

Università degli Studi di Padova

Catch em All - CAPTCHA: Umano o Sovraumano?

Email: catchemallswe3@gmail.com

Piano di qualifica

Versione	(0.1.1)	
Approvazione	(modifica)	
Redazione	(Matteo Stocco, Ana Lazic)	
Verifica	(modifica)	
Stato	(In sviluppo)	
Uso	(modifica)	
Distribuzione	(modifica)	

Registro delle modifiche

Versione	Data	Descrizione	Autore	Ruolo
0.1.1	07/01/2023	Fix filenames, style, titlepage e modifiche	Gabriele Da Re	Verificatore
0.1.0	07/01/2023	Verifica generale	Ana Lazic, Zhen Wei Zheng	Verificatore, Verificatore
0.0.6	06/01/2023	Correzioni ortogra- fiche e di coerenza	Ana Lazic	Amministratore
0.0.5	05/01/2023	Aggiunto sezione "resoconto delle attività di verifica"	Zhen Wei Zheng	Amministratore
0.0.4	16/12/2022	Aggiustamenti metriche e ag- giunte descrizioni	Matteo Stocco	Analista
0.0.3	16/12/2022	Stesura sezione 3 del documento	Ana Lazic	Analista
0.0.2	15/12/2022	Stesura sezione 2 del documento	Matteo Stocco	Analista
0.0.1	14/12/2022	Scrittura boz- za documento	Matteo Stocco	Analista

Indice

1	Intr	roduzione	3
	1.1	Scopo del documento	3
	1.2	Scopo del prodotto	3
	1.3	Glossario	3
	1.4	Standard di progetto	3
	1.5	Riferimenti	3
		1.5.1 Riferimenti normativi	3
		1.5.2 Riferimenti informativi	4
2	Obi	iettivi e metriche di qualità	5
	2.1	Obiettivi e metriche di qualità di processo	5
		2.1.1 Obiettivi di qualità di processo	5
		2.1.2 Metriche di qualità di processo	6
		2.1.2.1 Dettagli delle metriche di qualità di processo utilizzate	6
	2.2	Obiettivi e metriche di qualità di prodotto	9
		2.2.1 Obiettivi di qualità di prodotto	9
		2.2.1.1 Documentazione	6
		2.2.1.2 Software	10
		2.2.2 Metriche di qualità di prodotto	11
		2.2.2.1 Dettagli delle metriche di qualità di prodotto utilizzate	12
		2.2.2.2 Metriche di qualità della documentazione	12
		2.2.2.3 Metriche di qualità del software	12
3	Spe	ecifiche dei test	16
	3.1	Scopo della verifica software	16
	3.2	Test di unità	16
	3.3	Test di integrazione	16
	3.4	Test di sistema	16
	3.5	Test di regressione	16
	3.6	Test di collaudo	16
4	Res	soconto delle attivita' di verifica	17
	4.1	Documentazione	17
		4.1.1 Indice di Gulnease	17

Elenco delle tabelle

3	Obiettivi di qualità di processo	5
4	Metriche di qualità di processo	6
5	Obiettivi di qualità di processo specifici	9
6	Obiettivi di qualità di prodotto	10
7	Metriche di qualità di prodotto	11
8	Indice di Gulpease	17

1 Introduzione

1.1 Scopo del documento

Questo documento ha come obiettivo quello di fissare gli standard che permetteranno al gruppo Catch Em All di garantire qualità al prodotto e ai processi durante l'intera durata del progetto. Verranno quindi definiti metodi di verifica e validazione continui che permetteranno al gruppo di agire in modo rapido e incisivo nel momento in cui si dovranno fare delle correzioni su eventuali errori o andamenti indesiderati. Questo allo scopo di sprecare meno risorse possibili e produrre un prodotto che sia facilmente mantenibile.

1.2 Scopo del prodotto

Gli attuali sistemi di rilevazione dei bot_G rispetto agli esseri umani prevedono l'utilizzo di un test $CAPTCHA_G$, progettato per cercare di bloccare azioni con fini malevoli nel web da parte di sistemi automatizzati. Nel capitolato "CAPTCHA: Umano o Sovrumano?" viene evidenziata una criticità presente in tali sistemi: grazie ai notevoli progressi nel campo dell'intelligenza artificiale si è nel tempo giunti al punto che i task i quali si ritenevano impossibili (o quantomeno, molto difficili) da svolgere per una macchina ora vengono effettuate dai bot_G talvolta persino meglio delle persone. Dal proponente "Zucchetti S.p.A" viene richiesto lo sviluppo di un'applicazione web contenente una pagina di login con un sistema in grado di rilevare i bot_G rispetto agli esseri umani in maniera più efficace.

1.3 Glossario

Per risolvere ambiguità relative al linguaggio utilizzato nei documenti prodotti, è stato creato un documento denominato **Glossario v.1.0.0**. Questo documento fornisce le definizioni relative a tutti i termini tecnici utilizzati nei vari documenti, segnalando questi termini con pedice G accanto alla parola.

1.4 Standard di progetto

Per lo svolgimento del progetto il gruppo *Catch Em All* ha scelto di utilizzare come riferimenti formativi la serie standard **ISO/IEC 25000 SQuaRE** per i requisiti e valutazione della qualità di un prodotto e lo standard **ISO/IEC 15504 SPICE** per definire al meglio la qualità di un processo.

1.5 Riferimenti

1.5.1 Riferimenti normativi

- Norme di Progetto v0.0.4;
- Capitolato d'appalto C1 CAPTCHA: Umano o Sovrumano?:
 https://www.math.unipd.it/~tullio/IS-1/2022/Progetto/C1.pdf.

1.5.2 Riferimenti informativi

- Processi di ciclo di vita Materiale didattico del corso di Ingegneria del Software: https://www.math.unipd.it/~tullio/IS-1/2022/Dispense/T03.pdf;
- Qualità di prodotto Materiale didattico del corso di Ingegneria del Software: https://www.math.unipd.it/~tullio/IS-1/2022/Dispense/T08.pdf;
- Qualità di processo Materiale didattico del corso di Ingegneria del Software: https://www.math.unipd.it/~tullio/IS-1/2022/Dispense/T09.pdf;
- Standard SQuaRE: http://www.iso25000.it/styled/;
- Standard SPICE: https://en.wikipedia.org/wiki/ISO/IEC_15504;
- Matriche di prodotto: https://metriche-per-il-software-pa.readthedocs.io/it/latest/documento-in-consultazione/metriche-e-strumenti.html#misurazioni-di-manutenibilita
- Metriche di progetto: https://it.wikipedia.org/wiki/Metriche_di_progetto.

2 Obiettivi e metriche di qualità

2.1 Obiettivi e metriche di qualità di processo

In questa sezione viene illustrato come il gruppo vuole verificare e misurare i progressi dei processi primari e di supporto nel corso del progetto.

2.1.1 Obiettivi di qualità di processo

ID	Nome	Descrizione	Metriche associate
OQPC01	Miglioramento continuo	Il processo si deve poter valutare e mi- gliorare continuamente	MQPC01 - SPICE
OQPC02	Efficienza nell'uti- lizzo delle risorse	Le risorse disponibili durante la durata del progetto devono essere distribuite ed utilizzate al meglio	MQPC02 - Costo pia- nificato di progetto; MQPC03 - Costo piani- ficato di progetto svolto; MQPC04 - Costo rea- le di progetto svolto
OQPC03	Variazioni dal- la pianificazione	Assicurare che le scadenze e i limiti di costi illustrati nel documento Piano di progetto siano rispettati	MPC05: Variazioni nel- la programmazione; MPC06: Varia- zioni nei costi.

Tabella 3: Obiettivi di qualità di processo.

2.1.2 Metriche di qualità di processo

ID	Nome	Obiettivo	Valore ac- cettabile	Valore ottimo
MQPC01	SPICE	OQPC01 - Miglio- ramento continuo	Level of Capability _G ≥ 2 (Managed process)	Level of Capability _G ≥ 4 (Predictable process)
MQPC02	Costo pianificato di progetto	OQPC02 - Efficienza nell'utilizzo delle risorse	$\geq 0 \& \leq 11.100$	$\geq 0 \& \leq 11.100$
MQPC03	Costo pianificato di progetto svolto	OQPC02 - Efficienza nell'utilizzo delle risorse	$BCWS \pm 10\%$	BCWS
MQPC04	Costo reale di progetto svolto	OQPC02 - Efficienza nell'utilizzo delle risorse	BCWS \pm 15%	≥ BCWS
MQPC05	Variazioni nella pianificazione	OQPC03 - Rispetto della pianificazione	-15%	0%
MQPC06	Variazioni nei costi	OQPC03 - Rispetto della pianificazione	-15%	0%

Tabella 4: Metriche di qualità di processo.

2.1.2.1 Dettagli delle metriche di qualità di processo utilizzate

Le metriche di qualità a cui ogni processo deve essere conforme sono:

- SPICE: Riferito alla metrica per misurare il miglioramento continuo (MQPC01);
- Costo pianificato di progetto: Riferito alla metrica per misurare l'efficienza dell'utilizzo delle risorse (MQPC02);
- Costo pianificato di progetto svolto: Riferito alla metrica per misurare l'efficienza dell'utilizzo delle risorse (MQPC03);
- Costo reale di progetto svolto: Riferito alla metrica per misurare l'efficienza dell'utilizzo delle risorse (MQPC04);
- Variazioni nella pianificazione: Riferito alla metrica per misurare le variazioni dalla pianificazione (MQPC05);

• Variazioni nei costi: Riferito alla metrica per misurare le variazioni dalla pianificazione (MQPC06).

SPICE

Questa metrica è di riferimento ai processi ed è stata scelta dal gruppo per verificare il grado di $capability_G$ che ogni processo deve raggiungere. Lo standard definisce vari livelli di $capability_G$:

- Livello 0 Incomplete process: Il processo non è implementato oppure è incapace di raggiungere i suoi obiettivi;
- Livello 1 Performed process: Il processo è attivo e può essere completato ma non è sottoposto a controlli;
- Livello 2 Managed process: Il processo processo è attivo e pianificato, e può completare i suoi obbiettivi attraverso vari controlli;
- Livello 3 Established process: Il processo è definito da degli standard;
- Livello 4 Predictable process: Il processo è attivo secondo standard e viene controllato in modo dettagliato per renderlo in futuro prevedibile e ripetibile;
- Livello 5 Optimizing process: Il processo è completamente definito e tracciato, e viene analizzato e migliorato in maniera continua.

Per misurare la $capability_G$ si utilizzano i vari attributi di un processo:

- Process performance;
- Performance management;
- Work product management;
- Process definition;
- Process deployment;
- Process measurement;
- Process control;
- Process innovation;
- Process optimization.

Ogni attributo di processo viene valutato su una scala di valutazione NPLF_G. Il gruppo si impegna a raggiungere un grado di *capability*_G minimo di 2 per ogni processo.

Costo pianificato di progetto

Questa metrica è di riferimento ai processi ed è stata scelta dal gruppo per indicare il costo totale di progetto pianificato alla data corrente. Il valore si può osservare nella sezione Preventivo del **Piano di progetto**. Questo valore deve essere ≥ 0 e minore del budget totale disponibile.

Costo pianificato di progetto svolto

Questa metrica è di riferimento ai processi ed è stata scelta dal gruppo per indicare il valore effettivo del prodotto ottenuto fino alla data corrente.

Costo reale di progetto svolto

Questa metrica è di riferimento ai processi ed è stata scelta dal gruppo per indicare il costo reale impiegato per svolgere il progetto fino alla data corrente. Il valore si può osservare nella sezione *Consuntivo* del **Piano di progetto**. Questo valore deve essere un intorno_G del BCWS con un errore non superiore al 20%.

Variazioni nella pianificazione

Questa metrica è di riferimento ai processi ed è stata scelta dal gruppo per misurare in che percentuale ci sono state variazioni rispetto alla pianificazione preventivata. Questa metrica si calcola come segue:

$$\mathbf{VP} = \frac{100 * (BCWP - BCWS)}{BCWS}$$

Dove:

- **VP** sta per *Variazione pianificazione*;
- BCWP sta per Budgeted Cost of Work Performed;
- BCWS sta per Budgeted Cost of Work Scheduled.

Variazioni nei costi

Questa metrica è di riferimento ai processi ed è stata scelta dal gruppo per misurare in che percentuale ci sono state variazioni tra i costi di sviluppo pianificati e quelli reali. Questa metrica si calcola come segue:

$$\mathbf{VC} = \frac{100 * (BCWS - ACWP)}{BCWS}$$

Dove:

- VC sta per Variazione costi;
- **ACWP** sta per *Actual Cost of Work Performed*;
- BCWS sta per Budgeted Cost of Work Scheduled.

2.2 Obiettivi e metriche di qualità di prodotto

Riferendoci alla serie di standard ISO/IEC 25000 SQuaRE possiamo osservare un insieme di caratteristiche che il prodotto deve avere per essere considerato di qualità. Queste caratteristiche saranno misurabili tramite metriche apposite, le quali forniranno i valori accettabili per il raggiungimento dell'obiettivo.

2.2.1 Obiettivi di qualità di prodotto

2.2.1.1 Documentazione

ID	Nome	Descrizione	Metriche associate
OQPD01	Leggibilità dei documenti	I documenti devono essere comprensibi- le all'utente medio	MQPD01 - In- dice di Gulpease
OQPD02	Correttezza ortografica	I documenti devono essere scritti sen- za errori ortografici	MQPD02 - Corret- tezza documento

Tabella 5: Obiettivi di qualità di processo specifici.

2.2.1.2 Software

ID	Nome	Descrizione	Metriche associate
OQPD03	Appropriatezza funzionale	Si vogliono soddisfare in modo completo i requisiti presenti nel documento Analisi dei requisiti	MQPD03 - Coper- tura funzionale
OQPD04	Efficienza	Si vuole realizzare un prodotto che soddisfi gli obiettivi prefissati dando all'utente un'esperienza che utilizzi al meglio le capacità del sistema.	MQPD04 - Tem- po di risposta dei servizi all'utente
OQPD05	Affidabilità	Si vuole che il prodot- to fornito sia sempre disponibile e con meno errori possibili. Nel caso se ne verifichino il prodotto deve poter ri- spondere adeguatamente.	MQPD05 - Copertura dei test, MQPD06 - Robustezza agli errori
OQPD06	Usabilità	Si vuole realizzare un prodotto facilmente usabile dagli utenti e che non richieda sforzi nel capire il suo funzionamento.	MQPD07 - Completezza di descrizione, MQPD08 - Completezza della guida utente
QQPD07	Sicurezza	Si vuole realizzare un prodotto che garantisca la sicurezza dei sistemi e degli utenti che interagi- scono con quest'ultimo.	MQPD10 - Procedure di autenticazione
OQPD08	Manutenibilità	Si vuole ottenere un prodotto riutiliz-zabile e facilmente migliorabile in futuro.	MQPD11 - Accoppiamento _G di componenti, MQPD12 - Adeguatezza della complessità ciclomatica _G , MQPD13 - Completezza della funzione di test
OQPD09	Compatibilità	Il prodotto dovrà essere accessibile al numero più elevato di utenti possibile, garantendo quindi la compatibilità con tutti i browser più diffusi.	MQPD14 - Bro- wser supportati

2.2.2 Metriche di qualità di prodotto

Alcuni valori accettabili e ottimi per le metriche di qualità di prodotto verranno fissati in futuro.

ID	Descrizione	Obiettivo	Valore ac- cettabile	Valore ottimo	
MORRON	T 11 11 G 1	OQPD01 -			
MQPD01	Indice di Gulpease	Leggibilità	≥ 40	≥ 80	
		dei documenti OQPD02 -			
MQPD02	Numero errori	Correttezza	0	0	
MQI D02	ortografici	ortografica	U	U	
		OQPD03 -			
MQPD03	Copertura	Appropriatezza	100% dei requisiti	100% di tutti	
11101 1500	funzionale	funzionale	obbligatori	i requisiti	
	Tempo di	OQPD04 -			
MQPD04	risposta dei	Efficienza	-	-	
	servizi all'utente				
MQPD05	Copertura dei test	OQPD05 -	100%	100%	
111 Q1 D00	_	Affidabilità	10070	100/0	
MQPD06	Robustezza	OQPD05 -	80%	100%	
	agli errori	Affidabilità	00,0		
MQPD07	Completezza	OQPD06 -	100%	100%	
	di descrizione	Usabilità	-00,0	10070	
MQPD08	Completezza	OQPD06 -	80%	100%	
-0	della guida utente	Usabilità	7 V		
MQPD09	Interfaccia utente	OQPD06 -	70%	100%	
-0	auto-esplicativa	Usabilità			
MQPD10	Procedure di	OQPD07 -	25%	0%	
	autenticazione	Sicurezza			
MQPD11	Accoppiamento _G	OQPD08 -	-	-	
	di componenti	Manutenibilità			
MODD10	Adeguatezza	OQPD08 -			
MQPD12	della complessità	Manutenibilità	-	-	
	ciclomatica _G	OODDOO			
MQPD13	Completezza della funzione di test	OQPD08 - Manutenibilità	90%	100%	
-					
MQPD14	Browser	OQPD09 -	75%	100%	
	supportati	Compatibilità			

Tabella 7: Metriche di qualità di prodotto.

2.2.2.1 Dettagli delle metriche di qualità di prodotto utilizzate

Le metriche di qualità a cui ogni prodotto deve essere conforme sono divisi in due categorie:

- Metriche per la qualità della documentazione;
- Metriche per la qualità del software.

2.2.2.2 Metriche di qualità della documentazione

Le metriche di qualità a cui solo la documentazione deve essere conforme sono:

- Indice di Gulpease: Che fa riferimento alla metrica MQPD01;
- Correttezza ortografica: Che fa riferimento alla metrica MQPD02.

Indice di Gulpease

L'indice di Gulpease è una metrica di riferimento ai prodotti di documentazione che il gruppo ha scelto di utilizzare per verificare la leggibilità della documentazione prodotta. L'indice è tarato sulla lingua italiana e si calcola in questo modo:

$$\mathbf{IG} = 89 + \frac{300*Nfrasi - 10*Nlettere}{Nparole}$$

Il gruppo ha scelto come valore minimo di accettabilità 40. Questo viene indicato come limite dato che un valore minore implica una difficoltà di lettura anche per chi ha conferito un diploma di scuola superiore.

Correttezza ortografica

Questa metrica è di riferimento ai prodotti di documentazione ed è utilizzata dal gruppo per assicurare la correttezza ortografica di ogni parola presente nei documenti. Non devono esserci errori grammaticali per far sì che un documento sia accettato.

2.2.2.3 Metriche di qualità del software

Le metriche di qualità a cui solo il software deve essere conforme sono:

- Copertura funzionale: Che fa riferimento alla metrica MQPD03;
- Tempo di risposta dei servizi all'utente: Che fa riferimento alla metrica MQPD04;
- Copertura dei test: Che fa riferimento alla metrica MQPD05;
- Robustezza agli errori: Che fa riferimento alla metrica MQPD06;
- Completezza di descrizione: Che fa riferimento alla metrica MQPD07;
- Completezza della guida utente: Che fa riferimento alla metrica MQPD08;
- Interfaccia utente auto-esplicativa: Che fa riferimento alla metrica MQPD09;
- Procedure di autenticazione: Che fa riferimento alla metrica MQPD10;

- Accoppiamento_G di componenti: Che fa riferimento alla metrica MQPD11;
- Adeguatezza della complessità ciclomatica_G: Che fa riferimento alla metrica MQPD12;
- Completezza della funzione di test: Che fa riferimento alla metrica MQPD13;
- Browser supportati: Che fa riferimento alla metrica MQPD14.

Copertura funzionale

Questa metrica è di riferimento ai prodotti software ed è utilizzata dal gruppo per verificare che tutti i requisiti obbligatori del progetto siano stati integrati nel prodotto finale. Questa metrica è calcolata attraverso il rapporto tra il numero di requisiti soddisfatti e quello di requisiti obbligatori totali:

$$\mathbf{CF} = \frac{RqSoddisfatti}{RqTotali}$$

Dove **CF** sta per *Copertura funzionale*.

Tempo di risposta dei servizi all'utente

Questa metrica è di riferimento ai prodotti software ed è utilizzata dal gruppo per assicurare che i tempi di risposta del prodotto siano accettabili. Un tempo di risposta adeguato in un sistema ${\rm CAPTCHA_G}$ è molto importante e per questo è un obiettivo fondamentale. Il valore accettabile verrà analizzato in una fase più avanzata di progetto.

Copertura dei test

Questa metrica è di riferimento ai prodotti software ed è utilizzata dal gruppo per verificare che i test svolti sul prodotto finale coprano tutti i requisiti e casi d'uso identificati. Questa metrica è calcolata attraverso il rapporto tra il numero di requisiti e casi d'uso testati e quello di requisiti e casi d'uso totali da testare:

$$\mathbf{CdT} = \frac{RqUCTestati}{RqUCTotali}$$

Dove CdT sta per Copertura dei test.

Robustezza agli errori

Questa metrica è di riferimento ai prodotti software ed è utilizzata dal gruppo per verificare quale parte di tutti gli errori critici, ovvero quelli che possono determinare blocchi del sistema, è stata messa sotto controllo. Questa metrica è calcolata attraverso il rapporto tra il numero di errori critici gestiti e il numero totale di errori critici da gestire in totale:

$$\mathbf{RaE} = \frac{ErrCritGestiti}{ErrCritTotali}$$

Dove RaE sta per Robustezza agli errori.

Completezza di descrizione — Questa metrica è di riferimento ai prodotti software ed è utilizzata dal gruppo per verificare la percentuale degli scenari d'uso che è descritta nella documentazione rispetto al totale. Questo per poter garantire informazioni complete agli utilizzatori del prodotto. Questa metrica è calcolata attraverso il rapporto tra il numero di scenari descritti e il numero di scenari effettivamente presenti nel dominio_G:

$$\mathbf{CdD} = \frac{ScenariDescritti}{ScenariPresenti}$$

Dove CdD sta per Completezza di descrizione.

Completezza della guida utente

Questa metrica è di riferimento ai prodotti software ed è utilizzata dal gruppo per verificare la percentuale delle funzioni utilizzabili dall'utente che hanno una descrizione completa nei vari manuali. Questa metrica è calcolata attraverso il rapporto tra il numero di funzionalità descritte e il numero di funzionalità totali:

$$\mathbf{CdGU} = \frac{FunzDescritte}{FunzTotali}$$

Dove CdGU sta per Completezza della guida utente.

Interfaccia utente auto-esplicativa

Questa metrica è di riferimento ai prodotti software ed è utilizzata dal gruppo per verificare la percentuale degli elementi di informazione che sono presentati all'utente inesperto in modo che possa completare un'attività senza un addestramento preliminare o assistenza esterna. Questa metrica è calcolata attraverso il rapporto tra il numero di informazioni fornite all'utente rispetto a quelle di cui avrebbe bisogno per completare ogni piccolo passo:

$$\mathbf{IUAE} = \frac{InfoFornite}{InfoRichieste}$$

Dove IUAE sta per Interfaccia utente auto-esplicativa.

Procedure di autenticazione

Questa metrica è di riferimento ai prodotti software ed è utilizzata dal gruppo per verificare il grado di efficacia del sistema CAPTCHA_G implementato per l'autenticazione di un utente. Il gruppo definisce un grado di accettabilità per la percentuale di accessi indesiderati non bloccati:

$$AINB \le 25\%$$

Dove **AINB** sta per Accessi indesiderati non bloccati.

Accoppiamento_G di componenti

Questa metrica è di riferimento ai prodotti software ed è utilizzata dal gruppo per controllare quanti componenti del sistema sono strettamente indipendenti e quanti sono esenti da impatti conseguenti a cambiamenti negli altri componenti. In futuro verrà definito un valore per misurarla al meglio.

Adeguatezza della complessità ciclomatica G

Questa metrica è di riferimento ai prodotti software ed è utilizzata dal gruppo per verificare quanti moduli software hanno una complessità ciclomatica_G accettabile. Per verificarla il gruppo deciderà una soglia di accettabilità per i vari linguaggi di programmazione e per il tipo di modulo o di funzione utilizzati durante il progetto.

Nelle metriche software la complessità ciclomatica $_{\rm G}$ è usata per valutare la complessità di un algoritmo ed è basata sulla struttura del grafo che rappresenta l'algoritmo da misurare. Per calcolarla si fa uso di questa formula:

$$\mathbf{v}(\mathbf{G}) = L - N + 2 * P$$

Dove:

- **v**(**G**): Numero ciclomatico relativo al grafo **G**;
- L: Numero di archi nel grafo;
- N: Numero di nodi del grafo;
- P: Numero dei componenti del grafo disconnessi.

Completezza della funzione di test

Questa metrica è di riferimento ai prodotti software ed è utilizzata dal gruppo per verificare la percentuale di completezza delle funzioni di test implementate. Questa metrica è calcolata attraverso il rapporto tra il numero di test implementati e il numero di test totali da fare:

$$\mathbf{CdFT} = \frac{TestImpl}{TestTot}$$

Dove CdFT sta per Completezza della funzione di test.

Browser supportati

Questa metrica è di riferimento ai prodotti software ed è utilizzata dal gruppo per verificare il numero di browser che supportano il prodotto sviluppato. Il gruppo definirà un grado di accettabilità per la percentuale di browser che deve supportare il prodotto.

$$\mathbf{BRS} \geq 75\%$$

Dove **BRS** sta per *Browser supportati*.

3 Specifiche dei test

3.1 Scopo della verifica software

La verifica software serve per accertare che l'esecuzione delle attività attuate nel periodo in esame non abbia introdotto errori. La forma di verifica software utilizzata dal gruppo Catch Em All sarà l'Analisi Dinamica, che viene effettuata tramite test che richiedono l'esecuzione dell'oggetto di verifica. In particolare, i test dovranno essere:

- Ripetibili;
- Automatizzabili.

Gli oggetti della verifica saranno le unità $_{\rm G}$ software, le integrazioni tra unità $_{\rm G}$, e anche l'intero sistema. Essendo invece il dominio delle esecuzioni possibili infinito, il gruppo selezionerà un insieme finito di casi da studiare, che dovrà essere sufficiente per garantire la qualità attesa.

La verifica software così descritta prepara il successo della validazione software, la quale invece servirà per accertare che il prodotto finale sia conforme alle aspettative.

Le specifiche dei test verranno definite nelle prossime versioni del presente documento.

3.2 Test di unità

Solitamente un'unità $_{\rm G}$ software può essere realizzata da un singolo programmatore, e pertanto il test di unità, che ha il compito di verificare il comportamento di ogni unità $_{\rm G}$ isolandola dalle altre, potrà essere a carico dello stesso autore. Il test di unità potrà considerarsi completo una volta che tutte le unità $_{\rm G}$ software saranno state verificate.

3.3 Test di integrazione

Nei test di integrazione le singole unità_G software che insieme realizzano una funzionalità del sistema vengono raggruppate nelle componenti individuate nella fase di progettazione architetturale. Servono quindi proprio per rilevare eventuali difetti di progettazione.

3.4 Test di sistema

I test di sistema sono finalizzati all'accertamento della copertura dei requisiti individuati nella fase di analisi, e sono quindi test propedeutici al collaudo.

3.5 Test di regressione

I test di regressione vengono utilizzati per accertare che le modifiche effettuate per aggiunta, correzione o rimozione, non pregiudichino le funzionalità già verificate in un periodo precedente, causando regressione. Consistono nella ripetizione dei test già definiti ed eseguiti con esito positivo in precedenza.

3.6 Test di collaudo

Il test di collaudo saranno supervisionati dal committente, per dimostrazione di conformità del prodotto rispetto alle aspettative.

4 Resoconto delle attivita' di verifica

4.1 Documentazione

4.1.1 Indice di Gulpease

Documento	Valore
Analisi dei Requisiti	93
Norme di Progetto	?
Piano di Progetto	68
Piano di Qualifica	71

Tabella 8: Indice di Gulpease