

Présentation PIM: PageRank

Groupe EF-03

Louis Thevenet

Albin Morisseau

ENSEEIHT

17 Janvier, 2024

Programme pirncipal

- Programme Principal:
 - 1. Traitement de la ligne de commande
 - 2. Appel à PageRank

PageRank

PageRank

- PageRank:
 - 1. Traite les données d'entrée
 - 2. Applique l'algorithme PageRank

Lire Graphe

• Traite les données

Matrices Pleines

- Traite les données
 - Cas Matrices Pleines
 - Crée la matrice G

Matrices creuses

- Traite les données
 - Cas Matrices Creuses
 - Crée la matrice M telle que $\forall (i,j) \in [\![1,n]\!]^2, M_{i,j} \in \{0,1\}$
 - Crée la vecteur F tel que $\forall i \in [\![1,n]\!], F_i = \sum_{k=1}^n M_{i,k}$

Vecteurs Creux

• type T_Matrice_Creuse est tableau de T_Vecteur_Creux

Vecteurs Creux: détails

```
1 type T Cellule;
2 type T Vecteur Creux is access T Cellule;
3 type T Cellule is
    record
     Indice : Integer;
   Valeur : Long Float;
     Suivant : T Vecteur Creux;
  end record;
```

PageRank Pleine

• Réalise l'algorithme PageRank sur une matrice pleine

PageRank Pleine : détails

Itération de l'algorithme : produit vectoriel de π_k (Poids) et G.

```
1 for J in 1 .. N loop
2    Resultat(J) := 0.0;
3    for I in 1..N loop
4        Resultat(J) := Resultat(J)+Poids(I)*G(I, J);
5    end loop;
6 end loop;
7 return Resultat;
```

PageRank Creuse

PageRank Creuse : détails

Dans le cas Matrices Creuse, on parcourt les lignes avec un curseur.

```
1 for J in 1. Taille loop -- pour chaque colonne
      Resultat(J) := 0.0;
      Tete := S(J);
      for I in 1. Taille loop -- parcourir la ligne
          if Tete = Null then
              Tmp := 0.0;
6
          elsif Tete. Indice = I then
              Tmp := Tete.Valeur/Facteurs(I);
9
              Tete := Tete.Suivant;
          else
10
```

PageRank Creuse : détails

```
while Tete /= Null and then Tete.Indice < I
11
   loop
12
                    Tete := Tete.Suivant;
13
                end loop;
14
                Tmp := 0.0;
15
           end if;
16
           Resultat(J) := Resultat(J) + (Alpha * Tmp+ beta)
  * Poids(I);
       end loop;
<sup>18</sup> end loop;
```

On recrée la matrice G directement dans les itérations dans la ligne 16.

Idées d'amélioration

- Données utiles : présence d'au moins un référencement et ${\cal F}$ lui-même
- Dans le cas Matrices Creuses, on peut remplacer M par \widetilde{M} :

$$\forall (i,j) \in [\![1,n]\!]^2, \widetilde{\boldsymbol{M}}_{i,j} \in \{\text{Vrai}, \text{Faux}\}$$

- Motivations
 - Long_Float : 64 bits
 - Booléen: 1 bit