Norma e seminorma ℓ^1

Sia X uno spazio topologico.

$$\ldots \xrightarrow{d_{n+2}} C_{n+1}(X) \xrightarrow{d_{n+1}} C_n(X) \xrightarrow{d_n} C_{n-1}(X) \xrightarrow{d_{n-1}} \ldots$$

Norma ℓ^1 su $C_n(X)$

$$\left\|\sum a_i s_i\right\|_1 = \sum |a_i|$$

Seminorma ℓ^1 su $H_n(X)$

$$||c||_1 = \inf\{||z||_1 : z \in Z_n(X), [z] = c\}$$

Classe fondamentale

Sia *M* una *n*-varietà chiusa orientata.

- $ightharpoonup H_n(M,\mathbb{Z})\simeq \mathbb{Z}.$
- ▶ L'orientazione fissa un generatore $[M]_{\mathbb{Z}} \in H_n(M, \mathbb{Z})$.
- ▶ Il cambio di coefficienti $C_{\bullet}(M, \mathbb{Z}) \to C_{\bullet}(M, \mathbb{R})$ induce

$$H_{\bullet}(M\mathbb{Z}) \longrightarrow H_{\bullet}(M,\mathbb{R})$$

 $[M]_{\mathbb{Z}} \longmapsto [M]_{\mathbb{R}} = [M].$

Definizione

Definizione

Sia M una n-varietà chiusa orientata, $[M] \in H_n(M)$ la sua classe fondamentale. Si chiama $volume\ simpliciale\ il\ numero\ reale$

$$||M|| = ||[M]||_1$$
.

- Non dipende dall'orientazione ⇒ è ben definito per varietà chiuse orientabili.
- Può essere nullo, anche se $[M] \neq 0$.

Principio di proporzionalità

Teorema

Sia M una varietà Riemanniana chiusa.

Allora il rapporto

$$\frac{\|M\|}{\operatorname{Vol}(M)}$$

dipende solo dal tipo di isometria del rivestimento universale di M.

Principio di proporzionalità

Lo dimostreremo con un'ipotesi aggiuntiva.

Teorema

Sia M una varietà Riemanniana chiusa con curvatura non positiva. Allora il rapporto

$$\frac{\|M\|}{\operatorname{Vol}(M)} = \frac{1}{\left\| [\operatorname{Vol}_{\widetilde{M}}]_c^G \right\|_{\infty}}$$

dipende solo dal tipo di isometria del rivestimento universale di M.

Limitazione del grado

Proposizione

Siano M, N n-varietà chiuse orientate, $f:M\to N$ una funzione continua di grado d. Allora

$$|d|\cdot ||N|| \leq ||M||.$$

Corollario

Sia $f: M \to M$ di grado $d \ge 2$. Allora ||M|| = 0.

Varietà euclidee

- L'*n*-toro $(S^1)^n$ ammette endomorfismi di grado arbitrariamente alto; di conseguenza, $||(S^1)^n|| = 0$.
- ▶ $(S^1)^n$ ammette una metrica piatta, con rivestimento universale isometrico a \mathbb{R}^n .
- Data una qualunque n-varietà chiusa euclidea M, vale

$$\frac{\|M\|}{\text{Vol}(M)} = \frac{\|(S^1)^n\|}{\text{Vol}((S^1)^n)} = 0$$

da cui ||M|| = 0.

Varietà iperboliche

Teorema

Sia M una n-varietà chiusa iperbolica. Allora

$$||M|| = \frac{\operatorname{Vol}(M)}{v_n},$$

dove v_n è il volume dell'*n*-simplesso ideale regolare in \mathbb{H}^n .

Corollario

Una varietà chiusa M non può ammettere contemporaneamente una metrica euclidea e una iperbolica.

Mappe fra superfici

Sia Σ_g la superficie chiusa orientabile di genere g.

- ▶ Per $g \le 1$ vale $\|\Sigma_g\| = 0$
- Per $g \ge 2$, Σ_g ammette una metrica iperbolica.

$$\|\Sigma_g\| = rac{\mathsf{Vol}(\Sigma_g)}{v_2} = -rac{2\pi\chi(\Sigma_g)}{\pi} = 4g - 4.$$

▶ Sia $f: \Sigma_{g_1} \to \Sigma_{g_2}$, con $g_1 \ge 1$, $g_2 \ge 2$. Allora

$$|\deg(f)| \leq \frac{\|\Sigma_{g_1}\|}{\|\Sigma_{g_2}\|} = \frac{g_1 - 1}{g_2 - 1}.$$