WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

74/2

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6:

C07D 211/58, A61K 31/435, 31/41, C07D 207/14, 211/56, 211/26, 207/09, 401/12, 405/12, 409/12, 413/06, 413/14, 409/06, 405/06

(11) International Publication Number:

WO 99/25686

(43) International Publication Date:

27 May 1999 (27.05.99)

7-3182

(21) International Application Number:

PCT/US98/23254

A1

(22) International Filing Date:

17 November 1998 (17.11.98)

(30) Priority Data:

 08/972,484
 18 November 1997 (18.11.97)
 US

 09/055,285
 6 April 1998 (06.04.98)
 US

 09/133,434
 13 August 1998 (13.08.98)
 US

(63) Related by Continuation (CON) or Continuation-in-Part (CIP) to Earlier Applications

US 08/972,484 (CIP)
Filed on 18 November 1997 (18.11.97)
US 09/055,285 (CIP)
Filed on 6 April 1998 (06.04.98)
US 09/133,434 (CIP)
Filed on 13 August 1998 (13.08.98)

(71) Applicants (for all designated States except US): TEIJIN LIM-ITED [JP/JP]; 6-7, Minamihommachi 1-chome, Chuo-ku, Osaka-shi, Osaka 541-0054 (JP). COMBICHEM, INC. [US/US]; 9050 Camino Santa Fe, San Diego, CA 92121 (US).

(72) Inventors; and

(75) Inventors/Applicants (for US only): SHIOTA, Tatsuki [JP/JP]; Teijin Limited, Tokyo Research Center, 4-3-2, Asahigaoka, Hino-shi, Tokyo 191 (JP). KATAOKA, Ken-ichiro [JP/JP]; Teijin Limited, Tokyo Research Center, 4-3-2, Asahigaoka, Hino-shi, Tokyo 191 (JP). IMAI, Minoru [JP/JP]; Teijin Limited, Tokyo Research Center, 4-3-2, Asahigaoka, Hino-shi, Tokyo 191 (JP). TSUTSUMI, Takaharu [JP/JP]; Teijin Limited, Tokyo Research Center, 4-3-2, Asahigaoka, Hino-shi. Tokyo 191 (JP). SUDOH, Masaki [JP/JP]; Teijin Limited, Tokyo Research Center, 4-3-2, Asahigaoka, Hino-shi, Tokyo 191 (JP). SOGAWA, Ryo [JP/JP]; Teijin Limited, Tokyo Research Center, 4-3-2, Asahigaoka, Hino-shi, Tokyo 191 (JP). MORITA, Takuya [JP/JP]; Teijin Limited, Tokyo Research Center, 4-3-2, Asahigaoka, Hino-shi, Tokyo 191 (JP). HADA, Takahiko [JP/JP]; Teijin Limited, Tokyo Research Center, 4-3-2, Asahigaoka, Hino-shi, Tokyo 191 (JP). MUROGA, Yumiko [JP/JP]; Teijin Limited, Tokyo Research Center, 4-3-2, Asahigaoka, Hino-shi, Tokyo 191 (JP). TAKENOUCHI, Osami [JP/JP]; Teijin Limited, Tokyo Research Center, 4-3-2, Asahigaoka, Hino-shi, Tokyo 191 (JP). FURUYA, Monoru [JP/JP]: Teijin Limited, Tokyo Research Center, 4-3-2, Asahigaoka, Hino-shi, Tokyo 191 (JP). ENDO, Noriaki [JP/JP]: Teijin Limited, Tokyo Research Center, 4-3-2, Asahigaoka, Hino-shi, Tokyo 191 (JP). TARBY, Christine, M. [US/US]; CombiChem, Inc., 9050 Camino Santa Fe. San Diego, CA 92121 (US). MOREE, Wilna [NL/US]; CombiChem, Inc., 9050 Camino Santa Fe. San Diego, CA 92121 (US). TEIG, Steven, L. [US/US]; CombiChem North, Suite 201, 1804 Embarcadero Road, Palo Alto, CA 94303 (US).

- (74) Agents: BIGGART, Waddell, A. et al.; Sughrue, Mion, Zinn, MacPeak & Seas, PLLC, Suite 800, 2100 Pennsylvania Avenue, N.W., Washington, DC 20037-3202 (US).
- (81) Designated States: AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, UA, UG, US, UZ, VN, YU, ZW, ARIPO patent (GH, GM, KE, LS, MW, SD, SZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Published

With international search report.

Before the expiration of the time limit for amending the claims and to be republished in the event of the receipt of amendments.

(54) Title: CYCLIC AMINE DERIVATIVES AND THEIR USE AS DRUGS

$$\begin{array}{c}
R^{1} \\
 \longrightarrow (CH_{2})_{j} - N \\
R^{2} \\
 (CH_{2})_{m} \\$$

(57) Abstract

A compound represented by general formula (I), a pharmaceutically acceptable acid addition salt thereof or a pharmaceutically acceptable C_1 - C_6 alkyl addition salt thereof, and their medical applications. Since these compounds inhibit the action of chemokines such as MIP- 1α and/or MCP-1 on target cells, they may be useful as a therapeutic drug and/or preventative drug in diseases, such as atherosclerosis, rheumatoid arthritis, and the like where blood monocytes and lymphocytes infiltrate into tissues.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL	Albania	ES	Spain	LS	Lesotho	SI	Slovenia
AM	Armenia	FI	Finland	LT	Lithuania	SK	Slovakia
AT	Austria	FR	France	LU	Luxembourg	· SN	Senegal
ΑU	Australia	GA	Gabon	LV	Latvia	SZ	Swaziland
AZ	Azerbaijan	GB	United Kingdom	MC	Monaco	TD	Chad
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagascar	TJ	Tajikistan
BE	Belgium	GN	Guinea	MK	The former Yugoslav	TM	Turkmenistan
BF	Burkina Faso	GR	Greece		Republic of Macedonia	TR	Turkey
BG	Bulgaria	HU	Hungary	ML	Mali	TT	Trinidad and Tobago
BJ	Benin	IE	Ireland	MN	Mongolia	UA	Ukraine
BR	Brazil	ΙL	Israel	MR	Mauritania	UG	Uganda
BY	Belarus	IS	Iceland	MW	Malawi	US	United States of America
CA	Canada	IT	Italy	MX	Mexico	UZ	Uzbekistan
CF	Central African Republic	JP	Japan '	NE	Niger	VN	Viet Nam
CG	Congo	KE	Kenya	NL	Netherlands	YU	Yugoslavia
СН	Switzerland	KG	Kyrgyzstan	NO	Norway	zw	Zimbabwe
CI	Côte d'Ivoire	KР	Democratic People's	NZ	New Zealand		
CM	Cameroon		Republic of Korea	PL	Poland		
CN	China	KR	Republic of Korea	PT	Portugal		
CU	Cuba	ΚZ	Kazakstan	RO	Romania		
CZ	Czech Republic	LC	Saint Lucia	RU	Russian Federation		
DE	Germany	LI	Liechtenstein	SD	Sudan		
DK	Denmark	LK	Sri Lanka	SE	Sweden		
EE	Estonia	LR	Liberia	SG	Singapore		

SPECIFICATION

Cyclic Amine Derivatives and Their Use as Drugs

5 Field of the Invention

10

15

20

25

30

35

This invention relates to novel cyclic amine derivatives.

This invention also relates to chemokine receptor antagonists that may be effective as a therapeutic agent and/or preventive agent for diseases such as atherosclerosis, rheumatoid arthritis, psoriasis, asthma, ulcerative colitis, nephritis (nephropathy), multiple sclerosis, pulmonary fibrosis, myocarditis, hepatitis, pancreatitis, sarcoidosis, Crohn's disease, endometriosis, congestive heart failure, viral meningitis, cerebral infarction, neuropathy, Kawasaki disease, and sepsis in which tissue infiltration of blood leukocytes, such as monocytes and lymphocytes, play a major role in the initiation, progression or maintenance of the disease.

Description of related art

Chemokines are a group of inflammatory/immunomodulatory polypeptide factors which have a molecular weight of 6-15 kD and are produced by a variety of cell types, such as macrophages, monocytes, eosinophils, neutrophiles, fibroblasts, vascular endotherial cells, smooth muscle cells, and mast cells, at inflammatory sites. The chemokines can be classified into two major subfamilies, the CXC chemokines (or α -chemokines) and CC chemokines (or β chemokines), by the common location of the four conserved cysteine residues and by the differences in the chromosomal locations of the genes encoding them. The first two cysteines of CXC chemokines are separated by one amino acid and those of CC chemokines are adjacent. For example IL-8 (abbreviation for interleukin-8) is a CXC chemokine, while the CC chemokines include MIP-1 α/β (abbreviation for macrophage inflammatory protein-llpha/eta), MCP-l (abbreviation for monocyte chemoattractant protein-1), and RANTES (abbreviation for regulated upon activation, normal T-cell expressed and secreted). There also exist chemokines which do not fall into either chemokine subfamily. They are lymphotactin, which has only two cysteines and defines the C chemokine, and fractalkine that has a chemokine-like domain in the mucin structure in which the first two cysteines are separated by three amino acids and hence defines CX3C chemokine. These chemokines promote chemotaxis, cell migration, increase the expression of cellular adhesion molecules such as integrins, and cellular adhesion, and are

thought to be the protein factors intimately involved in the adhesion and infiltration of leukocytes into the pathogenic sites in such as inflammatory tissues (for references, see for example, Vaddi, K., et al., The Chemokine Facts Book, Academic Press, 1997; Chemoattractant Ligand and Their Receptors, Horuk, R., Ed., CRC Press, 1996; Ward, G.W., et al., Biochem. J., 1998, 333, 457; Luster, A.D., New Engl. J. Med., 1998, 338, 436; Baggiolini, M., Nature, 1998, 392, 565; Rollins, B.J., Blood, 1997, 90, 909; Alam, R., J. Allergy Clin. Immunol., 1997, 99, 273; Hancock, W.W., Am. J. Pathol., 1996, 148, 681; Taub, D.D., Cytokine & Growth Factor Rev., 1996, 7, 335; Strieter, R.M., et al., J. Immunol., 1996, 156, 3583; Furie, M.B., et al., Am. J. Pathol., 1995, 146, 1287; Schall, T.J., et al., Current Opinion in Immunology, 1994, 6, 865; Edginton, S.M., Biotechnology, 1993, 11, 676).

For example, MIP-lq causes a transient increase in intracellular calcium ion concentration levels and induces migration of T lymphocytes, B lymphocytes (see for example, Taub, D.D., et al., Science, 1993, 260, 355; Schall, T.J., et al., J. Exp. Med., 1993, 177, 1821), and eosinophiles (see for example, Rot, A., et al., J. Exp. Med., 1992, 176, 1489), chemotaxis of natural killer cells (see for example, Maghazachi, A.A., et al., J. Immunol., 1994, 153, 4969), expression of integrins (see for example, Vaddi, K., et al., J. Immunol., 1994, 153, 4721), and osteoclast differentiation (see for example, Kukita, T., et al., Lab. Invest., 1997, 76, 399). MIP-lq also enhances IgE and IgG4 production in B cells (see for example, Kimata, H., et al., J. Exp. Med., 1996, 183, 2397) and inhibits hematopoietic stem cell proliferation (see for example, Mayani, H., et al., Exp. Hematol., 1995, 23, 422; Keller, J.R., et al., Blood, 1994, 84, 2175; Eaves, C.J., et al., Proc. Natl. Acad. Sci. USA, 1993, 90, 12015; Bodine, D.M., et al., Blood, 1991, 78, 914; Broxmeyer, H.E., et al., Blood, 1990, 76, 1110).

With respect to the activity of MIP-1α in vivo and its role in the pathogenesis of disease, it has been reported that it is a pyrogen in rabbits (see for example Davatelis, G., et al., Science, 1989, 243, 1066); that MIP-1α injection into mouse foot pads results in an inflammatory reaction such as infiltration by neutrophils and mononuclear cells (see for example Alam, R., et al., J. Immunol., 1994, 152, 1298); that MIP-1α neutralizing antibody has an inhibitory effect or a therapeutic effect in animal models of granuloma (see for example Lukacs, N.W., et al., J. Exp. Med., 1993, 177, 1551), asthma (see for example Lukacs, N.W., et al., Eur. J. Immunol., 1995, 25, 245; Lukacs, N.W., et al., J. Immunol., 1997, 158, 4398), multiple sclerosis (see for example Karpus,

15

20

25

30

PCT/US98/23254 WO 99/25686

W.J., et al., J. Immunol., 1995, 155, 5003; Karpus, W.J., et al., J. Leukoc. Biol., 1997, 62, 681), idiopathic pulmonary fibrosis (see for example Smith, R.E., et al., J. Immunol., 1994, 153, 4704; Smith, R.E., Biol. Signals, 1996, 5, 223), acute lung injury (see for example Shanley, T.P., et al., J. Immunol., 1995, 154, 4793; Standiford, T.J., et al., J. Immunol., 1995, 155, 1515), and rheumatoid arthritis (see for example Kasama, T., et al., J. Clin. Invest., 1995, 95, 2868); that coxsackie virus induced myocarditis and herpes stromal keratitis are inhibited in mice with a disrupted MIP-1 α gene (see for example Cook, D.N. et al., Science, 1995, 269, 1583; Tumpey, T.M., et al., J. Virology, 1998, 72, 3705); and that significant expression of MIP-l α is observed in patients with chronic inflammatory diseases of lung (see for example Standiford, T.J., et al., J. Immunol., 1993, 151, 2852), hypersensitivity pneumonitis (see for example Denis, M., Am. J. Respir. Crit. Care Med., 1995, 151, 164), rheumatoid arthritis (see for example Koch, A.E., et al., J. Clin. Invest., 1994, 93, 921), infectious meningitis (see for example Lahrtz, F., et al., J. Neuroimmunol., 1998, 85, 33), and chronic inflammation of muscle (see for example Adams, E.M., et al., Proc. Assoc. Am. Physicians, 1997, 109, 275). These studies indicate that MIP-1 α is deeply involved in the local attraction of various subtypes of leukocytes and the initiation, progression and maintenance of resulting inflammatory response.

MCP-1 (also known as MCAF (abbreviation for macrophage chemotactic and activating factor) or JE) is a CC chemokine produced by monocytes/macrophages, smooth muscle cells, fibroblasts, and vascular endothelial cells and causes cell migration and cell adhesion of monocytes (see for example Valente, A.J., et al., Biochemistry, 1988, 27, 4162; Matsushima, K., et al., J. Exp. Med., 1989, 169, 1485; Yoshimura, T., et al., J. Immunol., 1989, 142, 1956; Rollins, B.J., et al., Proc. Natl. Acad. Sci. USA, 1988, 85, 3738; Rollins, B.J., et al., Blood, 1991, 78, 1112; Jiang, Y., et al., J. Immunol., 1992, 148, 2423; Vaddi, K., et al., J. Immunol., 1994, 153, 4721), memory T lymphocytes (see for example Carr, M.W., et al., Proc. Natl. Acad. Sci. USA, 1994, 91, 3652), T lymphocytes (see for example Loetscher, P., et al., FASEB J., 1994, 8, 1055) and natural killer cells (see for example Loetscher, P., et al., J. Immunol., 1996, 156, 322; Allavena, P., et al., Eur. J. Immunol., 1994, 24, 3233), as well as mediating histamine release by basophils (see for example Alam, R., et al., J. Clin. Invest., 1992, 89, 723; Bischoff, S.C., et al., J. Exp. Med., 1992, 175, 1271; Kuna, P., et al., J. Exp. Med., 1992, 175, 489). 35

In addition, high expression of MCP-1 has been reported in diseases where accumulation of monocyte/macrophage and/or T cells is thought to be important

10

15

20

25

in the initiation or progression of diseases, such as atherosclerosis (see for example Hayes, I.M., et al., Arterioscler. Thromb. Vasc. Biol., 1998, 18, 397; Takeya, M., et al., Hum. Pathol., 1993, 24, 534; Yla-Herttuala, S., et al., Proc. Natl. Acad. Sci. USA, 1991, 88, 5252; Nelken, N.A., J. Clin. Invest., 1991, 88, 1121), rheumatoid arthritis (see for example Koch, A.E., et al., J. Clin. Invest., 1992, 90, 772; Akahoshi, T., et al., Arthritis Rheum., 1993, 36, 762; Robinson, E., et al., Clin. Exp. Immunol., 101, 398), nephritis (see for example Noris, M., et al., Lab. Invest., 1995, 73, 804; Wada, T., at al., Kidney Int., 1996, 49, 761; Gesualdo, L., et al., Kidney Int., 1997, 51, 155), nephropathy (see for example Saitoh, A., et al., J. Clin. Lab. Anal., 1998, 12, 1; Yokoyama, H., 10 et al., J. Leukoc. Biol., 1998, 63, 493), pulmonary fibrosis, pulmonary sarcoidosis (see for example Sugiyama, Y., et al., Internal Medicine, 1997, 36, 856), asthma (see for example Karina, M., et al., J. Invest. Allergol. Clin. Immunol., 1997, 7, 254; Stephene, T.H., Am. J. Respir. Crit. Care Med., 1997, 156, 1377; Sousa, A.R., et al., Am. J. Respir. Cell Mol. Biol., 1994, 10, 142), 15 multiple sclerosis (see for example McManus, C., et al., J. Neuroimmunol., 1998, 86, 20), psoriasis (see for example Gillitzer, R., et al., J. Invest. Dermatol., 1993, 101, 127), inflammatory bowel disease (see for example Grimm, M.C., et al., J. Leukoc. Biol., 1996, 59, 804; Reinecker, H.C., et al., Gastroenterology, 1995, 106, 40), myocarditis (see for example Seino, Y., et al., Cytokine, 1995, 20 7, 301), endometriosis (see for example Jolicoeur, C., et al., Am. J. Pathol., 1998, 152, 125), intraperitoneal adhesion (see for example Zeyneloglu, H.B., et al., Human Reproduction, 1998, 13, 1194), congestive heart failure (see for example Aurust, P., et al., Circulation, 1998, 97, 1136), chronic liver disease (see for example Marra, F., et al., Am. J. Pathol., 1998, 152, 423), viral 25 meningitis (see for example Lahrtz, F., et al., Eur. J. Immunol., 1997, 27, 2484), Kawasaki disease (see for example Wong, M.; et al., J. Rheumatol., 1997, 24,1179) and sepsis (see for example Salkowski, C.A.; et al., Infect. Immun., 1998, 66, 3569). Furthermore, anti-MCP-1 antibody has been reported to show an inhibitory effect or a therapeutic effect in animal models of rheumatoid arthritis (see 30 for example Schimmer, R.C., et al., J. Immunol., 1998, 160, 1466; Schrier, D.J., J. Leukoc. Biol., 1998, 63, 359; Ogata, H., et al., J. Pathol., 1997, 182, 106), multiple sclerosis (see for example Karpus, W.J., et al., J. Leukoc. Biol., 1997, 62, 681), nephritis (see for example Lloyd, C.M., et al., J. Exp. Med., 1997, 185, 1371; Wada, T., et al., FASEB J., 1996, 10, 1418), Asthma (see for example 35 Gonzalo, J.-A., et al., J. Exp. Med., 1998, 188, 157; Lukacs, N.W., J. Immunol., 1997, 158, 4398), atherosclerosis (see for example Guzman, L.A., et al.,

Circulation, 1993, 88 (suppl.), I-371), delayed type hypersensitivity (see for example Rand, M.L., et al., Am. J. Pathol., 1996, 148, 855), pulmonary hypertension (see for example Kimura, H., et al., Lab. Invest., 1998, 78, 571), and intraperitoneal adhesion (see for example Zeyneloglu, H.B., et al., Am. J. Obstet. Gynecol., 1998, 179, 438). A peptide antagonist of MCP-1, MCP-1(9-76), has been also reported to inhibit arthritis in the mouse model (see Gong, J.-H., J. Exp. Med., 1997, 186, 131), as well as studies in MCP-1-deficient mice have shown that MCP-1 is essential for monocyte recruitment in vivo (see Lu, B., et al., J. Exp. Med., 1998, 187, 601; Gu, L., et al., Moll. Cell, 1998, 2, 275).

These data indicate that chemokines such as MIP-1a and MCP-1 attract monocytes and lymphocytes to disease sites and mediate their activation and thus are thought to be intimately involved in the initiation, progression and maintenance of diseases deeply involving monocytes and lymphocytes, such as atherosclerosis, rheumatoid arthritis, psoriasis, asthma, ulcerative colitis, nephritis (nephropathy), multiple sclerosis, pulmonary fibrosis, myocarditis, hepatitis, pancreatitis, sarcoidosis, Crohn's disease, endometriosis, congestive heart failure, viral meningitis, cerebral infarction, neuropathy, Kawasaki disease, and sepsis (see for example Rovin, B.H., et al., Am. J. Kidney. Dis., 1998, 31, 1065; Lloyd, C., et al., Curr. Opin. Nephrol. Hypertens., 1998, 7, 281; Conti, P., et al., Allergy and Asthma Proc., 1998, 19, 121; Ransohoff, R.M., et al., Trends Neurosci., 1998, 21, 154; MacDermott, R.P., et al., Inflammatory Bowel Diseases, 1998, 4, 54). Therefore, drugs which inhibit the action of chemokines on target cells may be effective as a therapeutic and/or preventive drug in the diseases.

Genes encoding receptors of specific chemokines have been cloned, and it is now known that these receptors are G protein-coupled seven-transmembrane receptors present on various leukocyte populations. So far, at least five CXC chemokine receptors (CXCR1-CXCR5) and eight CC chemokine receptors (CCR1-CCR8) have been identified. For example IL-8 is a ligand for CXCR1 and CXCR2, MIP-1a is that for CCR1 and CCR5, and MCP-1 is that for CCR2A and CCR2B (for reference, see for example, Holmes, W.E., et al., Science 1991, 253, 1278-1280; Murphy P.M., et al., Science, 253, 1280-1283; Neote, K. et al., Cell, 1993, 72, 415-425; Charo, I.F., et al., Proc. Natl. Acad. Sci. USA, 1994, 91, 2752-2756; Yamagami, S., et al., Biochem. Biophys. Res. Commun., 1994, 202, 1156-1162; Combadier, C., et al., The Journal of Biological Chemistry, 1995, 270, 16491-16494, Power, C.A., et al., J. Biol. Chem., 1995, 270, 19495-19500; Samson, M., et al.,

10

15

20

25

30

Biochemistry, 1996, 35, 3362-3367; Murphy, P.M., Annual Review of Immunology, 1994, 12, 592-633). It has been reported that lung inflammation and granuroma formation are suppressed in CCR1-deficient mice (see Gao, J.-L., et al., J. Exp. Med., 1997, 185, 1959; Gerard, C., et al., J. Clin. Invest., 1997, 100, 2022), and that recruitment of macrophages and formation of atherosclerotic lesion decreased in CCR2-deficient mice (see Boring, L., et al., Nature, 1998, 394, 894; Kuziel, W.A., et al., Proc. Natl. Acad. Sci., USA, 1997, 94, 12053; Kurihara, T., et al., J. Exp. Med., 1997, 186, 1757; Boring, L., et al., J. Clin. Invest., 1997, 100, 2552). Therefore, compound which inhibit the binding of chemokines such as MIP-1α and/or MCP-1 to these receptors, that is, chemokine receptor antagonist, may be useful as drugs which inhibit the action of chemokines such as MIP-1α and/or MCP-1 on the target cells, but there are no drugs known to have such effects.

The cyclic amine derivatives provided by the present invention is quite novel. Recently, it has been reported that the diphenylmethane derivatives 15 (WO9724325; Hesselgesser, J., et al., J. Biol. Chem., 1998, 273, 15687), piperidine derivatives (JP9-249566), imidazobenzodiazepine derivatives (JP9-249570), benzazocine derivatives (JP9-255572), tricyclic compounds with cyclic amino group (WO9804554), phenothiazine derivatives (Bright, C., et al., Bioorg. Med. Chem. Lett., 1998, 8, 771), pieprazine derivatives (WO9744329), 20 benzimidazole derivatives (WO9806703), distamycin analogues (Howard, O.M.Z., et al., J. Med. Chem., 1998, 41, 2184), bis-acridine derivatives (WO9830218), substituted aryl spiro-substituted azacycles (WO9825604; WO9825605), (WO9827815), aminoquinoline derivatives (WO9825617), piperazines arylpiperidine derivatives (WO9831364), hexanoic amide derivatives (WO9838167), 25 and other small molecules (WO9744329; WO9802151; WO9804554) have antagonistic activity of chemokine receptor, such as CXCR1, CXCR4, CCR1, CCR2, CCR3, and CCR5. However, these compounds differ from the compound of the present invention.

30 Summary of the Invention

Therefore, it is an object of the present invention to provide small molecule compound which inhibits the binding of chemokines such as MIP-l α and/or MCP-l to their receptors on the target cells.

It is another object of the present invention to establish a method to inhibit the binding to the receptors on the target cells and/or effects on target cells of chemokines such as MIP-1 α and/or MCP-1.

It is an additional object of the present invention to propose a method

for the treatment of diseases for which the binding of chemokines such as MIP-l α and/or MCP-l to the receptor on the target cell is one of the causes.

As a result of intensive studies, the present inventors discovered that a cyclic amine derivative having a arylalkyl group, its pharmaceutically acceptable C_1 - C_6 alkyl addition salt or its pharmaceutically acceptable acid addition salt has an excellent activity to inhibit the binding of chemokines such as MIP-l α and/or MCP-l and the like to the receptor of a target cell, which has led to the completion of this invention.

That is, the present invention is a compound of the formula (I) below:

10

$$\begin{array}{c}
R_{2}^{1} \longrightarrow (CH_{2})_{j} - N \\
R_{2}^{2} \longrightarrow (CH_{2})_{m} \longrightarrow (CH_{2})_{m} \longrightarrow (CH_{2})_{n} - N - C \longrightarrow (CH_{2})_{p} \longrightarrow (CH_{2})_{q} - G - R^{6}
\end{array} (I)$$

, a pharmaceutically acceptable acid addition salt thereof or a pharmaceutically acceptable $C_1\text{--}C_6$ alkyl addition salt thereof (Invention 1),

15

20

25

30

wherein R^1 is a phenyl group, a $C_3 - C_8$ cycloalkyl group, or an aromatic heterocyclic group having 1-3 heteroatoms selected from the group consisting of an oxygen atom, a sulfur atom, a nitrogen atom, or a combination thereof, in which the phenyl or aromatic heterocyclic group may be condensed with a benzene ring or an aromatic heterocyclic group having 1-3 heteroatoms selected from the group consisting of an oxygen atom, a sulfur atom, a nitrogen atom, or a combination thereof, to form a condensed ring, and the phenyl group, $C_3 - C_{\varrho}$ cycloalkyl group, aromatic heterocyclic group, or condensed ring may be substituted with one or more of a halogen atom, a hydroxy group, a cyano group, a nitro group, a carboxy group, a carbamoyl group, a C_1-C_6 alkyl group, a C_3-C_8 cycloalkyl group, a C_2 - C_6 alkenyl group, a C_1 - C_6 alkoxy group, a C_i - C_6 alkylthio group, a C_3 - C_5 alkylene group, a C_2 - C_4 alkylenoxy group, a C_1 - C_3 alkylenedioxy group, a phenyl group, a phenoxy group, a phenylthio group, a benzyl group, a benzyloxy group, a benzoylamino group, a C_2-C_7 alkanoyl group, a C_2-C_7 alkoxycarbonyl group, a C_2 - C_7 alkanoyloxy group, a C_2 - C_7 alkanoylamino group, a C_2 -C. N-alkylcarbamoyl group, a C_4 -C. N-cycloalkylcarbamoyl group, a C_1 -C. alkylsulfonyl group, a C_3-C_2 (alkoxycarbonyl) methyl group, a N-phenylcarbamoyl group, a piperidinocarbonyl group, a morpholinocarbonyl group, a 1pyrrolidinylcarbonyl group, a divalent group represented by the formula: -NH(C=0)0-, a divalent group represented by the formula: -NH(C=S)O-, an amino

group, a mono $(C_1-C_5$ alkyl) amino group, or a di $(C_1-C_5$ alkyl) amino group, wherein the substituent for the phenyl group, C_5-C_5 cycloalkyl group, aromatic heterocyclic group, or condensed ring is optionally substituted with one or more of a halogen atom, a hydroxy group, an amino group, a trifluoromethyl group, a C_1-C_5 alkyl group, or a C_1-C_5 alkoxy group;

 R^2 is a hydrogen atom, a C_1 - C_6 alkyl group, a C_2 - C_7 alkoxycarbonyl group, a hydroxy group, or a phenyl group, in which the C_1 - C_6 alkyl or phenyl group may be substituted with one or more of a halogen atom, a hydroxy group, a C_1 - C_6 alkoxy group, and when j=0, R^2 is not a hydroxy group;

j represents an integer of 0-2;
k represents an integer of 0-2;
m represents an integer of 2-4;
n represents 0 or 1;

5

15

20

25

30

 R^2 is a hydrogen atom or a C_1 - C_6 alkyl group optionally substituted with one or two phenyl groups each of which may be substituted with one or more of a halogen atom, a hydroxy group, a C_1 - C_6 alkyl group, or a C_1 - C_6 alkoxy group;

 R^4 and R^6 are the same or different from each other and are a hydrogen atom, a hydroxy group, a phenyl group, or a C_1 - C_6 alkyl group, in which the C_1 - C_6 alkyl group is optionally substituted with one or more of a halogen atom, a hydroxy group, a cyano group, a nitro group, a carboxy group, a carbamoyl group, a mercapto group, a guanidino group, a C_3 - C_3 cycloalkyl group, a C_1 - C_6 alkoxy group, a C_1 - C_6 alkylthio group, a phenyl group optionally substituted with one or more of a halogen atom, a hydroxy group, a C_1 - C_6 alkyl group, a C_1 - C_6 alkoxy group, or a benzyloxy group, a phenoxy group, a benzyloxy group, a benzyloxycarbonyl group, a C_2 - C_1 alkanoyl group, a C_2 - C_2 alkoxycarbonyl group, a C_3 - C_4 alkanoylamino group, a C_2 - C_7 alkoxycarbonyl group, a C_2 - C_7 alkanoylamino group, a mono $(C_1$ - C_6 alkyl) amino group, a di $(C_1$ - C_6 alkyl) amino group, or an aromatic heterocyclic group having 1-3 of heteroatoms selected from the group consisting of an oxygen atom, a sulfur atom, a nitrogen atom, or a combination thereof and optionally condensed with benzene ring, or R^4 and R^5 taken together form a 3 to 6 membered cyclic hydrocarbon;

p represents 0 or 1;
q represents 0 or 1;

G is a group represented by -CO-, -SO₂-, -CO-O-, -NR²-CO-, -CO-NR²-, -NH-CO-NH-, -NH-CS-NH-, -NR²-SO₂-, -SO₂-NR²-, -NH-CO-O-, or -O-CO-NH-, wherein R is a hydrogen atom or a C₁-C₅ alkyl group, or R² taken together with R⁵ represents C₂-C₅ alkylene group;

R'is a phenyl group, a C₁-C₂ cycloalkyl group, a C₃-C₃ cycloalkenyl group, a benzyl group, or an aromatic heterocyclic group having 1-3 heteroatoms selected from the group consisting of an oxygen atom, a sulfur atom, a nitrogen atom, or a combination thereof, in which the phenyl, benzyl, or aromatic heterocyclic group may be condensed with a benzene ring or an aromatic heterocyclic group having 1-3 heteroatoms selected from the group consisting of an oxygen atom, a sulfur atom, a nitrogen atom, or a combination thereof, to form a condensed ring, and the phenyl group, C3-C8 cycloalkyl group, C3-C8 cycloalkenyl group, benzyl group, aromatic heterocyclic group, or condensed ring may be substituted with one or more of a halogen atom, a hydroxy group, a mercapto group, a cyano group, a nitro group, a thiocyanato group, a carboxy group, a carbamoyl group, a trifluoromethyl group, a C_1 - C_6 alkyl group, a C_3 - C_6 cycloalkyl group, a C_2 - C_6 alkenyl group, a C_1 - C_6 alkoxy group, a C_3 - C_8 cycloalkyloxy group, a C_1 - C_6 alkylthio group, a C_1 - C_3 alkylenedioxy group, a phenyl group, a phenoxy group, a phenylamino group, a benzyl group, a benzoyl group, a phenylsulfinyl group, a phenylsulfonyl group, a 3-phenylureido group, a C_2 - C_7 alkanoyl group, a C_2 - C_7 alkoxycarbonyl group, a C_2 - C_7 alkanoyloxy group, a C_2 - C_7 alkanoylamino group, a C_2-C_1 N-alkylcarbamoyl group, a C_1-C_6 alkylsulfonyl group, a phenylcarbamoyl group, a $N, N-\text{di}(C_1-C_6 \text{ alkyl})$ sulfamoyl group, an amino group, a mono(C_1-C_6 alkyl) amino group, a di $(C_1-C_5$ alkyl) amino group, a benzylamino group, a C_2-C_7 $(alkoxycarbonyl) amino \ group, \ a \ C_1-C_5 \ (alkylsulfonyl) amino \ group, \ or \ a \ bis (C_1-C_6)$ alkylsulfonyl)amino group, wherein the substituent for the phenyl group, $C_0 - C_0$ cycloalkyl group, C_3 - C_8 cycloalkenyl group, benzyl group, aromatic heterocyclic group, or condensed ring is optionally substituted with one or more of a halogen atom, a cyano group, a hydroxy group, an amino group, trifluoromethyl group, a C_1-C_6 alkyl group, a C_1-C_ξ alkoxy group, a C_1-C_6 alkylthio group, a mono(C_1-C_6 alkyl) amino group, or a $di(C_1-C_{\epsilon} alkyl)$ amino group.

Also the present invention is a method of inhibiting the binding of a chemokine to the receptor of a target cell and/or its action on a target cell using a pharmaceutical preparation containing a therapeutically effective amount of a compound represented by the above formula (I), a pharmaceutically acceptable acid addition salt thereof, or a pharmaceutically acceptable C_1 - C_{ℓ} alkyl addition salt thereof (Invention 2).

35

10

15

20

25

30

Here, the compound represented by the above formula (I) have activities to inhibit the binding of chemokines such as MIP-l α and/or MCP-l and the like

to the receptor of a target cell and activities to inhibit physiological activities of cells caused by chemokines such as MIP-l α and/or MCP-l and the like.

5 Description of the Preferred Embodiments

(1) On Invention 1

10

15

20

25

30

35

In the above formula (I), R^1 is a phenyl group, a C_3 - C_8 cycloalkyl group, or an aromatic heterocyclic group having 1-3 heteroatoms selected from the group consisting of an oxygen atom, a sulfur atom, a nitrogen atom, or a combination thereof, in which the phenyl or aromatic heterocyclic group may be condensed with a benzene ring or an aromatic heterocyclic group having 1-3 heteroatoms selected from the group consisting of an oxygen atom, a sulfur atom, a nitrogen atom, or a combination thereof, to form a condensed ring, and the phenyl group, C_3 - C_8 cycloalkyl group, aromatic heterocyclic group, or condensed ring may be substituted with one or more of a halogen atom, a hydroxy group, a cyano group, a nitro group, a carboxy group, a carbamoyl group, a C_1 - C_6 alkyl group, a C_3 - C_8 cycloalkyl group, a C_2-C_6 alkenyl group, a C_1-C_6 alkoxy group, a C_1-C_6 alkylthio group, a C_3-C_5 alkylene group, a C_2-C_4 alkylenoxy group, a C_1-C_3 alkylenedioxy group, a phenyl group, a phenoxy group, a phenylthio group, a benzyl group, a benzyloxy group, a benzoylamino group, a C_2 - C_1 alkanoyl group, a C_2 - C_2 alkoxycarbonyl group, a C_2 -C- alkanoyloxy group, a C_2 -C- alkanoylamino group, a C_2 - C_7 N-alkylcarbamoyl group, a C_4 - C_5 N-cycloalkylcarbamoyl group, a C_1 - C_5 alkylsulfonyl group, a C_5-C_8 (alkoxycarbonyl) methyl group, a N-phenylcarbamoyl group, a piperidinocarbonyl group, a morpholinocarbonyl group, a 1pyrrolidinylcarbonyl group, a divalent group represented by the formula: -NH(C=0)O-, a divalent group represented by the formula: -NH(C=S)O-, an amino group, a mono(C_1 - C_{ε} alkyl)amino group, or a di(C_1 - C_{ε} alkyl)amino group.

The " C_1 - C_2 cycloalkyl group" for R^1 means a cyclic alkyl group such as a cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl, and cyclooctyl group, specifically including a cyclopropyl, cyclopentyl, and cyclohexyl group.

The "aromatic heterocyclic group having 1-3 heteroatoms selected from the group consisting of an oxygen atom, a sulfur atom, a nitrogen atom, or a combination thereof" for Rⁱ is specifically, for example, thienyl, furyl, pyrrolyl, imidazolyl, pyrazolyl, oxazolyl, isoxazolyl, thiazolyl, isothiazolyl, pyridyl, pyrimidinyl, triazinyl, triazolyl, oxadiazolyl (furazanyl),

thiadiazolyl group and the like, preferably including a thienyl, furyl, pyrrolyl, isoxazolyl, and pyridyl group.

The "condensed ring" for R¹ means a ring obtained by the condensation with a benzene ring or an aromatic heterocyclic group having 1-3 heteroatoms selected from the group consisting of an oxygen atom, a sulfur atom, a nitrogen atom of a phenyl group or an aromatic heterocyclic group having 1-3 heteroatoms selected from the group consisting of an oxygen atom, a sulfur atom and/or a nitrogen atom, at any possible sites, suitably and specifically for example, naphthyl, indolyl, benzofuranyl, benzothienyl, quinolyl, benzimidazolyl, benzoxazolyl, benzotriazolyl, benzoxadiazolyl (benzofurazanyl), and benzothiadiazolyl group.

Among them, a phenyl group and an isoxazolyl group can be listed as a preferred specific example for $\ensuremath{\mathsf{R}}^1.$

The "halogen atom" as a substituent for the phenyl group, C_3 - C_5 cycloalkyl group, aromatic heterocyclic group, or condensed ring in R^1 includes a fluorine atom, chlorine atom, bromine atom, and iodine atom, suitably including a fluorine atom, chlorine atom, and bromine atom.

The " C_1 - C_6 alkyl group" as a substituent for R^1 means a C_1 - C_6 straight-chain or a branched alkyl group such as a methyl, ethyl, n-propyl, n-butyl, n-pentyl, n-hexyl, n-heptyl, n-octyl, isopropyl, isobutyl, sec-butyl, tert-butyl, isopentyl, neopentyl, tert-pentyl, isohexyl, 2-methylpentyl, 1-ethylbutyl group, and the like, suitably specifically including a methyl, ethyl, propyl, and isopropyl group.

The " C_1 - C_0 cycloalkyl group" as a substituent for R^1 is the same as defined for the aforementioned " C_3 - C_0 cycloalkyl group" for R^1 , where the same examples can be given for the preferred specific examples.

The " C_2 - C_6 alkenyl group" as a substituent for R^1 means a C_2 - C_7 straight-chain or a branched alkenyl group such as a vinyl, allyl, 1-propenyl, 2-butenyl, 3-butenyl, 2-methyl-1-propenyl, 4-pentenyl, 5-hexenyl, 4-methyl-3-pentenyl group, and the like, suitably specifically including a vinyl and 2-methyl-1-propenyl group.

The " C_1 - C_5 alkoxy group" as a substituent for R^1 means group consisting of the aforementioned C_1 - C_5 alkyl group and oxy group, specifically, for example, a methoxy and ethoxy group.

The " C_1 - C_6 alkylthio group" as a substituent for R^2 means group consisting of the aforementioned C_1 - C_6 alkyl group and thio group, specifically, for example,

10

20

25

30

a methylthio and ethylthio group.

5

10

15

20

25

30

35

The " C_2 - C_5 alkylene group" as a substituent for R^1 means the C_2 - C_5 divalent alkylene group such as a trimethylene, tetramethylene, pentamethylene, and 1-methyltrimethylene group, specifically, for example, a trimethylene and a tetramethylene group.

The "C₂-C₄ alkylenoxy group" as a substituent for R¹ means group consisting of the aforementioned C₂-C₄ divalent alkylene group and oxy group such as a ethylenoxy (-CH₂CH₂O-), trimethylenoxy (-CH₂CH₂O-), tetramethylenoxy (-CH₂CH₂CH₂O-), and 1,1-dimethylenoxy (-CH₂C(CH₃)₂O-) group, specifically, for example, a ethylenoxy and trimethylenoxy group.

The " C_1 - C_3 alkylenedioxy group" as a substituent for R^1 means group consisting of C_1 - C_3 divalent alkylene group and two oxy groups such as a methylenedioxy (-OCH $_2$ O-), ethylenedioxy (-OCH $_2$ CH $_2$ O-), trimethylenedioxy (-OCH $_2$ CH $_2$ O-) group, specifically, for example, a methylenedioxy and ethylenedioxy group.

The " C_2 - C_7 alkanoyl group" as a substituent for R^1 means C_2 - C_7 straight-chain or branched alkanoyl group such as an acetyl, propanoyl, butanoyl, pentanoyl, hexanoyl, heptanoyl, isobutyryl, 3-methylbutanoyl, 2-methylbutanoyl, pivaloyl, 4-methylpentanoyl, 3,3-dimethylbutanoyl, 5-methylhexanoyl group, and the like, where the preferred and specific example includes an acetyl group.

The " C_2 - C_7 alkoxycarbonyl group" as a substituent for R^1 means group consisting of the aforementioned C_1 - C_6 alkoxy group and carbonyl group, preferably and specifically for example, a methoxycarbonyl and ethoxycarbonyl group.

The " C_2 - C_7 alkanoyloxy group" as a substituent for R^1 means group consisting of the aforementioned C_2 - C_7 alkanoyl group and oxy group, specifically, for example, an acetyloxy group.

The " C_2-C_1 alkanoylamino group" as a substituent for R^1 means group consisting of the aforementioned C_2-C_1 alkanoyl group and amino group, specifically, for example, an acetylamino group.

The " C_1 -C-N-alkylcarbamoyl group" as a substituent for R^1 means group consisting of the aforementioned C_1 - C_2 - C_3 -alkyl group and carbamoyl group, specifically, for example, a N-methylcarbamoyl and N-ethylcarbamoyl group.

The " C_4 - C_5 N-cycloalkylcarbamoyl group" as a substituent for R^1 means group consisting of the aforementioned C_5 - C_5 cycloalkyl group and carbamoyl group, specifically, for example, a N-cyclopentylcarbamoyl and N-cyclohexylcarbamoyl group.

The "C₁-C, alkylsulfonyl group" as a substituent for R^1 means group

consisting of the aforementioned C_1-C_5 alkyl group and sulfonyl group, preferably and specifically, for example, a methylsulfonyl group.

The " C_3 - C_2 (alkoxycarbonyl)methyl group" as a substituent for R^1 means group consisting of the aforementioned C_2 - C_1 alkoxycarbonyl group and methyl group, preferably and specifically for example, a (methoxycarbonyl)methyl and (ethoxycarbonyl)methyl group.

The "mono(C_1 - C_6 alkyl)amino group" as a substituent for R^1 means amino group substituted with one of the aforementioned C_1 - C_6 alkyl group, preferably and specifically, for example, a methylamino and ethyl amino group.

The "di(C_1 - C_6 alkyl) amino group" as a substituent for R^1 means amino group substituted with the same or different two C_1 - C_6 alkyl group aforementioned, preferably and specifically, for example, a dimethylamino, diethylamino, and N-ethyl-N-methylamino group.

Among them, a halogen atom, a hydroxy group, a C_1 - C_6 alkyl group, a C_2 - C_6 alkenyl group, a C_1 - C_6 alkoxy group, a C_1 - C_6 alkylthio group, a C_2 - C_4 alkylenoxy group, a methylenedioxy group, a N-phenylcarbamoyl group, an amino group, a mono(C_1 - C_6 alkyl)amino group, and a di(C_1 - C_6 alkyl)amino group can be listed as a preferred specific example for substituent for the phenyl group, C_3 - C_8 cycloalkyl group, aromatic heterocyclic group, or condensed ring in R^1 .

Furthermore above substituent for the phenyl group, C_1 - C_5 cycloalkyl group, aromatic heterocyclic group, or condensed ring in R^2 are optionally substituted with one or more of a halogen atom, a hydroxy group, an amino group, a trifluoromethyl group, a C_1 - C_5 alkyl group, or a C_1 - C_6 alkoxy group. The halogen atom, C_1 - C_6 alkyl group, and C_2 - C_6 alkoxy group are the same as defined for the aforementioned substituents for the phenyl group, C_3 - C_8 cycloalkyl group, aromatic heterocyclic group, or condensed ring in R^1 , and the same examples can be listed as preferred specific examples.

30

35

5

10

15

20

25

In the above formula (I), R^2 represents a hydrogen atom, a C_1-C_2 alkyl group, a C_2-C_3 alkoxycarbonyl group, a hydroxy group, or a phenyl group, in which the C_1-C_2 alkyl or phenyl group may be substituted with one or more of a halogen atom, a hydroxy group, a C_2-C_3 alkyl group, or a C_3-C_4 alkoxy group, and when j=0, R^2 is not a hydroxy group.

The C_1 - C_5 alkyl group and C_5 - C_7 alkoxycarbonyl group for R^2 are the same as defined for the aforementioned substituent for the phenyl group, C_5 - C_5

cycloalkyl group, aromatic heterocyclic group, or condensed ring in R^1 , and the same examples can be listed as preferred specific examples.

The halogen atom, C_1 - C_6 alkyl group, and C_1 - C_6 alkoxy group as substituents for the C_1 - C_6 alkyl or phenyl group in R^2 are the same as defined for the aforementioned substituent for the phenyl group, C_2 - C_8 cycloalkyl group, aromatic heterocyclic group, or condensed ring in R^1 , and the same examples can be listed as preferred specific examples.

Among them, a hydrogen atom is a preferred specific example for R².

10) In the above formula (I), j represents an integer of 0-2. It is particularly preferred for j to be 0.

In the above formula (I), k represents an integer of 0-2 and m represents an integer of 2-4. It is preferred to use a 2-substituted pyrrolidine in which k is 0 and m is 3, a 3-substituted pyrrolidine in which k is 1 and m is 2, a 3-substituted piperidine in which k is 1 and m is 3, a 4-substituted piperidine in which k is 2 and m is 2, or 3-substituted hexahydroazepine in which k is 1 and m is 4.

n in the above formula (I) represents 0 or 1.

Especially, 3-amidopyrrolidines in which k is 1, m is 2, and n is 0 and 4-(amidomethyl)piperidines in which k is 2, m is 2, and n is 1 can be listed as a particularly preferred example.

 R^3 in the above formula (I) represents a hydrogen atom or a C_1-C_{ϵ} alkyl group optionally substituted with one or two phenyl groups each of which may be substituted with one or more of a halogen atom, a hydroxy group, a C_1-C_{ϵ} alkyl group, or a C_1-C_{ϵ} alkoxy group.

The C_1 - C_6 alkyl group for R^2 is the same as defined for the aforementioned substituents for the phenyl group, C_3 - C_9 cycloalkyl group, aromatic heterocyclic group, or condensed ring in R^2 , specifically, for example, a methyl, ethyl and propyl group.

The halogen atom, C_1 - C_ϵ alkyl group, and C_1 - C_ϵ alkoxy group as substituents for the phenyl group, which is a substituent for C_1 - C_ϵ alkyl group in R^2 , are the same as defined for the aforementioned substituents for the phenyl group, C_2 - C_ϵ cycloalkyl group, aromatic heterocyclic group, or condensed ring in R^1 , and the same examples can be listed as preferred specific examples.

Among them, a hydrogen atom is a preferred specific example for R.

15

20

25

30

In the above formula (I), R^4 and R^5 are the same or different from each other and are a hydrogen atom, a hydroxy group, a phenyl group, or a C_1 - C_5 alkyl group, in which the C_1 - C_5 alkyl group is optionally substituted with one or more of a halogen atom, a hydroxy group, a cyano group, a nitro group, a carboxy group, a carbamoyl group, a mercapto group, a guanidino group, a C_3 - C_9 cycloalkyl group, a C_1 - C_6 alkoxy group, a C_1 - C_6 alkylthio group, a phenyl group optionally substituted with one or more of a halogen atom, a hydroxy group, a C_1 - C_6 alkyl group, a C_1 - C_6 alkoxy group, or a benzyloxy group, a phenoxy group, a benzyloxy group, a benzyloxy group, a C_2 - C_1 alkanoyl group, a C_2 - C_1 alkanoyloxy group, a C_2 - C_1 alkanoyloxy group, a C_2 - C_1 alkanoylamino group, a C_2 - C_1 alkylcarbamoyl group, a C_1 - C_6 alkylsulfonyl group, an amino group, a mono $(C_1$ - C_6 alkyl) amino group, a di $(C_1$ - C_6 alkyl) amino group, or an aromatic heterocyclic group having 1-3 of heteroatoms selected from the group consisting of an oxygen atom, a sulfur atom, a nitrogen atom, or a combination thereof and optionally condensed with benzene ring, or R^4 and R^5 taken together form a 3 to 6 membered cyclic hydrocarbon.

The C_1-C_6 alkyl group for R^4 and R^5 is the same as defined for the aforementioned substituent for the phenyl group, C_3-C_8 cycloalkyl group, aromatic heterocyclic group, or condensed ring in R, and the same examples can be listed as preferred specific examples.

The halogen atom, C_1 - C_5 alkoxy group, C_1 - C_5 alkylthio group, C_2 - C_7 -alkanoyl group, C_2 - C_7 -alkoxycarbonyl group, C_2 - C_7 -alkanoyloxy group, C_7 - C_7 -alkanoylamino group, C_7 - C_7 -N-alkylcarbamoyl group, C_7 - C_7 -alkylsulfonyl group, mono $(C_1$ - C_6 -alkyl) amino group, and di $(C_1$ - C_5 -alkyl) amino group as a substituent for the C_1 - C_7 -alkyl group in R^4 and R^5 -are the same as defined for the aforementioned substituent for the phenyl group, C_3 - C_8 -cycloalkyl group, aromatic heterocyclic group, or condensed ring in R^1 , and the same examples can be listed as preferred specific examples.

The C_3 - C_2 cycloalkyl group and aromatic heterocyclic group having 1-3 heteroatoms selected from the group consisting of an oxygen atom, a sulfur atom, a nitrogen atom, or a combination thereof as substituent for the C_1 - C_6 alkyl group in R^4 and R^5 are the same as defined for the aforementioned group for R^1 , and the same examples can be listed as preferred specific examples.

The halogen atom, C_1-C_2 alkyl group, and C_1-C_3 alkoxy group for the substituent for the phenyl group which is substituent for the C_1-C_2 alkyl group in R^4 and R^5 are the same as defined for the aforementioned substituent for the phenyl group, C_2-C_3 cycloalkyl group, aromatic heterocyclic group, or condensed

10

15

20

25

30

ring in R^2 , and the same examples can be listed as preferred specific examples.

The "3 to 6 membered cyclic hydrocarbon" consisting of R^4 , R^5 , and the adjacent carbon atom includes a cyclopropane, cyclobutane, cyclopentane, and cyclohexane.

5 . Among them, a hydrogen atom and a $C_1\text{--}C_6$ alkyl group can be listed as a preferred specific example for R^4 and R^5 .

In the above formula (I), p represents 0 or 1, and q represents 0 or 1. It is particularly preferred for both p and q to be 0.

10

20

25

30

35

In the above formula (I), G is a group represented by -CO-, -SO₂-, -CO-O-, -NR⁷-CO-, -CO-NR⁷-, -NH-CO-NH-, -NH-CS-NH-, -NR⁷-SO₂-, -SO₂-NR⁷-, -NH-CO-O-, or -O-CO-NH-, wherein R⁷ is a hydrogen atom or a C_1 - C_5 alkyl group, or R⁷ taken together with R⁵ represents a C_2 - C_5 alkylene group.

In the above formula, -CO- means a carbonyl group, -SO₂- means a sulfonyl group, and -CS- means a thiocarbonyl group. Preferred G group is specifically, for example, those represented by the formula $-NR^7$ -CO- and -NH-CO-NH-.

The C_1 - C_6 alkyl group for R^7 are the same as defined for the aforementioned substituent for the phenyl group, C_2 - C_2 cycloalkyl group, aromatic heterocyclic group, or condensed ring in R^1 , and the same examples can be listed as preferred specific examples.

The " C_2 - C_5 alkylene group" consisting of R^5 and R^7 means C_2 - C_5 straight-chain or branched alkylene group such as a methylene, ethylene, propylene, trimethylene, tetramethylene, 1-methyltrimethylene, pentamethylene group, and the like, suitably and specifically including a ethylene, trimethylene and tetramethylene group.

A hydrogen atom is a preferred specific example for ${\sf R}$.

In the above formula (I), R^6 is a phenyl group, a C_3 - C_6 cycloalkyl group, a C_5 - C_6 cycloalkenyl group, a benzyl group, or an aromatic heterocyclic group having 1-3 heteroatoms selected from the group consisting of an oxygen atom, a sulfur atom, a nitrogen atom, or a combination thereof, in which the phenyl, benzyl, or aromatic heterocyclic group may be condensed with a benzene ring or an aromatic heterocyclic group having 1-3 heteroatoms selected from the group consisting of an oxygen atom, a sulfur atom, a nitrogen atom, or a combination thereof, to form a condensed ring, and the phenyl group, C_5 - C_5 cycloalkyl group, C_5 - C_5 cycloalkenyl group, benzyl group, aromatic heterocyclic group, or condensed

ring may be substituted with one or more of a halogen atom, a hydroxy group, a mercapto group, a cyano group, a nitro group, a thiocyanato group, a carboxy group, a carbamoyl group, a trifluoromethyl group, a C_1 - C_6 alkyl group, a C_2 - C_6 cycloalkyl group, a C_2 - C_6 alkenyl group, a C_1 - C_6 alkoxy group, a C_3 - C_8 cycloalkyloxy group, a C_1 - C_6 alkylthio group, a C_1 - C_6 alkylenedioxy group, a phenyl group, a phenoxy group, a phenylamino group, a benzyl group, a benzoyl group, a phenylsulfinyl group, a phenylsulfonyl group, a 3-phenylureido group, a C_2 - C_7 alkanoyl group, a C_2 - C_7 alkoxycarbonyl group, a C_2 - C_7 alkanoyloxy group, a C_2 - C_7 alkanoylamino group, a C_2 - C_7 alkylcarbamoyl group, a C_1 - C_6 alkylsulfonyl group, a mono $(C_1$ - C_6 alkyl) amino group, a di $(C_1$ - C_6 alkyl) amino group, a benzylamino group, a C_2 - C_7 (alkoxycarbonyl) amino group, a C_1 - C_6 (alkylsulfonyl) amino group, or a bis $(C_1$ - C_6 alkylsulfonyl) amino group, amino group, a mino group, a a mino group, a carboxy

The C_3 - C_2 cycloalkyl group, aromatic heterocyclic group having 1-3 heteroatoms selected from the group consisting of an oxygen atom, a sulfur atom, a nitrogen atom, or a combination thereof, and the condensed ring for R^6 are the same as defined for the aforementioned R^1 , and the same examples can be listed as preferred specific examples.

The " C_3 - C_2 cycloalkenyl group" for R^6 means a cyclic alkenyl group such as a cyclobutenyl, cyclopentenyl, cyclohexenyl, cycloheptenyl, and cyclooctenyl group, specifically including a 1-cyclopentenyl and 1-cyclohexenyl group.

Among them, a phenyl group, a furyl group, and a thienyl group can be listed as a preferred specific example for R^{ϵ} .

25

30

35

10

15

20

The halogen atom, C_1-C_{ϵ} alkyl group, C_2-C_{ϵ} alkenyl group, C_1-C_{ϵ} alkoxy group, C_1-C_{ϵ} alkylthio group, C_1-C_3 alkylenedioxy group, C_2-C_7 alkanoyl group, C_2-C_7 alkoxycarbonyl group, C_2-C_7 alkanoyloxy group, C_2-C_7 alkanoylamino group, C_2-C_7 alkylcarbamoyl group, C_1-C_{ϵ} alkylsulfonyl group, mono $(C_1-C_{\epsilon}$ alkyl) amino group, and di $(C_1-C_{\epsilon}$ alkyl) amino group as a substituent for the phenyl group, C_3-C_5 cycloalkyl group, C_3-C_7 cycloalkyl group, aromatic heterocyclic group, or condensed ring in R^5 are the same as defined for the aforementioned substituent for the phenyl group, C_2-C_7 cycloalkyl group, aromatic heterocyclic group, or condensed ring in R^7 , and the same examples can be listed as preferred specific examples.

The C_2 - C_2 cycloalkyl group as a substituent for R^C is the same as defined for the aforementioned C_1 - C_2 cycloalkyl group for R^1 , where the same examples

can be given for the preferred specific examples.

The " C_1 - C_2 cycloalkyloxy group" as a substituent for R^6 means group consisting of the aforementioned C_3 - C_2 cycloalkyl group and oxy group, specifically, for example, a cyclopropyloxy, cyclopentyloxy, and cyclohexyloxy group.

The "N, N-di(C_1 - C_5 alkyl)sulfamoyl group" as a substituent for R^6 means sulfamoyl group substituted with the same or different two C_1 - C_6 alkyl group aforementioned, preferably and specifically, for example, a N, N-dimethylsulfamoyl, N, N-diethylsulfamoyl, and N-ethyl-N-methylsulfamoyl group.

The " C_2 - C_7 (alkoxycarbonyl) amino group" as a substituent for R^6 means group consisting of the aforementioned C_2 - C_7 alkoxycarbonyl group and amino group, specifically, for example, a (methoxycarbonyl) amino and (ethoxycarbonyl) amino group.

The " C_1 - C_6 (alkylsulfonyl) amino" group as a substituent for R^6 means group consisting of the aforementioned C_1 - C_6 alkylsulfonyl group and amino group, specifically, for example, a (methylsulfonyl) amino group.

The "bis $(C_1-C_6$ alkylsulfonyl) amino" group as a substituent for R^6 means amino group substituted with the same or different two C_1-C_6 alkylsulfonyl group aforementioned, preferably and specifically, for example, a bis (methylsulfonyl) amino group.

Among them, a halogen atom, a mercapto group, a nitro group, a thiocyanato group, a trifluoromethyl group, a C_1 - C_6 alkyl group, a C_1 - C_6 alkoxy group, a phenyl group, a phenylsulfonyl group, a C_2 - C_7 alkanoylamino group, or an amino group can be listed as preferred specific example for substituent for the phenyl group, C_3 - C_8 cycloalkyl group, C_3 - C_8 cycloalkenyl group, benzyl group, aromatic heterocyclic group, or condensed ring in R^6 .

Furthermore above substituents for the phenyl group, C_3-C_8 cycloalkyl group, C_3-C_8 cycloalkenyl group, benzyl group, aromatic heterocyclic group, or condensed ring in R^6 are optionally substituted with one or more of a halogen atom, a cyano group, a hydroxy group, an amino group, trifluoromethyl group, a C_1-C_6 alkyl group, a C_1-C_6 alkyl group, a C_1-C_6 alkyl)amino group, or a di $(C_1-C_6$ alkyl)amino group.

The halogen atom, C_1 - C_{ϵ} alkyl group, C_1 - C_{ϵ} alkoxy group, a C_1 - C_{ϵ} alkylthio group, mono(C_1 - C_{ϵ} alkyl)amino group, and di(C_1 - C_{ϵ} alkyl)amino group are the same as defined for the aforementioned substituents for the phenyl group, C_1 - C_{ϵ} cycloalkyl group, aromatic heterocyclic group, or condensed ring in R^1 , and the

5

15

20

25

30

same examples can be listed as preferred specific examples.

(2) On Invention 2

5

10

20

25

The compound represented by the formula (I) above, a pharmaceutically acceptable acid addition salt thereof or a pharmaceutically acceptable C_1 - C_6 alkyl addition salt can be used to prepare a chemokine receptor antagonist preparation of the present invention by formulating the therapeutically effected amount and a carrier and/or diluent into a pharmaceutical composition. Thus, the cyclic amine derivatives shown by the above formula (I), a pharmaceutically acceptable acid addition salt thereof or a pharmaceutically acceptable C_1 - C_6 alkyl addition salt can be administered orally or by parenterally, for example, intravenously, subcutaneously, intramuscularly, percutaneously or intrarectally.

The oral administration can be accomplished in the form of tablets, pills, granules, powder, solution, suspension, capsules, etc.

The tablets for example can be prepared using a vehicle such as lactose, starch and crystallized cellulose; binder such as carboxymethylcellulose, methylcellulose, and polyvinylpyrrolidone; disintegrator such as sodium alginate, sodium bicarbonate and sodium lauryl sulfate, etc.

Pills, powder and granule preparations can be prepared by a standard method using the vehicles mentioned above. Solution or suspension can be prepared by a standard method using glycerin ester such as tricaprylin and triacetin or alcohols such as ethanol. Capsules can be made by charging granules, powder or solution in gelatin, etc.

Subcutaneous, intramuscular or intravenous preparations can be prepared as an injection using aqueous or nonaqueous solution. Aqueous solution for example may include isotonic sodium chloride solution. Nonaqueous solutions may include for example, propyleneglycol, polyethyleneglycol, olive oil, ethyl oleate, etc., and optionally, one can add antiseptics and stabilizers. For injection, one can be sterilized by filtration through a bacterial filter or combination of disinfectant.

35

30

Percutaneous administration may be in the form of an ointment or cream, and ointment can be prepared in the standard manner using fatty oils such as

castor oil and olive oil, or Vaseline, while creams can be made using fatty oils or emulsifying agent such as diethyleneglycol and sorbitan esters of fatty acid.

 $\label{eq:formula} For intrarectal administration, one can use standard suppositories using \\ 5 \quad \text{gelatin soft capsules, etc.}$

The cyclic amine derivatives of the present invention, a pharmaceutically acceptable acid addition salt thereof or a pharmaceutically acceptable C_1 - C_6 alkyl addition salt is administered at a dose that varies depending on the type of disease, route of administration, age and sex of patient, and severity of disease, but is likely to be 1-500 mg/day in an average adult.

(3) Matter common throughout Invention 1 and Invention 2

Preferred specific examples for the cyclic amine compound in the above formula (I) include compound having each substituent as shown in the following Tables 1.1-1.201.

In the Tables 1.1-1.201, "chirality" means configuration of the asymmetric carbon atom on the cyclic amine. "R" shows that the asymmetric carbon atom has a R configuration, "S" shows that the asymmetric carbon atom has a S configuration, and "-" means racemate or that the compound do not have a asymmetric carbon atom on the nitrogen containing ring.

[Table 1.1 - Table 1.201]

10

Table 1.1

idoic	•••						
Compd.	R ² (CH ₂) _j -	k	m	n	chirality	R³	$-(CH_2)_{p}$ $+ \frac{R^4}{R^5}$ $(CH_2)_{q}$ $-G-R^6$
1	С⊢С СН₂-	1	2	0	-	н	- CH ₂ -N-C-
2	CH-CH ₂ -	1	2	0	-	н	- CH ₂ - N- C- CH ₃
3	C├ - CH ₂ -	1	2	0	-	н	-CH ₂ -N-C-\(\big \)
4	CH2-	1	2	0	-	H	- CH ₂ - N- C- CF ₃
5	CHCH2-	1	2	0	S	н	-CH ₂ -N-CF ₃
6	C├ \ CH ₂ -	1	2	0	s	н	$-CH_2-NC$
7	C⊢√CH₂-	1	2	0	S -	Н	-CH ₂ -N-C-
8	C├ - CH ₂ -	1	2	0	S	Н	-CH ₂ -N-C
9	C├ - CH ₂ -	1	2	0	S	н	-CH2-N-C-CI
10	C├ - CH ₂ -	1	2	0	S	н	-CH ₂ -N-C
11	C├─ ◯ CH ₂ -	1	2	0	S	н	-CH ₂ -N-C-OCH ₃

Table 1.2

Compd. No.	R ¹ (CH ₂) _j -	k	m	n	chirality	. R3	$-(CH_2)_{\overline{p}} + (CH_2)_{\overline{q}} - G - R^6$
12	CI—CH ₂ -	1	2	0	S	н	-CH ₂ -N-C
13	С⊢—СН₂-	1	2	0	S	н	-CH ₂ -N-C
	C├ - CH ₂ -					н	- CH ₂ -N-C-
	; C⊢√CH ₂ -					н	- СН ₂ - № С
16	CH-{CH ₂ -	1	2	0	s	н	-CH2-N C - OCH3
17	CH-2-	1	2	0	S	н	-CH ₂ -N-C-CI
18	C├─ \ CH ₂ -	1	2	0	S	Н	- CH ₂ - N- C-
19	C├ - CH ₂ -	1	2	0	S	н	-CH ₂ -N-C
20	C⊢CH₂-	1	2	0	S	н	- CH ₂ -NC-CF ₃
21	CH ₂ -	1	2	0	S	н	-CH ₂ -N-C-CF ₃
22	С⊢—СН₂-	1	2	0	S	н	- CH ₂ -N-C

Table 1.3

Table	1.5						
Compd.	R ¹ (CH ₂) _j	k	m	n	chirality	R³	-(CH ₂) _p + (CH ₂) _q G-R ⁶
23	CH-(-)-CH ₂ -	1	2	0	S	н	- CH₂- N-C- H
24	C├ - CH ₂ -	1	2	0	S	н	-CH ₂ -N-C
25	CH-CH ₂ -	1	2	0	S	н	-CH ₂ -N-C
26	CH-CH ₂ -	1	2	0	S	н	-CH ₂ -N-C
27	CH-CH ₂ -	1	2	0	S	н	-CH ₂ -N-C-\(\sigma\).
28	CH-2-	1	2	0	S	н	- CH ₂ - N- C- NO ₂
29	CH-CH ₂ -	1	2	0	R	н	O CF ₃ - CH ₂ -N C CF ₃
30	CH-CH ₂ -	1	2	0	R	н	$-CH_2-N$ C F_3C
31	CH-CH ₂ -	1	2	0	R	н	- CH ₂ - N C - Br
32	CI-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C
33	CI—⟨□ CH ₂ -	1	2	0	R	н	- CH ₂ -N-C-CI

Table 1.4

Compd. No.	R ¹ (CH ₂) _j -	k	m	n	chirality	·R³	—(CH _{2)p} + (CH ₂)q G−R ⁶
34	C├ - CH₂-	1	2	0	R	н	- CH ₂ - N C → OC H ₃
35	C⊢√CH₂-	1	2	0	R	н	- CH ₂ - N- C- OCH ₃
36	C⊢√_CH₂-	1	2	0	R	н	- CH ₂ -N-C-OCH ₃
37	С⊢{СН₂-	1	2	0	R	н	- CH ₂ - N- C- CF ₃
38	C⊢√ CH₂-	1	2	0	R	н	- CH ₂ -N-C-CH ₃
39	C├ - CH ₂ -	1	2	0	R	н	- CH ₂ - N- C- CI
40	CH-CH₂-	1	2	0	R	Н	-CH ₂ -N-C- H C- O-OCH ₃
41	C├ \ CH ₂ -	1	2	0	R	н	- CH ₂ - N- C- CI
42	СН2−	1	2	0	R	н	- CH ₂ - N- C- CN
43	C├─ \ CH ₂ -	1	2	0	R	н	- CH ₂ -N-C-
44	CHCH2-	1	2	0	R	н	- CH ₂ -N-C

Table 1.5

Compd.	R ¹ (CH ₂),—	k	m	n	chirality	· R³	-(CH ₂) _p + (CH ₂) _q G-R ⁶
45	С⊢С СН₂-	1	2	0	R	н	-CH ₂ -N-C-F ₃
46	C├ - CH₂-	1	2	0	R	н	- CH ₂ -N-C-CF ₃
47	CH—CH₂-	1	. 2	0	R	н	-CH ₂ -N-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-
48	CH-CH ₂ -	1	2	0	R	н	- CH ₂ -N-C
49	CH-CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C
50	CHCH ₂ -	1	2	0	R	н	- CH ₂ -N-C-CF ₃
51	C├─ ◯ -CH ₂ -	1	2	0	R .	н	-CH ₂ -N-C-Br
52	CI—(1	2	0	R	н	-CH₂-N-C- H
53	CHCH ₂ -	1	2	0	R	н	-CH₂-N-C- CI
54	C├ - CH ₂ -	1	2	0	R	н	- CH ₂ - N- C-
55	C├ - CH ₂ -	1	2	0	R	н	- CH ₂ -N-C

Table 1.6

Compd. No.	R ¹ (CH ₂)j-	k	m	n	chirality	R³	$-(CH_2)_{\overline{p}} + \frac{R^4}{R^5} (CH_2)_{\overline{q}} - G - R^6$
56	CI—CH₂-	1	2	0	R	н	-CH ₂ -N-C
57	C├ - CH₂-	1	2	0	R .	н	-CH ₂ -N-C
58	C├ - CH ₂ -	1	2	0	R	н	- CH ₂ -N-C-
59	C⊢—CH₂-	1	2	0	R	н	- CH ₂ - N- C- Br
60	C	1	2	0	R	н	-CH ₂ -N C-
61	C⊢————————————————————————————————————	1	2	0	R	н	-CH ₂ -N-C
62	C⊢CH₂-	1	2	0	R .	н	-CH ₂ -N-C-CH ₃
63	C⊢—CH₂-	1	2	0	R	н	-CH ₂ -N-CH ₂ CH ₃
64	C├ - CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CN
65	C⊢-()- CH ₂ -	1	2	0	R	н	- CH ₂ -N-C-
66	C⊢-{	1	2	0	R	н	- CH ₂ -N C

Table 1.7

Compd.	R ² (CH ₂) _j -	k	m	n	chirality	R³	$-(CH_2)_p + (CH_2)_{\overline{q}} G - R^6$
67	CI—⟨□ CH₂-	1	2	0	R	н	- CH ₂ -N-C
68	CH-2-	1	2	0	R	н	- CH ₂ -N-C
69	CHCH ₂ -	1	2	0	R	н	-CH ₂ -N-C-F
70	CH-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C
71	CH	1	2	0	R	Н	О - CH₂-N-С- Н ₃ CO
72	CH-2-	1	. 2	0	R	н	$-CH_2-NC$ $-CF_3$
73	CHCH ₂ -	1	2	0	R	Н	-CH ₂ -N-C- F₃CO
74	CI-CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C
75	CI—CH₂-	1	2	0	R	н	$-CH_2-N+C$ F_3C
76	C	1	2	0	R	н	-CH ₂ -N-C- F ₃ C
77	CH-€	1	2	0	R	Н	- CH ₂ -N-C

Table 1.8

Compd.	R ¹ (CH ₂) _j	k	m	n	chirality	R³	-(CH ₂) p C CH ₂) q G-R ⁶ R ⁵
78	C⊢√CH₂-	1	2	0	R	н	-CH ₂ -N-C
79	C├ - CH₂-	1	2	0	R	н	$-CH_2-NC F_3C$
80	C├ - CH₂-	1	2	0	R	н	$-CH_2-NC$ F_3C
81	CH_CH ₂ -	. 1	2	0	R	н	-CH ₂ - N C — CH ₃
82	CH-CH ₂ -	1	2	0	-	− СН ₃	-CH ₂ -N-C-CF ₃
.83	CHCH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-NO ₂
84	C	1	2	0	R	н	-CH ₂ -N-CNO ₂
85	C├ - CH ₂ -	1	2	0	-	н	-(CH ₂) ₂ - N- C-
86	C├ - CH ₂ -	1	2	0	-	н	-(CH ₂) ₂ -N-C-NO ₂
87	C├ - CH ₂ -	1	2	0	S	н	-(CH ₂) ₂ -N-C-CF ₃
88	C├ ~ CH ₂ -	1	2	0	S	н	-(CH ₂) ₂ - N- C

Table 1.9

Table	1.5						
Compd. No.	R ¹ (CH ₂) _j -	k	m	n	chirality	R³	$-(CH_2)_{p} + (CH_2)_{q} - (CH_2)_{p} + (CH_2)_{q} - (C$
89	C├ ~ CH₂-	1	2	0	S	н	-(CH ₂) ₂ -N-C-
90	CH-CH ₂ -	1	2	0	S	н	-(CH ₂) ₂ -N-C
91	CH-CH ₂ -	1	2	0	S	н	-(CH ₂) ₂ -N-C-CI
92	CH-CH ₂ -	1	2	0	S	н	-(CH ₂) ₂ -N-C
93	CH-CH ₂ -	1	2	0	S	н	-(CH ₂) ₂ -N-C
94	CH-CH ₂ -	1	2	0	S	н	$-(CH_2)_2-N-C \longrightarrow OCH_3$ OCH_3 OCH_3
95	CHCH_2-	1	2	0	S	н	-(CH ₂) ₂ -N-C-CF ₃
96	CI—CH₂-	1	2	0	S	н	-(CH ₂) ₂ -N-C-CH ₃
97	CH-CH ₂ -	1	2	0	S	н	-(CH ₂) ₂ -N-C
98	C├ ~ CH ₂ -	1	2	0	S	н	-(CH ₂) ₂ -N-C
99	CH-{	1	2	0	S	н	-(CH ₂) ₂ -N-C-CI

Table 1.10

							-4
Compd. No.	R ¹ (CH ₂) _j -	k	m	n	chirality	R³	$-(CH_2)_{p} + (CH_2)_{q} - (CH_2)_{p} + (CH_2)_{q} - (CH_2)_{q} + (C$
100	C	1	2	0	S	н	-(CH ₂) ₂ -N-C-CN
101	C	1	2	0	S	н	-(CH ₂) ₂ -N-C-
102	C├ ─ CH ₂ -	1	2	0	S	н	-(CH ₂) ₂ - N- C- CF ₃
103	C	1	2	0	S	н	-(CH ₂) ₂ -N-CF ₃
104	C├ ─ CH ₂ -	1	2	0	S	н	-(CH ₂) ₂ - N- C- CF ₃
105	CHCH ₂ -	1	2	0	S	Н	-(CH ₂) ₂ - N- C- F
106	СН2-	1	2	0	S	н	-(CH ₂)₂-N-C-
107	CHCH ₂ -	1	2	0	S	н	-(CH ₂) ₂ -N-C
108	CHCH ₂ -	1	2	0	S	Н	-(CH ₂) ₂ -N-C-N-C-N-C-N
109	CH-CH ₂ -	1	2	0	S	н	-(CH ₂) ₂ -N-C
110	C├─ ○ CH ₂ -	1	2	0	S	н	-(CH ₂) ₂ -N-C

Table 1.11

	•••						
Compd. No.	R^1 $(CH_2)_j$	k	m	n	chirality	R ³	$-(CH_2)_{p} + (CH_2)_{q} - (CH_2)_{p} + (CH_2)_{q} - (CH_2)_{q}$
111	CH2−	1	2	0	R	Н	-(CH ₂) ₂ -N-C-CF ₃
112	CHCH2-	1	2	0	R	. н	-(CH ₂) ₂ -N-C
113	C├ - CH ₂ -	1	2	0	R	н	-(CH ₂) ₂ -N-C-Br
114	CH₂-	1	2	0	R	н	-(CH ₂) ₂ -N-C-
115	CH₂-	1	2	0	R	н	-(CH ₂) ₂ -N-C-CI
116	С⊢—СН₂-	1	2	0	R	н	-(CH ₂) ₂ -N-C
117	С⊢ СН₂-	1	2	0	R	н	-(CH ₂) ₂ -N-C-OCH ₃
118	С⊢—СН₂-	1	2	0	R	н	$-(CH_2)_2$ -N-C- \bigcirc OC H_3 OC H_3 OC H_3
119	С⊢—СН₂-	1	2	0	R	н	-(CH ₂) ₂ -N-C-CF ₃
120	C├ - CH ₂ -	1	2	0	R	н	-(CH ₂) ₂ -N-CH ₃
121	C├ - CH ₂ -	1	2	0	R	н	-(CH ₂) ₂ -N-C-CI

Table 1.12

							54
Compd. No.	R ¹ (CH ₂)j-	k	m	n	chirality	R³	-(CH ₂) p (CH ₂) q G-R ⁶
122	C├ - CH ₂ -	1	2	0	R	н	-(CH ₂) ₂ -N-C
123	C├ - CH₂-	1	2	0	R	н	-(CH ₂) ₂ -N-C-CI
124	С├─{}СН₂-	1	2	0	R	н	-(CH ₂) ₂ -N-CN
125	C├ - CH ₂ -	1	2	0	R	н	-(CH ₂) ₂ -N-C
126	C├ - CH ₂ -	1	2	0	R	н	-(CH ₂) ₂ -N-C-CF ₃
127	C├ - CH ₂ -	1	2	0	R	н	-(CH ₂) ₂ -N-CF ₃
128	CH-CH ₂ -	1	2	0	R	н	-(CH ₂) ₂ -N-C-F ₃
129	CH-2-	1	2	0	R	н	-(CH ₂) ₂ -N-C-F ₃
130	CHCH ₂ -	1	2	0	R	н	-(CH ₂) ₂ -N-C-OCF ₃
131	CH-CH ₂ -	1	2	0	R	Н	-(CH ₂) ₂ -N-C-F
132	CH-CH2-	1	2	0	R	н	-(CH ₂) ₂ -N-C-\ O ₂ N

Table 1.13

Table		_					
Compd.	R ¹ (CH ₂) _j -	k	m	n	chirality	R³	$-(CH_2)_{p} + (CH_2)_{q} G - R^6$
133	CI—(CH ₂ -	1	2	0	R	н	-(CH ₂) ₂ -N-C-\(\sigma\)
134	C├ - CH ₂ -	1	2	0	R	н	-(CH ₂) ₂ -N-C-NO ₂
135	CH-2-	1	2	0	R	н	-(CH ₂) ₂ -N-C
136	C	1	2	0	R	н	-(CH ₂) ₂ -N-C-F
137	C⊢√CH₂-	1	2	0	R	н	-(CH ₂) ₂ -N-C
138	C	1	2	0	R	н	-(CH ₂) ₂ -N-C-
139	C⊢√CH₂-	1	2	0	R	н	-(CH ₂) ₂ -N-C-CI
	CI— CH₂-					н	-(CH ₂) ₂ -N-C
141	CI—CH₂-	1	2	0	R	н	H ₃ CO O O H H ₃ СО O O O O O O O O O O O O O O O O O O O
142	CI—CH₂-	1	2	0	R	н	-(CH ₂) ₂ -N-C-
143	CH-CH ₂ -	1	2	0	R	н	-(CH ₂) ₂ -N-C-Br

Table 1.14

	*** *						
Compd.	R ¹ /(CH ₂)j-	k	m	n	chirality	R³	$-(CH_2)_{p}$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$
144	CH-2-	1	2	0	R	н	-(CH ₂) ₂ -N C -
145	C├ - CH₂-	1	2	0	R	н	-(CH ₂) ₂ -NC-CF ₃
146	CH-2-	1	2	0	R	н	-(CH ₂) ₂ -N-C
147	CHCH ₂ -	1	2	0	R	н	-(CH ₂) ₂ - N- C- CH ₂ CH ₃
148	CHCH ₂ -	1	2	0	R	н	-(CH ₂) ₂ -N-CN
149	C⊢√CH₂-	1	2	0	R	н	-(CH ₂) ₂ -N-C-
150	CHCH ₂ -	1	2	0	R	Н	-(CH ₂) ₂ -N-C-
151	CH-CH ₂ -	1	2	0	R	н	-(CH ₂) ₂ -N-C
152	CHCH ₂ -	1	2	0	R	н	-(CH ₂) ₂ -N-C
153	CH2-	1.	2	0	R	н	-(CH ₂) ₂ -N-C
154	C	1	2	0	R	н	-(CH ₂) ₂ -N-C

Table 1.15

0	ΒĹ						R⁴
No.	R ¹ (CH ₂) _j -	k	m	n	chirality	R³	$-(CH_2)_{\overline{p}} + (CH_2)_{\overline{q}} G - R^6$
155	C├ - CH₂-	1	2	0	R	Н	O -(CH ₂) ₂ -N-C- H H ₃ CO
156	CHCH ₂ -	1	2	0	R	н	-(CH ₂) ₂ -N-C
157	CI-CH ₂ -	1	2	0	R	н	-(CH ₂) ₂ -N-C- H F ₃ CO
158	CH-CH ₂ -	1	2	0	R	Н	$-(CH_2)_2$ -N-C- \longrightarrow ∞_2 CH ₃
159	CH-CH ₂ -	1	2	0	R	н	-(CH ₂) ₂ -N-C
160	CHCH ₂ -	1	2	0	R	н	-(CH ₂) ₂ -N-C
161	CHCH ₂ -	1	2	0	R	Н	-(CH ₂) ₂ -N-C-F
162	C	1	2	0	R	н	-(CH ₂) ₂ -N-C-F-F
163	C	1	2	0	R	н	$-(CH2)2-N \stackrel{O}{\leftarrow} -CF3$ $F3C$
164	C├ ~ CH ₂ -	1	2	0	R	н	-(CH2)2-N-CF3 $+ F3C$
165	C├-()- CH ₂ -	1	2	0	R	н	-(CH ₂) ₂ -N-C-CH ₃

Table 1.16

_ 4
R ⁴ S G G G G G G G G G
CF ₃
) H-N-C- CH ₃
CH3
+N-C-C1
+N-C
+ ¹ 3 + H C − C - C
CH _N -C-C
+N-C
HNC CF3
CH-N-C-S CH ₃
OHNC-CI CHNC-C

Table 1.17

Compd.	R ¹ (CH ₂) _j -	k	m	n	chirality	R³	-(CH ₂) _p CH ₂ , G-R ⁶ CH ₂ , G-R ⁶
177	CI-CH ₂ -	1	2	0	R	н	(F) CI -CH-N-C-C-CI CH ₃
178	CI-CH ₂ -	1	2	0	R	н	(R) O CF ₃ -CH-N-C F
179	CH-CH ₂ -	1	2	0	R	н	(A) P -CHN-C-CI CH3
180	CH-CH ₂ -	1	2	0	R	н	(F) P -CHN-C
181	CHCH ₂ -	1	2	0	R	Н	(A) -C++N-C- CH ₃
182	CHCH ₂ -	1	2	0	R	н	ÇH ₃ O CF ₃ - CH N C CH ₃
183	CHCH ₂ -	1	2	0	R	н.	СН ₃ О Вr
184	CH2-	1	2	0	R	Н	CH3 C CI
185	CI—CH₂-	1	2	0	R	н	CH₃
186	C	1	2	0	R	н	CH ₃ O CF ₃ -CH N C F
187	C├─ ─ CH ₂ -	1	2	0	R	Н	CH ³ O CI

WO 99/25686

Table 1.18

	.,						
Compd. No.	R ¹ (CH ₂) -	k	m	n	chirality	R ³	—(CH ₂) _p
188	C	1	2	0	R	Н	- СН3 С -СН-И-С- СН3
189	CI—CH₂-	1	2	0	R	н	CH ₃ P -CH-N-C- CH ₃ NO ₂
190	С⊢ СН₂-	1	2	0	R	н	CF ₃ CH ₂ -CF ₃
191	с⊢СН₂-	1	2	0	R	н	CH ₂ S
192	CH-€	1	2	0	R	н	CH ₂ CH ₂
193	C├ - CH ₂ -	1	2	0	R	н	(A) P -CHN-C
194	C├ - CH ₂ -	1	2	0	R	н	(A) PCF3 -CH-N-C-F
195	CH₂-	1	2	0	R	Н	(A) P -CHN-C-C-CI CH2-S
196	C⊢—CH₂-	1	2	0	R	Н	(A) PO
	C├ - CH ₂ -						(A) PO 2 -CH-N-C-
198	CI—€ CH ₂ -	1	2	0	R	н	(S) P CF3 -CH2-S

Table 1.19

Table	.13						
Compd.	R ¹ (CH ₂) _j	k	m	n	chirality	R³ 	$-(CH_2)_{p} + (CH_2)_{q} - (C$
199	CI— CH₂-	1	2	0	R	н	(S) P -CH N C
200	C⊢√CH₂-	1	2	0	R	н	CH2-45
201	C⊢-(CH ₂ -	1	· 2	0	R	н	CH ₂ -CH ₂ -CI
202	C⊢CH₂-	1	2	0	R	н	(S) P CF ₃ -CH-N-C-F CH ₂ F
203	C⊢-(CH ₂ -	1	2	0	R	н	(S) -CHN-C
204	C├ - CH ₂ -	1	2	0	R	н	(S) P -C+N-C- CH ₂ -(S)
205	CH2-	1	2	0	R	н	(5) P NO 2 -CH-N-C-
206	CHCH ₂ -	1	2	0	R	н	(S) Q -CH-N-C- -CH-N-C- Q-Q-Q-CH ₃
207	CHCH ₂ -	1	2	0	R	н	(S) P P P P P P P P P P P P P P P P P P P
208	CHCH ₂ -	1	2	0	R	Н	(O+2)2-8-O+3
209	CHCH ₂ -	1	2	0	R	н	(S) -CH N-C-CI H O (CH ₂) ₂ -G-CH ₃

Table 1.20

Compd. No.	R ¹ (CH ₂) _j -	k	m	n	chirality	˳	-(CH ₂) _p + (CH ₂) _q G-R ⁶
210	CH-2-	1	2	0	R	н	(S) P OF 3 -CH-N-C- OF 3 (OH ₂) ₂ -S-CH ₃ F
211	C⊢ (1	2	0	R	н	(3) - CH+ N-C- H Q (CH ₂) ₂ -3-CH ₃
212	C├ - CH ₂ -	1	2	0	R	Н	(S) -CH-H-C- H-Q (CH ₂) ₂ -S-CH ₃
213	CHCH ₂ -	1	2	0	R	н	(S) PO2 -CH-N-C- H Q (CH ₂) ₂ -3 CH ₃
214	CH-CH ₂ -	1	2	0	-	н	-(CH ₂) ₃ -C-
215	CH2⁻	1	2	0	-	н	O -(CH ₂) ₃ -C
216	CI—CH₂-	1	2	0	-	н	-(CH ₂) ₃ -C-(S)
217	CI—CH₂-	1	2	0	-	н	$-(CH_2)_2$ - C \longrightarrow OCH ₃ \longrightarrow H ₃ CO
218	C	1	2	0	-	н	$-(CH_2)_2 - CH_3$ H_3C
219	CI-CH ₂ -	1	2	0	-	н	$-(CH_2)_2$ - C
220	CI-CH ₂ -	1	2	0	-	н	-(CH ₂) ₂ -CH ₃

Table 1.21

rabic i	· 4 1						
Compd.	R ¹ (CH ₂)j	k	m	n	chirality	R ³	$-(CH_2)_{\overline{p}} + (CH_2)_{\overline{q}} - G^{-R^6}$
221	С⊢—СН₂-	1	2	0	-	н	-(CH ₂) ₂ -C-
222	CH-CH₂-	1	2	0	-	н	-(CH ₂) ₂ -C-CI
223	CH-CH₂-	1	2	0	-	Н	O -(CH ₂) ₂ -C
224	CH-2-	1	2	0	-	н	- CH ₂ - \$ CH ₃
225	CH-€	1	2	0	-	Н	-(CH ₂) ₃ - C-N-
226	CH2-	1	2	0	-	н	-(CH ₂) ₃ - C-N-
227	CH2−	1	2	0	-	н	-(CH ₂) ₃ -C-N-C1
228	CH2 ⁻	1	2	0	-	н	-(CH ₂) ₃ -C-N-OCH ₃
229	С⊢СН₂-	1	2	0	-	Н	- CH ₂ -C-CH ₂ -C-N-CH ₃
230	CH-CH ₂ -	1	2	0	-	н	- CH ₂ -CH ₂ -C·N-F
231	CH2-	1	2	0	-	Н	-(CH ₂) ₃ -C-N- C-CH ₃

Table 1.22

Compd.	R ¹ (CH ₂)	k	m	n	chirality	·R³	$-(CH_2)_{p}$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$
232	CH2-	1	2	0	-	н	-(CH ₂) ₃ - C-N-
233	CH-2-	1	2	0	-	н	-(CH ₂) ₃ - C-N-CH ₂
234	C⊢√CH₂-	1	2	0	-	н	-(CH ₂) ₃ - C- N ← CH ₃
235	C├ - CH ₂ -	1	2	0	-	н	-CH ₂ -CH-CH ₂ -C-N-CH ₂ -C-CI CH ₃
236	С⊢СН2-	1	2	0	-	H .	- CH ₂ -N-S-CH ₃
237	C⊢—CH₂-	1	2	0	-	Н	- CH ₂ - N- C- O- CH ₂ -
238	C├ \ CH ₂ -	1	2	0	-	Н	- ¢H ↔ C- N ← CI
239	—CH₂-	1	2	0	S	Н	-CH ₂ -N-C-CF ₃
240		1	2	0	S .	Н	-CH ₂ -N-C-CF ₃
241	CI CH ₂ -	1	2	0	S	н	-CH ₂ -N-C-CF ₃
242	CI CH₂−	1	2	0	S	н	-CH ₂ -N-C-CF ₃

Table 1.23

iusic							
Compd.	R ² (CH ₂)j-	k	m	n	chirality	·R³	$-(CH_2)_{p} + \frac{R^4}{R^5} (CH_2)_{q} - G - R^6$
243	CI CH ₂ -	1	2	0	S	н	-CH ₂ -N-C-CF ₃
244	CH₃ −CH₂−	1	2	0	S	н	-CH ₂ -N-C-CF ₃
245	F_CH ₂ -	1	2	0	S	н	-CH ₂ -N-C- CF ₃ CF ₃
246	CICH ₂ -	1	2	0	S.	н	-CH ₂ -N-C-CF ₃
247	CICH ₂ -	1	2	0	S	н	-CH ₂ -N-C-CF ₃
248	H ₃ CO —CH ₂ -	1	2	0	S	н	-CH₂-N-C-CF3
249	F ₃ C ————————————————————————————————————	1	2	0	Ś	н	-CH2-N-C-CF3
250	H ₃ C ————————————————————————————————————	1	2	0	S	н	-CH ₂ -N-C-CF ₃
251	F-\(\bigcup_\)-CH2-	1	2	0	S	н	-CH ₂ -N-C-CF ₃
252	н₃со-{}-сн₂-	1	2	0	S	н	-CH ₂ -N-C-CF ₃
253	H ₃ C-\(\bigcirc\)-CH ₂ -	1	2	0	S	н	-CH2-N-C-€

Table 1.24

rable i	1.24						
Compd.	R ¹ (CH ₂)j-	k	m	n	chirality	R³	$-(CH_2)_{p} + (CH_2)_{q} G^{-}R^6$
254	NO ₂	1	2	0	S	н	-сн₂-N-с-(СF3
255	O ₂ N ————————————————————————————————————	1	2	0	S	н	-CH ₂ -N-C-CF ₃
256	O ₂ N-CH ₂ -	1	2	0	S	н	-CH ₂ -N-C-CF ₃
257	CF₃ CH₂−	1	2	0	S	Н	-CH ₂ -N-C-CF ₃
258	CO₂CH₂CH₃	1	2	0	S	н	-CH ₂ -N-C-CF ₃
259	СН₃	1	2	0	S	н	-сн ₂ -N-С-С-С-
260	CI CH ₂ -	1	2	0	S	н	-CH ₂ -N-C-CF ₃
261	F ₃ C-CH ₂ -	1	2	0	S	н	-CH ₂ -N-C-CF ₃
262	Br CH ₂ -	1	2	0	S	н	-CH ₂ -N-C- CF ₃ H
263	Br CH ₂ -	1	2	0	S	н	-CH ₂ -N-C-CF ₃
264	OH2-	1	2	0	S	н	-CH₂-N-C-CF3

Table 1.25

, abic							
Compd.	R ¹ (CH ₂) _j -	k	m	n	chirality	R³	$-(CH_2)_{p} + (CH_2)_{q} - (C$
265	Br—CH ₂ -	1	2	0	S	н	-CH ₂ -N-C-CF ₃
266	CH ₂ -	1	2	0	S	н	-CH ₂ -N-C-CF ₃
267	OCH ₃	1	2	0	S	н	-CH ₂ -N-C-CF ₃
268	HC-C-N-CH2	1	2	0	S	н	-CH ₂ -N-C-CF ₃
269	H ₃ C-\$ CH ₂ -	1	2	0	s	н	-CH ₂ -N-C-CF ₃
270	H ₃ CO ₂ C —CH ₂ -	1	2	0	S	н	-CH ₂ -N-C-CF ₃
271	€CH₂-	1	2	0	S	Н	-CH ₂ -N-C-CF ₃
272	HO-CH ₂ -	1	2	0	S	Н	-CH ₂ -N-C-CF ₃
273	CN —CH ₂ -	· 1	2	0	S	н	-CH ₂ -N-C-CF ₃
274	NC CH ₂ -	1	2	0	S	н	-CH ₂ -N-C-CF ₃
275	NC-⟨¯¯}-CH ₂ -	1	2	0	S	н	-CH ₂ -N-C-CF ₃

Table 1.26

Table							
Compd.	R ¹ (CH ₂)-	k	m	n	chirality	R ³	$-(CH_2)_{p} + \frac{R^4}{R^5} (CH_2)_{q} - G - R^6$
276	F-CH ₂ -	1	2	0	S	н	-CH2-N-C-CF3
277	OH₂-	1	2	0	S	н	-CH ₂ -N-C-CF ₃
278	H₃ ∞₂ C	1	2	0	S	н	-CH ₂ -N-C-CF ₃
	F ₃ CO-CH ₂ -					н	-CH ₂ -N-C-CF ₃
280	F ₃ CQ ————————————————————————————————————	1	2	0	S	н	-CH ₂ -N-C-CF ₃
281	HO ₂ C-CH ₂ -	1	2	0	S	Н	-CH ₂ -N-C-CF ₃
282	(H ₃ C) ₃ C-CH ₂ -	1	2	0	S	н	-CH ₂ -N-C-CF ₃
283	CH₃ CH₂− CH₃	1	2	0	S	. н	-CH ₂ -N-C-CF ₃
284	c-C-c+-	1	2	0	S	Н	$-CH_2-N-C-$
285	—CH₂-	1	2	0	R	н	-CH ₂ -N-C-CF ₃
286	F	1	2	0	R	н	-CH ₂ -N-C-

Table 1.27

Table							
Compd.	R ¹ (CH ₂)	k	m	n	chirality	. R ³	$-(CH_2)_{p} + \frac{R^4}{R^5} (CH_2)_{q} - G - R^6$
287	CI CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃
288	CH ₂ −CH ₂ −	1	2	0	R	н	-CH ₂ -N-C-CF ₃
289	CI CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃
290	CH ₃	1	2	0	R	н	-CH ₂ -N-C-CF ₃
291	F_CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃
292	CICH₂-	1	2	0	R	н	-CH ₂ -N-C-CF ₃
293	CI CI—CH₂-	1	2	0	R	Н	-CH ₂ -N-C-⟨CF ₃
	H₃CQ —CH₂-					н	-сн ₂ -N-с-СF ₃
	F ₃ C ————————————————————————————————————						
296	H₃C ————————————————————————————————————	1	2	0	R	н	$-CH_2-N-C-$
297	F-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-C-CF ₃

Table 1.28

Compd.	R ¹ (CH ₂);-	k	m	n	chirality	R³	$-(CH_2)_{p} + \frac{R^4}{R^5} (CH_2)_{q} - G - R^6$
298	H₃CO-⟨¯_)-CH₂-	1	2	0	R	н	-CH ₂ -N-C-CF ₃
299-	H ₃ C-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃
300	CH_CH ₂ -	1	2	0	R	н .	-CH ₂ -N-C- CF ₃
301	O ₂ N —CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃
302	O ₂ N—CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃
303	CF ₃	1	2	0	R	н.	-CH ₂ -N-C-CF ₃
304	CO ₂ CH ₂ CH ₃	1	2	0	R	Н	-CH ₂ -N-C-CF ₃
305	СН₃	1	2	0	R	Н	-CH ₂ -N-C-CF ₃
306	CI CH₂−	1	2	0	R	н	-CH ₂ -N-C-CF ₃
	F ₃ C-CH ₂ -						-CH ₂ -N-C-CF ₃
308	Br' —CH ₂ —	1	2	0	R	н	-CH ₂ -N-C-CF ₃

Table 1.29

Compd.	R ¹ (CH ₂);	k '	m	n	chirality	R³	$-(CH_2)_p + (CH_2)_q - G - R^6$
309	Br CH2-	1	2	0	R	н	-CH ₂ -N-C-CF ₃
310	Q-Q-QH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃
311	Br—€—CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃
312	CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃
313	OCH₃ CH₂-	1	2	0	R	н	-CH ₂ -N-C-CF ₃
314	40-c-Å-(>-a+≥	1	2	0	R	Н	-CH ₂ -N-C-CF ₃
315	H ₂ C-\$ OH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-CF ₃
	H ₃ CO ₂ C ————————————————————————————————————					H	-CH ₂ -N-C-CF ₃
317	CH₂−	1	2	0	R	н	-CH ₂ -N-C-CF ₃
	но-{						
319	CN CH ₂ -	1	2	0	R	н .	-CH ₂ -N-C-CF ₃

Table 1.30

	•••			_			
Compd.	R ¹ (CH ₂),-	k	m	n	chirality	R³	—(CH ₂) _p + (CH ₂) _q G−R ⁶
320	NC ————————————————————————————————————	1	2	0	R	н	-CH ₂ -N-C-
321	NC-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃
322	F-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C- CF ₃
323	OH₂-	1	2	0	R	н	-CH ₂ -N-C-CF ₃
324	н₃∞₂с-{_}-сн₂-	1	2	0	R	н	-CH ₂ -N-C-CF ₃
325	F ₃ CO—CH ₂ -	1	2	0	R	н	-CH ₂ -N-C- H CF ₃
326	F ₃ CO —CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃
327	HO ₂ C-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C- CF ₃
328	(H ₃ C) ₃ C	1	2	0	R	н	-CH ₂ -N-C-CF ₃
329	CH ₃ CH ₂ − CH ₃	1	2	0	R	Н	-CH ₂ -N-C-CF ₃
330	CH-2⁻	0	3	1	-	н	- CH ₂ -N-C-

Table 1.31

Compd. No.	R ¹ (CH ₂)j-	k	m	n	chirality	· R³	$-(CH_2)_{\overline{p}} + (CH_2)_{\overline{q}} - G - R^6$
331	CI—CH₂-	0	3	1	-	н	- CH ₂ - N- C-
332	CHCH ₂ -	0	3	1	<u>-</u>	н	$-CH_{2}-H \stackrel{O}{C} \longrightarrow OCH_{3}$ $-CH_{3}$ $-CH_{3}$
333	С⊢СН₂-	0	3	1	-	н	- CH ₂ - N- C-
334	с⊢(Сн₂-	0	3	1	-	н	-CH ₂ -N-C-CH ₃
335	CH-CH ₂ -	0	3	1	- ,	н	- CH ₂ -N-C-\(\sigma\)
336	CHCH ₂ -	0	3	1	-	н	- CH ₂ - N- C-
337	CH-CH ₂ -	0	3	1	-	Н	-CH ₂ -N-C-
338	CHCH ₂ -	0,	3	1	-	н	- CH ₂ - N- C - CH ₃
339	CH-CH ₂ -	0	3	1	R	н	- CH ₂ - N- C- CF ₃
340	C├ - CH₂-	0	3	1	S	н	- CH ₂ -N-C-CF ₃
341	CH-CH2-	0	3	1	-	н	-(CH ₂) ₂ -N-C-

Table 1.32

lable i							
Compd.	R ¹ (CH ₂);-	k	m	n	chirality	R³	-(CH ₂) p (CH ₂) q G-R ⁶
342	C	0	3	1	-	н	CH3 0 -CHN-C-
343	CH-2-	0	3	1	-	н	O O H H CH(CH ₃) ₂
344	CH-CH₂-	0	3	1		. Н	- CH N- C- H CH ₂ CH(CH ₃) ₂
345	C⊢CH₂-	0	3	1	-	Н	-(CH ₂) ₃ -C-
346	CH2−	0	3	1	-	н	-(CH ₂) ₂ -C
347	CH2 ⁻	0	. 3	1	-	н	-(CH2)2-C CH3 $H3C$
348	CH2-	0	3	1	-	Н	-(CH ₂) ₂ -C-CH ₃
349	CH-CH ₂ -	0	3	1	- .	н	-CH ₂ -\$
350	CHCH ₂ -	0	3	1	-	н	$-CH_2-N \stackrel{O}{\stackrel{\circ}{S}} - CH_3$
351	C├ - CH₂-	0	3	1	-	н	O - CH ₂ - N- C- O- CH ₂ -
352	C├ - CH ₂ -	0	3	1	-	н	-¢++0·¢·N-⟨€⟩

Table 1.33

	.00							
Compd.	R ¹	CH ₂)j	k	m	n	chirality	R³	—(CH ₂) , (CH ₂) , G −R ⁶
353	с⊢	CH2-	1	2	1	-	H	-CH ₂ -N-C-
354	сн	_}-CH2-	1	3	0	-	н	-CH ₂ -N-C-
355	с⊷	CH2	1	3	0	-	н	- CH ₂ -N-C- CH ₃
356	сн		1	3	0	•	н	- CH2-N-C-
357	с⊢√		1	3	0	-	н	-CH ₂ -N-C-
358	с⊢{		1	3	0	- .	н	- CH ₂ -N-C-CF ₃
359	с-{		1	3	0	-	н	-(CH ₂) ₂ -N-C-
360	с⊢{		1	3	0	-	Н	-(CH ₂) ₂ -N-C-NO ₂
361	c⊢√	CH₂-	1	3	0	-	н	-(CH ₂) ₃ -C-
		•						-(CH ₂) ₃ -C-C-OCH ₃
363	с{		1	3	0	-	н	-(CH ₂) ₃ - C-

Table 1.34

Table	.0 4						
Compd.	R ¹ (CH ₂)	k	m	n	chirality	R³	$-(CH_2)_{p}$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$
364	C⊢√CH2-	1	3	0	-	н	$-(CH_2)_2$ - C
365	C├	1	3	0	-	н	-(CH2)2-CH3 $H3C$
366	C├ - CH ₂ -	1	3	0	-	н	-(CH ₂) ₂ -C-C-C-OCH ₃
367	C⊢CH₂-	1	3	0	-	н	-(CH ₂) ₂ -CH ₃
368	CH2-	1	3	0	-	н	-(CH ₂) ₂ -C-
369	CH2-	1	3	0	-	н	-(CH ₂) ₂ -C-CI
370	С⊢СУ-СН₂-	1	3	0	-	н	-(CH ₂) ₂ -C-C-C(CH ₂) ₃ CH ₃
371	C├ ~ CH ₂ -	1	3	0	-	Н	$-(CH_2)_2$ - C
372	· CH2-	1	3	0	-	Н	$-CH_2$ - S - CH_3
373	CH-CH ₂ -	1	3	0	-	н	-(CH ₂) ₃ -C-N-
374	C├-{CH ₂ -	1	3	0	-	н.	-(CH ₂) ₃ -C-N-OCH ₃

Table 1.35

Compd.	R ¹ (CH ₂)j-	k	m	n	chirality	R³	$-(CH_2)_{\overline{p}} + (CH_2)_{\overline{q}} - G - R^6$
375	СН2−СН2−	1	3	0	-	н	-(CH ₂) ₃ - C-N-CI
376	C⊢√CH ₂ -	1	3	0	-	Н	-(CH ₂) ₃ -C-N-OCH ₃
377	C├───────────────────────────	1	3	0	-	н	- CH ₂ -C-CH ₂ -C-N-CI CH ₃ CH ₂ -C-N-CI
378	C⊢√CH₂-	1	3	0	-	н	$-CH_2 \xrightarrow{CH_2 - C \cdot N} \xrightarrow{P} F$
379	C⊢√CH₂-	1	3	0	-	н	-(CH ₂) ₃ -C-N- C-CH ₃
380	C├ - CH ₂ -	1	3	0	-	н	-(CH ₂) ₃ - C- N- CH ₂
381	CHCH ₂ -	1	3	0	-	Н	-CH ₂ -N-S-CH ₃
382	CHCH ₂ -	1	3	0	-	н	- CH ₂ - N- C- O- CH ₂ -
383	CH-CH ₂ -	1	3	0	• •	н	- CH ³ CI CI CI
384	C⊢√ CH₂-	2	2	0	-	н	-CH ₂ -N-C-CH ₃
385	C├ -	2	2	0	-	н	-CH ₂ -N-C-\(\sigma\)

Table 1.3.6

Compd.	R ¹ (CH ₂)j-	k	m	n	chirality	R³	$-(CH_2)_{p}$ $+\frac{R^4}{R^5}$ $(CH_2)_{q}$ $G-R^6$
386	CH₂-	2	2	0	-	н	-CH ₂ -N-C-
387	—CH₂-	2	2	0	-	н	-CH ₂ -N-C-
388	CH₂-	2	2	0	-	н	-CH ₂ -N-C-NO ₂
389	CH₂-	2	2	0	-	. н	-CH ₂ -N-C- H C- CO ₂ CH ₃
390	~ CH ₂ −	2	2	0	-	н	-CH ₂ -N-C-CF ₃
391	CH₂-	2	2	0	-	н	-CH ₂ -N-C
392	CH ₂ -	2	2	0	-	н	CH ₂ -N-C-OCF ₃
393	—CH₂—	2	2	0	-	н	-CH ₂ -N-C-
394	CH₂−	2	2	0	-	н	-CH ₂ -N-C-
395	~ CH₂−	2	2	0	-	н	-СH ₂ -N-С-С-Вг
396	(2	2	0	-	н	-CH ₂ -N-C

Table 1.37

Table 1	1.37	_					
Compd.	R ² (CH ₂) _j	k	m	n	chirality	R³	$-(CH_2)_{p}$ $+ \frac{R^4}{R^5}$ $(CH_2)_{q}$ $G-R^6$
397	—CH₂-	2	2	0	-	н	-CH ₂ -N-C-CI
398	CH₂-	2	2	0	-	н	-(CH ₂) ₂ -N-C-
399	CH₂-	2	2	0	•	Н	-(CH ₂) ₂ -N-C-
400	CH₂-	2	2	0	-	Н	-(CH ₂) ₂ -N-C-NO ₂
401	—CH₂-	2	2	0	-	Н	-(CH ₂) ₂ -N-C- H
402	CH₂-	2	2	0	-	Н	-(CH ₂) ₂ -N-C-CF ₃
403	CH₂-	2	2	0	-	н	-(CH ₂) ₂ -N-C
404	€ CH ₂ -	2	2	0	-	н	-(CH ₂) ₂ -N-C
405	CH₂-	2	2	0	-	н	-(CH ₂) ₂ -N-C-
406	CH₂-	2	2	0	-	н	-(CH ₂) ₂ -N-C-
407	CH₂-	2	2	0	-	н	-(CH ₂) ₂ -N-C-\(\bigcup_H\)-Br

Table 1.38

Compd.	R ¹ (CH ₂) _j	k	m	n	chirality	·R³	$-(CH_2)_{p} + \frac{R^4}{R^5} (CH_2)_{q} - G^{-R^6}$
408	CH₂-	2	2	0	-	н	-(CH ₂) ₂ -N-C
409	CH₂-	2	2	0	-	н	-(CH ₂) ₂ -N-C-CI
410	CH ₂ -	2	2	0	-	н	(S) -CH-N-C- CH ₂ CH(CH ₃) ₂
411	; —CH₂-	2	2	0	-	н	(S) P -CH-N-C- H CH ₂ CH(CH ₃) ₂
412	CH₂-	2	2	0	-	н	(S) -CH-N-C- H CH ₂ CH(CH ₃) ₂
413	CH₂-	2	2	0	-	H	(S) O -CH-N-C
414	CH₂-	2	2	0	-	н	(S) P CF ₃ -CH-N-C- CF ₃ -CH ₂ CH(CH ₃) ₂
415	CH₂-	2	2	0	-	Н	(5) CF ₃ -CH-N-C- CH ₂ CH(CH ₃) ₂ F
416	—CH₂-	2	2	0	-	Н	(S) P -CH-N-C- H CH ₂ CH(CH ₃) ₂
417	—CH₂-	2	2	0	-	Н	(S) -CH-N-C- H CH ₂ CH(CH ₃) ₂
418	—CH₂-	2	2	0	-	Н	(S) P -CH-N-C- H CH ₂ CH(CH ₃) ₂

Table 1.39

Table 1							
Compd.	R^1 $(CH_2)_j$	k	m	n	chirality	[:] R³	$-(CH_2)_{\overline{p}} + \frac{R^4}{R^5} (CH_2)_{\overline{q}} - G^- R^6$
419.	CH₂-	2	2	0	-	н	(S) P -CH-N-C-Br CH ₂ CH(CH ₃) ₂
420	—CH₂-	2	2	0	-	н	(5) -CH-N-C
421	CH₂-	2	2	0	-	н	(S) P CI -CH-N-C
422	~ CH₂-	2	2	0	-	н	(R) -CH-N-C- CH ₂ CH(CH ₃) ₂
423		2	2	0	-	н	(A) 0 -CH-N-C- H CH ₂ CH(CH ₃) ₂
424	CH₂-	2	2	0	-	н	(R) -CH-N-C- H CH ₂ CH(CH ₃) ₂
425	CH₂-	2	2	0	-	н	(<i>H</i>) P -CH-N-C
426	CH₂-	2	2	0	-	н	(F) -CH-N-C- H CH ₂ CH(CH ₃) ₂
427	CH ₂ -	2	2	0	-	н	(H) CF ₃ -CH-N-C- H CH ₂ CH(CH ₃) ₂ F
428	CH ₂ -	2	2	0	-	н	(<i>R</i>) OCF ₃ -CH-N-C
429	(—)−CH ₂ −	2	2	0	-	Н	(A) -CH-N-C- H CH ₂ CH(CH ₃) ₂

Table 1.40

Compd.	R ¹ (CH ₂);-	k	m	n	chirality	`R³	-(CH ₂) _p + (CH ₂) _q G-R ⁶
430		2	2	0	•	н	(FI) −CH−N-C− i H CH ₂ CH(CH ₃) ₂
431	CH₂-	2	2	0	-	н	(<i>H</i>) -CH-N-C
432	CH₂-	2	2	0	-	н	(FI) P -CH-N-C-F H CH ₂ CH(CH ₃) ₂
433	ĆH₂-	2	2	0	-	н	(A) P -CH-N-C
434	C├ - CH ₂ -	1	3	1	-	н	-CH ₂ -N-C-
435	С⊢—СН₂-	1	3	1	-	н	-CH ₂ -N-C
436	СЊ_СН₂-	1	3	1	-	н	-CH ₂ -N-C-\(\sigma\)
437	С⊢—СН₂-	1	3	1	-	н	-CH ₂ -N-C
438	C├ \ CH ₂ -	1	3	1	-	н	-CH ₂ -N-C-CF ₃
439	с⊢СН₂-	1	3	1	-	н	-CH ₂ -N-C-
440	C├ ─ _CH ₂ -	1	3	1	-	н	-CH ₂ -N-C-C

Table 1.41

lable	.4 1		_				
Compd.	R ¹ (CH ₂) _j	k	m	n	chirality	R³	$-(CH_2)_p + (CH_2)_q G - R^6$
441	C├ - CH₂-	1	3	1	-	н	-CH ₂ -N-C-
442	CH-CH ₂ -	1	3	1	-	н	-CH ₂ -N-C- CI
443	с⊢—СН₂-	1	3	1	-	Н	-CH ₂ -N-C- H-C- Br
444	С⊢—СН₂-	1	3	1	-	Н	-CH ₂ -N-C-F
445	C├ - CH₂-	1	3	1	-	н	-CH ₂ -N-C-CI
446	C├ - CH₂-	1	3	1	-	Н	-(CH ₂) ₂ -N-C-
447	C├ ~ CH₂-	1	3	1	-	H	-(CH ₂) ₂ -N-C-
448	C⊢√CH2-	1	3	1	- .	Н	-(CH ₂) ₂ -N-C-
449	C├ - CH ₂ -	1	3	1	-	н	$-(CH_2)_2-N-C -\infty_2CH_3$
450	CH-CH2-	1	3	1	-	н	-(CH ₂) ₂ -N-C-CF ₃
451	CH-{	1	3	1	-	н _.	-(CH ₂) ₂ -N-C

Table 1.42

R ¹ (CH ₂) _j -	k	m	n	chirality	Ř³	$-(CH_2)_{p} + (CH_2)_{q} - G - R^6$
C├─ ◯ CH ₂ -	1	3	1	-	н	-(CH ₂) ₂ -N-C
CHCH2-	1	3	1	-	н	-(CH ₂) ₂ -N-C-Br
C├ - CH ₂ -	1	3	1	-	н	-(CH ₂) ₂ -N-C-C
CH	1	3	1	-	н	-(CH ₂) ₂ -N-C
C⊢-€	1	3	1	-	н	-(CH ₂) ₂ -N-C-F
C├ - CH ₂ -	1	3	1		н	-(CH ₂) ₂ -N-C-CI
CH-2-	2	2	1	-	н	- CH ₂ -N-C-
CH-2-	2	2	1	-	н	- CH₂- N- C- CH₃
CH-CH ₂ -	2	2	1	-	н	- CH ₂ - N- C- CH ₃
CHCH ₂ -	2	2	1	-	н	- CH₂- N-C-
CH	2	2	1	-	н	- CH ₂ -N-C-
	$C \vdash - CH_2 -$	$CH - CH_2 - 1$ $CH - CH_2 - 2$ $CH - CH_2 - 2$ $CH - CH_2 - 2$	CH—CH ₂ — 1 3 CH—CH ₂ — 2 2 CH—CH ₂ — 2 2 CH—CH ₂ — 2 2	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$C \mapsto CH_{2} - CH_{2} - 1 3 1 -$ $C \mapsto CH_{2} - 2 2 1 -$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

Table 1.43

, ubic		_					
Compd. No.	R ¹ (CH ₂) _j	k	m	n	chirality	[:] R³	-(CH ₂) _p + (CH ₂) _q G-R ⁶
463	CH2⁻	2	2	1	-	н	- CH ₂ -N-C-C
464	C├ - CH ₂ -	2	2	1	-	н	$-CH_2-N-C \longrightarrow OCH_3$ $-CH_3$ OCH_3
465	CH-2-	2	2	1	-	H	-CH ₂ -N-C-N
466	C├	2	2	1	-	н	-CH ₂ -N-C-NO ₂
467	CH2-	2	2	1	-	н	- CH ₂ -N-C-
468	CH2-	2	2	1	-	Н	-CH ₂ -N-C
469	C⊢(CH₂-	2	2	1	-	Н	-CH ₂ -N-C-OCH ₃
470	C├ - CH ₂ -	2	2	1	-	н	-CH ₂ -N-C
471	CH-CH ₂ -	2	2	1	-	н	-CH ₂ -N-C
472	СНСН₂-	2	2	1	-	н	-CH ₂ -N-C
473	С⊢{СН₂-	2	2	1	-	н	- CH ₂ -N-C

Table 1.44

lable i							
Compd.	R ¹ (CH ₂) _j -	k	m	n	chirality	. Ř³ 	$-(CH_2)_{p} + (CH_2)_{q} - G-R^6$
474	CH-CH ₂ -	2	2	1		н	-CH ₂ -N-C
475	с⊢Ст-сн₂- •	2	2	1	<u>-</u>	H	- CH ₂ - N- C- CH(CH ₃) ₂
476	с⊢С сн₂-	2	2	1	-	н	-CH ₂ -N-C-NO ₂
477	С⊢—СН₂-	2	2	1	-	н	- CH ₂ -N-C
478	C├ - CH ₂ -	2	2	1	-	н	- CH ₂ - N C
479	с⊢С СН₂-	2	2	1	-	Н	- CH ₂ -N-C-
480	C⊢√CH₂-	2	2	1	-	н	-CH ₂ -N-C
481	C⊢√_CH₂-	2	2	1	-	Н	-CH2-NC-S
482 ·	CH-{	2	2	1	-	н	-CH ₂ -NC-S
483	CH-2-	2	. 2	1	-	н	-CH ₂ -N-C-S CH ₃
484	C├─ \ CH ₂ -	2	2	1	-	н	-CH ₂ -N-C-N-H

Table 1.45

lable i	.40						
Compd.	R ¹ (CH ₂) _j -	k	m	n	chirality	R³	$-(CH_2)_{p} + (CH_2)_{q} G - R^6$
485	CH2-	2	2	1	-	н .	-CH ₂ -N-C- CF ₃
486	C├ - CH ₂ -	2	2	1	-	н	-CH ₂ -N-C-CN
487	CH2⁻	2	2	1	-	н	- CH ₂ -N-C-
488	C⊢√CH₂-	2	2	1	-	н	-CH ₂ -N-C
489	CI—(2	2	1	-	н	− CH ₂ − N C CF ₃ F ₃ C
490	CH-CH ₂ -	2	2	1	-	.	-CH ₂ -N-C
491	CHCH ₂ -	2	2	1	-	Н	-CH ₂ -N-C-CF ₃
492	CH2-	2	2	1	-	н	-CH ₂ -N-C-OCF ₃
493	C├ - CH₂-	2	2	1	-	н	- CH ₂ -N-C-CF ₃
494	C⊢√_CH₂-	2	2	1	-	н	- CH ₂ -N-C- CF ₃
495						н	- CH ₂ -N C − CF ₃
	•						

Table 1.46

Compd.	R ¹ (CH ₂),	k	m	n	chirality	.R³	$-(CH_2)_{p} + (CH_2)_{q} - (CH_2)_{q} - (CH_2)_{q}$
496	CH-CH2-	2	2	1	-	н	- CH ₂ - N- C
497	CH-€CH ₂ -	2	2	1	-	н	-CH ₂ -N-C
498	C├ - CH ₂ -	2	2	1	-	н	- CH ₂ -N-C-N-C-
499	CH-CH ₂ -	2	2	1	-	н	- CH ₂ -N C- N(CH ₃) ₂
500	C├ - CH ₂ -	2	2	1	-	н	-CH ₂ -N-C
501	с⊢С сн₂-	2	2	1	-	н	-CH ₂ -N-C-NO ₂
502	CH2-	2	2	1	-	н	-CH ₂ -N-C
503	CH-CH ₂ -	2	2	1	-	н	- CH ₂ - N- C- NO ₂
504	CH-CH ₂ -	2	2	1	-	н	-CH ₂ -N-C- OCH ₃ OCH ₃
505	CH-CH ₂ -	2	2	1	-	н	- CH ₂ - N- C- NO ₂
506	CH-CH ₂ -	2	2	1	-	н	-CH ₂ -N-C-\ NO ₂

Table 1.47

Table 1	.47						
Compd.	R ¹ (CH ₂);-	k	m	n	chirality	Ŕ³	-(CH ₂) p + (CH ₂) q G-R ⁶
507	CICH ₂ -	2	2	1	-	н	- CH ₂ -N-C-O
508	CH-2-	2	2	1	•	н	- CH ₂ -N-C-S
509	C├ - CH ₂ -	2	2	1	-	н	- CH ₂ -N-C-S
510	CH₂-	2	2	1	-	н	-CH ₂ -N-C- CH ₃
511	C⊢CH₂-	2	2	1	-	н	-CH2-N-C-C(CH3)3
512	CH2-	2	2	1	-	н	- CH ₂ -N-C-CHCH ₃
513	CH-CH ₂ -	2	2	1	-	Н	O C-CH ₃ -CH ₂ -N-C-
514	C├ - CH ₂ -	2	. 2	1	-	Н	- CH ₂ -N-C-C(CH ₃) ₃
515	CI—CH ₂ -	2	2	1	-	н	- CH ₂ - N- C- CH ₂ OH
516	H ₂ N-CH ₂ -	2	2	1	-	Н	$-CH_2-N-C- CF_3$ $O CF_3$
517	H ₂ N —CH ₂ -	2	2	1	-	н	-CH ₂ -N-C- CF ₃

Table 1.48

iable .							
Compd.	R ¹ (CH ₂)j-	k	m	n	chirality	Ŕ³	$-(CH_2)_{p}$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$
518	NH ₂ —CH ₂ -	2	2	1	-	н	-CH ₂ -N-C-CF ₃
519	Q - C-N-CH2-	2	2	1	-	н	-CH ₂ -N-C-CF ₃
520	CHCH ₂ -	2	2	1	-	−сн₃	-CH ₂ -N-C-CF ₃
521	С├─(СН₂-	2	2	1		-(CH ₂) ₂ CH-	-CH ₂ -N-C-CF ₃
522	С├-СН₂-	2	2	1	-	-CH ₂ CH-	-CH ₂ -N-C-CF ₃
523	СЊ_СН₂-	2	2	1		-(CH ₂) ₂ CH-	-сн ₂ - N- С-
524	С├-СН₂-	2	2	1	- -	-CH ₂ CH-	-сн ₂ - № с-
525	СЊСН₂-	2	2	1	-	Н	-CH ₂ -N-C
526	CI—(CH₂-	2	2	1	-	н	-CH ₂ -N-C-CO
527	C⊢√CH₂-	2	2	1	-	Н	-CH ₂ -N-C-S
528	C⊢(CH ₂ -	2	2	1	-	н	$-CH_2-N-C-CH_3$ F_3C

Table 1.49

Compd. No.	R ¹ (CH ₂) _j -	k	m	n	chirality	R³	$-(CH_2)_{p} + (CH_2)_{q} - (CH_2)_{q} - (CH_2)_{q}$
529	CH-2-	2	2	1	-	н	-CH ₂ -N-C-\(\frac{0}{1}\)
530	CH-2-	2	2	1	-	н	-CH2-N-C-
531	CH2-	2	2	1	-	н	-CH ₂ -N-C-S
532	СН ₂ -	2	2	1	-	н	$-CH_2-N-C-O H_3$ $+J_3C$
533	CH2-	2	2	1	-	н	-CH ₂ -N-CO H H ₃ C
534	CH2-	2	2	1	-	н	$-CH_2-N-C-VO$ H_3C
535	CHCH ₂ -	2	2	1	-	н	-CH ₂ -N-C-S H ₃ C-C ₀
536	CH-2-	2	2	1	-	н	CH ₂ -N-C-N _{CH₃}
537	C├ ~ CH₂-	2	2	1	-	н	-CH ₂ -N-C-C(CH ₃) ₃ H ₃ C
538	CI—CH ₂ -	2	2	1	-	н	-CH ₂ -N-C-CH ₃ -CH ₂ -N-C-CH ₃ F ₃ C
539	С⊢—СН₂-	2	2	1	-	н	-CH ₂ -N-C-O-CH ₃

Table 1.50

Compd.	R ² (CH ₂)j-	k	m	n	chirality	R³	$-(CH_2)_{p} + \frac{R^4}{R^5} (CH_2)_{q} G - R^6$
540	C	2	2	1	-	н	-CH ₂ -N-C-N-C-N-CH ₃
541	CI—CH₂-	2	2	1	-	н •	$-CH_2-N-C$ H_2N
542	с⊢Ст}- сн₂-	2	2	1	-	н	-CH ₂ -N-C-CH ₂ CH ₃
543	C⊢CH₂-	2	2	1	-	н	-CH ₂ -N-C
544	C⊢CH₂-	2	2	1	-	н	-CH ₂ -N-C-
545	C├ - CH₂-	2	2	1	-	н	-CH ₂ -N-C-
546	C├─ ─ -CH ₂ -	2	2	1	-	н	-CH₂-N-C-CI
547	CH2-	2	2	1	-	Н	-CH ₂ -N-C-CI
548	CH2-	2	2	1	-	Н	-CH ₂ -N-C-CI
549	CHCH ₂ -	2	2	1	-	Н	$-CH_{2}-N-C$ $-CH_{2}-N-C$ $-CH_{2}-N-C$ $O_{2}N$ $O_{2}N$
550	C├ ~ CH₂-	2	2	1	-	н	$-CH_{2}-N-C-$ $O_{2}N$ CI

Table 1.51

Table 1	.5 1						
Compd.	R ¹ (CH ₂);-	k	m	n	chirality	. R ³	$-(CH_2)_{\overline{p}} + (CH_2)_{\overline{q}} G - R^6$
551	CH-CH ₂ -	2	2	1	-	н	-CH ₂ -N-C-CH ₂ -CH ₃
552	CH2-	2	2	1	-	н	-CH ₂ -N-C-CH ₂ -CF ₃
553	C├ - CH ₂ -	2	2	1	-	н	-CH ₂ -N-C-CH ₂ -CF ₃
554	C├────────────────────────────	2	2	1	-	н	-CH ₂ -N-C-NH H
555	C├ ─ CH ₂ -	2	2	1	-	н	-CH ₂ -N-C-N-H-H-H-H-H-H-H-H-H-H-H-H-H-H-H-H-H
556	CH2-	2	2	1	-	н	-CH ₂ -N-C-N-CH ₃
557	CH-2-	2	2	1	-	н	-(CH ₂) ₂ -N-C-
558	CHCH2-	2	2	1	-	н	CH ₃ 0 - CH ₁ C-
559	CHCH ₂ -	2	2	1	-	Н	CHNC-CF3
560	CH-2⁻	2	2	1	-	н	-CH-N-C-CN
561	CI—(CH ₂ -	2	2	1	-	н .	-CHNC-Br

Table 1.52

Compd.	R ¹ /(CH ₂)j	k	m	n	chirality	R³	$-(CH_2)_{p} + (CH_2)_{q} - (C$
562	C├ - CH ₂ -	2	2	1	-	н	-CHNC-CI
563	CH ₂ -	2	2	1	-	н	- CH N- C- CF ₃ - CH N- C- CF ₃ CH ₃ F ₃ C
564	C⊢√CH ₂ -	2	2	1	-	н	- CH № C
565	; CH ₂ -	2	2	1	-	н	-CHNCC-CF3
566	CICH ₂ -	2	2	1	-	н	- CH N C-C
567	CH ₂ −	2	2	1		н	-CHNC-CF3
568	CH-2−	2	2	1	-	Н	-CHNC-CF3
569	CHCH ₂ -	2	2	1	-	н	-CHNC-CF3
570	CI—CH₂-	2	2	1	-	н	CF ₃ -CHNC-F
571	CI-CH ₂ -	2	2	1	-	Н	-CHNC-CH3)2 -CHNC-CH3
572	C├ \ CH ₂ -	2	2	1	-	н	-CH-N-C

Table 1.53

, abic							
Compd.	R ¹ (CH ₂),	k	m	n	chirality	R³	$-(CH_2)_{p} + (CH_2)_{q} - G^{-R^6}$
573	C├	2	2	1	-	н	-CH N C S CH₃
574	C├ - CH ₂ -	2	2	1	-	н	-CHNC-S Br
575	С⊢—СН₂-	2	2.	1	-	н	-CH N C C(CH3)3
576	CI—CH₂-	2	2	1	-	н	-CHMC-OSCH3
577	CHCH2-	2	2	1	-	Н	-CH N C-0
578	CHCH_2-	2	2	1	-	н	-CHNC-S
579	C⊢√CH₂-	2	2	1	-	н	-CH N-C-N
580	C├ - CH ₂ -	2	2	1	-	Н	-CHNC-S CH3
581	CH2-	2	2	1	-	н	-CHNC-S
582	CHCH ₂ -	2	2	1	-	н	-CHNC-S
583	C├ ~ CH₂-	2	2	1	-	н	-CHNC-N

Table 1.54

1 abic							
Compd.	R ¹ (CH ₂) _j	k	m	n	chirality	R³	$-(CH_2)_{p} + (CH_2)_{q} G - R^6$
584	CI—CH₂-	2	2	1	-	н	-CHNC-C-C-C
585	С⊢—СН₂-	2	2	1	-	н	- CH N C - CN
586	CH ₂ -	2	2	1	-	н	- CH N-C
587	CI—CH₂-	2	2	1	-	н	-CHNC-CF3 CH3
588	CH ₂ -	2	2	1	-	н	$-CHNC-NH_2$ CH_3
589	CH-2⁻	2	2	1	-	н	-сн ү с Н СН ₃
590	C├────────────────────────────────────	2	2	1	-	н	- CH N C - CH(CH ₃) ₂ CH ₃
591	CH-√CH₂-	2	2	1	-	н	-CH N C → N(CH ₃) ₂ H CH ₃
592	CI—CH ₂ -	2	2	1	-	Н	- СН N- С- Н Н СН ₃
593	C├ - CH ₂ -	2	2	1	-	Н	- CH-N-C- CH₂OH CH₃
594	CHCH ₂ -	2	2	1	-	н	- СН N С - ОН СН3

Table 1.55

I able	.5 5						
Compd.	R ¹ (CH ₂)j-	k	m	n	chirality	'R³	-(CH ₂) _p +(CH ₂) _q G-R ⁶
595	CI-CH ₂ -	2	2	1	-	н	O -CHNC-CO2CH3 H CH3
596	CH-CH ₂ -	2	2	1	-	н	- CH N C- C- CH3 CH3
597	CH-2-	2	2	1		н	- CH3 CH3
598	C├ - CH₂-	2	2	1	•	н	-CH N C-0
599	CH2-	2	2	1	• ·	н	-CHNC-N CH3 CH3
600	CH2-	2	2	1	-	н	-CH-N-C-O-Br
601	CHCH ₂ -	2	2	1	-	H .	-CH N C QCH3 -CH3
602	CHCH ₂ -	2	2	1	-	н	-CHN-C
603	CH2-	2	2	1	-	н	- CH N C NH2
604	C├ - CH₂-	2	2	1	-	н	-CH-M-C-(N)
605	CH2⁻	2	2	1	-	н	-CH-N-C-

Table 1.56

Compd.	R^{1} $(CH_{2})_{j}$	k	m	n	chirality	·R³	$-(CH_2)_{p} + (CH_2)_{q} G - R^6$
606	с⊢(Сн₂-	2	2	1	-	н	-CHNC-CS
607	CI—(CH₂-	2	2	1	-	н	-CHNC-S
608	CH-CH2-	2	2	1	-	н	-CHNC-CH3 CH3 H3C
609	CHCH ₂ -	2	2	1	-	н	-CHN-C
610	CH-2-	2	2	1	-	Н	-CHNC-S CH3 OFCCH3
611	CH-2-	. 2	2	1	-	н	-CHNC C(CH3)3 $-CHNC C(CH3)3$ $-CHNC C(CH3)3$
612	CH-CH ₂ -	2	2	1	-	н	-CH-N-C-CO
613	CH-CH ₂ -	2	2	1	-	н	-CHNC-CH ₃ CH ₃ F ₃ C
614	CH-CH2-	2	2	1	-	н	-CHN-C-CH3 CH3 F3C CH3
615	C├ - CH ₂ -	2	2	1	-	н	-CH-MC-NH
616	С⊢-{}СН₂-	2	2	1	-		-CH-N-CN

Table 1.57

Compd.	R ¹ (CH ₂) _j	k	m	n	chirality	R³	-(CH ₂) p (CH ₂) q G-R ⁶
617	CH-{	2	2	. 1	-	н	-CH-N-C-CF3
618	С├-{}СН₂-	2	2	1	-	н	- CH- N- C- H CH(CH ₃) ₂
619	CH-{	2	2	1	-	н	O - CH N C - CH(CH ₃) ₂
620	C⊢-⟨¯¯⟩- CH ₂ -	2	2	1	-	Н	CHNC- H CH(CH ₃) ₂
621	C⊢√CH ₂ -	2	2	1	-	н	- C ++ N· C - C H CH(CH ₃) ₂
622	CH2 ⁻	2	2	1	-	Н	O N(CH ₃) ₂ -CH N C N(CH ₃) ₂ CH(CH ₃) ₂
623	с⊷СН₂-	2	2	1	-	н	-CH N-C-
624	CH2-	2	2	1	-	н	- CH N C NO ₂ H CH(CH ₃) ₂
625	CH2-	2	2	1	-	н	$-CH \stackrel{\circ}{\text{NH}_2}$ $-CH \stackrel{\circ}{\text{NH}_2}$ $-CH \stackrel{\circ}{\text{NH}_2}$ $-CH \stackrel{\circ}{\text{CH}_3})_2$
626	CH2-	2	2	1	· -	н	-CH+N-C- H CH(CH ₃) ₂ CF ₃
627	CHCH ₂ -	2	2	1	-	н	- CH-N-C

Table 1.58

Compd.	R ¹ (CH ₂) _j -	k	m	n	chirality	R³	-(CH ₂) p G (CH ₂) q G-R ⁶
628	CI—()—CH₂-	2	2	1	•	н	- CH- N- C- CO ₂ CH ₃
629	C├ - CH ₂ -	2	2	1	-	н	O F CF ₃ - CH N C
630	C⊢√_CH₂-	2	2	1	-	н	O − CH N C − H CH(CH ₃) ₂
631	СН₂-	2	2	1	-	н	OCI - CH N C I H CH(CH ₃) ₂ CF ₃
632	C├ - CH ₂ -	2	2	1	-	н	O F - CH N C - CF ₃ CH(CH ₃) ₂ CF ₃
633	CH₂-	2	2	1	-	н	$ \begin{array}{ccc} & & & & & & \\ & & & & & & \\ & & & & $
634	CH2-	2	2	1	-	н	- CH N C - F H CH(CH ₃) ₂
635	CH-2-	2	2	1	-	Н	- CH N C CH(CH ₃) ₂ - CH(CH ₃) ₂ - CH(CH ₃) ₂
636	CH2-	2	2	1	-	Н	- CH N C CH3 - CH (CH3)2
637	CH₂-	2	2	1	-	н	- CH N C CF ₃ - CH(CH ₃) ₂
638	C├ - CH ₂ -	2	2	1	-	н	- CH-N-C-CN - CH(CH ₃) ₂

Table 1.59

Table !							
Compd.	R ² (CH ₂) _j	k	m	n	chirality	[*] R³	$-(CH_2)_{p} + (CH_2)_{q} - (C$
639	C⊢(CH ₂ -	2	2	1	-	н	- CH N C - N(CH ₃) ₂ H CH(CH ₃) ₂
640	C⊢√CH ₂ -	2	2	1	-	н	- CH N C - OCH ₃ CH(CH ₃) ₂
641	CH ₂ -	2	2	1	-	н	-CHNC-CO ₂ CH ₃ -CH(CH ₃) ₂
642	CH2⁻	2	2	1	-	н	- CH W C- CH(CH ³) ⁵
643	CH2-	2	2	1	-	Н	O - CH+N-C- H CH(CH ₃) ₂ CF ₃
644	C├ \ CH ₂ -	2	2	1	-	н	-CHNC-C(CH ₃) ₃ H CH(CH ₃) ₂
645	CH-2-	2	2	1	-	н	$-CHNC-NH_2$ $-CH(CH_3)_2$
646	CH₂-	2	2	1	-	н	- СН- N- С- - СН ₂ ОН - СН(СН ₃) ₂
647	CH ₂ -	2	2	1	-	н	- CH N C - C- CH ₃ - CH (CH ₃) ₂
648	C├ \ CH ₂ -	2	2	1	-	н	O - CH N C — CH(CH ₃) ₂ I H CH(CH ₃) ₂
649	C├ ~ CH ₂ -	2	2	1	-	н	- CH M C- ОСН(СН3)2 СН(СН3)2

Table 1.60

Compd.	R ¹ (CH ₂)j-	k	m	n	chirality	R³	$-(CH_2)_{\overline{p}} + (CH_2)_{\overline{q}} G - R^6$
650	C⊢√CH₂-	2	2	1	-	н	-CH-N-C
651	C├ - CH ₂ -	2	2	1	-	н	-CH-N-C-CHCH3
652	CI—CH₂-	2	2	1	-	н	-CHNC-NO ₂ CH(CH ₃) ₂
653	CH ₂ -	2	2	1	-	н	-CH-N-C
654	CI———— CH₂-	2	2	1	-	н	-CH-N-C-C-CH ₃ -CH(CH ₃) ₂
655	С⊢—СН₂-	2	2	1	-	н	-CH-N-C- -CH(CH ₃) ₂
656	C	2	2	1	-	н	-CH-N-C-C CH(CH ₃) ₂
657	C├ - CH ₂ -	2	2	1	-	н	-CH-N-C-S CH(CH ₃) ₂
658	CH2⁻	2	2	1	-	H.	-CH-N-C-NH CH(CH ₃)₂
659	CH2-	2	2	1	-	н	-CH-N-CS NO ₂ CH(CH ₃) ₂
660	CI—CH₂-	2	2	1	-	н	-CH-N-C-N CH(CH ₃) ₂

Table 1.61

lable	.0 1						
Compd.	R ¹ (CH ₂)j-	k	m	n	chirality	.F.3	$-(CH_2)_{\overline{p}} + (CH_2)_{\overline{q}} - G - R^6$
661	C⊢(CH ₂ -	2	2	1	-	н	-CH-N-C- H CH(CH ₃) ₂ OCH ₃
662	C├	2	2	1	-	н	-CH-N-C-CH ₃ -CH(CH ₃) ₂ CH(CH ₃) ₂
663	C⊢√CH ₂ -	2	2	1	-	н	-CHN-C-
664	; CI—CH₂-	2	2	1	-	н	-CH-N-C- NO ₂ CH(CH ₃) ₂
665	CHCH ₂ -	2	2	1	-	Н	-CH-N-C
666	CH2-	2	2	1	-	н	CH(CH ₃) ₂ CH ₃ CH ₃ CH ₃
667	C├─ (CH ₂ -	2	2	1	-	Н	-CH-N-C-CO CH (CH ₃) ₂
668	С⊢СН2-	2	2	1	-	Н	CH(CH ₃) ₂ CH ₃
669	CICH ₂ -	2	2	1	-	н	-CH-N-C-N H N CH(CH ₃) ₂ CH ₃
670	CH-CH ₂ -	2	2	1	-	н	-CH-N-C- H O Br CH(CH ₃) ₂
671	С⊢—СН₂-	· 2	2	1	-	н	-CH-N-C-ONO ₂ CH(CH ₃) ₂

Table 1.62 .

Compd.	R ¹ (CH ₂) _j -	k	m	n	chirality	R³	-(CH ₂) _p + (CH ₂) _q G-R ⁶
672	CH2-	2	2	1	-	н	-CH-N-C- H N CH(CH ₃) ₂ H
673	СН2−	2	2	1	-	н	-CH-N-C-S C(CH ₃) ₂
674	C⊢√CH₂-	2	2	1	-	н	-CH-N-C-S CH(CH ₃) ₂
675	С⊢—СН₂-	2	2	1	-	н	-CHNC-S CH3
676	C⊢√CH₂-	2	2	1	-	н	-CH-N-C-N-C-N-C-N-CH(CH ₃) ₂ H
677	C├─ CH ₂ -	2	2	1	-	н	-CH-N-C-N CH(CH ₃) ₂ CH ₃
678	CH2-	2	2	1	-	Н	-CH-N-C
679	C	2	2	1	-	Н	-CH-N-C-S-CH(CH ₃) ₂
680	CH2-	2	2	1	-	н	-CHN-C-(SH) CH(CH ₃) ₂
681	CHCH2-	2	2	i	-	н	-CH-N-C-CH ₃ -CH(CH ₃) ₂ -CH ₃
682	C├ \ CH ₂ -	2	2	1	-	н	-CH-N-C- H CH(CH ₃) ₂ C(CH ₃) ₃

Table 1.63

lable i	.03						
Compd.	R ¹ (CH ₂) _j	k	m	n	chirality	Ŕ³	$-(CH_2)_{p} + (CH_2)_{q} G - R^6$
683	С⊢{СН₂-	2	2	1	-	Н	-CHN-C- H S SCH ₃ CH(CH ₃) ₂
684	C├ - CH ₂ -	2	2	1	-	н	-CH-N-C- H S S-CH(CH ₃) ₂ CH(CH ₃) ₂ O
685	C⊢√CH₂-	2	2	1	-	н	-CH-N-C- H S S-CH ₃ CH(CH ₃) ₂ O
686	с⊢√_СН₂-	2	2	1	-	н	- CH N- C- H CH ₂ CH(CH ₃) ₂
687	CI-CH ₂ -	2	2	1	-	н	-CHN-C-
688	C⊢(CH ₂ -	2	2	1	-	н	-CHNC-CF3
689	CH2-	2	2	1	-	н	-c+ v-c-
690	CHCH ₂ -	2	2	1	-	Н	-CHN-C-Br
691	C├ - CH ₂ -	2	2	1	-	н	-CH N-C- (NCH3)2
692	C├ \ CH ₂ -	2	2	1	-	н	-CH M-C-
693	C├ ~ CH ₂ -						-CH N-C

Table 1.64

lable	.04						
Compd.	R ¹ (CH ₂)j-	k	m	n	chirality	R³	$-(CH_2)_{p} + (CH_2)_{q} G - R^6$
694	CI—CH₂-	2	2	1	-	н.	-CH N C OCH2CH3
695	C⊢—CH₂-	2	2	1	-	н	-CHNC- © 2CH3
696	С⊢—СН₂-	2	2	1	-	н	- CH N C - OCF3
697	: C⊢———CH₂-	2	2	1	-	н	-CH-N-C-CN
698	C⊢√_CH₂-	2	2	1	-	н	-CH N C- N(CH ₃) ₂
699	C├ - CH ₂ -	2	2	1	-	н	-CHN C-OCH3
700	C├ \ CH ₂ -	2	2	1	-	н	-CHN-C
701	CHCH ₂ -	2	2	1	-	Н	-CH N-C- C-CH3
702	CI—CH₂-	2	2	1	-	Н	-CH N-C-CF3
	CI-CH ₂ -						0
							-CHN-CNO2

Table 1.65

Compd.	R ¹ (CH ₂)j-	k	m	n	chirality	R³	$-(CH_2)_{p} + (CH_2)_{q} G - R^6$
705	C├ - CH ₂ -	2	2	1	-	н -	-CH-N-C-S H ₃ C
706	C⊢————————————————————————————————————	2	2	1	-	н	-CHNC-CH3
707	C├ - CH ₂ -	2	2	1	-	н	-c+-v-c
708	CI—CH₂-	2	2	1	-	н	-CHNC-S Br
709	C├───────────────────────────	2	2	1	-	н	-CHNC-S SCH3
710	C⊢√CH₂-	2	2	1	-	н	-CHNC-Br
711	C├ - CH ₂ -	2	2	1	-	Н	-CHN-C-CH3
712	C├ - CH ₂ -	2	2	1	-	н	-CHN-C-(\$)
713	C⊢——CH₂-	2	2	1	-	н	CH-N-C
714	C⊢CH₂-	2	2	1	-	н	-CH-N-C-\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
715	CH2⁻	2	2	1	-	н	-c+n-c-(\$)

Table 1.66

Compd. No.	R ¹ (CH ₂) _j -	k	m	n	chirality	R³	$-(CH_2)_{\overline{p}} + (CH_2)_{\overline{q}} G - R^6$
716	с⊢(Сн₂-	2	2	1	-	н	-c++c-NH
717	CI—⟨	2	2	1	-	H:	-CH-N-C- NO2
718	CH_CH ₂ -	2	2	1	-	н	-c+v-c-\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
719	С⊢СТ}-СН₂-	2	2	1	-	н	-CHN C-C
720	CHCH2-	2	2	1	-	н	-CH-N-C-Q Br
721	CH-CH₂-	2	2	1	-	н	-CHN-C-\N CH3
722	СН-2-	2	2	1	-	н	-CHN-C-CH2OH
723	CH-CH₂-	2	2	1	-	н	-CHN-C-NH2
724	C	2	2	1	-	н .	-CH-N-C-(CH3)3
725	С⊢√_СН₂-	2	2	1	-	н	-CHMC-C-C-C
726	С⊢(СН₂-	2	2	1	-	н	-CHN-C-CH3

Table 1.67

lable	1.07						
Compd.	R ¹ (CH ₂) _j	k	m	n	chirality	R³	$-(CH_2)_{p} + (CH_2)_{q} - G - R^6$
727	CH2−	2	2	1	-	н	-c+n-c
728	CI-CH ₂ -	2	2	1	-	н	-CH-N-C-\(\bigc\)NH2
729	CH2 ⁻	2	2	1	- -	н	-c+-n-c
730	CHCH ₂ -	2	2	1	-	н	-c+n-c-
731	CH2-	2	2	1	-	н	-ch-hc-CH3
732	С├-СН2-	2	2	1	-	н	-CH-N-C-CF3
733	С├-СН₂-	2	2	1	-	Ĥ	-сн-n-с- но сн(сн ₃) ₂
734	CH-2-	2	2	1	-	н	-CH-N-C
735	CHCH ₂ -	2	2	1	-	Н	-CH-N-C-CF3
736	CI-CH ₂ -	2	2	1	-	н	-CH-N-C- H₂N CF3
	CH2−						-CHN-C

Table 1.68

Table 1	.68						
Compd.	R ¹ (CH ₂)j-	k	m	n	chirality	Ŕ³	$-(CH_2)_{p} + (CH_2)_{q} G - R^6$
738	CH2-	2	2	1	-	н	-CHN-C-CO H ₃ C
739	C⊢-(2	2	1	-	н	-CH-N-C-NH
740	C├ - CH ₂ -	2	2	1	· •	н	-CH-N-C-\(\frac{1}{2}\) H ₃ C
741	C├────────── CH ₂ -	2	2	1	-	н	-CHN-C-CS
742	CH2⁻	2	2	1	-	н .	-CHN-C-S
743	CHCH ₂ -	2	2	1	-	Н	-CHNC-
744	CH2-	2	2	1	• ·	н	-CHN-C-CH3
745	CH2-	2	2	1	-	н	-CHN-C-(CH3)3
746	C├ ~ CH ₂ -	2	2	1	-	Н	-CHNC-N CH3
747	C├ - CH ₂ -	2	2	1	-	Н	-CH-N-C
748	C	2	2	1	-	н	-chyc-Cs

Table 1.69

Table	1.69						
Compd.	R ¹ (CH ₂) _j -	k	m	n	chirality	ˈR³	$-(CH_2)_{\overline{p}} + \frac{R^4}{R^5} (CH_2)_{\overline{q}} - G - R^6$
749	C⊢————————————————————————————————————	2	2	1	-	н	-CH-N-CN
750	C⊢√CH₂-	2	2	1	-	н	-CH-N-C
751	CH₂⁻	2	2	1	- -	н	-CH-V-C- CH ⁵ OH
752	CH-2⁻	2	2	1	-	н	CF ₃ CH-N-C- H CH ₂ OH CF ₃
753	CI-CH ₂ -	2	2	1	- -	н	-CH-N-C- H CH ₂ OH
754	CH2-	2	2	1	-	Н	-CH-N-C- H CH2OH
755	CH2-	2	2	1	-	Н	-сн-й-с- сн²он
756	CH2-	2	2	1	-	н	-CH-N-C-NO ₂ -CH-N-C-C-NO ₂ -CH ₂ OH
757	CH-CH ₂ -	2	2	1	-	н	-CH-N-C-CH ₂ CH ₃ -CH ₂ OH
758	CH-2-	2	2	1	-	н	CO₂CH ₃ -CHNC- HCCH2OH
759	C├ - CH ₂ -	2	2	1	-	н	OCF ₃ −CHN-C− H CH ₂ OH

Table 1.70

lable	1.70		_				
Compd. No.	R ¹ (CH ₂)j-	k	m	n	chirality	R³	$-(CH_2)_{\overline{p}} + (CH_2)_{\overline{q}} - G^-R^6$
760	C├	2	2	1	-	н	-CH-N-C-CF ₃ -CH ₂ OH F
761	C├ -	2	2	1	-	н	CF ₃ -CH-N-C- H CH₂OH
762	C⊢(CH₂-	2	2	1	-	н	-CH-N-C- H CH₂OH
763	CH-{	2	2	1	-	н	-CHN-C- H CH ₂ OH
764	C⊢—CH₂-	2	2	1	-	н	CH ₃ P -C-N-C- H CH ₃
765	C├	2	2	1	-	н	CH ₃ O CH ₃ -C-N-C-
766	CH-CH₂-	2	2	1	-	н	CH ₃ O CF ₃ -C-N-C-C-CF ₃ CH ₃
767	CI—CH ₂ -	2	2	1	-	н	CH3 CH3 CH3 CH3
768	CH-2-	2	2	1	-	н	CH ₃ O Br -C-N-C- Br CH ₃
769	C├─ \ CH ₂ -	2	2	1	-	н	-CH ₃ O OCF ₃ -C-N-C- OCF ₃ -CH ₃
770	C├────────────────────────────────────	2	2	1	-	н	CH ₃ O CF ₃ -C-N-C-

Table 1.71

lable	1.7 1						
Compd.	R ¹ (CH ₂) _j	k	m	n	chirality	R³	$-(CH_2)_{p} + (CH_2)_{q} - (C$
771	CH-2-	2	2	1	-	н	CH ₃ O CF ₃ -C-N-C-F CH ₃
772	CH-2-	2	2	1	-	н	CH ₃ O -C-N-C-C-C-CF ₃ CH ₃
773	C⊢CH₂-	2	2	1	-	н	CH ₃ P -C-N-C- CH ₃ C(CH ₃) ₃
774	C⊢√CH₂-	2	2	1	-	н	CH ₃ P CH ₃ SCH ₃
775	CI—CH₂-	2	2	1	-	н	CH ₃ Q CH ₃ -C-N-C-Q C(CH ₃) ₃
776	CI—CH₂-	2	2	1	-	н	CH3 O CH3
777	CHCH ₂ -	2	2	1	-	н	CH ₃ Q CF ₃ -C-N-C- H CH ₃ CH ₃
778	CH2-	2	2	1	-	Н	CH ₃ O NO ₂ -C-N-C-C-CI CH ₃
779	С⊢С СН₂-	2	2	1	-	н	CH ₃ O CI −C−N-C− CH ₃
780	CI-CH ₂ -	2	2	1	-	Н	CH ₃ O NO ₂ -C-N-C- NO ₂
781	CH-{CH₂-	2	2	1	-	н	CH ₃ P -C-N-C-N-C-N-C-N-C-N-C-N-C-N-C-N-C-N-C-

Table 1.72

IADIC	., =						
Compd. No.	R ¹ (CH ₂) _j	k	m	n	chirality	R³	$-(CH_2)^{R^4}_{p+1}(CH_2)^{-}_{q}G^{-R^6}$
782	CH-CH ₂ -	2	2	1	<u>-</u>	н	CH ₃ OCH ₃ -C-N-C-C
783	CH-CH2-	2	2	1	-	н	CH ₃ O OCH ₂ CH ₃ -C-N-C-CH ₂ CH ₃ -CH ₃
784	CH-CH2-	2	2	1	-	н	CH ₃ O -C-N-C-CH ₂ CF ₃ -C-C-CH ₂ CF ₃
785	CH-CH ₂ -	2	2	1	-	н	CH ₃ OCH ₃ CH ₃ OCH ₃ OCH ₃
786	CHCH ₂ -	2	2	1	-	Н	H ₂ C—CH ₂
787	CHCH ₂ -	2	2	1	-	н	H ₂ C CH ₂
788	CH-2-	2	2	1	-	H .	H ₂ C—CH ₂ CF ₃ CF ₃
789	CH ₂ -CH ₂ -	2	2	1	-	Н	P C C C C C C C C C C C C C C C C C C C
790	CH2 ⁻	2	2	1	-	н	H ₂ C—CH ₂
791	C├ - CH ₂ -	2	2	1	-	н	H ₂ C-CH ₂ NO
792	C⊢—CH₂-	2	2	1	-	н	H ₂ C—CH ₂

Table 1.73

(abic i	., -						
Compd.	R ¹ (CH ₂) _j -	k	m	n	chirality	R³	$-(CH_2)_p + (CH_2)_q G - R^6$
793	C├-{}-CH ₂ -	2	2	1	•	н	-C-N-C-F H ₂ C-CH ₂
794	C├ - CH ₂ -	2	2	1	-	н	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
795	C⊢√CH₂-	2	2	1	-	н	H_2C-CH_2
796	C⊢————————————————————————————————————	2	2	1	-	н	H ₂ C-CH ₂
797	CH-2 ⁻	2	2	1	-	н	-C - N - C - C + C - C + C - C + C - C + C - C + C - C + C - C + C - C + C - C + C - C + C - C + C - C + C - C + C - C + C - C -
798	CH-2-	2	2	1	-	н	-C-N-C-CH2
799	CH2-	2	2	1	-	, H	H ₂ C—CH ₂ CF ₃ CH ₃ CH ₃
800	C	2	2	1		н	$ \begin{array}{c c} & & & & & & \\ & & & & & & \\ & & & & $
801	CH2-	2	2	1	-	H	H ₂ C—CH ₂
802	CH-CH ₂ -	2	2	1	-	н	-C-N-C-OCH ₃ H ₂ C-CH ₂
803	CI————————————————————————————————————	2	2	1	-	н	OCH ₂ CH ₃ -C-N-C- H H ₂ C-CH ₂

Table 1.74

lable	1.74						
Compd.	R ¹ (CH ₂) _j	k	m	n	chirality	R³	
804	C├	2	2	1	-	н	-C-N-C-CH ₂ -CF ₃
805	CH-CH₂-	2	2	1	-	н	H_2 C— C H $_2$ OCH $_3$
806	CH2⁻	2	2	1	-	н	H ₂ C—CH ₂
807	CH2⁻	2	2	1	-	н	-CH-NC-NH2
808	C├ - CH ₂ -	2	2	1	-	н	-CH-N-C
809	C├─(2	2	1	- .	н	-CH-N-C
810	C├	2	2	1	-	н	-CH-N-C
811	CH2-	2	2	1	-	н	-CH-N-C
812	C├ - CH ₂ -	2	2	1		н	-CH-N-C
813	C├ - CH ₂ -	2	2	1	-	н	-CH-N-C
814	С⊢СУ-СН₂-	2	2	1	-	Н	-CH-N-C

Table 1.75

lable i							
Compd.	R ¹ (CH ₂) _j -	k	m	n	chirality	R³	-(CH ₂) _p + (CH ₂) _q G-R ⁶
815	CH-€	2	2	1	-	н	· - CH-N-C- CF3 (CH ₂) ₂ C-NH ₂ F
816	C⊢—CH₂-	2	2	1	-	н	-CH-N-C- H (CH ₂) ₂ -C-NH ₂
817	C⊢—CH₂-	2	2	1	-	н	CF3 -CH-N-C
818	C⊢—CH₂-	2	2	1	-	н	-CH-N-C-SP (CH ₂) ₂ -C-NH ₂
819	C⊢————————————————————————————————————	2	2	1	-	н	-CH-N-C
820	CH ₂ -	2	2	1	-	н	- CH-N-C
821	CH-CH ₂ -	2	2	1	-	н	-CH-N-C
822	CHCH ₂ -	2	2	1	-	н	-CH-N-C-SSCH3 -CH2OCH3
823	C├-{_}- CH ₂ -	2	2	1	-	н	-CH-N-C- H CH₂OCH3
824	CH-€ CH ₂ -	2	2	1	-	н	CH ₂ OCH ₃ CH ₂ OCH ₃ CH ₂ OCH ₃ CH ₂ OCH ₃
825	CH-CH ₂ -	2	2	1	-	н	-CH-N-C O H CH2OCH3

Table 1.76

lable	.10						
Compd.	R ¹ (CH ₂)j	k	m	n	chirality	R³	$-(CH_2)_{p} + (CH_2)_{q} - G^{-}R^6$
826	C├ - CH ₂ -	2	2	1	-	н	CH-N-C-CH ₃ CH ₂ OCH ₃
827	C├ - CH ₂ -	2	2	1	-	н	-CH-N-C-NH H CH2OCH3
828	C⊢-{CH₂-	2	2	1	-	н	OCF ₃ -CH-N-C- CH ₂ OCH ₃
829	C├ - CH₂-	2	2	1	-	н	CF ₃ -CH-N-C- H CH ₂ OCH ₃ F
830	C	2	2	1	-	н	-CH-N-C
831	C	2	2	1	-	Н	-CH-N-C- CH₂OCH3
832	CH2⁻	2	2	1	-	н	CH-N-C-CI CH2OCH3
833	CH₂-	2	2	1	-	Н	-CH-N-C- CH ₂ OCH ₃
834	C⊢√CH2-	2	2	1	-	Н	$-CH-N-C-CF_3$ CH_2OCH_3
835	CH2-	2	2	1	-	Н	-CH-N-C- CH ₂ OCH ₃
836	CH-2-	2	2	1	-	н	-CH-N-C- H CH ₂ OCH ₃

Table 1.77

lable i							
Compd.	R ¹ (CH ₂) _j -	k	m	n	chirality	R³	$-(CH_2)_{p} + (CH_2)_{q} G - R^6$
837	C⊢-{CH ₂ -	2	2	1	-	н	OCF ₃ -CH-N-C-C-C-C-S CH ₂ OCH ₃
838	CH-2-	2	2	1	-	н	OCH ₂ CH ₃ -CH-N-C
839	C├ - CH ₂ -	2	2	1	-	н	OCH ₃ -CH-N-C
840	C├ - CH₂-	2	2	1	-	н	-(CH ₂) ₃ -C-
841	CH2⁻	2	2	1	-	н	-(CH ₂) ₂ - C-
842	CH2-	2	2	1	-	н	-(CH ₂) ₂ -C-CI
843	CH ₂ -	2	2	1	-	н	-(CH ₂) ₂ -CH ₃ H ₃ C
844	CHCH ₂ -	2	2	1	-	Н	-(CH ₂) ₂ -C-CH ₃
845	CH-2-	2	2	1	-	н	-(CH2)2-C-C-C-OOO
846	CH-2-	2	2	1	-	н	-(CH ₂) ₂ -C-C-
847	С⊢С СН2-	2	2	1	-	н	-(CH2)2-C-

Table 1.78

	•						
Compd.	R ¹ (CH ₂) _j -	k	m	n	chirality	R³	$-(CH_2)_{p} + \frac{R^4}{R^5} (CH_2)_{q} - G^{-R^6}$
848	C├ - CH ₂ -	2	2	1	-	н	-(CH2)2-C - CH3 $H3C$
849	C├ - CH₂-	2	2	1	-	н	-(CH ₂) ₂ -C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C
850	С⊢С СН₂-	2	2	1	-	н	- CH ₂ - \$
851	С⊢—СН₂-	2	2	1	-	н	-CH ₂ -N-C-N-CF ₃
852	CH-2-	2	2	1	-	н	-CH ₂ -N-C-N-CF ₃
853	C├───────── CH ₂ -	2	2	1	-	н	- CH ₂ - N- C- N-
854	C⊢CH₂-	2	2	1	-	н	- CH ₂ -N-C-N-CH ₃
	CI—CH ₂ -						-CH ₂ -N-C-N-CH ₃
856	CH-2-	2	2	1		Н	-CH2-N-C-N-C-N-
	CH2 ⁻					Н	-CH ₂ -N-C-N-C-N-C-N-C-N-C-N-C-N-C-N-C-N-C-N-
858	CI-CH ₂ -	2	2	1	-	н	-CH ₂ -N-C-N-OCH ₃

Table 1.79

	_						
Compd.	R ¹ (CH ₂)	k	m	n	chirality	R³	$-(CH_2)_{\overline{p}} + (CH_2)_{\overline{q}} - G - R^6$
859	сн С	ı ₂ - 2	2	1	-	Н	-CH ₂ -N-C-N-C
860	сн С	1 ₂ - 2	2	1	-	Н	-CH ₂ -N-C-N-CN
861	сн С	1 ₂ - 2	2	1	-	н	- CH ₂ -N-C-N-C-N-C-N-C-N-C-N-C-N-C-N-C-N-C-N-
862	сн С	1 ₂ - 2	2	1	-	н	-CH ₂ -N-C-N-C-CH ₃
863	CH_CF	H ₂ - 2	2	1	-	Н	-CH ₂ -N-C-N-C-N-C-N-C-N-C-N-C-N-C-N-C-N-C-N-
864	сн С	4 ₂ - 2	2	1	-	н	-CH ₂ -N-C-N-C-H ₃
865	c⊢()—cı	_{4₂} - 2	2	1	-	H	-CH ₂ -N-S-CH ₃
866	c-{-}-cı	н ₂ - 2	2	1	-	н	CH ₂ - N- S- CF ₃
867	c (_)- c	H₂- 2	2	1	-	н	- CH ₂ - N- S- CF ₃
							-CH ₂ -N-S-CH ₂ CH ₃
869	с⊢С}-с	H₂- 2	2 2	1	-	Н	-CH ₂ -N-S-CH(CH ₃) ₂

Table 1.80

, abic							
Compd. No.	R ² (CH ₂),	k	m	n	chirality	R³	$-(CH_2)_p + \frac{R^4}{R^5} (CH_2)_q - G - R^6$
870	C⊢CH₂-	2	2	1	-	н	- CH ₂ - N- S- CH ₃
871	C├ - CH ₂ -	2	2	1	<u>-</u>	н	- CH ₂ -N-S-(CH ₂) ₃ CH ₃
872	C⊢CH₂-	2	2	1	-	н	- CH ₂ -N-S-
873	C├ - CH ₂ -	2	2	1	- -	н	- CH ₂ -N-C-O CH ₂ -
874	CH-{	2	2	1	-	н	- CH O C N CI
875	CH₂-	2	2	1	-	Н	- CH ₂ - N-C-CF ₃
876	Br—CH ₂ -	2	2	1	-	Н	-CH ₂ -N-C-CF ₃
877	NC-CH ₂ -	2	2	1	-	н	- CH ₂ -NC-CF ₃
878	O ₂ N-CH ₂ -	2	2	1	-	н	- CH ₂ -N-C-CF ₃
	O-CH ₂ -						- CH ₂ -N-C-CF ₃
880	O^O CH₂-	2	2	1	-	н	-CH ₂ -N-C-CF ₃

Table 1.81

iable	1.0 (
Compd.	R^1 $(CH_2)_j$	k	m	n	chirality	R³	$-(CH_2)_{\overline{p}} + (CH_2)_{\overline{q}} + G - R^6$
881	Br CH₂-	2	2	1	-	н	- CH ₂ - N C − CF ₃
882	OH ₂ -	2	2	1	-	н	- CH ₂ - N-C
883	CI CH₂-	2	2	1	-	н	- CH ₂ -N-C-CF ₃
884	нс.с-Д——— сн₂-	2	2	1	-	н	- CH ₂ - N C-CF ₃
885	H ₃ C−S−CH ₂ −	2	2	1	-	н	- CH ₂ -N-C-CF ₃
886	F-CH ₂ -	2	2	1	-	н	- CH ₂ -N-C-CF ₃
887	F ₃ C-√CH ₂ -	2	2	1	-	н	- CH ₂ - N- C- CF ₃
888	HO€	2	2	1	-	Н	- CH ₂ -N-C-CF ₃
889	CH ₂ -	2	2	1	-	Н	-CH ₂ -N-C-CF ₃
890	CH ₂ -	2	2	1	-	н	- CH ₂ - N- C-CF ₃
891	CI CH ₂ -	2	2	1	-	н	- CH ₂ -N-CF ₃

Table 1.82

Table	1.02	_					
Compd.	R ¹ (CH ₂),-	k	m	n	chirality	R³	$-(CH_2)_{\overline{p}} + \frac{R^4}{R^5} (CH_2)_{\overline{q}} - G - R^6$
892	H₃CO CH₂-	2	2	1	-	н	- CH ₂ -N-C-CF ₃
893	O ₂ N CH ₂ -	2	2	1	-	н	- CH ₂ -N-C-CF ₃
894	HO CH_3 H_3C CH_2 CH_3	2	2	1	-	. н	- CH ₂ -N-C-CF ₃
895	(CH ₂) ₂ -	2	2	1	-	н	- CH ₂ - N- CF ₃
896	CN CH ₂ -	2	2	1	-	н	- CH ₂ -N-C-CF ₃
897	HO ₂ C CH ₂ -	2	2	1	-	н	- CH ₂ -N-C-CF ₃
898	HO ₂ C-CH ₂ -	2	2	1	-	Н	- CH ₂ -N-C-CF ₃
899	ОСН ₃ СН ₂ -	2	2	1	-	Н	- CH ₂ -N-C-CF ₃
900	H ₃ ∞ ₂ C-√CH ₂ -	2	2	1	-	Н	- CH ₂ -N-C- CF₃ - CH₂-N-C-
901	○ CH-	2	2	1	-	н	- CH ₂ -N-C-CF ₃
902	O ₂ N CH ₂ -	2	2	1	-	н	-CH ₂ -N-C-CF ₃

Table 1.83

. ubic							
Compd. No.	R ¹ (CH ₂)	k	m	n	chirality	R³	-(CH ₂) _p + (CH ₂) _q G-R ⁶
903	H ₃ CO CH ₂ - OCH ₃	2	2	1	-	н	- CH ₂ -N-C-CF ₃
904	HO CH₂-	2	2	1	<u>-</u>	н	- CH ₂ -N-C-CF ₃
905	O ₂ N CH ₂ -	2	2	1	-	н	- CH ₂ -N-C-CF ₃
906	(CH ₂) ₃ -	2	2	1	-	н	- CH ₂ - N- C-
907	CH(CH ₂) ₂ -	2	2	1	-	н	CH ₂ -N-C-
908	OH2-	2	2	1	-	Н	- CH ₂ - N- C-
909	O CH2-	2	2	1	-	Н	- CH ₂ -N-C-CF ₃
	CI C⊢ CH₂-					н	- CH ₂ - N- C- CF ₃
911	CI CH ₂ -	2	2	1	-	н	- CH ₂ -N-C-CF ₃
912	Br CH ₂ -	2	2	1	-	н	- CH ₂ -N-C-CF ₃
913	H₃CO—CH₂-	2	2	1	-	н	- CH ₂ -N-C-CF ₃

Table 1.84

Compd.	R ¹ (CH ₂) _j -	k	m	n	chirality	R³	$-(CH_2)_{p} + \frac{R^4}{R^5} (CH_2)_{q} - G^{-R^6}$
914	CH ₂ O-CH ₂ -	2	2	1	-	н	- CH ₂ -N-C-CF ₃
915	OH CHCH₂-	2	2	1	-	Н	- CH ₂ - N- C- CF ₃
916	N CH ₂ -	2	2	1	-	н	- CH ₂ -N-C-CF ₃
917	N CH₂-	2	2	1	· _	н	- CH ₂ -N-C-CF ₃
918	н,со,с он, — Он,2-	2	2	1	-	н	- CH ₂ -N-C-CF ₃
919	H ₃ C-CH ₂ -	2	2	1	-	н	CH ₂ -N-C-CF ₃
920	OCF ₃	2	2	1	-	н	- CH ₂ -N-C-CF ₃
921	CH ₂ -	2	2	1	-	н	- CH ₂ -N-C-CF ₃
922	├ ─- CH ₂ -	2	2	1	-	н	- CH ₂ -N-C-CF ₃
923	CH—CH—	2	2	1	-	н	- CH ₂ -N-C-CF ₃
924	CI—CH— H ₂ N-C	2	2	1	-	н	-CH ₂ -N-C-CF ₃

Table 1.85

lable	1.03						
Compd.	R ² (CH ₂);-	k	m	n	chirality	R³	$-(CH_2)_{\overline{p}} + (CH_2)_{\overline{q}} - G - R^6$
925	H ₂ N-C-CH ₂ -	2	2	1	-	Н	-CH ₂ -N-C-CF ₃
926	CH2-CH2-	2	2	1	-	н	-CH ₂ -N-C-CF ₃
927	F ₃ CQ CH ₂ -	2	2	1	;	н	-CH ₂ -N-C-CF ₃
928	; F₃CO-{CH ₂ -	2	2	1	-	н	-CH ₂ -N-C-CF ₃
929	H₃CS-()-CH ₂ -	2	2	1	-	н	-CH ₂ -N-C-CF ₃
930	CH ₃ -CH ₂ -	2	2	1	- .	н	-CH ₂ -N-C-CF ₃
931	NC —CH ₂ -	2	2	1	-	н	-CH ₂ -N-C-CF ₃
932	NO ₂	2	2	1	-	Н	-CH ₂ -N-C-CF ₃
933	CH−	2	2	1	-	н	-CH ₂ -N-C-CF ₃
934	N—CH₂-	2	2	1	-	н	-CH ₂ -N-C-CF ₃
935	O ₂ N —CH ₂ -	2	2	1	-	H	-CH ₂ -N-C-CF ₃ -CH ₂ -N-C-CF ₃ -CH ₂ -N-C-CF ₃

Table 1.86

Compd.	R ¹ (CH ₂) _j	k	m	n	chirality	R ³	$-(CH_2)_{p} + (CH_2)_{q} - G - R^6$
936	NO ₂	2	2	1	-	н	-CH ₂ -N-C-CF ₃
937	(H ₃ C) ₂ N-\(\bigc\)-CH ₂ -	2	2	1	-	н	-CH ₂ -N-C-CF ₃
938	CI—CH₂-	2	2	1	-	н	-CH ₂ -N-C-CF ₃
939	O ₂ N CH————————————————————————————————————	2	2	1	-	н	-CH ₂ -N-C-CF ₃
940	OH CH₂-	2	2	1	-	н	-CH ₂ -N-C-CF ₃
941	F ₃ C CH ₂ -	2	2	1	-	Н	-CH ₂ -N-C-CF ₃
942	C⊢(CH ₂ -	2	2	1	-	н	CF ₃ -CHNC-CF ₃ -CH(CH ₃) ₂ CF ₃
943	C⊢————— CH₂-	1	4	0	-	Н	-CH ₂ -N-C-CF ₃
944	C⊢√CH₂-	1	4	0	-	н	-CH ₂ -N-C-CH ₃
945	CH-€	1	4	0	-	н	-CH ₂ -N-C
946	C	1	4	0	-	н	-(CH ₂) ₂ -N-C-NO ₂

Table 1.87

1 abic	.07						
Compd.	R ² (CH ₂)	k	m	n	chirality	R³	$-(CH_2)_{p} + (CH_2)_{q} + G-R^6$
947	C├ - CH ₂ -	1	4	0	-	н	-(CH ₂) ₂ -N-C
948	CH-CH ₂ -	1	4	0	-	н	-(CH ₂) ₃ -C-N-CI
949	CHCH ₂ -	1	4	0	-	н	-(CH ₂) ₃ -C-N-CH ₂ -
950	CHCH ₂ -	0	4	1	-	н	- CH ₂ -N-C-
951	CH-CH2-	1	2	0	R	Н	-сн ₂ - N-сС-с-сн3
952	CHCH2-	1	2	0	R	Н	-CH ₂ -N-C-\(\sigma\)-N(CH ₃) ₂
953	СЊСН₂-	1	2	0	R	Н	-(CH ₂) ₂ -N-C
954	CI-CH ₂ -	1	2	0	R [.]	н	-CH ₂ -N-C- H ₃ C-NH
955	CI—CH ₂ -	1	2	0	R	н	-(CH ₂) ₂ -N-C- H H ₃ C-NH
956	CH-€	1	2	0	R	н	-(CH ₂) ₂ -N-C
957	CH2 ⁻	1	2	0	R	н	-CH2-N-C-OH

Table 1.88

Compd.	R ¹ (CH ₂) _j	k	m	n	chirality	R³	$-(CH_2)_{p}$ $+\frac{R^4}{R^5}(CH_2)_{q}$ $-(CH_2)_{q}$ $-(CH_2)_{q}$
958	C⊢√ CH₂-	1	2	0	R	н	-(CH ₂) ₂ -N-C-
959	C⊢√CH₂-	1	2	0	R	н	-CH ₂ -N-C-CH ₃
960	C	1	2	0	R	н	-(CH ₂) ₂ -N-C-CH ₃
961	C⊢(CH₂-	1	2	0	R	н	-CH2-N-C
962	CI—CH₂-	1	2	0	R	н	-(CH ₂) ₂ -N-C-\ H CH ₃
963	CH-€CH ₂ -	1	2	0	R	н	-(CH ₂) ₂ -N-СОН
964	с⊢(Сн₂-	1	2	0	R	н	CH ₂ -N-C
965	CH-CH ₂ -	1	2	0	R	н	$-(CH_2)_2$ -N-C- $ -$
966	C⊢√CH₂-	1	2	0	R	Н	-CH2-N-C(C-CH3
967	CI—CH₂-	1	2	0	R	Н	$-(CH_2)_2-N-C-$
968	C⊢—CH₂-	1	2	0	R	н	-CH ₂ -N-C-NH

Table 1.89

	.03						
Compd.	R ¹ (CH ₂)j-	k	m	n	chirality	R³	$-(CH_2)_{\overline{p}} + (CH_2)_{\overline{q}} - G - R^6$
969	C⊢√CH ₂ -	1	2	0	R	н	-(CH ₂) ₂ -N-C-NH
970	CHCH ₂ -	1	2	0	R	н	-CH ₂ -N-C-N(CH ₃) ₂
971	C⊢(CH ₂ -	1	2	0	R	н	-(CH ₂) ₂ -N-C
972	С⊢СТ—СН₂-	1	2	0	R	н	-CH ₂ -N-C
973	СН-СН₂-	1	2	0	R	н	-(CH ₂) ₂ -N-C-NH ₂
974	CI—CH₂-	1	2	0	R	н	-CH ₂ -N-C-_NH ₂
975	CH-€-	1	2	0	R	н	-(CH ₂) ₂ -N-C-\(\bigc\)-NH ₂
976	CH2-	1	2	0	R	н	-CH ₂ -N-C-NH
977	CH2-	1	2	0	R	н	-(CH ₂) ₂ -N-C-NH
978	C⊢√CH₂-	1	2	0	R	н	-CH2-N-C-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-
979	C├ - CH ₂ -	1	2	0	R	н	-(CH ₂) ₂ -N-C-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-

Table 1.90

Compd.	R ¹ (CH ₂)j-	k	m	n	chirality	R³	-(CH ₂) _p + (CH ₂) _q G−R ⁶
980	CH-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CH ₃
981	CH_CH ₂ -	1	2	0	R	н	-(CH ₂) ₂ -N-C-CH ₃
982	CH-CH ₂ -	1	2	0	R	· н	CH ₂ -N-C
983	CHCH ₂ -	1	2	0	R	н	-(CH ₂) ₂ -N-C-
984	С⊢СН2-	1	2	0	R	н	−CH ₂ −N-C− Н
985·	C⊢√CH₂-	1	2	0	R	н	-(CH ₂) ₂ -N-C-CH ₂ OH
986	CH-CH-	1	2	0	R	н	-CH ₂ -N-C-CF ₃
987	CH-CH ₂ -	2	2	1	-	н	-CH ₂ -N-C- H
988	CH-CH ₂ -	1	4.	0	-	н	-CH₂-N-C-CF3
989	CH-CH ₂ -	1	4	0	-	н	-CH ₂ -N-C-O-CH ₂ -
990	CH-CH ₂ -	1	4	0	-	н	-CH2-N-C-

Table 1.91

Table 1	.91						
Compd.	R ² -(CH ₂) _j -	k	m	n (chirality	R³	$-(CH_2)_{p}$ $+ \frac{R^4}{R^5}$ $(CH_2)_q$ $G-R^6$
991	CH-CH ₂ -	1	4	0	-	н	-(CH ₂) ₂ -C-
992	CH-CH ₂ -	1	4	0	-	н	OCH_3 OCH_3 OCH_3
993	C├ -	1	4	0	-	н	$-(CH_2)_2$ CH_3 H_3C
994	C├ - CH ₂ -	1	4	0	-	н	-(CH ₂) ₃ -C-
995	C├ - CH ₂ -	1	4	0	-	н	-(CH ₂) ₃ -C-\OCH ₃
996	CH-CH ₂ -	1	4	0	-	н	-(CH ₂) ₃ -C-N-CH ₃
997	CHCH ₂ -	2	2	1	-	Н	-CH-N-C
998	CI—CH₂-	2	2	1	-	н	-CH-N-C- H CH ₂ CH(CH ₃) ₂
999	C⊢-(CH₂-	2	2	1	-	н	O −CH-N-C− H CH ₂ CH(CH ₃) ₂
1000	CH-CH ₂ -	2	2	1	-	н	— CH-N-C- H CH₂CH(CH₃)₂
1001	CH-CH2-	2	2	1	-	н	-CH-N-C- H CH ₂ CH(CH ₃) ₂

Table 1.92

. abic .							
Compd.	R ¹ (CH ₂) _j -	k	m	n	chirality	`R³	-(CH ₂) _p + (CH ₂) _q G-R ⁶
1002	C⊢————————————————————————————————————	2	2	1	-	н	OCF ₃ -CHN-C
1003	C├ - CH ₂ -	2	2	1	-	н	-CHN-C
1004	C├ - CH ₂ -	2	2	1	-	н	OCH ₃ -CHN-C- H CH ₂ CH(CH ₃) ₂ OCH ₃
1005	с⊢Ст}-сн₂-	2	2	1	-	н	-CH-N-C
1006	CI—Ĉ—CH ₂ -	2	2	1	-	н	- CH-N-C OCH ₂ CH ₃ - CH ₂ CH(CH ₃) ₂
1007	C⊢√CH₂-	2	2	1	-	H	ОСН ₂ СН ₃ ОСН ₂ СН ₃ ОСН ₂ СН ₃ ОН ₂ СН(СН ₃) ₂ ОСН ₂ СН ₃
1008	C⊢√CH₂-	2	2	1	-	Н	- CHN-C-() (CH ₂) ₂ -G-NH ₂
1009	CHCH ₂ -	2	2	1	-	н	CH ₂) ₂ -G-NH ₂
1010	CHCH ₂ -	2	2	1	-	н	- CH-CH-2 CH-2CH-3 (CH2)2-G-NH2 CH-CH-3
1011	C├────────────────────────────────────	2	2	1	-	н	-CH-N-C-CH ₂ CH ₃
1012	CH-CH2-	2	2	1	-	н	-CHN-CCH3

Table 1.93

,							
Compd. No.	R ¹ (CH ₂)j-	k	m	n	chirality	R³	$-(CH_2)_{p} + \frac{R^4}{R^5} (CH_2)_{q} G - R^6$
1013	CH-CH ₂ -	2	2	1	-	н	CH ₂) ₂ G-NH ₂ OCH ₃
1014	CH₂-	2	2	1	-	н	OCH ₂ CH ₃ -CH-N-C
1015	C├ - CH₂-	2	2	1	-	н	OCH2CH3 (CH2)2-C-NH2 OCH2CH3
1016	сСН2-	2	2	0	-	н	-CH ₂ -N-C-CF ₃
1017	CH-CH2-	2	2	0	-	н	-CH ₂ -N-C-
1018	CCH2-	2	2	1	-	н	OCH ₂ CH ₃ -CH ₂ -N-C
1019	С⊢СТ}-СН₂-	2	2	1	-	н	OCH ₂ CH ₃ -CH ₂ -N-C
1020	CH-CH ₂ -	2	2	1	-	н	-CH ₂ -N-C-CH ₃
1021	CHCH ₂ -	2	2	1	-	н	-CH ₂ -N-C
1022	CH-CH ₂ -	2	2	1	-	н	$ \begin{array}{ccc} (S) & & & OCH_3 \\ -CH-N-C- & & & \\ -CH_3 & & OCH_3 \end{array} $
1023	CI—CH ₂ -	2	2	1	-	Н	(S) Q CH₂CH₃ -CH N C CH₂CH₃ CH₃

Table 1.94

Compd.	R ¹ (CH ₂)j-	k	m	n	chirality	⁻ R³	-(CH ₂) _p + (CH ₂) _q G-R ⁶
1024	C├ - CH ₂ -	2	2	1	-	н	$(S) \qquad OCH_3$ $-CH-N-C- OCH_3$ $CH_3 OCH_3$
1025	C⊢-{CH ₂ -	2	2	1	-	н	(S) OCH ₂ CH ₃ -CH-N-C-OCH ₂ CH ₃ CH ₃
1026	CH2-	2	2	1	-	н	(S) OCH ₂ CH ₃ −CH-N-C− − − OCH ₂ CH ₃ H OCH ₂ CH ₃
1027	C├-{	2	2	1	-	н	(S) OCH ₂ CH ₃ -CH-N-C
1028	CH2 ⁻	2	2	1	- ·	н	(S) OCH ₂ CF ₃ -CH-N-C-C-CH ₃ OCH ₂ CF ₃
1029	CH2⁻	2	2	1	-	н	(S) OCH ₂ CH ₃ -CH-N-C-CH ₃
1030	CH-€T-CH₂-	2	2	1	-	н	(S) OCF ₃ -CH-N-C-C
1031	C⊢√CH₂-	2	2	1	-	н	(S) Q OCH ₃ -CH-N-C-C
1032	С⊢—СН₂-	2	2	1	-	н	(F) OCH ₃ -CH-N-C H CH ₃ OCH ₃
1033	CH2-	2	2	1	-	н	(R) Q -CH-N-C CH₂CH₃ -CH-N-C CH₂CH₃ -CH₃
1034	C⊢√CH ₂ -	2	2	1	-	Н	(FI) OCH ₃ -CH-N-C-OCH ₃ I H CH ₃ OCH ₃

Table 1.95

rable	1.90						
Compd.	R ² (CH ₂);	k	m	n	chirality	R³	$-(CH_2)_{\overline{p}} + \frac{R^4}{R^5} (CH_2)_{\overline{q}} - G - R^6$
1035	CH2 ⁻	2	2	1	-	н	(F) OCH ₂ CH ₃ -CH-N-C
1036	C├ - CH₂-	2	2	1	-	н	(H) OCH ₂ CH ₃ -CH-N-C OCH ₂ CH ₃ H OCH ₂ CH ₃
1037	C├ - CH₂-	2	2	1	-	н	(A) OCH ₂ CH ₃ -CH-N-C
1038	с⊢С СН₂-	2	2	1	-	н	(A) OCH ₂ CF ₃ -CH-N-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-
1039	C├ \ CH ₂ -	2	2	1	-	н	(F) OCH ₂ CH ₃ -CH-N-C-CH ₃ CH ₃
1040	C⊢√CH₂-	2	2	1	-	н	(F) P OCF ₃ -CH-N-C- CH-N-C-C-CH-N-C-C-CH-N-C-C-CH-N-C-C-C-C
1041	C├─ \ CH ₂ -	2	2	1	-	н	
1042	C├────────────────────────────────────	2	2	1	-	Н	-CH ₂ -N-C
1043	CH-CH ₂ -	2	2	1	-	Н	$-CH_2-N$ H H_2N
1044	C├ - CH ₂ -	2	2	1	-	н	-CH ₂ -N-C-CH ₃ H ₂ N
1045	С⊢—СН₂-	2	2	1		н	$-CH_{2}-N$ $H_{2}N$ OCH_{3} $H_{2}N$

Table 1.96

. 45.0							
Compd.	R ¹ (CH ₂) _j -	k	m	n	chirality	R³	-(CH ₂) _p + (CH ₂) _q G-R ⁶
1046	C├ - CH ₂ -	2	2	1	•	н	-CH ₂ -N-C-CI
1047	C├ - CH ₂ -	2	2	1	-	н	$-CH_2-N-C$ H_2N CH_3 CH_3
.1048	CH2−	2	2	1	<u>-</u>	н	$-CH_2-N$ $-CH_2-N$ $-CH_2-N$ $-CH_3$ $-CH_3$ $-CH_3$
1049	С⊢√СН₂-	2	2	1	-	н	$-CH_2-N-C-$ H_2N H_2N Br
1050	CH2−	2	2	1	-	Н	(S) OCH ₃ -CH-N-C-CH ₂ CH ₂ CH(CH ₃) ₂ OCH ₃
1051	CH₂-	2	2	1	-	H	(S) P CH ₂ CH ₃ -CH-N-C-CH ₂ CH ₃ -CH ₂ CH(CH ₃) ₂
1052	C⊢√_CH₂-	2	2	1	-	Н	(S) OCH ₃ -CH-N-C
1053	C⊢√CH₂-	2	2	1	- -	Н	(S) OCH ₂ CH ₃ -CH-N-C
1054	C⊢√_CH₂-	2	2	1	-	н	(S) OCH ₂ CH ₃ -CH-NC OCH ₂ CH ₃ H CH ₂ CH(CH ₃) ₂ OCH ₂ CH ₃
1055	C├	2	2	1	-	н	(S) O OCH₂CH₃ -CH-N-C
1056	C├ \	2	2	1	-	н	(S) OCH ₂ CF ₃ -CH-N-C- H CH ₂ CH(CH ₃) ₂ OCH ₂ CF ₃

Table 1.97

Table 1							· · · · · · · · · · · · · · · · · · ·
Compd.	R ¹ (CH ₂) _j -	k	m	n	chirality	R ³	$-(CH_2)_p + (CH_2)_q - G - R^6$
1057	CH2-	2	2	1	-	٠Н	(F) OCH ₂ CH ₃ -CH-N-C
1058	C├ - CH ₂ -	2	2	1	-	н	(S) OCH ₃ -CH-N-C- H CH ₂ CH(CH ₃) ₂
1059	C├ - CH ₂ -	2	2	1	-	н	(S) OCF ₃ -CH-N-C
1060	с⊢С}-сн₂-	2	2	1	-	н	(A) OCH ₂ CH ₃ -CH-N-C
1061	C├-()-CH₂-	2	2	1	-	н	(R) OCH ₂ CF ₃ -CH-N-C-CH-CH ₂ CH ₂ CH ₂ CH ₂ CH ₃) ₂ OCH ₂ CF ₃
1062	CH-2- ·	2	2	1	-	Н	(S) P -CH-N-C- CH ₂ CH(CH ₃) ₂
1063	CH2-	2	2	1	-	Н	(<i>H</i>) OCH ₃ -CH-N-C
1064	CHCH ₂ -	2	2	1	-	н	(F) P OCF ₃ -CH-N-C
1065	CHCH ₂ -	2	2	1	-	н	(F) 0CH ₃ -CH-N-C- H CH ₂ CH(CH ₃) ₂ OCH ₃
1066	C├ - CH₂-	2	2	1	-	н	(<i>F</i>)
1067	C├─(2	2	1	-	н	(A) OCH3 -CHN-C- OCH3 H CH2CH(CH3)2 OCH3

Table 1.98

Table	1.50						
Compd.	R ¹ (CH ₂);	k	m	n	chirality	R³	$-(CH_2)_{p} + (CH_2)_{q} G - R^6$
1068	C⊢-{}- CH₂-	2	2	1	-	Н	(F) OCH ₂ CH ₃ -CH-N-C
1069	CH-€	2	2	1	-	H	(<i>F</i>) OCH ₂ CH ₃ -CH-N-C
1070	CH2−	2	2	1	• •	н	-СН-И-С
1071	CH2−	2	2	1	-	н	-CH-N-C
1072	CH2−	2	2	1	· -	Н	-CH-N-C
1073	CH-2-	2	2	1	-	Н	-CH-N-C
1074	CH2-	2	2	1	-	Н	- CH-N-C- OH ₂ OH ₃
1075	CH2-	2	2	1	-	н	OCF ₃ -CH+N-C
1076	CH2-	2	2	1	-	н	- CH- N- C
1077	C├ - CH₂-	2	2	1	-	н	-CH-N-C
1078	CH-CH ₂ -	2	2	1	-	н	-CH-NC-C

Table 1.99

Table 1							
Compd.	R^1 (CH ₂)	k	m	n	chirality	· R³	$-(CH_2)_p + (CH_2)_q - G - R^6$
1079	C├ - CH ₂ -				-	н	-CH-N-C
1080	C├	2	2	1	-	н	OCH ₂ CH ₃
1081	C⊢————————————————————————————————————	2	2	1	-	н	OCH ₃ -CH-N-C
1082	CI—CH₂-	2	2	1	-	Н	(S) P CH ₃
1083	CH-€ CH₂-	2	2	1	-	н	(A) -CH-N-C-CH3
1084	CH_CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-
1085	CI—CH₂-	1	2	0	R	н	-CH ₂ -N-C
1086	CI—CH₂-	1	2	0	R	н	$-CH_2-N-C-$ H_2N
1087	CH-CH2-	1	2	0	R	н	-CH ₂ -N-C-N-H
1088	CH-CH ₂ -	1	2	0	R	н	-CH2-N-C-
1089	CICH ₂ -	1	2	C) R	н	-CH ₂ -N-C-Y

Table 1.100

Table	.100						
Compd.	R ¹ (CH ₂),-	k	m	n	chirality	R ³	$-(CH_2)_{p} + (CH_2)_{q} - G^{-R^6}$
1090	CHCH ₂ -	1	2	0	R	н	-CH ₂ -N-C
1091	CH-CH ₂ -	1	2	0	R	н	-CH ₂ CH ₂ -N-C-
1092	CH-CH ₂ -	1	2	0	R	н	-CH ₂ CH ₂ -N-C
1093	СН ₂ -	1	2	0	R	н	$-CH_2CH_2-N-C$ H_2N
1094	C├ - CH₂-	1	2	0	R	Н	-CH ₂ CH ₂ -N-C-N-H
1095	CH_CH₂-	1	2	0	R	Н	-CH2CH2-N-C-
1096	CHCH ₂ -	1	2	0	R	н	-CH ₂ CH ₂ -N-C-N-H-H-H-H-H-H-H-H-H-H-H-H-H-H-H-H-H
1097	CH2-	1	2	0	R	н	-CH2CH2-N-C-
1098	CHCH ₂ -	1	2	0	R	н	$-CH_2-N-C CH_3$
1099	C├ - CH₂-	1	2	0	R	н	-CH₂-N-CSF
1100	C├ - CH₂-	1	2	0	R	н	-CH₂-N-CF

Table 1.101

Table 1	.101						
Compd.	R ¹ (CH ₂),-	k	m	n	chirality	. R³	$-(CH_2)_{p} + (CH_2)_{q} - (CH_2)_{p} + (CH_2)_{q} - (CH_2)_{q} - (CH_2)_{q} + (C$
1101	CH-{}CH₂-	1	2	0	R	н	-CH ₂ -N-C
1102	C⊢————————————————————————————————————	1	2	0	R	н	-CH ₂ -N-CNO ₂
1103	H ₃ C-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C
1104	H ₃ C-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C
1105	H ₃ C-\CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CI H
1106	H ₃ C-CH ₂ -	1	2	0	R	н .	-CH ₂ -N-C
1107	H ₃ C-CH ₂ -	1	2	0	R	H	-CH ₂ -N-C
1108	CH ₃ N CH ₂ - CH ₃	1	2	0	R	Н	-CH ₂ -N-C-SH ₃
1109	CH ₂	1	2	0	R	н	-CH ₂ -N-CF
1110	CH ₂	1	2	0	ı R	н	-CH ₂ -N-CF
1111	CH ₃ N CH ₂ - CH ₃	1	2	C) R	н	$-CH_{2}-N-C-$ $-CH_{2}-N-C-$ $-CH_{2}-N-C-$ $-CH_{2}-N-C-$ $-CH_{3}-N-C-$ $-CH_{3}-N-C-$ $-CH_{3}-N-C-$

Table 1.102

Compd.	R ¹ (CH ₂) _j -	k	m	n	chirality	R³	$-(CH_2)_{p} + \frac{R^4}{R^5} (CH_2)_{q} - G^{-R^6}$
1112	CH ₃ N CH ₂ - CH ₃	1	2	0	R	н	-CH ₂ -N-CNO ₂
1113	CH-CH ₂ -	2	2	1	-	н	$-CH_2-N-C$ \xrightarrow{P} CH_3
1114	C├ \ CH₂-	2	2	1	-	н	-CH ₂ -N-C
1115	с⊷СН₂-	2	2	1	-	н	-CH ₂ -N-C
1116	CH	2	2	1	-	н	-CH ₂ -N-C-CH ₃
1117	CH2-	2	2	1	-	н	$-CH_2-N-C- \longrightarrow NO_2$
1118	O-N-C	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1119	H₃CS-CH₂-	1	2	0	R	H	-CH ₂ -N-C-CF ₃
1120	H ₃ CO ————————————————————————————————————	1	2	0	R	Н .	-CH ₂ -N-C-CF ₃
1121	H ₃ C O ₂ N-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1122	H3C (H3C)2CH-CH2- CH(CH3)2	1	2	0	R	н	-CH ₂ -N-C-CF ₃

Table 1.103

Table 1	.103						
Compd. No.	R ² (CH ₂) _j -	k	m	n cl	nirality	['] R³	$-(CH_2)_{p} + (CH_2)_{q} G - R^6$
1123	CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1124	O ₂ N_O-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1125	C├	2	2	1	-	н	- CH- N-C- CI H CH ₂ O CH ₂ - CI
1126	C├ \ CH ₂ -	2	2	1	-	н	OHNC OHNC OH2O CH2 OH2O CH2 OH2O CH2
1127	CH-€ CH ₂ -	2	2	1	-	. H	-CHNC-NH CH2OCH2
1128	CH_CH ₂ -	2	2	1	~	н	-CH-N-C
1129	C├ - CH ₂ -	2	2	1	-	н	CH-N-C
1130	C ├── CH₂-	2	2	1	-	Н	OH-N-C
1131	C├ ~ CH₂-	2	2 2	. 1	-	н	-CH-N-C
	CH√_CH₂-						OH-N-C
	н₃СО н₃СО—————СН₂						-CH ₂ -N-C- CF₃

Table 1.104

Compd.	R ¹ (CH ₂),	k	m	n	chirality	R³	-(CH ₂) _p + (CH ₂) _q G-R ⁶
1134	H ₃ CO — CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1135	CH ₂ -NO ₂	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1136	CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1137	CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃
.1138	CH ₂ -	1	2	0	R	н	-CH₂-N-C-CF₃
1139	(CH ₂) ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1140	O ₂ N — CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1141	CH₂-	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1142	CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-CF ₃
1143	OH2O CH2-CH2-	1	2	0	R	н	-CH ₂ -N-C-CF ₃ -CH ₂ -N-C-CF ₃
1144	H ₃ CO H ₃ CO	1	2	0	R	Н	-CH₂-N-C-CF3

Table 1.105

Compd.	R ¹ (CH ₂) _j	k	m	n	chirality	R ³	$-(CH_2)_{\overline{p}} + (CH_2)_{\overline{q}} - G - R^6$
1145	H ₃ CO — — — CH ₂ -	1	2	0	R	H	-CH ₂ -N-C-CF ₃
1146	CH2O-CH2-	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1147	HC-C-N-()-CH2	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1148	CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-⟨CF ₃
1149	CH ₃ CH₂−	1	2	0	R	H .	-CH ₂ -N-C
•	CH₃ N—CH₂- CH₃					н	-CH ₂ -N-C
1151	CH ₃ N—CH ₂ - CH ₃	1	2	0	R	Н	-CH ₂ -N-C-CH ₂ CF ₃
1152	CH ₃ N — CH ₂ - · CH ₃	1	2	0	R	н	-CH ₂ -N-C-N-H
1153	CH₃ N CH₂− CH₃	1	2	0	R	н	-CH ₂ -N-C-NH H
1154	CH₃ N CH₂- CH₃	1	2	0	R	н	-CH ₂ -N-C-N-CH ₃
1155	CH₃ CH₂- CH₃	1	2	0	R	н	-CH ₂ -N-C

Table 1.106

lable	1.100						
Compd.	R ¹ (CH ₂);-	k	m	n	chirality	· R³	$-(CH_2)_{p} + (CH_2)_{q} - G - R^6$
1156	CH ₃ N—CH ₂ - CH ₃	1	2	0	R	н	-CH ₂ -N-C-C(CH ₃) ₃
	CH₃ CH₂-					н	-CH ₂ -N-C-SSCH ₃
1158	CH₃ N CH₂- CH₃	1	2	0	R	н	-CH ₂ -N-C-
1159	CH ₃ CH ₂ - CH ₃	1	2	0	R	Н	-CH ₂ -N-C
1160	CH ₃ CH ₂ − CH ₃	1	2	0	R	Н	-CH ₂ -N-C
	OH H ₃ CO—CH ₂ -					н	-CH ₂ -N-C-CF ₃
1162	H ₃ CO—CH ₂ —CH ₂ —	1	2	0	R	н	-сн ₂ -N-С-СF ₃
1163	H₃CO-CH₂-	1	. 2	0	R	н	-CH ₂ -N-C-CF ₃
1164	H ₃ C H ₃ CO————————————————————————————————————	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1165	O-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1166	H ₃ CO—CH ₂ —	. 1	2	0	R	н	-CH ₂ -N-C-CF ₃

Table 1.107

Compd.	R ¹ (CH ₂);-	k	m	n	chirality	'R³	$-(CH_2)_{\overline{p}} + (CH_2)_{\overline{q}} + G - R^6$
1167	СҢСН₂-	2	2	1		н	-CH ₂ -N-C-
1168	CL N CH2-	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1169	H ₃ C-C ^H N CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1170	CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1171	С⊢—СН₂-	1	2	0	R	н	-CH ₂ -N-C
1172	С⊢—СН₂-	1	2	0	R	н	-CH ₂ -N-C-N-C-N-C-N-C-N-C-N-C-N-C-N-C-N-C-N-
1173	C (CH₂-	1	2	0	R	Н	-CH ₂ -N-C-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-
1174	с⊢СН₂−	1	2	0	R	Н	-CH ₂ -N-C
1175	H ₃ C-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-Br
1176	H ₃ C-(CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-N-C-N-C-N-C-N-C-N-C-N-C-N-C-N-C-N-
1177	H₃C-⟨¯¯)-CH₂-	1	2	0	R	н	-CH ₂ -N-C-N-H

Table 1.108

Compd.	R ¹ (CH ₂);	k	m	n	chirality	R³	-(CH ₂) _p + (CH ₂) _q G-R ⁶
1178	H ₃ C-(CH ₂ -	1	2	0	, R	н	-CH ₂ -N-C-
1179	H ₃ C-()-CH ₂ -	1	2	0	R	н	$-CH_2-N-C$ H_2N H_2N
1180	H ₃ CCH ₂ -	1	2	0	R	н	-CH ₂ -N-C-N H
	CH₃ N CH₂- CH₃					н	−CH ₂ −N-C−−−−Br
1182	CH ₃ CH ₂ - CH ₃	1	2	0	R	н	-CH ₂ -N-C-N-C-N-H
1183	CH ₃ CH ₂ - CH ₃	1	2	0	R	н	-CH ₂ -N-C-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-
1184	CH ₃ N CH ₂ - CH ₃	1	2	0	R	н	$-CH_2-N$ H_2N
1185	CH ₃ CH ₂ - CH ₃	1	2	0	R	н	-CH ₂ -N-C
1186	CH ₃ CH ₂ - CH ₃	1	2	0	R	н	-CH ₂ -N-C-N-H
1187	C├ - CH ₂ -	2	2	1	-	н	-CH₂-N-CBr
1188	CH-CH ₂ -	2	2	1	-	н	$-CH_{2}-N-C- \longrightarrow Br$ $-CH_{2}-N-C- \longrightarrow DH$ $-CH_{2}-N-C- \longrightarrow N$

Table 1.109

Compd.	R ¹ (CH ₂)-	k	m	n	chirality	R³	$-(CH_2)_{\overline{p}} + \frac{R^4}{R^5} (CH_2)_{\overline{q}} - G^-R^6$
1189	С⊢(СН₂-	2	2	. 1	-	н	-CH ₂ -N-C-N-C-N-H
1190	С⊢—СН₂-	2	2	1	-	н	-CH ₂ -N-C
1191	CH ₃ N CH ₂ − CH ₃	1	2	0	R	H	-CH ₂ -N-C-CF ₃
1192	CH₃ N—CH₂- CH₃	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1193	CH ₃ CH ₂ - CH ₃	1	2	0	R	Н	-CH ₂ -N-C- OCF₃
1194	CH ₃ CH ₂ - CH ₃	1	2	0	R	н	-CH ₂ -N-C
1195	CH ₃ CH ₂ - CH ₃	1	2	0	R	н	-CH ₂ -N-C-Br
1196	CH ₃ CH ₂ CH ₃	1	2	0	R	. н	-CH ₂ -N-C-\(\sigma\)
1197	CH ₃ N CH ₂ - CH ₃	1	2	0	R	н	-CH ₂ -N-C
1198	CH ₃ CH ₂ - CH ₃	1	2		R	Н	-сн ₂ -N-с-
1199	CH ₃ CH ₂ − CH ₃	1	2	0	R	н	F -CH ₂ -N-C- -CH ₂ -N-C- -CH ₂ -N-C- -CH ₂ -N-C-

Table 1.110

Compd.	R ¹ (CH ₂)	k	m	n	chirality	R³	-(CH ₂) _p + (CH ₂) _q G-R ⁶
1200	CH ₃ CH ₂ CH ₃	1	2	0	R	н	-CH ₂ -N-C- H
1201	CH ₃ CH ₂ - CH ₃	1	2	0	R	н	-CH ₂ -N-C-F
1202	CH ₃ CH ₂ - CH ₃	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1203	H₃C-€ CH₂-	1	2	0	R	н	-CH ₂ -N-C-✓OCF ₃
1204	H ₃ C-(CH ₂ -	1	2	0	R	н	$-CH_2-N-C-$ F_3C
1205	H ₃ CCH ₂ -	1	2	0	R	н	-CH ₂ -N-C-S ^{Br}
1206	H ₃ CCH ₂ -	1	2	0	R	н	-CH ₂ -N-C-NO ₂
1207	H ₃ C-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C
1208	H ₃ C-CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-CI
1209	H₃C-()-CH₂-	1	2	0	R	Н	-CH ₂ -N-C-CH ₃
1210	H ₃ C-CH ₂ -	1	2	0	R	Н	-CH2-N-C-CI

Table 1.111

Table 1	1.111						
Compd.	R ¹ (CH ₂);-	k	m	n	chirality	R³	$-(CH_2)_{p} + (CH_2)_{q} - (C$
1211	H ₃ C-CH ₂ -	1	2	0	R	н	-CH ₂ -N-CF
1212	H₃C-⟨CH₂-	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1213	C├ - CH ₂ -	2	2	1	-	н	-CH ₂ -N-C-CF ₃
1214	СЊ_СН₂-	2	2	1	-	н	-CH ₂ -N-C− H F
1215	C⊢√_CH₂-	2	2	1	-	н	-сн ₂ -N-С-Сі
1216	C⊢√_CH ₂ -	2	2	1	•	Н	-CH ₂ -N-CF
1217	CH2-	1	2	0	R	н	-CH₂-N-C-CF₃
1218	C	1	2	0	R	н	-CH ₂ -N-C
1219	С⊢СН₂-	1	2	0	R		-CH ₂ -N-C-CI
1220	CH-CH ₂ -	1	2	0	R		$-CH_2-NC$ H_2N
1221	C├ \ _CH ₂ -	1	2	0	R	н	$-CH_2-N$ C H_2N F F

Table 1.112

				_			
Compd. No.	R ¹ (CH ₂)j	k	m	n	chirality	R³	$-(CH_2)_{p}$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$
1222	С⊢СН₂-	1	2	0	R	н	-CH ₂ -N-C-N-H
1223	C├ -	1	2	0	R	Н	-CH ₂ -N-C-S-S-
1224	CCH ₂ -	1	2	0	R	н .	-CH ₂ -N-C-NO ₂
1225	H ₃ C-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1226	H ₃ C-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-SF
1227	H ₃ C-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CI
1228	H ₃ C-CH ₂ -	1	2	0	R	н	$-CH_2-NC-$ H_2 H_2 N
1229	H ₃ C-CH ₂ -	1	2	0	R	н	$-CH_2-N$ C H_2N
1230	H ₃ C	1	2	0	R	н	-CH ₂ -N-C-() H N H
1231	H ₃ C-CH ₂ -	1	2	0		н	-CH ₂ -N-C-
1232	H₃C- ⟨ ¯⟩-CH₂-	1	2	0	R	н	-CH ₂ -N-C-NO ₂

Table 1.113

Table 1	1.113						
Compd.	R ¹ (CH ₂)j-	k	m	n c	hirality	R³	$-(CH_2)_{\overline{p}} + (CH_2)_{\overline{q}} G^-R^6$
1233	CH ₃	1	2	0	R	н	-CH₂-N-C-CF3
1234	CH ₂	1	2	0	R	н	-CH ₂ -N-C-SF
1235	CH ₂ -	1	2	0	R	н	−CH ₂ −N·C−−CI
1236	CH ₃ N CH ₂ - CH ₃	1	2	0	R	Н	-CH ₂ -N-C
1237	CH ₃ N CH ₂ - CH ₃	1	2	0	R	Н	$-CH_2-N-C$ H_2N H_2N
1238	CH ₃ N—CH ₂ - CH ₃	1	2	0	R	Н	-CH₂-N-C-N-H
1239	CH₃ N — CH₂- CH₃	1	2	0	R	н	-CH ₂ -N-C-
1240	CH ₃ CH ₂ - CH ₃	1	2	0	R	Н	-CH ₂ -N-C- HO
1241	CH_CH2-	2	2	1	-	н	-CH ₂ -N-C-√CF ₃
1242	CH-CH2-	2	2	1	-	н	-CH ₂ -N-C
1243	C├ - CH ₂ -						-CH ₂ -N-C

Table 1.114

Table 1	1.1.7						
Compd.	R ¹ (CH ₂)-	k	m	n (chirality	Ŕ³	$-(CH_2)_{p} + (CH_2)_{q} - G - R^6$
	C⊢()-CH ₂ -				<u>.</u>	Н	$-CH_2-N-C$ H_2N
1245	с⊢(2	2	1	-	н	$-CH_2-N-C$ H_2N
1246	CH2-	2	2	1	-	н	-CH₂-N-C-N H H
1247	C├ - CH ₂ -	2	2	1	-	н	-CH ₂ -N-C-
1248	CH2-	2	2	1	-	н	-CH ₂ -N-C-NO ₂
1249	CH2-	1	2	0	R	Н	-CH ₂ -N-C
1250	H ₃ C-CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C
1251	CH ₃ N——CH ₂ — CH ₃	1	2	0	R	н	-CH ₂ -N-C
1252	CHCH2-	1	2	0	R		-CH ₂ -N-C-CH(CH ₃) ₂
1253	H₃C-{CH₂-	1	2	0	R	н	-CH ₂ -N-C- H C-(CH ₃) ₂
1254	CH ₃ CH₂− CH₃	1	2	0	R	н	-CH ₂ -N-C-⟨_>-CH(CH ₃) ₂

Table 1.115

lable 1							
Compd.	R ¹ (CH ₂)	k	m	n	chirality	R ³	$-(CH_2)_{\overline{p}} + (CH_2)_{\overline{q}} G - R^6$
1255	CH-CH2-	1	2	0	R	н	$-CH_2-N-C-$ H_2N
1256	H ₃ C-CH ₂ -	1	2	0	R	н	$-CH_2-N-C$ H_2N H_2N
1257	CH₃ N CH₂- CH₃	1	2	0	R	н	$-CH_2-NC$ H_2N H_2N
1258	H ₃ C-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-
1259	CH ₃ N—CH ₂ - CH ₃	1	2	0	R	н	-CH ₂ -N-C
1260	H ₃ C-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C- OCH ₂ CH ₃
1261	C├─ \ CH ₂ -	1	2	0	R	н	$-CH_2-N-C-C(CH_3)_3$ $+G-C-C(CH_3)_3$ $+G-C-C(CH_3)_3$
1262	H ₃ C-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-C(CH ₃) ₃
							-CH ₂ -N-C-C(CH ₃) ₃
1264	C├ - CH ₂ -	1	2	0	R	н	-CH ₂ -N-C- H ₃ C
1265	н₃С-{СН₂-	1	2	0	R	н	-CH ₂ -N-C-O H ₀ C

Table 1.116

lable	.110						
Compd.	R ¹ (CH ₂)j-	k	m	n	chirality	R³	$-(CH_2)_{p} + (CH_2)_{q} G - R^6$
1266	CH ₃ CH ₂ - CH ₃	1	2	0	R	н	-CH₂-N-C-CO H₀C
1267	CH-2-	1	2	0	R	н	-CH₂-N-C-N-CH3
1268	СНСН2-	1	2	0	R	н	$-CH_{2}-N-C$ $H_{3}CO$
1269	с⊷С}-сн₂-	1	2	0	R	н	-CH ₂ -N-C-→Br
1270	с⊢—СН₂-	1	2	0	R	H	-CH ₂ -N-C- HO
1271	с⊢—СН₂-	1	2	0	R	н	-CH ₂ -N-C-F
1272	H ₃ C-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-N-C-N-H-H-H-H-H-H-H-H-H-H-H-H-H-H-H
1273	H ₃ C-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C
1274	H ₃ C-(1	2	0	R _.	н	-CH ₂ -N-C
	H ₃ C-()-CH ₂ -					н	-CH ₂ -N-C
1276	H ₃ C-\(\bigc\)-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C

Table 1.117

Compd.	R ¹ (CH ₂) _j -	k	m	'n	chirality	⁻ R³	$-(CH_2)_{p} + \frac{R^4}{R^5} (CH_2)_{q} - G - R^6$
1277	CH₃ N CH₂- CH₃	1	2	0	R	н	-CH ₂ -N-C-N-H OCF ₃
1278	CH ₃ CH ₂ − CH ₃	1	2	0	R	н	-CH ₂ -N-C
1279	CH ₃ CH ₂ -	1	2	0	R	н	-CH ₂ -N-C
1280	CH ₃ CH ₂ - CH ₃					н	-CH ₂ -N-C
1281	CH ₃ CH ₂ − CH ₃	1	2	0	R	н	-CH ₂ -N-C
1282	C├ - CH ₂ -	2	2	1	-	н	-CH₂-N-C-N-CH3
1283	C├ ─ CH ₂ -	2	2	1	-	н	-CH ₂ -N-C
1284	C├ ─ CH ₂ -	2	2	1	-	н	-CH ₂ -N-C
1285	С⊢—СН₂-	2	2	1	-	н	-CH ₂ -N-C- H HO
1286	H ₃ ¢ N(OH ₂) ₃ O	1	2	0	R	н	-CH ₂ -N-C-⟨CF ₃
1287	O ₂ N-CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-CF ₃

Table 1.118

100.0							
Compd. No.	R ² (CH ₂) _j	k	m	n	chirality	R ³	$-(CH_2)_p + (CH_2)_q - G - R^6$
1288	HQ H ₃ CO—CH ₂ —	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1289	CH₃ N—CH₂- CH₃	1	2	0	R	н	$-CH_2-N+C-$ H_2N OCH_3 H_2N
1290	CH₃ N—CH₂- CH₃	1	2	0	R	н	$-CH_{2}-N-C-$ $H_{2}N-CH_{3}$
1291	H ₃ C—CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-N-CH ₃
1292	H ₃ C————————————————————————————————————	. 1	2	0	R	н	$-CH_2-N-C-$ H_2N Br
1293	H ₃ CCH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1294	H₃C-⟨CH₂-	1	2	. 0	R	н	-CH ₂ -N-CF
1295	H ₃ C-CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-(CH ₃) ₃
1296	H ₃ C-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-SSCH ₃
1297	H ₃ C-\	1	2	0	R	н	-CH ₂ -N-C-CH ₃ F ₃ C
	H ₃ CO—CH ₂ -					н	-CH ₂ -N-C-CF ₃

Table 1.119

Table	1.119 						4
Compd.	R ¹ (CH ₂)	k	m	n	chirality	R ³	$-(CH_2)_{p}$ $+\frac{R^4}{R^5}$ $(CH_2)_{q}$ $G-R^6$
1299	H ₃ CO — CH ₂ -	1	2	0	R	н	-CH₂-N-C-CF3
	OCH ₃ H ₃ CO-CH ₂ -					н	-CH ₂ -N-C-CF ₃
1301	OCH ₃ H ₃ CO—CH ₂ -	1	2	0	R	· н	-CH ₂ -N-C-CF ₃
1302	H ₃ C CH ₃ H ₃ CO-CH ₂ -	1	2	0	·R	н	-CH ₂ -N-C
1303	H ₃ CO H ₃ CO————————————————————————————————————	1	2	0	R	н	-сн ₂ -м-с-С-Б
1304	H ₂ CQ CH ₂ -CH ₂ -	1	2	0	R	н	-сн ₂ -ү-с-€
1305	H ₃ CO-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1306	H ₃ CCH ₂ Q H ₅ CO————————————————————————————————————	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1307	H ₃ CO — CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1308	CH ₂ -	1	2	Ċ	R	н	-CH ₂ -N-C-CF ₃
	H ₃ CO — CH ₂ -						-CH ₂ -N-C-CF ₃

Table 1.120

Compd. No.	R ¹ (CH ₂) _j -	k	m	n	chirality	R³	$-(CH_2)_{p} + \frac{R^4}{R^5} (CH_2)_{q} - G - R^6$
1310	H ₃ CQ HO—CH ₂ -	1	2	0	R	н	-CH₂-N-C-CF3
1311	° CH₂-	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1312	CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1313	Br CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1314	O ₂ N ————————————————————————————————————	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1315	H ₃ C CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1316	F ₃ C CH ₂ -	1	2	0	R	H .	-CH ₂ -N-C
1317	O ₂ N CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1318	C⊢ CH₂-	1	2	0	R	Н	-CH ₂ -N-C-CF ₃
1319	C → CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1320	Br—CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃

Table 1.121

Table I	. [2]						
Compd.	R ¹ (CH ₂),-	k	m	n	chirality	R³	-(CH ₂) _p + (CH ₂) _q G-R ⁶
1321	CH	1	2	0	R	н	-CH ₂ -N-C-Br
1322	CH	1	2	0	R	н	-CH ₂ -N-C- CH ₃
1323	CH	1	2	0	R	н	-CH ₂ -N-C
1324	СН2-	1	2	0	R	н	-CH₂-N-C-SH3
1325	CHCH ₂ -	1	2	0	R	н	-CH2-N-C
1326	С├-СН₂-	1	2	0	R	н	-CH ₂ -N-C
1327	C├ ─ CH ₂ -	1	2	0	R	Н	$-CH_2-N-C \xrightarrow{C} CH_3$ $+ H_2N$
1328	H ₃ C-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-Br
1329	H ₃ C-CH ₂ -	1	2	0	R	н	$-CH_2-N-C CI$ CH_3
1330	. H ₃ C-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C
1331	H ₃ C-\(\bigc\)-CH ₂ -	1	2	0	R	н	$-CH_2-N-C$ $+O$ $+O$

Table 1.122

						 -	
Compd.	R ¹ (CH ₂) _j	k	m	n	chirality	R³	-(CH ₂) _p + (CH ₂) _q G-R ⁶
1332	H₃C-⟨¯¯⟩-CH₂-	1	2	0	R	н	-CH ₂ -N-C
1333	H ₃ C-(CH ₂ -	1	2	0	R	н	-CH2-N-C-
1334	H ₃ C-CH ₂ -	1	2	0	R	н	$-CH_2-N$ - C - H_2 N- C - H_2 N- C - H_2 N- C - H_2 N- C - H_3
1335	CH ₃ CH ₂ - CH ₃	1	2	0	R .	н	−CH ₂ −N-C−√Br H
1336	CH₃ N CH₂- CH₃	1	2	0	R	Н	-CH ₂ -N-C
1337	CH ₃ CH ₂ - CH ₃	1	2	0	R	н	-CH ₂ -N-C
1338	CH ₃ N CH ₂ - CH ₃	1	2	0	R	н	-CH ₂ -N-C
1339	CH ₃ CH ₂ - CH ₃	1	2 ·	0	R	н	-CH ₂ -N-C
							-CH ₂ -N-C
1341	CH₃ N CH₂- CH₃	1	2	0	R	н	$-CH_2-N-C-$ H_2N
1342	CH-CH2-	2	2	1	-	н	-CH ₂ -N-C

Table 1.123

	.123						
Compd.	R ¹ (CH ₂) _j -	k	m	n	chirality	R³	$-(CH_2)_{\overline{p}} + (CH_2)_{\overline{q}} - G - R^6$
1343	CHCH2-	2	2	1	-	н	-CH ₂ -N-C-CH ₃
1344	CHCH ₂ -	2	2	1	-	н	-CH ₂ -N-C-CI
1345	C├ - CH ₂ -	2	2	1	-	н	-CH₂-N-C- HO
1346	СН ₂ —СН ₂ -	2	2	1	-	н	-CH ₂ -N-C-
1347	CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-S CH ₃
1348	H ₃ CCH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-SCH ₃
1349	CH ₃ N—CH ₂ - CH ₃	1	2	0	R	н	-CH ₂ -N-C-SCH ₃
1350	C├ \ CH ₂ -	2	2	1	-	н	-CH ₂ -N-C
1351	C├ - CH ₂ -	1	2	0	R	Н	- CH3-H-C-CH3
	H ₃ C-\(\bigcirc\)-CH ₂ -						- CH2-H C 3
1353	CH ₃ CH ₂ - CH ₃	1	2	0	R	Н	-042-HC-043

Table 1.124

- 2				R³	9.
	2	1			a Ar
<u> </u>			-	н	- 015-Å-c-013
· '	2	0	R	н	-CH ₂ -N-C
l ₂ - 1	2	0	R	н	-CH ₂ -N-C-CN
1	2	, 0	R	Н	$-CH_2-N-C-$ H_2N
- 2	2	1	-	н	-CH ₂ -N-C-N
1	2	0	R	н	-CH ₂ -N-C-
1	2	0	R	Н	$-CH_2-N-C-CH_3\\CH_3\\CH_3\\CH_3$
l ₂ - 1	2	0	R	Н	-сн ₂ -N-с- -осн ₃
1	2	0	R	Н	-CH ₂ -N-C-CH ₃
					-CH ₂ -N-C-CH ₃
	1 1 1 1 1 1 1	1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2	1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0	1 2 0 R 1 2 0 R 1 2 0 R 1 2 0 R 1 2 0 R	1 2 0 R H 1 2 0 R H 1 2 0 R H 1 2 0 R H

Table 1.125

Compd. No.	R ¹ (CH ₂) _j -	k	m	n	chirality	R³	$-(CH_2)_{p} + (CH_2)_{q} - (CH_2)_{q} - G - R^6$
1365	CH ₃ CH ₂ - CH ₃	1	2	0	R	н	-CH ₂ -N-C
1366	CH ₃ N CH ₂ - CH ₃	1	2	0	R	н	-CH ₂ -N-C- H
1367	H ₃ C-CH ₂ -	1	2	0	R	Н	-сн ₂ -№-ССН ₃
1368	CHCH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-CF ₃
1369	C├ - CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C- H F ₃ CCH ₂ O
1370	с⊢—СН₂-	1	2	0	R	Н	-CH ₂ -N-C-SBr
1371	C⊢√_CH₂-	1	2	0	R	н	-CH ₂ -N-C-
1372-	C├ ─ CH ₂ -	1	2	0	R	н	-CH2-NC-
1373	H ₃ C-CH ₂ -	1	2	0			-CH ₂ -N-C-CF ₃
1374	H ₃ C-()-CH ₂ -	1	2	0	R	н	OCH ₂ CF ₃ -CH ₂ -N-C
1375	H ₃ C-CH ₂ -	1	2	0			-CH₂-N-C-SBr

Table 1.126

lable	1.120		_				
Compd.	R ² (CH ₂);	k	m	n	chirality	R ³	$-(CH_2)_p + (CH_2)_q - G - R^6$
1376	H ₃ C-(1	2	0	R	н	-CH ₂ -N-C-
1377	H₃C()-CH₂-	1	2	0	R	н	- CH ₂ -N C-
1378	CH ₃ CH ₂ - CH ₃	1	2	0	R	н	-CH ₂ -N-C
1379	CH ₃ CH ₂ − CH ₃	1	2	0	R	н	-CH ₂ -N-C- F ₃ CCH ₂ O
1380	CH ₃ CH ₂ − CH ₃	1	2	0	R	Н	-CH ₂ -N-C-SBr
1381	CH ₃ CH ₂ - CH ₃	1	2	0	R	Н	-CH ₂ -N-C-
1382	CH ₃ CH ₂ − CH ₃	1	2	0	R	Н	-CH ₂ -N-C-
1383	CH2-	2	2	1	-	Н	-CH ₂ -N-C-CI
1384	CHCH_2-	2	2	1	-	н	-CH ₂ -N-C-S
1385	СН <u></u> СН ₂ -	2	2	1	-	Н	-CH ₂ -N-C-S Br
1386	C├ \ CH₂-	2	2	1		н	-012-HC-

Table 1.127

Compd.	R ¹ (CH ₂) _j -	k	m	n	chirality	R³	-(CH ₂) _p + (CH ₂) _q G-R ⁶
1387	CH₃ CH₂− CH₃	1	2	0	R	Н	-CH2-N-C-1
1388	CH ₃ N—CH ₂ - CH ₃	1	2	0	R	н	-CH ₂ -N-C-(CH ₃) ₃ -CH ₂ -N-C-(CH ₃) ₃ -CH ₃
	CH₃ CH₂− CH₃					н	-CH2-NCNO
1390	H_3C CH_3 H_3C CH_3	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1391	H ₃ C — CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1392	CL H ₃ C—CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1393	ң₃ССН₂—()—СН₂-	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1394	O ₂ N H ₃ C-CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-CF ₃
1395	H ₂ C=CH—CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃
							-CH ₂ -N-C-CF ₃
1397	Br—CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-CF ₃

Table 1.128

labic i							
Compd. No.	R ¹ (CH ₂)j-	k	m	n	chirality	R³	$-(CH_2)_{p} + \frac{R^4}{R^5} (CH_2)_{q} - G - R^6$
1398	CH-CH-	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1399	CH-CH-CH-	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1400	C⊢————————————————————————————————————	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1401	H ₃ C-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-N-CI
1402	H ₃ C-CH ₂ -	1	2	0	R	н	$-CH_{2}-N-C- OCH_{3}$ $-CH_{2}-N-C- OCH_{3}$ $H_{2}N OCH_{3}$
1403	H ₃ C-CH ₂ -	1	2	0	Ŕ	н	-CH₂-N-C-√N
1404	H ₃ C-CH ₂ -	1	2	0	R	H	-CH2-N-C-
1405	H ₃ C-CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-N H ₃ CS
1406	H₃C-{	1	2	0	R	н	-CH₂-N-C CH₃
1407	H₃C-⟨¯¯⟩-CH₂-	1	2	0	R	н	$-CH_2-N-C-$ H_3CCH_2S
1408	H ₃ C-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

Table 1.129

Compd.	R ¹ (CH ₂) _j	k	m	n	chirality	R³	$-(CH_2)_{p} + (CH_2)_{q} - G^{-R^6}$
1409	H ₃ CCH ₂ -	1	2	0	R	н	-CH ₂ -N-C-
1410	CH₃ CH₂− CH₃	1	2	0	R	н	-CH ₂ -N-C-
1411	CH2-	1	2	0	R	н	H2C-C-NH H2C-C-NH G
1412	H ₃ C-CH ₂ -	,1	2	0	R	н	CH ₂ -N-C-C-NH H ₃ -C-C-NH
1413	CH₃ N—CH₂- CH₃	1	2	0	R	H .	-CH ₂ -N-C-C-NH
1414	с⊢—СН₂-	2	2	1	-	н	H ₃ C-C-NH
1415	с⊢—СН₂-	1	2	0	R	н	$-CH_2-N-C-$ H H_2N
1416	H ₃ C-CH ₂ -	1	2	0	R	н	$-CH_2-N$ H_2N
1417	CH ₃ CH ₂ - CH ₃	1	2	0	R	Н	$-CH_2-N-C$ H_2N SCN H_2N
1418	CH2-	2	2	1	-	н	-CH ₂ -N-C-SCN H ₂ N
1419	C├ ~ CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-SH H ₂ N

Table 1.130

Compd.	R ¹ (CH ₂) _j	k	m	n	chirality	R³	$-(CH_2)_{p} + (CH_2)_{q} - (CH_2)_{q} - G - R^6$
1420	H₃C	1	2	0	R	н	-CH ₂ -N-C-SH H H ₂ N
1421	CH₃ CH₂-	1	2	0	R	н	-CH ₂ -N-C-SH H ₂ N
1422	CHCH ₂ -	2	2	1	-	н	$-CH_2-N-C-$ H_2N H_2N
1423	C├ - CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-
1424	H ₃ C	1	2	0	R	н	-CH ₂ -N-C-
1425	CH ₃ CH₂− CH₃	1	2	0	R	н	-CH ₂ -N-C-
1426	CH2-	2	2	1	-	н	-CH ₂ -N-C-
1427	С⊢СТ}-СН₂-	2	2	1	-	н	-CH ₂ -N-C-SH H ₃ C-NH
1428	С⊢СН2-	2	2	1	-	н	-CH ₂ -N-C
1429	ңссн₂0-{	2	2	1	-	н	$-CH_2-N$ H_2N
1430	O-√	2	2	1	-	н	-CH ₂ -N-C

Table 1.131

lable	1.131						
Compd.	R ² (CH ₂);-	k	m	n	chirality	R³	$-(CH_2)_{\overline{p}} + (CH_2)_{\overline{q}} - G - R^6$
1431	H,CCH2O-(CH2-	2	2	1	-	н	-CH ₂ -N-C- H H ₂ N
1432	O-CH ₂ -	2	2	1	-	н	-CH ₂ -N-C
1433	ңссн₂0-{_}_сн₂-	2	2	1	-	Н	-CHZ-NC-CHZCH
1434	H ₃ CCH ₂ O	2	2	1	-	Н	-CH2-N-C-H2CH
1435	н₃ссн₂—СҺ₂-	2	2	1	-	н	-CH ₂ -N-C
1436	(ҢС)₂СН-СН-г	2	2	1	-	н	-CH ₂ -N-C
1437	H ₃ C(CH ₂) ₂ O	2	2	1	-	н	-CH ₂ -N-C
1438	н₃ссн₂—СН₂-	2	2	1	-	н	$-CH_2-N-C-$ H_2 H_2 H_2
1439	(H ₂ C) ₂ CH-√CH ₂ -	2	2	1	-	н	-CH ₂ -N-C
1440	ң ₅ С(СН ₂) ₂ О————————————————————————————————————	2	2	1	-	н	-CH ₂ -N-C
1441	H₃CS————————————————————————————————————	2	2	1	-	н	-CH ₂ -N-C

Table 1.132

Compd.	R ¹ (CH ₂) _j -	k	m	n	chirality	R³	-(CH ₂) _p + (CH ₂) _q -G-R ⁶
1442	н₃ссн₂—Сн₂-	2	2	1	-	н	-CH2-NC-CH2CH
1443	(H ₂ C) ₂ CH-CH ₂ -CH ₂ -	2	2	1	-	н	-CH2-N-C
1444	н ₃ с(сн ₂) ₂ о	2	2	1	-	н	-CH ₂ -N-C
1445	ңссн₂-√-сн₂-	2	2	1	-	н	-CH2-NC-HNCH2CH
1446	(H ₆ C) ₂ CH- CH ₂ -	2	2	1	-	н	-CH ₂ -N-C- HN CH ₂ -CH(CH ₃) ₂
1447	ң ₅ С(СН ₂) ₂ О{}-ОН ₂ -	2	2	1	-	н	-CH ₂ -N-C- HN(CH ₂ -C)-O(CH ₂) ₂ CH ₃
1448	H₃CS—CH₂-	2	2	1	-	н .	-CH2-N-C
1449	н₃ссн₂-{_}-сн₂-	2	2	1	-	н	-CH ₂ -N-C-CF ₃
1450	(H ₃ C) ₂ CH-√CH ₂ -	2	2	1	-	н	-CH ₂ -N-C-CF ₃
1451	(H ₃ CCH ₂) ₂ N	2	2	1	-	н	-CH ₂ -N-C-CF ₃
1452	HQ H₃CO-CH₂-	2	2	1		н	-CH ₂ -N-C-CF ₃

Table 1.133

rable	1.133						
Compd.	R ¹ (CH ₂) _j	k	m	n	chirality	R³	$-(CH_2)_{p} + (CH_2)_{q} - (CH_2)_{p} + (CH_2)_{q} - (CH_2)_{q}$
1453	H ₃ C(CH ₂) ₂ O	2	2	1	-	н	-CH ₂ -N-C-CF ₃
1454	H ₀ CCH ₂ O	2	2	1	-	н	-CH ₂ -N-C-CF ₃
1455	H ₃ CQ HO—CH₂-	2	2	1	-	н	-CH ₂ -N-C-CF ₃
1456	CH₂-	2	2	1	-	н	-CH ₂ -N-C-CF ₃
1457	(CH ₃) ₂ N-\(\bigcirc\)-CH ₂ -	2	2	1	-	н	$-CH_2-N-C$ H_2N
1458	H ₃ CQ HO— CH ₂ -	2	2	1	-	н	$-CH_2-N-C$ H_2 H_2 N
1459	(H ₃ C) ₂ N-\(\bigcup_{2}\)-OH ₂ -	2	2	1	-	н	-CH ₂ -N-C
	H ₃ CQ HO—CH₂−					н	$-CH_2-N-C$ H_2N H_2N
1461	H ₃ CQ HO—CH ₂ -	2	2	1	-	н	-CH _Z -N-C- HN CH _Z -OCH
1462	H ₃ CQ HO————————————————————————————————————	2	2	1	-	н	-CH2-NC-ST.
1463	CHCH ₂ -	2	1	1		Н	-CH ₂ -N-C-CF ₃

Table 1.134

Compd. No.	R ² (CH ₂) _j -	k	m	n	chirality	R³	$-(CH_2)_{\overline{p}} \stackrel{\mathbb{R}^4}{\downarrow} (CH_2)_{\overline{q}} G - \mathbb{R}^6$
1464	С⊢—СН₂-	2	1	1	-	н	-CH ₂ -N-C-OCF ₃
1465	CHCH ₂ -	2	1	1	-	н	-CH ₂ -N-C
1466	с⊢С}-сн₂-	2	1	1	•	н	-CH ₂ -N-C-√Br
1467	C-CH2-	2	1	1	-	н	-CH₂-N-C-
1468	CHCH_2-	2	1	1	-	н	-CH ₂ -N-C-\\ NO ₂
1469	CH-CH2-	2	1	1	-	н	-CH₂-N-C-CF3
1470	СН-СН2-	2	1	1	-	Н	-CH ₂ -N-C-CI
1471	C	2	1	1	-	Н	-CH ₂ -N-C
1472	CH ₃ CH₂-	1	2	0	R	н	CH ₂ -N-C-CF ₃
1473	Br S CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1474	CI N CH₂- CH₃	1	2	0	R	н	-CH ₂ -N-C-CF ₃

Table 1.135

rabie	1.133						
Compd.	R ² (CH ₂);-	k	m	n	chirality	R³	$-(CH_2)_{p} + \frac{R^4}{R^5} (CH_2)_{q} - G - R^6$
1475	CL CH2	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1476	Br S CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1477	Br	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1478	B-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1479	H ₃ C-CH ₂ -CH ₂ -CH ₃	1	2 -	0	R	н	-СH ₂ -N-С-СF ₃
1480	CH ₃ −CH ₂ −				R	н	-CH ₂ -N-C-CF ₃
1481	CH ₃ H ₃ C ← CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1482	Br CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1483	H ₃ C CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1484	CF \$ CH2-	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1485	H₃C-(CH₂-	1	2	0	R	н	-CH ₂ -N-C-S

Table 1.136

Compd.	R ¹ (CH ₂) _j -	k	m	n	chirality	R³	$-(CH_2)_{p} + (CH_2)_{q} G - R^6$
1486	H₃C- ()-CH₂-	1	2	0	R	н	$-CH_2-N-C-$ H_2N
1487	H₃C-√CH₂-	1	2	0	R	H	$-CH_2-N\cdot C \longrightarrow H_2N CI$
1488	H ₃ CCH ₂ -	1	2	0	R	н	-CH ₂ -N-C- H
1489	H ₃ C-CH ₂ -	1	2	0	R	н	-CH ₂ -N-CCH ₂ -N-CCH ₂ -N-CCH ₃
1490	H ₃ C-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-⟨CH ₃
1491	H ₃ C-CH ₂ -	1	2	0	R	н	NH ₂ 0 0=0 -CH ₂ -N-C- H
1492	H ₃ C-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-\(\sigma\)
1493	CH ₃ CH ₂ -	1	2	0	R	Н	-a+2-Hc-Ch c+1
1494	CH₃ CH₂−	1	2	0			-CH ₂ -N-C
1495	CH₃ N CH₂- CH₃	1	2	0		н	H₂C
1496	CH₃ CH₂− CH₃	1	2	0	R	н	CH ₂ N-C

Table 1.137

Compd.	R ¹ (CH ₂) _j -	k	m	n	chirality	R ³	$-(CH_2)_{\overline{p}} + \frac{R^4}{R^5} (CH_2)_{\overline{q}} - G^{-R^6}$
1497	CH₃ N CH₂- CH₃	1	2	0	R	н	-CH ₂ -N-C
1498	CH ₃ N CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-
1499	CH₃ N CH₂- CH₃	1	2	0	R	н	-CH ₂ -N-C
1500	CH₃ N CH₂- CH₃	1	2	0	R	н	-CH₂-N-C-
1501	CH₃ N CH₂- CH₃	1	2	0	R	н	-CH ₂ -N-C
1502	CH ₃ N—CH₂- CH ₃					н	-CH ₂ -N-C- H
1503	CH ₃ N—CH ₂ - CH ₃	1	2	0	R	н	-CH ₂ -N-C
	H ₂ N-CH ₂ -					н	-CH ₂ -N-C-CF ₃
1505	CH ₂ Q CH ₂ O	1	2	0	R		-CH ₂ -N-C-CF ₃
1506	C├ - CH ₂ -	2	1	1	-	H	$-CH_2-N-C-$ H_2N H_2N
1507	С⊢√_СН₂-	2	1	1	-	н	$-CH_2-N-C$ H_2N

Table 1.138

Compd.	R ¹ (CH ₂) _j -	k	m	n	chirality	R³	-(CH ₂) _p + (CH ₂) _q G-R ⁶
1508	с⊢(Сн₂-	2	1	1	-	н	$-CH_2-N-C$ H_2N H_2N
1509	C⊢√_CH₂-	2	1	1	-	н	-CH ₂ -N-C-
1510	CH-CH ₂ -	2	1	1	-	н	$-CH_2-N-C-$ H_2N
1511	C├ - CH ₂ -	2	. 1	1	-	н	-CH ₂ -N-C-SBr
1512	CH2-	2	1	1	-	Н	$-CH_2-N-C \longrightarrow H_2N$
1513	CHCH ₂ -	2	1	1	-	н	-CH ₂ -N-C-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S
1514	(H ₃ CCH ₂) ₂ N-CH ₂ -	2	2	1	-	н	-CH ₂ -N-C
1515	HQ H₃CO-CH₂-	2	2	1	-	Н	$-CH_2-N-C-$ H_2N
1516	(H ₃ CCH ₂) ₂ N-CH ₂ -	2	2	1	-	н	$-CH_2-NC-\longrightarrow_{H_2N}^{O}$
1517	HQ . H ₃ CO—CH ₂ -	2	2	1	-	н	-CH ₂ -N-C
1518	HQ H₃CO-CH₂-	2	2	1	-	н	-сн ₂₋ И С С С О С С О С С С С С С С С С С С С

Table 1.139

Compd.	R ² (CH ₂);	k	m	n	chirality	R ³	$-(CH_2)_p + (CH_2)_q G - R^6$
1519	HQ H ₃ CO—CH ₂ -	2	2	1	-	н	-CH2-N-C
1520	Br—€ CH₂-	1	2	0	R	н	-CH ₂ -N-C-
1521	H ₃ CO-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-
1522	CH ₂ -	1	2	0	R	н	-CH₂-N-C-
1523	H ₃ CO CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-
1524	H ₃ CQ HO————————————————————————————————————	1	2	0	R	н	-CH₂-N-C-S
1525	Вг—СН₂-	1	2	0	R	н	-CH ₂ -N-C-S
1526	H ₃ CO-()-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-
1527	CH₂-	1	2	0	R	н	-CH ₂ -N-C-OCF ₃
1528	H ₃ CO ————————————————————————————————————	1	2	0	R	н	
1529	H ₃ CQ HO————————————————————————————————————	1	2	0	R	Н	-CH ₂ -N-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-

Table 1.140

Compd.	R ² (CH ₂);-	k	m	n	chirality	R³	$-(CH_2)_p + (CH_2)_q G - R^6$
1530	B.—CH₂−	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1531	H₃CO-{}CH₂-	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1532	CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1533	H ₃ CQ H ₃ CO————————————————————————————————————	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1534	H₃CQ HO—CH₂-	1	2	0	R	н	-CH ₂ -N-C- H
1535	вг—{	1	2	0	R	Н	-CH ₂ -N-C-CF ₃
1536	H₃CO-{CH₂-	1	2	0	R	Н	-CH ₂ -N-C-CF ₃
1537	CH ₂ -	1	2	0	R	н	-CH ₂ -N-C- F
1538	н₃со н₃со—Сн₂-	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1539	H ₃ CO HO—CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-CF ₃
1540	Br—√CH₂−	1	2	0	R	Н	-CH ₂ -N-C

Table 1.141

						•	
Compd.	R ¹ R ² (CH ₂) _j	k	m	n	chirality	R³	-(CH ₂) p (CH ₂) q G-R ⁶ R ⁵
1541	H₃CO-{}-CH₂-	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1542	CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-⟨F ₃ F
1543	H ₃ CO C H ₂	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1544	H ₃ CQ HO—CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-CF ₃ F
1545	CL_S CH₂-	1	2	0	R	Н	-CH ₂ -N-C-CF ₃
1546	H_3CO F F CH_2-	1	2	0	R	Н	-CH ₂ -N-C-CF ₃
1547	H_3CO \longrightarrow CH_2 \longrightarrow Br	1	2	0	R	Н	-CH ₂ -N-C-CF ₃
1548	H ₃ C-CH ₂ -	1	2	0	R	н	$-CH_2-N-C\cdots$ H_3C CH_3 CH_3
1549	H₃C-{CH₂-	1	2	0	R	н	-CH2-N-C
1550	H₃C-{	1	2	0	R	н	-a+2-h-c- ++2co ++3co -cı
1551	H ₃ C-CH ₂ -	1	2	0	R	Н	-CH2-HC-

Table 1.142

	_						
Compd.	R ¹ (CH ₂);	k	m	n	chirality	R³	$-(CH_2)_p$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$
1552	H ₃ C-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-
1553	H ₃ C-CH ₂ -	1	2	0	R	н	-043-Hc -0
1554	H ₃ C-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C H
1555	H ₃ CCH ₂ -	1	2		R	н	$-CH_2-N-C-V$ $-CH_3-N-C-V$ H_3C
1556	H ₃ C-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-ON H ₃ C
1557	H ₃ C-CH ₂ -	1	2	0	R	н	$-CH_2-N-C-V_N$ H_3C
1558	H ₃ C-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-N-N H ₃ C N-CH ₃
1559	H ₃ C—CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-(CH ₃) ₃ H ₃ C
1560	H ₃ C-CH ₂ -	1	.2	0	R	н	-CH ₂ -N-C-\NO
1561	H ₃ C-CH ₂ -	1	2	0	R	н	-CH ₂ -N-CCH ₃ -CH ₃ -CH ₃ -CH ₃
1562	H₃C-⟨}-CH₂-	1	2	0	R	н	$-CH_2-N-C O_2N$ OCH_3

Table 1.143

lable	1.145						
Compd.	R ¹ (CH ₂) _j -	k	m	n	chirality	. R3	$-(CH_2)_{\overline{p}} + (CH_2)_{\overline{q}} - G^{-R^6}$
1563	H ₃ C-()-CH ₂ -	1	2	0	R	н	-cH2-H2-CI
1564	H₃C-⟨}-CH₂-	1	2	0	R	н	-a+2-ld c- +in -æ²-d c- -æ³
1565	CH ₃ CH ₂ - CH ₃	1	2	0	R	н	-CH ₂ -N-C- H H₃CO
1566	CH_3 CH_2 CH_3	1	2	0	R	н	$-CH_2-N-C O_2N$ OCH_3
1567	CH ₃ N—CH ₂ - CH ₃				R	н	-CH2-HC
1568	CH ₃ CH ₂ − CH ₃	1	2	0	R	Н	-cH2-HC-
1569	CH ₃ CH ₂ - CH ₃	1	2	0	R	Н	-сн₂-н с
1570	H₃CS-()—CH₂-	2	2	1	-	н	$-CH_{2}-N+C$ $H_{2}N$
1571	н₃сѕ-{}Сн₂-	2	2	1	-	н	-CH2-NC-SCH
1572	Cho-Cy-ati	2	2	1	-	н	-CH ₂ -N-C- CF ₃
1573	н,со-О- р°с-О-оч,-	2	2	1	-	н	-CH ₂ -N-C-CF ₃

Table 1.144

Compd. No.	R ¹ (CH ₂);	k	m	n	chirality	R ³	$-(CH_2)_{\overline{p}} + (CH_2)_{\overline{q}} - G - R^6$
1574	#c-{}-Hc-{}-c#-	2	2	1	•	н	-CH ₂ -N-C-CF ₃
1575	CH_NG_CH3-	2	2	1	-	н	-CH ₂ -N-C-CF ₃
1576	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	2	2	1	-	н	-CH ₂ -N-C-CF ₃
1577	но(сн.) - М.с. Сн	2	2	1	-	н	-CH ₂ -N-C-CF ₃
1578	H ₃ C Q CH ₂ -	2	2	1	-	н	-CH ₂ -N-C-CF ₃
1579	CH3 P-CH2-	2	2	1	-	н	-CH ₂ -N-C-CF ₃
1580	O-N-C	2	2	1	-	Н	-CH ₂ -N-C-CF ₃
1581	C├ ~ _CH ₂ -	2	2	1	-	Н	-CH2-H C - BL
1582	C⊢———CH₂-	2	2	1	-	н	-c+2-HC-2-N
1583	CCH₂-	1	2	0	R	н	$-CH_{2}-NC-$ $H_{2}N$
1584	С⊢СТ}−СН₂-	1	2	0	R	н	$-CH_2-N-C$ H_2N OCF_3 H_2N

Table 1.145

I able	,140						
Compd. No.	R ¹ (CH ₂)j-	k	m	n	chirality	R³	$-(CH_2)_{p} + (CH_2)_{q} - G-R^6$
1585	с⊢—Сн₂-	1	2	0	R	н	$-CH_2-N$ C N N N
1586	с⊢—СН₂-	1	2	0	R	н	-CH ₂ -N-C-√N=CI
1587	с⊢СН₂-	1	2	0	R	н	-CH ₂ -N-C-
1588	С⊢СН2-	1	2	0	R	н	$-CH_2-N-C-$
1589	H ₃ C-CH ₂ -	1	2	0	R	н	$-CH_2-N+C$ H_2N
1590	H ₃ C-CH ₂ -	1	2	0	R	н.	$-CH_2-N-C$ H_2N OCF_3 H_2N
1591	H ₃ C-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C
1592	H ₃ C—CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-\square
1593	H ₃ C-CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-
1594	CH ₃ N→CH ₂ − CH ₃	1	2	0	R	н	$-CH_{2}-N-C$ $-CH_{2}-N-C$ $H_{2}N$ OCF_{3}
1595	CH ₃ N→CH ₂ - CH ₃	1	2	0	R	н	$-CH_2-N-C$ H_2N

Table 1.146

Compd.	R ¹ (CH ₂) _j -	k	m	n	chirality	R³	$-(CH_2)_{p} + (CH_2)_{q} G - R^6$
1596	CH ₃ N − CH ₂ − CH ₃	1	2	0	R	н	-CH ₂ -N-CN
1597	CH ₃ N CH₂- CH₃	1	2	0	R	н .	-CH ₂ -N-C-\
1598	CH₃ N CH₂− CH₃	1	2	0	R	н	-CH ₂ -N-C-
1599	CH₃ N CH₂− CH₃	1	2	0	R	н	-CH ₂ -N-C-√CH ₃
1600	С⊢—СН₂-	2	2	1	-	Н	$-CH_2-NC$ H_2N CF_3
1601	C├ - CH ₂ -	2	2	1	-	н	-CH ₂ -N-C
1602	. CH ₂ -	2	2	1	-	н	-CH ₂ -N-C-S
1603	CH2−	2	2	1	-	Н	-CH ₂ -N-C-\(\sigma\)
1604	C├ \ CH ₂ -	2	2	1	-	Н	-CH ₂ -N-C-
1605	с⊷{	2	2	1	-	Н	-CH ₂ -N-C-(CH ₃
1606	C├ - CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-SCF ₃

Table 1.147

lable i	1.147						
Compd.	R ¹ (CH ₂)j-	k	m	n	chirality	R³	$-(CH_2)_{p}$ $+ \frac{R^4}{R^5}$ $(CH_2)_{q}$ $- G - R^6$
1607	H₃C—CH₂−	1	2	0	R	н	-CH2-N-C-SCF3
1608	CH ₃ N CH ₂ - CH ₃	1	2	0	R	Н	-CH ₂ -N-C-SCF ₃
1609	CH_CH ₂ -	2	2	1	-	н	-CH ₂ -N-C-SCF ₃
1610	CF ₃ P CH ₂ -	2	2	1	-	н	-CH ₂ -N-C-CF ₃
1611	CH NO CH2	2	2	1	-	н	-CH ₂ -N-C-CF ₃
1612	н ₃ СО(СН 9)2- МС	2	2	1	-	Н	-CH ₂ -N-C-CF ₃
1613	н, с-С н, с - С - Сн, -	2	2	1	-	н	-CH ₂ -N-C- H
1614	F ₃ CS—CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1615	F3CS-CH2-	2	2	1		н	-CH ₂ -N-C-CF ₃
1616	F₃CS—CH₂-	2	2	1	-	н	$-CH_{2}-N-C$ $H_{2}N$
1617	F ₃ CS—CH ₂ -	2	2	1	-	н	-CH ₂ -N-C

Table 1.148

Compd.	R ¹ (CH ₂) _j -	k	m	n	chirality	R³	-(CH ₂) p G -R ⁶
1618	HQ H ₃ CO—CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-
1619	HQ H ₃ CO—CH ₂ -	1	2	0	R	н .	-CH ₂ -N-C-C
1620	HQ H₃CO-CH₂-	1	2	0	R	. н	-CH ₂ -N-C-CF ₃
1621	HQ H₃CO-CH₂-	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1622	HQ H₃CO—CH₂-	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1623	HO-€CH ₂ -	1	2	0	R	н	-CH₂-N-C-Br
1624	HO-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-C
1625	HO-CH ₂ -	1	2	0	R	н ·	-CH ₂ -N-C-CF ₃
1626	HO-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1627	HOCH ₂ -	1	2	0	R	н	-CH ₂ -N-C-⟨CF ₃ F
1628	н₃СЅ-{}СН₂-	1	2	0			-CH ₂ -N-C-CF ₃

Table 1.149

. 45.0							
Compd.	R ¹ (CH ₂) _j	k	m	n	chirality	R³	$-(CH_2)_{p} + (CH_2)_{q} - (CH_2)_{p} + G - R^6$
1629	H₃CS-CH₂-	1	2	0	R	н	-CH ₂ -N-CF
1630	H ₃ C CH ₂ −	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1631	H ₂ NCH ₂ —CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1632	CF ₃ —⟨CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1633	H₃CS NC-CH₂-	1	2	0	R	н	-CH ₂ -N-C- CF ₃
1634	(H ₃ C)₂CH-{\bigce}-CH2-	1	2	0	R	Н	-CH2-N+C-CF3
1635	H ₃ C-CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-C(CH ₃) ₃
1636	H ₃ C-CH ₂ -	1	2	0	R	н	H ₃ C CH ₃ O H ₃ C -CH ₂ -N-C
	Crig				R	• н	-CH ₂ -N-C-(CH ₂) ₄ CH ₃
1638	CH₃ N—CH₂- CH₃	1	2	0	R	н	-CH ₂ -N-C-(CH ₂) ₃ CH ₃
1639	CH₃ N CH₂- CH₃	1	2	0	R	н	-cH2-17 с-осH2 CH3

Table 1.150

							-(CH ₂) _p + (CH ₂) _q G-R ⁶
1640	CH ₃ CH ₂ - CH ₃	1	2	0	R	н	-CH2-HC
1641	CH₃ CH₂− CH₃	1	2	0	R	н	-CH2-N-C
1642	CH₃ N CH₂- CH₃	1	2	0	R	н	-CH ₂ -N-C-N H O ₂ N-
1643	CH₃ N CH₂- CH₃	1	2	0	R	н	-CH ₂ -N-C-
	CH₃					Н	-CH2-N-C-
1645	CI CH₂−	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1646	Br_O_CH₂-	1	2	0	R	н	-CH₂-N-C-CF3
1647	H ₃ C(CH ₂) ₃ —()—CH ₂ -	2	2	1	-	н	-CH ₂ -N-C-CF ₃
1648	H ₃ C(CH ₂) ₃ —(CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1649	H ₃ C(CH ₂) ₂ -CH ₂ -	2	2	1	-	н	-CH ₂ -N-C-CF ₃
1650	H ₃ C(CH ₂) ₂ CH ₂ -	1	2	0	R	н	CH ₂ -N-C-CF ₃

Table 1.151

Compd.	R ¹ (CH ₂);-	k	m	n	chirality	R³	$-(CH_2)_{p} + (CH_2)_{q} G - R^6$
1651	H ₃ C(CH ₂) ₃ —(2	2	1	-	н	-сн ₂ -м-с
1652	H ₃ C(CH ₂) ₃ ———————————————————————————————————	2	2	1	-	н	$-CH_2-NC-\longrightarrow_{H_2N}^{O}$
1653	H3C(CH2)2	2	2	1	•	н	-CH ₂ -N-C
1654	H ₃ C(CH ₂) ₂ —————————————————————————————————	2	2	1	-	н	-CH ₂ -N-C
1655	H ₃ C(CH ₂) ₃ ———————————————————————————————————	2	2	1	-	н	-CH2-N-CH2-(CH2)3CH
1656	H ₃ C(CH ₂) ₃ —CH ₂ -	2	2	1	-	н	$-CH_2-N-C H_2N$
1657	H ₃ C(CH ₂) ₂	2	2	1	-	н	-CH2-N-CH2-(CH2)2CH
1658	H ₃ C(CH ₂) ₂ —————————————————————————————————	2	2	1	-	н	$-CH_2-NC-$ H_2N
1659	CHCH ₂ -	2	2	1	-		$-CH_2-N-C$ H_2N CI
1660	Br—√CH ₂ -	1	2	0	R	н	$-CH_2-N-C \longrightarrow H_2N$
1661	Br—CH ₂ -	1	2	0	R	н	$-CH_2-NC-$ H_2N H_2N

Table 1.152

lable	1.102						
Compd.	R ¹ (CH ₂) _j	k	m	n	chirality	R³	-(CH ₂) _p + (CH ₂) _q G-R ⁶
1662	Br—€ CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-F H ₂ N
1663	Br—CH₂-	1	2	0	R	н	-CH ₂ -N-C
1664	H₃CS-()-CH₂-	2	2	1	-	н	$-CH_2-N-C-$ H_2N
1665	H ₃ CS-CH ₂ -	2	2	1	-	н	$-CH_2-N-C-$ H_{H_2N}
1666	H ₃ CS-CH ₂ -	2	2	1	-	н	$-CH_2-N-C$ H_2N F
1667	H ₃ CCH ₂ —CH ₂ -	2	2	1	•	Н	-CH ₂ -N-C-Br
1668	ң₃ссн₂—СҺ₂-	2	2	1	-	·H	$-CH_2-N-C$ H_2N H_2N
1669	ң₃ссн₂—Сн₂-	2	2	1	-	н	$-CH_2-N-C$ H_2N
1670	H ₃ CCH ₂ —CH ₂ -	2	2	1	-	н	-CH ₂ -N-C-
1671	H ₃ CCH ₂ —CH ₂ -	2	2	1	-	н	$-CH_2-N-C- \longrightarrow H_2N$
1672	H ₃ CCH ₂ —CH ₂ —	2	. 2	1	-	н .	$-CH_2-N-C-$ H_2N

Table 1.153

labic	1.130						
Compd.	R ¹ (CH ₂)j-	k	m	n	chirality	R³	$-(CH_2)_{p}$ $+\frac{R^4}{R^5}$ $(CH_2)_{q}$ $-G-R^6$
1673	H₃CCH₂—CH₂-	2	2	1	-	н	-CH ₂ -N-C- H
1674	F—CH ₂ -	2	2	1	-	н	-CH₂-N-C- Br
1675	F—CH ₂ -	2	2	1	-	н	$-CH_2-N-C H_2N$ H_2N
1676	F-CH ₂ -	2	2	1	-	н	$-CH_2-N-C-$ H H_2N
1677	FCH ₂ -	2	2	1	-	н	$-CH_2-N-C$ H_2-N H_2-N
1678	F-CH ₂ -	2	2	1	-	Н	-CH ₂ -N-C
1679	F-CH ₂ -	2	2	1	-	н	$-CH_2-NC-$ H_2N
1680	F-CH ₂ -	2	2	1	-	н	-CH ₂ -N-C
1681	F-CH ₂ -	2	2	1	-	н	$-CH_2-NC H_2N$
1682	F—CH2-	2	2	1	-	н	-CH ₂ -N-C Br H C CI
1683		2	2	1	-	н	-CH₂-N-C-(Br

Table 1.154

lable	1.134						
Compd.	R ¹ (CH ₂) _j	k	m	n	chirality	. K3	$-(CH_2)_{\overline{p}} + (CH_2)_{\overline{q}} - G^{-R^6}$
1684		₂ - 2	2	1	-	н	$-CH_2-N-C$ H_2N
1685	C-Nc-CH	₂- 2	2	1	-	н	$-CH_2-N-C-$ H_2N
1686	CH-N-C-CH	₂- 2	2	1	-	Н	-CH ₂ -N-C
1687	— H c ← C → CH	₁₂ - 2	2	1	-	н	$-CH_2-N$ C H_2N
1688	- H C	₁₂ - 2	2	1	-	н	-CH ₂ -N-C
1689	— " c — c · c · c · c · c · c · c · c · c ·	₁₂ - 2	2	1	-	н	$-CH_2-NCC H$ H_2N
1690	— H c — C C C C C C C C C C	_{H2} - 2	2	1	-	Н	$-CH_2-N$ H_2 H_2
1691		н ₂ - 2	2	1	-	н	-CH ₂ -N-C
1692	сн₃ н₃с-{∑}—сн	_ 1 ₂	2	0	R	н	-CH ₂ -N-C-Br
1693	СН ₃	_{l2} - 1	2	0	R		$-CH_2-N-C-$ H_2N
1694	н ₃ С-{СН ₃	1 ₂− ¹	ı 2	0	R	Н	$-CH_2-N-C$ H_2N
						•	

Table 1.155

Table 1	.155						
Compd.	R ¹ (CH ₂) _j -	k	m	n	chirality	. R³	$-(CH_2)_{p+1}^{R^4}(CH_2)_{q-1}^{R^6}$
1695	H ₃ C−⟨CH ₃ −CH ₂ −	1	2	0	R	н	$-CH_2-NC$ H_2N H_2N
1696	CH ₃ −CH ₂ −	1	2	0	R	н	$-CH_2-NC$ H_2N
1697	CH ₃	1	2	0	R	Н	$-CH_2-N-C$ H_2N
1698	H_3C CH_3 CH_2	1	2	0	R	н	-CH ₂ -N-C
1699	CH ₃	1	2,	0	R .	н	$-CH_2-N-C H_2N$
1700	CH ₃	1	2	0	R	Н	-CH ₂ -N-C-Sr CI
1701	H ₂ C=CH-\(\bigc\)-CH ₂ -	1	2	0	R	н	$-CH_2-N-C$ H_2N
1702	H ₃ CO-()-CH ₂ -	1	2	0	R	Н	$-CH_2-N$ H_2N
1703	CH ₂ -	1	2	0	R	. н	$-CH_{2}-NC-$ $H_{2}N$ $-CH_{2}-NC-$ $H_{2}N$
1704	HO-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1705	CH ₂ -	1	2	. 0	R	н	$-CH_2-N-C \xrightarrow{CF_3}$ H_2N

Table 1.156

Table 1	,150						54
Compd. No.	R ¹ (CH ₂)	k	m	n cl	hirality	. K ₃	-(CH ₂) _p + (CH ₂) _q G-R ⁶
1706	CH ₂ -	1	2	0	R	н	$-CH_2-N-C-$ H_2N
1707	H₃CSCH₂-	1	2	0	R	н	$-CH_2-N+C-$ H_2N
1708	н₃ссн ₂ —Сн ₂ -	1	2	0	R	Н	-CH ₂ -N-C- H ₂ N
1709	(H ₂ C) ₂ CH-C-CH ₂ -CH ₂ -	. 1	2	0	R	н	-CH ₂ -N-C- H ₂ N
1710	H ₃ C Br—CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1711	CH ₃	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1712	H ₃ CCH ₂ Q HO—CH ₂ −CH ₂ −	1	2	0	R	н	-CH ₂ -N-C-CF ₃
	H ₃ C HO—CH ₂ -				R	н	-CH ₂ -N-C-CF ₃
1714	HQ	- 1	. 2	0	R	н	-CH ₂ -N-C-CF ₃
1715	CH ₂ -	•	1 2	9 0	R	Н	-CH2-N-C-<->
1716	CH ₂ -		1 2	2 0	R	н	-CH ₂ -N-C-CF ₃

Table 1.157

Compd. No.	R ¹ (CH ₂);	k	m	n	chirality	R ³	-(CH ₂) _p + (CH ₂) _q G-R ⁶
1717	OCH ₃ H ₃ CO−⟨N− CH ₂ −	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1718	CH ₃ CH ₂ - CH ₃	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1719	ÇN—CH₂-	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1720	H ₃ C → CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-CF ₃
1721	H ₃ CCH ₂ —CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-⟨F ₃
1722	O ← CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-CF ₃
1723	-CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-CF ₃
1724	CH ₃ H ₃ C−CH ₂ −	1	2	0	R	Н	-CH ₂ -N-C- H
1725	H_3C CH_3 CH_2 CH_2	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1726	H₃CCH₂—CH₂-	1	2	0	R	н	$-CH_2-N_1$ C- CF_3
1727	CH ₂ -	1	2	0	R	н	-CH₂-N-C-CF3

Table 1.158

Compd	R ¹					R³	$-(CH_2)_{p} + (CH_2)_{q} G - R^6$
No.	R ¹ (CH ₂) _j -	К	m		chiranty	H*	R ⁵
1728	CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1729	CH ₃	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1730	H ₃ C CH ₂ -	1	2	0	R	н	-CH₂-N-C- CF3
1731	H ₃ COL ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1732	HOCH ₂ ————————————————————————————————————	1	2	0	R	Н	-CH ₂ -N-C-CF ₃
1733	CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C- H F
1734	н₃сѕ{СН₂-	1	2	0	R	Н	-CH ₂ -N-C- H CF ₃ F
1735	н₃ссн ₂ —⟨Сн ₂ -	1	2	0	R	Н	-CH ₂ -N-C
1736	-CH ₂ -	1	2	0	R	Н	-CH ₂ -N-CF
	CH ₃ −CH ₂ −				R	Н	-CH ₂ -N-CF
1738	H_3C CH_3 CH_2 CH_2	1	2	0	R	н	-CH₂-N-CF

Table 1.159

Compd.	R ² (CH ₂) _j -	k	m	n	chirality	R³	$-(CH_2)_{p} + (CH_2)_{q} - G - R^6$
1739	(H ₂ C) ₂ CH-CH ₂ F	1	2	0	R	н	-CH ₂ -N-CF
1740	-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-✓ Br
1741	H₃CS-CH₂-	1	2	0	R	н	-CH ₂ -N-C-✓ Br
1742	H ₃ CCH ₂ —CH ₂ -	1	2	0	R	н	$-CH_2-N-C- \stackrel{D}{\longleftarrow} Br$
1743	CH ₂ -	1	Ż	0.	R	Н	-CH ₂ -N-C-
1744	H_3C — CH_2 — CH_2 —	1	2	0	R	н	-CH ₂ -N-C-Br
1745	H_3C CH_3 CH_2 CH_2	1	2	0	R	Н	-CH ₂ -N-C-
1746	(HgC)2CH-(1	2	0	R	н	-CH ₂ -N-C- H
1747	-CH ₂ -	1	2	0	R	н	$-CH_2-N-C$ H_2N H_2N H_2N
1748	H ₃ CCH ₂ ————————————————————————————————————	1	2	0	R	н	$-CH_2-N-C H_2N$ H_2N H_2N
1749	CH₃ ⁻ H₃C-————————————————————————————————————	1	2	0	R	н	$-CH_2-N-C- \longrightarrow_{H_2N}^{Pr}$

WO 99/25686 PCT/US98/23254

Table 1.160

						-	
Compd.	R ¹ (CH ₂)j-	k	m	n	chirality	R³	—(CH ₂) _p G−R ⁶
1750	CH₂-	1	2	0	R	н	-CH ₂ -N-C-OCF ₃
1751	H ₃ CS-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-C-C-S
1752	н ₃ ссн ₂ —Сн ₂ -	1	2	0	R.	н	-CH ₂ -N-C-C-C-S
1753	CH ₂ -	1	2	0	R	н	-CH₂-N-C-COCF3
1754	CH ₃	1	2	0	R	н	-CH ₂ -N-C-OCF ₃
1755	H ₃ C — CH ₂ -	1	2	0	R	н	-CH ₂ -N-C
1756	(ҢС)₂СН-СССТ СН Е	1	2	0	R	н	-CH ₂ -N-C
1757	Br Br CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1758	H ₃ CO Br CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1759	H ₃ C-CH ₂ -	1	2	0	R	н	- он - М. с С.
1760	H ₃ C-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃ -OH ₂ -N-C-CH ₃ -OH ₂ -N-C-CH ₃ -CH ₂ -N-C-C-CH ₃ CF ₂ CHCIF

Table 1.161

Compd.	R ¹ (CH ₂) _j -	k	m	n	chirality	. H3	$-(CH_2)_{p} + \frac{R^4}{R^5} (CH_2)_{q} - G - R^6$
1761	H ₃ C-CH ₂ -	1	2	0	R	н	-CH2-N-C-N-C-N-CI
1762	CH ₃ N CH ₂ - CH ₃	1	2	0	R	Н	-CH ² -H _C CN-CI
1763	CH₂-	2	2	0	-	Н	-CH ₂ -N-C
1764	CH₂-	2	2	0	-	н	-CH2CH2-N-C-
1765	—CH₂-	2	2	0	-	н	(S) OCH ₂ CH ₃ -CH-N-C-CH ₂ CH ₃ CH ₂ CH(CH ₃) ₂
1766	—CH₂-	2	2	0	-	н	(F) OCH ₂ CH ₃ -CH-N-C
1767	С⊢(СН₂-	1	3	1	-	н	-CH ₂ -N-C- OCH ₂ CH ₃
1768	CH2-	1	3	1	-	н	-CH2CH2-N-C
1769	CH_3 CH_2 CH_3	1	2	0	R	н	-CH2-N-C-OCH3 CH-CHCF2O
1770	CH_3 CH_2 CH_3	1	2	0	R	н	-CH2-HC-M CI
							-CH ₂ -N-C (H ₃ C) ₃ C-ÇH-N-C H ₃ C

Table 1.162

140.	R ¹ (CH ₂) _j -					·R³	-(CH ₂) p G (CH ₂) q G-R⁶
1772	CH ₃ CH ₂ - CH ₃	1	2	0	R	н	-CH-N-C- H-C H-C H-C H-C
1773	CH ₃ CH ₂ - CH ₃	1	2	0	R	н	H ₃ C - H C H
	CH ₃ CH ₂ − CH ₃					н	-CH ₂ -N-C-N-C-N-C-N-C-N-C-N-C-N-C-N-C-N-C-N-
1775	HO-CH ₂ -	1	2	0	R	н.	$-CH_2-N+C$
1776	H ₃ CO—CH ₂ —	1	2	0	R	н	$-CH_2-N-C$ H_2 H_2 H_2 H_3
1777	CH₂− CI	2	2	1	-	н	$-CH_2-N$ CF_3 H_2N
1778	H ₃ C-CH ₂ -	2	2	1	-	н	-CH ₂ -N-C
1779	CH ₂ -	2	2	1	-	Н	-CH ₂ -N-C
1780	Br—CH ₂ —	2	2	1	-	н	-CH ₂ -N-C
1781	HO(□)CH ₂ -	2	2	1	-	Н	-CH ₂ -N-C-CF ₃
1782	H ₂ C=CH-\(\bigc\)-CH ₂ -	2	2	1	•	Н	$-CH_2-NC-$ H_2N

Table 1.163

Compd.	R^1 $(CH_2)_j$	k	m	n	chirality	[·] R³	$-(CH_2)_{p} + \frac{R^4}{R^5} (CH_2)_{q} - G - R^6$
1783	NC-CH ₂ -	2	2	1	•	н	-CH ₂ -N-C
1784	CH₂-	2	2	1	-	н	$-CH_2-N-C \longrightarrow H_2N$
1785	СН3(СН2)2-СН2-	2	2	1	•	н	$-CH_2-N-C H_2N$ CF_3
1786	-CH ₂ -	2	2	1	-	н	$-CH_2-N-C-$ H_2 H_2 H_2
1787	CH ₃ (CH ₂) ₂ —————————————————————————————————	1	2	0	R	н	$-CH_2-N-C-$ H_{H_2N}
1788	H_3 C \longrightarrow C H_2	2	2	1	-	H	$-CH_2-N-C-$ H_2N
1789	H₃CO-{}-CH₂-	2	2	1	•	Н	-CH ₂ -N-C
1790	C	1	2	0	S	Н	$-CH_2-NC-$ H_2N
1791	C	1	2	0	S	н	$-CH_2-N-C$ H_2N OCF_3 H_2N
1792	CH ₃ H ₃ C-CH ₂ -	2	2	1	-	н	-CH ₂ -N-C
1793	CH2-CH2-	2	2	1	-	н	-CH ₂ -N-C

Table 1.164

Compd.	R ¹ (CH ₂) _j -	k	m	n	chirality	R³	−(CH ₂) p G (CH ₂) q G−R ⁶
1794	H ₃ C⟨	2	2	1	-	н	-CH ₂ -N-C
1795	CH₂-	2	2	1	-	н	-CH ₂ -N-C
1796	Br—CH ₂ -	2	2	1	-	н	-CH ₂ -N-C
1797	HO-CH ₂ -	2	2	1	-	н	CH ₂ -N-C
1798	H ₃ CO-CH ₂ -	2	2	1	-	н	-CH ₂ -N-C
1799	H ₂ C=CH-√CH ₂ -	2	2	1	-	Н	-CH ₂ -N-C
1800	NC-⟨□}-CH ₂ -	2	2	1	-	Н	$-CH_2-N$ C H_2N
1801	CH ₂ -	2	2	1	-	Ή	-CH ₂ -N-C-F H ₂ N
1802	HO-CH ₂ -CH ₂ -	1	2	0	R	н	$-CH_2-N-C \xrightarrow{P} H_2N$
1803	HO-CH ₂ -	1	2	0	R	Н	$-CH_{2}-N+C$ $H_{2}N$ $-CH_{2}-N+C$ $H_{2}N$ $-CH_{2}-N+C$ $H_{2}N$
1804	H ₃ C(CH ₂) ₂ -CH ₂ -	2	2	1		н	-CH ₂ -N-C-F H ₂ N

Table 1.165

Compd. No.	R ¹ (CH ₂) _j -	k	m	n	chirality	R³	$-(CH_2)_{p} + \frac{R^4}{R^5} (CH_2)_{q} - G - R^6$
1805	Br—CH ₂ —	1	2	0	R	н	-CH ₂ -N-C-SCF ₃
1806	H₃CO-(CH₂-	1	2	0	R	н	-CH ₂ -N-C-SCF ₃
1807	H ₃ CQ HO-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-SCF ₃
1808	HQ H ₃ CO−CH ₂ −	1	2	0	R	н	-CH ₂ -N-C-SCF ₃
1809	но-{	1	2	0	R	н	-CH ₂ -N-C-SCF ₃
1810	CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-SCF ₃
1811	CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-SCF ₃
1812	H₃CS-{\bigce}-CH2-	1	2	0	R	Н	-CH ₂ -N-C-SCF ₃
1813	н₃ссн₂—()—сн₂-	1	2	0	R	Н	-CH ₂ -N-C-SCF ₃
1814	o√CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-SCF ₃
1815	CH₃ H₃C−⟨□ CH₂−	1	2	0	R	н	-CH ₂ -N-C-SCF ₃

Table 1.166

Compd.	R ¹ (CH ₂) _j -	k	m	n	chirality	-R³	$-(CH_2)_{p} + \frac{R^4}{R^5} (CH_2)_{q} - G - R^6$
1816	(CH ₃) ₂ CH-√CH ₂ -	1	2	0	R	н.	-CH ₂ -N-C-SCF ₃
1817	(CH ₃) ₃ C-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-SCF ₃
1818	Br—CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-OCHF ₂
1819	H₃CO-()-CH₂-	1	2	0	R	н	-CH ₂ -N-C-OCHF ₂
1820	H ₃ CQ HO—CH ₂ —	1	2	0	R	н	-CH ₂ -N-C-OCHF ₂
1821	HQ H ₃ CO-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-C
1822	HO(CH ₂	1	2	0	R	H	-CH ₂ -N-C-OCHF ₂
1823	CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-C
1824	-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-OCHF ₂
1825	H₃CS-(1	2	0	R	Н	-CH ₂ -N-C-OC HF ₂
1826	H₃CCH₂CH₂-	1	2	0	R	Н	-CH ₂ -N-C

Table 1.167

Compd.	R ¹ (CH ₂);-	k	m	n	chirality	R³	$-(CH_2)_{p} + (CH_2)_{q} - G - R^6$
1827	CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-OCHF ₂
1828	CH ₃ H ₃ C−√− CH ₂ −	1	2	0	R	Н	-CH ₂ -N-C-OCHF ₂
1829	H_3C CH_3 CH_2 CH_2	1	2	0	R	н	-CH ₂ -N-C
1830	(CH ₃) ₂ CH	1	2	0	R	н	- CH ₂ -N-C
1831	Br—⟨CH₂-	1	2	0	R	Н.	-CH ₂ -N-C-(CH ₃) ₃
1832	H₃CO-{}-CH₂-	1	2	0	R	н	-CH ₂ -N-C-(CH ₃) ₃
1833	H ₃ CQ HO—CH ₂ −	1	2	0	R	н	-CH ₂ -N-C-(CH ₃) ₃
1834	HQ H ₃ CO—CH ₂ -	1	2	0	R	Ħ	-CH ₂ -N-C-(CH ₃) ₃
1835	HO	1	2	0	R	н	-CH ₂ -N-C-(CH ₃) ₃
1836	CH ₂ −	1	2	0	R	н	-CH ₂ -N-C-(CH ₃) ₃
1837	CH₂-	1	2	0	R	н	-CH ₂ -N-C-C(CH ₃) ₃

Table 1.168

Compd. No.	R ¹ (CH ₂)j-	k	m	n	chirality	R³	$-(CH_2)_{p} + (CH_2)_{q} - (C$
1838	H₃CS-CH₂-	1	2	0	R	н	-CH ₂ -N-C-C(CH ₃) ₃
1839	н₃ссн₂—⟨Сн₂-	1	2	0	R.	н	-CH ₂ -N-C-(CH ₃) ₃
1840	CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-(CH ₃) ₃
1841	CH ₃ -CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-(CH ₃) ₃
1842	H_3C CH_3 CH_2 CH_2	1	2	0	R	Н	-CH ₂ -N-C-(CH ₃) ₃
1843	(CH ₃) ₂ CH————————————————————————————————————	1	2	0	R	Н	-CH ₂ -N-C
1844	(CH ₃) ₃ C-\(\bigcirc\) CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-C(CH ₃) ₃
	H ₃ CCH ₂ —CH ₂ -					н	-CH2-NC
1846	H_3C CH_3 CH_2 CH_2	1	2	0	R	н	-CH ₂ -N-C-SCF ₃
1847	(CH ₃) ₃ C————————————————————————————————————	1	2	0	R	н	-CH ₂ -N-C-OCHF ₂
1848	H ₃ CQ HO————————————————————————————————————	1	2	0	R	н	-CH2-NC-

Table 1.169

Compd.	R ¹ (CH ₂) _j -	k	m	n	chirality	Ħ³	$-(CH_2)_{p} + \frac{R^4}{R^5} (CH_2)_{q} - G - R^6$
1849	CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-
1850	H ₃ CCH ₂ CH ₂ -	1	2	0	R	н	-CH ₂ -N C-
1851	H_3C CH_3 CH_2	1	2	0	R	н	-CH ₂ -N-C-
1852	CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-
1853	H ₃ CQ HO————————————————————————————————————	1	2	0	R	Н	-CH ₂ -N-C-
1854	CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-
	H₃ССН ₂ ——СН ₂ -				R	н	-CH ₂ -N-C-
1856	CH ₃ CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-
1857	O−CH ₂ −	1	2	0	R		-CH ₂ -N-C-
1858	Br—CH₂−	1	2	0	R	Н	$-CH_2-N-C \xrightarrow{Q} \xrightarrow{Br}$ $+G$ $+G$ $+G$ $+G$ $+G$ $+G$ $+G$ $+G$
1859	H₃CO-{}CH₂-	1	2	0	R	н	$-CH_2-NC$ H_2N H_2N H_2N

Table 1.170

	<u></u>				····		
Compd.	R ¹ (CH ₂) _j -	k	m	n	chirality	R³	$-(CH_2)_{p}$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$
1860	H ₃ CQ HO————————————————————————————————————	1	2	0	R	н	-CH ₂ -N-C
1861	HQ H ₃ CO—CH ₂ -	1	2	0	R	н	-CH ₂ -N-C
1862	HO-CH ₂ -	1	2	0	R	н	$-CH_2-N-C$ H_2N H_2N H_2N
1863	CH ₂ -	1	2	0	R	н	$-CH_2-N-C$ H_2N H_2N H_2N
1864	H ₃ CS-CH ₂ -	1	2	0	R .	н	$-CH_2-N-C$ H_2N H_2N H_2N
1865	O-CH ₂ -				R	Н	$-CH_2-N-C$ H_2 H_2 N H_2 N
1866	H_3C CH_3 CH_2 CH_2	1	2	0	R	н	$-CH_2-N-C \longrightarrow Br$ $H_2 N$
1867	(CH ₃) ₂ CH————————————————————————————————————	1	2	0	R	Н	$-CH_2-N-C-$ H_2N H_2N
1868	(CH ₃) ₃ C-CH ₂ -	1	2	0	R	н	$-CH_2-N^{-}C H_2N$
1869	Br—⟨	1	2	0	R	н	$-CH_2-NC-$ H_2N
1870	H₃CO-{}CH₂-	1	2	0	R	Н	$-CH_2-N \xrightarrow{O} \xrightarrow{H_2N}$

Table 1.171

Compd.	R ¹ (CH ₂)-	k	m	n	chirality	R³	-(CH ₂) _p + (CH ₂) _q G-R ⁶
1871	H ₃ CQ HO————————————————————————————————————	1	2	0	R	н	-CH ₂ -N-C-
1872	HQ H ₃ CO—CH ₂ -	1	2	0	R	н	$-CH_2-N-C$ H_2N
1873	но-{}-СН ₂	1	2	0	R	н	-CH ₂ -N-C-
1874	; -CH ₂ -	1	2	0	R	н	$-CH_2-N-C$ H_2N
1875	-CH ₂ -	1	2	0	R	Н	$-CH_2-N-C$ H_2N
1876	H₃CS-()-CH₂-	1	2	0	R	Н	$-CH_2-N-C$ H_2N
1877	H ₃ CCH ₂ —CH ₂ -	1	2	0	R	н	$-CH_2-NC \longrightarrow H_2N$
1878	O-CH₂-			0	R	Н	$-CH_{2}-NCC \longrightarrow H_{2}N$
1879	H_3C CH_3 CH_2 CH_2	1	2	0	R	н	$-CH_{2}-NC-$ $H_{2}N$
1880	(CH ₃) ₂ C H-√CH ₂	1	2	0	R	н	$-CH_{2}-N$ $H_{2}N$
1881	(CH ₃) ₃ C−€ CH ₂ -	1	2	0	R	н	-CH ₂ -N-C

Table 1.172

Compd. No.	R ¹ (CH ₂)j-	k	m	n	chirality	R³	-(CH ₂) _p + (CH ₂) _q G-R ⁶
1882	Br—⟨	1	2	0	R	н	-CH ₂ -N-C
1883	H₃CO⟨□}-CH₂-	1	2	0	R	н	-CH ₂ -N-C
1884	H ₃ CQ HO————————————————————————————————————	1	2	0	R	н	$-CH_2-N+C-\longrightarrow H_2N$
1885	HQ H ₃ CO-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C
1886	HOCH ₂ -	1	2	0	Ŗ	н	-CH ₂ -N-C
1887	CH₂-	1	2	0	R	Н	-CH ₂ -N-C
1888	CH ₂ -	1	2	0	R	Н	$-CH_2-N C \longrightarrow H_2N$
1889	H₃CS-CH₂-	1	2	0	R	Н	$-CH_2-N-C$ H_2N H_2N
1890	H₃CCH₂—CH₂−	1	2	0	R	н	$-CH_2-NC \longrightarrow H_2N$
1891	O-CH ₂ -	1	2	0	R	Н	$-CH_2-N-C$ H_2N H_2N
1892	CH ₃ -CH ₂ -	1	2	0	R	н	$-CH_2-N+C$ H_2N NO_2 H_2N

Table 1.173

Compd.	R ¹ (CH ₂) _j -	k	m	n	chirality	R³	$-(CH_2)_{p}$ $+\frac{R^4}{R^5}$ $(CH_2)_{q}$ $-G-R^6$
1893	CH ₃ -CH ₂ -	1	2	0	R	н	$-CH_{2}-NC_{2}$ $H_{2}N$ NO_{2} $H_{2}N$
1894	(CH ₃) ₂ CH————————————————————————————————————	1	2	0	R	н	$-CH_{2}-NC$ $H_{2}N$ $H_{2}N$
1895	(CH ₃) ₃ C-⟨¯¯⟩-CH ₂ -	1	2	0	R	н	$-CH_{2}-N-C$ $H_{2}N$ $H_{2}N$
1896	HQ H ₃ CO-CH ₂ -	1	2	0	R	н	$-CH_2-N-C$ H_2N
1897	- H₃CS-{}CH₂-	1	2	0	R	н	$-CH_2-N-C-$ H_2N
1898	H ₃ CCH ₂ CH ₂ -	1	2	0	R	Н	$-CH_2-N-C-$ H_2N
1899	(CH ₃) ₂ CH-CH ₂ -	1	2	0	R	Н	$-CH_2-N-C-$ H_2N
1900	H ₃ CQ HO————————————————————————————————————	1	2	0	R	Н	$-CH_{2}-N-C$ $H_{2}N$ $H_{2}N$
1901	H ₃ C(CH ₂) ₂ —————————————————————————————————	1	2	0	R	Н	172 N
1902	-CH ₂ -	1	2	0	R	Н	$-CH_2-N$ H_2N OCF_3
1903	(CH ₃) ₂ CHCH ₂ -	2	2	1	•	н	$-CH_2-N-C$ H_2N

Table 1.174

Compd.	R ¹ (CH ₂)-	k	m	n	chirality	R³	-(CH ₂) _p + (CH ₂) _q -G-R ⁶
1904	H ₃ C(CH ₂) ₂	2	2	1	-	н	$-CH_2-N$ C H_2 N
1905	CH ₂ -	1	2	0	R	н	$-CH_2-N-C$ H_2N OCF_3
1906	CH ₂ -	1	2	0	R	н	$-CH_2-N-C$ H_2N OCF_3
1907	: HO{}CH ₂ -	1	2	0	R	н	$-CH_2-N$ C H_2 N
1908	H₃CO-{}CH₂-	1	2	0	R	н	-CH ₂ -N-C
1909	H₂C=CH-{CH₂-	1	2	0	R	н	$-CH_2-N$ H_2N OCF_3
1910	Br	2	2	1	-	н	$-CH_2-N$ C H_2 H_2 N
1911	CH ₂ —CH ₂ —	2	2	1	-	н	$-CH_2-N$ H_2 H_2 N
1912	HO-(2	2	1	-	н	-CH ₂ -N-C
1913	CH ₃	2	2	1	-	н	$-CH_2-N-C$ H_2N OCF_3
1914	H₃C-{}-CH₂-	2	2	1	-	н	$-CH_{2}-N$ $H_{2}N$ OCF_{3} $H_{2}N$

Table 1.175

Compd.	R ¹ (CH ₂) _j -	k	m	n	chirality	R³	-(CH ₂) _p + (CH ₂) _q G-R ⁶
1915	H ₃ CCH ₂ Q HO-CH ₂ -	1	2	0	R	Н	$-CH_2-N-C$ H_2N OCF_3
1916	H ₃ C HO-CH ₂ -	1	2	0	R	н	$-CH_2-N-C H_2N$ OCF_3
1917	H ₃ CCH ₂ Q HO————————————————————————————————————	2	2	1	-	н	$-CH_2-N$ H_2N OCF_3
1918	H ₃ C ₂ HO—CH ₂ -	2	2	1	-	н	$-CH_2-N$ H_2N OCF_3
1919	CH-CH ₂ -	2	2	1	-	н	$-CH_2-N-C-$ H_2N
1920	NH₂ CH⊋−	2	2	1	-	н	$-CH_2-N-C$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$
1921	CH ₂ -CH ₂ -	1	2	0	R	н	$-CH_2-NC$ H_2N OCF_3
1922	NH₂ C⊢√CH₂−	2	2	1	-	Н	$-CH_2-N$ H_2N OCF_3 H_2N
1923	Br—⟨¯CH ₂ -	2	2	1	-	н	-CH ₂ -N-C-SCF ₃
1924	H ₃ CO-\CH ₂ -	2	2	1	-	Н	-CH ₂ -N-C-SCF ₃
1925	F(CH ₂ -	2	2	1	-	н	-CH ₂ -N-C-SCF ₃

Table 1.176

					·· ·····		
Compd. No.	R^{1} $(CH_{2})_{j}$	k	m	n	chirality	À³	$-(CH_2)_{\overline{p}} + (CH_2)_{\overline{q}} - G - R^6$
1926	F-CH ₂ -	2	2	1	-	н	$-CH_2-N-C- SCF_3$
1927	но-{	2	2	1	-	н	-CH ₂ -N-C-SCF ₃
1928	CH ₂ -	2	2	1	- -	н	· -CH₂-N-C-SCF₃
1929	CH ₂ -	2	2	1	-	н	-CH2-N-C-SCF3
1930	H₃CS-CH₂-	2	2	1	-	н	-CH₂-N-C-SCF3
1931	H₃CCH2——————————————————————————————————	2	2	1	-	н	-CH ₂ -N-C-SCF ₃
1932	CH ₂ -	2	2	1	-	Н	-CH ₂ -N-C-SCF ₃
1933	CH ₃	2	2	1	-	H .	-CH ₂ -N-C-SCF ₃
1934	H_3C CH_3 CH_2 CH_2	2	2	1	-	Н	-CH ₂ -N-C-SCF ₃
1935	O ₂ N-CH ₂ -	2	2	1	-	н	-CH ₂ -N-C-SCF ₃
1936	H ₃ C-\CH ₂ -	2	2	1	-	н	-CH ₂ -N-C-SCF ₃

Table 1.177

Compd.	R ¹ (CH ₂),-	k	m	n	chirality	R³	$-(CH_2)_{p} + (CH_2)_{q} - (C$
1937	(CH ₃) ₂ C H-√CH ₂ -	2	2	1	-	н	- CH ₂ -N-C-SCF ₃
1938	В€СН₂-	2	2	1	-	н	-CH ₂ -N-C
1939	H₃CO(CH₂-	2	2	1	-	н	-CH ₂ -N-C-Sr CH ₃
1940	F—(2	2	1	-	н	$-CH_2-N-C Br$ CH_3
1941	F—CH ₂ -	2	2	1	-	н	$-CH_2-NC CH_3$
1942	HO-()-CH ₂ -	2	2	1	-	н	−CH ₂ −N-C−− CH ₃
1943	CH₂-	2	2	1	-	н	$-CH_2-NC$
1944	CH ₂ -	2	2	1	-	н	-CH ₂ -N-C
1945	H ₃ CS-CH ₂ -	2	2	1	-	н	-CH ₂ -N-C
1946	H ₃ CCH ₂ —CH ₂ -	2	2	1	-	н	-CH ₂ -N-C
1947	CH ₂ -	2	2	1	-	Н	$-CH_2-N-C Br$ CH_3

Table 1.178

Compd. No.	R ¹ (CH ₂) _j -	k	m	n	chirality	R³	-(CH ₂) _p + (CH ₂) _q G-R ⁶
1948	CH ₃	2	2	1	-	н	-СH ₂ -N-С Вг СН ₃
1949	H_3C CH_3 CH_2 CH_2	2	2	1		н	-CH ₂ -N-C-⟨Sr CH ₃
1950	O ₂ N-CH ₂ -	2	2	1	-	н	-CH ₂ -N-C
1951	H ₃ C-\CH ₂ -	2	2	1	-	н	-CH ₂ -N-C
1952	Br—CH ₂ -	2	2	1	-	н	CH ₂ -N-C
1953	H ₃ CO-CH ₂ -	2	2	1	-	н	-CH ₂ -N-C
1954	F-CH ₂ -	2	2	1	-	н	-CH ₂ -N-C
1955	F—CH ₂ -	2	2	1	-	н	-CH ₂ -N-C
1956	HO-CH ₂ -	2	2	1	-	н	-CH ₂ -N-C-⟨Sr F
1957	CH ₂ -	2	2	1	-	н	-CH ₂ -N-CF
1958	-CH ₂ -	2	2	1	•	н	-CH ₂ -N-C

Table 1.179

Compd.	R ¹ (CH ₂) _j -	k	m	n	chirality	R³	-(CH ₂) p G-R⁶
1959	H₃CS-{}-CH₂-	2	2	1	-	Н	-CH ₂ -N-C- Br
1960	н₃ссн₂-{}сн₂-	2	2	1	-	н	-CH ₂ -N-C
1961	O-CH ₂ -	2	2	1	-	н	-сн ₂ -№-сБвг
1962	CH ₃	2	2	1	-	н	-CH ₂ -N-C
1963	CH ₃ -CH ₂ -	2	2	1	-	H	-CH ₂ -N-CF
1964	O ₂ N-CH ₂ -	2	2	1	-	H	-CH₂-N-CF
1965	H ₃ C-\CH ₂ -	2	2	1	-	н	-CH ₂ -N-C
1966	(CH ₃) ₂ C H− CH ₂ −	2	2	1	-	н	-CH ₂ -N-C
1967	Br—⟨□}−CH₂−	2	2	1	-	н	-CH ₂ -N-C
1968	H₃CO-⟨}-CH₂-	2	2	1	-	н	-CH ₂ -N-C
1969	HO-()-CH ₂ -	2	2	1	-	н	-CH ₂ -N-C

Table 1.180

Compd.	R ¹ (CH ₂),-	k	m	n	chirality	R³	$-(CH_2)_{p} + (CH_2)_{q} - G-R^6$
1970	о√ Сн₂-	2	2	1	<u>-</u>	н	-CH ₂ -N-C
1971	CH ₂ -	2	2	1	-	н	$-CH_2-N-C$ H_2N
1972	H₃CS-{}CH₂-	2	2	1	-	н	$-CH_2-\overset{\circ}{N}-\overset{\circ}{C}-\overset{\circ}{\bigvee}$
1973	H₃CCH₂CH₂-	2	2	1	-	н	$-CH_2-N-C$ H_2N
1974	CH ₃	2	2	1	-	н	$-CH_2-N-C$ H_2N
1975	O ₂ N-CH ₂ -	2	2	1	-	н	$-CH_2-N-C$ H_2N
1976	H ₃ C-(2	2	1	-	Н	-CH ₂ -N-C
	NC-CH ₂ -				-	Н	-CH ₂ -N-C
1978	(CH ₃) ₂ CH— CH ₂ −	2	2	1	-	н	-CH ₂ -N-C
1979	CH ₂ -	2	2	1	•	н	-CH ₂ -N-C
1980	CH ₂ -	2	2	1	-	Н	$-CH_{2}-NC$ $H_{2}N$

Table 1.181

lable	1.101						
Compd. No.	R ¹ (CH ₂),-	k	m	n	chirality	Ė ³	$-(CH_2)_{\overline{p}} + (CH_2)_{\overline{q}} - G^-R^6$
1981	O ₂ N-CH ₂ -	2	2	1	•	н	$-CH_2-NC-F$
1982	NC-CH ₂ -	2	2.	1	-	н	-CH ₂ -N-C
1983	(CH ₃) ₂ CH-CH ₂ -	2	2	1	~	н	$-CH_2-NC H_2N$
1984	Br—CH ₂ -	2	2	1	-	н	$-CH_2-N-C$ H_2 H_2 N
1985	H₃CO	2	2	1	-	н	-CH ₂ -N-C
1986	HO	2	2	1	-	н	$-CH_2-N-C$ $H_2 N$
1987	CH ₂ -	2	2	1	-	н	$-CH_2-N$ H_2 H_2 N
1988	CH ₂ -	2	2	1	-	н	$-CH_{2}-N-C$ $H_{2}N$
1989	H ₃ CS-CH ₂ -	2	2	1	-	н	$-CH_2-NC$ H_2N
1990	H ₃ CCH ₂ ————————————————————————————————————	2	2	1	-	н	$-CH_2-NC \longrightarrow H_2N$
1991	CH ₂ -	2	2	1		н	$-CH_{2}-N$ $H_{2}N$

Table 1.182

Compd. No.	R ¹ (CH ₂) _j	k	m	n	chirality	R³	-(CH ₂) _p + (CH ₂) _q -G-R ⁶
1992	H_3C CH_3 CH_2	2	2	1	_	Н	$-CH_2-N-C$ H_2N
1993	O ₂ N-CH ₂ -	2	2	1	-	н	$-CH_2-NC$ H_2N
1994	H ₃ C-CH ₂ -	2	2	1	-	н	$-CH_2-NC$ H_2N
1995	NC-⟨¯¯⟩-CH ₂ -	2	2	1	- .	អ	$-CH_2-NC$ H_2N
1996	(CH ₃) ₂ CH————————————————————————————————————	2	2	1	-	H	$-CH_2-NC$ H_2N
1997	H_3C CH_3 CH_2 CH_2	2	2	1	•	н	$-CH_2-NC \longrightarrow H_2N$
1998	Вг—СН₂-	2	2	1	-	Н	-CH ₂ -N-C-
1999	H ₃ CO-CH ₂ -	2	2	1	-	н	-CH ₂ -N-C-C
2000	F(CH ₂ -	2	2	1	-	н	-CH ₂ -N-C-
2001	HO-CH ₂ -	2	2	1	-	н	-CH ₂ -N-C-
2002	CH ₂ -	2	2	1	-	н	-CH ₂ -N-C

Table 1.183

Compd.	R ¹ (CH ₂) _j -	k	m	n	chirality	R³	$-(CH_2)_{p} + (CH_2)_{q} - G - R^6$
2003	-CH ₂ -	2	2	1	-	Н	-CH ₂ -N-C-CI
2004	H₃CS-CH₂-	2	2	1	-	н	-CH2-N-C-
2005	H ₃ CCH ₂ —CH ₂ -	2	2	1	-	н	-CH2-N-C-
2006	CH ₃	2	2	1	-	н	-CH2-N-C-
2007	O ₂ N-CH ₂ -	2	2	1	-	н	-CH2-N-C-
2008	H ₃ C-CH ₂ -	2	2	1	-	н	-CH ₂ -N-C
2009	NC-CH ₂ -	2	2	1	-	н	-CH ₂ -N-C-
2010	(CH ₃) ₂ C H−√−−−−−−−−	2	2	1	-	н	-CH2-N-C-
2011	CH ₃ H ₃ C — CH ₂ -	2	2	1	-	н	-CH ₂ -N-C-CI
							-CH ₂ -N-C- Br
2013	H₃CO-()-CH₂-	2	2	1	-	н	-CH ₂ -N-C

Table 1.184

Compd.	R ¹ (CH ₂)j-	k	m	n	chirality	R³	$-(CH_2)_{\overline{p}}$ $+ (CH_2)_{\overline{q}}$ $+ (CH_2)_{\overline$
2014	но-{	2	2	1	· <u>-</u>	н	-CH ₂ -N-C-
2015	CH ₂ -	2	2	1	• •	н	-CH ₂ -N-C-
2016	-CH ₂ -	2	2	1	-	н	-CH ₂ -N-C- H
2017	н₃сѕ-{}сн₂-	2	2	1	-	н	-CH₂-N-C-Sr CI
2018	H ₃ CCH ₂ ————————————————————————————————————	2	2	1	-	н	-CH ₂ -N-C
2019	O-CH ₂ -	2	2	1	-	н	-CH ₂ -N-C
2020	CH ₃ H ₃ C−CH ₂ −	2	2	1	-	н	-CH ₂ -N-C
2021	O ₂ N-CH ₂ -	2	2	1	-	н	-CH₂-N-CBr
2022	H ₃ C-CH ₂ -	2	2	1	-	н	-CH ₂ -N-C
2023	NC-CH ₂ -	2	2	1	-	н .	-CH ₂ -N-C
2024	(CH ₃) ₂ C H−√	2	2	1	-	н	-CH ₂ -N-C-\Br

Table 1.185

Table 1	-						
Compd.	R ¹ (CH ₂) _j -	k	m	n	chirality	R³	-(CH ₂) _p + (CH ₂) _q G-R ⁶
2025	CH ₃ H ₃ C − CH ₂ − H ₃ C	2	2	1	-	н	-CH ₂ -N-C
2026	F-CH ₂ -	2	2	1	-	н	-CH₂-N-C- Br -CH₂-N-C- CI
2027	Br-CH ₂ -	2	2	. 1	-	н	-CH ₂ -N-C
2028	H ₃ CO-CH ₂ -	2	2	1	-	н	-CH ₂ -N-C-Br
2029	HO-CH ₂ -	2	2	1	-	н	-CH ₂ -N-C-Br
2030	CH ₂ -	2	2	1	-	н	$-CH_2-N-C$ H_2 H_2 H_2
2031	CH₂-	2	2	1	-	Н	$-CH_2-NC- \longrightarrow_{H_2N}^{O}$
2032	CH₂-	2	2	1	ي	н	$-CH_2-N-C$ H_2N
2033	CH ₃ H ₃ C-CH ₂ -	2	2	1	-	н	$-CH_2-N+C-\longrightarrow_{H_2N}^{Pr}$
2034	O ₂ N-(-)-CH ₂ -	2	2	1	-	н	$-CH_2-NC-$ H_2N H_2N
2035	H₃C-⟨CH ₂ -	2	2	1	-	н	-CH ₂ -N-C
						~	· · · · · · · · · · · · · · · · · · ·

Table 1.186

Compd.	R ¹ (CH ₂) _j -	k	m	n	chirality	R³	-(CH ₂) _p + (CH ₂) _q G-R ⁶
2036	NC-⟨CH ₂ -					Н	- CH ₂ -N-C
2037	H_3C CH_3 CH_2 CH_2	2	2	1		Н	-CH ₂ -N-C-Br
	F-CH ₂ -					н	$-CH_2-N+C$ H_2N H_2N
2039	; H₃C————————————————————————————————————	2	2	1	-	Н	-CH ₂ -N-C H CN
2040	H ₃ C-\(\bigcirc\)-CH ₂ -	1	2	0	R	н	-CH2-NC-CH
2041	H ₃ C	1	2	0	R	н	-сн ₂ - N-С-СН-
2042	H ₃ CCH ₂ -	1	2	0	R	н	$-CH_2-N-C$ H_3C H_3C
2043	H ₃ C-CH ₂ -	1	2	0	R	н	$-CH_2-N-C-CH_2$ CH_3 CH_3
2044	CH ₃ CH ₂ - CH ₃	1	2	0	R	н	-CH ₂ -N-C
2045	CH ₂ -	1	2	0	R	н	-cH2-N-C-N-C-N-CI
2046	CH ₃ CH ₂ - CH ₃	1	2	0	R	н	-CH ₂ -N-C-N-CH ₃

WO 99/25686 PCT/US98/23254

Table 1.187

								Table 1.18
	-(CH ₂) _p + (CH ₂ R ⁵	R ³	chirality	n	m	k	R ¹ (CH ₂) _j -	Compd. R ¹ No. R ²
	- CH,- N C	н	R	0	2	1	CH ₃ CH ₂ - CH ₃	2047
OCH2CH3	CH ₂ -H ₂ -H _N	н	R	0	2	1	CH ₃ CH ₂ - CH ₃	2048
CH ₃	-CH2-HC-	н	R	0	2	1	CH ₃ N—CH ₂ - CH ₃	2049
CF ₃	-CH2-N-C-€	н	R	0	2	1	H ₃ C_S_CH ₂ -	н _з 2050
CF ₃	-CH2-N-C-	н	R	0	2	1	H ₃ C N CH ₂ -	н 2051
F H ₂ N	-CH ₂ -N-C- H H ₂ N	н	-	1	2	2	Br CH₂− OCH₂CH₃	2052
C——F H ₂ N	-CH ₂ -N-C- H ₂ N	н	-	1	2	2	H ₃ CQ CH ₂ O-CH ₂ -	2053
C——F H ₂ N	-CH ₂ -N-C- H H ₂ N	н	-	1	2	2	H ₃ CO-CH ₂ -	2054 _{H3}
C-F F H ₂ N	-CH ₂ -N-C- H H ₂ N	н	-	1	2	2	H₃CQ CH₂− OH	н 2055
F F H ₂ N	-CH ₂ -N-C- H H ₂ N	н	-	1	2	2	Br CH ₂ -	2056
	- CH2-N-C-(H2N		-	1	2	_ 2	Br H₃CO—CH₂-	2057 _{Իչ}
	- CH ₂ -N-1	H H	-	1 1 1	2 2 2	2 2 2	Br CH_2 OCH_2CH_3 H_3CO CH_2O CH_2	2052 2053 2054 H ₃ 2055

Table 1.188

Compd.	R ¹ (CH ₂) _j -	k	m	n	chirality	R³	$-(CH_2)_{\overline{p}} + \frac{R^4}{R^5} (CH_2)_{\overline{q}} - G^-R^6$
2058	H ₃ CO OCH ₃	2	2	1	-	н	$-CH_{2}-N-C-$ $H_{2}N$
2059	СН2-	2	2	1	-	н	$-CH_2-N-C$ H_2 H_2 H_2 H_2
2060	H_3CO H_3CO CH_2 OCH_3	2	2	1	-	н	$-CH_2-N-CF$ H_2N
2061	F_CH ₃ CH ₂ -	2	2	1	-	н	$-CH_2-N-C$ H_2N
	H ₃ CO-CH ₂ -				-	н	$-CH_2-N$ $-CH_2-N$ $-CH_2-N$ $-CH_2-N$ $-CH_2-N$
2063	H_3CO H_3C CH_2	2	2	1	-	Н	$-CH_2-N-C-$ H_2 H_2 H_2
2064	Br F—CH ₂ -	2	2	1	-	Н	-CH ₂ -N-C
2065	H₃CCH₂Q H₃CCH₂O-CH₂-	2	2	1	-	н	-CH ₂ -N-C
2066	OCH ₂ -	2	2	1	-	н	-CH ₂ -N-C-F H H ₂ N
2067	(H;C)2CHCH2—————CH2-	2	2	1	-	н	-CH ₂ -N-C-F H H ₂ N
2068	CI F—CH ₂ -	2	2	1	-	н	-CH ₂ -N-C

Table 1.189

able	1.103						
Compd.	R ¹ (CH ₂) _j -	k	m	n	chirality	R ³	$-(CH_2)_{p} + \frac{R^4}{R^5} (CH_2)_{q} - G^-R^6$
2069	H ₃ C H ₃ CO—CH ₂ —	2	2	1	-	н	-CH ₂ -N-C
2070	Br CH ₂ -OCH ₃	2	2	1	-	н	$-CH_2-N-C$ H_2N
2071	H ₃ CO-CH ₂ -OCH ₃	2	2	1	-	Н	-CH ₂ -N-C-F H ₂ N
2072	(H ₃ C) ₂ CHO-\CH ₂ -	2	2	1	-	н	-CH ₂ -N-C- H H ₂ N
2073	CH ₂ Q	2	2	1	-	н	$-CH_2$ $-N$ $-C$ $+$ $-F$ $-F$ $-F$
2074	н₃со-С С С С С С С С С С С С С С С С С С С	2	2	1	-	H	$-CH_2-N-C-$ H_2 H_2 N
2075	H₃CQ CH₂− F	2	2	1	-	н	$-CH_2-N-C H_2$ H_2 N
2076	F—CH ₂ -	2	2	1		н	-CH ₂ -N-C
2077	CICH ₂ OH	2	2	1	•	н	$-CH_2-N-C-F$ H_2N
2078	H ₃ CCH ₂ O OH	2	2	1	-	н	-CH ₂ -N-C-F H ₂ N
2079	CH ₂ Q H ₃ CO—CH ₂ -	. 2	2	1	-	Н	-CH ₂ -N-C

Table 1.190

· abic							
Compd.	R ¹ (CH ₂) _j -	k	m	n	chirality	R³	$-(CH_2)_{\overline{p}} + \frac{R^4}{R^5} (CH_2)_{\overline{q}} - G - R^6$
2080	CH ₂ Q H ₃ CO—CH ₂ -	2	2	1	-	н	$-CH_{2}-N-C$ $H_{2}N$
2081	Cl HO—CH ₂ —	2	2	1	· <u>-</u>	н	$-CH_{2}-N-C$ $H_{2}N$
2082	OH H₃CO-⟨CH₂-	2	2	1	-	н	$-CH_2-N-C$ H_2 H_2 H_2 H_2
2083	H ₃ CQ HO—CH ₂ —	1	2	0	R	н	$-CH_2-N-C-$ H_2 H_2 H_2
2084	H ₃ CQ HO————————————————————————————————————	1	2	0	R	Н	-CH ₂ -N-C
2085	OH H₃CO-⟨CH ₂ -	1	2	0	R	Н	CH ₂ N-C
2086	CI CH₂-	1	2	0	R	Н	CH ₂ -N-C
2087	(H ₃ C) ₂ N-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-SH ₂ N
2088	(H ₃ CCH ₂) ₂ N-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-S-H ₂ N
2089	F-CH ₂ -	1	2	0	R	н	$-CH_2-N-C-$ H_2N
2090	CH₂-	1	2	0	R	. н	$-CH_2-N-C \xrightarrow{P}$ H_2N

Table 1.191

Table 1								
Compd.	R^1	CH ₂) _j —	k	m	n	chirality	R ³	$-(CH_2)_{p} + (CH_2)_{q} - (CH_2)_{p} + (CH_2)_{q} - (CH_2)_{q}$
2091	c+{\bigci}	}—СН2 [_]	2	2	1	•	Н	OCH ₂ CH ₃ -CH-N-C
2092	c-{	∕—CH2−	2	2	1	-	н	CH NC CH,
2093	c-{_	> −СН2−	2	2	1	-	Н	(A) OCH₂CH₃ - CH-N-C- CH₂CH₂SCH₃
2094	CI-) —СН₂-	2	2	1	-	н	(H O CH ₂ CH ₃ -CH N C CH ₂
2095	c-{) —СН₂-	2	2	1		н	(R) OCH ₂ CH ₃ -CH-N-C- H C(CH ₃) ₃
2096	c-{)_−CH ₂ −	2	2	1	-	н	(R O OCH ₂ CH ₃ -CH-N-C-
2097	c-{	_CH2-	2	2	1	-	н	(H) OCH ₂ CH ₃ -CH ₁ N-C-CH ₂ CH ₃ CH ₂ CH ₂ CH ₃
2098	cH{	CH2	2	2	1	-	н	CH ₂ CH ₃ OCH ₂ CH ₃ OCH ₂ CH ₃
2099	c-{		2	2	1	-	н	CHN-C-CH ₃
2100	c⊢{_		2	2	1	-	Н	(F OCH ₂ CH ₃ -CH-N-C
2101	c-{	CH ₂ -	2	2	1	-	н	(R O OCH ₂ CH ₃ -CH-N-C OCH ₂ -CH ₂

Table 1.192

Table	1.152						
Compd.	R ¹ (CH ₂) _j -	k	m	n	chirality	R³	$-(CH_2)_{p} + \frac{R^4}{R^5} (CH_2)_{q} - G^-R^6$
2102	ССН2-	2	2	1	-	н	OCH ₂ CH ₃ -CH-N-C
2103	CHCH ₂ -	2	2	1	-	н	H ₃ C-CHOCH ₂ CH ₃ OCH ₂ CH ₃ OCH ₂ CH ₃
2104	сСН2-	2	2	1	-	н	CH2CH2COCH3 CH2CH2-C-OCH3
2105	H₃CQ OH CH₂-	2	2	1	-	н	$-CH_2-N-C H_2N$
2106	H₃C OH CH₂-	2	2	1	-	н	$-CH_2-N-C-$ H_2N
2107	Br CH ₂ -	2	2	1	-	Н	$-CH_2-N-C-F$ H_2N
2108	CH ₃ CH ₂ -	2	2	1	-	Н	$-CH_2-N-C-F$ H_2N
2109	Br O-CH ₂ -	2	2	1	-	н	$-CH_2-N-C H_2$ H_2 H_2 H_2
2110	H₃CCH ₂ CH ₂ -	2	2	1	-	н	$-CH_2-N-C-$ H_2N
2111	CH ₂ -	2	2	1	-	н	-CH ₂ -N-C
2112	H ₃ CO — CH ₂ -	2	2	1	-	н	-CH ₂ -N-C-F H H ₂ N

WO 99/25686 PCT/US98/23254

Table 1.193

Compd.	R ¹ (CH ₂) _j -	k	m	n	chirality	R³	-(CH ₂) p R⁴ (CH ₂) q G-R ⁶
2113	H ₂ N H ₃ CO-CH ₂ -	2	2	1	•	н	$-CH_2-N-C$ H_2N H_2N
2114	H ₂ N H ₃ C—CH ₂ -	2	2	1	-	н	$-CH_2-N-C$ H_2N H_2N
2115	C├ ~ CH₂-	2	2	1	-	н	(F) OCH ₂ CH ₃ -CH-N-C
2116	C├─ \ CH ₂ -	2	2	1	-	н	(F) OCH ₂ CH ₃ -CH-N-C
2117	C	2	2	1	-	н	-CH-N-C-NH
2118	HQ HO—CH ₂ —	1	2	0	R	Н	$-CH_2-N-C-$ H_2N
2119	OH HO-CH ₂ -	1	2	0	R	н	$-CH_2-N-C-$ H_2 H_2 H_2
2120	B	1	2	0	R	н	$-CH_2-N-C-$ H_2 H_2 H_2
2121	OC H ₃	1	2	0	R		-CH ₂ -N-C
2122	C⊢√FCH ₂ -	1	2	0	R	н	$-CH_{2}-N-C-$ $H_{2}N$ $-CH_{2}-N-C-$ $H_{2}N$ $-CH_{2}-N-C-$ $H_{2}N$
2123	CH ₂ -CH ₂ -NO ₂	1	2	0) R	н	-CH ₂ -N-C

Table 1.194

145.0							
Compd.	R ¹ (CH ₂) _j -	k	m	n	chirality	R³	$-(CH_2)_{p} + \frac{R^4}{R^5} (CH_2)_{q} - G - R^6$
2124	O ₂ N CI————————————————————————————————————	1	2	0	R	н	-CH ₂ -N-C- H H ₂ N
2125	O ₂ N H ₃ CO—CH ₂ —	1	2	0	R	н	$-CH_{2}-N-C-$ $H_{2}N$ $H_{2}N$
2126	O_2N H_3C — CH_2 -	1	2	0	R	н	$-CH_2-N-C-$ H_2 H_2 H_2 H_2
2127	CH ₂ -	1	2	0	R	н	$-CH_2-N-C-$ H_2 H_2 N
2128	H ₂ N H ₃ CO—CH ₂ -	1	2	0	R	н	-CH ₂ -N-C
2129	H_2N H_3C — CH_2 —	1	2	0	R	Н	-CH ₂ -N-C
2130	Q ⁻ N= CH₂-	2	2	1	-	Н	$-CH_2-N-C +$ H_2N
2131	CH ₃ CH ₂ − CH ₃	2	2	1	-	н	$-CH_2-N-C$ H H_2N
2132	H ₂ N CI—CH ₂ -	1	2	. 0	R	н	-CH ₂ -N-C
2133	(H ₃ C) ₂ N C⊢ CH ₂ -	1	2	0	R	н	$-CH_2-N-C$ $-CH_2-N-C$ $-CH_2-N-C$ $-CH_2-N-C$ $-CH_2-N-C$ $-CH_2-N-C$ $-CF_3$ $-CF_3$ $-CF_3$ $-CF_3$
2134	O CH ₂ - N(CH ₃) ₂	1	2	0	R	н	-CH ₂ -N-C- H ₂ N

Table 1.195

lable	1.133						
Compd.	R ¹ (CH ₂)j-	k	m	n	chirality	R ³	$-(CH_2)_{p} + (CH_2)_{q} - G^{-R^6}$
2135	(H ₃ C) ₂ N H ₃ CO———CH ₂ —	1	2	0	R	н	-CH ₂ -N-C
2136	(H ₃ C) ₂ N H ₃ C—CH ₂ -	1	2	0	R	н	$-CH_{2}-N-C-$ $H_{2}N$ $H_{2}N$
2137	CH₃ CH₂−	1	2	0	R	н	$-CH_2-N-C-$ H_2 H_2 N
2138	CH ₃ CH ₂ - CH ₃	1	2	0	R	н	$-CH_2-N-C-$ H_2N
2139	H ₃ C, Cl CH ₂ - CH ₃	1	2	0	R	Н	-CH ₂ -N-C
2140	CH ₂ -	2	2	1	-	Н	-CH ₂ -N-C
2141	H ₂ N HO—CH ₂ -	2	2	1	-	н	-CH ₂ -N-C
2142	H ₂ N CH—CH ₂ -	2	2	1	-	н	-CH ₂ -N-C
2143	HMC-CH3	2	2	1	-	н	$-CH_2-N-C$ H_2N
2144	H ₂ N H ₃ CO-CH ₂ -	2	2	1	-	Н	$-CH_2-N+C H_2N$ CF_3
2145	H ₂ N HO-CH ₂ -	2	2	1		Н	-CH ₂ -N-C-CF ₃

Table 1.196

Compd.	R ¹ (CH ₂)j-	k	m	n	chirality	R³	$-(CH_2)_{\overline{p}} + (CH_2)_{\overline{q}} - G - R^6$
2146	CH ₂ -NH ₂	2	2	1	-	н	-CH ₂ -N-C-CF ₃
2147	H ₃ C-C-NH H ₃ CO-CH ₂ -	2	2	1	-	н	$-CH_{2}-N-C-$ $H_{2}N$
2148	$\begin{array}{c} Q \\ H_3 C \cdot C - NH \\ HO \longrightarrow CH_2 - \end{array}$	2	2	1	-	Н	$-CH_2-N-C-$ H_2 H_2 H_2
2149	O ₂ N HO-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃
2150	$\begin{array}{c} Q \\ H_3 \text{ C-C-NH} \\ CI$	1	2	0	R	Н	$-CH_2-N$ CF_3 H_2N
2151	CH₂- HM·C-CH₃	1	2	0	R	Н	-CH ₂ -N-C-CF ₃
2152	H ₃ C-C-NH H ₃ CO-CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-CF ₃
2153	H ₃ C-C-NH H ₃ C-CH₂-	1	2	0	R	н	-CH ₂ -N-C-CF ₃
2154	H ₃ C-C-NH H ₃ CO-CH ₂ -	2	2	1		н	$-CH_{2}-N+C$ $H_{2}N$ $-CH_{2}-N+C$ $H_{2}N$ CF_{3} $-CH_{2}-N+C$ $H_{2}N$ CF_{3}
2155	H ₃ C-C-NH HO-CH ₂ -	2	2	1	-	н	$-CH_2-N-C-$ H_2N H_2N
2156	HNC-CH3						$-CH_2-N-C H_2N$ H_2N

Table 1.197

Table I							
Compd.	R^1 $(CH_2)_j$	k	m	n	chirality	R³	$-(CH_2)_p + (CH_2)_q - G-R^6$
2157	HO—CH ₂ —	1	2	0	R	н	$-CH_2-N-C H_2N$ CF_3
2158	H ₃ C-NH HO—————CH ₂ -	1	2	0	R	н	$-CH_2-NCH_2$
2159	H ₃ C-NH H ₃ CO-CH ₂ -	2	2	1	-	Н	$-CH_{2}-N-C$ $H_{2}N$ $H_{2}N$
2160	H ₃ C-NH HO—————CH ₂ -	2	2	1		н	$-CH_2-N-C$ H_2 H_2 H_2 H_3
2161	H ₃ C-NH CH ₂ -CH ₂ -	2	2	1	-	н	$-CH_2-N-C$
2162	H ₃ C-NH H ₃ CO-CH ₂ -	2	2	1	-	н	$-CH_2-NC-$ H_2N
2163	H ₃ C-NH HO-CH ₂ -	2	2	1	-	н	-CH ₂ -N-C-CF ₃
2164	CH ₃	1	2	0	R	н	$-CH_2-N-C \longrightarrow H_2N$
	H N CH₂-			0	R	н	$-CH_2-N+C H_2N$ CF_3
2166	[1	2	C) R	н	$-CH_{2}-N+C-$ $H_{2}N$ $-CH_{2}-N+C-$ $H_{2}N$ CF_{3} $-CH_{2}-N+C-$ $H_{2}N$ CF_{3}
2167	H N CH ₂ -	1	2	C) R	н	$-CH_2-NC H_2N$

Table 1.198

Compd.	D ² ∕ ` ^{2′} ¹	k	m	n	chirality	R ³	$-(CH_2)_{p} + (CH_2)_{q} - (CH_2)_{p} + (CH_2)_{q} - (CH_2)_{q}$
2168	Q C-OCH ₃ H ₃ C CH ₂ - H ₃ C CH ₃	1	2	0	R	н	$-CH_2-N$ H_2N CF_3
2169	H_3C CH_3 CH_3 CH_3					н	$-CH_2-NC- \longrightarrow CF_3$ H_2N
2170	C1 CN−CH2−	1	2	0	R	н	$-CH_2-N C - CF_3$ $H_2 N$
2171	H ₃ C CH ₂ -	1	2	0	R	н	$-CH_2-N-C-$ H_2 H_2 H_2
2172	F ₃ C CH ₂ -CH ₂ -	1	2	0	R	н	$-CH_2-N-C$ H_2N
2173	S—CH ₂ - N—CH ₂ - CH ₃	1	2	0	R	Н	-CH ₂ -N-C
2174	H ₃ C CH ₃ B CH ₂ -	1	2	0	R	н	-CH ₂ -N-C
2175	H ₃ CO-\ N-CH ₂ -	1	2	0	R	н	$-CH_2-NC$ H_2N CF_3
2176	H ₃ C CH ₂ -	1	2	0	R	н	$-CH_2$ -N-C- \longrightarrow H_2N
2177	H ₃ C OH CH ₂ CH CH ₂ CH	1	2	0	R	н	$-CH_2-N-C \longrightarrow H_2N$
2178	H ₃ CO-C	1	2	0	R	н	$\begin{array}{c} & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ &$

Table 1.199

lable i	.133		_				
Compd.	R ¹ (CH ₂) _j -	k	m	n	chirality	R³	$-(CH_2)_{p}$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$
2179	H ₃ C-Ç-NCH ₂ -	1	2	0	R	н	$-CH_2-N+C-$ H_2N
2180	C-(CH ₂) ₂ -	1	2	0	R	н	$-CH_2-NCC \longrightarrow H_2N$
2181	H ₃ CO N CH ₂ -	1	2	0	R	н	-CH ₂ -N-C
2182	H ₃ C N CH ₂ -	1	2	0	R	н	$-CH_2-N$ $+C$ $+C$ $+C$ $+C$ $+C$ $+C$ $+C$ $+C$
2183	Ş-N N⇒ CH₂-	1	2	0	R	Н	$-CH_2-N-C$ H_2N
2184	S-N CH2-	2	2	1	-	Н	$-CH_2-N-C$ H_2N
2185	Ş-N N= CH₂-	2	2	1	-	н	$-CH_2-N-C \longrightarrow H_2N$
2186	H N CH ₂ -	2	2	. 1	-	Н	-CH ₂ -N-C-\(\sigma\) H ₂ N
2187	H ₂ N HO—CH ₂ —	1	2	C) R	н	$-CH_2-NC- \longrightarrow_{H_2N}^{CF_3}$
2188	CH ₂ -	2	2	1	I -	н	$-CH_2-N$ CF_3 H_2N
2189	CH ₂ -	1	2	() R	н	$-CH_2-N-C H_2N$

Table 1.200

Compd.	R ¹ (CH ₂),-	k	m	n	chirality	R³	-(CH ₂) _p + (CH ₂) _q G-R ⁶
2190	O CH₂-	2	2	1	-	н	$-CH_2-N-C-$ H_2N
2191	CH ₂ -	2	2	1	-	н	$-CH_2-N$ CF_3 H_2N
2192	CH ₂ -	2	2	1	-	Н	-CH ₂ -N-C- H ₂ N
2193	SH CH ₂ -	2	2	1	-	н	-CH ₂ -N-C
2194	H_2N H_3C — CH_2 —	2	2	1	-	Н	-CH ₂ -N-C-S
2195	H ₂ N CH ₂ -	2	2	1	-	Н	$-CH_2-N-C$ H_2N
2196	H ₃ C-NH H ₃ C-CH ₂ -	1	2	0	R	н	$-CH_2-N-C \longrightarrow H_2N$
2197	H ₃ C-NH H ₃ CO-CH ₂ -	1	2	0	R	н	$-CH_2-N-C-$ H_2N H_2N
2198	H ₃ C-NH CH ₂ -	1	2	0	R	н	$-CH_2-N-C$ H_2N CF_3
2199	H_3C-NH H_3C-CH_2-	2	2	1	-	н	$-CH_{2}-N+C$ $H_{2}N$ $-CH_{2}-N+C$ $H_{2}N$ CF_{3} CF_{3} CF_{3}
2200	H ₃ C-NH CH ₂ -CH ₂ -	2	2	1	-	н	$-CH_2-N$ CF_3 H_2N

Table 1.201

Compd.	R ¹ -(CH ₂) _j -	k	m	n	chirality	R³	$-(CH_2)_{p} + \frac{R^4}{R^5} (CH_2)_{q} - G^{-R^6}$
2201	H ₃ C-NH H ₃ C-CH ₂ -	2	2	1	-	н	-CH ₂ -N-C
2202	SH CH ₂ -	1	2	0	R	н	-CH ₂ -N-C
2203	CH ₂ -	2	2	1	-	н	$-CH_2-N-C F$ H H_2N
2204	CH ₃ CH ₂ -	2	2	1	-	н	-CH ₂ -N-C-CF ₃
2205	CH ₃ CH ₂ −	2	2	1	-	н	$-CH_{2}-N-C$ $+D_{2}N$ $+D_{2}N$
2206	CH ₃	2	2	1	-	н	$-CH_2-N-C-$ H_2N H_2N
2207	CH ₃	2	2	1	-	н	$-CH_2-N-C$ H_2N
2208	HN-CH ₃	2	2	1	i -	Н	$-CH_2-N-C-$ H_2N
2209	HN-CH ₃	2	2		1 -	н	$-CH_2-N-C$ H_2N

The present invention can also use acid addition salt of the cyclic amine compound where such acids include, for example, mineral acids such as hydrochloric acid, hydrobromic acid, sulfuric acid, phosphoric acid, carbonic acid, and the like, as well as organic acids such as maleic acid, citric acid, malic acid, tartaric acid, fumaric acid, methanesulfonic acid, trifluoroacetic acid, formic acid, and the like.

Furthermore, the present invention can also use a C_1 - C_6 alkyl addition salt of the cyclic amine compound, such as $1-(4-\text{chlorobenzyl})-1-\text{methyl}-4-[\{N-(3-\text{trifluoromethylbenzoyl})\text{glycyl}\}$ aminomethyl]piperidinium iodide, where such alkyl include, for example, a methyl, ethyl, n-propyl, n-butyl, n-pentyl, n-hexyl, n-heptyl, n-octyl, isopropyl, isobutyl, sec-butyl, tert-butyl, isopentyl, neopentyl, tert-pentyl, 2-methylpentyl, 1-ethylbutyl, and the like, suitably specifically including, a methyl and ethyl group. As preferred specific examples for counter anion of the ammonium cation, a halide anion such as fluoride, chloride, bromide or iodide can be listed.

The present invention may use racemates and all possible optically active forms of the compound represented by the above formula (I).

Compound represented by the above general formula (I) can be synthesized by any of the general preparations given below.

(Preparation 1)

5

10

15

20

A preparation which call for treating one equivalent of a compound 25 represented by the formula (II) below:

$$\begin{array}{c}
R^{1} \longrightarrow (CH_{2})_{j} - N \longrightarrow (CH_{2})_{n} - NH \\
R^{2} \longrightarrow (CH_{2})_{m} \longrightarrow (CH_{2})_{n} - NH \\
R^{3} \longrightarrow (CH_{2})_{m} \longrightarrow (CH_{2})_{n} - NH
\end{array}$$

(where R^1 , R^2 , R^3 , j, k, m, and n are the same as defined respectively in the above formula (I)) with 0.1-10 equivalents of a carboxylic acid represented by the formula (III) below:

$$\begin{array}{c} O \\ HO - C - (CH_2)_p - \stackrel{R^4}{\longleftarrow} (CH_2)_q - G - R^6 \end{array}$$
 (III)

(where R^4 , R^5 , R^6 , G, p, and q are the same as defined respectively in the above formula (I)), or its reactive derivative, either in the absence or presence of solvent.

The reactive derivative for the carboxylic acid in the above formula (III) include highly reactive carboxylic acid derivatives, which are usually used in synthetic organic chemistry, such as acid halides, acid anhydrides, mixed acid anhydrides.

Such reactions can be more smoothly run by using suitable amounts of a dehydrating agent such as molecular sieve, coupling reagent such as N-ethyl-N'-(3-(DCC), dicyclohexylcarbodiimide 10 dimethylaminopropyl)carbodiimide (EDCI or WSC), carbonyldiimidazole (CDI), $extit{N-hydroxysuccinimide}$ (HOSu), $extit{N-hydroxybenzotriazole}$ (HOBt), benzotriazol-lyloxytris(pyrrolidino)phosphonium hexafluorophosphate (PyBOP[©]), benzotriazol-1-yl)-1,1,3,3-tetramethyluronium hexafluorophosphate 2-(1H-benzotriazol-1-yl)-1,1,3,3-tetramethyluronium tetrafluoroborate (TBTU),15 2-(5-norbornene-2,3-dicarboxyimido)-1,1,3,3-tetramethyluronium O-(N-succinimidyl)-1,1,3,3-tetramethyluronium (UTNTU), tetrafluoroborate tetrafluoroborate (TSTU), bromotris(pyrrolidino)phosphonium hexafluorophosphate (PyBrop $^{\otimes}$), and the like, or base including inorganic salts such as potassium carbonate, sodium carbonate, sodium hydrogencarbonate, and the like, amines such 20 as triethylamine, diisopropylethylamine, and pyridine, and the like, or polymer (piperidinomethyl)polystyrene, as such supported (diethylaminomethyl)polystyrene, poly(4-(morpholinomethyl)polystyrene, vinylpyridine), and the like.

25
 (Preparation 2)

A preparation which calls for treating 1 equivalent of an alkylating reagent given by the formula (IV) below:

$$\begin{array}{c}
R^1 \\
 \longrightarrow (CH_2)_j -X
\end{array}$$
(IV)

30

5

{where R^1 , R^2 , and j are the same as defined respectively in the above formula (I)}; X represents a halogen atom, alkylsulfonyloxy group, or arylsulfonyloxy group}, with 0.1-10 equivalents of a compound represented by the formula (V) below:

$$\begin{array}{c} \text{HN} \\ \text{HN} \\ \text{(CH2)}_{m} \\ \text{(CH2)}_{m} \\ \end{array} \\ \begin{array}{c} \text{O} \\ \text{N} \\ \text{C} \\ \text{P}_{2} \\ \text{Q}_{p} \\ \end{array} \\ \begin{array}{c} \text{R}^{4} \\ \text{(CH2)}_{q} \\ \text{-G-R}^{6} \\ \text{(V)} \\ \text{$$

(where R^5 , R^4 , R^5 , R^6 , G, k, m, n, p, and q are the same as defined respectively in the above formula (I)) either in the absence or presence of solvent.

Such reactions can be more smoothly run if a base similar to that used in the above preparation 1 is present. In addition, the reactions in these preparations can also be promoted by iodide such as potassium iodide, sodium iodide, and the like.

In the above formulas (IV), X represents a halogen atom, alkylsulfonyloxy group, arylsulfonyloxy group. Such halogen atoms include preferably chlorine, bromine, and iodine atoms. Suitable specific examples for the alkylsulfonyloxy groups include methylsulfonyloxy, trifluoromethylsulfonyloxy group, and the like. A preferred specific example for the arylsulfonyloxy group includes a tosyloxy group.

15 (Preparation 3)

5

10

A preparation which calls for treating 1 equivalent of an aldehyde represented by the formula (VI) below:

$$R^1$$
 (CH₂)_{j-1}-CHO (VI)

Where R^1 and R^2 are the same as defined respectively in the above formula (I); j represents 1 or 2) or the formula (VII) below:

(where R^1 is the same as defined in the above formula (I); j represents 0), with 0.1-10 equivalents of a compound represented by the formula (V) either in the absence or presence of solvent under reductive conditions.

Such reactions are in general called reductive amination reactions and such reductive conditions may be generated by catalytic hydrogenation using a catalyst containing a metal such as palladium, platinum, nickel, rhodium, or the like, using complex hydrides, such as lithium aluminum hydride, sodium borohydride, sodium cyanoborohydride, sodium triacetoxyborohydride, and the

like, boranes, or electrolytic reduction, and the like.

(Preparation 4)

10

20

A preparation which call for treating one equivalent of a compound 5 represented by the formula (VIII) below:

$$\begin{array}{c|c}
R^{1} & \nearrow & (CH_{2})_{j} - N \\
R^{2} & (CH_{2})_{m} & (CH_{2})_{m}
\end{array}$$

$$\begin{array}{c|c}
& CH_{2} \\
& R^{3}
\end{array}$$

$$\begin{array}{c|c}
& CH_{2} \\
& R^{3}
\end{array}$$

$$\begin{array}{c|c}
& CH_{2} \\
& R^{5}
\end{array}$$

$$\begin{array}{c|c}
& CH_{2} \\
& R^{7}
\end{array}$$

$$\begin{array}{c|c}
& (VIII)
\end{array}$$

(where R^1 , R^2 , R^3 , R^4 , R^5 , R^7 , j, k, m, n, p and q are the same as defined respectively in the above formula (I)) with 0.1-10 equivalents of a carboxylic acid or sulfonic acid represented by the formula (IX) below:

$$HO-A-R^6$$
 (IX)

{where R⁶ is the same as defined in the above formulas (I); "A" represents a

15 carbonyl group or sulfonyl group), or its reactive derivative, either in the
absence or presence of solvent.

The reactive derivative for the carboxylic acid or sulfonic acid in the above formula (IX) include highly reactive carboxylic acid or sulfonic acid derivative, which are usually used in synthetic organic chemistry, such as acid halides, acid anhydrides, mixed acid anhydrides.

Such reactions can be more smoothly run by using suitable amounts of a dehydrating agent, coupling reagent, or base which are similar to those used in the above preparation 1.

25 (Preparation 5)

A preparation which calls for treating 1 equivalent of a compound represented by the above formula (VIII) with 0.1-10 equivalents of a isocyanate or isothiocyanate represented by the formula (X) below:

$$30 Z=C=N-R^{6} (X)$$

{where R^2 is the same as defined in the above formulas (I)}; Z represents a oxygen atom or sulfur atom}, either in the absence or presence of solvent.

(Preparation 6)

5

15

20

25

30

A preparation which calls for treating 1 equivalent of a compound represented by the formula (XI) below:

$$\begin{array}{c}
R^{1} \longrightarrow (CH_{2})_{j} - N \longrightarrow (CH_{2})_{n} \longrightarrow (CH_{2})_{n} - N - C \longrightarrow (CH_{2})_{p} \longrightarrow (CH_{2})_{p} \longrightarrow (CH_{2})_{q} - A - OH
\end{array}$$
(XI)

(where R^1 , R^2 , R^3 , R^4 , R^5 , j, k, m, n, p and q are the same as defined respectively in the above formula (I)); "A" represents a carbonyl group or sulfonyl group) with 0.1-10 equivalents of an amine represented by the formula (XII) below:

$$R^{6}-NH_{2} \tag{XII}$$

(where R^{ϵ} is the same as defined in the above formula (I)), either in the absence or the presence of solvent.

Such reactions can be more smoothly run by using suitable amounts of a dehydrating agent, coupling reagent, or base which are similar to those used in the above preparation 1.

If the substrates submitted to each of the above preparations contains a substituent which reacts under each reaction condition or is thought to adversely affect the reaction in general in synthetic organic chemistry, that functional group can be protected by a known suitable protecting group followed by the reaction of the above preparations and deprotection using a known procedure to obtain the desired compound.

Furthermore, a compound of the present invention can be prepared by the further conversion of the substituent(s) of the compound, prepared with the above preparations 1-6, using known reactions which are usually used in synthetic organic chemistry, such as alkylation, acylation, reduction, and so on.

Each of the above preparations may use solvents for the reaction such as halogenated hydrocarbons such as dichloromethane, chloroform, and the like, aromatic hydrocarbons such as benzene, toluene, and the like, ethers such as diethyl ether, tetrahydrofuran, and the like, esters such as ethyl acetate, aprotic polar solvents such as dimethylformamide, dimethyl sulfoxide, acetonitrile, and the like, alcohols such as methanol, ethanol, isopropyl alcohol, and the like.

The reaction temperature in either of the preparations should be in the range of -78 °C - \pm 150 °C, preferably 0 °C - 100 °C. After completion of the reaction, the usual isolation and purification operations such as concentration, filtration, extraction, solid-phase extraction, recrystallization, chromatography, and the like may be used, to isolate the desired cyclic amine compound represented by the above formula (I). These can be converted into pharmaceutically acceptable acid addition salt or C_1 - C_6 alkyl addition salt by the usual method.

10 Potential Industrial Utilities

5

15

20

The chemokine receptor antagonist, which contain the cyclic amine compound, its pharmaceutically acceptable acid addition salt or a pharmaceutically acceptable C_1 - C_{ϵ} alkyl addition salt of this invention, which inhibits chemokines such as MIP- 1α and/or MCP-1 and the like from action on target cells, are useful as therapeutic agents and/or preventive preparation for diseases such as atherosclerosis, rheumatoid arthritis, psoriasis, asthma, ulcerative colitis, nephritis (nephropathy), multiple sclerosis, pulmonary fibrosis, myocarditis, hepatitis, pancreatitis, sarcoidosis, Crohn's disease, endometriosis, congestive heart failure, viral meningitis, cerebral infarction, neuropathy, Kawasaki disease, sepsis, and the like, in which tissue infiltration of blood monocytes, lymphocytes, and the like plays a major role in the initiation, progression, and maintenance of the disease.

Examples

The present invention is now specifically described by the following examples. However, the present invention is not limited to these compounds described in these examples. Compound numbers in these examples represent numbers attached to these compounds listed as suitable specific examples in Tables 1.1-1.201.

Reference Example 1: Preparation of 3-Amino-1-(4-chlorobenzyl)pyrrolidine dihydrochloride.

- 4-Chlorobenzyl chloride (4.15 g, 25.8 mmol) and ${}^{1}\text{Pr}_{2}\text{NEt}$ (6.67 g, 51.6 mmol) were added to a solution of 3-{(tert-butoxycarbonyl)amino}pyrrolidine (4.81 g, 25.8 mmol) in DMF (50 mL). The reaction mixture was stirred at 70 °C for 15 h and the solvent was removed under reduced pressure. Recrystallization (CH₃CN, 50 mL) provided the desired material, 3-(tert-butoxycarbonyl)amino-1-(4-chlorobenzyl)pyrrolidine as a pale yellow solid (6.43 g, 80.2%): ${}^{1}\text{H}$ NMR (CDCl₃, 300 MHz) δ 1.37 (s, 9 H), 1.5-1.7 (br, 1 H), 2.1-2.4 (m, 2 H), 2.5-2.7 (m, 2 H), 2.83 (br, 1 H), 3.57 (s, 2 H), 4.1-4.3 (br, 1 H), 4.9-5.1 (br, 1 H), 7.15-7.35 (br, 4 H); The purity was determined by RPLC/MS (98%); ESI/MS m/e 311.0 (M*+H, Cloft₁₄ClN₂O₂).
- 20 A solution of 3-(tert-butoxycarbonyl)amino-1-(4-chlorobenzyl)pyrrolidine (6.38 g, 20.5 mmol) in CH₃OH (80 mL) was treated with 1 N HCl-Et₂O (100 mL) and was stirred at 25 °C for 15 h. The solvent was removed under reduced pressure to afford a solid which was purified by recrystallization (1:2 CH₃OH-CH₃CN, 150 mL) to give 3-amino-1-(4-chlorobenzyl)pyrrolidine dihydrochloride as a white powder (4.939 g, 84.9%): ¹H NMR (d₆-DMSO, 300 MHz) δ 3.15 (br, 1 H), 3.3-3.75 (br-m, 4 H), 3.9 (br, 1 H), 4.05 (br, 1 H), 4.44 (br, 1 H), 4.54 (br, 1 H), 7.5-7.7 (m, 4 H), 8.45 (br, 1 H), 8.60 (br, 1 H); The purity was determined by RPLC/MS (>99%); ESI/MS m/e 211.0 (M*+H, C₁₁H₁₆ClN₂).
- 30 Optically active (R)-3-amino-1-(4-chlorobenzyl)pyrrolidine dihydrochloride and (S)-3-amino-1-(4-chlorobenzyl)pyrrolidine dihydrochloride were also prepared pursuant to the above method using the corresponding reactant respectively. The products showed the same 1 H NMR with that of the racemate.
- 35 Example 1: Preparation of 3-(N-Benzoylglycyl)amino-1-(4-chlorobenzyl)pyrrolidine (Compound No. 1).

N-Benzoylglycine (9.9 mg, 0.055 mmol), 3-ethyl-1-{3-(dimethylaminopropyl)carbodiimide hydrochloride (EDCI) (10.5 mg) and 1-

hydroxybenzotriazole hydrate (HOBt) (7.4 mg) were added to a solution of 3-amino-1-(4-chlorobenzyl)pyrrolidine dihydrochloride (14.2 mg, 0.050 mmol) and Et₃N (15.2 mg) in CHCl₃ (2.5 mL). The reaction mixture was stirred at 25 °C for 16 h, washed with 2 N aqueous NaOH (2 mL x 2) and brine (1 mL). After filtration through a PTFE membrane filter, the solvent was removed under reduced pressure to afford 3-(N-benzoylglycyl)amino-1-(4-chlorobenzyl)pyrrolidine (compound No. 1) as a pale yellow oil (17.7 mg, 95%): The purity was determined by RPLC/MS (95%); ESI/MS m/e 372.0 (M'+H, C₂₀H₂₂ClN₃O₂).

10 Examples 2-32.

15

The compounds of this invention were synthesized pursuant to methods of Example, 1 using the corresponding reactant respectively. The ESI/MS data and yields are summarized in Table 2.

Table 2

	Compound No.	Molecular Formula	ESI/MS m/e	Yield (mg)	Yield (%)
Example 2	2	C21 H24 Cl N3 O2	386	16.4	85
Example 3	3	C19 H21 C1 N4 O2	373	18.7	100
Example 4	4	C21 H21 C1 F3 N3 O2	440	57.2	69
Example 5	82	C22 H23 C1 F3 N3 O2	454	5.6	11
Example 6	85	C21 H24 C1 N3 O2	386	22.6	59
Example 7	86	C21 H23 C1 N4 O4	431	21.2	98
Example 8	214	C22 H25 C1 N2 O2	385	23.9	62
Example 9	215	C23 H27 C1 N2 O3	415	17.4	84
Example 10	216	C20 H23 C1 N2 O2 S	391	21.6	quant
Example 11	217	C23 H27 C1 N2 O4	431	15.3	66
Example 12	218	C23 H27 C1 N2 O2	399	12.8	64
Example 13	219	C22 H24 C1 F N2 O3	419	18.1	86
Example 14	220	C22 H25 C1 N2 O2	385	16.4	85
Example 15	221	C21 H23 C1 N2 O2	371	14.9	80
Example 16	222	C21 H22 C12 N2 O2	405	13.3	65
Example 17	223	C25 H31 C1 N2 O3	443	18.4*	63
Example 18	224	C20 H23 C1 N2 O3 S	407	11.2	28
Example 19	225	C22 H26 C1 N3 O2	400	22.7	quant
Example 19	226	C23 H28 C1 N3 O3	430	21.0	98
	227	C22 H25 C12 N3 O2	434	21.9	100
Example 21		C23 H28 C1 N3 O3	430	20.8	97
Example 22	228	C23 H28 C1 N3 U3	430	20.0	

Example 23	229	C25 H32 C1 N3 O2	462	25.4	quant
Example 24	230	C26 H31 C1 F N3 O2	472	26.0	quant
Example 25	231	C24 H28 C1 N3 O3	442	30.3*	quant
Example 26	232	C22 H32 C1 N3 O2	406	3.9	19
Example 27	233	C23 H28 Cl N3 O2	414	8.5	41
Example 28	234	C22 H27 C1 N4 O2	415	7.3	35
Example 29	235	C24 H29 Cl2 N3 O2	462	9.0	39
Example 30	236	C25 H29 C1 N4 O3 S	501	17.4	69
Example 31	237	C21 H24 C1 N3 O3	402	14.2	71
Example 32	238	C21 H23 C12 N3 O3	436	23.4	quant

^{*}Yield of TFA salt.

5

10

15

20

25

Reference Example 2: Preparation of (R)-3-{N-(tert-Butoxycarbonyl)glycyl)amino-1-(4-chlorobenzyl)pyrrolidine.

A mixture of (R)-3-amino-1-(4-chlorobenzyl)pyrrolidine dihydrochloride (4.54 g, 16.0 mmol), 2 N NaOH solution (80 mL), and ethyl acetate (80 mL) was shaken, the organic layer was separated, and the aqueous layer was extracted with ethyl acetate (80 mL x 2). The combined organic layers were dried over anhydrous sodium sulfate, filtered, and evaporated to give free (R)-3-amino-1-(4-chlorobenzyl)pyrrolidine (3.35 g, 99%).

A solution of (R)-3-amino-1-(4-chlorobenzyl)pyrrolidine (3.35 g, 16 mmol) in CH_2Cl_2 (80 mL) was treated with Et_2N (2.5 mL, 17.6 mmol), N-tertbutoxycarbonylglycine (2.79 g, 16.0 mmol), EDCI (3.07 g, 16.0 mmol) and HOBt (2.16 q, 16 mmol). After the reaction mixture was stirred at 25 °C for 16 h, 2 N NaOH solution (80 mL) was added. The organic layer was separated, and the aqueous layer was extracted with dichloromethane (100 mL x 3). The combined organic layer was washed with water (100 mL x 2) and brine (100 mL), dried over anhydrous sodium sulfate, filtered, and concentrated. Column chromatography acetate) afforded the desired (R) - 3 - (N - (tert ethyl (SiO₂, butoxycarbonyl)glycyl)amino-1-(4-chlorobenzyl)pyrrolidine (5.40 g, 92%).

Reference Example 3: Preparation of (R)-1-(4-Chlorobenzyl)-3-(glycylamino)pyrrolidine.

To a solution of $(R)-3-\{N-(tert-butoxycarbonyl)glycyl\}$ amino-1-(4-chlorobenzyl)pyrrolidine (5.39 g, 14.7 mmol) in methanol (60 mL) was added 4 N HCl in dioxane (38 mL). The solution was stirred at room temperature for 2 h. The reaction mixture was concentrated and 2 N NaOH solution (80 mL) was added. The mixture was extracted with dichloromethane (80 mL x 3), and the combined

extracts were dried over sodium sulfate and concentrated. Column chromatography (SiO, AcOEt/EtOH/Et;N = 90/5/5) gave (R)-3-(glycyl) amino-1-(4-chlorobenzyl) pyrrolidine (3.374 g, 86%): 1 H NMR (CDCl, 270 MHz) δ 1.77 (dd, J = 1.3 and 6.9 Hz, 1 H), 2.20-3.39 (m, 2 H), 2.53 (dd, J = 3.3 and 9.6 Hz, 1 H), 2.62 (dd, J = 6.6 and 9.6 Hz, 1 H), 2.78-2.87 (m, 1 H), 3.31 (s, 2 H), 3.57 (s, 2 H), 4.38-4.53 (br, 1 H), 7.18-7.32 (m, 4 H), 7.39 (br. s, 1 H).

Other 3-acylamino-1-(4-chlorobenzyl)pyrrolidines were also synthesized pursuant to methods of Reference Example 2 and 3 using the corresponding reactants respectively.

- (S)-1-(4-Chlorobenzyl)-3-(glycylamino) pyrrolidine: 3.45 g, 79% (2 steps).
- (R)-3-(β -Alanylamino)-1-(4-chlorobenzyl)pyrrolidine: 3.79 g, 85% (2 steps).
- 15 $(S)-3-(\beta-Alanylamino-)1-(4-chlorobenzyl)$ pyrrolidine: 3.72 g, 86% (2 steps).
 - $(R)-3-\{(S)-Alanylamino\}-1-(4-chlorobenzyl)$ pyrrolidine: 368 mg, 65% (2 steps).
- $(R)-3-\{(R)-Alanylamino\}-1-(4-chlorobenzyl) \ pyrrolidine: \ 425 \ mg, \ 75\% \ (220 \ steps).$
 - (R)-3- $\{(2S)$ -2-Amino-3-thienylpropanoyl $\}$ amino-1- $\{4$ -
 - chlorobenzyl)pyrrolidine: 566 mg, 78% (2 steps).
 - $(R)-3-\{(2R)-2-Amino-3-thienylpropanoyl\}$ amino-1- $\{4-1\}$
 - chlorobenzyl)pyrrolidine: 585 mg, 81% (2 steps).
- 25 (R)-3-(2-Amino-2-methylpropanoyl)amino-1-(4-chlorobenzyl)pyrrolidine: 404 mg, 66% (2 steps).
 - $(R) 3 \{ (2S) 2 Amino 4 (methylsulfonyl) \ butanoyl \} \ amino 1 (4 chlorobenzyl) \ pyrrolidine: 535 \ mg, 72 \% (2 steps).$
- Furthermore (R)-3-(glycylamino)-1-(4-methylbenzyl)pyrrolidine, (R)-1-(4-bromobenzyl)-3-(glycylamino)pyrrolidine, (R)-1-(2,4-dimethylbenzyl)-3-(glycylamino)pyrrolidine, and (R)-1-(3,5-dimethylisoxazol-4-ylmethyl)-3-(glycylamino)pyrrolidine were also synthesized pursuant to methods of Reference Example 1, 2 and 3 using the corresponding reactants respectively.
- 35 (R)-3-(Glycylamino)-1-(4-methylbenzyl)pyrrolidine: 4.65 g, 62% yield from 3-((tert-butoxycarbonyl)amino)pyrrolidine.
 - (R)-1-(4-Bromobenzyl)-3-(glycylamino)pyrrolidine: 2.55 g, 68% yield from (R)-3-amino-1-(4-bromobenzyl)pyrrolidine; 1 H NMR (CDCl;, 270 MHz) 3

5

1.37-1.78 (m, 3 H), 2.23-2.39 (m, 2 H), 2.50-2.67 (m, 2 H), 2.80-2.89 (m, 1 H), 3.32 (s, 2 H), 3.58 (s, 2 H), 4.39-4.55 (m, 1 H), 7.21 (d, J = 6.5 Hz, 2 H), 7.45 (d, J = 6.5 Hz, 2 H).

 $(R)-1-(2,4-Dimethylbenzyl)-3-(glycylamino)pyrrolidine: 1.56 g, 58% yield from 3-{(tert-butoxycarbonyl)amino}pyrrolidine; <math>^{1}$ H NMR (CDCl₃, 270 MHz) δ 1.55-1.78 (m, 3 H), 2.30(s, 3 H), 2.23-2.31 (m, 2 H), 2.33(s, 3 H), 2.51-2.63 (m, 2 H), 2.78-2.87 (m, 1 H), 3.30 (s, 2 H), 3.55 (s, 2 H), 4.38-4.60 (m, 1 H), 6.95 (d, J = 7.6 Hz, 1 H), 6.97 (s, 1 H), 7.13 (d, J = 7.6 Hz, 1 H), 7.43 (br-s, 1 H).

 $(R)-1-(3,5-Dimethylisoxazol-4-ylmethyl)-3-(glycylamino)pyrrolidine: 3.14 g, 45% yield from 3-{(tert-butoxycarbonyl)amino}pyrrolidine.$

Example 33: Preparation of (S)-3-[N-(3,5-Bis(trifluoromethyl)benzoyl)glycyl]amino-1-(4-chlorobenzyl)pyrrolidine (Compound No. 5).

A solution of 3,5-bis(trifluoromethyl)benzoyl chloride (0.060 mmol) in chloroform (0.4 mL) was added to a solution of (5)-1-(4-chlorobenzyl)-3-(glycylamino)pyrrolidine (0.050 mmol) and triethylamine (0.070 mmol) in chloroform (1.0 mL). After the reaction mixture was agitated at room temperature for 2.5 h, (aminomethyl)polystyrene resin (1.04 mmol/g, 50 mg, 50 mmol) was added and the mixture was agitated at room temperature for 12 h. The reaction mixture was filtered and the resin was washed with dichloromethane (0.5 mL). The filtrate and washing were combined, dichloromethane (4 mL) was added, and the solution was washed with 2 N aqueous NaOH solution (0.5 mL) to give (5)-3-[N-(3,5-bis(trifluoromethyl)benzoyl)glycyl]amino-1-(4-chlorobenzyl)pyrrolidine (compound No. 5) (14.4 mg, 57%): The purity was determined by RPLC/MS (97%); ESI/MS m/e 508.0 (M*+H, $C_{21}H_{20}C1F_6N_3O_2$).

Examples 34-239.

30 The compounds of this invention were synthesized pursuant to methods of Example 33 using the corresponding reactant respectively. The ESI/MS data and yields are summarized in Table 3.

Table 3

35

10

15

20

·	Compound No.	Molecular	Formula	ESI/MS	m/e	Yield	(mg)	Yield	(8)
Example 34	5	C22H; ClF4N3O2		508.0	0	14.	4	57	

Example 35	6	C21H21ClF3N3O2	440.0	17.0	77
Example 36	7	C20H21BrClN3O2	450.0	17.7	79
Example 37	8	C20H21C1FN3O2	390.0	12.7	65
Example 38	9	C ₂₀ H ₂₀ Cl ₃ N ₃ O ₂	440.0	39.0	quant
Example 39	10	C ₂₁ H _{?4} C1N ₃ O ₃	402.5	23.5	quant
Example 40	11	C22H26C1N3O4	432.5	22.4	quant
Example 41	12	C ₂₂ H ₂₆ ClN ₃ O ₄	432.5	15.9	74
Example 42	13	C ₂₁ H ₂₁ C1F ₃ N ₃ O ₂	440.0	13.1	60
Example 43	14	C ₂₁ H ₂₄ ClN ₃ O ₂	386.0	16.4	85
Example 44	15	C ₂₀ H ₂₁ Cl ₂ N ₃ O ₂	406.0	15.7	77
Example 45	16	C ₂₁ H ₂₄ ClN ₃ O ₂	402.0	28.2	quant
Example 46	17	C ₂₀ H ₂₀ Cl ₃ N ₃ O ₂	442.0	35.6	quant
Example 47	18	C ₂₁ H ₂₁ ClN ₄ O ₂	397.5	22.8	quant
Example 48	19	C ₂₁ H ₂₂ ClN ₃ O ₄	416.0	16.3	78
Example 49	20	C ₂₁ H ₂₀ Cl F ₄ N ₃ O ₂	458.0	24.9	quant
Example 50	21	C ₂₁ H ₂₀ C1F ₄ N ₃ O ₂	458.0	17.9	78
Example 51	22	C ₂₁ H ₂₀ ClF ₄ N ₃ O ₂	458.0	9.4	41
Example 52	23	C ₂₁ H ₂₀ ClF ₄ N ₃ O ₂	458.0	15.4	67
Example 53	24	C ₂₁ H ₂₁ C1F ₃ N ₃ O ₃	456.0	20.7	91
Example 54	25	C ₂₁ H ₂₀ C1F ₄ N ₃ O ₂	458.0	18.5	81
Example 55	26	C ₂₀ H ₂₁ ClN ₄ O ₄	417.0	21.9	quant
Example 56	27	C ₂₀ H ₂₁ ClN ₄ O ₄	417.0	16.8	81
Example 57	28	C ₂₀ H ₂₁ C1N ₄ O ₄	417.0	6.8	33
Example 58	29	C ₂₂ H ₂₀ ClF ₆ N ₃ O ₂	508.0	20.8	82
Example 50 Example 59	30	C ₂₁ H ₂₁ C1F ₃ N ₃ O ₂	440.0	15.2	69
Example 60	31	C ₂₀ H ₂₁ BrClN ₃ O ₂	450.0	15.6	69
Example 60	32	C ₂₀ H ₂₁ C1FN ₃ O ₂	390.0	11.8	61
Example 62	33	C ₂₀ H ₂₀ Cl ₃ N ₃ O ₂	440.0	15.8	72
Example 63	34	C ₂₁ H ₂₄ ClN ₃ O ₃	402.5	33.8	quant
Example 64	35	C ₂₂ H ₂₆ C1N ₃ O ₄	432.5	56.1	quant
Example 65	36	C ₂₂ H ₂₆ ClN ₃ O ₄	432.5	37.6	quant
Example 66	37	C ₂₁ H ₂₁ C1F ₃ N ₃ O ₂	440.0	12.6	57
Example 67	38	C ₂₁ H ₂₄ C1N ₃ O ₂	386.0	12.3	64
Example 67 Example 68	39	C ₂₀ H ₂₁ Cl ₂ N ₃ O ₂	406.0	15.9	78
	40	C ₂₁ H ₂₄ ClN ₃ O ₂	402.0	11.6	58
Example 69	L	C ₂₀ H ₂₀ Cl ₃ N ₃ O ₂	442.0	17.8	81
Example 70	41	C ₂₁ H ₋₁ ClN ₄ O ₂	397.5	22.4	quant
Example 71	42	C ₂₁ H ₂₁ C1N ₄ O ₂ C ₂₁ H ₂₂ C1N ₃ O ₄	416.0	30.1	quant
Example 72	43		458.0	13.4	59
Example 73	44	C ₂₁ H ₂₆ C1F ₄ N ₅ O ₂	458.0	13.4	58
Example 74	45	$C_{21}H_{20}ClF_4N_3O_7$	458.0	13.2	

					
Example 115	89	C ₂₁ H ₂₃ BrClN ₃ O ₂	466.0	15.4	66
Example 116	90	C21H25ClFN3O2	404.0	10.7	53
Example 117	91	$C_{21}H_{22}Cl_3N_3O_2$	456.0	13.7	60
Example 118	92	C ₂₂ H ₂₆ ClN ₃ O ₁	416.0	38.4	quant
Example 119	93	C ₂₃ H ₂₆ ClN ₃ O ₄	446.0	25.2	quant
Example 120	94	C ₂₃ H ₂₃ ClN ₃ O ₄	446.0	16.5	74
Example 121	<u>95</u>	C22H23C1F3N3O2	454.0	16.3	72
Example 122	96	C22H26C1N3O2	400.5	16.7	8 4
Example 123	97	C ₂₁ H ₂₃ Cl ₂ N ₃ O ₂	420.0	11.2	53
Example 124	98	C22H26ClN3O2	416.5	11.8	57
Example 125	99	C ₂₁ H ₂₂ Cl ₃ N ₃ O ₂	454.0	14.8	65
Example 126	100	C ₂₂ H ₂₃ C1N ₄ O ₂	411.0	9.5	46
Example 127	101	C ₂₂ H ₂₄ ClN ₃ O ₄	430.5	13.2	61
Example 128	102	C ₂₂ H ₂₂ ClF ₄ N ₃ O ₂	472.0	13.1	56
Example 129	103	C ₂₂ H ₂₂ ClF ₄ N ₃ O ₂	472.0	36.5	quant
Example 130	104	C ₂₂ H ₂₂ ClF ₄ N ₃ O ₂	472.0	22.8	97
Example 131	105	C ₂₂ H ₂₂ ClF ₄ N ₃ O ₂	472.0	20.1	85
Example 132	106	C ₂₂ H ₂₃ ClF ₃ N ₃ O ₃	470.0	27.4	quant
Example 133	107	$C_{22}H_{22}C1F_4N_3O_2$	472.0	18.5	78
Example 134	108	C ₂₁ H ₂₃ ClN ₄ O ₄	431.0	11.9	55
Example 135	109	C ₂₁ H ₂₂ ClN ₄ O ₄	431.0	23.9	quant
Example 136	110	C21H25ClN4O4	431.0	24.4	quant
Example 137	111	$C_{23}H_{23}ClF_6N_3O_2$	522.0	9.5	36
Example 138	112	$C_{22}H_{23}C1F_3N_3O_2$	454.0	3.9	17
Example 139	113	C ₂₁ H ₂₅ BrClN ₅ O ₂	466.0	7.5	32
Example 140	114	C21H23C1FN3O2	404.0	6.1	30
Example 141	115	C ₂₁ H ₂₂ Cl ₃ N ₃ O ₂	456.0	6.6	29
Example 142	116	C ₂₂ H ₂₆ ClN ₃ O ₃	416.0	4.8	23
Example 143	117	C ₂₃ H ₂₈ ClN ₃ O ₄	446.0	6.4	29
Example 144	118	C ₂₃ H ₂₉ ClN ₃ O ₄	446.0	24.6	quant
Example 145	119	C ₂₂ H ₂₃ ClF ₅ N ₃ O ₂	454.0	5.2	23
Example 146	120	C ₂₂ H ₂₆ ClN ₃ O ₂	400.5	4.4	22
Example 147	121	C ₂₁ H ₂₂ Cl ₂ N ₃ O ₂	420.0	7.8	37
Example 148	122	$C_{22}H_{24}C1N_3O_2$	416.5	14.1	68
Example 149	123	C ₂₁ H ₂₂ Cl ₃ N ₃ O ₂	454.0	5.4	24
Example 150	124	C ₂₂ H ₂₁ ClN ₄ O ₁	411.0	34.0	quant
Example 151	125	C22H24C1N3O4	430.5	32.0	quant
Example 152	126	C22H22C1F4N3O2	472.0	4.6	19
Example 153	127	CaaHaaClF4N3Oa	472.0	10.4	44
Example 154	128	C22H21ClF4N2O2	472.0	7.3	31
1	I	_1			

Example 155	129	CaaHaaClF4N3Oa	472.0	13.5	57
Example 156	130	C ₂₂ H ₂₃ C1F ₃ N ₃ O ₅	470.0	15.1	64
Example 157	131	C ₂₂ H ₂₂ C1F ₄ N ₅ O ₂	472.0	8.6	36
Example 158	132	C21H23ClN4O4	431.0	4.4	20
Example 159	133	C ₂₁ H ₂₅ ClN ₄ O ₄	431.0	32.0	quant
Example 160	134	C ₂₁ H ₂₃ ClN ₄ O ₄	431.0	6.9	32
Example 161	135 -	C ₂₁ H ₂₃ BrClN ₃ O ₂	466.0	7.8	34
Example 162	136	C ₂₁ H ₂₃ ClFN ₃ O ₂	404.0	13.7	68
Example 163	137	C ₂₁ H ₂₃ Cl ₂ N ₃ O ₂	420.5	14.6	69
Example 164	138	C ₂₁ H ₂₂ Cl ₃ N ₃ O ₂	454.0	17.7	78
Example 165	139	C ₂₁ H ₂₂ BrCl ₄ N ₃ O ₂	454.0	17.2	76
Example 166	140	C ₂₂ H ₂₆ ClN ₃ O ₂	400.0	15.0	75
Example 167	141	C ₂₃ H ₂₉ ClN ₃ O ₄	443.5	13.9	62
Example 168	142	C ₂₁ H ₂₃ Cl ₂ N ₃ O ₂	420.0	13.7	65
Example 169	143	C ₂₁ H ₂₃ BrClN ₃ O ₂	464.0	16.1	69
Example 170	144	C ₂₇ H ₂₉ ClN ₃ O ₂	462.0	17.6	76
Example 171	145	$C_{22}H_{23}C1F_3N_3O_2$	454.0	16.0	. 71
Example 172	146	C22H26C1N3O2	400.0	14.9	75
Example 173	147	C ₂₃ H ₂₈ ClN ₃ O ₂	414.0	16.2	78
Example 174	148	C ₂₂ H ₂₅ ClN ₄ O ₂	411.0	14.9	73
Example 175	149	C25H26C1N3O2	436.0	17.1	78
Example 176	150	C ₂₅ H ₂₆ ClN ₃ O ₂	436.0	13.1	60
Example 177	151	$C_{21}H_{22}ClF_2N_3O_2$	422.0	14.8	70
Example 178	152	$C_{21}H_{22}C1F_2N_3O_2$	422.0	15.3	73
Example 179	153	C ₂₁ H ₂₂ ClF ₂ N ₃ O ₂	422.0	15.3	73
Example 180	154	$C_{21}H_{22}C1F_2N_3O_2$	422.0	16.4	78
Example 181	155	C ₂₃ H ₂₈ ClN ₃ O ₄	443.0	16.9	76
Example 182	156	C ₂₂ H ₂₃ ClF ₃ N ₃ O ₂	470.5	12.6	54
Example 183	157	C ₂₂ H ₂₃ ClF ₃ N ₃ O ₂	470.0	20.0	85
Example 184	158	C ₂₃ H ₂₆ ClN ₃ O ₄	444.0	17.4	78
Example 185		C ₂₂ H ₂₂ C1F ₄ N ₃ O ₂	472.0	18.4	78
Example 186	160	C ₂₂ H ₂₂ ClF ₄ N ₃ O ₂	472.0	19.6	83
Example 187	161	C ₂₁ H ₂₁ C1F ₃ N ₃ O ₂	440.0	17.0	77
Example 188	162	C ₂₁ H ₂₁ C1F ₃ N ₃ O ₂	440.0	17.1	78
Example 189	163	C ₂₃ H ₂₂ C1F ₆ N ₃ O ₂	522.0	20.8	80
Example 190	164	C ₂₃ H ₂₂ ClF ₆ N ₂ O ₂	522.0	2.7	10
Example 191	165	$C_{25}H_{24}C1N_5O_2$	414.0	16.4	79
Example 192	166	C22H23ClF3N3O2	454.0	8.6	38
Example 193	167	C ₂₁ H ₂₁ BrClN ₂ O ₂	464.0	11.6	50
Example 194	168	C ₂₁ H ₂₁ Cl ₂ N ₃ O ₂	420.0	11.5	55
L					

Example 235	209	C ₂ : H ₂₆ Cl ₃ N ₃ O ₄ S	546.0	7.3	27
Example 236	210	C24H26C1F4N3O4S	564.0	19.2	68
Example 237	211	C ₂₃ H ₂₇ Cl ₂ N ₃ O ₄ S	512.0	7.9	31
Example 238	212	C23H28C1N3O4S	478.0	13.7	57
Example 239	213	C23H27C1N4O4S	523.0	5.5	21

Example 240: Preparation of (R)-3-[N-{3-Fluoro-5-(trifluoromethyl)benzoyl}glycyl]amino-1-(3,5-dimethylisoxazol-4-ylmethyl)pyrrolidine (Compound No. 1191).

A solution of 3-fluoro-5-(trifluoromethyl)benzoyl chloride (0.058 mmol) in dichloromethane (1 mL) was added to a mixture of (R)-1-(3,5-dimethylisoxazol-4-ylmethyl)-3-(glycylamino)pyrrolidine (0.050 mmol) and piperidinomethylpolystyrene (58 mg) in chloroform (0.2 mL) and dichloromethane (0.75 mL). After the reaction mixture was stirred at room temperature for 2 h, methanol (1.0 mL) was added and the mixture was stirred at room temperature for 30 min. The reaction mixture was loaded onto Varian SCX column, and washed with CH₃OH (16 mL). Product was eluted off using 2 N NH₃ in CH₃OH (6 mL) and concentrated to afford (R)-3-[N-{3-fluoro-5-(trifluoromethyl)benzoyl)glycyl]amino-1-(3,5-dimethylisoxazol-4-ylmethyl)pyrrolidine (Compound No. 1191) (19.5 mg, 88%): The purity was determined by RPLC/MS (100%); ESI/MS m/e 443.2 (M+H, C₂₀H₃₂F₄N₄O₃).

Examples 241-265.

The compounds of this invention were synthesized pursuant to methods of Example 240 using the corresponding reactant respectively. The ESI/MS data and yields are summarized in Table 4.

Table 4

	Compound No.	Molecular Formula	ESI/MS m/e	Yield (mg)	Yield (%)
Example 241	1192	C20 H22 F4 N4 O3	443.2	19.2	87
Example 242	1193	C20 H23 F3 N4 O4	441.0	17.5	79
Example 243	1194	C21 H22 F6 N4 O3	493.0	20.4	83
Example 244	1195	C19 H23 Br N4 O3	435.1	16.8	77
Example 245	1196	C19 H23 N5 O5	402.2	16.2	81
Example 246	1197	C20 H22 F4 N4 O3	443.2	17.6	80
Example 247	1198	C19 H23 C1 N4 O3	391.0	16.5	84
Example 248	1199	C20 H26 N4 O3	371.0	16.1	87

5

10

15

Example 249	1200	C19 H22 C12 N4 O3	425.0	18.0	85
Example 250	1201	C19 H22 F2 N4 O3	393.0	16.6	85
Example 251	1202	C20 H22 F4 N4 O3	443.2	16.8	76
Example 252	1203	C22 H24 F3 N3 O3	436.2	17.1	79
Example 253	1204	C23 H23 F6 N3 O2	488.2	18.1	74
Example 254	1205	C21 H24 Br N3 O2	430.0	17.5	81
Example 255	1206	C21 H24 N4 O4	397.0	16.2	82
Example 256	1207	C22 H23 F4 N3 O2	438.2	17.5	80
Example 257	1208	C21 H24 C1 N3 O2	386.0	15.8	82
Example 258	1209	C22 H27 N3 O2	366.0	15.7	86
Example 259	1210	C21 H23 C12 N3 O2	420.0	17.8	85
Example 260	1211	C21 H23 F2 N3 O2	388.0	16.3	84
Example 261	1212	C22 H23 F4 N3 O2	438.2	17.4	80
Example 262	1213	C24 H24 C1 F6 N3 O2	536.2	24.0	90
Example 263	1214	C23 H24 C1 F4 N3 O3	486.2	22.2	91
Example 264	1215	C22 H24 C13 N3 O2	467.9	20.9	89
Example 265	1216	C22 H24 C1 F2 N3 O2	436.0	19.3	89

Example 266: Preparation of $(R)-1-(4-Chlorobenzyl)-3-[(N-\{4-(dimethylamino)benzoyl)glycyl)amino]pyrrolidine (Compound No. 952).$

A solution of (R)-1-(4-chlorobenzyl)-3-(glycylamino)pyrrolidine (13.8 mg, 0.052 mmol) in CHCl₃ (2 mL) was treated with Et₃N (0.021 mL, 0.15 mmol), 4-(dimethylamino)benzoic acid (10 mg, 0.061 mmol), EDCI (10.2 mg, 0.053 mmol) and HOBt (7.5 mg, 0.055 mmol). The reaction mixture was stirred at room temperature for 16 h. The solution was washed with 2 N aqueous NaOH solution (2 mL x 2) and brine (2 mL), and dried by filtration through a PTFE membrane using CH_2Cl_2 (3 mL). Concentration afforded the desired material (compound No. 952) (24.9 mg, quant): The purity was determined by RPLC/MS (91%); ESI/MS m/e 415.0 (M*+H, $C_{22}H_{27}ClN_4O_2$).

Examples 267-347.

The compounds of this invention were synthesized pursuant to methods of Example 266 using the corresponding reactant respectively. Solid-phase extraction (Varian TH SCX column) or chromatography (HPLC-C₁₆), if needed, afforded the desired material. The ESI/MS data and yields are summarized in Table 5.

20 Table 5

5

10

	Compound No.	Molecular Formula	ESI/MS m/e	Yield (mg)	Yield (3)
Example 267	951	C22 H24 C1 N3 O4	430.0	26.3	quant
Example 268	953	C23 H29 C1 N4 O2	429.0	28.8	quant
Example 269	954	C21 H25 Cl N4 O2	401.0	27.9	quant
Example 270	955	C22 H27 Cl N4 O2	415.0	26.8	quant
Example 271	956	C21 H24 C1 N3 O3	402.0	10.3	51
Example 272	957	C20 H22 Cl N3 O3	388.0	1.4	7
Example 273	958	C21 H24 Cl N3 O3	402.5	1.2	6
Example 274	959	C22 H25 C1 N4 O3	429.5	4.7	22
Example 275	960	C23 H27 C1 N4 O3	443.0	10.9	49
Example 276	961	C21 H25 C1 N4 O2	401.0	28.4	quant
Example 277	962	C22 H27 C1 N4 O2	415.0	24.9	quant
Example 278	963	C21 H24 C1 N3 O3	402.0	4.4	22
Example 279	964	C22 H24 Cl N3 O4	430.0	29.5	quant
Example 280	965	C23 H26 Cl N3 O4	444.0	27.2	quant
Example 281	966	C22 H24 Cl N3 O3	414.0	27.0	quant
Example 282	967	C23 H26 Cl N3 O3	428.0	27.0	quant
Example 283	968	C22 H23 Cl N4 O2	411.0	21.4	quant
Example 284	969	C23 H25 Cl N4 O2	425.0	27.6	quant
Example 285	970	C22 H27 Cl N4 O2	415.0	28.6	quant
Example 286	971	C23 H29 C1 N4 O2	429.0	27.9	quant
Example 287	972	C20 H23 Cl N4 O2	387.0	26.2	quant
Example 288	973	C21 H25 Cl N4 O2	401.0	26.8	quant
Example 289	974	C20 H23 Cl N4 O2	387.0	26.6	quant
Example 290	975	C21 H25 C1 N4 O2	401.0	28.2	quant
Example 291	976	C22 H23 Cl N4 O2	411.0	29.2	quant
Example 292	977	C23 H25 Cl N4 O2	425.0	29.5	quant
Example 293	978	C20 H21 C1 N6 O2	413.0	2.2	11
Example 294	979	C21 H23 Cl N6 O2	427.0	10.2	48
Example 295	980	C22 H25 Cl N4 O3	429.0	28.8	quant
Example 296	981	C23 H27 C1 N4 O3	443.0	11.9	54
Example 297	982	C22 H27 Cl N4 O2	415.0	27.4	quant
Example 298	983	C23 H29 Cl N4 O2	429.5	28.1	quant
Example 299	984	C21 H24 C1 N3 O3	402.0	27.7	quant
Example 300	985	C22 H26 C1 N3 O3	416.0	28.6	quant
Example 301	1149	C21 H28 N4 O4	401	15.5*	38
Example 302	1150	C21 H28 N4 O3	385	10.9*	28
Example 303	1151	C21 H25 F3 N4 O3	439	17.3*	39
Example 304	1152	C21 H24 F N5 O3	415	12.7*	30

Example 305	1153	C21 H24 C1 N5 O3	430	17.5*	41
Example 306	1154	C22 H27 N5 O3	410	20.6*	50
Example 307	1155	C19 H23 F3 N4 O4	429	13.8*	32
Example 308	1156	C21 H30 N4 O4	403	17.7*	43
Example 309	1157	C18 H24 N4 O3 S2	409	12.6*	30
Example 310	1158	C19 H23 C12 N5 O3	440	16.9*	38
Example 311	1159	C22 H31 N5 O6	462	38.6*	85
Example 312	1160	C20 H26 Br N5 O3	464	20.4	45
Example 313	1289	C20 H27 N5 O4	403	5.8*	14
Example 314	1290	C21 H29 N5 O3	400	6.9*	17
Example 315	1291	C24 H28 N4 O2	405	22.4	68
Example 316	1292	C22 H27 Br N4 O2	461	23.8	15
Example 317	1293	C22 H23 F4 N3 O2	438	20.9	59
Example 318	1294	C22 H23 F4 N3 O2	438	20.8	59
Example 319	1295	C23 H31 N3 O3	398	17.5	54
Example 320	1296	C20 H25 N3 O2 S2	404	18.8	58
Example 321	1297	C21 H24 F3 N3 O3	424	18.1	53
Example 322	1388	C21 H32 N6 O3	417	7.4*	24
Example 323	1389	C19 H22 N6 O4	399	15.2	48
Example 324	1401	C23 H25 Cl N4 O2	425	8.3*	16
Example 325	1402	C24 H32 N4 O5	457	8.3*	15
Example 326	1403	C20 H24 N4 O2	353	14.8	52
Example 327	1404	C20 H24 N4 O2	353	17.0	60
Example 328	1405	C21 H26 N4 O2 S	399	17.3	54
Example 329	1407	C22 H28 N4 O2 S	413	19.1	57
Example 330	1410	C19 H24 N4 O3	357	9.7*	59
Example 331	1769	C22 H26 Cl F3 N4 O5	519	11.6*	20
Example 332	1770	C26 H28 C12 N6 O4	559	13.1*	21
Example 333	1771	C26 H37 N5 O4	484	12.7*	23
Example 334		C28 H39 N5 O4	510	5.5*	9
Example 335		C28 H37 N5 O4	509	6.2*	11
Example 336		C28 H34 N6 O6	551	13.6*	22
Example 337		C19 H24 N4 O2	341	5.2*	14
Example 338		C22 H27 N3 O4	398	2.0*	5
Example 339		C23 H29 N3 O3	396	6.2*	15
Example 340		C25 H37 N3 O2	413	2.6*	ε
Example 341		C24 H31 N3 O2	394	6.8*	17
Example 341	1	C25 H28 N4 O4	449	8.7+	16
<u> </u>	<u> </u>	C26 H29 C1 N6 O4	525	11.4*	19
Example 343			505	7.7*	13
Example 344	2040				

Example 345	2047	C28 H32 N4 O4	489	10.0*	18
Example 346	2048	C28 H37 N5 O5	524	3.7*	6
Example 347	2049	C28 H37 N5 O4	509	5.3*	9

^{*}Yield of TFA salt.

5

10

15

20

Example 348: Preparation of $(R)-1-(4-Chlorobenzy1)-3-[{N-(2-amino-5-chlorobenzoy1)glycyl}amino]pyrrolidine (Compound No. 1084).$

A solution of (R)-1-(4-chlorobenzyl)-3-(glycylamino)pyrrolidine (0.050 mmol) in CHCl₃ (2 mL) was treated with 2-amino-5-chlorobenzoic acid (0.060 mmol) and diisopropylcarbodiimide (0.060 mmol). The reaction mixture was stirred at room temperature for 15 h. The mixture was loaded onto VarianTM SCX column, and washed with CH₃OH (15 mL). Product was eluted off using 2 N NH₃ in CH₃OH (5 mL) and concentrated to afford (R)-1-(4-chlorobenzyl)-3- $\{N$ -(2-amino-5-chlorobenzoyl)glycyl)amino)pyrrolidine (Compound No. 1084) (12.7 mg, 60%): The purity was determined by RPLC/MS (87%); ESI/MS m/e 421.0 (M⁺+H, C₂₀H₂₂Cl₂N₄O₂).

Examples 349-361.

The compounds of this invention were synthesized pursuant to methods of Example 348 using the corresponding reactant respectively. If the starting amine remained, treatment with isocyanatomethylated polystyrene (50 mg) in $CHCl_3$ (1 mL) at room temperature, filtration and concentration afforded the desired material. The ESI/MS data and yields are summarized in Table 6.

Table 6

	Compound No.	Molecular Formula	ESI/MS m/e	Yield (mg)	Yield (%)
Example 349	1085	C20H22ClN5O4	432.0	4.1	19
Example 350	1086	C ₂₀ H ₂₃ C1N ₄ O ₂	387.0	7.9	41
Example 351	1087	C ₂₂ H ₂₃ ClN ₄ O ₂	411.0	15.0	73
Example 352	1088	C18H20ClN3O3	362.0	12.9	71
Example 353	1089	C22H22C1FN4O2	429.0	16.0	75
Example 354	1090	C ₂₂ H ₂₆ ClN ₃ O ₃	416.0	15.8	76
Example 355	1091	C ₂₁ H ₂₄ Cl ₂ N ₄ O ₂	435.0	10.9	50
Example 356	1	C ₂₁ H ₂₄ ClN ₅ O ₄	446.0	7.9	35
Example 357		C ₂₁ H ₂₅ ClN ₄ O ₁	401.0	9.5	47
Example 358	L	C ₂₅ H ₂₅ ClN ₄ O ₂	425.0	15.8	74
Example 359	l	C ₁₉ H ₂₂ ClN ₅ O ₃	376.0	13.5	72
Example 360	L	C ₂₁ H ₂₄ C1FN ₄ O ₁	443.0	11.8	53

		In 11 Clay O	430.0	15.1	/0
Example 361	1097	C25H28ClN3O	1 30.0		
Pygwbrc 201		1 '' ''			

Example 362: Preparation of $(R)-1-(4-Chlorobenzy1)-3-[{N-(3-bromo-4-methylbenzoy1)glycyl}amino]pyrrolidine (Compound No. 1098).$

A solution of (R)-1-(4-chlorobenzyl)-3-(glycylamino) pyrrolidine (0.050 mmol) in CHCl₃ (1.35 mL) and tert-butanol (0.15 mL) was treated with 3-bromo-4-methylbenzoic acid (0.060 mmol), diisopropylcarbodiimide (0.060 mmol), and HOBt (0.060 mmol). The reaction mixture was stirred at room temperature for 15 h. The mixture was loaded onto VarianTM SCX column, and washed with CH₃OH/CHCl₃ 1:1 (12 mL) and CH₃OH (12 mL). Product was eluted off using 2 N NH₃ in CH₃OH (5 mL) and concentrated to afford (R)-1-(4-chlorobenzyl)-3-[(N-(3-bromo-4-methylbenzoyl)glycyl)amino]pyrrolidine (Compound No. 1098) (11.6 mg, 50%): The purity was determined by RPLC/MS (94%); ESI/MS m/e 466.0 $(C_{21}H_{23}BrClN_3O_2)$.

15 Examples 363-572.

The compounds of this invention weré synthesized pursuant to methods of Example 362 using the corresponding reactant respectively. Preparative TLC, if needed, afforded the desired material. The ESI/MS data and yields are summarized in Table 7.

The following 3 compounds were obtained as byproduct of Compound Nos. 1415, 1416, and 1417, respectively.

1419: 7.9 mg, 38% yield; ESI/MS m/e 419.0 ($C_{20}H_{23}ClN_4O_2S$).

1420: 7.1 mg, 36% yield; ESI/MS m/e 399.2 ($C_{21}H_{26}N_4O_2S$).

1421: 7.4 mg, 37% yield; ESI/MS m/e 404.2 ($C_{19}H_{25}N5O3S$).

25

20

5

Table 7

.0 3.1 1 .0 12.5 4	3 5 9
.0 12.5 4	9
.0 12.3	
.2 7.7 3	6
· - I	
.0 13.8 6	52
.0 16.5 7	14
.2 14.7 7	13
.0 18.5 7	75
	.0 16.5 7 .2 14.7

Example 371	1107	C ₂₂ H ₂₆ N ₄ O ₄	411.2	15.2	74
Example 372	1108	C20H25BrN4O3	449.0	12.8	57
Example 373	1109	C ₁₆ H ₂₂ BrFN ₄ O ₃	455.0	16.2	71
Example 374	1110	C ₁₉ H ₂₂ ClFN ₄ O ₅	409.2	14.4	70
Example 375	1111	C20H25IN4O3	497.0	17.9	72
Example 376	1112	C ₂₀ H ₂₅ N5O ₅	416.2	14.9	72
Example 377	1113	C ₂₃ H ₂₇ BrClN ₃ O ₂	494.0	16.1	65
Example 378	1114	C ₂₂ H ₂₄ BrClFN ₃ O ₂	498.0	20.2	81
Example 379	1115	C ₂₂ H ₂₄ Cl ₂ FN ₃ O ₂	452.2	18.6	82
Example 380	1116	$C_{23}H_{27}CliN_3O_2$	539.1	21.9	81
Example 381	1117	C23H27C1N4O4	459.2	18.7	81
Example 382	1171	C ₂₁ H ₂₃ BrClN ₃ O ₂	466.0	4.9	21
Example 383	1172	C ₂₂ H ₂₃ ClN ₄ O ₃	427.2	16.1	75
Example 384	1173	C ₂₅ H ₂₅ ClN ₄ O ₃	441.2	22.8	quant
Example 385	1174	C ₂₀ H ₂₂ C1FN ₄ O ₂	405.2	21.4	quant
Example 386	1175	C ₂₂ H ₂₆ BrN ₃ O ₂	446.0	15.8	71
Example 387	1176	C ₂₃ H ₂₆ N ₄ O ₃	407.2	17.6	87
Example 388	1177	C ₂₄ H ₂₈ N ₄ O ₃	421.2	20.2	96
Example 389	1178	C ₂₁ H ₂₅ FN ₄ O ₂	385.0	16.2	84
Example 390	1179	C ₂₁ H ₂₅ N ₅ O ₄	412.2	2.3	11
Example 391	1180	C ₂₃ H ₂₆ N ₄ O ₂	391.0	21.6	quant
Example 392	1181	C ₂₀ H ₂₅ BrN ₄ O ₃	451.0	20.1	89
Example 393	1182	C ₂₁ H ₂₅ N ₅ O ₄	412.2	13.3	65
Example 394	1183	C ₂₂ H ₂₇ N ₅ O ₄	426.2	20.9	98
Example 395	1184	C ₁ eH ₂₄ FN ₅ O ₃	390.0	20.0	quant
Example 396	1185	C16H24N6O5	417.2	18.2	87
Example 397	1186	C ₂₁ H ₂₅ N ₅ O ₃	396.2	17.6	89
Example 398	1187	C ₂₃ H ₂₇ BrClN ₃ O ₂	494.0	22.1	90
Example 399	1188	C ₂₄ H ₂₇ ClN ₄ O ₃	455.2	17.2	76
Example 400	1189	C ₂₅ H ₂ ¢ClN ₄ O ₃	469.2	21.1	90
Example 401	1190	C ₂₂ H ₂₆ ClFN ₄ O ₂	433.2	20.4	94
Example 402	1217	$C_{21}H_{20}C1_2F_3N_3O_2$	474.0	38.5	81
Example 403	1218	$C_{21}H_{23}C1FN_3O_2$	404.2	35.6	88
Example 404	1219	$C_{21}H_{23}C1_2N_3O_2$	420.0	3.7	9
Example 405	1220	C20H22CliN4O2	513.0	53.0	quant
Example 406	1221	C ₂₀ H ₂₁ ClF ₂ N ₄ O ₂	423.0	38.7	92
Example 407	1222	C ₁ eH ₂ ;ClN ₄ O ₂	375.2	33.6	90
Example 408	1223	C26H26ClN3O2S	496.0	43.7	88
Example 409	1224	C2H21ClN4O5	433.0	40.6	94
Example 410	1225	CarHa ClF:N:Oa	454.2	18.4	41
L		1		·	

	1226	C ₁₂ H ₁₆ FN ₃ O ₂	384.0	17.1	45
Example 411	1226	<u> </u>	400.2	17.5	44
Example 412	1227	C ₂₂ H ₂₆ C1N ₃ O ₂		23.3	47
Example 413	1228	C ₂₁ H ₂₅ IN ₄ O ₂	493.0		46
Example 414	1229	C ₂₁ H ₂₄ F ₂ N ₄ O ₂	403.2	18.4	
Example 415	1230	C20H26N4O2	355.2	15.7	44
Example 416	1231	C ₂₇ H ₂ eN ₃ O ₂ S	476.0	20.9	88
Example 417	1232	C ₂₁ H ₂₄ N ₄ O ₅	413.0	19.9	96
Example 418	1233	C ₂₀ H ₂₂ ClF ₃ N ₄ O ₃	459.0	19.4	85
Example 419	1234	C ₂₀ H ₂₅ FN ₄ O ₃	389.0	17.8	92
Example 420	1235	C ₂₀ H ₂₅ ClN ₄ O ₃	405.2	18.7	92
Example 421	1236	$C_{19}H_{24}IN_5O_3$	498.0	23.9	96
Example 422	1237	$C_{19}H_{23}F_2N_5O_3$	408.2	19.0	93
Example 423	1238	C ₁₈ H ₂₅ N ₅ O ₃	360.0	16.3	91
Example 424	1239	C ₂₅ H ₂₈ N ₄ O ₃ S	481.2	21.4	89
Example 425	1240	C ₁₉ H ₂₃ N ₅ O ₆	418.0	19.9	95
Example 426	1241	C ₂₃ H ₂₄ Cl ₂ F ₃ N ₃ O ₂	502.0	22.5	90
Example 427	1242	C ₂₃ H ₂₇ C1FN ₃ O ₂	432.2	21.2	98
Example 428	1243	C ₂₃ H ₂₇ Cl ₂ N ₃ O ₂	448.0	21.6	96
Example 429	1244	C ₂₂ H ₂₆ ClIN ₄ O ₂	541.0	26.4	98
Example 430	1245	C22H25ClF2N4O2	451.0	21.3	94
Example 431	1246	C21H27ClN4O2	403.2	19.4	96
Example 432	1247	C ₂₈ H ₃₀ ClN ₃ O ₂ S	524.0	24.7	94
Example 433	1248	C22H25ClN4O5	461.0	20.7	90
Example 434	1249	C20 H20 Cl2 N4 O4	451.0	7.4	33
Example 435	1250	C21 H23 C1 N4 O4	431.2	15.5	72
Example 436	1251	C19 H22 C1 N5 O5	436.0	22.9	quant
Example 437	1252	C23 H28 Cl N3 O2	414.2	17.9	86
Example 438	1253	C24 H31 N3 O2	394.2	15.8	80
Example 439	1254	C22 H30 N4 O3	399.2	17.3	87
Example 440	1255	C20 H22 Br Cl N4 O2	467.0	21.3	91
Example 441	1256	C21 H25 Br N4 O2	445.0	20.7	93
Example 442	1257	C19 H24 Br N5 O3	450.0	21.8	97
Example 443		C21 H25 C1 N4 O2	401.2	18.1	90
Example 444		C19 H24 C1 N5 O3	406.0	20.1	99
Example 445		C23 H29 N3 O3	396.2	16.8	85
Example 446	L	C23 H30 Cl N3 O3	432.2	19.8	92
Example 447		C24 H33 N3 O3	412.2	17.4	85
Example 448	<u> </u>	C22 H32 N4 O4	417.2	18.7	90
Example 449		C25 H26 C1 N3 O3	452.2	29.1	quant
Example 450		C26 H29 N3 O3	432.2	18.1	84
Example 420	1203		<u> </u>	L	

Example 451	1266	C24 H28 N4 O4	437.2	19.3	88
Example 452	1267	C ₂₃ H ₂₂ ClF ₃ N ₄ O ₃	495.2	20.6	83
Example 453	1268	C ₂₁ H ₂₃ Cl ₂ N ₃ O ₃	436.0	17.5	80
Example 454	1269	C ₂₀ H ₂₁ BrClN ₃ O ₃	468.0	19.2	82
Example 455	1270	C ₂₀ H ₂₁ Cl ₂ N ₃ O ₃	422.2	17.3	82
Example 456	1271	C20H20C1FN4O4	435.0	17.1	79
Example 457	1272	C24H25F3N4O3	475.2	21.7	91
Example 458	1273	C ₂₂ H ₂₆ C1N ₃ O ₃	416.2	17.8	86
Example 459	1274	C ₂₁ H ₂₄ BrN ₃ O ₃	448.0	19.5	87
Example 460	1275	C ₂₁ H ₂₄ ClN ₃ O ₃	402.2	16.7	83
Example 461	1276	C ₂₁ H ₂₃ FN ₄ O ₄	415.2	18.1	87
Example 462	1277	C ₂₂ H ₂₄ F ₃ N ₅ O ₄	480.2	20.3	85
Example 463	1278	C20H25ClN4O4	421.2	18.6	88
Example 464	1279	C ₁₉ H ₂₃ BrN ₄ O ₄	451.0	21.3	94
Example 465	1280	C19H23ClN4O4	407.2	19.1	94
Example 466	1281	C ₁₉ H ₂₂ FN ₅ O ₅	420.2	19.1	91
Example 467	1282	C ₂₅ H ₂₆ ClF ₃ N ₄ O ₃	523.2	25.0	96
Example 468	1283	C ₂₃ H ₂₇ Cl ₂ N ₃ O ₃	464.2	12.2	53
Example 469	1284	C ₂₂ H ₂₅ BrClN ₃ O ₃	496.0	24.1	97
Example 470	1285	C ₂₂ H ₂₅ Cl ₂ N ₃ O ₃	450.2	21.8	97
Example 471	1321	C ₂₀ H ₂₀ BrCl ₂ N ₃ O ₂	486.0	5.1	21
Example 472	1322	C ₂₁ H ₂₃ Cl ₂ N ₃ O ₂	420.0	10.5	50
Example 473	1323	C20H20Cl2IN3O2	532.0	7.1	27
Example 474	1324	C ₂₁ H ₂₄ ClN ₃ O ₃	402.2	22.2	quant
Example 475	1325	C ₂₇ H ₂₅ ClN ₅ O ₃	476.0	22.2	93
Example 476	1326	C20H21ClIN3O3	514.0	26.9	quant
Example 477	1327	C21H25ClN4O2	401.2	24.2	quant
Example 478	1328	C21H23BrClN3O2	466.0	23.1	99
Example 479	1329	$C_{22}H_{26}ClN_3O_2$	400.2	16.4	82
Example 480	1330	C ₂₁ H ₂₃ ClIN ₃ O ₂	512.2	20.8	81
Example 481	1331	C ₂₁ H ₂₄ N ₃ O ₃	382.2	19.6	quant
Example 482	1332	C28H26N3O3	456.2	21.1	93
Example 483	1333	C ₂₁ H ₂₄ IN ₃ O ₃	494.0	25.3	quant
Example 484	1334	C22H28N4O2	381.2	19.0	quant
Example 485	1335	C16H22BrClN4O3	471.0	25.8	quant
Example 486	1336	C20H25ClN4O3	405.2	18.5	91
Example 487	1337	C16H22ClIN4O3	517.0	23.1	89
Example 488	1338	C ₂₀ H ₂₆ N ₄ O4	387.2	20.6	quant
Example 489	1339	C26H28N4O4	461.2	23.7	quant
Example 490	1340	C16HIBIN4O4	499.0	28.2	quant
	1			·	

			386.0	20.5	quant
Example 491	1341	C ₂₁ ,H ₂₆ N ₄ O ₄	·	27.2	quant
Example 492	1342	C ₂₂ H ₂₄ BrCl ₂ N ₃ O ₂	514.0		
Example 493	1343	C ₂₃ H ₂₇ Cl ₂ N ₃ O ₂	448.0	21.4	95
Example 494	1344	$C_{22}H_{24}Cl_2IN_3O_2$	560.0	27.0	96
Example 495	1345	$C_{23}H_{28}ClN_3O_3$	430.2	23.8	quant
Example 496	1346	C ₂₂ H ₂₅ ClIN ₃ O ₃	542.0	29.4	quant
Example 497	1347	C ₁ eH ₂₂ ClN ₃ O ₂ S	392.0	16.9	43
Example 498	1348	C ₂₀ H ₂₅ N ₃ O ₂ S	372.2	6.9	19
Example 499	1349	C ₁₈ H ₂₄ N ₄ O ₃ S	377.2	8.1	43
Example 500	1350	C ₂₁ H ₂₆ ClN ₃ O ₂ S	420.0	13.0	62
Example 501	1351	C ₂₂ H ₂₄ BrClN ₄ O ₃	509.2	5.0	10
Example 502	1352	C ₂₃ H ₂₇ BrN ₄ O ₃	489.2	3.6	15
Example 503	1353	C ₂₁ H ₂₆ BrN ₅ O ₄	494.0	2.8	11
Example 504	1354	C24H28BrClN4O3	537.2	5.2	19
Example 505	1355	C21 H22 C1 N5 O2	412.0	25.5	quant
Example 506	1356	C22 H25 N5 O2	392.0	16.5	. 84
Example 507	1357	C20 H24 N6 O3	397.2	19.9	quant
Example 508	1358	C23 H26 Cl N5 O2	440.2	21.8	99
Example 509	1368	$C_{21}H_{20}Cl_2F_3N_3O_2$	474.0	18.4	78
Example 510	1369	C24H24C1F6IN3O4	568.0	24.1	85
Example 511	1370	C ₁₈ H ₁ ,BrClN ₃ O ₂ S	458.0	19.4	85
Example 512	1371	C26H26ClN3O4S	512.2	22.1	86
Example 513	1372	C26H26ClN3O2	448.0	19.1	85
Example 514	1373	C ₂₂ H ₂₃ ClF ₃ N ₃ O ₂	454.2	16.2	71
Example 515	1374	C ₂₅ H ₂₇ F ₆ IN ₃ O ₄	548.2	22.1	81
Example 516	1375	C ₁₉ H ₂₂ BrN ₃ O ₂ S	436.0	17.1	78
Example 517	1376	C ₂₇ H ₂₉ N ₃ O ₄ S	492.0	19.4	79
Example 518	1377	C27H29N3O2	428.2	18.1	85
Example 519	1378	C ₂₀ H ₂₂ Cl F ₃ N ₄ O ₃	459.0	17.3	75
Example 520	1379	C23H26F6IN4O5	553.2	21.0	76
Example 521	1380	C ₁₇ H ₂₁ BrN ₄ O ₃ S	443.0	16.4	74
Example 522	1381	C ₂₅ H ₂₈ N ₄ O ₅ S	497.0	18.4	74
Example 523	1382	C25H28N4O3	433.2	17.3	80
Example 524	1383	C23H24Cl2F3N2O2	502.0	20.0	80
Example 525	1384	C ₂₀ H ₂₃ BrClN ₃ O ₂ S	486.0	21.0	87
Example 526	1385	C28H30ClN3O4S	540.2	· 23.8	88
Example 527	1386	C28H3nClN3O2	476.0	20.0	84
Example 528	1411	C ₂₂ H ₂₄ Cl ₂ N ₄ O ₃	463.0	0.4	2
Example 529	1412	C ₂₃ H ₂₇ C1N ₄ O ₂	443.0	1.3	6
Example 530		C21H26C1N5O;	448.0	1.1	5
	<u> </u>				

Example 571	1699	C23 H27 F3 N4 O2	449	25.3	quant
Example 572	1700	C22 H25 Br C1 N3 O2	480	17.8	74

For example, Compound No. **1583** showed the following NMR spectra: 1 H NMR (400 MHz, CD₃OD) δ 1.64-1.72 (m, 1 H), 2.20-2.30 (m, 1 H), 2.41-2.51 (m, 2 H), 2.71-2.78 (m, 2 H), 3.59 (dd, J = 15.4, 12.9 Hz, 2 H), 3.94 (s, 2 H), 4.35-4.41 (m, 1 H), 6.82 (d, J = 8.6 Hz, 1 H), 7.29 (s, 4 H), 7.40 (dd, J = 8.6, 1.7 Hz, 1 H), 7.85 (d, J = 0.96 Hz, 1 H).

Reference Example 4: Preparation of $(S)-3-[N-\{3-\{1,1\}]\}$ (trifluoromethyl) benzoyl $\{3,1\}$ glycyl $\{3,1\}$ aminopyrrolidine.

(S)-1-(4-chlorobenzyl)-3-[N-{3suspension of 10 (trifluoromethyl)benzoyl}glycyl]aminopyrrolidine (2.93 g, 6.66 mmol) and $Pd(OH)_2$ in 5% $HCO_2H/methanol$ (70 mL) was stirred at 60 °C for 3 h. The Pd catalyst was filtered off through Celite, and the filtrate was concentrated. To the residue was added 2N aqueous NaOH solution (100 mL) and the mixture was extracted with ethyl acetate (100 mL \times 3). The combined extracts were washed with brine, 15 dried over anhydrous sodium sulfate, filtered, and concentrated. Column chromatography (SiO₂, AcOEt/MeOH/Et₃N = 85/10/5-60/30/5) gave (S)-3-[N-(3-1)] (trifluoromethyl)benzoyl}glycyl]aminopyrrolidine (1.70 g, $81\hat{\epsilon}$) as an oil: ^{1}H NMR (CDCl₃, 270 MHz) δ 1.76 (d, J = 7.3 Hz, 1 H), 2.07-2.25 (m, 1 H), 2.81-2.98 (m, 2 H), 3.02-3.11 (m, 2 H), 4.12 (s, 2 H), 4.41 (br, 1 H), 6.90 (br, 1 20 H), 7.45 (br, 1 H), 7.58 (dd, J = 7.3 and 7.3 Hz, 1 H), 7.77 (d, J = 7.3 Hz, 1 H), 8.02 (d, J = 7.3 Hz, 1 H), 8.11 (s, 1 H); ESI/MS m/e 316.0 (M^{7} +H, $C_{14}H_{16}F_{3}N_{3}O_{2}$).

 $(R)-3-[N-\{3-\{{\rm Trifluoromethyl}\}\ {\rm prepared}\ {\rm prepared}\ {\rm prepared}\ {\rm prepared}\ {\rm prepared}\ {\rm to}\ {\rm the}\ {\rm above}\ {\rm method}\ {\rm using}\ {\rm the}\ {\rm corresponding}\ {\rm reactant:}\ 1.49$ g, 68%; The product showed the same $^1{\rm H}\ {\rm NMR}\ {\rm and}\ {\rm ESI/MS}\ {\rm with}\ {\rm those}\ {\rm of}\ (S)-{\rm isomer.}$

 $(R) - 3 - [N - \{2 - Amino - 5 - (trifluoromethyl) benzoyl\} glycyl] aminopyrrolidine was also prepared pursuant to the above method using the corresponding reactant: 316 mg, 93%; ESI/MS m/e 331.2 (M*+H, C₁₄H₁₇F,N₄O₂).$

30 (R)-3-[N-(2-(tert-Butoxycarbonylamino)-5- (trifluoromethoxy)benzoyl)glycyl)aminopyrrolidine was also prepared pursuant to the above method using the corresponding reactant: quant; ¹H NMR (CDCl₃, 400 MHz) δ 1.51 (s, 9 H), 1.60-1.70 (m, 2 H), 2.10-2.25 (m, 1 H), 2.80-2.88 (m, 1 H), 2.89-2.98 (m, 1 H), 3.04-3.18 (m, 2 H), 4.05 (d, J = 4.9 Hz, 2 H), 4.43 (br, 1 H), 6.15 (br, 1 H), 7.03 (br, 1 H), 7.32 (d, J = 9.3 Hz, 1 H), 7.38 (s, 1 H), 8.42 (d, J = 9.3 Hz, 1 H).

Example 573: Preparation of (R)-3-[{N-(2-(tert-Butoxycarbonylamino)-5-trifluoromethylbenzoyl)glycyl}amino]-1-(4-chlorobenzyl)pyrrolidine.

A solution of (R)-1-(4-chlorobenzyl)-3-(glycylamino) pyrrolidine (5.0 g, 18.7 mmol) in dichloromethane (100 mL) was treated with Et;N (2.9 mL, 20.5 mmol), 2-(tert-butoxycarbonylamino)-5-(trifluoromethyl) benzoic acid (6.27 g, 20.5 mmol), EDCI (3.9 g, 20.5 mmol) and HOBt (2.8 g, 20.5 mmol). The reaction mixture was stirred at room temperature overnight. To the reaction mixture was added 2 N aqueous NaOH solution (80 mL) and the mixture was extracted with dichloromethane. The extract was dried over anhydrous Na_2SO_4 , filtered, and evaporated. Column chromatography $(SiO_2, \text{ hexane/ethyl})$ acetate = 1/1-1/4) afforded $(R)-3-\{N-(2-(\text{tert-butoxycarbonylamino})-5-\text{trifluoromethylbenzoyl})$ glycyl $\{\text{amino}\}-1-(4-\text{chlorobenzyl})$ pyrrolidine (9.41 g, 91%) as a white amorphous solid: ESI/MS m/e 555.2 $(M^*+H, C_26H_{50}\text{ClF}_3N_4O_4)$.

15

30

35

10

5

Reference Example 5: Preparation of (R)-3-[{N-(2-(text-butoxycarbonylamino)-5-trifluoromethylbenzoyl)glycyl)amino]pyrrolidine.

A mixture of (R)-3-[{N-(2-(tert-butoxycarbonylamino)-5-trifluoromethylbenzoyl)glycyl}amino]-1-(4-chlorobenzyl)pyrrolidine (6.3 g, 11.4 mmol), Pd(OH)₂ (1.68 g), HCO₂H (3.7 mL), and methanol (80 mL) was stirred at 50 °C overnight. After the mixture was cooled to room temperature, the Pd catalyst was filtered off through Celite and the filtrate was concentrated. Column chromatography (SiO₂, AcOEt, AcOEt/MeOH = 5/1-4/1) gave (R)-3-[{N-(2-(tert-butoxycarbonylamino)-5-

25 trifluoromethylbenzoyl)glycyl)amino]pyrrolidine (4.42 g, 90%) as a white solid: 1 H NMR (CDCl₃, 400 MHz) δ 1.48 (s, 9 H), 2.0-2.4 (m, 2 H), 3.42-3.71 (m, 5 H), 4.00-4.22 (m, 2 H), 4.56 (br, 1 H), 7.48 (d, J = 9.0 Hz, 1 H), 7.93 (s, 1 H), 8.17 (br, 1 H), 8.33 (d, J = 9.0 Hz, 1 H), 8.45 (br, 1 H).

Example 574: Preparation of (S)-1-Benzy1-3-[N-(3-(trifluoromethyl)benzoyl)glycyl]aminopyrrolidine (Compound No. 239).

A solution of (S)-3-[N-(3-(Trifluoromethyl)benzoyl)glycyl]aminopyrrolidine (0.060 mmol) in CH₂CN (1.1 mL) and (piperidinomethyl)polystyrene (2.6-2.8 mmol/g, 30 mg) were added to a solution of benzyl bromide (0.050 mmol) in CH₃CN (0.4 mL). The reaction mixture was stirred at 45 °C for 5 h. After the mixture was cooled to room temperature, the resin was removed by filtration and the filtrate was concentrated. The residue was resolved in CH-CN (1.0 mL) and phenyl isocyanate (0.008 mL, 0.05

mmol) was added. The mixture was stirred at room temperature for 1 h, loaded onto Varian TH SCX column, and washed with CH₃OH (15 mL). Product was eluted off using 2 N NH₃ in CH₃OH (6 mL) and concentrated to afford (S)-1-benzyl-3-[N-(3-(trifluoromethyl)benzoyl)glycyl]aminopyrrolidine (compound No. 239) (9.0 mg, 44%): The purity was determined by RPLC/MS (99%); ESI/MS m/e 406.0 (M*+H, C₂₁H₂₂F₃N₃O₂).

Example 575: Preparation of (R)-1-(4-Butylbenzyl)-3-[{N-(3-trifluoromethylbenzoyl)glycyl}amino]pyrrolidine (Compound No. 1648).

 $(R) - 3 - [N - {3 - }$ οf mixture (trifluoromethyl)benzoyl)glycyl]aminopyrrolidine (0.050 mmol), butylbenzaldehyde (0.18 mmol), $NaBH_3CN$ (0.23 mmol), and methanol (1.85 mL) was added acetic acid (0.060 mL). The reaction mixture was stirred at 60 $^{\circ}\text{C}$ for 12 h. The mixture was cooled to room temperature, loaded onto Varian TM SCX column, and washed with CH_3OH (15 mL). Product was eluted off using 2 N NH, in CH_3OH $(R) -1 - (4-butylbenzyl) -3 - [{N-(3$ afford concentrated to (5 and mL) trifluoromethylbenzoyl)glycyl)amino)pyrrolidine (Compound No. 1648) (20.6 mg, 89%): The purity was determined by RPLC/MS (91%); ESI/MS m/e 462.2 (M $^{\circ}$ +H, $C_{25}H_{30}F_3N_3O_2$).

20

25

5

10

15

Examples 576-738.

The compounds of this invention were synthesized pursuant to methods of Examples 574or 575 using the corresponding reactant respectively. Preparative TLC or chromatography (HPLC- C_{12}), if needed, afforded the desired material. The ESI/MS data and yields are summarized in Table 8.

Table 8

	Compound No.	Molecular Formula	ESI/MS m/e	Yield (mg)	Yield (है)
Example 57	5 240	C ₂₁ H ₂₁ F ₄ N ₃ O ₂	424.0	10.2	48
Example 57	7 241	C21H21ClF3N3O2	440.0	12.1	55
Example 57		$C_{21}H_{21}Cl_2F_3N_3O_2$	474.0	13.9	59
Example 57		C ₂₁ H ₂₀ Cl ₂ F ₃ N ₃ O ₂	474.0	13.8	58
Example 58		C ₂₂ H ₂₄ F ₃ N ₃ O ₂	420.0	13.1	62
Example 58		C21H21F4N3O2	424.0	11.9	56
Example 58		C ₂₁ H ₂₁ C1F ₃ N ₃ O ₂	440.0	8.5	39
Example 58		C21H2vCl2F;N5O1	474.0	10.5	44
Example 58		C ₂₂ H ₂₄ CF·N ₁ O ₂	436.0	11.0	51

Example 586 250 C2:H4:F3N,O2 420.0 11.0 52 Example 587 251 C2:H4:F3N,O2 424.0 13.5 64 Example 588 252 C2:H4:F3N,O2 426.0 11.8 54 Example 589 253 C2:H4:F3N,O2 420.0 11.1 53 Example 589 253 C2:H4:F3N,O2 420.0 11.1 53 Example 590 254 C2:H2:F3N,O4 485.0 12.2 54 Example 591 255 C2:H4:F3N,O4 485.0 12.2 54 Example 592 256 C2:H2:F3N,O4 451.0 12.2 54 Example 593 257 C2:H2:F3N,O4 451.0 11.4 51 Example 594 258 C2:H2:F3N,O4 474.0 11.1 47 Example 595 259 C2:H2:F3N,O4 474.0 15.3 64 Example 596 260 C2:H3:C1F3N,O2 420.0 6.4 31 Example 597 261 C2:H3:C1F3N,O2 474.0 12.1 51 Example 598 262 C2:H3:B7F3N,O2 474.0 12.1 51 Example 599 263 C2:H3:B7F3N,O2 474.0 12.1 51 Example 599 263 C2:H3:B7F3N,O2 474.0 12.1 51 Example 599 263 C2:H3:B7F3N,O2 484.0 15.2 63 Example 600 264 C2:H3:B7F3N,O2 484.0 14.5 60 Example 601 265 C2:H3:B7F3N,O2 484.0 14.5 60 Example 602 266 C2:H3:B7F3N,O2 484.0 11.6 48 Example 603 267 C2:H3:F5N,O4 450.0 6.9 40 Example 604 268 C3:H3:F5N,O4 450.0 6.9 40 Example 605 266 C2:H3:F5N,O4 450.0 6.9 40 Example 606 270 C2:H3:F5N,O4 450.0 6.9 40 Example 607 271 C2:H3:F5N,O4 450.0 6.9 40 Example 608 272 C2:H3:F5N,O4 450.0 6.9 30 Example 609 273 C3:H3:F5N,O2 442.0 6.1 28 Example 609 273 C3:H3:F5N,O2 442.0 6.1 28 Example 609 273 C3:H3:F5N,O2 442.0 6.1 28 Example 607 271 C3:H3:F5N,O2 442.0 6.1 28 Example 608 272 C3:H3:F5N,O2 442.0 6.1 28 Example 609 273 C3:H3:F5N,O2 442.0 6.1 28 Example 601 274 C3:H3:F5N,O2 442.0 6.1 28 Example 601 274 C3:H3:F5N,O2 442.0 6.1 28 Example 602 276 C3:H3:F5N,O2 442.0 6.1 2.0 59 Example 603 277 C3:H3:F5N,O2 442.0 6.1 2.0 59 Example 604 270 C3:H3:F5N,O2 442.0 6.1 2.0 59 Example 605 270 C3:H3:F5N,O2 442.0 6.1 2.0 59 Example 607 271 C3:H3:F5N,O2 442.0 6.1 2.0 49 Example 608 272 C3:H3:F5N,O2 442.0 6.1 2.0 49 Example 609 273 C3:H3:F5N,O2 442.0 6.1 2.0 49 Example 610 270 C3:H3:F5N,O2 442.0 6.1 2.0 49 Example 610 280 C3:H3:F5N,O2 440.0 11.7 53 Example 610 280 C3:H3:F5N,O2 440.0 12.0 4.9 Example 610 280 C3:H3:F5N,O2 440.0 12.0 4.9 Example 621 286 C3:H3:F5N,O2 440.0 5.	Example 585	249	CacHalClF6N3Oa	474.0	12.8	54
Example 587 251 C ₁ H ₁ F ₈ N ₃ O ₂ 424.0 13.5 64 Example 588 252 C ₂ H ₂ F ₈ N ₃ O ₂ 420.0 11.8 54 Example 589 253 C ₂ H ₂ F ₈ N ₃ O ₂ 420.0 11.1 53 Example 590 254 C ₂ H ₂ F ₈ N ₃ O ₂ 420.0 11.1 53 Example 591 255 C ₂ H ₂ F ₈ N ₃ O ₄ 485.0 2.4 10 Example 592 256 C ₂ H ₂ F ₈ N ₃ O ₄ 451.0 12.2 54 Example 593 257 C ₂ H ₂ F ₈ N ₃ O ₄ 451.0 11.4 51 Example 594 258 C ₂ H ₂ F ₈ N ₃ O ₄ 474.0 11.1 47 Example 595 259 C ₂ H ₂ C ₁ F ₃ N ₃ O ₄ 478.0 15.3 64 Example 596 260 C ₂ H ₂ C ₂ F ₃ N ₃ O ₄ 474.0 12.1 51 Example 597 261 C ₂ H ₃ C ₁ F ₈ N ₃ O ₂ 474.0 12.1 51 Example 598 262 C ₁ H ₃ C ₁ F ₈ N ₃ O ₂ 474.0 12.1 51 Example 599 263 C ₁ H ₃ C ₁ F ₈ N ₃ O ₂ 474.0 12.1 51 Example 599 263 C ₁ H ₃ B ₂ F ₈ N ₃ O ₂ 484.0 15.2 63 Example 599 263 C ₁ H ₃ B ₂ F ₈ N ₃ O ₂ 484.0 15.2 63 Example 599 263 C ₁ H ₃ B ₂ F ₈ N ₃ O ₂ 484.0 15.2 63 Example 600 264 C ₂ H ₂ F ₈ F ₃ N ₃ O ₃ 498.0 9.3 37 Example 601 265 C ₂ H ₃ B ₂ F ₈ N ₃ O ₂ 484.0 11.6 48 Example 602 266 C ₂ H ₃ B ₂ F ₈ N ₃ O ₃ 436.0 10.3 47 Example 603 267 C ₂ B ₂ F ₈ N ₃ O ₃ 436.0 10.3 47 Example 604 268 C ₂ H ₂ F ₈ F ₃ N ₃ O ₃ 436.0 10.3 47 Example 605 269 C ₂ H ₂ F ₈ F ₃ N ₃ O ₃ 436.0 10.3 47 Example 606 270 C ₂ H ₃ F ₈ F ₃ N ₃ O ₄ 463.0 6.3 27 Example 607 271 C ₃ H ₃ F ₈ F ₃ N ₃ O ₄ 442.0 6.1 28 Example 608 272 C ₂ H ₃ F ₈ F ₃ N ₃ O ₄ 442.0 6.1 28 Example 609 273 C ₂ H ₃ F ₈ F ₃ N ₃ O ₄ 442.0 6.1 28 Example 610 274 C ₂ H ₃ F ₈ F ₃ N ₃ O ₄ 442.0 6.1 28 Example 608 270 C ₂ H ₃ F ₈ F ₃ N ₃ O ₄ 442.0 6.1 28 Example 609 273 C ₂ H ₃ F ₈ F ₃ N ₃ O ₄ 442.0 6.1 28 Example 610 274 C ₂ H ₃ F ₈ F ₃ N ₃ O ₄ 442.0 6.1 28 Example 610 276 C ₂ H ₃ F ₈ F ₃ N ₃ O ₄ 442.0 6.1 2.6 59 Example 610 276 C ₂ H ₃ F ₈ F ₃ N ₃ O ₄ 442.0 6.1 2.7 59 Example 610 276 C ₂ H ₃ F ₈ F ₃ N ₃ O ₄ 442.0 12.0 12.0 59 Example 610 277 C ₂ H ₃ F ₈ F ₃ N ₃ O ₄ 442.0 12.0 12.0 59 Example 611 275 C ₂ H ₃ F ₈ F ₃ N ₃ O ₄ 442.0 12.0 12.0 49 Example 612 286 C ₃ H ₃ F ₈ N ₃ O ₄ 442.0 442.0 12.0 4.9 Example 613 287 C ₂ H ₃ F ₈ F ₃ N ₃ O ₄ 442.0 44.0						52
Example 588 252 C ₂₅ H ₂₁ F ₃ N ₃ O ₂ 420.0 11.8 54 Example 589 253 C ₂₅ H ₂₁ F ₃ N ₃ O ₂ 420.0 11.1 53 Example 590 254 C ₂₁ H ₂₁ C1F ₃ N ₃ O ₄ 485.0 2.4 10 Example 591 255 C ₂₁ H ₂₁ F ₃ N ₄ O ₄ 451.0 12.2 54 Example 592 256 C ₂₁ H ₂₁ F ₃ N ₄ O ₄ 451.0 11.4 51 Example 592 256 C ₂₁ H ₂₁ F ₃ N ₄ O ₄ 451.0 11.4 51 Example 593 257 C ₂₂ H ₂₁ F ₄ N ₃ O ₂ 474.0 11.1 47 Example 594 258 C ₂₄ H ₂₄ F ₃ N ₃ O ₄ 478.0 15.3 64 Example 595 259 C ₂₅ H ₃₂ C1F ₃ N ₃ O ₂ 420.0 6.4 31 Example 596 260 C ₂₁ H ₃₂ C1F ₃ N ₃ O ₂ 474.0 12.1 51 Example 597 261 C ₂₂ H ₂₁ C1F ₃ N ₃ O ₂ 474.0 12.1 51 Example 598 262 C ₂₃ H ₃₂ C1F ₃ N ₃ O ₂ 474.0 13.6 57 Example 599 263 C ₂₂ H ₂₁ E ₃ F ₃ N ₃ O ₂ 484.0 15.2 63 Example 599 263 C ₂₂ H ₃₂ EF ₃ N ₃ O ₂ 484.0 14.5 60 Example 601 265 C ₂₂ H ₃₂ F ₃ F ₃ N ₃ O ₂ 484.0 14.5 60 Example 602 266 C ₂₂ H ₃₂ F ₃ N ₃ O ₃ 498.0 9.3 37 Example 603 267 C ₂₂ H ₂₄ F ₃ N ₃ O ₃ 484.0 11.6 48 Example 604 268 C ₂₂ H ₃₂ F ₃ N ₃ O ₃ 436.0 10.3 47 Example 605 269 C ₂₂ H ₂₄ F ₃ N ₃ O ₃ 436.0 10.3 47 Example 607 271 C ₂₂ H ₂₄ F ₃ N ₃ O ₃ 436.0 10.3 47 Example 608 270 C ₂₂ H ₂₄ F ₃ N ₃ O ₃ 484.0 8.0 33 Example 607 271 C ₂₂ H ₂₄ F ₃ N ₃ O ₃ 436.0 10.3 47 Example 608 272 C ₂₂ H ₂₄ F ₃ N ₃ O ₃ 436.0 10.3 47 Example 609 273 C ₂₂ H ₂₄ F ₃ N ₃ O ₃ 436.0 10.3 47 Example 607 271 C ₂₁ H ₂₅ F ₃ N ₃ O ₄ 464.0 8.9 38 Example 608 272 C ₂₂ H ₂₄ F ₃ N ₃ O ₃ 422.0 13.6 59 Example 609 273 C ₂₂ H ₂₄ F ₃ N ₃ O ₃ 422.0 13.6 59 Example 608 272 C ₂₁ H ₂₅ F ₃ N ₃ O ₃ 422.0 13.6 59 Example 608 272 C ₂₁ H ₂₅ F ₃ N ₃ O ₃ 422.0 13.6 59 Example 608 272 C ₂₂ H ₂₅ F ₃ N ₃ O ₃ 422.0 13.6 59 Example 608 272 C ₂₂ H ₂₅ F ₃ N ₃ O ₃ 422.0 13.6 59 Example 609 273 C ₂₂ H ₂₅ F ₃ N ₃ O ₃ 422.0 13.6 59 Example 609 273 C ₂₂ H ₂₅ F ₃ N ₃ O ₃ 422.0 13.6 59 Example 610 274 C ₂₂ H ₂₅ F ₃ N ₃ O ₃ 422.0 13.6 59 Example 611 275 C ₂₂ H ₂₅ F ₃ N ₃ O ₃ 422.0 13.6 59 Example 612 276 C ₂₂ H ₂₅ F ₃ N ₃ O ₃ 422.0 431.0 12.7 59 Example 613 279 C ₂₂ H ₂₅ F ₃ N ₃ O ₃ 422.0 431.0 56 Example 614 280 C ₂₂ H ₂₅ F						
Example 589 253 C ₂₂ H ₂₂ F ₃ N ₃ O ₂ 420.0 11.1 53 Example 590 254 C ₂₁ H ₂ CIF ₃ N ₄ O ₄ 485.0 2.4 10 Example 591 255 C ₂₁ H ₂₁ F ₃ N ₄ O ₄ 451.0 12.2 54 Example 592 256 C ₂₁ H ₂₁ F ₃ N ₄ O ₄ 451.0 11.4 51 Example 593 257 C ₂₂ H ₂₁ F ₄ N ₃ O ₂ 474.0 11.1 47 Example 594 258 C ₄₄ H ₄₂ E ₅ N ₃ O ₂ 478.0 15.3 64 Example 595 259 C ₂₂ H ₂₂ CIF ₃ N ₃ O ₂ 474.0 12.1 51 Example 597 261 C ₂₂ H ₂₁ CIF ₄ N ₃ O ₂ 474.0 12.1 51 Example 598 262 C ₂₂ H ₂₂ CIF ₃ N ₃ O ₂ 474.0 12.1 51 Example 599 261 C ₂₂ H ₂₁ CIF ₄ N ₃ O ₂ 474.0 12.1 51 Example 599 261 C ₂₂ H ₂₁ CIF ₄ N ₃ O ₂ 474.0 12.1 51 Example 599 263 C ₂₂ H ₂₂ EF ₃ N ₃ O ₂ 484.0 15.2 63 Example 599 263 C ₂₂ H ₂₂ EF ₃ N ₃ O ₂ 484.0 15.2 63 Example 600 264 C ₂₂ H ₂₂ EF ₃ N ₃ O ₂ 484.0 14.5 60 Example 601 265 C ₂₂ H ₃₂ EF ₃ N ₃ O ₂ 484.0 11.6 48 Example 602 266 C ₂₂ H ₂₂ F ₃ N ₃ O ₃ 498.0 9.3 37 Example 603 267 C ₂₂ H ₂₂ E ₃ N ₃ O ₃ 484.0 11.6 48 Example 604 268 C ₂₂ H ₃₂ F ₃ N ₃ O ₃ 436.0 10.3 47 Example 605 269 C ₂₂ H ₃₂ F ₃ N ₃ O ₃ 484.0 8.0 33 Example 606 270 C ₂₃ H ₂₂ F ₃ N ₃ O ₃ 484.0 8.0 33 Example 607 271 C ₂₂ H ₂₂ F ₃ N ₃ O ₃ 484.0 8.0 33 Example 608 272 C ₂₂ H ₃₂ F ₃ N ₃ O ₃ 442.0 6.1 28 Example 609 273 C ₂₂ H ₃₂ F ₃ N ₃ O ₃ 442.0 6.1 28 Example 609 273 C ₂₂ H ₃₂ F ₃ N ₃ O ₃ 422.0 13.6 59 Example 610 274 C ₂₂ H ₂₂ F ₃ N ₃ O ₃ 422.0 13.6 59 Example 611 275 C ₂₂ H ₃₂ F ₃ N ₃ O ₃ 422.0 13.6 59 Example 612 276 C ₂₃ H ₃₂ F ₃ N ₃ O ₃ 422.0 13.6 59 Example 613 277 C ₂₂ H ₃₂ F ₃ N ₃ O ₃ 422.0 13.6 59 Example 616 270 C ₂₃ H ₃₂ F ₃ N ₃ O ₃ 422.0 13.6 59 Example 617 271 C ₂₃ H ₃₂ F ₃ N ₃ O ₃ 422.0 13.6 59 Example 618 279 C ₂₂ H ₃₁ F ₃ N ₃ O ₃ 422.0 13.6 59 Example 619 273 C ₂₂ H ₃₁ F ₃ N ₃ O ₃ 422.0 13.6 59 Example 610 274 C ₂₃ H ₂₂ F ₃ N ₃ O ₃ 422.0 13.6 59 Example 611 275 C ₂₂ H ₃₁ F ₃ N ₃ O ₃ 422.0 13.6 59 Example 612 276 C ₂₃ H ₃₂ F ₃ N ₃ O ₃ 422.0 12.0 52 Example 613 279 C ₂₂ H ₃₁ F ₃ N ₃ O ₃ 422.0 420.0 12.0 52 Example 616 280 C ₂₃ H ₃₂ F ₃ N ₃ O ₃ 490.0 12.0 49 Example 617 281 C ₂₃ H ₂₂ F ₃ N ₃	_					
Example 590 254 C ₂₁ H ₂₁ CIF ₃ N ₄ O ₄ 485.0 2.4 10 Example 591 255 C ₂₁ H ₂₁ F ₃ N ₄ O ₄ 451.0 12.2 54 Example 592 256 C ₂₁ H ₂₁ F ₃ N ₄ O ₄ 451.0 11.4 51 Example 593 257 C ₂₂ H ₂₁ F ₃ N ₃ O ₂ 474.0 11.1 47 Example 594 258 C ₂₄ H ₂₄ F ₃ N ₃ O ₂ 478.0 15.3 64 Example 595 259 C ₂₂ H ₂₃ CIF ₃ N ₃ O ₂ 420.0 6.4 31 Example 596 260 C ₂₃ H ₂₀ Cl ₂ F ₃ N ₃ O ₂ 474.0 12.1 51 Example 597 261 C ₂₂ H ₂₁ CIF ₄ N ₃ O ₂ 474.0 12.1 51 Example 598 262 C ₂₃ H ₂₃ EF ₃ N ₃ O ₂ 484.0 15.2 63 Example 599 263 C ₂₂ H ₂₁ EF ₃ N ₃ O ₂ 484.0 15.2 63 Example 600 264 C ₂₂ H ₂₂ EF ₃ N ₃ O ₃ 498.0 9.3 37 Example 601 265 C ₂₂ H ₂₁ EF ₃ N ₃ O ₂ 494.0 11.6 48 Example 602 266 C ₂₂ H ₂₂ E ₃ N ₃ O ₃ 498.0 9.3 37 Example 603 267 C ₂₂ H ₂₁ E ₃ N ₃ O ₃ 463.0 6.3 27 Example 604 268 C ₂₂ H ₂₂ E ₃ N ₃ O ₃ 463.0 6.3 27 Example 605 269 C ₂₂ H ₂₂ E ₃ N ₃ O ₃ 463.0 6.3 27 Example 606 270 C ₂₃ H ₂₂ E ₃ N ₃ O ₃ 464.0 8.9 38 Example 607 271 C ₂₁ H ₂₂ E ₃ N ₃ O ₃ 464.0 8.9 38 Example 608 272 C ₂₂ H ₂₂ E ₃ N ₃ O ₃ 422.0 13.6 59 Example 609 273 C ₂₂ H ₂₁ E ₃ E ₃ N ₃ O ₃ 422.0 13.6 59 Example 610 274 C ₂₂ H ₂₁ E ₃ E ₃ N ₃ O ₃ 422.0 13.6 59 Example 611 275 C ₂₂ H ₂₁ E ₃ N ₃ O ₃ 431.0 12.6 59 Example 612 276 C ₂₂ H ₂₁ E ₃ N ₃ O ₃ 422.0 13.6 59 Example 613 277 C ₂₂ H ₂₁ E ₃ N ₃ O ₃ 482.0 9.5 39 Example 610 274 C ₂₂ H ₂₁ E ₃ N ₃ O ₃ 422.0 13.6 59 Example 611 275 C ₂₂ H ₂₁ E ₃ N ₃ O ₃ 422.0 13.6 59 Example 612 276 C ₂₂ H ₂₁ E ₃ N ₃ O ₃ 422.0 13.6 59 Example 613 277 C ₂₂ H ₂₁ E ₃ N ₃ O ₃ 422.0 13.6 59 Example 616 280 C ₂₂ H ₂₁ E ₃ N ₃ O ₃ 422.0 13.6 59 Example 617 291 C ₂₂ H ₂₁ E ₃ N ₃ O ₃ 422.0 13.6 59 Example 618 282 C ₂₃ H ₂₂ E ₃ N ₃ O ₃ 422.0 13.6 59 Example 619 274 C ₂₂ H ₂₁ E ₃ N ₃ O ₃ 422.0 13.6 59 Example 610 274 C ₂₂ H ₂₁ E ₃ N ₃ O ₃ 422.0 13.0 12.0 59 Example 611 275 C ₂₂ H ₂₁ E ₃ N ₃ O ₃ 422.0 13.0 12.0 59 Example 612 276 C ₂₁ H ₂₂ E ₃ N ₃ O ₃ 422.0 431.0 12.7 59 Example 618 280 C ₂₃ H ₂₂ E ₃ N ₃ O ₃ 482.0 9.5 39 Example 619 283 C ₂₃ H ₂₂ E ₃ N ₃ O ₃ 490.0 12.0 49 Example 619 283 C ₂₃	· · · ·					
Example 591 255 C ₂₁ H ₂₁ F ₂ N ₁ O ₄ 451.0 12.2 54 Example 592 256 C ₂₁ H ₂₁ F ₃ N ₁ O ₄ 451.0 11.4 51 Example 593 257 C ₂₂ H ₂₁ F ₄ N ₃ O ₂ 474.0 11.1 47 Example 594 258 C ₂₄ H ₂₄ F ₃ N ₃ O ₄ 478.0 15.3 64 Example 595 259 C ₂₂ H ₂₂ ClF ₃ N ₃ O ₂ 420.0 6.4 31 Example 596 260 C ₂₁ H ₂₀ Cl ₂ F ₃ N ₃ O ₂ 474.0 12.1 51 Example 597 261 C ₂₂ H ₂₁ ClF ₄ N ₃ O ₂ 474.0 13.6 57 Example 598 262 C ₂₁ H ₂₁ ErF ₃ N ₃ O ₂ 484.0 15.2 63 Example 599 263 C ₂₁ H ₂₁ ErF ₃ N ₃ O ₂ 484.0 14.5 60 Example 600 264 C ₂₂ H ₂₄ ErF ₃ N ₃ O ₃ 498.0 9.3 37 Example 601 265 C ₂₂ H ₂₂ ErF ₃ N ₃ O ₃ 498.0 9.3 37 Example 602 266 C ₂₂ H ₂₂ F ₃ N ₃ O ₃ 484.0 11.6 48 Example 603 267 C ₂₂ H ₂₂ ErF ₃ N ₃ O ₃ 486.0 10.3 47 Example 604 268 C ₂₂ H ₂₄ F ₃ N ₃ O ₃ 463.0 6.3 27 Example 605 269 C ₂₂ H ₂₄ F ₃ N ₃ O ₃ 484.0 8.0 33 Example 606 270 C ₂₃ H ₂₄ F ₃ N ₃ O ₃ 484.0 8.0 33 Example 607 271 C ₂₁ H ₂₂ F ₃ N ₃ O ₃ 484.0 8.0 33 Example 608 272 C ₂₂ H ₂₄ F ₃ N ₃ O ₃ 484.0 8.0 33 Example 609 273 C ₂₂ H ₂₄ F ₃ N ₃ O ₃ 436.0 10.3 47 Example 606 270 C ₂₃ H ₂₄ F ₃ N ₃ O ₄ 464.0 8.9 38 Example 607 271 C ₂₁ H ₂₂ F ₃ N ₃ O ₃ 436.0 10.3 59 Example 608 272 C ₂₂ H ₂₄ F ₃ N ₃ O ₃ 422.0 13.6 59 Example 609 273 C ₂₂ H ₂₄ F ₃ N ₃ O ₃ 422.0 13.6 59 Example 610 274 C ₂₂ H ₂₂ F ₃ N ₃ O ₃ 431.0 12.6 59 Example 611 275 C ₂₂ H ₂₄ F ₃ N ₃ O ₂ 442.0 11.7 53 Example 612 276 C ₂₁ H ₂₄ F ₃ N ₃ O ₂ 442.0 11.7 53 Example 613 277 C ₂₁ H ₂₄ F ₃ N ₃ O ₂ 442.0 11.7 53 Example 616 280 C ₂₂ H ₂₄ F ₃ N ₃ O ₂ 490.0 10.4 42 Example 617 281 C ₂₂ H ₂₄ F ₃ N ₃ O ₂ 490.0 10.4 42 Example 618 280 C ₂₂ H ₂₄ F ₃ N ₃ O ₂ 490.0 10.4 42 Example 619 283 C ₂₂ H ₂₄ F ₃ N ₃ O ₂ 425.0 490.0 12.0 49 Example 610 284 C ₂₂ H ₂₄ F ₃ N ₃ O ₂ 425.0 490.0 12.0 52 Example 610 284 C ₂₂ H ₂₄ F ₃ N ₃ O ₂ 462.0 12.0 52 Example 611 285 C ₂₁ H ₂₂ F ₃ N ₃ O ₂ 425.0 406.0 4.8 24 Example 620 284 C ₂₁ H ₂₂ F ₃ N ₃ O ₂ 425.0 406.0 4.8 24 Example 621 285 C ₂₁ H ₂₂ F ₃ N ₃ O ₂ 424.0 4.5 21 Example 622 286 C ₂₁ H ₂₁ F ₃ N ₃ O ₂ 424.0 4.5 21	-					
Example 592 256						
Example 593 257 C ₂₁ H ₂₁ F ₈ N ₃ O ₂ 474.0 11.1 47 Example 594 258 C ₂₁ H ₂₆ F ₃ N ₃ O ₄ 478.0 15.3 64 Example 595 259 C ₂₂ H ₂₃ ClF ₃ N ₃ O ₂ 420.0 6.4 31 Example 596 260 C ₂₁ H ₂₀ Cl ₇ F ₃ N ₃ O ₂ 474.0 12.1 51 Example 597 261 C ₂₂ H ₂₁ ClF ₆ N ₃ O ₂ 474.0 13.6 57 Example 598 262 C ₂₁ H ₂₁ ClF ₆ N ₃ O ₂ 484.0 15.2 63 Example 599 263 C ₂₁ H ₂₁ BeF ₃ N ₃ O ₂ 484.0 14.5 60 Example 600 264 C ₂₁ H ₂₆ F ₃ N ₃ O ₂ 484.0 11.6 48 Example 601 265 C ₂₁ H ₂₁ BeF ₃ N ₃ O ₂ 484.0 11.6 48 Example 602 266 C ₂₂ H ₂₂ F ₃ N ₃ O ₄ 450.0 8.9 40 Example 603 267 C ₂₁ H ₂₁ F ₃ N ₃ O ₃ 450.0 10.3 47 Example 604 268 C ₂₃ H ₂₄ F ₃ N ₃ O ₃ 463.0 10.3 47 Example 605 269 C ₂₂ H ₂₄ F ₃ N ₃ O ₃ 464.0 8.9 38 Example 606 270 C ₂₃ H ₂₄ F ₃ N ₃ O ₃ 464.0 8.0 8.9 38 Example 606 270 C ₂₃ H ₂₄ F ₃ N ₃ O ₃ 464.0 8.9 38 Example 607 271 C ₂₃ H ₂₆ F ₃ N ₃ O ₃ 464.0 8.9 38 Example 608 272 C ₂₃ H ₂₅ F ₃ N ₃ O ₄ 464.0 8.9 38 Example 609 273 C ₂₃ H ₂₅ F ₃ N ₃ O ₅ 442.0 6.1 28 Example 609 273 C ₂₂ H ₂₁ F ₃ N ₃ O ₃ 422.0 13.6 59 Example 609 273 C ₂₂ H ₂₁ F ₃ N ₃ O ₃ 422.0 13.6 59 Example 610 274 C ₂₂ H ₂₁ F ₃ N ₃ O ₂ 431.0 12.6 59 Example 611 275 C ₂₂ H ₂₁ F ₃ N ₃ O ₂ 431.0 12.7 59 Example 612 276 C ₂₁ H ₂₆ F ₃ N ₃ O ₂ 442.0 11.7 53 Example 613 277 C ₂₁ H ₂₆ F ₃ N ₃ O ₂ 442.0 11.7 53 Example 614 278 C ₂₃ H ₂₄ F ₃ N ₃ O ₂ 442.0 11.7 53 Example 615 279 C ₂₂ H ₂₁ F ₃ N ₃ O ₂ 490.0 10.4 42 Example 616 280 C ₂₃ H ₂₄ F ₃ N ₃ O ₃ 490.0 10.4 42 Example 617 281 C ₂₃ H ₂₄ F ₃ N ₃ O ₂ 490.0 12.0 49 Example 618 282 C ₂₃ H ₂₄ F ₃ N ₃ O ₂ 490.0 12.0 49 Example 619 283 C ₂₃ H ₂₄ F ₃ N ₃ O ₂ 490.0 12.0 49 Example 619 283 C ₂₃ H ₂₄ F ₃ N ₃ O ₂ 490.0 12.0 49 Example 619 283 C ₂₃ H ₂₄ F ₃ N ₃ O ₂ 490.0 12.0 49 Example 619 283 C ₂₃ H ₂₄ F ₃ N ₃ O ₂ 490.0 12.0 49 Example 619 283 C ₂₃ H ₂₄ F ₃ N ₃ O ₂ 400.0 450.0 4.8 19 Example 620 284 C ₂₃ H ₂₅ F ₃ N ₃ O ₂ 400.0 400.0 4.8 24 Example 621 285 C ₂₁ H ₂₅ F ₃ N ₃ O ₂ 400.0 400.0 4.8 24 Example 622 286 C ₂₁ H ₂₅ F ₃ N ₃ O ₂ 400.0 5.8 26						
Example 594	·1					
Example 595	I					· · · · · · · · · · · · · · · · · · ·
Example 596				1		l
Example 597 261						_
Example 598 262 C ₂₁ H ₂₁ BrF ₃ N ₃ O ₂ 484.0 15.2 63 Example 599 263 C ₂₁ H ₂₁ BrF ₃ N ₃ O ₂ 484.0 14.5 60 Example 600 264 C ₂₁ H ₂₂ BrF ₃ N ₃ O ₂ 498.0 9.3 37 Example 601 265 C ₂₁ H ₂₂ BrF ₃ N ₃ O ₂ 484.0 11.6 48 Example 602 266 C ₂₂ H ₂₂ F ₃ N ₃ O ₄ 450.0 8.9 40 Example 603 267 C ₂₂ H ₂₄ F ₃ N ₃ O ₃ 436.0 10.3 47 Example 604 268 C ₂₃ H ₂₅ F ₃ N ₃ O ₄ 463.0 6.3 27 Example 605 269 C ₂₂ H ₂₄ F ₃ N ₃ O ₄ 464.0 8.0 33 Example 606 270 C ₂₃ H ₂₄ F ₃ N ₃ O ₄ 464.0 8.9 38 Example 607 271 C ₂₁ H ₂₀ F ₅ N ₃ O ₃ 422.0 13.6 59 Example 608 272 C ₂₁ H ₂₂ F ₃ N ₃ O ₃ 422.0 13.6 59 Example 609 273 C ₂₂ H ₂₁ F ₃ N ₄ O ₂ 431.0 12.6 59 Example 610 274 C ₂₂ H ₂₅ F ₃ N ₃ O ₂ 431.0 7.7 36 Example 611 275 C ₂₂ H ₂₁ F ₃ N ₄ O ₂ 431.0 12.7 59 Example 612 276 C ₂₁ H ₂₀ F ₅ N ₃ O ₂ 442.0 11.7 53 Example 613 277 C ₂₁ H ₂₀ F ₅ N ₃ O ₂ 482.0 9.5 39 Example 614 278 C ₂₂ H ₂₁ F ₃ N ₃ O ₄ 464.0 13.0 56 Example 615 279 C ₂₂ H ₂₁ F ₆ N ₃ O ₂ 490.0 10.4 42 Example 616 280 C ₂₂ H ₂₁ F ₆ N ₃ O ₂ 490.0 10.4 42 Example 617 281 C ₂₂ H ₂₁ F ₆ N ₃ O ₂ 490.0 12.0 49 Example 618 282 C ₂₅ H ₂ F ₃ N ₃ O ₄ 465.0 4.9 22 Example 619 283 C ₂₀ H ₂₁ F ₆ N ₃ O ₂ 462.0 12.0 52 Example 620 284 C ₂₁ H ₂ F ₃ N ₃ O ₂ 462.0 12.0 52 Example 620 284 C ₂₁ H ₂ F ₃ N ₃ O ₂ 462.0 4.8 19 Example 621 285 C ₂₁ H ₂₁ F ₃ N ₃ O ₂ 406.0 4.8 19 Example 622 286 C ₂₁ H ₂₁ F ₃ N ₃ O ₂ 424.0 4.5 21 Example 623 287 C ₂₁ H ₂₁ F ₃ N ₃ O ₂ 440.0 5.8 26	· -		<u> </u>	ł		
Example 599 263						
Example 600 264						
Example 601 265 C ₂₁ H ₂₁ BrF ₃ N ₃ O ₂ 484.0 11.6 48 Example 602 266 C ₂₂ H ₂₂ F ₃ N ₃ O ₄ 450.0 8.9 40 Example 603 267 C ₂₂ H ₂₄ F ₃ N ₃ O ₃ 436.0 10.3 47 Example 604 268 C _{E3} H ₂₅ F ₃ N ₄ O ₃ 463.0 6.3 27 Example 605 269 C ₂₂ H ₂₄ F ₃ N ₃ O ₄ 484.0 8.0 33 Example 606 270 C ₂₃ H ₂₄ F ₃ N ₃ O ₄ 464.0 8.9 38 Example 607 271 C ₂₁ H ₂₀ F ₅ N ₃ O ₂ 442.0 6.1 28 Example 608 272 C ₂₁ H ₂₂ F ₃ N ₃ O ₃ 422.0 13.6 59 Example 609 273 C ₂₂ H ₂₁ F ₃ N ₄ O ₂ 431.0 12.6 59 Example 610 274 C ₂₂ H ₂₁ F ₃ N ₄ O ₂ 431.0 7.7 36 Example 611 275 C ₂₃ H ₂₁ F ₃ N ₄ O ₂ 431.0 12.7 59 Example 612 276 C ₂₁ H ₂₀ F ₅ N ₃ O ₂ 442.0 9.5 39 Example 613 277 C ₂₇ H ₂₆ F ₃ N ₃ O ₂ 482.0 9.5 39 Example 614 278 C ₂₃ H ₂₄ F ₃ N ₃ O ₄ 464.0 13.0 56 Example 615 279 C ₂₂ H ₂₁ F ₃ N ₃ O ₄ 464.0 13.0 56 Example 616 280 C ₂₂ H ₂₁ F ₃ N ₃ O ₄ 464.0 13.0 56 Example 617 281 C ₂₂ H ₂₁ F ₃ N ₃ O ₄ 464.0 13.0 56 Example 618 282 C ₂₅ H ₂₄ F ₃ N ₃ O ₄ 462.0 12.0 49 Example 619 283 C ₂₂ H ₂₁ F ₃ N ₃ O ₂ 490.0 12.0 49 Example 619 283 C ₂₀ H ₂₅ F ₃ N ₃ O ₂ 462.0 12.0 52 Example 620 284 C ₂₇ H ₂₅ F ₃ N ₃ O ₂ 462.0 12.0 52 Example 621 285 C ₂₁ H ₂₁ F ₃ N ₃ O ₂ 406.0 4.8 19 Example 622 286 C ₂₁ H ₂₁ F ₄ N ₃ O ₂ 424.0 4.5 21 Example 623 287 C ₂₁ H ₂₁ F ₄ N ₃ O ₂ 424.0 4.5 21 Example 623 287 C ₂₁ H ₂₁ F ₄ N ₃ O ₂ 424.0 5.8						
Example 602 266 C ₂₂ H ₂₂ F ₃ N ₃ O ₄ 450.0 8.9 40 Example 603 267 C ₂₂ H ₂₄ F ₃ N ₃ O ₃ 436.0 10.3 47 Example 604 268 C ₂₃ H ₂₅ F ₃ N ₄ O ₃ 463.0 6.3 27 Example 605 269 C ₂₂ H ₂₄ F ₃ N ₃ O ₄ 484.0 8.0 33 Example 606 270 C ₂₃ H ₂₄ F ₃ N ₃ O ₄ 464.0 8.9 38 Example 607 271 C ₂₁ H ₂₀ F ₅ N ₃ O ₂ 442.0 6.1 28 Example 608 272 C ₂₁ H ₂₂ F ₃ N ₃ O ₃ 422.0 13.6 59 Example 609 273 C ₂₂ H ₂₁ F ₃ N ₄ O ₂ 431.0 12.6 59 Example 610 274 C ₂₂ H ₂₁ F ₃ N ₄ O ₂ 431.0 12.7 59 Example 611 275 C ₂₂ H ₂₁ F ₃ N ₄ O ₂ 431.0 12.7 59 Example 612 276 C ₂₁ H ₂₀ F ₅ N ₃ O ₂ 442.0 11.7 53 Example 613 277 C ₂₇ H ₂₆ F ₃ N ₃ O ₂ 482.0 9.5 39 Example 614 278 C ₂₂ H ₂₁ F ₃ N ₄ O ₂ 482.0 9.5 39 Example 615 279 C ₂₂ H ₂₁ F ₆ N ₃ O ₃ 490.0 10.4 42 Example 616 280 C ₂₂ H ₂₁ F ₆ N ₃ O ₃ 490.0 12.0 49 Example 617 281 C ₂₂ H ₂₁ F ₃ N ₄ O ₂ 450.0 4.9 22 Example 618 282 C ₂₅ H ₂₆ F ₃ N ₃ O ₂ 462.0 12.0 52 Example 619 283 C ₂₀ H ₂₆ F ₃ N ₃ O ₂ 462.0 12.0 52 Example 620 284 C ₂₇ H ₂₆ F ₃ N ₃ O ₂ 462.0 12.0 52 Example 621 285 C ₂₁ H ₂₆ F ₃ N ₃ O ₂ 406.0 4.8 19 Example 622 286 C ₂₁ H ₂₁ F ₄ N ₃ O ₂ 424.0 4.5 21 Example 623 287 C ₂₁ H ₂₁ F ₄ N ₃ O ₂ 424.0 4.5 21 Example 623 287 C ₂₁ H ₂₁ F ₄ N ₃ O ₂ 424.0 5.8						
Example 603 267				1		
Example 604 268						
Example 605 269						<u> </u>
Example 606 270 C ₂₃ H ₂₄ F ₃ N ₃ O ₄ 464.0 8.9 38 Example 607 271 C ₂₁ H ₂₀ F ₅ N ₃ O ₅ 442.0 6.1 28 Example 608 272 C ₂₁ H ₂₀ F ₃ N ₃ O ₃ 422.0 13.6 59 Example 609 273 C ₂₂ H ₂₁ F ₃ N ₄ O ₂ 431.0 12.6 59 Example 610 274 C ₂₂ H ₂₁ F ₃ N ₄ O ₂ 431.0 7.7 36 Example 611 275 C ₂₂ H ₂₁ F ₃ N ₄ O ₂ 431.0 12.7 59 Example 612 276 C ₂₁ H ₂₀ F ₃ N ₃ O ₂ 442.0 11.7 53 Example 613 277 C ₂₁ H ₂₆ F ₃ N ₃ O ₂ 482.0 9.5 39 Example 614 278 C ₂₃ H ₂₄ F ₃ N ₃ O ₄ 464.0 13.0 56 Example 615 279 C ₂₂ H ₂₁ F ₆ N ₃ O ₃ 490.0 10.4 42 Example 616 280 C ₂₂ H ₂₁ F ₆ N ₃ O ₃ 490.0 10.4 42 Example 617 281 C ₂₂ H ₂₆ F ₃ N ₃ O ₄ 450.0 4.9 22 Example 618 282 C ₂₅ H ₁ AF ₃ N ₃ O ₄ 462.0 12.0 52 Example 619 283 C ₂₆ H ₂₃ F ₃ N ₃ O ₂ 462.0 12.0 52 Example 620 284 C ₂₇ H ₂₆ F ₃ N ₃ O ₂ 462.0 12.0 52 Example 620 284 C ₂₇ H ₂₆ F ₃ N ₃ O ₂ 462.0 4.8 19 Example 621 285 C ₂₁ H ₂₁ F ₃ N ₃ O ₂ 406.0 4.8 19 Example 622 286 C ₂₁ H ₂₁ F ₄ N ₃ O ₂ 440.0 4.5 21 Example 623 287 C ₂₁ H ₂₁ C1F ₃ N ₃ O ₂ 440.0 5.8 26	-					
Example 607 271						
Example 608 272 C ₂₁ H ₂₂ F ₃ N ₃ O ₃ 422.0 13.6 59 Example 609 273 C ₂₂ H ₂₁ F ₃ N ₄ O ₂ 431.0 12.6 59 Example 610 274 C ₂₂ H ₂₁ F ₃ N ₄ O ₂ 431.0 7.7 36 Example 611 275 C ₂₂ H ₂₁ F ₃ N ₄ O ₂ 431.0 12.7 59 Example 612 276 C ₂₁ H ₂₀ F ₅ N ₃ O ₂ 442.0 11.7 53 Example 613 277 C ₂₇ H ₂₆ F ₃ N ₃ O ₂ 482.0 9.5 39 Example 614 278 C ₂₃ H ₂₄ F ₃ N ₃ O ₄ 464.0 13.0 56 Example 615 279 C ₂₂ H ₂₁ F ₆ N ₃ O ₃ 490.0 10.4 42 Example 616 280 C ₂₂ H ₂₁ F ₆ N ₃ O ₃ 490.0 12.0 49 Example 617 281 C ₂₂ H ₂₁ F ₆ N ₃ O ₃ 490.0 4.9 22 Example 618 282 C ₂₅ H ₁₆ F ₃ N ₃ O ₄ 450.0 4.9 22 Example 619 283 C ₂₆ H ₂₆ F ₃ N ₃ O ₂ 462.0 12.0 52 Example 620 284 C ₂₇ H ₂₆ F ₃ N ₃ O ₂ 406.0 4.8 19 Example 621 285 C ₂₁ H ₂₁ F ₃ N ₃ O ₂ 406.0 4.8 24 Example 622 286 C ₂₁ H ₂₁ F ₄ N ₃ O ₂ 440.0 5.8 26						
Example 609 273						
Example 610 274 C ₂₂ H ₂₁ F ₃ N ₄ O ₂ 431.0 7.7 36 Example 611 275 C ₂₂ H ₂₁ F ₃ N ₄ O ₂ 431.0 12.7 59 Example 612 276 C ₂₁ H ₂₀ F ₅ N ₃ O ₂ 442.0 11.7 53 Example 613 277 C ₂₇ H ₂₆ F ₃ N ₃ O ₂ 482.0 9.5 39 Example 614 278 C ₂₅ H ₂₄ F ₃ N ₃ O ₄ 464.0 13.0 56 Example 615 279 C ₂₂ H ₂₁ F ₆ N ₃ O ₃ 490.0 10.4 42 Example 616 280 C ₂₂ H ₂₁ F ₆ N ₂ O ₂ 490.0 12.0 49 Example 617 281 C ₂₂ H ₂₀ F ₃ N ₃ O ₄ 450.0 4.9 22 Example 618 282 C ₂₅ H ₂₆ F ₃ N ₃ O ₂ 462.0 12.0 52 Example 619 283 C ₂₀ H ₂₅ F ₃ N ₃ O ₂ 462.0 12.0 52 Example 620 284 C ₂₇ H ₂₅ C1F ₃ N ₃ O ₂ 406.0 4.8 19 Example 621 285 C ₂₁ H ₂₁ F ₄ N ₃ O ₂ 406.0 4.8 24 Example 622 286 C ₂₁ H ₂₁ F ₄ N ₃ O ₂ 424.0 4.5 21 Example 623 287 C ₂₁ H ₂₁ C1F ₃ N ₃ O ₂ 440.0 5.8 26	_					
Example 611 275						
Example 612 276 $C_{21}H_{20}F_5N_3O_2$ 442.0 11.7 53 Example 613 277 $C_{27}H_{26}F_5N_3O_2$ 482.0 9.5 39 Example 614 278 $C_{23}H_{24}F_3N_3O_4$ 464.0 13.0 56 Example 615 279 $C_{22}H_{21}F_6N_3O_3$ 490.0 10.4 42 Example 616 280 $C_{22}H_{21}F_6N_2O_3$ 490.0 12.0 49 Example 617 281 $C_{22}H_{21}F_6N_2O_3$ 450.0 4.9 22 Example 618 282 $C_{25}H_{16}F_3N_3O_4$ 462.0 12.0 52 Example 619 283 $C_{20}H_{25}F_3N_4O_3$ 425.0 8.1 38 Example 620 284 $C_{27}H_{25}C1F_3N_3O_2$ 516.0 4.8 19 Example 621 285 $C_{21}H_{22}F_3N_3O_2$ 406.0 4.8 24 Example 622 286 $C_{21}H_{21}F_4N_3O_2$ 424.0 4.5 21 Example 623 287 $C_{21}H_{21}C1F_3N_3O_2$ 440.0 5.8 26			<u> </u>	1		
Example 613 277 $C_{27}H_{26}F_3N_3O_2$ 482.0 9.5 39 Example 614 278 $C_{25}H_{24}F_3N_3O_4$ 464.0 13.0 56 Example 615 279 $C_{22}H_{21}F_6N_3O_3$ 490.0 10.4 42 Example 616 280 $C_{22}H_{21}F_6N_2O_2$ 490.0 12.0 49 Example 617 281 $C_{22}H_{22}F_3N_3O_4$ 450.0 4.9 22 Example 618 282 $C_{25}H_{16}F_3N_3O_2$ 462.0 12.0 52 Example 619 283 $C_{20}H_{25}F_3N_4O_3$ 425.0 8.1 38 Example 620 284 $C_{27}H_{25}C1F_3N_3O_2$ 516.0 4.8 19 Example 621 285 $C_{21}H_{21}F_4N_3O_2$ 406.0 4.8 24 Example 622 286 $C_{21}H_{21}F_4N_3O_2$ 424.0 4.5 21 Example 623 287 $C_{21}H_{21}C1F_3N_3O_2$ 440.0 5.8 26	· .					L
Example 614 278 $C_{25}H_{24}F_3N_3O_4$ 464.0 13.0 56 Example 615 279 $C_{22}H_{21}F_6N_3O_3$ 490.0 10.4 42 Example 616 280 $C_{22}H_{21}F_6N_2O_2$ 490.0 12.0 49 Example 617 281 $C_{22}H_{22}F_3N_3O_4$ 450.0 4.9 22 Example 618 282 $C_{25}H_{10}F_3N_3O_2$ 462.0 12.0 52 Example 619 283 $C_{20}H_{23}F_3N_4O_3$ 425.0 8.1 38 Example 620 284 $C_{27}H_{25}C1F_3N_3O_2$ 516.0 4.8 19 Example 621 285 $C_{21}H_{22}F_3N_3O_2$ 406.0 4.8 24 Example 622 286 $C_{21}H_{21}F_4N_3O_2$ 424.0 4.5 21 Example 623 287 $C_{21}H_{21}C1F_3N_3O_2$ 440.0 5.8 26						
Example 615 279 $C_{22}H_{21}F_6N_3O_3$ 490.0 10.4 42 Example 616 280 $C_{22}H_{21}F_6N_2O_2$ 490.0 12.0 49 Example 617 281 $C_{22}H_{20}F_3N_3O_4$ 450.0 4.9 22 Example 618 282 $C_{25}H_{10}F_3N_3O_2$ 462.0 12.0 52 Example 619 283 $C_{20}H_{20}F_3N_4O_3$ 425.0 8.1 38 Example 620 284 $C_{27}H_{25}C1F_3N_3O_2$ 516.0 4.8 19 Example 621 285 $C_{21}H_{20}F_3N_3O_2$ 406.0 4.8 24 Example 622 286 $C_{21}H_{21}F_4N_3O_2$ 424.0 4.5 21 Example 623 287 $C_{21}H_{21}C1F_3N_3O_2$ 440.0 5.8 26	· ·					
Example 616 280 $C_{22}H_{21}F_6N_2O_2$ 490.0 12.0 49 Example 617 281 $C_{22}H_{22}F_3N_3O_4$ 450.0 4.9 22 Example 618 282 $C_{25}H_{10}F_3N_3O_2$ 462.0 12.0 52 Example 619 283 $C_{20}H_{23}F_3N_4O_3$ 425.0 8.1 38 Example 620 284 $C_{27}H_{25}C1F_3N_3O_2$ 516.0 4.8 19 Example 621 285 $C_{21}H_{22}F_3N_3O_2$ 406.0 4.8 24 Example 622 286 $C_{21}H_{21}F_4N_3O_2$ 424.0 4.5 21 Example 623 287 $C_{21}H_{21}C1F_3N_3O_2$ 440.0 5.8 26	-					
Example 617 281 $C_{22}H_{20}F_3N_3O_4$ 450.0 4.9 22 Example 618 282 $C_{25}H_{10}F_3N_3O_2$ 462.0 12.0 52 Example 619 283 $C_{20}H_{20}F_3N_4O_3$ 425.0 8.1 38 Example 620 284 $C_{27}H_{25}C1F_3N_3O_2$ 516.0 4.8 19 Example 621 285 $C_{21}H_{20}F_3N_3O_2$ 406.0 4.8 24 Example 622 286 $C_{21}H_{21}F_4N_3O_2$ 424.0 4.5 21 Example 623 287 $C_{21}H_{21}C1F_3N_3O_2$ 440.0 5.8 26	1					
Example 618 282 $C_{25}H_{10}F_3N_3O_2$ 462.0 12.0 52 Example 619 283 $C_{20}H_{23}F_3N_4O_3$ 425.0 8.1 38 Example 620 284 $C_{27}H_{25}C1F_3N_3O_2$ 516.0 4.8 19 Example 621 285 $C_{21}H_{22}F_3N_3O_2$ 406.0 4.8 24 Example 622 286 $C_{21}H_{21}F_4N_3O_2$ 424.0 4.5 21 Example 623 287 $C_{21}H_{21}C1F_3N_3O_2$ 440.0 5.8 26						
Example 619 283 $C_{20}H_{23}F_3N_4O_3$ 425.0 8.1 38 Example 620 284 $C_{27}H_{25}C1F_3N_3O_7$ 516.0 4.8 19 Example 621 285 $C_{21}H_{27}F_3N_3O_7$ 406.0 4.8 24 Example 622 286 $C_{21}H_{21}F_4N_3O_7$ 424.0 4.5 21 Example 623 287 $C_{21}H_{21}C1F_3N_3O_7$ 440.0 5.8 26						ļ
Example 620 284 $C_{27}H_{25}C1F_3N_3O_2$ 516.0 4.8 19 Example 621 285 $C_{21}H_{22}F_3N_3O_2$ 406.0 4.8 24 Example 622 286 $C_{21}H_{21}F_4N_3O_2$ 424.0 4.5 21 Example 623 287 $C_{21}H_{21}C1F_3N_3O_2$ 440.0 5.8 26						
Example 621 285 $C_{21}H_{22}F_3N_3O_2$ 406.0 4.8 24 Example 622 286 $C_{21}H_{21}F_4N_3O_2$ 424.0 4.5 21 Example 623 287 $C_{21}H_{21}C1F_3N_3O_2$ 440.0 5.8 26						
Example 622 286 $C_{21}H_{21}F_4N_5O_2$ 424.0 4.5 21 Example 623 287 $C_{21}H_{21}C1F_3N_2O_2$ 440.0 5.8 26						<u> </u>
Example 623 287 C ₂₁ H ₂₁ ClF ₃ N ₃ O ₂ 440.0 5.8 26						
Likampie 023 207 Giriginas and						<u> </u>
Example 624 288 C ₁₁ H ₂ ·Cl ₂ F·N ₃ O ₂ 474.0 8.1 34						J
	Example 624	288	C ₂₁ H ₂ ·Cl ₂ F·N ₃ O ₂	474.0	8.1	34

	289	CatHacClaFaNaOa	1 474.0	8.0	34
Example 625			420.0	6.0	29
Example 626	290	C ₂₂ H ₂₄ F ₁ N ₃ O ₂	424.0	6,2	29
Example 627	291	C ₂₁ H ₂₁ F ₄ N ₃ O ₂	440.0	4.5	20
Example 628	292	C ₂₁ H ₂₁ C1F ₃ N ₃ O ₂			22
Example 629	293	C ₂₃ H ₂₀ Cl ₂ F ₃ N ₃ O ₂	474.0	5.1	19
Example 630	294	C ₂₂ H ₂₄ CF ₃ N ₃ O ₃	436.0	4.2	25
Example 631	295	C ₂₂ H ₂₁ ClF ₆ N ₃ O ₂	474.0	6.0	23
Example 632	296	C ₂₂ H ₂₄ F ₃ N ₃ O ₂	420.0	4.3	
Example 633	297	C ₂₁ H ₂₁ F ₄ N ₃ O ₂	424.0	8.2	39
Example 634	298	$C_{32}H_{34}F_3N_3O_3$	436.0	12.2	56
Example 635	299	$C_{22}H_{24}F_3N_3O_2$	420.0	8.1	39
Example 636	300	C21H20ClF3N4O4	485.0	13.7	57
Example 637	301	C21H21F3N4O4	451.0	15.1	67
Example 638	302	C ₂₁ H ₂₁ F ₃ N ₄ O ₄	451.0	16.6	74
Example 639	303	C22H21F6N3O2	474.0	12.6	53
Example 640	304	C24H26F3N3O4	478.0	14.5	61
Example 641	305	C22H23C1F3N3O2	420.0	8.4	37
Example 642	306	C21H20Cl2F3N3O2	474.0	13.5	57
Example 643	307	C22H21ClF6N3O2	474.0	3.7	16
Example 644	308	C ₂₁ H ₂₁ BrF ₃ N ₃ O ₂	484.0	7.2	30
Example 645	309	C ₂₁ H ₂₁ BrF ₃ N ₃ O ₂	484.0	6.7	28
Example 646	310	C27H26F3N3O3	498.0	4.2	17
Example 647	311	C ₂₁ H ₂₁ BrF ₃ N ₃ O ₂	484.0	6.3	26
Example 648	312	C22H22F3N3O4	450.0	2.4	11
Example 649	313	C22H24F3N3O3	436.0	1.9	9
Example 650	314	C25H25F1N4O3	463.0	5.0	22
Example 651	315	C22H24F3N3O4S	484.0	2.5	10
Example 652	316	C23H24F3N3O4	464.0	3.3	14
Example 653	317	C ₂₁ H ₂₆ F ₅ N ₃ O ₂	442.0	4.5	20
Example 654	318	C ₂₁ H ₂₂ F ₃ N ₃ O ₃	422.0	7.9	34
Example 655		C ₂₂ H ₂₁ F ₃ N ₄ O ₂	431.0	6.5	30
Example 656		C ₂₂ H ₂₁ F ₃ N ₄ O ₂	431.0	14.2	66
Example 657		C ₂₂ H ₂₃ F ₃ N ₄ O ₂	431.0	14.9	69
Example 658		C ₂₁ H ₂ ;F ₅ N ₃ O ₂	442.0	13.6	62
Example 659		C ₂₇ H ₂₆ F ₃ N ₃ O ₂	482.0	3.9	16
Example 660		C23H24F3N3O4	464.0	15.2	66
Example 661		C22H21F6N2O3	490.0	16.1	66
Example 662	l	C ₂₂ H ₂₄ F ₆ N ₃ O ₃	490.0	13.6	56
Example 663		C ₂₂ H ₂₁ F ₃ N ₃ O ₄	450.0	5.4	24
Example 664		C ₂₅ H ₂ F ₂ N ₃ O ₂	462.0	10.9	47
Example 664	320			L	

l	329	C ₂₆ H ₂₃ F ₃ N ₄ O	425.0	12.0	57
Example 665		C27 H25 C1 F3 N3 O2	516.0	1.5	6
Example 666	986	<u> </u>			62
Example 667	1118	C28 H27 F3 N4 O3	525	21.5	
Example 668	1119	C22 H24 F3 N3 O2 S	452	16.9	57
Example 669	1120	C23 H26 F3 N3 O4	466	20.5	67
Example 670	1121	C22 H23 F3 N4 O4	465	16.8	55
Example 671	1122	C28 H36 F3 N3 O2	504	21.0	63
Example 672	1123	C25 H23 Br F3 N3 O2	534	26.6	75
Example 673	1124	C19 H19 F3 N4 O5	441	21.3	73
Example 674	1133	C23 H26 F3 N3 O4	467	33.6	84
Example 675	1134	C24 H28 F3 N3 O5	496	34.8	82
Example 676	1135	C22 H21 F3 N4 O6	495	32.6	77
Example 677	1136	C23 H24 F3 N3 O5	480	36.6	89
Example 678	1137	C22 H21 Br F3 N3 O4	529	30.8	69
Example 679	1138	C24 H26 F3 N3 O2	446	32.7	86
Example 680	1139	C22 H24 F3 N3 O2	420	18.6	51
Example 681	1140	C21 H20 F3 N5 O6	496	20.5	49
Example 682	1141	C25 H24 F3 N3 O2	456	22.5	58
Example 683	1142	C25 H24 F3 N3 O2	456	21.6	55
Example 684	1143	C35 H34 F3 N3 O4	618	27.3	53
Example 685	1144	C23 H26 F3 N3 O4	466	25.5	64
Example 686	1145	C23 H25 F3 N4 O6	511	38.0	88
Example 687	1146	C28 H28 F3 N3 O3	512	38.3	89
Example 688	1147	C23 H25 F3 N4 O3	463	27.1	62
Example 689	1148	C27 H26 F3 N3 O2	482	22.4	57
Example 690	1161	C22 H24 F3 N3 O4	452	13.5	58
Example 691	1162	C24 H28 F3 N3 O3	464	16.7	70
Example 692	1163	C22 H23 F4 N3 O3	454	15.8	68
Example 693	1164	C23 H26 F3 N3 O3	450	15.7	68
Example 694	1165	C23 H24 F3 N3 O4	464	16.3	68
Example 695	1166	C22 H23 Br F3 N3 O3	513	15.0	57
Example 696	1168	C17 H17 C1 F3 N5 O2 S	448	6.9*	23
Example 697	1169	C20 H22 F3 N5 O3 S	470	1.7*	6
Example 698	1170	C22 H22 F3 N5 O2	446	2.3*	8
Example 699	1286	C26 H33 F3 N4 O3	507	25.3*	51
Example 700	1287	C21 H20 F3 N5 O6	496	4.0*	8
Example 70:	1288	C22 H24 F3 N3 O4	452	3.6*	13
Example 702		C23 H25 Br F3 N3 O4	544	28.4	quant
Example 70		C24 H28 F3 N3 O5	496	1.4	6
Example 70	.1	C23 H26 F3 N3 O4	466	7.3	33
1 '	1		1		L

Example 705	1301	C24 H28 F3 N3 O5	496	12.6	53
Example 705	1302	C24 H28 F3 N3 O3	464	24.5	quant
Example 700	1302	C23 H25 Br F3 N3 O4	544	22.2	86
Example 707	1304	C29 H30 F3 N3 O4	542	28.6	quant
Example 709	1305	C26 H26 F3 N3 O3	486	35.4	quant
Example 710	1306	C24 H28 F3 N3 O4	480	8.1	35
Example 711	1307	C23 H26 F3 N3 O5	482	27.9	quant
Example 712	1308	C23 H24 F3 N3 O3	448	5.9	28
Example 713	1309	C23 H25 F3 I N3 O4	592	24.0	85
Example 713	1310	C22 H24 F3 N3 O4	452	3.4	16
Example 714 Example 715	1311	C22 H22 F3 N3 O4	450	3.4	16
Example 715	1312	C21 H21 F3 I N3 O2	532	18.1	72
Example 717	1313	C21 H21 Br F3 N3 O2	484	17.4	76
Example 717	1314	C19 H19 F3 N4 O4 S	457	16.8	77
Example 719	1315	C20 H22 F3 N3 O3	410	13.6	70
Example 713	1316	C22 H20 C1 F6 N3 O2	508	18.6	77
Example 721	1317	C21 H20 C1 F3 N4 O4	485	17.0	74
Example 722	1318	C21 H20 C1 F4 N3 O2	458	17.0	78
Example 723	1319	C21 H20 C1 F4 N3 O2	458	17.6	81
Example 724	1320	C21 H20 Br F4 N3 O2	502	18.5	77
Example 725		C26 H32 F3 N3 O2	476	16.1	51
Example 726		C23 H26 F3 N3 O2	434	20.0	76
Example 727	1	C22 H23 Cl F3 N3 O2	454	20.0	67
Example 728		C23 H26 F3 N3 O2	434	20.1	70
Example 729		C22 H23 F3 N4 O4	465	18.4	60
Example 730	l	C23 H24 F3 N3 O2	432	21.4	75
Example 731	<u> </u>	C26 H26 F3 N3 O2	470	20.4	66
Example 732		C21 H20 Br2 F3 N3 O2	562	14.5	54
Example 733		C22 H22 C12 F3 N3 O2	488	10.8	47
Example 734	1	C22 H22 C12 F3 N3 O2	488	9.4	40
Example 735		C22 H23 C1 F3 N3 O2	454	19.1	88
Example 736	.1	C22 H21 F6 N3 S	506.0	24.2	96
Example 737	1	C20 H22 F3 N3 O2 S	426	6.0	30
Example 738		C21 H23 F3 N4 O2	421	6.5	32

^{*}Yield of TFA salt.

Examples 739-748.

The compounds of this invention were synthesized pursuant to methods of Example 738 using the corresponding reactant respectively. Preparative TLC,

if needed, afforded the desired material. The .ESI/MS data and yields are summarized in Table 9.

Table 9

5

10

15

20

25

	Compound No.	Molecular Formula	ESI/MS m/e	Yield (mg)	Yield(%)
Example 739	1650	C24 H28 F3 N3 O2	448.0	20.4	91
Example 740	1706	C23 H25 F3 N4 O3	463.2	3.7	11
Example 741	1707	C22 H25 F3 N4 O2 S	467.0	10.3	29
Example 742	1708	C23 H27 F3 N4 O2	449.2	11.4	34
Example 743	1709	C24 H29 F3 N4 O2	463.2	15.2	44
Example 744	1775	C22 H25 F3 N4 O4	467.2	9.2	26.3
Example 745	1776	C22 H25 F3 N4 O4	467.2	8.9	25.4
Example 746	1787	C24 H29 F3 N4 O2	463.2	5.6	16.1
Example 747	1802	C23 H27 F3 N4 O4	481.2	11.7	32.5
Example 748	1803	C22 H25 F3 N4 O3	451.2	9.6	28.4

Example 749: Preparation of (R)-3-[{N-(2-Amino-5-trifluoromethoxybenzoyl)glycyl}amino]-1-(3-hydroxy-4-methoxybenzyl)pyrrolidine (Compound No. 1896).

 $(R)-3-[N-\{2-(\text{tert-butoxycarbonylamino})-5$ of mixture (trifluoromethoxy)benzoyl}glycyl]aminopyrrolidine (0.050 mmol), 3-hydroxy-4-methoxybenzaldehyde (0.060 mmol), NaBH3CN (0.15 mmol), and methanol (1.3 mL) was added acetic acid (0.050 mL). The reaction mixture was stirred at 60 $^{\circ}\text{C}$ for 8 h. The mixture was cooled to room temperature, loaded onto Varian TH SCX column, and washed with CH_3OH (10 mL). Product was eluted off using 2 N NH_3 in CH_3OH (5 mL) and concentrated. To the resulting material was added 4 N HCl in 1,4-dioxane and the solution was stirred overnight at room temperature. preparative TLC gave (R) - 3 - [(N - (2 - amino - 5 -Concentration and trifluoromethoxybenzoyl)glycyl)amino]-1-(3-hydroxy-4-

methoxybenzyl)pyrrolidine (Compound No. 1896) (9.1 mg, 38%): The purity was

determined by RPLC/MS (93%); ESI/MS m/e 483 (M⁷+H, $C_{22}H_{25}F_3N_4O_5$).

Examples 750-757.

The compounds of this invention were synthesized pursuant to methods of Example 749 using the corresponding reactant respectively. The ESI/MS data and yields are summarized in Table 10.

Table 10

	Compound No.	Molecular Formula	ESI/MS m/e	Yield (mg)	Yield(%)
Example 750	1897	C22 H25 F3 N4 O3 S	483	22.7	94.1
Example 751		C23 H27 F3 N4 O3	465	12.2	52.5
Example 752		C24 H29 F3 N4 O3	479	14.4	60.2
Example 753		C22 H25 F3 N4 O5	483	2.6	10.8
Example 754		C24 H29 F3 N4 O3	479	14.5	60.6
		C23 H25 F3 N4 O4	479	12.0	50.2
Example 755		C23 H27 F3 N4 O5	467.2	2.5	6.7
Example 756			467.2	3.1	8.9
Example 757	1916	C22 H25 F3 N4 O4	407.2		

Example 758: Preparation of (R)-3-[{N-(2-Amino-5-5 (trifluoromethyl)benzoyl)glycyl}amino]-1-(4-vinylbenzyl)pyrrolidine (Compound No. 1701).

Mixture of (R)-3-[(N-(2-amino-5-(trifluoromethyl)benzoyl)glycyl)amino] pyrrolidine (0.050 mmol), 4-vinylbenzyl chloride (9.9 mg, 0.065 mmol), piperidinomethylpolystyrene (60 mg), acetonitrile (1.0 mL) and chloroform (0.30 mL) was stirred at 50 °C for 12 h. The reaction mixture was cooled, loaded onto VarianTM SCX column and washed with CH₃OH (15 mL). Product was eluted using 2 N NH₃ in CH₃OH (5 mL) and concentrated to afford (R)-3-[(N-(2-amino-5-(trifluoromethyl)benzoyl)glycyl)amino]-1-(4-vinylbenzyl)pyrrolidine (Compound No. 1701) (19.6 mg, 88%): The purity was determined by RPLC/MS (92%); ESI/MS m/e 547.2 (M'+H, C₂₃H₂₅ClF₃N₄O₂).

Examples 759-762

The compounds of this invention were synthesized pursuant to methods of Example 758 using the corresponding reactant respectively. Preparative TLC, if needed, afforded the desired material. The ESI/MS data and yields are summarized in Table 11.

Table 11

ompound No.	Molecular Formula	ESI/MS m/e	Yield (mg)	
1702	C22 H25 F3 N4 O3	451.2	5.3	24
1703	C22 H23 F3 N4 O4	465.2	5.0	22
1704	C21 H23 F3 N4 O3	437.2	20.9	96
1705	C21 H21 C12 F3 N4 O2	489.2	9.3	38
-	No. 1702 1703 1704	No. 1702 C22 H25 F3 N4 O3 1703 C22 H23 F3 N4 O4 1704 C21 H23 F3 N4 O3	No. 1702 C22 H25 F3 N4 O3 451.2 1703 C22 H23 F3 N4 O4 465.2 1704 C21 H23 F3 N4 O3 437.2	No. 1702 C22 H25 F3 N4 O3 451.2 5.3 1703 C22 H23 F3 N4 O4 465.2 5.0 1704 C21 H23 F3 N4 O3 437.2 20.9

10

Example 763: Preparation of (R)-3-[{N-(2-Amino-5-(trifluoromethoxy)benzoyl)glycyl}amino]-1-(2,4-dichlorobenzyl)pyrrolidine (Compound No. 1905).

(R) - 3 - [(N - (2 - amino - 5 of mixture (trifluoromethoxy)benzoyl)glycyl)amino}pyrrolidine (0.050 mmol), 2,4dichlorobenzyl chloride (0.060 mmol), piperidinomethylpolystyrene (60 mg), acetonitrile (0.8 mL) and chloroform (0.5 mL) was stirred at 60 °C for 12 h. The reaction mixture was cooled, loaded onto Varian $^{ extstyle{TM}}$ SCX column and washed with 50% CHCl:/CH3OH (10 mL) and CH3OH (10 mL). Product was eluted using 2 N NH3 in CH₃OH (5 mL) and concentrated. To the resulting material was added 4 N HCl in 1,4-dioxane (2 mL), and the solution was stirred overnight at room temperature. preparative TLC afforded $(R) -3 - [{N - (2-amino - 5 - 4)}]$ and Concentration (trifluoromethoxy)benzoyl)glycyl)amino]-1-(2,4-dichlorobenzyl)pyrrolidine (Compound No. 1905) (17.6 mg, 70%): The purity was determined by RPLC/MS (93%); ESI/MS m/e 505 (M $^{+}$ +H, $C_{21}H_{21}Cl_{2}F_{3}N_{4}O_{3}$).

Examples 764-770

The compounds of this invention were synthesized pursuant to methods of Example 763 using the corresponding reactant respectively. The ESI/MS data and yields are summarized in Table 12.

Table 12

	Compound No.	Molecular Formula	ESI/MS m/e	Yield (mg)	Yield (%)
Example 764	1906	C22 H23 F3 N4 O5	481	9.4	39.1
Example 765	1907	C21 H23 F3 N4 O4	453	7.5	33.2
Example 766	1908	C22 H25 F3 N4 O4	467	7.7	33.0
Example 767	2180	C22 H24 C1 F3 N4 O2	469	1.3	26
Example 768	2181	C23 H25 F3 N6 O3	491	4.3	52
Example 769	l	C19 H22 F3 N5 O2 S	442	7.0	51
Example 770	1	C23 H25 F3 N4 O3	463	8.7	37.6

25

5

10

15

Example 771: Preparation of (R)-3-[{N-(2-Amino-5-trifluoromethoxybenzoyl)glycyl}amino]-1-(2-amino-4-chlorobenzyl)pyrrolidine (Compound No. 1921).

A mixture of (R)-3-[{N-(2-amino-5-

30 trifluoromethoxybenzoyl)glycyl)amino]pyrrolidine (0.050 mmol), 4-chloro-2-

nitrobenzyl chloride (0.050 mmol), piperidinomethylpolystyrene (60 mg), acetonitrile (1.0 mL) and chloroform (0.7 mL) was stirred overnight at 50 °C. The reaction mixture was cooled, loaded onto Varian SCX column and washed with 50% CHCl $_3$ /CH $_3$ OH (10 mL) and CH $_3$ OH (10 mL). Product was eluted using 2 N NH $_3$ in CH $_3$ OH (5 mL) and concentrated. To the resulting material was added ethanol (3 mL) and 10% Pd-C (15 mg), and the mixture was stirred under H $_2$ at room temperature for 1.5 h. Filtration, concentration, and preparative TLC afforded (R)-3-[(N-(2-amino-5-trifluoromethoxybenzoyl)glycyl)amino]-1-(2-amino-4-chlorobenzyl)pyrrolidine (Compound No. 1921) (2.2 mg, 6%): The purity was determined by RPLC/MS (81%); ESI/MS m/e 486.2 (M $^+$ +H, C $_{21}$ H $_{23}$ ClF $_{3}$ N $_{5}$ O $_{3}$).

Example 772: Preparation of $(R)-3-[\{N-(2-A\min o-5-trifluoromethylbenzoyl)glycyl\}amino]-1-(4-bromo-2-fluorobenzyl)pyrrolidine (Compound No. 2120).$

(R) -3 - [(N-(2-(tert-butoxycarbonylamino)-5mixture of 15 To trifluoromethylbenzoyl)glycyl)amino]pyrrolidine (0.050 mmol), 4-bromo-2fluorobenzaldehyde (0.15 mmol), methanol (1.5 mL), and acetic acid (0.016 mL) was added $NaBH_3CN$ (0.25 mmol) in methanol (0.50 mL). The reaction mixture was stirred at 50 °C overnight. The mixture was cooled to room temperature, loaded onto $Varian^{TH}$ SCX column, and washed with CH_3OH (5 mL x 2). Product was eluted 20 off using 2 N NH $_3$ in CH $_3$ OH (5 mL) and concentrated. The residue was dissolved in methanol (0.25 mL) and 4 N HCl in dioxane (0.50 mL) was added. The solution was stirred at room temperature for 5 h and concentrated. The residue was dissolved in methanol, loaded onto Varian TH SCX column, and washed with CH_3OH (5 mL x 2). Product was eluted off using 2 N NH $_3$ in CH $_3$ OH (5 mL) and concentrated. 25 The resulting material was dissolved into ethyl acetate (0.5 mL), loaded onto $Varian^{TM}$ Si column, eluted off using ethyl acetate/methanol = 5:1 (6 mL), and $(R) - 3 - \{ \{ N - (2 - amino - 5 - amino$ afford concentrated trifluoromethylbenzoyl)glycyl)amino]-1-(4-bromo-2-fluorobenzyl)pyrrolidine (Compound No. 2120) (16.0 mg, 31%): The purity was determined by RPLC/MS (99%); 30 ESI/MS m/e 517.0 (M $^{+}$ +H, C₂₁H₂₁BrF₄N₄O₂).

Examples 773-793.

The compounds of this invention were synthesized pursuant to methods of Example 772 using the corresponding reactant respectively. The ESI/MS data and yields are summarized in Table 13.

Table 13

35

	Compound No.	Molecular Formula	ESI/MS m/e	Yield (mg)	Yield (%)
Example 773	2083	C22 H24 Br F3 N4 O4	545.2	2.9	11
Example 774	2084	C23 H27 F3 N4 O5	497.2	5.1	21
Example 775	2085	C22 H25 F3 N4 O4	467.2	3.1	13
Example 776	2086	C21 H22 C1 F3 N4 O3	471.0	4.6	20
Example 777	2087	C23 H28 F3 N5 O2	464.2	5.6	24
Example 778	2088	C25 H32 F3 N5 O2	492.2	5.9	24
Example 779	2089	C21 H21 F5 N4 O2	457.2	4.5	20
Example 780	2090	C27 H27 F3 N4 O3	513.2	8.0	31
Example 781	2118	C21 H23 F3 N4 O4	453.1	2.7	12
Example 782	2119	C21 H23 F3 N4 O4	453.1	4.3	19
Example 783	2121	C22 H25 F3 N4 O4	467.0	1.2	2
Example 784	2122	C21 H21 C1 F4 N4 O2	472.9	13.1	28
Example 785	2123	C22 H22 F3 N5 O6	510.1	13.1	51
Example 786	2124	C21 H21 C1 F3 N5 O4	500.1	15.6	62
Example 787	2125	C22 H24 F3 N5 O5	496.0	16.0	65
Example 788	2126	C22 H24 F3 N5 O4	480.1	15.6	65
Example 789	2137	C22 H24 C1 F3 N4 O2	469.2	2.6	11
Example 790	2138	C26 H29 F3 N6 O2	515.3	25.1	98
Example 791	2139	C20 H24 C1 F3 N6 O2	473.2	25.0	98
Example 792	2149	C21 H22 F3 N5 O5	482.3	4.9	34
Example 793	2157	C22 H25 F3 N4 O3	451.2	15.5	70

Example 794: Preparation of (R)-3-[{N-(2-Amino-5-trifluoromethylbenzoyl)glycyl}amino]-1-(2,4-dimethoxypyrimidin-5-ylmethyl)pyrrolidine (Compound No. 2175).

 $(R)-3-[\{N-(2-Amino-5-trifluoromethylbenzoyl)\, glycyl\}\, amino]\, pyrrolidine \ (17.2\,mg,\ 0.04\,mmol)\ was dissolved in THF (1\,mL)\ and\ 2,4-dimethoxy-5-pyrimidine \ carboxaldehyde (6.7\,mg,\ 0.04\,mmol)\ was added followed by sodium triacetoxyborohydride (12.7\,mg,\ 0.06\,mmol)\ and glacial acetic acid (2.4\,mg,\ 0.04\,mmol)\ . The mixture was stirred at room temperature for 24 h and evaporated. The residue was then dissolved in dichloromethane (1 mL)\ and washed with 1 N NaOH solution (1mL)\ . The organic phase was recovered and evaporated then treated with 25% trifluoroacetic acid in dichloromethane (1 mL) for 1 h at room temperature and evaporated. The residue was purified using LC/MS to afford (R)-3-[\{N-(2-amino-5-trifluoromethylbenzoyl)glycyl\}amino]-1-(2,4-dimethoxypyrimidin-5-ylmethyl)pyrrolidine (Compound No. 2175) (18.6 mg, 78%): The purity was determined by RPLC/MS (98%); ESI/MS m/e 483 (M'+H, C2-1H2-5F3N-604).$

5

10

Examples 795-803.

The compounds of this invention were synthesized pursuant to methods of Example 794 using the corresponding reactant respectively. The ESI/MS data and yields are summarized in Table 14.

5

10

15

Table 14

	Compound No.	Molecular Formula	ESI/MS m/e	Yield (mg)	Yield (%)
Example 795	2165	C18 H21 F3 N6 O2	411	2.0	27
Example 796		C18 H20 F3 N5 O2 S	428	9.9	66
Example 797		C24 H25 F3 N6 O2	487	15.1	73
Example 798		C24 H29 F3 N4 O2	463	1.2	24
Example 790		C26 H25 C1 F3 N5 O2	520	6.0	40
Example 800		C19 H23 F3 N6 O2	425	16.8	88
		C23 H24 Br F3 N4 O2 S2	591	5.3	53
Example 801		C25 H28 F3 N5 O4	518	5.4	62
Example 802	1		502	6.3	60
Example 803	2179	C25 H28 F3 N5 O3		0.0	

Example 804: Preparation of $(R)-1-(2-A\min o-4,5-methylenedioxybenzyl)-3-[{N-(2-amino-5-methylene$

trifluoromethylbenzoyl)glycyl}amino]pyrrolidine (Compound No. 2127).

A mixture of (R)-3-[{N-(2-amino-5-

trifluoromethylbenzoyl)glycyl)amino]-1-(4,5-methylenedioxy-2-nitrobenzyl)pyrrolidine (30.5 mg), 10% Pd-activated carbone (6 mg), and methanol (3 mL) was stirred under a hydrogen atmosphere at room temperature for 10 h. The Pd catalyst was filtered off through Celite, and the filtrate was concentrated. Solid phase extraction (Bond Elut SI, 20% methanol/AcOEt) afforded (R)-1-(2-amino-4,5-methylenedioxybenzyl)-3-[{N-(2-amino-5-

trifluoromethylbenzoyl)glycyl)amino]pyrrolidine (Compound No. 2127) (21.9 mg, 76%): The purity was determined by RPLC/MS (95%); ESI/MS m/e 480.1 (M*+H, $C_{22}H_{24}F_3N_5O_4$).

Examples 805 and 806.

The compounds of this invention were synthesized pursuant to methods of Example 804 using the corresponding reactant respectively. The ESI/MS data and yields are summarized in Table 15.

Table 15

	Compound No.	Molecular Formula	ESI/MS m/e	Yield (mg)	Yield (%)
Example 805	2128	C22 H26 F3 N5 O3	466.0	8.6	30
Example 806	2129	C22 H26 F3 N5 O2	450.1	13.1	37

Example 807: Preparation of $(R)-1-(3-Amino-4-chlorobenzy1)-3-[{N-(2-amino-5-trifluoromethylbenzoy1)glycyl}amino]pyrrolidine (Compound No. 2132).$

Trifluoromethylbenzoyl)glycyl}amino]-1-(4-chloro-3-nitrobenzyl)pyrrolidine (32.6 mg), 10% Pd-activated carbone (8 mg), ethyl acetate (2.7 mL) and methanol (0.3 mL) was stirred under a hydrogen atmosphere at room temperature for 15 h. The Pd catalyst was filtered off, and the filtrate was concentrated. Solid phase extraction (Bond ElutTM SI, 20% methanol/AcOEt) afforded (R)-1-(3-amino-4-chlorobenzyl)-3-[(N-(2-amino-5-trifluoromethylbenzoyl)glycyl)amino]pyrrolidine (Compound No. 2132). (10.5 mg, 34%): The purity was determined by RPLC/MS (84%); ESI/MS m/e 470.2 (M*+H, $C_{21}H_{23}C1F_3N_5O_2$).

15

20

25

30

10

5

Example 808: Preparation of $(R)-1-(2-A\min o-4,5-methylenedioxybenzyl)-3-[(N-(2-(tert-butoxycarbonylamino)-5-trifluoromethylbenzoyl)glycyl)amino]pyrrolidine.$

To a mixture of $(R)-3-[\{N-(2-(tert-butoxycarbonylamino)-5-trifluoromethylbenzoyl)glycyl\}amino]$ pyrrolidine (0.150 mmol), $4,5-trifluoromethylbenzoyl)glycyl\}amino]$ pyrrolidine (0.150 mmol), and acetic acid (0.048 mL) was added NaBH;CN (0.75 mmol) in methanol (1.50 mL). The reaction mixture was stirred at 50 °C overnight. The mixture was cooled to room temperature, loaded onto VarianTM SCX column, and washed with CH₃OH. Product was eluted off using 2 N NH₃ in CH₃OH and concentrated to afford $(R)-3-[\{N-(2-(tert-butoxycarbonylamino)-5-trifluoromethylbenzoyl)glycyl\}amino]-1-<math>(4,5-methylenedioxy-2-nitrobenzyl)$ pyrrolidine.

A mixture of $(R)-3-[\{N-(2-(text-butoxycarbonylamino)-5-trifluoromethylbenzoyl)glycyl)amino]-1-(4,5-methylenedioxy-2-$

nitrobenzyl)pyrrolidine prepared above, 10% Pd-activated carbone (22 mg), and methanol (3.0 mL) was stirred under a hydrogen atmosphere at room temperature overnight. The Pd catalyst was filtered off, and the filtrate was concentrated to afford $(R)-1-(2-a\min o-4,5-methylenedioxybenzyl)-3-[(N-(2-(tert-butoxycarbonylamino)-5-trifluoromethylbenzoyl)glycyl)amino]pyrrolidine$

(87.1 mg, quant.): Any remarkable by-products were not detected in TLC.

 $(R)-1-(3-A\min o-4-methoxybenzyl)-3-[\{N-(2-(tert-butoxycarbonylamino)-5-trifluoromethylbenzoyl)glycyl\}amino]pyrrolidine and (R)-1-(3-amino-4-methylbenzyl)-3-[\{N-(2-(tert-butoxycarbonylamino)-5-methylbenzyl)-3-[(tert-butoxycarbonylamino)-5-methylbenzyl)-3-[(tert-butoxycarbonylamino)-5-methylbenzyl)-3-[(tert-butoxycarbonylamino)-5-methylbenzyl)-3-[(tert-butoxycarbonylamino)-5-methylbenzyl)-3-[(tert-butoxycarbonylamino)-5-methylbenzyl)-3-[(tert-butoxycarbonylamino)-5-methylbenzyl)-3-[(tert-butoxycarbonylamino)-5-methylbenzyl)-3-[(tert-butoxycarbonylamino)-5-methylbenzyl)-3-[(tert-butoxycarbonylamino)-5-methylbenzylamino)-3-[(tert-butoxycarbonylamino)-4-methylbenzylamino)-4-methylbenzylamino-4-methylbenzylamino-4-methylbenzylamino-4-methylbenzylamino-4-methylbenzylamino-4-methylbenzylamino-4-methylbenzylamino-4-methylbenzylamino-4-methylbenzylamino-4-methylbenzylamino-4-methylbenzylamino-4-meth$

trifluoromethylbenzoyl)glycyl)amino]pyrrolidine were also synthesized pursuant to methods of Example 808 using the corresponding reactant respectively.

 $(R)-1-(3-A\min o-4-methoxybenzyl)-3-[\{N-(2-(tert-butoxycarbonylamino)-5-trifluoromethylbenzoyl)glycyl\}amino]pyrrolidine: 101 mg, quant.; Any remarkable by-products were not detected in TLC.$

 $(R)-1-(3-a\min o-4-methylbenzyl)-3-[(N-(2-(tert-butoxycarbonylamino)-5-trifluoromethylbenzoyl)glycyl)amino]pyrrolidine: 97.2 mg, quant.; Any remarkable by-products were not detected in TLC.$

Example 809: Preparation of (R)-1-(3-Amino-4-chlorobenzyl)-3-[{N-(2-(tert-butoxycarbonylamino)-5-trifluoromethylbenzoyl)glycyl}amino]pyrrolidine.

To a mixture of $(R)-3-[\{N-(2-(tert-butoxycarbonylamino)-5-trifluoromethylbenzoyl)glycyl\}amino]pyrrolidine (0.150 mmol), 4-chloro-3-nitrobenzaldehyde (0.45 mmol), methanol (4.5 mL), and acetic acid (0.048 mL) was added NaBH₃CN (0.75 mmol) in methanol (1.50 mL). The reaction mixture was stirred at 50 °C overnight. The mixture was cooled to room temperature, loaded onto VarianTM SCX column, and washed with CH₃OH. Product was eluted off using 2 N NH; in CH₂OH and concentrated to afford <math>(R)-3-[\{N-(2-(tert-butoxycarbonylamino)-5-trifluoromethylbenzoyl)glycyl)amino]-1-(4-chloro-3-nitrobenzyl)pyrrolidine.$

A mixture of $(R)-3-[\{N-(2-(tert-butoxycarbonylamino)-5-trifluoromethylbenzoyl)glycyl\}amino]-1-(4-chloro-3-nitrobenzyl)pyrrolidine prepared above, 10% Pd-activated carbone (22 mg), ethyl acetate (2.7 mL) and methanol (0.3 mL) was stirred under a hydrogen atmosphere at room temperature for 15 h. The Pd catalyst was filtered off, and the filtrate was concentrated to afford <math>(R)-1-(3-a\min o-4-chlorobenzyl)-3-(\{N-(2-(tert-butoxycarbonylamino)-5-trifluoromethylbenzoyl)glycyl)amino]pyrrolidine (89.7 mg, quant.): Any remarkable by-products were not detected in TLC.$

35

30

10

20

25

Example 810: Preparation of $(R)-1-(3-A\min o-4-hydroxybenzyl)3-[{N-(2-A\min o-5-trifluoromethylbenzoyl)glycyl}amino]pyrrolidine (Compound No. 2187).$

A solution of (R)-1-(3-amino-4-hydroxybenzyl)-3-[(N-(2-(tert-1))-3-(N-(2-(tert-1)))-3-(N-(2-(tert-1)))]

butoxycarbonylamino)-5-trifluoromethylbenzoyl)glycyl)amino]pyrrolidine (20 mg), prepared pursuant to methods of Example 808, in 4 N HCl in dioxane (2.0 mL) was stirred at room temperature overnight. After the solution was concentrated, the residue was dissolved in methanol, loaded onto Varian SCX column, washed with CH₃OH, and eluted off using 2 N NH₃ in CH₃OH. Concentration and preparative TLC (SiO₂, AcOEt/MeOH = 4:1) afforded (R)-1-(3-amino-4-hydroxybenzyl)3-[{N-(2-Amino-5-trifluoromethylbenzoyl)glycyl)amino]pyrrolidine (Compound No. 2187) (9.6 mg, 59%): The purity was determined by RPLC/MS (86%); ESI/MS m/e 452.3 (M[†]+H, C₂₁H₂₄F₃N₅O₃).

Example 811: Preparation of (R)-3-[{N-(2-Amino-5-trifluoromethylbenzoyl)glycyl}amino]-1-{4-chloro-3-(dimethylamino)benzyl}pyrrolidine (Compound No. 2133).

(R)-1-(3-amino-4-chlorobenzyl)-3-[{N-(2-(tertmixture of butoxycarbonylamino)-5-trifluoromethylbenzoyl)glycyl)amino]pyrrolidine (44.9 mg), methanol (0.95 mL), acetic acid (0.05 mL), and 37% aqueous HCHO solution (0.15 mL) was added NaBH $_3$ CN (38 mg). The reaction mixture was stirred at 50 $^{\circ}$ C overnight. The mixture was cooled to room temperature and evaporated. To the residue was added 2 N aqueous NaOH solution and ethyl acetate, the organic layer was separated, and the aqueous layer was extracted with ethyl acetate. The combined organic layers were dried and concentrated, and the residue was loaded onto Varian ™ SCX column and washed with CH3OH. Product was eluted off using 2 N NH_{\odot} in $CH_{\odot}OH$ and concentrated. The residue was dissolved in 50% conc. HCl/dioxane and the solution was stirred at room temperature for 1 h. The reaction mixture was adjusted to pH 10 with 5 N aqueous NaOH solution and extracted with ethyl acetate (2 times). The combined extracts were dried over Na2SO4, filtered, and evaporated. Preparative TLC (SiO2, 20% MeOH/AcOEt) gave (R)-3-[{N-(2-amino-5-trifluoromethylbenzoyl)glycyl}amino]-1-(4-chloro-3-(dimethylamino)benzyl)pyrrolidine (Compound No. 2133). (10.9 mg, 28%): The purity was determined by RPLC/MS (95%); ESI/MS m/e 498.3 (M'+H, $C_{23}H_2$ -ClF₃N₅O₂).

Examples 812-814.

The compounds of this invention were synthesized pursuant to methods of Example 811 using the corresponding reactant respectively. The ESI/MS data and yields are summarized in Table 16.

Table 16

10

15

20

25

	Compound No.	Molecular Formula	ESI/MS m/e	Yield (mg)	Yield (₹)
Example 812	2134	C ₂₄ H ₂₈ F ₃ N ₅ O ₄	508.4	19.0	50
Example 813	2135	C24H36F3N5O3	494.4	21.8	50
Example 814	2136	C ₂₄ H ₅₀ F ₃ N ₅ O ₂	478.4	29.2	69

Example 815: Preparation of (R)-3-[{N-(2-Amino-5-trifluoromethylbenzoyl)glycyl)amino]-1-(3-methylamino-4-hydroxybenzyl)pyrrolidine (Compound No. 2158).

To a mixture of $(R)-1-(3-\text{amino}-4-\text{hydroxybenzyl})-3-[\{N-(2-(\text{tert-butoxycarbonylamino})-5-\text{trifluoromethylbenzoyl})\,\text{glycyl}\}\,\text{amino}]\,\text{pyrrolidine}$ (27.3 mg, 0.049 mmol), 37% HCHO solution (4.0 mg, 0.049 mmol), acetic acid (0.10 mL) and methanol (1.3 mL) was added NaBH₃CN (9.2 mg) in methanol (0.2 mL). The reaction mixture was stirred at 60 °C overnight. The mixture was cooled to room temperature, loaded onto Varian SCX column, and washed with CH₃OH (5 mL x 2). Product was eluted off using 2 N NH₃ in CH₃OH (8 mL) and concentrated.

The resulting material was dissolved in methanol (1 mL) and 4 N HCl in dioxane (1.0 mL) was added. The solution was stirred at room temperature for 3 h. After the solution was concentrated, the residue was dissolved in methanol (1 mL), loaded onto VarianTM SCX column, washed with CH₃OH (5 mL x 2), and eluted off using 2 N NH₃ in CH₃OH (8 mL). Concentration and preparative TLC (SiO₂) afforded (R)-3-[{N-(2-amino-5-trifluoromethylbenzoyl)glycyl)amino}-1-(3-methylamino-4-hydroxybenzyl)pyrrolidine (Compound No. 2158) (4.3 mg, 19 $\hat{\epsilon}$): The purity was determined by RPLC/MS (71 $\hat{\epsilon}$); ESI/MS m/e 480.3 (M⁷+H, C₂₂H₂₅F₃N₅O₃).

Example 816: Preparation of (R)-1-(3-Acetylamino-4-methoxybenzyl)-3-[(N-(2-amino-5-trifluoromethylbenzoyl)glycyl)amino]pyrrolidine (Compound No. 2152).

To a solution of $(R)-1-(3-\min o-4-\operatorname{methoxybenzyl})-3-[\{N-(2-(tert-butoxycarbonylamino)-5-trifluoromethylbenzoyl)glycyl)amino]pyrrolidine (50.5 mg)in pyridine (1 mL) was added acetic anhydride (1 mL). The reaction mixture was stirred at room temperature overnight and methanol was added. The mixture was evaporated, and 1 N NaOH solution was added. The mixture was extracted with ethyl acetate and the organic layer was concentrated. Preparative TLC gave <math>(R)-1-(3-\operatorname{acetylamino-4-methoxybenzyl})-3-[\{N-(2-(tert-butoxycarbonylamino)-5-trifluoromethylbenzoyl)glycyl)amino]pyrrolidine.$

The resulting (R)-1-(3-acetylamino-4-methoxybenzyl)-3-[(N-(2-(tert-tert-tert))-3-(tert-tert)]

5

10

15

20

25

butoxycarbonylamino)-5-trifluoromethylbenzoyl)glycyl)amino)pyrrolidine was dissolved in 50% 6 N hydrochloric acid in dioxane and the solution was stirred at room temperature for 2 h. The mixture was adjusted to pH 10 with 5 M NaOH solution, and extracted with ethyl acetate. The organic layer was evaporated and preparative TLC (SiO₂, AcOEt/MeOH = 4:1) afforded (R)-1-(3-acetylamino-4-methoxybenzyl)-3-[{N-(2-amino-5-trifluoromethylbenzoyl)glycyl)amino]pyrrolidine (Compound No. 2152) (3.7 mg,

trifluoromethylbenzoyl)glycyl)amino]pyrrolidine (Compound No. 2152) (3.7 mg, 8%): The purity was determined by RPLC/MS (100%); ESI/MS m/e 508.3 (M'+H, $C_{24}H_{28}F_3N_5O_4$).

10

5

Examples 817-819.

The compounds of this invention were synthesized pursuant to methods of Example 816 using the corresponding reactants respectively. The ESI/MS data and yields are summarized in Table 17.

15

25

30

Table 17

	Compound No.	Molecular Formula	ESI/MS m/e	Yield (mg)	Yield (%)
Example 817	2150	C23H25C1F3N5O3	512.3	3.8	9
Example 818	2151	C24H26F3N5O5	522.2	3.1	8
Example 819	2153	C24H28F3N5O3	492.3	4.3	10

Example 820: Preparation of (R)-3-[{N-(2-Amino-5-20 trifluoromethylbenzoyl)glycyl}amino]-1-(benz[d]oxazol-5-yl)pyrrolidine (Compound No. 2189).

A solution of $(R)-1-(3-a\min no-4-hydroxybenzy1)-3-[\{N-(2-(tert-butoxycarbonylamino)-5-trifluoromethylbenzoy1)glycyl\}amino]pyrrolidine (20 mg), prepared pursuant to methods of Example 808, in THF (2 mL) was treated with triethyl orthoformate (0.020 mL, 3.3 eq) and pyridinium <math>p$ -toluenesulphonate (1.2 mg, 0.4 eq). The reaction mixture was stirred overnight under reflux. After cooling to room temperature, the mixture was concentrated. The residue was dissolved in AcOEt, loaded onto BondElut^{TI} Si column, eluted off using ethyl acetate/methanol = 4/1, and concentrated.

The resulting material was dissolved into AcOEt (1.5 mL), and 4 N HCl in dioxane (0.5 mL) was added. The solution was stirred at room temperature overnight, adjusted to pH 10 with 5 M NaOH aqueous solution, and extracted with AcOEt. The extract was concentrated and purified by PTLC (SiO_2 , AcOEt/MeOH =

4:1) to afford (R)-3-[{N-(2-amino-5-trifluoromethylbenzoyl)glycyl}amino]-1-(benz[d]oxazol-5-yl)pyrrolidine (Compound No. 2189) (0.5 mg, 3%): The purity was determined by RPLC/MS (97%); ESI/MS m/e 462.3 (M*+H, $C_{22}H_{22}F_3N_5O_3$).

Example 821: Preparation of (R)-3-[(N-(2-Amino-5-trifluoromethylbenzoyl)glycyl)amino]-1-(benzo[c]thiadiazol-5-yl)pyrrolidine (Compound No. 2183).

To a mixture of 5-(hydroxymethyl) benzo[c]thiadiazole (8.3 mg, 0.050 mmol), (piperidinomethyl) polystyrene (86 mg), and chloroform (1 mL) was added methanesulfonyl chloride (0.0042 mL) and the mixture was stirred at room temperature for 1.5 h. Acetonitrile (1 mL) and (R)-3-[$\{N$ -(2-(tertbutoxycarbonylamino)-5-trifluoromethylbenzoyl) glycyl) amino] pyrrolidine (0.060 mmol) was added and the reaction mixture was stirred at 50 °C for 3 h. After cooling to room temperature, phenyl isocyanate (30 mg) was added, and the mixture was stirred at room temperature for 1 h, loaded onto Varian SCX column and washed with CH₃OH (5 mL) and CHCl₃ (5 mL). Product was eluted using 2 N NH₃ in CH₃OH (3 mL) and concentrated.

The resulting material was dissolved into dichloromethane (1 mL), and 1 M chlorotrimethylsilane and 1 M phenol in dichloromethane (1 mL) was added. The solution was stirred at room temperature for 5 h, loaded onto Varian SCX column and washed with CH₃OH and dichloromethane. Product was eluted using 2 N NH₃ in CH₃OH and concentrated. Preparative TLC (SiO₂, AcOEt/MeOH = 3:1) afforded (R)-3-[{N-(2-amino-5-trifluoromethylbenzoyl)glycyl}amino]-1- (benzo[c]thiadiazol-5-yl)pyrrolidine (Compound No. 2183) (11.5 mg, 48%): The purity was determined by RPLC/MS (86%); ESI/MS m/e 479.2 (M*+H, C₂₁H₂₁F₃N₆O₂S).

To a solution of (R)-1-(9-fuluorenylmethoxycarbonyl)-3-glycylamino-pyrrolidine hydrochloride (4.38 g, 10 mmol) in DMF (65 mL) were added acetic acid (0.3 mL), sodium triacetoxyborohydride (1.92 g), and 4-formyl-3-(methoxyphenyloxymethyl)-polystyrene (1 mmol/g, 200 g). The mixture was shaken for 2 h and filtered. The resin was washed with MeOH, DMF, CH_2Cl_1 , and methanol, and dried to afford the desired material (2.73 g).

Examples 822-912: General Procedure for Solid-Phase Synthesis of 3-Aminopyrrolidines.

5

10

15

20

25

30

To a mixture of the corresponding acid (1.6 mmol), HBTU (1.6 mmol), and DMF (6 mL) was added diisopropylethylamine (3.6 mmol), and the mixture was shaken for 2 min. $4-[\{N-(1-(9-\text{fuluorenylmethoxycarbonyl})\text{pyrrolidin-3-yl})\text{ carbamoylmethyl}]-3-methoxyphenyloxymethyl-polystyrene (400 mg, 0.4 mmol) was added and the mixture was shaken for 1 h and filtered. The resin was rinsed with DMF and CH₂Cl₂, and dried.$

A mixture of the resulting resin, piperidine (3.2 mL), and DMF (12.8 mL) was shaken for 10 min and filtered. The resin was washed with DMF and CH_2Cl_2 , and dried.

To the dry resin (0.05 mmol) was added a mixture of NaBH(OAc); (0.25 mmol), AcOH (0.025 mL) and DMF (1 mL). The corresponding aldehyde (2.5 mmol) was added, and the mixture was shaken for 2 h, then filtered and washed with CH₃OH, 10% diisopropylethylamine in DMF, DMF, CH₂Cl₂, and CH₃OH. A mixture of the resin, water (0.050 mL), and trifluoroacetic acid (0.95 mL) was shaken for 1 h and filtered. The resin was washed with CH₂Cl₂ and CH₃OH. The filtrate and washings were combined and concentrated. The crude material was loaded onto Varian SCX column and washed with CH₃OH (15 mL). Product was eluted using 2 N NH₃ in CH₃OH (5 mL) and concentrated. Preparative TLC or HPLC, if needed, afforded the desired material. The ESI/MS data and yields are summarized in Table 18.

20

15

Table 18

	Compound No.	Molecular Formula	ESI/MS m/e	Yield (mg)	Yield (%)
Example 822	1805	C21 H21 Br F3 N3 O2 S	516	13.3	76
Example 823	1806	C22 H24 F3 N3 O3 S	468	12.8	81
Example 824	1807	C22 H24 F3 N3 O4 S	484	13.7	83
Example 825	1808	C22 H24 F3 N3 O4 S	484	14.9	91
Example 826	1809	C21 H22 F3 N3 O3 S	454	12.9	84
Example 827	1810	C22 H22 F3 N3 O4 S	482	12.9	79
Example 828	1811	C24 H26 F3 N3 O2 S	478	12.9	79
Example 829	1812	C22 H24 F3 N3 O2 S2	484	5.3	32
Example 830	1813	C23 H26 F3 N3 O2 S	466	12.8	81
Example 831	1814	C23 H24 F3 N3 O3 S	480	9.7	59
Example 832	1815	C23 H26 F3 N3 O2 S	466	12.7	80
Example 833	1816	C24 H28 F3 N3 O2 S	480	14.4	88
Example 834	1817	C25 H30 F3 N3 O2 S	494	14.1	84
Example 835	1818	C21 H22 Br F2 N3 O3	482	13.4	82
Example 836		C22 H25 F2 N3 O4	434	11.7	79

Example 837	1820	C22 H25 F2 N3 O5	450	11.8	77
Example 838	1821	C22 H25 F2 N3 O5	450	13.3	87
Example 839	1822	C21 H23 F2 N3 O4	420	11.9	83
Example 840	1823	C22 H23 F2 N3 O5	448	11.9	78
Example 841	1824	C24 H27 F2 N3 O3	444	9.1	60
Example 842	1825	C22 H25 F2 N3 O3 S	450	11.3	74
Example 843	1826	C23 H27 F2 N3 O3	432	10.8	74
Example 844	1827	C23 H25 F2 N3 O4	446	12.7	84
Example 845	1828	C23 H27 F2 N3 O3	432	11.7	80
Example 846	1829	C24 H29 F2 N3 O3	446	14.3	94
Example 847	1830	C24 H29 F2 N3 O3	446	10.0	66
Example 848	1831	C22 H28 Br N3 O3	462	4.8	31
Example 849	1832	C23 H31 N3 O4	414	10.4	74
Example 850	1833	C23 H31 N3 O5	430	12.1	83
Example 851	1834	C23 H31 N3 O5	430	12.0	82
Example 852	1835	C22 H29 N3 O4	400	7.9	58
Example 853	1836	C23 H29 N3 O5	428	11.1	. 76
Example 854	1837	C25 H33 N3 O3	424	13.3	92
Example 855	1838	C23 H31 N3 O3 S	430	8.7	60
Example 856	1839	C24 H33 N3 O3	412	11.3	81
Example 857	1840	C24 H31 N3 O4	426	12.9	89
Example 858	1841	C24 H33 N3 O3	413	12.8	91
Example 859	1842	C25 H35 N3 O3	426	8.7	60
Example 860	1843	C25 H35 N3 O3	426	12.2	84
Example 861	1844	C26 H37 N3 O3	440	11.3	76
Example 862	1845	C31 H37 Br N4 O2	577	6.4	30
Example 863	1846	C23 H28 F3 N3 O2 S	480	12.8	81
Example 864	1847	C25 H31 F2 N3 O3	460	12.2	78
Example 865	1848	C27 H29 N3 O4	460	6.1	39
Example 866	1849	C29 H31 N3 O2	454	15.1	98
Example 867	1850	C28 H31 N3 O2	442	12.7	85
Example 868	1851	C28 H31 N3 O2	442	14.3	95
Example 869	1852	C28 H29 N3 O3	456	3.4	22
Example 870	1853	C27 H29 N3 O6 S	524	15.4	87
Example 871	1854	C29 H31 N3 O4 S	518	15.8	90
Example 872	1855	C28 H31 N3 O4 S	506	17.0	99
Example 873	1856	C28 H31 N3 O4 S	506	3.0	17
Example 874	1857	C28 H29 N3 O5 S	520	10.0	57
Example 875	1858	C20 H22 Br2 N4 O2	511	9.3*	37
Example 876	1859	C21 H25 Br N4 O3	461	6.7*	29
L					<u> </u>

Example 877	1860	C21 H25 Br N4 O4	477	9.5*	40
Example 878	1861	C21 H25 Br N4 O4	477	10.0*	42
Example 879	1862	C20 H23 Br N4 O3	447	7.8*	34
Example 880	1863	C21 H23 Br N4 O4	475	3.4*	14
Example 881	1864	C21 H25 Br N4 O2 S	477	3.9*	16
Example 882	1865	C22 H25 Br N4 O3	473	6.4*	27
Example 883	1866	C23 H29 Br N4 O2	472	7.0*	29
Example 884	1867	C23 H29 Br N4 O2	473	7.6*	32
Example 885	1868	C24 H31 Br N4 O2	487	9.1*	37
Example 886	1869	C20 H22 Br I N4 O2	557	8.9*	33
Example 887	1870	C21 H25 I N4 O3	509	9.2*	37
Example 888	1871	C21 H25 I N4 O4	525	6.3*	25
Example 889	1872	C21 H25 I N4 O4	525	5.9*	23
Example 890	1873	C20 H23 I N4 O3	495	7.7*	31
Example 891	1874	C21 H23 I N4 O4	523	8.2*	32
Example 892	1875	C23 H27 I N4 O2	519	6.7*	26
Example 893	1876	C21 H25 I N4 O2	525	4.3*	17
Example 894	1877	C22 H27 I N4 O2	507	7.9*	32
Example 895	1878	C22 H25 I N4 O3	521	8.4*	33
Example 896	1879	C23 H29 I N4 O2	521	8.2*	32
Example 897	1880	C23 H29 I N4 O2	521	8.1*	32
Example 898	1881	C24 H31 I N4 O2	535	8.6*	33
Example 899	1882	C20 H22 Br N5 O4	476	5.3*	22
Example 900	1883	C21 H25 N5 O5	428	5.7*	26
Example 901	1884	C21 H25 N5 O6	444	8.2*	36
Example 902	1885	C21 H25 N5 O6	444	5.0*	22
Example 903	1886	C20 H23 N5 O5	414	8.7*	40
Example 904	1887	C21 H23 N5 O6	442	7.8*	34
Example 905		C23 H27 N5 O4	438	5.6*	25
Example 906		C21 H25 N5 O4 S	444	13.2*	58
Example 907		C22 H27 N5 O4	426	11.3*	51
Example 908	1891	C22 H25 N5 O5	440	7.4*	33
Example 909	1892	C22 H27 N5 O4	426	5.5*	25
Example 910	1893	C23 H29 N5 O4	440	5.7*	25
Example 911	1894	C23 H29 N5 O4	440	9.4+	41
Example 912	1895	C24 H31 N5 O4	455	8.5*	37

^{*}Yield of TFA salt.

Reference Example 7: Preparation of 2-Carbamoyl-1-(4-

chlorobenzyl)pyrrolidine.

A solution of dl-prolinamide hydrochloride (2.5 g, 21.8 mmol) in CH₃CN (35 mL) was treated with Et₃N (7.45 mL) and 4-chlorobenzyl chloride (3.88 g, 24.1 mmol). The reaction mixture was stirred at 70 °C for 4 h and then at 25 °C for 16 h. The resulting mixture was diluted with CH₂Cl₂ (20 mL) and was washed with water(3 x 30 mL). The organic phase was dried (MgSO₄) and concentrated. Chromatography (SiO₂, 1% CH₃OH-CH₂Cl₂) afforded 2-carbamoyl-1-(4-chlorobenzyl)pyrrolidine (5.21 g, 81%).

1() Reference Example 8: Preparation of 2-(Aminomethyl)-1-(4-chlorobenzyl)pyrrolidine.

2-carbamoyl-1-(4-chlorobenzyl)pyrrolidine was dissolved in lM BH₃-THF (9.4 mL) and heated to 70 °C. After 16 h and 25 h, additional 0.5 equiv. of lM BH₃-THF were added. After 40 h, 1 N aqueous HCl solution (14 mL) was added and the reaction was heated to reflux for 3 h, 3 N aqueous HCl solution (6 mL) was added and the reaction was heated for an additional 3 h. The reaction mixture was cooled to 25 °C, basicified with 4 N aqueous NaOH solution and extracted with CH_2Cl_2 (4 x 15 mL). Chromatography (SiO₂, 8:1:1 PrOH-H₂O-NH₄OH) afforded 2-(aminomethyl)-1-(4-chlorobenzyl)pyrrolidine (1.21 g, 86%).

20

15

5

Optically active (S)-2-(aminomethyl)-1-(4-chlorobenzyl) pyrrolidine and (R)-2-(aminomethyl)-1-(4-chlorobenzyl) pyrrolidine were also prepared pursuant to the above method using the corresponding reactant respectively.

 $(S)-2-(aminomethyl)-1-(4-chlorobenzyl) pyrrolidine: \ ^1H \ NMR \ (CDCl_2,\ 400)$ $25 \quad MHz) \quad \delta \ 1.40-1.80 \ (m,\ 5\ H),\ 1.80-1.95 \ (m,\ 1\ H),\ 2.12-2.21 \ (m,\ 1\ H),\ 2.48-2.65 \ (m,\ 1\ H),\ 2.66-2.78 \ (m,\ 2\ H),\ 2.85-2.95 \ (m,\ 1\ H),\ 3.26 \ (d,\ J=13.2\ Hz,\ 1\ H),\ 3.93 \ (d,\ J=13.2\ Hz,\ 1\ H),\ 7.20-7.40 \ (m,\ 4\ H).$

(R) -2-(aminomethyl)-1-(4-chlorobenzyl)pyrrolidine showed the same $^{1}\mathrm{H}$ NMR with that of (S)-isomer.

30

35

Example 913: Preparation of 2-((N-benzoylleucyl)aminomethyl}-1-(4-chlorobenzyl)pyrrolidine (Compound No. 344).

A solution of 2-(aminomethyl)-1-(4-chlorobenzyl)pyrrolidine (22.5 mg, 0.10 mmol) and dl-benzoylleucine (0.12 mmol) in CHCl. (1 mL) was treated with EDCI (23 mg), HOBt (16.2 mg) and Et₃N (15.2 μ L), and stirred at 25 °C for 16 h. The reaction mixture was diluted with CH₂Cl. (0.5 mL), washed with 2 N aqueous NaOH solution (2 x 0.75 mL), dried by filtration through a PTFE membrane and concentrated to afford 2-((N-benzoylleucyl)aminomethyl)-1-(4-

chlorobenzyl)pyrrolidine (compound No. 344) (74 mg, quant) : The purity was determined by RPLC/MS (85%); ESI/MS m/e 442 (M'+H, $C_{25}H_{12}ClN_3O_2$).

Examples 914-935.

The compounds of this invention were synthesized pursuant to methods of Example 913 using the corresponding reactant respectively. Chromatography, if needed, (HPLC- C_{18} , $CH_3CN/H_2O/TFA$) afforded the desired material as the TFA salt. The ESI/MS data and yields are summarized in Table 19 and compound No. **339** and **340** showed the following 1H NMR spectra respectively.

10

Table 19

	Compound No.	Molecular Formula	ESI/MS m/e	Yield (mg)	Yield (के)
Example 914	330	C21 H24 C1 N3 O2	386	75*	quant
Example 915	331	C22 H26 Cl N3 O2	400	44*	70
Example 916	332	C24 H30 Cl N3 O5	476	57	quant
Example 917	333	C20 H23 Cl N4 O2	387	40	quant
Example 918	334	C22 H26 Cl N3 O2	400	68	quant
Example 919	335	C21 H23 Cl N4 O4	431	73	quant
Example 920	336	C22 H23 C1 F3 N3 O2	454	75	quant
Example 921	337	C22 H26 C1 N3 O2	400	68	quant
Example 922	338	C22 H26 Cl N3 O2	400	70	quant
Example 923	341	C22 H26 C1 N3 O2	400	80*	quant
Example 924	342	C22 H26 Cl N3 O2	400	68	quant
Example 925	343	C24 H30 Cl N3 O2	428	63	quant
Example 926	345	C23 H27 Cl N2 O2	399	68*	quant
Example 927	346	C23 H26 Cl F N2 O3	433	51	quant
Example 928	347	C24 H29 C1 N2 O2	413	47	quant
Example 929	348	C23 H27 C1 N2 O2	399	26	quant
Example 930	349	C21 H25 C1 N2 O3 S	421	42	quant
Example 931	350	C26 H33 Cl N2 O3	457	12.4	54
Example 932	351	C22 H26 C1 N3 O3	416	34	81
Example 933	352	C22 H25 C12 N3 O3	450	51	quant

^{*}Yield of TFA salt.

¹⁵ Example 934. Compound No. **339**: 82%; 1 H NMR (CDCl₃) δ 1.52-1.75 (m, 4 H), 1.84-1.95 (m, 1 H), 2.10-2.20 (m, 1 H), 2.67-2.78 (m, 1 H), 2.80-2.90 (m, 1 H), 3.10-3.20 (m, 1 H), 3.25 (d, J = 13.1 Hz, 1 H), 3.50-3.60 (m, 1 H), 3.89 (d,

J = 13.1 Hz, 1 H), 4.28-4.20 (m, 2 H), 7.00-7.05 (m, 1 H), 7.12-7.29 (m, 4 H), 7.51 (t, J = 7.8 Hz, 1 H), 7.74 (d, J = 7.8 Hz, 1 H), 7.99 (d, J = 7.8 Hz, 1 H), 8.10-8.27 (m, 2 H).

Example 935. Compound No. **340**: 68%; ¹H NMR (CDCl₃) δ 1.55–1.73 (m, 4 H), 1.86–1.97 (m, 1 H), 2.12–2.21 (m, 1 H), 2.67–2.76 (m, 1 H), 2.86–2.93 (m, 1 H), 3.14–3.21 (m, 1 H), 3.27 (d, J = 13.1 Hz, 1 H), 3.52–3.59 (m, 1 H), 3.89 (d, J = 13.1 Hz, 1 H), 4.09–4.21 (m, 2 H), 7.00–7.07 (m, 1 H), 7.12–7.30 (m, 4 H), 7.50 (t, J = 7.8 Hz, 1 H), 7.73 (d, J = 7.8 Hz, 1 H), 8.01 (d, J = 7.8 Hz, 1 H), 8.10–8.25 (m, 2 H).

10

15

20

Reference Example 9: Preparation of 3-(Aminomethyl)-1-(4-chlorobenzyl)pyrrolidine.

To a mixture of 4-carboxy-1-(4-chlorobenzyl)pyrrolidin-2-one (5.05 g, 20 mmol), EDCI (2.85 g, 22 mmol), HOBt (2.97 g, 22 mmol) and dichloromethane (100 mL) was added 0.5 M ammonia in dioxane (60 mL, 30 mmol). The reaction mixture was stirred at room temperature for 15 h and washed with 2N HCl (3 times) and 2 N NaOH aqueous solution (100 mL x 4). The organic layer was dried over anhydrous magnesium sulfate, filtered, and concentrated to afford 3-carbamoyl-1-(4-chlorobenzyl)pyrrolidin-2-one (1.49 g) as a colorless solid.

To a solution of 3-carbamoyl-1-(4-chlorobenzyl)pyrrolidin-2-one (1.45 g) in THF (15 mL) was added 1.0 N BH $_3$ in THF (25 mL). The reaction mixture was stirred at 65 °C for 15 h. After cooling to room temperature, the solvent was removed under reduced pressure. Water (30 mL) and conc. HCl (10 mL) were added and the mixture was stirred at 100 °C for 2 h and room temperature for 1 h. 2 N NaOH aqueous solution (100 mL) was added and the mixture was extracted with AcOEt (50 mL x 3). The combined organic layers were dried over K_2CO_3 , filtered and concentrated. Column chromatography (SiO $_2$, 15% CH $_3$ OH-5% Et $_3$ N in CH $_2$ Cl $_2$) afforded 3-(aminomethyl)-1-(4-chlorobenzyl)pyrrolidine (860 mg, 19%) as a colorless oil.

30

35

25

Reference Example 10: Preparation of 1-(4-Chlorobenzyl)-3-{(glycylamino)methyl}pyrrolidine.

A mixture of 3-(aminomethyl)-1-(4-chlorobenzyl)pyrrolidine (860 mg, 3.8 mmol), Et;N (5.7 mmol), N-tert-butoxycarbonylglycine (704 mg), EDCI (594 mg), HOBt (673 mg), and dichloromethane (20 mL) was stirred at room temperature for 15 h. Dichloromethane (50 mL) was added and the solution was washed with 2 N NaOH solution (50 mL \times 2), dried over anhydrous sodium sulfate, filtered, and concentrated to afford 3-[(N-(tert-butoxycarbonyl)glycyl)aminomethyl]-1-(4-

chlorobenzyl)pyrrolidine (1.31 g, 90%).

To a solution of 3-[{N-(tert-butoxycarbonyl)glycyl}aminomethyl]-1-(4-chlorobenzyl)pyrrolidine (804 mg, 2.11 mmol) in methanol (10 mL) was added 4 N HCl in dioxane (5 mL). The solution was stirred at room temperature for 3.5 h. The reaction mixture was concentrated and 1 N NaOH solution (20 mL) was added. The mixture was extracted with dichloromethane (20 mL x 3), and the combined extracts were dried over sodium sulfate and concentrated to give desired $1-(4-chlorobenzyl)-3-(\{glycylamino\}methyl\}pyrrolidine (599 mg, 100%): The purity was determined by RPLC/MS (100%); ESI/MS m/e 282.2 (M*+H, C14H20ClN3O).$

10

15

5

Example 936: Preparation of 3-[(N-(3-Trifluoromethylbenzoyl)glycyl)aminomethyl]-1-(4-chlorobenzyl)pyrrolidine (Compound No. 1463).

A solution of 3-(trifluoromethyl)benzoyl chloride (0.058 mmol) in dichloromethane (0.2 mL) was added to a mixture of 1-(4-chlorobenzyl)-3- {(glycylamino)methyl)pyrrolidine (0.050 mmol) and piperidinomethylpolystyrene (60 mg) in chloroform (0.2 mL) and dichloromethane (1 mL). After the reaction mixture was stirred at room temperature for 2.5 h, methanol (0.30 mL) was added and the mixture was stirred at room temperature for 1 h. The reaction mixture was loaded onto Varian SCX column, and washed with CH₃OH (15 mL). Product was eluted off using 2 N NH₃ in CH₃OH (5 mL) and concentrated to afford (3-[{N-(3-trifluoromethylbenzoyl)glycyl}aminomethyl]-1-(4-chlorobenzyl)pyrrolidine (Compound No. 1463) (22.4 mg, 99%): The purity was determined by RPLC/MS (97%); ESI/MS m/e 454.2 (MT+H, $C_{22}H_{23}ClF_3N_3O_2$).

25

20

Examples 937-944.

The compounds of this invention were synthesized pursuant to methods of Example 936 using the corresponding reactant respectively. The ESI/MS data and yields are summarized in Table 20.

Table 20

	Compound No.	Molecular Formula	ESI/MS m/e	Yield (mg)	Yield (%)
Example 937	1464	C22 H23 Cl F3 N3 O3	470.0	21.0	89
Example 938	1465	C23 H22 Cl F6 N3 O2	522.0	24.5	94
Example 939	1466	C21 H23 Br Cl N3 O2	466.0	20.8	90
Example 940	1467	C21 H23 C12 N3 O2	420.0	19.6	93

Example 941	1468	C21 H23 C1 N4 O4	431.2	19.5	91
Example 942	1469	C22 H22 C1 F4 N3 O2	472:0	21.8	92
Example 943	1470	C21 H22 C13 N3 O2	456.0	22.1	97
Example 944	1471	C21 H22 C1 F2 N3 O2	422.0	20.9	99

Example 945: Preparation of 3-[{N-(2-Amino-4,5-difluorobenzoyl)glycyl}aminomethyl]-1-(4-chlorobenzyl)pyrrolidine (Compound No. 1506).

A solution of 1-(4-chlorobenzyl)-3-{(glycylamino)methyl}pyrrolidine (0.050 mmol) in CHCl₃ (1.35 mL) and tert-butanol (0.05 mL) was treated with 2-amino-4,5-difluorobenzoic acid (0.060 mmol), diisopropylcarbodiimide (0.060 mmol), and HOBt (0.060 mmol). The reaction mixture was stirred at room temperature for 19 h. The mixture was loaded onto Varian SCX column, and washed with CH₃OH/CHCl₃ 1:1 (10 mL) and CH₃OH (10 mL). Product was eluted off using 2 N NH₃ in CH₃OH (5 mL) and concentrated to afford 3-[{N-(2-amino-4,5-difluorobenzoyl)glycyl}aminomethyl]-1-(4-chlorobenzyl)pyrrolidine (Compound No. 1506) (22.0 mg, quant): The purity was determined by RPLC/MS (92%); ESI/MS m/e 437 $(C_{21}H_{23}C1F_2N_4O_2)$.

15

5

10

Examples 946-952.

The compounds of this invention were synthesized pursuant to methods of Example 945 using the corresponding reactant respectively. The ESI/MS data and yields are summarized in Table 21.

20

Table 21

	Compound No.	Molecular Formula	ESI/MS m/e	Yield (mg)	Yield (%)
Example 946	1506	C21 24 Br Cl N4 O2	481	20.6	86
Example 947		C21 H24 F C1 N4 O2	419	21.7	quant
Example 948	1509	C27 H28 Cl N3 O2	462	26.5	quant
Example 949		C21 H24 C1 I N4 O2	527	22.0	84
Example 950	-il	C19 H21 Br Cl N3 O2 S	472	23.7	quant
Example 95	_B	C21 H24 C12 N4 O2	435	22.3	quant
	1	C27 H28 C1 N3 O4 S	526	24.6	94
Example 952	1513	C27 H20 C1 H3 0: 5			

Reference Example 11: Preparation of 1-(4-Chlorobenzyl) nipecotic acid. 4-Chlorobenzyl chloride (6.42 g, 39.9 mmol) and Pr₂NEt (7.74 g, 40.0 mmol)

were added to a solution of ethyl nipecotate (6.29 g, 40.0 mmol) in CH₃CN (15 mL). The reaction mixture was stirred at 70 °C for 1.5 h. The solvent was removed under reduced pressure. Saturated aqueous NaHCO₃ (50 mL) was added to the residue and the mixture was extracted with EtOAc (100 mL). The organic phase was washed with saturated aqueous NaHCO₃ and brine, and dried over Na₂SO₄. The solvent was removed under reduced pressure to afford ethyl 1-(4-chlorobenzyl) nipecotate as a red yellow oil (11.025 g, 97.8%) used without further purification. The purity was determined by RPLC/MS (97%); ESI/MS m/e 382.2 (M*+H, C₁₅H₂₁ClNO₂).

A solution of LiOH (1.66 g) in H_2O (25 mL) was added to the solution of ethyl 1-(4-chlorobenzyl)nipecotate in THF (60 mL) and CH_2OH (20 mL). The reaction mixture was stirred at room temperature for 15 h. The solvent was removed under reduced pressure to afford an amorphous solid which was purified by column chromatography (SiO₂, 50% $CH_3OH-CH_2Cl_2$) to yield 1-(4-chlorobenzyl)nipecotic acid (9.75 g, 98.2%) as a pale yellow amorphous solid. The purity was determined by RPLC/MS (>95%); ESI/MS m/e 254.0 (M*+H, $C_{13}H_{17}ClNO_2$).

Reference Example 12: Preparation of 1-(4-Chlorobenzyl)-3-{(text-butoxycarbonyl)amino}piperidine.

A solution of 1-(4-chlorobenzyl)nipecotic acid (7.06 g, 27.8 mmol) in tBuOH (500 mL) was treated with Et₃N (3.38 g) and activated 3 Å molecular sieves (30 g). Diphenylphosphoryl azide (8.58 g) was added, and the reaction mixture was warmed at reflux for 18 h. The mixture was cooled and the solvent was reflux for 18 h. The mixture was cooled and the solvent was remove under vacuum. The residue was dissolved in EtOAc (500 mL), and the organic phase was washed with saturated aqueous NaHCO₃ (2 x 100 mL) and brine (50 mL), dried (Na₂SO₄), and concentrated in vacuo. Chromatography (SiO₂, 25% EtOAc-hexane) afforded 1-(4-chlorobenzyl)-3-{(tert-butoxycarbonyl)amino}piperidine (2.95 g, 32.6%) as a white crystalline solid: 1 H NMR (CDCl₃, 300 MHz) δ 1.4-1.75 (br, 4 H), 2.2-2.7 (br, 4 H), 3.5 (br, 2 H), 3.8 (br, 1 H), 7.3 (br, 4 H); The purity was determined by RPLC/MS (>99%); ESI/MS m/e 269.2 (M*+H-56, Cl₁₂H₂₆ClN₂O₂).

Reference Example 13: Preparation of 3-Amino-1-(4-chlorobenzyl)piperidine.

A solution of 1-(4-chlorobenzyl)-3-{(tert-35 butoxycarbonyl)amino}piperidine (2.55 g, 7.85 mmol) in CH-OH (25 mL) was treated with 1 N HCl-Et $_2$ O (50 mL). The reaction mixture was stirred at 25 °C for 15 h. The solvent was removed under reduced pressure to afford 3-amino-1-(4-chlorobenzyl)piperidine dihydrochloride as an amorphous solid (2.49 g, quant).

10

15

20

25

The purity was determined by RPLC/MS (>95%),; ESI/MS m/e 225.2 (M*+H, $C_{12}H_{18}ClN_2$).

Example 953: Preparation of $1-(4-Chlorobenzy1)-3-\{\{N-(3-methylbenzoy1)glycyl\}$ amino]piperidine (Compound No. 355).

 $N-(3-{\rm Methylbenzoyl})$ glycine (10.6 mg, 0.055 mmol), EDCI (10.5 mg) and 1-hydroxybenzotriazole hydrate (7.4 mg) were added to a solution of 1-(4-chlorobenzyl)-3-aminopiperidine dihydrochloride (14.9 mg, 0.050 mmol) and Et₃N (15.2 mg) in CHCl₃ (2.5 mL). The reaction mixture was stirred at 25 °C for 16 h, washed with 2 N aqueous NaOH (2 mL x 2) and brine (1 mL). After filtration through PTFE membrane filter, the solvent was removed under reduced pressure to afford 1-(4-chlorobenzyl)-3-[(N-(3-methylbenzoyl)glycyl)amino]piperidine (compound No. 355) as a pale yellow oil (17.4 mg, 87%): The purity was determined by RPLC/MS (97%); ESI/MS m/e 400.0 (M+H, $C_{22}H_{24}ClN_3O_2$).

15 Examples 954-982.

The compounds of this invention were synthesized pursuant to methods of Example 953 using the corresponding reactant respectively. The ESI/MS data and yields are summarized in Table 22 and compound No. 358 showed the following $^1\mathrm{H}$ NMR spectra.

20

5

Table 22

	Compound	Molecular Formula	ESI/MS m/e	Yield (mg)	Yield (%)
	No.				
Example 954	354	C21 H24 C1 N3 O2	386	16.1	83
Example 955	356	C20 H23 C1 N4 O2	387	19.4	100
Example 956	357	C22 H26 Cl N3 O2	400	16.8	84
Example 957	359	C22 H26 Cl N3 O2	400	8.9	17
Example 958	360	C22 H25 Cl N4 O4	445	25.6	quant
Example 959	361	C23 H27 C1 N2 O2	399	15.5	29
Example 960	362	C24 H29 C1 N2 O3	429	12.4	58
Example 961	363	C21 H25 C1 N2 O2 S	405	22.2	quant
Example 962	364	C24 H29 C1 N2 O4	445	20.7	93
Example 963	365	C24 H29 C1 N2 O2	413	15.6	75
Example 964	366	C23 H26 C1 F N2 O3	433	21.6	100
Example 965	367	C23 H27 C1 N2 O2	399	11.9	60
Example 966	368	C22 H25 C1 N2 O2	385	16.0	83
Example 967		C22 H24 C12 N2 O2	419	13.9	60
Example 968	<u> </u>	C26 H33 C1 N2 O3	457	15.9	54

Example 969	371	C25 H31 Cl N2 O3	443	19.6	84
Example 970	372	C21 H25 C1 N2 O3 S	421	23.0	quant
Example 971	373	C23 H28 C1 N3 O2	414	19.1	92
Example 972	374	C24 H30 Cl N3 O3	444	18.6	84
Example 973	375	C23 H27 C12 N3 O2	448	18.0	80
Example 974	376	C24 H30 Cl N3 O3	444	19.6	88
Example 975	377	C25 H31 C12 N3 O2	476	20.7	87
Example 976	378	C27 H33 C1 F N3 O2	486	23.9	98
Example 977	379	C25 H30 C1 N3 O3	456	33.3	quant
Example 978	380	C24 H30 C1 N3 O2	428	9.8	46
Example 979	381	C21 H26 C1 N3 O3 S	436	10.3	47
Example 980	382	C22 H26 C1 N3 O3	416	24.4	quant
Example 981	383	C22 H25 C12 N3 O3	450	27.5	quant

Example 982. Compound No. **358**: 88%; ¹H NMR (CDCl₃) δ 1.53–1.75 (m, 4 H), 2.12–2.20 (m, 1 H), 2.37–2.50 (m, 2 H), 2.53–2.61 (m, 1 H), 3.38–3.50 (m, 2 H), 2.53–2.61 (m, 1 H), 3.38–3.50 (m, 2 H), 4.06–4.20 (m, 3 H), 7.10–7.13 (m, 1 H), 7.18–7.30 (m, 4 H), 7.59 (t, J = 7.8 Hz, 1 H), 7.79 (d, J = 7.8 Hz, 1 H), 8.01 (d, J = 7.8 Hz, 1 H), 8.11 (s, 1 H).

Reference Example 14: Preparation of 1-benzyl-4-[{N-(text-butoxycarbonyl)glycyl}amino]piperidine.

A solution of 4-amino-1-benzylpiperidine (3.80 g, 20 mmol) in CH₂Cl₂ (40 mL) was treated with N-(tert-butoxycarbonyl)glycine (3.48 g, 20 mmol), EDCI (4.02 g, 21 mmol) and HOBt (2.83 g, 21 mmol). After the reaction mixture was stirred at room temperature for 12 h, 2 N NaOH solution (20 mL) was added. The organic layer was separated, and the aqueous layer was extracted with dichloromethane (20 mL x 2). The combined organic layers were washed with water (20 mL) and brine (20 mL), dried over anhydrous sodium sulfate, filtered, and concentrated. Column chromatography (SiO₂, ethyl acetate/MeOH/Et₂N = 85/12/3) afforded 1-benzyl-4-(N-(tert-butoxycarbonyl)glycyl)aminopiperidine (6.59 g, 95%).

20 Reference Example 15: Preparation of 1-(4-Chlorobenzyl)-4-(glycylamino)piperidine.

To a solution of 1-benzyl-4- $\{N-(tert-butoxycarbonyl)glycyl\}$ aminopiperidine (6.59 g) in methanol (80 mL) was added 4 N HCl in dioxane (19 mL). The solution was stirred at room temperature for 2 h. The reaction mixture was concentrated and 2 N aqueous NaOH solution (20

mL) was added. The mixture was extracted with dichloromethane (40 mL x 3), and the combined extracts were dried over anhydrous sodium sulfate and concentrated. Column chromatography (SiO_2 , AcOEt/MeOH/Et₃N = 85/12/3) gave 1-(4-chlorobenzyl)-4-(glycylamino)piperidine (3.91 g, 83%): ¹H NMR (CDCl₃, 400 MHz) d 1.47-1.59 (m, 2 H), 1.59 (br, 2 H), 1.76-1.96 (m, 2 H), 2.10-2.19 (m, 2 H), 2.75-2.87 (m, 2 H), 3.29 (s, 2 H), 3.50 (s, 2 H), 3.65-3.89 (m, 1 H), 7.15-7.23 (m, 1 H), 7.23-7.33 (m, 5 H).

Other 4-acylamino-1-benzylpiperidines were also synthesized pursuant to 10 methods of Reference Example 13 and 14 using the corresponding reactant respectively.

4-(β -alanylamino)-1-benzylpiperidine: 2.46 g, 51% (2 steps). 1-benzyl-4-((S)-leucylamino)piperidine: 1.78 g, 74% (2 steps). 1-benzyl-4-((R)-leucylamino)piperidine: 1.48 g, 61% (2 steps).

Example 983: Preparation of 4-(N-benzoylglycyl)amino-1-benzylpiperidine (Compound No. 386).

A solution of benzoyl chloride (0.060 mmol) in chloroform (0.4 mL) was added to a solution of 1-(4-chlorobenzyl)-4-(glycylamino)piperidine (0.050 mmol) and triethylamine (0.070 mmol) in chloroform (1.0 mL). After the reaction mixture was agitated at room temperature for 2.5 h, (aminomethyl)polystyrene resin (1.04 mmol/g, 50 mg, 50 mmol) was added and the mixture was agitated at room temperature for 12 h. The reaction mixture was filtered and the resin was washed with dichloromethane (0.5 mL). The filtrate and washing were combined, dichloromethane (4 mL) was added, and the solution was washed with 2 N aqueous NaOH solution (0.5 mL) to give 4-(N-benzoylglycyl)amino-1-benzylpiperidine (compound No. 386) (11.3 mg, 64%): The purity was determined by RPLC/MS (94%); ESI/MS m/e 352.0 (M*+H, $C_{21}H_{25}N_3O_2$).

30 Examples 984-1034.

The compounds of this invention were synthesized pursuant to methods of Example 983 using the corresponding reactant respectively. The ESI/MS data and yields are summarized in Table 23.

35

15

20

25

Table 23

	Compound No.	Molecular Formula	ESI/MS m/e	Yield (mg)	Yield (%)
Example 984	384	C22 H26 Cl N3 O2	400	60.0	quant
Example 985	385	C21 H23 Cl N4 O4	431	58.7	91
Example 986	387	C25 H27 N3 O2	402.5	15.5	77
Example 987	388	C21 H24 N4 O4	397.0	16.2	82
Example 988	389	C23 H27 N3 O4	410.0	16.2	79
Example 989	390	C22 H24 F3 N3 O2	420.0	17.4	83
Example 990	391	C22 H23 F4 N3 O2	438.0	18.4	84
Example 991	392	C22 H24 F3 N3 O3	436.0	17.1	79
Example 992	393	C21 H24 Br N3 O2	430.0	18.0	84
Example 993	394	C21 H24 Cl N3 O2	386.0	16.4	85
Example 994	395	C21 H24 Br N3 O2	430.0	17.2	80
Example 995	396	C21 H23 F2 N3 O2	388.0	15.1	78
Example 996	397	C21 H23 C12 N3 O2	420.0	11.7	56
Example 997	398	C22 H27 N3 O2	366.0	13.1	72
Example 998	399	C26 H29 N3 O2	416.0	15.8	76
Example 999	400	C22 H26 N4 O4	411.0	17.4	85
Example 1000	401	C24 H29 N3 O4	424.0	16.9	80
Example 1001	402	C23 H26 F3 N3 O2	434.0	17.7	82
Example 1002	403	C23 H25 F4 N3 O2	452.0	18.6	82
Example 1003	404	C23 H26 F3 N3 O3	450.0	17.8	79
Example 1004	405	C22 H26 Br N3 O2	444.0	17.9	81
Example 1005	406	C22 H26 C1 N3 O2	400.0	15.5	78
Example 1006	407	C22 H26 Br N3 O2	444.0	17.8	80
Example 1007	408	C22 H25 F2 N3 O2	402.0	15.6	78
Example 1008	409	C22 H25 C12 N3 O2	434.0	17.6	81
Example 1009	410	C25 H33 N3 O2	408.0	16.2	79
Example 1010	411	C29 H35 N3 O2	458.5	18.8	82
Example 101	1 412	C25 H32 N4 O4	453.0	19.4	86
Example 1012	2 413	C27 H35 N3 O4	466.0	19.8	85
Example 101	3 414	C26 H32 F3 N3 O2	476.0	20.2	85
Example 101	4 415	C26 H31 F4 N3 O2	494.0	20.5	83
Example 101	5 416	C26 H32 F3 N3 O3	492.0	19.5	79
Example 101	6 417	C25 H32 Br N3 O2	486.0	19.1	79
Example 101	7 418	C25 H32 C1 N3 O2	442.0	17.7	80
Example 101	8 419	C25 H32 Br N3 O2	486.0	20.3	83
Example 101	9 420	C25 H31 F2 N3 O2	444.0	18.6	84
Example 102	0 421	C25 H31 C12 N3 O2	476.0	19.4	81
Example 102	1 422	C25 H33 N3 O2	408.0	14.4	71

Example 1022	423	C29 H35 N3 O2	458.0	16.4	72
Example 1023	424	C25 H32 N4 O4	453.0	18.1	80
Example 1024	425	C27 H35 N3 O4	466.0	16.4	70
Example 1025	426	C26 H32 F3 N3 O2	476.0	17.3	73
Example 1026	427	C26 H31 F4 N3 O2	494.0	18.8	76
Example 1027	428	C26 H32 F3 N3 O3	492.0	18.4	75
Example 1028	429	C25 H32 Br N3 O2	486.0	17.9	74
Example 1029	430	C25 H32 C1 N3 O2	442.0	15.7	71
Example 1030	431	C25 H32 Br N3 O2	486.0	17.7	73
Example 1031	432	C25 H31 F2 N3 O2	444.0	16.6	75
Example 1032	433	C25 H31 C12 N3 O2	476.0	18.7	78
Example 1033		C22 H23 C1 F3 N3 O2	454	32.5*	53
Example 1034		C21 H24 C1 N3 O2	386	55.2*	quant

^{*}Yield of TFA salt.

5

10

20

25

Reference Example 16: Preparation of 3-Carbamoy1-1-(4-chlorobenzyl)piperidine.

A solution of nipecotamide (6.40 g, 50 mmol) in CH₃CN (150 mL) and ethanol (20 mL) was treated with Et₃N (7.0 mL, 50 mmol) and 4-chlorobenzyl chloride (8.05 g, 50 mmol). The reaction mixture was stirred at 50 °C for 16 h. After cooling to room temperature, saturated aqueous NaHCO₃ (50 mL) and water (150 mL) was added to the reaction mixture. The mixture was extracted with ethyl acetate (150 mL x 3) and the combined organic layers were washed with brine, dried (Na₂SO₄) and concentrated to give a pale red solid. The crude solid was washed with ether (100 mL) to afford 3-carbamoyl-1-(4-chlorobenzyl) piperidine (6.98 g, 54%).

Reference Example 17: Preparation of 3-(Aminomethyl)-1-(4-15 chlorobenzyl)piperidine.

3-Carbamoyl-1-(4-chlorobenzyl)piperidine (3.80 g, 15 mmol) was dissolved in THF (30 mL) and 1 M BH₃-THF (9.4 mL) was added to the solution. The reaction mixture was stirred at 70 °C for 15 h. After the mixture was cooled to 0 °C, 2 N aqueous HCl solution (50 mL) was added and the mixture was stirred at room temperature for additional 3 h, basicified with 4 N aqueous NaOH solution, and extracted with ethyl acetate (100 mL x 3). The combined extracts were washed with brine, dried over anhydrous Na₂SO₄, filtered and concentrated. Column chromatography (SiO₂, ethyl acetate/EtOH/Et₂N = 80/15/5) afforded 3-(aminomethyl)-1-(4-chlorobenzyl)piperidine (2.05 g, 55%): H NMR (CDCl₂, 400 MH₂) δ 1.00-1.09 (m, 1 H), 1.50-1.87 (m, 7 H), 1.97-2.06 (m, 1 H), 2.65-2.77

(m, 2 H), 3.16-3.26 (m, 2 H), 3.32 (s, 2 H), 3.40. (d, J = 13.3 Hz, 1 H), 3.49 (d, J = 13.3 Hz, 1 H), 7.22-7.33 (m, 5 H).

Example 1035: Preparation of 3-{(N-Benzoylglycyl)amino}methyl-1-(4-chlorobenzyl)piperidine (Compound No. 434).

A solution of benzoyl chloride (0.060 mmol) in chloroform (0.4 mL) was added to a solution of 3-(aminomethyl)-1-(4-chlorobenzyl)piperidine (0.050 mmol) and triethylamine (0.070 mmol) in chloroform (1.0 mL). After the reaction mixture was agitated at room temperature for 2.5 h, (aminomethyl)polystyrene resin (1.04 mmol/g, 50 mg, 50 mmol) was added and the mixture was agitated at room temperature for 12 h. The reaction mixture was filtered and the resin was washed with dichloromethane (0.5 mL). The filtrate and washing were combined, dichloromethane (4 mL) was added, and the solution was washed with 2 N aqueous NaOH solution (0.5 mL) to give $3-\{(N-\text{benzoylglycyl})\text{amino}\}\text{methyl-1-}(4-\text{chlorobenzyl})\text{piperidine (compound No. 434) (14.7 mg, 74%): The purity was determined by RPLC/MS (91%); ESI/MS m/e 400 (M^+H, C22H26ClN3O2).$

Examples 1036-1058.

The compounds of this invention were synthesized pursuant to methods of 20 Example 1035 using the corresponding reactant respectively. The ESI/MS data and yields are summarized in Table 24.

ESI/MS m/e Yield (mg) Yield (%) Compound Molecular Formula No. 71 435 C26 H28 Cl N3 O2 450 16.0 Example 1036 85 445 18.9 C22 H25 Cl N4 O4 Example 1037 436 79 18.2 437 C24 H28 Cl N3 O4 458 Example 1038 C23 H25 C1 F3 N3 O2 19.0 81 468 438 Example 1039 C23 H24 Cl F4 N3 O2 486 20.2 83 439 Example 1040 C23 H25 Cl F3 N3 O3 78 484 18.9 Example 1041 440 80 C22 H25 Br Cl N3 O2 478 19.2 Example 1042 441 80 C22 H25 C12 N3 O2 434 17.3 442 Example 1043 C22 H25 Br Cl N3 O2 79 478 18.8 Example 1044 443 C22 H24 C1 F2 N3 O2 436 16.7 77 444 Example 1045 76 468 17.9 C22 H24 C13 N3 O2 Example 1046 445 71 14.6 C23 H28 C1 N3 O2 414 446 Example 1047 464 17.0 C27 H30 C1 N3 O2 Example 1048 447

Table 24

5

10

Example 1049	448	C23 H27 Cl N4 O4	459	19.5	85
Example 1050	449	C25 H30 C1 N3 O4	472	17.1	72
Example 1051	450	C24 H27 C1 F3 N3 O2	482	19.4	81
Example 1052	451	C24 H26 Cl F4 N3 O2	500	18.2	73
Example 1053	452	C24 H27 C1 F3 N3 O3	498	18.8	76
Example 1054	453	C23 H27 Br C1 N3 O2	492	19.4	79
Example 1055	454	C23 H27 C12 N3 O2	448	16.5	74
Example 1056	455	C23 H27 Br Cl N3 O2	492	19.3	78
Example 1057	456	C23 H26 C1 F2 N3 O2	450	17.1	76
Example 1058	457	C23 H26 C13 N3 O2	482	16.9	70

Reference Example 18: Preparation of 4-(Aminomethyl)-1-(4-chlorobenzyl)piperidine.

A solution of 4-(aminomethyl)piperidine (7.00 g, 61.3 mmol) in CH₃CN (100 mL) was treated sequentially with K_2CO_3 (3.02 g) and 4-chlorobenzyl chloride (3.52 g, 21.8 mmol). The reaction mixture was heated to 60 °C for 16 h, cooled to 25 °C and concentrated. The residue was partitioned between CH₂Cl₂ (75 mL) and water (50 mL), and was washed with water (2 x 50 mL) and brine (1 x 50 mL). The organic phase was dried (MgSO₄) and concentrated. Chromatography (SiO₂, 4% $H_2O^{-1}PrOH$) afforded 4-(aminomethyl)-1-(4-chlorobenzyl)piperidine (3.58 g, 69%).

Example 1059: Preparation of 4-{(N-Benzoylglycyl)amino)methyl-1-(4-chlorobenzyl)piperidine (Compound No. 458).

A solution of 4-(aminomethyl)-1-(4-chlorobenzyl)piperidine (50 mg, 0.21 mmol) in CH_2Cl_2 (1 mL) was treated with hippuric acid (38 mg, 0.21 mmol), EDCI (48 mg, 0.24 mmol), HOBt (31 mg, 0.23 mmol) and Et₃N (38 µL, 0.27 mmol). The reaction mixture was stirred for 16 h at 25 °C, diluted with 1 mL of CH_2Cl_2 , washed with 2 N aqueous NaOH solution (2 x 0.75 mL), dried (MgSO₄) and concentrated. Chromatography (SiO₂, 6 to 8% CH_3OH/CH_2Cl_2 gradient elution) afforded 4-(N-benzoylglycyl)amino}methyl-1-(4-chlorobenzyl)piperidine (compound No. 458) which was treated with TFA to give a TFA salt(105 mg, 97%): The purity was determined by RPLC/MS (85%); ESI/MS m/e 400 (M²+H, $C_{12}H_{26}ClN_3O_2$).

Examples 1060-1086.

The compounds of this invention were synthesized pursuant to methods of Example 1059 using the corresponding reactant respectively. The ESI/MS data and yields are summarized in Table 25.

10

15

20

Table 25

	Compound No.	Molecular Formula	ESI/MS m/e	Yield (mg)	Yield (%)
Example 1060	459	C23 H28 Cl N3 O2	414	86*	78
Example 1061	460	C23 H28 C1 N3 O2	414	55	quant
Example 1062	461	C23 H25 C1 F3 N3 O2	468	65	quant
Example 1063	462	C23 H28 C1 N3 O2	414	61	quant
Example 1064	463	C23 H28 C1 N3 O2	414	54	quant
Example 1065	464	C25 H32 C1 N3 O5	490	56	quant
Example 1066	465	C21 H 25 Cl N4 O2	401	38	96
Example 1067	466	C22 H25 Cl N4 O4	445	15	34
Example 1068	557	C23 H28 C1 N3 O2	414	58*	66
Example 1069	558	C23 H 28 Cl N3 O2	414	55	quant
Example 1070	618	C25 H32 C1 N3 O2	442	58	quant
Example 1071	686	C26 H34 C1 N3 O2	456	62	quant
Example 1072	749	C34 H37 Cl N4 O2	569	7.2*	18
Example 1073	750	C24 H30 Cl N3 O3	444	4.7*	14
Example 1074	840	C24 H29 Cl N2 O2	413	52*	58
Example 1075	841	C23 H27 C1 N2 O2	399	52	quant
Example 1076	842	C23 H26 C12 N2 O2	433	55	quant
Example 1077	843	C25 H31 C1 N2 O2	427	58	quant
Example 1078	844	C24 H29 C1 N2 O2	413	56	quant
Example 1079	845	C24 H29 C1 N2 O4 S	477	62	quant
Example 1080	846	C29 H31 C1 N2 O3	491	43	88
Example 1081	847	C24 H28 Cl F N2 O3	447	54	quant
Example 1082	848	C25 H31 C1 N2 O2	427	47	quant
Example 1083	849	C25 H31 C1 N2 O4	459	55	quant
Example 1084	850	C22 H27 C1 N2 O3 S	435	46	quant
Example 1085	873	C20 H28 C1 N3 O2	378	44.8	quant
Example 1086	5 874	C23 H27 C12 N3 O3	464	51	quant

^{*}Yield of TFA salt.

5 Reference Example 19: Preparation of 1-(4-Chlorobenzyl)-4-{N-(3,3-diphenylpropyl)aminomethyl}piperidine.

4-(Aminomethyl)-1-(4-chlorobenzyl)piperidine (120 mg) was alkylated with 3,3-diphenylpropyl methanesulfonate (1.0 equiv.) in the presence of NaI (2.6 equiv.) in CH₂CN at 70 °C for 16 h. General workup and column chromatography (SiO₂) afforded $1-(4-chlorobenzyl)-4-\{N-(3,3-4-1)\}$

diphenylpropyl) aminomethyl) piperidine (118 mg, 54%): The purity was determined by RPLC (98%).

Reference Example 20: Preparation of 1-(4-Chlorobenzyl)-4-{N-(2,2-diphenylethyl)aminomethyl)piperidine.

Reductive amination of 4-(aminomethyl)-1-(4-chlorobenzyl)piperidine (120 mg) with 2,2-diphenylacetaldehyde (0.66 equiv.)and polymer-supported borohydride in methanol at 25 °C for 16 h, followed by general workup and column chromatography (SiO₂) afforded 1-(4-chlorobenzyl)-4- $\{N-(2,2-diphenylethyl)\}$ aminomethyl)piperidine (70 mg, 49%): The purity was determined by RPLC (98%).

Example 1087: Preparation of 4-(N-M-Benzoylglycyl)-N-(2,2-diphenylethyl) aminomethyl}-1-(4-chlorobenzyl)piperidine (Compound No. 524).

A solution of 1-(4-chlorobenzyl)-4-(N-(2,2-diphenylethyl)) aminomethyl)piperidine (0.084 mmol) in CH_2Cl_2 was treated with hippuric acid (1.1 equiv.), HBTU (1.1 equiv.), HOBt (1.1 equiv.). The reaction mixture was stirred at 40 °C for 24 h. General workup and preparative TLC (SiO₂) afforded 4-(N-(N-benzoylglycyl)-N-(2,2-diphenylethyl)) aminomethyl)-1-(4-chlorobenzyl)piperidine (Compound No. 524) (8.5 mg, 17%): The purity was determined by RPLC/MS (98%); ESI/MS m/e 580 (M*+H, C36H38ClN3O₂).

Examples 1088-1090.

The compounds of this invention were synthesized pursuant to methods of Example 1087 using the corresponding reactant respectively. The ESI/MS data and yields are summarized in Table 26.

Yield (३) Compound ESI/MS m/e Yield (mg) Molecular Formula No. C38 H39 Cl F3 N3 O2 662 5.5 10 521 Example 1088 16 C37 H37 C1 F3 N3 O2 648 8.6 522 Example 1089 594 4.8 10 523 C37 H40 C1 N3 O2 Example 1090

Table 26

30

5

10

15

20

25

Reference Example 21: Preparation of 1-(4-Chlorobenzyl)-4-((valylamino)methyl)piperidine.

A solution of 4-(aminomethyl)-1-(4-chlorobenzyl)piperidine (1.0 g, 4.2

mmol) in CH_2Cl_2 (21 mL) was treated with Et₃N (0.76 mL, 5.44 mmol), dl-N-(tert-butoxycarbonyl) valine (1.09 g, 5.03 mmol), EDCI (883 mg, 4.61 mmol) and HOBt (623 mg, 4.61 mmol). The reaction mixture was stirred at 25 °C for 16 h. The resulting solution was diluted with CH_2Cl_2 (20 mL), and washed with 2 N NaOH solution (2 x 20 mL), brine (1 x 20 mL) and dried (MgSO₄). Concentration and chromatography (SiO₂, 3% CH_3OH/CH_2Cl_2) afforded 1-(4-chlorobenzyl)-4-[{(N-Boc-valyl)amino}methyl]piperidine (1.1 g, 60%) as a pale amber oil: ESI/MS m/e 438 (M'+H).

1-(4-Chlorobenzyl)-4-[{(N-Boc-valyl)amino}methyl]piperidine (1.1 g, 2.51 mmol) was dissolved in 3 M HCl-CH₃OH solution (25 mL) and stirred at 25 °C for 1 h. The reaction mixture was concentrated and the resulting salt was dissolved in 3:1 ^tBuOH-H₂O (25 mL). Anion (OH) exchange resin was added until the solution was slightly basic. Filtration and concentration afforded 1-(4-chlorobenzyl)-4-{(valylamino)methyl)piperidine (819 mg, 97%) which required no further purification: RPLC (97%); ESI/MS 338.1 (M*+H, C₁₉H₂₈ClN₃O).

Other 4-{(acylamino)methyl}-1-(4-chlorobenzyl)piperidines were also synthesized pursuant to methods of Reference Example 20 using the corresponding reactant respectively.

- - $1-(4-chlorobenzyl)-4-{(serylamino)methyl)piperidine: 0.286 g, 20% (2 steps); ESI/MS 326 (M*+H).$
- 4-{(alanylamino)methyl}-1-(4-chlorobenzyl)piperidine: 1.20 g, 65% (2 steps); ESI/MS 310 ($M^{+}H$).
 - $1-(4-chlorobenzy1)-4-\{(prolylamino)methyl\}$ piperidine: 1.48 g, 86% (2 steps); ESI/MS 336 (M*+H).
 - $1-(4-chlorobenzyl)-4-\{(glutaminylamino)methyl\}piperidine: 0.830 g, 27% (2 steps); ESI/MS 367 (M*+H).$
- - $1-(4-chlorobenzyl)-4-\{((\emph{O}-methylseryl)\,amino)\,methyl\}piperidine: 0.686 g, 38% (2 steps); ESI/MS 340 (M*+H).$
 - 1-(4-chlorobenzyl)-4-{((1-
- 35 aminocyclopropylcarbonyl) amino) methyl) piperidine: 2.03 g, 82% (2 steps); ESI/MS 322 (M $^+$ +H).
 - $l-(4-chlorobenzyl)-4-\{(leucylamino)methyl\}piperidine: 1.30 g, 58% (2 steps); ESI/MS 352 (M'+H).$

1-(4-chlorobenzyl)-4-{((0-benzylseryl)amino)methyl)piperidine: 1.34g, 56c (2 steps); ESI/MS 416 (M'+H).

Reference Example 22: Preparation of 1-(tert-Butoxycarbonyl)-4-[{N-(9-fluorenylmethyloxycarbonyl)glycyl}aminomethyl]piperidine.

A solution of 4-(aminomethyl)-1-(tert-butoxycarbonyl)piperidine (5.72 g) in CH_2Cl_2 (150 mL) was treated with Et_3N (3.51 g), N-(9-fluorenylmethyloxycarbonyl)glycine (7.93 g, 26.7 mmol), EDCI (3.80 g) and HOBt (4.33 g). After the reaction mixture was stirred at room temperature for 5 h, the mixture was washed with water (100 mL x 3) and brine (100 mL x 2), dried over anhydrous sodium sulfate, filtered, and concentrated. Recrystallization from CH_3CN/CH_3OH (150 mL/1 mL) at 0 °C afforded 1-(tert-Butoxycarbonyl)-4-[(N-(9-fluorenylmethyloxycarbonyl)glycyl)aminomethyl]piperidine (5.75 g, 44%) as pale yellow crystals.

15

20

25

30

35

10

5

Reference Example 23: Preparation of 4-[{N-(9-Fluorenylmethyloxycarbonyl)glycyl}aminomethyl]piperidine.

To $1-(tert-Butoxycarbonyl)-4-[\{N-(9-1)-1\}] + (1-1)-4-[\{N-(9-1)-1\}] + (1-1)-[\{N-(9-1)-1\}] + (1-1)-[\{N-(9-1$

Reference Example 24: Preparation of 4-[{N-(9-Fluorenylmethyloxycarbonyl)glycyl}aminomethyl]-1-(4-methylthiobenzyl)piperidine.

4-[{N-(9of solution Α fluorenylmethyloxycarbonyl)glycyl)aminomethyl]piperidine (1.00 g, 2.33 mmol) in 1% AcOH/DMF (15 mL) were added 4-methylthiobenzaldehyde (1.24 g) and NaBH(OAc); $(2.56\ \mathrm{g})$. The reaction mixture was stirred at 60 °C for 1 h, cooled to room temperature, and concentrated. Saturated aqueous NaHCO3 solution (50 mL) was added and the mixture was extracted with AcOEt (50 mL \times 2). The combined extracts were dried over anhydrous sodium sulfate, filtered, and concentrated. Column afforded $4 - [\{N - (9 -$ CH;OH/CH2Cl2) (SiO2, 5%-10% chromatography fluorenylmethyloxycarbonyl)glycyl)aminomethyl]-1-(4methylthiobenzyl)piperidine (602 mg) as a colorless oil.

Reference Example 25: Preparation of .1-(4-Ethylbenzyl)-4-[{N-(9-fluorenylmethyloxycarbonyl)glycyl}aminomethyl]piperidine.

fluorenylmethyloxycarbonyl)glycyl)aminomethyl)piperidine (1.00 g, 2.33 mmol) in 2.5% AcOH/CH₃OH (80 mL) were added 4-ethylbenzaldehyde (1.09 g, 8.16 mmol) and NaBH₃CN (6.59 g, 10.5 mmol). The reaction mixture was stirred at 60 °C for 13 h. After the mixture was cooled to room temperature, 1 N aqueous NaOH solution (50 mL) and dichloromethane (50 mL) were added. The organic layer was separated and the aqueous layer was extracted with dichloromethane (50 mL x 3). The combined organic layers were washed with brine, dried over anhydrous sodium sulfate, filtered, and concentrated. Column chromatography (SiO2, CH₃OH/AcOEt 2 : 8) afforded $1-(4-\text{ethylbenzyl})-4-[\{N-(9-\text{fluorenylmethyloxycarbonyl})glycyl)aminomethyl)piperidine (740 mg, 62%).$

Reference Example 26: Preparation of 4-{(Glycylamino)methyl}-1-(4-methylthiobenzyl)piperidine.

A solution of 4-[{N-(9-fluorenylmethyloxycarbonyl)glycyl}aminomethyl]-1-(4-methylthiobenzyl)piperidine (590 mg) and piperidine (1 mL) in DMF (4 mL) was stirred at room temperature for 2 h. Concentration and column chromatography (SiO₂, Et₃N : CH₃OH : CH₂Cl₂ = 1 : 1 : 9) afforded 4-{(glycylamino)methyl}-1-(4-methylthiobenzyl)piperidine (365 mg) as a white solid: ¹H NMR (CDCl₃, 270 MHz) δ1.25(dd, J = 12 Hz, 4.1 Hz, 2 H), 1.34(dd, J = 12 Hz, 4.1 Hz, 2 H), 1.51 (br-s, 2 H), 1.66 (d, J = 12 Hz, 2 H), 1.77 (d, J = 7.3 Hz, 1 H), 1.94 (t, J = 9.5 Hz, 2 H), 2.48 (s, 3 H), 2.80 (d, J = 12 Hz, 2 H), 3.18 (t, J = 6.2 Hz, 2 H), 3.35 (s, 2 H), 3.45 (s, 2 H), 7.18-7.29 (m, 4 H), 7.35 (br-s, 1 H).

1-(4-Ethylbenzyl)-4-{(glycylamino)methyl}piperidine was also synthesized pursuant to methods of Reference Example 25 using the corresponding reactant: 333 mg, 79%.

Reference Example 27: Preparation of 4-{(glycylamino)methyl}-1-(4-fluorobenzyl)piperidine.

35 fluorenylmethyloxycarbonyl)glycyl)aminomethyl]piperidine (1.50 g, 3.49 mmol), 4-fluorobenzyl bromide (0.478 mL, 3.84 mmol), and Et₃N (1.47 mL, 10.5 mmol) in CH₃CN (200 mL) was stirred at room temperature for 13 h and concentrated. Column chromatography (SiO2, 10) CH-OH/CH₂Cl₂) afforded 4-[(N-(9-10))]

30

5

fluorenylmethyloxycarbonyl)glycyl;aminomethyl]-1-(4-fluorobenzyl)piperidine.

A solution of the $4-[\{N-(9-fluorenylmethyloxycarbonyl)glycyl\}$ aminomethyl]-1-(4-fluorobenzyl)piperidine and piperidine (5 mL) in DMF (5 mL) was stirred at room temperature for 17 h. Concentration and column chromatography (SiO₂, Et₃N : CH₃OH : CH₂Cl₂ = 0.5: 2 : 8) afforded $4-\{(glycylamino)methyl\}-1-(4-fluorobenzyl)piperidine (453 mg, 46%).$

Reference Example 28: Preparation of 4-{(glycylamino)methyl}-1-{4-(N-phenylcarbamoyl)benzyl}piperidine.

fluorenylmethyloxycarbonyl)glycyl}aminomethyl]piperidine (1.27 g, 2.96 mmol), Et₃N (1.25 mL, 8.88 mmol), KI (50 mg, 0.30 mmol) and CH₃CN (200 mL) was added dropwise a solution of 4-(N-phenylcarbamoyl)benzyl chloride (800 mg, 3.26 mmol) in CH₃CN (100 mL). The mixture was stirred at room temperature for 19 h and at 60 °C for 5 h. Concentration and column chromatography (SiO₂, 5% CH₃OH/CH₂Cl₂-Et₃N : CH₃OH : CH₂Cl₂ = 2 : 2 : 96) afforded $4-\{(\text{glycylamino})\text{methyl}\}-1-\{4-(N-\text{phenylcarbamoyl})\text{benzyl}\}$ piperidine (340 mg, 30%).

Example 1091: Preparation of 1-(4-Chlorobenzyl)-4-[{N-(3-cyanobenzoyl)valyl}aminomethyl]piperidine (Compound No. 619).

A solution of 1-(4-chlorobenzyl)-4-{(valylamino)methyl)piperidine (20 mg, 0.059 mmol) in CH_2Cl_2 (0.60 mL) was treated with Et₃N (0.011 mL, 0.077 mmol), m-cyanobenzoic acid (28 mg, 0.071 mmol), EDCI (13 mg, 0.065 mmol) and HOBt (9 mg, 0.065 mmol). The reaction mixture was stirred at 25 °C for 16 h. The resulting solution was diluted with CH_2Cl_2 (0.75 mL), washed with 2 N aqueous NaOH solution (2 x 0.75 mL) and dried by filtration through a PTFE membrane. Concentration afforded the 1-(4-chlorobenzyl)-4-[{N-(3-cyanobenzoyl)valyl}aminomethyl]piperidine (compound No. **619**) (24.2 mg, 88%) which required no further purification: The purity was determined by RPLC/MS (85%); ESI/MS m/e 467 (M'+H, $C_{26}H_{31}ClN_4O_2$).

Examples 1092-1543.

35 The compounds of this invention were synthesized pursuant to methods of Example 1091 using the corresponding reactant respectively. The ESI/MS data and yields are summarized in Table 27.

10

15

20

25

Table 27

	Compound No.	Molecular Formula	ESI/MS m/e	Yield (mg)	Yield (%)
Example 1092	467	C22 H25 Br Cl N3 O2	478	11	46
Example 1093	468	C24 H31 C1 N4 O2	443	9	41
Example 1094	469	C23 H28 C1 N3 O3	430	7+	27
Example 1095	470	C23 H25 C1 N4 O2	425	21	quant
Example 1096	471	C24 H28 C1 N3 O4	458	7	29
Example 1097	472	C29 H31 N3 O3	504	5*	21
Example 1098	473	C24 H28 C1 N3 O3	442	16	71
Example 1099	474	C23 H25 C1 F3 N3 O2	468	14	60
Example 1100	475	C25 H32 C1 N3 O2	442	5	22
Example 1101	476	C22 H25 Cl N4 O4	445	4	17
Example 1102	477	C25 H32 C1 N3 O3	458	10*	36
Example 1103	478	C21 H27 C1 N4 O2	403	9	47
Example 1104	479	C20 H24 C1 N3 O3	390	17	87
Example 1105	480	C20 H23 Br Cl N3 O3	470	23	quant
Example 1106	481	C20 H24 C1 N3 O2 S	406	7	33
Example 1107	482	C21 H26 C1 N3 O2 S	420	9	45
Example 1108	483	C21 H26 C1 N3 O2 S	420	8	40
Example 1109	484	C24 H27 C1 N4 O2	439	9*	34
Example 1110	485	C24 H24 C1 F6 N3 O2	536	13	49
Example 1111	ł	C23 H25 Cl N4 O2	425	16	74
Example 1112		C22 H25 C12 N3 O2	434	5	24
Example 1113	488	C22 H27 C1 N4 O2	415	7	32
Example 1114		C24 H24 C1 F6 N3 O2	536	21	78
Example 1115	490	C24 H30 C1 N3 O3	444	8	35
Example 1116	491	C23 H24 C1 F4 N3 O2	486	19	79
Example 1117	492	C23 H25 C1 F3 N3 O3	484	18	76
Example 1118	1	C23 H24 C12 F3 N3 O2	<u> </u>	23	92
Example 1119		C23 H24 C1 F4 N3 O2	486	19	79
Example 1120		C23 H24 C1 F4 N3 O2	486	20	83
Example 1121		C23 H24 C1 F4 N3 O2	486	12	48
Example 1122		C25 H32 C1 N3 O3	458	4	16
Example 1123	498	C23 H26 C1 F3 N4 O2	483	13	52
Example 1124		C24 H31 C1 N4 O2	443	8	36
Example 1125		C23 H28 C1 N3 O3	430	10	48
Example 1126		C22 H24 Br Cl N4 O4	523	10	39
Example 1127	502	C22 H24 C1 F N4 O4	463	4	17

Example 1128	503	C22 H24 C12 N4 O4	479	12	52
Example 1129	504	C24 H30 C1 N3 O4	460	11	43
Example 1130	505	C22 H24 Br Cl N4 O4	523	2	8
Example 1131	506	C20 H23 C1 N4 O5	435	2	10
Example 1132	507	C21 H26 C1 N3 O3	404	9	44
Example 1133	508	C24 H26 C1 N3 O2 S	456	1	5
Example 1134	509	C20 H23 Br Cl N3 O2 S	484	12	48
Example 1135	510	C22 H28 C1 N3 O3	418	9	44
Example 1136	511	C24 H32 C1 N3 O3	446	9	40
Example 1137	512	C25 H29 C1 N4 O2	453	10	45
Example 1138	513	C24 H28 C1 N3 O3	442	9	41
Example 1139	514	C26 H34 Cl N3 O2	456	11	49
Example 1140	515	C23 H28 Cl N3 O3	430	5	24
Example 1141	525	C23 H28 C1 N3 O4 S	478	20	85
Example 1142	526	C20 H24 C1 N3 O3	390	6	31
Example 1143	527	G20 H24 Cl N3 O2 S	406	8 .	39
Example 1144	528	C25 H30 Cl F3 N4 O4	543	28.2	95
Example 1145	529	C20 H23 C1 N4 O4 S	451	9	39
Example 1146	530	C31 H33 C1 N4 O2	529	5	17
Example 1147	531	C21 H26 Cl N3 O3 S	436	8	37
Example 1148	532	C22 H28 Cl N3 O3	418	8	40
Example 1149	533	C21 H26 Cl N3 O3	404	6	32
Example 1150	534	C21 H25 C1 N4 O5	449	5	20
Example 1151	535	C22 H26 C1 N3 O3 S	448	8	37
Example 1152	536	C23 H31 Cl N4 O2	431	6	28
Example 1153	537	C25 H34 C1 N3 O3	460	8	34
Example 1154	538	C27 H30 C1 N3 O3	480	9	36
Example 1155	539	C22 H25 C1 F3 N3 O3	472	18	75
Example 1156	540	C25 H29 C1 N4 O2	453	8	36
Example 1157	541	C22 H26 C1 N5 O4	460	2.4	10
Example 1158		C24 H30 C1 N3 O2	428	4.6*	51
Example 1159	543	C24 H30 C1 N3 O2	428	20.6*	71
Example 1160		C22 H25 C1 F N3 O2	418	15.8*	56
Example 1161	545	C22 H24 C13 N3 O2	468	7.3*	23
Example 1162	546	C22 H24 C13 N3 O2	468	17.4*	55
Example 1163	547	C22 H24 C13 N3 O2	468	14.1*	44
Example 1164	548	C22 H24 C13 N3 O2	468	6.8*	22
Example 1165		C22 H24 C12 N4 O4	479	5.7*	18
Example 1166	550	C22 H24 C12 N4 O4	479	18.9*	58
Example 1167	551	C24 H30 C1 N3 O2	428	14.2*	49

Example 1168	552	C24 H27 C1 F3 N3 O2	482	30.6*	94
Example 1169	553	C25 H26 C1 F6 N3 O2	550	38.0*	quant
Example 1170	554	C24 H26 C1 F N4 O2	457	0.9*	3
Example 1171	555	C24 H26 C12 N4 O2	473	11.1*	35
Example 1172	556	C25 H29 C1 N4 O2	453	12.5*	41
Example 1173	559	C25 H26 C1 F6 N3 O2	550	15	72
Example 1174	560	C24 H27 C1 N4 O2	439	12	68
Example 1175	561	C23 H27 Br Cl N3 O2	494	14	73
Example 1176	562	C23 H27 C12 N3 O2	448	13	75
Example 1177	563	C25 H26 C1 F6 N3 O2	550	14	66
Example 1178	564	C25 H32 Cl N3 O3	458	5	28
Example 1179	565	C24 H26 C1 F4 N3 O2	500	12	61
Example 1180	566	C24 H27 C1 F3 N3 O3	498	12	62
Example 1181	567	C24 H26 C12 F3 N3 O2	516	12	61
Example 1182	568	C24 H26 C1 F4 N3 O2	500	15	77
Example 1183	569	C24 H26 C1 F4 N3 O2	500	11	59
Example 1184	570	C24 H26 C1 F4 N3 O2	500	16	.84
Example 1185	571	C26 H34 Cl N3 O3	472	14	77
Example 1186	572	C24 H28 C1 F3 N4 O2	497	11	55
Example 1187	573	C21 H25 Br Cl N3 O2 S	500	12	64
Example 1188	574	C21 H25 Br Cl N3 O2 S	500	, 15	75
Example 1189	575	C25 H34 C1 N3 O3	460	16	87
Example 1190	576	C22 H28 C1 N3 O2 S2	466	13	71
Example 1191	577	C22 H28 C1 N3 O3	418	12	72
Example 1192	578	C25 H28 C1 N3 O2 S	470	15	81
Example 1193	579	C25 H29 Cl N4 O2	453	17	94
Example 1194	580	C22 H28 C1 N3 O2 S	434	15	91
Example 1195	581	C21 H26 C1 N3 O2 S	420	13	80
Example 1196	. 582	C22 H28 C1 N3 O2 S	434	10	59
Example 1197	583	C26 H31 Cl N4 O2	467	6	31
Example 1198	584	C30 H32 C1 N3 O3	518	18	92
Example 1199	585	C24 H27 C1 N4 O2	439	14	85
Example 1200	586	C23 H27 C12 N3 O2	448	17	97
Example 1201	587	C24 H27 Cl F3 N3 O2	482	17	91
Example 1202	588	C23 H29 C1 N4 O2	429	5	29
Example 1203	589	C27 H36 C1 N3 O2	470	4	24
Example 1204	590	C26 H34 C1 N3 O2	456	6	36
Example 1205	591	C25 H33 Cl N4 O2	457	7	38
Example 1206	592	C24 H30 Cl N3 O3	444	4	20
Example 1207	593	C24 H30 C1 N3 O3	444	2	14
E .					4

		C23 H28 C1 N3 O3	430	4	25
Example 1208	594		472	$\frac{1}{7}$	38
Example 1209	595	C25 H30 C1 N3 O4		7	40
Example 1210	596	C25 H30 Cl N3 O3	456		
Example 1211	597	C25 H30 C1 N3 O3	456	15	85
Example 1212	598	C21 H26 C1 N3 O3	404	15	94
Example 1213	599	C22 H29 C1 N4 O2	417	5	30
Example 1214	600	C21 H25 Br Cl N3 O3	484	6	34
Example 1215	601	C24 H30 Cl N3 O3	444	5	28
Example 1216	602	C25 H33 C1 N4 O2	457	5	28
Example 1217	603	C23 H29 Cl N4 O2	429	4	22
Example 1218	604	C21 H27 C1 N4 O2	403	9	58
Example 1219	605	C21 H26 Cl N3 O3	404	17	87
Example 1220	606	C21 H26 C1 N3 O2 S	420	15	74
Example 1221	607	C22 H28 Cl N3 O3 S	450	31	quant
Example 1222	608	C23 H30 Cl N3 O3	432	17	80
Example 1223	609	C22 H28 C1 N3 O3	418	18	89
Example 1224	610	C23 H28 Cl N3 O3 S	462	20	86
Example 1225	611	C26 H36 Cl N3 O3	474	21	90
Example 1226	612	C28 H32 C1 N3 O3	494	20	84
Example 1227	613	C23 H27 Cl F3 N3 O3	486	19	81
Example 1228	614	C24 H33 Cl N4 O2	445	23	quant
Example 1229	615	C25 H29 C1 N4 O2	453	4	20
Example 1230	616	C32 H35 C1 N4 O2	543	11	40
Example 1231	617	C25 H27 Cl F3 N3 O2	482	6.7	37
Example 1232	620	C25 H31 Br Cl N3 O2	520	15	49
Example 1233	621	C25 H31 C12 N3 O2	476	18	64
Example 1234	622	C27 H37 C1 N4 O2	485	14	50
Example 1235	623	C26 H34 Cl N3 O3	472	19	69
Example 1236	624	C25 H31 Cl N4 O4	487	21	73
Example 1237	625	C25 H33 C1 N4 O2	457	19	69
Example 1238	626	C27 H30 Cl F6 N3 O2	578	8	25
Example 1239	627	C27 H36 C1 N3 O3	486	16	55
Example 1240	628	C27 H34 Cl N3 O4	500	24	80
Example 1241	629	C26 H30 Cl F4 N3 O2	528	18	56
Example 1242	630	C26 H31 Cl F3 N3 O3	526	21	68
Example 1243	631	C26 H30 C12 F3 N3 O2	544	15	48
Example 1244		C26 H30 C1 F4 N3 O2	528	13	41
Example 1245		C26 H30 C1 F4 N3 O2	528	20	63
Example 1246		C26 H30 Cl F4 N3 O2	528	19	62
Example 1247		C28 H38 C1 N3 O3	500	11	36
I	L		J	L	<u> </u>

Example 1288	676	C27 H33 C1 N4 O2	482	2*	6
Example 1289	677	C28 H35 Cl N4 O2	495	2*	6
Example 1290	678	C24 H32 C1 N3 O3	446	3*	9
Example 1291	679	C27 H32 Cl N3 O2 S	498	1*	3
Example 1292	680	C23 H29 Br Cl N3 O2 S	526	2*	6
Example 1293	681	C25 H34 C1 N3 O3	460	2*	5
Example 1294	682	C27 H38 C1 N3 O3	488	2+	4
Example 1295	683	C24 H32 C1 N3 O2 S2	494	1*	4
Example 1296	684	C26 H36 Cl N3 O4 S2	554	2*	5
Example 1297	685	C24 H32 Cl N3 O4 S2	526	3*	7
Example 1298	687	C25 H30 C1 N3 O2	440	24	quant
Example 1299	688	C27 H28 Cl F6 N3 O2	576	28	98
Example 1300	689	C26 H29 Cl N4 O2	465	23	99
Example 1301	690	C25 H29 Br Cl N3 O2	518	26	99
Example 1302	691	C27 H35 C1 N4 O2	483	24	97
Example 1303	692	C26 H32 Cl N3 O3	470	24	quant
Example 1304	693	C27 H28 Cl F6 N3 O2	576	16	55
Example 1305	694	C27 H34 Cl N3 O3	484	25	quant
Example 1306	695	C27 H32 Cl N3 O4	498	12	47
Example 1307	696	C26 H29 C1 F3 N3 O3	524	25	95
Example 1308	697	C26 H29 C1 N4 O2	465	15	64
Example 1309	698	C27 H35 Cl N4 O2	483	24	quant
Example 1310	699	C26 H32 C1 N3 O3	470	26	quant
Example 1311	700	C27 H32 C1 N3 O4	498	15	62
Example 1312	701	C27 H32 C1 N3 O3	482	11	44
Example 1313	702	C26 H29 C1 F3 N3 O2	508	23	94
Example 1314	703	C28 H36 Cl N3 O2	482	26	quant
Example 1315	704	C25 H29 C1 N4 O4	485	11	43
Example 1316	705	C24 H30 C1 N3 O2 S	460	25	quant
Example 1317	706	C24 H30 Cl N3 O2 S	460	25	quant
Example 1318	707	C26 H29 Cl F3 N3 O2	508	15	55
Example 1319	708	C23 H27 Br Cl N3 O2 S		25	92
Example 1320	709	C24 H30 C1 N3 O2 S2	492	26	quant
Example 1321	710	C23 H27 Br C1 N3 O2 S		25	94
Example 1322	711	C25 H32 C1 N3 O3	458	26	quant
Example 1323	712	C27 H30 C1 N3 O2 S	496	26	quant
Example 1324	713	C24 H30 Cl N3 O3	444	26	quant
Example 1325	714	C28 H33 C1 N4 O2	493	12	50
Example 1326	715	C23 H28 C1 N3 O2 S	446	24	quant
Example 1327	716	C27 H31 C1 N4 O2	479	32	quant

In	717	C23 H27 C1 N4 O5	475	23	95
Example 1328		C23 H29 C1 N4 O2	429	24	quant
Example 1329	718		425	24	
Example 1330	719	C23 H28 C1 N3 O3			quant 95
Example 1331	720	C23 H27 Br Cl N3 O3	510	24	
Example 1332	721	C24 H31 C1 N4 O2	443	22	98
Example 1333	722	C26 H32 C1 N3 O3	470	9	37
Example 1334	723	C25 H31 C1 N4 O2	455	10	44
Example 1335	724	C29 H38 Cl N3 O2	496	28	quant
Example 1336	725	C32 H34 Cl N3 O3	544	26	95
Example 1337	726	C27 H33 Cl N4 O3	497	3	11
Example 1338	727	C25 H29 C12 N3 O2	474	25	quant
Example 1339	728	C25 H31 Cl N4 O2	455	21	92
Example 1340	729	C25 H29 Cl N4 O4	485	26	quant
Example 1341	730	C25 H29 Cl2 N3 O2	474	21	90
Example 1342	731	C27 H32 C1 N3 O3	482	10	41
Example 1343	732	C26 H28 Cl F4 N3 O2	526	27	quant
Example 1344	733	C28 H36 Cl N3 O3	498	22	89
Example 1345	734	C26 H28 Cl F4 N3 O2	526	25	94
Example 1346	735	C26 H28 C1 F4 N3 O2	526	23	87
Example 1347	736	C26 H30 Cl F3 N4 O2	523	24	78
Example 1348	737	C26 H28 C1 F4 N3 O2	526	21	66
Example 1349	738	C25 H32 C1 N3 O3	458	23	84
Example 1350	739	C27 H31 C1 N4 O2	479	19	66
Example 1351	740	C24 H31 C1 N4 O5	489	23	77
Example 1352	741	C23 H27 Cl N4 O4 S	491	26	88
Example 1353	742	C24 H30 Cl N3 O3 S	476	23	82
Example 1354	743	C23 H28 C1 N3 O3	430	21	81
Example 1355	744	C26 H32 C1 N3 O2	454	25	91
Example 1356	745	C27 H36 C1 N3 O3	486	23	80
Example 1357	746	C26 H35 C1 N4 O2	471	27	96
Example 1358	747	C25 H29 C1 F3 N3 O3	512	23	74
Example 1359	748	C23 H28 C1 N3 O2 S	446	22	82
Example 1360	751	C24 H30 Cl N3 O3	444	3	11
Example 1361	752	C25 H26 Cl F6 N3 O3	566	7	20
Example 1362	753	C24 H27 C1 N4 O3	455	6	22
Example 1363	754	C23 H27 C12 N3 O3	464	8	29
Example 1364	755	C24 H30 C1 N3 O4	460	6	22
Example 1365	756	C23 H27 C1 N4 O5	475	5	18
Example 1366	757	C25 H32 C1 N3 O4	474	5	18
Exquibre 1200					

Example 1368	759	C24 H27 C1 F3 N3 O4	514	6	20
Example 1369	760	C24 H26 C1 F4 N3 O3	516	6	18
Example 1370	761	C24 H26 C1 F4 N3 O3	516	3	10
Example 1371	762	C24 H27 C1 F3 N3 O3	498	2	95
Example 1372	763	C23 H28 C1 N3 O3	430	4	95
Example 1373	764	C24 H30 Cl N3 O2	428	9	42
Example 1374	765	C25 H32 C1 N3 O2	442	10	47
Example 1375	766	C25 H29 C1 F3 N3 O2	496	10	42
Example 1376	767	C25 H32 C1 N3 O4 S	506	8	32
Example 1377	768	C24 H29 Br Cl N3 O2	506	9	35
Example 1378	769	C25 H29 C1 F3 N3 O3	512	6	22
Example 1379	770	C25 H28 Cl F4 N3 O2	514	3	10
Example 1380	771	C25 H28 C1 F4 N3 O2	514	10	37
Example 1381	772	C25 H29 Cl F3 N3 O2	496	8	33
Example 1382	773	C26 H36 C1 N3 O3	474	10	41
Example 1383	774	C23 H30 C1 N3 O2 S2	480	12	50
Example 1384	775	C27 H38 Cl N3 O3	488	14	57
Example 1385	776	C29 H34 Cl N3 O3	508	12	49
Example 1386	777	C24 H29 Cl F3 N3 O3	500	22	87
Example 1387	778	C24 H28 C12 N4 O4	507	6	22
Example 1388	779	C24 H29 C12 N3 O2	462	10	46
Example 1389	780	C24 H29 C1 N4 O4	473	15	65
Example 1390	781	C26 H31 Cl N4 O2	467	7*	20
Example 1391	782	C25 H32 C1 N3 O3	458	8*	23
Example 1392	783	C26 H34 C1 N3 O3	472	7*	19
Example 1393	784	C26 H31 Cl F3 N3 O2	510	7*	17
Example 1394	785	C26 H34 C1 N3 O4	488	6*	17
Example 1395	786	C24 H28 C1 N3 O2	426	22	9
Example 1396	787	C25 H30 C1 N3 O2	440	21	94
Example 1397	788	C25 H27 C1 F3 N3 O2	494	4*	14
Example 1398	789	C25 H30 C1 N3 O4 S	504	9	35
Example 1399	790	C24 H27 C12 N3 O2	460	5*	16
Example 1400	791	C24 H27 C1 N4 O4	471	3*	10
Example 1401	792	C25 H27 C1 F3 N3 O3	510	5*	16
Example 1402	793	C25 H26 Cl F4 N3 O2	511	5*	16
Example 1403	794	C25 H26 Cl F4 N3 O2	512	5*	16
Example 1404	795	C25 H27 C1 F3 N3 O2	494	6*	21
Example 1405	796	C23 H28 C1 N3 O2 S2	478	4*	14
Example 1406	797	C27 H36 C1 N3 O3	486	7+	29
Example 1407	798	C29 H32 C1 N3 O3	506	3	13
L	1				· ············

Example 1408	799	C24 H27 C1 F3 N3 O3	498	3*	11
Example 1409	800	C24 H26 C12 N4 O4	505	5*	15
Example 1410	801	C26 H29 C1 N4 O2	465	12	41
Example 1411	802	C25 H30 C1 N3 O3	456	5*	15
Example 1412	803	C26 H32 C1 N3 O3	470	6*	16
Example 1413	804	C26 H29 Cl F3 N3 O2	508	8*	20
Example 1414	805	C26 H32 C1 N3 O4	486	6*	15
Example 1415	806	C24 H27 Br Cl N3 O2	506	5*	14
Example 1416	807	C27 H32 Cl N5 O3	510	29.7	quant
Example 1417	808	C26 H33 Cl N4 O3	485	29.9	quant
Example 1418	809	C25 H30 C12 N4 O3	505	30.2	quant
Example 1419	810	C30 H35 Cl N4 O4	551	31.0	quant
Example 1420	811	C25 H29 C12 N5 O5	550	30.4	quant
Example 1421	812	C24 H31 Cl N4 O3 S2	523	25.0	88
Example 1422	813	C26 H30 Cl F3 N4 O3	539	20.5	70
Example 1423	814	C26 H30 Cl F3 N4 O4	555	22.7	75
Example 1424	815	C26 H29 Cl F4 N4 O3	557	25.8	85
Example 1425	816	C26 H30 Cl F3 N4 O3	539	25.3	86
Example 1426	817	C26 H29 C1 F4 N4 O3	557	26.8	88
Example 1427	818	C25 H30 Br Cl N4 O3	551	27.1	90
Example 1428	819	C27 H29 Cl F6 N4 O3	607	13.9	42
Example 1429	820	C25 H30 C1 N5 O5	516	14.1	51
Example 1430	821	C24 H28 C12 N4 O5	523	40	86
Example 1431	822	C23 H30 C1 N3 O3 S2	496	41	93
Example 1432	823	C26 H31 Cl N4 O3	483	43	quant
Example 1433	824	C27 H38 Cl N3 O4	503	37	83
Example 1434	825	C29 H34 C1 N3 O4	524	28	61
Example 1435	826	C24 H29 Cl F3 N3 O4	516	40	87
Example 1436	827	C26 H31 C1 N4 O3	483	31	72
Example 1437		C25 H29 C1 F3 N3 O4	528	40	. 86
Example 1438	829	C25 H28 C1 F4 N3 O3	530	45	97
Example 1439	830	C25 H28 C1 F4 N3 O3	530	35	74
Example 1440	831	C24 H29 Br C1 N3 O3	523	45	98
Example 1441	832	C24 H29 C12 N3 O3	478	38	91
Example 1442	833	C24 H29 C1 N4 O5	488	38	87
Example 1443	834	C25 H29 C1 F3 N3 O3	512	42	93
Example 1444	835	C24 H30 Cl N3 O3	444	43	quant
Example 1445	836	C25 H32 C1 N3 O3	458	37	91
Example 1446	837	C25 H29 C1 F3 N3 O3	512	41	91
Example 1447	838	C26 H34 C1 N3 O4	488	34	78
		<u> </u>		·	

				•	
Example 1448	839	C27 H36 Cl N3 O6	534	37	71
Example 1449	942	C27 H30 Cl F6 N3 O2	578	17	48
Example 1450	997	C26 H34 C1 N3 O2	456	7.6+	23
Example 1451	998	C27 H33 C1 F3 N3 O2	524	6	15
Example 1452	999	C27 H36 C1 N3 O2	470	8	24
Example 1453	1000	C27 H36 C1 N3 O3	486	9	24
Example 1454	1001	C28 H38 C1 N3 O3	500	4	10
Example 1455	1002	C27 H33 C1 F3 N3 O3	540	9	23
Example 1456	1003	C28 H38 C1 N3 O2	484	7	21
Example 1457	1004	C28 H38 Cl N3 O4	516	11	30
Example 1458	1005	C29 H40 Cl N3 O5	547	9	23
Example 1459	1006	C30 H42 Cl N3 O4	544	8	21
Example 1460	1007	C32 H46 C1 N3 O5	589	7	17
Example 1461	1008	C25 H31 C1 N4 O3	471	25	79
Example 1462	1009	C26 H33 Cl N4 O4	501	35	97
Example 1463	1010	C27 H35 Cl N4 O4	515	35	9
Example 1464	1011	C27 H35 C1 N4 O3	499	32	54
Example 1465	1012	C27 H35 C1 N4 O5	531	27	77
Example 1466	1013	C28 H37 C1 N4 O6	561	14	37
Example 1467	1014	C29 H39 C1 N4 O5	559	24	66
Example 1468	1015	C31 H43 C1 N4 O6	603	25	65
Example 1469	1018	C26 H34 C1 N3 O4	488	13.0*	39
Example 1470	1019	C28 H38 C1 N3 O5	532	13.4*	37
Example 1471	1020	C25 H32 C1 N3 O4	474	12.7*	40
Example 1472	1021	C26 H28 C1 F6 N3 O4	596	13.8*	34
Example 1473	1022	C25 H32 C1 N3 O4	474	14.2*	37
Example 1474	1023	C25 H32 C1 N3 O2	442	11.5*	32
Example 1475	1024	C26 H34 Cl N3 O5	504	12.0*	30
Example 1476	1025	C27 H36 Cl N3 O4	502	14.7*	37
Example 1477	1026	C29 H40 Cl N3 O5	546	13.5*	32
Example 1478	1027	C26 H34 Cl N3 O4	488	11.9*	31
Example 1479	1028	C27 H30 Cl F6 N3 O4	610	14.6*	31
Example 1480	1029	C25 H32 C1 N3 O3	458	14.0*	38
Example 1481	1030	C24 H27 C1 F3 N3 O3	498	14.0*	35
Example 1482	1031	C24 H30 Cl N3 O3	444	10.4*	29
Example 1483	1032	C25 H32 C1 N3 O4	474	14.9*	39
Example 1484	1033	C25 H32 C1 N3 O2	442	13.3*	37
Example 1485	1034	C26 H34 C1 N3 O5	504	13.7*	34
Example 1486	1035	C27 H36 C1 N3 O4	502	16.7*	42
Example 148	7 1036	C29 H40 C1 N3 O5	547	15.5*	36
	. I				

1077	C31 H33 C1 F3 N3 O3	588	35.8	84
1078	C30 H34 C1 N3 O3			93
1079	C31 H36 C1 N3 O3	534	38.4	quant
1080	C32 H38 C1 N3 O4	564	39.3	97
1081	C33 H40 Cl N3 O6	610	45.5	quant
1082	C28 H36 C1 N3 O3	498	4.1*	10
1083	C28 H36 C1 N3 O3	498	6.4*	16
1125	C30 H32 C12 N4 O5	599	3.4*	8
1126	C30 H32 Br Cl N4 O5	644	3.4*	7
1127	C32 H35 C1 N4 O3	559	1.6*	4
1128	C31 H32 Cl F4 N3 O3	606	4.3*	10
1129	C31 H32 C1 F4 N3 O3	606	5.9*	14
1130	C30 H33 Br Cl N3 O3	599	5.7*	13
1131	C30 H33 C12 N3 O3	554	6.4*	16
1132	C31 H33 C1 F3 N3 O3	588	6.3*	15
1167	C27 H34 C1 N3 O3	484	1.8*	4
	1080 1081 1082 1083 1125 1126 1127 1128 1129 1130 1131	1078	1078 C30 H34 C1 N3 O3 520 1079 C31 H36 C1 N3 O3 534 1080 C32 H38 C1 N3 O4 564 1081 C33 H40 C1 N3 O6 610 1082 C28 H36 C1 N3 O3 498 1083 C28 H36 C1 N3 O3 498 1125 C30 H32 C12 N4 O5 599 1126 C30 H32 Br C1 N4 O5 644 1127 C32 H35 C1 N4 O3 559 1128 C31 H32 C1 F4 N3 O3 606 1129 C31 H32 C1 F4 N3 O3 606 1130 C30 H33 Br C1 N3 O3 599 1131 C30 H33 C12 N3 O3 554 1132 C31 H33 C1 F3 N3 O3 588	1078 C30 H34 C1 N3 O3 520 34.7 1079 C31 H36 C1 N3 O3 534 38.4 1080 C32 H38 C1 N3 O4 564 39.3 1081 C33 H40 C1 N3 O6 610 45.5 1082 C28 H36 C1 N3 O3 498 4.1* 1083 C28 H36 C1 N3 O3 498 6.4* 1125 C30 H32 C12 N4 O5 599 3.4* 1126 C30 H32 Br C1 N4 O5 644 3.4* 1127 C32 H35 C1 N4 O3 559 1.6* 1128 C31 H32 C1 F4 N3 O3 606 4.3* 1129 C31 H32 C1 F4 N3 O3 606 5.9* 1130 C30 H33 Br C1 N3 O3 554 6.4* 1131 C30 H33 C12 N3 O3 588 6.3*

^{*}Yield of TFA salt.

5

10

20

Example 1544: Preparation of 1-(4-Chlorobenzyl)-4-[{N-(3,5-bis(trifluoromethyl)benzoyl)glycyl}aminomethyl]piperidine (Compound No. 1213).

bis(trifluoromethyl)benzoyl)glycyl)aminomethyl]piperidine (Compound No. 1213) (24.0 mg, 90%): The purity was determined by RPLC/MS (100%); ESI/MS m/e 536.2 (M'+H, $C_{24}H_{24}ClF_6N_3O_2$).

Examples 1545-1547.

The compounds of this invention were synthesized pursuant to methods of Example 1544 using the corresponding reactant respectively. The ESI/MS data and yields are summarized in Table 28.

Table 28

	Compound No.	Molecular Formula	ESI/MS m/e	Yield (mg)	Yield (%)
Example 1545	1214	C23 H24 Cl F4 N3 O3	486.2	22.2	91
Example 1546	1215	C22 H24 C13 N3 O2	467.9	20.9	89
Example 1547	1216	C22 H24 C1 F2 N3 O2	436.0	19.3	89

Example 1548: Preparation of 4-[(N-(3-Bromo-4-methylbenzoyl)glycyl)aminomethyl]-1-(4-chlorobenzyl) piperidine (Compound No. 1113).

A solution of 1-(4-chlorobenzyl)-4-{(glycylamino)methyl)piperidine (0.050 mmol) in CHCl₃ (1.35 mL) and tert-butanol (0.15 mL) was treated with 3-bromo-4-methylbenzoic acid (0.060 mmol), diisopropylcarbodiimide (0.060 mmol), and HOBt (0.060 mmol). The reaction mixture was stirred at room temperature for 15 h. The mixture was loaded onto VarianTM SCX column, and washed with CH₃OH/CHCl₃ 1:1 (12 mL) and CH₃OH (12 mL). Product was eluted off using 2 N NH₃ in CH₃OH (5 mL) and concentrated to afford 4-[(N-(3-bromo-4-methylbenzoyl)glycyl)aminomethyl]-1-(4-chlorobenzyl) piperidine (Compound No. 1113) <math>(16.1 mg, 65%): The purity was determined by RPLC/MS (95%); ESI/MS m/e $494.0 (C_{23}H_{27}BrClN_3O_2)$.

Examples 1549-1619.

The compounds of this invention were synthesized pursuant to methods of Example 1548 using the corresponding reactant respectively. Preparative TLC, if needed, afforded the desired material. The ESI/MS data and yields are summarized in Table 29.

Compound No. 1422 was obtained as byproduct of Compound No. 1418: 5.6 mg, 25% yield; ESI/MS m/e 447.2 ($C_{22}H_{27}ClN_4O_2S$).

Table 29

	Compound No.	Molecular Formula	ESI/MS m/e	Yield (mg)	Yield (%)
Example 1549	1114	C ₂₂ H ₂₄ BrClFN ₃ O ₂	498.0	20.2	81
Example 1550	1115	C ₂₂ H ₂₄ Cl ₂ FN ₃ O ₂	452.2	18.6	82
Example 1551	1116	C23H27ClIN;O2	539.1	21.9	81
Example 1552	1117	C ₂₃ H ₂ -ClN ₄ O;	459.2	18.7	81

5

10

15

Example 1553	1187	C ₂₃ H ₂₇ BrClN ₃ O ₂	494.0	22.1	90
Example 1554	1188	C ₂₄ H ₂₇ ClN ₄ O ₃	455.2	17.2	76
Example 1555	1189	C ₂₅ H ₂₉ ClN ₄ O ₃	469.2	21.1	90
Example 1556	1190	C22H26C1FN4O2	433.2	20.4	94
Example 1557	1241	C ₂₃ H ₂₄ Cl ₂ F ₃ N ₃ O ₂	502.0	22.5	90
Example 1558	1242	C ₂₃ H ₂₇ C1FN ₃ O ₂	432.2	21.2	98
Example 1559	1243	C ₂₃ H ₂₇ Cl ₂ N ₃ O ₂	448.0	21.6	96
Example 1560	1244	C22H26ClIN4O2	541.0	26.4	98
Example 1561	1245	C ₂₂ H ₂₅ C1F ₂ N ₄ O ₂	451.0	21.3	94
Example 1562	1246	C ₂₁ H ₂₇ ClN ₄ O ₂	403.2	19.4	96
Example 1563	1247	C ₂₈ H ₃₀ ClN ₃ O ₂ S	524.0	24.7	94
Example 1564	1248	C ₂₂ H ₂₅ ClN ₄ O ₅	461.0	20.7	90
Example 1565	1282	C ₂₅ H ₂₆ ClF ₃ N ₄ O ₃	523.2	25.0	96
Example 1566	1283	C ₂₃ H ₂₇ Cl ₂ N ₃ O ₃	464.2	12.2	53
Example 1567	1284	C ₂₂ H ₂₅ BrClN ₃ O ₃	496.0	24.1	97
Example 1568	1285	C ₂₂ H ₂₅ Cl ₂ N ₅ O ₅	450.2	21.8	97
Example 1569	1342	C ₂₂ H ₂₄ BrCl ₂ N ₃ O ₂	514.0	27.2	quant
Example 1570	1343	C ₂₃ H ₂₇ Cl ₂ N ₃ O ₂	448.0	21.4	95
Example 1571	1344	C22H24Cl2IN3O2	560.0	27.0	96
Example 1572	1345	C23H28C1N3O2	430.2	23.8	quant
Example 1573	1346	C22H25ClIN3O3	542.0	29.4	quant
Example 1574	1350	$C_{21}H_{26}ClN_3O_2S$	420.0	13.0	62
Example 1575	1354	C24H28BrClN4O3	537.2	5.2	19
Example 1576	1358	C23H26C1N5O2	440.2	21.8	99
Example 1577	1383	C ₂₃ H ₂₄ Cl ₂ F ₃ N ₃ O ₂	502.0	20.0	80
Example 1578	1384	C20H23BrClN3O2S	486.0	21.0	87
Example 1579	1385	C28H30ClN3O4S	540.2	23.8	88
Example 1580	1386	C28H30ClN3O2	476.0	20.0	84
Example 1581	1414	C24H28Cl2N4O3	491.0	0.8	3
Example 1582	1418	C ₂₃ H ₂₆ ClN ₅ O ₂ S	472.0	10.4	4.4
Example 1583	1436	C29 H30 C1 N3 O3	504.2	26.8	quant
Example 1584	1600	C23 H26 Cl F3 N4 O2	483.2	16.5	68
Example 1585	1601	C23 H26 C1 F3 N4 O3	499.0	20.0	80
Example 1586	1602	C21 H24 Br Cl N4 O2	481.0	18.1	75
Example 1587	1603	C21 H24 C12 N4 O2	435.0	5.5	25
Example 1588	1604	C27 H30 C1 N3 O3	492.0	18.6	76
Example 1589	1605	C21 H27 C1 N4 O2	415.2	18.1	87
Example 1590	1609	C23 H25 N3 O2 S	500.0	18.3	73
Example 1591	1659	C22 H26 C12 N4 O2	449.0	366.0	83
Example 1592	1664	C24 H29 F3 N4 O2 S	495.2	13.7	55
L	I			J	<u></u>

Example 1593	1665	C24 H29 F3 N4 O3 S	511.2	14.9	58
		C21 1125 13 117 00 0		14.5	30
Example 1594	1666	C23 H28 F2 N4 O2 S	463.2	12.9	56
Example 1595	1667	C22 H27 Br2 N3 O3	542	26.1	96
Example 1596	1668	C24 H30 F2 N4 O2	445	22.9	quant
Example 1597	1669	C24 H31 F N4 O2	427	24.0	quant
Example 1598	1670	C24 H31 I N4 O2	535	28.1	quant
Example 1599	1671	C25 H31 F3 N4 O3	493	26.8	quant
Example 1600	1672	C25 H31 F3 N4 O2	478	24.7	quant
Example 1601	1673	C24 H29 Br Cl N3 O2	508	24.9	98
Example 1602	1674	C20 H22 Br2 F N3 O3	532	25.6	96
Example 1603	1675	C22 H25 F3 N4 O2	435	21.5	99
Example 1604	1676	C22 H26 F2 N4 O2	417	21.4	quant
Example 1605	1677	C22 H26 Br F N4 O2	479	23.4	98
Example 1606	1678	C22 H26 F I N4 O2	525	27.4	quant
Example 1607	1679	C22 H26 Cl F N4 O2	433	22.4	quant
Example 1608	1680	C23 H26 F4 N4 O3	483	25.5	quant
Example 1609	1681	C23 H26 F4 N4 O2	467	23.2	99
Example 1610	1682	C23 H26 Br Cl F N3 O	498	24.2	98
Example 1611	1683	C27 H28 Br2 N4 O4	633	31.8	quant
Example 1612	1684	C29 H31 F2 N5 O3	536	28.3	quant
Example 1613	1685	C29 H32 F N5 O3	518	31.1	quant
Example 1614	1686	C29 H32 Br N5 O3	578	29.6	quant
Example 1615	1687	C29 H32 I N5 O3	626	32.4	quant
Example 1616	1688	C29 H32 Cl N5 O3	534	28.2	quant
Example 1617	1689	C30 H32 F3 N5 O4	584	31.7	quant
Example 1618	1690	C30 H32 F3 N5 O3	568	30.6	quant
Example 1619	1691	C29 H30 Br Cl N4 O3	599	31.4	quant

For example, Compound 1245 and 1600 showed the following NMR spectra. Compound No. 1245: 1 H NMR (270 MHz, CDCl₃) δ 1.20-1.97 (m, 7 H), 2.80-2.86 (m, 2 H), 3.19 (t, J = 6.5 Hz, 2 H), 3.43 (s, 2 H), 4.02 (d, J = 5.3 Hz, 2 H), 5.52 (br s, 2 H), 6.44 (d, J = 11.9, 6.6 Hz, 1 H), 7.02 (br s, 1 H), 7.21-7.32 (m, 5 H).

Compound No. 1600: 1 H NMR (270 MHz, CDCl₃) δ 1.25-1.97 (m, 9 H), 2.82-2.87 (m, 2 H), 3.21 (t, J = 6.5 Hz, 2 H), 3.44 (s, 2 H), 4.06 (d, J = 5.1 Hz, 2 H), 5.98 (br s, 1 H), 6.71 (d, J = 8.3 Hz, 1 H), 6.87 (br s, 1 H), 7.26 (s, 4 H), 7.43 (dd, J = 5.9 Hz, 1 H), 7.64 (s, 1 H).

Example 1620: Preparation of 1-(4-Chlorobenzyl)-4-[{N-(4-

isopropylphenylsulfonyl)glycyl)aminomethyl]piperidine (Compound No. 869).

A solution of 1-(4-chlorobenzyl)-4-((glycylamino)methyl)piperidine (2 mL) treated with CHCl3 mmol) in 0.05 (14.8 4-(piperidinomethyl)polystyrene (28 2.8 mmol/q), resin mg, isopropylbenzenesulfonyl chloride (1.5 equiv.) and stirred at 25 °C for 16 h. (Aminomethyl)polystyrene was added to scavenge the residual sulfonyl chloride and the reaction mixture was stirred at 25 °C for 16 h. Filtration and afforded 1-(4-chlorobenzyl)-4-[{(4concentration isopropylphenylsulfonyl)glycyl)aminomethyl]piperidine (compound No. 869) (22.1 mg, 92%): The purity was determined by RPLC/MS (86%); ESI/MS m/e 478 ($M^{+}H$, $C_{24}H_{32}ClN_5O_3S)$.

Examples 1621-1627.

The compounds of this invention were synthesized pursuant to methods of Example 1620 using the corresponding reactant respectively. The ESI/MS data and yields are summarized in Table 30.

Table 30

	Compound No.	Мс	lecu	ılar	F	rmi	ıla		ESI/MS m/e	Yield (mg)	Yield (%)
Example 1621	865	C22	H28	Cl	N3	03	S		450	16.2	72
Example 1622	866	C22	H25	Cl	F3	N3	03	S	504	8.8	35
Example 1623	867	C23	H24	Cl	F6	И3	03	S	572	8.0	28
Example 1624	868	C23	Н30	Cl	N3	03	S		464	9.6	41
Example 1625	870	C22	H28	Cl	ΝЗ	03	S		450	8.8	39
Example 1626		C25	Н34	Cl	N3	03	S		492	11.1	45
Example 1627		C21	H26	Cl	N3	03	S		436	9.6	44

20

10

Example 1628: Preparation of 1-(4-Chlorobenzyl)-4-[{2-(3-(4-trifluoromethylphenyl)ureido}acetylamino}methyl]piperidine (Compound No. 852).

A solution of 1-(4-chlorobenzyl)-4-{(glycylamino)methyl)piperidine mL) treated with CHC1: (2 was mmol) in 25 0.05 (14.8)mq, (28 2.8 mmol/g), (piperidinomethyl)polystyrene mg, resin (trifluoromethyl)phenyl isocyanate (1.3 equiv.) and stirred at 25 °C for 16 h. (Aminomethyl) polystyrene was added to scavenge the residual isocyanate and the reaction mixture was stirred at 25 °C for 16 h. Filtration and concentration

afforded

1-(4-chlorobenzyl)-4-[(2-(3-(4-

trifluoromethylphenyl)ureido)acetylamino)methyl)piperidine (19 mg, 78%) (compound No. **852**): The purity was determined by RPLC/MS (92%); ESI/MS m/e 483 (M*+H, $C_{23}H_{26}C1F_3N_4O_3$).

5

Examples 1629-1641.

The compounds of this invention were synthesized pursuant to methods of Example 1628 using the corresponding reactant respectively. The ESI/MS data and yields are summarized in Table 31.

10

Table 31

	Compound No.	Molecular Formula	ESI/MS m/e	Yield (mg)	Yield (%)
Example 1629	851	C23 H26 C1 F3 N4 O2	483	13.2	55
Example 1630	853	C22 H27 Cl N4 O2	416	8.5*	32
Example 1631	854	C23 H29 Cl N4 O2	429	11.4*	42
Example 1632	855	C23 H29 Cl N4 O2	429	10.1*	37
Example 1633	856	C24 H29 Cl N4 O3	457	10.3*	36
Example 1634	857	C23 H29 Cl N4 O3	445	10.9*	39
Example 1635	858	C23 H29 Cl N4 O3	445	8.6*	31
Example 1636	859	C22 H26 C12 N4 O2	449	11.0*	39
Example 1637	860	C23 H26 C1 N5 O2	440	9.2*	33
Example 1638	861	C22 H27 C1 N4 O S	431	13.3	62
Example 1639	862	C23 H29 C1 N4 O S	445	15.3	69
Example 1640	863	C23 H29 C1 N4 O2 S	461	14.7	64
Example 1641	864	C23 H29 Cl N4 O2 S	461	13.1	57

^{*}Yield of TFA salt.

Example 1642: Preparation of 1-(4-Chlorobenzyl)-4-[{N-(3-ethoxybenzoyl)-D-phenylalanyl)aminomethyl]piperidine (Compound No. 2091).

A solution of 1-(4-chlorobenzyl)-4-(aminomethyl)piperidine (100 mg) in CHCl; (3 mL) was treated with Et₃N (0.090 mL), N-(tert-butoxycarbonyl)-p-phenylalanine (122 mg), EDCI (89 mg) and HOBt (62 mg). The reaction mixture was stirred at room temperature for 17 h. The reaction mixture was washed with 1 N aqueous NaOH solution (2 mL x 2) and brine (2 mL). The organic layer was dried and concentrated to afford 1-(4-chlorobenzyl)-4-[(N-(tert-butoxycarbonyl)-p-phenylalanyl)aminomethyl]piperidine.

The resulting 1-(4-chlorobenzyl)-4-[(N-(tert-butoxycarbonyl)-c-

15

phenylalanyl)aminomethyl)piperidine was dissolved in methanol (5 mL) and 4 N $\,$ HCl in dioxane (1.5 mL) was added. The solution was stirred at room temperature for 19 h and concentrated.

A solution of the resulting material and 3-ethoxybenzoic acid (80 mg, 0.48 mmol) in CHCl₃ (1 mL) was treated with Et₃N (0.090 mL), EDCI (90 mg) and HOBt (68 mg). The reaction mixture was stirred at room temperature for 11 h. The reaction mixture was washed with 1 N aqueous NaOH solution (1.5 mL x 2) and brine (1.5 mL). The organic layer was dried and concentrated. Column chromatography (SiO₂, CH₂Cl₂/MeOH = 95 : 5) afforded 1-(4-chlorobenzyl)-4-[(N-(3-ethoxybenzoyl)-D-phenylalanyl)aminomethyl]piperidine (Compound No. 2091) (183.5 mg, 82%): The purity was determined by RPLC/MS (99%); ESI/MS m/e 534.0 (M+H, C₃₁H₃₆ClN₃O₃).

Examples 1643-1657.

The compounds of this invention were synthesized pursuant to methods of Example 1642 using the corresponding reactant respectively. The ESI/MS data and yields are summarized in Table 32.

Table 32

20

15

10

	Compound No.	Molecular Formula	ESI/MS m/e	Yield (mg)	
Example 1643	2092	C33 H37 C1 N4 O3	572.8	152.9	64
Example 1644	2093	C27 H36 C1 N3 O3 S	518.0	177.4	82
Example 1645	2094	C29 H34 Cl N3 O3 S	539.9	164.4	73
Example 1646	2095	C28 H38 Cl N3 O3	500.0	139.1	66
Example 1647	2096	C31 H42 C1 N3 O3	540.0	161.7	71
Example 1648		C27 H36 Cl N3 O3	485.8	157.8	78
Example 1649		C31 H35 Cl2 N3 O3	567.9	172.2	72
Example 1650	L	C30 H34 Cl N3 O3	519.8	144.7	66
Example 1651	l	C32 H38 Cl N3 O4	564.0	181.5	77
Example 1652		C38 H42 C1 N3 O4	639.9	192.3	72
Example 1653	1	C33 H40 C1 N3 O4	577.8	159.9	66
Example 1654		C28 H36 C1 N3 O5	530.1	99.7	45
Example 1655	<u> </u>	C27 H36 C1 N3 O3	486.2	122.9	60
Example 1656		C28 H38 C1 N3 O3	500.1	118.3	57
Example 1657		C28 H34 C1 N5 O3	524.1	98.3	45

Reference Example 29: Preparation of 1-(tert-Butoxycarbonyl)-4-[{N-

(3-(trifluoromethyl)benzoyl)glycyl)aminomethyl]piperidine.

N-(3-(Trifluoromethyl)benzoyl)glycine (4.22 g, 17.0 mmol), EDCI (4.25)g, 22.1 mmol), 1-hydroxybenzotriazole hydrate (2.99 g, 22.1 mmol) and Et₃N (1.72 of 1-(tert-butoxycarbonyl)-4solution added (aminomethyl)piperidine (4.03 g) in dry CH_2Cl_2 (200 mL). The reaction mixture 5 was stirred at 25 $^{\circ}$ C for 20 h. $\mathrm{H}_2\mathrm{O}$ (100 mL) was added to the reaction mixture and the mixture was extracted with CH_2Cl_2 (2 x 50 mL). The combined extracts were washed with H_2O (2 x 50 mL), brine (50 mL) and dried (MgSO₄). The solvent was removed under reduced pressure to afford an yellow oil which was purified by column chromatography (SiO2, 70% EtOAc-hexane) to give 1-(tert-10 butoxycarbonyl)-4-[{N-(3-(trifluoromethyl)benzoyl)glycyl)aminomethyl]piperidine as a white solid (6.39 q, 85%): $^{1}H-NMR$ (CDCl₃, 300 MHz) δ 1.4 (s, 9 H), 1.0-1.8 (m, 5 H), 2.6-2.8 (m, 2 H), 3.15-3.3 (m, 2 H), 4.0-4.3 (m, 4 H), 6.6-6.7 (m, 1H), 7.64 (s, 1 H), 7.60 (dd, 1 H, J = 7.2, 7.2 Hz), 7.79 (d, 1 H, J = 7.2 Hz), 8.0 (d, 1 H, J = 7.2 Hz),15 8.11 (s, 1 H); The purity was determined by RPLC/MS (97%); ESI/MS m/e 444.3 (M+H, $C_{21}H_{28}F_3N_3O_4$).

Reference Example 30: Preparation of 4-[{N-(3-(Trifluoromethyl)benzoyl)glycyl}aminomethyl]piperidine.

1-(tert-butoxycarbonyl)-4-[{N-(3-Ωf solution (trifluoromethyl)benzoyl)glycyl}aminomethyl]piperidine (2.29 g, 5.16 mmol) in CH_3OH (40 mL) was treated with 1 N $HCl-Et_2O$ (55 mL). The reaction mixture was stirred at 25 °C for 15 h and the solvent was removed under reduced pressure. 2 N aqueous NaOH solution (100 mL) was added to the reaction mixture and the 25 mixture was extracted with EtOAc (3 x 100 mL). The combined extracts were washed with brine and dried (K2CO3). The solvent was removed under reduced pressure to afford a white solid which was purified by column chromatography (SiO2, give $4 - [\{N - (3 - 1)\}]$ 7/6/1)) CH3OH/CH2Cl2/Et3N (trifluoromethyl)benzoyl)glycyl)aminomethyl]piperidine as a white solid (1.27 30 g, 72%): The purity was determined by RPLC/MS (98%); ESI/MS m/e 344.1 (M'+H, $C_{16}H_{20}F_3N_3O_4$).

Example 1658: Preparation of 1-{3-(Trifluoromethoxy)benzyl}-4-[{N-35 (3-(trifluoromethyl)benzoyl)glycyl}aminomethyl]piperidine (Compound No. 927).

A solution of 4-[{N-(3-(trifluoromethyl)benzoyl)glycyl}aminomethyl]piperidine (19.9 mg, 0.058 mmol) in CH₃CN (1.0 mL) and (piperidinomethyl)polystyrene (55 mg, 2.7 mmol base/g resin)

were added to a solution of 3-(trifluoromethoxy) benzyl bromide (12.3 mg, 0.048 mmol) in CH₃CN (1.0 mL). The reaction mixture was stirred at 60 °C for 2.5 h. Phenyl isocyanate (6.9 mg, 0.048 mmol) was added to the cooled reaction mixture and the mixture was stirred at 25 °C for 1 h. The reaction mixture was loaded onto VarianTM SCX column and washed with CH₃OH (20 mL). Product was eluted off using 2 N NH₃ in CH₃OH (6 mL) and concentrated to afford 1-{3-(trifluoromethoxy)benzyl}-4-[{N-(3-(trifluoromethyl)benzoyl)glycyl}aminomethyl]piperidine (compound No. 927)

(trifluoromethyl)benzoyl)glycyl}aminomethyl]piperidine (compound No. 927) (22.8 mg, 91%) as a pale yellow oil: The purity was determined by RPLC/MS (99%); ESI/MS m/e 518.1 (M^{\dagger} +H, $C_{24}H_{25}F_{6}N_{3}O_{3}$).

Examples 1659-1710.

10

15

The compounds of this invention were synthesized pursuant to methods of Example 1658 using the corresponding reactant respectively. The ESI/MS data and yields are summarized in Table 33.

Table 33

	Compound No.	Molecular Formula	ESI/MS m/e	Yield (mg)	Yield (%)
Example 1659	875	C23 H26 F3 N3 O2	434	6.3	40
Example 1660	876	C23 H25 Br F3 N3 O2	512	4.3	23
Example 1661	877	C24 H25 F3 N4 O2	459	11.3	68
Example 1662	878	C23 H25 F3 N4 O4	479	8.3	48
Example 1663	884	C25 H29 F3 N4 O3	491	10.8	61
Example 1664	885	C24 H28 F3 N3 O4 S	512	9.0	49
Example 1665	886	C23 H25 F4 N3 O2	452	12.7	78
Example 1666	887	C24 H25 F6 N3 O2	502	13.9	77
Example 1667	888	C23 H26 F3 N3 O3	450	11.5	71
Example 1668	889	C29 H30 F3 N3 O2	510	12.4	68
Example 1669	890	C27 H28 F3 N3 O2	484	12.0	69
Example 1670		C23 H24 C12 F3 N3 O2	502	11.4	63
Example 1671	1	C24 H28 F3 N3 O3	464	11.7	70
Example 1672	893	C24 H26 F3 N5 O5	522	13.9	74
Example 1673		C26 H32 F3 N3 O3	492	11.3	64
Example 1674	<u> </u>	C24 H28 F3 N3 O2	448	4.8	30
Example 1675		C24 H25 F3 N4 O2	459	17.5	quant
Example 1676		C24 H26 F3 N3 O4	478	9.2	57
Example 167		C24 H26 F3 N3 O4	478	8.9	55

Example 1678	899	C24 H28 F3 N3 O3	464	13.7	82
Example 1679	900	C25 H28 F3 N3 O4	492	18.6	quant
Example 1680	901	C29 H30 F3 N3 O2	510	13.7	75
Example 1681	902	C23 H24 F3 N5 O6	524	12.6	67
Example 1682	903	C25 H30 F3 N3 O4	494	14.0	79
Example 1683	906	C25 H30 F3 N3 O2	462	11.2	67
Example 1684	907	C31 H34 F3 N3 O2	538	19.6	75
Example 1685	908	C30 H31 F3 N4 O3	553	30.4	76
Example 1686	909	C30 H31 F3 N4 O3	553	12.6	63
Example 1687	910	C23 H24 C12 F3 N3 O2	502	11.0	61
Example 1688	911	C23 H25 Cl F3 N3 O2	468	20.2	89
Example 1689	912	C23 H24 Br2 F3 N3 O2	590	20.2	95
Example 1690	913	C24 H28 F3 N3 O3	464	12.6	76
Example 1691	914	C30 H32 F3 N3 O3	540	13.9	72
Example 1692	915	C24 H28 F3 N3 O3	464	8.3	25
Example 1693	916	C22 H25 F3 N4 O2	435	2.5	8
Example 1694	917	C22 H25 F3 N4 O2	435	2.7	9
Example 1695	918	C26 H30 F3 N3 O4	506	3.9	22
Example 1696	919	C24 H28 F3 N3 O2	448	15.9	99
Example 1697	920	C24 H25 F6 N3 O3	518	20.3	81
Example 1698	921	C27 H28 F3 N3 O2	484	15.5	89
Example 1699	·	C20 H26 F3 N3 O2	398	7.3	51
Example 1700	923	C29 H29 C1 F3 N3 O2	544	12.5	48
Example 1701	928	C24 H25 F6 N3 O3	518	21.4	86
Example 1702		C24 H28 F3 N3 O2 S	480	23.7	quant
Example 1703	1	C24 H28 F3 N3 O2	448	21.3	99
Example 1704		C24 H25 F3 N4 O2	459	21.4	97
Example 1705	·	C23 H24 Cl F3 N4 O4	513	15.6	63
Example 1706		C24 H28 F3 N3 O2	448	16.6	77
Example 1707	934	C22 H25 F3 N4 O2	435	18.0	43
Example 1708	935	C23 H25 F3 N4 O4	479	15.1	65
Example 1709	936	C23 H25 F3 N4 O4	479	15.4	67
Example 1710	1615	C24 H25 F6 N3 O2 S	534.2	26.3	99

Example 1711: Preparation of $1-\{4-(Dimethylamino)benzyl\}-4-\{N-(3-(trifluoromethyl)benzoyl)glycyl\}$ aminomethyl]piperidine (Compound No. 937).

A solution of $4-[{N-(3-$

(trifluoromethyl)benzoyl)glycyl}aminomethyl]piperidine (20.0 mg, 0.058 mmol) in CH_3OH (1.0 mL) and $NaBH_3CN$ (16.5 mg) were added to a solution of 4-

(dimethylamino)benzaldehyde (30.4 mg, 0.204 mmol) in 5 $^{\circ}$ CH₃COOH/CH₃OH (1.0 mL). The reaction mixture was stirred at 60 $^{\circ}$ C for 19 h. The solvent was evaporated to afford a solid. CH₃CN (2.0 mL) and phenyl isocyanate (6.9 mg, 0.048 mmol) were added to the solid and the mixture was stirred at 25 $^{\circ}$ C for 1 h. The reaction mixture was loaded onto VarianTH SCX column and washed with CH₃OH (20 mL). Product was eluted using 2 N NH₃-CH₃OH (6 mL) and the eluant was concentrated to afford 1-(4-(dimethylamino)benzyl)-4-[{N-(3-

(trifluoromethyl)benzoyl)glycyl)aminomethyl]piperidine (compound No. 937) as a pale yellow oil (13.5 mg, 49%): The purity was determined by RPLC/MS ($\acute{8}7\%$); ESI/MS m/e 477.3 (\acute{M}^+ +H, $C_{25}H_{31}F_3N_4O_2$).

Examples 1712-1729.

5

10

15

The compounds of this invention were synthesized pursuant to methods of Example 1711 using the corresponding reactant respectively. Preparative TLC (SiO_2) , if needed, afforded the desired material. The ESI/MS data and yields are summarized in Table 34.

Table 34

	Compound No.	Molecular Formula	ESI/MS m/e	Yield (mg)	Yield (%)
Example 1712	879	C24 H26 F3 N3 O4	478	13.0	62
Example 1713	880	C24 H26 F3 N3 O4	478	16.3	78
Example 1714	881	C23 H25 Br F3 N3 O2	512	11.4	51
Example 1715	882	C29 H30 F3 N3 O3	526	13.4	58
Example 1716	883	C23 H25 C1 F3 N3 O2	468	7.9	39
Example 1717	904	C23 H26 F3 N3 O3	450	3.3	17
Example 1718	905	C21 H23 F3 N4 O4 S	485	27.7	98
Example 1719	938	C23 H24 Cl F4 N3 O2	486	8.6	30
Example 1720	939	C23 H24 Cl F3 N4 O4	513	11.0	37
Example 1721	940	C23 H26 F3 N3 O3	450	5.5	21
Example 1722	941	C24 H24 Cl F6 N3 O2	536	11.2	36
Example 1723	987	C30 H32 F3 N3 O2	524	17.5	76
Example 1724	1449	C25 H30 F3 N3 O2	462	21.6	80
Example 1725	1450	C26 H32 F3 N3 O2	476	23.5	85
Example 1726	1452	C27 H35 F3 N4 O2	505	5.1	17
Example 1727	1453	C26 H32 F3 N3 O3	492	22.0	77
Example 1728	1454	C25 H30 F3 N3 O3	478	21.4	77
Example 1729	1456	C25 H28 F3 N3 O4	492	23.8	83

Example 1730: Preparation of 1-(3-Hydroxy-4-methoxybenzyl)-4-[(N-(3-(trifluoromethyl)benzoyl)glycyl)aminomethyl]piperidine (Compound No. 1452).

To a solution of $4-[\{N-(3-(1)^2 + 1)\}]$ (trifluoromethyl) benzoyl) glycyl) aminomethyl] piperidine (20.0 mg, 0.058 mmol) and 3-hydroxy-4-methoxybenzaldehyde (33 mg) in 5 % CH₃COOH/CH₃OH (1.0 mL) was added NaBH₃CN (16.5 mg) in 5 % CH₃COOH/CH₃OH (1.0 mL). The reaction mixture was stirred at 60 °C for 15 h. The reaction mixture was loaded onto VarianTM SCX column and washed with CH₃OH (15 mL). Product was eluted using 2 N NH₃-CH₃OH (5 mL) and the eluant was concentrated to afford 1-(3-hydroxy-4-methoxybenzyl)-4-[$\{N-(3-(1)^2 + 1)\}$ (25.8 mg, 92%): The purity was determined by RPLC/MS (91%); ESI/MS m/e 480 (M*+H, C₂₄H₂₈F₃N₃O₄).

15 Examples 1731-1733.

5

10

The compounds of this invention were synthesized pursuant to methods of Example 1730 using the corresponding reactant respectively. The ESI/MS data and yields are summarized in Table 35.

20 Table 35

	Compound No.	Molecular Formula	ESI/MS m/e	Yield (mg)	Yield (%)
Example 1731	1455	C24 H28 F3 N3 O4	480	24.0	86
Example 1732	1647	C27 H34 F3 N3 O2	490.2	23.6	96
Example 1733		C26 H32 F3 N3 O2	476.2	23.1	97

Example 1734: Preparation of 1-(4-Benzylbenzyl)-4-[{N-(3-(4-Benzylbenzyl))-4-[{N-(3-(4-Benzylbenzyl))}] Example 1734: Preparation of 1-(4-Benzylbenzyl)-4-[{N-(3-(4-Benzylbenzyl))}] example 1734: Preparation of 1-(4-Benzylbenzy

A solution of methanesulfonyl chloride (4.2 mg, 0.037 mmol) in CHCl $_3$ (1.0 mL) and (piperidinomethyl)polystyrene (54 mg, 2.7 mmol base/g resin) were added to a solution of 4-(benzyl)benzyl alcohol (8.7 mg, 0.044 mmol) in CHCl $_1$ (1.0 mL). The reaction mixture was stirred at 25 °C for 15 h. A solution of 4-[(N-(3-(trifluoromethyl)benzoyl)glycyl)aminomethyl]piperidine (15.1 mg, 0.044 mmol) in CH $_3$ CN (1.0 mL) and KI (2 mg) were added to the reaction mixture and the mixture was stirred at 65 °C for 5 h. Phenyl isocyanate (5.2 mg) was added to the cooled reaction mixture and the mixture was stirred at 25 °C for 1 h. The reaction mixture was loaded onto Varian SCX column and washed with CH $_1$ OH

25

(20 mL). Product was eluted off using 2 N NH₃ in CH₃OH (6 mL) and concentrated to afford 1-(4-benzylbenzyl)-4-[(N-(3-(trifluoromethyl)benzoyl)glycyl}aminomethyl]piperidine (compound No. 926) as a pale yellow oil (5.6 mg, 29 \hat{z}): The purity was determined by RPLC/MS (94 \hat{z}); ESI/MS m/e 524.1 (M*+H, C₃₀H₃₂F₃N₃O₂).

Reference Example 31: Preparation of 4-[{(N-(Benzyloxycarbonyl)glycyl)amino}methyl]-1-(tert-butoxycarbonyl)piperidine.

A solution of 4-(aminomethyl)-1-(tert-butoxycarbonyl)piperidine (3.54 g, 16.5 mmol) in CH₂Cl₂ (80 mL) was treated with Et₃N (2.8 mL, 20 mmol), N-(benzyloxycarbonyl)glycine (3.77 g, 18 mmol), EDCI (3.45 g, 18 mmol) and HOBt (2.43 g, 18 mmol). After the reaction mixture was stirred at room temperature for 15 h, 2 N aqueous NaOH solution (100 mL) was added. The organic layer was separated, and the aqueous layer was extracted with dichloromethane (100 mL x 3). The combined organic layers were dried over anhydrous sodium sulfate, filtered, and concentrated. Column chromatography (SiO₂, ethyl acetate) afforded the desired 4-[{(N-(Benzyloxycarbonyl)glycyl)amino}methyl]-1-(tert-butoxycarbonyl)piperidine (6.27 g, 94%) as an amorphous solid.

Reference Example 32: Preparation of 4-{(Glycylamino)methyl}-1-(tert-butoxycarbonyl)piperidine.

A solution of 4-[{(N-(benzyloxycarbonyl)glycyl)amino}methyl]-1-(tert-butoxycarbonyl)piperidine (6.26 g, 15.4 mmol) in methanol (100 mL) was hydrogenated at 1 atm in the presence of 5% palladium on charcoal (620 mg) at room temperature for 7 h. The catalyst was removed by filtration through Celite and the combined filtrate was concentrated to afford 4-{(glycylamino}methyl)-1-(tert-butoxycarbonyl)piperidine (3.84 g, 92%) as a solid.

Reference Example 33: Preparation of 4-[((N-(2-Amino-5-chlorobenzoyl)glycyl)amino)methyl]-1-(text-butoxycarbonyl)piperidine.

A solution of $4-(\{glycylamino\}methyl\}-1-(tert-butoxycarbonyl)$ piperidine (1.33 g, 4.90 mmol) in CH_2Cl_2 (25 mL) was treated with Et_2N (0.75 mL, 5.4 mmol), 2-amino-5-chlorobenzoic acid (840 mg, 4.9 mmol), EDCI (940 mg, 4.9 mmol) and HOBt (660 mg, 4.9 mmol). After the reaction mixture was stirred at room temperature for 3 h, 2 N aqueous NaOH solution (20 mL) was added. The organic layer was separated, and the aqueous layer was extracted with dichloromethane (20 mL x 3). The combined organic layers were dried over

5

20

25

anhydrous sodium sulfate, filtered, and concentrated. Column chromatography (SiO₂, ethyl acetate) afforded the desired $4-[{(N-(2-amino-5-chlorobenzoyl)glycyl)amino}methyl]-l-(tert-butoxycarbonyl)piperidine (1.63 g, 78%) as a solid.$

5

10

15

20

Reference Example 34: Preparation of 4-[{(N-(2-Amino-5-chlorobenzoyl)glycyl)amino}methyl]piperidine.

solution of 4-[{(N-(2-amino-5-To chlorobenzoyl)glycyl)amino; methyl]-1-(tert-butoxycarbonyl)piperidine (1.63 g, 3.84 mmol) in methanol (20 mL) was added 4 N HCl in dioxane (9.5 mL). The solution was stirred at room temperature for 6 h. The reaction mixture was concentrated and 2 N aqueous NaOH solution (20 mL) was added. The mixture was extracted with dichloromethane (20 mL \times 3), and the combined extracts were dried over sodium and concentrated to give 4-[{(N-(2-amino-5sulfate, filtered chlorobenzoyl)glycyl)amino)methyl]piperidine (1.19 g, 95%): 1H NMR (CDCl3, 270 MHz) δ 1.10-1.76 (m, 4 H), 2.55 (td, J = 2.4 and 12.2 Hz, 2 H), 3.00-3.10 (m, 2 H), 3.17 (t, J = 6.2 Hz, 2 H), 3.48 (s, 2 H), 4.03 (d, J = 4.9 Hz, 2 H), 5.50(br. s, 2 H), 6.11-6.23 (m, 1 H), 6.60 (d, J = 8.8 Hz, 1 H), 6.85-7.02 (m, 1 H), 7.15 (dd, J = 2.7 and 8.8 Hz, 1 H), 7.38 (d, J = 2.4 Hz, 1 H); ESI/MS m/e $325.2 (C_{15}H_{21}ClN_4O_2)$.

 $4-\{\{(N-(2-Amino-5-bromobenzoyl)\,glycyl)\,amino\}\,methyl\}\,piperidine \qquad was also synthesized pursuant to methods of Reference Examples 32 and 33 using the corresponding reactant: 951 mg, 64% (2 steps).ESI/MS m/e 369.2 (<math>C_{15}H_{21}BN_4O_2$).

25

30

35

Example 1735: Preparation of 4-[{(N-(2-(text-Butoxycarbonylamino)-4,5-difluorobenzoyl)glycyl)amino)methyl]-1-(4-chlorobenzyl)piperidine.

A solution of 1-(4-chlorobenzyl)-4-{(glycylamino)methyl}piperidine dihydrochloride (738 mg, 2 mmol) in CH_2Cl_2 (20 mL) was treated with Et_3N (1.1 mL, 8 mmol), 2-(tert-butoxycarbonylamino)-4,5-difluorobenzoic acid (607 mg, 2.2 mmol), EDCI (422 mg, 2.2 mmol) and HOBt (337 mg, 2.2 mmol). After the reaction mixture was stirred at room temperature for 14 h, 0.6 N aqueous NaOH solution (50 mL) was added, and the mixture was extracted with dichloromethane (3 times). The combined organic layers were dried over anhydrous sodium sulfate, filtered, and concentrated. Column chromatography (SiO, ethyl acetate then ethyl aceafforded the desired 4-{{(N-(2-(terttate/methanol 92/8) butoxycarbonylamino)-4,5-difluorobenzoyl)glycyl)amino)methyl]-1-(4chlorobenzyl) piperidine (1.01 g, 92%): ESI/MS m/e 551.3 (M^++H , $C_{27}H_{23}ClF_2N_4O_4$).

4-[{(N-(2-(tert-butoxycarbonylamino)-5trifluoromethylbenzoyl)glycyl)amino)methyl}-1-(4-chlorobenzyl)piperidine
was also prepared pursuant to the above method using the corresponding reactant:
5 3.03 g, 82%; ESI/MS m/e 583.2 (M*+H, C₂₈H₃₄ClF₃N₄O₄).

Reference Example 35: Preparation of 4-[{(N-(2-Amino-5-trifluoromethylbenzoyl)glycyl)amino)methyl]piperidine.

A suspension of $1-(4-\text{chlorobenzyl})-4-[\{(N-(2-\text{amino-}5-\text{trifluoromethylbenzoyl})\,\text{glycyl})\,\text{amino}\}$ methyl]piperidine (447 mg, 0.93 mmol) and Pd(OH)₂ (60 mg, 0.23 mmol) in 5% HCO₂H/methanol (10 mL) was stirred at 50 °C for 14 h. The Pd catalyst was filtered off through Celite, and the filtrate was concentrated. To the residue was added 1N aqueous NaOH solution (15 mL) and the mixture was extracted with ethyl acetate (30 mL x 3). The combined extracts were dried over anhydrous sodium sulfate, filtered, and concentrated. Column chromatography (SiO₂, AcOEt/MeOH/Et₃N = 70/25/5) gave 4-[{(N-(2-amino-5-trifluoromethylbenzoyl)glycyl)amino}methyl]piperidine (284 mg, 86%): ESI/MS m/e 359.0 (M*+H, C₁₆H₂₁F₃N₄O₂).

 $4-[\{(N-(2-A\min o-4,5-\operatorname{difluorobenzoyl})\operatorname{glycyl})\operatorname{amino}\}\operatorname{methyl}]\operatorname{piperidine}, \\ 4-[\{(N-(2-(tert-Butoxycarbonylamino)-5-trifluoromethoxybenzoyl)\operatorname{glycyl}\}\operatorname{aminomethyl}]\operatorname{piperidine}, \\ 4-[\{(N-(2-(tert-butoxycarbonylamino)-4,5-\operatorname{difluorobenzoyl})\operatorname{glycyl})\operatorname{amino}\}\operatorname{methyl}]\operatorname{piperidine}, \\ \operatorname{and} \\ 4-[\{(N-(2-(tert-butoxycarbonylamino)-5-trifluorobenzoyl)\operatorname{glycyl})\operatorname{amino}]\operatorname{methyl}]\operatorname{piperidine}, \\ \operatorname{and} \\ 4-[\{(N-(2-(tert-butoxycarbonylamino)-5-trifluorobenzoyl)\operatorname{glycyl})\operatorname{amino}]\operatorname{methyl}]\operatorname{piperidine}, \\ \operatorname{and} \\ \mathrm{deg}(N-(2-(tert-butoxycarbonylamino)-5-trifluorobenzoyl)\operatorname{glycyl})$

trifluoromethylbenzoyl)glycyl)amino)methyl]piperidine were also prepared pursuant to the above method using the corresponding reactant, respectively.

 $4-[\{(N-(2-amino-4,5-difluorobenzoyl)glycyl)amino\}methyl]piperidine: $564 mg, 89\%; ESI/MS m/e 327.2 (M*+H, <math>C_{15}H_{20}F_2N_4O_2$).

4-[(N-(2-(tert-Butoxycarbonylamino)-5-

30 trifluoromethoxybenzoyl)glycyl}aminomethyl]piperidine: quant; 1 H NMR (CDCl₃, 400 MHz) δ 1.10-1.25 (m, 2 H), 1.45-1.73 (m, 3 H), 1.51 (s, 9 H), 2.53-2.64 (m, 2 H), 3.04-3.13 (m, 2 H), 3.22 (t, J = 6.3 Hz, 2 H), 4.09 (d, J = 4.6 Hz, 2 H), 5.91 (br. s, 1 H), 7.08 (br. s., 1 H), 7.32 (d, J = 9.0 Hz, 1 H), 7.38 (s, 1 H), 8.43 (d, J = 9.0 Hz, 1 H).

 $4-[\{(N-(2-(tert-butoxycarbonylamino)-4,5-difluorobenzoyl)glycyl)amino\}methyl]piperidine: 310 mg, 40%; ESI/MS m/e 427.3 \\ (M^++H, C₂₀H₂₂F₂N₄O₄).$

4-[{(N-(2-(tert-butoxycarbonylamino)-5-

10

15

trifluoromethylbenzoyl)glycyl)amino)methyl]piperidine: 1.35 g, 57%; ESI/MS m/e 459.3 (M $^+$ +H, $C_{21}H_{29}F_3N_4O_4$).

Sodium cyanoborohydride (140 mmol) in methanol (0.4 mL) was added to a mixture of $4-[(N-(2-\text{amino}-5-\text{chlorobenzoyl})\,\text{glycyl}\}\,\text{aminomethyl}]$ piperidine (0.10 mmol), 4-ethoxybenzaldehyde (0.10 mmol), acetic acid (0.050 mL), and methanol (1.6 mL). The reaction mixture was stirred at 60 °C for 14 h. The reaction mixture was loaded onto Varian SCX column and washed with CH₃OH (20 mL). Product was eluted using 2 N NH₃ in CH₃OH (6 mL) and concentrated. Preparative TLC (SiO2, AcOEt/CH3OH 5 : 1) afforded $4-[(N-(2-\text{amino}-5-\text{chlorobenzoyl})\,\text{glycyl}\,\text{aminomethyl}]-1-(4-\text{ethoxybenzyl})\,\text{piperidine}$ (Compound No. 1429) and $1-(4-\text{ethoxybenzyl})-4-[(N-(2-(4-\text{ethoxybenzyl})\,\text{amino}-5-\text{chlorobenzoyl})\,\text{glycyl}\,\text{aminomethyl}]\,\text{piperidine}$ (Compound No. 1433).

Compound No. 1429: 4.5 mg, 20%: The purity was determined by RPLC/MS (95%); ESI/MS m/e 459.2 (M 4 +H, $C_{24}H_{31}ClN_4O_3$).

Compound No. 1433: 8.4 mg, 28%: The purity was determined by RPLC/MS (98%); ESI/MS m/e 593.2 (M $^{+}$ +H, C $_{33}$ H $_{41}$ ClN $_{4}$ O $_{4}$).

Examples 1737-1779.

The compounds of this invention were synthesized pursuant to methods of Example 1736 using the corresponding reactant respectively. The ESI/MS data and yields are summarized in Table 36.

Table 36

Compound No.	Molecular Formula	ESI/MS m/e	Yield (mg)	Yield (%)
1430	C24 H29 Cl N4 O4	473.0	3.1	13
1431	C24 H31 Br N4 O3	505.2	5.8	23
1432	C24 H29 Br N4 O4	517.0	4.1	16
	C33 H41 Br N4 O6	637.2	9.7	30
t	C24 H31 C1 N4 O2	443.2	9.7	44
	C25 H33 C1 N4 O2	457.2	12.5	55
l	C25 H33 C1 N4 O3	473.2	9.4	40
	No. 1430 1431 1432 1434 1435 1436	No. 1430	No. 1430	No. 1430 C24 H29 C1 N4 O4 473.0 3.1 1431 C24 H31 Br N4 O3 505.2 5.8 1432 C24 H29 Br N4 O4 517.0 4.1 1434 C33 H41 Br N4 O6 637.2 9.7 1435 C24 H31 C1 N4 O2 443.2 9.7 1436 C25 H33 C1 N4 O2 457.2 12.5

10

Example 1744	1438	C24 H31 Br N4 O2	489.2	5.9	24
Example 1745	1439	C25 H33 Br N4 O2	503.2	15.2	61
Example 1746	1440	C25 H33 Br N4 O3	519.2	11.0	43
Example 1747	1441	C23 H29 Br N4 O2 S	507.2	9.3	37
Example 1748	1442	C33 H41 C1 N4 O2	561.4	6.8	24
Example 1749	1443	C35 H45 Cl N4 O2	589.4	9.8	33
Example 1750	1444	C35 H45 Cl N4 O4	621.4	9.4	30
Example 1751	1445	C33 H41 Br N4 O2	605.2	6.5	21
Example 1752	1446	C35 H45 Br N4 O2	635.2	10.7	34
Example 1753	1447	C35 H45 Br N4 O4	665.4	12.4	37
Example 1754	1448	C31 H37 Br N4 O2 S2	643.2	7.6	24
Example 1755	1457	C24 H32 C1 N5 O2	458.2	4.5	20
Example 1756	1458	C23 H29 Cl N4 O4	461.2	6.0	26
Example 1757	1459	C24 H32 Br N5 O2	504.0	6.8	27
Example 1758	1460	C23 H29 Br N4 O4	505.0	8.0	32
Example 1759	1461	C31 H37 C1 N4 O6	597.2	5.9	20
Example 1760	1462	C31 H37 Br N4 O6	643.2	6.0	19
Example 1761	1514	C26 H36 Cl N5 O2	486.2	5.5	23
Example 1762	1515	C23 H29 C1 N4 O4	463.0	5.8	25
Example 1763	1516	C26 H36 Br N5 O2	530.2	4.2	16
Example 1764	1517	C23 H29 Br N4 O4	505.0	6.5	26
Example 1765	1518	C31 H37 C1 N4 O6	597.2	4.3	14
Example 1766	1519	C31 H37 Br N4 O6	641.2	5.3	17
Example 1767	1570	C23 H29 C1 N4 O2 S	461.0	2.7	12
Example 1768	1571	C31 H37 C1 N4 O2 S2	597.2	4.9	16
Example 1769	1651	C37 H49 Br N4 O2	663.2	5.5	17
Example 1770	1652	C26 H35 Br N4 O2	515.2	6.0	23
Example 1771	1653	C35 H45 Br N4 O2	633.2	5.0	16
Example 1772		C25 H33 Br N4 O2	501.0	6.2	25
Example 1773		C37 H49 C1 N4 O2	617.4	5.6	18
Example 1774		C26 H35 Cl N4 O2	471.2	5.9	25
Example 1775		C35 H45 C1 N4 O2	589.2	4.6	16
Example 1776		C25 H33 C1 N4 O2	457.2	5.3	23
Example 1777		C26 H33 F3 N4 O2	491.2	4.7	12.8
Example 1778		C25 H29 F3 N4 O3	491.2	3.7	10.1
Example 1779	1804	C25 H32 F2 N4 O2	459.2	3.3	9.6

Example 1780: Preparation of 4-[{N-(2-Amino-5-trifluoromethoxybenzoyl)glycyl}aminomethyl]-1-(4-isopropylbenzyl)piperidine

(Compound No. 1903).

4-[{N-(2-(tert-butoxycarbonylamino)-5mixture οf trifluoromethoxy)benzoylglycyl}aminomethyl]piperidine (0.050 isopropylbenzaldehyde (0.060 mmol), NaBH3CN (0.15 mmol), and methanol (1.3 mL) was added acetic acid (0.050 mL). The reaction mixture was stirred at 60 $^{\circ}\text{C}$ for 8 h. The mixture was cooled to room temperature, loaded onto Varian $^{T\!N}$ SCX column, and washed with CH_3OH (10 mL). Product was eluted off using 2 N NH_3 in $CH_{\bullet}OH$ (5 mL) and concentrated. To the resulting material was added 4 N HCl in 1,4-dioxane (2 mL) and the solution was stirred overnight at room temperature. preparative TLC gave 4-[{N-(2-amino-5-Concentration and trifluoromethoxybenzoyl)glycyl)aminomethyl]-1-(4-isopropylbenzyl)piperidine (Compound No. 1903) (6.6 mg, 26%): The purity was determined by RPLC/MS (93%); ESI/MS m/e 507 (M^++H , $C_{26}H_{53}F_3N_4O_3$).

15 Examples 1781-1783.

10

25

30

The compounds of this invention were synthesized pursuant to methods of Example 1780 using the corresponding reactant respectively. The ESI/MS data and yields are summarized in Table 37.

20 Table 37

	Compound No.	Molecular Formula	ESI/MS m/e	Yield (mg)	Yield (%)
Example 1781	1904	C26 H33 F3 N4 O3	507	9.6	37.9
Example 1782	1917	C25 H31 F3 N4 O5	525.2	1.2	3.1
Example 1783	1918	C24 H29 F3 N4 O4	495.2	2.8	7.5

Example 1784: Preparation of 4-[{N-(2-Amino-4,5-difluorobenzoyl)glycyl}aminomethyl]-1-(5-bromo-2-ethoxybenzyl)piperidine (Compound No. 2052).

To a mixture of 4-[(N-(2-(tert-butoxycarbonylamino)-4,5-diffuorobenzoyl)glycyl)aminomethyl]piperidine (0.050 mmol), 5-bromo-2-ethoxybenzaldehyde (0.15 mmol), methanol (1.2 mL), and acetic acid (0.030 mL) was added NaBH3CN (0.25 mmol) in methanol (0.50 mL). The reaction mixture was stirred at 50 °C for 13 h. The mixture was cooled to room temperature, loaded onto Varian T4 SCX column, and washed with CH3OH (5 mL x 3). Product was eluted off using 2 N NH3 in CH3OH (5 mL) and concentrated. To the resulting material were added dichloromethane (1 mL) and trifluoroacetic acid (TFA) (0.50 mL) and

the solution was stirred at room temperature for 10 min. The reaction mixture was concentrated, and the residue was dissolved in methanol, loaded onto Varian SCX column, and washed with CH₃OH (5 mL x 2). Product was eluted off using 2 N NH₃ in CH₃OH (5 mL) and concentrated. Preparative TLC (SiO₂, ethyl acetate/methanol = 10/1) gave $4-[\{N-(2-\text{amino}-4,5-\text{difluorobenzoyl})\text{glycyl}\}$ aminomethyl]-1-(5-bromo-2-ethoxybenzyl) piperidine (Compound No. 2052) (10.2 mg, 38%): The purity was determined by RPLC/MS (96%); ESI/MS m/e 539.2 (M*+H, C₂₄H₂₄BrF₂N₄O₃).

10 Examples 1785-1792.

The compounds of this invention were synthesized pursuant to methods of Example 1784 using the corresponding reactant respectively. The ESI/MS data and yields are summarized in Table 38.

15 Table 38

	Compound No.	Molecular Formula	ESI/MS m/e	Yield (mg)	Yield (%)
Example 1785	2053	C30 H34 F2 N4 O4	553.4	12.7	• 46
Example 1786	2054	C27 H30 F2 N4 O3	497.2	13.7	55
Example 1787	2055	C23 H28 F2 N4 O4	463.2	10.1	44
Example 1788		C22 H24 Br F3 N4 O2	515.2	7.7	30
Example 1789	2057	C23 H27 Br F2 N4 O3	527.0	8.6	33
Example 1790		C24 H30 F2 N4 O4	477.2	6.4	27
Example 1791		C28 H30 F2 N4 O3	509.4	6.7	26
Example 1792		C25 H32 F2 N4 O5	507.2	7.2	28

Example 1793: Preparation of 4-[{N-(2-Amino-4,5-difluorobenzoyl)glycyl}aminomethyl]-1-(3,4-diethoxybenzyl)piperidine (Compound No. 2065).

To a mixture of $4-[\{N-(2-(tert-butoxycarbonylamino)-4,5-diffluorobenzoyl)glycyl)$ aminomethyl]piperidine (0.050 mmol), 3,4-diethoxybenzaldehyde (0.15 mmol), methanol (1.2 mL), and acetic acid (0.050 mL) was added NaBH;CN (0.25 mmol) in methanol (0.50 mL). The reaction mixture was stirred at 50 °C overnight. The mixture was cooled to room temperature, loaded onto VarianTH SCX column, and washed with CH₃OH (5 mL x 2). Product was eluted off using 2 N NH; in CH₃OH (5 mL) and concentrated. To the resulting material were added dichloromethane (2 mL) and phenyl isocyanate (0.10 mL) and the solution was stirred at room temperature for 1 h, loaded onto VarianTH SCX column, and

20

washed with CH₂OH (5 mL \times 2). Product was eluted off using 2 N NH₃ in CH₃OH (5 mL) and concentrated. The residue was dissolved in methanol (0.25 mL) and 4 N HCl in dioxane (0.125 mL) was added. The solution was stirred at room temperature overnight and concentrated. The residue was dissolved in methanol, loaded onto VarianTM SCX column, and washed with CH₃OH (5 mL \times 2). Product was eluted off using 2 N NH₃ in CH₃OH (5 mL) and concentrated to afford 4-[{N-(2-amino-4,5-difluorobenzoyl)glycyl}aminomethyl]-1-(3,4-diethoxybenzyl)piperidine (Compound No. 2065) (21.2 mg, 84%): The purity was determined by RPLC/MS (97%); ESI/MS m/e 505.2 (M⁴+H, C₂₀H₃4F₂N₄O₄).

10

5

Examples 1794-1808.

The compounds of this invention were synthesized pursuant to methods of Example 1793 using the corresponding reactant respectively. The ESI/MS data and yields are summarized in Table 39.

15

Table 39

	Compound No.	Molecular Formula	ESI/MS m/e	Yield (mg)	Yield (%)
Example 1794	2061	C23 H27 F3 N4 O2	449.2	12.6	56
Example 1795	2062	C23 H27 F3 N4 O3	465.2	19.7	85
Example 1796	2063	C25 H32 F2 N4 O4	491.2	19.8	81
Example 1797	2064	C22 H24 Br F3 N4 O2	515.2	17.5	68
Example 1798	2066	C29 H32 F2 N4 O3	523.2	18.0	69
Example 1799	2067	C26 H34 F2 N4 O2	473.2	21.9	93
Example 1800	2068	C22 H24 C1 F3 N4 O2	469.2	11.2	48
Example 1801	2069	C24 H30 F2 N4 O3	461.4	20.2	88
Example 1802	2070	C23 H27 Br F2 N4 O3	527.2	17.7	67
Example 1803	2071	C24 H30 F2 N4 O4	477.2	10.9	46
Example 1804	2072	C25 H32 F2 N4 O3	475.2	19.3	81
Example 1805	2073	C29 H32 F2 N4 O3	523.2	22.8	87
Example 1806	2074	C29 H32 F2 N4 O4	539.2	22.5	84
Example 1807	2075	C23 H27 F3 N4 O3	465.2	14.9	64
Example 1808	2076	C22 H24 F4 N4 O2	453.2	21.9	97

Example 1809: Preparation of 4-[(N-(2-Amino-4,5-20 difluorobenzoyl)glycyl)aminomethyl]-1-(2-hydroxy-3-methylbenzyl)piperidine (Compound No. 2106).

To a mixture of 4-[(N-(2-(tert-butoxycarbonylamino)-4,5-difluorobenzoyl)glycyl)aminomethyl)piperidine (0.050 mmol), 2-hydroxy-3-

methylbenzaldehyde (0.25 mmol), methanol (1.0 mL), and acetic acid (0.040 mL) was added NaBH:CN (0.40 mmol) in methanol (0.50 mL). The reaction mixture was stirred at 50 °C overnight. The mixture was cooled to room temperature, loaded onto Varian TM SCX column, and washed with CH $_3$ OH (5 mL x 2). Product was eluted off using 2 N NH_3 in CH_3OH (5 mL) and concentrated. The resulting material was dissolved into ethyl acetate/methanol = 5:1 (1 mL), loaded onto Varian^{TN} Si column, eluted off using ethyl acetate/methanol = 5:1 (5 mL), and concentrated. The residue was dissolved in methanol (2 mL) and 4 N HCl in dioxane (0.50 mL) was added. The solution was stirred at room temperature overnight and concentrated. The residue was dissolved in methanol, loaded onto Varian™ SCX column, and washed with CH_3OH (5 mL x 2). Product was eluted off using 2 N NH_3 in CH_3OH (5 mL) and TLC afforded $4-[{N-(2-amino-4,5-$ Preparative concentrated. difluorobenzoyl)glycyl)aminomethyl]-1-(2-hydroxy-3-methylbenzyl)piperidine (Compound No. 2106): The purity was determined by RPLC/MS (97%); ESI/MS m/e $447.0 (M^++H, C_{33}H_{28}F_2N_4O_3)$.

Examples 1810-1823.

The compounds of this invention were synthesized pursuant to methods of Example 1809 using the corresponding reactant respectively. The ESI/MS data and yields are summarized in Table 40.

Table 40

	Compound No.	Molecular Formula	ESI/MS m/e	Yield (mg)	Yield (%)
Example 1810	2077	C22 H25 Cl F2 N4 O3	467.2	3.7	16
Example 1811		C24 H30 F2 N4 O4	477.2	1.9	8
Example 1812		C30 H34 F2 N4 O4	553.4	4.8	17
Example 1813		C22 H25 C1 F2 N4 O3	467.2	13.5	58
Example 1814		C22 H25 Cl F2 N4 O3	467.2	13.8	59
Example 1815		C23 H28 F2 N4 O4	463.2	9.6	42
Example 1816	l	C23 H28 F2 N4 O4	463.2	ND	ND
Example 1817		C23 H28 F2 N4 O3	447.0	ND	ND
Example 1818		C20 H23 Br F2 N4 O2 S	503.1	ND	ND
Example 1819		C25 H28 F2 N4 O2 S	487.2	ND	ND
Example 1820	<u> </u>	C20 H23 Br F2 N4 O3	487.0	ND	ND
Example 1821	1	C22 H28 F2 N4 O3	435.1	ND	ND
Example 1822		C22 H24 C1 F3 N4 O2	469.0	ND	ND
Example 1823		C24 H29 Br F2 N4 O4	557.0	ND	ND

ND: Not determined.

5

10

15

Example 1824: Preparation of 4-[{N-(2-Amino-4,5-difluorobenzoyl)glycyl}aminomethyl]-1-(3-amino-4-methylbenzyl)piperidine (Compound No. 2114).

4-[{N-(2-(tert-butoxycarbonylamino)-4,5-То а mixture of difluorobenzoyl)glycyl)aminomethyl]piperidine (0.050 mmol), 4-methyl-3nitrobenzaldehyde (0.25 mmol), methanol (1.2 mL), and acetic acid (0.050 mL) was added NaBH₃CN (0.50 mmol) in methanol (1.0 mL). The reaction mixture was stirred at 50 °C overnight. The mixture was cooled to room temperature, loaded onto Varian™ SCX column, and washed with CH₃OH (5 mL x 2). Product was eluted off using 2 N NH_3 in CH_3OH (5 mL) and concentrated. The resulting material was dissolved into ethyl acetate/methanol = 2/1 (2 mL), loaded onto VarianTM Si column, eluted off using ethyl acetate/methanol = 2/1 (6 mL), and concentrated. The residue was dissolved in methanol (1 mL) and 4 N HCl in dioxane (0.50 mL) was added. The solution was stirred at room temperature overnight and concentrated. The residue was dissolved in methanol, loaded onto Varian $^{ extsf{TM}}$ SCX column, washed with CH₃OH (5 mL x 2), and eluted off using 2 N NH₃ in CH₃OH (5 mL). Concentration 4-[{N-(2-amino-4,5-difluorobenzoyl)glycyl}aminomethyl]-1-(4afforded methyl-3-nitrobenzyl)piperidine.

A mixture of $4-[\{N-(2-amino-4,5-difluorobenzoyl)glycyl\}$ aminomethyl]-1-(4-methyl-3-nitrobenzyl)piperidine prepared above, 5% palladium-activated carbon (15 mg), and methanol (2 mL) was stirred under a hydrogen atmosphere at room temperature for 4 h. The Pd catalyst was filtered off through Celite and the filtrate was concentrated. Preparative TLC (SiO₂, ethyl acetate/MeOH = 3/1) gave $4-[\{N-(2-amino-4,5-difluorobenzoyl)glycyl\}$ aminomethyl]-1-(3-amino-4-methylbenzyl)piperidine (Compound No. 2114) (2.9 mg, 13%): The purity was determined by RPLC/MS (100%); ESI/MS m/e 446.1 (M*+H, C₂₃H₂₅F₂N₅O₂).

Example 1825: Preparation of 4-[{N-(2-Amino-4,5-30 difluorobenzoyl)glycyl)aminomethyl]-1-(3-amino-4-methoxybenzyl)piperidine (Compound No. 2113).

The titled compound, $4-[\{N-(2-amino-4,5-difluorobenzoyl)glycyl\}aminomethyl]-1-(3-amino-4-methoxybenzyl)piperidine (Compound No. 2113), was synthesized pursuant to methods of Example 1824 using the corresponding reactant: 4.6 mg, 20% yield; ESI/MS m/e 462.2 (M'+H, <math>C_{23}H_{29}F_2N_5O_3$).

Example 1826: Preparation of 1-(3-Amino-4-hydroxybenzyl)-4-[{N-(2-

5

10

15

20

25

(tert-butoxycarbonylamino)-4,5difluorobenzoyl)glycyl}aminomethyl]piperidine.

To a mixture of $4-[\{N-(2-(tert-butoxycarbonylamino)-4,5-difluorobenzoyl)glycyl\}$ aminomethyl]piperidine (0.35 mmol), 4-hydroxy-3-nitrobenzaldehyde (1.22 mmol), methanol (3.8 mL), and acetic acid (0.175 mL) was added NaBH;CN (1.58 mmol) in methanol (3.2 mL). The reaction mixture was stirred at 50 °C overnight. The mixture was cooled to room temperature, loaded onto Varian SCX column, and washed with CH3OH. Product was eluted off using 2 N NH; in CH3OH and concentrated. The resulting material was dissolved into ethyl acetate/methanol = 5/1, loaded onto Varian Si column, eluted off using ethyl acetate/methanol = 5/1 (10 mL), and concentrated to give $4-[\{N-(2-(tert-butoxycarbonylamino)-4,5-difluorobenzoyl)glycyl\}$ aminomethyl]-1-(4-hydroxy-3-nitrobenzyl)piperidine (175 mg, 87%).

A mixture of 4-[{N-(2-(tert-butoxycarbonylamino)-4,5-difluorobenzoyl)glycyl}aminomethyl]-1-(4-hydroxy-3-nitrobenzyl)piperidine prepared above, 10% palladium-activated carbon (45 mg), and methanol (5 mL) was stirred under a hydrogen atmosphere at room temperature for 2 h. The Pd catalyst was filtered off and the filtrate was concentrated to afford 1-(3-amino-4-hydroxybenzyl)-4-[{N-(2-(tert-butoxycarbonylamino)-4,5-

difluorobenzoyl)glycyl)aminomethyl)piperidine (100 mg, 60%).

Example 1827: Preparation of 4-[(N-(2-Amino-4,5-difluorobenzoyl)glycyl)aminomethyl]-1-(3-amino-4-hydroxybenzyl)piperidine (Compound No. 2141).

To a solution of $1-(3-a\min o-4-hydroxybenzyl)-4-[\{N-(2-(tert-butoxycarbonylamino)-4,5-difluorobenzoyl)glycyl)aminomethyl]piperidine (20.0 mg, 0.035 mmol) in methanol (1 mL) was added 4 N HCl in dioxane (0.50 mL) and the solution was stirred at room temperature overnight. After the solution was concentrated, the residue was dissolved in methanol, loaded onto Varian SCX column, washed with CH3OH (5 mL x 2), and eluted off using 2 N NH3 in CH3OH (5 mL). Concentration afforded <math>4-[\{N-(2-a\min o-4,5-difluorobenzoyl)glycyl)aminomethyl]-1-(3-amino-4-hydroxybenzyl)piperidine (Compound No. 2141) (17.6 mg, quant.): The purity was determined by RPLC/MS (85%); ESI/MS m/e 448.3 (M*+H, C22H27F2N5O3).$

35

30

25

10

Examples 1828-1831.

The compounds of this invention were synthesized pursuant to methods of Examples 1826 and 1827 using the corresponding reactants respectively.

Preparative TLC (SiO_2) , if needed, afforded the desired material. The ESI/MS data and yields of last step are summarized in Table 41.

Table 41

5

10

15

20

25

30

	Compound No.	Molecular Formula	ESI/MS m/e	Yield (mg)	Yield (%)
Example 1828	2140	C23 H27 F2 N5 O4	476.3	6.7	28.4
Example 1829	2144	C24 H30 F3 N5 O3	494.2	18.7	82.0
Example 1830	2145	C23 H28 F3 N5 O3	480.3	19.8	63.7
Example 1831	2146	C24 H28 F3 N5 O4	508.3	13.5	81.7

Example 1832: Preparation of 1-(3-Amino-4-chlorobenzyl)-4-[N-(2-(text butoxycarbonylamino)-4,5-difluorobenzoyl)glycyl}aminomethyl]piperidine.

4-[{N-(2-(tert-butoxycarbonylamino)-4,5mixture οf То difluorobenzoyl)glycyl)aminomethyl]piperidine (0.14 mmol), 4-chloro-3nitrobenzaldehyde (0.50 mmol), methanol (1.5 mL), and acetic acid (0.070 mL) was added $NaBH_3CN$ (0.63 mmol) in methanol (1.3 mL). The reaction mixture was stirred at 50 °C overnight. The mixture was cooled to room temperature, loaded onto Varian[™] SCX column, and washed with CH₃OH. Product was eluted off using 2 N NH_3 in CH_3OH and concentrated. The resulting material was dissolved into ethyl acetate/methanol = 5/1, loaded onto Varian™ Si column, eluted off using ethyl acetate/methanol = 5/1 (6 mL), and concentrated to give 4-[(N-(2-(tert-butoxycarbonylamino)-4,5-difluorobenzoyl)glycyl}aminomethyl]-1-(4chloro-3-nitrobenzyl)piperidine (44 mg, 53%): ESI/MS m/e 596.3 (M'+H).

A mixture of $4-\{\{N-(2-(tert-butoxycarbonylamino)-4,5-difluorobenzoyl\}$ aminomethyl $\}-1-(4-chloro-3-nitrobenzyl)$ piperidine (121 mg, 0.20 mmol), 10% palladium-activated carbon (85 mg), ethyl acetate (10 mL), and methanol (1 mL) was stirred under a hydrogen atmosphere at room temperature for 19 h. The Pd catalyst was filtered off and the filtrate was concentrated to afford $1-(3-amino-4-chlorobenzyl)-4-\{\{N-(2-(tert-butoxycarbonylamino)-4,5-difluorobenzoyl)glycyl\}$ aminomethyl $\}$ piperidine (78 mg, 68%).

Example 1833: Preparation of 1-(3-Amino-4-chlorobenzyl)-4-[{N-(2-amino-4,5-difluorobenzoyl)glycyl}aminomethyl]piperidine (Compound No. 2142).

The titled compound, $1-(3-amino-4-chlorobenzyl)-4-\{\{N-(2-amino-4,5-difluorobenzoyl)glycyl\}$ aminomethyl]piperidine (Compound No. **2142**) was synthesized pursuant to method of Example 1832 using the corresponding reactant:

13.7 mg, 98%); The purity was determined by RPLC/MS (83%); ESI/MS m/e 466.2 (M*+H, $C_{22}H_{26}C1F_2N_5O_2$).

Example 1834: Preparation of 1-(3-Acetylamino-4-hydroxybenzyl)-4-5 [{N-(2-amino-4,5-difluorobenzoyl)glycyl)aminomethyl]piperidine (Compound No. 2148).

To a mixture of 1-(3-amino-4-hydroxybenzyl)-4-[(N-(2-(tert-butoxycarbonylamino)-4,5-difluorobenzoyl)glycyl}aminomethyl]piperidine (27 mg, 0.049 mmol), (piperidinomethyl)polystyrene (2.7 mmol/g, 60 mg, 0.15 mmol) and dichloromethane (2 mL) was added acetic anhydride (0.12 mmol) in dichloromethane (0.12 mL). The reaction mixture was stirred at room temperature for 3 h. The mixture was loaded onto VarianTM SCX column, and washed with CH₃OH. Product was eluted off using 2 N NH₃ in CH₃OH and concentrated to give 1-(3-acetylamino-4-hydroxybenzyl)-4-[(N-(2-(tert-butoxycarbonylamino)-4,5-difluorobenzoyl)glycyllaminomethyllpiperidine (30 mg, quant). ESI/MS m/e

difluorobenzoyl)glycyl}aminomethyl]piperidine (30 mg, quant.): ESI/MS m/e 590.4 ($M^{+}+H$, $C_{29}H_{57}F_{2}N_{5}O_{6}$).

To a solution of 1-(3-acetylamino-4-hydroxybenzyl)-4-[$\{N-(2-(tert-butoxycarbonylamino)-4,5-difluorobenzoyl)glycyl\}aminomethyl]piperidine obtained above in methanol (1 mL) was added 4 N HCl in dioxane (0.50 mL) and the solution was stirred at room temperature overnight. After the solution was concentrated, the residue was dissolved in methanol, loaded onto Varian <math>^{TH}$ SCX column, washed with CH₃OH (5 mL x 2), and eluted off using 2 N NH₃ in CH₃OH (5 mL). Concentration and preparative TLC (SiO₂, AcOEt/MeOH = 3:2) afforded 1-(3-acetylamino-4-hydroxybenzyl)-4-[$\{N-(2-amino-4,5-4)\}$

difluorobenzoyl)glycyl)aminomethyl]piperidine (Compound No. **2148**) (2.3 mg, 9.2%): The purity was determined by RPLC/MS (98%); ESI/MS m/e 490.3 (M $^{+}$ +H, $C_{24}H_{25}F_{2}N_{5}O_{4}$).

Examples 1835-1839.

The compounds of this invention were synthesized pursuant to methods of Examples 1826 and 1834 using the corresponding reactants respectively. The ESI/MS data and yields are summarized in Table 42.

35

10

15

20

Table 42

	Compound No.	Molecular Formula	ESI/MS - m/e	Yield (mg)	Yield (%)
Example 1835	2143	C25 H29 F2 N5 O5	518.3	4.8	45
Example 1836	2147	C25 H31 F2 N5 O4	504.3	3.0	23
Example 1837	2154	C26 H32 F3 N5 O4	536.4	4.1	66
Example 1838	2155	C25 H30 F3 N5 O4	522.3	5.5	71
Example 1839		C26 H30 F3 N5 O5	550.3	7.0	78

Example 1840: Preparation of 4-[{N-(2-Amino-4,5-difluorobenzoyl)glycyl}aminomethyl]-1-(3-methylamino-4-hydroxybenzyl)piperidine (Compound No. 2160).

To a mixture of 4-[{N-(2-(tert-butoxycarbonylamino)-4,5-difluorobenzoyl)glycyl}aminomethyl]-1-(3-amino-4-hydroxybenzyl)piperidine (20.4 mg, 0.037 mmol), 37% HCHO solution (3.0 mg, 0.037 mmol), acetic acid (0.10 mL) and methanol (1.3 mL) was added NaBH₃CN (7.0 mg) in methanol (0.2 mL). The reaction mixture was stirred at 60 °C overnight. The mixture was cooled to room temperature, loaded onto VarianTM SCX column, and washed with CH₃OH (5 mL x 2). Product was eluted off using 2 N NH₃ in CH₃OH (8 mL) and concentrated to give 4-[{N-(2-(tert-butoxycarbonylamino)-4,5-difluorobenzoyl)glycyl}aminomethyl]-1-(3-methylamino-4-hydroxybenzyl)piperidine.

To a solution of 4-[{N-(2-(tert-butoxycarbonylamino)-4,5-difluorobenzoyl)glycyl}aminomethyl]-1-(3-methylamino-4-hydroxybenzyl)piperidine obtained above in methanol (1.0 mL) was added 4 N HCl in dioxane (1.0 mL) and the solution was stirred at room temperature for 3 h. After the solution was concentrated, the residue was dissolved in methanol (1 mL), loaded onto Varian™ SCX column, washed with CH₃OH (5 mL x 2), and eluted off using 2 N NH₃ in CH₃OH (8 mL). Concentration and preparative TLC (SiO₂) afforded 4-{{N-(2-amino-4,5-difluorobenzoyl)glycyl}aminomethyl}-1-(3-methylamino-4-hydroxybenzyl)piperidine (Compound No. 2160) (3.4 mg, 20%): The purity was determined by RPLC/MS (96%); ESI/MS m/e 462.4 (M*+H, C₂₃H₂₅F₂N₅O₃).

Examples 1841-1844.

The compounds of this invention were synthesized pursuant to methods of Examples 1826 and 1840 using the corresponding reactants respectively. The ESI/MS data and yields are summarized in Table 43.

30

25

5

10

15

20

Table 43

Compound No.	Molecular Formula	ESI/MS - m/e	Yield (mg)	Yield (%)
2159	C24 H31 F2 N5 O3	476.3	7.6	48
	C23 H28 C1 F2 N5 O2	480.3	7.3	45
	C25 H32 F3 N5 O3	508.4	6.0	24
	C24 H30 F3 N5 O3	494.3	4.3	15
	No. 2159 2161 2162	No. 2159	No.	Compound No. m/e (mg) 2159 C24 H31 F2 N5 O3 476.3 7.6 2161 C23 H28 C1 F2 N5 O2 480.3 7.3 2162 C25 H32 F3 N5 O3 508.4 6.0

Example 1845: Preparation of 4-[{N-(2-Amino-4,5-difluorobenzoyl)glycyl}aminomethyl]-1-(benzo[c]furazan-5-yl)piperidine (Compound No. 2130).

4-[(N-(2-(tert-butoxycarbonylamino)-4,5of mixture Α (0.050 mmol), difluorobenzoyl)glycyl)aminomethyl]piperidine (bromomethyl)benzo[c]furazan (0.75 mmol), (piperidinomethyl)polystyrene (2.6-2.8 mmol/g, 60 mg, 0.15 mmol), methanol (0.2 mL), acetonitrile (1.0 mL),and chloroform (0.50 mL) was stirred at 50 $^{\circ}$ C overnight. The mixture was cooled to room temperature, loaded onto Varian TM SCX column, and washed with CH $_3$ OH (5 mL x 2). Product was eluted off using 2 N NH_3 in CH_3OH (5 mL) and concentrated. To the resulting material were added chloroform (1.5 mL) and phenyl isocyanate (0.075 mL) and the solution was stirred at room temperature for 1 h, loaded onto $Varian^{TH}$ SCX column, and washed with CH₃OH (5 mL \times 2). Product was eluted off using 2 N NH $_{\rm 3}$ in CH $_{\rm 3}$ OH (5 mL) and concentrated. The residue was dissolved in methanol (1 mL) and 4 N HCl in dioxane (0.50 mL) was added. The solution was stirred at room temperature overnight and concentrated. The residue was dissolved in methanol, loaded onto Varian $^{\text{TM}}$ SCX column, washed with CH $_3$ OH (5 mL \times 2), and eluted off using 2 N NH $_3$ in CH $_3$ OH (5 mL). Concentration and preparative ethyl acetate/MeOH = 5/1) afforded $4-[{N-(2-amino-4,5-mino-4,5$ difluorobenzoyl)glycyl)aminomethyl]-1-(benzo[c]furazan-5-yl)piperidine (Compound No. 2130) (3.6 mg, 16%): The purity was determined by RPLC/MS (87%); ESI/MS m/e 459.3 (M $^{+}$ +H, $C_{22}H_{24}F_{2}N_{6}O_{3}$).

25 Example 1846: Preparation of 4-[{N-(2-Amino-4,5-diffluorobenzoyl)glycyl}aminomethyl]-1-(3,5-dimethylisoxazol-4-yl)piperidine (Compound No. 2131).

The titled compound, $4-[\{N-(2-\min o-4,5-\dim o-4)\}]$ difluorobenzoyl)glycyl)aminomethyl]-1-(3,5-dimethylisoxazol-4-yl)piperidine (Compound No. 2131), was synthesized pursuant to methods of Example 1845 using the corresponding reactant: 3.8 mg, 185 yield; ESI/MS m/e 436.2 (M'+H, $C_{21}H_{27}F_2N_5O_3$).

5

10

15

20

Example 1847: Preparation of 4-[{N-(2-Amino-5-chlorobenzoyl)glycyl}aminomethyl]-1-{4-(trifluoromethylthio)benzyl}piperidine (Compound No. 1616).

of $4 - [{N - (2-amino-5$ mixture chlorobenzoyl)glycyl)aminomethyl]piperidine (16.2 mg, 0.050 mmol), 4-5 (trifluoromethylthio)benzyl bromide (20.3 mg, 0.075 mmol), piperidinomethylpolystyrene (60 mg), acetonitrile (1.0 mL) and chloroform (0.50 mL) was stirred at 60 °C for 15 h. The reaction mixture was cooled, loaded onto Varian™ SCX column and washed with CH_3OH (15 mL). Product was eluted using 2 N NH_3 in CH_3OH afford 4-[(N-(2-amino-5concentrated to 10 chlorobenzoyl)glycyl}aminomethyl}-1-{4-(trifluoromethylthio)benzyl)piperidine (Compound No. 1616) (21.9 mg, 85%): The purity was determined by RPLC/MS (96%); ESI/MS m/e 545.2 (M $^{+}$ H, C₂₅H₂₆ClF₃N₄O₂S).

15 Example 1848-1868.

The compound of this invention was synthesized pursuant to methods of Example 1847 using the corresponding reactant. Preparative TLC, if needed, afforded the desired material. The ESI/MS data and yields are summarized in Table 44.

Table 44

	Compound No.	Molecular Formula	ESI/MS m/e	Yield (mg)	Yield (%)
Example 1848	1617	C23 H26 Br F3 N4 O2 S	559.0	21.0	75
Example 1849	1777	C23 H25 C12 F3 N4 O2	517.0	16.3	63.0
Example 1850	1778	C24 H29 F3 N4 O2	463.2	9.5	41.1
Example 1851	1779	C24 H27 F3 N4 O4	493.2	12.7	51.6
Example 1852	1780	C23 H26 Br F3 N4 O2	527.0	16.4	62.2
Example 1853	1781	C23 H27 F3 N4 O3	465.2	10.0	28.7
Example 1854	1782	C25 H29 F3 N4 O2	475.2	12.2	34.3
Example 1855	1783	C24 H26 F3 N5 O2	474.2	17.2	48.4
Example 1856	1784	C23 H27 F3 N4 O2	449.2	11.3	33.6
Example 1857	1788	C25 H31 F3 N4 O2	477.2	10.0	42.0
Example 1858	1789	C24 H29 F3 N4 O3	479.2	10.0	27.9
Example 1859	1792	C24 H30 F2 N4 O2	445.2	5.9	26.5
Example 1860	1793	C22 H24 C12 F2 N4 O2	485.2	9.2	37.9
Example 1861	1794	C23 H28 F2 N4 O2	431.2	5.7	26.5
Example 1862	1795	C23 H26 F2 N4 O4	461.2	6.0	26.1

133.2	3.5	16.2
147.2	5.6	25.1
143.2	5.5	24.9
142.2	9.4	42.6
117.2	6.5	31.2
1	143.2	143.2 5.5 142.2 9.4

Example 1869: Preparation of 4-[{N-(2-Amino-5-trifluoromethoxybenzoyl)glycyl)aminomethyl]-1-(4-bromobenzyl)piperidine (Compound No. 1910).

4-[{N-(2-(tert-butoxycarbonylamino)-5of mixture Α trifluoromethoxybenzoyl)glycyl;aminomethyl]piperidine (0.050 mmol), 4bromobenzyl bromide (0.060 mmol), piperidinomethylpolystyrene (60 mg), acetonitrile (0.8 mL) and chloroform (0.5 mL) was stirred at 60 $^{\circ}$ C for 12 h. The reaction mixture was cooled, loaded onto Varian TM SCX column and washed with 50% CHCl $_3$ /CH $_3$ OH (10 mL) and CH $_3$ OH (10 mL). Product was eluted using 2 N NH $_3$ in $\mathrm{CH_3OH}$ (5 mL) and concentrated. To the resulting material was added 4 N HCl in 1,4-dioxane (2 mL), and the solution was stirred overnight at room temperature. 4-[{N-(2-amino-5afforded TLC preparative Concentration and $trifluoromethoxybenzoyl) \verb|glycyl|| aminomethyl|-1-(4-bromobenzyl) piperidine$ (Compound No. 1910) (6.5 mg, 24%): The purity was determined by RPLC/MS (96%); ESI/MS m/e 545 (M 4 +H, $C_{25}H_{26}BrF_{5}N_{4}O_{5}$).

Examples 1870-1873.

The compounds of this invention were synthesized pursuant to methods of 20 Example 1869 using the corresponding reactant respectively. The ESI/MS data and yields are summarized in Table 45.

Table 45

Compound No.	Molecular Formula	ESI/MS m/e	Yield (mg)	
1911	C23 H25 C12 F3 N4 O3	533	10.6	39.7
	C23 H27 F3 N4 O4	481	12.5	52.0
	C25 H31 F3 N4 O3	493	7.5	30.5
	C24 H29 F3 N4 O3	479	11.0	46.0
	No. 1911 1912 1913	No. 1911 C23 H25 C12 F3 N4 O3 1912 C23 H27 F3 N4 O4 1913 C25 H31 F3 N4 O3	No. 1911 C23 H25 C12 F3 N4 O3 533 1912 C23 H27 F3 N4 O4 481 1913 C25 H31 F3 N4 O3 493	No. 1911 C23 H25 C12 F3 N4 O3 533 10.6 1912 C23 H27 F3 N4 O4 481 12.5 1913 C25 H31 F3 N4 O3 493 7.5

Example 1874: Preparation of 4-[{N-(2-Amino-5-trifluoromethylbenzoyl)glycyl}aminomethyl]-1-(benz[d]imidazol-5-

25

5

10

yl)piperidine (Compound No. 2186).

5

10

15

25

30

35

A mixture of 4-[{N-(2-(tert-butoxycarbonylamino)-5-trifluoromethylbenzoyl)glycyl}aminomethyl]piperidine (0.060 mmol), 1-(tert-butoxycarbonyl)-6-(bromomethyl)benz[d]imidazole (15.6 mg, 0.050 mmol), (piperidinomethyl)polystyrene (86 mg), and acetonitrile (2 mL) was stirred at 50 °C for 3 h. After cooling to room temperature, phenyl isocyanate (30 mg) was added and the mixture was stirred at room temperature for 1 h, loaded onto VarianTM SCX column and washed with CH;OH (5 mL) and CHCl; (5 mL). Product was eluted using 2 N NH; in CH;OH (3 mL) and concentrated.

The resulting material was dissolved into methanol (1 mL), and 4 N HCl in dioxane (1 mL) was added. The solution was stirred at room temperature overnight, loaded onto VarianTM SCX column and washed with CH₃OH and dichloromethane. Product was eluted using 2 N NH₃ in CH₃OH and concentrated. Preparative TLC (SiO₂, AcOEt/MeOH = 3:1) afforded 4-[(N-(2-amino-5-trifluorobenzoyl)glycyl)aminomethyl]-1-(benz[d]imidazol-5-yl)piperidine (Compound No. 2186) (1.9 mg, 7.8%): The purity was determined by RPLC/MS (100%); ESI/MS m/e 489.4 (M*+H, C₂₄H₂₇F₃N₆O₂).

Example 1875: Preparation of 4-[{N-(2-Amino-4,5-20 difluorobenzoyl)glycyl}aminomethyl]-1-(benzo[c]thiadiazol-5-yl)piperidine (Compound No. 2184).

To a mixture of 5-(hydroxymethyl) benzo[c] thiadiazole (8.3 mg, 0.050 mmol), (piperidinomethyl) polystyrene (86 mg), and chloroform (1 mL) was added methanesulfonyl chloride (0.0042 mL) and the mixture was stirred at room temperature for 1.5 h. Acetonitrile (1 mL) and $4-[\{N-(2-(tert-butoxycarbonylamino)-4,5-difluorobenzoyl)glycyl]$ aminomethyl] piperidine (0.060 mmol) was added and the reaction mixture was stirred at 50 °C for 3 h. After cooling to room temperature, phenyl isocyanate (30 mg) was added, and the mixture was stirred at room temperature for 1 h, loaded onto Varian SCX column and washed with CH₃OH (5 mL) and CHCl₃ (5 mL). Product was eluted using 2 N NH₂ in CH₃OH (3 mL) and concentrated.

The resulting material was dissolved into dichloromethane (1 mL), and 1 M chlorotrimethylsilane and 1 M phenol in dichloromethane (1 mL) was added. The solution was stirred at room temperature for 5 h, loaded onto Varian SCX column and washed with CH₂OH and dichloromethane. Product was eluted using 2 N NH₃ in CH₂OH and concentrated. Preparative TLC (SiO₂, AcOEt/MeOH = 3:1) afforded $4-[\{N-(2-amino-4,5-difluorobenzoyl)glycyl\}aminomethyl]-1-(benzo[c]thiadiazol-5-yl)piperidine (Compound No. 2184) (1.3 mg, 5.5%): The$

purity was determined by RPLC/MS (100:); ESI/MS m/e 475.2 (M*+H, $C_{22}H_{24}F_2N_6O_2S$).

Example 1876: Preparation of 4-[{N-(2-Amino-5-trifluoromethylbenzoyl)glycyl}aminomethyl]-1-(benzo[c]thiadiazol-5-yl)piperidine (Compound No. 2185).

The titled compound, $4-[\{N-(2-amino-5-trifluoromethylbenzoyl)glycyl\}aminomethyl]-1-(benzo[c]thiadiazol-5-yl)piperidine (Compound No. 2185) was synthesized pursuant to methods of Example 1875 using the corresponding reactant: 7.2 mg, 28% yield; ESI/MS m/e 507.4 (M<math>^+$ +H, $C_{23}H_{25}F_3N_6O_2S$).

Example 1877: Preparation of 4-[{N-(2-Amino-5-trifluoromethylbenzoyl)glycyl}aminomethyl]-1-(2-amino-4-chlorobenzyl)piperidine (Compound No. 1919).

4-[{N-(2-amino-5of mixture 15 Α trifluoromethylbenzoyl)glycyl)aminomethyl]piperidine (0.050 mmol), chloro-2-nitrobenzyl chloride (0.050 mmol), piperidinomethylpolystyrene (60 mg), acetonitrile (1.0 mL) and chloroform (0.7 mL) was stirred overnight at 50 $^{\circ}$ C. The reaction mixture was cooled, loaded onto Varian Ti SCX column and washed with 50% CHCl:/CH:OH (10 mL) and CH:OH (10 mL). Product was eluted using 2 N $\,$ 20 $\mathrm{NH_{3}}$ in $\mathrm{CH_{3}OH}$ (5 mL) and concentrated. To the resulting material was added ethanol (3 mL) and 10% Pd-C (15 mg), and the mixture was stirred under $\rm H_2$ at room temperature for 1.5 h. Filtration, concentration, and preparative TLC afforded 4-[$\{N-1\}$] (2-amino-5-trifluoromethylbenzoyl)glycyl}aminomethyl]-1-(2-amino-4-

25 chlorobenzyl)piperidine (Compound No. 1919) (5.1 mg, 14%): The purity was determined by RPLC/MS (90%); 1 H NMR (400 MHz, CDCl₃) δ 1.09-1.32 (m, 4 H), 1.41-1.59 (m, 1 H), 1.66 (d, J = 12.5 Hz, 2 H), 1.88 (t, J = 11.5 Hz, 2 H), 2.82 (d, J = 11.5 Hz, 2 H), 3.17 (t, J = 6.5 Hz, 2 H), 3.42 (s, 2 H), 4.05 (d, J = 5.5 Hz, 2 H), 4.85 (br s, 1 H), 5.92 (br s, 2 H), 6.25-6.36 (m, 1 H), 6.55-6.66 (m, 1 H), 6.70 (d, J = 8.5 Hz, 1 H), 6.85 (d, J = 8.5 Hz, 1 H), 7.26 (s, 1 H), 7.42 (d, J = 8.5 Hz, 1 H), 7.68 (s, 1 H); ESI/MS m/e 498.2 (M*+H, C₂₃H₂₇ClF₂N₅O₂).

Examples 1878 and 1879.

The compounds of this invention were synthesized pursuant to methods of 35 Example 1877 using the corresponding reactant respectively. The ESI/MS data and yields are summarized in Table 46.

Table 46

5

	Compound No.	Molecular Formu	la ESI/MS m/e	Yield (mg)	Yield (%)
Example 1878	1920	C22 H26 C1 F2 N5	02 466.2	3.5	10.0
Example 1879	1922	C23 H27 C1 F3 N5	03 514.2	1.2	3.1

Example 1880: Preparation of 4-[{N-(2-Amino-5-trifluoromethylbenzoyl)glycyl}aminomethyl]-1-(benz[d]oxazol-5-yl)piperidine (Compound No. 2188).

A solution of 1-(3-amino-4-hydroxybenzyl)-4-[$\{N-(2-(tert-butoxycarbonylamino)-5-trifluoromethylbenzoyl)$ glycyl) aminomethyl) piperidine (34.8 mg, 0.060 mmol), prepared pursuant to methods of Example 1826, in THF (2 mL) was treated with triethyl orthoformate (0.033 mL, 3.3 eq) and pyridinium p-toluenesulphonate (2 mg, 0.4 eq). The reaction mixture was stirred overnight under reflux. After cooling to room temperature, the mixture was concentrated. The residue was dissolved in AcOEt, loaded onto BondElutTM Si column, eluted off using ethyl acetate/methanol = 4/1, and concentrated.

The resulting material was dissolved into AcOEt (1.5 mL), and 4 N HCl in dioxane (0.5 mL) was added. The solution was stirred at room temperature overnight, adjusted to pH 10 with 5 M NaOH aqueous solution, and extracted with AcOEt. The extract was concentrated and purified by PTLC (SiO₂, AcOEt/MeOH = 4:1) to afford 4-[(N-(2-amino-5-trifluoromethylbenzoyl)glycyl)aminomethyl]-1-(benz[d]oxazol-5-yl)piperidine (Compound No. 2188) (1.6 mg, 5%): The purity was determined by RPLC/MS (94%); ESI/MS m/e 490.3 (M*+H, C24H26F3N5O3).

Example 1881: Preparation of $4-[{N-(2-Amino-4,5-diffuorobenzoyl)glycyl}aminomethyl]-1-(2-oxo-2,3-dihydro-1,3-benzoxazol-5-yl)piperidine (Compound No. 2190).$

To a mixture of 1-(3-amino-4-hydroxy)-4-[$\{N-(2-(tert-butoxycarbonylamino)-4,5-difluorobenzoyl)$ glycyl)aminomethyl)piperidine (22 mg, 0.040 mmol), NaHCO; (0.040 mmol), water (0.7 mL), and methanol (1.5 mL) was added phenyl chloroformate (0.046 mmol) and the mixture was stirred at room temperature for 3 h. A 1 N NaOH solution (0.040 mL) was added, and the reaction mixture was stirred for additional 1.5 h. The mixture was extracted with ethyl acetate and evaporated. The residue was dissolved in methanol, loaded onto Varian SCX column and washed with CH₃OH (5 mL x 2). Product was eluted using 2 N NH₃ in CH₃OH (5 mL) and concentrated.

To the resulting material was added 1 M chlorotrimethylsilane and 1 M

5

10

15

20

25

phenol in dichloromethane (2 mL). The solution was stirred at room temperature for 2 h and evaporated. The residue was dissolved in methanol, loaded onto $Varian^{TM}$ SCX column and washed with CH₃OH (5 mL x 2). Product was eluted using 2 N NH₃ in CH₃OH (5 mL) and concentrated. Preparative TLC (SiO₂, AcOEt/MeOH = 5:2) afforded 4-[(N-(2-amino-4,5-difluorobenzoyl)glycyl)aminomethyl]-1-(2-oxo-2,3-dihydro-1,3-benzoxazol-5-yl)piperidine (Compound No. 2190) (4.1 mg, 22%): The purity was determined by RPLC/MS (100%); ESI/MS m/e 474.2 (M*+H, C₂₃H₂₃F₂N₅O₄).

10 Examples 1882-1884.

15

20

25

30

The compounds of this invention were synthesized pursuant to methods of Example 1881 using the corresponding reactant respectively (phenyl chlorothionoformate was used instead of phenyl chloroformate for preparation of Compounds 2192 and 2193). The ESI/MS data and yields are summarized in Table 47.

Table 47

	Compound No.	Molecular Formula	ESI/MS m/e	Yield (mg)	Yield (%)
Example 1882	2191	C24 H26 F3 N5 O4	506.3	3.1	10
Example 1883	2192	C23 H25 F2 N5 O3 S	490.2	6.9	35
Example 1884		C24 H26 F3 N5 O3 S	522.2	3.6	11

Reference Example 36: Preparation of 4-[(N-(1-(9-Fuluorenylmethoxycarbonyl)piperidine-4-ylmethyl)carbamoylmethyl)aminomethyl]-3-methoxyphenyloxymethyl-polystyrene.

To a solution of 1-(9-fuluorenylmethoxycarbonyl)-4-(glycylaminomethyl)piperidine hydrochloride (10 mmol) in DMF (65 mL) were added acetic acid (0.3 mL), sodium triacetoxyborohydride (1.92 g), and 4-formyl-3-(methoxyphenyloxymethyl)-polystyrene (1 mmol/g, 200 g). The mixture was shaken for 2 h and filtered. The resin was washed with MeOH, DMF, CH_2Cl_1 , and methanol, and dried to afford the desired material.

Examples 1885-2000: General Procedure for Solid-Phase Synthesis of 4-Aminomethylpiperidines.

To a mixture of the corresponding acid (1.6 mmol), HBTU (1.6 mmol), and DMF (6 mL) was added diisopropylethylamine (3.6 mmol), and the mixture was shaken

for 2 min. $4-\{\{N-(1-(9-\text{fuluorenylmethoxycarbonyl})\text{piperidine-}4-y\}$ methyl) carbamoylmethyl) aminomethyl]-3-methoxyphenyloxymethyl-polystyrene (0.4 mmol) was added and the mixture was shaken for 1 h and filtered. The resin was rinsed with DMF and CH₂Cl₂, and dried.

A mixture of the resulting resin, piperidine (3.2 mL), and DMF (12.8 mL) was shaken for 10 min and filtered. The resin was washed with DMF and CH_2Cl_2 , and dried.

To the dry resin (0.05 mmol) was added a mixture of NaBH (OAc): (0.25 mmol), AcOH (0.025 mL) and DMF (1 mL). The corresponding aldehyde (2.5 mmol) was added, and the mixture was shaken for 2 h, then filtered and washed with CH₃OH, 10% diisopropylethylamine in DMF, DMF, CH₂Cl₂, and CH₃OH. A mixture of the resin, water (0.050 mL), and trifluoroacetic acid (0.95 mL) was shaken for 1 h and filtered. The resin was washed with CH₂Cl₂ and CH₃OH. The filtrate and washings were combined and concentrated. The crude material was loaded onto Varian SCX column and washed with CH₃OH (15 mL). Product was eluted using 2 N NH₃ in CH₃OH (5 mL) and concentrated. Preparative TLC or HPLC, if needed, afforded the desired material. The ESI/MS data and yields are summarized in Table 48.

Table 48

20

5

10

	Compound No.	Molecular Formula	ESI/MS m/e	Yield (mg)	Yield (%)
Example 1885	1923	C23 H25 Br F3 N3 O2 S	544	15.7	87
Example 1886	1924	C24 H28 F3 N3 O3 S	496	14.6	89
Example 1887	1925	C23 H25 F4 N3 O2 S	484	11.7	73
Example 1888	1926	C23 H24 F5 N3 O2 S	502	13.9	84
Example 1889	1927	C23 H26 F3 N3 O3 S	482	10.7	67
Example 1890	1928	C24 H26 F3 N3 O4 S	510	14.3	85
Example 1891	1929	C26 H30 F3 N3 O2 S	506	14.7	88
Example 1892	1930	C24 H28 F3 N3 O2 S2	512	14.4	85
Example 1893	1931	C25 H30 F3 N3 O2 S	494	14.3	88
Example 1894	1932	C25 H28 F3 N3 O3 S	509	7.1*	35
Example 1895	1933	C25 H30 F3 N3 O2 S	494	14.3	88
Example 1896	1934	C26 H32 F3 N3 O2 S	509	14.4	86
Example 1897	1935	C23 H25 F3 N4 O4 S	511	14.9	88
Example 1898	1936	C24 H28 F3 N3 O2 S	480	13.3	84
Example 1899	1937	C26 H32 F3 N3 O2 S	509	11.1	66
Example 1900	1938	C23 H27 Br2 N3 O2	538	5.3*	25
Example 1901	1939	C24 H30 Br N3 O3	488	5.0*	25

Example 1902	1940	C23 H27 Br F N3 O2	476	4.9*	25
	1941	C23 H26 Br F2 N3 O2	494	6.1*	30
Example 1903		C23 H28 Br N3 O3	474	1.7*	9
Example 1904	1942	C24 H28 Br N3 O4	502	6.6*	32
Example 1905	1943		498	7.0+	35
Example 1906	1944	C26 H32 Br N3 O2		11.1	67
Example 1907	1945	C24 H30 Br N3 O2 S	504	3.2*	16
Example 1908	1946	C25 H32 Br N3 O2	488		
Example 1909	1947	C25 H30 Br N3 O3	500	5.7	35
Example 1910	1948	C25 H32 Br N3 O2	486	4.9*	25
Example 1911	1949	C26 H34 Br N3 O2	500	6.7*	33
Example 1912	1950	C23 H27 Br N4 O4	503	5.0*	25
Example 1913	1951	C24 H30 Br N3 O2	472	5.1*	26
Example 1914	1952	C22 H24 Br2 F N3 O2	542	14.9	83
Example 1915	1953	C23 H27 Br F N3 O3	492	13.9	86
Example 1916	1954	C22 H24 Br F2 N3 O2	480	12.5	79
Example 1917	1955	C22 H23 Br F3 N3 O2	498	13.2	80
Example 1918	1956	C22 H25 Br F N3 O3	478	7.0	44
Example 1919	1957	C23 H25 Br F N3 O4	506	4.0*	20
Example 1920	1958	C25 H29 Br F N3 O2	502	14.6	88
Example 1921	1959	C23 H27 Br F N3 O2 S	508	13.1	78
Example 1922	1960	C24 H29 Br F N3 O2	490	13.8	85
Example 1923	1961	C24 H27 Br F N3 O3	504	2.7*	13
Example 1924	1962	C24 H29 Br F N3 O2	490	12.7	78
Example 1925	1963	C25 H31 Br F N3 O2	504	13.5	81
Example 1926	1964	C22 H24 Br F N4 O4	507	14.8	88
Example 1927	1965	C23 H27 Br F N3 O2	476	12.1	77
Example 1928	1966	C25 H31 Br F N3 O2	504	13.4	80
Example 1929	1967	C22 H26 Br F N4 O2	477	4.7*	20
Example 1930	1968	C23 H29 F N4 O3	429	6.9*	32
Example 1931	1969	C22 H27 F N4 O3	415	3.7*	17
Example 1932	1970	C23 H27 F N4 O4	443	5.4*	24
Example 1933		C25 H31 F N4 O2	439	4.3*	20
Example 1934	1972	C23 H29 F N4 O2 S	445	6.2*	28
Example 1935		C24 H31 F N4 O2	427	6.3*	29
Example 1936	1974	C24 H31 F N4 O2	427	4.9*	23
Example 1937		C22 H26 F N5 O4	444	5.9+	27
Example 1938		C23 H29 F N4 O2	413	6.7*	32
Example 1939		C23 H26 F N5 O2	424	5.1*	24
Example 1940		C25 H33 F N4 O2	441	6.3*	29
Example 1941		C25 H30 F2 N4 O2	457	8.0*	35
Drampic 1941					L

Example 1942	1980	C24 H28 F2 N4 O3	459	6.0*	26
Example 1943	1981	C22 H25 F2 N5 O4	462	9.3*	41
Example 1944	1982	C23 H25 F2 N5 O2	442	6.0*	27
Example 1945	1983	C25 H32 F2 N4 O2	459	8.3*	37
Example 1946	1984	C22 H26 Br I N4 O2	585	9.7*	36
Example 1947	1985	C23 H29 I N4 O3	537	9.2*	36 .
Example 1948	1986	C22 H27 I N4 O3	523	5.8*	23
Example 1949	1987	C23 H27 I N4 O4	551	8.2*	32
Example 1950	1988	C25 H31 I N4 O2	547	6.7*	26
Example 1951	1989	C23 H29 I N4 O2 S	553	6.4*	25
Example 1952	1990	C24 H31 I N4 O2	535	7.2*	29
Example 1953	1991	C24 H29 I N4 O3	549	5.6*	22
Example 1954	1992	C24 H31 I N4 O2	535	6.2*	25
Example 1955	1993	C22 H26 I N5 O4	552	10.2*	40
Example 1956	1994	C23 H29 I N4 O2	521	7.5*	30
Example 1957	1995	C23 H26 I N5 O2	532	6.8*	27
Example 1958	1996	C25 H33 I N4 O2	549	7.1*	28
Example 1959	1997	C25 H33 I N4 O2	549	3.0*	12
Example 1960	1998	C22 H25 Br Cl N3 O2	478	7.6*	39
Example 1961	1999	C23 H28 C1 N3 O3	430	7.0+	39
Example 1962	2000	C22 H25 Cl F N3 O2	418	14.1	102
Example 1963	2001	C22 H26 C1 N3 O3	416	6.3*	36
Example 1964	2002	C23 H26 Cl N3 O4	444	7.1*	39
Example 1965	2003	C25 H30 C1 N3 O2	440	15.3	105
Example 1966	2004	C23 H28 Cl N3 O2 S	446	8.4*	45
Example 1967	2005	C24 H30 Cl N3 O2	428	7.4*	41
Example 1968	2006	C24 H30 C1 N3 O2	428	13.8	98
Example 1969	2007	C22 H25 C1 N4 O4	445	16.0	109
Example 1970		C23 H28 C1 N3 O2	414	14.1	103
Example 1971		C23 H25 C1 N4 O2	425	14.8	106
Example 1972	2010	C25 H32 C1 N3 O2	442	14.5	99
Example 1973		C25 H32 C1 N3 O2	442	14.5	99
Example 1974	2012	C22 H24 Br2 Cl N3 O2	558	12.8*	58
Example 1975	2013	C23 H27 Br Cl N3 O3	508	8.6*	42
Example 1976	2014	C22 H25 Br Cl N3 O3	494	6.0*	30
Example 1977	2015	C23 H25 Br Cl N3 O4	522	8.4*	40
Example 1978	2016	C25 H29 Br Cl N3 O2	518	17.6	103
Example 1979	2017	C23 H27 Br C1 N3 O2 S	<u> </u>	17.1	99
Example 1980	2018	C24 H29 Br Cl N3 O2	506	14.7	88
Example 1981	2019	C24 H27 Br Cl N3 O3	520	8.0*	38
L			• — — —	• • • • • • • • • • • • • • • • • • • •	

Example 1982	2020	C24 H29 Br Cl N3 O2	506	14.7	88
Example 1983	2021	C22 H24 Br Cl N4 O4	523	12.0*	57
Example 1984	2022	C23 H27 Br Cl N3 O2	492	8.5*	42
Example 1985	2023	C23 H24 Br Cl N4 O2	503	6.3*	31
Example 1986	2024	C25 H31 Br Cl N3 O2	520	9.6*	46
Example 1987	2025	C25 H31 Br Cl N3 O2	520	15.0	87
Example 1988	2026	C22 H23 Br Cl F2 N3 O2	514	15.8	93
Example 1989		C22 H26 Br2 N4 O2	537	10.7*	42
Example 1990	2028	C23 H29 Br N4 O3	489	8.5*	36
Example 1991	2029	C22 H27 Br N4 O3	475	7.5*	32
Example 1992	2030	C23 H27 Br N4 O4	503	6.8*	28
Example 1993		C25 H31 Br N4 O2	499	6.2*	26
Example 1994		C24 H29 Br N4 O3	501	8.9+	37
Example 1995		C24 H31 Br N4 O2	487	9.1*	39
Example 1996		C22 H26 Br N5 O4	504	6.4*	26
Example 1997		C23 H29 Br N4 O2	473	6.5*	28
Example 1998		C23 H26 Br N5 O2	484	6.3*	. 27
Example 1999		C25 H33 Br N4 O2	501	5.4*	22
Example 2000		C22 H25 Br F2 N4 O2	495	5.4*	23

^{*}Yield of TFA salt.

Example 2001: Preparation of 1-(3-Carbamoylbenzyl)-4-[(N-(3-(trifluoromethyl)benzoyl)glycyl)aminomethyl]piperidine (Compound No. 924).

EDCI (10.7 mg), 1-hydroxybenzotriazole hydrate (7.5 mg), Et₃N (15.4 mg), 0.5 M NH₃ in dioxane (0.1 mL, 0.05 mmol) and DMF (0.5 mL) were added to a solution of 1-(3-carboxybenzyl)-4-[{N-(3-(trifluoromethyl)benzoyl)glycyl)aminomethyl]piperidine (19.4 mg, 0.041 mmol) in CHCl₃ (2.5 mL). The reaction mixture was stirred at 25 °C for 20 h, washed with 2 N aqueous NaOH (2 x 2 mL) and brine (1 mL). After filtration through PTFE membrane filter, the solvent was removed under reduced pressure to afford 1-(3-carbamoylbenzyl)-4-[{N-(3-(trifluoromethyl)benzoyl)glycyl}aminomethyl]piperidine (compound No. 924) as a pale yellow solid (17.9 mg, 92%): The purity was determined by RPLC/MS (89%); ESI/MS m/e 447.3 (M*+H, C₂₄H₂₃F₃N₄O₃).

Example 2002: Preparation of 1-(4-Carbamoylbenzyl)-4-[{N-(3-(trifluoromethyl)benzoyl)glycyl}aminomethyl]piperidine (Compound No. 925).

Compound No. 925 was synthesized pursuant to methods of Example 2001 using

the corresponding reactant: 14.2 mg, 72%; The purity.was determined by RPLC/MS (86%); ESI/MS m/e 447 (M $^{+}$ +H, $C_{24}H_2 \cdot F_3N_4O_3$).

Example 2003: Preparation of 1-(4-Aminobenzyl)-4-[(N-(3-(trifluoromethyl)benzoyl)glycyl)aminomethyl]piperidine (Compound No. 516).

A solution of 1-(4-nitrobenzy1)-4-[(N-(3-(trifluoromethyl)benzoyl)glycyl)aminomethyl)piperidine (22.4 mg, 0.047 mmol) in EtOH (3 mL) was hydrogenated at 1 atm for 1 h in the presence of 5% palladium on charcoal (10 mg) at 25 °C. The catalyst was removed by filtration and washed with EtOH (5 mL). The combined filtrate was evaporated to afford 1-(4-aminobenzyl)-4-[(N-(3-minobenzyl)-4-[(N-(3-minobenzyl))-4-[(N-(3-minobenzyl))-4-[(N-(3-minobenzyl))-4-[(N-(3-minobenzyl))-4-[(N-(3-minobenzyl))-4-[(N-(3-minobenzyl))-4-[(N-(3-minobenzyl))-4-[(N-(3-minobenzyl))-4-[(N-(3-minobenzyl))-4-[(N-(3-minobenzyl))]]

(trifluoromethyl)benzoyl)glycyl)aminomethyl]piperidine (compound No. **516**) as a pale yellow solid (20.1 mg, 96%). The purity was determined by RPLC/MS (99%); ESI/MS m/e 449.1 ($M^{\dagger}+H$, $C_{23}H_{27}F_3N_4O_2$).

15

5

10

Examples 2004 and 2005.

Compounds No. 517 and 518 were synthesized pursuant to methods of Example 2003 using the corresponding reactant respectively. The ESI/MS data and yields are summarized in Table 49.

20

25

30

Table 49

	Compound No.	Molecular Formula	ESI/MS m/e	Yield (mg)	Yield (%)
Example 2004	517	C23 H27 F3 N4 O2	449	26.5	78
Example 2005	518	C23 H27 F3 N4 O2	449	25.3	71

Example 2006: Preparation of 1-{4-(Benzoylamino)benzyl}-4-[{N-(3-(trifluoromethyl)benzoyl)glycyl}aminomethyl]piperidine (Compound No. 519).

EDCI (4.7 mg), 1-hydroxybenzotriazole hydrate (3.3 mg), Et₃N (2.5 mg) and benzoic acid (3.0 mg) were added to a solution of 1-(4-aminobenzyl)-4- $\{N-(3-(\text{trifluoromethyl})\text{benzoyl})\text{glycyl}\}$ aminomethyl $\}$ piperidine (10.1 mg, 0.023 mmol) in CH₂Cl₂ (2.5 mL). The reaction mixture was stirred at 25 °C for 16 h, washed with 2 N aqueous NaOH (2 × 2 mL) and brine (1 mL). After filtration through PTFE membrane filter, the solvent was removed under reduced pressure to afford an yellow oil which was purified by preparative TLC (SiO₂, 10 $^{\circ}$ CH₃OH-CH₂Cl₂) to give $1-(4-(\text{benzoylamino})\text{benzyl})-4-\{N-(3-(\text{trifluoromethyl})\text{benzoyl})\text{glycyl}\}$ aminomethyl $\}$ piperidine (compound No. 519) as

a colorless oil (4.6 mg, 36%): The purity was determined by RPLC/MS (99%); ESI/MS m/e 553.2 (M*+H, $C_{50}H_{21}F_{2}N_{4}O_{3}$).

Example 2007: Preparation of 1-{4-(Piperidinocarbonyl)benzyl}-4-[{N-5 (3-(trifluoromethyl)benzoyl)glycyl}aminomethyl]piperidine (Compound No. 1572).

Piperidine (0.048 mmol), diisopropylcarbodiimide (0.45 mmol) in DMF (0.15 mL), 1-hydroxybenzotriazole hydrate (0.45 mmol) in DMF (0.15 mL) were added to a solution of 1-(4-carboxybenzyl)-4-[{N-(3-10 mL) mmol}] benzoyl)glycyl)aminomethyl]piperidine (0.040 mmol) in DMF (1.0 mL). The reaction mixture was stirred at room temperature for 17 h, loaded onto Varian™ SCX column, and washed with CHCl₃/CH₃OH 1 : 1 (5 mL) and CH₃OH (5 mL). Product was eluted off using 2 N NH₃ in CH₃OH (5 mL) and concentrated to afford 1-{4-(piperidinocarbonyl)benzyl}-4-[{N-(3-15 mL) mmol}] benzyl)glycyl)aminomethyl]piperidine (Compound No. 1572) (14.3 mg, 66%): The purity was determined by RPLC/MS (99%); ESI/MS m/e 545 (M*+H, C₂₅H₃₅F₃N₄O₃).

Examples 2008-2015.

The compounds of this invention were synthesized pursuant to methods of Example 2007 using the corresponding reactant respectively. The ESI/MS data and yields are summarized in Table 50.

Table 50

25

20

	Compound No.	Molecular Formula	ESI/MS m/e		
Example 2008	1573	C31 H33 F3 N4 O4	583	17.6	76
Example 2009	1574	C31 H33 F3 N4 O3	567	18.8	83
Example 2010	l	C30 H30 C1 F3 N4 O3	587	3.2	14
Example 2011		C28 H33 F3 N4 O4	547	21.1	97
Example 2012		C26 H31 F3 N4 O4	521	5.1	24
Example 2013		C31 H33 F3 N4 O3	567	16.9	75
Example 2014	1	C31 H33 F3 N4 O3	567	6.0	26
Example 2015		C29 H35 F3 N4 O3	545	15.1	69

Example 2016: Preparation of $1-[4-(Chloroformyl)benzyl]-4-[{N-(3-(trifluoromethyl)benzoyl)glycyl}aminomethyl]piperidine.$

A mixture of $1-(4-carboxybenzyl)-4-[\{N-(3-(trifluoromethyl)benzoyl)glycyl\}aminomethyl]piperidine (240 mg) and thionyl chloride (1 mL) was stirred at room temperature for 12 h and the excess thionyl chloride was removed under reduced pressure to give desired <math>1-[4-(chloroformyl)benzyl]-4-[\{N-(3-(chloroformyl)benzyl]-4-[\{N-(a-(chloroformyl)benzyl]-4-[\{N-(a-(a-(chloroformyl)benzyl]-4-[\{N-(a-(a-(chloroformyl)benzyl]-4-[\{N-(a-(a-(a-(chloroformyl)benzyl]-4-[\{N-(a-($

(trifluoromethyl)benzoyl)glycyl)aminomethyl]piperidine. The acid chloride was used without further purification.

Example 2017: Preparation of 1-[4-(N-(2-

Methoxyethyl)carbamoyl}benzyl}-4-[{N-(3-

10

15

20

25

(trifluoromethyl)benzoyl)glycyl)aminomethyl]piperidine (Compound No. 1612).

A mixture of $1-[4-(\text{chloroformyl})\text{benzyl}]-4-[\{N-(3-(\text{trifluoromethyl})\text{benzoyl})\text{glycyl}\}$ aminomethyl]piperidine (0.042 mmol), 2-methoxyethylamine (3.8 mg, 0.050 mmol), piperidinomethylpolystyrene (46 mg) and dichloromethane (1.5 mL) was stirred at room temperature for 17 h. Water (0.020 mL) was added and the mixture was stirred for 30 min. Methanol (1 mL) was added and the mixture was loaded onto VarianTM SCX column, and washed with CH₃OH (10 mL). Product was eluted off using 2 N NH₃ in CH₃OH (5 mL) and concentrated to afford $1-[4-(N-(2-\text{methoxyethyl})\text{carbamoyl})\text{benzyl}]-4-[\{N-(3-(2-\text{methoxyethyl})\text{carbamoyl})\text{benzyl}]-4-[\{N-(3-(2-\text{methoxyethyl})\text{carbamoyl})\text{benzyl}]-4-[\{N-(3-(2-\text{methoxyethyl})\text{carbamoyl})\text{benzyl}]-4-[\{N-(3-(2-\text{methoxyethyl})\text{carbamoyl})\text{benzyl}]-4-[\{N-(3-(2-\text{methoxyethyl})\text{carbamoyl})\text{benzyl}]-4-[\{N-(3-(2-\text{methoxyethyl})\text{carbamoyl})\text{benzyl}]-4-[\{N-(3-(2-\text{methoxyethyl})\text{carbamoyl})\text{benzyl}]-4-[\{N-(3-(2-\text{methoxyethyl})\text{carbamoyl})\text{benzyl}]-4-[\{N-(3-(2-\text{methoxyethyl})\text{carbamoyl})\text{benzyl}]-4-[\{N-(3-(2-\text{methoxyethyl})\text{carbamoyl})\text{benzyl}]-4-[\{N-(3-(2-\text{methoxyethyl})\text{carbamoyl})\text{benzyl}]-4-[\{N-(3-(2-\text{methoxyethyl})\text{carbamoyl})\text{benzyl}]-4-[\{N-(3-(2-\text{methoxyethyl})\text{carbamoyl})\text{benzyl}]-4-[\{N-(3-(2-\text{methoxyethyl})\text{carbamoyl})\text{benzyl}]-4-[\{N-(3-(2-\text{methoxyethyl})\text{carbamoyl})\text{benzyl}]-4-[\{N-(3-(2-\text{methoxyethyl})\text{carbamoyl})\text{benzyl}]-4-[\{N-(3-(2-\text{methoxyethyl})\text{carbamoyl})\text{benzyl}]-4-[\{N-(3-(2-\text{methoxyethyl})\text{carbamoyl})\text{carbamoyl})\text{carbamoyl})$

Examples 2018-2020.

The compounds of this invention were synthesized pursuant to methods of Example 2017 using the corresponding reactant respectively. Preparative TLC, if needed, afforded the desired material. The ESI/MS data and yields are summarized in Table 51.

30 Table 51

	Compound No.	Molecular Formula	ESI/MS m/e	Yield (mg)	Yield (%)
Example 2018	1610	C31 H30 F6 N4 O3	621.2	4.4	14
Example 2019	1611	C30 H29 C12 F3 N4 O3	621.2	35.7	quant
Example 2020	1613	C32 H35 F3 N4 O3	581.2	29.9	quant

Example 2021: Preparation of 4-[N-{5-Bromo-2-

(methylamino)benzoyl)glycyl]aminomethyl-1-(4-chlorobenzyl)piperidine (Compound No. 1427).

A solution of 4-(N-(2-amino-5-bromobenzoyl)glycyl)aminomethyl-1-(4-mino-5-bromobenzoyl)glycylchlorobenzyl)piperidine (Compound No. 1042) (50 mg, 0.10 mmol) in triethyl orthoformate (6.5 mL) was stirred at 150 $^{\circ}\text{C}$ for 17 h. Concentration afforded a yellow solid. To a solution of the yellow solid in ethanol (3 mL) was added sodium borohydride (7.6 mg, 0.2 mmol) and the mixture was stirred at room temperature for 14 h. A resulting white precipitate was resolved in dichloromethane and the solution was washed with 1 N aqueous NaOH (2 mL). The organic layer was separated, dried over K_2CO_3 , filtered and evaporated. Column MeOH/CHCl₃) gave 4-[N-(5-bromo-2-20% (SiO2, chromatography (methylamino)benzoyl)glycyl]aminomethyl-1-(4-chlorobenzyl)piperidine (Compound No. 1427) (40 mg, 80%): The purity was determined by RPLC/MS (100%); ESI/MS m/e 505 ($C_{23}H_{28}BrClF_6N_4O_2$).

15

20

5

10

Example 2022: Preparation of 4-[N-{5-Bromo-2-(dimethylamino)benzoyl}glycyl]aminomethyl-1-(4-chlorobenzyl)piperidine (Compound No. 1428).

Sodium cyanoborohydride (26 mg, 0.42 mmol) and acetic acid (14 μL) was $4 - \{N - (2 - amino - 5 - am$ οf mixture successively to added bromobenzoyl)glycyl)aminomethyl-1-(4-chlorobenzyl)piperidine (Compound No. 1042) (67 mg, 0.14 mmol), 37% formaldehyde solution in water (0.112 mL, 1.4 mmol), acetonitrile (2 mL), and methanol (1.5 mL). After the solution was stirred at 50 °C for 30 h, 1 N aqueous NaOH and dichloromethane were added. The aqueous layer was separated and the organic layer was dried over K_2CO_3 , filtered and Column chromatography (SiO₂, 20% MeOH/AcOEt) gave $4-[N-{5-}]$ bromo-2-(dimethylamino)benzoyl}glycyl]aminomethyl-1-(4chlorobenzyl)piperidine (Compound No. 1428) (60 mg, 82%): The purity was determined by RPLC/MS (100%); ESI/MS m/e 523 ($C_{24}H_{56}BrClF_6N_4O_2$).

30

35

25

Example 2023: Preparation of 4-[{N-(5-Bromo-2-(methylsulfonylamino)benzoyl)glycyl)aminomethyl]-1-(4-chlorobenzyl)piperidine (Compound No. 1581).

A mixture of $4-\{(N-(2-amino-5-bromobenzoyl)glycyl)aminomethyl]-1-(4-chlorobenzyl)piperidine (25 mg, 0.05 mmol), methanesulfonyl chloride (0.0045 mL), triethylamine (0.026 mL) and dichloromethane (2 mL) was stirred at room temperature for 17 h. The reaction mixture was purified with column chromatography (SiO₂), loaded onto Varian^{TI} SAX column, and washed with CH₃OH (5$

mL). Product was eluted off using 0.1 N HCl in CH_2QH (5 mL) and concentrated to afford 4-[(N-(5-bromo-2-(methylsulfonylamino)benzoyl)glycyl)aminomethyl]-1-(4-chlorobenzyl)-piperidine (Compound No.**1581** $) (5.4 mg, 19%): ESI/MS m/e 573.0 (M*+H, <math>C_{23}H_{23}BrClN_4O_4S$).

Example 2024: Preparation of 4-[{N-(5-Bromo-2-(bis(methylsulfonyl)amino)benzoyl)glycyl}aminomethyl]-1-(4-chlorobenzyl)piperidine (Compound No. 1582).

of 1-(4-chlorobenzyl)-4-[(N-(2-amino-5-Α mixture bromobenzoyl)glycyl}aminomethyl]piperidine (57 mg, 0.10 mmol), methanesulfonyl chloride (0.018 mL, 0.24 mmol), triethylamine (0.068 mL) and dichloromethane (2 mL) was stirred at room temperature for 8 h. Aqueous 1 N NaOH solution (1 mL) was added and the mixture was extracted with dichloromethane (2 mL x 3). The combined extracts were dried over K2CO3, filtered and evaporated. Column 4-[{N-(5-bromo-2-(SiO-) gave chromatography (bis (methylsulfonyl) amino) benzoyl) glycyl) aminomethyl]-1-(4chlorobenzyl)piperidine (Compound No. 1582) (40 mg, 62%): ESI/MS m/e 651 (M^++H , $C_{24}H_{30}BrClN_4O_6S_2$).

20

25

30

35

15

5

10

Example 2025: Preparation of 1-(4-Chlorobenzyl)-1-methyl-4-[(N-(3-(trifluoromethyl)benzoyl)glycyl)aminomethyl]piperidinium iodide (Methylammonium iodide of Compound No. 461).

4-[{N-(3of solution Α (trifluoromethyl)benzoyl)glycyl}aminomethyl]piperidine (30 mg, 0.087 mmol) in CH_3CN (1.0 mL) and (piperidinomethyl) polystyrene (80 mg, 2.7 mmol base/g resin) were added to a solution of 4-chlorobenzyl chloride (11.7 mg, 0.073 mmol) in $\mathrm{CH_{3}CN}$ (1.0 mL). The reaction mixture was stirred at 60 °C for 2 h. Phenyl isocyanate (10.4 mg, 0.087 mmol) was added to the cooled reaction mixture and the mixture was stirred at 25 °C for 1 h. The reaction mixture was loaded onto $Varian^{TM}$ SCX column and washed with CH_3OH (20 mL). Product was eluted off using 2 N NH; in CH;OH (6 mL) and concentrated to afford 1-(4-chlorobenzyl)-4-[{N-(3-(trifluoromethyl)benzoyl)glycyl)aminomethyl]piperidine as a colorless oil used without purification. Iodomethane (28 mg, 0.20 mmol) was added to a solution $1-(4-chlorobenzyl)-4-({N-(3$ of (trifluoromethyl)benzoyl)glycyl)aminomethyl]piperidine in CH_3CN (2.0 mL) and the reaction mixture was stirred at 70 °C for 4 h. The solvent was removed under 1-(4-chlorobenzyl)-1-methyl-4-[(N-(3afford pressure reduced

(trifluoromethyl)benzoyl)glycyl)aminomethyl]piperidinium iodide as a pale yellow oil (31.7 mg, 71%): The purity was determined by RPLC/MS (99%); ESI/MS m/e 482.1 (M', $C_{24}H_{26}C1F_3N_3O_2$).

Example 2026: Preparation of 1-{4-Chlorobenzyl}-4-[N-methyl-N-{N-(3-(trifluoromethyl)benzoyl)glycyl}aminomethyl]piperidine (Compound No. 520).

Formaldehyde (108 mg, 1.33 mmol, 37% wt solution in H_2O) was added to a solution of 1-(4-chlorobenzyl)-4-(aminomethyl)piperidine (318 mg, 1.33 mmol) and NaBH₃CN (668 mg) in 10% CH₃COOH/CH₃OH (3 mL). The reaction mixture was stirred at 25 °C for 1 h. The reaction mixture was loaded on DOWEXTM 50Wx2 column (10 mL) and washed with CH₃OH (100 mL). Product was eluted off using 2 N NH₃ in CH₃OH (100 mL) and concentrated to afford 173 mg of crude 1-(4-chlorobenzyl)-4-{ (methylamino)methyl)piperidine as a colorless oil used without purification.

EDCI (85 mg), 1-hydroxybenzotriazole hydrate (60 mg) were added to a solution of 1-(4-chlorobenzyl)-4-{ (methylamino) methyl}piperidine (111 mg, 0.44 mmol) in CH_2Cl_2 (4 mL). The reaction mixture was stirred at 25 °C for 1 h and then washed with 2 N aqueous NaOH (2 mL X 2) and brine (1 mL). After filtration through PTFE membrane filter, the solvent was removed under reduced pressure to afford an yellow oil which was purified by preparative TLC (SiO_2 , 5% CH_3OH/CH_2Cl_2) to give 1-(4-chlorobenzyl)-4-[N-methyl-N-(N-(3-(trifluoromethyl)benzoyl)glycyl)aminomethyl)piperidine (compound No. 520) as a pale yellow oil (14.0 mg, <math>3.4%). The purity was determined by RPLC/MS (99%); ESI/MS m/e 482.1 (M*+H, $C_24H_2:ClF_3N_3O_2$).

Reference Example 37: Preparation of 3-Aminohomopiperidine.

A solution of DL- α -amino- ϵ -caprolactam (2 g, 16 mmol) in THF (70 mL) was treated with 1 M BH₃-THF solution (80 mL) and heated to reflux for 3 h. 2 N aqueous HCl solution (50 mL) was added and the reaction was heated to reflux for an additional hour before cooling to 25 °C. The reaction was basicified (pH 10) by the addition of 4 N NaOH solution and extracted with EtOAc (3 x 200 mL). The combined organic phases were washed with saturated aqueous NaHCO₂, dried (MgSO₄) and concentrated to yield the desired material (990 mg, 54%) which was used without any further purification.

35 Reference Example 38: Preparation of 3-Amino-1-(4-chlorobenzyl)homopiperidine.

A solution of 3-aminohomopiperidine (1.71 g, 15 mmol) in CH₂CN (45 mL) was treated with p-chlorobenzyl chloride (463 mg, 2.9 mmol) and K_2 CO₁ (828 g,

5

10

15

20

6 mmol) and heated to 70 °C for 9 h. The reaction mixture was cooled to 25 °C and concentrated to afford a yellow solid. The residue was partitioned between $\rm H_2O$ (5 mL) and EtOAc (50 mL), and extracted with EtOAc (2 x 50 mL). The combined organic extracts were washed with brine (20 mL), dried (Na₂SO₄) and concentrated. The resulting yellow oil was purified by chromatography (SiO₂, 5-20% CH₃OH-CH₂Cl₂ gradient elution) to afford the desired product as a yellow oil (639 mg, 93%).

Example 2027: Preparation of 1-(4-Chlorobenzyl)-3-((4-benzoylbutyryl)amino}homopiperidine (Compound No. 994).

A solution of 3-amino-1-(4-chlorobenzyl)homopiperidine (24 mg, 0.10 mmol) and 4-benzoylbutyric acid (1.2 equiv.) in CHCl3 (1 mL) was treated with EDCI (23 mg), HOBt (16.2 mg) and Et₃N (15.2 μ L), and stirred at 25 °C for 16 h. The reaction mixture was diluted with CH₂Cl₂ (0.5 mL), washed with 2 N aqueous NaOH solution (2 x 0.75 mL), dried by filtration through a PTFE membrane and concentrated to afford 1-(4-chlorobenzyl)-3-((4-benzoylbutyryl)amino)homopiperidine (compound No. 994) (43 mg, 99%): The purity was determined by RPLC/MS (98%); ESI/MS m/e 413 (M*+H, C₂₄H₂₆ClN₂O₂).

Examples 2028-2042.

The compounds of this invention were synthesized pursuant to methods of Example 2027 using the corresponding reactant respectively. Chromatography (HPLC-C18), if needed, afforded the desired material as the TFA salt. The ESI/MS data and yields are summarized in Table 52.

25 Table 52

	Compound No.	Molecular Formula	ESI/MS m/e	Yield (mg)	Yield (%)
Example 2028	943	C23 H25 Cl F3 N3 O2	468	6	28
Example 2029	944	C23 H28 Cl N3 O2	414	5	29
Example 2030	945	C22 H25 Cl N4 O4	445	6	30
Example 2031	946	C23 H27 Cl N4 O4	459	5	24
Example 2032	947	C25 H31 C1 N2 O4	459	4	20
Example 2033	948	C24 H29 C12 N3 O2	462	6	32
Example 2034	949	C25 H32 Cl N3 O2	442	6	31
Example 2035	988	C23 H25 C1 F3 N3 O2	468	45	92
Example 2036	989	C23 H28 C1 N3 O3	430	44	97
Example 2037	990	C22 H26 C1 N3 O2	400	41	99
Example 2038	991	C23 H27 C1 N2 O2	399	41	97

10

15

992	C25 H31 C1 N2 O4	459	47	98
993	C25 H31 C1 N2 O2	427	44	98
995	C25 H31 C1 N2 O3	443	44	95
996	C24 H31 C1 N4 O2	443	5*	11
	993	993 C25 H31 C1 N2 O2 995 C25 H31 C1 N2 O3	993 C25 H31 C1 N2 O2 427 995 C25 H31 C1 N2 O3 443	993 C25 H31 C1 N2 O2 427 44 995 C25 H31 C1 N2 O3 443 44

^{*}Yield of TFA salt.

Example 2043: Measurement of Inhibition of MIP-1 α Binding to THP-1 Cells by Test Compounds.

Human monocytic leukemia cell line THP-1 was suspended in assay buffer (RPMI-1640 (Gibco-BRL Co.) containing 0.1% BSA and 25 mM HEPES adjusted to pH 7.4) to give a cell suspension of a concentration of 1 x 10^{-} cells/mL. The test compound was diluted in the assay buffer and used as the test compound solution. Iodinated human MIP-1 α (DuPont NEN Co.) was diluted in assay buffer to 250 nCi/mL and used as the labeled ligand solution. In a 96 well filter plate (Millipore Co.), 25 μ L of test compound solution, 25 μ L of labeled ligand solution and 50 μ L of cell suspension were aliquoted into each well in this order, stirred (total reaction volume 100 μ L), and incubated for one hour at 18 °C.

After the reaction, the reaction solution was filtered, and the filter was washed twice with 200 μL of cold PBS (200 μL of cold PBS was added and then filtered). The filter was air-dried and 25 μL of liquid scintillator was added into each well. The radioactivity retained by the cells on the filter were measured using TopCount (Packard Instrument Co.).

20

5

10

15

To calculate the ability of test compounds to inhibit binding of human MIP-1 α to THP-1 cells, non-specific binding determined by adding 100 ng of unlabeled human MIP-1 α (Peprotech Co.) in place of the test compound was subtracted, while the counts with no test compound added was taken as 100%.

25

Inhibition (%) =
$$\{1 - (A - B)/(C - B)\} \times 100$$

(A, counts with test compound added; B, counts with 100 ng of unlabeled human MIP-l α added; C, counts with [125 I]-labeled human MIP-l α added).

30

When inhibition by the cyclic amine derivative of this invention was measured, for example, the following compounds demonstrated 20-50%, 50%-80% and >80% inhibitory activity at 2 μ M or 10 μ M, respectively. These compounds are

```
200-500 inhibition at 10 \mu M: Compound Nos. 29, 37, 41, 45, 46, 47, 50, 82, 85,
     107, 120, 134, 214, 217, 218, 220, 222, 225, 226, 227, 228, 229, 230, 231, 233,
     234, 236, 237, 238, 333, 334, 335, 336, 338, 340, 342, 347, 348, 349, 350, 352,
     357, 359, 361, 366, 372, 374, 375, 376, 380, 382, 383, 385, 470, 471, 472, 473,
     474, 483, 484, 488, 489, 491, 497, 499, 500, 502, 506, 508, 510, 514, 515, 518,
     524, 543, 553, 554, 555, 556, 563, 571, 575, 576, 578, 579, 580, 583, 586, 587,
     588, 590, 591, 592, 595, 596, 598, 603, 610, 611, 612, 614, 624, 625, 626, 629,
     635, 638, 639, 640, 641, 642, 643, 644, 646, 647, 648, 649, 652, 653, 658, 659,
     660, 665, 666, 669, 671, 675, 677, 679, 681, 682, 684, 691, 695, 696, 700, 702,
     704, 706, 711, 712, 714, 717, 721, 723, 724, 726, 727, 728, 729, 731, 737, 739,
10
     740, 741, 742, 744, 746, 765, 767, 772, 773, 774, 775, 776, 780, 781, 785, 786,
     787, 788, 790, 791, 792, 793, 795, 796, 797, 798, 805, 806, 807, 810, 813, 820,
     821, 822, 824, 825, 827, 829, 830, 833, 834, 837, 838, 844, 853, 855, 873, 877,
     878, 880, 882, 887, 888, 891, 894, 901, 903, 904, 905, 911, 929, 932, 933, 935,
     938, 940, 948, 993, 996, 1006, 1018, 1026, 1028, 1035, 1048, 1053, 1054, 1055,
     1056, 1068, 1070, 1071, 1072, 1073, 1075, 1076, 1081, 1763, 1764.
     50%-80% inhibition at 10 \mu M: Compound Nos. 1, 2, 3, 4, 7, 13, 22, 23, 24, 25,
     27, 31, 32, 38, 48, 83, 119, 121, 123, 131, 215, 216, 221, 235, 337, 351, 354,
     358, 362, 363, 365, 367, 368, 369, 373, 378, 381, 384, 458, 459, 463, 465, 466,
     467, 468, 478, 479, 480, 482, 485, 486, 487, 492, 493, 494, 495, 496, 498, 501,
     503, 504, 507, 511, 512, 513, 520, 523, 527, 529, 530, 531, 532, 533, 534, 535,
     536, 537, 538, 539, 540, 541, 542, 545, 546, 547, 548, 549, 550, 551, 552, 558,
     559, 560, 561, 562, 565, 567, 568, 569, 570, 572, 573, 574, 577, 581, 582, 594,
     597, 599, 600, 602, 604, 606, 607, 608, 609, 613, 615, 616, 618, 619, 620, 621,
     628, 630, 631, 632, 633, 634, 636, 637, 645, 651, 654, 655, 657, 661, 662, 664,
25
     673, 674, 676, 678, 680, 683, 685, 687, 688, 689, 693, 703, 705, 707, 708, 709,
     710, 713, 716, 718, 719, 720, 725, 730, 732, 733, 734, 735, 736, 749, 750, 751,
     752, 753, 754, 756, 758, 760, 762, 763, 764, 766, 768, 769, 770, 771, 777, 778,
     779, 784, 794, 799, 800, 802, 804, 808, 809, 811, 812, 815, 816, 819, 828, 831,
     832, 835, 836, 839, 840, 845, 846, 847, 848, 850, 851, 854, 857, 858, 859, 860,
30
     861, 862, 863, 865, 866, 867, 868, 872, 874, 876, 886, 899, 910, 942, 998, 1004,
      1005, 1007, 1013, 1015, 1016, 1017, 1019, 1020, 1021, 1022, 1024, 1030, 1037,
      1042, 1043, 1044, 1045, 1046, 1047, 1049, 1050, 1052, 1059, 1060, 1061, 1067,
      1069, 1074, 1078, 1079, 1080, 1766.
     >80% inhibition at 10 \mu M: Compound Nos. 461, 464, 469, 481, 490, 505, 509, 521,
35
      526, 528, 544, 564, 566, 601, 605, 617, 622, 623, 627, 650, 656, 663, 668, 672,
      686, 690, 692, 694, 715, 743, 747, 748, 755, 757, 759, 761, 782, 783, 803, 814,
```

817, 818, 826, 849, 856, 864, 869, 870, 871, 999, 1000, 1001, 1002, 1003, 1008,

1009, 1010, 1011, 1012, 1023, 1029, 1031, 1032, 1033, 1034, 1036, 1038, 1039, 1040, 1041, 1051, 1057, 1058, 1062, 1063, 1064, 1065, 1066, 1082, 1083. 20%-50% inhibition at 2 μM: Compound Nos. 1042, 1043, 1244, 1245, 1416, 1435, 1436, 1438, 1441, 1480, 1570, 1583, 1584, 1589, 1590, 1594, 1595, 1601, 1660, 1672, 1687, 1724, 1779, 1780, 1787, 1795, 1796, 1798, 1799, 1802, 1893, 1894, 1898, 1900, 1915, 1919, 1920, 2092, 2096, 2098, 2100. 50%-80% inhibition at 2 μM: Compound Nos. 1190, 1414, 1600, 2091, 2094, 2095. >80% inhibition at 2 μM: Compound Nos. 2093, 2097, 2099, 2103, 2104.

- 10 Example 2044: Measurement of Inhibition of MCP-1 Binding to THP-1 Cells.
 - 1. Construction of recombinant baculovirus carrying the human MCP-1 gene

Based on the previously published human MCP-1 gene sequence (for example T. Yoshimura et al., FEBS Lett., 1989, 244, 487-493), two synthetic DNA primers (5'-CACTCTAGACTCCAGCATGA-3' and 5'-TAGCTGCAGATTCTTGGGTTG-3') flanked by restriction enzyme sites were used to amplify a DNA fragment from cDNA derived from human endothelial cells (purchased from Kurabow Co.); the amplified fragment was cut with the restriction enzymes (PstI and XbaI), ligated into a transfer vector pVL1393 (Invitrogen Co.), and the resulting vector was co-transfected along with infectious baculovirus into Sf-9 insect cells and the supernatant was plaque assayed to yield human MCP-1 gene baculovirus recombinant.

- Synthesis of [125]-labeled human MCP-1 expressed in baculovirus
- Using the method of K. Ishii et al. (Biochem Biophys Research Communications, 1995, 206, 955-961), 5 x 10⁶ Sf-6 insect cells was infected with 5 x 10⁷ PFU (plaque forming units) of the above human MCP-1 recombinant baculovirus and cultured for 7 days in Ex-Cell 401 medium. The culture supernatant was affinity purified using a heparin Sepharose column (Pharmacia Co.) and then further purified using reverse phase HPLC (Vydac C18 column) to prepare purified human MCP-1. The purified human MCP-1 was protein labeled by Amersham Co. using the Bolton Hunter method to yield [125I]-labeled baculovirus expressed human MCP-1 (specific activity 2000 Ci/mmol).
- 35 3-1. Measurement of inhibition of binding of [125I]-labeled baculovirus expressed human MCP-1 to THP-1 cells (Method 1)

Human monocytic leukemia cell line THP-1 was suspended in assay buffer

(RPMI-1640 (Gibco-BRL Co.) containing 0.1% BSA and 25 mM HEPES adjusted to pH 7.4) to give a cell suspension of a concentration of $1 \times 10^{\circ}$ cells/mL. The test compound was diluted in the assay buffer and used as the test compound solution. [125 I]-labeled human MCP-1 described above was diluted in assay buffer to 1 mCi/mL and used as the labeled ligand solution. In a 96 well filter plate (Millipore Co.), 25 μ L of test compound solution, 25 μ L of labeled ligand solution and 50 μ L of cell suspension were aliquoted into each well in this order, stirred (total reaction volume 100 μ L), and incubated for one hour at 18 °C.

After the reaction, the reaction solution was filtered, and the filter was washed twice with 200 μL of cold PBS (200 μL of cold PBS was added and then filtered). The filter was air-dried and 25 μL of liquid scintillator was added into each well. The radioactivity retained by the cells on the filter were measured using TopCount (Packard Instrument Co.).

15

To calculate the ability of test compound to inhibit binding of human MCP-1 to THP-1 cells, non-specific binding determined by adding 100 ng of unlabeled human MCP-1 in place of the test compound was subtracted, while the counts with no test compound added was taken as 100%.

20

Inhibition (%) =
$$\{1 - (A - B)/(C - B)\} \times 100$$

(A, counts with test compound added; B, counts with 100 ng of unlabeled human MCP-1 added; C, counts with [125 I]-labeled human MCP-1 added).

25

When inhibition by the cyclic amine derivative of this invention was measured, for example, the following compounds demonstrated 20%-50%, 50%-80% and >80% inhibitory activity at 1 μ M, 10 μ M or 100 μ M, respectively. These compounds are

- 30 20%-50% inhibition at 100 μM: Compound Nos. 3, 6, 11, 15, 16, 19, 28, 44, 88, 92, 94, 104, 111, 112, 124, 125, 133, 219, 220, 224, 228, 236, 338, 343, 346, 347, 348, 349, 362, 363, 367, 368, 371, 373, 381, 618, 847, 849, 850, 866, 867, 869, 870, 871, 872, 873.
- 50%-80% inhibition at 100 µM: Compound Nos. 1, 8, 10, 12, 18, 21, 26, 30, 33, 35, 39, 84, 89, 90, 91, 96, 97, 98, 99, 100, 101, 103, 106, 108, 109, 110, 116, 122, 126, 216, 218, 221, 225, 226, 231, 330, 332, 333, 334, 337, 341, 342, 350, 352, 354, 356, 359, 360, 361, 364, 366, 374, 375, 379, 382, 462, 463, 464, 557, 686, 840, 841, 842, 843, 844, 845, 846, 848, 862, 863, 864, 865, 868.

>80% inhibition at 100 $\mu\text{M}\colon$ Compound Nos. 2, 4, 5, 7, 13, 14, 17, 20, 22, 23, 24, 25, 27, 29, 31, 32, 34, 36, 38, 40, 41, 42, 43, 45, 46, 47, 48, 49, 50, 83, 85, 86, 95, 102, 105, 107, 113, 114, 115, 119, 120, 121, 123, 127, 128, 129, 130, 131, 132, 134, 214, 215, 217, 227, 237, 238, 331, 335, 336, 339, 340, 345, 351, 355, 357, 358, 383, 458, 459, 460, 466, 558, 851, 852, 861, 874. 20%-50% inhibition at 10 μM : Compound Nos. 12, 18, 30, 34, 40, 42, 43, 51, 52, 53, 54, 55, 56, 57, 59, 60, 64, 66, 75, 76, 77, 78, 79, 82, 89, 90, 97, 98, 102, 103, 116, 127, 128, 129, 130, 132, 135, 136, 140, 141, 144, 156, 157, 159, 160, 161, 162, 163, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 178, 179, 190, 191, 192, 195, 197, 200, 202, 203, 204, 205, 208, 233, 234, 235, 239, 240, 10 241, 242, 243, 245, 247, 249, 250, 255, 263, 264, 269, 274, 278, 279, 282, 306, 316, 317, 323, 324, 380, 404, 409, 433, 446, 448, 449, 451, 470, 471, 473, 476, 479, 486, 488, 489, 497, 498, 499, 501, 504, 507, 508, 509, 510, 512, 514, 516, 519, 527, 530, 532, 542, 545, 560, 563, 564, 565, 566, 568, 569, 572, 573, 574, 575, 578, 583, 584, 586, 587, 589, 590, 599, 600, 601, 603, 606, 612, 613, 620, 15 621, 622, 624, 625, 627, 629, 630, 632, 634, 636, 637, 640, 641, 642, 643, 644, 645, 646, 647, 648, 649, 658, 678, 682, 687, 692, 694, 764, 775, 856, 857, 860, 881, 882, 883, 884, 890, 892, 899, 900, 903, 905, 907, 908, 911, 912, 916, 917, 921, 922, 923, 925, 927, 931, 932, 935, 939, 940, 968, 986, 1039, 1041, 1045, 1047, 1062, 1063, 1083. 20 50%-80% inhibition at 10 μM : Compound Nos. 7, 32, 36, 61, 62, 63, 65, 67, 69, 70, 71, 72, 73, 74, 81, 91, 105, 114, 121, 123, 134, 137, 138, 139, 146, 147, 148, 149, 151, 154, 165, 177, 232, 244, 248, 251, 252, 253, 256, 259, 261, 266, 267, 276, 286, 292, 293, 295, 301, 305, 307, 310, 314, 315, 320, 322, 328, 434, 435, 436, 437, 439, 440, 443, 447, 450, 452, 453, 454, 455, 456, 468, 469, 472, 25474, 475, 477, 478, 480, 481, 482, 483, 485, 490, 493, 494, 500, 505, 511, 517, 520, 529, 534, 540, 543, 544, 548, 555, 556, 561, 562, 570, 576, 579, 611, 617, 853, 854, 855, 858, 859, 875, 877, 879, 880, 885, 886, 887, 888, 891, 894, 895, 904, 906, 909, 910, 913, 914, 918, 928, 930, 933, 937, 938, 945, 970, 1040, 1044, 30 1046. >80% inhibition at 10 μ M: Compound Nos. 31, 45, 46, 48, 58, 68, 80, 83, 113, 115, 142, 143, 145, 150, 152, 265, 268, 272, 275, 283, 285, 287, 288, 290, 291, 294, 296, 297, 302, 308, 309, 313, 321, 325, 326, 358, 438, 441, 442, 444, 445, 457, 466, 467, 484, 487, 491, 492, 495, 496, 503, 518, 537, 538, 547, 554, 876, 35 878, 919, 929, 943. 20%-50% inhibition at 1 μM : Compound Nos. 1118, 1121, 1136, 1143, 1146, 1158, 1159, 1167, 1170, 1359, 1361, 1362, 1363.

50%-80% inhibition at 1 μM : Compound Nos. 1133, 1134, 1137, 1141, 1156, 1161,

1162, 1163, 1164, 1166. >80% inhibition at 1 μ M: Compound No. 1147.

3-2. Measurement of inhibition of binding of [125I]-labeled baculovirus 5 expressed human MCP-1 to THP-1 cells (Method 2)

Human monocytic leukemia cell line THP-1 was suspended in assay buffer (50 mM HEPES, pH 7.4, 1.0 mM CaCl₂, 5.0 mM MgCl₂, 0.5% BSA) to give a cell suspension of a concentration of 1 x 10 cells/mL. The test compound was diluted in the assay buffer and used as the test compound solution. [^{125}I]-labeled human MCP-1 described above was diluted in assay buffer to 1 mCi/mL and used as the labeled ligand solution. In a 96 well filter plate (Millipore Co.), 25 µL of test compound solution, 25 µL of labeled ligand solution and 50 µL of cell suspension were aliquoted into each well in this order, stirred (total reaction volume 100 µL), and incubated for one hour at 18 °C.

After the reaction, the reaction solution was filtered, and the filter was washed twice with 200 μL of cold PBS (200 μL of cold PBS was added and then filtered). The filter was air-dried and 25 μL of liquid scintillator was added into each well. The radioactivity retained by the cells on the filter were measured using TopCount (Packard Instrument Co.).

To calculate the ability of test compound to inhibit binding of human MCP-1 to THP-1 cells, non-specific binding determined by adding 100 ng of unlabeled human MCP-1 in place of the test compound was subtracted, while the counts with no test compound added was taken as 100%.

Inhibition (
$$%$$
) = {1 - (A - B)/(C - B)} x 100

30 (A, counts with test compound added; B, counts with 100 ng of unlabeled human MCP-1 added; C, counts with $[^{125}I]$ -labeled human MCP-1 added).

When inhibition by the cyclic amine derivative of this invention was measured, for example, the following compounds demonstrated 20%-50%, 50%-80% and >80% inhibitory activity at 0.2 μM , 1 μM or 10 μM , respectively. These compounds are

20%-50% inhibition at 10 μM: Compound No. 1560. 50%-80% inhibition at 10 μM: Compound No. 1550.

10

15

20

25

```
>80% inhibition at 10 \mu\text{M}\colon Compound Nos. 541, 1042, 1043, 1559.
    20\%-50\% inhibition at 1 \mu\text{M}: Compound Nos. 1098, 1100, 1101, 1104, 1105, 1109,
    1110, 1116, 1174, 1175, 1176, 1178, 1187, 1188, 1189, 1197, 1198, 1199, 1200,
    1201, 1202, 1209, 1210, 1211, 1212, 1222, 1225, 1229, 1230, 1237, 1238, 1243,
    1250, 1259, 1261, 1265, 1266, 1272, 1277, 1282, 1294, 1299, 1302, 1307, 1315,
5
    1318, 1319, 1320, 1329, 1330, 1335, 1336, 1337, 1343, 1344, 1353, 1355, 1356,
    1357, 1358, 1368, 1372, 1385, 1386, 1392, 1400, 1413, 1422, 1423, 1425, 1426,
    1429, 1430, 1432, 1437, 1440, 1445, 1446, 1447, 1448, 1450, 1452, 1453, 1455,
    1458, 1459, 1461, 1463, 1464, 1466, 1468, 1469, 1470, 1471, 1474, 1479, 1482,
    1485, 1507, 1508, 1510, 1511, 1512, 1513, 1514, 1515, 1516, 1518, 1519, 1521,
10
    1522, 1524, 1535, 1538, 1540, 1542, 1544, 1571, 1573, 1574, 1575, 1576, 1577,
     1578, 1579, 1580, 1581, 1582, 1585, 1587, 1598, 1602, 1603, 1604, 1609, 1611,
     1612, 1613, 1614, 1615, 1616, 1617, 1618, 1622, 1627, 1630, 1643, 1646, 1662,
     1669, 1716, 1717, 1723, 1728, 1731, 1733, 1736, 1739, 1740, 1747, 1750, 1755,
     1757, 1758, 1759, 1760, 1761, 1762, 1769, 1770, 1771, 1772, 1773, 1774, 1777,
15
     1783, 1784, 1785, 1791, 1793, 1904, 1911, 1917, 2057, 2061, 2063, 2064, 2065,
     2066, 2067, 2068, 2069, 2071, 2072, 2073, 2074, 2075, 2076, 2080, 2081, 2082,
     2110, 2112, 2123, 2130, 2131, 2139.
     50%-80% inhibition at 1 μM: Compound Nos. 37, 298, 318, 1084, 1091, 1103, 1106,
     1108, 1111, 1113, 1114, 1115, 1138, 1142, 1165, 1179, 1190, 1192, 1193, 1195,
20
     1196, 1204, 1205, 1206, 1207, 1208, 1245, 1246, 1255, 1257, 1258, 1262, 1263,
     1293, 1300, 1342, 1351, 1352, 1354, 1370, 1371, 1373, 1375, 1377, 1378, 1380,
     1381, 1383, 1384, 1391, 1411, 1412, 1414, 1417, 1418, 1419, 1421, 1424, 1431,
     1436, 1439, 1449, 1454, 1456, 1457, 1460, 1462, 1472, 1473, 1487, 1502, 1504,
     1506, 1517, 1525, 1526, 1527, 1529, 1530, 1531, 1532, 1533, 1534, 1536, 1537,
25
     1539, 1541, 1545, 1593, 1600, 1601, 1606, 1608, 1619, 1620, 1621, 1623, 1624,
     1625, 1626, 1628, 1629, 1645, 1650, 1654, 1658, 1663, 1664, 1665, 1670, 1671,
      1672, 1673, 1675, 1678, 1679, 1681, 1684, 1687, 1688, 1689, 1690, 1711, 1712,
      1714, 1718, 1722, 1725, 1726, 1727, 1729, 1730, 1732, 1734, 1735, 1737, 1741,
     1742, 1743, 1744, 1745, 1746, 1748, 1751, 1753, 1754, 1756, 1779, 1781, 1782,
30
      1786, 1788, 1789, 1790, 1792, 1795, 1797, 1798, 1800, 1801, 1804, 1848, 1862,
      1883, 1885, 1886, 1887, 1889, 1893, 1894, 1903, 1905, 1910, 1912, 1913, 1914,
      1918, 1922, 1976, 1985, 2027, 2035, 2062, 2083, 2084, 2088, 2089, 2090, 2111,
      2124, 2125, 2126, 2135.
      >80\% inhibition at 1 \mu\text{M}: Compound Nos. 299, 311, 312, 329, 1042, 1043, 1085,
 35
      1119, 1191, 1203, 1220, 1228, 1236, 1244, 1256, 1288, 1295, 1308, 1310, 1376,
      1382, 1393, 1395, 1415, 1416, 1420, 1435, 1438, 1441, 1480, 1481, 1570, 1583,
      1584, 1589, 1590, 1594, 1595, 1607, 1634, 1660, 1661, 1666, 1668, 1695, 1696,
```

1697, 1698, 1699, 1701, 1702, 1703, 1704, 1705, 1706, 1707, 1708, 1709, 1713, 1724, 1749, 1752, 1775, 1776, 1778, 1780, 1787, 1794, 1796, 1799, 1802, 1803, 1841, 1869, 1870, 1871, 1872, 1876, 1877, 1892, 1896, 1897, 1898, 1899, 1900, 1901, 1902, 1906, 1907, 1908, 1909, 1915, 1916, 1919, 1920, 1921, 2085, 2086, 2087, 2113, 2114, 2118, 2119, 2120, 2121, 2122, 2127, 2128, 2129, 2132, 2133, 2136, 2137, 2138, 2159, 2161, 2162, 2187, 2189, 2193. 20%-50% inhibition at 0.2 μM: Compound Nos. 1680, 1682, 1686, 1691, 1694, 1700, 1805, 1810, 1811, 1812, 1813, 1815, 1816, 1817, 1818, 1819, 1820, 1824, 1825, 1826, 1827, 1828, 1832, 1833, 1834, 1835, 1836, 1839, 1840, 1842, 1843, 1851, 1852, 1853, 1854, 1855, 1856, 1858, 1859, 1860, 1863, 1864, 1865, 1866, 1868, 10 1874, 1878, 1879, 1880, 1888, 1890, 1891, 1895, 1926, 1927, 1928, 1929, 1930, 1934, 1935, 1937, 1945, 1946, 1951, 1952, 1953, 1954, 1959, 1960, 1961, 1962, 1966, 1969, 1970, 1971, 1972, 1973, 1977, 1978, 1979, 1980, 1981, 1985, 2014, 2027, 2028, 2033, 2035, 2039, 2040, 2041, 2042, 2044, 2045, 2046. 50%-80% inhibition at 0.2 µM: Compound Nos. 1677, 1678, 1679, 1681, 1687, 1688, 15 1689, 1690, 1695, 1697, 1808, 1809, 1841, 1848, 1861, 1862, 1869, 1870, 1871, 1872, 1873, 1876, 1877, 1883, 1884, 1885, 1886, 1887, 1889, 1893, 1894, 1976. >80% inhibition at 0.2 μM : Compound No. 1696, 1892.

- 20 Example 2045: Measurement of Inhibition of Binding of [125]-Labeled Human MCP-1 to Cells Expressing the MCP-1 Receptor.
 - 1. Derivation of cells expressing the MCP-1 receptor

cDNA fragment containing the MCP-1 receptor reported by S. Yamagami et al., Biochemical Biophysical Research Communications 1994, 202, 1156-1162) was cloned into the expression plasmid pCEP4 (Invitrogen Co.) at the NotI site, and the plasmid obtained was transfected into the human kidney epithelial cell line 293-EBNA using the Lipofectamine reagent (Gibco-BRL Co.). The cells were cultured in the presence of the selective agent (Hygromycin), and a stably expressing transfectant line was obtained. The expression of the receptor was confirmed by binding of [125I]-labeled human MCP-1.

2. Measurement of inhibition of binding of [125]-labeled baculovirus expressed human MCP-1 to the MCP-1 receptor expressing cells

The MCP-1 receptor expressing cells on tissue culture dishes were scraped using a cell scraper and suspended in assay buffer (D-MEM(Gibco-BRL Co.) containing 0.1% BSA and 25 mM HEPES adjusted to pH 7.4) to give a cell suspension of a concentration of 6 x 10^6 cells/mL. The test compound was diluted in the assay buffer. The remainder of the procedure was as described in Example 2044.

25

When the inhibition by some typical compounds of the present invention was measured, the inhibitory activities were substantially the same as those in Example 2044, respectively.

5

10

15

20

25

Example 2046: Measurement of Inhibition of Cell Chemotaxis.

In order to determine the inhibition of cell chemotaxis by the compounds of this invention, we measured cell chemotaxis caused by monocyte chemotactic factor MCP-1 using the human monocytic leukemia cell line THP-1 as the chemotactic cell according to the method of Fall et al. (J. Immunol. Methods, 190, 33, 239-247). 2×10^6 cells/mL of THP-1 cells (suspended in RPMI-1640 (Flow Laboratories Co.) +10% FCS) was placed in the upper chamber (200 μ L) of a 96 well micro-chemotaxis chamber (Neuroprobe, registered tradename), and human recombinant MCP-1 in a same solution (Peprotech Co.) at a final concentration of 20 ng/mL was placed in the lower chamber, with a polycarbonate filter (PVP-free, Neuroprobe; registered tradename) placed between the two chambers. These were incubated at 37 °C for 2 hr in 5% CO2.

The filter was removed, and the cells which had migrated to the underside of the filter was fixed, stained using Diff Quick (Kokusai Shiyaku Co.) and then quantitated using a plate reader (Molecular Device Co.) at a wavelength of 550 nm to determine the index of cell migration as a mean of 3 wells. In addition, test compounds were placed in the upper and lower chambers along with THP-1 and MCP-1, respectively, and the inhibition of cell migration (inhibition IC_{50} (μM)) was determined. Inhibition was defined as {(cells migration induced MCP-1 with no test compound in the upper and lower chambers) - (cells migration with no MCP-1 added in the lower chamber) = 100%}, and the concentration of the test compound which gave 50% inhibition was designated IC_{50} .

When inhibition by the cyclic amine derivative of this invention was measured, for example, the 50% inhibition concentration (IC5.) for the following compounds were IC50 < 0.1 μM .

 $IC_{50} < 0.1 \ \mu M$: Compound Nos. 4, 37, 298, 299, 311, 312, 318, 329, 461, 886, 909, 1042, 1043, 1085, 1119, 1138, 1142, 1165, 1179, 1191, 1203, 1205, 1220, 1228, 1236, 1244, 1245, 1256, 1288, 1293, 1295, 1308, 1310, 1352, 1376, 1382, 1393, 1395, 1416, 1420, 1435, 1436, 1438, 1441, 1480, 1531, 1532, 1570, 1583, 1584, 1589, 1590, 1594, 1595, 1600, 1601, 1607, 1660, 1661, 1664, 1666, 1668, 1698, 1699, 1701, 1702, 1703, 1704, 1706, 1707, 1708, 1709, 1713, 1775, 1776, 1778, 1779, 1787, 1794, 1796, 1799, 1802, 1803, 1896, 1898, 1899, 1900, 1901, 1902,

1906, 1907, 1908, 1909, 1915, 1916, 1919, 1920, 1921, 2087, 2114, 2128, 2129, 2132, 2137, 2141, 2144, 2157, 2158, 2189.

Claims

What is claimed is:

5

10

15

20

25

30

A compound of the formula (I) below:

$$\begin{array}{c}
R^{1} \longrightarrow (CH_{2})_{j} - N \longrightarrow (CH_{2})_{m} \longrightarrow (CH_{2})_{n} - N - C - (CH_{2})_{p} \longrightarrow (CH_{2})_{q} - G - R^{6} \\
R^{2} \longrightarrow (CH_{2})_{m} \longrightarrow (CH_{2})_{m} \longrightarrow (CH_{2})_{m} \longrightarrow (CH_{2})_{n} \longrightarrow (CH_{2})_{p} \longrightarrow (CH_{2})_{q} - G - R^{6}
\end{array}$$
(1)

, a pharmaceutically acceptable acid addition salt thereof or a pharmaceutically acceptable $C_1\text{--}C_6$ alkyl addition salt thereof,

wherein R^1 is a phenyl group, a C_3-C_8 cycloalkyl group, or an aromatic heterocyclic group having 1-3 heteroatoms selected from the group consisting of an oxygen atom, a sulfur atom, a nitrogen atom, or a combination thereof, in which the phenyl or aromatic heterocyclic group may be condensed with a benzene ring or an aromatic heterocyclic group having 1-3 heteroatoms selected from the group consisting of an oxygen atom, a sulfur atom, a nitrogen atom, or a combination thereof, to form a condensed ring, and the phenyl group, $C_3\text{--}C_8$ cycloalkyl group, aromatic heterocyclic group, or condensed ring may be substituted with one or more of a halogen atom, a hydroxy group, a cyano group, a nitro group, a carboxy group, a carbamoyl group, a $C_1 - C_6$ alkyl group, a $C_3 - C_8$ cycloalkyl group, a C_2 - C_6 alkenyl group, a C_1 - C_6 alkoxy group, a C_1 - C_6 alkylthio group, a C_3-C_5 alkylene group, a C_2-C_4 alkylenoxy group, a C_1-C_3 alkylenedioxy group, a phenyl group, a phenoxy group, a phenylthio group, a benzyl group, a benzyloxy group, a benzoylamino group, a C_2-C_7 alkanoyl group, a C_2-C_7 alkoxycarbonyl group, a C_2 - C_7 alkanoyloxy group, a C_2 - C_7 alkanoylamino group, a C_2 - C_7 N-alkylcarbamoyl group, a C_4 - C_9 N-cycloalkylcarbamoyl group, a C_1 - C_6 alkylsulfonyl group, a C_3-C_8 (alkoxycarbonyl) methyl group, a N-phenylcarbamoyl group, a piperidinocarbonyl group, a morpholinocarbonyl group, a 1pyrrolidinylcarbonyl group, a divalent group represented by the formula: -NH(C=0)O-, a divalent group represented by the formula: -NH(C=S)O-, an amino group, a mono(C_1 - C_6 alkyl)amino group, or a di(C_1 - C_6 alkyl)amino group, wherein the substituent for the phenyl group, $C_3\text{--}C_8$ cycloalkyl group, aromatic heterocyclic group, or condensed ring is optionally substituted with one or more of a halogen atom, a hydroxy group, an amino group, a trifluoromethyl group, a C_1 - C_6 alkyl group, or a C_1 - C_6 alkoxy group;

 R^2 is a hydrogen atom, a C_1 - C_6 alkyl group, a C_2 - C_7 alkoxycarbonyl group, a hydroxy group, or a phenyl group, in which the C_1 - C_6 alkyl or phenyl group may

be substituted with one or more of a halogen atom, a hydroxy group, a C_1-C_6 alkyl group, or a C_1-C_6 alkoxy group, and when j=0, R^2 is not a hydroxy group;

- i represents an integer of 0-2;
- k represents an integer of 0-2;
- m represents an integer of 2-4;
- n represents 0 or 1;

35

40

45

50

55

65

 R^3 is a hydrogen atom or a C_1 - C_6 alkyl group optionally substituted with one or two phenyl groups each of which may be substituted with one or more of a halogen atom, a hydroxy group, a C_1 - C_6 alkyl group, or a C_1 - C_6 alkoxy group;

 R^4 and R^5 are the same or different from each other and are a hydrogen atom, a hydroxy group, a phenyl group, or a C_1 - C_6 alkyl group, in which the C_1 - C_6 alkyl group is optionally substituted with one or more of a halogen atom, a hydroxy group, a cyano group, a nitro group, a carboxy group, a carbamoyl group, a mercapto group, a guanidino group, a C_3 - C_6 cycloalkyl group, a C_1 - C_6 alkoxy group, a C_1 - C_6 alkylthio group, a phenyl group optionally substituted with one or more of a halogen atom, a hydroxy group, a C_1 - C_6 alkyl group, a C_1 - C_6 alkoxy group, or a benzyloxy group, a phenoxy group, a benzyloxy group, a benzyloxycarbonyl group, a C_2 - C_7 alkanoyl group, a C_2 - C_7 alkoxycarbonyl group, a C_2 - C_7 alkanoylamino group, a C_2 - C_7 alkoxycarbonyl group, a C_2 - C_7 alkanoylamino group, a mono $(C_1$ - C_6 alkyl) amino group, a di $(C_1$ - C_6 alkyl) amino group, or an aromatic heterocyclic group having 1-3 of heteroatoms selected from the group consisting of an oxygen atom, a sulfur atom, a nitrogen atom, or a combination thereof and optionally condensed with benzene ring, or R^4 and R^5 taken together form a 3 to 6 membered cyclic hydrocarbon;

- p represents 0 or 1;
- q represents 0 or 1;

G is a group represented by $-CO_-$, $-SO_2_-$, $-CO_-O_-$, $-NR^7_-CO_-$, $-CO_-NR^7_-$, $-NH_-CO_-NH_-$, $-NH_-CS_-NH_-$, $-NR^7_-SO_2_-$, $-SO_2_-NR^7_-$, $-NH_-CO_-O_-$, or $-O_-CO_-NH_-$, wherein R° is a hydrogen atom or a C₁-C₅ alkyl group, or R° taken together with R° represents C₂-C₅ alkylene group;

 R^6 is a phenyl group, a C_3 - C_8 cycloalkyl group, a C_3 - C_8 cycloalkenyl group, a benzyl group, or an aromatic heterocyclic group having 1-3 heteroatoms selected from the group consisting of an oxygen atom, a sulfur atom, a nitrogen atom, or a combination thereof, in which the phenyl, benzyl, or aromatic heterocyclic group may be condensed with a benzene ring or an aromatic heterocyclic group having 1-3 heteroatoms selected from the group consisting of an oxygen atom, a sulfur atom, a nitrogen atom, or a combination thereof, to form a condensed

ring, and the phenyl group, C_3-C_8 cycloalkyl group, C_3-C_8 cycloalkenyl group, benzyl group, aromatic heterocyclic group, or condensed ring may be substituted 70 with one or more of a halogen atom, a hydroxy group, a mercapto group, a cyano group, a nitro group, a thiocyanato group, a carboxy group, a carbamoyl group, a trifluoromethyl group, a C_1 - C_6 alkyl group, a C_3 - C_6 cycloalkyl group, a C_2 - C_6 alkenyl group, a C_1 - C_6 alkoxy group, a C_3 - C_8 cycloalkyloxy group, a C_1 - C_6 alkylthio group, a C_1 - C_3 alkylenedioxy group, a phenyl group, a phenoxy group, a phenylamino group, a benzyl group, a benzoyl group, a phenylsulfinyl group, a phenylsulfonyl group, a 3-phenylureido group, a C_2 - C_1 alkanoyl group, a C_2 - C_1 alkoxycarbonyl group, a C_2 - C_1 alkanoyloxy group, a C_2 - C_1 alkanoylamino group, a C_2 - C_7 N-alkylcarbamoyl group, a C_1 - C_6 alkylsulfonyl group, a phenylcarbamoyl group, a $N, N-\text{di}(C_1-C_6 \text{ alkyl})$ sulfamoyl group, an amino group, a mono(C_1-C_6 80 alkyl)amino group, a di(C_1 - C_6 alkyl)amino group, a benzylamino group, a C_2 - C_7 (alkoxycarbonyl) amino group, a C_1 - C_6 (alkylsulfonyl) amino group, or a bis (C_1 - C_6 alkylsulfonyl)amino group, wherein the substituent for the phenyl group, C_3-C_θ cycloalkyl group, C_3-C_θ cycloalkenyl group, benzyl group, aromatic heterocyclic group, or condensed ring is optionally substituted with one or more of a halogen 85 atom, a cyano group, a hydroxy group, an amino group, trifluoromethyl group, a C_1 - C_6 alkyl group, a C_1 - C_6 alkoxy group, a C_1 - C_6 alkylthio group, a mono(C_1 - C_6 alkyl) amino group, or a $di(C_1-C_6$ alkyl) amino group.

- 2. A compound, its pharmaceutically acceptable acid addition salt or its pharmaceutically acceptable C_1 - C_6 alkyl addition salt as set forth in claim 1, wherein k=1 and m=2 in the above formula (I).
- 3. A compound, its pharmaceutically acceptable acid addition salt or its pharmaceutically acceptable C_1 - C_6 alkyl addition salt as set forth in claim 2, wherein n=0 in the above formula (I).
- 4. A compound, its pharmaceutically acceptable acid addition salt or its pharmaceutically acceptable C_1 - C_6 alkyl addition salt as set forth in claim 1, wherein k=0, m=3 and n=1 in the above formula (I).
- 5. A compound, its pharmaceutically acceptable acid addition salt or its pharmaceutically acceptable C_1 - C_6 alkyl addition salt as set forth in claim 1, wherein k=1 and m=3 in the above formula (I).

6. A compound, its pharmaceutically acceptable acid addition salt or its pharmaceutically acceptable C_1 - C_6 alkyl addition salt as set forth in claim 1, wherein k=2 and m=2 in the above formula (I).

- 7. A compound, its pharmaceutically acceptable acid addition salt or its pharmaceutically acceptable $C_1\text{--}C_6$ alkyl addition salt as set forth in claim 6, wherein n = 1 in the above formula (I).
- 8. A compound, its pharmaceutically acceptable acid addition salt or its pharmaceutically acceptable $C_1\text{-}C_6$ alkyl addition salt as set forth in claim 1, wherein k=1 and m=4 in the above formula (I).
- 9. A compound, its pharmaceutically acceptable acid addition salt or its pharmaceutically acceptable C_1 - C_6 alkyl addition salt as set forth in claim 1, wherein j=0 in the above formula(I).
- 10. A compound, its pharmaceutically acceptable acid addition salt or its pharmaceutically acceptable C_1 - C_6 alkyl addition salt as set forth in claim 1, wherein p=0, q=0 and G is a group represented by $-NR^7$ -CO- in the above formula (I).
- 11. A compound, its pharmaceutically acceptable acid addition salt or its pharmaceutically acceptable C_1 - C_6 alkyl addition salt as set forth in claim 1, wherein R^2 is a hydrogen atom, R^3 is a hydrogen atom and R^7 is a hydrogen atom in the above formula (I).
- 12. A compound, its pharmaceutically acceptable acid addition salt or its pharmaceutically acceptable C_1 - C_6 alkyl addition salt as set forth in claim 1, wherein the substituent for the phenyl group, C_3 - C_8 cycloalkyl group, aromatic heterocyclic group, or condensed ring in R^1 is one or more of a halogen atom, a hydroxy group, a C_1 - C_6 alkyl group, a C_2 - C_6 alkenyl group, a C_1 - C_6 alkylthio group, a C_2 - C_4 alkylenoxy group, a methylenedioxy group, a N-phenylcarbamoyl group, an amino group, a mono(C_1 - C_6 alkyl)amino group, or a di(C_1 - C_6 alkyl)amino group in the above formula (I).
- 13. A compound, its pharmaceutically acceptable acid addition salt or its pharmaceutically acceptable $C_1\text{--}C_6$ alkyl addition salt as set forth in claim 1,

5

wherein the substituent for the phenyl group, C_3-C_8 cycloalkyl group, C_3-C_8 cycloalkenyl group, benzyl group, aromatic heterocyclic group, or condensed ring in R^6 is one or more of a halogen atom, a nitro group, a trifluoromethyl group, a C_1-C_6 alkyl group, a C_1-C_6 alkoxy group, a phenylsulfonyl group, a C_2-C_7 alkanoylamino group, or an amino group in the above formula (I).

- 14. A compound, its pharmaceutically acceptable acid addition salt or its pharmaceutically acceptable C_1 - C_6 alkyl addition salt as set forth in claim 1, wherein R^1 is a phenyl group or an isoxazolyl group in the above formula (I).
- 15. A compound, its pharmaceutically acceptable acid addition salt or its pharmaceutically acceptable C_1 - C_6 alkyl addition salt as set forth in claim 1, wherein R^6 is a phenyl group, a furyl group, or a thienyl group in the above formula (I).

16. A method of inhibiting the binding of a chemokine to the receptor of a target cell and/or its action on a target cell using a pharmaceutical preparation containing a therapeutically effective amount of a compound represented by the formula (I) below:

, a pharmaceutically acceptable acid addition salt thereof or a pharmaceutically acceptable $C_1\hbox{--} C_6$ alkyl addition salt thereof,

wherein R^1 is a phenyl group, a C_3-C_8 cycloalkyl group, or an aromatic heterocyclic group having 1-3 heteroatoms selected from the group consisting of an oxygen atom, a sulfur atom, a nitrogen atom, or a combination thereof, in which the phenyl or aromatic heterocyclic group may be condensed with a benzene ring or an aromatic heterocyclic group having 1-3 heteroatoms selected from the group consisting of an oxygen atom, a sulfur atom, a nitrogen atom, or a combination thereof, to form a condensed ring, and the phenyl group, C_3-C_9 cycloalkyl group, aromatic heterocyclic group, or condensed ring may be substituted with one or more of a halogen atom, a hydroxy group, a cyano group, a nitro group, a carboxy group, a carbamoyl group, a C_1-C_6 alkyl group, a C_3-C_9 cycloalkyl group, a C_2-C_6 alkenyl group, a C_1-C_6 alkoxy group, a C_1-C_6 alkylthio group, a C_3-C_9 alkylene group, a C_2-C_6 alkyleneoxy group, a C_1-C_6 alkylenedioxy group,

5

5

10

a phenyl group, a phenoxy group, a phenylthio group, a benzyl group, a benzyloxy group, a benzoylamino group, a C_2 - C_1 alkanoyl group, a C_2 - C_1 alkanoyloxy group, a C_2 - C_1 alkanoylamino group, a C_2 - C_1 alkanoyloxy group, a C_2 - C_1 alkanoylamino group, a C_2 - C_1 N-alkylcarbamoyl group, a C_4 - C_9 N-cycloalkylcarbamoyl group, a C_1 - C_6 alkylsulfonyl group, a C_3 - C_8 (alkoxycarbonyl) methyl group, a N-phenylcarbamoyl group, a piperidinocarbonyl group, a morpholinocarbonyl group, a 1-pyrrolidinylcarbonyl group, an amino group, a mono (C_1 - C_6 alkyl) amino group, or a di (C_1 - C_6 alkyl) amino group, wherein the substituent for the phenyl group, C_3 - C_8 cycloalkyl group, aromatic heterocyclic group, or condensed ring is optionally substituted with one or more of a halogen atom, a hydroxy group, an amino group, a trifluoromethyl group, a C_1 - C_6 alkyl group, or a C_1 - C_6 alkoxy group;

 R^2 is a hydrogen atom, a C_1 - C_6 alkyl group, a C_2 - C_7 alkoxycarbonyl group, a hydroxy group, or a phenyl group, in which the C_1 - C_6 alkyl or phenyl group may be substituted with one or more of a halogen atom, a hydroxy group, a C_1 - C_6 alkyl group, or a C_1 - C_6 alkoxy group, and when j = 0, R^2 is not a hydroxy group;

j represents an integer of 0-2; k represents an integer of 0-2; m represents an integer of 2-4;

n represents 0 or 1;

 R^3 is a hydrogen atom or a C_1 - C_6 alkyl group optionally substituted with one or two phenyl groups each of which may be substituted with one or more of a halogen atom, a hydroxy group, a C_1 - C_6 alkyl group, or a C_1 - C_6 alkoxy group;

 R^4 and R^5 are the same or different from each other and are a hydrogen atom, a hydroxy group, a phenyl group, or a C_1 - C_6 alkyl group, in which the C_1 - C_6 alkyl group is optionally substituted with one or more of a halogen atom, a hydroxy group, a cyano group, a nitro group, a carboxy group, a carbamoyl group, a mercapto group, a guanidino group, a C_3 - C_6 cycloalkyl group, a C_1 - C_6 alkoxy group, a C_1 - C_6 alkylthio group, a phenyl group optionally substituted with one or more of a halogen atom, a hydroxy group, a C_1 - C_6 alkyl group, a C_1 - C_6 alkoxy group, or a benzyloxy group, a phenoxy group, a benzyloxy group, a benzyloxycarbonyl group, a C_2 - C_1 alkanoyl group, a C_2 - C_1 alkoxycarbonyl group, a C_2 - C_1 alkanoylamino group, a C_2 - C_1 alkoxycarbonyl group, a C_2 - C_1 alkanoylamino group, a mono $(C_1$ - C_6 alkyl) amino group, a a mino group, a mono $(C_1$ - C_6 alkyl) amino group, a di $(C_1$ - C_6 alkyl) amino group, or an aromatic heterocyclic group having 1-3 of heteroatoms selected from the group consisting of an oxygen atom, a sulfur atom, a nitrogen atom, or a combination thereof and optionally condensed with benzene ring, or R^4 and R^5 taken together form a 3 to 6 membered cyclic hydrocarbon;

20

25

30

35

40

45

50

p represents 0 or 1;

q represents 0 or 1;

65

70

75

80

85

90

G is a group represented by $-CO_-$, $-SO_2_-$, $-CO_-O_-$, $-NR^2_-CO_-$, $-CO_-NR^2_-$, $-NH_-CO_-NH_-$, $-NH_-CS_-NH_-$, $-NR^2_-SO_2_-$, $-SO_2_-NR^2_-$, $-NH_-CO_-O_-$, or $-O_-CO_-NH_-$, wherein R^2 is a hydrogen atom or a $C_1_-C_6$ alkyl group, or R^2 taken together with R^5 represents $C_2_-C_5$ alkylene group;

 R^6 is a phenyl group, a C_3-C_8 cycloalkyl group, a C_3-C_8 cycloalkenyl group, a benzyl group, or an aromatic heterocyclic group having 1-3 heteroatoms selected from the group consisting of an oxygen atom, a sulfur atom, a nitrogen atom, or a combination thereof, in which the phenyl, benzyl, or aromatic heterocyclic group may be condensed with a benzene ring or an aromatic heterocyclic group having 1-3 heteroatoms selected from the group consisting of an oxygen atom, a sulfur atom, a nitrogen atom, or a combination thereof, to form a condensed ring, and the phenyl group, C_3-C_8 cycloalkyl group, C_3-C_8 cycloalkenyl group, benzyl group, aromatic heterocyclic group, or condensed ring may be substituted with one or more of a halogen atom, a hydroxy group, a mercapto group, a cyano group, a nitro group, a thiocyanato group, a carboxy group, a carbamoyl group, a trifluoromethyl group, a C_1 - C_6 alkyl group, a C_3 - C_6 cycloalkyl group, a C_2 - C_6 alkenyl group, a C_1 - C_6 alkoxy group, a C_3 - C_8 cycloalkyloxy group, a C_1 - C_6 alkylthio group, a C_1 - C_3 alkylenedioxy group, a phenyl group, a phenoxy group, a phenylamino group, a benzyl group, a benzoyl group, a phenylsulfinyl group, a phenylsulfonyl group, a 3-phenylureido group, a C_2 - C_7 alkanoyl group, a C_2 - C_7 alkoxycarbonyl group, a C_2-C_1 alkanoyloxy group, a C_2-C_1 alkanoylamino group, a C_2-C_7 N-alkylcarbamoyl group, a C_1-C_6 alkylsulfonyl group, a phenylcarbamoyl group, a $N, N-\text{di}(C_1-C_6 \text{ alkyl})$ sulfamoyl group, an amino group, a mono(C_1-C_6 alkyl)amino group, a di $(C_1-C_6$ alkyl)amino group, a benzylamino group, a C_2-C_7 $(alkoxycarbonyl)\,amino\,\,group,\,\,a\,\,C_1-C_6\,\,(alkylsulfonyl)\,amino\,\,group,\,\,or\,\,a\,\,bis\,(C_1-C_6)$ alkylsulfonyl) amino group, wherein the substituent for the phenyl group, C_3-C_8 cycloalkyl group, C_3-C_θ cycloalkenyl group, benzyl group, aromatic heterocyclic group, or condensed ring is optionally substituted with one or more of a halogen atom, a cyano group, a hydroxy group, an amino group, trifluoromethyl group, a C_1 - C_6 alkyl group, a C_1 - C_6 alkoxy group, a C_1 - C_6 alkylthio group, a mono(C_1 - C_6 alkyl) amino group, or a $di(C_1-C_6 \text{ alkyl})$ amino group.

17. A method of inhibiting the binding of a chemokine to the receptor of a target cell and/or its action on a target cell as set forth in claim 16, wherein

k = 1 and m = 2 in the above formula (I).

18. A method of inhibiting the binding of a chemokine to the receptor of a target cell and/or its action on a target cell as set forth in claim 17, wherein n=0 in the above formula (I).

- 19. A method of inhibiting the binding of a chemokine to the receptor of a target cell and/or its action on a target cell as set forth in claim 16, wherein k=0, m=3 and n=1 in the above formula (I).
- 20. A method of inhibiting the binding of a chemokine to the receptor of a target cell and/or its action on a target cell as set forth in claim 16, wherein k=1 and m=3 in the above formula (I).
- 21. A method of inhibiting the binding of a chemokine to the receptor of a target cell and/or its action on a target cell as set forth in claim 16, wherein k=2 and m=2 in the above formula (I).
- 22. A method of inhibiting the binding of a chemokine to the receptor of a target cell and/or its action on a target cell as set forth in claim 21, wherein n=1 in the above formula (I).
- 23. A method of inhibiting the binding of a chemokine to the receptor of a target cell and/or its action on a target cell as set forth in claim 16, wherein k = 1 and m = 4 in the above formula (I).
- 24. A method of inhibiting the binding of a chemokine to the receptor of a target cell and/or its action on a target cell as set forth in claim 16, wherein j = 0 in the above formula (I).
- 25. A method of inhibiting the binding of a chemokine to the receptor of a target cell and/or its action on a target cell as set forth in claim 16, wherein p=0, q=0 and G is a group represented by $-NR^7-CO-$ in the above formula (I).
- 26. A method of inhibiting the binding of a chemokine to the receptor of a target cell and/or its action on a target cell as set forth in claim 16, wherein R^2 is a hydrogen atom, R^3 is a hydrogen atom and R^7 is a hydrogen atom in the above formula (I).

5

- 27. A method of inhibiting the binding of a chemokine to the receptor of a target cell and/or its action on a target cell as set forth in Claim 16, wherein the substituent for the phenyl group, C_3-C_8 cycloalkyl group, aromatic heterocyclic group, or condensed ring in R^1 is one or more of a halogen atom, a hydroxy group, a C_1-C_6 alkyl group, a C_2-C_6 alkenyl group, a C_1-C_6 alkoxy group, a C_1-C_6 alkylthio group, a C_2-C_4 alkylenoxy group, a methylenedioxy group, a N-phenylcarbamoyl group, an amino group, a mono(C_1-C_6 alkyl)amino group, or a di(C_1-C_6 alkyl)amino group in the above formula (I).
- 28. A method of inhibiting the binding of a chemokine to the receptor of a target cell and/or its action on a target cell as set forth in claim 16, wherein the substituent for the phenyl group, C_3-C_8 cycloalkyl group, C_3-C_8 cycloalkenyl group, benzyl group, aromatic heterocyclic group, or condensed ring in R^6 is one or more of a halogen atom, a nitro group, a trifluoromethyl group, a C_1-C_6 alkyl group, a C_1-C_6 alkoxy group, a phenylsulfonyl group, a C_2-C_7 alkanoylamino group, or an amino group in the above formula (I).
- 29. A method of inhibiting the binding of a chemokine to the receptor of a target cell and/or its action on a target cell as set forth in claim 16, wherein \mathbb{R}^1 is a phenyl group or an isoxazolyl group in the above formula (I).
- 30. A method of inhibiting the binding of a chemokine to the receptor of a target cell and/or its action on a target cell as set forth in claim 16, wherein R^6 is a phenyl group, a furyl group, or a thienyl group in the above formula (I).

- 31. A method of inhibiting the binding of a chemokine to the receptor of a target cell and/or its action on a target cell as set forth in claim 16, wherein the chemokine is MIP-l α .
- 32. A method of inhibiting the binding of a chemokine to the receptor of a target cell and/or its action on a target cell as set forth in claim 16, wherein the chemokine is MCP-1.
- 33. A method of inhibiting the binding of a chemokine to the receptor of a target cell and/or its action on a target cell as set forth in claim 16, wherein

the chemokine receptor is CCR1.

34. A method of inhibiting the binding of a chemokine to the receptor of a target cell and/or its action on a target cell as set forth in claim 16, wherein the chemokine receptor is CCR2A or CCR2B.

35. A compound, its pharmaceutically acceptable acid addition salt or its pharmaceutically acceptable C_1 - C_6 alkyl addition salt as set forth in claim 1, wherein the compound is 4-[{N-(2-amino-5-chlorobenzoyl)glycyl)aminomethyl]-1-(4-chlorobenzyl)piperidine.

5

36. A compound, its pharmaceutically acceptable acid addition salt or its pharmaceutically acceptable C_1 - C_6 alkyl addition salt as set forth in claim 1, wherein the compound is $4-[\{N-(2-amino-4,5-difluorobenzoyl)glycyl\}aminomethyl]-1-(4-chlorobenzyl)piperidine.$

5

37. A compound, its pharmaceutically acceptable acid addition salt or its pharmaceutically acceptable C_1 - C_6 alkyl addition salt as set forth in claim 1, wherein the compound is $4-[\{N-(2-amino-5-itrifluoromethylbenzoyl)glycyl\}aminomethyl]-1-(4-chlorobenzyl)piperidine.$

5

38. A compound, its pharmaceutically acceptable acid addition salt or its pharmaceutically acceptable C_1 - C_6 alkyl addition salt as set forth in claim 1, wherein the compound is 4-[(N-(2-amino-5-trifluoromethoxybenzoyl)glycyl)aminomethyl]-1-(4-chlorobenzyl)piperidine.

5

39. A compound, its pharmaceutically acceptable acid addition salt or its pharmaceutically acceptable C_1 - C_6 alkyl addition salt as set forth in claim 1, wherein the compound is $4-[\{N-(2-amino-4,5-difluorobenzoyl)glycyl\}aminomethyl]-1-(4-bromobenzyl)piperidine.$

5

40. A compound, its pharmaceutically acceptable acid addition salt or its pharmaceutically acceptable C_1 - C_6 alkyl addition salt as set forth in claim 1, wherein the compound is 1-(2-amino-4-chlorobenzyl)-4-[(N-(2-amino-5-trifluoromethylbenzoyl)glycyl)aminomethyl)piperidine.

5

41. A compound, its pharmaceutically acceptable acid addition salt or its

PCT/US98/23254 WO 99/25686

pharmaceutically acceptable C_1 - C_6 alkyl addition salt as set forth in claim 1, wherein the compound is $1-(3-amino-4-methoxybenzyl)-4-[{N-(2-amino-4,5-methoxybenzyl)}]$ difluorobenzoyl)glycyl}aminomethyl]piperidine.

5

- A compound, its pharmaceutically acceptable acid addition salt or its 42. pharmaceutically acceptable C_1-C_6 alkyl addition salt as set forth in claim 1, $4-[{N-(2-amino-4,5$ is compound wherein difluorobenzoyl)glycyl}aminomethyl]-1-{4-chloro-3-
- (methylamino)benzyl)piperidine. 5
 - A compound, its pharmaceutically acceptable acid addition salt or its 43. pharmaceutically acceptable C_1-C_6 alkyl addition salt as set forth in claim 1, 4-[{N-(2-amino-5is compound the wherein trifluoromethylbenzoyl)glycyl)aminomethyl]-1-(2-thioxo-2,3-dihydro-1,3-
- benzoxazol-5-ylmethyl)piperidine.
 - A compound, its pharmaceutically acceptable acid addition salt or its 44. pharmaceutically acceptable C_1 - C_6 alkyl addition salt as set forth in claim 1, 3-[{N-(2-amino-5compound is trifluoromethylbenzoyl)glycyl)amino}-1-(4-chlorobenzyl)pyrrolidine.

5

A compound, its pharmaceutically acceptable acid addition salt or its pharmaceutically acceptable C_1 - C_6 alkyl addition salt as set forth in claim 1, 3 - [(N - (2 - amino - 5 compound is wherein trifluoromethylbenzoyl)glycyl)amino]-1-(4-methoxybenzyl)pyrrolidine.

- A compound, its pharmaceutically acceptable acid addition salt or its pharmaceutically acceptable C_1 - C_6 alkyl addition salt as set forth in claim 1, 3-[{N-(2-amino-5compound is the wherein trifluoromethylbenzoyl)glycyl}amino]-1-(3,4-
- methylenedioxybenzyl)pyrrolidine.
 - A compound, its pharmaceutically acceptable acid addition salt or its 47. pharmaceutically acceptable C_1 - C_6 alkyl addition salt as set forth in claim 1, 3-[(N-(2-amino-5is compound the wherein trifluoromethylbenzoyl)glycyl)amino]-1-(2,3-dihydro-1-benzofuran-5-
- ylmethyl)pyrrolidine.

PCT/US98/23254

48. A compound, its pharmaceutically acceptable acid addition salt or its pharmaceutically acceptable C_1 - C_6 alkyl addition salt as set forth in claim 1, wherein the compound is 3-[(N-(2-amino-5-trifluoromethylbenzoyl)glycyl)amino]-1-(4-methylthiobenzyl)pyrrolidine.

5

49. A compound, its pharmaceutically acceptable acid addition salt or its pharmaceutically acceptable C_1 - C_6 alkyl addition salt as set forth in claim 1, wherein the compound is $3-[\{N-(2-amino-5-trifluoromethylbenzoyl)glycyl\}amino]-1-(4-ethylbenzyl)pyrrolidine.$

5

50. A compound, its pharmaceutically acceptable acid addition salt or its pharmaceutically acceptable C_1 - C_6 alkyl addition salt as set forth in claim 1, wherein the compound is $3-[\{N-(2-\text{amino}-5-\text{trifluoromethoxybenzoyl}\}]$ amino]-1-(4-ethylbenzyl)pyrrolidine.

5

51. A compound, its pharmaceutically acceptable acid addition salt or its pharmaceutically acceptable C_1 - C_6 alkyl addition salt as set forth in claim 1, wherein the compound is $1-(3-\text{amino}-4-\text{methoxybenzyl})-3-[\{N-(2-\text{amino}-5-\text{trifluoromethylbenzoyl})glycyl\}amino]pyrrolidine.$

- 52. A compound, its pharmaceutically acceptable acid addition salt or its pharmaceutically acceptable C_1 - C_6 alkyl addition salt as set forth in claim 1, wherein the compound is $3-[\{N-\{2-\text{amino-5-trifluoromethylbenzoyl}\}\text{glycyl}\}\text{amino}]-1-\{4-\text{chloro-3-trifluoromethylbenzoyl}\}$
- 5 methylbenzyl)pyrrolidine.
 - 53. A compound, its pharmaceutically acceptable acid addition salt or its pharmaceutically acceptable C_1 - C_6 alkyl addition salt as set forth in claim 1, wherein the compound is $3-[(N-(2-a\min -5-trifluoromethylbenzoyl)glycyl)amino]-1-(4-hydroxy-3-trifluoromethylbenzoyl)glycyl)glycyl$
- 5 (methylamino)benzyl)pyrrolidine.
 - 54. A compound, its pharmaceutically acceptable acid addition salt or its pharmaceutically acceptable C_1 - C_6 alkyl addition salt as set forth in claim 1, wherein the compound is $3-[\{N-(2-amino-5-trifluoromethylbenzoyl)glycyl\}amino]-1-(1,3-benzoxazol-5-$

5 ylmethyl)pyrrolidine.

Inte anal Application No PCT/US 98/23254

IPC 6	CO7D211/58 A61K31/435 A61K31/41 CO7D211/26 CO7D207/09 CO7D401/1 CO7D413/06 CO7D413/14 CO7D409/0	2 C07D405/12 06 C07D405/06	C07D211/56 C07D409/12						
According to	International Patent Classification (IPC) or to both national classificati	on and IPC							
B. FIELDS									
Minimum do	cumentation searched (classification system followed by classification CO7D A61K	symbols)							
	on searched other than minimum documentation to the extent that sur	ch documents are included in the	ne fields searched						
Documentati	on searched other than manifest documentation to the extent that our								
Electronic da	ata base consulted during the international search (name of data base	and, where practical, search t	erms used)						
C. DOCUME	ENTS CONSIDERED TO BE RELEVANT								
Category °	Citation of document, with indication, where appropriate, of the rele-	vant passages	Relevant to claim No.						
Х	EP 0 217 286 A (OKAMOTO SHOSUKE ; DENKO KK (JP)) 8 April 1987 see page 31, compound 42; claim 1	1,3,6, 9-11,14							
Х	EP 0 417 698 A (HOECHST AG) 20 Ma	rch 1991	1,-3,6,9, 14,15						
ľ	see example 5C		Ì						
		/ 							
		/							
ĺ			į						
			,						
İ									
ļ									
İ									
l									
X Furt	her documents are listed in the continuation of box C.	X Patent family member	rs are listed in annex.						
* Special categories of cited documents : "T" later document published after the international filing date									
or priority date and not in conflict with the application but cited to understand the principle or theory underlying the									
	considered to be of particular relevance invention								
"E" earlier document but published on or after the international "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to									
"L" document which may throw doubts on priority claim(s) or involve an inventive step when the document is taken alone which is cited to establish the publication date of another "Y" document of particular relevance; the claimed invention									
citation or other special reason (as specified) cannot be considered to involve an inventive step when the									
other means ments, such combination being obvious to a person skilled									
"P" document published prior to the international filing date but later than the priority date claimed "&" document member of the same patent family									
	actual completion of the international search	Date of mailing of the inte	rnational search report						
	3 March 1999	25/03/1999							
		Authorized officer							
Name and	mailing address of the ISA European Patent Office, P.B. 5818 Patentlaan 2	Administed dilices							
	NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl,	00 3							
1	Fax: (+31-70) 340-2040, 1x: 31 651 epo fit,	De Jong, B							

Form PCT/ISA/210 (second sheet) (July 1992)

Inter nal Application No
PCT/US 98/23254

		FC1703 90723234
	ation) DOCUMENTS CONSIDERED TO BE RELEVANT Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
Category *	Citation of document, with indication, while appropriate, of the following processor	
X	CHEMICAL ABSTRACTS, vol. 107, no. 7, 17 August 1987 Columbus, Ohio, US; abstract no. 51382, KHALID, M. ET AL: "N,N'-disubstituted L-isoglutamines as novel cancer chemotherapeutic agent" XP002094911 see abstract & DRUGS EXP. CLIN. RES. (1987), 13(SUPPL. 1), 57-60; ISSN: 0378-6501,1987,	1,3,6, 9-11,14, 15
A .	DATABASE WPI Section Ch, Week 9804 Derwent Publications Ltd., London, GB; Class B03, AN 98-035793 XP002094912 & JP 09 249566 A (TAKEDA CHEM IND LTD) , 22 September 1997 see abstract	1-54
P,X	WO 98 50534 A (SMITHKLINE BEECHAM CORP; RUYU (US); VEBER DANIEL F (US); MARQUIS) 12 November 1998 see claim 1; examples	1-15

. inational application No.

PCT/US 98/23254

Box I Observations where certain claims were found unsearchable (Continuation of item 1 of first sheet)
This International Search Report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:
1. X Claims Nos.: 16-34 because they relate to subject matter not required to be searched by this Authority, namely: Remark: Although claims 16-34 are directed to a method of treatment of the human/animal body, the search has been carried out and based on the alleged effects of the compounds.
2. X Claims Nos.: not applicable because they relate to parts of the International Application that do not comply with the prescribed requirements to such an extent that no meaningful International Search can be carried out, specifically: see FURTHER INFORMATION sheet PCT/ISA/210
3. Claims Nos.: because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).
Box II Observations where unity of invention is lacking (Continuation of item 2 of first sheet)
This International Searching Authority found multiple inventions in this international application, as follows:
As all required additional search fees were timely paid by the applicant, this International Search Report covers all searchable claims.
2. As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee.
3. As only some of the required additional search fees were timely paid by the applicant, this International Search Report covers only those claims for which fees were paid, specifically claims Nos.:
4. No required additional search fees were timely paid by the applicant. Consequently, this International Search Report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:
Remark on Protest The additional search fees were accompanied by the applicant's protest. No protest accompanied the payment of additional search fees.

Form PCT/ISA/210 (continuation of first sheet (1)) (July 1998)

FURTHER INFORMATION CONTINUED FROM PCT/ISA/ 210

Claims Nos.: not applicable

In view of the extremely broad Markush claims 1-15, the search was executed with due regard to the PCT Search Guidelines (PCT/GL/2), C-III, paragraph 2.1, 2.3 read in onjunction with 3.7 and Rule 33.3 PCT, i.e. particular emphasis was put on the inventive concept, as illustrated by the examples. The international search was, in so far as possible and reasonable, complete in that it covered the entire subject-matter to which the claims are directed.

information on patent family members

Inter nal Application No PCT/US 98/23254

	ent document in search report		Publication date		Patent family member(s)		Publication date
EP	0217286	A	08-04-1987	AU	598750 8	3	05-07-1990
				AU	6305186		02-04-1987
				CA	1297633	4	17-03-1992
				US	4895842 /	4	23-01-1990
				JP	2023215 (2	26-02-1996
				JP	7053705	3	07-06-1995
				JP	63022061	4	29-01-1988
EP	0417698	 A	20-03-1991	AT	135368	г Г	15-03-1996
		• • •		AU	639259		22-07-1993
				AU	6234090	A	21-03-1991
				CA	2025093	A	13-03-1991
				DD	295377	A	31-10-1991
				DE	4028741	A	28-03-1991
				DE	59010189	D	18-04-1996
				DK		T	22-07-1996
				ES	2086341	T	01-07-1996
				GR	3019331	T	30-06-1996
				JP	3106877		07-05-1991
				MX	9203284		31-07-1992
				NO	177143		18-04-1995
				PT	95278		22-05-1991
				US	5374731	A 	20-12-1994
WO	9850534	 А	12-11-1998	AU	7288598	Α	27-11-1998

Form PCT/ISA/210 (patent family annex) (July 1992)

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6:

C07D 211/58, A61K 31/435, 31/41, C07D 207/14, 211/56, 211/26, 207/09, 401/12, 405/12, 409/12, 413/06, 413/14, 409/06, 405/06

(11) International Publication Number:

WO 99/25686

(43) International Publication Date:

27 May 1999 (27.05.99)

(21) International Application Number:

PCT/US98/23254

A1

(22) International Filing Date:

17 November 1998 (17.11.98)

(30) Priority Data:

08/972,484 18 November 1997 (18.11.97) US 09/055,285 6 April 1998 (06.04.98) US 09/133,434 13 August 1998 (13.08.98) US

09/155,454

(63) Related by Continuation (CON) or Continuation-in-Part (CIP) to Earlier Applications

US 08/972,484 (CIP)
Filed on 18 November 1997 (18.11.97)
US 09/055,285 (CIP)
Filed on 6 April 1998 (06.04.98)
US 09/133,434 (CIP)
Filed on 13 August 1998 (13.08.98)

(71) Applicants (for all designated States except US): TEIJIN LIM-ITED [JP/JP]; 6-7, Minamihommachi 1-chome, Chuo-ku, Osaka-shi, Osaka 541-0054 (JP). COMBICHEM, INC. [US/US]; 9050 Camino Santa Fe, San Diego, CA 92121 (US).

(72) Inventors; and

(75) Inventors/Applicants (for US only): SHIOTA, Tatsuki [JP/JP]; Teijin Limited, Tokyo Research Center, 4-3-2. Asahigaoka, Hino-shi, Tokyo 191 (JP). KATAOKA, Ken-ichiro [JP/JP]; Teijin Limited, Tokyo Research Center, 4-3-2, Asahigaoka, Hino-shi, Tokyo 191 (JP), IMAI, Minoru [JP/JP]; Teijin Limited, Tokyo Research Center, 4-3-2, Asahigaoka, Hino-shi, Tokyo 191 (JP). TSUTSUMI, Takaharu [JP/JP]; Teijin Limited, Tokyo Research Center, 4-3-2, Asahigaoka, Hino-shi. Tokyo 191. (JP). SUDOH, Masaki [JP/JP]; Teijin Limited, Tokyo Research Center, 4-3-2, Asahigaoka, Hino-shi, Tokyo 191 (JP). SOGAWA, Ryo [JP/JP]; Teijin Limited, Tokyo Research Center, 4-3-2, Asahigaoka, Hino-shi, Tokyo 191 (JP). MORITA, Takuya [JP/JP]; Teijin Limited, Tokyo Research Center, 4-3-2, Asahigaoka, Hino-shi, Tokyo 191 (JP). HADA, Takahiko [JP/JP]; Teijin Limited, Tokyo Research Center, 4-3-2, Asahigaoka, Hino-shi, Tokyo 191 (JP). MUROGA, Yumiko [JP/JP]; Teijin Limited, Tokyo Research Center, 4-3-2, Asahigaoka, Hino-shi, Tokyo 191 (JP). TAKENOUCHI, Osami [JP/JP]; Teijin Limited, Tokyo Research Center, 4-3-2, Asahigaoka, Hino-shi, Tokyo 191 (JP). FURUYA, Monoru [JP/JP]: Tei-jin Limited, Tokyo Research Center, 4-3-2, Asahigaoka, Hino-shi, Tokyo 191 (JP). ENDO, Noriaki [JP/JP]: Tei-jin Limited, Tokyo Research Center, 4-3-2, Asahigaoka, Hino-shi, Tokyo 191 (JP). TARBY, Christine, M. [US/US]; CombiChem, Inc., 9050 Camino Santa Fe, San Diego, CA 92121 (US). MOREE. Wilna [NL/US]; CombiChem, Inc., 9050 Camino Santa Fe, San Diego, CA 92121 (US). TEIG, Steven, L. [US/US]; CombiChem North, Suite 201, 1804 Embarcadero Road, Palo Alto, CA 94303 (US).

- (74) Agents: BIGGART, Waddell, A. et al.; Sughrue, Mion, Zinn, MacPeak & Seas, PLLC, Suite 800, 2100 Pennsylvania Avenue, N.W., Washington, DC 20037-3202 (US).
- (81) Designated States: AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, UA, UG, US, UZ, VN, YU, ZW, ARIPO patent (GH, GM, KE, LS, MW, SD, SZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE). OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Published

With international search report. With amended claims.

Date of publication of the amended claims:

8 July 1999 (08.07.99)

(54) Title: CYCLIC AMINE DERIVATIVES AND THEIR USE AS DRUGS

$$\begin{array}{c}
R^{1} \\
 \longrightarrow (CH_{2})_{j} - N \\
R^{2}
\end{array}$$

$$\begin{array}{c}
 & CH_{2} \\
 & R^{3}
\end{array}$$

$$\begin{array}{c}
 & CH_{2} \\
 & R^{5}
\end{array}$$

$$\begin{array}{c}
 & CH_{2} \\
 & R^{6}
\end{array}$$

(57) Abstract

A compound represented by general formula (I), a pharmaceutically acceptable acid addition salt thereof or a pharmaceutically acceptable C_1 - C_6 alkyl addition salt thereof, and their medical applications. Since these compounds inhibit the action of chemokines such as MIP- 1α and/or MCP-1 on target cells, they may be useful as a therapeutic drug and/or preventative drug in diseases, such as atherosclerosis, rheumatoid arthritis, and the like where blood monocytes and lymphocytes infiltrate into tissues.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL	Albania	ES	Spain	LS	Lesotho	SI	Slovenia
AM	Armenia	FI	Finland	LT	Lithuania	SK	Slovakia
AT	Austria	FR	France	LU	Luxembourg	SN	Senegal
AU	Australia	GA	Gabon	LV	Latvia	SZ	Swaziland
AZ	Azerbaijan	GB	United Kingdom	MC	Monaco	TD	Chad
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagascar	TJ	Tajikistan
BE	Belgium	GN	Guinea	MK	The former Yugoslav	TM	Turkmenistan
BF	Burkina Faso	GR	Greece		Republic of Macedonia	TR	Turkey
BG	Bulgaria	HU	Hungary	ML	Mali	TT	Trinidad and Tobago
BJ	Benin	IE	Ireland	MN	Mongolia	UA	Ukraine
BR	Brazil	IL	Israel	MR	Mauritania	UG	Uganda
BY	Belarus	IS	Iceland	MW	Malawi	US	United States of America
CA	Canada	ΙT	Italy	MX	Mexico	UZ	Uzbekistan
CF	Central African Republic	JP	Japan	NE	Niger	VN	Viet Nam
CG	Congo	KE	Kenya	NL	Netherlands	YU	Yugoslavia
СН	Switzerland	KG	Kyrgyzstan	NO	Norway	zw	Zimbabwe
CI	Côte d'Ivoire	KP	Democratic People's	N2	New Zealand		
CM	Cameroon		Republic of Korea	PL	Poland		
CN	China	KR	Republic of Korea	PT	Portugal		
CU	Cuba	ΚZ	Kazakstan	RO	Romania		
CZ	Czech Republic	LC	Saint Lucia	RU	Russian Federation		
DE	Germany	LI	Liechtenstein	SD	Sudan		
DK	Denmark	LK	Sri Lanka	SE	Sweden		
EE	Estonia	LR	Liberia	SG	Singapore		

[received by the International Bureau on 19 May 1999 (19.05.99); original claim 1 amended; remaining claims unchanged (2 pages)]

ring, and the phenyl group, C3-C8 cycloalkyl group, C3-C8 cycloalkenyl group, benzyl group, aromatic heterocyclic group, or condensed ring may be substituted with one or more of a halogen atom, a hydroxy group, a mercapto group, a cyano group, a nitro group, a thiocyanato group, a carboxy group, a carbamoyl group, a trifluoromethyl group, a C1-C6 alkyl group, a C3-C6 cycloalkyl group, a C2-C6 alkenyl group, a C1-C6 alkoxy group, a C3-C8 cycloalkyloxy group, a C1-C6 alkylthio group, a C1-C3 alkylenedioxy group, a phenyl group, a phenoxy group, a phenylamino group, a benzyl group, a benzoyl group, a phenylsulfinyl group, a phenylsufonyl group, a 3-phenylureido group, a C2-C7 alkanoyl group, a C2-C7 alkoxycarbonyl group, a C2-C7 alkanoyloxy group, a C2-C7 alkanoylamino group, a C2-C7 Nalkylcarbamoyl group, a C1-C6 alkylsulfonyl group, a phenylcarbamoyl group, a N,N-di (C1-C6 alkyl) sulfamoyl group, an amino group, a mono (C1-C6 alkyl) amino group, a di (C1-C6 alkyl) amino group, a benzylamino group, a C2-C7 (alkoxycarbonyl) amino group, a C1-C6 (alkylsulfonyl) amino group, or a bis (C1-C6 alkylsulfonyl) amino group, wherein the substituent for the phenyl group, C3-C8 cycloalkyl group, C3-C8 cycloalkenyl group, benzyl group, aromatic heterocyclic group, or condensed ring is optionally substituted with one or more of a halogen atom, a cyano group, a hydroxy group, an amino group, a trifluoromethyl group, a C1-C6 alkyl group, a C1-C6 alkoxy group, a C1-C6 alkylthio group, a mono (C1-C6 alkyl) amino group, or a di (C_1-C_6) alkyl) amino group, with the proviso that when k=2, m=12. n = 0, and the phenyl group in R^1 is not substituted, C_1 - C_6 alkyl group as a substituent for the phenyl group, C3-C8 cycloalkyl group, C3-C8 cycloalkenyl group, benzyl group, aromatic heterocyclic group, or condensed ring in R⁶ is not substituted with an amino group and R⁶ is not a benzyl group.

- 2. A compound, its pharmaceutically acceptable acid addition salt or its pharmaceutically acceptable C_1 - C_6 alkyl addition salt as set forth in claim 1, wherein k=1 and m=2 in the above formula (I).
- 3. A compound, its pharmaceutically acceptable acid addition salt or its pharmaceutically acceptable C_1 - C_6 alkyl addition salt as set forth in claim 2, wherein n=0 in the above formula (I).

4. A compound, its pharmaceutically acceptable acid addition salt or its pharmaceutically acceptable C_1 - C_6 alkyl addition salt as set forth in claim 1, wherein k=0, m=3 and n=1 in the above formula (I).

5. A compound, its pharmaceutically acceptable acid addition salt or its pharmaceutically acceptable C_1 - C_6 alkyl addition salt as set forth in claim 1, wherein k=1 and m=3 in the above formula (I).

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6:

C12N 9/99, 9/48, 9/66, 9/50, A61K 38/00, 38/06, A01N 37/18, 43/40, 43/42, 43/36, C07D 207/00, 207/04, 207/06, 211/00, 211/08, 405/00

(11) International Publication Number:

WO 98/50534

(43) International Publication Date: 12 November 1998 (12.11.98)

(21) International Application Number:

PCT/US98/09192

A1

(22) International Filing Date:

6 May 1998 (06.05.98)

(30) Priority Data:

60/046,865

8 May 1997 (08.05.97)

US

(71) Applicant (for all designated States except US): SMITHKLINE BEECHAM CORPORATION [US/US]; One Franklin Plaza, Philadelphia, PA 19103 (US).

(72) Inventors; and

- (75) Inventors/Applicants (for US only): MARQUIS, Robert, W. [US/US]; 115 Cambria Court, St. Davids, PA 19087 (US). RU, Yu [CN/US]; 109 Gilmore Road, Havertown, PA 19083 (US). VEBER, Daniel, F. [US/US]; 290 Batleson Road, Ambler, PA 19002 (US).
- (74) Agents: McCARTHY, Mary, E. et al.; SmithKline Beecham Corporation, Corporate Intellectual Property, UW2220, 709 Swedeland Road, P.O. Box 1539, King of Prussia, PA 19406-0939 (US).

(81) Designated States: AL, AU, BA, BB, BG, BR, CA, CN, CZ, EE, GE, HU, ID, IL, IS, JP, KP, KR, LC, LK, LR, LT, LV, MG, MK, MN, MX, NO, NZ, PL, RO, SG, SI, SK, SL, TR, TT, UA, US, UZ, VN, YU, ARIPO patent (GH, GM, KE, LS, MW, SD, SZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, Cl, CM, GA, GN, ML, MR, NE, SN, TD, TG).

Published

With international search report.

(54) Title: PROTEASE INHIBITORS

(57) Abstract

This invention relates to compounds of formula (I) wherein: Y is Ar or NR^1R^2 ; R^1 is R'', R''C(O), R''C(S), $R''SO_2$, R''OC(O), R''R'NC(O), or R''R'NC(S); R^2 is H, C_{1-6} alkyl, C_{2-6} alkenyl, $Ar-C_{0-6}$ alkyl, or $Het-C_{0-6}$ alkyl; R^3 is H, C_{2-6} alkenyl, C_{2-6} alkynyl, Het, Ar or C_{1-6} alkyl optionally substituted by OR', SR', NR'2, N(R')C(O)OR'', CO₂R', CO₂NR'2, N(C=NH)NH₂, Het or Ar; R⁴ is H, C₁₋₆alkyl, C₂₋₆alkenyl, Ar-C₀₋₆alkyl, or Het-C₀₋₆alkyl; R⁵ is (a), Ar-C₀₋₆alkyl, Het-C₀₋₆alkyl, adamantyl-C(O)-, Ar-C(O)-, Het-C(O)-, R⁶ is R'', R''C(O), R''C(S), R''SO₂, R''OC(O), R''R'NC(O), R''R'NC(S), or R''OC(O)NR'CH(R*)C(O); R⁷ is C₃₋₆cycloalkyl-C₀₋₆alkyl, Ar-C₀₋₆alkyl, Het-Co-6alkyl, Ar-Co-6alkoxy, Het-Co-6alkoxy, or C1-6alkyl optionally substituted by OR', SR', NR'2, N(R')C(O)OR'', CO2R', CO2NR'2, N(C=NH)NH2, Het or Ar; R* is H, C₁₋₆alkyl, C₂₋₆alkenyl, C₃₋₆cycloalkyl-C₀₋₆-alkyl, Ar-C₀₋₆alkyl, Het-C₀₋₆alkyl; each R' independently is H, C1-6alkyl, C2-6alkenyl, Ar-C0-6alkyl, or Het-C0-6alkyl; each R'' independently is C1-6alkyl, C3-6cycloalkyl-C0-6-alkyl, Ar-C0-6alkyl, or Het-Co-6alkyl; R''' is H, C1-6alkyl, C3-6cycloalkyl-C0-6alkyl, Ar-C0-6alkyl, or

$$R^6 \nearrow N \nearrow Z \searrow$$
 (a)

Het-Co-6alkyl; Z is C(O) or CH2; and n is 1, 2 or 3; or a pharmaceutically acceptable salt thereof, which are inhibitors of cysteine proteases, particularly cathepsin K, and are useful in the treatment of diseases in which inhibition of bone loss is a factor.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL	Albania	ES	Spain	LS	Lesotho	SI	Slovenia
AM	Amienia	FI	Finland	LT	Lithuania	SK	Slovakia
AT	Austria	FR	France	LU	Luxembourg	SN	Senegal
AU	Australia	GA	Gabon	LV	Latvia	SZ	Swaziland
ΑZ	Azerbaijan	GB	United Kingdom	·MC	Monaco	TD	Chad
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagascar	TJ	Tajikistan
BE	Belgium	GN	Guinea	MK	The former Yugoslav	TM	Turkmenistan
BF	Burkina Faso	GR	Greece		Republic of Macedonia	TR	Turkey
BG	Bulgaria	HU	Hungary	ML	Mali	TT	Trinidad and Tobago
BJ	Benin	IE	Ireland	MN	Mongolia	UA	Ukraine
BR	Brazil	IL	Israel	MR	Mauritania	UG	Uganda
BY	Belarus	IS	Iceland	MW	Malawi	US	United States of America
CA	Canada	IT	Italy	MX	Mexico	UZ	Uzbekistan
CF	Central African Republic	JP	Japan	NE	Niger	VN	Viet Nam
CG	Congo	KE	Kenya	NL	Netherlands	YU	Yugoslavia
СН	Switzerland	KG	Kyrgyzstan	NO	Norway	zw	Zimbabwe
CI	Côte d'Ivoire	KP	Democratic People's	NZ	New Zealand		
CM	Cameroon		Republic of Korea	PL	Poland		
CN	China	KR	Republic of Korea	PT	Portugal		
CU	Cuba	ΚZ	Kazakstan	RO	Romania		
CZ	Czech Republic	LC	Saint Lucia	RU	Russian Federation		
DE	Germany	LI	Liechtenstein	SD	Sudan		
DK	Denmark	LK	Sri Lanka	SE	Sweden		
EE	Estonia	LR	Liberia	SG	Singapore		
					= -		

WO 98/50534

PROTEASE INHIBITORS

Field of the Invention

5

This invention relates to novel protease inhibitors, particularly inhibitors of cysteine and serine proteases, more particularly compounds which inhibit cysteine proteases, even more particularly compounds which inhibit cysteine proteases of the papain superfamily, yet more particularly compounds which inhibit cysteine proteases of the cathepsin family, most particularly compounds which inhibit cathepsin K. Such compounds are particularly useful for treating diseases in which cysteine proteases are implicated, especially diseases of excessive bone or cartilage loss, e.g., osteoporosis, periodontitis, and arthritis.

15

20

25

30

35

10

Background of the Invention

Cathepsin K is a member of the family of enzymes which are part of the papain superfamily of cysteine proteases. Cathepsins B, H, L, N and S have been described in the literature. Recently, cathepsin K polypeptide and the cDNA encoding such polypeptide were disclosed in U.S. Patent No. 5,501,969 (called cathepsin O therein). Cathepsin K has been recently expressed, purified, and characterized. Bossard, M. J., et al., (1996) J. Biol. Chem. 271, 12517-12524; Drake, F.H., et al., (1996) J. Biol. Chem. 271, 12511-12516; Bromme, D., et al., (1996) J. Biol. Chem. 271, 2126-2132.

Cathepsin K has been variously denoted as cathepsin O, cathepsin X or cathepsin O2 in the literature. The designation cathepsin K is considered to be the more appropriate one (name assigned by Nomenclature Committee of the International Union of Biochemistry and Molecular Biology).

Cathepsins of the papain superfamily of cysteine proteases function in the normal physiological process of protein degradation in animals, including humans, e.g., in the degradation of connective tissue. However, elevated levels of these enzymes in the body can result in pathological conditions leading to disease. Thus, cathepsins have been implicated in various disease states, including but not limited to, infections by pneumocystis carinii, trypsanoma cruzi, trypsanoma brucei brucei, and Crithidia fusiculata; as well as in schistosomiasis malaria, tumor metastasis, metachromatic leukodystrophy, muscular dystrophy, amytrophy, and the like. See International Publication Number WO 94/04172, published on March 3, 1994, and references cited therein. See also European Patent Application EP 0 603 873 A1, and references cited

THIS PAGE BLANK (USPTO)

therein. Two bacterial cysteine proteases from P. gingivallis, called gingipains, have been implicated in the pathogenesis of gingivitis. Potempa, J., et al. (1994) *Perspectives in Drug Discovery and Design*, 2, 445-458.

Cathepsin K is believed to play a causative role in diseases of excessive bone or cartilage loss. Bone is composed of a protein matrix in which spindle- or plate-shaped crystals of hydroxyapatite are incorporated. Type I Collagen represents the major structural protein of bone comprising approximately 90% of the structural protein. The remaining 10% of matrix is composed of a number of non-collagenous proteins, including osteocalcin, proteoglycans, osteopontin, osteonectin, thrombospondin, fibronectin, and bone sialoprotein. Skeletal bone undergoes remodeling at discrete foci throughout life. These foci, or remodeling units, undergo a cycle consisting of a bone resorption phase followed by a phase of bone replacement.

Bone resorption is carried out by osteoclasts, which are multinuclear cells of hematopoietic lineage. The osteoclasts adhere to the bone surface and form a tight sealing zone, followed by extensive membrane ruffling on their apical (i.e., resorbing) surface. This creates an enclosed extracellular compartment on the bone surface that is acidified by proton pumps in the ruffled membrane, and into which the osteoclast secretes proteolytic enzymes. The low pH of the compartment dissolves hydroxyapatite crystals at the bone surface, while the proteolytic enzymes digest the protein matrix. In this way, a resorption lacuna, or pit, is formed. At the end of this phase of the cycle, osteoblasts lay down a new protein matrix that is subsequently mineralized. In several disease states, such as osteoporosis and Paget's disease, the normal balance between bone resorption and formation is disrupted, and there is a net loss of bone at each cycle. Ultimately, this leads to weakening of the bone and may result in increased fracture risk with minimal trauma.

The abundant selective expression of cathepsin K in osteoclasts strongly suggests that this enzyme is essential for bone resorption. Thus, selective inhibition of cathepsin K may provide an effective treatment for diseases of excessive bone loss, including, but not limited to, osteoporosis, gingival diseases such as gingivitis and periodontitis, Paget's disease, hypercalcemia of malignancy, and metabolic bone disease. Cathepsin K levels have also been demonstrated to be elevated in chondroclasts of osteoarthritic synovium. Thus, selective inhibition of cathepsin K may also be useful for treating diseases of excessive cartilage or matrix degradation, including, but not limited to, osteoarthritis and rheumatoid arthritis. Metastatic neoplastic cells also typically express high levels of proteolytic enzymes that degrade the surrounding matrix. Thus, selective inhibition of cathepsin K may also be useful for treating certain neoplastic diseases.

5

10

15

20

25

30

PROTEASE INHIBITORS

Field of the Invention

5

10

This invention relates to novel protease inhibitors, particularly inhibitors of cysteine and serine proteases, more particularly compounds which inhibit cysteine proteases, even more particularly compounds which inhibit cysteine proteases of the papain superfamily, yet more particularly compounds which inhibit cysteine proteases of the cathepsin family, most particularly compounds which inhibit cathepsin K. Such compounds are particularly useful for treating diseases in which cysteine proteases are implicated, especially diseases of excessive bone or cartilage loss, e.g., osteoporosis, periodontitis, and arthritis.

15

20

25

30

35

Background of the Invention

Cathepsin K is a member of the family of enzymes which are part of the papain superfamily of cysteine proteases. Cathepsins B, H, L, N and S have been described in the literature. Recently, cathepsin K polypeptide and the cDNA encoding such polypeptide were disclosed in U.S. Patent No. 5,501,969 (called cathepsin O therein). Cathepsin K has been recently expressed, purified, and characterized. Bossard, M. J., et al., (1996) J. Biol. Chem. 271, 12517-12524; Drake, F.H., et al., (1996) J. Biol. Chem. 271, 12511-12516; Bromme, D., et al., (1996) J. Biol. Chem. 271, 2126-2132.

Cathepsin K has been variously denoted as cathepsin O, cathepsin X or cathepsin O2 in the literature. The designation cathepsin K is considered to be the more appropriate one (name assigned by Nomenclature Committee of the International Union of Biochemistry and Molecular Biology).

Cathepsins of the papain superfamily of cysteine proteases function in the normal physiological process of protein degradation in animals, including humans, e.g., in the degradation of connective tissue. However, elevated levels of these enzymes in the body can result in pathological conditions leading to disease. Thus, cathepsins have been implicated in various disease states, including but not limited to, infections by pneumocystis carinii, trypsanoma cruzi, trypsanoma brucei brucei, and Crithidia fusiculata; as well as in schistosomiasis malaria, tumor metastasis, metachromatic leukodystrophy, muscular dystrophy, amytrophy, and the like. See International Publication Number WO 94/04172, published on March 3, 1994, and references cited therein. See also European Patent Application EP 0 603 873 A1, and references cited

It now has been discovered that a novel class of compounds are protease inhibitors, most particularly inhibitors of cathepsin K, and these compounds are useful for treating diseases in which inhibition of bone resorption is indicated, such as osteoporosis and periodontal disease.

5

10

Summary of the Invention

An object of the present invention is to provide protease inhibitors, particularly such inhibitors of cysteine and serine proteases, more particularly such compounds which inhibit cysteine proteases, even more particularly such compounds which inhibit cysteine proteases of the papain superfamily, yet more particularly such compounds which inhibit cysteine proteases of the cathepsin family, most particularly such compounds which inhibit cathepsin K, and which are useful for treating diseases which may be therapeutically modified by altering the activity of such proteases.

15

Accordingly, in the first aspect, this invention provides a compound according to formula (I).

In another aspect, this invention provides a pharmaceutical composition comprising a compound according to formula (I) and a pharmaceutically acceptable carrier.

20

In yet another aspect, this invention provides a method of treating diseases in which the disease pathology may be therapeutically modified by inhibiting proteases, particularly cysteine and serine proteases, more particularly cysteine proteases, even more particularly cysteine proteases of the papain superfamily, yet more particularly cysteine proteases of the cathepsin family, most particularly cathepsin K.

25

In a particular aspect, the compounds of this invention are especially useful for treating diseases characterized by bone loss, such as osteoporosis and gingival diseases, such as gingivitis and periodontitis, or by excessive cartilage or matrix degradation, such as osteoarthritis and rheumatoid arthritis.

30

Detailed Description of the Invention

The present invention provides compounds of formula (I):

wherein:

5

Y is Ar or NR¹R²;

R¹ is R", R"C(O), R"C(S), R"SO₂, R"OC(O), R"R'NC(O), or R"R'NC(S);

 R^2 is H, C_{1-6} alkyl, C_{2-6} alkenyl, Ar- C_{0-6} alkyl, or Het- C_{0-6} alkyl;

R³ is H, C₂₋₆alkenyl, C₂₋₆alkynyl, Het, Ar or C₁₋₆alkyl optionally substituted

by OR', SR', NR'₂, N(R')C(O)OR", CO₂R', CO₂NR'₂, N(C=NH)NH₂, Het or Ar;

 R^4 is H, C_{1-6} alkyl, C_{2-6} alkenyl, Ar- C_{0-6} alkyl, or Het- C_{0-6} alkyl;

$$R^6 \nearrow N \nearrow Z \searrow$$

10 R⁵ is

, Ar-C₀₋₆alkyl, Het-C₀₋₆alkyl, adamantyl-C(O)-,

Ar-C(O)-, or Het-C(O)-;

 R^6 is R", R"C(O), R"C(S), R"SO₂, R"OC(O), R"R'NC(O), R"R'NC(S), or R"OC(O)NR'CH(R*)C(O);

 R^7 is C_{3-6} cycloalkyl- C_{0-6} alkyl, Ar- C_{0-6} alkyl, Het- C_{0-6} alkyl, Ar- C_{0-6} alkoxy,

Het-C₀₋₆alkoxy, or C₁₋₆alkyl optionally substituted by OR', SR', NR'₂, N(R')C(O)OR", CO₂R', CO₂NR'₂, N(C=NH)NH₂, Het or Ar;

 $\rm R^*$ is H, C $_{1-6}$ alkyl, C $_{2-6}$ alkenyl, C $_{3-6}$ cycloalkyl-C $_{0-6}$ -alkyl, Ar-C $_{0-6}$ alkyl, Het-C $_{0-6}$ alkyl;

each R'independently is H, C₁₋₆alkyl, C₂₋₆alkenyl, Ar-C₀₋₆alkyl, or

20 Het-C₀₋₆alkyl;

each R" independently is C_{1-6} alkyl, C_{3-6} cycloalkyl- C_{0-6} -alkyl, Ar- C_{0-6} alkyl, or Het- C_{0-6} alkyl;

R"' is H, C_{1-6} alkyl, C_{3-6} cycloalkyl- C_{0-6} alkyl, Ar- C_{0-6} alkyl, or Het- C_{0-6} alkyl; Z is C(O) or CH₂; and

25 n is 1, 2 or 3;

or a pharmaceutically acceptable salt thereof.

Preferably, the present invention provides compounds of formula (Ia):

wherein:

5

15

 R^1 is R", R"C(O), R"C(S), R"SO₂, R"OC(O), R"R'NC(O), or R"R'NC(S); R^2 is H, C₁₋₆alkyl, C₂₋₆alkenyl, Ar-C₀₋₆alkyl, or Het-C₀₋₆alkyl; R^3 is H, C₂₋₆alkenyl, C₂₋₆alkynyl, Het, Ar or C₁₋₆alkyl optionally substituted by OR', SR', NR'₂, N(R')C(O)OR", CO₂R', CO₂NR'₂, N(C=NH)NH₂, Het or Ar; R^4 is H, C₁₋₆alkyl, C₂₋₆alkenyl, Ar-C₀₋₆alkyl, or Het-C₀₋₆alkyl;

$$R^{5}$$
 is R^{7} , Ar-C₀₋₆alkyl, Het-C₀₋₆alkyl, adamantyl-C(O)-,

10 Ar-C(O)-, or Het-C(O)-;

 R^6 is R", R"C(O), R"C(S), R"SO₂, R"OC(O), R"R'NC(O), R"R'NC(S), or R"OC(O)NR'CH(R*)C(O);

 R^7 is C_{3-6} cycloalkyl- C_{0-6} alkyl, Ar- C_{0-6} alkyl, Het- C_{0-6} alkyl, Ar- C_{0-6} alkoxy, Het- C_{0-6} alkoxy, or C_{1-6} alkyl optionally substituted by OR', SR', NR'₂, N(R')C(O)OR", CO_2 R', CO_2 NR'₂, N(C=NH)NH₂, Het or Ar;

 R^* is H, C_{1-6} alkyl, C_{2-6} alkenyl, C_{3-6} cycloalkyl- C_{0-6} -alkyl, Ar- C_{0-6} alkyl, Het- C_{0-6} alkyl;

each R' independently is H, C_{1-6} alkyl, C_{2-6} alkenyl, Ar- C_{0-6} alkyl, or Het- C_{0-6} alkyl;

20 each R" independently is C_{1-6} alkyl, C_{3-6} cycloalkyl- C_{0-6} -alkyl, Ar- C_{0-6} alkyl, or Het- C_{0-6} alkyl;

R"' is H, C_{1-6} alkyl, C_{3-6} cycloalkyl- C_{0-6} alkyl, Ar- C_{0-6} alkyl, or Het- C_{0-6} alkyl; Z is C(O) or CH₂; and n is 1, 2 or 3;

or a pharmaceutically acceptable salt thereof.

The present invention includes all hydrates, solvates, complexes and prodrugs of the compounds of this invention. Prodrugs are any covalently bonded compounds which release the active parent drug according to formula (I) in vivo. If a chiral center or another form of an isomeric center is present in a compound of the present invention, all forms of such isomer or isomers, including enantiomers and diastereomers, are intended to be covered herein. Inventive compounds containing a chiral center may be used as a

racemic mixture, an enantiomerically enriched mixture, or the racemic mixture may be separated using well-known techniques and an individual enantiomer may be used alone. In cases in which compounds have unsaturated carbon-carbon double bonds, both the cis (Z) and trans (E) isomers are within the scope of this invention. In cases wherein compounds may exist in tautomeric forms, such as keto-enol tautomers, each tautomeric form is contemplated as being included within this invention whether existing in equilibrium or predominantly in one form.

The meaning of any substituent at any one occurrence in formula (I) or any subformula thereof is independent of its meaning, or any other substituent's meaning, at any other occurrence, unless specified otherwise.

With respect to formula (I):

Suitably, R^4 and $R^{"}$ are each H and R^3 is C_{1-6} alkyl or C_{2-6} alkenyl. Preferably, R^3 is i-butyl.

15 Suitably, R⁵ is benzyl or

5

10

$$R^6 \xrightarrow{R'} Z$$

, in which R' is H, R⁷ is C₁₋₆alkyl, preferably i-butyl, R⁶ is

R"OC(O), wherein R" is benzyl, and Z is CH₂.

Suitably, Y is NR¹R², in which R² is H and R¹ is R"C(O) or R"OC(O), and R" in said
R¹ group is C₁₋₆alkyl, Ar-C₀₋₆alkyl or Het-C₀₋₆alkyl, and, most preferably, R" is tert-butyl,

25

Suitably, n is 1 or 2. Preferably, n is 1.

In one particular embodiment, the formula (Ia) compound of this invention is a compound of formula (Ib):

PCT/US98/09192

$$R^{5}$$

(Ib).

In another embodiment, the formula (Ia) compound of this invention is a compound of formula (Ic):

$$R^{5}$$
 N O H (Ic) .

5

10

15

Specific representative compounds of this invention are:

 $3-[[N^{\alpha}-(2-quinoline carbonyl)-L-leucinyl]amino]-1-[(2S)-4-methyl-2-[[(benzyloxycarbonyl)amino]pentyl]-pyrrolidine;$

1-benzyl-3-[[Nα-(2-quinolinecarbonyl)-L-leucinyl]amino]- pyrrolidine;

 $3-[[N^{\alpha}-(2-naphthylcarbonyl)-L-leucinyl]amino]-1-[(2S)-4-methyl-2-[[(benzyloxycarbonyl)amino]pentyl]-pyrrolidine;$

1-benzyl-3-[[Nα-(2-naphthylcarbonyl)-L-leucinyl]amino]-pyrrolidine;

1-benzyl-(3S)-[[N^{α} -(benzyloxycarbonyl)-L-leucinyl]amino]-pyrrolidine;

1-benzyl-(3S)- $[N^{\alpha}-(tert-butoxycarbonyl)-L-leucinyl]$ amino]-pyrrolidine;

 $(3S)-[[N^{\alpha}-(2-naphthylcarbonyl)-L-leucinyl]amino]-1-[(2S)-4-methyl-2-[(benzyloxycarbonyl)amino]pentyl]-pyrrolidine;$

 $(3R)-[[N^{\alpha}-(2-naphthylcarbonyl)-L-leucinyl]amino]-1-[(2S)-4-methyl-2-[[(benzyloxycarbonyl)amino]pentyl]-pyrrolidine;$

20 1-benzyl-(3R)-[[N^{α} -(2-naphthyl)acetyl-L-leucinyl]amino]-pyrrolidine;

1-benzyl-(3R)-[[$N\alpha$ -(2-naphthylcarbonyl)-L-leucinyl]amino]-pyrrolidine;

1-benzyl-(3R)-[[N^{α} -(3-quinolinecarbonyl)-L-leucinyl]amino]-pyrrolidine;

1-benzyl-(3R)-[[N^{α} -(2-quinolinecarbonyl)-L-leucinyl]amino]-pyrrolidine;

1-benzyl-(3R)-[[N^{α} -(3-isoquinolinecarbonyl)-L-leucinyl]amino]-pyrrolidine;

25 1-benzyl-(3S)-[[N^{α} -(2-naphthyl)acetyl-L-leucinyl]amino]-pyrrolidine;

1-benzyl-(3S)-[N^{α} -(2-naphthylcarbonyl)-L-leucinyl]amino]-pyrrolidine;

1-benzyl-(3S)-[[N^{α} -(3-quinolinecarbonyl)-L-leucinyl]amino]-pyrrolidine;

```
l-benzyl-(3S)-[[N^{\alpha}-(2-quinolinecarbonyl)-L-leucinyl]amino]-pyrrolidine;
l-benzyl-(3S)-[[N^{\alpha}-(3-isoquinolinecarbonyl)-L-leucinyl]amino]-pyrrolidine;
l-benzyl-4-[[N^{\alpha}-(2-naphthylcarbonyl)-L-leucinyl]amino]-piperidine;
l-benzyl-4-[[N^{\alpha}-(2-quinolinecarbonyl)-L-leucinyl]amino]-piperidine;
l-benzyl-4-[[N^{\alpha}-(benzyloxycarbonyl)-L-leucinyl]amino]-piperidine;
l-[3-(2-pyridyl)phenyl]-2-ethyl-(3S)-[[N^{\alpha}-(2-naphthylcarbonyl)-L-leucinyl]amino]-
```

- 1-[3-(2-pyridyl)phenyl]-2-ethyl-(3S)-[[N^{α} -(2-quinolinecarbonyl)-L-leucinyl]amino]-pyrrolidine;
- 10 1-[3-(2-pyridyl)phenyl]-2-ethyl-(3S)-[[N^{α} -(3-isoquinolinecarbonyl)-L-leucinyl]amino]-pyrrolidine;
 - $1-[3-(2-pyridyl)phenyl]-2-ethyl-(3R)-[[N^{\alpha}-(2-naphthylcarbonyl)-L-leucinyl]amino]-pyrrolidine;$
- 1-[3-(2-pyridyl)phenyl]-2-ethyl-(3R)-[[N^{α} -(3-isoquinolinecarbonyl)-L-leucinyl]amino]pyrrolidine;
 - 1-[3-(2-pyridyl)phenyl]-2-ethyl-(3R)-[[N α -(2-quinolinecarbonyl)-L-leucinyl]amino]-pyrrolidine;
 - 1-(1-adamantanecarbonyl)-(3R)-[[N^{α} -(4-pyridylmethoxycarbonyl)-L-leucinyl]amino]-pyrrolidine;
- 1-(1-adamantanecarbonyl)-(3S)-[[N^{α} -(4-pyridylmethoxycarbonyl)-L-leucinyl]amino]-pyrrolidine;
 - $(3R)-[[N^{\alpha}-(benzo[b]thiophene-2-carbonyl)-L-leucinyl] amino]-1-[(2S)-4-methyl-2-[[(benzyloxycarbonyl)amino]pentyl]-pyrrolidine;$
 - $(3R)-[[N^{\alpha}-(3,4-dimethoxybenzoyl)-L-leucinyl]amino]-1-[(2S)-4-methyl-2-$
- 25 [[(benzyloxycarbonyl)amino]pentyl]-pyrrolidine;
 - $(3R)-[[N^{\alpha}-(benzofuran-2-carbonyl)-L-leucinyl]amino]-1-[(2S)-4-methyl-2-[(benzyloxycarbonyl)amino]pentyl]-pyrrolidine;$
 - $(3R)-[[N^{\alpha}-(benzothiazole-6-carbonyl)-L-leucinyl] amino]-1-[(2S)-4-methyl-2-[[(benzyloxycarbonyl)amino]pentyl]-pyrrolidine;$
- 30 (3R)- $[[N^{\alpha}-(indole-2-carbonyl)-L-leucinyl]$ amino]-1-[(2S)-4-methyl-2-[[(benzyloxycarbonyl)amino]pentyl]-pyrrolidine;
 - $(3R)\hbox{-}[[N^\alpha\hbox{-}(4\hbox{-}fluor obenzoyl)\hbox{-}L\hbox{-}leucinyl] amino}]\hbox{-}1\hbox{-}[(2S)\hbox{-}4\hbox{-}methyl\hbox{-}2\hbox{-}leucinyl]$
 - [[(benzyloxycarbonyl)amino]pentyl]-pyrrolidine;
 - (3R)-[[N α -(4-methoxybenzoyl)-L-leucinyl]amino]-1-[(2S)-4-methyl-2-
- 35 [[(benzyloxycarbonyl)amino]pentyl]-pyrrolidine;
 (3R)-[[Nα-(3,4-dichlorobenzoyl)-L-leucinyl]amino]-1-[
 - (3R)-[[N^{α} -(3,4-dichlorobenzoyl)-L-leucinyl]amino]-1-[(2S)-4-methyl-2-[[(benzyloxycarbonyl)amino]pentyl]-pyrrolidine;

5

pyrrolidine;

```
(3R)-[N^{\alpha}-(thiophene-2-carbonyl)-L-leucinyl]amino]-1-[(2S)-4-methyl-2-
            [[(benzyloxycarbonyl)amino]pentyl]-pyrrolidine;
                       (3R)-[[N^{\alpha}-(4-biphenylcarbonyl)-L-leucinyl]amino]-1-[(2S)-4-methyl-2-
            [[(benzyloxycarbonyl)amino]pentyl]-pyrrolidine;
  5
                      (3R)-[[Nα-(5-methoxybenzofuran-2-carbonyl)-L-leucinyl]amino]-1-[(2S)-4-methyl-2-
            [[(benzyloxycarbonyl)amino]pentyl]-pyrrolidine;
                      (3R)-[[Nα-(5-chlorobenzofuran-2-carbonyl)-L-leucinyl]amino]-1-[(2S)-4-methyl-2-
            [[(benzyloxycarbonyl)amino]pentyl]-pyrrolidine;
                      (3R)-[[Nα-(7-methoxybenzofuran-2-carbonyl)-L-leucinyl]amino]-1-[(2S)-4-methyl-2-
10
            [[(benzyloxycarbonyl)amino]pentyl]-pyrrolidine;
                       (3R)-[[N\alpha-(3-chlorobenzo[b]thiophene-2-carbonyl)-L-leucinyl]amino]-1-[(2S)-4-methy]-
            2-[[(benzyloxycarbonyl)amino]pentyl]-pyrrolidine;
                       (3R)-[N^{\alpha}-(3-(2-pyridyl)benzoyl)-L-leucinyl]amino]-1-[(2S)-4-methyl-2-
            [[(benzyloxycarbonyl)amino]pentyl]-pyrrolidine;
15
                       (3S)-[[Nα-(benzo[b]thiophene-2-carbonyl)-L-leucinyl]amino]-1-[(2S)-4-methyl-2-
            [[(benzyloxycarbonyl)amino]pentyl]-pyrrolidine;
                       (3S)-[N^{\alpha}-(3,4-dimethoxybenzoyl)-L-leucinyl]amino]-1-[(2S)-4-methyl-2-dimethoxybenzoyl)
            [[(benzyloxycarbonyl)amino]pentyl]-pyrrolidine;
                       (3S)-[N^{\alpha}-(benzofuran-2-carbonyl)-L-leucinyl]amino]-1-[(2S)-4-methyl-2-
20
            [[(benzyloxycarbonyl)amino]pentyl]- pyrrolidine;
                       (3S)-[N^{\alpha}-(benzothiazole-6-carbonyl)-L-leucinyl]amino]-1-[(2S)-4-methyl-2-
            [[(benzyloxycarbonyl)amino]pentyl]-pyrrolidine;
                       (3S)-[[N^{\alpha}-(indole-2-carbonyl)-L-leucinyl]amino]-1-[(2S)-4-methyl-2-
            [[(benzyloxycarbonyl)amino]pentyl]-pyrrolidine;
25
                       (3S)-[N^{\alpha}-(4-\text{fluorobenzoyl})-L-\text{leucinyl}]amino]-1-[(2S)-4-\text{methyl}-2-\text{methyl}]
            [[(benzyloxycarbonyl)amino]pentyl]-pyrrolidine;
                       (3S)-[N^{\alpha}-(4-methoxybenzoyl)-L-leucinyl]amino]-1-[(2S)-4-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-met
            [[(benzyloxycarbonyl)amino]pentyl]-pyrrolidine;
                       (3S)-[N^{\alpha}-(3,4-dichlorobenzoyl)-L-leucinyl]amino]-1-[(2S)-4-methyl-2-
30
            [[(benzyloxycarbonyl)amino]pentyl]-pyrrolidine;
                       (3S)-[N^{\alpha}-(thiophene-2-carbonyl)-L-leucinyl]amino]-1-[(2S)-4-methyl-2-
            [[(benzyloxycarbonyl)amino]pentyl]-pyrrolidine;
                       (3S)-[N^{\alpha}-(4-biphenylcarbonyl)-L-leucinyl]amino]-1-[(2S)-4-methyl-2-
            [[(benzyloxycarbonyl)amino]pentyl]-pyrrolidine;
35
                       (3S)-[[Nα-(5-methoxybenzofuran-2-carbonyl)-L-leucinyl]amino]-1-[(2S)-4-methyl-2-
            [[(benzyloxycarbonyl)amino]pentyl]-pyrrolidine;
```

```
(3S)-[N^{\alpha}-(5-\text{chlorobenzofuran-}2-\text{carbonyl})-L-\text{leucinyl}]amino]-1-[(2S)-4-\text{methyl-}2-\text{methyl}]
           [[(benzyloxycarbonyl)amino]pentyl]-pyrrolidine;
                     (3S)-[[Nα-(7-methoxybenzofuran-2-carbonyl)-L-leucinyl]amino]-1-[(2S)-4-methyl-2-
           [[(benzyloxycarbonyl)amino]pentyl]-pyrrolidine;
  5
                     (3S)-[N^{\alpha}-(3-chlorobenzo[b]thiophene-2-carbonyl)-L-leucinyl]amino]-1-<math>[(2S)-4-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-me
           [[(benzyloxycarbonyl)amino]pentyl]-pyrrolidine;
                     (3S)-[N^{\alpha}-(3-(2-pyridyl)benzoyl)-L-leucinyl]amino]-1-[(2S)-4-methyl-2-
           [[(benzyloxycarbonyl)amino]pentyl]-pyrrolidine;
                     1-(4-phenyl)benzyl-(3S)-[[N^{\alpha}-(tert-butoxycarbonyl)-L-leucinyl]amino]-pyrrolidine;
10
                     1-(4-phenyl)benzyl-(3S)-[N^{\alpha}-(2-naphthylcarbonyl)-L-leucinyl]amino]-pyrrolidine;
                     1-(4-phenyl) benzyl-(3S)-[[N^{\alpha}-(2-quinoline carbonyl)-L-leucinyl] aminol-pyrrolidine;
                     1-(4-phenyl)benzyl-(3S)-[[N^{\alpha}-(3,4-dimethoxybenzoyl)-L-leucinyl]amino]-pyrrolidine;
                     1-(4-phenyl)benzyl-(3S)-[[N^{\alpha}-(benzofuran-2-carbonyl)-L-leucinyl]amino]-pyrrolidine;
                      1-(4-phenyl)benzyl-(3S)-[[N^{\alpha}-(benzo]b]thiophene-2-carbonyl)-L-leucinyl]amino]-
15
           pyrrolidine;
                     1-(4-phenyl)benzyl-(3S)-[[N^{\alpha}-(benzyloxycarbonyl)-L-leucinyl]amino]-pyrrolidine;
                     1-(2-phenyl)ethyl-(3S)-[N^{\alpha}-(tert-butoxycarbonyl)-L-leucinyl]amino]-pyrrolidine;
                     1-(2-phenyl)ethyl-(3S)-[N^{\alpha}-(2-naphthylcarbonyl)-L-leucinyl]amino]-pyrrolidine;
                     1-(2-phenyl)ethyl-(3S)-[[N\alpha-(2-quinolinecarbonyl)-L-leucinyl]amino]-pyrrolidine;
20
                     1-(2-phenyl)ethyl-(3S)-[[N\alpha-(benzo[b]thiophene-2-carbonyl)-L-leucinyl]amino]-
            pyrrolidine;
                     1-(2-phenyl)ethyl-(3S)-[N^{\alpha}-(benzofuran -2-carbonyl)-L-leucinyl]amino]-pyrrolidine;
                     1-(2-phenyl) ethyl-(3S)-[N^{\alpha}-(3-chlorobenzo[b]thiophene-2-carbonyl)-L-leucinyl] amino]-
            pyrrolidine;
25
                      1-(4-phenoxy)benzyl-(3S)-[[N^{\alpha}-(tert-butoxycarbonyl)-L-leucinyl]amino]-pyrrolidine;
                      1-(4-phenoxy)benzyl-(3S)-[N\alpha-(2-naphthylcarbonyl)-L-leucinyl]amino]-pyrrolidine;
                      1-(4-phenoxy)benzyl-(3S)-[[N^{\alpha}-(2-quinolinecarbonyl)-L-leucinyl]amino]-pyrrolidine;
                      1-(4-phenoxy)benzyl-(3S)-[[N^{\alpha}-(3,4-dimethoxybenzoyl)-L-leucinyl]amino]-pyrrolidine;
                      1-(4-phenoxy)benzy1-(3S)-[N^{\alpha}-(benzofuran -2-carbonyl)-L-leucinyl]aminol-pyrrolidine
                      1-(4-phenoxy)benzyl-(3S)-[[N^{\alpha}-(benzo[b]thiophene-2-carbonyl)-L-leucinyl]amino]-
30
            pyrrolidine;
                      1-(4-fluoro)benzyl-(3S)-[[N\alpha-(tert-butoxycarbonyl)-L-leucinyl]amino]-pyrrolidine;
                      1-(4-fluoro)benzyl-(3S)-[[N\alpha-(2-naphthylcarbonyl)-L-leucinyl]amino]-pyrrolidine;
                      1-(4-fluoro)benzyl-(3S)-[N^{\alpha}-(benzo[b]thiophene-2-carbonyl)-L-leucinyllamino]-
35
            pyrrolidine;
                      1-(4-cyano)benzyl-(3S)-[[N\alpha-(tert-butoxycarbonyl)-L-leucinyl]amino]-pyrrolidine;
                      1-(4-cyano)benzyl-(3S)-[[N\alpha-(2-naphthylcarbonyl)-L-leucinyl]amino]-pyrrolidine;
```

```
1-benzyl-(3S)-[N^{\alpha}-(benzo[b]thiophene-2-carbonyl)-L-leucinyl]amino]-pyrrolidine;
                         1-benzyl-(3S)-[[N^{\alpha}-(3,4-dimethoxybenzoyl)-L-leucinyl]amino]-pyrrolidine;
                         1-benzyl-(3S)-[[N\alpha-(3-(2-dimethylaminoethoxy)-4-methoxybenzoyl)-L-leucinyl]amino]-
             pyrrolidine;
                         1-(4-nitro)benzyl-(3S)-[[N^{\alpha}-(2-naphthylcarbonyl)-L-leucinyl]amino]-pyrrolidine;
 5
                         1-(4-(N,N-dimethylamino)benzyl-(3S)-[[N^{\alpha}-(2-naphthylcarbonyl)-L-leucinyl]amino]-
                         pyrrolidine;
                         1-(4-methoxy)benzyl-(3S)-[[N^{\alpha}-(2-naphthylcarbonyl)-L-leucinyl]amino]-pyrrolidine;
                         1-(4-pyridyl) methyl-(3S)-[[N^{\alpha}-(2-naphthylcarbonyl)-L-leucinyl] amino]-pyrrolidine;
                         1-(4-carboxymethyl) benzyl-(3S)-[[N^{\alpha}-(2-naphthylcarbonyl)-L-leucinyl] amino]-(4-carboxymethyl) benzyl-(4-carboxymethyl) benzyl-(4-carboxymethy
10
              pyrrolidine:
                          1-(3,4-methylenedioxy)benzyl-(3S)-[[N^{\alpha}-(2-naphthylcarbonyl)-L-leucinyl]amino]-
              pyrrolidine;
                          1-(2-naphthyl)methyl-(3S)-[[N\alpha-(2-naphthylcarbonyl)-L-leucinyl]amino]-pyrrolidine;
                          1-(3-indolyl)methyl-(3S)-[[N\alpha-(2-naphthylcarbonyl)-L-leucinyl]amino]-pyrrolidine;
15
                          1-(2-quinolinyl)methyl-(3S)-[[N^{\alpha}-(2-naphthylcarbonyl)-L-leucinyl]amino]-pyrrolidine;
                          1-(3-quinolinyl)methyl-(3S)-[N^{\alpha}-(2-naphthylcarbonyl)-L-leucinyl]amino]-pyrrolidine;
                          1-(1-naphthyl)methyl-(3S)-[[N^{\alpha}-(2-naphthylcarbonyl)-L-leucinyl]amino]-pyrrolidine;
                          1-(4-quinolinyl)methyl-(3S)-[[N^{\alpha}-(2-naphthylcarbonyl)-L-leucinyl]amino]-pyrrolidine;
                          1-(3-pyrrolyl)methyl-(3S)-[[N^{\alpha}-(2-naphthylcarbonyl)-L-leucinyl]amino]-pyrrolidine;
20
                          1-(3-pyridyl)methyl-(3S)-[[N^{\alpha}-(2-naphthylcarbonyl)-L-leucinyl]amino]-pyrrolidine;
                          1-(2-pyridyl) methyl-(3S)-[[N^{\alpha}-(2-naphthylcarbonyl)-L-leucinyl] amino]-pyrrolidine;
                          1\hbox{-}(3\hbox{-nitro}) benzyl\hbox{-}(3S)\hbox{-}[[N^\alpha\hbox{-}(2\hbox{-naphthylcarbonyl})\hbox{-}L\hbox{-leucinyl}] amino]\hbox{-}pyrrolidine};
                          1-(4-acetamido)benzyl-(3S)-[[N^{\alpha}-(2-naphthylcarbonyl)-L-leucinyl]amino]-pyrrolidine;
                          1-(3-cyano)benzyl-(3S)-[N\alpha-(2-naphthylcarbonyl)-L-leucinyl]amino]-pyrrolidine;
 25
                          1-(3-fluoro)benzyl-(3S)-[[N^{\alpha}-(2-naphthylcarbonyl)-L-leucinyl]amino]-pyrrolidine;
                          1-(3-phenoxy)benzyl-(3S)-[[N^{\alpha}-(2-naphthylcarbonyl)-L-leucinyl]amino]-pyrrolidine;
                           1-(4-chloro)benzyl-(3S)-[[N^{\alpha}-(2-naphthylcarbonyl)-L-leucinyl]amino]-pyrrolidine;
                           1-(4-trifluoromethyl)benzyl-(3S)-[[N^{\alpha}-(2-naphthylcarbonyl)-L-leucinyl]amino]-
 30
                           pyrrolidine;
                           1-(3-trifluoromethyl)benzyl-(3S)-[[N^{\alpha}-(2-naphthylcarbonyl)-L-leucinyl]amino]-
                           pyrrolidine;
                           1-(4-(3-(N,N-dimethylamino)propoxy)benzyl-(3S)-[[N^{\alpha}-(2-naphthylcarbonyl)-L-(3-(N,N-dimethylamino)propoxy)benzyl-(3S)-[[N^{\alpha}-(2-naphthylcarbonyl)-L-(3-(N,N-dimethylamino)propoxy)benzyl-(3S)-[[N^{\alpha}-(2-naphthylcarbonyl)-L-(3-(N,N-dimethylamino)propoxy)benzyl-(3S)-[[N^{\alpha}-(2-naphthylcarbonyl)-L-(3-(N,N-dimethylamino)propoxy)benzyl-(3S)-[[N^{\alpha}-(2-naphthylcarbonyl)-L-(3-(N,N-dimethylamino)propoxy)benzyl-(3S)-[[N^{\alpha}-(2-naphthylcarbonyl)-L-(3-(N,N-dimethylamino)propoxy)benzyl-(3S)-[[N^{\alpha}-(2-naphthylcarbonyl)-L-(3-(N,N-dimethylamino)propoxy)benzyl-(3S)-[[N^{\alpha}-(2-naphthylcarbonyl)-L-(3-(N,N-dimethylamino)propoxy)benzyl-(3S)-[[N^{\alpha}-(2-naphthylcarbonyl)-L-(3-(N,N-dimethylamino)propoxy)benzyl-(3S)-[[N^{\alpha}-(2-naphthylamino)propoxy])-[[N^{\alpha}-(2-naphthylamino)propoxy]]
                leucinyllamino]-pyrrolidine;
                           1-(4-(isopropyl)benzyl-(3S)-[[N^{\alpha}-(2-naphthylcarbonyl)-L-leucinyl]amino]-pyrrolidine;
 35
```

1-(2-benzofuranyl)methyl-(3S)-[[Nα-(2-naphthylcarbonyl)-L-leucinyl]amino]-pyrrolidine;

1-(2-(3-methylbenzo[b]thiophenyl)methyl-(3S)-[N^{α} -(2-naphthylcarbonyl)-L-leucinyl]amino]-pyrrolidine;

1-(2-furanyl)methyl-(3S)-[[Nα-(2-naphthylcarbonyl)-L-leucinyl]amino]-pyrrolidine;

1-(3-furanyl)methyl-(3S)-[[N^{α} -(2-naphthylcarbonyl)-L-leucinyl]amino]-pyrrolidine;

1-(2-thiophenyl)methyl-(3S)- $[N^{\alpha}$ -(2-naphthylcarbonyl)-L-leucinyl]amino}-pyrrolidine;

1-(2-nitro)benzyl-(3S)-[[N^{α} -(2-naphthylcarbonyl)-L-leucinyl]amino]-pyrrolidine;

-(3-thiophenyl)methyl-(3S)- $[N^{\alpha}$ -(2-naphthylcarbonyl)-L-leucinyl]amino]-pyrrolidine;

 $1-(3,4-dimethoxy) benzyl-(3S)-[[N^{\alpha}-(2-naphthylcarbonyl)-L-leucinyl] amino]-pyrrolidine;\\$

and

 $\label{eq:continuous} $$1-(5-nitro-3-furanyl)$ methyl-(3S)-[[N^{\alpha}-(2-naphthylcarbonyl)-L-leucinyl]$ amino]-pyrrolidine;$

or a pharmaceutically acceptable salt thereof.

In yet another aspect, this invention provides novel intermediates useful in the preparation of formula (I) compounds represented by the formula (II):

15

20

25

10

5

wherein:

 R^3 is H, C₂₋₆alkenyl, C₂₋₆alkynyl, Het, Ar or C₁₋₆alkyl optionally substituted by OR', SR', NR'₂, N(R')C(O)OR", CO₂R', CO₂NR'₂, N(C=NH)NH₂, Het or Ar; R^4 is H, C₁₋₆alkyl, C₂₋₆alkenyl, Ar-C₀₋₆alkyl, or Het-C₀₋₆alkyl;

 R^{5} is R^{7} Z

, Ar-C₀₋₆alkyl, Het-C₀₋₆alkyl, adamantyl-C(O)-,

Ar-C(O)-, or Het-C(O)-;

R⁶ is R", R"C(O), R"C(S), R"SO₂, R"OC(O), R"R'NC(O), R"R'NC(S), or R"OC(O)NR'CH(R*)C(O);

 R^7 is C_{3-6} cycloalkyl- C_{0-6} alkyl, Ar- C_{0-6} alkyl, Het- C_{0-6} alkyl, Ar- C_{0-6} alkoxy, Het- C_{0-6} alkoxy, or C_{1-6} alkyl optionally substituted by OR', SR', NR'₂, N(R')C(O)OR", CO_2R' , $CO_2NR'_2$, N(C=NH)NH₂, Het or Ar;

 R^* is H, C_{1-6} alkyl, C_{2-6} alkenyl, C_{3-6} cycloalkyl- C_{0-6} -alkyl, Ar- C_{0-6} alkyl, Het- C_{0-6} alkyl;

each R' independently is H, C_{1-6} alkyl, C_{2-6} alkenyl, Ar- C_{0-6} alkyl, or Het- C_{0-6} alkyl;

each R" independently is C_{1-6} alkyl, C_{3-6} cycloalkyl- C_{0-6} -alkyl, Ar- C_{0-6} alkyl, or Het- C_{0-6} alkyl;

R"' is H, C_{1-6} alkyl, C_{3-6} cycloalkyl- C_{0-6} alkyl, Ar- C_{0-6} alkyl, or Het- C_{0-6} alkyl; Z is C(O) or CH₂; and n is 1, 2 or 3;

or a pharmaceutically acceptable salt thereof.

5

10

15

20

25

30

35

Abbreviations and symbols commonly used in the peptide and chemical arts are used herein to describe the compounds of the present invention. In general, the amino acid abbreviations follow the IUPAC-IUB Joint Commission on Biochemical Nomenclature as described in *Eur. J. Biochem.*, 158, 9 (1984). The term "amino acid" as used herein refers to the D- or L- isomers of alanine, arginine, asparagine, aspartic acid, cysteine, glutamine, glutamic acid, glycine, histidine, isoleucine, leucine, lysine, methionine, phenylalanine, proline, serine, threonine, tryptophan, tyrosine and valine.

"C₁₋₆alkyl" as applied herein is meant to include substituted and unsubstituted methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl and t-butyl, pentyl, n-pentyl, isopentyl, neopentyl and hexyl and the simple aliphatic isomers thereof. Any C₁₋₆alkyl group may be optionally substituted independently by one or two halogens, SR', OR', N(R')₂, C(O)N(R')₂, carbamyl or C₁₋₄alkyl, where R' is H or C₁₋₆alkyl. C₀alkyl means that no alkyl group is present in the moiety. Thus, Ar-C₀alkyl is equivalent to Ar.

"C₃₋₆cycloalkyl" as applied herein is meant to include substituted and unsubstituted cyclopropane, cyclobutane, cyclopentane, and cyclohexane.

"C₂₋₆ alkenyl" as applied herein means an alkyl group of 2 to 6 carbons wherein a carbon-carbon single bond is replaced by a carbon-carbon double bond. C₂₋₆alkenyl includes ethylene, 1-propene, 2-propene, 1-butene, 2-butene, isobutene and the several isomeric pentenes and hexenes. Both cis and trans isomers are included.

"C₂₋₆alkynyl" means an alkyl group of 2 to 6 carbons wherein one carbon-carbon single bond is replaced by a carbon-carbon triple bond. C₂₋₆ alkynyl includes acetylene, 1-propyne, 2-propyne, 1-butyne, 2-butyne, 3-butyne and the simple isomers of pentyne and hexyne.

"Halogen" or "halo" means F, Cl, Br, and I.

"Ar" or "aryl" means unsubstituted phenyl or naphthyl; or phenyl or naphthyl substituted by one or more of Ph-C $_{0-6}$ alkyl, Het-C $_{0-6}$ alkyl, C $_{1-6}$ alkoxy, Ph-C $_{0-6}$ alkoxy, Het-C $_{0-6}$ alkoxy, OH, (CH $_{2}$) $_{1-6}$ NR'R', O(CH $_{2}$) $_{1-6}$ NR'R'; wherein each R' independently is H, C $_{1-6}$ alkyl, Ar-C $_{0-6}$ alkyl, or Het-C $_{0-6}$ alkyl; or phenyl or naphthyl substituted by one to three moieties selected from C $_{1-4}$ alkyl, OR', N(R'), SR',

5

10

15

20

25

30

35

CF₃, NO₃, CN, CO₂R', CON(R'), F, Cl, Br and I, or substituted by a methylenedioxy group.

As used herein "Het" or "heterocyclic" or "heteroaryl" represents a stable 5- to 7-membered monocyclic or a stable 7- to 10-membered bicyclic heterocyclic ring, which is either saturated or unsaturated, and which consists of carbon atoms and from one to four heteroatoms selected from the group consisting of N, O and S, and wherein the nitrogen and sulfur heteroatoms may optionally be oxidized, and the nitrogen heteroatom may optionally be quaternized, and including any bicyclic group in which any of the above-defined heterocyclic rings is fused to a benzene ring. The heterocyclic ring may be attached at any heteroatom or carbon atom which results in the creation of a stable structure, and may optionally be substituted with one or two moieties selected from C₁₋₄alkyl, OR', N(R')₂, SR', CF₃, NO₂, CN, CO₂R', CON(R'), F, Cl, Br and I, where R' is as defined hereinbefore. Examples of such heterocycles include piperidinyl, piperazinyl, 2-oxopiperazinyl, 2-oxopiperidinyl, 2-oxopyrrolodinyl, 2-oxoazepinyl, azepinyl, pyrrolyl, 4-piperidonyl, pyrrolidinyl, pyrazolyl, pyrazolidinyl, imidazolyl, pyridyl, pyrazinyl, oxazolidinyl, oxazolinyl, oxazolyl, isoxazolyl, morpholinyl, thiazolidinyl, thiazolinyl, thiazolyl, quinuclidinyl, indolyl, quinolinyl, isoquinolinyl, benzimidazolyl, benzopyranyl, benzoxazolyl, furyl, pyranyl, tetrahydrofuryl, tetrahydropyranyl, thienyl, benzoxazolyl, thiamorpholinyl sulfoxide, thiamorpholinyl sulfone, oxadiazolyl, benzothiazolyl, benzoisothiazolyl, benzisoxazolyl, pyrimidinyl, cinnolinyl, quinazolinyl, quinoxalinyl, 1,5-napthyridinyl, 1,6-napthyridinyl, 1,7napthyridinyl, 1,8-napthyridinyl, tetrazolyl, 1,2,3-triazolyl, and 1,2,4-triazolyl. "Het" also means any heterocyclic moiety encompassed by the above definition of Het which is aromatic in character, e.g., pyridinyl, quinolinyl, isoquinolinyl, pyrrolyl, pyrazolyl, imidazolyl, pyridyl, pyrazinyl, oxazolyl, isoxazolyl, thiazolyl, isothiazolyl, indolyl, quinolinyl, isoquinolinyl, benzimidazolyl, benzoxazolyl, furyl, thienyl, benzoxazolyl, oxadiazolyl, benzothiazolyl, benzoisothiazolyl, benzisoxazolyl, pyrimidinyl, cinnolinyl, quinazolinyl, quinoxalinyl, 1,5-napthyridinyl, 1,6- napthyridinyl, 1,7- napthyridinyl, 1,8- napthyridinyl, tetrazolyl, 1,2,3-triazolyl, and 1,2,4-triazolyl.

Certain radical groups are abbreviated herein. t-Bu refers to the tertiary butyl radical, Boc or BOC refers to the t-butyloxycarbonyl radical, Fmoc refers to the fluorenylmethoxycarbonyl radical, Ph refers to the phenyl radical, Cbz or CBZ refers to the benzyloxycarbonyl radical.

Certain reagents are abbreviated herein. DCC refers to dicyclohexylcarbodiimide, DMAP is 2,6-dimethylaminopyridine, EDC or EDCI refers to N-ethyl-N'(dimethylaminopropyl)-carbodiimide. HOBT or HOBt refers to 1-hydroxybenzotriazole, DMF refers to dimethyl formamide, BOP refers to benzotriazol-

1-yloxy-tris(dimethylamino)phosphonium hexafluorophosphate, DMAP is dimethylaminopyridine, DIEA refers to di-isopropylethylamine, Lawesson's reagent is 2,4-bis(4-methoxyphenyl)-1,3-dithia-2,4-diphosphetane-2,4-disulfide, NMM is N-methylmorpholine, TFA refers to trifluoroacetic acid, TFAA refers to trifluoroacetic anhydride, KHMDS refers to potassium hexamethyldisilazide, and THF refers to tetrahydrofuran. Jones reagent is a solution of chromium trioxide, water, and sulfuric acid well-known in the art.

Compounds of the formula (I) are generally prepared by reacting a compound of the formula (II):

10

15

20

5

(II)

or a salt thereof,

wherein R"', R³, R⁴, R⁵ and n are as defined in formula (I), with any reactive functional groups protected, with:

claim 1; or

(a) R"C(O)Cl, in which R" is as defined in formula (I) of

(b) R"C(O)OH, in which R" is as defined in formula (I) of claim 1, in the presence of EDC and HOBT; or

(c) $R^{"}C(O)H$, in which $R^{"}$ is as defined in formula (I) of claim 1, followed by reduction; or

(d) R"OC(O)Cl, in which R" is as defined in formula (I) of claim 1, in the presence of base; or

(e) $R"SO_2CI$, in which R" is as defined in formula (I) of claim 1, in the presence of base;

and thereafter removing any protecting groups and optionally forming a pharmaceutically acceptable salt.

Compounds of the formula (I) are prepared by methods analogous to those described in Schemes 1 and 2.

Scheme 1

a) PhCHO, CH₂Cl₂, NaBH(OAc)₃; b) HCl, EtOAc, CH₃OH; c) N-BOC-leucine, EDC, HOBt, NMM, CH₂Cl₂; d) HCl, EtOAc, CH₃OH; e) quinaldic acid, EDC, HOBt, NMM, CH₂Cl₂

Compounds of the general formula (I) wherein n is 1, R⁵ is an alkyl group and 10 R¹ is an R'C(O) can be prepared as outlined in Scheme 1. Reductive alkylation of the commercially available amine 1-Scheme-1 (this material available in racemic or enantiomerically pure form) with an aldehyde, such as benzaldehyde or CBZ-leucinal, follwed by treatment with a reducing agent, such as sodium triacetoxyborohydride, affords the tertiary amine 2-Scheme-1. Removal of the protecting group by treating 2-15 Scheme-1 with a strong acid, such as hydrogen chloride, in ethyl acetate or ether or dioxane and methanol affords 3-Scheme-1. 3-Scheme-1 may be coupled with an acid using EDC and HOBT in the presence of a base, such as N-methylmorpholine or triethylamine, in an aprotic solvent, such as dichloromethane, to yield 4-Scheme-1. The protecting group of 4-Scheme-1 may be removed with strong acid, such as hydrogen 20 chloride, in ethyl acetate or ether or dioxane and methanol to afford 5-Scheme-1. Coupling of the amine salt 5-Scheme-1 may be effected with an acid in the presence of EDC, HOBt and a base, such as N-methylmorpholine, to yield 6-Scheme-1. The 5-

<u>Scheme-1</u> salt may also be converted to the sulphonamide derivative by treatment with a sulphonyl chloride in the presence of a base, such as triethylamine, in an aprotic solvent, such as dichloromethane.

Scheme 2

a) N-BOC-leucine, EDC, HOBT, NMM, CH₂Cl₂; b) HCl, EtOAc; c) 2-naphthoic acid, EDC, HOBT, CH₂Cl₂, NMM

Compounds of the general formula (I) wherein n is 2, R⁵ is a benzyl group and R¹ is an R'C(O) can be prepared as outlined in Scheme 1. Acylation of the commercially available 4-amino-1-benzylpiperidine (1-Scheme-1) with N-BOC-leucine in the presence of EDC, HOBT and N-methylmorpholine in dichloromethane afforded 2-scheme-2. Removal of the protecting group with anhydrous hydrogen chloride in ethyl acetate or ether or dioxane and methanol gave 3-Scheme-2. Acylation of the amine salt 3-Scheme-2 with a carboxylic acid as described previously afforded 4-Scheme-2.

20

25

10

15

5

The starting materials used herein are commercially available amino acids or are prepared by routine methods well known to those of ordinary skill in the art and can be found in standard reference books, such as the COMPENDIUM OF ORGANIC SYNTHETIC METHODS, Vol. I-VI (published by Wiley-Interscience).

Coupling methods to form amide bonds herein are generally well known to the art. The methods of peptide synthesis generally set forth by Bodansky et al., THE

PRACTICE OF PEPTIDE SYNTHESIS, Springer-Verlag, Berlin, 1984; E. Gross and J. Meienhofer, THE PEPTIDES, Vol. 1, 1-284 (1979); and J.M. Stewart and J.D. Young, SOLID PHASE PEPTIDE SYNTHESIS, 2d Ed., Pierce Chemical Co., Rockford, Ill., 1984. are generally illustrative of the technique and are incorporated herein by reference.

Synthetic methods to prepare the compounds of this invention frequently employ protective groups to mask a reactive functionality or minimize unwanted side reactions. Such protective groups are described generally in Green, T.W., PROTECTIVE GROUPS IN ORGANIC SYNTHESIS, John Wiley & Sons, New York (1981). The term "amino protecting groups" generally refers to the Boc, acetyl, benzoyl, Fmoc and Cbz groups and derivatives thereof as known to the art. Methods for protection and deprotection, and replacement of an amino protecting group with another moiety are well known.

Acid addition salts of the compounds or formula (I) are prepared in a standard manner in a suitable solvent from the parent compound and an excess of an acid, such as hydrochloric, hydrobromic, hydrofluoric, sulfuric, phosphoric, acetic, trifluoroacetic, maleic, succinic or methanesulfonic. Certain of the compounds form inner salts or zwitterions which may be acceptable. Cationic salts are prepared by treating the parent compound with an excess of an alkaline reagent, such as a hydroxide, carbonate or alkoxide, containing the appropriate cation; or with an appropriate organic amine. Cations such as Li⁺, Na⁺, K⁺, Ca⁺⁺, Mg⁺⁺ and NH₄⁺ are specific examples of cations present in pharmaceutically acceptable salts. Halides, sulfate, phosphate, alkanoates (such as acetate and trifluoroacetate), benzoates, and sulfonates (such as mesylate) are examples of anions present in pharmaceutically acceptable salts.

This invention also provides a pharmaceutical composition which comprises a compound according to formula (I) and a pharmaceutically acceptable carrier, diluent or excipient. Accordingly, the compounds of formula (I) may be used in the manufacture of a medicament. Pharmaceutical compositions of the compounds of formula (I) prepared as hereinbefore described may be formulated as solutions or lyophilized powders for parenteral administration. Powders may be reconstituted by addition of a suitable diluent or other pharmaceutically acceptable carrier prior to use. The liquid formulation may be a buffered, isotonic, aqueous solution. Examples of suitable diluents are normal isotonic saline solution, standard 5% dextrose in water or buffered sodium or ammonium acetate solution. Such formulation is especially suitable for parenteral administration, but may also be used for oral administration or contained in a metered dose inhaler or nebulizer for insufflation. It may be desirable to add excipients

5

10

15

20

25

30

such as polyvinylpyrrolidone, gelatin, hydroxy cellulose, acacia, polyethylene glycol, mannitol, sodium chloride or sodium citrate.

WO 98/50534

5

10

15

20

25

30

35

Alternately, these compounds may be encapsulated, tableted or prepared in an emulsion or syrup for oral administration. Pharmaceutically acceptable solid or liquid carriers may be added to enhance or stabilize the composition, or to facilitate preparation of the composition. Solid carriers include starch, lactose, calcium sulfate dihydrate, terra alba, magnesium stearate or stearic acid, talc, pectin, acacia, agar or gelatin. Liquid carriers include syrup, peanut oil, olive oil, saline and water. The carrier may also include a sustained release material such as glyceryl monostearate or glyceryl distearate, alone or with a wax. The amount of solid carrier varies but, preferably, will be between about 20 mg to about 1 g per dosage unit. The pharmaceutical preparations are made following the conventional techniques of pharmacy involving milling, mixing, granulating, and compressing, when necessary, for tablet forms; or milling, mixing and filling for hard gelatin capsule forms. When a liquid carrier is used, the preparation will be in the form of a syrup, elixir, emulsion or an aqueous or non-aqueous suspension. Such a liquid formulation may be administered directly p.o. or filled into a soft gelatin capsule.

For rectal administration, the compounds of this invention may also be combined with excipients such as cocoa butter, glycerin, gelatin or polyethylene glycols and molded into a suppository.

The compounds of formula (I) are useful as protease inhibitors, particularly as inhibitors of cysteine and serine proteases, more particularly as inhibitors of cysteine proteases, even more particularly as inhibitors of cysteine proteases of the papain superfamily, yet more particularly as inhibitors of cysteine proteases of the cathepsin family, most particularly as inhibitors of cathepsin K. The present invention also provides useful compositions and formulations of said compounds, including pharmaceutical compositions and formulations of said compounds.

The present compounds are useful for treating diseases in which cysteine proteases are implicated, including infections by pneumocystis carinii, trypsanoma cruzi, trypsanoma brucei, and Crithidia fusiculata; as well as in schistosomiasis, malaria, tumor metastasis, metachromatic leukodystrophy, muscular dystrophy, amytrophy; and especially diseases in which cathepsin K is implicated, most particularly diseases of excessive bone or cartilage loss, including osteoporosis, gingival disease including gingivitis and periodontitis, arthritis, more specifically, osteoarthritis and rheumatoid arthritis, Paget's disease; hypercalcemia of malignancy, and metabolic bone disease.

Metastatic neoplastic cells also typically express high levels of proteolytic enzymes that degrade the surrounding matrix, and certain tumors and metastatic neoplasias may be effectively treated with the compounds of this invention.

The present invention also provides methods of treatment of diseases caused by pathological levels of proteases, particularly cysteine and serine proteases, more particularly cysteine proteases, even more particularly as inhibitors of cysteine proteases of the papain superfamily, yet more particularly cysteine proteases of the cathepsin family, which methods comprise administering to an animal, particularly a mammal, most particularly a human in need thereof a compound of the present invention. The present invention especially provides methods of treatment of diseases caused by pathological levels of cathepsin K, which methods comprise administering to an animal, particularly a mammal, most particularly a human in need thereof an inhibitor of cathepsin K, including a compound of the present invention. The present invention particularly provides methods for treating diseases in which cysteine proteases are implicated, including infections by pneumocystis carinii, trypsanoma cruzi, trypsanoma brucei, and Crithidia fusiculata; as well as in schistosomiasis, malaria, tumor metastasis, metachromatic leukodystrophy, muscular dystrophy, amytrophy, and especially diseases in which cathepsin K is implicated, most particularly diseases of excessive bone or cartilage loss, including osteoporosis, gingival disease including gingivitis and periodontitis, arthritis, more specifically, osteoarthritis and rheumatoid arthritis, Paget's disease, hypercalcemia of malignancy, and metabolic bone disease.

This invention further provides a method for treating osteoporosis or inhibiting bone loss which comprises internal administration to a patient of an effective amount of a compound of formula (I), alone or in combination with other inhibitors of bone resorption, such as bisphosphonates (i.e., allendronate), hormone replacement therapy, anti-estrogens, or calcitonin. In addition, treatment with a compound of this invention and an anabolic agent, such as bone morphogenic protein, iproflavone, may be used to prevent bone loss or to increase bone mass.

For acute therapy, parenteral administration of a compound of formula (I) is preferred. An intravenous infusion of the compound in 5% dextrose in water or normal saline, or a similar formulation with suitable excipients, is most effective, although an intramuscular bolus injection is also useful. Typically, the parenteral dose will be about 0.01 to about 100 mg/kg; preferably between 0.1 and 20 mg/kg, in a manner to maintain the concentration of drug in the plasma at a concentration effective to inhibit cathepsin K. The compounds are administered one to four times daily at a level to achieve a total daily dose of about 0.4 to about 400 mg/kg/day. The precise amount of an inventive compound which is therapeutically effective, and the route by which such compound is

5

10

15

20

25

30

best administered, is readily determined by one of ordinary skill in the art by comparing the blood level of the agent to the concentration required to have a therapeutic effect.

The compounds of this invention may also be administered orally to the patient, in a manner such that the concentration of drug is sufficient to inhibit bone resorption or to achieve any other therapeutic indication as disclosed herein. Typically, a pharmaceutical composition containing the compound is administered at an oral dose of between about 0.1 to about 50 mg/kg in a manner consistent with the condition of the patient. Preferably the oral dose would be about 0.5 to about 20 mg/kg.

No unacceptable toxicological effects are expected when compounds of the present invention are administered in accordance with the present invention.

The compounds of this invention may be tested in one of several biological assays to determine the concentration of compound which is required to have a given pharmacological effect.

15 Determination of cathepsin K proteolytic catalytic activity

All assays for cathepsin K were carried out with human recombinant enzyme. Standard assay conditions for the determination of kinetic constants used a fluorogenic peptide substrate, typically Cbz-Phe-Arg-AMC, and were determined in 100 mM Na acetate at pH 5.5 containing 20 mM cysteine and 5 mM EDTA. Stock substrate solutions were prepared at concentrations of 10 or 20 mM in DMSO with 20 uM final substrate concentration in the assays. All assays contained 10% DMSO. Independent experiments found that this level of DMSO had no effect on enzyme activity or kinetic constants. All assays were conducted at ambient temperature. Product fluorescence (excitation at 360 nM; emission at 460 nM) was monitored with a Perceptive Biosystems Cytofluor II fluorescent plate reader. Product progress curves were generated over 20 to 30 minutes following formation of AMC product.

Inhibition studies

Potential inhibitors were evaluated using the progress curve method. Assays were carried out in the presence of variable concentrations of test compound. Reactions were initiated by addition of enzyme to buffered solutions of inhibitor and substrate. Data analysis was conducted according to one of two procedures depending on the appearance of the progress curves in the presence of inhibitors. For those compounds whose progress curves were linear, apparent inhibition constants $(K_{i,app})$ were calculated according to equation 1 (Brandt *et al.*, *Biochemitsry*, 1989, 28, 140):

$$v = V_m A / [K_a(1 + I/K_{i, app}) + A]$$
 (1)

5

10

20

25

30

where v is the velocity of the reaction with maximal velocity V_m , A is the concentration of substrate with Michaelis constant of K_a , and I is the concentration of inhibitor.

For those compounds whose progress curves showed downward curvature characteristic of time-dependent inhibition, the data from individual sets was analyzed to give k_{obs} according to equation 2:

$$[AMC] = v_{SS} t + (v_0 - v_{SS}) [1 - exp(-k_{obs}t)] / k_{obs}$$
 (2)

where [AMC] is the concentration of product formed over time t, v0 is the initial reaction velocity and vss is the final steady state rate. Values for kobs were then analyzed as a linear function of inhibitor concentration to generate an apparent second order rate constant (kobs / inhibitor concentration or kobs / [I]) describing the time-dependent inhibition. A complete discussion of this kinetic treatment has been fully described (Morrison et al., Adv. Enzymol. Relat. Areas Mol. Biol., 1988, 61, 201).

One skilled in the art would consider any compound with a K_i of less than 50 micromolar to be a potential lead compound. Preferably, the compounds used in the method of the present invention have a K_i value of less than 1 micromolar. Most preferably, said compounds have a K_i value of less than 100 nanomolar. 4-(R,S)-Amino-N-[(8-quinolinesulfonyl)-S-leucine]-3-tetrahydrofuran-3-one, a compound of formula (I), has a K_i value that is greater than 10 micromolar.

Human Osteoclast Resorption Assay

Aliquots of osteoclastoma-derived cell suspensions were removed from liquid nitrogen storage, warmed rapidly at 37°C and washed x1 in RPMI-1640 medium by centrifugation (1000 rpm, 5 min at 4°C). The medium was aspirated and replaced with murine anti-HLA-DR antibody, diluted 1:3 in RPMI-1640 medium, and incubated for 30 min on ice The cell suspension was mixed frequently.

The cells were washed x2 with cold RPMI-1640 by centrifugation (1000 rpm, 5 min at 4°C) and then transferred to a sterile 15 mL centrifuge tube. The number of mononuclear cells were enumerated in an improved Neubauer counting chamber.

Sufficient magnetic beads (5 / mononuclear cell), coated with goat anti-mouse IgG, were removed from their stock bottle and placed into 5 mL of fresh medium (this washes away the toxic azide preservative). The medium was removed by immobilizing the beads on a magnet and is replaced with fresh medium.

The beads were mixed with the cells and the suspension was incubated for 30 min on ice. The suspension was mixed frequently. The bead-coated cells were

5

20

25

30

5

10

15

20

25

30

35

immobilized on a magnet and the remaining cells (osteoclast-rich fraction) were decanted into a sterile 50 mL centrifuge tube. Fresh medium was added to the bead-coated cells to dislodge any trapped osteoclasts. This wash process was repeated x10. The bead-coated cells were discarded.

The osteoclasts were enumerated in a counting chamber, using a large-bore disposable plastic pasteur pipette to charge the chamber with the sample. The cells were pelleted by centrifugation and the density of osteoclasts adjusted to $1.5 \times 10^4 / \text{mL}$ in EMEM medium, supplemented with 10% fetal calf serum and 1.7 g/litre of sodium bicarbonate. 3 mL aliquots of the cell suspension (per treatment) were decanted into 15 mL centrifuge tubes. These cells were pelleted by centrifugation. To each tube 3 mL of the appropriate treatment was added (diluted to 50 uM in the EMEM medium). Also included were appropriate vehicle controls, a positive control (87MEM1 diluted to 100 ug/mL) and an isotype control (IgG2a diluted to 100 ug/mL). The tubes were incubate at 37°C for 30 min.

0.5 mL aliquots of the cells were seeded onto sterile dentine slices in a 48-well plate and incubated at 37°C for 2 h. Each treatment was screened in quadruplicate. The slices were washed in six changes of warm PBS (10 mL/well in a 6-well plate) and then placed into fresh treatment or control and incubated at 37°C for 48 h. The slices were then washed in phosphate buffered saline and fixed in 2% glutaraldehyde (in 0.2M sodium cacodylate) for 5 min., following which they were washed in water and incubated in buffer for 5 min at 37°C. The slices were then washed in cold water and incubated in cold acetate buffer / fast red garnet for 5 min at 4°C. Excess buffer was aspirated, and the slices were air dried following a wash in water.

The TRAP positive osteoclasts were enumerated by bright-field microscopy and were then removed from the surface of the dentine by sonication. Pit volumes were determined using the Nikon/Lasertec ILM21W confocal microscope.

Examples

Nuclear magnetic resonance spectra were recorded at either 250 or 400 MHz using, respectively, a Bruker AM 250 or Bruker AC 400 spectrometer. CDCl3 is deuteriochloroform, DMSO-d6 is hexadeuteriodimethylsulfoxide, and CD3OD is tetradeuteriomethanol. Chemical shifts are reported in parts per million (d) downfield from the internal standard tetramethylsilane. Abbreviations for NMR data are as follows: s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet, dd = doublet of doublets, dt = doublet of triplets, app = apparent, br = broad. J indicates the NMR coupling constant measured in Hertz. Continuous wave infrared (IR) spectra were recorded on a Perkin-Elmer 683 infrared spectrometer, and Fourier transform infrared

(FTIR) spectra were recorded on a Nicolet Impact 400 D infrared spectrometer. IR and FTIR spectra were recorded in transmission mode, and band positions are reported in inverse wavenumbers (cm⁻¹). Mass spectra were taken on either VG 70 FE, PE Syx API III, or VG ZAB HF instruments, using fast atom bombardment (FAB) or electrospray (ES) ionization techniques. Elemental analyses were obtained using a Perkin-Elmer 240C elemental analyzer. Melting points were taken on a Thomas-Hoover melting point apparatus and are uncorrected. All temperatures are reported in degrees Centigrade (°C).

Analtech Silica Gel GF and E. Merck Silica Gel 60 F-254 thin layer plates were used for thin layer chromatography. Both flash and gravity chromatography were carried out on E. Merck Kieselgel 60 (230-400 mesh) silica gel.

Where indicated, certain of the materials were purchased from the Aldrich Chemical Co., Milwaukee, Wisconsin, Chemical Dynamics Corp., South Plainfield, New Jersey, and Advanced Chemtech, Louisville, Kentucky.

Unless otherwise indicated, all of the starting materials were obtained from commercial sources. Without further elaboration, it is believed that one skilled in the art can, using the preceding description, utilize the present invention to its fullest extent. These Examples are given to illustrate the invention, not to limit its scope. Reference is made to the claims for what is reserved to the inventors hereunder.

20

10

15

Example 1

Preparation of 3-[[N^a-(2-quinolinecarbonyl)-L-leucinyl]amino]-1-[(2S)-4-methyl-2-[[(benzyloxycarbonyl)amino]pentyl]-pyrrolidine

25

30

a.) 3-[(tert-butoxycarbonyl)amino]-1-[(2S)-4-methyl-2-[[(benzyloxycarbonyl)amino]pentyl]-pyrrolidine

To a solution of 3-(tert-butoxycarbonylamino)pyrrolidine (2.0 g, 10.74 mmol) in CH₂Cl₂ was added CBZ-leucinal (3.2 g, 12.88 mmol). The reaction was allowed to stir at room temperature for approximately 1 hour whereupon sodium triacetoxyborohydride (3.4 g, 16.11 mmol) was added in a single portion. The reaction was stirred an additional 2 hours whereupon it was diluted with ethyl acetate and washed with sat'd NaHCO3, brine, dried (Na₂SO₄), concentrated and chromatographed (5% CH₃OH:CH₂Cl₂) to give 4.3 g of the title compound: MS(ES+) 420 (MH⁺).

b.) 3-amino-1-[(2S)-4-methyl-2-[[(benzyloxycarbonyl)amino]pentyl]-pyrrolidine bis hydrochloride

To a solution of the compound of Example 1(a) (4.3 g) in CH₃OH (10 mL) was added 4M HCl in dioxane (10 mL). The reaction was stirred at room temperature for 4 hours whereupon it was concentrated *in vacuo* to yield 3.97 g of the title compound: MS(ES+) 320 (MH⁺).

c.) $3-[[N^{\alpha}-(tert-butoxycarbonyl)-L-leucinyl]amino]-1-[(2S)-4-methyl-2-[[(benzyloxycarbonyl)amino]pentyl]-pyrrolidine$

To a solution of the compound of Example 1(b) (2.0 g, 5.1 mmole) was added 10 EDC (1.27 g, 6.37 mmol) HOBT (724 mg, 5.35 mmol) TEA (1.78 mL, 12.75 mmol) and N-BOC-leucine (1.3 g, 5.35 mmol) The reaction was stirred until complete as indicated by TLC analysis whereupon it was diluted with ethyl acetate and washed with 5% NaHCO₃, brine, dried (MgSO₄), filtered, concentrated and chromatographed (5% CH₃OH:CH₂Cl₂) to give 2.7 g of the title compound: MS(ES+) 533 (MH⁺)

15

5

d.) 3-L-leucinyl-1-[(2S)-4-methyl-2-[[(benzyloxycarbonyl)amino]pentyl]-pyrrolidine bis hydrochloride

Following the procedure of Example 1(b) except substituting the compound of Example 1(c), the title compound was produced: MS(ES+) 433 (MH+).

20

e.) $3-[[N^{\alpha}-(2-quinolinecarbonyl)-L-leucinyl]amino]-1-[(2S)-4-methyl-2-[[(benzyloxycarbonyl)amino]pentyl]-pyrrolidine$

Following the procedure of Example 1(c) except substituting the compound of Example 1(d) and quinaldic acid for N-BOC-leucine, the title compound was produced:

25 MS(ES+) 588 (MH+).

Example 2

Preparation of 1-benzyl-3-[[Nα-(2-quinolinecarbonyl)-L-leucinyl]amino]-pyrrolidine

30

- a.) 1-benzyl-3-[[N^a-(tert-butoxycarbonyl)-L-leucinyl]amino]-pyrrolidine

 Following the procedure of Example 1(c) except substituting 1-benzyl-3aminopyrrolidine, the title compound was prepared. MS(ES+) 390 (MH+).
- 35 b.) 1-benzyl-3-L-leucinyl-pyrrolidine bis hydrochloride

Following the procedure of Example 1(b) except substituting the compound of Example 2(a), the title compound was prepared: MS(ES+) 290 (MH⁺).

c.) 1-benzyl-3-[[N°-(2-quinolinecarbonyl)-L-leucinyl]amino]-pyrrolidine

Following the procedure of Example 1(e) except substituting the compound of

Example 2(b), the title compound was prepared: MS(ES+) 445 (MH+).

5

Example 3

Preparation of $3-[[N^4-(2-naphthylcarbonyl)-L-leucinyl]amino]-1-[(2S)-4-methyl-2-[[(benzyloxycarbonyl)amino]pentyl]-pyrrolidine$

10

Following the procedure of Example 1(e) except substituing 2-naphthoic acid for quinaldic acid, the title compound was prepared: MS(ES+) 587 (MH+).

Example 4

15

Preparation of 1-benzyl-3- $[[N^{\alpha}-(2-naphthylcarbonyl)-L-leucinyl]$ aminol-pyrrolidine Following the procedure of Example 2(c) except substituting 2-naphthoic acid for quinaldic acid, the title compound was produced: MS(ES+) 444 (MH⁺).

20

25

Example 5

Preparation of 1-benzyl-((3S))- $[[N^{\alpha}-(benzyloxycarbonyl)-L-leucinyl]$ amino]-pyrrolidine a.) 1-benzyl-((3S))-(tert-butoxycarbonyl)amino-pyrrolidine

Following the procedure of Example 1(a) except substituting ((3S))-(-)-3-(tert-butoxycarbonylamino)pyrrolidine for 3-(tert-butoxycarbonylamino)pyrrolidine and benzaldehyde for CBZ-leucinal, the title compound was prepared: MS(ES+) 221.2 (M-C₄H₈), 277.3 (MH⁺).

b.) 1-benzyl-((3S))-amino-pyrrolidine bis hydrochloride

To a solution of the compound of Example 5(a) in methanol was added a 1M HCl/ether. The reaction was stirred at room temperature until complete as indicated by mass spectral analysis. The reaction was concentrated in vacuo to give a white solid: MS(ES+) 177.0 (MH⁺).

c.) 1-benzyl-((3S))-[$\{N^{\alpha}$ -(benzyloxycarbonyl)-L-leucinyl|amino]-pyrrolidine

Following the procedure of Example 1(c) except substituting the compound of Example 5(b) and CBZ-leucine for BOC-leucine, the title compound was prepared: MS(ES+) 424.2(MH⁺).

5

10

Example 6

<u>Preparation of 1-benzyl-((3S))-[[N^a-(tert-butoxycarbonyl)-L-leucinyl]amino]-pyrrolidine</u>

Following the procedure of Example 5(c) except substituting BOC-leucine for CBZ-leucine, the title compound was prepared: MS(ES+) 390.5 (MH⁺).

Example 7

- Preparation of ((3S))-[[N°-(2-naphthylcarbonyl)-L-leucinyl]amino]-1-[(2S)-4-methyl-2-[[(benzyloxycarbonyl)amino]pentyl]-pyrrolidine
 - a.) ((3S))-[(tert-butoxycarbonyl)amino]-1-[(2S)-4-methyl-2-[[(benzyloxycarbonyl)amino]pentyl]-pyrrolidine
- Following the procedure of Example 1(a) except substituting ((3S))-(-)-3-(tert-butoxycarbonylamino)pyrrolidine for 3-(tert-butoxycarbonylamino)pyrrolidine the title compound was prepared: MS(ES+) 420 (MH+).
 - b.) ((3S))-[(tert-butoxycarbonyl)amino]-1-[(2S)-4-methyl-2-
- 25 [[(benzyloxycarbonyl)amino]pentyl]-pyrrolidine

Following the procedure of Example 1(b) except substituting the compound of Example 7(a), the title compound was produced: MS(ES) 320 (MH⁺)

- c.) (3S)-[[N"-(tert-butoxycarbonyl)-L-leucinyl]amino]-1-[(2S)-4-methyl-2-
- 30 [[(benzyloxycarbonyl)amino]pentyl]-pyrrolidine

Following the procedure of Example 1(c) except substituting the compound of Example 7(b), the title compound was produced: MS(ES+) 533 (MH⁺).

d.) (3S)-L-leucinyl-1-[(2S)-4-methyl-2-[[(benzyloxycarbonyl)amino]pentyl]-pyrrolidine bis hydrochloride

Following the procedure of Example 1(d) except sustituting the compound of Example 7(c), the title compound was prepared: MS(ES+) 433 (MH⁺).

e.) (3S)- $[[N^{\alpha}-(2-naphythylcarbonyl)-L-leucinyl]amino}-1-[(2S)-4-methyl-2-[[(benzyloxycarbonyl)amino]pentyl]-pyrrolidine$

Following the procedure of Example 1(e) except substituting the compound of Example7(d) and substituting 2-naphthoic acid for quinaldic acid, the title compound was produced: MS(ES+) 587 (MH⁺).

Example 8

- Preparation of (3R)-[[Nα-(2-naphthylcarbonyl)-L-leucinyl]amino]-1-[(2S)-4-methyl-2-[[(benzyloxycarbonyl)amino]pentyl]-pyrrolidine
 - a.) (3R)-[(*tert*-butoxycarbonyl)amino]-1-[(2S)-4-methyl-2-[((benzyloxycarbonyl)amino]pentyl]-pyrrolidine
- Following the procedure of Example 1(a) except substituting (3R)-(-)-3-(*tert*-butoxycarbonylamino)pyrrolidine for 3-(*tert*-butoxycarbonylamino)pyrrolidine the title compound was prepared: MS(ES+) 420 (MH⁺).
- b.) (3R)-amino-1-[(2S)-4-methyl-2-[[(benzyloxycarbonyl)amino]pentyl]-pyrrolidine

 Following the procedure of Example 1(b) except substituting the compound of Example 8(a), the title compound was produced: 320 MS(ES) (MH⁺)
 - c.) (3R)-[[N°-(tert-butoxycarbonyl)-L-leucinyl]amino]-1-[(2S)-4-methyl-2-[[(benzyloxycarbonyl)amino]pentyl]-pyrrolidine
- Following the procedure of Example 1(c) except substituting the compound of Example 8(b), the title compound was produced: 533 MS(ES+) (MH⁺).
 - d.) (3R)-L-leucinyl-1-[(2S)-4-methyl-2-[[(benzyloxycarbonyl)amino]pentyl]-pyrrolidine bis hydrochloride
- Following the procedure of Example 1(d) except sustituting the compound of Example 8(c), the title compound was prepared: MS(ES+) 433 (MH⁺).
 - e.) $(3R)-[N^{\alpha}-(2-naphthylcarbonyl)-L-leucinyl]$ amino]-1-[(2S)-4-methyl-2-[[(benzyloxycarbonyl)amino]pentyl]-pyrrolidine
- Following the procedure of Example 1(e) except substituting the compound of Example 8(d) and substituting 2-naphthoic acid for quinaldic acid, the title compound was produced: MS(ES+) 587 (MH⁺).

Example 9

Preparation of 1-benzyl-(3R)-[[Na-(2-quinolineacetonoyl)-L-leucinyl]amino]-pyrrolidine

5

10

a.) 1-benzyl-(3R)-[(tert-butoxycarbonyl)amino]-pyrrolidine

To a solution of ((3R))-(-)-3-(tert-butoxycarbonylamino)pyrrolidine (2.0 g, 10.73 mmol) in CH₂Cl₂ (20 mL) was added benzaldehyde (1.3 mL, 12.88 mmol). The reaction was stirred at room temperature for 2 hours whereupon sodium triacetoxyborohydride (5.68 g, 26.82 mmol) was added. The reaction was stirred overnight at room temperature whereupon it was diluted with ethyl acetate and washed with sat. K₂CO₃, water, brine, dried (MgSO₄), filtered, concentrated and chromatographed (1:1 hex:EtOAc) to give the title compound: MS(ES+) 221.1 (M-C₄H₈), 277.2 (MH⁺)

15

20

25

30

35

b.) 1-benzyl-(3R)-amino-pyrrolidine bis hydrochloride

To a solution of the compound of Example 9(a) in methanol was added 1N HCl/ether. The suspension was stirred at room temperature until complete as indicated by mass spectral analysis. The reaction was concentrated *in vacuo* to give the title compound: MS(ES+) 176.9 (MH⁺).

- c). 1-benzyl-(3R)-[[N^a-(tert-butoxycarbonyl)-L-leucinyl]amino]-pyrrolidine

 Following the procedure of Example 1(c) except substituting the compound of

 Example 9(b) and N-methylmorpholine for triethylamine, the title compound was

 produced: MS(ES+) 390.3 (MH⁺).
- d.) 1-benzyl-(3R)-[(L-leucinyl)amino]-pyrrolidine bis hydrochloride

 To a solution of the compound of Example 9(c) in ethyl acetate and methanol was bubbled HCl gas for ca. 2 mins. The reaction was stirred overnight whereupon it was concentrated in vacuo to afford the title compound: MS(ES+) 290.4 (MH+).
- e.) 1-benzyl-(3R)-[[N^a-(2-naphthylacetonoyl)-L-leucinyl]amino]-pyrrolidine

 To a suspension of the compound of Example 9(d) (75 mg) was added EDC

 (44.3 mg), HOBT (28.4 mg) NMM (0.14 mL) and 2-naphthylacetic acid. The reaction was stirred overnight at room temperature whereupon it was diluted wiyh ethyl acetae and washed with sat. K₂CO₃, water, brine, dried (MgSO₄), filtered, concentrated and chromatographed to give the title compound: MS(ES+) 458.3 (MH+).

Example 10

	<u>Preparation of 1-benzyl-(3R)-[[N -(2-naphthylcarbonyl)-L-icucinyl]aminol-pyrroliding</u>
5	
	Following the procedure of Example 9(e) except substituting 2-naphthoic acid
	for 2-naphthylacetic acid, the title compound was prepared: MS(ES+) 444.2 (MH+).

Example 11

10

15

Preparation of 1-benzyl-(3R)- $[N^{\alpha}$ -(3-quinolinecarbonyl)-L-leucinyl]amino]-pyrrolidine

Following the procedure of Example 9(e) except substituting 3-quinolinecarboxylic acid for 2-naphthylacetic acid, the title compound was prepared: MS(ES+) 445.3 (MH⁺).

Example 12

Preparation of 1-benzyl-(3R)-[[Na-(2-quinolinecarbonyl)-L-leucinyl]amino]-pyrrolidine

20

Following the procedure of Example 9(e) except substituting quinaldic acid for 2-naphthylacetic acid, the title compound was prepared: MS(ES+) 445.2 (MH⁺).

Example 13

25

 $\underline{Preparation\ of\ 1-benzyl-(3R)-[[N^{\alpha}-(3-isoquinoline carbonyl)-L-leucinyl]amino]}-\\ \underline{pyrrolidine}$

Following the procedure of Example 9(e) except substituting 330 isoquinolinecarboxylic acid for 2-naphthylacetic acid, the title compound was prepared:
MS(ES+) 445.3 (MH⁺).

Example 14

Preparation of 1-benzyl-(3S)-[[Na-(2-naphthylacetonoyl)-L-leucinyl]amino]-pyrrolidine

- 5 a.) 1-benzyl-(3S)-[(tert-butoxycarbonyl)amino]-pyrrolidine
 - Following the procedure of Example 9(a) except substituting ((3S))-(-)-3-(tert-butoxycarbonylamino)pyrrolidine for (3R)-(-)-3-(tert-butoxycarbonylamino)pyrrolidine, the title compound was produced: MS(ES+) 277.2 (MH⁺).
- 10 b.) 1-benzyl-(3S)-amino-pyrrolidine bis hydrochloride

 Following the procedure of Example 9(b) except substituting

Following the procedure of Example 9(b) except substituting the compound of example 14(a), the title compound was produced: MS(ES+) 177.0 (MH⁺).

- c.) 1-benzyl-(3S)-[[N^a-(tert-butoxycarbonyl)-L-leucinyl]amino]-pyrrolidine

 Following the procedure of Example 9(c) except substituting the compound of

 Example 14(b), the title compound was produced: MS(ES+) 390.3 (MH⁺).
- d.) 1-benzyl-(3S)-[(L-leucinyl)amino]-pyrrolidine bis hydrochloride
 Following the procedure of Example 9(d) except substituting the compound of
 Example 14(c), the title compound was produced: MS(ES+) 290.3 (MH+).
 - e.) 1-benzyl-(3S)-[[Nα-(2-naphthylacetonoyl)-L-leucinyl]amino]-pyrrolidine

 Following the procedure of Example 9(e) except substituting the compound of

 Example 14(d), the title compound was produced: MS(ES+) 458.4 (MH+).

Preparation of 1-benzyl-(3S)- $[N^{\alpha}-(2-naphthy|carbony|)-L-leuciny|]$ amino]-pyrrolidine

Example 15

Following the procedure of Example 14(e) except substituting 2-naphthoic acid for 2-naphthylacetic acid, the title compound was produced: MS(ES+) 444.4 (MH⁺).

Example 16

Preparation of 1-benzyl-(3S)-[[N°-(3-quinolinecarbonyl)-L-leucinyl]amino]-pyrrolidine

Following the procedure of Example 14(e) except substituting 3quinolinecarboxylic acid for 2-naphthylacetic acid, the title compound was produced: MS(ES+) 445.2 (MH⁺).

Example 17

10

Preparation of 1-benzyl-(3S)-[[N^a-(2-quinolinecarbonyl)-L-leucinyl]amino]-pyrrolidine

Following the procedure of Example 14(e) except substituting quinaldic acid for 2-naphthylacetic acid, the title compound was produced: MS(ES+) 445.3 (MH⁺).

15

Example 18

Preparation of 1-benzyl-(3S)- $[[N^{\alpha}-(3-isoquinolinecarbonyl)-L-leucinyl]$ amino]-pyrrolidine

20

Following the procedure of Example 14(e) except substituting 3-isoquinolinecarboxylic acid for 2-naphthylacetic acid, the title compound was produced: MS(ES+) 445.3 (MH⁺).

25

Example 19

Preparation of 1-benzyl-4-[[N^a-(2-naphthylcarbonyl)-L-leucinyl]amino]-piperidine

- a.) 1-benzyl-4- $[N^{\alpha}$ -(tert-butoxycarbonyl)-L-leucinyl]amino]-piperidine
- Following the procedure of Example 1(c) except substituting 4-amino-1-benzylpiperidine, the title compound was produced: MS(ES+) 404.1 (MH⁺).
 - b.) 1-benzyl-4-[(L-leucinyl)amino]-piperidine

The compound of Example 19(a) (2.0 g) was dissolved in 4N HCl/dioxane (100 mL). The reaction was stirred at room temperature for 30 minutes whereupon it was concentrated in vacuo to give 1.94 g of the title compound as a white solid: MS(ES+) 304.2 (MH⁺).

c.) 1-benzyl-4-[[Na-(2-naphthylcarbonyl)-L-leucinyl]amino]-piperidine

To a solution of the compound of Example 19(b) (240 mg) in DMF (3.0 mL) was added N-methylmorpholine (0.17 mL), HOBT (101.5 mg), 2-naphthoic acid (130.2 mg) and EDC (145.4 mg). The reaction was stirred overnight whereupon it was poured into a rapidly stirred mixture of EtOAc, 10% Na₂CO₃ and brine (75 mL each). This mixture was stirred for 30 minutes. The organic layer was sepaerated and the aqueous layer was washed with ethyl acetate. The combined organic layers were washed with 10% Na₂CO₃, water, brine, dried (MgSO₄), filtered, concentrated and chromatographed (ethyl acetate) to give 107 mg of the title compound: MS(ES+) 458.5 (MH⁺).

Example 20

Preparation of 1-benzyl-4-[[N^a-(2-quinolinecarbonyl)-L-leucinyl]amino]-piperidine

15

10

5

Following the procedure of Example 19(c) except substituting quinaldic acid for 2-naphthoic acid, the title compound was prepared: MS(ES+) 459.3 (MH⁺).

Example 21

20

25

Preparation of 1-benzyl-4-[[Na-(benzyloxycarbonyl)-L-leucinyl]amino]-piperidine

To a solution of N-benzyl-4-amino piperidine (0.50 g) in CH₂Cl₂ (10 mL) was added CBZ-leucine (695 mg), EDC (552.5 mg) and HOBT (356.6 mg). The reaction was stirred at room temperature until complete as indicated by TLC analysis. The reaction was dissolved in CHCl₃ and washed with 10% Na₂CO₃, brine, dried (MgSO₄), filtered, concentrated and chromatographed (3:1 EtOAc:hexanes) to give 0.99 g of the title compound: MS(ES+) 438 (MH⁺).

30

Example 22

Preparation of 1-[3-(2-pyridyl)phenyl]-2-ethyl-(3S)-[$[N^{\alpha}-(2-naphthylcarbonyl)-L-leucinyl]$ amino]-pyrrolidine

a) N-methyl-N-methoxy-3-(2-pyridyl)-phenylacetamide

To a stirred solution of N-methoxy-N-methylamine hydrochloride (0.980 g, 10.0 mmol) in DMF (25 mL) was added N-methylmorpholine (1.21 mL, 11.0 mmol), HOBt (1.50 g, 11.1

mmol), 3-(2-pyridyl)-phenylacetic acid (2.36 g, 11.1 mmol), and EDC (2.13 g, 11.1 mmol). The reaction was stirred overnight whereupon it was poured into a rapidly-stirred mixture of 150 mL each of EtOAc, 10% NaHCO₃, and brine. After stirring for 30 min, the layers were separated and the aqueous layer was washed with fresh EtOAc (150 mL). The combined organic layers were washed with 10% Na₂CO₃, and brine, then dried (MgSO₄), filtered, and concentrated. Column chromatography (silica gel, 3:1 EtOAc: hexane) gave 2.275 g of the title compound: MS (ES+) (MH+) 257.2.

b) 3-(2-pyridyl)-phenylacetaldehyde

10

15

20

25

30

35

To a stirred solution of the compound of Example 22(a) (2.2 g, 8.6 mmol) in anhydrous THF (20 mL) at -78°C was added a solution of lithium aluminum hydride in THF (22 mL, 22.0 mmol). The reaction was stirred for 2 h, then warmed to 0°C and stirred 1 h, whereupon 4.2 g of KHSO₄ was added in small portions over 10 min, followed by 100 mL of water in small portions. The reaction mixture was filtered to remove a white precipitate and the filtrate was adjusted to pH 9 by the addition of 1 N NaOH, then extracted with Et₂O (3 x 100 mL). The combined organic layers were washed with brine, then dried (Na₂SO₄), filtered, and concentrated to give 1.878 g of the title compound: MS (ES+) (MH+) 198.1.

c) 1-[3-(2-pyridyl)phenyl]-2-ethyl-(3S)-[Nα-(tert-butoxycarbonylamino]-pyrrolidine To a stirred solution of (3S)-(-)-3-(tert-butoxycarbonylamino)pyrrolidine (672.3 mg, 3.6 mmol) in CH₂Cl₂ (15 mL) was added the compound of Example 22(b) (0.94 g, 4.3 mmol). The reaction was stirred 2 h whereupon Na(OAc)₃BH (1.68 g, 7.9 mmol) added. After stirring overnight, the reaction mixture was diluted with CHCl₃ (150 mL) and washed with H₂O, and brine, then dried (MgSO₄), filtered, and concentrated. Column chromatography (silica gel, 1:9 MeOH: EtOAc) gave 467 mg of the title compound: MS (ES+) (MH+) 368.

d) 1-[3-(2-pyridyl)phenyl]-2-ethyl-(3S)-[[N^{α} -(tert-butoxycarbonyl)-L-leucinyl]amino]-pyrrolidine

The compound of Example 22(c) (440 mg, 1.2 mmol) was dissolved in 4.0 N HCl in dioxane (20 mL) and stirred at room temperature for 30 min. The solution was concentrated to a white solid and dried under high vacuum for 30 min. To a stirred solution of the residue in DMF (10 mL) was added N-methylmorpholine (400 uL, 3.6 mmol), HOBt (245.6 mg, 1.8 mmol), Boc-Leucine hydrate (449.1 mg, 1.8 mmol), and EDC (352.0 mg, 1.8 mmol). The reaction was stirred overnight whereupon it was partitioned between 50 mL each of EtOAc, 10% Na₂CO₃, and brine. The aqueous layer was washed with fresh EtOAc (50 mL), the combined organic layers were washed with 10% Na₂CO₃ and brine, then dried (MgSO₄), filtered, and

concentrated. Column chromatography (silica gel, 5:95 MeOH: EtOAc) gave 204 mg of the title compound: MS (ES+) (MH+) 481.4.

e) 1-[3-(2-pyridyl)phenyl]-2-ethyl-(3S)-[[Nα-L-leucinyl]amino]-pyrrolidine dihydrochloride

The compound of Example 22(d) (200 mg, 0.42 mmol) was dissolved in 4.0 N HCl in
dioxane (25 mL) and stirred at room temperature for 1 h. The solution was concentrated to a
white solid and dried under high vacuum for 3 h to give the title compound: MS (ES+) (MH+)
381.4.

10 f) 1-[3-(2-pyridyl)phenyl]-2-ethyl-(3S)-[[N $^{\alpha}$ -(2-naphthylcarbonyl)-L-leucinyl]amino]-pyrrolidine

To a stirred solution of the compound of Example 22(e) (0.14 mmol) in DMF (2 mL) was added N-methylmorpholine (62 uL, 0.56 mmol), HOBt (31.8 mg, 0.24 mmol), 2-naphthoic acid (37.6 mg, 0.22 mmol), and EDC (41.2 mg, 0.22 mmol). The reaction was stirred overnight whereupon it was partitioned between 50 mL each of EtOAc, 10% Na₂CO₃, and brine. The aqueous layer was washed with fresh EtOAc (50 mL), the combined organic layers were washed with 10% Na₂CO₃ and brine, then dried (MgSO₄), filtered, and concentrated. Column chromatography (silica gel, 5:95 MeOH: EtOAc) gave 40.1 mg of the title compound: MS (ES+) (MH+) 535.4.

20

15

5

Example 23

Preparation of 1-[3-(2-pyridyl)phenyl]-2-ethyl-(3S)-[[N α -(2-quinolinecarbonyl)-L-leucinyl]amino]-pyrrolidine

25

Following the procedure of Example 22(f), except using 2-quinolinecarboxylic acid, the title compound was prepared: MS (ES+) (MH+) 536.4.

Example 24

30

Preparation of 1-[3-(2-pyridyl)phenyl]-2-ethyl-(3S)-[N^{α} -(3-isoquinolinecarbonyl)-L-leucinyl]amino]-pyrrolidine

Following the procedure of Example 22(f), except using 3-isoquinolinecarboxylic acid, the title compound was prepared: MS (ES+) (MH+) 536.4.

Example 25

Preparation of 1-[3-(2-pyridyl)phenyl]-2-ethyl-(3R)- $[N^{\alpha}$ -(2-naphthylcarbonyl)-L-leucinyl]amino]-pyrrolidine

5

- a) 1-[3-(2-pyridyl)phenyl]-2-ethyl-(3R)-[Nα-(tert-butoxycarbonylamino]-pyrrolidine
 Following the procedure of Example 22(c), except substituting (3R)-(+)-3-(tert-butoxycarbonylamino)pyrrolidine, the title compound was prepared: MS (ES+) (MH+) 368.4.
- b) 1-[3-(2-pyridyl)phenyl]-2-ethyl-(3R)-[[N^{α} -(tert-butoxycarbonyl)-L-leucinyl]amino]-pyrrolidine

Following the procedure of Example 22 (d), except substituting the compound of Example 25 (a), the title compound was prepared: MS (ES+) (MH+) 481.4.

- c) 1-[3-(2-pyridyl)phenyl]-2-ethyl-(3R)-[[Nα-L-leucinyl]amino]-pyrrolidine dihydrochloride
 Following the procedure of Example 22 (e), except substituting the compound of
 Example 25 (b), the title compound was prepared: MS (ES+) (MH+) 381.4.
 - d) 1-[3-(2-pyridyl)phenyl]-2-ethyl-(3R)-[[N α -(2-naphthylcarbonyl)-L-leucinyl]amino]-pyrrolidine

Following the procedure of Example 22 (f), except substituting the compound of Example 25 (c), the title compound was prepared: MS (ES+) (MH+) 535.3.

Example 26

25

20

Preparation of 1-[3-(2-pyridyl)phenyl]-2-ethyl-(3R)-[[N^{α} -(3-isoquinolinecarbonyl)-L-leucinyl]amino]-pyrrolidine

Following the procedure of Example 25(d), except using 3-isoquinolinecarboxylic acid, the title compound was prepared: MS (ES+) (MH+) 536.3.

Example 27

Preparation of 1-[3-(2-pyridyl)phenyl]-2-ethyl-(3R)-[[Nα-(2-quinolinecarbonyl)-L-leucinyl]amino]-pyrrolidine

5

Following the procedure of Example 25(d), except using 2-quinolinecarboxylic acid, the title compound was prepared: MS (ES+) (MH+) 536.3.

Example 28

10

25

Preparation of 1-(1-adamantanecarbonyl)-(3R)-[[N^{α} -(4-pyridylmethoxycarbonyl)-L-leucinyl]amino]-pyrrolidine

- a) 1-(1-adamantanecarbonyl)-(3R)-[[Nα-(tert-butyloxycarbonyl)-L-leucinyl]amino]-pyrrolidine
 To a stirred solution of (3R)-(+)-3-(tert-butoxycarbonylamino)pyrrolidine (1.87 g, 10.0 mmol) in CH₂Cl₂ (30 mL) at 0°C was added N-methylmorpholine (1.65 mL, 15.0 mmol) and 1-adamantylcarbonyl chloride (2.99 g, 15.0 mmol). The reaction was stirred overnight, gradually warming to room temperature, whereupon it was diluted with 200 mL of CHCl₃, washed with 5% NaHCO₃, H₂O, 1N HCl, H₂O, and brine, then dried (MgSO₄), filtered, and concentrated to give 4.66 g of the title compound: MS (ES+) (MH+) 349.4.
 - b) 1-(1-adamantanecarbonyl)-(3R)-aminopyrrolidine hydrochloride

The compound of Example 28 (a) (4.6 g) was dissolved in 4.0 N HCl in dioxane (100 mL) and stirred at room temperature for 1 h. The solution was concentrated to a white solid and dried under high vacuum for 2 h to give the title compound: MS (ES+) (MH+) 249.1.

c) 1-(1-adamantanecarbonyl)-(3R)-[[N $^{\alpha}$ -(4-pyridylmethoxycarbonyl)-L-leucinyl]amino]-pyrrolidine

To a stirred solution of the compound of Example 28(b) (143.2 mg, 0.50 mmol) in DMF (2 mL) was added N-methylmorpholine (83 uL, 0.75 mmol), HOBt (101.5 mg, 0.75 mmol), 4-Inoc-Leucine (201.5 mg, 0.76 mmol), and EDC (146.0 mg, 0.76 mmol). The reaction was stirred overnight whereupon it was partitioned between 50 mL each of EtOAc, 10% Na₂CO₃, and brine. The aqueous layer was washed with fresh EtOAc (50 mL), the combined organic layers were washed with 10% Na₂CO₃ and brine, then dried (MgSO₄), filtered, and concentrated. Column chromatography (silica gel, 2:98 MeOH: EtOAc) gave 109.0 mg of the title compound: MS (ES+) (MH+) 497.5.

Example 29

<u>Preparation of 1-(1-adamantanecarbonyl)-(3S)-[[N α -(4-pyridylmethoxycarbonyl)-L-leucinyl]amino]-pyrrolidine</u>

5

- a) 1-(1-adamantanecarbonyl)-(3S)-[[Nα-(tert-butyloxycarbonyl)-L-leucinyl]amino]-pyrrolidine
 Following the procedure of Example 28(a), except substituting (3S)-(-)-3-(tert-butoxycarbonylamino)pyrrolidine, the title compound was prepared: MS (ES+) (MH+) 349.5.
- b) 1-(1-adamantanecarbonyl)-(3S)-aminopyrrolidine hydrochloride
 Following the procedure of Example 28(b), except substituting the compound of
 Example 29 (a), the title compound was prepared: MS (ES+) (MH+) 249.1.
- c) 1-(1-adamantanecarbonyl)-(3S)-[[N α -(4-pyridylmethoxycarbonyl)-L-leucinyl]amino]-pyrrolidine

Following the procedure of Example 28(c), except substituting the compound of Example 29(b), the title compound was prepared: MS (ES+) (MH+) 497.4.

Example 30

20

30

<u>Preparation of (3R)-[[N α -(benzo[b]thiophene-2-carbonyl)-L-leucinyl]amino]-1-[(2S)-4-methyl-2-[[(benzyloxycarbonyl)amino]pentyl]-pyrrolidine</u>

- a) (3R)-[[N^{α} -(tert-butoxycarbonyl)amino]-1-[(2S)-4-methyl-2-
- 25 [[(benzyloxycarbonyl)amino]pentyl]-pyrrolidine

To a stirred solution of (3R)-(+)-3-(tert-butoxycarbonylamino)pyrrolidine (2 g, 10.7 mmol) in CH₂Cl₂ (200 mL) was added N-CBZ-Leucinal (3.2 g, 12.9 mmol). The reaction was stirred 2 h whereupon Na(OAc)₃BH (3.4 g, 16.1 mmol) was added. After stirring overnight, the reaction mixture was diluted with CHCl₃ (150 mL) and washed with 5% NaHCO₃ and brine, then dried (MgSO₄), filtered, and concentrated. Column chromatography (silica gel, 3:97 MeOH: CH₂Cl₂) gave 3.4 g of the title compound: MS (ES+) (MH+) 420.

- b) (3R)-amino-1-[(2S)-4-methyl-2-[[(benzyloxycarbonyl)amino]pentyl]-pyrrolidine dihydrochloride
- The compound of Example 30 (a) (3.4 g) was dissolved in 4.0 N HGl in dioxane (50 mL) and stirred at room temperature for 1 h. The solution was concentrated *in vacuo* and dried under high vacuum to give 3.37 g of the title compound: MS (ES+) (MH+) 320.

5

10

15

20

c) (3R)- $[N^{\alpha}-(tert-butoxycarbonyl)-L-leucinyl]$ amino]-1-[(2S)-4-methyl-2-[(benzyloxycarbonyl)amino]pentyl]-pyrrolidine

To a stirred solution of the compound of Example 30(b) (2.36 g, 6.0 mmol) in DMF (25 mL) was added N-methylmorpholine (2.0 mL, 18.2 mmol), HOBt (1.22 g, 9.0 mmol), Boc-Leucine hydrate (2.25 g, 9.0 mmol), and EDC (1.73 g, 9.0 mmol). The reaction was stirred for 3 h whereupon it was partitioned between 150 mL each of EtOAc, 10% Na₂CO₃, and brine. The aqueous layer was washed with fresh EtOAc (150 mL), the combined organic layers were washed with 10% Na₂CO₃ and brine, then dried (MgSO₄), filtered, and concentrated. Column chromatography (silica gel, 2:1 EtOAc: hexane) gave 2.78 g of the title compound: MS (ES+) (MH+) 533.6.

d) (3R)-[[N^{α} -L-leucinyl]amino]-1-[(2S)-4-methyl-2-[[(benzyloxycarbonyl)amino]pentyl]-pyrrolidine dihydrochloride

The compound of Example 30(c) (2.7 g) was dissolved in 4.0 N HCl in dioxane (100 mL) and stirred at room temperature for 1 h. The solution was concentrated in vacuo and dried azeotropically with toluene to afford a tan solid and stored under high vacuum overnight to give 2.45 g of the title compound: MS (ES+) (MH+) 433.3.

e) $(3R)-[[N^{\alpha}-(benzo[b]thiophene-2-carbonyl)-L-leucinyl]amino]-1-[(2S)-4-methyl-2-[(benzyloxycarbonyl)amino]pentyl]-pyrrolidine$

To a stirred solution of the compound of Example 30(d) (101.4 mg, 0.2 mmol) in DMF (1 mL) was added N-methylmorpholine (66 uL, 0.6 mmol), HOBt (42.2 mg, 0.3 mmol), benzo[b]thiophene-2-carboxylic acid (53.3 mg, 0.3 mmol), and EDC (57.8 mg, 0.3 mmol). The reaction was stirred overnight whereupon it was partitioned between 50 mL each of EtOAc, 10% Na₂CO₃, and brine. The aqueous layer was washed with fresh EtOAc (50 mL), the combined organic layers were washed with 10% Na₂CO₃ and brine, then dried (MgSO₄), filtered, and concentrated. Column chromatography (silica gel, 3:1 EtOAc: hexane) gave 80.4 mg of the title compound: MS (ES+) (MH+) 593.4.

30

25

Example 31

<u>Preparation of (3R)-[[N α -(3,4-dimethoxybenzoyl)-L-leucinyl]amino]-1-[(2S)-4-methyl-2-[[(benzyloxycarbonyl)amino]pentyl]-pyrrolidine</u>

35

Following the procedure of Example 30(e), except substituting 3,4-dimethoxybenzoic acid, the title compound was prepared: MS (ES+) (MH+) 597.4.

Example 32

Preparation of (3R)-[[Nα-(benzofuran-2-carbonyl)-L-leucinyl]amino]-1-[(2S)-4-methyl-2-

5 [[(benzyloxycarbonyl)amino]pentyl]-pyrrolidine

Following the procedure of Example 30(e), except substituting benzofuran-2-carboxylic acid, the title compound was prepared: MS (ES+) (MH+) 577.2.

10

Example 33

 $\frac{Preparation\ of\ (3R)-[[N^{\alpha}-(benzothiazole-6-carbonyl)-L-leucinyl]amino]-1-[(2S)-4-methyl-2-[(benzyloxycarbonyl)amino]pentyl]-pyrrolidine}{[[Continue of the continue of$

Following the procedure of Example 30(e), except substituting benzothiazole-6-carboxylic acid, the title compound was prepared: MS (ES+) (MH+) 594.4.

Example 34

20 Preparation of (3R)- $[N^{\alpha}$ -(indole-2-carbonyl)-L-leucinyl]amino]-1-[(2S)-4-methyl-2-[[(benzyloxycarbonyl)amino]pentyl]-pyrrolidine

Following the procedure of Example 30(e), except substituting indole-2-carboxylic acid, the title compound was prepared: MS (ES+) (MH+) 576.3.

25

Example 35

Preparation of (3R)-[[N α -(4-fluorobenzoyl)-L-leucinyl]amino]-1-[(2S)-4-methyl-2-[[(benzyloxycarbonyl)amino]pentyl]-pyrrolidine

30

Following the procedure of Example 30(e), except substituting 4-fluorobenzoic acid, the title compound was prepared: MS (ES+) (MH+) 555.3.

Example 36

Preparation of (3R)- $[N^{\alpha}-(4-methoxybenzoyl)-L-leucinyl]$ amino]-1-[(2S)-4-methyl-2-[(benzyloxycarbonyl)amino]pentyl]-pyrrolidine

5

Following the procedure of Example 30(e), except substituting p-4-methoxybenzoic acid, the title compound was prepared: MS (ES+) (MH+) 567.4.

Example 37

10

Preparation of (3R)- $[N^{\alpha}-(3,4-dichlorobenzoyl)-L-leucinyl]$ amino]-1-[(2S)-4-methyl-2-[(benzyloxycarbonyl)amino]pentyl]-pyrrolidine

Following the procedure of Example 1(e), except substituting 3,4-dichlorobenzoic acid, the title compound was prepared: MS (ES+) (MH+) 605.2.

Example 38

Preparation of (3R)- $[N^{\alpha}$ -(thiophene-2-carbonyl)-L-leucinyl]amino]-1-[(2S)-4-methyl-2-[(benzyloxycarbonyl)amino]pentyl]-pyrrolidine

Following the procedure of Example 30(e), except substituting thiophene-3-carboxylic acid, the title compound was prepared: MS (ES+) (MH+) 543.4.

25

20

Example 39

<u>Preparation of (3R)-[[N α -(4-biphenylcarbonyl)-L-leucinyl]amino]-1-[(2S)-4-methyl-2-[[(benzyloxycarbonyl)amino]pentyl]-pyrrolidine</u>

To a stirred solution of the compound of Example 30(d) (102.3 mg, 0.2 mmol) in CH₂Cl₂ (1 mL) at 0°C was added N-methylmorpholine (66 uL, 0.6 mmol) and 4-biphenylcarbonyl chloride (65.2 mg, 0.3 mmol). The reaction was stirred overnight whereupon it was diluted with CHCl₃ and washed with 10% Na₂CO₃ and brine, then dried (MgSO₄), filtered, and concentrated. Column chromatography (silica gel, 3:1 EtOAc: hexane) gave 55.1 mg of the title compound: MS (ES+) (MH+) 613.5.

Example 40

Preparation of (3R)- $[[N^{\alpha}-(5-methoxybenzofuran-2-carbonyl]-L-leucinyl]amino]-1-[(2S)-4-methyl-2-[[(benzyloxycarbonyl)amino]pentyl]-pyrrolidine$

5

Following the procedure of Example 30(e), except substituting 5-methoxybenzofuran-2-carboxylic acid, the title compound was prepared: MS (ES+) (MH+) 607.4.

Example 41

10

<u>Preparation of (3R)-[[N α -(5-chlorobenzofuran-2-carbonyl)-L-leucinyl]amino]-1-[(2S)-4-methyl-2-[[(benzyloxycarbonyl)amino]pentyl]-pyrrolidine</u>

Following the procedure of Example 30(e), except substituting 5-chlorobenzofuran-2-carboxylic acid, the title compound was prepared: MS (ES+) (MH+) 611.4.

Example 42

Preparation of (3R)- $[N^{\alpha}-(7-methoxybenzofuran-2-carbonyl)-L-leucinyl]amino]-1-<math>[(2S)-4-methyl-2-[(benzyloxycarbonyl)amino]pentyl]-pyrrolidine$

Following the procedure of Example 30(e), except substituting 7-methoxybenzofuran - 2-carboxylic acid, the title compound was prepared: MS (ES+) (MH+) 607.4.

25

20

Example 43

Preparation of (3R)- $[N^{\alpha}-(3-chlorobenzo[b]thiophene-2-carbonyl)-L-leucinyl]amino]-1-<math>[(2S)-4-methyl-2-[[(benzyloxycarbonyl)amino]pentyl]-pyrrolidine$

Following the procedure of Example 30(e), except substituting 3-chlorobenzo[b]thiophene-2-carboxylic acid, the title compound was prepared: MS (ES+) (MH+) 627.3.

Example 44

Preparation of (3R)- $[N^{\alpha}$ -(3-(2-pyridyl)benzoyl)-L-leucinyl]amino]-1-[(2S)-4-methyl-2-[(benzyloxycarbonyl)amino]pentyl]-pyrrolidine

5

Following the procedure of Example 30(e), except substituting 3-(2-pyridyl)benzoic acid, the title compound was prepared: MS (ES+) (MH+) 614.4.

Example 45

10

20

30

Preparation of (3S)- $[N^{\alpha}-(benzo[b]thiophene-2-carbonyl)-L-leucinyl]amino]-1-[(2S)-4-methyl-2-[[(benzyloxycarbonyl)amino]pentyl]-pyrrolidine$

- a) (3S)- $[N^{\alpha}-(tert-butoxycarbonyl)amino]-1-[(2S)-4-methyl-2-$
- 15 [[(benzyloxycarbonyl)amino]pentyl]-pyrrolidine

Following the procedure of Example 30(a), except substituting (3S)-(-)-3-(tert-butoxycarbonylamino)pyrrolidine, the title compound was prepared: MS (ES+) (MH+) 420.

b) (3S)-amino-1-[(2S)-4-methyl-2-[[(benzyloxycarbonyl)amino]pentyl]-pyrrolidine dihydrochloride

Following the procedure of Example 30(b), except substituting the compound of Example 45(a), the title compound was prepared: MS (ES+) (MH+) 320.

- c) (3S)-[[N α -(tert-butoxycarbonyl)-L-leucinyl]amino]-1-[(2S)-4-methyl-2-
- 25 [[(benzyloxycarbonyl)amino]pentyl]-pyrrolidine

Following the procedure of Example 30(c), except substituting the compound of Example 45 (b), the title compound was prepared: MS (ES+) (MH+) 533.5.

d) (3S)- $[N^{\alpha}-L-leucinyl]$ amino]-1-[(2S)-4-methyl-2-[[(benzyloxycarbonyl)amino]pentyl]-pyrrolidine dihydrochloride

Following the procedure of Example 30(d), except substituting the compound of Example 45 (c), the title compound was prepared: MS (ES+) (MH+) 433.3.

- e) (3S)-[[N $^{\alpha}$ -(benzo[b]thiophene-2-carbonyl)-L-leucinyl]amino]-1-[(2S)-4-methyl-2-
- 35 [[(benzyloxycarbonyl)amino]pentyl]-pyrrolidine

Following the procedure of Example 30(e), except substituting the compound of Example 45 (d), the title compound was prepared: MS (ES+) (MH+) 593.4.

Example 46

Preparation of (3S)- $[N^{\alpha}-(3,4-dimethoxybenzoyl)-L-leucinyl]$ amino]-1-[(2S)-4-methyl-2-[(benzyloxycarbonyl)amino]pentyl]-pyrrolidine

Following the procedure of Example 45(e), except substituting 3,4-dimethoxybenzoic acid, the title compound was prepared: MS (ES+) (MH+) 597.5.

10 Example 47

Preparation of (3S)- $[N^{\alpha}-(benzofuran-2-carbonyl)-L-leucinyl]amino]-1-[(2S)-4-methyl-2-[[(benzyloxycarbonyl)amino]pentyl]-pyrrolidine$

Following the procedure of Example 45(e), except substituting benzofuran-2-carboxylic acid, the title compound was prepared: MS (ES+) (MH+) 577.4.

Example 48

20 <u>Preparation of (3S)-[[Nα-(benzothiazole-6-carbonyl)-L-leucinyl]amino]-1-[(2S)-4-methyl-2-[[(benzyloxycarbonyl)amino]pentyl]-pyrrolidine</u>

Following the procedure of Example 45(e), except substituting benzothiazole-6-carboxylic acid, the title compound was prepared: MS (ES+) (MH+) 594.4.

25

5

Example 49

Preparation of (3S)- $[N^{\alpha}-(indole-2-carbonyl)-L-leucinyl]$ amino]-1-[(2S)-4-methyl-2-[(benzyloxycarbonyl)amino]pentyl]-pyrrolidine

30

Following the procedure of Example 45(e), except substituting indole-2-carboxylic acid, the title compound was prepared: MS (ES+) (MH+) 576.4.

Example 50

<u>Preparation of (3S)-[[N $^{\alpha}$ -(4-fluorobenzoyl)-L-leucinyl]amino]-1-[(2S)-4-methyl-2-[[(benzyloxycarbonyl)amino]pentyl]-pyrrolidine</u>

5

Following the procedure of Example 45(e), except substituting 4-fluorobenzoic acid, the title compound was prepared: MS (ES+) (MH+) 555.3.

Example 51

10

<u>Preparation of (3S)-[[N α -(4-methoxybenzoyl)-L-leucinyl]amino]-1-[(2S)-4-methyl-2-[[(benzyloxycarbonyl)amino]pentyl]-pyrrolidine</u>

Following the procedure of Example 45(e), except substituting p-4-methoxybenzoic acid, the title compound was prepared: MS (ES+) (MH+) 567.3.

Example 52

Preparation of (3S)-[[Nα-(3,4-dichlorobenzoyl)-L-leucinyl]amino]-1-[(2S)-4-methyl-2-20 [[(benzyloxycarbonyl)amino]pentyl]-pyrrolidine

Following the procedure of Example 45(e), except substituting 3,4-dichlorobenzoic acid, the title compound was prepared: MS (ES+) (MH+) 605.2.

25 <u>Example 53</u>

<u>Preparation of (3S)-[[N α -(thiophene-2-carbonyl)-L-leucinyl]amino]-1-[(2S)-4-methyl-2-[[(benzyloxycarbonyl)amino]pentyl]-pyrrolidine</u>

Following the procedure of Example 45(e), except substituting thiophene-3-carboxylic acid, the title compound was prepared: MS (ES+) (MH+) 543.2.

Example 54

Preparation of (3S)- $[[N^{\alpha}-(4-biphenylcarbonyl)-L-leucinyl]$ amino]-1-[(2S)-4-methyl-2-[[(benzyloxycarbonyl)amino]pentyl]-pyrrolidine

5

Following the procedure of Example 39, except substituting the compound of Example 45 (e), the title compound was prepared: MS (ES+) (MH+) 613.4.

Example 55

10

<u>Preparation of (3S)-[[N $^{\alpha}$ -(5-methoxybenzofuran-2-carbonyl)-L-leucinyl]amino]-1-[(2S)-4-methyl-2-[[(benzyloxycarbonyl)amino]pentyl]-pyrrolidine</u>

Following the procedure of Example 45(e), except substituting 5-methoxybenzofuran-2-carboxylic acid, the title compound was prepared: MS (ES+) (MH+) 607.4.

Example 56

Preparation of (3S)-[[Nα-(5-chlorobenzofuran-2-carbonyl)-L-leucinyl]amino]-1-[(2S)-4-methyl-20 2-[[(benzyloxycarbonyl)amino]pentyl]-pyrrolidine

Following the procedure of Example 45(e), except substituting 5-chlorobenzofuran-2-carboxylic acid, the title compound was prepared: MS (ES+) (MH+) 611.4.

25

Example 57

<u>Preparation of (3S)-[[N $^{\alpha}$ -(7-methoxybenzofuran-2-carbonyl)-L-leucinyl]amino]-1-[(2S)-4-methyl-2-[[(benzyloxycarbonyl)amino]pentyl]-pyrrolidine</u>

Following the procedure of Example 45(e), except substituting 7-methoxybenzofuran - 2-carboxylic acid, the title compound was prepared: MS (ES+) (MH+) 607.4.

Example 58

Preparation of (3S)- $[N^{\alpha}-(3-\text{chlorobenzo}]b]$ thiophene-2-carbonyl)-L-leucinyl]amino]-1-[(2S)-4-(3-chlorobenzo]b]methyl-2-[[(benzyloxycarbonyl)amino]pentyl]-pyrrolidine

5

Following the procedure of Example 45(e), except substituting 3chlorobenzo[b]thiophene-2-carboxylic acid, the title compound was prepared: MS (ES+) (MH+) 627.2.

10

25

Example 59

Preparation of (3S)-[[Nα-(3-(2-pyridyl)benzoyl)-L-leucinyl]amino]-1-[(2S)-4-methyl-2-[[(benzyloxycarbonyl)amino]pentyl]-pyrrolidine

Following the procedure of Example 45(e), except substituting 3-(2-pyridyl)benzoic 15 acid, the title compound was prepared: MS (ES+) (MH+) 614.4.

Example 60

- 20 Preparation of 1-(4-phenyl)benzyl-(3S)-[N^{α} -(tert-butoxycarbonyl)-L-leucinyl]amino]pyrrolidine
- a) $1-(2,2,2-\text{trichloroethylcarbonyl})-(3S)-[[N^{\alpha}-(\text{tert-butoxycarbonyl})amino]-pyrrolidine$ To a stirred solution of (3S)-(-)-3-(tert-butoxycarbonylamino)pyrrolidine (10 g, 53.7 mmol) in CH₂Cl₂ (150 mL) at 0°C was added N-methylmorpholine (6.50 mL, 59.1 mmol), and 2,2,2-trichloroethyl chloroformate (8.20 mL, 59.6 mmol). After stirring overnight, gradually warming to room temperature, the reaction mixture was concentrated to 1/2 original volume, diluted with CHCl₃ (250 mL), and washed with 5% NaHCO₃, H₂O, 1N HCl, H₂O, and brine, then dried (MgSO₄), filtered, and concentrated to give 23.98 g of the title compound: 'H-NMR 30 (400 MHz, CDCl₃): d (ppm) 4.74 (s, 2H); 4.66 (br m, 1H); 4.25 (br m, 1H); 3.72 (m, 1H); 3.56 (m, 2H); 3.33 (m, 1H); 2.19 (m, 1H); 1.87 (m, 1H); 1.45 (s, 9H).
 - b) $1-(2,2,2-\text{trichloroethylcarbonyl})-(3S)-[[N^{\alpha}-(\text{tert-butoxycarbonyl})-L-\text{leucinyl}]amino]$ pyrrolidine
 - The compound of Example 60(a) (23.9 g) was dissolved in 4.0 N HCl in dioxane (200 mL) and stirred at room temperature for 1 h. The solution was concentrated to a white solid and stored under high vacuum for 30 min. To a stirred solution of the residue in DMF (200 mL) was

added N-methylmorpholine (8.90 mL, 80.9 mmol), HOBt (10.88 g, 80.5 mmol), Boc-Leucine hydrate (20.09 g, 80.6 mmol), and EDC (15.44 g, 80.6 mmol). The reaction was stirred overnight whereupon it was partitioned between EtOAc (300 mL), 10% Na₂CO₃ (150 mL), and brine (150 mL). The aqueous layer was washed with fresh EtOAc (100 mL), the combined organic layers were washed with IN HCl, H₂O. 10% Na₂CO₃, H₂O, and brine, then dried (MgSO₄), filtered, and concentrated to give 27.88 g of the title compound: MS (ES+) (MH+) 474.1.

c) (3S)-[[N^{α} -(tert-butoxycarbonyl)-L-leucinyl]amino]-pyrrolidine

To a stirred solution of the compound of Example 60(b) (27.7 g) in THF (200 mL) was added a solution of 1N NH₄OAc (pH 7-7.5, 40 mL), followed by Zn powder (25.06 g). The reaction was stirred for 3 h at room temperature whereupon the slurry was filtered through a pad of Celite, followed by several CHCl₃ washes. The combined filtrates were concentrated to remove THF, diluted with additional CHCl₃ (300 mL) and washed with 10% Na₂CO₃ and brine, then dried (MgSO₄), filtered, and concentrated to give 16.34 g of the title compound: MS (ES+) (MH+) 300.2.

d) 1-(4-phenyl)benzyl-(3S)-[[N^{α} -(tert-butoxycarbonyl)-L-leucinyl]amino]-pyrrolidine

To a stirred solution of the compound of Example 60(c) (1.51 g, 5.0 mmol) in CH₂Cl₂ (10 mL) was added 4,4'-biphenylcarboxaldehyde (1.09 g, 6.0 mmol). The reaction was stirred 2 h whereupon Na(OAc)₃ (2.34 g, 11.0 mmol) was added. After stirring overnight, the reaction mixture was diluted with CHCl₃ (100 mL) and washed with 5% NaHCO₃ and brine, then dried (MgSO₄), filtered, and concentrated. Column chromatography (silica gel, 2:1 EtOAc: hexane to 3:1 EtOAc: hexane) gave 1.68 g of the title compound: MS (ES+) (MH+) 466.4.

25

5

10

15

20

Example 61

<u>Preparation of 1-(4-phenyl)benzyl-(3S)-[[N α -(2-naphthylcarbonyl)-L-leucinyl]amino]-pyrrolidine</u>

30

35

a) 1-(4-phenyl)benzyl-(3S)-[[Nα-L-leucinyl]amino]-pyrrolidine dihydrochloride

The compound of Example 60(d) (1.57 g, 3.4 mmol) was dissolved in 4.0 N HCl in dioxane (25 mL) and stirred at room temperature for 1 h. The solution was concentrated to a white solid and dried under high vacuum for 30 min to give the title compound: MS (ES+) (MH+) 366.4.

b) 1-(4-phenyl)benzyl-(3S)-[[N^{α} -(2-naphthylcarbonyl)-L-leucinyl]amino]-pyrrolidine

To a stirred solution of the compound of Example 61(a) (132.9 mg, 0.30 mmol) in DMF (1 mL) was added N-methylmorpholine (100 uL, 0.91 mmol), HOBt (62.0 mg, 0.46 mmol), 2-naphthoic acid (78.4 mg, 0.46 mmol), and EDC (87.3 mg, 0.46 mmol). The reaction was stirred overnight whereupon it was partitioned between 50 mL each of EtOAc, 10% Na₂CO₃, and brine. The aqueous layer was washed with fresh EtOAc (50 mL), the combined organic layers were washed with 10% Na₂CO₃ and brine, then dried (MgSO₄), filtered, and concentrated. Column chromatography (silica gel, 2:1 EtOAc: hexane) gave 102.8 mg of the title compound: MS (ES+) (MH+) 520.3.

10

5

Example 62

<u>Preparation of 1-(4-phenyl)benzyl-(3S)-[[N α -(2-quinolinecarbonyl)-L-leucinyl]amino]-pyrrolidine</u>

Following the procedure of Example 61(b), except substituting 2-quinolinecarboxylic acid, the title compound was prepared: MS (ES+) (MH+) 521.3.

Example 63

20 <u>Preparation of 1-(4-phenyl)benzyl-(3S)-[[N α -(3,4-dimethoxybenzoyl)-L-leucinyl]amino]-pyrrolidine</u>

Following the procedure of Example 61(b), except substituting 3,4-dimethoxybenzoic acid, the title compound was prepared: MS (ES+) (MH+) 530.3.

25

Example 64

<u>Preparation of 1-(4-phenyl)benzyl-(3S)-[[N α -(benzofuran-2-carbonyl)-L-leucinyl]aminol-pyrrolidine</u>

30

Following the procedure of Example 61(b), except substituting benzofuran-2-carboxylic acid, the title compound was prepared: MS (ES+) (MH+) 510.3.

Example 65

Preparation of 1-(4-phenyl)benzyl-(3S)-[[N α -(benzo|b]thiophene-2-carbonyl)-L-leucinyl]amino]-pyrrolidine

5

Following the procedure of Example 61(b), except substituting benzo[b]thiophene-2-carboxylic acid, the title compound was prepared: MS (ES+) (MH+) 526.4.

Example 66

10

<u>Preparation of 1-(4-phenyl)benzyl-(3S)-[[N α -(benzyloxycarbonyl)-L-leucinyl]amino]-pyrrolidine</u>

To a stirred suspension of the compound of Example 61(a) (132.9 mg, 0.30 mmol) in CH₂Cl₂ (2 mL) at 0°C was added N-methylmorpholine (132 uL, 1.20 mmol), and benzyl chloroformate (53 uL, 0.36 mmol). The reaction was stirred overnight, gradually warming to room temperature, whereupon it was diluted with CHCl₃ (100 mL) and washed with 10% Na₂CO₃ and brine, then dried (MgSO₄), filtered, and concentrated. Column chromatography (silica gel, EtOAc) gave 94.0 mg of the title compound: MS (ES+) (MH+) 500.3.

20

Example 67

Preparation of 1-(2-phenyl)ethyl-(3S)- $[N^{\alpha}-(tert-butoxycarbonyl)-L-leucinyl]$ amino}-pyrrolidine

25

Following the procedure of Example 60(d), except substituting phenylacetaldehyde, the title compound was prepared: MS (ES+) (MH+) 404.4.

Example 68

30

35

<u>Preparation of 1-(2-phenyl)ethyl-(3S)-[[N α -(2-naphthylcarbonyl)-L-leucinyl]amino]-pyrrolidine</u>

a) 1-(2-phenyl)ethyl-(3S)-[$[N^{\alpha}$ -L-leucinyl]amino]-pyrrolidine dihydrochloride

The compound of Example 67 (1.13 g, 2.8 mmol) was dissolved in 4.0 N HCl in dioxane (25 mL) and stirred at room temperature for 1 h. The solution was concentrated to a white solid and dried under high vacuum for 30 min to give the title compound: MS (ES+) (MH+) 304.3.

b) 1-(2-phenyl)ethyl-(3S)-[[Nα-(2-naphthylcarbonyl)-L-leucinyl]amino]-pyrrolidine
Following the procedure of Example 61(b), except substituting the compound of
Example 68(a), the title compound was prepared: MS (ES+) (MH+) 458.3.

5

Example 69

<u>Preparation of 1-(2-phenyl)ethyl-(3S)-[[N α -(2-quinolinecarbonyl)-L-leucinyl]aminol-pyrrolidine</u>

. 10

Following the procedure of Example 68(b), except substituting 2-quinolinecarboxylic acid, the title compound was prepared: MS (ES+) (MH+) 459.5.

Example 70

Preparation of 1-(2-phenyl)ethyl-(3S)- $[N^{\alpha}$ -(benzo[b]thiophene-2-carbonyl)-L-leucinyl]amino]-pyrrolidine

Following the procedure of Example 68(b), except substituting benzo[b]thiophene-2-carboxylic acid, the title compound was prepared: MS (ES+) (MH+) 464.3.

20

Example 71

<u>Preparation of 1-(2-phenyl)ethyl-(3S)-[[N α -(benzofuran -2-carbonyl)-L-leucinyl]amino]-pyrrolidine</u>

25

Following the procedure of Example 68(b), except substituting benzofuran-2-carboxylic acid, the title compound was prepared: MS (ES+) (MH+) 448.3.

Example 72

30

<u>Preparation of 1-(2-phenyl)ethyl-(3S)-[[N $^{\alpha}$ -(3-chlorobenzo[b]thiophene-2-carbonyl)-L-leucinyl]amino]-pyrrolidine</u>

Following the procedure of Example 68(b), except substituting 3chlorobenzo[b]thiophene -2-carboxylic acid, the title compound was prepared: MS (ES+) (MH+) 498.1.

Example 73

Preparation of 1-(4-phenoxy)benzyl-(3S)-[[N^{α} -(tert-butoxycarbonyl)-L-leucinyl]amino]-pyrrolidine

5

Following the procedure of Example 60(d), except substituting 4-phenoxybenzaldehyde, the title compound was prepared: MS (ES+) (MH+) 482.4.

Example 74

10

<u>Preparation of 1-(4-phenoxy)benzyl-(3S)-[[N α -(2-naphthylcarbonyl)-L-leucinyl]amino]-pyrrolidine</u>

- a) 1-(4-phenoxy)benzyl-(3S)- $[N^{\alpha}-L$ -leucinyl]amino]-pyrrolidine dihydrochloride
- The compound of Example 73 (1.52 g, 3.2 mmol) was dissolved in 4.0 N HCl in dioxane (25 mL) and stirred at room temperature for 1 h. The solution was concentrated to a white solid and dried under high vacuum for 30 min to give the title compound: MS (ES+) (MH+) 382.4.
- b) 1-(4-phenoxy)benzyl-(3S)-[[Nα-(2-naphthylcarbonyl)-L-leucinyl]amino]-pyrrolidine
 Following the procedure of Example 61(b), except substituting the compound of Example 74(a), the title compound was prepared: MS (ES+) (MH+) 536.3.

Example 75

25 <u>Preparation of 1-(4-phenoxy)benzyl-(3S)-[[Nα-(2-quinolinecarbonyl)-L-leucinyl]amino}-pyrrolidine</u>

Following the procedure of Example 74(b), except substituting 2-quinolinecarboxylic acid, the title compound was prepared: MS (ES+) (MH+) 537.3.

30

Example 76

<u>Preparation of 1-(4-phenoxy)benzyl-(3S)-[[N $^{\alpha}$ -(3,4-dimethoxybenzoyl)-L-leucinyl]amino]-pyrrolidine</u>

35

Following the procedure of Example 74(b), except substituting 3,4-dimethoxybenzoic acid, the title compound was prepared: MS (ES+) (MH+) 546.3.

Example 77

Preparation of 1-(4-phenoxy)benzyl-(3S)-[[N α -(benzofuran -2-carbonyl)-L-leucinyl]amino]5 pyrrolidine

Following the procedure of Example 74(b), except substituting benzofuran-2-carboxylic acid, the title compound was prepared: MS (ES+) (MH+) 526.4.

10

Example 78

<u>Preparation of 1-(4-phenoxy)benzyl-(3S)-[[N α -(benzo[b]thiophene-2-carbonyl)-L-leucinyl]amino]-pyrrolidine</u>

15

Following the procedure of Example 74(b), except substituting benzo[b]thiophene-2-carboxylic acid, the title compound was prepared: MS (ES+) (MH+) 542.3.

Example 79

20 Preparation of 1-(4-fluoro)benzyl-(3S)- $[N^{\alpha}-(tert-butoxycarbonyl)-L-leucinyl]$ pyrrolidine

Following the procedure of Example 60(d), except substituting 4-fluorobenzaldehyde, the title compound was prepared: MS (ES+) (MH+) 408.3.

25

Example 80

Preparation of 1-(4-fluoro)benzyl-(3S)- $[N^{\alpha}-(2-naphthy|carbony|)-L-leuciny|]$ amino]-pyrrolidine

30

a) 1-(4-fluoro)benzyl-(3S)-[[N^{α} -L-leucinyl]amino]-pyrrolidine dihydrochloride

The compound of Example 79 (508 mg, 1.25 mmol) was dissolved in 4.0 N HCl in dioxane (25 mL) and stirred at room temperature for 1 h. The solution was concentrated to a white solid and dried under high vacuum for 30 min to give the title compound: MS (ES+)

35 (MH+) 308.3.

PCT/US98/09192 WO 98/50534

b) 1-(4-fluoro)benzyl-(3S)-[[N^{α} -(2-naphthylcarbonyl)-L-leucinyl]amino]-pyrrolidine Following the procedure of Example 61(b), except substituting the compound of Example 80(a), the title compound was prepared: MS (ES+) (MH+) 462.3.

5

Example 81

Preparation of 1-(4-fluoro)benzyl-(3S)- $[N^{\alpha}$ -(benzo[b]thiophene-2-carbonyl)-Lleucinyl]amino]-pyrrolidine

10

Following the procedure of Example 80(b), except substituting benzo[b]thiophene-2carboxylic acid, the title compound was prepared: MS (ES+) (MH+) 468.3.

Example 82

15 <u>Preparation of 1-(4-cyano)benzyl-(3S)-[[N α -(tert-butoxycarbonyl)-L-leucinyl]amino]-</u> pyrrolidine

Following the procedure of Example 60(d), except substituting 4-cyanobenzaldehyde, the title compound was prepared: MS (ES+) (MH+) 415.4.

20

Example 83

Preparation of 1-(4-cyano)benzyl-(3S)-[[N α -(2-naphthylcarbonyl)-L-leucinyl]amino]pyrrolidine

25

30

- a) 1-(4-cyano)benzyl-(3S)-[[N^{α} -L-leucinyl]amino]-pyrrolidine dihydrochloride The compound of Example 82 (512 mg, 1.23 mmol) was dissolved in 4.0 N HCl in dioxane (25 mL) and stirred at room temperature for 1 h. The solution was concentrated to a white solid and dried under high vacuum for 30 min to give the title compound: MS (ES+) (MH+) 315.4.
- b) 1-(4-cyano)benzyl-(3S)- $[N^{\alpha}$ -(2-naphthylcarbonyl)-L-leucinyl]amino]-pyrrolidine Following the procedure of Example 61(b), except substituting the compound of Example 83(a), the title compound was prepared: MS (ES+) (MH+) 469.5.

Example 84

Preparation of 1-benzyl-(3S)- $[N^{\alpha}-(benzo[b]thiophene-2-carbonyl)-L-leucinyl]amino]$ pyrrolidine

5

10

20

30

35

a) 1-benzyl-(3S)-[[N α -(tert-butoxycarbonyl)amino]-pyrrolidine

To a stirred solution of (3S)-(-)-3-(tert-butoxycarbonylamino)pyrrolidine (10 g, 53.7 mmol) in CH₂Cl₂ (125 mL) was added benzaldehyde (6.6 mL, 64.9 mmol). The reaction was stirred 2 h whereupon Na(OAc)3 (25.05 g, 118.2 mmol) was added. After stirring overnight, small aliquots of 5% NaHCO3 were added until foaming had ceased. The reaction mixture was diluted with CHCl3 (150 mL) and washed with 5% NaHCO3 and brine, then dried (MgSO4), filtered, and concentrated. Column chromatography (silica gel, 1:1 EtOAc: hexane) gave 11.5 g of the title compound: MS (ES+) (MH+) 277.2.

b) 1-benzyl-(3S)-[[N^{α} -(tert-butoxycarbonyl)-L-leucinyl]amino]-pyrrolidine 15

The compound of Example 84 (a) (11.0 g, 39.8 mmol) was dissolved in 4.0 N HCl in dioxane (300 mL) and stirred at room temperature for 1 h. The solution was concentrated to a white solid and dried under high vacuum. To a stirred solution of the residue in DMF (100 mL) was added N-methylmorpholine (13.1 mL, 119.1 mmol), HOBt (8.07 g, 59.7 mmol), Boc-Leucine hydrate (14.89 g, 59.7 mmol), and EDC (11.44 g, 59.7 mmol). The reaction was stirred overnight whereupon it was diluted with EtOAc (500 mL), and washed with 1:1 10% Na₂CO₃: brine (300 mL). The aqueous layer was washed with fresh EtOAc (150 mL), the combined organic layers were washed with 10% Na₂CO₃ and brine, then dried (MgSO₄), filtered, and concentrated. Column chromatography (silica gel, 1:2 EtOAc: hexane to 1:1 EtOAc: hexane) gave 13.5 g of the title compound: MS (ES+) (MH+) 390.4. 25

c) 1-benzyl-(3S)-[[Nα-L-leucinyl]amino]-pyrrolidine dihydrochloride

The compound of Example 84 (b) (11.6 g, 29.8 mmol) was dissolved in 4.0 N HCl in dioxane (300 mL) and stirred at room temperature for 1 h. The solution was concentrated to a white solid and dried under high vacuum to give the title compound: MS (ES+) (MH+) 290.4.

d) 1-benzyl-(3S)- $[N^{\alpha}$ -(benzo[b]thiophene-2-carbonyl)-L-leucinyl]amino]-pyrrolidine

To a stirred solution of the compound of Example 84 (c) (109.2 mg, 0.30 mmol) in DMF (1 mL) was added N-methylmorpholine (100 uL, 0.91 mmol), HOBt (61.6 mg, 0.46 mmol), benzo[b]thiophene-2-carboxylic acid (80.8 mg, 0.45 mmol), and EDC (86.6 mg, 0.45 mmol). The reaction was stirred overnight whereupon it was partitioned between 50 mL each of EtOAc, 10% Na₂CO₃, and brine. The aqueous layer was washed with fresh EtOAc (50 mL), the

combined organic layers were washed with 10% Na₂CO₃ and brine, then dried (MgSO₄), filtered, and concentrated. Column chromatography (silica gel, 4:1 EtOAc: hexane) gave 85.0 mg of the title compound: MS (ES+) (MH+) 450.0.

5 Example 85

<u>Preparation of 1-benzyl-(3S)-[[N α -(3,4-dimethoxybenzoyl)-L-leucinyl]amino]-pyrrolidine</u>

Following the procedure of Example 84(d), except substituting 3,4-dimethoxybenzoic acid, the title compound was prepared: MS (ES+) (MH+) 454.4.

Example 86

Preparation 1-benzyl-(3S)- $[N^{\alpha}$ -(3-(2-dimethylaminoethoxy)-4-methoxybenzoyl)-L-leucinyl]amino]-pyrrolidine

Following the procedure of Example 84(d), except substituting 3-(2-dimethylaminoethoxy)-4-methoxybenzoic acid, the title compound was prepared: MS (ES+) (MH+) 511.2.

20

30

15

Example 87

Preparation of 1-(4-nitro)benzyl-(3S)-[[Nα-(2-naphthylcarbonyl)-L-leucinyl]amino]-pyrrolidine

25 a) 1-benzyl-(3S)- $[N^{\alpha}-(2-naphthy|carbony|)-L-leuciny|]amino]-pyrrolidine$

To a stirred solution of the compound of Example 84 (c) (7.25 g, 20.0 mmol) in DMF (50 mL) was added N-methylmorpholine (6.60 mL, 60.0 mmol), HOBt (4.05 g, 30.0 mmol), 2-naphthoic acid (5.17 g, 30.0 mmol), and EDC (5.76 g, 30.1 mmol). The reaction was stirred overnight whereupon it was partitioned between EtOAc (300 mL), 10% Na₂CO₃ (150 mL), and brine (150 mL). The aqueous layer was washed with fresh EtOAc (150 mL), the combined organic layers were washed with 10% Na₂CO₃ and brine, then dried (MgSO₄), filtered, and concentrated. Column chromatography (silica gel, 3:1 EtOAc: hexane to EtOAc) gave 5.7 g of the title compound: MS (ES+) (MH+) 444.0.

b) (3S)- $[N^{\alpha}-(2-naphthylcarbonyl)-L-leucinyl]$ amino]-pyrrolidine

To a stirred suspension of the compound of Example 87(a) (2.22 g, 5.00 mmol) in anhydrous dichloroethane (10 mL) at 0°C, in an oven-dried flask under an Argon atmosphere,

was added a solution of 1-chloroethyl chloroformate (600 uL, 5.56 mmol) in dichloroethane, drop-wise over 10 min. After stirring at 0°C for 15 min, the reaction was heated to reflux for 1.5 h, cooled to room temperature, and concentrated. The residue was dissolved in anhydrous MeOH (10 mL) and heated to reflux overnight. The reaction was cooled to room temperature, whereupon it was concentrated, dissolved in H₂O, and basified to pH 9-9.5 by the addition of solid Na₂CO₃. The aqueous solution was extracted with CHCl₃ (2 x 100 mL), the combined organic layers were washed with brine, then dried (MgSO₄), filtered, and concentrated. Column chromatography (silica gel, 10:90 MeOH: CHCl₃ to 10:90:0.1 MeOH: CHCl₃: NH₄OH) gave 0.82 g of the title compound: MS (ES+) (MH+) 354.3.

10

15

5

c) 1-(4-nitro)benzyl-(3S)-[[Nα-(2-naphthylcarbonyl)-L-leucinyl]amino]-pyrrolidine
 To a stirred solution of the compound of Example 87(b) (106.5 mg, 0.30 mmol) in
 CH₂Cl₂ (1 mL) was added 4-nitrobenzaldehyde (55.5 mg, 0.37 mmol). The reaction was stirred

CH₂Cl₂ (1 mL) was added 4-nitrobenzaldehyde (55.5 mg, 0.37 mmol). The reaction was stirred 1.5 h whereupon Na(OAc)₃ (141.3 mg, 0.67 mmol) added. After stirring overnight, the reaction mixture was diluted with CHCl₃ (100 mL) and washed with 5% NaHCO₃ and brine, then dried (MgSO₄), filtered, and concentrated. Column chromatography (silica gel, EtOAc) gave 88.0 mg of the title compound: MS (ES+) (MH+) 489.3.

Example 88

20

25

<u>Preparation of 1-(4-(N,N-dimethylamino)benzyl-(3S)-[[N $^{\alpha}$ -(2-naphthylcarbonyl)-L-leucinyl]amino]-pyrrolidine</u>

Following the procedure of Example 87(c), except substituting 4-(N,N-dimethylamino)benzaldehyde, the title compound was prepared: MS (ES+) (MH+) 487.1.

Example 89

Preparation of 1-(4-methoxy)benzyl-(3S)- $[N^{\alpha}-(2-naphthy|carbonyl)-L-leucinyl]amino]$ 30 pyrrolidine

Following the procedure of Example 87(c), except substituting p-anisaldehyde, the title compound was prepared: MS (ES+) (MH+) 474.4.

Example 90

Preparation of 1-(4-pyridyl)methyl-(3S)- $[N^{\alpha}-(2-naphthylcarbonyl)-L-leucinyl]amino]-pyrrolidine$

5

Following the procedure of Example 87(c), except substituting 4-pyridinecarboxaldehyde, the title compound was prepared: MS (ES+) (MH+) 445.4.

Example 91

10

20

<u>Preparation of 1-(4-carboxymethyl)benzyl-(3S)-[[N α -(2-naphthylcarbonyl)-L-leucinyl]amino]-pyrrolidine</u>

Following the procedure of Example 87(c), except substituting methyl-4formylbenzoate, the title compound was prepared: MS (ES+) (MH+) 502.3.

Example 92

Preparation of 1-(3,4-methylenedioxy)benzyl-(3S)-[[N^{α} -(2-naphthylenedioxyl)-L-leucinyl]amino]-pyrrolidine

Following the procedure of Example 87(c), except substituting piperonal, the title compound was prepared: MS (ES+) (MH+) 488.2.

25 Example 93

Preparation of 1-(2-naphthyl)methyl-(3S)-[[N α -(2-naphthylcarbonyl)-L-leucinyl]amino]-pyrrolidine

Following the procedure of Example 87(c), except substituting 2-naphthaldehyde, the title compound was prepared: MS (ES+) (MH+) 494.2.

Example 94

Preparation of 1-(3-indolyl)methyl-(3S)-[[N α -(2-naphthylcarbonyl)-L-leucinyl]aminol-pyrrolidine

5

Following the procedure of Example 87(c), except substituting indole-3-carboxaldehyde, the title compound was prepared: MS (ES+) (MH+) 483.4.

Example 95

10

20

Preparation of 1-(2-quinolinyl)methyl-(3S)- $[N^{\alpha}-(2-naphthylcarbonyl)-L$ -leucinyl]aminol-pyrrolidine

Following the procedure of Example 87c), except substituting quinoline-2carboxaldehyde, the title compound was prepared: MS (ES+) (MH+) 495.4.

Example 96

Preparation of 1-(3-quinolinyl)methyl-(3S)- $[N^{\alpha}-(2-naphthylcarbonyl)-L-leucinyl]amino}-pyrrolidine$

Following the procedure of Example 87(c), except substituting quinoline-3-carboxaldehyde, the title compound was prepared: MS (ES+) (MH+) 495.3.

25 <u>Example 97</u>

Preparation of 1-(1-naphthyl)methyl-(3S)- $[N^{\alpha}$ -(2-naphthylcarbonyl)-L-leucinyl]amino]-pyrrolidine

Following the procedure of Example 87(c), except substituting 1-naphthaldehyde, the title compound was prepared: MS (ES+) (MH+) 494.3.

Example 98

<u>Preparation of 1-(4-quinolinyl)methyl-(3S)-[[N α -(2-naphthylcarbonyl)-L-leucinyl]aminol-pyrrolidine</u>

5

Following the procedure of Example 87(c), except substituting quinoline-4-carboxaldehyde, the title compound was prepared: MS (ES+) (MH+) 495.3.

Example 99

10

<u>Preparation 1-(3-pyrrolyl)methyl-(3S)-[[N α -(2-naphthylcarbonyl)-L-leucinyl]amino]-pyrrolidine</u>

Following the procedure of Example 87(c), except substituting pyrrole-2carboxaldehyde, the title compound was prepared: MS (ES+) (MH+) 433.3.

Example 100

Preparation of 1-(3-pyridyl)methyl-(3S)-[[N α -(2-naphthylcarbonyl)-L-leucinyl]amino]-pyrrolidine

Following the procedure of Example 87(c), except substituting pyridine-3-carboxaldehyde, the title compound was prepared: MS (ES+) (MH+) 445.2.

25

20

Example 101

<u>Preparation of 1-(2-pyridyl)methyl-(3S)-[[N $^{\alpha}$ -(2-naphthylcarbonyl)-L-leucinyl]amino]-pyrrolidine</u>

Following the procedure of Example 87(c), except substituting pyridine-2-carboxaldehyde, the title compound was prepared: MS (ES+) (MH+) 445.1.

Example 102

Preparation of 1-(3-nitro)benzyl-(3S)-[[Nα-(2-naphthylcarbonyl)-L-leucinyl]amino]-pyrrolidine

Following the procedure of Example 87(c), except substituting 3-nitrobenzaldehyde, the title compound was prepared: MS (ES+) (MH+) 489.3.

Example 103

- 10 Preparation of 1-(4-acetamido)benzyl-(3S)-[[N^{α} -(2-naphthylcarbonyl)-L-leucinyl]amino]-pyrrolidine
- - b) 1-(2,2,2-trichloroethyl)carbonyl-(3S)-[[N $^{\alpha}$ -(tert-butoxycarbonyl)-L-leucinyl]amino]-pyrrolidine
 - The compound of Example 103 (a) (19.9 g) was dissolved in 4.0 N HCl in dioxane (400 mL) and stirred at room temperature for 1 h. The solution was concentrated to a white solid and stored under high vacuum. To a stirred solution of the residue in DMF (200 mL) was added N-methylmorpholine (8.90 mL, 80.9 mmol), HOBt (10.88 g, 80.5 mmol), Boc-Leucine hydrate (20.10 g, 80.6 mmol), and EDC (15.45 g, 80.7 mmol). The reaction was stirred overnight whereupon it was concentrated to remove most of the DMF, then diluted with EtOAc (300 mL), and washed with brine (150 mL). The aqueous layer was washed with fresh EtOAc (100 mL), the combined organic layers were washed with 1N HCl, H₂O, 10% Na₂CO₃, H₂O, and brine, then dried (MgSO₄), filtered, and concentrated to give 24.64 g of the title compound: ¹H-NMR (400 MHz, CDCl₃): d (ppm) 6.55 (br m, 1H); 4.88 (m, 1H); 4.76 (s, 2H); 4.48 (m, 1H); 4.03 (m, 1H); 3.75 (m, 1H); 3.58 (m, 2H); 3.33 (m, 1H); 2.19 (m, 1H); 1.88 (m, 1H); 1.64 (m, 2H); 1.49 (m, 1H); 1.44 (s, 9H); 0.93 (m, 6H).

25

30

c) 1-(2,2,2-trichloroethyl)carbonyl-(3S)-[{N^α-L-leucinyl]amino}-pyrrolidine hydrochloride
 The compound of Example 103 (b) (24.5 g) was dissolved in 4.0 N HCl in dioxane (500 mL) and stirred at room temperature for 1 h. The solution was concentrated to a white solid and dried under high vacuum to give the title compound: MS (ES+) (MH+) 375.

5

10

15

20

25

30

d) 1-(2,2,2-trichloroethyl)carbonyl-(3S)-[[N α -(2-naphthylcarbonyl)-L-leucinyl]amino]-pyrrolidine

To a stirred solution of the compound of Example 103(c) (10.28 g, 25.0 mmol) in DMF (75 mL) was added N-methylmorpholine (4.2 mL, 38.2 mmol), HOBt (5.07 g, 37.5 mmol), 2-naphthoic acid (6.46 g, 37.5 mmol), and EDC (7.18 g, 37.5 mmol). The reaction was stirred overnight whereupon it was concentrated to remove most of the DMF, then partitioned between EtOAc (300 mL), 1N HCl (150 mL), and brine (150 mL). The aqueous layer was washed with fresh EtOAc (150 mL), the combined organic layers were washed with 1N HCl, H₂O, 10% Na₂CO₃, H₂O, and brine, then dried (MgSO₄), filtered, and concentrated. Column chromatography (silica gel, 1:2 EtOAc: hexane to 1:1 EtOAc: hexane) gave 9.74 g of the title compound: MS (ES+) (MH+) 528.1.

e) (3S)- $[N^{\alpha}-(2-naphthylcarbonyl)-L-leucinyl]$ amino]-pyrrolidine

To a stirred solution of the compound of Example 103(d) (9.65 g) in THF (75 mL) was added a solution of 1N NH₄OAc (pH 7-7.5, 15 mL), followed by Zn powder (9.53 g). The reaction was stirred for 5 h at room temperature whereupon fresh Zn (4 g) was added and the reaction was stirred overnight. The slurry was filtered through a pad of Celite, followed by several THF washes. The combined filtrates were concentrated to remove THF, diluted with CHCl₃ (300 mL), washed with 10% Na₂CO₃ and brine, then dried (MgSO₄), filtered, and concentrated. Column chromatography (silica gel, 10:90 MeOH: CHCl₃ to 10:90:0.25 MeOH: CHCl₃: NH₄OH) gave 5.71 g of the title compound: MS (ES+) (MH+) 354.2.

f) 1-(4-acetamido)benzyl-(3S)-[[Nα-(2-naphthylcarbonyl)-L-leucinyl]amino]-pyrrolidine

To a stirred solution of the compound of Example 103(e) (106.5 mg, 0.3 mmol) in

CH₂Cl₂ (1 mL) was added 4-acetamidobenzaldehyde (59.7 mg, 0.37 mmol). The reaction was

stirred 2 h whereupon Na(OAc)₃ (140.0 mg, 0.66 mmol) was added. After stirring overnight,

the reaction mixture was diluted with CHCl₃ (100 mL) and washed with 5% NaHCO₃ and

brine, then dried (MgSO₄), filtered, and concentrated. Column chromatography (silica gel, 5:95

MeOH: EtOAc) gave 105.1 mg of the title compound: MS (ES+) (MH+) 501.4.

Example 104

Preparation of 1-(3-cyano)benzyl-(3S)- $[N^{\alpha}$ -(2-naphthylcarbonyl)-L-leucinyl]amino]-pyrrolidine

5

Following the procedure of Example 103(f), except substituting 3-cyanobenzaldehyde, the title compound was prepared: MS (ES+) (MH+) 469.2.

Example 105

10

Preparation of 1-(3-fluoro)benzyl-(3S)- $[N^{\alpha}$ -(2-naphthylcarbonyl)-L-leucinyl]amino]-pyrrolidine

Following the procedure of Example 103(f), except substituting 3-fluorobenzaldehyde, the title compound was prepared: MS (ES+) (MH+) 462.3.

Example 106

Preparation of 1-(3-phenoxy)benzyl-(3S)-[[Nα-(2-naphthylcarbonyl)-L-leucinyl]amino]pyrrolidine

Following the procedure of Example 103(f), except substituting 3-phenoxybenzaldehyde, the title compound was prepared: MS (ES+) (MH+) 536.3.

25

20 -

Example 107

Preparation of 1-(4-chloro)benzyl-(3S)-[[N α -(2-naphthylcarbonyl)-L-leucinyl]aminol-pyrrolidine

Following the procedure of Example 103(f), except substituting 4-chlorobenzaldehyde, the title compound was prepared: MS (ES+) (MH+) 478.3.

Example 108

Preparation of 1-(4-trifluoromethyl)benzyl-(3S)- $[N^{\alpha}-(2-naphthylcarbonyl)-L$ -leucinyl|amino]-pyrrolidine

5

Following the procedure of Example 103(f), except substituting 4-(trifluoromethyl)benzaldehyde, the title compound was prepared: MS (ES+) (MH+) 512.3.

Example 109

10

<u>Preparation of 1-(3-trifluoromethyl)benzyl-(3S)-[[N $^{\alpha}$ -(2-naphthylcarbonyl)-L-leucinyl]amino]-pyrrolidine</u>

Following the procedure of Example 103(f), except substituting 3-(trifluoromethyl)benzaldehyde, the title compound was prepared: MS (ES+) (MH+) 512.2.

Example 110

Preparation of 1-(4-(3-(N,N-dimethylamino)propoxy)benzyl-(3S)- $[N^{\alpha}-(2-naphthylcarbonyl)-L-leucinyl]$ amino]-pyrrolidine

Following the procedure of Example 103(f), except substituting 4-(3-dimethylaminopropoxy)benzaldehyde, the title compound was prepared: MS (ES+) (MH+) 545.2.

25

20

Example 111

<u>Preparation of 1-(4-(isopropyl)benzyl-(3S)-[[N α -(2-naphthylcarbonyl)-L-leucinyl]amino]-pyrrolidine</u>

30

Following the procedure of Example 103(f), except substituting 4-isopropylbenzaldehyde, the title compound was prepared: MS (ES+) (MH+) 486.4.

Example 112

<u>Preparation of 1-(2-benzofuranyl)methyl-(3S)-[[N $^{\alpha}$ -(2-naphthylcarbonyl)-L-leucinyl]amino]-pyrrolidine</u>

5

Following the procedure of Example 103(f), except substituting benzofuran-2-carboxaldehyde, the title compound was prepared: MS (ES+) (MH+) 484.2.

Example 113

10

Preparation of 1-(2-(3-methylbenzo[b]thiophenyl)methyl-(3S)- $[N^{\alpha}$ -(2-naphthylcarbonyl)-L-leucinyllaminol-pyrrolidine

Following the procedure of Example 103(f), except substituting 3methylbenzo[b]thiophene-2-carboxaldehyde, the title compound was prepared: MS (ES+) (MH+) 514.2.

Example 114

20 Preparation of 1-(2-furanyl)methyl-(3S)- $[N^{\alpha}$ -(2-naphthylcarbonyl)-L-leucinyl]amino]-pyrrolidine

Following the procedure of Example 103(f), except substituting furan-2-carboxaldehyde, the title compound was prepared: MS (ES+) (MH+) 434.1.

25

Example 115

Preparation of 1-(3-furanyl)methyl-(3S)-[[N^{α} -(2-naphthylcarbonyl)-L-leucinyl]amino]-pyrrolidine

30

Following the procedure of Example 103(f), except substituting furan-3-carboxaldehyde, the title compound was prepared: MS (ES+) (MH+) 434.3.

Example 116

<u>Preparation of SB 1-(2-thiophenyl)methyl-(3S)-[[N α -(2-naphthylcarbonyl)-L-leucinyl]amino}-pyrrolidine</u>

5

Following the procedure of Example 103(f), except substituting thiophene-3-carboxaldehyde, the title compound was prepared: MS (ES+) (MH+) 450.3.

Example 117

10

Preparation of 1-(2-nitro)benzyl-(3S)-[[Nα-(2-naphthylcarbonyl)-L-leucinyl]amino]-pyrrolidine

Following the procedure of Example 103(f), except substituting 2-nitrobenzaldehyde, the title compound was prepared: MS (ES+) (MH+) 489.3.

15

Example 118

Preparation of 1-(3-thiophenyl)methyl-(3S)- $[N^{\alpha}-(2-naphthylcarbonyl)-L-leucinyl]amino}$ 20 <u>pyrrolidine</u>

Following the procedure of Example 103(f), except substituting thiophene-2-carboxaldehyde, the title compound was prepared: MS (ES+) (MH+) 450.2.

25

Example 119

<u>Preparation of 1-(3,4-dimethoxy)benzyl-(3S)-[[N α -(2-naphthylcarbonyl)-L-leucinyl]amino]-pyrrolidine</u>

Following the procedure of Example 103(f), except substituting 3,4-dimethoxybenzaldehyde, the title compound was prepared: MS (ES+) (MH+) 504.2.

Example 120

Preparation of 1-(5-nitro-3-furanyl)methyl-(3S)- $[N^{\alpha}$ -(2-naphthylcarbonyl)-L-leucinyl]amino]-pyrrolidine

5

10

Following the procedure of Example 103(f), except substituting 5-nitrofuran-2-carboxaldehyde, the title compound was prepared: MS (ES+) (MH+) 479.1.

The above specification and Examples fully disclose how to make and use the compounds of the present invention. However, the present invention is not limited to the particular embodiments described hereinabove, but includes all modifications thereof within the scope of the following claims. The various references to journals, patents and other publications which are cited herein comprise the state of the art and are incorporated herein by reference as though fully set forth.

What is claimed is:

1. A compound according to formula (I):

5

15

20

wherein:

Y is Ar or NR¹R²;

R¹ is R", R"C(O), R"C(S), R"SO₂, R"OC(O), R"R'NC(O), or R"R'NC(S);

R² is H, C₁₋₆alkyl, C₂₋₆alkenyl, Ar-C₀₋₆alkyl, or Het-C₀₋₆alkyl;

10 R³ is H, C₂₋₆alkenyl, C₂₋₆alkynyl, Het, Ar or C₁₋₆alkyl optionally substituted by OR', SR', NR'₂, N(R')C(O)OR", CO₂R', CO₂NR'₂, N(C=NH)NH₂, Het or Ar; R⁴ is H, C₁₋₆alkyl, C₂₋₆alkenyl, Ar-C₀₋₆alkyl, or Het-C₀₋₆alkyl;

$$R^{6}$$
 R^{7} , Ar-C₀₋₆alkyl, Het-C₀₋₆alkyl, adamantyl-C(O)-,

Ar-C(O)-, or Het-C(O)-;

R⁶ is R", R"C(O), R"C(S), R"SO₂, R"OC(O), R"R'NC(O), R"R'NC(S), or R"OC(O)NR'CH(R*)C(O);

 R^7 is C_{3-6} cycloalkyl- C_{0-6} alkyl, Ar- C_{0-6} alkyl, Het- C_{0-6} alkyl, Ar- C_{0-6} alkoxy, Het- C_{0-6} alkoxy, or C_{1-6} alkyl optionally substituted by OR', SR', NR'₂, N(R')C(O)OR", CO_2 R', CO_2 NR'₂, N(C=NH)NH₂, Het or Ar;

 R^{*} is H, $C_{1\text{-}6}$ alkyl, $C_{2\text{-}6}$ alkenyl, $C_{3\text{-}6}$ cycloalkyl- $C_{0\text{-}6}$ -alkyl, Ar- $C_{0\text{-}6}$ alkyl, Het- $C_{0\text{-}6}$ alkyl;

each R'independently is H, C_{1-6} alkyl, C_{2-6} alkenyl, Ar- C_{0-6} alkyl, or Het- C_{0-6} alkyl;

each R" independently is C₁₋₆alkyl, C₃₋₆cycloalkyl-C₀₋₆-alkyl, Ar-C₀₋₆alkyl, or Het-C₀₋₆alkyl;

R"' is H, C $_{\rm 1-6}$ alkyl, C $_{\rm 3-6}$ cycloalkyl-C $_{\rm 0-6}$ alkyl, Ar-C $_{\rm 0-6}$ alkyl, or Het-C $_{\rm 0-6}$ alkyl; Z is C(O) or CH $_{\rm 2}$; and

n is 1, 2 or 3;

30 or a pharmaceutically acceptable salt thereof.

2. A compound according to formula (Ia):

wherein:

 $R^1 \text{ is } R^{"}, R^{"}C(O), R^{"}C(S), R^{"}SO_2, R^{"}OC(O), R^{"}R^{'}NC(O), \text{ or } R^{"}R^{'}NC(S);$

R² is H, C₁₋₆alkyl, C₂₋₆alkenyl, Ar-C₀₋₆alkyl, or Het-C₀₋₆alkyl;

R³ is H, C₂₋₆alkenyl, C₂₋₆alkynyl, Het, Ar or C₁₋₆alkyl optionally substituted by OR', SR', NR'₂, N(R')C(O)OR", CO₂R', CO₂NR'₂, N(C=NH)NH₂, Het or Ar;

R⁴ is H, C₁₋₆alkyl, C₂₋₆alkenyl, Ar-C₀₋₆alkyl, or Het-C₀₋₆alkyl;

10

20

25

30

5

$$R^{6}$$
 R^{6}
 R^{7}
 R^{7}
, Ar-C₀₋₆alkyl, Het-C₀₋₆alkyl, adamantyl-C(O

Ar-C(O)-, or Het-C(O)-;

R⁶ is R", R"C(O), R"C(S), R"SO₂, R"OC(O), R"R'NC(O), R"R'NC(S), or R"OC(O)NR'CH(R*)C(O);

R⁷ is C₃₋₆cycloalkyl-C₀₋₆alkyl, Ar-C₀₋₆alkyl, Het-C₀₋₆alkyl, Ar-C₀₋₆alkoxy, Het-C₀₋₆alkoxy, or C₁₋₆alkyl optionally substituted by OR', SR', NR'₂, N(R')C(O)OR", CO₂R', CO₂NR'₂, N(C=NH)NH₂, Het or Ar;

 $\rm R^*$ is H, C $_{1-6}$ alkyl, C $_{2-6}$ alkenyl, C $_{3-6}$ cycloalkyl-C $_{0-6}$ -alkyl, Ar-C $_{0-6}$ alkyl, Het-C $_{0-6}$ alkyl;

each R' independently is H, C_{1-6} alkyl, C_{2-6} alkenyl, Ar- C_{0-6} alkyl, or Het- C_{0-6} alkyl;

each R" independently is C_{1-6} alkyl, C_{3-6} cycloalkyl- C_{0-6} -alkyl, Ar- C_{0-6} alkyl, or Het- C_{0-6} alkyl;

R"' is H, C_{1-6} alkyl, C_{3-6} cycloalkyl- C_{0-6} alkyl, Ar- C_{0-6} alkyl, or Het- C_{0-6} alkyl;

Z is C(O) or CH2; and

n is 1, 2 or 3;

or a pharmaceutically acceptable salt thereof.

- 3. A compound according to claim 1 wherein \mathbb{R}^4 and $\mathbb{R}^{"}$ are each H.
- 4. A compound according to claim 1 wherein R³ is C₁₋₆alkyl.

- 5. A compound according to claim 4 wherein R³ is i-butyl.
- A compound according to claim 1 wherein Y is NR¹R², in which R² is
 H and R¹ is R"C(O) or R"OC(O), and R" in said R¹ group is C₁₋₆alkyl, Ar-C₀₋₆alkyl or Het-C₀₋₆alkyl.
 - 7. A compound according to claim 6 wherein R in said R^1 group is tert-butyl,

10

- 15
- 8. A compound according to claim 1 wherein n is 1 or 2.
- 9. A compound according to claim 8 wherein n is 1.
- 10. A compound according to claim 1 wherein R⁵ is benzyl or

20

$$R^6 \xrightarrow{R'} Z$$
, in which R' is H, R⁷ is C_{1-6} alkyl, R⁶ is R"OC(O) and Z is CH₂.

11. A compound according to claim 10 wherein, in said R^5 group, R^7 is ibutyl and $R^{\prime\prime}$ is benzyl.

25

12. A compound according to claim 2 of the formula (Ib):

5

15

$$R^{5}$$

(Ib).

13. A compound according to claim 2 of the formula (Ic):

$$R^{5}$$
 N O H (Ic) .

14. A compound according to claim 1 which is:

 $3-[[N^{\alpha}-(2-quinolinecarbonyl)-L-leucinyl]amino]-1-[(2S)-4-methyl-2-[[(benzyloxycarbonyl)amino]pentyl]-pyrrolidine;$

10 1-benzyl-3-[[Nα-(2-quinolinecarbonyl)-L-leucinyl]amino]- pyrrolidine;

 $3-[[N^{\alpha}-(2-naphthylcarbonyl)-L-leucinyl]amino]-1-[(2S)-4-methyl-2-[(benzyloxycarbonyl)amino]pentyl]-pyrrolidine;$

1-benzyl-3-[{Nα-(2-naphthylcarbonyl)-L-leucinyl]amino]-pyrrolidine;

1-benzyl-(3S)-[[Nα-(benzyloxycarbonyl)-L-leucinyl]amino]-pyrrolidine;

1-benzyl-(3S)-[[Nα-(tert-butoxycarbonyl)-L-leucinyl]amino]-pyrrolidine;

(3S)- $[[N^{\alpha}-(2-naphthylcarbonyl)-L-leucinyl]amino]-1-[(2S)-4-methyl-2-$ [[(benzyloxycarbonyl)amino]pentyl]-pyrrolidine;

(3R)-[[N $^{\alpha}$ -(2-naphthylcarbonyl)-L-leucinyl]amino]-1-[(2S)-4-methyl-2-[[(benzyloxycarbonyl)amino]pentyl]-pyrrolidine;

20 1-benzyl-(3R)-[[$N\alpha$ -(2-naphthyl)acetyl-L-leucinyl]amino]-pyrrolidine;

1-benzyl-(3R)- $[N^{\alpha}$ -(2-naphthylcarbonyl)-L-leucinyl]amino]-pyrrolidine;

1-benzyl-(3R)- $[N^{\alpha}$ -(3-quinolinecarbonyl)-L-leucinyl]amino]-pyrrolidine;

1-benzyl-(3R)-[[N^{α} -(2-quinolinecarbonyl)-L-leucinyl]amino]-pyrrolidine;

1-benzyl-(3R)-[[N^{α} -(3-isoquinolinecarbonyl)-L-leucinyl]amino]-pyrrolidine;

25 1-benzyl-(3S)-[[$N\alpha$ -(2-naphthyl)acetyl-L-leucinyl]amino]-pyrrolidine;

1-benzyl-(3S)- $[N^{\alpha}-(2-naphthylcarbonyl)-L-leucinyl]$ amino]-pyrrolidine;

1-benzyl-(3S)-[[N^{α} -(3-quinolinecarbonyl)-L-leucinyl]amino]-pyrrolidine;

```
1-benzyl-(3S)-[[Nα-(2-quinolinecarbonyl)-L-leucinyl]amino]-pyrrolidine;
                                                                       1-benzyl-(3S)-[[N^{\alpha}-(3-isoquinolinecarbonyl)-L-leucinyl]amino]-pyrrolidine;
                                                                       1-benzyl-4-[[N^{\alpha}-(2-naphthylcarbonyl)-L-leucinyl]amino]-piperidine;
                                                                       1-benzyl-4-[[Nα-(2-quinolinecarbonyl)-L-leucinyl]amino]-piperidine;
          5
                                                                       1-benzyl-4-[N^{\alpha}-(benzyloxycarbonyl)-L-leucinyl]amino]-piperidine;
                                                                       pyrrolidine;
                                                                       1-[3-(2-pyridyl)phenyl]-2-ethyl-(3S)-[[N^{\alpha}-(2-quinolinecarbonyl)-L-leucinyl]amino]-
                                        pyrrolidine;
     10
                                                                       1-[3-(2-pyridyl)phenyl]-2-ethyl-(3S)-[[N^{\alpha}-(3-isoquinolinecarbonyl)-L-leucinyl]amino]-
                                        pyrrolidine;
                                                                       1-[3-(2-pyridyl)phenyl]-2-ethyl-(3R)-[[N^{\alpha}-(2-naphthylcarbonyl)-L-leucinyl]amino]-
                                        pyrrolidine;
                                                                     1-[3-(2-pyridyl)phenyl]-2-ethyl-(3R)-[[N^{\alpha}-(3-isoquinolinecarbonyl)-L-leucinyl]amino]-
   15
                                        pyrrolidine;
                                                                     1-[3-(2-pyridyl)phenyl]-2-ethyl-(3R)-[[N^{\alpha}-(2-quinolinecarbonyl)-L-leucinyl]amino]-
                                        pyrrolidine;
                                                                     1-(1-adamantanecarbonyl)-(3R)-[[N^{\alpha}-(4-pyridylmethoxycarbonyl)-L-leucinyl]amino]-
                                       pyrrolidine;
  20
                                                                    1-(1-adamantanecarbonyl)-(3S)-[[Nα-(4-pyridylmethoxycarbonyl)-L-leucinyl]amino]-
                                      pyrrolidine;
                                                                   (3R)-[N^{\alpha}-(benzo[b]thiophene-2-carbonyl)-L-leucinyl]amino]-1-[(2S)-4-methyl-2-
                                      [[(benzyloxycarbonyl)amino]pentyl]-pyrrolidine;
                                                                    (3R)-[[N^{\alpha}-(3,4-dimethoxybenzoyl)-L-leucinyl]amino]-1-[(2S)-4-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-
 25
                                      [[(benzyloxycarbonyl)amino]pentyl]-pyrrolidine;
                                                                   (3R)-[[N^{\alpha}-(benzofuran-2-carbonyl)-L-leucinyl]amino]-1-[(2S)-4-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2
                                      [[(benzyloxycarbonyl)amino]pentyl]-pyrrolidine;
                                                                    (3R)-[[Nα-(benzothiazole-6-carbonyl)-L-leucinyl]amino]-1-[(2S)-4-methyl-2-
                                      [[(benzyloxycarbonyl)amino]pentyl]-pyrrolidine;
 30
                                                                   (3R)-[[N^{\alpha}-(indole-2-carbonyl)-L-leucinyl]amino]-1-[(2S)-4-methyl-2-indole-2-carbonyl)-L-leucinyl]amino]-1-[(2S)-4-methyl-2-indole-2-carbonyl)-L-leucinyl]amino]-1-[(2S)-4-methyl-2-indole-2-carbonyl)-L-leucinyl]amino]-1-[(2S)-4-methyl-2-indole-2-carbonyl)-L-leucinyl]amino]-1-[(2S)-4-methyl-2-indole-2-carbonyl)-L-leucinyl]amino]-1-[(2S)-4-methyl-2-indole-2-carbonyl)-L-leucinyl]amino]-1-[(2S)-4-methyl-2-indole-2-carbonyl)-L-leucinyl]amino]-1-[(2S)-4-methyl-2-indole-2-carbonyl)-L-leucinyl]amino]-1-[(2S)-4-methyl-2-indole-2-carbonyl)-L-leucinyl]amino]-1-[(2S)-4-methyl-2-indole-2-carbonyl)-L-leucinyl]amino]-1-[(2S)-4-methyl-2-indole-2-carbonyl)-L-leucinyl]amino]-1-[(2S)-4-methyl-2-indole-2-carbonyl)-L-leucinyl]amino]-1-[(2S)-4-methyl-2-indole-2-carbonyl)-L-leucinyl]amino]-1-[(2S)-4-methyl-2-indole-2-carbonyl)-L-leucinyl]amino]-1-[(2S)-4-methyl-2-carbonyl)-L-leucinyl]amino]-1-[(2S)-4-methyl-2-carbonyl)-L-leucinyl]amino]-1-[(2S)-4-methyl-2-carbonyl)-L-leucinyl]amino]-1-[(2S)-4-methyl-2-carbonyl)-L-leucinyl]amino]-1-[(2S)-4-methyl-2-carbonyl)-L-leucinyl]amino]-1-[(2S)-4-methyl-2-carbonyl)-[(2S)-4-methyl-2-carbonyl)-[(2S)-4-methyl-2-carbonyl)-[(2S)-4-methyl-2-carbonyl)-[(2S)-4-methyl-2-carbonyl)-[(2S)-4-methyl-2-carbonyl)-[(2S)-4-methyl-2-carbonyl)-[(2S)-4-methyl-2-carbonyl)-[(2S)-4-methyl-2-carbonyl)-[(2S)-4-methyl-2-carbonyl)-[(2S)-4-methyl-2-carbonyl)-[(2S)-4-methyl-2-carbonyl)-[(2S)-4-methyl-2-carbonyl)-[(2S)-4-methyl-2-carbonyl)-[(2S)-4-methyl-2-carbonyl)-[(2S)-4-methyl-2-carbonyl)-[(2S)-4-methyl-2-carbonyl)-[(2S)-4-methyl-2-carbonyl)-[(2S)-4-methyl-2-carbonyl)-[(2S)-4-methyl-2-carbonyl)-[(2S)-4-methyl-2-carbonyl)-[(2S)-4-methyl-2-carbonyl)-[(2S)-4-methyl-2-carbonyl)-[(2S)-4-methyl-2-carbonyl)-[(2S)-4-methyl-2-carbonyl)-[(2S)-4-methyl-2-carbonyl)-[(2S)-4-methyl-2-carbonyl)-[(2S)-4-methyl-2-carbonyl)-[(2S)-4-methyl-2-carbonyl)-[(2S)-4-methyl-2-carbonyl)-[(2S)-4-methyl-2-carbonyl)-[(2S)-4-methyl-2-carbonyl)-[(2S)-4-methyl-2-carbonyl)-[(2S)-4-methyl-2-carbonyl)-[(2S)-4-methyl-2-carbonyl)-[(2S)-4-methyl-2-carbonyl)-
                                     [[(benzyloxycarbonyl)amino]pentyl]-pyrrolidine;
                                                                  (3R)-[[N^{\alpha}-(4-fluor obenzoy l)-L-leuciny l] amino]-1-[(2S)-4-methy l-2-methy l-2-m
                                     [[(benzyloxycarbonyl)amino]pentyl]-pyrrolidine;
                                                                   (3R)-[[Nα-(4-methoxybenzoyl)-L-leucinyl]amino]-1-[(2S)-4-methyl-2-
35
                                     [[(benzyloxycarbonyl)amino]pentyl]-pyrrolidine;
                                                                 (3R)-[[N^{\alpha}-(3,4-dichlorobenzoyl)-L-leucinyl]amino]-1-[(2S)-4-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-m
```

[[(benzyloxycarbonyl)amino]pentyl]-pyrrolidine:

```
(3R)-[[Nα-(thiophene-2-carbonyl)-L-leucinyl]amino]-1-[(2S)-4-methyl-2-
                [[(benzyloxycarbonyl)amino]pentyl]-pyrrolidine;
                               (3R)-[N^{\alpha}-(4-biphenylcarbonyl)-L-leucinyl]amino]-1-[(2S)-4-methyl-2-
                [[(benzyloxycarbonyl)amino]pentyl]-pyrrolidine;
                               (3R)-[[N^{\alpha}-(5-methoxybenzofuran-2-carbonyl)-L-leucinyl]amino]-1-[(2S)-4-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2
  5
                 [[(benzyloxycarbonyl)amino]pentyl]-pyrrolidinc;
                               (3R)-[[Nα-(5-chlorobenzofuran-2-carbonyl)-L-leucinyl]amino]-1-[(2S)-4-methyl-2-
                 [[(benzyloxycarbonyl)amino]pentyl]-pyrrolidine;
                               (3R)-[N^{\alpha}-(7-methoxybenzofuran-2-carbonyl)-L-leucinyl]amino}-1-[(2S)-4-methyl-2-
                 [[(benzyloxycarbonyl)amino]pentyl]-pyrrolidine;
10
                               (3R)-[[Nα-(3-chlorobenzo[b]thiophene-2-carbonyl)-L-leucinyl]amino]-1-[(2S)-4-methyl-
                 2-[[(benzyloxycarbonyl)amino]pentyl]-pyrrolidine;
                               (3R)-[[N\alpha-(3-(2-pyridyl)benzoyl)-L-leucinyl]amino]-1-[(2S)-4-methyl-2-
                 [[(benzyloxycarbonyl)amino]pentyl]-pyrrolidine;
15
                               (3S)-[N^{\alpha}-(benzo[b]thiophene-2-carbonyl)-L-leucinyl]amino]-1-[(2S)-4-methyl-2-
                  [[(benzyloxycarbonyl)amino]pentyl]-pyrrolidine;
                                (3S)-[[N^{\alpha}-(3,4-dimethoxybenzoyl)-L-leucinyl]amino]-1-[(2S)-4-methyl-2-
                 [[(benzyloxycarbonyl)amino]pentyl]-pyrrolidine;
                                (3S)-[N^{\alpha}-(benzofuran-2-carbonyl)-L-leucinyl]amino]-1-[(2S)-4-methyl-2-
                  [[(benzyloxycarbonyl)amino]pentyl]- pyrrolidine;
20
                                (3S)-[[N^{\alpha}-(benzothiazole-6-carbonyl)-L-leucinyl]amino]-1-[(2S)-4-methyl-2-
                  [[(benzyloxycarbonyl)amino]pentyl]-pyrrolidine;
                                (3S)-[N^{\alpha}-(indole-2-carbonyl)-L-leucinyl]amino]-1-[(2S)-4-methyl-2-
                  [[(benzyloxycarbonyl)amino]pentyl]-pyrrolidine;
                                (3S)-[[N^{\alpha}-(4-fluorobenzoyl)-L-leucinyl]amino]-1-[(2S)-4-methyl-2-
25
                   [[(benzyloxycarbonyl)amino]pentyl]-pyrrolidine;
                                (3S)-[[N^{\alpha}-(4-methoxybenzoyl)-L-leucinyl]amino]-1-[(2S)-4-methyl-2-
                   [[(benzyloxycarbonyl)amino]pentyl]-pyrrolidine;
                                 (3S)-[N^{\alpha}-(3,4-dichlorobenzoyl)-L-leucinyl]amino]-1-[(2S)-4-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-
                  [[(benzyloxycarbonyl)amino]pentyl]-pyrrolidine;
30
                                 (3S)-[N^{\alpha}-(thiophene-2-carbonyl)-L-leucinyl]amino]-1-[(2S)-4-methyl-2-
                   [[(benzyloxycarbonyl)amino]pentyl]-pyrrolidine;
                                 (3S)-[N^{\alpha}-(4-biphenylcarbonyl)-L-leucinyl]amino]-1-[(2S)-4-methyl-2-
                   [[(benzyloxycarbonyl)amino]pentyl]-pyrrolidine;
 35
                                 (3S)-[N^{\alpha}-(5-methoxybenzofuran-2-carbonyl)-L-leucinyl]amino]-1-[(2S)-4-methyl-2-
                   [[(benzyloxycarbonyl)amino]pentyl]-pyrrolidine;
```

```
(3S)-[N^{\alpha}-(5-chlorobenzofuran-2-carbonyl)-L-leucinyl]amino]-1-[(2S)-4-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-m
                                  [[(benzyloxycarbonyl)amino]pentyl]-pyrrolidine;
                                                            (3S)-[N^{\alpha}-(7-methoxybenzofuran-2-carbonyl)-L-leucinyl]amino]-1-[(2S)-4-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-
                                  [[(benzyloxycarbonyl)amino]pentyl]-pyrrolidine;
         5
                                                            (3S)-[N^{\alpha}-(3-chlorobenzo[b]thiophene-2-carbonyl)-L-leucinyl]amino]-1-[(2S)-4-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-met
                                  [[(benzyloxycarbonyl)aminolpentyl]-pyrrolidine:
                                                            (3S)-[N^{\alpha}-(3-(2-pyridyl)benzoyl)-L-leucinyl]amino]-1-[(2S)-4-methyl-2-
                                  [[(benzyloxycarbonyl)amino]pentyl]-pyrrolidine;
                                                            1-(4-phenyl)benzyl-(3S)-[N^{\alpha}-(tert-butoxycarbonyl)-L-leucinyl]amino]-pyrrolidine;
   10
                                                            1-(4-phenyl)benzyl-(3S)-[N^{\alpha}-(2-naphthylcarbonyl)-L-leucinyl]amino}-pyrrolidine;
                                                            1-(4-phenyl)benzyl-(3S)-[N^{\alpha}-(2-quinolinecarbonyl)-L-leucinyl]amino]-pyrrolidine:
                                                            1-(4-phenyl) benzyl-(3S)-[[N^{\alpha}-(3,4-dimethoxybenzoyl)-L-leucinyl] amino]-pyrrolidine:
                                                            1-(4-phenyl) benzyl-(3S)-[N^{\alpha}-(benzofuran-2-carbonyl)-L-leucinyl] amino]-pyrrolidine;
                                                            1-(4-phenyl)benzyl-(3S)-[[N^{\alpha}-(benzo[b]thiophene-2-carbonyl)-L-leucinyl]amino]-(4-phenyl)benzyl-(3S)-[[N^{\alpha}-(benzo[b]thiophene-2-carbonyl)-L-leucinyl]amino]-(4-phenyl)benzyl-(3S)-[[N^{\alpha}-(benzo[b]thiophene-2-carbonyl)-L-leucinyl]amino]-(4-phenyl)benzyl-(3S)-[[N^{\alpha}-(benzo[b]thiophene-2-carbonyl)-L-leucinyl]amino]-(4-phenyl)benzyl-(3S)-[[N^{\alpha}-(benzo[b]thiophene-2-carbonyl)-L-leucinyl]amino]-(4-phenyl)benzyl-(3S)-[[N^{\alpha}-(benzo[b]thiophene-2-carbonyl)-L-leucinyl]amino]-(4-phenyl)benzyl-(3S)-[[N^{\alpha}-(benzo[b]thiophene-2-carbonyl)-L-leucinyl]amino]-(4-phenyl)benzyl-(3S)-[[N^{\alpha}-(benzo[b]thiophene-2-carbonyl)-L-leucinyl]amino]-(4-phenyl)benzyl-(4-phenyl)benzyl-(4-phenyl)benzyl-(4-phenyl)benzyl-(4-phenyl)benzyl-(4-phenyl)benzyl-(4-phenyl)benzyl-(4-phenyl)benzyl-(4-phenyl)benzyl-(4-phenyl)benzyl-(4-phenyl)benzyl-(4-phenyl)benzyl-(4-phenyl)benzyl-(4-phenyl)benzyl-(4-phenyl)benzyl-(4-phenyl)benzyl-(4-phenyl)benzyl-(4-phenyl)benzyl-(4-phenyl)benzyl-(4-phenyl)benzyl-(4-phenyl)benzyl-(4-phenyl)benzyl-(4-phenyl)benzyl-(4-phenyl)benzyl-(4-phenyl)benzyl-(4-phenyl)benzyl-(4-phenyl)benzyl-(4-phenyl)benzyl-(4-phenyl)benzyl-(4-phenyl)benzyl-(4-phenyl)benzyl-(4-phenyl)benzyl-(4-phenyl)benzyl-(4-phenyl)benzyl-(4-phenyl)benzyl-(4-phenyl)benzyl-(4-phenyl)benzyl-(4-phenyl)benzyl-(4-phenyl)benzyl-(4-phenyl)benzyl-(4-phenyl)benzyl-(4-phenyl)benzyl-(4-phenyl)benzyl-(4-phenyl)benzyl-(4-phenyl)benzyl-(4-phenyl)benzyl-(4-phenyl)benzyl-(4-phenyl)benzyl-(4-phenyl)benzyl-(4-phenyl)benzyl-(4-phenyl)benzyl-(4-phenyl)benzyl-(4-phenyl)benzyl-(4-phenyl)benzyl-(4-phenyl)benzyl-(4-phenyl)benzyl-(4-phenyl)benzyl-(4-phenyl)benzyl-(4-phenyl)benzyl-(4-phenyl)benzyl-(4-phenyl)benzyl-(4-phenyl)benzyl-(4-phenyl)benzyl-(4-phenyl)benzyl-(4-phenyl)benzyl-(4-phenyl)benzyl-(4-phenyl)benzyl-(4-phenyl)benzyl-(4-phenyl)benzyl-(4-phenyl)benzyl-(4-phenyl)benzyl-(4-phenyl)benzyl-(4-phenyl)benzyl-(4-phenyl)benzyl-(4-phenyl)benzyl-(4-phenyl)benzyl-(4-phenyl)benzyl-(4-phenyl)benzyl-(4-phenyl)benzyl-(4-phenyl)benzyl-(4-phenyl)benzyl-(4-phenyl)benzyl-(4-phenyl)benzyl
   15
                                  pyrrolidine;
                                                            1-(4-phenyl)benzyl-(3S)-[[N^{\alpha}-(benzyloxycarbonyl)-L-leucinyl]amino]-pyrrolidine;
                                                            1-(2-phenyl)ethyl-(3S)-[[N^{\alpha}-(tert-butoxycarbonyl)-L-leucinyl]amino]-pyrrolidine;
                                                            1-(2-phenyl) ethyl-(3S)-[[N^{\alpha}-(2-naphthylcarbonyl)-L-leucinyl] amino]-pyrrolidine;
                                                            1-(2-phenyl)ethyl-(3S)-[[N^{\alpha}-(2-quinolinecarbonyl)-L-leucinyl]amino]-pyrrolidine;
 20
                                                            1-(2-phenyl)ethyl-(3S)-[[N^{\alpha}-(benzo[b]thiophene-2-carbonyl)-L-leucinyl]amino]-
                                  pyrrolidine:
                                                           1-(2-phenyl)ethyl-(3S)-[N^{\alpha}-(benzofuran -2-carbonyl)-L-leucinyl]amino]-pyrrolidine;
                                                            1-(2-phenyl) ethyl-(3S)-[[N^{\alpha}-(3-chlorobenzo[b]thiophene-2-carbonyl)-L-leucinyl] amino]-(2-phenyl) ethyl-(3S)-[[N^{\alpha}-(3-chlorobenzo[b]thiophene-2-carbonyl)-L-leucinyl] amino]-(2-phenyl) ethyl-(3S)-[[N^{\alpha}-(3-chlorobenzo[b]thiophene-2-carbonyl)-L-leucinyl] amino]-(3-phenyl) ethyl-(3S)-[[N^{\alpha}-(3-chlorobenzo[b]thiophene-2-carbonyl)-L-leucinyl] amino]-(3-phenyl) ethyl-(3S)-[[N^{\alpha}-(3-chlorobenzo[b]thiophene-2-carbonyl)-L-leucinyl] amino]-(3-phenyl) ethyl-(3S)-[[N^{\alpha}-(3-chlorobenzo[b]thiophene-2-carbonyl)-L-leucinyl] amino]-(3-phenyl) ethyl-(3S)-[[N^{\alpha}-(3-chlorobenzo[b]thiophene-2-carbonyl)-L-leucinyl] ethyl-(3S)-[[N^{\alpha}-(3-chlorobenzo[b]thiophene-2-carbonyl] ethyl-(3S)-[[N^{\alpha}-(3-chlorobenzo[b]thiop
                                  pyrrolidine;
 25
                                                           1-(4-phenoxy)benzyl-(3S)-[[Nα-(tert-butoxycarbonyl)-L-leucinyl]amino]-pyrrolidine;
                                                           1-(4-phenoxy)benzyl-(3S)-[[N\alpha-(2-naphthylcarbonyl)-L-leucinyl]amino]-pyrrolidine;
                                                           1-(4-phenoxy)benzyl-(3S)-[[N^{\alpha}-(2-quinolinecarbonyl)-L-leucinyl]amino]-pyrrolidine;
                                                           1-(4-phenoxy)benzyl-(3S)-[N^{\alpha}-(3,4-dimethoxybenzoyl)-L-leucinyl]amino]-pyrrolidine:
                                                           1-(4-phenoxy)benzyl-(3S)-[[N^{\alpha}-(benzofuran -2-carbonyl)-L-leucinyl]amino]-pyrrolidine
 30
                                                           1-(4-phenoxy) benzyl-(3S)-[[N^{\alpha}-(benzo[b]thiophene-2-carbonyl)-L-leucinyl] amino]-
                                 pyrrolidine;
                                                           1-(4-fluoro)benzyl-(3S)-[[N^{\alpha}-(tert-butoxycarbonyl)-L-leucinyl]amino]-pyrrolidine;
                                                           1-(4-fluoro)benzyl-(3S)-[N\alpha-(2-naphthylcarbonyl)-L-leucinyl]amino]-pyrrolidine;
                                                           1-(4-fluoro)benzyl-(3S)-[[N^{\alpha}-(benzo[b]thiophene-2-carbonyl)-L-leucinyl]amino]-
35
                                 pyrrolidine;
                                                           1-(4-cyano)benzyl-(3S)-[[Nα-(tert-butoxycarbonyl)-L-leucinyl]amino]-pyrrolidine;
                                                           1-(4-cyano)benzyl-(3S)-[[Nα-(2-naphthylcarbonyl)-L-leucinyl]amino]-pyrrolidine;
```

```
1-benzyl-(3S)-[[N^{\alpha}-(benzo[b]thiophene-2-carbonyl)-L-leucinyl]amino]-pyrrolidine;
           1-benzyl-(3S)-[N^{\alpha}-(3,4-dimethoxybenzoyl)-L-leucinyl]amino]-pyrrolidine;
           1-benzyl-(3S)-[N^{\alpha}-(3-(2-dimethylaminoethoxy)-4-methoxybenzoyl)-L-leucinyl]amino]-
      pyrrolidine;
           1-(4-nitro)benzyl-(3S)-[N^{\alpha}-(2-naphthylcarbonyl)-L-leucinyl]amino]-pyrrolidine;
5
           1-(4-(N.N-dimethylamino)benzyl-(3S)-[[N^{\alpha}-(2-naphthylcarbonyl)-L-leucinyl]amino]-
           pyrrolidine;
            1-(4-methoxy) benzyl-(3S)-[[N^{\alpha}-(2-naphthylcarbonyl)-L-leucinyl] amino]-pyrrolidine;
            1-(4-pyridyl) methyl-(3S)-[N^{\alpha}-(2-naphthylcarbonyl)-L-leucinyl] amino]-pyrrolidine;
            1-(4-carboxymethyl)benzyl-(3S)-[[N\alpha-(2-naphthylcarbonyl)-L-leucinyl]amino]-
10
      pyrrolidine;
            1-(3,4-methylenedioxy)benzyl-(3S)-[[N^{\alpha}-(2-naphthylcarbonyl)-L-leucinyl]amino]-
      pyrrolidine;
            1-(2-naphthyl)methyl-(3S)-[[N^{\alpha}-(2-naphthylcarbonyl)-L-leucinyl]amino]-pyrrolidine;
            1-(3-indolyl)methyl-(3S)-[[N^{\alpha}-(2-naphthylcarbonyl)-L-leucinyl]amino]-pyrrolidine;
15
            1-(2-quinolinyl) methyl-(3S)-[[N^{\alpha}-(2-naphthylcarbonyl)-L-leucinyl] amino]-pyrrolidine:
            1-(3-quinolinyl)methyl-(3S)-[N^{\alpha}-(2-naphthylcarbonyl)-L-leucinyl)amino]-pyrrolidine;
            1-(1-naphthyl)methyl-(3S)-[[N^{\alpha}-(2-naphthylcarbonyl)-L-leucinyl]amino]-pyrrolidine;
            1-(4-quinolinyl)methyl-(3S)-[N^{\alpha}-(2-naphthylcarbonyl)-L-leucinyl]amino]-pyrrolidine;
            1-(3-pyrrolyl)methyl-(3S)-[[N^{\alpha}-(2-naphthylcarbonyl)-L-leucinyl]amino]-pyrrolidine;
20
            1-(3-pyridyl)methyl-(3S)-[N^{\alpha}-(2-naphthylcarbonyl)-L-leucinyl]amino]-pyrrolidine;
            1-(2-pyridyl) methyl-(3S)-[[N^{\alpha}-(2-naphthylcarbonyl)-L-leucinyl] amino]-pyrrolidine;
            1-(3-nitro)benzyl-(3S)-[[Nα-(2-naphthylcarbonyl)-L-leucinyl]amino]-pyrrolidine;
            1-(4-acetamido) benzyl-(3S)-[[N^{\alpha}-(2-naphthylcarbonyl)-L-leucinyl] amino]-pyrrolidine;\\
            1-(3-cyano) benzyl-(3S)-[N\alpha-(2-naphthylcarbonyl)-L-leucinyl] amino]-pyrrolidine;
25
            1-(3-fluoro)benzyl-(3S)-[[N^{\alpha}-(2-naphthylcarbonyl)-L-leucinyl]amino]-pyrrolidine;
            1-(3-phenoxy)benzyl-(3S)-[[N^{\alpha}-(2-naphthylcarbonyl)-L-leucinyl]amino]-pyrrolidine;
            1-(4-chloro)benzyl-(3S)-[[Nα-(2-naphthylcarbonyl)-L-leucinyl]amino]-pyrrolidine;
            1-(4-trifluoromethyl)benzyl-(3S)-[[N^{\alpha}-(2-naphthylcarbonyl)-L-leucinyl]amino]-
30
            pyrrolidine;
            1-(3-trifluoromethyl)benzyl-(3S)-[[N^{\alpha}-(2-naphthylcarbonyl)-L-leucinyl]amino]-
            pyrrolidine;
            leucinyl]amino]-pyrrolidine;
```

 $1-(4-(isopropyl)benzyl-(3S)-[[N^{\alpha}-(2-naphthylcarbonyl)-L-leucinyl]amino]-pyrrolidine;\\$

1-(2-benzofuranyl)methyl-(3S)- $[N^{\alpha}$ -(2-naphthylcarbonyl)-L-leucinyl]amino]-pyrrolidine;

 $\label{lem:lemond} $$1-(2-(3-methylbenzo[b]thiophenyl)$ methyl-(3S)-{[N$^{\alpha}-(2-naphthylcarbonyl)-L-leucinyl]amino]-pyrrolidine;}$

- 1-(2-furanyl)methyl-(3S)- $[N^{\alpha}$ -(2-naphthylcarbonyl)-L-leucinyl]amino]-pyrrolidine;
- 1-(3-furanyl)methyl-(3S)- $[N^{\alpha}$ -(2-naphthylcarbonyl)-L-leucinyl]amino]-pyrrolidine;
- 1-(2-thiophenyl)methyl-(3S)-[$[N^{\alpha}$ -(2-naphthylcarbonyl)-L-leucinyl]amino]-pyrrolidine;
- 1-(2-nitro)benzyl-(3S)-[[N^{α} -(2-naphthylcarbonyl)-L-leucinyl]amino]-pyrrolidine;
- -(3-thiophenyl)methyl-(3S)-[[Nα-(2-naphthylcarbonyl)-L-leucinyl]amino]-pyrrolidine;
- 1-(3,4-dimethoxy)benzyl-(3S)- $[N^{\alpha}$ -(2-naphthylcarbonyl)-L-leucinyl]amino}-pyrrolidine;

or

5

- 10 1-(5-nitro-3-furanyl)methyl-(3S)-[[N α -(2-naphthylcarbonyl)-L-leucinyl]amino]-pyrrolidine;
 - a pharmaceutically acceptable salt thereof.
- 15. A pharmaceutical composition comprising a compound according to any one of claims 1-14 and a pharmaceutically acceptable carrier.
 - 16. A method of inhibiting a cysteine protease which comprises administering a compound according to claim 1.
- 20 17. A method according to claim 16 wherein the cysteine protease is cathepsin K.
 - 18. A method of inhibiting bone loss which comprises administering a compound according to claim 1.

- 19. A method of treating osteoporosis which comprises administering a compound according to claim 1.
- 20. A method of treating gingival or peridontal disease which comprises30 administering a compound according to claim 1.
 - 21. A method of treating a disease characterized by excessive cartilage or matrix degradation which comprises administering a compound according to claim 1.
- 35 22. A method according to claim 21 wherein said disease is osteoarthritis or rheumatoid arthritis.

23. A compound according to any one of claims 1 to 14 for use as a medicament.

- The use of a compound of the formula (I) as defined in claim 1 in the
 manufacture of a medicament for the treatment of diseases in which inhibition of a cysteine protease is a factor.
 - 25. The use of a compound according to claim 24 wherein the cysteine protease is cathepsin K.
 - 26. The use of a compound of the formula (I) as defined in claim 1 in the manufacture of a medicament for the inhibition of bone loss.
- The use of a compound of the formula (I) as defined in claim 1 in the manufacture of a medicament for the treatment of osteoporosis.
 - 28. The use of a compound of the formula (I) as defined in claim 1 in the manufacture of a medicament for the treatment of gingival or peridontal disease.
- 29. The use of a compound of the formula (I) as defined in claim 1 in the manufacture of a medicament for the treatment of diseases characterized by excessive cartilage or matrix degradation.
- 30. The use of a compound according to claim 29 wherein the disease
 25 characterized by excessive cartilage or matrix degradation is osteoarthritis or rheumatoid arthritis.
 - 31. A process for preparing a compound of the formula (I) as defined in claim 1, which process comprises:

reacting a compound of the formula (II):

30

5

15

20

25

(II)

or a salt thereof,

wherein $R^{"}$, R^3 , R^4 , R^5 and n are as defined in formula (I) of claim 1, with any reactive functional groups protected, with:

- (a) R"C(O)Cl, in which R" is as defined in formula (I) of claim 1; or
- (b) R "C(O)OH, in which R" is as defined in formula (I) of claim 1, in the presence of EDC and HOBT; or
- (c) R"C(O)H, in which R" is as defined in formula (I) of claim 1, followed by reduction; or
 - (d) R"OC(O)CI, in which R" is as defined in formula (I) of claim 1, in the presence of base; or
 - (e) $R"SO_2CI$, in which R" is as defined in formula (I) of claim 1, in the presence of base;

and thereafter removing any protecting groups and optionally forming a pharmaceutically acceptable salt.

32. A compound according to formula (II):

wherein:

 R^3 is H, C_{2-6} alkenyl, C_{2-6} alkynyl, Het, Ar or C_{1-6} alkyl optionally substituted by OR', SR', NR'₂, N(R')C(O)OR", CO_2 R', CO_2 NR'₂, N(C=NH)NH₂, Het or Ar; R^4 is H, C_{1-6} alkyl, C_{2-6} alkenyl, Ar- C_{0-6} alkyl, or Het- C_{0-6} alkyl;

$$R^{5}$$
 is R^{7} , Ar-C₀₋₆alkyl, Het-C₀₋₆alkyl, adamantyl-C(O)-,

Ar-C(O)-, Het-C(O)- or;

 R^6 is R", R"C(O), R"C(S), R"SO₂, R"OC(O), R"R'NC(O), R"R'NC(S), or R"OC(O)NR'CH(R*)C(O);

 $R^7 \ is \ C_{3-6} cycloalkyl-C_{0-6} alkyl, \ Ar-C_{0-6} alkyl, \ Het-C_{0-6} alkyl, \ Ar-C_{0-6} alkyl$

 $\text{R* is H, C$_{1-6}$ alkyl, C$_{2-6}$ alkenyl, C$_{3-6}$ cycloalkyl-C$_{0-6}$-alkyl, Ar-C$_{0-6}$ alkyl.}$

5 Het-C₀₋₆alkyl;

each R' independently is H, C_{1-6} alkyl, C_{2-6} alkenyl, Ar- C_{0-6} alkyl, or

Het-C₀₋₆alkyl;

each R" independently is C_{1-6} alkyl, C_{3-6} cycloalkyl- C_{0-6} -alkyl, Ar- C_{0-6} alkyl, or Het- C_{0-6} alkyl;

10 R"' is H, C_{1-6} alkyl, C_{3-6} cycloalkyl- C_{0-6} alkyl, Ar- C_{0-6} alkyl, or Het- C_{0-6} alkyl; Z is C(O) or CH₂; and n is 1, 2 or 3;

or a pharmaceutically acceptable salt thereof.

INTERNATIONAL SEARCH REPORT

International application No. PCT/US98/09192

A. CLA	ASSIFICATION OF SUBJECT MATTER			
IPC(6)	:Please See Extra Sheet.			
US CL	:Please See Extra Sheet.			
	to International Patent Classification (IPC) or to both	national classification and IPC		
	LDS SEARCHED			
Minimum c	ocumentation searched (classification system follow	ed by classification symbols)		
	Please See Extra Sheet.			
Documenta	tion searched other than minimum documentation to the	he extent that such documents are included	I in the fields searched	
NONE			•	
Electronic o	lata base consulted during the international search (n	name of data base and, where practicable	search terms used)	
	e Extra Sheet.	·		
C. DOC	UMENTS CONSIDERED TO BE RELEVANT			
Category*	Citation of document, with indication, where a		Relevant to claim No.	
Y	US 5,514,694 A (POWERS ET AI document, especially columns 2-4.	L) 07 May 1996, see entire	1-32	
Y	US 4,301,151 A (VEBER ET AL) 1 document, especially columns 1-4.	7 November 1981, see entire	1-15, 31, 32	
Y	US 4,680,283 A (VEBER ET AL document, especially column 8, lines) 14 July 1987, see entire 1-25.	1-15, 31, 32	
A	YAMASHITA, D.S. ET AL. Structure and Design of Potent and Selective Cathepsin K Inhibitors. J. Amer. Chem. Soc. November 1997, Vol. 119, No. 46, pages 11351-11352, see entire document.			
		Ì		
X Further documents are listed in the continuation of Box C. See patent family annex.				
A document defining the general state of the art which is not considered to be of particular relevance should be determined as the principle or theory underlying the invention.			ICBUOD but cited to understand	
"E" earl	ier document published on or efter the international filing date	"X" document of particular relevance; the	claimed invention cannot be	
L document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other		when the document is taken alone	red to involve an inventive step	
•	ument referring to an oral disclosure, use, exhibition or other	"Y" document of particular relevance; the considered to involve an inventue combined with one or more other such being obvious to a person skilled in the	step when the document is	
P doc	ument published prior to the international filing date but later than priority date claimed	*&* document member of the same patent		
Date of the	actual completion of the international search	Date of mailing of the international sea	rch report	
18 JUNE 1998		1 3 AUG 1998		
Name and mailing address of the ISA/US Commissioner of Patents and Trademarks Box PCT Washington, D.C. 20231		Authorized officer Authorized officer SUSAN HANLEY TOURSENSON FOR		
Facsimile No	0. (703) 305-3230	Telephone No. (703) 308-0196		
		L		

Form PCT/ISA/210 (second sheet)(July 1992)*

INTERNATIONAL SEARCH REPORT

International application No.
PCT/US98/09192

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No
Y	TSUDA, M. ET AL. Poststatin, a New Inhibitor of Prolyl Endopeptidase, VI. Endopeptidase Inhibitory Activity of Poststatin Analogues Containing Pyrrolidine Ring. J. Antibiotics. September 1996, Vol. 49, No. 9, pages 900-908, see especially page 901.	1-32
Y	TSUDA, M. ET AL. Poststatin, a New Inhibitor of Prolyl Endopeptidase, VII. N-Cycloalkylamide Analogues. J. Antibiotics. September 1996, Vol. 49, No. 9, pages 909-920, see especially pages 910-911.	1-32

Form PCT/ISA/210 (continuation of second sheet)(July 1992)*

INTERNATIONAL SEARCH REPORT

International application No. PCT/US98/09192

A. CLASSIFICATION OF SUBJECT MATTER: IPC (6):

C12N 9/99, 9/48, 9/66, 9/50; A61K 38/00, 38/06; A01N 37/18, 43/40, 43/42, 43/36; C07D 207/00, 207/04, 207/06, 211/00, 211/08, 405/00

A. CLASSIFICATION OF SUBJECT MATTER: US CL :

435/184, 212, 218, 219; 514/2, 277, 279, 316, 336, 408; 530/300, 323, 331, 332; 546/184, 191, 192; 548/400, 577, 579, 962

B. FIELDS SEARCHED
Minimum documentation searched
Classification System: U.S.

435/184, 212, 218, 219; 514/2, 277, 279, 316, 336, 408; 530/300, 323, 331, 332; 546/184, 191, 192; 548/400, 577, 579, 962

B. FIELDS SEARCHED

Electronic data bases consulted (Name of data base and where practicable terms used):

APS, STN, REGISTRY, BIOSIS, MEDLINE, SCISEARCH, EMBASE, CAPLUS, WPIDS search terms: cysteine protease, cathepsin K, bone loss, arthritis

Form PCT/ISA/210 (extra sheet)(July 1992)*