

B. Cukierki

Nazwa zadania	Cukierki	
Limit czasu	3 sekundy	
Limit pamięci	1 GB	

Krążą legendy, że w starożytnym Ica znajduje się pałac pełen niewyobrażalnych człowiekowi skarbów. Wewnątrz pałacu znajduje sie korytarz, w którym jest N pudełek cukierków pochodzących z każdego zakątka świata. Podróżnicy przechodzący korytarzem mogą wziąć tyle cukierków, ile tylko zechcą, pod warunkiem, że zapłacą taką samą wagą w złocie.

Pudełka są ponumerowane od lewej do prawej liczbami od 0 do N-1. W i-tym pudełku znajduje się a_i cukierków (a_i jest nieujemną liczbą całkowitą). Jako strażniczka pałacu chciałabyś przemieścić pudełka tak, że pudełka z dużą ilością cukierków znajdują się bliżej wejścia.

Podana jest lista $a_0, a_1, \ldots, a_{N-1}$ oraz liczby F i T. W pojedynczej operacji możesz zamienić miejscami **sąsiadujące** elementy $a_0, a_1, \ldots, a_{N-1}$. Jaka jest minimalna liczba operacji by zagwarantować, że pierwsze F elementów listy sumuje się do co najmniej T?

Wejście

Pierwsza linie wejścia zawiera trzy liczby całkowite N, F oraz T.

Druga linia wejścia zawiera N liczb całkowitych $a_0, a_1, \ldots, a_{N-1}$.

Wyjście

Jeśli nie jest możliwe uzyskanie oczekiwanego układu, wypisz "NO".

W przeciwnym przypadku wypisz jedną liczbę całkowitą reprezentującą minimalną liczbę potrzebnych operacji.

Ograniczenia i ocenianie

- $1 \le N \le 100$.
- 1 < F < N.
- $0 < T < 10^{11}$.

• $0 < a_i < 10^9$ dla $i = 0, 1, \dots, N-1$.

Komentarz: Wartości podane w danych wejściowych mogą nie zmieścić się w 32-bitowej liczbie, dlatego uważaj na przepełnienie, jeśli używasz języka C++.

Twoje rozwiązanie będzie sprawdzane na zbiorze grup testowych, każda z grup jest warta określoną liczbę punktów. W każdej grupie znajduje się zbiór testów. Aby rozwiązanie otrzymało punkty za grupę testową, musi wypisać poprawną odpowiedź dla każdego testu w tej grupie.

Grupa	Punktacja	Ograniczenia
1	6	$N \leq 2$ i $a_i \leq 100$ dla $i=0,1,\ldots,N-1$ i $T \leq 10^9$
2	19	$a_i \leq 1$ dla $i=0,1,\ldots,N-1$
3	16	$N \leq 20$
4	30	$a_i \leq 100$ dla $i=0,1,\ldots,N-1$
5	29	Brak dodatkowych ograniczeń

Przykład

W pierwszym przykładzie suma pierwszych dwóch elementów powinna mieć wartość co najmniej 27. Można to uzyskać poprzez pojedynczą zamianę wartości 4 i 20. Po tej operacji lista wygląda następująco: 10 20 4 6 3 3 i pierwsze dwa elementy sumują się do $10+20=30 \geq 27$.

W drugim przykładzie wartość 0 musi przemieścić się aż na koniec listy; potrzeba na to trzech operacji.

W trzecim przykładzie jest niemożliwe, aby pierwsze dwa elementy sumowały się do wartości większej lub równej 100 (największa suma, jaką można uzyskać to 60+30=90).

Wejście	Wyjście
6 2 27 10 4 20 6 3 3	1
6 5 500000000 1000000000 1000000000 0 100000000	3
3 2 100 20 30 60	NO
1 1 100 100	0