Stochastik I

Blatt 12

Aufgabe 1 (2+2=4 Punkte)

- (a) Seien X_1, \ldots, X_n unabhängige Zufallsvariablen, sodass X_j $\mathcal{N}\left(\mu_j, \sigma_j^2\right)$ -verteilt ist mit Parametern $\mu_j \in \mathbb{R}$ und $\sigma_j^2 > 0$ $(j = 1, \ldots, n)$. Rechnen Sie die Verteilung von $X_1 + \cdots + X_n$ mittels charakteristischer Funktionen aus.
- (b) Seien Y_1, \ldots, Y_n unabhängige Zufallsvariablen, sodass Y_j Poisson (λ_j) -verteilt ist mit Parametern $\lambda_j > 0$ $(j = 1, \ldots, n)$. Rechnen Sie die Verteilung von $Y_1 + \cdots + Y_n$ mittels charakteristischer Funktionen aus.

Aufgabe 2 (5 Punkte)

Es sei X eine reellwertige Zufallsvariable mit charakteristischer Funktion φ und sei $n \in \mathbb{N}$. Zeigen Sie, dass unter der Voraussetzung $\mathbb{E}\left[|X|^n\right] < \infty$ für alle $k \in \{0, \dots, n\}$ die k-te Ableitung $\varphi^{(k)}$ gleichmäßig stetig ist auf \mathbb{R} .

Aufgabe 3 (6 Punkte)

Seien $(\Omega, \mathcal{A}, \mathbb{P})$ ein Wahrscheinlichkeitsraum, $X \in L^2(\mathbb{P})$ und $(X_n)_{n \in \mathbb{N}}$ eine Folge unabhängiger Zufallsvariablen so dass X_n die gleiche Verteilung besitzt wie X für alle $n \in \mathbb{N}$. Wir definieren

$$S_n := \sum_{j=1}^n \frac{X_j - \mathbb{E}[X_j]}{\sqrt{\operatorname{Var}[X_1 + \dots + X_n]}}.$$

Zeigen Sie, dass gilt

 S_n ist verteilt wie X für alle $n \in \mathbb{N} \Leftrightarrow X$ ist $\mathcal{N}(0,1)$ -verteilt.

Aufgabe 4 (5 Punkte)

Wir betrachten n unabhängige $\mathcal{N}(0,1)$ -verteilte Zufallsvariablen X_1,\ldots,X_n auf einem Wahrscheinlichkeitsraum $(\Omega,\mathcal{A},\mathbb{P})$, eine invertierbare Matrix $A\in\mathbb{R}^{n\times n}$, einen Vektor $\mu\in\mathbb{R}^n$ und definieren für $X:=(X_1,\ldots,X_n)^T$ die Zufallsvariable $Y:=AX+\mu$. Berechnen Sie die Dichte f_Y von Y.