МИНОБРНАУКИ РОССИИ САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭЛЕКТРОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ЛЭТИ» ИМ. В.И. УЛЬЯНОВА (ЛЕНИНА) Кафедра ВМ-2

ОТЧЕТ

по индивидуальному заданию №5 по дисциплине «Статический анализ» Вариант №13

Студент гр. 8382	Мирончик П.Д.
Преподаватель	Малов С.В.

Санкт-Петербург 2020

ПОСТАНОВКА ЗАДАЧИ

Bap. 13 (83822020)

Результаты статистического эксперимента приведенны в таблице 1. Требуется оценить характер (случайной) зависимости переменной Y от уровней факторов A и B.

- 1. Сформулировать модели двухфакторного дисперсионного анализа зависимости значений Y от уровней фактора A и B в центральной параметризации. Является ли дизайн данного эксперимента сбалансированным? Построить МНК оценки параметров и несмещенную оценку дисперсии. В предположении нормальности ошибок построить доверительные интервалы для параметров уровня доверия $1-\alpha$.
- Проверить визуально согласование исходных данных с предположением аддитивности влияния факторов. Построить графически оценку зависимости уровней фактора A при каждом фиксированном значении фактора B. Наблюдается ли эффект пересечения факторов.
- 3. Сформулировать модель двухфакторного дисперсионного анализа когда пара наибольших уровненей факторов A и B рассматривается как базовая. Построить МНК оценки параметров и несмещенную оценку дисперсии. В предположении нормальности ошибок построить доверительные интервалы для параметров уровня доверия $1-\alpha$.
- 4. Провести анализ ошибок. На базе ошибок построить гистограмму с шагом h. Оценить расстояние полученной оценки до класса центрированных нормальных распределений по Колмогорову.
- Составить таблицу дисперсионного анализа. Провести дисперсионный анализ, начиная с проверки значимости взаимодействий фактров на результаты эксперимента.
- 6. Интерпретировать полученные результаты. Написать отчет.

Таблица 1 $\alpha_1 = 0.20$; $h = 0.63$.																	
No	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17
Y	47.89	48.26	47.39	48.14	47.71	47.41	49.01	48.95	48.25	49.16	48.69	49.66	48.51	47.79	48.36	50.18	48.62
A	1	1	1	1	1	1	1	1	1	1	1	1	2	2	2	2	2
В	1	1	1	1	1	1	2	2	2	2	2	2	1	1	1	1	1
No	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34
Y	48.84	50.07	50.25	49.46	50.81	50.64	49.86	52.05	51.04	51.83	51.84	52.08	53.34	53.00	53.72	54.33	53.16
A	2	2	2	2	2	2	2	3	3	3	3	3	3	3	3	3	3
В	1	2	2	2	2	2	2	1	1	1	1	1	1	2	2	2	2
No	35	36	37	38	39	40	41	42	43	44	45	46	47	48			
Y	52.97	52.63	44.21	44.51	45.39	44.81	43.08	45.31	45.22	46.48	45.78	45.28	46.76	45.51			
A	3	3	4	4	4	4	4	4	4	4	4	4	4	4			
В	2	2	1	1	1	1	1	1	2	2	2	2	2	2			

ход решения

Сформулировать модели двухфакторного дисперсионного анализа зависимости значений Y от уровней фактора A и B в центральной параметризации. Является ли дизайн данного эксперимента сбалансированным? Построить МНК оценки параметров и несмещенную оценку дисперсии. В предположении нормальности ошибок построить доверительные интервалы для параметров уровня доверия 1 – α

Модель имеет вид:

$$y_{ij} = \mu + \alpha_i^A + \beta_j^B + \gamma_{ij}^{AB}$$

Где μ - среднее взвешенное, $\alpha_i^{(1)}$ - главные эффекты вектора A, $\beta_j^{(2)}$ - главные эффекты вектора B, $\gamma_{ij}^{(12)}$ - взаимодействия.

Занесем данные:

y = c(47.89, 48.26, 47.39, 48.14, 47.71, 47.41, 49.01, 48.95, 48.25, 49.16, 48.69, 49.66, 48.51, 47.79, 48.36, 50.18, 48.62, 48.84, 50.07,

```
50.25, 49.46, 50.81, 50.64, 49.86, 52.05, 51.04, 51.83, 51.84, 52.08,
53.34, 53.00, 53.72, 54.33, 53.16, 52.97, 52.63, 44.21, 44.51, 45.39,
44.81, 43.08, 45.31, 45.22, 46.48, 45.78, 45.28, 46.76, 45.51)
2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4,
4, 4, 4, 4)
2, 2, 2, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 2, 2,
2, 2, 2, 2)
     здесь A и B поменяли местами: A - z^2, B = z^1.
     Приведем к модели однофакторного анализа:
# Linear model (code)
k<-n.lev1*n.lev2
z1.1<-
as.numeric(t(matrix(levels(as.factor(z1)),nrow=n.lev1,ncol=n.lev2)))
z2.1 < -
as.numeric(matrix(levels(as.factor(z2)),nrow=n.lev2,ncol=n.lev1))
t.code<-matrix(ncol=3,nrow=n.lev1*n.lev2)</pre>
k < -0
for (i in 1:n.lev1)
  for (j in 1:n.lev2) {
   k < -k+1
   dat1$x[dat1$x1==i \& dat1$x2==j]<-k
   t.code[k,1] < -i
    t.code[k,2] < -j
   t.code[k,3] < -k
t.code<-as.data.frame(t.code)
names(t.code)<-c("z1", "z2", "x")
     получили соответствие
> t.code
  z1 z2 x
    1 1
  1
2
  1
     2 2
     3 3
  1
4
  1 4 4
5
  2 1 5
6
  2 2 6
7
  2
     3 7
8
  2
     4 8
     Найдем значения параметров:
n<-length(y)
lev<-levels(as.factor(dat1$x))</pre>
n.lev<-length(lev)</pre>
Y<-as.matrix(dat1$y)
X<-matrix(0,nrow=n.lev,ncol=n)</pre>
for (i in 1:n) {
  X[dat1$x[i],i]<-1
S<-X%*%t(X)
S1 < -solve(S)
bhat<-S1%*%X%*%Y
```

```
res<-Y-t(X)%*%as.matrix(bhat)
SS<-sum(res^2)
s2 < -SS/(n-k)
     Несмещенная оценка дисперсии: 0.414725
v1<-array(1/n.lev1,dim=n.lev1)
v2<-array(1/n.lev2,dim=n.lev2)
CO<-as.matrix(as.numeric(v1%o%v2))
C1<-matrix(0,nrow=k,ncol=n.lev1)</pre>
for (i in 1:n.lev1) { C1[t.code$x[t.code$z1==i],i]<-v2 }
C1<-C1-matrix(C0, nrow=k, ncol=n.lev1)
C2<-matrix(0,nrow=k,ncol=n.lev2)
for (i in 1:n.lev2) { C2[t.code$x[t.code$z2==i],i]<-v1 }
C2<-C2-matrix(C0,nrow=k,ncol=n.lev2)
C12 < -diag(k)
for (j in 1:k) {
  C12[,j] < -C12[,j] -C1[,t.code$z1[t.code$x==j]]
  C12[,j] < -C12[,j] - C2[,t.code$z2[t.code$x==j]]
  C12[,j] < -C12[,j] - C0
muhat<-t(C0)%*%bhat
V.mu<-t(C0)%*%S1%*%C0
ahat1<-t(C1)%*%bhat
V.a1<-t(C1)%*%S1%*%C1
V1<-diag(V.a1)
ahat2<-t(C2)%*%bhat
V.a2<-t(C2)%*%S1%*%C2
V2 < -diag(V.a2)
itr<-t(C12)%*%bhat
V.itr<-t(C12)%*%S1%*%C12
V12<-diag(V.itr)
     Среднее взвешенное: 48.92167
     Главные эффекты А: [-0.545000, 0.527500,.744167,3.726667]
     Главные эффекты В: [-0.6470833, 0.6470833]
      Матрица взаимодействий:
            [,1]
[1,] 0.07041667 -0.07041667
[2,] -0.08541667 0.08541667
[3,] 0.01125000 -0.01125000
[4,] 0.00375000 -0.00375000
     Доверительный интервал для взвешенного среднего:
  parameter
                cntr
                            lw
         mu 48.92167 48.80054 49.04279
     Доверительный интервал для главных эффектов А:
  parameter
                               lw
                 cntr
         A1 -0.545000 -0.7547926 -0.3352074
1
2
         A2 0.527500 0.3177074 0.7372926
3
         A3 3.744167 3.5343740 3.9539593
         A4 -3.726667 -3.9364593 -3.5168740
```

Доверительный интервал для главных эффектов В:

```
рагамеter cntr lw up

1 B1 -0.6470833 -0.7682072 -0.5259595
2 B2 0.6470833 0.5259595 0.7682072

Доверительный интервал для взаимодействий:
```

```
parameter
                                lw
                   cntr
    int1:1 0.07041667 -0.1393760 0.2802093
1
2
     int2:1 -0.08541667 -0.2952093 0.1243760
3
    int3:1 0.01125000 -0.1985426 0.2210426
4
    int4:1 0.00375000 -0.2060426 0.2135426
5
    int1:2 -0.07041667 -0.2802093 0.1393760
6
    int2:2 0.08541667 -0.1243760 0.2952093
7
    int3:2 -0.01125000 -0.2210426 0.1985426
8
    int4:2 -0.00375000 -0.2135426 0.2060426
```

2. Проверить визуально согласование исходных данных с предположением аддитивности влияния факторов. Построить графически оценку зависимости уровней фактора А при каждом фиксированном значении фактора В. Наблюдается ли эффект пересечения факторов.

Построим график.

```
beta<-t(matrix(bhat,nrow=n.lev2,ncol=n.lev1))
xx<-c(1:n.lev2)
yx1<-beta[1,]
yx2<-beta[2,]
sym<-c(1:2)
plot(NULL,NULL,"n",xlab="A",ylab="Y",col="blue",main="ANOVA TWO
WAY",xlim=c(min(xx),max(xx)), ylim=c(min(y),max(y)))
points(z2[z1==1],y[z1==1],col="red",pch=2)
points(z2[z1==2],y[z1==2],col="blue",pch=3)
points(xx,yx1,col="red","l",lwd=2)
points(xx,yx1,col="red",lwd=2,pch=19)
points(xx,yx2,"l",col="blue",lwd=2)
points(xx,yx2,col="blue",lwd=2,pch=19)</pre>
```

ANOVA TWO WAY

Заметно, что модель аддитивна, эффекта пересечения факторов не наблюдается.

3. Сформулировать модель двухфакторного дисперсионного анализа когда пара наибольших уровней факторов A и В рассматривается как базовая. Построить МНК оценки параметров и несмещенную оценку дисперсии. В предположении нормальности ошибок построить доверительные интервалы для параметров уровня доверия $1-\alpha$

Зададим базовым уровнем наибольший:

$$y_{ij} = \mu_{42}^{AB} + \alpha_i^A + \beta_j^B + \gamma_{ij}^{AB}$$

Зададим веса:

v1<-c(array(0,dim=n.lev1-1),1) v2<-c(array(0,dim=n.lev2-1),1)

Остальной код при этом менять не нужно.

Получим значения:

Среднее взвешенное: 45.83833

```
Главные эффекты А: [3.115000, 4.343333,7.463333,0.000000]
```

Главные эффекты В: [-1.286667, 0]

Матрица взаимодействий:

```
[,1]
[1,] 0.1333333
[2,] -0.1783333
[3,] 0.0150000
...далее нулевые значения
```

Доверительный интервал для взвешенного среднего:

```
parameter cntr lw up
1 mu 45.83833 45.49574 46.18092
```

Доверительный интервал для главных эффектов А:

```
parameter cntr lw up

1 A1 3.115000 2.630505 3.599495
2 A2 4.343333 3.858838 4.827829
3 A3 7.463333 6.978838 7.947829
```

Доверительный интервал для главных эффектов В:

```
parameter cntr lw up
1 B1 -1.286667 -1.771162 -0.8021714
```

Доверительный интервал для взаимодействий:

```
parameter cntr lw up

1 int1:1 0.1333333 -0.5518465 0.8185132

2 int2:1 -0.1783333 -0.8635132 0.5068465

3 int3:1 0.0150000 -0.6701798 0.7001798
```

4. Провести анализ ошибок. На базе ошибок построить гистограмму с шагом h. Оценить расстояние полученной оценки до класса центрированных нормальных распределений по Колмогорову.

Построим гистограмму ошибок с шагом h=0.63:

```
hh<-hist(res,breaks=seq(from=-1.5, to=2, by=0.63),plot=FALSE)
nu<-hh$counts
brk<-hh$breaks</pre>
```

Histogram of res

Найдем расстояние полученной оценки до класса центрированных нормальных распределений по Колмогорову:

5. Составить таблицу дисперсионного анализа. Провести дисперсионный анализ, начиная с проверки значимости взаимодействий факторов на результаты эксперимента

Источник	SS	df	SS	F	p
дисперсии					
A:B	0.148	3	0.0495	0.119	0.948
A	171.630	3	57.210	137.947	2.144e-20
В	4.966	1	4.9665	11.975	7.2e-07
Ошибки	16.589	40	0.414		

Видно, что взаимодействия факторов не оказывают значительного влияния, в то время как сами факторы заметно влияют на результат.