Gödel's Incompleteness Theorem; sketch of the rigorous proof

Hyoyoon Lee

Yonsei University

The 2nd Korea Logic Day January 14th, 2022

References

Byunghan Kim, 'Complete proofs of Gödel's Incompleteness Theorems', lecture note on Byunghan Kim's homepage:

https://web.yonsei.ac.kr/bkim/

Recursivevess of a function

Notation: $\omega = \mathbb{N}$, the set of natural numbers.

Definition

For $R\subseteq\omega^n$ a relation, $\chi_R:\omega^n\to\omega$, the characteristic function on R, is given by

$$\chi_{R}(\overline{a}) = \begin{cases} 1 & \text{if } \neg R(\overline{a}), \\ 0 & \text{if } R(\overline{a}). \end{cases}$$

Definition

A function from ω^n to ω ($n \ge 0$) is called **recursive** (or **computable**) if it is obtained by finitely many applications of the following 3 rules:

- R1. \bullet $I_i^n:\omega^n\to\omega$, $1\leq i\leq n$, defined by $I_i^n(x_1,\cdots,x_n)=x_i$ is recursive;
 - \blacksquare + : $\omega \times \omega \rightarrow \omega$ and \cdot : $\omega \times \omega \rightarrow \omega$ are recursive;
 - $\chi_{<}:\omega\times\omega\to\omega$ is recursive.

Recursiveness of a function

Definition(Continued)

R2. (Composition) For recursive functions G, H_1, \dots, H_k such that $H_i : \omega^n \to \omega$ and $G : \omega^k \to \omega, F : \omega^n \to \omega$ defined by

$$F(\overline{a}) = G(H_1(\overline{a}), \cdots, H_k(\overline{a}))$$

is recursive.

R3. (Minimization) Let $G:\omega^{n+1}\to\omega$ be recursive, such that for all $\overline{a}\in\omega^n$ there exists some $x\in\omega$ such that $G(\overline{a},x)=0$. Then $F:\omega^n\to\omega$, defined by

$$F(\overline{a}) = \mu x(G(\overline{a}, x) = 0)$$

is recursive (where $\mu x P(x) = \min\{x \in \omega \mid P(x)\}\)$.

Recursivess of a relation

Definition

 $R(\subseteq \omega^n)$ is called **recursive**, or **computable** (R is a recursive relation) if χ_R is a recursive function.

Digression: Church's Thesis

Let *Ob* be some countable set of 'objects'.

Definition

- A countable set $S \subseteq Ob$ is called **computable*** if there is an 'algorithm' determining the membership of S.
- A function $f: \omega^n \to \omega$ is **computable*** if there is an algorithm which 'effectively produces' $f(\overline{a})$ for given $\overline{a} \in \omega^n$.

Church's Thesis says that a function/relation is recursive(or Turing computable) if and only if it is computable*.

Coding of a sequence of numbers: β -function Lemma

Lemma (β -function Lemma)

There is a recursive function $\beta: \omega^2 \to \omega$ such that $\beta(a,i) \leq a \div 1$ for all $a,i \in \omega$, and for any $a_0, \cdots, a_{n-1} \in \omega$, there is $a \in \omega$ such that $\beta(a,i) = a_i$ for all i < n.

Definition

The **sequence number** of a sequence of natural numbers a_1, \dots, a_n is given by

$$\langle a_1, \cdots, a_n \rangle = \mu x \Big((\beta(x,0) = n) \wedge (\beta(x,1) = a_1) \wedge \cdots \wedge (\beta(x,n) = a_n) \Big).$$

Remark. <> is recursive and injective.

Representability Theorem

Let $\mathcal{L}_{\mathcal{N}} = \{+, \cdot, S, <, 0\}$. Q is an (finite) $\mathcal{L}_{\mathcal{N}}$ -theory consists of

- Q1. $\forall x(Sx \neq 0)$
- Q2. $\forall x \forall y (Sx = Sy \rightarrow x = y)$
- Q3. $\forall x(x+0=x)$
- Q4. $\forall x \forall y (x + Sy = S(x + y))$
- Q5. $\forall x(x \cdot 0 = 0)$
- Q6. $\forall x \forall y (x \cdot Sy = x \cdot y + x)$
- Q7. $\forall x(\neg x < 0)$
- Q8. $\forall x \forall y (x < Sy \leftrightarrow x < y \lor x = y)$
- Q9. $\forall x \forall y (x < y \lor x = y \lor y < x)$

Peano Arithmetic, or PA, is Q union generalizations of the following formulas:

$$(\varphi_0^{\mathsf{x}} \wedge \forall \mathsf{x}(\varphi \to \varphi_{\mathsf{S}\mathsf{x}}^{\mathsf{x}})) \to \varphi.$$

Representability Theorem

Notation. $\underline{0} \equiv 0$, $\underline{1} \equiv S0$, $\underline{2} \equiv SS0$, \cdots , which are $\mathcal{L}_{\mathcal{N}}$ -terms.

Theorem (Representability Theorem)

Every recursive function or relation is representable in Q. i.e. for recursive $f:\omega^n\to\omega$, there exists an $\mathcal{L}_{\mathcal{N}}$ -formula $\varphi(x_1,\cdots,x_n,y)$ such that for all $k_1,\cdots,k_n\in\omega$,

$$Q \vdash \forall y \Big(\varphi(\underline{k_1}, \cdots, \underline{k_n}, y) \leftrightarrow y = \underline{f(k_1, \cdots, k_n)} \Big)$$

and recursive $P \subseteq \omega^n$, there exists an $\mathcal{L}_{\mathcal{N}}$ -formula $\varphi(x_1, \dots, x_n)$ such that for all $k_1, \dots, k_n \in \omega$,

$$P(k_1,\cdots,k_n)$$
 implies $Q \vdash \varphi(\underline{k_1},\cdots,\underline{k_n})$ and

$$\neg P(k_1, \dots, k_n)$$
 implies $Q \vdash \neg \varphi(\underline{k_1}, \dots, \underline{k_n})$.

Coding of symbols

Let \mathcal{L} be a countable language with $\mathcal{L} = \mathcal{C} \cup \mathcal{F} \cup \mathcal{P}$ and \mathcal{V} a set of variables. \mathcal{L} is called **reasonable** if the following two functions exist:

- $h: \mathcal{L} \cup \mathcal{V} \cup \{\neg, \rightarrow, \forall\} \rightarrow \omega$ injective such that each of $h(\mathcal{C}), h(\mathcal{F}), h(\mathcal{P}), h(\mathcal{V})$ is recursive.
- AR: $\omega \to \omega \setminus \{0\}$ recursive such that
 - AR(h(f)) = n, for *n*-ary function symbol f and
 - AR(h(P)) = n, for *n*-ary predicate symbol *P*.

Coding of formulas: Gödel numbers

- $\lceil \rceil : \{\mathcal{L}\text{-terms and } \mathcal{L}\text{-formulas}\} o \omega \text{ inductively, by}$
 - For $x \in \mathcal{V} \cup \mathcal{C}$, $\lceil x \rceil = \langle h(x) \rangle$.
 - For \mathcal{L} -terms t_1, \cdots, t_n and n-ary $f \in \mathcal{F}$, $\lceil ft_1 \cdots t_n \rceil = \langle h(f), \lceil t_1 \rceil, \cdots, \lceil t_n \rceil \rangle.$
 - For \mathcal{L} -terms t_1, \cdots, t_n and n-ary $P \in \mathcal{P}$, $\lceil Pt_1 \cdots t_n \rceil = \langle h(P), \lceil t_1 \rceil, \cdots, \lceil t_n \rceil \rangle.$
 - For \mathcal{L} -formulas φ and ψ ,

$$(\lceil \rightarrow \varphi \psi \rceil =) \lceil \varphi \rightarrow \psi \rceil = \langle h(\rightarrow), \lceil \varphi \rceil, \lceil \psi \rceil \rangle \lceil \neg \varphi \rceil = \langle h(\neg), \lceil \varphi \rceil \rangle \lceil \forall x \varphi \rceil = \langle h(\forall), \lceil x \rceil, \lceil \varphi \rceil \rangle.$$

Remark. Gödel numbering [] is recursive and injective.

Axiomatizable and Decidable Theories

Definition

Let T be an \mathcal{L} -theory.

- 1 $\underline{T} = \{ [\sigma] \mid \sigma \in T \}.$
- 2 Cn $T = {\sigma \in Sent(\mathcal{L}) \mid T \vdash \sigma}$.
- 3 T is called **complete** if Cn T is maximal consistent. i.e. it is consistent and for any $\sigma \in \text{Sent}(\mathcal{L})$, $\sigma \in \text{Cn } T$ or $\neg \sigma \in \text{Cn } T$.
- 4 T is **axiomatizable** if there exists a theory S such that $\operatorname{Cn} S = \operatorname{Cn} T$, such that S is recursive.
- 5 T is **decidable** if Cn T is recursive.

Theorem

If T is axiomatizable and complete in \mathcal{L} , then T is decidable.

Technical Lemma and a Fact

Theorem (Gödel, Fixed Point Theorem)

For any $\mathcal{L}_{\mathcal{N}}$ -formula $\varphi(\mathsf{x})$, there is some $\mathcal{L}_{\mathcal{N}}$ -sentence σ such that $Q \vdash \sigma \leftrightarrow \varphi(\lceil \sigma \rceil)$.

With Representability Theorem, Fixed Point Theorem will play a critical role to derive a contradiction in the proof of a theorem in the next slide.

Fact (A result of Craig's Theorem)

PA is axiomatizable.

In particular, letting T=PA, $T\cup Q$ is consistent and by above Fact, T is axiomatizable.

Results: Strong Undecidability of Q

From now on, let $\mathcal{L}\ (\supseteq \mathcal{L}_{\mathcal{N}})$ be countable reasonable and \mathcal{T} be an \mathcal{L} -theory.

Theorem (Strong Undecidability of Q)

If $T \cup Q$ is consistent, then T is not decidable (i.e. $\underline{\mathsf{Cn}\ T}$ is not recursive).

Sketch of the Proof.

Suppose not, that is, Cn T is recursive.

Then it can be shown that $Cn(T \cup Q)$ is recursive since Q is finite.

By Representability Theorem, there is $\varphi(x)$ representing $\operatorname{Cn}(T \cup Q)$, i.e.

for any
$$\tau$$
, if $\tau \in \operatorname{Cn}(T \cup Q)$, then $Q \vdash \varphi(\lceil \tau \rceil)$ and if $\tau \notin \operatorname{Cn}(T \cup Q)$, then $Q \vdash \neg \varphi(\lceil \tau \rceil)$.

By Fixed Point Theorem, there is σ such that $Q \vdash \sigma \leftrightarrow \neg \varphi(\lceil \sigma \rceil)$. Then $\int \sigma \in \operatorname{Cn}(T \cup Q)$ implies $Q \vdash \neg \sigma$ and $\sigma \notin \operatorname{Cn}(T \cup Q)$ implies $Q \vdash \sigma$, hence contradiction for any case.

Results: Gödel's Incompleteness Theorems

Now the First Incompleteness Theorem is a corollary of previous theorems.

Theorem (Gödel-Rosser, First Incompleteness Theorem)

If $T \cup Q$ is consistent and T is axiomatizable, then T is not complete.

Proof.

By previous theorems;

if T is axiomatizable and complete in \mathcal{L} , then T is decidable and if $T \cup \mathcal{L}$ is axiomatizable and the T is not decidable.

if $T \cup Q$ is consistent, then T is not decidable.

 Con_T is an \mathcal{L} -sentence that says ' $0 \neq 0$ is not provable from T', which is equivalent to saying that 'T is consistent'.

Theorem (Gödel, Second Incompleteness Theorem)

If T is consistent, \underline{T} is recursive and $T \vdash PA$, then $T \nvdash Con_T$.