Алгебра, семинар №1 вшЭ, осень, первый курс

- 1. Сколько существует функций $f:\{1,\ldots,5\}\to\{1,\ldots,5\}$, таких что $\#f^{-1}(k)\leq 2$ для всех $k=1,\ldots,5$?
- 2. Раскройте скобки и приведите подобные члены в выражениях:

$$(a+b)^n$$
, $(a+b+c)^3$, $(a_1+\cdots+a_m)^n$.

3. Докажите (по-возможности, комбинаторно) следующие равенства:

a).
$$\sum_{i=0}^{n} {x+i \choose i} = {x+n+1 \choose n},$$
6).
$$\sum_{i=0}^{n} i {n \choose i} = n2^{n-1}.$$

- **4.** а). Сколько существует путей на плоскости из точки (0,0) в точку $(n_1,n_2), n_1,n_2 \geq 0$, состоящих из отрезков (1,0) и (0,1)?
- б). Обобщите пункт а) на высшие размерности (пути в d-мерном пространстве).
- **5.** При каких n, m биномиальный коэффициент $\binom{n}{m}$ нечётный? При каких n все биномиальные коэффициенты $\binom{n}{m}, 0 \le m \le n$ нечётны?
- **6.** Назовём разложением числа n равенство вида $n=a_1+\cdots+a_k,\,a_i>0$. Например, число 3 имеет ровно 4 разложения $3=3,\,3=2+1,\,3=1+2,\,3=1+1+1$. Числа a_i называются частями разложения.
- а). Найдите число разложений числа n.
- б). Найдите число разложений числа n, имеющих чётное число чётных частей.

Алгебра, семинар №2 вшэ, осень, первый курс

- **1.** Зафиксируем целые числа a, b. Опишите все числа, представимые в виде $ax + by, x, y \in \mathbb{Z}$.
- **2.** Вычислите наибольший общий делитель 10203 и 4687 и запишите его линейное представление.
- **3.** Вычислите наибольшие общие делители (8888888, 8888) и $(2^n-1, 2^m-1)$.
- **4.** Найдите вещественную и мнимую части, модуль и аргумент следующих комплексных чисел

$$\frac{(4-i)(7+6i)}{3-i}$$
, $\frac{(1-i)^3}{(1+i)^5}$, $\left(\frac{\sqrt{3}+i}{1-i}\right)^{25}$.

- **5.** Вычислите $z^m + z^{-m}$, если $z + z^{-1} = 2\cos\varphi$.
- 6. Решите уравнения

$$z^4 = i$$
, $(z+1)^n + (z-1)^n = 0$, $(z+i)^n + (z-i)^n = 0$, $\bar{z} = z^3$.

7. Докажите, что три различных комплексных числа z_1, z_2, z_3 тогда и только тогда лежат на одной прямой, когда $(z_1-z_3)/(z_2-z_3)\in\mathbb{R}$.

Алгебра, семинар №3 вшэ, осень, первый курс

1. Поделите с остатком многочлен f(x) на многочлен g(x) в кольце $\mathbb{Z}[x]$

и в кольце
$$(\mathbb{Z}/2\mathbb{Z})[x]$$
:
 $a) \ f(x) = 3x^4 + 4x^3 + 5x^2 - 6x + 4, \ g(x) = x^2 - 2x + 1;$
 $b) \ f(x) = x^7 + 3x^3 + 2x^2 + 1, \ g(x) = x^3 + 2.$

b)
$$f(x) = x^7 + 3x^3 + 2x^2 + 1$$
, $g(x) = x^3 + 2$

2. Поделите многочлен f(x) с остатком на $x - x_0$:

a).
$$f(x) = 4x^6 + 2x^4 - 3x + 7$$
, $x_0 = -1$,
b). $f(x) = -x^5 + 3x^3 - x$, $x_0 = 2$.

b).
$$f(x) = -x^5 + 3x^3 - x$$
, $x_0 = 2$.

3. Найдите остаток от деления многочлена $x^{179} + x^{57} + x^2 + 1$ в кольце многчоленов $\mathbb{Z}[x]$ на многочлены

a)
$$x^2 + 1$$
, b) $x^2 - 1$, c) $x^2 + x + 1$.

4. Вычислите остаток от деления многочлена $(x+1)^{2019}$ на многочлен $x^2 + x + 1$ в кольце $\mathbb{Z}[x]$.

5. Какие многочлены делятся нацело на a) x+1 и b) x^2+1 в кольце

6. При каких n в кольце $\mathbb{Z}/n\mathbb{Z}$ имеются нетривиальные (то есть отличные от 1 и 0) идемпотенты (то есть решения уравнения $a^2 = a$)?

7. Сколько решений имеет уравнение $x^3 = 1$ в кольце $\mathbb{Z}/360\mathbb{Z}$?

Алгебра, семинар №4 ВШЭ, осень, первый курс

Пусть K[x] – кольцо многочленов от одной переменной над полем K, $f \in K[x]$. Через K[x]/(f) обозначается факторкольцо многочленов по отношению эквивалентности

$$R = \{(a, b) : f \mid a - b\} \subset K[x] \times K[x]\}.$$

- **0.** Проверьте, что R отношение эквивалентности.
- **1.** Является ли кольцо $\mathbb{F}_2[x]/(x^2+x+1)$ полем?
- **2.** Является ли кольцо $\mathbb{F}_2[x]/(x^3+x+1)$ полем?
- **3.** Найдите минимальное k, такое что $\bar{x}^k = 1$ в кольце из задачи а). 1 и
- б). 2 (\bar{x} класс эквивалентности элемента x).
- **4.** Найдите все обратимые элементы и все делители нуля в кольцах $\mathbb{F}_2[x]/(f)$ для следующих многчленов f:

$$x+1$$
, x^4+1 , x^4+x^2+1 .

- **5.** Обозначим через \mathbb{F}_4 поле $\mathbb{F}_2[x]/(x^2+x+1)$. Найдите все обратимые элементы и все делители нуля в факторкольце $\mathbb{F}_4[y]/(y^2+\bar{x}y+1)$.
- **6.** Является ли кольцо $\mathbb{R}[x]/(f)$ полем для следующих многочленов f:

$$x^2 + 1$$
, $x^3 + 1$, $x^4 + 1$.

7. Найдите все корни многочлена $x^2 - 1$ в поле \mathbb{F}_p .

Алгебра, семинар №5 вшэ, осень, первый курс

- **1.** Найдите все неприводимые многочлены степени не выше 5 с коэффициентами в поле \mathbb{F}_2 .
- **2.** Найдите все неприводимые многочлены степени не выше 3 с коэффициентами в поле \mathbb{F}_3 .
- **3.** Постройте какое-нибудь поле $\mathbb F$ из 9 элементов. Для такого поля найдите элемент $x \in \mathbb F$, такой, что любой ненулевой $y \in \mathbb F$ представим в виде x^k .
- 4. Постройте какое-нибудь поле из 4 элементов и опишите все его автоморфизмы (гомоморфизмы в себя).
- **5.** Докажите, что а). над любым (в том числе конечным) полем имеется бесконечно много неприводимых многочленов. б). над полем \mathbb{F}_p имеется неприводимый многочлен любой степени.
- **6.** Докажие, что любой гомоморфизм из поля в произвольное кольцо является вложением.
- 7. Докажите, что натуральное число p просто тогда и только тогда, когда (p-1)!+1 делится на p.
- **8.** Какие значения в \mathbb{F}_p принимают многочлены $x^p x, x^{p-1}$ и $x^{\frac{p-1}{2}}$?