Review Concepts in Chp 3

Weak Entity Sets

Entity sets are <u>weak</u> when their key comes from other classes to which they are related.

"Football team" v. "*The GSU*Football team" (E.g., GT has a football team too, sort of)

2

Weak Entity Sets (cont.)

Entity sets are <u>weak</u> when their key comes from other classes to which they are related.

- number is a <u>partial key</u>. (denote with dashed underline).
- University is called the <u>identifying owner</u>.
- Participation in affiliation must be total. Why?

Two Types of Relationship Constraints (1)

- Cardinality ratios
 - Specifies the maximum number of relationship instances that an entity can participate in
 - E.g., in WORKS_FOR relationship, DEPARTMENT : EMPLOYEE is of cardinality ratio 1 :
 - Means what?
- Possible cardinality ratios
 - 1:1
 - 1:N
 - N:1
 - M: N

A Running Example of 1:1

An employee can manage at most one department and a department can have at most one manager.

A Running Example of 1: N

Constraint: each employee must work for exactly one department

A Running Example of M: N

Two Types of Relationship Constraints (2)

- Participation constraints
 - Specifies the **minimum** number of relationship instances that each entity can participate in (also called minimum cardinality constraint)
 - Total participation
 - Partial participation

Two Types of Relationship Constraints (2) (cont.)

- Let R be a relationship set between entity sets A and B.
- The participation of A is **total** if every entity of A must participate in at least one relationship in R
- Otherwise, the participation of A is partial

What's the participation of A?

What's the participation of B?

Two Types of Relationship Constraints (2) (cont.)

• E.g., "every employee must work for a department"

• We do not expect every employee to mange a department

N-ary Relationship

- Relationship R is called N-ary Relationship if
 - The number of participating entity sets is n

Chapter 9: Relational Database Design by ER- and EER-to-Relational Mapping

Objectives

Convert the basic ER model — entity sets (strong and weak), binary relationships (with various structural constraints), n-ary relationships, and attributes (simple, composite and multivalued) — into relations

• Map **EER model** — specialization/generalization — into relations

EMPLOYEE

Step 1—Mapping of Regular Entity Sets

- Mapping of regular entity sets
 - For each **regular entity set** *E* in ER schema, **create** a **relations** *R* that **includes** all the simple **attributes of** *E*
 - Choose one of the key attributes of E as the primary key for R

See an example:

Step 1—Mapping of Regular Entity Sets (example)

Step 2—Mapping of Weak Entity Sets

- Mapping of weak entity sets
 - For each weak entity set W in ER schema with owner entity set E, create a relations

 R
 - Include all simple attributes of W as attributes of R
 - Include the primary key of the relation that correspond to the owner entity types, as foreign key of R
 - The primary key of R is the combination of the primary key(s) of the owner(s) and the partial key of the weak entity type W
- See an example:

Step 2—Mapping of Weak Entity Sets (example)

Step 3—Mapping of Binary 1:1 Relationship Types

For each binary 1:1 relationship R in ER schema, identify the relation
 S and T that correspond to the entity sets participating in R

Foreign key approach

Step 3—Mapping of Binary 1:1 Relationship Types (cont.)

- Choose one of the relations, say S
- Include the primary key of T as a foreign key of S
- Better to choose an entity set with total participation in R in the role of S
- Include all the simple attributes of the 1:1 relationship R as attributes
 of S.

• See an example:

Step 4—Mapping of Binary 1:N Relationship Types

• For each 1:N relationship R, identify the relation S that represents the participating entity at the N-side

 Include as foreign key in S the primary key of the relation T that represents the other entity set participating in R

Include any simple attributes of the 1:N relationship as attributes of S

See an example:

Step 5—Mapping of Binary M:N Relationship Types

- **Relationship relation** (cross-reference) approach
- For each M:N relationship R, create a new relation S to represent R
- Include as foreign key in S the primary keys of the relations that represent the participating entity sets
- There combination will form the primary key of S
- Also include any simple attributes of the M:N relationship as attributes of S
- See an example:

WORKS_ON

Step 6—Mapping of Multivalued Attributes

- For each multivalued attribute A, create a new relation R
- R will include an attribute corresponding to A
- Include as a foreign key in R the primary key K of the relation that represents the entity set that has A as a multivalued attribute
- The primary key of R is the combination of A and K
- See an example:

DEPT_LOCATIONS

Dnumber	Dlocation
---------	-----------

Step 7—Mapping of N-ary Relationship Types

- For each n-ary relationship type R, where n>2, create a new relationship relation
 S to represent R
- Include as foreign key in S the primary keys of the relations represent the participating entity sets
- Also include any simple attributes of the *n*-ary relationship type as attributes of *S*
- The primary key of S is usually a combination of all the foreign keys that reference the relations representing the participating entity types
- See an example:

Step 7—Mapping of *N*-ary Relationship Types (cont.)

Summary

 Table 9.1
 Correspondence between ER and Relational Models

RELATIONAL MODEL
Entity relation
Foreign key (or <i>relationship</i> relation)
Relationship relation and two foreign keys
Relationship relation and n foreign keys
Attribute
Set of simple component attributes
Relation and foreign key
Domain
Primary (or secondary) key

Mapping EER Model to Relations

Step 8—Mapping Specialization or Generalization

- Convert each specialization with m subclasses $\{S_1, S_2, ..., S_m\}$ and superclass C, where the attributes of C are $\{k, a_1, ..., a_n\}$ and k is the primary key, into relation schemas using one of the following options:
 - Option 8A:
 - 1) Create a relation L for C with attributes Attrs(L) = $\{k, a_1, ..., a_n\}$ and PK(L) = k.
 - 2) Create a relation L_i for each subclass S_i , $1 \le i \le m$, with the attributes Attrs $(L_i) = \{k\} \cup \{\text{attributes of } S_i\}$ and $PK(L_i) = k$.
 - This option works for any specialization (total or partial, disjoint or overlapping).
- See an example:

Step 8—Mapping Specialization or Generalization (example)

