

UNIVERSIDADE FEDERAL DE OURO PRETO DEPARTAMENTO DE COMPUTAÇÃO

PLANO DE ENSINO

Nome do Componente Curricular em português:			Código:
Inteligência Artificial			BCC740
Nome do Componente Curricul	ar em inglês:		
None			
Nome e sigla do departamento:			Unidade acadêmica:
Departamento de Computação (DECOM)			ICEB
Nome do docente:			
Rodrigo César Pedrosa Silva	ı		
Carga horária semestral:	Carga horária semanal teórica:	Carga h	orária semanal prática:
60 horas	4 horas/aula	0 horas/aula	
Data de aprovação na assemble	ia departamental:		
26/10/2022			
Ementa:			
Introdução.			
Resolução de Problemas.			
Sistemas baseados em Con	necimento:		
Representação do Conhecin	nento (ênfase em Lógica Nebulosa),		
Automatização do Raciocínio),		
Controladores inteligentes.			
Aprendizagem Automática (é	enfase em Redes Neurais).		
Percepção.			
Planejamento.			
Aplicações.			

Conteúdo Programático:

- 1. Introdução
- 2. Resolução de Problemas
 - 2.1. Pesquisa como construção da solução
 - 2.1.1. Espaço de estados
 - 2.1.2. Decomposição de Problemas
 - 2.1.3. Métodos de busca
 - 2.2. Pesquisa em espaço de soluções
 - 2.3. Subida de encosta ("Hill-climbing")
 - 2.4. Têmpera simulada ("Simulated Annealing")
 - 2.5. Métodos evolutivos: algoritmo genético
- 3. Sistemas Baseados em Conhecimento
 - 3.1. Representação do Conhecimento
 - 3.1.1. Lógica convencional
 - 3.1.2. Lógica Nebulosa ("Fuzzy Logic")

- 3.1.3. Regras
- 3.2. Controladores Baseados em Conhecimento
- 4. Aprendizagem Automática
 - 4.1. Aprendizagem Simbólica
 - 4.2. Redes Neurais Artificiais
- 5. Percepção
 - 5.1. Sensores
 - 5.2. Processamento: Digitalização, Extração de informações, Interpretação
- 6. Planejamento

Objetivos:

Ao final do curso o aluno deverá:

- ter uma visão abrangente da área de IA (Inteligência Artificial);
- · dominar os principais pontos da IA clássica;
- · conhecer razoavelmente bem alguns tópicos avançados em IA, os quais sejam interessantes para a área de automação e controle;
- · ter a capacidade de aplicar técnicas de IA para resolver problemas práticos em automação e controle.

Metodologia:

Aulas expositivas sobre o conteúdo programático

Estudos Dirigidos: atividades individuais práticas contendo exercícios e implementações dos métodos estudados. Serão avaliados com entrevistas ou testes durante as aulas.

Leituras recomendadas: leitura de textos técnicos com a finalidade de proporcionar ao discente a oportunidade de consulta e desenvolvimento de sua capacidade de análise, síntese e crítica de uma bibliografia específica.

Observações: A principal linguagem de programação deste curso será a linguagem Python. O código fonte dos trabalhos práticos será submetido pelo GitHub. O aluno precisará ter acesso à internet e um computador (desktop ou laptop).

Atividades avaliativas:

6 estudos dirigidos (EDs) de 10 pontos - 1 para cada bloco de duas semanas definidos no cronograma.

2 provas (P1 e P2)

Nota Final = $(2 \times P1 + 7 \times P2 + 1 \times média(ED))/10,0$

Exame Especial: Os alunos que tiverem pelo menos 75% de frequência (mínimo para aprovação) e média inferior a seis pontos poderão fazer o Exame Especial ou o Exame Especial Parcial. Estes exames serão provas únicas, individuais.

Cronograma:

Semana	Conteúdo
1	O que é Inteligência Artificial? O que são agentes? Como simulamos um
	ambiente? (Estudo dirigido 1)
2 e 3	Busca em espaço de estados: Como um agente pode encontrar soluções para
	um problema? (Estudo dirigido 2)

4 e 5	Problema de statisfação de restrições: Como um agente resolve problemas com
	restrições? (Estudo dirigido 3)
6 e 7	Representação do conhecimento e inferência: Como um agente pode representar
	conhecimento e inferir coisas a partir deste conhecimento? (Estudo dirigido 4)
8 (18/01)	PROVA 1
9 e 10	Aprendizado de máquina: Como um agente aprende um modelo linear a partir
	dos dados? Como um agente aprende uma Árvore de Decisão ou uma Floresta a
	partir de dados (Estudo dirigido 5)
11 e 12	Redes Neurais Artificiais: Resolvendo problemas imitando (ou tentando imitar) o
	cérebro. (Estudo dirigido 6)
13 (15/03)	PROVA 2
14	Correção da prova e retorno das atividades
15 (27/03)	EXAME ESPECIAL

Bibliografia Básica:

- POOLE D.L., MACKWORTH A.K. Artificial Intelligence: Foundations of Computational Agents,
 2nd Edition. Cambridge University Press. Disponível em: https://artint.info/2e/html/ArtInt2e.html
- SILVA, F.M. Inteligência artificial. Grupo A, 2019. 9788595029392. Disponível em: https://integrada.minhabiblioteca.com.br/#/books/9788595029392/. Acesso em: 31 Jul 2020
- SIMÖES MG, SHAW IS. Controle e modelagem fuzzy. Editora Blucher; 2007. Disponível em: https://plataforma.bvirtual.com.br/Leitor/Publicacao/173310/pdf/0 . Acesso em: 31 Jul 2020.

Bibliografia Complementar:

- LUGER, G.F. Inteligência Artificial : estruturas e estratégias para a resolução de problemas complexos. Tradução de Paulo Martins Engel. Bookman, 2004.
- MITCHELL, T. Machine Learning, McGraw-Hill, 1997. ISBN: 978-0070428072
- BARR, A.; COHEN, P.R.; FEINGENBAUM, E.A. The Handbook of Artificial Intelligence. vol. I, II, III e IV. Addison-Wesley, 1989. ISBN: 0201118157
- BRATKO, I. Prolog: Programming for Artificial Inteligence, Addison-Wesley, 3a. edição, 2000.
 ISBN: 978-0201403756
- RICH, E.; KNIGHT, K. Artificial Intelligence, McGraw-Hill, 2a. edição, 1990. ISBN: 978-0070522633