Interpretation of regression coefficients for most common forms of regression models
1. Linear regr. model
$y_i = b_A + b_2 x_{2i} + + b_j x_{ji} + + b_k x_{ki} + e$
partial regr. coefficient
If x; increases by 1 unit of measurement, then on average, ceters parious, y increases I decreases by by unite of measurement
Two relativisations, intercept: 575.
2.) Log-linear tegression model
lny; = b1+b2lnxzi++bj/lnxji++belnxe;+e;
part. elasticity (approximation)
If x's increases by 1 percent, then on average, ceter's panishes, y increases decreases by bj percent.

3.) Log-lin tegression model
$lny_1 = b_1 + b_2 \times z_i + + b_2 \times z_i +$
If x; in creases by 1 unit of measurement, then on average, ceteris parisus, y in creases, decreases by 100.b; percent.
G. Lin-log regression model
yi=b1+b2lnxzi++bj/nxji++bk/nxxi+e part. semi elasticity (approximation)
If x; increases by 1 percent, then on average, ceteris paribus, y increases, decreases by 6/100 units of measurement.

(5.) "Mixed" regression model
EXAMPLE: $\ln y_i = b_1 + b_2 \times_{2i} + b_3 \ln x_{3i} + e_i$
log-lin r.m.
Each regression coefficient is interpreted based on the functional form of the relationship between "y" and "xj".
Indired effects, S77-78:
Indirect effect of x; on x (through x;): total effect of x; on x, odirect effect of x, on

Example, c) $L_i = c_1 + c_2 K_i + e_{Li}$ $\hat{Q}_i = d_1 + d_2 e_{Li} + d_3 K_i$ $\hat{Q}_i = b_1 + b_2 L_i + b_3 K_i$ $d_2 = b_2$ $V_i = l_1 + l_2 + e_{II}$

$$K_{i} = \int_{1}^{1} + \int_{2}^{2} L_{i} + e_{K_{i}}$$

$$\hat{Q}_{i} = g_{1} + g_{2} L_{i} + g_{3} e_{K_{i}}$$

$$\hat{Q}_{i} = b_{1} + b_{2} L_{i} + b_{3} K_{i}$$

$$\hat{Q}_{3} = b_{3}$$

Effects of L on Q:

- direct:
$$b_1 = d_2 = 9687.38$$
- indirect: $f_2 \cdot b_3 = 4085.43 \cdot 1.279 = 9340.69$
- total: $b_2 + f_2 \cdot b_3 = 48,998.07$
or $g_2 = 18,999.75$

L-K-Q

Effects of K on Q: - direct: $b_3 = g_3 = 1.179$ - indirect: $c_2 \cdot b_2 = 0.000 (76)$ - total: $b_3 + c_1 \cdot b_2 = 3.9$ or $d_3 = 3.983$	5.9,687.38=1.705
Example, ol)	PDF, pp. 7-8.
Qi=bn+bzLitbaKi+e1i	
Qi = Ci+czli + eqi Ki = di +dzli + eki	
FWL regression: PQ; = 91+92	2 Ki + Pzi
FWL 1 b ₃ = q_2 theorem: 2 $e_{1i} = e_{2i}$	y Vi