Discrete Et Geometrique | CM: 8

Par Lorenzo

08 avril 2025

Proposition 0.1.

Soit X une variable aléatoire et $f : \mathbb{R} \to \mathbb{R}$. Posons $Y(\omega) = f(X(\omega))$. Alors $Y : \Omega \to \mathbb{R}$. Supposons que nous connaissons P_X et que nous voulons calculer P_Y .

• Cas facile:

$$f: X(\Omega) = \mathbb{R}$$
 est injective.

Alors
$$Y(\Omega) = \{f(x) \mid x \in X(\Omega)\}\$$

et $P(\{Y = y\}) = P(\{X = f^{-1}(y)\}) = P_X(\{f^{-1}(y)\}).$

• Cas général:

 $f: X(\Omega) = \mathbb{R}$ n'est pas forcément injective.

On peut écrire $P({Y = y}) = P({X \in f^{-1}({y})}) = \sum_{x \in f^{-1}({y})}$ (on différencie bien $f^{-1}(y)$ avec celui du cas injectif, ici c'est l'image réciproque et non la fonction réciproque).

esperance variance variablea aléatoire indépendante loi de probabilité