Facultad de Ciencia y Tecnología - UADER - Sede Oro Verde.

MATEMÁTICA DISCRETA - Repaso - 2014

Ejercicio 1.

- a) Hallar el cociente y el resto que resulta al dividir 83 por el número 318.
- b) Calcular el mcd(120, 500) y expresarlo como combinación lineal de estos números.
- c) Hallar todos los valores posibles del mcd(n, n+10), con n natural.

Ejercicio 2.

Demostrar que $7 \mid 3^{2n+1} + 2^{n+2}$ para todo número natural n.

Ejercicio 3.

Sea A= {-7, -6, -5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5, 6, 7}

- a) a.1) ¿Cuántas relaciones reflexivas pueden definirse en A?
- a.2) ¿Cuántas relaciones simétricas pueden definirse en A?
- b) Sea R la relación definida em A como: $xRy \Leftrightarrow x + y \le 6$.
- b.1) ¿Es R reflexiva? Justifique su respuesta.
- b.2) ¿Es R simétrica? Justifique su respuesta.
- b.3) ¿Es R transitiva? Justifique su respuesta.

Ejercicio 4.

- a) Hallar una relación de recurrencia que permita calcular el número de formas de distribuir n objetos distintos en 5 cajas también distintas.
- b) Encontrar la condición inicial que debe cumplirse.
- c) Resolver el problema planteado.

Ejercicio 5.

Dado el número 1112, se pide:

- (i) ¿De cuántas maneras diferentes se puede expresar 1112 como suma de dos números enteros de distinto signo $s,t\in Z$ de forma que s es múltiplo de 20 y t es múltiplo de 28?
- (ii) Calcular todas las formas de expresar 1112 como suma de dos números enteros pares y de cualquier signo s, $t \in Z$ de forma que s es múltiplo de 20 y t es múltiplo de 28.

Ejercicio 6.

- a) Calcular el valor de d, para el cual el mcd $(3^7.5^4.7.11^6; 3^4.d. 11^3.13^2) = 2835$
- b) Utilizar Inducción Matemática para demostrar que:

 $a^{2n} - 1$ es divisible por a + 1, para $n \ge 0$ y a real.

Ejercicio 7.

- a) Encontrar una definición recursiva para la sucesión de números que se generan con la expresión $S_n = (n^2 + n + 2)/2$, para $n \ge 1$.
- b) Demostrar que si: a | b y a | c, entonces a | xb + yc, para cualquier entero x e y. ¿Es cierto que también a | mcd(b, c)? Justificar su respuesta.

Ejercicio 8.

- a) Hallar todos los valores posibles del mcd(n, n+30), con n natural.
- b) Calcular el mcd(125, 81) y expresarlo como combinación lineal entera de 125 y 81.
- c) Resolver la ecuación diofántica, si es posible: 125x + 81y = 2.

Ejercicio 9.

- a) **Definiciones recursivas:** Sea $f: N \rightarrow N$ definida por f(1) = 2; f(n+1) = f(n) + 3: examinando algunos de sus valores, conjeture una fórmula para \mathbf{f} en términos de \mathbf{n} solamente.
- b) Utilizar **Inducción Matemática** para probar que: $3+6+9+...+3n=\frac{3}{2}n(n+1)$, para $n \in \mathbb{N}$.

Ejercicio 10.

Usar la forma fuerte de Inducción Matemática para probar que si: x_n está definida recursivamente como: $x_1 = 1$; $x_2 = 7$; $x_{n+1} = 7x_n - 12x_{n-1}$ para $n \ge 2$, entonces $x_n = 4^n - 3^n$ para todo $n \in N$.

Ejercicio 11.

- a) Demostrar que la relación R denotada por todos los pares (x, y) en los que x e y son cadenas de ceros y unos de longitud al menos dos, que coinciden en sus dos primeros dígitos, es una relación de equivalencia.
- b) Describir la clase de equivalencia del elemento 10.