Algoritmi e Strutture Dati

Analisi di algoritmi Funzioni di costo, notazione asintotica

Alberto Montresor

Università di Trento

2020/10/08

Notazioni $O,\,\Omega,\,\Theta$

Definizione – Notazione O

Sia g(n) una funzione di costo; indichiamo con O(g(n)) l'insieme delle funzioni f(n) tali per cui:

$$\exists c > 0, \exists m \ge 0 : f(n) \le cg(n), \forall n \ge m$$

- \bullet Come si legge: f(n)è "O grande" (big-O) di g(n)
- Come si scrive: f(n) = O(g(n))
- g(n) è un limite asintotico superiore per f(n)
- f(n) cresce al più come g(n)

Notazioni $O,\,\Omega,\,\Theta$

Definizione – Notazione Ω

Sia g(n) una funzione di costo; indichiamo con $\Omega(g(n))$ l'insieme delle funzioni f(n) tali per cui:

$$\exists c > 0, \exists m \ge 0 : f(n) \ge cg(n), \forall n \ge m$$

- Come si legge: f(n) è "Omega grande" di g(n)
- Come si scrive: $f(n) = \Omega(g(n))$
- g(n) è un limite asintotico inferiore per f(n)
- \bullet f(n)cresce almeno quanto g(n)

Notazioni O, Ω, Θ

Definizione – Notazione Θ

Sia g(n) una funzione di costo; indichiamo con $\Theta(g(n))$ l'insieme delle funzioni f(n) tali per cui:

$$\exists c_1 > 0, \exists c_2 > 0, \exists m \ge 0 : c_1 g(n) \le f(n) \le c_2 g(n), \forall n \ge m$$

- Come si legge: f(n) è "Theta" di g(n)
- Come si scrive: $f(n) = \Theta(g(n))$
- f(n) cresce esattamente come g(n)
- $f(n) = \Theta(g(n))$ se e solo se f(n) = O(g(n)) e $f(n) = \Omega(g(n))$

Graficamente

Algoritmi e Strutture Dati

Analisi di algoritmi Proprietà della notazione asintotica

Alberto Montresor

Università di Trento

2020/10/08

Regola generale

Espressioni polinomiali

$$f(n) = a_k n^k + a_{k-1} n^{k-1} + \dots + a_1 n + a_0, a_k > 0 \Rightarrow f(n) = \Theta(n^k)$$

Limite superiore: $\exists c > 0, \exists m \ge 0 : f(n) \le cn^k, \forall n \ge m$

$$f(n) = a_k n^k + a_{k-1} n^{k-1} + \dots + a_1 n + a_0$$

$$\leq a_k n^k + |a_{k-1}| n^{k-1} + \dots + |a_1| n + |a_0|$$

$$\leq a_k n^k + |a_{k-1}| n^k + \dots + |a_1| n^k + |a_0| n^k \qquad \forall n \geq 1$$

$$= (a_k + |a_{k-1}| + \dots + |a_1| + |a_0|) n^k$$

$$\stackrel{?}{\leq} c n^k$$

che è vera per $c \ge (a_k + |a_{k-1}| + \ldots + |a_1| + |a_0|) > 0$ e per m = 1.

Regola generale

Espressioni polinomiali

$$f(n) = a_k n^k + a_{k-1} n^{k-1} + \dots + a_1 n + a_0, a_k > 0 \Rightarrow f(n) = \Theta(n^k)$$

Limite inferiore: $\exists d > 0, \exists m \geq 0 : f(n) \geq dn^k, \forall n \geq m$

$$f(n) = a_k n^k + a_{k-1} n^{k-1} + \dots + a_1 n + a_0$$

$$\geq a_k n^k - |a_{k-1}| n^{k-1} - \dots - |a_1| n - |a_0|$$

$$\geq a_k n^k - |a_{k-1}| n^{k-1} - \dots - |a_1| n^{k-1} - |a_0| n^{k-1} \qquad \forall n \geq 1$$

$$\stackrel{?}{\geq} dn^k$$

L'ultima equazione è vera se:

$$d \le a_k - \frac{|a_{k-1}|}{n} - \frac{|a_{k-2}|}{n} - \dots - \frac{|a_1|}{n} - \frac{|a_0|}{n} > 0 \Leftrightarrow n > \frac{|a_{k-1}| + \dots + |a_0|}{a_k}$$

Alcuni casi particolari

- Qual è la complessità di f(n) = 5?
 - $f(n) = 5 \ge c_1 n^0 \Rightarrow c_1 \le 5$
 - $f(n) = 5 \le c_2 n^0 \Rightarrow c_2 \ge 5$
 - $f(n) = \Theta(n^0) = \Theta(1)$
- Qual è la complessità di $f(n) = 5 + \sin(n)$?

Dualità

$$f(n) = O(g(n)) \Leftrightarrow g(n) = \Omega(f(n))$$

Dimostrazione:

$$\begin{split} f(n) &= O(g(n)) \Leftrightarrow f(n) \leq cg(n), \forall n \geq m \\ &\Leftrightarrow g(n) \geq \frac{1}{c}f(n), \forall n \geq m \\ &\Leftrightarrow g(n) \geq c'f(n), \forall n \geq m, c' = \frac{1}{c} \\ &\Leftrightarrow g(n) = \Omega(f(n)) \end{split}$$

Eliminazione delle costanti

$$f(n) = O(g(n)) \Leftrightarrow af(n) = O(g(n)), \forall a > 0$$

$$f(n) = \Omega(g(n)) \Leftrightarrow af(n) = \Omega(g(n)), \forall a > 0$$

Dimostrazione:

$$\begin{split} f(n) &= O(g(n)) \Leftrightarrow f(n) \leq cg(n), \forall n \geq m \\ &\Leftrightarrow af(n) \leq acg(n), \forall n \geq m, \forall a \geq 0 \\ &\Leftrightarrow af(n) \leq c'g(n), \forall n \geq m, c' = ac > 0 \\ &\Leftrightarrow af(n) = O(g(n)) \end{split}$$

Sommatoria (sequenza di algoritmi)

$$f_1(n) = O(g_1(n)), f_2(n) = O(g_2(n)) \Rightarrow f_1(n) + f_2(n) = O(\max(g_1(n), g_2(n)))$$

$$f_1(n) = \Omega(g_1(n)), f_2(n) = \Omega(g_2(n)) \Rightarrow f_1(n) + f_2(n) = \Omega(\max(g_1(n), g_2(n)))$$

Dimostrazione (Lato O)

$$f_{1}(n) = O(g_{1}(n)) \land f_{2}(n) = O(g_{2}(n)) \Rightarrow f_{1}(n) \le c_{1}g_{1}(n) \land f_{2}(n) \le c_{2}g_{2}(n) \Rightarrow f_{1}(n) + f_{2}(n) \le c_{1}g_{1}(n) + c_{2}g_{2}(n) \Rightarrow f_{1}(n) + f_{2}(n) \le \max\{c_{1}, c_{2}\}(2 \cdot \max(g_{1}(n), g_{2}(n))) \Rightarrow f_{1}(n) + f_{2}(n) = O(\max(g_{1}(n), g_{2}(n)))$$

Prodotto (Cicli annidati)

$$f_1(n) = O(g_1(n)), f_2(n) = O(g_2(n)) \Rightarrow f_1(n) \cdot f_2(n) = O(g_1(n) \cdot g_2(n))$$

$$f_1(n) = \Omega(g_1(n)), f_2(n) = \Omega(g_2(n)) \Rightarrow f_1(n) \cdot f_2(n) = \Omega(g_1(n) \cdot g_2(n))$$

Dimostrazione

$$f_1(n) = O(g_1(n)) \land f_2(n) = O(g_2(n)) \Rightarrow$$

 $f_1(n) \le c_1 g_1(n) \land f_2(n) \le c_2 g_2(n) \Rightarrow$
 $f_1(n) \cdot f_2(n) \le c_1 c_2 g_1(n) g_2(n)$

Simmetria

$$f(n) = \Theta(g(n)) \Leftrightarrow g(n) = \Theta(f(n))$$

Dimostrazione

Grazie alla proprietà di dualità:

$$f(n) = \Theta(g(n)) \Rightarrow f(n) = O(g(n)) \Rightarrow g(n) = \Omega(f(n))$$

$$f(n) = \Theta(g(n)) \quad \Rightarrow \quad f(n) = \Omega(g(n)) \Rightarrow g(n) = O(f(n))$$

Transitività

$$f(n) = O(g(n)), g(n) = O(h(n)) \Rightarrow f(n) = O(h(n))$$

Dimostrazione

$$f(n) = O(g(n)) \land g(n) = O(h(n)) \Rightarrow$$

$$f(n) \le c_1 g(n) \land g(n) \le c_2 h(n) \Rightarrow$$

$$f(n) \le c_1 c_2 h(n) \Rightarrow$$

$$f(n) = O(h(n))$$

Logaritmi vs funzioni lineari

Proprietà dei logaritmi

Vogliamo provare che $\log n = O(n)$. Dimostriamo per induzione che

$$\exists c > 0, \exists m \ge 0 : \log n \le cn, \forall n \ge m$$

• Caso base (n=1):

$$\log 1 = 0 \le cn = c \cdot 1 \Leftrightarrow c \ge 0$$

Logaritmi vs funzioni lineari

Proprietà dei logaritmi

Vogliamo provare che $\log n = O(n)$. Dimostriamo per induzione che

$$\exists c > 0, \exists m \ge 0 : \log n \le cn, \forall n \ge m$$

- Ipotesi induttiva: sia $\log k \le ck, \forall k \le n$
- Passo induttivo: Dimostriamo la proprietà per n+1

$$\log(n+1) \leq \log(n+n) = \log 2n \qquad \forall n \geq 1$$

$$= \log 2 + \log n \qquad \log ab = \log a + \log b$$

$$= 1 + \log n \qquad \log_2 2 = 1$$

$$\leq 1 + cn \qquad \text{Per induzione}$$

$$\stackrel{?}{\leq} c(n+1) \qquad \text{Obiettivo}$$

 $1 + cn \le c(n+1) \Leftrightarrow c \ge 1$

Giocando con le espressioni

- È vero che $\log_a n = \Theta(\log n)$?
 - Sì: $\log_a n = (\log_a 2) \cdot (\log_2 n) = \Theta(\log n)$
- È vero che $\log n^a = \Theta(\log n)$, per a > 0?
 - Sì: $\log n^a = a \log n = \Theta(\log n)$
- È vero che $2^{n+1} = \Theta(2^n)$?
 - Sì: $2^{n+1} = 2 \cdot 2^n = \Theta(2^n)$
- È vero che $2^n = \Theta(3^n)$?
 - Ovviamente $2^n = O(3^n)$
 - Ma: $3^n = \left(\frac{3}{2} \cdot 2\right)^n = \left(\frac{3}{2}\right)^n \cdot 2^n$: Quindi non esiste c > 0 tale per cui $\left(\frac{3}{2}\right)^n \cdot 2^n \le c2^n$, e quindi

Notazioni o, ω

Definizione – Notazioni o, ω

Sia g(n) una funzione di costo; indichiamo con o(g(n)) l'insieme delle funzioni f(n) tali per cui:

$$\forall c, \exists m : f(n) < cg(n), \forall n \ge m.$$

Sia g(n) una funzione di costo; indichiamo con $\omega(g(n))$ l'insieme delle funzioni f(n) tali per cui:

$$\forall c, \exists m : f(n) > cg(n), \forall n \ge m.$$

- Come si leggono: f(n) è "o piccolo", "omega piccolo" di g(n)
- Come si scrivono: f(n) = o(g(n)) oppure $f(n) = \omega(g(n))$

Notazioni o, ω

Utilizzando il concetto di limite, date due funzioni f(n) e g(n) si possono fare le seguenti affermazioni:

$$\lim_{n \to \infty} \frac{f(n)}{g(n)} = 0 \Rightarrow f(n) = o(g(n))$$

$$\lim_{n \to \infty} \frac{f(n)}{g(n)} = c \neq 0 \Rightarrow f(n) = \Theta(g(n))$$

$$\lim_{n \to \infty} \frac{f(n)}{g(n)} = +\infty \Rightarrow f(n) = \omega(g(n))$$

Si noti che:

$$f(n) = o(g(n)) \Rightarrow f(n) = O(g(n))$$

 $f(n) = \omega(g(n)) \Rightarrow f(n) = \Omega(g(n))$

Classificazione delle funzioni

E' possibile trarre un'ordinamento delle principali espressioni, estendendo le relazioni che abbiamo dimostrato fino ad ora

Per ogni r < s, h < k, a < b:

$$O(1) \subset O(\log^r n) \subset O(\log^s n) \subset O(n^h) \subset O(n^h \log^r n) \subset O(n^h \log^s n) \subset O(n^k) \subset O(n^h) \subset O(n^h)$$

Algoritmi e Strutture Dati

Analisi di algoritmi Ricorrenze, metodo dell'albero di ricorsione

Alberto Montresor

Università di Trento

2020/10/08

Introduzione

Equazioni di ricorrenza

Quando si calcola la complessità di un algoritmo ricorsivo, questa viene espressa tramite un'equazione di ricorrenza, ovvero una formula matematica definita in maniera... ricorsiva!

MergeSort

$$T(n) = \begin{cases} T(\lfloor n/2 \rfloor) + T(\lceil n/2 \rceil) + \Theta(n) & n > 1 \\ \Theta(1) & n \le 1 \end{cases}$$

Introduzione

Forma chiusa

Il nostro obiettivo è ottenere, quando possibile, una formula chiusa che rappresenti la classe di complessità della funzione.

MergeSort

$$T(n) = \begin{cases} T(\lfloor n/2 \rfloor) + T(\lceil n/2 \rceil) + \Theta(n) & n > 1 \\ \Theta(1) & n \le 1 \end{cases}$$

Introduzione

Forma chiusa

Il nostro obiettivo è ottenere, quando possibile, una formula chiusa che rappresenti la classe di complessità della funzione.

MergeSort

$$T(n) = \Theta(n \log n)$$

Oltre l'analisi di algoritmi

Utilizzeremo le equazioni di ricorrenza anche per risolvere problemi

Problema

Un bambino scende una scala composta da n scalini. Ad ogni passo, può decidere di fare 1,2,3,4 scalini alla volta. Determinare in quanti modi diversi può scendere le scale. Ad esempio, se n=7, alcuni dei modi possibili sono i seguenti:

- 1,1,1,1,1,1,1
- 1,2,4
- 4,2,1
- 2,2,2,1
- 1,2,2,1,1

Oltre l'analisi di algoritmi

Soluzione

Sia M(n) il numero di modi in cui è possibile scegliere n scalini; allora M(n) può essere espresso nel modo seguente:

$$M(n) = \begin{cases} 0 & n < 0 \\ 1 & n = 0 \\ \sum_{k=1}^{4} M(n-k) & n > 0 \end{cases}$$

Questa ricorrenza può essere trasformata in un algoritmo tramite semplice ricorsione o tramite programmazione dinamica.

Numeri di Tetranacci

 $1, 1, 2, 4, 8, 15, 29, 56, 108, 208, 401, 773, 1490, 2872, 5536, \dots$

Metodo dell'albero di ricorsione, o per livelli

Metodi per risolvere ricorrenze

- Analisi per livelli
- Analisi per tentativi, o per sostituzione
- Metodo dell'esperto, o delle ricorrenze comuni

Metodo dell'albero di ricorsione, o per livelli

"Srotoliamo" la ricorrenza in un albero i cui nodi rappresentano i costi ai vari livelli della ricorsione

Primo esempio

$$T(n) = \begin{cases} T(n/2) + b & n > 1\\ c & n \le 1 \end{cases}$$

È possibile risolvere questa ricorrenza nel modo seguente:

$$T(n) = b + T(n/2)$$

$$= b + b + T(n/4)$$

$$= b + b + b + T(n/8)$$

$$= \dots$$

$$= \underbrace{b + b + \dots + b}_{\log n} + T(1)$$

Assumiamo per semplicità: $n = 2^k$, ovvero $k = \log n$

$$T(n) = b \log n + c = \Theta(\log n)$$

$$T(n) = \begin{cases} 4T(n/2) + n & n > 1\\ 1 & n \le 1 \end{cases}$$

È possibile risolvere questa ricorrenza nel modo seguente:

$$T(n) = n + 4T(n/2)$$

$$= n + 4n/2 + 16T(n/2^{2})$$

$$= n + 2n + 16n/4 + 64T(n/8)$$

$$= \dots$$

$$= n + 2n + 4n + 8n + \dots + 2^{\log n - 1}n + 4^{\log n}T(1)$$

$$= n \sum_{i=0}^{\log n - 1} 2^{i} + 4^{\log n}$$

$$T(n) = \begin{cases} 4T(n/2) + n & n > 1\\ 1 & n \le 1 \end{cases}$$

È possibile risolvere questa ricorrenza nel modo seguente:

$$T(n) = n \sum_{j=0}^{\log n - 1} 2^j + 4^{\log n}$$

$$T(n) = \begin{cases} 4T(n/2) + n & n > 1\\ 1 & n \le 1 \end{cases}$$

È possibile risolvere questa ricorrenza nel modo seguente:

$$T(n) = n \sum_{j=0}^{\log n - 1} 2^{j} \quad n \cdot \frac{2^{\log n} - 1}{2 - 1} + 4^{\log n}$$

Serie geometrica finita:

$$\forall x \neq 1 : \sum_{j=0}^{k} x^j = \frac{x^{k+1} - 1}{x - 1}$$

$$T(n) = \begin{cases} 4T(n/2) + n & n > 1\\ 1 & n \le 1 \end{cases}$$

È possibile risolvere questa ricorrenza nel modo seguente:

$$T(n) = n \sum_{j=0}^{\log n - 1} 2^{j} \quad n \cdot \frac{2^{\log n} - 1}{2 - 1} \quad n(n - 1) + 4^{\log n}$$

Passaggi algebrici

$$T(n) = \begin{cases} 4T(n/2) + n & n > 1\\ 1 & n \le 1 \end{cases}$$

È possibile risolvere questa ricorrenza nel modo seguente:

$$T(n) = n \sum_{j=0}^{\log n - 1} 2^{j} \quad n \cdot \frac{2^{\log n}}{2 - 1} \quad n(n - 1) + 4^{\log n} \quad n^{\log 4}$$

Cambiamento di base:

$$\log_b n = (\log_b a) \cdot (\log_a n) \Rightarrow$$
$$a^{\log_b n} = n^{\log_b a}$$

$$T(n) = \begin{cases} 4T(n/2) + n & n > 1\\ 1 & n \le 1 \end{cases}$$

È possibile risolvere questa ricorrenza nel modo seguente:

$$T(n) = n \sum_{j=0}^{\log n - 1} 2^{j} \quad n \cdot \frac{2^{\log n}}{2 - 1} \quad n(n - 1) + 4^{\log n} \quad n^{\log 4} \quad n^{2}$$
$$= 2n^{2} - n = \Theta(n^{2})$$

Terzo esempio

$$T(n) = \begin{cases} 4T(n/2) + n^3 & n > 1\\ 1 & n \le 1 \end{cases}$$

Proviamo a visualizzare l'albero delle chiamate, per i primi tre livelli:

$$\frac{\left(\frac{n}{2}\right)^{3} \qquad \left(\frac{n}{2}\right)^{3} \qquad \left(\frac{n}{2}\right)^{3} \qquad \left(\frac{n}{2}\right)^{3}}{\left(\frac{n}{4}\right)^{3} \left(\frac{n}{4}\right)^{3} \left($$

$$T(n) = \begin{cases} 4T(n/2) + n^3 & n > 1\\ 1 & n \le 1 \end{cases}$$

Livello	Dim.	Costo chiam.	N. chiamate	Costo livello
0	n	n^3	1	n^3
1	n/2	$(n/2)^3$	4	$4(n/2)^3$
2	n/4	$(n/4)^3$	16	$16(n/4)^3$
• • • •	• • •	• • •	•••	• • • •
i	$n/2^i$	$(n/2^i)^3$	4^i	$4^i(n/2^i)^3$
	• • •	• • •	• • •	
$\ell-1$	$n/2^{\ell-1}$	$(n/2^{\ell-1})^3$	$4^{\ell-1}$	$4^{\ell-1}(n/2^{\ell-1})^3$
$\ell = \log n$	1	T(1)	$4^{\log n}$	$4^{\log n}$

$$T(n) = \begin{cases} 4T(n/2) + n^3 & n > 1\\ 1 & n \le 1 \end{cases}$$

La sommatoria dà origine a:

$$T(n) = \sum_{i=0}^{\log n - 1} 4^{i} \cdot n^{3} / 2^{3i} + 4^{\log n}$$

$$= n^{3} \sum_{i=0}^{\log n - 1} \frac{2^{2i}}{2^{3i}} + 4^{\log n}$$

$$= n^{3} \sum_{i=0}^{\log n - 1} \left(\frac{1}{2}\right)^{i} + 4^{\log n}$$

Passaggi algebrici

Passaggi algebrici

$$T(n) = \begin{cases} 4T(n/2) + n^3 & n > 1\\ 1 & n \le 1 \end{cases}$$

La sommatoria dà origine a:

$$T(n) = n^{3} \sum_{i=0}^{\log n - 1} \left(\frac{1}{2}\right)^{i} + 4^{\log n}$$

$$= n^{3} \sum_{i=0}^{\log n - 1} \left(\frac{1}{2}\right)^{i} + n^{2}$$

$$\leq n^{3} \sum_{i=0}^{\infty} \left(\frac{1}{2}\right)^{i} + n^{2}$$

Cambiamento di base

Estensione della sommatoria

$$T(n) = \begin{cases} 4T(n/2) + n^3 & n > 1\\ 1 & n \le 1 \end{cases}$$

La sommatoria dà origine a:

$$T(n) \le n^3 \sum_{i=0}^{\infty} \left(\frac{1}{2}\right)^i + n^2$$
$$= n^3 \cdot \frac{1}{1 - \frac{1}{2}} + n^2$$
$$= 2n^3 + n^2$$

Serie geometrica infinita decrescente:

$$\forall x, |x| < 1 : \sum_{i=0}^{\infty} x^i = \frac{1}{1-x}$$

$$T(n) = \begin{cases} 4T(n/2) + n^3 & n > 1\\ 1 & n \le 1 \end{cases}$$

Abbiamo dimostrato che:

$$T(n) \le 2n^3 + n^2$$

- Possiamo affermare che $T(n) = O(n^3)$
- La dimostrazione precedente non afferma che $T(n) = \Theta(n^3)$, perché ad un certo punto siamo passati a \leq
- Però è possibile notare che $T(n) \ge n^3$, quindi è possibile affermare che $T(n) = \Omega(n^3)$ e quindi $T(n) = \Theta(n^3)$

Quarto esempio

$$T(n) = \begin{cases} 4T(n/2) + n^2 & n > 1\\ 1 & n \le 1 \end{cases}$$

Livello	Dimensione	Costo chiamata	N. chiamate	Costo livello
0	n	n^2	1	n^2
1	n/2	$(n/2)^2$	4	$4(n/2)^2$
2	n/4	$(n/4)^2$	16	$16(n/4)^2$
i	$n/2^i$	$(n/2^i)^2$	4^i	$4^{i}(n/2^{i})^{2}$
			• • •	• • •
$\ell-1$	$n/2^{\ell-1}$	$(n/2^{\ell-1})^2$	$4^{\ell-1}$	$4^{\ell-1}(n/2^{\ell-1})^2$
$\ell = \log n$	1	T(1)	$4^{\log n}$	$4^{\log n}$

Quarto esempio

$$T(n) = \begin{cases} 4T(n/2) + n^2 & n > 1\\ 1 & n \le 1 \end{cases}$$

$$\begin{split} T(n) &= \sum_{i=0}^{\log n - 1} n^2 / 2^{2i} \cdot 4^i + 4^{\log n} \\ &= n^2 \sum_{i=0}^{\log n - 1} \frac{2^{2i}}{2^{2i}} + n^2 \\ &= n^2 \sum_{i=0}^{\log n - 1} 1 + n^2 \\ &= n^2 \log n + n^2 = \Theta(n^2 \log n) \end{split}$$

Algoritmi e Strutture Dati

Analisi di algoritmi Ricorrenze, metodo di sostituzione

Alberto Montresor

Università di Trento

2020/10/08

Metodo della sostituzione

Metodi per risolvere ricorrenze

- Metodo dell'albero di ricorsione, o per livelli
- Metodo di sostituzione, o per tentativi
- Metodo dell'esperto, o delle ricorrenze comuni

Metodo di sostituzione

È un metodo in cui si cerca di "indovinare" (guess) una soluzione, in base alla propria esperienza, e si dimostra che questa soluzione è corretta tramite induzione.

Cerchiamo di indovinare

$$T(n) = \begin{cases} T(\lfloor n/2 \rfloor) + n & n > 1\\ 1 & n \le 1 \end{cases}$$

Cerchiamo di indovinare

$$T(n) = \begin{cases} T(\lfloor n/2 \rfloor) + n & n > 1\\ 1 & n \le 1 \end{cases}$$

$$T(n) = n \sum_{i=0}^{\log n} (1/2)^i \le n \sum_{i=0}^{\infty} (1/2)^i \le n \frac{1}{1 - \frac{1}{2}} = 2n$$

Serie geometrica decrescente infinita

$$\forall x, |x| < 1 : \sum_{i=0}^{\infty} x^i = \frac{1}{1-x}$$

Limite superiore

$$T(n) = \begin{cases} T(\lfloor n/2 \rfloor) + n & n > 1 & \text{Tentativo: } T(n) = O(n) \\ 1 & n \le 1 & \exists c > 0, \exists m \ge 0 : T(n) \le cn, \forall n \ge m \end{cases}$$

• Caso base: Dimostriamo la disequazione per T(1) $T(1) = 1 \stackrel{?}{\leq} 1 \cdot c \Leftrightarrow \forall c \geq 1$

Limite superiore

$$T(n) = \begin{cases} T(\lfloor n/2 \rfloor) + n & n > 1 & \text{Tentativo: } T(n) = O(n) \\ 1 & n \leq 1 & \exists c > 0, \exists m \geq 0 : T(n) \leq cn, \forall n \geq m \end{cases}$$

- Ipotesi induttiva: $\forall k < n : T(k) \le ck$.
- Passo di induzione: Dimostriamo la disequazione per T(n)

$$T(n) = T(\lfloor n/2 \rfloor) + n$$

 $\leq c \lfloor n/2 \rfloor + n$ Sostituzione
 $\leq cn/2 + n$ Intero inferiore
 $= (c/2 + 1)n$ Passo algebrico
 $\stackrel{?}{\leq} cn$ Obiettivo
 $\Leftrightarrow c/2 + 1 < c \Leftrightarrow c > 2$ Risultato finale

Limite superiore

$$T(n) = \begin{cases} T(\lfloor n/2 \rfloor) + n & n > 1 & \text{Tentativo: } T(n) = O(n) \\ 1 & n \le 1 & \exists c > 0, \exists m \ge 0 : T(n) \le cn, \forall n \ge m \end{cases}$$

- Abbiamo provato che $T(n) \le cn$
 - Nel caso base: $c \ge 1$
 - Nel passo induttivo: $c \ge 2$
 - Un valore c che rispetta entrambe le disequazioni è c=2
- Questo vale per n=1, e per tutti i valori di n seguenti
 - Quindi m=1

Abbiamo quindi provato che T(n) = O(n)

$$T(n) = \begin{cases} T(\lfloor n/2 \rfloor) + n & n > 1 \\ 1 & n \leq 1 \end{cases} \quad \begin{array}{ll} \text{Tentativo: } T(n) = \Omega(n) \\ \exists d > 0, \exists m \geq 0 : T(n) \geq dn, \forall n \geq m \\ m \end{cases}$$

• Caso base: Dimostriamo la disequazione per T(1)

$$T(1) = 1 \stackrel{?}{\geq} 1 \cdot d \Leftrightarrow \forall d \leq 1$$

$$T(n) = \begin{cases} T(\lfloor n/2 \rfloor) + n & n > 1 \\ 1 & n \leq 1 \end{cases} \quad \begin{array}{l} \text{Tentativo: } T(n) = \Omega(n) \\ \exists d > 0, \exists m \geq 0 : T(n) \geq dn, \forall n \geq n \end{cases}$$

- Ipotesi induttiva: $\forall k < n : T(k) \ge dk$.
- Passo di induzione: Dimostriamo la disequazione per T(n)

$$T(n) = T(\lfloor n/2 \rfloor) + n$$

$$\geq d\lfloor n/2 \rfloor + n$$
Sostituzione
$$\geq dn/2 - 1 + n$$
Intero inferiore
$$= \left(\frac{d}{2} - \frac{1}{n} + 1\right) n \stackrel{?}{\geq} dn$$
Passo algebrico
$$\Leftrightarrow \frac{d}{2} - \frac{1}{n} + 1 \geq d \Leftrightarrow d \leq 2 - 2/n$$
Risultato finale

$$T(n) = \begin{cases} T(\lfloor n/2 \rfloor) + n & n > 1 \\ 1 & n \leq 1 \end{cases} \quad \begin{array}{ll} \text{Tentativo: } T(n) = \Omega(n) \\ \exists d > 0, \exists m \geq 0 : T(n) \geq dn, \forall n \geq n \end{cases}$$

- Abbiamo provato che $T(n) \ge dn$
 - Nel caso base: $d \le 1$
 - Nel passo induttivo: $d \le 2 \frac{2}{n}$
 - Un valore d che rispetta entrambe le disequazioni, per ogni valore di n > 1, è d = 1
- Questo vale per n = 1, e per tutti i valori di n seguenti
 - Quindi m=1

Abbiamo quindi provato che $T(n) = \Omega(n)$

$$T(n) = O(n) \wedge T(n) = \Omega(n) \Leftrightarrow$$

 $T(n) = \Theta(n)$

$$T(n) = \begin{cases} T(\lfloor n/2 \rfloor) + n & n > 1 \\ 1 & n \leq 1 \end{cases} \quad \begin{array}{l} \text{Tentativo: } T(n) = \Omega(n) \\ \exists d > 0, \exists m \geq 0 : T(n) \geq dn, \forall n \geq n \end{cases}$$

• É possibile dimostrare che $T(n)=\Omega(n)$ in maniera molto più semplice, senza fare nemmeno ricorso all'ipotesi induttiva.

$$T(n) = T(\lfloor n/2 \rfloor) + n \ge n \stackrel{?}{\ge} dn$$

• L'ultima equazione è vera per $d \leq 1$, condizione identica a quella del caso base

Cosa succede se si sbaglia l'intuizione

$$T(n) = \begin{cases} T(n-1) + n & n > 1\\ 1 & n \le 1 \end{cases}$$

Cosa succede se si sbaglia l'intuizione

$$T(n) = \begin{cases} T(n-1) + n & n > 1\\ 1 & n \le 1 \end{cases}$$

$$T(n) = \sum_{i=1}^{n} i = \frac{n(n+1)}{2} = \Theta(n^2)$$

Cosa succede se si sbaglia l'intuizione

$$T(n) = \begin{cases} T(n-1) + n & n > 1 & \text{Tentativo sbagliato: } T(n) = O(n) \\ 1 & n \leq 1 & \exists c > 0, \exists m \geq 0 : T(n) \leq cn, \forall n \geq m \end{cases}$$

- Ipotesi induttiva: $\forall k < n : T(k) \le ck$.
- Passo di induzione: Dimostriamo la disequazione per T(n)

$$T(n) = T(n-1) + n$$

 $\leq c(n-1) + n$ Sostituzione
 $\leq (c+1)n - c$ Passo algebrico
 $\leq (c+1)n$ Rimozione elemento negativo
 $\stackrel{?}{\leq} cn$ Obiettivo
 $\Rightarrow c+1 \leq c$ Impossibile

$$T(n) = \begin{cases} T(\lfloor n/2 \rfloor) + T(\lceil n/2 \rceil) + 1 & n > 1\\ 1 & n \le 1 \end{cases}$$

$$T(n) = \begin{cases} T(\lfloor n/2 \rfloor) + T(\lceil n/2 \rceil) + 1 & n > 1\\ 1 & n \le 1 \end{cases}$$

0

20

21

 2^2

log n - I

7 log n - 1

log n

7log n

$$T(n) = \begin{cases} T(\lfloor n/2 \rfloor) + T(\lceil n/2 \rceil) + 1 & n > 1\\ 1 & n \le 1 \end{cases}$$

$$T(n) = \sum_{i=0}^{\log n} 2^i = 1 + 2 + \dots + n/4 + n/2 + n = O(n)$$

$$T(n) = \begin{cases} T(\lfloor n/2 \rfloor) + T(\lceil n/2 \rceil) + 1 & n > 1 \\ 1 & n \leq 1 \end{cases} \begin{array}{ll} & \text{Tentativo: } T(n) = O(n) \\ \exists c > 0, \exists m \geq 0: \\ T(n) \leq cn, \forall n \geq m \end{cases}$$

- Ipotesi induttiva: $\forall k < n : T(k) \le ck$.
- Passo di induzione: Dimostriamo la disequazione per T(n)

$$T(n) = T(\lfloor n/2 \rfloor) + T(\lceil n/2 \rceil) + 1$$

$$\leq c \lfloor n/2 \rfloor + c \lceil n/2 \rceil + 1$$
Sostituzione
$$= cn + 1$$
Passo algebrico
$$\stackrel{?}{\leq} cn$$
Obiettivo
$$\Rightarrow 1 < 0$$
Impossibile

$$T(n) = \begin{cases} T(\lfloor n/2 \rfloor) + T(\lceil n/2 \rceil) + 1 & n > 1 \\ 1 & n \leq 1 \end{cases} \begin{array}{ll} & \text{Tentativo: } T(n) = O(n) \\ \exists c > 0, \exists m \geq 0 : \\ T(n) \leq cn, \forall n \geq m \end{cases}$$

Cosa succede?

- Il tentativo è corretto...
- ma non riusciamo a dimostrarlo per un termine di ordine inferiore

$$cn + 1 < cn$$

$$T(n) = \begin{cases} T(\lfloor n/2 \rfloor) + T(\lceil n/2 \rceil) + 1 & n > 1 \\ 1 & n \leq 1 \end{cases} \begin{array}{ll} & \text{Tentativo: } T(n) = O(n) \\ \exists c > 0, \exists m \geq 0: \\ T(n) \leq cn, \forall n \geq m \end{cases}$$

- Ipotesi induttiva più stretta: $\exists b > 0, \forall k < n : T(k) \le ck b$.
- Passo di induzione: Dimostriamo la disequazione per T(n):

$$T(n) = T(\lfloor n/2 \rfloor) + T(\lceil n/2 \rceil) + 1$$

$$\leq c \lfloor n/2 \rfloor - b + c \lceil n/2 \rceil - b + 1$$
Sostituzione
$$= cn - 2b + 1$$
Passo algebrico
$$\stackrel{?}{\leq} cn - b$$

$$\Rightarrow -2b + 1 \leq -b$$

$$\Rightarrow b \geq 1$$
Climinazione cn
Passo algebrico

$$T(n) = \begin{cases} T(\lfloor n/2 \rfloor) + T(\lceil n/2 \rceil) + 1 & n > 1 \\ 1 & n \leq 1 \end{cases} \begin{array}{ll} & \text{Tentativo: } T(n) = O(n) \\ \exists c > 0, \exists m \geq 0: \\ T(n) \leq cn, \forall n \geq m \end{cases}$$

• Caso base: Dimostriamo la disequazione per T(1)

$$T(1) = 1 \stackrel{?}{\leq} 1 \cdot c - b \Leftrightarrow \forall c \geq b + 1$$

$$T(n) = \begin{cases} T(\lfloor n/2 \rfloor) + T(\lceil n/2 \rceil) + 1 & n > 1 \\ 1 & n \leq 1 \end{cases} \begin{array}{ll} & \text{Tentativo: } T(n) = O(n) \\ \exists c > 0, \exists m \geq 0: \\ T(n) \leq cn, \forall n \geq m \end{cases}$$

- Abbiamo provato che $T(n) \le cn b \le cn$
 - Nel passo induttivo: $\forall b \geq 1, \forall c$
 - Nel caso base: $\forall c > b+1$
 - Una coppia di valori b,c che rispettano queste disequazioni sono $b=1,\,c=2$
- Questo vale per n=1, e per tutti i valori di n seguenti
 - Quindi m=1

Abbiamo quindi provato che T(n) = O(n)

$$T(n) = \begin{cases} T(\lfloor n/2 \rfloor) + T(\lceil n/2 \rceil) + 1 & n > 1 \\ 1 & n \leq 1 \end{cases} \quad \begin{aligned} & \underset{}{\text{Tentativo: } T(n) = \Omega(n)} \\ \exists d > 0, \exists m \geq 0: \\ T(n) \geq dn, \forall n \geq m \end{aligned}$$

• Passo di induzione: Dimostriamo la disequazione per T(n)

$$T(n) = T(\lfloor n/2 \rfloor) + T(\lceil n/2 \rceil) + 1$$

$$\geq d \lfloor n/2 \rfloor + d \lceil n/2 \rceil + 1$$
 Sostituzione
$$= dn + 1 \stackrel{?}{\geq} dn$$
 Vero per ogni d

• Caso base: Dimostriamo la disequazione per T(1)

$$T(n) = 1 \ge d \cdot 1 \Leftrightarrow d \le 1$$

Abbiamo quindi provato che $T(n) = \Omega(n)$

$$T(n) = \begin{cases} 2T(\lfloor n/2 \rfloor) + n & n > 1\\ 1 & n \le 1 \end{cases}$$

....

$$T(n) = \begin{cases} 2T(\lfloor n/2 \rfloor) + n & n > 1\\ 1 & n \le 1 \end{cases}$$

$$T(n) = \begin{cases} 2T(\lfloor n/2 \rfloor) + n & n > 1\\ 1 & n \le 1 \end{cases}$$

$$T(n) = O(n \log n)$$

$$T(n) = \begin{cases} 2T(\lfloor n/2 \rfloor) + n & n > 1 & \frac{\text{Tentativo: } T(n) = O(n \log n)}{\exists c > 0, \exists m \ge 0:} \\ 1 & n \le 1 & T(n) \le cn \log n, \forall n \ge m \end{cases}$$

- Ipotesi induttiva: $\exists c > 0, \forall k < n : T(k) \le ck \log k$.
- Passo di induzione: Dimostriamo la disequazione per T(n):

$$T(n) = 2T(\lfloor n/2 \rfloor) + n$$

 $\leq 2c\lfloor n/2 \rfloor \log \lfloor n/2 \rfloor + n$ Sostituzione
 $\leq 2cn/2 \log n/2 + n$ Intero inferiore
 $= cn(\log n - 1) + n$ Passo algebrico
 $= cn \log n - cn + n$ Passo algebrico
?
 $\leq cn \log n$ Obiettivo

$$T(n) = \begin{cases} 2T(\lfloor n/2 \rfloor) + n & n > 1 & \frac{\text{Tentativo: } T(n) = O(n \log n)}{\exists c > 0, \exists m \ge 0:} \\ 1 & n \le 1 & T(n) \le cn \log n, \forall n \ge m \end{cases}$$

- Ipotesi induttiva: $\exists c > 0, \forall k < n : T(k) \le ck \log k$.
- Passo di induzione: Dimostriamo la disequazione per T(n):

$$T(n) \le cn \log n - cn + n \stackrel{?}{\le} cn \log n$$
 Obiettivo
 $\Rightarrow -cn + n \le 0$ Eliminazione $cn \log n$
 $\Rightarrow c \ge 1$ Passo algebrico

$$T(n) = \begin{cases} 2T(\lfloor n/2 \rfloor) + n & n > 1 & \text{Tentativo: } T(n) = O(n \log n) \\ 1 & n \leq 1 & T(n) \leq cn \log n, \forall n \geq m \end{cases}$$

 \bullet Caso base: Dimostriamo la disequazione per T(1)

$$T(1) = 1 \stackrel{?}{\leq} 1 \cdot c \log 1 = 0 \Rightarrow 1 \nleq 0$$

Problemi con i casi base

$$T(n) = \begin{cases} 2T(\lfloor n/2 \rfloor) + n & n > 1 & \text{Tentativo: } T(n) = O(n \log n) \\ 1 & n \leq 1 & T(n) \leq cn \log n, \forall n \geq m \end{cases}$$

Cosa succede?

- È falso, ma non è un problema: non a caso si chiama notazione asintotica.
- \bullet Il valore iniziale di m lo possiamo scegliere noi

Problemi con i casi base

$$T(n) = \begin{cases} 2T(\lfloor n/2 \rfloor) + n & n > 1 & \frac{\text{Tentativo: } T(n) = O(n \log n)}{\exists c > 0, \exists m \ge 0:} \\ 1 & n \le 1 & T(n) \le cn \log n, \forall n \ge m \end{cases}$$

• Caso base: Dimostriamo la disequazione per T(2), T(3):

$$\begin{split} T(2) &= 2T(\lfloor 2/2 \rfloor) + 2 = 4 \le 1 \cdot c \cdot 2 \log 2 \Leftrightarrow c \ge 2 \\ T(3) &= 2T(\lfloor 3/2 \rfloor) + 3 = 5 \le 1 \cdot c \cdot 3 \log 3 \Leftrightarrow c \ge \frac{5}{3 \log 3} \\ T(4) &= 2T(\lfloor 4/2 \rfloor) + 4 = 2T(\lfloor 2 \rfloor) + 4 \end{split}$$

• Non è necessario provare la terza disequazione, in quanto viene espressa in base a casi base diversi da T(1) che sono già stati dimostrati e quindi possono costituire la base della nostra induzione.

Problemi con i casi base

$$T(n) = \begin{cases} 2T(\lfloor n/2 \rfloor) + n & n > 1 & \frac{\text{Tentativo: } T(n) = O(n \log n)}{\exists c > 0, \exists m \ge 0:} \\ 1 & n \le 1 & T(n) \le cn \log n, \forall n \ge m \end{cases}$$

- Abbiamo provato che $T(n) \le cn \log n$
 - Nel passo induttivo: $\forall c \geq 1$
 - Nel caso base: $\forall c \geq 2, c \geq \frac{5}{3 \log 3}$
 - Visto che sono tutti disequazioni con il segno \geq , è sufficiente utilizzare un valore $c \geq \max\{1, 2, \frac{5}{3\log 3}\}$
- Questo vale per n=2, n=3, e per tutti i valori di n seguenti
 - Quindi m=2

$$T(n) = \begin{cases} 9T(\lfloor n/3 \rfloor) + n & n > 1 & \text{Tentativo: } T(n) = O(n^2) \\ 1 & n \le 1 & \exists c > 0, \exists m \ge 0 : T(n) \le cn^2, \forall n \ge m \end{cases}$$

- Ipotesi induttiva: $\exists c > 0 : T(k) \le ck^2, \forall k < n$
- Passo induttivo: Dimostriamo la disequazione per T(n)

$$T(n) = 9T(\lfloor n/3 \rfloor) + n$$

 $\leq 9c(\lfloor n/3 \rfloor)^2 + n$ Sostituzione
 $\leq 9c(n^2/9) + n$ Limite inferiore
 $= cn^2 + n$ Passo algerbrico
 $\nleq cn^2$ Falso

$$T(n) = \begin{cases} 9T(\lfloor n/3 \rfloor) + n & n > 1 & \text{Tentativo: } T(n) = O(n^2) \\ 1 & n \le 1 & \exists c > 0, \exists m \ge 0 : T(n) \le cn^2, \forall n \ge m \end{cases}$$

- Ipotesi induttiva: $\exists c > 0 : T(k) \le c(k^2 k), \forall k < n$
- Passo induttivo: Dimostriamo la disequazione per T(n)

$$T(n) = 9T(\lfloor n/3 \rfloor) + n$$

$$\leq 9c(\lfloor n/3 \rfloor^2 - \lfloor n/3 \rfloor) + n$$

$$\leq cn^2 - 3cn + n$$
Sostituzione
$$\stackrel{?}{\leq} cn^2 - cn$$
Cobiettivo
$$\Leftrightarrow c \geq \frac{1}{2}$$

$$T(n) = \begin{cases} 9T(\lfloor n/3 \rfloor) + n & n > 1 & \text{Tentativo: } T(n) = O(n^2) \\ 1 & n \le 1 & \exists c > 0, \exists m \ge 0 : T(n) \le cn^2, \forall n \ge m \end{cases}$$

- Ipotesi induttiva: $\exists c > 0 : T(k) \le c(k^2 k), \forall k < n$
- Passo base:
 - $T(1) = 1 \le c(1^2 1) = 0$, falso
 - $T(2) = 9T(0) + 2 = 11 \le c(4-2) \Leftrightarrow c \ge 11/2$
 - $T(3) = 9T(1) + 3 = 12 \le c(9-3) \Leftrightarrow c \ge 12/6$
 - $T(4) = 9T(1) + 4 = 13 \le c(16 4) \Leftrightarrow c \ge 13/12$
 - $T(5) = 9T(1) + 5 = 14 \le c(25 5) \Leftrightarrow c \ge 14/20$
 - T(6) = 9T(2) + 6
- Non è necessario andare oltre, perchè T(6) dipende da T(2) che è già stato dimostrato

$$T(n) = \begin{cases} 9T(\lfloor n/3 \rfloor) + n & n > 1 & \text{Tentativo: } T(n) = O(n^2) \\ 1 & n \le 1 & \exists c > 0, \exists m \ge 0 : T(n) \le cn^2, \forall n \ge m \end{cases}$$

- Parametri:
 - $c \ge \max\left\{\frac{1}{2}, \frac{11}{2}, \frac{12}{6}, \frac{13}{12}, \frac{14}{20}\right\}$
 - m = 1
- Notare che l'esempio combina le due difficoltà insieme, ma è artificiale:
 - Se avessimo scelto come ipotesi più stretta $T(n) \le cn^2 bn$, il problema sui casi base non si sarebbe posto

Riassumendo

Metodo di sostituzione

- Si "indovina" una possibile soluzione e si formula un'ipotesi induttiva
- Si sostituisce nella ricorrenza le espressioni $T(\cdot)$, utilizzando l'ipotesi induttiva
- Si dimostra che la soluzione è valida anche per il caso base

Attenzione

- Ad ipotizzare soluzioni troppo "strette"
- Ad alcuni casi particolari che richiedono alcune astuzie matematiche
- Attenzione ai casi base: il logaritmo può complicare le cose

Algoritmi e Strutture Dati

Analisi di algoritmi Ricorrenze comuni

Alberto Montresor

Università di Trento

2020/10/08

This work is licensed under a Creative Commons Attribution-Share Alike 4.0 International License.

Metodo dell'esperto

Metodi per risolvere ricorrenze

- Metodo dell'albero di ricorsione, o per livelli
- Metodo di sostituzione, o per tentativi
- Metodo dell'esperto, o delle ricorrenze comuni

Ricorrenze comuni

Esiste un'ampia classe di ricorrenze che possono essere risolte facilmente facendo ricorso ad alcuni teoremi, ognuno dei quali si occupa di una classe particolare di equazioni di ricorrenza.

Teorema

Siano a e b costanti intere tali che $a \ge 1$ e $b \ge 2$, e c, β costanti reali tali che c > 0 e $\beta > 0$. Sia T(n) data dalla relazione di ricorrenza:

$$T(n) = \begin{cases} aT(n/b) + cn^{\beta} & n > 1\\ d & n \le 1 \end{cases}$$

Posto $\alpha = \log a / \log b = \log_b a$, allora:

$$T(n) = \begin{cases} \Theta(n^{\alpha}) & \alpha > \beta \\ \Theta(n^{\alpha} \log n) & \alpha = \beta \\ \Theta(n^{\beta}) & \alpha < \beta \end{cases}$$

Assunzioni

Assumiamo che n sia una potenza intera di b: $n = b^k$, $k = \log_b n$

Perchè ci serve?

Semplifica tutti i calcoli successivi

Influisce sul risultato?

- Supponiamo che l'input abbia dimensione $b^k + 1$
- Estendiamo l'input fino ad una dimensione b^{k+1} (padding)
- ullet L'input è stato esteso al massimo di un fattore costante b
- Ininfluente al fine della complessità computazionale

$$T(n) = aT(n/b) + cn^{\beta} \qquad T(1) = d$$

Liv.	Dim.	Costo chiam.	N. chiamate	Costo livello
0	b^k	$cb^{k\beta}$	1	$cb^{k\beta}$
1	b^{k-1}	$cb^{(k-1)\beta}$	a	$acb^{(k-1)\beta}$
2	b^{k-2}	$cb^{(k-2)\beta}$	a^2	$a^2cb^{(k-2)\beta}$
	• • •	•••	•••	•••
i	b^{k-i}	$cb^{(k-i)\beta}$	a^i	$a^i c b^{(k-i)\beta}$
			• • •	
k-1	b	cb^{β}	a^{k-1}	$a^{k-1}cb^{\beta}$
k	1	d	a^k	da^k

Liv.	Dim.	Costo chiam.	N. chiamate	Costo livello
i	b^{k-i}	$cb^{(k-i)\beta}$	a^i	$a^i c b^{(k-i)\beta}$
k	1	d	a^k	da^k

Sommando i costi totali di tutti i livelli, si ottiene:

$$T(n) = da^k + cb^{k\beta} \sum_{i=0}^{k-1} \frac{a^i}{b^{i\beta}} = da^k + cb^{k\beta} \sum_{i=0}^{k-1} \left(\frac{a}{b^{\beta}}\right)^i$$

$$T(n) = da^k + cb^{k\beta} \sum_{i=0}^{k-1} \frac{a^i}{b^{i\beta}} = da^k + cb^{k\beta} \sum_{i=0}^{k-1} \left(\frac{a}{b^{\beta}}\right)^i$$

Osservazioni

- $a^k = a^{\log_b n} = a^{\log n/\log b} = 2^{\log a \log n/\log b} = n^{\log a/\log b} = n^{\alpha}$
- $\alpha = \log a / \log b \Rightarrow \alpha \log b = \log a \Rightarrow \log b^{\alpha} = \log a \Rightarrow a = b^{\alpha}$
- Poniamo $q = \frac{a}{b\beta} = \frac{b^{\alpha}}{b\beta} = b^{\alpha-\beta}$

$$T(n) = da^k + cb^{k\beta} \sum_{i=0}^{k-1} \left(\frac{a}{b^\beta}\right)^i = dn^\alpha + cb^{k\beta} \sum_{i=0}^{k-1} q^i$$

Caso 1: $\alpha > \beta$

Ne segue che: $q = b^{\alpha - \beta} > 1$:

$$T(n) = dn^{\alpha} + cb^{k\beta} \sum_{i=0}^{k-1} q^{i}$$

$$= n^{\alpha}d + cb^{k\beta} [(q^{k} - 1)/(q - 1)] \qquad \text{Serie geometrica finita}$$

$$\leq n^{\alpha}d + cb^{k\beta}q^{k}/(q - 1) \qquad \text{Disequazione}$$

$$= n^{\alpha}d + \frac{cb^{k\beta}a^{k}}{b^{k\beta}}/(q - 1) \qquad \text{Sostituzione } q$$

$$= n^{\alpha}d + ca^{k}/(q - 1) \qquad \text{Passi algebrici}$$

$$= n^{\alpha}[d + c/(q - 1)] \qquad a^{k} = n^{\alpha}, \text{raccolta termini}$$

- Quindi T(n) è $O(n^{\alpha})$.
- Per via della componente dn^{α} , T(n) è anche $\Omega(n^{\alpha})$, e quindi $T(n) = \Theta(n^{\alpha}).$

Caso 2:
$$\alpha = \beta$$

Ne segue che: $q = b^{\alpha - \beta} = 1$:

$$T(n) = dn^{\alpha} + cb^{k\beta} \sum_{i=0}^{k-1} q^{i}$$

$$= n^{\alpha}d + cn^{\beta}k \qquad q^{i} = 1^{i} = 1$$

$$= n^{\alpha}d + cn^{\alpha}k \qquad \alpha = \beta$$

$$= n^{\alpha}(d + ck) \qquad \text{Raccolta termini}$$

$$= n^{\alpha}[d + c\log n/\log b] \qquad k = \log_{b} n$$

e quindi $T(n) \in \Theta(n^{\alpha} \log n)$;

Caso 3: $\alpha < \beta$

Ne segue che: $q = b^{\alpha - \beta} < 1$:

$$T(n) = dn^{\alpha} + cb^{k\beta} \sum_{i=0}^{k-1} q^{i}$$

$$= n^{\alpha}d + cb^{k\beta} [(q^{k} - 1)/(q - 1)] \qquad \text{Serie geometrica finita}$$

$$= n^{\alpha}d + cb^{k\beta} [(1 - q^{k})/(1 - q)] \qquad \text{Inversione}$$

$$\leq n^{\alpha}d + cb^{k\beta} [1/(1 - q)] \qquad \text{Disequazione}$$

$$= n^{\alpha}d + cn^{\beta}/(1 - q) \qquad b^{k} = n$$

- Quindi $T(n) \in O(n^{\beta})$.
- Poichè $T(n) = \Omega(n^{\beta})$ per il termine non ricorsivo, si ha che $T(n) = \Theta(n^{\beta}).$

Teorema

Sia $a \ge 1, b > 1, f(n)$ asintoticamente positiva, e sia

$$T(n) = \begin{cases} aT(n/b) + f(n) & n > 1\\ d & n \le 1 \end{cases}$$

Sono dati tre casi:

$$(1) \quad \exists \epsilon > 0 : f(n) = O(n^{\log_b a - \epsilon}) \qquad \Rightarrow \quad T(n) = \Theta(n^{\log_b a})$$

$$(2) \quad f(n) = \Theta(n^{\log_b a}) \qquad \Rightarrow \quad T(n) = \Theta(f(n) \log n)$$

$$(3) \quad \exists \epsilon > 0 : f(n) = \Omega(n^{\log_b a + \epsilon}) \land$$

$$\exists c : 0 < c < 1, \exists m \ge 0 : \qquad \Rightarrow \quad T(n) = \Theta(f(n))$$

$$af(n/b) \le cf(n), \forall n \ge m$$

Ricorrenza	a	b	log_ba	Caso	Funzione
$T(n) = 9T(n/3) + n\log n$	9	3	2	(1)	$T(n) = \Theta(n^2)$

$$f(n) = n \log n = O(n^{\log_b a - \epsilon}) = O(n^{2 - \epsilon}), \text{ con } \epsilon < 1$$

Ricorrenza	a	b	log_ba	Caso	Funzione
T(n) = T(2n/3) + 1	1	$\frac{3}{2}$	0	(2)	$T(n) = \Theta(\log n)$

$$f(n) = n^0 = \Theta(n^{\log_b a}) = \Theta(n^0)$$

Ricorrenza	a	b	$\log_{\mathrm{b}}\!\mathrm{a}$	Caso	Funzione
$T(n) = 3T(n/4) + n\log n$	3	4	≈ 0.79	(3)	$T(n) = \Theta(n \log n)$

$$f(n) = n \log n = \Omega(n^{\log_4 3 + \epsilon}), \text{ con } \epsilon < 1 - \log_4 3 \approx 0.208$$

Dobbiamo dimostrare che:

$$\exists c \leq 1, \exists m \geq 0: af(n/b) \leq cf(n), \forall n \geq m$$

$$af(n/b) = 3(n/4 \log n/4)$$

$$= 3/4n(\log n - \log 4)$$

$$\leq 3/4n \log n$$

$$\stackrel{?}{\leq} cn \log n$$

L'ultima disequazione è soddisfatta da c = 3/4 e qualsiasi m.

Ricorrenza	a	b	log_ba	Caso	Funzione
$T(n) = 2T(n/2) + n\log n$	2	2	1	_	Non applicabile

$$f(n) = n \log n \neq O(n^{1-\epsilon}), \text{ con } \epsilon > 0$$

$$f(n) = n \log n \neq \Theta(n)$$

$$f(n) = n \log n \neq \Omega(n^{1+\epsilon}), \text{ con } \epsilon > 0$$

Nessuno dei tre casi è applicabile e bisogna utilizzare altri metodi.

Interi inferiori/superiori

• I teoremi appena visti non considerano equazioni di ricorrenza con interi inferiori/superiori

$$T(n) = 2T(n/2) + n$$

 In realtà, le equazioni di ricorrenza dovrebbero sempre essere espresse tramite interi inferiori/superiori, perché operano su dimensioni dell'input

$$T(n) = T(\lfloor n/2 \rfloor) + T(\lceil n/2 \rceil) + n$$

• I risultati dei teoremi valgono anche quando le funzioni sono espresse tramite interi inferiori/superiori

Ricorrenze lineari di ordine costante

Teorema

Siano a_1, a_2, \ldots, a_h costanti intere non negative, con h costante positiva, $c \in \beta$ costanti reali tali che c > 0 e $\beta \geq 0$, e sia T(n) definita dalla relazione di ricorrenza:

$$T(n) = \begin{cases} \sum_{1 \le i \le h} a_i T(n-i) + cn^{\beta} & n > m \\ \Theta(1) & n \le m \le h \end{cases}$$

Posto $a = \sum_{1 \le i \le h} a_i$, allora:

- $T(n) \in \Theta(a^n n^\beta)$, se $a \ge 2$.

	Ricorrenza	a	β	Caso	Funzione
(A)	$T(n) = T(n-10) + n^2$	1	2	(1)	$T(n) = \Theta(n^3)$
(B)	T(n) = T(n-2) + T(n-1) + 1	2	0	(2)	$T(n) = 2^n$

- (A) Poiché a = 1, il costo è polinomiale.
- (B) Poiché a=2, il costo è esponenziale.

Esercizio

Siano

- $T(n) = 7T(n/2) + n^2$ una funzione di costo di un algoritmo A, e
- $T'(n) = aT'(n/4) + n^2$ una funzione di costo di un algoritmo A'.

Qual è il massimo valore intero di a che rende A' asintoticamente più veloce di A?

Esercizio – Soluzione

Poichè $\log_2 7$ è ≈ 2.81 , il Master Theorem dice che $T(n) = \Theta(n^{\log_2 7})$.

Utilizzando alcune trasformazioni algebriche, si ottiene che:

$$\log_2 7 = \frac{\log_4 7}{\log_4 2} = \frac{\log_4 7}{1/2}$$
$$= 2\log_4 7 = \log_4 49$$

- $a < 16 \Rightarrow \alpha = \log_A a < 2 \Rightarrow T'(n) = \Theta(n^2) = O(T(n))$
- $a = 16 \Rightarrow \alpha = \log_4 a = 2 \Rightarrow T'(n) = \Theta(n^2 \log n) = O(T(n))$
- $16 < a \le 49 \Rightarrow \alpha = \log_4 a > 2 \Rightarrow T'(n) = \Theta(n^{\alpha}) = O(T(n))$
- $a < 49 \Rightarrow \alpha = \log_4 a > 2 \Rightarrow T'(n) = \Theta(n^{\alpha}) = \Omega(T(n))$

Algoritmi e strutture dati

Analisi di funzioni Back to algorithms!

Alberto Montresor

Università di Trento

2020/10/08

Complessità della Versione 1

```
int maxsum1(int[] A, int n) {
  int maxSoFar = 0;
  for (int i=0; i < n; i++) {</pre>
    for (int j=i; j < n; j++) {</pre>
      int sum = 0;
      for (int k=i; k <= j; k++) {</pre>
        sum = sum + A[k];
    maxSoFar = max(maxSoFar, sum);
  return maxSoFar;
```

La complessità dell'algoritmo può essere approssimata come segue (contando il numero di esecuzioni della riga più interna)

$$T(n) = \sum_{i=0}^{n-1} \sum_{j=i}^{n-1} (j-i+1)$$

Complessità della Versione 1 - $O(n^3)$

Vogliamo provare che $T(n) = O(n^3)$, i.e.

$$\exists c_2 > 0, \exists m \ge 0 : T(n) \le c_2 n^3, \forall n \ge m$$

$$T(n) = \sum_{i=0}^{n-1} \sum_{j=i}^{n-1} (j-i+1)$$

$$\le \sum_{i=0}^{n-1} \sum_{j=i}^{n-1} n \le \sum_{i=0}^{n-1} \sum_{j=0}^{n-1} n$$

$$= \sum_{i=0}^{n-1} n^2 = n^3 \le c_2 n^3$$

Questa disequazione è vera per $n \ge m = 0$ and $c_2 \ge 1$.

Complessità della Versione 1 - $\Omega(n^3)$

Vogliamo provare che $T(n) = \Omega(n^3)$, i.e.

$$\exists c_1 > 0, \exists m \ge 0 : T(n) \ge c_1 n^3, \forall n \ge m$$

$$T(n) = \sum_{i=0}^{n-1} \sum_{j=i}^{n-1} (j-i+1)$$

$$\geq \sum_{i=0}^{n/2} \sum_{j=i}^{i+n/2-1} (j-i+1)$$

$$= \sum_{i=0}^{n/2} \sum_{j=i}^{i+n/2-1} n/2$$

$$= \sum_{i=0}^{n/2} n^2/4 \geq n^3/8 \geq c_1 n^3$$

L'ultima disequazione è vera per n > m = 0 and $c_1 < 8$.

Complessità della versione 2

```
int maxsum2(int[] A, int n) {
  int maxSoFar = 0;
  for (int i=0; i < n; i++) {
    int sum = 0;
    for (int j=i; j < n; j++) {
        sum = sum + A[j];
        maxSoFar = max(maxSoFar, sum);
    }
  }
  return maxSoFar;
}</pre>
```

La complessità di questo algoritmo può essere approssimata come segue (stiamo contando il numero di passi nel ciclo più interno)

$$T(n) = \sum_{i=0}^{n-1} n - i$$

Complessità della versione 2 - $\theta(n^2)$

Vogliamo provare che $T(n) = \theta(n^2)$.

$$T(n) = \sum_{i=0}^{n-1} n - i$$
$$= \sum_{i=1}^{n} i$$
$$= \frac{n(n+1)}{2} = \Theta(n^2)$$

Questo non richiede ulteriori dimostrazioni

Complessità della versione 3

```
int maxsum_rec(int[] A, int i, int j) {
  if (i==j)
   return max(0, A[i]);
  int m = (i+j) / 2;
  int maxs = maxsum_rec(A, i, m);
  int maxd = maxsum_rec(A, m+1, j);
  int maxss = 0;
  int sum = 0;
 for (int k=m; k>=i; k--) {
    sum = sum + A[k];
    maxss = max(maxss, sum);
  int maxdd = 0;
  sum = 0;
 for (int k=m+1; k<=j; k++) {</pre>
    sum = sum + A[k];
    maxdd = max(maxdd, sum);
 return max(max(maxs,maxd),maxss+maxdd);
```

Per questo, definiamo la equazione di ricorrenza:

$$T(n) = 2T(n/2) + n$$

Utilizzando il teorema, possiamo vedere che $\alpha = \log_2 2 = 1$ e $\beta = 1$, quindi $T(n) = \Theta(n \log n)$.

Complessità della versione 4

```
int maxsum4(int A[], int n) {
  int maxSoFar = 0;
  int maxHere = 0;
  for (int i=0; i < n; i++) {
    maxHere = max(maxHere+A[i],0);
    maxSoFar = max(maxSoFar,maxHere);
  }
  return maxSoFar;
}</pre>
```

E' facile vedere che la complessità di questa versione è $\theta(n)$.

Fattori moltiplicativi

A volte, i fattori moltiplicativi di una funzione di complessità sono talmente alti che se ne sconsiglia l'uso per piccoli valori di n

GNU Multiple Precision Arithmetic Library

- Utilizzata da Mathematica, Maple, etc.
- Le moltiplicazioni vengono realizzate utilizzando algoritmi diversi, mano a mano che *n* cresce.
- https://gmplib.org/manual/Multiplication-Algorithms.html

15.1 Multiplication

NxN limb multiplications and squares are done using one of seven algorithms, as the size N increases.

```
Algorithm Threshold
Basecase (none)
Karatsuba MUL_TOOM22_THRESHOLD
Toom-3 MUL_TOOM33_THRESHOLD
Toom-4 MUL_TOOM44_THRESHOLD
Toom-6.5 MUL_TOOM6H_THRESHOLD
Toom-8.5 MUL_TOOM8H_THRESHOLD
FFT MUL_FFT_THRESHOLD
```

GNU Multiple Precision Arithmetic Library

- Utilizzata da Mathematica, Maple, etc.
- I limiti (threshold) dipendono dall'architettura

host type	abi	host name	meas thres	conf thres	cfg file
z10-ibm-linux-gnu	64	Igentoo4.s390.gentoo.wh0rd.org-stat	1728	1728	s390_64/z10/gmp-mparam.h
atom-unknown-linux-gnu	64	gege.gmplib.org-stat	2240	2240	x86_64/atom/gmp-mparam.h
z10esa-ibm-linux-gnu	32	lgentoo3.s390.gentoo.wh0rd.org-stat	2240	2240	s390_32/esame/gmp-mparam.h
power7-unknown-linux-gnu	mode32	gcc1-power7.osuosl.org-stat	2688	2688	powerpc64/mode32/p4/gmp-mparam.h
bulldozer-unknown-freebsd8.3	64	oshell.gmplib.org-stat	3520	3712	x86_64/bd1/gmp-mparam.h
piledriver-unknown-netbsd6.1.3	64	pilenbsd64v61.gmplib.org-stat	3712	3712	x86_64/hd2/gmp-mparam.h
powerpc7447-unknown-linux-gnu	32	spigg.gmplib.org-stat	3712	3712	powerpc32/gmp-mparam.h
coreihwl-unknown-netbsd6.1.2	64	hannahnbsd64v61.gmplib.org-stat	4224	4224	x86_64/coreihwl/gmp-mparam.h
coreinhm-unknown-netbsd6.1.3	64	hikonbsd64v61.gmplib.org-stat	4224	4032	x86_64/coreinhm/gmp-mparam.h
power7-ibm-aix7.1.0.0	mode64	power-aix.fsffrance.org-stat	4288	4288	powerpc64/mode64/p7/gmp-mparam.h
atom-unknown-linux-gnu	32	gege.gmplib.org-stat	4544	4544	x86/atom/gmp-mparam.h
core2-unknown-netbsd6.1.4	64	repentiumnbsd64v61.gmplib.org-stat	4736	4736	x86_64/core2/gmp-mparam.h
coreisbr-apple-darwin12.5.0	64	poire.loria.fr-stat	4736	4736	x86 64/coreisbr/gmp-mparam.h
coreiwsm-unknown-linux-gnu	64	gcc20.fsffrance.org-stat	4736	4032	x86_64/coreinhm/gmp-mparam.h
power7-unknown-linux-gnu	mode64	gcc1-power7.osuos1.org-stat	4736	4288	powerpc64/mode64/p7/gmp-mparam.h
powerpc970-apple-darwin8.11.0	mode32	e5.emplib.org-stat	4736	2688	powerpc64/mode32/p4/gmp-mparam.h
power7-ibm-aix7.1.0.0	32	power-aix.fsffrance.org-stat	5312	5312	powerpc32/p7/gmp-mparam.h
bobcat-unknown-netbsd6.1.3	64	bobcat.gmplib.org-stat	5504	5504	x86_64/bobcat/gmp-mparam.h
alphaev6-unknown-linux-gnu	standard	agnesi math su se-stat	5760	5760	alpha/ev6/gmp-mparam.h
armcortexa15neon-unknown-linux-	standard	parma.gmplib.org-stat	5760	5760	arm/v7a/cora15/gmp-mparam.h
power7-unknown-linux-gnu	32	gcc1-power7.osuos1.org-stat	5760	5312	powerpc32/p7/gmp-mparam.h
core2-unknown-netbsdelf6.1.4	32	repentiumnbsd32v61.gmplib.org-stat	6784	6784	x86/core2/gmp-mparam.h
coreinhm-unknown-netbsdelf6.1.3	32	bikonbsd32v61.gmplib.org-stat	6784	6784	x86/coreinhm/gmp-mparam.h
Alberto Montresor (Uni	$\overline{\Gamma N)}$	ASD - Analisi di fun	zioni		2020/10/08 67 / 67