# Lecture 5 Symmetic Matrices and their Eigenvalues

Note by Samion Suwito on 2/4/25

### **Last Time**

Any  $A \in \mathbb{R}^{m imes n}$  w/ full column rank can be written as

$$A=QR,\ Q\in\mathbb{R}^{m imes n},\ Q^\intercal Q=I,R\in\mathbb{R}^{n imes n}$$

Where Q has orthonormal columns and R is invertible upper triangular

If A does not have full column rank,

 $Q \in \mathbb{R}^{m imes r}$  where  $r = \mathrm{rank}(A)$ .

(Rearrange the columns of A s.t. the first columns are LI. and do QR you will get the short and fat triangular matrix)

Gram Schmidt is sequential and greedy.

## How to interpret Q?

Claim:  $QQ^\intercal$  is projection onto R(A). (=  $\operatorname{Sp}\{q^{(1)}\dots q^{(r)}\}$ )

Check: need to show that

$$egin{aligned} \langle x - QQ^\intercal x, Ay 
angle &= 0 \;\; orall x, y \ \iff \langle x - QQ^\intercal x, Qz 
angle &= 0 \;\; orall x, z \ &= x^\intercal Qz - x^\intercal QQ^\intercal Qz = 0 \ &= x^\intercal Qz - x^\intercal QIz \end{aligned}$$

Example:

$$egin{aligned} \min_x \|Ax - b\|_2^2 &= \min_{a \in R(A)} \|a - b\|_2^2 = \|\pi_{R(A)}(b) - b\|_2^2 \ &= \|QQ^\intercal b - b\|_2^2 = \|\left(I - QQ^\intercal\right)b\|_2^2 \end{aligned}$$

# **Symmetric matrices**

**Def**:  $A \in \mathbb{R}^{n \times n}$  w/  $A = A^{\intercal}$   $[A]_{ij} = [A]_{ji}$  (Sometimes written as  $\mathbb{S}^n$ ) Most important class of matrix for optimisation (In his opinion).

## **Examples**

Example 1:  $f:\mathbb{R}^n o\mathbb{R}$ 

$$egin{aligned} \operatorname{Hess}(f) &= 
abla^2 f = \mathbb{R}^{n imes n} \ [
abla^2 f(x)]_{ij} &:= \partial_{x_i} \partial_{x_j} f(x) = \partial_{x_j} \partial_{x_i} = [
abla^2 f(x)]_{ji} \ &\Rightarrow \operatorname{Hessian} \ ext{is always symmetric} \end{aligned}$$

*Example 2*: Given set of data points  $x^{(1)}\dots x^{(m)}\in\mathbb{R}^n$  Often useful to consider their sample correlation/covariant matrix:

$$C := rac{1}{m} \sum_{i=1}^m (x^{(i)} - ar{x}) (x^{(i)} - ar{x})^\intercal$$

where  $ar{x} = rac{1}{m} \sum x^{(i)}$  and is symmetric

Example 3: X a given matrix,  $X^\intercal X$  (sometimes called kernel matrix) is symmetric

*Example 4*: Quadratic functions  $q: \mathbb{R}^n \to \mathbb{R}$  is quadratic if it is polynomial of degree  $\leq$  2. Claim: Every quadratic can be written as

$$q(x) = rac{1}{2}x^\intercal h x + c^\intercal x + d$$

Where  $H\in\mathbb{S}^n,\;c\in\mathbb{R}^n,\;d\in\mathbb{R}$  Why?

$$egin{aligned} q(x) &= \sum_{i \leq j} q_{ij} x_i x_j + \sum c_i x_i + d \ & rac{1}{2} x^\intercal egin{pmatrix} 2q_{11} & q_{21} \dots & q_{m1} \ q_{12} & \ddots & dots \ q_{1n} & \dots & 2q_{mn} \end{pmatrix} x \end{aligned}$$

 $q_{ij}$  is the coefficients of the polynomial. Which is the hessian of  ${\sf q}$ 

Eigenvectors of symmetric matrices are orthogonal

Claim: Symmetric matrices have real eigenvalues.

#### **Spectral Theorem for symmetric matrices**

Let  $A\in\mathbb{S}^n$  and  $\lambda_1,\dots,\lambda_n$  be its eigenvalues. There exists orthogonal matrix\*  $U=[u^{(1)}\cdots u^{(n)}]\ UU^\intercal=U^\intercal U=I$  s.t. A= $U\Lambda U^\intercal$  where  $\Lambda=\mathrm{diag}(\lambda_1,\dots,\lambda_n)$ 

$$egin{aligned} &= \sum_{i=1} \lambda_i u^{(i)} u^{(i)\intercal} \ &= \sum_{i=1} \lambda_i \pi_{\mathrm{Sp}\{u^{(i)}\}} \end{aligned}$$

# **Variational Characterisation of Eigenvalues**

$$\|x^{\intercal}Ax = \sum \lambda_i \|\pi_{\mathrm{Sp}\{u^{(i)}\}}(x)\|_2^2 \leq \lambda_{\mathrm{max}}(A) \|x\|_2^2$$

$$\implies \lambda_{\max}(A) = \max_{x:\|x\|_2=1} rac{(x^\intercal A x)}{\|x\|_2^2}$$

Rayleigh Quotient

One approach to spectral decomposition.

Solve

$$\lambda^* = \max_{x 
eq 0} rac{x^\intercal A x}{\|x\|_2^2}$$

then Write 
$$A' = A - \lambda^* rac{x^*x^{*\intercal}}{\|x^*\|}_2^2$$

Quiz: How to find

$$\lambda_{\min}(A) = \min_{x 
eq 0} rac{x^\intercal A x}{\|x\|_2^2}$$

Example in terms of matrix norms

Recall

$$egin{align} \|A\|_2^2 &:= \max_{x:\|x\|_2 \le 1} \|Ax\|_2^2 = \max_{x 
eq 0} rac{\|Ax\|_2^2}{\|x\|_2^2} \ &= \max_{x 
eq 0} rac{x^\intercal (A^\intercal A)x}{\|x\|_2^2} \ &= \lambda_{\max} \left(A^\intercal A
ight) \ \implies \|A\|_2 = \sqrt{\lambda_{\max} \left(A^\intercal A
ight)} \end{aligned}$$

Which is also called the "Spectral norm"

## **PSD**

Def: A symmetric matrix is

Positive Semidefinite if  $x^\intercal A x \geq 0 \ \ \forall x$ , (psd,  $\mathbb{S}^n_+$ ,  $A \geq 0$ )
Positive Definite if  $x^\intercal A x > 0 \ \ \forall x$ , (pd, A > 0)

**Remarks**: For any matrix  $A \in \mathbb{R}^{m imes n}$  both  $A^\intercal A$  and  $AA^\intercal$  are symmetric

- 1.  $A^\intercal A \geq 0$  and  $AA^\intercal \geq 0$  Why:  $x^\intercal A^\intercal A x = \|Ax\|_2^2 \geq 0$
- 2.  $A^{\rm T}A>0\iff N(A)=\{0\}\iff {\rm rank}(A)=n$  (full column rank)
- 3.  $AA^{\intercal}>0\iff N\left(A^{\intercal}\right)=\{0\}\iff R(A)=\mathbb{R}^n$  (full row rank)
- 4. In context of quadratic functions, (Hessian)  $H>0 \implies q$  looks like an upright "bowl" (typical quadratic picture).

If  $H \geq 0 \implies q$  looks like an upward trough, looks curved in one way and flat in another.

# **Decompositions of PSD Matrices:**

If A>0, then there  $\exists$  a unique pd matrix B s.t.  $B^2=A$  In this case, we call B the square root of A, and denoted by  $A^{\frac{1}{2}}$ .

If  $A\geq 0$ ,  $\exists$  unique psd  $B\geq 0$ , s.t.  $B^2=A$  and we call  $B=A^{\frac{1}{2}}$  (Both pd and psd are symmetric!)

**Proof** (w/o uniqueness): Decompose  $A=U\Lambda U^\intercal$  (is spectral decomp).

 $\Lambda$  diagonal w non-neg matrix so  $\Lambda^{rac{1}{2}}=\mathrm{diag}\left(\lambda_1^{rac{1}{2}},\ldots,\lambda_n^{rac{1}{2}}
ight)$ 

$$A = U\Lambda^{rac{1}{2}}\Lambda^{rac{1}{2}}U^\intercal = (U\Lambda^{rac{1}{2}}U^\intercal)(U\Lambda^{rac{1}{2}}U^\intercal)$$

Therefore  $A^{rac{1}{2}} = \left(U\Lambda^{rac{1}{2}}U^{\intercal}
ight)$ 

another example of a decomposition

Cholesky Decomp of A>0 where  $A=LL^{\rm T}$  and L is lower triangular matrix

Proof: 
$$A^{rac{1}{2}}=QR\Rightarrow A^{rac{1}{2}}A^{rac{1}{2}}=R^\intercal Q^\intercal QR=R^\intercal R$$

## PD matrices and inner products

Claim: Every inner product  $\langle \cdot, \cdot \rangle$  on  $\mathbb{R}^n$  can be written as  $\langle x, y \rangle = x^\intercal A y$  for some suitable A>0.

$$egin{aligned} \langle x,y
angle &= \left\langle \sum_i x_i e_i, \sum_j y_j e_j 
ight
angle &= \sum_{i,j} x_i y_j \langle e_i, e_j 
angle =: a_{ij} = a_{ji} \ \implies x^\intercal A y \ [A]_{ij} = a_{ij} \ A \in \mathbb{S}^n \end{aligned}$$

$$x^\intercal A x = \langle x, x 
angle = \|x\|^2 \geq 0$$
 w/ =  $\iff x = 0 \implies$  A > 0

Norm ball of the Hilbert's norm:  $\{x: \|x\| \leq 1\}$  =  $\{x: x^\intercal A x \leq 1\}$  = an elipsoid



| Where the directions are eigenvectors and lengths are related to eigenvalues ( $\frac{1}{\sqrt{\lambda_i(A)}}$ ) |
|------------------------------------------------------------------------------------------------------------------|
|                                                                                                                  |
|                                                                                                                  |
|                                                                                                                  |
|                                                                                                                  |
|                                                                                                                  |
|                                                                                                                  |
|                                                                                                                  |
|                                                                                                                  |
|                                                                                                                  |
|                                                                                                                  |
|                                                                                                                  |
|                                                                                                                  |
|                                                                                                                  |
|                                                                                                                  |
|                                                                                                                  |