CS 440 Introduction to Artificial Intelligence

Lecture 26:

Monte Carlo Markov Chains

April 16, 2020

- Markovian assumption
 - Future state only depend on current state
 - Only matters where cars currently are on road
 - Doesn't matter what maneuvers they took to get there
 - Assumption makes solving problems a lot easier
 - Only need to keep track of current state
 - As opposed to history of previous states
 - Only need to reason over current state

Types of Markov Processes

- Discrete vs continuous
- Passive vs active
 - Active process: The agent's actions influence process
- Observable state vs partially observable state
 - Observable state: agent can observe state directly
 - Partially observable state:
 - Example: Wumpus world

	Observable State	Hidden State
Passive	Markov Chain	Hidden Markov Model
Active	Markov Decision Process (MPD)	Partially Observable Markov Decision Process (POMPD)

- Given an environment in a known state
 - What could the environment look like after n steps?
 - Probability of being in each state
- Solve inductively
 - Assume we know the probability you are in each state s at step i
 - $p_{s,i}$ for all $s \in S$
 - Compute probability for each state at step i+1
 - p_{s',i+1} for all s'∈S
 - Probability we will transition from state s to s' at step i+1 equal to probability we are in state s at step i times the transition probability from s to s'
 - $p_{s',i+1} = p(s'|s)*p_{s,i}$
 - Probability we will be in state s' at step i+1
 - $p_{s',i+1} = \sum_{s' \in S} p(s'|s)*p_{s,i}$

Markov Chains Example

- And moves up/down/left/right with probability p
 - stays in same cell with probability 1-p
- We don't know what move the ant will make

Rutgers

Monte Carlo Sampling

- Sample
 - Start at initial state
 - At each step randomly select transition according to probability distribution
- Take many samples
 - Approximate aggregate behavior of system

- First sample
 - First move
 - Roll the dice and get UP

	↑	

- First sample
 - Second move
 - Roll the dice and get Right

	\rightarrow	

- First sample
 - third move
 - Roll the dice and get stay in same place

- First sample
 - forth move
 - Roll the dice and get down

MCMC Example

- First sample = {Up,Right,Stay,Down}
- Repeat process to get many samples
- Proportion of samples that end in each cell approximates probability ant will be in that cell after 4
 moves
 - As number of samples goes to , converges to actual probability
 - Actual probability = probability obtained from computing directly

- Simpler then computing exact solution
- Anytime algorithm
 - Can stop algorithm after specified time and use samples that have been generated
 - Useful for problems where there is a fixed time window

RUTGERS Application to Hidden Markov Models

- Sample
 - Initialize hidden variables based on probability distribution
 - Each step
 - Randomly select observable variables according to current setting of hidden variables
 - Transition hidden variables according to transition probability
- Approximate probability of x given y
 - Take all samples for which y is true
 - Compute proportion of those sample for which x is true
- Example: Compute probability of hidden variable value given a sequence of observations
 - Take all samples with that sequence of observations
 - Find portion of those samples with hidden variable value
- Compute next move given a sequence of moves
 - Given moves 0 through i, compute move i+1
 - Take all samples with sequence where moves 0 through i are the given sequence of moves
 - Distribution of move i+1 on those samples

- Consider the following model
 - If Bob has a paper deadline at time step i there is a .9 probability he will have a paper deadline at step i+1
 - If Bob has a no deadline at time step i there is a .1 probability he will have a paper deadline at step i+1
 - If Bob is sick at time step i there is a .8 probability he will be sick at step i+1
 - If Bob is not at time step i there is a .1 probability he will be sick at step i+1
- If we know the values of deadline and sick this is a Markov Chain

	Not Sick	Sick
Deadline	.9	.6
No Deadline	.7	.1

- One an ordinary day Bob has a .7 probability of being in his office
- If Bob is busy working on a paper deadline he has a .9 probability of being in his office
- If he is sick and there is no paper deadline he has a .1 probability of being in his office
- If he is sick but there is a paper deadline he has a .6 probability of being in his office
- John does not know if Bob has a paper deadline of if he is sick
 - He only knows if Bob is in his office

- Sample 1
 - Initial settings
 - Roll the dice
 - Get bob is sick and has no deadline
 - Step 1
 - Roll dice and get Bob not in office
 - Roll dice and transition to sick and no deadline
 - Step 2
 - Roll dice and get Bob in office
 - Roll dice and transition to not sick and no deadline
 - Step 3
 - Roll dice and get Bob in office
 - Roll dice and transition to not sick and no deadline

	Not Sick	Sick
Deadline	.9	.6
No Deadline	.7	.1

- Compute many samples
- Use to approximate probability of system
- Example: Compute probability Bob is sick if Bob is not in office for first 3 steps
 - Take all samples where Bob is not in office for first 3 steps
 - Compute portion of those samples where bob is sick
- Example: If Bob is in office for first three steps what is probability he will be in office at fourth step
 - Take all samples where Bob is in office for first 3 steps
 - Compute portion of those samples where Bob is in office for fourth step

	Not Sick	Sick
Deadline	.9	.6
No Deadline	.7	.1

Sample Trees

- Each Sample can be seen as a sequence of states
 - S₀, S₁, S₂, ...
- Sample tree
 - Nodes correspond to states
 - Nodes at each level correspond to state at that step
 - Nodes at ith level correspond to states at ith step
 - Samples correspond to paths in tree
 - Path formed by sequence of states
 - Samples with same sequence correspond to same path
 - Paths for samples diverge at node corresponding to first state where sequences differ
 - Edge weights = number of samples that pass through edge
 - Weight of edges out of state proportional to transition probability

Application to MDPs/POMDPs

- Can sample transitions from probability distribution
- For a given sequence of actions we can compute sample
- Want to know expected future reward
 - States' value equal to expected value of best action
 - Actions' value equal to weighted average of possible resulting states
 - \sum value(s')*p(s'|a,s)

State/Action Trees

- Each Sample can be seen as a sequence of alternating states and actions
 - s₀, a₀ s₁, a₁, s₂, a₂, ...
- Sample tree
 - Nodes correspond to states
 - Nodes at each level correspond to state at that step
 - Nodes at level 2i correspond to states at ith step
 - Nodes at level 2i+1corospond to action at ith step
 - Compute value of states by backtracking
 - Action nodes: Value = weighted sum of children + any reward for taking that action, R(a)
 - Weighted by number of samples that go through edge to child
 - State nodes: Value = max value over children
 + any reward associated with state, R(s)
 - Action with highest value

