Københavns Universitet. Økonomisk Institut

2. årsprøve 2014 S-2DM ex ret

Skriftlig eksamen i Dynamiske Modeller

Fredag den 24. januar 2014

Rettevejledning

Opgave 1. For ethvert $a \in \mathbb{C}$ betragter vi fjerdegradspolynomiet $P_a : \mathbb{C} \to \mathbb{C}$, som er givet ved forskriften

$$\forall z \in \mathbf{C} : P_a(z) = z^4 + (5-a)z^3 + (8-5a)z^2 + (4-8a)z - 4a.$$

Desuden betragter vi differentialligningerne

(*)
$$\frac{d^4x}{dt^4} + (5-a)\frac{d^3x}{dt^3} + (8-5a)\frac{d^2x}{dt^2} + (4-8a)\frac{dx}{dt} - 4ax = 0$$

og

$$\frac{d^4x}{dt^4} + 4\frac{d^3x}{dt^3} + 3\frac{d^2x}{dt^2} - 4\frac{dx}{dt} - 4x = 48e^{2t}.$$

(1) Vis, at tallene z = -1 og z = a er rødder i polynomiet P_a .

Løsning. Ved indsættelse af tallene z = -1 og z = a i polynomiet P_a ser vi, at disse tal er rødder i dette polynomium.

(2) Bestem samtlige rødder i polynomiet P_a for et vilkårligt $a \in \mathbb{C}$, og angiv røddernes multiplicitet.

Løsning. Ved polynomiers division finder vi, at

$$\forall z \in \mathbf{C} : P_a(z) = (z+1)(z-a)(z^2+4z+4),$$

og vi ser dernæst, at polynomiet $P(z) = z^2 + 4z + 4$ har dobbeltroden z = -2.

Heraf får vi følgende: Hvis $a \neq -1$ og $a \neq -2$, har polynomiet P_a rødderne -1, -2 og a med multipliciteterne 1, 2 og 1.

Hvis a=-1, har polynomiet P_a rødderne -1 og -2, som begge har multipliciteten 2.

Hvis a = -2, har polynomiet P_a rødderne -1 og -2 med multipliciterne 1 og 3.

(3) Bestem den fuldstændige løsning til differentialligningen (*) for ethvert $a \in \mathbf{R}$.

Løsning. Hvis $a \neq -1$ og $a \neq -2$, er den fuldstændige løsning til differentialligningen (*):

$$x = c_1 e^{-t} + c_2 e^{-2t} + c_3 t e^{-2t} + c_4 e^{at}$$
, hvor $c_1, c_2, c_3, c_4 \in \mathbf{R}$.

Hvis a = -1, er den fuldstændige løsning til differentialligningen (*):

$$x = c_1 e^{-t} + c_2 e^{-2t} + c_3 t e^{-2t} + c_4 t e^{-t}$$
, hvor $c_1, c_2, c_3, c_4 \in \mathbf{R}$.

Hvis a = -2, er den fuldstændige løsning til differentialligningen (*):

$$x = c_1 e^{-t} + c_2 e^{-2t} + c_3 t e^{-2t} + c_4 t^2 e^{-2t}$$
, hvor $c_1, c_2, c_3, c_4 \in \mathbf{R}$.

(4) For hvilke $a \in \mathbf{R}$ er differentialligningen (*) globalt asymptotisk stabil?

Løsning. Differentialligningen (*) er globalt asymptotisk stabil, hvis og kun hvis a < 0.

(5) Bestem den fuldstændige løsning til differentialligningen (**).

 $\mathbf{L} \emptyset \mathbf{sning}.$ Den fuldstændige løsning til differentialligningen (**) er:

$$x = c_1 e^{-t} + c_2 e^{-2t} + c_3 t e^{-2t} + c_4 e^t + e^{2t}$$
, hvor $c_1, c_2, c_3, c_4 \in \mathbf{R}$.

Opgave 2. Vi betragter 3×3 matricen

$$A = \left(\begin{array}{ccc} 5 & -1 & -1 \\ -1 & 3 & 1 \\ -1 & 1 & 3 \end{array}\right)$$

og vektordifferentialligningen

(§)
$$\frac{d\mathbf{z}}{dt} = A\mathbf{z}.$$

(1) Idet det oplyses, at $\lambda=2$ er en egenværdi for matricen A, skal man finde matricens øvrige egenværdier og bestemme egenrummene for enhver af egenværdierne.

Løsning. Matricen A har det karakteristiske polynomium $P_A(t) = -t^3 + 11t^2 - 36t + 36$, og ved indsættelse af tallet $\lambda = 2$, ser vi, at dette tal er en rod i P_A . Desuden får vi dernæst, at

$$P_A(t) = (t-2)(-t^2 + 9t - 18),$$

hvoraf det følger, at de øvrige karakteristiske rødder er 3 og 6.

Dette viser, at matricen A har egenværdierne 2, 3 og 6.

De tilhørende egenrum er

$$V(2) = \operatorname{span}\left\{ \begin{pmatrix} 0 \\ -1 \\ 1 \end{pmatrix} \right\}, V(3) = \operatorname{span}\left\{ \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} \right\} \operatorname{og} V(6) = \operatorname{span}\left\{ \begin{pmatrix} -2 \\ 1 \\ 1 \end{pmatrix} \right\}.$$

(2) Bestem den fuldstændige løsning for vektordifferentialligningen (§).

Løsning. Den fuldstændige løsning for vektordifferentialligningen (§)

$$\mathbf{z} = c_1 e^{2t} \begin{pmatrix} 0 \\ -1 \\ 1 \end{pmatrix} + c_2 e^{3t} \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} + c_3 e^{6t} \begin{pmatrix} -2 \\ 1 \\ 1 \end{pmatrix}, \text{ hvor } c_1, c_2, c_3 \in \mathbf{R}.$$

(3) Bestem den specielle løsning $\tilde{\mathbf{z}} = \tilde{\mathbf{z}}(t)$ til vektordifferentialligningen (§), så betingelsen $\tilde{\mathbf{z}}(0) = (1, 2, 3)$ er opfyldt.

Løsning. Vi finder, at

$$\tilde{\mathbf{z}} = \frac{1}{2}e^{2t} \begin{pmatrix} 0 \\ -1 \\ 1 \end{pmatrix} + 2e^{3t} \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} + \frac{1}{2}e^{6t} \begin{pmatrix} -2 \\ 1 \\ 1 \end{pmatrix}.$$

Opgave 3. Vi betragter vektorfunktionen $\mathbf{f}: \mathbf{R}^2 \to \mathbf{R}^2$ givet ved

$$\forall (x, y) \in \mathbf{R}^2 : \mathbf{f}(x, y) = (x^2 + y^2, 2xy).$$

(1) Bestem Jacobimatricen (funktionalmatricen) $D\mathbf{f}(x,y)$ for vektorfunktionen \mathbf{f} i et vilkårligt punkt $(x,y) \in \mathbf{R}^2$.

Løsning. Jacobimatricen er

$$D\mathbf{f}(x,y) = \begin{pmatrix} 2x & 2y \\ 2y & 2x \end{pmatrix}.$$

(2) Bestem de punkter $(x, y) \in \mathbf{R}^2$, hvor Jacobimatricen $D\mathbf{f}(x, y)$ er regulær.

Vi ser, at $\det\left(D\mathbf{f}(x,y)\right)=4x^2-4y^2$, så Jacobi
matricen er regulær, hvis og kun hvis $x\neq \pm y$.

(3) Betragt vektoren $v_0 = (1, 0)$.

Løs ligningen

$$\begin{pmatrix} u \\ v \end{pmatrix} = \mathbf{f}(v_0) + D\mathbf{f}(v_0) \begin{pmatrix} x - 1 \\ y \end{pmatrix}$$

med hensyn til (x, y).

Løsning. Idet $\mathbf{f}(1,0) = (1,0)$, og idet

$$D\mathbf{f}(1,0) = \begin{pmatrix} 2 & 0 \\ 0 & 2 \end{pmatrix},$$

finder vi, at $x = \frac{u+1}{2}$ og $y = \frac{1}{2}v$.

Opgave 4. Vi betragter funktionen $f: \mathbb{R}^2 \to \mathbb{R}$, som er givet ved forskriften

$$\forall (x,y) \in \mathbf{R}^2 : f(x,y) = x^2y + y^2,$$

og korrespondancen $F: \mathbf{R} \to \mathbf{R}$, som er defineret ved udtrykket

$$F(x) = \begin{cases} \{0\}, & \text{for } x < 0\\ [0, 1], & \text{for } 0 \le x < 1\\ [0, 2], & \text{for } x \ge 1 \end{cases}$$

(1) Vis, at korrespondancen F har afsluttet graf egenskaben.

Løsning. Vi ser umiddelbart, at F har afsluttet graf egenskaben, thi grafen for F er en afsluttet mængde i \mathbb{R}^2 .

(2) Vis, at korrespondancen F ikke er nedad hemikontinuert.

Løsning. Vælg en følge (x_k) hvor $x_k < 0$ og sådan, at $(x_k) \to 0$. Det er nu klart, at der ikke findes en konvergent følge (y_k) , så $(y_k) \to 1 \in F(0)$ og $y_k \in F(x_k)$ for ethvert $k \in \mathbb{N}$. Dette viser påstanden.

(3) Vis, at korrespondancen F er opad hemikontinuert.

Løsning. Dette er klart, thi F har afsluttet graf egenskaben, $F(x) \subset [-1,3]$ for ethvert $x \in \mathbf{R}$, og mængden [-1,3] er kompakt.

(4) Bestem en forskrift for værdifunktionen $V: \mathbf{R} \to \mathbf{R}$, som er defineret ved forskriften

$$\forall x \in \mathbf{R} : V(x) = \max\{f(x, y) \mid y \in F(x)\}.$$

Løsning. Vi får, at

$$V(x) = \begin{cases} 0, & \text{for } x < 0, \text{ hvor } y = 0\\ x^2 + 1, & \text{for } 0 \le x < 1, \text{ hvor } y = 1\\ 2x^2 + 4, & \text{for } x \ge 1, \text{ hvor } y = 2 \end{cases}.$$

(5) Bestem en forskrift for maksimumskorrespondancen $M: \mathbf{R} \to \mathbf{R}$, som er defineret ved udtrykket

$$\forall x \in \mathbf{R} : M(x) = \{ y \in F(x) \mid V(x) = f(x, y) \}.$$

Løsning. På baggrund af resultatet i det foregående spørgsmål får vi, at

$$M(x) = \begin{cases} \{0\}, & \text{for } x < 0 \\ \{1\}, & \text{for } 0 \le x < 1 \\ \{2\}, & \text{for } x \ge 1 \end{cases}$$