Гладкие многообразия

Пусть M — хаусдорфово топологическое пространство со счетной базой. Внутренняя карта на M — это пара (U, φ) , где φ — гомеоморфизм некоторой области $U \subset M$ в \mathbf{R}^n или в открытый шар $B^n \subset \mathbf{R}^n$. Краевая карта — это пара (V, ψ) , где ψ есть гомеоморфизм из V в замкнутое полупространство

$$\mathbf{R}_{+}^{n} = \{x \in \mathbf{R}^{n} \mid x_{n} \ge 0\}.$$

Две карты (U_1, φ_1) и (U_2, φ_2) называются согласованными, если склейки

$$\varphi_1 \circ \varphi_2^{-1} : \varphi_2(U_1 \cap U_2) \to \varphi_1(U_1 \cap U_2)$$

задаются дифференцируемыми (мы будем требовать C^{∞} -гладкими) функциями. Атласом называется система согласованных карт, покрывающая все пространство M. Два атласа называются эквивалентными, если каждая карта первого атласа согласована с каждой картой второго атласа. Топологическое пространство M с указанными выше условиями вместе с классом эквивалентных атласов называется гладким n-многообразием.

Гладкое отображение $F: M \to N$ гладких многообразий называется *погружением*, если dF инъективен всюду на M (то есть для всех $p \in M$ линейное отображение $d_pF: T_pM \to T_{F(p)}N$ инъективно). Отображение F называется вложением, если оно является погружением и M гомеоморфно F(M). В данном случае отсюда следует и диффеоморфность. В частности, погружения допускают самопересечения, а вложения — нет, т.к. должны быть в том числе инъективными.

Вариант I

ДГТ 1\diamond1. Докажите, что $\mathbf{R}P^n = P(\mathbf{R}^{n+1})$ является гладким n-многообразием без края (дать атлас из n+1 карты, см. лекции).

ДГТ 1\diamond2. Пусть $F: M \to N$ является гладким погружением, и пусть F — собственное (т.е. проообраз всякого компакта есть компакт). Докажите, что F является вложением, если оно инъективно.

Вариант II

ДГТ 1\diamond3. Ограниченный цилиндр $C = [0,1] \times \mathbf{S}^1$. Покажите, что C является двумерным гладким многообразием с краем $\partial C = \mathbf{S}^1 \cup \mathbf{S}^1$ (нужно предъявить атлас).

ДГТ 1\diamond4. Докажите, что комплексное проективное пространство ${\bf C}P^1 = P({\bf C}^2)$ является 2-мерным вещественным многообразием, диффеоморфным ${\bf S}^2$.

Вариант III

ДГТ 1\diamond5. Бесконечный цилиндр $\mathbf{R} \times \mathbf{S}^1 \subset \mathbf{R}^3$. Постройте атлас из двух карт. Является ли гладким подмногообразием в \mathbf{R}^3 ?

ДГТ 1\diamond6. Рассмотрим $\mathbf{R}^4 = \mathbf{C}^2$ с координатами (z,w). Пусть M есть пересечение трехмерной сферы $\{|z|^2 + |w|^2 = 1\}$ и конуса |z| = |w|. Докажите, что M диффеоморфно тору \mathbf{T}^2 .

Вариант IV

ДГТ 1 \diamond **7.** Докажите, что лента Мёбиуса Mb является гладким 2-мерным многообразием с краем ∂ Mb = \mathbf{S}^1 . Указание: постройте сначала атлас для открытой ленты Мёбиуса Mb $\backslash \partial$ Mb (открытый квадрат, у которого отождествлены две противоположных стороны, например, вертикальных, с разными ориентациями).

Открытая лента Мёбиуса $\mathrm{Mb} \setminus \partial \mathrm{Mb}$.

ДГТ 1\diamond8. Пусть $F: M \to N$ является гладким погружением, где M — компактно. Докажите, что F является вложением, если оно инъективно.

Дополнительные задачи

ДГТ 1\diamond9. Снабдить множество всех прямых на плоскости \mathbf{R}^2 структурой гладкого многообразия. Доказать, что оно диффеоморфно открытому листу Мебиуса.

ДГТ 1◊10. Доказать, что специальная ортогональная группа

$$SO_n(\mathbf{R}) = \{ A \in Mat_{n \times n}(\mathbf{R}) \mid A^t A = E, \det A = 1 \}$$

является гладким многообразием; найдите его размерность. Докажите также, что $\mathrm{SO}_3(\mathbf{R})$ и $\mathbf{R}P^3$ диффеоморфны.

ДГТ 1\diamond11. Докажите, что комплексная окружность $\{z_1^2+z_2^2=1\}\subset {\bf C}^2$ диффеоморфна цилиндру без границы.