Calcul Numeric – Tema#1 Informatică, Anul III

INSTRUCŢIUNI:

- 1. Comentați și explicați toate rezolvările trimise. Codurile necomentate/neexplicate nu se punctează.
- 2. Codurile vor fi salvate cu următoarea denumire Nume_Prenume_Grupa_Tema1.py și vor fi trimise până în data de 30 octombrie 2020, ora 23:59.

Ex. 1 (1.5 puncte)

Să se găsească o aproximare a valorii $\sqrt{3}$ cu o precizie de 7 zecimale.

Ex. 2 (1.5 puncte)

Rezolvaţi numeric ecuaţia $e^{x-2} = \cos(e^{x-2}) + 1$. Să se ilustreze grafic cele două funcţii şi punctul lor de intersecţie.

Ex. 3 (3 puncte)

(a) Creați funcția pozitie_falsa care determină numeric soluția ecuației:

$$f(x) = 0, \quad x \in [a, b], \tag{1}$$

prin metoda poziției false și are ca date de intrare:

- funcția care determină ecuația (1), f;
- capetele intervalului în care se rezolvă ecuația (1), a și b;
- toleranța erorii specifice metodei poziției false, eps;

iar ca date de ieşire:

- soluţia numerică obţinută, x_{aprox};
- numărul de iterații necesare, N;
- (b) Într-un fişier script să se construiască graficul funcției $f(x) = x^3 7x^2 + 14x 8$ pe intervalul [-5,5]. Alegeți trei subintervale, astfel încât metoda poziției false să fie convergentă. Aflați cele trei soluții apelând funcția pozitie_falsa cu eroarea de aproximare eps = 10^{-5} . Construiți punctele obținute pe graficul funcției.

Ex. 4 (3 puncte)

(a) Creați funcția secanta care determină numeric soluția ecuației:

$$f(x) = 0, \quad x \in [a, b], \tag{2}$$

prin metoda secantei și are ca date de intrare:

- funcția care determină ecuația (2), f;
- capetele intervalului în care se rezolvă ecuația (2), a și b;
- punctele de start x_0 și x_1 ;
- toleranța erorii specifice metodei secantei, eps;

iar ca **date de ieșire**:

- soluţia numerică obţinută, x_{aprox};
- numărul de iteratii necesare, N;
- (b) Într-un fișier script să se construiască graficul funcției $f(x) = x^3 + x^2 2x$ pe intervalul [-3,3]. Alegeți trei subintervale, astfel încât metoda secantei să fie convergentă. Aflați cele trei soluții apelând funcția secanta cu eroarea de aproximare eps = 10^{-5} . Construiți punctele obținute pe graficul funcției.

Oficiu: 1 punct.