

SYN470R/JSM470R 433M/315M 无线接收芯片

1. 概述

JSM470R是一款高集成度超低功耗的单片 ASK/OOK 射频接收芯片 。高频信号接收功能全部集成于片内

以达到用最少的外围器件和最低的成本获得最可靠的接收效果。 因此它是 真正意义上的"天线高频调制信号输入"数字解调信号输出"的单片接收器件。

工作电压范围 2.0V~5.5V 和非常高的灵敏度-108dBm, 以及超低的工作电流 2mA, 使之非常适合各种低功 耗要求的设备等。 芯片内自动完成所有的 RF 和 IF 调谐, 所以在开发和生产中就省略了手工调节的工艺工程, 进而降低成本, 加快产品上市。

2. 特性

- 完美兼容 SYN470R
- ▶ 完全的单片 UHF 接收器件
- ▶ 频率范围: 300MHz 440 MHz
- ➤ 工作电压: 2.0V 5.5V
- 低功耗模式:

2mA@315MHz 完全工作 2.4mA@433.92MHz 完全工作 0.01uA@关断模式

- > 接收灵敏度
 - -107 dBm @ 315MHz
 - -108 dBm @ 433MHz
- ▶ 数据速率:最高 10kpbs
- ▶ 标准的 CMOS 接口控制及解码数据输出
- RF 天线辐射非常低
- 最经济的外围器件设计方案
- 集成度高、外围简单、稳定可靠

3. 应用领域

- ▶ 遥控扇
- > 遥控灯
- 遥控门
- 遥控键盘
- ▶ 远距离 RFID
- 智能家居控制器
- 遥控玩具
- 无线加密设备接收器
- 短距离遥控器

4. 典型应用

JSM470R 315MHz 2.5kbps 典型电路

JSM470R 433.92MHz 2.5kbps 典型电路

注:JSM470R 可直接替代 SYN470R, 无需修改外围元件。如果使用以上外围元件则效果更佳

5. 脚位图

引脚描述

JSM470R SOP16	SOP8	引脚 名称	引脚功能			
1		SEL0	与 SEL1 、 SWEN 配合选择解调滤波器带宽, 见注[2]			
2、3	1	VSSRF	接地管脚			
4	2	ANT	RF 信号输入脚			
5	3	VDDRF	接电源管脚 , 外加去耦电容到地			
6	_	VDDBB	接电源管脚			
7	4	CTH	用 于 内 部 数据 比 较 器 的 参 考 信 号			

SYN470R/JSM470R 433M/315M 无线接收芯片

8	_	NC	悬空			
9		VSSBB	接地管脚			
10	5	DO	数据信号输出			
11	6	SHUT	关断模式 : 接电源 ; 工作模式 : 接地			
12	_	NC	_			
13	7	CAGC	外接 CAGC 电容			
14	_	SEL1	与 SELO 、SWEN 配合选择解调滤波器带宽			
15	8	REFOSC	外接晶振管脚			
16	_	SWEN	与 SELO 、SEL1 配合选择解调滤波器带宽			

7. 极限参数

电源电压 (VDDRF, VDDBB)	+6V		
I/O 端口电压 (V I/O)	VSS -0.3 ~ VDD+0.3		
结点温度 (TJ)	+150 C°		
储藏温度范围 (Ts)	-65C° ~ +150C°		

8. 工作参数

工作频率范围	300MHz ~ 440MHz
数据占空比	20% ~ 80%
参考晶振输入范围	0.1Vpp ~ 1.5Vpp
工作环境温度范围	-35C° ~ +85C°

9. 电气特性

符号	参数	条件	最小值	典型值	最大值	单位
VDD	Operating Voltage		2.0		5.5	V
	Continuous Operating	fRF =315MHz ,VDD =3 .3V		2		m _A
	Current	fRF =315MHz,VDD =5V		2		m _A
IOP		fRF =433 .92MHz,VDD =3 .3V		2.4		m _A
		fRF =433.92MHz,VDD =5V		2.4		m _A
ISTBY	Standby Current	VSHUT=VDD		0 01		μΑ
	Receiver Sensitivity	fRF = 315MHz		-108		dBm
	O)`	fRF = 433 .92MHz		-108		dBm
f _{IF}	IF Center Frequency			0 86		MHz
f _{BW}	IF Bandwidth			0 43		MHz
	Maximum Receiver Input	$RSC = 50\Omega$		-20		dBm
	Spurious Reverse Isolation	ANT pin, RSC = 50Ω		30		μVr ms
	AGC Attack to Decay Ratio	tATTACK ÷ tDECAY		0.1		
	AGC Leakage Current	TA = +85°C		±100		n _A
ZREFOSC	Reference Oscillator Input					
	Reference Oscillator Source					
f _T	Reference Oscillator					
ZCTH	CTH Source Impedance	Note 6		145		k_{Ω}
IZCTH(leak)	CTH Leakage Current	TA = +85°C		±100		n _A

10. 结构框图

如图所示: JSM470R 分为四个功能块:

11. 设计步骤

11.1 选择解调滤波器带宽

SWEN 、SELO 、SEL1 :选择解调滤波器带宽 。用户应根据需要选择解调滤波器带宽:

		解调滤波器带宽		
SEL0	SLE1	SWEN=1	SWEN=0	
1	1	5000Hz	10000Hz	
0	1	2500Hz	5000Hz	
1	0	1250Hz	2500Hz	
0	0	625Hz	1250Hz	

11.2 限幅电平和 CTH 电容

通过使用外部的阈值电容 CTH 和片上选择电容 RSC, 来提取解调后信号的直流值用来对逻辑数据比较。比较水平的时间常数值会由于解码器的类型 ,数据速率而有所不同 ,然而典型的值 一般为 5ms 到 50ms 。 优化的 CTH 值可以使其达到最大的范围。

11.3 自动增益控制 (AGC) 与 CAGC 电容

自动增益控制 (AGC) 能增加输入动态范围。 衰落与激励时间常数之比固定为 10:1, 但激励时间常数能通过选择 CAGC 的值来改变。

为了增大系统动态范围, 在控制电平达到静态值时, 应尽量减低 AGC 控制波纹 (最好低于 10mv) 。推荐 CAGC 应大于等于 0.47uF。

11.4 参考振荡器与外部时钟

根据用户需要 , 可选择以下三种外部时钟:

陶瓷振荡器 晶体振荡器

外部时钟信号(如 MCU 输出时钟),峰值幅度大约 0.7Vpp 用户应根据发射频率和工作模式来确定时钟的值(详细如下)

Transmit Frequency fTX	Reference Oscillator Frequency fT
------------------------	-----------------------------------

315MHz	4.8970MHz
390MHz	6.0630MHz
418MHz	6.4983MHz
433.92MHz	6.7458MHz

11.5 SHUTDOWN 功能

当 SHUT 脚输入高电平时, 芯片进入低功耗 SHUTDOWN 模式, 此时消耗电流仅为 0.01uA 。此脚内部 被上拉 , 正常工作时必须下拉到地。

12. 封装信息

尺寸符号	数值			尺寸符号	数值		
/ / 3 3	最小	公称	最大	7 (3 3)	最小	公称	最大
Α			1 75	Ε	5 80		6 20
A1			1.50	<i>E1</i>	3.70		4.10
b	0 39		0 48	e		1 27	
D	9.70		10.10			· · · · · · · · · · · · · · · · · · ·	

13.注意事项

- 接地:金属底板采用尽量多的通孔接地, 减小寄生电感。
- ▶ 电源旁路:为了器件能很好工作 , 电源引线处建议用 0.1μF 电容滤波 , 电容需靠近器件。
- 防静电损伤:器件为静电敏感器件,传输、装配、测试过程中应采取充分的防静电措施。
- 用户在使用前应进行外观检查, 电路底部、侧面、四周光亮方可进行焊接。如出现氧化可采用去氧化 手段对电路进行处理 ,处理完成电路必须在4小时内完成焊接。
- ▶ 包装袋被打开后 , 元器件将被回流焊制程或其他的高温制程所采用时必须符合:
 - a) 在 12 小时内且工厂环境为温度 < 30C°, 湿度 ≤ 60%RH 完成;
 - b) 使用前需进行去湿处理 (建议 125C°, 4 小时烘烤)
- 产品说明书以发布日期为准,适时修改不另行说明。

防护注意事项

- 产品必须进行密封真空包装 , 并建议放置在干燥柜中储存 , 在温度小于 30C°且湿度小于 60%时 , 可达 12 个月。
- ▶ 打开包装后 . 如未使用完 . 则剩余产品需进行抽真空并放置在干燥柜中保管。