1. It we generate random samples from an exponential distribution, yes we expect to pass the three tests. Because rand (Exponential (1), 10000) would generate a random Exponential distribution 10000 samples. In the first histogram (first test), we get a histogram which is more inclined towards left as expected from Exponential data. In the second test of testing successive points we get a non-linear scatter plot and in the third test we get a autocorrelation of about 0, since exponential values are not correlated. Hence we expect the rand (Exponential (1), 10000) to pass 3 tests Poisson distribution with $\lambda=2 \rightarrow \lambda^{2} \bar{e}^{\lambda}$ 1 = (x)= x! $f(x) = 2^{x} e^{2/x!}$ $u = F(\pi) = e^{-2} \int_{-\pi/2}^{\pi/2} d\pi$ solving for n, x = F-1(u) Step 3 cannot be solved, as we cannot Integration for the factor

b. Since we cannot find the Inverse of E,
we cannot draw u ~ u(0,1),
Herce Poisson samples cannot be drawn
from this method without knowing F-1(a).
The second secon
a stronger described a section of which are secured to grade to
3. Gaussian distribution with $\mu=0$ $\alpha=1$
$\longrightarrow \mathcal{N}(0,1) 1 e^{-(\chi-10)^2/\alpha^2}$
hastonomical of the contraction of the contraction of
$= 1 e^{-(x)^2/2}$
17-30 1 (1) (21) (1) (1) (1) (1) (1) (1) (1) (1) (1) (
O Charles of the control of the cont
O step 1: $F(x) = \frac{1}{e^{-x^2/2}} dx$
V271 0 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
② Step 2: $u = F(x) = \frac{1}{1} \left(\frac{1}{e^{-x^2/2}} dx \right)$
$\sqrt{277}$ $u_2 = \frac{1}{\sqrt{272}}$
(3) Step 3: $n = F'(u)$ $\sqrt{2\pi}$
Given $x_1, x_2 \sim \mathcal{N}(0,1)$
$n_1 = \sqrt{-2\pi n_1} u, \cos(2\pi u_2) \text{ and}$
$d = \sqrt{2 \ln u_1} \cos (2\pi u_2)$ and
$ \frac{1}{2} = \sqrt{2 \ln u_1} \sin \left(277 u_2\right) $ $\frac{1}{2} = \sqrt{2 \ln u_1} \sin \left(277 u_2\right) $ $\frac{1}{2} = \sqrt{2 \ln u_1} \sin \left(277 u_1\right) $
71=5-2lose, cos(277cl2)~ N(0,1)
1= (-2knu sin/2714)~~(0,1)

```
In [3]: 1ST QUESTION PART B
```

In [2]: using StatsBase

In [7]: using Gadfly;
 using Distributions;
 x = rand(Exponential(1),10000);
 myplot1 = plot(x=x, Geom.histogram(bincount=10),
 Guide.xlabel("x"),Guide.ylabel("frequency"));
 myplot2 = plot(x=x[1:end-1],y=x[2:end], Geom.point,
 Guide.xlabel("x[i]"),Guide.ylabel("x[i+1]"));
 myplot3 = plot(x=1:40,y=autocor(x,1:40), Geom.line,
 Coord.Cartesian(ymax=1),Guide.xlabel("lags"),
 Guide.ylabel("autocorr"));
 myplot = hstack(myplot1,myplot2,myplot3)
 draw(PNG(10inch, 3.5inch), myplot);

In []: From the plots seen above, the first histogram gives a random histogram but since we have passed an exponential distribution, therefore the graph is more inclined towards left but it is a random sample though.

The second distribution shows the correlation between successive samples and it shows that there is no clear correlation and the samples are random

The third distribution shows the correlation after a lag and clearly it is around 0 and there is no corrlation in between the samples.

Hence the given sample is a random sample.

In []: 2ND QUESTION PART C

```
In [8]: x = rand(Poisson(2),10000);
    myplot = plot(x=x, Geom.histogram(bincount=10),
    Guide.xlabel("x"),Guide.ylabel("frequency"));
    Coord.Cartesian(ymax=1),Guide.xlabel("x"),
    Guide.ylabel("Poisson(2)");
    draw(PNG(10inch, 3.5inch), myplot);
```


In []: The plot shows a random Poisson distribution, Since we were unable to draw the samples from F Inverse, we cannot compare the plots.

In []: 2ND QUESTION PART D

11/9/2018

```
In [9]: x = rand(Poisson(2),10000);
    myplot1 = plot(x=x, Geom.histogram(bincount=10),
        Guide.xlabel("x"),Guide.ylabel("frequency"));
    myplot2 = plot(x=x[1:end-1],y=x[2:end], Geom.point,
        Guide.xlabel("x[i]"),Guide.ylabel("x[i+1]"));
    myplot3 = plot(x=1:40,y=autocor(x,1:40), Geom.line,
        Coord.Cartesian(ymax=1),Guide.xlabel("lags"),
        Guide.ylabel("autocorr"));
    myplot = hstack(myplot1,myplot2,myplot3);
        draw(PNG(10inch, 3.5inch), myplot);
```


In []: From the 3 plots shown above, the Poisson sample is an uncorrelated sample and hence it is a random sample.
From the 1st plot the values are random but follow a poisson distribution, From the second plot the successive values
are uncorrelated, From the third plot the values are uncorrelated after a lag x.
Hence this distribution from a random sample.

In []: 3RD QUESTION PART B

```
In [24]: using Gadfly;
         using Distributions;
         u1 = rand(10000,3);
         u2 = rand(3,10000);
         x1 = sqrt(-2*log(u1))*cos(2*pi*u2);
         x2 = sqrt(-2*log(u1))*sin(2*pi*u2);
         WARNING: log(x::AbstractArray{T}) where T <: Number is deprecated, use log.(x) instead.
         Stacktrace:
          [1] depwarn(::String, ::Symbol) at ./deprecated.jl:70
          [2] log(::Array{Float64,2}) at ./deprecated.jl:57
          [3] include string(::String, ::String) at ./loading.jl:522
          [4] include_string(::Module, ::String, ::String) at /users/PES0767/ucn3125/.julia/v0.6/Compat/src/Compat.jl:88
          [5] execute request(::ZMO.Socket, ::IJulia.Msg) at /usr/local/julia/0.6.4/site/v0.6/IJulia/src/execute request.jl:180
          [6] (::Compat.#inner#14{Array{Any,1},IJulia.#execute_request,Tuple{ZMQ.Socket,IJulia.Msg}})() at /users/PES0767/ucn3125/.julia/v0.6/Compat/
         src/Compat.jl:332
          [7] eventloop(::ZMQ.Socket) at /usr/local/julia/0.6.4/site/v0.6/IJulia/src/eventloop.jl:8
          [8] (::IJulia.##15#18)() at ./task.jl:335
         while loading In[24], in expression starting on line 5
         WARNING: log(x::AbstractArray{T}) where T <: Number is deprecated, use log.(x) instead.
         Stacktrace:
          [1] depwarn(::String, ::Symbol) at ./deprecated.jl:70
          [2] log(::Array{Float64,2}) at ./deprecated.jl:57
          [3] include string(::String, ::String) at ./loading.jl:522
          [4] include_string(::Module, ::String, ::String) at /users/PES0767/ucn3125/.julia/v0.6/Compat/src/Compat.jl:88
          [5] execute_request(::ZMQ.Socket, ::IJulia.Msg) at /usr/local/julia/0.6.4/site/v0.6/IJulia/src/execute_request.jl:180
          [6] (::Compat.#inner#14{Array{Any,1},IJulia.#execute_request,Tuple{ZMQ.Socket,IJulia.Msg}})() at /users/PES0767/ucn3125/.julia/v0.6/Compat/
         src/Compat.jl:332
          [7] eventloop(::ZMQ.Socket) at /usr/local/julia/0.6.4/site/v0.6/IJulia/src/eventloop.jl:8
          [8] (::IJulia.##15#18)() at ./task.il:335
         while loading In[24], in expression starting on line 6
```

Out[29]:


```
In [30]: using Gadfly;
    myplot1 = plot(x=x2, Geom.histogram(bincount=10),
    Guide.xlabel("x2"),Guide.ylabel("frequency"))
```

Out[30]:

In []: 3RD QUESTION PART C

```
In [16]: x = rand(Normal(0,1),10000);
    myplot = plot(x=x, Geom.histogram(bincount=10),
    Guide.xlabel("x"),Guide.ylabel("frequency"));
    Coord.Cartesian(ymax=1),Guide.xlabel("x"),
    Guide.ylabel("Normal(0,1)");
    draw(PNG( 10inch, 3.5inch), myplot)
```


Out[16]: false

In []: By comparing the above plot with the plot drawn from the samples of poisson distribution, we observe both the plots to be same.

Both are same because of the Inverse Transform Method by which we draw samples of the distributions.

In []: 3RD QUESTION D PART

```
In [18]: myplot1 = plot(x=x1, Geom.histogram(bincount=10),
    Guide.xlabel("x1"),Guide.ylabel("frequency"));
    myplot2 = plot(x=x[1:end-1],y=x[2:end], Geom.point,
    Guide.xlabel("x1[i]"),Guide.ylabel("x1[i+1]"));
    myplot3 = plot(x=1:40,y=autocor(x,1:40), Geom.line,
    Guide.xlabel("lags"),
    Guide.ylabel("autocorr"));
    myplot = hstack(myplot1,myplot2,myplot3);
    draw(PNG( 10inch, 3.5inch), myplot)
```


Out[18]: false

Out[19]: false

In []: From the above plots, the three distributions pass the Tests of Random functions and the samples are uncorrelated, Hence the Gaussian samples are random numbers.