Litter Power Package: List of Objects &c.

Discrete Distributions

Object	Distributions	Output Ran	ge Options	Parameters (defaults, ranges)	Availabilit
p.bernie	Bernoulli	0 n		n [1]: Positive integer, number of Bernoulli trials	Starter
-	Binary Choice (n = 1)			p [0.5]: Probability (i.e between 0 and 1) of positive outcome	
lp.bibi	Beta Binomial model	0 N		n [1]: Positive integer, number of Bernoulli trials	Pro
				alpha, beta [0.5, 0.5]: Parameters of an underlying binomial	
				distribution generating values of p for a Bernoulli (n, p)	
la diam	Dice	0 n * m		n [2]: Positive integer, number of dice	Pro
lp.dicey	Dice	0 II " III			F10
				m [6]: Faces on each die	
				Optional list of integers representing "weights" of each face on	
				the die. All faces for which no individual weighting has been	
				specified are equiprobable	
lp.ernie	Arbitrary distributions using the "finite urn" model			L [128]: Length of cycle	Pro
•	,			Other messages: const int, refer symbol (refers to table with data))
				, , , , , ,	,
lp.ginger	I Ching	1 64	coin (default)	None	Starter
	Produces both "present" and "future" oracles.		yarrow		
	Supports yarrow stick and coin toss methods.		,		
p.lili	Uniform distribution over long integers. Well, sort of uniform.	0 mod.		mul [65539]: Seed multiplier between succesive calls	Pro
·P	ormorni distribution over forig integers. Well, soft of dimorni.	o moa.		add [0]: Constant added to (seed * mul) at each succesive call	
	Based on the now largely obsolete Linear Congruence method for generating pseudo-random numbers. Allows you to play			· · · · · · · · · · · · · · · · · · ·	
	with the parameters. Find the shortest cycle!	0	main; unsigned	seed [1]: Initial seed for linear congruence pseudo-random	
		values ≥ 2^3	1are interpreted	number generator	
		by Max as ne	egative values.		
		•		The default values give the same random numbers as Max.	
p.mama	Uniform distribution over long integers.	min max		min [-2,147,483,648]: integer less than max	Pro
	Based on the Generate random numbers using the Marsaglia "Mother of All Random Number Generators" algorithm			max [2,147,483,647]: integer greater than min	
	algorithm: flat distribution, cycle of approx. 2^250, all bits random, robust seeding.	(See paramet	ters. Note that the		
	angoritam. That distribution, cycle of approx. 2 250, an one fundon, robust security.	` *	ned inclusively)	If only one integer is given as an initialization argument and it is	
		range is dem	ned merusivery)	, , ,	
				positive, the range is set from 0 to the specified value. If this	
	Trible that a second second			integer is negative, the maximum is taken as 0.	Pro
p.mrmr	Uniform distribution over long integers.	min max		min [-2,147,483,648]: integer less than max	PTO
	Based on the Mersenne Twister algorithm: flat distribution, unbelievable cycle of over 2^19000, all bits random, robust			max [2,147,483,647]: integer greater than min	
	seeding.	(See paramet	ters. Note that the	2	
		range is defin	ned inclusively)	If only one integer is given as an initialization argument and it is	
		-		positive, the range is set from 0 to the specified value. If this	
				integer is negative, the maximum is taken as 0.	
lp.pfishie	Poisson	0∞		lambda [1]: Positive real, is both mean and standard deviation	Pro
p.tata	Uniform distribution over long integers.	min max		min [-2,147,483,648]: integer less than max	Starter
·F	Based on the Taus88 (Tausworthe) algorithm: flat distribution, cycle of just under 2^88, all bits random, robust seeding. All			max [2,147,483,647]: integer greater than min	
		(C	tana Mata da cula		
	that, and faster than the traditional linear congruence method!		ters. Note that the		
		range is defii	ned inclusively)	If only one integer is given as an initialization argument and it is	
				positive, the range is set from 0 to the specified value. If this	
				integer is negative, the maximum is taken as 0.	
p.titi	Uniform distribution over long integers.	min max		min [-2,147,483,648]: integer less than max	Pro
	Based on M. Matsumoto's TT800 algorithm: flat distribution, cycle of 2^800 - 1, all bits random, robust seeding.			max [2,147,483,647]: integer greater than min	
		(See paramet	ters. Note that the	?	
			ned inclusively)	If only one integer is given as an initialization argument and it is	
		Turige is defin	merusively)		
				positive, the range is set from 0 to the specified value. If this	
la sianis	7 inf distribution	1		integer is negative, the maximum is taken as 0.	Dvo
p.zippie	Zipf distribution	1∞		Zeta exponent [1.0]. Controls steepness of the distribution curve.	1 10
	NB: Output from any of these distributions can be scaled/mapped to non-standard values with lp.scampi				_

Continuous Distributions

Object	Distributions	Output Range Options	Parameters (defaults, ranges)	Availability
lp.abbie	arc sine (a = 0.5 and b = 0.5)	01	a [0.5]: Positive real; increase tendency towards 0	Pro
	beta		b [0.5]: Positive real; increase tendency towards 1	
lp.chichi	Chi Square	0∞	f [1]: Positive integer, degrees of freedom	Pro

lp.coshy	Cauchy	-∞∞	sym (default)	tau [1]: Positive real, effectively a scaling factor	Pro
	Positive Cauchy	0∞	pos		
	Negative Cauchy	-∞ 0	neg		
lp.expo	Exponential	0 ∞	pos (default)	lambda [1]: Positive real, influences mean and standard	Pro
	Bilateral ("[First Law of] Laplace")	-∞∞	sym	deviation	
	Negative Exponential	-∞ 0	neg	4. 4.5.7. 4.3.7	D.
lp.fishie	Fisher	0 ∞		f1 and f2 [both 1]: Positive integers,	Pro
				two independent degrees of freedom parameters	n
lp.gammer	Gamma/Erlang distribution	0 ∞		nu [1]: Positive real. If nu is an integral value, the Erlang	Pro
				distribution is produced.	
1	WG II :	01		lambda [1]: Positive real	Pro
lp.grrr	"Gray" noise	-∞ ∞		None	Pro
lp.hyppie	Hyperbolic Cosine & Hyperbolic Secant distributions	-00 00	cos	None	F10
lp.linnie	Lineau (dogracina)	01	sec	None	Starter
ip.iiiiiie	Linear (decreasing)	01	neg (default)		Starter
	Triangular Linear (increasing)		sym	Note: the option names refer to the slope of the distribution. Does that help?	
lp.loggie	Linear (increasing) Logistic	-∞ ∞	pos	alpha [1]: Positive real	Pro
ip.ioggie	Logistic			beta [0]: Non-negative real	110
lp.lonnie	Log-normal	(0) ∞		mu*[1]: Positive real	Pro
1p.ioinne	Log-normal	(0) ∞		sigma* [1]: Positive real	170
lp.norm	Normalized Gauss distribution (with mean at 0 and standard deviation of 1)	-∞ ∞		mu[0]: any real value	Starter
ip.norm	Normalized Gauss distribution (with mean at 0 and standard deviation of 1)			sigma [1]: Positive real (0 is allowed but counter-productive;	Starter
				negative values give the same results as the complementary	
				positive value)	
lp.pfff	Brownian motion ("brown" noise)	01		positive value)	Starter
lp.phhh	1/f^3 random distribution ("black" noise)	01			Starter
lp.pvvv	Variable Hurst exponent for 1/f^h distributions ("white", "pink", "brown", "black" and between and beyond)	01		Hurst exponent [0.0]: Controls "color" of random number	Pro
тр.р***	variable fruits exponent for 1/1 fruits indutions (white , plack , blown , black and between and beyond)	01		distribution	
lp.shhh	Uniform ("white" noise)	01		nn [0]: Integer from 0 to 31; a noisiness factor (number of least	Starter
Pionini	Children (White Holse)	01		significant bits masked out before calculating result)	
lp.sss	1/f ("pink" noise: Voss/Gardner algorithm)	01		nn [0]: Integer from 0 to 29 a noisiness factor (number of least	Starter
1	-,-(F			significant bits masked out before calculating result).	
lp.stu	Student's "T" Distribution	-∞ ∞		f [1]: Positive integer, degrees of freedom	Pro
lp.y	Weibull/Rayleigh distributions	0∞		s [1]: Positive real	Pro
1 ,	, , ,			t [1]: Positive real	
lp.vilfrie	Pareto distribution	b∞		a [1]: Shape parameter, controls sharpness with which the	
•				probability of higher values falls off	
				b [1]: Location parameters, determines smallest possible value	
lp.zzz	1/f (McCartney's improved algorithm for pink noise)	01	_	nn [0]: Integer from 0 to 29 a noisiness factor (number of least	Pro
				significant bits masked out before calculating result).	
	NB: Output from any of these distributions can be scaled/mapped to other values (including integers) with lp.scampi			., ,	
Signal Generators					
olgital contraction					
Ohiect	Distributions	Output Rang	e Ontions	Parameters (defaults_ranges)	
Object In engisse~	Distributions Cheesy poise part pitch part poise	Output Rang	e Options	Parameters (defaults, ranges)	Pro
	Distributions Cheesy noise: part pitch, part noise	Output Rang signal (-1 1)	e Options	frequency	Pro
			e Options	frequency pitch factor	Pro
lp.epoisse~	Cheesy noise: part pitch, part noise	signal (-1 1)	e Options	frequency pitch factor Hurst exponent	
lp.epoisse~			e Options	frequency pitch factor Hurst exponent baseFreq [1000]: Approx. frequency of center freq. (always	Pro Pro
lp.epoisse~	Cheesy noise: part pitch, part noise	signal (-1 1)	e Options	frequency pitch factor Hurst exponent baseFreq [1000]: Approx. frequency of center freq. (always rounded to integral division of sample rate)	
lp.epoisse~	Cheesy noise: part pitch, part noise	signal (-1 1)	e Options	frequency pitch factor Hurst exponent baseFreq [1000]: Approx. frequency of center freq. (always rounded to integral division of sample rate) Interp [0]: Order of interpolation between generated random	
lp.epoisse~	Cheesy noise: part pitch, part noise Low frequency noise	signal (-1 1)	e Options	frequency pitch factor Hurst exponent baseFreq [1000]: Approx. frequency of center freq. (always rounded to integral division of sample rate) Interp [0]: Order of interpolation between generated random values. Range from 0 to 2.	Pro
lp.frrr~	Cheesy noise: part pitch, part noise Low frequency noise 1-bit white noise	signal (-1 1) signal (-1 1)	e Options	frequency pitch factor Hurst exponent baseFreq [1000]: Approx. frequency of center freq. (always rounded to integral division of sample rate) Interp [0]: Order of interpolation between generated random	
lp.frrr~ lp.feta~ lp.grrr~	Cheesy noise: part pitch, part noise Low frequency noise 1-bit white noise Gray noise	signal (-1 1) signal (-1 1) signal (-1 1) signal (-1 1)	e Options	frequency pitch factor Hurst exponent baseFreq [1000]: Approx. frequency of center freq. (always rounded to integral division of sample rate) Interp [0]: Order of interpolation between generated random values. Range from 0 to 2. amp [sqrt(1/3)]. Produces power equal to lp.shhh	Pro Starter
lp.fera~ lp.feta~ lp.grrr~ lp.ksks~	Cheesy noise: part pitch, part noise Low frequency noise 1-bit white noise Gray noise Plucked-string noise (without the intonation problems of Karplus-Strong)	signal (-1 1) signal (-1 1) signal (-1 1) signal (-1 1) signal (-1 1)	e Options	frequency pitch factor Hurst exponent baseFreq [1000]: Approx. frequency of center freq. (always rounded to integral division of sample rate) Interp [0]: Order of interpolation between generated random values. Range from 0 to 2. amp [sqrt(1/3)]. Produces power equal to lp.shhh frequency	Pro Starter Pro
Object Ip.epoisse~ Ip.frrr~ Ip.feta~ Ip.grrr~ Ip.ksks~ Ip.Ill~	Cheesy noise: part pitch, part noise Low frequency noise 1-bit white noise Gray noise	signal (-1 1) signal (-1 1) signal (-1 1) signal (-1 1)	e Options	frequency pitch factor Hurst exponent baseFreq [1000]: Approx. frequency of center freq. (always rounded to integral division of sample rate) Interp [0]: Order of interpolation between generated random values. Range from 0 to 2. amp [sqrt(1/3)]. Produces power equal to lp.shhh frequency mul	Pro Starter Pro Pro
lp.frrr~ lp.feta~ lp.grrr~ lp.ksks~	Cheesy noise: part pitch, part noise Low frequency noise 1-bit white noise Gray noise Plucked-string noise (without the intonation problems of Karplus-Strong)	signal (-1 1) signal (-1 1) signal (-1 1) signal (-1 1) signal (-1 1)	e Options	frequency pitch factor Hurst exponent baseFreq [1000]: Approx. frequency of center freq. (always rounded to integral division of sample rate) Interp [0]: Order of interpolation between generated random values. Range from 0 to 2. amp [sqrt(1/3)]. Produces power equal to lp.shhh frequency mul add:	Pro Starter Pro Pro
lp.fera~ lp.feta~ lp.grrr~ lp.ksks~	Cheesy noise: part pitch, part noise Low frequency noise 1-bit white noise Gray noise Plucked-string noise (without the intonation problems of Karplus-Strong)	signal (-1 1) signal (-1 1) signal (-1 1) signal (-1 1) signal (-1 1)	e Options	frequency pitch factor Hurst exponent baseFreq [1000]: Approx. frequency of center freq. (always rounded to integral division of sample rate) Interp [0]: Order of interpolation between generated random values. Range from 0 to 2. amp [sqrt(1/3)]. Produces power equal to lp.shhh frequency mul add: mod[0]: 0 is interpreted as 2^32.	Pro Starter Pro Pro
lp.frrr~ lp.feta~ lp.grrr~ lp.ksks~	Cheesy noise: part pitch, part noise Low frequency noise 1-bit white noise Gray noise Plucked-string noise (without the intonation problems of Karplus-Strong)	signal (-1 1) signal (-1 1) signal (-1 1) signal (-1 1) signal (-1 1)	e Options	frequency pitch factor Hurst exponent baseFreq [1000]: Approx. frequency of center freq. (always rounded to integral division of sample rate) Interp [0]: Order of interpolation between generated random values. Range from 0 to 2. amp [sqrt(1/3)]. Produces power equal to lp.shhh frequency mul add: mod[0]: 0 is interpreted as 2^32. seed [1]: Initial seed for linear congruence pseudo-random	Pro Starter Pro Pro
lp.frrr~ lp.feta~ lp.grrr~ lp.ksks~	Cheesy noise: part pitch, part noise Low frequency noise 1-bit white noise Gray noise Plucked-string noise (without the intonation problems of Karplus-Strong)	signal (-1 1) signal (-1 1) signal (-1 1) signal (-1 1) signal (-1 1)	e Options	frequency pitch factor Hurst exponent baseFreq [1000]: Approx. frequency of center freq. (always rounded to integral division of sample rate) Interp [0]: Order of interpolation between generated random values. Range from 0 to 2. amp [sqrt(1/3)]. Produces power equal to lp.shhh frequency mul add: mod[0]: 0 is interpreted as 2^32.	Pro Starter Pro Pro

lp.pvvv~	77 111 1 1 1				_
= =	Variable colored noise	signal (-1 1)	Mode:	Hurst exponent [0.0]: Controls 'darkness' of noise. 0 generates a	Pro
		0 ()	0 (native)	pink noise, 1 generates a black noise. Fractional values produce	
			1 (PPC)	signals in between, negative values are increasingly	
			2 (Intel)	'white' (lower than -0.5 remains white), larger values produce	
			3 (PC415)	even 'darker' noise.	
			3 (1 C413)	even darker noise.	
				nn [0]: Granularity of noise (bit-masking) in range (031]	
lp.qvvv~	Variable colored noise using floating-point calculations	signal	stet	Hurst exponent [0.0]: Controls 'darkness' of noise. 0 generates a	Pro
			clip	pink noise, 1 generates a black noise. Fractional values produce	
			wrap	signals in between, negative values are increasingly	
			reflect	'white' (lower than -0.5 remains white), larger values produce	
				even 'darker' noise.	
				nn [0]: Granularity of noise (bit-masking) [0.0 31.0]. Use float	
				input to specify fractional bit-depth.	
		Note on option	ns: lp.qvvv~ caı	n produce output outside the nominal signal range of (-1 1). Use	
				limit output to the standard signal range.	
lp.ppp~	Dust/popcorn noise	signal (-1 1)	pos (default)	density [100]: average number of "pops" per second.	Pro
			sym	popWidth [1]: number of samples before and after pop peak.	
			neg		
lp.shhh~	White noise	signal (-1 1)		nn [0]: Granularity of noise (bit-masking)	Starte
lp.sss~	Pink noise (Original Voss algorithm)	signal (-1 1)		nn [0]: Granularity of noise (bit-masking)	Starte
lp.trrr~	Triangular noise (and Linear?)	signal (-1 1)	sym (default	nn [0]: Granularity of noise (bit-masking)	Starte
•	0	0 ()	pos	, , , , , , , , , , , , , , , , , , , ,	
			neg		
lp.zzz~	Pink noise (McCartney's algorithm)	signal (-1 1)		nn [0]: Granularity of noise (bit-masking)	Pro
Mutation and Cros	ss-Synthesis Distributions	Output Rang	o Ontiono	Parameters (defaults, ranges)	
	Cross-synthesis for first years	signal	е Орцопъ	omega [0]: value in the unit range, proximity to source/target	Starte
In emeric~					
			usim uuim		
	Frequency-domain interval mutation	signal	usim, uuim,	omega [0]: value in the unit range, proximity to source/target	Pro
			isim, iuim,	omega [0]: value in the unit range, proximity to source/target pi [0]: value in the unit range, "clumping factor" (isim/iuim/lcm	Pro
			isim, iuim, lcm, wcm;	omega [0]: value in the unit range, proximity to source/target pi [0]: value in the unit range, "clumping factor" (isim/iuim/lcm only)	Pro
			isim, iuim,	omega [0]: value in the unit range, proximity to source/target pi [0]: value in the unit range, "clumping factor" (isim/iuim/lcm only) delta [0]: in range [-1 1], "delta emphasis" (relative mutations	Pro
p.frim~	Frequency-domain interval mutation	signal	isim, iuim, lcm, wcm; rel/abs	omega [0]: value in the unit range, proximity to source/target pi [0]: value in the unit range, "clumping factor" (isim/iuim/lcm only) delta [0]: in range [-1 1], "delta emphasis" (relative mutations only)	<i>Pro</i>
p.frim~			isim, iuim, lcm, wcm; rel/abs	omega [0]: value in the unit range, proximity to source/target pi [0]: value in the unit range, "clumping factor" (isim/iuim/lcm only) delta [0]: in range [-1 1], "delta emphasis" (relative mutations only) omega [0]: value in the unit range, proximity to source/target	Pro Starte
p.frim~	Frequency-domain interval mutation	signal	isim, iuim, lcm, wcm; rel/abs usim, uuim, isim, iuim,	omega [0]: value in the unit range, proximity to source/target pi [0]: value in the unit range, "clumping factor" (isim/iuim/lcm only) delta [0]: in range [-1 1], "delta emphasis" (relative mutations only) omega [0]: value in the unit range, proximity to source/target pi [0]: value in the unit range, "clumping factor" (isim/iuim/lcm	Pro Starte
p.frim~	Frequency-domain interval mutation	signal	isim, iuim, lcm, wcm; rel/abs usim, uuim, isim, iuim, lcm, wcm;	omega [0]: value in the unit range, proximity to source/target pi [0]: value in the unit range, "clumping factor" (isim/iuim/lcm only) delta [0]: in range [-1 1], "delta emphasis" (relative mutations only) omega [0]: value in the unit range, proximity to source/target pi [0]: value in the unit range, "clumping factor" (isim/iuim/lcm only)	Pro Starte
p.frim~	Frequency-domain interval mutation	signal	isim, iuim, lcm, wcm; rel/abs usim, uuim, isim, iuim,	omega [0]: value in the unit range, proximity to source/target pi [0]: value in the unit range, "clumping factor" (isim/iuim/lcm only) delta [0]: in range [-1 1], "delta emphasis" (relative mutations only) omega [0]: value in the unit range, proximity to source/target pi [0]: value in the unit range, "clumping factor" (isim/iuim/lcm only) delta [0]: in range [-1 1], "delta emphasis" (relative mutations	Pro Starte
p.frim~ lp.tim~	Frequency-domain interval mutation Time-domain interval mutation	signal signal	isim, iuim, lcm, wcm; rel/abs usim, uuim, isim, iuim, lcm, wcm; rel/abs	omega [0]: value in the unit range, proximity to source/target pi [0]: value in the unit range, "clumping factor" (isim/iuim/lcm only) delta [0]: in range [-1 1], "delta emphasis" (relative mutations only) omega [0]: value in the unit range, proximity to source/target pi [0]: value in the unit range, "clumping factor" (isim/iuim/lcm only) delta [0]: in range [-1 1], "delta emphasis" (relative mutations only)	Pro Starte
p.frim~ lp.tim~	Frequency-domain interval mutation	signal	isim, iuim, lcm, wcm; rel/abs usim, uuim, isim, iuim, lcm, wcm; rel/abs usim, uuim,	omega [0]: value in the unit range, proximity to source/target pi [0]: value in the unit range, "clumping factor" (isim/iuim/lcm only) delta [0]: in range [-1 1], "delta emphasis" (relative mutations only) omega [0]: value in the unit range, proximity to source/target pi [0]: value in the unit range, "clumping factor" (isim/iuim/lcm only) delta [0]: in range [-1 1], "delta emphasis" (relative mutations only) omega [0]: value in the unit range, proximity to source/target	Pro Starte
p.frim~ lp.tim~	Frequency-domain interval mutation Time-domain interval mutation	signal signal	isim, iuim, lcm, wcm; rel/abs usim, uuim, isim, iuim, lcm, wcm; rel/abs usim, uuim, isim, iuim,	omega [0]: value in the unit range, proximity to source/target pi [0]: value in the unit range, "clumping factor" (isim/iuim/lcm only) delta [0]: in range [-1 1], "delta emphasis" (relative mutations only) omega [0]: value in the unit range, proximity to source/target pi [0]: value in the unit range, "clumping factor" (isim/iuim/lcm only) delta [0]: in range [-1 1], "delta emphasis" (relative mutations only) omega [0]: value in the unit range, proximity to source/target pi [0]: value in the unit range, "clumping factor" (isim/iuim/lcm pi [0]: value in the unit range, "clumping factor" (isim/iuim/lcm	Pro Starte
p.frim~ lp.tim~	Frequency-domain interval mutation Time-domain interval mutation	signal signal	isim, iuim, lcm, wcm; rel/abs usim, uuim, isim, iuim, lcm, wcm; rel/abs usim, uuim, isim, iuim, lcm, wcm;	omega [0]: value in the unit range, proximity to source/target pi [0]: value in the unit range, "clumping factor" (isim/iuim/lcm only) delta [0]: in range [-1 1], "delta emphasis" (relative mutations only) omega [0]: value in the unit range, proximity to source/target pi [0]: value in the unit range, "clumping factor" (isim/iuim/lcm only) delta [0]: in range [-1 1], "delta emphasis" (relative mutations only) omega [0]: value in the unit range, proximity to source/target pi [0]: value in the unit range, "clumping factor" (isim/iuim/lcm only)	Pro Starte
p.frim~ lp.tim~	Frequency-domain interval mutation Time-domain interval mutation	signal signal	isim, iuim, lcm, wcm; rel/abs usim, uuim, isim, iuim, lcm, wcm; rel/abs usim, uuim, isim, iuim,	omega [0]: value in the unit range, proximity to source/target pi [0]: value in the unit range, "clumping factor" (isim/iuim/lcm only) delta [0]: in range [-1 1], "delta emphasis" (relative mutations only) omega [0]: value in the unit range, proximity to source/target pi [0]: value in the unit range, "clumping factor" (isim/iuim/lcm only) delta [0]: in range [-1 1], "delta emphasis" (relative mutations only) omega [0]: value in the unit range, proximity to source/target pi [0]: value in the unit range, "clumping factor" (isim/iuim/lcm pi [0]: value in the unit range, "clumping factor" (isim/iuim/lcm	Pro Starte
p.frim~ lp.tim~	Frequency-domain interval mutation Time-domain interval mutation	signal signal	isim, iuim, lcm, wcm; rel/abs usim, uuim, isim, iuim, lcm, wcm; rel/abs usim, uuim, isim, iuim, lcm, wcm;	omega [0]: value in the unit range, proximity to source/target pi [0]: value in the unit range, "clumping factor" (isim/iuim/lcm only) delta [0]: in range [-1 1], "delta emphasis" (relative mutations only) omega [0]: value in the unit range, proximity to source/target pi [0]: value in the unit range, "clumping factor" (isim/iuim/lcm only) delta [0]: in range [-1 1], "delta emphasis" (relative mutations only) omega [0]: value in the unit range, proximity to source/target pi [0]: value in the unit range, "clumping factor" (isim/iuim/lcm only) delta [0]: in range [-1 1], "delta emphasis" (relative mutations	Pro Starte
lp.tim~	Frequency-domain interval mutation Time-domain interval mutation Interval mutation for values (ints and floats)	signal signal int/float	isim, iuim, lcm, wcm; rel/abs usim, uuim, isim, iuim, lcm, wcm; rel/abs usim, uuim, isim, iuim, lcm, wcm; rel/abs	omega [0]: value in the unit range, proximity to source/target pi [0]: value in the unit range, "clumping factor" (isim/iuim/lcm only) delta [0]: in range [-1 1], "delta emphasis" (relative mutations only) omega [0]: value in the unit range, proximity to source/target pi [0]: value in the unit range, "clumping factor" (isim/iuim/lcm only) delta [0]: in range [-1 1], "delta emphasis" (relative mutations only) omega [0]: value in the unit range, proximity to source/target pi [0]: value in the unit range, "clumping factor" (isim/iuim/lcm only) delta [0]: in range [-1 1], "delta emphasis" (relative mutations only)	Pro Starte
lp.tim~ lp.vim Litter Chaos Object	Frequency-domain interval mutation Time-domain interval mutation Interval mutation for values (ints and floats) Function	signal signal int/float Output Range	isim, iuim, lcm, wcm; rel/abs usim, uuim, isim, iuim, lcm, wcm; rel/abs usim, uuim, isim, iuim, lcm, wcm; rel/abs	omega [0]: value in the unit range, proximity to source/target pi [0]: value in the unit range, "clumping factor" (isim/iuim/lcm only) delta [0]: in range [-1 1], "delta emphasis" (relative mutations only) omega [0]: value in the unit range, proximity to source/target pi [0]: value in the unit range, "clumping factor" (isim/iuim/lcm only) delta [0]: in range [-1 1], "delta emphasis" (relative mutations only) omega [0]: value in the unit range, proximity to source/target pi [0]: value in the unit range, "clumping factor" (isim/iuim/lcm only) delta [0]: in range [-1 1], "delta emphasis" (relative mutations	Pro Starte
p.frim~ Ip.tim~ Ip.vim Litter Chaos Object Ip.ccc	Frequency-domain interval mutation Time-domain interval mutation Interval mutation for values (ints and floats) Function Schuster/Procaccia 1/f generator	signal signal int/float Output Range	isim, iuim, lcm, wcm; rel/abs usim, uuim, isim, iuim, lcm, wcm; rel/abs usim, uuim, isim, iuim, lcm, wcm; rel/abs	omega [0]: value in the unit range, proximity to source/target pi [0]: value in the unit range, "clumping factor" (isim/iuim/lcm only) delta [0]: in range [-1 1], "delta emphasis" (relative mutations only) omega [0]: value in the unit range, proximity to source/target pi [0]: value in the unit range, "clumping factor" (isim/iuim/lcm only) delta [0]: in range [-1 1], "delta emphasis" (relative mutations only) omega [0]: value in the unit range, proximity to source/target pi [0]: value in the unit range, "clumping factor" (isim/iuim/lcm only) delta [0]: in range [-1 1], "delta emphasis" (relative mutations only)	Pro Starte
p.frim~ lp.tim~ lp.vim Litter Chaos Object lp.ccc	Frequency-domain interval mutation Time-domain interval mutation Interval mutation for values (ints and floats) Function Schuster/Procaccia 1/f generator Schuster/Procaccia 1/f noise	signal signal int/float Output Range [01]	isim, iuim, lcm, wcm; rel/abs usim, uuim, isim, iuim, lcm, wcm; rel/abs usim, uuim, isim, iuim, lcm, wcm; rel/abs	omega [0]: value in the unit range, proximity to source/target pi [0]: value in the unit range, "clumping factor" (isim/iuim/lcm only) delta [0]: in range [-1 1], "delta emphasis" (relative mutations only) omega [0]: value in the unit range, proximity to source/target pi [0]: value in the unit range, "clumping factor" (isim/iuim/lcm only) delta [0]: in range [-1 1], "delta emphasis" (relative mutations only) omega [0]: value in the unit range, proximity to source/target pi [0]: value in the unit range, "clumping factor" (isim/iuim/lcm only) delta [0]: in range [-1 1], "delta emphasis" (relative mutations only)	Pro Starte Pro Pro Pro
p.frim~ lp.tim~ lp.vim Litter Chaos Object lp.ccc	Frequency-domain interval mutation Time-domain interval mutation Interval mutation for values (ints and floats) Function Schuster/Procaccia 1/f generator	signal signal int/float Output Range	isim, iuim, lcm, wcm; rel/abs usim, uuim, isim, iuim, lcm, wcm; rel/abs usim, uuim, isim, iuim, lcm, wcm; rel/abs	omega [0]: value in the unit range, proximity to source/target pi [0]: value in the unit range, "clumping factor" (isim/iuim/lcm only) delta [0]: in range [-1 1], "delta emphasis" (relative mutations only) omega [0]: value in the unit range, proximity to source/target pi [0]: value in the unit range, "clumping factor" (isim/iuim/lcm only) delta [0]: in range [-1 1], "delta emphasis" (relative mutations only) omega [0]: value in the unit range, proximity to source/target pi [0]: value in the unit range, "clumping factor" (isim/iuim/lcm only) delta [0]: in range [-1 1], "delta emphasis" (relative mutations only) Parameters, defaults, ranges	Pro Starte
Ip.tim~ Ip.vim Litter Chaos Object Ip.ccc Ip.ccc Ip.ccc	Frequency-domain interval mutation Time-domain interval mutation Interval mutation for values (ints and floats) Function Schuster/Procaccia 1/f generator Schuster/Procaccia 1/f noise	signal signal int/float Output Range [01]	isim, iuim, lcm, wcm; rel/abs usim, uuim, isim, iuim, lcm, wcm; rel/abs usim, uuim, isim, iuim, lcm, wcm; rel/abs	omega [0]: value in the unit range, proximity to source/target pi [0]: value in the unit range, "clumping factor" (isim/iuim/lcm only) delta [0]: in range [-1 1], "delta emphasis" (relative mutations only) omega [0]: value in the unit range, proximity to source/target pi [0]: value in the unit range, "clumping factor" (isim/iuim/lcm only) delta [0]: in range [-1 1], "delta emphasis" (relative mutations only) omega [0]: value in the unit range, proximity to source/target pi [0]: value in the unit range, "clumping factor" (isim/iuim/lcm only) delta [0]: in range [-1 1], "delta emphasis" (relative mutations only) Parameters, defaults, ranges	Pro Starte Pro Pro Pro
lp.emeric~ lp.frim~ lp.tim~ lp.vim Litter Chaos Object lp.ccc lp.ccc lp.poppy	Frequency-domain interval mutation Time-domain interval mutation Interval mutation for values (ints and floats) Function Schuster/Procaccia 1/f generator Schuster/Procaccia 1/f noise Population growth model	Signal Signal Signal	isim, iuim, lcm, wcm; rel/abs usim, uuim, isim, iuim, lcm, wcm; rel/abs usim, uuim, isim, iuim, lcm, wcm; rel/abs	omega [0]: value in the unit range, proximity to source/target pi [0]: value in the unit range, "clumping factor" (isim/iuim/lcm only) delta [0]: in range [-1 1], "delta emphasis" (relative mutations only) omega [0]: value in the unit range, proximity to source/target pi [0]: value in the unit range, "clumping factor" (isim/iuim/lcm only) delta [0]: in range [-1 1], "delta emphasis" (relative mutations only) omega [0]: value in the unit range, proximity to source/target pi [0]: value in the unit range, "clumping factor" (isim/iuim/lcm only) delta [0]: in range [-1 1], "delta emphasis" (relative mutations only) Parameters, defaults, ranges	Pro Starte Pro Pro Starte
Ip.tim~ Ip.vim Litter Chaos Object Ip.ccc Ip.ccc Ip.ccc	Frequency-domain interval mutation Time-domain interval mutation Interval mutation for values (ints and floats) Function Schuster/Procaccia 1/f generator Schuster/Procaccia 1/f noise Population growth model	Signal Signal Signal	isim, iuim, lcm, wcm; rel/abs usim, uuim, isim, iuim, lcm, wcm; rel/abs usim, uuim, isim, iuim, lcm, wcm; rel/abs	omega [0]: value in the unit range, proximity to source/target pi [0]: value in the unit range, "clumping factor" (isim/iuim/lcm only) delta [0]: in range [-1 1], "delta emphasis" (relative mutations only) omega [0]: value in the unit range, proximity to source/target pi [0]: value in the unit range, "clumping factor" (isim/iuim/lcm only) delta [0]: in range [-1 1], "delta emphasis" (relative mutations only) omega [0]: value in the unit range, proximity to source/target pi [0]: value in the unit range, "clumping factor" (isim/iuim/lcm only) delta [0]: in range [-1 1], "delta emphasis" (relative mutations only) Parameters, defaults, ranges seed growth rate/rates baseFreq [1000]: Approx. frequency of center freq. (always rounded to integral division of sample rate)	Pro Starte Pro Pro Starte
Ip.tim~ Ip.vim Litter Chaos Object Ip.ccc Ip.ccc Ip.ccc	Frequency-domain interval mutation Time-domain interval mutation Interval mutation for values (ints and floats) Function Schuster/Procaccia 1/f generator Schuster/Procaccia 1/f noise Population growth model	Signal Signal Signal	isim, iuim, lcm, wcm; rel/abs usim, uuim, isim, iuim, lcm, wcm; rel/abs usim, uuim, isim, iuim, lcm, wcm; rel/abs	omega [0]: value in the unit range, proximity to source/target pi [0]: value in the unit range, "clumping factor" (isim/iuim/lcm only) delta [0]: in range [-1 1], "delta emphasis" (relative mutations only) omega [0]: value in the unit range, proximity to source/target pi [0]: value in the unit range, "clumping factor" (isim/iuim/lcm only) delta [0]: in range [-1 1], "delta emphasis" (relative mutations only) omega [0]: value in the unit range, proximity to source/target pi [0]: value in the unit range, "clumping factor" (isim/iuim/lcm only) delta [0]: in range [-1 1], "delta emphasis" (relative mutations only) Parameters, defaults, ranges seed growth rate/rates baseFreq [1000]: Approx. frequency of center freq. (always rounded to integral division of sample rate) interp [0]: Order of interpolation between generated random	Pro Starte Pro Pro Starte
Ip.tim~ Ip.vim Litter Chaos Object Ip.ccc Ip.ccc Ip.ccc	Frequency-domain interval mutation Time-domain interval mutation Interval mutation for values (ints and floats) Function Schuster/Procaccia 1/f generator Schuster/Procaccia 1/f noise Population growth model	Signal Signal Signal	isim, iuim, lcm, wcm; rel/abs usim, uuim, isim, iuim, lcm, wcm; rel/abs usim, uuim, isim, iuim, lcm, wcm; rel/abs	omega [0]: value in the unit range, proximity to source/target pi [0]: value in the unit range, "clumping factor" (isim/iuim/lcm only) delta [0]: in range [-1 1], "delta emphasis" (relative mutations only) omega [0]: value in the unit range, proximity to source/target pi [0]: value in the unit range, "clumping factor" (isim/iuim/lcm only) delta [0]: in range [-1 1], "delta emphasis" (relative mutations only) omega [0]: value in the unit range, proximity to source/target pi [0]: value in the unit range, "clumping factor" (isim/iuim/lcm only) delta [0]: in range [-1 1], "delta emphasis" (relative mutations only) Parameters, defaults, ranges seed growth rate/rates baseFreq [1000]: Approx. frequency of center freq. (always rounded to integral division of sample rate) interp [0]: Order of interpolation between generated random values. Range from 0 to 2.	Pro Starte Pro Pro Starte
Ip.tim~ Ip.vim Litter Chaos Object Ip.ccc Ip.ccc Ip.ccc	Frequency-domain interval mutation Time-domain interval mutation Interval mutation for values (ints and floats) Function Schuster/Procaccia 1/f generator Schuster/Procaccia 1/f noise Population growth model	Signal Signal Signal	isim, iuim, lcm, wcm; rel/abs usim, uuim, isim, iuim, lcm, wcm; rel/abs usim, uuim, isim, iuim, lcm, wcm; rel/abs	omega [0]: value in the unit range, proximity to source/target pi [0]: value in the unit range, "clumping factor" (isim/iuim/lcm only) delta [0]: in range [-1 1], "delta emphasis" (relative mutations only) omega [0]: value in the unit range, proximity to source/target pi [0]: value in the unit range, "clumping factor" (isim/iuim/lcm only) delta [0]: in range [-1 1], "delta emphasis" (relative mutations only) omega [0]: value in the unit range, proximity to source/target pi [0]: value in the unit range, "clumping factor" (isim/iuim/lcm only) delta [0]: in range [-1 1], "delta emphasis" (relative mutations only) Parameters, defaults, ranges seed growth rate/rates baseFreq [1000]: Approx. frequency of center freq. (always rounded to integral division of sample rate) interp [0]: Order of interpolation between generated random	Pro Starte Pro Pro Starte

Utilities	Description		Parameters (defaults, ranges)	
lp.ale	Plug-and-play replacement for the orphaned alea object.		An initial list can be specified with arbitrary instantiation	Starter
	Uses a more efficient scrambling algorithm and Litter Power-strength random number generation		arguments.	
p.c2p~	Cartersian to polar coordinate conversion (compatible with MSP1 and MSP2)		None	Starter
p.crabelms	Plug-and-play replacement for the orphaned scramble object.		An initial list can be specified with arbitrary instantiation	Starter
	Uses a more efficient scrambling algorithm and Litter Power-strength random number generation		arguments.	
lp.grl~	Phase unwrapping		FFT Size	Pro
lp.i	Posts fortunes from I Ching to the Max window. Can be used with the ginger object.		None	Pro
lp.kg	Maps I Ching results (from the ginger object) to some number (2 to 63) of different items. Bang generates a new distribution pattern.		n [2]: Integer between 2 and 63, number of different choices to make.	Pro
lp.nn~	General-purpose quality degradation (NN) function signal		Resolution degradation [0]: default means no change; positive values in 1 ≤ nn ≤ 31 indicate number of low-order bits to mask; negative values in -1 ≤ nn ≤ -31 indicate number of bits to replace	Pro
			with dithering noise. Fractional values allow a continuous sweep of the bit-depth spectrum. Sample-rate degradation [0 == current SR]: any value in the rance 0.0 < esr < SR sets an effective sample rate.)
lp.p2c∼	Polar to Cartesian coordinate conversion (compatible with MSP1 and MSP2)		None	Starter
lp.scampf	Scale, map, and limit floating point values Scampf can limit output to a specific range. Specify one of the limiter options (clip, reflect, wrap, or split) or send it as a message. The not message overrides range limits and all values are sent out the left outlet after being scaled and offset. When the split option is in effect, or of range values are sent out the right outlet. In the case of clip, reflet, and wrap, out of range values are "corrected" into range (by clipping reflection, or wrapping) and sent out the left outlet; the right outlet sends out a 0 if no range correction was necessary, non-zero if corrections are necessary (the value sent is actually a count of the number of consecutive values requiring correction).	ıt split g, stet	scale [128]: Any value; input 1 maps to offset + scale. (default value chosen for convenient mapping of MIDI data) offset [0]: Any value that 0 input maps to. limit [stet]: any of the limiting options clip, reflect, wrap, split, or stet. min [0]: Minimum output value (ignored if limit option is set to stet). max [1]: Maximum output value (ignored if limit option is set to	
lp.scampi	Scale, map, and limit values Scampi can limit output to a specific range. Specify one of the limiter options (clip, reflect, wrap, or split) or send it as a message. The not message overrides range limits and all values are sent out the left outlet after being scaled and offset. When the split option is in effect, or		steth scale [1/128]: Any value; input 1 maps to offset + scale. (default value chosen for convenient mapping of MIDI data) offset [0]: Any value that 0 input maps to. limit [stet]: any of the limiting options clip, reflect, wrap, split, or	
	of range values are sent out the right outlet. In the case of clip, reflet, and wrap, out of range values are "corrected" into range (by clipping reflection, or wrapping) and sent out the left outlet; the right outlet sends out a 0 if no range correction was necessary, non-zero if correction was necessary (the value sent is actually a count of the number of consecutive values requiring correction).	z, stet	stet. min [0]: Minimum output value (ignored if limit option is set to stet). max [1]: Maximum output value (ignored if limit option is set to stet). integer-conversion [trunc]: Integer processing truncates by default, but scampi understands floor, ceil, round, and trunc	
lp.scamp~	Scale, map, and limit signals	clip reflect	scale [-6dB]: Any value; input 1 maps to offset + scale. offset [0]: Any value that 0 input maps to.	Pro
	Scampi~ can limit output to a specific range. Specify one of the limiter options (clip, reflect, wrap, or split) or send it as a message. The nolim message overrides range limits and all values are sent out the left outlet after being scaled and offset. When any of the clip, reflet, a wrap, options are specified, out of range values are "corrected" into range (by clipping, reflection, or wrapping). When scampi~ receives bang message, a value is sent out the right outlet indicating how many samples required range correction (since object creation or the last bang message). The value sent is actually a count of the number of values requiring correction.	ì	limit [stet]: any of the limiting options clip, reflect, wrap or stet. (Note that lp.scampi~ does not support split.) min [-1]: Minimum output value (ignored if limit option is set to stet). max [1]: Maximum output value (ignored if limit option is set to	
lp.stacey	Basic statistics: Count, Min/Max, Mean, Standard Deviation, Skew, and Kurtosis		stet). n[0]: Window size of data buffered; when this is exceeded, correlation is calculated only for the last n data (reminder: implement as ring buffer, and implement a "remove" command to incrementally remove data). 0 indicates no window	Starter
lp.simga lp.delta lp.pi lp.logos	"Active" arithmetic: data in any inlet triggers output. Also: -Plus/times sprout additional inlets according to number of arguments - Minus has three outlets (a-b, b-a, and abs) - Div has three outlets (a/b, a remainder b, a mod b)	«none»	Two or more optional arguments to specify initial values for each inlet (default: two inlets, each initialized to zero). Type of first argument (int/float) determines type of output.	Pro (lp.sigma i Starter)