Coefficient Interpretation and Hypothesis Tests for Multiple Logistic Regression

Model

$$P(Y_i = 1 | X_{i1}, \dots, X_{ip}) = \frac{e^{\beta_0 + \beta_1 X_{i1} + \dots + \beta_p X_{ip}}}{1 + e^{\beta_0 + \beta_1 X_{i1} + \dots + \beta_p X_{ip}}}$$

Note that this means that

$$P(Y_i = 0|X_{i1}, \dots, X_{ip}) = 1 - P(Y_i = 1|X_{i1}, \dots, X_{ip}) = 1 - \frac{e^{\beta_0 + \beta_1 X_{i1} + \dots + \beta_p X_{ip}}}{1 + e^{\beta_0 + \beta_1 X_{i1} + \dots + \beta_p X_{ip}}}$$

$$= \frac{1}{1 + e^{\beta_0 + \beta_1 X_{i1} + \dots + \beta_p X_{ip}}}$$

Odds

The odds that Y = 1 are given by:

$$Odds(Y_i = 1) = \frac{P(Y_i = 1|X_i)}{P(Y_i = 0|X_i)}$$

- If $P(Y_i=1|X_i)=0.75,\,Odds(Y_i=1)=\frac{0.75}{0.25}=3$ If $P(Y_i=1|X_i)=0.5,\,Odds(Y_i=1)=\frac{0.5}{0.9}=\frac{1}{9}$ If $P(Y_i=1|X_i)=0.1,\,Odds(Y_i=1)=\frac{0.75}{0.9}=\frac{1}{9}$

Odds in a Logistic Regression Model

$$\begin{aligned} Odds(Y_i = 1) &= \frac{P(Y_i = 1 | X_i)}{P(Y_i = 0 | X_i)} = \frac{\frac{e^{\beta_0 + \beta_1 X_{i1} + \dots + \beta_p X_{ip}}}{1 + e^{\beta_0 + \beta_1 X_{i1} + \dots + \beta_p X_{ip}}} \\ &= e^{\beta_0 + \beta_1 X_{i1} + \dots + \beta_p X_{ip}} \end{aligned}$$

Coefficient Interpretation

On Odds Scale

Increasing X_{ij} by 1 unit while holding all other explanatory variables fixed leads to a multiplicative change in the predicted odds by e_i^{β} .

On Log-Odds Scale

Increasing X_{ij} by 1 unit while holding all other explanatory variables fixed leads to an additive change in predicted log-odds of β_j units.

Credit Card Default Example

```
library(ggplot2)
library(gridExtra)
library(dplyr)
library(ISLR)
fit <- glm(default ~ student + balance + income, data = Default, family = binomial)
summary(fit)
##
## Call:
## glm(formula = default ~ student + balance + income, family = binomial,
##
      data = Default)
##
## Deviance Residuals:
##
      Min
                1Q
                    Median
                                  3Q
                                          Max
## -2.4691 -0.1418 -0.0557 -0.0203
                                       3.7383
##
## Coefficients:
##
                Estimate Std. Error z value Pr(>|z|)
## (Intercept) -1.087e+01 4.923e-01 -22.080 < 2e-16 ***
## studentYes -6.468e-01 2.363e-01 -2.738 0.00619 **
## balance
              5.737e-03 2.319e-04 24.738 < 2e-16 ***
               3.033e-06 8.203e-06
## income
                                     0.370 0.71152
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
      Null deviance: 2920.6 on 9999 degrees of freedom
## Residual deviance: 1571.5 on 9996 degrees of freedom
## AIC: 1579.5
##
## Number of Fisher Scoring iterations: 8
```

What is the interpretation of the coefficient for studentYes? Note that $e^{-0.6468} \approx 0.523719$.

What is the interpretation of the coefficient for balance? Note that $e^{0.005737}\approx 1.005753$. Is it helpful to consider that $e^{(0.005737*100)}\approx 1.775$?

Hypothesis Tests

Caution: standard approaches to hypothesis testing in logistic regression models are highly dependent on having a fairly large sample size. See Stat 343 for bootstrap-based alternatives.

Tests about one coefficient

P-values for tests about one coefficient can be read from the summary output as with lm. Note that these are not t tests, but are large-sample z tests (based on an approximate normal distribution from the Central Limit Theorem).

Example: Conduct a test of the claim that an individual's income is not useful in predicting whether or not they will default on their credit card debt.

Tests about more than one coefficient

This is a little artificial, but to demonstrate the code let's consider a test of the hypotheses that we can drop both the student and the income variables from the model. We will:

- fit a reduced model (similar to what we would do in a lm context)
- call anova to compare the reduced and full model
 - Unlike anova comparisons with linear models, we need to specify a test argument to anova. A common option is test = "LRT" (for likelihood ratio test). Again, this is a large-sample approximate test procedure.

```
fit_reduced <- glm(default ~ balance, data = Default, family = binomial)
anova(fit_reduced, fit, test = "LRT")
## Analysis of Deviance Table</pre>
```

```
##
## Model 1: default ~ balance
## Model 2: default ~ student + balance + income
## Resid. Df Resid. Dev Df Deviance Pr(>Chi)
## 1 9998 1596.5
## 2 9996 1571.5 2 24.907 3.904e-06 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
```