System zarządzający stacją paliw

Zespół:

- 1. Jakub Mroczkowski
- 2. Paweł Bąk
- 3. Kamil Mierzwiński

Systemy baz danych

Spis treści

1.	Wst	ęp 3
2.	Ana	liza wymagań systemu
	2.1	Wymagania funkcjonalne
	2.2	Wymagania niefunkcjonalne
	2.3	Diagram przypadków użycia
3.	Wyk	corzystane technologie
4.	Proj	ekt aplikacji4
	4.1	Architektura aplikacji4
	4.2	Projekt koncepcyjny bazy danych
	4.3	Projekt schematu relacyjnego5
	4.4	Mapowanie klas na tabele bazodanowe
5.	Funkcjonalność aplikacji7	
6.	5. Interfejs użytkownika	
7.	Pod	sumowanie7
Dodatek A: Skrypty tworzące obiekty baz danych		

1. Wstęp

Celem budowy systemu jest zautomatyzowanie stacji paliw. Aplikacja ma umożliwić: zarządzanie transakcjami oraz kartami promocyjnymi, wprowadzanie dostaw produktów oraz generowanie raportów.

2. Analiza wymagań systemu

2.1 Wymagania funkcjonalne

- Generowanie raportów
- Utworzenie transakcji
- Wycofanie transakcji
- Wystawianie faktury
- Dodanie kontrahenta
- Wydanie karty
- · Sprawdzenie liczby punktów na danej karcie
- Wprowadzenie dostawy
- Wycofanie dostawy

2.2 Wymagania niefunkcjonalne

- Czas odpowiedzi systemu dla generowania raportów:
 - o Poniżej 10 sekund
- Czas odpowiedzi systemu w przypadku pozostałych aktywności:
 - o Poniżej 5 sekund
- Czas na zasygnalizowanie przez system przyjęcia akcji użytkownika:
 - o Poniżej 100 ms
- Program pracuje na systemie Windows 10
- Program posiada graficzny interfejs
- Do pełnej pracy systemu potrzebne są zewnętrzne czujniki (napełnienie zbiornika, praca dystrybutora)

2.3 Diagram przypadków użycia

3. Wykorzystane technologie

Framework ASP.NET Core wersja 3.0.0 + Entity Framework Core wersja 3.0.0 Baza danych:

System zarządzania: MS SQL, Hosting: GearHost

4. Projekt aplikacji

4.1 Architektura aplikacji

4.2 Projekt koncepcyjny bazy danych

4.3 Projekt schematu relacyjnego

Opis tabel:

- 1. Towar zawiera informacje na temat danego produktu sprzedawanego na stacji paliw
 - a. Id towaru unikatowy identyfikator
 - b. Nazwa tytuł produktu
 - c. Ilość na stanie aktualna liczebność towaru w magazynie
 - d. Cena opłata za sztukę produktu wyrażona w PLN
 - e. Cena w punktach opłata za sztukę produktu wyrażona w punktach znajdujących się na karcie lojalnościowej
- 2. Lista_towarów zawiera informacje o zakupionych towarach w transakcji
 - a. Id_transakcji identyfikator określający transakcję
 - b. Id towaru identyfikator określający towar
 - c. Ilość liczebność wybranego towaru w danej transakcji
- 3. Transakcja zawiera informacje o transakcji
 - a. Id_transakcji unikatowy identyfikator
 - b. Id karty identyfikator określający kartę użytą podczas wykonywania transakcji
 - c. Data data transakcji
- 4. Lista-tankowań łączy informacje o danym tankowaniu z konkretną transakcją
 - a. Id tankowania unikatowy identyfikator
 - b. Id_transakcji identyfikator określający transakcję
- 5. Tankowanie tabela zawierająca informacje o pojedynczych tankowaniach (jedno tankowanie z jednego dystrybutora):
 - a. Id_tankowania pole uzupełniane automatycznie, identyfikuje pojedynczy rekord
 - b. Ilość pole zawierające ilość paliwa składającą się na pojedyncze tankowanie w ustalonej jednostce
 - c. Data data tankowania
 - d. Id paliwa pole wskazujące na tabelę Paliwo i określające jakie paliwo zatankowano
 - e. Nr dystrybutora pole wskazujące na tabelę Dystrybutor i określające, z którego dystrybutora tankowano

- 6. Paliwo tabela zawierająca informacje o różnych rodzajach paliwa:
 - a. Id paliwa pole uzupełniane automatycznie, identyfikuje pojedynczy rekord
 - b. Nazwa pole zawierające nazwę rodzaju paliwa, którą posługują się pracownicy stacji
 - c. Cena za litr pole zawierające cenę paliwa za litr w złotych polskich
- 7. Dystrybutor tabela zawierająca informacje o poszczególnych dystrybutorach na obsługiwanej stacji:
 - a. Nr_dystrybutora pole jednoznacznie identyfikujące dystrybutor na stacji
 - b. Zablokowany pole zawierające informację o tym czy dystrybutor jest aktualnie dostępny
- 8. Dystrybutor-zbiornik tabela łącząca dystrybutory ze zbiornikami z paliwem, do których są podłączone:
 - a. Nr_dystrybutora pole wskazujące na tabelę Dystrybutor i przechowujące numer jednego dystrybutora
 - b. Nr_zbiornika pole wskazujące na tabelę Zbiornik i przechowujące numer jednego zbiornika
- 9. Zbiornik tabela zawierająca informacje o zbiornikach z paliwem:
 - a. Nr_zbiornika pole jednoznacznie identyfikujące zbiornik z paliwem na stacji
 - b. Pojemność pojemność zbiornika w ustalonej jednostce
 - c. Aktualna zawartość aktualne zapełnienie zbiornika w ustalonej jednostce
 - d. Id_paliwa pole wskazujące na tabelę Paliwo i określające jakie paliwo znajduje się w zbiorniku
- 10. Klient- Przechowuje informacje o klientach stacji paliw, którzy mogą posiadać kartę lojalnościową lub biorą zakupy na fakturę:
 - a. Id klienta klucz główny, unikalny identyfikator klienta (typ: liczba całkowita)
 - b. Nazwa nazwa firmy, jeśli klientem jest osoba prywatna, to pole jest null (typ: napis)
 - c. Imie Imie klienta, wypełnione jeśli klient jest osobą prywatną (typ: napis)
 - d. Nazwisko nazwisko klienta, wypełnione jeśli klient jest osobą prywatną (typ: napis)
 - e. NIP numer NIP klienta, jeśli klient nie posiada- NULL, typ (liczba)
 - f. Ulica, nr domu, nr mieszkania, kod pocztowy, miejscowość dane adresowe klienta (typ: napis)
- 11. Transakcja-faktura przechowuje transakcje do których została wystawiona faktura:
 - a. id transakcji klucz główny, identyfikator transakcji (typ: liczba całkowita)
 - b. id_klienta identyfikator klienta, dla którego została wystawiona faktura.(typ: liczba całkowita)
 - c. Data przechowuje datę transakcji (typ:date)
 - d. id_samochodu jeśli na fakturze było paliwo, w tym miejscu może znaleźć się id pojazdu który był tankowany
- 12. Samochód przechowuje samochody, które są przypisane do klientów:
 - a. Id_samochodu klucz główny, identyfikator samochodu (typ: liczba całkowita)
 - b. id_klienta identyfikator klienta do którego należy samochód (typ: liczba całkowita)
 - c. nr rejestracji numer rejestracyjny samochodu (typ: napis)
 - d. marka marka samochodu (typ: napis)
 - e. model model samochodu (typ: napis)
- 13. Karta lojalnościowa przechowuje karty lojalnościowe przypisane do klientów:
 - a. Nr_karty klucz główny, identyfikator karty (typ: liczba całkowita)

- b. id_klienta identyfikator klienta, do którego należy karta (typ: liczba całkowita)
- c. liczba_punktów ilość punktów zebranych na karcie (typ: liczba całkowita)
- 4.4 Mapowanie klas na tabele bazodanowe
- 5. Funkcjonalność aplikacji
- 6. Interfejs użytkownika
- 7. Podsumowanie

Dodatek A: Skrypty tworzące obiekty baz danych

```
CREATE TABLE [Client] (
    [IdClient] int NOT NULL IDENTITY,
     Name nvarchar(max) NULL,
     FirstName] nvarchar(max) NULL,
     Surname] nvarchar(max) NULL,
     [NIP] nvarchar(max) NULL,
     Street] nvarchar(max) NOT NULL,
     [HouseNumber] nvarchar NOT NULL,
     ApartmentNumber] int NULL,
     [Postcode] nvarchar(max) NOT NULL,
    [Locality] nvarchar(max) NOT NULL.
    CONSTRAINT [PK Client] PRIMARY KEY ([IdClient])
);
CREATE TABLE [Fuel] (
    [IdFuel] int NOT NULL IDENTITY,
    [Name] nvarchar(max) NOT NULL,
    [PriceForLiter] decimal(18,2) NOT NULL,
    CONSTRAINT [PK Fuel] PRIMARY KEY ([IdFuel])
);
CREATE TABLE [GasPump] (
    [IdGasPump] int NOT NULL IDENTITY,
    [Locked] bit NOT NULL,
    CONSTRAINT [PK GasPump] PRIMARY KEY ([IdGasPump])
);
```

```
CREATE TABLE [Product] (
    [IdProduct] int NOT NULL IDENTITY,
     Namel nvarchar(max) NOT NULL,
     [QuantityInStorage] int NOT NULL,
    [Price] decimal(18,2) NOT NULL,
    [PriceInPoints] int NOT NULL,
    CONSTRAINT [PK Product] PRIMARY KEY ([IdProduct])
);
CREATE TABLE [Car] (
    [IdCar] int NOT NULL IDENTITY,
     [IdClient] int NOT NULL,
     [NumberPlate] nvarchar(max) NOT NULL,
     [CarBrand] nvarchar(max) NULL,
    [CarModel] nvarchar(max) NULL,
    CONSTRAINT [PK Car] PRIMARY KEY ([IdCar]),
    CONSTRAINT [FK_Car_Client_IdClient] FOREIGN KEY ([IdClient]) REFERENCES
[Client] ([IdClient]) ON DELETE CASCADE
CREATE TABLE [LoyalityCard] (
    [IdLoyalityCard] int NOT NULL IDENTITY,
    [IdClient] int NOT NULL,
    [ActualPoints] int NOT NULL,
    CONSTRAINT [PK_LoyalityCard] PRIMARY KEY ([IdLoyalityCard]),
    CONSTRAINT [FK_LoyalityCard_Client_IdClient] FOREIGN KEY ([IdClient])
REFERENCES [Client] ([IdClient]) ON DELETE CASCADE
CREATE TABLE [FuelTank] (
    [IdFuelTank] int NOT NULL IDENTITY,
     [IdFuel] int NOT NULL,
    [Capacity] real NOT NULL,
    [ActualQuantity] real NOT NULL,
    CONSTRAINT [PK FuelTank] PRIMARY KEY ([IdFuelTank]),
    CONSTRAINT [FK FuelTank Fuel IdFuel] FOREIGN KEY ([IdFuel]) REFERENCES
[Fuel] ([IdFuel]) ON DELETE CASCADE
);
CREATE TABLE [Fueling] (
     [IdFueling] int NOT NULL IDENTITY,
    [IdFuel] int NOT NULL,
    [IdGasPump] int NOT NULL,
     [Quantity] real NOT NULL,
    [Date] datetime2 NOT NULL,
    CONSTRAINT [PK_Fueling] PRIMARY KEY ([IdFueling]),
CONSTRAINT [FK_Fueling_Fuel_IdFuel] FOREIGN KEY ([IdFuel]) REFERENCES [Fuel] ([IdFuel]) ON DELETE CASCADE,
    CONSTRAINT [FK_Fueling_GasPump_IdGasPump] FOREIGN KEY ([IdGasPump])
REFERENCES [GasPump] ([IdGasPump]) ON DELETE CASCADE
```

```
CREATE TABLE [Transaction] (
    [IdTransaction] int NOT NULL IDENTITY,
     IdLoyalityCard] int NULL,
     Datel datétime2 NOT NULL,
    [Discriminator] nvarchar(max) NOT NULL,
    [IdClient] int NULL,
    [IdCar] int NULL,
    CONSTRAINT [PK_Transaction] PRIMARY KEY ([IdTransaction]),
    CONSTRAINT [FK_Transaction LoyalityCard IdLoyalityCard] FOREIGN KEY
([IdLoyalityCard])    REFERENCES [LoyalityCard] ([IdLoyalityCard])    ON DELETE
NO ACTION,
    CONSTRAINT [FK_Transaction_Car_IdCar] FOREIGN KEY ([IdCar]) REFERENCES
[Car] ([IdCar]) ON DELETE NO ACTION,
    CONSTRAINT [FK Transaction Client IdClient] FOREIGN KEY ([IdClient])
REFERENCES [Client] ([IdClient]) ON DELETE NO ACTION
CREATE TABLE [PumpTank] (
    [IdGasPump] int NOT NULL,
    [IdFuelTank] int NOT NULL,
    CONSTRAINT [PK PumpTank] PRIMARY KEY ([IdGasPump], [IdFuelTank]),
    CONSTRAINT [FK_PumpTank_FuelTank_IdFuelTank] FORÉÍGN KEY
([IdFuelTank]) REFERENCES [FuelTank] ([IdFuelTank]) ON DELETE CASCADE,
    CONSTRAINT [FK_PumpTank_GasPump_IdGasPump] FOREIGN KEY ([IdGasPump])
REFERENCES [GasPump] ([IdGasPump]) ON DELETE CASCADE
);
CREATE TABLE [FuelingList] (
    [IdFueling] int NOT NULL,
    [IdTransaction] int NOT NULL,
    CONSTRAINT [PK_FuelingList] PRIMARY KEY ([IdFueling]),
    CONSTRAINT [FK_FuelingList_Fueling_IdFueling] FOREIGN KEY
([IdFueling]) REFERENCES [Fueling] ([IdFueling]) ON DELETE CASCADE,
    CONSTRAINT [FK_FuelingList_Transaction_IdTransaction] FOREIGN KEY
([IdTransaction]) REFERENCES [Transaction] ([IdTransaction]) ON DELETE
CASCADE
);
CREATE TABLE [ProductList] (
    [IdTransaction] int NOT NULL,
    [IdProduct] int NOT NULL,
    [Quantity] int NOT NULL,
    CONSTRAINT [PK ProductList] PRIMARY KEY ([IdProduct],
[IdTransaction]),
    CONSTRAINT [FK ProductList Product IdProduct] FOREIGN KEY
([IdProduct]) REFERENCES [Product] ([IdProduct]) ON DELETE CASCADE,
    CONSTRAINT [FK ProductList Transaction IdTransaction] FOREIGN KEY
([IdTransaction]) REFERENCES [Transaction] ([IdTransaction]) ON DELETE
CASCADE
);
```