

Física

Licenciatura em Engenharia Informática

Susana Sério

Aula 05

Forças de Atrito

Quando um corpo está em movimento assente numa superfície ou num meio viscoso, surge uma força de resistência ao movimento;

Esta força resulta das interacções do corpo com o que o rodeia;

A esta força dá-se o nome de *força de atrito*.

Forças de Atrito entre duas superfícies em contacto

O módulo da força de atrito é proporcional ao módulo da força normal:

$$f_{\rm e} \le \mu_{\rm e} \, n$$
 e $f_{\rm c} = \mu_{\rm c} \, n$

Estas equações não são vectoriais, porque relacionam apenas os módulos das forças.

A força de **atrito estático**, $f_{\rm e}$, que ocorre *quando não há movimento relativo* do corpo em relação ao meio que o rodeia é, em geral, maior, em módulo, do que a **força de atrito cinético**, $f_{\rm c}$, que ocorre *quando há movimento relativo*;

O coeficiente de atrito, μ , depende das superfícies em contacto.

Forças de Atrito

- ✓ A força de atrito tem a direcção do movimento e o sentido oposto;
- ✓ É paralela às superfícies em contacto;
- ✓ Os coeficientes de atrito são independentes das áreas de contacto.

Atrito Estático

A força de atrito estático actua de forma a impedir que ocorra o movimento;

Se o módulo de \vec{f} diminui, o módulo de $\vec{f}_{\rm e}$ diminui;

Se o módulo de \vec{F} aumenta, o módulo de $\vec{f}_{\rm e}$ aumenta, até atingir um valor máximo:

$$f_{\rm e \, max} = \mu_{\rm e} \, n$$

De uma forma geral $f_e \le \mu_e n$. A igualdade ocorre quando o movimento relativo está na iminência de iniciar-se.

Atrito cinético

A força de atrito cinético actua quando o corpo está em movimento;

Ainda que μ_c possa, em geral, variar com o módulo da velocidade, vamos desprezar essas variações e considerar:

$$f_{\rm c} = \mu_{\rm c} n$$

Alguns coeficientes de Atrito

Coeficientes de atrito		
	μ_{e}	μ_{c}
Aço com aço	0.74	0.57
Alumínio com aço	0.61	0.47
Cobre com aço	0.53	0.36
Borracha com cimento	1.0	0.8
Madeira com madeira	0.25-0.5	0.2
Vidro com vidro	0.94	0.4
Madeira encerada com neve húmida	0.14	0.1
Madeira encerada com neve seca	-	0.04
Metal com metal (lubrificado)	0.15	0.06
Gelo com gelo	0.1	0.03
Teflon com teflon	0.04	0.04
Juntas sinoviais no corpo humano	0.01	0.003

Todos os valores são aproximados.

Em alguns casos, o coeficiente de atrito pode ser superior a 1.0

Movimento com atrito

Origem da força de atrito?

Não deveria depender da área

de contacto?

Forças intermoleculares superficiais

Depende da área de contacto real

À medida que N aumenta, aumenta a superfície de contacto.

Exemplo de uma superfície real vista com microscópio de forças atómicas

O Atrito em Problemas de Dinâmica

 \checkmark O atrito é uma força, consequentemente é incluído no somatório das forças, $\sum \vec{F}$, que surge na aplicação das leis de Newton;

✓ As regras do atrito permitem-nos identificar a direcção, sentido e módulo das forças de atrito.

O bloco está a escorregar ao longo do plano inclinado, consequentemente a direcção da força de atrito é paralela ao plano e o sentido é para cima;

Esta montagem pode ser utilizada para determinar experimentalmente o coeficiente de atrito:

$$\mu$$
 = tan θ

Para obter μ_e , utiliza-se o ângulo em que o escorregamento se inicia;

Para obter μ_c , utiliza-se o ângulo segundo o qual o bloco escorrega com velocidade constante.

- 1) Desenhamos o diagrama das forças aplicadas ao bloco;
- 2) Aplicamos a 2.ª lei de Newton ao bloco:

$$\vec{f}_{c} + \vec{n} + m\vec{g} = m\vec{a}$$

- 3) Escolhemos o sistema de eixos (por exemplo, o da figura);
- 4) Escrevemos as equações escalares correspondentes às componentes, no sistema de eixos escolhido, dos vectores que surgem na equação anterior:

$$x: -f_c + mg \sin \theta = ma$$

 $y: n - mg \cos \theta = 0$

5) Acrescentamos a equação que relaciona o módulo da força de atrito com o módulo da força (normal ao plano inclinado):

$$f_{\rm c} = \mu_{\rm c} n$$

- 6) Resolvemos o sistema de três equações a três incógnitas para obter o módulo da aceleração: $a = -\frac{f_c}{m} + g \sin \theta = -\mu_c g \cos \theta + g \sin \theta = g(\sin \theta \mu_c \cos \theta)$
- 7) Como a direcção e sentido da aceleração são os do eixo dos x, a aceleração do bloco é $\vec{a} = g(\sin\theta \mu_c\cos\theta)\vec{i}$

Desenhamos o diagrama das forças aplicadas ao corpo, incluindo a força de atrito cinético:

O sentido é oposto ao do movimento;

A direcção é paralela às superfícies em contacto.

 $\vec{f}_{
m c}$ Movimento $\vec{f}_{
m c}$

Resolvemos o problema da forma habitual para a aplicação das leis de Newton.

A força de atrito opõe-se ao movimento;

Desenhamos o diagrama de forças;

Aplicamos as leis de Newton como em qualquer outro problema.

- ✓ A força de atrito actua apenas no corpo que está em contacto com outra superfície;
- ✓ Isolamos os corpos;
- ✓ Desenhamos os diagramas de forças;
- ✓ Aplicamos as leis de Newton como em qualquer outro problema com muitos corpos.