

DISCRETE DIFFERENTIAL GEOMETRY:

AN APPLIED INTRODUCTION

Keenan Crane • CMU 15-458/858

SUPPLEMENTAL:

VECTOR-VALUED DIFFERENTIAL FORMS

DISCRETE DIFFERENTIAL

GEOMETRY:

AN APPLIED INTRODUCTION

Keenan Crane • CMU 15-458/858

Vector Valued k-Forms

- Originally defined *k*-form as linear map from *k* vectors to <u>real numbers</u>
 - To encode geometry, need functions that describe points in space
 - Will therefore generalize to <u>vector</u>-valued *k*-forms

Definition. A *vector-valued k-form* is a fully antisymmetric multi-linear map from k vectors in a vector space V to another vector space U.

- Have already seen many \mathbb{R} -valued k-forms on \mathbb{R}^n ($V = \mathbb{R}^n$, $U = \mathbb{R}$)
- A \mathbb{R}^3 -valued 2-form on \mathbb{R}^2 would instead be a multilinear, fully-antisymmetric map from a pair of vectors u,v in \mathbb{R}^2 to a single vector in \mathbb{R}^3 :

$$\alpha: \mathbb{R}^2 \times \mathbb{R}^2 \to \mathbb{R}^3$$
 $\alpha(u, v) = -\alpha(v, u)$

$$\alpha(au + bv, w) = a\alpha(u, w) + b\alpha(v, w), \quad \forall u, v, w \in \mathbb{R}^2, a, b \in \mathbb{R}$$

Q: What kind of object is a \mathbb{R}^2 -valued 0-form on \mathbb{R}^2 ?

Vector-Valued k-forms—Example

Consider for instance the following \mathbb{R}^3 -valued 1-form on \mathbb{R}^2 :

$$\alpha := \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} e^1 + \begin{bmatrix} 4 \\ 5 \\ 6 \end{bmatrix} e^2$$

Q: What do we get if we evaluate this 1-form on the vector

$$u := e_1 - e_2$$

Key idea: most operations just look like scalar case, applied to each component

Wedge Product of Vector-Valued k-Forms

- Most important change is how we evaluate wedge product for vector-valued forms.
- Consider for instance a pair of \mathbb{R}^3 -valued 1-forms:

$$\alpha, \beta: V \to \mathbb{R}^3$$

• To evaluate their wedge product on a pair of vectors *u,v* we would normally write:

$$(\alpha \wedge \beta)(u,v) = \alpha(u)\beta(v) - \alpha(v)\beta(u)$$

- If α and β were *real*-valued, then $\alpha(u)$, $\beta(v)$, $\alpha(v)$, $\beta(u)$, would just be *real numbers*, so we could just multiply the two pairs and take their difference.
- But what does it mean to take the "product" of two vectors from \mathbb{R}^3 ?
- Many possibilities (*e.g.*, dot product), but if we want result to be an \mathbb{R}^3 -valued 2-form, the product we choose must produce another vector in \mathbb{R}^3 !

Wedge Product of \mathbb{R}^3 -Valued k-Forms

- When working with 3D geometry:
 - -k-forms are \mathbb{R}^3 -valued
 - use **cross product** to multiply vectors in \mathbb{R}^3

$$\alpha, \beta: V \to \mathbb{R}^3$$

$$\alpha \wedge \beta : V \times V \to \mathbb{R}^3$$

$$(\alpha \wedge \beta)(u,v) := \alpha(u) \times \beta(v) - \alpha(v) \times \beta(u)$$

\mathbb{R}^3 -valued 1-forms: Antisymmetry & Symmetry

With real-valued forms, we observed antisymmetry in both the wedge product of 1-forms as well as the application of the 2-form to a pair of vectors, *i.e.*,

$$(\alpha \wedge \beta)(u, v) = -(\alpha \wedge \beta)(v, u)$$
$$(\beta \wedge \alpha)(u, v) = -(\alpha \wedge \beta)(u, v)$$

What happens w / \mathbb{R}^3 -valued 1-forms? Since cross product is antisymmetric, we get

$$(\alpha \wedge \beta)(v, u) = \alpha(v) \times \beta(u) - \alpha(u) \times \beta(v)$$

$$= -(\alpha(u) \times \beta(v) - \alpha(v) \times \beta(u))$$

$$\Rightarrow (\alpha \wedge \beta)(u, v) = -(\alpha \wedge \beta)(v, u)$$
(same as with real-valued forms)

$$(\beta \wedge \alpha)(u,v) = \beta(u) \times \alpha(v) - \beta(v) \times \alpha(u)$$

$$= \alpha(u) \times \beta(v) - \alpha(v) \times \beta(u)$$

$$= (\alpha \wedge \beta)(u,v)$$

$$\Rightarrow \boxed{\alpha \wedge \beta = \beta \wedge \alpha}$$
(no sign change)

Key idea: "antisymmetries cancel"

R³-valued 1-forms: Self-Wedge

Likewise, we saw that wedging a real-valued 1-form with itself yields zero:

$$\alpha \wedge \alpha = 0$$

Q: What was the *geometric* interpretation?

A: Parallelogram made from two copies of the same vector has zero area!

No longer true with (\mathbb{R}^3, \times) -valued 1-forms:

$$(\alpha \wedge \alpha)(u,v) = \alpha(u) \times \alpha(v) - \alpha(v) \times \alpha(u) = 2\alpha(u) \times \alpha(v) \neq 0$$

Q: Geometric meaning?

A: Vector with (twice) area of "stretched out" parallelogram.

Vector-Valued Differential k-Forms

- Just as we distinguished between a *k-form* (value at a single point) and a *differential k-form* (value at each point), will say that a *vector-valued differential k-form* is a vector-valued *k*-form at each point.
- Just like any differential form, a vector-valued differential k-form gets evaluated on k vector fields $X_1, ..., X_k$.
- Example: an \mathbb{R}^3 -valued differential 1-form on \mathbb{R}^2 :

$$\alpha = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} dx + \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} dy$$

Q: What does α do to a given vector field U in the plane?

A: It turns it into a 3D vector field that "sticks out" of the plane.

Exterior Derivative on Vector-Valued Forms

Unlike the wedge product, not much changes with the exterior derivative. For instance, if we have an \mathbb{R}^n -valued k-form we can simply imagine we have *n* real-valued k-forms and differentiate as usual.

Example.

Consider an \mathbb{R}^2 -valued differential 0-form $\phi_{(x,y)} := \begin{bmatrix} x^2 \\ xy \end{bmatrix}$ Then $d\phi = \frac{\partial \phi}{\partial x} dx + \frac{\partial \phi}{\partial y} dy = \begin{bmatrix} 2x \\ y \end{bmatrix} dx + \begin{bmatrix} 0 \\ x \end{bmatrix} dy$

Then
$$d\phi = \frac{\partial \phi}{\partial x} dx + \frac{\partial \phi}{\partial y} dy = \begin{bmatrix} 2x \\ y \end{bmatrix} dx + \begin{bmatrix} 0 \\ x \end{bmatrix} dy$$

Example.

Consider an \mathbb{R}^2 -valued differential 1-form $\alpha_{(x,y)} := \left| \begin{array}{c} x^2 \\ xy \end{array} \right| dx + \left| \begin{array}{c} xy \\ y^2 \end{array} \right| dy$

Then
$$d\alpha = \left(\begin{bmatrix} 2x \\ y \end{bmatrix} dx + \begin{bmatrix} 0 \\ x \end{bmatrix} dy \right) \wedge dx + \left(\begin{bmatrix} y \\ 0 \end{bmatrix} dx + \begin{bmatrix} x \\ 2y \end{bmatrix} dy \right) \wedge dy = \begin{bmatrix} y \\ -x \end{bmatrix} dx \wedge dy$$

AN APPLIED INTRODUCTION

Keenan Crane • CMU 15-458/858