

第八章卤代烃

授课老师:沈杰

邮箱: ShenJie@fzu. edu. cn

福州大学旗山校区科技园7号楼216

有机化学(Organic Chemistry)

本章主要内容:

第一节 卤代烷烃

第二节 卤代烯烃

第三节 卤代芳烃

第四节 多卤代烃

第一节 卤代烷烃

- 一、分类
- 二、命名
- 三、卤代烃的制备
- 四、卤代烃的物理性质
- 五、卤代烃的化学性质*
- 六、亲核取代反应机理▲※
- 七、消除反应机理▲

人工离子通道的构筑及功能化应用

K+

高效离子分离膜

抗癌新药

生活中的卤代烃

米勒 (诺贝尔医学或生理学奖)

DDT 食物链富集

DDT VS 疟疾

双对氯苯基三氯乙烷(DDT)

错的不是DDT, 而是使用它的人和方式。

生活中的卤代烃

卤代烃: 烃分子中的氢原子被卤素原子取代后的化合物

卤代烃的通式为(Ar)R-X, 其中X代表卤素原子,包括氟(F)、氯(Cl)、溴(Br)、碘(I)

卤代烷在有机合成中起承上启下的纽带作用,是原料和目标 化合物之间的**重要桥梁**

第一节 卤代烷烃

一、分类

■按卤原子个数分类: 单卤代烃、二卤代烃、多卤代烃 CH₃I CH₂—CH₂ CH₃ Br Br

- ■按卤素所连碳原子的结构分类: 一级卤代烃、
- 二级卤代烃、三级卤代烃

二、命名

- ■卤代烃不作为母体化合物
- ■卤原子在命名时始终作为取代基
- 1. 习惯命名法 卤代烷烃看做是烷基和卤素的结合, 称为某烷基卤(适合C≤5)

二、命名:系统命名法

卤原子作为取代基,按最低系列原则确定其编号。当卤素和烃基有相同编号时,使烃基编号较小。

2-甲基-3-氯丁烷

4-异丙基-2-氟-4-氯-3-溴庚烷

三、卤代烃的制备

- 1. 烷烃卤化
- 2. 不饱和烃与X2、HX的加成
- 3. 环烷烃与HX, X_2 的加成
- 4. 从醇制备

常用的卤化试剂: HX, PX₃, PX₅, SOCl₂(亚硫酰氯)

四、卤代烃的物理性质

- ▶ 物态: CH₃F, CH₃Cl, CH₃Br, CH₃CH₂F, CH₃CH₂Cl
 为气态, 其余为液体
- 沸点:一元卤代烃随着碳原子数增加,沸点升高。烃基相同时,碘代化合物沸点最高。分子的极性越大,偶极—偶极相互作用也大,沸点升高
- > 溶解度: 卤代烃不溶于水
- > 密度: 只有一氯代烃、一氟代烃比水轻。

五、卤代烃的化学性质

	C-Cl	C-Br	C—I
键长	176	194	214 pm
键能	338.9	284.5	217.6 kJ/mol
$C^{\delta^{+}}X^{\delta^{-}}$		C-X键的断裂	

其化学性质是由于官能团卤素的存在而引起的

(一) 亲核取代反应 (Nucleophilic Substitution)

- ■亲核试剂 (Nucleophile): 卤素一般易被 RO, OH, CN⁻等负离子或ROH, H₂O, NH₃等具有未共用电子对 的分子取代,因这些试剂具有向带正电的原子亲近的 性质,称为亲核试剂,一般用Nu:或Nu⁻表示
- ■亲核取代反应:由亲核试剂进攻而引起的取代反 应,以S_N表示

$$R-X + Nu$$
: $R-Nu + X$

Alkyl halide Nucleophile

Product Halide ion

1. 水解反应 (Hydrolysis):

$$RX + H_2O \longrightarrow ROH + HX$$

卤代烷在强碱水溶液中共热制备醇:

$$OH + CH_3CH_2 \xrightarrow{Br} \xrightarrow{H_2O} CH_3CH_2 \xrightarrow{OH} + NaBr$$

一般情况下,ROH→RX

2. 与 NaCN反应制备腈:

CH₃CH₂CH₂CH₂COOH

$$\uparrow H^+/H_2O$$
CH₃CH₂CH₂CH₂CH₂CN
$$\downarrow H_2/Ni$$
CH₃CH₂CH₂CH₂CH₂CH₂CH₂CH₂NH₂

3. 与 NH₃反应制备胺:

$$RX + NH_3 \rightarrow [RNH_2 \cdot HX] \stackrel{NH_3}{\rightarrow} RNH_2 + NH_4X$$

$$ClCH_2CH_2Cl + 4NH_3$$
 $\frac{密闭容器}{115-120^{\circ}C_1 \cdot 5h}$ $H_2NCH_2CH_2NH_2 + 2NH_4Cl$

4. 与 RONa作用: 即Williamson 反应制备醚

(CH₃)₃CONa + CH₃CH₂CH₂CH₂CH₂Br → (CH₃)₃CO-CH₂CH₂CH₂CH₃ 伯卤代烷

5. 与AgNO₃反应: AgNO₃的醇溶液 AgX沉淀

 $R-X + AgNO_3 \xrightarrow{EtOH} R-ONO_2 + AgX \downarrow$

反应活性: RI > RBr > RCl

3°RX > 2°RX > 1°RX 伯卤代烷需加热

该反应用于鉴定卤代烷

6. 与NaI/丙酮溶液反应

氯代烷、溴代烷与碘化钠反应

 $1^{\circ} RX > 2^{\circ} RX > 3^{\circ} RX$

(二)消除反应(Elimination)

$$\begin{array}{c|c}
-C - C & \xrightarrow{Elimination} \\
Y & Z
\end{array}$$

$$\begin{array}{c|c}
C = C
\end{array}$$

从分子中失去一个简单分子而形成不饱和键反应称为消除反应,用E表示,也称β消除

1. 脱卤化氢

$$RCH_2CH_2$$
— $X \xrightarrow{KOH, EtOH} RCH=CH_2$

$$RCH_{2}CH - X \xrightarrow{KOH, EtOH} RC = CH$$

1. 脱卤化氢

条件: 强碱浓醇溶液共热

消除取向:符合saytzeff规则

Saytzeff 规则: 氢原子从含氢较少的β-C原子上脱去 生成取代较多的烯烃(烯烃的稳定性)。

CH₃CH₂-CH-CH₃
$$\xrightarrow{\text{KOH, EtOH}}$$
 CH₃CH=CHCH₃ $\xrightarrow{\text{Br}}$ + 81%

CH₃CH₂CH=CH₂
19%

例外, 优先形成共轭体系

$$CH_2 = CHCH_2CHCH(CH_3)_2 \xrightarrow{KOH, EtOH}$$
Br

$$CH_2 = CH - CH = CHCH(CH_3)_2$$

2. 脱卤素

$$\begin{array}{c|c} C - C & \overline{Zn / Zip} \\ Br & Br \end{array} \qquad \begin{array}{c} C = C \\ \end{array}$$

引入双键,保护双键

- (三)与金属作用,生成有机金属化合物
 - 1. 与钠作用

$$2RX + Na \longrightarrow R-R + 2NaX$$

Wurtz 反应,制备高级烷烃

2.与镁作用,生成Grignard 试剂

Grignard 试剂

1) Grignard 试剂与活泼氢的反应

RMgX + H₂O
$$\longrightarrow$$
 RH + Mg(OH)X
RMgX + R'OH \longrightarrow RH + R'OMgX
RMgX + R'CO₂H \longrightarrow RH + R'CO₂MgX
RMgX + R'C \equiv CH \longrightarrow RH + R'C \equiv CMgX

2)制备Grignard 试剂,无水操作,所用溶剂 为无水乙醚,THF

$$\mathbf{RMgx} + \mathbf{O_2} \rightarrow \mathbf{ROMgX} \stackrel{\mathbf{H_2O}}{\rightarrow} \mathbf{ROH}$$

4) Grignard 试剂能和醛、酮反应,其应用很广,1912年诺贝尔化学奖

六、亲核取代反应机理

(-) 双分子亲核取代机理 (S_N^2) (Bimolecular Nucleophlic Substitution)

$$HO+CH_3Br \longrightarrow CH_3OH+Br$$

反应速率:

1. 反应机理,一步完成

$2. S_N 2$ 反应的特征

- 1) 旧键断裂和新键生成同时进行
- 2) 构型翻转 (Inversion of configuration)

3. S_N2反应速度的影响因素

Leaving group(离去基团)

v = k[底物][亲核试剂]

1) [底物]↑[亲核试剂]↑,则v↑

2)底物的结构 空间位阻大不利于 S_N 2反应

这是由烷基的空间效应决定的, 烷基结构越拥挤,亲核试剂背面进攻越困难。

■ $S_N 2$: $CH_3 X > 1^0 RX > 2^0 RX > 3^0 RX$

3) 离去基团 离去能力↑则v↑

卤代烷的反应活性顺序: RI>RBr>RCI>RF 取决于碳卤键的强弱

$4. S_N 2$ 反应的典型条件

I[−] 亲核能力强
NaI−丙酮

丙酮: 溶剂极性小

(二)单分子亲核取代机理(S_N1)

(Unimolecular Nucleophlic Substitution)

1. 反应机理,分两步完成

第一步 叔丁基溴解离成叔丁基正离子:

$$(CH3)3C-Br \stackrel{ি}{\longrightarrow} [(CH3)3C \stackrel{\delta^{+}}{\longrightarrow} -Br^{\delta^{-}}] \longrightarrow (CH3)3C + Br^{-}$$

过渡态T1

第二步 叔丁基正离子与亲核试剂 OH-作用:

 $(CH_3)_3C^+ + OH^- \stackrel{.}{\longleftarrow} [(CH_3)_3\overset{\delta^+}{C}\cdots OH^{\delta^-}] \longrightarrow (CH_3)_3C-OH$ 过渡态T2

2. S_N1反应的特征

- 1) 反应分两步进行,有正碳离子生成
- 2) 光学底物的产物外消旋化

50%构型翻转

50%构型保持

$3. S_N 1$ 反应速度的影响因素

- 1) υ∝ [底物], [底物]↑ 则v↑
- 2) 中间体C+稳定性↑则v↑

 $S_N 1: 3^{\circ}RX > 2^{\circ}RX > 1^{\circ}RX > CH_3X$

3) 离去基团 离去能力↑则v↑

卤代烷的反应活性顺序: RI>RBr>RCI>RF 取决于碳卤键的强弱

4. S_N1反应的典型条件

AgNO₃-EtOH 亲核能力弱,溶剂极性大

- (三) 影响亲核取代反应的因素总结
 - 1. 烃基结构的影响

- S_N1: 3° RX> 2° RX> 1° RX> CH₃X
- S_N2 : $CH_3X > 1^{\circ}RX > 2^{\circ}RX > 3^{\circ}RX$

R—Br + H₂O
$$\xrightarrow{S_N 1}$$
 R—OH + HBr R = CH₃ CH₃CH₂ (CH₃)₂CH (CH₃)₃C 相对速率 1.0 1.7 45 1 x 10⁸

$$R - Br + I \xrightarrow{S_{N}2} R - I + Br$$

$$R = CH_3 \quad CH_3CH_2 \quad (CH_3)_2CH \quad (CH_3)_3C$$

相对速率 150 1.0 0.01 0.001

2. 离去基团

离去能力增强

离去基团的离去能力强,对S_N1和S_N2都有利

3. 判断反应机理的类型

1)
$$3^{\circ} RX \rightarrow S_{N}1$$

 $1^{\circ} RX \rightarrow S_{N}2$

2) 典型的反应条件

$$AgNO_3$$
— $EtOH \rightarrow S_N1$
 NaI —丙酮 $\rightarrow S_N2$

预测下列各对反应中,何者较快?并说明理由。

(CH₃)₃CBr
$$\xrightarrow{\text{H}_2\text{O}}$$
 (CH₃)₃COH + HBr
(CH₃)₂CHBr $\xrightarrow{\triangle}$ (CH₃)₂CHOH + HBr

(3)
$$CH_3I + NaOH \xrightarrow{H_2O} CH_3OH + NaI$$
 $CH_3I + NaSH \xrightarrow{H_2O} CH_3SH + NaI$

(4)
$$(CH_3)_2CHCH_2CI \xrightarrow{H_2O} (CH_3)_2CHCH_2OH$$

 $(CH_3)_2CHCH_2Br \xrightarrow{H_2O} (CH_3)_2CHCH_2OH$

七、消除反应机理

(一)双分子消除反应(E2)(Bimolecular Elimination)

$$\begin{array}{c}
B \longrightarrow H \\
CH_{3}CH \longrightarrow CH_{2} \longrightarrow Br
\end{array}$$

$$\begin{array}{c}
B^{--}H \\
CH_{3}CH \longrightarrow CH_{2} \longrightarrow Br
\end{array}$$

$$\begin{array}{c}
B \longrightarrow H + CH_{3}CH \longrightarrow CH_{2} + Br
\end{array}$$

■ E2: 3°RX > 2°RX > 1°RX

(一)双分子消除反应(E2)

(二)单分子消除反应(E1) (Unimolecular Elimination

$$(CH_3)_3C$$
— Br \longrightarrow $(CH_3)_3C^+ + Br^ B$ — H — CH_2 \longrightarrow B — H + $(CH_3)_2C$ = CH_2 $(CH_3)_2C$ $+$

■ E1: 3°RX > 2°RX > 1°RX

(二)单分子消除反应(E1)

$1. 重排反应(和<math>S_N$ 1竞争)

2. 消除反应

烃基结构影响

S_N越易伯卤代烃、强亲核试剂、

3°RX 2°RX 1°RX CH₃X

E越易

叔卤代烃、强碱、

高温、弱极性溶剂

总结: 烃基结构对取代和消除反应的影响

- S_N1: 3°RX> 2° RX> 1°RX> CH₃X
- S_N2 : $CH_3X > 1^0RX > 2^0RX > 3^0RX$

E1: 3°RX > 2° RX> 1° RX

■ E2: 3°RX > 2° RX> 1° RX

发生消除还是取代主要看烃基结构和反应条件。

第二节 卤代烯烃

一、卤代烯烃的分类和命名

(烯烃为母体, 卤原子为取代基)

1. 乙烯型卤代烃, X直接与双键上的C原子相连

CH₃CH₂C=CH₂ Br

2-溴-1-丁烯

氯乙烯

2. 烯丙型卤代烃

 $R-CH=CH-CH_2X$

H₂C=CHCH₂Cl

3-氯-1-丙烯(烯丙基氯)

3. 隔离型卤代烯烃 R-CH=CH-(CH₂)n-X n≥2

4-氯-1-丁烯

二、双键位置对卤原子活性影响

卤代烯烃的活性次序:

$RCH=CHCH_2X > RCH=CH(CH_2)_nX > RCH=CHX$

1. 乙烯型卤代烃

$$CH_{2} = CH_{2} = C$$

氯乙烯分子中的p轨道

由于p-π共轭作用 乙烯型卤代烃的卤原子很不活泼! 一般不与亲核试剂NaOH、RONa、NaCN、NH₃、AgNO₃作用。

$$\delta^{-}$$
 $CH_2 = CH - Cl$

2. 烯丙型卤代烃

卤原子活泼,很容易与亲核试剂NaOH、RONa、NaCN、NH₃、AgNO₃等发生亲核取代反应

$$CH_2 = CH - CH_2 - Cl$$
 $\xrightarrow{AgNO_3 / Z$ 醇 $AgCl \downarrow$

S_N1历程:

烯丙基正离子中的P轨道

P-π共轭,使正电荷分散,稳定性增强

烯丙基氯进行 S_N 2反应的过渡态

不管发生 S_N 1或 S_N 2反应,烯丙基型都是最活泼的, 乙烯型都是最不活泼的

第三节 卤代芳烃

一、卤代芳烯的分类和命名

卤素直接与苯环相连, 卤素作为取代基

卤素取代芳烃侧链上 的氢,烷烃为母体

苯氯甲烷

二、氯苯

1.制法

$$+ Cl_2$$
 $FeCl_3$ C

2.化学性质

是乙烯型卤代烃,C-CI键很难断裂

三、苯氯甲烷

1.制法
$$_3$$
 \bigcirc + (HCHO) $_3$ + 3 HCl $\stackrel{ZnCl_2}{\longrightarrow}$ \bigcirc CH₂Cl

2.化学性质

加热

 CH_2 = $CHCH_2C1$ (CH_3)₃CC1

(CH₃)₂CHC1

CH₃CH₂CH₂Cl

CI

 $CH_2 = CHC1$

AgNO₃
EtOH

AgCl↓ 稍慢

AgCl 立即

 \times

AgC1

X

 \times

■ 卤代烃按照S_N1历程的活性:

烯丙基型 > 仲卤代烷 > 伯卤代烷 > 甲基 > 乙烯型 > 放卤代烷 > 卤代烷 > 卤代烷

■ 卤代烃按照S_N2历程的活性:

烯丙基型>甲基 卤代烷 >伯卤代烷 >仲卤代烷> 叔卤代烷 > 乙烯型 卤代烷

将下列化合物按照指定试剂的反应活性,从大到小排列顺序

- 1) 在2%硝酸银乙醇溶液中反应
- a) 1-溴丁烷 b) 1-氯丁烷 c) 1-碘丁烷
- 2) 在碘化钠一丙酮溶液中反应
- a) 3-溴-1-丙烯 b) 溴乙烯 c) 1-溴丁烷 d) 2-溴丁烷

第四节 多卤代烃

一、三氯甲烷(氯仿)

二、四氯化碳

$$CCl_4 + H_2O \xrightarrow{500^{\circ}C} COCl_2 + HCl$$

三、氟代烃(Alkyl fluorides)

- ■特点:具有极好的耐热性和耐腐蚀性
- ■全氟代烃在4000~5000°C也不变化
- ■聚四氟乙烯能耐"王水"

Freon (氟里昂) —— $C1 \sim C2$ 的多氟多氯代烷 F-abc a = 碳原子数-1

b = 氢原子数+1 c = 氟原子数

F-11 CFCl₃

F-12 CF₂Cl₂ b.p. -29.8°C

F-13 CF₃Cl

F-14 CF4

Freon用作制冷剂、喷射剂

制冷剂的化学组成来表示制冷剂的种类

不含氢的卤代烃称为氯氟化碳,写成CFC;

含氢的卤代烃称为氢氯氟化碳,写成HCFC;

不含氯的卤代烃称为氢氟化碳,写成HFC;

碳氢化合物写成HC。

R600a (HC600a)

即异丁烷,是国际公认的冰箱制冷剂之一,对臭氧层无破坏作用,温室效应为零,热学性能也比较好。

异丁烷的主要缺点是它的易燃易爆性,它的燃点为462°C,它的爆炸极限为空气中含量达体积百分比1.8~8.4%。使用异丁烷在生产和维修过程中,管路的明火焊接存在燃烧爆炸的危险;异丁烷电冰箱的使用过程中,由于蒸发器可能泄漏,引起异丁烷在食品储藏室中的积聚,假如这时室中发生一电弧,也存在燃烧爆炸的危险。它的传热性能比较接近且比R12好,所以制冷系统的改型比较容易且制冷剂的用量可大减少。

R-134a制冷剂,别名R134a、HFC134a、HFC-134a、四氟乙烷,商品名称有SUVA 134a、Genetron 134a、KLEA 134a等,中文名称四氟乙烷,英文名称1,1,1,2-tetrafluoroethane,化学名1,1,1,2-四氟乙烷,分子式CH₂FCF₃。因此完全不破坏臭氧层,是当前世界绝大多数国家认可并推荐使用的环保制冷剂,也是目前主流的环保制冷剂,广泛用于新制冷空调设备上的初装和维修过程中的再添加。

聚四氟乙烯

$$F_2C=CF_2$$
 引发剂 — F_2C-CF_2 — polytetrafluoro ethylene Teflon

耐高温——使用工作温度达250°C。

耐低温——具有良好的机械韧性;即使温度下降到-196℃, 也可保持5%的伸长率。

耐腐蚀——对大多数化学药品和溶剂,表现出惰性、能耐强酸强碱、水和各种有机溶剂。

耐气候——有塑料中最佳的老化寿命。

高润滑——是固体材料中摩擦系数最低者。

不粘附——是固体材料中最小的表面张力,不粘附任何物质。

无毒害——具有生理惰性,作为人工血管和脏器长期植入体 内无不良反应。

本章要点

■卤代烷烃

亲核取代(-OH,-CN, $-NH_2$,-OR,-X) 影响 S_N1 , S_N2 反应速率的因素 消除反应(条件) 与金属反应(格氏试剂)

■卤代烯烃、卤代芳烃 双键位置对卤原子活泼性的影响

作业

 P_{209} 1, 3, 4, 5 1) 4),

6, 10, 11 1) 3) 4) 11)