# GraphGAN: Graph Representation Learning with Generative Adversarial Nets

Hongwei Wang<sup>1,2</sup>, Jia Wang<sup>3</sup>, Jialin Wang<sup>4</sup>, Miao Zhao<sup>3</sup>, Weinan Zhang<sup>1</sup>, Fuzheng Zhang<sup>2</sup>, Xing Xie<sup>2</sup>, Minyi Guo<sup>1</sup>

Shanghai Jiao Tong University, <sup>2</sup> Microsoft Research Asia,
 The Hong Kong Polytechnic University,
 <sup>4</sup> Huazhong University of Science and Technology

January 10, 2018









### **About Me**

- □ Hongwei Wang (王鸿伟)
  - ☐ Ph.D. candidate at Shanghai Jiao Tong University
  - ☐ Full-time intern at Microsoft Research Asia
- Advisor
  - ☐ Prof. Minyi Guo (SJTU)
  - Dr. Xing Xie and Dr. Baining Guo (MSRA)
- Research interests
  - Recommender systems [TCSS 2017] [RecSys 2017] [CIKM 2017] [WWW 2018]
  - Graph representation learning [WSDM 2018] [AAAI 2018a]
  - Machine learning applications [ICDCS 2017] [TPDS 2018] [AAAI 2018b]
- ☐ Homepage: https://hwwang55.github.io



### **Outline**

- ☐ Introduction to graph representation learning
  - Definition and application
  - Taxonomy
  - Representative work
- ☐ GraphGAN [AAAI 2018]
- ☐ GRL application
  - □ Recommender systems [WWW 2018]
  - Sentiment prediction [WSDM 2018]

- 1. A Comprehensive Survey of Graph Embedding: Problems, Techniques and Applications, TKDE 2017
- 2. https://github.com/thunlp/NRLPapers
- 3. https://hwwang55.github.io/files/a\_literature\_review\_on\_rs\_and\_nrl.pdf (in Chinese)

### **Outline**

- ☐ Introduction to graph representation learning
  - Definition and application
  - Taxonomy
  - Representative work
- ☐ GraphGAN [AAAI 2018]
- ☐ GRL application
  - □ Recommender systems [WWW 2018]
  - ☐ Sentiment prediction [WSDM 2018]

### **Definition**

- ☐ Graph representation learning tries to embed each node of a graph into a low-dimensional vector space, which preserves the structural similarities or distances among the nodes in the original graph
- □ Also known as **network embedding** / **graph embedding** / **network representation learning**



## **Application**

- ☐ Graph representation learning can benefit a wide range of real-world applications:
  - Link prediction (Gao, Denoyer, and Gallinari, CIKM 2011)
  - Node classification (Tang, Aggarwal, and Liu, SDM 2016)
  - Recommendation (Yu et al., WSDM 2014)
  - Visualization (Maaten and Hinton, JMLR 2008)
  - Knowledge graph representation (Lin et al., AAAI 2015)
  - Clustering (Tian et al., AAAI 2014)
  - Text embedding (Tang, Qu, and Mei, KDD 2015)
  - □ Social network analysis (Liu et al., IJCAI 2016)

## Taxonomy (1/3)

#### Input

- ☐ Homogeneous graph (e.g., citation network)
  - Weighted / Unweighted
  - Directed / Undirected
  - Signed / Unsigned
- ☐ Heterogeneous graph
  - Multimedia network
  - Knowledge graph
- ☐ Graph with side information
  - Node/edge label (categorical)
  - Node/edge attribute (discrete or continuous)
  - Node feature (e.g., texts)
- Graph transformed from non-relational data
  - Manifold learning

## Taxonomy (2/3)

#### Output

- □ Node embedding (the most common case)
- Edge embedding
  - Relations in knowledge graph
  - Link prediction
- Sub-graph embedding
  - Substructure embedding
  - Community embedding
- Whole-graph embedding
  - Multiple small graphs, e.g., molecule, protein



## Taxonomy (3/3)

#### Method

- Matrix factorization
  - SVD
  - Spectral Analysis
- Random walk
- Deep learning
  - Auto-encoder
  - Convolutional neural network
- ☐ Self-defined loss
  - Maximizing edge reconstruction probability
  - Minimizing distance-based loss
  - Minimizing margin-based ranking loss

## Representative Work



## **Linear Discriminant Analysis**

- Suppose binary classification
- $D = \{(x_i, y_i)\}, \ \mu_i$ : mean of data of the *i*-th class,  $\Sigma_i$ : covariance matrix of data of the *i*-th class
- Make projected covariance matrix as small as possible, while make projected distance between the mean of two classes as large as possible
- maximize

$$J = \frac{\|\boldsymbol{w}^{\mathrm{T}}\boldsymbol{\mu}_{0} - \boldsymbol{w}^{\mathrm{T}}\boldsymbol{\mu}_{1}\|_{2}^{2}}{\boldsymbol{w}^{\mathrm{T}}\boldsymbol{\Sigma}_{0}\boldsymbol{w} + \boldsymbol{w}^{\mathrm{T}}\boldsymbol{\Sigma}_{1}\boldsymbol{w}}$$
$$= \frac{\boldsymbol{w}^{\mathrm{T}}(\boldsymbol{\mu}_{0} - \boldsymbol{\mu}_{1})(\boldsymbol{\mu}_{0} - \boldsymbol{\mu}_{1})^{\mathrm{T}}\boldsymbol{w}}{\boldsymbol{w}^{\mathrm{T}}(\boldsymbol{\Sigma}_{0} + \boldsymbol{\Sigma}_{1})\boldsymbol{w}}$$



《机器学习》, 周志华

## **Locally Linear Embedding**

#### Introduction

- An unsupervised learning algorithm that computes lowdimensional, neighborhoodpreserving embeddings of highdimensional inputs
- LLE keeps linear dependency between local instances









### Word2vec

#### Skip-Gram Model

- ☐ Find word representations that are useful for **predicting the surrounding** words in a sentence
- Maximizing

$$\frac{1}{T} \sum_{t=1}^{T} \sum_{-c < j < c, j \neq 0} \log p(w_{t+j}|w_t)$$

where

$$p(w_{O}|w_{I}) = \frac{\exp\left(v'_{w_{O}}^{\top}v_{w_{I}}\right)}{\sum_{w=1}^{W} \exp\left(v'_{w}^{\top}v_{w_{I}}\right)}$$

Negative sampling:

$$\log \sigma(v_{w_O}^{\prime \top} v_{w_I}) + \sum_{i=1}^k \mathbb{E}_{w_i \sim P_n(w)} \left[ \log \sigma(-v_{w_i}^{\prime \top} v_{w_I}) \right]$$

### DeepWalk / Node2vec

#### ■ DeepWalk: Random walk + Word2vec

■ Sample the next node to be visited uniformly from the neighbors of current node

$$\underset{\Phi}{\text{minimize}} - \log \Pr \left( \{ v_{i-w}, \cdots, v_{i+w} \} \setminus v_i \mid \Phi(v_i) \right)$$

Hierarchical softmax

#### Node2vec: Biased random walk + Word2vec

Sample the next node to be visited with bias from the neighbors of current node



### LINE

#### ☐ First-order proximity

$$O_{1} = d(\hat{p}_{1}(\cdot, \cdot), p_{1}(\cdot, \cdot))$$

$$p_{1}(v_{i}, v_{j}) = \frac{1}{1 + \exp(-\vec{u}_{i}^{T} \cdot \vec{u}_{j})}$$

$$\hat{p}_{1}(i, j) = \frac{w_{ij}}{W}$$

$$O_{1} = -\sum_{(i, j) \in E} w_{ij} \log p_{1}(v_{i}, v_{j})$$



#### Second-order proximity

$$O_2 = \sum_{i \in V} \lambda_i d(\hat{p}_2(\cdot|v_i), p_2(\cdot|v_i)) \qquad p_2(v_j|v_i) = \frac{\exp(\vec{u}_j'^T \cdot \vec{u}_i)}{\sum_{k=1}^{|V|} \exp(\vec{u}_k'^T \cdot \vec{u}_i)}$$

$$\hat{p}_2(v_j|v_i) = \frac{w_{ij}}{d_i}$$

$$O_2 = -\sum_{(i,j)\in E} w_{ij} \log p_2(v_j|v_i)$$

### **TransX**

- □ Embed knowledge graph into a continuous vector space while preserving structural information
- ☐ TransE (NIPS 13):
  - □ Ensures  $\mathbf{h} + \mathbf{r} \approx \mathbf{t}$  when (h, r, t) holds
- ☐ TransH (AAAI 14):
  - lacksquare Ensures  $\mathbf{h}_{\perp} + \mathbf{r} \approx \mathbf{t}_{\perp}$  when (h, r, t) holds, where  $\mathbf{h}_{\perp} = \mathbf{h} \mathbf{w}_r^{\mathrm{T}} \mathbf{h} \mathbf{w}_r$  and  $\mathbf{t}_{\perp} = \mathbf{t} \mathbf{w}_r^{\mathrm{T}} \mathbf{t} \mathbf{w}_r$
- ☐ TransR (AAAI 15):
  - □ Score function:  $f_r(h, t) = \|\mathbf{h}\mathbf{M}_r + \mathbf{r} \mathbf{t}\mathbf{M}_r\|_2^2$ , where  $\mathbf{M}_r$  is the projection matrix for relation r.

Knowledge Graph Embedding: A Survey of Approaches and Applications, TDKE 2017

### **SDNE**

#### Reconstruction loss term

$$\mathcal{L}_{2nd} = \sum_{i=1}^{n} \|(\hat{\mathbf{x}}_i - \mathbf{x}_i) \odot \mathbf{b_i}\|_2^2$$
$$= \|(\hat{X} - X) \odot B\|_F^2$$

#### ■ Proximity loss term

$$\mathcal{L}_{1st} = \sum_{i,j=1}^{n} s_{i,j} \|\mathbf{y}_{i}^{(K)} - \mathbf{y}_{j}^{(K)}\|_{2}^{2}$$
$$= \sum_{i,j=1}^{n} s_{i,j} \|\mathbf{y}_{i} - \mathbf{y}_{j}\|_{2}^{2}$$

#### Regularization term

$$\mathcal{L}_{reg} = \frac{1}{2} \sum_{k=1}^{K} (\|W^{(k)}\|_F^2 + \|\hat{W}^{(k)}\|_F^2)$$

#### Loss function

$$\mathcal{L}_{mix} = \mathcal{L}_{2nd} + \alpha \mathcal{L}_{1st} + \nu \mathcal{L}_{reg}$$



### **Outline**

- □ Introduction to graph representation learning
  - Definition and application
  - Taxonomy
  - ☐ Representative work
- ☐ GraphGAN [AAAI 2018]
- ☐ GRL application
  - □ Recommender systems [WWW 2018]
  - ☐ Sentiment prediction [WSDM 2018]

### Motivation (1/3)

#### **Generative Model**

- ☐ Generative graph representation learning model assumes an **underlying** true connectivity distribution  $p_{true}(v|v_c)$  for each vertex  $v_c$ 
  - Similar to GMM and LDA
  - □ The edges can be viewed as observed samples generated by  $p_{true}(v|v_c)$
  - Vertex embeddings are learned by maximizing the likelihood of edges
  - E.g., DeepWalk (KDD 2014) and node2vec (KDD 2016)



Original graph



 $p_{true}(v|v_c)$ 

### Motivation (2/3)

#### **Discriminative Model**

- □ Discriminative graph representation learning model aim to learn a classifier for predicting the existence of edges directly
  - $\square$  Consider two vertices  $v_i$  and  $v_i$  jointly as features
  - $\square$  Predict the probability of an edge existing between them, i.e.,  $p(edge|v_i,v_i)$
  - E.g., SDNE (KDD 2016) and PPNE (DASFAA, 2017)



$$p(edge|v_i, v_j) = 0.8$$
$$p(edge|v_i, v_k) = 0.3$$

### Motivation (3/3)

#### G + D?

- Generative and discriminative models are two sides of the same coin
- □ LINE (WWW 2015) has tried to combine these two objectives
- ☐ Generative adversarial nets (GAN) have received a great deal of attention
  - GAN designs a game-theoretical minimax game to combine G and D
  - GAN achieves success in various applications:
    - ☐ image generation (Denton et al., NIPS 2015)
    - □ sequence generation (Yu et al., AAAI 2017)
    - ☐ dialogue generation (Li et al., arXiv 2017)
    - ☐ information retrieval (Wang et al., SIGIR 2017)
    - domain adaption (Zhang, Barzilay, and Jaakkola, arXiv 2017)

☐ We propose **GraphGAN**, a framework that unifies generative and discriminative thinking for graph representation learning

### The Minimax Game

- $\Box \mathcal{G} = (\mathcal{V}, \mathcal{E}), \ \mathcal{V} = \{v_1, ..., v_V\}, \ \mathcal{E} = \{e_{ij}\}_{i,j=1}^V$
- $\square \mathcal{N}(v_c)$ : set of neighbors of  $v_c$
- $\square$   $p_{true}(v_c)$ : underlying true connectivity distribution for  $v_c$
- ☐ The objective of GraphGAN is to learn the following two models:
  - $\Box$   $G(v|v_c;\theta_G)$  which tries to approximate  $p_{true}(v_c)$
  - $\square$   $D(v, v_c; \theta_D)$  which aims to discriminate the connectivity for the vertex pair  $(v, v_c)$
- ☐ The two-player minimax game:

$$\min_{\theta_{G}} \max_{\theta_{D}} V(G, D) = \sum_{c=1}^{V} \left( \mathbb{E}_{v \sim p_{\text{true}}(\cdot | v_{c})} \left[ \log D(v, v_{c}; \theta_{D}) \right] + \mathbb{E}_{v \sim G(\cdot | v_{c}; \theta_{G})} \left[ \log \left( 1 - D(v, v_{c}; \theta_{D}) \right) \right] \right) \tag{1}$$

## Implementation & Optimization of D

$$\min_{\theta_G} \max_{\theta_D} V(G, D) = \sum_{c=1}^{V} \left( \mathbb{E}_{v \sim p_{\text{true}}(\cdot | v_c)} \left[ \log D(v, v_c; \theta_D) \right] + \mathbb{E}_{v \sim G(\cdot | v_c; \theta_G)} \left[ \log \left( 1 - D(v, v_c; \theta_D) \right) \right] \right) \tag{1}$$

☐ Implementation of D:

$$D(v, v_c; \theta_D) = \sigma(\mathbf{d}_v^{\mathsf{T}} \mathbf{d}_{v_c}) = \frac{1}{1 + \exp(-\mathbf{d}_v^{\mathsf{T}} \mathbf{d}_{v_c})},$$
(2)

where  $\mathbf{d}_v$ ,  $\mathbf{d}_{v_c} \in \mathbb{R}^k$  are the k-dimensional vectors of v and  $v_c$  for D

□ Gradient of V(G, D) w.r.t  $\theta_D$ :

$$\nabla_{\theta_D} V(G, D) = \begin{cases} \nabla_{\mathbf{d}_v, \mathbf{d}_{v_c}} \log D(v, v_c; \theta_D), & \text{if } v \sim p_{\text{true}}; \\ \nabla_{\mathbf{d}_v, \mathbf{d}_{v_c}} \left( 1 - \log D(v, v_c; \theta_D) \right), & \text{if } v \sim G. \end{cases}$$
(3)

## Optimization of G

$$\min_{\theta_G} \max_{\theta_D} V(G, D) = \sum_{c=1}^{V} \left( \mathbb{E}_{v \sim p_{\text{true}}(\cdot | v_c)} \left[ \log D(v, v_c; \theta_D) \right] + \mathbb{E}_{v \sim G(\cdot | v_c; \theta_G)} \left[ \log \left( 1 - D(v, v_c; \theta_D) \right) \right] \right) \tag{1}$$

 $\square$  Gradient of V(G,D) w.r.t  $\theta_G$  (policy gradient):

$$\nabla_{\theta_{G}} V(G, D)$$

$$= \nabla_{\theta_{G}} \sum_{c=1}^{V} \mathbb{E}_{v \sim G(\cdot | v_{c}; \theta_{G})} \left[ \log \left( 1 - D(v, v_{c}; \theta_{D}) \right) \right]$$

$$= \sum_{c=1}^{V} \sum_{i=1}^{N} \nabla_{\theta_{G}} G(v_{i} | v_{c}; \theta_{G}) \log \left( 1 - D(v_{i}, v_{c}; \theta_{D}) \right)$$

$$= \sum_{c=1}^{V} \sum_{i=1}^{N} G(v_{i} | v_{c}; \theta_{G}) \nabla_{\theta_{G}} \log G(v_{i} | v_{c}; \theta_{G}) \log \left( 1 - D(v_{i}, v_{c}; \theta_{D}) \right)$$

$$= \sum_{c=1}^{V} \mathbb{E}_{v \sim G(\cdot | v_{c}; \theta_{G})} \left[ \nabla_{\theta_{G}} \log G(v | v_{c}; \theta_{G}) \log \left( 1 - D(v, v_{c}; \theta_{D}) \right) \right].$$

$$(4)$$

## **GraphGAN Framework**

$$\min_{\theta_G} \max_{\theta_D} V(G, D) = \sum_{c=1}^{V} \left( \mathbb{E}_{v \sim p_{\text{true}}(\cdot | v_c)} \left[ \log D(v, v_c; \theta_D) \right] + \mathbb{E}_{v \sim G(\cdot | v_c; \theta_G)} \left[ \log \left( 1 - D(v, v_c; \theta_D) \right) \right] \right) \tag{1}$$



## Implementation of G

- Softmax?
  - Computationally inefficient
  - Graph-structure-unaware
- ☐ Hierarchical softmax?
  - Graph-structure-unaware

$$G(v|v_c; \theta_G) = \frac{\exp(\mathbf{g}_v^{\top} \mathbf{g}_{v_c})}{\sum_{v \neq v_c} \exp(\mathbf{g}_v^{\top} \mathbf{g}_{v_c})}$$

where  $\mathbf{g}_v, \mathbf{g}_{v_c} \in \mathbb{R}^k$  are the k-dimensional vectors of v and  $v_c$  for G

$$p(w|w_I) = \prod_{j=1}^{L(w)-1} \sigma\left( [n(w, j+1) = \operatorname{ch}(n(w, j))] \cdot v'_{n(w, j)}^{\mathsf{T}} v_{w_I} \right)$$



- Negative sampling?
  - Not a valid probability distribution
  - graph-structure-unaware

$$\log \sigma(v'_{w_O}^{\top} v_{w_I}) + \sum_{i=1}^{k} \mathbb{E}_{w_i \sim P_n(w)} \left[ \log \sigma(-v'_{w_i}^{\top} v_{w_I}) \right]$$

## Graph Softmax (1/5)

#### **Objectives**

- ☐ The design of graph softmax should satisfy the following three properties:
  - **Normalized**: The generator should produce a valid probability distribution, i.e.,  $\sum_{v\neq v_c} G(v|v_c;\theta_G) = 1$
  - ☐ **Graph-structure-aware**: The generator should take advantage of the structural information of a graph
  - □ Computationally efficient: The computation of  $G(v|v_c;\theta_G)$  should only involve a small number of vertices in the graph

## Graph Softmax (2/5)

#### Design

- $\blacksquare$  Breadth First Search (BFS) on  $\mathcal{G}$  from every vertex  $v_c$ 
  - $lue{}$  **BFS-tree**  $T_c$  rooted at  $v_c$
- □ For a given vertex v and one of its neighbors  $v_i \in \mathcal{N}_c(v)$ , the **relevance probability** of  $v_i$  given v as

$$p_c(v_i|v) = \frac{\exp(\mathbf{g}_{v_i}^{\mathsf{T}} \mathbf{g}_v)}{\sum_{v_j \in \mathcal{N}_c(v)} \exp(\mathbf{g}_{v_j}^{\mathsf{T}} \mathbf{g}_v)},$$
 (6)

where  $\mathcal{N}_c(v)$  is the set of neighbors of v in  $T_c$ 

□ Graph softmax

$$G(v|v_c;\theta_G) \triangleq \left(\prod_{j=1}^m p_c(v_{r_j}|v_{r_{j-1}})\right) \cdot p_c(v_{r_{m-1}}|v_{r_m}),$$
 (7)

given the unique path from  $v_c$  to v in tree  $T_c$ :  $P_{v_c \to v} = (v_{r_0}, v_1, ..., v_{r_m})$ , where  $v_{r_0} = v_c$  and  $v_{r_0} = v$ 

## Graph Softmax (3/5)

#### Design

#### ☐ Graph softmax

$$G(v|v_c;\theta_G) \triangleq \left(\prod_{j=1}^{m} p_c(v_{r_j}|v_{r_{j-1}})\right) \cdot p_c(v_{r_{m-1}}|v_{r_m}), \tag{7}$$

given the unique path from  $v_c$  to v in tree  $T_c$ :  $P_{v_c \to v} = (v_{r_0}, v_1, \dots, v_{r_m})$ , where  $v_{r_0} = v_c$  and  $v_{r_0} = v$ 



## Graph Softmax (4/5)

#### **Properties**

- $\square \sum_{v \neq v_C} G(v|v_C; \theta_G) = 1$  in graph softmax
- $\square$  In graph softmax,  $G(v|v_c;\theta_G)$  decreases exponentially with the increase of the shortest distance between v and  $v_c$  in original graph G
- In graph softmax, calculation of  $G(v|v_c;\theta_G)$  depends on  $O(d \log V)$  vertices, where d is average degree of vertices and V is the number of vertices in graph G

## Graph Softmax (5/5)

#### **Generating Strategy**

#### **Algorithm 1** Online generating strategy for the generator

```
Input: BFS-tree T_c, representation vectors \{\mathbf{g}_i\}_{i\in\mathcal{V}}
Output: generated sample v_{gen}
 1: v_{pre} \leftarrow v_c, v_{cur} \leftarrow v_c;
 2: while true do
        Randomly select v_i proportionally to p_c(v_i|v_{cur}) in Eq.
        (6);
        if v_i = v_{pre} then
 5:
           v_{gen} \leftarrow v_{cur};
 6:
           return v_{qen}
 7:
        else
 8:
            v_{pre} \leftarrow v_{cur}, v_{cur} \leftarrow v_i;
        end if
10: end while
```



## **GraphGAN Algorithm**

#### Algorithm 2 GraphGAN framework

```
Input: dimension of embedding k, size of generating samples
    s, size of discriminating samples t
Output: generator G(v|v_c;\theta_G), discriminator D(v,v_c;\theta_D)
1: Initialize and pre-train G(v|v_c;\theta_G) and D(v,v_c;\theta_D);
 2: Construct BFS-tree T_c for all v_c \in \mathcal{V};
 3: while GraphGAN not converge do
      for G-steps do
         G(v|v_c;\theta_G) generates s vertices for each vertex v_c
 5:
         according to Algorithm 1;
         Update \theta_G according to Eq. (4), (6) and (7);
 6:
      end for
      for D-steps do
         Sample t positive vertices from ground truth and t
         negative vertices from G(v|v_c;\theta_G) for each vertex v_c;
         Update \theta_D according to Eq. (2) and (3);
10:
      end for
11:
12: end while
13: return G(v|v_c;\theta_G) and D(v,v_c;\theta_D)
```

### Experiments (1/3)

#### **Datasets**

- □ arXiv-AstroPh: 18,772 vertices and 198,110 edges
- □ arXiv-GrQc: 5,242 vertices and 14,496 edges
- □ BlogCatalog: 10,312 vertices, 333,982 edges and 39 labels
- ☐ Wikipedia: 4,777 vertices, 184,812 edges and 40 labels
- MovieLens-1M: 6,040 users and 3,706 movies

#### **Baselines**

- ☐ DeepWalk (KDD 2014)
- **□ LINE** (WWW 2015)
- □ Node2vec (KDD 2016)
- ☐ Struc2vec (KDD 2017)

## Experiments (2/3)

#### **Link Prediction**

#### ☐ Learning curves



Fig. 4: Learning curves of the generator and the discriminator of GraphGAN on arXiv-GrQc in link prediction.

#### Results

TABLE 1: Accuracy and Macro-F1 on arXiv-AstroPh and arXiv-GrQc in link prediction.

| Model     | arXiv-AstroPh |          | arXiv-GrQc |          |
|-----------|---------------|----------|------------|----------|
|           | Accuracy      | Macro-F1 | Accuracy   | Macro-F1 |
| DeepWalk  | 0.841         | 0.839    | 0.803      | 0.812    |
| LINE      | 0.820         | 0.814    | 0.764      | 0.761    |
| Node2vec  | 0.845         | 0.854    | 0.844      | 0.842    |
| Struc2vec | 0.821         | 0.810    | 0.780      | 0.776    |
| GraphGAN  | 0.855         | 0.859    | 0.849      | 0.853    |

### Experiments (3/3)

#### **Node Classification**

TABLE 2: Accuracy and Macro-F1 on BlogCatalog and Wikipedia in node classification.

| Model     | BlogCatalog |          | Wikipedia |          |
|-----------|-------------|----------|-----------|----------|
|           | Accuracy    | Macro-F1 | Accuracy  | Macro-F1 |
| DeepWalk  | 0.225       | 0.214    | 0.194     | 0.183    |
| LINE      | 0.205       | 0.192    | 0.175     | 0.164    |
| Node2vec  | 0.215       | 0.206    | 0.191     | 0.179    |
| Struc2vec | 0.228       | 0.216    | 0.211     | 0.190    |
| GraphGAN  | 0.232       | 0.221    | 0.213     | 0.194    |

#### Recommendation



Fig. 5: Precision@K and Recall@K on MovieLens-1M in recommendation.

### **Summary**

- We propose **GraphGAN**, a novel framework that unifies generative and discriminative thinking for graph representation learning
  - $\Box$  Generator  $G(v|v_c)$  tries to fit  $p_{true}(v|v_c)$  as much as possible
  - $\square$  Discriminator  $D(v, v_c)$  tries to tell whether an edge exists between v and  $v_c$
- ☐ G and D act as two players in a minimax game:
  - G tries to produce the most indistinguishable "fake" vertices under guidance provided by D
  - D tries to draw a clear line between the ground truth and "counterfeits" to avoid being fooled by G
- We propose graph softmax as the implementation of G
  - Graph softmax overcomes the limitations of softmax and hierarchical softmax
  - Graph softmax satisfies the properties of normalization, graph structure awareness and computational efficiency

1/10/2018 36

### **Outline**

- □ Introduction to graph representation learning
  - ☐ Definition and application
  - Taxonomy
  - ☐ Representative work
- ☐ GraphGAN [AAAI 2018]
- ☐ GRL application
  - □ Recommender systems [WWW 2018]
  - □ Sentiment prediction [WSDM 2018]

### **DKN (WWW 2018)**

#### □ DKN: Deep Knowledge-Aware Network for News Recommendation

- Learning knowledge graph representations by TransX
- A CNN framework for combining word embedding and entity embedding
- Attention-based CTR prediction





Fig. 1: Knowledge graph in news recommendation

Fig. 2: DKN framework

### **SHINE (WSDM 2018)**

## □ SHINE: Signed Heterogeneous Information Network Embedding for Sentiment Link Prediction

- Sign: positive/negative sentiment link
- Heterogeneity: sentiment network, social network, knowledge graph
- Auto-encoder based framework



Fig. 1: Signed heterogeneous networks in sentiment prediction



Fig. 2: Auto-encoder for sentiment network representation learning

### **SHINE (WSDM 2018)**

## □ SHINE: Signed Heterogeneous Information Network Embedding for Sentiment Link Prediction

- Sign: positive/negative sentiment link
- ☐ **Heterogeneity**: sentiment network, social network, knowledge graph
- Auto-encoder based framework



Fig. 3: SHINE framework

1/10/2018 40

## Q & A

### Thanks!

Visit <a href="https://hwwang55.github.io">https://hwwang55.github.io</a> for full papers, slides, code and more information