Digital Fundamentals

ELEVENTH EDITION

CHAPTER 1

Introductory Concepts

Graph of an analog quantity

Sampled-value representation (quantization) of analog quantity.

Each dot can be digitized by representing by series of 1s and 0s.

A basic audio public address system

Basic block diagram of a CD player

Binary Digits

$$HIGH = 1$$
 and $LOW = 0$

Logic level ranges of voltage for a digital circuit

Ideal pulses

(a) Positive-going pulse

(b) Negative–going pulse

Nonideal pulse characteristics

Examples of digital waveforms

(a) Periodic (square wave)

$$f = \frac{1}{T}$$
$$T = \frac{1}{f}$$

(b) Nonperiodic

Duty cycle =
$$\left(\frac{t_W}{T}\right)$$
100%

Example

A portion of a periodic digital waveform is shown in Figure 1–10. The measurements are in milliseconds. Determine the following:

- (a) period
- (b) frequency (c) duty cycle

FIGURE 1-10

Solution

- (a) The period (T) is measured from the edge of one pulse to the corresponding edge of the next pulse. In this case T is measured from leading edge to leading edge, as indicated. T equals 10 ms.
- **(b)** $f = \frac{1}{T} = \frac{1}{10 \text{ ms}} = 100 \text{ Hz}$
- (c) Duty cycle = $\left(\frac{t_W}{T}\right)100\% = \left(\frac{1 \text{ ms}}{10 \text{ ms}}\right)100\% = 10\%$

Example of a clock waveform synchronized with a waveform representation of a sequence of bits

Example of a timing diagram

Illustration of serial and parallel transfer of binary data

(a) Serial transfer of 8 bits of binary data. Interval t_0 to t_1 is first.

(b) Parallel transfer of 8 bits of binary data. The beginning time is t_0 .

Example

- (a) Determine the total time required to serially transfer the eight bits contained in waveform A of Figure 1–14, and indicate the sequence of bits. The left-most bit is the first to be transferred. The 1 MHz clock is used as reference.
- **(b)** What is the total time to transfer the same eight bits in parallel?

Solution

(a) Since the frequency of the clock is 1 MHz, the period is

$$T = \frac{1}{f} = \frac{1}{1 \text{ MHz}} = 1 \,\mu\text{s}$$

It takes 1 μ s to transfer each bit in the waveform. The total transfer time for 8 bits is

$$8 \times 1 \,\mu s = 8 \,\mu s$$

The left-most bit is the first to be transferred.

(b) A parallel transfer would take $1 \mu s$ for all eight bits.

Basic Logic Functions

- Define the NOT function
- Define the AND function
- Define the OR function

The basic logic functions and symbols

The NOT function

The AND function

The OR function

$$\frac{\text{LOW }(0)}{\text{LOW }(0)}$$

The comparison function

(a) Basic magnitude comparator

(b) Example: A is less than B (2 < 5) as indicated by the HIGH output (A < B)

The addition function

(a) Basic adder

(b) Example: *A* plus B(3 + 9 = 12)

The Arithmetic Functions

Addition, Subtraction, Multiplication, Division An encoder used to encode a calculator keystroke into a binary code

A decoder used to convert a special binary code into a 7-segment decimal readout

Illustration of a basic multiplexing/demultiplexing application

ALWAYS LEARNING

Example of the operation of a 4-bit serial shift register Each block represents one storage "cell" or flip-flop

Example of the operation of a 4-bit parallel shift register

Memories

Semiconductor Memories, Magnetic Memories, Optical Memories

Illustration of basic counter operation

Block diagram of a tablet-bottling system

Programmable logic hierarchy

