ANEXOS

ANEXO Nº1 Explicación de las funciones de probabilidad

	Nombre de la distribución	Función asociada	Fuente de consulta (en wikipedia)
Funciones Discretas	Poisson	$f(k;\lambda)=rac{e^{-\lambda}\lambda^k}{k!},$ λ es la media de la distribución Rango de k $[0\ldots\infty[$	http://es.wikipedia.org/ wiki/Distribuci %C3%B3n_Poisson
	Binomial	$\binom{n}{k}p^k(1-p)^{n-k}$ P es la probabilidad de éxito n es el número de experimentos realizados Indica la probabilidad de tener k éxitos en n experimentos realizados Rango de k: [0,n]	http://es.wikipedia.org/ wiki/Distribuci %C3%B3n_binomial
	Geométrica	$P(X=x)=(1-p)^{x-1}p$ p es la probabildiad de tener éxito $q=(1-p)$	http://es.wikipedia.org/ wiki/Distribuci %C3%B3n_geom %C3%A9trica
		Indica la probabilidad de tener éxito luego de "x" intentos Rango de x [1∞[
	Hipergeométrica	$P(X=x) = \frac{\binom{d}{x}\binom{N-d}{n-x}}{\binom{N}{n}},$ N: tamaño de la población n: tamaño de la muestra extraída d: tamaño de la población que denota éxito Rango de x [0 N]	http://es.wikipedia.org/ wiki/Distribuci %C3%B3n_hipergeom %C3%A9trica
	Uniforme discreta	Esta función únicamente recibe una lista de valores de largo N y cada uno tiene la probabilidad 1/N de aparecer.	http://es.wikipedia.org/ wiki/Distribuci %C3%B3n_uniforme_d iscreta
Funciones Continuas	Normal	$\frac{1}{\sigma\sqrt{2\pi}} \ e^{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2}$ Miu es la media cita es la desviación estándar Rango de x]- ∞ , ∞ [pero luego de 12 veces la desviación estándar es despreciable	http://es.wikipedia.org/ wiki/Distribuci %C3%B3n_normal

	Exponencial	$1 - e^{-\lambda x}$ $\lambda \text{ es } 1/\text{E(x)}$ Rango de x $[0, \infty[$	http://es.wikipedia.org/ wiki/Distribuci %C3%B3n_exponencial
	Uniforme continua	Consiste en dar un número aleatorio continuo entre dos parámetros que son dados.	http://es.wikipedia.org/ wiki/Distribuci %C3%B3n_uniforme_c ontinua

ANEXO Nº2

Método de Simpson para cálculo de área bajo la curva en Scheme

```
;; Realiza el método compuesto de Simpson
;; Divide cada unidad en 10000 partes iguales
;; Entradas: Una función sobre la que se va a calcular la integral
            y un rango para dicha integral desde a hasta b
;; Salidas: El valor de la integral más un error que se basa en la cuarta derivada de la función
;; Restricciones: La función sólo recibe un parámetro "x"
                 el valor de a debe ser menor que el valor de b.
(define simpson
 (lambda (fun a b)
  (*
  (/(10000)3)
  (simpson-aux fun a b (* (- b a) 10000)))))
(define simpson-aux
 (lambda (fun a b particiones)
  (+ (fun a)
    (fun b)
    (suma-simpson
    fun
     #f
    (+ a (/ (- b a) particiones))
    (/ (- b a) particiones)
    0))))
(define suma-simpson
 (lambda (fun es-par val-act tope aumento acum)
  (cond ((>= val-act tope) acum)
      (es-par
      (suma-simpson
       fun (not es-par) (+ val-act aumento) tope aumento
       (+ (* 2 (fun val-act)) acum)))
      (else
      (suma-simpson
       fun (not es-par) (+ val-act aumento) tope aumento
       (+ (* 4 (fun val-act)) acum)))))
```

ANEXO Nº3

Definición de la función normal en Scheme a modo de ejemplo

```
;; Función normal
;; Si "pi" no existiera como constante en su dialecto de Scheme, debe de definirlo (define normal (lambda (m s) (lambda (x) (* (/ 1 (* s (sqrt (* 2 pi)))) (exp (* -1/2 (cuad (/ (- x m) s)))))))))
;; Función normal estándar, media 0 y desviación estándar 1 (define normal-estandar (normal 0 1))
```