ESTAD_TRG. HPTSIS COMPUESTAS y CUMP.

CONTRASTES de SIGNIFICACIÓN, PURLOT.

CONTRASTE de RAZÓN de VEROSIMILITUDES.

CONTRASTES cobre µ y G² en pobl. normala.

CONTRASTES en pobl. no normala.

MUESTRAS GRANDES

thipólesis compuellas > +6, the o'combas incluye mái de vu valor par el parémetro.

Contraste uniformemente mai potente -> Contraste de Horimple frente a Hi alternativa, doncte la RC es la mojor RC de bunaño a par contraster to frente a cado una de las liptois simples que integra tos.

Para los contractes uniblereles y bibliendes, en general, no en anequirade la existencia de CUMP,

CONTRASTES de SIGNIFICACIÓN

1 Ho: $\theta = \theta_0$ | se contrarte ni existen defenencias injustration

1 Ho: $\theta \neq \theta_0$ | se contrarte ni existen defenencias injustration

1 Ho: $\theta \neq \theta_0$ | sette la que dice tho y la evidencia muental.

Estadístico: $D = \hat{\Theta} - \Theta_0$ (cautided pivotel) Decisión: Si $D > d_{\alpha}$, rechatotto

PUDLOR -> memor mivel de njuitración con el que se redocto.

Probab. a partir de la cual Dae en Re

p-velor < a >> Rechoto to -> p a

p-velor > a >> Recepto to a f

CONTRASTE de RAZON de VEROSITILITUD:

Es un contrate de significación, donde la modida de discrepancie que se utilità en un discrepancie relativa entre verosimiletudes.

Définiment el entadéstico ratou de veronimilietre :

$$\lambda(x) = \lambda(x, -x_u) = \frac{\int_0^x (x, \theta)}{\int_0^x (x, \theta)} = \frac{\lim_{\theta \in \Omega_0} \chi(x, \theta)}{\lim_{\theta \in \Omega_0} \chi(x, \theta)} /0 \leq \lambda(x) \leq 1$$

trainion: A(x) NO => reclusto Ho X(x) NA => acepto the

Para poblacioner cormales:

$$|X-\mu_0| > Z_{X/2}$$
. \sqrt{n} = π reduces the $|X-\mu_0| > t_{X/2}$. $\sqrt{n-1}$ = π reduces the

NO NORTALES

Para muestras orfic. pender, se puode utilizer TCL

Población	'Hipótesis nula H ₀	Hipótesis alternativa H _i	Tamaño de muestra	Estadístico	Distribu- ción	Región crítica
N(μ, σ) σ conocida	$\mu = \mu_0$ $\mu \leqslant \mu_0$ $\mu \geqslant \mu_0$	$\mu \neq \mu_0$ $\mu > \mu_0$ $\mu < \mu_0$	п	$z_{\exp} = \frac{\bar{x} - \mu_0}{\sigma / \sqrt{n}}$	N(0, 1)	$z_{\exp} < -z_{\alpha/2}$ y $z_{\exp} > z_{\alpha/2}$ $z_{\exp} > z_{\alpha}$ $z_{\exp} < -z_{\alpha}$ $z_{\exp} < -z_{\alpha}$ $z_{\exp} < -z_{\alpha}$
N(μ, σ) σ desconocida	$\mu = \mu_0$ $\mu \leqslant \mu_0$ $\mu \geqslant \mu_0$	$\mu \neq \mu_0$ $\mu > \mu_0$ $\mu < \mu_0$	п	$s^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (x_{i} - \bar{x})^{2}$	t_{n-1}	$t_{\exp} < -t_{\alpha/2}$ y $t_{\exp} > t_{\alpha/2}$ $-t_{\alpha/2}$ $t_{\exp} > t_{\alpha}$ $\alpha/2$ $-t_{\alpha/2}$ $t_{\alpha/2}$ $t_{\alpha/2}$ $-t_{\alpha/2}$ $t_{\alpha/2}$ $t_{\alpha/2}$ $t_{\alpha/2}$ $t_{\alpha/2}$ $t_{\alpha/2}$ $t_{\alpha/2}$ $t_{\alpha/2}$ $t_{\alpha/2}$

Población	Hipótesis nula H ₀	Hipótesis alternativa H ₁	Tamaño de muestra	Estadístico	Distribu- ción	Región crítica
N(μ, σ) μ	$\sigma^{2} = \sigma_{0}^{2}$ $\sigma^{2} \leqslant \sigma_{0}^{2}$ $\sigma^{2} \geqslant \sigma_{0}^{2}$	$\sigma^2 \neq \sigma_0$ $\sigma^2 > \sigma_0^2$	п	$\begin{cases} \sum_{i=1}^{n} (x_i + \mu)^2 \\ x_{\text{exp}}^2 = \frac{1}{\sigma^2} \end{cases}$	χ^2_n	$\chi_{\text{exp}}^2 < \chi_{n, a/2}^2$ y $\chi_{\text{exp}}^2 > \chi_{n, 1-a/2}^2$ $\chi_{\text{exp}}^2 > \chi_{n, 1-a/2}^2$ $\chi_{n, a/2}^2 \qquad \chi_{n, 1-a/2}^2$ $\chi_{\text{exp}}^2 > \chi_{n, 1-a}^2$
conocida	$\sigma^2 \geqslant \sigma_0^2$	$\sigma^2 < \sigma_0^2$		$\left \begin{array}{c} \lambda_{\text{exp}}^2 = \frac{1+1}{\sigma_0^2} \end{array}\right $		$\chi_{\rm exp}^2 < \chi_{n, \alpha}^2$ $\chi_{\rm exp}^2 < \chi_{n, \alpha}^2$ $\chi_{\rm a}^2$
Ν(μ, σ)	$\sigma^2 = \sigma_0^2$ $\sigma^2 \leqslant \sigma_0^2$	$\sigma^2 \neq \sigma_0$	n	$\left \chi_{\exp}^2 = \frac{(n-1)s^2}{ \sigma_0^2 } \right $		$\chi_{\exp}^{2} < \chi_{n-1, \alpha/2}^{2}$ y $\chi_{\exp}^{2} > \chi_{n-1, 1-\alpha/2}^{2}$ $\chi_{n-1, 1-\alpha/2}^{2}$ $\alpha/2$ $1-\alpha$ $\chi_{n-1, 1-\alpha/2}^{2}$
μ desconocida	$\sigma^2 \leqslant \sigma_0^c$ $\sigma^2 \geqslant \sigma_0^2$	$\sigma^2 > \sigma_0^2$ $\sigma^2 < \sigma_0^2$	n	$s^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (x_{i} - \bar{x})^{2}$	X _{n-1}	$ \chi_{\exp}^2 > \chi_{n-1, 1-\alpha}^2 $ $ \frac{1-\alpha}{\chi_{n-1, 1-\alpha}^2} $ $ \chi_{n-1, \alpha}^2 = \chi_{n-1, \alpha}^2 $

Población	Hipótesis nula H ₀	Hipótesis alternativa H ₁	Tamaño de muestra	Estadístico	Distribu- ción	Región crítica
$N(\mu_x, \sigma_x)$ $N(\mu_y, \sigma_y)$ σ_x, σ_y conocidas	$\mu_{x} - \mu_{y} = d_{0}$ $\mu_{x} - \mu_{y} \leq d_{0}$ $\mu_{x} - \mu_{y} \geq d_{0}$	$\mu_x - \mu_y > d_0$	n_x , n_y	$z_{\rm exp} = \frac{x - \ddot{y} - d_0}{\sqrt{\frac{\sigma_x^2 + \frac{\sigma_y^2}{n_x}}{n_x} + \frac{\sigma_y^2}{n_y}}} $	N(0, 1)	$z_{\exp} < -z_{a/2}$ y $z_{\exp} > z_{a/2}$ $z_{\exp} > z_{\alpha}$ $\alpha/2$ $-z_{a/2}$ $z_{a/2}$ $\alpha/2$ $-z_{a/2}$ $z_{a/2}$
				English Constitution (Constitution Constitution Cons		$z_{\rm exp} < -z_{\alpha}$ $\frac{\alpha}{-z_{x}}$
$N(\mu_x, \sigma_x)$				$i_{\text{cap}} = \frac{\bar{x} - \bar{y} - d_0}{\sqrt{1 - 1}}$		$t_{\exp} < -t_{\alpha/2} \qquad \frac{\alpha/2}{y}$ $t_{\exp} > t_{\alpha/2} \qquad \frac{\alpha/2}{-t_{\alpha/2}} \qquad t_{\alpha/2}$
$N(\mu_y, \sigma_y)$ σ_x, σ_y	$\mu_x - \mu_y \leqslant d_0$	$ \begin{array}{ccc} d_0 & \mu_x - \mu_y \neq d_0 \\ d_0 & \mu_x - \mu_y > d_0 \\ \mu_x - \mu_y < d_0 \end{array} $	n_x, n_y	$s'^{2} = \frac{(n_{x} - 1)s_{x}^{2} + (n_{y} - 1)s_{y}^{2}}{n_{x} + n_{y} - 2}$	$t_{n_x+n_y-2}$	$t_{\rm exp} > t_{\alpha}$ $t_{\rm x}$
						$t_{\rm exp} < -t_a$ $\frac{\alpha}{1-\alpha}$

Población	Hipótesis nula H ₀	Hipótesis alternativa H _i	Tamaño de muestra	Estadístico	Distribu- ción	Región crítica
σ_x, σ_y	$\mu_{x} - \mu_{y} = d_{0}$ $\mu_{x} - \mu_{y} \leqslant d_{0}$	$\mu_x - \mu_y > d_0$	n _x , n _y	$\begin{cases} t_{\text{exp}} = \frac{\bar{x} - \bar{y} - d_0}{\sqrt{\frac{S_x^2 + S_y^2}{n_x} + \frac{S_y^2}{n_y}}} \\ \\ \frac{1}{\sqrt{\frac{S_x^2 + S_y^2}{n_x} + \frac{S_y^2}{n_y}}} \end{cases}$	$v = \frac{\left(\frac{S_x^2}{n_x} + \frac{S_y^2}{n_y}\right)^2}{\left(\frac{S_x^2}{S_x^2}\right)^2 \left(\frac{S_y^2}{S_y^2}\right)^2}$	$t_{\exp} < -t_{\alpha/2} \alpha/2 \alpha/2$ $y 1-\alpha$ $t_{\exp} > t_{\alpha/2} t_{\alpha/2}$ $t_{\exp} > t_{\alpha} \alpha$
desconocidas $\sigma_x^2 \neq \sigma_y^2$	$\mu_{\dot{x}} - \mu_{\dot{y}} \geqslant d_0$	$\mu_x - \mu_y < d_0$		$\begin{cases} t_{\text{exp}} = \frac{1}{\sqrt{\frac{S_x^2 + S_y^2}{n_x + n_y}}} \\ \frac{S_x^2 + \frac{1}{n_x - 1}}{n_x - 1} \sum_{i=1}^{n_x} (x_i - \bar{x})^2 \\ \frac{1}{S_y^2 = \frac{1}{n_y - 1}} \sum_{i=1}^{n_y} (y_i - \bar{y})^2 \end{cases}$	$\frac{\left(\frac{3x}{n_x}\right)}{n_x - 1} + \frac{\left(\frac{3y}{n_y}\right)}{n_y - 1}$,
$N(\mu_x, \sigma_x)$	9 •			$t_{\rm exp} = \frac{\overline{d} - d_0}{s_d \sqrt{n}}$		$\begin{vmatrix} t_{\exp} < -t_{\alpha/2} & \alpha/2 & \alpha/2 \\ y & 1-\alpha & 1-\alpha \\ t_{\exp} > t_{\alpha/2} & -t_{\alpha/2} & t_{\alpha/2} \end{vmatrix}$
$N(\mu_y, \sigma_y)$ muestras apareadas (X_i, Y_i)	$\mu_x - \mu_y \leqslant d_0$	$\mu_{x} - \mu_{y} \neq d_{0}$ $\mu_{x} - \mu_{y} > d_{0}$ $\mu_{x} - \mu_{y} < d_{0}$		$\bar{d} = \frac{1}{n} \sum_{i=1}^{n} d_{i}$ $s_{d}^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (d_{i} - \bar{d})^{2}$	t_{n-1}	$t_{\rm exp} > t_{\alpha}$ t_{α}
				$d_i = x_i - y_i$		$t_{\rm exp} < -t_{\alpha}$ $t_{\rm exp} < -t_{\alpha}$

Población	Hipótesis nula <i>H</i> 0	Hipótesis alternativa H ₁	Tamaño de muestra	Estadístico	Distribu- ción	Región crítica
$N(\mu_x, \sigma_x)$	$\sigma^2 = \sigma^2$	$a^2 \neq a^2$		$\frac{1}{2} \int_{0}^{u_x} (x_x - \mu_x)^2$		$F_{\exp} < F_{\alpha/2}$ y $F_{\exp} > F_{1-\alpha/2}$ $ \alpha/2 $ $1-\alpha$ $F_{\alpha/2}$ $F_{1-\alpha/2}$
$N(\mu_y, \sigma_y)$ μ_x, μ_y conocidas	$ \begin{aligned} \sigma_x^2 &\leqslant \sigma_y^2 \\ \sigma_x^2 &\leqslant \sigma_y^2 \\ \sigma_x^2 &\geqslant \sigma_y^2 \end{aligned} $	$\sigma_x^2 \neq \sigma_y^2$ $\sigma_x^2 > \sigma_y^2$ $\sigma_x^2 < \sigma_y^2$	n _x , n _y	$F_{\text{exp}} = \frac{\frac{1}{n_x} \sum_{i=1}^{n_x} (x_i - \mu_x)^2}{\frac{1}{n_y} \sum_{i=1}^{n_y} (y_i - \mu_y)^2}$	F_{n_x, n_y}	$F_{\text{exp}} > F_{1-\alpha}$ $F_{1-\alpha}$
						$F_{\rm exp} < F_{\alpha}$ $x = \frac{\alpha}{F_{\alpha}}$ $x = \frac{1-\alpha}{F_{\alpha}}$
$N(\mu_x, \sigma_x)$	$\sigma^2 = \sigma^2$	$\sigma^2 \neq \sigma^2$		$F_{\mathrm{cop}} = rac{\hat{s}_{\mathrm{x}}^2}{\hat{s}_{\mathrm{y}}^2}$		$F_{\exp} < F_{\alpha/2}$ y $F_{\exp} > F_{1-\alpha/2}$ $ \alpha/2 $ $1-\alpha$ $F_{\alpha/2}$ $ \alpha/2 $ $1-\alpha$
$N(\mu_y, \sigma_y)$ μ_x, μ_y desconocidas	$\sigma_x^2 \leqslant \sigma_y^2$ $\sigma_x^2 \geqslant \sigma_y^2$	$ \begin{array}{c c} \sigma_x^2 \neq \sigma_y^2 \\ \sigma_x^2 > \sigma_y^2 \\ \sigma_x^2 < \sigma_y^2 \end{array} $	n_x, n_y	$s_x^2 = \frac{1}{n_x - 1} \sum_{i=1}^{n_x} (x_i - \bar{x})^2$	F_{n_x-1, n_y-1}	$F_{\text{exp}} > F_{1-\alpha}$ $T_{1-\alpha}$
				$s_y^2 = \frac{1}{n_y - 1} \sum_{i=1}^{n_y} (y_i - \bar{y})^2$		$F_{\rm exp} < F_{\alpha}$ Γ_{α} Γ_{α}

Población	Hipótesis nula H ₀	Hipótesis alternativa H ₁	Tamaño de muestra	Estadístico	Distribu- ción	Región crítica
$N(\mu_x, \sigma_x)$ $N(\mu_y, \sigma_y)$ μ_x conocida μ_y desconocida	$\sigma_x^2 = \sigma_y^2$ $\sigma_x^2 \leqslant \sigma_y^2$ $\sigma_x^2 \geqslant \sigma_y^2$	$\sigma_x^2 \neq \sigma_y^2$ $\sigma_x^2 > \sigma_y^2$ $\sigma_x^2 < \sigma_y^2$	n_x, n_y	$F_{\text{exp}} = \frac{\frac{1}{n_x} \sum_{i=1}^{n_x} (x_i - \mu_x)^2}{\frac{1}{s_y^2}}$	F_{n_x, n_y-1}	$F_{\text{exp}} < F_{a/2}$ y $F_{\text{exp}} > F_{1-a/2}$ $F_{a/2}$ $F_{a/2}$ $F_{1-a/2}$ $A/2$ $F_{1-a/2}$ $F_{1-a/2}$
						$F_{\rm exp} < F_{\alpha}$ $rac{\alpha}{F_{\alpha}}$ $rac{1-\alpha}{F_{\alpha}}$
$N(\mu_x, \sigma_x)$ $N(\mu_y, \sigma_y)$ μ_x	$\sigma_x^2 = \sigma_y^2$ $\sigma_x^2 \leqslant \sigma_y^2$	$\sigma_{x}^{2} \neq \sigma_{y}^{2}$ $\sigma_{x}^{2} > \sigma_{y}^{2}$	n _{er} n _e	$F_{\text{exp}} = \frac{S_2^2}{\frac{1}{n_y} \sum_{i=1}^{n_y} (y_i - \mu_i)^2}$	F	$\begin{vmatrix} F_{\exp} < F_{\alpha/2} \\ y \\ F_{\exp} > F_{1-\alpha/2} \end{vmatrix} = \begin{vmatrix} \alpha/2 \\ I - \alpha \end{vmatrix}$ $\begin{vmatrix} \alpha/2 \\ F_{\alpha/2} \end{vmatrix} = \begin{vmatrix} \alpha/2 \\ F_{1-\alpha/2} \end{vmatrix}$
desconocida μ _y conocida	$\sigma_x^2 \geqslant \sigma_y^2$	$\sigma_x^2 < \sigma_y^2$	y	$\frac{1}{n_p}\sum_{i=1}^{n}\left(y_i-\mu_i\right)^2$	$-n_x-1$, n_y	$F_{\rm exp} > F_{1-\alpha}$ $F_{1-\alpha}$ $F_{1-\alpha}$

Población	Hipótesis nula <i>H</i> 0	Hipótesis alternativa <i>H</i> 1	Tamaño de muestra	Estadístico	Distribu- ción	Región crítica
B(1, p)	$p = p_0$ $p \le p_0$ $p \ge p_0$	$p \neq p_0$ $p > p_0$ $p < p_0$	n	$\left \frac{z_{exp}}{\sqrt{\frac{p_0(1-p_0)}{n}}}\right $	N(0, 1)	$z_{\exp} < z_{\alpha/2}$ y $z_{\exp} > z_{\alpha/2}$ $z_{\exp} > z_{\alpha}$ $z_{\exp} < -z_{\alpha}$ $\alpha/2$
$B(1, p_X)$ $B(1, p_Y)$	$p_X = p_Y$ $p_X \le p_Y$ $p_X \ge p_Y$	$p_X \neq p_Y$ $p_X > p_Y$ $p_X < p_Y$	n_X n_Y	$\hat{p} = \frac{\hat{p}_x - \hat{p}_y}{\sqrt{\frac{n_x + n_y}{n_x n_y}}} \frac{1}{pq}$ $\hat{p} = \frac{n_x \hat{p}_x + n_y \hat{p}_y}{n_x + n_y} = \frac{x + y}{n_x + n_y}$	N(0, 1)	$z_{\exp} < -z_{\alpha/2} \qquad \alpha/2 \qquad \alpha/2$ $y \qquad 1 - \alpha$ $z_{\exp} > z_{\alpha/2} \qquad z_{2/2}$ $z_{\exp} > z_{\alpha} \qquad \alpha$ $z_{\exp} < z_{\alpha} \qquad \alpha$ $z_{\exp} < z_{\alpha} \qquad \alpha$

CONTRASTES DE BONDAD DE AJUSTE Y TABLAS DE CONTINGENCIA

Capítulo 7

7.1. INTRODUCCIÓN

En los capítulos anteriores hemos estudiado la estimación tanto puntual como por intervalos, y también nos hemos ocupado del contraste de hipótesis paramétrico, estudiando algunos contrastes con cierto detalle.

En este capítulo podíamos haber realizado una amplia introducción sobre los contrastes no paramétricos, pero por razones didácticas hemos preferido dejar esa introducción para el capítulo siguiente, aunque los tests que aquí vamos a estudiar pueden considerarse como no paramétricos, como indicaremos con más detalle también en la introducción del capítulo siguiente.

Hasta ahora hemos utilizado la distribución χ^2 de Pearson para hacer inferencias sobre la varianza poblacional, aquí, sin embargo, utilizaremos este estadístico χ^2 de Pearson para:

- Contrastar si una supuesta distribución se ajusta a un conjunto de datos. Contrastes de bondad de ajuste.

 Contrastar si existe dependencia entre dos características de la misma
- población. Contraste de independencia.

 Contrastar si varias muestras proceden de la misma población. Contraste de homogeneidad.

ယ