GAS INTERSTELLARE

T~80-100 K costituito da H neutro nello stato fondamentale

> non redamo emissione nel visibile

I come si è scoperto?

formation di righe di assorbimento prodotte nel metto

Come s: (api che proenta dal metro e non dalla stella?

Porche otho a righe con allangamento termico compatibile con le

temperature della totoscere dalla stella si sisseverano righe con

allongamenti pui poccoli (xmpre con probili di he doppier)

> evelle vighe si sono formati dal metro

I prove del nove

sistemi binovi: le rigne che si formavano nella stella si Sposkveno periodicamente, quelle del meno (sottlei) skvano ferme

La trettatione che lacciamo è semiciassica per cui

Voglamo trovore la profondità ottica del metro

$$\alpha'_{i} = n \sigma \phi(\Delta i) = \frac{e^{2}}{U \varepsilon m_{e}C}$$
 $\alpha'_{i} = \frac{e^{2}}{U \varepsilon m_{e}C}$
 $\alpha'_{i} = \frac{e^{2}}{U \varepsilon m_{e}C}$

Vedomo de per us dota riga 7, dipende 2001 intigrale del numero di atoni in grado di produne quella tensisione lungo la Uneva di vista

Scansionato con CamScanner

Quindi la curva di crescita sense per canatterissare 11 messo per messo delle ujue di assorbimento
Noi però vomamo shudur il meno indipendentamente dalla sorgente che la telmidumina -> viena predeba l'esistemi di via uga di eninione dell' idropeno neumo HI nel Rapio : eninione dell' idropeno neumo HI nel Rapio :
lo stato fondamentato doll' atomo di H è splittato. In due l'uelli ipezfini grane all' interatione ha Spin del Protone e dell'e- L=0 momento angolare orbitale nella stato fondamentale
$S = \frac{1}{2} \text{spin}$ $F = I + J \text{freshold entry is minore}$ $F = I + J freshold in the single of the si$
$\Delta \epsilon = 5,87 \cdot 10^{-6} \text{ eV} \sim 6.10^{-6} \text{ eV} \Rightarrow \Delta \epsilon = h v_0 \Rightarrow v_0 = 1,420 \text{ GeV}$ $\lambda_0 = 21 \text{ cm}$
Nohamo che si helta di una hansistione di dipolo magnetico non c'è dipolo elettrico => e na transmione proibita => A 10 = 2,85-10 - 5 - 1 <= 1 Qiundi se popoliamo il uvello F = 1 si diseccita in n terripo Tri = 1 = 3,5.10 "s enettendo n lotone a 21 cm Aio = 10 yz
HOTA: In laborations non veduamo questa transmine perche' l'atomo verrebbe disecutato per collisioni con ua probabilità molto pui alta.
Vediamo però se nel memo integstellala ci dobbiamo aspettala che il livello con $F=1$ sia popolato $T=80:-100 \text{ k}$ \Rightarrow $\text{kT} \sim 0.0122$ \Rightarrow $\text{kT} \sim >> \Delta E$
Scansionato con CamScanner

$$\frac{n_1}{n_1} = \frac{\gamma_{12} \, n_e}{A_{21} + n_e \, \gamma_{21}} = \frac{g_1}{g_1} \, \exp\left(\frac{-h_0}{\kappa x}\right) \frac{1}{1 \cdot \frac{A_{11}}{n_e \, \gamma_{21}}}$$

$$\frac{g_1}{g_1} = \frac{\gamma_{12} \, n_e}{A_{21} + n_e \, \gamma_{21}} = \frac{g_1}{g_1} \, \exp\left(\frac{-h_0}{\kappa x}\right) \frac{1}{1 \cdot \frac{A_{11}}{n_e \, \gamma_{21}}}$$

allesto lemine le si che il popolamento del livello 2 repetto al livello 1 è puì pacolo di puello die si attendibbe all'equilibrio termodinamico.

$$R = \frac{A_{21}}{N_{1}} \ll 1 \implies \frac{N_{2}}{n_{1}} = 80 \text{ Bolhamam}$$
 V_{pondo}
 V_{pondo}

Nel cono della riga a 21 cm ne.c ~ 3.10-5 cm³ e nelle nubi di H si ha ne 1-100 cm³ » popolemento dei luelli ipentini può enere describo con ottima approssimatione de Bottemann

V pono usom Bolhamam

Per F=0
$$g_1=1$$
 $\Rightarrow \frac{n_2}{n_1} = \frac{g_2}{g_1} e^{-\frac{1}{1} \frac{\pi}{4}} = 3 \cdot 1 = 3$
F=1 $g_2=3$

M= 610 eV KT ~ d => hv << kT

Quindi reducino che si perde la dipendente dalla T perchi.

il popolamento safura al reprorto tra i pesì statistici.

motivo per cui l'intensità della riga a 21 cm non difende da T.

$$\frac{n_2}{n_4} = 3$$
 $n_1 + n_2 = \frac{n_H}{n_1}$ densità di atomi di H reutro

Scansionato con CamScanner

Per u memo non renimato ju ha dei picchi; che comispondono alla righe di emissione. Tuttavia le nubi non sono amogener per cui
Iv(w) ~ \ij, ds \in consordo iv colcobano l'integrale
$j_{\nu} = \frac{h v_{o}}{u \pi} n_{2} Au \Phi(v)$ $\int \Phi(v) = 1$
$I = \int_{a} I dv = \int_{a} \int_{a} dv da = \int_{a} \frac{h_{0}}{a} n_{z} A_{z} dv dv ds = $
$T = \frac{h\nu}{4\pi} A_{21} \int n_2 da = \frac{h\nu}{4\pi} A_{21} \int \frac{3}{4} n_1 ds = \frac{h\nu}{4\pi} A_{21} \int \frac{3}{4} n_1 d$
I = 3 hv. A21 Snuds
Quindi minimando l'intensità della uga 2 21 cm nel redo aldonno una minima della dennità di calanna della H neumo lungo la lunea di vista non dipende dolla T perche hi « RT => 12 -3
Copa rucada x metramo na sorgente dietro la nua de H atenico?
Ora voglano musurare la tiga di No voglano musurare la tiga d
corretto per eminione shmolate $qv = \frac{hv}{4\pi}$ $\phi(v) \left(n, B_{12} - n_2 B_{21} \right)$ renota $n = 2$ $(F = 1)$ è popolato
Noto a pono colcoloro Tr = Ja, ds => I = I.e-2,
$\alpha_{v} = \frac{hv}{a\pi} \phi_{(v)} \eta_{1} \beta_{12} \left[1 - \frac{g_{1}}{g_{2}} \frac{n_{2}}{n_{1}} \right] = \frac{hv}{a\pi} \phi_{(v)} \eta_{1} \beta_{v2} \left[1 - \exp\left(\frac{hv}{kT}\right) \right]$
$hv \ll kT \Rightarrow e^{-hv/kT} = 1 - \frac{hv}{kT} \Rightarrow \alpha_v = \frac{hv}{\mu \pi} \phi_{(v)} n_v B_{i2}, \frac{hv}{kT}$
$\alpha_{\nu} = \frac{3}{32\pi} \frac{4c^2}{k\tau} n_{\mu} A_{24} \frac{4\omega}{v}$ Scansionato con CamScanner

Ora la mettamo neco' integrale $\frac{T_V = 3}{32\pi} \frac{hc^2}{K} A_{21} \frac{\Phi(v)}{V} \left(\frac{n_H}{T} ds \right)$ dipende da T = intensità m is a diamigracie in refit digenda da T. NOTA: l'assorbimento nel redia diferrite di Tinel visibile no. Quento perche hel pimo caso abbiamo briscurato l'emissione simolata parche hyper >> 1 e 11 esponenhale -> 0. Quindi se ho due mezi , no treddo 80 k e no più rerefatto ma pui coldo e shidiano la rediamore che energe 8000 K # -- / 30K Avremo na la riga di entriore che anordimento (percle c'è La sorgerte che retrolleumina). Per la riga di assorbimento peu alla è T pui bona è la profonditité (reui 11 matro e harparente) => gran parti della riga è prodotte nel meno pli treddo => 2m vi aclangamento dorrter comispondente 2000 T=80K. (shette). La upa du enirione de parde salo dalla densità di colonna e amo damento 80k Quandi anuduando gei oretti anorbimento rock a si sose conto dolla proventa di na rona pui fredda e na zu coldo con danski pur basse Olho ela polvera, oltre al gas estatoro le moltocarel m mi la Tè pui bassa (Ta10-30h) e denati mappioni Queste nubi sono pur concentre sulla sona contre del Nano galattico menno le nubi di H neumo si trovano anche plu

Le molecole si individuano attaverro llorien arione nel volto e la

distanti.

rui diffusa è Hz

Scansionato con CamScanner

Ma l'H2 non emette nel redio, in tratti si è scoperto grane alle Ughe du assorbimento (dovute ad ua sorgente che remol@umina) nell' UV. Per mappore la distributione delle H2 sonz sorgenti che retrollementro il memo si shidia la molocola (O (monossido di conberso) righe mocho intense nos redio prodotte des transitionis la livelli notationali. Riga intensa d 1 - 2,6 mm 12 = 115 GHz e multipli (216, 316, ecc.) MASER Osservando la nubi molecolori si è scoperte l'environe du via intentità molto alta per vovie molecole e per giuonficule il domebbero ouppore T mous elevati. In realta's i pense che sia donnte a MASER microonde $O_{h} = \frac{hv}{6\pi} \Phi(v) \left[n_1 B_{12} - n_2 B_{21} \right]$ artische vi ma antericarione du <0 => 12821 > 11.812 Cice birogna avere un inventione du popolatione $Q_{\nu} = \frac{h_{\nu}}{6\pi} \Phi_{(\nu)} B_{\nu} n_{i} \left[-\frac{3!}{9!} \left(\frac{h_{2}}{h_{i}} \right) \right]$ e homano h pompagio guando dul momo moide redomine intenio neog narono Jamen hocomenta helle regioni di Formanione stellare dove il nucleo di prohitella riscorda la policie interestallare, la quale inme ad impolone new infravosso (maser ad Acqua) . AGN (nudei galattici attivi) dou al centro c'è u buco nono massicele, re vi piecipile materia si forma in obsco di accresiomento e si survivalda ed emette redissione the recaldon la politice, questa poi produco infravosso Scansionato con CamScanner