极限运算准则

高等数学 I-信息、统计外招

Weiwen Wang(王伟文)

暨南大学

2025 年秋季学期

课程网页

在本节的讨论中, 记号 "lim" 没有标明自变量的变化过程. 下面的定理对于 $x \to x_0$ 及 $x \to \infty$ 都是成立的.

定理 1

两个无穷小量之和仍是无穷小.

定理1

两个无穷小量之和仍是无穷小.

- $\forall \frac{\epsilon}{2} > 0, \exists \delta_1 > 0, \stackrel{\omega}{=} 0 < |x x_0| < \delta_1, |\alpha| < \frac{\epsilon}{2};$
- $\delta = \min\{\delta_1, \delta_2\}, \leq 0 < |x x_0| < \delta, |\alpha + \beta| \le |\alpha| + |\beta| < \epsilon$;

推论 1

有限个无穷小之和也是无穷小.

解

$$\lim_{n \to \infty} \left(\frac{1}{n^2} + \frac{2}{n^2} + \dots + \frac{n}{n^2} \right) = \lim_{n \to \infty} \frac{1 + 2 + \dots + n}{n^2}$$
$$= \lim_{n \to \infty} \frac{n(n+1)}{2n^2} = \frac{1}{2}$$

定理 2

有界函数与无穷小的乘积是无穷小.

定理 2

有界函数与无穷小的乘积是无穷小.

- 设函数 f(x) 在 x_0 的某一邻域 $\mathring{U}(x_0, \delta_1)$ 内有界. $\exists M > 0, \forall x \in \mathring{U}(x_0, \delta_1), |f(x)| < M;$
- 任意给定 $\epsilon > 0$, 取 $\epsilon_1 = \frac{\epsilon}{M}, \exists \delta_2 > 0, \forall x \in \mathring{U}(x_0, \delta_2), |g(x)| < \frac{\epsilon}{M};$
- \mathbb{R} $\delta = \min\{\delta_1, \delta_2\}$, $\forall x \in \mathring{U}(x_0, \delta)$, $|f(x) \cdot g(x)| < \frac{\varepsilon}{M} \cdot M = \varepsilon$.

$$\vec{\mathbb{R}} \lim_{x \to \infty} \frac{\sin 3x}{x}$$

推论 1

常数与无穷小的乘积是无穷小.

推论 2

有限个无穷小的乘积是无穷小.

定理 3

如果 $\lim f(x) = A$, $\lim f(x) = B$, 则

- (1) $\lim[f(x) \pm g(x)] = \lim f(x) \pm \lim g(x) = A \pm B$;
- (2) $\lim[f(x)\cdot g(x)] = \lim f(x)\cdot \lim g(x) = A\cdot B$;
- (3) 若又有 $B \neq 0$,

$$\lim \frac{f(x)}{g(x)} = \frac{\lim f(x)}{\lim g(x)} = \frac{A}{B}.$$

证明 (2).

因为 $\lim f(x) = A$, $\lim g(x) = B$, 故 $f(x) = A + \alpha$, $g(x) = B + \beta$, 其中 α , β 为无 穷小.

证明 (2).

因为 $\lim_{x \to a} f(x) = A$, $\lim_{x \to a} g(x) = B$, 故 $f(x) = A + \alpha$, $g(x) = B + \beta$, 其中 α , β 为无 穷小.

$$f(x) \cdot g(x) = (A + \alpha) \cdot (B + \beta) = A \cdot B + \underbrace{A\beta + \alpha B + \alpha \cdot \beta}_{\gamma}$$

结合定理 1、推论 1, γ 为无穷小. 因此

$$\lim[f(x)\cdot g(x)] = \lim f(x)\cdot \lim g(x) = A + B.$$

7

推论 1

如果 $\lim f(x)$ 存在, c 为常数, 则

$$\lim[cf(x)] = c\lim f(x).$$

推论 2

如果 $\lim f(x)$ 存在, $n \in \mathbb{N}_+$,

$$\lim[f(x)]^n = [\lim f(x)]^n$$

定理 4 (数列极限的四则运算法则)

设有数列 $\{x_n\}$ 和 $\{y_n\}$. 如果 $\lim_{n\to\infty} x_n = A$, $\lim_{n\to\infty} y_n = B$, 则

- $(1) \lim_{n\to\infty} [x_n \pm y_n] = A \pm B;$
- (2) $\lim [x_n \cdot y_n] = A \cdot B$;
- (3) 若又有 $y_n \neq 0 (n = 1, 2, ...)$ 且 $B \neq 0$,

$$\lim \frac{x_n}{y_n} = \frac{A}{B}.$$

定理 5

如果 $\psi(x) \ge \phi(x)$, 且有 $\lim \psi(x) = A$, $\lim \phi(x) = A$, 则 $A \ge B$.

● 极限四则运算 (1) 结合极限的保号性.

多项式极限

设有 n 次多项式

$$f(x) = a_0 x^n + a_1 x^{n-1} + \dots + a_n \quad (a_0 \neq 0).$$

由极限四则运算及推论

$$\lim_{x \to x_0} f(x) = \lim_{x \to x_0} \left(a_0 x^n + a_1 x^{n-1} + \dots + a_n \right)$$

$$= \lim_{x \to x_0} a_0 x^n + \lim_{x \to x_0} a_1 x^{n-1} + \dots + \lim_{x \to x_0} a_n$$

$$= a_0 (\lim_{x \to x_0} x)^n + a_1 (\lim_{x \to x_0} x)^{n-1} + \dots + a_n$$

$$= a_0 x_0^n + a_1 x_0^{n-1} + \dots + a_n = f(x_0).$$

求极限 $\lim_{x\to 1} (x^2-2x+2)$.

求极限
$$\lim_{x\to 1} (x^2 - 2x + 2)$$
.

解

$$\lim_{x \to 1} (x^2 - 2x + 2) = 1^2 - 2 \cdot 1 + 2 = 1.$$

求极限 $\lim_{x\to 2} \frac{x^3+x-7}{2x-1}$.

求极限
$$\lim_{x\to 2} \frac{x^3+x-7}{2x-1}$$
.

解 因为
$$\lim_{x\to 2} (x^3 + x - 7) = 2^3 + 2 - 7 = 3$$
, $\lim_{x\to 2} (2x - 1) = 2 \cdot 2 - 1 = 3 \neq 0$.

求极限
$$\lim_{x\to 2} \frac{x^3+x-7}{2x-1}$$
.

解 因为
$$\lim_{x\to 2} (x^3 + x - 7) = 2^3 + 2 - 7 = 3$$
, $\lim_{x\to 2} (2x - 1) = 2 \cdot 2 - 1 = 3 \neq 0$. 故

$$\lim_{x \to 2} \frac{x^3 + x - 7}{2x - 1} = \frac{\lim_{x \to 2} (x^3 + x - 7)}{\lim_{x \to 2} (2x - 1)} = \frac{3}{3} = 1.$$

随堂练习

求极限

- (1) $\lim_{x \to 1} \frac{x-1}{x^2 + 2x 3}$
- (2) $\lim_{x\to 2} \frac{2x+1}{x-2}$
- (3) $\lim_{x \to \infty} \frac{x^3 2x + 1}{2x^3 + 1}$

随堂练习

求极限

(1)
$$\lim_{x \to 1} \frac{x-1}{x^2 + 2x - 3} = \lim_{x \to 1} \frac{1}{x+3} = \frac{1}{4}$$

(2)
$$\lim_{x \to 2} \frac{x-2}{2x+1} = 0 \Longrightarrow \lim_{x \to 2} \frac{2x+1}{x-2} = \infty$$

(3)
$$\lim_{x \to \infty} \frac{x^3 - 2x + 1}{2x^3 + 1} = \lim_{x \to \infty} \frac{1 - \frac{2}{x^2} + \frac{1}{x^3}}{2 + \frac{1}{x^3}} = \frac{1}{2}$$

解 因为

$$\lim_{x \to \infty} \frac{2x^2 + 1}{x^3 - 2x + 1} = \lim_{x \to \infty} \frac{\frac{2}{x} + \frac{1}{x^3}}{1 - \frac{2}{x^2} + \frac{1}{x^3}} = \frac{0}{1} = 0,$$

故

$$\lim_{x \to \infty} \frac{x^3 - 2x + 1}{2x^2 + 1} = \infty.$$

解

$$\lim_{x \to \infty} \frac{x^2 - 2x + 1}{2x^3 + 1} = 0.$$

当 $x \to \infty$ 时, 多项式分式函数的极限

设 $a_0 \neq 0$ 且 $b_0 \neq 0$, m 和 n 为非负整数

$$\lim_{x \to \infty} \frac{a_0 x^m + a_1 x^{m-1} + \dots + a_m}{b_0 x^n + b_1 x^{n-1} + \dots + b_n} = \begin{cases} 0, & n > m, \\ \frac{a_0}{b_0}, & n = m, \\ \infty, & n < m. \end{cases}$$

定理 6 (复合函数的极限运算准则)

设函数 y = f[g(x)] 是由函数 u = g(x) 与函数 y = f(u) 复合而成, f[g(x)] 在点 x_0 的某去心邻域内有定义, 若 $\lim_{x \to x_0} g(x) = u_0$, $\lim_{x \to x_0} f(u) = A$, 且存在 $\delta_0 > 0$, 当 $x \in \mathring{U}(x_0, \delta_0)$ 时有 $g(x) \neq u_0$, 则

$$\lim_{x \to x_0} f[g(x)] = \lim_{u \to u_0} f(u) = A.$$

- $\lim_{x \to x_0} f[g(x)] = \lim_{\substack{u := g(x) \to u_0 \\ (x \to x_0)}} f(u);$
- $\lim_{x\to 2} \frac{1}{4}x^2 = 1$ \coprod $\lim_{u\to 1} \ln u = 0$ \Longrightarrow $\lim_{x\to 2} \ln\left(\frac{1}{4}x^2\right) = 0$.

由
$$\lim_{u \to u_0} f(u) = A$$
 知 $\forall \epsilon > 0$, $\exists \bar{\delta} > 0$, $\forall u \in \mathring{U}(u_0, \bar{\delta})$, 有

$$|f(u)-A|<\epsilon$$
.

接下来只要证明 $\exists \delta > 0$, $\forall x \in \mathring{U}(x_0, \delta)$, 有 $g(x) \in \mathring{U}(u_0, \bar{\delta})$.

由 $\lim_{u \to u_0} f(u) = A$ 知 $\forall \epsilon > 0$, $\exists \bar{\delta} > 0$, $\forall u \in \mathring{U}(u_0, \bar{\delta})$, 有

$$|f(u)-A|<\epsilon$$
.

接下来只要证明 $\exists \delta > 0$, $\forall x \in \mathring{U}(x_0, \delta)$, 有 $g(x) \in \mathring{U}(u_0, \bar{\delta})$.

因为 $\lim_{x\to x_0} g(x) = u_0$, 故 $\exists \underline{\delta} > 0$, 使得 $\forall x \in \mathring{U}(x_0, \underline{\delta})$, 有

$$|g(x)-u_0|<\bar{\delta}.$$

由 $\lim_{u\to u_0} f(u) = A$ 知 $\forall \epsilon > 0$, $\exists \bar{\delta} > 0$, $\forall u \in \mathring{U}(u_0, \bar{\delta})$, 有

$$|f(u)-A|<\epsilon$$
.

因为 $\lim_{x\to x_0} g(x) = u_0$, 故 $\exists \underline{\delta} > 0$, 使得 $\forall x \in \mathring{U}(x_0, \underline{\delta})$, 有

$$|g(x)-u_0|<\bar{\delta}$$
.

又因为当 $x \in \mathring{U}(x_0, \delta_0)$ 时, $g(x) \neq u_0$. 故取 $\delta = \min\{\delta_0, \underline{\delta}\}$, 此时 $\forall x \in \mathring{U}(x_0, \delta)$, 有

$$0 < |g(x) - u_0| < \bar{\delta},$$

即 $g(x) \in \mathring{U}(u_0, \bar{\delta})$.

作业

• 教材习题 1-5: 1(1)(3)(7)(8)(9)(14); 2(3); 3(1); 5.