MAT0501 E MAT5734 - ANEIS E MÓDULOS

Prof: Juan Carlos Gutiérrez Fernández Lista 2 (2018)

A seguir, A denotará um anel com 1.

1. Seja M um A-módulo e X um subconjunto de M. Definimos o anulador de X por

$$ann(X) = \{a \in A : ax = 0 \text{ para todo } x \in X\}.$$

Mostre que ann (X) é um ideal à esquerda de A e quando X é um submódulo de M, então é um ideal (bilateral) de A.

- 2. Determine todos os submódulos de \mathbb{Z}_{15} (como \mathbb{Z} -módulo). Determine o anulador de cada elemento de \mathbb{Z}_{15} e o anulador de \mathbb{Z}_{15} .
- 3. Seja $M \neq 0$ um \mathbb{Z} -módulo finito tal que o conjunto dos seus submódulos é totalmente ordenado por inclusão. Prove que existe um primo p, tal que a ordem de M é uma potência de p.
- 4. Seja D um domínio de integridade e $x \in D$ com $x \neq 0$. Mostre que $D \cong Dx$ como D-módulos.
- 5. Mostre que $\mathbb Q$ não é um $\mathbb Z$ -módulo finitamente gerado.
- 6. Mostre que \mathbb{Q} não é um \mathbb{Z} -módulo livre.
- 7. Se M, N são A-módulos, então o conjunto $\operatorname{Hom}_R(M, N)$ de todos os homomorfismos de A-módulos de M em N é um grupo abeliano respeito da operação "soma de homomorfismos". Provar que $\operatorname{Hom}_A(M, M)$ é um anel, onde o produto é a composição de aplicações. Provar que M é um $\operatorname{Hom}_A(M, M)$ -módulo à esquerda em relação à ação obvia de $\operatorname{Hom}_A(M, M)$ em M,

$$f \cdot x = f(x)$$
, para todo $f \in \text{Hom}_A(M, M)$, e $x \in M$.

- 8. Determinar $\operatorname{Hom}(\mathbb{Z}, \mathbb{Z}_n)$ e $\operatorname{Hom}(\mathbb{Z}_n, \mathbb{Z})$, com n > 0 como \mathbb{Z} -módulos.
- 9. Provar que para todo A-módulo M, temos $\operatorname{Hom}_A(A, M) \cong (M, +, 0)$.
- 10. Seja M um A-módulo. Seja $x \longrightarrow ax$ o endomorfismo do grupo M definido por um elemento fixo a de A. Este endomorfismo pertence a $\operatorname{End}_A(M)$?
- 11. Um A-módulo M é simples (ou irredutivel) se $M \neq 0$ e os únicos submódulos de M são 0 e M. Seja $f: M \longrightarrow N$ um homomorfismo não nulo de A-módulos. Mostre que se M é simples então f é injetora e se N é simples, então f é sobrejetora.
- 12. Prove o Lema de Schur: Se M e N são módulos simples, então qualquer homomorfismo de M em N não nulo é um isomorfismo. Em particular, o anel de endomorfismos de um módulo simples é um anel com divisão.

- 13. A reciproca do lema é verdadeira? Isto é, se $\operatorname{End}_A(M)$ é um anel de divisão, então necessariamente M é simples?
- 14. Provar que um A-módulo M é simples se e somente se $M\cong A/I$ onde I é um ideal à esquerda maximal de A.
- 15. Sejam M, M_1, \ldots, M_n uma família de A-módulos. Provar que $M \cong M_1 \oplus \cdots \oplus M_n$ se e somente se para cada $i \in \{1, 2, \ldots, n\}$, existe um homomorfismo de A-módulos $\varphi_i \colon M \longrightarrow M$ tal que $\operatorname{Im}(\varphi_i) \cong M_i, \ \varphi_i \varphi_j = 0$ para $i \neq j$ e $\varphi_1 + \varphi_2 + \cdots + \varphi_n = I_M$.
- 16. Seja $0 \longrightarrow M' \xrightarrow{f} N \xrightarrow{g} M'' \longrightarrow 0$ uma sequência exata curta de A-módulos. Provar que se M' e M'' são finitamente gerados, então N é finitamente gerado.
- 17. Considerar o seguinte diagrama comutativo de A-módulos:

$$\begin{array}{c}
M \xrightarrow{f} N \\
\downarrow g & \downarrow h \\
M' \xrightarrow{f'} N'
\end{array}$$

Provar que g envia Ker f em Ker f' e que h envia Im f em Im f'. Consequentemente, g e h determinam homomorfismos,

$$g_1 \colon \operatorname{Ker} f \longrightarrow \operatorname{Ker} f', \qquad g_2 \colon \operatorname{Coim} f \longrightarrow \operatorname{Coim} f'$$

 $h_1 \colon \operatorname{Im} f \longrightarrow \operatorname{Im} f', \qquad h_2 \colon \operatorname{Coker} f \longrightarrow \operatorname{Coker} f'.$

18. Se considera o seguinte diagrama comutativo de A-módulos com filas exatas

$$M \xrightarrow{f} N \xrightarrow{g} T$$

$$\downarrow^{\alpha} \qquad \downarrow^{\beta} \qquad \downarrow^{\gamma}$$

$$M' \xrightarrow{f'} N' \xrightarrow{g'} T'$$

Provar que f e g induzem homomorfismos $\operatorname{Ker} \alpha \longrightarrow \operatorname{Ker} \beta$ e $\operatorname{Ker} \beta \longrightarrow \operatorname{Ker} \gamma$ respetivamente. Provar que f' e g' induzem homomorfismos $\operatorname{Coker} \alpha \longrightarrow \operatorname{Coker} \beta$ e $\operatorname{Coker} \beta \longrightarrow \operatorname{Coker} \gamma$. Além do mais, se f' monomorfismo, então sequência $\operatorname{Ker} \alpha \longrightarrow \operatorname{Ker} \beta \longrightarrow \operatorname{Ker} \gamma$ é exata e se g é epimorfismo, então é exata a sequência $\operatorname{Coker} \alpha \longrightarrow \operatorname{Coker} \beta \longrightarrow \operatorname{Coker} \gamma$.

19. Provar que se F é um A-módulo livre, para qualquer diagrama de A-módulos com linha exata da forma

$$\begin{array}{c}
F \\
\downarrow h \\
M \xrightarrow{g} N \xrightarrow{} 0
\end{array}$$

existe um homomorfismo $\varphi \colon F \longrightarrow M$, tal que $g\varphi = h$.

20. Provar que para todo A-módulo livre F e toda sequência exata de A-módulos

$$0 \longrightarrow M \xrightarrow{f} N \xrightarrow{g} T \longrightarrow 0,$$

a sequência

$$0 \longrightarrow \operatorname{Hom}(F,M) \xrightarrow{f^*} \operatorname{Hom}(F,N) \xrightarrow{g^*} \operatorname{Hom}(F,T) \longrightarrow 0$$

é exata, onde f^* e g^* são definidas por $f^*(\varphi) = f \circ \varphi$ e $g^*(\varphi) = g \circ \varphi$.

21. Provar que se f é um endomorfismo suprajetivo de A^n , então f é bijetora. Podemos também concluir que f é necessariamente bijetora se assumir que f é um endomorfismo de R^n injetor?