JAPAN PATENT OFFICE

別紙添付の書類に記載されている事項は下記の出願書類に記載されている事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office.

出願年月日 Date of Application: 2005年 1月18日

号 願 Application Number:

特願2005-010690

パリ条約による外国への出願 に用いる優先権の主張の基礎 となる出願の国コードと出願 番号

JP2005-010690

The country code and number of your priority application,

to be used for filing abroad under the Paris Convention, is

宇部興産株式会社 人 願

Applicant(s):

出

4月12日 2006年

特許庁長官 Commissioner, Japan Patent Office

【発明者】

プロス 【住所又は居所】 千葉県市原市五井南海岸8番の l 宇部興産株式会社千葉石油化

学工場内

【氏名】

岡本 尚美

【発明者】

プロレー 【住所又は居所】 千葉県市原市五井南海岸8番の l 宇部興産株式会社千葉石油化

学工場内

【氏名】 永久 光春

【特許出願人】

【識別番号】 000000206

【氏名又は名称】 宇部興産株式会社

【代表者】 常見 和正

【手数料の表示】

【予納台帳番号】 012254 【納付金額】 16,000円

【提出物件の目録】

【物件名】 特許請求の範囲 1

 【物件名】
 明細書

 【物件名】
 要約書

【审拟句】付前胡小ツ聪田

【請求項1】

(A) (1) 水分の濃度が調節された、1, 3-ブタジエンと農化水素系有機溶剤を主成分としてなる混合物に、有機アルミニウム化合物と可溶性コバルト化合物から得られるシスー1, 4 重合触媒を添加して1, 3-ブタジエンをシスー1, 4 重合する工程、引き続き、(2) 得られた重合反応混合物中に可溶性コバルト化合物と一般式A1R $_3$ (但し、R は農素数1~6のアルキル基、フェニル基又はシクロアルキル基である)で表される有機アルミニウム化合物と二硫化農素とから得られる触媒を存在させて、1, 3-ブタジエンを1, 2 重合する工程から得られたビニル・シスーボリブタジエン、及び、(B)上記シスー1, 4 重合触媒を添加して1, 3-ブタジエンをシスー1, 4 重合する工程で得られたシスーボリブタジエンを溶液混合することを特徴とするビニル・シスーボリブタジエンを溶液混合することを特徴とするビニル・シスーポリブタジエンが混合することを特徴とするグール・シスーポリブタジエンが混合することを特徴とするグール・シスーポリブタジエンが混合することを特徴とするグール・シスーポリブタジエンが混合することを特徴とするグール・100重量部とゴム補強剤(100年重

【請求項2】

前記ピニル・シスポリブタジエンゴム (a)の製造工程において、前記 (A) (2)の 1,3-ブタジエンを1,2重合する工程の重合温度が-5~50℃であることを特徴と する請求項1に記載のタイヤコードコーティング用ゴム組成物。

【請求項3】

前記ビニル・シスポリプタジエンゴム(a)の製造工程において、前記(A)で得られたビニル・シスーポリプタジエンの沸騰n-ヘキサン不溶分の割合(HI)が10~60重量%であることを特徴とする請求項1~2に記載のタイヤコードコーティング用ゴム組成物。

【請求項4】

前記ピニル・シスポリプタジエンゴム(a)において、(A)(1)のシスー1,4重合する工程で得られたシスーポリプタジエンの5%トルエン溶液粘度(Tcp))が150~250であることを特徴とする請求項1~3に記載のタイヤコードコーティング用ゴム組成物。

【請求項5】

(a)以外のジエン系ゴム(b)が、天然ゴム及び/又はポリイソプレンであることを特徴とする請求項1~4に記載のタイヤコードコーティング用ゴム組成物。

【請求項6】

ゴム補強剤がカーボンブラックであることを特徴とする請求項1~5に記載のタイヤコードコーティング用ゴム組成物。

自想句】叨和官

【発明の名称】タイヤコードコーティング用ゴム組成物

【技術分野】

 $[0\ 0\ 0\ 1\]$

本発明は、ダイ・スウェルが小さくて押出加工性に優れ、且つ金属との接着性の良好なカーカス、ベルト等のタイヤコーティングゴムといったタイヤの内部材用ゴム組成物に関するものである。また、本発明のタイヤに使用されるゴム組成物は、更にタイヤにおけるキャップトレッド、サイドウォール、ランフラットタイヤのサイド補強層、ベーストレッド、スティフナー、インナーライナー、チェーファー、ピード等のタイヤ部材や、防振ゴム、ホース、ベルト、ゴムロール、ゴムクーラー、靴底ゴムなどの工業製品、その他のコンポジット、接着剤、プラスチックの改質剤などにも用いる事ができる。

【背景技術】

[0002]

ポリブタジエンは、いわゆるミクロ構造として、1,4-位での重合で生成した結合部分(1,4-構造)と1,2-位での重合で生成した結合部分(1,2-構造)とか分子鎖中に共存する。1,4-構造は、更にシス構造とトランス構造の二種に分けられる。一方、1,2-構造は、ビニル基を側鎖とする構造をとる。

[0003]

従来、ビニル・シスポリブタジエンゴム組成物の製造方法は、ベンゼン、トルエン、キシレンなどの芳香族炭化水素系溶媒で行われてきた。これらの溶媒を用いると重合溶液の粘度が高く撹拌、伝熱、移送などに問題があり、溶媒の回収には過大なエネルギーが必要であった。

[0004]

[0005]

また、例之ば、特公昭62-171号公報(特許文献3),特公昭63-36324号公報(特許文献4),特公平2-37927号公報(特許文献5),特公平2-38081号公報(特許文献6),特公平3-63566号公報(特許文献7)には、二硫化炭素の存在下又は不在下に1,3-ブタジエンをシス1,4重合して製造、さらには製造した後に1,3-ブタジエンと二硫化炭素を分離・回収して二硫化炭素を実質的に含有しない1,3-ブタジエンや前記の不活性有機溶媒を循環させる方法などが記載されている。更に特公平4-48815号公報(特許文献8)には配合物のダイスウェル比が小さく,その加硫物がタイヤのサイドウォールとして好適な引張応力と耐屈曲亀裂成長性に優れたゴム組成物が記載されている。

[0006]

また、特開 2000-44633 号公報(特許文献 9)には、n-792、シス 2-7 テン、トランス -2-7 テン、及びプテンー 1 などの C_4 留分を主成分とする不活性有機 溶媒中で製造する方法が記載されている。この方法でのゴム組成物が含有する 1、2-ボリプタジェンは短繊維結晶であり、短繊維結晶の長軸長さの分析が繊維長さの <math>98% 以上が 0.6μ m未満であり、70% 以上が 0.2μ m未満であることが記載され、得られた

コム組成物はンヘ1, サホッノノンエンコム(以下, DNC 町 9 月 20 以ルはで可な心力, 引張強さ, 耐屈曲亀裂成長性などを改良されることが記載されている。しかしながら、用途によっては種々の特性が改良されたゴム組成物が求められていた。

[0007]

【特許文献1】特公昭49一17666号公報

【特許文献2】特公昭49-17667号公報

【特許文献3】特公昭62-171号公報

【特許文献4】特公昭63-36324号公報

【特許文献5】特公平2-37927号公報

【特許文献 6】 特公平 2 - 3 8 0 8 1 号公報

【特許文献7】特公平3-63566号公報

【特許文献8】特公平4-48815号公報

【特許文献 9】 特開 2 0 0 0 - 4 4 6 3 3 号公報

[0008]

一般にラジアルタイヤでは、高速耐久性や高速操縦性の点からスチールコードも使用されている。スチールコードを使用する場合、タイヤ走行時にスチールコード近傍のゴムに非常に大きな歪み集中が生じやすい。従って、スチールコード用ゴムとしては高弾性率で金属との接着性に優れることが必要とされる。有機繊維コードを用いるラジアルタイヤ、バイアスタイヤにおいても耐久性の観点からコード用ゴムとしては高弾性率のものが好ましい。

[0009]

高弾性率のゴムを得る方法としては従来から種々の方法が試みられている。カーボンブラックを多量配合する方法は、加工工程でのゴムのまとまりが悪いこと、混練や押出時に電力負荷が増大すること、配合物MLが大きくなるので押出成形時に困難が伴うため好ましくない。硫黄を多量配合する方法は、硫黄がブルームすること、架橋密度の増大によって亀裂成長が速くなる等の欠点を有する。熱硬化性樹脂の添加は、熱硬化性樹脂がコードコーティングゴムとして一般的に用いられる天然ゴムやジエン系ゴムとの相溶性が低いので分散不良になりやすく耐クラック性に劣る。また、従来公知のタイヤコードコーティングゴム組成物はグリーンストレングスが小さく、成形加工性の点からさらにグリーンストレングスの大きいものが要求されている。

【発明の開示】

【発明が解決しようとする課題】

[0010]

本発明は、ダイスウェルが小さく、またグリーンストレングスが大きく成形加工性に優れ、且つ加硫物の弾性率が大きい、カーカス、ベルト、ピード等のタイヤコードコーティング用ゴム組成物を得ることを目的とする。

【課題を解決するための手段】

[0011]

本発明は、(A)(1)水分の濃度が調節された、1,3ープタジエンと炭化水素系有機溶剤を主成分としてなる混合物に、有機アルミニウム化合物と可溶性コバルト化合物から得られるシスー1,4 重合触媒を添加して1,3ープタジエンをシスー1,4 重合する工程、引き続き、(2)得られた重合反応混合物中に可溶性コバルト化合物と一般式A1R3(但し、Rは炭素数1~6のアルキル基、フェニル基又はシクロアルキル基である)で表される有機アルミニウム化合物と二硫化炭素とから得られる触媒を存在させて、1,3ープタジエンを1,2 重合する工程から得られたビニル・シスーポリブタジエン、及び、(B)上記シスー1,4 重合触媒を添加して1,3ープタジエンをシスー1,4 重合する工程で得られたシスーポリブタジエンを溶液混合することを特徴とするビニル・シスーポリプタジエンゴム(a) 10~60 重量%と、(a)以外のジエン系ゴム(b)90~

40里里ルCかつなるコム版が(a) T (U) 100里里即Cコム畑短期(C) 30~80重量部とからなることを特徴とするタイヤコードコーティング用ゴム組成物に関する。

[0012]

また、本発明は、前記ピニル・シスポリブタジエンゴム(a)の製造工程において、前記(A)(2)の1,3-ブタジエンを1,2 重合する工程の重合温度が-5~50℃であることを特徴とするタイヤコードコーティング用ゴム組成物に関する。

[0013]

また、本発明は、前記ピニル・シスポリプタジエンゴム(a)の製造工程において、前記 (A) で得られたピニル・シスーポリプタジエンの沸騰 n ーへキサン不溶分の割合 (H I) が 1 0 ~ 6 0 重量%であることを特徴とするタイヤコードコーティング用ゴム組成物に関する。

[0014]

また、本発明は、前記ピニル・シスポリブタジエンゴム(a)において、(A)(1)のシスー1,4重合する工程で得られたシスーポリブタジエンの5%トルエン溶液粘度(Tcp))が150~250であることを特徴とするタイヤコードコーティング用ゴム組成物に関する。

[0015]

また、本発明は、(a)以外のジエン系ゴム(b)が、天然ゴム及び/又はポリイソブレンであることを特徴とするタイヤコードコーティング用ゴム組成物に関する。

[0016]

また、本発明は、ゴム補強剤(c)がカーボンブラックであることを特徴とするタイヤコードコーティング用ゴム組成物に関する。

【発明を実施するための最良の形態】

[0017]

本発明のビニル・シスーポリブタジエンゴム(a)は、(A)(1)水分の濃度が調節された、1,3ーブタジエンと炭化水素系有機溶剤を主成分としてなる混合物に、有機アルミニウム化合物と可溶性コバルト化合物から得られるシスー1,4重合触媒を添加して1,3ーブタジエンをシスー1,4重合する工程、引き続き、(2)得られた重合反応混合物中に可溶性コバルト化合物と一般式A1R3(但し、Rは炭素数1~6のアルキル基、フェニル基又はシクロアルキル基である)で表される有機アルミニウム化合物と二硫化炭素とから得られる触媒を存在させて、1,3ーブタジエンを1,2重合する工程から得られたビニル・シスーポリブタジエン、及び、(B)上記シスー1,4重合触媒を添加して1,3ーブタジエンをシスー1,4重合する工程で得られたシスーポリブタジエンを混合することにより製造される。

[0018]

上記(A)ピニル・シスーポリプタジエンは、例えば以下の製造方法で好適に得られる

[0019]

炭化水素系溶媒として、トルエン、ベンゼン、キシレン等の芳香族系炭化水素、nーへキサン、ブタン、ヘプタン、ベンタン等の脂肪族炭化水素、シクロベンタン、シクロヘキサン等の脂環式炭化水素、上記のオレフィン化合物やシスー2ープテン、トランスー2ープテン等のオレフィン系炭化水素、ミネラルスピリット、ソルベントナフサ、ケロシン等の炭化水素系溶媒、塩化メチレン等のハロゲン化炭化水素系溶媒等が挙げられ、1,3ープタジエンモノマーそのものを重合溶媒に用いて製造しても良い。中でも、トルエン、シクロヘキサン、あるいは、シスー2ープテンとトランスー2ープテンとの混合物などが好適に用いられる。

[0020]

次に1,3-プタジエンと前記溶媒とを混合して得られた混合媒体中の水分の濃度を調

即する。 小刀は即乱無体中の再級 / ルミーンムノロノコドュモルヨにカ, 対 ましてはり、 1~1.0 モル, 特に好ましくは 0.2~1.0 モルの範囲である。この範囲以外では触媒活性が低下したり、シス1、4 構造含有率が低下したり、分子量が異常に低下又は高くなったり、重合時のゲルの発生を抑制することができず、このため重合槽などへのゲルの付着が起り、更に連続重合時間を延ばすことができないので好ましくない。 水分の濃度を調節する方法は公知の方法が適用できる。 多孔質濾過材を通して添加・分散させる方法(特開平 4 - 8 5 3 0 4 号公報)も有効である。

[0021]

水分の濃度を調節して得られた溶液には有機アルミニウム化合物を添加する。有機アルミニウム化合物としては、トリアルキルアルミニウムやジアルキルアルミニウムクロライド、ジアルキルアルミニウムブロマイド、アルキルアルミニウムセスキブロマイド、アルキルアルミニウムジクロライド等である。

[0022]

具体的な化合物としては、トリメチルアルミニウム、トリエチルアルミニウム、トリイソブチルアルミニウム、トリヘキシルアルミニウム、トリオクチルアルミニウム、トリデシルアルミニウムなどのトリアルキルアルミニウムを挙げることができる。さらに、ジメチルアルミニウムクロライド、ジエチルアルミニウムクロライドなどのジアルキルアルミニウムクロライド、セスキエチルアルミニウムクロライド、エチルアルミニウムジクロライドなどのような有機アルミニウムハロゲン化合物、ジエチルアルミニウムハイドライド、ジイソブチルアルミニウムハイドライド、セスキエチルアルミニウムハイドライドのような水素化有機アルミニウム化合物も含まれる。これらの有機アルミニウム化合物は、二種類以上併用することができる。

[0023]

有機アルミニウム化合物の使用量の具体例としては、1,3ーブタジエンの全量1モル当たり0.1ミリモル以上、特に0.5~50ミリモルが好ましい。

[0024]

次いで、有機アルミニウム化合物を添加した混合媒体に可溶性コバルト化合物を添加してシス1、4重合する。可溶性コバルト化合物としては、炭化水素系溶媒を主成分とする、不活性媒体又は液体1、3ープタジエンに可溶なものであるか又は、均一に分散できる、例えばコバルト(II) アセチルアセトナート、コバルト(III) アセチルアセトナートなどコバルトのβージケトン錯体、コバルトアセト酢酸エチルエステル錯体のようなルトのβーケト酸エステル錯体、コバルトオクトエート、コバルトナフテネートにリジンルトのβーケトなどの炭素数6以上の有機カルボン酸コバルト塩、塩化コバルトピリジンに体、塩化コバルトエチルアルコール錯体などのがしている。 1 まいの1 モル当たり0.001 ミリモル以上、特に0.005 ミリモル以上であることが好ましい。また可溶性コバルト化合物に対する有機アルミニウムクロライドのモル比(A1/Co)は10以上であり、特に50以上であることが好ましい。また、可溶性コバルト化合物以外にもニッケルの有機カルボン酸塩、ニッケルの有機錯塩、有機リチウム化合物、ネオジウムの有機 カルボン酸塩、ニッケルの有機錯塩を使用することも可能である。

[0025]

シス1、4重合する温度は0 \mathbb{C} を超える温度 \sim 100 \mathbb{C} 、好ましくは $10\sim$ 100 \mathbb{C} 、更に好ましくは $20\sim$ 100 \mathbb{C} までの温度範囲で1 、3 - ブタジェンをシス1 、4 重合する。重合時間(平均滞留時間)は10 $分\sim$ 2 時間の範囲が好ましい。シス1 、4 重合後のボリマー濃度は $5\sim$ 26 重量%となるようにシス1 、4 重合を行うことが好ましい。重合槽は1 槽、又は2 槽以上の槽を連結して行われる。重合は重合槽(重合器)内にて溶液を 慢拌混合して行う。重合に用いる重合槽としては高粘度液慢拌装置付きの重合槽,例えば特公昭40-2645 号に記載された装置を用いることができる。

[0026]

本発明のシス1、4重合時に公知の分子量調節剤、例えばシクロオクタジエン、アレン

, ステル,レン (1, 4 - / / / / /) はこいれて、ステン は、人はエテレン, ノロこレン, プテンー l などの α - オレフィン類を使用することができる。 又重合時の ゲルの生成を更に抑制するために公知の ゲル 化防止剤を使用することができる。

[0027]

重合生成物の特性としては、シスー1、4 構造含有率が一般に90%以上、特に95%以上であることが好ましく、ムーニー粘度(ML_{1+4} 100 \mathbb{C} ;以下MLと略す)は10~130、特に15~80が好ましく、5%トルエン溶液粘度(Tcp))は150~250であることが好ましく、実質的にゲル分を含有しない。

[0028]

次いで、前記の如くして得られたシス1、4重合物に1、3ープタジェンを添加しても添加しなくてもよい。そして、一般式 $A1R_3$ で表せる有機アルミニウム化合物と二硫化炭素、必要なら前記の可溶性コバルト化合物を添加して1、3ープタジェンを1、2重合してビニル・シスポリプタジェンゴム(VCR)を製造する。一般式 $A1R_3$ で表せる有機アルミニウム化合物としてはトリメチルアルミニウム、トリエチルアルミニウム、トリイソプチルアルミニウム、トリ1の一へキシルアルミニウム、トリフェニルアルミニウム、トリケインができる。有機アルミニウム化合物は1、3ープタジェン1モルとを好適に挙げることができる。有機アルミニウム化合物は1、3ープタジェン1モルとを好適に挙げることができる。有機アルミニウム化合物は1、3ープタジェン1モルとながあることが好ましい。二硫化炭素の濃度は10ミリモル人とである。二硫化炭素の代替として公知のイソチオシアン酸フェニルやキサントゲン酸化合物を使用してもよい。

[0029]

1, 2重合する温度は $-5\sim100$ $^{\circ}$ $^{$

[0030]

重合反応が所定の重合率に達した後、常法に従って公知の老化防止剤を添加することができる。老化防止剤の代表としてはフェノール系の2、6ージー t ーブチルー p ークレゾール (BHT)、リン系のトリノニルフェニルフォスファイト (TNP)、硫黄系の4.6ーピス(オクチルチオメチル)ーのークレゾール、ジラウリルー3、3'ーチオジプロピオネート (TPL)などが挙げられる。単独でも2種以上組み合わせて用いてもよく、老化防止剤の添加はVCR100重量部に対して0.001~5重量部である。次に重合停止剤を重合系に加えて停止する。例えば重合反応終了後、重合停止槽に供給し、この重合溶液にメタノール、エタノールなどのアルコール、水などの極性溶媒を大量に投入する方法、塩酸、硫酸などの無機酸、酢酸、安息香酸などの有機酸、塩化水素ガスを重合溶液に導入する方法などの、それ自体公知の方法である。次いで通常の方法に従い生成したビニル・シスポリプタジエン (以下、VCRと略)を分離、洗浄、乾燥する。

[0031]

このようにして得られたビニル・シスーポリブタジエンの沸騰 n ー へキサン不溶分の割合 (HI) が10~60重量%であることが好ましく、特に30~50重量%が好ましい。沸騰 n ー へキサン可溶分はミクロ構造が90%以上のシス1,4ーポリブタジエンである。

[0032]

このようにして得られたVCRを分離取得した残部の未反応の1、3-ブタジエン、不

四世無中以び一城に原業では有りる此口初かつ為国により1,3一ノノンエン,小四世無体として分離して,一方,二硫化炭素を吸着分離処理,あるいは二硫化炭素付加物の分離処理によって二硫化炭素を分離除去し,二硫化炭素を実質的に含有しない1,3ープタジエンと不活性媒体とを回収する。また,前記の混合物から蒸留によって3成分を回収して,この蒸留から前記の吸着分離あるいは二硫化炭素付着物分離処理によって二硫化炭素を分離除去することによっても,二硫化炭素を実質的に含有しない1,3ープタジエンと不活性媒体とを回収することもできる。前記のようにして回収された二硫化炭素と不活性媒体とは新たに補充した1,3ープタジエンを混合して使用される。

[0033]

本発明による方法で連続運転すると、触媒成分の操作性に優れ、高い触媒効率で工業的に有利にVCRを連続的に長時間製造することができる。特に、重合槽内の内壁や攪拌翼、その他攪拌が緩慢な部分に付着することもなく、高い転化率で工業的に有利に連続製造できる。

[0034]

前記(B)シスーポリプタジエンは、例えば以下の製造方法で好適に得られる。

[0035]

上記(A)(1)の製造方法、すなわち、シスー1,4 重合触媒を添加して1,3 ープタジエンをシスー1,4 重合する工程と同様にして製造できる。

[0036]

得られたシスーポリブタジエンは、シス1、4ー構造含有率が一般に90%以上、特に95%以上であることが好ましく、ムーニー粘度(ML_{1+4} 100℃;以下MLと略す)は $10\sim130$,特に $15\sim80$ が好ましく、5%トルエン溶液粘度(Tcp))が $30\sim250$ であることが好ましく、実質的にゲル分を含有しない。

[0037]

本発明のビニル・シスーポリブタジエンゴム(a)は、(A)ビニル・シスーポリブタジエンと(B)シスーポリブタジエンとを溶液混合して得られ、当該ビニル・シスーポリブタジエンゴム(a)における(A)と(B)の割合は、(A)/(B)=10~50重量%/90~50重量%であることが好ましい。

[0038]

次に、本発明に使用されるタイヤコードコーティング用ゴム組成物は、前記のビニル・シスポリブタジエン(a)、(a)以外のジエン系ゴム(b)、ゴム補強剤(c)を配合してなる。

[0039]

前記のジエン系ゴム(b)としては、ハイシスポリプタジエンゴム、ローシスポリプタジエンゴム(BR)、天然ゴム、ポリイソプレンゴム、乳化重合若しくは溶液重合スチレンプタジエンゴム(SBR)、エチレンプロピレンジエンゴム(EPDM)、ニトリルゴム(NBR)、プチルゴム(IIR)、クロロプレンゴム(CR)などが挙げられる。

[0040]

また、これらゴムの誘導体、例えは錫化合物で変性されたポリプタジエンゴムやエポキシ変性、シラン変性、マレイン酸変性された上記ゴムなども用いることができ、これらのゴムは単独でも、二種以上組み合わせて用いても良い。

[0041]

本発明の(c)成分のゴム補強剤としては、各種のカーボンブラック以外に、ホワイトカーボン、活性化炭酸カルシウム、超微粒子珪酸マグネシウム等の無機補強剤やシンジオタクチック1、2ボリブタジエン樹脂、ボリエチレン樹脂、ボリプロピレン樹脂、ハイスチレン樹脂、フェノール樹脂、リグニン、変性メラミン樹脂、クマロンインデン樹脂及び石油樹脂等の有機補強剤があり、特に好ましくは、粒子径が90nm以下、ジブチルフタレート(DBP)吸油量が70m1/100g以上のカーボンブラックで、例えば、FEF、FF、GPF、SAF、ISAF、SRF、HAF等が挙げられる。

[0042]

明礼日瓜ガモ、ビール・ンへホリノノンエン(aノエロン UU里里ルC、(aノ以バツジエン系ゴム(b)90~40重量%とからなるゴム成分(a)+(b)100重量部と、ゴム補強剤(c)30~80重量部の条件を満足すべく配合する。

[0043]

前記ピニル・シスポリプタジエンの量が前記下限より少ないと、加硫物の弾性率が大きい組成物が得られず、ピニル・シスポリプタジエンの量が前記上限より多いと、組成物のムーニー粘度が大きくなりすぎて成形性が悪くなる。前記ゴム補強剤の量が前記下限より少ないと加硫物の弾性率が低下し、逆に前記上限より多いとムーニー粘度が大きくなりすぎてタイヤ成形性が悪化する傾向にある。また、ゴムの割合が前記範囲外であると加硫物の弾性率などが低下したり、金属との接着性が低下したりする。

[0044]

本発明のタイヤコードコーティング用ゴム組成物は、前記各成分を通常行われているバンバリー、オープンロール、ニーダー、二軸混練り機などを用いて混練りすることで得られる。 混練温度は、当該ビニル・シスポリブタジエンに含有される 1 , 2 ポリブタジエン結晶繊維の融点より低い必要がある。この 1 , 2 ポリブタジエン結晶繊維の融点より高い温度で混練すると、ビニル・シスポリブタジエン中の微細な短繊維が溶けて球状の粒子等に変形してしまうから好ましくない。

[0045]

本発明のゴム組成物には、必要に応じて、加硫剤、加硫助剤、老化防止剤、充填剤、プロセスオイル、亜鉛華、ステアリン酸など、通常ゴム業界で用いられる配合剤を混練してもよい。

[0046]

加硫剤としては、公知の加硫剤、例えは硫黄、有機過酸化物、樹脂加硫剤、酸化マグネシウムなどの金属酸化物などが用いられる。

[0047]

加硫助剤としては、公知の加硫助剤、例えばアルデヒド類、アンモニア類、アミン類、グアニジン類、チオウレア類、チアゾール類、チウラム類、ジチオカーバメイト類、キサンテート類などが用いられる。

[0048]

老化防止剤としては、アミン・ケトン系、イミダゾール系、アミン系、フェノール系、 硫黄系及び燐系などが挙げられる。

[0049]

充填剤としては、炭酸カルシウム、塩基性炭酸マグネシウム、クレー、リサージュ、珪 藻土等の無機充填剤、再生ゴム、粉末ゴム等の有機充填剤が挙げられる。

[0050]

プロセスオイルは、アロマティック系、ナフテン系、パラフィン系のいずれを用いても よい。

[0051]

本発明のタイヤコードコーティング用ゴム組成物は、高弾性率でありながらダイ・スウェルが小さく、グリーンストレングスが大きくて押出成形加工性及び成形性に優れるため、従来公知のタイヤコードコーティング用ゴム組成物に代えて、乗用車、バス、トラック、飛行機、ランフラットタイヤ等のタイヤ部材として他のタイヤ部材(キャップトレッド、サイドウォール、サイドウォール補強層、ベーストレッド、カーカス、ベルト、ビード等)と組み合わせて使用することができる。

[0052]

以下、実施例及び比較例を示して、本発明について具体的に説明する。実施例及び比較例において、ピニル・シスポリブタジエンゴムの素ゴムの物性、及び得られたタイヤコードコーティング用ゴム組成物の配合物の物性と加硫物の物性は以下のようにして測定した

<u>(1)沸騰n-ヘキサン不溶分(H.l.)</u>;2gのピニル・シスポリプタジエンゴムを2

∪∪Ⅲ1∨Ⅱ[−] ヽヿッンにしょ呵阄ノッノヘレー畑山鉛によっしの媽畑山レに畑山ススロロで重量部で示した。

- <u>(2) ムーニー粘度</u>; ビニル・シスポリプタジエンゴム、及びビニル・シスポリプタジエンゴムの配合物を JIS K6300に準じて100℃にて測定した値である。
- <u>(3)シスーポリプタジエンゴムのトルエン溶液粘度</u>;シスーポリプタジエンの25℃における5重量%トルエン溶液の粘度を測定してセンチポイズ(cp)で示した。
- <u>(4) ダイ・スウェル</u>;加工性測定装置(モンサント社、MPT)を用いて配合物の押出加工性の目安として100℃、 $100sec^{-1}$ のせん断速度で押出時の配合物の断面積とダイオリフィス断面積(但し、L/D=1.5 mm/1.5 mm)の比を測定して求めた。また比較例を100とし、指数を算出した。数値が小さい程押出し加工性が良好なことを示す。
- <u>(5) グリーンモジュラス;</u>未加硫ゴムを3号ダンベルに打ち抜いて試験片とし、室温、200mm/minの引張速度で測定した。また比較例を100とし、指数を算出した。数値が大きい程グリーンモジュラスが高く良好なことを示す。
- (6) 引張弾性率; JIS K6301に従い引張弾性率M300を測定し、比較例を100として指数を算出した。数値が大きい程引張弾性率が高く良好なことを示す。
- <u>(7)金属との接着強さ</u>; ASTM D2229に準じて測定した。比較例を100とし、指数を算出した。数値が大きい程金属との接着強さが高く良好なことを示す。

[0053]

(実施例)

(ビニル・シスポリブタジエンサンプル1の製造)

(A) ピニル・シスポリブタジエンの製造

窒素ガスで置換した内容 1.5 Lの撹拌機つきステンレス製反応槽中に重合溶液 1.0 L (ブタジエン;31.5 w t %、2 - ブテン類;28.8 w t %、シクロへキサン;39.7 w t %)を入れ、水1.7 m m o 1、ジエチルアルミニウムクロライド 2.9 m m o 1、二硫化炭素 0.3 m m o 1、シクロオクタジエン 13.0 m m o 1、コバルトオクトエート 0.005 m m o 1を加え、40℃で20分間撹拌し、1,4シス重合を行った。この時少量のシスポリブタジエン重合液を反応槽より取り出し、乾燥した後得られたシスーポリブタジエンゴムのトルエン溶液粘度を測定したところ 175 であった。その後、ブタジエン 150 m 1、水1.1 m m o 1、トリエチルアルムニウムクロライド 3.5 m m o 1、コバルトオクトエート 0.04 m m o 1を加え、40℃で20分間撹拌し、1,2シンジオ重合を行った。これに老化防止剤エタノール溶液を加えた。その後、未反応のブタジエン及び2-ブテン類を蒸発除去し、収量 66gで、HI;40.5%のビニル・シスポリブタジエンを得た。このうち58gのビニル・シスポリブタジエンをシクロへキサンに溶解させ、ビニル・シスポリブタジエンスラリーを作製した。

[0054]

(B) シスポリプタジエンの製造

窒素ガスで置換した内容1.5 Lの撹拌機つきステンレス製反応槽中に、重合溶液1.0 L (ブタジエン;31.5 w t %、2 - ブテン類;28.8 w t %、シクロヘキサン;39.7 w t %)を入れ、水1.7 mmo1、ジエチルアルミニウムクロライド2.9 m mo1、シクロオクタジエン20.0 mmo1、コバルトオクトエート0.005 mmo1を加え、60℃で20分間撹拌し、1,4シス重合を行った。これに老化防止剤エタノール溶液を加えて重合を停止した。その後、未反応のブタジエン及び2 - ブテン類を蒸発除去し、81 gのムーニー粘度 29.0、トルエン溶液粘度48.3のシスポリブタジエンを得た。この操作を2回実施し、合わせて162 gのシスーポリブタジエンをシクロヘキサンに溶解させ、シスーポリブタジエンシクロヘキサン溶液を作製した。

[0055]

(A)+(B)混合物ピニル・シスーポリプタジエンゴムの製造

窒素ガスで置換した内容5.0Lの攪拌機つきステンレス製反応槽中に前述で述べたシスポリプタジエン162gが溶解したシスーポリプタジエンシクロヘキサン溶液を入れ、

てこに別述で述いたとール・ンへホッテランエンのOBではピロル・ンへホッテランエンシクロへキサンスラリーを撹拌しながら添加した。スラリー添加後1時間撹拌した後、105℃で60分間真空乾燥して、(A)+(B)混合物ビニル・シスーポリブタジエンゴム220gを得た。この重合体混合物は、ML;61.1、HI;11.9%であった

[0056]

(ビニル・シスポリプタジエンサンプル2の製造)

窒素ガスで置換した内容 5 Lの撹拌機つきステンレス製反応槽中に、重合溶液 3.5 L(ブタジエン;31.5 w t %、2 - ブテン類;28.8 w t %、シクロヘキサン;39.7 w t %)を入れ、水5.3 m m o 1、ジエチルアルミニウムクロライド 10.5 m m o 1、二硫化炭素 1.8 m m o 1、シクロオクタジエン 40.0 m m o 1、コバルトオクトエート0.04 m m o 1 を加え、40 で 20 分間撹拌し、1.4 シス重合を行った。その後、ブタジエン 560 m 1、水4.5 m m o 1、トリエチルアルムニウムクロライド 13.4 m m o 1、コバルトオクトエート13.4 m m o 13 に 14 m m o 14 に 14 の 14 で 14 の 14 で 14 の 14

[0057]

前記サンブル1とサンブル2の物性を表1に示した。

[0058]

【表 1】

	サンブル1	サンブル2
成分(A) シスポリブタジエンのトルエン溶液粘度 H. I. (%)	175 40.5	1 1
成分(B) ムーニー粘度 トルエン溶液粘度	29 48.3	1 1
全ポリマー シスポリブタジエンのトルエン溶液粘度 ムーニー粘度 H. I. (%)	— 61.1 11.9	49.9 58.8 11.8

[0059]

(実施例1~3)(比較例1)

前記サンプル1及びサンプル2を用い、表2に示す配合処方のうち、加硫促進剤、硫黄を除く配合剤を1.7 Lの試験用パンパリーミキサーを使用して混練し、サイドウォール用ゴム組成物である混練物を得た。この際、最高混練温度を $170\sim180$ Cに調節した。次いで、この混練物を104ンチロール上で加硫促進剤、硫黄を混練し、これをシート状にロール出しした後、金型に入れて加硫し、加硫物を得た。加硫は150 C、30 分で行った。結果をまとめて表2に示す。

[0060]

実施例の組成物は、高弾性率でありながらダイ・スウェルが小さく、グリーンモジュラスが大きく改善しており、且つ金属との接着性にも優れている。

[0061]

配合表	実施例1	実施例2	実施例3	比較例1
ヒニル・シスポリフタシェン種類	サンプル1	サンプル1	サンプル1	サンプル2
量(部数)	35	20	35	35
NR(注1)	65	80	65	65
カーホ・ンフ・ラック N330	60	60	50	60
酸化亜鉛	7	7	7	7
ステアリン酸	2	2	2	2
ステアリン酸コハルト	3	3	3	3
老化防止剤(注2)	2	2	2	2
加硫促進剤(注3)	0.8	0.8	0.8	0.8
硫黄	1.5	1.5	1.5	. 1.5
配合物物性				
ダイ・スウェル (指数)	82	91	89	100
100%グリーンモジュラス(指数)	122	110	104	100
加硫物物性				
300%引張弾性率 (指数)	128	111	104	100
引張強度 (指数)	108	104	102	100
金属との接着強さ(指数)	110	108	106	100

(注1) NR; RSS#1

(注2) 老化防止剤; アンテージAS (アミンとケトンの反応物)

(注3) 加硫促進剤; ノクセラー C Z (N - シクロヘキシルー 2 - ベンゾチアゾールスルフェンアミド

【盲规句】女形官

【要約】

【課題】 ダイスウェルが小さく、またグリーンストレングスが大きく成形加工性に優れ、且つ加硫物の弾性率が大きい、カーカス、ベルト、ピード等のタイヤコードコーティング用ゴム組成物を得ることを目的とする。

【解決手段】 1,3-ブタジエンと炭化水素系有機溶剤を主成分としてなる混合物中の1,3-ブタジエンをシス-1,4重合し、引き続き得られた重合反応混合物中の1,3-ブタジエンを1,2重合する工程から得られたピニル・シスーポリブタジエン、および上記工程で得られたシスーポリブタジエンを溶液混合することを特徴とするビニル・シスーポリブタジエンゴムとそれ以外のジエン系ゴムからなるゴム成分とゴム補強剤からなることを特徴とするタイヤコードコーティング用ゴム組成物に関する。

【選択図】

なし

000000206200620010104 住所変更

山口県宇部市大字小串 1 9 7 8 番地の 9 6 宇部興産株式会社

Document made available under the **Patent Cooperation Treaty (PCT)**

International application number: PCT/JP2005/023377

International filing date:

20 December 2005 (20.12.2005)

Document type:

Certified copy of priority document

Document details:

Country/Office: JP

Number:

2005-010690

Filing date: 18 January 2005 (18.01.2005)

Date of receipt at the International Bureau: 27 April 2006 (27.04.2006)

Priority document submitted or transmitted to the International Bureau in Remark:

compliance with Rule 17.1(a) or (b)

