	DATE: 17
	A. Maths. 7(B)
	Unit D Chapler.
1	Définite 9ntegrals.
	(1712-यत समाकाला)
Proper	lies of Definite Integrals.
$-\int_a^b$	for de = for for de
-a	$f(x)dx = -\int_{b}^{a} f(x)dx$
	$f(x)dx = \int_{a}^{c} f(x) dx + \int_{c}^{b} f(x) dx$ (acccb)
4) Ja	$f(x)dx = \int_a^b f(a+b-x)dx$
\mathcal{O}	$f(x) dx = \int_{0}^{a} f(a-x) dx$
1	for $dn = 2 \int_0^a f(x) dx$, for is even function
Ø ∫ a +	f(x) dx = 0, $f(x)$ is odd function.
0	$f(x) dx = 2 \int_0^a f(x) dx$, $f(x) = f(x)$
(9) jna	$f(x)dx = n \int_{0}^{a} f(x)dx$, $f(na-x) = f(x)$

 $\int_0^a \frac{dx}{x + \sqrt{a^2 - x^2}} = \frac{7}{4}$ a dn $x + Ja^2 - x^2$ $\kappa = a \sin \theta$ $\kappa = 0, 0 = 0$ $dn = a ceso \cdot do$ $x = a, o = \frac{3}{2}$ $\int_{0}^{\pi} \frac{a \cos \theta \cdot d\theta}{a \sin \theta + \int a^{2} - a^{2} \sin^{2} \theta}$ $= \int_{0}^{4} \frac{1}{2} a \cos \theta \cdot d\theta$ $= \int_{0}^{4} \frac{1}{2} a \cos \theta \cdot d\theta$ $-\int_{0}^{\pi/2} \frac{\cos \theta \cdot d\theta}{\sin \theta + \cos \theta}$ $\int_{0}^{\pi} \frac{Ces(\tilde{\gamma}_{2}-0)}{Sin(\tilde{\gamma}_{2}-0)+Ces(\tilde{\gamma}_{2}-0)}$ $= \int_{0}^{\pi} \frac{\sin \theta \cdot d\theta}{\cos \theta + \sin \theta}$ $2I = \int_{0}^{\sqrt{N_2}} \frac{\cos \theta}{\sin \theta + \cosh \theta} d\theta + \int_{0}^{\sqrt{N_2}} \frac{\sin \theta}{\cos \theta + \sin \theta} d\theta$ $= \int_0^{\pi/2} \frac{\cos 0 + 8in0}{8in0 + 600} d0$ 1.d0 [0] 7/2

