Readme.rmd

Sergio Pedro R Oliveira

2023-02-03

Contents

1	Objetivo	2
2	Livro de referência	2
3	Cap 1 - Instalação do R e Rstudio	2
4	Cap 2 - Pacote base e funções estatísticas básicas	
	4.1 Operações matematicas basicas	5
5	Cap 3 - Principais pacotes	1.0
	5.1 Instalação de pacotes	10
	5.2 Pacotes	10 10 11 11
6	Sites para uso Remote do R	12
7	Cap 4 - R Markdown	13
8	Cap ${\bf 5}$ - Pacotes do Tidyverse e identificando/mudando tipos de variaveis	15
9	Cap 6 - Pacote data.table	18
10	0 Cap 7 - Gráficos basicos e pacote ggplot2	19
11	1 Andamento dos Estudos 11.1 Assunto em andamento:	22 22 22 22

11.4	Finalizando	detalhes: .																												22
------	-------------	-------------	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	----

1 Objetivo

Estudo dirigido de linguagem R.

2 Livro de referência

Utilizando a Linguagem R.

Editora: ALTA BOOKS EDITORA

3 Cap 1 - Instalação do R e Rstudio

- Download da linguagem R: https://www.r-project.org/
- Download Rstudio IDE: https://posit.co/downloads/

4 Cap 2 - Pacote base e funções estatísticas básicas

4.1 Operações matematicas basicas

Nome da operação	Operação	Resultado
Adição	5+4	[9]
Subtração	6-2	[4]
Multiplicação	7*3	[21]
Divisão	45/9	[5]
Potência	2^2	[4]
Raiz	sqrt(121)	[11]
Exponencial	$\exp(0)$	[1]
Log na base e	$\log(1)$	[0]
Log na base 10	$\log 10(1)$	[0]
Log na base 2	$\log 2(4)$	[2]
Log na base 3 ou qualquer outra	$\log(9,3)$	[2]

4.2 Vetor

- Para criar um vetor usamos a função c().
- Os argumentos são separados por virgula dentro do parênteses.

- strings devem estar entre aspas duplas. Ex.: c(``um",``sete",``nove")

- $\bullet~$ Vetores são compostos de elementos todos do mesmo tipo.
- Armazenando vetores em um objeto: Ex.: $obj_qualquer <- c(1,2,3)$

4.3 Tabela de dados (data.frame) e matrizes

4.3.1 data.frame

- Uma tabela onde cada coluna é um vetor.
- Como cada coluna é um vetor, cada coluna pode ser de um tipo diferente. Ex.: nome_data.frame <- data.frame(vetor_1, vetor_2)
- Acrescentando uma nova coluna ao data.frame.

```
Ex.: nome_data.frame <- data.frame(nome_data.frame, vetor_3)
```

• Para visualizar um data.frame podemos usar a função View().

Ex.: **View**(nome_data.frame)

4.3.2 Matrizes

- A diferença entre **matrizes** e **data.frames**, é que no caso das matrizes todas as colunas e linhas devem ser do mesmo tipo. Enquanto nos **data.frames** as colunas podem ser de tipos diferentes.
- Para adicionar uma coluna numa matriz, usamos a função cbind().

```
Ex.: nome_matriz <- cbind(vetor_1, vetor_2, ...)
```

• Para adicionar uma linha numa matriz, usamos a função rbind().

```
Ex.: nome_matriz <- rbind(vetor_3, vetor_4, ...)
```

• Quando inserimos dados (vetor) de naturezas diferentes (tipos) numa matriz, ela converte todos os dados para um único tipo. A principio string (chr).

4.4 Acessando valores em posições especificadas dos objetos - vetor, matriz e data.frame

4.4.1 Caso vetor e matriz

- Podemos acessar os valores do objeto tipo vetor e matriz, informando a posição entre colchetes [].
- Para os **vetores** precisamos apenas informa a posição. A contagem da posição começa a partir do 1. Fy.

```
vetor <- c(5,18,89) 
 vetor[1]
```

• Para as **matrizes**, é necessario informar a posição [linha, coluna]. A contagem da posição começa a partir do 1.

Ex.: Mc[1,2]

• Para acessar todos os valores de uma *linha* da **matriz**, podemos determinar a *linha* e deixar a *coluna* em branco.

Ex.: Mc[1,]

• Para acessar todos os valores de uma coluna da **matriz**, podemos determinar a coluna e deixar a linha em branco.

Ex.: Mc[,2]

4.4.2 Caso data.frame

• No caso do **data.frame** podemos acessar os valores das colunas informando, "nome do **data.frame**" "\$" "nome da coluna".

Sintaxe:

 $nome_dataframe\$nome_coluna$

• O data.frame também aceita as mesmas formas de acessar posições que as matrizes.

4.5 Visualizando dados

4.5.1 View() - visualização de dados

- Podemos visualizar dados de duas formas:
 - Escrevendo o nome da variável
 O valor dela será impressa na tela.
 - Atraves da função View()
 Ao chamar a função View() e colocar dentro a variavel que queremos ver, será exibido uma nova janela com o valor da variável numa tabela.

4.5.2 str() - estrutura de objetos

- A função "str()" retorna a estrutura do objeto do argumento.
- Retorna diversos dados, entre eles:
 - A classe do objeto.
 - Tamanho do objeto.
 - A lista, ou vertor, dos campos com o tipo e tamanho.
- Sintaxe: str(argumento)

4.5.3 summary() - resumo de variáveis

- A função summary() retorna o resumo de variaveis.
- O retorno depende do argumento (se for um vetor, uma lista, um data.frame).
- O retorno para uma matriz ou data.frame, vai ser os metodos aplicados a cada campo/coluna.
- O retorno da função, no geral, retorna diversos metodos aplicados aos dados, tais como:
 - valor mínimo
 - 1º quantil
 - valor da mediana
 - valor da media
 - 3^o quantil
 - valor máximo
- Sintaxe: summary(nome_variavel)

4.5.4 class() - classe de objetos

- A função " ${f class}()$ " retorna a que classe do objeto do argemunto pertence.
- Basicamente diz se o objeto é numerico, string, vetor, lista, data.
frame, matriz, \dots
- Sintaxe: class(argumento)

4.6 Funções estatísticas básicas

Função	Descrição
${\operatorname{apply}(D,i,f)}$	Retorna os valores resultantes da aplicação da função f ao
	objeto D, linhas i=1, ou colunas i=2.
c(valor1, valor2, valor3)	Concatena uma sequência de valores seja númerico ou de
	caracteres. Neste último caso os valores devem estar entre
	aspas.
cbind(x1, x2,, xn)	Cria uma matriz com n colunas formada pelos vetores x1, x2,
	\dots , xn.
ceiling(x)	Retorna o menor inteiro maior ou igual ao valor x.
cor(x,y)	Calcula o coeficiente de correlação.
cumsum(x)	Retorna um vetor com valores acumulados em soma sobre os
` '	elementos de x.
cumprod(x)	Retorna um vetor com valores acumulados em produto sobre
1 ()	os elementos de x.
cummin(x)	Retorna um vetor com valores acumulados em mínimo sobre
()	os elementos de x.
cummax(x)	Retorna um vetor com valores acumulados em máximo sobre
()	os elementos de x.
data.frame(x1, x2,, xn)	Cria um dataframe com os vatores $x1, x2, \ldots, xn$.
$\det(M)$	Calcula o determinante da matriz quadrada M.
$\dim(M)$	Retorna as dimensões do objeto M.
$\operatorname{diff}(x)$	Retorna um vetor com a diferença entre os valores de x.
$\operatorname{eigen}(M)$	Retorna os autovalores e os autovetores da matriz quadrada
cigon(ivi)	M.
floor(x)	Retorna o maior inteiro menor ou igual a x.
identical(x,y)	Verifica se os vetores são idênticos.
intersect(x,y)	Realiza a interseção de dois conjuntos.
head(D)	Mostra o cabeçalho do objeto D.
length(x)	Calcula o comprimento do vetor x.
$\operatorname{mean}(x)$	Calcula a média do vetor x.
median(x) $median(x)$	Calcula a mediana do vetor x. Calcula a mediana do vetor x.
$\min(x)$	Calcula o mínimo de x.
$\max(x)$	Calcula o máximo de x. Calcula o máximo de x.
$\operatorname{ncol}(M)$	Retorna o número de colunas da matriz M.
. ,	Retorna o número de linhas da matriz M. Retorna o número de linhas da matriz M.
nrow(M)	
polyroot(x)	Encontra as raízes do polinômio de ordem n cujos coeficientes
1()	são representados no vetor x em ordem decrescente.
prod(x)	Multiplica os valores de x.
quantile(x,k)	Calcula o percentil de ordem $0 \le x \le 1$ dos valores de x.
$\operatorname{Re}(\mathbf{x})$	Retorna a parte real de um vetor x.
rep(x,k)	Cria um vetor repetindo a sequência x k vezes.
round(x,k)	Arredonda o valor x com k casas decimais.
$\operatorname{sd}(x)$	Calcula o desvio-padrão do vetor x.
seq(i,j,k)	Cria uma sequência de i ate j com tamanho de passo k.
setdiff(x,y)	Retorna um vetor contendo os elementos do conjunto
	diferença entre x e y.
setequal(x,y)	Verifica se os elementos dos vetores x e y são iguais,
. (4.7)	idenpendentemente da frequência em que aparecem no vetor.
solve(A,b)	Resolve Ax=b, retornando x.
sort(x)	Ordena os valores de vetor x em ordem crescente.
sort(x, decreasing = T)	Ordena os valores de x em ordem decrescente.

Função	Descrição
str(D)	Retorna a estrutura do objeto D.
sum(x)	Soma os valores de x.
union(x,y)	Retorna os elementos da união entre x e y.
var(x)	Calcula a variância do vetor x.
var(x,y)	Calcula a covariância entre x e y.
View(D)	Mostra o dataframe em janela separada.

5 Cap 3 - Principais pacotes

5.1 Instalação de pacotes

- sintaxe de instalação: install.packages("nome do pacote")
- sintaxe de variais instalações simultaneas: install.packages(c("nome do pacote", "nome do pacote",...), dependencies = TRUE)

5.2 Pacotes

- 1. Principais pacotes:
- stringr

Pacote para trabalhar com strings (texto).

• Rmarkdown

Produção de relatorios (html, pdf, doc, md).

• knitr

Interpretação e compilação do documento rmd.

· data.table

Exploração de data.frames.

• janitor

Limpeza de dados.

• DescTools

Analise descritiva de dados.

• tidyverse

conjunto de pacotes.

- readr

Importação e leitura de arquivos de dados.

- tibble

estruturação de data.frame.

- dplyr

Manipulação de data.frame.

tidyr

Organização de data.frame.

- ggplot2

Visualização de dados, produção de gráficos.

– purr

Manipulação de vetores e listas.

• foreign

Leitura e gravação de dados armazenados por algumas versões de "Epi Info", "Octave", "Minitab", "S", "SAS", "SPSS", "Stata", "Systat", "Weka" e para leitura e gravação de alguns "dBase" arquivos.

devtools

Para instalar pacotes que não estejam no CRAN.

- 2. Pacotes auxiliares ao pacote ggplot2:
- ggthemes
- grid

5.3 Carregamento de pacotes

- Para poder utilizar o conjunto de funções de um determinado pacote, não basta apenas instalar o pacote, é preciso carrega-lo no script.
- As principais formas de carregar um pacote no script é través dos comandos library() e require(). library(nome_pacote) require(nome_pacote)
- Outra possibilidade, é ao usar um função especificar a qual pacote ela pertence. nome_pacote::função.

5.4 Obter ajuda (informações) sobre pacotes

Duas formas de se conseguir informações sobre determinado pacote é através dos comandos:

- 1. package? nome pacote
- 2. **help**(**package** = "nome_pacote")

6 Sites para uso Remote do R

- Alguns sites que possibilitam utilizar o R básico, sem que seja necessário instala-lo no computador.
- Uma otima saída quando necessario utilizar em algum computador público (lan houses, hotéis, laboratórios, ...)
- 1. http://rstudio.cloud/
- 2. http://jupyter.org/try
- 3. http://www.tutorialspoint.com/execute_r_online.php
- 4. http://github.com/datacamp/datacamp_light
- 5. http://rdrr.io/snippets
- 6. http://www.jdoodle.com/execute-r-online
- 7. http://rextester.com/l/r_online_compiler
- 8. http://rnotebook.io

7 Cap 4 - R Markdown

- 1. Preâmbulo: • title: "Titulo desejado" • author: "Nome dos autores" • date: "Data do dia da compilação", para adicionar a data atual, podemos usar uma função dentro de um chunk "r Sys.Date()" • output: o tipo de saida, podem ser: - Documentos: * pdf_document * $md_document$ $* html_document$ $*\ word_document$ $* odt_document$ * rtf_document Apresentação: $*\ powerpoint_presentation$ $*\ ioslides_presentation$ $*\ beamer_presentation$ - mais: * $flexdashboard::flex_dashboard$ * $github_document$
- 2. Chunks (códigos embutidos):
- Códigos em R, ou em outras linguagens, podem ser inseriodos nos documentos através de chunks.
- Chunks são blocos de programação.
- A principal forma de inserir *chunks* é:
 - Três sinais de acento grave (crases) para abrir o chunk.
 - Definição da linguagem do bloco de programação.
 - Considerações sobre o bloco de programação.

- Bloco de programação.
- Três sinais de acento grave (crases) para fechar o *chunk*.
- Outras formas de inserir *chunks* é atraves do botão *Insert*, na área superior da tela do script, do **RStudio**.
- 3. Titulos e subtitulos:
- 4. Listas e blocos de citação:
- 5. Inserir tabelas:
- 6. Fontes:
- 7. Hiperlinks e imagens:
- Hiperlinks
- Imagens
- 8. Letras gregas:
- 9. Fórmulas:
 - Subscritos e superescritos
 - Sublinhados, sobrelinhas e vetores
 - Frações, matrizes e chavetas
 - Expressões
 - Sinais e setas

8 Cap 5 - Pacotes do Tidyverse e identificando/mudando tipos de variaveis

1. identificando/mudando tipos de variaveis

- i. identificando uso do **is**.
- ii. mudando o tipo de variavel: uso do **as**.
- 2. pacotes do Tidyverse:
- readr

Leitura de dados.

• tibble

Tipo de data.frame.

• magrittr

Operador pipe '%>%', concatena linhas de comando.

• dplyr

Manipulação de dados.

- i. munipulação de dados:
 - select seleciona e retorna as colunas selecionadas da tabela.
 - pull
 extrai uma coluna de uma tabela de dados e retorna ela como vetor.
 - filter filtra linhas.
 - distinct remove linhas com valores repetidos.
 - arrange reordena ou combina linhas.
 - mutate cria novas colunas.
 - transmute
 cria novas colunas, mas não adiciona na base de dados.

- summarise sumariza valores.
- group_by
 permite operações por grupo.
- add_column adiciona novas colunas.
- add_row adiciona novas linhas.
- rename renomeia uma coluna.

ii. combinando tabelas de dados:

- bind cols

Une duas tabelas lado a lado. acrescenta numeração as colunas repetidas.

É necessario que tenha o mesmo numero de linhas nas duas tabelas para fazer essa combinação.

- bind rows

Une duas tabelas sobrepostas.

Quando não há correspondencia o comando retorna NA.

- inner join

A tabela final será o resultado da intersecção das duas colunas de x e y, que possuem pelo menos uma coluna em comum, a coluna chave.

Junta duas colunas pela interseção.

- left_join

Une duas tabelas, definindo qual será a tabela principal e a unida a esquerda da outra. Esse fator muda a interpretação das linhas/registros correspondentes uma na outra, no caso, a tabela principal e tabela que será colocada a esquerda.

È necessario que tenha pelo menos uma coluna em comum, uma coluna chave.

- right_join

Une duas tabelas, definindo qual será a tabela principal e a unida a direita da outra. Esse fator muda a interpretação das linhas/registros correspondentes uma na outra, no caso, a tabela principal e tabela que será colocada a direita.

È necessario que tenha pelo menos uma coluna em comum, uma coluna chave.

- full_join

Une duas tabelas. Prestar atenção na junção das linhas/registros que formam novas informações, atraves da junção de correspondentes.

É necessario que tenha pelo menos uma coluna em comum, uma coluna chave.

- intersect

Retorna a interseção entre tabelas.

- union

Retorna a união de tabelas.

- setdiff

Retorna a diferença entre tabelas.

- setequal

Esse comando verifica se duas tabelas de dados possuem linhas com os mesmos valores, independentemente da ordem em que tais valores se apresentem. retorna **TRUE**, se os registros forem iguais, ou **FALSE**, se os registros forem diferentes.

• tidyr

Organização de dados.

- pivot_longer ou gather
 Converte a tabela de dados para o formato longo. (larga -> longo)
- pivot_wider ou spread Converte a tabela de dados para o formato larga. (longo -> larga)
- separate
 Separa as respostas que estão em uma unica coluna para diversas colunas.
- unite
 O comando unite é utilizado para unir duas ou mais colunas em uma unica coluna.
- $-\ complete$ Completa as combinações de duas colunas, se não houver valor completa com NA.
- drop_na
 Elimina as linhas, especificadas ou não, com valor NA.
- replace_na
 Substitui o valor NA por outro valor especificado.

9 Cap 6 - Pacote data.table

1. data.table

- Manipulando linhas
- Manipulando colunas
- Sumarizando dados
- modificando dados com set:
 - set modificando um valor.
 - setnames modificando nome da coluna.
 - setorder modificando ordem das linhas.
 - setcolorder modificando ordem das colunas.

10 Cap 7 - Gráficos basicos e pacote ggplot2

- 1. Gráficos basicos:
- Gráfico de barras **barplot**
- Gráfico circular (pizza) pie
- Gráfico de linhas **plot**
 - Para adicionar mais linhas no grafico.
 lines
- Gráfico de dispersão
 - Para obter a correlação.
 cor(x,y)
 - Para obter o coeficiente da reta de regressão.
 lm(y ~x)\$coef
 - Adiciona a reta tracejada.
 abline
- Histograma **hist**
- Boxplot (diagrama de caixa)
- 2. Pacote **ggplot2**
- Constroi diversos tipos de graficos a partir da mesma estrutura de componentes:
 - data: referente ao banco de dados.
 - geom_forma: um rol de tipos possiveis de representação dos dados.
 - coord_system: referente ao sistema de coordenadas, que podem ser cartesianas, polares e projeção de mapas.
- i) O que precisa para fazer o grafico?
 - A. Um nome de objeto para guardar o grafico (uma variavel).
 - B. A base de dados que será utilizada para a plotagem.

```
\mathbf{ggplot}(data = nome\_da\_base)
```

C. Descrever como as variaveis serão utilizadas na plotagem:

```
\mathbf{aes}(x=\ldots, y=\ldots, \ldots)
```

D. Especificar o tipo de grafico:

- $geom_forma(...)$
- E. Utilizar o operador "+" para adicionar camadas ao objeto **ggplot** criado.
- F. Pacotes auxiliares como ggthemes e grid, dentre outros.
- ii) Quais formatos podemos utilizar no ggplot2 geom_forma?

Forma	Tipo de grafico
geom_area ou	Produz um grafico para visualizar área sob a curva ou entre curvas.
geom_ribbon	
geom_bar ou geom_col	Produz um grafico de colunas do vetor x.
$geom_bar+coord_polar$	Produz um grafico circular (Pizza).
geom_boxplot	Produz o boxplot de x.
geom_curve	Produz um grafico em curva.
geom_density	Produz um grafico da densidade de x.
$geom_dotplot$	Produz um grafico de pontos.
geom_histogram	Produz um histograma do vetor x.
geom_line, geom_abline,	Produz um grafico de linhas
geom_hline, geom_vline	
geom_point	Produz um grafico de dispersão entre x e y.
geom_qq ou	plota os quantis de x usando como base a curva normal.
$geom_qq_line$	
geom_tile, geom_rect ou	Produz uma grade de retangulos.
geom_raster	
geom_violin	Produz um grafico em forma de violino.

iii) Nome dos argumentos para adicionar efeito em graficos do pacote ggplot2.

Função	Efeito no grafico
autoplot	Produz um grafico apropriado para o tipo de variavel.
coord_cartesian	Coordenada cartesiana.
coord_fixed	Coordenada cartesiana com razão entre eixo x e y fixada.
coord_flip	Inverte a posição dos eixos x e y.
coord_polar	Coordenada polar.
geom_blank	Janela em branco.
geom_jitter	Produz um efeito jitter.
$geom_smooth$	Produz uma curva suavizada.
geom_text	Aplica texto a janela grafica.
scale_fill_(=brewer ou	Define a escala de cores.
grey ou gradient)	
scale_*_continuos	Define parametros para o eixo x ou y continuos.
scale_*_discrete	Define parametros para o eixo x ou y discreto.
scale_*_manual	Define parametros para os eixos manualmente.

- Definindo um tema para o grafico ggplot.
 - theme_gray Fundo cinza e linhas grandes brancas.
 - theme_bw
 O classico preto e branco. Otimo para projetor.

- theme_linedraw
 Linhas pretasde varias larguras num fundo branco. semelhante ao theme_bw.
- theme_light
 Semelhante ao theme_linedraw, porem com as linhas mais cinza claro, para dar atenção aos dados.
- theme_dark
 Versão escura do theme_light, com o fundo escuro, util para criar linhas finas coloridas.
- theme_minimal
 Um tema minimalista sem anotações de fundo.
- theme_classic
 Tema classico, com linhas do eixo x e y, sem linhas de grade.
- theme_void Um tema completamente vazio.

11 Andamento dos Estudos

11.1 Assunto em andamento:

Atualmente estou estudando Cap.7, pacote ggplot2. E revisando Cap.4 - R Markdown.

- 11.2 Em andamento:
- 11.3 Vazios:
- 11.4 Finalizando detalhes: