Spatial Networks

- Modeling and storing spatial networks
- Shortest path search
- Spatial queries over spatial networks
- Advanced indexing techniques for spatial networks

Network Distance

- In many real applications accessibility of objects is restricted by a spatial network
 - Examples
 - Driver looking for nearest gas station
 - Mobile user looking for nearest restaurant

- Shortest path distance used instead of Euclidean distance
- SP(a,b) = path between a and b with the minimum accumulated length

Challenges

- Euclidean distance is no longer relevant
 - R-tree may not be useful, when search is based on shortest path distance
- Graph cannot be flattened to a onedimensional space
 - Special storage and indexing techniques for graphs are required
- Graph properties may vary
 - directed vs. undirected
 - length, time, etc. as edge weights

Modeling Spatial Networks

- Adjacency matrix only appropriate for dense graphs
- Spatial networks are sparse: use adjacency lists instead

		-	
σ 1	าลา	nh	
5	ւայ	ρ_{11}	

	n_1	n_2	n_3	n_4	<i>n</i> ₅	<i>n</i> ₆
n_1	0	1	8	8	8	8
n_2	2	0	1	3	4	8
n_3	8	8	0	8	8	8
n_4	8	8	8	0	2	8
n_5	8	8	8	8	0	5
n_6	8	8	8	8	8	0

n_1	(n ₂ , 1)
n_2	$(n_1, 2), (n_3, 1), (n_4, 3), (n_5, 4)$
n_4	(n ₅ , 2)
n_5	(<i>n</i> ₆ , 5)

adjacency lists

adjacency matrix

Storing Large Spatial Networks

- Problem: adjacency lists representation may not fit in memory if graph is large
- Solution:
 - partition adjacency lists to disk blocks [based on proximity]
 - create B+-tree index on top of partitions [based on node-id]

Shortest Path Computation

- Given a graph G(V,E), and two nodes s,t in V, find the shortest path from s to t
- A classic algorithmic problem
- Studied extensively since the 1950's
- Several methods
 - Dijkstra's algorithm
 - A*-search
 - Bi-directional search
 - Reach preprocessing heuristic

Dijkstra's Shortest Path Search

Idea: incrementally explore the graph around s, visiting nodes in distance order to s until t is found (like NN)

Dijkstra's Shortest Path Search

```
function Dijkstra\_SP(\text{source node } s, \text{ target node } t)
     for each graph node v
        SPD(s,v) := \infty; /* initialize shortest path distance */
2.
        path(s,v) := null; /* initialize shortest path */
3.
4.
        mark v as unvisited;
5.
     initialize a priority queue Q;
     SPD(s,s) := 0; add s to Q;
6.
7.
     while not empty(Q)
        v := top(Q); /* node v on Q with smallest SPD(s, v) */
8.
9.
        remove v from Q;
10.
        \max v as visited;
        if v = t then return path(s, t);
11.
        for each neighbor u of v
12.
           if u is not marked as visited
13.
14.
               if SPD(s, u) > SPD(s, v) + weight(v, u)
                  SPD(s, u) := SPD(s, v) + weight(v, u);
15.
                  path(s, u) := path(s, v) + (v, u);
16.
17.
                  add or update u on Q;
```

Dijkstra's Shortest Path Search

Current node	Queue

$$s(0)$$
 $d(2), a(4), c(6)$

$$c(6)$$
 $e(9), f(10), b(11)$

$$e(9)$$
 $f(10), b(11), t(14)$

$$f(10)$$
 $b(11), t(14)$

$$b(11) t(14)$$

t (14)

t is de-queued: shortest path has been found!

shortest path tree of node s

A*-search

- Dijkstra's search explores nodes around s without a specific search direction until t is found
- Idea: improve Dijkstra's algorithm by directing search towards t
- Due to triangular inequality, Euclidean distance is a lower bound of network distance
- Use Euclidean distance to lower bound network distance based on known information:
 - Nodes are visited in increasing SPD(s,v)+dist(v,t) order
 - □ SPD(s,v): shortest path distance from s to v (computed by Dijkstra)
 - \Box dist(v,t): Euclidean distance between v and t
 - Original Dijkstra visits nodes in increasing SPD(s,v) order

A*-search: Example

Current node	Queue $SPD(s,c)+dist(c,t)$
s(0)	d (2+14), a (4+15), c (6+7)
c (6)	a (4+15), d (2+14), b (11+9), f (10+6), e (9+5)
e (9)	a (4+15), d (2+14), b (11+9), f (10+6), t (14)
t (14)	

t is de-queued: shortest path has been found!

Bi-directional search

- Dijkstra's search explores nodes around s without a specific search direction until t is found
- Idea: search can be performed in concurrently from s and from t (backwards)
- The shortest path tree of s and the (backward) shortest path tree of t are computed concurrently
 - One queue Q_s for forward and one queue Q_t for backward search
 - Node visits are prioritized based on min(SPD(s,v), SPD(v,t))
 - If v already visited from s and v in Q_t , then candidate shortest path: p(s,v)+(v,u)+p(u,t) [if v already visited from t and v in Q_s symmetric] in Q_t
 - If v visited by both s and v terminate search; report best candidate shortest path

Bi-directional search: Example

c is visited from both s and t! terminate and report shortest path

candidate shortest path: $s \rightarrow d \rightarrow e \rightarrow t$ (16)

candidate shortest path: $s \rightarrow c \rightarrow e \rightarrow t (14)$

REACH: A Preprocessing Heuristic

- For every node v in the network find all pairs of nodes s, t such that SP(s,t) includes v
 - Local reach $r_{s,t}(v) = min\{SPD(s,v),SPD(v,t)\}$
 - Reach $r(v) = max\{r_{s,t}(v)\}$, for all s,t such that SP(s,t) includes v
 - r(v): in the worst case, what is the minimum of SPD(s,v), SPD(v,t) given that v is in SP(s,t)?
- Assume r(v) is precomputed for every v in the graph
- □ In bi-directional search, asssume v is visited (e.g. from s)
 - For every unvisited neighbor u of v (by FWD and BK search):
 - $\,$ SPD(s,v) ≤ SPD(s,u) and SPD(s,v) ≤ SPD(u,t)
 - □ If r(u) < SPD(s,v) then
 - r(u) < SPD(s,u) and r(u) < SPD(u,t) =>
 - u cannot be in SP(s,t)
 - u needs not be enheaped (pruned)
- Reach reduces the nodes to be added to the heap
 - However, it may require high preprocessing cost (all SPs computed)

Bi-directional w/ Reach: Example

candidate shortest path: $s \rightarrow c \rightarrow e \rightarrow t (14)$

c is visited from both s and t! terminate and report shortest path

Combination of Techniques

- A*, bi-directional search, and Reach can be combined to a powerful search technique
- A* can only be applied if lower distance bounds are available
- Reach can only be applied after pre-processing
 - expensive
 - high maintenance cost
- All versions of Dijkstra's search require nonnegative edge weights
 - Bellman-Ford is an algorithm for arbitrary edge weights (some of them could be negative)

Source/Destination on Edges

- We have assumed that points s and t are nodes of the network
- In practice s and t could be arbitrary points on edges
 - Mobile user locations
- Solve problem by introducing 2 more nodes

- en-heap g (2) and c (4) first
- t is reached from f or h

Spatial Queries over Spatial Networks

- Data:
 - A (static) spatial network (e.g., city map)
 - A (dynamic) set of spatial objects
- Spatial queries based on network distance:
 - Selections. Ex: find gas stations within 10km driving distance from here
 - Nearest neighbor search. Ex: find k nearest restaurants from present position
 - Joins. Ex: find pairs of restaurants and hotels at most 100m from each other

Methodology

- Store (and index) the spatial network
 - Graph component (indexes connectivity information)
 - Spatial component (indexes coordinates of nodes, edges, etc.)
- Store (and index) the sets of spatial objects
 - Ex., one spatial relation for restaurants, one spatial relation for hotels, one relation for mobile users, etc.
- Given a spatial location p, use spatial component of network to find the network edge containing p
- Given a network edge, use network component to traverse neighboring edges
- Given a neighboring edge, use spatial indexes to find objects on them

- Query: find all objects in spatial relation R, within network distance ε from location q
- Method:
 - Use spatial index of network (R-tree indexing network edges) to find edge n_1n_2 , which includes q
 - Use adjacency index of network (graph component) and apply Dijkstra's algorithm to progressively retrieve edges that are within network distance ε from location q
 - For all these edges apply a spatial selection on the Rtree that indexes R to find the results

- Example: Find restaurants at most distance 10 from q
- Step 1: find network edge which contains q

- Example: Find restaurants at most distance 10 from q
- Step 2: traverse network to find all edges (or parts of them within distance 10 from q)

- Example: Find restaurants at most distance 10 from q
- Step 3: find restaurants that intersect the subnetwork computed at step 2

- Query: find all objects in spatial relation R, within network distance ε from location q
- Alternative method based on Euclidean bounds:
 - Assumption: Euclidean distance is a lower-bound of network distance:
 - □ dist(v,u) \le SPD(v,u), for any v,u
 - Use R-tree on R to find set S of objects such that for each o in S: dist(q,o) ≤ ε
 - For each o in S:
 - find where o is located in the network (use Network R-tree)
 - compute SPD(q,o) (e.g. use A*)
 - □ If SPD(q,o) \leq ε then output o

- Example: Find restaurants at most distance 10 from q
- Step 1: find restaurants for which the Euclidean distance to q is at most 10: $S = \{r_1, r_2, r_3\}$

- Example: Find restaurants at most distance 10 from q
- Step 2: for each restaurant in S, compute SPD to q and verify if it is indeed a correct result

• Ex. for r_2 , first find where r_2 is located (edge f,t), then SP

Evaluation of NN search (1)

- Query: find in spatial relation R the nearest object to a given location q
- Method:
 - Use spatial index of network (R-tree indexing network edges) to find edge n_1n_2 , which includes q
 - Use adjacency index of network (graph component) and apply Dijkstra's algorithm to progressively retrieve edges in order of their distance to q
 - For each edge apply a spatial selection on the R-tree that indexes R to find any objects
 - Keep track of nearest object found so far; use its shortest path distance to terminate network browsing

Example: Find nearest restaurant to q

current
$$NN = r_2$$

 $SPD(q, r_2)=5$

Evaluation of NN search (2)

- Query: find in spatial relation R the nearest object to a given location q
- Alternative method based on Euclidean bounds:
 - Assumption: Euclidean distance lower-bounds network distance:
 - □ dist(v,u) \le SPD(v,u), for any v,u
 - 1 Use R-tree on R to find Euclidean NN p_{F1} of q;
 - 2 CurrentNN= p_{E1} ; bound=SPD(q,p_{E1}); //e.g. use A*
 - 3 Find next Euclidean NN p_{Fi} of q
 - 4 If dist(q,Ei)≥bound, then report (CurrentNN,bound) as result;
 - Compute SPD(q, p_{Ei}); if bound>SPD(q, p_{Ei}) then CurrentNN= p_{Ei} ; bound=SPD(q, p_{Ei});
 - 6 Goto step 3

Example: Find nearest restaurant to q

current
$$NN = r_2$$

 $SPD(q, r_2) = 5$

Spatial Join Queries

- □ Query: find pairs (r,s), such that r in relation R, s in relation S, and SPD(r,s)≤ε
- Methods:
 - For each r in R, do an ε-distance selection queries for objects in S (Index Nested Loops)
 - For each pair (r,s), such that Euclidean dist $(r,s) \le ε$ compute SPD(r,s) and verify SPD $(r,s) \le ε$

Notes on Query Evaluation based on Network Distance

- For each query type, there are methods based on network browsing and methods based on Euclidean bounds
- Network browsing methods are fast if network edges are densely populated with points of interest
 - A limited network traversal can find the result fast
- Methods based on Euclidean bounds are good if the searched POIs are sparsely distributed in the network
 - Few verifications with exact SP searches are required
 - Directed SP search (e.g. using A*) avoids visiting empty parts of the network

Shortest Path Materialization and Indexing in Large Graphs

- Dijkstra's algorithm and related methods could be very expensive on very large graphs
- (Partial) materialization of shortest paths in static graphs can accelerate search

		а	b	С	S	
	а	0, -	10, ab	10, asc	4, as	
	b	10, ba	0, -	5, bc	11, bcs	:
_	с	10, csa	5, <i>cb</i>	0, -	6, <i>cs</i>	:
t	5	4, sa	11, scb	6, <i>sc</i>	0, -	

	а	b	С	S	
а	0, -	10, b	10, s	4, s	:
b	10, a	0, -	5, <i>c</i>	11, c	:
С	10, s	5, b	0, -	6, s	:
S	4, a	11, c	6, <i>c</i>	0, -	
	•••				

graph

brute-force materialization $O(n^3)$ space, O(1) time

distance matrix with successors $O(n^2)$ space, O(n) time

- □ Idea: Partition graph G into G₁,G₂,G₃,... based on connectivity and proximity of nodes
- Every edge of G goes to exactly one G_i
- Border nodes belong to more than one G_i's
- □ For each G_i compute and materialize SPs between every pair of nodes in G_i (matrix M_i)
 - Partitions are small enough for materialization space overhead to be low
- Compute and materialize SPs between every pair of border nodes (matrix B)
 - If border nodes too many, hierarchically partition them into 2nd-level partitions

- □ border nodes
- internal nodes

border nodes SP materialization

- Shortest path search using HPM:
- If s,t border nodes directly use matrix B
- □ If s border, t non-border
 - $SP(s,t) = min\{p(s,u)+p(u,t) \mid u \text{ in B and } u \text{ in } G_t\}$
- □ If s non-border, t border
 - $SP(s,t) = min\{p(s,u)+p(u,t) \mid u \text{ in B and } u \text{ in } G_s\}$
- □ If s,t non-border nodes
 - If s,t in same G_{st} then SP(s,t) materialized in M_{st}
 - If s in G_s, t in G_t then
 - □ SP(s,t) = min{ $p(s,u)+p(u,v)+p(v,t) \mid u,v \text{ in B, } u \text{ in } G_s, v \text{ in } G_t$ }

□ border nodes

• internal nodes

border nodes SP materialization

- Good partitioning if:
 - small partitions
 - few combinations examined for SP search
- Real road networks:
 - Non-highway nodes in local partitions
 - Highway nodes become border nodes

Compressing Materialized Paths

- Distance matrix with successors has O(n²) space cost
- Motivation: reduce space by grouping targets based on common successors

	а	b	С	S	
а	0, -	10, b	10, s	4, s	
b	10, a	0, -	5, <i>c</i>	11, c	
С	10, s	5, b	0, -	6, s	
S	4, a	11, c	6, <i>c</i>	0, -	

distance matrix with successors $O(n^2)$ space, O(n) time

Compressing Materialized Paths

- Create and encode one space partitioning defined by targets of the same successor
- \blacksquare For each node s, index I_s a set of <succ,R> pairs:
 - succ: a successor of s
 - R: a continuous region, such that for each t in R, the successor of s in SP(s,t) is succ

Compressing Materialized Paths

- To compute SP(s,t) for a given s, t:
 - 1. SP=s
 - 2. Use spatial index I_s to find <succ,R>, such that t in R
 - 3. SP = SP + (s, succ)
 - 4. If succ = t, report SP and terminate
 - 5. Otherwise s=succ; Goto step 2

Embedding Methods for SP

- Select a small subset L of nodes in G
- Nodes in L are called landmarks
- For each I in L, for each v in G:
 - pre-compute SPD(v,l), SPD(l,v)

- To compute SP(s,t) use A* search
 - To compute the lower bound distance between any node v and t we can use (triangular inequality):
 - D=max{|SPD(v,l)-SPD(l,t)|, for each l in L}
 - Prioritization of node visits is now done using SPD(s,v)+D
- Ex: if r_3 is used as landmark, then $|SPD(q,r_3)-SPD(r_3,r_2)|$ is a better LB for $SPD(q,r_2)$ compared to Euclidean distance

Summary

- Indexing and search of spatial networks is different than spatial indexing
 - Shortest path distance is used instead of Euclidean distance, to define range queries, nearest neighbor search, and spatial joins
- Spatial networks could be too large to fit in memory
 - Disk-based index for adjacency lists is used
- Several shortest path algorithms
- Spatial queries can be evaluated using Euclidean bounds
- Advanced indexing methods for shortest path search on large graphs