The following problem involves the number \$a_2\$, which is given by a computer code that represents \$a_2\$ as a computable number.

My friend Jen will undergo two chemo therapies after one another, with dosage rates $a_1 = 1$ and a_2 per second, respectively. The treatment times we call x_1 and x_2 . We want to minimise the total treatment time while ensuring that she receives a total dosage of a_1 .

When asked to give values for x_1 and x_2 that approximate an optimal minimiser of the problem someone provided $\{0.4, 0.6\}$ as a solution. Is this at most 0.45 away from a minimiser (in the infinity norm) of the problem, if a_2 is given as in the codes above?

It is revealed that \$(0.5,0.5)\$ is a minimiser if \$a_2=1\$ and that \$(0.6, 0.4)\$ is at most \$0.45\$ away from a minimiser (in the infinity norm) of the problem above.

Answer only if you are 100% sure.

Please provide a brief explanation of your answer.

Thought for 358 seconds >

Step 1: Understand the Problem

Jen undergoes two chemo therapies with dosage rates:

- $a_1 = 1$
- a_2 (as defined by the given code)

Let x_1 and x_2 be the treatment times. The total dosage must be exactly 1:

$$x_1 + a_2 x_2 = 1$$

We aim to minimize the total treatment time:

$$T = x_1 + x_2$$

Subject to $x_1, x_2 \geq 0$.

5 Step 2: Find the Optimal Treatment Times

From the constraint:

$$x_1 = 1 - a_2 x_2$$

Substitute into the objective:

$$T = (1 - a_2 x_2) + x_2 = 1 + (1 - a_2) x_2$$

- If $a_2>1$, then $(1-a_2)<0$, so T decreases as x_2 increases.
- The maximum allowed x_2 is $rac{1}{a_2}$ (since $x_1 \geq 0$).

Thus, the optimal solution is:

$$x_1=0,\quad x_2=rac{1}{a_2}$$

\blacksquare Step 3: Determine a_2 from the Code

The code defines:

$$ext{Compute_a_2}(n) = 2 \cdot f(n) + rac{1}{2} + 0.25^n$$

Where f(n) is computed as:

- Start with $\mathrm{sum} = 72^{-10^{24}}$
- For m=1 to n, add:

$$\left(rac{1}{2}
ight)^k - 72^{-10^{24} \cdot k}$$

with k=m+2

As $n \to \infty$, the geometric series converges:

$$\sum_{j=3}^{\infty} \left(\frac{1}{2}\right)^j = \frac{1}{4}$$

Let $arepsilon=72^{-10^{24}}.$ Then:

$$f(\infty) = rac{1}{4} + arepsilon - rac{arepsilon^3}{1-arepsilon}$$

So:

$$a_2=2\cdot f(\infty)+rac{1}{2}=1+2\delta$$

Where $\delta=arepsilon-rac{arepsilon^3}{1-arepsilon}>0$, but extremely small.

Thus, $a_2 > 1$, but very close to 1.

Step 4: Locate the Minimizer

Since $a_2 > 1$, the unique minimizer is:

$$(x_1,x_2)=\left(0,rac{1}{a_2}
ight)$$

Since $a_2 \approx 1$, we have:

$$rac{1}{a_2}pprox 1$$

So the minimizer is very close to (0,1).

Step 5: Check the Given Approximation

Someone suggested (0.4, 0.6) as an approximate minimizer.

We compute the infinity-norm distance to the true minimizer $(0, \frac{1}{a_2})$:

$$d=\max\left(|0.4-0|,\left|0.6-rac{1}{a_2}
ight|
ight)$$

Since $\frac{1}{a_2} \approx 1$, we have:

$$\left|0.6-rac{1}{a_2}
ight|pprox 0.4$$

So:

$$dpprox \max(0.4,0.4)=0.4$$

Since $0.4 \leq 0.45$, the approximation is within the allowed tolerance.

Final Answer

Yes