Introduction, Logic

June 15, 2014

What are discrete structures...?

- discrete ≠ discreet
- Discrete math deals with objects that can only take on distinct, separated values (e.g., number of people in a room).
- ...in contrast to values that can vary continuously (e.g., how far you are from a wall).

...and what are they good for?

- Shortest path problem: How do we find the fastest route from Chicago to Bloomington?
- Graph coloring: How many colors does it take to color a map such that no two bordering countries share the same color?
- Zero-knowledge proofs: How can a user prove to her bank that she knows her password without ever revealing the password itself?
- Algorithm analysis: What is the fastest sorting algorithm possible?
- Proof theory: Can we ever prove statements that are false?
 Are there true statements that are impossible to prove?
- Set theory: How do we compare sizes of infinite sets?

Course Staff

- Instructor Yipu Wang
- TA Noah Chartoff

Schedule

- 8 weeks
- Monday through Thursday 10-11:15
- MTW lecture, Th problem session

Coursework

- Moodle reading quiz due before every lecture (M-W). First one due this Wednesday morning.
- Moodle Mini-homework due once a week on Wednesdays at 11:59pm. First one due on 6/25.
- Longform HW due in class on Wednesdays. First one due on 6/25.
- 2 midterms and final exam.

Grading

- Midterms 20% each
- Final 25%
- Reading quizzes 5% (lowest two quizzes dropped)
- Mini-homeworks 10% (lowest mini-HW dropped)
- Homeworks 20% (lowest HW dropped)

Grading Scale

- Thresholds for guaranteed grades:
 - A 94%
 - A- 90%
 - B- 80%
 - C- 70%
 - D- 60%
- In previous terms, this course has given about 20% A's, 30% B's, 30% C's, 15% D's, and 5% F's.

Textbook

- Margaret Fleck's *Building Blocks for Theoretical Computer Science*. Link on course website.
- CS 173 Discussion Problems. Please pick up at end of class today.
- Optional: Kenneth Rosen's Discrete Mathematics and its Applications

What is logic?

- Logic is the study of reasoning.
- "'Contrariwise,' continued Tweedledee, 'if it was so, it might be; and if it were so, it would be; but as it isn't, it ain't. That's logic."' - Alice in Wonderland

Lewis Carroll Logic Puzzle

Suppose

- All babies are illogical.
- Nobody is despised who can manage a crocodile.
- Illogical persons are despised.

Can babies manage crocodiles?

Atoms

- A proposition is a statement that is either true or false.
- Examples: "It is raining" and "8 < 4."
- Propositions cannot be questions or contain variables.
- Non-examples: "Is the sky blue?" and "x < 9"

Complex propositions

- Propositions can be joined together.
- e.g., "Springfield is the capital of IL and the sky is blue."
- Atoms are the simplest propositions, and we use variables to denote them.
- e.g., if p is "Springfield is the capital of IL" and q is "the sky is blue," then the previous example can be written as "p and q" or " $p \land q$."

AND (\land)

 $p \wedge q$ means "p and q" and is true when p and q are both true. We can express this using a **truth table**

р	q	$p \wedge q$
T	T	T
T	F	F
F	T	F
F	F	F

NOT (¬)

 $\neg p$ means "not p."

р	$\neg p$
T	F
F	T

OR (∀)

 $p \lor q$ means "p or q"

p	q	$p \lor q$
T	T	T
Τ	F	T
F	Τ	T
F	F	F

Implication (\rightarrow)

```
p \to q means "p implies q." In other words, "if p, then q." In other words, "When p is true, then so is q."
```

		/
p	q	$p \rightarrow q$
T	T	T
T	F	F
F	T	T
F	F	T

Chaining Implications

If $p \rightarrow q$ and $q \rightarrow r$ are true, then so is $p \rightarrow r$.

Proof:					
p	q	r	p o q	$q \rightarrow r$	$p \rightarrow r$
T	T	T	T	T	T
T	T	F	T	F	F
T	F	T	F	T	T
T	F	F	F	T	F
F	T	T	T	T	T
F	T	F	T	F	T
F	F	T	T	T	T
F	F	F	T	T	T

Bi-implication (\leftrightarrow)

 $p \leftrightarrow q$ means "q implies p and p implies q." In other words, "p if and only if q."

р	q	$p \leftrightarrow q$
T	T	T
T	F	F
F	T	F
F	F	T

In other words, "p and q have the same truth value."

Logical Equivalence

Two propositions s and t are **logically equivalent** if they have the same truth values for all cases, and we denote this by $s \equiv t$. Examples:

- $p \lor q \equiv q \lor p$ and $p \land q \equiv q \land p$

Converse and Contrapositive

- The converse of $p \rightarrow q$ is $q \rightarrow p$.
- ullet The contrapositive of p o q is eg q o
 eg p
- Any statement is equivalent to its contrapositive.

р	q	p o q	$\neg p$	$\neg q$	eg q o eg p
T	T	T	F	F	T
T	F	F	F	T	F
F	T	T	T	F	T
F	F	T	T	T	T

Now, back to the logic puzzle...

Lewis Carroll Logic Puzzle

• All babies are illogical.

$$B \rightarrow I$$

• Nobody is despised who can manage a crocodile.

$$C \rightarrow \neg D$$

• Illogical persons are despised.

$$I \rightarrow D$$

Thus

$$B \rightarrow I \rightarrow D \rightarrow \neg C$$
.

Negation

To negate expressions, we must use the following three equivalences.

- $\neg (p \land q) \equiv \neg p \lor \neg q$
- $\neg (p \lor q) \equiv \neg p \land \neg q.$

English examples:

- The opposite of "I will eat dinner and shower" is "I will not eat dinner or I will not take a bath."
- The opposite of "I will go to the movies or go to the park" is "I will not go to the movies and I will not go to the park."

Thus

$$\neg(p o q) \equiv \neg(\neg p \lor q) \equiv p \land \neg q$$

Negation example

Formula to negate

$$(p \rightarrow q) \lor r$$

$$\neg((p \to q) \lor r) \equiv \neg(p \to q) \land \neg r \tag{1}$$

$$\equiv (p \land \neg q) \land \neg r \tag{2}$$

To do

- 1 Pick up discussion problems.
- Enroll in Piazza.
- Make sure you can access Moodle. First reading quiz due right before Wednesday's class.