IT IS CLAIMED:

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

- 1. In a non-volatile memory having an array of memory storage units, each unit having a charge storage unit between a control gate and a channel region defined by a source and a drain, and a bit line switchably coupled to the drain, a method of programming a page of contiguous memory storage units having interconnected control gates to their target states, comprising:
- 6 (a) providing a bit line switchably coupled to the drain of each memory storage 7 unit and a word line coupled to all the control gates of said page of memory storage unit;
 - (b) applying an initial, first predetermined voltage to the bit lines of designated memory storage units of the page to enable programming;
 - (c) applying an initial, second predetermined voltage to the bit lines of undesignated memory storage units of said page to be program inhibited;
 - (d) floating the program-enabled bit lines, while raising the program-inhibited bit lines from said second predetermined voltage by a predetermined voltage difference to a third predetermined voltage, wherein a predetermined portion of the predetermined voltage difference is coupled as an offset to any neighboring, floated, program-enabled bit lines, and said third predetermined voltage enables floating of the channel of each program-inhibited memory storage unit;
 - (e) applying a programming voltage pulse to the word line in order to program the designated memory storage units of the page, wherein those un-designated memory storage units of the page are program-inhibited by virtue of their floated channel boosted to a program inhibited voltage condition, and a perturbation resulted from the boosting on any neighboring program-enabled memory storage units is compensated by said offset.
- 1 2. The method as in claim 1, further comprising:
- 2 (f) verifying the selected memory storage units under programming;
- 3 (g) re-designating any memory storage units that have not been verified; and

4	(h) repeating (c) to (g) until all of said page of memory storage units have been
5	verified.
1	3. The method as in any one of claims 1 or 2, wherein said floating the program-
2	enabled bit lines precedes the floating of the channel of each program-inhibited memory
3	storage unit.
1	4. The method as in any one of claims 1 or 2, wherein said floating the program-
2	enabled bit lines is after the floating of the channel of each program-inhibited memory
3	storage unit.
1	5. The method as in any one of claims 1 or 2, wherein said page of memory
2	storage units forms a row of said array.
1	6. The method as in any one of claims 1 or 2, wherein said page of memory
2	storage units forms a segment of a row of said array.
1	7. The method as in any one of claims 1 or 2, wherein:
2	said memory is organized as an array of NAND chains of memory storage units,
3	each chain having a plurality of memory storage units connected in series, and said page
4	of memory storage units is constituted from a memory storage unit from each NAND
5	chain among a page thereof.

2

1 2	8. The method as in any one of claims 1 or 2, wherein each memory storage unit stores one bit of information.
1 2	9. The method as in any one of claims 1 or 2, wherein each memory storage unit stores more than one bit of information.
1 2	10. The method as in any one of claims 1 or 2, wherein said charge storage unit is a floating gate.
1 2	11. The method as in any one of claims 1 or 2, wherein said charge storage unit is a dielectric layer.
1 2	12. The method as in any one of claims 1 or 2, wherein said non-volatile memory is in the form of a card.
1 2 3 4	13. The method as in any one of claims 1 or 2, further comprising: setting a program-enabled bit line to a predetermined potential that substantially maximizes programming efficiency whenever it has two neighboring bit lines that are also program-enabled.
1 2	14. The method as in any one of claim13, wherein said predetermined potential is at ground.
1	15. In a non-volatile memory having an array of memory storage units, each unit

having a charge storage unit between a control gate and a channel region defined by a

1 2

3	source and a drain, and a bit line switchably coupled to the drain, a programming circuit
4	for programming a page of contiguous memory storage units having interconnected
5	control gates to their target states comprising:
6	a bit line switchably coupled to the drain of each memory storage unit;
7	a word line coupled to all the control gates of said page of memory storage unit;
8	means for applying an initial, first predetermined voltage to the bit lines of
9	designated memory storage units of the page to enable programming;
10	means for applying an initial, second predetermined voltage to the bit lines of un-
11	designated memory storage units of said page to be program inhibited;
12	means for floating the program-enabled bit lines, while raising the program-
13	inhibited bit lines from said second predetermined voltage by a predetermined voltage
14	difference to a third predetermined voltage, wherein a predetermined portion of the
15	predetermined voltage difference is coupled as an offset to any neighboring, floated,
16	program-enabled bit lines, and said third predetermined voltage enables floating of the
17	channel of each program-inhibited memory storage unit;
18	means for applying a programming voltage pulse to the word line in order to
19	program the designated memory storage units of the page, wherein those un-designated
20	memory storage units of the page are program- inhibited by virtue of their floated
21	channel boosted to a program inhibited voltage condition, and a perturbation resulted
22	from the boosting on any neighboring program-enabled memory storage units is
23	compensated by said offset.
1	16. 70
1	16. The non-volatile memory as in claim 15, further comprising:
2	means for setting a program-enabled bit line to a predetermined potential that
3	substantially maximizes programming efficiency whenever it has two neighboring bit
4	lines that are also program-enabled.

17. The non-volatile memory as in claim 16, wherein said predetermined potential is at ground.

SNDK.308US0 (M-12899 US) SDK0458.000US

1	18. In a non-volatile memory having an array of memory storage units, each unit
2	having a charge storage unit between a control gate and a channel region defined by a
3	source and a drain, and a bit line switchably coupled to the drain, a programming circuit
4	for programming a page of contiguous memory storage units having interconnected
5	control gates to their target states comprising:
6	a bit line switchably coupled to the drain of each memory storage unit;
7	a word line coupled to all the control gates of said page of memory storage unit;
8	a controller and a power supply responsive to said controller;
9	said controller designating memory storage units to be programmed among said
10	page;
11	said power supply applying a first predetermined voltage to the bit lines of the
12	designated memory storage units of said page to enable programming;
13	said power supply applying a second predetermined voltage to the bit lines of un-
14	designated memory storage unit of said page to be program inhibited;
15	switches responsive to said controller for floating the program-enabled bit lines
16	while said power supply raising the program-inhibit bit lines from said second
17	predetermined voltage by a predetermined voltage difference to a third predetermined
18	voltage, wherein a predetermined portion of said predetermined voltage difference is
19	coupled as an offset to any neighboring, floated, program-enabled bit lines, and said third
20	predetermined voltage enables floating of the channel of each program-inhibited memory
21	storage units; and
22	said power supply a programming voltage pulse to the word line in order to
23	program the designated memory storage units of the page, wherein those un-designated
24	memory storage units of the page are program- inhibited by virtue of their floated
25	channel boosted to a program inhibited voltage condition, and a perturbation resulted
26	from the boosting on any neighboring program-enabled memory storage units is
27	compensated by said offset.

1	19. The non-volatile memory as in claim 18, wherein said floating the program-
2	enabled bit lines precedes the floating of the channel of each program-inhibited memory
3	storage unit.
1	20. The non-volatile memory as in claim 18, wherein said floating the program-
2	enabled bit lines is after the floating of the channel of each program-inhibited memory
3	storage unit.
1	21. The non-volatile memory as in claim 18, wherein said page of memory
2	storage units forms a row of said array.
1	22. The non-volatile memory as in claim 18, wherein said page of memory
2	storage units forms a segment of a row of said array.
1	23. The non-volatile memory as in claim 18, wherein:
2	said memory is organized as an array of NAND chains of memory storage units,
3	each chain having a plurality of memory storage units connected in series, and said page
4	of memory storage units is constituted from a memory storage unit from each NAND
5	chain among a page thereof.
1	24. The non-volatile memory as in claim 18, wherein each memory storage unit
2	stores one bit of information.
1	25. The non-volatile memory as in claim 18, wherein each memory storage unit
2	stores more than one bit of information.

1	26. The non-volatile memory as in claim 18, wherein said charge storage unit is
2	floating gate.
1	27. The non-volatile memory as in claim 18, wherein said charge storage unit is
2	dielectric layer.
1	28. The non-volatile memory as in claim 18, wherein said non-volatile memory
2	is in the form of a card
	•
1	29. The non-volatile memory as in claim 18, wherein each of said memory
2	storage units to be programmed is connectable to a bit line, and said not-volatile memory
3	further comprising:
4	a voltage source for setting said bit line to a predetermined potential that
5	substantially maximizes programming efficiency whenever it has two adjacent bit lines
6	associated with neighboring memory storage units not inhibited for programming.
1	30. The non-volatile memory as in claim 16, wherein said predetermined
2	potential is at ground.

a

a