HÀM SỐ ĐỒNG BIẾN, HÀM SỐ NGHỊCH BIẾN

Câu 1. Cho hàm số $f(x) = |x^4 - 4x^2 + 4|$. Hỏi hàm số f'(x) đổi dấu tại bao nhiều điểm **D.** 2.

Giải

TXĐ $D = \mathbb{R}$

Ta có
$$f'(x) = \frac{(4x^3 - 8x)(x^4 - 4x^2 + 4)}{|x^4 - 2x^2 - 3|} = 0 \Leftrightarrow \begin{bmatrix} 4x^3 - 8x = 0\\ x^4 - 4x^2 + 4 = 0 \end{bmatrix}$$

Biểu diễn dấu f'(x) trên trục số

Vậy f'(x) đổi dấu tại 3 điểm

Câu 2. Cho hàm số $f(x) = |x^4 - 2x^2 - 3|$. Hỏi hàm số f'(x) đổi dấu tại bao nhiều điểm

D. 2.

Giải

TXĐ $D = \mathbb{R}$

Ta có
$$f'(x) = \frac{(4x^3 - 4x)(x^4 - 2x^2 - 3)}{|x^4 - 2x^2 - 3|} = 0 \Leftrightarrow \begin{bmatrix} 4x^3 - 4x = 0\\ x^4 - 2x^2 - 3 = 0 \end{bmatrix}$$

Biểu diễn dấu f'(x) trên trục số

Vậy f'(x) đổi dấu tại 5 điểm

Câu 3. Cho hàm số $f(x) = |x^3 - 5x^2 + 7x - 3|$. Hỏi hàm số f(x) đồng biến trên khoảng nào dưới đây

A. $\left(-\infty;1\right)$. C. $\left(3;+\infty\right)$.

D. $(\frac{7}{3};3)$.

Giải

TXĐ $D = \mathbb{R}$

Ta có
$$f'(x) = \frac{(3x^2 - 10x + 7)(x^3 - 5x^2 + 7x - 3)}{|x^3 - 5x^2 + 7x - 3|} = 0 \Leftrightarrow \begin{bmatrix} 3x^2 - 10x + 7 = 0 \\ x^3 - 5x^2 + 7x - 3 = 0 \end{bmatrix}$$

Câu 4. Cho hàm số $f(x) = x^4 + x^3 - 5|x^2 - 1|$. Hỏi hàm số f'(x) đổi dấu tại bao nhiều điểm

A. 3.

<u>C.</u> 5.

D. 2.

Giải

TXĐ $D = \mathbb{R}$

Ta có
$$f(x) = x^4 + x^3 - 5|x^2 - 1| = \begin{cases} x^4 + x^3 - 5x^2 + 5khi \ x^2 - 1 \ge 0 \\ x^4 + x^3 + 5x^2 - 5khi \ x^2 - 1 < 0 \end{cases}$$

Khi đó
$$f'(x) = \begin{cases} 4x^3 + 3x^2 - 10x & khi \ x^2 - 1 \ge 0 \\ 4x^3 + 3x^2 + 10x & khi \ x^2 - 1 \le 0 \end{cases}$$

Phương trình
$$f'(x) = 0 \Leftrightarrow \begin{bmatrix} 4x^3 + 3x^2 - 10x = 0 \\ x^2 - 1 \ge 0 \\ 4x^3 + 3x^2 + 10x = 0 \\ x^2 - 1 < 0 \end{bmatrix} \Leftrightarrow \begin{bmatrix} x = 0 \\ x = \frac{5}{4} \\ x = -2 \end{bmatrix}$$

Biểu diễn dấu f'(x) trên trục số

Vậy f'(x) đổi dấu tại 5 điểm

Câu 5. Cho hàm số y = f(x) có đạo hàm $f'(x) = x^2 - 2x$, $\forall x \in \mathbb{R}$. Hàm số g(x) = -2f(x) đồng biến trên khoảng

A. $(2; +\infty)$.

B. $(-\infty; -2)$. **C.** (0;2). **D.** (-2;0).

Lời giải

Chon C

Ta có
$$g'(x) = -2f'(x) = -2(x^2 - 2x)$$
.

 $g'(x) > 0 \Leftrightarrow x^2 - 2x < 0 \Leftrightarrow 0 < x < 2$. Suy ra, hàm số đồng biến trên (0;2).

Câu 6. Cho hàm số y = f(x) có đạo hàm f'(x) = (x+1)(x-3), $\forall x \in \mathbb{R}$. Hàm số y = f(2x+3) nghịch biến trên khoảng nào dưới đây?

<u>**A**</u>. (-1;0).

B. (0;1).

C. (1;2). **D.** (-3;-1).

Lời giải

Chon A

Ta có:

Xét hàm số $g(x) = f(2x+3) \Rightarrow g'(x) = 2f'(2x+3) = 2.(2x+4)(2x)$

Lập bảng xét dấu

x	$-\infty$		-2		0		$+\infty$
g'(x)		+	0	-	0	+	
f(x)			√ g(−1)		$\rightarrow g(0)$		7

Từ bảng xét dấu ta có khoản nghịch biến của hàm số g(x) = f(2x+3) là (-2,0).

Câu 7. Cho hàm số y = f(x) có đạo hàm $f'(x) = x^2(x-1)(x-4)g(x)$, trong đó g(x) > 0, $\forall x \in \mathbb{R}$. Hàm số $y = f(x^2)$ đồng biến trên khoảng nào dưới đây?

A. $(-\infty; -2)$. **B.** (-1;1). **C.** (-2;-1). **D.** (1;2).

Lời giải

Chon C

Ta có
$$y' = 2xf'(x^2) = 2x(x^2)^2(x^2-1)(x^2-4)g(x^2) = 2x^5(x+1)(x+2)(x-1)(x-2)g(x^2)$$
.

Vì
$$g(x) > 0$$
, $\forall x \in \mathbb{R}$ nên $y' > 0$. $\Leftrightarrow 2x^5(x+1)(x+2)(x-1)(x-2) > 0 \Leftrightarrow \begin{bmatrix} x > 2 \\ -2 < x < -1 \\ 0 < x < 1 \end{bmatrix}$

Câu 8. Cho hàm số f(x) có bảng biến thiên như sau

Hàm số g(x) = 4 - 5f(x) nghịch biến trên khoảng nào dưới đây

A.
$$(0;+\infty)$$
.

C.
$$(-2;0)$$
.

D.
$$(-\infty; -2)$$
.

Lời giải

Chon C

$$g'(x) = -5f'(x) < 0 \Leftrightarrow f'(x) > 0$$

Từ bảng biến thiên, suy ra trên khoảng (-2,0) hàm số nghịch biến.

Câu 9. Cho hàm số y = f(x) có đạo hàm $f'(x) = (x-1)(x-2)(x+4)^2$, $\forall x \in \mathbb{R}$. Hàm số y = f(x+1)đồng biến trên khoảng nào dưới đây?

A.
$$(-5;1)$$
.

B.
$$(0; +\infty)$$
.

$$\underline{\mathbf{C}}$$
. $(-\infty;0)$.

Lời giải

Ta có
$$f'(x) = 0 \Leftrightarrow (x-1)(x-2)(x+4)^2 = 0 \Leftrightarrow \begin{bmatrix} x=1 \\ x=2 \\ x=-4 \end{bmatrix}$$

$$y' = f'(x+1) = 0 \Leftrightarrow \begin{bmatrix} x+1=1 \\ x+1=2 \\ x+1=-4 \end{bmatrix} \Leftrightarrow \begin{bmatrix} x=0 \\ x=1 \\ x=-5 \end{bmatrix}$$

Bảng biến thiên

х	-∞		-5		0		1		$+\infty$
f'(x)		+	0	+	0	_	0	+	
f(x)	-∞				20_		13		≯ +∞

Hàm số đồng biến trên khoảng $(-\infty;0)$.

Câu 10. Cho hàm số y = f(x) có bảng biến thiên như sau:

Hàm số $y=1-6f^{5}(x)$ đồng biến trên khoảng nào dưới đây?

A.
$$(0;+\infty)$$

B.
$$(-\infty; -2)$$

D.
$$(-2;0)$$

Chon D

Câu 11. Cho hàm số f(x), bảng xét dấu của f'(x) như sau:

Hàm số y = f(5-2x) đồng biến trên khoảng nào dưới đây?

C.
$$(-\infty; -3)$$
. **D.** $(4;5)$.

D.
$$(4;5)$$
.

Lời giải

Chon D

Ta có
$$y' = f'(5-2x) = -2f'(5-2x)$$
.

$$y' = 0 \Leftrightarrow -2f'(5-2x) = 0 \Leftrightarrow \begin{bmatrix} 5-2x = -3 \\ 5-2x = -1 \Leftrightarrow x = 3 \\ x = 2 \end{bmatrix}$$

$$f'(5-2x) < 0 \Leftrightarrow \begin{bmatrix} 5-2x < -3 \\ -1 < 5 - 2x < 1 \end{cases} \Leftrightarrow \begin{bmatrix} x > 4 \\ 2 < x < 3 \end{cases}; f'(5-2x) > 0 \Leftrightarrow \begin{bmatrix} 5-2x > 1 \\ -3 < 5 - 2x < -1 \end{cases}$$

$$\Leftrightarrow \begin{bmatrix} x < 2 \\ 3 < x < 4 \end{cases}.$$

Bảng biến thiên

Dựa vào bảng biến thiên hàm số y = f(5-2x) đồng biến trên khoảng (4;5).

Câu 12. Cho hàm số y = f(x) có đạo hàm liên tục trên \mathbb{R} và có bảng biến thiên như sau

A.
$$(2; +\infty)$$
.

B.
$$(1;2)$$
.

D.
$$(-\infty;1)$$
.

Lời giải

Chon B

$$g(x) = f(x^{2} - 2x)$$
$$g'(x) = (2x - 2)f'(x^{2} - 2x)$$

$$g'(x) = 0 \Leftrightarrow (2x - 2)f'(x^2 - 2x) = 0 \Leftrightarrow \begin{bmatrix} 2x - 2 = 0 \\ f'(x^2 - 2x) = 0 \end{bmatrix} \Leftrightarrow \begin{bmatrix} x = 1 \\ x^2 - 2x = -1 \Leftrightarrow \begin{bmatrix} x = 1 \\ x = 0 \\ x^2 - 2x = 0 \end{bmatrix}$$

Bảng biến thiên:

x	$-\infty$	0		1		2		$+\infty$
g'(x)	_	0	+	0	_	0	+	
g(x)		<u> </u>		/ \		•	/	

Từ bảng biến thiên suy ra hàm số y = g(x) nghịch biến trên $(-\infty; 0)$, (1; 2).

Câu 13. Cho hàm số f'(x) có bảng xét dấu như sau:

$$x$$
 $-\infty$ -2 1 3 $+\infty$ $f'(x)$ $-$ 0 $+$ 0 $+$ 0 $-$

Hàm số $y = f(x^2 + 2x)$ nghịch biến trên khoảng nào dưới đây?

A.
$$(-2;1)$$
.

B.
$$(-4;-3)$$
. **C.** $(0;1)$.

Ta có: Đặt:
$$y = g(x) = f(x^2 + 2x)$$
; $g'(x) = [f(x^2 + 2x)]' = (2x + 2).f'(x^2 + 2x)$

$$g'(x) = 0 \Leftrightarrow (2x+2).f'(x^2+2x) = 0$$

$$\Leftrightarrow \begin{bmatrix} 2x+2=0 \\ f'(x^2+2x)=0 \end{cases} \Leftrightarrow \begin{bmatrix} x=-1 \\ x^2+2x=-2(VN) \\ x^2+2x=1 \\ x^2+2x=3 \end{cases} \Leftrightarrow \begin{bmatrix} x=-1 \\ x=-1-\sqrt{2} \\ x=-1+\sqrt{2} \\ x=1 \\ x=-3 \end{bmatrix}$$

(Trong đó: $x = -1 - \sqrt{2}$; $x = -1 + \sqrt{2}$ là các nghiệm bội chẵn của PT: $x^2 + 2x = 1$) + Ta có bảng biến thiên

Dựa vào bảng biến thiên, suy ra hàm số $y = f(x^2 + 2x)$ nghịch biến trên khoảng (-2; -1).

Câu 14. Cho hàm số y = f(x) có bảng biến thiên như hình vẽ.

		- <i>y y</i> ()	9		
х	$-\infty$	-2	1	3	+∞
f(x)		$\frac{3}{2}$	-2	2	-∞

Hỏi hàm số $y = \frac{1}{f(x) - 3}$ nghịch biến trên khoảng nào dưới đây

A.
$$(-3;-2)$$
.

$$\mathbf{R} \ (-2.1)$$

$$\mathbf{C}$$
. $(-1;2)$

D.
$$(3;+\infty)$$
.

Chon A

Ta luôn có: $f(x) \le 2 < 3 \rightarrow$ phương trình mẫu số f(x) - 3 = 0 vô nghiệm.

Suy ra hàm số $y = \frac{1}{f(x) - 3}$ có tập xác đinh là \mathbb{R} .

Đạo hàm:
$$y' = -\frac{f'(x)}{[f(x)-3]^2}$$

Hàm số nghịch biến thì:
$$y' = -\frac{f'(x)}{[f(x)-3]^2} < 0 \Leftrightarrow f'(x) > 0 \Leftrightarrow \begin{bmatrix} x \in (-\infty;-2) \\ x \in (1;3) \end{bmatrix}$$

Câu 14. Cho hàm số y = f(x) có đạo hàm liên tục trên \mathbb{R} và có bảng xét dấu đạo hàm f'(x) như hình vẽ bên dưới.

$$\frac{x -\infty -3}{f'(x) -0} + 0 - 0 + \frac{\pi}{4}$$
Hàm số $g(x) = f(4-\sqrt{4-x^2})$ đồng biến trên:
$$\mathbf{A.} \ (0;1). \qquad \mathbf{B.} \ (1;2). \qquad \mathbf{C.} \ (-1;0). \qquad \mathbf{D.} \ (-3;-1).$$

A.
$$(0;1)$$
.

$$\mathbf{C.}(-1;0)$$

D.
$$(-3;-1)$$
.

Chon C

Cách 1: Tập xác định của hàm số $f(4-\sqrt{4-x^2})$ là [-2;2]

Đạo hàm:
$$g'(x) = \frac{x}{\sqrt{4-x^2}} f'(4-\sqrt{4-x^2})$$

Hàm số đồng biến thì $g'(x) \ge 0$. Từ tập xác định ta có:

$$\begin{bmatrix}
x \in (0;2) \\
f'(4-\sqrt{4-x^2}) \ge 0 \\
\begin{cases}
x \in (-2;0) \\
f'(4-\sqrt{4-x^2}) \le 0
\end{cases}
\Leftrightarrow
\begin{bmatrix}
x \in (0;2) \\
-3 \le 4-\sqrt{4-x^2} \le 1 \\
4-\sqrt{4-x^2} \ge 4
\end{cases}
\Leftrightarrow
\begin{bmatrix}
x \in (0;2) \\
4-\sqrt{4-x^2} \le 1 \\
VN
\end{cases}
\Leftrightarrow
\begin{bmatrix}
x \in (0;2) \\
4-\sqrt{4-x^2} \le 3
\end{cases}$$

$$\begin{cases}
x \in (-2;0) \\
1 \le 4-\sqrt{4-x^2} \le 4 \\
4-\sqrt{4-x^2} \le -3
\end{cases}
\Leftrightarrow
\begin{bmatrix}
x \in (0;2) \\
4-\sqrt{4-x^2} \le 3
\end{cases}$$

$$\Leftrightarrow \begin{bmatrix} \begin{cases} x \in (0;2) \\ VN \\ \begin{cases} x \in (-2;0) \end{cases} \Leftrightarrow x \in (-2;0). \end{cases}$$

Cách 2: Ghép trục để tối ưu. $g(x) = f(4 - \sqrt{4 - x^2}) = f(u), u = 4 - \sqrt{4 - x^2}$, với $x \in [-2;2]$

Bảng biến thiên kép

Suy ra hàm số đồng biến trên khoảng (-2;0).

Câu 15. Cho hàm số y = f(x) có đạo hàm liên tục trên \mathbb{R} và có bảng xét dấu đạo hàm f'(x) như hình vẽ bên dưới.

x	-∞		1		2		+∞
f'(x)		+	0	-	0	+	

Hàm số $g(x) = f(-1 + \sqrt{7 + 6x - x^2})$ nghịch biến trên khoảng nào dưới đây

A.
$$(5;6)$$

B.
$$(-1;2)$$

Chon D

Cách 1:

Tập xác định của hàm số $g(x) = f(-1 + \sqrt{7 + 6x - x^2})$ là D = [-1;7]

Đạo hàm:
$$g'(x) = \frac{3-x}{\sqrt{7+6x-x^2}} f'(-1+\sqrt{7+6x-x^2})$$

Hàm số nghịch biến: $g'(x) \le 0$

Từ tập xác định, ta có các trường hợp sau:

$$\begin{bmatrix}
\begin{cases} x \in (-1;3) \\
f'(-1+\sqrt{7+6x-x^2}) \le 0 \\
\begin{cases} x \in (3;7) \\
f'(-1+\sqrt{7+6x-x^2}) \ge 0
\end{cases}
\Leftrightarrow
\begin{bmatrix}
\begin{cases} x \in (-1;3) \\
-1 \le -1+\sqrt{7+6x-x^2} \le 2 \\
\begin{cases} x \in (3;7) \\
-1+\sqrt{7+6x-x^2} \le -1 \\
-1+\sqrt{7+6x-x^2} \ge 2
\end{cases}
\Leftrightarrow
\begin{bmatrix}
\begin{cases} x \in (-1;3) \\
\sqrt{7+6x-x^2} \le 3 \\
\sqrt{7+6x-x^2} \le 3
\end{cases}$$

$$\begin{cases} x \in (-1;3) \\ x \le 3 - \sqrt{7} \\ x \ge 3 + \sqrt{7} \end{cases} \Leftrightarrow \begin{cases} -1 < x \le 3 - \sqrt{7} \\ 3 < x \le 3 + \sqrt{7} \end{cases}.$$
$$\begin{cases} x \in (3;7) \\ 3 - \sqrt{7} \le x \le 3 + \sqrt{7} \end{cases}.$$

2: Sử dụng phương pháp ghép truc

$$g(x) = f(-1 + \sqrt{7 + 6x - x^2}) = f(u) \text{ v\'oi } u = -1 + \sqrt{7 + 6x - x^2} \text{ và } x \in [-2;2]$$

Bảng biến thiên kép

Vậy hàm số nghịch biến trên các khoảng $\left(-1; 3-\sqrt{7}\right)$ và $\left(3; 3+\sqrt{7}\right)$

Câu 16. Cho hàm số y = f(x) không âm với mọi giá trị x và có đạo hàm trên \mathbb{R} , bảng xét dấu của biểu thức f'(x) như bảng dưới đây.

 $\begin{array}{c|ccccc} x & -\infty & -2 & -1 & 3 & +\infty \\ \hline f'(x) & - & 0 & + & 0 & - & 0 & + \\ \\ \text{Hàm số} & y = g\left(x\right) = \frac{f\left(x^2 - 2x\right)}{f\left(x^2 - 2x\right) + 1} & \text{nghịch biến trên khoảng nào dưới đây?} \\ \end{array}$

A.
$$(-\infty;1)$$
. **B.** $\left(-2;\frac{5}{2}\right)$. **C.** $(1;3)$. **D.** $(2;+\infty)$.

Chon C

$$g'(x) = \frac{(x^2 - 2x)' \cdot f'(x^2 - 2x)}{(f(x^2 - 2x) + 1)^2} = \frac{(2x - 2) \cdot f'(x^2 - 2x)}{(f(x^2 - 2x) + 1)^2}.$$

$$g'(x) = 0 \Leftrightarrow \begin{bmatrix} 2x - 2 = 0 \\ f'(x^2 - 2x) = 0 \end{bmatrix} \Leftrightarrow \begin{bmatrix} x = 1 \\ x^2 - 2x = -2 \\ x^2 - 2x = -1 \\ x^2 - 2x = 3 \end{bmatrix} \Leftrightarrow \begin{bmatrix} x = 1 \\ x = -1 \\ x = 3 \end{bmatrix}$$

Ta có bảng xét dấu của g'(x):

Dựa vào bảng xét dấu ta có hàm số y = g(x) nghịch biến trên các khoảng $(-\infty; -1)$ và (1;3).

Câu 17. Cho hàm số y = f(x) có bảng xét của đạo hàm như sau:

Hàm số $y = f(x^2 - 2)$ nghịch biến trên khoảng nào dưới đây?

A.
$$(-2; -1)$$
.

B.
$$(2; +\infty)$$
.

C.
$$(0; 2)$$
. D. $(-1; 0)$.

D.
$$(-1;0)$$

Lời giải

Chon C

Đặt
$$y = g(x) = f(x^2 - 2)$$

Ta có: $g'(x) = 2xf'(x^2 - 2)$, hàm số $y = g(x) = f(x^2 - 2)$ nghịch biến khi và chỉ khi

$$g'(x) \le 0 \Leftrightarrow xf'(x^2 - 2) \le 0 \Leftrightarrow \begin{bmatrix} x \ge 0 \\ f'(x^2 - 2) \le 0 \\ x \le 0 \\ f'(x^2 - 2) \ge 0 \end{bmatrix} \Leftrightarrow \begin{bmatrix} x \ge 0 \\ x^2 - 2 \le 2 \\ x \le 0 \\ x^2 - 2 \ge 2 \end{bmatrix} \Leftrightarrow \begin{bmatrix} 0 \le x \le 2 \\ x \le -2 \end{bmatrix}$$

Vậy hàm số $y = f(x^2 - 2)$ nghịch biến trên (0; 2)

Câu 18. Cho hàm số y = f(x) có bảng xét dấu đạo hàm như ở bảng sau:

Hỏi hàm số $f\left(x+\frac{1}{x}\right)$ nghịch biến trên khoảng nào dưới đây? **B.** $\left(\frac{1}{2};2\right)$. **C.** $\left(-2;-\frac{1}{2}\right)$. **D.** $\left(0;\frac{1}{2}\right)$.

$$\mathbf{A.}\left(-\frac{1}{2};0\right).$$

B.
$$\left(\frac{1}{2};2\right)$$
.

$$\mathbf{C.}\left(-2; -\frac{1}{2}\right)$$

D.
$$\left(0;\frac{1}{2}\right)$$
.

Lời giải

Từ gt ta có BBT của $g(x) = f\left(x + \frac{1}{x}\right)$

$$g'(x) = \left(1 - \frac{1}{x^2}\right) f'\left(x + \frac{1}{x}\right). \ g'(x) = 0 \Leftrightarrow \left(1 - \frac{1}{x^2}\right) f'\left(x + \frac{1}{x}\right) = 0$$

$$\Leftrightarrow \begin{bmatrix} 1 - \frac{1}{x^2} = 0 \\ f'\left(x + \frac{1}{x}\right) = 0 \end{bmatrix} \Leftrightarrow \begin{bmatrix} x = 1 \\ x = -1 \end{bmatrix}$$

BXD của g'(x)

Hàm số nghịch biến trên (-1;0) và $(1;+\infty)$. Chọn

Câu 19. Cho hàm số y = f(x) có đạo hàm là f'(x) $\forall x \in \mathbb{R}$, biết rằng $f'(-x) = x^2 + 2x$, $\forall x \in \mathbb{R}$. Hàm số y = -2f(x) đồng biến trên khoảng nào?

A.
$$(-2;0)$$
.

B.
$$(0;2)$$
.

C.
$$(2;+\infty)$$
.

A.

D.
$$(-\infty; -2)$$
.

Hướng dẫn giải

Chon B

Đặt
$$-x = t \Rightarrow f(t) = (-t)^2 + 2(-t) = t^2 - 2t$$

Ta có:
$$y' = -2f'(x) = -2x^2 + 4x > 0 \iff x \in (0,2)$$
.

Suy ra: Hàm số y = -2f(x) đồng biến trên khoảng (0,2)

Câu 20. Cho hàm số y = f(x) có đạo hàm $f'(x) \ \forall x \in \mathbb{R}$. Biết f'(1-2x) = (2x+1)(2x-6)(1-x). Hàm số $y = f(x^2)$ đồng biến trên khoảng nào dưới đây?

A.
$$(0;1)$$
.

B.
$$(-1;0)$$
.

$$\mathbf{C}. (-2;-1).$$

D.
$$(-2;0)$$
.

Hướng dẫn giải

Chọn B

Đặt
$$1-2x = t \Rightarrow 2x = 1-t \Rightarrow f'(t) = \frac{1}{2}(t-2)(t+5)(t+1)$$

Xét dấu f'(x):

Ta có:
$$y' = (f(x^2))' = 2x \cdot f'(x^2) = 0 \Leftrightarrow \begin{bmatrix} x = 0 \\ f'(x^2) = 0 \end{cases} \Leftrightarrow \begin{bmatrix} x = 0 \\ x^2 = 2 \\ x^2 = -5 \\ x^2 = -1 \end{bmatrix} \Leftrightarrow \begin{bmatrix} x = 0 \\ x = \sqrt{2} \\ x = -\sqrt{2} \end{bmatrix}$$

Chọn $x = 1 \in (0; \sqrt{2})$ ta có $y'(1) = 2.1. f'(1^2) = 2. f'(1) < 0$. Do đó, cả khoảng $(0; \sqrt{2})$ âm.

Từ đó ta có trục xét dấu của $y' = (f(x^2))'$ như sau:

Từ trục xét dấu trên ta thấy: Hàm số $y = f(x^2)$ đồng biến trên (-1;0).

Câu 21. Cho hàm số y = f(x) có đạo hàm f'(x) liên tục trên \mathbb{R} . Đặt g(x) = f(1-x), biết dấu của g'(x) như hình vẽ

Hàm số y = f(|3-x|) đồng biến trên khoảng nào dưới đây

A.
$$(4;7)$$

B.
$$(-\infty; -1)$$

D.
$$(-1;2)$$

Ta có
$$g'(x) = -f'(1-x)$$

Từ dấu ta có thể xây dựng g'(x) như sau g'(x) = (x-2)(x)(x+3)h(x) với $h(x) \ge 0 \ \forall x \in \mathbb{R}$ Suy ra -f'(1-x) = (x-2)(x)(x+3)h(x)

Đặt
$$1-x=t \Rightarrow f'(t) = (t+1)(t-1)(t-4)h(1-t)$$

Đạo hàm
$$y = f(|3-x|) \Rightarrow y' = \frac{x-3}{|3-x|} \cdot f'(|3-x|) = 0 \Leftrightarrow \begin{bmatrix} x=3 \\ f'(|3-x|) = 0 \end{bmatrix} \Leftrightarrow \begin{bmatrix} x=3 \\ |3-x| = -1 \\ |3-x| = 1 \end{bmatrix} \Leftrightarrow \begin{bmatrix} x=3 \\ x=2 \\ x=4 \\ x=7 \\ x=-1 \end{bmatrix}$$

Lập truc số và xét dấu ta có kết quả hàm số đã cho đồng biến trên (-1;2).

Câu 22. Cho hàm số f(x) có đạo hàm f'(x) $\forall x \in \mathbb{R}$. Dấu của f'(1-x) được cho như hình bên.

Hỏi hàm số $g(x) = f(x^2 - 3)$ nghịch biến trên khoảng nào trong các khoảng sau?

A.
$$(-2;1)$$
.

B.
$$(-1;0)$$

D.

Lời giải

$$\underline{\mathbf{Chon}} \, \underline{\mathbf{D}}$$
Đặt $t = 1 - x \Rightarrow f(t) = f(1 - x) \Rightarrow f'(t) = -f'(1 - x)$

Ta có
$$f'(t) = 0 \Rightarrow f'(1-x) = 0 \Leftrightarrow$$

$$\begin{bmatrix} x = 0 \\ x = 2 \Rightarrow \\ t = -1 \\ t = -2 \end{bmatrix}$$

$$f'(t) > 0 \Leftrightarrow f'(1-x) < 0 \Leftrightarrow$$

$$\begin{bmatrix} x < 0 \\ 2 < x < 3 \end{cases} \Rightarrow$$

$$\begin{bmatrix} t > 1 \\ -2 < t < -1 \end{bmatrix}$$

$$f'(t) > 0 \Leftrightarrow f'(1-x) < 0 \Leftrightarrow \begin{bmatrix} x < 0 \\ 2 < x < 3 \end{bmatrix} \Rightarrow \begin{bmatrix} t > 1 \\ -2 < t < -1 \end{bmatrix}$$

Dấu của f'(t)

Mặt khác $g'(x) = 2x \cdot f'(x^2 - 3)$

Nên
$$g'(x) = 0 \Leftrightarrow 2x \cdot f'(x^2 - 3) = 0 \Leftrightarrow \begin{bmatrix} x = 0 \\ f'(x^2 - 3) = 0 \end{bmatrix}$$

Ta có
$$f'(x^2-3) = 0 \Leftrightarrow \begin{bmatrix} x^2-3=1 \\ x^2-3=-1 \\ x^2-3=-2 \end{bmatrix} \Leftrightarrow \begin{bmatrix} x=\pm 2 \\ x=\pm \sqrt{2} \\ x=\pm 1 \end{bmatrix}$$

Bảng xét dấu của g'(x)

х	-∞		-2	,	$-\sqrt{2}$		-1		0		1		$\sqrt{2}$		2		$+\infty$
2x		-		-		-		-	0	+		+		+		+	
$f'(x^2-3)$		+	0	-	0	+	0	-		-	0	+	0	-	0	+	
g'(x)		-	0	+	0	-	0	+	0	-	0	+	0	-	0	+	

Dựa vào bảng xét dấu g'(x) suy ra hàm số g(x) nghịch biến trên (0;1) suy ra đáp là

Câu 23. Cho hàm đa thức y = f(x). Nghiệm của bất phương trình $f'(3-2x) \ge 0$ là tập $(-\infty; -1] \cup [0; 2]$. Hàm số y = f(x) nghịch biến trên khoảng

$$\underline{\mathbf{A}}$$
. $(-\infty; -1)$.

B.
$$(-1;1)$$
.

D. $(5; +\infty)$.

Lời giải

Chọn A

• Xét $y' = f'(x) \le 0$.

Đặt x = 3 - 2t, ta có

$$f'(3-2t) \le 0 \Leftrightarrow \begin{bmatrix} -1 \le t \le 0 \\ 2 \le t \end{bmatrix} \Leftrightarrow \begin{bmatrix} -1 \le \frac{3-x}{2} \le 0 \\ 2 \le \frac{3-x}{2} \end{bmatrix} \Leftrightarrow \begin{bmatrix} -2 \le 3-x \le 0 \\ 4 \le 3-x \end{bmatrix} \Leftrightarrow \begin{bmatrix} 3 \le x \le 5 \\ x \le -1 \end{bmatrix}$$

Hàm số y = f(x) nghịch biến trên khoảng $(-\infty; -1)$ và (3; 5)

Câu 24. Cho hàm số y = f(x) có đạo hàm là f'(x) $\forall x \in \mathbb{R}$. Biết $f'(x-1) = (x-1)^2 (x-10)(x-5)^2$. Hàm số $g(x) = f(x^2)$ đồng biến trên khoảng nào trong các khoảng sau?

A.
$$(-2;2)$$
.

B.
$$(-\infty; -3)$$
.

C.
$$(-\infty; -3) \cup (0; 3)$$
. D. $(3; +\infty)$.

Lời giải.

Đặt $x-1=t \Rightarrow x=t+1$ suy ra $f'(t)=t^2(t-9)(t-4)^2$

Ta có $g'(x) = 2xf(x^2) = 2x^5(x^2 - 9)(x^2 - 4)^2$;

$$g'(x) = 0 \Leftrightarrow 2x^5 (x^2 - 9)(x^2 - 4)^2 = 0 \Leftrightarrow \begin{bmatrix} x = 0 \\ x = \pm 3. \\ x = \pm 2 \end{bmatrix}$$

Bảng biến thiên

Dựa vào bảng biến thiên và đối chiếu với các đáp án, ta chọn D.

Câu 25. Cho hàm số f(x) có đạo hàm trên \mathbb{R} . Đặt h(x) = f(2-x), biết $h'(x) = (x-1)^2(2x-x^2)$ với mọi $x \in \mathbb{R}$. Hỏi số thực nào dưới đây thuộc khoảng đồng biến của hàm số $g(x) = f(x^2 - 2x + 2)$?

C.
$$\frac{3}{2}$$
.

Lời giải.

Ta có
$$h'(x) = -f'(2-x) = (x-1)^2(2x-x^2) \Rightarrow f'(2-x) = (x-1)^2(x^2-2x)$$

Đặt
$$2-x=t \Rightarrow x=2-t$$
 suy ra $f'(t)=(2-t-1)^2((2-t)^2-2(2-t))=(t-1)^2(t^2-2t)$

Ta có $g'(x) = 2(x-1)f'(x^2-2x+2)$

$$= 2(x-1) \left[(x^2 - 2x + 2 - 1)^2 ((x^2 - 2x + 2)^2 - 2(x^2 - 2x + 2)) \right]$$

= $2(x-1)^5 \left[(x-1)^4 - 1 \right].$

Xét
$$2(x-1)^5 [(x-1)^4 - 1] > 0 \Leftrightarrow \begin{bmatrix} 0 < x < 1 \\ x > 2 \end{bmatrix}$$

Suy ra hàm số đồng biến trên các khoảng (0;1), $(2;+\infty)$.

Vậy số 3 thuộc khoảng đồng biến của hàm số g(x). **Chọn B.**

Câu 26. Cho hàm số y = f(x) liên tục và xác định trên \mathbb{R} , biết rằng $f'(x+2) = x^2 - 3x + 2$. Hàm số $y = f(x^2 + 4x + 7)$ đồng biến trên khoảng nào dưới đây?

A.
$$(-2;-1)$$
.

B.
$$(-3;-1)$$
.

C.
$$(1;+\infty)$$
.

D.
$$(-2;0)$$
.

Lời giải

Chon C

Ta có:
$$f'(x+2) = x^2 - 3x + 2 = (x-1)(x-2) \Rightarrow f'(x) = (x-2-1)(x-2-2) = (x-3)(x-4)$$
.

Khi đó:
$$f'(x) = 0 \Rightarrow \begin{bmatrix} x = 3 \\ x = 4 \end{bmatrix}$$
. Đặt $y = g(x) = f(x^2 + 4x + 7)$.

Ta có:
$$g'(x) = (2x+4) \cdot f'(x^2+4x+7) = 0 \Leftrightarrow \begin{bmatrix} 2x+4=0 \\ f'(x^2+4x+7) = 0 \end{bmatrix}$$

$$\Rightarrow \begin{bmatrix} x = -2 \\ x^2 + 4x + 7 = 3 \Leftrightarrow \begin{bmatrix} x = -2 \\ (x+2)^2 = 0 \\ x = -1 \end{bmatrix} \Leftrightarrow \begin{bmatrix} x = -2 \\ x = -1 \\ x = -3 \end{cases}$$

Bảng xét dấu g'(x):

Dựa vào bảng biến thiên, ta có: hàm số $y = g(x) = f(x^2 + 4x + 7)$ đồng biến trên khoảng $(1; +\infty)$

Câu 27. Cho hàm đa thức y = f(x). Đặt $g(x) = f(x^2)$, biết rằng $g'(x) = 2x^3(x^2 - 1)$, $\forall x \to \mathbb{R}$. Hàm số h(x) = -2f(x) nghịch biến trên khoảng nào sau đây?

$$\underline{\mathbf{A}}. (1; +\infty).$$

C.
$$(-\infty;1)$$
.

D.
$$(0;+\infty)$$

Lời giải

<u>C</u>họn <u>A</u>

Ta có
$$g'(x) = 2xf'(x^2) = 2x^3(x^2 - 1) \Rightarrow f'(x^2) = x^2(x^2 - 1) \Rightarrow f'(x) = x(x - 1)$$

Ta có
$$h(x) = -2f(x) \Rightarrow h'(x) = -2f'(x) \Rightarrow h'(x) = -2(x^2 - x)$$
.

Do đó
$$g'(x) < 0 \Leftrightarrow -2(x^2 - x) < 0 \Leftrightarrow x^2 - x > 0 \Leftrightarrow \begin{bmatrix} x > 1 \\ x < 0 \end{bmatrix}$$

Vậy hàm số g(x) = -2f(x) nghịch biến trên khoảng $(-\infty; 0)$ và $(1; +\infty)$.

Câu 15. Cho hàm số y = f(x) có đạo hàm liên tục trên \mathbb{R} và có $f'(1-x^2) = x^4 + x^2$. Hàm số $g(x) = f(-1 + \sqrt{7 + 6x - x^2})$ nghịch biến trên:

B.
$$(-1;2)$$
.

Chon D

$$f'(1-x^2) = x^4 + x^2$$

$$f'(x) = x^2 - 3x + 2$$
 Tập xác định của hàm số $g(x)$ là $D = [-1, 7]$

Đạo hàm:
$$g'(x) = \frac{3-x}{\sqrt{7+6x-x^2}} f'(-1+\sqrt{7+6x-x^2})$$

Hàm số nghịch biến: $g'(x) \le 0$

Từ tập xác định, ta có các trường hợp sau:

$$\begin{cases}
x \in (-1;3) \\
f'(-1+\sqrt{7+6x-x^2}) \le 0 \\
\begin{cases}
x \in (3;7) \\
f'(-1+\sqrt{7+6x-x^2}) \ge 0
\end{cases}
\Leftrightarrow
\begin{cases}
x \in (3;7) \\
-1 \le -1 + \sqrt{7+6x-x^2} \le 2 \\
\begin{cases}
x \in (3;7) \\
-1 + \sqrt{7+6x-x^2} \le -1 \\
-1 + \sqrt{7+6x-x^2} \ge 2
\end{cases}
\Leftrightarrow
\begin{cases}
\begin{cases}
x \in (-1;3) \\
\sqrt{7+6x-x^2} \le 3 \\
\sqrt{7+6x-x^2} \le 3
\end{cases}$$

$$\begin{cases}
x \in (-1;3) \\
x \le 3 - \sqrt{7} \\
x \ge 3 + \sqrt{7}
\end{cases}
\Leftrightarrow
\begin{cases}
-1 < x \le 3 - \sqrt{7} \\
3 < x \le 3 + \sqrt{7}
\end{cases}$$

$$\begin{cases}
x \in (3;7) \\
3 - \sqrt{7} \le x \le 3 + \sqrt{7}
\end{cases}$$

Vậy hàm số nghịch biến trên các khoảng $\left(-1; 3-\sqrt{7}\right)$ và $\left(3; 3+\sqrt{7}\right)$

Câu 9. Cho hàm số y = f(x) liên tục và xác định trên \mathbb{R} , biết rằng $f'(x+2) = x^2 - 3x + 2$. Hàm số $y = f(x^2 + 4x + 7)$ đồng biến trên khoảng nào dưới đây? **A.** (-2;-1). **B.** (-3;-1). **C.** $(1;+\infty)$.

A.
$$(-2;-1)$$
.

B.
$$(-3;-1)$$

C.
$$(1;+\infty)$$
.

Câu 1: **Chon C**

Ta có:
$$f'(x+2) = x^2 - 3x + 2 = (x-1)(x-2) \Rightarrow f'(x) = (x-2-1)(x-2-2) = (x-3)(x-4)$$
.

Khi đó:
$$f'(x) = 0 \Rightarrow \begin{bmatrix} x = 3 \\ x = 4 \end{bmatrix}$$
. Đặt $y = g(x) = f(x^2 + 4x + 7)$.

Ta có:
$$g'(x) = (2x+4) \cdot f'(x^2 + 4x + 7) = 0 \Leftrightarrow \begin{bmatrix} 2x+4=0 \\ f'(x^2 + 4x + 7) = 0 \end{bmatrix}$$

$$\Rightarrow \begin{bmatrix} x = -2 \\ x^2 + 4x + 7 = 3 \Leftrightarrow \begin{bmatrix} x = -2 \\ (x+2)^2 = 0 \Leftrightarrow \begin{bmatrix} x = -2 \\ x = -1 \end{cases} \\ x = -3 \end{cases} \Leftrightarrow \begin{bmatrix} x = -2 \\ x = -1 \\ x = -3 \end{cases}$$

Bảng xét dấu g'(x):

Dựa vào bảng biến thiên, ta có: hàm số $y = g(x) = f(x^2 + 4x + 7)$ đồng biến trên khoảng $(1; +\infty)$

Câu 13. Cho hàm số y = f(x) có đạo hàm liên tục trên \mathbb{R} và có bảng xét đấu đạo hàm f'(x)như hình vẽ bên dưới. Hàm số $g(x) = f(-1 + \sqrt{7 + 6x - x^2})$ nghịch biến trên:

х	-∞		1		2		+∞
f'(x)		+	0	-	0	+	
	B. (-1;2	C. (2;3).			D. (3;5).		

Chọn D

Cách 1:

A. (5;6).

Tập xác định của hàm số $g(x) = f(-1 + \sqrt{7 + 6x - x^2})$ là D = [-1;7]

Đạo hàm:
$$g'(x) = \frac{3-x}{\sqrt{7+6x-x^2}} f'(-1+\sqrt{7+6x-x^2})$$

Hàm số nghịch biến: