Ribo-Seq project report template: Some Descriptive Title

Project ID: RNAseq_PI_Name_Organism_Aug2015 Project PI: First Last (first.last@inst.edu) Author of Report: First Last (first.last@inst.edu)

September 1, 2015

Contents

1	Introduction 1.1 Background and objectives	
2	Load workflow environment 2.1 Load packages and sample data	
3	Read preprocessing 3.1 Demultiplexing	3
4	Alignments 4.1 Read mapping with Bowtie2/Tophat2	4
5	Read distribution across genomic features	5
6	Read quantification per annotation range 6.1 Read counting with summarizeOverlaps in parallel mode using multiple cores 6.2 Sample-wise correlation analysis	
7	Analysis of differentially expressed genes with edgeR 7.1 GO term enrichment analysis of DEGs 7.1.1 Obtain gene-to-GO mappings 7.1.2 Batch GO term enrichment analysis 7.1.3 Plot batch GO term results	9 10
8	Clustering and heat maps	11
9	Version Information	12
10	Funding	13
11	References	13

1 Introduction

Note: this workflow is currently under construction!

1.1 Background and objectives

This workflow contains most of the relevant data analysis steps used by the Ribo-Seq study from Juntawong et al. (2014). To improve re-usability and adapt to the mose recent versions of software (e.g. R, Bioconductor and short read aligners), the code had to be revised accordingly. Thus, the results obtained here are not expected to be identical with the published ones described in the original paper.

1.2 Experimental design

Typically, users want to specify here all information relevant for the analysis of their NGS study. This includes detailed descriptions of FASTQ files, experimental design, reference genome, gene annotations, etc.

2 Load workflow environment

2.1 Load packages and sample data

The systemPipeR package needs to be loaded to perform the analysis steps shown in this report (Girke, 2014).

```
library(systemPipeR)
```

Load workflow environment with sample data into your current working directory. The sample data are described here.

```
library(systemPipeRdata)
genWorkenvir(workflow="chipseq")
setwd("chipseq")
```

In the workflow environments generated by genWorkenvir all data inputs are stored in a data/ directory and all analysis results will be written to a separate results/ directory, while the systemPipeRIBOseq.Rnw script and the targets file are expected to be located in the parent directory. The R session is expected to run from this parent directory. Additional parameter files are stored under param/.

To work with real data, users want to organize their own data similarly and substitute all test data for their own data. To rerun an established workflow on new data, the initial targets file along with the corresponding FASTQ files are usually the only inputs the user needs to provide.

If applicable users can load custom functions not provided by systemPipeR. Skip this step if this is not the case.

```
source("systemPipeRIBOseq_Fct.R")
```

2.2 Experiment definition provided by targets file

The targets file defines all FASTQ files and sample comparisons of the analysis workflow.

```
targetspath <- system.file("extdata", "targets.txt", package="systemPipeR")
targets <- read.delim(targetspath, comment.char = "#")[,1:4]
targets</pre>
```

```
FileName SampleName Factor SampleLong
1
  ./data/SRR446027_1.fastq
                                   M1A
                                           M1 Mock.1h.A
  ./data/SRR446028_1.fastq
                                               Mock.1h.B
                                   M1B
                                           M1
  ./data/SRR446029_1.fastq
                                   A1A
                                           Α1
                                                Avr.1h.A
  ./data/SRR446030_1.fastq
                                   A1B
                                           Α1
                                                Avr.1h.B
  ./data/SRR446031_1.fastq
                                   V1A
                                           V1
                                                Vir.1h.A
  ./data/SRR446032_1.fastq
                                   V1B
                                           V1
                                                Vir.1h.B
7
  ./data/SRR446033_1.fastq
                                   M6A
                                           M6 Mock.6h.A
8 ./data/SRR446034_1.fastq
                                   M6B
                                           M6
                                               Mock.6h.B
9 ./data/SRR446035_1.fastq
                                   A6A
                                                Avr.6h.A
                                           A6
10 ./data/SRR446036_1.fastq
                                   A6B
                                                Avr.6h.B
                                           A6
11 ./data/SRR446037_1.fastq
                                           V6
                                                Vir.6h.A
                                   V6A
12 ./data/SRR446038_1.fastq
                                   V6B
                                           V6
                                                Vir.6h.B
13 ./data/SRR446039_1.fastq
                                  M12A
                                          M12 Mock.12h.A
14 ./data/SRR446040_1.fastq
                                          M12 Mock.12h.B
                                  M12B
15 ./data/SRR446041_1.fastq
                                          A12 Avr.12h.A
                                  A12A
16 ./data/SRR446042_1.fastq
                                  A12B
                                          A12 Avr. 12h. B
17 ./data/SRR446043_1.fastq
                                  V12A
                                          V12 Vir.12h.A
18 ./data/SRR446044_1.fastq
                                  V12B
                                          V12 Vir.12h.B
```

3 Read preprocessing

3.1 Demultiplexing

. . .

3.2 Quality filtering and adaptor trimming

The following example shows how one can design a custom read preprocessing function using utilities provided by the *ShortRead* package, and then apply it with preprocessReads in batch mode to all FASTQ samples referenced in the corresponding SYSargs instance (args object below). More detailed information on read preprocessing is provided in *systemPipeR*'s main vignette.

```
args <- systemArgs(sysma="param/trim.param", mytargets="targets_chip.txt")
filterFct <- function(fq, cutoff=20, Nexceptions=0) {
    qcount <- rowSums(as(quality(fq), "matrix") <= cutoff)
    fq[qcount <= Nexceptions] # Retains reads where Phred scores are >= cutoff with N exceptions
}
preprocessReads(args=args, Fct="filterFct(fq, cutoff=20, Nexceptions=0)", batchsize=100000)
writeTargetsout(x=args, file="targets_chip_trim.txt", overwrite=TRUE)
```

3.3 **FASTQ** quality report

The following seeFastq and seeFastqPlot functions generate and plot a series of useful quality statistics for a set of FASTQ files including per cycle quality box plots, base proportions, base-level quality trends, relative k-mer diversity, length and occurrence distribution of reads, number of reads above quality cutoffs and mean quality distribution. The results are written to a PDF file named fastqReport.pdf.

```
args <- systemArgs(sysma="tophat.param", mytargets="targets.txt")
fqlist <- seeFastq(fastq=infile1(args), batchsize=100000, klength=8)</pre>
```

```
pdf("./results/fastqReport.pdf", height=18, width=4*length(fqlist))
seeFastqPlot(fqlist)
dev.off()
```

Figure 1: QC report for 18 FASTQ files.

4 Alignments

4.1 Read mapping with Bowtie2/Tophat2

The NGS reads of this project will be aligned against the reference genome sequence using Bowtie2/TopHat2 (Kim et al., 2013; Langmead and Salzberg, 2012). The parameter settings of the aligner are defined in the tophat.param file.

```
args <- systemArgs(sysma="tophat.param", mytargets="targets.txt")
sysargs(args)[1] # Command-line parameters for first FASTQ file</pre>
```

Submission of alignment jobs to compute cluster, here using 72 CPU cores (18 qsub processes each with 4 CPU cores).

Check whether all BAM files have been created

```
file.exists(outpaths(args))
```

4.2 Read and alignment stats

The following provides an overview of the number of reads in each sample and how many of them aligned to the reference.

```
read_statsDF <- alignStats(args=args)
write.table(read_statsDF, "results/alignStats.xls", row.names=FALSE, quote=FALSE, sep="\t")</pre>
```

```
read.table(system.file("extdata", "alignStats.xls", package="systemPipeR"), header=TRUE)[1:4,]
  FileName Nreads2x Nalign Perc_Aligned Nalign_Primary Perc_Aligned_Primary
1
       M1A
             192918 177961
                                92.24697
                                                  177961
                                                                      92.24697
2
       M1B
             197484 159378
                                80.70426
                                                  159378
                                                                      80.70426
3
             189870 176055
                                92.72397
                                                  176055
                                                                      92.72397
       A 1 A
4
       A1B
             188854 147768
                                78.24457
                                                  147768
                                                                      78.24457
```

4.3 Create symbolic links for viewing BAM files in IGV

The symLink2bam function creates symbolic links to view the BAM alignment files in a genome browser such as IGV. The corresponding URLs are written to a file with a path specified under urlfile, here IGVurl.txt.

5 Read distribution across genomic features

The following provides utilities useful for evaluating read distributions across genomic feature types.

The first step is the generation of the feature type ranges based on annotations provided by a GFF file that can be transformed into a TxDb object. This includes ranges for mRNAs, exons, introns, UTRs, CDSs, miRNAs, rRNAs, tRNAs, promoter and intergenic regions. In addition, any number of custom annotations can be included in this routine.

```
library(GenomicFeatures)
file <- system.file("extdata/annotation", "tair10.gff", package="systemPipeRdata")
txdb <- makeTxDbFromGFF(file=file, format="gff3", organism="Arabidopsis")
feat <- genFeatures(txdb, featuretype="all", reduce_ranges=TRUE, upstream=1000, downstream=0, verbose=TRUE</pre>
```

Generate and plot feature counts for specific read lengths

```
fc <- featuretypeCounts(bfl=BamFileList(outpaths(args), yieldSize=50000), grl=feat, singleEnd=TRUE, readle
p <- plotfeaturetypeCounts(x=fc, graphicsfile="featureCounts.pdf", graphicsformat="pdf", scales="fixed", a</pre>
```

Generate and plot feature counts for any read length

```
fc2 <- featuretypeCounts(bfl=BamFileList(outpaths(args), yieldSize=50000), grl=feat, singleEnd=TRUE, readl
p2 <- plotfeaturetypeCounts(x=featureCounts2, graphicsfile="featureCounts2.pdf", graphicsformat="pdf", sca</pre>
```

6 Read quantification per annotation range

6.1 Read counting with summarize 0 verlaps in parallel mode using multiple cores

Reads overlapping with annotation ranges of interest are counted for each sample using the summarizeOverlaps function (Lawrence et al., 2013). The read counting is preformed for exonic gene regions in a non-strand-specific manner while ignoring overlaps among different genes. Subsequently, the expression count values are normalized by reads per kp per million mapped reads (RPKM). The raw read count table (countDFeByg.xls) and the correspoding RPKM table (rpkmDFeByg.xls) are written to separate files in the results directory of this project. Parallelization is achieved with the BiocParallel package, here using 8 CPU cores.

Sample of data slice of count table

```
read.delim("results/countDFeByg.xls", row.names=1, check.names=FALSE)[1:4,1:5]
```

Sample of data slice of RPKM table

```
read.delim("results/rpkmDFeByg.xls", row.names=1, check.names=FALSE)[1:4,1:4]
```

Note, for most statistical differential expression or abundance analysis methods, such as *edgeR* or *DESeq2*, the raw count values should be used as input. The usage of RPKM values should be restricted to specialty applications required by some users, *e.g.* manually comparing the expression levels among different genes or features.

6.2 Sample-wise correlation analysis

The following computes the sample-wise Spearman correlation coefficients from the rlog normalized expression values generated with the *DESeq2* package. After transformation to a distance matrix, hierarchical clustering is performed with the hclust function and the result is plotted as a dendrogram (sample_tree.pdf).

```
library(DESeq2, quietly=TRUE); library(ape, warn.conflicts=FALSE)
countDF <- as.matrix(read.table("./results/countDFeByg.xls"))
colData <- data.frame(row.names=targetsin(args)$SampleName, condition=targetsin(args)$Factor)
dds <- DESeqDataSetFromMatrix(countData = countDF, colData = colData, design = ~ condition)
d <- cor(assay(rlog(dds)), method="spearman")
hc <- hclust(dist(1-d))
pdf("results/sample_tree.pdf")
plot.phylo(as.phylo(hc), type="p", edge.col="blue", edge.width=2, show.node.label=TRUE, no.margin=TRUE)
dev.off()</pre>
```


Figure 2: Correlation dendrogram of samples.

7 Analysis of differentially expressed genes with edgeR

The analysis of differentially expressed genes (DEGs) is performed with the glm method from the *edgeR* package (Robinson et al., 2010). The sample comparisons used by this analysis are defined in the header lines of the targets file starting with <CMP>.

```
library(edgeR)
countDF <- read.delim("countDFeByg.xls", row.names=1, check.names=FALSE)
targets <- read.delim("targets.txt", comment="#")
cmp <- readComp(file="targets.txt", format="matrix", delim="-")
edgeDF <- run_edgeR(countDF=countDF, targets=targets, cmp=cmp[[1]], independent=FALSE, mdsplot="")</pre>
```

Add functional descriptions

```
desc <- read.delim("data/desc.xls")
desc <- desc[!duplicated(desc[,1]),]
descv <- as.character(desc[,2]); names(descv) <- as.character(desc[,1])
edgeDF <- data.frame(edgeDF, Desc=descv[rownames(edgeDF)], check.names=FALSE)
write.table(edgeDF, "./results/edgeRglm_allcomp.xls", quote=FALSE, sep="\t", col.names = NA)</pre>
```

Filter and plot DEG results for up and down regulated genes. The definition of 'up' and 'down' is given in the corresponding help file. To open it, type ?filterDEGs in the R console.

```
edgeDF <- read.delim("results/edgeRglm_allcomp.xls", row.names=1, check.names=FALSE)
pdf("results/DEGcounts.pdf")
DEG_list <- filterDEGs(degDF=edgeDF, filter=c(Fold=2, FDR=1))
dev.off()</pre>
```

write.table(DEG_list\$Summary, "./results/DEGcounts.xls", quote=FALSE, sep="\t", row.names=FALSE)

Figure 3: Up and down regulated DEGs with FDR of 1%.

The function overLapper can compute Venn intersects for large numbers of sample sets (up to 20 or more) and vennPlot can plot 2-5 way Venn diagrams. A useful feature is the possiblity to combine the counts from several Venn comparisons with the same number of sample sets in a single Venn diagram (here for 4 up and down DEG sets).

```
vennsetup <- overLapper(DEG_list$Up[6:9], type="vennsets")
vennsetdown <- overLapper(DEG_list$Down[6:9], type="vennsets")
pdf("results/vennplot.pdf")
vennPlot(list(vennsetup, vennsetdown), mymain="", mysub="", colmode=2, ccol=c("blue", "red"))
dev.off()</pre>
```


Figure 4: Venn Diagram for 4 Up and Down DEG Sets.

7.1 GO term enrichment analysis of DEGs

7.1.1 Obtain gene-to-GO mappings

The following shows how to obtain gene-to-GO mappings from biomaRt (here for A. thaliana) and how to organize them for the downstream GO term enrichment analysis. Alternatively, the gene-to-GO mappings can be obtained for many organisms from Bioconductor's *.db genome annotation packages or GO annotation files provided by various genome databases. For each annotation this relatively slow preprocessing step needs to be performed only once. Subsequently, the preprocessed data can be loaded with the load function as shown in the next subsection.

```
library("biomaRt")
listMarts() # To choose BioMart database
m <- useMart("ENSEMBL_MART_PLANT"); listDatasets(m)
m <- useMart("ENSEMBL_MART_PLANT", dataset="athaliana_eg_gene")
listAttributes(m) # Choose data types you want to download
go <- getBM(attributes=c("go_accession", "tair_locus", "go_namespace_1003"), mart=m)
go <- go[go[,3]!="",]; go[,3] <- as.character(go[,3])</pre>
```

```
go[go[,3]=="molecular_function", 3] <- "F"; go[go[,3]=="biological_process", 3] <- "P"; go[go[,3]=="cellul
go[1:4,]
dir.create("./data/GO")
write.table(go, "data/GO/GOannotationsBiomart_mod.txt", quote=FALSE, row.names=FALSE, col.names=FALSE, sep
catdb <- makeCATdb(myfile="data/GO/GOannotationsBiomart_mod.txt", lib=NULL, org="", colno=c(1,2,3), idconv
save(catdb, file="data/GO/catdb.RData")</pre>
```

7.1.2 Batch GO term enrichment analysis

Apply the enrichment analysis to the DEG sets obtained the above differential expression analysis. Note, in the following example the FDR filter is set here to an unreasonably high value, simply because of the small size of the toy data set used in this vignette. Batch enrichment analysis of many gene sets is performed with the GOCluster_Report function. When method="all", it returns all GO terms passing the p-value cutoff specified under the cutoff arguments. When method="slim", it returns only the GO terms specified under the myslimv argument. The given example shows how a GO slim vector for a specific organism can be obtained from BioMart.

```
load("data/GO/catdb.RData")
DEG_list <- filterDEGs(degDF=edgeDF, filter=c(Fold=2, FDR=50), plot=FALSE)
up_down <- DEG_list$UporDown; names(up_down) <- paste(names(up_down), "_up_down", sep="")
up <- DEG_list$Up; names(up) <- paste(names(up), "_up", sep="")
down <- DEG_list$Down; names(down) <- paste(names(down), "_down", sep="")
DEGlist <- c(up_down, up, down)
DEGlist <- DEGlist[sapply(DEGlist, length) > 0]
BatchResult <- GOCluster_Report(catdb=catdb, setlist=DEGlist, method="all", id_type="gene", CLSZ=2, cutoff library("biomaRt"); m <- useMart("ENSEMBL_MART_PLANT", dataset="athaliana_eg_gene")
goslimvec <- as.character(getBM(attributes=c("goslim_goa_accession"), mart=m)[,1])
BatchResultslim <- GOCluster_Report(catdb=catdb, setlist=DEGlist, method="slim", id_type="gene", myslimv=gene")</pre>
```

7.1.3 Plot batch GO term results

The data.frame generated by GOCluster_Report can be plotted with the goBarplot function. Because of the variable size of the sample sets, it may not always be desirable to show the results from different DEG sets in the same bar plot. Plotting single sample sets is achieved by subsetting the input data frame as shown in the first line of the following example.

```
gos <- BatchResultslim[grep("M6-V6_up_down", BatchResultslim$CLID), ]
gos <- BatchResultslim
pdf("GOslimbarplotMF.pdf", height=8, width=10); goBarplot(gos, gocat="MF"); dev.off()
goBarplot(gos, gocat="BP")
goBarplot(gos, gocat="CC")</pre>
```


Figure 5: GO Slim Barplot for MF Ontology.

8 Clustering and heat maps

The following example performs hierarchical clustering on the RPKM normalized expression matrix subsetted by the DEGs identified in the above differential expression analysis. It uses a Pearson correlation-based distance measure and complete linkage for cluster joining.

```
library(pheatmap)
geneids <- unique(as.character(unlist(DEG_list[[1]])))
y <- rpkmDFeByg[geneids, ]
pdf("heatmap1.pdf")
pheatmap(y, scale="row", clustering_distance_rows="correlation", clustering_distance_cols="correlation")</pre>
```

dev.off()

Figure 6: Heat map with hierarchical clustering dendrograms of DEGs.

9 Version Information

toLatex(sessionInfo())

- R version 3.2.2 (2015-08-14), x86_64-pc-linux-gnu
- Locale: LC_CTYPE=en_US.UTF-8, LC_NUMERIC=C, LC_TIME=en_US.UTF-8, LC_COLLATE=en_US.UTF-8, LC_MONETARY=en_US.UTF-8, LC_MESSAGES=en_US.UTF-8, LC_PAPER=en_US.UTF-8, LC_NAME=C, LC_ADDRESS=C, LC_TELEPHONE=C, LC_MEASUREMENT=en_US.UTF-8, LC_IDENTIFICATION=C
- Base packages: base, datasets, graphics, grDevices, methods, parallel, stats, stats4, utils
- Other packages: Biobase 2.29.1, BiocGenerics 0.15.6, BiocParallel 1.3.51, Biostrings 2.37.8, DBI 0.3.1, GenomeInfoDb 1.5.13, GenomicAlignments 1.5.12, GenomicRanges 1.21.19, IRanges 2.3.18, knitr 1.11, Rsamtools 1.21.15, RSQLite 1.0.0, S4Vectors 0.7.13, ShortRead 1.27.5, SummarizedExperiment 0.3.3, systemPipeR 1.3.31, XVector 0.9.3
- Loaded via a namespace (and not attached): annotate 1.47.4, AnnotationDbi 1.31.17, AnnotationForge 1.11.18, base64enc 0.1-3, BatchJobs 1.6, BBmisc 1.9, BiocStyle 1.7.6, biomaRt 2.25.1, bitops 1.0-6, brew 1.0-6, Category 2.35.1, checkmate 1.6.2, colorspace 1.2-6, digest 0.6.8, edgeR 3.11.2, evaluate 0.7.2, fail 1.2, formatR 1.2, futile.logger 1.4.1, futile.options 1.0.0, genefilter 1.51.0, GenomicFeatures 1.21.18, ggplot2 1.0.1, GO.db 3.2.1, GOstats 2.35.1, graph 1.47.2, grid 3.2.2, GSEABase 1.31.3, gtable 0.1.2, highr 0.5, hwriter 1.3.2, lambda.r 1.1.7, lattice 0.20-33, latticeExtra 0.6-26, limma 3.25.15, magrittr 1.5, MASS 7.3-43, Matrix 1.2-2,

munsell 0.4.2, pheatmap 1.0.7, plyr 1.8.3, proto 0.3-10, RBGL 1.45.1, RColorBrewer 1.1-2, Rcpp 0.12.0, RCurl 1.95-4.7, reshape2 1.4.1, rjson 0.2.15, rtracklayer 1.29.20, scales 0.3.0, sendmailR 1.2-1, splines 3.2.2, stringi 0.5-5, stringr 1.0.0, survival 2.38-3, tools 3.2.2, XML 3.98-1.3, xtable 1.7-4, zlibbioc 1.15.0

10 Funding

This project was supported by funds from the National Institutes of Health (NIH).

11 References

Thomas Girke. systemPipeR: NGS workflow and report generation environment, 28 June 2014. URL https://github.com/tgirke/systemPipeR.

Brian E Howard, Qiwen Hu, Ahmet Can Babaoglu, Manan Chandra, Monica Borghi, Xiaoping Tan, Luyan He, Heike Winter-Sederoff, Walter Gassmann, Paola Veronese, and Steffen Heber. High-throughput RNA sequencing of pseudomonas-infected arabidopsis reveals hidden transcriptome complexity and novel splice variants. *PLoS One*, 8 (10):e74183, 1 October 2013. ISSN 1932-6203. doi: 10.1371/journal.pone.0074183. URL http://dx.doi.org/10.1371/journal.pone.0074183.

Piyada Juntawong, Thomas Girke, Jérémie Bazin, and Julia Bailey-Serres. Translational dynamics revealed by genome-wide profiling of ribosome footprints in arabidopsis. *Proc. Natl. Acad. Sci. U. S. A.*, 111(1):E203–12, 7 January 2014. ISSN 0027-8424, 1091-6490. doi: 10.1073/pnas.1317811111. URL http://dx.doi.org/10.1073/pnas.1317811111.

Daehwan Kim, Geo Pertea, Cole Trapnell, Harold Pimentel, Ryan Kelley, and Steven L Salzberg. TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions. *Genome Biol.*, 14(4):R36, 25 April 2013. ISSN 1465-6906. doi: 10.1186/gb-2013-14-4-r36. URL http://dx.doi.org/10.1186/gb-2013-14-4-r36.

Ben Langmead and Steven L Salzberg. Fast gapped-read alignment with bowtie 2. *Nat. Methods*, 9(4):357–359, April 2012. ISSN 1548-7091. doi: 10.1038/nmeth.1923. URL http://dx.doi.org/10.1038/nmeth.1923.

Michael Lawrence, Wolfgang Huber, Hervé Pagès, Patrick Aboyoun, Marc Carlson, Robert Gentleman, Martin T Morgan, and Vincent J Carey. Software for computing and annotating genomic ranges. *PLoS Comput. Biol.*, 9(8):e1003118, 8 August 2013. ISSN 1553-734X. doi: 10.1371/journal.pcbi.1003118. URL http://dx.doi.org/10.1371/journal.pcbi.1003118.

M D Robinson, D J McCarthy, and G K Smyth. edger: a bioconductor package for differential expression analysis of digital gene expression data. *Bioinformatics*, 26(1):139–140, January 2010. ISSN 1367-4803. doi: 10.1093/bioinformatics/btp616. URL http://dx.doi.org/10.1093/bioinformatics/btp616.