Knowledge Processing with Neural Networks

Lecture 9 Visual Frame of Reference Transformations

http://www.informatik.uni-hamburg.de/WTM/

Generative Models – Summary

- hierarchical visual system with growing abstraction
- weight matrices transform the representations
- generative model for learning
- prior constraints on hidden encoding:
 - few hidden neurons PCA
 - weight constraints
 - sparse hidden activations ICA
 - non-negativity NMF
 - denoising
 - winner code vector quantization,
 K-means, Kohonen

- innate face preferences
- peripheral / foveal preferences
- slow / fast responses

Size of Visual Areas

Receptive Field Sizes at 5° eccentricity

Invariances in Visual Areas

Invariances in V1

- Complex Cells in V1 are orientation selective (like Simple Cells), but fire independent of spatial phase (e.g. if a black/white edge turns to white/black)
- Cannot be explained by linear superposition of receptive fields, or of linear responses (both would result to zero)

Non-Generative Models: Invariances

- Non-linear simple cell:
- if simple cell 1 fires, simple cell 2 will be OFF
 - construct a 2nd-layer complex cell that fires in both cases:
 2nd-layer neuron sums output of simple cells 1 & 2
 (HMAX operator may be useful)
 - → 2nd-layer neuron is orientation-selective, but shift-invariant

Fukushima's Neocognitron

alternating layers of feature-detecting S-cells (simple-like) and C-cells (complex-like) over the hierarchy of the visual system

Slow Feature Analysis

Hidden layer pre-determined

$$s^{hid} = ((s_1^{in})^2, s_1^{in} s_2^{in}, s_1^{in} s_3^{in}, ..., (s_n^{in})^2)$$

Linear "invariant" output

$$S_j^{inv} = \sum w_{jk}^{inv} S_k^{hid}$$

Output shall^k change slowly

$$\left\langle \frac{\partial s_{j}^{inv}}{\partial t} \right\rangle_{t}^{!} = \min$$

Constraints: $\langle s_j^{inv} \rangle_t = 0$ (zero mean)

$$\left\langle (s_j^{inv})^2 \right\rangle_t = 1 \text{ (unit variance)}$$

$$\forall i < j : \left\langle s_i^{inv} s_j^{inv} \right\rangle_t = 0$$
 (decorrelation and order)

 \rightarrow Obtain w^{inv} using linear algebra

Place Cells

Robot turns a lot ⇒ direction-independent place fields

Invariant Representations – Summary

- learning invariances by temporal averaging ("trace rule", "slowness")
- spatial transformations: shift, scale, rotation, shape
- other transformations: light, shading, color
- information loss no strict generative model
- need to code features and their transformations
 - "what & where" models (for the shift-transformation)
 - 3-way model needed:
 - Input
 - what's there
 - where is it / where do I want to look

Dynamic Routing

- rich physical connectivity must exist
- sparse "logical" connectivity dynamically activated
- partial routing between layers full routing over entire hierarchy

Dynamic Routing

$$I_i^{out} = \sum_k \sum_j W_{ijk} c_k I_j^{in}$$

- Higher-order connections W
- Only one c_k should be active

Dynamic Routing

$$I_i^{out} = \sum_k \sum_j W_{ijk} c_k I_j^{in}$$

- Higher-order connections W
- Only one c_k should be active
- c_k inhibit each other
- c_k may be activated by I^{in} (bottom-up attention)
- c_k may be activated voluntarily (top-down attention)

Foveated Vision

retinal receptive field sizes increase with eccentricity

15

- → little information in the periphery to route (covert attention)
- → we do saccades to retrieve visual detail (overt attention)

12°

Predictive Remapping

 just before a saccade, a neuron in FEF (frontal eye field)
 will shift its receptive field to its predicted position after the saccade

Predictive Remapping

 activation of MD neurons (medial dorsal nucleus of the thalamus) is required to remap the FEF neuron's receptive field

Predictive Remapping

double saccade task: perform memory-guided saccades to

double -step saccade task

two briefly flashed targets

 MD transmits motor signals from the first saccade to update the sensory representation to guide the second saccade

Remapping & Transformations

shift all object features to a defined frame for recognition (i.e. "subtract" eccentricity)

assess an object's position in a motor-relevant coordinate frame (i.e. add retinal+gaze position)

Frame of Reference Transformations

$$S_i^z = \sum_{jk} w_{ijk} S_j^x S_k^y$$

training with slowness: similar s^z response for consecutive views

Frame of Reference Transformations

$$E = \frac{1}{2} \sum_{\mu}^{data} \sum_{j}^{hid} s_{j}^{hid}(x, y) \sum_{k}^{hid} h(|j - k|) (\bar{x}_{i} \bar{y}_{l} - w_{kil})^{2}$$

on-line algorithm (Kohonen-like)

initialize

w_{jil}= small random variables repeat

- choose random sum location z, random matching input x,y
- assign winning unit
 j*= argmax_k w_{kil} x_i y_l
- give another random input pair
 x, y that matches z
- learn winner and surround

$$\Delta w_{kil} = \varepsilon h(|j^* - k|)(\bar{x}_i \bar{y}_l - w_{kil})$$

- Gaussian neighbour function
 h = h(σ) on map layer
- Interaction with σ is reduced during learning

Frame of Reference Transformations

What-Where Estimation (Bi-Linear)

What-Where Estimation (Bi-Linear)

What-Where Estimation (Horizontal Product)

U from pure ICA

$$I^{out} = Ur \otimes Wx$$

$$I_i^{out} = (\sum_j U_{ij} r_j) (\sum_k W_{ik} x_k)$$

- W is undercomplete
- W and x have only positive entries

Neural Fields

update of a neural field (time constant τ, additional input I):

$$\tau \frac{\partial s_i(t)}{\partial t} = -s_i(t) + \sum_j w_{ij} f(s_j(t)) + l_i(t)$$

Neural Fields Activity a(x) Local excitation Surround inhibition activity Output threshold -30° -20° retinocentric position Resting level Feature space x gaze direction body centered position w(x-x')activity w(x-x')

update of a neural field (time constant τ, additional input I):

$$\tau \frac{\partial s_i(t)}{\partial t} = -s_i(t) + \sum_j w_{ij} f(s_j(t)) + l_i(t)$$

Neural Fields

WHAT -Path Spatial Attention Invariant Object Recognition Attentional Bias Local Lateral Inhibition ocal Lateral Inhibition LGN - Retinal Input

Attentional Selection

- hierarchical model with "gradually" increasing invariance
- competition via neural field within any layer
- topographic lateral connections between "what" and where" stream
- attentional bias to "what" or to "where" possible

oscillating neurons select inputs that have matching frequency

"What" & "Where" Models – Summary

- non-linearities required for modulation/control
 - e.g. higher-order neurons, recurrent competition, oscilations
- computationally demanding
- reduced information: non-routed information is discarded
 - e.g. limit field of view ⇔ spatial attention
- some models learn with the generative model paradigm
- simultaneous feature extraction and control is problematic
 - control- and invariance-mechanisms may overlap
- models should better exploit foveation & active vision
- biological models of routing not used in practice (rather, Allike sliding search window for object recognition)

Note:

Oral Exams:

Thu 2nd Oct 2014; 10-13 & 14-16; F-230

Registration:

Mon 23rd Jun – Thu 3rd Jul 2014; 9-15; Studienbüro; (exception: Studienbüro closed on Friday 27th Jun)