Notations

Introduction

L'objectif de ce document est de formaliser un ensemble de notations cohérentes pour l'ensemble du cours.

Vecteur aléatoire en entrée

Soit $p \in \mathbb{N}$ le nombre de composantes du vecteur d'entrée. Soit $\mathcal{X} \subset \mathbb{R}^p$ le support de X. Soit $X = (X_1, ..., X_p)^T \in \mathcal{X}$ le vecteur aléatoire d'entrée. On note $i \in \{1, ..., p\}$ l'indice d'une composante du vecteur d'entrée X. Pour tout i = 1, ..., p, on a donc $X_i \in \mathbb{R}$.

Densité de probabilité du vecteur d'entrée

On note f la densité de probabilité du vecteur aléatoire X. Dans le contexte de l'inférence (c'est à dire de l'étape B), lorsqu'on considère un modèle probabiliste paramétrique, on peut chercher à estimer les paramètres du modèle s'ajustant au mieux à un échantillon donné de X.

Soit $m \in \mathbb{N}$ le nombre de paramètres de la densité de probabilité f. Soit $\Theta \subset \mathbb{R}^m$ le sous-ensemble des paramètres. Alors $f(x, \theta)$ est la valeur de la densité de probabilité au point x dont le vecteur de paramètres est $\theta \in \Theta$.

Variable aléatoire en sortie

On note $i \in \{1,...,p\}$ l'indice d'une composante du vecteur d'entrée X. Pour tout i=1,...,p, on a donc $X_i \in \mathbb{R}$. On note f la densité de probabilité du vecteur aléatoire X. Soit $g: \mathcal{X} \to \mathbb{R}$ une fonction. On considère la variable aléatoire :

$$Y = g(\boldsymbol{X}).$$

Nous allons estimer l'espérance de Y :

$$\mathbb{E}[Y] = \int_{\mathcal{X}} g(\boldsymbol{x}) f(\boldsymbol{x}) d\boldsymbol{x}.$$

De plus, nous allons estimer la variance de Y :

$$\operatorname{Var}(Y) = \mathbb{E}\left[(Y - \mathbb{E}[Y])^2 \right].$$

Pour un seuil $s \in \mathbb{R}$ fixé, on peut souhaiter la probabilité de dépasser le seuil s:

$$\mathbb{P}(Y > s) = \int_{\mathcal{X}} \mathbf{1}_{g(\mathbf{x}) > s} f(\mathbf{x}) d\mathbf{x}$$

où $\mathbf{1}_{g(\mathbf{x})>s}$ est la fonction indicatrice définie par :

$$\mathbf{1}_{g(\mathbf{x})>s}(\mathbf{x}) = \begin{cases} 1, & \text{si } g(\mathbf{x}) > s, \\ 0, & \text{sinon.} \end{cases}$$

Echantillon Monte-Carlo simple

Soit $n \in \mathbb{N}$ un entier représentant la taille de l'échantillon. Soit:

$$\left\{ \boldsymbol{X}^{(j)} \right\}_{j=1,\dots,n}$$

un échantillon i.i.d. du vecteur aléatoire X. Par conséquent, la réalisation $x_i^{(j)}$ est la i-ème composante de la j-ème réalisation, pour i=1,...,p et j=1,...,n. Le plan d'expériences A associé est donc :

$$A = \begin{pmatrix} x_1^{(1)} & x_2^{(1)} & \cdots & x_p^{(1)} \\ x_1^{(2)} & x_2^{(2)} & \cdots & x_p^{(2)} \\ \vdots & \vdots & & \vdots \\ x_1^{(n)} & x_2^{(n)} & \cdots & x_p^{(n)} \end{pmatrix}$$

où chaque ligne représente une réalisation du vecteur aléatoire \boldsymbol{X} et chaque colonne représente une composante. Soit :

$$y^{(j)} = g\left(\boldsymbol{x}^{(j)}\right)$$

pour j=1,...,n. L'estimateur Monte-Carlo de la moyenne empirique est :

$$\bar{y} = \frac{1}{n} \sum_{j=1}^{n} y^{(j)}.$$

Modèle paramétrique

Dans certains cas, on suppose que la fonction g est un modèle paramétrique dont on cherche à déterminer les paramètres. Il peut s'agir d'un contexte de calage de modèle (dans l'étape B') ou d'estimation des hyper-paramètres d'un méta-modèle (dans l'étape C). Soit $g \in \mathbb{N}$ le nombre de paramètres de la foncion g. Soit $\mathcal{B} \subset \mathbb{R}^q$ le sous-ensemble des paramètres. Pour tout $\beta \in \mathcal{B}$, on considère la fonction $g = g(x, \beta)$.

Réplications

Pour observer la variabilité d'un estimateur, on considère parfois des réplications d'une simulation de Monte-Carlo. Dans ce cas, le nombre de réplications est noté $r \in \mathbb{N}$ et chaque réplication porte l'indice k=1,...,r.