COCKOBA: EAM April 23, 2010

1.3.5 Стекови автомати

$$K = (Q, \Sigma, \Gamma, \delta, s, \#)$$
:

- \square Q, състояния
- \square Σ , азбука
- \square Γ азбука за стека, $\Sigma \cup \{\#\} \subseteq \Gamma$
- \square $\delta: Q \times (\Sigma \cup \varepsilon) \times \Gamma \to 2^{Q \times \Gamma^*},$ функция на прехода; (крайно м-во)
- \square $s \in Q$, начално състояние
- \square # $\not\in \Sigma$: край на стека,

 $\approx \varepsilon {
m NFA} + {
m c}$ текова памет — крайните състояния $\approx {
m c}$ пециална 2-лентова-машина на Тюринг

Cockoba: EAM April 23, 2010

Конфигурация на стеков автомат

$$(q, w, x) \in Q \times \Sigma^* \times \Gamma^*$$

Как работи един стеков автомат

Възможни преходи между конфигурации.

Четене на един входен символ а:

$$(q, aw, bx)$$
 $(q', x') \in \delta(q, a, b)$ $(q', w, x'x)$

 ε -преход:

$$(q, w, bx) \vdash^{(q', x') \in \delta(q, \varepsilon, b)} (q', w, x'x)$$

$$(q, w, \alpha) \vdash^{*} (q', w, \beta) \iff$$

$$\exists C_{1} \dots C_{n}(C_{1} = (q, w, \alpha) \& C_{n} = (q', w, \beta) \& C_{1} \vdash C_{2} \dots C_{n-1} \vdash C_{n})$$

$$(q, w, \alpha) \vdash^{*} (q, w, \alpha)$$

Cockoba: EAM April 23, 2010

Стековите автомати като разпознаватели

$$K = (Q, \Sigma, \Gamma, \delta, s, \#).$$

 $L(K)$?

Дефиниция:

K приема $w \in \Sigma^*$ т.т.к.

 \exists редица от (разрешени от δ) конфигурации

$$(s, w, \#) \vdash \cdots \vdash (q, \varepsilon, \varepsilon)$$
 с $q \in Q$ произволно.

"Приемане с празен стек"

$$L(K):= \{w \in \Sigma^* : K \text{ приема } w\}.$$

Упражнение:
$$\{w\$w^R : w \in \{a,b\}^*\}$$

$$K = (\{0,1\}, \{a,b,\$\}, \{a,b,\#\}, \delta, 0,\#)$$

$$\delta(0,\$,k) = \{(1,k)\}$$

$$\delta(0,i,k) = \{(0,ik)\}\$$
за $i \in \{a,b\}$

$$\delta(1, i, i) = \{(1, \varepsilon)\}$$

$$\delta(1, \varepsilon, \#) = \{(1, \varepsilon)\}$$

$$(0,ba\$ab,\#)\vdash$$

$$(0, a\$ ab, b\#) \vdash$$

$$(0,\$ ab, ab\#) \vdash$$

$$(1,ab,ab\#)\vdash$$

$$(1,b,b\#)\vdash$$

$$(1, \varepsilon, \#) \vdash$$

$$(1, \varepsilon, \varepsilon)$$

Упражнение:
$$\{ww^R : w \in \{a,b\}^*\}$$

Cockoba: EAИ April 23, 2010

Твърдение: L е контекстно-свободен т.т.к. \exists недетерминистичен стеков автомат (NstackA)

$$M:L(M)=L$$

Cockoba: EAM April 23, 2010

Д-во: L е контекстно-свободен $\longrightarrow \exists$ NstackA M: L(M) = L

Нека $G=(V,\Sigma,P,S)$ е гарматика с L(G)=L. Да разгледаме NstackA $M=(\{q\}\,,\Sigma,V\cup\Sigma,\delta,q,S)$ с

$$(1)\forall \mathbf{A} \to \mathbf{\alpha} \in P : (q, \mathbf{\alpha}) \in \delta(q, \varepsilon, \mathbf{A}),$$
$$(2)\forall a \in \Sigma : (q, \varepsilon) \in \delta(q, a, a)$$

Идея (инварианта): в стека се запомнят правилата на един извод, и при вход на терминален символ го вади от върха на стека.

 $G = (V, \Sigma, P, S)$ гарматика с L(G) = L.

$$M = (\{q\}, \Sigma, V \cup \Sigma, \delta, q, S)$$
 c

$$\forall A \to \alpha \in P : (q, \alpha) \in \delta(q, \varepsilon, A), \ \forall a \in \Sigma : (q, \varepsilon) \in \delta(q, a, a)$$

Лема: Ако $w \in \Sigma^*, \alpha \in V(V \cup \Sigma)^* \cup \{\varepsilon\}$, то

$$S \Rightarrow^* w\alpha \iff (q, w, S) \vdash^* (q, \varepsilon, \alpha).$$

Следствие: $\alpha = \varepsilon \longrightarrow S \Rightarrow^* w \iff (q, w, S) \vdash^* (q, \varepsilon, \varepsilon).$

Д-во: Нека $S \Rightarrow^* w\alpha$. Тогава има извод $u_0 = S \Rightarrow u_1 \cdots \Rightarrow u_n = w\alpha$.

С индукция по дължината на извода ще покажем, че $(q, w, S) \vdash^* (q, \varepsilon, \alpha)$.

$$S \Rightarrow^* w\alpha \longrightarrow (q, w, S) \vdash^* (q, \varepsilon, \alpha)$$

Случай n=0:

$$u_0 = S = w\alpha \longrightarrow w = \varepsilon \& \alpha = S \longrightarrow (q, w, S) \vdash^* (q, \varepsilon, \alpha).$$

Случай $n \rightsquigarrow n+1$:

$$u_0 = S \Rightarrow u_1 \dots u_n \Rightarrow u_{n+1} = w\alpha$$
. Here $u_n = xA\beta$, $x \in \Sigma^*$,

$$u_{n+1} = x \gamma \beta$$
 и $A \rightarrow \gamma \in P$.

Тъй като
$$u_0 = S \Rightarrow u_1 \cdots \Rightarrow u_n = xA\beta$$
, то по ИП

$$(q,x,S)\vdash^*(q,\varepsilon,A\beta).$$

Ot
$$A \rightarrow \gamma \in P \longrightarrow (q, \varepsilon, A\beta) \vdash (q, \varepsilon, \gamma\beta)$$
.

Но $u_{n+1} = w\alpha = x\gamma\beta$, α започва с променлива и $x, w \in \Sigma^*$.

Следователно $w=xy,\ y\in\Sigma^*,\ y\alpha=\gamma\beta$. Така

$$(q,w,S)\vdash^*(q,y,\gamma\beta)=(q,y,y\alpha)$$
. Сега прилагайки у пъти

преходи от тип (2): $(q, w, S) \vdash^* (q, y, y\alpha) \vdash^* (q, \varepsilon, \alpha)$.

Cockoba: EAИ April 23, 2010

$$(q, w, S) \vdash^* (q, \varepsilon, \alpha) \longrightarrow S \Rightarrow^* w\alpha$$

Индукция по броя n на преходите от тип (1).

Случай n=0:

$$(q, w, S) \vdash^* (q, \varepsilon, \alpha) \longrightarrow w = \varepsilon, \alpha = S \longrightarrow S \Rightarrow^* w\alpha.$$

Случай $n \rightsquigarrow n+1$:

$$(q, w, S) \stackrel{n(1)}{\vdash^*} (q, y, A\beta) \vdash (q, y, \gamma\beta) \stackrel{(2)}{\vdash^*} (q, \varepsilon, \alpha).$$

$$w = xy, A \rightarrow \gamma \in P, \ \gamma \beta = y\alpha!.$$

$$(q,x,S) \stackrel{n(1)}{\vdash}^* (q,\varepsilon,A\beta).$$

$$Πο ΜΠ S ⇒* xAα ⇒ xγβ = xyα = wα → S ⇒* wα.$$

COCKOBA: EAM April 23, 2010

Твърдение: За всеки NstackA с едно състояние

$$M = (\{z\}, \Sigma, \Gamma, \delta, z)$$

има граматика $G \in L(G) = L(M)$.

Д-во: Нека $G = (\Gamma, \Sigma, P, \#)$ с

$$P = \{A \to a\alpha : (z, \alpha) \in \delta(z, a, A)\}$$

 $a = \varepsilon$ разрешено!

 $L(G) \subseteq L(M)$:

$$x \in L(G) \longrightarrow \exists$$
 ляв извод $A = \# \stackrel{*}{\Rightarrow} x$.

За всяко начало w на x, x = wy, за извода $\# \stackrel{*}{\Rightarrow} w\alpha$ с $w \in \Sigma^*, \ \alpha \in \Gamma^*$

 \exists редица от конфигурации $(z, x, \#) \vdash \cdots \vdash (z, y, \alpha)$ на M.

$$\# \stackrel{*}{\Rightarrow} w\alpha \Leftrightarrow (z, x, \#) \vdash \cdots \vdash (z, y, \alpha)$$

Индукция по дължината на извода *п*.

База: n=0. От $\#\stackrel{*}{\Rightarrow}\alpha$ следва $w=\varepsilon$, $y=x,\alpha=\#(\alpha\in\Gamma^*)$.

Следователно $(z, x, \#) \vdash^* (z, y, \alpha)$.

Индукционна стъпка: n+1

 $\# \stackrel{*}{\Rightarrow} wA\beta \Rightarrow wa\gamma\beta. \ a \in \varepsilon \cup \Sigma, , \alpha = \gamma\beta.$

По ИП \exists редица от конфигурации $(z, x, \#) \vdash \cdots \vdash (z, ay, A\beta)$ с way = x.

Тъй като $A \to a\gamma \in P$ трябва $(z, \gamma) \in \delta(z, a, A)$.

Така, $(z, ay, A\beta) \vdash (z, y, \gamma\beta)$

 $(z, x, \#) \vdash^* (z, y, \gamma \beta) = (z, y, \alpha).$

Следователно $\# \stackrel{*}{\Rightarrow} x \longrightarrow (z, x, \#) \vdash^* (z, \varepsilon, \varepsilon)$ ($w = x \Rightarrow y = \varepsilon, \alpha = \varepsilon$).

$$L(M) \subseteq L(G)$$
:

$$x \in L(M) \longrightarrow \exists$$
 редица от конфигурации $(z,x,\#) \vdash \cdots \vdash (z,\varepsilon,\varepsilon)$

На това съответства ляв извод $A = \# \stackrel{*}{\Rightarrow} x$.

За всяко начало w на x и x = wy

От $(z, x, \#) \vdash^* (z, y, \alpha)$ следва, че съществува извод $\# \stackrel{*}{\Rightarrow} w\alpha$.

Аналогично.

Така за w = x имаме :

$$(z, x, \#) \vdash^* (z, \varepsilon, \varepsilon) \Rightarrow \# \stackrel{*}{\Rightarrow} x.$$

Cockoba: EAИ April 23, 2010

$$K = (Q, \Sigma, \Gamma, \delta, s, \#, F)$$
:

- \square $Q, \Sigma, \Gamma, s, \#$ знаем.
- \square $\delta: Q \times (\Sigma \cup \varepsilon) \times \Gamma \to 2^{Q \times \Gamma^*}$, където $\forall z \in Q, a \in \Sigma, A \in \Gamma:$ $|\delta(z, a, A)| + |\delta(z, \varepsilon, A)| \leq 1$

K приема $w \in \Sigma^*$, ако

 \exists редица от конфигурации (допустими от δ) $(s, w, \#) \vdash \cdots \vdash (f, \varepsilon, \varepsilon)$ с $f \in F$.

Соскова: EAИ April 23, 2010

Твърдение:

 \forall DstackA $K:\exists$ NstackA с едно състояние

K': L(K) = L(K').

 \exists NstackA с едно състояние $K': \not\exists$ DstackA

K: L(K) = L(K').

