PostGIS 2.x

Olivier Courtin

PostgreSQL Session #6 - 2014 — Paris

PostGIS spatial database

2.0.0 04/2012

2.1.0 08/2013

Current version: 2.1.4

Coming 2.2

Advanced spatial analysis

Topology

Raster

Point Cloud

Advanced spatial analysis

Topology

Raster

Point Cloud

```
CREATE EXTENSION postgis;
CREATE EXTENSION postgis_topology;
```

geometry_columns (and geography_columns) are now views (rather than table)

```
CREATE TABLE buildings (
    gid SERIAL PRIMARY KEY
    , geom geometry(MultiPolygon, 26986)
);

alter table buildings
    alter column geom
    type geometry(MultiPolygon, 2154)
    using st_setsrid(geom, 2154);
```


examples of invalid multipolygon

UPDATE my_schema.my_table
SET geom =
ST_CollectionExtract(ST_MakeValid(geom), 3);

Advanced spatial analysis

Topology

Raster

Point Cloud

ST_ConvexHull

ST_ConcaveHull

ST_Split

ST_Snap

KNN-GIST: Spatial nearest neighbors

```
SELECT name, gid FROM geonames
ORDER BY geom <->
ST_SetSRID(ST_MakePoint(-90,40),4326)
LIMIT 10;
```

Distance operator: <-> or <#> (center or bbox)

Advanced spatial analysis

Topology

Raster

Point Cloud

Topology

node / edge / face model ISO SQL/MM functions

Source: Sandro Santilli

Using ST_Simplify without topology

select * from hydro.edge limit 10;

ne	au sortie	ortie							
0	tie de donné	onnées Expliquer (Explain) Messages Historique							
	edge_id integer	start_node integer	end_node integer	next_left_edg integer	next_right_edge integer	_		geom geometry(LineString,2154)	
1	175256	190369	190361	175230	-175243	0	0	01020000206A0800000	
2	167356	183762	181917	166725	167356	0	0	01020000206A0800001	

select * from tr_topo limit 10; au sortie rtie de données Expliquer (Explain) Messages gid topogeom topology.topogeometry 116768 (1,1,163704,2) 116767 (1,1,163705,2) 116765 (1,1,163706,2)

```
create table
        rec res2 as
with recursive
        search graph(edge id, start node, depth, path, length, cycle) as (
                 select
                         g.edge id, g.start node, 1 as depth, ARRAY[g.edge id] as path
                         , st length(geom) as length, false as cycle
                 from
                         hydro.edge as g
                 where
Recursive CTE
                         edge id = 173832
                 union all
                 select
                         g.edge id
                          , g.start node
                          , sg.depth + 1 as depth
                          , path || q.edge id as path
                          , sg.length + st length(g.geom) as length
                         , g.edge id = ANY(path) as cycle
                 from
                         hydro.edge as g
                 join
                         search graph as sq
                                                       select
                 on
                                                                sq.*
                         sg.start node = g.end node
                                                                , edge.geom as geom
                 where
                                                       from
                         not cycle
                                                                search graph as sg
                                                       join
                                                                hydro.edge as edge
                                                       on
```

sq.edge id = edge.edge id

limit 1000;

```
select
    g.edge_id, g.start_node, 1 as depth, ARRAY[g.edge_id] as path
    , st_length(geom) as length, false as cycle
from
    hydro.edge as g
where
    edge_id = 173832
union all
```

```
select
         g.edge id
         , g.start node
                                                         Stack the gid to the path
         , sg.depth + 1 as depth
                                                         for this record
         , path || g.edge id as path₄
           sg.length + st length(g.geom) as length
                                                              Sum up the cost
                                                              ( it's the length here)
           g.edge id = ANY(path) as cycle
from
         hydro.edge as g
                                                       If the record gid is already
join
                                                       in the path, we have a cycle
         search graph as sg
on
                                                     Join result set from
         sg.start node = g.end node
                                                     previous iteration
where
                                                     to connected upstream
                                                     edges
         not cycle
                                    Do not take elements
                                    which make a cycle
```

```
select
```

sg.*
, edge.geom as geom

from

search_graph as sg

join

hydro.edge as edge

Join CTE results to original table to get geometries

on

sg.edge_id = edge.edge_id

limit 1000; ⊲

Better limit recursive queries to avoid unfinite loops

		depth integer		length double precision		geom geometry(MultiLineString,2154)
31913	20850	1	{31913}	2666.0523017	f	01050000206A08000001000
33855	20735	2	{31913,	3473.3086319	f	01050000206A08000001000
32477	20845	2	{31913,	2725.7640259	f	01050000206A08000001000
33854	19909	3	{31913,	7183.7295195	f	01050000206A08000001000
		_			-	

1871			1000			A CONTRACTOR OF THE PARTY OF TH
	edge_id ▲	start_node	depth	path	length	cycle
0	173832	189333	1	{173832}	2666.05230	f
1	173452	189332	2	{173832,17	3473.30863	f

Advanced spatial analysis

Topology

Raster

Point Cloud

- Raster / vector analysis
- New raster datatype (using tiles)
- Multiresolution, multiband, tile coverage
- Import/export (GDAL)
- Raster functions

a) warehouse of untiled and unrelated images (4 images)

b)irregularly tiled raster coverage (36 tiles)

c) regularly tiled raster coverage (36 tiles)

d)rectangular regularly tiled raster coverage (54 tiles)

e) tiled images (2 tables of 54 tiles)

f) rasterized geometries coverage (9 lines in the table)

Source: Pierre Racine

Extract ground elevation values for lidar points...

SELECT pointID, ST_Value(rast, geom) elevation
 FROM lidar, srtm WHERE ST_Intersects(geom, rast)

Intersect a road network to extract elevation values for each road segment

SELECT roadID,

(ST_Intersection(geom, rast)).geom road,

(ST_Intersection(geom, rast)).val elevation

FROM roadNetwork, srtm WHERE ST_Intersects(geom, rast)

Source: Pierre Racine

Advanced spatial analysis

Topology

Raster

Point Cloud

As PostgreSQL and PostGIS extension

Handle Patches

Arbitrary dimension handling

Data compression

PDAL (as a loader)

Advanced spatial analysis

Topology

Raster

Point Cloud

CGAL

ST 3DIntersection

ST Tesselate

ST_3DArea

ST_Extrude

ST_ForceLHR

ST Orientation

ST_MinkowskiSum

ST_StraightSkeleton

SFCGAL functions

ST_Tesselate

ST_StraightSkeleton

ST_Intersects

ST_3DIntersects

ST_Intersection

ST Area

ST_Distance

ST_3DDistance

Both GEOS & SFCGAL

SET postgis.backend = 'geos';

SET postgis.backend = 'sfcgal';

SFCGAL performances similar to GEOS ones for 2D (but with SFCGAL we gain arbitrary precision)

SFCGAL perfomances similar to GEOS ones for 2D (but with SFCGAL we gain arbitrary precision)

But some 3D computation could take time.

https://vimeo.com/74869530

https://vimeo.com/105323534

www.oslandia.com

http://www.postgresql-sessions.org/6/start