5.3 Комутативни прстени са јединицом

3.1 Затвореност за +. Нека је $a,b\in R$, тј. $a=\frac{m_1}{n_1}$ и $b=\frac{m_2}{n_2}$, за неке целе бројеве $m_1,\ m_2,\ n_1$ и n_2 , при чему n_1 и n_2 нису дељиви са p. Тада је

$$a+b=\frac{m_1n_2+m_2n_1}{n_1n_2},$$

па како $p \nmid n_1 n_2$, важи $a + b \in R$.

Затвореност за \cdot . Нека је $a,b\in R$, тј. $a=\frac{m_1}{n_1}$ и $b=\frac{m_2}{n_2}$, за неке целе бројеве $m_1,\ m_2,\ n_1$ и n_2 , при чему n_1 и n_2 нису дељиви са p. Тада је $a\cdot b=\frac{m_1m_2}{n_1n_2},$ па како $p\nmid n_1n_2,$ важи $a\cdot b\in R.$

Неутрал за +. Како је $0 = \frac{0}{1}$, то је $0 \in R$.

Инверз за +. Нека је $a\in R$, тј. $a=\frac{m}{n}$, где $p\nmid n$. Тада је $-a=\frac{-m}{n}$, па како $p\nmid n$, важи $-a\in R$.

Неутрал за \cdot . Како је $1 = \frac{1}{1}$, то је $1 \in R$.

Како су операције + и \cdot асоцијативне, а + и комутативна, закључујемо да је R потпрстен од \mathbb{Q} .

3.2 Означимо са N скуп свих нилпотентних елемената претена R. Нека је $x,y\in N$. Тада је $x^n=0$ и $y^m=0$, за неке $n,m\geqslant 1$. Како је

R комутативан прстен у њему важи биномна формула 37 , па је

$$(x+y)^{n+m-1} = \sum_{k=0}^{n+m-1} \binom{n+m-1}{k} x^k y^{n+m-1-k}.$$

Посматрајмо произвољан сабирак на десној страни ове једнакости. Ако је $k\geqslant n$, тада је $x^k=0$, па је и $x^ky^{n+m-1-k}=0$; ако је k< n, тада је $n+m-1-k\geqslant n+m-1-n+1=m$, па је $y^{n+m-1-k}=0$, тј. $x^ky^{n+m-1-k}=0$. Дакле, сваки сабирак ове суме једнак је 0, па је $(x+y)^{n+m-1}=0$, а самим тим и $x+y\in N$.

Нека је сада $x \in N$ и $r \in R$. Тада је $x^n = 0$, за неко $n \geqslant 1$. Како је R комутативан прстен важи $(rx)^n = r^n x^n = 0$, па је $rx \in N$.

3.3 Како је x нилпотентан елемент за неко $n \ge 1$ важи $x^n = 0$. Претен R је комутативан, па важи (погледати и коментар)

$$1 = 1 - x^{n} = (1 - x)(1 + x + x^{2} + \dots + x^{n-1}),$$

тј. $1 + x + x^2 + \dots + x^{n-1}$ је инверз елемента 1 - x.

Коментар. У овом доказу смо користили да у комутативном претену са јединицом R за све $a,b\in R$ и све $n\in \mathbb{N}$ важи

$$a^{n}-b^{n}=(a-b)(a^{n-1}+a^{n-2}b+\cdots+ab^{n-2}+b^{n-1}).$$

³⁷ Доказ се може извести на исти начин као у нпр. прстену R.

Изведимо ову формулу. Важи:

$$a^{n} - b^{n} = a^{n} - a^{n-1}b + a^{n-1}b - a^{n-2}b^{2} + a^{n-2}b^{2} - a^{n-3}b^{3} + \dots + ab^{n-1} - a^{n}$$

$$= (a - b)a^{n-1} + (a - b)a^{n-2}b + (a - b)a^{n-3}b^{2} + \dots + (a - b)b^{n-1}$$

$$= (a - b)(a^{n-1} + a^{n-2}b + \dots + ab^{n-2} + b^{n-1}).$$

(у другој једнакости смо користили комутативност множења).

3.4 Затвореност за +. Нека је $x,y\in R$, тј. $x=a_1+b_1\sqrt{2}$ и $y=a_2+b_2\sqrt{2}$, за неке $a_1,a_2,b_1,b_2\in\mathbb{Q}$. Тада је

$$x + y = a_1 + a_2 + (b_1 + b_2)\sqrt{2}$$

па како је $a_1 + a_2, b_1 + b_2 \in \mathbb{Q}$, то је $x + y \in R$.

Затвореност за \cdot . Нека је $x,y\in R$, тј. $x=a_1+b_1\sqrt{2}$ и $y=a_2+b_2\sqrt{2}$, за неке $a_1,a_2,b_1,b_2\in\mathbb{Q}$. Тада је

$$x \cdot y = (a_1 + b_1\sqrt{2})(a_2 + b_2\sqrt{2}) = a_1a_2 + 2b_1b_2 + (a_1b_2 + a_2b_1)\sqrt{2},$$

па како је $a_1b_1 + 2a_2b_2$, $a_1b_2 + a_2b_1 \in \mathbb{Q}$, то је $x \cdot y \in R$.

Инверз за +. Нека је $x \in R$, тј. $x = a + b\sqrt{2}$, где је $a, b \in \mathbb{Q}$. Тада је $-x = -a - b\sqrt{2}$, па је $-x \in R$.

Неутрал за \cdot . Како је $1 = 1 + 0 \cdot \sqrt{2}$, то је $1 \in R$.

Инверз за ·. Нека је $x\in R\setminus\{0\}$, тј. $x=a+b\sqrt{2}$, где је $a,b\in\mathbb{Q}$ и $(a,b)\neq(0,0)$. Тада је³⁸ $a-b\sqrt{2}\neq0$ и важи

$$rac{1}{x} = rac{1}{a + b\sqrt{2}} \cdot rac{a - b\sqrt{2}}{a - b\sqrt{2}} = rac{a}{a^2 - 2b^2} + rac{-b}{a^2 - 2b^2} \cdot \sqrt{2},$$

па како је $\frac{a}{a^2-2b^2}, \frac{-b}{a^2-2b^2} \in \mathbb{Q}$, то је $\frac{1}{x} \in R$.

3.5 Скуп I^2+J^2 је идеал прстена R (по ставу 3.13), па је довољно доказати да се 1 налази у I^2+J^2 (погледати пример 3.20).

Из I+J=R закључујемо да постоје $x\in I$ и $y\in J$ такви да је x+y=1. Због комутативности прстена R, тада је и

$$1 = (x+y)^2 = x^2 + y^2 + 2xy,$$

па како $x^2+y^2\in I^2+J^2$, да бисмо доказали да је $1\in I^2+J^2$, довољно је доказати да важи $2xy\in I^2+J^2$. Важи

$$x^2y + xy^2 = (x+y)xy = xy,$$

па како је $x^2y\in I^2$ и $xy^2\in J^2$, то је $xy\in I^2+J^2$, а самим тим и $2xy\in I^2+J^2$. Овим је тврђење доказано.

 $^{^{38}}$ У супротном је $\sqrt{2}=a/b\in\mathbb{Q}$, а знамо да је $\sqrt{2}$ ирационалан број.

3.6 Доказаћемо да је S + I потпрстен прстена R.

Затвореност за +. Нека је $x,y\in S+I$. Тада је $x=s_1+i_1$ и $y=s_2+i_2$, за неке $s_1,s_2\in S$ и $i_1,i_2\in I$. Како је S потпретен од R то је $s_1+s_2\in S$, а како је I идеал од R, то је $i_1+i_2\in I$, па важи

$$x + y = (s_1 + s_2) + (i_1 + i_2) \in S + I.$$

Затвореност за . Нека је $x,y\in R$. Тада је $x=s_1+i_1$ и $y=s_2+i_2$, за неке $s_1,s_2\in S$ и $i_1,i_2\in I$. Како је S потпретен од R то је $s_1\cdot s_2\in S$, а како је I идеал од R, то је $s_2\cdot i_1,s_1\cdot i_2,i_1\cdot i_2\in I$, па и $s_2\cdot i_1+s_1\cdot i_2+i_1\cdot i_2\in I$. Одавде је

$$(s_1+i_1)(s_2+i_2)=s_1\cdot s_2+(s_2\cdot i_1+s_1\cdot i_2+i_1\cdot i_2)\in S+I.$$

Неутрал за +. Како је 0 = 0 + 0, а $0 \in S$ и $0 \in I$, то је $0 \in S + I$.

Инверз за +. Нека је $x \in S+I$, тј. x=s+i, где је $s \in S$ и $i \in I$. Тада је -x=-s-i, па како је $-s \in S$ и $-i \in I$, то је $-x \in S+I$.

Неутрал за \cdot . Како је 1 = 1 + 0, а $1 \in S$ и $0 \in I$, то је $1 \in S + I$.

Како су операције + и \cdot асоцијативне, а + и комутативна, закључујемо да је S+I потпретен од R.

3.7 Нека су S и T потпрстени прстена R. Докажимо да је $S\cap T$ потпрстен прстена R

Затвореност за +. Нека је $x,y\in S\cap T$. Тада је $x,y\in S,T$, па како су S и T потпрстени од R, то је $x+y\in S$ и $x+y\in T$. Одавде је $x+y\in S\cap T$, што је требало доказати.

Затвореност за · . Нека је $x,y\in S\cap T$. Тада је $x,y\in S,T$, па како су S и T потпретени од R, то је $x\cdot y\in S$ и $x\cdot y\in T$. Одавде је $x\cdot y\in S\cap T$, што је требало доказати.

Неутрал за +. Како је $0 \in S$ и $0 \in T$, то је $0 \in S \cap T$.

Инверз за +. Нека је $x \in S \cap T$. Тада је $x \in S, T$, па је $-x \in S, T$, а самим тим и $-x \in S \cap T$.

Неутрал за \cdot . Како је $1 \in S$ и $1 \in T$, то је $1 \in S \cap T$.

Докажимо сада да постоји прстен R и његови потпрстени S и T такви да $S \cup T$ није потпрстен од R.

Ловољно је узети $R = \mathbb{R}$, $S = \mathbb{Q}(\sqrt{2})$ и $T = \mathbb{Q}(\sqrt{3})$. Тада S и T јесу потпрстени од R (погледати задатак 3.4), па је довољно доказати да $S \cup T$ није потпрстен од R.

Претпоставимо супротно. Тада из $\sqrt{2}, \sqrt{3} \in S \cup T$, следи $\sqrt{2} + \sqrt{3} \in S \cup T$, па је $\sqrt{2} + \sqrt{3} \in S$ или $\sqrt{2} + \sqrt{3} \in T$. Претпоставимо да је $\sqrt{2} + \sqrt{3} \in S$ (случај $\sqrt{2} + \sqrt{3} \in T$ се може анализирати аналогно). Тада за неке рационалне бројева a и b важи $a + b\sqrt{2} = \sqrt{2} + \sqrt{3}$, па је $a - \sqrt{3} = (1 - b)\sqrt{2}$. Квадрирањем и сређивањем ове једнакости добијамо

$$a^2 + 3 - 2(1 - b)^2 = 2a\sqrt{3}$$

па је $2a\sqrt{3}\in\mathbb{Q}$. Ово је могуће једино уколико је a=0. Међутим, тада је $\sqrt{3}=(b-1)\sqrt{2}$, па је $\sqrt{3/2}\in\mathbb{Q}$, чиме је добијена контрадикција.

3.8 По примеру 3.16 важи

$$I = \langle \mathrm{NZD}(45,36) \rangle \cap \langle 12 \rangle = \langle 9 \rangle \cap \langle 12 \rangle = \langle \mathrm{NZS}(9,12) \rangle = \langle 36 \rangle.$$

- **3.9** По (3.1) слемент $a \in \mathbb{Z}_n$ је делитељ нуле ако и само ако није инвертибилан, тј. ако и само ако $a \notin \Phi(n)$. Дакле, $a \in \mathbb{Z}_n \setminus \{0\}$ је прави делитељ нуле ако и само ако је $\mathrm{NZD}(a,n) > 1$.
 - а) Прави делитељи нуле у \mathbb{Z}_{21} чине скуп $\{3,6,7,9,12,14,15,18\}$.
 - б) Прави делитељи нуле у \mathbb{Z}_{16} чинс скуп $\{2,4,6,8,10,12,14\}$.
- **3.10** а) Скуп инвертибилних елемената у \mathbb{Z}_{15} је

$$U(\mathbb{Z}_{15}) = \Phi(15) = \{1, 2, 4, 7, 8, 11, 13, 14\}.$$

При томе, 1 је инверз од 1, 2 је инверз од 8, 4 је инверз од 4, 7 је инверз од 13, 11 је инверз од 11 и 14 је инверз од 14.

б) Скуп инвертибилних елемената у \mathbb{Z}_{36} је

$$U(\mathbb{Z}_{36}) = \Phi(36) = \{1, 5, 7, 11, 13, 17, 19, 23, 25, 29, 31, 35\}.$$

При томе, 1 је инверз од 1, 5 је инверз од 29, 7 је инверз од 31, 11 је инверз од 23, 13 је инверз од 25, 17 инверз од 17, 19 инверз од 19 и 35 је инверз од 35.

- **3.11** Као у примеру 3.28 може се доказати да су сви идеали прстена \mathbb{Z}_n облика $\langle m \rangle$ за неко $m \mid n$.
 - а) Идеали прстена \mathbb{Z}_{24} су $\langle 1 \rangle$, $\langle 2 \rangle$, $\langle 3 \rangle$, $\langle 4 \rangle$, $\langle 6 \rangle$, $\langle 8 \rangle$, $\langle 12 \rangle$ и $\langle 0 \rangle = \{0\}$.
 - б) Идеали прстена \mathbb{Z}_{16} су $\langle 1 \rangle, \, \langle 2 \rangle, \, \langle 4 \rangle, \, \langle 8 \rangle$ и $\langle 0 \rangle = \{0\}.$
- **3.12** Докажимо да важи: уколико n дели m и $n \neq 1$, тада је пресликавање $f: \mathbb{Z}_m \to \mathbb{Z}_n$ задато са $f(x) = \rho(x,n)$ хомоморфизам комутативних претена са јединицом. Нека је m = nq.

По дефиницији пресликавања f и операције $+_m$ важи

$$f(x +_m y) = \rho(x +_m y, n) = \rho(\rho(x + y, m), n).$$

Нека је x+y=mk+r, где је $0\leqslant r< m$, те нека је r=nl+s, где је $0\leqslant s< n$. По дефиницији, тада је $\rho(x+y,m)=r$ и $\rho(\rho(x+y,m),n)=\rho(r,n)=s$. Са друге стране,

$$f(x) +_n f(y) = \rho(x, n) +_n \rho(y, n) = \rho(\rho(x, n) + \rho(y, n), n),$$

па како је пресликавање $f_n:\mathbb{Z}\to\mathbb{Z}_n$ задато са $f_n(x)=\rho(x,n)$ хомо-морфизам прстена (погледати пример 3.22), то је

$$\rho(\rho(x,n) + \rho(y,n), n) = f_n(x) +_n f_n(y) = f_n(x+y) = \rho(x+y,n).$$

Scanned with CamScanner

Коначно, x+y=mk+r=mk+nl+s=n(qk+l)+s, на је $\rho(x+y,n)=s$, а самим тим важи

$$f(x +_m y) = \rho(\rho(x + y, m), n) = s = \rho(x + y, n) = f(x) +_n f(y),$$

што је и требало доказати.

Аналогно доказујемо да је $f(x \cdot_m y) = f(x) \cdot_n f(y)$. Како је $f(1) = \rho(1,n) = 1$, закључујемо да је f хомоморфизам комутативних прстена са јединицом.

а) Како 9 | 36 пресликавање f јесте хомоморфизам комутативних прстена са јединицом. При томе важи

$$Ker(f) = \{x \in \mathbb{Z}_{36} : f(x) = 0\}$$

$$= \{x \in \mathbb{Z}_{36} : \rho(x,9) = 0\}$$

$$= \{x \in \mathbb{Z}_{36} : 9 \mid x\}$$

$$= \{0, 9, 18, 27\}.$$

б) Како 6 | 36 пресликавање f јесте хомоморфизам комутативних претена са јединицом. При томе важи

$$\operatorname{Ker}(f) = \{x \in \mathbb{Z}_{36} : f(x) = 0\}$$

$$= \{x \in \mathbb{Z}_{36} : \rho(x,6) = 0\}$$

$$= \{x \in \mathbb{Z}_{36} : 6 \mid x\}$$

$$= \{0, 6, 12, 18, 24, 30\}.$$

в) Докажимо да f нијс хомоморфизам. Ово следи из

$$f(6 \cdot_{36} 6) = f(0) = 0$$
 и $f(6) \cdot_{10} f(6) = 6 \cdot_{10} 6 = 6$.

- **3.13** а) Како је NZD(7,5) = 1, то дату конгруенцију можемо помножити са 5 (множимо бројем 5, јер је $3 \cdot 5 \equiv 1 \pmod{7}$), чиме добијамо $5 \cdot 3 \cdot x \equiv 5 \cdot 4 \pmod{7}$, а самим тим $x \equiv 6 \pmod{7}$. Сва решења дате конгруенције су бројеви x = 7k + 6, за $k \in \mathbb{Z}$.
- б) У овом случају не можемо поступати као у делу под а), јер NZD(4,6) $\neq 1$. Запишимо зато задату конгруснцију у сквивалентном облику, тј. као 6 | 4x-2. Како су "обе стране" у овој релацији дељиве са 2, то можемо "скратити" са 2, чиме добијамо 3 | 2x-1. Ово је сквивалентно са $2x \equiv 1 \pmod{3}$. Приметимо да важи NZD(3,2) = 1, па сада можемо поступати као у делу под а). Множењем ове конгруенције са 2 добијамо $x \equiv 2 \pmod{3}$, па су сва решења почетне конгруенције бројеви x = 3k+2, за $k \in \mathbb{Z}$.
- в) Важи NZD(15,10) = $5 \neq 1$, па дату конгруснцију записујемо као $10 \mid 15x-4$. Међутим, $5 \mid 10$ и $5 \mid 15x$, па како $5 \nmid 4$, то $10 \nmid 15x-4$, а самим тим дата конгруснција нема решења.

- г) Важи NZD(12, 15) = $3 \neq 1$, па дату конгруснцију записујемо као 15 | 12x-21. Обе стране ове релације дељиве су са 3, па можемо скратити са 3, чиме добијамо 5 | 4x-7, тј. $4x \equiv 7 \pmod 5$. Како је NZD(4, 5) = 1 ову конгруенцију можемо помножити са 4, чиме добијамо $x \equiv 3 \pmod 5$. Дакле, сва решења почетне конгруенције су бројеви x=5k+3, за $k \in \mathbb{Z}$.
- **3.14** а) Конгруснција $x \equiv 3 \pmod{7}$ сквивалентна је са x = 7k + 3, за неко $k \in \mathbb{Z}$. Заменом у другу конгруснцију добијамо $7k + 3 \equiv 5 \pmod{8}$, тј. $7k \equiv 2 \pmod{8}$. Како је NZD(7,8) = 1, ову конгруснцију можемо помоножити са 7 чиме добијамо $k \equiv 6 \pmod{8}$, па је k = 8l + 6, за неко $l \in \mathbb{Z}$. Коначно, сва решења овог система конгруснција су бројеви x = 7k + 3 = 7(8l + 6) + 3 = 56l + 45, за $l \in \mathbb{Z}$.
- б) Конгруснција $x\equiv 5\pmod{13}$ еквивалентна је са x=13k+5, за $k\in\mathbb{Z}$. Заменом у другу конгруснцију добијамо $13k+5\equiv -1\pmod{8}$, тј. $5k\equiv 2\pmod{8}$. Како је NZD(5,8)=1, ову конгруснцију можемо помоножити са 5 чиме добијамо $k\equiv 2\pmod{8}$, па је k=8l+2, за $l\in\mathbb{Z}$. Дакле, x=13k+5=13(8l+2)+5=104l+31, па заменом у последњу конгруснцију добијамо

$$104l + 31 \equiv 4 \pmod{7}.$$

Како је $104 \equiv 6 \pmod{7}$ и $31 \equiv 3 \pmod{7}$, ова конгруснција сквивалентна је са $6l \equiv 1 \pmod{7}$. Како је $\mathrm{NZD}(6,7) = 1$, ову конгруснцију можемо помоножити са 6 чиме добијамо $l \equiv 6 \pmod{7}$, па је l = 7r + 6, за $r \in \mathbb{Z}$. Коначно, сва решења овог система конгруснција су бројеви

$$x=104l+31=104(7r+6)+31=728r+655,$$
 за $r\in\mathbb{Z}.$

в) Решимо прво дате три конгруенције. То можемо урадити тако што прву конгруенцију помножимо са 4, другу са 7, а трећу са 9, чиме добијамо сквивалентан систем конгуенција

$$x \equiv 4 \pmod{7}$$
, $x \equiv 5 \pmod{9}$, $x \equiv 5 \pmod{11}$.

Прва конгруснција сквивалентна је са x=7k+4, за $k\in\mathbb{Z}$. Заменом у другу конгруснцију добијамо $7k+4\equiv 5\pmod 9$, тј. $7k\equiv 1\pmod 9$. Како је NZD(4,9)=1, ову конгруснцију можемо помоножити са 4 чиме добијамо $k\equiv 4\pmod 9$, па је k=9l+4, за $l\in\mathbb{Z}$. Дакле, $x=7k+4\equiv 7(9l+4)+4=63l+32$, па заменом у последњу конгруснцију добијамо

$$63l + 32 \equiv 5 \pmod{11}.$$

Како је $63 \equiv 8 \pmod{11}$ и $32 \equiv -1 \pmod{11}$, ова конгруснција еквивалентна је са $8l \equiv 6 \pmod{11}$. Како је $\mathrm{NZD}(7,11) = 1$, ову конгруснцију можемо помоножити са 7 чиме добијамо $l \equiv 9 \pmod{11}$, па је l = 11r + 9, за $r \in \mathbb{Z}$. Коначно, сва решења овог система конгруенција су бројеви

$$x=63l+32=63(11r+9)+32=693r+599,\,\,$$
за $r\in\mathbb{Z}.$

3.15 Приметимо да је $2^3 \equiv 1 \pmod{7}$, па 2 није примитивни корен по модулу 7. Број 3 јесте примитивни корен по модулу 7, што доказује следећа таблица:

из које читамо и вредности $\operatorname{ind}_3(n)$:

Примитивни корени по модулу 7 су тачно они елементи $n \in \mathbb{Z}_7 \setminus \{0\}$ за које је $\mathrm{H3}\mathrm{J}(\mathrm{ind}_3(n),6)=1$, па из претходне табеле налазимо да су једини примитивни корени по модулу 7 бројеви 3 и 5.

Сваки број из $\mathbb{Z}_7 \setminus \{0\}$ се на јединствен начин (по модулу 7) може записати као 3^y , па у свакој од наведених конгруснција уводимо смену $x \equiv 3^y \pmod{7}$.

- а) Коришћењем описане смене и таблице за $\operatorname{ind}_3(n)$ конгруснција $4x \equiv 3 \pmod{7}$ своди се на $3^43^y \equiv 3^1 \pmod{7}$, тј. на $3^{y+3} \equiv 1 \pmod{7}$. Како је $3^n \equiv 1 \pmod{7}$ ако и само ако $n \equiv 0 \pmod{6}$ (јер је 3 примитивни корен по модулу 7), закључујемо да је дата конгруенција еквивалентна са $y \equiv 3 \pmod{6}$. Дакле, $x \equiv 3^3 \equiv 6 \pmod{7}$, па су сва решења дате конгруенције бројеви x = 7k + 6, за $k \in \mathbb{Z}$.
 - б) На сличан начин, конгруснција $x^2 \equiv 2 \pmod{7}$ своди се на

$$3^{2y-2} \equiv 1 \pmod{7},$$

па је дата конгруснција сквивалентна са $2y\equiv 2\pmod 6$. Као у задатку 3.13 може се добити да је решење ове конгруснције $y\equiv 1\pmod 3$, тј. $y\equiv 1\pmod 6$ или $y\equiv 4\pmod 6$. Дакле, важи $x\equiv 3^1\equiv 3\pmod 7$ или $x\equiv 3^4\equiv 4\pmod 7$, па су сва решења дате конгруснције бројеви x=7k+3 и x=7k+4, за $k\in \mathbb{Z}$.

- в) Конгруснција $x^3 \equiv 2 \pmod{7}$ своди се на $3^{3y-2} \equiv 1 \pmod{7}$, па је дата конгруснција еквивалентна са $3y \equiv 2 \pmod{6}$. Како $H3 \coprod (3,6) = 3$ не дели 2 закључујемо да ова конгруснција нема решења.
- г) Конгруснција $x^4 \equiv 3 \pmod{7}$ своди се на $3^{4y-1} \equiv 1 \pmod{7}$, па је дата конгруснција еквивалентна са $4y \equiv 1 \pmod{6}$. Како НЗД(4,6) = 2 не дели 1 закључујемо да ни ова конгруснција нема решења.
- **3.16** Следећа таблица доказује да је број 2 примитивни корен по модулу 11:

из које читамо и вредности $\operatorname{ind}_2(n)$:

Примитивни корени по модулу 11 су тачно они елементи $n \in \mathbb{Z}_{11} \setminus \{0\}$ за које је $\mathrm{H3}\mathrm{\mathcal{I}}(\mathrm{ind}_2(n),10)=1$, па из претходне табеле налазимо да су примитивни корени по модулу 11 бројеви 2, 6, 7 и 8.

Сваки број из $\mathbb{Z}_{11} \setminus \{0\}$ се на јединствен начин (по модулу 11) може записати као 2^y , па у свакој од наведених конгруснција уводимо смену $x \equiv 2^y \pmod{11}$.

- а) Коришћењем описане смене и таблице за $\operatorname{ind}_2(n)$ конгруснција $4x\equiv 3\pmod {11}$ своди се на $2^22^y\equiv 2^8\pmod {11}$, тј. на $2^{y-6}\equiv 1\pmod {11}$. Како је $2^n\equiv 1\pmod {11}$ ако и само ако $n\equiv 0\pmod {10}$ (јер је 2 примитивни корен по модулу 11), закључујемо да је дата конгруенција еквивалента са $y\equiv 6\pmod {10}$. Дакле, $x\equiv 2^6\equiv 9\pmod {11}$, па су сва решења дате конгруенције бројеви x=11k+9, за $k\in \mathbb{Z}$.
- б) На сличан начин, $x^2 \equiv 3 \pmod{11}$ своди се на $2^{2y-8} \equiv 1 \pmod{11}$, па је почетна конгруснција сквивалентна са $2y \equiv 8 \pmod{10}$. Као у задатку 3.13 добијамо да је решење ове конгруенције $y \equiv 4 \pmod{5}$, тј. $y \equiv 4 \pmod{10}$ или $y \equiv 9 \pmod{10}$. Дакле, $x \equiv 2^4 \equiv 5 \pmod{11}$ или $x \equiv 2^9 \equiv 6 \pmod{11}$, па су сва решења дате конгруенције бројеви x = 11k + 5 и x = 11k + 6, за $k \in \mathbb{Z}$.
- в) Конгруснција $x^3 \equiv 2 \pmod{7}$ своди се на $2^{3y-1} \equiv 1 \pmod{11}$, па је дата конгруснција сквивалентна са $3y \equiv 1 \pmod{10}$. Као у задатку 3.13 добијамо да је решење ове конгруснције $y \equiv 7 \pmod{10}$. Дакле, важи $x \equiv 2^7 \equiv 7 \pmod{11}$, па су сва решења дате конгруснције бројеви x = 11k + 7, за $k \in \mathbb{Z}$.
- г) Конгруснција $x^4 \equiv -3 \equiv 8 \pmod{11}$ своди се на $2^{4y-3} \equiv 1 \pmod{11}$, па је еквивалентна са $4y \equiv 3 \pmod{10}$. Као НЗД $(4,10) = 2 \nmid 3$ закључујемо да ова конгруснција нема решења.