Bayesian learning and the Hierarchical Gaussian Filter

Practical session CPC 2020

Tore Erdmann Sandra Iglesias Lilian Weber

Conditioned hallucinations

Subjects with hallucinations show higher estimates for weights on prior beliefs

Introduction

- Computational psychiatry is concerned with understanding mental disorders through formalisation and model-building
- Underlying processes can often be described in terms of inference
- And these can be studied through decision-making tasks
- Inverse Bayesian decision theory (see Daunizeau et al (2010)):
 - "a meta-Bayesian procedure which allows for Bayesian inferences about subject's Bayesian inferences"

Modelling the inference process

Example: gambling task

Example: gambling task

• Two slot machines:
For 100 trials, subjects can choose to play either machine to obtain a reward

• Generative process of task:

At each time *t* one of the machines will give a reward. This can be described as a coin flip:

$$u^{(t)} \sim Ber(x)$$

Subject's response in t-th trial:

$$y^{(t)} \in \{0,1\}$$

Subject's reward in t-th trial:

$$r^{(t)} = \begin{cases} 1, & if \ u^{(t)} = y^{(t)} \\ 0, & else \end{cases}$$

Derive inference process

We assume this perceptual model:

$$m^{(p)}: \begin{cases} p(u^{(t)}|x) = Ber(x) & t = 1,...,T \\ p(x) = Beta(1,1) \end{cases}$$

Which has this posterior:

$$\pi\left(x \mid u^{(1)}, \dots, u^{(T)}\right) = Beta\left(a + \sum_{t=1}^{T} u^{(t)}; b + T - \sum_{t=1}^{T} u^{(t)}\right)$$

This gives the following sequence of parameters:

$$(a^{(t)}, b^{(t)}) = (a^{(t-1)} + u^{(t)}, b^{(t-1)} + 1 - u^{(t)})$$

And these expectations:
$$\mu^{(t)} = \frac{a^{(t)}}{a^{(t)} + b^{(t)}}$$

Modelling the inference process

Example inference process

The Hierarchical Gaussian Filter (HGF)

HGF generative model

- The HGF is a model for perceptual learning defined through specific choices for the inference process:
 - Generative model: hierarchy of random walks
 - update equations derived through minimising perceptual free energy
- The HGF dynamically updates its learning rate with every observation

Beta-bernoulli model: generative model and inference process

Generative model

Inference model

HGF: generative model and inference process

Generative model

Inference model

Precision weights and types of uncertainty

The learners observations are generated by:

$$u^{(t)} \sim \operatorname{Ber}\left(x_1^{(t)}\right)$$

which leads to these updates for the belief about the latent process:

$$\mu_2^{(t)} = \mu_2^{(t-1)} + \frac{1}{\pi_2^{(t)}} \delta_1^{(t)} \qquad \hat{\mu}_1^{(t)} = s \left(\mu_2^{(t)} \right)$$

The precision weight can be decomposed into factors corresponding to different kinds of uncertainty:

$$\frac{1}{\pi_2^{(t)}} = \frac{1}{\sigma_2^{(t-1)} \exp(\kappa \mu_3^{(t-1)} + \omega)} + \frac{1}{\hat{\mu}_1^{(t)} (1 - \hat{\mu}_1^{(t)})}$$

uncertainty of the environment

Estimation Estimated volatility Irreducible uncertainty about the outcome

Generative process of gambling task

Types of uncertainty:

- Expected and irreducible: noise
- Unexpected and reducible: estimation error
- Unexpected and irreducible: state changes (volatility)

Simulation of Beta-Bernoulli model

Simulation of HGF

Simulated responses

Inputs

Simulated belief (mean of posterior)

True value of hidden variable

References/further reading

Theory

- "A reading list on Bayesian methods": http://cocosci.princeton.edu/tom/bayes.html
- Mathys et al. (2011): "A Bayesian foundation for individual learning under uncertainty"
- Mathys et al. (2014): "Uncertainty in perception and the Hierarchical Gaussian Filter"
- Daunizeau et al. (2010): "Observing the Observer (I): Meta-Bayesian Models of Learning and Decision-Making"
- Maia and Frank (2011): "From Reinforcement Learning Models to Psychiatric and Neurological Disorders"

Applications

- Iglesias et al. (2013): "Hierarchical Prediction Errors in Midbrain and Basal Forebrain during Sensory Learning"
- de Berker et al. (2015): "Computations of uncertainty mediate acute stress responses in humans"
- Powers et al. (2017): "Pavlovian conditioning-induced hallucinations result from overweighting of perceptual priors"

General modelling

- Wilson and Collins (2019): "Ten simple rules for the computational modeling of behavioral data"
- Palminteri et al. (2017): "The Importance of Falsification in Computational Cognitive Modeling"