Exercises on singular value decomposition

Problem 29.1: (Based on 6.7 #4. *Introduction to Linear Algebra:* Strang) Verify that if we compute the singular value decomposition $A = U\Sigma V^T$ of the Fibonacci matrix $A = \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}$,

$$\Sigma = \left[egin{array}{cc} rac{1+\sqrt{5}}{2} & 0 \ 0 & rac{\sqrt{5}-1}{2} \end{array}
ight].$$

Problem 29.2: (6.7 #11.) Suppose *A* has orthogonal columns \mathbf{w}_1 , \mathbf{w}_2 , ..., \mathbf{w}_n of lengths σ_1 , σ_2 , ..., σ_n . Calculate A^TA . What are U, Σ , and V in the SVD?

MIT OpenCourseWare http://ocw.mit.edu

18.06SC Linear Algebra Spring 2011

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.