

Jul 23, 2024

Perfusion/ Fixation for cryostat slicing for HHC

DOI

dx.doi.org/10.17504/protocols.io.j8nlk8dk5l5r/v1

louis-eric.trudeau^{1,2,3}

¹Department of Pharmacology and Physiology and Department of Neurosciences, Faculty of Medicine, Université de Montréal, Montreal, QC, Canada;

²SNC and CIRCA Research Groups, Université de Montréal, Montréal, QC, Canada;

³Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA.

ASAP Collaborative Rese...

Nicolas Giguère

Trudeau Lab

OPEN ACCESS

DOI: dx.doi.org/10.17504/protocols.io.j8nlk8dk5l5r/v1

Protocol Citation: louis-eric.trudeau 2024. Perfusion/ Fixation for cryostat slicing for HHC. protocols.io https://dx.doi.org/10.17504/protocols.io.j8nlk8dk5l5r/v1

License: This is an open access protocol distributed under the terms of the <u>Creative Commons Attribution License</u>, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited

Protocol status: Working
We use this protocol and it's
working

Created: June 18, 2024

Last Modified: July 23, 2024

Protocol Integer ID: 102049

Keywords: ASAPCRN

Abstract

This protocol details the Perfusion and Fixation for cryostat slicing for HHC.

Materials

Composition:

SUCROSE SOLUTION 30%	500 mL	1L	
dH2O	250 mL	500 mL	
Sodium Phosphate Monobasic (NaH2PO4-H2O)	2.691g	5.382g	
Sodium Phosphate Dibasic Anhydrous (Na2HPO4)	4.331g	8.662g	
Mix until salts are completely dissolved.			
Sucrose	150g	300g	
Complete to final volume with dH2O, filter Adjust pH to 7.4, filter and store at 4 degrees			

Cryostat slicing

2d 1h 36m 30s

- 1 Weight the animal.
- 2 Anesthetize the animal with sodium pentobarbital (\$\frac{100 \text{ mg/kg}}{4}\$ et \$\frac{1}{4}\$ 7 \text{ mg/ml}\$) by i.p. injection with a 27G needle.
- 3 Confirm the absence of pain reflex (paw pinch).
- Perfuse the animal with \$\bullet\$ 50 mL of PBS followed by \$\bullet\$ 50 mL of PFA 4% by transcardiac injection with a butterfly needle while the right atrium is detached from the superior vena cava.
- Extract the brain and immerse it 48:00:00 in PFA 4% followed by 48:00:00 2d 1h 36m

 96:00:00 in sucrose 30% (until the initially floating brain drops to the bottom of the tube)

Composition:

SUCROSE SOLUTION 30%	500 mL	1L	
dH2O	250 mL	500 mL	
Sodium Phosphate Monobasic (NaH2PO4-H2O)	2.691g	5.382g	
Sodium Phosphate Dibasic Anhydrous (Na2HPO4)	4.331g	8.662g	
Mix until salts are completely dissolved.			
Sucrose	150g	300g	
Complete to final volume with dH2O, filter Adjust pH to 7.4, filter and store at 4 degrees			

Using dry ice, cool isopentane to -30 °C and submerge the brains for 00:00:15 - 30s 00:00:30 in the freezing solution before storing them at -80 °C.