安徽大学 2023—2024 学年第一学期

《概率论与数理统计 A》期末模拟题(一)

—、	冼择颙	(每小题3分,	共 15 分)

- 1. 将一枚均匀的硬币连续抛两次,以A表示事件"正面最多出现一次",以B表示事件"正面和反面各出现一次",则()
- (A) $A \subset B$; (B) A 与 B 互斥; (C) A 与 B 互不相容; <math>(D) A 与 B 不独立
- 2. 设两个相互独立的随机变量 X 和 Y 的方差分别是 4 和 2,则随机变量 3X 2Y 的方差是 ()。
- (A)44; (B)28; (C)16; (D)8.
- 3. 已知总体 X 的期望为 0,方差为 σ^2 . 从总体 X 中抽取容量为 n 的简单随机样本,其样本均值和样本方差分别为 \overline{X} , S^2 . 记 $S_k^2 = \frac{n}{k} (\overline{X})^2 + \frac{1}{k} S^2$ (k = 1, 2, 3, 4),则()。
- (A) $E(S_1^2) = \sigma^2$; (B) $E(S_2^2) = \sigma^2$; (C) $E(S_3^2) = \sigma^2$; (D) $E(S_4^2) = \sigma^2$
- **4** . 设 X_1, X_2, \dots, X_n $(n \ge 2)$ 为 来 自 总 体 N(0,1)的简单随机样本, \overline{X} 为样本均值, S^2 为样本方差,则()。

$$(A)n\overline{X} \sim N(0,1);$$
 $(B)nS^2 \sim \chi^2(n);$ $(C)\frac{(n-1)\overline{X}}{S} \sim t(n-1);$ $(D)\frac{(n-1)X_1^2}{\sum_{i=2}^n X_i^2} \sim F(1,n-1).$

- 5. 设总体 $X \sim N(\mu, \sigma^2)$ (σ^2 已知),则在给定样本容量 n 及置信度 $1-\alpha$ 的情况下,未知参数 μ 的置信区间长度随着样本均值 \overline{X} 的增加而 ()。
- (A)不变; (B)增加; (C)减少; (D)不能确定增加或减少。

二、填空题(每小题3分,共15分)

- 6. 一批产品共有8个正品和2个次品,任意抽取两次,每次抽一个,抽出后不再放回.则第二次抽出的是次品的概率_____.
- 7. 设随机变量 X 和 Y 相互独立,且均服从区间 [0,3] 上的均匀分布,则 $P\{\max\{X,Y\}\leq 1\}=$ _____。
- 8. 设二维随机变量 $(X,Y) \sim N(1,1;2,4;0)$,则 $D(XY) = _____$ 。
- 9. 设随机变量 X 和 Y 的相关系数为 0.9,若 Z=X-0.4,则 Y 和 Z 的相关系数为____。
- 10. 设随机变量 X 的数学期望 E(X)=75 ,方差 D(X)=5 ,由根据切比雪夫不等式估计得

 $P(|X-75| \ge k) \le 0.05$,则 k 为_____。

三、计算题(每小题10分,共50分)

- 11. 设连续型随机变量 X 的分布函数为: $F(x) = \begin{cases} 0, & x < -1 \\ a + b \arcsin x, -1 < x \le 1 \\ 1, & x > 1 \end{cases}$
- (1) 试确定常数a,b; (2) 求 $P\{-1 < X < \frac{1}{2}\}$; (3) 求X的密度函数;
- 12. 设 A、 B 为两个随机事件,且 $P(A) = \frac{1}{4}$, $P(B|A) = \frac{1}{3}$, $P(A|B) = \frac{1}{2}$, 令

$$X = \begin{cases} 1, & A$$
发生 $\\ 0, & A$ 不发生 \end{cases} $Y = \begin{cases} 1, & B$ 发生 $\\ 0, & B$ 不发生 \end{cases}

求: (1) 二维随机变量(X,Y)的概率分布; (2) X与Y的相关系数 ρ_{XY} ;

(3) $Z = X^2 + Y^2$ 的概率分布。

13. 设二维随机变量
$$(X,Y)$$
的概率密度为 $f(x,y) = \begin{cases} 1, & 0 < x < 1, 0 < y < 2x \\ 0, & 其他 \end{cases}$

求: (1) (X,Y)的边缘概率密度 $f_X(x)$, $f_Y(y)$; (2) Z = 2X - Y的概率密度 $f_Z(z)$ 。

14. 设
$$(X,Y)$$
的概率密度为 $f(x,y) = \begin{cases} 12e^{-3x-4y}, & x>0, y>0 \\ 0, & 其他 \end{cases}$, 求

- (1) 随机变量 X, Y 的边缘密度函数; (2) $P(0 < X \le 1, 1 < Y \le 2)$.
- 15. 设总体 X 的概率分布为

X	0	1	2	3
P	$ heta^2$	$2\theta(1-\theta)$	θ^2	$1-2\theta$

其中是 θ $\left(0<\theta<\frac{1}{2}\right)$ 未知参数,利用总体X的如下样本值 3,1,3,0,3,1,2,3,求 θ 的矩估计值和最大似然估计值。

四、应用题(每小题10分,共10分)

16. 设某次考试的考生成绩服从正态分布,从中随机地抽取 36 位考生的成绩,算得平均成绩为 66.5 分,标准差为 15 分,问在显著水平 0.05 下,是否可以认为这次考试全体考生的平均成绩为 70 分?并给出检验过程。

五、证明题(每小题10分,共10分)

17. 设二维随机变量(X,Y)的概率分布为

X	-1	0	1
-1	$\frac{1}{3}$	0	0

0	0	$\frac{1}{3}$	0
1	0	0	$\frac{1}{3}$

证明: $X 与 Y^2$ 不独立也不相关.