Problema 826

Construir el triángulo $\stackrel{\triangle}{ABC}$ conocidos a, b+c, w_a , on w_a es la bisectriz interna. Petersen, J. (1901): Méthodes et théories pour la résolution des problémes de constructions géomètriques . Gauthier - Villars (116), p. 21

Solución de Ricard Peiró i Estruch:

$$\begin{split} S_{ADC} &= \frac{1}{2} w_a b \cdot sin \frac{A}{2} \; . \; S_{ADB} = \frac{1}{2} w_a c \cdot sin \frac{A}{2} \; . \\ S_{ABC} &= \frac{1}{2} w_a (b+c) sin \frac{A}{2} = r \cdot p = \frac{1}{2} (a+b+c) \frac{1}{2} (-a+b+c) tg \frac{A}{2} \; . \\ cos \frac{A}{2} &= \frac{(a+b+c)(-a+b+c)}{2(b+c)w_a} \; . \end{split}$$

Con esta igualdad podemos construir los ángulos $\frac{A}{2}$, A.

El problema se transformaría en construir el triángulo conocidos $\,a,\, A,\, b+c\, .$

Pasos de la construcción:

a) Construir los ángulos $\frac{A}{2}$, A

b) Dibujar el segmento $\overline{BC} = a$.

- c) Dibujar los arcos capaces de $\frac{A}{2}$, A sobre el segmento \overline{BC} .
- d) Dibujar la circunferencia de centro B i radi $\,b+c$.
- e) La circunferencia de centro B corta el arco capaz de $\frac{A}{2}$ en el punt A_1 .

f) Dibujar la recta que pasa por los puntos B, A_1 , que corta el arco capaz de $\frac{A}{2}$ en el punto A.

Problema:

Siga el triángulo $\stackrel{\Delta}{ABC}$ conocidos a=7,b+c=13, $w_a=5$.

$$cos\frac{A}{2} = \frac{(a+b+c)(-a+b+c)}{2(b+c)w_a}.$$

$$\cos \frac{A}{2} = \frac{20 \cdot 5}{2 \cdot 13 \cdot 5} = \frac{12}{13}$$
.

$$\cos A = 2\cos^2\frac{A}{2} - 1 = \frac{119}{169}$$
.

Aplicando el teorema del coseno al triángulo $\stackrel{\Delta}{\text{ABC}}$:

$$7^2 = b^2 + (13 - b)^2 - 2b \cdot (13 - b) \frac{119}{169}$$
. Resolviendo la ecuación:

$$b = \frac{78 - 13\sqrt{6}}{12} \; , \; \; c = \frac{78 + 13\sqrt{6}}{12} \; .$$