MEK inhibition and resistance in acute myeloid leukaemia

Amanda Smith¹, Achal Neupane², Jonathan Ellis³, Sadia Afrin¹, Rachel Burow¹, Caedyn Stinson¹, Paul Leo^{2,3}, Alex Cristino⁴, Andrew Moore^{1,5,6}

¹Childhood Leukaemia Research Laboratory, The University of Queensland Diamantina Institute, Translational Research Institute, Brisbane; ²UQ Centre for Clinical Genomics, The University of Queensland Diamantina Institute, Brisbane; ⁵Children's Health Research Institute, Brisbane; ⁶UQ Child Health Research Centre, The University of Queensland, Brisbane.

1.1 Background

- > RAS mutations occur in 10% paediatric and up to 20% of adult AML
- ➤ Mutations confer constitutive activation of Ras/Raf/MEK/ERK pathway → hyperproliferation
- > MEK inhibitors currently under evaluation in clinical trials
- AZD6244 -GSK1120212 -AS703026
- > Potential resistance mechanisms poorly described

2.1 Methods

- > Panel of 6 paediatric and 5 adult AML cell lines including
- -THP1 (NRAS G12D) -AML193 (NRAS G13V) -HL-60 (NRAS Q61L) -ML-2 (KRAS A146T)
- > Assessed 7 commercially available MEK inhibitors
- -Proliferation -Cell cycle -Apoptosis -MEK expression
- > Potential mechanisms of resistance to MEK inhibitors
- -THP1 cells with resistance to AZD6244 or AS703026 (denoted AZD6244_R or AS703026_R respectively) were established by long term co-culture with drug.

3.1 AML exhibit variable sensitivity to MEK inhibitors

Table 1. MEK inhibition reduces the proliferation of AML cells

_					IC ₅₀ 1				
	Cell line	PD0325901	AZD6244	MEK162	GSK1120212	CI1040	TAK733	AS703026	Ara-C
	MV411	0.17**	0.41*	0.33**	0.003***	6.9	0.098**	0.41**	1.6
O	THP1	0.19***	0.3**	0.43**	0.08***	2.2*	0.23***	0.23***	6.7
iatri	CMK	>20	>20	>20	>20	>20	>20	>20	0.48
Paediatric	AML193	0.24*	2.9	2.1	0.014*	4.8	0.25*	0.42*	2.6
۵.	Kasumi1	0.2	1.7	1.1	0.004	6.5	0.051	0.31	0.15
	Mo7e	0.11	1.1	0.34	0.006	4.8	0.038	0.08	0.033
	ME1	0.003	0.022	0.037	0.00004	0.55	0.005	0.08	0.41
	HL60	0.001	0.12	0.02	0.001	0.73	0.001	0.007	0.64
Adult	ML2	0.004	0.066	0.047	0.001	0.68	0.01	0.02	0.069
1	HEL	>20	>20	>20	>20	>20	>20	>20	0.085
	OCI-AML3	0.008	0.07	0.04	9.20E-05	1.1	0.004	0.02	>20
	Median all ²	0.11	0.3	0.33	0.003	2.2	0.038	0.08	0.445

 1 IC₅₀; is defined as the concentration of drug that reduces cell viability by 50%, calculated by non-linear regression. Median calculated excluding those values >20uM where an exact IC50 could not be established. Bolded cell lines highlights those with known *Ras* mutations. P-value determined by students t-test; *p<0.05, **<0.01, **p<0.005, compared to Ara-C. Abbrev: Ara-C; cytarabine arabinoside.

3.2 MEK inhibition induces apoptosis and pMEK

Figure 1. MEK inhibitors induce apoptosis and MEK phosphorylation. AML cell lines were treated with 1 μ M GSK1120212 for 96h and assessed for A) Apoptosis with Annexin V staining, and B) MEK phosphorylation by immunoblotting. GAPDH was used as a loading control. *Column*, mean (n \geq 3); *Bars*, SEM. **p<0.01. Student's t-test relative to DMSO control.

3.3 Resistance does not affect MEK pathway response to inhibitors

Table 2. MEK inhibitor resistance in THP1 AML cells

	IC ₅₀						
Cell Line	AZD6244	MEK162	GSK1120212	AS703026	Ara-C	Daunorubicin	
Parental	0.3	0.43	0.08	0.23	6.7	0.12	
AZD6244_R	>20	>20	>20	>20	4.6	0.03	
AS703026_R	>20	7.4	>20	12.5	5.43	0.02	

Figure 2. Resistant cells' response to MEK inhibitors. THP1 parental, AS703026_R and AZD6244_R were treated with indicated MEK inhibitors (1μM; 1h) and subject to immunoblotting for pMEK (Ser217/Ser221), MEK total, p44/42ERK (Thr202/Tyr204), 44/42ERK total, and GAPDH (loading control).

3.4 Genomic analysis of resistance

Figure 3. Genomic analysis of MEK inhibitor resistance. A) THP1 parental, AS703026_R and AZD6244_R were subjected to whole exome sequencing. Fuzzy clustering identified enriched SNPs where a p-value threshold of 10⁻⁹ was set for significant enrichment. SNPs were classified according to presence in THP1-AS703026_R alone, AZD6244_R alone or present in both AS703026_R and AZD6244_R. **B)** DESeq2 (version 1.8.1) was used to analyse RNAseq data and hierarchical clustering revealed strong concordance of gene expression between AS703026_R and AZD6244_R.

Log2fc_AZD6244_F

Table 3. Snapshot of genes identified as mutated in THP1 MEK inhibitor resistant cell lines and causally related to cancer (COSMIC Gene Census database; accessed 08012015)

Cell Line	Chromosome	Start	End	Reference nucleotide	Alternate nucleotide	Mutation type	Ensembl gene name
۳	19	4110558	4110558	G	Т	snp	MAP2K2
026	1	51829622	51829622	С	Т	snp	EPS15
AS703026	17	5035634	5035634	G	Т	snp	USP6
AS7	17	5035641	5035641	С	Т	snp	USP6
	10	43606856	43606856	G	А	snp	RET
۳	11	119156193	119156193	С	Т	snp	CBL
244	12	56493492	56493492	G	Α	snp	ERBB3
AZD624	13	32920978	32920978	С	Т	snp	BRCA2
AZ	_17	7579542	7579542	С	G	snp	TP53
	19	17948009	17948009	<u>G</u>	Α	snp	JAK3

4.0 Conclusions

- > RAS mutations do not delineate AML sensitivity to MEK inhibitors in vitro
- Resistance to MEK inhibitors is rapid and characterised by acquisition of large numbers of SNPs
- Only 3.4% of SNPs are common to both resistance models despite strong concordance in gene expression
- > JAK3 or MAP2K2 mutations may drive resistance

