MA3209 - Metric and Topological Spaces Suggested Solutions

(Semester 1, AY2021/2022)

Written by: Chow Boon Wei Audited by: Chong Jing Quan

Question 1

i) For any $x, y \in X$, we have

$$\begin{split} \rho(x,y) &= 0 \iff \sqrt{d(x,y)+4} - 2 = 0 \\ &\iff \sqrt{d(x,y)+4} = 2 \\ &\iff d(x,y)+4 = 4 \\ &\iff d(x,y) = 0 \\ &\iff x = y. \end{split}$$

Also, $\rho(x,y) = \sqrt{d(x,y) + 4} - 2 = \sqrt{d(y,x) + 4} - 2 = \rho(y,x)$. Finally, we have

$$\begin{split} \rho(x,y) + \rho(y,z) &= \sqrt{d(x,y) + 4} - 2 + \sqrt{d(y,z) + 4} - 2 \\ &= \sqrt{(\sqrt{d(x,y) + 4} + \sqrt{d(y,z) + 4})^2} - 4 \\ &= \sqrt{d(x,y) + 4 + 2\sqrt{d(x,y) + 4}\sqrt{d(y,z) + 4} + d(y,z) + 4} - 4 \\ &= \sqrt{d(x,y) + d(y,z) + 2\sqrt{d(x,y)d(y,z) + 4d(x,y) + 4d(y,z) + 16} + 8} - 4 \\ &\geq \sqrt{d(x,z) + 2\sqrt{d(x,y)d(y,z) + 4d(x,z) + 16} + 8} - 4 \\ &\geq \sqrt{d(x,z) + 2\sqrt{4d(x,z) + 16} + 8} - 4 \\ &\geq \sqrt{d(x,z) + 4 + 4\sqrt{d(x,z) + 4} + 4} - 4 \\ &= \sqrt{d(x,z) + 4} + 2 - 4 \\ &= \sqrt{d(x,z) + 4} - 2. \end{split}$$

ii) Let $(a_n)_{n\in\mathbb{N}}$ be a sequence that is Cauchy convergent with respect to ρ . Then, I claim that this sequence is also Cauchy convergent with respect to d. Let $\epsilon > 0$ be given. We can find an $N \in \mathbb{N}$ such that

$$n, m \ge N \implies \rho(a_n, a_m) < \sqrt{\epsilon + 4} - 2.$$

Then, whenever $n, m \geq N$, we have $d(a_n, a_m) = (\rho(a_n, a_m) + 2)^2 - 4 < \epsilon$. So, this sequence is also Cauchy convergent with respect to d. Since (X < d) is complete, we can find an $a \in X$ such that $a_n \to a$ with respect to d. That is, for every $\epsilon > 0$, we can fine a $K \in \mathbb{N}$ such that

$$n \ge K \implies d(a_n, a) < (\epsilon + 2)^2 - 4.$$

Then, whenever $n \geq K$, we have $\rho(a_n, a) = \sqrt{d(a_n, a) + 4} - 2 < \epsilon$. Hence, $a_n \to a$ with respect to ρ . This means that the sequence is convergent. Finally, we see that every sequence that is Cauchy convergent with respect to ρ is also convergent with respect to ρ . So, (X, ρ) is complete.

iii) Let $\{U_{\lambda}\}_{{\lambda}\in\Lambda}$ be an open cover for (X,ρ) . Then, for each ${\lambda}\in\Lambda$, U_{λ} is open in (X,ρ) . So, for each $x\in U_{\lambda}$, we can find a ${\epsilon}>0$ such that $B_{\rho}(x,{\epsilon})\subset U_{\lambda}$. Now, I claim that $B_{d}\left(x,({\epsilon}+2)^{2}-4\right)\subset U_{\lambda}$. Indeed, we have

$$y \in B_d(x, (\epsilon + 2)^2 - 4) \iff d(y, x) < (\epsilon + 2)^2 - 4$$

 $\iff \rho(x, y) < \epsilon$
 $\iff y \in B_\rho(x, \epsilon)$
 $\implies y \in U_\lambda.$

So, U_{λ} is also open in (X, d). In particular, $\{U_{\lambda}\}_{{\lambda} \in \Lambda}$ is also an open cover for (X, d). Since, (X, d) is compact, we can find a finite subcover $\{U_{\lambda_1}, \ldots, U_{\lambda_n}\}$. This shows that (X, ρ) is compact.

Remark: In fact, (X, d) and (X, ρ) have the same topology.

Question 2

i) Take $f:[0,2]\to\mathbb{R}$ given by f(x)=x for each $x\in[0,2]$. Let $\epsilon>0$ be given. Take $N\in\mathbb{N}$ such that $\frac{1}{N}<\epsilon$. For any $n\geq N$, we have

$$d_2(f, f_n) = \sqrt{\int_0^2 |f(x) - f_n(x)| dx}$$

$$= \sqrt{\int_0^{1/n^3} |f(x) - f_n(x)| dx + \int_{1/n^3}^2 |x - f_n(x)| dx}$$

$$= \sqrt{\int_0^{1/n^3} |x - n - (1 - n^4)x| dx + \int_{1/n^3}^2 |x - x| dx}$$

$$= \sqrt{\int_0^{1/n^3} |-n + n^4x| dx}$$

$$= \sqrt{\int_0^{1/n^3} n - n^4x dx}$$

$$= \sqrt{\frac{1}{2n^2}}$$

$$< \frac{1}{N}$$

Therefore, this sequence converges in $(C[0,2],d_2)$.

ii) Let $K = \mathbb{Z}_{\geq 0}$. Then, K is compact because give any open cover $C = \{U_{\lambda}\}_{\lambda \in \Lambda}$, we can choose a finite subcover as follows. Fix $U_{\lambda_0} \in C$. Since U_{λ_0} is open in $(\mathbb{Z}, \tau_{cofinite})$, $\mathbb{Z}\backslash U_{\lambda_0}$ is finite. So, $K\backslash U_{\lambda_0}$ is also finite. If $K\backslash U_{\lambda_0} = \emptyset$, we are done. Otherwise, write $K\backslash U_{\lambda_0} = \{x_1, \ldots, x_n\}$. For each $1 \leq i \leq n$, we can find a $U_{\lambda_i} \in C$ such that $x_i \in U_{\lambda_i}$. Finally, $\{U_{\lambda_0}, U_{\lambda_1}, \ldots, U_{\lambda_n}\}$ is the finite subcover we need. Now, the closed sets of $(\mathbb{Z}, \tau_{cofinite})$ are finite subsets and \mathbb{Z} . Since K is infinite and $K \subset \overline{K}$, we see that $\overline{K} = \mathbb{Z}$. But, K is not open in $\overline{K} = \mathbb{Z}$ because $\mathbb{Z}\backslash K = \mathbb{Z}_{<0}$ is infinite.

Question 3

a) For reference, $Z = \{f: [2,4] \to \mathbb{R}: \forall x \in [2,4], 4 \le f(x) \le 8\}$ We can define $F: Z \to Z$ by $F(f) = \left(x \mapsto \sqrt{f\left(\frac{x+2}{2}\right) + x + 10}\right)$ for any $f \in Z$. This map is well-defined because $\sqrt{f\left(\frac{x+2}{2}\right) + x + 10} \le \sqrt{8 + 4 + 10} < 8$ and $\sqrt{f\left(\frac{x+2}{2}\right) + x + 10} \ge \sqrt{4 + 2 + 10} > 4$ for any $x \in [2,4]$. Now, with respect to the supremum norm, we have

$$\begin{split} \sup_{x \in [2,4]} |F(f)(x) - F(g)(x)| &= \sup_{x \in [2,4]} \left| \sqrt{f\left(\frac{x+2}{2}\right) + x + 10} - \sqrt{g\left(\frac{x+2}{2}\right) + x + 10} \right| \\ &= \sup_{x \in [2,4]} \left| \frac{f\left(\frac{x+2}{2}\right) + x + 10 - g\left(\frac{x+2}{2}\right) - x - 10}{\sqrt{f\left(\frac{x+2}{2}\right) + x + 10} + \sqrt{g\left(\frac{x+2}{2}\right) + x + 10}} \right| \\ &= \sup_{x \in [2,4]} \left| \frac{f\left(\frac{x+2}{2}\right) - g\left(\frac{x+2}{2}\right)}{\sqrt{4 + 2 + 10} + \sqrt{4 + 2 + 10}} \right| \\ &= \sup_{x \in [2,3]} \left| \frac{f\left(x\right) - g\left(x\right)}{8} \right| \\ &\leq \frac{1}{8} \sup_{x \in [2,4]} |f\left(x\right) - g\left(x\right)| \,. \end{split}$$

So, F is a contraction map. Let B([2,4]) be the set of real valued bounded functions on [2,4]. Since $Z \subset B([2,4])$ and we know that B([2,4]) with the supremum norm is complete, all we have to show is that Z is closed to deduce that B([2,4]) is also complete. Let $(f_n)_{n\in\mathbb{N}}\subset Z$ be a sequence in Z that is convergent in B([2,4]). Denote its limit by f. Then, $4 \le f_n(x) \le 8$ for each $x \in [2,4]$. As $n \to \infty$, we have $4 \le f(x) \le 8$. So, $f \in Z$ which shows that Z is closed in B([2,4]). Hence, Z is complete. Finally, by Banach's fixed point theorem, there exists a unique $f \in Z$ such that F(f) = f. So, there is a unique $f \in Z$ such that

$$f(x)^2 = f\left(\frac{x+2}{2}\right) + x + 10$$

for all $x \in [2, 4]$.

b) The result is clear if $X = \emptyset$ or $Y = \emptyset$. So we shall assume that we are not in these cases. Fix $(z_1, z_2) \in (X \times Y)^a$. Then, for every open neighborhood U of (z_1, z_2) , we have

$$U \cap (X \times Y) \setminus \{(z_1, z_2)\} \neq \emptyset.$$

In particular, we can choose $U = A \times B$ where A and B are neighborhoods of z_1 and z_2 respectively. But,

$$\emptyset \neq (A \times B) \cap (X \times Y) \setminus \{(z_1, z_2)\} = (A \cap X) \times (B \cap Y) \setminus \{(z_1, z_2)\} = (A \setminus \{z_1\} \times Y) \cup (X \times B \setminus \{z_2\}).$$

So, $A\setminus\{z_1\}\times Y\neq\emptyset$ or $X\times B\setminus\{z_2\}\neq\emptyset$. Hence, $A\setminus\{z_1\}\neq\emptyset$ or $B\setminus\{z_2\}\neq\emptyset$. Suppose that $A\setminus\{z_1\}=A\cap(X\setminus\{z_1\})\neq\emptyset$ for all open neighborhood A of z_1 . Then, we have $z_1\in X^a$. Otherwise, if $A\setminus\{z_1\}=A\cap(X\setminus\{z_1\})=\emptyset$ for some A open neighborhood A of z_1 , then we can let B be arbitrary. So, $B\setminus\{z_2\}\neq\emptyset$ for any open neighborhood B of z_2 . Therefore, $z_2\in Y^a$. We have $z_1\in X^a$ or $z_2\in Y^a$. Therefore, $(z_1,z_2)\in(X^a\times Y)\cup(X\times Y^a)$. Hence, we have $(X\times Y)^a\subset(X^a\times Y)\cup(X\times Y^a)$.

Fix $(z_1, z_2) \in (X^a \times Y) \cup (X \times Y^a)$. So, we have $(z_1, z_2) \in X^a \times Y$ or $(z_1, z_2) \in X \times Y^a$. Suppose that $(z_1, z_2) \in X^a \times Y$. Then, $z_1 \in X^a$. So, for every open neighborhood A of z_1 , we have $A \setminus \{z_1\} = A \cap (X \setminus \{z_1\}) \neq \emptyset$. Now, let U be an arbitrary open neighborhood of (z_1, z_2) . Then, there exists open

neighborhoods A of z_1 and B of z_2 such that $(z_1, z_2) \in A \times B \subset U$. Therefore,

$$U \cap (X \times Y) \setminus \{(z_1, z_2)\} \supset (A \times B) \cap ((X \times Y) \setminus \{(z_1, z_2)\})$$

$$= (A \cap X) \times (B \cap Y) \setminus \{(z_1, z_2)\}$$

$$= (A \times B) \setminus \{(z_1, z_2)\}$$

$$= (A \setminus \{z_1\} \times Y) \cup (X \times B \setminus \{z_2\})$$

$$\neq \emptyset.$$

Since U is arbitrary, we have $(z_1, z_2) \in (X \times Y)^a$. A similar argument holds for $(z_1, z_2) \in X \times Y^a$. Finally, we have $(X^a \times Y) \cup (X \times Y^a) \subset (X \times Y)^a$.

Question 4

i) Denote $Z=\{x\in X: f(x)\neq g(x)\}$. Fix $x\in X\backslash Z$. Then, $f(x)\neq g(x)$. So, there exists open sets $U,V\subset Y$ such that $f(x)\in U,\ g(x)\in V$ but $U\cap V=\emptyset$. Since, f and g are continuous, $f^{-1}(U)$ and $g^{-1}(V)$ are both open in X. Now, $x\in f^{-1}(U)\cap g^{-1}(V)$ means that $f^{-1}(U)\cap g^{-1}(V)\neq\emptyset$. Furthermore, $f^{-1}(U)\cap g^{-1}(V)$ is open in X. Finally, $f^{-1}(U)\cap g^{-1}(V)\subset X\backslash Z$ because

$$x \in f^{-1}(U) \cap g^{-1}(V) \implies f(x) \in U, g(x) \in V$$

 $\implies f(x) \neq g(x)$
 $\implies x \notin Z.$

So, for every $x \in X \setminus Z$, we can find an open set $W = f^{-1}(U) \cap g^{-1}(V)$ such that $x \in W \subset (X \setminus Z)$. Hence, $X \setminus Z$ is open in X and so Z is closed in X.

ii) Take $X = \mathbb{R}$ with the usual topology and $Y = \mathbb{R}$ with the indiscrete topology. Since $\tau_Y = \{\emptyset, \mathbb{R}\}$, it is clearly non-Hausdorff. Then, take $F, G: X \to Y$ to be given by F(x) = 1 and

$$G(x) = \begin{cases} 1 & x > 0 \\ 0 & x \le 0 \end{cases}$$

for every $x \in \mathbb{R}$. Clearly, F and G are continuous (in fact any map $K: X \to Y$ is), and

$$\{x \in X : F(x) = G(x)\} = \mathbb{R}^+$$

is not closed in X.

Question 5

a) Note that [0,2] is compact. For each $x \in [0,2]$ and for any $n \in \mathbb{N}$, we have

$$0 \le g_n(x) = \frac{2\sqrt{x}}{n} + \int_0^x (f_n(t))^2 dt \le \frac{2\sqrt{2}}{n} + 9\int_0^x t^2 dt \le 2\sqrt{2} + 9\frac{x^3}{3} \le 2\sqrt{2} + 24.$$

Therefore, $\{g_n\}_{n\in\mathbb{N}}$ is a point-wise bounded (in fact uniformly bounded) family of functions. Furthermore, let $x\in[0,2]$ be arbitrary and let $\epsilon>0$ be given. Since $(x\mapsto\sqrt{x})$ is uniformly continuous on [0,2], there is a $\delta_1>0$ such that whenever $|x-y|<\delta$, we have $|\sqrt{x}-\sqrt{y}|\leq\frac{\epsilon}{4}$. Take $\delta=\min(\delta_1,\frac{\epsilon}{72})$. Then, for any $n\in\mathbb{N}$ and $y\in[0,2]$, whenever $|x-y|<\delta$,

$$|g_{n}(x) - g_{n}(y)| = \left| \frac{2\sqrt{x}}{n} + \int_{0}^{x} (f_{n}(t))^{2} dt - \frac{2\sqrt{y}}{n} - \int_{0}^{y} (f_{n}(t))^{2} dt \right|$$

$$\leq \left| \frac{2\sqrt{x}}{n} - \frac{2\sqrt{y}}{n} \right| + \left| \int_{0}^{x} (f_{n}(t))^{2} dt - \int_{0}^{y} (f_{n}(t))^{2} dt \right|$$

$$\leq \frac{2}{n} \left| \sqrt{x} - \sqrt{y} \right| + \left| \int_{x}^{y} (f_{n}(t))^{2} dt \right|$$

$$\leq \frac{2}{n} \times \frac{\epsilon}{4} + \left| \int_{x}^{y} 9t^{2} dt \right|$$

$$\leq \frac{\epsilon}{2} + 3 \left| y^{3} - x^{3} \right|$$

$$\leq \frac{\epsilon}{2} + 3 \left| (y - x)(x^{2} + xy + y^{2}) \right|$$

$$\leq \frac{\epsilon}{2} + 36\delta$$

$$\leq \epsilon.$$

Remark: To show that $(x \mapsto \sqrt{x})$ is uniformly continuous on [0,2], take $\delta = \epsilon^2$. Therefore, $\{g_n\}_{n \in \mathbb{N}}$ is a point-wise equicontinuous (in fact uniformly equicontinuous) family of functions. By the Arzela-Ascoli theorem, $(g_n)_{n \in \mathbb{N}}$ has a subsequence which converges uniformly to some continuous function on [0,2].

b) Denote $K:=\bigcap_{n\in\mathbb{N}}K_n$. Suppose that K is not connected. Then, there exists open sets $G,H\subset X$ such that $G\cap H\cap K=\emptyset$, $K\subset G\cup H$, $G\cap K\neq\emptyset$ and $H\cap K\neq\emptyset$. Since X is metrizable, we can choose G and H to be disjoint. But, for each $n\in\mathbb{N}$, K_n is connected. So, we have either $G\cap H\cap K_n\neq\emptyset$, $K_n\not\subset G\cup H$, $G\cap K_n=\emptyset$, or $H\cap K_n=\emptyset$. But, $G\cap K_n\supset G\cap K\neq\emptyset$ and $H\cap K_n\supset H\cap K\neq\emptyset$ so $G\cap K_n=\emptyset$ and $H\cap K_n=\emptyset$ are not possible. This leaves us with $G\cap H\cap K_n\neq\emptyset$ or $K_n\not\subset G\cup H$. Since G and G are chosen to be disjoint, we only have G and G are consecutive only have G and G are consecutive only have G and G are chosen to be disjoint, we only have G and G are consecutive of a compact set and is therefore also compact. Also, we have G are G and G are consecutive of a compact set and is therefore also compact. Also, we have G and G are consecutive of G and G are consecutive of a compact set and is therefore also compact. Also, we have G and G are consecutive of G and G are consecutive of a compact set and is therefore also compact. Also, we have G are consecutive of G and G are consecutive of G are consecutive of G and G are consecutive