Given a set X of vertices, we can use depth-first search to determine if G - X has no cycles. Thus undirected feedback set is in NP.

We now show that vertex cover can be reduced to undirected feedback set. Given a graph G = (V, E) and integer k, construct a graph G' = (V', E') in which each edge $(u, v) \in E$ is replaced by the four edges (u, x_{uv}^1) , (u, x_{uv}^2) , (v, x_{uv}^1) , and (v, x_{uv}^2) for new vertices x_{uv}^i that appear only incident to these edges. Now, suppose that X is a vertex cover of G. Then viewing X as a subset of V', it is easy to verify that G' - X has no cycles. Conversely, suppose that Y is a feedback set of G' of minimum cardinality. We may choose Y so that it contains no vertex of the form x_{uv}^i — for it does, then $Y \cup \{u\} - \{x_{uv}^i\}$ is a feedback set of no greater cardinality. Thus, we may view Y as a subset of V. For every edge $(u, v) \in E$, Y must intersect the four-node cycle formed by u, v, x_{uv}^1 , and x_{uv}^2 ; since we have chosen Y so that it contains no node of the form x_{uv}^i , it follows that Y contains one of u or v. Thus, Y is a vertex cover of G.

 $^{^{1}}$ ex867.590.603