### **Chapter 5: Microarray Techniques**

5.3 Classification & Machine Learning Techniques

Prof. Yechiam Yemini (YY)
Computer Science Department
Columbia University

### Overview

- Principal components analysis (PCA)
- Linear classifiers; perceptrons; neural nets..
- SVM Classifiers









### Principal Component Analysis







### **Principal Components Analysis**

- Represent the data in the eigenvectors space
  - Compute autocovariance: XTX
  - Eigenvectors of **X**<sup>T</sup>**X** are the principal coordinates
  - Principal coordinates maximize residual variance
  - Eigenvalues correspond to maximal residual variance
- Use Singular Value Decomposition (SVD) to compute PCA
  - Compute factorization: X<sup>T</sup>X = U Λ U<sup>T</sup>
  - The transformation to principal coordinates is: y=Ux
  - This PCA coordinate change is also called: Karhunen-Loeve transform
- Eliminate eigenvectors with small eigenvalues
  - Project data unto a subspace with maximal residual variance
  - This reduces dimensionality while maxing discrimination







### Notes On PCA

- Effective in reducing dimensionality
- More predictable and analyzable than clustering
- Intuitive interpretation
  - Eigengene = linear combination of gene profiles maxing variance
  - Let  $P^k$  be the projection on the subspace  $U^k$ =Span $\{u_1, u_2, ..., u_k\}$ ;  $u_{k+1}$  maximizes the residual variance of the projections  $\{(I-P^k)g_i\}$
- SVD is often simpler to compute in array-space
  - Results may be applied and interpreted in gene-space



**Linear Classifiers** 

# Basic Classification Concepts ■ Given: sample data {Xk} and class association Yk∈{-1,1} ■ Goal: find a "good" function f(X) such that Y=sgn[f(X)] • There are numerous classification techniques • Classical statistics → machine learning... • We consider only basics ■ Supervised Learning • input {Xk,Yk}; output f(X) • Avoid over-fitting











# More Generally ■ A linear classifier y=sgn[f(x)]=sgn[w^Tx+w₀] ■ The classifier may be represented as: f(x)=(w^T,w₀) x 1 The perceptron training problem: ■ Given: a training sample S={x(k),y(k)} ■ Compute: w such that y=sgn[w^Tx] is consistent with S





### Support Vector Machines (SVM)











### SVM Example Continued ■ Training result: $\underline{\alpha}$ =(-0.5,0.5,1,0.5,0)=0.5(-1,1,2,1,0) ■ Computing the SVM classifier: f(x)=<[Σα(t)y(t)x(t)],x>=<w,x> w = Σα(t)y(t)x(t)=0.5(-x(1)+x(2)+2x(3)-x(4))= =0.5(-1,3,2,1,-3,1) ■ Classifier: f(x)= -x<sub>1</sub>+3x<sub>2</sub>+2x<sub>3</sub>+x<sub>4</sub>-3 x<sub>5</sub>+1

### Notes On SVM Training

- ■What did the SVM classifier learn about convexity?
  - $f(x) = -x_1 + 3x_2 + 2x_3 + x_4 3x_5 + 1$  much like perceptron, assigns negative weights to the extremes and positive to the middle
  - Consider the samples misclassified by the perceptron: X1=(5,6,1,0,0); X2=(0,3,4,2,0)
  - The SVM classifier classifies X1 correctly but errs in classifying X2
  - (What is the source of the error? What training samples can improve this?)





### Linear Classification in Feature Space

- Consider the classification in feature space:  $f(x)=\Sigma\alpha(t)y(t)<\phi(\mathbf{x}(t))\phi(\mathbf{x})>+b$
- Define the Kernel of the transformation:  $K(u,v) = \langle \phi(u), \phi(v) \rangle$
- The kernel specifies the "feature space" classifier:  $f(x) = \Sigma \alpha(t) y(t) K(\mathbf{x}(t), \mathbf{x}) + b$

**Example Kernel Functions:** 

- 1) Polynomial,  $\Phi(x_i, x_j) = (x_i x_j + 1)^d$ 2) Gaussian,  $\Phi(x_i, x_j) = e^{-\|x_i x_j\|/\sigma^2}$

### **Example: Polynomial Kernel**

- $K(x_i,x_i)=(1+x_i^Tx_i)^2$
- $= [1, x_{i1}^2, \sqrt{2} x_{i1} x_{i2}, x_{i2}^2, \sqrt{2} x_{i1}, \sqrt{2} x_{i2}]^{\mathrm{T}} [1, x_{j1}^2, \sqrt{2} x_{j1} x_{j2}, x_{j2}^2, \sqrt{2} x_{j1}, \sqrt{2} x_{j2}]$
- $K(x_i,x_i) = \phi(x_i)^T \phi(x_i)$ , where  $\phi(x) = [1,x_1^2,\sqrt{2} x_1x_2,x_2^2,\sqrt{2}x_1,\sqrt{2}x_2]$



### The Kernel "Trick"

Consider the classifier:  $f(x)=\Sigma\alpha(t)y(t)K(\mathbf{x}(t),\mathbf{x})+b$  and training algorithm:  $y(i)[\Sigma\alpha(t)y(t)K(\mathbf{x}(t),\mathbf{x}(i))+b]\leq 0$  then  $\alpha(i)\leftarrow\alpha(i)+\eta$ 

- An SVM classifier may be computed from the kernel alone
  - No need to know the underlying mapping  $\varphi(x)$
- ■We just need to know that the kernel is appropriate
  - $K(u,v)=<\phi(u),\phi(v)>$  for some  $\phi$
- Mercer: any symmetric positive definite matrix is a kernel



### **Applying SVM**

- Represent the biological question as a classification problem
  - Represent the as vectors
- Establish a kernel matrix to represent similarity
- Train an SVM classifier

Classifier:  $f(x)=\Sigma\alpha(t)y(t)K(\mathbf{x}(t),\mathbf{x})+b$ 

Training:  $y(i)[\Sigma a(t)y(t)K(\mathbf{x}(t),x(i))+b] \leq 0$  then  $\alpha(i) \leftarrow \alpha(i)+\eta$ 

■ Evaluate performance of classifier

4

### Cancer Classification With SVM

A. Zhang, DIMACS, 2007

|                                                                | Car                                          |                               | ssification Study                                        |
|----------------------------------------------------------------|----------------------------------------------|-------------------------------|----------------------------------------------------------|
| <ul> <li>Key cha</li> <li>Comparat</li> <li>Use SVM</li> </ul> | illenge: over<br>ive study of<br>with improv | a <mark>small</mark> sample o | of high-dimensional data  Microarray DBs discrimination) |
| t and a second                                                 | sample size                                  | number of genes               |                                                          |
| ALL-MAL                                                        | 72                                           | 7129                          |                                                          |
|                                                                |                                              |                               |                                                          |
| Breast-ER                                                      | 49                                           | 7129                          |                                                          |
| Breast-ER<br>Breast-LN                                         | 49<br>49                                     | 7129<br>7129                  |                                                          |
|                                                                |                                              |                               |                                                          |
| Breast-LN                                                      | 49                                           | 7129                          |                                                          |
| Breast-LN CNS                                                  | 49                                           | 7129<br>7129                  |                                                          |
| Breast-LN CNS Colon                                            | 49<br>60<br>62                               | 7129<br>7129<br>2000          |                                                          |
| Breast-LN CNS Colon Lung                                       | 49<br>60<br>62<br>181                        | 7129<br>7129<br>2000<br>12533 |                                                          |



| But www.sci.usq.edu.au/research/seminars/files//seminar135/ausdm1.ppt |                                                                                     |                                                              |                                                                               |                                                                              |                                                                             |                                                                  |  |  |
|-----------------------------------------------------------------------|-------------------------------------------------------------------------------------|--------------------------------------------------------------|-------------------------------------------------------------------------------|------------------------------------------------------------------------------|-----------------------------------------------------------------------------|------------------------------------------------------------------|--|--|
|                                                                       | С                                                                                   | ecis                                                         | ion-trees                                                                     | Boost                                                                        | ing                                                                         |                                                                  |  |  |
|                                                                       | Data set Breast Cancer Lung Cancer Lymphoma Leukemia Colon Ovarian Prostate Average | C4.5<br>84.5<br>98.3<br>74.5<br>88.9<br>88.7<br>96.8<br>95.2 | Random Forests<br>88.7<br>99.5<br>93.6<br>98.6<br>83.9<br>99.2<br>100<br>94.8 | AdaBoostC4.5<br>90.7<br>98.3<br>89.4<br>95.8<br>90.3<br>98.8<br>95.2<br>94.1 | BaggingC4.5<br>85.6<br>97.8<br>89.4<br>95.8<br>90.3<br>98.0<br>95.2<br>93.2 | 72.2<br>100.0<br>55.3<br>100.0<br>90.3<br>100.0<br>100.0<br>88.3 |  |  |
|                                                                       |                                                                                     |                                                              |                                                                               |                                                                              |                                                                             |                                                                  |  |  |
|                                                                       |                                                                                     |                                                              |                                                                               |                                                                              |                                                                             |                                                                  |  |  |
|                                                                       |                                                                                     |                                                              |                                                                               |                                                                              |                                                                             |                                                                  |  |  |
|                                                                       |                                                                                     |                                                              |                                                                               |                                                                              |                                                                             |                                                                  |  |  |

### **Cancer Studies**

A. Statnikov, C. F. Aliferis, I. Tsamardinos.

Vanderbilt University, MEDINFO 2004

|                         |              | IVIIC                       | croa | array Da            | atasets                 |
|-------------------------|--------------|-----------------------------|------|---------------------|-------------------------|
| Dataset name            | Sam-<br>ples | Number of Variables (genes) |      | Reference           |                         |
| 11_Tumors               | 174          | 12533                       | 11   | Su, 2001            |                         |
| 14_Tumors               | 308          | 15009                       | 26   | Ramaswamy, 2001     | Total                   |
| 9_Tumors                | 60           | 5726                        | 9    | Staunton, 2001      | Total:  • ~1300 samples |
| Brain_Tumor1            | 90           | 5920                        | 5    | Pomeroy, 2002       | • 74 diagnostic         |
| Brain_Tumor2  Leukemia1 | 50           | 50 10367<br>72 5327         | 4    | V 2002              | categories              |
|                         | 72           |                             | 3    | Golub, 1999         | • 41 cancer types and   |
| Leukemia2               | 72           | 11225                       | 3    | Armstrong, 2002     | 12 normal tissue types  |
| Lung_Cancer             | 203          | 12600                       | 5    | Bhattacherjee, 2001 |                         |
| SRBCT                   | 83           | 2308                        | 4    | Khan, 2001          |                         |
| Prostate_Tumor          | 102          | 10509                       | 2    | Singh, 2002         |                         |
| DLBCL                   | 77           | 5469                        | 2    | Shipp, 2002         |                         |









### **Protein Classification**

(Based on W. S. Noble U. Washington)





















# SVM Final Notes Kernel machines provide powerful classifiers Kernels admit flexible modeling of similarity Simple and general training procedure Multiple classifiers may be combined to improve results Choosing a good kernel is an art Training results may be sensitive to training sample Other classification ideas Boosting Decision trees Comparison of the sensitive sample

### Conclusions

### Microarray Analysis

- Microarrays provide rich information on gene expression
  - Identify variance between cell behaviors
  - Determine co-expression patterns of genes
  - Analyze temporal behavior of genome
- Low-level analysis improves data quality
  - Normalization, noise reduction...
- High-level analysis improves data interpretation
  - Study correlations of gene expressions
  - Clustering determines similarity
  - PCA analyzes variance
  - Classifiers analyze features