

Chapter 6: Recommender Systems

崔金华

电子邮箱: jhcui@hust.edu.cn

个人主页: https://csjhcui.github.io/

Example: Recommender System

□Customer X

- Published papers
- ➤ Saved papers in personal library

Google 学术搜索

□Customer X

> Recommend related papers

Another Example: Recommender System

□Customer X

- ➤ Buys Metallica(金属乐队) CD
- ➤Buys Megadeth(麦格德斯) CD

□Customer Y

- ➤ Does search on Metallica
- Recommender system suggests Megadeth from data collected about customer **X**

Recommendations

Examples:

. . .

From Scarcity to Abundance

- **■Shelf space is a scarce commodity for traditional retailers**
 - ➤ Also: TV networks, movie theaters,...
- Web enables near-zero-cost dissemination of information about products
 - > From scarcity to abundance
 - **▶Long tail phenomenon (长尾现象)**

The Long Tail

□The distinction between the physical and on-line worlds has been called the **long tail phenomenon (长尾现象)**.

- ➤ 纵坐标代表流行度(the number of times an item is chosen).
- 所有项按照流行度在横坐标上排序.
- 实体机构只列出红色竖线左边的流行项; 在线机构能提供包括流行项和尾部项在内 的全范围的项.

From Scarcity to Abundance

- ■Shelf space is a scarce commodity for traditional retailers
 - ➤ Also: TV networks, movie theaters,...
- ■Web enables near-zero-cost dissemination of information about products
 - > From scarcity to abundance
 - **▶Long tail phenomenon (长尾现象)**
- More choice necessitates better filters
 - > Recommendation engines
 - ➤ How Into Thin Air 《巅峰》made Touching the Void 《攀越冰峰》a bestseller: http://www.wired.com/wired/archive/12.10/tail.html

Types of Recommendations

Editorial and hand curated

- ➤ List of favorites
- ➤ Lists of "essential" items

□Simple aggregates

➤ Top 10, Most Popular, Recent Uploads

□ Tailored to individual users

➤ Amazon, Netflix, ...

Formal Model

- $\square X$ = set of Customers
- $\Box S$ = set of **Items**
- □Utility matrix (效用矩阵) *u. X* × *S* → *R*
 - ightharpoonup R = set of ratings
 - > R is a totally ordered set
 - >e.g., **0-5** stars, real number in [**0,1**]

Utility Matrix

	Avatar (阿凡达)	LOTR (指环王)	Matrix (黑客帝国)	Pirates (加勒比海盗)
Alice	1		2	
Bob		5		3
Carol	2		1	
David				4

Key Problems

- **□(1)** Gathering "known" ratings for matrix
 - ➤ How to collect the data in the utility matrix
- **□(2)** Extrapolate unknown ratings from the known ones
 - ➤ Mainly interested in high unknown ratings
 - We are not interested in knowing what you don't like but what you like
- **□(3)** Evaluating extrapolation methods
 - >How to measure success/performance of recommendation methods

(1) Gathering Ratings

■Explicit

- ➤ Ask people to rate items
- ➤ Doesn' t work well in practice people can' t be bothered

□Implicit

- ▶ Learn ratings from user actions
 - E.g., purchase implies high rating
- ➤ What about low ratings?
- Hybrid: both explicit and implicit

(2) Extrapolating Utilities

■Key problem: Utility matrix *U* is sparse

- Most people have not rated most items
- **≻**Cold start:
 - New items have no ratings
 - New users have no history

■Approaches to recommender systems:

- **▶1)** Content-based
- **▶2)** Collaborative
- **▶3)** Latent factor based

>.....