3. Find ordered bases β and β' of \mathbb{R}^3 such that $Q = \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 1 & 1 & 3 \end{pmatrix}$ is the change of coordinates matrix from β' -coordinates to β -coordinates. Can every invertible matrix be thought of as a change of coordinates matrix in this way?

We can maybe let β' or β be $\mathcal{E} = \mathcal{E}_1, \mathcal{E}_2, \mathcal{E}_3$. Which one sounds easier?

The charge of coord. motorx from β' to β : $[I]_{\beta'}^{\beta} = ([\beta'-vectors]_{\beta})$ letting $\beta = \xi$ will be simplex b/c $[V]_{\xi} = V$.

So, $\beta' = \frac{2}{5}(\frac{4}{5})(\frac{2}{5})(\frac{3}{5})$ works b/c $[V]_{\xi} = V$.

Yes (for the 2nd part) loke we can let B=E and B'= foolin vectors

2. Find, with proof, two 2×2 real matrices that are invertible and not similar. Do not use any theorems (or the next problem). Think easy! Our first matrix well be Izz. What's the other? Suppose A is similar to $I_{2\times 2}$. Then $A=Q^{-1}I_{2\times 2}Q$ for some Q:Tuv. able. $=Q^{-1}Q=I_{2\times 2}. \quad \{r(Q^{-1}AQ)=\{r(QQ^{-1}A)\}$ 1 I2x2, Ony other (invortible) exemodrix ((1) or (20) or (...) But tr (ABC) = tr (BCA) 3. Show that if $A, B \in M_{n \times n}(F)$, then $\operatorname{tr}(AB) = \operatorname{tr}(BA)$. Conclude that similar matrices have the same trace. Warning: The "rule" tr(ABC) = tr(ACB) is not true. Let A=(aij) and B=(bij) and compute 6 of AB? Is this the best? Observation: if A,B,C satisfies tr(AB)=tr(BA), then tr(A(BtC))=tr((BtC)A). tr(ABIAC) () tr(BATCA) 6-(AB)+6-(AC)=6-(BA)+6-(CA) => The set of modrices B st tr(AB)=tr(BA) is a vector space. Our goal: It actually is $M_{nxn}(F)$ (has a "std" basix $E_{ij}=(\cdots;i)i$)

So, it is enough to prove $fr(A\cdot(\cdots;i))=fr((\cdots;i)\cdot A)$ fr(C) for can closect this easily

5. Let A and B be similar matrices in $M_{n\times n}(F)$. Show that $\operatorname{rank}(A) = \operatorname{rank}(B)$. You could consider in A and compare this with B.

But we will use ker A instead ble it's easier to deal with. Claim. If A 2s similar to B (A=Q'BQ), then dim ker A \(\) dim ker B. Why is this enough? (D So B is sim to A => dim Ker B = dim ter A. So, dinker A = dinker B.

(2) By Dim_Thm., Yk A=n-dinker A = n-dinker B = Yk B. Pf. A=0 BO SO QA=BQ. If $v \in \ker A$, then Av = 0 so QAv = 0 so BQv = 0 so $Qv \in \ker B$. Le can define a tm trans $To: \ker A \to \ker B$ $v \mapsto Qv$. This I-I bic if Q.V=0 then by left multiply Q^{-1} we get N=0. => dim ker A ≤ dim ker B.

d) Recall a previous problem

- If A is similar to B and A is invertible, then B is also invertible.
- The set of solutions to a homogenous system of linear equations is a vector space. If $A \in M_{n \times n}$ is upper triangular and B is similar to A, then B is also upper
- If two $n \times n$ matrices have the same trace, then they are similar.

 - c) Use 0 & lonly $Q = \begin{pmatrix} 0 & 1 \\ 1 & 2 \end{pmatrix}$
- B=QAQ-1
 and QAQ-175 the inverse B-1

1. (True/False Jeopardy) Supply convincing reasoning for your answer.

triangular.

T=O,BO

True blc

2. Let $T:V\to W$ be a linear transformation. Show that if T is surjective, then $T^*:W^*\to V^*$ is injective. Conclude that if the columns of an $n \times m$ matrix generate \mathbb{R}^n , then its rows must be linearly independent.

OT* is thear. (Checked in class.) 2 Now. It is enough to consider lear T* RevT*= 3EW*: T*(3)=0, EV*

= { g ∈ W*: T*(g)(v)=0 for all neV}

= gew^* : g(T(v))=0 for all vev^* g(w)=0 for all vev^* g(w)=0 for all vev^* g(w)=0 for all vev^* $=10^{1/2}$

3 Given an new modrix M. consider $T:\mathbb{R}^n\to\mathbb{R}^n$ defined by $T(v)=M\cdot v$.

Then "columns of M generale \mathbb{R}^n " (=)" $T(\mathbb{R}^m)$ spans \mathbb{R}^n "

(Note that $M=[T]_{E_n}^{E_n}$.) $=_{C_n}^{C_n}$ (=)" T is surjective.

Honce, T* is injective. So, [T*] Ex has trearly independent columns.

However, we have [T*] Ex* = ([T] Ex), so M's rows are trearly independent.