#### Perfectly Secure Cipher

Presentation by:

V. Balasubramanian

SSN College of Engineering



#### Objective

- Principles of Modern Cipher
- Security Definitions
- Cipher text only attack
- Proof for Security



#### Introduction

 "Heuristic" constructions; construct, break, repeat, ...

 Can we prove that some encryption scheme is secure?

• First need to *define* what we mean by "secure" in the first place...

### Historically

- Cryptography was an art
  - Heuristic design and analysis

- This isn't very satisfying
  - How do we know when a scheme is secure?



## Modern Cryptography

 In the late '70s and early '80s, cryptography began to develop into more of a science

 Based on three principles that underpin most crypto work today



# Core principles of modern crypto

- Formal definitions
  - Precise, mathematical model and definition of what security means
- Assumptions
  - Clearly stated and unambiguous
- Proofs of security
  - Move away from design-break-patch



#### Importance of definition

• If you don't understand what you want to achieve, how can you possibly know when (or if) you have achieved it?



## Importance of definitions -- analysis

- Definitions enable meaningful analysis, evaluation, and comparison of schemes
  - Does a scheme satisfy the definition?
  - What definition does it satisfy?
    - Note: there may be multiple meaningful definitions!
    - One scheme may be less efficient than another, yet satisfy a stronger security definition



## Importance of definitions -- usage

- Definitions allow others to understand the security guarantees provided by a scheme
- Enables schemes to be used as components of a larger system (modularity)
- Enables one scheme to be substituted for another if they satisfy the same definition

#### Assumptions

- With few exceptions, cryptography currently requires computational assumptions
  - At least until we prove P ≠ NP (and even that would not be enough)
- Principle: any such assumptions should be made explicit



## Importance of clear assumptions

- Allow researchers to (attempt to)
   validate assumptions by studying them
- Allow meaningful comparison between schemes based on different assumptions
  - Useful to understand minimal assumptions needed
- Practical implications if assumptions are wrong
- Enable proofs of security



#### Proofs of security

- Provide a rigorous proof that a construction satisfies a given definition under certain specified assumptions
  - Provides an iron-clad guarantee (relative to your definition and assumptions!)

 Proofs are crucial in cryptography, where there is a malicious attacker trying to "break" the scheme

#### Limitations?

 Cryptography remains partly an art as well

- Given a proof of security based on some assumption, we still need to instantiate the assumption
  - Validity of various assumptions is an active area of research



#### Limitations?

- Proofs given an iron-clad guarantee of security
  - ...relative to the definition and the assumptions!
- Provably secure schemes can be broken!
  - If the definition does not correspond to the real-world threat model
    - I.e., if attacker can go "outside the security model"
    - This happens a lot in practice
  - If the assumption is invalid
  - If the implementation is flawed
    - This happens a lot in practice



#### Nevertheless...

- This does not detract from the importance of having formal definitions in place
- This does not detract from the importance of proofs of security



# Defining secure encryption



## Crypto definitions (generally)

- Security guarantee/goal
  - What we want to achieve and/or what we want to prevent the attacker from achieving

- Threat model
  - What (real-world) capabilities the attacker is assumed to have



#### Recall

- A private-key encryption scheme is defined by a message space M and algorithms (Gen, Enc, Dec):
  - Gen (key-generation algorithm): generates k
  - Enc (encryption algorithm): takes key k and message
    - $m \in \mathcal{M}$  as input; outputs ciphertext c  $c \leftarrow Enc_k(m)$
  - Dec (decryption algorithm): takes key k and ciphertext c as input; outputs m.

$$m := Dec_k(c)$$



## Private-key encryption



### Threat models for encryption

- Ciphertext-only attack
  - One ciphertext or many?
- Known-plaintext attack
- Chosen-plaintext attack
- Chosen-ciphertext attack



| Type of Attack    | Known to Cryptanalyst                                                                                                                                                                                                                                                                                                          |
|-------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Ciphertext Only   | ■ Encryption algorithm ■ Ciphertext                                                                                                                                                                                                                                                                                            |
| Known Plaintext   | <ul> <li>■ Encryption algorithm</li> <li>■ Ciphertext</li> <li>■ One or more plaintext-ciphertext pairs formed with the secret key</li> </ul>                                                                                                                                                                                  |
| Chosen Plaintext  | <ul> <li>■ Encryption algorithm</li> <li>■ Ciphertext</li> <li>■ Plaintext message chosen by cryptanalyst, together with its corresponding ciphertext generated with the secret key</li> </ul>                                                                                                                                 |
| Chosen Ciphertext | <ul> <li>■ Encryption algorithm</li> <li>■ Ciphertext</li> <li>■ Ciphertext chosen by cryptanalyst, together with its corresponding decrypted plaintext generated with the secret key</li> </ul>                                                                                                                               |
| Chosen Text       | <ul> <li>■ Encryption algorithm</li> <li>■ Ciphertext</li> <li>■ Plaintext message chosen by cryptanalyst, together with its corresponding ciphertext generated with the secret key</li> <li>■ Ciphertext chosen by cryptanalyst, together with its corresponding decrypted plaintext generated with the secret key</li> </ul> |



### Goal of secure encryption?

- How would you define what it means for encryption scheme (Gen, Enc, Dec) over message space M to be secure?
  - Against a (single) ciphertext-only attack



#### Secure encryption?

- "Impossible for the attacker to learn the key"
  - The key is a means to an end, not the end itself
  - Necessary (to some extent) but not sufficient
  - Easy to design an encryption scheme that hides the key completely, but is insecure
  - Can design schemes where most of the key is leaked, but the scheme is still secure

#### Secure encryption?

- "Impossible for the attacker to learn the plaintext from the ciphertext"
  - What if the attacker learns 90% of the plaintext?



### Secure encryption?

- "Impossible for the attacker to learn any character of the plaintext from the ciphertext"
  - What if the attacker is able to learn (other)
     partial information about the plaintext?
    - E.g., salary is greater than \$75K
  - What if the attacker guesses a character correctly?

### Perfect secrecy



#### Perfect secrecy

- "Regardless of any prior information the attacker has about the plaintext, the ciphertext should leak no additional information about the plaintext"
  - The right notion!
  - How to formalize?



#### Probability review

 Random variable (r.v.): variable that takes on (discrete) values with certain probabilities

- Probability distribution for a r.v. specifies the probabilities with which the variable takes on each possible value
  - Each probability must be between 0 and 1
  - The probabilities must sum to 1



#### Probability review

- Event: a particular occurrence in some experiment
  - Pr[E]: probability of event E
- Conditional probability: probability that one event occurs, given that some other event occurred
  - $Pr[A \mid B] = Pr[A \text{ and } B]/Pr[B]$
- Two r.v.'s X, Y are independent if for all x, y: Pr[X=x | Y=y] = Pr[X=x]



#### Probability review

 Law of total probability: say E<sub>1</sub>, ..., E<sub>n</sub> are a partition of all possibilities. Then for any A:

```
Pr[A] = \Sigma_i Pr[A \text{ and } E_i] = \Sigma_i Pr[A \mid E_i] \cdot Pr[E_i]
```



#### Notation

 K (key space) – set of all possible keys

 C (ciphertext space) – set of all possible ciphertexts



- Let M be the random variable denoting the value of the message
  - − M ranges over M
  - This reflects the likelihood of different messages being sent by the parties, given the attacker's prior knowledge
  - E.g.,

$$Pr[M = "attack today"] = 0.7$$

$$Pr[M = "don't attack"] = 0.3$$

- Let K be a random variable denoting the key
  - − K ranges over K
- Fix some encryption scheme (Gen, Enc, Dec)
  - Gen defines a probability distribution forK: Pr[K = k] = Pr[Gen outputs key k]



- Random variables M and K are independent
  - I.e., the message that a party sends does not depend on the key used to encrypt that message



- Fix some encryption scheme (Gen, Enc, Dec), and some distribution for M
- Consider the following (randomized) experiment:
  - 1. Choose a message m, according to the given distribution
  - 2. Generate a key k using Gen
  - 3. Compute  $c \leftarrow Enc_k(m)$
- This defines a distribution on the ciphertext!
- Let C be a random variable denoting the value of the ciphertext in this experiment



#### Example 1

- Consider the shift cipher
  - So for all  $k \in \{0, ..., 25\}$ , Pr[K = k] = 1/26
- Say Pr[M = 'a'] = 0.7, Pr[M = 'z'] = 0.3
- What is Pr[C = 'b'] ?
  - Either M = a' and K = 1, or M = z' and K = 2
  - $Pr[C='b'] = Pr[M='a'] \cdot Pr[K=1] + Pr[M='z'] \cdot Pr[K=2]$ = 0.7 \cdot (1/26) + 0.3 \cdot (1/26) = 1/26



- Consider the shift cipher, and the distribution Pr[M = `one'] = ½, Pr[M = `ten'] = ½
- Pr[C = 'rqh'] = ?

  - $= 1/26 \cdot \frac{1}{2} + 0 \cdot \frac{1}{2} = \frac{1}{52}$



## Perfect secrecy (informal)

 "Regardless of any prior information the attacker has about the plaintext, the ciphertext should leak no additional information about the plaintext"



## Perfect secrecy (informal)

 Attacker's information about the plaintext = attacker-known distribution of M

 Perfect secrecy means that observing the ciphertext should not change the attacker's knowledge about the distribution of M



### Perfect secrecy (formal)

Encryption scheme (Gen, Enc, Dec) with message space M and ciphertext space C is perfectly secret if for every distribution over M, every m ∈ M, and every c ∈ C with Pr[C=c] > 0, it holds that

$$Pr[M = m | C = c] = Pr[M = m].$$

 i.e., the distribution of M does not change conditioned on observing the ciphertext



- Consider the shift cipher, and the distribution Pr[M = `one'] = ½, Pr[M = `ten'] = ½
- Take m = 'ten' and c = 'rqh'

Pr[M = 'ten' | C = 'rqh'] = ?
 = 0
 ≠ Pr[M = 'ten']



### Bayes Theorem

•  $Pr[A \mid B] = Pr[B \mid A] \cdot Pr[A]/Pr[B]$ 



```
    Shift cipher;
    Pr[M='hi'] = 0.3,
    Pr[M='no'] = 0.2,
    Pr[M='in']= 0.5
```

- Pr[M = 'hi' | C = 'xy'] = ?
   = Pr[C = 'xy' | M = 'hi'] · Pr[M = 'hi']/Pr[C = 'xy']
- Pr[C = 'xy' | M = 'hi'] = 1/26
- Pr[C = 'xy']
   = Pr[C = 'xy' | M = 'hi'] · 0.3 + Pr[C = 'xy' | M = 'no'] · 0.2
   + Pr[C='xy' | M='in'] · 0.5
   = (1/26) · 0.3 + (1/26) · 0.2 + 0 · 0.5
   = 1/52

### Contd...

```
    Pr[M = 'hi' | C = 'xy'] = ?
    = Pr[C = 'xy' | M = 'hi'] · Pr[M = 'hi']/Pr[C = 'xy']
    = (1/26) · 0.3/(1/52)
    = 0.6
    ≠ Pr[M = 'hi']
```



### Conclusion

- The shift cipher is not perfectly secret!
  - At least not for 2-character messages



#### **Plaintext Distribution**

- Let X be a discrete random variable over the set P
- Alice chooses x from P based on some probability distribution
  - Let Pr[X = x] be the probability that x is chosen
  - This probability may depend on the language



#### Plaintext set

$$Pr[X=a] = 1/2$$

$$Pr[X=b] = 1/3$$

$$Pr[X=c] = 1/6$$

Note: Pr[a] + Pr[b] + Pr[c] = 1



#### **Key Distribution**

- Alice & Bob agree upon a key  ${\sf k}$  chosen from a key set  ${\sf K}$
- Let K be a random variable denoting this choice

#### keyspace

$$Pr[K=k_1] = \frac{3}{4}$$

$$Pr[K=k_2] = \frac{1}{4}$$



There are two keys in the keyset thus there are two possible encryption mappings



## Cipher Text Distribution

- Let Y be a discrete random variable over the set C
- The probability of obtaining a particular ciphertext y depends on the plaintext and key probabilities

$$\Pr[Y = y] = \sum_{k} \Pr(k) \Pr(d_k(y))$$



$$Pr[Y = Q] = Pr(k_1) * Pr(b) + Pr(k_2) * Pr(a)$$
  
=  $(3/4 * 1/3) + (1/4 * 1/2) = 3/8$ 

$$Pr[Y = R] = Pr(k_1) * Pr(a) + Pr(k_2) * Pr(b)$$
  
=  $(3/4 * 1/2) + (1/4 * 1/3) = 11/24$ 

Note: Pr[Y=P] + Pr[Y=Q] + Pr[Y=R] = 1





#### plaintext

Pr[X=a] = 1/2

Pr[X=b] = 1/3

Pr[X=c] = 1/6

#### keyspace

 $Pr[K=k_1] = \frac{3}{4}$ 

 $Pr[K=k_2] = \frac{1}{4}$ 

### Attacker's Probability

- The attacker wants to determine the plaintext x
- Two scenarios
  - Attacker does not have y (a priori Probability)
    - Probability of determining x is simply Pr[x]
    - Depends on plaintext distribution (eg. Language charcteristics)
  - Attacker has y (a posteriori probability)
    - Probability of determining x is simply Pr[x|y]



### Posteriori Probability

- How to compute the attacker's a posteriori probabilities?  $Pr[X = x \mid Y = y]$ 
  - Bayes' Theorem

$$Pr[x \mid y] = \frac{Pr[x] \times Pr[y \mid x]}{Pr[y]}$$

probability of the plaintext

probability of this ciphertext



The probability that y is obtained given x depends on the keys which provide such a mapping

$$\Pr[y \mid x] = \sum_{\{k : d_k(y) = x\}} \Pr[k]$$



## P[Y|X]

$$Pr[P|a] = 0$$
  
 $Pr[P|b] = 0$   
 $Pr[P|c] = 1$   
 $Pr[Q|a] = Pr[k_2] = \frac{1}{4}$   
 $Pr[Q|b] = Pr[k_1] = \frac{3}{4}$   
 $Pr[Q|c] = 0$   
 $Pr[R|a] = Pr[k_1] = \frac{3}{4}$   
 $Pr[R|b] = Pr[k_2] = \frac{1}{4}$   
 $Pr[R|c] = 0$ 





#### keyspace

 $Pr[K=k_1] = \frac{3}{4}$ 

 $Pr[K=k_2] = \frac{1}{4}$ 





## Computing Posteriori **Probbaility**

$$Pr[x \mid y] = \frac{Pr[x] \times Pr[y \mid x]}{Pr[y]} \qquad \frac{\text{plaintext}}{Pr[X=a] = 1/2}$$

$$\Pr[\mathbf{X}=\mathbf{a}] = 1/2$$

$$Pr[X=b] = 1/3$$

$$Pr[X=c] = 1/6$$

#### ciphertext

$$Pr[Y=P] = 1/6$$

$$Pr[Y=Q] = 3/8$$

$$Pr[Y=R] = 11/24$$

$$Pr[a|P] = 0$$
  $Pr[b|P] = 0$   $Pr[c|P] = 1$ 

$$Pr[b|P] = 0$$

$$Pr[c|P] = 1$$

$$Pr[a|Q] = 1/3$$
  $Pr[b|Q] = 2/3$   $Pr[c|Q] = 0$ 

$$Pr[c|Q] = 0$$

$$Pr[a|R] = 9/11$$
  $Pr[b|R] = 2/11$   $Pr[c|R] = 0$ 

$$Pr[b|R] = 2/11$$

$$Pr[c|R] = 0$$

#### Pr[y|x]

$$Pr[P|a] = 0$$

$$Pr[P|b] = 0$$

$$Pr[P|c] = 1$$

$$Pr[Q|a] = \frac{1}{4}$$

$$Pr[Q|b] = \frac{3}{4}$$

$$Pr[Q|c] = 0$$

$$Pr[R|a] = \frac{3}{4}$$

$$Pr[R|b] = \frac{1}{4}$$

$$Pr[R|c] = 0$$

If the attacker sees ciphertext **P** then she would know the plaintext was **c** If the attacker sees ciphertext **R** then she would know **a** is the most likely plaintext Not a good encryption mechanism!!

## Perfect Secrecy

Perfect secrecy achieved when

a posteriori probabilities = a priori probabilities

$$\Pr[x \mid y] = \Pr[x]$$

i.e the attacker learns nothing from the ciphertext



- Find the a posteriori probabilities for the following scheme
- Verify that it is perfectly secret.

### plaintext

$$Pr[X=a] = 1/2$$

$$Pr[X=b] = 1/3$$

$$Pr[X=c] = 1/6$$

#### keyspace

$$Pr[K=k_1] = 1/3$$

$$Pr[K=k_2] = 1/3$$

$$Pr[K=k_3] = 1/3$$











### Solution

### Given

### plaintext

$$Pr[X=a] = 1/2$$

$$Pr[X=b] = 1/3$$

$$Pr[X=c] = 1/6$$

### keyspace

$$Pr[K=k_1] = 1/3$$

$$Pr[K=k_2] = 1/3$$

$$Pr[K=k_3] = 1/3$$



### Cipher Text Distribution

$$P_r[Y = y] = \sum_{k} P_r(k) \cdot P_r(d_k(y))$$

$$P_r[Y = P] = P_r(k_1) \cdot P_r(c) + P_r(k_2) \cdot P_r(a) + P_r(k_3) \cdot P_r(b) = \frac{1}{3} * \frac{1}{6} + \frac{1}{3} * \frac{1}{2} + \frac{1}{3} * \frac{1}{3} = \frac{1}{18} + \frac{1}{6} + \frac{1}{9} = \frac{1+3+2}{18} = \frac{1}{3}$$

$$P_r[Y = Q] = P_r(k_1) \cdot P_r(b) + P_r(k_2) \cdot P_r(c) + P_r(k_3) \cdot P_r(a) = \frac{1}{3} * \frac{1}{3} + \frac{1}{3} * \frac{1}{6} + \frac{1}{3} * \frac{1}{2} = \frac{1}{9} + \frac{1}{18} + \frac{1}{6} = \frac{2+1+3}{18} = \frac{1}{3}$$

$$P_r[Y = R] = P_r(k_1) \cdot P_r(a) + P_r(k_2) \cdot P_r(b) + P_r(k_3) \cdot P_r(c) = \frac{1}{3} * \frac{1}{2} + \frac{1}{3} * \frac{1}{3} + \frac{1}{3} * \frac{1}{6} = \frac{1}{6} + \frac{1}{9} + \frac{1}{18} = \frac{3+2+1}{18} = \frac{1}{3}$$







## P(Y|X)

The probability that y is obtained given x depends on the keys which provide such a mapping

$$\Pr[y \mid x] = \sum_{\{k : d_k(y) = x\}} \Pr[k]$$





$$P(P|a) = P_r(k_2) = \frac{1}{3} P(P|b) = P_r(k_3) = \frac{1}{3} P(P|c) = P_r(k_1) = \frac{1}{3}$$

$$P(Q|a) = P_r(k_3) = \frac{1}{3} P(Q|b) = P_r(k_1) = \frac{1}{3} P(Q|c) = P_r(k_2) = \frac{1}{3}$$

$$P(R|a) = P_r(k_1) = \frac{1}{3} P(R|b) = P_r(k_2) = \frac{1}{3} P(R|c) = P_r(k_3) = \frac{1}{3}$$



# Computing Posteriori **Probability**

$$\Pr[x \mid y] = \frac{\Pr[x] \times \Pr[y \mid x]}{\Pr[y]}$$

$$P_r[a|P] = P_r[a] * \frac{P_r[P|a]}{P_r[P]} = \frac{1}{2} * \frac{\frac{1}{3}}{\frac{1}{3}} = \frac{1}{2} = P_r[a] = \frac{1}{2}$$

$$P_r[a|Q] = P_r[a] * \frac{P_r[Q|a]}{P_r[Q]} = \frac{1}{2} * \frac{\frac{1}{3}}{\frac{1}{3}} = \frac{1}{2} = P_r[a] = \frac{1}{2}$$

$$P_r[a|R] = P_r[a] * \frac{P_r[R|a]}{P_r[R]} = \frac{1}{2} * \frac{\frac{1}{3}}{\frac{1}{3}} = \frac{1}{2} = P_r[a] = \frac{1}{2}$$

$$P_r[a|R] = P_r[a] * \frac{P_r[R|a]}{P_r[R]} = \frac{1}{2} * \frac{\frac{1}{3}}{\frac{1}{2}} = \frac{1}{2} = P_r[a] = \frac{1}{2}$$

### Contd...

$$P_r[b|P] = P_r[b] * \frac{P_r[P|b]}{P_r[P]} = \frac{1}{3} * \frac{\frac{1}{3}}{\frac{1}{3}} = \frac{1}{3} = P_r[b] = \frac{1}{3}$$

$$P_r[b|Q] = P_r[b] * \frac{P_r[Q|b]}{P_r[Q]} = \frac{1}{3} * \frac{\frac{1}{3}}{\frac{1}{3}} = \frac{1}{3} = P_r[b] = \frac{1}{3}$$

$$P_r[b|R] = P_r[b] * \frac{P_r[R|b]}{P_r[R]} = \frac{1}{3} * \frac{\frac{1}{3}}{\frac{1}{3}} = \frac{1}{3} = P_r[b] = \frac{1}{3}$$

$$P_r[b|R] = P_r[b] * \frac{P_r[R|b]}{P_r[R]} = \frac{1}{3} * \frac{\frac{1}{3}}{\frac{1}{3}} = \frac{1}{3} = P_r[b] = \frac{1}{3}$$



**Example 3.3** Let  $\mathcal{P} = \{a,b\}$  with  $\Pr[a] = 1/4$ ,  $\Pr[b] = 3/4$ . Let  $\mathcal{K} = \{K_1, K_2, K_3\}$  with  $\Pr[K_1] = 1/2$ ,  $\Pr[K_2] = \Pr[K_3] = 1/4$ . Let  $\mathcal{C} = \{1,2,3,4\}$ , and suppose the encryption functions are defined to be  $e_{K_1}(a) = 1$ ,  $e_{K_1}(b) = 2$ ;  $e_{K_2}(a) = 2$ ,  $e_{K_2}(b) = 3$ ; and  $e_{K_3}(a) = 3$ ,  $e_{K_3}(b) = 4$ . This cryptosystem can be represented by the following *encryption matrix*:

|       | а | b |
|-------|---|---|
| $K_1$ | 1 | 2 |
| $K_2$ | 2 | 3 |
| $K_3$ | 3 | 4 |



### Contd...

$$\mathbf{Pr}[1] = \frac{1}{8} \\
\mathbf{Pr}[2] = \frac{3}{8} + \frac{1}{16} = \frac{7}{16} \\
\mathbf{Pr}[3] = \frac{3}{16} + \frac{1}{16} = \frac{1}{4} \\
\mathbf{Pr}[4] = \frac{3}{16}.$$

$$\mathbf{Pr}[a|1] = 1 \qquad \mathbf{Pr}[b|1] = 0$$
 $\mathbf{Pr}[a|2] = \frac{1}{7} \qquad \mathbf{Pr}[b|2] = \frac{6}{7}$ 
 $\mathbf{Pr}[a|3] = \frac{1}{4} \qquad \mathbf{Pr}[b|3] = \frac{3}{4}$ 
 $\mathbf{Pr}[a|4] = 0 \qquad \mathbf{Pr}[b|4] = 1.$ 



