Rene Zamudio

Exercise 1

I first imported the three data sets.

Part a:

```
/*(a) How many students took STAT550 and STAT484? What were their
grades in these courses? List their id's and respective grades. */

proc sql;
    select count(*) label 'Students Count'
        from (select a.id, a.grade, b.grade
            from grades484 as a, grades550 as b
            where a.id=b.id);

quit;

proc sql;
    select a.id, a.grade label 'STAT484 Grade',
            b.grade label 'STAT550 Grade'
        from grades484 as a, grades550 as b
        where a.id=b.id
            order by a.id;

quit;
```

Output: 13 students took STAT550 and STAT484.

Part b:

```
/* (b) How many students took STAT550 and STAT695? What were their
grades in these courses? List their id's and respective grades. */
proc sql;
select count(*) label 'Students Count'
  from (select a.id, a.grade, b.grade
    from grades550 as a, grades695 as b
      where a.id=b.id);
quit;

proc sql;
select a.id, a.grade label 'STAT550 Grade',
      b.grade label 'STAT695 Grade'
from grades550 as a, grades695 as b
    where a.id=b.id
    order by a.id;
quit;
```

Output: 12 students took STAT550 and STAT695.

ID	STAT550 Grade	STAT695 Grade
477	Α	Α
1401	Α	В
1455	Α	Α
1841	Α	Α
3406	Α	Α
3528	Α	Α
3572	Α	В
4852	Α	Α
5310	В	В
5967	Α	Α
7577	Α	Α
7756	Α	Α

Part C:

```
/* (c) How many students took STAT484 and STAT695? What were their
grades in these courses? List their id's and respective grades. */
proc sql;
select count(*) label 'Students Count'
  from (select a.id, a.grade, b.grade
    from grades484 as a, grades695 as b
    where a.id=b.id);
quit;

proc sql;
select a.id, a.grade label 'STAT484 Grade',
    b.grade label 'STAT695 Grade'
  from grades484 as a, grades695 as b
    where a.id=b.id
    order by a.id;
quit;
```

Output: 6 students STAT484 and STAT695.

Part d:

```
/* (d) How many students took all three courses? What were their grades
in these courses? List their id's and respective grades. */
proc sql;
 select count(*) label 'Students Count'
   from (select a.id, a.grade, b.grade, c.grade
     from grades484 as a, grades550 as b,
          grades695 as c
       where a.id=b.id=c.id);
quit;
proc sql;
 select a.id, a.grade label 'STAT484 Grade',
        b.grade label 'STAT550 Grade', c.grade label 'STAT695 Grade'
   from grades484 as a, grades550 as b,
        grades695 as c
     where a.id=b.id=c.id
       order by a.id;
quit;
```

Output: 3 students took all three courses.

Exercise 2 Part a: /* (a) How many patients were in the study? */ proc sql; select count(distinct id) as PatientCount from glaucoma; quit;

Output: There are 26 patients in the study.


```
Part b:
/* (b) How many patients were currently on medication? How many were
currently off medication or medication-naïve (never took medication)? */
proc sql;
select count(distinct id) as PatientCount
    from glaucoma
    where No_of_meds>0;
select count(distinct id) as PatientCount
    from glaucoma
    where Time_previously__on_meds_yrs=0 or No_of_meds=0;
```

Output: 17 patients were currently on medication. 9 patients were currently off medication or medication-naïve.

The SAS System

The SAS System

Part c:

quit;

Output: Mean = 10.9, std = 7.65, min, = 1, max = 28

The SAS System

mean	std	min	max
10.90	7.65	1	28

Part d:

```
/* (d) How many males and how many females were in the study? */
proc sql;
  select gender, count(distinct id)as GenderCount
    from glaucoma
      group by gender;
quit;
```

Output: There are 8 females and 18 males.

The SAS System			
Gender GenderCount			
	0		
F	8		
М	18		

Part e:

```
/* (e) How many patients were in the study by type of glaucoma? */
proc sql;
  select type_of_glaucoma, count(distinct id) as TypeCount
    from glaucoma
      group by type_of_glaucoma;
quit;
```

Output: 10 POAG. 12 normotensive, 3 pigmentary, and 1 traumatic.

The SAS System

Type of glaucoma TypeCount 0 POAG 10 normotensive 12 pigmentary 3 traumatic 1

Part f:

```
/* (f) What was the mean age by gender and type of glaucoma? */
proc sql;
  select gender, type_of_glaucoma, mean(age) as MeanAge format 5.2
    from glaucoma
        group by gender, type_of_glaucoma;
quit;
```

The SAS System				
Gender	Type of glaucoma	MeanAge		
F	POAG	87.25		
F	normotensive	58.50		
М	POAG	72.50		
М	normotensive	70.88		
M	pigmentary	71.67		
M	traumatic	72.00		

```
data Ex3;
input empty$;
cards;
;
%let fullname=Rene Zamudio;
%let lastname=%scan(&fullname,2);
%put &lastname;
%macro ex3macro;
title "This assignment is completed by &lastname on &sysday, &sysdate at &systime";
%let count=%eval(&x+&x);
%put &count;
title3 "&x+&x=&count";
proc print data=Ex3 noobs;
run;
%mend;
%ex3macro;
```

Output:

This assignment is completed by Zamudio on Tuesday, 21APR20 at 18:32

1+1=2

empty

```
Exercise 4
```

```
%macro LLN(total_length, p);
data sample;
do n=1 to &total_length;
b=rand("Bernoulli", &p);
sum+b;
xnbar=sum/n;
output;
end;
keep xnbar n;
run;
proc print data=sample;
symbol interpol=join c=blue;
proc gplot;
plot xnbar*n/vref=&p;
run;
%mend;
```

```
%LLN(500, 0.5);
```



```
data pets;
input gender$ pet$10. count;
cards;
boy cockatiel 1
boy turtle
boy rabbit
girl cockatiel 2
girl turtle
girl rabbit 7
Title 'Number of Cute Pets Owned by Families of 3rd Graders';
proc format;
value $petsfmt
'cockatiel'='\\Mac\Home\Desktop\Spring 2020\STAT 475\HW\homework4\cockatiel.jpg'
'rabbit'='\\Mac\Home\Desktop\Spring 2020\STAT 475\HW\homework4\rabbit.jpg'
'turtle'='\\Mac\Home\Desktop\Spring 2020\STAT 475\HW\homework4\turtle.jpg';
run;
proc tabulate ;
class gender pet;
classlev gender/s=[foreground=white background=purple just=r postimage=$genderfmt.];
classlev pet/s=[foreground=white background=green just=r postimage=$petsfmt.];
var count;
table gender={s=[foreground=white background=blue just=c]}, pet={s=[foreground=white
background=pink just=c]}*count=''*sum=''/box='# of Pets';
run;
```


/* Exercise 6. Take five points (-3, -2), (0, 4), (2, 8), (4, 12), and (7, 18). Note that these points lie on a perfectly straight line with the intercept a=4 and slope b=2. The quantities a and b can be found as a solution of linear regression equation y=X*Beta+epsilon that is, Beta=[a,b]'=(X'X)^-1y where y={-2, 4, 8, 12, 18} and X = {1 -3, 1 0, 1 2, 1 4, 1 7} is the design matrix. Use proc iml to find a and b. */

```
proc iml;
X = {1 -3, 1 0, 1 2, 1 4, 1 7};
X_inv=inv(X);
X_tr=t(X);
y={-2, 4, 8, 12, 18};
Beta=inv(X_tr*X)*X_tr*y;
a=Beta[1, 1];
b=Beta[2, 1];
print Beta;
print a;
print b;
```



```
data products;
input prodnum prodname $ 7-28 @30 manunum prodtype $ 35-45 @47 rtlcost comma8.;
cards;
5009 Dream Machine
                                                     500 Workstation $3,200

      4506
      Business Machine
      450
      Workstation $3,345

      2101
      Travel Laptop
      400
      Laptop
      $2,760

2101 Travel Laptop 400 Laptop $2,760
2212 Analog Cell Phone 230 Phone $35
4509 Digital Cell Phone 245 Phone $175
5003 Office Phone 560 Phone $145
1110 Spreadsheet Software 134 Software $300
1200 Database Software 113 Software $799
3409 Statistical Software 243 Software $1,899
2102 Wordprocessor Software 245 Software $345
2200 Graphics Software 246 Software $599
Part a:
```

```
/* (a) Read instream data */
proc print data=products;
run;
```

Output:

Obs	prodnum	prodname	manunum	prodtype	rtlcost
1	5009	Dream Machine	500	Workstation	3200
2	4506	Business Machine	450	Workstation	3345
3	2101	Travel Laptop	400	Laptop	2760
4	2212	Analog Cell Phone	230	Phone	35
5	4509	Digital Cell Phone	245	Phone	175
6	5003	Office Phone	560	Phone	145
7	1110	Spreadsheet Software	134	Software	300
8	1200	Database Software	113	Software	799
9	3409	Statistical Software	243	Software	1899
10	2102	Wordprocessor Software	245	Software	345
11	2200	Graphics Software	246	Software	599

Updated on 23APR20

Product Information

prodnum	prodname	manunum	prodtype	rtlcost
5009	Dream Machine	500	Workstation	3200
4506	Business Machine	450	Workstation	3345
2101	Travel Laptop	400	Laptop	2760
2212	Analog Cell Phone	230	Phone	35
4509	Digital Cell Phone	245	Phone	175
5003	Office Phone	560	Phone	145
1110	Spreadsheet Software	134	Software	300
1200	Database Software	113	Software	799
3409	Statistical Software	243	Software	1899
2102	Wordprocessor Software	245	Software	345
2200	Graphics Software	246	Software	599
3480	Desktop Computer	780	Workstation	1799

Updated on 23APR20

```
Part c:
/* (c) Use PROC SQL to modify the data to reflect a 20% price increase
on all software products, and a 20% discount on all the other products. */
proc sql;
  update products
    set rtlcost=rtlcost*0.8
    where prodtype<>'Software';
  update products
    set rtlcost=rtlcost*1.2
    where prodtype='Software';
  select *
    from products;
quit;
```

Product Information					
prodnum	prodname	manunum	prodtype	rtlcost	
5009	Dream Machine	500	Workstation	2560	
4506	Business Machine	450	Workstation	2676	
2101	Travel Laptop	400	Laptop	2208	
2212	Analog Cell Phone	230	Phone	28	
4509	Digital Cell Phone	245	Phone	140	
5003	Office Phone	560	Phone	116	
1110	Spreadsheet Software	134	Software	360	
1200	Database Software	113	Software	958.8	
3409	Statistical Software	243	Software	2278.8	
2102	Wordprocessor Software	245	Software	414	
2200	Graphics Software	246	Software	718.8	
3480	Desktop Computer	780	Workstation	1439.2	

Part d:

Output:

Product Information

Product Number	Product Name	Manufacturer Number	Product Type	Retail Unit Cost
5009	Dream Machine	500	Workstation	\$2560.00
4506	Business Machine	450	Workstation	\$2676.00
2101	Travel Laptop	400	Laptop	\$2208.00
2212	Analog Cell Phone	230	Phone	\$28.00
4509	Digital Cell Phone	245	Phone	\$140.00
5003	Office Phone	560	Phone	\$116.00
1110	Spreadsheet Software	134	Software	\$360.00
1200	Database Software	113	Software	\$958.80
3409	Statistical Software	243	Software	\$2278.80
2102	Wordprocessor Software	245	Software	\$414.00
2200	Graphics Software	246	Software	\$718.80
3480	Desktop Computer	780	Workstation	\$1439.20

Updated on 23APR20