physics 宏包手册

Sergio C. de la Barrera (著)

SwitWu (译)

physics.tex@gmail.com

2401336502@qq.com

2025年1月2日

目录

1	开始	之前	1
	1.1	宏包设计初衷	1
	1.2	其它需要的宏包	2
	1.3	在你的 LATEX 文档中使用 physics 宏包	2
2	命令	·列表	2
	2.1	自动括号	2
	2.2	向量记号	3
	2.3	算符	4
	2.4	快速添加带铅空文本	5
	2.5	导数	6
	2.6	Dirac bra-ket 记号	7
	2.7	矩阵宏	8

1 开始之前

1.1 宏包设计初衷

此宏包的目标是让物理方程式的排版更加简单、快捷以及具有可读性。为了做到这一点,此宏包中的命令依照其作用进行命名,并且移除在阅读和编辑 physics 代码时的任何歧义点。从实践的立场看,给这些命令的"冗长"形式定义合适的缩写集合非常便于用户使用。因此,下面列出的命令是根据它们的长格式名称定义的,然后根据默认的缩写命令序列显式展示。这些缩写命令旨在让你轻松记住缩写名称以及每个名称所代表的含义。

1.2 其它需要的宏包

physics 宏包需要 xparse 宏包和 amsmath 宏包的支持来正常工作。amsmath 标配于大多数 LATEX 发行版且为了方便已由 physics 宏包进行加载。考虑到 xparse 是一个用于定义 LATEX 宏的著名宏包,所以也许你已经在系统上安装了 xparse 宏包。然而,如果你不能确定的话,那么你可以通过使用你的本地宏包管理器¹(大多数发行版标配)来进行安装,也可以通过访问 CTAN 在线宏包数据库进行安装,甚至可以尝试直接使用 physics 宏包。许多现代 LATEX 编译器会为你定位并提供下载缺失的宏包。

1.3 在你的 LATEX 文档中使用 physics 宏包

若要使用 physics 宏包,只需在文档导言区插入 \usepackage{physics}:

```
\documentclass{class}
...
\usepackage{physics}
...
\begin{document}
content...
\end{document}
```

2 命令列表

2.1 自动括号

$\qty(\typical) \to (\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	自动添加圆括号()
$\qty[\typical] o [live] \qty[\typical] o live \qty[\typical] o \{live \qty[\typical] o \{\} \qty[\typical$	自动添加中括号[] 自动添加竖线 自动添加花括号 {} 手动调整尺寸(对上述任意括号类型 生效)
$\qty \rightarrow \left \{ \right \}$ $ \leftrightarrow \qty()$ $ \leftrightarrow \qty[]$	等价语法,具健壮性且更具 LATEX 友好性
	$eq:continuous_continuous$

 $^{^1}$ 例如 T_EX Live 的宏包管理器为 tlmgr, $MiKT_EX$ 的宏包管理器为 mpm。

2.2 向量记号

向量记号中 nabla 算符 默认使用 ∇ ,如果需要使用带箭头的 $\vec{\nabla}$,请在文档导言区添加 arrowdel 选项,即 \usepackage[arrowdel]{physics}。

\vectorbold	$\verb vb{a} \to \mathbf{a}$	直立体/非希腊字母
	\vb*{a}, \vb*{\theta} $ ightarrow oldsymbol{a}, oldsymbol{ heta}$	意大利斜体/希腊字母
\vectorarrow	extstyle ext	直立体/非希腊字母
	\va*{a}, \va*{\theta} $ ightarrow ec{a}, ec{ heta}$	意大利斜体/希腊字母
\vectorunit	$\operatorname{vu}\{\mathtt{a}\} o \widehat{\mathbf{a}}$	直立体/非希腊字母
	\vu*{a}, \vu*{\theta} $ ightarrow \hat{m{a}}, \hat{m{ heta}}$	意大利斜体/希腊字母

 $\vdot
ightarrow \cdot$ 如 $\mathbf{a} \cdot \mathbf{b}$ \dotproduct 注: \dp 为受保护的 TpX 原语 \crossproduct \cross \rightarrow x 如 $\mathbf{a} \times \mathbf{b}$ 替换名 \c p $\rightarrow \times$ as in $\mathbf{a} \times \mathbf{b}$ 缩写名称 $\grad o oldsymbol{
abla}$ \gradient $\grad{\Psi} o oldsymbol{
abla}\Psi$ 默认模式 $\grad(\Psi+\tall) o oldsymbol{
abla} (\Psi + oldsymbol{
abla})$ 长形式(类似\qty,也处理间距) $\texttt{\grad[\Psi+\tall]} \to \boldsymbol{\nabla}[\Psi + \blacksquare]$ \div $ightarrow oldsymbol{
abla} \cdot$ 注: amsmath 中符号 ÷ 被重命名为 \divergence \divisionsymbol $\texttt{\div}\{\texttt{\vb\{a\}}\} \to \boldsymbol{\nabla} \boldsymbol{\cdot} \mathbf{a}$ 默认模式 $\forall (\nabla v = \mathbf{a} + \mathbf{b}) \rightarrow \nabla \cdot (\mathbf{a} + \mathbf{b})$ 长形式 $\text{\div[\vb{a}+\tall]} o oldsymbol{
a} \cdot ig[a + ig]$ $\curl o oldsymbol{
abla} imes$ \curl $\operatorname{\operatorname{Vob}\{a\}} \to \nabla \times a$ 默认模式 长形式 $\operatorname{\operatorname{|vb}\{a\}+\operatorname{|tall}|} \to \nabla \times \operatorname{|a+|}$ ackslash \lambda laplacian $o
abla^2$ \laplacian $\label{eq:laplacian} \$ 默认模式 长形式 $\label{eq:laplacian} \$

2.3 算符

physics 宏包重定义了标准三角函数集合使得集合中的函数宏可以提供自动调整尺寸的括号。另外,还提供了一个可选参数用来输出幂。此行为可通过在导言区添加 notrig 选项进行关闭,即

\usepackage[notrig]{physics}

重定义样例:

\sin \sin(\grande) $\to \sin$ 自动添加括号;旧的 \sin 重命名为 \sine \sin[2](x) $\to \sin^2(x)$ 可选参数输出幂 \sin x $\to \sin x$ 仍然可以无参数使用

physics 宏包中可用的三角函数集合:

```
\sin(x) \sinh(x) \arcsin(x)
                                                     \sin(x)
                                                              sinh(x)
                                                                         \arcsin(x)
                                                                                     asin(x)
\cos(x)
                                     \acos(x)
          \c) \arccos(x)
                                                     \cos(x)
                                                              \cosh(x)
                                                                         \arccos(x)
                                                                                     acos(x)
\tan(x)
          \tanh(x) \arctan(x)
                                     \lambda(x)
                                                     tan(x)
                                                              tanh(x)
                                                                        \arctan(x)
                                                                                    atan(x)
                                      \acsc(x)
                                                                         \operatorname{arccsc}(x)
                                                                                     acsc(x)
\csc(x)
          \csch(x)
                     \arccsc(x)
                                                     \csc(x)
                                                              \operatorname{csch}(x)
\sec(x)
          \sch(x)
                       \arcsec(x)
                                      \ac{x}
                                                     sec(x)
                                                              \operatorname{sech}(x)
                                                                         \operatorname{arcsec}(x)
                                                                                     asec(x)
\cot(x)
          \c)
                       \arccot(x)
                                                     \cot(x)
                                                              \coth(x)
                                                                        \operatorname{arccot}(x)
                                                                                     acot(x)
                                      \acot(x)
```

标准的三角函数(加上 amsmath 中缺少的一些)可以通过如下名称集进行使用,注意这些不会自动调整括号尺寸。

\sine	\hypsine	\arcsine	\asine
\cosine	\hypcosine	\arccosine	\acosine
\tangent	\hghtyptangent	\arctangent	\atangent
\cosecant	\hgpi	\arccosecant	\acosecant
\secant	\hypsecant	\arcsecant	\asecant
\cotangent	\hypcotangent	\arccotangent	\acotangent

类似的行为也被拓展到下列函数:

$\exp({tall})$	$\exp($		\exponential
$\log({tall})$	$\log($		$\label{logarithm}$
$\ln({tall})$	$\ln($	旧版本重定义为 ⇒	\naturallogarithm
\det(\tall)	$\det($		\determinant
$\P(\lambda)$	$\Pr(\blacksquare)$		\Probability

新的算符:

新的异付:		
\trace or \tr	$\operatorname{tr} \rho \operatorname{also} \operatorname{tr}(\operatorname{tall}) \to \operatorname{tr}($	迹;与三角函数具相同括号功能
\Trace or \Tr	Tr rho $ o\operatorname{Tr} ho$	替换名
\rank	$\verb \rank M \to \operatorname{rank} M$	矩阵的秩
\erf	$\operatorname{ heta}(x) \to \operatorname{erf}(x)$	高斯误差函数
\Res	$\operatorname{\mathtt{Res}}[\mathtt{f}(\mathtt{z})] o \operatorname{Res}[f(z)]$	留数;与三角函数具相同括号功能
\principalvalue	\pv{\int f(z) \dd{z}}\rightarrow $\mathcal{P}\int f(z)\mathrm{d}z$	Cauchy 主值
	\PV{\int f(z) \dd{z}} $ ightarrow$ P.V. $\int f(z) \mathrm{d}z$	替换名
\Re	$\Re\{z\} o \operatorname{Re}\{z\}$	旧版 \Re 重命名为 \real → ℜ
\Im	$\mathtt{Im}\{\mathtt{z}\} o \mathrm{Im}\{z\}$	旧版 \Im 重命名为 \imaginary → ♡

2.4 快速添加带铅空文本

这组命令在数学模式中提供两端带 \quad 间距的文本,为在方程中插入简单的词语及短语提供了快捷的方式。下面每一个命令都有一个星号版本用于只在右侧填充 \quad 间距,这样方便用于像 cases 这样的对齐环境。

一般性文本:

\qqtext \qq{} 单参数

\qq{word or phrase} → __ word or phrase __ 一般模式; 两端都填充 \quad 间距 \qq*{word or phrase} → word or phrase __ 星号版本; 只在右侧填充 \quad 间距

特殊宏:

\qcomma 或者 \qc →, __ 仅右侧填充 \quad 间距

\qcc → __ c.c.__ 复共轭; 两端都填充 \quad 间距除非使用星号版本 \qcc* → c.c.__

\qif →__ if__ 两端都填充 \quad 间距除非使用星号版本 \qif* → if__

类似于 \qif 的还有:

2.5 导数

如果需要将在 \differential 和 \derivative 中使用的默认微分符号 d 切换为意大利形式的 d, 请在文档导言区添加 italicdiff 选项,即 \usepackage[italicdiff]{physics}。

\differential	\d dd $ ightarrow$ d	
	\dd $\mathbf{x} o \mathrm{d} x$	无间距 (不推荐)
	$\d(x) \rightarrow _{\sqcup} \mathrm{d}x_{\sqcup}$	基于邻接项自动添加间距
	$dd[3]\{x\}\to\mathrm{d}^3x$	可选参数输出幂
	$\d(\cos\theta)$	长形式;自动调整括号尺寸
\derivative	$\operatorname{dv}\{x\} o rac{\mathrm{d}}{\mathrm{d}x}$	单参数
		双参数
	$\operatorname{dv}[\mathtt{n}]\{\mathtt{f}\}\{\mathtt{x}\} \to \frac{\mathrm{d}^n f}{\mathrm{d} x^n}$	可选参数输出幂
	$\operatorname{dv}\{x\}(\operatorname{grande}) \to \frac{\mathrm{d}}{\mathrm{d}x}$	长形式; 自动调整括号尺寸和间距
	$\mathbf{dv*\{f\}\{x\}} \to \mathbf{d}f/\mathbf{d}x$	使用 \flatfrac 的行内形式
\partialderivative	$\dv*{f}{x} \to df/dx$ $\pderivative{x} \to \frac{\partial}{\partial x}$	替换名
	$\pdv{x} o rac{\partial}{\partial x}$	缩写名
	$\pdv{f}{x} o rac{\partial f}{\partial x}$	双参数
	$\pdv[n]{f}{x} o rac{\partial^n f}{\partial x^n}$	可选参数输出幂
	$\pdv{x}(\grande) o rac{\partial}{\partial x}$	长形式
	$\begin{array}{l} \partial x \\ \pdv{x} \to \frac{\partial}{\partial x} \\ \pdv{f}{x} \to \frac{\partial f}{\partial x} \\ \pdv{n}{f}{x} \to \frac{\partial f}{\partial x} \\ \pdv{n}{f}{x} \to \frac{\partial^n f}{\partial x^n} \\ \pdv{x}{(\prande)} \to \frac{\partial}{\partial x} \\ \pdv{f}{x}{y} \to \frac{\partial^2 f}{\partial x \partial y} \\ \end{array}$	混合偏导数

\pdv*{f}{x}
$$\rightarrow \partial f/\partial x$$
 使用\flatfrac 的行内形式\rightarrow variation \var{F[g(x)]} $\rightarrow \delta F[g(x)]$ 泛函变体(机制类似于\dd)\rightarrow var(E-TS) $\rightarrow \delta (E-TS)$ 长形式\functionalderivative \fdv{g} $\rightarrow \frac{\delta}{\delta g}$ 泛函导数(机制类似于\dv)\rightarrow \fdv{F}{g} $\rightarrow \frac{\delta F}{\delta g}$ \rightarrow \fdv{V}(E-TS) $\rightarrow \frac{\delta}{\delta V}(E-TS)$ 长形式\fdv*{F}{x} $\rightarrow \delta F/\delta x$ 使用\flatfrac 的行内形式

2.6 Dirac bra-ket 记号

下面关于 Dirac 记号的宏集合包含两个基本的命令,\bra 和 \ket,此外还有一系列由两个基本命令组合而成的更加专门的宏。从生成 physics 代码的角度来看,专用宏既有用又具有描述性,但是,两个基本命令旨在在适当的时候相互代数性结合,因此建议将其一般性使用。例如,下面的代码表达正确:

$$\beta \rightarrow \langle \phi | \psi \rangle$$
 as opposed to $\langle \phi | \psi \rangle$

而具有更高级别宏的类似结构不会以稳健的方式收缩

另一方面,可以通过坚持基本命令来生成正确的输出,

$$\fill \parbox{phi}\ket{\psi}\bra{\xi} \to \langle \phi | \psi \rangle \langle \xi |$$

允许用户排版出复杂的量子力学表达式而不必担心 bra-ket 收缩。话虽如此,高级宏确实在便利性和可读性方面占有一席之地,只要用户意识到由于缺乏自动收缩而可能出现的渲染问题。

\ket	$raket{ tall} ightarrow raket{raket}$	自动调整尺寸
	$\texttt{\ket*{\tall}} \to \ket{\hspace{1em}}$	固定尺寸
\bra	$\beta \rightarrow \langle $	自动调整尺寸
	\bra*{\tall} $ ightarrow$ (固定尺寸
	$\verb \hi \ket{\psi} \to \langle \phi \psi \rangle$	自动收缩
	$\hat{\phi}$	自动收缩和调整尺寸
	\bra{\phi}\ket*{\tall} $ ightarrow$ $\langle \phi $	任一项带星号都禁止调整尺寸
	\bra*{\phi}\ket{\tall} $ ightarrow$ $\langle \phi $	在 次市生与即示止州罡八寸
	\bra*{\phi}\ket*{\tall} $ ightarrow$ $\langle \phi luellowbreak angle$	
\innerproduct	$\texttt{\braket{a}{b}} \rightarrow \langle a b\rangle$	双参数 braket
	$\texttt{\braket{a}} \rightarrow \langle a a \rangle$	单参数 (范数)
	\braket{a}{\tall} $ ightarrow \left\langle a \middle \rule{0mm}{2mm} \right\rangle$	自动调整尺寸

	\braket*{a}{\tall} $ ightarrow$ $\langle a $	固定尺寸
	$\texttt{\label{a}} \{\texttt{b}\} \rightarrow \langle a b\rangle$	缩写名
\outerproduct	$\texttt{\dyad\{a\}\{b\}} \rightarrow a\rangle\!\langle b $	双参数 dyad
	$\texttt{\dyad\{a\}} \to a\rangle\!\langle a $	单参数 (projector)
	$\texttt{\dyad\{a\}\{\tall\}} \rightarrow \big a\big\rangle\!\big $	自动调整尺寸
	\dyad*{a}{\tall} $ ightarrow a angle \langle$	固定尺寸
	$\texttt{ar{a}}\{\texttt{b}\} \to a\rangle\!\langle b $	替换名
	$\verb op{a}{b} \to a\rangle\!\langle b $	缩写名
\expectationvalue	$\texttt{\ensuremath{\tt Lap}} \to \langle A \rangle$	隐式形式
	$\verb \expval{A} \{\verb \Psi \} \to \langle \Psi A \Psi\rangle$	显式形式
	$\texttt{\ev{A}}\{\texttt{\ensuremath{\ensuremath{\mbox{\ensuremath{\ensuremath{\mbox{\ensuremath{\mbox{\ensuremath{\mbox{\ensuremath{\mbox{\ensuremath{\mbox{\ensuremath{\mbox{\ensuremath{\mbox{\ensuremath{\mbox{\ensuremath}\ensuremat$	缩写名
	\ev{\grande}{\Psi} $ ightarrow \left\langle \Psi ightert \leftert \Psi ight angle$	默认尺寸忽略中间参数
	$\texttt{\ev*{\grande}}\{\texttt{\tall}\} \to \langle \blacksquare \hspace{0.2cm} \blacksquare \rangle$	单星号版本固定尺寸
	$\texttt{\ev**}\{\texttt{\grande}\}\{\texttt{\Psi}\} \to \left\langle \Psi \rule{0mm}{2mm} \Psi \right\rangle$	双星号版本基于所有部分调整尺寸
\matrixelement	$\verb \matrixel{n}{A}{m} \rightarrow \langle n A m\rangle$	三个参数都必需
	$\label{eq:meln} $$ \mathbf{A}_n \to \langle n A m\rangle $$$	缩写名
	$\mathbf{mel}_n \leq \mathbf{m} \rightarrow \langle n m \rangle$	默认尺寸忽略中间参数
	$\mathbf{n}_{n} \leq n $	单星号版本固定尺寸
	$\mathbf{mel**\{n\}\{\{grande\}\{m\}} \rightarrow \left\langle n \middle m \right\rangle$	双星号版本基于所有部分调整尺寸

2.7 矩阵宏

下列矩阵宏生成由矩阵元组成的未格式化的行与列,其既可以单独使用,也可以充当大型矩阵中的块。例如,命令 \identitymatrix{2}(其有缩写形式 \imat{2})用于生成一个不带括号及分组的 2×2 单位矩阵 $\frac{1}{0}$,这使得该命令可以在另一个矩阵之中使用,例如:

为了指定 \imat{2} 子矩阵右侧的元, 我们使用分组命令 \matrixquantity 或者 \mqty 来将 \imat{2} 转化为大矩阵中的一个单矩阵元。

在这个情形下需要额外的 \mqty 分组来把 a 和 b 看作一个单元,这是因为 \mqty{\imat{2}} 也被视

作一个单矩阵元(c 和 d 的分组同理说明)。最后,最外层的 pmatrix 环境也可以替换为 physics 宏 \mqty(),从而使得上面的例子通过一行代码完成:

		\ /
$\mbox{\colored}$	\mqty{a & b \\ c & d} $ ightarrow rac{a}{c} rac{b}{d}$	将矩阵元素集合组为一个单位体
	\mqty(a & b \\ c & d) $ ightarrow egin{pmatrix} a & b \\ c & d \end{pmatrix}$	圆括号
	\mqty*(a & b \\ c & d) $ ightarrow egin{pmatrix} a & b \ c & d \end{pmatrix}$	替换圆括号
	\mqty[a & b \\ c & d] $ ightarrow egin{bmatrix} a & b \ c & d \end{bmatrix} ightarrow egin{bmatrix} a & b \ c & d \end{bmatrix} ightarrow egin{bmatrix} a & b \ c & d \end{bmatrix}$	中括号
	\mqtyla & b \\ c & d\ $ ightarrow egin{array}{c c} a & b \ c & d \end{array}$	垂直竖线
	$ \leftrightarrow \pmqty()$	等价语法;具健壮性且更具 LATEX 友
	$\P \{\} \leftrightarrow \P \{\}$	好性
	$\verb \leftrightarrow \verb \mqty[] $	
	$\verb \leftrightarrow \verb \mqty $	
\smallmatrixquantity	\smqty{a & b \\ c & d} $ ightarrow egin{smallmatrix} a & b \\ c & d \end{pmatrix}$	\mqty的 smallmatrix 形式
	\smqty() or	\mqty() 的 "小" 版本
	\smqty*() or	\mqty*() 的 "小" 版本
	\smqty[] or	\mqty[] 的 "小" 版本
	\smqty or	\mqty 的"小"版本
\matrixdeterminant	\mdet{a & b \\ c & d} $ ightarrow egin{bmatrix} a & b \ c & d \end{pmatrix}$	矩阵行列式
	\smdet{a & b \\ c & d} $ ightarrow$ $\begin{vmatrix} a & b \\ c & d \end{vmatrix}$	小型矩阵行列式
\identitymatrix	$\operatorname{imat}\{n\}$	$n \times n$ 单位矩阵的元
	$\smooth{ ext{smqty(\imat{3})}} ightarrow \left(egin{smallmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{smallmatrix} ight)$	使用 \mqty 或者 \smqty 进行格式化
\xmatrix	$\x \x \$	以 x 填充的 $n \times m$ 矩阵的元
	$\texttt{\smqty(\xmat{1}{2}{3})} \rightarrow \left(\begin{smallmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{smallmatrix}\right)$	使用 \mqty 或者 \smqty 进行格式化
	$\mbox{smqty(\xmat*{a}{3}{3})} ightarrow \left(\begin{array}{c} a_{11} \ a_{12} \ a_{13} \\ a_{21} \ a_{22} \ a_{23} \\ a_{31} \ a_{32} \ a_{33} \end{array} \right)$	星号版本生成元素指标
	$\operatorname{smqty}(\operatorname{xmat}_{a} {3}{1}) \rightarrow \begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix}$	带指标向量
	$\texttt{smqty(xmat*{a}{1}{3})} \rightarrow \left(\begin{smallmatrix} a_1 & a_2 & a_3 \end{smallmatrix}\right)$	
\zeromatrix	\zmat{n}{m}	以 0 填充的 $n \times m$ 矩阵
	$\verb \smqty(\zmat{2}{2}) \to \left(\begin{smallmatrix} 0 & 0 \\ 0 & 0 \end{smallmatrix} \right)$	等价于 \xmat{0}{n}{m}

\paulimatrix	\pmat{n}	第 n 个泡利矩阵
	$\texttt{\smqty(\pmat{0})} \rightarrow \left(\begin{smallmatrix} 1 & 0 \\ 0 & 1 \end{smallmatrix} \right)$	$n \in \{0, 1, 2, 3$ 或者 $x, y, z\}$
	$\texttt{\smqty(\pmat{1})} \rightarrow \left(\begin{smallmatrix} 0 & 1 \\ 1 & 0 \end{smallmatrix} \right)$	
	$\texttt{\smqty(\pmat{2})} \to \left(\begin{smallmatrix} 0 & -i \\ i & 0 \end{smallmatrix} \right)$	
	$\texttt{\smqty(\pmat{3})} \rightarrow \left(\begin{smallmatrix} 1 & 0 \\ 0 & -1 \end{smallmatrix}\right)$	
\diagonalmatrix	$ dmat{a,b,c,} $	最多指定八个对角或块对角元
	$$\parbox{$\$	
	$\texttt{\nqty(\dmat[0]\{1,2\})} \to \begin{pmatrix} 1 & 0 \\ 0 & 2 \end{pmatrix}$	可选参数填充非对角部分

\mqty(\dmat{1,2&3\\4&5}) \rightarrow $\begin{pmatrix} 1 \\ 2 & 3 \\ 4 & 5 \end{pmatrix}$ 为每块输入矩阵元使其作为一个单独的对角元 \admat{a,b,c,...}

 $\label{eq:local_abs} $$ \admat{a,b,c,...}$ $$ \mqty(\admat{1,2,3}) \to \begin{pmatrix} & 1 \\ & 2 \\ & & \end{pmatrix} $$$ \antidiagonalmatrix

语法同 \dmat