

(12) United States Patent Katinger et al.

(10) Patent No.:

US 6,268,484 B1

(45) Date of Patent:

Jul. 31, 2001

(54) HIV-VACCINES

Inventors: Hermann Katinger; Andrea

Buchacher; Wolfgang Ernst; Claudia Ballaun; Martin Purtscher; Alexandra Trkola, all of Vienna; Renate Predl, Deutsch-Wagram; Christine Schmatz, Vienna; Annelies Klima, Vienna; Franz Steindl, Vienna; Thomas Muster,

Vienna, all of (AT)

Assignee: Polymun Scientific Immunbiologische

Forschung GmbH, Vienna (AT)

(*) Notice: Subject to any disclaimer, the term of this patent is extended or adjusted under 35

U.S.C. 154(b) by 0 days.

Appl. No.: 09/124,900 (21)

(22)Filed: Jul. 30, 1998

Related U.S. Application Data

(60)Division of application No. 08/478,536, filed on Jun. 7, 1995, now Pat. No. 5,911,989, which is a continuation-inpart of application No. PCT/EP95/01481, filed on Apr. 19, 1995.

(51) Int. Cl.⁷ C07K 16/00; A61K 39/00; A61K 39/21; C12Q 1/70; G01N 33/53

U.S. Cl. 530/388.35; 424/192.1; 424/208.1; 435/5; 435/7.1; 435/339.1

Field of Search 424/192.1, 208.1; 530/388.35; 435/5, 7.1, 339.1

(56)References Cited

U.S. PATENT DOCUMENTS

4,761,470 8/1988 Emini et al. 530/326

5,087,557	2/1992	McClure 435/5
5,245,015	9/1993	Fung et al 530/388.35
5,516,657	5/1996	Murphy et al 435/69.3

OTHER PUBLICATIONS

Fahey et al., Status of immune-based therapies in HIV infection and AIDS Clin. Exp. Immunol. (1992) 88, 1-5

Luckow et al., Trends in the development of Baculovirus expression vectors, Bio/Tech vol. 6, pp. 47-55, see Abstract and p. 47, col. 1, sentence 4. (01/88).

Ratner et al., Complete nucleotide sequence of the AIDS virus, HTLV-III, Nature 313:277-284 (01/85).

Primary Examiner-Hankyel Park (74) Attorney, Agent, or Firm-Birch, Stewart, Kolasch & Birch, LLP.

ABSTRACT

Disclosed are antibodies which can be used for the manufacture of vaccines for active and/or passive immunization of persons in need of such treatment. The invention also provides for human monoclonal antibodies that are functionally equivalent to the above-mentioned antibodies produced by any one of the cell lines CL1 through CL6 (deposited at the European Collection of Animal Cell Cultures (ECACC) at the PHLS in Porton Down, Salisbury, UK). Also provided are hybridoma and/or CHO cell lines producing any one of the antibodies disclosed and claimed herein, Also provided are mixtures of antibodies of the present invention, as well as methods of using individual antibodies or mixtures thereof for the detection, prevention and/or therapeutical treatment of HIV-1 infections in vitro

8 Claims, 6 Drawing Sheets

FIG.1

FIG. 2

A B 1 2 3 1 2 3

- 97 -- 50 -

- 35 -

- 30 -

FIG.3

rec. GST/HIVgp120

FIG.4A

FIG.4B

FIG.5A

FIG.5B

Jul. 31, 2001

FIG.6

2

This application is a divisional of U.S. application Ser. No. 08/478,536 filed on Jun. 7, 1995 which issued as U.S. Pat. No. 5,911,989, which is a Continuation-in-Part Application of PCT International Application No. PCT/EP95/01481 filed on Apr. 19, 1995 under 35 U.S.C. § 371, the entire contents of each of the above identified applications are herein incorporated by reference.

BACKGROUND OF THE INVENTION

1. Technical field

The present invention is in the field of immunology, especially detection, prevention and treatment of HIV-1 infection and AIDS therapy. More particularly, it concerns monoclonal antibodies, drugs and vaccines made from these antibodies and methods based on the use of these antibodies, drugs and vaccines for analytical and/or clinical applications.

2. Description of Related Art

In the sera of human immunodeficiency virus type 1 20 (HIV-1) infected patients, anti-virus antibodies can be detected over a certain period after infection without any clinical manifestations of the acquired immunodeficiency syndrome (AIDS). At this state of active immune response, high numbers of antigen-specific B-cells are expected in the circulation. These B-cells are used as fusion partners for the generation of human monoclonal anti-HIV antibodies.

Monoclonal antibodies can be produced by known procedures, e.g., as described by R. Kennet et al. in "Monoclonal Antibodies and Functional Cell Lines; Progress and Applications". Plenum Press (New York), 1984.

Further materials and methods applied are based on known procedures, e.g., such as described in J. Virol. 67:6642-6647, 1993.

Monoclonal antibodies and in particular human mono- 35 clonal antibodies have been widely used in the last few years in order to improve the understanding of HIV-1 neutralization by antibodies released upon immunization with HIV-1 derived immunogens or upon infection in afflicted patients (J. Virol. 62:2107-2114, 1988; Immunology 76;515-534, 40 1992; J. Virol. 67:6642-6647, 1993; U.S. Pat. No. 5,087, 557). Many efforts have been made to overcome the detrimental capability of the HIV-1 virus to rapidly charge its morphology under immunological pressure and thereby to escape the capture by antibodies released from a patient's 45 immune systems or developed and applied by researchers, As a result thereof, there is presently no reliable antibodyleased (nor any other) vaccine for active or passive immunization on the market. One significant step forward has been made when an antigens determinant on the smaller 50 subunit gp41 of the HIV-1 envelope glycoprotein gp160 was found (EP 570 357 A2), which corresponds to the amino acid sequence "ELDKWA" (SEQ ID NO:11) located at amino acid position number 662 to 667 of gp41 of HIV-1 isloate BH10. The authors report therein an HIV-1 neutralizing 55 human monoconal antibody specifically binding to said antigenic determinant. The antibody proved to be a powerful tool for biochemical analysis of the binding epitome and its variability, The discovery of the highly conserved state of said gp41-epitope gave rise to the hope of possibly finding 60 a vaccine composition suitable for more reliable prevention of human individuals from HIV-1 infection and/or for more successful therapeutic treatment of infected patients.

The results reported in EP 570 357 A2 motivated the present inventors to intensify their research activities which 65 finally led them to the novel and inventive findings herein disclosed.

However, in spite of promising results of the art relating to the use of HIV-1 neutralizing monoclonal antibodies, there is at least one major drawback to this sort of approach. It lies in the wide-spread use of laboratory strains of HIV-1 isolates, which have become adapted to lab-conditions and are more or less attenuated and hence only poorly—if at all—representative of the properties and behaviour of primary HIV-1 isolates. Consequently, promising vaccine compositions drawn against laboratory HIV-1 strains frequently proved non-efficacious when applied against primary HIV-1 isolates, e.g., of blood samples of infected persons (see J. Cohen, Science 262:980–981, 1993).

The second major drawback was and still is the ability of the HIV-1 virus to escape antibody capture by morphological variation, which very often renders the remarkable efforts of the researchers almost useless. Such escape mutants may be characterized by a change of only one or several of the amino acids within one of the targeted antigenic determinants and may occur, e.g., as a result of spontaneous or induced mutation.

SUMMARY OF THE INVENTION:

The present invention therefore provides antibodies which have been found to overcome the disadvantages of the prior art and which can be used for the manufacture of vaccines for active and/or passive immunization of persons in need of such treatment. Such beneficial antibodies are, for instance, produced by any one of the cell lines CL1 through CL6 listed below. The invention also provides for human monoclonal antibodies that are functionally equivalent to the antibodies of CL1 through CL6. These functionally equivalent antibodies substantially share at least one major functional property with an antibody of CL1 to CL6 as herein described, comprising: binding specificity to gp160; bindinig dependence on glycosylation; reactivity in the presence of tunicamycin; inhibition of infections of human lymphocytes by primary HIV-1 isolates; reactivity towards antiidiotypes; competition for same binding site; reduction of the HIV-1 level in blood serum after intravenous administration to an infected patient; and/or specific binding to HIV-1 neutralizing antibodies.

It is also an object of the present invention to provide for the hybridoma and/or CHO cell lines producing any one of the antibodies disclosed and claimed herein.

The invention is further directed to mixtures of antibodies according to the present invention, as well as to methods of using individual antibodies or mixtures thereof for the prevention and/or therapeutical treatment of HIV-1 infections in vitro and in vivo, and/or for improved detection of HIV-1 infections.

The cell lines CL1 to CL4 produce monoclonal antibodies recognizing HIV-envelope glycoproteins, and in particular specific antigenic determinants of gp160. The antibodies of CL1 and CL4 recognize and bind to an amino acid sequence of gp41/gp160 corresponding to the epitope located at amino acid position number 662 to 667 ("ELDKWA") of gp41 of HIV-1 isloate BH10 (GenBank accession M15654; (SEQ ID NOS:1-10) numbering as described in the Swissprot database entry ENV\$HIV10). The monoclonal antibodies of CL2 and CL3 bind to two different antigenic determinants, more particularly to fragments of gp120/gp160 corresponding to the epitope sequences located at amino acid positions 79 to 184 and 326 to 400 respectively, of processed gp120 of HIV-1 isolate BH10 (GenBank accession M15654; numbering as described in the Swissprot database entry ENV\$HIV10).

While the idiotypic antibodies produced by CL1 to CL4 are directed to the capture and neutralization of HIV-1 viruses in vitro and in vivo, the antiidiotypic antibodies released from CL5 and CL6-take an opposite role, i.e., they mimic the viruses, more particularly they mimic the corresponding antigenic determinant(s) of the HIV-1 viruses. The anti-idiotypic antibodies of CL5 and CL6 are of a nature such that they bind to the idiotypic antibody of CL2 at essentially the same location(s) (antigenic determinants) on gp160 as does the virus itself.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 shows the specific binding of a human monoclonal antibody released by hybridoma cell line CL2 with two distinct fragments of glycoprotein subunit gp120 of HIV-1; 15 the numerals indicate the position numbers of the amino acids of the gp120 fragments as herein described;

FIG. 2A shows the failure of a CL2 antibody to bind to the deglycosylated form (lane 3) of gp160 of HIV-1, while MAb CL1 (FIG. 2B) was used as a control because it successfully binds to the deglycosylated gp160;

FIG. 3 shows the reactivity of anti-GST antiserum and a CL2 antibody with a recombinant gp120 in the presence and absence of tunicamycin, while a-GST binds to rec.GST/HIVgp120 in the presence of tunicamycin (at a reduced level) the CL2 antibody does not (bar 4);

FIG. 4A shows the blocking effect of antibodies M1G1 through 4C12 toward HIV-1 neutralizing monoclonal antibodies of the CL2 (plot A) and CL1 (FIG. 4B) cell line in a 30 p24 antigen ELISA; the anti-idiotypic character of M1G1 towards MAb CL2 is demonstrated;

FIG. 5A shows the uniqueness of antibodies of the CL2 and the CL3 (=recomb. CL2) cell lines among a multitude of different anti-HIV antibodies; only the antibodies of CL2 ³⁵ and CL3 are recognized and bound by the antiidiotypic antibodies M1G1 (plot A) and M1A3 FIG. 5B:

FIG. 6 shows HIV-1 neutralizing efficacy of antibodies of cell line CL1 after in vivo application to a human patient; triangles show the HIIV-induced formation of syncytia in the serum taken from an infected patient before administration of CL1 antibodies, while squares demonstrate complete failure of syncytia formation after administration of CL1 antibodies.

DETAILED DESCRIPTION OF THE INVENTION

The contents of each of the references cited herein are herein incorporated by reference in their entirety.

When conducting experiments to find novel anti-HIV-1 antibodies the inventors found human monoclonal antibodies which could be shown to efficiently neutralize HIV-1 in vitro including a variety of primary HIV-1 isolates, such as, e.g., primary HIV-1 isolates 92 RW009, 92RW021, 92UG037, 92TH014, 92BR030, N70-2, DJ259 (all obtained from WHO network for HIV-1 isolation and characterization), or WYG, WRF, WRB, WSC, WHM (isolated from Austrian patients).

Surprisingly, it turned out that these antibodies recognize 60 and bind to two different antigenic determinants of the glycoprotein gp160 of HIV-1.

Moreover, it appears that the binding target of these antibodies is extraordinarily unique. In a comparative test involving a mixture of 41 different HIV-1 binding antibodies 65 supplied by laboratories from different companies and research institutes, it was shown that no one of the other

antibodies present in the mixture competed with an antibody of the above-identified group, for instance with the human monoclonal antibody from cell line CL2, for binding to the targeted antigenic fragments of gp120/gp160 corresponding to amino acid sequences 79 to 184 and 326 to 400 of processed gp120 of HIV-1 isolate BH10.

Also, investigations of blood serum and blood plasma of HIV-1 infected patients revealed that antibodies of the CL2 type were not present in the samples tested so far. This finding again emphasizes the uniqueness of these HIV-1 neutralizing human monoclonal antibodies and simultaneously indicates that there might exist an extraordinary potential to combat HIV-1 infection, by using these antibodies in a suitable form for the prophylactic and/or thera-

Another object of the present invention relates to antibodies of the CL2 type which have been found to bind to the above-mentioned antigenic determinants of gp120/gp160 only if the determinants are present in a glycosylated form; they do not bind to these antigenic glycopeptide fragments when the fragments are deglycosylated, e.g., by the action of Peptide-N-Glycosidase F (EC 3.2.2.18; hereinafter referred to as "PN Gase F").

Still another object of the present invention encompasses human monoclonal antibodies of the CL2 type which are further characterized in that they also specifically bind to a fragment of gp120 produced in the SF9 insect cell/ Baculovirus expression system in the absence of tunicamycin, while they do not bind to gp120 fragments expressed in the presence of tunicamycin. Tunicamycin is known for its inhibitory activity toward the glycosylating action of glycosyl transferase in glycoprotein biosynthesis.

Among the antibodies of the CL2 type as disclosed herein, there are also types which inhibit the infection of human lymphocytes by primary HIV-1 isolates such as the ones listed herein, as could successfully be demonstrated by the inventors in in vitro experiments.

The present invention also relates to antibodies of the CL2 type which possess one or more of the above-mentioned properties and which can further be characterized by their special interaction with the anti-idiotypic monoclonal antibodies of hybridoma cell lines CL5 and CL6. While they can be bound by one and/or the other of the two anti-idiotypic antibodies CL5 and CL6, at least part of them is bound by anti-idiotypic huMAb produced by CL6 in a way that results in a specific blockade of the capability of the antibody to inhibit the infection of human lymphocytes by primary HIV-1 isolates.

A further object of the present invention comprises antibodies of the CL2 type which show at least one of the above-mentioned features or properties and which—in addition—have been proved to compete for binding to the antigenic determinants of gp120/160 with the antibody produced by hybridoma call line CL2. The antibodies of this category are therefore—at least functionally—very closely related with the antibody released by CL2, and can be regarded as functional equivalents to it.

Another object of the present invention is directed to the most beneficial human monoclonal antibody produced by hybridoma cell line CL2. This antibody can be used, e.g. for passive immunization of HIV-1 infected individuals, but may even be more useful as a biochemical tool for developing vaccines applicable in the prevention and/or therapy of HIV-1 infections in vivo.

An attractive object of the present invention comprises the use of recombinant CHO cells for the production of the

antibodies of the CL2 type. After successful identification of the antigenic determinants recognized and bound by these antibodies, the inventors also succeeded in transforming the respective genetic information into CHO cells, resulting in a stable cell line CL3, which synthesizes the CL2 type 5 antibodies in a more efficient manner than the hybridoma cell line CL2 itself.

In another embodiment, anti-idiotypic antibodies are disclosed which can specifically bind to idiotypic antibodies of the CL2 type and/or which can interact with at least some of them in a fashion that eliminates their anti-HIV protective capability, i.e., bars them from inhibiting the infection of human lymphocytes by primary HIV-1 isolates. Such anti-idiotypic antibodies are therefore expected to be conformationally related to the HIV-1 viruses in that they probably contain similar or even identical antigenic fragments of a viral glycoprotein, e.g., of gp160.

The antibodies of the next embodiment seem to be very interesting because they are of an anti-idiotypic type and combine the features of the anti-idiotypic antibodies of the previous embodiment with their ability to induce—upon administration to a mammal, e.g., a human or animal individual—the production and release of anti-HIV-1 anti-bodies. Optionally, the induced antibodies are of a nature such that they compete for binding to the above specified antigenic determinants of gp120/160 with at least one antibody of the CL2 type as hereinbefore described in any one of the respective embodiments. A special representative of this group of anti-idiotypic antibodies is the one produced by hybridoma cell line CL6.

While the anti-idiotypic antibodies of the preceding embodiment may be used for active immunization of test animals or HIV-1 endangered and preferably not yet infected persons, the antibodies induced upon such active immunization may serve as components of a vaccine for passive immunization or as subjects of investigation to design and/or synthetically or genetically prepare such antibodies. Optionally, these (idiotypic) antibodies are functional equivalents to the CL2 type antibodies, i.e., they compete with the CL2 type antibodies for binding to the above specified antigenic determinants of gp120/gp160.

In a further—most exciting—embodiment of the invention, the human monoclonal antibodies exhibit strong HIV-1 neutralizing activity and bind to the smaller subunit of gp160, hereinafter referred to as gp41/gp160. Preclinical studies have proved that they are able to significantly reduce—upon intravenous administration to a human HIV-1 infected individual—the level of circulating HIV-1 in the blood serum and/or blood plasma of said individual (see 50 Example 8 and FIG. 6).

Moreover, at least part of these antibodies may be further characterized in that they also compete with an idiotypic antibody produced by hybridoma cell line CL1 for binding to the gp41/gp160 antigenic determinant. Finally, the antibody produced by said cell line CL1 itself can be regarded as an important member of this group of HIV-1 level reducing antibodies.

Similarty to the situation with the CHO cell line CL3 producing CL2 type antibodies, the inventors also succeeded 60 in cloning a recombinant CHO cell line CL4 producing antibodies which compete with the antibody of CL1 for binding to the gp41/gp160 antigenic determinant and hence may be regarded as more or less close equivalents to the CL1 antibody. Such recombinant CHO cell lines are easier to 65 grow and more efficiently employed in the manufacture of the respective antibodies.

Various in vitro experiments have proved that the CL2 type antibodies as well as tile CL1 type antibodies are able to neutralize a variety of different laboratory and primary HIV-1 isolates including a number of escape mutants, which usually develop upon individual application of any one of these antibodies. It could further be shown that both antibody types are cross-reactive, i.e., they interact synergistically in that each of them is able to capture the escaped HIV-1 mutants of the other antibody. Combined in a mixture, they are therefore a powerful tool to combat HIV-1 infections and AIDS. It is one of the objects of the present invention to provide for a mixture of at least one antibody of the CL1 type and at least one antibody of the CL2 type.

The present invention also relates to a cell line producing any one of the antibodies described above, and in particular, to the cell lines CL1 through CL6 identified by their accession numbers as described below. Viable samples of the hybridoma cell lines CL1 to CL6 producing the monoclonal antibodies herein described were deposited at the European Collection of Animal Cell Cultures (ECACC) at the Public Health Laboratory Service (PHLS), Centre for Applied Microbiology and Research, Porton Down, Salisbury SP4 OJG, United Kingdom. They are identified by their accession numbers:

CL1—Accession No. 90091704 (deposited on Sep. 17, 1990);

CL2—Accession No. 93091517 (deposited on Sep. 15, 1993);

CL3—Accession No. 95032235 (deposited on Mar. 22, 1995);

CL4—Accession No. 95032236 (deposited on Mar. 22, 1995);

CL5—Accession No. 95032240 (deposited on Mar. 22, 1995); and

CL6—Accession No. 95032241 (deposited on Mar. 22, 1995).

The corresponding monoclonal antibodies produced by these cell lines are hereinafter termed MAb CL1, MAb CL2 through MAb CL6, when used in the abbreviated form.

In a further embodiment of the present invention, peptide fragments are provided which contain at least one of the antigenic determinants of gp41/gp160 and gp120/gp160 as herein described. It is desired that these peptide fragments are of a nature such that they are able to induce an immune response against HIV-1 infection, optionally the production and/or release of HIV-1 neutralizing antibodies after administration to mammals, e.g., to an animal or a human individual.

In another embodiment, these peptide fragments may be linked to a suitable carrier in order to improve the efficacy of antigen presentation to the immune system. Such carriers may be, for instance, organic polymers including proteins, but any other appropriate and physiologically acceptable carrier may also be used, including tetanus toxoid, cholera toxin, keyhole limpet hemocyan, glutathions S-transferase and all viruses that can be modified by recombinant DNA technology such as, e.g. Rhino-, Polio-, Vaccinia-, or Influenzavirus, etc. It may be advantageous in many cases to have the peptide fragments linked to a modifies, i.e., attenuated and/or recombinant virus such as modified influenza virus or modified hepatitis B virus or to parts f a virus, e.g., to a viral glycoprotein such as, e.g., hemagglutinin of influenza virus or surface antigen of hepatitis B virus, in order to increase the immunological response against HIV-1 viruses and/or infected cells.

It is also an important object of the present invention to provide for the manufacture of a reliable vaccine to protect people from HIV-1 infection and/or to treat patients with already manifest HIV-1 infections in the course of a therapy. Vaccines based on at least one of the idiotypic antibodies of the CL2 and CL1 groups can be employed for active immunization in the prophylaxis and therapy of higher animals including man. Convincing evidence are provided below for the reduction of the HIV-1 level in the plasma and serum of a seropositive patient in the course of a therapeutic treatment in a preclinical study (cf. Example 8 and FIG. 6). Also, the preventive potency of the idiotypic antibodies of cell line CL1 was demonstrated in an impressive SCID-mouse trial as well as in a chimpanzee experiment. Neither the antibody-treated mice nor the chimpanzees developed HIV-1 infection upon challenge with live HIV-1 virus, while the animals in the untreated control groups became infected.

The use of at least one anti-idiotypic antibody as hereinbefore described for the manufacture of a vaccine for active immunization can help to successfully combat HIV-1 infection. The anti-idiotypic antibodies-as well as the drugs and vaccines derived therefrom—may primarily be used for the preventive treatment of HIV-1 endangered people and are optimally applied prior to coming into contact with HIV-1 virus. Due to their unique paratope characteristics they may also be administered to already infected patients in order to stimulate the immune system to release the correspondingand possibly even more powerful—HIV-1 neutralizing anti- 25 bodies. They may be either directly administered to a person or in combination with at least one suitable carrier and/or additive as usual in the art, and/or along with additional drugs such as, for instance, nucleoside analogues (e.g. AZT, ddl), cytokines (e.g. interleukins), HIV-protease inhibitors, 30 antibiotics, etc. The anti-idiotypic antibodies may, however, also serve as "model templates" for the design and construction of, e.g., fusion proteins carrying their respective antigenic determinant(s) (paratopes).

It might be preferable in many cases to combine an individual antibody or a mixture of at least two different antibodies with an immunoserum and/or an antibiotic, in order to further improve the benefit of an antibody vaccine

manufactured accordingly.

In other cases it might be advantageous to use at least one of the herein specified antigenic peptide fragments of gp41/ gp160 and gp120/gp160 to substitute the anti-idiotypic antibodies in the corresponding vaccines and drugs. Therefore the present invention also relates to said peptide fragments and to the use thereof for the manufacture of drugs and/or vaccines applicable in the prophylactic and/or therapeutic treatment of HIV-1 endangered or HIV-1 infected people. The fragments are preferably applied as fusion proteins, wherein they are linked to a suitable carrier which might be a recombinant or attenuated virus or a part of a virus such as, e.g., the hemagglutinin of influenza virus or 50 the surface antigen of hepatitis B virus, or another suitable carrier including other viral surface proteins, e.g., surface proteins of Rhinovirus, Poliovirus, Sindbis virus, Coxsackievirus, etc., for efficient presentation of the antigenic site(s) to the immune system. In some cases, the antigenic fragments might, however, also be purely, i.e., without attachment to a carrier, applied in an analytical or therapeutical program. It is of considerable benefit that the fragments can be used for the prevention and/or treatment of HIV-1 infections in human individuals such as persons belonging to one of the high-risk groups of HIV-1 endangered people including medical and scientific staff dealing with HIV-1 viruses and/or infected individuals.

The idiotypic antibodies referred to herein may further be used for the detection and/or determination of HIV-1 infected cells and/or HIV-1 viruses, either as individual 65 antibodies or as an antibody cocktail. Similarly, one or more of the anti-idiotypic antibodies and/or the above-specified

peptide fragments can successfully be applied to detect and/or determine anti-HIV-1 antibodies binding to the viruses or to HIV-1 infected cells. Both the idiotypic and anti-idiotypic antibodies of the present invention may therefore be prepared and arranged for an analytical testing procedure and/or for a commercially utilizable test kit.

Finally, it is also an object of the present invention to provide a method of treating HIV-1 infected persons in need of such treatment, and to provide for a method of preventing people from becoming HIV-1 infected. Patients with manifest HIV-1 infections may be therapeutically treated with a vaccine comprising at least one of the idiotypic antibodies of the CL2 and the CL1 type, preferably a mixture thereof. However, in some cases it might be preferable to administer at least one of the anti-idiotypic antibodies and/or antigenic peptide fragments in order to induce additional—possibly even more powerful—antibodies to neutralize the viruses and to reduce the HIV-1 levels in the blood of infected patients.

The vaccine based on antibodies and/or antigenic peptide fragments may further comprise suitable, i.e., physiologically acceptable, carriers—preferably for the preparation of injection solutions—and further additives as usually applied in the art (stabilizers, preservatives, etc.), as well as additional drugs. The patients may be adminstered a dose of approximately 1 to 10 µg/kg body weight, preferably by intravenous injection once a day. For less threatening cases or long-lasting therapies the dose may be lowered to 0.5 to 5 µg/kg body weight per day. The treatment may be repeated in periodic intervals, e.g., two to three times per day, or in daily or weekly intervals, depending on the status of the infection.

Vaccines according to the present invention may comprise any one of the idiotypic or anti-idiotypic antibodies or any one of the petide fragments disclosed herein, either alone or in combination with suitable carriers and/or linked to carrier molecules. In some cases, e.g., where HIV-1 infection is acute and/or has already considerably progressed, it might be preferable to apply a mixture of idiotypic antibodies, while in other cases it might be more beneficial to apply a mixture of anti-idiotypic antibodies and/or—preferably carrier-linked—gp160 peptide fragments. It is recommended to apply a dose of 0.5 to 10 µg/kg body weight of antibody or carrier-linked gp160 peptide fragments, administered once to three times a day and possibly repeated in periodic intervals, e.g., weekly, monthly or yearly intervals, depending on the status of HIV-1 infection or the estimated threat of an individual of getting HIV infected.

In order that the invention described herein may be more fully understood, the following examples are set forth. It should be understood that these examples are for illustrative purposes only and a riot to be construed as limiting this invention in any respect.

EXAMPLE 1 (FIG. 1)

Reactivity of GST/HIV-gp120 Fusion Proteins with Antibodies from Cell Line CL2

The binding characteristics of the human monoclonal antibody produced by CL2 (referred to hereinafter as MAb CL2) to the HIV-1 envelope glycoprotein gp120:

Overlapping gp120 fragments were fused to Glutathione S-transerase (GST) and expressed using the insect cell/baculovirus system. Cell lysates of SF9 cells infected with recombinant baculovirus clones expressing different GST-gp120 fragments were first tested for their production level of GST. Lysates of GST-gp120 fusion proteins were then analysed in order to determine the binding affinity of MAb CL2. OD values of MAb CL2 given in the figure correspond to different rgp120 fragments. Microtiter plates were precoated with 2 µg/ml glutathione, cell lysates were added and incubated for 1 hour followed by an incubation step of 1

hour with 1 µg/ml MAb CL2 and detection with horseradish. peroxidase conjugated anti-human IgG. The optical densities of the cell lysates corresponding to an equal amount of the GST fusion protein are shown.

In FIG. 1, GST-fusion-protein containing fragment 1 corresponds to amino acids 1-95 of processed gp120 of the BH10 isolate of HIV-1, fragment 2 corresponds to amino acids 79-184 of gp120, fragment 3 to amino acids 170-279, fragment 4 to amino acids 264-354, fragment 5 to amino acids 326-400 and fragment 6 to amino acids 384-481. FIG. 1 demonstrates that MAb CL2 binds to two different fragments of gp120, namely to fragment 2 (amino acids 79-184) and to fragment 5 (amino acids 326-400).

EXAMPLE 2 (FIG. 2)

Antibody Binding to Deglycosylated gp160_{HIV MN}

For N-deglycosylation protein samples (500 ng recombinant gp160 of HIV-1 isolate MN) were boiled 10 min. in denaturation buffer (0.5% SDS, 1% β-Mercaptoethanol). Then 1/10 volume each of 10x enzyme reaction buffer and 10% NP-40 (polyglycol ether surfactant; Tergitol®) were 20 added. This reaction mixture was incubated with 2000 U of PNGaseF (Boehringer Mannheim) for 12 hours at 37° Polyacrylamide gel electrophoresis was performed on gels in 10-20% Tris/Glycin . After protein blottifig, identical membranes were incubated with 5 μ g/ml MAb CL2 (panel 25 A), and 5 μ g/ml MAb CL1 (panel B) as control.

In FIG. 2 lanes 1 to 3 contain the following:

lanes 1: untreated gp160_{HIV MIN};

lanes 2: gp160_{HIV MN} conditioned for PNGaseF treatment without enzyme;

lanes 3: gp160_{HIV MN} PNGaseF treated;

molecular weight markers are indicated in kDa,

It can be seen in FIG. 2 that MAb CL2 does not bind to gp160 after the deglycosylating action of PNGaseF (panel A, lane 3), while MAb CL1 binds to the PNGaseF treated 35 gp160 (panel B, lane 3).

EXAMPLE 3 (FIG.3)

Reactivity of Recombinant GST/HIVgp120 Fusion Protein with MAb CL2 and anti-GST Antiserum in the Presence and Absence of Tunicamycin (TM)

SF9 insect-cells were infected with either wildtype baculovirus or GST-gp120 expressing recombinant baculovirus. 5 hours after infection, tunicamycin was added to a final concentration of 5 µg/ml. Cells were harvested after 48 hours and lysed. Anti-GST reactivity and MAb CL2 reactivity were tested by ELISA. Baculovirus infected celllysates (obtained from 1×10⁷ cells/ml) were transferred to microtiter plates, which were precoated with 2 μ g/ml glutathione and incubated for 1.5 hours. GST-fusion protein or gp120 was detected by GST-antiserum (diluted 1:2000) or 50 MAb 2G12 (1.5 µg/ml), respectively, and horseradish peroxidase conjugated anti-mouse/anti-human IgG. The absorbance was determined at 492 nm.

As can be seen in FIG. 3 MAb CL2 does not bind to the gp120 fusion protein in the precence of tunicamycin, 55 whereas anti-GST does, although at a decreased level.

EXAMPLE 4

Neutralization Capacity of MAb CL2 for Primary HIV-1 Isolates

A PBMC (-peripheral blood mononuclear cells) based 60 neutralization assay was performed as described by Purtscher et al. (M. Purtscher et.al., 1994. Aids Research and Human Retroviruses. 10/12: 1651-1658, Mary Ann Liebert, Inc., Publ., 1994) by pre-incubating virus with serial anti-body dilutions for 1 h at 37° C. and subsequent infection of 65 fresh PHA (=phytohemagglutinin) stimulated PBMC prepared from HIV-negative donor buffy-coat cells. Neutral-

ization capacity was estimated after 7 to 12 days by comparing the amounts of p24 antigen produced by the cells in the presence or in the absence of antibody.

TABLE 1

primary	subtype	neutralizing
isolate	clade	capacity
92RW009	Α	+++
92RW021	Α	+++
92UG037	Α	+++
92TH014	В	+++
92BR030	В	+++
N70-2	В	· +
DJ259 ·	С.	· •
WYG	unknown	+++
WRF	unknown	+++
WRB	unknown	. +++
wsc -	unknown	+
WHM	unknown	+

- Key: +++ 90% neutralization at a conc. of <1 μg/ml ++ 90% neutralization at a conc. between 1 to 50 µg/ml
- + 50% neutralization at a conc. below 50 μg/ml

EXAMPLE 5 (FIG. 4)

Syncytia Inhibition Assay/Anti-idiotype Blocking

An anti-idiotype (Ab2) blocking assay was performed to determine whether the anti-idiotypic antibodies Ab2 block the neutralization capacity of MAb CL2 by binding to the neutralizing paratope of MAb CL2. The syncytia inhibition concentrations (EC₅₀) of MAbs CL1 and CL2 in the absence of anti-idiotypic antibodies were 2.0 and 8.8 µg/ml, respectively (the HIV-1 isolate RF was used). The addition of anti-idiotypic antibodies to MAb CL2 revealed that the antibodies M1A3 and M4C12 did not alter the neutralizing capacity, but when M1G1 (=anti-idiotypic antibody produced by CL6) was incubated with MAb CL2 a significant impairment could be observed (Table 2). The syncytia inhibiting capacity of MAb CL1, which is directed against gp41, should not be affected by the anti-idiotypic antibodies tested. No syncytia inhibition was observed with antiidiotypic antibodies alone at a concentration of 100 µg/ml as well as with MAb 3D6, which was used as a nonneutralizing control.

TABLE 2

ECso of MAb CL2 and MAb CL1 in the presence of M1G1, M1A3 or M4C12

		anti-idi)	
MAb	alone	+ M1G1 (= MAb CL6) 100	+ M1A3 (= MAb CL5) 100	+ M4C12 100
MAb CL2 MAb CL1	2.02 8.83	5.26 7.43	2.63 8.83	0.66 6.25

Anti-idiotypic antibodies were diluted to 200 µg/ml and MAbs CL2 and CL1 (as control antibody) were diluted to 10 μg/ml in RPMI 1640 medium 50 μl of serial two-fold dilutions of MAbs CL2 and CL1 were prepared starting at 100 µg/ml in four replicates. 50 µl of anti-idiotypic antibody (200 µg/ml) were added to each well and pre-incubated for 1 h at 37° C. in the incubator. As virus inoculum the HIV-1 isolate RF was diluted to approximately 102-103 TCID_{so}/ml and 50 μ l of the virus suspension were added to each well. After an incubation of 1h at 37° C., 50 µl of AA-2 cell suspension (10^6 cells per ml; see CHAFFEE et al, 1988, J.Exp.Med. 168:605-621) were added to each well. The cells were then cultivated during 5 days at 37° C. and 5% CO₂, followed by microscopical evaluation of syncytia formation. Occurrence of at least one syncytium per well was recorded as an indication of HIV-1 infection. The 50% effective concentration (EC₅₀) was calculated by the method of Reed and Muench (Reed, L. J. and Muench, H. 1938. A simple method of estimating fifty percent endpoints. Am.J.Hyg.27:493-497).

All wells of one dilution step were then pooled and p24 was determined quantitatively in a p24 antigen ELISA. The measured p24 values were plotted against the MAb concentration. The results thereof can be seen in FIG. 4 which displays the production of antigen p24 in cultures containing MAb CL2 (graph A) and MAb CL1 (graph B) with different amounts of anti-idiotypic antibodies. Contrary to M1A3 (=MAb CL5) and 4C12, M1G1 (=MAb CL6) inhibits the neutralization activity of MAb CL2 suggesting that M1G1 at least partly mimics the paratope (of HIV-1 gp120) corresponding to the epitope of MAb CL2. The control MAb CL1 is not inhibited by any of these antibodies. These results indicate that monoclonal antibody M1G1 is an antiidiotypic antibody to MAb CL2.

EXAMPLE 6 (FIG.5)

Reactivity of the Anti-idiotypic Antibodies with Different Anti-gp160 Antibodies

A panel of human anti-gp160 antibodies and pooled serum of HIV-1 positive individuals (HIVIG) were incubated on gp160-coated microtiter plates in the presence of M1G1 (=MAb CL6) and M1A3 (=MAb CL5), to prove the reactivity of the anti-idiotypes. FIG. 5, graphs A and B, show the MAb CL2 specific binding of M1G1 (graph A) and M1A3 (graph B), respectively. Both anti-idiotypic antibodies were only reactive with MAb CL2 and its recombinant double (MAb CL3) but not with other tested human antibodies (MAb CL1 and 5F3 and HIVIG are representative examples of human anti-HIV-1 antibodies).

FIG. 5, graphs A and B: 96-microtiter plates were coated with 2 μ g/ml gp160 (Immuno AG, Vienna). Starting dilution of the human monoclonal antibody samples began at a concentration of about 200 ng/ml and HIVIG was prediluted 1:100. Eight dilutions of the human antibodies were preformed in 2" steps. M1G1 and M1A3 were used at a concentration of 1 μ g/ml. The human and murine antibody dilutions were transferred to the test plate and simultaneously incubated for 1 h. Then peroxidase-conjugated goat anti-mouse IgG was applied to the plate. After 1 h of incubation staining solution was added to each well; the solution absorbances were read at 492 nm against 620 nm.

EXAMPLE 7

Immune Selection Experiments with HIV-1 Molecular Clone cl82.

Immune selection experiments with HIV-1 molecular clone cl82 in the presence of either MAb CL1 or MAb CL2 resulted in the generation of escape mutants at antibody concentrations lower than 6.3 μ g/ml and 25 μ g/ml, respectively, When both MAbs were present at the same 60 time in the reaction mixtures virus variants evolved were only resistant to either MAb CL1 or MAb CL2. These results (Table 3) suggest that the virus cannot accumulate sufficient mutations to render itself resistant to both antibodies. Therefore, the emergence of HIV-1 escape mutants during 65 treatment of HIV-1 infected individuals could be overcome by using a mixture of MAb CL1 and MAb CL2.

TABLE 3

Selection conditions											
MAb	μg/ml	virus emerged	EC ₅₀ > 50 μg/ml								
MAbCL1	25	. по									
	6.3	· no									
•	1.6	` yes	+								
	0.8	yes	+								
0 MAb CL2	25	по									
	6.3	yes	+ .								
	1.6	yes	+								
	0.8	ND									
MAb CL1 + CL2	25	no									
(Mixture: 50/50)	6.3	no	• ,								
5	1.6	no									
	0.8	1)	-								
	0.4	. 2)	-								

ND, not done

1) neutralization resistant to MAb CL2; Mixture and MAb CL1 still neutralizing

tralizing;
2) neutralization resistant to MAb CL1; Mixture and MAb CL2 still neutralizing.

EXAMPLE 8 (FIG. 6)

Course of p24 Production in Cultures with Serum Samples from an HIV-1 Infected Individual Before and after Treatment with 3 Doses of MAb CL1.

Serum was incubated with PHA-stimulated PBMC from healthy, HIV-negative blood donors. Twice a week, culture supernatant was changed 1:2 by removing half of the supernatant and substituting therefor an equal volume of fresh media. Once per week fresh PHA-stimulated PBMC were added to the culture, The culture was monitored for 5 weeks.

FIG. 6 shows the increase in syncytia formation of cultured serum samples taken from the patient before the administration of MAb CL1 (triangles) and the impressive neutralization of the patient's HIV-1 infection upon administration of MAb CL1, as displayed by the horizontal line at the zero level of p24 production.

EXAMPLE 9

In Vivo Prevention of HIV-1 Infection in a Chimpanzee

4 chimpanzees have been selected for testing the in vivo neutralization in a collaboration with the Merck-research center in West Point, Pa. 19486, USA.

Prior to the in vivo test, CD4 positive primary T cells (PBMC's) were isolated from each chimpanzee to test the permissiveness of in vitro infection with the primary HIV-1 isolate, lade B. For all in vitro tests, conventional procedures as described in M. Purtscher et.al., Aids Research and Human Retroviruses, Vol. 10, Nr. 12, 1994, Mary Ann Liebert, Inc., Publ., have been used. The CD4 PBMC of all four chimpanzees were permissive to viral propagation in vitro. This was to prove that an in vivo infection should be successful.

Two of the chimpanzees were infused with the monoclonal antibody CL1 (PHLS Deposit No. 90091704). For the intravenous infusion of the antibodies 300 ml of solution containing approx. 1 mg/per mililiter stabilized in 1% human serum albumin, at pH 7 were applied per animal. Two other animals were only treated with human serum albumin.

All four chimpanzees were challenged one day after treatment with the primary HIV-1 isolate by intraveneous injection of 3 chimpanzee infective doses of the virus. All four animals were routinely tested for HIV-1 infection for a period of four months.

Result: The two chimpanzees treated with antibody CL1 showed no signs of HIV-1 infection; they have been protected from infection. Both control animals, i.e., those treated only with human serum albumin, became HIV-1 positive.

EXAMPLE 10

In Vivo Prevention of HIV-1 Infection in a SCID-mouse

Another experiment to demonstrate the in-vivo neutralization ability of MAb CL1 has been carried out in collaboration with Transgene, Strasbourg, France,

The genes encoding the heavy and light chains of MAb CL1 have been supplied to Transgene to genetically manipulate mouse fibroblasts (3T3) using standard genetic engineering techniques. The transformed mouse fibroblasts producing MAb CL1 were propagated in vitro on GOREDEX® fibres to form cell pellets. The cell pellets were then applied under the skin of SCID mice to form organelles within these mice so as to release the MAb CL1 into the blood stream. 20

The SCID-mice were reconstituted using conventional procedures with the human white blood cell system in order to give an animal model suitable for infection by HIV-1.

Those SCID-mice having a level of MAb CL1 higher than 2 micrograms of antibody per ml serum were protected against a challenge with HIV-1 IIIB, whereas those having a lower level of antibody per ml in the serum showed a significant delay of infection. SCID-mice treated otherwise in an analogous way and having no MAb CL1 in their serum were all infected.

EXAMPLE 11

Detection of HIV-infection by Means of HIV-1 Peptide Fragments and/or Antiidiotypic Antibodies

Peptide fragments according to the present invention containing at least one of the antigenic determinants of gp41/gp160 and gp120/gp160 as herein described and/or antiidiotypic antibodies recognizing and binding to the epitope of MAb CL1 or MAb CL2 are coated onto microtiter plates by known procedures. Then, sera or plasma of HIV-1 infected patients are added to the precoated wells, where-upon anti-HIV-1 antibodies captured by the HIV-1 specific peptide fragments and/or by said antiidiotypic antibodies are detected by an anti-human IgG specific antibody conjugate (e.g. IgG-horseradish peroxidase) in an ELISA. The presence of antibodies that bind to HIV-1 specific peptide fragments indicate an infection with HIV.

EXAMPLE 12

Detection of HIV-infection by Means of Anti-HIV Antibodies

PBMC from HIV-1 endangered or infected patients are isolated by a Ficoll® density gradient centrifugation. Cells are then incubated with at least one of the HIV-1 neutralizing antibodies MAb CL1, MAb CL2, MAb CL3 and MAb CL4 and/or with functionally equivalent antibodies obtained upon active immunization of an anmial or human individual with an antiidiotypic antibody such as MAb CL6 (M1G1) or MAb CL5 (M1A3). Incubation is carried out at standard conditions e.g., at room temperature or at 37° C. for about one hour, or at 4° C. overnight. Bound antibody, confirming an HIV infection, is detected by a fluorochrome conjugated anti-human IgG antibody and analyzed in a fluorescence activated cell scanner (FACS).

SEQUENCE LISTING

<160> NUMBE	R OF SEQ II	NOS: 11				
<210> SEQ I <211> LENGT <212> TYPE:	H: 8932 DNA	immedafaia				
		imunodeficie	ency virus t	:ype I	a constant	
<400> SEQUE	NCE: 1			•		
agctctctcg	acgcaggact	cggcttgctg	aagcgcgcac	ggcaagaggc	gagggggggc	60
gactggtgag	tacgccaaaa	attttgacta	gcggaggcta	gaaggagaga	gatgggtgcg	120
agagogtcag	tattaagcgg	gggagaatta	gatcgatggg	aaaaaattcg	gttaaggcca	180
gggggaaaga	aaaaatataa	attaaaacat	atagtatggg	caagcaggga	gctagaacga	240
ttcgcagtta	atcctggcct	gttagaaaca	tcagaaggct	gtagacaaat	actgggacag	300
ctacaaccat	cccttcagac	aggatcagaa	gaacttagat	cattatataa	tacagtagca	360
accctctatt	gtgtgcatca	aaggatagag	ataaaagaca	ccaaggaagc	tttagacaag	420
atagaggaag	agcaaaacaa	aagtaagaaa	aaagcacagc	aagcagcagc	tgacacagga	480
cacagcagtc	aggtcagcca	aaattaccct	atagtgcaga	acatccaggg	gcaaatggta	540
catcaggcca	tatcacctag	aactttaaat	gcatgggtaa	aagtagtaga	agagaagget	600
ttcagcccag	aagtaatacc	catgttttca	gcattatcag	aaggagccac	cccacaagat	660
ttaaacacca	tgctaaacac	agtggggga	catcaagcag	ccatgcaaat	gttaaaagag	. 720
accatcaatg	aggaagctgc	agaatgggat	agagtacatc	cagtgcatgc	agggcctatt	780
gcaccaggcc	agatgagaga	accaagggga	agtgacatag	caggaactac	tagtaccctt	840
caggaacaaa	taggatggat	gacaaataat	ccacctatcc	cagtaggaga	aatttataaa	900

agatggataa	tcctgggatt	aaataaaata	gtaagaatgt	atagccctac	cagcattctg	960
gacataagac	aaggaccaaa	agaacctttt	agagactatg	tagaccggtt	ctataaaact	1020
ctaagagccg	agcaagcttc	acaggaggta	aaaaattgga	tgacagaaac	cttgttggtc	1080
caaaatgcga	acccagattg	taagactatt	ttaaaagcat	tgggaccagc	ggctacacta	1140
gaagaaatga	tgacagcatg	tcagggagta	ggaggacccg	gccataaggc	aagagttttg	1200
gctgaagcaa	tgagccaagt	aacaaataca	gctaccataa	tgatgcagag	aggcaatttt	1260
aggaaccaaa	gaaagatggt	taagtgtttc	aattgtggca	aagaagggca	cacagecaga	1320
aattgcaggg	cccctaggaa	aaagggctgt	tggaaatgtg	gaaaggaagg	acaccaaatg	1380
aaagattgta	ctgagagaca	ggctaatttt	ttagġgaaga	tctggccttc	ctacaaggga	1440
aggccaggga	atttcttca	gagcagacca	gagccaacag	ccccaccatt	tettcagage	1500
agaccagagc	caacagcccc	accagaagag	agcttcaggt	ctggggtaga	gacaacaact	1560
cccctcaga	agcaggagcc	gatagacaag	gaactgtatc	ctttaacttc	cctcagatca	1620
ctctttggca	acgacccctc	gtcacaataa	agataggggg	gcaactaaag	gaagctctat	1680
tagatacagg	agcagatgat	acagtattag	aagaaatgag	tttgccagga	agatggaaac	1740
caaaaatgat	agggggaatt	ggaggtttta	tcasagtsag	acagtatgat	cagatactca	1800
tagaaatctg	tggacataaa	gctataggta	cagtattagt	aggacctaca	cctgtcaaca	1860
taattggaag	aaatctgttg	actcagattg	gttgcacttt	aaattttccc	attagcccta	1920
ttgagactgt	accagtasas	ttaaagccag	gaatggatgg	cccaaaagtt	aaacaatggc	1980
càttgacaga	agaaaaaata	aaagcattag	tagaaatttg	tacagaaatg	gaaaaggaag	2040
ggaaaatttc	aaaaattggg	cctgagaatc	catacaatac	tccagtattt	gccataaaga	2100
aaaaagacag	tactaaatgg	agaaaattag	tagatttcag	agaacttaat	aagagaactc	2160
aagacttctg	ggaagttcaa	ttaggaatac	cacatcccgc	agggttaaaa	aagaaaaaat	2220
cagtaacagt	actggatgtg	ggtgatgcat	atttttcagt	tcccttagat	gaagacttca	2280
ggaagtatac	tgcatttacc	atacctagta	taaacaatga	gacaccaggg	attagatatc	2340
agtacaatgt	gcttccacag	ggatggaaag	gatcaccage	aatattccaa	agtagcatga	.2400
cassastctt	agagcctttt	******	atccagacat	agttatctat	caatacatgg	2460
atgatttgta	tgtaggatct.	gacttagaaa	tagggcagca	tagaacaaaa	atagaggagc	2520
tgagacaaca	tctgttgagg	tggggactta	ccacaccaga	caaaaaacat	cagaaagaac	2580
ctccattcct	ttggatgggt	tatgaactcc	atcctgataa	atggacagta	cagcctatag	2640
tgctgccaga	aaaagacagc	tggactgtca	atgacataca	gaagttagtg	gggaaattga	2700
attgggcaag	tcagatttac	ccagggatta	aagtaaggca	attatgtaaa	ctccttagag.	2760
gaaccaaagc	actaacagaa	gtaataccac	taacagaaga	agcagagcta	gaactggcag	2820
aaaacagaga	gattctassa	gaaccagtac	atggagtgta	ttatgaccca	tcaaaagact	2880
taatagcaga	aatacagaag	caggggcaag	gccaatggac	atatcaaatt	tatcaagagc	.2940
catttaaaaa	tctgaaaaca	ggaaaatatg	caagaatgag	gggtgcccac	actaatgatg	3000
tasascastt	aacagaggca	gtgcaaaaaa	taaccacaga	aagcatagta	atatggggaa	3060
agactectaa	atttaaacta	cccatacaaa	aggaaacatg	ggaaacatgg	tggacagagt	3120
attggcaagc	cacctggatt	cctgagtggg	agtttgttaa	tacccctcct	ttagtgaaat	3180
tatggtacca	gttagagaaa	gaacccatag	taggagcaga	aaccttctat	gtagatgggg	3240

cagctaacag	ggagactaaa	ttaggaaaag	caggatatgt	tactaacaaa	ggaagacaaa	3300
aggttgtccc	cctaactaac	acaacaaatc	agaaaactga	gttacaagca	atttatctag	3360
ctttgcagga	ttcaggatta	gaagtaaaca	tagtaacaga	ctcacaatat	gcattaggaa	3420
tcattcaagc	acaaccagat	aaaagtgaat	cagagttagt	caatcaaata	atagagcagt	3480
taataaaaaa	ggaaaaggtc	tatctggcat	gggtaccagc	acacaaagga	attggaggaa	3540
atgaacaagt	agataaatta	gtcagtgctg	gaatcaggaa	aatactattt	ttagatggaa	3600
tagataaggc	ccaagatgaa	catgagaaat	atcacagtaa	ttggagagca	atggctagtg	3660
attttaacct	gccacctgta	gtagcaaaag	aaatagtagc	cagctgtgat	aaatgtcagc	3720
taaaaggaga	agccatgcat	ggacaagtag	actgtagtcc	aggaatatgg	caactagatt	3780
gtacacattt	agaaggaaaa	gttatcctgg	tagcagttca	tgtagccagt	ggatatatag	3840
aagcagaagt	tattccagca	gaaacagggc	aggaaacagc	atattttctt	ttaaaattag	3900
caggaagatg	gccagtaaaa	acaatacata	cagacaatgg	cagcaatttc	accagtgcta	3960
cggttaaggc	cgcctgttgg	tgggcgggaa	tcaagcagga	atttggaatt	ccctacaatc	4020
cccaaagtca	aggagtagta	gaatctatga	ataaagaatt	aaagaaaatt	ataggacagg	4080
taagagatca	ggctgaacat	cttaagacag	cagtacaaat	ggcagtattc	atccacaatt	4140
ttaaaagaaa	aggggggatt	ggggggtaca	gtgcagggga	aagaatagta	gacataatag	. 4200
caacagacat	acaaactaaa	gaattacaaa	aacaaattac	aaaaattcaa	aattttcggg	4260
tttattacag	ggacagcaga	aatccacttt	ggaaaggacc	agcaaagctc	ctctggaaag	4320
gtgaaggggc	agtagtaata	caagataata	gtgacataaa	agtagtgcca	agaagaaaag	4380
caaagatcat	tagggattat	ggaaaacaga	tggcaggtga	tgattgtgtg	gcaagtagac	4440
aggatgagga	ttagaacatg	gaaaagttta	gtadaacacc	atatgtatgt	ttcagggaaa	4500
gctaggggat	ggttttatag	acatcactat	gaaagccctc	atccaagaat	aagttcagaa	4560
gtacacatcc	cactagggga	tgctagattg	gtaataacaa	catattgggg	tctgcataca	4620
ggagaaagag	actggcattt	gggtcaggga	gtctccatag	aatggaggaa	aaagagatat	4680
agcacacaag	tagaccctga	actagcagac	caactaattc	atctgtatta	ctttgactgt	4740
ttttcagact	ctgctataag	aaaggcctta	ttaggacaca	tagttagccc	taggtgtgaa	4800
tatcaagcag	gacataacaa	ggtaggatct	ctacaatact	tggcactagc	agcattaata	4860
acaccaaaaa	agataaagcc	acctttgcct	agtgttacga	aactgacaga	ggatagatgg	4920
aacaagcccc	agaagaccaa	gggccacaga	gggagccaca	caatgaatgg	acactagage	4980
tttagagga	gcttaagaat	gaagcigtta	gacattttcc	taggatttgg	ctccatggct	5040
tagggcaaca	tatctatgaa	acttatgggg	atacttgggc	aggagtggaa	gccataataa	5100
gaattctgca	acaactgctg	tttatccatt	ttcagaattg	ggtgtcgaca	tagcagaata	5160
ggcgttactc	gacagaggag	agcaagaaat	ggagccagta	gatectagae	tagagccctg	5220
gaagcatcca	ggaagtcagc	ctaaaactgc	ttgtaccaat	tgctattgta	aaaagtgttg	5280
	caagtttgtt					5340
gcġgagacag	cgacgaagac	ctcctcaagg	cagtcagact	catcaagttt	ctctatcaaa	5400
gcagtaagta	gtacatgtaa	tgcaacctat	acaaatagca	atagtagcat	tagtagtagc	5460
	gcaatagttg				•	5520
acaaagaaaa	atagacaggt	taattgatag	actaatagaa	agagcagaag	acagtggcaa	5580
tgagagtgaa	ggagaaatat	cagcacttgt.	ggagatgggg	gtggagatgg	ggcaccatgc	5640

tccttgggat	gttgatgatc	tgtagtgcta	cagaaaaatt	gtgggtcaca	gtctattatg	5700
gggtacctgt	gtggaaggaa	gcaaccacca	ctctattttg	tgcatcagat	gctaaagcat	5760
atgatacaga	ggtacataat	gtttgggcca	cacatgcctg	tgtacccaca	gaccccaacc	5820
cacaagaagt	agtattggta	aatgtgacag	aaaattttaa	catgtggaaa	aatgacatgg	5880
tagaacagat	gcatgaggat	ataatcagtt	tatgggatca	aagcctaaag	ccatgtgtaa	5940
aattaacccc	actctgtgtt	agtttaaagt	gcactgattt	gaagaatgat	actastacca	6000
atagtagtag	cgggagaatg	ataatggaga	aaggagagat	aaaaaactgc	tctttcaata	6060
tcagcacaag	cataagaggt	aaggtgcaga	aagaatatgc	attttttat	aaacttgata	6120
taataccaat	agataatgat	actaccaget	atacgttgac	aagttgtaac	acctcagtca	6180
ttacacaggc	ctgtccaaag	gtatectttg	agccaattcc	catacattat	tgtgccccgg	6240
ctggttttgc	gattctaaaa	tgtaataata	agacgttcaa	tggaacagga	ccatgtacaa	6300
atgtcagcac	agtacaatgt	acacatggaa	ttaggccagt	agtatcaact	caactgctgt	6360
taaatggcag	tctggcagaa	gaagaggtag	taattagatc	tgccaatttc	acagacaatg	6420
ctaaaaccat	aatagtacag	ctgaaccaat	ctgtagaaat	taattgtaca	agacccaaca	6480
acaatacaag	aaaaagtatc	cgtatccaga	gaggaccagg	gagagcattt	gttacaatag	6540
gaaaaatagg	aaatatgaga	caagcacatt	gtaacattag	tagagcasaa	tggaataaca	6600
ctttaaaaca	gatagatago	aaattaagag	aacaatttgg	aaataataaa	acastsatct	6660
ttaagcagtc	ctcaggaggg	gacccagaaa	ttgtaacgca	cagttttaat	tgtggagggg	6720
aatttttcta	ctgtaattca	acacaactgt	ttaatagtac	ttggtttaat	agtacttgga	6780
gtactaaagg	gtcaaataac	actgaaggaa	gtgacacaat	caccetecea	tgcagaataa	6840
aacaaattat	aaacatgtgg	caggaagtag	gaaaagcaat	gtatgcccct	cccatcagtg	6900
gacaaattag	atgttcatca	aatattacag	ggctgctatt	aacaagagat	ggtggtaata	6960
gcaacaatga	gtccgagatc	ttcagacctg	gaggaġgaga	tatgagggac	aattggagaa	7020
gtgaattata	taaatataaa	gtagtaaaaa	ttgaaccatt	aggagtagca	cccaccaagg	7080
caaagagaag	agtggtgcag	agagaaaaaa	gagcagtggg	aataggagct	ttgttccttg	7140
ggttcttggg	agcagcagga	agcactatgg	gcgcagcgtc	aatgacgctg	acggtacagg	7200
ccagacaatt	attgtctggt	atagtgcagc	agcagaacaa	tttgctgagg	gctattgagg	7260
cgcaacagca	tctgttgcaa	ctcacagtct	ggggcatcaa	gcagctccag	gcaagaatcc	7320
tggctgtgga	aagataccta	aaggatcaac	agctcctggg	gatttggggt	tgctctggaa	7380
aactcatttg	caccactgct	gtgccttgga	atgctagttg	gagtaataaa	tctctggaac	7440
agatttggaa	taacatgacc	tggatggagt	gggacagaga	aattaacaat	tacacaagct	7500
taatacactc	cttaattgaa	gaatcgcaaa	accagcaaga	aaagaatgaa	caagaattat	7560
tggaattaga	taaatgggca	agtttgtgga	attggtttaa	cataacaaat	tggctgtggt	7620
atataaaatt	attcataatg	atagtaggag	gcttggtagg	tttaagaata	gtttttgctg	-7680
tactttctgt	agtgaataga	gttaggcagg	gatattcacc	attatcgttt	cagacccacc	7740
tcccaatccc	gaggggaccc	gacaggcccg	aaggaataga	agaagaaggt	ggagagagag	780Ġ
acagagacag	atccattcga	ttagtgaacg	gatccttagc	acttatctgg	gacgatctgc	7860
ggagcctgtg	cctcttcagc	taccaccgct	tgagagactt	actcttgatt	gtaacgagga	7920
ttgtggaact	tctgggacgc	agggggtggg	aagccctcaa	atattggtgg	aatctcctac	7980

agt	attg	gag	tcag	gage	ta a	agaa	tagt	g ct	gtta	gctt	gct	caat	gcc	acag	ctat	ag	8040
cag	tagc	tga	9999	acag	at a	gggt	tata	g aa	gtag	taca	agg	agct	tat	agag	ctat	tc	8100
gcc	acat	acc	taga	agaa	ta a	gaca	gggc	t tg	gaaa	ggat	ttt	gcta	taa	gatg	ggtg	gc	8160
aag	tggt	caa	aaag	tagt	gt g	gttg	gatg	g cc	tgct	gtaa	999	aaag	aat	gaga	cgag	ct	8220
gag	ccag	cag	caga	tggg	gt g	ggag	cagc	a tc	tcga	gacc	tag	aaaa	aca	tgga	gcaat	tc	8280
aca	agta	gca	acac	agca	gc t	aaca	atgc	t ga	ttgt	gcct	ggc	taga	agc	acaa	gagga	ag	8340
gag	gagg	tgg	gttt	tcca	gt c	acac	ctca	g gt	acct	ttaa	gac	caat	gac	ttac	aaggo	ca	8400
gct	gtag	atc	ttag	CCAC	tt t	ttaa	aaga	a aa	9999	ggac	tgg	aagg	gct	aatt	cacto	ec ,	8460
caa	cgaa	gac	aaga	tațc	ct t	gatc	tgtg	g at	ctac	caca	cac	aagg	cta_	cttc	cctg	at	8520
tag	caga	act	acac	acca	99 g	ccag	ggat	c ag	atat	ccac	tga	cctt	tgg	atgg	tgcta	ac .	8580
aag	ctag	tac	cagt	tgag	cc a	gaga	agtt	a ga	agaa	gcca	aca	aagg	aga	gaac	acca	jc	8640
ttg	ttac	acc ·	ctgt	gagc	ct g	catg	gaat	g ga	tgac	ccgg	aga	gaga	agt	gtta	gagte	19	8700
a gg	tttg	aca	gccg	ccta	gc a	tttc	atca	c at	ggcc	cgag	agc	tgca	tcc	ggag	tactt	c	8760
aag	aact	gct	gaca	toga	gĉ t	tgct	acaa	g gg	actt	teeg	ctg	ggga	ctt	tcca	gggag	39	8820
cgt	ggee.	tgg	gcgg	gact	99 g	gagt	ggcg	a gc	cctc	agat	cct	gcat	ata	agca	gctgo	:t	8880
ttt	tgcc	tgt	actg	ggtc	tc t	ctgg	ttag	a cc	agat	ctga	gcc	tggg.	agc	tc.			8932
<211 <212 <213	0> SI L> LI 2> T 3> OF	PE:	i: 5: PRT [SM:	12 Huma	an ir	 mnoo	defici	iency	y Vi:	rus 1	cype	1					
Met	Gly	Ala	Arg	Ala	Ser	Val	Leu	Ser	_	Gly	Glu	Leu	Asp	Arg	Trp		•
1 Glu	Lys	Ile	Arg	Leu	Arg	Pro	Gly		LÄB.	Lyв	Lys	Tyr	Lys	15 Leu	Lys		
His	Ile		Trp	Ala	Ser	Arg		25 Leu	Glu	Arg	Phe		Val	Asn	Pro		
	.	35			_		.40					45					
GIY	50	Leu	GIU	Thr	Ser	55	GIÀ	Сув	Arg	Gln	11e 60	Leu	Gly	Gln	Leu		
Gln 65	Pro	Ser	Leu	Gln	Thr 70	Gly	Ser	Glu	Glu	Leu 75	Arg	Ser	Leu	Tyr	Asn 80		
Thr	Val	Ala	Thr	Leu 85	Tyr	Сув	Val	His	Gln 90	Arg	Ile	Glu	Ile	Lys 95	Авр	· .	j.,
Thr	Lys	Glu	Ala 100	Leu	Asp	Lys	Ile	Glu 105	Glu	Glu	Gln	Asn	Lys 110	Ser	Lys		
Lув	Ĺув	Ala 115	Gln	Gln	Ala	Ala	Ala 120	Авр	Thr	Gly	His	Ser 125	Ser	Gln	Val		
Ser	Gln 130	Asn	Tyr	Pro	Ile	Val 135	Gln	Asın	Ile	Gln	Gly 140	Gln	Met	Val	His		
Gln 145	Ala	Ile	Ser	Pro	Arg 150	Thr	Leu	Asn	Ala	Trp 155	Val	Lys	Val	Val	Glu 160	-	•
Glu	Lýs	Ala	Phe	Ser 165	Pro	Glu	Val	Ile	Pro 170	Met	Phe	Ser	Ala	Leu 175	Ser		
Glu	Gly	Ala	Thr 180	Pro	Gln	Авр	Leu	Asn 185	Thr	Met	Leu	Asn	Thr 190	Val	Gly		
Gly	His	Gln 195	Ala	Ala	Met	Gln	Met 200	Leu	Lys	Glu	Thr	Ile 205	Asn	Glu	Glu		

Ala	Ala 210	Glu	Trp	Авр	Arg	Val 215	His	Pro	Val	His	Ala 220	Gly	Pro	Ile	Ala
Pro 225	Gly	Gln	Met	Arg	Glu 230	Pro	Arg	Gly	Ser	Авр 235	Ile	Aļa	Gly	Thr	Thr 240
Ser	Thr	Leu	Gln	Glu 245	Gln	Ile	Gly	Trp	Met 250	Thr	Asn	Asn	Pro	Pro 255	Ile
Pro	Val	GJA	Glu 260	Ile	Tyr	Lys	Arg	Trp 265	Ile	Ile	Leu	Gly	Leu 270	Asn	Lys
Ile	Val	Arg 275	Met	Tyr	Ser	Pro	Thr 280	Ser	Ile	Leu	Asp	Ile 285	Arg	Gln ,	Gly
Pro	Lув 290	Glu	Pro	Phe	Arg	Авр 295	Tyr	Val	Asp	Arg	Phe 300	Tyr	Lys	Thr	Leu
Arg 305	Ala	Glu	Gln	Ala	Ser 310	Gln	Glu	Val	Lys	Asn 315	Trp	Het	Thr	Glu	Thr 320
Leu	Leu	Val	Gln	Asn 325	Ala	Asn	Pro	Asp	Сув 330	Lys	Thr	Ile	Leu	Lys 335	Ala
		•	340					345					350	Gln	
Val	Gly	Gly 355	Pro	Gly	His	Lys	Ala 360	Arg	Val	Leu	Ala	Glu 365	Ala	Met	Ser
	370					375					380			Phe	
385		•	-		390					395				Gly	400
				405					410					Lув 415	
			420		•			425				,	430	Ala	
		435				-	440-			_		445	_	Asn	
	450					455			•		460			Ser	
465					470					475	-		-	Val	480
				485					490					Leu 495	
Pro	Leu	Thr	Ser 500	Leu	Arg	Ser	Leu	Phe 505	Gly	Asn	Asp	Pro	Ser 510	Ser	Gln
<211	> LE	Q ID	: 10					·:							٠
		PE: GANI		Huma	n im	unod	lefici	ency	vir	us t	ype	1			٠.
<400	> SE	QUEN	CE:	3											
Phe 1	Phe	Arg	Glu	Asp 5	Leu	Ala	Phe	Leu	Gln 10	Gly	Lys	Ala	Arg	Glu 15	Phe
Ser	Ser	Glu	Gln 20	Thr	Arg	Ala	Asn	Ser 25	Pro	Thr	Ile	Ser	Ser 30	Glu	Gln ,
Thr	Arg	Ala 35	Asn	Ser	Pro	Thr	Arg 40	Arg	Glu	Leu	Gln	Val 45	Trp	Gly	Arg
Asp	Asn 50	Asn	Ser	Pro	Ser	Glu 55	Ala	Gly	Ala	Авр	Arg 60	Gln	Gly	Thr	Val
Ser 65	Phe	Asn	Phe	Pro	Gln 70	Ile	Thr	Leu	Trp	Gln 75	Arg	Pro	Leu	Val	Thr 80

Ile	Lys	Ile	Gly	Gly 85	Gln	Leu	Lys	Glu	Ala 90	Leu	Leu	Asp	Thr	Gly 95	Ala
Asp -	Asp	Thr	Val 100	Leu	Glu	Glu	Met	Ser 105	Leu	Pro	Gly	Arg	Trp 110	Lys	Pro
Lys	Met	Ile 115	Gly	Gly	Ile	Gly	Gly 120	Phe	Ile	Lys	Val	Arg 125	Gln	Tyr	Asp
Gln	11e	Leu	Ile	Glu	Ile	Сув 135	Gly	His	Lys	Ala	11e 140	Gly	Thr	Val	Leu
145	Gly				150	,				155					160
Ile	Gly	Сув	Thr	Leu 165	Asn	Phe	Pro	Ile	Ser 170	Pro	Ile	Glu	Thr	Val 175	Pro
Val	Lys	Leu	Lys 180	Pro	Gly	Met	Asp	Gly 185	Pro	Lув	Val	Lys	Gln 190	Trp	Pro
Leu	Thr	Glu 195	Glu	Lys	Ile	ГÀв	Ala 200	Leu	Val ·	Glu	Ile	Сув 205	Thr	Glu	Met
Glu	Lys 210	Glu	Gly	Lys	Ile	Ser 215	Lys	Ile	Gly	Pro	Glu 220	Asn	Pro	Tyr	Asn
Thr 225	Pro	Val	Phe	Ala	Ile 230		Lys	Lув	Авр	Ser 235	Thr	Lys	Trp	Arg	Lys 240
Leu	Val	Asp	Phe	Arg 245	Glu	Leu	naA	Lys	Arg 250	Thr	Gln	Asp	Phe	Trp 255	Glu
·	Gln		260					265			-	٠,	270	-	
Val	Thr	Val 275	Leu	Asp	Val	Gly	Asp 28 _. 0	Ala	Tyr	Phe	Ser	Val 285	Pro	Leu	qaA
Glu	Авр 290	Phe	Arg	Lys	Tyr.	Thr 295	Ala	Phe	Thr	Ile	Pro 300	Ser	Ile	naA	Asn
Glu 305	Thr	Pro	Gly	Ile	Arg 310	Tyr	Gln	Tyr	Asn	Val 315	Leu	Pro	Gln	Glý	Trp 320
	Gly			325					330			-		335	
	Phe		340					345				•	350		
Asp	Leu	Tyr 355	Val	Gly	Ser	Asp	Leu 360	Glu	Ile	Gly	Gln	His 365	Arg	Thr	Lys
Ile	Glu 370	Glu	Leu	Arg	Gln	His 375	Leu	Leu	Arg	Trp	Gly 380	Leu	Thr	Thr	Pro
98A 385	Lys	Lys	His	Gln	Lув 390	Glu	Pro	Pro	Phe	Leu 395	Trp	Met	Gly	Tyr	Glu 400
Leu	His	Pro	Asp	Lу в 405	Trp	Thr	Val	Gln	Pro 410	Ile	Val	Leu	Pro	Glu 415	Lys
Asp	Ser	Trp	Thr 420	Val	naA	Asp	Ile	Gln 425	Lys	Leu	Val	Gly	Lys 430	Leu	Asn
Trp	Ala	Ser 435	Gln	Ile	Tyr	Pro	Gly 440	Ile	Lys	Val	Arg	Gln 445	Leu	Cys	Lys
Leu	Leu 450	Arg	Gly	Thr	Lув	Ala 455	Leu	Thr	Glu	Val	11e 460	Pro	Leu	Thr	Glu
Glu 465	Ala	Glu	Leu		Leu 470	Ala	Glu	Asn	Arg	Glu 475	Ile	Leu	Lув	Glu	Pro 480
Val	His	Gly	Val	Tyr 485	Tyr	Asp	Pro	Ser	Lув 490	Asp	Leu	lle	Ala	Glu 495	Ile

						• •						COI	CIN	ueu		
Gln	Lув	Gln	Gly 500	Gln	Gly	Gln	Trp	Thr 505	Tyr	Gln	Ile	Tyr	Gln 510	Glu	Pro	
Phe	Lys	Asn 515	Leu	Lys	Thr	Gly	Lys 520	Tyr	Ala	Arg	Met	Arg 525	Gly	Ala	His	
Thr	Asn 530	Asp	Val	Lys	Gln	Leu 535	Thr	Glu	Ala	Val	Gln 540	Lys	Ile	Thr	Thr	
Glu 545	Ser	Ile	Val	Ile	Trp 550		Lys	Thr	Pro	Lys 555	Phe	Lув	Leu	Pro	Ile 560	
Gln	Lув	Glu	Thr	Trp 565	Glu	Thr	Trp	Trp	Thr 570	Glu	Tyr	Trp	Gln	Ala 575	Thr	
Trp	Ile	Pro	Glu 580	Trp	Glu	Phe	Val	Asn 585	Thr	Pro	Pro	Leu	Val 590	Lys	Leu	
Trp	Tyr	Gln 595	Leu	Glu	Lys	Glu	Pro 600	Ile	Val	Gly	Ala	Glu 605	Thr	Phe	Tyr	
Val	Авр 610	Gly	Ala	Ala	Asn	Arg 615	Glu	Thr	Lys	Leu	Gly 620	Lys	Ala	Gly	Tyr	
Val 625	Thr	Asn	Lys	Glý	Arg 630	Gln	Lys	Val		Pro 635	Leu	Thr	Asn	Thr	Thr 640	
Asn	Gln	Lys	Thr	Glu 645	Leu	Gln	Ala	Ile	Tyr 650	Leu	Ala	Leu	Gĺn	Asp 655	Ser	
Gly	Leu	Glu	Val 660	naA	Ile	Val	Thr	Авр 665	Ser	Glņ	Tyr	Ala	Leu 670	Gly	Ile	
Ile	Gln	Ala 675	Gln	Pro	Авр	Lys	Ser 680	Glu	Ser	Glu	Leu	Val 685	Asn	Gln	Ile	
Ile	Glu 690	Gln	Leu	Ile	Lys	Lys 695	Glu	Lys	Val	Tyr	Leu 700	Ala	Trp	Val	Pro	
Ala 705	His	Lys	Gly	Ile	Gly 710	Gly	Asn	Glu	Gln	Val 715	Asp -	Lys	Leu	Val	Ser 720	
Ala	Gly	Ile	Arg	Lys 725	Ile	Leu	Phe	Leu	Авр 730	Gly	Ile	qaA	Lys	Ala 735	Gln	
Asp	Glu	His	Glu 740	Lys	Ţyr	His	Ser	Asn 745	Trp	Arg	Ala	Met	Ala 750	Ser	Asp	
Phe	Asn	Le ц 755	Pro	Pro	Val	Val	Ala 760	Lys	Glu	Ile	Val	Ala 765	Ser	Сув	Asp	
Lув	Су́в 770	Gln	Leu	Lys	Gly	Glu 775	Aļa	Met	His	Gly	Gln 780	Val	Авр	Сув	Ser	
Pro 785	Gly	Ile	Trp	Gln	Leu 790	Asp	е Сув	Thr	His	Leu 795	Glu	Gly	Lys	Val	11e 800	
Leu	Val	Ala	Val	His 805	Val	Ala	Ser	Gly	Tyr 810	Ile	Glu	Ala	Glu	Val 815	Ile	
Pro	Ala	Glu	Thr 820	Gly	Gln	Glu	Thr	Ala 825	Tyr	Phe	Leu	Leu	Lys 830	Leu	Ala	
Gly	Arg	Trp 835	Pro	Val	Lyś	Thr	11e 840	His	Thr	qaA	Asn	Gly 845	Ser	Asn	Phe	
Thr	Ser 850	Ala	Thr	Val	Lys	Ala 855	Ala	Сув	Trp	Trp	Ala 860	Gly	Ile	Lys	Gln	
Glu 865	Phe	Gly	Ile	Pro	Tyr 870	Asn	Pro	Gln	Ser	Gln 875	Gly	Val	Val	Glu	Ser 880	
Met	Asn	Lys	Glu	Leu 885	Lys	Lys	Ile	Ile	Gly 890	Gln	Val	Arg	Asp	Gln 895	Ala	
Glu	His	Leu	Lув 900	Thr	Ala	Val	Gln	Met 905	Ala	Val	Phe	Ile	His 910	Asn	Phe	

Lys Arg Lys Gly Gly Ile Gly Gly Tyr Ser Ala Gly Glu Arg Ile Val 915 920 925

Asp Ile Ile Ala Thr Asp Ile Gln Thr Lys Glu Leu Gln Lys Gln Ile 930 935 940

Thr Lys Ile Gln Asn Phe Arg Val Tyr Tyr Arg Asp Ser Arg Asn Pro 945 950 955 960

Leu Trp Lys Gly Pro Ala Lys Leu Leu Trp Lys Gly Glu Gly Ala Val 965 970 . 975 \

Val Ile Gln Asp Asn Ser Asp Ile Lys Val Val Pro Arg Arg Lys Ala 980 985 990

Lys Ile Ile Arg Asp Tyr Gly Lys Gln Met Ala Gly Asp Asp Cys Val 995 1000 1005

Ala Ser Arg Gln Asp Glu Asp 1010 1015

<210> SEQ ID NO 4

<211> LENGTH: 192 <212> TYPE: PRT

<213> ORGANISM: Human imunodeficiency virus type 1

<400> SEQUENCE: 4

Met Glu Asn Arg Trp Gln Val Met Ile Val Trp Gln Val Asp Arg Met
1 5 10 15

Arg Ile Arg Thr Trp Lys Ser Leu Val Lys His His Met Tyr Val Ser 20 25 30

Gly Lys Ala Arg Gly Trp Phe Tyr Arg His His Tyr Glu Ser Pro His 35 40 45

Pro Arg Ile Ser Ser Glu Val His Ile Pro Leu Gly Asp Ala Arg Leu 50 $\,$ 55 $\,$ 60 $\,$

Val Ile Thr Thr Tyr Trp Gly Leu His Thr Gly Glu Arg Asp Trp His 65 70 75 80

Leu Gly Gln Gly Val Ser Ile Glu Trp Arg Lys Lys Arg Tyr Ser Thr 85 . 90 95

Gln Val Asp Pro Glu Leu Ala Asp Gln Leu Ile His Leu Tyr Tyr Phe $100 \hspace{1cm} 105 \hspace{1cm} 110$

Asp Cys Phe Ser Asp Ser Ala Ile Arg Lys Ala Leu Leu Gly His Ile 115 120 125

Val Ser Pro Arg Cys Glu Tyr Gln Ala Gly His Asn Lys Val Gly Ser 130 135

Leu Gln Tyr Leu Ala Leu Ala Ala Leu Ile Thr Pro Lys Lys Ile Lys 145 150 150

Pro Pro Leu Pro Ser Val Thr Lys Leu Thr Glu Asp Arg Trp Asn Lys

Pro Gln Lys Thr Lys Gly His Arg Gly Ser His Thr Met Asn Gly His

<210> SEQ ID NO 5 <211> LENGTH: 78

<212> TYPE: PRT

<213> ORGANISM: Human imunodeficiency virus type 1

<400> SEQUENCE: 5

Met Glu Gln Ala Pro Glu Asp Gln Gly Pro Gln Arg Glu Pro His Asn 1 5 10 15

Glu Trp Thr Leu Glu Leu Leu Glu Glu Leu Lys Asn Glu Ala Val Arg

```
His Phe Pro Arg Ile Trp Leu His Gly Leu Gly Gln His Ile Tyr Glu
Thr Tyr Gly Asp Thr Trp Ala Gly Val Glu Ala Ile Ile Arg Ile Leu 50 . 55 60
Gln Gln Leu Leu Phe Ile His Phe Gln Asn Trp Val Ser Thr
<210> SEQ ID NO 6 <211> LENGTH: 86
<212> TYPE: PRT
<213> ORGANISM: Human imunodeficiency virus type 1
<400> SEQUENCE: 6
Met Glu Pro Val Asp Pro Arg Leu Glu Pro Trp Lys His Pro Gly Ser 1 _{\cdot} 5 10 15
Gln Pro Lys Thr Ala Cys Thr Asn Cys Tyr Cys Lys Lys Cys Cys Phe
20 25 30
His Cys Gln Val Cys Phe Ile Thr Lys Ala Leu Gly Ile Ser Tyr Gly 35 40
Arg Lys Lys Arg Arg Gln Arg Arg Pro Pro Gln Gly Ser Gln Thr 50 \, 55 \, 60
His Gln Val Ser Leu Ser Lys Gln Pro Thr Ser Gln Ser Arg Gly Asp 65 70 80 80
Pro Thr Gly Pro Lys Glu
<210> SEQ ID NO 7 <211> LENGTH: 116
<212> TYPE: PRT
<213> ORGANISM: Human imunodeficiency virus type 1
<400> SEQUENCE: 7
Met Ala Gly Arg Ser Gly Asp Ser Asp Glu Asp Leu Leu Lys Ala Val
Arg Leu Ile Lys Phe Leu Tyr Gln Ser Asn Pro Pro Pro Asn Pro Glu
20 25 30
Gly Thr Arg Gln Ala Arg Arg Asn Arg Arg Arg Arg Trp Arg Glu Arg 35 40 45
Gln Arg Gln Ile His Ser Ile Ser Glu Arg Ile Leu Ser Thr Tyr Leu 50 55 60
Gly Arg Ser Ala Glu Pro Val Pro Leu Gln Leu Pro Pro Leu Glu Arg 65 70 70 75 80
Leu Thr Leu Asp Cys Asn Glu Asp Cys Gly Thr Ser Gly Thr Gln Gly 85 90 95
Val Gly Ser Pro Gln Ile Leu Val Glu Ser Pro Thr Val Leu Glu Ser
100 105 110
Gly Ala Lys Glu
<210> SEQ ID NO 8 <211> LENGTH: 81
<212> TYPE: PRT
<213> ORGANISM: Human imunodeficiency virus type 1
<400> SEQUENCE: 8
Met Gln Pro Ile Gln Ile Ala Ile Val Ala Leu Val Val Ala Ile Ile
```

Ile	Ala	Ile	Val 20	Val	Trp	Şer	Ile	Val 25	Ile	Ile	Glu	Tyr	Arg 30	Lys	Ile
Leu	Arg	Gln 35	Arg	Lys	Ile	Asp	Arg 40	Leu	Ile	Asp	Arg	Leu 45	Ile	Glu	Arg
Ala	Glu 50	Asp	Ser	Gly	Asn	Glu 55	Ser	Glu	Gly	Glu	Ile 60	Ser	Ala	Leu	Val
Glu 65	Met	Gly	Val	Glu	Met 70	Gly	His	His	Ala	Pro 75	Trp	Asp	Val	Asp	Asp 80
Leu															
<210> SEQ ID NO 9 <211> LENGTH: 856															
<212> TYPE: PRT <213> ORGANISM: Human imunodeficiency virus type 1															
<220)> FI	EATUE	Œ:	•	PEPTIDE										
<222> LOCATION: <221> NAME/KEY:			(79) (184)												
					5)((400))			-					
<400)> SI	QUE	ICE:	9		•							`		
Met 1	Arg	Val	Lys	Glu 5	Lys	Tyr	Gln	His	Leu 10	Trp	Arg	Trp	Gly	Trp 15	Arg
Trp	Gly	Thr	Met 20	Leu	Leu	Gly	Met	Leu 25	Met	Ile	Сув	Ser	Ala 30	Thr	Glu '
Lys		Trp 35	Val	Thr	Val	Tyr	Tyr 40	Gly	Val	Pro	Val	Trp 45	Lys ·	Glu	Ala
Thr	Thr 50	Thr	Leu	Phe	Сув	Ala 55	Ser	Asp	Ala	Lys	Ala 60	Tyr	Asp	Thr	Glu
Val 65	His	Asn	Val	Trp	Ala 70	Thr	His	Ala	Сув	Val 75	Pro	Thr	qaA	Pro	Asn 80
Pro	Gln	Glu	Val	Val 85	Leu	Val	Asn	Val	Thr 90	Glu	naA	Phe	Asn	Met 95	Trp
Lys	Asn	Asp	Met 100	Val	Glu	Gln	Met	His 105	Glu	Asp	Ile	Ile	Ser 110	Leu	Trp
yeb	Gln	Ser 115	Leu	Lys	Pro	Сув	Val 120	Lув	Leu	Thr	Pro	Leu 125	Сув	Val	Ser
Leu	Lу в 130	Сув	Thr	Asp	Leu	Lув 135	naA	Asp	Thr	Asn	Thr 140	Asn	Ser	Ser	Ser
Gly 145	Arg	Met	Ile	Met	Glu 150	Lув	Gly	Glu	Ile	Lу в 155	Asn	Сув	Ser	Phe	Asn 160
Ile	Ser	Thr	Ser	Ile 165	Arg	Gly	Lу̀в	Val	Gln 170	Lys	Glu	Tyr	Ala	Phe 175	Phe
Tyr	Lys	Leu	Авр 180	Ile	Ile	Pro	Ile	Авр 185	Asn	Авр	Thr	Thr o	Ser 190	Tyr	Thr
Leu	Thr	Ser 195	Сув	Asn	Thr	Ser	Val 200	Ile	Thr	Gln	Ala	Сув 205	Pro	Lys	Val
	Phe 210	Glu	Pro	Ile	Pro	Ile 215	His	Tyr	Cys	Ala	Pro 220	Ala	Gly	Phe	Ala
11e 225	Leu	Lys	Сув	Asn	Asn 230	Lys	Thr	Phe	naA	Gly 235	Thr	Gly	Pro	Сув	Thr 240
Asn	Val	Ser	Thr	Val 245	Gln	Сув	Thr	His	Gly 250	Ile	Arg	Pro	Val	Val 255	Ser
Thr	Gln	Leu	Leu 260	Leu	Asn	Gly	Ser	Leu 265	Ala	Glu	Glu	Glu	Val 270	Val	Ile

Arg	Ser	Ala 275	Asn	Phe	Thr	Двр	Авп 280	Ala	Lys	Thr	Ije	11e 285	Val	Gln	Leu
Asn	Gln 290	Ser	Val	Glu		Asn 295	Сув	Thr	Arg	Pro	Asn 300	Asn	Asn	Thr	Arg
Lув 305	Ser	Ile	Arg	Ile	Gln 310	Arg	-Gly	Pro	Gly	Arg 315	Ala	Phe	Val	Thr	Ile 320
Gly	Lys	Ile	Gly	Asn 325	Met	Arg	Gln	Ala	His 330	Сув	Asn	Ile	Ser	Arg 335.	Ala
Lys	Trp	Asn ,	Asn 340	Thr	Leu	Lys	Gln	Ile 345	Asp	Ser	Lys	Leu	Arg 350	Glu	Gln
٠.		355					11e 360		_			365	_	_	-
	370	. •				375	Phe			•	380				
385					390		Asn			395					400
	,	-		405			Thr.		410	•				415	
		_	420				Ile	425		-			430		-
	•	435					Ser 440	_			_	445			
	450					455	Arg	•			460				
465			•	·	470		Gly			4.75				•	480
				485			Val		490					495	
			500				Arg	505			- 7		510	_	
		515	•				Leu 520					525		_	
÷	530					5 3 5					540				
545					550		Gln			555					560
				565			Leu		570 ·	_			•	575	
	•	•	580			:	Glu	585	-,		-	_	590		
		595					Gly 600				_	605			
	610					615	Asn	•			620				
Asn 625	Met	Thr	Trp	Met	Glu 630	Trp	Asp	Arg	Glu	11e 635	Asn	Asn	Tyr	Thr	Ser 640
Leu	Ile	His	Ser	Leu 645	Ile	Glu	Glu	Ser	Gln 650		Gln	Gln	Glu	Lys 655	Asn
Glu	Gln	Glu	Leu 660	Leu	Glu	Leu	Asp	Lys 665	Trp _.	Ala _.	Ser	Leu	Trp 670	Asn	Trp
Phe	Asn	11e 675	Thr	Asn [.]	Trp	Leu	Trp 680	Tyr	Ile	Lys	Leu	Phe 685		Met	Ile

Val Gly Gly Leu Val Gly. Leu Arg Ile Val Phe Ala Val Leu Ser Val 690 700 Val Asn Arg Val Arg Gln Gly Tyr Ser Pro Leu Ser Phe Gln Thr His 705 710 715 720 Leu Pro Ile Pro Arg Gly Pro Asp Arg Pro Glu Gly Ile Glu Glu Glu 725 730 735 Gly Gly Glu Arg Asp Arg Asp Arg Ser Ile Arg Leu Val Asn Gly Ser 740 745 750 Leu Ala Leu Ile Trp Asp Asp Leu Arg Ser Leu Cys Leu Phe Ser Tyr 755 760 765 His Arg Leu Arg Asp Leu Leu Leu Ile Val Thr Arg Ile Val Glu Leu 770 775 780 Leu Gly Arg Arg Gly Trp Glu Ala Leu Lys Tyr Trp Trp Asn Leu Leu 785 790 795 800 Gln Tyr Trp Ser Gln Glu Leu Lys Aan Ser Ala Val Ser Leu Leu Aan 805 810 810 815 Ala Thr Ala Ile Ala Val Ala Glu Gly Thr Asp Arg Val Ile Glu Val 820 825 830 \cdot Val Gln Gly Ala Tyr Arg Ala Ile Arg His Ile Pro Arg Arg Ile Arg 835 840 845 Gln Gly Leu Glu Arg Ile Leu Leu 850 855 <210> SEQ ID NO 10 <211> LENGTH: 123 <212> TYPE: PRT <213> ORGANISM: Human imunodeficiency virus type 1 <400> SEQUENCE: 10 Met Gly Gly Lys Trp Ser Lys Ser Ser Val Val Gly Trp Pro Ala Val 1 5 10 15 Arg Glu Arg Met Arg Arg Ala Glu Pro Ala Ala Asp Gly Val Gly Ala 20 25 30 Ala Ser Arg Asp Leu Glu Lys His Gly Ala Ile Thr Ser Ser Asn Thr $15 \hspace{1cm} 40 \hspace{1cm} 45$ Ala Ala Asn Asn Ala Asp Cys Ala Trp Leu Glu Ala Gln Glu Glu Glu 50 55 60 Glu Val Gly Phe Pro Val Thr Pro Gln Val Pro Leu Arg Pro Met Thr 65 70 75 80 Tyr Lys Ala Ala Val Asp Leu Ser His Phe Leu Lys Glu Lys Gly Gly 85 90 95 Trp Ile Tyr His Thr Gln Gly Tyr Phe Pro Asp. 115 <210> SEQ ID NO 11 <213> ORGANISM: Human immunodeficiency virus type 1 <400> SEQUENCE: 11 Glu Leu Asp Lys Trp Ala

We claim:

1. A peptide fragment which consists of one or both amino acid sequences that correspond to amino acid positions 79 to 184 or 326 to 400 (SEQ ID NO:9) of processed gp120 of HIV-1 isolate BH10 (GenBank accession M15654 (SEQ ID 5 NOS:1-10); numbering described in the Swissprot database entry ENV\$HIV10).

2. The peptide fragment according to claim 1 in combination with a pharmaceutically acceptable carrier.

3. The peptide fragment according to claim 1, linked to a 10 carrier.

4. The peptide fragment according to claim 3, wherein said carrier is a virus or part of a virus.

5. The peptide fragment according to claim 4, wherein said part of a virus is selected from the group consisting of 15 hemagglutinin of influenza virus, surface antigen of hepatitis B virus, surface protein of rhinovirus, surface protein of poliovirus, surface protein of Sindbis virus, and surface protein of coxsackie virus.

6. A pharmaceutical composition comprising at least one peptide fragment as defined in claim 1 or claim 3.

7. A pharmaceutical composition according to claim 6, which comprises said at least one peptide fragment in an amount suitable for administration of 0.5 to 10 μ g/kg of body weight.

8. A peptide fragment comprising one or both amino acid sequences that correspond to amino acid positions 79 to 184 or 326 to 400 (SEQ ID NO:9) of processed gp120 of HIV-1 isolate BH10 (GenBank accession M15654 (SEQ ID NOS:1-10); numbering as described in the Swissprot database entry ENV\$HIV10), wherein the peptide fragment in its glycosylated stage binds an HIV-1 neutralizing antibody produced by cell line CL2 (ECACC Accession No. 93091517) or cell line CL3 (ECACC Accession No. 95032235).