Projekt 2

Julia Girtler

22 maja 2023

Spis treści

1	Opis zadania	2
2	Algorytm Goertzela	2
3	Metoda Trapezów	2
4	Analiza wyników 4.1 Błąd względny a ilość podziałów przedziału całkowania 4.2 Porównanie czasu wykonania funkcji wbudowanej i funkcji zaimplementowanej (metoda trapezów)	3 3 4
5	Wnioski	5

1 Opis zadania

W poniższym projekcie została zaimplementowna metoda trapezów do obliczania przybliżonej wartości całki $\int_a^b (\sum_{i=1}^n a_k \cos(kx)) dx$ gdzie $\sum_{i=1}^n a_k \cos(kx)$ wyznaczana jest za pomocą algorytmu Goertzela.

2 Algorytm Goertzela

Aby wyznaczyć wartości wielomianu zadanego w zadaniu wykorzystany został algorytm Goertzela. Oblicza on wartości wielomianu: $w(\lambda) = \sum_{n=0}^{n} a_n \lambda^n$

```
Algorymt obliczania w(z) dla z=x+iy \mathbf{p}=2\mathbf{x} \mathbf{q}=-(x^2+y^2) \mathbf{b}_N=a_N for \mathbf{n}= N-1,...,1 b_n=a_n+pb_{n+1}+qb_{n+2} end \mathbf{u}=\mathbf{a}_1p+x*b_2+q*b_3 \mathbf{v}=\mathbf{y}\mathbf{b}_2 w(z)=\mathbf{u}+\mathbf{i}\mathbf{v}
```

3 Metoda Trapezów

Metoda trapezów to jedna z podstawowych metod numerycznego całkowania, która przybliża wartość całki z funkcji na danym przedziałe poprzez podział tego przedziału na niewielkie trapezy i sumowanie ich pól. Zaimplementowana przeze mnie funckja działa następująco:

- Podany przedział zostaje dzielony na n części, obliczona zosatje długość każdej z nich.
- 2. Obliczane są wartości funkcji na początku i na końcu danego przedziału.
- 3. Wyliczamy średnia wartość funkcji dla danego przedziału.
- Dodajemy do siebie wszystkie wartości przemnożone przez długość tego przedziału.

4 Analiza wyników

4.1 Błąd względny a ilość podziałów przedziału całkowania

4.2 Porównanie czasu wykonania funkcji wbudowanej i funkcji zaimplementowanej (metoda trapezów)

Rysunek 1: Wykres dla podziału przedziału na 100 części

Rysunek 2: Wykres dla podziału przedziału na 1000 części

Rysunek 3: Wykres dla podziału przedziału na 10000 części

5 Wnioski

- 1. Im większa liczba podprzedziałów tym czas wykonywania zaimplementowanej funckji, która oblicza całkę za pomocą metody trapezów jest dłuższy.
- 2. Im ciąg a ma więcej wyrazów tym czas wykonywaniu obu funkcji jest dłuższy.
- 3. Metoda trapezów jest efektywniejsza czasowo od metody wbudowanej Integral.
- 4. Tempo zmiany czasu wykonywania metody trapezów jest niewielkie, podczas gdy czas metody wbudowanej rośnie o wiele szybciej.