Assignment 1 Raytracer

Taekyu Shin in Advanced Computer Graphics

I studied 'A Fast Voxel Traversal Algorithm for Ray Tracing.'

: http://www.cse.yorku.ca/~amana/research/grid.pdf

I also studied this website(Spatial Subdivision) : http://www.devmaster.net/articles/raytracing_series/part4.php

And I tried to use the resources here.

Usage >

Trace.exe <NFF file name>

Other methods may fail. Putting wrong filenames will fail as well.

I developed in Visual Studio 2010. Therefore, loading in VS 2009 may fail.

The techniques I used:

- 1. Uniform Grid. However, it does not have to have unform lengths. Programmers can change the lengths of each x, y, z in whatever way they want. Avoidance of multiple intersection through grids is also implemented.
- 2. Axis Aligned Bounding Box I use AABB only to determine in which uniform grid the ray resides or objects are. I do not use AABB to intersect with. I thought that it might slow down the performance.
- 3. Shadow ray intersection optimization. I use shadow ray optimization technique. It checks nearby grids for the result of neighboring shadow rays. Try the successful objects of the neighbors first.

- 4. Multi-threading: Simplest kind of multi-threading. I used threadbeginex() and threadend(), the built-in functions in C. I have tried different threads. I usually use 7 to 16 threads. Experimentally, the performance depends on NFF files.
 - a. The threads go through each pixels. However, they go through closely together.(Like a checkerboard.) I give thanks to Marc Olano and Wallace Brown for the idea. It helped me because I was actually thinking about what to choose between the checkerboard style and different styles.

Note

- o I did not implement Cones, so tree.nff does not work.
- When tracing mount.NFF, there is precision problem. It seems to be hitting the same wall that it is leaving. It is hardly noticeable.

<Tables>

Performance Comparison

*** Please note that I use 100 grids in (-12.5, -12.5, -6) to (12.5, 12.5, 6). It is actually like a small teapot in a stadium. However, it still speeds up. BLANK is NOT tested results due to amount of time consumption.

	Original New		Speed Up	
Balls1	0.594	1.261	0.471055	
Balls2	3.276	1.329	2.465011	
Balls3	28.336	1.476	19.19783	
Balls4	264.702	2.384	111.0327	
Balls5	2634.87	9.366	281.3229	
Balls6		73.658		
gears1	94.633	6.074	15.58001	
gears2	605.999	8.888	68.18171	
gears3		10.322		
gears4	4096.02	15.39	266.1481	
gears5		16.47		
mount1	1.362	1.458	0.934156	

mount2	4.302	1.452	2.96281	
mount3	15.751	1.64	9.604268	
mount4	63.898	1.661	38.4696	
mount5	240.894	2.074	116.1495	
mount6		3.194		
tetra1	0.129	0.78	0.165385	
tetra2	0.518	0.709	0.730606	
tetra3	0.1888	0.745	0.253423	
tetra4	6.818	0.752	9.066489	
tetra5	24.264	0.854	28.41218	
tetra6	98.2	1.026	95.7115	
tetra7	424.259	1.78	238.3478	

(UNIT : Seconds)

I used Gears2.NFF to determine the effect of how many grids and sizes of grids on the performance.

Below is the comparison based on different number of grids.

# of						
Grids						
20	50	70	100	150	200	250
46.797	15.521	11.725	9.114	8.29	10.03	13.51

(UNIT:Seconds)

I also used Gears4.NFF to show the performance based on the number of threads.

# of									
Thread	1	2	7	10	20	50	100	200	500
	61.087	37.102	16.33	16.418	15.78	15.075	15.015	15.287	15.133

Thank you very much.

Taekyu Shin