Кафедра ИУ-4 «Проектирование и технология производства ЭС»

Журнал практических работ

по курсу: «Физические основы микроэлектроники»

Для студентов приборостроительных специальностей				
	20/	учебный год		
Студент	(фамилия, и. о.)	Группа		
	Допуск к экзам лия, и. о.)		Подпись	

Москва 2023

Программа

к учебному плану направления подготовки 551100 (654300)

ПРОЕКТИРОВАНИЕ И ТЕХНОЛОГИЯ ЭЛЕКТРОННЫХ СРЕДСТВ, специальностям

220500 Проектирование и технология электронно-вычислительных средств и 200800 Проектирование и технология радиоэлектронных средств.

No	Виды учебных работ	Объем работ в часах		
		Всего	6 сем.	
	На дисциплину	144	144	
1	Аудиторная работа	85	85	
1.1	- лекции	51	51	
1.2	- семинары	17	17	
1.3	- лабораторные занятия	17	17	
1.4	Самостоятельная работа:	59	59	
	Домашние задания:	-	-	
	Курсовая работа	-	-	
	Самостоятельное изучение раздела			
1.5	Виды отчетности по дисциплине			
	Контрольная работа			
	Рубежный контроль			
			РКЗ (15)	
	Зачеты	-	-	
	Экзамены		экзамен	-

Отчет по практической работе № 6						
«Расчет основных параметров сплавного p-n перехода с использованием MATLAB»						
дата	Оценка		подпись			
Цель работы:						
Задачи работы:						
						
						
	й сложности (бонус за					
-реализация в среде М	IATLAB методики расч	ета основных параметр	ов р-и перехода с			
интерактивным задані	ием исходных параметр	<u>00B.</u>				
	еоретической части (от	гветы на контрольные в	опросы)			
1						
:						
2						
						
						
3						
1						
4						
						
E						
5						
						
6						
U						

7	
8	
9	
l	
10	
11.	
10	
12	
Ознакомление с необходимыми справочными данными:	
r, r	

Заряд электрона $q = 1,6021766208(98) \cdot 10^{-19} \text{ Kл}$

Постоянная Больцмана $k = 1,38*10^{-23}$ Дж/К

Постоянная Планка $h = 6,63*10^{-34}$ Дж*с

 $\epsilon_0 = 8,8541878128(13) \cdot \ 10^{-12} \ \text{m}^{-3} \cdot \text{к} \Gamma^{-1} \cdot c^4 \cdot A^2$, или $\Phi \cdot \text{m}^{-1}$.

Таблица №1 Некоторые параметры полупроводников

Параметр	Обозначе	Si	Ge	GaAs	InSb
	ние				
Ширина запрещенной зоны	Eg	1,12	0,66	1,43	0,18
при 300К, эВ					
Ширина запрещенной зоны	Eg	1,21	0,8	1,56	0,23
при 0К, эВ					
Эффективная масса m*/m ₀	m* _n	1,08	0,56	0,068	0,013
электронов					
Эффективная масса m*/m ₀	m* _p	0,56	0,35	0,45	0,6
дырок					
Концентрация собственных	n_i	$1,4*10^{10}$	$2,3*10^{13}$	$1,1*10^{7}$	$2*10^{16}$
носителей зарядов при 300					
K^0 , cm ⁻³					
Диэлектрическая	3	11,7	16	14,6	5,7
проницаемость					
Подвижность электронов	μ_n	1400	3800	4000	60 000
см²/(B·с)	rn				
Пожвижность дырок	μ_p	450	1800	400	4000
$cm^2/(B \cdot c)$	$\sim p$				

Этапы расчетов и представления результатов Имеется сплавной р-п переход. Используя исходные данные, представленные в табл.№1 приложения рассчитать:

- 1. Контактную разность потенциалов
- 2. Ширину р-п перехода
- 3. Максимальную напряженность электрического поля p-n перехода
- 4. Барьерную емкость p-n перехода при различных обратных напряжениях
- 5. Обратный ток насыщения p-n перехода при $T=300 \text{ K}^0$

Разработка m.-файла расчета в среде MATLAB

- 1. Согласно руководству пользователя запустите программную среду MATLAB, в окне редактора (EDITOR) вбейте первую строку следующего содержания:
- % Исходные данные Это будет заголовок программного модуля в среде MATLAB.
 - 2. Сохраните .m-файл под вашим именем.
 - 3. Последовательно введите значения справочных данных, соблюдая следующие рекомендуемые обозначения:

%Расчет основных параметров сплавного p-n перехода % Исходные данные q=1.6*1e-19; %Кл - это заряд электрона k=1.38*1e-23;% Дж/К - постоянная Больцмана

```
Na= 1.0*1e+23 % м-3 концентрация акцепторной примеси
Nd= 1.00*1e+21 % м-3 концентрация донорной примеси
ni= 1.40*1e+16 % м-3 собственная концентрация носителей
T= 3.00*1e+02 % К температура в градусах Кельвина
S= 1*1e-6 % площадь р-п перехода согласно варианту, M2
ep= 11.7 % диэлектрическая проницаемость Si
ep0= 8.8541878128*1e-12 % м?3·кг?1·с4·A2 - диэлектрическая постоянная
% расчет контактной разности потенциалов Uk, B
Uk=k.*T./q.*log(Na.*Nd./ni./ni)
```

Ряд параметров необходимо взять из приложения №1 настоящего журанала в соответствии с номером студента в списке группы.

1. Расчет контактной разности потенциала сплавного р-п перехода

Рис.1. Схема контактной разности потенциала U_k в p-n переходе

$$U_k = \frac{kT}{q} ln \frac{N_a N_d}{n_i^2}$$

$$U_k =$$
, B

2. Расчет ширины p-n перехода при температуре 300К в отсутствии внешнего напряжения Ширина области объемного заряда

.

$$d = d_p + d_n = \sqrt{\frac{2\varepsilon\varepsilon_0 U_k (N_a + N_d)}{q N_a N_d}}$$

d =

Определим ширину области, легированной донорами

$$d_p = d \frac{N_d}{N_a + N_d}$$

 $d_p =$

Определим ширину области, легированной акцепторами

$$d_n = d \frac{N_a}{N_a + N_d}$$

 $d_n =$

3. Расчет максимальной напряженности электрического поля р-п перехода

Выражения для напряженности внутреннего поля перехода соответственно со стороны ри побластей.

Напряженность поля со стороны р-области

$$E_p = -\frac{qN_a}{\varepsilon\varepsilon_0}(d-d_n)$$

Напряженность поля со стороны п-области

$$E_n = -\frac{qN_d}{\varepsilon\varepsilon_0}(d-d_p)$$

На металлургической границе p-n перехода, когда d=0

Максимальная напряженность электрического поля со стороны р области

$$E_p = \frac{q}{\varepsilon \varepsilon_0} N_a \, d_n$$

Максимальная напряженность электрического поля со стороны п области

$$E_n = \frac{q}{\varepsilon \varepsilon_0} N_d d_p$$

3.1. Построить графики изменения напряженности электрического поля Е для области dp и dn и совместить эти графики в одном окне, в одних координатных осях. На графике авторучкой указать, где область p и где область n.

Примечание: для отображения нужного окна с графиком можно нажать левой кнопкой мышки на пиктограмму маталаба внизу и в открывшемся окне выбрать нужный график или открыть нужное окно с графиком через основное меню.

4. Расчет барьерной емкости р-п перехода

4.1. Расчет барьерной емкости p-n перехода при отсутствии обратного напряжения (U=0)

$$C_{\text{6ap_0}} = S \sqrt{\frac{q\varepsilon\varepsilon_0}{2(U_k - U)} \frac{N_a N_d}{(N_a + N_d)}}$$

$$C_{\text{бар_0}} =$$

$$C_{\text{fap}} = S \sqrt{\frac{q\varepsilon\varepsilon_0}{2(U_k - U)} \frac{N_a N_d}{(N_a + N_d)}}$$

$$C_{\text{бар}} =$$

4.3. Определение величины изменения барьерной емкости p-n перехода за счет отрицательного смещения

$$\Delta C_{\delta ap} = C_{\delta ap} - C_{\delta ap_0}$$

$$\Delta C_{\delta ap} =$$

5. Построить график изменения барьерной емкости p-n перехода в зависимости от величины приложенного к нему обратного напряжения в диапазоне от 0 до 30 В. На осях графика рис.2 поставить деления и указать на них числа. Допускается наклеить или вставить отдельный лист графика, построенного на компьютере.

Рис.2 график изменения барьерной емкости р-п перехода

6. Рассчитать плотность обратного тока насыщения p-n перехода для соответствующего варианта при температуре $T=300~{\rm K}^0$ и $L_p\!=\!L_n\!=\!1\!\cdot\!10^{-3}~{\rm M}$

$$I_0 = qS\left(\frac{D_p N_d}{L_p} + \frac{D_n N_a}{L_n}\right)$$

Из соотношения Эйнштейна известно, что D_p = $(kT/q)\cdot \mu_p$ и D_n = $(kT/q)\cdot \mu_n$.

Где μ_p — подвижность дырок; μ_n — подвижность электронов

 D_p – коэффициент диффузии дырок в n-области

 D_n – коэффициент диффузии электронов в р-области

 L_n - диффузионная длина электрона в р-области

 L_p – диффузионная длина дырки в n-области

$$D_{p}=$$

$$D_n =$$

$$I_0 =$$

7. На основании расчетов, сделанных в п.2. настоящей практической работы, проставить ручкой размеры областей d, d_p и d_n . на рис.3.

Рис.3. Структура р-п перехода

8. Сформулируйте выводы по работе				

Контрольные вопросы

- 1. Что называют р-п переходом или запирающим слоем?
- 2. До каких пор будут продолжаться взаимные переходы электронов и дырок при контакте полупроводника n и р типа?
- 3. Что такое контактная разность потенциалов в p-n переходе?
- 4. Каков порядок величины контактной разности потенциалов p-n перехода?
- 5. Что такое ширина р-п перехода?
- 6. Как меняется ширина p-n перехода при приложении к нему прямого напряжения?
- 7. Как меняется ширина p-n перехода при приложении к нему обратного напряжения?
- 8. От чего зависит напряженность электрического поля p-n перехода при отсутствии внешнего напряжения?
- 9. Чем обусловлена барьерная емкость p-n перехода?
- 10. От каких параметров p-n перехода зависит величина барьерной емкости?
- 11. Как можно управлять величиной барьерной емкости р-п перехода?
- 12. Где используется варикап?

13. СПИСОК ЛИТЕРАТУРЫ

- 1. Андреев В.В., Столяров А.А. Физические основы наноинженерии. М.: Изд-во МГТУ им.Н.Э.Баумана. 2011.
- 2. Гуртов В.А. Твердотельная электроника.-М.: Техносфера. 2005.
- 3. Драгунов В.П., Неизвестный И.Г., Гридчин В.А. Основы наноэлектроники.- Новосибирск: Изд-во НГТУ, 2000.
- 4. Шик А.Я., Бакуева Л.Г., Мусихин С.Ф., Рыков С.А. Физика низкоразмерных систем,

СПб, Наука, 2001.

- 5. Пасынков В.В., Сорокин В.С. Материалы электронной техники, СПб, 2003.
- 6. Степаненко И.П. Основы микроэлектроники: учебное пособие для вузов. 2-е изд. М.: Лаборатория базовых знаний, 2001.
- 7. Старосельский В.И. Физика полупроводниковых приборов микроэлектроники: учебное
 - пособие. М.: Юрайт, 2011.
 - 8. Зиненко, В.И. Основы физики твердого тела [Текст]: учеб. пособие для вузов / В.И. Зиненко, Б.И. Сорокин, Р.И. Турчин. М.: Издательство физикоматематическойлитературы, 2001. 336с.
- 9. Электронные, квантовые приборы и микроэлектроника: Учебное пособие для вузов / Под
 - ред. Н.Д. Федорова. М.: Радио и связь, 2002.
 - 10. Зегря Г.Г., Перель В.И. Основы физики полупроводников. М.: Физматлит, 2009. Н.А. Афанасьева, Л.П. Булат. Физические основы электроники. Учебное пособие. СПб.: СПБ ГУНиПТ, 2010. -181c.
 - 11. Андреев В.В., Балмашнов А.А., Корольков В.И., Лоза О.Т., Милантьев В.П. Физическая электроника и ее современные приложения. Учеб. пособие. М.: РУДН, 2008. 383 с.

Приложение 1 Номер варианта соответствует номеру студента в списке группы

Таблица №1 Исходные данные.

таолица №1 исходные данные.								
№	Полупро	N_a –	N_d –	Пло	Обратное			
вари	водник	концентрация	концентрац	щадь	смещение,			
анта		акцепторных	ия	p-n	<i>Uобр</i> , В			
		атомов, м-3	донорных	перех				
			атомов, м-3	ода,				
				S,				
		20	20	MM ²				
1	Si	10^{22}	10^{20}	1	-25			
2	Ge	2,8*10 ¹⁶	4,4*10 ¹⁷	2	-15			
3	GaAs	$2*10^{20}$	3*10 ²²	1,5	-15			
4	InSb	3,8*10 ¹⁹	$1,5*10^{20}$	0,75	-10			
5	Si	$2*10^{22}$	$2*10^{20}$	3	-20			
6	Ge	2*10 ¹⁶	4*10 ¹⁷	4	-12			
7	GaAs	$2,5*10^{20}$	$3,5*10^{22}$	0,5	-14			
8	InSb	3,4*10 ¹⁹	$1,9*10^{20}$	0,3	-13			
9	Si	$2*10^{21}$	2*10 ¹⁹	0,2	-22			
10	Ge	2*10 ¹⁷	4*10 ¹⁸	0,1	-10			
11	GaAs	2,5*10 ²¹	$3,5*10^{21}$	0,4	-14			
12	InSb	3,4*10 ²⁰	1,9*10 ²¹	0,6	-12			
13	Si	$4*10^{22}$	3*10 ²⁰	0,5	-18			
14	Ge	3,8*10 ¹⁶	3,4*10 ¹⁷	1	-11			
15	GaAs	3,3*10 ²⁰	4,3*10 ²²	1	-13			
16	InSb	5,8*10 ¹⁹	$4,5*10^{20}$	0,4	-12			
17	Si	6*10 ²²	$7*10^{20}$	0,3	-23			
18	Ge	1,8*10 ¹⁶	2,4*10 ¹⁷	0,2	-14			
19	GaAs	2,9*10 ²⁰	3,9*10 ²²	0,3	-12			
20	InSb	3,9*10 ¹⁹	1,9*10 ²⁰	0,7	-11			
21	Si	$7*10^{22}$	$3*10^{20}$	1,2	-24			
22	Ge	7,8*10 ¹⁶	6,4*10 ¹⁷	1,3	-14			
23	GaAs	$3*10^{20}$	7,8*10 ²²	1,1	-10			
24	InSb	5,8*10 ¹⁹	$7,5*10^{20}$	1,4	-12			
25	Si	3,3*10 ²²	5,8*10 ²⁰	1,7	-18			
26	Ge	2,1*10 ¹⁶	4,2*10 ¹⁷	1,8	-11			
27	GaAs	2,6*10 ²⁰	$3,7*10^{22}$	1,9	-9			
28	InSb	$3,7*10^{19}$	1,8*10 ²⁰	2,1	-8			
29	Si	1,3*10 ²²	$2,8*10^{20}$	0,75	-30			
30	Ge	$1,1*10^{16}$	$2,2*10^{17}$	0,65	-15			

```
%Расчет основных параметров сплавного р-п перехода
% Исходные данные
q=1.6*1e-19; %Кл - это заряд электрона
k=1.38*1e-23;% Дж/К - постоянная Больцмана
       1.0*1e+23 %
                      м-3 концентрация акцепторной примеси
Nd =
       1.00*1e+21 %
                      м-3 концентрация донорной примеси
       1.40*1e+16 %
                      м-3 собственная концентрация носителей
ni=
       3.00*1e+02
                      % К температура в градусах Кельвина
S= 1*1e-6 % площадь p-n перехода согласно варианту, M2
ер= 11.7 % диэлектрическая проницаемость Si
ер0= 8.8541878128*1e-12 % м?3·кг?1·с4·А2 - диэлектрическая постоянная
mpSi=450 %Подвижность дырок полупроводника см?/(B·c)
mnSi=1400 % Подвижность электронов полупроводника см?/(В·с)
Uobr=-30
Lp=1*1e-3 % м - диффузионная длина дырок
Ln=1*1e-3 %м - диффузионная длина электронов
% расчет контактной разности потенциалов Uk, B
Uk=k.*T./q.*log(Na.*Nd./ni./ni)
% Расчет ширины p-n перехода d при температуре 300К в отсутствии внешнего
% напряжения, М
d=sqrt(2.*ep.*ep0.*Uk.*(Na+Nd)./(q.*Na.*Nd))
%Определим ширину области, легированной донорами, М
dp=d.*Nd./(Na+Nd)
dp max=dp
%Определим ширину области, легированной акцепторами, М
dn=d.*Na./(Na+Nd)
dn max=dn
%проверка, что dd=d
dd=dp+dn
%Расчет максимальной напряженности электрического поля р-п перехода со
%стороны р области
Ep=-q.*Na.*dn./ep./ep0
% построение графика изменения напряженности от координаты для области р
%dn=0:1e-07:9.4568e-07
dn=0:1e-07:dn max
Ep=-q.*Na.*dn./ep./ep0
% subplot(1,2,1);
hold on
plot(dn,Ep)
%Расчет максимальной напряженности электрического поля р-п перехода со
%стороны п области
En=-q.*Nd.*dp./ep./ep0
%проверка
A=Na.*dp
B=Nd.*dn
% построение графика изменения напряженности от координаты для области п
dp=0:-1e-09:-dp_max
En=-q.*Nd.*dp./ep./ep0
plot(dp,Ep)
title('Изменение напряженности поля Е на p-n переходе');
xlabel(' справа от 0 п-область; Толщина p-п перехода,М');
ylabel('Напряженность E, B/M');
grid on
hold off;
% Расчет барьерной емкости р-п перехода, Ф, при отсутствии обратного напряжения (Uобр=0)
Cbar0=S.*sqrt((q.*ep.*ep0.*Na.*Nd)./(2.*(Uk-Uobr).*(Na+Nd)))
% Расчет барьерной емкости р-п перехода, Ф, при обратном напряжении Џобр
```

% согласно варианту

```
Cbar_Uobr=S.*sqrt((q.*ep.*ep0.*Na.*Nd)./(2.*(Uk-Uobr).*(Na+Nd)))
%Определение величины изменения барьерной емкости р-п перехода за счет
%отрицательного смещения, Ф
delta_Cbar=Cbar0-Cbar_Uobr
% строим график
% subplot(1,2,2);
Uobr=0:-1:-30
Cbar_Uobr=S.*sqrt((q.*ep.*ep0.*Na.*Nd)./(2.*(Uk-Uobr).*(Na+Nd)))
figure
plot(Uobr,Cbar_Uobr)
title('Барьерная емкость Сбар p-n перехода');
xlabel('Обратное напряжение Uобр, В');
ylabel('Емкость Сбар, \Phi');
grid on
%Рассчитать величину плотности обратного тока насыщения р-п перехода для
%соответствующего варианта при температуре T = 300 K0 и Lp=Ln=1 10-3 м
Dp=k.*T.*mpSi./q./10000 % делим на 10000, чтобы для подвижности перевести см в м
Dn=k.*T.*mnSi./q./10000 % делим на 10000, чтобы для подвижности перевести см в м
I0=q.*S.*(Dp./Lp.*Nd+Dn./Ln.*Na) % плотность обратного тока насыщения А/М2
```