Apuntes Detallados de Campo Electromagnético y Corrientes

10 de octubre de 2025

${\bf \acute{I}ndice}$

1.	Introducción al Electromagnetismo
	1.1. Carga Eléctrica y Ley de Coulomb
	1.2. Campo Eléctrico (\vec{E})
2.	Campo Magnético (\vec{B})
	2.1. Fuerza Magnética (Ley de Lorentz)
	2.2. Fuentes del Campo Magnético
	2.2.1. Ley de Biot-Savart
	2.2.2. Ley de Ampère
3.	Inducción Electromagnética
	3.1. Ley de Faraday de la Inducción
	3.2. Ley de Lenz
	3.3. Ecuaciones de Maxwell (Resumen)
4.	Corriente Continua (DC)
	4.1. Conceptos Básicos
	4.2. Ley de Ohm
	4.3. Potencia Eléctrica en DC
	4.4. Circuitos en DC (Leyes de Kirchhoff)
	4.4.1. Asociación de Resistencias
5.	Corriente Alterna (AC)
	5.1. Conceptos Fundamentales
	5.2. Valores Eficaces (RMS)

1. Introducción al Electromagnetismo

El electromagnetismo es la rama de la física que estudia las interacciones entre partículas con carga eléctrica en reposo (electrostática) y en movimiento (electrodinámica), así como los campos magnéticos que estas generan. Es una de las cuatro fuerzas fundamentales de la naturaleza.

1.1. Carga Eléctrica y Ley de Coulomb

La carga eléctrica es una propiedad intrínseca de la materia. Se mide en Coulombs (C). La **Ley de Coulomb** describe la fuerza (\vec{F}) entre dos cargas puntuales $(q_1 \ y \ q_2)$ separadas por una distancia r:

$$\vec{F} = k \frac{q_1 q_2}{r^2} \hat{r}$$

Donde k es la constante de Coulomb ($k \approx 9 \times 10^9 \,\mathrm{N} \cdot \mathrm{m}^2/\mathrm{C}^2$).

1.2. Campo Eléctrico (\vec{E})

El campo eléctrico es la región del espacio donde una carga de prueba q_0 experimenta una fuerza. Se define como la fuerza por unidad de carga:

$$\vec{E} = \frac{\vec{F}}{q_0}$$

Para una carga puntual Q:

$$\vec{E} = k \frac{Q}{r^2} \hat{r}$$

2. Campo Magnético (\vec{B})

El campo magnético se origina por cargas eléctricas en movimiento (corrientes) o por materiales magnetizados. Se mide en Teslas (T).

2.1. Fuerza Magnética (Ley de Lorentz)

Una carga q moviéndose con velocidad \vec{v} dentro de un campo magnético \vec{B} experimenta una fuerza \vec{F}_B :

$$\vec{F}_B = q(\vec{v} \times \vec{B})$$

Si consideramos también el campo eléctrico, la Fuerza de Lorentz total es:

$$\vec{F} = q(\vec{E} + \vec{v} \times \vec{B})$$

2.2. Fuentes del Campo Magnético

2.2.1. Ley de Biot-Savart

Esta ley permite calcular el campo magnético \vec{B} generado por un segmento infinitesimal $d\vec{l}$ de corriente I a una distancia r:

$$d\vec{B} = \frac{\mu_0 I}{4\pi} \frac{d\vec{l} \times \hat{r}}{r^2}$$

Donde μ_0 es la permeabilidad del vacío.

2.2.2. Ley de Ampère

La Ley de Ampère relaciona el campo magnético con la corriente eléctrica que lo produce. Su forma integral es:

$$\oint \vec{B} \cdot d\vec{l} = \mu_0 I_{\text{encerrada}}$$

Se utiliza para calcular \vec{B} en sistemas con alta simetría (solenoides, toroides, cables largos).

3. Inducción Electromagnética

La inducción es el fenómeno que vincula los campos eléctricos y magnéticos, mostrando que un campo magnético variable puede generar una corriente eléctrica.

3.1. Ley de Faraday de la Inducción

La Ley de Faraday establece que una fuerza electromotriz (FEM, \mathcal{E}) inducida en un circuito es igual al negativo de la tasa de cambio del flujo magnético (Φ_B) a través del circuito:

$$\mathcal{E} = -\frac{d\Phi_B}{dt}$$

Donde el flujo magnético es $\Phi_B = \int \vec{B} \cdot d\vec{A}$.

3.2. Ley de Lenz

El signo negativo en la Ley de Faraday es la **Ley de Lenz**, que establece que la corriente inducida siempre fluye en una dirección tal que su propio campo magnético se opone al cambio de flujo que la produjo.

3.3. Ecuaciones de Maxwell (Resumen)

Las cuatro ecuaciones de Maxwell son la base del electromagnetismo clásico, unificando todos los fenómenos eléctricos y magnéticos:

- 1. Ley de Gauss para el campo eléctrico.
- 2. Ley de Gauss para el campo magnético (no existen monopolos magnéticos).
- 3. Ley de Faraday de la inducción.
- 4. Ley de Ampère-Maxwell (incluye la corriente de desplazamiento).

4. Corriente Continua (DC)

La Corriente Continua (DC o CC) es el flujo de carga eléctrica que va en una sola dirección. Es producida por pilas, baterías y fuentes de alimentación DC.

4.1. Conceptos Básicos

- Corriente (I): Tasa de flujo de carga, $I = \frac{dQ}{dt}$. Se mide en Amperios (A).
- **Resistencia** (R): Oposición al flujo de corriente. Se mide en Ohmios (Ω).
- Voltaje (V): Energía potencial eléctrica por unidad de carga (FEM o diferencia de potencial). Se mide en Voltios (V).

4.2. Ley de Ohm

La Ley de Ohm es la relación fundamental entre estas tres magnitudes en un conductor óhmico:

$$V = I \cdot R$$

4.3. Potencia Eléctrica en DC

La potencia eléctrica (P) disipada por una resistencia:

$$P = V \cdot I = I^2 R = \frac{V^2}{R}$$

4.4. Circuitos en DC (Leyes de Kirchhoff)

- Ley de Corrientes (Nodo): La suma algebraica de las corrientes que entran en un nodo es cero. $\sum I_{\text{entrantes}} = \sum I_{\text{salientes}}$.
- Ley de Voltajes (Malla): La suma algebraica de las diferencias de potencial (voltajes) alrededor de cualquier lazo cerrado es cero. $\sum V = 0$.

4.4.1. Asociación de Resistencias

- Serie: $R_{\text{eq}} = R_1 + R_2 + \dots$
- Paralelo: $\frac{1}{R_{eq}} = \frac{1}{R_1} + \frac{1}{R_2} + \dots$

5. Corriente Alterna (AC)

La Corriente Alterna (AC o CA) es el flujo de carga que invierte su dirección periódicamente. Es la forma de electricidad que se distribuye a hogares e industrias.

5.1. Conceptos Fundamentales

La variación temporal de voltaje y corriente en AC es típicamente sinusoidal:

$$v(t) = V_{\text{máx}} \sin(\omega t + \phi)$$

Donde:

- $V_{\text{máx}}$: Voltaje pico o amplitud.
- $\omega = 2\pi f$: Frecuencia angular (en rad/s).
- f: Frecuencia (en Hz). En muchos países f = 50 o 60 Hz.

5.2. Valores Eficaces (RMS)

Para comparar la potencia de AC con DC, se utiliza el valor cuadrático medio (RMS, por sus siglas en inglés).