JP-A 4189023; JP-A 2319279; JP-A 90319279

COPYRIGHT: (C)1992, JPO & Japio

PATENT ABSTRACTS OF JAPAN

04189023

GET EXEMPLARY DRAWING

July 7, 1992

PULSE SYNCHRONIZING CIRCUIT

INVENTOR: HAYAKAWA MITSURU

APPL-NO: 02319279 (JP 90319279)

FILED: November 22, 1990

ASSIGNEE: VICTOR CO OF JAPAN LTD

INT-CL: H03K5/00, (Section H, Class 03, Sub-class K, Group 5, Sub-group 00)

ABST:

PURPOSE: To prevent the occurrence of contention resulting in causing uncertain timing even when an input pulse and a clock pulse are asynchronous by providing a function to discriminate the contention between the input pulse and the clock pulse.

CONSTITUTION: An output (b) of a pulse width shaping circuit 31 and an output (c) of a delay circuit 32 are inputted to a discrimination circuit 33, in which whether or not leading edges of the pulse outputs b, c are close to each other, that is, the relation of contention is discriminated. The output (b) of the pulse width shaping circuit 31 and the delay output (c) of the delay circuit 32 are latched respectively by DFFs 331, 332 by using a 2nd clock CK 2. Then an output (d) of the FF 331 and an output (e) of the FF 332 are decoded by an inverter 333 and an AND gate circuit 334. After the decoding, an output of the gate 334 is latched at a trailing edge of the delay pulse (c) to output an output (f) for discriminating the contention.

LOAD-DATE: June 17, 1999

Source: All Sources > Area of Law - By Topic > Patent Law > Patents > Non-U.S. Patents > \$ Patent Abstracts of

Japan 🚹

Terms: 4189023 (Edit Search)

View: Full

Date/Time: Tuesday, August 28, 2001 - 2:30 PM EDT

About LexisNexis | Terms and Conditions

This Page Blank (uspto)

19 日本国特許庁(JP)

⑩特許出願公開

◎ 公開特許公報(A) 平4-189023

Sint. Cl. 5

識別記号 庁内整理番号

❸公開 平成4年(1992)7月7日

H 03 K 5/00

V 7125-5 J

審査請求 未請求 請求項の数 1 (全6頁)

劉発明の名称 パルス同期化回路

②特 顧 平2-319279

②出 願 平2(1990)11月22日

@発明者 早川

充 神奈川県横浜市神奈川区守屋町3丁目12番地 日本ピクタ

一株式会社内

勿出 願 人 日本ピクター株式会社

神奈川県横浜市神奈川区守屋町3丁目12番地

明 年 會

1. 発明の名称

パルス同期化回路

2. 特許請求の範囲

第1のクロックにより生成された 周期性の入力 パルスを選延して選延パルスを出力する選延回路 と、

前記入力パルスと第2のクロックとのタイミング関係を判定して、競合関係にあると判定したときに所定の出力を得る判定回路と、

前記判定回路の出力を養分して出力する複分回路と、

前記積分回路の出力を切換タイミングパルスに よってラッチして出力する第1のラッチ回路と、 前記入力パルスと前記是延パルスとを前記第1 のラッチ回路の出力により切り換えて出力するス

前記スイッチの出力を前記第2のクロックでラッチして確定した同期化パルス出力を得る第2のラッチ回路とよりなることを特徴とするパルス同

期化回路。

3. 発明の詳細な説明

(産業上の利用分野)

本発明は、デジタル回路において、入力パルス と非同期なクロックとの競合関係を避けるように したパルス同期化回路に関する。

(従来の技術)

デジタル回路に入力するパルスをそのデジタル回路のクロックに同期させるために、従来よりパルス同期化回路が用いられていることは周知の通りである。

第6回は従来のパルス同類化回路を示す構成図であり、第7回はそのパルス同期化回路の周辺回路を示すプロック図である。

まず、第7回を用いて世来のバルス同期化回路4及びその周辺回路について説明する。第1の計数回路1には第1のクロックCK1が、第2の計数回路2には第2のクロックCK2がそれぞれ入力される。また、バルス同期化回路4にも第2のクロックCK2が入力される。

特開平4-189023(2)

そして、第1のクロックCK1で動作している第1の計数回路1から出力されるデコードバルスは、パルス同期化回路4に入力され、パルス同期化回路4は、第2のクロックCK2で動作する第2の計数回路2へ同期をとるためのリセットパルスを出力する。

٠-٠٠ سده

従来のパルス同期化回路 4 は第 6 図に示すように、 D フリップフロップ 4 1 . 4 2 及び N A N D ゲート回路 4 3 とによって構成される。

(発明が解決しようとする課題)

ところで、上述した第6回及び第7回に示す従来のパルス同期化回路4においては、第1のクロックCK1と第2のクロックCK2とが非同期である場合、パルス同期化回路4に入力する入力(入力パルス)aと第2のクロックCK2との鉄合が起こる。

この観合について、第8図を用いて説明する。 同図に示すように、入力(入力パルス)aの立上がりと第2のクロックCK2の立上がりとが時刻 t。において極めて接近している場合、入力パル スaに含まれるノイズやクロックジッタ等により酸合状態となり、その出力が時刻で。に出力される h (!) と時刻で、に出力される h (!) との 2 つが存在し、出力タイミングが 1 クロック分不確定となるという問題点がある。

そこで、本発明は、前記した入力パルスとクロックパルスとの競合状態を判定する機能を有し、その競合を避けて安定な同期化が可能なパルス同期化回路を提供することを目的とする。

(課題を解決するための手段)

ッチ 回路 の 出力 に よ り 切 り 換 え て 出 力 す る ス イ ッチ と 、 前 記 ス イ ッチ の 出 力 を 前 記 第 2 の ク ロ ック で ラ ッチ し て 確 定 し た 同 期 化 パ ル ス 出 力 を 得 る 第 2 の ラ ッチ 回路 と よ り な る こ と を 特 徹 と す る パ ルス 同 期 化 回路 を 提 供 す る もの で あ る。

(実施例)

以下、本発明のパルス同期化回路について、系付図面を参照して説明する。

第1回は本発明のパルス同期化回路の一裏施例を示すプロック図、第2回及び第3回は本発明のパルス同期化回路を説明するための図、第4回は本発明のパルス同期化回路の周辺回路を示すプロック図、第5回は本発明のパルス同期化回路の動作説明用タイミングチャートである。

まず、第4 図を用いて本発明のパルス同期化回路 3 及びその周辺回路について脱明する。 第 1 の計数回路 1 には第1のクロック C K 1 が、第 2 の計数回路 2 には第2 のクロック C K 2 がそれぞれ入力される。パルス同期化回路 3 には第1のクロック C K 1 と第2 のクロック C K 2 及びタイミン

グパルスとが入力される。

そして、パルス同期化回路 3 は第1 の 7 ロック C K 1 により動作している 第1 の 計 数回路 1 から のデコードパルスを入力とし、 第2 の 7 ロック C K 2 により動作する第2 の計 数回路 2 にり セット パルスとして出力するために、 第1 及び 第2 の ク ロックパルス C K 1 、 C K 2 そしてタイミングパ ルスとによって制御されている。

次に、本発明のパルス同期化回路3の一実施例の具体的回路構成を第1回を用いて説明する。同図に示すように、パルス幅整形回路31、運延回路32、判定回路33、役分回路34、第1のラッチ回路37とによって構成される。

そして、パルス幅整形回路31と遅延回路32 及び料定回路33の具体的回路構成を第2図を用いて説明する。また、本発明のパルス同期化回路3における回路動作を第5図に示すタイミングチャートを用いて説明する。

第5型に示す入力パルスaはクロックCK1に

よって生成される周期性のパルスであり、そのパルス幅はクロック C K 1 の周期T! より大であるとする。

類 2 図に示すように、パルス幅整形回路 3 1 は D フリップフロップ 3 1 1 と A N D ゲート回路 3 1 2 とよりなり、その出力はパルス幅 T w (w T I) なる出力 b となる。このパルス幅 T w は、 クロック C K 2 の周期を T 1 とすれば、 T 1 / 2 < T w < T 1 に設定される。

そして、その出力 b が入力する遅延回路 3 2 は、インパータ 3 2 1 と D フリップフロップ 3 2 2 とよりなり、その遅延時間 T d は、 T 1 く T d + T w < 2 T 1 に設定され、その出力はパルス幅整形回路 3 1 の出力 b に対し、遅延時間 T d (= T 1 / 2) だけ遅延し、パルス幅 T w の出力 c となる。

そして、パルス幅整形回路31の出力b及び遅延回路32の出力cは判定回路33に入力され、出力bと出力cとの競合関係(つまり、お互いのパルスの立上がりが極めて接近しているか)を判

足回路33によって料定する。

即 5、 パルス 幅整形回路 3 1 の 出力 b 及び 遅延 回路 3 2 の 出力 (遅延パルス) c を それぞれ D フリップフロップ 3 3 1 の出力 (ラッチ し、 年の D フリップフロップ 3 3 1 の出力 (ラッチ 出力) d 及び Dフリップフロップ 3 3 2 の出力 (ラッチ出力) d 及び Dフリップフロップ 3 3 2 0 出力 (ラッチ出力) e を インパータ 3 3 2 と A N D ゲート回路 3 3 4 とによって デコード した 後、 その 出力を 遅延パルス c の 立下がりエッジでラッチ して 料定出力 f として出力する。

第5回において、クロックCK2(1)は判定回路33の人力パルスである出力も(以下、入力パルスのかないのクロックCK2であり、その人力パルスもをクロックCK2(1)でラッチした出力はは時期 t。~ t 、の別間不足であり、時刻t,以後し(ロー) レベルとなる。また、選延パルスにをラッチした出力。においてH(ハイ)レベルとなる。このラッチ出力d. e をデコードして時刻t,にお

いて選延パルスcの立下がりでラッチすれば、その出力!はHレベルとなり、数合状態を判定することができる。

要するに、判定回路33は、その入力パルスをが第2のクロックCK2でラッチされず、その判定出力がLレベルであり、遅延パルスcが第2のクロックCK2とは競合するタイミング脳係であると判定する。そして、判定出力!は、入力パルスとの誤り返し周期で保持されている。

ところで、料定回路33による数合料定は、第2のクロックCK2がクロックCK2(1) の条件のみならず、ラッチ出力はがレベル、ラッチ出力はがレレベル、ラッチ出力eがHレベルの期間、即ち第2のクロックCK2が時割t,の直接をラッチする位置関係CK2(1) と時割t,の直和をラッチする位置関係CK2(1) との間で数合と料定する。

従って、本発明による観合料定は、料定ウィンドを有し、料定回路33に入力する出力bの立上

がりエッジタイミング t 。 を基準に - Δ T 1 ~ Δ T 1 の ウィンドとなり、 第 5 図に示す場合、 Δ T 1 = T 2 - T w . Δ T 2 = T d + T w - T 2 という関係にある。

この関係は、入力パルストのパルス権工をが、 T!/2 < T w < T!であり、選延時間 T d が、 T! < T d + T w < 2 T! の場合に成り立つもの である。ゆえに、入力パルス a が上記したパルス 幅を満足する場合には、パルス幅整形回路 3 1 は 不要となる。

また、人力パルス a がアナログ回路により生成される場合には、パルス幅整形回路 3 1 と遅延回路 3 2 とをアナログ手段で構成し、上記したTw、Tdの条件を満たすように実施することも可能である。

第1 図における複分回路3 4 は、料定回路3 3 の料定出力(を所定回散器分して有象であるか、つまり、所定レベル以上であるかどうかを料定するものであり、公知の手段を用いることができ、 複分回路3 4 を用いることによりノイズ等によっ

特別平4-189023(4)

て展動作することがなく、安定した料定条件が投 定される。

第1のラッチ回路35は、スイッチ36を切り 換えるタイミングを決定するもので、第1のラッチ回路35に入力する入力パルス、つまり複分回路34の出力パルスの周期より十分長い周期を有する切換タイミングパルスで動作する。

そして、種分回路 3 4 における競合判定が有意となった場合、第 1 の ラッチ回路 3 5 で決定される タイミングによりスイッチ 3 6 の出力 g は遅延回路 3 2 の出力パルス (遅延パルス) c となり、競合判定が有意でなければ、スイッチ 3 6 の出力 g はパルス幅整形回路 3 1 の出力パルス b となる。

出力 g は第 2 の ラッチ 回路 3 7 において、第 2 の クロック C K 2 により ラッチされるが、 競合条件の場合には、 遅延パルス c を ラッチするので、 競合を避けることができる。

第 2 の ラッチ 回路 3 7 は第 3 図に示すように、 D.フ リップ フロップ 3 7 1 . 3 7 2 . 3 7 3 と N A N D ゲート 回路 3 7 4 とによって構成され、そ の動作は周知の如く、入力gの立上がりエッジの 直後のクロックタイミングによりラッチされた負 極性パルストを出力する。

第 5 図において、第 2 の クロック C K 2 の クロックタイミング C K 2 (1) 、 C K 2 (2) 、 C K 2 (1) 、 C K 2 (2) 、 C K 2 (1) に対応する出力 h を h (1) 、 h (2) 、 h (4) に示している。それぞれ時刻 t : 、 t 2 、 t 1 に確立しており、競合を回避できていることが判る。(発明の効果)

以上詳細に説明したように、本発明のパルス同期化回路は上述のように構成されてなるので、デジタル回路において入力パルスとクロックとが非問期であっても、競合を起こしてタイミングの不確定をまねくことなく安定した動作が可能となる等、実用上極めて優れた効果がある。

4. 図面の簡単な説明

第1 図は本発明のパルス 同期化回路の一実施例の構成を示すプロック図、第2 図及び第3 図は本発明のパルス同期化回路を説明するための図、第4 図は本発明のパルス同期化回路の周辺回路を示

すプロック図、第5図は本発明のパルス同期化回路の動作説明用タイミングチャート、第6図は従来のパルス同期化回路を示す構成図、第7図は従来のパルス同期化回路の属辺回路を示すプロック図、第8図は従来のパルス同期化回路の動作説明用タイミングチャートである。

3 2 … 連延回路、3 3 … 料定回路、3 4 … 積分回路、3 5 … 第 1 の ラッチ回路、3 6 … スイッチ、3 7 … 第 2 の ラッチ回路。

特許出職人 日本ピクター株式会社

第 4 図

特別平4-189023(5)

特開平4-189023 (6)

