

IEL — protokol k projektu

 $\begin{array}{c} Nurdaulet,\,Turar\\xturarn00\end{array}$

6. prosince 2023

Obsah

1	Příklad 1 1.1 Řešení	2
	Příklad 2 2.1 Řešení	5
3	Příklad 3 3.1 Řešení	9
4	Příklad 4	11
5	Příklad 5	12
6	Shrnutí výsledků	13

Stanovte napětí U_{R2} a proud I_{R2} . Použijte metodu postupného zjednodušování obvodu.

sk.	U_1 [V]	U_2 [V]	$R_1 [\Omega]$	$R_2 [\Omega]$	$R_3 [\Omega]$	$R_4 [\Omega]$	$R_5 [\Omega]$	$R_6 [\Omega]$	$R_7 [\Omega]$	$R_8 [\Omega]$
A	80	120	350	650	410	130	360	750	310	190

Řešení

Prvním krokem je zjednodušit rezistory R_7 a R_8 , protože jsou zapojeny sériově, paralelní rezistory R_5 a R_6 , a zároveň i zdroje napětí U_1 a U_2 :

$$R_{78} = R_6 + R_8 = 310 + 190 = 500\Omega$$

$$R_{56} = \frac{1}{\frac{1}{R_5} + \frac{1}{R_6}} = \frac{1}{\frac{1}{360} + \frac{1}{750}} = 243.2432\Omega$$

$$U_{12} = U_1 + U_2 = 80 + 120 = 200V$$

Druhým krokem můžeme provést delta-wye transformace:

$$R_a = \frac{R_3 R_4}{R_3 + R_4 + R_{56}} = \frac{410 * 130}{410 + 130 + 500} = 127.3292\Omega$$

$$R_b = \frac{R_3 R_{56}}{R_3 + R_4 + R_{56}} = \frac{410 * 500}{410 + 130 + 500} = 65.0504\Omega$$

$$R_c = \frac{R_4 R_{56}}{R_3 + R_4 + R_{56}} = \frac{500 * 130}{410 + 650 + 500} = 40.3727\Omega$$

Zatim lze zjednodušit rezistory takhle:

$$R_{1a} = R_1 + R_a = 350 + 127.3292 = 477.3291\Omega$$

$$R_{2b} = R_2 + R_b = 650 + 65.0504 = 718.0503\Omega$$

$$R_{1a2b} = \frac{1}{\frac{1}{R_{1a}} + \frac{1}{R_{2b}}} = \frac{1}{\frac{1}{477.3291} + \frac{1}{718.0503}} = 286.7260\Omega$$

$$R_{EKV} = R_{1a2b} + R_c + R_{78} = 286.7260 + 40.3727 + 500 = 827.0986\Omega$$

S timhle obvodem se dá vypočist celý proud:

$$U = U_{12} = 200 \text{V}$$

$$I = \frac{U}{R_{EKV}} = \frac{200}{827.0987} = 0.2418 \text{A}$$

A teď můžeme vypočist \mathcal{I}_{R2} a \mathcal{U}_{R2}

$$U_{R1a2b} = I * R_{1a2b} = 0.2418 * 286.7260 = 69.3329 V$$

$$U_{R2b} = U_{R1a2b} = 69.3329 V$$

$$U_{R2} = \frac{U_{R2b}R_2}{R2 + Rb} = \frac{69.3329 * 120}{120 + 65.0504} = 62.7622 V$$

$$I_{R2} = \frac{U_{R2}}{R_2} = \frac{62.7622}{650} = 0.2418 A$$

Stanovte napětí U_{R6} a proud $I_{R6}.$ Použijte metodu Théveninovy věty.

sk.	U[V]	$R_1 [\Omega]$	$R_2 [\Omega]$	$R_3 [\Omega]$	$R_4 [\Omega]$	$R_5 [\Omega]$	$R_6 [\Omega]$	
D	150	200	200	660	200	550	150	

Řešení

Podle Theveninovy vety nahradime zdroj napeti U za drat, vypneme resistor R_6 a vypocitame odpor mezi body A a B:

Zjednodušime obvod:

$$R_{23} = R_2 + R_3 = 200 + 660 = 860\Omega$$

$$R_{123} = \frac{1}{\frac{1}{R_1} + \frac{1}{R_{23}}} = \frac{1}{\frac{1}{200} + \frac{1}{860}} = 162.2642\Omega$$

$$R_{1234} = R_{123} + R_4 = 162.2642 + 200 = 362.2642\Omega$$

$$R_{th} = \frac{1}{\frac{1}{R_{1234}} + \frac{1}{R_5}} = \frac{1}{\frac{1}{362.2642} + \frac{1}{550}} = 218.4074\Omega$$

Ted mame zjistit U_{th} . Vratime zdroj napeti at jsme ho vypocitame.

$$R_{45} = R_4 + R_5 = 200 + 550 = 750\Omega$$

$$R_{2345} = \frac{1}{\frac{1}{R_{23}} + \frac{1}{R_{45}}} = \frac{1}{\frac{1}{860} + \frac{1}{750}} = 400.6211\Omega$$

$$R_{12345} = R_1 + R_{2345} = 200 + 400.6211 = 600.6211\Omega$$

Po Zjednodušeni se da vypocist Theveninovy proud:

$$I = \frac{U}{R_{12345}} = \frac{150}{600.6211} = 0.2497 \text{A}$$

$$U_{R2345} = I * R_{2345} = 0.2497 * 400.6211 = 100.0517 \Omega$$

$$U_{R45} = U_{R2345}$$

$$I_{R45} = \frac{U_{R45}}{R_{45}} = \frac{100.0517}{750} = 0.1334 \text{A}$$

$$I_x = I_{R45}$$

$$U_{th} = I_x * R_5 = 0.1334 * 550 = 73.3713 \text{V}$$

Podle Theveninovy vety dostaneme takyto ekvivalentni obvod:

S kterym se da jednoduse vypocist U_{R6} a I_{R6} :

$$R_{ekv} = R_1 + R_{th} = 200 + 218.4074 = 418.4074\Omega$$

$$I = \frac{U}{R_{ekv}} = \frac{150}{418.4074} = 0.1992A$$

$$I_{R6} = I = 0.1992A$$

$$U_{R6} = I * R_6 = 0.1992 * 150 = 29.8737V$$

Stanovte napětí U_{R4} a proud I_{R4} . Použijte metodu uzlových napětí $(U_A,\,U_B,\,U_C)$.

sk.	U[V]	I_1 [A]	I_2 [A]	$R_1 [\Omega]$	$R_2 [\Omega]$	$R_3 [\Omega]$	$R_4 [\Omega]$	$R_5 [\Omega]$
D	115	0.6	0.9	50	38	48	37	28

Řešení

Prvnim krokem vyadrime napeti na uzlech pomoci druheho Kirchhoffův zákona:

$$U_A: I_1 + I_{R_2} - I_{R_1} = 0$$

 $U_B: I_2 + I_{R_3} - I_{R_2} = 0$
 $U_C: I_{R_5} - I_2 - I_{R_3} - I_{R4} = 0$

Vyadrime proudy:

$$I_{R1} = \frac{U_A}{R_1}$$

$$I_{R2} = \frac{U_B - U_A}{R_2}$$

$$I_{R3} = \frac{U_C - U_B}{R_3}$$

$$I_{R4} = \frac{U_C}{R_4}$$

$$I_{R5} = \frac{U - U_C}{R_5}$$

Nasadime do uzlovych napeti:

$$\begin{split} U_A: \quad I_1 + \frac{U_B - U_A}{R_2} - \frac{U_A}{R_1} &= 0 \\ U_B: \quad I_2 + \frac{U_C - U_B}{R_3} - \frac{U_B - U_A}{R_2} &= 0 \\ U_C: \quad \frac{U - U_C}{R_5} - I_2 - \frac{U_C - U_B}{R_2} - \frac{U_C}{R_4} &= 0 \end{split}$$

Nasadime zname hodnoty:

$$\begin{split} U_A: \quad & \frac{6}{10} + \frac{U_B - U_A}{38} - \frac{U_A}{50} = 0 \\ U_B: \quad & \frac{9}{10} + \frac{U_C - U_B}{48} - \frac{U_B - U_A}{38} = 0 \\ U_C: \quad & \frac{U - U_C}{28} - \frac{9}{10} - \frac{U_C - U_B}{48} - \frac{U_C}{37} = 0 \end{split}$$

Dostali jsme soustavu tri rovnic s tremi neznamymi. Upravime koeficienty:

$$-\frac{22}{475}U_A + \frac{1}{38}U_B = -\frac{3}{5}$$

$$\frac{1}{38}U_A - \frac{43}{912}U_B + \frac{1}{48}U_C = -\frac{9}{10}$$

$$\frac{1}{48}U_B + \frac{1039}{12432}U_C = -\frac{449}{140}$$

A nasadime do matice:

$$\begin{pmatrix} -\frac{22}{475} & \frac{1}{38} & 0\\ \frac{1}{38} & -\frac{43}{912} & \frac{1}{48}\\ 0 & \frac{1}{48} & \frac{1039}{12432} \end{pmatrix} \times \begin{pmatrix} U_A \\ U_B \\ U_C \end{pmatrix} = \begin{pmatrix} -\frac{3}{5} \\ -\frac{9}{10} \\ -\frac{449}{140} \end{pmatrix}$$

Spočítáme hodnoty U_A , U_B a U_C

$$U_A = \frac{275965}{4938} = 55.8859V$$

$$U_B = \frac{186556}{2469} = 75.5593V$$

$$U_C = \frac{706256}{12345} = 57.2098V$$

S tim se da vypocist U_{R4} a I_{R4} :

$$U_{R4} = U_C = 57.2098$$
V
 $I_{R4} = \frac{U_{R4}}{R4} = 1.5462$ A

Pro napájecí napětí platí: $u_1 = U_1 \cdot \sin(2\pi f t)$, $u_2 = U_2 \cdot \sin(2\pi f t)$. Ve vztahu pro napětí $u_{L_2} = U_{L_2} \cdot \sin(2\pi f t + \varphi_{L_2})$ určete $|U_{L_2}|$ a φ_{L_2} . Použijte metodu smyčkových proudů.

Pozn: Pomocné směry šipek napájecích zdrojů platí pro speciální časový okamžik $(t=\frac{\pi}{2\omega}).$

									200
sk.	U_1 [V]	U_2 [V]	$R_1 [\Omega]$	$R_2 [\Omega]$	L_1 [mH]	L_2 [mH]	C_1 [μ F]	C_2 [µF]	f [Hz]
A	3	5	12	14	120	100	200	105	70

V obvodu na obrázku níže v čase t=0 [s] sepne spínač S. Sestavte diferenciální rovnici popisující chování obvodu na obrázku, dále ji upravte dosazením hodnot parametrů. Vypočítejte analytické řešení $u_C=f(t)$. Proveďte kontrolu výpočtu dosazením do sestavené diferenciální rovnice.

	sk.	U [V]	C[F]	$R [\Omega]$	$u_C(0)$ [V]
	E	40	2	100	13
		R			
			\neg		
t = 0 s	_\ _\				
s	_		c.		
	٦		<u> </u>	C	
			₩		
υ					
↓ -	\bigvee				

Shrnutí výsledků

Příklad	Skupina	$\mathbf{V}\mathbf{\acute{y}}\mathbf{sledky}$			
1	A	$U_{R2} = 62.7622 V$	$I_{R2} = 0.2418$ A		
2	D	$U_{R6} = 29.8737 \text{V}$	$I_{R6} = 0.1992$ A		
3	D	$U_{R4} = 57.2098 V$	$I_{R4} = 1.5462$ A		
4	A	$ U_{L_2} =$	$\varphi_{L_2} =$		
5	E	$u_C =$			