

Effect of Management Practices on Economic and Animal Welfare Outcomes for Beef Cattle

Student Author: Danielle Contreras (Statistics, College of Natural Sciences)

Faculty Mentor: Dr. Ann Hess (Statistics, College of Natural Sciences)

Also: Dr. Lily Edwards-Callaway and Melissa Davis (Animal Sciences, College of Agricultural Sciences)

Background and Significance

What is the relationship between pre-slaughter management and quality outcomes (Hot Weight) at commercial cattle slaughter facilities in the US?

Study Design/Methods/Techniques

This was an observational study that included:

- 501 Lots of cattle
- 71,053 total cattle
- · Multiple states
- · 4 different plants/companies
- Data was collected from March 2021 to April 2022.

Variables Included:

- Outcome (Response):
 - Hot weight (Yield in lbs)
- · Pre-slaughter Management (Predictors):

Arrival Humidity(%)

Arrival Temperature(°F)

Arrival to Unload Time(minutes)

Pen Density(animals/ft^2)

Shift(A,B, Both)

Plant(1-4)

Sex(Steer, Heifer, Mix)

Challenges:

- Lot is the unit of interest, but observational units varied (multiple trucks, pens, etc per lot) depending on variable.
- · Merging data
- · Missing data

Methods:

- Multiple regression for economic outcome (Yield in lbs)
- Multiple logistic regression for welfare outcome (limp), which is not shown
- · AIC for model selection

Main Findings

Results and Conclusions

Std Err	Estimate				Predictor
17.5	880.023				ntercept
0.1	-0.300			ty	Arrival Humidit
0.1	-0.433			ature	Arrival Temper
0.1	0.222			ad Time	Arrival to Unloa
I upper bound	CI lower bound	df	SE	emmean	Shift
867.948	838.523	330	5.543	853.235	А
840.757	814.539	330	4.939	827.648	В
938.709	735.976	330	38.190	837.342	Both
CI upper bound	CI lower bound	df	SE	emmean	Plant
898.823	822.175	330	13.561	860.499	1
855.795	776.774	330	13.981	816.285	2
908.627	825.233	330	14.754	866.930	3
854.170	773.671	330	14.242	813.920	4
I upper bound	CI lower bound	df	SE	emmean	Sex
845.533	772.308	330	13.794	808.921	Heifer
861.673	782.177	330	14.975	821.925	Mix
922.261	852.499	330	13.142	887.380	Steer

- Higher Arrival Humidity and Arrival Temperature are associated with lower average Hot Weight.
- Longer Arrival to Unload Time is associated with higher average Hot Weight.