Lecture 7-1

Application & Tips:
Learning rate, data preprocessing, overfitting

Sung Kim <hunkim+mr@gmail.com>

```
cost = tf.reduce_mean(-tf.reduce_sum(Y*tf.log(hypothesis), reduction_indices=1)) # Cross entropy
optimizer = tf.train.GradientDescentOptimizer(learning_rate).minimize(cost) # Gradient Descent
                                                                   LOSS
```

Minimize error using cross entropy

learning_rate = 0.001

https://www.udacity.com/course/viewer#!/c-ud730/l-6370362152/m-6379811827

Large learning rate: overshooting

Small learning rate:

takes too long, stops at local minimum

Try several learning rates

- Observe the cost function
- Check it goes down in a reasonable rate

Data (X) preprocessing for gradient descent

Data (X) preprocessing for gradient descent

x1	x2	У
1	9000	А
2	-5000	А
4	-2000	В
6	8000	В
9	9000	С

Data (X) preprocessing for gradient descent

x1	x2	У
1	9000	А
2	-5000	А
4	-2000	В
6	8000	В
9	9000	С

Hormalizer.

Data (X) preprocessing for gradient descent

Lecture 6 - 5

Standardization (Normalization)

$$\mathbf{x}_{j}' = \frac{\mathbf{x}_{j} - \mu_{j}}{\sigma_{j}}$$

 $X_{std}[:,0] = (X[:,0] - X[:,0].mean()) / X[:,0].std()$

http://sebastianraschka.com/Articles/2015_singlelayer_neurons.html

Overfitting

- Our model is very good with training data set (with memorization)
- Not good at test dataset or in real use

Overfitting-/ haden/ modelp $\mathbf{1}_{\mathbf{2}}$

Solutions for overfitting

- More training data!
- Reduce the number of features
- Regularization Mitor.

Regularization

• Let's not have too big numbers in the weight

Theribbe text.

(weight L.)

Regularization fortherisan hypotherisan

new C= Co+ Zw > weight winimize. ization wy ______ wy ______ wy ______

Regularization

• Let's not have too big numbers in the weight

Summary

- Learning rate \/√
- Data preprocessing
- Overfitting
 - More training data
 - Regularization ?

Lecture 7-2

Application & Tips: Learning and test data sets

Sung Kim <hunkim+mr@gmail.com>

Performance evaluation: is this good?

Evaluation using training set?

Training, validation and test sets

http://www.intechopen.com/books/advances-in-data-mining-knowledge-discovery-and-applications/selecting-representative-data-sets

Online learning

100 AFTH A MANSON -(ODFM

http://www.intechopen.com/books/advarces-in-data-mining-knowledge-discovery-and-applications/selecting-representative-data-sets

MINIST Dataset

Zip: 63363

 2

train-images-idx3-ubyte.gz: training set images (9912422 bytes)

<u>train-labels-idx1-ubyte.gz</u>: training set labels (28881 bytes)

t10k-images-idx3-ubyte.gz: test set images (1648877 bytes)

t10k-labels-idx1-ubyte.gz: test set labels (4542 bytes)

http://yann.lecun.com/exdb/mnist/

Accuracy

• How many of your predictions are correct?

• Check out the lab video

