Example 12

ABCD is a convex quadrilateral. AB=CD.E, F are midpoints of BC, AD, respectively. The extensions of BA and CD meet the extension of EF at M, N, respectively. Show that $\angle BME=\angle CNE$.

Solution: Method 1: Connect BD. Take G, the midpoint of BD. Connect GF, GE.

Since GF is the midline of $\triangle DAB$. GF//AB and $GF = \frac{1}{2}AB$ GE is the midline of $\triangle BDC$. GE//CD and $GE = \frac{1}{2}CD$. Since AB = CD, GF = GE.

Thus $\angle GFE = \angle GEF$. We know that GF//AB, so $\angle BME = \angle GFE$. We also know that GE//CD//CN, so $\angle CNE = \angle GEF$ Therefore, $\angle BME = \angle CNE$. Method 2:

Connect AC. Take P, the midpoint of AC. Connect EP, EP. Since EP is the midline of $\triangle CAB, EP//AB$ and $EP = \frac{1}{2}AB$. FP is the midline of $\triangle ADC$. FP//CD and $FP = \frac{1}{2}CD$.

Since AB = CD, EP = FP. Thus $\angle PFE = \angle PEF$. We know that EP//AB, so $\angle BME = \angle PEF$. We also know that FP//CD//CN, so $\angle CNE = \angle PFE$ Therefore, $\angle BME = \angle CNE$.