BUNDESREPUBLIK **DEUTSCHLAND** 

**@ Gebrauchsmuster** <sub>®</sub> DE 296 10 640 U 1

6) Int. Cl.6: F 16 B 37/06

**DEUTSCHES PATENTAMT**  (1) Aktenzeichen:

Anmeldetag:

Eintragungstag:

Bekanntmachung im Patentblatt:

296 10 640.2 17. 6.96

10.10.96

21.11.98

(73) Inhaber:

Emhart Inc., Newark, Del., US

74 Vertreter:

Bardehle, Pagenberg, Dost, Altenburg, Frohwitter, Geissler & Partner Patent- und Rechtsanwälte, 40474 Düsseldorf

(A) Bolzenschweißmutter mit einer umlaufenden Nut zwischen einem umlaufenden Kragen und der Öffnung einer Durchgangsbohrung



Emhart Inc.

20

35

14. Juni 1996 E40220 KA/NE/ZZ2

Bolzenschweißmutter mit einer umlaufenden Nut zwischen einem umlaufenden Kragen und der Öffnung einer Durchgangsbohrung

Die Erfindung betrifft eine Bolzenschweißmutter zur schweißtechnischen Verbindung mit einem Bauteil, mit den Merkmalen nach dem Oberbegriff des Anspruchs 1.

Es ist bekannt, daß Bolzenschweißmuttern als Anschweißmuttern bei der Herstellung von Kraftfahrzeugen verwendet werden. Die Bolzenschweißmutter weist eine Durchgangsbohrung, bei der es sich um eine Gewindebohrung handeln kann, die eine erste und eine zweite Stirnfläche der Bolzenschweißmutter durchdringt, auf. Eine der Stirnflächen weist einen umlaufenden Kragen auf, der zur Anlage an das Bauteil gebracht wird. Der Kragen umgibt eine Öffnung der Durchgangsbohrung. Eine solche Bolzenschweißmutter ist beispielsweise durch die US-PS 2 167 285 bekannt.

Während des Schweißvorgangs besteht die Gefahr, daß Tröpfchen der beim Schweißvorgang entstehenden Schmelze auf das Gewinde der Durchgangsbohrung spritzen. Nachdem die Schmelze auf dem Gewinde erstarrt ist, verhindern die erstarrten Spritzer ein Eindrehen einer Schraube in die Bolzenschweißmutter. Ein Nacharbeiten des Gewindes ist in solchen Fällen notwendig. Ein Nacharbeiten ist insbesondere dann zweckmäßig, wenn in die Bolzenschweißmutter eine Schraube mit einem definierten Anzuzgsmoment geschraubt werden muß. Solche Arbeiten sind relativ kostenintensiv, da sie den automasitierten Herstellungsvorgang behindern.



Die hier in Rede stehenden Bolzenschweißmuttern werden in der Praxis mittels eines Lichtbogenschweißverfahrens, insbesondere mittels des Hubzündungsverfahrens, an ein Bauteil angeschweißt. Bedingt durch das Anschweißverfahren und die im wesentlichen als rohrförmiges Bauteil ausgebildete Bolzenschweißmutter besteht die Gefahr, daß aufgrund des rotierenden Magnetfeldes und eines Zusammenziehens des Lichtbogens die Schmelze in die Bolzenschweißmutter gelangt.

Hiervon ausgehend legt der vorliegenden Erfindung die Aufgabe zugrunde, die bekannte Bolzenschweißmutter, zur schweißtechnischen Verbindung mit einem Bauteil, insbesondere nach dem Hubzündungsverfahren, so weiterzubilden, daß die Gefahr eines Eintritts von Schmelzepartikeln oder eines Teils der Schmelze in die Durchgangsbohrung der Bolzenschweißmutter vermindert wird.

15

Diese Aufgabe wird erfindungsgenmäß durch eine Bolzenschweißmutter mit den Merkmalen des Anspruches 1 gelöst. Vorteilhafte Weiterbildungen sind Gegenstand der Unteransprüche.

Die erfindungsgemäße Bolzenschweißmutter, zur schweißtechnischen Verbindung mit einem Bauteil, insbesondere nach dem Hubzündungsverfahren, die eine Durchgangsbohrung, die eine erste und eine zweite Stirnfläche durchdringt, und mindestens einen von wenigstens einer Stirnfläche vorstehenden, umlaufenden Kragen aufweist, zeichnet sich dadurch aus, daß in der Stirnfläche zwischen dem Kragen und der Durchgangsbohrung eine umlaufende Nut ausgebildet ist. Diese umlaufende Nut dient als ein Aufnahmereservoir der beim Schweißvorgang entstehenden Schmelze. Zum einen wird durch die umlaufende Nut zuverlässig der Eintritt von Schmelzepartikeln bzw. Schmelzeteilen in die Durchgangsbohrung verhindert und zum anderen wird eine verbesserte Wärmeentwicklung an der Schweißstelle, die

5

10

15

25

30



durch den Kragen gebildet wird, erreicht. Die verbesserte Wärmeentwicklung am Kragen wird dadurch erreicht, daß die Fläche, durch die ein Wärmefluß vom Kragen in den übrigen Teil der Bolzenschweißmutter durch die Nut verringert wird.

Vorzugsweise ist die Bolzenschweißmutter so ausgebildet, daß in der ersten und in der zweiten Stirnfläche zwischen dem jeweiligen Kragen und der Durchgangsbohrung jeweils eine umlaufende Nut ausgebildet ist. Hierbei kann die Nut und der Kragen der ersten Stirnfläche spiegelsymmetrisch zu der Ausbildung des Kragens und der Nut an der zweiten Stirnfläche zweckmäßig sein. Dies ist insbesondere dann von Vorteil, wenn die Bolzenschweißmutter als solche keine bevorzugte Orientierung hat. Hierdurch wird ein erhöhter Automatsierungsgrad erreicht, da die Bolzenschweißmutter vor der Zuführung in eine Bolzenschweißvorrichtung nicht in einer vorbestimmten Orientierung dieser zugeführt werden muß.

Nach einem vorteilhaften Gedanken wird vorgeschlagen, daß jede Nut sich in Längsrichtung der Durchgangsbohrung verjüngt.

Nach einer weiteren vorteilhaften Ausgestaltung der Bolzenschweißmutter ist jeder Kragen so ausgebildet, daß dieser sich von der Stirnfläche weg in Längsbohrung verjüngt.

Die Nut ist so bemessen, daß diese ein Eintreten eines Teils der Schmelze in die Durchgangsbohrung verhindert. Bevorzugt ist eine Ausgestaltung der Bolzenschweißmutter, bei der das Hohlvolumen der Nut im wesentlichen dem Volumen des von der Stirnfläche hervorstehenden Kragens entspricht. Hierbei wird davon ausgegangen, daß während des Schweißvorgangs im wesentlichen nur der von der Stirnfläche vorstehende Kragen schmilzt. Durch diese Ausgestaltung der Bolzenschweißmutter wird sichergestellt, daß auch



wenn die Schmelze des von der Stirnfläche vorstehenden Kragens zu der Durchgangsbohrung fließen würde, diese von der Nut aufgenommen werden kann.

Zu einer einfachen Herstellung der Bolzenschweißmutter wird vorgeschlagen, daß diese bezüglich der Achse der Durchgangsbohrung rotationssymmetrisch ausgebildet ist.

Weitere Vorteile und Merkmale der erfindungsgemäßen Bolzenschweißmutter werden anhand eines in der Zeichnung dargestellten Ausführungsbeispieles erläutert. In der Zeichnung zeigt

Figur 1 eine Bolzenschweißmutter im Vollschnitt und

Figur 2 eine Draufsicht der Bolzenschweißmutter nach Figur 1.

Die Bolzenschweißmutter weist eine Durchgangsbohrung 1 auf. Bei der Durchgangsbohrung 1 handelt es sich um eine Gewindebohrung. die Durchgangsbohrung 1 durchdringt eine erste Stirnfläche 2 und eine zweite Stirnfläche 3. Die erste Stirnfläche 2 ist umgeben von einem umlaufenden Kragen 4. Der Kragen 4 steht der ersten Stirnfläche 2 vor.

Die zweite Stirnfläche 3 weist einen umlaufenden Kragen 5 auf. Der Kragen 5 steht der zweiten Stirnfläche 3 vor.

Zwischen dem Kragen 4 und der Durchgangsbohrung 1 ist in der ersten Stirnfläche 2 eine umlaufende Nut 6 ausgebildet. Die Nut 6 verjüngt sich in Längsrichtung der Durchgangsbohrung 1. Sie weist einen im wesentlichen trapezförmigen Querschnitt auf. Der von der ersten Stirnfläche 2 vorstehende Abschnitt des Kragens 4 verjüngt sich in Längsrichtung der Durchgangsbohrung 1. Wie insbesondere aus der Figur 1 ersichtlich ist, ist der Kragen

15

4 an seinem freien Ende 7 im wesentlichen gerundet ausgebildet. Das freie Ende 7 des Kragens 4 dient auch als Anlage an ein Bauteil.

In der zweiten Stirnfläche 3 ist zwischen dem Kragen 5 und der Durchgangsbohrung 1 eine umlaufende Nut 8 ausgebildet. Der Kragen 5 an der zweiten Stirnfläche 3 sowie die Nut 8 ist entsprechend dem Kragen 4 und der Nut 6 an der ersten Stirnfläche 2 ausgebildet.

Bei der bevorzugten Ausführungsform der Bolzenschweißmutter ist diese bezüglich der Achse der Durchgangsbohrung 1 rotationssymmetrisch ausgebildet.

Bei einer schweißtechnischen Verbindung der Bolzenschweißmutter nach dem Hubzündungsverfahren wird beispielsweise der Kragen 4 an das Bauteil gebracht und der Lichtbogen gezündet. Mit der Zündung des Lichtbogens wird die Bolzenschweißmutter von dem Bauteil weg entfernt, so daß zwischen dem Kragen 4 und dem Bauteil ein rotierender Lichtbogen entsteht. Aufgrund der Energiezufuhr schmilzt der Kragen 4 ab. Aufgrund des Magnetfeldes und des sich zusammenziehenden Lichtbogens wird zumindest ein Teil der Schmelze in Richtung der Durchgangsbohrung 1 geleitet. Dieser Teil der Schmelze tritt nun in die Nut 6 ein, in der die Schmelze verbleibt. Hierdurch wird verhindert, daß während des Schweißvorgangs Teile der Schmelze in die Durchgangsbohrung 1 gelangen. Durch die Ausgestaltung der Nut in umlaufender Form wird auch eine Verteilung der Schmelze innerhalb der Nut erreicht.



**Emhart** 

14. Juni 1996 E40220 KA/NE/ZZ2

5

## Bezugszeichenliste

| 0  | 1    | Durchgangsbohrung  |
|----|------|--------------------|
|    | 2    | erste Stirnfläche  |
|    | 3    | zweite Stirnfläche |
|    | 4, 5 | umlaufender Kragen |
|    | 6    | Nut                |
| 15 | 7 ·  | freies Ende        |
|    | 8    | Nut                |



Emhart Inc.

14. Juni 1996 E40220 KA/NE/ZZ2

5

## Schutzansprüche

- 1. Bolzenschweißmutter, zur schweißtechnischen Verbindung mit einem Bauteil, mit einer Durchgangsbohrung (1), die eine erste und eine zweites Stirnfläche (2, 3) durchdringt, und mit mindestens einem von wenigstens einer Stirnfläche (2, 3) vorstehendem, umlaufendem Kragen (4, 5),
- in der ersten bzw. zweiten Stirnfläche (2, 3) zwischen dem Kragen (4, 5) und der Durchgangsbohrung (1) eine umlaufende Nut (6, 8) ausgebildet ist.
- Bolzenschweißmutter nach Anspruch 1, dadurch gekennzeichnet, daß in der ersten und in der zweiten Stirnfäche (2, 3) zwischen dem jeweiligen Kragen (4, 5) und der Durchgangsbohrung (1) jeweils eine umlaufende Nut (6, 8) ausgebildet ist.
- 25 3. Bolzenschweißmutter nach Anspruch 2, dadurch gekennzeichnet, daß die Nut (8) und der Kragen (5) der zweiten Stirnfläche (3) im wesentlichen der Form der Nut (6) bzw. des Kragens (4) der ersten Stirnfläche (2) entspricht.
- Bolzenschweißmutter nach Anspruch 1, 2 oder 3, dadurch gekennzeichnet, daß jede Nut (6, 8) sich in Längsrichtung der Durchgangsbohrung
   (1) verjüngt.



- 5. Bolzenschweißmutter nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß jeder Kragen (4, 5) sich von der Stirnfäche (2, 3) weg in Längsrichtung der Durchgangsbohrung (1) verjüngt.
- 6. Bolzenschweißmutter nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß das Hohlvolumen der Nut (6, 8) im wesentlichen dem Volumen des von der Stirnfläche (2, 3) vorstehendem Kragens (4, 5) entspricht.
- 7. Bolzenschweißmutter nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, daß diese bezüglich der Achse der Durchgangsbohrung

  (1) rotationssymetrisch ist.

## 



Fig. 1



Fig. 2