Estimadores y su distribución

Contents

1	Población y muestra	1
2	Estimadores puntuales de los parámetros del modelo	1
3	Distribución en el muestreo de los estimadores puntuales	2
	3.1 Distribución de los datos	2
	3.2 Distribución del estimador de β	9
	3.3 Distribución del estimador de σ^2	4

1 Población y muestra

Queremos estudiar la relación entre la variable y y los regresores x_1, x_2, \ldots, x_k . Y queremos obtener **conclusiones generales**. Para ello suponemos que dicha relación viene dada por el siguiente modelo estadístico:

$$y_i = \beta_0 + \beta_1 x_{1i} + \ldots + \beta_k x_{ki} + u_i, \quad u_i \sim N(0, \sigma^2) \quad i = 1, 2, \ldots, N$$

- El modelo nos permite obtener conclusiones generales. Dichas conclusiones son válidas en el conjunto de tamaño N, conocida como **población**.
- Los parámetros del modelo $\beta_0, \beta_1, \dots, \beta_k, \sigma^2$ son desconocidos y no so pueden calcular porque no conocemos toda la población.
- Para trabajar con dicho modelo tenemos un conjunto de datos de $y_i, x_{1i}, \ldots, x_{ki}, i = 1, 2, \ldots, n$, donde n < N. A estos datos se le conoce como **muestra**.

2 Estimadores puntuales de los parámetros del modelo

El modelo de la población tiene (k+2) parámetros: $\beta_0, \beta_1, \dots, \beta_k, \sigma^2$. Lo primero que haremos es estimar un valor para dichos parámetros.

Se denomina **estimador de un parámetro** a cualquier expresión que asigna un valor a dicho parámetro. Y se denomina **estimación** al valor asignado.

Por ejemplo, podríamos utilizar los siguientes estimadores (se indica poniendo el símbolo $\hat{\Box}$):

$$\hat{\beta}_k = \bar{x}_k, \ \hat{\sigma} = Var(y)$$

En cualquier caso, las estimaciones se tienen que calcular con los datos disponibles, la muestra. Sin embargo, unos estimadores tienen mejores propiedades que otros. Nosotros vamos a utilizar como estimadores los valores calculados con máxima verosimilitud, ya que son estimadores insesgados y con varianza mínima:

$$\hat{\beta} = \begin{bmatrix} \hat{\beta}_0 \\ \hat{\beta}_1 \\ \dots \\ \hat{\beta}_k \end{bmatrix} = (X^T X)^{-1} (X^T y)$$

El estimador de σ se define como:

$$\hat{\sigma} = \sqrt{\frac{\sum e_i^2}{n - k - 1}}$$

donde k es el número de regresores.

3 Distribución en el muestreo de los estimadores puntuales

El hecho de considerar un modelo con variables aleatorias hace que los estimadores sean variables aleatorias:

$$u_i \sim Normal \Rightarrow y_i \sim Normal$$

Como

$$\hat{\beta} = (X^T X)^{-1} X^T y \Rightarrow \hat{\beta} \sim Normal$$

Según el modelo, y_i son variables aleatorias. Y como los estimadores se calculan a partir de y_i , también son variables aleatorias. Por tanto tienen distribución de problabilidad. En los siguientes apartados se calcula dicha distribución, que se conoce como distribución en el muestreo.

3.1 Distribución de los datos

Como hemos visto en el apartado anterior, el modelo general es:

$$y_i = \beta_0 + \beta_1 x_{1i} + \dots + \beta_k x_{ki} + u_i, \quad u_i \sim N(0, \sigma^2), \quad i = 1, \dots, n$$

En forma matricial

$$y = X\beta + u, \quad u \sim N(0, \sigma^2 I)$$

Como $u \sim Normal$, debido a las propiedades de la distribución normal, $y \sim Normal$. Concretamente:

$$y \sim N(X\beta, \sigma^2 I)$$

ya que:

$$E[y] = E[X\beta + u] = X\beta$$

$$Var[y] = Var[X\beta + u] = \sigma^2 I$$

3.2 Distribución del estimador de β

3.2.1 Con matrices de datos

La ecuación de los estimadores es

$$\hat{\beta} = (X^T X)^{-1} (X^T y)$$

Si consideramos variables aleatorias en lugar de datos obtenemos la distribución de los estimadores:

$$\hat{\beta} \sim N(\beta, \sigma^2(X^T X)^{-1})$$

ya que

$$y \sim Normal \Rightarrow \hat{\beta} \sim Normal$$

$$E[\hat{\beta}] = E[(X^T X)^{-1} X^T y] = (X^T X)^{-1} X^T E[y] = (X^T X)^{-1} X^T X \beta = \beta$$

$$Var[\hat{\beta}] = Var[(X^TX)^{-1}X^Ty] = (X^TX)^{-1}X^TVar[Y]((X^TX)^{-1}X^T)^T = \sigma^2(X^TX)^{-1}$$

3.2.2 Con matrices de covarianzas

Si en lugar de utilizar las matrices $(X^TX)^{-1}$ y (X^Ty) utilizamos matrices de varianzas y convarianzas, los estimadores son:

$$\hat{\beta}_a = S_{XX}^{-1} S_{Xy} = \left(\frac{1}{n-1} X_a^T X_a\right)^{-1} \left(\frac{1}{n-1} X_a^T Y_a\right) = \left(X_a^T X_a\right)^{-1} \left(X_a^T Y_a\right)$$

donde $\hat{\beta}_a = [\hat{\beta}_1 \ \hat{\beta}_2 \ \cdots \ \hat{\beta}_k]^T$. Por tanto hay que obtener la distribución de y_a . El modelo generador de datos es:

$$y_i = \beta_0 + \beta_1 x_{1i} + \beta_2 x_{2i} + \dots + \beta_k x_{ki} + u_i, \ i = 1, 2, \dots, n$$

Teniendo en cuenta que:

$$\bar{y} = \beta_0 + \beta_1 \bar{x}_1 + \beta_2 \bar{x}_2 + \dots + \beta_k \bar{x}_k$$

y restando ambas ecuaciones se obtiene:

$$y_i - \bar{y} = \beta_1(x_{1i} - \bar{x}_1) + \beta_2(x_{2i} - \bar{x}_2) + \dots + \beta_k(x_{ki} - \bar{x}_k) + u_i, \ i = 1, 2, \dots, n$$

Estas n ecuaciones se pueden expresar en forma matricial de la misma forma que hicimos antes, obteniendo:

$$y_a = X_a \beta_a + u, \quad u \sim N(0, \sigma^2 I)$$

Por tanto,

$$y_a \sim N\left(X_a\beta_a, \sigma^2 I\right)$$

Ahora se puede demostrar que

$$\hat{\beta}_a \sim N\left(\beta_a, \frac{\sigma^2}{n-1} S_{XX}^{-1}\right)$$

ya que

$$y_a \sim Normal \Rightarrow \hat{\beta}_a \sim Normal$$

$$E[\hat{\beta}_a] = E[(X_a^T X_a)^{-1} X_a^T y_a] = (X_a^T X_a)^{-1} X_a^T E[y_a] = (X_a^T X_a)^{-1} X_a^T X_a \beta_a = \beta_a$$

$$Var[\hat{\beta}_a] = Var[(X_a^T X_a)^{-1} X_a^T y_a] = (X_a^T X_a)^{-1} X_a^T Var[y_a] ((X_a^T X_a)^{-1} X_a^T)^T = \sigma^2 (X_a^T X_a)^{-1} X_a^T Var[y_a] ((X_a^T X_a)^{-1} X_a^T)^T = \sigma^2 (X_a^T X_a)^{-1} X_a^T Var[y_a] ((X_a^T X_a)^{-1} X_a^T)^T = \sigma^2 (X_a^T X_a)^{-1} X_a^T Var[y_a] ((X_a^T X_a)^{-1} X_a^T)^T = \sigma^2 (X_a^T X_a)^{-1} X_a^T Var[y_a] ((X_a^T X_a)^{-1} X_a^T)^T = \sigma^2 (X_a^T X_a)^{-1} X_a^T Var[y_a] ((X_a^T X_a)^{-1} X_a^T)^T = \sigma^2 (X_a^T X_a)^{-1} X_a^T Var[y_a] ((X_a^T X_a)^{-1} X_a^T)^T = \sigma^2 (X_a^T X_a)^{-1} X_a^T Var[y_a] ((X_a^T X_a)^{-1} X_a^T)^T = \sigma^2 (X_a^T X_a)^{-1} X_a^T Var[y_a] ((X_a^T X_a)^{-1} X_a^T)^T = \sigma^2 (X_a^T X_a)^{-1} X_a^T Var[y_a] ((X_a^T X_a)^{-1} X_a^T)^T = \sigma^2 (X_a^T X_a)^{-1} X_a^T Var[y_a] ((X_a^T X_a)^{-1} X_a^T)^T = \sigma^2 (X_a^T X_a)^{-1} X_a^T Var[y_a] ((X_a^T X_a)^{-1} X_a^T Var[$$

Finalmente:

$$S_{XX} = \frac{1}{n-1} X_a^T X_a \Rightarrow (X_a^T X_a)^{-1} = \frac{1}{n-1} S_{XX}^{-1}$$

Faltaría el estimador de β_0 que se obtiene con la ecuación

$$\hat{\beta}_0 = \bar{y} - \bar{x}^T \hat{\beta}_a$$

dónde $\bar{x} = [\bar{x}_1 \ \bar{x}_2 \ \cdots \ \bar{x}_n]^T$. Se puede demostrar que

$$\hat{\beta}_0 \sim N\left(\beta_0, \sigma^2\left(\frac{1}{n} + \frac{1}{n-1}\bar{x}^T S_{XX}^{-1}\bar{x}\right)\right)$$

ya que:

$$\bar{y} \sim N\left(\beta_0 + \bar{x}^T \beta_a, \frac{\sigma^2}{n}\right)$$

3.3 Distribución del estimador de σ^2

El modelo tiene un parámetro más, la varianza de los errores, σ^2 . Este parámetro también hay que estimarlo. Se puede demostrar que

$$\frac{\sum e_i^2}{\sigma^2} \to \chi_{n-k-1}^2$$

donde n es el número de observaciones y k es el número de regresores. Por ello se propone el siguiente estimador

$$\hat{\sigma}^2 = \frac{\sum e_i^2}{n - k - 1}$$

ya que es un estimador insesgado de σ^2 . Efectivamente

$$E[\hat{\sigma}^2] = E\left[\frac{\sum e_i^2}{n - k - 1}\right] = \sigma^2$$

ya que $E[\chi_n^2] = n$. Al término $\sum e_i^2/(n-k-1)$ también se lo conoce como **varianza residual** y se representa por \hat{s}_R^2 .

$$\hat{s}_R^2 = \frac{\sum e_i^2}{n - k - 1}$$

A la raiz cuadrada se le conoce como **residual standard error**. El término (n-k-1) son los *grados de libertad*. La distribución en el muestreo de la varianza residual es

$$\frac{\sum e_i^2}{\sigma^2} \to \chi^2_{n-k-1} \Rightarrow \frac{(n-k-1)\hat{s}_R^2}{\sigma^2} \to \chi^2_{n-k-1}$$