Monitoria MAT1202 - Álgebra Linear 2 Apostila Notas de Aula

Matheus Nogueira

Resumo

Este documento consiste nas notas de aula da monitoria de MAT1202. Este material foi produzido com base em minhas anotações do curso de Álgebra Linear 2 do semestre 20.2 e do livro Álgebra Linear e suas aplicações, de Gilbert Strang. Qualquer dúvida, favor entrar em contato matnogueira@gmail.com

Sumário

1	\mathbf{Sist}	emas Lineares e Eliminação Gaussiana	4
	1.1	Sistemas Lineares e Notação Matricial	4
	1.2	Solução de um Sistema Linear	4
		1.2.1 Operações Elementares	5
		1.2.2 Matrizes das operações elementares	5
	1.3	Exemplo	6
	1.4	Conclusão	7
2	Fato	oração A=LU	8
	2.1	Sem permutação de linhas	8
		2.1.1 Exemplo	9
	2.2	Fatoração PA=LU (com permutação de linhas)	10
		2.2.1 Exemplo	10
	2.3	Conclusão	11
3	Esp	paços Fundamentais de uma Matriz	11
3	Esp 3.1	paços Fundamentais de uma Matriz Definições:	
3	-	3	11
3	-	Definições:	11 11
3	-	Definições:	11 11 11
3	-	Definições:	11 11 11
3	-	Definições:	11 11 11 12
3	3.1	Definições:	11 11 11 12 12
3	3.1 3.2 3.3	Definições:	11 11 11 12 12
	3.1 3.2 3.3	Definições:	11 11 12 12 12 14 14
	3.1 3.2 3.3 Ort	Definições:	11 11 12 12 12 14 14
	3.1 3.2 3.3 Ort 4.1	Definições:	11 11 12 12 12 14 14 14

Apostila Monitoria MAT1202

	4.3.2 Complemento Ortogonal		
5	Projeções Ortogonais		15
	5.1 Conceitos importantes		
	5.2 Projeção ortogonal sobre um vetor		
	5.2.1 Matriz de Projeção sobre o vetor u		
	5.2.2 Exemplo:		17
	5.2.3 Propriedades:		
	5.3 Projeção Ortogonal sobre um subespaço qualquer		17
	5.4 Conclusão		
6	Mínimos Quadrados		18
U	6.1 Motivação		18
	6.2 Relembrando Projeções Ortogonais		
	·		
	6.3.1 Exemplo:		
	6.4 Conclusão		20
7	Matrizes Ortogonais, Ortogonalização de Grand-Schimdt e Fatora	ção	
	QR		20
	7.1 Matrizes Ortogonais		
	7.1.1 Propriedades		
	7.2 Ortogonalização de Grand Schimdt		
	7.3 Fatoração QR		
	7.4 Conclusão		22
8	Polinômio Característico e Teorema de Cayley Hamilton		22
	8.1 Polinômio Característico		
	8.2 Teorema de Cayley Hamilton		
	8.2.1 Aplicação 1 - Cálculo da Inversa		
	8.2.2 Aplicação 2 - Divisão de Polinômios		
	8.3 Conclusão		25
9	Auto-Tudo		2 5
	9.1 Autovalores e Autovetores		25
	9.2 Diagonalização		26
	9.3 Potência de Matrizes		27
	9.4 Conclusão		27
10	Cálculo Funcional: Caso Diagonalizável		27
	10.1 Algumas Definições		27
	10.2 Caso Diagonalizável		28
	10.3 Conclusão		
11	Cálculo Funcional: Caso Não Diagonalizável		29
	11.1 Lembrando a aula anterior		29
	II.I Lembrando a auta amenor		$-Z^{\times}$
	11.1 Lembrando a auta anterior		29

Apostila Monitoria MAT1202

11.3	Justificativa Intuitiva	30
11.4	Conclusão	30
12 Sist	ema de Equações de Diferenças	30
12.1	Equações de Diferenças	30
12.2	Sistema de Equação de Diferenças	31
	12.2.1 Exemplos	31
	12.2.2 Comentários Importantes	32
12.3	Crescimento Populacional	33
12.4	Conclusão	34
13 Cad	leias de Markov	34
13.1	Definição e Apresentação	34
	13.1.1 Exemplo	34
	13.1.2 Propriedades da Matriz de Markov	35
13.2	Conclusão	35

1 Sistemas Lineares e Eliminação Gaussiana

1.1 Sistemas Lineares e Notação Matricial

Nosso foco é estudar sistemas de equações da forma Ax = b, onde A é a matriz com os termos que acompanham as variáveis (incógnitas), x é o vetor coluna com as incógnitas e b é o vetor coluna com os termos independentes.

Exemplo: Seja o seguinte sistema de equações...

$$x + 2y + 3 = 2$$
$$-x + y - z = -3$$
$$2x + y - z = 0$$

Escrevê-lo em forma matricial é definir as seguinte matriz e vetores:

$$A = \begin{bmatrix} 1 & 2 & 3 \\ -1 & 1 & -1 \\ 2 & 1 & -1 \end{bmatrix}, x = \begin{bmatrix} x \\ y \\ z \end{bmatrix} e b = \begin{bmatrix} 2 \\ -3 \\ 0 \end{bmatrix}$$

Não é difícil perceber que a multiplicação representada por Ax resulta exatamente no sistema linear inicial.

1.2 Solução de um Sistema Linear

Nossa estratégia para calcular a solução de um sistema de equações lineares será a **Eliminação Gaussiana**.

Este método consiste em realizar operações na matriz do sistema Ax = b, chamadas operações elementares, para chegar a um sistema triangular. Ao ser obtido este sistema, basta realizar uma série de substituições retroativas para chegar à solução.

Definição: Matrizes Triangulares

Uma matriz é triangular - superior ou inferior - se todas as entradas abaixo ou acima, respectivamente, da diagonal principal são nulas. A matriz A abaixo é triangular superior, enquanto que B é triangular inferior.

$$A = \begin{bmatrix} 1 & 2 & 3 \\ 0 & 1 & -1 \\ 0 & 0 & -1 \end{bmatrix}, B = \begin{bmatrix} 1 & 0 & 0 \\ -1 & 1 & 0 \\ 2 & 1 & -1 \end{bmatrix}$$

São 3 os possíveis tipos de solução de um sistema linear:

- 1. Exatamente 1 solução
- 2. Infinitas Soluções
- 3. Não há solução

Observação: lembrem-se que, para verificar qual das opções acima é a o caso da matriz a ser estudada, podemos olhar para o *determinante* da matriz. Se seu valor for zero, o sistema possui infinitas soluções ou nenhuma solução. Se for diferente de zero, uma solução.

1.2.1 Operações Elementares

Definição: dado um sistema linear Ax = b, são 3 as operações elementares que não alteram a solução do sistema.

- 1. Permutação de linhas $(L_i \leftrightarrow L_j)$
- 2. Multiplicação de linha por escalar $(L_i \to L_i \cdot k, k \neq 0)$
- 3. Somar um múltiplo de uma linha a outra linha $(L_i \to L_i + k \cdot L_j)$

1.2.2 Matrizes das operações elementares

Veremos que cada uma das 3 operações elementares descritas pode ser representada por meio de matrizes da seguinte forma:

Se queremos realizar a operação elementar e sobre a matriz A, devemos realizar a multiplicação $E \cdot A$, onde E é a matriz que representa a operação elementar e.

Vejamos as como montar as matrizes para as mesmas 3 operações já apresentadas. Por facilidade, usaremos matrizes 3x3, pois o raciocínio para outras dimensões é o mesmo. Começamos sempre com a matriz identidade e:

- 1. Permutação de linhas $(L_i \leftrightarrow L_j)$: basta permutar as linhas da matriz identidade de acordo com as linhas a serem permutadas na matriz A
- 2. Multiplicação de linha por escalar $(L_i \to L_i \cdot k, k \neq 0)$: multiplicamos a linha correspondente da matriz identidade pelo escalar em questão.
- 3. Somar um múltiplo de uma linha a outra linha $(L_i \to L_i + k \cdot L_j)$: colocamos na entrada i, j da matriz identidade o valor de k com o devido sinal.

$$L_2 \leftrightarrow L_3 \implies \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \leftrightarrow \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix} = E \tag{1}$$

$$L_2 \to L_2 \cdot k \implies \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \leftrightarrow \begin{bmatrix} 1 & 0 & 0 \\ 0 & k \cdot 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = E \tag{2}$$

$$L_3 \to L_3 - 2 \cdot L_1 \implies \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \leftrightarrow \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ -2 & 0 & 1 \end{bmatrix} = E \tag{3}$$

Ao final da *Eliminação Gaussiana*, depois de serem realizadas todas as devidas *operações* elementares, a matriz obtida estará na forma **escalonada**, isto é:

- 1. Se existem linhas nulas elas devem ser as últimas da matriz.
- 2. Em quaisquer duas linhas sucessivas não nulas, o pivô (primeiro elemento não nulo) da linha inferior deve estar mais à direita que o da linha superior.
- 3. Abaixo do pivô todas as entradas são nulas.

1.3 Exemplo

Calculemos a solução do seguinte sistema, mostrando as matrizes das operações elementares.

$$2x + y + z = 5$$
$$4x - 6y = 2$$
$$-2x + 7y + 2z = 9$$

Em forma matricial o sistema é:

$$\begin{bmatrix} 2 & 1 & 1 \\ 4 & -6 & 0 \\ -2 & 7 & 2 \end{bmatrix} \cdot \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 5 \\ -2 \\ 9 \end{bmatrix}$$

Seja a matriz aumentada a ser escalonada a seguir:

$$\begin{bmatrix} 2 & 1 & 1 & 5 \\ 4 & -6 & 0 & -2 \\ -2 & 7 & 2 & 9 \end{bmatrix}$$

Comecemos as operações elementares para chegar à matriz escalonada. A cada operação, indicaremos a matriz E correspondente.

$$L_2 \to L_2 - 2L_1 \text{ sendo } E_1 = \begin{bmatrix} 1 & 0 & 0 \\ -2 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Nosso sistema fica...

$$\begin{bmatrix} 2 & 1 & 1 & 5 \\ 0 & -8 & -2 & -12 \\ -2 & 7 & 2 & 9 \end{bmatrix}$$

$$L_3 \to L_3 + L_1 \text{ sendo } E_2 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix}$$

Nosso sistema fica...

$$\begin{bmatrix} 2 & 1 & 1 & 5 \\ 0 & -8 & -2 & -12 \\ 0 & 8 & 3 & 14 \end{bmatrix}$$

$$L_3 \to L_3 + L_2 \text{ sendo } E_3 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 1 \end{bmatrix}$$

Nosso sistema fica...

$$\begin{bmatrix} 2 & 1 & 1 & 5 \\ 0 & -8 & -2 & -12 \\ 0 & 0 & 1 & 2 \end{bmatrix}$$

Chegamos à matriz escalonada. Agora basta realizar algumas substituições retroativas para calcularmos a solução.

Lendo e substituindo o sistema de baixo para cima temos:

$$z = 2$$

 $-8y - 2(2) = -12 \rightarrow y = 1$
 $2x + 1 + 2 = 5 \rightarrow x = 1$

Note que chegamos a uma solução única, o que faz sentido pois $\det(A) = -16 \neq 0$ Utilizando as matrizes das operações elementares, chegaríamos na mesma matriz escalonada:

$$E_3 \cdot E_2 \cdot E_1 \cdot A$$
, onde A é a matriz aumentada

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 1 \end{bmatrix} \cdot \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} 1 & 0 & 0 \\ -2 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} 2 & 1 & 1 & 5 \\ 4 & -6 & 0 & -2 \\ -2 & 7 & 2 & 9 \end{bmatrix} = \begin{bmatrix} 2 & 1 & 1 & 5 \\ 0 & -8 & -2 & -12 \\ 0 & 0 & 1 & 2 \end{bmatrix}$$

1.4 Conclusão

Com este material sabemos como encontrar a solução de um sistema linear utilizando a Eliminação Gaussiana e as operações Elementares, com suas respectivas matrizes. O próximo assunto a ser abordado será **Fatoração LU**.

2 Fatoração A=LU

2.1 Sem permutação de linhas

No capítulo anterior vimos, ou relembramos, como resolver um sistema linear utilizando o processo da Eliminação Gaussiana por meio, principalmente, de operações elementares e suas matrizes. Neste capítulo continuaremos estudando sistemas lineares do tipo Ax = b e apresentaremos uma maneira de fatorar a matriz A, escrevendo-a como A = LU.

Dito isso, já podemos definir a matriz A como a matriz de coeficientes do nosso sistema linear, ou seja, exatamente a mesma matriz A do capítulo anterior. Nosso sistema linear é:

$$\begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix} \cdot \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} b_{11} \\ b_{21} \\ b_{31} \end{bmatrix} \text{ logo, } A = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix}$$

A matriz U é a matriz triangular superior que aparece ao final do processo de escalonamento da matriz A, obtida por meio das operações elementares. Você deve se lembrar que, em nossa aula 2 de MATLAB, aprendemos a função $[\ ,U]=lu(A)$, sendo U o nome dado à variável que guarda o output da função lu(), isto é, a matriz escalonada resultante da eliminação gaussiana. Com U em mãos, tudo que nos restava fazer era uma substituição retroativa para descobrir a solução do sistema.

A última matriz que falta ser descoberta é L. Para isso, precisamos lembrar das matrizes E_i que representam as operações elementares. Se nos recordarmos, para escalonar A até U fazíamos:

$$U = E_n \cdot E_{n-1} \cdot \dots \cdot E_2 \cdot E_1 \cdot A$$

sendo n o número de operações elementares a serem feitas.

Chamemos de E a matriz resultante de todas as multiplicações de E_i . Podemos reescrever a equação acima como $U = E \cdot A$. Queremos chegar na faturação A = LU, logo, não é difícil perceber que basta multiplicar ambos os lados de $U = E \cdot A$ por E^{-1} à esquerda que obteremos algo similar à fatoração desejada.

$$E^{-1}U = E^{-1}E \cdot A \to E^{-1} \cdot U = A$$

De fato, a matriz L da fatoração A=LU é, justamente, a multiplicação de todas as inversas das matrizes elementares utilizada. Sendo assim, definimos

$$L = E_1^{-1} \cdot E_2^{-1} \cdot \dots \cdot E_n^{-1}$$

Convença-se de que L está corretamente definida!

O único empecilho para esta definição é garantir que todas as matrizes elementares são inversíveis. Para isso, seus determinantes devem ser diferentes de 0. Como estamos estudando, nesta seção, apenas o caso sem trocas de linha, é trivial notar que todas as matrizes E_i possuem 1 em sua diagonal principal e são triangulares inferiores. Sendo

assim, seus determinantes são sempre 1. Convença-se deste fato.

Agora podemos apresentar a versão completa da função do MATLAB, [L,U]=lu(A). Esta função retorna, não somente a matriz escalonada U, como a matriz L, o que faz todo o sentido dado o nome da função... A análise da matriz L é importante para ver se houve trocas de linha na execução interna do algoritmo da função.

Com todas estas definições em mãos, podemos partir para um exemplo.

2.1.1 Exemplo

Dada a seguinte matriz A, calculemos cada uma das matrizes envolvidas na fatoração A = LU e mostremos que essa igualdade vale.

$$A = \begin{bmatrix} 1 & 1 & 1 \\ 2 & 3 & 5 \\ 4 & 6 & 8 \end{bmatrix}$$

Realizando seu escalonamento, chegamos às seguintes matrizes elementares:

$$E_1 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ -4 & 0 & 1 \end{bmatrix}; E_2 = \begin{bmatrix} 1 & 0 & 0 \\ -2 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}; E_3 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & -2 & 1 \end{bmatrix}$$

Podemos verificar (deixo por conta de você, caro aluno) que:

$$E_3 \cdot E_2 \cdot E_1 \cdot A = U \text{ onde, } U = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 3 \\ 0 & 0 & -2 \end{bmatrix}$$

Note que U é uma matriz triangular superior assim como prevê a teoria! Calculemos agora a matriz L.

$$L = E_1^{-1} \cdot E_2^{-1} \cdot E_3^{-1} = \begin{bmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ 4 & 2 & 1 \end{bmatrix}$$
 (4)

Como previsto, a matriz L é triangular inferior com todas as entradas da diagonal principal igual a 1.

Dica: para inverter uma matriz elementar basta trocar o sinal da entrada não nula fora da diagonal principal.

Podemos, por fim, verificar que:

$$L \cdot U = \begin{bmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ 4 & 2 & 1 \end{bmatrix} \cdot \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 3 \\ 0 & 0 & -2 \end{bmatrix} = \begin{bmatrix} 1 & 1 & 1 \\ 2 & 3 & 5 \\ 4 & 6 & 8 \end{bmatrix} = A$$

2.2 Fatoração PA=LU (com permutação de linhas)

Caso seja necessário realizar alguma permutação de linhas a fim de garantir que U será uma matriz escalonada, precisamos corrigir a matriz A, introduzindo as permutações necessárias para, então, realizar a fatoração LU. Uma vez detectadas as permutações realizadas, podemos carregar essa informação em uma matriz P e multiplicá-la por A de modo que

$$PA = LU$$

Vejamos um exemplo.

2.2.1 Exemplo

Dada a seguinte matriz A, calculemos cada uma das matrizes envolvidas na fatoração A=LU, mostremos que serão necessárias permutações, montemos a matriz P e verifiquemos a validade da igualdade PA=LU.

$$A = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 4 & 5 \\ 1 & 3 & 4 \end{bmatrix}$$

Para simplificar as contas, usemos a função do $MATLAB\ [L,U]=lu(A)$. O retorno desta função é:

$$L = \begin{bmatrix} 0.5 & 0 & 1 \\ 1 & 0 & 0 \\ 0.5 & 1 & 0 \end{bmatrix}; U = \begin{bmatrix} 2 & 4 & 5 \\ 0 & 1 & 1.5 \\ 0 & 0 & 0.5 \end{bmatrix}$$

A matriz L, neste caso, não é triangular inferior, o que indica que o algoritmo interno da função realizou permutações na matriz A. Precisamos, então, montar a matriz P de permutações. Podemos começar trocando as linhas 2 e 3. Para isso, chamemos de P_1 a seguinte matriz de modo que...

$$P_1 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix} \text{ de modo que } P_1 \cdot L = \begin{bmatrix} 0.5 & 0 & 1 \\ 0.5 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix}$$

Agora definimos P_2 a partir da troca das linhas 1 e 3.

$$P_2 = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix} \text{ de modo que } P_2 \cdot P_1 \cdot L = \begin{bmatrix} 1 & 0 & 0 \\ 0.5 & 1 & 0 \\ 0.5 & 0 & 1 \end{bmatrix}$$

Definimos, então, $P = P_2 \cdot P_1$. O valor da matriz P está exibido logo abaixo.

Agora a matriz L possui as características necessárias segundo a teoria, isto é, ser triangular inferior e possuir todas as entradas da diagonal principal igual a 1.

Podemos, finalmente, verificar que:

$$PA = LU \leftrightarrow \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{bmatrix} \cdot \begin{bmatrix} 1 & 2 & 3 \\ 2 & 4 & 5 \\ 1 & 3 & 4 \end{bmatrix} = \begin{bmatrix} 0.5 & 0 & 1 \\ 1 & 0 & 0 \\ 0.5 & 1 & 0 \end{bmatrix} \cdot \begin{bmatrix} 2 & 4 & 5 \\ 0 & 1 & 1.5 \\ 0 & 0 & 0.5 \end{bmatrix}$$

2.3 Conclusão

Neste capítulo foram apresentados os conceitos de fatoração A = LU em seu caso sem permutação de linhas e PA = LU quando são necessárias essas permutações. Este é um algoritmo importante para a compreensão dos métodos de resolução de sistemas lineares e seu entendimento desmistifica o funcionamento da função lu() utilizada no MATLAB.

3 Espaços Fundamentais de uma Matriz

3.1 Definições:

Estudaremos os 4 subespaços fundamentais de uma matriz. Para todo este estudo, considere A uma matriz $m \times n$ São eles:

- 1. Espaço Coluna, ou Imagem
- 2. Espaço Linha
- 3. Espaço Nulo, ou Núcleo
- 4. Espaço Numo da transposta

3.1.1 Espaço Coluna - Im(A)

O espaço coluna, ou imagem de uma matriz A é o subespaço vetorial gerado pelas colunas da matriz A.

Def:

$$Im(A) = \{v \in \mathbb{R}^m \text{ tal que } A \cdot u = v \text{ para algum } u \in \mathbb{R}^n\}$$

É importante lembrar de alguns conceitos como $Espaços\ e\ Subespaços\ Vetoriais\ e\ Independência\ Linear$, uma vez que nada garante que as m colunas sejam LI e gerem um espaço de dimensão m.

Base para Im(A): podemos fazer uma Eliminação Gaussiana de A e observar quais colunas da matriz U resultante deste processo possuem pivôs. Se as colunas c_i de U possuem pivô, então as colunas c_i de A serão base da Imagem de A. Consegue perceber o por quê?

Observação Importante: $Im(A) \neq Im(U)$

Posto de uma matriz A é a dimensão da Imagem dessa matriz $A \to posto(A) = dim(Im(A))$

3.1.2 Espaço Nulo - N(A)

O espaço nulo de A é o espaço vetorial gerado pelos vetores x tal que $A \cdot x = 0$.

Def:

$$N(A) = \{x \in \mathbb{R}^n \text{ tal que } A \cdot x = 0\}$$

3.1.3 Espaço Linha - $Im(A^T)$

O espaço linha de A é o espaço vetorial gerado pelos vetores linha de A. De modo análogo, é o espaço coluna da matriz transposta de A.

Def:

$$Im(A^T) = \{v \in R^m \text{ tal que } A \cdot u = v \text{ para algum } u \in R^n\}$$

Outra maneira de encontrar o espaço linha de A é, novamente, por meio da Eliminação Gaussiana. Note que, se U for a matriz escalonada da Eliminação Gaussiana, então o espaço linha de U é igual ao espaço linha de U. Isso quer dizer que uma base de $Im(U^T)$ é também base de $Im(A^t)$.

3.1.4 Espaço Nulo da Transposta- $N(A^T)$

O espaço nulo da transposta de A é o espaço vetorial gerado pelos vetores x tal que $A^T \cdot x = 0$.

Def:

$$N(A^T) = \{x \in R^m \text{ tal que } A^T \cdot x = 0\}$$

3.2 Exemplo:

Encontre os 4 espaços fundamentais da matriz abaixo.

$$A = \begin{bmatrix} 1 & 1 & 1 \\ 2 & 2 & 2 \\ 3 & 3 & 3 \end{bmatrix}$$

Para encontrar o espaço coluna de A, vamos escalonar esta matriz. Podemos usar o comando já aprendido [,U] = lu(A), que nos retorna:

$$U = \begin{bmatrix} 3 & 3 & 3 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

Já podemos perceber a existência de apenas 1 pivô, logo $\mathbf{posto}(\mathbf{A}) = \mathbf{dim}(\mathbf{Im}(\mathbf{A})) = 1$. Com além disso, como o pivô está na primeira coluna de U, a base da imagem de A será formada pela primeira coluna de A. Também podemos usar a função colspace(sym(A)) do MATLAB.

$$\beta_{Im(A)} = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}$$

Para o núcleo de A devemos resolver o sistema linear $A \cdot x = 0$ e os vetores x que satisfizerem esta igualdade serão nosso núcleo. Analogamente, e para facilitar nossa vida,

podemos usar o comando B=null(sym(A)), que retorna:

$$B = \begin{pmatrix} -1 & -1 \\ 1 & 0 \\ 0 & 1 \end{pmatrix}$$

Podemos confirmar esta resposta multiplicando A*B e verificando que esta conta dá **zero**.

Base: para verificar que estes vetores nas colunas de B são base do núcleo, devemos verificar que eles são LI. Uma vez confirmado, temos que:

$$\beta_{N(A)} = \left\{ \begin{pmatrix} -1\\1\\0 \end{pmatrix}, \begin{pmatrix} -1\\0\\1 \end{pmatrix} \right\}$$

Observação: note que dim(N(A)) = 2. Isso faz sentido pois, lembrando de Álgebra 1, dim(Im(A)) + dim(N(A)) = n.

Para calcularmos o espaço linha, temos duas opções. Primeiro, transpor a matriz A e calcular a imagem desta nova matriz da maneira já explicada. Por exemplo: colspace(sym(transpose(A))). Outra maneira é realizar a fatoração LU e olhar para as linhas de U, uma vez que $Im(U^T) = Im(A^T)$. Como já temos o resultado da função lu(A), podemos notar que a primeira linha de U é base do espaço linha de U. Logo,

$$\beta_{Im(A^T)} = \begin{pmatrix} 3\\3\\3 \end{pmatrix}$$

Finalmente, para o espaço nulo da transposta, podemos utilizar um processo similar ao cálculo do espaço nulo. Será que null(sym(transpose(A))), que retorna:

$$\begin{pmatrix} -2 & -3 \\ 1 & 0 \\ 0 & 1 \end{pmatrix}$$

Verificamos se estes vetores são, de fato, a base do núcleo da transposta ao verificar que eles satisfazem $transpose(A) \cdot null(symtranspose(A))) = 0$ e que eles são LI. Por fim, temos

$$\beta_{N(A)} = \left\{ \begin{pmatrix} -2\\1\\0 \end{pmatrix}, \begin{pmatrix} -3\\0\\1 \end{pmatrix} \right\}$$

3.3 Conclusão

Neste capítulo foram apresentados os 4 espaços fundamentais de uma matriz qualquer, bem como os procedimentos necessários para calcular estes subespaços vetoriais. Na próxima aula veremos relações de ortogonalidade entre estes subespaços.

4 Ortogonalidade

4.1 Produto Interno

O conceito de produto interno já é comum a nós. Sendo assim, vamos apenas defini-lo brevemente:

DEF: o produto interno entre dois vetores u e v, sendo $u, v \in \mathbb{R}^n$, representado por $u \cdot v$ ou $\langle u, v \rangle$, é definido por

$$\sum_{k=1}^{n} x_k y_k = x_1 y_1 + x_2 y_2 + \dots + x_n y_n$$

Algumas propriedades importantes do produto interno são:

- 1. O produto interno é linear para qualquer argumento $\rightarrow \langle ku, v \rangle = k \langle u, v \rangle, k \in R$ e $\langle u + w, v \rangle = \langle u, v \rangle + \langle w, v \rangle, w \in R^n$
- $2. \langle u, u \rangle \ge 0$
- 3. $\langle u, v \rangle = \langle v, u \rangle$

Nós utilizamos o conceito de produto interno para definir *ortogonalidade* da seguinte maneira.

DEF: dois vetores $u \in v$ são ditos **ortogonais** se e somente se $\langle u, v \rangle = 0$

4.2 Norma

Podemos pensar na norma de um vetor $u \in \mathbb{R}^n$ como o seu "tamanho" ou "comprimento". Para calcular a norma de um vetor, representada por ||u|| sabemos que vale:

$$||u|| = \sqrt{x_1^2 + x_2^2 + \dots + x_n^2}$$

Note, portanto, que podemos expressar a norma de um vetor utilizando o produto interno!

$$||u|| = \sqrt{\langle u, u \rangle}$$

DEF: Normalização de um vetor

Chamamos de normalização de um vetor o processo de dividi-lo pela sua norma com o intuito do vetor resultante possuir norma igual a 1.

$$\left\| \frac{u}{\|u\|} \right\| = 1$$

DEF: dois vetores u e v são ditos **ortonormais** se e somente se $\langle u,v\rangle=0$ e $\|u\|=\|v\|=1$

4.3 Ortogonalidade e Espaços Vetoriais

4.3.1 Espaços Ortogonais

DEF: Dizer que V e W são dois espaços vetoriais ortogonais, ou seja $V \perp W$ é

$$V \perp W \iff \langle v, w \rangle = 0, \forall v \in V, \forall w \in W$$

A discussão de espaços ortogonais é interessante para avaliarmos os espaços fundamentais de uma matriz A, estudados nas últimas aulas. D maneira direta, podemos averiguar que as seguintes duplas de espaços são ortogonais:

- Espaço Coluna Im(A) e Espaço Nulo da Transposta $N(A^t)$
- Espaço Linha $Im(A^t)$ e Núcleo N(A)

4.3.2 Complemento Ortogonal

DEF: Seja V um subespaço de \mathbb{R}^n . O conjunto

$$W = \{ w \in R^n : \langle v, w \rangle = 0, \forall v \in V \}$$

forma um subespaço de \mathbb{R}^n , chamado de complemento ortogonal de V e denotado por V^\perp Propriedades Importantes:

- 1. $dim(V) + dim(V^{\perp}) = n$, sendo n a dimensão de \mathbb{R}^n
- 2. $V \cap V^{\perp} = \emptyset$
- 3. $V \cup V^{\perp} = R^n$

4.4 Conclusão

Neste capítulo foram apresentados conceitos de ortogonalidade, produto interno, norma e complementos ortogonais.

5 Projeções Ortogonais

5.1 Conceitos importantes

Embora seja provável que estes conceitos já sejam bem conhecidos, vamos apenas relembrar o que são produto interno e sua relação com ortogonalidade, a Desigualdade de Cauchy-Schwarz e a Desigualdade Triangular.

Def: o produto interno entre dois vetores u e v pode ser definido como:

$$\langle u, v \rangle = \sum_{k=1}^{n} x_k y_k = x_1 y_1 + x_2 y_2 + \dots + x_n y_n$$

Uma outra maneira de definir o mesmo produto interno é:

$$\langle u, v \rangle = ||u|| \cdot ||v|| \cdot cos(\theta)$$

,

onde ||u|| é a norma do vetor $u \in \theta$ é o ângulo entre os vetores $u \in v$.

A partir desta definição, podemos derivar que dois vetores são ortogonais se e somente se o produto interno entre eles é zero. Isso é justificado por cos(90) = 0.

Def: Desigualdade de Cauchy-Schwarz em \mathbb{R}^n

$$||u \cdot v|| \le ||u|| \cdot ||v||$$

Def: Desigualdade Triangular

$$||u+v|| \le ||u|| + ||v||$$

5.2 Projeção ortogonal sobre um vetor

Imagine que queiramos projetar um vetor v sobre um vetor u. Note que o vetor w da figura 1 abaixo é, justamente, o resultado dessa projeção.

Figura 1: Projeção ortogonal de v em u

Precisamos de duas premissas, as quais são facilmente observadas na figura acima:

$$w = \alpha \cdot u$$
$$\langle u, v - w \rangle = 0$$

A maneira de encontrar, explicitamente, w em função de u e v, com base nessas premissas, está descrita abaixo:

$$\langle u, v - w \rangle = 0$$

$$\langle u, v - \alpha u \rangle = 0$$

$$u \cdot v - \alpha \cdot u \cdot u = 0$$

$$\alpha \cdot u \cdot u = u \cdot v$$

$$\alpha = \frac{u \cdot v}{u \cdot u}$$

Sendo assim, temos:

$$w = \left(\frac{u \cdot v}{u \cdot u}\right) \cdot u$$

Note que o resultado dos produtos internos entre parênteses é um número, garantindo que w e u são paralelos.

5.2.1 Matriz de Projeção sobre o vetor u

Podemos encapsular a projeção ortogonal sobre um vetor u em uma matriz P, da seguinte forma:

$$w = \left(\frac{u \cdot v}{u \cdot u}\right) \cdot u$$

$$= \left(\frac{u^T v}{u^T u}\right) \cdot u$$

$$= u \left(\frac{u^T v}{u^T u}\right)$$

$$= \left(\frac{u u^T}{u^T u}\right) v$$

$$= P \cdot v$$

5.2.2 Exemplo:

Calcule a matriz de projeção sobre o vetor u = (1, -1, 1)

$$P = \left(\frac{uu^T}{u^T u}\right)$$

$$P = \frac{1}{3} \begin{pmatrix} 1\\-1\\1 \end{pmatrix} \begin{pmatrix} 1\\-1\\1 \end{pmatrix} \begin{pmatrix} 1\\-1\\1 \end{pmatrix}$$

$$P = \frac{1}{3} \begin{pmatrix} 1\\-1\\1\\-1\\1 \end{pmatrix}$$

5.2.3 Propriedades:

A matriz P definida possui as seguintes propriedades:

- 1. P é simétrica
- 2. $P^2 = P$
- 3. Posto(P)=1

5.3 Projeção Ortogonal sobre um subespaço qualquer

Considere as matriz A e o vetor b definidos abaixo. Além disso, seja w a projeção ortogonal de b sobre o espaço coluna de A.

$$A = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \\ a_{31} & a_{32} \end{pmatrix}, b = \begin{pmatrix} b_{11} \\ b_{21} \\ b_{31} \end{pmatrix}$$

Figura 2: projeção ortogonal sobre imagem de A

Note que:

- 1. o vetor b-w é ortogonal ao espaço coluna de A
- 2. o vetor $b A\overline{x}$ é ortogonal ao espaço coluna de A, sendo $w = A\overline{x}$.
- 3. Logo, $b A\overline{x} \in \text{Núcleo da Transposta de A}$
- 4. $A^T(b A\overline{x}) = 0$
- 5. $A^Tb = A^TA\overline{x} \to \text{Equação Normal}$

Obs: se as colunas de A são LI, então A^TA é inversível.

Com isso, chegamos na matriz de projeção sobre o espaço coluna de A:

$$P = A \left(A^T A \right)^{-1} A^T$$

5.4 Conclusão

Neste capítulo foram apresentados conceitos projeções ortogonais sobre u vetor e sobre um subespaço vetorial qualquer.

6 Mínimos Quadrados

6.1 Motivação

Como já sabemos, estamos quase sempre interessados em resolver sistemas do tipo Ax = b. No entanto, há casos em que a solução deste sistema é impossível. Por exemplo, se o nosso sistema linear for um sistema linear de equações incompatíveis.

Def: Sistemas lineares incompatíveis são sistemas de m equações e n incógnitas onde m > n. Outra maneira de olhar para essa definição é pensar em matrizes A_{mxn} , as quais possuem m linhas (equações) e n colunas (incógnitas). Sabemos que sistemas desse tipo não possuem solução.

O que fazer, pode ser feito, além de abandonar o problema e ir dormir em paz, é procurar uma solução aproximada de tal modo que o **erro** desta solução seja o menor possível.

Def: o erro de uma solução aproximada de um sistema Ax = b, é definido como:

||Ax - b||, onde b é a solução real e Ax é a solução aproximada.

Perceba que, para casos em que podemos encontrar a solução real do sistema, esse erro é zero, uma vez que Ax = b, logo ||Ax - b|| = 0.

Mas e quando não é possível encontrar a solução?

X	17
1	<i>y</i>
-1	1
1	1
2	3

6.2 Relembrando Projeções Ortogonais

Lembre-se da capítulo passado sobre projeções ortogonais e acrescente um detalhe.

Figura 3: projeção ortogonal sobre imagem de A

No âmbito de minimização de erro, podemos pensar que queremos a menor distância entre a solução real e a aproximada. Sendo assim, a *Projeção Ortogonal* aprendida de mostra muito adequada para esse problema de aproximação.

A própria equação normal $A^T A \overline{x} = A^T b$ relaciona esses valores. Tenha isso em mente.

6.3 Mínimos Quadrados

Uma vez que o sistema linear Ax = b é incompatível, sabemos que $b \notin Col(A)$. Sendo assim, já sabemos que a melhor solução, a que minimiza o erro, será a solução \overline{x} tal que:

$$A\overline{x} = Proj_{Col(A)}b$$

Como vimos na aula anterior, podemos definir uma matriz P de projeção sobre o espaço coluna de A. Utilizando essa informação, chegamos no seguinte sistema:

$$A\overline{x} = Pb$$

Este sistema, agora, é compatível e possui uma solução.

Vejamos, por fim, um exemplo prático de como calcular a melhor reta para um dado conjunto de pontos (regressão linear).

6.3.1 Exemplo:

Encontre a reta que melhor interpola os seguintes pontos:

Dados esses pontos, podemos montar o seguinte sistema linear Ax = y:

$$\begin{pmatrix} 1 & x_1 \\ 1 & x_2 \\ 1 & x_3 \end{pmatrix} \cdot \begin{pmatrix} b \\ a \end{pmatrix} = \begin{pmatrix} y_1 \\ y_2 \\ y_3 \end{pmatrix}$$

$$\begin{pmatrix} 1 & -1 \\ 1 & 1 \\ 1 & 2 \end{pmatrix} \cdot \begin{pmatrix} b \\ a \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \\ 3 \end{pmatrix}$$

Rescrevemos como da seguinte maneira:

$$Ax = y$$
$$A^T A x = A^T y$$

Colocando valores:

$$\begin{pmatrix} 1 & 1 & 1 \\ -1 & 1 & 2 \end{pmatrix} \begin{pmatrix} 1 & -1 \\ 1 & 1 \\ 1 & 2 \end{pmatrix} \cdot \begin{pmatrix} b \\ a \end{pmatrix} = \begin{pmatrix} 1 & 1 & 1 \\ -1 & 1 & 2 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \\ 3 \end{pmatrix}$$

Resolvendo o sistema, encontramos $a = \frac{4}{7}$ e $b = \frac{9}{7}$.

Logo, a reta desejada é: $r(x) = \frac{4}{7} \cdot x + \frac{9}{7}$

6.4 Conclusão

Neste capítulo foi relembrado o conceito de projeções ortogonais sobre um subespaço vetorial qualquer e apresentado o algoritmo de Mínimos Quadrados.

7 Matrizes Ortogonais, Ortogonalização de Grand-Schimdt e Fatoração QR

7.1 Matrizes Ortogonais

Para definir uma matriz ortogonal, precisamos lembrar o que é um conjunto de vetores, ou uma base, se quisermos, ortonormal.

Def: uma base β de vetores de \mathbb{R}^n é dita ortonormal se todos os vetores que a formam possuem, simultaneamente, norma 1 e são ortogonais entre si.

Com essa definição, podemos definir tranquilamente uma Matriz Ortogonal.

Def: Uma Matriz Ortogonal A é uma matriz cujas colunas formam uma base ortonormal.

Algumas propriedades das matrizes ortogonais são importantes para nosso curso.

7.1.1 Propriedades

(1) Toda matriz ortogonal Q satisfaz $Q^TQ=I$. Dessa propriedade, nota-se que $Q^T=Q^{-1}$

Prova: note que uma multiplicação matricial é, de certo modo, um produto interno entre as colunas e linhas das matrizes. Sendo assim, como as colunas de Q são ortonormais, $\langle v_i, v_j^T \rangle = 0 \forall i \neq j$, sendo v_i os vetores da coluna de Q e v_j os vetores linhas de Q^T . A partir disso mostramos que $Q^TQ = I$.

(2) A multiplicação de uma matriz ortogonal por um vetor preserva o comprimento do vetor $\rightarrow ||Qx|| = ||x||$.

Dem:
$$||Qx||^2 = \langle Qx, Qx \rangle = (Qx)^T Qx = x^T Q^T Qx = x^T x = ||x||^2$$

(3)) O ângulo entre vetores se preserva por matriz ortogonal.

Dem:
$$cos\theta = \frac{\langle Qu, Qv \rangle}{||Qu|||Qv|||} = \frac{uQ^TQv}{||u|||v|||} = \frac{u^Tv}{||u|||v|||}$$

7.2 Ortogonalização de Grand Schimdt

O processo de ortogonalização de Grand-Schimdt consiste em uma estratégia para, a partir de uma base qualquer $\{a_1, ..., a_n\}$, obter uma base ortonormal $\{q_1, ..., q^n\}$ para o espaço gerado pela base a. Temos a seguinte construção:

$$a'_{1} = a_{1} \rightarrow q_{1} = \frac{a'_{1}}{||a'_{1}||}$$

$$a'_{2} = a_{2} - (q_{1}^{T}a_{2})q_{1} \rightarrow q_{2} = \frac{a'_{2}}{||a'_{2}||}$$

$$a'_{3} = a_{3} - (q_{1}^{T}a_{3})q_{1} - (q_{2}^{T}a_{3})q_{2} \rightarrow q_{3} = \frac{a'_{3}}{||a'_{3}||}$$

$$a'_{n} = a_{1} - (q_{1}^{T}a_{n})q_{1} - \dots - (q_{n-1}^{T}a_{n})q_{n-1} \rightarrow q_{n} = \frac{a'_{n}}{||a'_{n}||}$$

7.3 Fatoração QR

O processo de ortogonalização de Grand Schimdt nos entrega uma fatoração conhecida como **fatoração** A = QR. Não é difícil imaginar que a matriz Q desta fatoração será a matriz cujas colunas são a base $\{q_1, ..., q^n\}$ obtida no processo de ortogonalização e A é a matriz cujas colunas são a base $\{a_1, ..., a_n\}$.

Antes de definirmos a matriz R, lembremos:

Se $\{q_1,...q^n\}$ é base ortonormal de \mathbb{R}^N e b pertence a esse espaço gerado, então...

$$b = c_1 q_1 + c_2 + q_2 + \dots + c_n q_n$$

onde

$$c_1 = q_1^T b, c_2 = q_2^T b...c_n = q_n^T b$$

Vejamos como construir a matriz R para o caso de uma base do R^3 . Esse procedimento é facilmente generalizado para R^N .

Exemplo: Seja $\{a, b, c\}$ base para o R^3 e $\{q_1, q_2, q^3\}$ base ortonormal obtida via ortogonalização de Grand Schimdt a partir da base $\{a, b, c\}$.

Temos que:

$$a = (q_1^T a)q_1 + (q_2^T a)q_2 + (q_3^T a)q_3 = (q_1^T a)q_1$$

A primeira coluna de R será, então, $(q_1^T a, 0, 0)^T$

$$b = (q_1^T b)q_1 + (q_2^T b)q_2 + (q_3^T b)q_3 = (q_1^T b)q_1 + (q_2^T b)q_2$$

A segunda coluna de R será, então, $(q_1^Ta, q_2^Tb, 0)^T$

$$a = (q_1^T c)q_1 + (q_2^T c)q_2 + (q_3^T c)q_3$$

A terceira coluna de Rserá, então, $(q_1^Ta,q_2^Tb,q_3^Tc)^T$

Logo,
$$R = \begin{pmatrix} q_1^T a & q_1^T a & q_1^T a \\ 0 & q_2^T b & , q_2^T b \\ 0 & 0 & q_3^T c \end{pmatrix}$$

7.4 Conclusão

Neste capítulo apresentados os conceitos de Matriz Ortogonal, Processo de Ortogonalização de Grand-Schimdt e Fatoração A=QR.

8 Polinômio Característico e Teorema de Cayley Hamilton

8.1 Polinômio Característico

O polinômio característico de uma matriz é um conceito de extrema importância para a Álgebra Linear. É a partir dele que poderemos definir os conceitos de autovalores e autovetores, que, por sua vez, também são muito importantes. Esses conceitos surgem nas mais variadas aplicações, desde diagonalização de matriz e transformações lineares até cálculo funcional e sistemas de equações de diferenças.

Dito isso, passeamos para a definição de polinômio característico.

Def: seja A uma matriz quadrada de dimensões nxn. O polinômio característico dessa matriz é definido como:

$$p(\lambda) = det(\lambda I - A)$$
, onde I é a matriz Identidade de $R^n, \lambda \in R$

Ex: Calcule o polinômio característico da matriz A abaixo:

$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$
$$det(\lambda I - A) = det \begin{pmatrix} \lambda - a & b \\ c & \lambda - d \end{pmatrix} =$$
$$= (\lambda - a)(\lambda - d) - cb$$
$$= \lambda^2 - (a + d)\lambda + (ad - bc)$$

Podemos fazer alguns comentários interessantes sobre esse resultado:

1. O último termo entre parênteses é o determinante da matriz A original.

2.
$$p(0) = det(0 \cdot I - A) = det(-A) = det(A \cdot (-I)) = det(A) \cdot det(-I) = det(A) \cdot (-1)^n$$

8.2 Teorema de Cayley Hamilton

O teorema de Cayley Hamilton é simples de ser demonstrado e diz o seguinte:

Def: Se A é uma matriz quadrada nxn e $p(\lambda)$ seu polinômio característico, então p(A) = 0.

Demonstração:

$$p(\lambda) = det(\lambda I - A)$$

$$p(A) = det(A \cdot I - A) = det(0) = 0$$

Esse teorema possui algumas aplicações interessantes que justificam seu estudo. Vejamos duas delas.

8.2.1 Aplicação 1 - Cálculo da Inversa

Vamos direto para um exemplo. Seja a matriz A abaixo. Calcule sua inversa via Teorema de Cayley Hamilton.

$$A = \begin{pmatrix} 1 & -1 \\ 2 & 4 \end{pmatrix}$$

Temos que o polinômio característico dessa matriz é $p(\lambda) = \lambda^2 - 5\lambda + 6$.

A partir de $p(\lambda)$ podemos verificar facilmente que a matriz A é inversível uma vez que o termo independente do polinômio, que corresponde ao determinante de A é diferente de 0. Aplicando o Teorema de Cayley Hamilton temos a seguinte equação. Note que precisamos multiplicar o termo independente pela matriz identidade para a equação fazer sentido!

$$p(A) = 0 \to A^2 - 5A + 6I = 0$$

Desenvolvendo...

$$A^{2} - 5A = -6I$$

$$A^{-1}(A^{2} - 5A) = -6A^{-1}I$$

$$A - 5I = -6A^{-1}$$

$$A^{-1} = -\frac{1}{6}(A - 5I)$$

Calculando a inversa do enunciado temos a seguinte resposta:

$$A^{-1} = \frac{1}{6} \begin{pmatrix} 4 & 1 \\ -2 & 1 \end{pmatrix}$$

Sabendo que a demonstração genérica do cálculo da matriz inversa via Teorema de Cayley Hamilton não é difícil, ela ficará como um desafio para quem quiser! Qualquer dúvida, não hesite em entrar em contato comigo.

8.2.2 Aplicação 2 - Divisão de Polinômios

Vejamos como o conhecimento desse Teorema, somado À divisão de polinômios, nos tora capazes de simplificar a aplicação de um polinômio qualquer em A.

Considere $p_2(\lambda) = \lambda^r + a_{r-1}\lambda^{r-1} + ... + a_0$ um polinômio qualquer. Podemos simplificar o cálculo de $p_2(A)$ da seguinte forma:

$$p_2(A) = p(A) \cdot q + s$$

A equação acima é a expressão de uma divisão de polinômios, sendo p(A) o polinômio característico de A aplicado em A, o que resulta em 0, obviamente, q é o quociente e s é o resto da divisão. Lembremo-nos que o grau de $p_2(A)$ é r, de p(A) é n, de q é r-n e de s é menor que n.

A partir da aplicação do Teorema de Cayley Hamilton, teremos:

$$p_2(A) = p(A) \cdot q + s = 0q + s = s$$

Vamos a um exemplo!

Seja A a matriz abaixo, $p(\lambda)$ seu polinômio característico e $p_2(\lambda)$ um polinômio definido abaixo. Calculemos $p_2(A)$.

$$A = \begin{pmatrix} 1 & -1 \\ 2 & 4 \end{pmatrix}$$
$$p(\lambda) = \lambda^2 - 5\lambda + 6$$
$$p_2 \lambda = \lambda^7 - 5\lambda^6 + 6\lambda^5 - 2\lambda^3 + 11\lambda^2 - 16\lambda + 5$$

A imagem abaixo exibe o cálculo de $p_2(\lambda)$ simplificado. Peço perdão pela letra...

$$P_{2}(\lambda) = P(\lambda) \cdot q(\lambda) + S(\lambda)$$

$$\lambda - 5\lambda + 6\lambda - 2\lambda^{3} + 11\lambda^{2} - 16\lambda + 5$$

$$- \lambda^{7} + 5\lambda^{6} - 6\lambda^{5}$$

$$0 + 2\lambda^{3} - 10\lambda^{2} + 12\lambda$$

$$\lambda^{2} - 4\lambda + 5$$

$$- \lambda^{2} + 5\lambda - 6$$

$$+ \lambda - 1 = S(\lambda)$$

Figura 4: Cálculo de $q(\lambda)$ e $s(\lambda)$

Com isso, temos que $p_2(\lambda) = \lambda - 1$.

Logo,
$$p_2(A) = A - 1I = \begin{pmatrix} 0 & -1 \\ 2 & 3 \end{pmatrix}$$

8.3 Conclusão

Neste capítulo apresentados os conceitos de Polinômio Característico e Teorema de Cayley Hamilton, além de estudadas algumas aplicações importantes desse teorema. Em seguida, veremos as definições de autovalores e autovetores, uma aula que eu costumo chamar, informalmente, de "autotudo".

9 Auto-Tudo

9.1 Autovalores e Autovetores

Como esses conceitos são apresentados e bem trabalhados em Álgebra Linear 1, podemos partir direto para a definição.

Def: seja A uma transformação linear de R^n para R_n . Chamamos de autovalor o número real λ que satisfaz:

$$T(v) = \lambda v$$

Além disso, chamamos v de autovetor associado ao autovalor λ .

A partir dessas definições, podemos, em seguida, definir o conceito de subespaço característico.

Def: o conjunto de todos os autovetores de A associados a um autovalor λ é denominado subespaço característico de A associado a λ , também representado por A_{λ} .

Dado o nome deste subespaço vetorial, podemos supor que o polinômio característico da matriz A possui alguma relação com seus autovalores e autovetores. Essa relação se dá pelo fato de que as raízes do polinômio característico de A, $p(\lambda) = 0$ são, justamente, os autovalores de A. Note que, devido a essa maneira de calcular os autovalores, sabemos que uma matriz A de dimensões $n \times n$ terá sempre, no máximo, n autovalores. Com os autovalores em mãos, a maneira mais trivial de calcular os autovetores associados é por meio da própria definição de autovetor.

Além disso, os autovetores v_i estão associados aos autovalores λ_i da seguinte forma:

$$(\lambda_i I - A)v_i = 0$$

o que é o mesmo que dizer que...

$$v_i \in Nucleo(\lambda_i I - A)$$

Apresentemos mais algumas definições importantes conhecidas como multiplicidades.

Def: Multiplicidade Algébrica de λ corresponde à quantidade de raízes de $p(\lambda)$ que são iguais a λ .

Def: Multiplicidade Geométrica de λ corresponde à dimensão do autoespaço A_{λ} .

Exemplos: vejamos os autovalores, autovetores e multiplicidades das matrizes a seguir.

$$A = \begin{pmatrix} 10 & -9 \\ 4 & -2 \end{pmatrix}$$

Calculando as raízes de seu polinômio característico encontramos $\lambda_1 = \lambda_2 = 4$. Aplicando a definição, achamos o autovetor associado a esse autovalor $v_1 = [1, 2]^T$.

Logo, a multiplicidade algébrica do autovalor 2 é 2, uma vez que sã duas raízes iguais a 2 e a multiplicidade geométrica é igual a 1, pois há apenas 1 autovetor.

$$A = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

Calculando as raízes de seu polinômio característico encontramos $\lambda_1 = \lambda_2 = 1$. Aplicando a definição, achamos os autovetores associados a esses autovalores $v_1 = [1, 0]^T$ e $v_2 = [0, 1]^T$.

Logo, a multiplicidade algébrica do autovalor 1 é 2, uma vez que sã duas raízes iguais a 2 e a multiplicidade geométrica é igual a 2, pois há 2 autovetores LI.

9.2 Diagonalização

Novamente, vamos direto para a definição.

Def: uma matriz $A_{n\times n}$ é dita diagonalizável se existe uma matriz P tal que $P^{-1}AP = D$, onde D é uma matriz diagonal.

Se A possui apenas autovetores LI, então:

$$P = \begin{pmatrix} | & | & | \\ v_1 & v_2 & v_n \\ | & | & | \end{pmatrix} \text{ e } D = \begin{pmatrix} \lambda_1 & 0 & 0 \\ 0 & \lambda_2 & 0 \\ 0 & 0 & \lambda_n \end{pmatrix}$$

O procedimento para encontrar a diagonalização de uma matriz A é:

- 1. Encontrar os autovetores LI de A, se houver
- 2. Construir a matriz P com esses autovetores nas colunas
- 3. Construir a matriz D como $P^{-1}AP$.

Vamos enumerar, e não demonstrar, alguns teoremas importantes.

Teorema: Se $A_{n\times n}$ é quadrada, então são equivalentes as seguintes proposições:

- 1. A é diagonalizável
- 2. A possui n autovalores LI, ou seja, A = MG
- 3. $R^n = A_{\lambda 1} + A_{\lambda 2} + ... + A_{\lambda n}$

Teorema: se todos os autovalores de A são distintos, então A é diagonalizável.

Teorema: Os autovetores associados a autovalores distintos são LI.

9.3 Potência de Matrizes

O conhecimento do conceito de autovalor é um enorme facilitador para o cálculo de potência de matrizes. Vejamos o motivo.

Partindo da definição de uma matriz diagonal, vamos mostrar como calcular A^2 .

$$A = PDP^{-1}$$

$$A^{2} = (PDP^{-1})^{2}$$

$$A^{2} = PDP^{-1}PDP^{-1}$$

$$A^{2} = PDDP^{-1}$$

$$A^{2} = PD^{2}P^{-1}$$

Podemos, facilmente, generalizar: $A^n = PD^nP^{-1}$.

Outra pergunta interessante é: quais os autovalores de A^n ?

A demonstração é muito simples e similar à intuição dada pela potência de matriz acima, então me abstenho que realizá-la aqui. Sendo assim, respondemos que os autovalores de A^n são iguais a λ^n , sendo λ os autovalores de A.

9.4 Conclusão

Neste capítulo foram apresentados os conceitos de Autovalores e Autovetores, além de algumas aplicações desses conceitos, como a Diagonalização de Matrizes. Nas próximas aulas todos esses conceitos serão muito utilizados para estudarmos cálculo funcional.

10 Cálculo Funcional: Caso Diagonalizável

10.1 Algumas Definições

Considere uma matriz quadrada $A_{n\times n}$. O cálculo funcional associa, a cada função, uma matriz f(A). Por exemplo, seja $f: R \to R$ a função exponencial $f(x) = e^x$. Se A for nossa matriz, quanto vale $f(A) = e^A$?

Como não é ementa deste curso, vamos apenas definir uma série de potências e a Série de Taylor, bem como fornecer as séries de Taylor para algumas funções usuais. Para mais informações em relação a essas séries, a disciplina de Cálculo 4 é a ideal.

Def: Série de Potências é definida por

$$f(x) = \sum_{n=0}^{\inf} a_n x^n$$

Def: Série de Taylor de uma função f(x) é definida como

$$f(x) = \sum_{n=0}^{\inf} \frac{f^n(x_0)}{n!} (x - x_0)n$$

onde $f^n(x)$ é a n-ésima derivada de f(x) em relação a x.

Temos, por exemplo, que a série de Taylor para as funções exponencial, seno e cosseno é:

$$e^{x} = \sum_{n=0}^{\inf} \frac{1}{n!} x^{n} = 1 + x + \frac{1}{2!} x^{2} + \frac{1}{3!} x^{3} + \dots$$

$$sen(x) = \sum_{n=0}^{\inf} \frac{(-1)^{n}}{(2n+1)!} x^{2n+1}$$

$$cos(x) = \sum_{n=0}^{\inf} \frac{(-1)^{n}}{(2n)!} x^{2n}$$

Uma vez definidas essas séries para algumas funções, podemos nos perguntar, novamente, como calcular a exponencial de A. No entanto, podemos responder essa pergunta de uma forma um pouco mais adequada.

$$e^{A} = I + A + \frac{1}{2!}A^{2} + \frac{1}{3!}A^{3} + \dots + \frac{1}{n!}A^{n} + \dots$$

A partir dessa expressão, podemos calcular "facilmente" a exponencial de uma matriz! Para, de fato, facilitar nossos cálculos, vejamos o caso em que A é uma matriz diagonalizável.

10.2 Caso Diagonalizável

Seja $A_{n\times n}$ uma matriz quadrada diagonalizável. Ou seja, temos $A=SDS^{-1}$. Adicionando essa informação à série de Taylor da exponencial, teremos o seguinte:

$$\begin{split} e^A &= I + A + \frac{1}{2!}A^2 + \frac{1}{3!}A^3 + \ldots + \frac{1}{n!}A^n + \ldots \\ e^A &= I + SDS^{-1} + \frac{1}{2!}SDS^{-1}SDS^{-1} + \frac{1}{3!}SDS^{-1}SDS^{-1}SDS^{-1} + \ldots + \frac{1}{n!}(SDS^{-1})^n + \ldots \\ e^A &= SIS^{-1} + SDS^{-1} + \frac{1}{2!}SD^2S^{-1} + \frac{1}{3!}SD^3S^{-1} + \ldots + \frac{1}{n!}SD^nS^{-1} + \ldots \\ e^A &= S(I + D + \frac{1}{2!}D^2 + \frac{1}{3!}D^3 + \ldots) \\ e^A &= Se^DS - 1 \end{split}$$

Sabemos calcular e^D , basta aplicar a função exponencial nas entradas da diagonal principal, fazendo e^{λ_i} . Além disso, também sabemos calcular a matriz S, basta pssuirmos os autovetores de A.

De forma geral, se f está definida para os autovalores de A e A é diagonalizável, então:

$$f(A) = Sf(D)S^{-1}$$

Para finalizar, enumeremos algumas observações importantes:

- Se λ é autovalor de A, então e^{λ} é autovalor de e^{A}
- $det(e^A) = e_1^{\lambda} e_2^{\lambda} ... e_n^{\lambda} = e^{(\lambda_1 + \lambda_2 + ... + \lambda_n)} = e^{tr(A)}$
- e^A é sempre inversível, pois $det(e^A) \neq 0$

10.3 Conclusão

Neste capítulo foram apresentados os conceitos de cálculo funcional e a explicação de seu caso diagonaizável. Note que ganhamos um ferramental poderoso, pois podemos aplicar (quase) qualquer função a uma matriz. Nas próximas aulas continuaremos explorando o cálculo funcional.

11 Cálculo Funcional: Caso Não Diagonalizável

11.1 Lembrando a aula anterior

Na última semana foi discutido o cálculo funcional em seu caso diagonalizável. Lembremos:

Dada f uma função definida nos autovalores de $A_{n\times n}$ e $f(x) = \sum_{i=0}^{\inf} a_i x^i$, então, $f(A) = a_0 I + a_1 A + a_2 A^2 + \dots$

Se
$$A = SDS^{-1}$$
, então $f(A) = Sf(D)S^{-1}$.

11.2 Caso não diagonalizável

Para calcular f(A), sendo $A_{n\times n}$ uma matriz não diagonalizável, seguiremos o seguinte algoritmo:

- 1. Determinar $p(\lambda) = (\lambda I A)$
- 2. Determinar os autovalores de A com suas respectivas multiplicidades
- 3. Determinar o polinômio q de grau n-1, tal que, para cada autovalor λ_i :

$$q(\lambda_i) = f(\lambda_i)$$

$$q'(\lambda_i) = f'(\lambda_i)$$

$$q^{m_i-1}(\lambda_i) = f^{m_i-1}(\lambda_i)$$

, onde m_i é a multiplicidade de λ_i

4.
$$f(A) = q(A)$$

11.2.1 Exemplo 1

Seja A a matriz abaixo. Calcule f(A) sabendo que $f(x) = x^{150}$.

$$A = \begin{pmatrix} 3 & 1 \\ 0 & 3 \end{pmatrix}$$

Solução:

É fácil calcular que os autovalores de A são $\lambda_1 = 3$ com multiplicidade $m_1 = 2$.

Neste caso, temos n=2, logo o polinômio q terá grau n-1=2-1=1: q(x)=ax+b. Precisamos calcular a e b.

Sabemos que

$$\begin{cases} q(3) = f(3) \\ q'(3) = f'(3) \end{cases}$$

Com isso, temos:

$$\begin{cases} 3a + b = 3^{150} \\ a = 150 \cdot 3^{149} \end{cases}$$

Bastam algumas contas para calcular a e b e teremos nosso polinômio:

$$q(x) = 150 \cdot 3^{149} \cdot x - 149 \cdot 3^{150}$$

Por fim, fazemos f(A) = q(A):

$$A^{150} = 150 \cdot 3^{149} \cdot A - 149 \cdot 3^{150} \cdot I$$
$$A^{150} = \begin{pmatrix} 1 \cdot 3^{150} & 150 \cdot 3^{149} \\ 0 & 3^{150} \end{pmatrix}$$

11.3 Justificativa Intuitiva

Vejamos uma justificativa pouco formal, para o fato de f(A) = q(A). Se f for um polinômio, temos que:

$$h(x) = f(x) - q(x)$$

$$h(\lambda_i) = h'(\lambda_i) = \dots = h^{m_i - 1}(\lambda_i) = 0 \text{ pois } h(\lambda_i) = f(\lambda_i) - q(\lambda_i)$$

Note que todos os autovalores são raízes de h(x), logo,

$$h(x) = p(x) \cdot k(x)$$

 $h(A) = p(A) \cdot k(A) = 0$ lembre-se que $p(A)=0$
 $f(A) - q(A) = 0$
 $f(A) = q(A)$

Se f não for um polinômio, sabemos que ela pode ser aproximada por um, via Série de Taylor, por exemplo. Com isso, podemos descrever uma justificativa similar para verificar que a propriedade f(A) = q(A) vale.

11.4 Conclusão

Neste capítulo foi o cálculo funcional para o caso diagonalisável e apresentado o caso não diagonalizável. Nas próximas aulas entraremos em sistemas de equações de diferenças.

12 Sistema de Equações de Diferenças

12.1 Equações de Diferenças

Um sistema de equações de diferenças está associado à problemas do mundo discreto, onde temos informações pontuais de um sistema qualquer, em vez de informações contínuas. O exemplo que será abordado é o crescimento populacional.

Considere a equação:

$$y_{k+1} = f(y, k)$$
 onde $k \in N$

A equação acima é uma equação de diferenças de **primeira ordem**, pois o valor y_{k+1} depende apenas de y_k . Logo, uma equação de ordem n é definida pelo fato de y_{k+1} depender de n valores anteriores.

Ex: a equação $y_{k+1}=c\cdot y_k$, onde $k\in N$ e $c\in R$ possui solução da forma da sequência $y_1,y_2,y_3,...$

Estamos interessados em buscar a solução geral da equação e avaliar seu comportamento quando $k \to \infty$.

Para este exemplo, temos:

$$y_1 = c \cdot y_0$$

$$y_2 = c \cdot y_1 = c^2 \cdot y_0$$

$$y_k = c \cdot y_{k-1} = c^k \cdot y_0$$

Logo, avaliando no limite:

$$\lim_{k \to \infty} y_k = \begin{cases} 0, \text{ se } |c| < 1\\ y_0, \text{ se } c = 1\\ \beta, \text{ se caso contrário} \end{cases}$$

12.2 Sistema de Equação de Diferenças

Podemos generalizar a definição de uma equação de diferenças, passando a enxergar y_k não mais como um valor único, mas um vetor coluna de valores u_k :

$$u_{k+1} = A \cdot u_k$$

onde A é uma matriz $n \times n$ e $u_k \in \mathbb{R}^n$.

Dito isso, já sabemos que a solução geral é:

$$u_{k+1} = A^k \cdot u_0$$

12.2.1 Exemplos

Considere que, a cada ano, 10% da população do Estado do Rio se ,uda para a capital e 20% da população da capital se muda para outra cidade do estado.

(a) Determine o sistema que modela a situação

Podemos construir o seguinte vetor coluna $u_k = (y_k, z_k)^T$ onde y_k é a população do estado e z^k é a população da capital e k é o ano. Com as informações do enunciado, podemos construir o seguinte sistema:

$$\begin{cases} y + k + 1 = 0.9 \cdot y_k + 0.2 \cdot z_k \\ zk + 1 = 0.1 \cdot y_k + 0.8 \cdot z_k \end{cases}$$

Pense e veja se você concorda com essas equações antes de continuar! Montar corretamente o sistema é essencial!

Podemos, então, reescrever o sistema como: $u_{k+1} \begin{pmatrix} 0.9 & 0.2 \\ 0.1 & 0.8 \end{pmatrix} u_k$

(b) A população em 2019 era de y=15 e z=7 milhões. Qual será a população nos próximos anos?

$$u_1 = \begin{pmatrix} 0.9 & 0.2 \\ 0.1 & 0.8 \end{pmatrix} \begin{pmatrix} 15 \\ 7 \end{pmatrix} = \begin{pmatrix} 14.9 \\ 7.1 \end{pmatrix}$$
$$u_2 = \begin{pmatrix} 0.9 & 0.2 \\ 0.1 & 0.8 \end{pmatrix} \begin{pmatrix} 14.9 \\ 7.1 \end{pmatrix} = \begin{pmatrix} 14.83 \\ 7.17 \end{pmatrix}$$

(c) Estude o comportamento do sistema quando $t \to \infty$.

A estratégia para essa análise está expressa nos passos a seguir:

$$u_{k+1} = A^{k} u_{0}$$

$$u_{k+1} = SD^{K} S^{-1} u_{0}$$

$$u_{k+1} = S \begin{pmatrix} \lambda_{1}^{k} & 0 \\ 0 & \lambda_{2}^{k} \end{pmatrix} S^{-1} u_{0}$$

O polinômio característico de A é $p(\lambda) = \lambda^2 - 1.7\lambda + 0.7$. Com ele, calculamos $\lambda_1 = 1$, $\lambda_2 = 0.7$, $v_1 = \begin{pmatrix} 2/3 \\ 1/3 \end{pmatrix}$ e $v_2 = \begin{pmatrix} 1/3 \\ -1/3 \end{pmatrix}$.

Com esses valores em mãos:

$$A^{k} = \begin{pmatrix} 2/3 & 1/3 \\ 1/3 & -1/3 \end{pmatrix} \begin{pmatrix} 1^{k} & 0 \\ 0 & 0.7^{k} \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 1 & -2 \end{pmatrix}$$

Portanto,

$$U_{k+1} = \begin{pmatrix} 2/3 & 1/3 \\ 1/3 & -1/3 \end{pmatrix} \begin{pmatrix} 1^k & 0 \\ 0 & 0.7^k \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 1 & -2 \end{pmatrix} \begin{pmatrix} y_0 \\ z_0 \end{pmatrix} = \dots$$
$$u_{k+1} = (y_0 + z + 0) \begin{pmatrix} 2/3 \\ 1/3 \end{pmatrix} + 0.7^k (y_0 - 2z_0) \begin{pmatrix} 1/3 \\ -1/3 \end{pmatrix}$$

Finalmente, avaliando o limite, temos:

$$\lim_{k \to \infty} u_k = (y_0 + z_0) \begin{pmatrix} 2/3 \\ 1/3 \end{pmatrix}$$

12.2.2 Comentários Importantes

Podemos enumerar algumas considerações importantes sobre um sistema de equações de diferenças, principalmente em relação a sua estabilidade.

Note que
$$u_k = c_1 \lambda_1^k v_1 + c_2 \lambda_2^k v_2$$
.
O sistema $u + +1 = A^k u_k$ é:

- 1. Assintoticamente estável se $|\lambda_i| < 1, \forall i$.
- 2. Estável se $\exists j$, tal que $|\lambda_j| = 1$ e $|\lambda_j| < 1$ para os demais j.
- 3. Instável se $|\lambda_1| > 1$ para algum i.

12.3 Crescimento Populacional

Imagine que uma população de coelhos que possuem idade máxima de 15 anos. Dividimos a população em 3 faixas etárias: [0,5], [5,10], [10,15]. Sabemos que:

- 50% de [0,5] sobrevive
- 25% de [5, 10] sobrevive
- De [0, 5] não há reprodução.
- De [5, 10] nascem 4 filhotes por fêmea.
- De [10, 15] nascem 3 filhotes por fêmea.
- (a) Monte o sistema

$$\begin{pmatrix}
0 & 4 & 3 \\
1/2 & 0 & 0 \\
0 & 1/4 & 0
\end{pmatrix}$$

A matriz acima é chamada **Matriz de Leslie** e descreve a evolução da população. As colunas e linhas se referem, da esquerda para direita e de cima para baixo, às faixas etárias [0,5],[5,10],[10,15] respectivamente. Sendo assim, a primeira linha traz a informação do número de filhotes novos, pois é a linha da faixa de [0,5]. As demais mostram quantos sobrevivem de uma faixa para outra. O número 1/2 na primeira coluna ([0,5]) e segunda linha ([5,10]) quer dizer que 50% dos coelhos vivem entre as faixas de [0,5] e [5,10].

(b) Sendo a população inicial composta de 100 coelhos em cada fase, calcule a população depois de uma geração.

$$u_1 = \begin{pmatrix} 0 & 4 & 3 \\ 1/2 & 0 & 0 \\ 0 & 1/4 & 0 \end{pmatrix} \begin{pmatrix} 100 \\ 100 \\ 100 \end{pmatrix} = \begin{pmatrix} 700 \\ 50 \\ 25 \end{pmatrix}$$

(c) Calcule mais uma geração.

$$u_2 = \begin{pmatrix} 0 & 4 & 3 \\ 1/2 & 0 & 0 \\ 0 & 1/4 & 0 \end{pmatrix} \begin{pmatrix} 700 \\ 50 \\ 25 \end{pmatrix} = \begin{pmatrix} 1437, 5 \\ 137, 5 \\ 87, 5 \end{pmatrix}$$

(d) Estude o limite do sistema

Ao calcular as raízes do polinômio característico da Matriz de Leslie do sistema, obtemos $\lambda_1=3/2,\ \lambda_2=(-3+\sqrt{5})/4$ e $\lambda_3=(-3-\sqrt{5})/4$.

Como o sistema possui um autovalor de módulo maior que 1, ele será instável. Sendo assim, $\lim_{k\to\infty}u_k=\infty$

Como o maior autovalor é 3/2, será o seu autovetor associado que dominará o sistema no limite do infinito. Será o vetor $\begin{pmatrix} 1\\1/3\\1/18 \end{pmatrix}$ que ditará a proporção da quantidade de coelhos com o crescimento da população.

12.4 Conclusão

Neste capítulo foi apresentado o conceito de equações de diferenças e os sistemas de equações de equações de diferenças. Foi apresentada, também, a aplicação dessa teoria em problemas de crescimento populacional. Na próxima, e última, aula veremos as Cadeias de Markov, que são um tipo de sistema de equações de diferenças.

13 Cadeias de Markov

13.1 Definição e Apresentação

Def: Se o estado de um sistema em k+1 pode ser previsto, unicamente, a partir do estado em k, então o processo de mudança de estados do sistema é denominado Cadeia $de\ Markov$.

O que esta definição quer dizer que, uma cadeia de Marvok é um sistema de equação de diferenças de primeira ordem, no qual o valor de u_{k+1} , para utilizar a mesma notação já conhecida, pode ser previsto se soubermos o valor de u_k .

Definimos o sistema de equações de uma Cadeia de Markov como:

$$u_{k+1} = P \cdot u_k$$

onde P é a matriz de transição de estados do sistema.

Cada entrada p_{ij} da matriz de transição P é a probabilidade que o sistema possui de ir do estado j para o estado i, ou seja, $0 \le p_{ij} \le 1$. Além disso, a soma dos elementos de cada coluna de P deve ser exatamente 1. Você consegue perceber essa necessidade? Toda matriz P com essas características é denominada Matriz de Markov.

13.1.1 Exemplo

Uma locadora de carro possui 3 lojas, A, B e C em uma cidade qualquer. Um cliente pode alugar um carro em qualquer loja. Considere que, se um carro for alocado na loja:

- A
- -80% devolve em A
- -10% devolve em B
- 10% devolve em C
- B
- 30% devolve em A
- 20% devolve em B
- -50% devolve em C
- C
- -20% devolve em A
- 60% devolve em B
- -20% devolve em C

(a) Determine a matriz de Transição P.

Construiremos a matriz assumindo as colunas como as lojas de locação e as linhas como as lojas de devolução, isto é, as colunas, da esquerda para a direita, são as lojas A, B e C enquanto as linhas, de cima para baixo são as lojas A, B e C.

$$P = \begin{pmatrix} 0.8 & 0.3 & 0.2 \\ 0.1 & 0.2 & 0.6 \\ 0.1 & 0.5 & 0.2 \end{pmatrix}$$

Note, por exemplo, que a etrada $p_{1,1}$ quer dizer que 80% dos carros alugados em A são devolvidos em A. A entrada $p_{3,2}$, por outro lado, mostra que 50% dos carros alugados em B são devolvidos em C.

(b) Se um carro for alugado em B, determine, ao longo do tempo, a distribuição de probabilidade dele estar em cada uma das lojas.

Vamos definir nosso vetor $u_0 = (0, 1, 0)^T$, o que quer dizer que há 100% de probabilidade do carro estar na loja B, onde ele foi alugado.

Sabemos que $u_{k+1} = P \cdot u_k$, sendo u_{k+1} o vetor das probabilidades do carro estar em cada uma das lojas. Como as contas são fáceis, exibimos apenas alguns resultados.

$$u_2 = \begin{pmatrix} 0.4 \\ 0.37 \\ 0.23 \end{pmatrix}, u_3 = \begin{pmatrix} 0.477 \\ 0.252 \\ 0.271 \end{pmatrix}, u_{11} = \begin{pmatrix} 0.577 \\ 0.23 \\ 0.213 \end{pmatrix}$$

(c) Qual o comportamento de u_k quando $k \to \infty$?

Precisamos calcular os autovalores de P e descobrir o autovetor associado ao maior autovalor em módulo. Novamente, mostramos os resultados:

$$\lambda_1 = 1, \lambda_2 = 0.54, \lambda_3 = -0.34$$

O autovetor associado ao autovalor $\lambda_1 = 1$ é $v_1 = (0.87, 0.36, 0.33)^T$.

Logo, $\lim_{k\to\infty} u + k = v_1 = (0.87, 0.36, 0.33)^T$.

Já sabemos que o estado estacionário do sistema ocorre em $A \cdot v_1 = v_1$.

13.1.2 Propriedades da Matriz de Markov

- 1. A matriz de Markov é não negativa e os elementos da colunas somam 1
- 2. $\lambda = 1$ é autovalor de P
- 3. v_1 é não negativo e corresponde ao estado estacionário
- 4. Os autovalores restantes satisfazem $|\lambda_i| \leq 1$

13.2 Conclusão

Neste (último) capítulo foi apresentado o conceito de Cadeias de Markov. De certo modo, nada muito novo foi aprendido, uma vez que essa cadeia é um sistema de equações de diferenças. Com essa aula, finalizamos o curso de MAT1202. Espero que este material tenha sido útil!