



# Química Geral

Prof<sup>a</sup>. Laurinete S. Pinheiro Email: laurinete.pinheiro@fametro.edu.com

2023/1





# Objetivo da Aula de Hoje.

- Contextualizar historicamente como a evolução dos modelos atômicos se sucederam desde Demócrito até os modelos mais clássicos (Dalton, Thomson, Rutherford e Rutherford-Bohr).
- Investigar a constituição atômica (elétrons, prótons e nêutrons) e perceber sua organização coesa.
- Identificar modelos que descrevem a estrutura da matéria (constituição do átomo e composição de moléculas simples) e reconhecer sua evolução histórica.



# **Modelos Atômicos**

Modelo Atômico de Dalton



- A matéria é formada por partículas extremamente pequenas chamadas átomos;
- •Os átomos são esferas maciças e indivisíveis;
- Os átomos com as mesmas propriedades, constituem um elemento químico;
- •Elementos diferentes são constituídos por átomos com propriedades diferentes.
- •As reações químicas são rearranjos, união e separação, de átomos.
- •Modelo Bolha de Bilhar

# **CONCLUSÕES DE DALTON**

# "BOLINHAS DE GUDE"





O Átomo pode ser imaginado como uma minúscula esfera maciça, impenetrável, indestrutível e indivisível.

#### Modelo Atômico de Thomson



#### O átomo não era uma esfera indivisível.

A experiência que levou a elaboração desse modelo, consistiu na emissão de raios catódicos, onde as partículas negativas eram atraídas pelo pólo positivo de um campo elétrico externo.

Essas partículas negativas foram chamadas de elétrons, e para explicar a neutralidade da matéria, Thomson propôs que o átomo fosse uma esfera de carga elétrica positiva, onde os elétrons estariam uniformemente distribuídos, configurando um equilíbrio elétrico.

Modelo Pudim de Passas

## PRINCIPAIS CARACTERÍSTICAS DO ÁTOMO

Desde o modelo proposto por Thomson, sabemos que o átomo é um sistema eletricamente neutro, ou seja, o total de cargas positivas é igual ao total de cargas negativas.

# MODELO DE THOMSON



Elétrons

"Pudim" de carga positiva

Nesse modelo, os átomos podem ser divididos em partículas de cargas negativas (mais tarde reconhecidas como elétrons) incrustrados em uma "massa positiva".

#### Modelo Atômico de Rutherford



O modelo atômico de Rutherford concluiu que o átomo era composto por um pequeno núcleo com carga positiva neutralizada por uma região negativa, denominada eletrosfera, onde os elétrons giravam ao redor do núcleo.

Modelo Planetário

# MODELO DE RUTHERFORD



Observações:

Poucas partículas desviavam ou eram refletidas pela barra de ouro.

A maior parte das partículas atravessou a barra sem sofrer desvios.

# EVOLUÇÃO DO CONCEITO DE ÁTOMOS

- 1914-1920 Rutherford demonstrou a existência dos prótons.
- 1932 Chadwick descobriu os nêutrons no núcleo.

| prótons  | núcleo        | +1 |
|----------|---------------|----|
| nêutrons | núcleo        | 0  |
| elétrons | extra nuclear | -1 |

- A massa do elétron é desprezível em comparação com a massa dos prótons e nêutrons.
- O átomo é neutro, pois o 'número de prótons = número de elétrons'

#### Modelo Atômico de Bohr

#### Postulados de Bohr:

- I- Os elétrons descrevem ao redor do núcleo órbitas circulares, chamadas de camadas eletrônicas, com energia constante e determinada. Cada órbita permitida para os elétrons possui energia diferente.
- II- Os elétrons ao se movimentarem numa camada não absorvem nem emitem energia espontaneamente.
- III- Ao receber energia, o elétron pode saltar para outra órbita, mais energética. Dessa forma, o átomo fica instável, pois o elétron tende a voltar à sua orbita original. Quando o átomo volta à sua órbita original, ele devolve a energia que foi recebida em forma de luz ou calor.





# Salto Quântico











#### Estrutura atômica

As propriedades químicas dos elementos e moléculas dependem em grande parte dos elétrons.

O número de prótons do núcleo e dado por Z.

• O hidrogénio e o elemento mais simples com *apenas um próton* no seu núcleo.

# Número Atômico (Z)

A carga do núcleo, ou seu número de prótons, é a grandeza que caracteriza cada elemento, sendo este número denominado número atômico. ( $\mathbf{Z} = \text{número de prótons}$ ).

Como em um átomo o número de prótons é igual ao número de elétrons, ao ser fornecido o número atômico (Z) de um átomo, serão fornecidas duas informações: o no de prótons e o no de elétrons.

# Número de Massa (A)

A massa do átomo depende fundamentalmente dos seus prótons e nêutrons, já que a massa do elétron é desprezível. Logo, número de massa é a soma do  $n.^{\circ}$  de prótons (p) com o  $n.^{\circ}$  de nêutrons (n) presentes no núcleo de um átomo. (A = p + n)



Dalton sugeriu que as combinações de elementos envolvessem átomos e propôs uma escala relativa para as massa atómicas • Para simplificar escolheu 1 para hidrogênio no qual baseou a sua escala Jonh Dalton (1766-1844)

• Hoje usamos uma escala relativa - carbono como referência. 6 prótons e 6 e nêutrons no núcleo.

## Número de massa



Protons + neutrons

Número de massa

Número atômico

A Elemento

 $^{11}_{23}Na$ 

 $^{238}_{92}U$ 

# Íons

Os átomos apresentam a capacidade de ganhar ou perder elétrons, formando novos sistemas, eletricamente carregados, denominados íons. Íon é a espécie química que apresenta o número de prótons diferente do número de elétrons.

Os átomos, ao ganharem ou perderem elétrons, originam dois tipos de íons:

Cátions: Formam-se quando um átomo perde um ou mais elétrons, resultando num sistema eletricamente positivo, onde o n.º de prótons é maior que o n.º de elétrons. Sua representação, segundo norma da IUPAC (União Internacional de Química Pura e Aplicada), é feita colocando-se acima e à direita do símbolo do elemento a quantidade de elétrons perdidos seguida do sinal +.

Exemplo: Fe2+; Ca2+; Na +.

Ânions: Formam-se quando um átomo ganha um ou mais elétrons, resultando num sistema eletricamente negativo, onde o n.º de prótons é menor que o n.º de elétrons. Sua representação é feita colocando-se acima e à direita do símbolo do elemento a quantidade de elétrons ganhos seguida do sinal.

Exemplo:  $S^{2-}$ ;  $N^{3-}$ ;  $Br^{-}$ 

#### Elemento Químico

É o conjunto formado por átomos e íons que apresentam mesmo número atômico.

Observe que, quando um átomo se transforma em um íon, seu número atômico não se altera, pois há um ganho ou perda de elétrons e não de prótons.

#### SIMBOLOGIA DO ELEMENTO QUÍMICO

De acordo com a IUPAC, ao representar um elemento químico, devem-se indicar, junto ao seu símbolo, os números atômico e de massa e, quando se tratar de um íon, também a carga elétrica.



# Isótopos

Um elemento químico pode ser constituído por uma mistura de vários átomos com o mesmo número atômico, mas com diferentes números de massa. Esses átomos eram chamados de isótopos (iso = mesmo; topos = lugar).

Isótopos são átomos que apresentam o mesmo número atômico (Z) por pertencerem ao mesmo elemento químico, mas apresentam diferentes números de massa (A).

O elemento oxigênio (O), por exemplo, é formado por uma mistura de três isótopos:  ${}^{16}_{8}O$   ${}^{17}_{8}O$   ${}^{18}_{8}O$ .

A diferença no número de massa é produzida pelas diferentes quantidades de nêutrons existentes em cada isótopo.



# isótopos



Nem todos os átomos de uma amostra de ocorrência natural de um determinado elemento possuem a mesma massa

Exemplo: o boro em dois tipos de átomos um com massa de 10 e outro com massa de 11

Os átomos que possuem o mesmo número atômico e números e massa diferentes denominam-se isótopos

# Isótopos hidrogênio



# $^{2}_{1}H$ Deutério



O gelo produzido com água deuterada é mais denso que água -1,11 g/cm<sup>3</sup>

# $_{1}^{2}H$ Deutério





Wendelstein7X



# $^3H$ Tritio aplicações



O trítio é raro na natureza tempo de meia vida de 12,4. produzido pela radiação cósmica na parte superior da atmosfera.

A maior parte é produzido através da fissão do <sup>6</sup>Li -

Li-6 + n -> T + He-4 + 4.78 MeV

# Isóbaro

Os isóbaros (isobaria) são átomos de distintos elementos químicos os quais apresentam o mesmo número de massa (A) e diferentes números atômicos (Z).



# Isótonos

Os Isótonos (isotonia) são átomos de elementos químicos distintos os quais apresentam diferentes números atômicos (Z), diferentes números de massa (A) e o mesmo número de nêutrons.



# Isoeletrônicos

São os átomos e íons que apresentam a mesma quantidade de elétrons.

Exemplo: São isoeletrônicos: N <sup>3-</sup>, O <sup>2-</sup>, F <sup>1-</sup>, Ne, Na <sup>+</sup>.

Considerando que o raio é a distância provável do elétron mais externo ao núcleo, numa série de isoeletrônicos:

- Quanto maior for o n.º atômico (Z), maior será o n.º de prótons e maior será a atração núcleo eletrosfera; consequentemente, menor será o raio.
- ◆ O tamanho do <u>cátion é sempre menor que o do átomo que lhe deu origem</u> (mesmo n.º de prótons atraindo um n.º menor de elétrons; maior é a atração, menor é o raio).
- O tamanho do <u>ânion é sempre maior que o do átomo que lhe deu origem</u> ( mesmo n.º de prótons atraindo um n.º maior de elétrons; menor é a atração, maior é o raio).

| 23<br>Na <sup>+</sup><br>11 | <sup>16</sup> O <sup>2-</sup> | 20<br>10 <b>Ne</b> |
|-----------------------------|-------------------------------|--------------------|
| 11 p                        | 8 p                           | 10 p               |
| 10 e                        | 10 e                          | 10 e               |
| 12 n                        | 8 n                           | 10 n               |

# Atomo neutro



nº prótons = nº elétrons









Por favor figue com ele!

# Cátion



Perdeu elétrons



# Ânion





Não se preocupe filho. Agui você vai ser bein tratado

|                | Número de<br>Prótons (Z) | Número de massa<br>(A) |   | Número de<br>elétrons (e) |
|----------------|--------------------------|------------------------|---|---------------------------|
| ISÓTOPOS       | =                        | <b>‡</b>               | # | #                         |
| ISÓBAROS       | #                        | =                      | # | #                         |
| ISÓTONOS       | ‡                        | <b>‡</b>               | = | #                         |
| ISOELETRÔNICOS | #                        | #                      | # | =                         |

#### **EXERCÍCITANDO O CONHECIMENTO**

- 1. O tamanho do núcleo depende da quantidade de nêutrons e prótons que ele possui. essa razão, a massa dos elétrons torna-se insignificante. Assinale abaixo a alternativa que representa, de forma correta, as quantidades de prótons, nêutrons e elétrons, respectivamente, do íon  $^{138}_{56}$ Ba $^{2+}$ .
- a) 56, 54 e 82.
- b) 56, 82 e 54.
- c) 54, 82 e 56.
- d) 56, 138 e 56.
- e) 54, 82 e 138.
- 2. A água do mar é conhecida por um característico sabor salgado, já que contém diversos íons positivos e negativos. Considerando os elementos químicos X, Y, W e Z, com números atômicos 25, 27, 28 e 30 e números de massa 51, 53, 55 e 57, e os íons X<sup>-3</sup>, Y<sup>+</sup>, W<sup>-</sup> e Z<sup>+3</sup>, assinale a alternativa que identifica a relação correta entre elétrons e nêutrons dessas espécies.
- a) W e Y<sup>+</sup> têm a mesma quantidade de elétrons.
- b) Y e Z<sup>+3</sup> têm a mesma quantidade de elétrons.
- c) X e Z têm a mesma quantidade de nêutrons.
- d)  $X^{-3}$  e  $Z^{+3}$  têm a mesma quantidade de nêutrons.
- e) Todas as espécies têm a mesma quantidade de nêutrons.

- 3. Determine o n.º de prótons, elétrons e nêutrons do cátion  ${}^{40}_{20}Ca^{2+1}$
- 4. Se o número de prótons é maior que o de elétrons, o íon é positivo; caso contrário, é negativo. Existem características que reúnem átomos de um ou mais elementos, formando grupos. Um íon  $A^{-2}$  é isoeletrônico de um íon  $B^{2+}$ . Sabendo que o número atômico de A é igual a 34, qual será o de B?
- 5. A densidade da água comum (H2O) e da água pesada (D2O), medidas nas mesmas condições de pressão e temperatura, são diferentes. Isto porque os átomos de hidrogênio e deutério diferem quanto ao:
- a) número atômico
- b) n.º de elétrons
- c) número de oxidação
- d) n.º de nêutrons
- e) n.º de prótons

- 6. Produzidos nos chamados reatores de pesquisa, os isótopos radioativos possuem utilização variada. Em medicina, por exemplo, o Arsênio-74 é utilizado na localização de tumores no cérebro. Já o lodo-131 é, entre outras coisas, usado na detecção de anomalias no tratamento da glândula tireoide. Assinale a alternativa correta.
- a) Os isótopos são átomos de um mesmo composto químico.
- b) A massa atômica nos isótopos de Arsênio é a mesma.
- c) O lodo-131 apresenta 53 nêutrons no seu núcleo.
- d) Os isótopos do lodo diferem, basicamente, em seu número de elétrons.
- e) Os isótopos de um mesmo elemento químico possuem número de nêutrons diferentes.
- 7. Um átomo A, isótono de  $_{34}^{79}B$ , ao receber um elétron, torna-se isoeletrônico de  $_{36}^{83}C$ . Nessa situação, a massa atômica de A é:
- a) 79
- b) 80
- c) 81
- d) 82
- e) 83