第一章:数据系统概述

- ▶ 数据库的四个基本概念
 - 数据 (data)
 - 数据库 (Database)
 - 数据库管理系 (DBMS)
 - 数据库系统 (DBS)

数据库系统(DBS)

 数据库系统是由数据库、数据库管理系统(及其应用开发工具)、 应用程序和数据库管理员(DBA)组成的存储、管理、处理和维 护数据的系统。

第二章:关系数据库

2.1 关系的完整性

- 关系模型的完整性规则是对关系的某种约束条件
- 关系的三类完整性
 - 实体完整性
 - 若属性(指一个或一组属性) A是基本关系的主属性,则A不能取空值
 - ・参照完整性
 - · 用户定义的完整性

- ➤ 规则2.1 实体完整性规则 (Entity Integrity)
 - 若属性A是基本关系A的主属性,则属性A不能取空值
 - ■空值就是"不知道"或"不存在"或"无意义"的值

例:

选修(学号,课程号,成绩)

"学号、课程号"为主码

"学号"和"课程号"两个属性都不能取空值

外键及参照完整性

主码

▶ 在关系模型中实体及实体间的联系都是用关系来描述的,自然存在 着关系与关系间的引用。

【例】学生实体、专业实体

学生(学号,姓名,性别,专业号,年龄)

专业(专业号,专业名)

例 学生、课程、学生与课程之间的多对多联系

学生(学号,姓名,性别,专业号,年龄)

课程(课程号,课程名,学分)

选修(学号,课程号,成绩)

例 学生实体及其内部的一对多联系

学生(学号,姓名,性别,专业号,年龄,班长)

学号	姓名	性别	专业号	年龄	班长
801	张三	女	01	19	802
802	李四	男	01	20	
803	王五	男	01	20	802
804	赵六	女	02	20	805
805	钱七	男	02	19	

- ▶ "学号"是主码,"班长"是外码,它引用了本关系的"学号"
- ▶ "班长" 必须是确实存在的学生的学号
- \triangleright 设 F 是基本关系 R 的一个或一组属性,但不是关系 R 的码。如果 F 与基本关系 S 的主码 K_c 相对应,则称 F 是 R 的外码
- ➤ 基本关系 R 称为参照关系 (Referencing Relation)
- ➤ 基本关系 5 称为被参照关系 (Referenced Relation) 或目标关系 (Target Relation)

[例] 学生实体、专业实体

学生(学号,姓名,性别,专业号,年龄)

专业(专业号,专业名)

中学生关系的"专业号"与专业关系的主码"专业号"相对应,"专业号"属性是学生关系的外码,专业关系是被参照关系,学生关系为参照关系

[例] 学生、课程、学生与课程之间的多对多联系

学生(学号,姓名,性别,专业号,年龄)

课程(课程号,课程名,学分)

选修(学号,课程号,成绩)

选修关系的"学号"与学生关系的主码"学号"相对应

选修关系的"课程号"与课程关系的主码"课程号"相对应

- "学号"和"课程号"是选修关系的外码
- <u>学号</u> 选修关系 ______ 课程关系 学生关系 🛨 • 学生关系和课程关系均为被参照关系 (b)
- 选修关系为参照关系

[例] 学生实体及其内部的一对多联系

学生(学号,姓名,性别,专业号,年龄,班长)

学号	姓名	性别	专业号	年齢	班长
801	张三	女	01	19	802
802	李四	男	01	20	
803	王五	男	01	20	802
804	赵六	女	02	20	805
805	钱七	男	02	19	

- ▶ "学号"是主码,"班长"是外码,它引用了本关系的"学号"
- 学生关系既是参照关系也是被参照关系
- ▶ 关系R和 S不一定是不同的关系
- ▶ 目标关系 S 的主码 K。和参照关系的外码 F 必须定义在同一个(或一组)域上
- ▶ 外码并不一定要与相应的主码同名 当外码与相应的主码属于不同关系时,往往取相同的名字,以便于识别

▶ 规则2.2 参照完整性规则

若属性(或属性组)F 是基本关系 R 的外码它与基本关系S 的主码 K_c 相对应(基本关系R 和 S 不一定是不同的关系),则对于R 中 每个元组在 F 上的值必须为:

- 或者取空值 (F的每个属性值均为空值)
- 或者等于S中某个元组的主码值

用户定义的完整性 (user-defined integrity)

- ▶ 用户针对具体的应用环境定义的完整性约束条件,反映某一具体应用所涉及的数据必须满足的语义要求。
 - 如要求学号是8位整数,性别取值为"男"或"女"
 - 成绩取值范围为0 100
- ▶ 系统支持
 - 实体完整性和参照完整性(关系的两个不变性) 由系统自动支持
 - 系统应提供定义和检验用户定义的完整性机制 (DBMS中的实现)

2.3关系模式

- ➤ 关系模式 (Relation Schema) 是型
- ▶ 关系是值
- ▶ 关系模式是对关系的描述
 - □元组集合的结构
 - 属性构成
 - ●属性来自的域
 - ■属性与域之间的映象关系
 - □完整性约束条件

关系模式可以形式化地表示为:

R (U, D, DOM, F)

R 关系名

U 组成该关系的属性名集合

D U中属性所来自的域

DOM 属性向域的映象集合

F 属性间数据的依赖关系的集合

2.3 关系操作

▶ 常用的关系操作

■查询操作:选择、投影、连接、除、并、差、交、笛卡尔积

●选择、投影、并、差、笛卡尔基是5种基本操作

■数据更新:插入、删除、修改

▶ 关系操作的特点

■集合操作方式:操作的对象和结果都是集合,一次一集合的方式

2.4 关系代数

▶ 用对关系的运算表达查询

▶ 运算的三大要素:运算对象、运算符、运算结果

•运算对象:集合

•运算符:

•运算结果:集合

运 釒	含义	
集合	U	并
运算符	-	差
	Λ	交
	×	笛卡尔积
专门的	σ	选择
关系	π	投影
运算符		连接
	÷	除

并 (Union): 所有至少出现在两个关系中之一的元组集合

- ▶ R和S
 - ✓ 具有相同的目n (即两个关系都有n 个属性)
 - ✓相应的属性取自同一个域
- $\triangleright R \cup S$
 - ✔ 仍为n 目关系,由属于R 或属于S 的元组组成 $R \cup S = \{ t | t \in R \lor t \in S \}$

差(Difference): 所有出现在一个关系而不在另一关系中的元组集合

- ▶ R和S
 - ✓具有相同的目*n*
 - ✓相应的属性取自同一个域
- > R S
 - \checkmark 仍为n目关系,由属于R而不属于S的所有元组组成 $R-S=\{\ t\ |\ t\in R\land t\notin S\}$

	Α	В	С
R	3	6	7
	2	5	7
	7	2	3
	4	4	3

S	Α	В	С
3	3	4	5
	7	2	3

-	it 5	
Α	В	С
3	6	7
2	5	7
4	4	3

R-S

S-R

A B C
3 4 5

交 (Intersection): 所有同时出现在两个关系中的元组集合

	А	В	С
R	3	6	7
	2	5	7
	7	2	3
	4	4	3

	R∩S	
Α	В	С
7	2	3

S	Α	В	С
3	3	4	5
	7	2	3

广义笛卡尔积(Extended Cartesian Product):两个分别为n目和m目的关系R和S的笛卡儿积是一个(n+m)列的元组的集合元组的前n列是关系R的一个元组,后m列是关系S中的一个元组。

R×S的度为R与S的度之和,R×S的元组个数为R和S的元组个数的乘积

r

Α	В
Х	1
У	2

	S	
С	D	Е
X	6	7
у	5	7
Z	2	3

		•	•		
Α	В	С	D	E	
х	1	х	6	7	
X	1	у	5	7	
X	1	Z	2	3	
у	2	х	6	7	
у	2	у	5	7	
У	2	Z	2	3	

 $r \times s$

(1) R, $t \in R$, $t[A_i]$

设关系模式为 $R(A_1, A_2, ..., A_n)$

它的一个关系设为,

t ∈ R 表示 提 R的一个元组

 $t[A_i]$ 则表示元组t中相应于属性 A_i 的一个分量

(2) A, t[A], \overline{A}

若 $A=\{A_{i1}, A_{i2}, ..., A_{ik}\}$,其中 $A_{i1}, A_{i2}, ..., A_{ik}$ 是 $A_1, A_2, ..., A_n$ 中的一部分,则A称为属性列或属性组。

t[A]= $(t[A_{ii}], t[A_{ii}], ..., t[A_{ik}])$ 表示元组t在属性列A上诸分量的集合。

 \overline{A} 则表示 $\{A_1, A_2, ..., A_n\}$ 中去掉 $\{A_{i1}, A_{i2}, ..., A_k\}$ 后剩余的属性组。

(3) 元组连接 \hat{t} \hat{t}

R为n目关系,S为m目关系。

 $t_i \in R$, $t_i \in S$, t_i 称为元组的连接。

t 是一个n+m列的元组,前n个分量为R中的一个n元组,后m个分量为S中的一个m元组。

(4) 象集乙

给定一个关系R(X, Z) , X和Z为属性组。

当t[X]=x时, x在R中的象集 (Images Set) 为:

 $Z_x = \{t[Z] | t \in R, t[X] = x\}$

它表示A中属性组X上值为x的诸元组在Z上分量的集合

R	
x_1	Z_1
x_1	Z_2
x_1	Z_3
x_2	Z_2
x_2	Z_3
<i>x</i> ₃	Z_1
<i>x</i> ₃	Z_3

- ► x_1 $\neq x_1$ $\neq x_2$ $\neq x_3$ $\neq x_4$ $\neq x$
- > x_2 E E X_2 E X_2 E X_3 X_4 X_4 X_5 X_6 X_6 X_6 X_6 X_7 X_8 X_8 X_9 X_9
- x_3 在R中的象集 $Z_{x3} = \{Z_1, Z_3\}$

- ➤ 选择又称为限制 (Restriction)
- ▶ 选择运算符的含义
 - 在关系R 中选择满足给定条件的诸元组 $\sigma_F(R) = \{t \mid t \in R \land F(t) = '真'\}$
 - F: 选择条件,是一个逻辑表达式,取值为"真"或"假"
 - ●基本形式为: Xθ Y₁
 - ●θ表示比较运算符,它可以是>,≥,<,≤,=或<>
 - ●X,Y是属性名、常量、或简单函数

R

Α	В	С
3	6	7
2	5	7
7	2	3
4	4	3

 $\sigma_{A < 5}(R)$

Α	В	С
3	6	7
2	5	7
4	4	3

$$\sigma_{A < 5 \cap C = 7}(R)$$

Α	В	С
3	6	7
2	5	7

► 从R中选择出若干属性列组成新的关系

$$\pi_{\mathcal{A}}(R) = \{ t[A] \mid t \in R \}$$

A: R中的属性列

- ▶投影操作主要是从列的角度进行运算
- ▶投影之后不仅取消了原关系中的某些列,而且还可能取消某些元组 (避免重复行)

R

Α	В	С
3	6	7
2	6	7
7	2	3
4	4	3

$$\pi_{B,C}(R)$$

В	С
6	7
2	3
4	3

- ▶ 连接也称为θ连接
- ▶ 连接运算的含义

从两个关系的笛卡尔积中选取属性间满足一定条件的元组

$$R \bowtie_{A\theta B} S = \{ \widehat{t_r t_s} \mid t_r \in R \land t_s \in S \land t_r [A] \theta t_s [B] \}$$

● A和B: 分别为R和S上度数相等且可比的属性组

●θ: 比较运算符

■ 连接运算从 R 和 S 的广义笛卡尔积 R × S 中选取 R 关系在 A属性组上的值与 S 关系在 B 属性组上的值满足比较关系 θ的元组

					S	
	Α	В	С		D	Е
R	1	2	3		3	1
	4	5	6		6	2
	7	8	9	'		

- 54 -	Α	В	С	D	E
$R_{B < D} \bowtie S$	1	2	3	3	1
	1	2	3	6	2
	4	5	6	6	2

等值连接: θ为等号时称为等值连接

从关系R与S的广义笛卡尔积中选取A、B属性值相等的那些元组 $R\bowtie S=\{\widehat{t_tt_s}\mid t_r\in R\land t_s\in S\land t_r[A]=t_s[B]\}$

- ➤ 自然连接 (Natural join)
 - ●自然连接是一种特殊的等值连接
 - ▶两个关系中进行比较的分量必须是相同的属性组
 - > 在结果中把重复的属性列去掉
 - ●自然连接的含义

R和S具有相同的属性组B

$$R \bowtie S = \{ \widehat{t_t}_s [U-B] \mid t_r \in R \land t_s \in S \land t_r[B] = t_s[B] \}$$

R		
Α	В	С
a1	b1	5
a1	b2	6
a2	b3	8
a2	b4	12

S	
В	E
b1	3
b2	7
b3	10
b3	2
b2	2

自然连接 R ⋈ S

Α	В	С	E
a1	b1	5	3
a1	b2	6	7
a2	b3	8	10
a2	b 3	8	2

➤ 悬浮元组 (Dangling tuple)

■ 两个关系 R 和 S 在做自然连接时,关系 R 中某些元组有可能在 S 中不存在公共属性上值相等的元组,从而造成 R 中这些元组在操作时被舍弃了,这些被舍弃的元组称为悬浮元组。

➤ 外连接 (Outer Join)

- 如果把悬浮元组也保存在结果关系中,而在其他属性 上填空值(Null),就叫做外连接
- ■左外连接(LEFT OUTER JOIN或LEFT JOIN)
 - ●只保留左边关系*R*中的悬浮元组
- 右外连接(RIGHT OUTER JOIN或RIGHT JOIN)
 - ●只保留右边关系*S*中的悬浮元组

R		
Α	В	С
a1	b1	5
a1	b2	6
a2	b3	8
a2	b4	12

S	
В	E
b1	3
b2	7
b3	10
b3	2
b5	2

关系R和S的外连接

Α	В	С	E
a1	b1	5	3
a1	b2	6	7
a2	b3	8	10
a2	b3	8	2
a2	b4	12	NULL
NULL	b5	NULL	2

R			s										
Α	В	С	В	E									
a1	b1	5	b1	3									
a1	b2	6	b2	7									
a2	b3	8	b3	10	~	D	TDC+		1 \ 4 1 4 -	V = 5	T= C4		\ <u></u>
a2	b4	12	b3	2	天	系K	4月2日	的压力	卜连接	天糸k	(和JSE	的右外	连接
			b5	2		Α	В	С	Е	Α	В	С	E
						a1	b1	5	3	a1	b1	5	3
						a1	b2	6	7	a1	b2	6	7
						a2	b3	8	10	a2	b3	8	10
						a2	b3	8	2	a2	b3	8	2
						a2	b4	12	NULL	NULL	b5	NULL	2

除运算 (Division)

给定关系R (X, Y) 和S (Y, Z),其中X,Y,Z为属性组。 R中的Y与S中的Y可以有不同的属性名,但必须出自相同的 域集。

R与S的除运算得到一个新的关系P(X),

P是R中满足下列条件的元组在 X 属性列上的投影:

元组在X上分量值x的象集Y、包含x在y上投影的集合,记作:

 $R \div S = \{t_r[X] | t_r \in R \land \pi_Y(S) \subseteq Y_x\}$

 Y_x : x在R中的象集, $x = t_r[X]$

R

Α	В	С
a1	b1	c2
a2	b3	с7
а3	b4	с6
a1	b2	c3
a4	b6	c6
a2	b2	с3
a1	b2	с1

S

В	С	D
b1	c2	d1
b2	с1	d1
b2	c3	d2

S在 (B, C) 上的投影为: {(b1,c2), (b2, c1), (b2,c3), }

R÷S

A a1

a1的象集为{(b1,c2), (b2,c3), (b2, c1)}

- a2的象集为{(b3,c7), (b2,c3)}
- a3的象集为{(b4,c6)}
- a4的象集为{(b6,c6)}