# Rotation summary

Spring 2016 rotation



→ What is the most "effective" manner for assigning distal peaks to genes?

### Potential methods

- eQTLs
- Chromosome capture (ChIA-PET / HiC / 5C / etc)

# eQTLs



# GTEx



### ChIA-PET



Steensel and Dekker 2010. Genomic tools for unraveling chromosome architecture (Nature)

### ChIA-PET data sources

- ENCODE
  - 3x Pol2
  - 2x CTCF
  - 3x histone marks -- H3K4me1, H3K4me2, H3K4me3
  - 1x Rad21
- Young lab
  - 2x Cohesin (hESCs)
- Ruan lab (recent publication)
  - 2x CTCF (GM12878, HeLa)
  - 1x Pol2 (HeLa)

## Expanding enhancer lists

- Currently FANTOM5
  - Bi-directional transcription, CAGE
  - (Extended to 2kb)
- ChromHMM (ENCODE)
  - 9 cell types
- DNase-seq (ENCODE)
  - 125 cell types



## Overlap between old and new



→ e.g., 90.1% of the FANTOM5 enhancer set overlap with at least one of the chromhmm\_dnase.2000 set

# Total genome coverage



# Linking genes to enhancers



"Point-to-point" (P2P)



Ji et al 2016 – 3D chromosome regulatory landscape of human pluripotent stem cells

## Linking genes to enhancers



"Encompassing" (E)

(CTCF/Cohesin ChIA-PET only)

# Total genome coverage



### gene-enhancer interactions from old set in new set



How well do these definitions capture peaks?

ChIP-seq peaks caught per experiment





# Chipenrich





### **ACTIONS**

Create branch

Create pull request

Compare

=

☐ Fork

### NAVIGATION

\_\_\_\_ Overview

Source

Commits

Branches

Pull requests

Downloads

Settings

### Overview

This repository allows one to repeat much of the analysis that I did in my rotation in the Sartor lab in May/June 2016.

It includes the following:

- · Create new enhancers lists using ENCODE ChromHMM/DNase-seq data
- Process ENCODE ChIA-PET data using Mango / download other processed ChIA-PET data from other sources
- · Use processed ChIA-PET data to link enhancers to genes
- · Evaluate how well different enhancer lists capture ENCODE ChIP-seq peaks
- · Run chipenrich using different enhancer lists and compare the results

I've set it up so that everything can be run using a series of make commands.

### Instructions

### Download public data

You'll need to start by downloading some public datasets (ENCODE ChIP-seq, ChromHMM tracks, and master DNase). You can do this from this directory by running:

make chipseq # To fetch ENCODE chip-seq data
make dnase # To fetch ENCODE master DNase data
make chromhmm # To fetch the ~9 cell types with ChromHMM results on ENCODE

### Generate enhancer lists

Once these have been downloaded, you can generate enhancer lists:

cd new\_enhancer\_lists
make enhancer\_lists
cd ..

As it is now, this will generate four different enhancer lists:

- One list based on the ChromHMM enhancers alone
- One list based on the ChromHMM enhancers alone, extending enhancers less than 2kb in length to 2kb
- · One list based on the ChromHMM enhancers unioned with the DNase regions (requiring that a DNase region shows up in at least 2 samples)
- One list based on the ChromHMM enhancers unioned with the DNase regions (requiring that a DNase region shows up in at least 2 samples), and extending enhancers less than 2kb in length
  to 2kb

### Gather ChIA-PET interaction data

Next you need to make sure that you have ChIA-PET interaction lists (simple text files listing the significantly interacting regions based on ChIA-PET data). I've included all of the ones I've used in the interaction\_lists directory (all files ending with \*interactions), so if you don't want to change anything then you can skip this step. If you'd like to add new interactions files, just add them to this

## Peak catching



