

Description

The VSM40N10 uses advanced trench technology and design to provide excellent $R_{DS(ON)}$ with low gate charge. It can be used in a wide variety of applications.

General Features

- $V_{DS} = 100V, I_D = 40A$ $R_{DS(ON)} < 17m\Omega @ V_{GS} = 10V$ (Typ:14.5m Ω)
- Special process technology for high ESD capability
- High density cell design for ultra low Rdson
- Fully characterized avalanche voltage and current
- Good stability and uniformity with high E_{AS}
- Excellent package for good heat dissipation

Application

- Power switching application
- Hard switched and high frequency circuits
- Uninterruptible power supply

TO-252

Schematic Diagram

Package Marking and Ordering Information

Device Marking	Device	Device Package	Reel Size	Tape width	Quantity
VSM40N10-T2	VSM40N10	TO-252	-	-	-

Absolute Maximum Ratings (T_C=25 ℃unless otherwise noted)

Parameter	Symbol	Limit	Unit	
Drain-Source Voltage	V _{DS}	100	V	
Gate-Source Voltage	V _G s	±20	V	
Drain Current-Continuous	I _D	40	А	
Drain Current-Continuous(T _C =100 °C)	I _D (100℃)	28	Α	
Pulsed Drain Current	I _{DM}	160	Α	
Maximum Power Dissipation	P _D	140	W	
Derating factor	-	0.94	W/℃	
Single pulse avalanche energy (Note 5)	E _{AS}	520	mJ	
Operating Junction and Storage Temperature Range	T_{J} , T_{STG}	-55 To 175	$^{\circ}$	

Shenzhen VSEEI Semiconductor Co., Ltd

Thermal Characteristic

Thermal Resistance, Junction-to-Case (Note 2)	R _{eJC}	1.07	°C/W	
---	------------------	------	------	--

Electrical Characteristics (T_C=25°C unless otherwise noted)

Parameter	Symbol	Condition	Min	Тур	Max	Unit
Off Characteristics	·					
Drain-Source Breakdown Voltage	BV _{DSS}	V _{GS} =0V I _D =250µA	100	110	-	V
Zero Gate Voltage Drain Current	I _{DSS}	V _{DS} =100V,V _{GS} =0V	-	-	1	μA
Gate-Body Leakage Current	I _{GSS}	V _{GS} =±20V,V _{DS} =0V	-	-	±100	nA
On Characteristics (Note 3)						
Gate Threshold Voltage	$V_{GS(th)}$	$V_{DS}=V_{GS}$, $I_{D}=250\mu A$	2	3	4	V
Drain-Source On-State Resistance	R _{DS(ON)}	V _{GS} =10V, I _D =28A	-	14.5	17	mΩ
Forward Transconductance	g FS	V _{DS} =25V,I _D =28A	32	-	-	S
Dynamic Characteristics (Note4)	<u> </u>					•
Input Capacitance	C_{lss}	V 00V/V 0V	-	3400	-	PF
Output Capacitance	C _{oss}	V _{DS} =30V,V _{GS} =0V,	-	290	-	PF
Reverse Transfer Capacitance	C_{rss}	F=1.0MHz	-	221	-	PF
Switching Characteristics (Note 4)	<u> </u>					•
Turn-on Delay Time	t _{d(on)}		-	15	-	nS
Turn-on Rise Time	t _r	VDD=30V,ID=2A,RL=15Ω,	-	11	-	nS
Turn-Off Delay Time	t _{d(off)}	RG=2.5Ω,VGS=10V	-	52	-	nS
Turn-Off Fall Time	t _f		-	13	-	nS
Total Gate Charge	Qg		-	94	-	nC
Gate-Source Charge	Q _{gs}	ID=30A,VDD=30V,VGS=10V	-	16	-	nC
Gate-Drain Charge	Q_{gd}		-	24	-	nC
Drain-Source Diode Characteristics	-					
Diode Forward Voltage (Note 3)	V _{SD}	V _{GS} =0V,I _S =28A	-	0.85	1.2	V
Diode Forward Current (Note 2)	Is		-	-	40	А
Reverse Recovery Time	t _{rr}	TJ = 25°C, IF = 28A	-	33		nS
Reverse Recovery Charge	Qrr	di/dt = 100A/µs ^(Note3)	-	54		nC
Forward Turn-On Time	t _{on}	Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD)				

Notes:

- 1. Repetitive Rating: Pulse width limited by maximum junction temperature.
- 2. Surface Mounted on FR4 Board, t ≤ 10 sec.
- 3. Pulse Test: Pulse Width ≤ 300µs, Duty Cycle ≤ 2%.
- **4.** Guaranteed by design, not subject to production
- **5.** EAS condition: Tj=25 $^{\circ}$ C,V_{DD}=50V,V_G=10V,L=0.5mH,Rg=25 Ω

Test Circuit

1) E_{AS} test Circuit

2) Gate charge test Circuit

3) Switch Time Test Circuit

Typical Electrical and Thermal Characteristics (Curves)

Figure 1 Output Characteristics

Figure 2 Transfer Characteristics

Figure 3 Rdson- Drain Current

Figure 4 Rdson-JunctionTemperature

Figure 5 Gate Charge

Figure 6 Source- Drain Diode Forward

Figure 8 Safe Operation Area

Figure 9 BV_{DSS} vs Junction Temperature

Figure 10 V_{GS(th)} vs Junction Temperature

Figure 11 Normalized Maximum Transient Thermal Impedance