DAY 12

In last section, we have discussed about Pythagoras Theorem and its sums. In this section we shall discuss its converse and related sums.

(CONVERSE OF PYTHAGORAS THEOREM)

In a triangle, if the square of one side is equal to the sum of the squares of other two sides, then the angle opposite the first side is a right angle.

To prove: $\angle B = 90^{\circ}$

Construction: Construct a right angled $\triangle PQF$ at angle Q in which PQ = AB and QR = BC

Proof: In right angled $\triangle PQR$, we've

$$PR^{2} = PQ^{2} + QR^{2}$$
 (Pythagoras Theorem)
= $AB^{2} + BC^{2}$ (By Construction)
= AC^{2} (by i))

- \Rightarrow PR = AC
- \Rightarrow $\triangle ABC \cong \triangle PQR$ (SSS Congruence)
- \Rightarrow $\angle B = \angle Q = 90^{\circ}$ (By Construction)

Hence ΔABC is a right angled triangle.

Now we shall discuss some examples on it.

- 1. Check which of the following are the sides of a right angled triangle
- i) 3cm, 4cm, 5cm
- ii) 6cm, 7cm, 8cm
- iii) 20cm, 21cm, 29cm

Sol:-

i) Here the largest side is 5 cm (Hypotenuse)

Now (largest side)
$$^2 = 5^2 = 25$$

and Sum of squares of other two sides
$$= 3^2 + 4^2 = 9 + 16 = 25$$

$$\Rightarrow$$
 (largest side)² = Sum of squares of other two sides = 25

By converse of Pythagoras theorem, Given sides are of right angled triangle.

ii) Here the largest side is 8 cm (Hypotenuse)

Now (largest side)
$$^2 = 8^2 = 64$$

and Sum of squares of other two sides
$$= 6^2 + 7^2 = 36 + 49 = 85$$

- \Rightarrow (largest side)² \neq Sum of squares of other two sides Hence given sides are not of right triangle.
- iii) Here the largest side is 29 cm (Hypotenuse)

Now (largest side)
$$^2 = 29^2 = 841$$

and Sum of squares of other two sides
$$= 20^2 + 21^2 = 400 + 441 = 841$$

$$\Rightarrow$$
 (largest side)² = Sum of squares of other two sides = **841**

By converse of Pythagoras theorem, Given sides are of right angled triangle.

2. ABC is an isosceles triangle with AC=BC, If $AB^2 = 2AC^2$, prove that ABC is a right triangle. [Ex 6.5, Q5]

Sol:- Given
$$AB^2 = 2AC^2 = AC^2 + AC^2$$

= $AC^2 + BC^2$

$$\{As AC = BC\}$$

 \Rightarrow By converse of Pythagoras Theorem \triangle ABC is right angled at C.

come-become-educated

