

පිළිතුරු

22

ස්පර්ශක

22.1 අභාගාසය

 $oldsymbol{1}$. පහත දැක්වෙන එක් එක් වෘත්තයේ කේන්දුය O ද AB යනු වෘත්තය මත පිහිටි C ලක්ෂායේ දී ඇඳි ස්පර්ශකය ද වේ. දී ඇති දත්ත අනුව, වීජිය සංකේතවලින් දැක්වෙන අගය සොයන්න.

$$0\hat{\mathcal{C}}B=90^{\circ}$$
 (ස්පර්ශකය අරයට ලම්බ වන නිසා)

$$x + 90^{\circ} + 30^{\circ} = 180^{\circ}$$
 (තිකෝණයක කෝණ)

$$x = 180^{\circ} - 120^{\circ}$$

$$x = 60^{\circ}$$

$$0\hat{C}B=90^{\circ}$$
 (ස්පර්ශකය අරයට ලම්බ වන නිසා)

$$2a + 3a + 90^{\circ} = 180^{\circ}$$
 (තිකෝණයක කෝණ)

$$5a = 90^{\circ}$$

$$a = 18^{\circ}$$

$$O\hat{C}B=90^\circ$$
 (ස්පර්ශකය සහ අරය අතර කෝණය)

$$a=b$$
 (සමද්විපාද තිකෝණයක කෝණ)

$$a + b + 30^{\circ} = 180^{\circ}$$
 (තිකෝණයක කෝණ)

$$a + a + 30^{\circ} = 180^{\circ}$$

$$2a = 180^{\circ} - 30^{\circ}$$

$$2a = 150^{\circ}$$

$$a = 75^{\circ}$$

$$b = 75^{\circ}$$

$$c+90^\circ+30^\circ=180^\circ\,(OCB\Delta,$$
 තිකෝණයක කෝණ)
$$c=180^\circ-120^\circ$$
 $c=60^\circ$

$$O\hat{C}D=O\hat{D}C=x$$
 (OC , OD අරයන් සමාන නිසා) $x+x+x=180^\circ$ (තිකෝණයක අභාන්තර කෝණ) $3x=180^\circ$ $x=60^\circ$

$$A\hat{C}O = 90^\circ$$
 (ස්පර්ශකය සහ අරය අතර කෝණය) $x + y = 90^\circ$ $60^\circ + y = 90^\circ$ $y = 90^\circ - 60^\circ$ $y = 30^\circ$

$$x+x+100^\circ=180^\circ$$
 (තිකෝණයක අභාන්තර කෝණ) $2x=180^\circ-100^\circ$ $2x=80^\circ$ $x=40^\circ$ $y=40^\circ$ $y=40^\circ$ $y=40^\circ$ $y=40^\circ$

$$O\hat{C}A = 90^\circ$$
 (ස්පර්ශකය සහ අරය අතර කෝණය) $a + a = 90^\circ$ $2a = 90^\circ$ $\underline{a = 45^\circ}$ $a + a + b = 180^\circ$ (තිකෝණයක අභාන්තර කෝණ) $45^\circ + 45^\circ + b = 180^\circ$ $b = 180^\circ - 90^\circ$ $b = 90^\circ$

2. රූපයේ දැක්වෙන O කේන්දුය වූ වෘත්තය මත පිහිටි X ලක්ෂායේ දී ඇඳි ස්පර්ශකය AB වේ. වෘත්තයේ අරය $6~{\rm cm}$ ද $YB=4~{\rm cm}$ ද නම් XB හි දිග සොයන්න.

OXB තිකෝණයට පයිතගරස් පුමේයය යෙදීමෙන්

$$OB^2 = OX^2 + XB^2$$

$$10^2 = 6^2 + XB^2$$

$$XB^2 = 10^2 - 6^2$$

$$XB^2 = 100 - 36$$

$$XB^2 = 64$$

$$XB = \sqrt{64}$$

$$XB = 8 \text{ cm}$$

 $m{3.}$ රූපයේ දැක්වෙන $m{O}$ කේන්දුය වූ වෘත්තයට $m{P}$ හිදී ඇඳි ස්පර්ශකය $m{AB}$ ද $m{BOP} = m{45}^\circ$ ද $m{PB} = m{6}$ cm ද නම් වෘත්තයේ අරය සොයන්න.

 $P\hat{B}O + 90^\circ + 45^\circ = 180^\circ$ (තිකෝණයක අභාන්තර කෝණ එකතුව $= 180^\circ$)

$$P\hat{B}O = 45^{\circ}$$

$$\therefore P\hat{B}O = P\hat{O}B$$

$$\therefore OP = PB$$
 (සමාන කෝණ වලට ඉදිරියෙන් පිහිටි පාද සමාන වේ.)

$$\therefore OP = 6 cm$$

වෘත්තයේ අරය
$$= 6 cm$$

4. රූපයේ දැක්වෙන Oකේන්දුය වූ වෘත්තයට B හිදී ඇඳි ස්පර්ශකය AC වේ. $O\hat{A}B = B\hat{O}C$ නම් $A\hat{O}B = B\hat{C}O$ බව පෙන්වන්න.

$$A\hat{B}O = C\hat{B}O = 90^\circ$$
 (ස්පර්ශකය සහ අරය අතර කෝණය)

AOB තිකෝණයේ අභාාන්තර කෝණවල එකතුව 180° නිසා

$$A\hat{O}B + x + 90^{\circ} = 180^{\circ}$$

 $A\hat{O}B = 90^{\circ} - x \longrightarrow 1$

BOC තිකෝණයේ අභාන්තර කෝණවල එකතුව 180° නිසා

$$B\hat{C}O + x + 90^{\circ} = 180^{\circ}$$

$$B\hat{C}O = 90^{\circ} - x \longrightarrow \textcircled{2}$$

$$\therefore A\hat{O}B = B\hat{C}O$$

$$a + x = b + x$$
$$a = b$$

 $m{5.}$ රූපයේ දැක්වෙන $m{O}$ කේන්දුය වූ වෘත්තයට $m{P}$ හිදී ඇඳි ස්පර්ශකය $m{AB}$ වේ. $m{OQP} = m{QPB}$ වන ලෙස $m{Q}$ ලක්ෂාය වෘත්තය මත පිහිටයි. $m{OQ}$ හා $m{PO}$ එකිනෙකට ලම්බ වන බව පෙන්වන්න.

 $O\widehat{P}A=90^\circ$ (ස්පර්ශ ලක්ෂායේදී, අරය සහ ස්පර්ශකය අතර කෝණය $=90^\circ$)

$$OQ /\!/ AB \, (O\, \hat{Q}P = Q\hat{P}B,$$
 ඒකාන්තර කෝණ නිසා)

$$P\hat{O}Q = Q\hat{P}A$$
 (ඒකාන්තර කෝණ, $OQ /\!/AB$)

$$P\hat{O}Q = 90^{\circ}$$

$$\therefore \textit{OQ} \perp \textit{PO}$$

$$\begin{aligned}
O\hat{P}B &= 90^{\circ} \\
2x &= 90^{\circ} \\
x &= 45^{\circ} \\
P\hat{O}Q + x + x &= 180^{\circ} \\
P\hat{O}Q + 90^{\circ} &= 180^{\circ} \\
P\hat{O}Q &= 90^{\circ} \\
\therefore OQ \perp PO
\end{aligned}$$

6. රූපයේ දැක්වෙන Oකේන්දුය වූ වෘත්තය මත පිහිටි A සහ B ලක්ෂාවලදී ඇඳි ස්පර්ශක C ලක්ෂායේ දී එකිනෙක ඡේදනය වේ. AOBC වෘත්ත චතුරසුයක් බව පෙන්වන්න.

 $O\hat{A}C=90^\circ$ (ස්පර්ශකය සහ අරය අතර කෝණය)

 $O\widehat{B}\mathcal{C}=90^\circ$ (ස්පර්ශකය සහ අරය අතර කෝණය)

$$O\hat{A}C + O\hat{B}C = 180^{\circ}$$

සම්මුඛ කෝණ යුගලයක් පරිපූරක නිසා AOBC වෘත්ත චතුරසුයකි. $_$

7. රූපයේ දැක්වෙන්නේ අර සමාන වූ ද කේන්දු A හා B වූ ද වෘත්ත දෙකකි. Yලක්ෂාය පිහිටා ඇත්තේ AY = YB වන පරිදි ය. YX රේඛාව වෘත්ත දෙකටම පොදු ස්පර්ශකයක් වන බව පෙන්වන්න.

AXY සහ BXY තුිකෝණ දෙකෙහි

$$AY = BY$$
 (දක්තය)

$$AX = XB$$
 (අරයන් සමාන නිසා)

$$YX = YX$$
 (පොදු පාදය)

$$\therefore AXY \Delta \equiv BXY \Delta$$
 (පා. පා. පා.)

$$\therefore Y \widehat{X} A = Y \widehat{X} B$$
 (අංගසම තුිකෝණවල අනුරූප අංග)

තවද
$$Y\hat{X}A + Y\hat{X}B = 180^\circ$$

$$\therefore Y\hat{X}A = Y\hat{X}B = 90^{\circ}$$

$$\therefore YX$$
 රේඛාව වෘත්ත දෙකටම පොදු ස්පර්ශකයක් වේ. $ullet$

8. රූපයේ දැක්වෙන වෘත්තයේ AB විශ්කම්භයක් වන අතර PQ රේඛාව B ලක්ෂායේ දී වෘත්තය ස්පර්ශකරයි.

(i)
$$Q \stackrel{\wedge}{R} B = 90^\circ$$
 බව

(ii)
$$A \hat{BR} = R \hat{QB}$$
 බව

පෙන්වන්න.

$$A\hat{B}Q=90^\circ$$
 (ස්පර්ශකය සහ අරය අතර කෝණය)

$$A\widehat{R}B=90^\circ$$
 (අර්ධ වෘත්තයක කෝණ)

(i) $A\hat{R}B+Q\hat{R}B=180^\circ$ (සරල රේඛාවක කෝණ)

$$90^{\circ} + Q\hat{R}B = 180^{\circ}$$

$$Q\hat{R}B = 90^{\circ}$$

(ii) $A\hat{B}R + R\hat{B}Q = 90^{\circ} \longrightarrow \textcircled{1}$

 $R\hat{B}Q + B\hat{R}Q + R\hat{Q}B = 180^\circ$ (තිකෝණයක අභාන්තර කෝණ)

 $R\hat{B}Q + 90^{\circ} + R\hat{Q}B = 180^{\circ}$

$$R\hat{B}Q + R\hat{Q}B = 90^{\circ} \longrightarrow 2$$

① = ②; $A\widehat{B}R + R\widehat{B}Q = R\widehat{B}Q + R\widehat{Q}B$ $A\widehat{B}R = R\widehat{Q}B$

22.2 අභාගාසය

1. රූපයේ දැක්වෙන Oකේන්දුය වූ වෘත්තය මත පිහිටි A සහ C ලක්ෂාවල දී ඇඳි ස්පර්ශක B හි දී හමු වේ. වෘත්තයේ අරය $5~{\rm cm}$ ද $AB=12~{\rm cm}$ ද නම් ABCO චතුරසුයේ පරිමිතිය සොයන්න.

 $AB = BC = 12 \; cm$ (බාහිර ලක්ෂායක සිට ඇඳි ස්පර්ශක දිගින් සමාන වේ.)

$$\mathit{OA} = \mathit{OC} = 5~\mathit{cm}$$
 (වෘත්තයේ අරයන්)

$$ABCO$$
 චතුරසුයේ පරිමිතිය = $AO + OC + CB + BA$ = $5~cm + 5~cm + 12~cm + 12~cm$ = $34~cm$

2. රූපයේ දැක්වෙන වෘත්තය මත පිහිටි $P,\ Q$ හා R ලක්ෂාවල දී ඇඳි ස්පර්ශක පිළිවෙළින් $AB,\ AC$ සහ BC වේ. $RC=6\ {\rm cm}\ {\rm$

$$AP=AQ=4\ cm$$
 (බාහිර ලක්ෂායක සිට ඇඳි ස්පර්ශක දිගින් සමාන වේ.)

$$BP=BR=5\ cm$$
 (බාහිර ලක්ෂායක සිට ඇඳි ස්පර්ශක දිගින් සමාන වේ.)

$$\mathit{CR} = \mathit{CQ} = 6~\mathit{cm}$$
 (බාහිර ලක්ෂායක සිට ඇඳි ස්පර්ශක දිගින් සමාන වේ.)

$$ABC$$
 තිකෝණයේ පරිමිතිය $=AQ+QC+CR+RB+BP+PA$ $=4\ cm+6\ cm+5\ cm+5\ cm+4\ cm$ $=30\ cm$

 $m{3.}$ රූපයේ දැක්වෙන වෘත්තය මත පිහිටි $m{B}$ සහ $m{C}$ ලක්ෂාවල දී ඇඳි ස්පර්ශක $m{A}$ හි දී ඡේදනය වේ. $m{B}\hat{m{A}}m{C}=70^{\circ}$ නම් $m{A}\hat{m{B}}m{C}$ හි අගය සොයන්න.

$$AB=AC$$
 (බාහිර ලක්ෂායක සිට ඇඳි ස්පර්ශක දිගින් සමාන වේ.)

$$\therefore A\hat{B}C = A\hat{C}B$$
 (සමද්විපාද තිකෝණයක කෝණ)

$$x + x + 70^{\circ} = 180^{\circ}$$

$$2x = 180^{\circ} - 70^{\circ}$$

$$2x = 110^{\circ}$$

$$x = 55^{\circ}$$

$$A\widehat{B}C = 55^{\circ}$$

4. පහත දැක්වෙන එක් එක් වෘත්තයේ කේන්දුය O ද වෘත්ත මත පිහිටි A සහ C ලක්ෂාවල දී ඇඳි ස්පර්ශක හමුවන ලක්ෂා B ද වේ. දී ඇති දත්ත ඇසුරෙන්, වීජීය සංකේතවලින් දැක්වෙන අගය සොයන්න.

$$\underline{x} = 55^{\circ}$$
 (ස්පර්ශකවලින් කේන්දුයේ ආපාතනය කරන කෝණ සමාන වේ.)

$$0\hat{C}B=90^{\circ}$$
 (ස්පර්ශකය සහ අරය අතර කෝණය)

$$y + 55^{\circ} + 90^{\circ} = 180^{\circ}$$

$$y = 35^{\circ}$$

 ${\it O}{\hat A}{\it B}=90^\circ$ (ස්පර්ශකය සහ අරය අතර කෝණය)

 $O\hat{C}B=90^\circ$ (ස්පර්ශකය සහ අරය අතර කෝණය)

 $\underline{b=30}^{\circ}$ (බාහිර ලක්ෂාය සහ කේන්දුය යා කරන රේඛාව, ස්පර්ශක අතර කෝණය සමච්ඡේදනය කරයි.)

$$a + b + 90^{\circ} = 180^{\circ}$$
$$a + b = 90^{\circ}$$
$$a + 30^{\circ} = 90^{\circ}$$

 $a = 60^{\circ}$

a=c (ස්පර්ශකවලින් කේන්දුයේ ආපාතනය කරන කෝණ සමාන වේ.)

$$c = 60^{\circ}$$

$$2b = 70^{\circ}$$

$$b = 35^{\circ}$$

$$a + b = 90^{\circ}$$

$$a + 35^{\circ} = 90^{\circ}$$

$$a = 55^{\circ}$$

$$2y = 110^{\circ}$$

$$y = 55^{\circ}$$

$$x + y = 90^{\circ}$$

$$x + 55^{\circ} = 90^{\circ}$$

$$x = 35^{\circ}$$

 $A\hat{O}C = 110^{\circ}$

 $oldsymbol{5.}$ රූපයේ දැක්වෙන Oකේන්දුය වූ වෘත්තයේ Pසහ Rලක්ෂාවල දී ඇඳි ස්පර්ශක Q හිදී හමුවේ. QR=OR නම්, PQRO යන්න P සමචතුරසුයක් බව පෙන්වන්න.

$$QR = OR$$
 (දක්තය) \longrightarrow ①

$$OR = OP$$
 (වෘත්තයේ අරයන්) \longrightarrow (2)

$$QR = QP$$
 (බාහිර ලක්ෂායක සිට ස්පර්ශක) \longrightarrow \mathfrak{J}

$$\therefore PQ = QR = RO = OP \longrightarrow \textcircled{4}$$

$$0\hat{P}Q=90^{
m o}$$
 (ස්පර්ශකය සහ අරය අතර කෝණය) \longrightarrow (5)

- 4 සහ 5 අනුව PQRS සමචතුරසුයකි.
- **6.** රූපයේ දැක්වෙන Oකේන්දුය වූ විශාල වෘත්තය මත A, Bසහ C ලක්ෂා පිහිටා ඇත. වෘත්තය තුළ පිහිටි කුඩා වෘත්තය Pසහ Q ලක්ෂාවල දී AB හා AC ස්පර්ශ කරයි.

- (i) APQ සමද්විපාද තුිකෝණයක් බව
- (ii) BC // PQ බව

පෙන්වන්න.

- (i) AP = AQ (කුඩා වෘත්තයට A සිට ඇඳි ස්පර්ශක) $\therefore APQ$ සමද්විපාද තිුකෝණයකි.
- (ii) $OP \perp AB$ (ස්පර්ශකය අරයට ලම්බ වන නිසා) / (කුඩා වෘත්තයේ කේන්දුය ද O විය යුතුය) වෘත්තයක කේන්දුයේ සිට ජාායකට අඳිනු ලබන ලම්බයෙන් එම ජාාය සමච්ඡේදනය වන නිසා

$$AP = PB$$

මේ අයුරින්ම,
$$AQ=QC$$

$$ABC$$
 තිකෝණයේ $AP=PB$ ද $AQ=QC$ ද නිසා මධා ලක්ෂා පුමේයයට අනුව $BC \ /\!/ \ PQ$

7. දී ඇති වෘත්තයට A, B හා Zහි දී ඇඳි ස්පර්ශක පිළිවෙළින් AC, BC හා XY වේ. රූපයේ දැක්වෙන තොරතුරු අනුව XC = CYබව පෙන්වන්න.

$$AC=BC$$
 (බාහිර ලක්ෂායක සිට ඇඳි ස්පර්ශක)

$$\therefore C\hat{A}B = C\hat{B}A$$

$$C\widehat{X}Y=C\widehat{A}B$$
 (අනුරූප කෝණ, $XY/\!/AB$)

$$C\widehat{Y}X=C\widehat{B}A$$
 (අනුරූප කෝණ, $XY/\!/AB$)

$$\therefore C\widehat{X}Y = C\widehat{Y}X$$

$$\therefore XC = CY$$

8. රූපයේ දැක්වෙන වෘත්තයට Pසිට අඳින ලද ස්පර්ශක X හා Y ලක්ෂාවල දී වෘත්තය ස්පර්ශ කරයි. XQ=YRවන සේ අඳින ලද QRසරල රේඛාව Zහි දී වෘත්තය ස්පර්ශ කරයි.

(i)
$$PR = PQ$$
 බව

(ii)
$$QR = XQ + YR$$
 බව

(iii)
$$XY/\!/QR$$
 බව

පෙන්වන්න.

- (i) PX = PY (බාහිර ලක්ෂායක සිට ඇඳි ස්පර්ශක) \longrightarrow ① XQ = YR (දත්තය) \longrightarrow ② ① + ② ; PX + XQ = PY + YR PQ = PR
- (ii) QZ=XQ (බාහිර ලක්ෂායක සිට ඇඳි ස්පර්ශක) \longrightarrow ③ ZR=YR (බාහිර ලක්ෂායක සිට ඇඳි ස්පර්ශක) \longrightarrow ④ ③ + ④ ; QZ+ZR=XQ+YR QR=XQ+YR
- (iii) $PXY \Delta$ sd; $a + x + x = 180^{\circ} \longrightarrow \text{\$}$ $PQR \Delta$ sd; $a + y + y = 180^{\circ} \longrightarrow \text{\$}$

(5) = (6);
$$a + x + x = a + y + y$$

 $2x = 2y$
 $x = y$

 $\therefore XY // QR$ (අනුරූප කෝණ සමාන නිසා)

- $oldsymbol{9}$. රූපයේ දැක්වෙන O කේන්දුය වූ වෘත්තය මත පිහිටි A සහ C ලක්ෂාවලදී ඇඳි ස්පර්ශක B හිදී එකිනෙක හමුවේ.
 - (i) $OAX \land \equiv OCX \land$ බව
 - (ii) OB රේඛාව AC රේඛාවේ ලම්බ සමච්ඡේදකය බව
 - (iii) $A\hat{O}C = 2 A\hat{C}B$ බව පෙන්වන්න.

(i) OAX සහ OCX Δ දෙකෙහි

$$OA = OC$$
 (අරයන්)

$$A \hat{O} X = C \hat{O} X$$
 (ස්පර්ශකවලින් ආපාතිත කෝණ)

$$OX = OX$$
 (පොදු පාදය)

- $\therefore OAX \Delta \equiv OCX \Delta$ (පා. කෝ. පා.)
- (ii) $A\hat{X}O=C\hat{X}O$ (අංගසම තිුකෝණවල අනුරූප අංග)

$$A\hat{X}O + C\hat{X}O = 180^{\circ}$$

$$\therefore A\hat{X}O = C\hat{X}O = 90^{\circ}$$

$$\therefore OB \perp AC$$

තවද AX = XC (අංගසම තිකෝණවල අනුරූප අංග)

 \div OB රේඛාව AC හි ලම්බ සමච්ඡේදකය වේ.

$$A\hat{C}B=x$$
 යැයි ගනිමු.

$$O\hat{C}X = 90^{\circ} - x$$

$$C\hat{O}X + O\hat{C}X = 90^{\circ}$$

$$C\widehat{O}X + (90^{\circ} - x) = 90^{\circ}$$

$$C\widehat{O}X = x$$

$$\hat{COX} = \hat{AOX} = x$$
 (ස්පර්ශකවලින් කේන්දුයේ ආපාතනය කරන කෝණ සමාන වේ.)

$$\therefore A\widehat{O}C = 2x$$

$$A\hat{O}C = 2A\hat{C}B$$

$$x + a = 90^{\circ}$$

$$y + a = 90^{\circ}$$

$$x + a = y + a$$

$$x + a = y + a$$

$$x = y$$

 $m{10.}$ රූපයේ දැක්වෙන O කේන්දුය වූ වෘත්තයට Q සිට ඇඳි ස්පර්ශක PQ සහ QR වේ. දික් කරන ලද QO රේඛාවට S හි දී වෘත්තය හමුවේ.

(i)
$$PQS \Delta \equiv QRS \Delta$$
 බව

(ii) 2
$$\stackrel{\wedge}{OPX} = \stackrel{\wedge}{PQR}$$
 බව

පෙන්වන්න.

(i) PQS සහ QRS Δ දෙකෙහි

$$PQ=RQ$$
 (බාහිර ලක්ෂායක සිට ඇඳි ස්පර්ශක)

$$P \hat{Q} S = R \hat{Q} S$$
 (බාහිර ලක්ෂාය සහ කේන්දුය යා කරන රේඛාව, ස්පර්ශක අතර කෝණය සමච්ඡේදනය කරයි.)

$$SQ = SQ$$
 (පොදු පාදය)

$$\therefore PQS \Delta \equiv QRS \Delta$$
 (පා. කෝ. පා.)

(ii)
$$P\hat{Q}X = x$$
 යැයි ගනිමු. $Q\hat{P}X = 90^{\circ} - x$ $O\hat{P}X + Q\hat{P}X = 90^{\circ}$ $O\hat{P}X + (90^{\circ} - x) = 90^{\circ}$ $O\hat{P}X = x$ $20\hat{P}X = 2x$ $20\hat{P}X = P\hat{Q}R$

11. රූපයේ දැක්වෙන වෘත්ත දෙකම මත Q ලක්ෂාය පිහිටන අතර QS රේඛාව වෘත්ත දෙකටම පොදු ස්පර්ශකයක් වේ. S සිට වෘත්ත දෙකට අඳින ලද අනෙක් ස්පර්ශක දෙක Pසහ R ලක්ෂාවල දී වෘත්ත ස්පර්ශ කරයි.

(ii)
$$P\hat{Q}R = S\hat{P}Q + S\hat{R}Q$$
 බව

පෙන්වන්න.

(ii)
$$S\hat{Q}P = S\hat{P}Q \ (PS = SQ \ \mathfrak{S}$$
සා) \longrightarrow ① $S\hat{Q}R = S\hat{R}Q \ (SQ = SR \ \mathfrak{S}$ සා) \longrightarrow ② ① $+$ ②; $S\hat{Q}P + S\hat{Q}R = S\hat{P}Q + S\hat{R}Q$ $P\hat{Q}R = S\hat{P}Q + S\hat{R}Q$

22.3 අභාපාසය

1. රූපයේ දැක්වෙන ලක්ෂායේ දී ඇඳි ස්පර්ශකය PQ වේ. B, C, D සහ E ලක්ෂා වෘත්තය මත පිහිටයි.

ස්පර්ශකයත්	අනුරූප ඒකාන්තර
ජාායත් අතර	වෘත්ත බණ්ඩයේ
කෝණය	කෝණ
BÂQ PÂB PÂD EÂQ DÂP DÂP	ADBACBAEBARDACDACEACEACEACAACAACAACAACAACAACAACAACAACAACA

2. එක් එක් රූප සටහනේ AB ලෙස දැක්වෙන්නේ වෘත්තයට Xලක්ෂායේ දී අඳින ලද ස්පර්ශකයකි. වීජිය සංකේතවලින් දැක්වෙන අගයන් සොයන්න.

 $x = 40^{\circ}$

 $\underline{a = 35^{\circ}}$

$$b = 55^{\circ}$$

 $\underline{a=b=45^{\circ}}$

 $x=50^\circ+60^\circ$ (ඒකාන්තර වෘත්ත ඛණ්ඩයේ කෝණ)

$$x = 110^{\circ}$$

 $y=D\widehat{X}B$ (ඒකාන්තර වෘත්ත ඛණ්ඩයේ කෝණ)

$$y = 180^{\circ} - 110^{\circ}$$

$$y = 70^{\circ}$$

- $p=30^{
 m o}$ (ඒකාන්තර වෘත්ත ඛණ්ඩයේ කෝණ)
- $q=30^{
 m o}$ (ඒකාන්තර වෘත්ත බණ්ඩයේ කෝණ)
- $s=35^{\circ}$ (එකම බණ්ඩයේ කෝණ)
- $r=A\widehat{X}E$ (ඒකාන්තර වෘත්ත ඛණ්ඩයේ කෝණ)
- $r = 90^{\circ} 35^{\circ}$
- $r = 55^{\circ}$

- $a=25^{\circ}$ (ඒකාන්තර වෘත්ත ඛණ්ඩයේ කෝණ)
- $b=40^{
 m o}$ (ඒකාන්තර වෘත්ත ඛණ්ඩයේ කෝණ)
- $c=40^{
 m o}$ (ඒකාන්තර වෘත්ත ඛණ්ඩයේ කෝණ)

3. PQයනු A හි දි වෘත්තයට ඇඳි ස්පර්ශකය වේ. AC = ABනම්, C

(ii) *PQ // CB* බවත්

පෙන්වන්න.

(i) $\hat{CAP} = \hat{ABC}$ (ඒකාන්තර වෘත්ත ඛණ්ඩයේ කෝණ) \longrightarrow ①

$$A\hat{B}C = A\hat{C}B$$
 ($AC = AB$ තිසා) \longrightarrow (2)

- $A\hat{C}B=B\hat{A}Q$ (ඒකාන්තර වෘත්ත ඛණ්ඩයේ කෝණ) \longrightarrow ③
- ①,② සහ ③ අනුව; $\it C\hat{A}P = B\hat{A}Q$
- (ii) $A\hat{B}C = B\hat{A}Q = x$
 - $\therefore~PQ~//~CB~(~A\hat{B}$ C, $B\hat{A}Q$ ඒකාන්තර කෝණ සමාන නිසා)

4. ABයනු Xලක්ෂායේ දී වෘත්තයට ඇඳි ස්පර්ශකය වේ. C සහ E ලක්ෂා වෘත්තය මත පිහිටා ඇත්තේ $B\hat{X}C = A\hat{X}E$ වන පරිදි ය. D වෘත්තය මත පිහිටි තවත් ලක්ෂායකි.

- (ii) *EX= CX* බව
- (iii) AB // EC බව

පෙන්වන්න.

(i)
$$A\widehat{X}E = E\widehat{D}X$$
 (ඒකාන්තර වෘත්ත ඛණ්ඩයේ කෝණ) \longrightarrow ① $B\widehat{X}C = X\widehat{D}C$ (ඒකාන්තර වෘත්ත ඛණ්ඩයේ කෝණ) \longrightarrow ② $B\widehat{X}C = A\widehat{X}E$ (දත්තය) \longrightarrow ③

$$\therefore E\widehat{D}X = X\widehat{D}C$$

$$\therefore$$
 $E\widehat{D}C$ හි සමච්ඡේදකය $X\!D$ වේ. ______

(ii)
$$X\widehat{E}C = X\widehat{D}C = x$$
 (එකම ඛණ්ඩයේ කෝණ) $X\widehat{C}E = X\widehat{D}E = x$ (එකම ඛණ්ඩයේ කෝණ) $\therefore X\widehat{E}C = X\widehat{C}E$ $\therefore \underline{E}X = \underline{C}X$

(iii) $E\hat{C}X = C\hat{X}B = x$ (ඉහත සාධන මගින්) $\therefore AB /\!\!/ EC$ ($E\hat{C}X$, $C\hat{X}B$ ඒකාන්තර කෝණ සමාන නිසා)

5. AB රේඛාව X හි දී වෘත්තය ස්පර්ශ කරයි. $PQ/\!/AB$ වන සේ PQ ජහාය ඇඳ ඇත.

(ii) PX= PA නම් AXQP සමාන්තරාසුයක් බව පෙන්වන්න.

- (i) $A\hat{X}P=P\hat{Q}X=x$ (ඒකාන්තර වෘත්ත ඛණ්ඩයේ කෝණ) $P\hat{Q}X=B\hat{X}Q=x$ (ඒකාන්තර කෝණ) $\therefore \underline{B\hat{X}Q=A\hat{X}P}$
- (ii) $P\hat{X}A = P\hat{A}X = x$ (PX = PA නිසා) $P\hat{A}X = Q\hat{X}B = x$ (ඉහත සාධන මගින්) $\therefore QX//PA$ ($P\hat{A}X,Q\hat{X}B$ අනුරූප කෝණ සමාන නිසා) AXQP වතුරසුයේ QX//PA ද PQ // AX ද නිසා AXQP සමාන්තරාසුයකි.
- $m{6.}$ වෘත්ත දෙකක් බාහිරව $m{X}$ ලක්ෂායේ දී ස්පර්ශ වේ. $m{YZ}$ පොදු ස්පර්ශකය වේ. $m{AB}$ එක් වෘත්තයක ජාායකි. දික් කරන ලද $m{AX}$ සහ $m{BX}$ පිළිවෙලින් අනෙක් වෘත්තය $m{P}$ හා $m{Q}$ හි දී හමුවේ.

- (i) $B\hat{X}Z = X\hat{P}Q$ බව පෙන්වන්න.
- (ii) $AB/\!/PQ$ බව පෙන්වන්න.
- (i) $B\hat{X}Z=Y\hat{X}Q=x$ (පුතිමුඛ කෝණ) $Y\hat{X}Q=X\hat{P}Q=x$ (ඒකාන්තර වෘත්ත ඛණ්ඩයේ කෝණ) $\therefore \underline{B\hat{X}Z=X\hat{P}Q}$

මිශු අභාහාසය

 $oldsymbol{1.0}$ කේන්දුය වූ වෘත්තයට A සිට අඳින ලද ස්පර්ශක B හා C හි දී වෘත්තය ස්පර්ශ කරයි. වෘත්තයේ අරය 5 cm හා OA=13 cm නම් OBAC චතුරසුයේ වර්ගඵලය සොයන්න.

$$OCA$$
 තිකෝණයේ වර්ගඵලය $= rac{1}{2} imes CA imes CO$ $= rac{1}{2} imes 12 imes 5$ $= 30~cm^2$ $OBAC$ වතුරසුයේ වර්ගඵලය $= 2 imes 30~cm^2$ $= rac{60~cm^2}{2}$

$$OCA$$
 නිකෝණයට පයිතගරස් පුමේයය යෙදීමෙන් $OA^2 = OC^2 + CA^2$ $13^2 = 5^2 + CA^2$ $CA^2 = 13^2 - 5^2$ $CA^2 = 169 - 25$ $CA^2 = 144$ $CA = \sqrt{144}$ $CA = 12$ cm

2. O කේන්දුය වූ වෘත්තය මත පිහිටි A ලක්ෂායේ අඳින ලද ස්පර්ශකය AB වේ. OB, C හි දී වෘත්තය ඡේදනය කරයි. CB = 4 cm සහ AB = 8 cm වේ. වෘත්තයේ අරය ගණනය කරන්න.

$$OB^2 = OA^2 + AB^2$$
 $(r+4)^2 = r^2 + 8^2$ $r^2 + 8r + 16 = r^2 + 64$ $8r = 64 - 16$ $8r = 48$ $r = 6$ වෘත්තයේ අරය = 6 cm

OAB තිුකෝණයට පයිතගරස් පුමේයය යෙදීමෙන්

3. රූපයේ දැක්වෙන වෘත්ත දෙකේ කේන්දු Pහා Q වේ. විශාල වෘත්තය මත පිහිටි A හා B ලක්ෂාවල දී එම වෘත්තයට ඇඳි ස්පර්ශක පිළිවෙළින් Xහා Y හිදී කුඩා වෘත්තය ස්පර්ශක කරයි. තවද මෙම ස්පර්ශක දෙක Z හිදි එකිනෙක ඡේදනය වේ.

(i)
$$AX = BY$$
බව

(ii)
$$A\hat{P}Z = Y\hat{Q}Z$$
 බව

පෙන්වන්න.

$$(i)$$
 $AZ=BZ$ (බාහිර ලක්ෂායක සිට ඇඳි ස්පර්ශක) $ZX=ZY$ (බාහිර ලක්ෂායක සිට ඇඳි ස්පර්ශක) $AZ+ZX=BZ+ZY$ $\underline{AX=BY}$

$$(ii) \ A\hat{Z}P = B\hat{Z}P = a$$
 (ඛාහිර ලක්ෂාය සහ කේන්දුය යා කරන රේඛාව, ස්පර්ශක අතර කෝණය සමච්ඡේදනය කරයි.)

$$B\hat{Z}P=Y\hat{Z}Q=a$$
 (පුතිමුඛ කෝණ)

$$APZ \Delta$$
 න් ; $x + a = 90^{\circ}$ →①

YZQ
$$\Delta$$
 න් ; $y + a = 90^{\circ}$ →②

$$x + a = y + a$$

$$x = y$$

$$A\widehat{P}Z = Y\widehat{Q}Z$$

4. රූපයේ දැක්වෙන පරිදි PX සහ QX ස්පර්ශක P, R, Q සහ S ලක්ෂාවල දී වෘත්ත ස්පර්ශ කරයි. වෘත්තවල කේන්දු A සහ B වේ.

- (i) PR = QS බව
- (ii) PQ // RS බව
- (iii) A, B සහ Xඑකම සරල රේඛාවක පිහිටන බව පෙන්වන්න.

$$(i)$$
 $PX=QX$ (බාහිර ලක්ෂායක සිට ඇඳි ස්පර්ශක) \longrightarrow ① $RX=SX$ (බාහිර ලක්ෂායක සිට ඇඳි ස්පර්ශක) \longrightarrow ② $PX-RX=QX-SX$ $PR=QS$

$$RSX$$
 Δ ලස් $RX = SX$ නිසා $X\hat{R}S = X\hat{S}R = X$

$$PQX$$
 Δ ඉස් $PX=QX$ නිසා $X \hat{P}Q=P \hat{Q}X=y$

$$RSX \triangle$$
 అదే $2x + a = 180^{\circ} \longrightarrow 1$

$$PQX$$
 Δ ඉග් $2y + a = 180$ ° → ②

$$2x + a = 2y + a$$
$$2x = 2y$$
$$x = y$$
$$S\widehat{R}X = O\widehat{P}X$$

 $ilde{\cdot}$ PQ // RS ($S\hat{R}X$, $Q\hat{P}X$ අනුරූප කෝණ සමාන නිසා)

RX සහ SX ස්පර්ශක දෙක අතර කෝණයේ සමච්ඡේදකය XB වේ. PX සහ QX ස්පර්ශක දෙක අතර කෝණයේ සමච්ඡේදකය ද XB වේ.

- \therefore දික් කළ XB රේඛාව A හරහා ගමන් කරයි.
- \therefore A , B සහ X එකම සරල රේඛාවක පිහිටයි.