机器学习概论 实验一 垃圾邮件识别

张晨 2017011307

1 基本原理

已知训练集集中标签 y(是垃圾邮件/不是垃圾邮件) 的出现概率 P(y), 每种标签下各个词项 x_i 的出现概率 $P(x_i|y)$, 可根据下式估算测试集中一个拥有词项 $x_1,...,x_n$ 的邮件的标签为 y 的概率。

$$P(y|x_1,...,x_n) = P(y) \prod_{i=1}^n P(x_i|y)$$
 (1)

测试集中,邮件的标签输出为概率最大的标签,即

$$\hat{y} = argmax_y P(y) \prod_{i=1}^{n} P(x_i|y)$$
(2)

为了保证运算精度,在实际计算过程中,会对等式两边同时取对数。

2 对正文的处理

2.1 预处理

数据集选取 数据集中共 37822 封邮件,其中 python 可直接读取的有 32401 封。为分析便利,取其中 32400 封。将这些邮件打乱顺序后,分为 5 折。

元数据与正文的分离 观察发现,在绝大多数的文章中,元数据与正文以一个空行分割。个别的例外,如 118/184 等,暂不考虑。

异常邮件的处理 共有 528 封完全为 base64 编码的邮件,其中垃圾邮件 505 封,非垃圾邮件 23 封。在测试时,将它们都归为垃圾邮件。此外,有 142 封邮件中出现了形如 "B——"的串,它们的内容均为乱码,分类全是垃圾邮件,故在测试时,直接标记为垃圾邮件。

2.2 基础版本的实现

训练阶段,将训练集中邮件的正文进行分词,统计各个词项出现的次数,留下出现次数大于等于 10 的词项。分词的限制较松,允许一些非单词的元素出现,但会将单词最后的句号去掉。

测试阶段,对于测试集中的每封邮件,用同样的方法进行分词。若某个词项仅在垃圾邮件中出现过,则标记为垃圾邮件,若某个词项仅在非垃圾邮件中出现过,标记为非垃圾邮件。否则使用公式1进行计算。

此版本的准确率如下表所示。

Accuracy	Precision	Recall	F1
0.9724	0.9945	0.9607	0.9773

2.3 使用词表

在基础版本中,词项中有很多非单词的元素。我使用一个 20000 个单词的词表进行过滤,仅保留词表中的单词。同时,我还测试了词表中单词 + 垃圾邮件中的词项,词表中单词 + 非垃圾邮件中的词项两种组合,以及忽略大小写的结果。实验结果如下。

	Accuracy	Precision	Recall	F1
仅含词表中单词	0.9404	0.9955	0.9079	0.9496
词表单词 + 垃圾邮件词项	0.9718	0.9923	0.9619	0.9769
词表单词 + 非垃圾邮件词项	0.9467	0.9962	0.9174	0.9552
仅含词表中单词, 忽略大小写	0.8833	0.9949	0.8157	0.8962

2.4 停用词

一般而言,在进行文本分析的时候,需要删除停用词。我也对此作了测试,实验结果如下。可见, 删除停用词会略微提高准确度。

	Accuracy	Precision	Recall	F1
全体词项删除停用词	0.9733	0.9941	0.9626	0.9781
词表单词删除停用词	0.9505	0.9949	0.9247	0.9585

2.5 截取长度

出现次数较少的词项,在两种标签中的出现概率随机性较大,故可靠性可能降低。但是,实验发现,在这个数据集中,不删除任何词项却是准确度最高的做法。这是邮件的内容重复造成的,在后面会具体分析。之后的实验,都不再进行频率的截取。具体数据如下

2.6 提升 precision 或 recall

若想提高 precision,可提高垃圾邮件的判别条件,若想提高 recall,可降低垃圾邮件的判别条件。 我分别尝试了这两种做法,与预想一致,结果如下

	Accuracy	Precision	Recall	F1
提高一倍非垃圾邮件词频	0.9873	0.9935	0.9859	0.9897
正常	0.9887	0.9970	0.9848	0.9908
提高一倍垃圾邮件词频	0.9887	0.9972	0.9844	0.9908

3 零概率的处理

3.1 平滑

对于仅在垃圾邮件中出现或仅在非垃圾邮件中出现的词项,直接进行计算会由于计算 log(0) 而出错。通用的解决方法是进行平滑。平滑参数 α 的选取与准确度的关系如下表所示。从表中可以看出,无

α	Accuracy	Precision	Recall	F1
0.01	0.9642	0.9967	0.9451	0.9702
0.1	0.9565	0.9959	0.9334	0.9636
0.5	0.9452	0.9955	0.9154	0.9538
1	0.9372	0.9951	0.9029	0.9467
2	0.9290	0.9943	0.8904	0.9394

论平滑参数如何选取,准确率都低于直接判断(若某个词项仅在垃圾邮件中出现过,则标记为垃圾邮件,若某个词项仅在非垃圾邮件中出现过,标记为非垃圾邮件)

3.2 直接判断

进一步分析发现,绝大部分的邮件,都可以使用直接判断的方法进行处理,且准确率较高,具体如下表所示

	总数	Accuracy	Precision	Recall	F1
异常邮件 (判为垃圾邮件)	670	0.9658	0.9658	1.0000	0.9826
仅含在垃圾邮件中出现过的零概率词项		0.9993	0.9993	1.0000	0.9996
(判为垃圾邮件)	18499	0.9990	0.9993	1.0000	0.9990
仅含在非垃圾邮件中出现过的零概率词项	10416	0.9954	0.0000	0.0000	0.0000
(判为非垃圾邮件)	10410	0.9954	0.0000	0.0000	0.0000
两种零概率词项都有(根据出现频次之和判断)	2419	0.9112	0.9704	0.7403	0.8393
无零概率词项	396	0.8297	0.8256	0.3175	0.4377

从上表可以看出,若仅含在一种标签中的零概率词项,直接将其判为该标签可获得极高的准确率。一个可能的原因是,数据集较小,且存在重复(如 001/176 和 001/200 除时间外完全一样)。**为更明显的反映不同方法的意义,在之后的实验中,如没有特别说明,则忽略这些测例**。忽略这些测例后,剩余测例的 accuracy 仅为 0.86。

4 元数据的使用

4.1 标题

4.1.1 词频法

标题与正文结合有两种办法,一是为标题赋予较大的权重,与正文合并为同一词表。二是为标题和 正文分别构建词表。在我的实验中,方法二效果较好。比较有意思的一点是,在这些测例中,仅考虑标 题的准确度要高于仅考虑文本,其原因可能是,文本中存在大量非文字内容,会影响判断。

	Accuracy	Precision	Recall	F1
仅使用标题	0.8893	0.8701	0.7432	0.8012
仅使用文本	0.8697	0.9684	0.5876	0.7283
单词表,标题权重1	0.8761	0.9585	0.6162	0.7475
单词表,标题权重 10	0.8899	0.9649	0.6602	0.7809
单词表,标题权重 100	0.9176	0.9479	0.7686	0.8483
双词表,标题权重1	0.8816	0.9577	0.6364	0.7619
双词表,标题权重 10	0.8999	0.9595	0.6980	0.8065
双词表,标题权重 100	0.9200	0.9378	0.7856	0.8541

4.1.2 其他特征

我猜想在回复的邮件中,垃圾邮件极少,但对整个数据集统计发现,带有标题中带有"Re:"的邮件中,垃圾/非垃圾的比例为 2662/5119,差距不悬殊。再加上在词频分析中,已经间接考虑了"Re"一词,我就不再对其进行特殊处理。

我的另外一个猜想是,标题中带有感叹号的,垃圾邮件较多。但实际统计发现,在整个数据集上, 差距并不显著,且带有感叹号的标题仅占所有标题的一小部分,故我认为该特征不会带来明显的效果提升,也未做进一步测试。

4.2 客户端

垃圾邮件的分布与客户端有一定的关联性,如 "devMail.Net" 发出的 1537 封邮件,全是垃圾邮件, "Mozilla" 发出的 1259 封邮件,仅有 2 封不是垃圾邮件。但加入这个特征之后,模型的表现基本不变。 具体数据如下。本着模型应尽量简单的原则,我放弃了这个特征。

客户端权重	Accuracy	Precision	Recall	F1
1	0.9200	0.9378	0.7856	0.8541
2	0.9204	0.9379	0.7869	0.8550
4	0.9201	0.9394	0.7848	0.8542
8	0.9205	0.9355	0.7898	0.8557

4.3 发送方

在我解析出的发送方中,全为垃圾邮件的有 5320 个地址,全为非垃圾邮件的有 1150 个地址,垃圾邮件、非垃圾邮件都有的仅有 11 个地址。我将在训练集中全是垃圾邮件的发送方标记为黑名单,所有邮件全判为垃圾邮件;训练集中全是非垃圾邮件的发送方标记为白名单,所有邮件全判为非垃圾邮件。因为两种邮件都有的地址很少,我没有将其作为模型的一个特征。然而,加入黑白名单,并没有明显提升模型的表现,具体数据如下。

Accuracy	Precision	Recall	F1
0.9207	0.9401	0.7856	0.8551

5 训练集大小

最后,我测试了训练集规模对结果的影响,测试方法是在五折交叉验证的基础上,对训练集进行不同比例的采样,每个比例重复多次,并在整个测试集上进行测试。模型表现统计如下。可以发现,在目前的规模下,增大训练集规模可以明显的减小错误率。其根源可能为 3.2 节所述的直接判断法。

截取比例 Accuracy		Precision		Recall		F1						
(1)	max	min	avg	max	min	avg	max	min	avg	max	min	avg
0.05	0.955	0.950	0.953	0.983	0.979	0.980	0.949	0.939	0.943	0.963	0.959	0.961
0.5	0.985	0.984	0.984	0.995	0.994	0.995	0.981	0.979	0.980	0.988	0.987	0.987
1	0.991	0.991	0.991	0.996	0.996	0.996	0.989	0.989	0.989	0.992	0.992	0.992

6 最终结果

最终模型采用了如下方法

- 异常邮件,直接标注为垃圾邮件
- 去除停用词
- 若所有零概率词项都出自垃圾邮件,则判为垃圾邮件,若所有零概率词项都出自非垃圾邮件,则判为非垃圾邮件。
- 剩余邮件的零概率词项进行平滑
- 若发件人位于黑名单中,判为垃圾邮件; 若发件人位于白名单中, 判为非垃圾邮件。
- 使用朴素贝叶斯公式分别处理标题和正文,并以一定权重结合。

在整个数据集上采用五折交叉验证的准确率如下

Accuracy	Precision	Recall	F1
0.9918	0.9959	0.9908	0.9933

7 总结

这次实验,我感受了常见文本处理思路在文本分类上的作用,并进一步熟悉了贝叶斯算法。直接判断法的效果着实令我惊讶,但这并不是一个通用的方法,若数据集增大,它会失效。