```
In [115]:

#DUDDUKURI SAIKIRAN

#21BCE9166

#ASSIGNMENT-NO: 3

#Perform the Data preprocessing on Titanic Dataset
```

1. Import the necessary libraries:

```
In [3]:
    import numpy as np
    import pandas as pd
    import matplotlib.pyplot as plt
    import seaborn as sns
```

2. Import the dataset:

```
In [4]: df = pd.read_csv("Titanic.csv")
```

```
In [5]: print(df)
```

0

PassengerId Survived Pclass

1

0

3

```
2
1
                           1
                                    1
2
                3
                           1
                                    3
3
                4
                           1
                                    1
4
                5
                           0
                                    3
. .
              . . .
                           0
                                    2
886
              887
887
              888
                           1
                                    1
888
              889
                                    3
889
              890
                                    1
                           1
890
              891
                           0
                                    3
                                                       Name
                                                                 Sex
                                                                       Age
                                                                             SibSp
0
                                  Braund, Mr. Owen Harris
                                                               male
                                                                      22.0
                                                                                 1
1
     Cumings, Mrs. John Bradley (Florence Briggs Th...
                                                             female
                                                                      38.0
                                                                                 1
2
                                   Heikkinen, Miss. Laina
                                                             female
                                                                      26.0
                                                                                 0
3
          Futrelle, Mrs. Jacques Heath (Lily May Peel)
                                                             female
                                                                      35.0
                                                                                 1
4
                                 Allen, Mr. William Henry
                                                               male
                                                                      35.0
                                                                                 0
. .
                                                                 . . .
                                                                       . . .
886
                                    Montvila, Rev. Juozas
                                                                      27.0
                                                                                 0
                                                               male
                            Graham, Miss. Margaret Edith
887
                                                                      19.0
                                                             female
                                                                                 0
               Johnston, Miss. Catherine Helen "Carrie"
888
                                                             female
                                                                       NaN
                                                                                 1
889
                                    Behr, Mr. Karl Howell
                                                               male
                                                                      26.0
                                                                                 0
890
                                      Dooley, Mr. Patrick
                                                               male 32.0
                                                                                 0
                        Ticket
     Parch
                                    Fare Cabin Embarked
0
         0
                    A/5 21171
                                 7.2500
                                           NaN
                                                        S
1
          0
                     PC 17599
                                 71.2833
                                            C85
                                                        С
2
                                 7.9250
          0
             STON/02. 3101282
                                            NaN
                                                        S
3
          0
                        113803
                                 53.1000
                                           C123
                                                        S
4
          0
                        373450
                                  8.0500
                                            NaN
                                                        S
                                            . . .
. .
                           . . .
886
          0
                        211536
                                 13.0000
                                            NaN
                                                        S
887
          0
                        112053
                                 30.0000
                                            B42
                                                        S
888
          2
                   W./C. 6607
                                 23.4500
                                            NaN
                                                        S
889
          0
                        111369
                                 30.0000
                                           C148
                                                        С
890
                        370376
                                 7.7500
                                           NaN
                                                        Q
```

[891 rows x 12 columns]

```
In [10]: #no.of rows and columns df.shape
```

Out[10]: (891, 12)

In [9]: #getting mean, median, percentiles count, std, min and of dataset using descibe() function
df.describe()

Out[9]:

	PassengerId	Survived	Pclass	Age	SibSp	Parch	Fare
count	891.000000	891.000000	891.000000	714.000000	891.000000	891.000000	891.000000
mean	446.000000	0.383838	2.308642	29.699118	0.523008	0.381594	32.204208
std	257.353842	0.486592	0.836071	14.526497	1.102743	0.806057	49.693429
min	1.000000	0.000000	1.000000	0.420000	0.000000	0.000000	0.000000
25%	223.500000	0.000000	2.000000	20.125000	0.000000	0.000000	7.910400
50%	446.000000	0.000000	3.000000	28.000000	0.000000	0.000000	14.454200
75%	668.500000	1.000000	3.000000	38.000000	1.000000	0.000000	31.000000
max	891.000000	1.000000	3.000000	80.000000	8.000000	6.000000	512.329200

In [6]: #getting first five rows
df.head()

Out[6]:

	PassengerId	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Cabin	Embarked
0	1	0	3	Braund, Mr. Owen Harris	male	22.0	1	0	A/5 21171	7.2500	NaN	S
1	2	1	1	Cumings, Mrs. John Bradley (Florence Briggs Th	female	38.0	1	0	PC 17599	71.2833	C85	С
2	3	1	3	Heikkinen, Miss. Laina	female	26.0	0	0	STON/O2. 3101282	7.9250	NaN	S
3	4	1	1	Futrelle, Mrs. Jacques Heath (Lily May Peel)	female	35.0	1	0	113803	53.1000	C123	S
4	5	0	3	Allen, Mr. William Henry	male	35.0	0	0	373450	8.0500	NaN	S

In [7]: #getting last five rows df.tail()

Out[7]:

	Passengerld	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Cabin	Embarked
886	887	0	2	Montvila, Rev. Juozas	male	27.0	0	0	211536	13.00	NaN	S
887	888	1	1	Graham, Miss. Margaret Edith	female	19.0	0	0	112053	30.00	B42	S
888	889	0	3	Johnston, Miss. Catherine Helen "Carrie"	female	NaN	1	2	W./C. 6607	23.45	NaN	S
889	890	1	1	Behr, Mr. Karl Howell	male	26.0	0	0	111369	30.00	C148	С
890	891	0	3	Dooley, Mr. Patrick	male	32.0	0	0	370376	7.75	NaN	Q

```
In [8]:
        #info of the datset
        df.info()
        <class 'pandas.core.frame.DataFrame'>
        RangeIndex: 891 entries, 0 to 890
        Data columns (total 12 columns):
             Column
                         Non-Null Count Dtype
                          -----
         0
             PassengerId 891 non-null
                                         int64
         1
             Survived
                          891 non-null
                                         int64
             Pclass
                          891 non-null
                                         int64
         3
                          891 non-null
            Name
                                         object
                         891 non-null
                                         object
            Sex
         5
                         714 non-null
                                         float64
            Age
                          891 non-null
         6
             SibSp
                                         int64
         7
             Parch
                         891 non-null
                                         int64
            Ticket
                         891 non-null
                                         object
         9
             Fare
                          891 non-null
                                         float64
         10 Cabin
                          204 non-null
                                         object
         11 Embarked
                          889 non-null
                                         object
        dtypes: float64(2), int64(5), object(5)
        memory usage: 83.7+ KB
```

3. Checking for Null values:

```
In [11]: df.isnull().any()
Out[11]: PassengerId
                         False
         Survived
                         False
         Pclass
                         False
         Name
                         False
         Sex
                         False
                          True
         Age
         SibSp
                         False
         Parch
                         False
         Ticket
                         False
                         False
         Fare
         Cabin
                          True
         Embarked
                          True
         dtype: bool
In [11]: #here there are null values in the column cabin, Age ans Embarked so we need to handle the
In [12]: #lets check the sum of null values
In [12]: df.isnull().sum()
Out[12]: PassengerId
                           0
         Survived
                           0
         Pclass
                           0
         Name
                           0
         Sex
                           0
                         177
         Age
         SibSp
                           0
         Parch
                           0
         Ticket
                           0
         Fare
                           0
         Cabin
                         687
         Embarked
                           2
         dtype: int64
```

```
In [15]: #there are 177 null values in Age column
         #here are 687 null values in Cabin column
         #here are 2 null values in Embarked column
In [16]: #lets remove the null values in Age column
         #Age column is having only numerical data so we can replace null values of age column wi
In [13]: mean1 = df["Age"].mean()
In [14]: mean1
Out[14]: 29.69911764705882
In [15]: df["Age"]=df["Age"].fillna(mean1)
In [16]: df["Age"]
Out[16]: 0
                22.000000
                38.000000
         1
         2
                26.000000
                35.000000
         3
         4
                35.000000
         886
                27.000000
         887
                19.000000
         888
                29.699118
         889
                26.000000
         890
                32.000000
         Name: Age, Length: 891, dtype: float64
In [20]: #we have replaced the null values of age column with mean of age column
In [21]: #lets remove the null values in Cabin column
         #Cabin column is having only categorical data so we can replace null values of Cabin col
In [17]: mode1 = df["Cabin"].mode()
In [18]: mode1
Out[18]: 0
                  B96 B98
         1
              C23 C25 C27
         2
                       G6
         dtype: object
In [19]: df["Cabin"] = df["Cabin"].fillna(mode1[2])
In [20]: df["Cabin"]
Out[20]: 0
                  G6
                 C85
         1
         2
                  G6
                C123
         3
                  G6
         886
                  G6
         887
                 B42
         888
                  G6
         889
                C148
         890
         Name: Cabin, Length: 891, dtype: object
```

```
In [21]: #lets remove the null values in Embarked column
         #Embarked column is having only categorical data so we can replace null values of Embark
In [22]: mode2 = df["Embarked"].mode()
In [23]: mode2
Out[23]: 0
              S
         dtype: object
In [24]: df["Embarked"] = df["Embarked"].fillna(mode2[0])
In [25]: df["Embarked"]
Out[25]: 0
                S
         1
                С
         2
                S
         3
                S
         4
                S
                . .
         886
                S
         887
                S
         888
                S
                С
         889
         890
                Q
         Name: Embarked, Length: 891, dtype: object
In [26]: #Now lets check if there are null values are not
In [27]: df.isnull().any()
Out[27]: PassengerId
                         False
         Survived
                         False
         Pclass
                         False
         Name
                         False
         Sex
                         False
                         False
         Age
         SibSp
                         False
         Parch
                         False
         Ticket
                         False
         Fare
                         False
         Cabin
                         False
         Embarked
                         False
         dtype: bool
In [28]: df.isnull().sum()
Out[28]: PassengerId
         Survived
                         0
         Pclass
                         0
         Name
                         0
                         0
         Sex
                         0
         Age
         SibSp
         Parch
                         0
         Ticket
                         0
         Fare
                         0
         Cabin
                         0
         Embarked
         dtype: int64
```

In [29]: #so we have removed the null values

4. Data Visualization:

```
In [30]: plt.scatter(x=df["Age"],y=df["Fare"])
```

Out[30]: <matplotlib.collections.PathCollection at 0x1264a64f0>


```
In [31]: plt.scatter(x=df["Age"],y=df["Ticket"])
```

Out[31]: <matplotlib.collections.PathCollection at 0x1265d5a30>


```
In [32]: #lets us observe the correlation by drawing heat map
```

In [33]: cor = df.corr()

In [34]: plt.figure(figsize=(10,10))
sns.heatmap(cor,annot=True)

Out[34]: <AxesSubplot:>

5. Outlier Detection:

In [35]: #in order to know whether there are outliers or not we have to draw the box plot #lets us draw the boxplot

```
In [36]: sns.boxplot(df["Age"])
```

/opt/anaconda3/lib/python3.9/site-packages/seaborn/_decorators.py:36: FutureWarning: P
ass the following variable as a keyword arg: x. From version 0.12, the only valid posi
tional argument will be `data`, and passing other arguments without an explicit keywor
d will result in an error or misinterpretation.
 warnings.warn(

Out[36]: <AxesSubplot:xlabel='Age'>


```
In [37]: #we have outliers so lets remove the outliers
In [38]: A_q1 = df.Age.quantile(0.25)
         A_q3 = df.Age.quantile(0.75)
In [39]: IQR = A q3-A q1
In [40]: IQR
Out[40]: 13.0
In [41]: upper limit = A q3+1.5*IQR
In [42]: upper_limit
Out[42]: 54.5
In [43]: med = df.Age.median()
In [44]: med
Out[44]: 29.69911764705882
In [45]: df["Age"] = np.where(df["Age"]>upper_limit,med,df["Age"])
In [46]: lower_limit = A_q1-1.5*IQR
In [47]: df["Age"] = np.where(df["Age"] < lower_limit, med, df["Age"])</pre>
In [ ]:
```

```
In [48]: sns.boxplot(df["Age"])
```

/opt/anaconda3/lib/python3.9/site-packages/seaborn/_decorators.py:36: FutureWarning: P
ass the following variable as a keyword arg: x. From version 0.12, the only valid posi
tional argument will be `data`, and passing other arguments without an explicit keywor
d will result in an error or misinterpretation.
 warnings.warn(

Out[48]: <AxesSubplot:xlabel='Age'>


```
In [71]: #still we have some more outliers lets again remove them
In [49]: A_q1 = df.Age.quantile(0.25)
A_q3 = df.Age.quantile(0.75)
In [50]: IQR = A_q3-A_q1
In [51]: IQR
Out[51]: 9.25
In [52]: upper_limit = A_q3+1.5*IQR
In [53]: upper_limit
Out[53]: 46.875
In [54]: med = df.Age.median()
In [55]: med
Out[55]: 29.69911764705882
In [56]: df["Age"] = np.where(df["Age"]>upper_limit,med,df["Age"])
In [57]: lower_limit = A_q1-1.5*IQR
In [58]: df["Age"] = np.where(df["Age"]
```

```
In [59]: sns.boxplot(df["Age"])
```

/opt/anaconda3/lib/python3.9/site-packages/seaborn/_decorators.py:36: FutureWarning: P
ass the following variable as a keyword arg: x. From version 0.12, the only valid posi
tional argument will be `data`, and passing other arguments without an explicit keywor
d will result in an error or misinterpretation.
 warnings.warn(

Out[59]: <AxesSubplot:xlabel='Age'>


```
In [60]: #Lets use zscore method to remove some more outliers:
In [61]: from scipy import stats
In [62]: Age zscore = stats.zscore(df.Age)
In [63]: Age zscore
Out[63]: 0
                -1.000548
                 1.396086
          1
                -0.401390
          2
          3
                 0.946717
                 0.946717
                   . . .
          886
                -0.251600
          887
                -1.449917
          888
                 0.152700
          889
                -0.401390
          890
                 0.497348
         Name: Age, Length: 891, dtype: float64
In [64]: df_z=df[np.abs(Age_zscore)<=3]</pre>
```

In [65]: df_z

Out[65]:

	PassengerId	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Cabin	Embarked
0	1	0	3	Braund, Mr. Owen Harris	male	22.000000	1	0	A/5 21171	7.2500	G6	S
1	2	1	1	Cumings, Mrs. John Bradley (Florence Briggs Th	female	38.000000	1	0	PC 17599	71.2833	C85	С
2	3	1	3	Heikkinen, Miss. Laina	female	26.000000	0	0	STON/O2. 3101282	7.9250	G6	S
3	4	1	1	Futrelle, Mrs. Jacques Heath (Lily May Peel)	female	35.000000	1	0	113803	53.1000	C123	S
4	5	0	3	Allen, Mr. William Henry	male	35.000000	0	0	373450	8.0500	G6	S
886	887	0	2	Montvila, Rev. Juozas	male	27.000000	0	0	211536	13.0000	G6	S
887	888	1	1	Graham, Miss. Margaret Edith	female	19.000000	0	0	112053	30.0000	B42	S
888	889	0	3	Johnston, Miss. Catherine Helen "Carrie"	female	29.699118	1	2	W./C. 6607	23.4500	G6	S
889	890	1	1	Behr, Mr. Karl Howell	male	26.000000	0	0	111369	30.0000	C148	С
890	891	0	3	Dooley, Mr. Patrick	male	32.000000	0	0	370376	7.7500	G6	Q

891 rows \times 12 columns

In [66]: sns.boxplot(df.Age)

/opt/anaconda3/lib/python3.9/site-packages/seaborn/_decorators.py:36: FutureWarning: P
ass the following variable as a keyword arg: x. From version 0.12, the only valid posi
tional argument will be `data`, and passing other arguments without an explicit keywor
d will result in an error or misinterpretation.
 warnings.warn(

Out[66]: <AxesSubplot:xlabel='Age'>

In [67]: #we are able to remove the outliers only for some extend
#again and again some outliers are coming
#we can remove the columns but majority of the columns will eliminate from dataset which
#so let them as it is.
#for this dataset we are able to remove the outliers for some extend only

In [68]: #Lets try for Fare columns:

In [69]: sns.boxplot(df.Fare)

/opt/anaconda3/lib/python3.9/site-packages/seaborn/_decorators.py:36: FutureWarning: P
ass the following variable as a keyword arg: x. From version 0.12, the only valid posi
tional argument will be `data`, and passing other arguments without an explicit keywor
d will result in an error or misinterpretation.
 warnings.warn(

Out[69]: <AxesSubplot:xlabel='Fare'>

In [70]: #Here there are only outliers only at upperlimit so lets remove them

```
In [71]: F_q1 = df.Fare.quantile(0.25)
F_q3 = df.Fare.quantile(0.75)

In [72]: IQR = F_q3-F_q1

In [73]: IQR

Out[73]: 23.0896

In [74]: u_1 = F_q3+1.5*IQR

In [75]: l_1 = F_q1-1.5*IQR

In [76]: med = df["Fare"].median()

In [77]: df["Fare"] = np.where(df["Fare"])*u_1,med,df["Fare"])
```

In [78]: |sns.boxplot(df["Fare"])

/opt/anaconda3/lib/python3.9/site-packages/seaborn/_decorators.py:36: FutureWarning: P
ass the following variable as a keyword arg: x. From version 0.12, the only valid posi
tional argument will be `data`, and passing other arguments without an explicit keywor
d will result in an error or misinterpretation.
 warnings.warn(

Out[78]: <AxesSubplot:xlabel='Fare'>


```
In [79]: #here also only some outliers got removed
In [80]: #lets try with zscore also
In [81]: Fare_zscore = stats.zscore(df.Fare)
```

```
In [82]: Fare_zscore
Out[82]: 0
                -0.797554
                -0.230556
         1
                -0.744429
          2
          3
                 2.811012
                -0.734591
                   . . .
          886
                -0.345007
                 0.992956
          887
          888
                 0.477446
          889
                 0.992956
          890
                -0.758202
         Name: Fare, Length: 891, dtype: float64
```

In [83]: df_z=df[np.abs(Fare_zscore)<=3]</pre>

In [84]: df_z

Out[84]:

	PassengerId	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Cabin	Embarked
0	1	0	3	Braund, Mr. Owen Harris	male	22.000000	1	0	A/5 21171	7.2500	G6	S
1	2	1	1	Cumings, Mrs. John Bradley (Florence Briggs Th	female	38.000000	1	0	PC 17599	14.4542	C85	С
2	3	1	3	Heikkinen, Miss. Laina	female	26.000000	0	0	STON/O2. 3101282	7.9250	G6	S
3	4	1	1	Futrelle, Mrs. Jacques Heath (Lily May Peel)	female	35.000000	1	0	113803	53.1000	C123	S
4	5	0	3	Allen, Mr. William Henry	male	35.000000	0	0	373450	8.0500	G6	S
886	887	0	2	Montvila, Rev. Juozas	male	27.000000	0	0	211536	13.0000	G6	S
887	888	1	1	Graham, Miss. Margaret Edith	female	19.000000	0	0	112053	30.0000	B42	S
888	889	0	3	Johnston, Miss. Catherine Helen "Carrie"	female	29.699118	1	2	W./C. 6607	23.4500	G6	S
889	890	1	1	Behr, Mr. Karl Howell	male	26.000000	0	0	111369	30.0000	C148	С
890	891	0	3	Dooley, Mr. Patrick	male	32.000000	0	0	370376	7.7500	G6	Q

869 rows × 12 columns

In [85]: sns.boxplot(df.Fare)

/opt/anaconda3/lib/python3.9/site-packages/seaborn/_decorators.py:36: FutureWarning: P
ass the following variable as a keyword arg: x. From version 0.12, the only valid posi
tional argument will be `data`, and passing other arguments without an explicit keywor
d will result in an error or misinterpretation.
 warnings.warn(

Out[85]: <AxesSubplot:xlabel='Fare'>

In [86]: #by using zscore also we are able to remove the outliers upto some extend

6. Splitting Dependent and Independent variables:

In [87]: #Before splitting lets us the remove the columns which are not necessary for further step.

In [88]: df.drop(['Name'],axis=1,inplace=True)

In [89]: df

Out[89]:

	Passengerld	Survived	Pclass	Sex	Age	SibSp	Parch	Ticket	Fare	Cabin	Embarked
0	1	0	3	male	22.000000	1	0	A/5 21171	7.2500	G6	S
1	2	1	1	female	38.000000	1	0	PC 17599	14.4542	C85	С
2	3	1	3	female	26.000000	0	0	STON/O2. 3101282	7.9250	G6	S
3	4	1	1	female	35.000000	1	0	113803	53.1000	C123	S
4	5	0	3	male	35.000000	0	0	373450	8.0500	G6	S
886	887	0	2	male	27.000000	0	0	211536	13.0000	G6	S
887	888	1	1	female	19.000000	0	0	112053	30.0000	B42	S
888	889	0	3	female	29.699118	1	2	W./C. 6607	23.4500	G6	S
889	890	1	1	male	26.000000	0	0	111369	30.0000	C148	С
890	891	0	3	male	32.000000	0	0	370376	7.7500	G6	Q

891 rows × 11 columns

In [90]: df.drop(['Ticket'],axis=1,inplace=True)

In [91]: df

Out[91]:

	PassengerId	Survived	Pclass	Sex	Age	SibSp	Parch	Fare	Cabin	Embarked
0	1	0	3	male	22.000000	1	0	7.2500	G6	S
1	2	1	1	female	38.000000	1	0	14.4542	C85	С
2	3	1	3	female	26.000000	0	0	7.9250	G6	S
3	4	1	1	female	35.000000	1	0	53.1000	C123	S
4	5	0	3	male	35.000000	0	0	8.0500	G6	S
886	887	0	2	male	27.000000	0	0	13.0000	G6	S
887	888	1	1	female	19.000000	0	0	30.0000	B42	S
888	889	0	3	female	29.699118	1	2	23.4500	G6	S
889	890	1	1	male	26.000000	0	0	30.0000	C148	С
890	891	0	3	male	32.000000	0	0	7.7500	G6	Q

891 rows × 10 columns

In [92]: df.drop(["PassengerId"],axis=1,inplace=True)

In [93]: df

Out[93]:

	Survived	Pclass	Sex	Age	SibSp	Parch	Fare	Cabin	Embarked
0	0	3	male	22.000000	1	0	7.2500	G6	S
1	1	1	female	38.000000	1	0	14.4542	C85	С
2	1	3	female	26.000000	0	0	7.9250	G6	S
3	1	1	female	35.000000	1	0	53.1000	C123	S
4	0	3	male	35.000000	0	0	8.0500	G6	S
886	0	2	male	27.000000	0	0	13.0000	G6	S
887	1	1	female	19.000000	0	0	30.0000	B42	S
888	0	3	female	29.699118	1	2	23.4500	G6	S
889	1	1	male	26.000000	0	0	30.0000	C148	С
890	0	3	male	32.000000	0	0	7.7500	G6	Q

891 rows \times 9 columns

In [94]: df.drop(["Cabin"],axis=1,inplace=True)

```
In [95]: df
```

Out[95]:

	Survived	Pclass	Sex	Age	SibSp	Parch	Fare	Embarked
0	0	3	male	22.000000	1	0	7.2500	S
1	1	1	female	38.000000	1	0	14.4542	С
2	1	3	female	26.000000	0	0	7.9250	S
3	1	1	female	35.000000	1	0	53.1000	S
4	0	3	male	35.000000	0	0	8.0500	S
886	0	2	male	27.000000	0	0	13.0000	S
887	1	1	female	19.000000	0	0	30.0000	S
888	0	3	female	29.699118	1	2	23.4500	S
889	1	1	male	26.000000	0	0	30.0000	С
890	0	3	male	32.000000	0	0	7.7500	Q

891 rows × 8 columns

```
In [96]: #Now lets split the data into dependent and independent variables
#x determines the independent variable
#y determines the dependent variable
```

```
In [97]: #dependent variable
y=df["Survived"]
```

```
In [98]: y
Out[98]: 0
                 0
                 1
                 1
          3
                 1
                 0
          886
                 0
          887
                 1
          888
                 0
          889
                 1
          890
                 0
          Name: Survived, Length: 891, dtype: int64
```

```
In [99]:
```

```
In [103]: #independent variable
x=df.drop("Survived",axis=1)
```

```
In [104]: x
```

Out[104]:

	Pclass	Sex	Age	SibSp	Parch	Fare	Embarked
0	3	male	22.000000	1	0	7.2500	S
1	1	female	38.000000	1	0	14.4542	С
2	3	female	26.000000	0	0	7.9250	S
3	1	female	35.000000	1	0	53.1000	S
4	3	male	35.000000	0	0	8.0500	S
886	2	male	27.000000	0	0	13.0000	S
887	1	female	19.000000	0	0	30.0000	S
888	3	female	29.699118	1	2	23.4500	S
889	1	male	26.000000	0	0	30.0000	С
890	3	male	32.000000	0	0	7.7500	Q

891 rows × 7 columns

7. Encoding:

```
In [105]: #let us encode the sex column
In [108]: from sklearn.preprocessing import LabelEncoder
In [109]: #create the object for label encoder
          lr = LabelEncoder()
In [110]: | lr
Out[110]: LabelEncoder()
In [112]: x["Sex"] = lr.fit_transform(x["Sex"])
In [113]: x["Sex"]
Out[113]: 0
                 1
                 0
          2
          3
          886
          887
          888
          889
          890
          Name: Sex, Length: 891, dtype: int64
In [114]: | #we have encoded the sex column
```

```
In [116]: x.head()
Out[116]:
              Pclass Sex Age SibSp Parch
                                            Fare Embarked
            0
                  3
                       1 22.0
                                       0 7.2500
                                                        S
            1
                  1
                       0 38.0
                                 1
                                       0 14.4542
                                                        С
            2
                  3
                       0 26.0
                                 0
                                       0
                                         7.9250
                                                        S
            3
                  1
                       0 35.0
                                       0 53.1000
                                                        S
                  3
                       1 35.0
                                           8.0500
                                                        S
In [117]: #lets encode the Embarked column
In [118]: x["Embarked"] = lr.fit_transform(x["Embarked"])
In [119]: x["Embarked"]
Out[119]: 0
                   2
                   0
                   2
           3
                   2
                   2
           886
                   2
           887
           888
                   2
                   0
           889
           890
                   1
           Name: Embarked, Length: 891, dtype: int64
In [120]: x.head()
Out[120]:
              Pclass Sex Age SibSp Parch
                                            Fare Embarked
            0
                       1 22.0
                                          7.2500
                                                        2
                  3
                                       0
            1
                  1
                       0 38.0
                                       0 14.4542
                                                        0
                  3
                       0 26.0
                                          7.9250
                                                        2
            2
                                 0
            3
                  1
                       0 35.0
                                 1
                                       0 53.1000
                                                        2
                  3
                       1 35.0
                                          8.0500
                                                        2
In [121]: #now we have only numerical data
In [122]: x["Sex"].nunique()
Out[122]: 2
In [123]: x["Embarked"].nunique()
Out[123]: 3
```

8. Splitting the train and test data:

```
In [127]: from sklearn.model selection import train test split
In [128]: #80 percent for training and 20 percent for testing
           x_train,x_test,y_train,y_test = train_test_split(x,y,test_size=0.2,random_state=0)
In [129]: x_train
Out[129]:
                 Pclass Sex
                                 Age SibSp Parch
                                                    Fare Embarked
                         0 29.699118
                                               2 15.2458
                                                                 0
            140
                     3
                     2
                         1 31.000000
                                               0 10.5000
            439
                     2
                         1 31.000000
                                               1 37.0042
                                                                 0
            817
                     3
                         1 20.000000
                                               0
                                                   4.0125
                                                                 0
            378
            491
                         1 21.000000
                                                   7.2500
             ---
                         0 39.000000
                                               1 14.4542
            835
                     1
                                                                 0
                     3
                         0 19.000000
                                                   7.8542
            192
                         1 29.699118
                                                   7.7333
            629
                                         0
                                               0
                                                                 1
            559
                     3
                         0 36.000000
                                               0 17.4000
                                                                 2
                         1 29.699118
                                               1 39.0000
            684
```

712 rows × 7 columns

```
In [130]: y_train
Out[130]: 140
                  0
           439
                  0
                  0
           817
           378
           491
                   0
           835
                  1
           192
                  1
           629
                  0
           559
                  1
           684
           Name: Survived, Length: 712, dtype: int64
```

```
In [131]: x_test
```

Out[131]:

	Pclass	Sex	Age	SibSp	Parch	Fare	Embarked
495	3	1	29.699118	0	0	14.4583	0
648	3	1	29.699118	0	0	7.5500	2
278	3	1	29.699118	4	1	29.1250	1
31	1	0	29.699118	1	0	14.4542	0
255	3	0	29.000000	0	2	15.2458	0
780	3	0	13.000000	0	0	7.2292	0
837	3	1	29.699118	0	0	8.0500	2
215	1	0	31.000000	1	0	14.4542	0
833	3	1	23.000000	0	0	7.8542	2
372	3	1	19.000000	0	0	8.0500	2

179 rows × 7 columns

```
In [132]: y_test
Out[132]: 495
                 0
                 0
          648
          278
                 0
          31
                 1
          255
                 1
          780
                 1
          837
                 0
          215
                 1
          833
                 0
          372
          Name: Survived, Length: 179, dtype: int64
In [133]: x_train.shape
Out[133]: (712, 7)
In [134]: x_test.shape
Out[134]: (179, 7)
In [135]: y_train.shape
Out[135]: (712,)
In [136]: y_test.shape
Out[136]: (179,)
```

9. Feature Scaling:

```
In [137]: from sklearn.preprocessing import StandardScaler
```

```
In [138]: #create object for standard scaler
          sc = StandardScaler()
In [139]: sc
Out[139]: StandardScaler()
In [140]: x train = sc.fit transform(x train)
In [141]: x train
Out[141]: array([[ 0.81925059, -1.37207547, 0.13485787, ..., 1.95926403,
                  -0.17726299, -1.98156574],
                 [-0.38096838, 0.72882288, 0.33193428, ..., -0.47741019,
                  -0.54667438, 0.5790056 ],
                 [-0.38096838, 0.72882288, 0.33193428, ..., 0.74092692,
                   1.51640316, -1.98156574],
                 [0.81925059, 0.72882288, 0.13485787, ..., -0.47741019,
                  -0.76203333, -0.70128007],
                 [ 0.81925059, -1.37207547, 1.08940633, ..., -0.47741019, 
                  -0.00958083, 0.5790056 ],
                 [-0.38096838, 0.72882288, 0.13485787, ..., 0.74092692,
                   1.67175552, 0.5790056 ]])
In [142]: x_test = sc.fit_transform(x_test)
In [143]: x_test
Out[143]: array([[ 0.86022947, 0.77344314, 0.22087115, ..., -0.46006628,
                  -0.19571051, -1.80134224],
                 [0.86022947, 0.77344314, 0.22087115, ..., -0.46006628,
                  -0.76604362, 0.61394061],
                 [ 0.86022947, 0.77344314, 0.22087115, ..., 0.88996427,
                   1.01513799, -0.593700811,
                 ...,
                 [-1.50871015, -1.29291987, 0.40823562, ..., -0.46006628,
                  -0.19604899, -1.80134224],
                 [0.86022947, 0.77344314, -0.74399444, ..., -0.46006628,
                  -0.74092958, 0.61394061],
                 [0.86022947, 0.77344314, -1.32010947, ..., -0.46006628,
                  -0.72476479, 0.61394061]])
  In [ ]:
```