Telco 客户流失预测方法对比

随情英1 张三1 李四1 王五1 赵六1

Abstract

本研究对比了三种机器学习方法(逻辑回归、决策树和 AdaBoost)在 Telco 客户流失预测任务上的性能表现。实验基于 Kaggle 提供的电信客户数据集,包含 7043 条客户记录和 21 个特征。结果表明,逻辑回归模型在准确率 (80.00%)和 AUC(0.835)指标上均优于其他两种方法,同时具有良好的解释性和最快的训练速度。本研究提供了科学的方法选择依据,为电信行业客户流失预测提供了实践参考。

1. 引言

1.1. 项目背景

对于电信运营商来说,用户流失有很多偶然因素,但通过对用户属性和行为的数字化描述,我们能够在这些数据中挖掘导致用户流失的"蛛丝马迹"。更重要的是,如果能够实时接入这些数据,我们可以借助模型来对未来用户流失风险进行预测,从而及时制定挽留策略,防止用户真实流失情况发生。

1.2. 团队分工

• 数据预处理与代码实现: 随情英

• 模型训练与调参: 张三

• 实验结果整理与可视化: 李四

• 实验报告撰写与校对: 王五

 1 中国科学院大学人工智能学院. Correspondence to: suiqingying panyuxuan231@mails.ucas.ac.cn>.

2. 数据集与技术路线

2.1. 数据集说明

本实验选用 Kaggle Telco Customer Churn 数据集。 该数据集包含 7043 条客户记录,每条记录包含 21 个特征(如性别、合同类型、服务类型、月费用、总 费用等),目标变量为客户是否流失(Churn),属于 二分类问题。数据类型包括数值型和分类型,适合 多种机器学习方法。

2.2. 机器学习建模目标

在此背景下,实际的算法建模目标有两个:

- 对流失用户进行准确预测
- 找出影响用户流失的重要因子,辅助运营人员调整营销策略或制定用户挽留措施

综合上述两个目标,我们需要模型不仅具备一定的 预测能力,还能输出相应的特征重要性排名,并且 最好具备一定的可解释性,能够较为明显地阐述特 征变化如何影响标签取值变化。基于这些要求,我 们优先考虑逻辑回归模型,其线性方程能够提供良 好的结果可解释性,同时正则化项也可用于评估特 征重要性。此外,我们还对比了决策树和提升方法, 以全面评估不同算法的性能。

2.3. 项目实施阶段

本项目分为三个主要阶段:

Stage 1. 业务背景解读与数据探索

在接收任务的第一时间,我们需要对数据及其对应业务的基本背景进行解读。由于数据诞生于特定业务场景,我们尽可能了解数据诞生的基本环境和业

务逻辑,准确解读每个字段的含义。随后进行数据探索,包括数据分布检验、数据正确性校验、数据 质量检验、训练集/测试集规律一致性检验等。

Stage 2. 数据预处理与特征工程

这一阶段包括数据清洗和特征工程。数据清洗主要 聚焦于提升数据集质量,包括缺失值、异常值、重 复值处理,以及数据字段类型调整等;特征工程则 调整特征基本结构,使数据集规律更容易被模型识 别,如特征衍生、特殊类型字段处理等。

Stage 3. 算法建模与模型调优

最终的建模环节包括算法训练和参数调优。我们尝试了多种模型、调参方法以及模型对比,并根据模型输出结果调整数据预处理和特征工程相关方法,以获得最优的预测性能。

2.4. 数据集说明

本实验选用 Kaggle Telco Customer Churn 数据集。该数据集包含 7043 条客户记录,每条记录包含 21 个特征,目标变量为客户是否流失(Churn),属于二分类问题。数据类型包括数值型和分类型,适合多种机器学习方法。

2.4.1. 数据集详情

该数据集模拟了电信公司的客户信息及其流失状态,包含以下主要特征:

- **个人信息类特征**: 性别 (gender)、年龄 (SeniorCitizen)、伴侣状态 (Partner)、是否有抚养人 (Dependents)
- 账户信息类特征: 账户时长 (tenure)、合同类型 (Contract)、付款方式 (PaymentMethod)、无纸 化账单 (PaperlessBilling)、月度费用 (Monthly-Charges)、总费用 (TotalCharges)
- 服务信息类特征: 电话服务 (PhoneService)、多 线电话 (MultipleLines)、互联网服务 (Internet-Service)、在线安全 (OnlineSecurity)、在线备份 (OnlineBackup)、设备保护 (DeviceProtection)、 技术支持 (TechSupport)、流媒体电视 (Stream-

ingTV)、流媒体电影 (StreamingMovies)

2.4.2. 数据集特点

- 样本分布:流失客户占比约 26.5% (1869 人), 非流失客户占比约 73.5% (5174 人),存在一定 的类别不平衡
- 特征类型:包含17个分类特征和4个数值特征
- 数据质量: TotalCharges 列存在 11 条缺失记录, 其余特征数据完整
- 特征相关性: 月费用 (MonthlyCharges) 与多项服务选择存在较强相关性, 总费用 (TotalCharges) 与账户时长 (tenure) 和月费用呈正相关

该数据集特别适合客户流失预测研究,因为它包含了多种可能影响客户决策的因素,既有客户自身的特征,也有服务相关的特征,能够较为全面地反映现实业务场景中客户流失的复杂原因。

3. 算法简介

本实验对比了三种经典机器学习算法在该数据集上 的表现:

3.1. Logistic Regression (逻辑回归)

逻辑回归是一种广泛应用的线性分类方法,通过 Sigmoid 函数将线性模型的输出转换为 0-1 之间的概率值:

$$P(y=1|x) = \frac{1}{1 + e^{-(\beta_0 + \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_n x_n)}}$$
 (1)

适用场景:

- 二分类问题,如客户流失预测(流失/不流失)
- 需要输出概率而非仅分类结果的场景
- 对模型可解释性有较高要求的业务问题

优势与局限:

- 训练速度快,内存占用小,适合大规模数据处理
- 可输出类别预测的概率, 方便风险评估
- 模型系数直观反映特征重要性,可解释性强
- 不适合捕捉特征间的复杂非线性关系
- 对特征间的多重共线性较为敏感

3.2. Decision Tree (决策树)

决策树通过递归二分法将数据划分为不同子集,形成树状结构。每个节点代表一个特征条件判断,叶节点代表分类结果。在客户流失预测中,可以生成如"如果合同类型 = 月付且账户时长 <12 个月,则预测为流失"的规则。

适用场景:

- 需要高可解释性的分类或回归问题
- 特征间存在非线性关系的数据
- 混合类型特征(分类型和数值型)数据集

优势与局限:

- 决策规则直观易懂,可直接转化为业务规则
- 能自动处理特征选择, 对缺失值相对鲁棒
- 能处理数值和分类特征, 无需独热编码
- 容易过拟合, 泛化能力有限
- 对数据微小变化敏感,模型稳定性较差

3.3. Boosting (提升方法, 采用 AdaBoost)

AdaBoost (Adaptive Boosting) 是一种集成学习方法,通过顺序训练多个弱分类器(通常是简单决策树),每次训练都关注前一轮分类错误的样本,最终将所有弱分类器的预测结果加权组合。

适用场景:

• 复杂分类问题,需要高预测精度

- 数据存在噪声,需要强大的泛化能力
- 有足够计算资源进行集成模型训练

优势与局限:

- 通过集成多个弱分类器显著提高预测精度
- 能够自动处理特征重要性评估
- 相比单一决策树, 大幅降低过拟合风险
- 训练时间较长, 计算复杂度高
- 对异常值和噪声数据较为敏感
- 可解释性低于单一决策树和逻辑回归

在客户流失预测任务中,这三种算法各有优势:逻辑回归提供良好的可解释性和基准性能;决策树能够发现简单直观的流失规则;而 AdaBoost 则通过集成多个模型来提升整体预测准确率,适合追求高性能的场景。

4. 三种方法的测试与比较

4.1. 实验设置

- 训练集: 数据集的 80% (约 5634 条记录)
- 测试集: 数据集的 20% (约 1409 条记录)
- 所有分类型特征进行独热编码,数值型特征归一化
- 评估指标:准确率 (accuracy)、AUC、分类报告 (precision、recall、f1-score)、混淆矩阵、训练时间

4.2. 实验结果总览

4.3. 可视化对比

4.4. 详细分类报告与混淆矩阵

4.5. 分析与讨论

 逻辑回归在该数据集上表现最好,准确率和 AUC 均最高,且训练速度极快,适合实际业 务部署。

Table 1. 三种模型性能对比

模型	准确率	AUC	时间 (秒)
LogReg	0.8000	0.8350	0.01
DecTree	0.7220	0.6348	0.02
AdaBoost	0.7305	0.7523	1.13

Figure 1. 三种模型准确率对比

- 决策树模型训练速度快,但泛化能力有限,AUC 较低,容易过拟合。
- Boosting 方法(AdaBoost)在准确率和 AUC 上均优于单棵决策树,提升了模型的整体性能,但训练时间略长。
- 三种方法的混淆矩阵和分类报告显示,所有模型对"非流失"客户的识别能力较强,对"流失"客户的召回率和精确率相对较低,后续可考虑进一步优化模型或采用更复杂的集成方法。

5. 总结

本实验对比了三种机器学习方法在 Kaggle Telco Customer Churn 数据集上的表现。逻辑回归表现最佳,Boosting 方法次之,决策树表现一般。实验结果表明,针对结构化二分类数据,线性方法和集成方法均能取得较好效果。后续可尝试更多特征工程和模型融合进一步提升性能。

Figure 2. 三种模型 ROC 曲线及 AUC 对比

Table 2. 逻辑回归模型详细结果

类别	精确率	召回率	F1 值
非流失 (0) 流失 (1)	0.84 0.65	0.89 0.54	0.87 0.59
准确率 AUC		0.8000 0.8350	

混淆知	阵: _
463	55
86	101

Figure 3. 逻辑回归混淆矩阵

Table 3. 决策树模型详细结果

类别	精确率	召回率	F1 值
非流失 (0)	0.80	0.82	0.81
流失 (1)	0.47	0.45	0.46
准确率		0.7220	
AUC	0.6348		

混淆矩]阵:_		
423	95		
102	85		

Figure 4. 决策树混淆矩阵

Table 4. AdaBoost 模型详细结果

类别	精确率	召回率	F1 值
非流失 (0) 流失 (1)	0.82 0.51	0.82 0.50	0.82 0.50
准确率 AUC		0.7390 0.7522	

混淆矩阵:

[427 91]
[93 94]

Figure 5. AdaBoost 混淆矩阵

Table 5. 算法训练时间对比

算法	训练时间	(秒)
逻辑回归	0.01	
决策树	0.02	
AdaBoost	1.13	