New York University Tandon School of Engineering Computer Science and Engineering

CS-GY 9223I: Midterm Exam. Week of Oct. 26th, 2020, any 2 hour slot.

Directions

- Absolutely no collaboration allowed.
- You are allowed to use any notes or resources from the class, and any programming language, graphing software (e.g., Desmos), or symbolic math package (e.g., WolframAlpha).
- Show all of your work to receive full (and partial) credit.
- Clearly mark all submitted pages with the problem you are working on.
- 1. Always, sometimes, never. (12pts 3pts each)

Indicate whether each of the following statements is **always** true, **sometimes** true, or **never** true. A correct answer receives full credit, but you can provide a short justification or example to explain your choice, which might earn partial credit if you are wrong.

- (a) For random variables X and Y, $\mathbb{E}[X-Y] = \mathbb{E}[X] \mathbb{E}[Y]$. ALWAYS SOMETIMES NEVER
- (b) For random variables X and Y, $\mathbb{E}[XY] \ge \mathbb{E}[X]\mathbb{E}[Y]$. ALWAYS SOMETIMES NEVER
- (c) For convex functions f(x) and g(x), f(x) + g(x) is convex. ALWAYS SOMETIMES NEVER
- (d) For convex functions f(x) and g(x), f(g(x)) is convex. ALWAYS SOMETIMES NEVER

2. Safety First (5pts)

An airplane has 1000 critical parts, including engine components, navigation equipment, etc. Each part has been thoroughly tested, and during a given flight, each part is guaranteed not to fail with probability 9999/10000. What is the probability that no part fails during a given flight? Give the highest bound you can based on the problem information.

3. Approximating the Trace of a Matrix (15pts)

Let $A \in \mathbb{R}^{n \times n}$ be a square matrix. Recall that the trace of A is the sum of its diagonal elements $(A) = \sum_{i=1}^{n} A_{ii}$.

class we saw that a matrix $\Pi \in \mathbb{R}^{m \times d}$ with **random Gaussian entries** satisfies the Johnson-Lindenstrauss Lemma with high probability when $m = O(\log n/\epsilon^2)$. Here we will consider the setting where Π 's entries are **scaled random** ± 1 **random variables**. In particular, for all $i \in 1, ..., m$ and $j \in 1, ..., d$, let

$$\Pi_{i,j} = \begin{cases} +\frac{1}{\sqrt{m}} & \text{with probability } 1/2. \\ -\frac{1}{\sqrt{m}} & \text{with probability } 1/2. \end{cases}$$

(a) (6pts) Let $\pi_i \in \mathbb{R}^d$ be the first row of Π . Show that for any $z \in \mathbb{R}^d$, $\mathbb{E}[\langle \pi_i, z \rangle^2] = \frac{1}{m} \|z\|_2^2$

(b) (6pts) Use (a) to conclude that for any two vectors $x, y \in \mathbb{R}^d$,

$$\mathbb{E}[\|\Pi x - \Pi y\|_2^2] = \|x - y\|_2^2$$

(c) (3pts) What's one reason you might you want to use a matrix with each entry equal to $\pm \frac{1}{\sqrt{m}}$ instead of being a random Gaussian?

- 4. Smoothness, strong convexity, and condition number. (10pts)
 - (a) (5pts) Draw below:
 - A convex function which is smooth but not α -strongly convex for any $\alpha > 0$.
 - A convex function which is strongly convex but not β -smooth for any finite β .
 - A convex function which is not β -smooth for any finite β and not α -strongly convex for any $\alpha > 0$.

Extra credit (3pts): Given explicit expressions for your functions.

(b) (3pts) What is the condition number κ of the convex function $f(x) = x^2$. Recall that $\kappa = \frac{\beta}{\alpha}$ where β and α are the smoothness and strong convexity parameters of f(x).

(c) (2pts) Does $f(x) = x^6$ have a finite condition number? Justify your answer.

5. Simple locality sensitive hash. (8pts)

Define the hamming similarity between two length d binary vectors $q, y \in \{0, 1\}^d$ as:

$$1 - \frac{\|q - y\|_1}{d}.$$

Here $||q - y||_1$ is the ℓ_1 distance, which is defined as $||z||_1 = \sum_{i=1}^d |z_i|$.

(a) (4pts) Let g be a uniform random integer in $\{1, \ldots, d\}$. Define the function $h: \{0,1\}^d \to \{0,1\}$ as $h(x) = x_g$, where x_g is the g^{th} entry in the vector x. Show that h is a locality sensitive hash function for hamming similarity.

(b) (4pts) What are **two reasons** to *not use* locality sensitive hashing for similarity search, but instead to perform a linear scan.