You submitted this homework on **Sat 12 Sep 2015 3:21 PM EEST**. You got a score of **10.00** out of **10.00**.

Question 1

An attacker intercepts the following ciphertext (hex encoded):

20814804c1767293b99f1d9cab3bc3e7 ac1e37bfb15599e5f40eef805488281d

He knows that the plaintext is the ASCII encoding of the message "Pay Bob 100\$" (excluding the quotes). He also knows that the cipher used is CBC encryption with a random IV using AES as the underlying block cipher. Show that the attacker can change the ciphertext so that it will decrypt to "Pay Bob 500\$". What is the resulting ciphertext (hex encoded)? This shows that CBC provides no integrity.

You entered:

20814804c1767293bd9f1d9cab3bc3e7 ac1e37bfb15599e5f40eef805488281d

Your Answer		Score	Explanation
20814804c1767293bd9f1d9cab3bc3e7 ac1e37bfb15599e5f40eef805488281d	~	1.00	You got it!
Total		1.00 / 1.00	

Question 2

Let (E, D) be an encryption system with key space K, message space $\{0, 1\}^n$ and ciphertext space $\{0, 1\}^s$. Suppose (E, D) provides authenticated encryption. Which of the following

Your Answer	Score	Explanation
$\square E'(k,m) = E(k,m) \text{and} \\ D'(k,c) = \begin{cases} D(k,c) & \text{if } D(k,c) \neq \bot \\ 0^n & \text{otherwise} \end{cases}$	√ 0.25	This system does not provide ciphertext integrity since an attacker can simply output the ciphertext 0^s and win the ciphertext integrity game.
	√ 0.25	This system does not provide ciphertext integrity. The attacker queries for $E'(k,0^n)$ to obtain $(c,0)$. It then outputs $(c,1)$ and wins the ciphertext integrity game.
	✓ 0.25	(E',D') provides authenticated encryption because an attack on (E',D') directly gives an attack on (E,D) .
$ E'\left((k_1,k_2),m\right) = E(k_2, E(k_1,m)) \text{and} C'\left((k_1,k_2), c\right) = \begin{cases} D(k_1, D(k_2,c)) & \text{if } D(k_2,c) \neq \bot \\ \bot & \text{otherwise} \end{cases} $	✓ 0.25	(E',D') provides authenticated encryption because an attack on (E',D') gives an attack on (E,D) . It's an

interesting

		exercise to work
		out the
		ciphertext
		integrity attack
		on (E,D) given
		a ciphertext
		integrity attacker
		on (E', D') .
Total	1.00 /	
Total	1.00 /	
	1.00	

If you need to build an application that needs to encrypt multiple messages using a single key, what encryption method should you use? (for now, we ignore the question of key generation and management)

Your Answer		Score	Explanation
 use a standard implementation of one of the authenticated encryption modes GCM, CCM, EAX or OCB. 	~	1.00	
use a standard implementation of CBC encryption with a random IV.			
invent your own mode of operation and implement it yourself.			
use a standard implementation of randomized counter mode.			
Total		1.00 /	
		1.00	

Question 4

Let (E,D) be a symmetric encryption system with message space M (think of M as only consisting for short messages, say 32 bytes). Define the following MAC (S,V) for messages in M:

$$S(k,m) := E(k,m)$$
 ; $V(k,m,t) := \begin{cases} 1 & \text{if } D(k,t) = m \\ 0 & \text{otherwise} \end{cases}$

What is the property that the encryption system (E, D) needs to satisfy for this MAC system to be secure?

Your Answer	Score	Explanation
operfect secrecy		
chosen ciphertext security		
semantic security		
authenticated encryption	✓ 1.00	Indeed, authenticated encryption implies ciphertext integrity which prevents existential forgery under a chosen message attack.
Total	1.00 / 1.00	

Question 5

In lecture 8.1 we discussed how to derive session keys from a shared secret. The problem is what to do when the shared secret is non-uniform. In this question we show that using a PRF with a non-uniform key may result in non-uniform values. This shows that session keys cannot be derived by directly using a non-uniform secret as a key in a PRF. Instead, one has to use a key derivation function like HKDF.

Suppose k is a *non-uniform* secret key sampled from the key space $\{0,1\}^{256}$. In particular, k is sampled uniformly from the set of all keys whose most significant 128 bits are all 0. In other words, k is chosen uniformly from a small subset of the key space. More precisely,

for all
$$c \in \{0, 1\}^{256}$$
: $\Pr[k = c] = \begin{cases} 1/2^{128} & \text{if } MSB_{128}(c) = 0^{128} \\ 0 & \text{otherwise} \end{cases}$

Let F(k, x) be a secure PRF with input space $\{0, 1\}^{256}$. Which of the following is a secure PRF when the key k is uniform in the key space $\{0, 1\}^{256}$, but is insecure when the key is sampled from the *non-uniform* distribution described above?

(17/1	CATOD	(1)	, 1128

$$F'(k, x) = \begin{cases} F(k, x) & \text{if MSB}_{128}(k) \neq 1^{128} \\ 0^{256} & \text{otherwise} \end{cases}$$

$$\bigcirc F'(k,x) = F(k,x)$$

Your Answer

$$F'(k,x) = \begin{cases} F(k,x) & \text{if MSB}_{128}(k) \neq 1^{128} \\ 1^{256} & \text{otherwise} \end{cases}$$

$$F'(k,x) = \begin{cases} F(k,x) & \text{if MSB}_{128}(k) \neq 0^{128} \\ 1^{256} & \text{otherwise} \end{cases}$$

F'(k,x) is a secure PRF because for a uniform key k the probability that $\mathrm{MSB}_{128}(k) = 0^{128}$ is negligible. However, for the *non-uniform* key k this PRF always outputs 1 and is therefore completely insecure. This PRF cannot be used as a key derivation function for the distribution of keys described in the problem.

Explanation

Score

1.00

Total 1.00 / 1.00

Question 6

same record may repeat multiple

times.

In what settings is it acceptable to use deterministic authenticated encryption (DAE) like SIV?

Your Answer	Score	Explanation
to individually encrypt many packets in a voice conversation with a single key.		
 when a fixed message is repeatedly encrypted using a single key. 		
to encrypt many records in a database with a single key when the		

when messages are chosen at random from a large enough space so that messages are unlikely to repeat.	*	1.00	Deterministic encryption is safe to use when the message/key pair is never used more than once.
Total		1.00 / 1.00	
		1.00	

Let E(k,x) be a secure block cipher. Consider the following tweakable block cipher:

$$E'((k_1, k_2), t, x) = E(k_1, x) \bigoplus E(k_2, t).$$

Is this tweakable block cipher secure?

Your Answer	Score	Explanation
• no because for $x \neq x'$ we have $E'((k_1,k_2),0,x) \bigoplus E'((k_1,k_2),1,x) = E'((k_1,k_2),0,x') \bigoplus E'((k_1,k_2),1)$	1.00	since this relation holds, an attacker can make 4 queries to E' and distinguish E' from a random collection of one-to-one functions.
O no because for $t \neq t'$ we have $E'((k_1, k_2), t, 0) \bigoplus E'((k_1, k_2), t', 1) = E'((k_1, k_2), t', 1) \bigoplus E'((k_1, k_2), t', 1)$		
\bigcirc yes, it is secure assuming E is a secure block cipher.		
O no because for $x \neq x'$ we have $E'((k_1,k_2),0,x) \bigoplus E'((k_1,k_2),0,x') \bigoplus E'((k_1,k_2),0)$		
on no because for $x \neq x'$ and $t \neq t'$ we have $E'((k_1, k_2), t, x) \bigoplus E'((k_1, k_2), t', x) = E'((k_1, k_2), t, x') \bigoplus E'((k_1, k_2), t)$		
Total	1.00 / 1.00	

In lecture 8.5 we discussed format preserving encryption which is a PRP on a domain $\{0,\ldots,s-1\}$ for some pre-specified value of s. Recall that the construction we presented worked in two steps, where the second step worked by iterating the PRP until the output fell into the set $\{0,\ldots,s-1\}$.

Suppose we try to build a format preserving credit card encryption system from AES using *only* the second step. That is, we start with a PRP with domain $\{0,1\}^{128}$ from which we want to build a PRP with domain 10^{16} . If we only used step (2), how many iterations of AES would be needed in expectation for each evaluation of the PRP with domain 10^{16} ?

Score	Explanation
✓ 1.00	On every iteration we have a probability of $10^{16}/2^{128}$ of falling into the set $\{0,\ldots,10^{16}\}$ and therefore in expectation we will need $2^{128}/10^{16}$ iterations. This should explain why step (1) is needed.
1.00 / 1.00	
	1.00 /

Question 9

Let (E,D) be a secure tweakable block cipher. Define the following MAC (S,V):

$$S(k, m) := E(k, m, 0)$$
 ; $V(k, m, \text{tag}) := \begin{cases} 1 & \text{if } E(k, m, 0) = \text{tag} \\ 0 & \text{otherwise} \end{cases}$

In other words, the message m is used as the tweak and the plaintext given to E is always set to 0. Is this MAC secure?

Your Answer		Score	Explanation
• yes	•	1.00	A tweakable block cipher is indistinguishable from a collection of random permutations. The chosen message attack on the MAC gives the attacker the image of 0 under a number of the permutations in the family. But that tells the attacker nothing about the image of 0 under some other member of the family.
O no			
it depends on the tweakable block cipher.			
Total		1.00 / 1.00	

In Lecture 7.6 we discussed padding oracle attacks. These chosen-ciphertext attacks can break poor implementations of MAC-then-encrypt. Consider a system that implements MAC-then-encrypt where encryption is done using CBC with a random IV using AES as the block cipher. Suppose the system is vulnerable to a padding oracle attack. An attacker intercepts a 64-byte ciphertext c (the first 16 bytes of c are the IV and the remaining 48 bytes are the encrypted payload). How many chosen ciphertext queries would the attacker need *in the worst case* in order to decrypt the entire 48 byte payload? Recall that padding oracle attacks decrypt the payload one byte at a time.

Your Answer	Score	Explanation
O 12240		
• 1 2288	1.00	Correct. Padding oracle attacks decrypt the payload one byte at a time. For each byte the attacker needs no more than 256 guesses in the worst case. Since there are 48 bytes total, the number queries needed is $256 \times 48 = 12288$.

65536				
Total	1.00 / 1.00			