Khôlles de Mathématiques - Semaine 30

Hugo Vangilluwen

8 juin 2024

Pour cette semaine, E est un ensemble fini de cardianl $n \in \mathbb{N}^*$ et (Ω, \mathbf{P}) désigne un espace probabilisé fini.

1 p-partage d'un ensemble E et leur dénombrement

Soit $p \in \mathbb{N}^*$. Un p-partage de E est un p-liste $(A_1, \ldots, A_p) \in \mathcal{P}(E)^p$ de parties de E (éventuellement vide), deux à deux disjointes qui recouvrent E c'est-à-dire telles que t:

$$\forall (i,j) \in [1;p], i \neq j \implies A_i \cap A_j = \emptyset \qquad \text{et} \qquad \bigcup_{i=1}^p A_i = E$$
 (1)

Soient $(n_1, \dots n_p) \in \mathbb{N}^p$ tels que $n = n_1 + \dots + n_p$ est un p-partage de E tel que

$$\forall (i,j) \in [1;p], |A_i| = n_i$$

Le nombre de p-partage de type (n_1, \ldots, n_p) est :

$$\frac{n!}{\prod_{i=1}^{p} n_i!} \tag{2}$$

 $D\acute{e}monstration$. Considérons les p-partages de type (n_1,\ldots,n_p) et appliquons le principe des choix successifs :

$$\begin{pmatrix}
A_1, & A_2, & A_3, & \dots, & A_p \\
\binom{n}{n_1} & \text{choix } \binom{n}{n_2} & \text{choix } \binom{n}{n_3} & \text{choix } \binom{n}{n_p} & \text{choix}
\end{pmatrix}$$

donc il y a

$$\frac{n!}{n_1!(\underline{n-n_1})!} \frac{(\underline{n-n_1})!}{n_2!(\underline{n-n_1-n_2})!} \frac{(\underline{n-n_1-n_2})!}{n_2!(\underline{n-n_1-n_2-n_3})!} \cdots \underbrace{\frac{(\underline{n-(n_1+\ldots+n_{p-1})!}}{n_p!}}_{=0!}$$

Donc, au total, il y a $\frac{n!}{n_1!n_2!...n_p!}$ p-partages.

2 Une probabilité conditionnelle est une probabilité

Soit B un évènement de probabilité non nulle. L'application \mathbf{P}_B

$$\mathbf{P}_{B} \middle| \begin{array}{ccc} \mathcal{P}(\Omega) & \mapsto & [0;1] \\ A & \to & \frac{\mathbf{P}(A \cap B)}{\mathbf{P}(B)} \end{array}$$
 (3)

est une probabilité sur sur Ω .

Démonstration.

• Soit $A \in \mathcal{P}(\Omega)$ fixé quelconque. On a $\emptyset \subset A \cap B \subset B$ donc par croissance de la probabilité, $0 = \mathbf{P}(\emptyset) \leqslant \mathbf{P}(A \cap B) \leqslant \mathbf{P}(B)$. En divisant par $\mathbf{P}(B) \neq 0$, $0 \leqslant \mathbf{P}_B(A) \leqslant 1$. Donc \mathbf{P}_B est bien définie.

- $\mathbf{P}_B(\Omega) = \frac{\mathbf{P}(\Omega \cup B)}{\mathbf{P}(B)} = \frac{\mathbf{P}(B)}{\mathbf{P}(B)} = 1$
- Soient $(A, A') \in \mathcal{P}(\Omega)^2$ fixés quelconques tels que A et A' sont incompatibles.

$$\mathbf{P}_{B}(A \sqcup A') = \frac{\mathbf{P}(B \cap (A \sqcup A'))}{\mathbf{P}(B)}$$

$$= \frac{\mathbf{P}((B \cap A) \sqcup (B \cap A'))}{\mathbf{P}(B)} \operatorname{car} (B \cap A) \cap (B \cap A') \subset A \cap A' = \emptyset$$

$$= \frac{\mathbf{P}(B \cap A) + \mathbf{P}(B \cap A')}{\mathbf{P}(B)}$$

$$= \mathbf{P}_{B}(A) + \mathbf{P}_{B}(A')$$
(4)

Ainsi, \mathbf{P}_B est bien une probabilité sur Ω .

3 Montrer que si A et B sont des événements indépendants, alors A et \overline{B} aussi

Démonstration. Supposons donc que $0 \le \mathbf{P}(A) \le 1$ et $0 \le \mathbf{P}(B) \le 1$. D'une part, $\{B, \bar{B}\}$ constitue un système complet donc

$$\mathbf{P}(A) = \mathbf{P}(A \cap B) + \mathbf{P}(A \cap \bar{B})$$

$$\iff \mathbf{P}(A) = \mathbf{P}(A)\mathbf{P}(B) + \mathbf{P}(A \cap \bar{B})$$

$$\iff \mathbf{P}(A) - \mathbf{P}(A)\mathbf{P}(B) = \mathbf{P}(A \cap \bar{B})$$

$$\iff \mathbf{P}(A)(1 - \mathbf{P}(B)) = \mathbf{P}(A \cap \bar{B})$$

$$\iff \mathbf{P}(A)\mathbf{P}(\bar{B}) = \mathbf{P}(A \cap \bar{B})$$

Donc A et \bar{B} sont indépendants

4 Formule des probabilités composées

Démonstration. Soient (A_1, \ldots, A_n) , n événements tels que $\mathbf{P}(\bigcap_{i=1}^n A_i) \neq 0$ Pour $k \in [2, n]$ posons

$$\mathcal{H}_k: "\mathbf{P}\left(\bigcap_{i=1}^n A_i\right) = \mathbf{P}(A_1)\mathbf{P}_{A_1}(A_2)\mathbf{P}_{A_1\cap A_2}(A_3)\mathbf{P}_{A_1\cap A_2\cap A_3}(A_4)\dots\mathbf{P}_{A_1\cap\dots\cap A_{k-1}}(A_k)"$$

* Initialisation, $k \leftarrow 2$ d'une part, $\bigcap_{i=1}^n A_i \subset A_1$, donc par croissance de **P**,

$$0 < \mathbf{P}\left(\bigcap_{i=1}^{n} A_i\right) \leqslant \mathbf{P}(A_1)$$

Si bien que $\mathbf{P}(A_1) \neq 0$ donc la probabilité conditionnelle \mathbf{P}_{A_1} a un sens. D'où, par définition d'une probabilité conditionnelle :

$$P(A_1 \cap A_2) = P(A_1)P_{A_1}(A_2)$$

Donc \mathcal{H}_2 est vérifiée.

* Hérédité Soit $k \in [2, n-1]$ fixé quelconque tel que \mathcal{H}_k est vérifiée. D'abord, remarquons que $\bigcap_{i=1}^n A_i \subset \bigcap_{i=1}^k A_i$ donc par croissance de \mathbf{P} ,

$$0 < \mathbf{P}\left(\bigcap_{i=1}^{n} A_i\right) \leqslant \mathbf{P}\left(\bigcap_{i=1}^{k} A_i\right)$$

Si bien que $\mathbf{P}\left(\bigcap_{i=1}^k A_i\right) \neq 0$ donc la probabilité conditionnelle $\mathbf{P}_{A_1 \cap \dots \cap A_k}$ a un sens.

$$\mathbf{P}\left(\bigcap_{i=1}^{k+1} A_i\right) = \mathbf{P}\left(\left(\bigcap_{i=1}^k A_i\right) \cap A_{k+1}\right)$$

$$= \mathbf{P}\left(\bigcap_{i=1}^k A_i\right) \mathbf{P}_{\bigcap_{i=1}^k A_i}(A_{k+1})$$

$$= \mathbf{P}(A_1) \mathbf{P}_{A_1}(A_2) \mathbf{P}_{A_1 \cap A_2}(A_3) \dots \mathbf{P}_{A_1 \cap \dots \cap A_{k-1}}(A_k) \mathbf{P}_{A_1 \cap \dots \cap A_k}(A_{k+1})$$

Donc \mathcal{H}_{k+1} est aussi vérifiée

5 Formule des probabilités totales et formule de Bayes

Démonstration. — Formule des probabilités totales Soit $(A_1, \dots A_n)$ un système complet d'événements. Comme ils sont incompatibles

$$\mathbf{P}\left(\bigsqcup_{k=1}^{n} A_{k}\right) = \sum_{k=1}^{n} \mathbf{P}(A_{k})$$

Le système est de plus complet donc $\bigsqcup_{k=1}^n A_k = \Omega$. Donc $\sum_{k=1}^n \mathbf{P}(A_k) = 1$. (A_1, \ldots, A_n) sont aussi deux à deux incompatibles, donc $(B \cap A_1, \ldots B \cap A_n)$ aussi. De plus $B = B \cap \Omega = B \cap (\bigsqcup_{k=1}^n A_k) = \bigsqcup_{k=1}^n (B \cap A_k)$ Donc

$$\mathbf{P}(B) = \mathbf{P}\left(\bigsqcup_{k=1}^{n} (B \cap A_k)\right) = \sum_{k=1}^{n} \mathbf{P}(B \cap A_k)$$

De plus, en passant aux probabilités conditionnelles $(\mathbf{P}_{A_i})_{1\leqslant i\leqslant n}$ on a

$$\mathbf{P}(B) = \sum_{k=1}^{n} \mathbf{P}(A_k) \mathbf{P}_{A_k}(B)$$

— Formule de Bayes

Soient A et B deux événements de probabilité non nulle, on a alors :

$$\mathbf{P}(A)\mathbf{P}_A(B) = \mathbf{P}(A \cap B) = \mathbf{P}(B)\mathbf{P}_B(A)$$

donc

$$\mathbf{P}_A(B) = \frac{\mathbf{P}(B)\mathbf{P}_B(A)}{\mathbf{P}(A)}$$

6 Loi d'une fonction de X

Soit X une variable alétoire sur Ω et g une fonction définie sur $X(\Omega)$. La loi de probabilité Y=g(X) est donnée par $Y(\Omega)=g(X(\Omega))$ et

$$\forall y \in Y(\Omega), \mathbf{P}_Y(\{y\}) = \mathbf{P}(Y = y) = \sum_{\substack{x \in g^{-1}(\{y\}) \\ g(x) = y}} \mathbf{P}(X = x) = \sum_{\substack{x \in X(\Omega) \\ g(x) = y}} \mathbf{P}(X = x)$$

Démonstration. Utilisons le système complet $(X=x)_{x\in X(\Omega)}$ associé à la variable aléatoire X et la formule des probabilités totales

$$\mathbf{P}_{Y}(\{y\}) = \mathbf{P}(Y = y) = \sum_{x \in X(\Omega)} \mathbf{P}((Y = y) \cap (X = x))$$

$$= \sum_{\substack{x \in X(\Omega) \\ g(x) = y}} \mathbf{P}((g(X) = y) \cap (X = x)) + \sum_{\substack{x \in X(\Omega) \\ g(x) \neq y}} \mathbf{P}((g(X) = y) \cap (X = x))$$

Remarquons ainsi que

 \star Si g(x) = y

$$\omega \in (X = x) \implies X(\omega) = x \implies g(X(\omega)) = g(x) \implies \omega \in (g(X) = y)$$

De plus $(X = x) \subset (g(X) = y)$ donc $(g(X) = y) \cap (X = x) = (X = x)$

 \star Sinon, si $g(x) \neq y$

$$\omega \in (X=x) \implies X(\omega) = x \implies g(X(\omega)) = g(x) \neq y \implies \omega \not\in (g(X)=y)$$

Dans ce cas, $(q(X) = y) \cap (X = x) = \emptyset$

Ainsi,

$$\mathbf{P}_{y}(\{y\}) = \sum_{\substack{x \in X(\Omega) \\ g(x) = y}} \mathbf{P}(\underbrace{(g(X) = y) \cap (X = x)}_{=(X = x)}) + \underbrace{\sum_{\substack{x \in X(\Omega) \\ g(x) \neq y}} \mathbf{P}((g(X) = y) \cap (X = x))}_{=0}$$

$$= \sum_{\substack{x \in X(\Omega) \\ g(x) = y}} \mathbf{P}(X = x)$$

$$= \sum_{\substack{x \in G^{-1}(\{y\})}} \mathbf{P}(X = x)$$

7 Si $X \geqslant 0$ presque sûrement, $\mathbf{E}(X) = 0 \iff X = 0$ presque sûrement

 $D\acute{e}monstration$. Soit $X \geqslant 0$ presque sûrement

— Supposons que $\mathbf{E}(X) = 0$ Par hypothèse, l'évènement (X < 0) est négligeable donc

$$\mathbf{E}(X) = \sum_{\omega \in \Omega} X(\omega) \mathbf{P}(\{\omega\})$$

$$= \sum_{\omega \in (X=0)} \underbrace{X(\omega)}_{=0} \mathbf{P}(\{\omega\}) + \sum_{\omega \in (X<0)} X(\omega) \underbrace{\mathbf{P}(\{\omega\})}_{=0} + \sum_{\omega \in (X>0)} X(\omega) \mathbf{P}(\{\omega\})$$

$$= \sum_{\omega \in (X>0)} X(\omega) \mathbf{P}(\{\omega\})$$

Soit $\omega_0 \in (X > 0)$ fixé quelconque La nullité de l'espérance donne

$$0 \leqslant X(\omega_0)\mathbf{P}(\{\omega_0\}) \leqslant \sum_{\omega \in (X>0)} X(\omega)P(\{\omega\}) = \mathbf{E}(X) = 0$$

donc $X(\omega_0)\mathbf{P}(\{\omega_0\})=0$, or $X(\omega_0)>0$ donc $\mathbf{P}(\{\omega_0\})=0$ donc

$$\mathbf{P}(X > 0) = \sum_{\omega_0 \in (X > 0)} \mathbf{P}(\{\omega_0\}) = 0$$

Donc (X > 0) est négligeable, mais (X < 0) est négligeable aussi, donc

$$0 \le \mathbf{P}((X > 0) \cup (X < 0)) \le \mathbf{P}(X > 0) + \mathbf{P}(X < 0) = 0$$

donc l'évènement contraire de $(X>0)\cup(X<0)$, qui est (X=0) est certain

— Supposons X = 0 presque sûrement.

$$\begin{split} \mathbf{E}(X) &= \sum_{\omega \in \Omega} X(\omega) \mathbf{P}(\{\omega\}) \\ &= \sum_{\omega \in (X=0)} \underbrace{X(\omega)}_{=0} \mathbf{P}(\{\omega\}) + \sum_{\omega \in (X \neq 0)} X(\omega) \underbrace{\mathbf{P}(\{\omega\})}_{=0} \\ &= 0 \end{split}$$

8 Calcul de l'espérance et la variance d'une variable aléatoire suivant une loi binomiale

Démonstration. Soit $n \in \mathbb{N}^*$ et $p \in [0,1]$ Supposons que $X \hookrightarrow \mathcal{B}(n,p)$

$$\begin{split} \mathbf{E}(X) &= \sum_{\omega \in X(\Omega)} \omega \mathbf{P}(X = \omega) \\ &= \sum_{k=0}^{n} k \mathbf{P}(X = k) \\ &= \sum_{k=0}^{n} k \binom{n}{k} p^{k} (1 - p)^{n - k} \\ &= \sum_{k=0}^{n} k \frac{n!}{k!(n - k)!} p^{k} (1 - p)^{n - k} \\ &= n \sum_{k=1}^{n} \frac{(n - 1)!}{(k - 1)!((n - 1) - (k - 1))!} p^{k} (1 - p)^{n - k} \\ &= n \sum_{k=1}^{n} \binom{n - 1}{k - 1} p^{k} (1 - p)^{n - k} \\ &= n \sum_{j=0}^{n-1} \binom{n - 1}{j} p^{j+1} (1 - p)^{n-1-j} \\ &= n p \sum_{j=0}^{n-1} \binom{n - 1}{j} p^{j} (1 - p)^{n-1-j} \\ &= n p (p + (1 - p))^{n-1} = n p \end{split}$$

Pour la variance, calculons d'abord $\mathbf{E}(X^2)$

$$\mathbf{E}(X^{2}) = \sum_{k=0}^{n} k^{2} \mathbf{P}(X = k^{2})$$

$$= \sum_{k=1}^{n} k \underbrace{k \binom{n}{k}} p^{k} (1-p)^{n-k}$$

$$= n \sum_{k=1}^{n} \underbrace{k}_{(k-1)+1} \binom{n-1}{k-1} p^{k} (1-p)^{n-k}$$

$$= n \sum_{k=1}^{n} (k-1) \binom{n-1}{k-1} p^{k} (1-p)^{n-k} + n \sum_{k=1}^{n} \binom{n-1}{k-1} p^{k} (1-p)^{n-k}$$

$$= n \sum_{k=2}^{n} \underbrace{(k-1) \binom{n-1}{k-1}} p^{k} (1-p)^{n-k} + n \sum_{k=1}^{n} \binom{n-1}{k-1} p^{k} (1-p)^{n-k}$$

$$= n \sum_{k=2}^{n} \underbrace{(k-1) \binom{n-1}{k-1}} p^{k} (1-p)^{n-k} + n \sum_{k=1}^{n} \binom{n-1}{k-1} p^{k} (1-p)^{n-k}$$

$$= n(n-1) \sum_{i=0}^{n-2} \binom{n-2}{i} p^{i+2} (1-p)^{(n-2)-i} + n \sum_{i=0}^{n-1} \binom{n-1}{i} p^{i+1} (i-p)^{(n-1)-i}$$

$$= n(n-1)p^{2} (p+(1-p))^{n-2} + np(p+(1-p))^{n-1}$$

$$= n(n-1)p^{2} + np$$

$$= np((n-1)p+1)$$

D'où.

$$V(X) = \mathbf{E}(X^2) - \mathbf{E}(X)^2 = np((n-1)p+1) - n^2p^2 = np(1-p)$$

Calcul alternatif de $\mathbf{E^2}$ En utilisant la formule de transfert pour $f \leftarrow \begin{pmatrix} X(\Omega) & \to & \dots \\ x & \mapsto & x(x-1) \end{pmatrix}$

$$\mathbf{E}(X(X-1)) = \sum_{k=0}^{n} k(k-1)\mathbf{P}(X=k)$$

$$= \sum_{k=0}^{n} k(k-1) \binom{n}{k} p^{k} (1-p)^{n-k}$$

$$= n(n-1) \sum_{k=2}^{n} \binom{n-2}{k-2} p^{k} (1-p)^{n-k}$$

$$= n(n-1) p^{2} \sum_{j=0}^{n-2} \binom{n-2}{j} p^{j} (1-p)^{n-2-j}$$

$$= n(n-1) p^{2} (p+(1-p))^{n-2}$$

$$= n(n-1) p^{2}$$

Donc en remarquant que

$$\mathbf{E}(X^2) = \mathbf{E}(X(X-1) + X) = \mathbf{E}(X(X-1)) + \mathbf{E}(X) = n(n-1)p^2 + np$$

Donc

$$V(X) = \mathbf{E}(X^2) - \mathbf{E}(X)^2 = n(n-1)p^2 + np - n^2p^2 = np(1-p)$$