模块四 综合提升篇 (★★★☆)

强化训练

1. (2023•山西忻州模拟•★★★) 如图,在四棱锥 P-ABCD中,平面 PAD 上平面 ABCD,四边形 ABCD是矩形, $PA = \sqrt{2}AB$,E,F 分别是棱 BC,PD 的中点,则异面直线 EF 与 AB 所成角的余弦值是()

$$(A) \frac{\sqrt{3}}{3}$$

(B)
$$\frac{\sqrt{6}}{3}$$

(A)
$$\frac{\sqrt{3}}{3}$$
 (B) $\frac{\sqrt{6}}{3}$ (C) $\frac{\sqrt{3}}{6}$ (D) $\frac{\sqrt{6}}{6}$

(D)
$$\frac{\sqrt{6}}{6}$$

答案: B

解析:观察发现 ABCD 是矩形,平移 AB 比较方便,如图,取 AD 中点 G,连接 GE, GF,则 GE //AB, 所以 $GE \perp AD$,结合平面 $PAD \perp PAD \perp PAD$ 可得 $GE \perp PAD$,故 $GE \perp GF$,

设
$$AB = a$$
 ,则 $GE = a$, $PA = \sqrt{2}a$, $GF = \frac{\sqrt{2}}{2}a$, $EF = \sqrt{GE^2 + GF^2} = \frac{\sqrt{6}}{2}a$,

所以 $\cos \angle GEF = \frac{GE}{FF} = \frac{\sqrt{6}}{3}$,故异面直线 EF 与 AB 所成角的余弦值是 $\frac{\sqrt{6}}{3}$.

2. (★★★) 已知正三棱柱 $ABC - A_1B_1C_1$ 的侧棱长与底面边长相等,则 AB_1 与侧面 ACC_1A_1 所成角的正弦值 等于()

$$(A) \frac{\sqrt{6}}{4}$$

(A)
$$\frac{\sqrt{6}}{4}$$
 (B) $\frac{\sqrt{10}}{4}$ (C) $\frac{\sqrt{2}}{2}$ (D) $\frac{\sqrt{3}}{2}$

(C)
$$\frac{\sqrt{2}}{2}$$

$$(D) \frac{\sqrt{3}}{2}$$

答案: A

解析: 直三棱柱中,侧面的垂线易作,故直接作垂线,

如图,取 A_1C_1 中点O,则 $B_1O \perp A_1C_1$,正三棱柱中 AA_1 上平面 $A_1B_1C_1$,所以 $B_1O \perp AA_1$,

从而 B_1O 上平面 ACC_1A_1 ,故 $\angle B_1AO$ 即为直线 AB_1 与侧面 ACC_1A_1 所成角,

设 AB = 2 ,则 $OB_1 = \sqrt{3}$, $AO = \sqrt{5}$, $AB_1 = 2\sqrt{2}$, 所以 $\sin \angle B_1 AO = \frac{B_1 O}{AB} = \frac{\sqrt{6}}{4}$.

3.(2023•全国乙卷•★★★)已知 $\triangle ABC$ 为等腰直角三角形,AB 为斜边, $\triangle ABD$ 为等边三角形,若二面 角C - AB - D为150°,则直线 CD与平面 ABC 所成角的正切值为()

$$(A) \frac{1}{5}$$

$$(B) \frac{\sqrt{2}}{5}$$

(A)
$$\frac{1}{5}$$
 (B) $\frac{\sqrt{2}}{5}$ (C) $\frac{\sqrt{3}}{5}$ (D) $\frac{2}{5}$

(D)
$$\frac{2}{5}$$

答案: C

解析: 两个等腰三角形有公共的底边,这种情况常取底边中点构造线面垂直,

如图,取AB中点E,连接DE,CE,由题意,DA=DB,

AC = BC, 所以 $AB \perp DE$, $AB \perp CE$,

故 $\angle DEC$ 即为二面角 C - AB - D 的平面角,

且 $AB \perp$ 平面 CDE,所以 $\angle DEC = 150^{\circ}$,

作 DO ⊥ CE 的延长线于 O,则 DO ⊂ 平面 CDE,

所以 $DO \perp AB$,故 $DO \perp$ 平面ABC,

所以 $\angle DCO$ 即为直线 CD 与平面 ABC 所成的角,

不妨设 AB=2,则 CE=1, $DE=\sqrt{3}$,

因为 $\angle DEC = 150^{\circ}$,所以 $\angle DEO = 30^{\circ}$,

故 $OE = DE \cdot \cos \angle DEO = \frac{3}{2}$, $OD = DE \cdot \sin \angle DEO = \frac{\sqrt{3}}{2}$,

 $OC = OE + CE = \frac{5}{2}$, $fightharpoonup fixed for <math>fixed DCO = \frac{OD}{OC} = \frac{\sqrt{3}}{5}$.

【反思】两个等腰三角形有公共底边这类图形,常取底边中点,构造两个线线垂直,进而得出线面垂直.

4. (2023 •新高考 II 卷 •★★★)(多选)已知圆锥的顶点为 P,底面圆心为 O,AB 为底面直径, $\angle APB = 120^{\circ}$, PA=2,点 C 在底面圆周上,且二面角 P-AC-O 为 45° ,则(

- (A) 该圆锥的体积为π
- (B) 该圆锥的侧面积为 $4\sqrt{3}\pi$

(C)
$$AC = 2\sqrt{2}$$

(D) ΔPAC 的面积为 $\sqrt{3}$

答案: AC

解析: A项, 因为PA=2, $\angle APB=120^{\circ}$, 所以 $\angle APO=60^{\circ}$, $OP=AP \cdot \cos \angle APO=1$,

$$OA = AP \cdot \sin \angle APO = \sqrt{3}$$
,从而圆锥的体积 $V = \frac{1}{3}Sh = \frac{1}{3} \times \pi \times (\sqrt{3})^2 \times 1 = \pi$,故A项正确;

B 项,圆锥的侧面积 $S = \pi r l = \pi \times \sqrt{3} \times 2 = 2\sqrt{3}\pi$,故 B 项错误;

 \mathbb{C} 项,要求 AC 的长,条件中的二面角 P-AC-O 还没用,观察发现 ΔPAC 和 ΔOAC 都是等腰三角形,故取底边中点即可构造棱的垂线,作出二面角的平面角,

取 AC 中点 Q, 连接 PQ, OQ, 因为 OA = OC, PA = PC, 所以 $AC \perp OQ$, $AC \perp PQ$,

故 $\angle PQO$ 即为二面角P-AC-O的平面角,由题意, $\angle PQO=45^{\circ}$,所以OQ=OP=1,

故
$$AQ = \sqrt{OA^2 - OQ^2} = \sqrt{2}$$
,所以 $AC = 2AQ = 2\sqrt{2}$,故C项正确;

D 项,
$$PQ = \sqrt{OP^2 + OQ^2} = \sqrt{2}$$
,所以 $S_{\Delta PAC} = \frac{1}{2}AC \cdot PQ = \frac{1}{2} \times 2\sqrt{2} \times \sqrt{2} = 2$,故 D 项错误.

5.(2022·北京卷· $\star\star\star$)已知正三棱锥 P-ABC 的六条棱长均为 6, S 是 ΔABC 及其内部的点构成的集合,设集合 $T=\{Q\in S\mid PQ\leq 5\}$,则 T 表示的区域的面积为(

(A)
$$\frac{3\pi}{4}$$
 (B) π (C) 2π (D) 3π

解析: Q 在 ΔABC 内,故考虑把 $PQ \le 5$ 转换成 Q 与面 ABC 内某点的关系,由正棱锥想到选底面中心,

如图,设O为 ΔABC 的中心,则PO上平面ABC,当Q在 ΔABC 内部运动时,总有OQ $\perp PO$,

所以
$$PQ = \sqrt{PO^2 + OQ^2}$$
,故 $PQ \le 5$ 即为 $\sqrt{PO^2 + OQ^2} \le 5$ ①,

又
$$AO = 6 \times \frac{\sqrt{3}}{2} \times \frac{2}{3} = 2\sqrt{3}$$
,所以 $PO = \sqrt{PA^2 - AO^2} = 2\sqrt{6}$,代入①得: $OQ \le 1$,

所以集合 T 表示的区域是 $\triangle ABC$ 内以 O 为圆心,1 为半径的圆及其内部,其面积为 π .

答案: B

【反思】空间中到某定点距离为定值的点的轨迹是球面,若该点还在空间的某个平面上,则轨迹就是圆.

6. $(2022 \cdot \text{福建模拟} \cdot \star \star \star \star \star)$ (多选)如图,直角梯形 ABCD + AB/CD, $AB \perp BC$, $BC = CD = \frac{1}{2}AB = 1$, E 为 AB 中点,以 DE 为折痕把 ΔADE 折起,使点 A 到达点 P 的位置,使 $PC = \sqrt{3}$,则(

- (A) 平面 PED 上平面 PCD
- (B) $PC \perp BD$
- (C) 二面角 P-DC-B 的大小为60°
- (D) PC 与平面 PED 所成角为45°

答案: AB

解析: A项,要分析面面垂直,先找线面垂直,观察图形可猜想CD 上面PED,故尝试找理由,

如图,由题设可分析出 BCDE 是边长为 1 的正方形,连接 EC,则 PE=1, $EC=\sqrt{2}$,翻折后 $PC=\sqrt{3}$,所以 $PE^2+EC^2=PC^2$,故 $PE\perp EC$,又翻折前 $AE\perp ED$,所以翻折后 $PE\perp ED$,故 $PE\perp ED$,故 $PE\perp ED$,所以 $PE\perp CD$,又 $PE\perp ED$,所以 $PE\perp CD$,以 不可正确;

B项, PC在面 BCDE 内的射影好找,故用三垂线定理判断,

PE上面 $BCDE \Rightarrow PC$ 在该面内的射影为 EC,因为 $BD \perp EC$,所以 $BD \perp PC$,故 B 项正确; C 项,前面已证 $CD \perp$ 面 PED,所以 $CD \perp PD$,又 $CD \perp DE$,

所以 $\angle PDE$ 即为二面角P-DC-B的平面角, $\tan \angle PDE = \frac{PE}{DE} = 1 \Rightarrow \angle PDE = 45^{\circ}$,故 C 项错误;

D项,因为CD 上面PED,所以 $\angle CPD$ 即为PC 与面PED 所成角, CD=1,

又 $PD = AD = \sqrt{2}$, 所以 $\tan \angle CPD = \frac{CD}{PD} = \frac{\sqrt{2}}{2}$, 从而 $\angle CPD \neq 45^{\circ}$, 故 D 项错误.

7. $(2023 \cdot 云南模拟 \cdot \star \star \star \star \star)$ (多选)如图,正方体 $ABCD - A_1B_1C_1D_1$ 的棱长为 2,点 $E \neq A_1B$ 的中点,点 P 是线段 D_1E 上的动点,则下列说法正确的是()

- (A) $A_1C \perp D_1P$
- (B) CP 的最小值为 $\frac{4}{3}$
- (C) 三棱锥 $P-BC_1D$ 的体积为 $\frac{4}{3}$

(D) 存在点 P, 使直线 CP 与平面 ABCD 所成角为 60°

答案: AC

解析: 涉及线上动点,可由共线向量定理求出点P的坐标,用向量法来解决问题,

以 A 为原点建立如图所示的空间直角坐标系,则 A(0,0,0), $D_1(0,2,2)$, E(1,0,1),设 $\overrightarrow{D_1P}=\lambda \overrightarrow{D_1E}(0\leq \lambda\leq 1)$,

则
$$\overrightarrow{AP} = \overrightarrow{AD_1} + \overrightarrow{D_1P} = \overrightarrow{AD_1} + \lambda \overrightarrow{D_1E} = (0,2,2) + \lambda(1,-2,-1) = (\lambda,2-2\lambda,2-\lambda)$$
,所以 $P(\lambda,2-2\lambda,2-\lambda)$,

A 项,要判断此选项,只需看 $\overline{A_iC}\cdot\overline{D_iP}$ 是否为 0,由图可知, $A_i(0,0,2)$,C(2,2,0),

所以
$$\overrightarrow{A_1C} = (2,2,-2)$$
, $\overrightarrow{D_1P} = (\lambda,-2\lambda,-\lambda)$,故 $\overrightarrow{A_1C} \cdot \overrightarrow{D_1P} = 2\lambda + 2(-2\lambda) + (-2) \cdot (-\lambda) = 0$,

所以 $A_1C \perp D_1P$,故A项正确;

 \mathbf{B} 项,已有P 的坐标,可写出C 的坐标,用空间两点距离公式求CP,

由图可知,
$$C(2,2,0)$$
,所以 $CP = \sqrt{(\lambda-2)^2 + (2-2\lambda-2)^2 + (2-\lambda)^2} = \sqrt{6\lambda^2 - 8\lambda + 8} = \sqrt{6(\lambda-\frac{2}{3})^2 + \frac{16}{3}}$,

所以当
$$\lambda = \frac{2}{3}$$
时, CP 取得最小值 $\frac{4\sqrt{3}}{3}$,故 B 项错误;

C 项, ΔBC_1D 的面积好求,关键是求点 P 到平面 BC_1D 的距离,因为 P 是动点,所以如果三棱锥 $P-BC_1D$ 的体积是定值,那么点 P 到平面 BC_1D 的距离必定也为定值,于是 ED_1 // 平面 BC_1D ,故尝试找平行线,

如图,由正方体的结构特征, $D_1Q //BE$,且 $D_1Q = BE$,所以四边形 BED_1Q 是平行四边形,

从而 $ED_1 //BQ$,故 $ED_1 //$ 平面 BC_1D ,所以点 P 到平面 BC_1D 的距离是定值,从而 $V_{P-BC_1D} = V_{D_1-BC_1D}$,

故只需算三棱锥 $D_1 - BC_1D$ 的体积,观察图形发现转换成以B为顶点更好算,

$$V_{D_1-BC_1D} = V_{B-C_1D_1D} = \frac{1}{3}S_{\Delta C_1D_1D} \cdot BC = \frac{1}{3} \times \frac{1}{2} \times 2 \times 2 \times 2 = \frac{4}{3}$$
, 所以 $V_{P-BC_1D} = \frac{4}{3}$, 故 C 项正确;

D项,给出线面角,可用向量法求出线面角的正弦值,从而建立方程求λ,

由图可知 n = (0,0,1) 是平面 ABCD 的一个法向量, $\overrightarrow{CP} = (\lambda - 2, -2\lambda, 2 - \lambda)$,

所以
$$\left|\cos \langle \overrightarrow{CP}, \boldsymbol{n} \rangle \right| = \frac{\left|\overrightarrow{CP} \cdot \boldsymbol{n}\right|}{\left|\overrightarrow{CP}\right| \cdot \left|\boldsymbol{n}\right|} = \frac{\left|2 - \lambda\right|}{\sqrt{(\lambda - 2)^2 + (-2\lambda)^2 + (2 - \lambda)^2}}$$

$$=\frac{\left|2-\lambda\right|}{\sqrt{2(2-\lambda)^2+4\lambda^2}},$$

若 CP 与平面 ABCD 所成的角为 60° ,则

$$\frac{|2-\lambda|}{\sqrt{2(2-\lambda)^2+4\lambda^2}} = \frac{\sqrt{3}}{2}, \text{ K$ ($\lambda-2$)$}^2 + 6\lambda^2 = 0,$$

上述方程无解,所以不存在点P,使直线CP与平面ABCD所成的角为 60° ,故D项错误.

- 8. $(2022 \cdot 山东模拟 \cdot \star \star \star \star \star)$ (多选) 在三棱锥 P-ABC 中, $AB \perp BC$, P 在底面 ABC 上的投影是 AC 中点 D, DP=DC=1,则下列结论中正确的是()
 - (A) PA = PB = PC
- (B) $\angle PAB$ 的取值范围为 $(\frac{\pi}{4}, \frac{\pi}{2})$
- (C) 若三棱锥 P-ABC 的四个顶点都在球 O 的表面上,则球 O 的表面积为 2π
- (D) 若 AB = BC, E 是棱 PC 上的一个动点,则 DE + BE 的最小值是 $\frac{\sqrt{6} + \sqrt{2}}{2}$

答案: ABD

解析: A项,如图1,D为直角三角形ABC的斜边AC的中点,所以DA = DC = DB = 1,

又PD 上面ABC,所以PD 上AC,PD 上BD,故 $PA = \sqrt{PD^2 + AD^2} = \sqrt{2}$,

$$PB = \sqrt{PD^2 + BD^2} = \sqrt{2}$$
, $PC = \sqrt{PD^2 + DC^2} = \sqrt{2}$, 所以 $PA = PB = PC$, 故A项正确;

B 项,图形中不确定的是 $\triangle ABC$ 的直角边长,可把 AB 看成变量,表示 $\cos \angle PAB$,进而分析 $\angle PAB$ 的范围,注意到 AC=2 ,所以 0<AB<2 ,在 $\triangle PAB$ 中,由余弦定理,

$$\cos \angle PAB = \frac{PA^2 + AB^2 - PB^2}{2PA \cdot AB} = \frac{2 + AB^2 - 2}{2\sqrt{2}AB} = \frac{AB}{2\sqrt{2}} \in (0, \frac{\sqrt{2}}{2}), \quad \text{MU} \angle PAB \in (\frac{\pi}{4}, \frac{\pi}{2}), \quad \text{WB II} \text{ II.}$$

C 项, $DP = DA = DB = DC = 1 \Rightarrow D$ 即为球心,且球的半径 R = 1 ,表面积 $S = 4\pi R^2 = 4\pi$,故 C 项错误; D 项,涉及沿表面的距离最值问题,考虑将空间图形展开到平面上来分析,

若 AB = BC , 则 $\triangle ABC$ 是等腰直角三角形, $AC = 2 \Rightarrow AB = BC = \sqrt{2}$,

所以 ΔPBC 是边长为 $\sqrt{2}$ 的正三角形,将 ΔPBC 沿 PC 翻折到和 ΔPCD 在同一平面,如图 2,

当 E 位于 PC 中点 E' 处时, DE+BE 取得最小值,且最小值为 $\frac{\sqrt{2}}{2}+\sqrt{2}\cdot\frac{\sqrt{3}}{2}=\frac{\sqrt{6}+\sqrt{2}}{2}$,故 D 项正确.

《一数•高考数学核心方法》