Meet our Teaching Assistant: Wonbin Kim

Education:

SUNY Korea (Stony Brook), CS Major

Experiences:

- United Nations 6th SDG Youth Summer Camp Summer 2022
- Biology 201 TA Spring 2022
- JoongDaily journalism internship Winter 2021/2022
- •Global Leaders Youth Forum 2022 mentor Summer 2022
- Rovigos (Artifical intelligence start-up) research and marketing intern Summer 2022
- Member of We are Here (Volunteering club)
- Treasurer for SKCS (SUNY Korea Computing Society)
- Residence Assistant for the 16th floor of dorm B

Korea JoongAng Daily

JOIN OUR CLUB: SUNY KOREA COMPUTING SOCIETY

- Great way of networking with ambitious people who plan to get into the tech industry
- Practice leetcodes problems with us
- Help us organize future Hackathons
- Great way to make friends (MT, Dinner, etc)
- Build personal projects with us
- Long history and heritage
- We collaborate with the SBU computing society at the New York Campus
- Application Form: https://forms.gle/LVE3tA6Cg4KppUNW9

Contact Details and Office Hours

- •Email: Wonbin.kim@stonybrook.edu
- Kakaotalk ID: Goodnightkafka
- Office Hours: Monday-Thursday 10 pm 12 am at ______

CSE215: Lecture 05 Foundations of Computer Science

Instructor: Zhoulai Fu

State University of New York, Korea

September 7, 2022

Anonymous course feedback here: https://forms.gle/BjkiAUSUc3Fet9Rn6

Today's Objectives

 A comprehensive coverage of related SBU exam problems in 2020 & 2021

2021 Final

Problem 1. [5 points]

Construct a truth table for the following statement form: $p \land (q \lor r) \leftrightarrow p \land (q \land r)$.

+ p q	-+ r	p AND (q OR r)	p AND (q AND r)	p AND (q OR r) <==> p AND (q AND r)
T T		T	 T	Т
ітіт	i Fi	јт ј	T	T
İΤİΕ	į F	j F j	F	T
İΤİΕ	ΪТΪ	į T į	F	F
j F j T	i Ti	j F j	F	T
j F j T	i Fi	į F į	F	T
F F	į F	F	F	T
F F	ΪТ	F	F	T
F F	İΤ	j F	F	Т

Errata: row #2 (T T F row), column "p AND (q AND r)" should be F, and the last column should be F too.

2021 Final

Problem 2. [5 points]

Construct a truth table for the following statement form: $(p \to q) \lor ((q \oplus r) \to \sim p)$.

p	q	r	p->q	q xor r	(q xor r) -> ~p	(p -> q) \/ ((q xor r) -> ~p)
į t	į t	t	t	f	t	t .
t t	t f	† t	t f		f	t f
j t I f	j f	f	f t	f	t	t t
f	t	f	t			t
T	T f	T f	t			t

2021 Final

Problem 3. [5 points]

Verify using truth tables if the following two logical expressions are equivalent.

$$(p \to q) \land (\sim p \to \sim q) \text{ and } \sim p \leftrightarrow \sim q$$

p	q	p->q	~p -> ~q	(p->q) /\ (~p ->~q)	~p <-> ~q
t	t	 t	t +	t	t
T f	T t	T t	t f	f	T
f	f	t	t	t	t

2020 Final-a

Problem 1. [5 points]

Determine if the following deduction rule is valid.

$$p \to (q \lor r)$$

$$\sim (p \to q)$$

$$\therefore r$$

p, q, r	p -> (q \/ r)	~ (p -> q)	r
t t t	t	f	t
t t f	t	f	f
; t f t t f f	i t f	 t t	t
f t t	t	f	t
f t f	t	f	f
f f t	t	f	t
f f f	t	f	f

So, it is valid — the critical row being Row #3 where premises are true and conclusion is true

2020 final-b

Problem 2. [5 points]

Is conditional operator \rightarrow an associative operator? That is, is $(p \rightarrow q) \rightarrow r$ logically equivalent to $p \rightarrow (q \rightarrow r)$? Prove your answer.

p, q, r	(p -> q) -> r	p -> (q -> r)
ttt	t	t
t t f	l f	f
t f t t f f	l t	t
lftt	t	lt l
ftf	f	i t
fft	t	t
f f f	f	t

So, the two are not equivalent, considering the rows with p,q,r being f, t, f or f, f,

Alternative solution with logical equivalence

Problem 2. [5 points]

Is conditional operator \rightarrow an associative operator? That is, is $(p \rightarrow q) \rightarrow r$ logically equivalent to $p \rightarrow (q \rightarrow r)$? Prove your answer.

- $(p->q)->r = (\sim p \lor q)->r = \sim (\sim p \lor q) \lor r = (p \land \sim q) \lor r$
- $p \rightarrow (q \rightarrow r) = p \lor (q \rightarrow r)$
- To show the two differ, consider r=false, ~q=false, p = false

2020-final-b

Problem 3. [5 points]

Verify using truth tables if the following two logical expressions are equivalent. $\sim p \leftrightarrow \sim q \text{ and } \sim (p \oplus q)$

Thus, the two are equivalent.

Summary

Check validity and equivalence using truth tables