

Modellazione Grafica computazionale 2D e 3D

Autori:
Anna Lamboglia
Agostino Vitaglione
Mario Vitaglione

Introduzione

Durante il percorso effettuato sono state visti vari modi per rappresentare i dati, in particolare varie tipologie di curve, ognuna con i suoi pregi, che vengono sempre di più utilizzate nella modellazione 2D e 3D in campi come:

- Applicazioni economiche
- Animazione e videogames
- Progettazione di componenti meccanici ed elettronici
- Stampa 3D
- Programmazione di circuiti integrati e schede

Introduzione

Essendo le curve B-Spline e di Bézier realizzate attraverso dei polinomi, non è possibile rappresentare senza errori le curve goniometriche, anche utilizzando gli sviluppi in serie di Taylor poiché l'ambiente di calcolo è un ambiente finito.

Le 4 immagini rappresentano delle curve B-Spline di grado diverso con 8 punti di controllo.

Da sinistra verso destra i gradi sono 2, 3, 5, 10.

Notiamo che dobbiamo arrivare al grado 10 per avere un risultato simile ad una circonferenza.

Ciò risulta inaccettabile!

Esempio Curva di Bézier

Curva di Bézier con i polinomi di Bernstein

```
clear all; close all; clc;
        P = [0 \ 0; -6 \ 0; -3 \ 4; -0.5 \ 6; -0.5 \ 6; -2 \ 8];
        syms t
        B = bernsteinMatrix(length(P(:,1)) - 1, t);
        curve = simplify(B*P);
        figure
10 -
        hold on
        grid on
       xlim([-6 6])
13 -
       plot(P(:,1), P(:, 2), '*r')
14 -
       fplot(curve(1), curve(2), [0 1])
15 -
        fplot (-curve(1), curve(2), [0 1])
```


6 punti di controllo, curva di grado 5

Algoritmo di de Casteljau

Curva di Bézier con i polinomi di Bernstein

$$P_0^n(t) = (1-t)P_0^{n-1}(t) + tP_1^{n-1}(t).$$

$$B(t) = \sum_{i=0}^{n} {n \choose i} P_i (1-t)^{n-i} t^i \qquad t \in [0,1].$$

Perché le NURBS e non le B-spline?

Alcuni motivi per la diffusa accettazione e popolarità di NURBS nella comunità CAD/CAM e grafica come segue:

Offrono una forma matematica comune per rappresentare e progettare sia forme analitiche standard (coniche, quadriche, superfici di rivoluzione, ecc...) sia curve e superfici in forma libera

La valutazione è ragionevolmente veloce e computazionalmente stabile.

Le NURBS hanno chiare interpretazioni geometriche rendendole particolarmente utili per i progettisti che hanno una buona conoscenza della geometria descrittiva.

Le NURBS sono invarianti rispetto al ridimensionamento, alla rotazione, alla traslazione, al taglio e alla proiezione parallela e prospettica.

NURBS dispone di un potente kit di strumenti geometrici che può essere utilizzato per progettare, analizzare ed elaborare gli oggetti.

Le NURBS sono autentiche generalizzazioni delle B-spline e delle curve e superfici di Bézier razionali e non razionali

NURBS (Non Uniform Rational B-Spline)

Con le NURBS è possibile rappresentare precisamente qualunque forma, sia in 2D che in 3D, con quattro informazioni principali:

- un vettore di nodi
- 2. un insieme di funzione di base N_{in} (u)
- 3. un grado fissato p
- 4. punti di controllo

Ad ogni punto di controllo è associato un peso \mathbf{w}_{i} che rappresenta la sua capacità di "attrarre la curva".

Quando i punti di controllo hanno lo stesso peso, la curva viene definita non razionale, razionale altrimenti.

Con w grande, la curva tenderà ad avvicinarsi al punto di controllo ad esso associato

Con w = 0, la curva non sarà influenzata da quel determinato punto di controllo.

NURBS (Non Uniform Rational B-Spline)

L'equazione che rappresenta in maniera univoca una NURBS è data da:

$$C(u) = \frac{\sum_{i=0}^{n} w_{i} P_{i} N_{i,p}(u)}{\sum_{i=0}^{n} w_{i} N_{i,p}(u)}$$

Dove $N_{i,p}(u)$ sono le funzioni di base B-spline di grado p sul vettore dei nodi U

$$N_{i,\,0}(\ u) = \begin{cases} 1 & u_i \leq u < u_{i+1} \\ 0 & altrimenti \end{cases}$$
 La generica funzione $N_{i,k}(u)$ con k > 0 si calcola con la formula ricorsiva di **de Boor**.

Senza il polinomio al denominatore, la funzione non sarebbe razionale. Se tutti i pesi fossero uguali ad 1, la somma al denominatore diventa unitaria e la NURBS degenererebbe in una B-Spline.

NURBS (Non Uniform Rational B-Spline)

È possibile dare una definizione più sintetica alle NURBS.

Posto un insieme con n + 1 punti di controllo $P_0, P_1, ..., P_n$, ad ognuno dei quali è associato un peso non negativo w_i , e un vettore di nodi $U=[u_0, u_1, ..., u_m]$ costituito da m + 1 nodi, la curva NURBS di grado \boldsymbol{p} è definita come segue:

$$C(u) = \sum_{i=0}^{n} R_{i,p}(u) P_{i},$$

La funzione R_{i,n}(u) rappresenta la funzione di base della curva NURBS ed è definita come:

$$R_{i,p}(u) = \frac{N_{i,p}(u) \cdot w_i}{\sum_{j=0}^{n} N_{j,p}(u) \cdot w_j}$$

Le lettere NU in NURBS stanno per non uniformi, indicando che i nodi U possono essere non uniformi.

Se il vettore dei nodi uniforme è costituito con il primo e l'ultimo nodo a molteplicità piena, la curva è una curva di Bézier: interpola il primo e l'ultimo punto ed è tangente al primo e all'ultimo segmento del poligono di controllo.

Non solo lati positivi

- Vi è la necessità di conservare più informazioni anche per curve e superfici tradizionali.
 Per esempio, per rappresentare una circonferenza usando un quadrato circoscritto
 servono 7 punti di controllo e 10 nodi.
 In una rappresentazione tradizionale basterebbero il centro, il raggio e il vettore normale
 al piano contenente la circonferenza. In grafica 3D bisognerebbe utilizzare 38 punti.
- Alcune interrogazioni sono più facili con le tecniche tradizionali piuttosto che con le NURBS. Per esempio è più difficile individuare l'intersezione tra due superfici, trovare punti di tangenza...
- Uno sbagliato uso dei pesi dei punti di controllo può portare ad una cattiva parametrizzazione.

Proprietà delle NURBS

1. **Generalizzazione** Se
$$w_i = 1 \ \forall i$$
, allora $R_{i,p}(u) = \begin{cases} B_{i,p}(u) & \text{se } U = [0,0,\ldots,0,1,1,\ldots,1] \\ N_{i,p}(u) & \text{altrimenti} \end{cases}$ dove gli 0 e gli 1 sono ripetuti con molteplicità p+1 e $B_{i,p}(u)$ rappresenta il polinomio di Bernstein di grado p.

2. **Località**:
$$\longrightarrow$$
 $R_{i,p}(u) = 0$ se $u \notin [u_i, u_{i+p+1})$

3. Partizionamento dell'unità:
$$\sum_{i} R_{i,p} = 1$$

Differenziabilità:

Tra i nodi, la curva appartiene a C[®]. Sui nodi, la curva appartiene a C^{p-k}. Ciò comporta che all'aumentare della molteplicità di un nodo, decresce il livello di continuità; inversamente, all'aumentare del grado p, quest'ultimo aumenta.

5.
$$R_{i,p}(u;w_i=0)=0$$

7.
$$R_{i,p}(u; w_j \to +\infty) = 0 \quad j \neq i$$

6.
$$R_{i,p}(u;w_i \rightarrow +\infty) = 1$$

Conseguenze

- Local approximation: se un punto di controllo viene spostato o ne viene modificato il peso, il numero di intervalli della curva che vengono affetti da questa modifica sono p+1; in tal modo, non viene modificata tutta la curva, come accade per le curve di Bézier.
- 2. **Strong convex hull**: se u ∉ [u_i, u_{i+1}), allora, la curva C(u) giace all'interno dell'inviluppo convesso di P_{i-p}, ..., P_i.
- 3. Settando il peso di un punto di controllo a zero, tale punto non ha alcun effetto sull'intera curva.
- 4. Se $w_i \to +\infty$, allora:

$$C(u) = \begin{cases} P_i & u \in (u_i, u_{i+p+1}) \\ C(u) & altrimenti \end{cases}$$

Invarianza delle trasformazioni affini

Come affermato precedentemente, le curve NURBS sono invarianti rispetto al ridimensionamento, alla rotazione, alla traslazione e alla proiezione parallela e prospettica.

Applicando una trasformazione affine alla curva, si ottiene:

$$A[C(u)] = L[C(u)] + T = \sum_{i} L[P_{i}]R_{i,p}(u) + T.$$

D'altra parte, si ha:

$$\sum_{i} A[P_{i}]R_{i,p}(u) = \sum_{i} (L[P_{i}] + T)R_{i,p}(u) = \sum_{i} L[P_{i}]R_{i,p}(u) + T\sum_{i} R_{i,p}(u) = \sum_{i} L[P_$$

Per la proprietà del Partizionamento dell'unità = 1

Coordinate Omogenee

$$\varphi(X,Y,W) = \begin{cases} \left(\frac{X}{W}, \frac{Y}{W}\right) & W \neq 0 \\ direction(X,Y) & W = 0 \end{cases}$$

$$C^{w}(u) = \sum_{i=0}^{m} P_{i}^{w} N_{i,p}(u)$$

$$C(u) = \varphi(C^w(u)) = \frac{\sum_{i=0}^{n} w_i P_i N_{i,p}(u)}{\sum_{i=0}^{n} w_i N_{i,p}(u)}$$

Esempio

```
% Punti di controllo
       P = [-1 -3 -3 -1 -3 3 1 3 3 1 -1; 0 2 4 6 8 8 6 4 2 0 0];
       n = 3; % Ordine dei polinomi
       % Vettore dei nodi
       t = [0 \ 0 \ 0:1/(length(P)-n+1):1 \ 1 \ 1];
       % Peso
       w = ones(1,length(P));
       C = nurbsfun(n, t, w, P);
       hold on
10 -
11 -
       xlim([-5, 5])
12 -
       ylim([0, 12])
13 -
       plot(P(1, :), P(2, :), 'bo')
14 -
       plot(P(1, :), P(2, :), 'g')
15 -
       plot(C(1, :), C(2, :), 'r')
16 -
       grid on;
17
18
       % Cambio dei pesi
19 -
       w = [1 1 1 3 1 2 1 2 1 1 1];
20 -
       C = nurbsfun(n, t, w, P);
21 -
       plot(C(1, :), C(2, :), 'b')
22
23
       % Cambio pesi
       W = [1 1 3 1 4 1 1 1 2 1 2];
24 -
25 -
       C = nurbsfun(n, t, w, P);
       plot(C(1, :), C(2, :), 'm')
26 -
```

Esempio di raffigurazione di curve NURBS al variare dei pesi e del vettore dei nodi.

Applicazione in Matlab App Designer

Interfaccia

Video del funzionamento

Video del funzionamento

Esempio di utilizzo dell'applicazione

Bézier

20 punti 40 punti

Esempio di utilizzo dell'applicazione

B-Spline

20 punti 40 punti

Esempio di utilizzo dell'applicazione

NURBS

20 punti 40 punti

Codice

end

```
% Button pushed function: CaricaimmagineepuntiButton
function CaricaimmagineepuntiButtonPushed(app, event)
    global imm;
    global isRead;
    [name, path] = uigetfile;
    if name == 0
        isRead = false:
        return
    end
    isRead = true:
    imm = imread(strcat(path, name));
    [dimx, dimy] = size(imm(:,:,1));
    app.UIAxes.XLim = [0 dimx];
    app.UIAxes.YLim = [0 dimy];
   imshow(imm, [], 'parent', app.UIAxes);
   hold(app.UIAxes, 'on')
   figure(1);
   imshow(imm, []);
    grid on;
    hold on:
    n punti = app.NumeroPuntiEditField.Value:
    global xp;
    global yp;
    try
        [xp, yp] = ginput(n_punti);
    catch ignore
        % CHIUSURA FIGURE CON X
        return
    end
    close(1)
end
```

```
% Button pushed function: DisegnacurvaButton
function DisegnacurvaButtonPushed(app, event)
    global isRead;
   if isRead == false
        return
    end
    hold(app.UIAxes, 'off')
    global imm;
    imshow(imm, [], 'parent', app.UIAxes);
    hold(app.UIAxes, 'on')
    global xp;
    global yp;
    if app.CurvachiusaCheckBox.Value == true
        xp1 = [xp; xp(1)];
        yp1 = [yp; yp(1)];
    else
        xp1 = xp;
        yp1 = yp;
    if app.BezierButton.Value == true
        B = bernsteinMatrix(length(xp1) - 1, t);
        P = [xp1 yp1];
        curve = simplify(B*P);
        fplot(app.UIAxes, curve(1), curve(2), [0 1], 'b', 'LineWidth', 4);
        plot(app.UIAxes, xp1, yp1, '-xy', 'LineWidth', 3);
    else if app.BSplineButton_2.Value == true
        cpts = [xp1'; yp1'];
        tpts = [0 5];
        tvec = 0:0.01:5;
        [q, ~, ~,pp] = bsplinepolytraj(cpts, tpts, tvec);
        plot(app.UIAxes, cpts(1,:), cpts(2,:), '-xy', 'LineWidth', 3);
        [point, t] = fnplt(pp);
        plot(app.UIAxes, point(1,:), point(2,:), 'g', 'LineWidth', 4);
    else
       P = [xp1'; yp1'];
      n_punti = length(xp1);
      t = [0 0 0:1/(n_punti - n + 1):1 1 1];
       w = ones(1,n punti);
      C = nurbsfun(n,t,w,P);
       plot(app.UIAxes, C(1,:), C(2,:), 'c', 'LineWidth', 4);
      plot(app.UIAxes, xp1, yp1, '-xy', 'LineWidth', 3);
    end
```

Grazie per l'attenzione!