

CANopen Slave

Programming manual Version 03.12

Copyright

The owner may produce an unrestricted number of copies of this Programming manual solely for internal use. This Programming manual may not be copied or reproduced, even in extract form, for any other purpose.

Use and disclosure of the contents of this Programming manual are not permitted.

Names or company symbols in this Programming manual can be trademarks, the use of which by third parties for their own purposes may infringe the rights of the owners.

Preliminary information Caution: The following applies if this document is identified as preliminary information:

This version contains preliminary technical information which the users of the devices and functions described are intended to receive in advance, in order to be able to make arrangements for any changes or functional enhancements that may be required.

This information should be considered to be provisional, as it has not yet been subjected to the final Baumüller internal review process. In particular this information is still subject to change, so that no legal obligation can be deduced on the basis of this preliminary information. Baumüller accepts no liability for damages that may arise from this possibly erroneous or incomplete version.

Should you detect or suspect errors of content and/or serious technical errors in this preliminary information, we ask you to contact the Baumüller support person responsible for you and inform us of your findings and comments so that they might be considered and possibly incorporated when the preliminary information becomes finalized (reviewed by Baumüller). The conditions noted in the following section under "Liability" do not apply in the case of preliminary information.

Obligation

This Programming manual is a part of the device/machine. This Programming manual must be accessible to the operator at all times and be in a legible condition. When the device/machine is sold/relocated, this Programming manual must be passed on together with the device/machine by the owner.

After the device/machine is sold, this original and all copies must be handed over to the purchaser. After disposal or other end of service life, this original and all copies must be destroyed.

When this Programming manual is handed over, the corresponding Operating Manuals with earlier issue dates become invalid.

Please note that specifications/data/information are the **current values on the date of printing**. These specifications are **not legally binding** for measuring, computation and costing. Baumüller Nürnberg GmbH reserves the right to change the technical data and operation of Baumüller products within the framework of its own further development of the products.

However no guarantee can be provided regarding the freedom from errors of this Programming manual, unless otherwise described in the General Conditions for Sales and Supply.

© Baumüller Nürnberg GmbH

Ostendstr. 80 - 90 90482 Nürnberg Germany

Tel. +49 9 11 54 32 - 0 Fax: +49 9 11 54 32 - 1 30 E-Mail: mail@baumueller.de Internet: www.baumueller.de

Contents

1 Intr	roduction	5
1.1 1.2 1.3	General information	5
1.4	EDS file	6
2 Fur	ndamental safety instructions	7
2.1	Safety notes and instructions	
2.2	Information sign	
3 Bas	sic principles of CAN/CANopen	
3.1	Literature on CAN	9 10
3.2 3.3	Basic principles CAN	11
3.4	Operating modes supported by device profile DSP 402	14
3.4.1	Brief overview	14
3.4.2	Operating modes and field bus objects	15
4 Co	mmunication to the b maXX [®] controller	19
4.1	Communication flow	19
4.2	Parameterizing the BACI communication times	20
4.2.1	Parameterizing the of BACI communication times at the operation modes position co	
	nchronous operation and IP mode	21
4.3 4.3.1	Configuration possibilities of CANopen option card in ProDrive/WinBASS II Differentiation of the boot-up telegrams	22 22
4.3.1 4.3.2	Initialization of the CAN after to bus off	23
4.3.3	Settings from controller version V03.00 (LC2) on	23
4.3.4	Default mapping according to CANopen Standard DSP 402 changeable	23
4.3.5	Node guarding reaction	24
4.3.6	CANopen offset	24
4.3.7	Reset after a SYNC telegram failure	24
4.3.8 4.3.9	Deactivation of synchronize-mechanism to the controller EMCY error code	24 24
4.3.9 4.4	General comments to the CANopen option card	25
4.4.1	Application parameters	26
4.4.2	Speed profile at positioning FBO 6086 _{hex}	26
4.4.3	Settable behavior, if new target outside the software limit switch	26
4.4.4	Error tripping at moving in hardware limit switch	26
4.4.5	User units UU	27
4.4.6 4.4.7	Gear factor	28 29
4.4.8	Homing for positioning is necessary	29
4.4.9	Versions of positioning dependent on positioning mode (P601)	29
5 Dat	ta exchange and parameterization	31
5.1	Directory of objects for communication control	31
5.2	Network management (NMT)	43
5.2.1	Communication state machine	43
5.2.2	Telegrams	44
5.2.2.1	State control	44

Contents

5.2.2.2	Boot up	46
5.2.3	Node guarding	46
5.2.4	Heartbeat protocol	48
5.3	Service data (SDO)	49
5.3.1	Telegram structure	49
5.3.2	Types of SDO transfers	50
5.3.3	Writing object	50
5.3.4	Reading object	52
5.3.4.1	Expedited transfer	52
5.3.4.2	Segmented transfer	55
5.3.5	Error reactions	57
5.4	Synchronization (SYNC)	59
5.5	Process data (PDO)	60
5.5.1	PDO mapping	61
5.5.2	Communication relationship via PDO	65
5.5.3	Example for PDO mapping	67
5.5.4	Entry in BACI	78
5.6	Error telegram (EMCY) according to DSP 402	79
5.6.1	Telegram structure	79
5.6.2	Conversion of error messages to DSP 402 V1.1	80
Appendi	x A - Abbreviations	93
Appendi	x B - Quick reference	95
B.1	'4000' object numbers (manufacturer-specific objects)	95
B.2	'6000' object numbers (device profile DSP 402)	96
Appendi	x C - Conversion tables 1	101
Appendi	x D - Technical data	125
D.1		125
D.1 D.2	, ,	125
D.3	• •	126
List of III	lustrations	127
Subject	Index 1	129
Revision	survev 1	131

INTRODUCTION

The program manual is an important part of your b maXX[®] 4400 device. Therefore please, completely read this manual, before starting operation, last but not least on behalf of your own security. In this documentation you will learn how Baumüller Nürnberg GmbH has implemented the CANopen interface on the option module CANopen slave for the b maXX[®] 4400 device series.

The introduction contains general information on the CANopen slave option module.

1.1 General information

The CANopen option module connects the b maXX[®] 4400 via the CAN bus with other CANopen nodes (e. g. PC, SPS, further b maXX[®] 4400, I/O modules).

Information according option and function modules for the device series bmaXX[®]4400 is to be found in the documentation 5.01040.

Information according the programming of the b maXX[®]4400 controller is to be found in the parameter manual 5.02017.

1.2 Mounting and installation

The mounting of option module CANopen slave we describe in the documentation 5.02014.

1.3 Address setting

The address setting and the setting of the baudrate of the option module CANopen slave we describe in the manual 5.02014.

1.4

EDS file

1.4 EDS file

The EDS file is an ASCII file and is used in describing the functional range of a CANopen device. It is an electronic data sheet of the CANopen device.

The EDS file is used by the CANopen masters or bus configurators. The EDS file contains information about the supported objects, baud rates and other features of the slave.

The extension of name of the EDS file is *.eds.

FUNDAMENTAL SAFETY INSTRUCTIONS

In this chapter we describe the dangers, which can occur during parameterization of the Baumüller b maXX[®]4400 controller unit and we explain the meaning of the information sign.

2.1 Safety notes and instructions

(WARNING)

The following **can occur**, if you disregard this warning instruction:

• serious personal injury • death

The danger is: **mechanical and electrical cause.** The modification of parameters affects the action of the Baumüller unit and consequently the action of the installation and its components. If you change the adjustments of the parameters, you may cause dangerous actions to the construction and/or of its components.

After each modification of the parameter settings, execute a commissioning with consideration to all safety instructions and safety regulations.

2.2 Information sign

NOTE

This note is a very important information.

BASIC PRINCIPLES OF CAN/ CANOPEN

3.1 Literature on CAN

On behalf of basic information with reference to CAN we recommend the following literature:

• 'Etschberger'

CAN Controller Area Network Konrad Etschberger Carl Hauser Verlag München Wien

· 'Lawrenz'

CAN Controller Area Network. From Theory to Practical Applications Wolfhard Lawrenz
Hüthig Verlag

· 'Zeltwanger'

CANopen Holger Zeltwanger VDE-Verlag

www.can-cia.de

CAN in Automation e.V. Am Weichselgarten 26 D-91058 Erlangen

3.2 Basic principles CAN

The CAN field bus is implemented using a line structure. As a physical fundamental principle of data transfer a triple wire is used, which has the connections CAN_High, CAN_Low and CAN_Ground. CAN uses a ground-symmetric transfer, in order to suppress common-mode interferences. Therefore differential inputs are evaluated.

Network

CAN is a multi master network. Every user can have access to and be active on the bus, with equal priority. CAN uses object-oriented addressing, i. e. the transferred message is identified by an identifier defined network-wide. The identifier shows the coded message name.

Bus access

The bus access is made via the CSMA/CA procedure (carrier sense multiple access/collision avoidance). As each user is entitled to begin with the sending of the message after recognition of the necessary bus quiescence, collisions can occur. This is avoided by the bitwise arbitration of the messages to be sent. Thereby it is differed between two bus levels, a dominating level, logical bit value 0, and a recessive level, logical bit value 1. The worst case would be that all users, which are willing to send simultaneously start the message sending on the bus. If a recessive bit of a user is overwritten by a dominant bit of another one, then the "recessive" node draws back from the bus and after detecting bus quiescence, attempts once more to transmit its message. Therewith is guaranteed, that the most important message (with the lowest identifier) is free from collisions and is transmitted without delay. For this reason it is necessary, that each identifier must be assigned at the CAN bus once only.

Identifier

There are different identifiers available in the CAN specification CAN 2.0A 2032 (CiA). Each user can transmit unrequested (multi-master-capability). A transmitter sends its message to all CAN nodes (broadcast) and each then decides on the basis of the identifier whether they will continue processing the message or not.

Error

In a CAN data telegram up to eight bytes of service data can be transmitted. For error or overload signaling, a CAN node can send error or overload telegrams. This occurs on layer 2 of the OSI/ISO reference model (the data link layer), that means independent of the application. Due to high quality error detection and handling on layer 2, a Hamming distance (unit of error detection) of HD = 6 is achieved, i. e. a maximum of five simultaneously-occurring bit errors within a telegram are reliably recognized as error.

3.3 Basic principles of CANopen

CANopen is an open and hence manufacturer-independent field bus system defining layers 1 and 2 of the CAN standard.

CAL specification

The CANopen protocol is based on the CAL specification (layer 7 protocol). With CANopen, profiles are differentiated. The communication profile (DS 301) defines the method of data exchange and general definitions applicable for all devices.

Device profile

Device profiles contain application- and device-specific definitions describing the contents-related meaning of data and device functionality. Device profiles exist for drives, I/O modules, encoders or programmable devices. The CANopen slave option module for the b maXX [®]4400 controller is implemented in accordance with the device profile (drives and motion control).

Figure 1: CANopen profile structure

Object directory

The central element of every CANopen device is its object directory .CANopen-device.

Index (hex)	Object	
0000	Not used	
0001 _{hex} - 001F _{hex}	Static data types	
0020 _{hex} - 003F _{hex}	Complex data types	
0040 _{hex} - 005F _{hex}	Manufacturer-specific data types	
0060 _{hex} - 007F _{hex}	Device profile-specific static data types	
0080 _{hex} - 009F _{hex}	Device profile-specific dynamic data types	
00A0 _{hex} - 0FFF _{hex}	Reserved	
1000 _{hex} - 1FFF _{hex}	Range for the communication profile	
2000 _{hex} - 5FFF _{hex}	Range for manufacturer-specific objects	
6000 _{hex} - 9FFF _{hex}	Range for the device profile	
A000 _{hex} - AFFF _{hex}	Control objects for devices programmable in accordance with IEC 61131-3 (DSP 405)	

The objects are always addressed via an index (16 bit) and additionally via a subindex (8 bit).

CANopen differentiates between 4 types of messages:

- Administrative messages (e. g. network-management NMT, layer-management LMT)
- Service data (SDO)
- Process data (PDO)
- Predefined messages (e. g. synchronization, time stamp, emergency)

NMT

The communication states of the device are controlled and monitored by means of NMT (network management) services.

SDO

SDOs are used for the transfer of greater volume of data with low priority (service data) In addition, a data block with more than 4 bytes of user data is segmented and distributed across several SDOs by means of the CANopen protocol (SDO segmented transfer). Data volumes of 4 bytes maximum are transmitted with one SDO (SDO expedited transfer). Typically, SDOs are used for device configuration. SDOs are transmitted asynchronous and are accepted by the receiver. All entries in the object directory can be accessed by means of SDOs.

PDO

The function of PDOs is the exchange of process data (data with high priority). PDOs can be transmitted both synchronously and asynchronously. They have broadcast character and are not confirmed by the receiver.

Synchronous means that transmission depends on the synchronization object. The content of PDOs must be established by the user via SDOs (variable PDO mapping). This mapping must be completed before beginning process data communication. Default mapping is specified in the device profiles.

Figure 2: PDO transmission types

PDO communication is triggered either by the occurrence of certain events (e. g. reception of a SYNC telegram or value modification) or time-controlled.

To be able to establish peer-to-peer communication between master and slave directly after boot-up, predefined identifier assignment is available. This identifier assignment can be reconfigured by the user.

Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Function code		Module	: ID							

For the 7 bits for the module IDs, a maximum number of 127 nodes results per CANopen network.

Object	Binary func- tion code	Resultant COB ID	Object
NMT	0000	0	
SYNC	0001	128	1005 _{hex} , 1006 _{hex}
EMERGENCY	0001	129 - 255	1014 _{hex} ,1015 _{hex}
PDO1 (TX)	0011	385 - 511	1800 _{hex}
PDO1 (RX)	0100	513 - 639	1400 _{hex}
PDO2 (TX)	0101	641 - 767	1801 _{hex}
PDO2 (RX)	0110	769 - 895	1401 _{hex}
PDO3 (TX)	0111	896 - 1023	1802 _{hex}
PDO3 (RX)	1000	1025 - 1151	1402 _{hex}
PDO4 (TX)	1001	1153 - 1279	1803 _{hex}
PDO4 (RX)	1010	1281 - 1407	1403 _{hex}
SDO (TX)	1011	1409 - 1535	1200 _{hex}
SDO (RX)	1100	1537 - 1663	1200 _{hex}
Nodeguard	1110	1793 - 1919	100C _{hex} , 100D _{hex}

CANopen defines a network boot up. The simple boot up contains 4 communication states:

- INITIALIZATION
- PRE-OPERATIONAL
- STOPPED
- OPERATIONAL

The individual state transitions are triggered by NMT commands. After initializing, the CANopen slave option module switches automatically to the PRE-OPERATIONAL state. Additional data is available in ▶Communication state machine on page 43.

3.4 Operating modes supported by device profile DSP 402

3.4.1 Brief overview

The following operating modes are supported, i. e. all mandatory objects are existent via the CANopen slave option module.				
Device control	Optional objects are completely existent			
Homing objects	Optional objects are completely existent			
Objects of position mode profiles	Optional objects are partly existent			
Position control function	Optional objects are partly existent			
Velocity mode objects	Optional objects are partly existent			
Velocity mode profile objects	Optional objects are partly existent			
Common entries in the object dictionary (no mandatory objects existent)	Optional objects are partly existent			
Interpolated position mode	Optional objects are completely existent			

The following operating modes are not supported, i. e. at least one mandatory object is not existent, also optional objects can be existent.		
Profile torque mode Two objects		

3.4.2 Operating modes and field bus objects

Operating mode	
Field bus objects	Field bus name

Homing mode objects all mandatory objects and all optional objects are supported (homing)				
6098 _{hex}	mandatory	homing_method		
6099 _{hex}	mandatory SIX 0 = 2	homing_speed		
607C _{hex}	optional	home_offset		
609A _{hex}	optional	homing_acceleration		

Device control all mandatory objects and all optional objects are supported (device control)			
6040 _{hex}	mandatory	control word	
6041 _{hex}	mandatory	statusword	
6060 _{hex}	mandatory	modes_of_operation	
6061 _{hex}	mandatory	modes_of_operation_display	
605A _{hex}	optional	quick_stop_option_code	
605B _{hex}	optional	shutdown_option_code	
605C _{hex}	optional	disable_operation_option_code	
605D _{hex}	optional	halt_reaction_option_code	
605E _{hex}	optional	fault_reaction_option_code	

Torque mode profile objects one optional object is supported (torque control)				
6072 _{hex}	optional	max_torque		
6077 _{hex} optional torque_actual_value				

Objects of position mode profiles all mandatory objects, partially optional objects are supported (positioning)				
607A _{hex}	mandatory	target_position		
607D _{hex}	optional SIX 0 = 2	software_position_limit		
607F _{hex}	optional	max_profile_velocity		
6080 _{hex}	optional	max_motor_speed		
6081 _{hex}	mandatory	profile_velocitiy		
6083 _{hex}	mandatory	profile_acceleration		
6084 _{hex}	mandatory	profile_deceleration		
6085 _{hex}	optional	quick_stop_deceleration		
6086 _{hex}	mandatory	motion_profile _type		

Velocity mode profile objects all mandatory objects, partially optional objects are supported (speed control)					
606A _{hex}	mandatory	sensor_selection_code			
6069 _{hex}	mandatory	velocity_sensor_actual_value			
606B _{hex}	mandatory	velocity_demand_value			
606C _{hex}	mandatory	velocity_actual_value			
606F _{hex}	optional	velocity_threshold			
60FF _{hex}	mandatory	target_velocity			
60F _{hex}	optional	max_slippage			

Interpolated position mode all objects, objects are supported (positioning control)					
60C0 _{hex}	optional		Interpolation sub mode select		
60C1 _{hex}	optional	SIX 0 = 1	Interpolation data record		
60C2 _{hex}	mandatory	SIX 0 = 2	Interpolation time period		
60C3 _{hex}	optional	SIX 0 = 2	Interpolation sync definition		
60C4 _{hex}	optional	SIX 0 = 6	Interpolation data configuration		

Position control function all mandatory objects, partially optional objects are supported (positioning control)						
6067 _{hex}	optional	position_window				
6068 _{hex}	optional	position_window_time				
6064 _{hex}	mandatory	position_actual_value				
6063 _{hex}	optional	position_actual_value*				
6062 _{hex}	optional	position_damand_value				
6066 _{hex}	optional	following_error_time_out				
60FB _{hex}	optional SIX 0 = 28	position_control_parameter_set				

Velocity mode objects all mandatory objects, partially optional objects are supported (speed control)						
6042 _{hex}	mandatory	vl_target_velocity				
6043 _{hex}	mandatory	vl_velocity_demand				
6044 _{hex}	mandatory	vl_control_effort				
6045 _{hex}	optional	vl_manipulated_velocity				
6048 _{hex}	mandatory SIX 0 = 2	vl_velocity_acceleration				
6049 _{hex}	mandatory SIX 0 = 2	vl_velocity_deceleration				
6046 _{hex}	mandatory SIX 0 = 2	vl_velocity min_max_amount				
604C _{hex}	optional SIX 0 = 2	vl_manipulated_velocity				
604D _{hex}	optional	vl_pole_number				
60F _{hex}	optional	vl_ramp_function_time				
6050 _{hex}	optional	vl_slow_down_time				
6051 _{hex}	optional	vl_quick_stop_time				

Common entries in object dictionary No mandatory objects available, partially optional objects are supported (general inputs in object directory)						
60FD _{hex}	optional digits_inputs					
6007 _{hex}	007 _{hex} optional abort_connection_option_code					
6510 _{hex}	optional SIX 0	= 08	drive_date			

Factor group No mandatory objects available, partially optional objects are supported (user units group)							
6092 _{hex}	optional	SIX 0 = 2	feed_constant				

COMMUNICATION TO THE b maXX® CONTROLLER

In this chapter we describe the data communication between the CANopen slave option module and the b maXX[®]4400 device.

4.1 Communication flow

The CANopen option module exchanges data with the bmaXX[®]4400 controller via a dual port RAM. This data exchange takes place within a certain sampling time via the BACI interface (Baumüller bus).

The CANopen slave option module initiates communication with the b maXX[®]4400 controller. During communication, two different types of data are transferred:

- Process data
- Service data

Process data is always transferred cyclically. In the remaining time, service data is transferred. Process data transfer takes place within an adjustable time period, the SYNC interval. At the same time the setpoint and the actual values are transferred during the SYNC interval, each with a varying offset.

The cycle time of the SYNC telegram must agree with the BACI cycle time at the operating modes position control and synchronous operation. At other operating modes the BACI cycle time can differ from the cycle time of the SYNC telegram. The SYNC telegram is perceived as a trigger condition here.

NOTE

Cyclic communication is active only in the CANopen OPERATIONAL communication state.

4.2 Parameterizing the BACI communication times

Between the option module CANopen slave and the b maXX[®] controller 8 setpoints (exception: FBO 607A_{hex} target position is 2 FBOs, because it is shown on 2 controller parameters) and 8 actual values can be exchanged as process data in a communication cycle. Which setpoints and which actual values they exchange is established in the mapping objects in the CANopen slave option module (setting via SDO through the CANopen master or default setting: see the chapter ▶ Data exchange and parameterization ◄ from page 31). How to parameterize communication is revealed in this chapter.

Communication between the CANopen slave option module and b maXX[®] controller is parameterized preferably via ProDrive/WinBASS II. It is also possible to parameterize via field bus.

The communication cycle time (rate setpoints, actual values), the setpoint cycle offset and the actual value cycle offset is set via the ProDrive/WinBASS II page 'BACI' (option module 1).

The b maXX $^{\textcircled{R}}$ controller initiates a communication time slice every 125 μ s, in which process data setpoints or process data actual values are transferred.

The communication cycle time is a multiple of the communication time slice (every 125 µs). In the 'setpoint rates, actual value rates' edit box, only the factor is specified, i. e. the value in the edit box "rate setpoint values," rate actual values" is calculated as follows:

Cycle time setpoint values, actual values (P800) = $\frac{\text{communication cycle time (in } \mu \text{s})}{125 \, \mu \text{s}}$

Examples:

Communication cycle time = $2000 \,\mu s \Rightarrow setpoint$, actual values = $16 \,(P800)$

Communication cycle time = 4000 µs ⇒ setpoint, actual values = 32 (P800)

It is recommended to set the cycle time of the BACI (P800) to 1000 µs is equivalent to 8. Excepted from this are the operating modes position control and synchronous operation. The settings see ▶Parameterizing the of BACI communication times at the operation modes position control, synchronous operation and IP mode of from page 21.

- Cycle offset set values (P818) = 7
- Cyclle offset actual values = 0

NOTE

When establishing BM_u_Baci1M1Period note the following: BACI can only be accessed every 125 μ s.

The process data setpoints and the process data actual values are transferred in various communication time slices. Therefore there is a different cycle offset for the setpoints than for the actual values. Cycle offset is nothing else than the number of the communication time slice in which the data is transferred.

NOTE

Other settings for the cycle offset of the setpoints and actual values are possible, but, due to this the time response changes.

You will find the parameter numbers of the setpoints and actual values (P801 to P816) on the ProDrive/WinBASS II page 'BACI' (option module 1). These are only for display, because the setting of the parameter numbers for the process data exchange in the mapping objects are defined on the option module CANopen slave. The preselected settings for the offsets must be saved in the data set and the controller must be booted again.

NOTE

If cyclic communication is interrupted, e. g. at transition from OPERATIONAL to PRE-OPER-ATIONAL the error/warning Alive Counter or the error cyclic communication can occur.

NOTE

CANopen State Machine

At transition from PRE-OPERATIONAL to OPERATIONAL the parameter numbers are assigned to mapping. This assignment is time-consuming and can last several milliseconds (up to 11 ms, according to time setting of BACI also longer), during this time no PDO is send and also no RX-PDO is processed.

4.2.1 Parameterizing the of BACI communication times at the operation modes position control, synchronous operation and IP mode

At the operation modes position control, synchronous operation and IP mode the cycle times of BACI must comply with the cycle times of the field bus (sync-telegram), because the synchronization of the controller is effected by means of the sync-telegram.

The smallest value for the "BACI Cycle Time" is 2 ms, which means that the smallest communication time slice is 2 ms for this operation modes. The greatest value for the "BACI Cycle Time" is 8 ms.

The following considerations were made, which can help to get a sense of knowing, how many telegrams are possible at which baudrate in CANopen.

At a 1000 Kbit baudrate, e.g., the transfer of an eight byte telegram takes 130 - 140 μ s; at 500 Kbit, the transmission time doubles.

Consideration of a 1 Mbit-baudrate (these are approximate values only, because, if service data is transferred also, the CAN-bus is reaches its limits and accordingly synchronization-trouble may occur).

- At 2 ms and at a maximum of 4 slaves in the ring, one PDO can be processed per direction.
- At 4 ms and at a maximum of 7 slaves in the ring, one PDO can be processed per direction.

 At 8 ms and at a maximum of 14 slaves in the ring, one PDO can be processed per direction.

The process data setpoints and the process data actual values are transferred in different communication time slices to the controller. Therefore, for the setpoints another BACI-cycle offset than for the actual values is defined. The BACI-cycle offset is the number of the communication time slice, in which the data are transferred.

At a cycle time 2000 μs	Setpoints = 15	Actual value = 0
At a cycle time 4000 μs	Setpoints = 31	Actual value = 0
At a cycle time 8000 μs	Setpoints = 63	Actual value = 0

The settings must be saved in the data set and the controller must be rebooted.

Other settings for the cycle-offset of the setpoints and actual values are possible, but it can happen, that the data acceptance slides into the next cycle and accordingly the data-acceptance-time behavior is changed, thereby.

NOTE

The settings are valid for the operating modes position control and synchronous operation, only.

The parameter numbers of the setpoints and of the actual values (P801-P816) are found on the WinBASS II-page "BACI" (option module 1). These are for display only, because the setting of the parameter numbers for the process data exchange is specified in the mapping objects on the option module CANopen-slave.

4.3 Configuration possibilities of CANopen option card in ProDrive/WinBASS II

ProDrive/WinBASS II "option module G/H - configuration 1" (P830 / P840).

Dependent upon which slot the CANopen option card is plugged in.

NOTE

Settings result in a modified behavior!

4.3.1 Differentiation of the boot-up telegrams

Standard is the boot-up behavior according to DS 301 V4.

For differentiation of the boot-up telegram according to DS 301 V3 or DS 301 V4 the parameter 'option module G - configuration 1' or 'option module H - configuration 1' in the b $\max X^{\circledR}$ controller can be set. Dependent upon the slot in which the CANopen option card is plugged in.

22 Programming manual CANopen Slave

Bit $0 \Rightarrow 0$: acc. to DS 301 V4 Bit $0 \Rightarrow 1$: acc. to DS 301 V3

1 Boot-up acc. to DS 301 V4, boot-up telegram with ID = 700_{hex} + node-ID DLC = 1 byte 0 is filled with data = 0.

COB ID	DLC	Byte 0	Byte 1	Byte 2	Byte 3	Byte 4	Byte 5	Byte 6	Byte 7
701 _{hex}	01 _{hex}	00 _{hex}							

DSP 301 V4

2 Boot-up according to DS 301 V3, ID = 80_{hex} + node-ID, DLC = 0 and following ID = 80_{hex} + node-ID, DLC = 8 byte 0-7 filled with data = 0 (reset of the error register).

COB ID	DLC	Byte 0	Byte 1	Byte 2	Byte 3	Byte 4	Byte 5	Byte 6	Byte 7
81 _{hex}	00 _{hex}								
81 _{hex}	08 _{hex}	00 _{hex}							

DSP 301 V3

4.3.2 Initialization of the CAN after to bus off

Bit $1 \Rightarrow 0$: bus off remains

Bit 1 \Rightarrow 1: initialization of the CAN after a waiting time of 200 ms, until the bus off has been removed.

4.3.3 Settings from controller version V03.00 (LC2) on

(Changes of units of a few FBOs, e. g. units 1/10 RPM)

Bit $2 \Rightarrow 0$: resolution for speed 1 RPM

Bit 2 \Rightarrow 1: new functions, innovations are specified in the further procedure resolution for speed 1/10 RPM The following objects are concerned by this: 6042_{hex}, 6043_{hex}, 6045_{hex}, 6048_{hex} SIX 1, 6049_{hex} SIX 1, 606B_{hex}, 606C_{hex}, 60FF_{hex}

4.3.4 Default mapping according to CANopen Standard DSP 402 changeable

Bit 3 \Rightarrow 0: default mapping according to DSP 402. As well as FBO 6007_{hex} Node Guarding reaction = 0 (CANopen standard).

Bit 3 \Rightarrow 1: default mapping where all FBO objects are set to zero, trigger types remain according to DSP 402 on default. FBO $6007_{\rm hex}$ Node guarding reaction then is set to 3.

4.3.5 Node guarding reaction

- Bit $4 \Rightarrow 0$: CANopen state does not change to PRE-OPERATIONAL, but remains in current state (standard).
- Bit 4 ⇒ 1: up to now, CANopen state always changes to PRE-OPERATIONAL after a node guard event has occurred.

4.3.6 CANopen offset

- Bit 5 \Rightarrow 0: conversion of numerical scale from U32 to INT 32, at positioning an offset of 2³¹ according to direction is added/subtracted on the associated FBOs..
- Bit $5 \Rightarrow 1$: no offset is used.

For further information see ▶CANopen offset on page 29.

4.3.7 Reset after a SYNC telegram failure

- Bit 6 ⇒ 0: no reset after a SYNC telegram failure
- Bit 6 ⇒ 1: reset after a SYNC telegram failure

4.3.8 Deactivation of synchronize-mechanism to the controller

The mechanism is used for the compensation of greater jitter of the SYNC telegram. It is implemented in the FPGA on the option card.

- Bit 8 ⇒ Mechanism activated
- Bit 8 ⇒ Mechanism deactivated

4.3.9 EMCY error code

Not defined controller errors in the DSP 402 are added to the manufacturer-specific error code $FF00_{hex}$

e. g. Controller error number 167 (no release of brake), is then brake, then is issued with $FF00_{hex} + 00A7_{hex}$ (No. 167) = $FFA7_{hex}$.

- Bit 9 \Rightarrow 0: new behavior as described above standard e. g.: FFA7_{hex}
- Bit 9 \Rightarrow 1: prior behavior e. g.: FF00_{hex}

NOTE

CANopen State Machine

At transition of PRE-OPERATIONAL to OPERATIONAL the parameter numbers are assigned to the mapping. This assignment is time-consuming and can last several milliseconds (up to 11 ms according to time settings of BACI also longer), during this time no PDO is send and also no RX-PDO is processed.

4.4 General comments to the CANopen option card

Important: Modifications, which occur via Win BASS II, are not updated or noticed automatically on the CANopen option card. Therefore the access to the controller should, as far as possible, occur with FBO via CANopen.

Modifications via ProDrive/WinBASS II e. g. can not be noticed at switchover between relative and absolute positioning modes on the CANopen option card during positioning operation. Thereto also belong, e. g. modification of operation mode via ProDrive/WinBASS II. The switchover/modification should only occur via the CANopen.

Following controller parameters are affected:

P0830/ P0840	no FBO according to DSP 402, access only via the manufacturer-specific object possible (433E $_{\rm hex}$ /4348 $_{\rm hex}$)
P0304	(FBO 6060 _{hex}),
P1031	(FBO6080 _{hex}),
P3050	(FBO 6092 _{hex} SIX1),
P3051	(FBO 6092 _{hex} SIX2),
P0601	(internal switchover on the CANopen option card by the control word bit 6, operation mode positioning, relative and absolute modes),
P0531	(FBO 1006 _{hex})
P0532	(FBO 1006 _{hex}),
P3314	(FBO 604C _{hex} SIX1),
P3315	(FBO 604C _{hex} SIX2)
P1190	(FBO 6086 _{hex}).

If it is desired to make the modifications via ProDrive/WinBASS II, there is the possibility to update the parameters at transition of the CANopen state machine OPERATIONAL to PREOPERATIONAL or to STOP. Furthermore after saving the data set and making a power-down and power-up of the controller an updating occurs.

The following FBO can be entered via the field bus with SIX 1/2:

```
FBO 6048<sub>hex</sub> SIX1, SIX2, for the determination of acceleration (P1172),
```

FBO 6049_{hex} SIX1, SIX2, for the determination of delay (P1173).

The scales of the FBO can deviate from those of ProDrive/WinBASS II.

e. g.: input of positioning speed via the FB in [m/S] and input via ProDrive/WinBASS II in [INC/ms] accords to a difference of factor 1000.

Programming manual CANopen Slave

4.4

General comments to the CANopen option card

4.4.1 Application parameters

The application parameters P3314, P3315, P3329, P3330 are used on the CANopen option card and must not be used otherwise.

4.4.2 Speed profile at positioning FBO 6086_{hex}

The changes are valid for the handling of SW/HW limit switches as well as for homing (e. g. activate limits/warnings). Saving in the data set and a re-start are necessary, if the settings occur via ProDrive/WinBASS II. The speed profile can be set via the FBO 6086 $_{\rm hex}$, also during positioning. Thereby the present moving command is brought to an end and then the new moving command with the new profile is started.

4.4.3 Settable behavior, if new target outside the software limit switch

This is to be set in 'Drive manager 2 warning activated' in ProDrive/WinBASS II and it can be saved in the data set.

If new target outside \Rightarrow no movement;

There is a CAN emergency message code 8600 _{hex} positioning controller (controller error No. 196 SW limit switch 1, controller error No. 197 SW limit switch 2). Behavior of drive via 605A_{hex}. The error must be reset and a new positioning set then can be executed.

If the present position already is outside and the new target also is outside \Rightarrow no movement;

There is a CAN emergency message code $8600_{\rm hex}$ positioning controller (controller error No. 196 SW limit switch 1, controller error No. 197 SW limit switch 2). Behavior of drive via $605A_{\rm hex}$ adjustable. The error must be reset and then a new positioning data set can be executed.

4.4.4 Error tripping at moving in hardware limit switch

The HW limit switch monitoring is settable ProDrive/WinBASS II via Drive manager 2 activate warning.

There is a CAN emergency message code 8600_{hex} positioning controller (controller error No. 198 negative HW limit switch, controller error No. 199 positive HW limit switch). The generated error does not lead to a pulse inhibit. It must be reset, before starting a new positioning.

4.4.5 User units UU

The user units can be specified via ProDrive/WinBASS II \Rightarrow in 'Rescaling'. Store in the data set to save the user units after switching off.

If the required UUs are set, these should also be maintained with the following updates of the controller. To be on the safe side, once more check in ProDrive/WinBASS II.

Important: In the default data set for the user units 1 UU = 1 INC is set.

With CANopen the user units can be set via FBO 6092_{hex}.

6092_{hex}: feed constant = feed / driving shaft revolutions

"Driving shaft revolutions" is multiplied internally on the CANopen option card with 65536. Maximum input for 'feed' (UU) is $0 \dots 2^{24}$ - 1.

SIX1 = feed [in user units e. g. 360.00 degrees, 1/100 degrees resolution]

Shown on P3050 in b maXX® controller and can be saved in data set.

SIX2 = driving shaft revolutions [1 revolution is internally multiplied on the CANopen option card with 65536 [Inc]].

Shown on P3051 in b maXX® controller and can be saved in data set.

The number of revolutions is limited to 255.

The input via the field bus 360.00 degrees is converted on the option card to 65536 increments for one revolution.

Example: position setpoint in UU = 36000; accords to 360.00 degrees (accords to 65536 Inc).

The conversion on the CANopen option card for the position setpoint FBO $607A_{hex}$: looks like follows:

Position setpoint [INC] in b maXX®

- = FBO [BE] * driving shaft revolutions * 65536 [INC] / feed [BE]
- = 36000 * 1 * 65536 / 36000 [UU * Inc / UU]
- = 65536 [INC]

NOTE

The determination of user units is very time-consuming and should not be used at cyclic operation (position and synchronous operation). If the user units are set to 1:1 the calculation is to be dispensed with.

The UUs have an effect on the following FBOs:

 6062_{hex} , 6063_{hex} , 6064_{hex} , 6067_{hex} , $607A_{hex}$, $607C_{hex}$, $607D_{hex}$ Sub1/2, 6081_{hex} , 6083_{hex} , 6084_{hex} , 6085_{hex} , 6099_{hex} Sub1/2, $609A_{hex}$

FBO 604Chex:

4.4.6 Gear factor

Additionally to the user units a new gear factor can be introduced, which is set with the field bus object $604C_{\text{hex}}$, which newly has been introduced. With the gear factor it is now possible e. g. to take the gear ratio or other scalings into account, what from the required speed of the drive is calculated.

```
vl_dimension_factor =
vl_dimension_factor_numerator / vl_dimension_factor_denominator
SIX1 = vl_dimension_factor_numerator
Is mapped on P3314 in b maXX® INT32 (-33000 ... 33000)

SIX2 = vl_dimension_factor_denominator
Mapped on P3315 in b maXX® INT32 (-33000 ... 33000)

The calculation is the following:
Speed setpoint motor in b maXX®:
For vl_dimension_factor_numerator = 10
and vl_dimension_factor_denominator = 5
Speed setpoint motor = FBO[RPM] * vl_dimension_factor
= 100 * 10 / 5 [RPM]
= 200 [RPM]
```

NOTE

The calculation of the gear factors is very time-consuming and should not at cyclical operation (position- and synchronous operation) be used. If the gear factors are set to 1:1 calculation can be dispensed with.

The gear factor has an affect on the following FBOs:

 $6042_{\text{hex}},\ 6043_{\text{hex}},\ 6045_{\text{hex}},\ 6048_{\text{hex}}\ \text{Sub01/02},\ 6049_{\text{hex}}\ \text{Sub01/02},\ 606B_{\text{hex}},\ 606C_{\text{hex}},\ 606F_{\text{hex}}$

4.4.7 CANopen offset

Mapping of numerical scale USIGN32 to INT32 (CANopen mode). At changes of several FBOs an offset of 2 31 is internally added or subtracted on the CANopen option card accordant to direction.

If the position actual values and the target position in ProDrive/WinBASS II shall be displayed also in the INT32 numerical scale, a checkbox for the offset can be activated on the page 'Rescaling'.

The CANopen offset has an effect on the following FBOs:

$$(6062_{\text{hex}}, 6064_{\text{hex}}, 607A_{\text{hex}}, 607C_{\text{hex}}, 607D_{\text{hex}} \text{ Sub } \frac{1}{2}) - 2^{31}$$

 $(607A_{\text{hex}}, 607C_{\text{hex}}, 607D_{\text{hex}} \text{ Sub } \frac{1}{2}) + 2^{31}$

4.4.8 Homing for positioning is necessary

In ProDrive/WinBASS II on the page of 'Homing' with the provided checkbox activation can result from the drive permitting a positioning, if there was no first homing.

Deactivated: In order to operate in the operation mode positioning no homing is necessary.

Activated: If the drive is enabled in operation mode positioning, without taking place of homing, an error message (EMYC-telegram 8600_{hex} \Rightarrow controller error No. 200) is generated and the drive remains position-controlled in the actual position. Positioning requests are not executed. Not until homing has been executed (once after switching on), positioning requests are executed. The error message can only be acknowledged, if homing was executed. After homing a positioning can be initiated.

NOTE

Homing is necessary, if the CANopen mode standard is defined as standard!

4.4.9 Versions of positioning dependent on positioning mode (P601)

NOTE

It must be considered, that in ProDrive/WinBASS II under positioning 0 also the positioning data set 0 has to be set, otherwise positioning via CANopen cannot be correctly executed. The switching over between the positioning modes 'relative', 'negative/positive' and 'absolute' must be executed only via the control word. Homing always should precede before positioning in CANopen mode (standard).

There are the following positioning modes:

Positioning mode P0601	Description
'Absolute/relative' CANopen (standard value 9)	 Target is in P0607 (INT32) Switchover 'absolute/relative' only occurs via the control word
'Relative, positive and negative' (value 4)	 Target is in P0607 (INT32) No switchover 'absolute/relative' via the control word.
"Absolute relative" (value 10)	 Target is in P0600 (USIGN32) Switchover 'absolute/relative' only occurs via the control word
All other modes	 Target is in P0600 (USIGN32) No switchover 'absolute/relative' via the control word. No conversion data type = UINT32

Switchover absolute / relative. Via the control word bit 6

Bit 6 = 0 -> absolute Bit 6 = 1 -> relative

The conversion of data type INT32 <-> UINT32 means, that an offset of 2³¹ is added or subtracted, according to the direction. This is necessary, in order to have a consistent representation of the field bus objects in the data type INT, because several controller parameters for the positioning (▶CANopen offset on page 29) are implemented as data type USIGN. For the user, in the positioning, the existent FBOs are seen as the data type INT.

The consideration of the offset 2³¹ can be deactivated, if required. In this case in Prodrive/WinBASS II under the "Option Module G, H - Configuration 1":

Bit 5 -> 0:

Numerical scale conversion from the data type U32 to the data type INT32. At the positioning an offset of 2^{31} is added to the related FBO, according to the direction.

Bit 5 -> 1:

there is no offset used.

NOTE

The conversion in the positioning mode to P607 "Absolute /Relative" CANopen is not deactivated.

In **P1190** with bit 9 it is possible to deactivate the automatical mode setting 'Absolute/relative CANopen' during the Init Phase of the CANopen option card.

P1190 Bit 9 = 0 -> activated

P1190 Bit 9 = 1 -> deactivated.

DATA EXCHANGE AND PARAMETERIZATION

The access to data or parameters occurs with CANopen always via objects.

Accordant to profile structure it is differed between objects for communication control (indices 1XXX_{hex}) and user- or device-specific objects. The latter are divided into objects according to profile DSP 402 (indices 6XXX_{hex}) and manufacturer-specific objects (indices 4XXX_{hex}. A listing of the 6XXX and the 4XXX objects are found in ▶Appendix B - Quick reference on page 95.

Important:

With manufacturer-specific objects (4XXX_{hex}) the object index results from

4000_{hex} + b maXX[®]4400 parameter number in hexadecimal,

e. g. if object $412C_{hex}$ is at b maXX[®]4400-parameter 300, the control word will be transposed. These objects only have subindex 00_{hex} .

Object = 4000_{hex} + parameter number (hex)

5.1 Directory of objects for communication control

In this section all objects of the communication-specific area of the object directory are to be found, which are supported by the Baumüller CANopen option module in accordance with DS301.

Name	Index	Subindex	Data type	Default value
Device type	1000 _{hex}	00 _{hex}	U32	XX020192 _{hex}

This object is read-only and contains information on the related device (drive in accordance with DSP402).

Bit 31 .. 24 manufacturer-specific objects:

Bit 25	Bit 24	Option card for:
0	0	BKF/BKD 7000
0	1	V-controller
1	0	b maXX [®] 4400

Name	Index	Subindex	Data type	Default value
Error register	1001 _{hex}	00 _{hex}	U8	0

This object can only be read. The object 1001_{hex} contains an error bit string with the following meaning:

Bit 24	Meaning
0	Error has occurred, general error
1	Current error
2	Power error
3	Temperature error
4	CAN communication error
5	Device profile-specific error
6	Not used
7	Manufacturer-specific error

COB ID	DLC	Byte 0	Byte 1	Byte 2	Byte 3	Byte 4	Byte 5	Byte 6	Byte 7
80 _{hex} + address	08 _{hex}	Emergend code	y error	Error register	Manufactu	ırer-specific	error field		

EMCY telegram for error reset/No error

Name	Index	Subindex	Data type	Default value
Manufacturer status register	1002 _{hex}	00 _{hex}	U32	-

This object can only be read. The low byte contains the controller status word low byte from parameter **P0301**.

Name	Index	Subindex	Data type	Default value
Predefined error field	1003 _{hex}	00 _{hex}	U8	-
Latest error		01 _{hex}	U32	-
:		:	:	:
First error		0F _{hex}	U32	-

This object can only be written to subindex 00_{hex} . This contains an error history of 15 errors at maximum, in which the last-occurred error is in subindex 01_{hex} .

Subindex 00_{hex} of this object holds the number of errors registered. By writing '00 hex' to subindex 00_{hex} the list will be cleared.

 $XXXX_{hex}$: $XXXX_{hex}$

Emergency code: manufacturer-specific

The meaning of error number is to be found in ▶Conversion of error messages to DSP 402 V1.1 d from page 80.

Name	Index	Subindex	Data type	Default value
Number of PDOs supported	1004 _{hex}	00 _{hex}	U32	00040004 _{hex}
Synchronous PDOs		01 _{hex}	U32	00040004 _{hex}
Asynchronous PDOs		02 _{hex}	U32	00040004 _{hex}

This object is read-only. Subindex 00_{hex} where the number of receive PDOs is in the high word and the number of transmit PDO is in the low word. Subindex 01_{hex} contains the possible number of synchronous PDOs, subindex 02_{hex} the possible numbers of asynchronous PDOs.

The values entered mean that 4 receive PDOs and 4 transmit PDOs are available, whereby each PDO can be defined as synchronous or asynchronous.

Name	Index	Subindex	Data type	Default value
COB ID SYNC message	1005 _{hex}	00 _{hex}	U32	80 _{hex}

This object contains information about the SYNC slave behavior. The slave is not a SYNC master, e. g. only SYNC telegrams can be received. The lower 11 bits in the low word specify the identifier of the SYNC telegram (80_{hex}) , only readable.

Name	Index	Subindex	Data type	Default value
Communication cycle period	1006 _{hex}	00 _{hex}	U32	0

In case the SYNC telegram is active, the SYNC interval must be set to the time of SYNC telegram (1000, 2000, 4000 or 8000 $\mu s).$ The set time takes effects on the parameter P0532 (SYNC interval) of the b maXX $^{\!(B)}$ controller.

Name	Index	Subindex	Data type	Default value
Synchronous window length	1007 _{hex}	00 _{hex}	U32	0

This object is not evaluated.

Name	Index	Subindex	Data type	Default value
Manufacturer device name	1008 _{hex}	00 _{hex}	VString	-

This object is read-only. It contains the following character strings: "b maXX 4400".

Name	Index	Subindex	Data type	Default value
Manufacturer hardware version	1009 _{hex}	00 _{hex}	VString	-

This object is read-only. It contains the current hardware version of the option module, e. g. the character string: "HV01.00".

Name	Index	Subindex	Data type	Default value
Manufacturer software version	100A _{hex}	00 _{hex}	VString	-

This object is read-only. It contains the current software version of the option module, e. g. the character string: "SV01.00".

Name	Index	Subindex	Data type	Default value
Node ID	100B _{hex}	00 _{hex}	U32	Address

This object is read-only. It contains the CANopen node address (node ID). Only the low byte is valid.

Name	Index	Subindex	Data type	Default value
Guard time	100C _{hex}	00 _{hex}	U16	0

In this object the node guarding time basis is set in milliseconds. By writing the value '0', node guarding will be deactivated.

Name	Index	Subindex	Data type	Default value
Life time factor	100D _{hex}	00 _{hex}	U8	0

The value of this object is multiplied by object $100C_{hex}$ and from this the node guarding period results. By writing the value '0', node guarding will be deactivated.

Name	Index	Subindex	Data type	Default value
COB ID guarding protocol	100E _{hex}	00 _{hex}	U32	700 _{hex} + address

This object contains the identifier of the node guarding telegram. The identifier can be changed - cannot be saved.

Name	Index	Subindex	Data type	Default value
Number of SDOs supported	100F _{hex}	00 _{hex}	U32	00000001 _{hex}

This object is read-only. It contains the number of supported SDOs. In the high word is the client SDO number, which supports the device. The low word contains the number of server SDOs of the device.

Name	Index	Subindex	Data type	Default value
Save parameters	1010 _{hex}	00 _{hex}	U8	02 _{hex}
Save all parameters (not supported)		01 _{hex}	U32	00 _{hex}
Save communication parameters		02 _{hex}	U32	00 _{hex}

This object supports the saving of parameters in non-volatile memory. Subindex 00_{hex} is read-only and contains the greatest subindex to be supported (here 2). Subindex 01_{hex} is currently not supported. The 01_{hex} in subindex 02_{hex} indicates that saving is supported, here in particular saving mapping and communication parameters. Saving, only possible in the PRE-OPERATIONAL state, is initiated with the value 65766173 $_{\text{hex}}$ as U32 or with the value 'save' as string and lasts a few hundred milliseconds. The values last set for the mapping and communication parameters will be saved.

If SIX 2 is read, value 1 returns. This means that it is not saved automatically, but it must be initiated.

Programming manual CANopen Slave

Name	Index	Subindex	Data type	Default value
Restore parameters	1011 _{hex}	00 _{hex}	U8	02 _{hex}
Restore all parameters (not supported)		01 _{hex}	U32	00 _{hex}
Restore default communication parameters		02 _{hex}	U32	00 _{hex}

The communication parameters are set according to DSP402 to default values for this object. Subindex 00_{hex} is read-only and contains the greatest subindex to be supported. Subindex 01_{hex} is not supported. With the value 1_{hex} in subindex 02_{hex}, the mapping and communication parameter default values are set. This occurs only in the PRE-OPERA-TIONAL state by entering the value 64616F6C_{hex} (U32) or with the input 'load' as string parameter.

The default values are accepted after power down/power up was executed.

WARNING

The following **can occur**, if you disregard this warning instruction:

serious personal injury ● death

The danger is: changed mapping. Modified mapping causes parameters to be used other than those planned and consequently the drive can react unexpectedly.

In your application, prevent mapping from being modified in an uncontrolled manner.

Name	Index	Subindex	Data type	Default value
COB ID emergency	1014 _{hex}	00 _{hex}	U32	80 _{hex} + address

This object contains the identifier of the EMCY telegram.

Name	Index	Subindex	Data type	Default value
Producer heartbeat time	1017 _{hex}	00 _{hex}	U8	03 _{hex}

With the object the cyclic time of the heartbeat telegram is set. If the time is zero, no heartbeat telegram is set. The resolution is 1 ms.

Name	Index	Subindex	Data type	Default value
Identity object	1018 _{hex}	00 _{hex}	U8	03 _{hex}
Vendor ID		01 _{hex}	U32	15H _{hex}
Product code		02 _{hex}	U32	350442
Revision number		03 _{hex}	U32	see below

This object contains some information on the device.

The revision number contains the current version of firmware e. g. 00030002 for FW 6.1294.03.02.

Name	Index	Subindex	Data type	Default value
Server SDO parameter	1200 _{hex}	00 _{hex}	U8	02 _{hex}
COB ID client ⇒ server		01 _{hex}	U32	NODEID + 600 _{hex}
COB ID server ⇒ client		02 _{hex}	U32	NODEID + 580 _{hex}

This object is read-only.

At the same time default value here means default mapping acc. to DSP402

Name	Index	Subindex	Data type	Default value
1. receive PDO parameters	1400 _{hex}	00 _{hex}	U8	02 _{hex}
COD-ID used by PDO		01 _{hex}	U32	200 _{hex} + address
Transmission type		02 _{hex}	U8	FF _{hex}

This object contains the contents of receive-PDO1. Subindex 00_{hex} is read-only. The identifier of the receive PDO1 is entered in subindex 01_{hex} . Subindex 02_{hex} contains the trigger type of this PDO.

Name	Index	Subindex	Data type	Default value
2. receive PDO parameters	1401 _{hex}	00 _{hex}	U8	02 _{hex}
COD-ID used by PDO		01 _{hex}	U32	300 _{hex} + address
Transmission type		02 _{hex}	U8	FF _{hex}

This object contains the according receive PDO2. Subindex 00_{hex} is read-only. The identifier of the receive PDO2 is entered in subindex 01_{hex} . Subindex 02_{hex} contains the trigger type of this PDO.

Name	Index	Subindex	Data type	Default value
3. receive PDO parameters	1402 _{hex}	00 _{hex}	U8	02 _{hex}
COD-ID used by PDO		01 _{hex}	U32	400 _{hex} + address
Transmission type		02 _{hex}	U8	FF _{hex}

This object contains the contents of receive-PDO3. Subindex 00_{hex} is read-only. The identifier of the receive PDO3 is entered in subindex 01_{hex} . Subindex 02_{hex} contains the trigger type of this PDO.

Name	Index	Subindex	Data type	Default value
4. receive PDO parameters	1403 _{hex}	00 _{hex}	U8	02 _{hex}
COD-ID used by PDO		01 _{hex}	U32	500 _{hex} + address
Transmission type		02 _{hex}	U8	FF _{hex}

This object contains the contents of receive-PDO4. Subindex 00_{hex} is read-only. The identifier of the receive PDO4 is entered in subindex 01_{hex} . Subindex 02_{hex} contains the trigger type of this PDO.

Name	Index	Subindex	Data type	Default value
1. receive PDO mapping	1600 _{hex}	00 _{hex}	U8	1
		01 _{hex}	U32	60400010 _{hex}
		:	:	
		n _{hex}	U32	

This object contains the information of receive PDO1. The total number of the following entries is in subindex 00_{hex} . By default the control word (object 6040_{hex} subindex 00_{hex} length 10_{hex} bits) is entered in subindex 01_{hex} . The total number of mapped bytes may not exceed the CAN telegram limit of eight bytes max. (also see PDO mapping from page 61).

Name	Index	Subindex	Data type	Default value
2. receive PDO mapping	1601 _{hex}	00 _{hex}	U8	02 _{hex}
		01 _{hex}	U32	60400010 _{hex}
		02 _{hex}	U32	60600008 _{hex}
		:	:	
		n _{hex}	U32	

This object contains the information of receive PDO2. The total number of the following entries is in subindex 00_{hex} . By default the control word (object 6040_{hex} subindex 00_{hex} length 10_{hex} bits) is entered in subindex 01_{hex} . In subindex 02_{hex} by default the object of the specified operating mode (index 6060_{hex} subindex 00 length 08_{hex} bits). The total number of the mapped bytes may not exceed the CAN telegram limit of max. eight bytes (also see PDO mapping of from page 61).

Name	Index	Subindex	Data type	Default value
3. receive PDO mapping	1602 _{hex}	00 _{hex}	U8	02 _{hex}
		01 _{hex}	U32	60400010 _{hex}
		02 _{hex}	U32	607A0020 _{hex}
		:	:	
		n _{hex}	U32	

This object contain the contents of receive-PDO3. The total number of the following entries is in subindex 00_{hex} . By default the control word (object 6040_{hex} subindex 00_{hex} length 10_{hex} bits) is entered in subindex 01_{hex} . By default the Target position 1 object is in subindex 02_{hex} (index $607A_{hex}$ subindex 00 length 20_{hex} bits). The total number of mapped bytes may not exceed the CAN telegram limit of max. 8 bytes (also see ▶PDO mapping of from page 61).

Name	Index	Subindex	Data type	Default value
4. receive PDO mapping	1603 _{hex}	00 _{hex}	U8	02 _{hex}
		01 _{hex}	U32	60400010 _{hex}
		02 _{hex}	U32	60FF0020 _{hex}
		:	:	
		n _{hex}	U32	

This object contain the contents of receive-PDO4. The total number of the following entries is in subindex 00_{hex} . By default the control word (object 6040_{hex} subindex 00_{hex} length 10_{hex} bits) is entered in subindex 01_{hex} . By default, the speed actuating value object is in subindex 02_{hex} (index $60FF_{hex}$ subindex 00 length 20_{hex} bits). The total number of mapped bytes may not exceed the CAN telegram limit of max. eight bytes (also see PDO mapping of from page 61).

Name	Index	Subindex	Data type	Default value
1. transmit PDO parameters	1800 _{hex}	00 _{hex}	U8	05 _{hex}
COD-ID used by PDO		01 _{hex}	U32	180 _{hex} + address
Transmission type		02 _{hex}	U8	FF _{hex}
Inhibit time		03 _{hex}	U16	00 _{hex}
CMS priority group		04 _{hex}	U8	03 _{hex}
Event timer		05 _{hex}	U16	00 _{hex}

This object contains information on transmit PDO1. Subindex 00_{hex} is read-only. The transmit PD01 identifier is entered in subindex 01_{hex} . Subindex 02_{hex} contains the trigger type of this PDO. The inhibit time, which represents the minimum delay for a transmission interval, is set in subindex 03_{hex} . The input value is defined as a multiplier of $100~\mu s$. Subindex 04_{hex} is currently not used. Subindex 05_{hex} is for setting the time of timer triggered transmit PDOs. The resolution is 1 millisecond.

Name	Index	Subindex	Data type	Default value
2. transmit PDO parameters	1801 _{hex}	00 _{hex}	U8	04 _{hex}
COD-ID used by PDO		01 _{hex}	U32	280 _{hex} + address
Transmission type		02 _{hex}	U8	FF _{hex}
Inhibit time		03 _{hex}	U16	00 _{hex}
CMS priority group		04 _{hex}	U8	03 _{hex}
Event timer		05 _{hex}	U16	00 _{hex}

This object contains information on transmit PDO2. Subindex 00_{hex} is read-only. The transmit PD01 identifier is entered in subindex 01_{hex} . Subindex 02_{hex} contains the trigger type of this PDO. The inhibit time, which represents the minimum delay for a transmission interval, is set in subindex 03_{hex} . The input value is defined as a multiplier of $100~\mu s$. Subindex 04_{hex} is currently not used. Subindex 05_{hex} is for setting the time of timer triggered transmit PDOs. The resolution is 1 millisecond.

Name	Index	Subindex	Data type	Default value
3. transmit PDO parameters	1802 _{hex}	00 _{hex}	U8	04 _{hex}
COD-ID used by PDO		01 _{hex}	U32	380 _{hex} + address
Transmission type		02 _{hex}	U8	FE _{hex}
Inhibit time		03 _{hex}	U16	00 _{hex}
CMS priority group		04 _{hex}	U8	03 _{hex}
Event timer		05 _{hex}	U16	00 _{hex}

This object contains information on transmit PDO3. Subindex 00_{hex} is read-only. The transmit PD01 identifier is entered in subindex 01_{hex} . Subindex 02_{hex} contains the trigger type of this PDO. The inhibit time, which represents the minimum delay for a transmission interval, is set in subindex 03_{hex} . The input value is defined as a multiplier of 100 μ s. Subindex 04_{hex} is currently not used. Subindex 05_{hex} is for setting the time of timer triggered transmit PDOs. The resolution is 1 millisecond.

Name	Index	Subindex	Data type	Default value
4. transmit PDO parameters	1803 _{hex}	00 _{hex}	U8	04 _{hex}
COD-ID used by PDO		01 _{hex}	U32	480 _{hex} + address
Transmission type		02 _{hex}	U8	FE _{hex}
Inhibit time		03 _{hex}	U16	00 _{hex}
CMS priority group		04 _{hex}	U8	03 _{hex}
Event timer		05 _{hex}	U16	00 _{hex}

This object contains information on transmit PDO4. Subindex 00_{hex} is read-only. The transmit PD01 identifier is entered in subindex 01_{hex} . Subindex 02_{hex} contains the trigger type of this PDO. The inhibit time, which represents the minimum delay for a transmission interval, is set in subindex 03_{hex} . The input value is defined as a multiplier of 100 μ s. Subindex 04_{hex} is currently not used. Subindex 05_{hex} is for setting the time of timer triggered transmit PDOs. The resolution is 1 millisecond.

Name	Index	Subindex	Data type	Default value
1. transmit PDO mapping	1A00 _{hex} 00 _{hex}		U8	01 _{hex}
		01 _{hex}	U32	60410010 _{hex}
		:	:	
		n _{hex}		

This object contains the contents of transmit PDO1. The total number of the following entries is in subindex 00_{hex} . By default the status word $_{hex}$ (object 6041_{hex} subindex 00_{hex} length 10_{hex} bits) is entered in subindex 01. The total number of mapped bytes may not exceed the CAN message frame limit of eight bytes max. (also see \triangleright PDO mapping \triangleleft from page 61).

Name	Index	Subindex	Data type	Default value
2. transmit PDO mapping	1A01 _{hex}	00 _{hex}	U8	02 _{hex}
		01 _{hex}	U32	60410010 _{hex}
		02 _{hex}	U32	60610008 _{hex}
		:	:	
		n _{hex}	U32	

This object contains the content of transmit PDO2. The total number of the following entries is in subindex 00_{hex}. By default the status word _{hex}(object 6041_{hex} subindex 00_{hex} length 10_{hex} bits) is entered in subindex 01. By default the object of actual operating mode (index 6061_{hex}subindex 00 length 08_{hex} bit) is entered in subindex 02_{hex}. The total number of mapped bytes may not exceed the CAN message frame limit of eight bytes max. (also see ▶PDO mapping of from page 61).

Name	Index	Subindex	Data type	Default value
3. transmit PDO mapping	1A02 _{hex}	00 _{hex}	U8	02 _{hex}
		01 _{hex}	U32	60410010 _{hex}
		02 _{hex}	U32	60640020 _{hex}
		•	:	
		n _{hex}	U32	

This object contains the contents of transmit PDO3. The total number of the following entries is in subindex 00_{hex} . By default the status word $_{hex}$ (object 6041_{hex} subindex 00_{hex} length 10_{hex} bits) is entered in subindex 01. By default the object of actual positioning value (index 6064_{hex} subindex 00 length 20_{hex} bits) is entered in subindex 02_{hex} . The total number of mapped bytes may not exceed the CAN message frame limit of eight bytes max. (also see PDO mapping of from page 61).

Name	Index	Subindex	Data type	Default value
4. transmit PDO mapping	1A03 _{hex}	00 _{hex}	U8	02 _{hex}
		01 _{hex}	U32	60410010 _{hex}
		02 _{hex}	U32	606C0020 _{hex}
		n _{hex}	U32	

This object contains the content of transmit PDO4. The total number of the following entries is in subindex 00_{hex} . By default the status word $_{hex}$ (object 6041_{hex} subindex 00_{hex} length 10_{hex} bits) is entered in subindex 01. By default the object of actual speed value (index $606C_{hex}$ subindex 00 length 20_{hex} bits) is entered in subindex 02_{hex} . The total number of mapped bytes may not exceed the CAN message frame limit of eight bytes max. (also see PDO mapping of from page 61).

5.2 Network management (NMT)

Network management commands function primarily to control communication states in the CANopen network.

5.2.1 Communication state machine

Here the communication state diagram of the CANopen slaves is shown.

Figure 3: Communication state machine

After INITIALIZATION (triggered by switching on the device), the PRE-OPERATIONAL state will automatically be reached. If a slave is in this state, it can be configured via SDOs. Data exchange via PDOs is not possible.

In the STOPPED state, only node guarding is activated. Neither SDOs nor PDOs can be transmitted or received.

In the OPERATIONAL state (normal operating state), PDO and SDO data exchange as soon as node guarding is possible.

The individual state transitions are initiated by an NMT master. The Baumüller CANopen option module can process the following NMT commands:

1 Automatic transition from INITIALIZATION to PRE-OPERATIONAL Note

At transition from PRE-OPERATIONAL to OPERATIONAL the parameter numbers are assigned to mapping. This assignment is time-consuming and can last several milliseconds (up to 11 ms, according to time setting of BACI also longer), during this time no PDO is send and also no RX-PDO is processed.

It is not able to work on 3 NMT commands within 15 ms.

- 2 Start_Remote_Node
- 3 Stop_Remote_Node
- 4 Enter_Pre-Operational_State
- 5 Reset_Node
- 6 Reset_Communication

It is not able to work on 3 NMT commands within 8 ms.

5.2.2 Telegrams

NMT telegrams for communication control have the default identifier '0' in accordance with the predefined connection set (also see ▶Basic principles CAN◄ from page 10).

5.2.2.1 State control

Two data bytes are transmitted per NMT-telegram. Data byte 0 contains the command specifier CS, data byte 1 contains the device address. If the address 0 is entered, then all nodes will be addressed with the appropriate command (broadcast).

Figure 4: NMT telegram for controlling the communication states

cs	Identification	Effect
1	Start_Remote_Node	Starts normal operation
2	Stop_Remote_Node	Deactivates PDO and SDO communication
128	Enter_Pre-Operational_State	Transition to configuration mode
129	Reset_Node	Controlled reset of entire object directory to default values
130	Reset_Communication	Reset of the communication section of the object directory to default values

A telegram bringing node 16 into configuration mode has the following construction:

COB ID	DLC	Byte 0	Byte 1	Byte 2	Byte 3	Byte 4	Byte 5	Byte 6	Byte 7
00 _{hex}	02 _{hex}	80 _{hex}	10 _{hex}						

These telegrams are unconfirmed, i. e. no NMT slave acknowledges the correctly received message to the NMT master.

NOTE

The b maXX [®]4400 currently does not include device reset by software.

After turning on supply voltage and a reset the CANopen slave signals a boot up telegram (also see ▶Boot up ◄ from page 46). The entire reset sequence lasts a few seconds, starting with the receipt of the command reset_node to the acknowledgement using boot up telegram.

WARNING

The following **can occur**, if you disregard this warning instruction:

serious personal injury ● death

The danger is: **mechanical and electrical cause.** If a reset is triggered during a running cyclic operation, this can lead to undesired states in the application, because the boot record will be loaded in the controller and on the CANopen option card the default mapping last saved in flash memory will be set (with object 1010_{hex}in accordance with DS301).

Check the mapping after each reset.

5.2.2.2 Boot up

Standard is the boot up behavior according to DS 301 V4

For differentiation of the boot-up telegram according to DS 301 V3 or V4 the parameter 'option module G - configuration 1' or 'option module H configuration 1' b maXX[®] controller can be set. Dependent in which slot the CANopen option card is plugged.

Bit 0 \Rightarrow 0: in accordance with DS 301 V4 (default)

Bit $0 \Rightarrow 1$: acc. to DS 301 V3

Boot up according with DS 301 V4,

Boot up telegram with $ID = 700_{hex} + node ID$, DLC = 1 byte 0 filled with the data = 0.

COB ID	DLC	Byte 0	Byte 1	Byte 2	Byte 3	Byte 4	Byte 5	Byte 6	Byte 7
701 _{hex}	01 _{hex}	00 _{hex}							

DSP 301 V4

Boot up according to DS 301 V3, $ID = 80_{hex} + node ID$, DLC = 0 and following $ID = 80_{hex} + node ID$, DLC = 8 bytes 0 - 7 filled up with the data = 0 (reset of error register).

COB ID	DLC	Byte 0	Byte 1	Byte 2	Byte 3	Byte 4	Byte 5	Byte 6	Byte 7
81 _{hex}	00 _{hex}								
81 _{hex}	08 _{hex}	00 _{hex}							

DS 301 V3

5.2.3 Node guarding

The node guarding is used to monitor the slave by the master. Simultaneously the slave can monitor the master (life guarding).

The master scans the slaves in certain intervals by remote frames. Remote frames are special telegrams, which make it possible to request data telegrams. Remote frames possess the same COB ID as the corresponding data telegram, but show a data length of 1 byte. In order to differentiate between remote- and data telegram (telegram differentiation normally is carried out by the COB-ID), serves in the control field of the remote telegram the so-called RTR bit. In the remote frame the RTR bit is on "1", in the data telegram on "0".

The COB ID results from 700_{hex} + address according to the predefined connection set. This COB ID can also be changed. The object required for this is $100E_{hex}$.

Figure 5: Node guarding protocol

The guarding time is set in objects $100C_{hex}$ and $100D_{hex}$. Within this time, the slave must have received a guarding request (remote telegram) from the master. Should this not be the case, the life guarding event occurs in the slave. Through this, the slave switches to the PRE-OPERATIONAL state and the reaction specified in object 6007_{hex} is triggered in the controller.

If there is no response from the slave within a certain time, the node guarding event will be triggered in the master. If no time is set, the slave will respond to every RTR, but without monitoring lifetime.

The current communication state of the slave can be recognized from the response of the slave to a node guarding request from the master. The response telegram consists of one data byte (also see ▶Figure 5◄ on page 47). Field 's' differs according to the communication state. In addition, if there are two successive telegrams, toggle bit 't' will be changed.

Communication phase	Identifier s	Resulting data with	
		t = 0	t = 1
PRE-OPERATIONAL	7F _{hex} (127)	7F _{hex} (127)	FF _{hex} (255)
OPERATIONAL	05 _{hex} (5)	05 _{hex}	85 _{hex} (133)
STOPPED	04 _{hex} (4)	04 _{hex}	84 _{hex} (132)

Programming manual CANopen Slave

Node guarding is available in all communication phases. The toggle bit is only reset in phase INITIALIZATION to its default value. This means, that also at state changes the toggle mechanism is continued.

Node guarding is started in the slave after receipt of the first guarding request telegram. From the moment, the monitoring time parameterized in objects $100C_{hex}$ and $100D_{hex}$ runs in the slave.

NOTE

The node guarding time should be set at least 1.5 times greater than the remote telegram sent by the master.

5.2.4 Heartbeat protocol

The heartbeat protocol is for monitoring of the slave(s) by the master. The difference from node guarding is that there are no RTR frames, rather the slave transmits cyclic heartbeat messages. One or more heartbeat consumers receive or monitor the heartbeat messages. If the heartbeat message is not transferred within the set heartbeat time, the master (heartbeat consumer) releases a heartbeat event. The heartbeat time at the slave is set in the FB object 1017_{hex}. The resolution is 1 millisecond.

Figure 6: Heartbeat protocol

From the heartbeat message of the slave the current communication state of the slave is recognized. The heartbeat telegram consists of one data byte.

r: reserved (= 0)

Document No.: 5.02065.04

s: field 's' differs according to the communication state "s".

Communication phase	Identifier s
Boot up	00 _{hex}
PRE-OPERATIONAL	7F _{hex} (127)
OPERATIONAL	05 _{hex} (5)
STOPPED	04 _{hex} (4)

Either node guarding or the heartbeat is supported. If the heartbeat time is not equal ZE-RO, the heartbeat protocol is activated.

5.3 Service data (SDO)

Service data objects (SDO) are used in the exchange of messages without real time requirements. Therefore low-priority COB IDs are provided for this in the predefined connection set (also see Pasic principles CAN from page 10). SDOs are used for parameterizing slaves and for setting the communication references for PDOs. Access on data occurs only via the object list. SDOs are always confirmed data, i. e. the transmitter receives an acknowledgement from the receiver. Data exchange via SDOs can only progress asynchronously (also see Psynchronization (SYNC) from page 59).

SDOs follow the client-server model. The client initiates the communication and the server responds. A server cannot begin an SDO communication. The Baumüller CANopen option module supports one server SDO and no client SDOs.

5.3.1 Telegram structure

Die COB ID of the request SDO results from 600_{hex} + address, from the response SDOs from 580_{hex} + address. The data field of the CAN data telegram (8 bytes) for a SDO is divided into three parts, a command specifier CS (1 byte), a multiplexor M (3 bytes) and the actual user data D0 - D3 (4 bytes).

COB ID	DLC	Byte 0	Byte 1	Byte 2	Byte 3	Byte 4	Byte 5	Byte 6	Byte 7
600 _{hex} + address	08 _{hex}	CS	М	М	М	D0	D1	D2	D3
580 _{hex} + address	08 _{hex}	CS	М	М	М	D0	D1	D2	D3

The multiplexor M exists of the 16 bit index of an object and of the associated eight bit wide subindex. At segmented telegrams the user data range is extended by the three bytes of the multiplexor, whereby seven bytes user data are transmitted per telegram. The command specifier CS classifies the different SDO types.

5.3.2 Types of SDO transfers

The Baumüller CANopen interface supports the expedited transfer and segmented transfer, in that the latter is only used for objects $1008_{\rm hex}$, $1009_{\rm hex}$ and $100A_{\rm hex}$ manufacturer device name.

Expedited transfer

Objects can be written or read, with their data including a maximum of 4 bytes. Only two telegrams are required, a request and a response. All objects with the indices $1XXX_{hex}$, $4XXX_{hex}$, $6XXX_{hex}$ can be addressed via expedited SDOs with the exception of objects 1008_{hex} , 1009_{hex} and $100A_{hex}$.

Segmented transfer

The segmented transfer is necessary for objects with data greater than 4 bytes. Thereby the user data is divided to several telegrams. This is only necessary when reading the objects 1008_{hex} , 1009_{hex} and $100A_{hex}$.

5.3.3 Writing object

In order to write objects at the Baumüller CANopen connection the expedited transfer is used. A SDO-client (master) transmits a write request to the slave (Baumüller CANopen interface). This slave carries out the request and acknowledges this with the response.

Figure 7: Initiate SDO download protocol

The command specifier CS for the request depends on the user data length. D0 is the LSB and D3 the MSB of the datum to be transmitted.

Data length in D0 - D3	Command specifier CS
1 byte	2F _{hex}
2 byte	2B _{hex}
4 byte	23 _{hex}

The command specifier CS for the response is 60_{hex} , the multiplexor is identical to that of the request, the data field without meaning (reserved).

Example

The value '-3' (FD_{hex}) to be written to object 6060_{hex} , subindex 00_{hex} , of the slave with the address 4. The data width of this object is 8 bits.

Request

		CS	Multiplexor Byte 1 Byte 2 Byte 3			D0	D1	D2	D3
COB ID	DLC	Byte 0	Byte 1	Byte 2	Byte 3	Byte 4	Byte 5	Byte 6	Byte 7
604 _{hex}	08 _{hex}	2F _{hex}	60 _{hex}	60 _{hex}	00 _{hex}	FD _{hex}	00 _{hex}	00 _{hex}	00 _{hex}
<u> </u>			•	★	•	*			

Basic address 600_{hex} + slave address 4_{hex} Object 60 60_{hex} Subindex 00_{hex} Value -3

Response

		CS	Multiplexor Byte 1 Byte 2 Byte 3			D0	D1	D2	D3
COB ID	DLC	Byte 0	Byte 1 Byte 2 Byte 3			Byte 4	Byte 5	Byte 6	Byte 7
584 _{hex}	08 _{hex}	60 _{hex}	60 _{hex}	60 _{hex}	00 _{hex}				

The value '12' $(0C_{hex})$ is to be written to object $43E9_{hex}$, subindex 00_{hex} , of the slave with the address 4. The data width of this object is 16 bits.

Request

		CS	Multiplexor			D0	D1	D2	D3
COB ID	DLC	Byte 0	Byte 1 Byte 2 Byte 3			Byte 4	Byte 5	Byte 6	Byte 7
604 _{hex}	08 _{hex}	2B _{hex}	E9 _{hex}	43 _{hex}	00 _{hex}	0C _{hex}	00 _{hex}	00 _{hex}	00 _{hex}
_			▼.	1	•	_			

Basic address 600_{hex} + slave address 4_{hex}

Object 43 E9_{hex} Subindex 00_{hex} Value 12

Response

		CS	N	Multiplexor Byte 1 Byte 2 Byte 3			D1	D2	D3
COB ID	DLC	Byte 0	Byte 1	Byte 1 Byte 2 Byte		Byte 4	Byte 5	Byte 6	Byte 7
584 _{hex}	08 _{hex}	60 _{hex}	E9 _{hex}	43 _{hex}	00 _{hex}	00 _{hex}	00 _{hex}	00 _{hex}	00 _{hex}

The value $,60610008_{hex}$, to be written to the object 1800_{hex} , subindex 02_{hex} , of the slave with the address 4. The data width of this object is 32 bits.

Request

Response

		CS	M	Multiplexor Byte 1 Byte 2 Byte 3			D1	D2	D3
COB ID	DLC	Byte 0	Byte 1	Byte 1 Byte 2 I		Byte 4	Byte 5	Byte 6	Byte 7
584 _{hex}	08 _{hex}	60 _{hex}	00 _{hex}	18 _{hex}	02 _{hex}	00 _{hex}	00 _{hex}	00 _{hex}	00 _{hex}

5.3.4 Reading object

With the Baumüller CANopen interface, expedited transfer is used to read objects; with objects 1008_{hex} , 1009_{hex} and $100A_{hex}$ segmented transfer is used.

5.3.4.1 Expedited transfer

Figure 8: Initiate SDO upload expedited

A SDO client (master) transmits a read request to the slave (Baumüller CANopen interface). This slave carries out the request and sends the required data in the response telegram (response).

The command specifier CS for the request is always 40_{hex} . The command specifier CS for the response will depend on the length of the user data. D0 is the LSB and D3 the MSB.

Data length in D0 - D3	Command specifier CS
1 byte	4F _{hex}
2 byte	4B _{hex}
4 byte	43 _{hex}

The request and response multiplexors agree.

Example

Object 6061_{hex} , subindex 00_{hex} of the slave with the address 4 is to be read . The data width of this object is 1 byte.

Request

		CS	N				D1	D2	D3
COB ID	DLC	Byte 0	Byte 1 Byte 2 Byte 3		Byte 4	Byte 5	Byte 6	Byte 7	
604 _{hex}	08 _{hex}	40 _{hex}	61 _{hex}	60 _{hex}	00 _{hex}				

Response

		CS	Multiplexor			D0	D1	D2	D3
COB ID	DLC	Byte 0	Byte 1	Byte 2	Byte 3	Byte 4	Byte 5	Byte 6	Byte 7
584 _{hex}	08 _{hex}	4F _{hex}	61 _{hex}	60 _{hex}	00 _{hex}	D0 _{hex}	00 _{hex}	00 _{hex}	00 _{hex}
•			•	1			_		

Basic address 580_{hex} + slave address 4_{hex}

Object 60 61_{hex} Subindex 00_{hex} Value data

Object 6041_{hex} , subindex 00_{hex} of the slave with the address 4 is to be read . The data width of this object is 2 byte.

Request

		cs	M	Multiplexor Byte 1 Byte 2 Byte 3			D1	D2	D3
COB ID	DLC	Byte 0	Byte 1 Byte 2 Byte 3		Byte 4	Byte 5	Byte 6	Byte 7	
604 _{hex}	08 _{hex}	40 _{hex}	41 _{hex}	60 _{hex}	00 _{hex}	00 _{hex}	00 _{hex}	00 _{hex}	00 _{hex}

Response

		CS	Multiplexor			D0	D1	D2	D3
COB ID	DLC	Byte 0	Byte 1 Byte 2 Byte 3			Byte 4	Byte 5	Byte 6	Byte 7
584 _{hex}	08 _{hex}	4B _{hex}	41 _{hex} 60 _{hex} 00 _{hex}		D0	D1	00 _{hex}	00 _{hex}	

Basic address 580_{hex} + slave address 4_{hex} Object 60 41_{hex} Subindex 00_{hex} Value DB high DB low

Object $1400_{\rm hex}$, subindex $01_{\rm hex}$ of the slave with the address 4 is to be read. The data width of this object is 4 byte.

Request

		CS	M	ultiplex	or	D0	D1	D2	D3
COB ID	DLC	Byte 0	Byte 1	Byte 2	Byte 3	Byte 4	Byte 5	Byte 6	Byte 7
604 _{hex}	08 _{hex}	40 _{hex}	00 _{hex}	14 _{hex}	01 _{hex}	00 _{hex}	00 _{hex}	00 _{hex}	00 _{hex}

Response

		CS	M	ultiplex	or	D0	D1	D2	D3
COB ID	DLC	Byte 0	Byte 1	Byte 2	Byte 3	Byte 4	Byte 5	Byte 6	Byte 7
584 _{hex}	08 _{hex}	43 _{hex}	00 _{hex}	14 _{hex}	01 _{hex}	D0	D1	D2	D3
			•	1	•	_			*
Basic add	lress 58	30 _{hex}	Object 1	4 00 _{hex}	Subinde	x 00 _{hex}	Value D	B_3 DB ₂ D	$\widetilde{DB_1} \widetilde{DB_0}$

+ slave address 4_{hex}

5.3.4.2 Segmented transfer

First of all a read request is sent to the slave with initiate SDO upload protocol. The slave responds with the command specifier CS 41_{hex}. The total number of the user data bytes to be transferred is returned in the data field (request 1, response 1). This user data will be transferred in the following cycles (request 2, response 2, request 3 and response 3).

Figure 9: Upload SDO segmented protocol

Programming manual **CANopen Slave**

The command specifiers contain a toggle bit, the value of which changes for each transfer.

for example to read object 1008_{hex} manufacturer device name of slave 4:

Request

		CS	Multiplexor			D0	D1	D2	D3
COB ID	DLC	Byte 0	Byte 1	Byte 2	Byte 3	Byte 4	Byte 5	Byte 6	Byte 7
604 _{hex}	08 _{hex}	40 _{hex}	08 _{hex}	10 _{hex}	00 _{hex}				

Response 1

		CS	M	ultiplex	or	D0	D1	D2	D3
COB ID	DLC	Byte 0	Byte 1	Byte 2	Byte 3	Byte 4	Byte 5	Byte 6	Byte 7
584 _{hex}	08 _{hex}	41 _{hex}	08 _{hex}	10 _{hex}	00 _{hex}	6 _{hex}	00 _{hex}	00 _{hex}	00 _{hex}

Byte 0 in response 1 (command specifier 41_{hex}) signifies that the user data field contains the number of the user data bytes to be transferred (6).

Request

		CS							
COB ID	DLC	Byte 0	Byte 1	Byte 2	Byte 3	Byte 4	Byte 5	Byte 6	Byte 7
604 _{hex}	08 _{hex}	60 _{hex}	00 _{hex}						

Response

		CS	D0	D1	D2	D3	D4	D5	D6
COB ID	DLC	Byte 0	Byte 1	Byte 2	Byte 3	Byte 4	Byte 5	Byte 6	Byte 7
584 _{hex}	08 _{hex}	14 _{hex}	62 _{hex}	20 _{hex}	6D _{hex}	61 _{hex}	58 _{hex}	58 _{hex}	00 _{hex}

Byte 0 In request 2 (command specifier 60_{hex}) means that the first segment (6 bytes) are to be transferred. Byte 0 in response 2 (command specifier, 14_{hex}) signifies that the user data field (6 bytes) contains valid data and that this segment is at the same time the last.

The result of the transfer is: b maXX.

5.3.5 Error reactions

Invalid SDO accesses are refused with abort codes. The structure of these abort telegrams is identical to the SDO telegram illustrated in ▶ Figure 5.3.1 d on page 49. The data field contains an abort code of 4 bytes.

With invalid accesses to communication-specific objects $(1XXX_{hex})$ the following messages are differentiated:

Abort code	Meaning
05 _{hex} 03 _{hex} 00 _{hex} 00 _{hex}	Inconsistent parameters (toggle bit has not changed)
05 _{hex} 04 _{hex} 00 _{hex} 01 _{hex}	Client/server command specific CS not valid or unknown.
06 _{hex} 01 _{hex} 00 _{hex} 02 _{hex}	Writing to write-protected object
06 _{hex} 02 _{hex} 00 _{hex} 00 _{hex}	Object does not exist
06 _{hex} 04 _{hex} 00 _{hex} 41 _{hex}	Data cannot be mapped (e. g. incorrect length indication)
06 _{hex} 06 _{hex} 00 _{hex} 00 _{hex}	Hardware access error (save/load from flash memory)
06 _{hex} 07 _{hex} 00 _{hex} 10 _{hex}	Incorrect length data value
06 _{hex} 09 _{hex} 00 _{hex} 11 _{hex}	Subindex does not exist
06 _{hex} 09 _{hex} 00 _{hex} 30 _{hex}	Value range exceeded (during write accesses)
06 _{hex} 09 _{hex} 00 _{hex} 31 _{hex}	Value too high (during write accesses)
08 _{hex} 00 _{hex} 00 _{hex} 20 _{hex}	Data cannot be transferred or saved to the application
08 _{hex} 00 _{hex} 00 _{hex} 22 _{hex}	Data cannot be mapped due to the current communication state (e. g. change mapping in the OPERATIONAL state).

Invalid accesses to all other objects $(4XXX_{hex})$ and $6XXX_{hex}$ and $6XXX_{hex}$ are globally refused with the following codes:

Abort code	Meaning
06 _{hex} 01 _{hex} 00 _{hex} 00 _{hex}	Error in data format
06 _{hex} 01 _{hex} 00 _{hex} 02 _{hex}	Element cannot be changed
06 _{hex} 02 _{hex} 00 _{hex} 00 _{hex}	Element not present
06 _{hex} 09 _{hex} 00 _{hex} 31 _{hex}	Value too high (during write accesses)
06 _{hex} 09 _{hex} 00 _{hex} 32 _{hex}	Value too low (during write accesses)
08 _{hex} 00 _{hex} 00 _{hex} 00 _{hex}	General error occurred
08 _{hex} 00 _{hex} 00 _{hex} 21 _{hex}	Data not available at present

Example

Slave 4 object 1008_{hex} subindex 01_{hex} is to be read. Object 1008_{hex} manufacturer device name has however only subindex 00_{hex} .

Request

		CS	M	lultiplex	or	D0	D1	D2	D3
COB ID	DLC	Byte 0	Byte 1	Byte 2	Byte 3	Byte 4	Byte 5	Byte 6	Byte 7
604 _{hex}	08 _{hex}	40 _{hex}	08 _{hex}	10 _{hex}	01 _{hex}	00 _{hex}	00 _{hex}	00 _{hex}	00 _{hex}

Response

		CS	M	lultiplex	or	D0	D1	D2	D3
COB ID	DLC	Byte 0	Byte 1	Byte 2	Byte 3	Byte 4	Byte 5	Byte 6	Byte 7
584 _{hex}	08 _{hex}	80 _{hex}	08 _{hex}	10 _{hex}	01 _{hex}	11 _{hex}	00 _{hex}	09 _{hex}	06 _{hex}
				7		\			
Basic add	lress 58	30 _{hex}	Object 1	0 08 _{hex}	Subinde	x 01 _{hex}	Code 0	6 09 00 1	1 _{hex}

Basic address 580_{hex} + slave address 4_{hex}

The command specifier CS (4 byte 0, 80_{hex}) in the response telegram specifies, that it is an abort telegram. The request and response multiplexors agree.

5.4 Synchronization (SYNC)

In order to synchronize the slaves a SYNC telegram is used. This telegram is unconfirmed (broadcast). It contains no data. The COB ID is stipulated in object 1005_{hex} COB ID SYNC. By default, 80_{hex} is specified. The CANopen slave option module can receive SYNC telegrams. It is not a SYNC master!

Receipt of a SYNC telegram with the identifier set in object 1005_{hex} generates an interrupt to the CANopen option module, which is passed to the b maXX® controller. Because of this, this signal can be used to synchronize the b maXX® controller. All relevant telegrams must be transmitted to all configured slaves within one SYNC interval (communication cycle). Transfer rate, cable length, number of nodes, size of telegrams as well as processing times on the CANopen option card are to be taken into consideration during this setting the cycle time for the SYNC telegram is undertaken in object 1006_{hex}. For this, see ▶Directory of objects for communication control of from page 31. Furthermore, the communication cycle time in the ProDrive/WinBASS II must be matched on the page option module 1 BACI.

Figure 10: Communication cycle

After receipt of the SYNC telegram, the slaves first of all transmit their actual values by means of synchronous PDOs in the message window before the setpoints in the command window are transferred from the master to the slaves likewise by means of synchronous PDOs. The setpoints are accepted by the slaves with the next SYNC telegram (also see ▶Communication relationship via PDO⊲ from page 65). Asynchronous messages (SDOs, PDOs, NMT) can occur at any time.

If the controller is not synchronized via the CANopen, no monitoring of the synchronization may occur in the controller. The SYNC telegram can continue to be used as trigger condition.

Programming manual CANopen Slave

Settings for synchronization of the controller in ProDrive or WINBASS II

Additionally to the BACI settings the following settings must be done at the operating modes position control and synchronous operation on the page synchronization in ProDrive/WINBASS II.

Source for Sync signal: Use Sync1 or Sync2 from BACI

The Sync interval must be set to the same time as the Sync telegram is sent (can be set also via FBO $0x1006_{hex}$)

Fault reaction at Sync error: as required

Sync offset: 100

Sync tolerance: max. 40 µs, otherwise depending on the

jitter of the master

The Sync tolerance is the time in which the controller does not send a fault message, when the Sync telegram is received within this time. A mechanism (PLL) is implemented on the option module to compensate the jitter, so that the synchronization can take place a greater jitter. The "PLL" is activated after the first received Sync telegram. The Sync telegram must be sent without interruption.

If the Sync telegram fails and switches on again during operation, it will take a half minute in the worst case until the "PLL" is synchronous to the Sync telegram again, even if ProDrive/WinBASS II displays after a short time that the controller is running synchronous again.

The "PLL" can be deactivated at the option module from FPGA version 0107 on. However this is only recommended if the master is able to send a jitter less than 1.6 μ s for the Sync telegram.

The settings must be saved in the data set and the controller must be rebooted.

If the cyclic communication is interrupted, e.g. at the transition from OPERATIONAL to PRE-OPERATIONAL the error/warning Alive Counter or the error cyclic communication can occur. The error cyclic communication occurs only if this monitoring is activated.

If the operating modes position control and synchronous operation are not used, there are no extra settings required for the BACI times and for the synchronization.

5.5 Process data (PDO)

Process data objects are unconfirmed telegrams with high-priority COB IDs. They are optimized for the exchange of data with real time requests. In the PDOs, the entire CAN data frame (8 bytes) can be used for user data transmission. The format of the data exchange via PDOs must therefore be defined before the start of communication between transmitter and receiver (mapping). Transmitting and receiving PDOs can be triggered in various ways (also see ▶Communication relationship via PDO⊲ from page 65).

NOTE

All configured objects in the PDOs are transferred between the CANopen slave option module and the b maXX[®] controller as cyclic data (also see ▶Communication flow◄ from page 19). Because cyclic data transfer takes place only in the OPERATIONAL state, communication monitoring in Win BASS II BACI may be activated only in this state (timeout for cyclic communication **P0836** (BACI)).

5.5.1 PDO mapping

Mapping is a method of assigning variables/objects to PDOs. These variables/objects are moved across the CAN bus with the PDOs. Cyclic data exchange is configured by means of the mapping. SDOs are used for this parameterizing. Mapping is set in the object directory via addressable objects. There are four such objects for each PDO (also see ▶ Directory of objects for communication control ◄ from page 31). One of the objects determines the content of the PDO, the second one the communication relationship or triggering.

Process data object	Object for content	Object for the communication relationship
TX-PDO1	1A00 _{hex}	1800 _{hex}
TX-PDO2	1A01 _{hex}	1801 _{hex}
TX-PDO3	1A02 _{hex}	1802 _{hex}
TX-PDO4	1A03 _{hex}	1803 _{hex}
RX-PDO1	1600 _{hex}	1400 _{hex}
RX-PDO2	1601 _{hex}	1401 _{hex}
RX-PDO3	1602 _{hex}	1402 _{hex}
RX-PDO4	1603 _{hex}	1403 _{hex}

Mapping cannot be changed in the OPERATIONAL state. New mapping will only be activated after switching to OPERATIONAL.

For the user data transmission a CAN data telegram provides a maximum of eight bytes. By mapping the logic content is determined by a maximum of eight bytes. For this determination certain information about the object, which is mapped is necessary: object index, subindex and length of datum. From the object index the according objects are entered in the mapping object. The sequence of this input, determined by the subindex of the mapping object, determines the data sequence in the CAN telegram. In the mapping objects $(1600_{\text{hex}}, 1601_{\text{hex}}, 1602_{\text{hex}}, 1603_{\text{hex}}, 1A00_{\text{hex}}, 1A01_{\text{hex}}, 1A02_{\text{hex}}, 1A03_{\text{hex}})$ the objects which are mapped, are written to the according subindices (start with 01_{hex}), e. g. to object 1600_{hex} subindex $_{\text{hex}}$ the value 60400010_{hex} is entered. This means, that the first two bytes of the data, which was received in RX-PD01 is written to the control word (ob-

ject 6040_{hex} subindex_{hex}). The object 6040_{hex} is implemented to the b maXX[®]4400 parameter **P0300** control word (also see ▶Appendix C - Conversion tables ◄ on page 101). Therewith the first word of the received telegram in the RX-PDO1 is written to the control word of the b maXX[®]4400. In subindex 00_{hex} the number of the objects, which must be mapped (number of assigned subindices with the valid objects) must be entered. In ▶Example for PDO mapping ◄ from page 67 is a detailed example for mapping.

PDO data field in the CAN telegram

Byte 0		Byte 4
Object b	Object n	Object a2
16 bit	8 bit	16 bit

Default mapping is described in ▶Directory of objects for communication control
from page 31.

In order to deactivate an existing mapping, the values in the subindices can be overwritten or the value '0' can be written to subindex 00_{hex} of the corresponding mapping object $(1600_{\text{hex}}, 1601_{\text{hex}}, 1602_{\text{hex}}, 1603_{\text{hex}}, 1A00_{\text{hex}}, 1A01_{\text{hex}}, 1A02_{\text{hex}}, 1A03_{\text{hex}})$. In this way, the entire mapping of the respective PDO will be deactivated, but the entry is preserved.

Furthermore deactivation of mapping objects via the associated communication objects $1400_{\rm hex}$ to $1403_{\rm hex}$, $1800_{\rm hex}$ to $1803_{\rm hex}$ in subindex 1 with bit 31 set to 1 can take place. Note: therewith COBID must be written.

NOTE

At the setting of mapping in the $(1600_{hex}, 1601_{hex}, 1602_{hex}, 1603_{hex}, 1400_{hex}, 1400_{hex}, 1400_{hex}, 1400_{hex}, 1400_{hex}, 1400_{hex})$ is accordingly the subindex 00_{hex} with the correct number of the mapped objects is to be written at the end.

Setpoints:

The permissible cyclical setpoints are marked in a table with the column 'PDO mapping' as 'RX'. The table is found in appendix B.2 (for the six thousands object numbers). The manufacturer-specific parameters (four thousands objects) must be checked up in the parameter manual b $maXX^{@}4400$ basic unit (5.02017), chapter 6.1.4 attributes, for the b $maXX^{@}4400$.

Actual values:

The permissible cyclic actual values are marked in a table with the column 'PDO mapping' as 'TX'. The table is to be found in appendix B.2 (for the six thousands object numbers). At manufacturer-specific parameters (four thousands objects) it must be checked up in the parameter manual b maXX[®]4400 basic unit (5.02017), chapter 6.14 attributes, for the b maXX[®]4400. A detailed description of the b maXX[®] parameters are found in the parameter manual to b maXX[®].

Incorrect mapping configuration (invalid mapping configurations in 1600_{hex} , 1601_{hex} , 1602_{hex} , 1603_{hex} , 1400_{hex} , 140

The cyclic setpoints/actual values are initialized continuously in the BACI configuration, e.g. the first setpoint of PDO1 is in the first place in the BACI, the second setpoint of PDO1 in the second place and so on. Thereupon the setpoints of PDO2 follow. Analogously valid for the actual value initialization is the first actual value of PDO1 is in first place in the BACI, the second actual value of PDO1 in the second place and so on.

If the total range of PDO1 (max. four setpoints) is not used, the values of PDO2 move up. The cyclic data ranges of BACI are continuously.

NOTE

If the controller status word (FB0641_{hex}) is requested for the cyclic communication, then the status word must be entered in the first PDO in the first place!

If the status word is not requested, nevertheless it will be entered at BACI, but it is not considered at the field bus transfer in this case. The status word is required for internal samplings at this point. Only 7 more actual values can be used.

If a wrong parameter is mapped at the setpoints (e.g. an actual value parameter), the slave sends an EMYC telegram. Generally only the first error number is sent, when several error messages are present. This is not necessarily the error number which just triggers the error. (Therefore read out all present errors in ProDrive / WINBASS II if there are several error messages.)

In this case the controller reports the error number 54.4100 "Option module G/H wrong parameter number at setpoint parameter no. n".

Indeed the option module signalizes via the LED that it is in OPERATIONAL mode, but no cyclic setpoints are be handed on to the controller. The reason for this is that the controller has aborted the configuration of the BACI.

NOTE

A restart of the option module is required in this status.

Dummy mapping

The option module CANopen slave provides 2 dummy objects: a 1 byte dummy object and a 2 byte dummy object, which also can be mapped into a PDO. These objects have the indices 0005_{hex} (1 byte dummy) and 0006_{hex} (2 byte dummy). The dummy object serves as a dummy, in order to use only certain objects within a CAN telegram (also see ►Example for PDO mapping ◄ from page 67).

5.5

Process data (PDO)

NOTE

The present mapping, which was set gets lost after switching off or after a reset of the state machine. Thereupon the mapping, which was last saved via the object 1010_{hex} is set. If no mapping was saved, then the default mapping is used.

Description of equal field bus objects (FBO) via service data (SD) and process data (PD)

Generally PD write accesses overwrite cyclically SD write accesses in the same FBO. this is even then the case if the PD with the same FBO is not sent, but another FBO in another PD. The reason for this is that all listed BACI parameters are transferred from a therein contained parameter when a change is done.

In several cases it can happen that a write access via PD has been successfully, but this is not reliably.

NOTE

Avoid the access to the same field bus object via SD and PD in this context.

5.5.2 Communication relationship via PDO

In each mapping object an object exists for the setting of the communication.

The object index has an offset of -200_{hex} for the corresponding mapping object.

Process data object mapping	Object for con- tent	Object for communication relationship
TX-PDO1	1A00 _{hex}	1800 _{hex}
TX-PDO2	1A01 _{hex}	1801 _{hex}
TX-PDO3	1A02 _{hex}	1802 _{hex}
TX-PDO4	1A03 _{hex}	1803 _{hex}
RX-PDO1	1600 _{hex}	1400 _{hex}
RX-PDO2	1601 _{hex}	1401 _{hex}
RX-PDO3	1602 _{hex}	1402 _{hex}
RX-PDO4	1603 _{hex}	1403 _{hex}

The structure of these objects is described in ▶Directory of objects for communication control of from page 31.

The criterion for accepting a message transmitted onto the CAN bus into the CAN open slave option module is the matching COB ID. The COB ID is set in control objects 1400_{hex} - 1403_{hex} , 1800_{hex} - 1803_{hex} under subindex 01_{hex} . If the identifier parameterized here agrees with the message identifier transmitted via the CAN bus, the telegram will be accepted into its telegram buffer.

The PDOs can also be deactivated in this place, thereby the bit 31 is written to with 1.

e. g. 1400_{hex} subindex 1

Furthermore, triggering requirements for transmission and reception are defined for CANopen that group PDOs into synchronous and asynchronous. Triggering requirements are set in the objects 1400_{hex}- 1403_{hex}, 1800_{hex}- 1803_{hex} accordingly in the subindex 02_{hex}.

NOTE

PDOs which are not needed should be deactivated, in order to exclude interferences. Deactivation occurs with the writing of the subindices 0 of the objects 1600_{hex} to 1603_{hex} and 1400_{hex} to 1403_{hex} with 0 or with bit 31 in SIX 2 of the objects 1401_{hex} to 1403_{hex} and 1801_{hex} to 1803_{hex} .

Synchronous PDOs

Transmission and reception is linked with the SYNC telegram (also see ▶Synchronization (SYNC) ◄ from page 59).

Asynchronous PDOs

Transmission and reception is linked with certain events.

Value in	Туре	Eff	ect		
subindex 02 _{hex}		TX-PDO 1800 _{hex} , 1801 _{hex} , 1802 _{hex} , 1803 _{hex}	RX-PDO 1400 _{hex} , 1401 _{hex} , 1402 _{hex} , 1403 _{hex}		
00 _{hex} (0)	asynchro- nous	Transmission takes place after each SYNC telegram received and an event has occurred.	PDOs with a matching COB ID received before the last SYNC telegram are accepted.		
01 _{hex} (1)	synchro- nous	Transmission occurs after each received SYNC telegram.	PDOs with a matching COB ID received before the last SYNC telegram are accepted.		
02 _{hex} - F0 _{hex} (2 - 240)	synchro- nous	Transmission occurs after receiving the set number of SYNC telegrams	PDOs with a matching COB ID received before the last SYNC telegram are accepted.		
FC _{hex} (252)	RTR synchro- nous	Transmission takes place after receipt of the RTR telegram with matching COB ID updating the PDO takes place after receipt of the last SYNC telegram.	none		
FD _{hex} (253)	RTR asynchro- nous	Transmission takes place after receipt of the RTR telegram with matching COB ID	none		
FE _{hex} (254)	asynchro- nous	Transmission takes place in a time-controlled manner	none		
FF _{hex} (255)	asynchro- nous	Transmission takes place in an event-controlled manner	Each PDO with a matching COB ID is accepted		

Time-controlled transmission means that the transmission requirement is linked to a timer. This timer is set for the TX-PDO1 by means of subindex 05_{hex} in object 1800_{hex} (16 bit) is set in a similar manner. Analog the timer for TX-PDO2, TX-PDO3 and TX-PDO4 in the subindex 05_{hex} of object 1801_{hex} , 1802_{hex} , 1803_{hex} can be set. The resolution is 1 millisecond. The timer(s) is (are) started on change of state to OPERATIONAL. Transmission of the corresponding TX-PDO then takes place cyclically with the cycle time set in the timer. The timer will be cleared by writing the value '0' to subindices 05_{hex} of object 1800_{hex} - 1803_{hex} .

Time-controlled reception does not exist! The effect corresponds to event-controlled receipt.

Event-controlled transmission means that the transmission requirement is linked to the value change of the mapped objects. If for example 3 objects are mapped (status word, speed actual value, actual operating mode), the PDO transmits as soon as at least one of the 3 values changes. If the values remain constant, no PDO will be transmitted. Because of this, bus loading can be reduced (telegrams are only transmitted when they contain new information).

Event-controlled reception means that all PDOs with matching COB IDs will be accepted.

With transmission types synchronous RTR/asynchronous RTR (types 252 and 253), the PDO with matching COB ID will be transmitted after receipt of the RTR telegram. With type 252, the TX PDO is updated after each SYNC telegram received but not yet transmitted. With type 253, updating the PDO takes place after receipt of the RTR telegram (depending on the BACI cycle time). RTR telegrams are possible only for TX PDOs.

5.5.3 Example for PDO mapping

The CANopen slave option module with node 2 receives a speed setpoint from the master in RX PDO1. This speed setpoint must be written to the ramp-function generator input. The CANopen slave option module with node 7 should always exhibit a speed actual value identical to node 2. This value will be written to the ramp-function generator input of node 7. Implementation of this configuration is as follows:

The master transmits the speed setpoint to node 2. As soon as node 2 recognizes a change of this value, it transmits the actual value to node 7.

Furthermore, node 2 receives the control word from the master in its RX-PDO1. Node 7 likewise receives a control word from the master in RX-PDO 2. The configuration is shown in ▶Figure 11 on page 67. Object 6086_{hex} is used in connection with dummy mapping.

The b maXX[®]4400 with the address 2 transmits its speed actual value and the status word every 10 ms. Node 7 transmits its status word only after receiving a SYNC telegram (from the master) 3 times.

Figure 11: Example mapping with two b maXX[®]4400

Programming manual CANopen Slave

1st step: determining the necessary objects

Ascertain the relevant object directory objects from the object list (see ▶Appendix C - Conversion tables ◄ on page 101 and ▶Directory of objects for communication control ◄ from page 31).

The following parameters are relevant for the devices that correspond with the specified objects:

P0301 Status word	⇔ 6041 _{hex} Status word
P0300 Control word	⇔ 6040 _{hex} Control word
P1171 Setpoint selection HLG input	⇔ 6042 _{hex} Speed setpoint at the HLG
P0353 Speed actual value	⇔ 6044 _{hex} Control effort
P1190 Positioning mode	⇔ 6086 _{hex} Motion profile type

The following objects are necessary for setting mapping:

Node 2 1A00_{hex} (1. transmit PDO mapping), 1800_{hex} (1. transmit PDO parameters)

1A01_{hex} (2. transmit PDO mapping), 1801_{hex} (2. transmit PDO parameters)

Node 7 1600_{hex} (1. receive PDO mapping), 1400_{hex} (1. receive PDO parameters)

1601_{hex} (2. receive PDO mapping), 1401_{hex} (2. receive PDO parameters)

2nd step: configure mapping

In order to set mapping the SDOs of the expedited transfers (also see ▶Service data (SDO) ◄ from page 49) are used. These can be initiated via a master, a bus configurator or similar.

Mapping for slave 2

Write the first object to be mapped with index (6086_{hex}), subindex (00_{hex}) and length (10_{hex}) to $1A00_{hex}$ subindex 01_{hex} (TX-PDO 1). The object shall not be evaluated by slave 7

Request

		CS	M	Multiplexor			D1	D2	D3
COB ID	DLC	Byte 0	Byte 1	Byte 2	Byte 3	Byte 4	Byte 5	Byte 6	Byte 7
602 _{hex}	08 _{hex}	23 _{hex}	00 _{hex}	1A _{hex}	01 _{hex}	10 _{hex}	00 _{hex}	86 _{hex}	60 _{hex}

Response

		CS	M	Multiplexor			D1	D2	D3
COB ID	DLC	Byte 0	Byte 1	Byte 2	Byte 3	Byte 4	Byte 5	Byte 6	Byte 7
582 _{hex}	08 _{hex}	60 _{hex}	00 _{hex}	1A _{hex}	01 _{hex}	00 _{hex}	00 _{hex}	00 _{hex}	00 _{hex}

Write the first object to be mapped with index (6044 $_{\rm hex}$), subindex (00 $_{\rm hex}$) and length (10 $_{\rm hex}$) to 1A00 $_{\rm hex}$ subindex 02 $_{\rm hex}$ (TX-PDO 1).

Request

		CS	M	Multiplexor			D1	D2	D3
COB ID	DLC	Byte 0	Byte 1	Byte 2	Byte 3	Byte 4	Byte 5	Byte 6	Byte 7
602 _{hex}	08 _{hex}	23 _{hex}	00 _{hex}	1A _{hex}	02 _{hex}	10 _{hex}	00 _{hex}	44 _{hex}	60 _{hex}

Response

		CS	M	Multiplexor			D1	D2	D3
COB ID	DLC	Byte 0	Byte 1	Byte 2	Byte 3	Byte 4	Byte 5	Byte 6	Byte 7
582 _{hex}	08 _{hex}	60 _{hex}	00 _{hex}	1A _{hex}	02 _{hex}	00 _{hex}	00 _{hex}	00 _{hex}	00 _{hex}

Writing the number of the mapped objects $(02_{\rm hex})$ to $1{\rm A}00_{\rm hex}$ subindex $00_{\rm hex}$ (TXP-DO 1).

Request

		CS	M	Multiplexor			D1	D2	D3
COB ID	DLC	Byte 0	Byte 1	Byte 2	Byte 3	Byte 4	Byte 5	Byte 6	Byte 7
602 _{hex}	08 _{hex}	2F _{hex}	00 _{hex}	1A _{hex}	00 _{hex}	02 _{hex}	00 _{hex}	00 _{hex}	00 _{hex}

Response

		CS	Multiplexor			D0	D1	D2	D3
COB ID	DLC	Byte 0	Byte 1	Byte 2	Byte 3	Byte 4	Byte 5	Byte 6	Byte 7
582 _{hex}	08 _{hex}	60 _{hex}	00 _{hex}	1A _{hex}	00 _{hex}				

The content of object 1A00_{hex} is as follows:

1A00 _{hex}	00 _{hex}	02 _{hex}		
	01 _{hex}	60860010 _{hex}		
	02 _{hex}	60440010 _{hex}		

The following mapping of object 6041_{hex} is shown for completeness, but need not be carried out because it is set in the default mapping.

Write the first object to be mapped with index (6041_{hex}), subindex (00_{hex}) and length (10_{hex}) to $1A01_{hex}$ subindex 01_{hex} (TX-PDO 2).

Request

		CS	M	Multiplexor			D1	D2	D3
COB ID	DLC	Byte 0	Byte 1	Byte 2	Byte 3	Byte 4	Byte 5	Byte 6	Byte 7
602 _{hex}	08 _{hex}	23 _{hex}	01 _{hex}	1A _{hex}	01 _{hex}	10 _{hex}	00 _{hex}	41 _{hex}	60 _{hex}

Response

		CS	M	Multiplexor			D1	D2	D3
COB ID	DLC	Byte 0	Byte 1	Byte 2	Byte 3	Byte 4	Byte 5	Byte 6	Byte 7
582 _{hex}	08 _{hex}	60 _{hex}	01 _{hex}	1A _{hex}	01 _{hex}	00 _{hex}	00 _{hex}	00 _{hex}	00 _{hex}

Writing of the second object to be mapped with index (6044 $_{\rm hex}$), subindex (00 $_{\rm hex}$) and length (10 $_{\rm hex}$) to 1A01 $_{\rm hex}$ subindex 02 $_{\rm hex}$.

Request

		CS	Multiplexor			D0	D1	D2	D3
COB ID	DLC	Byte 0	Byte 1	Byte 2	Byte 3	Byte 4	Byte 5	Byte 6	Byte 7
602 _{hex}	08 _{hex}	23 _{hex}	01 _{hex}	1A _{hex}	02 _{hex}	10 _{hex}	00 _{hex}	44 _{hex}	60 _{hex}

Response

		CS	Multiplexor			D0	D1	D2	D3
COB ID	DLC	Byte 0	Byte 1	Byte 2	Byte 3	Byte 4	Byte 5	Byte 6	Byte 7
582 _{hex}	08 _{hex}	60 _{hex}	10 _{hex}	1A _{hex}	02 _{hex}	00 _{hex}	00 _{hex}	00 _{hex}	00 _{hex}

Write the number of the mapped objects (02_{hex}) to $1A01_{hex}$ subindex 00_{hex} (TX-PDO 2).

Request

		CS	Multiplexor			D0	D1	D2	D3
COB ID	DLC	Byte 0	Byte 1	Byte 2	Byte 3	Byte 4	Byte 5	Byte 6	Byte 7
602 _{hex}	08 _{hex}	2F _{hex}	01 _{hex}	1A _{hex}	00 _{hex}	02 _{hex}	00 _{hex}	00 _{hex}	00 _{hex}

Response

		CS	Multiplexor			D0	D1	D2	D3
COB ID	DLC	Byte 0	Byte 1	Byte 2	Byte 3	Byte 4	Byte 5	Byte 6	Byte 7
582 _{hex}	08 _{hex}	60 _{hex}	01 _{hex}	1A _{hex}	00 _{hex}				

The content of object 1A01_{hex} is as follows:

1A01 _{hex}	00 _{hex}	02 _{hex}
	01 _{hex}	60410010 _{hex}
	02 _{hex}	60440010 _{hex}

Write the first object to be mapped with index (6040_{hex}), subindex (00_{hex}) and length (10_{hex}) to 1600_{hex} subindex 0 1_{hex} (RX-PDO 1).

Request

		CS	Multiplexor			D0	D1	D2	D3
COB ID	DLC	Byte 0	Byte 1	Byte 2	Byte 3	Byte 4	Byte 5	Byte 6	Byte 7
602 _{hex}	08 _{hex}	23 _{hex}	00 _{hex}	16 _{hex}	01 _{hex}	10 _{hex}	00 _{hex}	40 _{hex}	60 _{hex}

Response

		CS	Multiplexor			D0	D1	D2	D3
COB ID	DLC	Byte 0	Byte 1	Byte 2	Byte 3	Byte 4	Byte 5	Byte 6	Byte 7
582 _{hex}	08 _{hex}	60 _{hex}	00 _{hex}	16 _{hex}	01 _{hex}	00 _{hex}	00 _{hex}	00 _{hex}	00 _{hex}

Write the second object to be mapped with index (6042_{hex}), subindex (00_{hex}) and length (10_{hex}) to 1600_{hex} subindex (02_{hex} (RX-PDO 1).

Request

		CS	Multiplexor			D0	D1	D2	D3
COB ID	DLC	Byte 0	Byte 1	Byte 2	Byte 3	Byte 4	Byte 5	Byte 6	Byte 7
602 _{hex}	08 _{hex}	23 _{hex}	00 _{hex}	16 _{hex}	02 _{hex}	10 _{hex}	00 _{hex}	42 _{hex}	60 _{hex}

Response

		CS	Multiplexor			D0	D1	D2	D3
COB ID	DLC	Byte 0	Byte 1	Byte 2	Byte 3	Byte 4	Byte 5	Byte 6	Byte 7
582 _{hex}	08 _{hex}	60 _{hex}	00 _{hex}	16 _{hex}	02 _{hex}	00 _{hex}	00 _{hex}	00 _{hex}	00 _{hex}

Write the number of the mapped objects $(02_{\rm hex})$ to $1600_{\rm hex}$ subindex $00_{\rm hex}$ (RX-PDO 1).

Request

		CS	Multiplexor			D0	D1	D2	D3
COB ID	DLC	Byte 0	Byte 1	Byte 2	Byte 3	Byte 4	Byte 5	Byte 6	Byte 7
602 _{hex}	08 _{hex}	2F _{hex}	00 _{hex}	16 _{hex}	00 _{hex}	02 _{hex}	00 _{hex}	00 _{hex}	00 _{hex}

Response

		CS	Multiplexor			D0	D1	D2	D3
COB ID	DLC	Byte 0	Byte 1	Byte 2	Byte 3	Byte 4	Byte 5	Byte 6	Byte 7
582 _{hex}	08 _{hex}	60 _{hex}	00 _{hex}	16 _{hex}	00 _{hex}				

The content of object 1600_{hex} is as follows:

1600 _{hex}	00 _{hex}	02 _{hex}
	01 _{hex}	60400010 _{hex}
	02 _{hex}	60420010 _{hex}

Mapping for slave 7 In RX-PDO 1, slave 7 should only evaluate the speed setpoint of slave 2 (here the speed actual value). The speed setpoint is mapped to the second position of TX PDO 1 slave 2. For this reason, the dummy object must be used for the first position.

Write the first object to be mapped with index (6041 $_{\rm hex}$), subindex (00 $_{\rm hex}$) and length (10 $_{\rm hex}$) to 1A00 $_{\rm hex}$ subindex 01 $_{\rm hex}$ (TX-PDO 1).

However, this is also entered as the default mapping and need not necessarily be entered again.

Request

		CS	Multiplexor			D0	D1	D2	D3
COB ID	DLC	Byte 0	Byte 1	Byte 2	Byte 3	Byte 4	Byte 5	Byte 6	Byte 7
607 _{hex}	08 _{hex}	23 _{hex}	00 _{hex}	1A _{hex}	01 _{hex}	10 _{hex}	00 _{hex}	41 _{hex}	60 _{hex}

Response

		CS	Multiplexor			D0	D1	D2	D3
COB ID	DLC	Byte 0	Byte 1	Byte 2	Byte 3	Byte 4	Byte 5	Byte 6	Byte 7
587 _{hex}	08 _{hex}	60 _{hex}	00 _{hex}	1A _{hex}	01 _{hex}	00 _{hex}	00 _{hex}	00 _{hex}	00 _{hex}

Write the first object to be mapped with index (6044 $_{\rm hex}$), subindex (00 $_{\rm hex}$) and length (10 $_{\rm hex}$) to 1A00 $_{\rm hex}$ subindex 02 $_{\rm hex}$ (TX-PDO 1).

Request

		CS	M	Multiplexor			D1	D2	D3
COB ID	DLC	Byte 0	Byte 1	Byte 2	Byte 3	Byte 4	Byte 5	Byte 6	Byte 7
607 _{hex}	08 _{hex}	23 _{hex}	00 _{hex}	1A _{hex}	02 _{hex}	10 _{hex}	00 _{hex}	44 _{hex}	60 _{hex}

Response

		CS	M	Multiplexor			D1	D2	D3
COB ID	DLC	Byte 0	Byte 1	Byte 2	Byte 3	Byte 4	Byte 5	Byte 6	Byte 7
587 _{hex}	08 _{hex}	60 _{hex}	00 _{hex}	1A _{hex}	02 _{hex}	00 _{hex}	00 _{hex}	00 _{hex}	00 _{hex}

Write the number of the mapped objects (02_{hex}) to $1A00_{hex}$ subindex 00_{hex} (TX-PDO 1).

Request

		CS	Multiplexor			D0	D1	D2	D3
COB ID	DLC	Byte 0	Byte 1	Byte 2	Byte 3	Byte 4	Byte 5	Byte 6	Byte 7
607 _{hex}	08 _{hex}	2F _{hex}	00 _{hex}	1A _{hex}	00 _{hex}	02 _{hex}	00 _{hex}	00 _{hex}	00 _{hex}

Response

		CS	M	Multiplexor			D1	D2	D3
COB ID	DLC	Byte 0	Byte 1	Byte 2	Byte 3	Byte 4	Byte 5	Byte 6	Byte 7
587 _{hex}	08 _{hex}	60 _{hex}	00 _{hex}	1A _{hex}	00 _{hex}				

The content of object 1A00_{hex} is as follows:

1A00 _{hex}	00 _{hex}	02 _{hex}
	01 _{hex}	60410010 _{hex}
	02 _{hex}	60440010 _{hex}

Write the first object to be mapped (16 bit dummy object) with index (0006 $_{\rm hex}$), subindex (00 $_{\rm hex}$) and length (10 $_{\rm hex}$) to 1600 $_{\rm hex}$ subindex 01 $_{\rm hex}$ (RX PDO 1).

Request

		CS	M	Multiplexor			D1	D2	D3
COB ID	DLC	Byte 0	Byte 1	Byte 2	Byte 3	Byte 4	Byte 5	Byte 6	Byte 7
607 _{hex}	08 _{hex}	23 _{hex}	00 _{hex}	16 _{hex}	01 _{hex}	10 _{hex}	00 _{hex}	06 _{hex}	00 _{hex}

Response

		CS	Multiplexor			D0	D1	D2	D3
COB ID	DLC	Byte 0	Byte 1	Byte 2	Byte 3	Byte 4	Byte 5	Byte 6	Byte 7
587 _{hex}	08 _{hex}	60 _{hex}	00 _{hex}	16 _{hex}	01 _{hex}	00 _{hex}	00 _{hex}	00 _{hex}	00 _{hex}

Write the second object to be mapped with index (6042 $_{\rm hex}$), subindex (00 $_{\rm hex}$) and length (10 $_{\rm hex}$) to 1600 $_{\rm hex}$ subindex 02 $_{\rm hex}$.

Request

		CS	Multiplexor			D0	D1	D2	D3
COB ID	DLC	Byte 0	Byte 1	Byte 2	Byte 3	Byte 4	Byte 5	Byte 6	Byte 7
607 _{hex}	08 _{hex}	23 _{hex}	00 _{hex}	16 _{hex}	02 _{hex}	10 _{hex}	00 _{hex}	42 _{hex}	60 _{hex}

Response

		CS	M	Multiplexor			D1	D2	D3
COB ID	DLC	Byte 0	Byte 1	Byte 2	Byte 3	Byte 4	Byte 5	Byte 6	Byte 7
587 _{hex}	08 _{hex}	60 _{hex}	00 _{hex}	16 _{hex}	02 _{hex}	00 _{hex}	00 _{hex}	00 _{hex}	00 _{hex}

Write the number of the mapped objects (02_{hex}) to 1600_{hex} subindex 00_{hex} .

Request

		CS	M	Multiplexor			D1	D2	D3
COB ID	DLC	Byte 0	Byte 1	Byte 2	Byte 3	Byte 4	Byte 5	Byte 6	Byte 7
607 _{hex}	08 _{hex}	2F _{hex}	00 _{hex}	16 _{hex}	00 _{hex}	02 _{hex}	00 _{hex}	00 _{hex}	00 _{hex}

Response

		CS	M	Multiplexor			D1	D2	D3
COB ID	DLC	Byte 0	Byte 1	Byte 2	Byte 3	Byte 4	Byte 5	Byte 6	Byte 7
587 _{hex}	08 _{hex}	60 _{hex}	00 _{hex}	16 _{hex}	00 _{hex}				

The content of object $1600_{\mbox{\scriptsize hex}}$ is as follows:

1600 _{hex}	00 _{hex}	02 _{hex}
	01 _{hex}	00060010 _{hex}
	02 _{hex}	60420010 _{hex}

Write the first object to be mapped with index (6040_{hex}), subindex (00_{hex}) and length (10_{hex}) to 1601_{hex} subindex 0 1_{hex} (RX-PDO 2).

Request

		CS	Multiplexor			D0	D1	D2	D3
COB ID	DLC	Byte 0	Byte 1	Byte 2	Byte 3	Byte 4	Byte 5	Byte 6	Byte 7
607 _{hex}	08 _{hex}	23 _{hex}	01 _{hex}	16 _{hex}	01 _{hex}	10 _{hex}	00 _{hex}	40 _{hex}	60 _{hex}

Response

		CS	Multiplexor			D0	D1	D2	D3
COB ID	DLC	Byte 0	Byte 1	Byte 2	Byte 3	Byte 4	Byte 5	Byte 6	Byte 7
587 _{hex}	08 _{hex}	60 _{hex}	01 _{hex}	16 _{hex}	01 _{hex}	00 _{hex}	00 _{hex}	00 _{hex}	00 _{hex}

Write the number of the mapped objects (01_{hex}) to 1601_{hex} subindex 00_{hex} .

Request

		CS	Multiplexor			D0	D1	D2	D3
COB ID	DLC	Byte 0	Byte 1	Byte 2	Byte 3	Byte 4	Byte 5	Byte 6	Byte 7
607 _{hex}	08 _{hex}	2F _{hex}	01 _{hex}	16 _{hex}	00 _{hex}	01 _{hex}	00 _{hex}	00 _{hex}	00 _{hex}

Response

		CS	Multiplexor			D0	D1	D2	D3
COB ID	DLC	Byte 0	Byte 1	Byte 2	Byte 3	Byte 4	Byte 5	Byte 6	Byte 7
587 _{hex}	08 _{hex}	60 _{hex}	01 _{hex}	16 _{hex}	00 _{hex}				

The content of object 1601_{hex} is as follows:

1601 _{hex}	00 _{hex}	01 _{hex}		
	01 _{hex}	60400010 _{hex}		

Data exchange between the b maXX[®]4400 via the PDOs is shown in ▶Figure 12◀ on page 76. Example for a cross communication. The speed actual value of slave 2 becomes speed set value of slave 7.

Figure 12: Telegram structure for example mapping

Only bytes 2 and 3 from TX-PDO1 of the b maXX[®]4400 node 2 are evaluated in b maXX[®]4400 node 7, because in RX-PDO1 only bytes 2 and 3 are validly linked with parameter numbers.

The communication parameters of both slaves are set via SDOs. So that a communication relationship can be built up, the COB-IDs of the transmitter and receiver must be in agreement. The COB-ID of the TX-PDO1 of slave 2 is by default set to $182_{\rm hex}$. The COB-ID of the TX-PDO1 of slave 7 is by default $207_{\rm hex}$. Which COB-ID must be used is the responsibility of the user. In the example, the COB-ID $207_{\rm hex}$ is used.

Communication parameter for slave 2:

On object 1800_{hex} subindex 01_{hex} the value 207_{hex} is entered. On subindex 02_{hex} the value "FF_{hex}" (event-controlled) is written.

1800 _{hex}		
	01 _{hex}	207 _{hex}
	02 _{hex}	FF _{hex}

The value FE_{hex} (timer triggered) is entered into object 1801_{hex} subindex 02_{hex} . The value OA_{hex} is written to subindex OA_{hex} (timer value = 10 ms).

1801 _{hex}		
	02 _{hex}	FE _{hex}
	05 _{hex}	0A _{hex}

The remaining subindices contain their default values.

The type of trigger for RX-PDO1 is set to event-triggered ($(1400_{hex} \text{ subindex } 02_{hex} = FF_{hex})$.

Communication parameter for Slave 7:

On object 1400_{hex} subindex 02_{hex} the value "FF_{hex}" (event controlled) is written. In subindex 01_{hex} is 207_{hex} by default.

1400 _{hex}		
	01 _{hex}	207 _{hex}
	02 _{hex}	FF _{hex}

Both of the TX-PDOs of node 7 keep their default COB IDs. The trigger type of TX-PDO1 is set to SYNC triggered with the value 03_{hex} . TX-PDO2 is parameterized as event triggered.

1800 _{hex}		
	01 _{hex}	187 _{hex}
	02 _{hex}	03 _{hex}

1801 _{hex}		
	01 _{hex}	287 _{hex}
	02 _{hex}	FF _{hex}

5.5.4 Entry in BACI

A maximum of 8 cyclic setpoints and 8 cyclic actual values can be simultaneously exchanged between the CANopen slave option module and the b maXX[®] controller. All values are updated in one cycle. With CANopen, the setpoint and actual values can each be distributed across 4 PDOs.

For example if two setpoints each for TX PDO1 and TX PDO2 are to be mapped, in the course of this the following BACI configuration results:

BACI position	PDO	PDO position
1	TX-PDO1	1. Object
2	TX-PDO1	2. Object
3	TX-PDO2	1. Object
4	TX-PDO2	2. Object

The same method applies for RX PDOs.

The entries in the BACI are made continuously, beginning with the first object of PDO1.

NOTE

The dummy object is not taken into consideration in the BACI initialization.

Beginning with the first object of PDO1, the contents of the PDOs are alternately queried for their validity for the BACI configuration (not a dummy). If the object is valid, then this is entered into the next free BACI configuration position. If the PDO mapping is invalid (incorrect parameter numbers or the like), no cyclic communication between option card and b maXX [®]4400 is started.

NOTE

If the same object number is mapped several times into the available PDOs of the same direction, then the object will appear only once in the BACI configuration.

Herewith it must be considered, that the data possibly interacts.

5.6 Error telegram (EMCY) according to DSP 402

Emergency telegrams serve as information for b $maXX^{@}4400$ -errors. This telegram is transmitted, as soon as b $maXX^{@}4400$ recognizes an internal error. An emergency telegram is transmitted at each new error. There is no telegram repetition.

5.6.1 Telegram structure

The user data area of the emergency telegram is organized into three sections:

COBI	DLC	Byte 0	Byte 1	Byte 2	Byte 3	Byte 4	Byte 5	Byte 6	Byte 7
80 _{hex} + addres		Emerge error co	_	Error register	Manufac	cturer-sp	ecific erro	or field	

In accordance with the predefined connection set, the COB ID results from 80_{hex} + node.

The emergency error code (4 bytes 0, 1) is defined in CANopen DSP 402. The conversion to b maXX[®]4400 error numbers is shown in ▶Conversion of error messages to DSP 402 V1.1 d from page 80.

The error register corresponds to the content of object 1001h (also see ▶ Directory of objects for communication control ◄ from page 31).

The first two bytes of the manufacturer-specific error field contain the bmaXX®4400 error number.

Example

Slave 5 has recognized an encoder error at encoder 1 (cable break encoder 1). The EMCY telegram then is the following type:

COB ID	DLC	Byte 0	Byte 1	Byte 2	Byte 3	Byte 4	Byte 5	Byte 6	Byte 7
85 _{hex}	08 _{hex}	00 _{hex}	73 _{hex}	81 _{hex}	0 _{hex}	73 _{hex}	00 _{hex}	00 _{hex}	00 _{hex}

If there are several errors and an error is reset, the option module CANopen slave transmits the EMCY telegram with the next error number. If all errors are acknowledged, the telegram "Error reset / no error" is transmitted.

COB ID	DLC	Byte 0	Byte 1	Byte 2	Byte 3	Byte 4	Byte 5	Byte 6	Byte 7
80 _{hex} + address	08 _{hex}	00 _{hex}							

5.6.2 Conversion of error messages to DSP 402 V1.1

The description of controller error messages and information on the rectification of faults can be found in the manual b maXX $^{\circledR}$ 5.01040. The following table shows the conversion of controller error messages to CANopen error messages.

Controller Error code	Description (of b maXX [®] controller)	CANopen Error code
0000 _{hex}	Reserved	
0001 _{hex}	Watchdog-Error	7400 _{hex}
0002 _{hex}	Incorrect or unexpected interrupt has occurred	7400 _{hex}
0003 _{hex}	NMI interrupt has occurred - incorrect bus access	7400 _{hex}
0010 _{hex}	System boot error	5530 _{hex}
0011 _{hex}	Software error (e. g. switch)	5530 _{hex}
0012 _{hex}	Configuring error of the time-slice operating system	7400 _{hex}
0013 _{hex}	time slot - time error	7400 _{hex}
0014 _{hex}	No more free memory	7400 _{hex}
0015 _{hex}	Software error: invalid error code	7400 _{hex}
0016 _{hex}	Software error: invalid warning code	7400 _{hex}
0017 _{hex}	FPGA version is not compatible with firmware	7400 _{hex}
0018 _{hex}	Error at writing on target parameter by two-level controller output	
0019 _{hex}	checksum error in external flash (system date, e.g. system time	
001A _{hex}	Power unit type (e.g. NWR) is not supported by firmware	
0020 _{hex}	Timeout Proprog protocol	8100 _{hex}
0021 _{hex}	Protocol error	7400 _{hex}
0022 _{hex}	Incorrect module type	7400 _{hex}
0023 _{hex}	Too many data in the list and telegram	7400 _{hex}
0024 _{hex}	Too little data in the list and telegram	7400 _{hex}
0025 _{hex}	Invalid operand	7400 _{hex}
0026 _{hex}	Device supports only VARSTAT_MEMORY	7400 _{hex}
0027 _{hex}	Invalid operand address (log. address)	7400 _{hex}
0028 _{hex}	Value less than the minimum value	7400 _{hex}
0029 _{hex}	Value greater than the maximum value	7400 _{hex}
602A _{hex}	Parameter is read-only	7400 _{hex}
002B _{hex}	Parameter cannot be changed because of operational status	7400 _{hex}
002C _{hex}	Invalid parameter value	7400 _{hex}

Controller Error code	Description (of b maXX [®] controller)	CANopen Error code
002D _{hex}	ProDrive/WinBASS is not connected or inactive anymore	7400 _{hex}
0030 _{hex}	Error in SmallModule_A (to determine the related error number, parameter P0240 in the b maXX [®] must be read, the error designation of P0240 is described after this table)	FF00 _{hex}
0031 _{hex}	Error in SmallModule_B (to determine the related error number, parameter P0240 in the b maXX [®] must be read; the error designation of P0241 is described after this table)	FF00 _{hex}
0032 _{hex}	Error in SmallModule_C (to determine the related error number parameter P0242 in the b maXX [®] must be read; the error designation of P0240 is described after this table)	FF00 _{hex}
0033 _{hex}	Error in SmallModule_D (to determine the related error number, parameter P0243 in the b maXX [®] must be read; the error designation of P0240 is described after this table)	FF00 _{hex}
0034 _{hex}	Error in SmallModule_F (to determine the related error number , parameter P0244 in the b maXX [®] must be read, the error designation of P0240 is described after this table)	FF00 _{hex}
0035 _{hex}	Error in BigModule_G (to determine the related error number, the parameter P0245 in the b maXX [®] must be read; the error designation of the P0240 is described after this table)	FF00 _{hex}
0036 _{hex}	Error in BigModule_H (to determine the error number, the parameter P0246 in the b maXX [®] must be read, the error designation of the P0240 is described after this table)	FF00 _{hex}
0037 _{hex}	Error in the BigModule_J (to determine the error number, the parameter P0247 in the b maXX [®] must be read, the error designation of the P0240 is described after this table)	FF00 _{hex}
0038 _{hex}	Error in the BigModule_K (to determine the related error number, parameter P0248 in the b maXX [®] must be read; the error designation of P0240 is described after this table)	FF00 _{hex}
0039 _{hex}	Error in BigModule_L (to determine the related error number, parameter P0249 in the b maXX [®] must be read, the error designation of P0240 is described after this table)	FF00 _{hex}
003A _{hex}	Error in BigModule_M (to determine the related error number, the parameter P0250 in the b maXX [®] must be read; the error designation of P0240 is described after this table)	FF00 _{hex}

Controller Error code	Description (of b maXX [®] controller)	CANopen Error code
003B _{hex}	Timeout at system initialization procedure	7400 _{hex}
003C _{hex}	CRC error in SPI transmission module ⇒ controller	7400 _{hex}
003D _{hex}	CRC error in SPI transmission controller ⇒ module	7400 _{hex}
0040 _{hex}	Mains failure	3100 _{hex}
0041 _{hex}	Phase error	3130 _{hex}
0042 _{hex}	Mains undervoltage	3120 _{hex}
0043 _{hex}	Mains overvoltage	3110 _{hex}
0044 _{hex}	24 V undervoltage	3100 _{hex}
0050 _{hex}	Communication errors in accordance with the hiper-face specification (to determine the related error number, parameter P0233 in the b maXX [®] must be read, the error designation is described after this table)	FF00 _{hex}
0051 _{hex}	Temperature threshold of heatsink exceeded	4210 _{hex}
0052 _{hex}	U DC link overvoltage	3210 _{hex}
0053 _{hex}	Overcurrent power unit	2310 _{hex}
0054 _{hex}	Ground current	2240 _{hex}
0055 _{hex}	Temperature threshold of inside air exceeded	4110 _{hex}
0057 _{hex}	Safety relay off (or defect)	5441 _{hex}
0058 _{hex}	Safety relay off (safety relay O.K., but there is no voltage)	5442 _{hex}
0059 _{hex}	Power unit not ready-to-operate	5400 _{hex}
005A _{hex}	Phase error	3130 _{hex}
005B _{hex}	Mains failure	3100 _{hex}
005C _{hex}	Mains undervoltage	3120 _{hex}
005D _{hex}	Mains overvoltage	3110 _{hex}
005E _{hex}	Undervoltage U DC link	3100 _{hex}
0060 _{hex}	Temperature sensor of the motor short-circuited $(T_M \le -30 ^{\circ}C)$	4320 _{hex}
0061 _{hex}	Temperature sensor of the motor not connected (T _M > +300 °C)	4310 _{hex}
0062 _{hex}	Error motor temperature - switch-off threshold exceeded	4310 _{hex}
0063 _{hex}	Error I ² t > 100% in the motor	7120 _{hex}
0064 _{hex}	Error CurrentDriveMax > MotorPeakCurrent	

Controller Error code	Description (of b maXX®controller)	CANopen Error code
0070 _{hex}	Communication error acc. to hiperface specification (to determine the error number the parameter P0234/P0235 in the b maXX [®] must be read, the error description is described subsequently to this table)	FF00 _{hex}
0071 _{hex}	Invalid module code	7300 _{hex}
0072 _{hex}	Error at writing of encoder position	7300 _{hex}
0073 _{hex}	Cable break encoder 1	7300 _{hex}
0074 _{hex}	Overspeed encoder 1	7310 _{hex}
0075 _{hex}	Amplitude limit exceeded	7300 _{hex}
0076 _{hex}	Encoder type unknown	7300 _{hex}
0077 _{hex}	Invalid data field for motor data	7120 _{hex}
0078 _{hex}	Incorrect motor data	7120 _{hex}
0079 _{hex}	Saving error of motor data	7120 _{hex}
007A _{hex}	Motor data write-protected (not BM motors)	7120 _{hex}
007B _{hex}	Error field angle	7300 _{hex}
007C _{hex}	Encoder without temperature measuring	7300 _{hex}
007D _{hex}	EEPROM capacity in encoder is insufficient	
0080 _{hex}	Communication error according to hiperface specification (to determine the error number the parameter P0235 in the b maXX [®] must be read, the error description is described subsequently to this table)	FF00 _{hex}
0081 _{hex}	Invalid module code	7300 _{hex}
0082 _{hex}	Error at writing of encoder position	7300 _{hex}
0083 _{hex}	Cable break encoder 2	7300 _{hex}
0084 _{hex}	Overspeed encoder 2	7310 _{hex}
0085 _{hex}	Amplitude limit exceeded	7300 _{hex}
0086 _{hex}	Encoder type unknown	7300 _{hex}
0087 _{hex}	Invalid data field for motor data	7120 _{hex}
0088 _{hex}	Incorrect motor data	7120 _{hex}
0089 _{hex}	Saving error of motor data	7120 _{hex}
008A _{hex}	Motor data write-protected (not BM motors)	7120 _{hex}
008B _{hex}	Field angle error	7300 _{hex}
008C _{hex}	Encoder without temperature measuring	7300 _{hex}
008D _{hex}	EEPROM capacity in encoder is insufficient	
0090 _{hex}	Absolute position of the encoder unknown	7320 _{hex}
0091 _{hex}	Absolute position of the encoder unknown	7320 _{hex}

Controller Error code	Description (of b maXX [®] controller)	CANopen Error code
0092 _{hex}	Encoder module 1 is missing	7300 _{hex}
0093 _{hex}	Encoder module 2 is missing	7300 _{hex}
0094 _{hex}	Measurement storage for encoder module is missing	7300 _{hex}
0095 _{hex}	At resolver no measured value storage possible	7300 _{hex}
0096 _{hex}	Triggering on zero pulse and encoder is no incremental encoder	7300 _{hex}
0097 _{hex}	Digital I/O module required and missing	7300 _{hex}
0098 _{hex}	Incremental encoder emulation module required and missing	7300 _{hex}
0099 _{hex}	Encoder module 1 required for incremental encoder emulation and missing	7300 _{hex}
009A _{hex}	Encoder module 2 required for incremental encoder emulation and missing	7300 _{hex}
009B _{hex}	Initialization error of the incremental encoder emulation module	7300 _{hex}
009C _{hex}	Incremental encoder emulation module signals error	7300 _{hex}
009D _{hex}	Incremental encoder emulation: Selecting the option 'start after first zero pulse' for non-incremental encoder	7300 _{hex}
009E _{hex}	SSI encoder emulation module is missing	7300 _{hex}
009F _{hex}	Error in setpoint source encoder 1 or encoder 2	7300 _{hex}
00A0 _{hex}	Time monitoring Proprog communication	8100 _{hex}
00A1 _{hex}	Time monitoring BACI communication	8100 _{hex}
00A2 _{hex}	Time monitoring cyclic communication	8110 _{hex}
00A3 _{hex}	Time monitoring service data transmission	8100 _{hex}
00A4 _{hex}	Field bus error	8100 _{hex}
00A5 _{hex}	Controller not synchronous to external signal	8100 _{hex}
00A6 _{hex}	Error at brake control	8100 _{hex}
00A7 _{hex}	Brake does not open	
00A8 _{hex}	Brake does not close	
00A9 _{hex}	Cyclic monitoring of brake state messages error	
00AA _{hex}	Cyclic monitoring of brake lining messages error	
00AB _{hex}	DIO module for control/acknowledgement of the brake fails	
00AC _{hex}	Holding torque not reached before opening the brake	
00B0 _{hex}	EEPROM copy error	5530 _{hex}
00B1 _{hex}	Timeout while writing to EEPROM	5530 _{hex}

Controller Error code	Description (of b maXX®controller)	CANopen Error code
00B2 _{hex}	Checksum error in EEPROM	5530 _{hex}
00B3 _{hex}	No boot record	5530 _{hex}
00B4 _{hex}	Incompatible SW	5530 _{hex}
00B5 _{hex}	Data record switching: DS not present	5530 _{hex}
00B6 _{hex}	Checksum error in the PSI	5530 _{hex}
00B7 _{hex}	PSI is reset	5530 _{hex}
00B8 _{hex}	PSI data invalid	5530 _{hex}
00B9 _{hex}	Self-optimization tables are invalid. Execute self-optimization again	5530 _{hex}
00BA _{hex}	A/D correction table invalid	5530 _{hex}
00BB _{hex}	EEPROM is deleted	
00C0 _{hex}	Position deviation dynamic	8611 _{hex}
00C1 _{hex}	Position deviation static	8611 _{hex}
00C2 _{hex}	Encoder 1 for position control used, but not active	7300 _{hex}
00C3 _{hex}	Encoder 2 for position control used, but not active	7300 _{hex}
00C4 _{hex}	Software limit switch monitoring 1 active	8600 _{hex}
00C5 _{hex}	Software limit switch monitoring 2 active	8600 _{hex}
00C6 _{hex}	Hardware limit switch monitoring 1 active	8600 _{hex}
00C7 _{hex}	Hardware limit switch monitoring 2 active	8600 _{hex}
00C8 _{hex}	Positioning started without homing	8600 _{hex}
00C9 _{hex}	Setpoint in the mode set-of-setpoints didn't arrive in time	8600 _{hex}
00CA _{hex}	Monitoring of modulo position active: target position > modulo position	8600 _{hex}
00CB _{hex}	Spindle positioning: Error at initialization of the trigger	8600 _{hex}
00CC _{hex}	Spindle positioning: Timeout at trigger signal (zero pulse / switch input)	8600 _{hex}
00CD _{hex}	Error at homing and process has broken	8600 _{hex}
00D0 _{hex}	Drive blocked	7121 _{hex}
00D1 _{hex}	Encoder 1 is used for motor control but inactive	7300 _{hex}
00D2 _{hex}	Encoder 2 is used for motor control but inactive	7300 _{hex}
00D3 _{hex}	Overspeed Open Loop	7300 _{hex}
00E0 _{hex}	Translation error	
00E1 _{hex}	Runtime error	
00EA _{hex}	Error quick discharge (at the time only in BM41XX (NRW))	

Controller Error code	Description (of b maXX [®] controller)	CANopen Error code
00EB _{hex}	Slave has switched off because of error in master (consecutive reaction to error in master, if parameterized so)	
00EC _{hex}	No operating mode speed control, although drive is a slave	
00ED _{hex}	Common error return motion configuration not valid (e.g. operation of the motor is not allowed at mains failure)	
00EE _{hex}	Return motion positioning could not be completed	
00EF _{hex}	Application error (triggered by control word 2)	

The manufacturer-specific error codes 0030_{hex} to 0030_{hex} , 0050_{hex} , 0070_{hex} and 0080_{hex} are issued together via the EMY telegram with the CANopen error code FF00_{hex}. The exact term for this can be read in the following parameters **P0233**, **P0234**, **P0235** and **P0240** to **P0250** and the description concerning the read error numbers is shown subsequently.

Controller Error code	Description (of b maXX® controller)	CANopen Error code				
The following	The following b maXX $^{ ext{@}}$ error codes are not issued via an EMY telegram.					
Error code (005 P0233 Commu ceError)	50 _{hex}) ⇒ nication error in accordance with hiperface specification	(AmpHiperfa-				
06 _{hex}	Data overflow					
07 _{hex}	Bit frame error					
08 _{hex}	Invalid command state					
09 _{hex}	Parity error					
0A _{hex}	Incorrect checksum of transmitted data					
0B _{hex}	Unknown command code					
0C _{hex}	Number of the transmitted data is wrong					
0D _{hex}	Invalid argument					
0E _{hex}	Data field is write protected					
0F _{hex}	Invalid access code					
10 _{hex}	Data field size cannot be changed					
11 _{hex}	Specified word address outside data field					
12 _{hex}	Access to non-existent data field					
24 _{hex}	Incorrect PU data checksum					
25 _{hex}	No response from PU					
42 _{hex}	Invalid response					
(Enc1Hiperface Error code (008	nication error in accordance with hiperface specification eError) 30 _{hex}) ⇒ nication error in accordance with hiperface specification					
01 _{hex}	Analog signals outside specification					
02 _{hex}	Error in internal angle offset					
03 _{hex}	Data field partitioning table destroyed					
04 _{hex}	Analog limit values not available					
05 _{hex}	Internal I2C bus not operational					
06 _{hex}	Internal checksum error					
07 _{hex}	Internal watchdog error - encoder reset					
09 _{hex}	Parity error					
0A _{hex}	Checksum of transferred data is incorrect					

Controller Error code	Description (of b maXX [®] controller)	CANopen Error code
0B _{hex}	Unknown command code	
0C _{hex}	Number of the transmitted data is wrong	
0D _{hex}	Invalid argument	
0E _{hex}	Data field is write protected	
0F _{hex}	Invalid access code	
10 _{hex}	Data field size cannot be changed	
11 _{hex}	Specified word address outside data field	
12 _{hex}	Access to non-existent data field	
1C _{hex}	Absolute monitoring of the analog signals	
1D _{hex}	Transmission current critical	
1E _{hex}	Encoder temperature critical	
1F _{hex}	Speed too high - no position generation possible	
20 _{hex}	Invalid position singleturn	
21 _{hex}	Multiturn position error	
22 _{hex}	Multiturn position error	
23 _{hex}	Multiturn position error	
24 _{hex}	Incorrect MT data checksum	
40 _{hex}	No answer from HIPERFACE encoder	
41 _{hex}	No response from EnDat encoder	
42 _{hex}	Useless answer to encoder command	
50 _{hex}	CRC has determined an error	
51 _{hex}	Invalid command	
52 _{hex}	Address or MRS-code in reply telegram is wrong	
53 _{hex}	Alarm bit of the encoder is set	
54 _{hex}	Storage in encoder is occupied	
55 _{hex}	Checksum error when reading the motor data	
56 _{hex}	Motor data length and/or data version of encoder and controller firmware are not identical	
57 _{hex}	Starting operation test has not determined an EnDat interface at the encoder	
58 _{hex}	Exceeding of transmission format which is able to be evaluated	
59 _{hex}	Exceeding of the measuring step length which is to be evaluated	
5A _{hex}	Signal period length < measuring step length	
60 _{hex}	Error lighting	

Controller Error code	Description (of b maXX [®] controller)	CANopen Error code
61 _{hex}	Error signal amplitude	
62 _{hex}	Error position value	
63 _{hex}	Error overvoltage	
64 _{hex}	Error undervoltage	
65 _{hex}	Error overcurrent	
66 _{hex}	Error battery	
Error Code (00: P0240P0244	30 _{hex} 0034 _{hex}) ⇒ Error im SmallModule 1 to 5	
01 _{hex}	Module not recognized	
02 _{hex}	Recognized modules at invalid position	
03 _{hex}	Digital output short-circuited	
04 _{hex}	Invalid target parameter value by digital input	
05 _{hex}	Direct PLC IO access for this module not permitted	
07 _{hex}	Module in controller not permitted	
	.35 _{hex} 0040 _{hex}) ⇒ Error in BigModule 1 to 6	
1000 _{hex}	Wrong parameter No. at setpoint parameter 1	
1001 _{hex}	Wrong parameter No. at setpoint parameter 2	
1002 _{hex}	Wrong parameter No. at setpoint parameter 3	
1003 _{hex}	Wrong parameter No. at setpoint parameter 4	
1004 _{hex}	Wrong parameter No. at setpoint parameter 5	
1005 _{hex}	Wrong parameter No. at setpoint parameter 6	
1006 _{hex}	Wrong parameter No. at setpoint parameter 7	
1007 _{hex}	Wrong parameter No. at setpoint parameter 8	
1008 _{hex}	Wrong parameter No. at setpoint parameter 9	
1009 _{hex}	Wrong parameter No. at setpoint parameter 10	
100A _{hex}	Wrong parameter No. at setpoint parameter 11	
100B _{hex}	Wrong parameter No. at setpoint parameter 12	
100C _{hex}	Wrong parameter No. at setpoint parameter 13	
100D _{hex}	Wrong parameter No. at setpoint parameter 14	
100E _{hex}	Wrong parameter No. at setpoint parameter 15	
100F _{hex}	Wrong parameter No. at setpoint parameter 16	
1010 _{hex}	Wrong parameter No. at actual value parameter 1	
1011 _{hex}	Wrong parameter No. at actual value parameter 2	
1012 _{hex}	Wrong parameter No. at actual value parameter 3	

Controller Error code	Description (of b maXX® controller)	CANopen Error code
1013 _{hex}	Wrong parameter No. at actual value parameter 4	
1014 _{hex}	Wrong parameter No. at actual value parameter 5	
1015 _{hex}	Wrong parameter No. at actual value parameter 6	
1016 _{hex}	Wrong parameter No. at actual value parameter 7	
1017 _{hex}	Wrong parameter No. at actual value parameter 8	
1018 _{hex}	Wrong parameter No. at actual value parameter 9	
1019 _{hex}	Wrong parameter No. at actual value parameter 10	
101A _{hex}	Wrong parameter No. at actual value parameter 11	
101B _{hex}	Wrong parameter No. at actual value parameter 12	
101C _{hex}	Wrong parameter No. at actual value parameter 13	
101D _{hex}	Wrong parameter No. at actual value parameter 14	
101E _{hex}	Wrong parameter No. at actual value parameter 15	
101F _{hex}	Wrong parameter No. at actual value parameter 16	
1020 _{hex}	Invalid value at setpoint parameter No. 1	
1021 _{hex}	Invalid value at setpoint parameter No. 2	
1022 _{hex}	Invalid value at setpoint parameter No. 3	
1023 _{hex}	Invalid value at setpoint parameter No. 4	
1024 _{hex}	Invalid value at setpoint parameter No. 5	
1025 _{hex}	Invalid value at setpoint parameter No. 6	
1026 _{hex}	Invalid value at setpoint parameter No. 7	
1027 _{hex}	Invalid value at setpoint parameter No. 8	
1028 _{hex}	Invalid value at setpoint parameter No. 9	
1029 _{hex}	Invalid value at setpoint parameter No. 10	
102A _{hex}	Invalid value at setpoint parameter No. 11	
102B _{hex}	Invalid value at setpoint parameter No. 12	
102C _{hex}	Invalid value at setpoint parameter No. 13	
102D _{hex}	Invalid value at setpoint parameter No. 14	
102E _{hex}	Invalid value at setpoint parameter No. 15	
102F _{hex}	Invalid value at setpoint parameter No. 16	
1030 _{hex}	Invalid value for setpoint period	
1031 _{hex}	Invalid value for actual value period	
1032 _{hex}	Wrong value for cycle offset setpoints	
1033 _{hex}	Wrong value for cycle offset actual values	
1034 _{hex}	BACI timeout at cyclic data	

Controller Error code	Description (of b maXX [®] controller)	CANopen Error code			
1035 _{hex}	BACI timeout at service data				
1036 _{hex}	Checksum error during test				
1037 _{hex}	Ramp-up timeout when waiting for the slave type or when waiting for the resetting of config-pending-flag				
1038 _{hex}	Invalid data transfer structure type				
1039 _{hex}	Internal error: wrong BACI status				
103A _{hex}	Access conflicts with slave by cyclic communication				
103B _{hex}	Error cyclic communication: parameter value wrong				
103C _{hex}	Error cyclic communication: alive-counter conflict				
103D _{hex}	Cmd interface: channel number wrong (0 or > 6)				
103E _{hex}	Cmd interface: the channel which was indicated does not exist				
103F _{hex}	Cmd interface: internal error - wrong pointer				
1040 _{hex}	Cmd interface: internal error - wrong status				
1041 _{hex}	Cmd interface: wrong package number				
1042 _{hex}	Cmd interface: wrong command number				
1043 _{hex}	Cmd interface: wrong status when handling the package				
1044 _{hex}	Cmd interface: timeout at command processing				
1045 _{hex}	Cmd interface: wrong package length				
1046 _{hex}	Cmd interface: descriptor not available (too little memory)				
1047 _{hex}	Cmd interface: wrong package type				
1048 _{hex}	Cmd interface: checksum error				
1049 _{hex}	Module identification: PCI-error when reading				
104A _{hex}	Module identification: PCI-error when writing				
104B _{hex}	Module identification: general error at reading				
104C _{hex}	Module identification: general error at writing				
104D _{hex}	Internal error				
104E _{hex}	Configuration cyclic services: parameters are not or not cyclic writable				
104F _{hex}	4F _{hex} Configuration cyclic services: invalid parameter number				
1050 _{hex}	Incorrect option modules error code (settable with P1007)				
2000 _{hex}	Error CANopen timeout on CAN bus (node guarding)				

APPENDIX A - ABBREVIATIONS

BACI Baumüller drives serial interface

CA Collision Avoidance

CSMA Carrier Sense Multiple Access

DS Draft Standard

DSP Draft Standard Proposal
EMCY Error frame message
HD Hamming Distance
ID Ident Number
LMT Layer Management

M Multiplexer

NMT Network Management
PC Personal Computer
PDO Process data object
SDO Service data object

SIX Index

SPS Programmable control

SYNC Synchronization

APPENDIX B - QUICK REFERENCE

The following quick reference shows the connection between CANopen object numbers and the b maXX[®] controller parameter numbers (see manual b maXX[®] 5.02017).

B.1 '4000' object numbers (manufacturer-specific objects)

Manufacturer-specific objects result from

 $4000_{
m hex}$ + parameter number_{hex}. Therefore the subindex for all 4000-target parameters is always $00_{
m hex}$.

Parameter **P0053** ⇒ object index 4035_{hex} subindex 00_{hex} Example

B.2 '6000' object numbers (device profile DSP 402)

You can access numerous parameters with one '4000' **and** also with one or several '6000' objects.

There are only few parameters that can be accessed exclusively with a '6000' parameter $(606A_{hex}, 6048_{hex} SIX 1, 6049_{hex} SIX 1, 604C_{hex} SIX 1 und SIX 2)$.

Please note the changed standardizations!

NOTE

Between the '4000' and '6000' parameters different standardizations can occur!

TX: Transmit; RX: Receive; r: read; w: write; ro: read only; wo: write only

CANopen object number		Parameter number	PDO mapping	Access type	Operating mode acc. to DSP 402
Index	Subindex	Para			
6007 _{hex}	00 _{hex}	P0300	TX / RX	rw	Common entries
6040 _{hex}	00 _{hex}	P0300	TX / RX	rw	Device control
6041 _{hex}	00 _{hex}	P0301	TX	ro	Device control
6042 _{hex}	00 _{hex}	P1171	TX / RX	rw	Velocity mode
6043 _{hex}	00 _{hex}	P0351	TX	ro	Velocity mode
6044 _{hex}	00 _{hex}	P0353	TX	ro	Velocity mode
6046 _{hex}	01 _{hex}	P1041	TX	ro	Velocity mode
6046 _{hex}	02 _{hex}	P1041, P1042	TX / RX	rw	Velocity mode
6048 _{hex}	01 _{hex}	P3329	TX / RX	rw	Velocity mode
6048 _{hex}	02 _{hex}	P1172	TX / RX	rw	Velocity mode
6049 _{hex}	01 _{hex}	P3330	TX / RX	rw	Velocity mode
6049 _{hex}	02 _{hex}	P1173	TX / RX	rw	Velocity mode
604C _{hex}	01 _{hex}	P3314	TX / RX	rw	Velocity mode
604C _{hex}	02 _{hex}	P3315	TX / RX	rw	Velocity mode
604D _{hex}	00 _{hex}	P0065	TX	rw	Velocity mode
605E _{hex}	00 _{hex}	P1007	TX		Device control
604F _{hex}	00 _{hex}	P1172	TX / RX	rw	Velocity mode
6050 _{hex}	00 _{hex}	P1173	TX / RX	rw	Velocity mode

Programming manual CANopen Slave

CANopen object number Index Subindex		Parameter number	PDO mapping	Access type	Operating mode acc. to DSP 402
6051 _{hex}	00 _{hex}	P1174	TX / RX	rw	Velocity mode
605A _{hex}	00 _{hex}	P1004	TX	rw	Device control
605B _{hex}	00 _{hex}	P1005	TX	rw	Device control
605C _{hex}	00 _{hex}	P1006	TX	rw	Device control
605D _{hex}	00 _{hex}	P1003	TX	rw	Device control
6060 _{hex}	00 _{hex}	P1000	- /RX	rw	Device control
6061 _{hex}	00 _{hex}	P0304	TX	ro	Device control
6062 _{hex}	00 _{hex}	P0463	TX	ro	Position control function
6063 _{hex}	00 _{hex}	P0362	TX	ro	Position control function
6064 _{hex}	00 _{hex}	P0462	TX	ro	Position control function
6066 _{hex}	00 _{hex}	P1056	TX	rw	Position control function
6067 _{hex}	00 _{hex}	P1194	TX / RX	rw	Position control function
6068 _{hex}	00 _{hex}	P1195	TX	rw	Position control function
6069 _{hex}	00 _{hex}	P0362	TX / RX	rw	Profile velocity mode
606A _{hex}	00 _{hex}	-	-	ro	Profile velocity mode
606B _{hex}	00 _{hex}	P0352	TX	ro	Profile velocity mode
606C _{hex}	00 _{hex}	P0353	TX	ro	Profile velocity mode
606F _{hex}	00 _{hex}	P1073	TX / RX	rw	Profile velocity mode
6072 _{hex}	00 _{hex}	P0357	TX / RX	rw	Profile torque mode
6077 _{hex}	00 _{hex}	P0344	TX	ro	Profile torque mode
607A _{hex}	00 _{hex}	P0600/ P0607	TX / RX	rw	Profile position mode
607C _{hex}	00 _{hex}	P1200	TX / RX	rw	Homing mode
607D _{hex}	01 _{hex}	P1196	TX	rw	Profile position mode
607D _{hex}	02 _{hex}	P1197	TX	rw	Profile position mode
607F _{hex}	00 _{hex}	P0057	TX	rw	Profile position mode
6080 _{hex}	00 _{hex}	P1031	TX	rw	Profile position mode
6081 _{hex}	00 _{hex}	P0602	TX	rw	Profile position mode
6083 _{hex}	00 _{hex}	P0603	TX	rw	Profile position mode
6084 _{hex}	00 _{hex}	P0604	TX	rw	Profile position mode
6085 _{hex}	00 _{hex}	P1213	TX	rw	Profile position mode

CANopen object number Index Subindex		Parameter number	PDO mapping	Access type	Operating mode acc. to DSP 402
6086 _{hex}	00 _{hex}	P1190	TX	rw	Profile position mode
6092 _{hex}	01 _{hex}	P1193	TX	rw	Factor group
6092 _{hex}	02 _{hex}	P3050	TX	rw	Factor group
6098 _{hex}	00 _{hex}	P3051	TX	rw	Homing mode
6099 _{hex}	01 _{hex}	P1201	TX / RX	rw	Homing mode
6099 _{hex}	02 _{hex}	P1202	TX / RX	rw	Homing mode
609A _{hex}	00 _{hex}	P1203	TX / RX	rw	Homing mode
60C0 _{hex}	00 _{hex}			ro	Interpolated mode
60C1 _{hex}	01 _{hex}	P369	TX / RX	rw	Interpolated mode
60C2 _{hex}	01 _{hex}			ro	Interpolated mode
60C2 _{hex}	02 _{hex}	P532	TX / RX	rw	Interpolated mode
60C3 _{hex}	01 _{hex}	P3331	TX / RX	rw	Interpolated mode
60C3 _{hex}	02 _{hex}	P3331	TX / RX	rw	Interpolated mode
60C4 _{hex}	01 _{hex}	P3331	TX / RX	rw	Interpolated mode
60C4 _{hex}	02 _{hex}	P3331	TX / RX	rw	Interpolated mode
60C4 _{hex}	03 _{hex}	P3331	TX / RX	rw	Interpolated mode
60C4 _{hex}	04 _{hex}	P3331	TX / RX	rw	Interpolated mode
60C4 _{hex}	05 _{hex}	P3331	RX	wo	Interpolated mode
60C4 _{hex}	06 _{hex}	P3331	RX	wo	Interpolated mode
60FB _{hex}	00 _{hex}	P1054	TX / RX	rw	Profile velocity mode
60FB _{hex}	01 _{hex}	P0360	TX	ro	Position control function
60FB _{hex}	02 _{hex}	P1050	TX	rw	Position control function
60FB _{hex}	03 _{hex}	P1051	TX	rw	Position control function
60FB _{hex}	04 _{hex}	P0364	TX / RX	rw	Position control function
60FB _{hex}	05 _{hex}	P0363	TX / RX	rw	Position control function
60FB _{hex}	06 _{hex}	P1053	TX	rw	Position control function
60FB _{hex}	07 _{hex}	P0367	TX	ro	Position control function
60FB _{hex}	08 _{hex}	P0362	TX / RX	rw	Position control function
60FB _{hex}	09 _{hex}	P0392	TX	ro	Position control function
60FB _{hex}	0A _{hex}	P0391	TX	ro	Position control function
60FB _{hex}	0B _{hex}	P0365	TX	ro	Position control function

of 132 Document No.: 5.02065.04

CANopen object number		Parameter number	PDO mapping	Access type	Operating mode acc. to DSP 402
Index	Subindex	_			
60FB _{hex}	0C _{hex}	P0460	TX	ro	Position control function
60FB _{hex}	0D _{hex}	P1191	TX / RX	rw	Position control function
60FB _{hex}	0E _{hex}	P1190	TX	rw	Position control function
60FB _{hex}	0F _{hex}	P1200	TX	rw	Position control function
60FB _{hex}	10 _{hex}	P1208	TX	rw	Position control function
60FB _{hex}	11 _{hex}	P0464	TX	ro	Position control function
60FB _{hex}	12 _{hex}	P0605	TX / RX	rw	Position control function
60FB _{hex}	13 _{hex}	P1198	TX / RX	rw	Position control function
60FB _{hex}	14 _{hex}	P1199	TX / RX	rw	Position control function
60FB _{hex}	15 _{hex}	P0601	TX / RX	rw	Position control function
60FB _{hex}	16 _{hex}	P0608	TX / RX	rw	Position control function
60FB _{hex}	17 _{hex}	P0370	TX / RX	rw	Position control function
60FB _{hex}	18 _{hex}	P1209	TX / RX	rw	Position control function
60FB _{hex}	19 _{hex}	P1204	TX / RX	rw	Position control function
60FB _{hex}	1A _{hex}	P0353	TX	ro	Position control function
60FB _{hex}	1B _{hex}	P0262 P0263	TX	ro	Position control function
60FD _{hex}	00 _{hex}	P0461	TX	ro	Common entries
60FF _{hex}	00 _{hex}	P1171	TX / RX	rw	Profile velocity mode
6510 _{hex}	01 _{hex}	P0001	TX	ro	Info
6510 _{hex}	02 _{hex}	P0002	TX	ro	Info
6510 _{hex}	03 _{hex}	P0003	TX	ro	Info
6510 _{hex}	04 _{hex}	P0004	TX	ro	Info
6510 _{hex}	05 _{hex}	P0005	TX	ro	Info
6510 _{hex}	06 _{hex}	P0009	TX	ro	Info
6510 _{hex}	07 _{hex}	P0555	TX	ro	Info
6510 _{hex}	08 _{hex}	P0556	TX	ro	Info

APPENDIX C - CONVERSION TABLES

This chapter contains tables specifying the conversion of CANopen communication objects into b maXX[®] controller communication parameters and vice versa. Conversion is performed by stating the value ranges $(x = x_{min} ... x_{max})$ and the mapping function x = f(x) (in the most simple case, the value is just passed through: y = x).

The tables contain the following entries:

CANopen object: Identification of the CANopen object from DS402

Index ◄ **P. No.**: Mapping of CANopen object indices to

b maXX®controller parameters

Controller parameters: Identification of the controller parameters

P. No. ▶ index: Conversion of the b maXX[®] controller parameter to

CANopen object indices

CANopen object	Index Value range	•	P. No. Scaling	Controller parameters	P. No. Value range		Index) Rescaling	Comment
abort_connection_option _code	6007 _{hex}	•	P0300		P0300	١	6007 _{hex}	The parameter 6007 _{hex} affects the control word in the b maXX [®] , in the course of
	x = -32768 32767	•	y = x		x =0 FFFF _{hex}	•	y = x	which local variables are used Note: Quickstop reactions via FBO 605A _{hex}
No action	x = 0			not used	x = 0	•	y = x	to be set.
Malfunction	x = 1			Response adjustable	x = 1	•	y = x	For the mode malfunction via writing on
Device control command "disable_voltage"	x = 2	•	y = x	Inhibit voltage	x = 2	٨	y = x	P3145 an error is activated, whose reaction can be set via FBO 605E _{hex} . Only at changes in 'Option module G/H
Device control command 'quick_stop'	x = 3	•	y = 4	Quickstop	x = 3	٨	y = 4	configuration 1' bit 3 = 1, default value then is 3instead of 0.
reserved	x =4 32767	١	y = x	not used	x =4 32767	•	y = x	
Manufacturer specific	x = -327681							
control word	6040 _{hex}	١	P0300	Control word	P0300	•	6040 _{hex}	Bit 6 in the control;
	x =0 FFFF _{hex}	١	y = x		x =0 FFFF _{hex}	•	y = x	Bit 6 = 0 : Positioning mode "absolute" Bit 6 = 1: Positioning mode "relative, negative positive" No other positioning mode is supported via
Switch On	Bit 0	١	unchanged	Switch on	Bit 0	•	unchanged	
Disable voltage	Bit 1	٠	unchanged	Inhibit voltage	Bit 1	•	unchanged	
Quickstop	Bit 2	•	unchanged	Quickstop	Bit 2	•	unchanged	the CANopen and the control word. In the operating mode = 7 (IP mode) Bit 4 is
Enable Op.	Bit 3	•	unchanged	Operation enabled	Bit 3	•	unchanged	set to1 always.
Operation mode specific	Bit 4	٠	unchanged	Depending on operation mode	Bit 4	•	unchanged	
Operation mode specific	Bit 5	•	unchanged	Depending on operation mode	Bit 5	•	unchanged	
Operation mode specific	Bit 6	•	unchanged	Depending on operation mode	Bit 6	•	unchanged	
Reset fault	Bit 7	•	unchanged	Reset error	Bit 7	•	unchanged	
Operation mode specific	Bit 8	•	unchanged	Depending on operation mode	Bit 8	•	unchanged	
reserved	Bit 9	•	unchanged	Reserved (always 0)	Bit 9	•	unchanged	
reserved	Bit 10	•	unchanged	Reserved (always 0)	Bit 10	•	unchanged	
Manufacturer specific	Bit 11	•	unchanged	Depending on operation mode	Bit 11	•	unchanged	
Manufacturer specific	Bit 12	١	unchanged	Depending on operation mode	Bit 12	•	unchanged	
Manufacturer specific	Bit 13	٠	unchanged	Depending on operation mode	Bit 13	•	unchanged	
Manufacturer specific	Bit 14	١	unchanged	Depending on operation mode	Bit 14	•	unchanged	
Manufacturer specific	Bit 15	•	unchanged	Write protection	Bit 15	•	unchanged	

CANopen object	Index Value range	•	P. No. Scaling	Controller parameters	P. No. Value range	•	Index) Rescaling	Comment
status word	6041 _{hex} /ro			Status word	P0301	١	6041 _{hex}	In the operating mode = 7 (IP mode):
	x =0 FFFF _{hex}				x =0 FFFF-	٠	y = x	If control word Bit 4 will be set, then Bit 12 is set
					hex			10 001
Ready to switch on				Ready-to-start	Bit 0	•	unchanged	
Switched on				Switched on	Bit 1	•	unchanged	
Operation enabled				Operation enabled	Bit 2	•	unchanged	
Fault				Error	Bit 3	•	unchanged	
Voltage disabled				Voltage disabled	Bit 4	•	unchanged	
Quickstop				Quickstop	Bit 5	١	unchanged	
Switched on enabled				Inhibit start	Bit 6	•	unchanged	
Warning				Warning	Bit 7	•	unchanged	In ProDrive/WinBASS via drive manager adjustable
Man. specific				Depending on operation mode	Bit 8	•	unchanged	
Remote				Remote	Bit 9	١	unchanged	
Target reached				Setpoint reached	Bit 10	•	unchanged	
Internal limit active				Depending on operation mode	Bit 11	•	unchanged	In ProDrive/WinBASS via drive manager adjustable
Operation mode specific				Depending on operation mode	Bit 12	•	unchanged	
Operation mode specific				Depending on operation mode	Bit 13	•	unchanged	
Manufacturer specific				Conf. status bits	Bit 14	•	unchanged	
Manufacturer specific				Conf. status bits	Bit 15	•	unchanged	
vl_target_velocity	6042 _{hex}	١	P1171	RFG1Input	P1171	 	6042 _{hex}	The user-defined unit (speed units) is inter-
	x = -32768 32767	•	y = x *4000 _{hex} / MotorMax- Speed		x = -32768 32767	•	y = x*Motor- MaxSpeed / 4000 _{hex}	preted in the b maXX [®] controller as RPM Scaling of gear ratio is saved in FBO 604C _{hex} . Only at changes in the option module G/F configuration 1 bit 2 = 1: Specification of desired speed in 1/10 RPI e. g.: 200.0 RPM ⇒ input 2000.

CANopen object	Index Value range	•	P. No. Scaling		Controller parameters	P. No. Value range	•	Index) Rescaling	Comment
vl_ velocity_demand	6043 _{hex} /ro				RFG output	P0351	•	6043 _{hex}	The user-defined unit (speed units) is inter-
						$x = 8000_{hex}$ $7FFF_{hex}$	•	y = x*Motor- MaxSpeed / 4000 _{hex}	preted in the b maXX $^{\textcircled{@}}$ controller as RPM. Scaling of gear ratio is saved in FBO 604C _{hex} . Only at changes in the option module G/H configuration 1 bit 2 = 1: Internal setpoint for speed in 1/10 RPM, same unit as object 6042 _{hex} . e. g.: 200.0 RPM \Rightarrow input 2000.
vl_control_effort	6044 _{hex} /ro				SpeedActValue	P0353	١	6044 _{hex}	The user-defined unit (speed units) is inter-
						x = 8000 _{hex} 7FFF _{hex}		y = x*Motor- MaxSpeed / 4000 _{hex}	preted in the b maXX [®] controller as RPM. Scaling of gear ratio is saved in FBO 604C _{hex} . Only at changes in option module G/H configuration 1 bit 2 = 1: Internal setpoint for speed in 1/10 RPM, same unit as object 6042 _{hex} . e. g.: 200.0 RPM ⇒input 2000.
vl_control_effort	6045 _{hex} /ro				SpeedActValue	P0352	١	6045 _{hex}	The user-defined unit (speed units) is interpreted in the b maXX®controller as RPM.
						x = 8000 _{hex} 7FFF _{hex}	•	y = x*Motor- MaxSpeed / 4000 _{hex}	Scaling of gear ratio is saved in FBO 604C _{hex} . Only at modifications in option module G/H configuration 1 bit2 = 1: Internal setpoint for speed in 1/10 RPM, same unit as object 6042 _{hex} . e. g.: 200.0 RPM ⇒input 2000.
vl_velocity_min_max_ amount	6046 _{hex} /ro								
vl_velocity_min_amount	Sub. 01 _{hex}		'none'		SpeedSet_Ulim	"none"	١	Sub. 01 _{hex}	Sub. 1 is always zero, the min. limit is spec-
						x = 0	١	y = x	ified zero.
vl_velocity_max_amount	Sub. 02 _{hex}	•	P1042 / P1041		SpeedSet_Llim	P1042 / P1041	•	Sub. 02 _{hex}	The maximum limit symmetrical affects both speed directions in the b maXX [®] .
	x =0 FFFFFFFF-hex	•	y = x* 40000000 _{hex} / MotorMax- Speed		P1041 : $x = 0 4000000$ P1042 : $x = C00000000_{hex}$		•	y = x*Motor- MaxSpeed / 40000000 _{hex}	The user-defined unit (speed units) is interpreted in the b maXX [®] controller as RPM
vl_velocity_acceleration	6048 _{hex}	B It aı	is scaled to the mand then dt in SIX2	nax 2. T	imum speed of the controller. T	he calculation for t	the	desired accele	chieved by varying the ramp-up time P1172 . eration follows when the input of dv in SIX1 alculated. After a reboot the reconstrution of

CANopen object	Index Value range	١	P. No. Scaling		Controller parameters	P. No. Value range	•	Index) Rescaling	Comment
vl_delta_speed	Sub. 01 _{hex} x =0 FFFFFFF- hex	>	$y = \Delta v$		Application parameter 16	x =8000 7FFF _{hex}	•	Sub. 01_{hex} y = Δv	Scaling of gear ratio is saved in FBO $604C_{hex}$. Only at changes in option module G/H configuration 1 bit $2 = 1$: Internal setpoint for speed in 1/10 RPM, same unit as object 6042_{hex} . e. g.: 200.0 RPM \Rightarrow input 2000.
vl_delta_time	Sub. 02 _{hex}	•	P1172		RFG1RampUpTime	P1172	-	Sub. 02 _{hex}	delta_time is specified in seconds; corresponds to ramp-function generator-ramp-
	x =0 FFFFFFF _{hex}	•	y = Δt*Motor- MaxSpeed / Δv*100			x =0 65000		$y = \Delta t$	up time
vl_velocity_deceleration	6049 _{hex}	B so in	caled to the maxim	iui Th	m speed of the controller. The controller arm	calculation for the d	les	sired delay follo	d by varying the ramp-down time P1172 . It is two when the input of dv in SIX1 and then dt er a reboot the reconstrution of the set accel-
vl_delta_speed	Sub. 01 _{hex}	١			Application parameter 17		١	Sub. 01 _{hex}	Scaling of gear ratio is saved in FBO 604C _{hex} . Only at changes in option module G/H configuration 1 bit 2 = 1: Internal setpoint for speed in 1/10 RPM, same unit as object 6042 _{hex} . e. g.: 200.0 RPM ⇒input 2000.
	x =0 FFFFFFFF _{hex}	•	$y = \Delta v$			x =8000 7FFF _{hex}	•	y = Δv	
vl_delta_time	Sub. 02 _{hex}	•	P1173		RFG1RampDownTime	P1173	•	Sub. 02 _{hex}	delta_time is specified in seconds; corre-
	x =0 FFFFFFFF _{hex}	•	$y = \Delta t^*Motor-$ MaxSpeed / - Δv^*100			x =0 65000	•	$y = \Delta t$	sponds to ramp-function generator ramp- down time
vl_dimension_factor	604C _{hex}							604C _{hex}	Calculation in the controller is
vl_dimension_factor_	Sub. 01 _{hex}	١					٠	Sub. 01 _{hex}	e. g. as follows: Speed setpoint motor in the b maXX®:
numerator	X=-2 ³¹ 2 ³¹ -1	•	y=X			x=-33000 33000	•	y=X	For vl_dimension_factor_numerator = 10 and vl_dimension_factor_denominator = 5
vl_dimension_factor_	Sub. 02 _{hex}	•					٠	Sub. 02 _{hex}	Speed setpoint motor
denominator	X=-2 ³¹ 2 ³¹ -1	•	y=X			x=-33000 33000	•	y=X	= FBO [U/min]*vl_dimension_factor = 100*10 / 5 [RPM] = 200 [RPM]
vl_pole_number	604D _{hex}	١	P0065		Number of pole pairs	P0065	Þ	604D _{hex}	
	x =0 255	١	y = x / 2			x = 1120	١	y = x*2	
vl_ramp_function_time	604F _{hex}	١	P1172	I	RFG1RampUpTime	P1172	١	604F _{hex}	Ramp-function generator acceleration time
	$x = 0 FFFFFFFF_{hex}$	١	y = x			x = 0 65000	•	y = x	(1 = 1/1000 s -> 1s = 1000). Resolution is 10 ms

CANopen object	Index Value range	•	P. No. Scaling	Controller parameters	P. No. Value range		Index) Rescaling	Comment
vl_slow_down_time	6050 _{hex}	١	P1173	RFG1RampDownTime	P1173	>	6050 _{hex}	Ramp-function generator ramp-up time (1 =
	$x = 0$ $FFFFFFF_{hex}$	١	y = x		x = 065000	١	y = x	1/1000s, $1s = 1000$). The resolution is 10 ms.
vl_quick_stop_time	6051 _{hex}	١	P1174	RFG1StopTime	P1174	•	6051 _{hex}	Ramp-function generator ramp-up time (1 =
	$x = 0$ $FFFFFFF_{hex}$	٠	y = x		x = 065000	•	y = x	1/1000 s, 1 s = 1000). The resolution is 10 ms.
quick_stop_option_code	605A _{hex}	١	P1004	QuickstopCode (quickstop)	P1004	•	605A _{hex}	
Conversion formalism	x = -32768 32767	•	y = x		x = 0 3	•	y = x	
Manufacturer specific	x = -327681	•	y = x	not used	x = -32768 -1			
Disable drive	x = 0	•	y = x	Drive inhibited	x = 0	•	y = x	
Slow down on slow down ramp	x = 1	•	y = x	Ramp-down at deceleration ramp	x = 1	•	y = x	
Slow down on quickstop ramp	x = 2	•	y = x	Ramp down on quickstop ramp	x = 2	•	y = x	
Slow down on current ramp	x = 3	•	y = x	Ramp down at current limit	x = 3	•	y = x	
Slow down on voltage limit	x = 4	•	y = x	Ramp-down at voltage limit			y = 4	
Slow down on slow down ramp and remain in quick-stop	x = 5	•	y = x	Ramp-down ramp and remain in quickstop			y = 5	
Slow down on quickstop ramp and remain in quickstop	x = 6	•	y = x	Ramp-down on quickstop ramp and remain in quickstop			y = 6	
Slow down on current and remain in quick-stop	x = 7	•	y = x	Ramp down at current limit and remain in quickstop.			y = 7	
Slow down on voltage limit and remain in quick-stop	x = 8	•	y = x	Ramp down at voltage limit and remain in quickstop			y = 8	
reserved	x = 9 32767			not used			y = 9 32767	
shutdown_option_code	605B _{hex}	١	P1005	ShutDownCode (shut down)	P1005	•	605B _{hex}	
Manufacturer specific	x = -327683	•	y = x	not used	x = -327683			
Manufacturer specific	x = -2	•	y = 3	Ramp down at current limit	x = 3	•	y = -2	
Manufacturer specific	x = -1	•	y = 2	Ramp-down at quickstop ramp	x = 2	•	y = -1	
Disable drive	x = 0	•	y = x	Drive inhibited	x = 0	•	y = x	
Slow down on slow down ramp	x = 1	•	y = x	Ramp-down at deceleration ramp	x = 1	•	y = x	of the selected RFG adjustable via P1174 RFG stop time or in 6051 _{hex}

CANopen object	Index Value range	•	P. No. Scaling	Controller parameters	P. No. Value range	•	Index) Rescaling	Comment
reserved	x = 2 32767			not used			y = 32767	
disable_operation_ option_code	605C _{hex}	٠	P1006	DisableOpCode (disable)	P1006	•	605C _{hex}	
Manufacturer specific	x = -327683	•	y = x	not used	x = -327683			
Manufacturer specific	x = -2	•	y = 3	not used			y = -2	
Manufacturer specific	x = -1	•	y = 2	not used			y = -1	
Disable drive	x = 0	•	y = x	Drive inhibited		•	y = 0	
Slow down	x = 1	•	y = x	Ramp-down at deceleration ramp	x = 1	•	y = x	
reserved	x = 2			Ramp down on quickstop ramp	x = 2	•	y = -1	
reserved	x = 3			Ramp down at current limit	x = 3	•	y = -2	
reserved	x = 4 32767			not used			y = 4 32767	
stop_option_code	605D _{hex}	٠	P1003	StopOptionCode (Stop)	P1003		605D _{hex}	
Conversion formalism	x = -32768 32767	•	y = x		x = 0 3	•	y = x	
Manufacturer specific	x = -327681	•	y = x	not used			y = -32768 -1	
Disable drive	x = 0	•	y = x	Drive inhibited	x = 0	•	y = x	
Slow down on slow down ramp	x = 1	•	y = x	Ramp-down at deceleration ramp	x = 1	•	y = x	of the selected RFG adjustable via P1174 RFG stop time or in 6051 _{hex}
Slow down on quickstop ramp	x = 2	٠	y = x	Ramp down on quickstop ramp	x = 2	•	y = x	
Slow down on current ramp	x = 3	١	y = x	Ramp down at current limit	x = 3	•	y = x	
Slow down on voltage limit	x = 4	٠	y = x	not used			y = 4	
reserved	x = 5 32767			not used			y = 5 32767	

CANopen object	Index Value range	•	P. No. Scaling	Controller parameters	P. No. Value range	•	Index) Rescaling	Comment
fault_reaction_option_ code	605E _{hex}	•	P1007	ErrorReactionCode	P1007	٠	605E _{hex}	Presently for statical and dynamical position deviations and for the reactions for the FBO 6007 _{hex} 'Mode 1 malfunction' adjustable
Conversion formalism	x = -32768 32767	٠	y = x		x = 0 3	•	y = x	
Manufacturer specific	x = -327681	٠	y = x	not used	x = -327681			
Disable Drive, motor is free to rotate	x = 0	•	y = x	Drive inhibited	x = 0	•	y = x	
Slow down on slow down ramp	x = 1	•	y = x	Ramp-down at deceleration ramp	x = 1	•	y = x	
Slow down on quickstop ramp	x = 2	•	y = x	Ramp down on quickstop ramp	x = 2	•	y = x	
Slow down on current ramp	x = 3	٠	y = x	Ramp down at current limit	x = 3	•	y = x	
Slow down on voltage limit	x = 4	٠	y = x	Ramp-down at voltage limit			y = 4	
reserved	x = 5 32767			not used			y = 5 32767	

CANopen object	Index Value range	•	P. No. Scaling	Controller parameters	P. No. Value range	Index) Rescaling	Comment
	, ,	 -		LO a series Marila Oat			
modes_of_operation	6060 _{hex} /wo	_	P1000	OperationModeSet	P1000	6060	_
Conversion formalism	x = -128 127	•	y = x		x = -128 127	y = x	
Manufacturer specific	x = -106	•	y' = -6				
Manufacturer specific	x = -7	•	y = x	Autotuning	x = -7	y = x	y', x'
Manufacturer specific	x = -6	•	y = 5	Spindle positioning	x = -6	y = -106	
Manufacturer specific	x = -5	•	y = x	Synchronous operation with electronic gearing	x = -5	y = x	According to the set operating mode: Operating mode = -4 Position control
Manufacturer specific	x = -4	•	y = x	Position control or Interpolated Position Mode	x = -4	y = -4 or y = 7	Operating mode = 7 IP mode (controller switches internally to operating mode -4)
Manufacturer specific	x = -3	•	y = x	Speed control	x = -3	y = 3	operating mode -4)
Manufacturer specific	x = -2	•	y = x	Current control	x = -2	y = x	
Manufacturer specific	x = -1	•	y = x	Find notch position	x = -1	y = x	
reserved	x = 0			not used	x = 0		
Profile position mode	x = 1	•	y = x	Target position set value	x = 1	y = x	
Velocity mode	x = 2	•	y = x	Speed setting 1	x = 2	y = x	
Profile velocity mode	x = 3	•	y = -3	not used	x = 3	y = -3	
Torque profile mode	x = 4	•	y = x	not used	x = 4		
reserved	x = 5			Jog operation	x = 5	y = -6	
Homing mode	x = 6	•	y = x	Homing operation	x = 6	y = x	
Interpolated position mode	x = 7	•	y = x	not used	x = 7		
reserved	x = 8 127			not used	x = 8 127		

CANopen object	Index Value range	•	P. No. Scaling	Controller parameters	P. No. Value range	•	Index) Rescaling	Comment
modes_of_operation_ display	6061 _{hex} /ro			OperationModeAct (actual operating mode)	P0304	۰	6061 _{hex}	The CANopen standard name, see 6060 _{hex}
Conversion formalism					x = -128 127	١	y = x	7
				Autotuning	x = -7	١	y = x	- Jog operation has value 5 in controller
				Spindle positioning	x = -6	١	y = -106	in CANopen jog operation has v
				Synchronous operation el. gear	x = -5	•	y = x	alue -6 - Spindle positioning has value -6 in controller
				Position control	x = -4	١	y = x	in CANopen spindle positioning
				Speed control	x = -3	١	y = 3	has value -106
				Current control	x = -2	٠	y = x	
				Notch position	x = -1	١	y = x	
				not used	x = 0			
				Position set mode	x = 1	١	y = x	
				Speed setting 1	x = 2	١	y = x	
				not used	x = 3			
				not used	x = 4			
				Jog operation	x = 5	٠	y = -6	
				Homing mode	x = 6	٠	y = x	
				not used	x = 7			
				not used	x = 8 127			
position_demand_value	6062 _{hex} /ro			PPosSetValue (actual position value)	P0463	١	6062 _{hex}	OUSIGN32 is provided on the CANopen option card with an offset of 2 ³¹ . USIGN32
					x = 80000000 7FFFFFFF _{hex}	•	y = x-2 ³¹	-> INT32. (offset of 2 ³¹ is subtracted. UU - ratio added Only at changes in option module G/H cor figuration 1 bit 2 = 1, Specification of current position of the drive user units e. g. 1/100° for rotating movements starting from home position.
position_actual_value*	6063 _{hex} /ro			PPosActValue (actual position value)	P0362	١	6063 _{hex}	UU - ratio added Only at changes in option module G/H con-
					x = 80000000 7FFFFFFF _{hex}	•	y = x	figuration 1 bit 2 = 1: Specification of current position of the drive user units e. g. user units e. g. 1/100° for rotating movements starting from home position.

CANopen object	Index Value range	•	P. No. Scaling	C	Controller parameters	P. No. Value range	•	Index) Rescaling	Comment
position_actual_value	6064 _{hex} /ro			- 1	PPosActValue (actual position value)	P0462	١	6064 _{hex}	USIGN32 is provided on the CANopen option card with an offset of 2 ³¹ . USIGN32
						x = 80000000 7FFFFFFF _{hex}		y = x-2 ³¹	⇒INT32. (offset of 2 ³¹ is subtracted. UU - ratio added Only at changes in option module G/H configuration 1 bit 2 = 1: Specification of current position of the drive user units e. g. 1/100° for rotating movements starting from the home position.
following_error_time_out	6066 _{hex} /ro			F	PosDevTime	P1056	١	6066 _{hex}	The unit in
						x = 0 65000	٠	y = x	the CANopen object and in the b maXX [®] controller parameter is in ms.
position_window	6067 _{hex}	١	P1194	F	PPosWindow (pos. window)	P1194	٠	6067 _{hex}	
	$x = 0$ $FFFFFFFF_{hex}$	١	y = x			x = 0 FFFFFFFF _{hex}	١	y = x	
position_window_time	6068 _{hex}	•	P1195		PPosWindow Time pos. window time)	P1195	٠	6068 _{hex}	
	x = 0 65535	٠	y = x			$x = 1 FFFF_{hex}$	•	y = x	
velocity_sensor_actual_	6069 _{hex}	١	P0362	E	ENC1ActAngle	P0391	١	6069 _{hex}	
value	$x = -2^{15} 2^{15} -1$	•	y = x			x = 0 $FFFFFFFF_{hex}$	٠	y = x	
sensor_selection_code	606A _{hex} /ro			,,,	none"				The b maXX [®] controller only supports the
velocity_actual_value_from _position_encoder						x = 0	٠	y = x	position encoder, therefore only display.
velocity_actual_value_from _velocity_encoder				n	not supported				
velocity_demand_value	606B _{hex} /ro			S	SetValueTotal	P0352	١	606B _{hex}	The user-defined unit (speed units) is inter-
						x = 8000 _{hex} 7FFF _{hex}	•	y = x*Motor- MaxSpeed / 4000 _{hex}	preted in the controller as RPM. Only at changes in option module G/H configuration 1 bit 2 = 1: Specification of speed in 1/10 RPM. e. g.: 200.0 revolutions => input 2000.
velocity_actual_value	606C _{hex} /ro			S	SpeedActValue	P0353 x = -2 ³¹ 2 ³¹ -1		$606C_{hex}$ $y = x*Motor-MaxSpeed / 40000000_{hex}$	Scaling of gear ratio is in FBO $604C_{hex}$ Only at changes in option module G/H configuration 1 bit 2 = 1: specification of current speed in 1/10 RPM e. g. 200.0 revolutions \Rightarrow input 2000.

CANopen object	Index Value range	•	P. No. Scaling	Controller parameters	P. No. Value range	•	Index) Rescaling	Comment
velocity_threshold	$x = -2^{31} 2^{31} -1$		P1073 y = x*4000 _{hex} / 10000	ENC1Mon_Llim	P1073 x = -0 1000 _{hex}	•	$606F_{hex}$ y = x*10000 / 4000_{hex}	The threshold in the b maXX®controller is increased to 25% of maximum speed of the controller. The input then occurs in RPM e. g. max: 1000 RPM input for 25 % = 250 RPM
max_torque	x =0 FFFF _{hex}		P0357 y = x*4000 _{hex} / 1000	TrqSynDirect	P0357 x = 0000 FFFF _{hex}	٠	6072_{hex} y = x*1000 / 4000_{hex}	
Torque actual value	$6077_{\text{hex}} / \text{ro}$ $x = -2^{16} \dots 2^{16} - 1$		P0344 y = x * 10000 / 1638					1000 is equivalent to 100,0 % in relation to the nominal torque P1036
target_position	607A _{hex} x = 80000000 _{hex} 7FFFFFFF _{hex}	-	P0607 (P0600) y = x	PPosTarget1			607A _{hex} y = x	UU - ratio added Only at changes in the option module G/H configuration 1 bit 2 = 1: User units e. g. 1/100° for rotating movements starting from home position.
home_offset	$x = -2^{31} 2^{31} -1$		P1200 y = x+2 ³¹	PPosEncoderOffset			$607C_{hex}$ y = x-2 ³¹	Deviation of home position of homing- or limit switch UU - ratio and an offset of 2 ³¹ added (numerical scale conversion). Only at changes in the option module G/H configuration 1 bit 2 = 1: specified in UU e. g. 1/100 ° for rotating movements. No limit value monitoring.
software_position_limit		•	P1196 y = x P1197 y = x	SW limit switch PPosSWLimitSwitch1 PPosSWLimitSwitch2	FFFFFFF _{hex}	* * *	$607D_{hex}$ Sub. 01_{hex} $y = x$ Sub. 02_{hex} $y = x$	USIGN32 is provided with an offset of 2 ³¹ on the CANopen option card. USIGN32 ⇒ INT32. (offset of 2 ³¹ is subtracted. UU - ratio added.
max_profile_velocity	$607F_{hex}$ $x = 0 2^{32}-1$	•	P0057 y = x	MotorNomSpeed	P0057 x = 1 24000	•	$607F_{hex}$ $y = x$	The user-defined unit (speed units) is interpreted in the controller as RPM.
max_motor_speed	$x = 0 FFFF_{hex}$	-	P1031 y = x	SpeedMax		_	6080 y = x	The user-defined unit (speed units) is interpreted in the controller as RPM.

CANopen object	Index Value range	•	P. No. Scaling	Controller parameters	P. No. Value range	•	Index) Rescaling	Comment	
profile velocity	6081 _{hex} x = 0 2 ³²		P0602 y = x	PPosSetSpeed1	P0602 x = 1 13200	٠	6081 _{hex} y = x	Only at modifications in option module G/H configuration 1 bit2 = 1: Specification of desired moving speed of positioning in UU e. g. 1/100 °/s for rotating movements. s⇒ ms [1/1000]. UU added. At exceeding of limit value of parameter in b maXX [®] the maximum or minimum values are set without generating an error.	
profile acceleration	6083 _{hex}	١	P0603	PPosAcceleraton1	P0603	١	6083 _{hex}	Only at modifications in option module G/H	
	x = 0 2 ³²		y = x		x = 25 45000		y = x	configuration 1 bit2 = 1: Starting/braking acceleration of positioning	
profile deceleration	6084 _{hex}		P0604	PPosDeceleration1	P0604	-	6084 _{hex}	is specified in UU e. g. 10°/s² for rotating	
	x = 0 2 ³²	•	y = x		x = 25 45000	•	y = x	movements. $s^2 \Rightarrow ms^2 [1/10000]$ At exceeding of limit value of parameter in b maXX $^{\otimes}$ the maximum or minimum values are set without generating an error.	
quick_stop_deceleration	6085 _{hex} x = 0 2 ³²	Н	P1213 y = x	PPosStopDeceleraton	P1213 x = 25 45000	_	6085 _{hex} y = x	Only at modifications in option module G/H configuration 1 bit2 = 1: Starting/braking acceleration of positioning is specified in UU e. g. $10^{\circ}/s^2$ for rotating movements. $s^2 \Rightarrow ms^2$ [1/10000] At exceeding of limit value of parameter in b maXX® the maximum or minimum values are set without generating an error.	
motion profile type	6086 _{hex}	١	P1190	PPosMode	P1190		6086 _{hex}	In controller	
	$x = -2^{16} 2^{16}-1$	•			x = 0 FFFF _{hex}	•			
Manufacturer specific	x = -327681			not used			y = x		
Linear ramp (trapezoidal profile)	x = 0	•	Bit 3 and bit 4:	Trapezium	Bit 3 and bit 4:	•	0	Speed profile: Bit 4 bit 3:	
Sin ² ramp	x = 1		Bit 3 and bit 4:	Sin ²	Bit 3 and bit 4:		1	0 0: Trapezium 0 1: Sin² 1 0: S-curve 1 1: Reserved	
Jerk-free ramp	x = 2		Bit 3 and bit 4:	S-curve	Bit 3 and bit 4:		2		
Jerk-limited ramp	x = 3			not used					
Reserved for future profile types	x = 4		y = x	not used					

CANopen object	Index Value range	•	P. No. Scaling	Controller parameters	P. No. Value range	•	Index) Rescaling
feed_constant	6092 _{hex} /ro					Τ	6092 _{hex}
feed	Sub. 01 _{hex}	•	P3050	PosScalingUserUnit	P3050	•	Sub. 01 _{hex}
	$x = 0$ $FFFFFFF_{hex}$	•	y = x		$x = 2^{24} 1$	•	y = x
shaft_revolutions	Sub. 02 _{hex}	٠	P3051	PosScalingRevolution	P3051	•	Sub. 02 _{hex}
	$x = 0$ $FFFFFFFF_{hex}$	١	y = x		x = 1 2 ²⁴ -1	١	y = x

CANopen object	Index Value range	•	P. No. Scaling	Controller parameters	P. No. Value range	٨	Index) Rescaling	Comment
homing_method	6098 _{hex}	•	P1205	BM_i_Ds0_PPosHomingMod	P1205	١	6098 _{hex}	
				e (ref. homing mode)				
Manufacturer specific	x = -12812			not used			y = -1287	
Manufacturer specific	x = -10	•	y = -10	Reaching of mechanical stop with zero pulse, counter-clockwise	x = -10	•	y = -10	
Manufacturer specific	x = -9	•	y = -9	Reaching of mechanical stop with zero pulse, clockwise rotation	x = -9	•	y = -9	
Manufacturer specific	x = -8	١	y = -8	Reaching of mechanical stop, counter-clockwise	x = -8	•	y = -8	
Manufacturer specific	x = -7	•	y = -7	Reaching of mechanical stop, clockwise rotation	x = -7	•	y = -7	
Manufacturer specific	x = -6	•	y = -6	Reaching of the next encoder zero angle	x = -6	•	y = -6	
Manufacturer specific	x = -5	•	y = -5	Reaching of the pos. limit switch	x = -5	•	y = -5	
Manufacturer specific	x = -4	•	y = -4	Reaching of the neg. limit switch	x = -4	•	y = -4	
Manufacturer specific	x = -3	•	y = -3	Setting of home position	x = -3	•	y = -3	
Manufacturer specific	x = -2	•	y = -2	Reaching the encoder zero angle or zero pulse with counter-clockwise rotation	x = -2	•	y = -2	
Manufacturer specific	x = -1	•	y = -1	Reaching the encoder zero angle or zero pulse with clockwise rotation	x = -1	▼	y = -1	
No homing operation	x = 0			not used			y = 0	
Homing on the neg. limit switch	x = 1	•	y = 1	Reaching of the neg. limit switch with encoder zero angle or zero pulse homing	x = 1	▼	y = 1	
Homing on the pos. limit switch	x = 2	•	y = 2	Reaching of the pos. limit switch with encoder zero angle or zero pulse homing	x = 2	•	y = 2	
Homing on the positive home switch & index pulse	x = 3	•	y = 3	Reaching of the zero pulse reference switch with encoder zero angle or zero pulse hom- ing	x = 3	•	y = 3	
Homing on the positive home switch & index pulse	x = 4		y = 4	Reaching of the pos. zero pulse reference switch with encoder angle or zero pulse homing	x = 4	٠	y = 4	

CANopen object	Index Value range	•	P. No. Scaling	Controller parameters	P. No. Value range	•	Index) Rescaling	Comment
Homing on the negative home switch & index pulse	x = 6	•	y = 6	Reaching of the neg. zero pulse reference switch with encoder zero angle or zero pulse homing	x = 6	•	y = 6	
Zero reference cam switch, left to pos. edge with Zero pulse; CW move	x = 7		y = 7	Zero point switch, to the left of pos. edge with zero pulse; clockwise rotation	x = 7		y = 7	
Zero reference cam switch, right fo pos. edge with zero pulse; CW move	x = 8		y = 8	Zero point switch, to the right of pos. Edge with zero pulse; clockwise rotation	x = 8		y = 8	
Zero reference cam switch, left to neg. edge with zero pulse; CW move	x = 9		y = 9	Zero point switch, to the left of neg. Edge with zero pulse; clockwise rotation	x = 9		y = 9	
Zero reference cam switch, right to neg. edge with zero pulse; CW move	x = 10		y = 10	Zero point switch, to the right of neg. edge with zero pulse; clockwise rotation	x = 10		y = 10	
Zero reference cam switch, right to neg. edge with zero pulse; CCW move	x = 11		y = 11	Zero point switch, to the right of neg. edge with zero pulse; counter-clockwise rotation	x = 11		y = 11	
Zero reference cam switch, right fo pos. edge with zero pulse; CCW move	x = 12		y = 12	Zero point switch, to the right of pos. edge with zero pulse; counter-clockwise rotation	x = 12		y = 12	
Zero reference cam switch, left to neg. edge with zero pulse; CCW move	x = 13		y = 13	Zero point switch, on the left of neg. angle with zero pulse; counter-clockwise rotation	x = 13		y = 13	
Zero reference cam switch, right to neg. edge with zero pulse; CCW move	x = 14		y = 14	Zero point switch, to the right of neg. edge with zero pulse; counter-clockwise rotation	x = 14		y = 14	
CANopen spec.	x = 15, 16			not used				
Negative limit switch	x = 17	•	y = 17	negative limit switch	x = 17	١	y = 17	
Positive limit switch	x = 18		y = 18	positive limit switch	x = 18	_	y = 18	
Positive zero reference switch, CCW move	x = 19		y = 19	positive zero point switch counter-clockwise rotation	x = 19		y = 19	
Positive zero reference switch, CW move	x = 20	•	y = 20	positive zero point switch clockwise rotation	x = 20	•	y = 20	
Negative zero reference switch, CW move	x = 21	٠	y = 21	negative zero point switch clockwise rotation	x = 21	•	y = 21	

CANopen object	Index Value range	P. No. Scaling	Controller parameters	P. No. Value range	١	Index) Rescaling	Comment
Negative zero reference switch, CCW move	x = 22	y = 22	negative zero point switch counter-clockwise rotation	x = 22	١	y = 22	
Zero reference cam switch, left to pos. edge; CW move	x = 23	y = 23	Zero point switch, to the left of pos.; clockwise rotation	x = 23	•	y = 23	
Zero reference cam switch, right to pos. edge; CW move	x = 24	y = 24	Zero point switch, to the right of pos. edge; clockwise rotation	x = 24	•	y = 24	
Zero reference cam switch, left to neg. edge; CW move	x = 25	y = 25	Zero point switch, to the left of neg. edge; clockwise rotation	x = 25	•	y = 25	
Zero reference cam switch, right to neg. edge; CW move	x = 26	y = 26	Zero point switch, to the right of neg. edge; clockwise rotation	x = 26	•	y = 26	
Zero reference cam switch, right to neg. edge; CCW move	x = 27	y = 27	Zero point switch, to the right of neg. edge; counter-clock-wise rotation	x = 27	•	y = 27	
Zero reference cam switch, left to neg. edge; CCW move	x = 28	y = 28	Zero point switch, to the left of neg. edge; counter-clockwise rotation	x = 28	•	y = 28	
Zero reference cam switch, right to pos. edge; CCW move	x = 29	y = 29	Zero point switch, to the right of pos. edge; counter-clockwise rotation	x = 29	•	y = 29	
Zero reference limit switch, left to pos. edge; CCW move	x = 30	y = 30	Zero point switch, to the left of pos. edge; counter-clockwise rotation	x = 30	•	y = 30	
CANopen spec.	3132		not used	3132			
Nearest zero pulse; CCW move	x = 33	y = 33	Next zero pulse; counter- clockwise rotation	x = 33	•	y = 33	
Nearest zero pulse; CW move	x = 34	y = 34	Next zero pulse with clock- wise rotation	x = 34	•	y = 34	
Homing on the current position	x = 35	y = 35	Setting of home position	x = 35	٠	y = 35	
reserved	x = 36 127		not used				

CANopen object	Index Value range	•	P. No. Scaling	Controller parameters	P. No. Value range	•	Index) Rescaling	Comment	
homing_speeds	6099 _{hex}			(Ref. speed)			6099 _{hex}	Only at changes in option module G/H con-	
speed_during_search_for_ switch	Sub. 01 _{hex}	٠	P1201	PPosHomingSpeed	P1201	•	Sub. 01 _{hex}	figuration 1 bit 2 = 1: Specification of desired moving speed of positioning in UU e. g. 1/100 °/s for rotating	
	x = 0 2 ³²	•	y = x		x = 113200	٨	y = x	movements. s in section of limit value of parameter in b maxX [®] the maximum or minimum values are set without generating an error.	
speed_during_search_for_	Sub. 02 _{hex}	•	P1202	PPosHomingFinalSpeed	P1202	٨	Sub. 02 _{hex}		
zero	$x = 0 2^{32}$	•	y = x		x = 150	•	y = x		
homing_acceleration	609A _{hex}	١	P1203	PPosHomingAcceler (homing acceleration)	P1203	۰	609A _{hex}	Only at changes in option module G/H configuration 1 bit 2 = 1: The user-defined unit (acceleration units) of homing_acceleration in UU e. g. 10 °/s for rotational movements. S ² ⇒ms ² [1/1000]. At exceeding of limit switch of the parameter in the b maXX [®] the max. or min. values are set without an error message.	
	x = 0 2 ³²	•	y = x		x = 25 45000	•	y = x		
Interpolation_submode_	60C0 _{hex} /ro	Γ	Sub. 0 = 1			Г		Object 60C0 _{hex} contains the information to the IP mode. The linear interpolation is supported only.	
select	$x = -2^{16} \dots 2^{16} - 1$		-327681,	It will be written to no parame-					
	x = 0	•	linear Interpo- lation	ter in the controller				The initial interpolation to supported only.	
	x = 1 32767	١	reserved			L			
Interpolation_data_ record	60C1 _{hex} /ro							In Sub. 0 the size of the buffer is readable. Sub. 0 is supported only.	
	Sub. 0							The 16 higher bits relate to the number of revolutions and the 16 lower bits relate to	
	x = 0 255	١	1					the angle in inc.	
	Sub. 1	•	P369	Position setpoint		•	60C1	Synchronization occurs via the Sync tele-	
	x = 0 2 ³² - 1		y = x		x = 0 2 ³² - 1	L	y = x	gram from the master.	
Interpolation_time_ period	60C2 _{hex}		Sub. 0 = 2					Thera are only entries allowed which relate to 2000, 4000 and 8000 μs . If no cycle time is recorded in P532 an error message is sent.	
Ip_time_units	Sub. 1	•	kein	Sync-Slot	kein	•	Sub. 1	10^ip_time_index * seconds	
	x = 1 255		x = -2 ¹⁶ 2 ¹⁶ - 1		x = -2 ¹⁶ 2 ¹⁶ - 1		x = 1 255	Example: If 4000 µs shold set, then it must be written value 4 to Sub1 and value -3 to	
Ip_time_index	Sub. 2	•	P532	Sync-Slot	P532	Sub2. Sub. 2 Sub2. Only when SIX2 is written to		Sub2. Only when SIX2 is written, the cycle time is	
	x = -128 63		x = -2 ¹⁶ 2 ¹⁶ - 1		x = -2 ¹⁶ 2 ¹⁶ - 1		x = 1 255	assumed in the controller.	

CANopen object	Index Value range	١	P. No. Scaling	Controller parameters	P. No. Value range	•	Index) Rescaling	Comment
Interpolation_sync_ definition	60C3 _{hex}		Sub. 0 = 2					Sub.1: the synchronization mode is defined.
syncronize on group	Sub. 1	•	P3331 (Application parameter)	General Sync is used (Standard)	P3331 (Application parameter)	•	60C3 _{hex} Sub 1	Confirmed -> value = 0: Synchronization refers to the SYNC telegram. Sub.2 is only readable and displays the number from which SYNC on the Phi val-
lp_sync every n event	Sub. 2 ro x = 0 255	•	P3331 (Application parameter)					ues are incremented and are assumed in the buffer. At every received SYNC telegram only the assumption is supported, i.e. standard = "0". A dummy parameter is used (application parameter 3331).
Interpolation_data_confi guration	60C4 _{hex}	•	Sub. 0 = 6					
max_buffer_size	Sub. 1 ro	١	1					7
actual_size	Sub. 2	•	1	Only one buffer is supported				
buffer_organisation	Sub. 3	٠	01	0 = FIFO buffer; 1= Ring buffer				
buffer_position	Sub. 4 ro	٠	1	Always = 1, because only one buffer available.				
size_ofdata_record	Sub. 5 ro	•	1	Always = 1, because only one buffer available.				
buffer_clear	Sub. 6	Þ	01	(no effect)				
position_control_ parameter_set	60FB _{hex}							Manufacturer-specific CANopen object
	Sub. 01 _{hex} /ro			PosCtrlStatus	P0360	٠	Sub. 01 _{hex}	Default = 0
					x = 0 2 ¹⁶ -1	•	y = x	
	Sub. 02 _{hex}	Þ	P1050	PosCtrlMode	P1050	٠	Sub. 02 _{hex}	Default = 0
	$x = 0$ $2^{16}-1$	١	y = x		x = 0 2 ¹⁶ -1	٠	y = x	
	Sub. 03 _{hex}	Þ	P1051	PosCtrl_Kv-Factor	P1051	•	Sub. 03 _{hex}	Default = 10.0
	x = 0 32767	١	y = 0 32767		x = 0 32767	•	y = x	
	Sub. 04 _{hex}	•	P0364	PosSetRev	P0364	•	Sub. 04 _{hex}	Default = 0
	x = 0 2 ¹⁶ -	•	y = x		x = 0 2 ¹⁶ -1	•	y = x	

CANopen object	Index Value range	•	P. No. Scaling		Controller parameters	P. No. Value range		Index) Rescaling	Comment
	Sub. 05 _{hex}	r	P0363	1	PosSetAngle	P0363	١	Sub. 05 _{hex}	Default = 0
	x = 0 2 ¹⁶ -1	٠	y = x			x = 0 2 ¹⁶ -1	•	y = x	
	Sub. 06 _{hex}	٠	P1053		SpeedFeedForFactor	P1053	•	Sub. 06 _{hex}	Default = 4000 _{hex}
	$x = 0$ $2^{16}-1$	•	y = 0 5000 _{hex}			x = 0 5000 _{hex}	•	y = 0 2 ¹⁶ -1	
	Sub. 07 _{hex} /ro				PosCtrlDev		•	Sub. 07 _{hex}	Default = 0
						$x = -2^{31} 2^{31} - 1$	•	y = x	
	Sub. 08 _{hex}				PosActValue	P0362	•	Sub. 08 _{hex}	Default = 0
						x=0 2 ³² -1	٠	y = x	
	Sub. 09 _{hex} /ro				Enc1ActRev	P0392	٨	Sub. 09 _{hex}	Default = 0
						x = 0 2 ³² -1	•	y = x	
	Sub. 0A _{hex} /ro				Enc1ActAngle	P0391	•	Sub. 0A _{hex}	
						x = 0 2^{32}		y = x	
	Sub. 0B _{hex} /ro				SpeedFeedFor	P0365		Sub. 0B _{hex}	
						$x = -2^{31} 2^{31} - 1$			
	Sub. 0C _{hex} /ro				PPosStatus	P0460	•	Sub. 0C _{hex}	
						x=0 FFFF _{hex}	•	y = x	
	Sub. 0D _{hex}	•	P1191		PPosActRecordNumber	P1191	•	Sub. 0D _{hex}	
	$x = 0$ $2^{16}-1$	٠	y = x			x=0 2 ¹⁶ -1	•	y = x	
	Sub. 0E _{hex}	•	P1190		PPosMode	P1190	•	Sub. 0E _{hex}	
	x = 0 2 ¹⁶ -1	•	y = x			x=0 FFFF _{hex}	•	y = x	
	Sub. 0F _{hex}	١	P1200		PPosHomePosition	P1200	•	Sub. 0F _{hex}	
	$x = 0$ $2^{32}-1$	•	y = x			x=0 FFFFFFFF _{hex}	٨	y = x	
	Sub. 10 _{hex}	•	P1208		PPosSwitchMode	P1208	•	Sub. 10 _{hex}	
	x = 0 2 ¹⁶ -1	•	y = x			x=0 FFFF _{hex}	٨	y = x	

CANopen object	Index Value range	١	P. No. Scaling	Controller parameters	P. No. Value range	•	Index) Rescaling	Comment
	Sub. 11 _{hex} /ro	Т		PPosSpeedSetValue	P0464	١	Sub. 11 _{hex}	
					x = -3276831 32767	A	y = x	
	Sub. 12 _{hex}	•	P0605	PPosBend0	P0605	•	Sub. 12 _{hex}	
	x = 0 2 ¹⁶ -1	٠	y = x		x=0 8191	•	y = x	
	Sub. 13 _{hex}	•	P1198	PPosClipEnvironment1	P1198	A	Sub. 13 _{hex}	
	x = 0 $2^{32}-1$	•	y = x		x = 0 FFFFFFFF _{hex}	▲	y = x	
	Sub. 14 _{hex}	•	P1199	PPosClipEnvironment2	P1199	•	Sub. 14 _{hex}	
	x = 0 2 ³² -1	•	y = x		x=0 FFFFFFF _{hex}	A	y = x	
	Sub. 15 _{hex}	٠	P0601	PPosTargetInput0	P0601		Sub. 15 _{hex}	
	$x = -2^{15} 2^{15} -1$	•	y = x		$x = -2^{15} 2^{15} -1$		-	
	Sub. 16 _{hex}	•	P0608	PposTargetInput1	P0608	•	Sub. 16 _{hex}	
	$x = -2^{15} 2^{15} -1$	•	y = x		-2 ¹⁵ 2 ¹⁵ -1	١	y = x	
	Sub. 17 _{hex}		P0370	PoslpSetAngle	P0370		Sub. 17 _{hex}	
	$x = 0$ 2^{32}	•	y = x		x=0 2 ³²	•	y = x	
	Sub. 18 _{hex}	•	P1209	PPosEncoderOffset	P1209	•	Sub. 18 _{hex}	
	x=0 2 ¹⁶	٠	y = x		x=0 2 ¹⁶	•	y = x	
	Sub. 19 _{hex}	•	P1209	PPosHomingDeceler	P1204	•	Sub. 19 _{hex}	
	x=0 2 ¹⁶	٠	y = x		x=0 2 ¹⁶	•	y = x	
	Sub. 1A _{hex} ro			SpeedActValue	P0353	•	Sub. 1A _{hex}	The actual speed value P0353 is rescaled
					$x = -2^{32} 2^{32} -1$	•	y = x	by a 32 bit value to 16384. 100% of the maximum speed (in P1031) accords to 16384 units. The amount is issued.

CANopen object	Index Value range	•	P. No. Scaling		Controller parameters	P. No. Value range	١	Index) Rescaling	Comment
	Sub. 1B _{hex} ro				AmpWarning/MotorWarning	P0262 , P0263 x=0 2 ¹⁶	*	Sub. 1B _{hex}	Bit 0 P0263 bit 1 Motor temperature threshold 2 exceeded Bit 1 P0263 bit 1 Motor temperature has exceeded threshold 2 Bit 2 P0262 bit 1 Power unit temperature > 80°C Bit 3 not assigned Bit 4 P0263 bit 0 Motor temperature has exceeded threshold 1 Bit 5 P0263 bit 0 Motor temperature has Threshold 1 exceeded
digital_inputs	60FD _{hex} /ro	 	P461		DigInOutStatus	P461	•	60FD _{hex}	
	x=0 2 ¹⁶					x=0 FFFF _{hex}		y = 0 2 ³²	
Negative limit switch					Status neg. limit switch	Bit 0	•	Bit 0	
Positive limit switch					Status pos. limit switch	Bit 1	١	Bit 1	
Home switch					Status zero point switch	Bit 2	•	Bit 2	
Interlock					reserved	Bit 4			
reserved					Reserved	Bit 315			
Man. specific					not used			Bit 1631	
target_velocity	60FF _{hex}	 	P1171		RFG1Input	P1171	•	60FF _{hex}	The user-defined unit (velocity units) is
	x = -2 ³¹ 2 ³¹ -1	•	y = x * 40000000 _{hex} / MotorMax- Speed			x = 8000 _{hex} 7FFF _{hex}	•	y = x * 40000000 _{hex} / MotorMax- Speed	interpreted in the b maXX [®] controller as RPM. Only at changes in option module G/H configuration 1 bit 2 = 1: Specification of current speed in 1/10 RPM. e. g.: 200.0 revolutions => input 2000.
drive_data	6510 _{hex}	П						6510 _{hex}	
Manufacturer specific	Sub. 01 _{hex} / ro					P0001	•	Sub. 01 _{hex}	
					Controller type		١	y = x	
Manufacturer specific	Sub. 02 _{hex} / ro					P0002	١	Sub. 02 _{hex}	
					Software type		•	y = x	
Manufacturer specific	Sub. 03 _{hex} / ro					P0003	•	Sub. 03 _{hex}	
					SoftwareID		١	y = x	
Manufacturer specific	Sub. 04 _{hex} / ro					P0004	١	Sub. 04 _{hex}	
				1	Software version		•	y = x	

CANopen object	Index Value range	•	P. No. Scaling	Controller parameters	P. No. Value range		Index) Rescaling
Manufacturer specific	Sub. 05 _{hex} / ro				P0005		Sub. 05 _{hex}
				ParamTableVersion		٠	y = x
Manufacturer specific	Sub. 06 _{hex} / ro				P0009	٠	Sub. 06 _{hex}
				AmpSW_Version		٠	y = x
Manufacturer specific	Sub. 07 _{hex} / ro				P0555	•	Sub. 07 _{hex}
				FbgaVersion		٠	y = x
Manufacturer specific	Sub. 08 _{hex} / ro				P0556		Sub. 08
				Bootloader version			y = x

123 of 132

APPENIDX D - TECHNICAL DATA

In this appendix you will find a survey of the technical data of the CANopen option card.

D.1 CANopen option card: technical features

CPU	SAB 80C167CR					
FPGA	XCS2S15-5TQ144C of the SpartanII series (XILINX)					
CAN controller	Integrated in the processor					
Memory	4 kByte DP-RAM, 256 kByte RAM, 1 1 MByte Flash-Eprom					
Baudrate	max. 1MBit/s, 500kBits, 250kBits, 125kBits, 20kBits					
Physical layer	ISO 11898					
Operating voltage	+5 V internal					
Electrical isolation	Optocoupler, DC/DC converter					
Plug-in connector	2 RJ45 sockets, 8-pin ¹⁾					

¹⁾ The RJ45 terminals are internally connected 1:1 and isolated from the controller

D.2 CANopen option card: Data channels to the b maXX[®] controller

Three channels are available for data transfer from b $\max X^{\otimes}$ controller to the option module CANopen slave:

- Two process data channels (4 PDOs per communication direction)
- One service data channel (server SDO)

With PDOs, objects can be transferred in cyclic data exchange. Not all objects are available for PDO transfer.

With the SDO transfer all b maXX[®]4400 parameters can be accessed via the object index.

D.3 CANopen option card: CAN buffer

The Baumüller CANopen interface corresponds to the full CAN concept, i. e. there is a CAN buffer for every type of message.

CAN buffer description	Transfer direction
NMT message	Receive
TX PDO1	Send
TX PDO2	Send
TX PDO3	Send
TX PDO4	Send
RX-PDO1	Receive
RX-PDO2	Receive
RX-PDO3	Receive
RX-PDO4	Receive
SDO_TX	Send
SDO_RX	Receive
Synchronization object	Receive
Emergency object	Send
Node guard object	Receive / transmit

List of Illustrations

List of Illustrations

CANopen profile structure	11
PDO transmission types	12
Communication state machine	43
NMT telegram for controlling the communication states	44
Node guarding protocol	47
Heartbeat protocol	48
Initiate SDO download protocol	50
Initiate SDO upload expedited	52
Upload SDO segmented protocol	55
Communication cycle	59
Example mapping with two b maXX®4400	67
Telegram structure for example mapping	76

List of Illustrations

Subject Index

A		S	
Abort codes	57	SDO	12
Accesses		Service data	19
incorrect	57	Status machine	43
Arbitration	10	Synchronization synchronous	59 12
В		eyeeue	
Bus access	10		
С			
Cable	10		
CAL specification	11		
Communication states			
boot-up	13		
Controller error messages	80		
CSMA/CA	10		
D			
Device profile	11		
E			
Emergency telegrams	79		
	70		
G			
Guarding time	47		
1			
Identifier structure	13		
Incorrect accesses	57		
•			
L Literature on CAN	9		
Literature on CAN	9		
N			
Network management	43		
NMT	12		
Node guarding	46		
Node number maximum	13		
maximum	13		
0			
Object directory	11		
Р			
PDO	12		
PDO mapping	61		
incorrect	78		
Process data	19		
R			
Remote frames	46		
RTR bit	46		
	-		

Subject Index

Revision survey

Version	Version	Changes
5.02065.03	Feb. 15, 2006	Configuration CANopen option card, error telegrams, conversion tables
5.02065.04	Feb. 06, 2012	Extension for position control and synchronous operation Revision of error messages (Chap. 5.6.2) Revision of 6000' object numbers (App. B.2) Revision of Conversion tables (App. C)

Notes:

				be in motion
Baumüller Nürnberg GmbH C	stendstraße 80-90 90482 Nürnberg	T: +49(0)911-5432-0	F: +49(0)911-5432-130 wwv	v.baumueller.de