CINECA

Programming GPUs with CUDA: Introduction to GPUs

Lara Querciagrossa, Andrew Emerson, Nitin Shukla, Luca Ferraro, Sergio Orlandini

I.querciagrossa@cineca.it

July 12th, 2022

In this lecture...

- What are GPUs
- CPUs vs GPUs
- GPU architecture
- How to accelerate applications
- GPGPU programming model

Introduction to GPU

What are GPUs?

- GPU stands for **Graphics Processing Units**.
- It is a device equipped with:
 - highly parallel microprocessor (thousands of cores),
 - private memory with very high bandwidth (about 900 GB/s).
- GPUs highly parallel structures makes them more efficient w.r.t. CPUs for **embarrassing parallel algorithms**:
 - CPUs race through a series of task requiring lots of interactivity;
 - GPUs break complex problems into thousands or millions of separate tasks and work them out at one.

What are GPUs?

- Born in '90 as a response to the growing demand for high-definition 3D **graphics** (gaming, animations, etc), where textures, lighting and the rendering of shapes should be done on the fly.
- Now routinely used in HPC and machine learning applications.
- Most important vendors: NVIDIA, AMD, ...
 - Different solutions depending on the purpose:
 - Workstations running professional applications
 - Gaming
 - HPC/GPGPU

Parallel Intensive Computation

 GPUs are designed to render complex 3D scenes composed of millions of data points/vertex at high frame rates (60-120 FPS).

- The rendering process requires a set of transformations based on linear algebra operations and (mostly local) filters:
 - the same set of operations are applied on each data point of the scene;
 - each operation is independent of each other;
 - all operations are performed in parallel using a huge number of threads which process all data independently.

SPMD: Single Program Multiple Data

 If the set of transformations can be applied independently on each point, the output result is independent on the order of point computation.

```
for (int i = 0; i < N; i++) {
    C[i] = A[i] + B[i];
}</pre>
```

- If transformations are independent, we can **speed up** the elaboration using **parallel work**:
 - apply the same transformation (Single Program) ...
 - ... to each point (Multiple Data)
 - ... using multiple threads concurrently.

What is a THREAD?

- A thread is an independent flow of execution of a program which share the same memory resources of the main process (access to main data).
- A process can spawn multiple threads of execution, each can follow an independent flow.

- Threads inside a process can:
 - exchange data because they share the same memory of the program,
 - use local memory not shared with other threads,
 - synchronize with other threads (waiting dependences).

Concurrency using CPU threads

• Threads can run **concurrently** as long as there is **available hardware** to use for their execution (*registers* and *ALUs*).

Concurrency using CPU threads

- Modern CPUs often have multiple cores on chip: each core has registers and ALU units to run a thread independently from other cores.
- When there are more threads on the fly than available cores, the operating system can make a context switch:
 - the running thread is freezed: all information about its status is saved and put back for later restore,
 - a new thread take the hardware resources, load its previous status and restart its flow until a new context switch will take place.
- CPU threads context switch involves many backup operations, plus the fact that data is no longer in registers and caches.

CPU threads vs GPU threads

- GPU are able to manage thousands of threads efficiently.
- GPU threads are extremely light weighted:
 - GPU have thousands of available registers,
 - each thread running on a GPU maintains its status in its own registers,
 - no penalty in case of a context-switch.
- The more threads are in flight, the more the GPU hardware is able to hide memory or computational latencies.

Summing up: CPUs vs GPUs

CPU vs GPU

- A Central Processing Unit (CPU) is a latency-optimized general purpose processor designed to handle a wide range of tasks sequentially.
- Graphics Processing Unit (GPU) is a throughput-optimized specialized processor designed for high-end parallel computing.
 - Massive Parallel Computing: extensive calculations with similar operations.
 - High Data Throughput: thousands of cores performing the same operation on multiple data items in parallel.
 - High Computing Throughput: high-performance computing power.

CPU vs GPU architecture

CPU

- just a few cores (8-32)
- large cache, low latency
- tens of software threads at a time
- task parallelism

GPU

- thousands of cores (5k)
- small memory, large bandwidth
 - thousands of threads simultaneously
 - data parallelism

Why using GPUs?

- Very large number of "cores" (better performance w.r.t. CPU applications).
- Often low cost (\$/Flop)
 and low energy
 consumption (Watts/Flop).

- May need complete rewrite of application.
- Low device memory (max 16/32 Gb).
- Depending on model, possible low transfer speeds.

GPU architecture

GPU architecture scheme

Main global memory

- medium size (16-40 GB)
- very high bandwidth (800-1200 GB/s)

Streaming Multiprocessors (SM)

- grouping independent cores and control units
- number of SM depends on GPU architecture
- ~16-32 up to ~100 SM on modern GPUs

Volta GV100 Full GPU with 84 SM Units

GPU architecture scheme

- Each SM unit has:
 - many cores (> 100 cores)
 - lots of registers (32K-64K)
 - instruction scheduler dispatchers
 - shared memory with fast access to data
 - several caches
- Host/Device connection technology (NVLink, PCIExpress, AMD Infinity Fabric)
 - → data movement bottleneck

Volta GV100 Streaming Multiprocessor

GPU functional unit types

- **FP32**: performs 32-bit floating point operations.
- INT32: performs 32-bit and maybe some logical operations.
- FP64: executes 64-bit FP operations.
- Special Functional Unit (SFU): performs reciprocal (1x) and transcendental instructions.
- Load/Store (LS): performs loads and stores from all memory address spaces.
- Tensor Core: specialized units to compute A*B+C matrix product.

Volta GV100 functional unit types

NVIDIA Volta V100 architecture (2017)

- https://developer.nvidia.com/blog/inside-volta
- A full GV100 GPU unit contains 6 Compute Graphic Clusters (CGC) with 14 SM each, total 84 SMs
- 5376 FP32 cores
- 5376 INT32 cores
- 6MB L2 cache
- High Bandwidth Memory
 - 16 GB HBM2 SDRAM
 - 900 GB/s bandwidth
- NVLink technology
 - 300GB/s bandwidth
- Peak Performance:
 - 15.7 FP32 TFlops
- Max Power Consumption:
 - 300W

NVIDIA Volta V100 architecture (2017)

- SM composed of 4 independent blocks
- each block supports:
 - 1 warps x 2 dispatchers
 - 16FP32 + 16INT32 ALU units
 - separate FP32 and INT32 cores, allowing simultaneous execution of FP32 and INT32 operations at full throughput
 - 8 FP64 ALU units
 - 2 Tensor Core units (HW matmul)
 - 8 Load/Store units
 - 4 SFU units
 - 32768 32bits registers
- each block accesses:
 - 128KB for L1/shared memory
 - 4 texture units

Volta GV100 Streaming Multiprocessor

Accelerating applications

Libraries

«Drop in» accelerations

Directives

Easily accelerate applications

Programming languages

Maximum flexibility

Libraries

«Drop in» accelerations

cuBLAS: CUDA Basic Linear Algebra Subroutines

- cuSPARSE for sparse matrices
- support for all 152 standard BLAS routines
- mixed and low precision support
- CUDA streams support

Libraries

«Drop in»
accelerations

MAGMA: Matrix Algebra for GPU and Multicore Architecture

- hybrid approach: small non-parallelizable tasks are run on CPU, large and parallel ones on GPU, bounded with communication
- data dependencies among tasks used to properly scheduling tasks' execution over multicore and GPU hardware components
- built on top of CUDA

Libraries

«Drop in»
accelerations

SLATE: Software for Linear Algebra Targeting Exascale

- based on tile layout and tile algorithms
- flexible: not-uniform size blocks, arbitrary matrix distribution
- standard based: MPI, OpenMP, GPU support with cuBLAS
- task-based parallelism

Vector Signal Image Processing

GPU Accelerated Linear Algebra

Matrix Algebra on GPU and Multicore

Sparse Linear Algebra

«Drop in» accelerations

Directives

Easily accelerate applications

- openMP from v 4.0 allows offloading of tasks onto GPUs.
- openACC allows to annotate areas of code that should be accelerated using compiler directives and additional functions.
- •

Programming languages

Maximum flexibility

- CUDA: C extension, developed by NVIDIA, PGI compiler, FORTRAN extension.
- OpenCL: General framework for writing programs across heterogenous devices. Often used for non-NVIDIA GPUs and FPGAs. Open source. Low level and verbose language.

Programming languages

Maximum flexibility

- HIP: developed by AMD, interface similar to CUDA, designed to easily convert existing CUDA code (HIPify tool to automate this conversion).
- Python support: pyCUDA, cuPy (open source NumPy/SciPy compatible lib), numba (decorators or CUDA language).

- oneAPI: developed by Intel.
- SYCL: developed by Khronos Group (as OpenCL).
- DirectCompute: developed by Microsoft.

GPGPU Programming Model

GPGPU programming model

- General Purpose GPU Programming relates to use GPU computational power to solve problems other than graphics.
- CPU and GPU are separate devices with separate memory space addresses.
- GPU is seen as an auxiliary coprocessor equipped with thousands of cores and a high bandwidth memory.
- They should work together for best benefit and performances.

GPGPU programming model

- Serial, or processes with low parallelism, remain on the CPU.
- Computational intensive high parallel regions are offloaded to the GPU for processing.

GPGPU programming model

- Required data is moved on GPU memory and back to the CPU: connection to GPU is relatively slow so minimise data transfers.
- The GPU's threads need to be saturated otherwise the result will be slower than CPU.
- For max performance, execution on the CPU should continue as much as possible while GPU is being used.

References

References

- Previous editions of this school at CINECA
- Oakridge National Laboratory's "Introduction to CUDA C++": https://www.olcf.ornl.gov/calendar/introduction-to-cuda-c/
- NVIDIA DL Institute Online Course
- blogs.nvidia.com
- unsplash.com
- Wikipedia
- https://www.javatpoint.com/microprocessor-introduction
- Computer register: https://www.geeksforgeeks.org/different-classes-of-cpu-registers/, https://alltechqueries.com/what-are-cpu-registers/
- ALU: https://www.javatpoint.com/what-is-alu
- https://www.learncomputerscienceonline.com/central-processing-unit/

THANK YOU!

Lara Querciagrossa

I.querciagrossa@cineca.it