Année universitaire: 2023-2024

Ecole Nationale de la Statistique et de l'Analyse Economique (ENSAE) Pierre Ndiaye de Dakar

Dr. S. DIOUF

Contrôle 1 D'algèbre 1 du 2nd Semestre : Section AS1 Durrée: 4 heures

Exercice 1: 3 points Dans $\mathcal{M}_3(\mathbb{R})$, soit:

$$A = \begin{pmatrix} 0 & 2 & -1 \\ -1 & 3 & 1 \\ 0 & 0 & 1 \end{pmatrix}$$

1. Déterminer le polynôme caractéristique de A.

2. Trouver les valeurs propres et les sous espaces propres associés de A.

3. Déduire que A est diagonalisable.

4. Déterminer le polynôme minimal de A.

5. Déduire A^2 en fonction de A et de I_3 .

Exercice 2: 3 points

Soit E l'ensemble des polynômes de degré inférieur où égalà 2 à coefficients réels et f l'application linéaire de E vers E définie par :

$$f(P)(X) = (X^2 - 1)P''(X) + 2XP'(X), \forall X \in \mathbb{R}$$

où $P \in E$, P' et P'' désignent respectivement la dérivée première et la dérivée seconde de P.

1. Calculer la matrice A de f par rapport la base canonique $\mathcal{B} = (1, X, X^2)$ de E.

2. Trouver les valeurs propres et les sous espaces propres associés de A.

3. Déduire que A est diagonalisable.

4. Déterminer le polynôme minimal de A.

Exercice 3: 3 points

Soit f l'endomorphisme de \mathbb{R}^3 tel que sa matrice dans la base canonique \mathcal{B} est:

$$A = \begin{pmatrix} -4 & 1 & 1\\ 1 & -1 & -2\\ -2 & 1 & -1 \end{pmatrix}$$

 $A = \begin{pmatrix} -4 & 1 & 1 \\ 1 & -1 & -2 \\ -2 & 1 & -1 \end{pmatrix}$ 1. Déterminer les sous espaces propres de f et préciser leurs dimensions respectives.

2. Déterminer le polvnôme minimal de f.

3. Déduire si f est diagonalisable ou non.

Exercice 4: 6 points

On considère l'application de \mathbb{R}^3 dans \mathbb{R}^3 par:

$$f(x, y, z) = (3x - y + z, -x - 2y - 5z, x + y + 3z).$$

1) a) Déterminer la matrice A de f par rapport à la base canonique B de \mathbb{R}^3 .

b) Donner une famille génératrice de Imf.

c) Calculer det(A). L'application f ets-elle bijective?

- d) Déterminer Kerf. Donner une base de Kerf et en déduire que Kerf est de dimension 1.
- e) Déterminer la dimension de Imf. Donner une base de Imf.
- 2) On considère les trois vecteurs suivants de \mathbb{R}^3 :

u = (-4, 1, 3), v = (2, 0, -1), w = (-1, 1, 1).

- a) Calculer le déterminant $det_B(u, v, w)$. Justifier que $B' = \{u, v, w\}$ est une base de \mathbb{R}^2 .
- b Donner la matrice de passage P de B à B^\prime et calculer P^{-1}
- c) Calculer la matrice A' de f par rapport à la base B'.
- 3) Soit p un vecteur de \mathbb{R}^3 . On note (a,b,c) ses coordonnées dans la base B et (α,β,γ) ses coordonnées dans
- la base B'. Exprimer a, b, et c en fonction de α, β et γ et α, β et γ en fonction de a, b, et c.
- 4) Déterminer la matrice C de $f\circ f$ relativement à la base B.

Exercice 5: 6 points

Soient a et b deux rels.

On note f l'endomorphisme de \mathbb{R}^3 dont la matrice dans la base canonique de \mathbb{R}^3 est:

$$A = \begin{pmatrix} 1 & a & a-1 \\ 3 & 2 & a \\ a-1 & a & a+1 \end{pmatrix}$$

On considre le systme linéaire (S) d'inconnues $(x,y,z)\in\mathbb{R}^3$

(S)
$$\begin{cases} x + ay + (a - 1)z &= b \\ 3x + 2y + az &= -1 \\ (a - 1)x + ay + (a + 1) &= 1 \end{cases}$$

- 1)a) Calculer det(A). On exprimera le résultat sous la forme $det A = \lambda a^2 (4-a)$ où λ est un réel non nul à
- b) Soit b un récl donné. Pour quelles valeurs de a est-on assuré que le systme (S) admet une solution unique?
- 2) On suppose dans cette question que a=4.
- On note C_1 et C_2 les deux premiers colonnes de A.
- a) Justifier que $rg(A) \leq 2$.
- b)Montrer que rg(A) = 2 et $\{C_1, C_2\}$ forme une base de Imf.
- c) En déduire que (S) admet des solutions si et seulement si le déterminant
- 1 4 b

- 3 2 -1
- 3 4 1
- d) Montrer que (S) n'admet de solution que pour une valeur de b préciser:
- -en utilisant les résultats précédents; -en résolvant directement (S) l'aide de la méthode de Gauss.
- 3) On suppose que a=0. Ecrire dans ce cas le système (S) et le résoudre lorsque c'est possible.