3장 케라스와 텐서플로우

주요 내용

- 딥러닝 필수 요소
- 케라스와 텐서플로우 간략 소개
- 텐서플로우, 케라스, GPU를 활용한 딥러닝 작업환경
- 케라스와 텐서플로우를 이용한 신경망의 핵심 구성요소 구현

3.1 텐서플로우 소개

텐서플로우

- 구글을 중심으로 개발된 머신러닝 **플랫폼**(platform)
 - TF-Agents: 강화학습 연구 지원
 - TFX: 머신러닝 프로젝트 진행과정(workflow) 운영 지원
 - TF-Hub: 훈련된 모델 제공
- 파이썬 기반
- 텐서 연산 지원

넘파이(Numpy)와의 차이점

- 미분 가능한 함수들의 그레이디언트 자동 계산
- GPU, TPU 등 고성능 병렬 하드웨어 가속기 활용 가능
 - 높은 확장성: 일기예보, 바둑 프로그램 등 매우 많은 데이터와 계산이 요구되는 실전 상황에 활용됨.
- C++(게임), 자바스크립트(웹브라우저), TFLite(모바일 장치) 등 다른 언어가 선호되는 도메인 특화 프로그램에 쉽게 이식 가능

3.2 케라스

케라스와 텐서플로우

- 딥러닝 모델 훈련에 최적화된 인터페이스 제공.
- 원래 텐서플로우와 독립적으로 시작됨.
- 텐서플로우 2.0부터 텐서플로우 라이브러리의 최상위 프레임워크(framework)로 포함 됨.
- 다양한 워크플로우 제공: 모델 구축과 훈련 방식에 있어서 고수준/저수준 방식 모두 제 공

그림 출처: Deep Learning with Python(Manning MEAP)

3.3 케라스와 텐서플로우의 약력

- 2007년: 씨아노(Theano) 공개. 캐나다 몬트리올 대학교 연구팀.
 - 계산 그래프, 미분 자동화 등을 최초로 활용
- 2015년 3월: 케라스 라이브러리 공개
 - 씨아노(Theano)를 백앤드로 사용하는 고수준 패키지
- 2015년 11월: 텐서플로우 라이브러리 공개
- 2016년: 텐서플로우가 케라스의 기본 백엔드로 지정됨
- 2017년: 씨아노, 텐서플로우, CNTK(마이크로소프트), MXNet(아마존)이 케라스의 백엔 드로 지원됨.
- 2019년 9월: 텐서플로우 2.0부터 케라스가 텐서플로우의 최상위 프레임워크로 지정됨.

3.4 딥러닝 작업환경

GPU 활용 옵션

- 개인 NVIDIA 그래픽카드가 장착된 PC 또는 노트북 사용
 - 딥러닝을 많이 활용하는 경우
 - Ubuntu 설치 또는 WSL(Windows Subsystem for Linux) 활용 추천
- 구글 클라우드 플랫폼 또는 아마존 웹서비스(AWS EC2) 활용
 - 단기간동안 고성능 컴퓨터를 활용하고자 하는 경우
- 구글 코랩 활용
 - 강좌 이수 용도로 추천

구글 코랩 사용

- 기본 사용법은 인터넷 검색 참조
- 코드 실행에 필요한 추가 패키지 설치는 pip(파이썬 패키지 관리자) 활용

!pip install package_name

- 참고: 느낌표(!)는 주피터 노트북 코드셀에서 터미널 명령어를 실행하는 경우 사용
- GPU 활용: 런타임 유형을 GPU로 지정만 하면 됨.
- TPU 활용: 좀 더 복잡한 세팅 필요. 13장 참조.

3.5 텐서플로우 기본 사용법

신경망 모델 훈련 핵심 1

- 1. 상수 텐서와 변수 텐서
 - 상수 텐서(constant tensor): 입출력 데이터 등 변하지 않는 텐서
 - 변수 텐서(variable): 모델 가중치, 편향 등 업데이트 되는 텐서
- 2. 텐서 연산: 덧셈, relu, 점곱 등
- 3. 역전파(backpropagation):
 - 손실함수의 그레이디언트 계산 후 모델 가중치 업데이트
 - 그레이디언트 테이프(GradientTape) 이용

3.6 케스의 핵심 API 이해

신경망 모델 훈련 핵심 2

- 1. 층(layer)과 모델: 층을 적절하게 쌓아 모델 구성
- 2. 손실 함수(loss function): 학습 방향을 유도하는 피드백 역할 수행
- 3. 옵티마이저(optimizer): 학습 방향을 정하는 기능 수행
- 4. 메트릭(metric): 정확도 등 모델 성능 평가 용도
- 5. 훈련 반복(training loop): 미니 배치 경사하강법 실행

층(layer)의 역할

- 모델의 상태(지식)로 사용되는 가중치(weight)와 편향(bias) 저장
- 데이터 표현 변환(forwardd pass)
- 케라스 활용 딥러닝 모델: 호환 가능한 층들의 적절한 연결

층의 종류와 처리 가능 텐서

- Dense 클래스를 사용하는 밀집층(dense layer): (샘플수, 특성수) 모양의 2D 텐서로 제공된 데이터셋
- LSTM 클래스, Conv1D 클래스 등을 사용하는 순환층(recurrent layer): (샘플수, 타임스텝수, 특성수) 모양의 3D 텐서로 제공된 순차 데이터셋
- Cons2D 클래스 등을 사용하는 층: (샘플수, 가로, 세로, 채널수) 모양의 4D 텐서로 제공된 이미지 데이터셋

Layer 클래스와 __call__() 메서드

- 케라스에서 사용되는 모든 층에 대한 부모 클래스
- __call__() 메서드의 역할
 - 가중치와 편향 벡터 생성 및 초기화
 - 입력 데이터를 출력 데이터로 변환

call () 메서드의 대략적 정의

```
def __call__(self, inputs):
    if not self.built:
        self.build(inputs.shape)
        self.built = True
return self.call(inputs)
```

- self.built: 가중치와 편향 벡터가 초기화가 되어 있는지 여부 기억
- self.build(inputs.shape) : 입력 배치 데이터셋(inputs)의 모양(shape) 정보 이용
 - 가중치 텐서 생성 및 무작위적으로 초기화
 - 편향 텐서 생성 및 0벡터로 초기화
- self.call(inputs): 출력값 계산(forward pass)
 - 아핀 변환 및 활성화 함수 적용

층에서 모델로

- 입렵값을 보고 바로 입력값의 모양 확인
- MNIST 모델 사용된 Dense 클래스처럼 입력 데이터에 정보 미리 요구하지 않음

```
from tensorflow import keras
from tensorflow.keras import layers

model = keras.Sequential([
    layers.SimpleDense(512, activation="relu"),
    layers.SimpleDense(10, activation="softmax")
])
```

딥러닝 모델

- 층으로 구성된 그래프
- 예제: Sequential 모델
 - 층을 일렬로 쌓은 신경망 제공
 - 아래 층에서 전달한 값을 받아 변환한 후 위 층으로 전달
- 예제: 트랜스포머(Transformer)

그림 출처: Deep Learning with Python(Manning MEAP)

망 구성방식과 가설 공간

- 모델의 학습과정은 층을 어떻게 구성하였는가에 전적으로 의존함.
- 여러 개의 Dense 층을 이용한 Sequential 모델
 - 아핀 변환, relu() 등의 활성화 함수를 연속적으로 적용한 데이터 표현 변환
- 다른 방식으로 구성된 모델: 다른 방식으로 텐서 표현 변환
- 이렇듯 층을 구성하는 방식에 따라 텐서들이 가질 수 있는 표현들의 공간이 정해짐.
- '**망 구성방식(network topology)에 따른 표현 가설 공간(hypothesis space)**'이 지정됨.
- 신경망의 구성
 - 주어진 데이터셋과 모델의 목적에 따라 결정됨.
 - 특별한 규칙 또는 이론은 없음.
 - 이론 보다는 많은 실습을 통한 경험에 의존

모델 컴파일

모델의 구조를 정의한 후에 아래 세 가지 설정을 추가로 지정해야 함.

- 옵티마이저(optimizer): 모델의 성능을 향상시키는 방향으로 가중치를 업데이트하는 알고리즘
- 손실함수(loss function): 훈련 중 모델의 성능 얼마 나쁜가를 측정하는 기준. 미분가능 이어야 하며 옵티마이저가 경사하강법을 활용하여 손실함숫값을 줄이는 방향으로 작 동함.
- 평가지표(metrics):: 훈련과 테스트 과정을 모니터링 할 때 사용되는 모델 평가 지표. 옵 티마이저 또는 손실함수와 일반적으로 상관 없음.

fit() 메서드 작동법

모델을 훈련시키려면 fit() 메서드를 적절한 인자들과 함께 호출해야 함.

- 훈련 세트: 보통 넘파이 어레이 또는 텐서플로우의 Dataset 객체 사용
- 에포크(epochs): 전체 훈련 세트를 몇 번 훈련할 지 지정
- 배치 크기(batch size): 배치 경사하강법에 적용될 배치(묶음) 크기 지정

아래 코드는 앞서 넘파이 어레이로 생성한 (2000, 2) 모양의 양성, 음성 데이터셋을 대상으로 훈련한다.

검증 세트 활용

훈련된 모델이 완전히 새로운 데이터에 대해 예측을 잘하는지 여부를 판단하려면 전체 데이터셋을 훈련 세트와 검증 세트로 구분해야 함.

- 훈련 세트: 모델 훈련에 사용되는 데이터셋
- 검증 세트: 훈련된 모델 평가에 사용되는 데이터셋

```
model.fit(
    training_inputs,
    training_targets,
    epochs=5,
    batch_size=16,
    validation_data=(val_inputs, val_targets)
)
```