3 (a) Figure 1 shows how the entropy of a molecular substance X varies with temperature.

Figure 1

3 (a) (i) Explain, in terms of molecules, why the entropy is zero when the temperature is zero Kelvin.

.....

(2 marks)

.....

3 (a) (ii) Explain, in terms of molecules, why the first part of the graph in **Figure 1** is a line that slopes up from the origin.

.....

.....

(2 marks)

(Extra space)

3	(a) (iii)	On Figure 1 , mark on the appropriate axis the boiling point (T_b) of substance X . (1 mark)
3	(a) (iv)	In terms of the behaviour of molecules, explain why $\mathbf{L_2}$ is longer than $\mathbf{L_1}$ in Figure 1.
		(2 marks)

Question 3 continues on the next page

Turn over ▶

3 (b) Figure 2 shows how the free-energy change for a particular gas-phase reaction varies with temperature.

Figure 2

3	(b) (i)	Explain, with the aid of a thermodynamic equation, why this line obeys the mathematical equation for a straight line, $y = mx + c$.	
			2 marks)
3	(b) (ii)	Explain why the magnitude of ΔG decreases as T increases in this reaction.	
			(1 mark)
3	(b) (iii)	State what you can deduce about the feasibility of this reaction at temperatures than 500 K.	s lower

(1 mark)

3 (c) The following reaction becomes feasible at temperatures above 5440 K.

$$H_2O(g) \longrightarrow H_2(g) + \frac{1}{2}O_2(g)$$

The entropies of the species involved are shown in the following table.

	H ₂ O(g)	H ₂ (g)	O ₂ (g)
S/JK ⁻¹ mol ⁻¹	189	131	205

3 (c) (i)	Calculate the entropy change ΔS for this reaction.
	(1 mark)
3 (c) (ii)	Calculate a value, with units, for the enthalpy change for this reaction at 5440 K.
	(If you have been unable to answer part (c) (i), you may assume that the value of the entropy change is $+98 \mathrm{J} \mathrm{K}^{-1} \mathrm{mol}^{-1}$. This is not the correct value.)
	(3 marks)

15

Turn over ▶

