.J^VDF

8 Z R F V Y C X J N W 'OVaYFYF VYNJW 6JVNYYBV

0^RXYFRYDRTW 1aPFW

'OVaYFYF 8ZRFVYCXJ^R

2DFXZRAVYLJXDLRFNQJUJIDTTVNXPOBTQLJYETYN UFVTZXNQABUNNXYTXnYTYT' aYFR

. 'HNFOAMIJ

'OVaYFYF 8ZRFVYCXJ^R

2DFXZRAVYLJXDLRFNQJUJIDTTVNXPOBTQbJYTNUFVTZXNQABUNNXYTXmYTYT' aYFR

'. 'HNFOAMIJ

.

2DFXZRAVYLJXDLRFNQJUJIDTTVNXPOBTQLJYETYN UFVTZXNJAPKAJYNXYT'XYYTYT' aYFR

'. 'HNFOAMIJ

Quiz time Σ-Λ

Μια συνάρτηση:

έχει πάντα μέγιστο έχει πάντα ακρότατο έχει το πολύ ένα μπορεί να έχει μέγιστο και όχι ελάχιστο μπορεί να έχει 3 ακριβώς ελάχιστα

Quiz time Σ-Λ

Μια συνάρτηση:

έχει πάντα μέγιστο έχει πάντα ακρότατο έχει το πολύ ένα μπορεί να έχει μέγιστο και όχι ελάχιστο μπορεί να έχει 3 ακριβώς ελάχιστα μπορεί να έχει άπειρα

$$f(x) = x^2$$

$$f(x) = x^2$$
, $f(x) \ge f(0)$

$$f(x)=x^2$$
 , $f(x)\geq f(0)$
$$f(x)=\alpha x^2+\beta x+\gamma \text{ , } \alpha>0$$

$$\begin{split} f(x)&=x^2\text{, }f(x)\geq f(0)\\ f(x)&=\alpha x^2+\beta x+\gamma\text{, }\alpha>0\text{, }f(x)\geq f(-\frac{\beta}{2\alpha}) \end{split}$$

$$f(x)=x^2\text{, }f(x)\geq f(0)$$

$$f(x)=\alpha x^2+\beta x+\gamma\text{, }\alpha>0\text{, }f(x)\geq f(-\frac{\beta}{2\alpha})$$

$$f(x)=|x|$$

$$\begin{split} f(x)&=x^2\text{, }f(x)\geq f(0)\\ f(x)&=\alpha x^2+\beta x+\gamma\text{, }\alpha>0\text{, }f(x)\geq f(-\frac{\beta}{2\alpha})\\ f(x)&=|x|\text{, }f(x)\geq f(0) \end{split}$$

$$\begin{split} f(x) &= x^2 \text{, } f(x) \geq f(0) \\ f(x) &= \alpha x^2 + \beta x + \gamma \text{, } \alpha > 0 \text{, } f(x) \geq f(-\frac{\beta}{2\alpha}) \\ f(x) &= |x| \text{, } f(x) \geq f(0) \\ f(x) &= x + \frac{1}{x} \text{, } x > 0 \end{split}$$

$$\begin{split} f(x) &= x^2 \text{, } f(x) \geq f(0) \\ f(x) &= \alpha x^2 + \beta x + \gamma \text{, } \alpha > 0 \text{, } f(x) \geq f(-\frac{\beta}{2\alpha}) \\ f(x) &= |x| \text{, } f(x) \geq f(0) \\ f(x) &= x + \frac{1}{x} \text{, } x > 0 \text{, } f(x) \geq f(1) \\ f(x) &= \eta \mu(2x) \end{split}$$

$$f(x) = x^{2}, f(x) \geq f(0)$$

$$f(x) = \alpha x^{2} + \beta x + \gamma, \alpha > 0, f(x) \geq f(-\frac{\beta}{2\alpha})$$

$$f(x) = |x|, f(x) \geq f(0)$$

$$f(x) = x + \frac{1}{x}, x > 0, f(x) \geq f(1)$$

$$f(x) = \eta \mu(2x), f(x) \geq f(k\pi + \frac{\pi}{2} - \frac{\pi}{4})$$

$$\begin{split} f(x) &= x^2 \text{, } f(x) \geq f(0) \\ f(x) &= \alpha x^2 + \beta x + \gamma \text{, } \alpha > 0 \text{, } f(x) \geq f(-\frac{\beta}{2\alpha}) \\ f(x) &= |x| \text{, } f(x) \geq f(0) \\ f(x) &= x + \frac{1}{x} \text{, } x > 0 \text{, } f(x) \geq f(1) \\ f(x) &= \eta \mu(2x) \text{, } f(x) \geq f(k\pi + \frac{\pi}{2} - \frac{\pi}{4}) \text{ , } f(x) \leq f(k\pi + \frac{\pi}{4}) \end{split}$$

Συμμετρίες...

Ορισμός

Μία συνάρτηση f είναι <u>άρτια</u> σε ένα διάστημα Δ αν για κάθε $x \in \Delta$

$$-x\in\Delta\ \mathrm{kal}\ f(-x)=f(x)$$

Συμμετρίες...

Ορισμός

Μία συνάρτηση f είναι <u>άρτια</u> σε ένα διάστημα Δ αν για κάθε $x \in \Delta$

$$-x\in\Delta\ \mathrm{kal}\ f(-x)=f(x)$$

Ορισμός

Μία συνάρτηση f είναι περιττή σε ένα διάστημα Δ αν για κάθε $x \in \Delta$

$$-x \in \Delta$$
 kal $f(-x) = -f(x)$

Quiz Time

Υπάρχει τουλάχιστον μια άρτια συνάρτηση

Quiz Time

Υπάρχει τουλάχιστον μια άρτια συνάρτηση Υπάρχει τουλάχιστον μία περιττή συνάρτηση

Quiz Time

Υπάρχει τουλάχιστον μια άρτια συνάρτηση Υπάρχει τουλάχιστον μία περιττή συνάρτηση Υπάρχει συνάρτηση που δεν είναι άρτια ούτε περιττή

Στο διπλανό σχήμα φαίνεται η γραφική παράσταση μιας συνάρτησης f

Να βρείτε τις θέσεις ακροτάτων και τα ακρότατα της f

Στο διπλανό σχήμα φαίνεται η γραφική παράσταση μιας συνάρτησης f

Να βρείτε τις θέσεις ακροτάτων και τα ακρότατα της f

Να δείξετε ότι $-1 \le f(x) \le 3$ για κάθε $x \in [-2,2]$

Στο διπλανό σχήμα φαίνεται η γραφική παράσταση μιας συνάρτησης f

Να βρείτε τις θέσεις ακροτάτων και τα ακρότατα της f

Να δείξετε ότι $-1 \leq f(x) \leq 3$ για κάθε $x \in [-2,2]$

Να δείξετε ότι $f(\alpha)-f(\beta)\leq 4$, α , $\beta\in[-2,2]$

Στο διπλανό σχήμα φαίνεται η γραφική παράσταση μιας συνάρτησης f

Να βρείτε τις θέσεις ακροτάτων και τα ακρότατα της f

Να δείξετε ότι $-1 \le f(x) \le 3$ για κάθε $x \in [-2,2]$

Nα δείξετε ότι $f(\alpha)-f(\beta)\leq 4$, α , $\beta\in[-2,2]$

Να λύσετε

Tην εξίσωση f(x) = 1

Στο διπλανό σχήμα φαίνεται η γραφική παράσταση μιας συνάρτησης f

Να βρείτε τις θέσεις ακροτάτων και τα ακρότατα της f

Να δείξετε ότι $-1 \le f(x) \le 3$ για κάθε $x \in [-2,2]$

Να δείξετε ότι $f(\alpha)-f(\beta)\leq 4$, α , $\beta\in[-2,2]$

Να λύσετε

Την εξίσωση f(x) = 1Την ανίσωση f(x) > -1

Να βρείτε τα ολικά ακρότατα των συναρτήσεων:

$$|e^{x}-1|$$

Να βρείτε τα ολικά ακρότατα των συναρτήσεων:

$$|e^x - 1|$$

 $f(x) = (e^x - 1)^2 (x - 1)^4$

Να βρείτε τα ολικά ακρότατα των συναρτήσεων:

$$|e^{x} - 1|$$

$$f(x) = (e^{x} - 1)^{2}(x - 1)^{4}$$

$$f(x) = x^{2} - 2x - 5$$

Δίνεται η συνάρτηση $f(x) = \frac{1}{x}$, x > 0. Από σημείο \mathbf{M} της C_f φέρνουμε παράλληλες ως προς τους άξονες y'y και x'x που τέμνουν τον x'x στο \mathbf{A} και τον y'y στο \mathbf{B} . Να βρείτε τη θέση του σημείου \mathbf{M} για το οποίο η περίμετρος του ορθογωνίου ΟΑΜΒ γίνεται ελάχιστη (όπου \mathbf{O} η αρχή των αξόνων).

Έστω $f:\mathbb{R}\to\mathbb{R}$ μία συνάρτηση, με f(0)=1, για την οποία ισχύει:

$$f(x) \ge x + 1$$
, για κάθε $x \in \mathbb{R}$

Για κάθε $x\in\mathbb{R}$ θεωρούμε τα σημεία $\mathbf{A}(x,f(x))$ και $\mathbf{B}(f(x),x)$. Να βρείτε την ελάχιστη απόσταση των σημείων \mathbf{A} και \mathbf{B} .

Έστω συνάρτηση $f:\mathbb{R}\to\mathbb{R}$ η οποία παρουσιάζει ελάχιστο μόνο στο 1 το 2.

Nα δείξετε ότι $f(x) \ge 2$ για κάθε $x \in \mathbb{R}$.

Έστω συνάρτηση $f: \mathbb{R} \to \mathbb{R}$ η οποία παρουσιάζει ελάχιστο μόνο στο 1 το 2.

Nα δείξετε ότι $f(x) \ge 2$ για κάθε $x \in \mathbb{R}$.

Να λύσετε την εξίσωση $f(x) + (x-1)^2 = 2$

Έστω συνάρτηση $f:\mathbb{R}\to\mathbb{R}$ η οποία παρουσιάζει ελάχιστο μόνο στο 1 το 2.

Nα δείξετε ότι $f(x) \ge 2$ για κάθε $x \in \mathbb{R}$.

Να λύσετε την εξίσωση $f(x) + (x-1)^2 = 2$

An iscúel $f(\alpha)+f(\ln\beta)=4$, na breíte tig timés twn α kal β .

$$x < \tfrac{2}{x^4+1}$$

$$x<\frac{2}{x^4+1}$$

$$x^4-\frac{2}{x}>-1\text{, sto}\ (0,+\infty)$$

$$x < \frac{2}{x^4 + 1}$$
 $x^4 - \frac{2}{x} > -1$, $\sigma \tau o \ (0, +\infty)$ $\ln^5 x + \ln x < 2$

$$x < \frac{2}{x^4+1}$$
 $x^4 - \frac{2}{x} > -1$, sto $(0, +\infty)$ $\ln^5 x + \ln x < 2$ $f(2x-1) + 2 > x^5 + x$

Δίνεται η συνάρτηση $f(x) = x + \ln(x+1)$ Να εξετάσετε τη συνάρτηση f ως προς τη μονοτονία

Δίνεται η συνάρτηση $f(x)=x+\ln(x+1)$ Να εξετάσετε τη συνάρτηση f ως προς τη μονοτονία Να λύσετε την ανίσωση $x^2+\ln(x^2+1)>0$

Δίνεται η συνάρτηση $f(x)=x+\ln(x+1)$ Να εξετάσετε τη συνάρτηση f ως προς τη μονοτονία Να λύσετε την ανίσωση $x^2+\ln(x^2+1)>0$ Να λύσετε την ανίσωση $x^4-x^2<\frac{x^2+1}{x^4+1}$

Δίνεται η συνάρτηση $f(x) = \sqrt{x^2 + 1}$

Να βρείτε το ελάχιστο της συνάρτησης f και τη θέση που το παρουσιάζει

Δίνεται η συνάρτηση $f(x) = \sqrt{x^2 + 1}$

Να βρείτε το ελάχιστο της συνάρτησης f και τη θέση που το παρουσιάζει

Να λύσετε την εξίσωση $\sqrt{x^2+1}=\sigma v \nu x$

Να εξετάσετε, αν οι παρακάτω συναρτήσεις είναι άρτιες ή περιττές.

$$f(x) = x\eta\mu\frac{1}{x}$$

Να εξετάσετε, αν οι παρακάτω συναρτήσεις είναι άρτιες ή περιττές.

$$f(x) = x\eta\mu\frac{1}{x}$$

$$f(x) = \ln\frac{1-x}{1+x}, \ x \in (-1,1)$$

Έστω η συνάρτηση
$$f(x) = \ln(x+\sqrt{x^2+1})$$

Να βρείτε το πεδίο ορισμού της συνάρτησης f

Έστω η συνάρτηση $f(x) = \ln(x+\sqrt{x^2+1})$ Να βρείτε το πεδίο ορισμού της συνάρτησης fΝα δείξετε ότι η συνάρτηση είναι περιττή.

Έστω $f: \mathbb{R} \to \mathbb{R}$ μία συνάρτηση με f(1) = 2 η οποία είναι γνησίως μονότονη και περιττή. Να λύσετε την ανίσωση:

$$f(x-1) + f(x-3) < 5(2-x)$$

Έστω $f: \mathbb{R} \to \mathbb{R}$ μία περιττή συνάρτηση, για την οποία ισχύει:

$$(x^2+1)f(x) \leq 2x$$
, για κάθε $x \in \mathbb{R}$

Να βρείτε:

 $\tau o f(0)$

Έστω $f: \mathbb{R} \to \mathbb{R}$ μία περιττή συνάρτηση, για την οποία ισχύει:

$$(x^2+1)f(x) \leq 2x$$
, για κάθε $x \in \mathbb{R}$

Να βρείτε:

το f(0)

τον τύπο της συνάρτησης f

Έστω $f:\mathbb{R} o \mathbb{R}$ μία συνάρτηση, για την οποία ισχύει

$$f(x+y)=f(x)+f(y)$$
, για κάθε $x,y\in\mathbb{R}$

Να εξετάσετε αν είναι άρτια ή περιττή

Θεωρία Ασκήσεις

Στο moodle θα βρείτε τις ασκήσεις που πρέπει να κάνετε, όπως και αυτή τη παρουσίαση

