DM no7

PREMIER EXERCICE

Il s'agit d'un résultat classique à connaître

Cryptographie

Le but de se problème est l'étude du principe de criptage RSA, qui permet de communiquer de façon sure des données. Ce résultat est à connaître

1. Chiffrement du message

On étudie le cryptage d'un message par un expéditeur. Soient p et q des nombres premiers distincts et n leur produit : n = pq. On appelle n module de chiffrement

- (a) Donner sans démonstration, en fonction de p et q, la valeur de $\varphi(n)$.
- (b) Soit e un entier premier avec $\varphi(n)$. On appelle e exposant de chiffrement. Montrer qu'il existe un entier naturel d tel que $ed \equiv 1 [\varphi(n)]$

Le couple (n, e) est appelé clef publique (elle peut être transmise à l'expéditeur), le couple (n, d) est appelé clef privée, elle reste connue du seul destinataire du message.

Dans la suite on considère un entier M (représentant le message) strictement inférieur à n. On note C l'élément de $\{0, 1, \ldots, n-1\}$ congru à M^e modulo n. Cet entier représente le message codé qui est transmis.

2. DÉCHIFFREMENT DU MESSAGE

On se propose de montrer que C^d est congru à M modulo n, ce qui permet au destinataire de trouver M, grâce à sa clef (n,d).

- (a) Montrer que M^{ed} est congru à M modulo p. On distinguera les deux cas M premier avec p et M non premiers avec p.
- (b) En déduire que $C^d \equiv M[n]$.

Remarque: pour trouver d à partir de e et n il faut savoir inverser e dans $\mathbf{Z}/\varphi(n)\mathbf{Z}$ ce qui nécessite de connaître $\varphi(n)$ et donc le couple (p,q). La décomposition de n en facteurs premiers peut être très difficile si les nombres premiers p et q ont été choisis très grands.

SECOND EXERCICE (3/2:1.,2.,3.,4. et 5.; 5/2:tout)

Entiers de Gauss

Soient $\mathbf{Z}[i]$ l'ensemble des nombres complexes de la forme u+iv, avec $(u,v) \in \mathbf{Z}^2$ et l'application. φ ; $\mathbf{Z}[i] \to \mathbf{N}$; $a \mapsto \bar{a}a$.

- 1. Montrer que $\mathbf{Z}[i]$ est un sous-anneau du corps \mathbf{C} .
- 2. Déterminer $\mathbf{Z}[i]^*$, ensemble des éléments inversibles de $\mathbf{Z}[i]$.
- 3. Montrer que pour tout élément a de $\mathbf{Z}[i]$ et tout élément b de $\mathbf{Z}[i]^*$, il existe un couple (q, r) d'éléments de $\mathbf{Z}[i]$ tel que a = bq + r et $\varphi(r) < \varphi(b)$. On dit que l'anneau $\mathbf{Z}[i]$ est euclidien pour φ .
- 4. Montrer que tout idéal de $\mathbf{Z}[i]$ est de la forme $a\mathbf{Z}[i]$, on dit que $\mathbf{Z}[i]$ est principal.
- 5. Soit a un élément de $\mathbf{Z}[i]$. Montrer que si $\varphi(a)$ est premier, alors a est un élément irréductible de $\mathbf{Z}[i]$. Rappelons qu'un élément a d'un anneau intègre est dit irréductible si par définition il n'est pas inversible et si il admet la décomposition a = bc, alors a ou b est inversible.
- 6. Soit p un nombre premier impair et y un élément de $(\mathbf{Z}/p\mathbf{Z})^*$, on dit que y est un carré s'il existe un élément z de $(\mathbf{Z}/p\mathbf{Z})^*$ tel que $z^2 = y$.
 - (a) Montrer que $\prod_{x \in (\mathbf{Z}/p\mathbf{Z})^*} x = \begin{cases} -y^{\frac{p-1}{2}}, & \text{si } y \text{ est un carr\'e}, \\ y^{\frac{p-1}{2}}, & \text{sinon }. \end{cases}$

Indication: on pourra regrouper deux à deux dans le produit les termes x et yx^{-1} .

(b) En déduire

$$\left\{ \begin{array}{ll} y^{\frac{p-1}{2}}=\bar{1}, & \text{si } y \text{ est un carr\'e}, \\ y^{\frac{p-1}{2}}=-\bar{1}, & \text{sinon }. \end{array} \right.$$

- 7. Soit p un nombre premier, impaire OU NON. Montrer l'équivalence entre les propriétés suivantes :
 - i. p est irréductible dans $\mathbf{Z}[i]$;
 - ii. $p \equiv 3 \, [4]$;
 - iii. Il n'existe pas d'élément a de $\mathbf{Z}[i]$ tel que $p = \phi(a)$.
- 8. En déduire les irréductibles de $\mathbf{Z}[i]$.

PROBLÈME

Première partie : Un exemple d'extension du corps Q (3/2)

- 1. Soit P le polynôme $X^3 X 1$.
 - Montrer que P n'a pas de racines rationnelles. En déduire que P est irréductible dans $\mathbf{Q}[X]$. Montrer que P a une racine réelle que l'on notera ω .
- 2. Soit \mathbf{K} le \mathbf{Q} -espace vectoriel engendré par $(\omega^i)_{i \in \mathbf{N}}$. Montrer que \mathbf{K} est de dimension finie, et donner une base simple de K.
- 3. Montrer que K est une Q-sous-algèbre de R, muni de sa structure naturelle de Q-algèbre.
- 4. Montrer que K est un sous-corps de R.

Deuxième partie : Cas général d'extension de \mathbf{Q} (5/2) Soit a un réel.

- 1. Montrer que tout sous-corps de **R** contient **Q**.
- 2. Montrer que l'ensemble des sous-corps de $\mathbf R$ qui contiennent a admet un plus petit élément pour l'inclusion. On le notera dans la suite $\mathbf Q(a)$.
- 3. Montrer que $\phi: \mathbf{Q}[X] \to \mathbf{R}$; $P \mapsto P(a)$ est un morphisme de la \mathbf{Q} -algèbres $\mathbf{Q}[X]$ dans la \mathbf{Q} algèbre \mathbf{R} . On note $\mathbf{Q}[a]$ son image.
- 4. Soit $I := \{P \in \mathbf{Q}[X], P(a) = 0\}$. Montrer que I est un idéal de $\mathbf{Q}[X]$.
- 5. Le réel a est dit algébrique (sur \mathbf{Q}), si, par définition, a est racine d'un polynôme non nul à coefficients entiers.

Montrer que a est algèbrique si et seulement si I est non réduit à $\{0\}$.

Dans cette partie on suppose dans la suite que que a est algèbrique, sauf à la dernière question.

- 6. Montrer qu'il existe un et un seul élément de $\mathbf{Q}[X]$ unitaire, μ_a , tel que $I = \mu_a \mathbf{Q}[X]$. Montrer que μ_a est irréductible dans $\mathbf{Q}[X]$. Montrer que si a est irrationnel, alors le degré de μ_a est supérieur ou égal à 2. Déterminer μ_a pour $a = \sqrt{2}$ et pour $a = \sqrt{\frac{1+\sqrt{5}}{2}}$.
- 7. Montrer que $\mathbf{Q}[a]$ est un corps. Montrer que $\mathbf{Q}(a) = \mathbf{Q}[a]$. Montrer que $\mathbf{Q}(a)$ est un \mathbf{Q} -espace vectoriel de dimension n, où n est le degré de μ_a , dont on donnera une base simple.
- 8. Si a est non algébrique, montrer qu'alors $\mathbf{Q}(a)$ est un \mathbf{Q} -espace vectoriel de dimension infinie¹.

Troisième partie : CORPS FINIS (5/2) (3/2)

Soit $(\mathbf{F}, +, \times)$ un corps. On note $1_{\mathbf{F}}$ l'unité de \mathbf{F} et pour tout entier k et tout élément a de $\mathbf{F}, k \cdot a$, désigne l'élément $\underbrace{a + a + \cdots + a}_{k \text{ termes}}$ pour $k \geq 1$, l'élément $\underbrace{(-a) + (-a) + \cdots + (-a)}_{k \text{ termes}}$ pour $k \leq -1$ et enfin $1_{\mathbf{F}}$ pour k = 0

On admet le résultat élémentaire suivant :

L'application

$$\varphi : \mathbf{Z} \to \mathbf{F}; k \mapsto k \cdot 1_{\mathbf{F}}$$

est un morphisme d'anneaux.

Son noyau est donc un sous groupe de $(\mathbf{Z}, +)$, donc de la forme pZ, où p désigne un élément de \mathbf{N} . L'entier naturel p s'appelle caractéristique de \mathbf{F} .

^{1.} On pourrait montrer que $\mathbf{Q}(a)$ est isomorphe en tant que corps au corps $\mathbf{Q}(X)$.

1. Montrer que si p est nul alors \mathbf{F} est infini.

Dans toute la suite on supposera que F est fini, donc que p est non nul.

- 2. Montrer qu'il existe une et une seule application $\tilde{\varphi}$ de $\mathbf{Z}/p\mathbf{Z}$ dans \mathbf{F} tel que $\varphi = \tilde{\varphi} \circ \pi_p$, où π_p désigne la surjection (dite canonique) de \mathbf{Z} sur $\mathbb{Z}/p\mathbf{Z}$, qui à un entier x associe sa classe modulo p.
- 3. Montrer que $\tilde{\varphi}$ est un morphisme d'anneaux injectif.
- 4. On note $\mathbf{k} = \tilde{\varphi}(\mathbf{Z}/p\mathbf{Z})$. Montrer que \mathbf{k} est un sous-anneau de \mathbf{F} isomorphe à $\mathbf{Z}/p\mathbf{Z}$. En déduire que p est un nombre premier.
- 5. Montrer que ${\bf k}$ est le plus petit sous-corps de ${\bf F}$.
 - Le sous-corps ${\bf k}$ est appelé sous corps premier de ${\bf F}$, on vient de voir qu'il est isomorphe à ${\bf Z}/p{\bf Z}$
- 6. En munissant \mathbf{F} d'une structure d'espace vectoriel sur \mathbf{k} , montrer que le cardinal de \mathbf{F} est une puissance de p.

L'étude de la réciproque est traitée dans le DM 1-ter.

PREMIER EXERCICE

1. Chiffrement du message

(a)

$$\varphi(n) = \varphi(p)\varphi(q) = (p-1)(q-1).$$

(b) Le lemme de Bezout assure l'existence d'entiers u et v tels que :

$$(u + k\varphi(n))e + (v - ke)\varphi(n) = 1$$

On choisi k, pour queb : $u + k\varphi(n)$ soit strictement positif...

- 2. DÉCHIFFREMENT DU MESSAGE
 - (a) PREMIER CAS: M premier avec p. Donc p ne divise pas M.D'après 2.(b), il existe un entiet h tel que ed = 1 + h(p-1). Donc $M^{ed} = M \times (M^{(p-1)})^h$ donc $M^{ed} \equiv M[p]$ (Fermat).
 - Second cas: M non premier avec p.
 Comme p est premier, il divise M et donc M^{ed}...

Dans tous les cas $M^{ed} \equiv M[p]$

(b) De la précédente question et comme p et q sont premiers entre eux, $pq|M^{ed}-M$ Soit $M^{ed}\equiv M[n]$. Mais $C\equiv M^e[n]$. Donc $C^d\equiv M^{ed}[n]$ et finalement $C^d\equiv M[n]$.

Entiers de Gauss

- 1. Sans problème.
- 2. Si Z est inversible dans $\mathbf{Z}[i]$, alors φ est inversible dans l'anneau \mathbf{Z} donc vaut 1. On trouve sans mal les élément de $\mathbf{Z}[i]$ de module 1 et l'on montre instantanément qu'ils sont inversibles...
- 3. Le complexe $\frac{a}{b}$ est élément d'un carré de côté 1 dont les sommets sont des entier de Gauss, prendre pour q le ou l'un des sommets plus proche de $\frac{b}{a}$...
- 4. cf. sous-groupes de \mathbf{Z} ou idéaux de $\mathbf{K}[X]$.
- 5. Résulte directement de $\varphi(bc) = \varphi(b)\varphi(c)$...
- 6. Regrouper deux à deux dans le produit les termes x et yx^{-1} , l'application de $\mathbb{Z}/p\mathbb{Z}$)* qui à x associe yx^{-1} est une involution si y est le carré de z alors deux et seulement deux élément z et -z sont leur propre image sinon aucun!
- 7. Facile
- 8. Soit p un nombre premier, impaire OU NON. Montrer l'équivalence entre les propriétés suivantes : Par la question précédente $(\bar{1})$ n'est pas un carré si et seulement si $p \equiv 3$ [4].

i. \Longrightarrow ii.

On raisonne par l'absurde si ii. est faux, -1 sécrit $a^2 + kp$ et donc p divide dans $\mathbf{Z}[i]$ (a+i)(a-i), absurde!

ii.⇒iii.

Par l'absurde, si $p = \alpha^2 + \beta^2$ on a pas ii. en regardant la congruence modulo 4 d'un carré.

iii. \Longrightarrow i. On suppose iii. et p de la forme p=ab on a $p^2=\phi(a)\phi(b)$, si ni $\varphi(a)=1$ ni $\varphi(b)=1$ alors $\varphi(a)=\varphi(b)=p...$.

9. On a montrer que les les entier premier congrus à 3 modulo 4 et les entier de Gauss a tels que $\phi(a)$ soit premier sont irreductibles.

Montrer que ce sont les seuls, à un inversible près... On prendra un irreductible a et on raisonnera sur les diviseurs premier p de $\phi(a)$.

On a que a divise $\phi(a)$, donc a divise un facteur premier p de $\phi(a)$ p=ab. Puis $p^2=\phi(a)\phi(b)$ Deux cas b inversible ou non .

Extensions de corps

Première partie

1. Donc on déduit (cf. exercice du cours) que les seules racines rationnelles possibles sont 1 et -1. Or P(1) = -1, P(-1) = -1. Donc P n'admet pas de racines rationnelles.

Le polynôme P est de degré impair à coefficients $r\acute{e}els$, il admet donc une racine réelle ω .

2. Soit c un élément de \mathbf{K} . Par définition de \mathbf{K} , il existe un entier naturel n et des rationnels a_0, a_1, \ldots, a_n tels que : $c = \sum_{i=0}^n a_i \omega^i$. Soit l'élément de $\mathbf{Q}[X]$, $C = \sum_{i=0}^n a_i X^i$. Par division euclidienne de C par P dans

 $\mathbf{Q}[X]$ on obtient que \mathbf{K} est le Q-espace vectoriel engendré par la sous famille de $(\omega^i)_{i\in\mathbf{N}}$, $(\omega^0,\omega^1,\omega^2)$.

La famille $(\omega^0, \omega^1, \omega^2)$ est libre. Soit λ , μ et ν des rationnels tels que : $\lambda \omega^2 + \mu \omega + \nu = 0$. Soit l'élément de $\mathbf{Q}[X]$, $C = \lambda X^2 + \mu X + \nu$. Supposons C non nul. Alors par division euclidienne : $P = \tilde{Q}C + uX + v$ avec $\tilde{Q} \in \mathbf{Q}[X]$, u et v des rationnels. En substituant dans cette égalité ω à l'indéterminée, il vient $0 = u\omega + v$. Comme ω est irrationnel u = 0 et donc v = 0, et donc C divise P, irréductible,...

Finalement $(\omega^0, \omega^1, \omega^2)$ est une base de K.

- 3. K est stable par combinaison linéaire.
 - K est stable par produit.
 - Enfin $1 = \omega^0 \in K$.

De ces trois points on déduit : K est une \mathbf{Q} -sous-algèbre de \mathbf{R} .

4. D'après (c), K est un sous-anneau de \mathbf{R} , il est donc commutatif et non trivial. Soit, par ailleurs, x un élément non nul de K. Il existe, d'après (b), des rationnels a, b et c non tous nuls, tels que $x = a\omega^2 + b\omega + c$. Soit $D = aX^2 + bX + C$. P et D sont, dans Q[X], premiers entre eux, par Bezout x est inversible... Conclusion : K est un sous-corps de \mathbf{R} .

Deuxième partie Cas général :

Soit a un réel.

- 1. Soit K_0 un sous-corps de \mathbf{R} . Il contient 1, est stable par somme et différence et par passage à l'inverse et multiplication il contient donc \mathbf{Q} .
- 2. Soit \mathcal{K} l'ensemble des sous-corps de \mathbf{R} qui contiennent a. considérer

$$\mathbf{Q}(a) = \bigcap_{K \in \mathcal{K}} K.$$

- 3. Facile! D'après la question précédente, ϕ induit notamment un morphisme de l'anneau $\mathbf{Q}[X]$ sur l'anneau \mathbf{R} . I en est le noyau, c'est donc un idéal de $\mathbf{Q}[X]$.
- 4. HYPOTHÈSE : I non réduit à 0. Il existe donc un polynôme P élément de $\mathbf{Q}[X]$, non nul tel que P(a) = 0. Multiplier P par le produit des dénominateurs de ses coefficients...
 - HYPOTHÈSE : a est algébrique.
 Presque immédiatement : I est non réduit à {0}.
- 5. I est un idéal de $\mathbf{Q}[X]$, donc, d'après le programme, il existe P élément de $\mathbf{Q}[X]$ (appelé générateur de I), tel que $I = P\mathbf{Q}[X]$, I étant non nul, $P \neq 0$. Soit \tilde{P} un générateur de I. $\tilde{P} \in I$ donc $P|\tilde{P}$. par symétrie des rôles $\tilde{P}|P$ donc \tilde{P} et P sont associés. Les générateurs de I sont associés, il en existe donc un et un seul unitaire, μ_a , qui est défini par $\mu_a = a^{-1}P$, avec a le coefficient dominant de P.

 $\mu_a(a) = 0$, donc μ_a ne saurait être un inversible de $\mathbf{Q}[X]$. Soient A et B des éléments de $\mathbf{Q}[X]$, tels que $\mu_a = AB$. $A(a)B(a) = \mu_a(a) = 0$ Montre que l'un des polynômes A ou B est inversible car sinon I contiendrait un polynôme de degré strictement plus petit que celui de μ_a Donc μ_a est irréductible.

Le degré de μ_a est supérieur ou égal à 2 , sinon il serait égal à 1 et a serait rationnel.

$$\underline{\mu_{\sqrt{2}} = X^2 - 2}.$$

Maintenant $a = \sqrt{\frac{1+\sqrt{5}}{2}}$. L'élément de $\mathbf{Q}[X]$, $X^4 - X^2 - 1$ admet a comme racine. Donc $\mu_a | X^4 - X^2 - 1$. On peut montrer que $X^4 - X^2 - 1$ est irréductible dans $\mathbf{Q}[X]$ (regarder ses racines). Donc

$$\mu_a = X^4 - X^2 - 1.$$

6. $\mathbf{Q}[a]$ est l'image par le morphisme d'anneaux ϕ de l'anneau $\mathbf{Q}[X]$ (cf. 3.), c'est donc un sous-anneau de \mathbf{R} . Comme \mathbf{R} est un corps, l'anneau $\mathbf{Q}[a]$ est commutatif et non trivial. Soit x un élément non nul de $\mathbf{Q}[a]$. Il existe $P \in \mathbf{Q}[X]$ tel que x = P(a). La division euclidienne de P par μ_a conduit à l'existence de Q et R éléments de $\mathbf{Q}[X]$ tels que : $P = Q\mu_a + R$ et d' $R < d^o\mu_a$. D'où $x = P(a) = Q(a)\mu_a(a) + R(a) = R(a)$. x étant non nul, R est non nul, Donc μ_a ne saurait divisé R, polynôme dont le degré est inférieur au sien. Or μ_a est irréductible dans $\mathbf{Q}[X]$ (cf. 6.), donc R et μ_a sont premiers entres eux dans $\mathbf{Q}[X]$. Le lemme de Bezout permet de montrer l'inversibilité de x.

Conclusion : $\mathbf{Q}[a]$ est un corps.

 $\mathbf{Q}[a]$ est un corps qui contient a. Donc $\mathbf{Q}(a) \subset \mathbf{Q}[a]$ Soit Soit x un élément de $\mathbf{Q}[a]$. Il sécrit

$$x = \sum_{i=0}^{n} c_i a^i,$$

avec n un naturel et c_0, c_1, \ldots, c_n des rationnels. le corps $\mathbf{Q}(a)$ contenant 1 et a et étant stable par multiplication, il contient a^i , pour $i = 0, 1, \ldots, n$. Par ailleurs $c_i \in \mathbf{Q}(a)$ (cf. 1.). Donc le corps $\mathbf{Q}(a)$ étant stable par multiplication est addition, il contient $\sum_{i=0}^{n} c_i a^i = x$. Donc $\mathbf{Q}[a] \subset \mathbf{Q}(a)$.

CONCLUSION : $\underline{\mathbf{Q}(a) = \mathbf{Q}[a]}$. $\mathbf{Q}[a]$ est l'image par ϕ , morphisme de \mathbf{Q} -espaces vectoriels, de l'espace vectoriel $\mathbf{Q}[X]$ (cf. 3.), c'est donc un sous-espace vectoriel du Q-espace vectoriel \mathbf{R} . En raisonnant comme dans le début de la question on montre que

$$Q[a] = \text{vect}(a^0, a^1, \dots, a^{n-1}).$$

la famille la famille $(a^0, a^1, \dots, a^{n-1})$ engendre donc $\mathbf{Q}[a]$.

On montre que la famille $(a^0, a^1, \dots, a^{n-1})$ est libre. Soient $\lambda_0, \lambda_1, \dots, \lambda_{n-1}$ des rationnels tels que : $\lambda_0 a^0 + \lambda_1 a^1 + \dots + \lambda_{n-1} a^{n-1} = 0$. Soit l'élément de $\mathbf{Q}[X]$, $C = \lambda_0 X^0 + \lambda_1 X^1 + \dots + \lambda_{n-1} X^{n-1}$. Supposons C non nul. Alors par division euclidienne : $\mu_a = \tilde{Q}C + R$ avec $\tilde{Q} \in \mathbf{Q}[X]$, $R \in \mathbf{Q}[X]$ et $d^o R \leq n-1$. Reste à montrer la nulité de R...

Finalement $(a^0, a^1, \dots, a^{n-1})$ est une base de $\mathbb{Q}[a]$, qui est donc de dimension n.

- 7. facile!
- 8. Si a est non algébrique, $(a^n)_{n \in \mathbb{N}^*}$ est libre...

Troisième partie : CORPS FINIS (5/2) (3/2)

- 1. Montrer que si p est nul alors φ est infini...
- 2. Montrer qu'il existe une et une seule application $\tilde{\varphi}$ de $\mathbf{Z}/p\mathbf{Z}$ dans \mathbf{F} tel que $\varphi = \tilde{\varphi} \circ \pi_p$, où π_p désigne la surjection (dite canonique) de \mathbf{Z} sur $Z/p\mathbf{Z}$, qui à un entier x associe sa classe modulo p. Il faut poser $\tilde{\varphi}(\bar{x}) = \varphi(x)$ en ayant soin de montrer que cette quantitée ne dépend pas du représentant x de \bar{x} ; cf. structure des groupes cycliques
- 3. Pas bien dur...
- 4. On note $\mathbf{k} = \tilde{\varphi}(\mathbf{Z}/p\mathbf{Z})$. \mathbf{k} est un sous-anneau de \mathbf{F} isomorphe à $\mathbf{Z}/p\mathbf{Z}$, par injectivité de $\tilde{\varphi}$. Reste à remarquer que \mathbf{k} est intègre.
- 5. Tout sous-corps de \mathbf{F} contient 1, donc \mathbf{k} est le plus petit sous-corps de \mathbf{F} .

Le sous-corps k est appelé sous corps premier de F, on vient de voir qu'il est isomorphe à $\mathbf{Z}/p\mathbf{Z}$

6. Facile!