

KNAPSACK PROBLEMS

Why

Suppose we want to fill up a backpack by selecting from various objects which gives us differing amounts of comfort. We only have so much space in the backpack.

Definition

Number the objects $1, \ldots, n$. Model the amount of space needed for a subset $H \subset \{1, \ldots, n\}$ of the n items by s(H); here $s : \mathcal{P}(S) \to \mathbf{R}_+$. Model the comfort (or value) they provide by v(H); here $v : \mathcal{P}(\{1, \ldots, n\}) \to \mathbf{R}$. Given a space constraint c, we want to find $H \subset P$ to

maximize
$$v(H)$$

subject to $s(H) \le c$

In other words, find the susbet of items which will fit in the bag and maximize the value. Such problems are called *knapsack problems*.

Linear formulation

It is natural to expect the space constraint to be additive In other words $H \cap G = \emptyset$ means $s(H \cup G) = s(H) + s(G)$, from which we conclude that the function is monotonic (using the fact that it is nonnegative). I.e., given $G \subset H$, we have $s(G) \leq S(H)$. Suppose we also model the value function as additive. Given $H \cap G = \emptyset$, then $v(H \cup G) = v(H) + v(G)$.

It turns out that additivity is sufficient to have a linear representation for both s and v. For $H \subset P$, denote by $\chi_H : P \to \{0,1\}$ the characteristic function of H. In other words, χ_H is defined by

$$x_H(i) = \begin{cases} 1 & \text{if } i \in H \\ 0 & \text{otherwise} \end{cases}$$

Then there exists $p:\{1,\ldots,n\}\to \mathbf{R}$ and $w:\{1,\ldots,n\}\to \mathbf{R}_+$ such that

$$v(H) = \sum_{i=1}^{n} p(i)\chi_H(i)$$
 for all $H \subset \{1, \dots, n\}$

and

$$s(H) = \sum_{i=1}^{n} w(i)\chi_H(i) \quad \text{for all } H \subset \{1, \dots, n\}$$

We can formulate the following problem: given $c \in \mathbf{R}_+$, $w : \{0,1\} \to \mathbf{R}_+$ and $p : \{0,1\}^n \to \mathbf{R}$, find $H \subset \{1,\ldots,n\}$ to

maximize
$$\sum_{i=1}^{n} p(i)\chi_{H}(i)$$

subject to $\sum_{i=1}^{n} w_{i}\chi_{H}(i) \leq c$

It is common to identify χ_H with a list $x \in \{0,1\}^n$ and to find x to

maximize
$$\sum_{i} p_{i}x_{i}$$

subject to $\sum_{i} w_{i}x_{i} \leq c$
 $x_{i} \in \{0,1\}$ for all $i = 1,...,n$

This problem is often called the zero-one knapsack problem (or 0-1 knapsack problem). The problem data is the triple (p, w, c).

Alternative perspectives

Suppose instead the n objects are investments, the ith investment requiring w_i investment, returning p_i . Given that we have c dollars in capital, how should we allocate the funds to the investments to maximize return.

Other areas in which these problems are used as models include capital budgeting, cargo loading

Terminology

We generally refer to the n items, the ith such item having weight w_i and profit p_i . Sometimes such problems are called single knapsack problems (one container), in contrast with multiple knapsack problems (in which there are multiple containers).

