基礎コンピュータ工学 第5章 機械語プログラミング (パート9)

シフト(桁ずらし)命令

- データの2進数を左右に桁移動する命令のこと.
- TeC は4種類 (実質は3種類) の命令を持っている.
- 左シフト (論理・算術)

右シフト(論理)

右シフト(算術)

◆ロト ◆個ト ◆ 恵ト ◆ 恵 ・ りへ○

SHLA (Shift Left Arithmetic) 命令

左算術(算術 = Arithmetic)シフト命令. レジスタの値を左に**1ビット**ずらす.(シフトする)

Cフラグ 上の図のように変化する.

S フラグ 結果が負なら1, それ以外は0になる.

Zフラグ 結果がゼロなら 1, それ以外は 0 になる.

フローチャート: Java のシフト演算子を流用する.

ニーモニック: SHLA GR

命令フォーマット: 1 バイトの長さを持つ.

第1バイト		
OP	GR XR	
1001_2	$GR 00_2$	

例:SHLA 命令を実行して確かめる. (イルミネーション?) (次のプログラムを GO を表示したまま STEP 実行する.)

00	10 05		LD	GO, N	
02	90	LOOP	SHLA	GO	
03	A0 02		JMP	LOOP	
05	01	N	DC	1	

注: 左シフトは×2を計算している.

SHLL (Shift Left Logical) 命令

左論理 (論理 = Logical) シフト命令. レジスタの値を左に**1 ビット**ずらす. (シフトする) (SHLL 命令と SHLA 命令の動作は全く同じ.)

フラグ SHLA と同じ

フローチャート: SHLA と同じ

ニーモニック: SHLL GR

命令フォーマット: 1 バイトの長さを持つ.

第1バイト		
OP	GR XR	
1001_2	$GR 01_2$	

左シフトを用いた×2計算

SHLL 命令はこちら用

符号	なし数	の×2	符号	付き数	女の × 2
0000	0001	(1)	1111	1111	(-1)
0000	0010	(2)	1111	1110	(-2)
0000	0100	(4)	1111	1100	(-4)
0000	1000	(8)	1111	1000	(-8)
0001	0000	(16)	1111	0000	(-16)
0010	0000	(32)	1110	0000	(-32)
0100	0000	(64)	1100	0000	(-64)
1000	0000	(128)	1000	0000	(-128)
0000	0000	(ERR)	0000	0000	(ERR)

SHLA 命令はこちら用

SHRA (Shift Right Arithmetic) 命令

右算術(算術= Arithmetic)シフト命令. レジスタの値を右に**1ビット**ずらす. (シフトする)

フラグ SHLA と同じ

フローチャート: Java のシフト演算子を流用する.

命令フォーマット: 1 バイトの長さを持つ.

第1バイト		
OP	GR XR	
1001_2	$GR \ 10_2$	

注: SHRA は符号付き数の ÷ 2を計算している.

SHRL (Shift Right Logical) 命令

右論理(論理= Logical)シフト命令. レジスタの値を右に**1ビット**ずらす (シフトする)

フラグ SHIAと同じ

フローチャート: Java のシフト演算子を流用する.

命令フォーマット: 1 バイトの長さを持つ

第1バイト		
OP	GR XR	
1001_2	$GR 11_2$	

注: SHRL は符号なし数の ÷ 2を計算している.

右シフトを用いた ÷ 2計算(1)

符号なし数	の÷2	符号付き数の ÷ 2
1100 0000	(192)	1100 0000 (-64)
0110 0000	(96)	1110 0000 (-32)
0011 0000	(48)	1111 0000 (-16)
0001 1000	(24)	1111 1000 (-8)
0000 1100	(12)	1111 1100 (-4)
0000 0110	(6)	1111 1110 (-2)
0000 0011	(3)	1111 1111 (-1)
0000 0001	(1)	1111 1111 (-1)
0000 0000	(0)	1111 1111 (-1)

SHRL 命令を使用する

SHRA 命令を使用する

右シフトを用いた ÷ 2計算(2)

符号付き正統	数の ÷ 2	符号付き負数の ÷ 2
0100 0000	(64)	1100 0000 (-64)
0010 0000	(32)	1110 0000 (-32)
0001 0000	(16)	1111 0000 (-16)
0000 1000	(8)	1111 1000 (-8)
0000 0100	(4)	1111 1100 (-4)
0000 0010	(2)	1111 1110 (-2)
0000 0001	(1)	1111 1111 (-1)
0000 0000	(0)	1111 1111 (-1)
0000 0000	(0)	1111 1111 (-1)

SHRA 命令使用

SHRA 命令使用

まとめ

学んだこと

- TeC のシフト命令は1ビットシフトする。
- TeC は4種類(実質は3種類)のシフト命令を持っている。
- シフト命令はイルミネーション(?)に使用できる。
- 左シフト(論理・算術)は、符号付き・なし兼用の×2計算に使用できる。
- 右シフト (論理) は、符号なし数の ÷ 2 計算に使用できる.
- **右シフト (算術)** は、符号付き数の ÷ 2 計算に使用できる.

演習

- ビットの右回転(例題5-5を参考に)
- シフト命令を使用した「× 7の計算」(例題 5 6を参考に)
- シフト命令を使用した「÷4の計算」
- シフト命令を使用した「× 1.5の計算」