CSCI 466: Networks

Lecture 3: OSI Model, Packet Forwarding, Network Performance

Reese Pearsall Fall 2022

Announcements

- TA: Justin Mau
- ➤ Office Hours: TR 12:00 1:00 in Barnard Hall 259
- > Email: justindmau@gmail.com

I am working on improving the audio quality for recordings

Questionnaire Stuff

Questionnaire Stuff

Which variable naming convention do you prefer?

58 responses

- Snake Case
- Camel Case
- I am a crazy person that uses a different convention

The internet is a *network of networks*, connected by **packet switches** and **communication links**

Messages going from A to B are split into **packets**

"Good morning, I hope you are having a good day!"

To: Host A John Paxton 192.42.98.11 m: Host B Reese Pearsall 192.5.223.42

Generated Packet

Good morning, I hope you are having a good day!

Communication links have different transmission rates

10 Mbps

500 kbps

100 kbps

Presentation Layer

Session Layer

Transport Layer

Network Layer

Data Link Layer

Physical Layer

Application Layer

Messages from Network Applications

Physical Layer

Bits being transmitted over a copper wire

*In the textbook, they condense it to a 5-layer model, but 7 layers is what is most used

What is a protocol?

What is a protocol?

What is a protocol?

A **protocol** defines the format and the order of messages exchanges between two or more communicating entities, as well as the actions taken on the transmission and/or receipt of the message or event

The layer which interacts directly with applications and provides necessary protocols and services for web applications

Humans interact with this layer

Data from user → Application Layer → Sent to next layer down

The layer which interacts directly with applications and provides necessary protocols and services for web applications

Humans interact with this layer

Data from user → Application Layer → Sent to next layer down

Search query on website →

GET /index.html HTTP/1.1 Host: www.example.com User-Agent: Mozilla/5.0 Accept: text/html Accept-Language: en-US,en;q=0.5 Accept-Encoding: gzip, deflate Connection: keep-alive

→ Sent to presentation layer

The layer which interacts directly with applications and provides necessary protocols and services for web applications

Humans interact with this layer

Data from user → Application Layer → Sent to next layer down

Search query on website →

GET /index.html HTTP/1.1 Host: www.example.com User-Agent: Mozilla/5.0 Accept: text/html Accept-Language: en-US,en;q=0.5 Accept-Encoding: gzip, deflate Connection: keep-alive

→ Sent to presentation layer

Protocol defines the steps of getting data from application to application

- FTP Client opens command channel to server; tells server second port number to use
- FTP Server acknowledges
- 6 FTP Server opens data channel to clients second port as instructed

Client acknowledges and data flows

Port 5151

The layer which interacts directly with applications and provides necessary protocols and services for web applications

Humans interact with this layer

Data from user → Application Layer → Sent to next layer down

Search query on website →

GET /index.html HTTP/1.1 Host: www.example.com User-Agent: Mozilla/5.0 Accept: text/html Accept-Language: en-US,en;q=0.5 Accept-Encoding: gzip, deflate Connection: keep-alive

→ Sent to presentation layer

Protocol defines the steps of getting data from FTP Server FTP Client application to application Port 20 Port 21 Data Command Port 5150 FTP Client opens command channel to server; tells server second port number to use FTP Server acknowledges Data Channel 6 FTP Server opens data channel to clients second port as instructed Client acknowledges and data flows

Presentation Layer

The layer which allows applications to interpret meaning of data

Translation

Text encoding → Encoding, Ascii

Bit/Byte order

File Syntax

Encryption

Compression

Session Layer

Manages, monitors, and synchronizing "sessions" between endpoints

Most of this functionality is handled by our web browsers

Transport Layer

Manges end to end communication and method of how data will be transferred

Ensures that the data received at host will be in the same order in which it was transmitted

Splits up packets into smaller segments

Transport Layer

Transmission Control Protocol (**TCP**)

- Requires an established connection to transmit data.
- Guarantees delivery of data in order
- Extensive error checking and acknowledgement of data

User Datagram Protocol (UDP)

- Connectionless protocol
- Faster, Simpler
- Not reliable
- No acknowledgement of data, basic error checking

Network Layer

Primary purpose is to move datagrams from one host to another, and to determine physical path to destination

We also assign **IP addresses** to our packet

		IP ⁻	v4 Packe	t Hea	der Fo	rmat		
Bit#	0	7	8	15	16	23	24	31
0	Version	THL	DSCP	ECN	Total Length			
32	Identification				Flags	Fragment Offset		
64	Time to	Live	Protocol		Header Checksum			
96	Source IP Address							
128	Destination IP Address							
160	Options (if IHL > 5)							

Data Link Layer

Handles the formatting and physical addressing of the "packet" before reaching the destination

Physical Layer

Transmits bits into physical signals over some medium

Application Layer

Presentation Layer

Session Layer

Data Data

Data

Application Layer

Presentation Layer

Session Layer

Transport Layer

Application Layer Data Presentation Layer Data Session Layer Data TCP **Transport Layer** "Segment" **Data** Header TCP **Network Layer IP** Header **Data** Header

"Packet"

Application Layer Presentation Layer Session Layer Transport Layer Network Layer Data Link Layer

Application Layer Presentation Layer Session Layer Transport Layer Network Layer Data Link Layer Physical Layer

Baggage (Check)

Baggage (Check)

Gates (load)

Baggage (Check)

Gates (load)

Runway Takeoff

Baggage (Check)

Gates (load)

Runway Takeoff

Baggage (Check)

Gates (load)

Runway Takeoff

Airplane Routing

Baggage (Check)

Gates (load)

Runway Takeoff

Airplane Routing

Runway landing

Baggage (Check)

Gates (load)

Runway Takeoff

Airplane Routing

Gates (unload)

Runway landing

Ticket (purchase)

Baggage (Check)

Gates (load)

Runway Takeoff

Airplane Routing

Baggage (claim)

Gates (unload)

Runway landing

Airplane Routing

Ticket (purchase)

Baggage (Check)

Gates (load)

Runway Takeoff

Airplane Routing

Tickets (complain)

Baggage (claim)

Gates (unload)

Runway landing

Airplane Routing

OSI Model

Packet Switching

Uses **store-and-forward** transmission

Time to transmit *L* bits over a link with transmission rate of *R*:

L/R

Routing Table

Routing Table

Routing Table

Announcements

First homework will be released either tomorrow or Friday. Due at the end of next week.

I am currently working out the details of Programming Assignment 1

No class on Monday

In circuit switching, the path and resources for transmitting from A to B is reserved

Communication links are divided into circuits, which allow for concurrent usage of the link

In circuit switching, the path and resources for transmitting from A to B is reserved

Communication links are divided into circuits, which allow for concurrent usage of the link

Reserved spaces that are not in use result in **silent periods**

Network Delay

Propagation Delay- time needed to propagate to destination (dependent on the medium)

Processing delay- time required to examine the packet's header and determine where to direct the packet

Nodal Delay = Processing delay + Queueing delay + Transmission delay + Propagation delay

Network Delay

Nodal Delay = Processing delay + Queueing delay + Transmission delay + Propagation delay

Processing delay- time required to examine the packet's header and determine where to direct the packet

Nodal Delay = Processing delay + Queueing delay + Transmission delay + Propagation delay

In an <u>uncongested</u> network with **N** links between source and destination

End-to-end Delay = N(Processing delay + Transmission delay + Propagation delay)

Packets arrive to the queue at a rate of **a** (packets/sec)

Bits are pushed out on the communication link at a rate of **R** (bits/sec)

L bits per packet

Packets arrive to the queue at a rate of **a** (packets/sec)

Traffic Intensity =
$$\frac{L * \alpha}{R}$$

Packets arrive to the queue at a rate of **a** (packets/sec)

Traffic Intensity =
$$\frac{L * a}{R}$$

Ratio of average bits that arrive at queue to how quick we can process one bit

Bits are pushed out on the communication link at a rate of **R** (bits/sec)

Traffic Intensity =
$$\frac{L * a}{R}$$

Ratio of average bits that arrive at queue to how quick we can process one bit

If traffic intensity > 1?

Bits are pushed out on the communication link at a rate of **R** (bits/sec)

Traffic Intensity =
$$\frac{L * a}{R}$$

Ratio of average bits that arrive at queue to how quick we can process one bit

If traffic intensity > 1?

Bits arrive to the queue faster than we can process them

Traffic Intensity =
$$\frac{L * a}{R}$$

Ratio of average bits that arrive at queue to how quick we can process one bit

If traffic intensity ≤ 1?

Packets arrive to the queue at a rate of **a** (packets/sec)

Bits are pushed out on the communication link at a rate of **R** (bits/sec)

Traffic Intensity =
$$\frac{L * a}{R}$$

Ratio of average bits that arrive at queue to how quick we can process one bit

If traffic intensity ≤ 1?

We can process bits faster than they arrive**

As traffic intensity grows, the average queueing delay will increase rapidly

The **arrival rate** of packets is typically random, so Queueing Delay is difficult to predict.

If traffic intensity ≤ 1?

We can process bits faster than they arrive**

Network diagnostic tool that displays route taken to destination and RTT for each hop

```
C:\Users\Reese Pearsall>tracert google.com
Tracing route to google.com [172.217.14.238]
over a maximum of 30 hops:
                         <1 ms gateway119.254.msu.montana.edu [153.90.119.254]</pre>
      <1 ms
               <1 ms
                               Request timed out.
                               Request timed out.
                        <1 ms 153.90.125.254
      <1 ms
               <1 ms
      <1 ms
               <1 ms
                        <1 ms 10.196.6.10
                        <1 ms rnedge-prodfw.msu.montana.edu [192.105.205.131]</pre>
       1 ms
                1 ms
                        16 ms ae13--538.icar-sttl1-2.infra.pnw-gigapop.net [209.124.190.212]
      15 ms
               15 ms
      15 ms
               15 ms
                        15 ms 209.124.190.202
      17 ms
               17 ms
                        17 ms 142.251.70.99
      16 ms
               16 ms
                        16 ms 209.85.254.247
      15 ms
               15 ms
                        15 ms sea30s02-in-f14.1e100.net [172.217.14.238]
Trace complete.
```

Network diagnostic tool that displays route taken to destination and RTT for each hop

```
Hop #
```

RTT time for each packet Destination

```
|Users\Reese | Pearsall>tracert google.com
Tricing rout to google.com [172.217.14.238]
over a maximum of 3) hops:
                         <1 ms gateway119.254.msu.montana.edu [153.90.119.254]</pre>
                                Request timed out.
                                Request timed out.
                <1 ms
                         <1 ms 153.90.125.254
       <1 ms
      <1 ms
                <1 ms
                         <1 ms 10.196.6.10
       1 ms
                1 ms
                         <1 ms rnedge-prodfw.msu.montana.edu [192.105.205.131]</pre>
                         16 ms ae13--538.icar-sttll-2.infra.pnw-gigapop.net [209.124.190.212]
      15 ms
               15 ms
      15 ms
               15 ms
                         15 ms 209.124.190.202
      17 ms
               17 ms
                         17 ms 142.251.70.99
               16 ms
                         16 ms 209.85.254.247
      16 ms
      15 ms
               15 ms
                         15 ms sea30s02-in-f14.1e100.net [172.217.14.238]
Trace complete.
```

Network diagnostic tool that displays route taken to destination and RTT for each hop

Hop #

```
RTT time for each packet Destination
```

```
\Users\Reese Pearsall>tracert google.com
  cing route to google.com [172.217.14.238]
over a maximum of 30 hops:
                         <1 ms gateway119.254.msu.montana.edu [153.90.119.254]</pre>
                                Request timed out.
                                Request timed out.
 3
                         <1 ms 153.90.125.254
 4
      <1 ms
                <1 ms
                <1 ms
                         <1 ms 10.196.6.10
      <1 ms
                        <1 ms rnedge-prodfw.msu.montana.edu [192.105.205.131]</pre>
       1 ms
                1 ms
                         16 ms ae13--538.icar-sttl1-2.infra.pnw-gigapop.net [209.124.190.212]
      15 ms
                15 ms
               15 ms
                         15 ms 209.124.190.202
      15 ms
               17 ms
                        17 ms 142.251.70.99
      17 ms
      16 ms
               16 ms
                         16 ms 209.85.254.247
      15 ms
               15 ms
                         15 ms sea30s02-in-f14.1e100.net [172.217.14.238]
Trace complete.
```

whois- provides registration data of a domain or IP address

172.217.14.238 address profil

Network diagnostic tool that displays route taken to destination and RTT for each hop

```
Hop #
```

RTT time for each packet Destination

```
\Users\Reese Pearsall>tracert google.com
  cing route to google.com [172.217.14.238]
ov r a maximum of 3) hops:
                         <1 ms gateway119.254.msu.montana.edu [153.90.119.254]</pre>
                                Request timed out.
                                Request timed out.
  3
                         <1 ms 153.90.125.254
 4
       <1 ms
                <1 ms
                <1 ms
                         <1 ms 10.196.6.10
       <1 ms
                         <1 ms rnedge-prodfw.msu.montana.edu [192.105.205.131]</pre>
       1 ms
                1 ms
                         16 ms ae13--538.icar-sttl1-2.infra.pnw-gigapop.net [209.124.190.212]
       15 ms
               15 ms
                         15 ms 209.124.190.202
       15 ms
               17 ms
                         17 ms 142.251.70.99
      17 ms
                         16 ms 209.85.254.247
       16 ms
                16 ms
       15 ms
                15 ms
                         15 ms sea30s02-in-f14.1e100.net [172.217.14.238]
Trace complete.
```

whois- provides registration data of a domain or IP address

153.90.119.254 address pro

Packet Loss

Queues have finite space.

If a router has no place to store the packet, the packet will be **dropped** or **lost**

The number of lost packets will increase as **traffic intensity** increases

In addition to delay, the **probability of packet loss** is helpful to calculate

Packet Loss

Queues have finite space.

Throughput is the amount of data transferred from one place to another within a given time period

Throughput is the amount of data transferred from one place to another within a given time period

Throughput is the amount of data transferred from one place to another within a given time period

Instantaneous throughput is the throughput for a given point in time

The instantaneous throughput at 7:00 PM is roughly 6.5 Mbps

Throughput is the amount of data transferred from one place to another within a given time period

Instantaneous throughput is the throughput for a given point in time

Throughput is the amount of data transferred from one place to another within a given time period

Instantaneous throughput is the throughput for a given point in time

In general, if F bits takes T seconds to transfer from one endpoint to another, the **average throughput** is:

 $\frac{F}{T}$

 R_s = transmission rate for server to router R_c = transmission rate for client to router

 R_s = transmission rate for server to router R_c = transmission rate for client to router

Point in network where flow of data is impaired or stopped

 R_s = transmission rate for server to router R_c = transmission rate for client to router

Point in network where flow of data is impaired or stopped **Bottleneck**

 R_s = transmission rate for server to router R_c = transmission rate for client to router

Point in network where flow of data is impaired or stopped

Bottleneck

 R_s = transmission rate for server to router R_c = transmission rate for client to router

Point in network where flow of data is impaired or stopped

Bottleneck

 R_s = transmission rate for server to router R_c = transmission rate for client to router

Throughput for server to client?

Dependent on the bottleneck link!

Point in network where flow of data is impaired or stopped

Bottleneck

 R_s = transmission rate for server to router R_c = transmission rate for client to router

Throughput for server to client?

$$\frac{F}{\min\{R_{s'}, R_{c}\}}$$

Dependent on the bottleneck link!

$$F = 32,000,000 \text{ bits}$$

 R_s = transmission rate for server to router R_c = transmission rate for client to router

Time needed to transfer file?

 R_s = transmission rate for server to router R_c = transmission rate for client to router

Time needed to transfer file?

 R_s = transmission rate for server to router R_c = transmission rate for client to router

Time needed to transfer file?

32 seconds

Link is shared across 10 servers

So each link supports 0.5 Mbps

Link is shared across 10 servers

So each link supports 0.5 Mbps

Sometimes, the bottleneck won't be the link with the slowest transmission rate