

**This page Is Inserted by IFW Operations
And is not part of the Official Record**

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of
The original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- **BLACK BORDERS**
- **TEXT CUT OFF AT TOP, BOTTOM OR SIDES**
- **FADED TEXT**
- **ILLEGIBLE TEXT**
- **SKEWED/SLANTED IMAGES**
- **COLORED PHOTOS**
- **BLACK OR VERY BLACK AND WHITE DARK PHOTOS**
- **GRAY SCALE DOCUMENTS**

IMAGES ARE BEST AVAILABLE COPY.

**As rescanning documents *will not* correct images,
Please do not report the images to the
Image Problem Mailbox.**

MANUFACTURE OF LIQUID CRYSTAL DISPLAY DEVICE

Patent Number: JP11142864
Publication date: 1999-05-28
Inventor(s): GOTO TAKASHI; SUMIDA SHIROU
Applicant(s): MATSUSHITA ELECTRIC IND CO LTD
Requested Patent: JP11142864
Application Number: JP19970304786 19971107
Priority Number(s):
IPC Classification: G02F1/1339
EC Classification:
Equivalents:

Abstract

PROBLEM TO BE SOLVED: To provide a liquid crystal display device manufacturing method capable of solving a problem of disturbing orientation around an uncured seal material by sufficiently curing a seal material on a part hidden by a signal wiring electrode.

SOLUTION: An ultraviolet curing type seal material 3 is coincidentally stuck to a black matrix 7 between a color filter substrate 1 forming the black matrix 7 on its circumference and a TFT array substrate 2 forming a signal wiring electrode, and in the case of curing the material 3 by irradiating the material 3 with ultraviolet rays 16 from the side of the substrate 2, ultraviolet rays 16 are applied to the material 3 through a prism sheet 8 for diffusing and outputting incident ultraviolet rays 16 so as to apply the ultraviolet rays 16 also to a seal material 3 on a part hidden by the signal wiring electrode to cure the material 3.

Data supplied from the esp@cenet database - I2

(19)日本国特許庁 (JP)

(12) 公開特許公報 (A)

(11)特許出願公開番号

特開平11-142864

(43)公開日 平成11年(1999)5月28日

(51)Int.Cl.⁶

G 0 2 F 1/1339

識別記号

5 0 5

F I

G 0 2 F 1/1339

5 0 5

審査請求 未請求 請求項の数2 O L (全6頁)

(21)出願番号

特願平9-304786

(22)出願日

平成9年(1997)11月7日

(71)出願人 000005821

松下電器産業株式会社

大阪府門真市大字門真1006番地

(72)発明者 後藤 任

大阪府門真市大字門真1006番地 松下電器

産業株式会社内

(72)発明者 岩田 礼朗

大阪府門真市大字門真1006番地 松下電器

産業株式会社内

(74)代理人 弁理士 森本 義弘

(54)【発明の名称】 液晶表示装置の製造方法

(57)【要約】

【課題】 信号配線電極で隠れた部分のシール材も十分に硬化させて、未硬化のシール材の周辺の配向を乱す問題を解消する液晶表示装置の製造方法を提供することを目的とする。

【解決手段】 周囲にブラックマトリクス7を設けたカラーフィルタ基板1と信号配線電極を設けたTFTアレイ基板2との間に紫外線硬化型シール材3をブラックマトリクス7に位置するようにして貼り合わせて、TFTアレイ基板2の側からシール材3に紫外線16を照射して硬化するに際し、入射した紫外線16を拡散させて出力するプリズムシート8を介して紫外線16をシール材3に照射して、信号配線電極で隠れた部分のシール材3にも紫外線16を照射して硬化させるものである。

- 1 カラーフィルタ基板
- 2 TFTアレイ基板
- 3 シール材
- 7 ブラックマトリクス
- 8 プリズムシート
- 16 紫外線

【特許請求の範囲】

【請求項1】周囲に遮光部を設けた第1の電極基板と信号配線電極を設けた第2の電極基板との間に紫外線硬化型シール材を前記遮光部に位置するようにして貼り合わせて、第2の電極基板の側から前記シール材に紫外線を照射して硬化するに際し、入射した紫外線を拡散させて出力するフィルタを介して紫外線をシール材に照射して、前記信号配線電極で隠れた部分のシール材にも紫外線を照射して硬化させる液晶表示装置の製造方法。

【請求項2】周囲に遮光部を設けた第1の電極基板と信号配線電極を設けた第2の電極基板との間に紫外線硬化型シール材を前記遮光部に位置するようにするとともに前記シール材に囲まれた部分内に液晶を滴下して第1および第2の電極基板を貼り合わせて、第2の電極基板の側から前記シール材に紫外線を照射して硬化するに際し、

入射した紫外線を拡散させて出力するフィルタを介して紫外線をシール材に照射して、前記信号配線電極で隠れた部分のシール材にも紫外線を照射して硬化させる液晶表示装置の製造方法。

【発明の詳細な説明】

【0001】

【発明の属する技術分野】本発明は、紫外線硬化型シール材を用いた液晶表示装置の製造方法に関するものである。

【0002】

【従来の技術】従来の液晶表示装置は、図7に示すように、製造工程に従って製造される。図7(a)に示すように、カラーフィルタ基板1の上の周囲には、遮光部としてのブラックマトリクス7が設けられている。

【0003】紫外線硬化型シール材3をシール印刷またはディスペンサにより、ブラックマトリクス7の上に位置するように形成する。図7(b)に示すように、対向するTFTアレイ基板2の上に直径4~6μmの球状の樹脂で形成したスペーサ4を100~200個/mm²の密度で散布する。

【0004】図7(c)に示すように、カラーフィルタ基板1とTFTアレイ基板2とを位置合わせて、両基板を貼り合わせる。貼り合わせた両基板のシール材3の部分の断面には、図8に示すように、TFTアレイ基板2の上に信号配線電極6が存在している。

【0005】TFTアレイ基板2の側から見たシール材3の周辺部分には、図9に示すように、線幅10~30μm、線間スペース10~30μmを有する信号配線電極6がシール材3の部分に掛かっている。

【0006】カラーフィルタ基板1から見たシール材3の周辺部分は、図10に示すように、ブラックマトリクス7に覆われている。このため紫外線硬化型シール材3への紫外線16の照射は、図7(d)に示すように、T

FETアレイ基板2の側から行なう。

【0007】具体的には、TFTアレイ基板2に形成されたTFTのスイッチング特性が紫外線16の照射によって悪化する等の影響を防ぐために、紫外線16をシール材3の部分のみに照射するような形状のマスク9をTFTアレイ基板2の側に当てた状態で、シール材3に1000~3000mJの紫外線16を照射しシール材3を硬化させて、液晶セル5を作製する。この液晶セル5に液晶を注入して液晶表示装置を作製する。

【0008】

【発明が解決しようとする課題】しかしながら前記のように作製した液晶セル5では、図11に示すように、シール材3は紫外線16が照射された部分では硬化したシール材3aとなるが、信号配線電極6で隠れて紫外線16が照射されない部分では未硬化のシール材3bのままである。

【0009】この状態で液晶セル5に液晶を注入して液晶表示装置を作製すると、未硬化のシール材3bが液晶と接するため、シール材成分の一部が液晶に染みだし、未硬化のシール材3bの周辺の配向を乱すという問題がある。

【0010】本発明は、信号配線電極で隠れた部分のシール材にも紫外線を照射して硬化させて、未硬化のシール材の周辺の配向を乱す問題を解消する液晶表示装置の製造方法を提供することを目的とする。

【0011】

【課題を解決するための手段】本発明は、入射した紫外線を拡散させて出力するフィルタを介して紫外線をシール材に照射して、前記信号配線電極で隠れた部分のシール材にも紫外線を照射して硬化させるようにしたものである。

【0012】本発明によると、信号配線電極で隠れた部分のシール材にも紫外線を照射して硬化させて、未硬化のシール材の周辺の配向を乱す問題を解消することができる。

【0013】

【発明の実施の形態】請求項1に記載の液晶表示装置の製造方法は、周囲に遮光部を設けた第1の電極基板と信号配線電極を設けた第2の電極基板との間に紫外線硬化型シール材を前記遮光部に位置するようにして貼り合わせて、第2の電極基板の側から前記シール材に紫外線を照射して硬化するに際し、入射した紫外線を拡散させて出力するフィルタを介して紫外線をシール材に照射して、前記信号配線電極で隠れた部分のシール材にも紫外線を照射して硬化させるものである。

【0014】請求項2に記載の液晶表示装置の製造方法は、周囲に遮光部を設けた第1の電極基板と信号配線電極を設けた第2の電極基板との間に紫外線硬化型シール材を前記遮光部に位置するようにするとともに前記シール材に囲まれた部分内に液晶を滴下して第1および第2

の電極基板を貼り合わせて、第2の電極基板の側から前記シール材に紫外線を照射して硬化するに際し、入射した紫外線を拡散させて出力するフィルタを介して紫外線をシール材に照射して、前記信号配線電極で隠れた部分のシール材にも紫外線を照射して硬化させるものである。

【0015】以下、本発明の液晶表示装置の製造方法を具体的な実施の形態に基づいて説明する。

(実施の形態1) 本実施の形態1の液晶表示装置は、図1に示すように、製造工程に従って製造される。

【0016】図1(a)に示すように、カラーフィルタ基板1の上の周囲には、遮光部としてのブラックマトリクス7が設けられている。紫外線硬化型シール材3をシール印刷またはディスペンサにより、このブラックマトリクス7の上に位置するように形成する。

【0017】図1(b)に示すように、対向するTFTアレイ基板2の上に直径4~6μmの球状の樹脂で形成したスペーサ4を100~200個/mm²の密度で散布する。

【0018】このようにして形成された一对のガラス基板であるカラーフィルタ基板1とTFTアレイ基板2とを位置合わせて、図1(c)に示すように、両基板を貼り合わせる。

【0019】貼り合わせた両基板のシール材3の部分の断面には、図8に示すように、TFTアレイ基板2の上に信号配線電極6が存在している。TFTアレイ基板2の側から見たシール材3の部分には、図9に示すように、線幅10~30μm、線間スペース10~30μmを有する信号配線電極6がシール材3の部分に掛かっている。

【0020】カラーフィルタ基板1から見たシール材3の部分は、図10に示すように、ブラックマトリクス7に覆われている。このためシール材3への紫外線16の照射は、図1(d)に示すように、TFTアレイ基板2の側から行なう。

【0021】シール材3の部分のみに紫外線16を照射させる形状のマスク9とTFTアレイ基板2とを位置合せし、入射した紫外線16を拡散させて出力するフィルタとしてのプリズムシート8をマスク9とTFTアレイ基板2との間に挿入して紫外線16を照射する。

【0022】先ず、このプリズムシート8の構造とその原理を図2~図4に基づいて説明する。図2に示すようにプリズムシート8は、凹凸面8aと平坦面8bとを有するものである。このプリズムシート8は、例えば、PET材質で形成されたものであり、PET表面にUV硬化性アクリル樹脂を塗布し、UVを照射し凹凸面8aを形成させたものである。

【0023】図3に示すように、拡散した紫外線Aがプリズムシート8の平坦面8bを通過して凹凸面8aから出力されると、プリズムシート8に対して垂直方向の紫

外線Bとなる。

【0024】反対に、図4に示すように、プリズムシート8に対して垂直方向の紫外線Bがプリズムシート8の凹凸面8aを通過して平坦面8bから出力されると、拡散した紫外線Aとなる。

【0025】そこで、本実施の形態1では、紫外線ランプ12からの紫外線16を拡散させるために、図4に示したように、プリズムシート8の平坦面8bをTFTアレイ基板2に向けてセットする。

【0026】この状態でマスク9の側より、紫外線ランプ12からの紫外線16を紫外線硬化型シール材3に照射する。マスク9を介してプリズムシート8に対して垂直方向に進む紫外線16は、図5に示すように、プリズムシート8により拡散して紫外線16aとなって出力されるので、線幅10~30μm、線間スペース10~30μmを有する信号配線電極6のかけに隠れた部分のシール材3にも紫外線16が照射されて、シール材3の全体を硬化させることができ、この液晶セル5に液晶を注入して液晶表示装置を作製する。

【0027】このように、プリズムシート8を介して液晶セル5のシール材3に紫外線を照射することにより、信号配線電極6のかけに隠れた部分のシール材3を十分に硬化させることができ、この液晶セル5に液晶を注入した場合ではシール材成分の液晶への染み出しが無く、シール材3の周辺の配向乱れのない液晶表示装置を得ることができる。

【0028】(実施の形態2) 本実施の形態2の液晶表示装置は、図6に示すように、製造工程に従って製造される。

【0029】図6(a)に示すように、配向膜を塗布し表面処理を施したカラーフィルタ基板1の上の周囲には、遮光部としてのブラックマトリクス7が設けられている。紫外線硬化型シール材3をスクリーン印刷またはディスペンサにより、このブラックマトリクス7の上に位置するように形成する。

【0030】図6(b)に示すように、シール材3で囲まれたカラーフィルタ基板1の上の領域に液晶11を液晶滴下用シリンジ14により滴下する。滴下する液晶量は、カラーフィルタ基板1とTFTアレイ基板2とを貼り合わせて形成される液晶セル内に注入するのに必要な量とする。

【0031】図6(c)に示すように、配向膜を塗布し表面処理を施したTFTアレイ基板2には、直径4~6μmのスペーサ4を100~200個/mm²の密度で散布する。

【0032】このようにしてできた一对のガラス基板であるカラーフィルタ基板1とTFTアレイ基板2とを位置合せし、図6(d)に示すように、両基板を真空中で貼り合わせる。

【0033】貼り合わせた両基板のシール材3の部分の

断面には、図8に示すように、TFTアレイ基板2の上に信号配線電極6が存在している。TFTアレイ基板2から見たシール材3の部分は、図9に示すように、線幅10～30μm、線間スペース10～30μmを有する信号配線電極6がシール材3の部分に掛かっている。

【0034】カラーフィルタ基板1から見たシール材3の部分は、図10に示すように、ブラックマトリクス7に覆われている。このため紫外線硬化型シール材3への紫外線16の照射は、図6(e)に示すように、TFTアレイ基板2の側から行なう。

【0035】この紫外線の照射の場合も実施の形態1の場合と同じプリズムシート8を使用する。このようにして、液晶の滴下工法によって液晶表示装置を製造する場合であっても、プリズムシート8を介してシール材3に紫外線を照射することにより、信号配線電極6のかげに隠れた部分のシール材3にも紫外線16を照射して硬化させることができ、シール材成分の液晶への染み出しが無く、シール材3の周辺の配向乱れのない液晶表示装置を得ることができる。

【0036】なお、上記の各実施の形態では、入射した紫外線16を拡散させて出力するフィルタとしてプリズムシート8を用いたが、液晶モジュールのバックライトシステムに用いられている拡散シートとした場合であっても、同様の効果が得られ、さらに、TFTアレイ基板2とマスク9との間にフィルタを設けて紫外線16を照射しているが、マスク9と紫外線ランプ12との間にフィルタを設けて紫外線16を照射する場合であっても、同様の効果を有する。

【0037】

【発明の効果】以上のように本発明の液晶表示装置の製造方法によれば、入射した紫外線を拡散させて出力するフィルタを介して紫外線をシール材に照射させることにより、信号配線電極で隠れた部分のシール材にも紫外線を照射して硬化させることができ、この液晶セルに液晶を注入した場合ではシール材成分の液晶への染み出しが無く、シール材周辺の配向乱れのない液晶表示装置を得ることができる。

【図面の簡単な説明】

【図1】本発明の実施の形態1における液晶表示装置の製造工程図

【図2】同実施の形態1のプリズムシートの断面図

【図3】同実施の形態1のプリズムシートの紫外線の拡散を示す図

【図4】同実施の形態1のプリズムシートの紫外線の拡散を示す図

【図5】同実施の形態1の液晶セルに紫外線を照射したときのシール材の部分の断面図

【図6】本発明の実施の形態2の液晶表示装置の製造工程図

【図7】従来の液晶表示装置の製造工程図

【図8】貼り合わせた両基板のシール材の部分の断面図

【図9】TFTアレイ基板から見たシール材周辺部分を示す図

【図10】カラーフィルタ基板から見たシール材周辺部分を示す図

【図11】従来の液晶セルに紫外線を照射したときのシール材部分の断面図

【符号の説明】

- 1 カラーフィルタ基板
- 2 TFTアレイ基板
- 3 シール材
- 3a 硬化したシール材
- 3b 未硬化のシール材
- 4 スペーサ
- 5 液晶セル
- 6 信号配線電極
- 7 ブラックマトリクス
- 8 プリズムシート
- 8a 凹凸面
- 8b 平坦面
- 9 マスク
- 10 液晶表示装置
- 11 液晶
- 12 紫外線ランプ
- 13 液晶を充填する領域
- 14 液晶滴下用シリジン
- 15 外部接続端子
- 16 紫外線
- 16a 拡散した紫外線

【図2】

8a 凹凸面
8b 平坦面

【図3】

【図4】

【図1】

1 カラーフィルタ基板
2 TFTアレイ基板
3 シール材
7 ブラックマトリクス
8 プリズムシート
16 紫外線

【図8】

【図9】

【図5】

6 信号配線電極
16a 拡散した紫外線

【図6】

【図7】

【図10】

【図11】

