Properties of Alternative Dirichlet-Multinomial Forms

For Fitting Composition Data

Goal

- Evaluate the relative performance of three alternative composition likelihood models:
 - o Multinomial the large sample limit of the Saturated Dirichlet-multinomial
 - Linear Dirichlet-multinomial
 - Saturated Dirichlet-multinomial
- Support better selection of composition likelihoods in integrated fishery stock assessment models.
- Use function-level diagnostics to assess estimator quality over the probability simplex for observed composition data from a simulated fishery system.

Problem

- Traditional modeling of age or size composition data often fails to account for:
 - o **Overdispersion** beyond the multinomial assumption.
 - o Residual correlation between composition bins.
 - o **Intracluster correlation** among composition data samples.
- This can lead to biased estimates, underestimated uncertainty, and poor model fit in stock assessments that use the multinomial distribution to model composition data.

Solution

- Implement a functional analysis framework in C++ and R to:
 - Sample observed proportions from a simulated fishery system over appropriate subsets of the **probability simplex**.
 - o Evaluate each distribution using:
 - Log-likelihood values
 - Stochasticity and variance metrics
 - Sensitivity diagnostics from gradients and Hessians
 - Residual correlation structure
 - Effective sample size estimation
 - Bias in recovered proportions
 - Convergence and speed metrics
 - Accuracy and precision of predictions.
- Provide **practical guidance** on the selection of composition model likelihoods based on robustness, informativeness, and computational stability.