_bottom)

6.32.1 Member Function/Subroutine Documentation

6.32.1.1 mqc print matrix algebra1()

6.32.1.2 mqc_print_r4tensor_algebra1()

6.32.1.3 mqc_print_scalar_algebra1()

MQC_Print_Scalar_Algebra1 is a subroutine used to print an MQC_Scalar

Purpose:

 ${\tt MQC_Print_Scalar_Algebra1}$ is a subroutine used to print an ${\tt MQC_Scalar}$. Blank_At_Top and Blank_At_Bottom are optional logical arguments to print blank lines before or after output.

Parameters

Faidilicies		
in	Scalar	
		Scalar is Class(MOC Scalar)
		The variable to be printed
		-
in	<i>IOut</i>	
		IOut is Integer(kind=int64)
		The Fortran file number to print to
		<u>*</u>
in	Header	
		Header is Character(Len=*)
		The title to print along with Scalar
		•
in	Blank_At_Top	
		Blank_At_Top is Logical,Optional
		= .True.: print blank line above output
		= .False.: do not print blank line above output
in	Blank_At_Bottom	
		Blank_At_Bottom is Logical,Optional
		= .True.: print blank line below output
		= .False.: do not print blank line below output

Author

L. M. Thompson

Date

2016

6.32.1.4 mqc_print_vector_algebra1()

The documentation for this interface was generated from the following file:

• src/mqc_algebra.F03

6.33 mqc_est::mqc_print Interface Reference

Public Member Functions

- subroutine mqc_print_wavefunction (wavefunction, iOut, label)
- subroutine mqc_print_integral (integral, iOut, header, blank_at_top, blank_at_bottom)
- subroutine mgc print eigenvalues (eigenvalues, iOut, header, blank at top, blank at bottom)
- subroutine mgc print twoeris (twoERIs, iOut, header, blank at top, blank at bottom)

6.33.1 Member Function/Subroutine Documentation

6.33.1.1 mqc_print_eigenvalues()

6.33.1.2 mqc_print_integral()

6.33.1.3 mqc_print_twoeris()

6.33.1.4 mqc_print_wavefunction()

The documentation for this interface was generated from the following file:

• src/mqc est.F03

6.34 mqc_est::mqc_pscf_wavefunction Type Reference

Inheritance diagram for mqc_est::mqc_pscf_wavefunction:

Public Attributes

- integer(kind=int64) ncore
- integer(kind=int64) nval
- integer(kind=int64) nactive
- integer(kind=int64) nfrz
- type(mqc_matrix) pscf_amplitudes
- type(mqc_vector) pscf_energies

Additional Inherited Members

6.34.1 Member Data Documentation

6.34.1.1 nactive

integer(kind=int64) mqc_est::mqc_pscf_wavefunction::nactive

6.34.1.2 ncore

integer(kind=int64) mqc_est::mqc_pscf_wavefunction::ncore

6.34.1.3 nfrz

 $\verb|integer(kind=int64)| mqc_est::mqc_pscf_wavefunction::nfrz|\\$

6.34.1.4 nval

integer(kind=int64) mqc_est::mqc_pscf_wavefunction::nval

6.34.1.5 pscf_amplitudes

type(mqc_matrix) mqc_est::mqc_pscf_wavefunction::pscf_amplitudes

6.34.1.6 pscf_energies

```
type(mqc_vector) mqc_est::mqc_pscf_wavefunction::pscf_energies
```

The documentation for this type was generated from the following file:

• src/mqc est.F03

6.35 mqc_algebra::mqc_r4tensor Type Reference

Public Member Functions

- Procedure, public print => mqc_print_r4tensor_algebra1
- Procedure, public at => mqc_r4tensor_at
- Procedure, public put => mqc_r4tensor_put
- Procedure, public initialize => mqc_r4tensor_initialize
- Procedure, public init => mgc r4tensor initialize

6.35.1 Member Function/Subroutine Documentation

6.35.1.1 at()

```
Procedure, public mqc\_algebra::mqc\_r4tensor::at ( )
```

6.35.1.2 init()

Procedure, public mqc_algebra::mqc_r4tensor::init ()

6.35.1.3 initialize()

Procedure, public mqc_algebra::mqc_r4tensor::initialize ()

6.35.1.4 print()

```
Procedure, public mqc_algebra::mqc_r4tensor::print ( )
```

6.35.1.5 put()

```
Procedure, public mqc_algebra::mqc_r4tensor::put ( )
```

The documentation for this type was generated from the following file:

src/mqc_algebra.F03

6.36 mqc_algebra::mqc_scalar Type Reference

Public Member Functions

- Procedure, public print => mqc_print_scalar_algebra1
- Procedure, public rval => mqc scalar get intrinsic real
- Procedure, public ival => mqc_scalar_get_intrinsic_integer
- Procedure, public cval => mqc scalar get intrinsic complex
- Procedure, public abs => mqc_scalar_get_abs_value
- Procedure, public random => mqc_scalar_get_random_value

6.36.1 Member Function/Subroutine Documentation

6.36.1.1 abs()

```
Procedure, public mqc\_algebra::mqc\_scalar::abs ( )
```

6.36.1.2 cval()

```
Procedure, public mqc_algebra::mqc_scalar::cval ( )
```

6.36.1.3 ival()

```
Procedure, public mqc_algebra::mqc_scalar::ival ( )
```

6.36.1.4 print()

```
Procedure, public mqc_algebra::mqc_scalar::print ( )
```

6.36.1.5 random()

```
Procedure, public mqc_algebra::mqc_scalar::random ( )
```

6.36.1.6 rval()

```
Procedure, public mqc_algebra::mqc_scalar::rval ( )
```

The documentation for this type was generated from the following file:

• src/mqc_algebra.F03

6.37 mqc_est::mqc_scf_eigenvalues Type Reference

Public Member Functions

- Procedure, public print => mqc_print_eigenvalues
- Procedure, public getlabel => mqc_eigenvalues_array_name
- Procedure, public addlabel => mqc_eigenvalues_add_name
- Procedure, public getblock => mqc_eigenvalues_output_block
- Procedure, public power => mqc_scf_eigenvalues_power
- Procedure, public at => mqc_eigenvalues_at

6.37.1 Member Function/Subroutine Documentation

6.37.1.1 addlabel()

Procedure, public mqc_est::mqc_scf_eigenvalues::addlabel ()

6.37.1.2 at()

Procedure, public mqc_est::mqc_scf_eigenvalues::at ()

6.37.1.3 getblock()

Procedure, public mqc_est::mqc_scf_eigenvalues::getblock ()

6.37.1.4 getlabel()

Procedure, public $mqc_est::mqc_scf_eigenvalues::getlabel$ ()

6.37.1.5 power()

Procedure, public $mqc_est::mqc_scf_eigenvalues::power ()$

6.37.1.6 print()

Procedure, public mqc_est::mqc_scf_eigenvalues::print ()

The documentation for this type was generated from the following file:

src/mqc_est.F03

6.38 mqc_est::mqc_scf_integral Type Reference

Public Member Functions

- Procedure, public print => mqc_print_integral
- Procedure, public getlabel => mqc_integral_array_name
- Procedure, public addlabel => mgc integral add name
- Procedure, public getblock => mqc_integral_output_block
- Procedure, public identity => mqc_integral_identity
- Procedure, public init => mqc integral initialize
- Procedure, public diag => mqc_scf_integral_diagonalize
- Procedure, public eigensys => mqc_scf_integral_generalized_eigensystem
- Procedure, public inv => mgc scf integral inverse
- Procedure, public trace => mqc_scf_integral_trace
- Procedure, public det => mgc scf integral determinant
- Procedure, public norm => mqc_integral_norm
- Procedure, public setelist => mqc_integral_set_energy_list
- Procedure, public getelist => mqc_integral_get_energy_list
- Procedure, public deleteelist => mqc_integral_delete_energy_list
- Procedure, public orbitals => mqc_integral_output_orbitals
- Procedure, public swap => mqc_integral_swap_orbitals

6.38.1 Member Function/Subroutine Documentation

6.38.1.1 addlabel()

Procedure, public mqc_est::mqc_scf_integral::addlabel ()

6.38.1.2 deleteelist()

Procedure, public mqc_est::mqc_scf_integral::deleteelist ()

6.38.1.3 det()

Procedure, public mqc_est::mqc_scf_integral::det ()

6.38.1.4 diag()

Procedure, public mqc_est::mqc_scf_integral::diag ()

6.38.1.5 eigensys()

Procedure, public mqc_est::mqc_scf_integral::eigensys ()

6.38.1.6 getblock()

Procedure, public mqc_est::mqc_scf_integral::getblock ()

6.38.1.7 getelist()

Procedure, public mqc_est::mqc_scf_integral::getelist ()

6.38.1.8 getlabel()

Procedure, public mqc_est::mqc_scf_integral::getlabel ()

6.38.1.9 identity()

Procedure, public mqc_est::mqc_scf_integral::identity ()

6.38.1.10 init()

Procedure, public mqc_est::mqc_scf_integral::init ()

6.38.1.11 inv()

```
Procedure, public mqc_est::mqc_scf_integral::inv ( )
```

6.38.1.12 norm()

```
Procedure, public mqc_est::mqc_scf_integral::norm ( )
```

6.38.1.13 orbitals()

```
Procedure, public mqc_est::mqc_scf_integral::orbitals ( )
```

6.38.1.14 print()

```
Procedure, public mqc_est::mqc_scf_integral::print ( )
```

6.38.1.15 setelist()

```
Procedure, public mqc_est::mqc_scf_integral::setelist ( )
```

6.38.1.16 swap()

```
Procedure, public mqc_est::mqc_scf_integral::swap ( )
```

6.38.1.17 trace()

```
Procedure, public mqc_est::mqc_scf_integral::trace ( )
```

The documentation for this type was generated from the following file:

src/mqc_est.F03

6.39 mqc_algebra::mqc_set_array2vector Interface Reference

Public Member Functions

- subroutine mqc_set_array2vector_integer (VectorOut, ArrayIn)
- subroutine mgc set array2vector real (VectorOut, ArrayIn)
- subroutine mqc_set_array2vector_complex (VectorOut, ArrayIn)

6.39.1 Member Function/Subroutine Documentation

6.39.1.1 mqc_set_array2vector_complex()

6.39.1.2 mqc_set_array2vector_integer()

6.39.1.3 mqc_set_array2vector_real()

The documentation for this interface was generated from the following file:

src/mqc_algebra.F03

6.40 mgc est::mgc twoeris Type Reference

Public Member Functions

procedure, public print => mqc print twoeris

6.40.1 Member Function/Subroutine Documentation

6.40.1.1 print()

```
procedure, public mqc_est::mqc_twoeris::print ( )
```

The documentation for this type was generated from the following file:

src/mqc_est.F03

6.41 mqc_algebra::mqc_vector Type Reference

Public Member Functions

- Procedure, public print => mqc print vector algebra1
- Procedure, public initialize => mqc_vector_initialize
- Procedure, public size => mqc_length_vector
- Procedure, public init => mgc vector initialize
- Procedure, public norm => mqc_vector_norm
- Procedure, public transpose => mqc_vector_transpose
- Procedure, public dagger => mqc_vector_conjugate_transpose
- Procedure, public at => mqc_vector_scalar_at
- Procedure, public vat => mqc_vector_vector_at
- Procedure, public put => mqc_vector_scalar_put
- Procedure, public vput => mqc_vector_vector_put
- Procedure, public push => mqc vector push
- Procedure, public unshift => mgc vector unshift
- Procedure, public pop => mqc_vector_pop
- Procedure, public shift => mqc_vector_shift
- Procedure, public maxval => mqc_vector_maxval
- Procedure, public minval => mqc_vector_minloc
- Procedure, public maxloc => mqc_vector_maxval
- Procedure, public minloc => mqc_vector_minloc
- Procedure, public argsort => mqc_vector_argsort
- Procedure, public sort => mqc vector sort
- Procedure, public sqrt => mqc_vector_sqrt
- Procedure, public abs => mgc vector abs
- Procedure, public power => mqc_vector_power
- Procedure, public diag => mqc matrix diagmatrix put vector

Public Attributes

- integer(kind=int64) length =0
- character(len=64) data_type
- real(kind=real64), dimension(:), allocatable vecr
- integer(kind=int64), dimension(:), allocatable veci
- complex(kind=real64), dimension(:), allocatable vecc

6.41.1 Member Function/Subroutine Documentation

6.41.1.1 abs() Procedure, public mqc_algebra::mqc_vector::abs () 6.41.1.2 argsort() Procedure, public mqc_algebra::mqc_vector::argsort () 6.41.1.3 at() Procedure, public mqc_algebra::mqc_vector::at () 6.41.1.4 dagger() Procedure, public mqc_algebra::mqc_vector::dagger () 6.41.1.5 diag() Procedure, public mqc_algebra::mqc_vector::diag ()

6.41.1.6 init()

Procedure, public mqc_algebra::mqc_vector::init ()

6.41.1.7 initialize()

Procedure, public mqc_algebra::mqc_vector::initialize ()

6.41.1.8 maxloc()

Procedure, public mqc_algebra::mqc_vector::maxloc ()

6.41.1.9 maxval()

Procedure, public mqc_algebra::mqc_vector::maxval ()

6.41.1.10 minloc()

Procedure, public mqc_algebra::mqc_vector::minloc ()

6.41.1.11 minval()

Procedure, public mqc_algebra::mqc_vector::minval ()

6.41.1.12 norm()

Procedure, public mqc_algebra::mqc_vector::norm ()

6.41.1.13 pop() Procedure, public mqc_algebra::mqc_vector::pop () 6.41.1.14 power() Procedure, public mqc_algebra::mqc_vector::power () 6.41.1.15 print() Procedure, public mqc_algebra::mqc_vector::print () 6.41.1.16 push() Procedure, public mqc_algebra::mqc_vector::push () 6.41.1.17 put() Procedure, public mqc_algebra::mqc_vector::put () 6.41.1.18 shift() Procedure, public mqc_algebra::mqc_vector::shift () 6.41.1.19 size()

Procedure, public mqc_algebra::mqc_vector::size ()

6.41.1.20 sort() Procedure, public mqc_algebra::mqc_vector::sort () 6.41.1.21 sqrt() Procedure, public mqc_algebra::mqc_vector::sqrt ()

6.41.1.22 transpose()

```
Procedure, public mqc_algebra::mqc_vector::transpose ( )
```

6.41.1.23 unshift()

```
Procedure, public mqc_algebra::mqc_vector::unshift ( )
```

6.41.1.24 vat()

```
Procedure, public mqc_algebra::mqc_vector::vat ( )
```

6.41.1.25 vput()

```
Procedure, public mqc_algebra::mqc_vector::vput ( )
```

6.41.2 Member Data Documentation

6.41.2.1 data_type

```
character(len=64) mqc_algebra::mqc_vector::data_type
```

6.41.2.2 length

integer(kind=int64) mqc_algebra::mqc_vector::length =0

6.41.2.3 vecc

complex(kind=real64), dimension(:), allocatable mqc_algebra::mqc_vector::vecc

6.41.2.4 veci

integer(kind=int64), dimension(:), allocatable mqc_algebra::mqc_vector::veci

6.41.2.5 vecr

real(kind=real64), dimension(:), allocatable mqc_algebra::mqc_vector::vecr

The documentation for this type was generated from the following file:

• src/mqc_algebra.F03

6.42 mqc_est::mqc_wavefunction Type Reference

Inheritance diagram for mqc_est::mqc_wavefunction:

Public Member Functions

Procedure, public print => mqc_print_wavefunction

Public Attributes

- type(mqc_scf_integral) mo_coefficients
- type(mqc_scf_eigenvalues) mo_energies
- type(mqc scf eigenvalues) mo symmetries
- type(mgc scf integral) core hamiltonian
- type(mqc_scf_integral) fock_matrix
- type(mqc_scf_integral) density_matrix
- type(mqc_scf_integral) scf_density_matrix
- type(mqc_scf_integral) overlap_matrix
- type(mqc_scalar) nalpha
- type(mqc_scalar) nbeta
- type(mqc_scalar) nelectrons
- type(mqc scalar) nbasis
- type(mqc_scalar) charge
- type(mqc_scalar) multiplicity
- character(len=256) basis
- character(len=256) symmetry
- character(len=256) wf_type
- logical wf_complex

6.42.1 Member Function/Subroutine Documentation

6.42.1.1 print()

Procedure, public mqc_est::mqc_wavefunction::print ()

6.42.2 Member Data Documentation

6.42.2.1 basis

character(len=256) mqc_est::mqc_wavefunction::basis

6.42.2.2 charge

type(mqc_scalar) mqc_est::mqc_wavefunction::charge

6.42.2.3 core_hamiltonian

type(mqc_scf_integral) mqc_est::mqc_wavefunction::core_hamiltonian

6.42.2.4 density_matrix

type(mqc_scf_integral) mqc_est::mqc_wavefunction::density_matrix

6.42.2.5 fock_matrix

 $\verb|type(mqc_scf_integral)| mqc_est::mqc_wavefunction::fock_matrix|\\$

6.42.2.6 mo coefficients

type(mqc_scf_integral) mqc_est::mqc_wavefunction::mo_coefficients

6.42.2.7 mo_energies

6.42.2.8 mo_symmetries

type(mqc_scf_eigenvalues) mqc_est::mqc_wavefunction::mo_symmetries

6.42.2.9 multiplicity

type(mqc_scalar) mqc_est::mqc_wavefunction::multiplicity

6.42.2.10 nalpha

type(mqc_scalar) mqc_est::mqc_wavefunction::nalpha

6.42.2.11 nbasis

type(mqc_scalar) mqc_est::mqc_wavefunction::nbasis

6.42.2.12 nbeta

type(mqc_scalar) mqc_est::mqc_wavefunction::nbeta

6.42.2.13 nelectrons

type(mqc_scalar) mqc_est::mqc_wavefunction::nelectrons

6.42.2.14 overlap_matrix

type(mqc_scf_integral) mqc_est::mqc_wavefunction::overlap_matrix

6.42.2.15 scf_density_matrix

type(mqc_scf_integral) mqc_est::mqc_wavefunction::scf_density_matrix

6.42.2.16 symmetry

character(len=256) mqc_est::mqc_wavefunction::symmetry

6.42.2.17 wf_complex

```
logical mqc_est::mqc_wavefunction::wf_complex
```

6.42.2.18 wf type

```
character(len=256) mgc_est::mgc_wavefunction::wf_type
```

The documentation for this type was generated from the following file:

src/mqc_est.F03

6.43 mqc_algebra::operator(*) Interface Reference

Public Member Functions

- type(mqc_scalar) function mqc_scalarmultiply (Scalar1, Scalar2)
 MQC_ScalarMultiply is a function that multiplies two MQC_Scalar objects
- type(mqc_scalar) function mqc_integerscalarmultiply (IntegerIn, Scalar)
- type(mgc scalar) function mgc scalarintegermultiply (Scalar, IntegerIn)
- type(mqc_scalar) function mqc_realscalarmultiply (RealIn, Scalar)
- type(mgc_scalar) function mgc_scalarrealmultiply (Scalar, RealIn)
- type(mqc_scalar) function mqc_complexscalarmultiply (ComplexIn, Scalar)
- type(mqc_scalar) function mqc_scalarcomplexmultiply (Scalar, ComplexIn)
- type(mqc_vector) function mqc_scalarvectorproduct (Scalar, Vector)
- type(mgc vector) function mgc vectorscalarproduct (vector, scalar)
- type(mqc_matrix) function mqc_scalarmatrixproduct (Scalar, Matrix)
- type(mqc_matrix) function mqc_matrixscalarproduct (Matrix, Scalar)
- type(mgc_vector) function mgc_realvectorproduct (RealIn, Vector)
- type(mqc_vector) function mqc_vectorrealproduct (vector, realIn)
- type(mqc_vector) function mqc_integervectorproduct (intln, Vector)
- type(mqc_vector) function mqc_vectorintegerproduct (vector, intln)
- type(mqc_vector) function mqc_complexvectorproduct (Compln, Vector)
- type(mgc_vector) function mgc_vectorcomplexproduct (vector, compln)
- type(mqc_matrix) function mqc_matrixmatrixproduct (MA, MB)

6.43.1 Member Function/Subroutine Documentation

6.43.1.1 mqc_complexscalarmultiply()

6.43.1.2 mqc_complexvectorproduct()

6.43.1.3 mqc_integerscalarmultiply()

6.43.1.4 mqc_integervectorproduct()

6.43.1.5 mqc_matrixmatrixproduct()

6.43.1.6 mqc_matrixscalarproduct()

6.43.1.7 mqc_realscalarmultiply()

6.43.1.8 mqc_realvectorproduct()

6.43.1.9 mqc_scalarcomplexmultiply()

6.43.1.10 mqc_scalarintegermultiply()

6.43.1.11 mqc_scalarmatrixproduct()

6.43.1.12 mqc scalarmultiply()

MQC_ScalarMultiply is a function that multiplies two MQC_Scalar objects

Purpose:

```
{\tt MQC\_ScalarMultiply} is a function that multiplies two {\tt MQC\_Scalar} objects.
```

Parameters

in	Scalar1	
		Scalarl is Type(MQC_Scalar) The first MQC_Scalar to be multiplied
in	Scalar2	
		Scalar2 is Type(MQC_Scalar) The second MQC_Scalar to be multiplied

Author

L. M. Thompson

Date

2016

6.43.1.13 mqc_scalarrealmultiply()

6.43.1.14 mqc_scalarvectorproduct()

6.43.1.15 mqc_vectorcomplexproduct()

6.43.1.16 mqc_vectorintegerproduct()

6.43.1.17 mqc_vectorrealproduct()

6.43.1.18 mqc_vectorscalarproduct()

The documentation for this interface was generated from the following file:

• src/mqc_algebra.F03

6.44 mqc_est::operator(*) Interface Reference

Public Member Functions

- type(mqc scf integral) function mqc scalar integral multiply (scalar, integral)
- type(mqc_scf_integral) function mqc_integral_scalar_multiply (integral, scalar)

6.44.1 Member Function/Subroutine Documentation

6.44.1.1 mgc integral scalar multiply()

6.44.1.2 mqc_scalar_integral_multiply()

The documentation for this interface was generated from the following file:

• src/mqc_est.F03

6.45 mqc algebra::operator(**) Interface Reference

Public Member Functions

• type(mqc_scalar) function mqc_scalarexponent (Scalar1, Scalar2)

MQC_ScalarExponent is a function that raises one MQC_Scalar to the power of another MQC_Scalar

- type(mqc_scalar) function mqc_scalarintegerexponent (Scalar, IntIn)
 - MQC_ScalarIntegerExponent is a function that raises an MQC_Scalar to the power of an intrinsic integer
- type(mqc_scalar) function mqc_scalarrealexponent (Scalar, RealIn)
 - MQC_ScalarRealExponent is a function that raises an MQC_Scalar to the power of an intrinsic real
- type(mqc_scalar) function mqc_scalarcomplexexponent (Scalar, Compln)

MQC_ScalarComplexExponent is a function that raises an MQC_Scalar to the power of an intrinsic complex

6.45.1 Member Function/Subroutine Documentation

6.45.1.1 mqc_scalarcomplexexponent()

MQC_ScalarComplexExponent is a function that raises an MQC_Scalar to the power of an intrinsic complex

Purpose:

 ${\tt MQC_ScalarComplexExponent}$ is a function that raises an ${\tt MQC_Scalar}$ to the power of an intrinsic complex.

Parameters

in	Scalar	
		Scalar1 is Type(MQC_Scalar) The base value
in	Comp⇔	
	In	CompIn is Complex(kind=real64) The power value

Author

L. M. Thompson

Date

2019

6.45.1.2 mqc_scalarexponent()

MQC_ScalarExponent is a function that raises one MQC_Scalar to the power of another MQC_Scalar

Purpose:

 $\texttt{MQC_ScalarExponent}$ is a function that raises one $\texttt{MQC_Scalar}$ to the power of another $\texttt{MQC_Scalar.}$

Parameters

in	Scalar1	
		Scalar1 is Type(MQC_Scalar) The base value
in	Scalar2	
		Scalar2 is Type(MQC_Scalar) The power value

Author

2016

6.45.1.3 mqc_scalarintegerexponent()

MQC_ScalarIntegerExponent is a function that raises an MQC_Scalar to the power of an intrinsic integer

Purpose:

 ${\tt MQC_ScalarIntegerExponent}$ is a function that raises an ${\tt MQC_Scalar}$ to the power of an intrinsic integer.

Parameters

in	Scalar	
		Scalar1 is Type(MQC_Scalar) The base value
2	lanklan.	
in	Intln	

Author

L. M. Thompson

Date

2019

6.45.1.4 mqc_scalarrealexponent()

MQC_ScalarRealExponent is a function that raises an MQC_Scalar to the power of an intrinsic real

Purpose:

 $\ensuremath{\mathtt{MQC_ScalarRealExponent}}$ is a function that raises an $\ensuremath{\mathtt{MQC_Scalar}}$ to the power of an intrinsic real.

Parameters

in	Scalar	
		Scalarl is Type(MQC_Scalar) The base value
in	Real←	
	ln	RealIn is Real(kind=real64) The power value

Author

L. M. Thompson

Date

2019

The documentation for this interface was generated from the following file:

• src/mqc_algebra.F03

6.46 mqc_est::operator(+) Interface Reference

Public Member Functions

• type(mqc_scf_integral) function mqc_integral_sum (integralA, integralB)

6.46.1 Member Function/Subroutine Documentation

6.46.1.1 mqc_integral_sum()

The documentation for this interface was generated from the following file:

src/mqc_est.F03

6.47 mqc_algebra::operator(+) Interface Reference

Public Member Functions

- type(mqc_scalar) function mqc_scalaradd (Scalar1, Scalar2)
 - MQC_ScalarAdd is a function that sums two MQC_Scalar objects
- type(mqc_scalar) function mqc_integerscalaradd (IntegerIn, Scalar)
- type(mgc scalar) function mgc scalarintegeradd (Scalar, IntegerIn)
- type(mqc_scalar) function mqc_realscalaradd (RealIn, Scalar)
- type(mqc_scalar) function mqc_scalarrealadd (Scalar, RealIn)
- type(mqc_scalar) function mqc_complexscalaradd (ComplexIn, Scalar)
- type(mqc_scalar) function mqc_scalarcomplexadd (Scalar, ComplexIn)
- type(mqc_vector) function mqc_vectorvectorsum (Vector1In, Vector2In)
- type(mqc_vector) function mqc_scalarvectorsum (ScalarIn, VectorIn)
- type(mqc_matrix) function mqc_matrixmatrixsum (MA, MB)

6.47.1 Member Function/Subroutine Documentation

6.47.1.1 mqc_complexscalaradd()

6.47.1.2 mqc_integerscalaradd()

6.47.1.3 mqc_matrixmatrixsum()

6.47.1.4 mqc_realscalaradd()

6.47.1.5 mqc_scalaradd()

MQC_ScalarAdd is a function that sums two MQC_Scalar objects

Purpose:

MQC_ScalarAdd is a function that sums two MQC_Scalar objects.

Parameters

in	Scalar1	
		Scalar1 is Type(MQC_Scalar) The first MQC_Scalar to be summed
in	Scalar2	
		Scalar2 is Type(MQC_Scalar) The second MQC_Scalar to be summed

Author

L. M. Thompson

Date

2016

6.47.1.6 mqc_scalarcomplexadd()

6.47.1.7 mqc_scalarintegeradd()

6.47.1.8 mqc_scalarrealadd()

6.47.1.9 mqc_scalarvectorsum()

6.47.1.10 mqc_vectorvectorsum()

The documentation for this interface was generated from the following file:

• src/mqc_algebra.F03

6.48 mqc_est::operator(-) Interface Reference

Public Member Functions

type(mqc_scf_integral) function mqc_integral_difference (integralA, integralB)

6.48.1 Member Function/Subroutine Documentation

6.48.1.1 mqc_integral_difference()

The documentation for this interface was generated from the following file:

src/mqc est.F03

6.49 mqc_algebra::operator(-) Interface Reference

Public Member Functions

- type(mqc_scalar) function mqc_scalarsubtract (Scalar1, Scalar2)
 - MQC_ScalarSubtract is a function that subtracts two MQC_Scalar objects
- type(mgc scalar) function mgc integerscalarsubtract (IntegerIn, Scalar)
- type(mqc_scalar) function mqc_scalarintegersubtract (Scalar, IntegerIn)
- type(mqc_scalar) function mqc_realscalarsubtract (RealIn, Scalar)
- type(mqc_scalar) function mqc_scalarrealsubtract (Scalar, RealIn)
- type(mgc scalar) function mgc complexscalarsubtract (ComplexIn, Scalar)
- type(mgc scalar) function mgc scalarcomplexsubtract (Scalar, ComplexIn)
- type(mgc_vector) function mgc_vectorvectordifference (Vector1In, Vector2In)
- type(mgc vector) function mgc scalarvectordifference (ScalarIn, VectorIn)
- type(mqc_matrix) function mqc_matrixmatrixsubtract (MA, MB)

6.49.1 Member Function/Subroutine Documentation

6.49.1.1 mqc_complexscalarsubtract()

6.49.1.2 mgc integerscalarsubtract()

6.49.1.3 mqc_matrixmatrixsubtract()

6.49.1.4 mqc_realscalarsubtract()

6.49.1.5 mqc_scalarcomplexsubtract()

6.49.1.6 mqc_scalarintegersubtract()

6.49.1.7 mqc_scalarrealsubtract()

6.49.1.8 mqc_scalarsubtract()

MQC_ScalarSubtract is a function that subtracts two MQC_Scalar objects

Purpose:

 ${\tt MQC_ScalarSubtract}$ is a function that subtracts two ${\tt MQC_Scalar}$ objects.

Parameters

in	Scalar1	
		Scalar1 is Type(MQC_Scalar) The first MQC_Scalar from which Scalar2 will be subtracted
in	Scalar2	
		Scalar2 is Type(MQC_Scalar) The second MQC_Scalar which will be subtracted from Scalar1

Author

L. M. Thompson

Date

2016

6.49.1.9 mqc scalarvectordifference()

6.49.1.10 mqc_vectorvectordifference()

```
type(mqc_vector) function mqc_algebra::operator(-)::mqc_vectorvectordifference ( type(mqc_vector), intent(in) Vector1In, type(mqc_vector), intent(in) Vector2In)
```

The documentation for this interface was generated from the following file:

• src/mqc_algebra.F03

6.50 mqc_algebra::operator(.dot.) Interface Reference

Public Member Functions

- type(mqc_scalar) function mqc_vectorvectordotproduct (Vector1, Vector2)
- type(mqc_vector) function mqc_vectormatrixdotproduct (VA, MB)
- type(mqc_vector) function mqc_matrixvectordotproduct (MA, VB)
- type(mqc_matrix) function mqc_matrixmatrixdotproduct (MA, MB)

6.50.1 Member Function/Subroutine Documentation

6.50.1.1 mqc_matrixmatrixdotproduct()

6.50.1.2 mqc_matrixvectordotproduct()

6.50.1.3 mqc_vectormatrixdotproduct()

```
type(mqc_vector) function mqc_algebra::operator(.dot.)::mqc_vectormatrixdotproduct ( type(mqc_vector), intent(in) VA, type(mqc_matrix), intent(in) MB)
```

6.50.1.4 mqc_vectorvectordotproduct()

The documentation for this interface was generated from the following file:

• src/mqc_algebra.F03

6.51 mqc_algebra::operator(.eq.) Interface Reference

Public Member Functions

• logical function mqc_scalareq (Scalar1, Scalar2)

MQC_ScalarEQ is a function that returns TRUE if two MQC_Scalar variables are equal

6.51.1 Member Function/Subroutine Documentation

6.51.1.1 mqc_scalareq()

MQC_ScalarEQ is a function that returns TRUE if two MQC_Scalar variables are equal

Purpose:

```
\ensuremath{\mathsf{MQC\_ScalarEQ}} is a function that returns TRUE if two \ensuremath{\mathsf{MQC\_Scalar}} variables are equal.
```

Parameters

in	Scalar1	
		Scalarl is Type(MQC_Scalar) The first MQC_Scalar that will be tested.
in	Scalar2	
		Scalar2 is Type(MQC_Scalar) The second MQC_Scalar that will be tested.

Author

L. M. Thompson

Date

2016

The documentation for this interface was generated from the following file:

• src/mqc_algebra.F03

6.52 mqc_algebra::operator(.ewd.) Interface Reference

Public Member Functions

type(mqc_matrix) function mqc_elementmatrixdivide (A, B)

6.52.1 Member Function/Subroutine Documentation

6.52.1.1 mqc_elementmatrixdivide()

The documentation for this interface was generated from the following file:

• src/mqc_algebra.F03

6.53 mqc_algebra::operator(.ewp.) Interface Reference

Public Member Functions

- type(mqc_vector) function mqc_elementvectorproduct (Vector1In, Vector2In)
- type(mqc_matrix) function mqc_elementmatrixproduct (A, B)

6.53.1 Member Function/Subroutine Documentation

6.53.1.1 mqc_elementmatrixproduct()

6.53.1.2 mqc_elementvectorproduct()

The documentation for this interface was generated from the following file:

src/mqc_algebra.F03

6.54 mqc_algebra::operator(.ge.) Interface Reference

Public Member Functions

• logical function mqc_scalarge (Scalar1, Scalar2)

6.54.1 Member Function/Subroutine Documentation

6.54.1.1 mqc scalarge()

The documentation for this interface was generated from the following file:

• src/mqc algebra.F03

6.55 mqc_algebra::operator(.gt.) Interface Reference

Public Member Functions

logical function mqc_scalargt (Scalar1, Scalar2)

MQC_ScalarGT is a function that returns TRUE if the left MQC_Scalar is greater than the right MQC_Scalar

logical function mqc_scalargtinteger (Scalar, Intln)

MQC_ScalarGTInteger is a function that returns TRUE if a MQC_Scalar is greater than an intrinsic integer

logical function mqc_integergtscalar (IntIn, Scalar)

MQC_IntegerGTScalar is a function that returns TRUE if an intrinsic integer is greater than a MQC_Scalar

- logical function mqc_scalargtreal (Scalar, RealIn)
- logical function mqc_realgtscalar (RealIn, Scalar)

6.55.1 Member Function/Subroutine Documentation

6.55.1.1 mqc_integergtscalar()

MQC_IntegerGTScalar is a function that returns TRUE if an intrinsic integer is greater than a MQC_Scalar

Purpose:

 $\ensuremath{\mathtt{MQC_IntegerGTScalar}}$ is a function that returns TRUE if an intrinsic integer is greater than a $\ensuremath{\mathtt{MQC_Scalar}}.$

When dealing with complex numbers, the function returns TRUE if the intrinsic integer is greater than the real part of the MQC_Scalar and FALSE if the intrinsic integer is less than the real part of the MQC_Scalar. If the intrinsic integer is equal to the real part of the MQC_Scalar, the function returns TRUE if the imaginary part of MQC_Scalar is less than zero and FALSE otherwise. Note that this is the same procedure used in python.

Parameters

in	Intln	
		<pre>IntIn is Integer(kind=int64) The intrinsic integer that will be tested.</pre>
in	Scalar	
		Scalar is Type(MQC_Scalar) The MQC_Scalar that will be tested.

Author

L. M. Thompson

Date

2019

6.55.1.2 mqc_realgtscalar()

6.55.1.3 mqc_scalargt()

MQC_ScalarGT is a function that returns TRUE if the left MQC_Scalar is greater than the right MQC_Scalar

Purpose:

 ${\tt MQC_ScalarGT}$ is a function that returns TRUE if the left ${\tt MQC_Scalar}$ is greater than the right ${\tt MQC_Scalar}.$

When dealing with complex numbers, the function returns TRUE if the left real part is greater than the right real part and FALSE if the left real part is less than the right real part. If the left real part is equal to the right real part, the function returns TRUE if the left imaginary part is greater than the right imaginary part and FALSE otherwise. Note that this is the same procedure used in python.

Parameters

in	Scalar1	
		Scalar1 is Type(MQC_Scalar) The first MQC_Scalar that will be tested.
in	Scalar2	
		Scalar2 is Type(MQC_Scalar) The second MQC_Scalar that will be tested.

Author

L. M. Thompson

Date

2016

6.55.1.4 mqc scalargtinteger()

MQC_ScalarGTInteger is a function that returns TRUE if a MQC_Scalar is greater than an intrinsic integer

Purpose:

 ${\tt MQC_ScalarGTInteger}$ is a function that returns TRUE if a ${\tt MQC_Scalar}$ is greater than an intrinsic integer.

When dealing with complex numbers, the function returns TRUE if the real part of the MQC_Scalar is greater than the intrinsic integer and FALSE if the real part of the MQC_Scalar is less than the intrinsic integer. If the real part of the MQC_Scalar is equal to the intrinsic integer, the function returns TRUE if the imaginary part of MQC_Scalar is greater than zero and FALSE otherwise. Note that this is the same procedure used in python.

Parameters

in	Scalar	
		Scalar is Type(MQC_Scalar) The MQC_Scalar that will be tested.
in	Intln	
		IntIn is Integer(kind=int64) The intrinsic integer that will be tested.

Author

L. M. Thompson

Date

2019

6.55.1.5 mqc_scalargtreal()

The documentation for this interface was generated from the following file:

• src/mqc_algebra.F03

6.56 mqc_algebra::operator(.le.) Interface Reference

Public Member Functions

- logical function mgc scalarle (Scalar1, Scalar2)
- logical function mgc scalarlereal (Scalar, RealIn)
- logical function mqc_reallescalar (RealIn, Scalar)
- logical function mqc_scalarleinteger (Scalar, Intln)
- logical function mqc integerlescalar (Intln, Scalar)

6.56.1 Member Function/Subroutine Documentation

6.56.1.1 mqc_integerlescalar()

6.56.1.2 mqc_reallescalar()

6.56.1.3 mqc_scalarle()

6.56.1.4 mqc_scalarleinteger()

6.56.1.5 mqc_scalarlereal()

The documentation for this interface was generated from the following file:

src/mqc_algebra.F03

6.57 mgc algebra::operator(.lt.) Interface Reference

Public Member Functions

logical function mgc scalarlt (Scalar1, Scalar2)

MQC_ScalarLT is a function that returns TRUE if the left MQC_Scalar is less than the right MQC_Scalar

logical function mqc_scalarItreal (Scalar, RealIn)

MQC_ScalarLTReal is a function that returns TRUE if a MQC_Scalar is less than an intrinsic real

• logical function mqc_realltscalar (RealIn, Scalar)

MQC RealLTScalar is a function that returns TRUE if an intrinsic real is less than a MQC Scalar

6.57.1 Member Function/Subroutine Documentation

6.57.1.1 mqc_realltscalar()

MQC_RealLTScalar is a function that returns TRUE if an intrinsic real is less than a MQC_Scalar

Purpose:

 ${\tt MQC_RealLTScalar}$ is a function that returns TRUE if an intrinsic real is less than a ${\tt MQC_Scalar}.$

When dealing with complex numbers, the function returns TRUE if the intrinsic real is less than the real part of the MQC_Scalar and FALSE if the intrinsic real is greater than the real part of the MQC_Scalar. If the intrinsic real is equal to the real part of the MQC_Scalar, the function returns TRUE if the imaginary part of MQC_Scalar is greater than zero and FALSE otherwise. Note that this is the same procedure used in python.

Parameters

in	Real← In	RealIn is Real(kind=real64) The intrinsic real that will be tested.
in	Scalar	
		Scalar is Type(MQC_Scalar) The MQC_Scalar that will be tested.

Author

L. M. Thompson

Date

2019

6.57.1.2 mqc_scalarIt()

MQC_ScalarLT is a function that returns TRUE if the left MQC_Scalar is less than the right MQC_Scalar

Purpose:

 ${\tt MQC_ScalarLT}$ is a function that returns TRUE if the left ${\tt MQC_Scalar}$ is less than the right ${\tt MQC_Scalar}$.

When dealing with complex numbers, the function returns TRUE if the left real part is less than the right real part and FALSE if the left real part is greater than the right real part. If the left real part is equal to the right real part, the function returns TRUE if the left imaginary part is less than the right imaginary part and FALSE otherwise. Note that this is the same procedure used in python.

Parameters

in	Scalar1	
		Scalarl is Type(MQC_Scalar) The first MQC_Scalar that will be tested.
in	Scalar2	
		Scalar2 is Type(MQC_Scalar) The second MQC_Scalar that will be tested.

Author

L. M. Thompson

Date

2016

6.57.1.3 mqc_scalarItreal()

MQC_ScalarLTReal is a function that returns TRUE if a MQC_Scalar is less than an intrinsic real

Purpose:

 ${\tt MQC_ScalarLTReal}$ is a function that returns TRUE if a ${\tt MQC_Scalar}$ is less than an intrinsic real.

When dealing with complex numbers, the function returns TRUE if the real part of the MQC_Scalar is less than the intrinsic real and FALSE if the real part of the MQC_Scalar is greater than the intrinsic real. If the real part of the MQC_Scalar is equal to the intrinsic real, the function returns TRUE if the imaginary part of MQC_Scalar is less than zero and FALSE otherwise. Note that this is the same procedure used in python.

Parameters

in	Scalar	
		Scalar is Type(MQC_Scalar) The MQC_Scalar that will be tested.
in	Real⊷	
	In	RealIn is Real(kind=real64) The intrinsic real that will be tested.

Author

L. M. Thompson

Date

2019

The documentation for this interface was generated from the following file:

• src/mqc_algebra.F03

6.58 mqc_algebra::operator(.ne.) Interface Reference

Public Member Functions

• logical function mqc_scalarne (Scalar1, Scalar2)

MQC_ScalarNE is a function that returns TRUE if two MQC_Scalar variables are not equal

6.58.1 Member Function/Subroutine Documentation

6.58.1.1 mqc_scalarne()

MQC_ScalarNE is a function that returns TRUE if two MQC_Scalar variables are not equal

Purpose:

```
\ensuremath{\mathtt{MQC\_ScalarNE}} is a function that returns TRUE if two \ensuremath{\mathtt{MQC\_Scalar}} variables are not equal.
```

Parameters

in	Scalar1	
		Scalarl is Type(MQC_Scalar) The first MQC_Scalar that will be tested.
in	Scalar2	
		Scalar2 is Type(MQC_Scalar) The second MQC_Scalar that will be tested.

Author

L. M. Thompson

Date

2016

The documentation for this interface was generated from the following file:

• src/mqc_algebra.F03

6.59 mqc_algebra::operator(.outer.) Interface Reference

Public Member Functions

type(mqc_matrix) function mqc_outer (VA, VB)

6.59.1 Member Function/Subroutine Documentation

6.59.1.1 mqc_outer()

The documentation for this interface was generated from the following file:

• src/mqc algebra.F03

6.60 mqc_algebra::operator(.x.) Interface Reference

Public Member Functions

type(mqc_vector) function mqc_crossproduct (Vector1In, Vector2In)

6.60.1 Member Function/Subroutine Documentation

6.60.1.1 mqc_crossproduct()

The documentation for this interface was generated from the following file:

• src/mqc_algebra.F03

6.61 mqc_algebra::operator(/) Interface Reference

Public Member Functions

• type(mqc_scalar) function mqc_scalardivide (Scalar1, Scalar2)

MQC_ScalarDivide is a function that divides two MQC_Scalar objects

- type(mqc_scalar) function mqc_integerscalardivide (IntegerIn, Scalar)
- type(mqc_scalar) function mqc_scalarintegerdivide (Scalar, IntegerIn)
- type(mqc_scalar) function mqc_realscalardivide (RealIn, Scalar)
- type(mgc scalar) function mgc scalarrealdivide (Scalar, RealIn)
- type(mgc scalar) function mgc complexscalardivide (ComplexIn, Scalar)
- type(mqc_scalar) function mqc_scalarcomplexdivide (Scalar, ComplexIn)
- type(mqc_vector) function mqc_vectorscalardivide (vector, scalar)
- type(mqc_vector) function mqc_vectorrealdivide (vector, realln)
- type(mqc vector) function mqc vectorintegerdivide (vector, intln)
- type(mgc vector) function mgc vectorcomplexdivide (vector, compln)

6.61.1 Member Function/Subroutine Documentation

6.61.1.1 mqc_complexscalardivide()

6.61.1.2 mqc_integerscalardivide()

6.61.1.3 mqc_realscalardivide()

6.61.1.4 mqc_scalarcomplexdivide()

6.61.1.5 mqc_scalardivide()

MQC_ScalarDivide is a function that divides two MQC_Scalar objects

Purpose:

```
MQC_ScalarDivide is a function that divides MQC_Scalar objects.
```

Parameters

in	Scalar1	
		Scalar1 is Type(MQC_Scalar) The numerator
in	Scalar2	
		Scalar2 is Type(MQC_Scalar) The denominator

Author

L. M. Thompson

Date

2016

6.61.1.6 mqc_scalarintegerdivide()

6.61.1.7 mqc_scalarrealdivide()

6.61.1.8 mqc_vectorcomplexdivide()

6.61.1.9 mqc_vectorintegerdivide()

6.61.1.10 mqc_vectorrealdivide()

6.61.1.11 mqc_vectorscalardivide()

The documentation for this interface was generated from the following file:

• src/mqc algebra.F03

6.62 mqc_algebra::real Interface Reference

Public Member Functions

- type(mqc_scalar) function mqc_scalar_complex_realpart (ScalarIn)
- type(mqc_vector) function mqc_vector_complex_realpart (A)

6.62.1 Member Function/Subroutine Documentation

6.62.1.1 mqc_scalar_complex_realpart()

6.62.1.2 mqc_vector_complex_realpart()

The documentation for this interface was generated from the following file:

• src/mqc_algebra.F03

6.63 mqc_algebra::sin Interface Reference

Public Member Functions

type(mqc_scalar) function mqc_scalar_sin (Scalar)
 MQC_Scalar_Sin is a function used to return the sine of an MQC_scalar

6.63.1 Member Function/Subroutine Documentation

6.63.1.1 mqc_scalar_sin()

MQC_Scalar_Sin is a function used to return the sine of an MQC_scalar

Purpose:

```
{\tt MQC\_Scalar\_Sin} is a function used to return the sine of an {\tt MQC\_scalar}.
```

Parameters

in	Scalar	
		Scalar is Type(MQC_Scalar) The argument of the function

Author

2019

The documentation for this interface was generated from the following file:

• src/mqc_algebra.F03

6.64 mqc_algebra::sqrt Interface Reference

Public Member Functions

type(mqc_scalar) function mqc_scalar_sqrt (Scalar)
 MQC_Scalar_Sqrt is a function used to return the square root of an MQC_scalar

6.64.1 Member Function/Subroutine Documentation

6.64.1.1 mqc_scalar_sqrt()

MQC_Scalar_Sqrt is a function used to return the square root of an MQC_scalar

Purpose:

```
{\tt MQC\_Scalar\_Sqrt} is a function used to return the square root of an {\tt MQC\_scalar} .
```

Parameters

in	Scalar	
		Scalar is Type(MQC_Scalar) The argument of the function

Author

2016

The documentation for this interface was generated from the following file:

• src/mqc_algebra.F03

6.65 mqc_algebra::tan Interface Reference

Public Member Functions

type(mqc_scalar) function mqc_scalar_tan (Scalar)
 MQC_Scalar_Tan is a function used to return the tangent of an MQC_scalar

6.65.1 Member Function/Subroutine Documentation

6.65.1.1 mqc_scalar_tan()

MQC_Scalar_Tan is a function used to return the tangent of an MQC_scalar

Purpose:

 ${\tt MQC_Scalar_Tan}$ is a function used to return the tangent of an ${\tt MQC_scalar_}$

Parameters

in	Scalar	
		Scalar is Type(MQC_Scalar) The argument of the function

Author

2019

The documentation for this interface was generated from the following file:

src/mqc_algebra.F03

6.66 mqc_est::transpose Interface Reference

Public Member Functions

type(mgc scf integral) function mgc integral transpose (integral, label)

6.66.1 Member Function/Subroutine Documentation

6.66.1.1 mqc_integral_transpose()

The documentation for this interface was generated from the following file:

• src/mqc_est.F03

6.67 mqc_algebra::transpose Interface Reference

Public Member Functions

- type(mqc_vector) function mqc_vector_transpose (Vector)
- type(mqc_matrix) function mqc_matrix_transpose (Matrix)

6.67.1 Member Function/Subroutine Documentation

6.67.1.1 mqc_matrix_transpose()

6.67.1.2 mqc_vector_transpose()

The documentation for this interface was generated from the following file:

• src/mqc_algebra.F03

Chapter 7

File Documentation

7.1 src/mqc_algebra.F03 File Reference

Data Types

- type mqc_algebra::mqc_scalar
- type mqc_algebra::mqc_vector
- type mqc_algebra::mqc_matrix
- type mqc_algebra::mqc_r4tensor
- interface mqc_algebra::mqc_print
- interface mqc_algebra::contraction
- interface mqc_algebra::conjg
- interface mqc_algebra::mqc_have_real
- interface mqc_algebra::mqc_have_int
- interface mqc_algebra::mqc_have_complex
- interface mqc_algebra::mqc_cast_real
- interface mqc_algebra::mqc_cast_complex
- interface mqc_algebra::matmul
- interface mqc_algebra::transpose
- · interface mqc_algebra::dagger
- interface mgc_algebra::cmplx
- interface mqc_algebra::sqrt
- interface mqc_algebra::abs
- interface mqc_algebra::real
- interface mqc_algebra::aimag
- interface mqc_algebra::sin
- interface mgc algebra::cos
- interface mqc_algebra::tan
- interface mqc_algebra::asin
- interface mqc_algebra::acos
- interface mqc_algebra::atan
- interface mqc_algebra::atan2
- interface mqc_algebra::mqc_set_array2vector
- interface mqc_algebra::mqc_matrix_symmmatrix_put

- interface mqc_algebra::mqc_matrix_diagmatrix_put
- interface mqc_algebra::matrix_symm2sq
- interface mqc_algebra::dot_product
- interface mqc_algebra::assignment(=)
- interface mgc_algebra::operator(+)
- interface mgc_algebra::operator(-)
- interface mqc_algebra::operator(*)
- interface mqc algebra::operator(/)
- interface mqc_algebra::operator(**)
- interface mqc_algebra::operator(.ne.)
- interface inqu_algorianoporator(inc.
- interface mqc_algebra::operator(.eq.)
- interface mqc_algebra::operator(.lt.)
- interface mqc_algebra::operator(.gt.)
- interface mqc_algebra::operator(.le.)
- interface mqc_algebra::operator(.ge.)
- interface mqc_algebra::assignment(=)
- interface mqc_algebra::operator(.dot.)
- interface mqc_algebra::operator(*)
- interface mqc_algebra::operator(/)
- interface mqc_algebra::operator(+)
- interface mqc_algebra::operator(-)
- interface mqc_algebra::operator(.ewp.)
- interface mqc_algebra::operator(.ewd.)
- interface mqc_algebra::operator(.x.)
- interface mqc_algebra::operator(.outer.)
- interface mgc_algebra::assignment(=)
- interface mgc algebra::operator(+)
- interface mqc_algebra::operator(-)
- interface mqc_algebra::operator(*)
- interface mqc_algebra::operator(.dot.)
- interface mqc_algebra::assignment(=)

Modules

• module mqc_algebra

Functions/Subroutines

• integer(kind=int64) function mgc_algebra::factorial (n)

Factorial returns the factorial of an integer

integer(kind=int64) function mqc_algebra::bin_coeff (N, K)

Bin_Coeff returns the binomial coefficient of (n,k)

subroutine mgc algebra::mgc allocate scalar (Scalar, Data type)

MQC_Allocate_Scalar is used to allocate a scalar type variable of the MQC_Scalar class

subroutine mgc algebra::mgc deallocate scalar (Scalar)

MQC_Deallocate_Scalar is used to deallocate a scalar type variable of the MQC_Scalar class

logical function mgc algebra::mgc scalar isallocated (Scalar)

MQC_Scalar_IsAllocated is used to determine the allocation status of an MQC_Scalar

• subroutine mqc_algebra::mqc_input_integer_scalar (ScalarOut, ScalarIn)

MQC_Input_Integer_Scalar is a subroutine is used to set an intrinsic integer to an MQC_Scalar

subroutine mqc_algebra::mqc_input_real_scalar (ScalarOut, ScalarIn)

MQC_Input_Real_Scalar is a subroutine is used to set an intrinsic real to an MQC_Scalar

• subroutine mgc algebra::mgc input complex scalar (ScalarOut, ScalarIn)

MQC_Input_Complex_Scalar is a subroutine is used to set an intrinsic complex to an MQC_Scalar

subroutine mqc_algebra::mqc_output_mqcscalar_scalar (ScalarOut, ScalarIn)

MQC_Output MQCScalar_Scalar is a subroutine used to output an MQC_scalar equal to an MQC_Scalar

subroutine mqc_algebra::mqc_output_integer_scalar (ScalarOut, ScalarIn)

MQC_Output_Integer_Scalar is a subroutine used to output an intrinsic integer equal to an MQC_Scalar

subroutine mqc_algebra::mqc_output_real_scalar (ScalarOut, ScalarIn)

MQC_Output_Real_Scalar is a subroutine used to output an intrinsic real equal to an MQC_Scalar

subroutine mgc algebra::mgc output complex scalar (ScalarOut, ScalarIn)

MQC_Output_Complex_Scalar is a subroutine used to output an intrinsic complex equal to an MQC_Scalar

• subroutine mgc algebra::mgc print scalar algebra1 (Scalar, IOut, Header, Blank At Top, Blank At Bottom)

MQC_Print_Scalar_Algebra1 is a subroutine used to print an MQC_Scalar

• type(mgc scalar) function mgc algebra::mgc scalar cmplx (Scalar1, Scalar2)

MQC_Scalar_Cmplx is a function used to set a complex MQC_Scalar type variable from two other MQC_scalars

type(mqc_scalar) function mqc_algebra::mqc_scalar_sqrt (Scalar)

MQC_Scalar_Sqrt is a function used to return the square root of an MQC_scalar

type(mqc scalar) function mqc algebra::mqc scalar sin (Scalar)

MQC_Scalar_Sin is a function used to return the sine of an MQC_scalar

type(mqc_scalar) function mqc_algebra::mqc_scalar_cos (Scalar)

MQC_Scalar_Cos is a function used to return the cosine of an MQC_scalar

type(mqc_scalar) function mqc_algebra::mqc_scalar_tan (Scalar)

MQC_Scalar_Tan is a function used to return the tangent of an MQC_scalar

type(mqc_scalar) function mqc_algebra::mqc_scalar_asin (Scalar)

MQC_Scalar_ASin is a function used to return the arcsin of an MQC_scalar

type(mqc_scalar) function mqc_algebra::mqc_scalar_acos (Scalar)

MQC_Scalar_ACos is a function used to return the arccosine of an MQC_scalar

type(mqc_scalar) function mqc_algebra::mqc_scalar_atan (Scalar)

MQC_Scalar_ATan is a function used to return the arctangent of an MQC_scalar

type(mqc scalar) function mqc algebra::mqc scalar atan2 (Scalar)

MQC_Scalar_ATan2 is a function used to return the arctangent of an MQC_scalar accounting for quadrant of Argand diagram

logical function mqc_algebra::mqc_scalar_havereal (Scalar)

MQC_Scalar_HaveReal is a function that returns TRUE or FALSE indicating whether an MQC_scalar is of type real

logical function mqc_algebra::mqc_scalar_haveinteger (Scalar)

MQC_Scalar_HaveInteger is a function that returns TRUE or FALSE indicating whether an MQC_scalar is of type integer

logical function mqc_algebra::mqc_scalar_havecomplex (Scalar)

MQC_Scalar_HaveComplex is a function that returns TRUE or FALSE indicating whether an MQC_scalar is of type complex

real(kind=real64) function mqc_algebra::mqc_scalar_get_intrinsic_real (Scalar)

MQC_Scalar_Get_Intrinsic_Real is a function that returns the MQC_scalar value as an intrinsic real

integer(kind=int64) function mqc_algebra::mqc_scalar_get_intrinsic_integer (Scalar)

MQC_Scalar_Get_Intrinsic_Integer is a function that returns the MQC_scalar value as an intrinsic integer

complex(kind=real64) function mqc_algebra::mqc_scalar_get_intrinsic_complex (Scalar)

MQC_Scalar_Get_Intrinsic_Complex is a function that returns the MQC_scalar value as an intrinsic complex

type(mqc_scalar) function mqc_algebra::mqc_scalar_get_abs_value (Scalar)

MQC_Scalar_Get_ABS_Value is a function that returns the absolute value of MQC_scalar variable

subroutine mgc algebra::mgc scalar get random value (Scalar)

MQC_Scalar_Get_Random_Value is a function that returns a random real value from a uniform distribution between zero and one

type(mgc_scalar) function mgc_algebra::mgc_scalaradd (Scalar1, Scalar2)

MQC_ScalarAdd is a function that sums two MQC_Scalar objects

type(mqc scalar) function mqc algebra::mqc scalarsubtract (Scalar1, Scalar2)

MQC_ScalarSubtract is a function that subtracts two MQC_Scalar objects

type(mgc scalar) function mgc algebra::mgc scalarmultiply (Scalar1, Scalar2)

MQC_ScalarMultiply is a function that multiplies two MQC_Scalar objects

type(mqc_scalar) function mqc_algebra::mqc_scalardivide (Scalar1, Scalar2)

MQC_ScalarDivide is a function that divides two MQC_Scalar objects

• type(mgc scalar) function mgc algebra::mgc scalarexponent (Scalar1, Scalar2)

MQC_ScalarExponent is a function that raises one MQC_Scalar to the power of another MQC_Scalar

type(mqc_scalar) function mqc_algebra::mqc_scalarintegerexponent (Scalar, Intln)

MQC_ScalarIntegerExponent is a function that raises an MQC_Scalar to the power of an intrinsic integer

type(mqc_scalar) function mqc_algebra::mqc_scalarrealexponent (Scalar, RealIn)

MQC_ScalarRealExponent is a function that raises an MQC_Scalar to the power of an intrinsic real

• type(mqc_scalar) function mqc_algebra::mqc_scalarcomplexexponent (Scalar, Compln)

MQC_ScalarComplexExponent is a function that raises an MQC_Scalar to the power of an intrinsic complex

logical function mqc_algebra::mqc_scalarne (Scalar1, Scalar2)

MQC_ScalarNE is a function that returns TRUE if two MQC_Scalar variables are not equal

logical function mqc algebra::mqc scalareq (Scalar1, Scalar2)

MQC_ScalarEQ is a function that returns TRUE if two MQC_Scalar variables are equal

logical function mgc algebra::mgc scalarIt (Scalar1, Scalar2)

MQC_ScalarLT is a function that returns TRUE if the left MQC_Scalar is less than the right MQC_Scalar

logical function mqc algebra::mqc realltscalar (RealIn, Scalar)

MQC_RealLTScalar is a function that returns TRUE if an intrinsic real is less than a MQC_Scalar

logical function mqc_algebra::mqc_scalarItreal (Scalar, RealIn)

MQC_ScalarLTReal is a function that returns TRUE if a MQC_Scalar is less than an intrinsic real

logical function mqc_algebra::mqc_scalargt (Scalar1, Scalar2)

MQC_ScalarGT is a function that returns TRUE if the left MQC_Scalar is greater than the right MQC_Scalar

logical function mgc algebra::mgc integergtscalar (Intln, Scalar)

MQC_IntegerGTScalar is a function that returns TRUE if an intrinsic integer is greater than a MQC_Scalar

logical function mqc_algebra::mqc_scalargtinteger (Scalar, Intln)

MQC_ScalarGTInteger is a function that returns TRUE if a MQC_Scalar is greater than an intrinsic integer

- logical function mqc_algebra::mqc_realgtscalar (RealIn, Scalar)
- logical function mgc algebra::mgc scalargtreal (Scalar, RealIn)
- logical function mgc algebra::mgc scalarle (Scalar1, Scalar2)
- logical function mqc_algebra::mqc_reallescalar (RealIn, Scalar)
- logical function mqc_algebra::mqc_scalarlereal (Scalar, RealIn)
- logical function mqc_algebra::mqc_integerlescalar (Intln, Scalar)
- logical function mqc_algebra::mqc_scalarleinteger (Scalar, Intln)
- logical function mqc algebra::mqc scalarge (Scalar1, Scalar2)
- type(mqc scalar) function mqc algebra::mqc scalar complex conjugate (ScalarIn)

- type(mqc_scalar) function mqc_algebra::mqc_scalar_complex_realpart (ScalarIn)
- type(mqc_scalar) function mqc_algebra::mqc_scalar_complex_imagpart (ScalarIn)
- type(mqc_scalar) function mqc_algebra::mqc_integerscalarmultiply (IntegerIn, Scalar)
- type(mqc_scalar) function mqc_algebra::mqc_scalarintegermultiply (Scalar, IntegerIn)
- type(mqc_scalar) function mqc_algebra::mqc_realscalarmultiply (RealIn, Scalar)
- type(mqc_scalar) function mqc_algebra::mqc_scalarrealmultiply (Scalar, RealIn)
- type(mqc_scalar) function mqc_algebra::mqc_complexscalarmultiply (ComplexIn, Scalar)
- type(mqc_scalar) function mqc_algebra::mqc_scalarcomplexmultiply (Scalar, ComplexIn)
- type(mqc_scalar) function mqc_algebra::mqc_integerscalardivide (IntegerIn, Scalar)
- type(mqc_scalar) function mqc_algebra::mqc_scalarintegerdivide (Scalar, IntegerIn)
- type(mqc_scalar) function mqc_algebra::mqc_realscalardivide (RealIn, Scalar)
- type(mqc_scalar) function mqc_algebra::mqc_scalarrealdivide (Scalar, RealIn)
- type(mqc_scalar) function mqc_algebra::mqc_complexscalardivide (ComplexIn, Scalar)
- type(mqc_scalar) function mqc_algebra::mqc_scalarcomplexdivide (Scalar, ComplexIn)
- type(mqc_scalar) function mqc_algebra::mqc_integerscalaradd (IntegerIn, Scalar)
- type(mqc_scalar) function mqc_algebra::mqc_scalarintegeradd (Scalar, IntegerIn)
- type(mqc_scalar) function mqc_algebra::mqc_realscalaradd (RealIn, Scalar)
- type(mqc_scalar) function mqc_algebra::mqc_scalarrealadd (Scalar, RealIn)
- type(mqc_scalar) function mqc_algebra::mqc_complexscalaradd (ComplexIn, Scalar)
- type(mqc_scalar) function mqc_algebra::mqc_scalarcomplexadd (Scalar, ComplexIn)
- type(mqc_scalar) function mqc_algebra::mqc_integerscalarsubtract (IntegerIn, Scalar)
- type(mqc_scalar) function mqc_algebra::mqc_scalarintegersubtract (Scalar, IntegerIn)
- type(mgc scalar) function mgc algebra::mgc realscalarsubtract (RealIn, Scalar)
- type(mqc_scalar) function mqc_algebra::mqc_scalarrealsubtract (Scalar, RealIn)
- type(mqc_scalar) function mqc_algebra::mqc_complexscalarsubtract (ComplexIn, Scalar)
- type(mgc scalar) function mgc algebra::mgc scalarcomplexsubtract (Scalar, ComplexIn)
- subroutine mqc_algebra::mqc_allocate_vector (N, Vector, Data_Type)
- subroutine mqc_algebra::mqc_deallocate_vector (Vector)
- integer(kind=int64) function mqc_algebra::mqc_length_vector (Vector)
- logical function mqc_algebra::mqc_vector_havereal (Vector)
- logical function mqc_algebra::mqc_vector_haveinteger (Vector)
- logical function mgc algebra::mgc vector havecomplex (Vector)
- logical function mqc_algebra::mqc_vector_iscolumn (Vector)
- subroutine mqc_algebra::mqc_vector_copy_int2real (Vector)
- subroutine mgc algebra::mgc vector copy int2complex (Vector)
- subroutine mqc_algebra::mqc_vector_copy_real2int (Vector)
- subroutine mqc_algebra::mqc_vector_copy_real2complex (Vector)
- subroutine mqc_algebra::mqc_vector_copy_complex2int (Vector)
- subroutine mgc algebra::mgc vector copy complex2real (Vector)
- type(mqc_scalar) function mqc_algebra::mqc_vector_scalar_at (Vec, I)
- type(mqc_vector) function mqc_algebra::mqc_vector_vector_at (Vec, I, J)
- subroutine mqc_algebra::mqc_set_vector2integerarray (ArrayOut, VectorIn)
- subroutine mqc_algebra::mqc_set_vector2realarray (ArrayOut, VectorIn)
- subroutine mqc_algebra::mqc_set_vector2complexarray (ArrayOut, VectorIn)
- subroutine mqc_algebra::mqc_set_array2vector_integer (VectorOut, ArrayIn)
- subroutine mqc_algebra::mqc_set_array2vector_real (VectorOut, ArrayIn)
- subroutine mqc_algebra::mqc_set_array2vector_complex (VectorOut, ArrayIn)
- subroutine mqc_algebra::mqc_set_vector2vector (VectorOut, VectorIn)
- type(mqc_vector) function mqc_algebra::mqc_vectorvectorsum (Vector1In, Vector2In)
- type(mqc_vector) function mqc_algebra::mqc_vectorvectordifference (Vector1In, Vector2In)
- type(mqc vector) function mqc algebra::mqc scalarvectorsum (ScalarIn, VectorIn)

- type(mqc_vector) function mqc_algebra::mqc_scalarvectordifference (ScalarIn, VectorIn)
- type(mqc_vector) function mqc_algebra::mqc_elementvectorproduct (Vector1In, Vector2In)
- type(mqc_vector) function mqc_algebra::mqc_vector_transpose (Vector)
- type(mqc_vector) function mqc_algebra::mqc_vector_conjugate_transpose (Vector)
- type(mgc scalar) function mgc algebra::mgc vectorvectordotproduct (Vector1, Vector2)
- type(mgc matrix) function mgc algebra::mgc outer (VA, VB)
- type(mqc_vector) function mqc_algebra::mqc_crossproduct (Vector1In, Vector2In)
- subroutine mqc_algebra::mqc_print_vector_algebra1 (Vector, IOut, Header, Verbose, Blank_At_Top, Blank_At
 Bottom)
- type(mqc vector) function mqc algebra::mqc vector cast real (VA)
- type(mgc vector) function mgc algebra::mgc vector cast complex (VA)
- subroutine mqc_algebra::mqc_vector_scalar_put (Vector, Scalar, I)
- subroutine mqc_algebra::mqc_vector_scalar_increment (Vector, Scalar, I)
- subroutine mqc_algebra::mqc_vector_vector_put (Vector, VectorIn, I)
- subroutine mqc_algebra::mqc_vector_initialize (Vector, Length, Scalar)
- type(mqc_vector) function mqc_algebra::mqc_scalarvectorproduct (Scalar, Vector)
- type(mqc_vector) function mqc_algebra::mqc_vectorscalarproduct (vector, scalar)
- type(mqc_vector) function mqc_algebra::mqc_vectorscalardivide (vector, scalar)
- type(mqc_vector) function mqc_algebra::mqc_realvectorproduct (RealIn, Vector)
- type(mgc vector) function mgc algebra::mgc vectorrealproduct (vector, realln)
- type(mqc_vector) function mqc_algebra::mqc_vectorrealdivide (vector, realIn)
- type(mqc_vector) function mqc_algebra::mqc_integervectorproduct (intln, Vector)
- type(mqc_vector) function mqc_algebra::mqc_vectorintegerproduct (vector, intln)
- type(mgc vector) function mgc algebra::mgc vectorintegerdivide (vector, intln)
- type(mqc_vector) function mqc_algebra::mqc_complexvectorproduct (Compln, Vector)
- type(mqc_vector) function mqc_algebra::mqc_vectorcomplexproduct (vector, compln)
- type(mqc_vector) function mqc_algebra::mqc_vectorcomplexdivide (vector, compln)
- type(mqc_scalar) function mqc_algebra::mqc_vector_norm (vector, methodIn)
- logical function mgc algebra::mgc vector isallocated (Vector)
- subroutine mgc algebra::mgc vector push (Vector, Scalar)
- subroutine mgc algebra::mgc vector unshift (Vector, Scalar)
- type(mgc scalar) function mgc algebra::mgc vector pop (Vector)
- type(mqc_scalar) function mqc_algebra::mqc_vector_shift (Vector)
- type(mqc_scalar) function mqc_algebra::mqc_vector_maxval (Vector)
- type(mqc_scalar) function mqc_algebra::mqc_vector_minval (Vector)
- integer function mqc_algebra::mqc_vector_maxloc (Vector)
- integer function mgc algebra::mgc vector minloc (Vector)
- type(mgc vector) function mgc algebra::mgc vector argsort (Vector)
- subroutine mgc algebra::mgc vector sort (Vector, idx)
- subroutine mgc algebra::mgc vector sqrt (A)
- type(mqc_vector) function mqc_algebra::mqc_vector_abs (A)
- subroutine mqc_algebra::mqc_vector_power (A, P)
- type(mqc_vector) function mqc_algebra::mqc_vector_complex_realpart (A)
- type(mgc vector) function mgc algebra::mgc vector complex imagpart (A)
- type(mgc vector) function mgc algebra::mgc vector cmplx (Vector1, Vector2)
- character(len=64) function mqc_algebra::mqc_matrix_storagetype (Matrix)
- subroutine mqc_algebra::mqc_matrix_diagonalize (A, EVals, EVecs)
- type(mqc_matrix) function mqc_algebra::mqc_matrix_cast_real (MA)
- type(mqc_matrix) function mqc_algebra::mqc_matrix_cast_complex (MA)
- type(mgc scalar) function mgc algebra::mgc matrix scalar at (Mat, I, J)
- type(mqc vector) function mqc algebra::mqc matrix vector at (Mat, Rows, Cols)

- recursive subroutine mqc_algebra::mqc_matrix_vector_put (Mat, VectorIn, Rows, Cols)
- type(mqc_matrix) function mqc_algebra::mqc_matrix_matrix_at (Mat, Rows, Cols)

MQC_Matrix_Matrix_At is a function that returns a submatrix of the matrix

- subroutine mgc algebra::mgc matrix diagmatrix put vector (diagVectorIn, mat)
- subroutine mqc_algebra::mqc_matrix_diagmatrix_put_integer (mat, diagMatrixIn)
- subroutine mgc algebra::mgc matrix diagmatrix put real (mat, diagMatrixIn)
- subroutine mgc algebra::mgc matrix diagmatrix put complex (mat, diagMatrixIn)
- subroutine mqc_algebra::mqc_matrix_symmmatrix_put_integer (mat, symmMatrixIn)
- subroutine mgc algebra::mgc matrix symmmatrix put real (mat, symmMatrixIn)
- subroutine mgc algebra::mgc matrix symmmatrix put complex (mat, symmMatrixIn)
- recursive subroutine mqc_algebra::mqc_matrix_put (Mat, MatrixIn, Rows, Cols)
- integer(kind=int64) function mgc algebra::symindexhash (i, j, k, l)
- type(mqc_matrix) function mqc_algebra::mqc_elementmatrixproduct (A, B)
- type(mqc_matrix) function mqc_algebra::mqc_elementmatrixdivide (A, B)
- logical function mqc_algebra::mqc_matrix_test_symmetric (Matrix, Option)
- logical function mqc_algebra::mqc_matrix_test_diagonal (Matrix)
- subroutine mgc algebra::mgc allocate matrix (M, N, Matrix, Data Type, Storage)
- subroutine mgc algebra::mgc deallocate matrix (Matrix)
- logical function mqc_algebra::mqc_matrix_isallocated (Matrix)
- subroutine mgc_algebra::mgc_set_integerarray2matrix (MatrixOut, ArrayIn)
- subroutine mgc_algebra::mgc_set_realarray2matrix (MatrixOut, ArrayIn)
- subroutine mgc_algebra::mgc_set_complexarray2matrix (MatrixOut, ArrayIn)
- subroutine mqc_algebra::mqc_set_matrix2integerarray (ArrayOut, MatrixIn)
- subroutine mqc_algebra::mqc_set_matrix2realarray (ArrayOut, MatrixIn)
- subroutine mqc_algebra::mqc_set_matrix2complexarray (ArrayOut, MatrixIn)
- subroutine mgc algebra::mgc set matrix2matrix (MatrixOut, MatrixIn)
- subroutine mqc_algebra::mqc_print_matrix_algebra1 (Matrix, IOut, Header, Blank_At_Top, Blank_At_Bottom)
- subroutine mgc algebra::mgc matrix copy int2real (Matrix)
- subroutine mqc_algebra::mqc_matrix_copy_int2complex (Matrix)
- subroutine mqc_algebra::mqc_matrix_copy_real2int (Matrix)
- subroutine mgc algebra::mgc matrix copy real2complex (Matrix)
- subroutine mqc_algebra::mqc_matrix_copy_complex2int (Matrix)
- subroutine mqc_algebra::mqc_matrix_copy_complex2real (Matrix)
- integer(kind=int64) function mqc_algebra::mqc_matrix_rows (Matrix)
- integer(kind=int64) function mgc_algebra::mgc_matrix_columns (Matrix)
- logical function mgc_algebra::mgc_matrix_havereal (Matrix)
- logical function mgc algebra::mgc matrix haveinteger (Matrix)
- logical function mqc_algebra::mqc_matrix_havecomplex (Matrix)
- logical function mqc_algebra::mqc_matrix_havefull (Matrix)
- logical function mqc_algebra::mqc_matrix_havesymmetric (Matrix)
- logical function mgc algebra::mgc matrix havediagonal (Matrix)
- type(mqc_matrix) function mqc_algebra::mqc_matrix_transpose (Matrix)
- type(mqc_matrix) function mqc_algebra::mqc_matrix_conjugate_transpose (Matrix)
- type(mqc_matrix) function mqc_algebra::mqc_matrix_symmetrize (Matrix)
- subroutine mqc_algebra::mqc_matrix_full2symm (Matrix)
- subroutine mqc_algebra::mqc_matrix_symm2full (Matrix, Option)
- subroutine mgc algebra::mgc matrix full2diag (Matrix)
- subroutine mqc_algebra::mqc_matrix_diag2full (Matrix)
- subroutine mqc_algebra::mqc_matrix_symm2diag (Matrix)
- subroutine mgc algebra::mgc matrix diag2symm (Matrix)

- type(mqc_matrix) function mqc_algebra::mqc_matrix_symm2full_func (Matrix)
- subroutine mqc_algebra::matrix_symm2sq_integer (N, I_Symm, I_Sq)
- subroutine mqc_algebra::matrix_symm2sq_real (N, A_Symm, A_Sq)
- subroutine mgc algebra::matrix symm2sq complex (N, A Symm, A Sq)
- type(mqc matrix) function mqc algebra::mqc vector2diagmatrix (vector)
- type(mgc matrix) function mgc algebra::mgc matrixmatrixsum (MA, MB)
- type(mqc_matrix) function mqc_algebra::mqc_matrixmatrixsubtract (MA, MB)
- type(mqc matrix) function mqc algebra::mqc matrixmatrixproduct (MA, MB)
- type(mqc_matrix) function mqc_algebra::mqc_matrixmatrixdotproduct (MA, MB)
- type(mqc vector) function mqc algebra::mqc matrixvectordotproduct (MA, VB)
- type(mqc vector) function mqc algebra::mqc vectormatrixdotproduct (VA, MB)
- type(mqc_matrix) function mqc_algebra::mqc_matrixscalarproduct (Matrix, Scalar)
- type(mqc_matrix) function mqc_algebra::mqc_scalarmatrixproduct (Scalar, Matrix)
- type(mqc_scalar) function mqc_algebra::mqc_matrix_matrix_contraction (Matrix1, Matrix2)
- subroutine mqc_algebra::mqc_matrix_scalar_put (Matrix, Scalar, I, J)
- subroutine mqc_algebra::mqc_matrix_initialize (Matrix, Rows, Columns, Scalar, Storage)
- subroutine mgc algebra::mgc matrix identity (matrix, n, m)
- subroutine mqc_algebra::mqc_matrix_set (matrix, scalar, storage)
- type(mqc scalar) function mqc algebra::mqc matrix norm (matrix, methodln)
- type(mgc scalar) function mgc algebra::mgc matrix determinant (a)
- type(mqc_matrix) function mqc_algebra::mqc_matrix_inverse (a)
- type(mgc scalar) function mgc algebra::mgc matrix trace (matrix)
- subroutine mqc_algebra::mqc_matrix_generalized_eigensystem (a, bln, eigenvals, reigenvecs, leigenvecs)
- subroutine mgc algebra::mgc matrix svd (A, EVals, EUVecs, EVVecs)
- subroutine mqc_algebra::mqc_matrix_rms_max (A, rms_A, max_A)
- subroutine mqc_algebra::mqc_matrix_sqrt (A, eVals, eVecs)
- type(mqc matrix) function mqc algebra::mqc givens matrix (m size, angle, p, q)
- subroutine mgc algebra::mgc allocate r4tensor (I, J, K, L, Tensor, Data Type, Storage)
- subroutine mqc_algebra::mqc_deallocate_r4tensor (Tensor)
- type(mgc scalar) function mgc algebra::mgc r4tensor at (Tensor, I, J, K, L)
- subroutine mqc_algebra::mqc_r4tensor_put (Tensor, Element, I, J, K, L)
- subroutine mqc_algebra::mqc_print_r4tensor_algebra1 (Tensor, IOut, Header, blank_at_top, blank_at_bottom)
- subroutine mqc_algebra::mqc_set_array2tensor (TensorOut, ArrayIn)
- subroutine mgc algebra::mgc r4tensor initialize (R4Tensor, I, J, K, L, Scalar)
- subroutine mqc algebra::mqc matrix symmsymmr4tensor put real (r4Tensor, symmSymmMatrixIn)
- subroutine mqc_algebra::mqc_matrix_symmsymmr4tensor_put_complex (r4Tensor, symmSymmMatrixIn)
- logical function mqc_algebra::mqc_r4tensor_haveinteger (R4Tensor)
- logical function mgc algebra::mgc r4tensor havereal (R4Tensor)
- logical function mgc algebra::mgc r4tensor havecomplex (R4Tensor)

7.2 src/mqc_est.F03 File Reference

Data Types

- type mgc est::mgc scf integral
- type mqc_est::mqc_scf_eigenvalues
- type mqc_est::mqc_wavefunction
- type mgc est::mgc pscf wavefunction

- type mqc_est::mqc_determinant_string
- type mqc_est::mqc_determinant
- type mqc_est::mqc_twoeris
- interface mgc est::mgc print
- interface mgc est::matmul
- interface mgc est::dot product
- interface mgc est::transpose
- interface mgc est::dagger
- interface mqc est::contraction
- interface mgc est::mgc matrix undospinblockghf
- interface mqc_est::assignment(=)
- interface mgc est::operator(+)
- interface mgc est::operator(-)
- interface mqc_est::operator(*)

Modules

· module mgc est

Functions/Subroutines

- subroutine mgc est::mgc print wavefunction (wavefunction, iOut, label)
- subroutine mqc_est::mqc_print_integral (integral, iOut, header, blank_at_top, blank_at_bottom)
- subroutine mqc_est::mqc_print_eigenvalues (eigenvalues, iOut, header, blank_at_top, blank_at_bottom)
- subroutine mqc_est::mqc_print_twoeris (twoERIs, iOut, header, blank_at_top, blank_at_bottom)
- logical function mqc_est::mqc_integral_isallocated (Integral)
- logical function mqc_est::mqc_eigenvalues_isallocated (Eigenvalues)
- · logical function mgc est::mgc integral has alpha (integral)
- logical function mgc est::mgc integral has beta (integral)
- logical function mqc_est::mqc_integral_has_alphabeta (integral)
- logical function mqc est::mqc integral has betaalpha (integral)
- logical function mqc_est::mqc_eigenvalues_has_alpha (eigenvalues)
- logical function mgc est::mgc eigenvalues has beta (eigenvalues)
- character(len=64) function mqc_est::mqc_integral_array_type (integral)
- character(len=64) function mqc_est::mqc_eigenvalues_array_type (eigenvalues)
- character(len=64) function mqc_est::mqc_integral_array_name (integral)
- character(len=64) function mqc_est::mqc_eigenvalues_array_name (eigenvalues)
- subroutine mqc_est::mqc_integral_add_name (integral, arrayName)
- subroutine mqc_est::mqc_eigenvalues_add_name (eigenvalues, arrayName)
- integer(kind=int64) function mqc_est::mqc_integral_dimension (integral, label, axis)
- integer(kind=int64) function mgc est::mgc eigenvalues dimension (eigenvalues, label)
- subroutine mqc_est::mqc_twoeris_allocate (twoERIs, storageType, integralType, alpha, beta, alphaBeta, beta
 — Alpha)
- subroutine mqc_est::mqc_integral_allocate (integral, arrayName, arrayType, alpha, beta, alphaBeta, betaAlpha)
- subroutine mqc_est::mqc_eigenvalues_allocate (eigenvalues, arrayName, arrayType, alpha, beta)
- subroutine mqc_est::mqc_integral_identity (integral, nAlpha, nBeta, label, nAlpha2, nBeta2)
- subroutine mqc_est::mqc_integral_initialize (integral, nAlpha, nBeta, scalar, label, nAlpha2, nBeta2)
- type(mgc matrix) function mgc est::mgc integral output block (integral, blockName)

type(mqc_scf_integral) function mqc_est::mqc_integral_output_orbitals (integral, orbString, alphaOrbsIn, beta
 OrbsIn, axis)

- type(mgc scf integral) function mgc est::mgc integral swap orbitals (integral, alphaOrbsIn, betaOrbsIn, axis)
- type(mqc_vector) function mqc_est::mqc_eigenvalues_output_block (eigenvalues, blockName)
- subroutine mgc est::mgc integral output array (matrixOut, integralIn)
- subroutine mgc est::mgc eigenvalues output array (vectorOut, eigenvaluesIn)
- type(mqc_scf_integral) function mqc_est::mqc_integral_matrix_multiply (integralA, matrixB, label)
- type(mgc scf integral) function mgc est::mgc matrix integral multiply (matrixA, integralB, label)
- type(mqc_scf_integral) function mqc_est::mqc_integral_sum (integralA, integralB)
- type(mqc_scf_integral) function mqc_est::mqc_integral_difference (integralA, integralB)
- type(mqc scf integral) function mqc_est::mqc_integral_integral_multiply (integralA, integralB, label)
- type(mqc_scf_integral) function mqc_est::mqc_scalar_integral_multiply (scalar, integral)
- type(mgc scf integral) function mgc est::mgc integral scalar multiply (integral, scalar)
- type(mqc_scf_integral) function mqc_est::mqc_integral_eigenvalues_multiply (integralA, eigenvaluesB, label)
- type(mqc_scf_integral) function mqc_est::mqc_eigenvalues_integral_multiply (eigenvaluesA, integralB, label)
- type(mqc_scf_eigenvalues) function mqc_est::mqc_eigenvalues_eigenvalues_multiply (eigenvaluesA, eigenvaluesB, label)
- type(mgc scalar) function mgc est::mgc eigenvalue eigenvalue dotproduct (eigenvalueA, eigenvalueB)
- type(mqc_scf_integral) function mqc_est::mqc_integral_transpose (integral, label)
- type(mqc scf integral) function mqc est::mqc integral conjugate transpose (integral, label)
- type(mqc_scalar) function mqc_est::mqc_integral_norm (integral, methodIn)
- subroutine mgc est::mgc matrix spinblockghf (array, nelec, multi, elist)
- subroutine mgc est::mgc matrix undospinblockghf eigenvalues (eigenvaluesIn, vectorOut)
- subroutine mgc est::mgc matrix undospinblockghf integral (integralIn, matrixOut)
- type(mqc scalar) function mqc est::mqc scf integral contraction (integral1, integral2)
- type(mqc_scf_integral) function mqc_est::mqc_eri_integral_contraction (eris, integral, label)
- subroutine mqc_est::mqc_scf_integral_generalized_eigensystem (integralA, integralB, eVals, rEVecs, IEVecs)
- subroutine mqc_est::mqc_scf_integral_diagonalize (integral, eVals, eVecs)
- type(mqc_scf_integral) function mqc_est::mqc_scf_integral_inverse (integral)
- type(mqc_scalar) function mqc_est::mqc_scf_integral_trace (integral)
- type(mgc scalar) function mgc est::mgc scf integral determinant (integral)
- subroutine mgc est::mgc integral set energy list (integral, elist)
- integer(kind=int64) function, dimension(:), allocatable mgc_est::mgc_integral_get_energy_list (integral)
- subroutine mqc_est::mqc_integral_delete_energy_list (integral)
- subroutine mqc_est::mqc_scf_eigenvalues_power (eigenvalues, power)
- type(mgc scalar) function mgc est::mgc twoeris at (twoERIs, i, j, k, I, spinBlock)
- type(mqc_scalar) function mqc_est::mqc_integral_at (integral, i, j, spinBlock)
- type(mqc_scalar) function mqc_est::mqc_eigenvalues_at (eigenvalues, i, spinBlock)
- subroutine mgc est::mgc scf transformation matrix (overlap, transform matrix, nBasUse)
- subroutine mgc est::gen det str (IOut, IPrint, NBasisIn, NAlphaIn, NBetaIn, Determinants, NCoreIn)
- type(mqc_scalar) function mqc_est::slater_condon (IOut, IPrint, NBasisIn, Determinants, L_A_String, L_B_String, R_A_String, R_B_String, Core_Hamiltonian, ERIs, UHF)
- subroutine mgc est::twoeri trans (IOut, IPrint, MO Coeff, ERIs, MO ERIs, UHF)
- subroutine mqc_est::mqc_build_ci_hamiltonian (IOut, IPrint, NBasis, Determinants, MO_Core_Ham, MO_ERIs, UHF, CI Hamiltonian)
- type(mqc_matrix) function mqc_est::get_one_gamma_matrix (iOut, iPrint, nBasisIn, nState, determinants, ci_
 amplitudes, nCoreIn, nOrbsIn)

Index

abs	eigensys
mqc_algebra::mqc_scalar, 143	mqc_algebra::mqc_matrix, 131
mqc_algebra::mqc_vector, 151	mqc_est::mqc_scf_integral, 147
addlabel	1 = 1 = 5 7
mqc_est::mqc_scf_eigenvalues, 144	factorial
mgc est::mgc scf integral, 146	mqc_algebra, 17
alpha	fock_matrix
mqc_est::mqc_determinant_string, 127	mqc_est::mqc_wavefunction, 157
argsort	
mqc_algebra::mqc_vector, 151	gen_det_str
at	mqc_est, 86
mqc_algebra::mqc_matrix, 130	get_one_gamma_matrix
mqc_algebra::mqc_r4tensor, 142	mqc_est, 86
mqc_algebra::mqc_vector, 151	getblock
mqc_est::mqc_scf_eigenvalues, 145	mqc_est::mqc_scf_eigenvalues, 145
mqo_estmqo_soi_eigenvalues, 145	mqc_est::mqc_scf_integral, 147
basis	getelist
mgc est::mgc wavefunction, 156	mqc_est::mqc_scf_integral, 147
beta	getlabel
mqc_est::mqc_determinant_string, 127	mqc_est::mqc_scf_eigenvalues, 145
	mqc_est::mqc_scf_integral, 147
bin_coeff	mqc_estmqc_sci_mtegrai, 147
mqc_algebra, 16	identity
aharga	-
charge	mqc_algebra::mqc_matrix, 131
mqc_est::mqc_wavefunction, 156	mqc_est::mqc_scf_integral, 147
core_hamiltonian	init
mqc_est::mqc_wavefunction, 156	mqc_algebra::mqc_matrix, 131
cval	mqc_algebra::mqc_r4tensor, 142
mqc_algebra::mqc_scalar, 143	mqc_algebra::mqc_vector, 151
	mqc_est::mqc_scf_integral, 147
dagger	initialize
mqc_algebra::mqc_matrix, 130	mqc_algebra::mqc_matrix, 131
mqc_algebra::mqc_vector, 151	mqc_algebra::mqc_r4tensor, 142
data_type	mqc_algebra::mqc_vector, 152
mqc_algebra::mqc_vector, 154	inv
deleteelist	mqc_algebra::mqc_matrix, 131
mqc_est::mqc_scf_integral, 146	mqc_est::mqc_scf_integral, 147
density_matrix	ival
mqc_est::mqc_wavefunction, 157	mqc_algebra::mqc_scalar, 143
det	
	1 = 0 1 = 7
mgc algebra::mgc matrix, 131	
mqc_algebra::mqc_matrix, 131 mqc_est::mqc_scf_integral, 146	length
mqc_est::mqc_scf_integral, 146	
mqc_est::mqc_scf_integral, 146 diag	length mqc_algebra::mqc_vector, 154
mqc_est::mqc_scf_integral, 146	length

mqc_algebra::mqc_matrix, 134	mqc_input_complex_scalar, 22
mati	mqc_input_integer_scalar, 23
mqc_algebra::mqc_matrix, 134	mqc_input_real_scalar, 24
matr	mqc_integergtscalar, 24
mqc_algebra::mqc_matrix, 134	mqc_integerlescalar, 25
matrix_symm2sq_complex	mqc_integerscalaradd, 25
mqc_algebra, 17	mqc_integerscalardivide, 25
mqc_algebra::matrix_symm2sq, 124	mqc_integerscalarmultiply, 26
matrix_symm2sq_integer	mqc_integerscalarsubtract, 26
mqc_algebra, 17	mqc_integervectorproduct, 26
mqc_algebra::matrix_symm2sq, 124	mqc_length_vector, 26
matrix_symm2sq_real	mqc_matrix_cast_complex, 26
mqc_algebra, 18	mqc_matrix_cast_real, 26
mqc_algebra::matrix_symm2sq, 124	mqc_matrix_columns, 27
maxloc	mqc_matrix_conjugate_transpose, 27
mqc_algebra::mqc_vector, 152	mqc_matrix_copy_complex2int, 27
maxval	mqc_matrix_copy_complex2real, 27
mqc_algebra::mqc_vector, 152	mqc_matrix_copy_int2complex, 27
minloc	mqc_matrix_copy_int2real, 27
mqc_algebra::mqc_vector, 152	mqc_matrix_copy_real2complex, 28
minval	mqc_matrix_copy_real2int, 28
mqc_algebra::mqc_vector, 152	mqc_matrix_determinant, 28
mo_coefficients	mqc_matrix_diag2full, 28
mqc_est::mqc_wavefunction, 157	mqc_matrix_diag2symm, 28
mo_energies	mqc_matrix_diagmatrix_put_complex, 28
mqc_est::mqc_wavefunction, 157	mqc_matrix_diagmatrix_put_integer, 29
mo_symmetries	mqc_matrix_diagmatrix_put_real, 29
mqc_est::mqc_wavefunction, 157	mqc_matrix_diagmatrix_put_vector, 29
mput	mqc_matrix_diagonalize, 29
mqc_algebra::mqc_matrix, 132	mqc_matrix_full2diag, 29
mqc_algebra, 9	mqc_matrix_full2symm, 29
bin_coeff, 16	mqc_matrix_generalized_eigensystem, 30
factorial, 17	mqc_matrix_havecomplex, 30
matrix_symm2sq_complex, 17	mqc_matrix_havediagonal, 30
matrix_symm2sq_integer, 17	mqc_matrix_havefull, 30
matrix_symm2sq_real, 18	mqc_matrix_haveinteger, 30
mqc_allocate_matrix, 18	mqc_matrix_havereal, 30
mqc_allocate_r4tensor, 18	mqc_matrix_havesymmetric, 31
mqc_allocate_scalar, 18	mqc_matrix_identity, 31
mqc_allocate_vector, 19	mqc_matrix_initialize, 31
mqc_complexscalaradd, 19	mqc_matrix_inverse, 31
mqc_complexscalardivide, 20	mqc_matrix_isallocated, 31
mqc_complexscalarmultiply, 20	mqc_matrix_matrix_at, 31
mqc_complexscalarsubtract, 20	mqc_matrix_matrix_contraction, 33
mqc_complexvectorproduct, 20	mqc_matrix_matrix_put, 33
mqc_crossproduct, 20	mqc_matrix_norm, 33
mqc_deallocate_matrix, 20	mqc_matrix_rms_max, 34
mqc_deallocate_r4tensor, 21	mqc_matrix_rows, 34
mqc_deallocate_scalar, 21	mqc_matrix_scalar_at, 34
mqc_deallocate_vector, 21	mqc_matrix_scalar_put, 34
mqc_elementmatrixdivide, 21	mqc_matrix_set, 34
mgc_elementmatrixproduct, 22	mqc_matrix_sqrt, 35
mgc_elementvectorproduct, 22	mqc_matrix_storagetype, 35
mqc_givens_matrix, 22	mqc_matrix_svd, 35
	· /

mqc_matrix_symm2diag, 35	mqc_scalar_get_intrinsic_complex, 52
mqc_matrix_symm2full, 35	mqc_scalar_get_intrinsic_integer, 53
mqc_matrix_symm2full_func, 36	mqc_scalar_get_intrinsic_real, 53
mqc_matrix_symmetrize, 36	mqc_scalar_get_random_value, 54
mqc_matrix_symmmatrix_put_complex, 36	mqc_scalar_havecomplex, 54
mqc_matrix_symmmatrix_put_integer, 36	mqc_scalar_haveinteger, 55
mqc_matrix_symmmatrix_put_real, 36	mqc_scalar_havereal, 56
mqc_matrix_symmsymmr4tensor_put_complex, 36	mqc_scalar_isallocated, 56
mqc_matrix_symmsymmr4tensor_put_real, 37	mqc_scalar_sin, 57
mqc_matrix_test_diagonal, 37	mqc_scalar_sqrt, 58
mqc_matrix_test_symmetric, 37	mgc scalar tan, 58
mqc_matrix_trace, 37	mgc_scalaradd, 59
mqc_matrix_transpose, 37	mqc_scalarcomplexadd, 59
mqc_matrix_vector_at, 37	mqc_scalarcomplexdivide, 60
mqc_matrix_vector_put, 38	mqc_scalarcomplexexponent, 60
mqc_matrixdotproduct, 38	mqc_scalarcomplexexponent, 60
mqc_matrixmatrixproduct, 38	mqc_scalarcomplexsubtract, 61
mqc_matrixmatrixsubtract, 38	mqc_scalardivide, 61
mqc_matrixmatrixsum, 38	
mgc matrixscalarproduct, 39	mqc_scalareq, 61
• —	mqc_scalarexponent, 62
mqc_matrixvectordotproduct, 39	mqc_scalarge, 63
mqc_outer, 39	mqc_scalargt, 63
mqc_output_complex_scalar, 39	mqc_scalargtinteger, 64
mqc_output_integer_scalar, 40	mqc_scalargtreal, 65
mqc_output_mqcscalar_scalar, 41	mqc_scalarintegeradd, 65
mqc_output_real_scalar, 41	mqc_scalarintegerdivide, 65
mqc_print_matrix_algebra1, 42	mqc_scalarintegerexponent, 65
mqc_print_r4tensor_algebra1, 42	mqc_scalarintegermultiply, 66
mqc_print_scalar_algebra1, 42	mqc_scalarintegersubtract, 66
mqc_print_vector_algebra1, 43	mqc_scalarle, 66
mqc_r4tensor_at, 44	mqc_scalarleinteger, 66
mqc_r4tensor_havecomplex, 44	mqc_scalarlereal, 67
mqc_r4tensor_haveinteger, 44	mqc_scalarlt, 67
mqc_r4tensor_havereal, 44	mqc_scalarltreal, 68
mqc_r4tensor_initialize, 44	mqc_scalarmatrixproduct, 68
mqc_r4tensor_put, 45	mqc_scalarmultiply, 68
mqc_realgtscalar, 45	mqc_scalarne, 69
mqc_reallescalar, 45	mqc_scalarrealadd, 70
mqc_realltscalar, 45	mqc_scalarrealdivide, 70
mqc_realscalaradd, 46	mqc_scalarrealexponent, 70
mqc_realscalardivide, 46	mqc_scalarrealmultiply, 71
mqc_realscalarmultiply, 47	mqc_scalarrealsubtract, 71
mqc_realscalarsubtract, 47	mqc_scalarsubtract, 71
mqc_realvectorproduct, 47	mqc_scalarvectordifference, 72
mqc_scalar_acos, 47	mgc scalarvectorproduct, 72
mqc_scalar_asin, 48	mgc scalarvectorsum, 72
mqc_scalar_atan, 48	mqc set array2tensor, 72
mqc_scalar_atan2, 49	mqc_set_array2vector_complex, 73
mqc_scalar_cmplx, 50	mqc_set_array2vector_integer, 73
mqc_scalar_complex_conjugate, 50	mqc_set_array2vector_real, 73
mqc_scalar_complex_imagpart, 50	mqc_set_complexarray2matrix, 73
mqc_scalar_complex_realpart, 51	mqc_set_integerarray2matrix, 73
mqc_scalar_cos, 51	mqc_set_matrix2complexarray, 73
mqc_scalar_get_abs_value, 51	mqc_set_matrix2complexarray, 74
40_000.400_14.400, 01	qu_oot_math.cgoranay, 7 +

mqc_set_matrix2matrix, 74	mqc_vectorscalarproduct, 83
mqc_set_matrix2realarray, 74	mqc_vectorvectordifference, 83
mqc_set_realarray2matrix, 74	mqc_vectorvectordotproduct, 83
mqc_set_vector2complexarray, 74	mqc_vectorvectorsum, 83
mqc_set_vector2integerarray, 74	symindexhash, 83
mqc_set_vector2realarray, 75	mqc_algebra::abs, 101
mqc_set_vector2vector, 75	mqc_scalar_get_abs_value, 101
mqc_vector2diagmatrix, 75	mqc_vector_abs, 102
mqc_vector_abs, 75	mqc_algebra::acos, 102
mqc_vector_argsort, 75	mqc_scalar_acos, 102
mgc vector cast complex, 75	mqc_algebra::aimag, 103
mqc_vector_cast_real, 76	mqc_scalar_complex_imagpart, 103
mqc_vector_cmplx, 76	mqc_vector_complex_imagpart, 103
mqc_vector_complex_imagpart, 76	mqc_algebra::asin, 104
mqc_vector_complex_realpart, 76	mqc_scalar_asin, 104
mqc_vector_conjugate_transpose, 76	mqc_algebra::assignment(=), 105
mqc_vector_copy_complex2int, 76	mqc_input_complex_scalar, 105
mqc_vector_copy_complex2real, 77	mqc_input_integer_scalar, 106
mqc_vector_copy_int2complex, 77	mqc_input_real_scalar, 107
mqc_vector_copy_int2real, 77	mqc_output_complex_scalar, 107
mqc_vector_copy_real2complex, 77	mqc_output_integer_scalar, 108
mqc_vector_copy_real2int, 77	mqc_output_mqcscalar_scalar, 109
mqc_vector_havecomplex, 77	mqc_output_real_scalar, 109
mgc vector haveinteger, 78	mqc_set_array2tensor, 110
mqc_vector_havereal, 78	mqc_set_array2vector_complex, 110
mqc_vector_initialize, 78	mqc_set_array2vector_integer, 110
mqc_vector_isallocated, 78	mqc_set_array2vector_real, 110
mqc_vector_iscolumn, 78	mqc_set_complexarray2matrix, 111
mqc_vector_maxloc, 78	mqc_set_integerarray2matrix, 111
mqc_vector_maxval, 79	mqc_set_matrix2complexarray, 111
mqc_vector_minloc, 79	mqc_set_matrix2integerarray, 111
mqc_vector_minval, 79	mqc_set_matrix2matrix, 111
mqc_vector_norm, 79	mqc_set_matrix2realarray, 111
mqc_vector_pop, 79	mgc set realarray2matrix, 112
mqc_vector_power, 79	mqc_set_vector2complexarray, 112
mgc vector push, 80	mqc_set_vector2integerarray, 112
mqc_vector_scalar_at, 80	mqc_set_vector2realarray, 112
mqc_vector_scalar_increment, 80	mgc set vector2vector, 112
mqc_vector_scalar_put, 80	mqc_algebra::atan, 113
mqc_vector_shift, 80	mqc_scalar_atan, 113
mqc_vector_sort, 80	mqc_algebra::atan2, 114
mqc_vector_sqrt, 81	mqc_scalar_atan2, 114
mgc vector transpose, 81	mqc_algebra::cmplx, 115
mqc_vector_unshift, 81	mgc scalar cmplx, 115
mqc_vector_at, 81	mqc_vector_cmplx, 116
mqc_vector_vector_put, 81	mqc_algebra::conjg, 116
mqc_vectorcomplexdivide, 81	mqc_scalar_complex_conjugate, 116
mqc_vectorcomplexproduct, 82	mgc algebra::contraction, 117
mqc_vectoriotimplexproduct, 62 mqc_vectorintegerdivide, 82	mqc_matrix_matrix_contraction, 117
mqc_vectorintegerdivide, 82	mqc_algebra::cos, 118
mqc_vectormatrixdotproduct, 82	mqc_scalar_cos, 118
mqc_vectorrealdivide, 82	mqc_algebra::dagger, 119
mqc_vectorrealdivide, 82	mqc_matrix_conjugate_transpose, 119
mgc vectorscalardivide, 83	mgc vector conjugate transpose, 119
ingo vociorocalaratido, oo	mgc vector conjugate transpose, 113

mqc_algebra::dot_product, 120	mqc_matrix_diagmatrix_put_integer, 135
mqc_vectorvectordotproduct, 120	mqc_matrix_diagmatrix_put_real, 135
mqc_algebra::matmul, 121	mqc_matrix_diagmatrix_put_vector, 135
mqc_matrixmatrixdotproduct, 121	mqc_algebra::mqc_matrix_symmmatrix_put, 135
mqc_matrixvectordotproduct, 121	mqc_matrix_symmmatrix_put_complex, 136
mqc_vectormatrixdotproduct, 122	mqc_matrix_symmmatrix_put_integer, 136
mqc_algebra::matrix_symm2sq, 124	mqc_matrix_symmmatrix_put_real, 136
matrix_symm2sq_complex, 124	mqc_algebra::mqc_print, 137
matrix_symm2sq_integer, 124	mqc_print_matrix_algebra1, 137
matrix_symm2sq_real, 124	mqc_print_r4tensor_algebra1, 137
mqc_algebra::mqc_cast_complex, 125	mqc_print_scalar_algebra1, 138
mqc_matrix_cast_complex, 125	mqc_print_seatat_algebra1, 139
mqc_vector_cast_complex, 125	mqc_algebra::mqc_r4tensor, 142
mqc_algebra::mqc_cast_real, 125	at, 142
mqc_matrix_cast_real, 125	init, 142
mqc_vector_cast_real, 126	initialize, 142
mqc_algebra::mqc_have_complex, 128	print, 142
mqc_matrix_havecomplex, 128	put, 143
mqc_vector_havecomplex, 128	mgc algebra::mgc scalar, 143
mqc_algebra::mqc_have_int, 128	abs, 143
mqc matrix haveinteger, 128	cval, 143
	ival, 143
mqc_vector_haveinteger, 129	
mqc_algebra::mqc_have_real, 129	print, 144
mqc_matrix_havereal, 129	random, 144 rval, 144
mqc_vector_havereal, 129	
mqc_algebra::mqc_matrix, 130	mqc_algebra::mqc_set_array2vector, 149
at, 130 dagger, 130	mqc_set_array2vector_complex, 149
	mqc_set_array2vector_integer, 149
det, 131	mqc_set_array2vector_real, 149
diag, 131	mqc_algebra::mqc_vector, 150
eigensys, 131	abs, 151
identity, 131	argsort, 151
init, 131	at, 151
initialize, 131	dagger, 151
inv, 131	data_type, 154
mat, 132	diag, 151
matc, 134	init, 151
mati, 134	initialize, 152
matr, 134	length, 154
mput, 132	maxloc, 152
norm, 132	maxval, 152
print, 132	minloc, 152
put, 132	minval, 152
rmsmax, 132	norm, 152
s_type, 132	pop, 152
set, 133	power, 153
sqrt, 133	print, 153
svd, 133	push, 153
trace, 133	put, 153
transpose, 133	shift, 153
vat, 133	size, 153
vput, 133	sort, 153
mqc_algebra::mqc_matrix_diagmatrix_put, 134	sqrt, 154
mqc_matrix_diagmatrix_put_complex, 134	transpose, 154

unshift, 154	mqc_matrixvectordotproduct, 174
vat, 154	mqc_vectormatrixdotproduct, 174
vecc, 155	mqc_vectorvectordotproduct, 174
veci, 155	mqc_algebra::operator(.eq.), 174
vecr, 155	mqc_scalareq, 175
vput, 154	mqc_algebra::operator(.ewd.), 175
mqc_algebra::operator(**), 164	mqc_elementmatrixdivide, 176
mqc_scalarcomplexexponent, 164	mqc_algebra::operator(.ewp.), 176
mqc_scalarexponent, 165	mqc_elementmatrixproduct, 176
mqc_scalarintegerexponent, 166	mqc_elementvectorproduct, 176
mqc_scalarrealexponent, 166	mqc_algebra::operator(.ge.), 177
mqc_algebra::operator(*), 159	mqc_scalarge, 177
mqc_complexscalarmultiply, 159	mqc_algebra::operator(.gt.), 177
mqc_complexvectorproduct, 160	mqc_integergtscalar, 177
mqc_integerscalarmultiply, 160	mqc_realgtscalar, 178
mqc_integervectorproduct, 160	mqc_scalargt, 178
mqc_matrixmatrixproduct, 160	mqc_scalargtinteger, 179
mqc_matrixscalarproduct, 160	mqc_scalargtreal, 180
mqc_realscalarmultiply, 160	mqc_algebra::operator(.le.), 180
mqc_realvectorproduct, 161	mqc_integerlescalar, 181
mqc_scalarcomplexmultiply, 161	mqc_reallescalar, 181
mqc_scalarintegermultiply, 161	mqc_scalarle, 181
mqc_scalarmatrixproduct, 161	mqc_scalarleinteger, 181
mqc_scalarmultiply, 161	mqc_scalarlereal, 181
mqc_scalarrealmultiply, 162	mqc_algebra::operator(.lt.), 182
mqc_scalarvectorproduct, 162	mqc_realltscalar, 182
mqc_vectorcomplexproduct, 162	mqc_scalarlt, 183
mqc_vectorintegerproduct, 162	mqc_scalarItreal, 183
mqc_vectorrealproduct, 163	mqc_algebra::operator(.ne.), 184
mqc_vectorscalarproduct, 163	mqc_scalarne, 185
mqc_algebra::operator(+), 168	mqc_algebra::operator(.outer.), 185
mqc_complexscalaradd, 168	mqc_outer, 186
mqc_integerscalaradd, 168	mqc_algebra::operator(.x.), 186
mgc matrixmatrixsum, 168	mqc_crossproduct, 186
mqc_realscalaradd, 168	mqc_algebra::operator(/), 186
mqc_scalaradd, 169	mqc_complexscalardivide, 187
mqc_scalarcomplexadd, 169	mqc_integerscalardivide, 187
mqc_scalarintegeradd, 169	mqc_realscalardivide, 187
mqc_scalarrealadd, 170	mqc_scalarcomplexdivide, 187
mqc_scalarvectorsum, 170	mqc_scalardivide, 187
mqc_vectorvectorsum, 170	mqc_scalarintegerdivide, 188
mqc_algebra::operator(-), 171	mqc_scalarrealdivide, 188
	mgc vectorcomplexdivide, 188
mqc_complexscalarsubtract, 171	mqc_vectorionplexalvide, 188
mqc_integerscalarsubtract, 171 mqc_matrixmatrixsubtract, 171	mqc_vectormegerarvae, 189
• —	
mqc_realscalarsubtract, 172	mqc_vectorscalardivide, 189
mqc_scalarcomplexsubtract, 172	mqc_algebra::real, 189
mqc_scalarintegersubtract, 172	mqc_scalar_complex_realpart, 189
mqc_scalarrealsubtract, 172	mqc_vector_complex_realpart, 189
mqc_scalarsubtract, 172	mqc_algebra::sin, 190
mqc_scalarvectordifference, 173	mqc_scalar_sin, 190
mqc_vectorvectordifference, 173	mqc_algebra::sqrt, 191
mqc_algebra::operator(.dot.), 173	mqc_scalar_sqrt, 191
mqc_matrixmatrixdotproduct, 174	mqc_algebra::tan, 192

mqc_scalar_tan, 192	mqc_est, 87
mqc_algebra::transpose, 193	mqc_eigenvalues_eigenvalues_multiply
mqc_matrix_transpose, 193	mqc_est, 88
mqc_vector_transpose, 194	mqc_est::matmul, 122
mqc_allocate_matrix	mqc_eigenvalues_has_alpha
mgc algebra, 18	mqc_est, 88
mqc_allocate_r4tensor	mqc_eigenvalues_has_beta
mqc_algebra, 18	mqc_est, 88
mqc_allocate_scalar	mqc_eigenvalues_integral_multiply
mqc_algebra, 18	mqc_est, 88
mqc_allocate_vector	mqc_est::matmul, 122
mqc algebra, 19	mqc_eigenvalues_isallocated
mqc_build_ci_hamiltonian	mqc_est, 88
mqc_est, 86	mqc_eigenvalues_output_array
mqc_complexscalaradd	mqc_est, 88
mqc_algebra, 19	mqc_est::assignment(=), 113
mqc_algebra::operator(+), 168	
	mqc_eigenvalues_output_block
mqc_complexscalardivide	mqc_est, 89
mqc_algebra, 20	mqc_elementmatrixdivide
mqc_algebra::operator(/), 187	mqc_algebra, 21
mqc_complexscalarmultiply	mqc_algebra::operator(.ewd.), 176
mqc_algebra, 20	mqc_elementmatrixproduct
mqc_algebra::operator(*), 159	mqc_algebra, 22
mqc_complexscalarsubtract	mqc_algebra::operator(.ewp.), 176
mqc_algebra, 20	mqc_elementvectorproduct
mqc_algebra::operator(-), 171	mqc_algebra, 22
mqc_complexvectorproduct	mqc_algebra::operator(.ewp.), 176
mqc_algebra, 20	mqc_eri_integral_contraction
mqc_algebra::operator(*), 160	mqc_est, 89
mqc_crossproduct	mqc_est::contraction, 117
mqc_algebra, 20	mqc_est, 84
mqc_algebra::operator(.x.), 186	gen_det_str, 86
mqc_deallocate_matrix	get_one_gamma_matrix, 86
mqc_algebra, 20	mqc_build_ci_hamiltonian, 86
mqc_deallocate_r4tensor	mqc_eigenvalue_eigenvalue_dotproduct, 86
mqc_algebra, 21	mqc_eigenvalues_add_name, 87
mqc_deallocate_scalar	mqc_eigenvalues_allocate, 87
mqc_algebra, 21	mqc_eigenvalues_array_name, 87
mqc_deallocate_vector	mqc_eigenvalues_array_type, 87
mqc_algebra, 21	mqc_eigenvalues_at, 87
mqc_eigenvalue_eigenvalue_dotproduct	mqc_eigenvalues_dimension, 87
mqc_est, 86	mqc_eigenvalues_eigenvalues_multiply, 88
mqc_est::dot_product, 121	mqc_eigenvalues_has_alpha, 88
mqc_eigenvalues_add_name	mqc_eigenvalues_has_beta, 88
mqc_est, 87	mqc_eigenvalues_integral_multiply, 88
mqc_eigenvalues_allocate	mqc_eigenvalues_isallocated, 88
mqc_est, 87	mqc_eigenvalues_output_array, 88
mqc_eigenvalues_array_name	mqc_eigenvalues_output_block, 89
mqc_est, 87	mqc_eri_integral_contraction, 89
mqc_eigenvalues_array_type	mqc_integral_add_name, 89
mqc_est, 87	mqc_integral_allocate, 89
mqc_eigenvalues_at	mqc_integral_array_name, 89
mqc_est, 87	mqc_integral_array_type, 90
mqc_eigenvalues_dimension	mqc_integral_at, 90
4 0	

mqc_integral_conjugate_transpose, 90	mqc_eigenvalue_eigenvalue_dotproduct, 121
mqc_integral_delete_energy_list, 90	mqc_est::matmul, 122
mqc_integral_difference, 90	mqc_eigenvalues_eigenvalues_multiply, 122
mqc_integral_dimension, 90	mqc_eigenvalues_integral_multiply, 122
mqc_integral_eigenvalues_multiply, 91	mqc_integral_eigenvalues_multiply, 123
mqc_integral_get_energy_list, 91	mqc_integral_integral_multiply, 123
mqc_integral_has_alpha, 91	mqc_integral_matrix_multiply, 123
mqc_integral_has_alphabeta, 91	mqc_matrix_integral_multiply, 123
mqc_integral_has_beta, 91	mqc_est::mqc_determinant, 126
mqc_integral_has_betaalpha, 91	nalpstr, 126
mqc_integral_identity, 92	nbetstr, 126
mqc_integral_initialize, 92	ndets, 126
mqc_integral_integral_multiply, 92	order, 127
mqc_integral_isallocated, 92	strings, 127
mqc_integral_matrix_multiply, 92	mqc_est::mqc_determinant_string, 127
mqc_integral_norm, 93	alpha, 127
mqc_integral_output_array, 93	beta, 127
mqc_integral_output_block, 93	mqc_est::mqc_matrix_undospinblockghf, 136
mqc_integral_output_orbitals, 93	mqc_matrix_undospinblockghf_eigenvalues, 136
mqc_integral_scalar_multiply, 93	mgc matrix undospinblockghf integral, 137
mqc_integral_set_energy_list, 94	mqc_est::mqc_print, 139
mqc_integral_sum, 94	mqc_print_eigenvalues, 139
mqc_integral_swap_orbitals, 94	mqc_print_integral, 139
mqc_integral_transpose, 94	mqc_print_twoeris, 140
mqc_matrix_integral_multiply, 94	mqc_print_wavefunction, 140
mqc_matrix_spinblockghf, 95	mqc_est::mqc_pscf_wavefunction, 140
mqc_matrix_undospinblockghf_eigenvalues, 95	nactive, 141
mqc_matrix_undospinblockghf_integral, 95	ncore, 141
mqc_print_eigenvalues, 95	nfrz, 141
mqc_print_integral, 95	nval, 141
mqc_print_twoeris, 96	pscf_amplitudes, 141
mqc_print_wavefunction, 96	pscf_energies, 141
mqc_scalar_integral_multiply, 96	mqc_est::mqc_scf_eigenvalues, 144
mqc_scf_eigenvalues_power, 96	addlabel, 144
mqc_scf_integral_contraction, 96	at, 145
mqc_scf_integral_determinant, 97	getblock, 145
· — — • —	-
mqc_scf_integral_diagonalize, 97	getlabel, 145 power, 145
mqc_scf_integral_generalized_eigensystem, 97	1 ,
mqc_scf_integral_inverse, 97	print, 145
mqc_scf_integral_trace, 97	mqc_est::mqc_scf_integral, 146
mqc_scf_transformation_matrix, 97	addlabel, 146
mqc_twoeris_allocate, 98	deleteelist, 146
mqc_twoeris_at, 98	det, 146
slater_condon, 98	diag, 146
twoeri_trans, 98	eigensys, 147
nqc_est::assignment(=), 113	getblock, 147
mqc_eigenvalues_output_array, 113	getelist, 147
mqc_integral_output_array, 113	getlabel, 147
nqc_est::contraction, 117	identity, 147
mqc_eri_integral_contraction, 117	init, 147
mqc_scf_integral_contraction, 118	inv, 147
nqc_est::dagger, 120	norm, 148
mqc_integral_conjugate_transpose, 120	orbitals, 148
nqc_est::dot_product, 121	print, 148

setelist, 148	mqc_integerscalardivide
swap, 148	mqc_algebra, 25
trace, 148	mqc_algebra::operator(/), 187
mqc_est::mqc_twoeris, 149	mqc_integerscalarmultiply
print, 150	mqc_algebra, 26
mqc_est::mqc_wavefunction, 155	mqc_algebra::operator(*), 160
basis, 156	mqc_integerscalarsubtract
charge, 156	mqc_algebra, 26
core_hamiltonian, 156	mqc_algebra::operator(-), 171
density_matrix, 157	mqc_integervectorproduct
fock_matrix, 157	mqc_algebra, 26
mo_coefficients, 157	mqc_algebra::operator(*), 160
mo_energies, 157	mqc_integral_add_name
mo_symmetries, 157	mqc_est, 89
multiplicity, 157	mqc_integral_allocate
nalpha, 157	mqc_est, 89
nbasis, 158	mqc_integral_array_name
nbeta, 158	mqc_est, 89
nelectrons, 158	mqc_integral_array_type
overlap_matrix, 158	mqc_est, 90
print, 156	mqc_integral_at
scf_density_matrix, 158	mqc_est, 90
symmetry, 158	mqc_integral_conjugate_transpose
wf_complex, 158	mqc_est, 90
wf_type, 159	mqc_est::dagger, 120
mqc_est::operator(*), 163	mqc_integral_delete_energy_list
mqc_integral_scalar_multiply, 163	mqc_est, 90
mqc_scalar_integral_multiply, 163	mqc_integral_difference
mqc_est::operator(+), 167	mqc_est, 90
mqc_integral_sum, 167	mqc_est::operator(-), 170
mqc_est::operator(-), 170	mqc_integral_dimension
mqc_integral_difference, 170	mqc_est, 90
mqc_est::transpose, 193	mqc_integral_eigenvalues_multiply
mqc_integral_transpose, 193	mqc_est, 91
mqc_givens_matrix	mqc_est::matmul, 123
mqc_algebra, 22	mqc_integral_get_energy_list
mqc_input_complex_scalar	mqc_est, 91
mqc_algebra, 22	mqc_integral_has_alpha
mqc_algebra::assignment(=), 105	mqc_est, 91
mqc_input_integer_scalar	mqc_integral_has_alphabeta
mqc_algebra, 23	mqc_est, 91
mqc_algebra::assignment(=), 106	mqc_integral_has_beta
mqc_input_real_scalar	mqc_est, 91
mqc_algebra, 24	mqc_integral_has_betaalpha
mqc_algebra::assignment(=), 107	mqc_est, 91
mqc_integergtscalar	mqc_integral_identity
mqc_algebra, 24	mqc_est, 92
mqc_algebra::operator(.gt.), 177	mqc_integral_initialize
mqc_integerlescalar	mqc_est, 92
mqc_algebra, 25	mqc_integral_integral_multiply
mqc_algebra::operator(.le.), 181	mqc_est, 92
mqc_integerscalaradd	mqc_est::matmul, 123
mqc_algebra, 25	mqc_integral_isallocated
mqc_algebra::operator(+), 168	mqc_est, 92

mqc_integral_matrix_multiply	mqc_matrix_diag2symm
mqc_est, 92	mqc_algebra, 28
mqc_est::matmul, 123	mqc_matrix_diagmatrix_put_complex
mqc_integral_norm	mqc_algebra, 28
mqc_est, 93	mqc_algebra::mqc_matrix_diagmatrix_put, 134
mqc_integral_output_array	mqc_matrix_diagmatrix_put_integer
mqc_est, 93	mqc_algebra, 29
mqc_est::assignment(=), 113	mqc_algebra::mqc_matrix_diagmatrix_put, 135
mqc_integral_output_block	mqc_matrix_diagmatrix_put_real
mqc_est, 93	mqc_algebra, 29
mqc_integral_output_orbitals	mqc_algebra::mqc_matrix_diagmatrix_put, 135
mqc_est, 93	mqc_matrix_diagmatrix_put_vector
mqc_integral_scalar_multiply	mqc_algebra, 29
mqc_est, 93	mqc_algebra::mqc_matrix_diagmatrix_put, 135
mqc_est::operator(*), 163	mqc_matrix_diagonalize
mqc_integral_set_energy_list	mqc_algebra, 29
mqc_est, 94	mqc_matrix_full2diag
mqc_integral_sum	mqc_algebra, 29
mqc_est, 94	mqc_matrix_full2symm
mqc_est::operator(+), 167	mgc algebra, 29
mqc_integral_swap_orbitals	mqc_matrix_generalized_eigensystem
mqc_est, 94	mqc_algebra, 30
mqc_integral_transpose	mqc_matrix_havecomplex
mgc est, 94	mqc_algebra, 30
mqc_est::transpose, 193	mqc_algebra::mqc_have_complex, 128
mqc_length_vector	mqc_matrix_havediagonal
mqc_algebra, 26	mqc_algebra, 30
mqc_matrix_cast_complex	mqc_matrix_havefull
mqc_algebra, 26	mqc_algebra, 30
mqc_algebra::mqc_cast_complex, 125	mqc_matrix_haveinteger
mqc_matrix_cast_real	mqc_algebra, 30
mqc_algebra, 26	mqc_algebra::mqc_have_int, 128
mqc_algebra::mqc_cast_real, 125	mqc_matrix_havereal
mqc_matrix_columns	mqc_algebra, 30
mqc_algebra, 27	mqc_algebra::mqc_have_real, 129
mqc_matrix_conjugate_transpose	mqc_matrix_havesymmetric
mqc_algebra, 27	mqc_algebra, 31
mqc_algebra::dagger, 119	mqc_matrix_identity
mqc_matrix_copy_complex2int	mqc_algebra, 31
mqc_algebra, 27	mgc matrix initialize
mqc_matrix_copy_complex2real	mqc_algebra, 31
mqc_algebra, 27	mqc_matrix_integral_multiply
mqc_matrix_copy_int2complex	mqc_est, 94
mqc_algebra, 27	mqc_est::matmul, 123
mqc_matrix_copy_int2real	mqc_matrix_inverse
mqc_algebra, 27	mqc_algebra, 31
mqc_matrix_copy_real2complex	mqc_matrix_isallocated
mqc_algebra, 28	mqc_algebra, 31
mqc_matrix_copy_real2int	mqc_matrix_matrix_at
mqc_algebra, 28	mqc_algebra, 31
mqc_matrix_determinant	mqc_matrix_matrix_contraction
mqc_algebra, 28	mqc_algebra, 33
mqc_matrix_diag2full	mqc_algebra::contraction, 117
mqc_algebra, 28	mqc_matrix_matrix_put
I — U	

mqc_algebra, 33	mqc_matrix_undospinblockghf_integral
mqc_matrix_norm	mqc_est, 95
mqc_algebra, 33	mqc_est::mqc_matrix_undospinblockghf, 137
mqc_matrix_rms_max	mqc_matrix_vector_at
mqc_algebra, 34	mqc_algebra, 37
mqc_matrix_rows	mqc_matrix_vector_put
mqc_algebra, 34	mqc_algebra, 38
mqc_matrix_scalar_at	mqc_matrixmatrixdotproduct
mqc_algebra, 34	mqc_algebra, 38
mqc_matrix_scalar_put	mqc_algebra::matmul, 121
mqc_algebra, 34	mqc_algebra::operator(.dot.), 174
mqc_matrix_set	mqc_matrixmatrixproduct
mqc_algebra, 34	mqc_algebra, 38
mqc_matrix_spinblockghf	mqc_algebra::operator(*), 160
mqc_est, 95	mqc_matrixmatrixsubtract
mqc_matrix_sqrt	mqc_algebra, 38
mqc_algebra, 35	mqc_algebra::operator(-), 171
mqc_matrix_storagetype	mqc_matrixmatrixsum
mqc_algebra, 35	mqc_algebra, 38
mqc_matrix_svd	mqc_algebra::operator(+), 168
mqc_algebra, 35	mqc_matrixscalarproduct
mqc_matrix_symm2diag	mqc_algebra, 39
mqc_algebra, 35	mqc_algebra::operator(*), 160
mqc_matrix_symm2full	mqc_matrixvectordotproduct
mqc_algebra, 35	mqc_algebra, 39
mqc_matrix_symm2full_func	mqc_algebra::matmul, 121
mqc_algebra, 36	mqc_algebra::operator(.dot.), 174
mqc_matrix_symmetrize	mqc_outer
mqc_algebra, 36	mqc_algebra, 39
mqc_matrix_symmmatrix_put_complex	mqc_algebra::operator(.outer.), 186
mqc_algebra, 36	mqc_output_complex_scalar
mqc_algebra::mqc_matrix_symmmatrix_put, 136	mqc_algebra, 39
mqc_matrix_symmmatrix_put_integer	mqc_algebra::assignment(=), 107
mqc_algebra, 36	mgc output integer scalar
mqc_algebra::mqc_matrix_symmmatrix_put, 136	mqc_algebra, 40
mqc_matrix_symmmatrix_put_real	mqc_algebra::assignment(=), 108
mqc_algebra, 36	mgc output mgcscalar scalar
mqc_algebra::mqc_matrix_symmmatrix_put, 136	mqc_algebra, 41
mqc_matrix_symmsymmr4tensor_put_complex	mqc_algebra::assignment(=), 109
mqc_algebra, 36	mqc_output_real_scalar
mqc_matrix_symmsymmr4tensor_put_real	mqc_algebra, 41
mqc_algebra, 37	mqc_algebra::assignment(=), 109
	mgc print eigenvalues
mqc_matrix_test_diagonal	, _ •
mqc_algebra, 37	mqc_est, 95
mqc_matrix_test_symmetric	mqc_est::mqc_print, 139
mqc_algebra, 37	mqc_print_integral
mqc_matrix_trace	mqc_est, 95
mqc_algebra, 37	mqc_est::mqc_print, 139
mqc_matrix_transpose	mqc_print_matrix_algebra1
mqc_algebra, 37	mqc_algebra, 42
mqc_algebra::transpose, 193	mqc_algebra::mqc_print, 137
mqc_matrix_undospinblockghf_eigenvalues	mqc_print_r4tensor_algebra1
mqc_est, 95	mqc_algebra, 42
mqc_est::mqc_matrix_undospinblockghf, 136	mqc_algebra::mqc_print, 137

mqc_print_scalar_algebra1	mqc_scalar_atan
mqc_algebra, 42	mqc_algebra, 48
mqc_algebra::mqc_print, 138	mqc_algebra::atan, 113
mqc_print_twoeris	mqc_scalar_atan2
mqc_est, 96	mqc_algebra, 49
mqc_est::mqc_print, 140	mqc_algebra::atan2, 114
mqc_print_vector_algebra1	mqc_scalar_cmplx
mqc_algebra, 43	mqc_algebra, 50
mqc_algebra::mqc_print, 139	mqc_algebra::cmplx, 115
mqc_print_wavefunction	mqc_scalar_complex_conjugate
mqc_est, 96	mqc_algebra, 50
mqc_est::mqc_print, 140	mqc_algebra::conjg, 116
mqc_r4tensor_at	mqc_scalar_complex_imagpart
mqc_algebra, 44	mqc_algebra, 50
mqc_r4tensor_havecomplex	mqc_algebra::aimag, 103
mqc_algebra, 44	mqc_scalar_complex_realpart
mqc_r4tensor_haveinteger	mqc_algebra, 51
mqc_algebra, 44	mqc_algebra::real, 189
mqc_r4tensor_havereal	mqc_scalar_cos
mqc_algebra, 44	mqc_algebra, 51
mqc_r4tensor_initialize	mqc_algebra::cos, 118
mqc_algebra, 44	mqc_scalar_get_abs_value
mqc_r4tensor_put	mqc_algebra, 51
mqc_algebra, 45	mqc_algebra::abs, 101
mqc_realgtscalar	mqc_scalar_get_intrinsic_complex
mqc_algebra, 45	mqc_algebra, 52
mqc_algebra::operator(.gt.), 178	mqc_scalar_get_intrinsic_integer
mqc_reallescalar	mqc_algebra, 53
mqc_algebra, 45	mqc_scalar_get_intrinsic_real
mqc_algebra::operator(.le.), 181	mqc_algebra, 53
mqc_realltscalar	mqc_scalar_get_random_value
mqc_algebra, 45	mqc_algebra, 54
mqc_algebra::operator(.lt.), 182	mqc_scalar_havecomplex
mqc_realscalaradd	mqc_algebra, 54
mqc_algebra, 46	mqc_scalar_haveinteger
mqc_algebra::operator(+), 168	mqc_algebra, 55
mqc_realscalardivide	mqc_scalar_havereal
mqc algebra, 46	mqc_algebra, 56
· — •	. — •
mqc_algebra::operator(/), 187	mqc_scalar_integral_multiply
mqc_realscalarmultiply	mqc_est, 96
mqc_algebra, 47	mqc_est::operator(*), 163
mqc_algebra::operator(*), 160	mqc_scalar_isallocated
mqc_realscalarsubtract	mqc_algebra, 56
mqc_algebra, 47	mqc_scalar_sin
mqc_algebra::operator(-), 172	mqc_algebra, 57
mqc_realvectorproduct	mqc_algebra::sin, 190
mqc_algebra, 47	mqc_scalar_sqrt
mqc_algebra::operator(*), 161	mqc_algebra, 58
mqc_scalar_acos	mqc_algebra::sqrt, 191
mqc_algebra, 47	mqc_scalar_tan
mqc_algebra::acos, 102	mqc_algebra, 58
mqc_scalar_asin	mqc_algebra::tan, 192
mqc_algebra, 48	mqc_scalaradd
mqc_algebra::asin, 104	mqc_algebra, 59

mga algebra::aparatar(+) 160	mae algebra::operator/ le \ 191
mqc_algebra::operator(+), 169	mqc_algebra::operator(.le.), 181
mqc_scalarcomplexadd mqc_algebra, 59	mqc_scalarleinteger mqc_algebra, 66
	mqc_algebra::operator(.le.), 181
mqc_algebra::operator(+), 169 mqc_scalarcomplexdivide	mqc_scalarlereal
	• —
mqc_algebra; 60	mqc_algebra; 67
mqc_algebra::operator(/), 187	mqc_algebra::operator(.le.), 181
mqc_scalarcomplexexponent	mqc_scalarlt
mqc_algebra; 60	mqc_algebra; 67
mqc_algebra::operator(**), 164	mqc_algebra::operator(.lt.), 183
mqc_scalarcomplexmultiply	mqc_scalaritreal
mqc_algebra, 60	mqc_algebra, 68
mqc_algebra::operator(*), 161	mqc_algebra::operator(.lt.), 183
mqc_scalarcomplexsubtract	mqc_scalarmatrixproduct
mqc_algebra, 61	mqc_algebra, 68
mqc_algebra::operator(-), 172	mqc_algebra::operator(*), 161
mqc_scalardivide	mqc_scalarmultiply
mqc_algebra, 61	mqc_algebra, 68
mqc_algebra::operator(/), 187	mqc_algebra::operator(*), 161
mqc_scalareq	mqc_scalarne
mqc_algebra, 61	mqc_algebra, 69
mqc_algebra::operator(.eq.), 175	mqc_algebra::operator(.ne.), 185
mqc_scalarexponent	mqc_scalarrealadd
mqc_algebra, 62	mqc_algebra, 70
mqc_algebra::operator(**), 165	mqc_algebra::operator(+), 170
mqc_scalarge	mqc_scalarrealdivide
mqc_algebra, 63	mqc_algebra, 70
mqc_algebra::operator(.ge.), 177	mqc_algebra::operator(/), 188
mqc_scalargt	mqc_scalarrealexponent
mqc_algebra, 63	mqc_algebra, 70
mqc_algebra::operator(.gt.), 178	mqc_algebra::operator(**), 166
mqc_scalargtinteger	mqc_scalarrealmultiply
mqc_algebra, 64	mqc_algebra, 71
mqc_algebra::operator(.gt.), 179	mqc_algebra::operator(*), 162
mqc_scalargtreal	mqc_scalarrealsubtract
mqc_algebra, 65	mqc_algebra, 71
mqc_algebra::operator(.gt.), 180	mqc_algebra::operator(-), 172
mqc_scalarintegeradd	mqc_scalarsubtract
mqc_algebra, 65	mqc_algebra, 71
mqc_algebra::operator(+), 169	mqc_algebra::operator(-), 172
mqc_scalarintegerdivide	mqc_scalarvectordifference
mqc_algebra, 65	mqc_algebra, 72
mqc_algebra::operator(/), 188	mqc_algebra::operator(-), 173
mqc_scalarintegerexponent	mqc_scalarvectorproduct
mqc_algebra, 65	mqc_algebra, 72
mqc_algebra::operator(**), 166	mqc_algebra::operator(*), 162
mqc_scalarintegermultiply	mqc_scalarvectorsum
mqc_algebra, 66	mqc_algebra, 72
mqc_algebra::operator(*), 161	mqc_algebra::operator(+), 170
mqc_scalarintegersubtract	mqc_scf_eigenvalues_power
mqc_algebra, 66	mqc_est, 96
mqc_algebra::operator(-), 172	mqc_scf_integral_contraction
mqc_scalarle	mqc_est, 96
mqc_algebra, 66	mqc_est::contraction, 118

man and integral determinant	man not ventorOrealerray
mqc_scf_integral_determinant	mqc_set_vector2realarray
mqc_est, 97	mqc_algebra; 75
mqc_scf_integral_diagonalize	mqc_algebra::assignment(=), 112
mqc_est, 97	mqc_set_vector2vector
mqc_scf_integral_generalized_eigensystem	mqc_algebra, 75
mqc_est, 97	mqc_algebra::assignment(=), 112
mqc_scf_integral_inverse	mqc_twoeris_allocate
mqc_est, 97	mqc_est, 98
mqc_scf_integral_trace	mqc_twoeris_at
mqc_est, 97	mqc_est, 98
mqc_scf_transformation_matrix	mqc_vector2diagmatrix
mqc_est, 97	mqc_algebra, 75
mqc_set_array2tensor	mqc_vector_abs
mqc_algebra, 72	mqc_algebra, 75
mqc_algebra::assignment(=), 110	mqc_algebra::abs, 102
mqc_set_array2vector_complex	mqc_vector_argsort
mqc_algebra, 73	mqc_algebra, 75
mqc_algebra::assignment(=), 110	mqc_vector_cast_complex
mqc_algebra::mqc_set_array2vector, 149	mqc_algebra, 75
mqc_set_array2vector_integer	mqc_algebra::mqc_cast_complex, 125
mqc_algebra, 73	mqc_vector_cast_real
mqc_algebra::assignment(=), 110	mqc_algebra, 76
mqc_algebra::mqc_set_array2vector, 149	mqc_algebra::mqc_cast_real, 126
mqc_set_array2vector_real	mqc_vector_cmplx
mqc_algebra, 73	mqc_algebra, 76
mqc_algebra::assignment(=), 110	mqc_algebra::cmplx, 116
mqc_algebra::mqc_set_array2vector, 149	mqc_vector_complex_imagpart
mqc_set_complexarray2matrix	mqc_algebra, 76
mqc_algebra, 73	mqc_algebra::aimag, 103
mqc_algebra::assignment(=), 111	mqc_vector_complex_realpart
mqc_set_integerarray2matrix	mqc_algebra, 76
mqc_algebra, 73	mqc_algebra::real, 189
mqc_algebra::assignment(=), 111	mqc_vector_conjugate_transpose
. — • • • • • • •	
mqc_set_matrix2complexarray	mqc_algebra, 76
mqc_algebra, 73	mqc_algebra::dagger, 119
mqc_algebra::assignment(=), 111	mqc_vector_copy_complex2int
mqc_set_matrix2integerarray	mqc_algebra, 76
mqc_algebra, 74	mqc_vector_copy_complex2real
mqc_algebra::assignment(=), 111	mqc_algebra, 77
mqc_set_matrix2matrix	mqc_vector_copy_int2complex
mqc_algebra, 74	mqc_algebra, 77
mqc_algebra::assignment(=), 111	mqc_vector_copy_int2real
mqc_set_matrix2realarray	mqc_algebra, 77
mqc_algebra, 74	mqc_vector_copy_real2complex
mqc_algebra::assignment(=), 111	mqc_algebra, 77
mqc_set_realarray2matrix	mqc_vector_copy_real2int
mqc_algebra, 74	mqc_algebra, 77
mqc_algebra::assignment(=), 112	mqc_vector_havecomplex
mqc_set_vector2complexarray	mqc_algebra, 77
mqc_algebra, 74	mqc_algebra::mqc_have_complex, 128
mqc_algebra::assignment(=), 112	mqc_vector_haveinteger
mqc_set_vector2integerarray	mqc_algebra, 78
mqc_algebra, 74	mqc_algebra::mqc_have_int, 129
mqc_algebra::assignment(=), 112	mqc_vector_havereal

mqc_algebra, 78	mqc_vectorintegerproduct
mqc_algebra::mqc_have_real, 129	mqc_algebra, 82
mqc_vector_initialize	mqc_algebra::operator(*), 162
mqc_algebra, 78	mqc_vectormatrixdotproduct
mqc_vector_isallocated	mqc_algebra, 82
mqc_algebra, 78	mqc_algebra::matmul, 122
mqc_vector_iscolumn	mqc_algebra::operator(.dot.), 174
mqc_algebra, 78	mqc_vectorrealdivide
mqc_vector_maxloc	mqc_algebra, 82
mqc_algebra, 78	mqc_algebra::operator(/), 189
mqc_vector_maxval	mqc_vectorrealproduct
mgc algebra, 79	mqc_algebra, 82
mqc_vector_minloc	mqc_algebra::operator(*), 163
mqc_algebra, 79	mqc_vectorscalardivide
mqc_vector_minval	mqc_algebra, 83
mqc_algebra, 79	mqc_algebra::operator(/), 189
mqc_vector_norm	mqc_vectorscalarproduct
mqc_algebra, 79	mqc_algebra, 83
mqc_vector_pop	mqc_algebra::operator(*), 163
mqc_algebra, 79	mqc_vectorvectordifference
mqc_vector_power	mqc_algebra, 83
mqc_algebra, 79	mqc_algebra::operator(-), 173
mqc_vector_push	mqc_vectorvectordotproduct
mqc_algebra, 80	mqc_algebra, 83
mqc_vector_scalar_at	mqc_algebra::dot_product, 120
mqc_algebra, 80	mqc_algebra::operator(.dot.), 174
mqc_vector_scalar_increment	mqc_vectorvectorsum
mqc_algebra, 80	mqc_algebra, 83
mqc_vector_scalar_put	mqc_algebra::operator(+), 170
mqc_algebra, 80	multiplicity
mqc_vector_shift	mqc_est::mqc_wavefunction, 157
mqc_algebra, 80	mqc_estmqc_wavefunction, 137
mqc_vector_sort	nactive
• — —	mqc_est::mqc_pscf_wavefunction, 141
mqc_algebra, 80 mqc vector sqrt	
mqc_algebra, 81	nalpha
. — •	mqc_est::mqc_wavefunction, 157
mqc_vector_transpose mqc_algebra, 81	nalpstr
. — •	mqc_est::mqc_determinant, 126 nbasis
mqc_algebra::transpose, 194 mqc vector unshift	mgc est::mgc wavefunction, 158
mqc_algebra, 81	· - · -
. — •	nbeta
mqc_vector_vector_at	mqc_est::mqc_wavefunction, 158
mqc_algebra, 81	nbetstr
mqc_vector_vector_put	mqc_est::mqc_determinant, 126
mqc_algebra, 81	ncore
mqc_vectorcomplexdivide	mqc_est::mqc_pscf_wavefunction, 141
mqc_algebra, 81	ndets
mqc_algebra::operator(/), 188	mqc_est::mqc_determinant, 126
mqc_vectorcomplexproduct	nelectrons
mqc_algebra, 82	mqc_est::mqc_wavefunction, 158
mqc_algebra::operator(*), 162	nfrz
mqc_vectorintegerdivide	mqc_est::mqc_pscf_wavefunction, 141
mqc_algebra, 82	norm
mqc_algebra::operator(/), 188	mqc_algebra::mqc_matrix, 132

mqc_algebra::mqc_vector, 152 mqc_est::mqc_scf_integral, 148	mqc_algebra::mqc_vector, 153 slater_condon
nval	mqc_est, 98
mqc_est::mqc_pscf_wavefunction, 141	sort mqc_algebra::mqc_vector, 153
orbitals	sqrt
mqc_est::mqc_scf_integral, 148	mqc_algebra::mqc_matrix, 133
order	mqc_algebra::mqc_vector, 154
mqc_est::mqc_determinant, 127	src/mqc_algebra.F03, 195
overlap_matrix	src/mqc_est.F03, 202
mqc_est::mqc_wavefunction, 158	strings
	mqc_est::mqc_determinant, 127
pop	svd
mqc_algebra::mqc_vector, 152	mqc_algebra::mqc_matrix, 133
power	swap
mqc_algebra::mqc_vector, 153	mqc_est::mqc_scf_integral, 148
mqc_est::mqc_scf_eigenvalues, 145	symindexhash
print	mqc_algebra, 83
mqc_algebra::mqc_matrix, 132	symmetry
mqc_algebra::mqc_r4tensor, 142	mqc_est::mqc_wavefunction, 158
mqc_algebra::mqc_scalar, 144	
mqc_algebra::mqc_vector, 153	trace
mqc_est::mqc_scf_eigenvalues, 145	mqc_algebra::mqc_matrix, 133
mqc_est::mqc_scf_integral, 148	mqc_est::mqc_scf_integral, 148
mqc_est::mqc_twoeris, 150	transpose
mqc_est::mqc_wavefunction, 156	mqc_algebra::mqc_matrix, 133
pscf_amplitudes	mqc_algebra::mqc_vector, 154
mqc_est::mqc_pscf_wavefunction, 141	twoeri_trans
pscf_energies	mqc_est, 98
mqc_est::mqc_pscf_wavefunction, 141	unshift
push	mqc_algebra::mqc_vector, 154
mqc_algebra::mqc_vector, 153 put	mqo_aigosiaiqo_vootoi, io i
mqc_algebra::mqc_matrix, 132	vat
mqc_algebra::mqc_r4tensor, 143	mqc_algebra::mqc_matrix, 133
mqc_algebra::mqc_vector, 153	mqc_algebra::mqc_vector, 154
mqc_aigebramqc_vector, 150	vecc
random	mqc_algebra::mqc_vector, 155
mgc algebra::mgc scalar, 144	veci
rmsmax	mqc_algebra::mqc_vector, 155
mqc_algebra::mqc_matrix, 132	vecr
rval	mqc_algebra::mqc_vector, 155
mgc algebra::mgc scalar, 144	vput
7 - 7	mqc_algebra::mqc_matrix, 133
s_type	mqc_algebra::mqc_vector, 154
mqc_algebra::mqc_matrix, 132	
scf_density_matrix	wf_complex
mqc_est::mqc_wavefunction, 158	mqc_est::mqc_wavefunction, 158
set	wf_type
mqc_algebra::mqc_matrix, 133	mqc_est::mqc_wavefunction, 159
setelist	
mqc_est::mqc_scf_integral, 148	
shift	
mqc_algebra::mqc_vector, 153	
ciza	