CHAPTER 8: Law of Large Numbers

Law of Large Numbers for Discrete Random Variables

We have also defined probability mathematically as a value of a distribution function for the random variable representing the experiment. The Law of Large Numbers, which is a theorem proved about the mathematical model of probability, shows that this model is consistent with the frequency interpretation of probability.

ChebyShev Inequality

Theorem 8.1 (ChebyShev Inequality) Let X be a discrete random variable with expected value $\mu E(X)$, and let $\epsilon > 0$ be any positive real number. Then,

$$\mathbb{P}(|X - \mu| \ge \epsilon) \le \frac{V(X)}{\epsilon^2}.$$

Let X by any random variable with $E(X) = \mu$ and $V(X) = \sigma^2$. Then, if $\epsilon = k\sigma$, Chebyshev's Inequality states that

$$\mathbb{P}(|X - \mu| \ge k\sigma) \le \frac{\sigma^2}{k^2 \sigma^2} = \frac{1}{k^2}.$$

Thus, for any random variable, the probability of a deviation from the mean of more than k standard deviations is $\leq \frac{1}{k^2}$. If, for example, k = 5, $\frac{1}{k^2} = .04$.

Chebyshevs Inequality is the best possible inequality in the sense that, for any $\epsilon > 0$, it is possible to give an example of a random variable for which Chebyshevs Inequality is in fact an equality. To see this, given $\epsilon > 0$, choose X with distribution

$$p_X = \begin{pmatrix} -\epsilon & +\epsilon \\ 1/2 & 1/2 \end{pmatrix}$$

Then E(X) = 0, $V(X) = \epsilon^2$, and

$$\mathbb{P}(|X - \mu| \ge \epsilon) \le \frac{V(X)}{\epsilon^2} = 1.$$

We are now prepared to state and prove the Law of Large Numbers.

Alternatively, Chebyshev's theorem says that the proportion of any distribution that lies within k standard deviations of the mean is at least: $1 - \frac{1}{k^2}$, where k is any positive number greater than 1. This theorem applies to **all distributions**.

For example, Chebyshev's theorem says that within 2 standard deviations of the mean, you will find at least

$$1 - \frac{1}{k^2} = 1 - \frac{1}{2^2} = 1 - \frac{1}{4} = \frac{3}{4},$$

or at least 75% of data will lie within 2 standard deviations from the mean.

Let $X_1, X_2, ..., X_n$ be a Bernoulli trials process with probability .3 for success and .7 for failure. Then, $E(X_i) = .3$ and $V(X_i) = .3 \cdot .7 = .21$. If

$$A_n = \frac{S_n}{n} = \frac{X_1, X_2, \dots, X_n}{n}$$

is the average of the X_j , then $E(A_n) = .3$ and $V(A_n) = \frac{V(S_n)}{n^2} = \frac{.21}{n}$.

Let $\epsilon = .1$. Then, Chebyshev's Inequality states that

$$\mathbb{P}(|A_n - .3| \ge .1) \le \frac{.21}{n(.1)^2} = \frac{21}{n}.$$

If n = 100, this can be rewritten as

$$\mathbb{P}(.2 < A_{100} < .4) \ge \mathbb{P}_{A_{100}}$$

where $\mathbb{P}_{A_{100}}$ is the probability that the mean of A_n lies between .2 and .4, which is .1 away from $\mathrm{E}(A_n)=.3$. By Chebyshev, we can calculate this by finding how many standard deviations .1 is. The standard deviation, $\sigma=\sqrt{\frac{.21}{100}}=.0458$. Thus, $k=\frac{.1}{.0458}=2.182$. Thus,

$$\mathbb{P}_{A_{100}} = 1 - \frac{1}{2.182^2} = .79 = 79\%.$$

Law of Large Numbers

Theorem 8.2: Law of Large Numbers Let $X_1, X_2, ..., X_n$ be an independent trial process, with finite expected value $\mu = E(X_j)$, and finite variance $\sigma = V(X_j)$. Then for any $\epsilon > 0$,

$$\mathbb{P}\left(\left|\frac{S_n}{n} - \mu\right| \ge \epsilon\right) \to 0$$

as $n \to \infty$. Equivalently,

$$\mathbb{P}\left(\left|\frac{S_n}{n} - \mu\right| < \epsilon\right) \to 1$$

as $n \to \infty$.

Proof. Since X_1, X_2, \ldots, X_n are independent and have the same distributions, we can apply Theorem 6.9. We obtain

$$V(S_n) = n\sigma^2 ,$$

and

$$V(\frac{S_n}{n}) = \frac{\sigma^2}{n} \ .$$

Also we know that

$$E(\frac{S_n}{n}) = \mu$$
.

By Chebyshev's Inequality, for any $\epsilon > 0$,

$$P\left(\left|\frac{S_n}{n} - \mu\right| \ge \epsilon\right) \le \frac{\sigma^2}{n\epsilon^2}$$
.

Thus, for fixed ϵ ,

$$P\left(\left|\frac{S_n}{n} - \mu\right| \ge \epsilon\right) \to 0$$

as $n \to \infty$, or equivalently,

$$P\left(\left|\frac{S_n}{n} - \mu\right| < \epsilon\right) \to 1$$

as $n \to \infty$.

The **Law of Large Numbers** states that as the number of observations increases, the actual or observed probability approaches the theoretical or expected probabilities.

Weak Law of Large Numbers vs. Strong Law of Large Numbers

The WLLN says that for a large sample, there is a very high probability that the mean of the sample will be very close to the expected value, due to *weak convergence*. However, the probability of convergence is still very high.

The **SLLN** says that for a large sample, the mean of the sample will almost surely be the expected value, due to *strong convergence*. The proof of the **SLLN** is much more complex and much harder to prove.

Example 8.2 Consider n rolls of a die. Let X_j be the outcome of the jth roll. Then $S_n = X_1 + X_2 + \cdots + X_n$ is the sum of the first n rolls. This is an independent trials process with $E(X_j) = 7/2$. Thus, by the Law of Large Numbers, for any $\epsilon > 0$

$$P\left(\left|\frac{S_n}{n} - \frac{7}{2}\right| \ge \epsilon\right) \to 0$$

as $n \to \infty$. An equivalent way to state this is that, for any $\epsilon > 0$,

$$P\left(\left|\frac{S_n}{n} - \frac{7}{2}\right| < \epsilon\right) \to 1$$

as $n \to \infty$.

There are exercises for **LLN** on page 312.

Law of Large Numbers for Discrete Random Variables

This law has a natural analogue for continuous probability distributions, which we consider somewhat more briefly here.

ChebyShev Inequality

Theorem 8.3 (ChebyShev Inequality) Let X be a continuous random variable with density function f(x). Suppose X has a finite expected value $\mu E(X)$ and finite variance $V(X) = \sigma^2$. Then, for any positive number $\epsilon > 0$ we have

$$\mathbb{P}(|X - \mu| \ge \epsilon) \le \frac{V(X)}{\epsilon^2}.$$

Note that this theorem says nothing if $V(X) = \sigma^2$ is infinite.

Law of Large Numbers

Theorem 8.4: Law of Large Numbers Let $X_1, X_2, ..., X_n$ be an independent trial process with a continuous density function f, finite expected value μ , and finite variance σ^2 . Let $S_n = X_1, X_2, ..., X_n$ be the sum of the X_i . Then for any real number $\epsilon > 0$ we have

$$\lim_{n\to\infty} \mathbb{P}\left(\left|\frac{S_n}{n}-\mu\right|\geq \epsilon\right)=0,$$

or equivalently,

$$\lim_{n\to\infty} \mathbb{P}\left(\left|\frac{S_n}{n} - \mu\right| < \epsilon\right) = 1.$$

There are exercises for LLN on page 320.

CHAPTER 9: Central Limit Theorem

Central Limit Theorem for Bernoulli Trials

The second fundamental theorem of probability is the *Central Limit Theorem*. This theorem says that if Sn is the sum of n mutually independent random variables, then the distribution function of Sn is well-approximated by a certain type of continuous function known as a normal density function, which is given by the formula

$$f_{\mu,\sigma} = \frac{1}{\sqrt{2\pi}\sigma} e^{-(x-\mu)^2/(2\sigma^2)}.$$

In this section, we will deal only with the case that $\mu = 0$ and $\sigma = 1$. We will call this particular normal density function the standard normal density, and we will denote it by $\phi(x)$:

$$\phi(x) = \frac{1}{\sqrt{2\pi}} e^{-x^2/2}.$$

Definition 9.1 The *standardized sum* of S_n is given by

$$S_n^* = \frac{S_n - np}{\sqrt{npq}},$$

where S_n^* has expected value 0 and variance 1.

Approximating Binomial Distributions We can approximate a binomial distribution function as follows

$$b(n, p, j) \sim \frac{\phi(x)}{\sqrt{npq}}$$
$$= \frac{1}{\sqrt{npq}} \phi\left(\frac{j - np}{\sqrt{npq}}\right).$$

An example of a situation where this can be used is when there are 100 flips of a fair coin and we want to know the probability of seeing exactly 55 heads.