Boosting the probability Cont'd

Analysis

Define

$$Y_i = \left\{ egin{array}{ll} 1, & ext{if } |\widehat{f}_a - f_a| \geq \epsilon \|f\|_2; \\ 0, & ext{otherwise.} \end{array}
ight.$$

- For $k = O(1/\epsilon^2)$, we have $P(Y_i = 1) < \frac{1}{2}$.
- Note that $\mu = E(\sum_i Y_i) \leq \frac{t}{3}$. Then by the Chernoff bound,

Note that
$$\mu = E(\sum_i Y_i) \le \overline{3}$$
. Then by the Chernoir bound,
$$\lim_{t \to \infty} P(\sum_i Y_i > \frac{t}{2}) \le P(\sum_i Y_i > (1 + \frac{1}{2})\mu)_{(i+\frac{1}{2})\mu} \le \exp(-\mu(1/2)^2/4) < \exp(-t/48) < \delta,$$
 thus, we have $t = O(\log 1/\delta)$.

thus, we have $t = O(\log 1/\delta)$

• Finally, we can get an (ϵ, δ) -approximation in space complexity $O(\frac{\log 1/\delta}{\epsilon^2})$ counters.

Count min or Cormode-Muthukrishnan sketch

Algorithm

- $C[1...t][1...k] \leftarrow \overleftarrow{0}$, where $k = \frac{2}{\epsilon}$ and $t = \lceil \log(1/\delta) \rceil$;
- Choose *t* independent hash functions $h_1, h_2, \dots, h_t : [n] \to [k]$;

Process item (i, c), where c = 1:

Process item
$$(j,c)$$
, where $c=1$:

3: for $i=1$ to t do $C[i][h_i(j)] \leftarrow C[i][h_i(j)] + c$; Let $C[i][h_i(j)] = C[i][h_i(j)] + c$;

Output:

On query a, report $\hat{f}_a = \min_{1 < i < t} C[i][h_i(a)];$

CM sketch analysis

Analysis

• Clearly, for each i, we immediately have $f(a) \leq count[i, h_i(a)]$. However, the bound may be poor.

CM sketch analysis

Analysis

- Clearly, for each i, we immediately have $f(a) \leq count[i, h_i(a)]$. However, the bound may be poor.
- To get a better estimator, we will take the minimum over all the rows in count.

1011A111A11A11A

CM sketch analysis cont.

Analysis

- For a fixed a, we now analyze the collision in one such counter, say in $count[i, h_i(a)]$. Let r.v. X_i denote this collision.
- For $j \in [n] \setminus \{a\}$, let

$$Y_{i,j} = \begin{cases} 1, & \text{if } h_i(j) = h_i(a); \\ 0, & \text{otherwise.} \end{cases}$$

be the indicator of the event $h_i(j) = h_i(a)$. Notice that j makes a contribution to the counter iff $Y_{i,j} = 1$ (Note that $E(Y_{i,j}) = \frac{1}{\iota}$).

Thus, we have
$$X_i = \sum_{j \in [n] \setminus \{a\}} f_j Y_{i,j}$$
. By linearity of expectation,
$$E[X_i] = X_i = \sum_{j \in [n] \setminus \{a\}} \frac{f_j}{k} = \frac{\|f\|_1 - f_a}{k} \frac{\|f_{-a}\|_1}{k} \cdot \text{The proof } k$$

• Since each $f_i \geq 0$, we have $X_i \geq 0$, and we can apply Markov's inequality to get (by choosing the value of k) $\bigwedge (ar \models p)$

$$P[X_i \ge \epsilon ||f||_1] \le P[X_i \ge \epsilon ||f_{-a}||_1] \le \frac{||f_{-a}||_1}{k\epsilon ||f_{-a}||_1} = \frac{1}{2}.$$

CM sketch analysis cont.

Analysis

• The above probability is for one counter. We have t such counters, mutually independent. The excess in the output $\widehat{f}_a - f_a$, is the minimum of excesses X_i over all $i \in [t]$. Thus

$$P[\widehat{f_a} - f_a \ge \epsilon \|f\|_1] \le P[\widehat{f_a} - f_a \ge \epsilon \|f_{-a}\|_1]$$

$$= P[\min\{X_1, \cdots, X_t\} \ge \epsilon \|f_{-a}\|_1] = \prod_{i=1}^t P[X_i \ge \epsilon \|f_{-a}\|_1] \le \frac{1}{2^t}.$$

• Using our choice of t, this probability is at most δ . Thus, we have shown that, with high probability,

$$f_a \leq \widehat{f}_a \leq f_a + \varepsilon \|f_{-a}\|_1$$
• Thus the space requirement is therefore $M = O(\frac{\log 1/\delta}{\epsilon})$

counters.

Take-home messages

- Data streaming
- Deterministic algorithm
- Randomized algorithm
 - Naive sampling
 - Count sketch
 - Count min sketch