1. Create a table "Station" to store information about weather observation stations:

ID	Number	Primary key
CITY	CHAR(20)	
STATE	CHAR(2)	
LAT_N	Number	
LONG_W	Number	

```
create table STATION
(    ID number,
    CITY char(20),
    STATE char(2),
    lAT_N Number,
    LONG_W Number
)
```

2. Insert the following records into the table:

ID	CITY	STATE	LAT_N	LONG_W
13	PHOENIX	AZ	33	112
44	DENVER	со	40	105
66	CARIBOU	МЕ	47	68

```
insert into STATION VALUES (13, 'PHOENIX', 'AZ', 33, 112)
insert into STATION VALUES (44, 'DENVER', 'CO', 40, 105)
insert into STATION VALUES (66, 'CARIBOU', 'ME', 47, 68)
select * from STATION
ID CITY STATELAT_NLONG_W
13 PHOENIX AZ 33 112
44 DENVER CO 40 105
66 CARIBOU ME 47 68
```

Q.3. Execute a query to look at table STATION in undefined order

Q.4. Execute a query to select Northern stations (Northern latitude >39.7)

5. Create another table, 'STATS', to store normalized temperature and precipitation data:

Column	Data type	Remark
ID	Number	must match some STATION table ID(so name & location will be known).
MONTH	Number	Range between 1 and 12
TEMP_F	Number	in Fahrenheit degrees,Range between -80 and 150
RAIN_I	Number	in inches, Range between 0 and 100

There will be no Duplicate ID and MONTH combination.

```
create table STATS
(     ID number,
     MONTH Number,
     TEMP_F Number,
     RAIN_I Number
)
```

6. Populate the table STATS with some statistics for January and July:

ID	MONTH	TEMP_F	RAIN_I
13	1	57.4	.31
13	7	91.7	5.15
44	1	27.3	.18
44	7	74.8	2.11
66	1	6.7	2.1
66	7	65.8	4.52

select * from stats

ID	MONTH	TEMP_F	RAIN_I
13	1	57.4	.31
13	7	91.7	5.15
44	1	27.3	.18
44	7	74.8	2.11
66	1	6.7	2.1
66	7	65.8	4.52

Download CSV

6 rows selected.

SQL Worksheet © Clear Find Actions Find Actions Run 8 --Execute a query to look at the table STATS,ordered by month and greatest rainfall,with columns rearranged. It should also show the corresponding cities. 9 with my_cte AS (SELECT distinct(station.city), stats.ID, stats.TEMP_F, stats.MONTH, stats.RAIN_I 10 FROM stats 11 INNER JOIN station 12 ON stats.ID = station.ID) 13 SELECT * FROM MY_CTE 14 ORDER BY RAIN_I DESC;

CITY	ID	TEMP_F	MONTH	RAIN_I
PHOENIX	13	91.7	7	5.15
CARIBOU	66	65.8	7	4.52
DENVER	44	74.8	7	2.11
CARIBOU	66	6.7	1	2.1
PHOENIX	13	57.4	1	.31
DENVER	44	27.3	1	.18

SQL Worksheet

- 15 --9.Execute a query to look at temperatures for July from table STATS, lowest temperatures first, picking up city name and latitude.
- 16 SELECT station.city,stats.TEMP_F,stats.MONTH ,station.LAT_N
- 17 FROM stats
- 18 INNER JOIN station
- 19 ON stats.ID = station.ID
- 20 where MONTH = 7
- 21 ORDER BY TEMP_F;

CITY	TEMP_F	MONTH	LAT_N
CARIBOU	65.8	7	47
DENVER	74.8	7	40
PHOENIX	91.7	7	33

Download CSV

3 rows selected.

SQL Worksheet

Actions

- --10.Execute a query to show MAX and MIN temperatures as well as average rainfall for each city
- 23 SELECT station.city, AVG(stats.RAIN_I) AS AVERAGE_RAINFALL, MAX(stats.TEMP_F) AS MAX_TEMPERATURE, MIN(stats.TEMP_F) AS MIN_TEMPERATURE

- 24 FROM stats
- 25 INNER JOIN station
- 26 ON stats.ID = station.ID
- 27 GROUP BY CITY;

CITY	AVERAGE_RAINFALL	MAX_TEMPERATURE	MIN_TEMPERATURE
CARIBOU	3.31	65.8	6.7
DENVER	1.145	74.8	27.3
PHOENIX	2.73	91.7	57.4

Download CSV

3 rows selected.

Q.

11. Execute a query to display each city's monthly temperature in Celcius and rainfall in Centimeter.

SQL Worksheet

```
1   select * from stats;
2   select * from METRIC_STATITSTI ;
3   CREATE VIEW METRIC_STATITSTI (ID, MONTH, temperature_in_Celcius, rainfall_in_Centimeter) AS
4   SELECT ID,
5   MONTH,
6   round((TEMP_F - 32) * 5 /9) ,
7   round(RAIN_I * 0.3937)
8  FROM STATS;
```

ID	MONTH	TEMPERATURE_IN_CELCIUS	RAINFALL_IN_CENTIMETER
13	1	14	0
13	7	33	2
44	1	-3	0
44	7	24	1
66	1	-14	1
66	7	19	2

Q.12

```
--12 upgate all rows of table STATS to compensate for faulty rain gauges known to read 0.01 inches low

SELECT ID,MONTH ,TEMP_F,(RAIN_I - 0.01) AS faulty_RAIN_I

FROM STATS;

SELECT * FROM STATS

61
```

ID	MONTH	TEMP_F	FAULTY_RAIN_I
13	1	57.4	.3
13	7	91.7	5.14
44	1	27.3	.17
44	7	74.9	2.1
66	1	6.7	2.09
66	7	65.8	4.51

SQL Worksheet

- 59 --13 Update Denver's July temperature reading as 74.9
 - 60 UPDATE STATS
 - 61 SET TEMP_F = 74.9
 - 62 WHERE ID = 44 AND MONTH = 7;
 - 63 SELECT * FROM STATS;

1 row(s) updated.

ID	MONTH	TEMP_F	RAIN_I
13	1	57.4	.31
13	7	91.7	5.15
44	1	27.3	.18
44	7	74.9	2.11
66	1	6.7	2.1
66	7	65.8	4.52