COMPLEMENTOS DE CÁLCULO: 521234

Guía de Ejercicios No 9

1. Analice las series siguientes en cuanto a convergencia absoluta, convergencia condicional o divergencia:

(a)
$$\sum_{n\in\mathbb{N}}i^n$$

(b)
$$\sum_{n\in\mathbb{N}} \frac{i^{2n}}{n}$$

(a)
$$\sum_{n\in\mathbb{N}} i^n$$
 (b) $\sum_{n\in\mathbb{N}} \frac{i^{2n}}{n}$ (c) $\sum_{n\in\mathbb{N}} \frac{2i}{n^3}$

$$(d) \quad \sum_{n \in \mathbb{N}} \frac{i^{4n}}{(2n)!}$$

$$(e) \quad \sum_{n \in \mathbb{N}} \frac{(1-i)^{2n}}{n!}$$

$$(d) \quad \sum_{n \in \mathbb{N}} \frac{i^{4n}}{(2n)!} \qquad \qquad (e) \quad \sum_{n \in \mathbb{N}} \frac{(1-i)^{2n}}{n!} \qquad \qquad (f) \quad \sum_{n \in \mathbb{N}} \left(\frac{1}{n+i} + \frac{1}{n+1+i}\right)$$

2. Dado el término general indicado de una serie de potencias, encuentre el radio de convergencia y especifique el círculo de convergencia:

(a)
$$\frac{(z-i)^n}{3^n}$$

(b)
$$\frac{e^n z^n}{n!}$$

$$(c) \quad \frac{z^n}{2^n}$$

$$(d) \quad \frac{(2n)! - z^n}{(n!)^2}$$

(a)
$$\frac{(z-i)^n}{3^n}$$
 (b) $\frac{e^n z^n}{n!}$ (c) $\frac{z^n}{2^n}$ (d) $\frac{(2n)! - z^n}{(n!)^2}$ (e) $\frac{n^2 (z-i)^n}{2^n}$

3. Desarrolle la función dada en una serie de potencias alrededor del respectivo centro, y determine el radio y círculo de convergencia:

(a)
$$f(z) = \frac{z^2}{2+z}$$
, $c = 0$.

(a)
$$f(z) = \frac{z^2}{2+z}$$
, $c = 0$. (b) $f(z) = \frac{1}{z}$, $c = i$.

(c)
$$f(z) = e^{-z}$$
, $c = i$.

(c)
$$f(z) = e^{-z}$$
, $c = i$. (d) $f(z) = e^{-z} Ln(z)$, $c = i$.

(e)
$$f(z) = \frac{1-z}{1+2z}$$
, $c = 0$.

(e)
$$f(z) = \frac{1-z}{1+2z}$$
, $c = 0$. (f) $f(z) = (z-1)^2 e^z$, $c = 1$.

$$(g)$$
 $f(z) = \frac{\operatorname{sen}(z)}{z-\pi}, \quad c = \pi$

(g)
$$f(z) = \frac{\sin(z)}{z - \pi}$$
, $c = \pi$. (h) $f(z) = \frac{e^z}{z}$, $c = 1 - 2i$.

4. Encuentre el desarrollo en serie de la función dada en la región indicada, o en torno al punto z_0 dado.

1

$$(a) \quad f(z) = \frac{1}{z+3},$$

$$R: |z| > 3;$$

(a)
$$f(z) = \frac{1}{z+3}$$
, $R: |z| > 3$; (b) $f(z) = \frac{1}{(z+2)(z-1)}$, $R: 1 < |z-2| < 4$;

$$R: 1 < |z - 2| < 4$$

(c)
$$f(z) = \operatorname{sen}(\frac{1}{z}),$$

$$R: \ 0 < |z| < \infty;$$

(c)
$$f(z) = \text{sen}(\frac{1}{z}), \quad R: \ 0 < |z| < \infty;$$
 (d) $f(z) = \frac{\cos(z-1)}{z-1}, \quad R: \ 0 < |z-1| < \infty;$

$$R: \ 0 < |z - 1| < \infty;$$

(e)
$$f(z) = \frac{z^2}{(z+i)^2}$$
, $z_0 = i$; (f) $f(z) = e^{z^{1/2}}$, $R: 0 < |z| < \infty$;

$$(f) \quad f(z) = e^{z^{1/2}}$$

$$R: \ 0 < |z| < \infty;$$

$$(g) \quad f(z) = \frac{\sinh(z)}{z^2}$$

$$R: \ 0 < |z| < \infty;$$

(g)
$$f(z) = \frac{\sinh(z)}{z^2}$$
, $R: 0 < |z| < \infty$; (h) $f(z) = \frac{z+i}{(z-2i)^3}$, $z_0 = 2i$

$$z_0 = 2i$$

(i)
$$f(z) = \frac{1}{z^3 - 2z^2 + z}$$
, $R: 0 < |z - 1| < 1$; (j) $f(z) = \frac{1}{z} + \frac{1}{z - 1} + \frac{1}{z - i}$, $R: 0 < |z| < 1$

$$f(z) = \frac{1}{z} + \frac{1}{z-1} + \frac{1}{z-i},$$

$$R: \ 0 < |z| < 1$$

5. Determine el tipo de cada singularidad de la función dada:

(a)
$$f(z) = \frac{z^2 - 3z + 2}{z^2 - 3z}$$

$$(b) \quad f(z) = \frac{\cos(z-1)}{z^2}$$

(a)
$$f(z) = \frac{z^2 - 3z + 2}{z - 2};$$
 (b) $f(z) = \frac{\cos(z - 1)}{z^2};$ (c) $f(z) = \frac{1}{(z - 1)(z - 2)^2};$

(d)
$$f(z) = \cos\left(\frac{1}{z}\right)$$
;

(e)
$$f(z) = \frac{e^{2z}-1}{z^4}$$
;

(d)
$$f(z) = \cos\left(\frac{1}{z}\right);$$
 (e) $f(z) = \frac{e^{2z} - 1}{z^4};$ (f) $f(z) = \frac{2}{z^2} + \frac{3}{z - \pi};$

(g)
$$f(z) = \frac{\cos(z+i)-1}{(z+i)^4}$$

6. Verifique que el punto z_0 es un cero de la función dada, y determine su orden:

(a)
$$f(z) = z^2 - 1$$
, $z_0 = -1$; (b) $f(z) = \operatorname{sen}(z)$, $z_0 = 0$;

$$(b) \quad f(z) = \operatorname{sen}(z),$$

$$z_0 = 0$$

(c)
$$f(z) = \cos(z), \quad z_0 = \frac{\pi}{2}$$

(c)
$$f(z) = \cos(z)$$
, $z_0 = \frac{\pi}{2}$; (d) $f(z) = z^4 - 2z^3 + 2z - 1$, $z_0 = 1$.

7. Encuentre el residuo de la función dada en cada singularidad:

$$(a) \quad f(z) = \frac{e^{2z} - 1}{z};$$

(b)
$$f(z) = \frac{z^2 - 1}{(z - 2)(z + 1)(z + \pi)};$$

(c)
$$f(z) = \frac{ze^z}{z^4 - z^2};$$

(d)
$$f(z) = \frac{sen(z-1)}{(z-1)^3}$$
;

(e)
$$f(z) = \frac{\sinh(z)}{z^2}$$
;

$$(f)$$
 $f(z) = \frac{\cos(z-\pi)+1}{z^5}$

8. Evalúe mediante residuos la integral de la función dada según la trayectoria indicada con orientación positiva:

(a)
$$f(z) = \frac{(z^2+1)e^z}{(z+i)(z-1)^3}$$
, $R: |z-2| = 3$; (b) $f(z) = e^{1/z}$, $R: |z| = 6$;

$$(b) \quad f(z) = e^{1/z}, \qquad I$$

$$(c) \quad f(z) = \frac{z}{z^4 - 1},$$

$$R \cdot |\gamma| = 4$$

(c)
$$f(z) = \frac{z}{z^4 - 1}$$
, $R: |z| = 4$; (d) $f(z) = \frac{\tan(z)}{z^3}$, $R: |z| = 1$;

$$R: |z| = 1;$$

(e)
$$f(z) = \frac{e^{3z} + \cos(2z)}{z(z-1)}$$
, $R: |z-1| = 2$; (f) $f(z) = \frac{e^z}{z^3 - 2z^2 + z}$, $R: |z| = 2$;

$$(f)$$
 $f(z) = \frac{e^z}{z^3 - 2z^2 + z}, \quad R: |z| = 2$

$$(g) \quad f(z) = \frac{\sinh(z)}{z^6}$$

$$R: |z| = 1;$$

(g)
$$f(z) = \frac{\sinh(z)}{z^6}$$
, $R: |z| = 1$; (h) $f(z) = \tanh(z)$, $R: |z| = 1$.

9. Use residuos para evaluar:

$$(a)\int_0^{2\pi}\frac{dt}{2+\cos(t)}$$

(a)
$$\int_0^{2\pi} \frac{dt}{2 + \cos(t)};$$
 (b) $\int_0^{2\pi} \frac{\sin^2(t)}{5 - 4\cos(t)} dt;$ (c) $\int_{-\infty}^{\infty} \frac{x dx}{(1 + x^2)^2};$

$$(c) \int_{-\infty}^{\infty} \frac{x dx}{(1+x^2)^2}$$

$$(d) \int_{-\infty}^{\infty} \frac{dx}{(x^2+4)^2}$$

$$(e) \int_0^\infty \frac{x \operatorname{sen}(x)}{x^2 + 4} dx;$$

$$(d) \int_{-\infty}^{\infty} \frac{dx}{(x^2 + 4)^2} \qquad (e) \int_{0}^{\infty} \frac{x \sin(x)}{x^2 + 4} dx; \qquad (f) \int_{0}^{\infty} \frac{dx}{\sqrt{x}(x+1)}.$$

Concepción, 21 de Octubre de 2005. FPV/cln/fpv.