Unidad 5: Funciones Álgebra y Geometría Analítica I (R-111) Licenciatura en Ciencias de la Computación

Iker M. Canut 2020

1. Funciones

Dados A y B conjuntos no vacios, una **función** de A en B es una relación de A en B que verifica que cada elemento de A es exactamente una vez primera componente de un par ordenado de la relación. Lo notamos $f:A\to B$. En otras palabras, se tiene que cumplir:

- Para cada $a \in A$ existe $b \in B : (a, b)$ está en la relación.
- No puede haber dos pares (a, b_1) y (a, b_2) con $b_1 \neq b_2$ en la relación.

Podemos escribir f(a) = b para indicar que la **imagen** de $a \in A$ por f es $b \in B$ El **dominio** de la función es A y el **codominio** de la función es B. Si $f: A \to B$ y $A_1 \subseteq A$, $f(A_1) = \{b \in B: f(a) = b, a \in A_1\}$ y decimos que es la imagen de A_1 por f. Si $A_1 = A$, notamos f(A) = Im(f) y ese es el **conjunto imagen** de f.

Decimos que $f: A \to B$ es **inyectiva** si cada elemento de B aparece a lo sumo una vez como segunda componente de los pares ordenados de la relación:

$$\forall a_1, a_2 \in A, f(a_1) = f(a_2) \Rightarrow a_1 = a_2$$

Teorema: Sea $f: A \to B, A_1, A_2 \subseteq A$:

•
$$f(A_1 \cup A_2) = f(A_1) \cup f(A_2)$$
 • $f(A_1 \cap A_2) \subseteq f(A_1) \cap f(A_2)$

Teorema: $\forall X_1, X_2 \subseteq A$, $[f(X_1 \cap X_2) = f(X_1) \cap f(X_2)] \iff f$ es inyectiva **Demostración**:

Sea $f: A \to B, A_1 \subseteq A \subseteq A_2$:

- $f|_{A_1}: A \to B: f|_{A_1}(a) = f(a)$ si $a \in A_1$, es la **restricción** de f a A_1 .
- $g: A_2 \to B: g(a) = f(a)$ si $a \in A$ es una **extensión** de f a A_2 .

Sea $f: A \to B, B_1 \subseteq B$, la **preimagen** de B_1 por medio de f, notada como $f^{-1}(B_1)$ es el conjunto:

$$f^{-1}(B_1) = \{ x \in A : f(x) \in B_1 \}$$

- $f^{-1}(B_1 \cup B_2) = f^{-1}(B_1) \cup f^{-1}(B_2)$
- $f^{-1}(B_1 \cap B_2) = f^{-1}(B_1) \cap f^{-1}(B_2)$
- $f^{-1}(\overline{B_1}) = \overline{f^{-1}(B_1)}$ $a \in f^{-1}(\overline{B_1}) \iff f(a) \in \overline{B_1} \iff \neg(f(a) \in B_1) \iff \neg(a \in f^{-1}(B_1)) \iff a \in \overline{f^{-1}(B_1)}$

Diremos que $f: A \to B$ es survectiva si cada elemento de B aparece al menos una vez como segunda componente de los pares ordenados de la relación: f(A) = Im(f) = B. Es decir:

Dado
$$y \in B, \exists x \in A : f(x) = y$$

Luego, una función es biyectiva si es inyectiva y suryectiva.

Sean f y g dos funciones, tales que $Im(f) \cap Dom(g) \neq \emptyset$, se define la **composición** de g con f, y se lo nota $g \circ f$, a la función con dominio: $Dom(g \circ f) = \{x \in Dom(f) : f(x) \in Dom(g)\}$ y tal que

$$(g \circ f)(x) = g(f(x)), \forall x \in Dom(g \circ f)$$

Bajo la condición $Im(f) \cap Dom(g) \neq \emptyset$ decimos que la composición de g con f es posible ya que su dominio es no vacio. Además, hay funciones para las cuales $(g \circ f)$ esta bien definida, pero $(f \circ g)$ no lo está. También pueden existir y ser distintas. Por lo tanto, no es conmutativa.

Pero la composición de funciones si es asociativa, es decir, $(h \circ g) \circ f = h \circ (g \circ f)$

Sea $f: A \to A$, la composición $(f \circ f)$ es posible y se nota f^2 . Recursivamente, $f^n = (f \circ f^{n-1})$

Teorema: Si
$$f: A \to B$$
 y $g: B \to C$ son inyectivas, entonces $(g \circ f): A \to C$ es inyectiva.
Dem: $a_1, a_2 \in A, (g \circ f)(a_1) = (g \circ f)(a_2) \Rightarrow g(f(a_1)) = g(f(a_1)) \Rightarrow f(a_1) = f(a_2) \Rightarrow a_1 = a_2$

Teorema: Si $f: A \to B$ y $g: B \to C$ son survectivas, entonces $(g \circ f): A \to C$ es survectivas. **Dem**: Dado $c \in C$ sabemos que existe $b \in B: g(b) = c$. Dado ese mismo b, sabemos que existe $a \in A: f(a) = b$. Dado $c \in C \exists a \in A: g(f(a)) = g(b) = c$ i.e es survectiva.

Una función $f: A \to B$ es **inversible** si existe $g: B \to A: (g \circ f) = id_A$ y $(f \circ g) = id_B$ Luego, si f es inversible, entonces g también lo es.

Teorema: $f:A\to B$ es inversible y $g:B\to A$ es una inversa de f, entonces es unica.

Dem: Supongamos
$$g: B \to A$$
 y $h: B \to A$ / $(f \circ h) = id_B$, $(f \circ g) = id_B$, $(g \circ f) = id_A$, $(h \circ f) = id_A$, luego: $h = h \circ id_B = h \circ (f \circ g) = (h \circ f) \circ g = id_A \circ g = g$

Teorema: f es inversible $\iff f$ es biyectiva.

 \Rightarrow) $f(a_1) = f(a_2) \Rightarrow f^{-1}(a_1) = f^{-1}(a_2) \Rightarrow a_1 = a_2$

Como $f(a) = b \iff a = f^{-1}(b)$, y sabemos que existe f^{-1} para todo $b \in B$, $\Rightarrow f^{-1}(b) \in A$

 \Leftarrow) Como f es survectiva, defino $g: B \to A$ de manera tal que a cada elemento de B le asigna $a \in A/f(a) = b$ Por la inyectividad, g es función, es decir, si $g(b) = a_1 \land g(b) = a_2$ con $a_1 \neq a_2$, sería porque $f(a_1) = f(a_2)$, contradiciendo la inyectividad de f. Luego, es inversible.

Teorema: $f: A \to B, g: B \to C$ son inversibles, entonces $(g \circ f)$ es inversible y $(g \circ f)^{-1} = f^{-1} \circ g^{-1}$. **Dem**: Como la composición de funciones biyectivas es biyectiva, $g \circ f$ es inversible.

Resta verificar que la inversa es $f^{-1} \circ g^{-1}$:

$$(f^{-1}\circ g^{-1})\circ (g\circ f)=f^{-1}\circ (g^{-1})\circ g)\circ f=f^{-1}\circ id_{B}\circ f=(f^{-1}\circ id_{B})\circ f=f^{-1}\circ f=id_{A}$$
 Análogamente, $(g\circ f)\circ (f^{-1}\circ g^{-1})=id_{B}$

La preimagen SIEMPRE existe y es un conjunto. La función inversa (si existe) es una función.

Teorema: Sea $f: A \to B$, A y B finitos, |A| = |B|, son equivalentes:

(i)
$$f$$
 es inversible (ii) f es inversible

Dem: Ya sabemos que $(i) \land (ii) \iff (iii)$, falta probar que $(i) \iff (ii)$. Vamos por el absurdo:

- Supongamos que no es inyectiva y que vale (ii), entonces $\exists a_1 \neq a_2/f(a_1) = f(a_2)$, con lo cual |A| > |f(A)| = |B|, teniendo así una contradicción.
- Suponiendo que no es survectiva y que vale (i), entonces |f(A)| < |B| = |A|s, pero como es inyectiva, $|A| \le |f(A)|$, teniendo asi otra contradicción.

Luego,
$$(i) \iff (ii) \iff (iii)$$
, demostrando asi el teorema.

2. Operaciones

Dados A y B no vacios, una función $f: A \times A \to B$ es una **operación binaria** en A. Si además, $Im(f) \subseteq A$, la operación es **cerrada** en A.

Una función $g: A \to A$ es una **operación monaria** (unaria) en A.

.....

Dada $f: A \times A \to B$, operación binaria en A,

- f es conmutativa si $f(a_1, a_2) = f(a_2, a_1), \forall (a_1, a_2) \in A \times A$.
- Si f es cerrada, entonces f es **asociativa** si $f(f(a,b),c)=f(a,f(b,c)), \forall a,b,c\in A.$

Podemos notar $f(a,b) = a \otimes b$, y estas propiedadades son mas amigables: Por ejemplo la asociatividad sería: $(a \otimes b) \otimes c = a \otimes (b \otimes c)$.

......

Luego, dado $f: A \times A \to A$, decimos que tiene **neutro** si existe $a_0 \in A$ tal que

$$f(a, a_0) = f(a_0, a) = a, \forall a \in A$$

Es decir,

$$a \otimes a_0 = a_0 \otimes a = a$$

Además, si $f: A \times A \to A$ tiene neutro, éste es único.

.....

Dada $f: A \times A \to A$, si f posee neutro $x \in A$, decimos que la operación posee inversos si

$$\forall a \in A \exists a' : f(a, a') = f(a', a) = x$$

Luego, si $f: A \times A \to A$ es una operación asociativa, con elemento neutro $x \in A$ que posee **inversos**, entonces cada elemento posee un único inverso: Supongamos que tiene 2 inversos a_1 y a_2 ,

$$a_1 = a_1 \otimes x = a_1 \otimes (a \otimes a_2) = (a_1 \otimes a) \otimes a_2 = x \otimes a_2 = a_2$$