

## **ESCUELA POLITÉCNICA NACIONAL**

## FACULTAD DE CIENCIAS ESTADÍSTICA MATEMÁTICA DEBER 03



Fecha entrega: 2015/07/14

## **EJERCICIOS**

1. Suponga que  $X_1, \ldots, X_n$  son variables aleatorias *i.i.d.* con función de densidad:

$$f(x; \theta_1, \theta_2) = \begin{cases} a(\theta_1, \theta_2)h(x), & \text{si } \theta_1 \le x \le \theta_2, \\ 0, & \text{caso contrario.} \end{cases}$$

donde h(x) > 0 es una función continua, conocida, definida en los reales.

- **a.** Muestre que  $X_{(1)}, X_{(n)}$  son MLEs de  $\theta_1, \theta_2$  respectivamente.
- **b.** Sean  $\hat{\theta}_{1n}$  y  $\hat{\theta}_{2n}$  MLEs de  $\theta_1$  y  $\theta_2$ , suponga que  $h(\theta_1)\lambda_1 > 0$  y  $h(\theta_2) = \lambda_2 > 0$ . Muestre que:

$$n \begin{pmatrix} \hat{\theta}_{1n} - \theta_1 \\ \theta_2 - \hat{\theta}_{2n} \end{pmatrix} \overrightarrow{d} \begin{pmatrix} Z_1 \\ Z_2 \end{pmatrix}$$

donde  $Z_1$  y  $Z_2$  son variables independientes exponenciales de parámetros  $\lambda_1 a(\theta_1, \theta_2)$  y  $\lambda_2 a(\theta_1, \theta_2)$  respectivamente.

**2.** Sean  $X_1, \ldots, X_n$  variables aleatorias *i.i.d.* con función de densidad dependiente de un parámetro  $\theta > 0$  desconocido:

$$f(x;\theta) = \frac{x}{\theta^2} e^{-x/\theta}$$
  $x > 0$ 

- **a.** Encuentre el MLEs de  $\theta$  basado en  $X_i$  y en  $X_1, \ldots, X_n$ .
- **b.** Encuentre el MLEs de  $k\theta$  basado en  $X_1, \ldots, X_n$ , para k una constante conocida.
- c. Encuentre la distribución asintótica del MLEs de  $k\theta$  basado en  $X_1, \ldots, X_n$  y su error estándar.
- 3. Sean  $X_1, ..., X_n$  variables aleatorias independientes y uniformemente distribuidas en el intervalo  $[0, \theta]$ , con  $\theta$  desconocido.
  - a. Halle el estadístico de máxima verosimilitud  $\hat{\theta}$  para  $\theta$ .

- **b.** Halle la función de distribución de la variable aleatoria  $\hat{\theta}$ .
- **c.** Calcule la esperanza y la varianza de  $\hat{\theta}$ .
- **d.** Calcule  $E[(\hat{\theta} \theta)^2]$ .
- **4.** Sean  $X_1, \ldots, X_n$  variables aleatorias i.i.d. con función de densidad:

$$f(x;\theta) = \frac{1}{\sigma} exp\left(-\frac{x-\mu}{\sigma}\right)$$
  $para \ x \ge \mu$ 

donde  $\theta = (\mu, \sigma^2), \, \mu \in (-\infty, \infty)$  y  $\sigma > 0$ .

- a. Si  $\sigma=1$  y  $\mu$  desconocido encuentre y grafique la función de verosimilitud. Halle un MLE para  $\mu$ .
- **b.** Si  $\mu = 2$  y  $\sigma$  es desconocido, halle un MLE para  $\sigma$ .
- 5. Sean  $X_1, \ldots, X_n$  variables aleatorias i.i.d. con función de densidad:

$$f(x; \alpha, \beta) = \alpha^{\beta} \beta x^{-(\beta+1)}$$
  $para 0 < \alpha < x y \beta > 0.$ 

- a. Si  $\alpha$  es conocido y  $\beta$  desconocido, encuentre un MLE para  $\beta$ , halle su distribución asintótica y encuentre su error estándar.
- **b.** Si  $\beta$  es conocido y  $\alpha$  desconocido, encuentre un MLE para  $\alpha$ .
- 6. Considere el modelo de regresión lineal múltiple definido como:

$$Y_i = \beta_1 + \beta_2 x_{i2} + \beta_3 x_{i3} + \dots + \beta_k x_{ik} + u_i$$
 para  $i = 1, \dots, n$ .

Suponiendo que  $u_i \rightsquigarrow N(0, \sigma^2), u_1, \ldots, u_n$  independientes, encuentre MLEs para  $\beta_1, \ldots, \beta_k$  basados en  $Y_1, \ldots, Y_n$ , considerando los regresores  $X_2, \ldots, X_k$  no aleatorios.