Seaman.h.zhang

博客园:: 首页:: 新随笔:: 联系:: 订阅 XML :: 管理 34 Posts:: 0 Stories:: 2 Comments:: 0 Trackbacks

公告

昵称: seaman.kingfall

园龄: 4年3个月

粉丝: 4 关注: 1 +加关注

搜索

常用链接

我的随笔

我的评论

我的参与

最新评论

我的标签

我的标签

练习题(6)

合一(3)

递归(3)

中断(2)

类型变量(2)

数字(2)

列表(2)

Haskell(2)

recursive(2)

比较(2) 更多

随笔分类

Haskell(2)

Prolog(32)

随笔档案

2015年8月 (7)

2015年7月 (22)

2015年6月 (5)

最新评论

1. Re:Learn Prolog Now 翻译 - 第一章 - 事实, 规则 和查询 - 第一节, 一些简单 的例子 学习!

--深蓝医生

2. Re:Learn Prolog Now 翻译 - 第一章 - 事实, 规则和查询 - 第一节, 一些简单的例子

翻译了这么多了,而且每天一篇,不能望其项背啊。

Learn Prolog Now 翻译 - 第五章 - 数字运算 - 第二节,数字运算与列表

内容提要

列表中的一些数字运算, 累加器

尾递归调用

列表中的一些数字运算, 累加器

关于数字运算最为重要的应用,可能是获取一些数据结构体的一些有用事实,比如列表。例如,知道列表的长度是很有用的。我们将会给出一些使用列表和数字运算的例子。

- 一个列表的长度是多少?这里有一个递归定义:
- 1. 空列表的长度为0.
- 2. 非空列表的长度为 1 + len(T), 其中len(T)是非空列表的尾部。

这个定义在Prolog中很容易实现,以下是实现代码:

len([], 0).

len([|T], N) := len(T, X), N is X + 1.

这个谓词会如期望的运行,比如:

?- len([a, b, c, d, e, [a, b], g], X).

X = 7

这是一个不错的程序:很容易理解,并且很书写很高效。但是还有其他一些求列表长度的方式。我们将会学习这种替代方式,因为它会引入累加器的概念。如果你有使用其他编程语言的经验,

你可能已经知道使用变量保持中间结果的概念,累加器就是Prolog中对应的思路。

如下是一个使用累加器计算列表长度的例子,我们将定义一个谓词,accLen/3,有如下的参数:

accLen(List, Acc, Length)

这里的List就是我们想要求解的列表,Length就是列表的长度(是一个整数)。Acc是什么?就是我们用于保存长度中间值的累加器(所以也是一个整数)。我们的思路是,如果我们调用这个

谓词,将Acct初始化为0;当递归对列表进行操作时,每当找到一个头元素,就将Acct加1,直到列表为空;当列表为空时,Acc就会保存列表的长度,下面是代码:

accLen([|T], A, L):- Anew is A+1, accLen(T, Anew, L).

--Benjamin Yan

阅读排行榜

- 1. Learn Prolog Now 翻译 第三章 递归 第一节, 递归的定义(1168)
- 2. Learn Prolog Now 翻译 第一章 事实, 规则和查询 第一节, 一些简单的例子 (1087)
- 3. Learn Prolog Now 翻译 第一章 事实,规则和查询 第二节, Prolog语法介绍 (781)
- 4. Haskell学习笔记二: 自定 义类型(767)
- 5. Learn Prolog Now 翻译 第六章 列表补遗 第一节, 列表合并(753)

评论排行榜

1. Learn Prolog Now 翻译 - 第一章 - 事实, 规则和查询 - 第一节, 一些简单的例子 (2)

推荐排行榜

- 1. Haskell学习笔记二: 自定 义类型(1)
- 2. Learn Prolog Now 翻译 第三章 递归 第四节, 更多的实践和练习(1)

accLen([], A, A).

关于基础子句的定义,将第二个参数和第三个参数进行了合一。为什么?因为这个简单的合一是返回结果的良好方式。当达到了列表的底部,累加器(第二个参数)持有了列表的长度值,所以

所以将这个值通过合一赋予长度变量(第三个参数)。下面是一个例子的追踪,可以清晰地看到当Prolog到达列表底部,长度变量通过合一进行了赋值:

?- accLen([a, b, c], 0, L).

Call: (6) accLen([a, b, c], 0, G499)?

Call: (7) G518 is 0 + 1?

Exit: (7) 1 is 0 + 1?

Call: (7) accLen([b, c], 1, _G499)?

Call: (8) G521 is 1+1?

Exit: (8) 2 is 1+1?

Call: (8) accLen([a], 2, G499)?

Call: (9) G524 is 2+1?

Exit: (9) 3 is 2+1?

Call: (9) accLen([], 3, G499)?

Exit: (9) accLen([], 3, 3) ?

Exit: (8) accLen([c], 2, 3)?

Exit: (7) accLen([b, c], 1, 3)?

Exit: (6) accLen([a, b, c], 0, 3)?

最后,我们可以定义一个谓词调用accLen,并且给出累加器的初始值为0:

leng(List, Length) :- accLen(List, 0, Length).

所以,我们可以进行如下的查询:

?- leng([a, b, c, d, e, [a, b], q], X).

X = 7

尾递归调用

累加器在Prolog中是很常用的(后面的章节会看到更多使用累加器的例子),但是为什么会这样?accLen在哪个方面比len更好呢?毕竟,accLen看上去更加复杂。答案就是因为accLen是

<mark>尾递归调</mark>用,但len不是。在一个尾递归调用的程序里,当递归到底底部的时候, 结果已经计算得出,剩下所需要做的,就是逐层返回。在一个不是尾递归调用的 递归中,一层的目标会等待

更里层的结果返回后,再进行计算。为了更清楚地理解,可以对比查询 accLen([a, b, c], 0, L)的追踪,和查询len([a, b, c], L) (如下所示):

?- len([a, b, c], L).

Call: (6) len([a, b, c], _G418) ?

Call: (7) len([b, c], _G481)?

Call: (8) len([c], _G486)?

Call: (9) len([], G489)?

Exit: (9) len([], 0) ?

Call: (9) _G486 is 0+1?

Exit: (9) 1 is 0+1?

Exit: (8) len([c], 1)?

Call: (8) G481 is 1+1?

Exit: (8) 2 is 1+1?

Exit: (7) len([b, c], 2)?

Call: (7) _G418 is 2+1?

Exit: (7) 3 is 2+1?

Exit: (6) len([a, b, c], 3)?

在accLen的查询追踪里, 当递归到底底部, accLen([], 3, _G449), 结果就已经计算完毕, 剩下只是回传上去。在len的查询追踪里面, 结果的计算依赖递归, 比如, len([b, c], _G481)的结果,

只能在完成len([c], _G489)的结果后才能进行计算。简<mark>而言之,尾递归程序会有</mark>更少的中间变量回溯计算,这使得递归会更高效。

分类: Prolog

标签: 列表, 数字运算, 尾递归, 累加器

seaman.kingfall

关注 - 1

粉丝 - 4

0

0

-加关注

« 上一篇: Learn Prolog Now 翻译 - 第五章 - 数字运算 - 第一节,Prolog中的数字运算

» 下一篇: Learn Prolog Now 翻译 - 第五章 - 数字运算 - 第三节,整数的比较 posted on 2015-07-16 10:57 seaman.kingfall 阅读(500) 评论(0) 编辑 收藏 刷新评论 刷新页面 返回顶部

努力加载评论框中...

【推荐】超50万C++/C#源码: 大型实时仿真组态图形源码

【活动】看雪2019安全开发者峰会,共话安全领域焦点

【培训】Java程序员年薪40W,他1年走了别人5年的路

最新新闻:

- ·微信公开课聚焦"增长":墨迹天气小程序DAU环比增100%
- ·知否 | 太空垃圾如何清理? 卫星测试用鱼叉击中太空垃圾碎片
- ·一线 | "美团配送"品牌发布: 对外开放配送平台 共享配送能力
- · 苍蝇落在食物上会发生什么? 让我们说的仔细一点
- · 科学家研究板块构造变化对海洋含氧量影响
- » 更多新闻...

Copyright @ seaman.kingfall Powered by: .Text and ASP.NET Theme by: .NET Monster