Nom:

Question de cours :

- Rappeler le domaine de définition de la fonction \ln , son allure, sa dérivée et la valeur de $\ln(1)$.
- Soient $x, y \in \mathbb{R}$ et $n \in \mathbb{N}$, rappeler les règles de calculs concernant $e^x \times e^y$ et $(e^x)^n$.

Exercice:

Résoudre dans \mathbb{R} les (in)équations suivantes :

1.
$$2e^{6x} - 5 < 0$$

2.
$$4e^{2x} - 5 > 0$$

3.
$$2^x = 3$$

1.
$$2e^{6x} - 5 < 0$$

2. $4e^{2x} - 5 \ge 0$
4. $\ln(x^2 - x - 1) = 0$
5. $3^{2x+1} = 5^{3x-2}$

$$5 \ 3^{2x+1} = 5^{3x-2}$$

6.
$$\ln(\ln(x)) > 0$$

Exercice:

- 1. Justifier que pour tout $n \in \mathbb{N}$ et tout $a \in \mathbb{R}_+^*$, on a $a^n = e^{n \ln(a)}$.
- 2. Rappeler la définition de a^x pour $x \in \mathbb{R}$ et $a \in \mathbb{R}_+^*$.

On rappelle que si deux fonction f,g sont dérivables en x et composables (au sens où $g \circ f$ est bien définie) alors $g \circ f$ est dérivable en x et $(g \circ f)'(x) = f'(x)g'(f(x))$.

- 3. Soit $a \in \mathbb{R}_+^*$, on pose $h: x \mapsto a^x$. Écrire h comme la composée $g \circ f$ de deux fonctions dérivables f et g.
- 4. Donner les fonctions dérivées de f et g et en déduire la dérivée de h pour tout $x \in \mathbb{R}$.

Commentaire:

Nom:

Question de cours :

• Soient $x, y \in \mathbb{R}$ et $a \in \mathbb{R}_+^*$, rappeler la définition de a^x . Prouver que $a^{x+y} = a^x \times a^y$ en utilisant les propriétés de exp et ln.

Exercice:

Résoudre dans \mathbb{R} les (in)équations suivantes :

1.
$$\ln(x^2 - 3) \le 1$$

2.
$$3^x - 2 = 0$$

$$3 2e^{-4x} - 3 < 0$$

1.
$$\ln(x^2 - 3) \le 0$$

4. $\frac{e^x + 1}{2e^x - 1} < 2$

2.
$$3^{x} - 2 = 0$$

3. $2e^{-4x} - 3 \le 0$
5. $\ln(x)^{2} - \ln(x) - 2 = 0$
6. $5^{3x+2} \le 3^{2x+1}$

$$6. \ 5^{3x+2} \le 3^{2x+3}$$

Exercice:

On définit les fonctions ch et sh sur $\mathbb R$ par :

$$ch(x) = \frac{e^x + e^{-x}}{2}$$
 et $sh(x) = \frac{e^x - e^{-x}}{2}$

- 1. Calculer ch(0) et sh(0).
- 2. Étudier la parité de ch et sh.
- 3. Montrer que pour tout $x \in \mathbb{R}$, on a $ch(x)^2 sh(x)^2 = 1$.
- 4. Montrer que pour tout $x \in \mathbb{R}$, on a $\operatorname{ch}'(x) = \operatorname{sh}(x)$ et $\operatorname{sh}'(x) = \operatorname{ch}(x)$.

On pose maintenant $\operatorname{th}(x) = \frac{\operatorname{sh}(x)}{\operatorname{ch}(x)}$ pour tout $x \in \mathbb{R}$.

5. Montrer que $th'(x) = \frac{1}{ch(x)^2} = 1 + th(x)^2$.

Commentaire:

Nom:

Question de cours :

- Rappeler le domaine de définition de la fonction exp, son allure, sa dérivée et la valeur de exp(0).
- Soient $x, y \in \mathbb{R}_+^*$ et $n \in \mathbb{N}$, rappeler les règles de calculs concernant $\ln(x) + \ln(y)$ et $\ln(x^n)$.

Exercice:

Résoudre dans \mathbb{R} les (in)équations suivantes :

1.
$$3e^{2x-1} - 2 > 0$$

2.
$$\ln(x)^2 - 1 \le 0$$

3. $5^x = 2$
5. $\ln(\ln(x)) < 0$
6. $3^{8x-1} = 7^{3x+1}$

3.
$$5^x = 2$$

4.
$$e^{2x} - e^x - 2 = 0$$

$$5. \ln(\ln(x)) < 0$$

5.
$$3^{8x-1} = 7^{3x+1}$$

Exercice:

Soient les fonctions f et g suivantes définies sur \mathbb{R}_+^* par :

$$f(x) = \ln(x) - 1 + \frac{1}{x}$$
 et $g(x) = x - 1 - \ln(x)$

1. Étudier les variations de f et g et en déduire l'inégalité suivante :

$$\forall x \ge 1, \qquad 1 - \frac{1}{x} \le \ln(x) \le x - 1$$

 $\text{2. Soit } n \in \mathbb{N}^*. \text{ En prenant } x = e^{\frac{1}{n}}, \text{ montrer que } \left(1 + \frac{1}{n}\right)^n \leq e \leq \left(1 - \frac{1}{n}\right)^{-n}.$

Commentaire: