Medical Image Processing for Diagnostic Applications

Image Registration in Practice – Part 1

Online Course – Unit 67 Andreas Maier, Joachim Hornegger, Markus Kowarschik, Frank Schebesch Pattern Recognition Lab (CS 5)

Topics

Applications of Image Registration Examples Intramodal Registration

Summary

Take Home Messages Further Readings

Example of 3-D/3-D Registration: Rigid Registration of the Airways

Figure 1: Rigid registration of the airways

Projections from 3-D to 2-D

Motivation: 2-D/3-D image fusion is important for applications where volume data and X-ray projections have to be registered.

Figure 2: 2-D/3-D image fusion

Intramodal Registration

Examples for the requirement of intramodal registration are:

- digital subtraction angiography (DSA),
- dual energy X-ray and CT,
- visualization of perfusion,
- visualization of differences (therapy control),
- motion estimation (for instance, in cardiac reconstruction).

Digital Subtraction Angiography

Figure 3: Mask image (left), fill image (middle), angiogram (right)

Digital Subtraction Angiography

Figure 4: Mask image (left), fill image (middle), angiogram (right)

Motion Artifacts in DSA

Figure 5: Motion artifacts in DSA (Yu Deuerling-Zheng, Pattern Recognition Lab, FAU)

Motion Artifacts in DSA

Figure 6: Motion artifacts in DSA (Yu Deuerling-Zheng, Pattern Recognition Lab, FAU)

Similarity Measures

Sum of squared differences (SSD):

$$\widehat{T} = \underset{T}{\operatorname{arg\,min}} \sum_{i,j} \|f_{i,j} - T\{g_{i,j}\}\|^2$$

Correlation coefficient:

$$\widehat{T} = \arg \max_{T} \frac{\sum_{i,j} (f_{i,j} - \overline{f}) (T\{g_{i,j}\} - \overline{g})}{\sqrt{\sum_{i,j} (f_{i,j} - \overline{f})^2 \sum_{i,j} (T\{g_{i,j}\} - \overline{g})^2}}$$

Notation:

- $[f_{i,j}]$: reference image
- $[g_{i,j}]$: image to be registered
- T: transform
- *f*: mean intensity value of reference image
- \bar{g} : mean intensity value of second image

Difference Imaging in CT

Figure 7: Difference imaging in CT (Dieter Hahn, Pattern Recognition Lab, FAU)

Registration Combined with Segmentation

Problem: Differences in images lead to a bias if all voxels are used for registration.

Solution: Apply a weighting scheme to voxels. Voxels that belong to bones are rigid and allow for a reliable estimate for the transform (high weights). Soft tissue deforms, for instance, with tumor growth and thus implies a bias (low weights).

Registration in CT using Transfer Functions

Figure 8: Difference imaging in CT: segmentation of bones (Dieter Hahn, Pattern Recognition Lab, FAU)

Figure 9: Checker board representation of results: no bone segmentation (left), bone segmentation (right) (Dieter Hahn, Pattern Recognition Lab, FAU)

Figure 10: Thorax: tumor at two different therapy stages (Dieter Hahn, Pattern Recognition Lab, FAU)

Figure 11: Checker board representation of results: no bone segmentation (left), bone segmentation (right) (Dieter Hahn, Pattern Recognition Lab, FAU)

Figure 12: Difference image (Dieter Hahn, Pattern Recognition Lab, FAU)

Topics

Applications of Image Registration
Examples
Intramodal Registration

Summary

Take Home Messages Further Readings

Take Home Messages

- There is a multitude of applications of intramodal registration alone.
- It can be combined with segmentation methods, and it can be used to generate difference images.

Further Readings – Part 1

Survey papers on medical image registration:

- Derek L. G. Hill et al. "Medical Image Registration". In: *Physics in Medicine and Biology* 46.3 (2001), R1–R45
- J. B.Antoine Maintz and Max A. Viergever. "A Survey of Medical Image Registration". In: *Medical Image Analysis* 2.1 (1998), pp. 1–36. DOI: 10.1016/S1361-8415(01)80026-8
- L. G. Brown. "A Survey of Image Registration Techniques". In: ACM Computing Surveys 24.4 (Dec. 1992), pp. 325–376. DOI: 10.1145/146370.146374
- Josien P. W. Pluim, J. B. Antoine Maintz, and Max A. Viergever. "Mutual-Information-Based Registration of Medical Images: A Survey". In: *IEEE Transactions on Medical Imaging* 22.8 (Aug. 2003), pp. 986–1004. DOI: 10.1109/TMI.2003.815867

A paper that inspired all the sections on complex numbers, quaternions, and dual quaternions: Konstantinos Daniilidis. "Hand-Eye Calibration Using Dual Quaternions". In: *The International Journal of* Robotics Research 18.3 (Mar. 1999), pp. 286–298. DOI: 10.1177/02783649922066213

Further Readings – Part 2

Non-parametric mappings for image registration:

- Nonlinear registration methods applied to DSA can be found in Erik Meijering's papers.
- Jan Modersitzki. *Numerical Methods for Image Registration*. Numerical Mathematics and Scientific Computations. Oxford Scholarship Online, 2007. Oxford: Oxford University Press, 2003. DOI: 10.1093/acprof:oso/9780198528418.001.0001
- Many of Jan Modersitzki's and Bernd Fischer's papers on image registration can be found in the publication list of the Institute of Mathematics and Image Computing (Lübeck).
- The group of Martin Rumpf also published on non-parametric image registration. Details on their work can be found on the institute's webpage.