Skript Mathe 2

25. Juni 2018

1. Fall: Beide Extrema werden auf dem Rand angenommen:

$$f(a) = f(b) \Rightarrow m = M$$

 $\Rightarrow f \text{ konstant } \Rightarrow f'(\xi) = 0 \quad \forall \xi \in (a, b)$

2. Fall: Ein Extremum wird auf dem Rand angenommen: $\Rightarrow \exists \xi \in (a,b) : f(\xi)$ Extremum $\Rightarrow f'(\xi) = 0$.

$$\Rightarrow \exists \xi \in (a,b) : f(\xi) \text{ Extremum} \underset{6.18}{\Rightarrow} f'(\xi) = 0.$$

3. Es ist $g(b) \neq g(a)$, denn sonst gäbe es ein $x \in (a,b)$ mit g'(x) = 0 (Rolle)

Hilfsfunktion:
$$h(x) = f(x) = \frac{f(b) - f(a)}{g(b) - g(a)} \cdot g(x)$$

Es ist h(b) - h(a) = 0. h stetig auf [a, b] und differenzierbar in (a, b).

$$\underset{\text{Rolle}}{\Rightarrow} \exists \xi \in (a, b) : h'(\xi) = 0$$
$$\Rightarrow \frac{f'(\xi)}{g'(\xi)} = \frac{f(b) - f(a)}{g(b) - g(a)}$$

1. Folgt aus 3. für g(x) = x.

0.1 Monotoniekriterium

Sei f : [a, b] stetig und auf (a, b) differenzierbar.

- 1. $f'(x) \geq 0 \quad \forall x \in (a,b) \Leftrightarrow f \text{ monoton wach$ $send auf } [a,b]$
- 2. $f'(x) > 0 \quad \forall x \in (a,b) \Rightarrow f$ streng monoton wachsend auf [a,b] (fallend)
- 3. $f'(x) = 0 \quad \forall x \in (a, b) \Leftrightarrow f \text{ konstant auf } [a, b]$

Beweis:

1.
$$(\Rightarrow)$$
: Sei $a \le x_1 < x_2 \le b$

$$\Rightarrow \exists \xi \in (x_1, x_2) : f(x_2) - f(x_1) = \underbrace{f'(\xi)}_{\ge 0} \cdot \underbrace{(x_2 - x_1)}_{>0} \ge 0$$

$$\Rightarrow f(x_1) \le f(x_2)$$

 (\Leftarrow) : Sei f monoton wachsend auf [a,b] und differenzierbar in (a,b)

$$\Rightarrow f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

Da
$$\frac{(f(x+h)-f(x))\geq 0}{h>0}\geq 0$$
 für $h<0$ und

$$\frac{(f(x+h) - f(x)) \le 0}{h < 0} \le 0 \text{ ist } f'(x) \ge 0 \quad \forall x \in (a,b)$$

2. + 3. analog \square

Bemerkung zu 2.: $f(x) = x^3$ ist streng monoton wachsend aber f'(0) = 0

0.2 Satz: Hinreichende Bedingung für lokale Exterma I

Sei $f: I \to \mathbb{R}$ differenzierbar und $x_0 \in I, f'(x_0) = 0$

1.
$$f'(y) \geq 0 \quad \forall (x_0 - \delta, x_0) \text{ und}$$

$$(\leq) \qquad \qquad f'(y) \geq 0 \quad \forall (x_0, x_0 + \delta) \text{ für ein } \delta < 0$$

 $\Rightarrow f$ hat ein lokales Minimum (Maximum) in x_0 .

2.
$$f'(x) < 0 \quad \forall x \in (x_0 - \delta, x_0) \cup (x_0, x_0 + \delta)$$

[1. hat einen Vorzeichenwechsel, 2. nicht]

Beweis: Für lokales Minimum in x_0 :

Z.z:
$$f(x) \ge f(x_0)$$
 $\forall x \in U := (x_0 - \delta, x_0 + \delta)$

Da $x \in U \setminus x_0 \underset{6.20.1}{\Rightarrow} \exists \xi \text{ zwischen } x \text{ und } x_0;$ $\xi \neq x_0, \text{ so dass } f(x) - f(x_0) = f'(\xi) \cdot (x - x_0)$ (*)

<u>1. Fall</u>: $x \in (x_0 - \delta, x_0)$

$$\Rightarrow x - x_0 < 0, f'(\xi) \le 0$$

\Rightarrow f(x) - f(x_0) \geq 0 \Rightarrow f(x) \geq f(x)

<u>2. Fall</u>: $x \in (x_0, x_0 + \delta)$

$$\Rightarrow x - x_0 > 0, f'(\xi) \ge 0$$

\Rightarrow f(x) - f(x_0) \ge 0 \Rightarrow f(x) \ge f(x_0)

Insgesamt: $f(x) \ge f(x_0) \quad \forall x \in U$

(Rest analog) \Box

0.3 Bemerkung

Vorzeichenwechsel von - nach + $\Rightarrow f$ hat Minimum in x_0

f' weist in x_0 einen Vorzeichenwechsel auf, wenn die Steigung von f' in x_0 positiv (negativ) ist, d.h. wenn $f''(x_0) > 0$ ($f''(x_0) < 0$).

Wenn f''(x) = 0, ist über einen Vorzeichenwechsel keine Aussage möglich.

$$f''(x_0) = 0$$
 und VZW

$$f(x) = x^4$$

$$f'(0) = 0$$

$$f''(0) = 0$$

$$g''(x_0) = 0$$
 und kein VZW

$$g(x) = x^3$$

$$g'(0) = 0$$

$$g''(0) = 0$$

Satz: Hinreichende Bedingung für Extrema II

Sei $f:I\to\mathbb{R}$ differenzierbar und $x_0\in I$ 2-mal differenzierbar.

 $(f'(x_0) = 0, f''(x_0) > 0) \Rightarrow f$ hat in x_0 ein lokales Minimum (Maximum)

Beweis: Für Minimum:

Es ist
$$\lim_{h \to 0} \frac{f'(x_0 + h) - f(x_0)}{h} = \lim_{h \to 0} \frac{f(x_0 + h)}{h} = f''(x_0) > 0$$

$$\Rightarrow \exists \delta < 0: \frac{f'(x_0 + h)}{h} > 0 \quad \forall |h| < \delta, h \neq 0 \quad (*)$$

1. Fall:
$$-\delta < h < 0 \Rightarrow_{f'(x_0 + h)} f'(x_0 + h) < 0$$

1. Fall :
$$-\delta < h < 0 \underset{(*)}{\Rightarrow} f'(x_0 + h) < 0$$

2. Fall : $0 < h < \delta \underset{(*)}{\Rightarrow} f'(x_0 + h) > 0$ Vorzeichenwechsel

 $f'(x_0) = 0$ und Vorzeichenwechsel $\underset{6.22}{\Rightarrow} f$ hat ein lokales Minimum in x_0 .

Rest analog \Box

Die Regeln von L'Hospital (1661–1704)

Problem: Grenzwerte vom Typ $\frac{0}{0},\ \frac{\infty}{\infty},\ 0\cdot\infty,\ 0^0$ usw...

Beispiel: $\frac{\sin(x)}{x} \xrightarrow[x \to 0]{} ?$

 $f(x) = \sin(x)$ und g(x) = x haben in x = 0

die selbe Tangente $(t(x) = x) \Rightarrow f, g$ konvergieren mit der gleichen Geschwindigkeit gegen 0, wenn $x \to 0$.

 $\Rightarrow \frac{\sin(x)}{x} \to 1 \text{ für } x \to 0.$