The z-Transform

Digital Signal Processing

October 2, 2025

Motivation for the *z***-Transform**

- Until now, we've used the Fourier transform to analyze frequency content of signals.
- With the z-transform, we'll analyze systems (specifically, LTI systems).
- Helps determine properties of a system, such as stability, causality, frequency response, etc.
- Used to design LTI systems (filters).

Review: Discrete Fourier Transform

Definition

Let x[n] be a complex-valued, periodic signal with period L. The **discrete Fourier transform (DFT)** of x[n] is given by

DFT analysis:

$$X[k] = \frac{1}{\sqrt{L}} \sum_{n=0}^{L-1} e^{-i\omega_0 k n} x[n]$$

DFT synthesis:

$$x[n] = \frac{1}{\sqrt{L}} \sum_{k=0}^{L-1} e^{i\omega_0 k n} X[k]$$

Review: Discrete Fourier Transform

Definition

Let x[n] be a complex-valued, periodic signal with period L. The **discrete Fourier transform (DFT)** of x[n] is given by

DFT analysis:

$$X[k] = \frac{1}{\sqrt{L}} \sum_{n=0}^{L-1} e^{-i\omega_0 kn} x[n]$$

DFT synthesis:

$$x[n] = \frac{1}{\sqrt{L}} \sum_{k=0}^{L-1} e^{i\omega_0 k n} X[k]$$

Transform Domains

Definition (DTFT Analysis)

$$X(e^{i\omega}) = \sum_{n=-\infty}^{\infty} e^{-i\omega n} x[n], \quad \text{for } \omega \in [-\pi, \pi).$$

- Note range of n is all of \mathbb{Z} .
- Note $X(e^{i\omega})$ is defined on the **continuous** unit circle in \mathbb{C} .
- Can also think of X as a function of angular frequency, ω .

Definition (DTFT Analysis)

$$X(e^{i\omega}) = \sum_{n=-\infty}^{\infty} e^{-i\omega n} x[n], \quad \text{for } \omega \in [-\pi, \pi).$$

- Note range of n is all of \mathbb{Z} .
- Note $X(e^{i\omega})$ is defined on the **continuous** unit circle in \mathbb{C} .
- Can also think of X as a function of angular frequency, ω .

Definition (DTFT Analysis)

$$X(e^{i\omega}) = \sum_{n=-\infty}^{\infty} e^{-i\omega n} x[n], \quad \text{for } \omega \in [-\pi, \pi).$$

- Note range of n is all of \mathbb{Z} .
- Note $X(e^{i\omega})$ is defined on the **continuous** unit circle in \mathbb{C} .
- Can also think of X as a function of angular frequency, ω .

Definition (DTFT Analysis)

$$X(e^{i\omega}) = \sum_{n=-\infty}^{\infty} e^{-i\omega n} x[n], \quad \text{for } \omega \in [-\pi, \pi).$$

- Note range of n is all of \mathbb{Z} .
- Note $X(e^{i\omega})$ is defined on the **continuous** unit circle in \mathbb{C} .
- Can also think of X as a function of angular frequency, ω .

Definition (DTFT Analysis)

$$X(e^{i\omega}) = \sum_{n=-\infty}^{\infty} e^{-i\omega n} x[n], \quad \text{for } \omega \in [-\pi, \pi).$$

- Note range of n is all of \mathbb{Z} .
- Note $X(e^{i\omega})$ is defined on the **continuous** unit circle in \mathbb{C} .
- Can also think of X as a function of angular frequency, ω .

Transform Domains

Inverse DTFT

Definition (DTFT Synthesis)

Let $X(e^{i\omega})$ be the DTFT of a signal x[n]. The **inverse** discrete-time Fourier transform is given by

$$x[n] = \frac{1}{2\pi} \int_{-\pi}^{\pi} X(e^{i\omega}) e^{i\omega n} d\omega.$$

• Note this is an integral around the unit circle in \mathbb{C} .

The *z*-Transform

Definition (z**-Transform Analysis**)

Given a complex discrete signal x[n], its z-transform is given by

$$X(z) = \sum_{n = -\infty}^{\infty} z^{-n} x[n].$$

The *z*-Transform

Definition (z**-Transform Analysis**)

Given a complex discrete signal x[n], its z-transform is given by

$$X(z) = \sum_{n = -\infty}^{\infty} \overline{z^{-n}} x[n].$$

Transform Domains

Overloaded Notation!

Notice we reused the notation "X" for the DFT, DTFT, and z-transform.

The context is clear from the input to X:

DFT	X[k]
DTFT	$X(e^{i\omega})$
z-transform	X(z)

Quick Side Note: Geometric Series

A geometric series looks like:

$$s = 1 + r + r^2 + r^3 + \cdots$$
$$= \sum_{n=0}^{\infty} r^n$$

The infinite sum evaluates to

$$s = \frac{1}{1 - r},$$
 for $|r| < 1$.

This holds for r real or complex!

DTFT Example: Right-Sided Exponential

Right-sided exponential signal, for some constant $a \in \mathbb{C}$, is:

$$x[n] = \begin{cases} a^n & \text{for } n \ge 0, \\ 0 & \text{for } n < 0, \end{cases}$$
$$= a^n u[n].$$

The DTFT is

$$\begin{split} X(e^{i\omega}) &= \sum_{n=-\infty}^{\infty} a^n u[n] e^{-i\omega n} = \sum_{n=0}^{\infty} (ae^{-i\omega})^n \\ &= \frac{1}{1-ae^{-i\omega}}, \qquad \text{for } |ae^{-i\omega}| < 1, \quad \text{or} \quad |a| < 1. \end{split}$$

Diverges for $|a| \ge 1$.

Plotting the DTFT

$$x[n] = 0.5^n u[n]$$
 \leftrightarrow $X(e^{i\omega}) = \frac{1}{1 - 0.5e^{-i\omega}}$

z-Transform of Right-Sided Exponential

The *z*-transform of $x[n] = a^n u[n]$ is

$$\begin{split} X(z) &= \sum_{n=-\infty}^{\infty} a^n u[n] z^{-n} = \sum_{n=0}^{\infty} (az^{-1})^n \\ &= \frac{1}{1-az^{-1}}, \qquad \text{for } |az^{-1}| < 1, \quad \text{or} \quad |z| > |a| \\ &= \frac{z}{z-a}. \end{split}$$

Region of Convergence (ROC)

Definition (ROC)

The **region of convergence** for the z-transform of a signal x[n] is defined as all points $z\in\mathbb{C}$ where

$$|X(z)| = \left| \sum_{n=-\infty}^{\infty} x[n]z^{-n} \right| < \infty.$$

ROC for Right-Sided Exponential

For $x[n] = u[n]a^n$, we had

$$X(z) = \frac{z}{z - a}, \qquad \text{for } |z| > |a|.$$

Left-Sided Exponential

Left-sided exponential for a constant $a \in \mathbb{C}$ is

$$x[n] = \begin{cases} -a^n & \text{for } n < 0\\ 0 & \text{for } n \ge 0 \end{cases}$$
$$= -a^n u[-n-1]$$

The z-transform is

$$\begin{split} X(z) &= \sum_{n=-\infty}^{\infty} -a^n u[-n-1] z^{-n} = -\sum_{n=-\infty}^{-1} (az^{-1})^n \\ &= -\sum_{m=1}^{\infty} a^{-m} z^m = 1 - \sum_{m=0}^{\infty} (a^{-1}z)^m \\ &= 1 - \frac{1}{1 - a^{-1}z}, \qquad \text{for } |a^{-1}z| < 1, \quad \text{or } |z| < |a| \end{split}$$

Left-Sided Exponential

Further simplifying:

$$\begin{split} X(z) &= 1 - \frac{1}{1 - a^{-1}z} \\ &= \frac{1 - a^{-1}z}{1 - a^{-1}z} - \frac{1}{1 - a^{-1}z} \\ &= \frac{-a^{-1}z}{1 - a^{-1}z} \\ &= \frac{z}{z - a}, \qquad \text{for } |z| < |a|. \end{split}$$

Same as right-sided exponential, but different ROC!

Right-sided ROC: |z| > |a|, Left-sided ROC: |z| < |a|

ROC for Left-Sided Exponential

For $x[n] = -a^n u[-n-1]$, we had

$$X(z) = \frac{z}{z - a}, \qquad \text{for } |z| < |a|.$$

Quick Side Note: Triangle Inequality

Complex Addition

Triangle inequality tells us:

$$|z_1 + z_2| \le |z_1| + |z_2|$$

Do this iteratively to get:

$$\left| \sum_{n=-\infty}^{\infty} z_n \right| \le \sum_{n=-\infty}^{\infty} |z_n|.$$

General ROC of *z***-Transform**

In general, we have:

$$|X(z)| = \left| \sum_{n = -\infty}^{\infty} x[n]z^{-n} \right|$$

$$\leq \sum_{n = -\infty}^{\infty} |x[n]z^{-n}|$$

$$= \sum_{n = -\infty}^{\infty} |x[n]||z|^{-n}$$

Note this only depends on the magnitude $r=\vert z\vert$, not the angle of z.

General ROC of z-Transform

ROC is an annulus:

$$0 \le r_R < |z| < r_L \le \infty$$

 r_R : right-side radius

 $\sum_{n=0}^{\infty}|x[n]|r^{-n}$ diverges when $r < r_R.$

 r_L : left-side radius

$$\sum_{n=-\infty}^{-1}|x[n]|r^{-n}$$
 diverges when $r>r_L$.

