Enoncés : Michel Emsalem, Corrections : Pierre Dèbes

Morphisme, sous-groupe distingué, quotient

Exercice 1

Soit G un groupe tel que l'application $x \to x^{-1}$ soit un morphisme. Montrer que G est commutatif.

Indication ▼ [002136]

Exercice 2

Soient G un groupe et $n \ge 1$ un entier tels que l'application $x \to x^n$ soit un automorphisme de G. Montrer que pour tout élément x de G, x^{n-1} appartient au centre de G.

Correction ▼ [002137]

Exercice 3

Montrer que le groupe des automorphismes du groupe $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$ est isomorphe au groupe symétrique S_3 .

Exercice 4

Montrer qu'un sous-groupe d'indice 2 dans un groupe G est distingué dans G.

Correction ▼ [002139]

Exercice 5

Soit G un groupe et H un sous-groupe. On suppose que le produit de deux classes à gauche modulo H est une classe à gauche modulo H. Montrer que H est distingué dans G.

Correction ▼ [002140]

Exercice 6

Soit G un groupe et \simeq une relation d'équivalence sur G. On suppose que cette relation est compatible avec la loi de groupe, c'est-à-dire que

$$\forall x, y \in G \quad \forall x', y' \in G \quad x \simeq x' \quad \text{et} \quad y \simeq y' \quad \text{alors} \quad xy \simeq x'y'$$

Montrer que la classe H de l'élément neutre 1 est un sous-groupe distingué de G et que

$$\forall x, x' \in G$$
 $x \simeq x'$ est équivalent à $x'x^{-1} \in H$

Correction ▼ [002141]

Exercice 7

Soit G un groupe et $K \subset H \subset G$ deux sous-groupes. On suppose que H est distingué dans G et que G est caractéristique dans G (i.e. stable par tout automorphisme de G). Montrer qu'alors G est distingué dans G. Donner un exemple de groupe G et de deux sous-groupes G0 et G1 étant distingué dans G3 et G4 étant distingué dans G6 et G6 étant distingué dans G7.

Correction ▼ [002142]

Exercice 8

- (a) Montrer que pour tous entiers premiers entre eux m, n > 0, les deux groupes $(\mathbb{Z}/mn\mathbb{Z})^{\times}$ et $(\mathbb{Z}/m\mathbb{Z})^{\times} \times (\mathbb{Z}/n\mathbb{Z})^{\times}$ sont isomorphes. En déduire que $\varphi(mn) = \varphi(m)\varphi(n)$, où φ est la fonction indicatrice d'Euler.
- (b) Le groupe multiplicatif $(\mathbb{Z}/15\mathbb{Z})^{\times}$ est-il cyclique ? Montrer que $(\mathbb{Z}/8\mathbb{Z})^{\times} \simeq (\mathbb{Z}/2\mathbb{Z}) \times (\mathbb{Z}/2\mathbb{Z})$, que $(\mathbb{Z}/16\mathbb{Z})^{\times} \simeq (\mathbb{Z}/4\mathbb{Z}) \times (\mathbb{Z}/2\mathbb{Z})$. Etudier le groupe multiplicatif $(\mathbb{Z}/24\mathbb{Z})^{\times}$.

Indication ▼ [002143]

Exercice 9

- (a) Montrer que si m et n sont des entiers premiers entre eux et qu'un élément z d'un groupe G vérifie $z^m = z^n = e$ où e désigne l'élément neutre de G, alors z = e.
- (b) Montrer que si m et n sont deux entiers premiers entre eux, l'application

$$\phi: \mu_m \times \mu_n \rightarrow \mu_{mn}$$

qui au couple (s,t) fait correspondre le produit st est un isomorphisme de groupes

Indication ▼ [002144]

Exercice 10

Montrer que les groupes μ_4 et $\mu_2 \times \mu_2$ ne sont pas isomorphes. De façon générale montrer que si m et n sont des entiers qui ne sont pas premiers entre eux, les groupes μ_{mn} et $\mu_m \times \mu_n$ ne sont pas isomorphes.

Correction ▼ [002145]

Exercice 11

Soit n et d deux entiers tels que d divise n. On définit une application $f: \mu_n \to \mu_d$ qui à s associe $s^{n/d}$. Montrer que f est un morphisme surjectif de groupes dont le noyau est $\mu_{n/d}$.

Indication ▼ [002146]

Exercice 12

Soit $f: G \to H$ un morphisme de groupes finis. Soit G' un sous-groupe de G. Montrer que l'ordre de f(G') divise les ordres de G' et de H.

Indication ▼ [002147]

Exercice 13

Soit $f: G \to H$ un morphisme de groupes finis. Soit G' un sous-groupe de G d'ordre premier à l'ordre de H. Montrer que $G' \subset \ker(f)$.

Indication ▼ [002148]

Exercice 14

Soit G un groupe fini et H et K deux sous-groupes de G. On suppose que H est distingué dans G, que |H| et |G/H| sont premiers entre eux et |H| = |K|. Montrer que H = K.

Correction ▼ [002149]

Exercice 15

Soit f un morphisme de groupes $f: \mathbb{Q} \to \mathbb{Q}_{>0}^{\times}$, \mathbb{Q} étant muni de l'addition et $\mathbb{Q}_{>0}^{\times}$ muni de la multiplication. Calculer f(n) en fonction de f(1) pour tout entier n > 0. Montrer que les deux groupes précédents ne sont pas isomorphes.

Correction ▼ [002150]

Exercice 16

Trouver tous les morphismes du groupe additif $\mathbb Q$ dans lui même.

Même question de \mathbb{Q} dans \mathbb{Z} .

Indication ▼ [002151]

Exercice 17

Etant donnés deux entiers m, n > 0, déterminer tous les morphismes de groupe de $\mathbb{Z}/m\mathbb{Z}$ dans $\mathbb{Z}/n\mathbb{Z}$, puis tous les automorphismes de $\mathbb{Z}/n\mathbb{Z}$.

Indication ▼ [002152]

Exercice 18

Soit G un groupe et H un sous groupe distingué de G d'indice n. Montrer que pour tout $a \in G$, $a^n \in H$. Donner un exemple de sous-groupe H non distingué de G pour lequel la conclusion précédente est fausse.

Correction ▼ [002153]

Exercice 19

Soit G un groupe fini et H un sous-groupe distingué d'ordre n et d'indice m. On suppose que m et n sont premiers entre eux. Montrer que H est l'unique sous-groupe de G d'ordre n.

Correction ▼ [002154]

Exercice 20

Montrer que $SL_n(\mathbb{R})$ est un sous-groupe distingué du groupe $GL_n(\mathbb{R})$ et que le groupe quotient est isomorphe à \mathbb{R}^{\times} .

Indication ▼ [002155]

Exercice 21

On considère les groupes suivants :

$$T = \{ z \in \mathbb{C} \mid |z| = 1 \}$$
 $\mu_n = \{ z \in \mathbb{C} \mid z^n = 1 \}$ $\mu_{\infty} = \{ z \in \mathbb{C} \mid \exists n \ z^n = 1 \}$

(a) Montrer les isomorphismes suivants :

$$\mathbb{R}/\mathbb{Z} \simeq T$$
 $\mathbb{C}^{\times}/\mathbb{R}_{>0}^{\times} \simeq T$ $\mathbb{C}^{\times}/\mathbb{R}^{\times} \simeq T$ $T/\mu_n \simeq T$ $\mathbb{C}^{\times}/\mu_n \simeq \mathbb{C}^{\times}$

- (b) Montrer que $\mu_{\infty} \simeq \mathbb{Q}/\mathbb{Z}$. Quels sont les sous-groupes finis de μ_{∞} ?
- (c) Montrer qu'un sous-groupe de type fini de \mathbb{Q} contenant \mathbb{Z} est de la forme $\frac{1}{q}\mathbb{Z}$. En déduire la forme des sous-groupes de type fini de \mathbb{Q}/\mathbb{Z} et de μ_{∞} .
- (d) Soit p un nombre premier. Montrer que $\mu_{p^{\infty}} = \{z \in \mathbb{C} \mid \exists n \in \mathbb{N} \mid z^{p^n} = 1\}$ est un sous-groupe de μ_{∞} . Est-il de type fini?

Correction ▼ [002156]

Exercice 22

Soit G un sous-groupe d'indice fini du groupe multiplicatif \mathbb{C}^{\times} . Montrer que $G = \mathbb{C}^{\times}$.

Correction ▼ [002157]

Exercice 23

Soit G un groupe et H un sous-groupe contenu dans le centre Z(G) de G. Montrer que H est distingué dans G et que, si le groupe quotient G/H est cyclique, G = Z(G).

Indication ▼ [002158]

Exercice 24

Montrer qu'un groupe d'ordre p^2 où p est un nombre premier est abélien. (On utilisera que le centre d'un p-groupe est non trivial, ce qui est une conséquence classique de la "formule des classes" (voir chapitre suivant)).

Indication ▼ [002159]

Exercice 25

(a) Soit p un nombre premier. Montrer que tout morphisme de groupes entre \mathbb{F}_p^n et \mathbb{F}_p^m est une application \mathbb{F}_p -linéaire.

- (b) Montrer que le groupe des automorphismes de $\mathbb{Z}/p\mathbb{Z}$ est isomorphe au groupe multiplicatif \mathbb{F}_p^* .
- (c) Déterminer le nombre d'automorphismes de \mathbb{F}_n^n .

Correction ▼ [002160]

Exercice 26

Déterminer le centre du groupe $GL_n(\mathbb{F}_p)$ des automorphismes de $(\mathbb{F}_p)^n$.

Indication ▼ [002161]

Exercice 27

Soit p un nombre premier. Montrer qu'un groupe abélien fini, dont tous les éléments différents de l'élément neutre sont d'ordre p, est isomorphe à $(\mathbb{Z}/p\mathbb{Z})^n$.

Correction ▼ [002162]

Exercice 28

- (a) Soit G un groupe et H un sous-groupe distingué de G. On note φ la surjection canonique $\varphi: G \to G/H$. Montrer que l'ordre d'un élément x de G est un multiple de l'ordre de $\varphi(x)$.
- (b) Pour tout $x \in G$ on pose τ_x l'application de G dans G définie par $\tau_x(y) = xyx^{-1}$. Montrer que τ_x est un automorphisme de G et que l'application

$$x \to \tau_x$$

est un morphisme de groupes de G dans Aut(G). Quel est le noyau de ce morphisme ?

(c) On suppose que G est fini et que H est un sous-groupe distingué dont l'ordre est le plus petit nombre premier p divisant l'ordre de G. Montrer que pour tout $x \in G$ l'ordre de la restriction à H de τ_x est un diviseur de p-1 et de l'ordre de G. En déduire que τ_x restreint à H est l'identité pour tout x et donc que H est contenu dans le centre de G.

Indication ▼ [002163]

Exercice 29

Soit G un groupe. On appelle groupe des commutateurs de G et l'on note D(G) le sous-groupe de G engendré par les éléments de la forme $xyx^{-1}y^{-1}$. Montrer que D(G) est distingué dans G et que le quotient G/D(G) est abélien. Montrer que D(G) est le plus petit sous-groupe distingué de G tel que le quotient de G par ce sous-groupe soit abélien.

Indication ▼ [002164]

Exercice 30

Soit G un groupe d'ordre p^3 où p est un nombre premier. Montrer que si G n'est pas commutatif, Z(G) = D(G) et que ce sous-groupe est d'ordre p.

Correction ▼ [002165]

Indication pour l'exercice 1 A

$$\overline{(xy)^{-1}} = x^{-1}y^{-1} \Rightarrow xy = yx.$$

Indication pour l'exercice 8 A

(a) est standard. En utilisant (a), on obtient $(\mathbb{Z}/15\mathbb{Z})^{\times} \simeq \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/4\mathbb{Z}$, lequel n'est pas cyclique puisque tous les éléments sont d'ordre 1, 2 ou 4. Le reste ne pose pas de grandes difficultés.

Indication pour l'exercice 9 ▲

(a) Bézout. (b) ϕ est injectif et ensembles de départ et d'arrivée ont même cardinal.

Indication pour l'exercice 11 ▲

$$e^{2ik\pi/d} = \left(e^{2ik\pi/n}\right)^{n/d} \ (k \in \mathbb{Z}).$$

Indication pour l'exercice 12 ▲

f(G') est un sous-groupe de H isomorphe à $G'/(\ker(f) \cap G')$.

Indication pour l'exercice 13 ▲

Résulte de l'exercice 12.

Indication pour l'exercice 16 ▲

Les morphismes du groupe $(\mathbb{Q},+)$ dans lui-même sont de la forme $x\to ax$ avec $a\in\mathbb{Q}$. Les morphismes du groupe $(\mathbb{Q},+)$ dans $(\mathbb{Z},+)$ sont, parmi les précédents, ceux dont l'image est dans \mathbb{Z} ; il n'y a que le morphisme nul. Les morphismes du groupe $(\mathbb{Z}/m\mathbb{Z},+)$ dans $(\mathbb{Z},+)$ sont déterminés par l'entier f(1) qui doit vérifier mf(1)=0; il n'y a que le morphisme nul, si $m\neq 0$.

Indication pour l'exercice 17 ▲

L'ensemble $\operatorname{Hom}(\mathbb{Z}/m\mathbb{Z},\mathbb{Z}/n\mathbb{Z})$ des morphismes de groupe de $\mathbb{Z}/m\mathbb{Z}$ dans $\mathbb{Z}/n\mathbb{Z}$ est un groupe abélien pour l'addition naturelle des morphismes. On note δ le pgcd de m et n' et n' les entiers m/δ et n/δ . Si $p:\mathbb{Z}\to\mathbb{Z}/m\mathbb{Z}$ désigne la surjection canonique, la correspondance associant à tout $f\in\operatorname{Hom}(\mathbb{Z}/m\mathbb{Z},\mathbb{Z}/n\mathbb{Z})$ l'élément $f\circ p(1)$ induit un isomorphisme de groupe entre $\operatorname{Hom}(\mathbb{Z}/m\mathbb{Z},\mathbb{Z}/n\mathbb{Z})$ et le sous-groupe $n'\mathbb{Z}/n\mathbb{Z}$ du groupe additif $\mathbb{Z}/n\mathbb{Z}$, lequel est isomorphe à $\mathbb{Z}/\delta\mathbb{Z}$.

L'ensemble $\operatorname{Aut}(\mathbb{Z}/n\mathbb{Z})$ des automorphismes de $\mathbb{Z}/n\mathbb{Z}$ est un groupe pour la composition. La correspondance précédente induit un isomorphisme entre $\operatorname{Aut}(\mathbb{Z}/n\mathbb{Z})$ et le groupe $(\mathbb{Z}/n\mathbb{Z})^{\times}$ des inversibles de $\mathbb{Z}/n\mathbb{Z}$.

Indication pour l'exercice 20 ▲

Le morphisme "déterminant" de $GL_n(\mathbb{R})$ dans \mathbb{R}^{\times} est surjectif et de noyau $SL_n(\mathbb{R})$.

Indication pour l'exercice 23 ▲

Si ζ est un élément de G dont la classe modulo H engendre G/H, alors tout élément de G peut s'écrire $h\zeta^m$ avec $h \in H$ et $m \in \mathbb{Z}$.

Indication pour l'exercice 24 ▲

Appliquer l'exercice 23 avec H = Z(G).

Indication pour l'exercice 26 ▲

Exercice classique d'algèbre linéaire : $Z(GL_n(\mathbb{F}_p)) = \mathbb{F}_p^{\times} \cdot Id_n$ (où Id_n désigne la matrice identité d'ordre n).

Indication pour l'exercice 28 ▲

Les questions (a) et (b) ne présentent aucune difficulté.

Pour la question (c), noter que, pour tout $x \in G$, on a $(\tau_x)^{|G|} = 1$, et que la restriction de τ_x à H appartient à $\operatorname{Aut}(H) \simeq \operatorname{Aut}(\mathbb{Z}/p\mathbb{Z})$ (et utiliser l'exercice 25).

Indication pour l'exercice 29 ▲

Aucune difficulté. Observer que tout conjugué d'un commutateur est un commutateur et qu'un quotient G/H est abélien si et seulement si pour tous $u, v \in G$, on a $uvu^{-1}v^{-1} \in H$.

Correction de l'exercice 2 A

Soient $x, y \in G$ quelconques. De $(xy)^n = x^n y^n$, on déduit $(yx)^{n-1} = x^{n-1} y^{n-1}$ puis $(yx)^n = yx^n y^{n-1}$ et donc $y^n x^n = yx^n y^{n-1}$, ce qui donne $y^{n-1} x^n = x^n y^{n-1}$. Ainsi, pour tout $y \in G$, y^{n-1} commute à tous les éléments de la forme x^n avec $x \in G$, et est donc dans le centre de G, puisque l'application $x \to x^n$ est supposée surjective.

Correction de l'exercice 3 A

Tout automorphisme φ du groupe $G = \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$ permute les trois éléments d'ordre 2, c'est-à-dire l'ensemble G^* des trois éléments non triviaux. La correspondance qui à $\varphi \in \operatorname{Aut}(\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z})$ associe sa restriction à G^* induit un morphisme $\chi : \operatorname{Aut}(\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}) \to S_3$. Tout morphisme $\varphi \in \operatorname{Aut}(\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z})$ étant déterminé par sa restriction à G^* , ce morphisme χ est injectif. De plus, tout automorphisme linéaire (pour la structure de $\mathbb{Z}/2\mathbb{Z}$ -espace vectoriel de $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$) est un automorphisme de groupes. Il y a 6 tels automorphismes (autant qu'il y a de bases). L'image de χ contient donc au moins 6 éléments. Comme c'est un sous-groupe de S_3 , c'est S_3 lui-même et χ est un isomorphisme.

Correction de l'exercice 4 A

Le sous-groupe H est à la fois la classe à gauche et la classe à droite modulo H de l'élément neutre. Si [G:H]=2, son complémentaire H^c dans G est donc l'autre classe, à droite et à gauche. Classes à droite et classes à gauche coincident donc, soit gH=Hg et donc $gHg^{-1}=Hgg^{-1}=H$ pour tout $g\in G$.

Correction de l'exercice 5 ▲

D'après l'hypothèse, pour tout $x \in G$, il existe $z \in G$ tel que $xH \cdot x^{-1}H = zH$. On en déduit $xHx^{-1} \subset zH$. Cela entraine que $1 \in zH$ et donc que $z \in H$. D'où finalement $xHx^{-1} \subset H$.

Correction de l'exercice 6 ▲

Etant donnés $y, z \in H$, on a $y \simeq 1$ et $z \simeq 1$. La compatibilité de la loi donne d'une part $yz \simeq 1$, soit $yz \in H$, et d'autre part $yy^{-1} \simeq y^{-1}$ soit $y^{-1} \in H$. Cela montre que H est un sous-groupe de G. Pour tout $x \in G$, on a aussi $xyx^{-1} \simeq x1x^{-1} = 1$ et donc $xyx^{-1} \in H$. Le sous-groupe H est donc distingué.

De plus, pour $x, x' \in G$, si $x \simeq x'$, alors par compatibilité de la loi, on a $x'x^{-1} \simeq xx^{-1} = 1$, c'est-à-dire $x'x^{-1} \in H$. Réciproquement, si $x'x^{-1} \in H$, alors $x'x^{-1} \simeq 1$, et donc, par compatibilité de la loi, $x \simeq x'$.

Correction de l'exercice 7 ▲

Pour tout $g \in G$, la conjugaison $c_g : G \to G$ par g induit un automorphisme de H si H est distingué dans G. Si de plus K est caractéristique dans H, alors K est stable par c_g . D'où K est alors distingué dans G.

Le sous-ensemble V_4 du groupe symétrique S_4 consistant en l'identité et les trois produits de transpositions disjointes : $(1\,2)(3\,4)$, $(1\,3)(2\,4)$ et $(1\,4)(2\,3)$ est un sous-groupe (vérification immédiate) qui est distingué : cela résulte de la formule $g(i\,j)(k\,l)g^{-1} = (g(i)\,g(j))(g(k)\,g(l))$ pour $i,j,k,l\in\{1,2,3,4\}$ distincts. Le sous-groupe K (d'ordre 2) engendré par $(1\,2)(3\,4)$ est distingué dans V_4 (car V_4 est abélien). Mais K n'est pas distingué dans S_4 (comme le montre encore la formule précédente).

Correction de l'exercice 10 ▲

Le groupe μ_{mn} a un élément d'ordre mn. En revanche tout élément $x \in \mu_m \times \mu_n$ vérifie $x^{\mu} = 1$ avec $\mu = \text{ppcm}(m,n)$ et est donc d'ordre un diviseur de μ , lequel est < mn si m et n ne sont pas premiers entre eux. Les groupes μ_{mn} et $\mu_m \times \mu_n$ ne peuvent donc pas être isomorphes.

Correction de l'exercice 14 ▲

Considérons la surjection canonique $s: G \to G/H$. D'après l'exercice 12, |s(K)| divise $\operatorname{pgcd}(|K|, |G/H|)$ qui est égal à $\operatorname{pgcd}(|H|, |G/H|)$ (puisque |H| = |K|) et vaut donc 1. Conclusion : $s(K) = \{1\}$, c'est-à-dire $K \subset H$. D'où K = H puisqu'ils ont même ordre.

Correction de l'exercice 15 A

On a $f(n) = f(1)^n$ pour tout entier n > 0. Mais on a aussi $f(1/n)^n = f(1)$ pour tout n > 0. Cela n'est pas possible car un nombre rationnel positif $\neq 0, 1$ ne peut être une puissance n-ième dans $\mathbb Q$ pour tout n > 0. (Pour ce dernier point, noter par exemple qu'être une puissance n-ième dans $\mathbb Q$ entraîne que tous les exposants de la décomposition en facteurs premiers sont des multiples de n). Les deux groupes $(\mathbb Q, +)$ et $(\mathbb Q_+^{\times}, \times)$ ne sont donc pas isomorphes.

Correction de l'exercice 18 ▲

On a n = |G/H|. Pour toute classe $aH \in G/H$, on a donc $(aH)^n = H$ c'est-à-dire, $a^nH = H$ ou encore $a^n \in H$. Cela devient faux si H n'est pas distingué dans G. Par exemple le sous-groupe H de S_3 engendré par la transposition (12) est d'indice 3 dans S_3 et, pour a = (23), on a $a^3 = a \notin H$.

Correction de l'exercice 19 ▲

Soit H' un sous-groupe de G d'ordre n et d'indice m. Pour tout $h \in H'$, on a $h^n = 1$ et $h^m \in H$ (voir l'exercice 18). Puisque n et m sont premiers en eux, on peut trouver $u, v \in \mathbb{Z}$ tels que um + vn = 1. On obtient alors $h = (h^m)^u (h^n)^v \in H$. D'où $H' \subset H$ et donc H = H' puisque |H| = |H'|.

Correction de l'exercice 21 ▲

- (a) La correspondance $x \to e^{2i\pi x}$ induit un morphisme $\mathbb{R} \to T$, surjectif et de noyau \mathbb{Z} . D'où $\mathbb{R}/\mathbb{Z} \simeq T$. La correspondance $z \to z/|z|$ induit l'isomorphisme $\mathbb{C}^\times/\mathbb{R}_+^\times \simeq T$. Similairement $z \to z^2/|z|^2$ fournit l'isomorphisme $\mathbb{C}^\times/\mathbb{R}^\times \simeq T$. Les isomorphismes $T/\mu_n \simeq T$ et $\mathbb{C}^\times/\mu_n \simeq \mathbb{C}^\times$ s'obtiennent à partir de la correspondance $z \to z^n$.
- (b) La correspondance $x \to e^{2i\pi x}$ induit un morphisme $\mathbb{Q} \to \mu_{\infty}$, surjectif et de noyau \mathbb{Z} . D'où $\mathbb{Q}/\mathbb{Z} \simeq \mu_{\infty}$. Si G est un sous-groupe fini de μ_{∞} , alors il existe $m \in \mathbb{N}$ tel que $G \subset \mu_m$. Les sous-groupes du groupe cyclique μ_m sont les μ_n où n|m.
- (c) Soit G un sous-groupe de $\mathbb Q$ de type fini, c'est-à-dire engendré par un nombre fini de rationnels $p_1/q_1,\ldots,p_r/q_r$. On a alors $q_1\cdots q_rG\subset \mathbb Z$. Soit q le plus petit entier >0 tel que $qG\subset \mathbb Z$. Le sous-groupe qG est de la forme $a\mathbb Z$ avec $a\in \mathbb N$ premier avec q (car l'existence d'un facteur commun contredirait la minimalité de q). On obtient $G=(a/q)\mathbb Z$. Si de plus $\mathbb Z\subset G$ alors $1\in G$ et s'écrit donc 1=ka/q avec $k\in \mathbb Z$, ce qui donne ka=q. Comme $\operatorname{pgcd}(a,q)=1$, on a nécessairement a=1 et donc $G=(1/q)\mathbb Z$.
- Soit $s: \mathbb{Q} \to \mathbb{Q}/\mathbb{Z}$ la surjection canonique. Si \overline{G} est un sous-groupe de type fini de \mathbb{Q}/\mathbb{Z} , alors $G = s^{-1}(\overline{G})$ est un sous-groupe de \mathbb{Q} , contenant \mathbb{Z} et de type fini (si $p_1/q_1, \ldots, p_r/q_r$ sont des antécédents par s de générateurs de \overline{G} , alors $1, p_1/q_1, \ldots, p_r/q_r$ engendrent G). D'après ce qui précède, on a $G = \frac{1}{q}\mathbb{Z}$ et donc $\overline{G} = \frac{1}{q}\mathbb{Z}/\mathbb{Z}$, qui est isomorphe à $\mathbb{Z}/q\mathbb{Z}$.

Via l'isomorphisme de la question (b), on déduit les sous-groupes de \mathbb{Q}/\mathbb{Z} de type fini : ce sont les sous-groupes $\{e^{2ik\pi/q} \mid k \in \mathbb{Z}\} = \mu_q \text{ avec } q \text{ décrivant } \mathbb{N}^{\times}.$

(d) On vérifie sans difficulté que pour tout nombre premier p, $\mu_{p^{\infty}}$ est un sous-groupe de μ_{∞} . Il n'est pas de type fini : en effet le sous-groupe de \mathbb{Q}/\mathbb{Z} qui lui correspond par l'isomorphisme de la question (b) est engendré par les classes de rationnels $1/p^n$ modulo \mathbb{Z} , n décrivant \mathbb{N} . Un tel sous-groupe G n'a pas de dénominateur commun, c'est-à-dire, il n'existe pas d'entier $q \in \mathbb{Z}$ tel que $qG \subset G$. En conséquence il ne peut pas être de type fini.

Correction de l'exercice 22 A

Soit $z \in \mathbb{C}$ quelconque et $\zeta \in \mathbb{C}$ une racine n-ième de z. Le sous-groupe G est distingué dans \mathbb{C} (puisque \mathbb{C} est commutatif). Si n est l'indice de G dans \mathbb{C} , on a donc $\zeta^n = z \in G$ (voir l'exercice 18). D'où $\mathbb{C} \subset G$. L'inclusion inverse est triviale.

Correction de l'exercice 25 ▲

(a) Soit $\varphi : \mathbb{F}_p^n \to \mathbb{F}_p^m$ un morphisme de groupes. Pour tout $n \in \mathbb{Z}$, on note $\overline{n} \in \mathbb{Z}/p\mathbb{Z} = \mathbb{F}_p$ sa classe modulo p. Tout élément $\overline{x} \in \mathbb{F}_p^n$ peut s'écrire $\overline{x} = (\overline{x_1}, \dots, \overline{x_n})$ avec $x = (x_1, \dots, x_n) \in \mathbb{Z}^n$. On a alors $\varphi(\overline{n} \cdot \overline{x}) = \varphi(\overline{nx}) = \overline{x_n}$

- $\varphi(n\overline{x}) = n\varphi(\overline{x}) = \overline{n} \cdot \varphi(\overline{x})$. Le morphisme φ est donc compatible avec les lois externes de \mathbb{F}_p^n et \mathbb{F}_p^m . Comme il est aussi additif, c'est une application \mathbb{F}_p -linéaire.
- (b) Considérons l'application $V: \operatorname{Aut}(\mathbb{Z}/p\mathbb{Z}) \to \mathbb{Z}/p\mathbb{Z}$ qui à tout automorphisme χ associe $\chi(1)$. Cette application est à valeurs dans $\mathbb{Z}/p\mathbb{Z}\setminus\{0\}$ (si $\chi\in\operatorname{Aut}(\mathbb{Z}/p\mathbb{Z})$, alors $\ker(\chi)=\{0\}$). C'est un morphisme de $\operatorname{Aut}(\mathbb{Z}/p\mathbb{Z})$ muni de la composition vers le groupe multiplicatif $\mathbb{Z}/p\mathbb{Z}\setminus\{0\}=\mathbb{F}_p^\times:$ en effet si $\chi,\chi'\in\operatorname{Aut}(\mathbb{Z}/p\mathbb{Z})$ et si on pose $\chi'(1)=\overline{c}$ (classe de $c\in\mathbb{Z}$ modulo p), alors $(\chi\circ\chi')(1)=\chi(\overline{c})=c\chi(1)=\overline{c}\cdot\chi(1)=\chi'(1)\cdot\chi(1)=\chi(1)\cdot\chi'(1)$. Ce morphisme V est de plus injectif puisque tout automorphisme χ de $\mathbb{Z}/p\mathbb{Z}$ est déterminé par $\chi(1)$. Enfin, pour tout $\overline{a}\in\mathbb{Z}/p\mathbb{Z}$ non nul, la correspondance $\overline{n}\to\overline{a}\cdot\overline{n}$ induit un automorphisme χ de $\mathbb{Z}/p\mathbb{Z}$ tel que $\chi(1)=\overline{a}$. L'image du morphisme V est donc tout \mathbb{F}_p^\times . Ce qui établit l'isomorphisme demandé.
- (c) D'après la question (a), il s'agit de compter le nombre d'automorphismes linéaires du \mathbb{F}_p -espace vectoriel \mathbb{F}_p^n , qui est égal au nombre de bases de \mathbb{F}_p^n , c'est-à-dire $(p^n-1)(p^n-p)\cdots(p^n-p^{n-1})$.

Correction de l'exercice 27 A

Soit G un groupe abélien fini tel que $pG = \{0\}$. Pour tout entier $n \in \mathbb{Z}$ et pour tout $g \in G$, l'élément ng ne dépend que de la classe de n modulo p; on peut le noter $\overline{n} \cdot g$. La correspondance $(\overline{n},g) \to \overline{n} \cdot g$ définit une loi externe sur le groupe additif $(\mathbb{Z}/p\mathbb{Z})^n$ et lui confère ainsi une structure de \mathbb{F}_p -espace vectoriel. Cet espace vectoriel, étant fini, est de dimension finie. Il est donc isomorphe comme espace vectoriel, et en particulier comme groupe à $(\mathbb{Z}/p\mathbb{Z})^n$ pour un certain entier $n \geq 0$.

Correction de l'exercice 30 ▲

Le centre Z(G) est ni trivial (car G est un p-groupe) ni égal à G (car G non abélien). En utilisant l'exercice 23, on voit qu'il n'est pas non plus d'ordre p^2 . Il est donc d'ordre p. Mais alors G/Z(G) est d'ordre p^2 et est donc abélien (exercice 24). D'après l'exercice 29, on a alors $D(G) \subset Z(G)$. Comme $D(G) \neq \{1\}$ (sinon G serait abélien), on a D(G) = Z(G).