

Julien Schmaltz

Lecture 04: Temporal Logics

Tue Technische Universiteit
Eindhoven
University of Technology

Where innovation starts

Course content - Covered so far

Course content - Current topic

Linear and Branching Temporal Logics¹

Frits Vaandrager

Institute for Computing and Information Sciences
Radboud University Nijmegen
fvaan@cs.ru.nl

June 25, 2015

Principles: next time or until ...

- Temporal logic = logic about time
- Abstract notion of (discrete) time = sequence of events
- Two principal operators
 - next A: at the next "time" A holds
 - A until B: A holds until B holds
- Application to software/hardware specification
 - At the next clock cycle, the request signal must be high
 - The request signal must be high until the acknowledge is high
 - Eventually the request signal must become low again
 - The arbiter always grants at most one request
 - The elevator should never travel when the doors are open

Syntax

modal logic over infinite sequences [Pnueli 1977]

- Propositional logic
 - Atomic propositions: $a \in AP$
 - Boolean connectives: $\neg a$ and $\varphi \wedge \psi$
- Temporal operators
 - "Next" noted $X \varphi$ or $\bigcirc \varphi$
 - "Until" noted φ \bigcup ψ or $\varphi \cup \psi$

Derived operators

- $\varphi \lor \psi \equiv \neg (\neg \varphi \land \neg \psi)$
- $\bullet \varphi \Rightarrow \psi \equiv \neg \varphi \lor \psi$
- $\varphi \Leftrightarrow \psi \equiv (\varphi \Rightarrow \psi) \land (\psi \Rightarrow \varphi)$
- True (or \top) $\equiv \varphi \lor \neg \varphi$
- False (or \bot) $\equiv \neg \top$
- $\mathbf{F}\varphi$ (also noted $\Diamond\varphi)\equiv \top \mathbf{U} \varphi$ "eventually φ "
- **G** φ (also noted $\Box \varphi$) $\equiv \neg \mathbf{F} \neg \varphi$ "globally φ "

Intuitive semantics

Example: traffic lights

Whenever the light is red, it cannot become green immediately

$$G(red \Rightarrow \neg Xgreen)$$

The traffic light eventually becomes green

Once red, the light eventually becomes green

$$G(red \Rightarrow Fgreen)$$

 After being red, the light goes yellow and then eventually becomes green

$$G(red \Rightarrow X(redU(yellow \land X(yellowUgreen))))$$

Classification of LTL Properties

- Reachability
 - negated reachability: $\mathbf{F} \neg \psi$
 - ullet conditional reachability: $arphi {f U} {m \psi}$
 - reachability from any state: not expressible
- Safety
 - simple safety: $\mathbf{G} \neg \psi$
 - conditional safety (weak until): $(\varphi \mathbf{U} \psi) \vee \mathbf{G} \varphi$
- Liveness: $\mathbf{G}(\varphi \Rightarrow \mathbf{F}\psi)$ and others
- ullet Fairness: $\mathbf{GF}\psi$ and others

Semantics over words

A word σ is an infinite sequence of sets of atomic propositions. LTL property ϕ defines set of words for which the property is true. Words $(\varphi) = \{ \sigma \in (2^{AP})^{\omega} \mid \sigma \models \varphi \}$

$$\sigma \models a \quad \text{iff} \quad a \in A_0 \text{ (or } A_0 \models a)$$
 $\sigma \models \varphi \wedge \psi \quad \text{iff} \quad \sigma \models \varphi \text{ and } \sigma \models \psi$
 $\sigma \models \neg \varphi \quad \text{iff} \quad \sigma \not\models \varphi$
 $\sigma \models \mathbf{X}\varphi \quad \text{iff} \quad \sigma[1..] = A_1A_2A_3... \models \varphi$
 $\sigma \models \varphi \mathbf{U}\psi \quad \text{iff} \quad \exists j \geq 0 : \sigma[j..] \models \psi \text{ and } \sigma[i..] \models \varphi, 0 \leq i < j$

for $\sigma = A_0 A_1 A_2 ..., \ \sigma[i..] = A_i A_{i+1} A_{i+2} ...$ is suffix of σ from index i

$$\sigma \models \mathbf{F} \psi$$
 iff

$$\sigma \models \mathbf{F} \psi$$
 iff $\exists j \geq 0 : \sigma[j..] \models \psi$

$$\sigma \models \mathbf{F}\psi \text{ iff } \exists j \geq 0 : \sigma[j..] \models \psi \\
\sigma \models \mathbf{G}\psi \text{ iff }$$

$$\sigma \models \mathbf{F}\psi \quad \text{iff} \quad \exists j \geq 0 : \sigma[j..] \models \psi \\
\sigma \models \mathbf{G}\psi \quad \text{iff} \quad \forall j \geq 0 : \sigma[j..] \models \psi$$

$$\sigma \models \mathbf{F}\psi \text{ iff } \exists j \geq 0 : \sigma[j..] \models \psi$$
 $\sigma \models \mathbf{G}\psi \text{ iff } \forall j \geq 0 : \sigma[j..] \models \psi$
 $\sigma \models \mathbf{G}\mathbf{F}\psi \text{ iff }$

$$\sigma \models \mathbf{F} \psi \text{ iff } \exists j \geq 0 : \sigma[j...] \models \psi \\
\sigma \models \mathbf{G} \psi \text{ iff } \forall j \geq 0 : \sigma[j...] \models \psi \\
\sigma \models \mathbf{G} \mathbf{F} \psi \text{ iff } \forall j \geq 0, \exists i \geq j : \sigma[i...] \models \psi \\
\sigma \models \mathbf{F} \mathbf{G} \psi \text{ iff }$$

$$\sigma \models \mathbf{F}\psi \quad \text{iff} \quad \exists j \geq 0 : \sigma[j...] \models \psi \\
\sigma \models \mathbf{G}\psi \quad \text{iff} \quad \forall j \geq 0 : \sigma[j...] \models \psi \\
\sigma \models \mathbf{G}\mathbf{F}\psi \quad \text{iff} \quad \forall j \geq 0, \exists i \geq j : \sigma[i...] \models \psi \\
\sigma \models \mathbf{F}\mathbf{G}\psi \quad \text{iff} \quad \exists j \geq 0, \forall i \geq j : \sigma[i...] \models \psi$$

$$\sigma \models \neg \mathsf{F} \neg \varphi$$

$$\sigma \models \neg \mathbf{F} \neg \varphi$$
 $\sigma \models \neg \exists j \geq 0 : \sigma[j..] \models \neg \varphi$ (Def. of **F**)

Semantics over paths, states, and transition systems

Let $TS = (S, \Sigma, T, I, AP, L)$ be a transition system and let φ be an LTL formula over AP.

• An infinite path π of TS satisfies φ iff the trace of π satisfies φ :

$$\pi \models \varphi \quad \text{iff} \quad trace(\pi) \models \varphi$$

• A state $s \in S$ satisfies φ iff all paths from s satisfy φ :

$$s \models \varphi$$
 iff $\forall \pi \in Paths(s) : \pi \models \varphi$

• A transition system satisfies φ iff φ holds from all initial states:

$$TS \models \varphi \text{ iff } Traces(TS) \subseteq Words(\varphi) \text{ iff } \forall s_0 \in I : s_0 \models \varphi$$

Example

$$TS \models \mathbf{G}a$$
 $TS \models \mathbf{X}(a \land b)$

$$TS \models \mathbf{G}(\neg b \Rightarrow \mathbf{G}(a \land \neg b)) \quad TS \not\models b\mathbf{U}(a \land \neg b)$$

Semantics of negation

For paths, it holds $\pi \models \varphi$ iff $\pi \not\models \neg \varphi$ since:

$$Words(\neg \varphi) = (2^{AP})^{\omega} \setminus Words(\varphi)$$

But: $TS \not\models \varphi$ and $TS \models \neg \varphi$ are not equivalent in general

We have: $TS \models \neg \varphi \text{ implies } TS \not\models \varphi$.

TS neither satisfies φ or $\neg \varphi$ if there are paths π_1 and π_2 such that $\pi_1 \models \varphi$ and $\pi_2 \models \neg \varphi$.

Example

A transition system for which $TS \not\models \mathbf{Fa}$ and $TS \not\models \neg \mathbf{Fa}$.

More dualities and idempotent laws

Duality

$$\neg \mathbf{G}\varphi \equiv \mathbf{F}\neg \varphi$$
 $\neg \mathbf{F}\varphi \equiv \mathbf{G}\neg \varphi$
 $\neg \mathbf{X}\varphi \equiv \mathbf{X}\neg \varphi$

Idempotency

$$egin{array}{lll} \mathbf{G} arphi & \equiv & \mathbf{G} arphi \ \mathbf{F} \mathbf{F} arphi & \equiv & \mathbf{F} arphi \ arphi \mathbf{U} (arphi \mathbf{U} \psi) & \equiv & arphi \mathbf{U} \psi \ (arphi \mathbf{U} \psi) \mathbf{U} \psi & \equiv & arphi \mathbf{U} \psi \end{array}$$

Absorption and distributive laws

Absorption

$$\mathsf{FGF} \varphi \equiv \mathsf{GF} \varphi$$
 $\mathsf{GFG} \varphi \equiv \mathsf{FG} \varphi$

Distribution

$$\mathbf{X}(\varphi \mathbf{U}\psi) \equiv (\mathbf{X}\varphi)\mathbf{U}(\mathbf{X}\psi)$$
 $\mathbf{F}(\varphi \lor \psi) \equiv \mathbf{F}\varphi \lor \mathbf{F}\psi$
 $\mathbf{G}(\varphi \land \psi) \equiv \mathbf{G}\varphi \land \mathbf{G}\psi$

• But we have:

$$\mathbf{F}(\varphi \wedge \psi) \not\equiv \mathbf{F}\varphi \wedge \mathbf{F}\psi$$

 $\mathbf{G}(\varphi \vee \psi) \not\equiv \mathbf{G}\varphi \vee \mathbf{G}\psi$

Absorption Laws(1)

$$\mathsf{FGF}arphi \equiv \mathsf{GF}arphi$$

More formally: **GF** φ means $\forall i \geq 0, \exists j \geq i : \sigma[j..] \models \varphi$

FGF φ means $\exists k \geq 0, \forall i \geq k, \exists j \geq i : \sigma[j..] \models \varphi$

Absorption Laws(2)

$$\mathsf{GFG}arphi \equiv \mathsf{FG}arphi$$

More formally: **FG** φ means $\exists i \geq 0, \forall j \geq i : \sigma[j..] \models \varphi$

GFG φ means $\forall k \geq 0, \exists i \geq k, \forall j \geq i : \sigma[j..] \models \varphi$

Distributive Laws (1)

$$\mathbf{F}(\varphi \lor \psi) \equiv \mathbf{F}\varphi \lor \mathbf{F}\psi$$

$$\varphi \lor \psi$$

$$\mathbf{G}(\varphi \wedge \psi) \equiv \mathbf{G}\varphi \wedge \mathbf{G}\psi$$

990

Distributive Laws (2)

$$F(a \wedge b) \not\equiv Fa \wedge Fb$$

$$TS \not\models \mathbf{F}(a \land b)$$
 and $TS \models \mathbf{F}a \land \mathbf{F}b$

Distributive Laws (3)

$$G(a \lor b) \not\equiv Ga \lor Gb$$

$$TS \models \mathbf{G}(a \lor b)$$
 and $TS \not\models \mathbf{G}a \lor \mathbf{G}b$

Linear vs Branching Time

- Linear time
 - Properties about all paths in state s
 - $s \models \mathbf{G}\varphi$ iff for all paths starting in s, φ holds for all time instants ("always" or "globally")
- Branching time
 - Properties about all or some paths starting in state s
 - $s \models \mathbf{AG}\varphi$ iff for all paths starting in s, φ holds globally on the path
 - $s \models \mathbf{EG}\varphi$ iff for some path starting in s, φ holds globally on the path

Linear vs. Branching Timed

- Semantics based on a branching notion of time
 - infinite tree of states obtained by unfolding a transition system
 - one "time instant" may have several successor states for the next "time instants"
 - linear time: "one only lives one future"
 - branching time: "one has many possible futures"
- Expressiveness: incomparable
 - There are linear properties that cannot be stated as branching properties
 - There are branching properties that cannot be stated as linear properties

Transition Systems and Trees

Computational Tree Logic (CTL)

modal logic over infinite trees [Clarke & Emerson 1981]

- State formulae containing path quantifiers
 - atomic proposition: $a \in AP$
 - Boolean connectives: $\neg \varphi$ and $\varphi \wedge \psi$
 - there exists a path satisfying φ : **E** φ or $\exists \varphi$
 - all paths satisfy φ : $\mathbf{A}\varphi$ or $\forall \varphi$
- Paths formulae containing temporal operators
 - Next φ : **X** φ or $\bigcirc \varphi$
 - φ until ψ : $\varphi \mathbf{U} \psi$
- In a CTL formula path and state formulae alternate

Derived Operators

- Potentially φ : $\mathbf{E}\mathbf{F}\varphi = \mathbf{E}(\top \mathbf{U}\varphi)$
- Inevitably φ : $AF\varphi = A(\top U\varphi)$
- Potentially always φ : $\mathbf{EG}\varphi = \neg \mathbf{AF} \neg \varphi$
- Invariantly φ : $\mathbf{AG}\varphi = \neg \mathbf{EF} \neg \varphi$

Operators

- Basic operators: EX, EG, EU
- Derived operators:

•
$$\mathbf{AX}\varphi = \neg \mathbf{EX}(\neg \varphi)$$

•
$$\mathbf{E}\mathbf{F}\varphi = \mathbf{E}(\top\mathbf{U}\varphi)$$

•
$$\mathsf{AG}\varphi = \neg \mathsf{EF}(\neg \varphi)$$

• AF
$$\varphi = \neg \mathsf{EG}(\neg \varphi)$$

Some typical CTL formulae

 It is possible to get to a state where Start holds but Ready does not

EF(
$$Start \land \neg Ready$$
)

If a request occurs, then it will be eventually acknowledged

$$AG(Req \Rightarrow AFAck)$$

Ready holds infinitely often on every path

From any state it is possible to Restart

Informal Semantics

Semantics of state-formulae

 $s \models \varphi$ iff formula φ holds in state s

$$s \models a \quad \text{iff} \quad a \in L(s)$$
 $s \models \neg \varphi \quad \text{iff} \quad \neg(s \models \varphi)$
 $s \models \varphi \land \psi \quad \text{iff} \quad (s \models \varphi) \text{ and } (s \models \psi)$
 $s \models \mathbf{E}\varphi \quad \text{iff} \quad \pi \models \varphi \text{ for some path } \pi \text{ from } s$
 $s \models \mathbf{A}\varphi \quad \text{iff} \quad \pi \models \varphi \text{ for all paths } \pi \text{ from } s$

Semantics of path-formulae

$$\pi \models \varphi$$
 iff path π satisfies φ

$$\pi \models \mathbf{X}\varphi \quad \text{iff} \quad \pi[1] \models \varphi$$

$$\pi \models \varphi \mathbf{U}\psi \quad \text{iff} \quad (\exists j \geq 0 : \pi[j] \models \psi \land (\forall 0 \leq k < j : \pi[k] \models \varphi))$$

where $\pi[i]$ denotes the state with index i (s_i) in π

Transition System Semantics

ullet TS satisfies CTL-formula φ iff φ holds in all initial states

$$TS \models \varphi \text{ iff } \forall s_0 \in I : s_0 \models \varphi$$

- Point of attention: $TS \not\models \varphi$ and $TS \not\models \neg \varphi$ is possible!
 - because of several initial states. We can have $s_0 \models \mathbf{EG}\varphi$ and $s_0' \not\models \mathbf{EG}\varphi$

LTL vs CTL

- » We have seen two logics.
- » Do we need them both?

Equivalence of LTL and CTL formulae

• CTL-formula ϕ and LTL-formula φ (both over AP) are equivalent, denoted $\phi \equiv \varphi$, if for any transition system TS (over AP):

$$TS \models \phi$$
 if and only if $TS \models \varphi$

• Let ϕ be a CTL-formula, and φ the LTL-formula obtained by eliminating all path quantifiers in ϕ . Then:

 $\phi \equiv \varphi$ or there does not exist any LTL-formula that is equivalent to ϕ

Comparing LTL and CTL (1)

$$F(a \land Xa) \not\equiv AF(a \land AXa)$$

Comparing LTL and CTL (1)

$$F(a \wedge Xa) \not\equiv AF(a \wedge AXa)$$

$$s_0 \models F(a \land Xa)$$

 $s_0 \not\models AF(a \land AXa)$

Counterexample: path to the left $s_0 s_1 (s_2)^{\omega}$

Comparing LTL and CTL (2)

$AFAGa \not\equiv FGa$

Comparing LTL and CTL (2)

$AFAGa \neq FGa$

$$s_0 \models \mathsf{FG}_{\boldsymbol{a}}$$

$$s_0 \not\models \mathsf{AFAG}_{a}$$

Counter-examples: s_0^{ω}

Comparing LTL and CTL (3)

$AGEF_a \not\equiv GF_a$

$$s_0 \not\models \mathbf{GFa}$$
 but $s_0 \models \mathbf{AGEFa}$

Syntax of CTL*

• CTL* state-formulae are formed according to:

$$\phi ::= \top \mid a \mid \phi_1 \wedge \phi_2 \mid \neg \phi \mid \mathbf{E} \psi$$

where $a \in AP$, ϕ, ϕ_1, ϕ_2 are state-formulae, and ψ is a path-formula

• CTL* path-formulae are formed according to:

$$\psi ::= \phi \mid \psi_1 \land \psi_2 \mid \neg \psi \mid \mathbf{X}\psi \mid \psi_1 \ \mathbf{U}\psi_2$$

where ϕ is a state-formula, and ψ, ψ_1, ψ_2 are path-formulae

- Path-quantifiers and temporal operators do not have to alternate anymore
- In CTL* we can define $\mathbf{A}\psi = \neg \mathbf{E} \neg \psi$ which is not possible in CTL!

Semantics of CTL*

```
egin{array}{lll} s &\models a & 	ext{iff} & a \in L(s) \ s &\models \neg \phi & 	ext{iff} & \neg (s \models \phi) \ s &\models \phi_1 \wedge \phi_2 & 	ext{iff} & (s \models \phi_1) 	ext{ and } (s \models \phi_2) \ s &\models \mathbf{E} \psi & 	ext{iff} & \pi \models \psi 	ext{ for some path } \pi 	ext{ from } s \end{array}
```

```
\begin{array}{lll} \pi & \models \phi & \text{iff} & \pi[0] \models \phi \\ \pi & \models \psi_1 \wedge \psi_2 & \text{iff} & \pi \models \psi_1 \text{ and } \pi \models \psi_2 \\ \pi & \models \neg \psi & \text{iff} & \pi \not\models \psi \\ \pi & \models \mathbf{X}\psi & \text{iff} & \pi[1..] \models \psi \\ \pi & \models \psi_1 \mathbf{U}\psi_2 & \text{iff} & (\exists j \geq 0 : \pi[j..] \models \psi_2 \wedge (\forall 0 \leq k < j : \pi[k..] \models \psi_1)) \end{array}
```

for path $\pi = s_0 s_1 s_2 \cdots$, $\pi[i...]$ denotes suffix of σ from index i on

Embedding LTL in CTL*

For LTL formula ψ , transition system TS, and state s:

$$s \models_{\mathit{LTL}} \psi$$
 if and only $s \models_{\mathit{CTL}*} \mathbf{A} \psi$

We also have:

$$TS \models_{LTL} \psi$$
 if and only if $TS \models_{CTL*} \mathbf{A}\psi$

CTL* is more expressive than LTL and CTL

We have seen that **FG***a* cannot be expressed in CTL. We have seen that **AGEF***b* cannot be expressed in LTL. The CTL* formula $\phi = (\mathbf{AFG}a) \vee (\mathbf{AGEF}b)$ is in CTL*!

LTL, CTL, and CTL*

