Biostatistics Week IV

Ege Ülgen, M.D.

28 October 2021

Hypothesis Testing - Steps

1. Check assumptions, determine H_0 and H_a , choose α

- Assumptions differ based on the test
- The null hypothesis always contains equality (=)

2. Calculate the appropriate test statistic

• z, t, χ^2 , ...

3. Calculate critical values/p value

With the aid of precalculated tables/software

4. Decide whether to reject/fail to reject H₀

• Reject if the statistic is within the critical region/p $\leq \alpha$

	Decision		
H _o	Accept H ₀	Reject H ₀	
H ₀ is True	Correct decision	Type I Error α	
H ₀ is False	Type II Error B	Correct decision	

Reminder

$$test \ statistic = \frac{estimator - null \ value}{standard \ error \ of \ estimator}$$

Two-Sample t-Test

The two-sample t-test (also known as the independent samples t-test) is a method used to test whether the unknown population means of two groups are equal or not

Two-sample t-Test

$$H_0: \mu_X = \mu_Y$$

$$H_a$$
: $\mu_X \neq \mu_Y$

or

$$H_0$$
: $\mu_X - \mu_Y = 0$

$$H_a$$
: μ_X - $\mu_Y \neq 0$

Two-sample t-Test

$$T = rac{ar{X} - ar{Y}}{\sqrt{rac{s_X^2}{n_X} + rac{s_Y^2}{n_Y}}} \sim t(m),$$

$$m = rac{(w_X + w_Y)^2}{\left(rac{w_X^2}{n_X - 1} + rac{w_Y^2}{n_Y - 1}
ight)} \ w_X = s_X^2/n_X, \quad w_Y = s_Y^2/n_Y$$

Two-sample t-Test – Example I

id	treatment	perc_benefit	id	treatment	<pre>perc_benefit</pre>
158	trt1	37.2549020	15	trt2	10.0978368
392	trt1	-4.3864459	143	trt2	0.5048635
457	trt1	-5.1075269	470	trt2	-0.8156940
487	trt1	36.7043369	536	trt2	50.000000
723	trt1	5.1303099	549	trt2	-3.0303030
832	trt1	3.1806616	750	trt2	-2.8977108
894	trt1	-3.9062500	891	trt2	26.3872135
1104	trt1	5.9443608	997	trt2	4.3651179
1283	trt1	-0.8601855	1000	trt2	2.3582125
1288	trt1	-3.1674208	1209	trt2	8.9702189

- Mean percentage benefit is 7.078674 for group 1, and 9.593976 for group 2
- Is the difference a significant one?

- 1. Check assumptions, determine H_0 and Ha, choose α
 - We check that the variables are normally distributed
 - H_0 : $\mu_1 = \mu_2$ H_a : $\mu_1 \neq \mu_2$
 - $\alpha = 0.05$
- 2. Calculate the appropriate test statistic

$$t = -0.3416(\sim t_{17.98834})$$

- 3. Calculate critical values/p value
- 4. Decide whether to reject/fail to reject H₀

- 3. Calculate critical values/p value
- 4. Decide whether to reject/fail to reject H₀

95% confidence interval for $\mu_1 - \mu_2 = [-17.98, 12.95]$

 there is not enough evidence to say mean percentage benefit for treatment 1 and treatment 2 are significantly different

Two-sample t-Test – Example II

- In a study,
 - The sedimentation rate of 12 arthritis patients was measured:
 - $\bar{X}_1 = 82.79 \text{ mm and } s_1 = 18.4 \text{ mm}$
 - The sedimentation rate of 15 healthy controls was measured
 - \bar{X}_2 = 69.03 mm and s_2 = 21.4 mm
- Is there a difference between the mean sedimentation rates of the two groups?

- 1. Check assumptions, determine H_0 and Ha, choose α
 - We check that the variables are normally distributed
 - H_0 : $\mu_1 = \mu_2$ H_a : $\mu_1 \neq \mu_2$
 - $\alpha = 0.05$
- 2. Calculate the appropriate test statistic

$$t = 2.34 \quad (\sim t_{25})$$

- 3. Calculate critical values/p value
- 4. Decide whether to reject/fail to reject H₀

95% confidence interval for $\mu_1 - \mu_2 = [3.52, 33]$

 With 95% confidence, there is enough evidence to say that there is a difference between the mean sedimentation rates of the two groups

Two-sample t-Test – Example III

- "Morbidly obese patients undergoing general anesthesia are at risk of hypoxemia during anesthesia induction"
- A randomized controlled trial investigating:
- Does high-flow nasal oxygenation provide longer safe apnea time compared to conventional facemask oxygenation during anesthesia induction in morbidly obese surgical patients?

- Safe Apnea time in Control Group (n = 20)
 - $\overline{X_c} = 185.5$
 - $s_c = 53$
- Safe Apnea time in High-Flow Nasal Oxygenation Group (n = 20)
 - $\overline{X_T} = 261.4$
 - $s_T = 77.7$

- 1. Check assumptions, determine H_0 and Ha, choose α
 - We check that the variables are normally distributed
 - H_0 : $\mu_c = \mu_T$ H_a : $\mu_c \neq \mu_T$
 - $\alpha = 0.05$
- 2. Calculate the appropriate test statistic

$$t = 3.6$$
 (~ $t_{33.53}$)

- 3. Calculate critical values/p value
- 4. Decide whether to reject/fail to reject H₀

Table 2.	Study Outcomes: Safe Apnea	Time, Minimum Spo ₂ ,	Plateau ETco ₂ , and '	Time to Regain
Baseline				

	High-Flow Nasal			
	Control Group (n = 20)	Oxygenation Group $(n = 20)$	Mean Difference (95% CI)	P Value
Safe apnea time (s)	185.5 ± 53.0	261.4 ± 77.7	75.9 (33.3–118.5)	.001
Minimum Spo ₂ (%)	87.9 ± 4.7	90.9 ± 3.5	3.1 (0.4–5.7)	.026
Plateau ETco ₂ (mm Hg)	38.8 ± 2.5	37.9 ± 3.0	-0.8 (-2.6 to 0.9)	.33
Time to regain baseline Spo ₂ (s)	49.6 ± 20.8	37.3 ± 6.8	-12.3 (-22.2 to -2.4)	.016

Values represent mean ± SD.

Control group: facemask oxygenation.

Abbreviations: CI, confidence interval; ETco₂, end-tidal carbon dioxide; Spo₂, oxygen saturation measured by pulse oximetry.

"Safe apnea time was significantly longer (261.4 \pm 77.7 vs 185.5 \pm 52.9 seconds; mean difference [95% CI], 75.9 [33.3–118.5]; P = .001)..."

Brief Summary

