专业(大类) 学院

年级 学号

共 3 页, 第 1 页

2023~2024 学年第二学期期中考试试卷 《微积分Ⅱ》(共3页)

(考试时间: 2024年5月10日)

题号	1	1 1	111	四	五.	成绩	核分人签字
得分							

一、选择题(共15分,每小题3分)

- 1. 下列二重极限存在的是(
- (A) $\lim_{(x,y)\to(0,0)} \frac{x}{y}$ (B) $\lim_{(x,y)\to(0,0)} \frac{x^2y}{\sqrt{x^2+y^2}}$ (C) $\lim_{(x,y)\to(0,0)} \frac{xy}{x^2+y^2}$ (D) $\lim_{(x,y)\to(0,0)} \frac{xy^3}{x^2+y^6}$
- 2. 以下说法正确的是(
- (A)若 $f(x_0, y)$ 在 y_0 连续, $f(x, y_0)$ 在 x_0 连续,则 f(x, y) 在 (x_0, y_0) 处连续
- (B)若 f(x,y) 在 (x_0,y_0) 的偏导数 $\frac{\partial f}{\partial x}$, $\frac{\partial f}{\partial y}$ 都存在,则 f(x,y) 在 (x_0,y_0) 处连续
- (C)若 f(x, y) 在 (x_0, y_0) 沿任意方向的方向导数都存在,则 f(x, y) 在 (x_0, y_0) 可微
- (D)若 f(x,y) 在 (x_0,y_0) 可微,则它的偏导数 $\frac{\partial f}{\partial x}$, $\frac{\partial f}{\partial y}$ 在 (x_0,y_0) 处不一定连续
- 3. 设 $I_1 = \iint \frac{1}{x^2 + y^2} dxdy$, $I_2 = \iint (x^2 + y^2) dxdy$, $I_3 = \iint \ln(x^2 + y^2) dxdy$, 其中
- $D = \left\{ (x, y) \middle| \frac{1}{4} \le x^2 + y^2 \le 1 \right\}, \quad \text{则 } I_1, I_2, I_3$ 的大小顺序为 (

- (A) $I_1 < I_2 < I_3$ (B) $I_1 < I_3 < I_2$ (C) $I_2 < I_3 < I_1$ (D) $I_3 < I_2 < I_1$
- 4. 设函数 f(x, y) 连续,则二次积分 $\int_0^1 dy \int_{-\sqrt{1-y^2}}^{1-y} f(x, y) dx = ($
- $(A) \int_{-1}^{0} dx \int_{-\sqrt{1-x^2}}^{0} f(x,y) dy + \int_{0}^{1} dx \int_{0}^{1-x} f(x,y) dy \quad (B) \int_{-1}^{1} dx \int_{0}^{\sqrt{1-x^2}} f(x,y) dy$
- $(C) \int_{-1}^{0} dx \int_{0}^{\sqrt{1-x^2}} f(x,y) dy + \int_{0}^{1} dx \int_{0}^{1-x} f(x,y) dy$ (D) $\int_{0}^{\pi} d\theta \int_{0}^{1} f(\rho \cos \theta, \rho \sin \theta) \rho d\rho$

- 5. 设函数 u(x, y) 满足 $du = (2x + e^x \sin y) dx + (e^x + 1) \cos y dy$, 则 $u(x, y) = (e^x + 1) \cos y dy$, 则 $u(x, y) = (e^x + 1) \cos y dy$, 则 $u(x, y) = (e^x + 1) \cos y dy$, 则 $u(x, y) = (e^x + 1) \cos y dy$, 则 $u(x, y) = (e^x + 1) \cos y dy$, 则 $u(x, y) = (e^x + 1) \cos y dy$, 则 $u(x, y) = (e^x + 1) \cos y dy$, 则 $u(x, y) = (e^x + 1) \cos y dy$, 则 $u(x, y) = (e^x + 1) \cos y dy$, 则 $u(x, y) = (e^x + 1) \cos y dy$, 则 $u(x, y) = (e^x + 1) \cos y dy$, 则 $u(x, y) = (e^x + 1) \cos y dy$, 则 $u(x, y) = (e^x + 1) \cos y dy$, 则 $u(x, y) = (e^x + 1) \cos y dy$, 则 $u(x, y) = (e^x + 1) \cos y dy$, 则 $u(x, y) = (e^x + 1) \cos y dy$, 则 $u(x, y) = (e^x + 1) \cos y dy$, 则 $u(x, y) = (e^x + 1) \cos y dy$, 则 $u(x, y) = (e^x + 1) \cos y dy$, $u(x, y) = (e^x + 1)$
- (A) $x^2 + (e^x + 1)\sin y + C$ (B) $x^2 + (2e^x + 1)\sin y + C$
- (C) $x^2 (e^x + 1)\sin y + C$ (D) $x^2 (2e^x + 1)\sin y + C$

二、填空题(共15分,每小题3分)

- 1. 曲面 $3x^2 + y^2 z^2 = 3$ 在点 M(1,1,1) 处的切平面方程为
- 2. 函数 $f(x, y, z) = x^2 + e^{xy} + z^2$ 在 M(1,0,2) 处的梯度 **grad** $f|_{M} =$ _____
- 3. 设 L 是曲线 $y = x^3$ 上从点 O(0,0) 到点 B(1,1) 的一段弧,则曲线积分 $\int_{L} 2xy \, dx + x^2 dy$ 的值为______.
- 4. 设 $L: y = \sin x \left(0 \le x \le \frac{\pi}{2} \right)$,则曲线积分 $\int_{L} y \cos x \, ds$ 的值为______.
- 5. 设无界区域 $D = \{(x, y) | x^2 + y^2 \ge 1\}$, 反常二重积分 $\iint e^{-(x^2 + y^2)} dxdy$ 的值为___

三、计算题(共40分,每小题8分)

1. 设方程 $x^2(y+z)-4\sqrt{x^2+y^2+z^2}=0$ 确定了函数 z=f(x,y),求点 P(-2,2,1) 处的 全微分dz.

学院_____ 专业(大类)_

年级 学号

姓名

共3页,第2页

2. 计算二重积分 $I = \iint_D (x+2y) dxdy$, 其中 D 是由 y = x 与 $y = \frac{x^2}{2}$ 所围成的闭区域.

4. 计算曲线积分
$$I = \int_{L} \frac{ds}{x^2 + y^2 + z^2}$$
, 其中 $L: \begin{cases} x = \cos t, \\ y = \sin t, (0 \le t \le 1). \end{cases}$

3. 计算三重积分 $I = \iint_{\Omega} z(x^2 + y^2) dx dy dz$,其中 Ω : $\sqrt{x^2 + y^2} \le z \le \sqrt{4 - x^2 - y^2}$.

5. 已知 L 是第一象限中从点 O(0,0) 沿上半圆 $y = \sqrt{2x - x^2}$ 到点 A(2,0),再沿圆弧 $y = \sqrt{4 - x^2}$ 到点 B(0,2) 的曲线段,计算曲线积分 $I = \int_L 3x^2y \, dx + (x^3 + x - 2y) \, dy$.

学院 专业(大类)

学号

共3页,第3页

四、解答题(共24分,每小题8分)

- 1. 计算曲线积分 $I = \int_{L} \frac{(2x-y)dx + (x+2y)dy}{x^2 + y^2}$, 其中 L 是沿曲线 $y = -\cos\frac{\pi x}{2}$ 从点A(-1,0)到点B(1,0)的一段弧.
- 3. 计算曲面积分 $\iint (2y^2+z) dS$, 其中 S 是平面 x+y+z=2 被圆柱面 $x^2+y^2=1$ 所截得 的有限部分.

2. 计算曲面积分 $I = \iint_{S} x^3 dy dz + y^2 dz dx + 3y^2 z dx dy$, 其中 S 是旋转抛物面 $z = 4 - x^2 - y^2$ 在 xOy 平面上方部分的上侧.

五、证明题(本题6分)

设分片光滑曲面 Σ 是空间有界闭区域 Ω 的边界, 函数 u(x,y,z),v(x,y,z) 在 Ω 上 具有连续的二阶偏导数, $\frac{\partial v}{\partial n}$ 是函数v沿 Σ 的外法线方向n的方向导数.证明:

$$\iiint_{\Omega} u \left(\frac{\partial^2 v}{\partial x^2} + \frac{\partial^2 v}{\partial y^2} + \frac{\partial^2 v}{\partial z^2} \right) dV = \bigoplus_{\Sigma} u \frac{\partial v}{\partial n} dS - \iiint_{\Omega} \left(\frac{\partial u}{\partial x} \frac{\partial v}{\partial x} + \frac{\partial u}{\partial y} \frac{\partial v}{\partial y} + \frac{\partial u}{\partial z} \frac{\partial v}{\partial z} \right) dV.$$