Comparison of Introductory Zero-Knowledge Proof Examples

By Navid Roux, 2020-05-22.

Latest version always at https://github.com/ComFreek/zero-knowledge-proofs-comparison-table. This work is licensed under a "CC BY-SA 4.0" license.

	Sudoku	Hamiltonian Cycle	Any "hard" Graph Property	Discrete Log (variant)	Discrete Log (Schnorr variant)
	Partial sudoku Ψ is solvable	Graph G is Hamiltonian ¹	Let $L \in NP$ be any graph-isomorphism-invariant graph property believed to be hard. 3	Let $\mathbb G$ of order q and $y\in\mathbb Z_q$ be fixed. I know $x\in\mathbb Z_q$ such that $[x]=y$	Let $\mathbb G$ of order q and $y\in \mathbb G$ be fixed. I know $x\in \mathbb Z_q$ such that $[x]=y$
Witness only known to P	Solution $\overline{\Psi}$	Hamiltonian cycle v	Certificate w	x	x
1. Rerandomization by P of	Pick set isomorphism i on $\{1, \dots, 9\}$	Pick graph isomorphism $i: G \to G'$ (just relabel vertices)	Pick graph isomorphism $i: G \to G'$ (just relabel vertices)		
 Problem Statement Solution 	1. $\Psi' := i[\Psi]$ is solvable 2. $\overline{\Psi'} := i[\overline{\Psi}]$ is solution to Ψ'	1. $G' := i[G]$ is Hamiltonian 2. $v' := i[v]$ is Hamiltonian cycle for G'^2	1. $G' := i[G] \in L$ 2. $w' := i[w]$ is certificate for G'	Pick $r \leftarrow \mathbb{Z}_q$ uniformly at random	Pick $r \leftarrow \mathbb{Z}_q$ uniformly at random
2. Commitment by P	Send all of $\bullet \ (\mathrm{com}(\Psi_{i,j}))_{1 \leq i,j \leq 9}$ $\bullet \ \mathrm{com}(\Psi')$	Send all of $ \bullet \ G' \\ \bullet \ \operatorname{com}(i) \\ \bullet \ \operatorname{com}(v') $	Send all of • G' • $com(i)$ • $com(w')$	Send all of $ \bullet \ \hat{g} := [r] $ $ \bullet \ \operatorname{com}(r) $	Send $[r]$
3. Pose Challenge by V	 Ask for one of permuted row i permuted column j permuted square k permuted statement In total, this gives 9 + 9 + 9 + 1 = 28 challenge types 	Ask for one of $ \bullet \ \ \text{isomorphism} \ i \colon G \to G' $ $ \bullet \ \ \text{Hamiltonian cycle in} \ G' $	Ask for one of $\bullet \ \ \text{isomorphism} \ i \colon G \to G'$ $\bullet \ \ \text{certificate for} \ G' \in L$	Ask for one of r $x+r$ and denote response by resp.	Pick $c \leftarrow \mathbb{Z}_q$ uniformly at random. Ask for $cx + r$ and denote response by resp.
4. Respond to challenge					
by P 5. Verify response by V	Check • that no numbers occur twice in row, column, or square, • or that the permuted statement is in fact a permutation	Check • conditions on isomorphism, • or check that cycle is indeed Hamiltonian	Check • conditions on isomorphism, • or check that certificate is valid	Check • that indeed $\hat{g}=[\text{resp.}]$ • that $[\text{resp.}]=y+\hat{g}$ namely if indeed $[x]=y$, then $y+\hat{g}=[x]+[r]=[x+r]=[\text{resp.}]$	Check that [resp.] = $cy + [r]$
Completeness P can convince V in case P actually had a solution	Since step 4 above is canonical, provers can convince with prob. of 1				
Soundness P cannot convince V without having a solution. Shown are the prob. of convincing w/o having a sol.	$pprox \left(rac{1}{28} ight)^{ ext{#iter}}$	$\left(\frac{1}{2}\right)^{\# \mathrm{iter}}$	$\left(rac{1}{2} ight)^{ ext{\#iter}}$	$\left(\frac{1}{2}\right)^{\text{\#iter}}$	todo
Zero Knowledge V doesn't learn anything about the witness	todo	In each round, V learns $either$ a useless isomorphism or a Hamiltonian cycle in $G' \cong G$. Since the graph isomorphism problem is believed to be hard, learning about such a cycle in G' without learning the isomorphism is useless as well.	Same argument as in the cell to the left.	In each round, V learns either a useless random r or $x+r$. In the latter case, however, since $r \sim \mathcal{U}(\mathbb{Z}_q)$, we also have $(x+r) \sim \mathcal{U}(\mathbb{Z}_q)^4$	In each round, V only learns $[r]$ and $cx + r$ for a c chosen by them. Due to DLOG assumed to be hard in \mathbb{G} , in the eyes of V we have $r \sim \mathcal{U}(\mathbb{Z}_q)$ and hence $(cx + r) \sim \mathcal{U}(\mathbb{Z}_q)^4$.

- 1 This means it contains a so-called Hamiltonian cycle that is a path visiting every node exactly once. The problem of finding such a cycle is NP-complete.
- 2 Here, v is effectively a sequence of edges, on which the isomorphism is applied elementwise.
- 3 Take for example HAMILTONIAN, 3-COL, or CLIQUE. From $L \in \mathsf{NP}$ it follows that for every $G \in L$ there is a certificate w for membership of length poly(|G|) that can be verified in poly(|G|) time.
- By graph-isomorphism invariance we demand that for $G \cong G'$ witnessed by an isomorphim $i: G \to G'$, certificates w for $G \in L$ can be transformed to certificates w' for $G' \in L$. We denote the latter by i[w].

 4 This is a simple lemma holding for arbitrary groups. The security of the OTP is based on this,
- usually phrased in the language of the group $(\{0,1\}^n, \oplus)$.

Useful Links

- Sudoku (slightly different challenges are given, though)
 - https://manishearth.github.io/blog/2016/08/10/interactive-sudoku-zero-knowledge-proof/
 - https://manishearth.github.io/sudoku-zkp/zkp.html
- Hamiltonian Cycles: [Wik20b]
- Discrete Log (variant): [Wik20a]
- Discrete Log (Schnott variant)
 - Lecture Notes by Prof. Schröder on "Privacy-Preserving Cryptocurrencies" (currently non-public; only accessible to students enrolled in their course)
 - [Cab00

References

[Sch90] C. P. Schnorr. "Efficient Identification and Signatures for Smart Cards". In: Advances in Cryptology — CRYPTO' 89 Proceedings. Ed. by Gilles Brassard. New York, NY: Springer New York, 1990, pp. 239–252. ISBN: 978-0-387-34805-6.

[Wik20a] Wikipedia contributors. Zero-knowledge proofs (Discrete log of a given value) — Wikipedia, The Free Encyclopedia. [Online; accessed 2020-05-21]. 2020. URL: https://en.wikipedia.org/w/index.php?title=Zero-knowledge_proof& oldid=957331895#Discrete_log_of_a_given_value.

[Wik20b] Wikipedia contributors. Zero-knowledge proofs (Hamiltonian cycle for a large graph)— Wikipedia, The Free Encyclopedia. [Online; accessed 2020-05-21]. 2020. URL: https://en.wikipedia.org/w/index.php?title=Zero-knowledge_proof&oldid=957331895#Hamiltonian_cycle_for_a_large_graph.