Assignment 1 – Written CSC 225 Feb 3rd, 2017

Ryan Woodward V00857268

^	
- 1,	Order the following functions by order of growth storting with the Slowest.
	Storting with the Slovest.
	that Shalson = (4(4(a))
	. 5
	· (log n)
- Calif	· no.1
740	· 190
	· 2 o log (log n) · n 5 o
	· 2 n log (logn)
	· 03
	* 5
	· 0!
	2" (S = 2) . W > 1 - 1 - 1 + m) wt
2	Share Traday Indiana Traday
~	Since $log(a) + log(b) = log(a)$ we see that $ \frac{\pi}{2} log i = log(1) + log(2) + + log(n) $
- 7	1 las = loc(1) + loc(2) + + loc(2)
	2 105 1 - 10gels + 10gels + + 10gels)
	= 105(1.2.3)
	= log(n!)
	los(n!) = los(1) + los(2) + + los(n)
(ase 1:	
7=	(alp) + (slo) + + (slo) >; (all) + (glo) + + (gln)
/	
	n los n >/ los (n'.)
f 7.	1010/10
Case 2.	15(1/2) + + 15/n) < 15(1) + 15(2) + + 15/n)
~=	19(1/2)+-+ 19(1/2) & 19(1) + 19(2)++ log(n)
	2(15)11 2(15) 5 (2(1) + 12 (2)+ 102(V)
	n les (n) (les (n')
	$\frac{n}{2} \log \left(\frac{n}{2}\right) \leq \log (n!)$

```
... fln) = n log n and it follows
                     that SEn) sum = O(fln))
3, a) int sum = 0;
for (int n= N; n>0; n/= 2) will run light thes
for (int i=0; i < n; itt) " 72 thes
         = O(N 10, H)
    b) int sum = 0;
for (Int i = 1; i(N; i *= 2)
for (Int i = 0; j(1); j+t) Eill many thes
           = 0 (N/04 N)
    c) int sum = 0;
for (int i=1'- i<N: i*=2)
for (int i=0; j<N; j+t)
            = 0 (N 1g N)
```

H,
$$\frac{1}{2} = \frac{1}{i(i+1)} = \frac{n}{n+1}$$
 for all $n \ge 1$

Base Case: $n = 1$
 $\frac{1}{i(1+1)} = \frac{1}{2} = \frac{1}{n+1} = \frac{1}{1+1} = \frac{1}{2}$

1. H: $\frac{n+1}{i=1} = \frac{1}{i(i+1)} = \frac{(n+1)}{(n+1)((n+1)+1)}$
 $= \frac{2}{i=1} = \frac{1}{i(i+1)} = \frac{n(n+2)+1}{(n+1)(n+2)}$
 $= \frac{n^2 + 2n + 1}{(n+1)(n+2)} = \frac{(n+1)}{(n+1)(n+2)}$
 $= \frac{n^2 + 2n + 1}{(n+1)(n+2)} = \frac{(n+1)}{(n+1)(n+2)}$
 $= \frac{(n+1)}{(n+1)(n+2)}$

(Gincluston: so it's true post of $\frac{n}{2} = \frac{1}{i(i+1)} = \frac{n}{n+1}$

