Tutorat mathématiques : TD3

Université François Rabelais

Département informatique de Blois

Analyse

Problème 1

- 1. Les assertions suivantes sont-elles vraies ou fausses? Déterminer une démonstration des assertions vraies et un contre-exemple dans le cas contraire.
 - (a) L'intégrale sur [-1,1] d'une fonction majorée par α est inférieure à 2α .

Soit
$$x \in [-1,1], f(x) \le \alpha$$
.
Par linéarité de l'intégration, on a :
$$\int_{1}^{-1} f(x) dx \le \int_{1}^{-1} \alpha dx \Leftrightarrow \int_{1}^{-1} f(x) dx \le [x\alpha]_{-1}^{1}$$

$$\Leftrightarrow \int_{1}^{-1} f(x) dx \le \alpha - (-\alpha)$$

$$\Leftrightarrow \int_{1}^{-1} f(x) dx \le 2\alpha$$

CQFD! ☺

(b) Toute fonction intégrable sur [a, b] est continue.

L'assertion est fausse.

La fonction partie entière E(x) est intégrable sur tout $[a,b] \subset \mathbb{R}$, mais elle n'est pas continue. Toute fonction qui ne comporte pas de "trou" sur son intervalle d'intégration est intégrable.

(c) Soit $\alpha \in \mathbb{R}^*$, on pose un intervalle $I = [-\alpha, \alpha]$. Soit une fonction réelle f définie et intégrable sur I, on suppose que f est impaire. Alors, on peu affirmer que $\int_{I} f(x)dx = 0$.

L'assertion est vraie.

$$\int_{I} f(x)dx = \int_{-\alpha}^{\alpha} f(x)dx$$

$$= \int_{-\alpha}^{0} f(x)dx + \int_{0}^{\alpha} f(x)dx$$

$$= -\int_{-\alpha}^{0} f(-x)dx + \int_{0}^{\alpha} f(x)dx$$

On sait qu'une fonction impaire se traduit par -f(-x) = f(x).

On effectue le changement variable x = -y dans la première intégrale, dès lors :

$$\frac{dx}{dy} = -1 \Leftrightarrow dx = -dy$$

Si
$$x = -\alpha \rightarrow y = \alpha$$

Si
$$x = 0 \rightarrow y = 0$$

On effectue le changement variable
$$x=-y$$
 dans la prem
$$\frac{dx}{dy}=-1 \Leftrightarrow dx=-dy.$$
 De plus, Si $x=-\alpha \to y=\alpha$ Si $x=0 \to y=0$ Ainsi, on a:
$$\int_{\alpha}^{0} f(y)dy + \int_{0}^{\alpha} f(x)dx = F(\alpha) - F(0) + F(0) - F(\alpha) = 0$$
 COFD! ©

CQFD! ☺

(d) Soient F et G, deux fonctions définies et dérivables sur \mathbb{R}^* , on suppose que pour tout $x \in \mathbb{R}^*, G'(x) = F'(x)$. Alors, on peut dire que $\exists k \in \mathbb{R}, \forall x \in \mathbb{R}^*, G(x) = F(x) + k$.

L'assertion est fausse.

En effet, si on pose
$$G(x) = 1$$
 et $F(x) = \begin{cases} 1 & \text{si } x > 0 \\ 0 & \text{si } x < 0 \end{cases}$. On a bien $x \in \mathbb{R}^*, G'(x) = F'(x)$ mais il n'existe pas de constante k telle que $G(x) = F(x) + k$.

2. Donner une condition nécéssaire et suffisante pour qu'une fonction f admette un développement limité en $a \in \mathbb{R}$ à l'ordre 1. À quel objet mathématique correspond ce développement limité?

Une condition nécessaire et suffisante pour qu'une fonction f admette au moins un $DL_1(a)$ est qu'elle soit dérivable en a. En effet, un $DL_1(a)$ peut se traduire comme étant l'équation de la tangente à la courbe représentative C de la fonction f en a.

3. Donner la définition de l'intégrale au sens de Riemann.

On dit que la fonction $f:[a,b]\to\mathbb{R}$ est intégrable au sens de Riemann sur [a,b] si et seulement si son intégrale inférieure $\sigma(f)$ est égale à son intégrale supérieure $\Sigma(f)$.

On pose $[a,b] = \bigcup_{k=1}^{n} [x_{k-1},x_k]$ et le pas δ de l'intervalle tel que $\delta = \max_{k \in [1,n]} \{x_k - x_{k-1}\}$. On précise que $x_k = a + \frac{k(b-a)}{n}$. $\sigma(f) = \sum_{k=1}^{n} (x_k - x_{k-1}) m_k \text{ où } m_k = \inf_{x \in [x_{k-1},x_k]} (f)$ $\Sigma(f) = \sum_{k=1}^{n} (x_k - x_{k-1}) M_k \text{ où } M_k = \sup_{x \in [x_{k-1},x_k]} (f)$

$$\sigma(f) = \sum_{k=1}^{n} (x_k - x_{k-1}) m_k$$
 où $m_k = \inf_{x \in [x_{k-1}, x_k]} (f)$

$$\Sigma(f) = \sum_{k=1}^{n} (x_k - x_{k-1}) M_k$$
 où $M_k = \sup_{x \in [x_{k-1}, x_k]} (f)$

On démontrer que $\sigma(f)$ est croissante et $\Sigma(f)$ est décroissante.

De plus, on a naturellement $\sigma(f) \leq \Sigma(f)$ et $\lim_{\delta \to 0} \Sigma(f) - \sigma(f) = 0$. On peut donc dire que ces suites sont convergentes vers une même limite R.

Cette valeur commune R s'appelle l'intégrale de Riemann de f sur [a,b] et est notée $\int_{b}^{a} f(x)dx$.

Elle est associée à la somme de Riemann $\frac{(b-a)}{n} \sum_{k=1}^{n} f\left(a + k \frac{(b-a)}{n}\right) = \sum_{k=1}^{n} (x_k - x_{k-1}) f(x_k)$. Ainsi

$$R = \lim_{n \to +\infty} \frac{(b-a)}{n} \sum_{k=1}^{n} f\left(a + k\frac{(b-a)}{n}\right) = \int_{b}^{a} f(x)dx$$

Problème 2

Soit l'intégrale I définie sur $\mathbb R$ telle que :

$$I = \int_0^{+\infty} \frac{3x+4}{(x^2+2x+2)^2} dx$$

1. Déterminer deux réels α et β tels que $\frac{3x+4}{(x^2+2x+2)^2} = \alpha \frac{2x+2}{(x^2+2x+2)^2} + \frac{\beta}{(x^2+2x+2)^2}$.

$$\begin{vmatrix} \frac{3x+4}{(x^2+2x+2)^2} = \frac{\alpha(2x+2)+\beta}{(x^2+2x+2)^2} \\ \frac{3x+4}{(x^2+2x+2)^2} = \frac{2\alpha x+2\alpha+\beta}{(x^2+2x+2)^2} \end{vmatrix}$$
Par identification, on a
$$\begin{cases} 2\alpha & = 3 \\ 2\alpha+\beta & = 4 \end{cases} \Leftrightarrow \begin{cases} \alpha & = \frac{3}{2} \\ \beta & = 1 \end{cases}$$

2. Calculer $\frac{3}{2} \int \frac{2x+2}{(x^2+2x+2)^2} dx$.

3. Déterminer les réels a et b tels que : $x^2 + 2x + 2 = (x + a) + b^2$.

Trouver les réels a et b tels que : $x^2 + 2x + 2 = (x+a) + b^2$ revient à rechercher la forme canonique : $x^2 + 2x + 2 = (x+1)^2 + 1$ On trouve alors a = b = 1.

4. On considère le changement de variable u = x + 1.

(a) Montrer que
$$\int \frac{dx}{(x^2+2x+2)^2} = \int \frac{du}{(u^2+1)^2}$$
.

On procède au changement de variable $u = x + 1 \Leftrightarrow x = u - 1$ $\frac{dx}{du} = \frac{(u-1)'}{(u)'} \Leftrightarrow \frac{dx}{du} = 1$ $\Leftrightarrow dx = du$ $\int \frac{dx}{(x^2 + 2x + 2)^2} = \int \frac{dx}{(x+1)^2 + 1}$ $= \int \frac{du}{((u-1)+1)^2 + 1)^2}$ $= \int \frac{du}{(u^2 + 1)^2}$

(b) Montrer par une technique que l'on expliquera que : $2\int \frac{du}{(u^2+1)^2} = \frac{u}{u^2+1} + \int \frac{du}{u^2+1}$

Pour l'intégration par parties on pose u et v telles que :

$$\begin{split} v' &= 1 \to v = u \\ w &= \frac{1}{u^2 + 1} \to w' = -\frac{2u}{(u^2 + 1)^2} \\ \text{Ainsi, on a } \int \frac{du}{u^2 + 1} &= [v.w] - \int v.w' du = \frac{u}{u^2 + 1} + \int \frac{2u^2}{(u^2 + 1)^2} du \\ &= \frac{u}{u^2 + 1} + \int \frac{2u^2}{(u^2 + 1)^2} du \\ &= \frac{u}{u^2 + 1} + 2 \int \frac{(u^2 + 1) - 1}{(u^2 + 1)^2} du \\ &= \frac{u}{u^2 + 1} + 2 \left(\int \frac{(u^2 + 1)}{(u^2 + 1)^2} du - \int \frac{1}{(u^2 + 1)^2} du \right) \\ &= \frac{u}{u^2 + 1} + 2 \left(\int \frac{du}{u^2 + 1} - \int \frac{du}{(u^2 + 1)^2} \right) \end{split}$$

Il vient que :

If vient que:
$$\int \frac{du}{u^2+1} - 2\int \frac{du}{u^2+1} = \frac{u}{u^2+1} - 2\int \frac{du}{(u^2+1)^2} \Leftrightarrow 2\int \frac{du}{(u^2+1)^2} = \frac{u}{u^2+1} + \int \frac{du}{u^2+1}$$
 On retrouve bien
$$2\int \frac{du}{(u^2+1)^2} = \frac{u}{u^2+1} + \int \frac{du}{u^2+1}$$

5. En déduire la valeur de I.

Par suite (On considère toute cte=0) :

$$2\int \frac{du}{(u^2+1)^2} = \frac{u}{u^2+1} + \arctan(u) \Leftrightarrow \int \frac{dx}{(x^2+2x+2)^2} = \frac{1}{2} \left[\frac{x+1}{(x+1)^2+1} + \arctan(x+1) \right]$$

Par suite (On considère toute
$$cte = 0$$
):
$$2\int \frac{du}{(u^2+1)^2} = \frac{u}{u^2+1} + \arctan(u) \Leftrightarrow \int \frac{dx}{(x^2+2x+2)^2} = \frac{1}{2} \left[\frac{x+1}{(x+1)^2+1} + \arctan(x+1) \right]$$
 On trouve I telle que : $I = \frac{1}{2} \left[\frac{x+1}{(x+1)^2+1} - \frac{3}{x^2+2x+2} + \arctan(x+1) \right]$ On pose $X \in [0, +\infty[$, dès lors :
$$\int_0^{+\infty} \frac{3x+4}{(x^2+2x+2)^2} dx = \lim_{X \to +\infty} \int_0^X \frac{3x+4}{(x^2+2x+2)^2} dx = I(X) - I(0)$$

$$\lim_{X \to +\infty} I(X) = \frac{\pi}{4} \text{ et } I(0) = -\frac{3}{4} + \frac{2+\pi}{8} = -\frac{1}{2} + \frac{\pi}{8}$$
 Par conséquent, cette intégrale converge vers $\frac{1}{2} + \frac{\pi}{2}$

$$\lim_{X \to +\infty} I(X) = \frac{\pi}{4} \text{ et } I(0) = -\frac{3}{4} + \frac{2+\pi}{8} = -\frac{1}{2} + \frac{\pi}{8}$$

Problème 3

Soit l'intégrale I définie telle que : $I = \int_{0}^{1} \frac{2x}{x^2 + x + 1} dx$

1. Montrer que I est de la forme : $\int_0^1 \frac{\alpha x + \beta}{x^2 + x + 1} + \frac{\gamma}{x^2 + x + 1} dx \text{ où } (\alpha, \beta, \gamma) \in \mathbb{R}^3.$

$$I = \int_0^1 \frac{2x+1-1}{x^2+x+1} dx$$

$$= \int_0^1 \frac{2x+1}{x^2+x+1} - \frac{1}{x^2+x+1} dx$$
 Par identification, il vient que $\alpha=2,\beta=1,\gamma=-1$

2. Déterminer la forme canonique de $x^2 + x + 1$.

$$\left\|\begin{array}{c}x^2+x+1,\,\text{On fait un début d'identité remarquable.}\\x^2+x+1=x^2+2.\frac{1}{2}.x+(\frac{1}{2})^2+\frac{3}{4}=(x+\frac{1}{2})^2+\frac{3}{4}\end{array}\right.$$

3. En déduire l'intégrale I et la calculer.

$$I = \int_0^1 \frac{2x+1}{x^2+x+1} dx - \int_0^1 \frac{1}{(x+\frac{1}{2})^2+\frac{3}{4}} dx$$
L'intégrale se compose de deux intégrales :
$$(1): \frac{u'}{u} \xrightarrow{\int} \ln |u| \text{ avec ici } u = x^2+x+1$$

$$(2): \frac{u'}{u^2+\alpha^2} \xrightarrow{\int} \frac{1}{\alpha} \arctan(\frac{u}{\alpha}) \text{ avec ici } u = x+\frac{1}{2} \text{ et } \alpha = \frac{\sqrt{3}}{2} \text{ (ou } -\frac{\sqrt{3}}{2})$$

$$I = \left[\ln |x^2+x+1| - \frac{2}{\sqrt{3}} \arctan\left(\frac{2}{\sqrt{3}}(x+\frac{1}{2})\right)\right]_1^0$$

$$= \ln(3) - \frac{2}{\sqrt{3}} \arctan\left(\frac{3}{\sqrt{3}}\right) - \left(-\frac{2}{\sqrt{3}} \arctan\left(\frac{1}{\sqrt{3}}\right)\right)$$

$$= \ln(3) - \frac{2\pi}{3\sqrt{3}} + \frac{2\pi}{6\sqrt{3}}$$

$$= \ln(3) - \frac{\pi}{3\sqrt{3}}$$

Problème 4

Soit l'intégrale $\varphi(x) = \int \frac{dx}{\sin(x)}$

1. Démontrer que $\sin(2x) = 2\sin(x)\cos(x)$.

On utilise la formule d'Euler.

$$e^{i2x} = (e^{ix})^2$$

$$= (\cos(x) + i\sin(x))^2$$

$$= \cos^2(x) - \sin^2(x) + 2i\sin(x)\cos(x)$$
On sait que $\sin(x) = \mathfrak{Im}(e^{ix})$ par conséquent : $\sin(2x) = \mathfrak{Im}(e^{i2x}) = 2\sin(x)\cos(x)$

2. En posant le changement de variable $u=\frac{x}{2}$, montrer que $\varphi(u)=\int \frac{\tan'(u)}{\tan(u)}du$. On rappelle que $\tan'(x) = \frac{1}{\cos^2(x)}.$

On pose
$$u = \frac{x}{2} \Leftrightarrow 2u = x$$
, on a donc : $dx = 2du$

$$\varphi(u) = \int \frac{2}{\sin(2u)} du$$

$$= \int \frac{2}{2\sin(u)\cos(u)} du$$

$$= \int \frac{\cos(u)}{\sin(u)\cos^2(u)} du$$

$$= \int \frac{1}{\tan(u)} \times \frac{1}{\cos^2(u)} du$$
On trouve bien $I(x)$ de la forme $\frac{u'(x)}{u(x)}$ avec $u(x) = \tan\left(\frac{x}{2}\right)$ et $u'(x) = \frac{1}{\cos^2\left(\frac{x}{2}\right)}$

3. En déduire la forme de $\varphi(x)$.

La primitive d'une fonction de la forme $\frac{u'(x)}{u(x)}$ est $\ln |u(x)|$ Ainsi : $\varphi(x) = \int \frac{1}{\sin(x)} dx = \ln |\tan \left(\frac{x}{2}\right)| + cte$

Problème 5

Soient les fonctions suivantes définies sur $\mathbb R$:

$$f(x) = x$$
, $g(x) = x^2$, et $h(x) = e^x$

- 1. Justifier qu'elles sont intégrables sur tout intervalle fermé borné de $\mathbb{R}.$
 - Une condition suffisante pour qu'elles soient intégrables et qu'elles soient continues sur leur intervalle d'intégration. Les fonctions ci-dessus sont continues sur tout \mathbb{R} et donc, sur tout intervalle $[a,b]\subset\mathbb{R}$.
- 2. En utilisant les sommes de Riemann, calculer les intégrales suivantes :

(a)
$$\int_0^1 f(x)dx.$$

Par définition, on a
$$\lim_{n \to +\infty} \frac{(b-a)}{n} \sum_{k=1}^{n} f\left(a + k \frac{(b-a)}{n}\right) = \int_{b}^{a} f(x) dx$$
. Dès lors :
$$\int_{0}^{1} f(x) dx = \lim_{n \to +\infty} \frac{1}{n} \sum_{k=1}^{n} f\left(\frac{k}{n}\right)$$

$$= \lim_{n \to +\infty} \frac{1}{n} \sum_{k=1}^{n} \frac{k}{n}$$

$$= \lim_{n \to +\infty} \frac{1}{n^{2}} \sum_{k=1}^{n} k$$

$$= \lim_{n \to +\infty} \frac{1}{n^{2}} \times \frac{n(n-1)}{2}$$

$$= \lim_{n \to +\infty} \frac{(n-1)}{2n}$$

$$= \frac{1}{2}$$

(b)
$$\int_{1}^{2} g(x)dx.$$

$$\int_{1}^{2} g(x)dx = \lim_{n \to +\infty} \frac{1}{n} \sum_{k=1}^{n} g\left(1 + \frac{k}{n}\right)$$

$$= \lim_{n \to +\infty} \frac{1}{n} \sum_{k=1}^{n} \left(1 + \frac{k}{n}\right)^{2}$$

$$= \lim_{n \to +\infty} \frac{1}{n} \sum_{k=1}^{n} 1 + \frac{k^{2}}{n^{2}} + 2\frac{k}{n}$$

$$= \lim_{n \to +\infty} \frac{1}{n} \left(\sum_{k=1}^{n} 1 + \frac{1}{n^{2}} \sum_{k=1}^{n} k^{2} + \frac{2}{n} \sum_{k=1}^{n} k\right)$$

$$= \lim_{n \to +\infty} \frac{1}{n} \left(n + \frac{(n-1)(2n-1)}{6n} + (n-1)\right)$$

$$= \lim_{n \to +\infty} 1 + \frac{(n-1)(2n-1)}{6n^{2}} + \frac{n-1}{n}$$

$$= \frac{7}{3}$$

Problème 6

Soit $n \in \mathbb{N}$ et l'intégrale définie telle que

$$I_n = \int_0^1 \frac{x^n}{1+x} dx$$

1. En majorant la fonction intégrée, montrer que $\lim_{n\to +\infty} I_n = 0$.

On a $\forall x \in [0,1], \frac{x^n}{1+x} \leq x^n$, puis par linéarité de l'intégration, on en déduit que :

On a
$$\forall x \in [0, 1], \frac{x}{1+x} \leq x^n$$
, puis par linéarité de l'
$$I_n \leq \int_0^1 x^n dx \Leftrightarrow I_n \leq \left[\frac{x^{n+1}}{n+1}\right]_0^1$$
$$\Leftrightarrow I_n \leq \frac{1}{n+1}$$
Ainsi, on a
$$0 \leq I_n \leq$$
Par le théorème des gendarmes, on $\lim_{n \to +\infty} I_n = 0$.

$$0 \le I_n \le \frac{1}{n+1}$$

2. Calculer $I_n + I_{n+1}$.

$$I_n + I_{n+1} = \int_0^1 \frac{x^n}{1+x} dx + \int_0^1 \frac{x^{n+1}}{1+x} dx$$

$$= \int_0^1 \frac{x^n + x^{n+1}}{1+x} dx$$

$$= \int_0^1 \frac{x^n (1+x)}{1+x} dx$$

$$= \int_0^1 x^n dx$$

$$= \frac{1}{n+1}$$

3. Déterminer $\lim_{n \to +\infty} \left(\sum_{k=-1}^{n} \frac{(-1)^{k+1}}{k} \right)$.

On pose
$$S_n = 1 - \frac{1}{2} + \dots + \frac{(-1)^n}{n-1} + \frac{(-1)^{n+1}}{n} = \sum_{k=1}^n \frac{(-1)^{k+1}}{k}$$
.
Ainsi, on a $S_n = \sum_{k=0}^n (-1)^k (I_k + I_{k+1})$
Il vient par télescopage que $S_n = I_0 + (-1)^n I_n$
Dès lors $\lim_{n \to +\infty} I_0 + (-1)^n I_n = \ln(2)$

Ainsi, on a
$$S_n = \sum_{k=0}^{n} (-1)^k (I_k + I_{k+1})$$

Dès lors
$$\lim_{n\to +\infty} I_0 + (-1)^n I_n = \ln(2)$$