Математические методы анализа текстов Лекция

Индустриальный ML-пайплайн на примере классификации текстов

Мурат Апишев (mel-lain@yandex.ru)

5 ноября, 2019

Как выглядит стандартный пайплайн

Решим продуктовую задачу

Контекст:

делаем сервис по агрегации новостного контента

Неформальная постановка задачи:

борьба с «чернушными» новостями

Формальная постановка задачи:

нужно придумать

Метод решения:

нужно придумать

Метрика:

нужно придумать

Внедрение:

открытый вопрос

Формализация постановки

- Прежде всего нужно решить, какая именно задача будет решаться
- В нашей ситуации задача очевидно делиться на две части:
 - ▶ создание классификатора «чёрного контента»
 - подбор стратегии работы с ним
- ► Нужно дать формальное описание текстового контента, который нужно уметь выявлять
- Попробуем для начала такое:
 - тексты, описывающие убийства, пытки и т.п.
 - тексты про бытовые конфликты, оскорбления
 - ► скандальные новости, низкосортный «жёлтый» контент
- Скорее всего, эти формулировки будут меняться в процессе решения, это нужно иметь ввиду

Метрика

- Важно с самого начала решить, по какой метрике будет вестись приёмка
- ▶ Приёмочные метрики классификатора: F1-мера, точность, полнота и ROC-AUC
- ▶ Бизнесу, как правило, эти числа неинтересны
- ▶ Важно не только то, как хорошо мы определяем «чёрный» контент, но и то, как мы пользуемся этим знанием в продакшене
- Метрики, по которым будет определяться стратегия показа выявленного контента, и будет целевой для всей системы
- Считают такие вещи обычно в А/Б-тесте
- Что это могут быть за метрики:
 - ► CTR
 - ▶ Доля жалоб на контент
 - Клики на рекламу
 - ▶ Все эти метрики в разных когортах пользователей
 - . . .

Предварительный итог

- Задача разделена на две последовательные части, есть общее видение решения
- Сперва будет строиться классификатор текстов, понятно, как измерять качество
- Дано первое определение целевого контента

Что дальше:

- найти данные
- определиться с предобработкой и фичами
- выбрать модели и обучить их
- ▶ убедиться, что всё ОК согласно и по метрике, и здравому смыслу

Данные

- Ключевое отличие академических курсов от реальной жизни отсутствие в общем случае данных для обучения
- Поскольку у нас новостной сервис, сырые данные есть
- Но для них нет разметки, как можно её получить?

Варианты:

- Поискать тексты, на которые были жалобы пользователей
- Изучить «чернушные» тексты и определить, какими словами они часто характеризуются
- Разметить часть документов руками
- ▶ Воспользоваться сервисом для разметки (Yandex.Toloka, Amazon Mechanical Turk)

Яндекс.Толока

- Сервис, объединяющий сообщество людей, делающих разметку, и их потенциальных заказчиков
- Предоставляет интерфейсы для решения большинства задача разметки:
 - Категоризация
 - ▶ Попарное сравнение
 - Сегментация изображений
 - Генерация текста
 - Разметка последовательности
 - **.**..
- Даёт возможности отбора размечающих, контроля качества разметки, отложенной оплаты и проч.
- ▶ Имеет API, вокруг которого можно написать библиотеки для автоматизации процессов загрузки данных и отгрузки результатов

Этапы работы с Толокой

Написание инструкции

Мы хотим показать текст и попросить выбрать класс

- Подготовка визуального шаблона
- Настройки фильтров пользователей и контроля качества

Выбираем наиболее качественных пользователей и ставим ограничения на количество ошибок и скорость разметки

Генерация и загрузка заданий в виде пулов

Собираем множество текстов на разметку, добавляем немного правильных ответов для онлайн-контроля разметки

- Запуск разметки, валидация результата, оплата
- Выгрузка и использование результатов

Но сперва...

- Прежде, чем тратить деньги на Толоку, нужно понять, что размечаем
- В нашей задаче классы очень несбалансированные
- ▶ Нельзя просто набрать случайные документы и отправить в разметку, получится слишком мало примеров целевого класса

Что можно сделать:

- Можем собрать грязную небольшую выборку с помощью регулярок и априорной информации
- ▶ Обучить на этом очень простую модель, например, лог-регрессию
- ▶ Прогнать через неё документы и набрать выборку для разметки из документов с низким значением уверенности

Возвращаясь к Толоке

Рассмотрим процесс разметки по шагам.

Написание инструкции: задание должно быть написано максимально чётко, всеобъемлюще, однозначно и с примерами, по возможности – кратко

Как надо писать:

В задании показывается текст, нужно определить, «чернушный» он или нет. Текст «чернушный», если он . . .

Как НЕ надо писать:

В данном задании Вам предстоит решать задачу классификации новостей. Классификация бинарная, то есть на два класса, один из которых назовём условно «чернушным»...

Подготовка визуального шаблона

Шаблоны

Шаблоны позволяют сформировать и запустить задания, исходя из ваших потребностей. Вы можете использовать шаблон как есть или адаптировать его под ваши входные данные и формат получаемых ответов.

Классификация

опциями

Категоризация текста с дополнительными

Предпросмотр

Настройка фильтров и контроля

- Ограничить качество пользователей
- ▶ Определить навыки пользователей (например, знание языка)
- Установить значение перекрытия для каждого задания (обычно 3-5)
- Ограничить число или долю ошибок относительно перекрытия
- Ограничить число или долю ошибок в капче (соответственно, выставить частоту капчи)
- ▶ Ограничить число или долю ошибок в проверочных заданиях
- Установить верхние и нижние границы времени на задание, банить за слишком быстрые ответы
- Установить стоимость выполнения заданий

Создание и загрузка пула

- Пул представляет собой набор заданий для разметки внутри текущего проекта
- Для его формирования нужно создать tsv-файл, в котором будут содержаться необходимые данные
- В нашем случае это могут быть колонки с текстом, его идентификатором и правильным ответом
- Ответ для большинства заданий будет пустым
- Задания, у которых он проставлен, будут считаться контрольными
- После загрузки пула с учётом перекрытия будут формированы итоговые страницы с заданиями и подсчитаны статистики

Запуск разметки и мониторинг

ЗАДАНИЯ ПУЛА (Пример загрузочного файла (tsv. кодировка UTF-8))

CTATUCTUKA ΠΥΠΑ

Предобработка данных

- Теперь у нас есть результаты разметки, с учётом перекрытия можно получить ответы, которым можно доверять
- Дальше начинается обычная предобработка:
 - Токенизация
 - Лемматизация
 - Фильтрация
 - ▶ Выделение N-грамм
 - **.**..
- Желательно сформировать обучающую выборку так, чтобы классы были представлены в примерно равных пропорциях
- Если даже после описанного выше способа организации разметки дисбаланс ещё существенный − можно аугментировать данные

Аугментация текстов (опционально)

- В простейшем случае можно делать перевзвешивание объектов, увеличивая веса объектов меньшего класса
- ▶ При наличии тезауруса с синсетами, можно делать случайные замены слов в текстах меньшего класса на синонимы
- При использовании сжатых векторных представлений текстов можно применять методы аугментации в линейном пространстве (SMOTE, ASMO)
- Для работы с несбалансированными выборками есть библиотека imbalanced-learn

Моделирование

- ▶ Базовая модель, с которой нужно начинать решение логистическая регрессия на «мешке слова» и TF-IDF
 - легковесная модель, быстрое обучение
 - вероятностная интерпретация выхода классификатора
 - интерпретируемость весов признаков
 - куча реализаций (sklearn, Vowpal Wabbit)
- Хороший вариант FastText
 - более сложная модель, но обучение всё равно быстрое и параллельное
 - строит хорошие векторные представления
 - работает с символьными N-граммами
 - ▶ можно работать из Python, C++, Java
- Ещё неплохо работают свёрточные сети
 - ▶ тоже работает на уровне символов и строит эмбеддинги
 - хорошо подходит для коротких документов
 - интегрируемость зависит от фреймворка

FastText как классификатор

- Сперва строятся эмбеддинги слов из обучающей коллекции
- Далее поверх них обучается классифицирующая сеть
- Входом являются усреднённые эмбеддинги слов документа

FastText: пример

Данные подаются в виде файла, каждый документ — одна строка вида __label__food-safety __label__acidity Dangerous pathogens capable of growing in acidic environments

Обучение и сохранение модели:

```
classifier = fasttext.supervised('data.train.txt', 'model')
```

Применение обученной модели к тестовым данным:

```
result = classifier.test('test.txt')
```

Наиболее вероятные классы (и их вероятности):

```
labels = classifier.predict(texts, k=3)
labels = classifier.predict_proba(texts, k=3)
```

CNN для текстов

- Для применения свёрточных сетей к текстам необходимо привести текст к матричному виду
- ▶ Для этого можно воспользоваться эмбеддингами
- ▶ Возьмём батчи фиксированного размера, при необходимости используем либо нарезку документов, либо, наоборот паддинг
- Для работы с текстами используются одномерные свёртки (вторая размерность всегда равна размерности эмбеддингов)

CNN для текстов

Следующий шаг, как и в свёрточных сетях для изображений – тах-пуллинг:

CNN для текстов

- Основная размерность свёрток может быть разной, что позволяет выделять признаки на N-граммах различной длины
- Идея в том, что наибольшее значение наиболее важного признака соответствует наиболее важной N-грамме текста
- ▶ Получить его можно с помощью тах-пуллинга, за счёт изменения backpropagation-ом весов свёрток для максимизации значения признака, наиболее влияющего на предсказание метки класса
- Число фильтров будет определять размерность выходного эмбеддинга текста, который далее передаётся в линейный слой с софтмаксом на выходе для предсказания тональности

Ну что, задача решена?

- Нет! По факту, ни одна из поставленных задач ещё не является решённой
- ▶ Мы обучили классификатор, но в продакшене он не протестирован
- ▶ Стратегия его применения тоже не отработана, бизнес-метрики не посчитаны
- Да и сам классификатор пока существует только в нашем ноутбуке
- Следующий шаг это интеграция, мониторинг и автоматизация

Звучит прикольно, а что это?

- Интеграция это внедрение решения в существующую инфраструктуру
- Например, у компании уже может быть система для оффлайнового обучения моделей и выкатки их в продакшн
- ▶ Тогда весь свой код нужно перенести в него + добавить туда нужные библиотеки, если их не хватает
- ▶ Мониторинг качество работы модели нужно измерять постоянно в онлайн-режиме, сигнализируя о проблемах
- ▶ Автоматизация очевидно, что почти все проделанные выше шаги будут повторяться многократно:
 - Разметка очередной порции данных
 - Дообучение классификатора
 - Валидация его качества
 - Выкатка новой версии модели в продакшн
 - Подбор порога бинаризации

Допустим, мы всё сделали правильно

- Система запущена, сама отправляет данные на разметку, дообучается, мониторит себя и выкатывает в продакшн
- ▶ Хотим использовать результаты для управления потоком показов
- Какие гипотезы можно пробовать проверять:
 - ▶ Попробуем полностью исключить «чернуху» из потока
 - ▶ Попробуем заменять такой контент на семантически близкий, но менее отталкивающий
 - Попробуем выделить пользователей, которые склонны к «чёрным» текстам, и показывать их только им
 - Попробуем этим же пользователям показывать больше подобного контента
- Принимаемся по какой-нибудь из метрик, например, СТР в А/Б-тесте
- В одной из групп улучшение получилось статистически значимым
- ► PROFIT!

Прошло два месяца...

- Уже неделю показы стабильно падают
- ▶ Смотрим мониторинг, видим, что дело в классификаторе «чёрного» контента
- ▶ Мониторинг показывает, что он выдаёт всё больше и больше положительных ответов
- Анализ показал, что банятся исторические тексты про войну, потому что в них много негатива
- Смотрим в календарь середина апреля, видимо, к 9 мая стали писать больше о ВОВ
- Расследование завершено, надо действовать

ML – процесс цикличный

- Возвращаемся к этапу формирования выборки
- ▶ Теми же методами формируем выборку для классификатора исторических текстов
- С его помощью корректируем выборку для классификатора «чёрного» контента
- Уточняем инструкцию в Толоке
- Прогоняем весь пайплайн проблема решена!

Какие в итоге выводы

- ▶ В индустриальных задачах собственно моделирование является самый быстрым и простым этапом решения
- Очень важно правильно сформулировать задачу, метрики и хотя бы примерно численно оценить пользу от решения
- Этап сбора и подготовки является ключевым, от качества данных по факту зависит практически всё
- ▶ Решить задачу это полдела, не менее важно внедрить решение, сделать его прозрачным, поддерживаемым и легко модернизируемым