CURRICULUM VITAE

JOSÉ M. HORAS AZNAR

MSc Physics

Spanish National and Munich resident jose.horas@gmail.com https://github.com/josehoras

CORE COMPETENCIES

- Passionate about Artificial Intelligence and Neural Networks
- Excellent adaptability to new environments and diverse cultural settings
- Strong mathematical background and analytical thinker as Physics graduate
- Translating the physical reality into mathematical models as Modelling Engineer
- Working with production and different stakeholders as Equipment Engineer

EDUCATION

From 2018

Student on AI and Neural Networks

- Graduated to Udacity Nanodegree: Self-Driving Car Engineer (360 hrs.)
- Graduated to Udacity Nanodegree: Intro into Self-Driving Cars (160 hrs.)
- Audit Stanford's CS231n: CNNs for Visual Recognition (100 hrs.)
- Audit Stanford's CS224n: NLP with Deep Learning (100 hrs.)

2007

MSc Physics at the Ludwig-Maximilian University in Munich and University of Seville (ES)

PROFESSIONAL EXPERIENCE

2017 - 2018 Sabbatical

South East Asia

- Gap year discovering different cultures, volunteering, and expanding personal limits and skills
- 2008 2016 Senior Semiconductor Engineer

Intel (Munich, DE)

2013 - 2016

RF Modelling Engineer

- Designed and modelled semiconductor devices for new silicon technologies
- Substantially reduced development lead time through automation, using SKILL programming language and deploying scripts to the wider team

2011 - 2013

Lead Probing Engineer

- Owned test equipment roadmap, qualification projects, and vendor management
- Successfully introduced RF test technology, improving equipment performance at the production line in excess of 15%

2008 - 2011

Probing Engineer

Infineon (Munich, DE)

Qualified new test equipment and technology for the production line, maintained and improved engineering laboratory developing Labview scripts

2007

Visiting scientist

Ludwig Maximilians University (Munich, DE)

Research on quantum Hall systems

2006

Research student

Characterize and process GaAs/AlGaAs semiconductor wafers

COMPUTER AND LANGUAGE SKILLS

Deep Learning Frameworks: TensorFlow, Keras, PyTorch
Programming Languages: Python, C++, SKILL, Labview
Development Libraries: ROS, OpenCV, numpy, matlib

Development Libraries:
Development Tools:
ROS, OpenCV, numpy, matlibplot, pandas
Jupyter Notebooks, Docker, Git, GitHub

• Languages: Spanish (Native), English (Excellent), German (Excellent)

SCIENTIFIC PUBLICATIONS

- "Asymmetric nonlinear response of the quantized Hall effect" New Journal of Physics 12, 113011 (2010)
- "Interaction mediated asymmetries of the quantized Hall effect" Eur. Phys. Lett. 88, 17007 (2009)
- "Investigations on unconventional aspects in the quantum Hall regime of narrow gate defined channels" Physica E 40, 1130-1132 (2008)