Practice for Solving Exact ODEs

Why?

Note: Exercises marked with * have answers in the back of the book.

Exercise 1 Show that $x = e^{4t}$ is a solution to x''' - 12x'' + 48x' - 64x = 0.

Exercise 2 Show that $x = e^{-2t}$ is a solution to x'' + 4x' + 4x = 0.

Exercise 3 Show that $x = e^t$ is not a solution to x''' - 12x'' + 48x' - 64x = 0.

Exercise 4 Is $y = \sin t$ a solution to $\left(\frac{dy}{dt}\right)^2 = 1 - y^2$? Justify.

Exercise 5 Is $y = x^2$ a solution to $x^2y'' - 2y = 0$? Justify.

Exercise 6 Let y'' + 2y' - 8y = 0. Now try a solution of the form $y = e^{rx}$ for some (unknown) constant r. Is this a solution for some r? If so, find all such r.

Exercise 7 Let xy'' - y' = 0. Try a solution of the form $y = x^r$. Is this a solution for some r? If so, find all such r.

Exercise 8 Verify that $x = Ce^{-2t}$ is a solution to x' = -2x. Find C to solve for the initial condition x(0) = 100.

Exercise 9 Verify that $x = C_1e^{-t} + C_2e^{2t}$ is a solution to x'' - x' - 2x = 0. Find C_1 and C_2 to solve for the initial conditions x(0) = 10 and x'(0) = 0.

Exercise 10 Verify that $x = C_1e^t + C_2$ is a solution to x'' - x' = 0. Find C_1 and C_2 so that x satisfies x(0) = 10 and x'(0) = 100.

Exercise 11 Find a solution to $(x')^2 + x^2 = 4$ using your knowledge of derivatives of functions that you know from basic calculus.

Exercise 12 Solve $\frac{d\varphi}{ds} = 8\varphi$ and $\varphi(0) = -9$.

Learning outcomes:

Exercise 13 Solve:

a)
$$\frac{dA}{dt} = -10A$$
, $A(0) = 5$

$$b) \frac{dH}{dx} = 3H, \quad H(0) = 1$$

c)
$$\frac{d^2y}{dx^2} = 4y$$
, $y(0) = 0$, $y'(0) = 1$

d)
$$\frac{d^2x}{du^2} = -9x$$
, $x(0) = 1$, $x'(0) = 0$

Exercise 14 Solve:

a)
$$\frac{dx}{dt} = -4x, \quad x(0) = 9$$

b)
$$\frac{d^2x}{dt^2} = -4x$$
, $x(0) = 1$, $x'(0) = 2$

$$c) \frac{dp}{da} = 3p, \quad p(0) = 4$$

d)
$$\frac{d^2T}{dx^2} = 4T$$
, $T(0) = 0$, $T'(0) = 6$

Exercise 15 Is there a solution to y' = y, such that y(0) = y(1)?

16 The population of city X was 100 thousand 20 years ago, and the population of city X was 120 thousand 10 years ago. Assuming constant growth, you can use the exponential population model (like for the bacteria). What do you estimate the population is now?

Exercise 17 Suppose that a football coach gets a salary of one million dollars now, and a raise of 10% every year (so exponential model, like population of bacteria). Let s be the salary in millions of dollars, and t is time in years.

a) What is s(0) and s(1).

- b) Approximately how many years will it take for the salary to be 10 million.
- c) Approximately how many years will it take for the salary d) Approximately how many years will it take for the salary to be 20 million.
- to be 30 million.