Question 1

a) First we must calculate the information contents: $h(x_i) = -\log_2 p(x_i)$. Note: the table has been reordered for the purpose of constructing the Huffman code.

x_i	a	С	b	е	d
$p(x_i)$	0.5	0.2	0.15	0.1	0.05
$h(x_i)$	1.000	2.322	2.737	3.322	4.322

$$H(X) = E[h(X)] = \sum h(x_i) p(x_i) = 1.000(0.5) + 2.322(0.2) + 2.737(0.15) + 3.3229(0.1) + 4.322(0.05)$$
$$= 0.500 + 0.464 + 0.411 + 0.332 + 0.216 = 1.923 \text{ bits.}$$

c) b d \mathbf{c} е x_i \mathbf{a} 0.5 0.20.150.05 $p(x_i)$ 0.1 $h(x_i)$ 1.000 2.322 2.737 3.322 4.322 $c(x_i)$ 0 10 110 1110 1111 2 3 $\ell(x_i)$ 4 4

$$E(L) = E[\ell(X)] = \sum \ell(x_i) p(x_i) = 1(0.5) + 2(0.2) + 3(0.15) + 4(0.1) + 4(0.05)$$

= 0.50 + 0.40 + 0.45 + 0.40 + 0.20 = 1.95 bits.

d)
$$e = \frac{H(X)}{E(L)} = \frac{1.923}{1.95} = 0.986.$$

 \Rightarrow This Huffman code is 98.6% efficient.

Question 2

a) First we must calculate the information contents: $h(x_i) = -\log_2 p(x_i)$.

x_i	a	b	С	d	е	f
$p(x_i)$	0.3	0.25	0.2	0.12	0.08	0.05
$h(x_i)$	1.737	2.000	2.322	3.059	3.644	4.322

$$H(X) = E[h(X)] = 1.737(0.3) + 2.000(0.25) + 2.322(0.2) + 3.059(0.12) + 3.644(0.08) + 4.322(0.05)$$

= $0.521 + 0.500 + 0.464 + 0.367 + 0.292 + 0.216 = 2.36$ bits.

c)b d f a \mathbf{c} е x_i 0.12 $p(x_i)$ 0.3 0.250.2 0.08 0.051.737 2.000 2.3223.059 4.322 $h(x_i)$ 3.644 $c(x_i)$ 00 01 10 110 1110 1111 2 2 $\ell(x_i)$ 2 3 4 4

$$E(L) = E[\ell(X)] = 2(0.3) + 2(0.25) + 2(0.2) + 3(0.12) + 4(0.08) + 4(0.05)$$

= $0.60 + 0.50 + 0.40 + 0.36 + 0.32 + 0.20 = 2.38$ bits.

d)
$$e = \frac{H(X)}{E(L)} = \frac{2.36}{2.38} = 0.992.$$

 \Rightarrow This Huffman code is 99.2% efficient.

Question 3

a) First we must calculate the information contents: $h(x_i) = -\log_2 p(x_i)$.

x_i	x_1	x_2	x_3	x_4	x_5	x_6	x_7
$p(x_i)$	0.3	0.2	0.2	0.1	0.1	0.05	0.05
$h(x_i)$	1.737	2.322	2.322	3.322	3.322	4.322	4.322

$$H(X) = E[h(X)] = 1.737(0.3) + 2.322(0.2) + 2.322(0.2) + 3.322(0.1) + 3.322(0.1) + 4.322(0.05) + 4.322(0.05) = 0.521 + 0.464 + 0.464 + 0.332 + 0.332 + 0.216 + 0.216 = 2.545 \text{ bits.}$$

c)

x_i	x_1	x_2	x_3	x_4	x_5	x_6	x_7
$p(x_i)$	0.3	0.2	0.2	0.1	0.1	0.05	0.05
$h(x_i)$	1.737	2.322	2.322	3.322	3.322	4.322	4.322
$c(x_i)$	00	10	11	010	0110	01110	01111
$\ell(x_i)$	2	2	2	3	4	5	5

$$E(L) = E[\ell(X)] = 2(0.3) + 2(0.2) + 2(0.2) + 3(0.1) + 4(0.1) + 5(0.05) + 5(0.05)$$

= 0.60 + 0.40 + 0.40 + 0.30 + 0.40 + 0.25 + 0.25 = 2.6 bits.

d)
$$e = \frac{H(X)}{E(L)} = \frac{2.545}{2.6} = 0.979.$$

 \Rightarrow This Huffman code is 97.9% efficient.

