Vyhľadávanie reťazcov v textoch I

Problém

Text:

Reťazec:

Úloha: nájsť všetky výskyty daného reťazca v danom texte.

Použitie

- textové editory,
- internetové vyhľadávače,
- filtre na slová v správach pre spravodajské služby,
- prehľadávanie DNA
- . . .

Označenia

```
\Sigma abeceda T[1..n] text dĺžky n znakov, T[i] in\Sigma
```

Ak T[s+1..s+m] = P[1..m], hovoríme o výskyte reťazca P v texte T na pozícii s+1, resp. o výskyte reťazca s posunutím s.

P[1..m] vyhľadávaný reťazec dĺžky m znakov, $P[i] \in \Sigma$, m < n

Označenia

- Σ abeceda
- Σ^* množina všetkých konečných reťazcov zo znakov abecedy Σ
- ε prázdny reťazec
- xy zreťazenie reťazcov x, y
- |x| dĺžka reťazca xPlatí |xy| = |x| + |y|.

Prefix reťazca

Definition

Hovoríme, že w je prefixom reťazca x, označujeme $w \sqsubset x$, ak $|w| \le |x|$ a x = wy pre nejaký $y \in \Sigma^*$.

Example

Reťazec po je prefixom reťazca počítač.

Suffix reťazca

Definition

Hovoríme, že w je suffixom reťazca x, označujeme $w \sqsupset x$, ak $|w| \le |x|$ a x = yw pre nejaký $y \in \Sigma^*$.

Example

Reťazec lýza je suffixom reťazca analýza.

Prefix a suffix reťazca

Prázdny reťazec ε je prefixom i suffixom každého reťazca.

 \square , \square sú tranzitívne relácie.

Veta o prekrývajúcom suffixe

Theorem

Nech $x, y, z \in \Sigma^*$ sú také reťazce, že $x \supset z$ a $y \supset z$. Potom:

- $ak |x| \leq |y|$, $tak x \supset y$,
- $ak |x| \ge |y|$, $tak y \supset x$,
- ak |x| = |y|, tak x = y.

Známe algoritmy na vyhľadávanie reťazcov v textoch

Algoritmus	Zlož.prípr.fázy	Zlož.vyhľadávania
Naivný	0	$\overline{\mathcal{O}((n-m+1)m)}$
Rabin-Kapr	$\Theta(m)$	$\mathcal{O}((n-m+1)m)$
Konečný automat	Theta $(m \Sigma)$	$\Theta(n)$
Knuth-Morris-Pratt	$\Theta(m)$	$\Theta(n)$

Naivný algoritmus

```
Naive-string-matching (T, P)
  n = length(T);
  m = length(P);
  for (s = 0; s \le n - m; s + +) {
    zhoda=1:
    for (i = 1; i <= m; i + +)
      if (P[i]! = T[s+i]) zhoda=0;
    if (zhoda)
      print "Výskyt reťazca s posunutím", s
```

Naivný algoritmus

Výpočtová zložitosť: $\mathcal{O}((n-m+1)m)$.

Prečo?

Aký je najhorší prípad?

Aký je najlepší prípad?

V čom tkvie neefektivita naivného algoritmu?

$$\Sigma = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}.$$

$$P[1..m] \rightarrow p, p \in N.$$

$$T[s+1..s+m] \rightarrow t_s, \ t_s \in N, \ s=0,1,2,\ldots,n-m.$$

Zrejme:

$$t_s = p \Leftrightarrow T[s+1..s+m] = P[1..m].$$

Výpočet *p*: pomocou Hornerovej schémy.

$$p = P[m] + 10(P[m-1] + 10(P[m-2] + \cdots + 10(P[2] + 10P[1]) \dots)).$$

Výpočtová zložitosť: $\Theta(m)$.

Podobne výpočet t₀:

$$t_0 =$$

$$T[m] + 10(T[m-1] + 10(T[m-2] + \cdots + 10(T[2] + 10T[1]) \cdots)).$$

Výpočet
$$t_{s+1}$$
 pomocou t_s :
 $t_{s+1} = 10(t_s - 10^{m-1}T[s+1]) + T[s+m+1].$

 $t_1, t_2, \ldots, t_{n-m}$ možno počítať počas samotného hľadania.

```
Rabin-Karp-matching 1(T, P)
  n = length(T);
  m = length(P);
  // prípravná fáza
  p=0;
  t_0 = 0:
  for (s = 1; s \le m; ++s) {
    p = 10p + P[s];
    t_0=10t_0+T[s];
```

Rabin-Karp algoritmus 1 (pokračovanie)

Teoreticky očakávaná výpočtová zložitosť:

prípravná fáza: $\Theta(m)$, hľadanie: $\Theta(n-m+1)$.

Prax:

 p,t_s môžu byť veľké čísla, t.j. predpoklad, že operácie s nimi možno vykonať v jednotkovom čase nie je správny.

```
Riešenie:
```

počítať p, t_s modulo vhodný modul q.

Problém tohto riešenia:

 $t_s \equiv p \pmod{q}$ neimplikuje $t_s = p$.

(V takomto prípade treba porovnať znaky reťazca so znakmi textu pri danom posunutí.)

Avšak platí:

$$t_s \neq p \pmod{q} \Rightarrow t_s \neq p.$$

Vo všeobecnosti: d-árna abeceda $\{0,1,2,\ldots,d-1\}$. Volíme q tak, aby sa dq zmestilo do registra PC. $t_{s+1}=(d(t_s-hT[s+1])+T[s+m+1])\mod q$. $h\equiv d^{m-1}\pmod q$.

```
Rabin-Karp-matching2(T, P, d, q)
  n = length(T);
  m = length(P);
  h = d^{m-1} \mod a:
  p = 0:
  t_0 = 0:
  // prípravná fáza
  for (i = 1; i <= m; ++ i) {
    p = (dp + P[i]) \mod q;
    t_0 = (dt_0 + T[i]) \bmod q;
```

Rabin-Karp algoritmus 2 (pokračovanie)

```
Teoreticky očakávaná výpočtová zložitosť: prípravná fáza: \Theta(m), hľadanie (najhorší prípad): \Theta(n-m+1)m.
```

Prax:

očakáva sa len malý počet (c) výskytov hľadaného reťazca hľadanie: $\mathcal{O}((n-m+1)+cm)$

Príklad - Rabin-Karp algoritmus 2

$$q = 11$$

 $T = 3141592653589793$
 $P = 26$ $p = 26$ mod $11 = 4$

r = 20, p = 20 mod 11 = 4									
S	0	1	2	3	4	5	6	7	
T[s+1,s+2]	31	14	41	15	59	92	26	65	
t_s	9	3	8	4	4	4	4	10	
S	8	9	10	11	12	13	14		
T[s+1,s+2]	53	35	58	89	97	79	93		
t_s	9	2	3	1	9	2	5		