

ORGANIZACIÓN DE COMPUTADORAS

Departamento de Ciencias e Ingeniería de la Computación Universidad Nacional del Sur

Segundo Cuatrimestre de 2017

Segundo Examen Parcial								
Lic. en Ciencias de la Computación – Ing. en Computación – Ing. en Sistemas de Información								
Apellido y Nombre:	LU:	Hojas entregadas:						
(en ese orden)		(sin enunciado)						
Profesor:								
NOTA: Resolver los ejercicios en hojas separadas. Poner n	ombre LU u núm	ero en cada hoja						

Apague cualquier dispositivo electrónico en su poder y manténgalo guardado. No puede utilizar auriculares. Lea todo el ejercicio antes de comenzar a desarrollarlo.

Ejercicio 1. Hacer

Ejercicio 2. Hacer

Ejercicio 3. Hacer

Ejercicio 4. Hacer

Ejercicio 5. Considerando el siguiente programa para la arquitectura OCUNS, en la que toda lectura/escritura de/en la dirección FF es atrapada y redireccionada a la entrada/salida estándar:

LDA RO, FFh LOAD R1, O(RO) LOAD R2, O(R0) XOR R3, R3, R3 LDA R4, 1b13 JZ R1, 1b13 JZ R2, 1b13 SUB R5, R1, R2 JG R5, 1b12 1b11: ADD R3, R3, R2 DEC R1 JZ R1, 1b13 JMP R4 1b12: ADD R3, R3, R1 DEC R2 JZ R2, 1b12 1b13: STORE R3, O(R0) HLT

Op.	Descr.	FORM.	Pseudocódigo					
0	add	Ι	$R[d] \leftarrow R[s] + R[t]$					
1	sub	I	$\texttt{R[d]} \leftarrow \texttt{R[s]} - \texttt{R[t]}$					
2	and	I	$\texttt{R[d]} \leftarrow \texttt{R[s]} \& \texttt{R[t]}$					
3	xor	I	$\texttt{R[d]} \leftarrow \texttt{R[s]} \texttt{R[t]}$					
4	lsh	I	$\texttt{R[d]} \leftarrow \texttt{R[s]} \mathrel{<\!\!\!<} \texttt{R[t]}$					
5	rsh	I	$\texttt{R[d]} \leftarrow \texttt{R[s]} >> \texttt{R[t]}$					
6	load	I	$\texttt{R[d]} \leftarrow \texttt{mem[offset} + \texttt{R[s]]}$					
7	store	I	$\texttt{mem[offset + R[d]]} \leftarrow \texttt{R[s]}$					
8	lda	II	R[d] ← addr					
9	jz	II	if (R[d] == 0) PC \leftarrow PC + addr					
A	jg	II	if (R[d] > 0) PC \leftarrow PC + addr					
В	call	II	$R[d] \leftarrow PC; PC \leftarrow addr$					
\mathbf{C}	jmp	III	PC ← R[d]					
D	inc	III	$R[d] \leftarrow R[d] + 1$					
\mathbf{E}	dec	III	$R[d] \leftarrow R[d] - 1$					
F	hlt	III	exit					

FORMATO	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
I	0	×	×	×		dest.	d			src	. s		sr	c. t	/ o	ff.
II	1	0	×	×	dest. d				address addr							
III	1	1	×	×		dest.	d						-			

- a) Ensamblar el programa a partir de la dirección 00h. Si se tuviese que reubicar el código a partir de la dirección 20h, ¿cuáles de las referencias a memoria requieren ser ajustadas y cuáles no?
- b) Suponiendo que los valores ingresados por teclado son 1Ah y 04h:
 - c.1) Realice una traza mostrando la evolución del contenido de cada registro.
 - c.2) Describir el propósito del programa en su conjunto.
 - c.3) ¿Qué sucede con el resultado retornado por el programa si los valores ingresados fueran 04h y 1Ah? ¿Cuál es la diferencia?
 - c.4) ¿Cuál es la restricción en cuanto a los valores de entrada que considera el programa para su correcto funcionamiento?