LSV PA1

R09943107 陳淳

Part 1.

show

Network structure visualized by ABC Benchmark "4bitadder". Time was Thu Oct 15 03:04:32 2020.

The network contains 12 logic nodes and 0 latches.

Part 2.

(a) Compare the following differences with the four-bit adder example

Initial print_stats on 4bitadder:

```
4bitadder : i/o = 9/ 5 lat = 0 nd = 12 edge = 28
cube = 28 lev = 4
```

1. logic network in AIG (by command aig) vs. structurally hashed AIG (by command strash)

- aig: As the name of the command, it changes the logic network represent method to AIG. But if you use show to take a look at the function, you would found that the figure doesn't change.
- strash: This command also produced AIG, but it transform the network by one-level structural hashing. Unlike aig, the AIG that strash produced is represented by 2-input AND gate and its complemented attributes on the edges.

After executing aig on 4bitadder, the print_stats shows:

```
4bitadder : i/o = 9/ 5 lat = 0 nd = 12 edge = 28
aig = 40 lev = 4
```

After executing strash on 4bitadder, the print_stats shows:

```
4bitadder : i/o = 9/5 lat = 0 and = 40 lev = 12
```

In aig, we can clear see that it has 40 aig and 28 edge. And in strash, we can see that lev becomes bigger, and there's no aig attributes but 40 and.

2. logic network in BDD (by command bdd) vs. collapsed BDD (by command collapse)

- bdd: As the name of the command, it changes the logic network represent method to BDD. But if you use show to take a look at the function, you would found that the figure doesn't change.
- collapse: Different from bdd, though collapse also represented the function by BDD in the end, it COLLAPSE the logic network to one-level only. So from CI to CO, it would only has one node in its path.

After executing bdd on 4bitadder, the print_stats shows:

```
4bitadder : i/o = 9/ 5 lat = 0 nd = 12 edge = 28
bdd = 32 lev = 4
```

After executing collapse on 4bitadder, the print_stats shows:

```
4bitadder : i/o = 9/ 5 lat = 0 nd = 5 edge = 33
bdd = 43 lev = 1
```

We found that lev becomes 1 in collapse, and it has more edge and bdd than bdd.

(b) Given a structurally hashed AIG, find a sequence of ABC command(s) to covert it to a logic network with node function expressed in sum-of-products (SOP).

To convert AIG to SOP expressed logic network, we can convert it to strashed AIG first, then we can use logic command to produce SOP:

```
strash;
logic;
```