

Nombre:_______ Nota:_____/10

- 1. (6 points) Sea X un esquema entero de tipo finito sobre un cuerpo k. Se sabe que su cuerpo de funciones es K(X) = k(t, u, v) donde t, u, v son algebraicamente independientes sobre k.
 - (a) (2 points) Determine la dimensión de X.

Solution:

$$\dim X = \operatorname{tr.deg}(K(X)/k) = 3$$

(b) (2 points) Sea $x \in X$ un punto cerrado. Determine la dimensión del anillo $\mathcal{O}_{X,x}$.

Solution:

$$\dim \mathcal{O}_{X,x} = \dim X = 3$$

(c) (2 points) Más aún, se sabe que $t \in \mathcal{O}_X(X)$. Determine la dimensión de V(t).

Solution:

$$\dim V(t) = \dim X - 1 = 2$$

lo cual usa que $t \in \mathcal{O}_X(X)$ no es nilpotente.

2. (4 points) Pruebe que $\mathbb{C} \otimes_{\mathbb{R}} \mathbb{C}$ no es un dominio entero (en particular, no es un cuerpo). Sugerencia: $\mathbb{C} = \mathbb{R}[t]/\langle t^2 + 1 \rangle$.

Solution: Note que

$$A := \mathbb{C} \otimes_{\mathbb{R}} \mathbb{C} = \mathbb{C} \otimes_{\mathbb{R}} \mathbb{R}[t]/\langle t^2 + 1 \rangle = \mathbb{C}[t]/\langle t^2 + 1 \rangle = \mathbb{C}[t]/\langle (t-i)(t+i) \rangle$$

entonces $0 \neq t-i, t+i \in A$ son elementos no nulos cuyo producto es cero, o sea que son divisores de cero.