

REPORTE DE PRACTICA NO.1

NOMBRE DE LA PRÁCTICA:

AFD y AFND

ALUMNO:

Jasiel Linares Carrada

PROFESOR:

Dr. Eduardo Cornejo Velazquez

INSTRUCCIONES.

Para los siguientes ejercicios construir los siguientes elementos:

- 1. Tupla del AFD -> $AFD = (\Sigma, Q, f, q0, F)$
- 2. Diagrama de transiciones
- 3. Tabla de transiciones
- 4. Simulación en Automaton Simulator (https://automatonsimulator.com/) captura de pantalla
- 5. Palabras aceptadas (5) y palabras rechazadas (5).

Ejercicios

Ejercicio 1. Obtenga un Autómata Finito Determinista (AFD) dado el lenguaje definido en el alfabeto Σ = {0, 1}, que acepte el conjunto de palabras que inician en "0".

- 1. Tupla del AFD
 - AFD = (Σ, Q, f, q_0, F)
 - $\Sigma = \{0, 1\}$
 - Q = {start, S_0 , S_1 }
 - q₀ = start (estado inicial)
 - $F = \{S_0\}$
 - f: $Q \times \Sigma \rightarrow Q$
- 2. Diagrama de transiciones

3. Tabla de transiciones

start + 0→	S₀
S₀ +0 →	S ₀
S₀ +1 →	S₀
start + 1→	S ₁
S₁+0 →	S ₁
S₁+1 →	Sı

Aceptadas: 0, 00, 01, 000, 010

Rechazadas: 1, 10, 11, 100, 111

Ejercicio 2. Obtenga un Autómata Finito Determinista (AFD) dado el lenguaje definido en el alfabeto Σ = {0, 1}, que acepte el conjunto de palabras que terminan en "1".

1. Tupla del AFD

- AFD = (Σ, Q, f, q_0, F)
- $\Sigma = \{0, 1\}$
- Q = $\{$ start, S_0 , $S_1 \}$
- q₀ = start (estado inicial)
- $F = \{S_1\}$
- f: $Q \times \Sigma \rightarrow Q$

2. Diagrama de transiciones

3. Tabla de transiciones

start + 0→	S₀
S₀ +0 →	S₀
S₀ +1 →	S ₁
S₁+1 →	S ₁
S₁+0 →	S₀
start + 1→	S ₁
S₁+0 →	S₀
S₁+1 →	S ₁

Aceptadas: 1, 01, 001, 111, 1101

Rechazadas: 0, 10, 1010, 110, 000

Ejercicio 3. Obtenga un Autómata Finito Determinista (AFD) dado el lenguaje definido en el alfabeto Σ = {0, 1}, que acepte el conjunto de palabras que contienen la subcadena "01".

- AFD = (Σ, Q, f, q_0, F)
- $\Sigma = \{0, 1\}$
- Q = {start, S_0 , S_1 }

• q₀ = start (estado inicial)

•
$$F = \{S_1\}$$

$$\bullet \quad f \colon Q \times \Sigma \to Q$$

2. Diagrama de transiciones

3. Tabla de transiciones

start + 0→	S ₀
start + 1→	start
S₀ +0 →	S₀
S₀+1 →	S ₁
S₁+0 →	S ₁
S₁+1 →	S ₁

Aceptadas: 1, 01, 001, 111, 1101

Rechazadas: 0, 10, 1010, 110, 000

Ejercicio 4. Obtenga un Autómata Finito Determinista (AFD) dado el lenguaje definido en el alfabeto Σ = {0, 1}, que acepte el conjunto de palabras que no contienen la subcadena "01".

- AFD = (Σ, Q, f, q_0, F)
- $\Sigma = \{0,1\}$
- Q = {start, S_0 , S_1 }
- q₀ = start (estado inicial)

•
$$F = \{start, S_0\}$$

$$\bullet \quad f \colon Q \times \Sigma \to Q$$

3. Tabla de transiciones

start + 0→	S ₀
start + 1→	start
S₀ +0 →	S₀
S₀+1 →	S ₁
S₁ +0 →	S ₁
S₁+1 →	S ₁

Aceptadas: 0, 1, 00, 100, 10

Rechazadas: 01, 001, 101, 010, 0001

Ejercicio 5. Obtenga un Autómata Finito Determinista (AFD) dado el lenguaje definido en el alfabeto Σ = {a, b, c}, que acepte el conjunto de palabras que inician con la subcadena "ac" o terminan con la subcadena "ab".

- AFD = (Σ, Q, f, q_0, F)
- $\Sigma = \{a, b, c\}$
- Q = {start, S_0 , S_1 , S_2 , S_3 , S_4 }
- q₀ = start (estado inicial)
- $F = \{S_2, S_4\}$

$$\bullet \quad f \colon Q \times \Sigma \to Q$$

3. Tabla de transiciones

start + b→	S₀
start + c→	S₀
S₀ + a →	S ₁
$S_1+b \rightarrow$	S ₂
start + a→	S ₃
S₃+ c →	S ₄
S₃+ b →	S ₄
S₄+ a →	S ₄
S₄+ b →	S ₄
S₄+ c →	S ₄

4. Simulación

5. Palabras

Aceptadas: ac, acab, acbb, ab, cab

Rechazadas: a, bc, ba, c, bca

Ejercicio 6. Obtenga un Autómata Finito Determinista (AFD) dado el lenguaje definido en el alfabeto Σ = {a, b, c}, que acepte el conjunto de palabras que inician con la subcadena "ac" y no terminan con la subcadena "ab".

1. Tupla del AFD

- AFD = (Σ, Q, f, q_0, F)
- $\Sigma = \{a, b, c\}$
- $Q = \{start, S_0, S_1\}$
- q₀ = start (estado inicial)
- $F = \{S_1\}$
- $f: Q \times \Sigma \rightarrow Q$

2. Diagrama de transiciones

3. Tabla de transiciones

start + a→	S ₀
$S_0 + c \rightarrow$	S ₁
S₁+ a→	S ₁
$S_1+b \rightarrow$	S ₁
S₁+ c→	S ₁

Aceptadas: ac, aca, acc, acb, acba

Rechazadas: a, ab, abc, cab, bca

Ejercicio 7. Obtenga un Autómata Finito Determinista (AFD) dado el lenguaje definido en el alfabeto Σ = {a, b, c}, que acepte el conjunto de palabras que inician con la subcadena "ac" o no terminan con la subcadena "ab".

- AFD = (Σ, Q, f, q_0, F)
- $\Sigma = \{a, b, c\}$
- Q = {start, S_0 , S_1 , S_2 , S_3 , S_4 , S_5 , S_6 }
- q₀ = start (estado inicial)
- $F = \{S_0, S_1, S_2, S_3, S_6\}$
- f: $Q \times \Sigma \rightarrow Q$

3. Tabla de transiciones

start + a →	S₀
S₀ + c →	S ₁
S₁+ a →	S ₁
$S_1 + b \rightarrow$	S ₁
S₁+ c→	S ₁
$S_0 + b \rightarrow$	S₅
S₅+ c →	S ₆
S ₆ + c →	S ₆
S ₆ + a →	S ₆

start + b →	S₃
start + c →	S ₃
S₃+ a →	S ₂
S₃+ b →	S₃
S₃+ b →	S₃
S_2 + b \rightarrow	S ₄

4. Simulación

5. Palabras

Aceptadas: ac, a, ba, cca, abc

Rechazadas: ab, cab, bab, aab, bcab

Ejercicio 8. Obtenga un Autómata Finito Determinista (AFD) dado el lenguaje definido en el alfabeto Σ = {a, b, c}, que acepte el conjunto de palabras que no inician con la subcadena "ac" y no terminan con la subcadena "ab".

1. Tupla del AFD

- AFD = (Σ, Q, f, q_0, F)
- $\Sigma = \{a, b, c\}$
- $Q = \{start, S_0, S_1, S_2\}$
- q₀ = start (estado inicial)
- $F = \{S_0, S_1, S_2\}$
- f: $Q \times \Sigma \rightarrow Q$

2. Diagrama de transiciones

3. Tabla de transiciones

start + a →	S ₁
start + b →	S₀
start + c →	S₀
S₀+ b →	S₀

S₀+ c →	S₀
S₀+ a →	S ₂

4. Simulación

5. Palabras

Aceptadas: b, c, bc, cb, bcb

Rechazadas: ac, ab, acab, cab, aab

Ejercicio 9. Obtenga un Autómata Finito No Determinista (AFND) dado el lenguaje definido en el alfabeto $\Sigma = \{0, 1\}$, que acepte el conjunto de palabras que no contienen la subcadena "01".

• AFD =
$$(\Sigma, Q, f, q_0, F)$$

•
$$\Sigma = \{0,1\}$$

• Q = {start,
$$S_0$$
}

•
$$F = \{start, S_0\}$$

$$\bullet \quad f \colon Q \times \Sigma \to Q$$

3. Tabla de transiciones

start + 1 →	start
start + 0 →	S₀
S₀+ 0 →	S₀

Aceptadas: 0, 00, 10, 11, 111

Rechazadas: 01, 001, 101, 010, 0110

Ejercicio 10. Obtenga un Autómata Finito No Determinista (AFND) dado el lenguaje definido en el alfabeto $\Sigma = \{a, b, c\}$, que acepte el conjunto de palabras que inician en la subcadena "ac" y terminan en la subcadena "ab".

• AFD =
$$(\Sigma, Q, f, q_0, F)$$

•
$$\Sigma = \{a, b, c\}$$

• Q = {start,
$$S_0$$
, S_1 , S_2 , S_3 }

•
$$F = \{S_3\}$$

$$\bullet \quad f \colon Q \times \Sigma \to Q$$

3. Tabla de transiciones

start + a →	S₀
S₀+ c →	S ₁
$S_1+b \rightarrow$	S ₁
S₁+ c →	S ₁
S₁+ a →	S ₂
S₂+ a →	S ₂
S_2 + $c \rightarrow$	S ₂
S_2 + b \rightarrow	S ₃

S₃+ a →	S ₃
S₃+ b →	S ₃

4. Simulación

5. Palabras

Aceptadas: acab, acacab, acabab, acbab, accab

Rechazadas: a, ac, ab, cab, acba