Нисходящий разбор

Теория формальных языков *2021 г*.

Неоднозначные КС-языки

Рассмотрим КС-язык $\{a^nb^mc^m\}\cup\{a^nb^nc^m\}$. Слова $a^nb^nc^n$ этого языка гарантированно имеют минимум два дерева разбора.

Неоднозначные КС-языки

Рассмотрим КС-язык $\{a^nb^mc^m\}\cup\{a^nb^nc^m\}$. Слова $a^nb^nc^n$ этого языка гарантированно имеют минимум два дерева разбора.

Определение

КС-грамматика G неоднозначная, если существует слово $w \in L(G)$ такое, что в G у него больше одного дерева разбора. КС-язык L существенно неоднозначен, если всякая его грамматика неоднозначна.

Неоднозначные КС-языки

Рассмотрим КС-язык $\{a^nb^mc^m\}\cup\{a^nb^nc^m\}$. Слова $a^nb^nc^n$ этого языка гарантированно имеют минимум два дерева разбора.

Определение

КС-грамматика G неоднозначная, если существует слово $w \in L(G)$ такое, что в G у него больше одного дерева разбора. КС-язык L существенно неоднозначен, если всякая его грамматика неоднозначна.

Существование однозначной грамматики не гарантирует существования DPDA: см. $\{\alpha^n b^n\} \cup \{\alpha^n b^{2n}\}$.

Алгоритм Кока-Янгера-Касами — таблица $T_{i,j} = \{A \, | \, \alpha_{i+1} \ldots \alpha_j \in L_G(A)\}$; изменим её на $T_i'[A] = \{i \mid \alpha_{i+1} \dots \alpha_j \in L_G(A)\}.$

Алгоритм Кока-Янгера-Касами — таблица $T_{i,j} = \{A \mid \alpha_{i+1} \dots \alpha_j \in L_G(A)\}$; изменим её на $T_j'[A] = \{i \mid \alpha_{i+1} \dots \alpha_j \in L_G(A)\}$.

Идея алгоритма СТ

Читаем очередной символ, вычисляем множество $T_j'[A]$ для всех $A\in N$, постепенно достраивая его как список, упорядоченный по возрастанию. Если $A\to BC$, тогда если $k\in T_j'[C]$, то для всех $x\in T_k'[B]$ выполнено $x\in T_j'[A]$.

Алгоритм Кока-Янгера-Касами — таблица $T_{i,j} = \{A \mid \alpha_{i+1} \dots \alpha_j \in L_G(A)\}$; изменим её на $T_j'[A] = \{i \mid \alpha_{i+1} \dots \alpha_j \in L_G(A)\}$.

```
\begin{split} T_j'[A] &= \emptyset, \ \forall j, A \\ \text{for } j = 1 \dots n \\ P_i &= \emptyset, \ \forall i, 0 \leqslant i < j \\ \text{for all } A \in N \\ &\text{if } A \to \alpha_j \in R \text{ then } T_j'[A] = \{j-1\} \\ \text{for } k = j - 1 \dots 1 \\ &\text{for all } A \to BC \in R \\ &\text{if } k \in T_j'[C] \text{ then for all } i \in T_k'[B] \ P_i = P_i \cup A \\ &\text{for all } A \in P_{k-1} \ T_j'[A] = T_j'[A] \cup \{k-1\} \end{split}
```

3 / 17

Алгоритм Кока-Янгера-Касами — таблица $T_{i,j} = \{A \mid \alpha_{i+1} \dots \alpha_j \in L_G(A)\}$; изменим её на $T_i'[A] = \{i \mid \alpha_{i+1} \dots \alpha_j \in L_G(A)\}$.

```
\begin{split} T_j'[A] &= \emptyset, \ \forall j, A \\ \text{for } j = 1 \dots n \\ P_i &= \emptyset, \ \forall i, 0 \leqslant i < j \\ \text{for all } A \in N \\ &\text{if } A \rightarrow \alpha_j \in R \text{ then } T_j'[A] = \{j-1\} \\ \text{for } k = j-1 \dots 1 \\ &\text{for all } A \rightarrow BC \in R \\ &\text{if } k \in T_j'[C] \text{ then for all } i \in T_k'[B] \ P_i = P_i \cup A \\ \text{for all } A \in P_{k-1} \ T_j'[A] = T_j'[A] \cup \{k-1\} \end{split}
```

Для однозначных грамматик ACT работает за $O(n^2)$.

Нисходящий разбор

Пусть PDA-анализатор хранит пару $\langle \alpha, \alpha_i \dots \alpha_{i+k} \rangle$, где α — сент. форма, $\alpha_i \dots \alpha_{i+k}$ — k следующих символов в строке.

- Если $\alpha = A\alpha'$, тогда по правилу $A \to \beta$ стековый анализатор переходит в $\langle \beta\alpha', \alpha_i \dots \alpha_{i+k} \rangle$, либо сообщает об ошибке.
- Если $\alpha = \alpha_i \alpha'$, тогда α_i одновременно снимается со стека и читается во входной строке.

LL(k)-грамматики

Определение

Грамматика G называется LL(k) (left-to-right, leftmost derivation) \Leftrightarrow в ситуации, когда существуют выводы $S \to^* w_1 A \alpha \to w_1 \xi \alpha \to^* w_1 c w_2$, $S \to^* w_1 A \beta \to w_1 \eta \beta \to^* w_1 c w_3$, причём $c \in \Sigma^k$, $w_1, w_2, w_3 \in \Sigma^*$, или $c \in \Sigma^{< k}$, $w_2 = w_3 = \varepsilon$, всегда $\eta = \beta$.

LL(k)-грамматики

Определение

Грамматика G называется LL(k) (left-to-right, leftmost derivation) \Leftrightarrow в ситуации, когда существуют выводы $S \to^* w_1 A \alpha \to w_1 \xi \alpha \to^* w_1 c w_2$, $S \to^* w_1 A \beta \to w_1 \eta \beta \to^* w_1 c w_3$, причём $c \in \Sigma^k$, $w_1, w_2, w_3 \in \Sigma^*$, или $c \in \Sigma^{< k}$, $w_2 = w_3 = \varepsilon$, всегда $\eta = \beta$.

Неформально: неоднозначность в выборе правила грамматики при разборе сверху вниз устраняется заглядыванием вперёд на k букв.

Критерий LL(k)-грамматики

Определим

- FIRST_k(η) = { $a_1 \dots a_j \mid (j < k \& \eta \rightarrow a_1 \dots a_j) \lor (j = k \& \eta \rightarrow a_1 \dots a_k \alpha)$ } \cup { $\epsilon \mid \eta \rightarrow^* \epsilon$ }
- $\begin{array}{l} \bullet \ \ \mathsf{FOLLOW}_k(\eta) = \{\alpha_1 \ldots \alpha_j \, | \, (j < k \ \& \ S \rightarrow^* \beta \eta \alpha_1 \ldots \alpha_j) \ \lor \\ (j = k \ \& \ S \rightarrow^* \beta \eta \alpha_1 \ldots \alpha_k \alpha) \} \cup \{\$ \, | \, S \rightarrow^* \beta \eta \} \end{array}$

Тогда G - LL(k)-грамматика $\Leftrightarrow \forall A \to \alpha, A \to \beta$ (FIRST $_k(\alpha \, FOLLOW_k(A)) \cap FIRST_k(\beta \, FOLLOW_k(A)) = \varnothing)$.

Вычисление FIRST_k

- FIRST_k(A) = { $a_1 \dots a_k | A \rightarrow a_1 \dots a_k \alpha$ } $\cup \{a_1 \dots a_j | j < k \& A \rightarrow a_1 \dots a_j\};$
- До исчерпания: $\forall A \to B_1 \dots B_n$, $\mathsf{FIRST}_k(A) = \mathsf{FIRST}_k(A) \cup \mathsf{first}_k(\mathsf{FIRST}_k(B_1) \dots \mathsf{FIRST}_k(B_n)$), где first_k это k первых символов строки.

Вычисление FIRST_k

- FIRST_k(A) = { $a_1 \dots a_k | A \rightarrow a_1 \dots a_k \alpha$ } $\cup \{a_1 \dots a_j | j < k \& A \rightarrow a_1 \dots a_j\};$
- До исчерпания: $\forall A \to B_1 \dots B_n$, $\mathsf{FIRST}_k(A) = \mathsf{FIRST}_k(A) \cup \mathsf{first}_k(\mathsf{FIRST}_k(B_1) \dots \mathsf{FIRST}_k(B_n))$, где first_k это k первых символов строки.

Алгоритм задаёт фундированный порядок на множестве конфигураций $\mathsf{FIRST}_k(A_\mathfrak{i})$, поэтому рано или поздно множества FIRST_k перестанут изменяться.

Вычисление FOLLOW_k

Добавляем правило из нового стартового символа $S_0 \to S\$.$

- $\mathsf{FOLLOW}_k(A) = \emptyset$ для всех $A \neq S$.
- До исчерпания: $\forall B \to \beta$ и разбиений $\beta = \eta_1 A \eta_2$, FOLLOW $_k(A) =$ FOLLOW $_k(A) \cup first_k(\mathsf{FIRST}_k(\eta_2)\mathsf{FOLLOW}_k(B))$, где $first_k$ это k первых символов строки.

Алгоритм также задаёт wfo на множестве конфигураций $\mathsf{FOLLOW}_k(A_i)$.

Таблица LL(k)-разбора

Таблица $T_k(A, x)$ по нетерминалу A и lookahead-символам xвычисляет правило для парсинга.

```
for all A \rightarrow \alpha
for all x \in first_k(FIRST_k(\alpha) FOLLOW_k(A))
  if \mathsf{T}_k(\mathsf{A},\mathsf{x}) не задано, тогда \mathsf{T}_k(\mathsf{A},\mathsf{x})=\mathsf{A}\to \alpha
         else объявление о конфликте
```


LL(k)-грамматики без ε -правил

Пример

Стандартный алгоритм удаления ε -правил приводит к разрушению LL-свойств:

 $S \rightarrow ABC$

 $\begin{array}{ccc} A & \rightarrow & \alpha A \mid d \\ B & \rightarrow & b \mid \epsilon \end{array}$

 $C \rightarrow c | \epsilon$

_____ LL(k)-грамматики без ε-правил

Утверждение (Куроки-Суонио)

Всякая LL(k)-грамматика может быть преобразована в LL(k+1)-грамматику без ε -правил.

LL(k)-грамматики без ε -правил

Утверждение (Куроки-Суонио)

Всякая LL(k)-грамматика может быть преобразована в LL(k+1)-грамматику без ε -правил.

Идея доказательства

Сначала избавимся от всех правил, начинающихся с nullable-нетерминала, путём введения notnull-двойников.

Затем присоединим все nullable-нетерминальные отрезки, стоящие в правых частях, к предшествующим им notnull-нетерминалам, и объявим полученные строки новыми нетерминалами.

В новых правилах nullable-кусок приписывается к самому последнему нетерминалу в правой части.

GNF для LL(k)-грамматики

Утверждения

- Ни одна леворекурсивная грамматика не LL(k) ни для какого k.
- Всякая LL(k)-грамматика может быть преобразована в LL(k+1)-грамматику в GNF.

LL(k)-языки

Определение

CFL L — это LL(k)-язык, если для него существует LL(k)-грамматика.

LL(k)-языки

Определение

CFL L — это LL(k)-язык, если для него существует LL(k)-грамматика.

Существуют LL(k), но не LL(k-1)-языки.

Рассмотрим язык $\{a^n(b^kd|b|c)^n\}$. Это LL(k)-язык:

$$\begin{array}{ccc} S & \rightarrow & \alpha CA \\ C & \rightarrow & \alpha CA \,|\, \epsilon \\ A & \rightarrow & bB \,|\, c \\ B & \rightarrow & b^{k-1}d \,|\, \epsilon \end{array}$$

Неформально: не LL(k-1) потому, что иначе бы имелась LL(k)-грамматика в GNF для L. В стеке разбора для префикса \mathfrak{a}^n оказалось бы больше, чем 2k-1 символов. Подставляя варианты суффиксов к \mathfrak{a}^{n+k-1} , получаем противоречие (метод подмены).

Метод подмены

Общая схема метода

- Рассматриваем сразу LL(k)-грамматику в GNF.
- Показываем, что в её стеке в состоянии α должно находиться не меньше, чем f(k) разных символов при предъявлении тех же самых lookahead k символов.
- После данных k символов предъявляем длинный суффикс, отрезок которого должен контекстно-свободно выводиться из некоторого нетерминала в стеке.
- Предъявляем другой суффикс к тому же префиксу и lookahead, в котором не может быть такого отрезка, и подменяем вывод нетерминала.

Техника метода подмены

- Ищем такие два слова xfy, xfz, что |f|=k и при чтении префикса x стек мог неограниченно разрастись (т.е. есть синхронная накачка хотя бы одной из пар x и y и x и z). Предполагаем высоту стека равной хотя бы k+t (где t выбирается в зависимости от задачи).
- к символов в стеке при выталкивании точно распознают фрагмент f (lookahead). Рассматриваем, что может распознаться остальными t символами. Комбинируем распознанные фрагменты и показываем, что их комбинация не входит в язык.
- Либо если в стеке осталось t символов, а длина, например, у меньше t, тогда с этим стеком точно нельзя распознать у.

Пример подмены

Может ли язык $\{a^nb^n\} \cup \{a^nc^n\}$ задаваться LL(k)-грамматикой для некоторого k?

Пусть такое k нашлось (без ограничения общности — в GNF). Рассмотрим слово $a^{n+k}b^{n+k}$ и подберём такое n, что после чтения a^n LL-анализатор имеет в стеке не меньше k+2 символов. Пусть последний символ — это Y. Он распознает некоторое подслово суффикса b^{n+k} , а именно b^s . Теперь подменим строку на $a^{n+k}c^{n+k}$. В этом случае Y должен распознать некоторое c^t . Но значит, $a^{n+k}b^{n+k-s}c^t\in L$, что невозможно.

Рассмотрим GNF-грамматику для языка $\{a^nb^m \mid n \geqslant m\}$.

Dangling Else

Рассмотрим GNF-грамматику для языка $\{a^nb^m \mid n \geqslant m\}$. Положим $w=a^{n+k}b^{n+k}$, где n таково, что в стеке на момент чтения a^n не меньше, чем k+2 нетерминала. Тогда при подмене w на a^{n+k+1} из стека достанется только k нетерминалов, и слово a^{n+k+1} распознаться не сможет.

Dangling Else

Рассмотрим GNF-грамматику для языка $\{a^nb^m \mid n \geqslant m\}$. Положим $w=a^{n+k}b^{n+k}$, где n таково, что в стеке на момент чтения a^n не меньше, чем k+2 нетерминала. Тогда при подмене w на a^{n+k+1} из стека достанется только k нетерминалов, и слово a^{n+k+1} распознаться не сможет.

Следствие

Dangling else не парсится с помощью LL-разбора.

Свойства LL(k)-языков

<u>Утверждение</u>

- LL(k)-языки не замкнуты относительно объединения.
- LL(k)-языки не замкнуты относительно пересечения с регулярным языком (пример: $\{a^nba^nb\} \cup \{a^nca^nc\}$ не LL(k)-язык).
- Если L LL(k)- нерегулярный язык, то его дополнение — не LL(k) ни для какого k.