1. Données et Modèles

Calculs statistiques:

Un échantillon de données $(x_1,...,x_n)$ est une série de valeurs prises par une variable X sur n individus.

La moyenne empirique : $\overline{x} = \frac{1}{n} \sum x_i$

La variance empirique : $s_x^2 = \frac{1}{n} \left(\sum x_i^2 \right) - \overline{x}^2 = \frac{1}{n} \sum (x_i - \overline{x})^2$

L'écart-type empirique : s_x

La fréquence empirique : $f = \frac{k}{n}$ k est le nombre de réalisations d'un évènement parmi les n individus

Un échantillon centré réduit a une moyenne de 0 et une variance de 1.

La médiane est la plus petite valeur prise par X telle qu'au moins la moitié des effectifs soit inférieur.

Le premier quartile est la plus petite valeur prise par X telle qu'au moins le quart des effectifs soit inférieur.

Le 3ème quartile est la plus petite valeur prise par X telle qu'au moins les 3/4 des effectifs soit inférieur.

Probabilités:

La probabilité d'un évènement est la proportion d'individus qui réalisent cet évènement (dans la population).

$$P[\Omega] = 1 \; ; \; P[\emptyset] = 0 \; ; \; 0 \leq P[A] \leq 1 \; ; \; P[\overline{A}] = 1 - P[A] \; ; \; P[A \cup B] = P[A] + P[B] - P[A \cap B]$$

La probabilité conditionnelle de A sa chant B est $P[A\mid B]=\frac{P[A\cap B]}{P[B]}$

Deux évènements A et B sont indépendants ssi : $P[A \mid B] = P[A]$ ou $P[A \cap B] = P[A]P[B]$

En notant \overline{B} l'évènement contraire de B, on a : $P[A] = P[A \mid B]P[B] + P[A \mid \overline{B}]P[\overline{B}]$

Formule de Bayes :
$$P[A \mid B] = \frac{P[B \mid A]P[A]}{P[B]} = \frac{P[B \mid A]P[A]}{P[B \mid A]P[A] + P[B \mid \overline{A}]P[\overline{A}]}$$

Lois:

X suit la loi Bernoulli $\mathcal{B}(p)$: P[X=1]=p; P[X=0]=1-p; E[X]=p et Var[X]=1-p

X suit la loi Binomiale $\mathcal{B}(n,p)$: [n expériences indépendantes ou tirages avec remise]

$$P[X=k] = \left(\begin{array}{c} n \\ k \end{array}\right) p^k (1-p)^{n-k} \qquad avec \qquad E[X] = np \quad et \quad Var[X] = np(1-p)$$

X suit la loi de Poisson
$$\mathcal{P}(\lambda)$$
: $P[X = k] = \frac{\lambda^k e^{-\lambda}}{k!}$ avec $E[X] = \lambda$ et $Var[X] = \lambda$

Pour les lois continues, on lit sur les tables [le quantile x_p d'ordre p: $P[X \le x_p] = F(x_p) = p$

La loi Normale $\mathcal{N}(0,1)$, la loi de Student \mathcal{T}_n de paramètre n, la loi du Khi-deux \mathcal{X}_n^2 de paramètre n, la loi de Fisher-Snédécor $\mathcal{F}_{(n_1,n_2)}$ de paramètres (n_1,n_2) .

Notations: u_p est le quantile d'ordre p de $\mathcal{N}(0,1)$; t_p^n est le quantile d'ordre p de \mathcal{T}_n ; z_p^n est le quantile d'ordre p de \mathcal{X}_n^2 ; $f_p^{n_1;n_2}$ est le quantile d'ordre p de $\mathcal{F}_{(n_1,n_2)}$.

Si $X \leadsto \mathcal{N}(\mu, \sigma^2)$, on centre et on réduite : $Y = (X - \mu)/\sigma \leadsto \mathcal{N}(0, 1)$.

T.C.L: (conditions) : la loi $\mathcal{B}(n,p)$ peut être appochée par la loi $\mathcal{N}(np; np(1-p))$

Autre approximation (conditions) : la loi $\mathcal{B}(n,p)$ peut être appochée par la loi $\mathcal{P}(\lambda)$ avec $\lambda = np$

Autre approximation (conditions) : la loi $\mathcal{P}(\lambda)$ peut être appochée par la loi $\mathcal{N}(\lambda,\lambda)$.

Inégalité Markov : X v.a. positive, a > 0, $P(X \ge a) \le \frac{E(X)}{a}$

Inégalité Bienaymé Tchebychev : X v.a. positive, a > 0, $P(|X - E(X)| \ge a) \le \frac{V(X)}{a^2}$

Intervalle de fluctuation de p pour une loi $\mathcal{B}(n,p)$ avec un niveau de confiance de $1-\alpha$:

$$I(p,\alpha) = \left] p - u_{1-\alpha/2} \frac{\sqrt{p(1-p)}}{\sqrt{n}}; \ p + u_{1-\alpha/2} \frac{\sqrt{p(1-p)}}{\sqrt{n}} \right[\text{ où } u_{1-\alpha/2} \text{ est le quantile d'ordre } (1-\alpha/2) \text{ de } \mathcal{N}(0,1) \right]$$

Intervalle de fluctuation de μ pour une loi $\mathcal{N}(\mu, \sigma^2)$ avec un niveau de confiance de $1-\alpha$:

$$I(\mu,\alpha) = \left[\mu - u_{1-\alpha/2} \, \frac{\sigma}{\sqrt{n}} \, ; \, \mu + u_{1-\alpha/2} \, \frac{\sigma}{\sqrt{n}} \right] \text{ où } u_{1-\alpha/2} \text{ est le quantile d'ordre } (1-\alpha/2) \text{ de } \mathcal{N}(0,1)$$

2. Estimation Statistique

Estimateurs ponctuels:

Un estimateur d'un paramètre est une fonction de $(X_1, ..., X_n)$ qui approche ce paramètre. Un 'bon' estimateur est sans biais et convergent.

Une estimation est la valeur de l'estimateur prise sur un échantillon de données.

Notations: $\widehat{p} = F \qquad \widehat{\mu} = \overline{X} = \frac{1}{n} \sum X_i \qquad \widehat{\sigma^2} = S'^2 = \frac{n}{n-1} S^2 = \frac{1}{n-1} \sum (X_i - \overline{X})^2$

Si $(X_1,...,X_n)$ est un échantillon gaussien de loi $\mathcal{N}(\mu,\sigma^2)$ alors :

$$\overline{X} \leadsto \mathcal{N}(\mu, \frac{\sigma^2}{n})$$
 $\qquad \qquad \frac{\overline{X} - \mu}{\sigma/\sqrt{n}} \leadsto \mathcal{N}(0, 1)$ $\qquad \qquad \frac{\overline{X} - \mu}{S/\sqrt{n-1}} \leadsto \mathcal{T}_{n-1}$ $\qquad \qquad \frac{nS^2}{\sigma^2} \leadsto \mathcal{X}_{n-1}^2$

Pour n grand : $\frac{F-p}{\sqrt{p(1-p)}} \rightsquigarrow \mathcal{N}(0,1)$

Estimations par intervalles de confiance pour un niveau de confiance $1-\alpha$:

$$I(\mu,\alpha) = \left] \overline{X} - u_{1-\alpha/2} \frac{\sigma}{\sqrt{n}}; \ \overline{X} + u_{1-\alpha/2} \frac{\sigma}{\sqrt{n}} \right[\text{ si } \sigma^2 \text{ est connue} ; u_{1-\alpha/2} \text{ est le quantile d'ordre } (1-\alpha/2) \text{ de } \mathcal{N}(0,1) \right]$$

$$I(\mu,\alpha) = \overline{X} - t_{1-\alpha/2}^{n-1} \frac{S'}{\sqrt{n}}; \overline{X} + t_{1-\alpha/2}^{n-1} \frac{S'}{\sqrt{n}} \left[\text{ si } \sigma^2 \text{ est inconnue } ; t_{1-\alpha/2}^{n-1} \text{ est le quantile d'ordre } (1-\alpha/2) \text{ de } \mathcal{T}_{n-1} \right]$$

$$I(\sigma^2,\alpha) = \left| \frac{nS^2}{z_{1-\alpha/2}^{n-1}}; \frac{nS^2}{z_{\alpha/2}^{n-1}} \right| \text{ si } \sigma^2 \text{ et } \mu \text{ sont incomnues } ; z_{1-\alpha/2}^{n-1} \text{ est le quantile d'ordre } (1-\alpha/2) \text{ de } \mathcal{X}_{n-1}^2$$

Cas de grands échantillons :

$$I(\mu,\alpha) = \overline{X} - u_{1-\alpha/2} \frac{S}{\sqrt{n}}; \overline{X} + u_{1-\alpha/2} \frac{S}{\sqrt{n}}$$
 où $u_{1-\alpha/2}$ est le quantile d'ordre $(1-\alpha/2)$ de $\mathcal{N}(0,1)$

$$I(p,\alpha) = \left[F - u_{1-\alpha/2} \frac{\sqrt{F(1-F)}}{\sqrt{n}}; F + u_{1-\alpha/2} \frac{\sqrt{F(1-F)}}{\sqrt{n}} \right]$$