, 1 (olive), 1 (olive)	Cognome:;	,	Nome:	;	matricola:	
--	-----------	---	-------	---	------------	--

ESERCIZI (Max 24 punti)

Tempo a disposizione: 45 minuti

CONSEGNARE SOLO QUESTO FOGLIO

Dovunque appaiano, utilizzare i seguenti valori delle variabili indicate negli esercizii.

 $T = (ultima \ cifra \ del \ numero \ di \ Matricola). \qquad \qquad T = \ \dots \ ;$

Ogni risposta a quesito, se corretta, equivale a 2 punti, salvo che altrimenti specificato.

- Supponendo di aver effettuato il login come *root*, indicare i comandi per cambiare il proprietario e il gruppo del file myfile, collocato nella directory /usr/doc, assegnandogli proprietario user1 e gruppo group1.
- Supponendo che la cwd sia ~/mydir, scrivere la pipeline di comandi per listare soltanto i file eseguibili della home directory dell'utente attualmente loggato.
- 2. Indicare come lanciare in *background* il comando che sospende la shell per 200 secondi. Indicare inoltre come terminare il processo appena lanciato in *background*, supponendo che il **PID** associato sia **3128**.
- 7. Indicare se si ritiene le seguenti affermazioni Vere (V) o False (F) e giustificare le risposte ritenute false:

seconda dell'utente loggato e attivo sul sistema. ()

una macchina. ()

Il superuser conosce la password di tutti gli account di

Il contenuto di una variabile d'ambiente può cambiare a

 Il file myfile ha ACL: rw-r-xrw-. I file link1 e link2 sono entrambi link al file myfile. Indicare che tipo di link rappresentano i file link1 e link2, se le relative ACL sono:

link1 → rw-r-xrwlink2 → rwxrwxrwx

- 8. Indicare la successione delle **principali operazioni** svolte quando la memoria è gestita con un sistema a *demand-paging* e viene segnalato un **interrupt di** *page-fault*.
- 4. Specificare qual è lo scopo del comando echo \$PATH
- 5. Siano dati i seguenti file con il contenuto indicato

fileAfileBcanecane lupogattogatto siameseaquilaaquila reale

Indicare l'output del comando:

cat fileA fileB | wc -l

e l'output del comando

cat fileA fileB | tail -n 4

- 9. Se p è la probabilità di page fault, T_{pf} il suo tempo medio di servizio e T_{am} il tempo di accesso alla memoria, qual è l'espressione con cui calcolare il tempo di accesso effettivo T_{eff} per una memoria a demand-paging?
- 10. Quale metodo di allocazione consente, senza ulteriore occupazione di spazio, di accedere con un solo accesso a qualunque blocco di un file, leggendo ad accesso diretto?

- 11. Qual è la differenza tra *lateness* e *laxity* nei sistemi in tempo reale?
- 12. Determinare la **dimensione di una memoria virtuale** con pagine di 1S Kbyte se per indicare il numero di pagina sono utilizzati 2Y bit.
- 13. Si considerino i seguenti cilindri di un disco magnetico

interessati da richieste di I/O:

35 2S5 Y0 55 343 223 120 44

Quale sarà la successione di servizio delle richieste e la distanza totale percorsa (in cilindri), se **l'algoritmo di scheduling è il C-LOOK**, le testine sono posizionate sul cilindro 2T0 ed il verso attuale di spostamento è ascendente (verso cilindri a indirizzo maggiore)?

14. Si consideri un sistema costituito da 4 risorse dello stesso tipo, condivise da 3 processi, ciascuno dei quali richiede al più 2 risorse. Dimostrare che il sistema è deadlockfree.

- 15. Si supponga che un **processo periodico in tempo reale**, abbia una deadline pari a 2W sec e il suo computation time sia di X sec. Quale sarà il ritardo massimo rispetto all'inizio del periodo con cui potrà pervenire un **processo aperiodico** con deadline uguale a quella del processo periodico e con computation time 2*(2+W+Z)sec perché sia possibile garantire entrambe le deadline? Motivare la risposta.
- 16. In un *file system UNIX-like* che pre-alloca 16 blocchi per volta, vi sono, nell'index block, 16 puntatori a blocchi allocati, di cui
 - 13 puntatori diretti a blocchi di dati
 - 1 puntatore al blocco di 1^a indirezione
 - 1 puntatore al blocco di 2^a indirezione
 - 1 puntatore al blocco di 3^a indirezione

Se la dimensione di un blocco è $2^{(X-1)}$ Kb e sono state eseguite 6S000 operazioni di scrittura, quale sarà lo spazio totale occupato dai blocchi di indirezione?

AFFERMAZIONI

Si considerino le seguenti affermazioni.

Si barri la casella "Sicuramente Vera" (SV), se si è sicuri che l'affermazione è vera.

Si barri, invece, la casella "Sicuramente Falsa" (SF), se si è sicuri che l'affermazione è falsa.

Per ogni risposta corretta 1 punto. Per ogni risposta errata -1 punto. Le affermazioni senza risposta comportano 0 punti.

Affermazione	SV	SF		
Una snoopy cache riduce l'accesso al bus ed alla memoria.				
Le condition variables di un monitor sono usate per realizzare la mutua esclusione.				
Il Demand-Paging può comportare un deadlock per impossibilità di attivare l'algoritmo di <i>Page-Replacement</i> .				
I moderni sistemi operativi prevedono l' <i>interrupt handler</i> per gestire le interruzioni esterne.				

POLITECNICO DI BARI		Corso di Laurea in Ing. dell'Automazione (DM	1 509)
Cognome:	; Nome:	; matricola:	;

Problema

Tempo a disposizione: 40 minuti Max 6 punti

CONSEGNARE SOLO QUESTO FOGLIO

Si progetti, mediante flow-chart o linguaggio strutturato, una <u>procedura</u> che realizzi l'aggiornamento del vettore LL costituente la *linked list* di un file system quando viene allocato un nuovo blocco per un file.

In particolare si assuma che alla procedura vengano "passati"

il numero N degli elementi del vettore LL,

il vettore **LL**,

l'indirizzo logico **NB** del nuovo blocco da aggiungere al file,

il numero **M** dell'elemento del vettore contenente l'indirizzo logico del primo blocco del file

Si supponga che l'ultimo blocco di un file sia segnalato con un valore -1 dell'indirizzo e che un elemento libero della linked list sia segnalato con il valore 0.