Homework 7

1 Let C be an ellipse in the plane \mathbf{E}^2 such that its foci are at the points $F_1 = (-1,0)$ and $F_2 = (1,0)$ and it passes through the point K = (0,2).

Write down the analytical formula which defines this ellipse.

Find the area of this ellipse.

2 Let C be an ellipse in the plane \mathbf{E}^2 such that its foci are at the points $F_1 = (-5, 0)$, $F_2 = (16, 0)$. It is known that the point K = (0, 12) belongs to the ellipse.

Write down the analytical formula which defines this ellipse.

Find intersection of this ellipse with OX and OY axis.

Find the area of this ellipse.

3 Let H be hyperbola in the plane \mathbf{E}^2 such that it passes through the point P=(3,2), and its foci are at the points $F_1=(0,2)$, $F_2=(0,-2)$. Find the intersection points of the hyperbola with OY axis.

Explain why this hyperbola does not intersect the axis OX.

4 Consider in the plane the curves C_1 , C_2 and C_3 which are given in some Cartesian coordinates (x, y) by equations C_1 : $4x^2 + 4x + y^2 = 0$, C_2 : $4x^2 + 4x - y^2 = 0$,

$$C_3$$
: $4x^2 + 4x + y = 0$.

Show that C_1 is an ellipse, C_2 is a hyperbola, and C_3 is a parabola.

5 Let H be hyperbola considered in the exercise **3**.

Consider in the plane \mathbf{E}^2 the ellpise such that it passes through the foci of the hyperbola H, and its foci are at the points where the hyperbola H intersects axis OY. Write down equation of this ellipse.

6 The ellipse C on the plane \mathbf{E}^2 has foci at the vertices A = (-1, -1) and C = (1, 1) of the square ABCD, and it passes through the other two vertices B = (-1, 1) and D = (1, -1) of this square.

Find new Cartesian coordinates (u,v) (express them via initial coordinates (x,y)) such that the ellipse C has canonical form C: $\frac{u^2}{a^2} + \frac{v^2}{b^2} = 1$ in these coordinates.

Write down the equation of ellipse C in initial Cartesian coordinates (x, y)

Calculate the area of this ellipse.

7 Consider a curve defined in Cartesian coordinates (x, y) by the equation

C:
$$px^2 + py^2 + 2xy + \sqrt{2}(x+y) = 0$$
,

where p is a parameter.

How looks this curve

if
$$p > 1$$
? if $p = 1$? if $-1 ? if $p = -1$? if $p < -1$?$

Find an affine transformation

$$\begin{cases} x = au + bv + e \\ y = cu + dv + f \end{cases}, \qquad \left(\det \begin{pmatrix} a & b \\ c & d \end{pmatrix} \neq 0 \right)$$
 (1)

which transforms this curve to the circle $u^2 + v^2 = 1$ in the case if p > 1

 8^* (pursuit problem) Consider two point in the plane \mathbf{E}^2 , A, and B. Let point A starts moving at the origin, and moves along OY with constant velocity v: $\begin{cases} x=0 \\ y=vt \end{cases}$

Let point B starts moving at the point (L,0), its speed is equal also to v, and velocity vector is directed in the direction to the particle A.

Of course the particle B never will reach the particle A because their speeds are the same. On the other hand the particle B asymptotically will be tended to vertical axis. What is the distance between these particles at $t \to \infty$?

Hint: Consider the reference frame in which particle A is not moving, i.e. consider coordinates $\begin{cases} x' = x \\ y' = y + vt \end{cases}$

Show that in these coordinates the trajectory of particle B will be a parabola.