## CS2020 Data Structures and Algorithms

Welcome!

#### Administrativia

• Today, come to Problem Sessions. If you have one assigned, come to that one. If you don't, come to any one.

• Discussion groups: still assignment in progress. If you are free for a Monday DG either 2-4 or 4-6, let me know.

• We will post problems to be discussed in DG next week today.

# Today: Divide and Conquer!

#### Algorithm Analysis

- Big-O Notation
- Model of computation

#### Searching

#### Peak Finding

- 1-dimension
- 2-dimensions

#### Did you remember your clicker?

- 1. Yes, I'm super-cool.
- 2. No, I'm lame.
- 3. Snakes?





#### Will you.....

- A. Walk 10 min to a shop to buy one for \$2
  - B. Walk 20 min to a supermarket and buy a dozen for \$18
- C. Drive 1 hour to a muffin company and ship back 200 muffins for \$200
  - D. I don't like muffins. I prefer snakes.....



# Algorithm Analysis

#### Which takes longer?

```
void pushAdd(int k) {
    for (int i=0; i<= k; i++)
    {
        for (int j=0; j<= k; j++){
            stack.push(i+j);
        }
    }
}</pre>
```

100k push operations

 $k^2$  push operations

#### Which grows faster?

$$T(k) = 100k$$

$$T(k) = k^2$$

$$T\left( 0\right) =0$$

$$T(1) = 100$$

$$T(100) = 10,000$$

$$T(1000) = 100,000$$

$$T\left( 0\right) =0$$

$$T(1) = 1$$

$$T(100) = 10,000$$

$$T(1000) = 1,000,000$$

#### How does an algorithm scale?

- For large inputs, what is the running time?
- T(n) = running time on inputs of size n



Definition: T(n) = O(f(n)) if T grows no faster than f

$$T(n) = O(f(n))$$
 if:

- there exists a constant c > 0
- there exists a constant  $n_0 > 0$

such that for all  $n > n_0$ :

$$T(n) \le c f(n)$$







n

$$T(n) = 4n^{2} + 24n + 16$$

$$< 4n^{2} + 24n^{2} + n^{2}$$

$$= 29n^{2} \quad \text{(for } n > n_{0} = 4\text{)}$$

$$= O(n^{2}) \quad \text{(for } c = 29\text{)}$$

| T(n)                        | f(n)       | big-O                      |
|-----------------------------|------------|----------------------------|
| T(n) = 1000n                | f(n) = n   | T(n) = O(n)                |
| T(n) = 1000n                | $f(n)=n^2$ | $T(n) = O(n^2)$            |
| $T(n)=n^2$                  | f(n) = n   | $T(n) \neq O(n)$ Not tight |
| $T(\mathbf{n}) = 13n^2 + n$ | $f(n)=n^2$ | $T(n) = \mathcal{O}(n^2)$  |
|                             |            |                            |

Definition: T(n) = O(f(n)) if T grows no faster than f

$$T(n) = O(f(n))$$
 if:

- there exists a constant c > 0
- there exists a constant  $n_0 > 0$

such that for all  $n > n_0$ :

$$T(n) \le c f(n)$$

# Big-O Notation as Upper Bound



### How about Lower bound?



Definition:  $T(n) = \Omega(f(n))$  if T grows no slower than f

$$T(n) = \Omega(f(n))$$
 if:

- there exists a constant c > 0
- there exists a constant  $n_0 > 0$

such that for all  $n > n_0$ :

$$T(n) \ge c f(n)$$

| T(n)               | f(n)       | big-O                |
|--------------------|------------|----------------------|
| T(n) = 1000n       | f(n)=1     | $T(n) = \Omega(1)$   |
| T(n) = n           | f(n) = n   | $T(n) = \Omega(n)$   |
| $T(n)=n^2$         | f(n) = n   | $T(n) = \Omega(n)$   |
| $T(n) = 13n^2 + n$ | $f(n)=n^2$ | $T(n) = \Omega(n^2)$ |
|                    |            |                      |

#### **Exercise:**

True or false:

"
$$f(n) = O(g(n))$$
 if and only if  $g(n) = \Omega(f(n))$ "

Prove that your claim is correct using the definitions of O and  $\Omega$  or by giving an example.

**Definition:**  $T(n) = \Theta(f(n))$  if T grows at the same rate as f

$$T(n) = \Theta(f(n))$$
 if and only if:

- T(n) = O(f(n)), and
- $T(n) = \Omega(f(n))$



| T(n)               | f(n)       | big-O                       |
|--------------------|------------|-----------------------------|
| T(n) = 1000n       | f(n) = n   | $T(\mathbf{n}) = \Theta(n)$ |
| T(n) = n           | f(n) = 1   | $T(n) \neq \Theta(1)$       |
| $T(n) = 13n^2 + n$ | $f(n)=n^2$ | $T(n) = \Theta(n^2)$        |
| $T(n)=n^3$         | $f(n)=n^2$ | $T(n) \neq \Theta(n^2)$     |
|                    |            |                             |

#### Rules:

If T(n) is a polynomial of degree k then:

$$T(n) = O(n^k)$$

$$10n^5 + 50n^3 + 10n + 17 = O(n^5)$$

#### Rules:

If 
$$T(n) = O(f(n))$$
 and  $S(n) = O(g(n))$  then:

$$T(n) + S(n) = O(f(n) + g(n))$$

$$10n^2 = O(n^2)$$
  
 $5n = O(n)$   
 $10n^2 + 5n = O(n^2 + n) = O(n^2)$ 

#### Rules:

If 
$$T(n) = O(f(n))$$
 and  $S(n) = O(g(n))$  then:

$$T(n)*S(n) = O(f(n)*g(n))$$

$$10n^{2} = O(n^{2})$$

$$5n = O(n)$$

$$(10n^{2})(5n) = 50n^{3} = O(n*n^{2}) = O(n^{3})$$

$$n^4 + 3n^2 + n^2 + 17 = ?$$

- A. O(1)
- B. O(n)
- C.  $O(n^2)$
- D.  $O(n^3)$
- E.  $O(n^4)$
- F. None of the above



$$4n^2\log(n) + 8n + 16 = ?$$

- 1.  $O(\log n)$
- O(n)
- 3. O(nlog n)
   4. O(n²log n)
- 5.  $O(2^n)$
- 6. Still confused...



84%

$$2^{2n} + 2^n + 2 =$$

- 1. O(n)
- 2.  $O(n^6)$
- 3.  $O(2^n)$
- 4.  $O(2^{2n})$
- 5.  $O(n^n)$
- 6. Still confused...



$$\log(8n^2 + 4n) =$$

- 1. O(1)
- 2.  $O(\log n)$
- 3.  $O(log^2n)$
- 4. O(n)
- 5.  $O(n^2)$
- 6. Still confused...



$$log(n!) =$$

- 1.  $O(\log n)$
- O(n)
- $\checkmark$ 3. O(n log n)
  - 4.  $O(n^2)$
  - 5.  $O(2^n)$
  - 6. Still confused...



78%

# Model of Computation?

What are the different types of "computations" or different types "of computers"

- Sequential vs Parallel
- Deterministic vs Probabilistic
- E.g. Biocomputers



## Model of Computation

#### Sequential Computer

One thing at a time

All operations take constant time

Addition, subtraction, multiplication, comparison

# Algorithm Analysis

```
void sum(int k, int[] intArray) {
   int total=0;
   for (int i=0; i<= k; i++) {
        total = total + intArray[i];
   }
   k array access
   k addition
   k assignment
   1 return
</pre>
```

Total: 
$$1 + 1 + (k+1) + 3k + 1 = 4k+4 = O(k)$$

# Algorithm Analysis

#### Example:

```
void sum(int k, int[] intArray) {
  int total=0;
  String name="Stephanie";
  for (int i=0; i \le k; i++) {
       total = total + intArray[i];
       name = name + "?"
  return total;
```

Not 1! Not constant! Not k!

### Loops

• cost = (# iterations)x(max cost of one iteration)

```
int sum(int k, int[] intArray) {
  int total=0;
  for (int i=0; i<= k; i++) {
    total = total + intArray[i];
  }
  return total;
}</pre>
```

### Nested Loops

• cost = (# iterations)(max cost of one iteration)

```
int sum(int k, int[] intArray) {
   int total=0;
   for (int i=0; i <= k; i++) {
     for (int j=0; j <= k; j++) {
          total = total + intArray[i];
  return total;
```

### Sequential statements

• cost = (cost of first) + (cost of second)

```
int sum(int k, int[] intArray) {
  for (int i=0; i <= k; i++)
      intArray[i] = k;
  for (int j = 0; j <= k; j++)
      total = total + intArray[i];
  return total;
```

#### if / else statements

cost = max(cost of first, cost of second)<= (cost of first) + (cost of second)</li>

```
void sum(int k, int[] intArray) {
   if (k > 100)
        doExpensiveOperation();
   else
        doCheapOperation();
   return;
}
```

### Recurrences

$$T(n) = 1 + T(n - 1) + T(n - 2)$$
  
= O(2<sup>n</sup>)

```
T(n-1)
                           T(n-1)
int fib(int n) {
  if (n <= 1)
     return n;
  else
     return fib(n-1) + fib(n-2);
```

### What is the running time?

- 1. O(1)
- O(n)
- 3.  $O(n \log n)$
- 4.  $O(n^2)$
- 5.  $O(2^n)$

```
for (int i = 0; i<n; i++)

for (int j = 0; j<i; j++)

store[i] = i + j;</pre>
```



# Today: Divide and Conquer!

### Algorithm Analysis

- Big-O Notation
- Model of computation

### Searching

### Peak Finding

- 1-dimension
- 2-dimensions

Sorted array: A [1..n]



Sorted array: A [1..n]



Sorted array: A [1..n]



Search for 17 in array A.

Find middle element: 7

Sorted array: A [1..n]



- Find middle element: 7
- Compare 17 to middle element: 17 > 7

Sorted array: A [1..n]



- Find middle element: 7
- Compare 17 to middle element: 17 > 7

Sorted array: A [1..n]



- Find middle element: 7
- Compare 17 to middle element: 17 > 7
- Recurse on right half

Sorted array: A [1..n]



- Find middle element
- Compare 17 to middle element
- Recurse

Sorted array: A [1..n]



- Find middle element
- Compare 17 to middle element
- Recurse

Sorted array: A [1..n]



- Find middle element
- Compare 17 to middle element
- Recurse

Sorted array: A [1..n]



- Find middle element
- Compare 17 to middle element
- Recurse

Sorted array: A [1..n]



- Find middle element
- Compare 17 to middle element
- Recurse

### Problem Solving: Reduce the Problem

Sorted array: A [1..n]



#### Reduce-and-Conquer:

- Start with n elements to search.
- Eliminate half of them.
- End with n/2 elements to search.
- Repeat.

Sorted array: A [1..n]

```
2 4 4 5 6 7 8 9 11 17 23 28
```

```
Search (A, key, n)
    begin = 0
    end = n-1
    while begin != end do:
         if key < A[(begin+end)/2] then</pre>
                end = (begin+end)/2 - 1
         else begin = (begin+end)/2
    return A[begin]
```

Sorted array: A [1..n]

```
2 4 4 5 6 7 8 9 11 17 23 28
```

```
Search (A, key, n)
                             Does not terminate
   begin = 0
    end = n-1
                                Round down?
   while begin != end do:
             key < A[(begin+end)/2] then
               end = (begin+end)/2 - 1
         else begin = (begin+end)/2
                              A[begin] == key?
    return A[begin] ←
```

### Specification:

- Finds element if it is in the array.
- Returns "NO" if it is not in the array

Sorted array: A [1..n]

```
2 4 4 5 6 7 8 9 11 17 23 28
```

```
Search (A, key, n)
    begin = 0
    end = n
    while begin < end - 1 do:
         if key < A[(begin+end)/2] then</pre>
                end = (begin+end)/2
         else begin = (begin+end)/2
    return A[begin]
```

### Precondition and Postcondition

#### Precondition:

Fact that is true when the loop/method begins.

#### Postcondition:

Fact that is true when the loop/method ends.

### Loop Invariants

#### **Invariant:**

relationship between variables that is always true.

### Loop Invariant:

 relationship between variables that is true at the beginning (or end) of each iteration of a loop.

Sorted array: A [1..n]

```
2 4 4 5 6 7 8 9 11 17 23 28
```

```
Search (A, key, n)
    begin = 0
    end = n
    while begin < end - 1 do:
         if key < A[(begin+end)/2] then</pre>
                end = (begin+end)/2
         else begin = (begin+end)/2
    return A[begin]
```

### Functionality:

- If element is in the array, return it.

#### **Preconditions:**

- Array is of size n
- Array is sorted

#### Postcondition:

```
-A[begin] = key
```

Sorted array: A[1..n]

```
2 4 4 5 6 7 8 9 11 17 23 28
```

```
Search (A, key, n)
    begin = 0
    end = n
    while begin < end - 1 do:
         if key < A[(begin+end)/2] then</pre>
                end = (begin+end)/2
         else begin = (begin+end)/2
    return A[begin]
```

#### Loop invariant:

 $- A[begin] \le key \le A[end]$ 

### Interpretation:

- The key is in the range of the array

### Error checking:

```
if ((A[begin] > key) or (A[end] < key))
System.out.println("error");</pre>
```

Sorted array: A[1..n]

```
2 4 4 5 6 7 8 9 11 17 23 28
```

```
Search (A, key, n)
    begin = 0
    end = n
    while begin < end - 1 do:
         if key < A[(begin+end)/2] then</pre>
                end = (begin+end)/2
         else begin = (begin+end)/2
    return A[begin]
```

### What is the running time of Binary Search?

- 1. O(1)
- 2.  $O(\log n)$
- 3. O(n)
- 4.  $O(n \log n)$
- 5.  $O(n^2)$
- 6. I'm confused...





Sorted array: A [1..n]



Iteration 1: (end - begin) = n

Iteration 2: (end - begin) = n/2

Iteration 3: (end - begin) = n/4

• • •

Iteration *k*: (end – begin) =  $1 = n/2^k$ 

$$n/2^k = 1$$
  $\rightarrow$   $k = \log(n)$ 

Sorted array: A[1..n]



#### Not just for searching arrays:

Assume a complicated function:

int complicatedFunction(int s)

Assume the function is always increasing:

complicatedFunction(i) < complicatedFunction(i+1)</pre>

Find the minimum value j such that:

complicatedFunction(j) > 100

# Today: Divide and Conquer!

### Algorithm Analysis

- Big-O Notation
- Model of computation

### Searching

### Peak Finding

- 1-dimension
- 2-dimensions

# Peak Finding



### Peak Finding

#### Global Maximum for Optimization problems:

- Find a good solution to a problem.
- Find a design that uses less energy.
- Find a way to make more money.
- Find a good scenic viewpoint.
- Etc.

#### Why local maximum?

- Finds a good enough solution.
- Local maxima are close to the global maximum?
- Much, much faster.

Input: Array A[1..n]

Output: global maximum element in A

#### How long to find a global maximum?

Input: Array A[1..n]

Output: maximum element in A

1. O(log n)



- 3.  $O(n \log n)$
- 4.  $O(n^2)$
- 5.  $O(2^n)$



Unsorted array: A [1..n]

```
7 4 9 2 11 6 23 4 28 8 17 5
```

```
FindMax(A,n)

max = A[1]

for i = 1 to n do:
   if (A[i]>max) then max=A[i]
```

Time Complexity: O(n)

Sorted array: A [1..n]

How long to find the maximum?

- **✓**1. O(1)
  - $2. O(\log n)$
  - 3. O(n)
  - 4.  $O(n \log n)$
  - 5.  $O(n^2)$



Sorted array: A [1..n]



```
FindMax(A,n)
return A[n]
```

Time Complexity: O(1)

# Peak (Local Maximum) Finding

Input: Some function f(x)



Output: A local maximum

### Peak Finding

Input: Some function array A[1..n]



Output: a local maximum in A

$$A[i-1] \le A[i]$$
 and  $A[i+1] \le A[i]$ 

And we assume that

$$A[0] = A[n] = -\infty$$

**Input:** Some array A [1..n]



#### **FindPeak**

- Start from A[1]
- Examine every element
- Stop when you find a peak.

**Input:** Some array A [1..n]



#### **FindPeak**

- Start from A[1]
- Examine every element
- Stop when you find a peak.

Input: Some array A[1..n]



#### **FindPeak**

- Start from A[1]
- Examine every element
- Stop when you find a peak.

Input: Some array A[1..n]



Running time: n

Simple improvement?

Input: Some array A[1..n]



Start in the middle!



Worst-case: n/2





Start in the middle

Recurse!









Input: Some array A[1..n]



FindPeak(A, n)

if A[n/2] is a peak then return n/2

else if A[n/2+1] > A[n/2] then

Search for peak in right half.

else if A[n/2-1] > A[n/2] then

Search for peak in left half.

Input: Some array A[1..n]

```
2 4 9 2 11 6 23 4 6 8 17 5
```

```
FindPeak(A, n)
    if A[n/2] is a peak then return n/2
    else if A[n/2+1] > A[n/2] then
        FindPeak (A[n/2+1..n], n/2)
    else if A[n/2-1] > A[n/2] then
        FindPeak (A[1..n/2-1], n/2)
```

### Why?



FindPeak(A, n)

if A[n/2] is a peak then return n/2

else if A[n/2+1] > A[n/2] then

Search for peak in right half.

else if A[n/2-1] > A[n/2] then

Search for peak in left half.

#### Key property:

 If we recurse in the right half, then there exists a peak in the right half.



#### Key property:

 If we recurse in the "higher" half, then there exists a peak in the right half.

#### **Explanation:**

- Even though there is "no peak" in the right half.
- Given: A[middle] < A[middle + 1]</li>
- Since no peaks, A[middle+1] < A[middle+2]</li>
- Since no peaks, A[middle+2] < A[middle+3]</li>
- **–** ...
- − Since no peaks, A[n-1] < A[n] ← PEAK!!

Recurse on right half, since 23 > 6.

Assume no peaks in right half.



### Running time?



FindPeak(A, n)

if A[n/2] is a peak then return n/2

else if A[n/2+1] > A[n/2] then

Search for peak in right half.

else if A[n/2-1] > A[n/2] then

Search for peak in left half.

#### **Running time:**

Time to find a peak in an array of size n

$$T(n) = T(n/2) + \theta(1)$$

Time for comparing A[n/2] with neighbors

Unrolling the recurrence:

$$T(n) = \theta(1) + \theta(1) + ... + \theta(1) = O(\log n)$$

Recursion

#### Unrolling the recurrence:

$$T(n) = T(n/2) + \theta(1)$$

$$= T(n/4) + \theta(1) + \theta(1)$$

$$= T(n/8) + \theta(1) + \theta(1) + \theta(1)$$
...

$$= T(1) + \theta(1) + ... + \theta(1) =$$

$$= \theta(1) + \theta(1) + ... + \theta(1) =$$

# How many times can you divide a number $\boldsymbol{n}$ in half before you reach 1?

- 1. n/4
- 2.  $\sqrt{n}$
- $\checkmark$ 3.  $\log_2(n)$ 
  - 4.  $\arctan(1+\sqrt{5}/2n)$
  - 5. I don't know.



How many times can you divide a number  $\boldsymbol{n}$  in half before you reach 1?

$$2 \times 2 \times \dots \times 2 = 2^{\log(n)} = n$$

$$\log(n)$$

Note: I always assume  $log = log_2$  $O(log_2, n) = O(log_2, n)$ 

#### Unrolling the recurrence:

$$T(n) = T(n/2) + \theta(1)$$

$$= T(n/4) + \theta(1) + \theta(1)$$

$$= T(n/8) + \theta(1) + \theta(1) + \theta(1)$$
...
$$= T(1) + \theta(1) + ... + \theta(1) =$$

$$= \theta(1) + \theta(1) + ... + \theta(1) =$$

### **Running time:**

Time to find a peak in an array of size n

 $T(n) = T(n/2) + \theta(1)$ 

Time for comparing A[n/2] with neighbors

Unrolling the recurrence:

$$T(n) = \theta(1) + \theta(1) + \dots + \theta(1) = O(\log n)$$

$$\log(n)$$

Recursion

### Onwards...

The 2<sup>nd</sup> dimension!



### Peak Finding 2D (the sequel)

Given: 2D array A[1..n, 1..m]

| 10 | 8 | 5 | 2 | 1 |
|----|---|---|---|---|
| 3  | 2 | 1 | 5 | 7 |
| 17 | 5 | 1 | 4 | 1 |
| 7  | 9 | 4 | 6 | 4 |
| 8  | 1 | 1 | 2 | 6 |

Output: a peak that is not smaller than the (at most) 4 neighbors.

### 2D: Algorithm 1

Step 1: Find global max for each column



Step 2: Find peak in the array of max elements.

#### Algorithm 1-2D

Step 1: Find global max for each column.

Step 2: Find <u>peak</u> in the max array.

Is this algorithm correct?



- 2. No.
- 3. I'm confused...



### 2D: Algorithm 1

Step 1: Find global max for each column

| 3 | 4 | 5 | 2 |   |         |
|---|---|---|---|---|---------|
| 2 | 1 | 2 | 5 |   |         |
| 1 | 9 | 1 | 2 |   |         |
| 7 | 5 | 3 | 3 |   |         |
| 7 | O | 5 | 5 | · | Find 1D |

Step 2: Find peak in the array of max elements.

Running time: O(mn + log(m))

### 2D: Algorithm 2

Step 1: Find a (local) peak for each column



Step 2: Find peak in the array of peaks.

#### Algorithm 2-2D

Step 1: Find 1D-peak for each column.

Step 2: Find <u>peak</u> in the max array.

#### Is this algorithm correct?





# 2D: Algorithm 2 (Counter Example)

Step 1: Find a (local) peak for each column



3 4 3 3 Find 1D peak.

Step 2: Find <u>peak</u> in the array of peaks.

Step 1: Find global max for each column

| 3 | 4 | 5 | 2 |
|---|---|---|---|
| 2 | 1 | 2 | 5 |
| 1 | 9 | 1 | 2 |
| 7 | 5 | 3 | 3 |

 $7 \quad 9 \quad 5 \quad 5 \leftarrow \qquad$  Find 1D peak.

Step 2: Find peak in the array of max elements.

Running time: O(mn + log(m))

Step 1: Find a global max for each column

| 3 | 4 | 5 | 2 |
|---|---|---|---|
| 2 | 1 | 2 | 5 |
| 1 | 9 | 1 | 2 |
| 7 | 5 | 3 | 3 |

? ? ? ← Find 1D peak.

Step 2: Find <u>peak</u> in the array of peaks by <u>lazy</u> evaluation.

| 7  | 10 | 12 | 20 | 7 | 9 | 4        | 3  | 1 | 10 | 5 | 17 | 4         |
|----|----|----|----|---|---|----------|----|---|----|---|----|-----------|
| 19 | 11 | 7  | 4  | 6 | 8 | 10       | 3  | 5 | 6  | 8 | 14 | 8         |
| 6  | 9  | 14 | 4  | 7 | 9 | 3        | 12 | 9 | 8  | 3 | 10 | 6         |
| ?  | 3  | Ş  | ?  | ? | 3 | <b>Š</b> | Ş  | Ş | Ş  | 3 | Ş  | <u>\$</u> |

#### Find 1D Peak:

Step 1: Check middle element.

Step 2: Recurse left/right half.





#### Find 1D Peak:

Step 1: Check middle element.

Step 2: Recurse left/right half.

Column Max Array

| 7  | 10 | 12 | 20 | 7 | 9 | 4  | 3  | I | 10 | 5 | 17 | 4 |
|----|----|----|----|---|---|----|----|---|----|---|----|---|
| 19 | 11 | 7  | 4  | 6 | 8 | 10 | 3  | 5 | 6  | 8 | 14 | 8 |
| 6  | 9  | 14 | 4  | 7 | 9 | 3  | 12 | 9 | 8  | 3 | 10 | 6 |
| ?  | ?  | ?  | ?  | ? | 9 | 10 | 12 | ? | 18 | 8 | 14 | ? |

#### Find 1D Peak:

Step 1: Check middle element.

Step 2: Recurse left/right half.

| 7  | 10 | 12 | 20 | 7 | 9 | 4  | 3  | 1 | 10 | 5 | 17 | 4 |
|----|----|----|----|---|---|----|----|---|----|---|----|---|
| 19 | 11 | 7  | 4  | 6 | 8 | 10 | 3  | 5 | 6  | 8 | 14 | 8 |
| 6  | 9  | 14 | 4  | 7 | 9 | 3  | 12 | 9 | 8  | 3 | 10 | 6 |
|    |    |    |    |   |   |    |    |   |    |   |    |   |

? ? ? ? 8 10 12 ? 18 8 (14) 8

#### Find 1D Peak:

Step 1: Check middle element.

Step 2: Recurse left/right half.

| 7  | 10 | 12 | 20 | 7 | 9 | 4  | 3  | 1 | 10 | 5 | 17 | 4 |
|----|----|----|----|---|---|----|----|---|----|---|----|---|
| 19 | 11 | 7  | 4  | 6 | 8 | 10 | 3  | 5 | 6  | 8 | 14 | 8 |
| 6  | 9  | 14 | 4  | 7 | 9 | 3  | 12 | 9 | 8  | 3 | 10 | 6 |

? ? ? ? 8 10 12 ? 18 8 (14) 8

How many columns do we need to examine?



- 2.  $O(\sqrt{m})$
- 3. O(log m)
- 4. O(1)



#### Find peak in the array of peaks:

- Use 1D Peak Finding algorithm
- For each column examined by the algorithm, find the maximum element in the column.

#### Running time:

- 1D Peak Finder Examines O(log m) columns
- Each column requires O(n) time to find max
- Total:  $O(n \log m)$

(Much better than O(nm) of before.)

Any ideas??

#### **Divide-and-Conquer**

- Find MAX element of middle column.
- 2. If found a peak, DONE.
- 3. Else:
  - If left neighbor is larger, then recurse on left half.
  - If right neighbor is larger, then recurse on right half.

| 10 | 8 | 4 | 2  | 1  |
|----|---|---|----|----|
| 3  | 2 | 2 | 12 | 13 |
| 17 | 5 | 1 | 11 | 1  |
| 7  | 4 | 6 | 9  | 4  |
| 8  | 1 | 1 | 2  | 6  |



#### **Correctness**

- 1. Assume no peak on right half.
- 2. Then, there is some increasing path:

$$9 \rightarrow 11 \rightarrow 12 \rightarrow \dots$$

| 10 | 8 | 4 | 2                | 1  |
|----|---|---|------------------|----|
| 3  | 2 | 2 | 12<br>? <b>^</b> | 13 |
| 17 | 5 | 1 | 11               | 1  |
| 7  | 4 | 6 | 9                | 4  |
| 8  | 1 | 1 | 2                | 6  |

3. Eventually, the path must end max.

- recurse
- 4. If there is no max in the right half, then it must cross to the left half... Impossible!

#### **Divide-and-Conquer**

$$T(n,m) = T(n,m/2) + O(n)$$

Recurse *once* on array of size [n, m/2]

| 10 | 8 | 4 | 2  | 1  |
|----|---|---|----|----|
| 3  | 2 | 2 | 12 | 13 |
| 17 | 5 | 1 | 11 | 1  |
| 7  | 4 | 6 | 9  | 4  |
| 8  | 1 | 1 | 2  | 6  |

recurse

right

Do n work to find max element in column.

```
T(n, m) = T(n, m/2) + n
= T(n, m/4) + n + n
= T(n, m/8) + n + n + n
= T(n, m/16) + n + n + n + n
= ...
```



$$T(n, m) = T(n, m/2) + n$$

$$T(n) = ??$$

- 1.  $O(\log n)$
- $2. O(\log m)$
- 3. O(nm)
- 4. O(n log m)
- 5. O(m log n)
- 6.  $O(n! cos(\Pi/m))$



#### **Divide-and-Conquer**

- 1. Find MAX element of middle column.
- 2. If found a peak, DONE.
- 3. Else:
  - If left neighbor is larger, then recurse on left half.
  - If right neighbor is larger, then recurse on right half.

$$T(n) = O(n \log m)$$

| 10 | 8 | 4 | 2  | 1  |
|----|---|---|----|----|
| 3  | 2 | 2 | 12 | 13 |
| 17 | 5 | 1 | 11 | 1  |
| 7  | 4 | 6 | 9  | 4  |
| 8  | 1 | 1 | 2  | 6  |

recurse right

We want to do better than O(n log m)...

Any ideas??

#### Divide-and-Conquer

- Find MAX element on border + cross.
- 2. If found a peak, DONE.
- 3. Else:

Recurse on quadrant containing element bigger than MAX.



Example: MAX = g

h > g

#### **Divide-and-Conquer**

- Find MAX element on border + cross.
- 2. If found a peak, DONE.
- 3. Else:

Recurse on quadrant containing element bigger than MAX.



Example: MAX = g

h > g

#### **Correctness**

1. The quadrant contains a peak.

Proof: as before.

2. Every peak in the quadrant is NOT a peak in the matrix.



#### **Correctness**

1. The quadrant contains a peak.

Proof: as before.

2. Every peak in the quadrant is NOT a peak in the matrix.





#### **Correctness**

#### Key property:

Find a peak at least as large as every element on the boundary.

#### **Proof:**

If recursing finds an element at least as large as g, and g is as big as the biggest element on the boundary, then the peak is as large as every element on the boundary.



#### **Divide-and-Conquer**

$$T(n,m) = T(n/2, m/2) + O(n + m)$$
Recurse *once* on array of size [n/2, m/2]

Do 6(n+m) work to find max element.

```
T(n, m) = T(n/2, m/2) + cn+cm
= T(n/4, m/4) + cn/2 + cm/2 + n + m
= T(n/8, m/8) + cn/4 + cm/4 + ...
= ...
```

$$T(n, m) = T(n/2, m/2) + cn + cm$$

$$T(n) = ??$$

- 1.  $O(\log n)$
- 2. O(nm)
- 3. O(n log m)
- 4.  $O(m \log n)$
- 5. O(n+m)





```
T(n, m) = T(n/2, m/2) + cn+cm
          = T(n/4, m/4) + cn/2 + cm/2 + n + m
          = T(n/8, m/8) + cn/4 + cm/4 + ...
          = cn(1 + \frac{1}{2} + \frac{1}{4} + ...) +
             cm(1+\frac{1}{2}+\frac{1}{4}+...)
          < 2cn + 2cm
          = O(n + m)
```

### Summary

#### 1D Peak Finding

- Divide-and-Conquer
- O(log n) time

#### 2D Peak Finding

- Simple algorithms: O(n log m)
- Careful Divide-and-Conquer: O(n + m)