A Book of Abstract Algebra (2nd Edition)

Chapter 33, Problem 2EE	Bookmark	Show all steps: ON

Problem

Let K be a finite extension of F, where K is a root field over F, with G = Gal(K: F) a solvable group. As remarked in the text, we will assume that F contains the required roots of unity. By Exercise D, let H_0, \ldots, H_n be a solvable series for G in which every quotient H_{i+1}/H_i is cyclic of prime order. For any $i = 1, \ldots, n$, let F_i and F_{i+1} be the fixfields of H_i and H_{i+1} .

Let π be a generator of Gal(Fi: Fi + 1), ω a pth root of unity in F_{i+1} , and $b \in F_i$. Set

$$c = b + \omega \pi^{-1}(b) + \omega^2 \pi^{-2}(b) + \dots + \omega^{p-1} \pi^{-(p-1)}(b)$$

Show that $\pi(c) = \omega c$.

Step-by-step solution

Step 1 of 4		
Here, objective is to prove that $\pi(c) = \omega c$.		
Comment		
Step 2 of 4		
A G is a group of automorphism of K . The set of elements fixed by every element of G cal fixed field.	led the	
Comment		
Ston 2 of 4		

Step 3 of 4

G = Gal(K : F) is a solvable group.

F is the fixed field of G.

Where, K is a the finite extension of F.

Consider F_i and F_{i+1} are the fixed fields of H_i and H_{i+1} .

Comment

Step 4 of 4

Consider π is the generator of $Gal[F_i:F_{i+1}]$ $F_i = F_{i+1}(\pi)$ $b \in F_i$ Then, $b = F_{i+1}(\pi)$ $\pi^{-1}(b) = F_{i+1}$ ω is a p^{th} root of unity in F_{i+1} and $b \in F_i$

Consider

$$\begin{split} c &= b + \omega \pi^{-1}(b) + \omega^2 \pi^{-2}(b) + \dots + \omega^{p-1} \pi^{-(p-1)}(b) \\ \pi(c) &= \pi(b) + b + \omega \pi^{-1}(b) + \omega^2 \pi^{-2}(b) + \dots + \omega^{p-1} \pi^{-(p-2)}(b) \\ &= \pi(b) + c \\ &= c \qquad (\because b \in F_i) \\ &= \omega c \qquad (\because \omega = \sqrt[p]{1}) \end{split}$$

Hence, proved

Comment