Laboratiorum 02 - Metoda najmniejszych kwadratów

Dawid Żak

Szymon Hołysz

2025-03-20

Table of contents

Treść zadania	1
Próbka ze zbioru danych	1
Ponizej znajduje się histogram i wykres posortowany rosnąco dla cechy radius	(mean) dla
próbek złośliwych i łagodnych	1
Tworzenie wektora wag	
Wykorzystanie rozkładu SVD	3
Współczynniki uwarunkowania	3
Predykcja	4
Wnioski	

Treść zadania

Celem zadania jest zastosowanie metody najmniejszych kwadratów do predykcji, czy nowotwór jest złośliwy (ang. malignant) czy łagodny (ang. benign). Nowotwory złośliwe i łagodne mają różne charakterystyki wzrostu. Istotne cechy to m. in. promień i tekstura. Charakterystyki te wyznaczane są poprzez diagnostykę obrazową i biopsje.

Próbka ze zbioru danych

	patient ID	Malignant/	radius (mean)	texture	perimeter	area (mean)
		Benign		(mean)	(mean)	
0	842302	M	17.99	10.38	122.80	1001.0
1	842517	M	20.57	17.77	132.90	1326.0
2	84300903	M	19.69	21.25	130.00	1203.0
3	84348301	M	11.42	20.38	77.58	386.1
4	84358402	M	20.29	14.34	135.10	1297.0

Ponizej znajduje się histogram i wykres posortowany rosnąco dla cechy radius (mean) dla próbek złośliwych i łagodnych

Możemy zauważyć, że próbki złośliwe posiadają wiekszę odchylenie standardowe niż próbki łagodne. Wykresy przypominają wyglądem rozkład normalny.

Rysunek 1. Histogram dla cechy radius (mean) dla próbek złośliwych i łagodnych

Z wykresu posortowanego rosnąco wynika, że próbki złośliwe posiadają w większości przypadków wyższą wartość cechy radius (mean) niż próbki łagodne.

Rysunek 2. Wykres posortowany rosnąco dla cechy radius (mean) dla próbek złośliwych i łagodnych Stworzyliśmy reprezentację danych zawartych w obu zbiorach dla liniowej i kwadratowej metody najmniejszych kwadratów. (Łącznie 4 macierze)

Stworzyliśmy wektor b, dla obu zbiorów danych, który zawiera wartości 1 dla próbek złośliwych i –1 dla próbek łagodnych.

Tworzenie wektora wag

Do stworzenia wektora wag wykorzystaliśmy wzór:

$$A^T A w = A^T y$$

do wyliczenia wagi w wykorzystaliśmy funkcję np.linalg.solve z biblioteki numpy.

Wykorzystanie rozkładu SVD

Do alternatywnego wyznaczenia wektora wag wykorzystaliśmy rozkład SVD o wartości λ równej 0.01

Współczynniki uwarunkowania

Do wyliczenia współczynnika uwarunkowania wykorzystaliśmy funkcję np.linalg.cond z biblioteki numpy. Dla poszczególnych metod otrzymaliśmy następujące wyniki:

- Współczynnik uwarunkowania liniowy wynosi 1.8092*10 12
- Współczynnik uwarunkowania kwadratowy wynosi 9.0568*10¹⁷
- Współczynnik uwarunkowania liniowy z regularyzacją wynosi 5.2934*10¹⁰

Wartości współczynnika uwarunkowania dla obu zbiorów są bardzo duże, co oznacza, że te macierze są źle uwarunkowane. Znaczy to, że niezależnie od uzyskanych wag będą one obarczone dużą niepewnością.

Predykcja

Poniżej znajduje się tabela z wynikami predykcji dla obu zbiorów danych.

Metoda	TP	TN	FP	FN	Accuracy	
Liniowa	58	194	6	2	96.92%	
Liniowa z zastosowaniem rozkładu SVD	58	194	6	2	96.92%	
Liniowa z zastosowaniem regularyzacji	55	199	1	5	97.69%	
Kwadratowa	55	185	15	5	92.30%	

Gdzie:

- TP True Positive (prawdziwie dodatnie)
- TN True Negative (prawdziwie ujemne)
- FP False Positive (fałszywie dodatnie)
- FN False Negative (fałszywie ujemne)
- $Accuracy = \frac{\overrightarrow{TP} + TN}{TP + TN + FP + FN}$

Wnioski

- Współczynnik uwarunkowania wskazuje, jak uwarunkowana jest macierz. Im wyższy
 współczynnik tym gorzej uwarunkowana macierz i tym mniej stabilny numerycznie jest model.
 Obliczone współczynniki wskazują, że reprezentacja liniowa jest lepiej uwarunkowana i stabilniejsza numerycznie niż reprezentacja kwadratowa, a metoda regularyzacji macierzy liniowej
 jest najlepsza.
- W powyższej tabeli przedstawione są wyniki przewidywań na podstawie wag uzyskanych różnymi metodami. Wynika z nich, że w tym przypadku (przewidywanie złośliwości nowotworu dla określonych parametrów) bardzej skuteczny jest model oparty o reprezentację liniową. Wyniki modelu opartego o reprezentację liniową zależą od zastosowanej metody wyznaczania wag. Metoda wykorzystująca regularyzację daje lepsze wyniki niż pozostałe dwie metody.