SSD: single shot detector

Feng Wang

AIRD, Coretronic Co.

May 03, 2019

The slides and a list of references can be found from https://github.com/fwcore/object-detection

Outlines

- > Review a few key concepts in object detection
- > SSD (arXiv: 1512.02325)
 - > design
 - > loss function
 - > training

Common tasks on images

Image Classification

Classify an image based on the dominant object inside it.

datasets: MNIST, CIFAR,

ImageNet

Object Localization

Predict the image region that contains the dominant object. Then image classification can be used to recognize object in the region

datasets: ImageNet

Object Recognition

Localize and classify all objects appearing in the image. This task typically includes: proposing regions then classify the object inside them.

datasets: PASCAL, COCO

Semantic Segmentation

Label each pixel of an image by the object class that it belongs to, such as human, sheep, and grass in the example.

datasets: PASCAL, COCO

Instance Segmentation

Label each pixel of an image by the object class and object instance that it belongs to.

datasets: PASCAL, COCO

Keypoint Detection

Detect locations of a set of predefined keypoints of an object, such as keypoints in a human body, or a human face.

datasets: COCO

Bounding box proposal

Region of interest, region proposal, box proposal

Ground truth

Proposed bounding box

5 parameters

- > w, h
- > x, y
- confidence score: how likely it contains an in a accuracy of the box

SSD predicts 4 parameters + class score for each box

How good: Intersection over Union (IOU)

Outlines

- > Review a few key concepts in object detection
- > SSD (arXiv: 1512.02325) focusing on the difference with YOLO
 - design
 - > loss function
 - > training

SSD's relation with other detectors

SSD: single shot detector

Single shot (Look once)

Results

- > x, y, w, h
- contain ... object ?
- box accuracy
- class score:
 belong to a class

use CNN

use regression with convolution

CNN backbone (base network)

Bounding box

- > YOLO uses grid on raw images.
- ➤ SSD takes advantage of the feature map, which is a "grid" coarse-grained from the raw images.

(a) Image with GT boxes

(c) 4×4 feature map

Parameters for one box

- > x, y, w, h
- class score:belong to a class

Number of boxes in feature map (FM)

(4+class)*(FM size)

Multiscale bounding box

Each layer is targeted to the given scale

$$> s_k = s_{\min} + \frac{s_{\max} - s_{\min}}{m-1} (k-1), \quad k \in [1, m]$$

$$\Rightarrow w_k^a = s_k \sqrt{a_r}, \qquad h_k^a = s_k / \sqrt{a_r}$$

- $> a_r$: aspect ratio of default box
- default box center = grid center
- box is learnable

Rules for multiscale bounding box

(a) Image with GT boxes

(b) 8×8 feature map (c) 4×4 feature map

training

- > IoU > 0.5 with ground truth
- > many boxes -> one ground truth

inference

- 1. filter out confidence < 0.01
- non-maximum suppression

LOSS function (before rescaled by the number of matched boxes)

$$L_{loc}(x, l, g) = \sum_{i \in Pos}^{N} \sum_{m \in \{cx, cy, w, h\}} x_{ij}^{k} \operatorname{smooth}_{L1}(l_{i}^{m} - \hat{g}_{j}^{m})$$

$$\hat{g}_{j}^{cx} = (g_{j}^{cx} - d_{i}^{cx})/d_{i}^{w} \qquad \hat{g}_{j}^{cy} = (g_{j}^{cy} - d_{i}^{cy})/d_{i}^{h}$$

$$\hat{g}_{j}^{w} = \log\left(\frac{g_{j}^{w}}{d_{i}^{w}}\right) \qquad \hat{g}_{j}^{h} = \log\left(\frac{g_{j}^{h}}{d_{i}^{h}}\right)$$

1.5

1.0

0.5

$$L_{conf}(x,c) = -\sum_{i \in Pos}^{N} x_{ij}^{p} log(\hat{c}_{i}^{p}) - \sum_{i \in Neg}^{N} log(\hat{c}_{i}^{0})$$

$$\hat{c}_i^p = \frac{\exp(c_i^p)}{\sum_p \exp(c_i^p)}$$

hard negative mining

- 1. sort by c^0
- 2. add top ones to loss function
- 3. neg : pos <= 3:1

Training

- ➤ Mutli-resolution input is not necessary.
- > Low-res (300x300, 512x512) is enough.

Faster R-CNN: 1000x600

- Data augmentation is very useful.
 - > zoom in: image patches with size [0.1, 1] and aspect ratio [0.5, 2]
 - > zoom out: randomly place the image on a canvas of 16x of the original image size filled with mean values before random crop. (It increases small object accuracy.

 Maybe we can replace it by randomly cropping a high-res image.)
 - horizontal flip
 - photo-metric distortion

Performance

Method	mAP	FPS	batch size	# Boxes	Input resolution
Faster R-CNN (VGG16)	73.2	7	1	~ 6000	$\sim 1000 \times 600$
Fast YOLO	52.7	155	1	98	448×448
YOLO (VGG16)	66.4	21	1	98	448×448
SSD300	74.3	46	1	8732	300×300
SSD512	76.8	19	1	24564	512×512
SSD300	74.3	59	8	8732	300×300
SSD512	76.8	22	8	24564	512×512

From SSD paper

arXiv: 1512.02325

From YOLOv2 paper

arXiv: 1612.08242