Unit Two: Energy and Sustainability (ESS, C, P and B)

The Big Picture

Modern Humans have been on the planet for a significant amount of time. They have learnt how to use energy and they have modified their environment to sustain their increasingly complex lives. The need and use of energy brings its own complexities, so an understanding is needed to formulate reasoned positions for the production and consumption of energy. Students need to understand how energy is used in everyday life, how it is consumed both directly and indirectly. They will explore how energy flows through a system and how the resources are recycled and the processes involved. They will assess and evaluate the impact of chemical weathering and deposition, as well as ocean acidification. How sustainable are the systems we use to harness energy? What are the alternatives?

Key course objectives / SOLO checklist

Topic	Checklist of Understanding	Done	Revise	Can teach
Energy	I can state what energy is.			
Consumption	I can describe what is meant by energy consumption.			
& Fossil	I can explain how energy is used in everyday life.			
<u>Fuels</u>	I can describe the direct use of energy in everyday life, e.g. lighting			
	heating, fuel for transport etc.			
	I can describe how energy is consumed indirectly.			
	I can explain how indirect consumption of energy is associated with the			
	production of consumer goods, energy required to build homes and			
	infrastructure, energy for transporting goods and growing food etc.			
	I can describe what is meant by a fossil fuel.			
	I can explain what happens to the levels of CO ₂ in the atmosphere with			
	the burning of fossil fuels.			
	I can describe the greenhouse effect.			
	I can explain the causes and effects of the greenhouse effect.			
	I can state what carbon capture means.			
	I can evaluate the uses of crude oil.			
Extension	I can reflect on the efficiency of energy use directly and indirectly.			
	I can theorise about some of the problems we face in the future if we			
	don't use energy more efficiently.			
	I can examine data to evaluate evidence of climate change.			
Enrichment	I can describe what carbon capture is and how it could reduce			
	atmospheric carbon dioxide.			
	I can conduct an energy survey and reflect on how much energy my			
	household uses.			
	I can reflect on some of the practices I could do to use less energy.			
	I can evaluate the wider impact of climate change.			
<u>Organic</u>	I can state what organic chemistry is			
Chemistry	I can explain how fractional distillation works and how it is used to			
	separate different substances within crude oil.			
	I can recognise homologous series of hydrocarbons:			
	alkanes, alkenes, alkynes, cycloalkanes, cycloalkenes.			
	I can state what a functional group is and recognise functional groups			
	of the homologous series listed above.			
	I can general formulae to recognise members of homologous series.			
	I can state what a saturated hydrocarbon is.			
	I can state what an unsaturated hydrocarbon is.			
	I can write the names of hydrocarbons using the IUPAC naming system			

Science B: Energy and Sustainability Student SOLO Checklist

		1	1	I
	for substances up to 8 carbons in the parent chain (straight and			
	branched alkanes and alkenes, simple only (no branches): cycloalkanes,			
	cycloalkenes, alkynes)			
	I can describe the molecular, condensed and structural formulae of			
	hydrocarbons with up to 8 carbons in the parent chain.			
	I can use given information to predict names of hydrocarbons and infer			
	molecular, condensed and structural formulae.			
	I can draw and identify structural isomers for hydrocarbons, including			
	chain isomers and position isomers.			
	I can use IUPAC naming system to write names for structural isomers,			
	using naming convention for alkyl groups and numbering system for			
	position of substituents			
	I can define terms viscosity, volatility and flammability in relation to			
	hydrocarbons.			
	I can describe the trends in physical properties of hydrocarbons			
	(melting point and boiling point, viscosity, volatility, flammability).			
	I can predict the outcome of combustion involving hydrocarbons.			
	I can write and balance molecular equations for complete combustion			
5 1	reactions of hydrocarbons.			
Extension	I can describe and give examples of functional group isomers as a			
	category of structural isomers.			
	I can describe geometric isomers and give examples of them. How do			
	they differ from structural isomers? How does the geometry affect the			
	properties of hydrocarbons?			
Enrichment	I can research the aromatic hydrocarbons and how they are used in			
	industry.			
Energy	I can state what is meant by endothermic and exothermic reactions.			
Changes	I can describe the energy changes (ΔH) that occur during endothermic			
	and exothermic reactions using +/			
	I can use the terms systems and surroundings to relate the energy			
	transfer during a reaction.			
	I can contrast the differences between endothermic and exothermic			
	reactions, in terms of temperature change and energy transfer.			
	I can define and describe activation energy (E _A) as the energy required			
	for reactants to be able to react.			
	I can state the key features of a catalyst (increases rate of reaction,			
	takes part in reaction but not consumed so can be reused).			
	•			
	I can describe how a catalyst speeds up a chemical reaction (reduction			
	of E _A so greater proportion of reactants can react).			
	I can draw and analyse energy profile diagrams, including use of:			
	reactants and products, ΔH positive or negative, E _a forward and			
	reverse, transition state, with and without a catalyst.			
	I can write equations for reactions that involve energy changes.			
	I can identify exothermic and endothermic reactions from quantitative			
	experimental data.			
	I can use data from reactions to compare fuels.			
Extension	I can describe and explain how catalytic cracking is used to convert long			
	chain alkanes into a range of useful products.			
	I can describe the difference between homogeneous and			
	heterogeneous catalysis.			
Enrichment	I can explain how catalysts are used to reduce emissions from vehicle			
Linicillicit	engines.			
			+	1
	I can describe what a catalyst inhibitor is, and how it effects a catalysed			
	I can describe what a catalyst inhibitor is, and how it effects a catalysed reaction.			

Science B: Energy and Sustainability Student SOLO Checklist

Nuclear	I can recall a description of Bohr's model of the atom.				
	I can recall what is meant by atomic number, atomic mass, protons,		 		
<u>Energy</u>	neutrons (Year 9)				
	I can definitions of nucleons, strong nuclear force, electromagnetic				
	force, radioactive decay				
	I can relate knowledge of strong nuclear force and (counters)				
	electromagnetic force to the stability of nucleus. I can relate binding				
	energy to stability of a nucleus and relate to nuclei becoming				
	radioactive.				
	I can describe the different types of radiation (alpha, beta and gamma)				
	and explain the differences between them.				
	I can identify specific materials that stop the different types of				
	radiation.				
	I can write and balance nuclear reactions for radioactive decay				
	I can state what a half-life is and explain that different isotopes have				
	different levels of stability.				
	I can interpret half-life graphs that measure mass, number of nuclei,				
	percentage and activity (counts per sec/becquerels)				
	I can draw decay graphs given data and use the graph to calculate half-				
	life.				
	I can describe what fission and fusion are and explain the differences				
	between them				
	I can predict energy changes as a result of fission and fusion reactions.				
	I can write and balance nuclear reactions for fission and fusion				
	reactions				
	I can state what is meant by mass defect in a fission/fusion reaction				
	and how it relates to the energy released in the reaction				
	I can describe the relationship between mass and energy using E = mc2.				
	I can describe mass defect and binding energy and their relationship.				
	I can describe the main components of nuclear power stations. In				
	particular, reactor vessel (encases and prevents radiation from				
	escaping), the control rods (function in controlling nuclear reactions),				
	fuel rods, steam generator (heat exchanger + turbine + generator),				
	moderator (slows neutrons eg graphite or heavy water).				
	I can explain, in simple terms, how nuclear power stations work to				
	generate electricity. A nuclear reactor is a device in which nuclear				
	reactions are generated, and the chain reaction is controlled to release				
	large amount of steady heat, thereby producing energy.				
	I can describe an uncontrolled reaction in terms of neutrons escaping				
	too quickly to maintain a chain reaction, resulting in the rapid release				
	of nuclear energy, causing an explosion. Contrast this with a controlled reaction.				
	I can analyse some advantages and disadvantages of using nuclear				
Extension	energy to generate electricity. I can discuss how radioisotopes are used in medicine.				
LXCENSION	I can perform quantitative analysis of mass defect and binding energy				
	Evaluate, with reference to empirical evidence, claims about heating				
Enrichment	processes, nuclear reactions and electrical technologies		 		
Emiciment	I can generalise about the work of Niels Bohr.		 		
	I can theorise about the impact of different sources of radiation used in				
	everyday life.		<u> </u>		
	I can reflect on nuclear power as an alternative energy source. What considerations would need to be made?				
		[<u>l</u>		
5 weeks, Biological Sciences (Diseases) Term 4 Weeks 1-5 Program will be handed out separately					

Science B: Energy and Sustainability Student SOLO Checklist

EXAM	Covers all content before this point.		
	·		
The Carbon	I can define biogeochemical cycle as a concept describing how chemical		
<u>Cycle</u>	elements (e.g., nitrogen, carbon) or molecules (e.g. water) are		
	transformed and stored by both biological and geological components		
	in the Earth's biosphere.		
	I can state the main forms of carbon in carbon cycle.		
	I can describe the main processes in the carbon cycle (respiration,		
	photosynthesis, weathering, erosion, dissolving, deposition,		
	fossilisation, extraction, volcanic eruptions, carbon fixation into carbon		
	sinks).		
	I can explain how solar energy is transformed into chemical potential		
	energy through the process of photosynthesis.		
	I can explain how the structure of plants is adapted to the process of		
	photosynthesis.		
	I can explain how the structure of leaves are adapted to the process of		
	photosynthesis.		
	I can state the word and chemical equation for photosynthesis.		
	I can state what respiration is.		
	I can compare and contrast the similarities and differences between		
	aerobic respiration and photosynthesis.		
	I can organise the carbon cycle into a poster (electronic or paper).		
	Emphasise the biological, chemical, geological or all three components		
	of the carbon cycle.		
Extension	I can explain the process light dependent and light independent stages		
	of photosynthesis.		
	I can hypothesise as to why intermittent light produces a greater rate		
	of photosynthesis than continuous light.		
	I can describe what photorespiration is and compare the differences		
	between C3 and C4 plants.		
	I can explain the processes of glycolysis, the Krebs Cycle and the		
	electron transport chain in the generation of ATP during aerobic		
	respiration.		
Enrichment	I can reflect on the importance of plants for the survival of animals.	<u> </u>	
	I can hypothesise what will happen if plants are not managed well in		
	Australia.	<u> </u>	
	I can consider what may be done to preserve plants or increase	1	
	productivity.		