MATH 242: Calculus 3 TEST 1A

Appropriate calculators ARE permitted—show decimals to three places unless otherwise stated. Please box your answers. Good luck!

Page	Points	Score
1	8	
2	10	
3	11	
4	8	
5	9	
6	4	
Total:	50	

Name:			
name.			

1. [4 pts] Set up an integral equal to the area inside $r = 4\cos\theta$ and outside r = 2, which is shown below.

2. [4 pts] Graph and label the polar points $(2, \frac{3\pi}{2}), (-1, \frac{7\pi}{6}), (-\sqrt{2}, \frac{-\pi}{4}),$ and (3, 3) on the axes provided.

4. [5 pts] Determine if each of the following sequences is convergent or divergent and state the limit of each, if it exists.

(a)
$$a_n = 1 - (.7)^n$$

(b)
$$a_n = \frac{2^n}{n!}$$

(c)
$$\{1, -1, 1, -1, 1, \ldots\}$$

- 5. [3 pts] Mark the following as true (T) or false (F):
 - (a) _____ If a sequence is convergent, then it must be bounded.
 - (b) _____ If a sequence is bounded, then it must be convergent.
 - (c) _____ If a sequence is convergent, then it must be monotonic.

6. [3 pts] Eliminate the parameter from the following parametric curve to obtain a Cartesian equation.

$$x = e^{4t}$$
$$y = \sqrt[3]{t+1}$$

7. [2 pts] Rewrite the Cartesian equation $y = x^2 - 3$ as a polar equation.

8. [3 pts] Find the Cartesian coordinates of the polar point $\left(3, \frac{13\pi}{12}\right)$.

9. [3 pts] Find the polar coordinates of the Cartesian point (-4,3).

- 10. Consider the parametric curve given by $x = \frac{1}{3}t^3 + t^2 3t$, $y = t^3 3t + 1$.
 - (a) [3 pts] Find $\frac{dy}{dx}$ for the given curve.

(b) [5 pts] Find the ordered pair(s) at which the curve has a horizontal tangent.

(c) [2 bonus] Determine the value of $\lim_{t\to 1} \frac{dy}{dx}$ and explain what it represents.

11. Set up (but do not evaluate) integrals equal to the arc lengths of the given curves.

(a) [3 pts]
$$x = t^3$$
, $y = e^{2t}$, $-1 \le t \le 5$

(b) [2 pts]
$$r = \sin^2(\theta), \quad 0 \le \theta \le \frac{\pi}{2}$$

12. [4 pts] Calculate the slope of the polar curve $r = 2\cos\theta$ at $\theta = \frac{\pi}{6}$.

13. [2 pts] Say that specific parametric equations yield the following table of values. Graph the function on the axes provided.

											3	†						
t	x	y									2	l						
-2	-4	2									1	ł						
-1	0	0																
0	1	-2		-6	!	5 -	-4	-3	3 —	2 -	-1		1	2	3	4	5	6
1	2	-2									-1	t						
2	6	0									-2	+						
											-3	-						

14. [1 pt] Give an example of a parametric function whose graph fails the vertical line test.

15. [1 pt] The graph of the parametric equations $x = t^2 + t - 3$, $y = t^2 - t - 3$ is shown below. Use an arrow to label the direction of increase.

