Problem 4

Problem 1. $\forall L \in \mathtt{NatList}, \operatorname{rev}(\operatorname{rev}(L)) = L.$

Proof. By structural induction on L.

(1) Base case

What to show: rev(rev(nil)) = nil.

$$rev(rev(nil)) \longrightarrow rev(nil)$$
 (by rev1)

$$\longrightarrow nil$$
 (by rev1)

(2) Induction case

What to show: $\operatorname{rev}(\operatorname{rev}(x\mid l)) = x\mid l$ Induction hypothesis: $\operatorname{rev}(\operatorname{rev}(l)) = l$ where $x\in \operatorname{PNat}$ and $l\in \operatorname{NatList}$.

$$\operatorname{rev}(\operatorname{\underline{rev}}(x \mid l)) \longrightarrow \operatorname{\underline{rev}}(\operatorname{\underline{rev}}(l) @ (x \mid nil)) \qquad \text{(by rev2)}$$

$$\longrightarrow \operatorname{\underline{rev}}(x \mid nil) @ \operatorname{rev}(\operatorname{\underline{rev}}(l)) \qquad \text{(by Lemma 1)}$$

$$\longrightarrow (\operatorname{\underline{rev}}(nil) @ (x \mid nil)) @ \operatorname{\underline{rev}}(\operatorname{\underline{rev}}(l)) \qquad \text{(by rev2)}$$

$$\longrightarrow (\underline{nil} @ (x \mid nil)) @ \operatorname{\underline{rev}}(\operatorname{\underline{rev}}(l)) \qquad \text{(by rev1)}$$

$$\longrightarrow (x \mid nil) @ \operatorname{\underline{rev}}(\operatorname{\underline{rev}}(l)) \qquad \text{(by @1)}$$

$$\longrightarrow x \mid (\underline{nil} @ \operatorname{\underline{rev}}(\operatorname{\underline{rev}}(l))) \qquad \text{(by @2)}$$

$$\longrightarrow x \mid \operatorname{\underline{rev}}(\operatorname{\underline{rev}}(l)) \qquad \text{(by @1)}$$

 $\longrightarrow x \mid l$ (by IH)

Lemma 1. $\forall L1, L2 \in \mathtt{NatList}, \operatorname{rev}(L1 @ L2) = \operatorname{rev}(L2) @ \operatorname{rev}(L1).$

Proof. By structural induction on L1.

(1) Base case

What to show: $\operatorname{rev}(nil @ l2) = \operatorname{rev}(l2) @ \operatorname{rev}(nil)$.

$$\underline{\operatorname{rev}(nil @ l2)} \longrightarrow \operatorname{rev}(l2)$$
 (by @1)

$$\operatorname{rev}(l2) \ @ \ \operatorname{\underline{rev}}(nil) \longrightarrow \operatorname{\underline{rev}}(l2) \ @ \ nil \tag{by rev1}$$

$$\longrightarrow \text{rev}(l2)$$
 (by Lemma 2)

(2) Induction case

What to show: rev((x | l1) @ l2) = rev(l2) @ rev(x | l1)Induction hypothesis: rev(l1 @ l2) = rev(l2) @ rev(l1)where $x \in PNat$, and $l1, l2 \in NatList$.

$$\begin{array}{c} \operatorname{rev}(\underline{(x\mid l1) @\ l2}) \longrightarrow \underline{\operatorname{rev}(x\mid (l1 @\ l2))} & \text{(by @2)} \\ \longrightarrow \underline{\operatorname{rev}(l1 @\ l2)} @\ (x\mid nil) & \text{(by rev2)} \\ \longrightarrow \underline{\operatorname{(rev}(l2) @\ \operatorname{rev}(l1)) @\ (x\mid nil)} & \text{(by IH)} \\ \longrightarrow \overline{\operatorname{rev}(l2) @\ (\operatorname{rev}(l1) @\ (x\mid nil))} & \text{(by Lemma 2 in Problem 2)} \\ \operatorname{rev}(l2) @\ \operatorname{rev}(l2) @\ \operatorname{(rev}(l1) @\ (x\mid nil)) & \text{(by rev2)} \end{array}$$

Lemma 2. $\forall L \in \text{NatList}, L @ nil = L.$

Proof. By structural induction on L.

(1) Base case

What to show: nil @ nil = nil.

$$\underline{nil} @ \underline{nil} \longrightarrow \underline{nil}$$
 (by @1)

(2) Induction case

 $(x \mid l) @ nil = x \mid l$ What to show: Induction hypothesis: l @ nil = lwhere $x \in PNat$ and $l \in NatList$.

$$\longrightarrow x \mid l$$
 (by IH)