Nome	
Cognome	
Matricola	

Architettura degli Elaboratori

Corso di Laurea in Informatica 22 Gennaio 2008

1.					l numero reale -85 a e 8 per quella in		onumber notazione	e in vir	gola fi	ssa a	14 bit	, di cı	ıi 6 bit
	(a) n	nodul	o e se	egno a	a 8 bit								
	(b) c	omple	ement	to a 2	a 8 bit								
2.	. (4 punti) Determinare il numero reale rappresentato dalla sequenza di bit 1110101011 nella notazione in virgola fissa in cui la parte intera è codificata in										tazione		
	(a) mo	odulo	e seg	no a 6	bit		(\mathbf{b}) compl	emente	o a 2 a	6 bit			
3.	3. (2 punti) Convertire da base 16 a base 2 i seguenti numeri naturali												
	(a) 30	CD7					(b) A5	Έ1					_
4.	4. (8 punti) Determinare la forma SOP minimale della funzione booleana avente la seguente tabella di veritá utilizzando il metodo delle mappe di Karnaugh:												
	x_1	x_2	x_3	x_4	$f(x_1, x_2, x_3, x_4)$								
	0	0	0	0	1								
	0	0	0	0	1 1	SOP							
	0	0	1	1	0	501							-
	0	1	0	0	-								
	0	1	0	1	0]
	0	1	1	0	0								
	0	1	1	1	-								
	1	0	0	0	1]							
	1	0	0	1	1								
	1	0	1	0	1								
	1	0	1	1	1								
	1	1	0	0	1	ļ							J
	1	1	0	1	1								
	1	1	1	0	0								
	1	1	1	1	1								

5. (6 punti) Disegnare il diagramma di stato di una Rete Sequenziale a singolo ingresso (x) e singola uscita (z) tale che agli istanti 3, 6, ... e in generale j=3i per $i\geq 1$ $z_j=1$ se e solo se $x_{j-2}=x_j$, mentre in tutti gli altri istanti $z_j=0$.

6. (6 punti) Progettare la rete sequenziale corrispondente al seguente diagramma di stato (avente gli stati giá codificati), utilizzando flip-flop di tipo JK. In particolare determinare tutte le funzioni booleane e disegnare la rete sequenziale corrispondente.

x	y_1	y_2	Y_1	Y_2	j_1	k_1	j_2	k_2	z
0	0	0							
0	0	1							
0	1	0							
0	1	1							
1	0	0							
1	0	1							
1	1	0							
1	1	1							

j_1 :	k_1 :
j_2 :	k_2 :
7.	

Disegno della rete:

<u>ATTENZIONE</u>: scrivere le risposte su questo foglio; la vicinanza di borse o astucci e l'uso di calcolatrici e cellulari sono motivo di esclusione dalla prova.