Data Sheet

December 1992

File Number

3309

CMOS Quad True/Complement Buffer

CD4041UBMS types are quad true/complement buffers consisting of n- and p- channel units having low channel resistance and high current (sourcing and sinking) capability. The CD4041UBMS is intended for use as a buffer, line driver, or CMOS-to-TTL driver. It can be used as an ultra-low power resistor-network driver for A/D and D/A conversion, as a transmission-line driver, and in other applications where high noise immunity and low power dissipation are primary design requirements.

The CD4041UBMS is supplied in these 14 lead outline packages:

Braze Seal DIP H4Q
Frit Seal DIP H1B
Ceramic Flatpack H3W

Pinout

Features

- · High Voltage Type (20V Rating)
- Balanced Sink and Source Current; Approximately 4 Times Standard "B" Drive
- Equalized Delay to True and Complement Outputs
- 100% Tested for Quiescent Current at 20V
- Maximum Input Current of $1\mu A$ at 18V Over Full Package-Temperature Range;
 - 100nA at 18V and +25°C
- 5V, 10V and 15V Parametric Ratings
- Meets All Requirements of JEDEC Tentative Standard No. 13B, "Standard Specificationsfor Description of 'B' Series CMOS Devices"

Applications

- High Current Source/Sink Driver
- CMOS-to-DTL/TTL Converter Buffer
- Display Driver
- MOS Clock Driver
- Resistor Network Driver (Ladder or Weighted R)
- Buffer
- Transmission Line Driver

Functional Diagram

FIGURE 1. SCHEMATIC DIAGRAM 1 OF 4 BUFFERS

Absolute Maximum Ratings

DC Supply Voltage Range, (VDD) -0.5V to +20V (Voltage Referenced to VSS Terminals) Input Voltage Range, All Inputs -0.5V to VDD +0.5V Operating Temperature Range-55°C to +125°C Package Types D, F, K, H Storage Temperature Range (TSTG).....-65°C to +150°C Lead Temperature (During Soldering) +265°C At Distance 1/16 \pm 1/32 Inch (1.59mm \pm 0.79mm) from case for 10s Maximum

Reliability Information

Thermal Resistance	θ_{ia}	$\theta_{\sf ic}$
Ceramic DIP and FRIT Package	80°C/W	20°C/W
Flatpack Package	70°C/W	20°C/W
Maximum Package Power Dissipation (PD)) at +125 ⁰ C	;
For TA = -55°C to +100°C (Package Ty	pe D, F, K) .	500mW
For TA = $+100^{\circ}$ C to $+125^{\circ}$ C (Package 7	Type D, F, K)	Derate
Linear	ity at 12mW	OC to 200mW
Device Dissipation per Output Transistor.		100mW
For TA = Full Package Temperature Rai	nge (All Pacl	kage Types)
Junction Temperature		+175 ^o C

TABLE 1. DC ELECTRICAL PERFORMANCE CHARACTERISTICS

				GROUP A		LIM	IITS	
PARAMETER	PARAMETER SYMBOL CONDITIONS (NOTE 1) SU		SUBGROUPS	TEMPERATURE	MIN	MAX	UNITS	
Supply Current	IDD	VDD = 20V, VIN = VDD or GND		1	+25 ^o C	-	2	μΑ
				2	+125 ⁰ C	-	200	μΑ
		VDD = 18V, VIN = VDI	D or GND	3	-55 ⁰ C	-	2	μΑ
Input Leakage Current	IIL	VIN = VDD or GND	VDD = 20	1	+25 ^o C	-100	-	nA
				2	+125 ⁰ C	-1000	-	nA
			VDD = 18V	3	-55 ⁰ C	-100	-	nA
Input Leakage Current	IIH	VIN = VDD or GND	VDD = 20	1	+25°C	-	100	nA
				2	+125 ^o C	-	1000	nA
			VDD = 18V	3	-55 ⁰ C	-	100	nA
Output Voltage	VOL15	VDD = 15V, No Load	•	1, 2, 3	+25°C, +125°C, -55°C	-	50	mV
Output Voltage	VOH15	VDD = 15V, No Load (Note 3)	1, 2, 3	+25°C, +125°C, -55°C	14.95	-	V
Output Current (Sink)	IOL5	VDD = 5V, VOUT = 0.4	4V	1	+25°C	1.6	-	mA
Output Current (Sink)	IOL10	VDD = 10V, VOUT = 0).5V	1	+25 ^o C	5.0	-	mA
Output Current (Sink)	IOL15	VDD = 15V, VOUT = 1	.5V	1	+25 ^o C	19	-	mA
Output Current (Source)	IOH5A	VDD = 5V, VOUT = 4.0	6V	1	+25 ^o C	-	-1.6	mA
Output Current (Source)	IOH5B	VDD = 5V, VOUT = 2.5	5V	1	+25 ^o C	-	-6.4	mA
Output Current (Source)	IOH10	VDD = 10V, VOUT = 9	.5V	1	+25 ^o C	-	-5.0	mA
Output Current (Source)	IOH15	VDD = 15V, VOUT = 1	3.5V	1	+25 ^o C	-	-19	mA
N Threshold Voltage	VNTH	VDD = 10V, ISS = -10	ιA	1	+25 ^o C	-2.8	-0.7	V
P Threshold Voltage	VPTH	VSS = 0V, IDD = 10μΑ	1	1	+25 ^o C	0.7	2.8	V
Functional	F	VDD = 2.8V, VIN = VD	D or GND	7	+25 ^o C	VOH >	VOL <	V
		VDD = 20V, VIN = VDI	D or GND	7	+25 ^o C	VDD/2	VDD/2	
		VDD = 18V, VIN = VDI	D or GND	8A	+125 ^o C			
		VDD = 3V, VIN = VDD	or GND	8B	-55 ⁰ C			
Input Voltage Low (Note 2)	VIL	VDD = 5V, VOH > 4.5V	V, VOL < 0.5V	1, 2, 3	+25°C, +125°C, -55°C	-	1.0	V
Input Voltage High (Note 2)	VIH	VDD = 5V, VOH > 4.5V	V, VOL < 0.5V	1, 2, 3	+25°C, +125°C, -55°C	4.0	-	V
Input Voltage Low (Note 2)	VIL	VDD = 15V, VOH > 13 VOL < 1.5V	.5V,	1, 2, 3	+25°C, +125°C, -55°C	-	2.5	V
Input Voltage High (Note 2)	VIH	VDD = 15V, VOH > 13 VOL < 1.5V	.5V,	1, 2, 3	+25°C, +125°C, -55°C	12.5	-	V

NOTES: 1. All voltages referenced to device GND, 100% testing being im- 3. For accuracy, voltage is measured differentially to VDD. Limit is plemented.

2. Go/No Go test with limits applied to inputs.

^{0.050}V max.

TABLE 2. AC ELECTRICAL PERFORMANCE CHARACTERISTICS

			GROUP A		LIM	ITS	
PARAMETER	SYMBOL	CONDITIONS (NOTE 1, 2)	SUBGROUPS	TEMPERATURE	MIN	MAX	UNITS
Propagation Delay	TPHL VDD = 5V, VIN = VDD or GND	9	+25 ⁰ C	-	120	ns	
	TPLH		10, 11	+125°C, -55°C	-	162	ns
Transition Time TTHL VDD = 5V, VIN = VDD or GND		VDD = 5V, VIN = VDD or GND	9	+25 ^o C	-	80	ns
	TTLH		10, 11	+125°C, -55°C	-	108	ns

NOTES:

- 1. CL = 50pF, RL = 200K, Input TR, TF < 20ns.
- 2. -55° C and $+125^{\circ}$ C limits guaranteed, 100% testing being implemented.

TABLE 3. ELECTRICAL PERFORMANCE CHARACTERISTICS

					LIMITS			
PARAMETER	SYMBOL	CONDITIONS	NOTES	TEMPERATURE	MIN	MAX	UNITS	
Supply Current	IDD	VDD = 5V, VIN = VDD or GND	1, 2	-55°C, +25°C	-	1	μΑ	
				+125 ⁰ C	-	30	μА	
		VDD = 10V, VIN = VDD or GND	1, 2	-55°C, +25°C	-	2	μΑ	
				+125 ^o C	-	60	μΑ	
		VDD = 15V, VIN = VDD or GND	1, 2	-55°C, +25°C	-	2	μΑ	
				+125 ^o C	-	120	μΑ	
Output Voltage	VOL	VDD = 5V, No Load	1, 2	+25°C, +125°C, - 55°C	-	50	mV	
Output Voltage	VOL	VDD = 10V, No Load	1, 2	+25°C, +125°C, - 55°C	-	50	mV	
Output Voltage	VOH	VDD = 5V, No Load	1, 2	+25°C, +125°C, - 55°C	4.95	-	V	
Output Voltage	VOH	VDD = 10V, No Load	1, 2	+25°C, +125°C, - 55°C	9.95	-	V	
Output Current (Sink)	IOL5	VDD = 5V, VOUT = 0.4V	1, 2	+125 ^o C	1.2	-	mA	
				-55 ⁰ C	2.1	-	mA	
Output Current (Sink)	IOL10	VDD = 10V, VOUT = 0.5V	1, 2	+125°C	3.5	-	mA	
				-55 ⁰ C	6.25	-	mA	
Output Current (Sink)	IOL15	VDD = 15V, VOUT = 1.5V	1, 2	+125 ^o C	13	-	mA	
				-55 ⁰ C	24	-	mA	
Output Current (Source)	IOH5A	VDD = 5V, VOUT = 4.6V	1, 2	+125 ⁰ C	-	-1.2	mA	
				-55 ⁰ C	-	-2.1	mA	
Output Current (Source)	IOH5B	VDD = 5V, VOUT = 2.5V	1, 2	+125 ⁰ C	-	-4.6	mA	
				-55 ⁰ C	-	-8.4	mA	
Output Current (Source)	IOH10	VDD = 10V, VOUT = 9.5V	1, 2	+125 ⁰ C	-	-3.5	mA	
				-55 ⁰ C	-	-6.25	mA	
Output Current (Source)	IOH15	VDD =15V, VOUT = 13.5V	1, 2	+125 ⁰ C	-	-13	mA	
				-55 ⁰ C	-	-24	mA	
Input Voltage Low	VIL	VDD = 10V, VOH > 9V, VOL < 1V	1, 2	+25°C, +125°C, - 55°C	-	2	V	
Input Voltage High	VIH	VDD = 10V, VOH > 9V, VOL < 1V	1, 2	+25°C, +125°C, - 55°C	8	-	V	
Propagation Delay	TPHL	VDD = 10V	1, 2, 3	+25°C	-	70	ns	
	TPLH	VDD = 15V	1, 2, 3	+25°C	-	50	ns	

TABLE 3. ELECTRICAL PERFORMANCE CHARACTERISTICS (Continued)

					LIMITS		
PARAMETER	SYMBOL	CONDITIONS	NOTES	TEMPERATURE	MIN	MAX	UNITS
Transition Time	TTHL	VDD = 10V	1, 2, 3	+25 ^o C	-	40	ns
	TTLH	VDD = 15V	1, 2, 3	+25 ⁰ C	-	30	ns
Input Capacitance	CIN	Any Input	1, 2	+25°C	-	22.5	pF

NOTES:

- 1. All voltages referenced to device GND.
- 2. The parameters listed on Table 3 are controlled via design or process and are not directly tested. These parameters are characterized on initial design release and upon design changes which would affect these characteristics.
- 3. CL = 50pF, RL = 200K, Input TR, TF < 20ns.

TABLE 4. POST IRRADIATION ELECTRICAL PERFORMANCE CHARACTERISTICS

					LIMITS		
PARAMETER SYMBOL CONDITIONS		NOTES	TEMPERATURE	MIN	MAX	UNITS	
Supply Current	IDD	VDD = 20V, VIN = VDD or GND	1, 4	+25°C	-	7.5	μΑ
N Threshold Voltage	VNTH	VDD = 10V, ISS = -10μA	1, 4	+25°C	-2.8	-0.2	V
N Threshold Voltage Delta	ΔVTN	VDD = 10V, ISS = -10μA	1, 4	+25°C	-	±1	V
P Threshold Voltage	VTP	VSS = 0V, IDD = 10μA	1, 4	+25 ⁰ C	0.2	2.8	V
P Threshold Voltage Delta	ΔVTP	VSS = 0V, IDD = 10μA	1, 4	+25°C	-	±1	V
Functional	F	VDD = 18V, VIN = VDD or GND	1	+25°C	VOH >	VOL <	V
		VDD = 3V, VIN = VDD or GND			VDD/2	VDD/2	
Propagation Delay Time	,		1, 2, 3, 4	+25°C	-	1.35 x +25°C Limit	ns

NOTES: 1. All voltages referenced to device GND.

3. See Table 2 for +25°C limit.

2. CL = 50pF, RL = 200K, Input TR, TF < 20ns.

4. Read and Record

TABLE 5. BURN-IN AND LIFE TEST DELTA PARAMETERS +25^OC

PARAMETER	SYMBOL	DELTA LIMIT
Supply Current - MSI-1	IDD	± 0.2μA
Output Current (Sink)	IOL5	± 20% x Pre-Test Reading
Output Current (Source)	IOH5A	± 20% x Pre-Test Reading

TABLE 6. APPLICABLE SUBGROUPS

CONFORMANCE GROUP		MIL-STD-883 METHOD	GROUP A SUBGROUPS	READ AND RECORD
Initial Test (F	re Burn-In)	100% 5004	1, 7, 9	IDD, IOL5, IOH5A
Interim Test	1 (Post Burn-In)	100% 5004	1, 7, 9	IDD, IOL5, IOH5A
Interim Test	2 (Post Burn-In)	100% 5004	1, 7, 9	IDD, IOL5, IOH5A
PDA (Note 1)		100% 5004	1, 7, 9, Deltas	
Interim Test	3 (Post Burn-In)	100% 5004	1, 7, 9	IDD, IOL5, IOH5A
PDA (Note	: 1)	100% 5004	1, 7, 9, Deltas	
Final Test		100% 5004	2, 3, 8A, 8B, 10, 11	
Group A		Sample 5005	1, 2, 3, 7, 8A, 8B, 9, 10, 11	
Group B Subgroup B-5 Sampl		Sample 5005	1, 2, 3, 7, 8A, 8B, 9, 10, 11, Deltas	Subgroups 1, 2, 3, 9, 10, 11
Subgroup B-6		Sample 5005	1, 7, 9	

TABLE 6. APPLICABLE SUBGROUPS (Continued)

CONFORMANCE GROUP	MIL-STD-883 METHOD	GROUP A SUBGROUPS	READ AND RECORD
Group D	Sample 5005	1, 2, 3, 8A, 8B, 9	Subgroups 1, 2 3

NOTE: 1.5% Parameteric, 3% Functional; Cumulative for Static 1 and 2.

TABLE 7. TOTAL DOSE IRRADIATION

	MIL-STD-883	TE	ST	READ AND RECORD		
CONFORMANCE GROUPS	METHOD	PRE-IRRAD	POST-IRRAD	PRE-IRRAD	POST-IRRAD	
Group E Subgroup 2	5005	1, 7, 9	Table 4	1, 9, Deltas	Table 4	

TABLE 8. BURN-IN AND IRRADIATION TEST CONNECTIONS

					OSCILLATOR	
FUNCTION	OPEN	GROUND	VDD	9V ± -0.5V	50kHz	25kHz
Static Burn-In 1 (Note 1)	1, 2, 4, 5, 8, 9, 11, 12	3, 6, 7, 10, 13	14			
Static Burn-In 2 (Note 1)	1, 2, 4, 5, 8, 9, 11, 12	7	3, 6, 10, 13, 14			
Dynamic Burn- In (Note 2)	-	7	14	1, 2, 4, 5, 8, 9, 11, 12	3, 6, 10, 13	
Irradiation (Note 3)	1, 2, 4, 5, 8, 9, 11, 12	7	3, 6, 10, 13, 14			

NOTE:

- 1. Each pin except VDD and GND will have a series resistor of 10K \pm 5%, VDD = 18V \pm 0.5V
- 2. Each pin except VDD and GND will have a series resistor of $4.75K \pm 5\%$; VDD = $18V \pm 0.5V$
- 3. Each pin except VDD and GND will have a series resistor of 47K ± 5%; Group E, Subgroup 2, sample size is 4 dice/wafer, 0 failures, VDD = 10V ± 0.5V

Typical Performance Characteristics

FIGURE 2. TYPICAL OUTPUT LOW (SINK) CURRENT CHARACTERISTICS

FIGURE 3. MINIMUM LOW (SINK) CURRENT CHARACTERISTICS

All Intersil semiconductor products are manufactured, assembled and tested under ISO9000 quality systems certification.

Intersil semiconductor products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design and/or specifications at any time without notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.

For information regarding Intersil Corporation and its products, see web site http://www.intersil.com

Typical Performance Characteristics (Continued)

FIGURE 4. TYPICAL OUTPUT HIGH (SOURCE) CURRENT CHARACTERISTICS

FIGURE 6. TYPICAL PROPAGATION DELAY TIME vs LOAD CAPACITANCE

FIGURE 8. MINIMUM AND MAXIMUM TRANSFER
CHARACTERISTICS - TRUE OUTPUT

FIGURE 5. MINIMUM OUTPUT HIGH (SOURCE) CURRENT CHARACTERISTICS

FIGURE 7. TYPICAL TRANSITION TIME vs LOAD CAPACITANCE

FIGURE 9. MINIMUM AND MAXIMUM TRANSFER
CHARACTERISTICS - COMPLEMENT OUTPUT

Typical Performance Characteristics (Continued)

FIGURE 10. TYPICAL POWER DISSIPATION vs INPUT RISE AND FALL TIME PER OUTPUT PAIR

FIGURE 11. TYPICAL POWER DISSIPATION vs FREQUENCY **PER OUTPUT PAIR**

Chip Dimensions and Pad Layout

Dimensions in parentheses are in millimeters and are derived from the basic inch dimensions as indicated. Grid graduations are in mils (10⁻³ inch) **METALLIZATION:** Thickness: 11kÅ – 14kÅ, AL. PASSIVATION: 10.4kÅ - 15.6kÅ, Silane BOND PADS: 0.004 inches X 0.004 inches MIN

DIE THICKNESS: 0.0198 inches - 0.0218 inches **DIE SIZE:** X = 72 (69 - 77)

Y = 82 (79 - 87)