7.2 Learning Decision Trees (continued)

- 3 parameters are computed:
 - a) Information Content or Entropy regarding the classes in the samples
 - b) Remainder or Expected Remaining Entropy of an Attribute Test
 - c) Information Gain of an Attribute Test
- a) $I(P(C_1), P(C_2), ..., P(C_m)) = \sum_{i=1:m} -P(C_i) \times Log_2(P(C_i)),$ where $P(C_i)$ – probability of the class C_i , m – number of classes.

```
For our example, I(P(positive), P(negative)) = -P(positive) \times Log_2(P(positive)) - P(negative) \times Log_2(P(negative))
```

06-Sep-21 1

ID	Age	Income	Student	Credit	Decision/
				Rating	Class/ Label
1	≤ 30	high	no	fair	negative
2	≤ 30	high	no	excellent	negative
3	3140	high	no	fair	positive
4	> 40	medium	no	fair	positive
5	> 40	low	yes	fair	positive
6	> 40	low	yes	excellent	negative
7	3140	low	yes	excellent	positive
8	≤ 30	Medium	no	fair	negative
9	≤ 30	low	yes	fair	positive
10	> 40	medium	yes	fair	positive
11	≤ 30	medium	yes	excellent	positive
12	3140	medium	no	excellent	positive
13	3140	high	yes	fair	positive
14	> 40	medium	no	excellent	negative

That is, I(9/14, 5/14) = - $9/14 \times Log_2 (9/14) -$ 5/14 × $Log_2 (5/14) \approx$ 0.940 (bits)

b. Remainder (A) =

 $\Sigma_{i=1:v}$ P(Samples with ith value of A) × I(Classes in samples with ith value of A), where v = number of distinct values of A.

i. Remainder(Age) =
$$5/14 \times I(2/5, 3/5)$$
 [≤ 30]
+ $4/14 \times I(4/4, 0/4)$ [$31 \dots 40$]
+ $5/14 \times I(3/5, 2/5)$ [> 40]

06-Sep-21

ID	Age	Income	Student	Credit	Decision/
				Rating	Class/ Label
1	≤ 30	high	no	fair	negative
2	≤ 30	high	no	excellent	negative
3	3140	high	no	fair	positive
4	> 40	medium	no	fair	positive
5	> 40	low	yes	fair	positive
6	> 40	low	yes	excellent	negative
7	3140	low	yes	excellent	positive
8	≤ 30	Medium	no	fair	negative
9	≤ 30	low	yes	fair	positive
10	> 40	medium	yes	fair	positive
11	≤30	medium	yes	excellent	positive
12	3140	medium	no	excellent	positive
13	3140	high	yes	fair	positive
14	> 40	medium	no	excellent	negative

- ➤That is,

 Remainder(Age) =

 2 ×5/14 × I(2/5, 3/5) ≈

 0. 694 (bits)
- ii) Remainder(Income)
 = ?
- iii) Remainder(Student)
 = ?
- iv) Remainder(Credit
 Rating) = ?

```
c) Gain(A) = I(Classes in all samples in the table) – Remainder(A)

Gain(Age) = 0.940 – 0.694 = 0.246 (bits)

Check that, Gain(Income) = 0.029 bits,

Gain(Student) = 0.151 bits, and

Gain(Credit Rating) = 0.048 bits.
```

06-Sep-21

So, we have the attribute 'Age' with the highest Gain, and this leads to what follows.

X =	Age	Income	Student	Credit	Decision/
				Rating	Class/
					Label
	≤ <i>30</i>	high	no	fair	negative
	≤ <i>30</i>	high	no	excellent	negative
	≤ <i>30</i>	medium	no	fair	negative
	≤ <i>30</i>	low	yes	fair	positive
	≤ <i>30</i>	medium	yes	excellent	positive

$$Y = ?$$

$$Z = ?$$

06-Sep-21

Finally, we have the following tree. [Self study]

And it means that we have **learned the following 5 rules**.

- 1. If 'Age' = '≤ 30' and 'Student' = 'yes', then 'Class' = 'Buys a computer'.
- 2. If 'Age' = ' \leq 30' and 'Student' = 'no', then 'Class' = 'Does not buy a computer'.
- 3.
- 4.
- 5. If 'Age' = '>40' and 'Credit Rating' = 'excellent', then 'Class' = 'Does not buy a computer'.