Algorithms and complexity

Kylie A. Bemis

Northeastern University
Khoury College of Computer Sciences

Goals for today

- Review of functions
- Intro to algorithms
- Time and complexity

REVIEW: FUNCTIONS

Why functions?

- Code should be reusable!
- Decomposition creates structure
 - Self-contained chunk of code
 - Coherent and organized design
- Performs a single task using input
- Returns a value as <u>output</u>

Using functions

- We use many functions (e.g., print())
- Abstraction supports usability
 - Functions are a "black box" for users
 - No need to know implementation details
- Supported usage should be documented
 - Function specification
 - Docstring

Function characteristics

- Functions in Python have:
 - Name
 - Parameters (0 or more)
 - Docstring (optional, but recommended)
 - Body (implementation)
 - Return value
- Good functions are intuitive to use

Defining a function in Python

```
def mysum(x):
    Sums values of an iterable
    param x: An iterable to sum the values
    returns: The sum
    11 11 11
    xsum = 0
    for xi in x:
        xsum += xi
    return xsum
```

Defining a function in Python

```
Parameter
 Name
mysum(x):
11 11 11
Sums values of an iterable
param x: An iterable to sum the values
returns: The sum
                Body
xsum = 0
```

```
xsum += xi
```

Docstring

mysum([1, 2, 3]) Usage (later in code)

Scope in functions

- Scope is how a program looks up names
- Variables may be found in 3 scopes:
 - Local variables are assigned inside a function def
 - Nonlocal variables are assigned in an enclosing def
 - Global variables are assigned in the top-level module
- Variables with the same name, but
 different scopes, are different variables

Scope example

```
# Global: X is assigned at top-level
X = 99

def func(Y):  # Local: Y and Z assigned in def
    Z = X + Y  # Accesses global X
    return Z

func(1) # returns 100
```

Another look at Python scopes

Built-in (Python)

Names preassigned in the built-in names module: open, range, SyntaxError....

Global (module)

Names assigned at the top-level of a module file, or declared global in a def within the file.

Enclosing function locals

Names in the local scope of any and all enclosing functions (def or lambda), from inner to outer.

Local (function)

Names assigned in any way within a function (def or lambda), and not declared global in that function.

Design of good functions

- Organize your function's inputs and outputs
 - Arguments should be inputs
 - Use return for outputs
 - Only modify mutable arguments when expected
 - Avoid global variables for inputs or outputs
- Functions should have a clear, single purpose
- Function code should be relatively small

Functions in Python

Function recursion

- Functions are allowed to call themselves
- Good for solving problems of recurrent relationships
- Fibonacci:
 - f(1) = 1, f(2) = 1
 - $\bullet f(n) = n + f(n 1)$
- Factorial:
 - $\bullet f(I) = I$
 - $\bullet f(n) = n \times f(n 1)$

Factorial example

```
def fact(n):
    11 11 11
    Factorial of n (i.e., n!)
    param n: A number
    returns: Factorial of n
    11 11 11
    if n == 1:
     return n
   else:
     return n * fact(n-1)
```

INTRO TO ALGORITHMS

Sort an array in increasing order?

1. Select the smallest element

2. Select the second smallest element

3. Select the third element

Selection sort

- For each position *i* along the array:
 - Scan forward from *i* to find smallest element
 - Swap smallest element into position I
 - First i elements are now a sorted subarray

```
SelectionSort(x):

for i along x
    find index j of min of x[i:]
    swap x[j] and x[j]
```

Selection sort

```
def ssort(x):
    11 11 11
    Sorts a list of numbers in-place using selection sort
    param x: The list to sort (in place)
    returns: None
    11 11 11
    for i in range(len(x)):
      imin = i
     # find minimum in sublist x[i:]
      for j in range(i, len(x)):
       if x[j] < x[imin]:</pre>
         imin = j
     swap(x, i, imin)
```

Improving selection sort

- Always need to scan whole subarray
- Is there a way we can improve this?
- Scan backward instead of forward?

1. Insert first element into subarray

2. Insert second element into subarray

3. Insert third element into subarray

4. Insert fourth element into subarray

5. Insert fifth element into subarray

Insertion sort

- For each position *i* along the array:
 - Scan backward from i comparing each element
 - Swap current element toward front while it's smaller
 - First i elements are now a sorted subarray

```
InsertionSort(x):

for i along x
   while x[i] < x[i-1]
      swap x[i] and x[i-1]
      i = i - 1</pre>
```

Insertion sort

```
def isort(x):
    Sorts a list of numbers in-place using insertion sort
    param x: The list to sort (in place)
    returns: None
    11 11 11
    for i in range(len(x)):
     i = i - 1
     # swap x[i] toward front of sorted sublist x[:i]
     while j \ge 0 and x[i] < x[j]:
       if x[i] < x[j]:
         swap(x, i, j)
         i = j # note: won't affect next iteration's 'i'!
```

Divide and conquer

- Can we divide the program into smaller sub-problems?
- Sub-problems should be easier to solve
- Re-combine the output of sub-problems into a complete solution

Sort array with divide and conquer?

Divide the problem into sub-problems

Merge the results back together

Merge sort

- Split input array into two subarrays
 - Apply merge sort to each subarray
 - Merge the sorted subarrays

```
MergeSort(x):

if length of x is 1
    return x
else
    i = midpoint of x
    L = MergeSort(x[:i])
    R = MergeSort(x[i:])
    return Merge(L, R)
```

TIME AND COMPLEXITY

Measuring algorithmic complexity

- Upper bound on amount of time for an algorithm to complete for input size *n*
- Asymptotic upper bound described as O(g(n))
- A function f(n) is O(g(n)) if

E.g.,
$$4n + 3 \rightarrow O(n)$$

E.g., $4n + 3 \rightarrow O(n^2)$

Growth rates of functions

Common complexities

O(I)	Constant time (not affected by input size)
O(n)	Time increases linearly with input
$O(n^2)$	Time increases quadratically with input
O(log n)	Time increases logarithmically (divide & conquer)
O(n log n)	Time increases log-linearly (divide & conquer)
$O(x^n)$	Time increases by factor of x for each new input
O(n!)	Time increases by a larger factor for each new input

Visualizing complexities

https://learntocodetogether.com/big-o-cheat-sheet-for-common-data-structures-and-algorithms/

Complexity of selection sort

```
def ssort(x):
      Sorts a list of numbers in-place using selection sort
      param x: The list to sort (in place)
      returns: None
      11 11 11
                                                     Outer loop grows as O(n)
      for i in range(len(x)):
       imin = i
       # find minimum in sublist x[i:]
       for j in range(i, len(x)):
                                                      Inner loop grows as O(n)
          if x[j] < x[imin]:</pre>
             imin = j
       swap(x, i, imin)
```

Complexity of insertion sort

```
def isort(x):
      11 11 11
      Sorts a list of numbers in-place using insertion sort
      param x: The list to sort (in place)
      returns: None
      11 11 11
                                                     Outer loop grows as O(n)
      for i in range(len(x)):
       j = i - 1
       # swap x[i] toward ...
       while j \ge 0 and x[i] < x[j]:
                                                     Inner loop grows as O(n)
          if x[i] < x[j]:
             swap(x, i, j)
             i = j \# note: \dots
```

Therefore, insertion sort is also $O(n \times n) = O(n^2)$

Complexity of merge sort

At each level, process O(n) elements

Therefore, merge sort is O(n × log n)

Common patterns of complexity

- Constant time
 - Operations that do not depend on input size
- Linear and polynomial time
 - Simple loops dependent on input size are linear: O(n)
 - ◆ Nested loops are polynomial: $O(n) \rightarrow O(n^2) \rightarrow O(n^3)$
- Logarithmic time
 - Algorithms that repeatedly divide input
 - Don't forget to consider sub-operations!