

Dr. Arun K. Kulshreshth

Fall 2020

Lecture 7: Math Concepts I

<u>Announcements</u>

- Project 3 is available on Moodle
 - Due: Wednesday, September 30, 2020 11:00 PM
 - Creating a game environment in Unity
 - Make sure to use the correct version of Unity 3D
 - 2020.1.3f1
- Midterm Exam 1
 - Wednesday, September 23, 2020
 - ODS: Schedule your exam with ODS by September 18,
 2020

About Today's Lecture

- Cartesian coordinate system
 - 2D cartesian space
 - 3D cartesian space
- Vectors

Cartesian Coordinate System

 3D math is all about measuring locations, distances, and angles precisely and mathematically in 3D space.

 The most frequently used framework to perform such calculations using a computer is called the Cartesian coordinate system.

2D Cartesian Coordinate System

2D Math Concepts

2D Coordinate Space

- Origin: (0,0)
 - The center of the coordinate system
- Axes: X and Y
 - X: Horizontal Axes
 - Y: Vertical Axes

Axis Orientation

There are 8 possible ways of orienting the Cartesian axes.

Screen Space

- Screen space is how you measure on a computer screen, with the origin at the top left corner.
- But it doesn't have to be this way. It's only a convention.
- In screen space, for example, +y points down.
- Unity 3D GUI coordinates use this convention

Angles and Trigonometry

Degrees and Radians

Angle Measurement

- The most important units of measure are degrees (°) and radians (rad).
- Angle between two rays in radians
 - The length of the intercepted arc of a unit circle
- To convert an angle from radians to degrees
 - multiply by $180/\pi \approx 57.29578$
- To convert an angle from degrees to radians
 - multiply by π/180 ≈
 0.01745329.

Cosine & Sine

$$\cos \theta = x$$

 $\sin \theta = y$

- You can easily remember which is which because they are in alphabetical order
 - x comes before y
 - cos comes before sin

The Pythagorean Theorem

Theorem

$$a^2 + b^2 = c^2$$

Other Identities

$$\sin^2 \theta + \cos^2 \theta = 1$$

$$\theta$$
 1 + tan² θ = sec² θ

$$\theta = 1 + \cot^2 \theta = \csc^2 \theta$$

3D Cartesian Coordinate System

3D Math Concepts

3D Cartesian Space

Locating Points in 3D

Point (x, y, z) is located

- x units along the x-axis
- y units along the y-axis
- z units along the z-axis
- All distances from the origin.

Visualizing 3D Space

- The usual convention
 - the x-axis is horizontal and positive is right
 - the y-axis is vertical and positive is up

- The z-axis is depth
 - but should the positive direction go forwards "into" the screen or backwards "out from" the screen?

Left-handed Coordinates

- +z goes "into" screen
- Use your left hand
- Thumb is +x
- Index finger is +y
- Second finger is +z

Right-handed Coordinates

- + z goes "out from" screen
- Use your right hand
- Thumb is +x
- Index finger is +y
- Second finger is +z
- (Same fingers, different hand)

Changing Conventions

- To swap between left and right-handed coordinate systems, negate the z.
- Linear algebra books usually use right-handed.
- Graphics books usually use left-handed.
- We'll use left-handed.
 - Unity 3D uses left-handed

Positive Rotation

- Use your left hand for a left-handed coordinate space, and your right hand for a right-handed coordinate space.
- Point your thumb in the positive direction of the axis of rotation (which may not be one of the principal axes).
- Your fingers curl in the direction of positive rotation.

Positive Rotation

Our Convention

- We will use a lefthanded coordinate system.
- Unity uses lefthanded system

Vectors

Vector Related Math

Vectors and Scalars

- An "ordinary number" is called a scalar.
- Algebraic definition of a vector: a list of scalars (with parenthesis around them)
 - Example: [1, 2, 3].
- Vector *dimension* is the number of numbers in the list.
- Typically we use dimension 2 for 2D work, dimension 3 for 3D work.

Row vs. Column Vectors

- Vectors can be written in one of two different ways: horizontally or vertically.
- Row vector: [1, 2, 3]
- Column vector: $\begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$
- Scalar parts of a vector are called components
 - $\mathbf{v} = [6, 19, 42]$
 - Components: $\mathbf{v}_1 = 6$, $\mathbf{v}_2 = 19$, $\mathbf{v}_3 = 42$

More Notation

- Can also use x, y, z for subscripts.
- 2D vectors: $[\mathbf{v}_{x}, \mathbf{v}_{y}]$.
- 3D vectors: $[\mathbf{v}_{x}, \mathbf{v}_{y}, \mathbf{v}_{z}]$.

The Zero Vector

- The zero vector 0 is the additive identity
 - meaning that for all vectors \mathbf{v} , $\mathbf{v} + \mathbf{0} = \mathbf{0} + \mathbf{v} = \mathbf{v}$.

•
$$\mathbf{0} = [0, 0, ..., 0]$$

 The zero vector is unique: It's the only vector that doesn't have a direction

Vectors vs Points

- Points are measured relative to the origin.
- A vector can be used to represent a point.
- The point (x,y) is the point at the head of the vector
 [x,y] when its tail is placed at the origin.
- But vectors don't have a location

Vectors vs Points

Vector Operations

- Negation
- Multiplication by a scalar
- Addition and Subtraction
- Displacement
- Magnitude
- Normalization
- Dot product
- Cross product

Vector Negation: Algebra

Negation is the additive inverse:

$$v + -v = -v + v = 0$$

To negate a vector, negate all of its components.

$$-\begin{bmatrix} a_1 \\ a_2 \\ \vdots \\ a_{n-1} \\ a_n \end{bmatrix} = \begin{bmatrix} -a_1 \\ -a_2 \\ \vdots \\ -a_{n-1} \\ -a_n \end{bmatrix}$$

<u>Examples</u>

$$-[x y] = [-x -y]$$

$$-[x y z] = [-x -y -z]$$

$$-[x y z w] = [-x -y -z -w]$$

$$-[x y z w] = [-x -y -z -w]$$

$$-[4 -5] = [-4 5]$$

$$-[-1 0 \sqrt{3}] = [1 0 -\sqrt{3}]$$

$$-[1.34 -3/4 -5 \pi] = [-1.34 3/4 5 -\pi]$$

Multiplication by a Scalar: Algebra

- Can multiply a vector by a scalar.
- Result is a vector of the same dimension.
- To multiply a vector by a scalar, multiply each component by the scalar.
- For example, if $k\mathbf{a} = \mathbf{b}$, then $\mathbf{b}_1 = k\mathbf{a}_1$, etc.

$$k \begin{bmatrix} a_1 \\ a_2 \\ \vdots \\ a_{n-1} \\ a_n \end{bmatrix} = \begin{bmatrix} a_1 \\ a_2 \\ \vdots \\ a_{n-1} \\ a_n \end{bmatrix} k = \begin{bmatrix} ka_1 \\ ka_2 \\ \vdots \\ ka_{n-1} \\ ka_n \end{bmatrix}$$

- So vector negation is the same as multiplying by the scalar –1.
- Division by a scalar same as multiplication by the scalar multiplicative inverse.

Vector Addition: Algebra

- Can add two vectors of the same dimension.
- Result is a vector of the same dimension.
- To add two vectors, add their components.
- For example, if $\mathbf{a} + \mathbf{b} = \mathbf{c}$, then $\mathbf{c}_1 = \mathbf{a}_1 + \mathbf{b}_1$, etc.
- Subtract vectors by adding the negative of the second vector, so a b = a + (-b)

Vector Addition: Algebra

$$\begin{bmatrix} a_1 \\ a_2 \\ \vdots \\ a_{n-1} \\ a_n \end{bmatrix} + \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_{n-1} \\ b_n \end{bmatrix} = \begin{bmatrix} a_1 + b_1 \\ a_2 + b_2 \\ \vdots \\ a_{n-1} + b_{n-1} \\ a_n + b_n \end{bmatrix}$$

Vector Subtraction: Algebra

$$\begin{bmatrix} a_1 \\ a_2 \\ \vdots \\ a_{n-1} \\ a_n \end{bmatrix} - \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_{n-1} \\ b_n \end{bmatrix} = \begin{bmatrix} a_1 \\ a_2 \\ \vdots \\ a_{n-1} \\ a_n \end{bmatrix} + \begin{pmatrix} - \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_{n-1} \\ b_n \end{bmatrix} \end{pmatrix} = \begin{bmatrix} a_1 - b_1 \\ a_2 - b_2 \\ \vdots \\ a_{n-1} - b_{n-1} \\ a_n - b_n \end{bmatrix}$$

Vector Magnitude

- The magnitude of a vector is a scalar.
- Also called the "norm".
- It is always positive
- Magnitude of a vector is its length.

$$\|\mathbf{v}\| = \sqrt{\sum_{i=1}^{n} v_i^2} = \sqrt{v_1^2 + v_2^2 + \dots + v_{n-1}^2 + v_n^2}$$

<u>Observations</u>

- The zero vector has zero magnitude.
- There are an infinite number of vectors of each magnitude (except zero).

Normalized Vector

- A normalized vector always has unit length.
- To normalize a nonzero vector, divide by its magnitude.

$$\hat{\mathbf{v}} = \frac{\mathbf{v}}{\|\mathbf{v}\|}$$

Example

Normalize [12, -5]:

$$\frac{\begin{bmatrix} 12 & -5 \end{bmatrix}}{\| \begin{bmatrix} 12 & -5 \end{bmatrix}\|} = \frac{\begin{bmatrix} 12 & -5 \end{bmatrix}}{\sqrt{12^2 + 5^2}} = \frac{\begin{bmatrix} 12 & -5 \end{bmatrix}}{\sqrt{169}} = \frac{\begin{bmatrix} 12 & -5 \end{bmatrix}}{13} = \begin{bmatrix} \frac{12}{13} & \frac{-5}{13} \end{bmatrix}$$
$$\approx \begin{bmatrix} 0.923 & -0.385 \end{bmatrix}$$

Computing Distance

- To find the geometric distance between two points a and b.
- Compute the vector d from a to b.

$$- d = b - a$$

Compute the magnitude of d.

Dot Product

Can take the dot product of two vectors of the same dimension. The result is a scalar.

$$\mathbf{a} \cdot \mathbf{b} = \sum_{i=1}^{n} a_i b_i$$

$$\begin{bmatrix} a_1 \\ a_2 \\ \vdots \\ a_{n-1} \\ a_n \end{bmatrix} \cdot \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_{n-1} \\ b_n \end{bmatrix} = a_1b_1 + a_2b_2 + \dots + a_{n-1}b_{n-1} + a_nb_n$$

Dot Product: Geometry

Dot product is the magnitude of the projection of one vector onto another.

Sign of Dot Product

Sign of Dot Product

$\mathbf{a} \cdot \mathbf{b}$	θ	Angle is	a and b are
> 0	$0^{\circ} \leqslant \theta < 90^{\circ}$	acute	pointing mostly in the same direction
0	$\theta = 90^{\circ}$	right	perpendicular
< 0	$90^{\circ} < \theta \le 180^{\circ}$	obtuse	pointing mostly in the opposite direction

Cross Product

- Can take the cross product of two vectors of the same dimension.
- Result is a vector of the same dimension.

$$\begin{bmatrix} x_1 \\ y_1 \\ z_1 \end{bmatrix} \times \begin{bmatrix} x_2 \\ y_2 \\ z_2 \end{bmatrix} = \begin{bmatrix} y_1 z_2 - z_1 y_2 \\ z_1 x_2 - x_1 z_2 \\ x_1 y_2 - y_1 x_2 \end{bmatrix}$$

Cross Pattern

$$\begin{bmatrix} x_1 \\ y_1 \\ z_1 \end{bmatrix} \times \begin{bmatrix} x_2 \\ y_2 \\ z_2 \end{bmatrix} = \begin{bmatrix} y_1 z_2 - z_1 y_2 \\ z_1 x_2 - x_1 z_2 \\ x_1 y_2 - y_1 x_2 \end{bmatrix}$$

$$\begin{bmatrix} x_1 \\ y_1 \\ z_1 \end{bmatrix} \times \begin{bmatrix} x_2 \\ y_2 \\ z_2 \end{bmatrix} = \begin{bmatrix} y_1 z_2 - z_1 y_2 \\ z_1 x_2 - x_1 z_2 \\ x_1 y_2 - y_1 x_2 \end{bmatrix}$$

$$\begin{bmatrix} x_1 \\ y_1 \\ z_1 \end{bmatrix} \times \begin{bmatrix} x_2 \\ y_2 \\ z_1 \end{bmatrix} = \begin{bmatrix} y_1 z_2 - z_1 y_2 \\ z_1 x_2 - x_1 z_2 \\ z_1 x_2 - x_1 z_2 \\ z_1 y_2 - y_1 x_2 \end{bmatrix}$$

Cross Product: Geometry

- Given 2 nonzero vectors a, b.
 - They are (must be) coplanar.
- The cross product of a and b is a vector perpendicular to the plane of a and b.
- The magnitude is related to the magnitude of a and b and the angle between a and b.
- The magnitude is equal to the area of a parallelogram with sides a and b.

- In a left-handed coordinate system, use your left hand.
- Curl fingers in direction of vectors
- Thumb points in direction of a x b

$$\|\mathbf{a} \times \mathbf{b}\| = \|\mathbf{a}\| \|\mathbf{b}\| \sin \theta$$

<u>Summary</u>

- 2D Cartesian coordinates
- 3D Cartesian coordinates
 - Left-handed vs right-handed
- Vectors
 - Operations with vectors
- Next class
 - Continue this discussion on math concepts

