

Санкт-Петербургский национальный исследовательский Академический университет имени Ж.И. Алфёрова Российской академии наук

Свиридов Фёдор, Александр Слободнюк, Владимир Попов

Рабочий протокол и отчёт по лабораторной работе № 4

Цель работы. С помощью баллистического маятника определить скорости пуль с различными массами

Задачи, решаемые при выполнении работы.

- Измерить массы пуль
- Измерить длину баллистического маятника
- Измерить массу баллистического маятника
- Измерить отклонения маятника после выстрела каждой пули
- Обработать полученные результаты
- Сделать выводы

Объект исследования. Зависимость скорости пули от её массы после выстрела из пружинного пистолета

Метод экспериментального исследования. Измерение скоростей пуль

Рабочие формулы и исходные данные.

Предполагаемая зависимость скорости пули от её массы после выстрела из пружинного пистолета: $v \sim \sqrt{\frac{1}{m}}$

$$v_i = \frac{m_i + M}{m_i} \sqrt{\frac{g}{l}} \cdot x_i$$
 (1)

где l - длина маятника; m_i и x_i - масса пули и отклонение маятника в данном эксперименте, соответственно

Таблица 1: Измерительные приборы

- · · · · · · · · · · · · · · · · · · ·				
Наименование	Тип прибора	Используемый	Погрешность	
		диапазон	прибора	
Линейка	Аналоговый	20 - 40 см	0,1 см	
Электронные	Цифровой	1 - 200 г	0,01 г	
весы				

Рис. 1: Схема установки

Результаты прямых измерений и их обработки.

- Масса баллистического маятника: $M=112\ {
 m r}$
- Длина маятника: l = 30 см

Таблица 2: Измерения

№	Масса пули m_i (г)	Отклонение маятника x_i (см)
1	11,53	9
2	10,72	5
3	3,74	2,5

Расчет результатов косвенных измерений. Пользуясь формулой (1), находим скорости пуль:

$$v_1 = \frac{11,53 \cdot 10^{-3} + 0,112}{11,53 \cdot 10^{-3}} \sqrt{\frac{9,81}{0,3}} \cdot 9 \cdot 10^{-2} \approx 5,51 \ \left(\frac{\mathrm{M}}{\mathrm{c}}\right)$$

$$v_2 = \frac{10,72 \cdot 10^{-3} + 0,112}{10,72 \cdot 10^{-3}} \sqrt{\frac{9,81}{0,3}} \cdot 5 \cdot 10^{-2} \approx 3,27 \, \left(\frac{\mathrm{M}}{\mathrm{c}}\right)$$

$$v_3 = \frac{3,74 \cdot 10^{-3} + 0,112}{3,74 \cdot 10^{-3}} \sqrt{\frac{9,81}{0,3}} \cdot 2, 5 \cdot 10^{-2} \approx 4,42 \ \left(\frac{\mathrm{M}}{\mathrm{c}}\right)$$

Nº	Скорость пули v_i $(\frac{M}{C})$	
1	5,51	
2	3,27	
3	4,42	

Расчет погрешностей измерений.

$$v = v(m, M, l, x)$$

$$\Delta v = \sqrt{\left(\frac{\partial v}{\partial m} \Delta m\right)^2 + \left(\frac{\partial v}{\partial M} \Delta M\right)^2 + \left(\frac{\partial v}{\partial l} \Delta l\right)^2 + \left(\frac{\partial v}{\partial x} \Delta x\right)^2}$$

$$\frac{\partial v}{\partial m} \Delta m = x \sqrt{\frac{g}{l}} \left(-\frac{M}{m^2}\right) \Delta m$$

$$\frac{\partial v}{\partial M} \Delta M = \frac{x}{m} \sqrt{\frac{g}{l}} \cdot \Delta M$$

$$\frac{\partial v}{\partial l} \Delta l = \frac{m+M}{m} x \sqrt{g} \left(-\frac{1}{2\sqrt{l^3}}\right)$$

$$\frac{\partial v}{\partial x} \Delta x = \frac{m+M}{m} \sqrt{\frac{g}{l}} \cdot \Delta x$$

В итоге:

$$\Delta v = \sqrt{\frac{x^2gM^2}{lm^4}\Delta m^2 + \frac{x^2g}{m^2l}\Delta M^2 + \frac{(m+M)^2x^2g}{4m^2l^3}\Delta l^2 + \frac{(m+M)^2g}{m^2l}\Delta x^2}$$

$$\Delta m = 0,01$$
 г $\Delta M = 0,1$ г $\Delta l = 5$ мм $\Delta x = 2$ см

Nº	Погрешность скорости $\Delta v_i \left(\frac{\mathrm{M}}{\mathrm{C}}\right)$
1	1,2
2	1,3
3	3,5

Таблица 3: Окончательные результаты.

١.		1 V
	Nº	Скорость пули v_i $(\frac{M}{C})$
	1	$(5, 5 \pm 1, 2)$
ĺ	2	$(3, 3 \pm 1, 3)$
ĺ	3	$(4, 4 \pm 3, 5)$

Puc. 2: Зависимость скорости v от $\sqrt{\frac{1}{m}}$

Выводы и анализ результатов Мы провели косвенные измерения скоростей пуль и получили зависимость скорости пули от её массы (стреляя из пружинного пистолета). Говорить о линейной зависимости $v \sim \sqrt{\frac{1}{m}}$ (рис. 2), основываясь всего на трёх измерениях, которые ещё и имеет большую погрешность, очень трудно.

Стоит отметить несколько пунктов о погрешности:

- Маятник, масса которого измерялась, не от экспериментальной установки (не учтено в погрешности)
- Рабочая формула (1) упрощённая. На самом деле высоту, на которую поднимается маятник, следует считать следующим образом:

$$h=l\left(1-\sqrt{rac{l^2-x^2}{l^2}}
ight)$$
 (не учтено в погрешности)

• Шкала, которую смещал маятник, не точно фиксировала отклонение (учтено в погрешности, для этого мы взяли $\Delta x=2$ см)