Лабораторная работа 8

Серенко Данил Сергеевич, НФИбд-03-19

Содержание

Цель работы	1
Условия задачи	
Выполнение лабораторной работы	
Выводы	
Список литературы	

РОССИЙСКИЙ УНИВЕРСИТЕТ ДРУЖБЫ НАРОДОВ

Факультет физико-математических и естественных наук

Кафедра прикладной информатики и теории вероятностей

ОТЧЕТ ПО ЛАБОРАТОРНОЙ РАБОТЕ №8

дисциплина: Математическое моделирование

Преподователь: Кулябов Дмитрий Сергеевич

Студент: Серенко Данил Сергеевич

Группа: НФИбд-03-19

МОСКВА

2022 г.

Цель работы

Построение модели конкуренции двух фирм.

Теоретическое введение

Для построения модели конкуренции хотя бы двух фирм необходимо рассмотреть модель одной фирмы. Вначале рассмотрим модель фирмы, производящей продукт долговременного пользования, когда цена его определяется балансом спроса и предложения. Примем, что этот продукт занимает определенную нишу рынка и конкуренты в ней отсутствуют.

Обозначим: N – число потребителей производимого продукта. S – доходы потребителей данного продукта. Считаем, что доходы всех потребителей одинаковы. Это предположение справедливо, если речь идет об одной рыночной нише, т.е. производимый продукт ориентирован на определенный слой населения. М – оборотные средства предприятия τ – длительность производственного цикла p – рыночная цена товара \tilde{p} – себестоимость продукта, то есть переменные издержки на производство единицы продукции. δ – доля оборотных средств, идущая на покрытие переменных издержек. κ – постоянные издержки, которые не зависят от количества выпускаемой продукции.

Q(S/p) – функция спроса, зависящая от отношения дохода S к цене p. Она равна количеству продукта, потребляемого одним потребителем в единицу времени. Функцию спроса товаров долговременного использования часто представляют в простейшей форме:

$$Q = q - k \frac{p}{S} = q \left(1 - \frac{p}{p_{cr}} \right)$$

Функция спроса товаров долговременного использования

где q – максимальная потребность одного человека в продукте в единицу времени. Эта функция падает с ростом цены и при p = pcr (критическая стоимость продукта) потребители отказываются от приобретения товара. Величина pcr = Sq/k. Параметр k – мера эластичности функции спроса по цене. Таким образом, функция спроса в форме (1) является пороговой (то есть, Q(S/p) = 0 при p ≥ pcr) и обладает свойствами насыщения.

Уравнения динамики оборотных средств можно записать в виде:

$$\frac{dM}{dt} = -\frac{M\delta}{\tau} + NQp - \kappa = -\frac{M\delta}{\tau} + Nq\left(1 - \frac{p}{p_{cr}}\right)p - \kappa$$

Уравнения динамики оборотных средств

После некоторых преобразований получаем два состояния стационарных значений М:

$$\tilde{M}_{+} = Nq \frac{\tau}{\delta} \left(1 - \frac{\tilde{p}}{p_{cr}} \right) \tilde{p}, \ \tilde{M}_{-} = \kappa \tilde{p} \frac{\tau}{\delta \left(p_{cr} - \tilde{p} \right)}$$

Стационарные значения М после преобразования

Первое состояние M+ устойчиво и соответствует стабильному функционированию предприятия. Второе состояние M- неустойчиво, так, что при M< M- оборотные средства падают (dM/dt<0), то есть, фирма идет к банкротству. По смыслу M- соответствует начальному капиталу, необходимому для входа в рынок.

В обсуждаемой модели параметр δ всюду входит в сочетании с τ . Это значит, что уменьшение доли оборотных средств, вкладываемых в производство, эквивалентно удлинению производственного цикла.

Условия задачи

Вариант 20

Случай 1. Рассмотрим две фирмы, производящие взаимозаменяемые товары одинакового качества и находящиеся в одной рыночной нише. Считаем, что в рамках нашей модели конкурентная борьба ведётся только рыночными методами. То есть, конкуренты могут влиять на противника путем изменения параметров своего производства: себестоимость, время цикла, но не могут прямо вмешиваться в ситуацию на рынке («назначать» цену или влиять на потребителей каким-либо иным способом.) Будем считать, что постоянные издержки пренебрежимо малы, и в модели учитывать не будем. В этом случае динамика изменения объемов продаж фирмы 1 и фирмы 2 описывается следующей системой уравнений:

$$\begin{split} \frac{dM_1}{d\theta} &= M_1 - \frac{b}{c_1} M_1 M_2 - \frac{a_1}{c_1} M_1^2 \\ &\qquad \qquad \frac{dM_2}{d\theta} = \frac{c_2}{c_1} M_2 - \frac{b}{c_1} M_1 M_2 - \frac{a_2}{c_1} M_2^2 \end{split},$$
 где
$$a_1 = \frac{p_{cr}}{\tau_1^2 \tilde{p}_1^2 N q}, \ a_2 = \frac{p_{cr}}{\tau_2^2 \tilde{p}_2^2 N q}, \ b = \frac{p_{cr}}{\tau_1^2 \tilde{p}_1^2 \tau_2^2 \tilde{p}_2^2 N q}, \ c_1 = \frac{p_{cr} - \tilde{p}_1}{\tau_1 \, \tilde{p}_1}, \ c_2 = \frac{p_{cr} - \tilde{p}_2}{\tau_2 \, \tilde{p}_2}. \end{split}$$

Также введена нормировка $t = c_1 \theta$.

Система уравнений для модели варианта-20. Случай 1

Случай 2. Рассмотрим модель, когда, помимо экономического фактора влияния (изменение себестоимости, производственного цикла, использование кредита и т.п.), используются еще и социально-психологические факторы – формирование общественного предпочтения одного товара другому, не зависимо от их качества и цены. В этом случае взаимодействие двух фирм будет зависеть друг от друга, соответственно коэффициент перед М1М2 будет отличаться. Пусть в рамках рассматриваемой модели динамика изменения объемов продаж фирмы 1 и фирмы 2 описывается следующей системой уравнений:

$$\frac{dM_1}{d\theta} = M_1 - \left(\frac{b}{c_1} + 0,0012\right) M_1 M_2 - \frac{a_1}{c_1} M_1^2$$

$$\frac{dM_2}{d\theta} = \frac{c_2}{c_1} M_2 - \frac{b}{c_1} M_1 M_2 - \frac{a_2}{c_1} M_2^2$$

Система уравнений для модели варианта-20. Случай 2

Для обоих случаев рассмотрим задачу со следующими начальными условиями и параметрами:

$$M_0^1=3.9,\ M_0^2=3,$$
 параметрами: $p_{cr}=9.9, N=24, q=1$ $au_1=12, au_2=18,$ $ilde p_1=6, ilde p_2=4$

Начальные условия и параметры для модели варианта-20

- 1. Постройте графики изменения оборотных средств фирмы 1 и фирмы 2 без учета постоянных издержек и с веденной нормировкой для случая 1.
- 2. Постройте графики изменения оборотных средств фирмы 1 и фирмы 2 без учета постоянных издержек и с веденной нормировкой для случая 2.

Выполнение лабораторной работы

Построение модели конкуренции двух фирм

Чтобы построить графики изменения оборотных средств фирмы 1 и фирмы 2 без учета постоянных издержек и с веденной нормировкой для случая 1, я написал следующий код:

```
model Lab8_1

parameter Real MO_1 = 3.9; // Начальное x1

parameter Real MO_2 = 3; // Начальное x2

parameter Real pO_2 = 3; // Начальное x2

parameter Real pO_2 = 3; // Начальное x2

parameter Real p cr = 9.9; // Критическая стоимость продукта

parameter Real tau1 = 12; // Длительность производственного цикла 1 фирмы

parameter Real tau2 = 18; // Длительность производственного цикла 2 фирмы

parameter Real p1= 6; // Себестоимость продукта фирмы 2

parameter Real p2 = 4; // Себестоимость продукта фирмы 2

parameter Real N = 24; // Число потребителей производимого продукта

parameter Real a = 1; // максимальная потребность одного человека в продукте в единицу времени

Real x1(start = MO_1);

parameter Real al = p_cr / (tau1 * tau1 * p1 * p1 * N * q);

parameter Real a2 = p_cr / (tau2 * tau2 * p2 * p2 * N * q);

parameter Real b = p_cr / (tau1 * tau1 * tau2 * tau2 * p2 * p2 * N * q);

parameter Real c1 = (p_cr - p1) / (tau1 * p1);

parameter Real c2 = (p_cr - p2) / (tau1 * p2);

equation

der(x1) = (c1/c1) * x1 - (b/c1) * x1 * x2 - (a1/c1) * x1 * x1;

der(x2) = (c2/c1) * x2 - (b/c1) * x1 * x2 - (a2/c1) * x2 * x2;

end Lab8_1;
```

Код для построения графиков изменения оборотных средств в варианте. Случай 1 и получил график:

График модели конкуренции двух фирм. Случай 1

Чтобы построить графики изменения оборотных средств фирмы 1 и фирмы 2 без учета постоянных издержек и с веденной нормировкой для случая 2, я написал следующий код:

```
model Lab8_2

parameter Real MO_1 = 3.9; // Начальное x1

parameter Real MO_2 = 3; // Начальное x2

4 parameter Real MO_2 = 3; // Начальное x2

4 parameter Real p_cr = 9.9; // Критическая стоимость продукта

5 parameter Real taul = 12; // Длительность производственного цикла 1 фирмы

6 parameter Real taul = 18; // Длительность производственного цикла 2 фирмы

7 parameter Real pl = 6; // Себестоимость продукта фирмы 1

8 parameter Real p 2 = 4; // Себестоимость продукта фирмы 2

9 parameter Real N = 24; // Число потребителей производимого продукта

10 parameter Real N = 24; // Число потребителей производимого продукта

11 Real x1(start = MO_1);

Real x2(start = MO_2);

12 Parameter Real al = p_cr / (taul * taul * pl * pl * N * q);

13 parameter Real al = p_cr / (taul * taul * tau2 * p2 * p2 * N * q);

14 parameter Real al = p_cr / (tau1 * tau1 * tau2 * tau2 * p2 * p2 * N * q);

15 parameter Real al = p_cr / (tau1 * tau1 * tau2 * tau2 * p2 * p2 * N * q);

16 parameter Real cl = (p_cr - pl) / (taul * p1);

17 parameter Real cl = (p_cr - p2) / (tau1 * p2);

18 equation

20 der(x1) = (c1/c1) * x1 - (b/c1 + 0.0012) * x1 * x2 - (a1/c1) * x1 * x1;

21 der(x2) = (c2/c1) * x2 - (b/c1) * x1 * x2 - (a2/c1) * x2 * x2;

22 end Lab8_2;
```

Код для построения графиков изменения оборотных средств в варианте. Случай 2 и получил график:

График модели конкуренции двух фирм. Случай 2

Выводы

После завершения данной лабораторной работы - я научился выполнять построение модели конкуренции двух фирм без учета постоянных издержек и с веденной нормировкой в OpenModelica.

Список литературы

1. Кулябов, Д.С. - Модель конкуренции двух фирм https://esystem.rudn.ru/pluginfile.php/1343905/mod_resource/content/2/Лаборато рная%20работа%20№%207.pdf