

Projekt 2. část - dokumentace výsledků

Varianta 3: COVID-19

Ukládání a příprava dat

Šimon Galba, Bc. (xgalba03) Gladiš Damián, Bc. (xgladi00) Jeřábek František, Bc. (xjerab25)

Obsah

1	anie
2	rorené CSV
3	avené CSV
	Normalizácia
	Diskretizácia
	Odl'ahlé hodnoty
	3.3.1 Detekcia
	3.3.2 Náhrada
	Výsledné CSV:

1 Zadanie

Hledání skupin podobných měst z hlediska vývoje covidu a věkového složení obyvatel.

Atributy: počet nakažených za poslední 4 čtvrtletí, počet očkovaných za poslední 4 čtvrtletí, počet obyvatel ve věkové skupině 0..14 let, počet obyvatel ve věkové skupině 15 - 59, počet obyvatel nad 59 let.

Pro potřeby projektu vyberte libovolně 50 měst, pro které najdete potřebné hodnoty (můžete např. využít nějaký žebříček 50 nejlidnatějších měst v ČR).

2 Vytvorené CSV

Riadky:

 Ako objekt bol zvolený okres - každý riadok csv súboru zodpovedá jednému okresu v ČR. Počet očkovaných ľudí v jednotlivých mestách nie je verejne dostupný údaj a rozšírenie mesta na okres spôsobí minimálnu zmenu vo výsledku.

Stĺpce: Každý stĺpec tabuľky odpovedá jednému atribútu objektu

- 1. LAU1 kód okresu
- 2. vaccination_count počet očkovaných ľudí v danom okrese
- 3. infected_count počet infikovaných ľudí v danom okrese
- 4. **0-14** počet obyvateľov podľa vo veku 0 až 14 rokov
- 5. 15-59 počet obyvateľov podľa vo veku 15 až 59 rokov
- 6. 60+ počet obyvateľov podľa vo veku 60 a vyššom
- 7. **název** názov okresu
- 8. infected_percentage percentuálny počet nakazených ľudí vzhľadom na počet obyvateľov okresu
- 9. vaccinated_percentage percentuálny počet očkovaných ľudí vzhľadom na počet obyvateľov okresu
- 10. kids_percentage percentuálny počet detí vo veku 0-14 rokov vzhľadom na počet obyvateľov okresu

3 Upravené CSV

3.1 Normalizácia

Pre potreby projektu bola použitá min-max normalizácia tak ako bola vysvetľovaná na prednáškach. Normalizované boli dáta udávajúce počty infikovaných v danom okrese, teda atribút infected_count.

Min-max normalizace: na [new_min_A, new_max_A]

$$v' = \frac{v - min_{A}}{max_{A} - min_{A}} (new _ max_{A} - new _ min_{A}) + new _ min_{A}$$

Obrázek 1: Vzorec pre min-max normalizáciu.

3.2 Diskretizácia

Pre diskretizáciu bol zvolený postup diskretizácie do šírky, teda delenie dát na rovnako veľké intervaly. Pre potreby trénovania klasifikátoru boli normalizované atribúty **infected_percentage** a **vaccinated_percentage**. Na diskretizáciu bola využitá funkcia **qcut** z knižnice pandas.

3.3 Odľahlé hodnoty

3.3.1 Detekcia

Odľahlé hodnoty **outlier** boli detekované pomocou **z-score**. Odľahlé hodnoty boli hľadané na atribúte percentuálneho počtu detí, keď že tieto dáta môžu ovplyvniť prípadné výsledky dolovacieho algoritmu vzhľadom na naočkovanie detí. Ako parameter bola zvolená hodnota 3 určujúca signifikantný rozdiel dát a na výpočet použitá funkcia **stats** z knižnice **scipy**.

3.3.2 Náhrada

V tomto atribúte boli pre náš dataset odhalené dve odľahlé hodnoty. Tieto hodnoty boli potom podľa kvantilu 95% a 5% upravené na hodnotu bližšieho kvantilu a znovu vložené do datasetu.

3.4 Výsledné CSV:

Riadky:

• Okres ako objekt zostáva nezmenený

Stĺpce: Každý stĺpec tabuľky odpovedá jednému atribútu objektu. Stĺpce 1 až 7 zostávajú nezmenené.

- 11. **outlier** odĺahlé hodnoty perpetuálneho počtu detí
- 12. infection_category kategorizovaná hodnota počtu infikovaných v okrese
- 13. vaccination_category kategorizovaná hodnota počtu očkovaných v okrese
- 14. **normalized_infected_count** normalizovaná hodnota počtu infikovaných v okrese