Math 6108 Homework 5

Jacob Hauck

September 25, 2024

Problem 1.

Let V be a finite-dimensional vector space, and let $T:V\to V$ be a linear transformation such that $\operatorname{rank}(T)=\operatorname{rank}(T^2)$. Then $\operatorname{Null}(T)\cap T(V)=\{\mathbf{0}\}$.

Proof. We observe that $\text{Null}(T) \subseteq \text{Null}(T^2)$ because $T(\mathbf{v}) = \mathbf{0} \implies T^2(\mathbf{v}) = T(T(\mathbf{v})) = \mathbf{0}$. By the Dimension Theorem, we must also have

$$\text{Nullity}(T) + \text{rank}(T) = \dim(V) = \text{Nullity}(T^2) + \text{rank}(T^2)$$

which implies that $Null(T) = Null(T^2)$.

Suppose that $\mathbf{v} \in \text{Null}(T) \cap T(V)$. Then $\mathbf{v} \in T(V)$, so there exists $\mathbf{w} \in V$ such that $\mathbf{v} = T(\mathbf{w})$. On the other hand, $\mathbf{v} \in \text{Null}(T)$, so $\mathbf{0} = T(\mathbf{v}) = T^2(\mathbf{w})$. This implies that $\mathbf{w} \in \text{Null}(T^2) = \text{Null}(T)$. Hence, $\mathbf{v} = T(\mathbf{w}) = \mathbf{0}$. Since $\mathbf{v} \in \text{Null}(T) \cap T(V)$ was arbitrary and $\mathbf{0}$ belongs to any subspace, it follows that $\text{Null}(T) \cap T(V) = \{\mathbf{0}\}$.

Problem 2.

Let $T:V\to W$ and $L:W\to U$ be linear transformations. Then

$$rank(L \circ T) \leq min\{rank(L), rank(T)\}.$$

Proof. Let $\mathbf{u} \in \operatorname{range}(L \circ T)$. Then there exists $\mathbf{v} \in V$ such that $\mathbf{u} = L(T(\mathbf{v}))$. Thus, $T(\mathbf{v}) \in W$ is a vector whose image under L is \mathbf{u} . This implies that $\mathbf{u} \in \operatorname{range}(L)$. Hence, $\operatorname{range}(L \circ T) \subseteq \operatorname{range}(L)$, and it follows that $\operatorname{rank}(L \circ T) \subseteq \operatorname{rank}(L)$.

Now suppose that $\dim((L \circ T)(V)) = \dim(L(T(V))) > \dim(T(V)) =: n$. Then there exist n+1 vectors $\mathbf{w}_1, \ldots, \mathbf{w}_n, \mathbf{w}_{n+1} \in L(T(V))$ that are linearly independent. There also must be $\mathbf{v}_1, \ldots, \mathbf{v}_n, \mathbf{v}_{n+1} \in T(V)$ such that $L(\mathbf{v}_i) = \mathbf{w}_i$ for $i = 1, 2, \ldots, n+1$. If

$$c_1\mathbf{v}_1 + \dots + c_{n+1}\mathbf{v}_{n+1} = \mathbf{0}$$

for some c_1, \ldots, c_{n+1} in the underlying field, then applying L on both sides implies

$$\mathbf{0} = L(\mathbf{0}) = L(c_1 \mathbf{v}_1 + \dots + c_{n+1} \mathbf{v}_{n+1})$$

= $c_1 L(\mathbf{v}_1) + \dots + c_{n+1} L(\mathbf{v}_{n+1})$
= $c_1 \mathbf{w}_1 + \dots + c_{n+1} \mathbf{w}_{n+1}$,

which implies that $c_1 = c_2 = \cdots = c_{n+1} = 0$ by the linear independence of $\mathbf{w}_1, \ldots, \mathbf{w}_{n+1}$. This means that $\mathbf{v}_1, \ldots, \mathbf{v}_{n+1}$ are linearly independent, contradicting the fact that $\dim(T(V)) = n$. Thus, $\dim(L(T(V))) \leq \dim(T(V))$.

Finally, we obtain $\operatorname{rank}(L \circ T) = \dim((L \circ T)(V)) = \dim(L(T(V))) \le \dim(T(V)) = \operatorname{rank}(T)$.

This proves that $rank(L \circ T) \leq min\{rank(L), rank(T)\}.$

Problem 3.

Let A be an $m \times n$ matrix with a left inverse. Then A^* has a right inverse.

Proof. Let B be a left inverse of A; that is, B is an $n \times m$ matrix such that BA = I, the $n \times n$ identity matrix. Then

$$I = I^* = (BA)^* = A^*B^*,$$

so B^* is a right inverse for A^* .

Problem 4.

Let $A \in \mathbb{C}^{n \times n}$ be Hermitian positive definite, and let $\langle \mathbf{x}, \mathbf{y} \rangle = \mathbf{x}^* A \mathbf{y}$ for $\mathbf{x}, \mathbf{y} \in \mathbb{C}^n$. Then $\langle \cdot, \cdot \rangle$ is an inner product on \mathbb{C}^n .

Proof. We show that $\langle \cdot, \cdot \rangle$ is positive definite, conjugate symmetric, and linear in the second argument.

1. Positive definiteness. For $\mathbf{x} \in \mathbb{C}^n$, we have

$$\langle \mathbf{x}, \mathbf{x} \rangle = \mathbf{x}^* A \mathbf{x} \ge \mathbf{0}$$

because A is positive definite. Furthermore, if $\mathbf{x} \neq \mathbf{0}$, then

$$\langle \mathbf{x}, \mathbf{x} \rangle = \mathbf{x}^* A \mathbf{x} > \mathbf{0},$$

because A is positive definite, so $\langle \mathbf{x}, \mathbf{x} \rangle = \mathbf{0}$ only if $\mathbf{x} = \mathbf{0}$.

2. Conjugate symmetry. For $\mathbf{x}, \mathbf{y} \in \mathbb{C}$, we have

$$\langle \mathbf{y}, \mathbf{x} \rangle = \mathbf{y}^* A \mathbf{x} = \overline{(\mathbf{y}^* A \mathbf{x})^*} = \overline{\mathbf{x}^* A^* \mathbf{y}} = \overline{\mathbf{x}^* A \mathbf{y}} = \overline{\langle \mathbf{x}, \mathbf{y} \rangle}$$

because A is Hermitian.

3. Linearity in second argument. For $\mathbf{x}, \mathbf{y}, \mathbf{z} \in \mathbb{C}$ and $a \in \mathbb{C}$, we have

$$\langle \mathbf{x}, \mathbf{y} + a\mathbf{z} \rangle = \mathbf{x}^* A(\mathbf{y} + a\mathbf{z}) = \mathbf{x}^* A\mathbf{y} + a(\mathbf{x}^* A\mathbf{z}) = \langle \mathbf{x}, \mathbf{y} \rangle + a\langle \mathbf{x}, \mathbf{z} \rangle.$$

Problem 5.

1. $\langle \cdot, \cdot \rangle$ is not an inner product because it is not conjugate symmetric. For $\mathbf{v} = (1,0)^T$ and $\mathbf{w} = (0,1)^T$, we have

$$\langle \mathbf{v}, \mathbf{w} \rangle = 1 + 1 + 1 = 3,$$

but

$$\langle \mathbf{w}, \mathbf{v} \rangle = 1 + 0 + 1 = 2 \neq 3 = \overline{\langle \mathbf{v}, \mathbf{w} \rangle}$$

2. $\langle \cdot, \cdot \rangle$ is not an inner product because it is not positive definite. Let $\mathbf{v} = (1, -1)^T$. Then

$$\langle \mathbf{v}, \mathbf{v} \rangle = 1 - 1 - 1 + 1 = 0,$$

but $\mathbf{v} \neq 0$.

3. $\langle \cdot, \cdot \rangle$ is not an inner product because it is not positive definite. Let $A \in \mathbb{M}_n$ be the matrix with zero diagonal and all other components equal to 1. Then

$$\langle A, A \rangle = \operatorname{tr}(A^* + A) = 0,$$

but $A \neq 0$.

4. Assuming that elements of C([-1,1]) are real-valued, then $\langle \cdot, \cdot \rangle$ is an inner product. We observe that $\langle f, g \rangle$ is an improper integral, but it can be shown to exist for all $f, g \in C([-1,1])$ by making the trigonometric substitution $x = \cos(\theta)$ for $\theta \in [0,\pi]$:

$$\langle f, g \rangle = \int_{-1}^{1} \frac{f(x)g(x)}{\sqrt{1 - x^2}} dx = \int_{0}^{\pi} f(\cos(\theta))g(\cos(\theta)) \frac{\sin(\theta)}{\sqrt{1 - \cos^2(\theta)}} d\theta$$
$$= \int_{0}^{\pi} f(\cos(\theta))g(\cos(\theta)) d\theta.$$

The latter-most integrand is integrable because $f \circ \cos$ and $g \circ \cos$ are continuous. We now show that $\langle \cdot, \cdot \rangle$ satisfies the requirements for being an inner product.

(a) **Positive definiteness.** Let $f \in C([-1,1])$. Then

$$\langle f, f \rangle = \int_{-1}^{1} \frac{(f(x))^2}{\sqrt{1 - x^2}} dx \ge 0$$

because the integrand is pointwise nonnegative. Suppose that $\langle f, f \rangle = 0$. Since the integral is improper, we have to be a bit careful. For any $a \in (0,1)$, the nonnegativity of the integrand implies that

$$0 \le \int_{-a}^{a} \frac{(f(x))^2}{\sqrt{1-x^2}} \, \mathrm{d}x \le \int_{-1}^{1} \frac{(f(x))^2}{\sqrt{1-x^2}} \, \mathrm{d}x = 0.$$

Since a was arbitrary, and the integral of a continuous, nonnegative function is zero only if the function is zero, we obtain

$$\frac{(f(x))^2}{\sqrt{1-x^2}} = 0, \quad x \in (-1,1).$$

Since $\sqrt{1-x^2} \neq 0$ for $x \in (-1,1)$, it follows that f(x) = 0 for $x \in (-1,1)$. Since f is continuous on [-1,1], it follows that f(-1) = f(1) = 0 as well. Thus, f = 0.

(b) Conjugate symmetry. For any $f, g \in C([-1, 1])$, we have

$$\langle f, g \rangle = \int_{-1}^{1} \frac{f(x)g(x)}{\sqrt{1 - x^2}} dx = \overline{\int_{-1}^{1} \frac{g(x)f(x)}{\sqrt{1 - x^2}} dx} = \overline{\langle g, f \rangle}$$

because f and g are real-valued.

(c) Linearity in second argument. Let $f, g, h \in C([-1, 1])$, and let $a \in \mathbb{R}$. Then

$$\langle f, g + ah \rangle = \int_{-1}^{1} \frac{f(x)(g(x) + ah(x))}{\sqrt{1 - x^2}} dx = \int_{-1}^{1} \frac{f(x)g(x)}{\sqrt{1 - x^2}} dx + a \int_{-1}^{1} \frac{f(x)h(x)}{\sqrt{1 - x^2}} dx = \langle f, g \rangle + a \langle f, h \rangle.$$

Problem 6.

Let V be an inner product space. Then $\langle \mathbf{v}, \mathbf{0} \rangle = 0$ for all $\mathbf{v} \in V$.

Proof. Let $\mathbf{v} \in V$. Since $\mathbf{0} = 0 \cdot \mathbf{0}$, it follows from the linearity of the inner product in the second argument that

$$\langle \mathbf{v}, \mathbf{0} \rangle = \langle \mathbf{v}, 0 \cdot \mathbf{0} \rangle = 0 \cdot \langle \mathbf{v}, \mathbf{0} \rangle = 0.$$