MAT 135 – Geometria Analítica e Álgebra Linear

 $1^{\underline{A}}$ Lista (Matrizes) – 2021/1

profa. Lana Mara Rodrigues dos Santos

Atualizada em: 3 de fevereiro de 2021

1) Determine a ordem das matrizes A, B, C, D e E, sabendo-se que AB^T tem ordem 5×3 , $(C^T + D)B$ tem ordem 4×6 e E^TC tem ordem 5×4 .

2) Sejam as matrizes
$$A = \begin{bmatrix} 1 & -1 & 3 & 2 \\ 0 & 1 & 4 & -3 \\ 1 & 2 & -1 & 5 \end{bmatrix}$$
, $B = \begin{bmatrix} 0 & 3 & 2 \\ -2 & 1 & 4 \\ -1 & 2 & 1 \\ 4 & 3 & 1 \end{bmatrix}$. $C = AB \in D = BA$.

Determine os elementos c_{32} e d_{43} .

3) Determine a matriz
$$A = (a_{ij}), 3 \times 4$$
 tal que $a_{ij} = \begin{cases} 2i - 3j, & \text{se } i < j \\ i^2 + 2j, & \text{se } i = j \\ -3i + 4j, & \text{se } i > j \end{cases}$

4) Seja a matriz
$$A = \begin{bmatrix} 2 & -1 \\ 3 & -2 \end{bmatrix}$$
 . Determine:

(a)
$$A^2$$

(b)
$$A^{3}$$

(c)
$$A^{31}$$

(d)
$$A^{42}$$

5) Determine números reais
$$x$$
 e y tais que $\begin{bmatrix} x^3 & y^2 \\ y^2 & x^2 \end{bmatrix} + \begin{bmatrix} -x & 3y \\ 4y & 2x \end{bmatrix} = \begin{bmatrix} 0 & 4 \\ 5 & -1 \end{bmatrix}$.

6) Determine em cada um dos casos abaixo, x, y e z números reais tais que a matriz A seja simétrica.

(a)
$$A = \begin{bmatrix} -2 & x \\ 4 & 1 \end{bmatrix}$$

(b)
$$B = \begin{bmatrix} 8 & x+3 & -10 \\ 15 & -5 & -8 \\ y-2 & 2z & 9 \end{bmatrix}$$

7) Considere as matrizes:
$$A = \begin{bmatrix} 3 & 0 \\ -1 & 2 \\ 1 & 1 \end{bmatrix}, B = \begin{bmatrix} 4 & -1 \\ 0 & 2 \end{bmatrix}$$
 e $C = \begin{bmatrix} 1 & 4 & 2 \\ 3 & 1 & 5 \end{bmatrix}$.

Quando possível, calcule o que se pede.

(a)
$$2A^T + C$$

(b)
$$(BA^T - 2C)^T$$

- 8) Diz-se que uma matriz B é uma raiz quadrada de uma matriz B se $B^2 = A$.
 - (a) Encontre duas raízes quadradas de $A=\left[\begin{array}{cc} 2 & 2 \\ 2 & 2 \end{array}\right].$
 - (b) Existem quantas raízes quadradas distintas de $A = \begin{bmatrix} 5 & 0 \\ 0 & 9 \end{bmatrix}$? Justifique.
 - (c) Na sua opinião qualquer matriz 2×2 tem pelo menos uma raíz quadrada? Justifique.
- 9) Seja A matriz em $M_n(\mathbb{R})$. Mostre que:
 - (a) As matrizes $A.A^T$ e $\frac{1}{2}(A+A^T)$ são simétricas,
 - (b) A matriz $\frac{1}{2}(A-A^T)$ é anti-simétrica,
 - (c) Toda matriz quadrada é a soma de uma matriz simétrica com uma matriz anti-simétrica.
- 10) Dizemos que uma matriz A é ortogonal se, e somente se, $A.A^T=I.$ Determine:
 - (a) Os possíveis valores para o determinante de uma matriz ortogonal.
 - (b) Quais matrizes reais de ordem 2 são simultaneamente anti-simétricas e ortogonais.
- 11) Determine o número real m de modo que a matriz $M = \begin{bmatrix} -1 & 0 \\ 0 & m \end{bmatrix}$ seja ortogonal.
- 12) Dado um número real α , considere a matriz $T_{\alpha} = \begin{bmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{bmatrix}$.
 - (a) Dados α e β em \mathbb{R} , mostre que $T_{\alpha}.T_{\beta} = T_{\alpha+\beta}$.
 - (b) Calcule $T_{-\alpha}$.
 - (c) Mostre que para todo número α a matriz T_{α} é ortogonal.
- 13) Seja $A = (a_{ij})$ uma matriz quadrada de ordem n. O traço de A, denotado por tr(A), é definido como sendo o número real $tr(A) = \sum_{k=1}^{n} a_{kk}$ ou seja, o traço de A é a soma dos elementos da diagonal principal de A. Dadas A e B matrizes quadradas de ordem n, valem as seguintes propriedades:
 - (a) tr(A+B) = tr(A) + tr(B)
 - (b) tr(kA) = ktr(A) em que $k \in I\!\!R$
 - (c) $tr(A^T) = tr(A)$
 - (d) tr(AB) = tr(BA)
 - (e) Usando algumas destas propriedades verifique que não existem A e B matrizes quadradas de ordem n tais que AB BA = I.
- 14) Mostre que se $A^TA = A$, então A é simétrica e $A = A^n$, para todo natural n.
- 15) Dadas as matrizes $A = \begin{pmatrix} 1 & 3 \\ 2 & 5 \end{pmatrix}$, $B = \begin{pmatrix} 2 & x \\ -1 & y \end{pmatrix}$ e $C = \begin{pmatrix} 9 & 3 \\ 3 & 1 \end{pmatrix}$,
 - (a) determine x e y tais que AC = BC;
 - (b) se AC = BC, é possível cancelar C?

- 16) Dadas as matrizes $A = \begin{pmatrix} 2 & 3 \\ 1 & -1 \end{pmatrix}$ e $B = \begin{pmatrix} 2 & 4 \\ 1 & 2 \end{pmatrix}$, determine:
 - (a) X tal que A + X = B. Esta matriz X é única?
 - (b) X tal que BX = A. Essa matriz X é única? Por quê?
- 17) Dada uma matriz quadrada A, se existir um número inteiro p > 1, tal que $A^p = A$, diz-se que A é uma matriz periódica de período p. Se $A = \begin{pmatrix} 2 & -1 & 1 \\ -3 & 4 & -3 \\ -5 & 5 & -4 \end{pmatrix}$, mostre que A é periódica. Determine o período p de A.
- 18) Sendo A e B matrizes invertíveis de ordem n, isolar a matriz X em cada equação.
 - (a) AXB = I

(c) $(AX)^{-1} = I$

(b) $(AX)^T = B$

- $(d) (A+X)^T = B$
- 19) Sejam $A \in B$ matrizes quadradas de ordem 3. Calcule det(A) nos seguintes casos, sabendo que det(A) = 2.
 - (a) $AA^T = B^{-1}$.
 - (b) $B = 2A^2$
 - (c) A matriz a é obtida de B por meio das operações elementares: $l_2 \leftrightarrow l_1, \, l_3 \leftarrow l_3 3l_2$ e $l_1 \rightarrow 2l_1$.
- 20) Suponha que A é uma matriz quadrada e que D é uma matriz diagonal tal que AD = I. O que se pode afirmar sobre a matriz A? Justifique.
- 21) É possível ter AB = I e B não ser inversa de A? Justifique sua resposta.
- 22) Seja A uma matriz quadrada de ordem n, mostre que:
 - (a) Se A satisfaz a igualdade $A^2 3A + I = 0$, então A é invertível e $A^{-1} = 3I A$.
 - (b) Se A é tal que $A^{n+1}=0$, então A é invertível e $(I-A)^{-1}=I+A+A^2+\ldots+A^n$
- 23) Seja A uma matriz quadrada de ordem 5 com det(A) = -3. Pede-se:
 - (a) O determinante da matriz P dada por $P = 4A^{-1}A^{T}$.
 - (b) Decidir se P é ou não inversível.
 - (c) O determinante da matriz B obtida de A após serem realizadas as seguintes operações: $L_3 \longleftrightarrow L_2; L_1 \longrightarrow L_1 + 2L_5; L_4 \longrightarrow -3L_4.$
 - (d) Decidir se a matriz $Q=AA^T$ é ou não inversível.
- 24) Calcule o determinante da matriz $A = \begin{bmatrix} 4 & -5 & 3 & 2 \\ -1 & 0 & 3 & 0 \\ 1 & 2 & -1 & 3 \\ 2 & 1 & 0 & 4 \end{bmatrix}$;
 - (a) Desenvolvendo-o pela segunda linha (usando cofatores).
 - (b) Pelo processo de triangularização (usando operações elementares sobre as linhas da matriz).

- 25) Seja Q uma matriz quadrada de ordem n tal que det $Q \neq 0$ e $Q^3 + 2Q^2 = 0$. Determine o valor de det Q.
- 26) Dada a matriz $A = \begin{bmatrix} 1 & 5 & -1 & 3 \\ -1 & 2 & -2 & 4 \\ 6 & 7 & 3 & -1 \\ 5 & 3 & 0 & 4 \end{bmatrix}$, determine:
 - (a) $\det A$ utilizando as operações elementares sobre as linhas de A.
 - (b) $\det A^T$
 - (c) $\det(A^2)$
 - (d) $\det(-A)$
 - (e) $3AA^T$
- 27) Seja a matriz $A = \begin{bmatrix} 1 & 1 & -1 \\ 1 & 0 & 1 \\ 0 & 1 & 1 \end{bmatrix}$.
 - (a) Determine o polinômio $p(x) = \det(xI_3 A)$, onde I_3 é a matriz identidade de ordem 3 e $x \in \mathbb{R}$.
 - (b) Verifique que p(A) = 0, onde 0 é a matriz nula de ordem 3.
 - (c) Use o item anterior para calcular a inversa de A.
- 28) Resolva as equações:

(a)
$$\begin{vmatrix} x & 5 & 7 \\ 0 & x+1 & 6 \\ 0 & 0 & 2x-1 \end{vmatrix} = 0$$

(b)
$$\begin{vmatrix} 2 & x-2 & 3 \\ 2x+3 & x-1 & 4 \\ 5 & 1 & 0 \end{vmatrix} = 16$$

- 29) Diz-se que uma matriz A é semelhante à matriz B quando existe uma matriz inversível P tal que $B = PAP^{-1}$.
 - (a) Mostre que se A é uma matriz semelhante a B, então B é semelhante a A.
 - (b) Mostre que se A é semelhante a B e B é semelhante a C, então A é semelhante a C.
 - (c) Prove que matrizes semelhantes tem mesmo determinante.
- 30) Determine A^{-1} , se esta existir.

(a)
$$A = \begin{bmatrix} 2 & 1 & 3 \\ 4 & 2 & 2 \\ 2 & 5 & 3 \end{bmatrix}$$

$$\text{(c)} \ \ A = \left[\begin{array}{cccc} 1 & 0 & 0 & 0 \\ 2 & 1 & 0 & 0 \\ 3 & 2 & 1 & 0 \\ 4 & 3 & 2 & 1 \end{array} \right]$$

(b)
$$A = \begin{bmatrix} 3 & -1 \\ 2 & 4 \end{bmatrix}$$

(d)
$$A = \begin{bmatrix} \cos \theta & \sin \theta & 0 \\ -\sin \theta & \cos \theta & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

31) Calcule o determinante da matriz abaixo e determine sua inversa, se esta existir.

$$B = \begin{bmatrix} 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ -1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & -1 & 0 & 0 & 0 & 0 \\ 0 & 0 & -1 & 0 & 0 & 0 \end{bmatrix}.$$

32) A tiragem diária na cidade de Mimosa dos jornais: **Dia a Dia**, **Nossa Hora**, **Acontece** e **Urgente**, durante o ano de 2002 está representada na seguinte tabela:

	Dia a Dia	Nossa Hora	Acontece	Urgente
Dias Úteis	400	600	450	650
Feriados	350	550	500	600
Sábados	350	600	500	650
Domingos	450	500	400	700

Determine:

- (a) A tiragem de cada jornal em Mimosa em 2002, sabendo-se que 2002 tivemos 52 sábados, 52 domingos, 12 feriados e 249 dias úteis.
- (b) A estimativa de tiragem total de cada jornal em Mimosa para o ano de 2005, sabendo-se que a previsão é que até o final deste ano(2005) a tiragem tenha um aumento de 60% em relação à 2002.
- 33) Uma construtora está fazendo o orçamento de 65 estabelecimentos rurais sendo estes divididos em: 20 de alvenaria, 30 mistos e 15 de madeira. A tabela abaixo descreve a quantidade de material utilizado em cada tipo de construção.

Tipo de construção/	Tábuas	Tijolos	Telhas	Tinta	Mão-de-obra
Material	(unidade)	(mil)	(mil)	(litros)	(dias)
Alvenaria	50	15	6	70	25
Madeira	500	1	5	20	30
Misto	200	8	7	50	40

Pede-se:

- (a) Determinar, utilizando o produto de matrizes, a matriz A que descreve quantas unidades de cada componente serão necessárias para cumprir o orçamento.
- (b) Dar o significado do produto de matrizes AB, sendo A a matriz obtida no item (a) e B á a matriz obtida pela tabela abaixo.

	Valor da Compra	Transporte	
	(a unidade em reais)	(a unidade em reais)	
Tábuas	12	0,08	
Tijolos	100	20	
Telhas	300	10	
Tinta	3	0,50	
Mão-de-obra	40	1,50	

34) Considere os adubos I,II,III e IV com características e preços descritos nas tabelas abaixo:

	Substância	Fósforo	Nitrato	Potássio
	po kg			
	Adubo I	25g	15g	70g
	Adubo II	30kg	25g	40g
•	Adubo III	60g	10g	55g
	Adubo IV	15g	30g	60g

Um agricultor necessita de uma mistura com a seguinte especificação: 6 kg do adubo I, 7 kg do adubo II, 5 kg do adubo III e 8 kg do adubo IV. Usando o produto de matrizes, determine a quantidade de cada substância na mistura descrita acima e o preço desta mistura.

35) Um fabricante de farinha produz três tipos de farinha: de mandioca, de milho e de trigo. Para produzir cada um dos tipos de farinha o produto bruto passa por três processos: seleção, processamento e embalagem. O tempo necessário (em horas), em cada processo, para produzir uma saca de farinha, é dado na tabela abaixo:

Processos/	Seleção	Processamento	Embalagem
Tipos de Farinha			
Mandioca	1	3	1
Milho	2	5	1
Trigo	1,5	4	1

O fabricante produz as farinhas em duas usinas uma em Cacha Pregos (BA) e outra em Cacimba de Dentro (PB), as taxas por hora para cada um dos processos são dadas (em reais) na tabela abaixo:

	Cacha Pregos	Cacimba de Dentro
Seleção	2	1,50
Processamento	1	1,80
Embalagem	0,50	0,60

Encontre A e B matrizes obtidas pelas primeira e segunda tabelas, respectivamente. Qual o significado do produto AB?

36) A secretaria de meio ambiente do município de Mil Flores constatou que as empresas que trabalham nos ramos de suinocultura, cunicultura e piscicultura são as grandes poluidoras de três regiões do município. Diariamente despejam dejetos destas culturas segundo a descrição da tabela abaixo:

Quantidade de dejetos	1^a Região	2^a Região	3^a Região
Por dia (em Kg)			
Cunicultura	80	90	70
Piscicultura	200	40	30
Suinocultura	150	120	100

A secretaria decidiu então aplicar multas diárias sobre estas empresas afim de angariar fundos para despoluir tais regiões, as multas foram estabelecidas de acordo com a tabela abaixo:

Multa cobrada (em reais) por kg de dejetos depositados (em Kg)	1^a Região	2^a Região	3^a Região
Cunicultura	400	200	300
Piscicultura	50	400	100
Suinocultura	600	300	500

Considerando A e B as matrizes obtidas através das primeira e segunda tabelas, respectivamente, determine os elementos da matriz AB^T que fornece a arrecadação da secretaria de meio ambiente de Mil Flores ao aplicar as multas nas três regiões, por ramo de atividade.

- 37) Nas afirmativas abaixo, as matrizes têm ordens apropriadas para as operações indicadas. Decida se a afirmação é (sempre) verdadeira ou (às vezes) falsa. Justifique sua resposta dando um argumento lógico matemático ou um contra-exemplo.
 - (a) Se a primeira coluna de A for constituída somente de zeros, o mesmo ocorre com a primeira coluna de qualquer produto AB.
 - (b) Se a soma de matrizes AB + BA estiver definida, então $A \in B$ devem ser matrizes quadradas.
 - (c) Se A é uma matriz quadrada com duas linhas idênticas, então A^2 tem duas linhas idênticas.
 - (d) Se AA^T é uma matriz singular(não-inversível), então A não é inversível.
 - (e) Se A é inversível e AB = 0, então necessariamente B é a matriz nula.
 - (f) Se A^{100} é inversível, então 3A também o é.
 - (g) Dada a equação matricial $X^2 + 2X = 0$, onde X é uma matriz quadrada de ordem n não singular. Então esta equação tem única solução.
 - (h) Se $A, B \in M_n(\mathbb{R})$ são tais que A.B = 0(matriz nula), então B.A também é a matriz nula.
 - (i) Se $A, B \in M_n(\mathbb{R})$ são tais que A.B = 0 (matriz nula), então A = 0 ou B = 0.
 - (j) A soma de duas matrizes simétricas de mesma ordem é uma matriz simétrica.
 - (k) Se A.C = B.C e C é inversível, então A = B.
 - (1) Se A.B = 0 e B é inversível, então A = 0.
 - (m) Se A.B = C e duas das matrizes são inversíveis, então a terceira também é.

- 38) Nas afirmativas abaixo, as matrizes têm ordens apropriadas para as operações indicadas. Decida se a afirmação é (sempre) verdadeira ou (às vezes) falsa. Justifique sua resposta dando um argumento lógico matemático ou um contra-exemplo.
 - (a) $\det(-A) = \det(A)$.
 - (b) det(A+B) = det(A) + det(B).
 - (c) Sejam $A, B \in P$ matrizes reais de ordem n tais que $B = P^T.A.P$. Então $\det(A) = \det(B)$.
 - (d) det(2A) = 2 det(A).
 - (e) Não existe matriz real quadrada A tal que $\det(AA^T) = -1$.
 - (f) det(A+B) = det(A) + det(B).
 - (g) Se $det(A) \neq 0$ e AB = 0, então B é inversível.

Gabarito

1) a)
$$A_{5\times 6}$$
,

$$b)B_{3\times 6}$$

c)
$$C_{3\times4}$$

b)
$$B_{3\times 6}$$
, c) $C_{3\times 4}$, d) $D_{4\times 3}$, e) $E_{3\times 5}$

2)
$$c_{32} = 18, d_{43} = 23.$$

3)
$$A = \begin{bmatrix} 3 & -4 & -7 & -10 \\ -2 & 8 & -5 & -8 \\ -5 & -1 & 15 & -6 \end{bmatrix}$$

4)
$$a)A^2 = I$$
, $b)A^3 = A$, $c)A^{31} = A$, $d)A^{42} = I$

$$(A)^3 = A.$$

c)
$$A^{31} = A$$

$$d)A^{42} = I$$

5)
$$x = -1, y = 1$$

$$y = 1$$

6)
$$a)m = 1$$

6)
$$a)x = 4$$
, $b)x = 12$, $y = -8$, $z = -4$,

7) a)
$$\begin{bmatrix} 7 & 2 & 4 \\ 3 & 5 & 7 \end{bmatrix}$$
, b) $\begin{bmatrix} 10 & -6 \\ -14 & 2 \\ -1 & -8 \end{bmatrix}$

8) a)
$$\begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$$
, $\begin{bmatrix} -1 & -1 \\ -1 & -1 \end{bmatrix}$

b)4 matrizes:
$$\begin{bmatrix} \sqrt{5} & 0 \\ 0 & 3 \end{bmatrix}$$
, $\begin{bmatrix} -\sqrt{5} & 0 \\ 0 & 3 \end{bmatrix}$, $\begin{bmatrix} \sqrt{5} & 0 \\ 0 & -3 \end{bmatrix}$, $\begin{bmatrix} -\sqrt{5} & 0 \\ 0 & -3 \end{bmatrix}$

c) Não,
$$A = \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix}$$

9) Tome
$$B = A.A^T$$
 e mostre que $B = B^T$. Analogamente faça os outros itens.

10) a)
$$\pm 1$$
,

10) a)
$$\pm 1$$
, b) $\begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}$ e $\begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$

11)
$$m = \pm 1$$

- 12) Use as propriedades de sen (a+b), sen (-a), $\cos(a+b)$, $\cos(-a)$ e a definição da matriz T_{α} .
- Calcule as diagonais das matrizes $A + B, kA, AB, A^T$ e aplique a definição de traço.
- 14) Tome $B = A^T.A$ e mostre que $B^T = A$. Como $A = A^T$, A.A = A.

15) (a)
$$x = 0, y = 14$$

16) (a)
$$X = \begin{pmatrix} 0 & 1 \\ 3 & 0 \end{pmatrix}$$

(b) Sim, é única.

17)
$$p = 2 \text{ pois } A^2 = A$$

18) (a)
$$X = (BA)^{-1}$$

(c)
$$X = A^{-1}$$

(b)
$$X = A^{-1}.B^T$$

(d)
$$X = B^T - A$$

- 20) A matriz A também é diagonal.
- 21) Sim
- 22)
- 23) a) 4^5 , b) P é invertível, c) -9, d) Q é invertível
- 24) -5
- 25) $\det Q = (-2)^n$
- 26) d) 131, e) 3. $\begin{vmatrix} 36 & 23 & 35 & 32 \\ 23 & 25 & -2 & 17 \\ 35 & -2 & 95 & 47 \\ 32 & 17 & 47 & 50 \end{vmatrix}$
- 27) $p(x) = x^3 2x^2 x + 1 e A^{-1} = -\frac{1}{3}(A^2 2A I).$
- 28) a)x = 0, -1, 1/2, b)x = 40/11,
- 29)

30) (a)
$$A^{-1} = \begin{bmatrix} -\frac{1}{8} & \frac{3}{8} & -\frac{1}{8} \\ -\frac{1}{4} & 0 & \frac{1}{4} \\ \frac{1}{2} & -\frac{1}{4} & 0 \end{bmatrix}$$
(b) $A^{-1} = \begin{bmatrix} \frac{2}{7} & \frac{1}{14} \\ -\frac{1}{7} & \frac{3}{14} \end{bmatrix}$

(b)
$$A^{-1} = \begin{bmatrix} \frac{2}{7} & \frac{1}{14} \\ -\frac{1}{7} & \frac{3}{14} \end{bmatrix}$$

(c)
$$A^{-1} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ -2 & 1 & 0 & 0 \\ 1 & -2 & 1 & 0 \\ 0 & 1 & -2 & 1 \end{bmatrix}$$

(d)
$$A^{-1} = \begin{bmatrix} \cos \theta & -\sin \theta & 0 \\ \sin \theta & \cos \theta & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

31)
$$\det(B) = 1 e B^{-1} = \begin{bmatrix} 0 & 0 & -1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & 0 & 0 & -1 \\ 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \end{bmatrix}$$

32) Para o item (a) faça o produto matricial
$$AB$$
, em que $A = \begin{bmatrix} 249 & 12 & 52 & 52 \end{bmatrix}$ e $B = \begin{bmatrix} 400 & 600 & 450 & 650 \\ 350 & 550 & 500 & 600 \\ 350 & 600 & 500 & 650 \\ 450 & 500 & 400 & 700 \end{bmatrix}$.

No item (b) basta somar 60% em cada entrada da matriz resultante.

33) a)
$$A = \begin{bmatrix} 20 & 15 & 30 \end{bmatrix}$$
.
$$\begin{bmatrix} 50 & 15 & 6 & 70 & 25 \\ 500 & 1 & 5 & 20 & 30 \\ 200 & 8 & 7 & 50 & 40 \end{bmatrix}$$

b) Os elementos de AB representam o valor total de compra e o preço total de transporte de todos os materiais utilizados na construção de todos os estabelecimentos.

34) Faça os produtos
$$AB \in AC$$
, onde $A = \begin{bmatrix} 6 & 7 & 5 & 8 \end{bmatrix}$, $B = \begin{bmatrix} 25 & 15 & 70 \\ 30 & 25 & 40 \\ 60 & 10 & 55 \\ 15 & 30 & 60 \end{bmatrix}$ e $C = \begin{bmatrix} 7, 5 & 5 & 4, 5 & 6, 5 \end{bmatrix}$

35) Cada linha representa o custo total de cada produto e as colunas representam esses custos totais em cada cidade.

36)
$$A.B^T = \begin{bmatrix} 71000 & 47000 & 110000 \\ 97000 & 29000 & 147000 \\ 114000 & 655000 & 176000 \end{bmatrix}$$

- 37) (a) F
- (d) V
- (g) V

- (j) V
- (m) V

(b) V

- (e) V
- (h) F

(k) V

(c) V

- (f) V
- (i) F

(l) V

38) (a) F

(c) F

(e) F

(g) F

- (b) F
- (d) V

(f) F