NPN EPITAXIAL PLANAR TYPE

DISCRIPTION

2SC2904 is a silicon NPN epitaxial planar type transistor specifically designed for high power amplifiers in HF band.

FEATURES

High gain: Gpe ≥ 11.5dB

@V_{CC} = 12.5V, Po=100W, f=30MHz

• High ruggedness: Ability to withstand 20:1 load

VSWR when operated at f = 30MHz

 $P_0 = 100W, V_{CC} = 15.2V$

• Emitter ballansted construction

• Low thermal resistance ceramic package with flange.

APPLICATION

Output stage of transmitter in HF band SSB mobile radio sets.

ABSOLUTE MAXIMUM RATINGS (T_C = 25°C unless otherwise specified)

Symbol	Parameter	Conditions	Ratings	Unit	
V _{CBO}	Collector to base voltage		50	V	
V _{EBO}	Emitter to base voltage		5	V	
VCEO	Collector to emitter voltage	R _{BE} = ∞	20	V	
I _C	Collector current		22	А	
Pc	Collector dissipation	Ta = 25°C	7.8	w	
		T _C = 25°C	200	w	
Tj	Junction temperature		175	°C	
Tstg	Storage temperature		-55 to 175	·c	
Rth-c	Thermal resistance		0.75	.c/w	

Note. Above parameters are guaranteed independently.

ELECTRICAL CHARACTERISTICS (T_C = 25°C unless otherwise specified)

Symbol	Parameter Test of	Test conditions	Limits			
		lest conditions	Min	Тур	Max	Unit
V _{(BR)EBO}	Emitter to base breakdown voltage	I _E =20mA, I _C =0	5			٧
V(BR)CBO	Collector to base breakdown voltage	I _C =20mA, I _E =0	50			V
V(BR)CEO	Collector to emitter breakdown voltage	I _C =100 mA, R _{BE} = ∞	20			V
Сво	Collector cutoff current	V _{CB} =15V, I _E =0			5	mΑ
EBO	Emitter cutoff current	V _{EB} =3V, I _C =0			5	mΑ
hFE	DC forward current gain *	V _{CE} = 10 V, I _C = 1A	10	50	180	_
P ₀	Output power	f=30MHz, V _{CC} =12.5V, P _{ID} =7W	100	110		W
η_{C}	Collector efficiency		55	60		%

Note. * Pulse test, $P_W = 150 \mu s$, duty=5%.

Above parameters, ratings, limits and conditions are subject to change.

TEST CIRCUIT

- C₁: 160pF, 160pF, 82pF in parallel
- C₂: 82pF, 82pF, 82pF in parallel
- C₃: 100pF, 4700pF, 4700pF, 0.22µF, 0.22µF, 33µF, 330µF in parallel
- C₄: 100pF, 220pF, 4700pF, 0.1μ F, 330μ F in parallel NOTES: All coils but L₁ are made from 1.5 ϕ mm silver plated copper wire, L₁ is made from 2.3 ϕ mm copper wire.
 - D: Inner diameter of coil
- P. Pitch of coil
- Turn number of coil
- Dimension is milli-meter

TYPICAL PERFORMANCE DATE

COLLECTOR DISSIPATION VS. AMBIENT TEMPERATURE

AMBIENT TEMPERATURE Ta (°C)

COLLECTOR CURRENT VS. COLLECTOR TO EMITTER VOLTAGE

COLLECTOR TO EMITTER VOLTAGE VCE (V)

COLLECTOR TO EMITTER BREAKDOWN VOLTAGE VS. BASE TO EMITTER RESISTANCE

BASE TO EMITTER RESISTANCE R_{BE} (Ω)

DC CURRENT GAIN VS. **COLLECTOR CURRENT**

COLLECTOR CURRENT Ic (A)

COLLECTOR OUTPUT CAPACITANCE VS. COLLECTOR TO BASE VOLTAGE

COLLECTOR TO BASE VOLTAGE VCB (V)

OUTPUT POWER, COLLECTOR EFFICIENCY VS. INPUT POWER

OUTPUT POWER VS. COLLECTOR SUPPLY VOLTAGE

COLLECTOR SUPPLY VOLTAGE V_{CC} (V)