

to = TEMPO DI ORIGINE DEL TERREMOTO

to = TEMPO DI ARRIVO FASE P ALLA STAZIONE

ts = TEMPO DI ARRIVO FASES ALLA STAZIONE

tper= TEMPO DI PERCORRENZA tp-to

$$t_p = t_0 + \frac{x}{v_p};$$
 $t_s = t_0 + \frac{x}{v_s};$ Servio $t_s - t_p$ ele poro leggre old rismogramme

$$t_s - t_p = \frac{x}{v_p} \left[\frac{v_p}{v_s} - 1 \right]$$
; Essendo $\frac{x}{v_p} = t_p - t_0$ sostituendo ni ottiene:

$$t_{s}-t_{p} = [t_{p}-t_{o}][\frac{\nabla p}{\nabla s}-1]$$

$$t_{s}-t_{p} = t_{p}[\frac{\nabla p}{\nabla s}-1]-t_{o}[\frac{\nabla p}{\nabla s}-1]$$

$$y = x \cdot m + q$$

DIAGRANNA DI WADATI

1 DISTAHEA STAFIONE PER VP = COSTANTE D = Vp · Tpen= Vp · (Tp - To)

	Stazioni	tp	ts	ts_tp
0	NRCA	98.5	105.3	6.8
1	TERO	96.4	100.7	4.2
2	PTQR	98.6	104.9	6.3
3	GUMA	102.9	113.0	10.1