COMP 251

Algorithms & Data Structures (Winter 2021)

Algorithm Paradigms – Dynamic Programming 1

School of Computer Science
McGill University

Slides of (Comp321,2021), Langer (2014), Kleinberg & Tardos, 2005 & Cormen et al., 2009, Jaehyun Park' slides CS 97SI, Topcoder tutorials, T-414-AFLV Course, Programming Challenges books.

What's the following equal to

subproblem

DP breaks a problem into smaller overlapping sub-problems and avoids the computation of the same results more than once.

Famous saying:

Those who cannot remember the past are condemned to repeat it.

Algorithms who cannot remember the past are condemned to recompute it.

```
.fib(5)
fib(n) = fib(n-1) + fib(n-2)
fib(1) = 1
                                                           fib(3
                                 fib(4
fib(0) = 0
                                                                     fib(1)
                                      fib(2
                      fib(3)
                                                     fib(2)
                      fib(1)
                                                     fib(1)
                                 fib(1)
   fib(1)
   fib(n):
       if n <= 1
            return n
       return fib(n - 1) + fib(n - 2)
```

```
fib(5)
fib(n) = fib(n-1) + fib(n-2)
fib(1) = 1
                                                 fib(3
                            fib(4)
fib(0) = 0
                   fib(3)
                   fib(1)
           fib(2)
                                    fib(0)
  fib(1)
              fib(0)
                             FibArray = |fib(0)||fib(1)||fib(2)||fib(3)||fib(4)||fib(5)|
 fib(n):
      if n <= 1
           return n
      else
         if FibArray[n-1] == 0
              FibArray[n-1] = fib(n-1)
         if FibArray[n-2] == 0
              FibArray[n-2] = fib(n-2)
      FibArray[n] = FibArray[n-2] + FibArray[n-1]
      return FibArray[n]
```


Wolfram Demonstrations Project

DP looks through all possible sub-problems and never re-computes the solution to any subproblem. This implies correctness and efficiency, which we can not say of most techniques. This alone makes DP special

Dynamic Programming— When to use it?

Key ingredients to make DP works

- 1. This problem has optimal sub-structures.
 - Solution for the sub-problem is part of the solution of the original problem.
- 2. This problem has overlapping sub-problems.

Dynamic Programming— How to solve it?

Steps for Solving DP Problems

- 1. Define subproblems.
 - fib(n-1) and fib(n-2) are subproblems of fib(n)
- 2. Write down the recurrence that relates subproblems.

$$fib(n) = fib(n-1) + fib(n-2)$$

3. Recognize and solve the base cases.

$$fib(0) = 0$$
; $fib(1) = 1$

- 4. Implement a solving methodology.
 - Memoization: Top down approach => FibArray[]
 - Tabulation: Bottom up approach

Top-Down VS Bottom-Up

- Top Down (Memoization).
 - I will be an expert in dynamic programming. How? I will work hard like crazy. How? I'll practice more and try to improve. How? I'll actively participate in David classes. How? I will attend all David's classes. Then, I'm going to learn dynamic programming.
- Bottom Up (Tabulation).
 - I'm going to learn dynamic programming. Then, I will attend all David's classes. Then, I will actively participate in David classes. Then, I'll practice even more and try to improve. After working hard like crazy, I will be an expert in dynamic

DP - Top-Down

- 1. Initialize a DP 'memo' table with dummy values, e.g. '-1'.
 - The dimension of the DP table must be the size of distinct sub-problems.
- 2. At the start of recursive function, simply check if this current state has been computed before.
 - (a) If it is, simply return the value from the DP memo table, O(1).
 - (b) If it is not, compute as per normal (just once) and then store the computed value in the DP memo table so that further calls to this sub-problem is fast.

DP – Bottom-Up

- 1. Identify the Complete Search recurrence.
- 2. Initialize some parts of the DP table with known initial values.
- 3. Determine how to fill the rest of the DP table based on the Complete Search recurrence, usually involving one or more nested loops to do so.

DP - Top-Down VS Bottom-Up

Top-Down	Bottom-Up
Pro:1. It is a natural transformation form normal complete search recursion.2. Compute sub-problems only when necessary.	 Pro: 1. Faster if many sub-problems are revisited as there is no overhead from recursive calls. 2. Can save memory space with DP "on-the-fly" technique.
 Cons: Slower if many sub-problems are revisited due to recursive calls overhead. If there are <i>M</i> states, it can use up to O(M) table size which can lead to memory problems. 	Cons:1. For some programmers who are inclined with recursion, this may be not intuitive.2. If there are <i>M</i> states, bottom-up DP visits and fills the value of <i>all</i> these M states.

DP – Take home picture

DP – Examples

Problem: Given *n*, find the number of different ways to write **n** as the sum of the numbers 1, 3, 4.

Example: for n = 5, the answer is 6

$$5 = 1 + 1 + 1 + 1 + 1$$

$$= 1 + 1 + 3$$

$$= 1 + 3 + 1$$

$$= 3 + 1 + 1$$

$$= 1 + 4$$

$$= 4 + 1$$

Step 1: Identify the sub-problems (in words).

Step 1.1: Identify the possible sub-problems.

Let D_{n-i} be the number of ways to write n-i as the sum of 1, 3, 4.

$$D_5 = 1 + 1 + 1 + 1 + 1$$
 D_4

$$D_5 = \boxed{1+3} + 1$$

$$\boxed{D_4}$$

$$D_5 = 1 + 4$$

$$D_{5} = 1 + 1 + 3$$

$$D_{2}$$

$$D_5 = 3 + 1 + 1$$

$$D_5 = \boxed{4} + 1$$

$$D_4$$

Step 2: Find the recurrence.

Step 2.1: What decision do I make at every step?.

- **7** Consider one possible solution $n = x_1 + x_2 + ... + x_m$
- If $x_m = 1$, the rest of the terms must sum to n 1. Thus, the number of sums that end with $x_m = 1$ is equal to D_{n-1}

$$D_{5} = \boxed{1 + 1 + 1 + 1} + 1$$

$$D_{5} = \boxed{1 + 3 + 1}$$

$$D_{5} = \boxed{3 + 1} + 1$$

$$D_{5} = \boxed{4 + 1}$$

$$\boxed{D_{4}}$$

$$D_5 = 1 + 1 + 3$$
 D_2

$$D_5 = 1 + 4$$
 D_1

Key ingredients to make DP works

- 1. This problem has optimal sub-structures.
 - Solution for the sub-problem is part of the solution of the original problem.
- 2. This problem has overlapping sub-problems.

Step 3: Recognize and solve the base cases.

- **7** $D_0 = 1$, and $D_n = 0$ for all n < 0.
- Alternatively, can set: $D_0 = D_1 = D_2 = 1$, and $D_3 = 2$

Step 4: Implement a solving methodology.

```
D[0] = D[1] = D[2] = 1; D[3] = 2;
for(i = 4; i <= n; i++)
D[i] = D[i-1] + D[i-3] + D[i-4];
```

DP – 1-dimensional – weighted interval scheduling

- Input: Set S of n activities, a₁, a₂, ..., a_n.
 - $-s_i$ = start time of activity *i*.
 - f_i = finish time of activity *i*.
 - w_i= weight of activity i
- Output: find maximum weight subset of mutually compatible activities.
 - 2 activities are compatible, if their intervals do not overlap.

DP – 1-dimensional – weighted interval scheduling

Example:

weighted interval scheduling – Data Structure

Notation: All activities are sorted by finishing time $f_1 \le f_2 \le ... \le f_n$

Definition: p(j) = largest index i < j such that activity/job i is compatible with activity/job j.

Examples: p(6)=4, p(5)=2, p(4)=2, p(2)=0.

weighted interval scheduling – Data Structure

Let
$$S(i)$$
 be a set of intervals in maximal solution of the problem when we can use only intervals $\{1, 2, ..., i\}$.

Claim: If $i \in S(i)$ then

 $S(i)$ cannot contain j where $p[i] < j < i$.

Proof:

To have $p[i] < j < i$, we would need

 $f(p[i]) < f(j)$ and $f(j) < s(i)$.

But this would contradict the definition of p[i].

McGill

Step 1: Identify the sub-problems (in words).

Step 1.1: Identify the possible sub-problems.

Let OPT(j) be the maximum total weight of compatible activities 1 to j (i.e., value of the optimal solution to the problem including activities 1 to j).

Step 2: Find the recurrence.

Step 2.1: What decision do I make at every step?.

Case 1: OPT selects activity j

- Add weight w_j
- Cannot use incompatible activities
- Must include optimal solution on remaining compatible activities {
 1, 2, ..., p(j) }.

Case 2: OPT does not select activity j

Optimal substructure property

Must include optimal solution on other activities { 1, 2, ..., j-1 }.

Step 2: Find the recurrence.

- Case 1: OPT selects activity j
 - Add weight w_i
 - Cannot use incompatible activities
 - Must include optimal solution on remaining compatible activities { 1, 2, ..., p(j) }.
- Case 2: OPT does not select activity j
 - Must include optimal solution on other activities { 1, 2, ..., j-1 }.

$$OPT(j) = \begin{cases} 0 & if j = 0\\ max\{w_j + OPT(p(j)), OPT(j-1)\} & Otherwise \end{cases}$$

$$OPT(j) = \begin{cases} 0 & if j = 0\\ max\{w_j + OPT(p(j)), OPT(j-1)\} \end{cases}$$
 Otherwise

```
Input: n, s[1..n], f[1..n], v[1..n]
Sort jobs by finish time so that f[1] ≤ f[2] ≤ ... ≤ f[n].
Compute p[1], p[2], ..., p[n].

Compute-Opt(j)
if j = 0
   return 0.
else
   return max(v[j] + Compute-Opt(p[j]), Compute-Opt(j-1)).
```

weighted interval scheduling – recursion tree

weighted interval scheduling – top down

Memoization: Cache results of each subproblem; lookup as needed.

```
Input: n, s[1..n], f[1..n], v[1..n]
Sort jobs by finish time so that f[1] \le f[2] \le ... \le f[n].
Compute p[1], p[2], ..., p[n].
for j = 1 to n
      M[i] \leftarrow empty.
M[0] \leftarrow 0.
M-Compute-Opt(j)
if M[j] is empty
       M[j] \leftarrow \max(v[j]+M-Compute-Opt(p[j]), M-Compute-Opt(j-1))
return M[j].
```

weighted interval scheduling – bottom-up

Observation: When we compute M[j], we only need values M[k] for k<j.

```
Input: n, s[1..n], f[1..n], v[1..n]
Sort jobs by finish time so that f[1] \le f[2] \le ... \le f[n].
Compute p[1], p[2], ..., p[n].

M[0] \leftarrow 0.
for j = 1 TO n
M[j] \leftarrow \max \{ vj + M[p(j)], M[j-1] \}
```

Main Idea of Dynamic Programming: Solve the sub-problems in an order that makes sure when you need an answer, it's already been computed.

activity	1	2	3	4	5
predecessor	0	0	2	2	3
Best weight M	-	-	-	-	_
V_j +M[p(j)]	-	-	-	_	_
M[j-1]	-	-	-	_	_

activity	1	2	3	4	5
predecessor	0	0	2	2	3
Best weight M	2	3	-	-	-
V_j +M[p(j)]	2	3	-	-	-
M[j-1]	0	2	-	_	_

activity	1	2	3	4	5
predecessor	0	0	2	2	3
Best weight M	2	3 🔊	4	_	-
V_j +M[p(j)]	2	3	4	-	-
M[j-1]	0	2	3	-	_

activity	1	2	3	4	5
predecessor	0	0	2	2	3
Best weight M	2	31	4 🕟	/ ₄₀ 8	-
V_j +M[p(j)]	2	3	4	\ 9	-
M[j-1]	0	2	3	4	-

activity	1	2	3	4	5	Your
predecessor	0	0	2	2	3	Solution
Best weight M	2	3	4 [9 🕟	\ 9	
V_j +M[p(j)]	2	3	4	9	$^{\prime}$ $^{\prime}$ 8	
M[j-1]	0	2	3	4	9	

(1) Activities sorted by finishing time. (2) Weight equal to the length of activity.

McGill

weighted interval scheduling – finding tasks

Dyn. Prog. algorithm computes optimal value.

Q: How to find solution itself?

A: Bactrack!

```
Find-Solution(j)
if j = 0
    return Ø.
else if (v[j] + M[p[j]] > M[j-1])
    return { j } U Find-Solution(p[j])
else
    return Find-Solution(j-1).
```

Analysis. # of recursive calls $\leq n \Rightarrow O(n)$.

weighted interval scheduling - reconstruction

activity	1	2	3	4	5
predecessor	0	0	2	2 1	3
Best weight M	2	3	4	9	9
V_j +M[p(j)]	2	3	4	9	8
M[j-1]	0	2	3	4	[\] 9

weighted interval scheduling - reconstruction

activity	1	2	3	4	5
predecessor	0	0	2	2	3
Best weight M	2	3	4	9	9
V_j +M[p(j)]	2	3	4	9	8
M[j-1]	0	2	3	4	9

weighted interval scheduling - reconstruction

activity	1	2	3	4	5
predecessor	0	0	2	2	3
Best weight M	2	3	4	9	9
V_j +M[p(j)]	2	3	4	9	8
M[j-1]	0	2	3	4	9

weighted interval scheduling – running time

Claim. Memoized version of algorithm takes $O(n \log n)$ time.

- Sort by finish time: $O(n \log n)$.
- Computing $p(\cdot)$: $O(n \log n)$ via binary search
- M-Compute-Opt(j): each invocation takes O(1) time and either
 - (i) returns an existing value M[j]
 - (ii) fills in one new entry M[j] and makes two recursive calls
- Progress measure $\Phi = \#$ nonempty entries of M[].
 - initially $\Phi = 0$, throughout $\Phi \leq n$.
 - (ii) increases Φ by $1 \Rightarrow$ at most 2n recursive calls.
- Overall running time of M-Compute-Opt(n) is O(n).

Remark. O(n) if jobs are presorted by start and finish times.

Outline

- Complete Search
- Divide and Conquer.
- Dynamic Programming.
 - Introduction.
 - Examples.
- Greedy.

