Lossless join Decomposition

Nonadditive (Lossless) Join Property of a Decomposition

Let R be a relation schema and let F be a set of FDs over R. A decomposition of R into two schemas with attribute sets X and Y is said to be a **lossless-join decomposition** with respect to F if for every instance r of R that satisfies the dependencies in F, $\pi_X(r) \bowtie \pi_Y(r) = r$.

The word loss in lossless refers to loss of information, not to loss of tuples. If a decomposition does not have the lossless join property, we may get additional spurious tuples after the PROJECT and NATURAL JOIN operations are applied; these additional tuples represent erroneous or invalid information.

Let R be a relation and F be a set of FDs that hold over R. The decomposition of R into relations with attribute sets R_1 and R_2 is lossless if and only if F^+ contains either the FD $R_1 \cap R_2 \to R_1$ or the FD $R_1 \cap R_2 \to R_2$.

In other words, if R1∩R2 forms a superkey for either R1 or R2, the decomposition of R is a lossless decomposition.

P.1.
$$P(AB(D))$$

 $F: \{AB \rightarrow C, C \rightarrow A, C \rightarrow D\}$
 $D: \{AB \rightarrow C, ACD\}$
 $AB \cap ACD = A$
 $AB \cap AB \rightarrow C$

$$F(ABCDEF)$$
 $F: \mathcal{L}A \rightarrow B, C \rightarrow DE, AC \rightarrow F$
 $D: \{BE, ACDEF\}$
 $P(ABCDEF)$
 $P(ABCDEF)$

D: $\{ABCOE, ACOE, ADS\}$ $\{ABCOE, ADS\}$ $\{ABCOE, ADS, ADSE, BSO, BCSA, ESS\}$ $\{ABCSC, ACSB, ADSE, BSO, BCSA, ESS\}$ $\{ABCSC, ACSB, ADSE, BSO, BCSA, ESS\}$ $\{ABCSC, ACSB, ADSE, BSO, BCSA, ESS\}$ $\{ABCSC, ACOE, ACOE$