(19) 日本国特許庁(JP)

(12)公表特許公報(A)

(11)特許出願公表番号

特表2005-501789 (P2005-501789A)

(43) 公表日 平成17年1月20日(2005.1.20)

(51) int.Cl. ⁷	F I	テーマコード(参考)
CO1B 31/02	CO1B 31/02 101F	4D058
BO1D 48/02	BO1D 46/02 Z	4G146
BO1D 46/04	BO1D 46/04 1O4	

審查請求 未請求 予備審查請求 有 (全 39 頁)

(21) 出願番号 (86) (22) 出願日 (85) 翻訳文提出日 (86) 国際公開番号 (87) 国際公開番号 (87) 国際公開日 (31) 優先權主張番号 (32) 優先權主張国 (31) 優先權主張雷号 (32) 優先日 (33) 優先權主張国 (33) 優先權主張国	特顏2003-524704 (P2003-524704) 平成14年8月23日 (2002. 8. 23) 平成16年2月27日 (2004. 2. 27) PCT/US2002/027058 W02003/020402 平成15年3月13日 (2003. 3. 13) 60/316, 423 平成13年8月30日 (2001. 8. 30) 米国 (US) 10/098, 828 平成14年3月15日 (2002. 3. 15) 米国 (US)	(71) 出願人 (74) 代理人 (72) 発明者	ティーディーエイ リサーチ インコーポレイテッド アメリカ合衆国 コロラド 80033, ウィート リッジ, ウエスト 52エヌディー アベニュー 12345 100090697 弁理士 中前 富士男
			最終頁に続く

(54) 【発明の名称】カーボンナノ材料を連続製造するためのフィルター装置及び方法

(57)【要約】

気相反応炉内で製造される、フラーレンなどのカーボン ナノ材料を回収するためのフィルター装置及び方法が提 供される。前記フィルター装置は、フィルターのその場 でのクリーニングのため備えられ、フィルターで捕集さ れる生成物をフィルターから放出して回収できるように する。生成物は、カーボンナノ材料の連続合成を中断す るととなく、放出されて前記反応炉から取り出されると とが可能である。前記フィルター装置は反応炉の高稼動 と、カーボンナノ材料のより大規模な生産を促進する。 フィルターは駆動力及び/又は気流を加えることにより クリーニングされる。具体的な実施例では、フィルター は、前記フィルターへの逆方向の気流パルスによってク リーニングされる。また、本発明は、本発明に係るフィ ルター装置を用いて、連続的に稼動可能なカーボンナノ 材料を気相合成するための反応装置を提供する。好まし い反応装置は、燃焼によってカーボンナノ材料を合成す るものである。本発明のフィルター装置及び方法を用い たカーボンナノ材料の連続製造の方法も提供される。

【特許請求の範囲】

【請求項1】

反応装置内において気相反応により生成するカーボンナノ材料を捕集する1又は2以上の ガス透過性フィルターと、

該1又は2以上のフィルターが該反応装置内の所定位置に配置されている間、捕集された カーボンナノ材料を該1又は2以上のガス透過性フィルターから除去するためのフィルタ ークリーニング装置と、

該1又は2以上のガス透過性フィルターに対して配設されておりフィルターから除去されるカーポンナノ材料を受け取り、カーボンナノ材料の合成を中断することなく回収されたカーボンナノ材料を排除することができるカーボンナノ材料の回収器と、

を有する反応装置内で気相反応により生成するカーボンナノ材料を回収するフィルター装 置。

【請求項2】

気流を前記フィルターへ導くことにより、カーボンナノ材料が除去される請求項1記載の 装置。

【請求項3】

前記気流がバルス化されたガスジェットにより供給される請求項2記載の装置。

【請求項4】

前記気流を構成するガスが窒素、アルゴン又は空気である請求項2又は3に記載の装置。 【請求項5】

前記フィルタークリーニング装置が、ガス源と流体的に連通するジェット形成オリフィス、及び前記ジェット形成オリフィスと前記ガス源との間に位置するバルブを有する請求項1~4のいずれか1項に記載の装置。

【請求項6】

前記ジェット形成オリフィスが前記フィルターの下流側に位置する請求項5記載の装置。 【請求項7】

前記ガス源の圧力が少なくとも約25 psi (ポンド/平方インチ)である請求項5又は6に記載の装置。

【請求項8】

前記ガス源の圧力が少なくとも約100psi(ポンド/平方インチ)である請求項5又 ³⁰は6に記載の装置。

【請求項9】

前記反応装置が生成物を含む気流を生成し、前記フィルターはフィルター室内に備えられ、実質的に前記生成物を含む気流全体が前記フィルターを通過するように前記フィルター 室が設計され、前記ガス透過性フィルターが配設される請求項1~8のいずれか1項に記載の装置。

【請求項10】

前記ガス透過性フィルターがバッグフィルターである請求項1~9のいずれか1項に記載の装置。

【請求項11】

前記フィルターがセラミック繊維でできている請求項10記載の装置。

【請求項12】

前記バッグフィルターがグラスファイバー、ポリマ繊維、又はテフロン(登録商標)コー ティングしたポリマ繊維でできている請求項10記載の装置。

【請求項13】

前記フィルターの孔径が約10ミクロン未満である請求項1~12のいずれか1項に記載の装置。

【請求項14】

2つ以上のフィルターを有する請求項1~13のいずれか1項に記載の装置。

【請求項15】

50

40

10

20

2つ以上のフィルタークリーニング装置を有する請求項1~14のいずれか1項に記載の 装置。

【請求項16】

. .

更に、バルブを通じて前記反応装置と接続している、カーボンナノ材料除去のための注入口を有する請求項1~15のいずれか1項に記載の装置。

【請求項17】

更に、前記1又は2以上のフィルターが配設されており、カーボンナノ材料を含む反応室からの気流が前記1又は2以上のフィルターを通過するために、加熱可能な導管を介して前記反応室と流体的に連通するフィルター室を有する請求項1記載のフィルター装置。

【請求項18】

前記フィルタークリーニング装置がパルス化されたガスジェットであり、前記フィルター 室内で加圧ガス源と流体的に連通する1又は2以上のジェット形成オリフィス、及び、前 記ガス源とガスパルスを生成するために作動する前記1又は2以上のジェット形成オリフィスとの間に位置する1又は2以上のバルブを有する請求項17記載のフィルター装置。

【請求項19】

少なくとも1つのジェット形成オリフィスが、ガスパルスを前記1又は2以上のフィルターの下流側に導くように配設される請求項18記載のフィルター装置。

【請求項20】

カーボンナノ材料を含有する生成ガス流を発生させる反応室、及び、カーボンナノ材料の 合成を停止することなくカーボンナノ材料を回収し、反応装置から取り出す請求項1~1 ²⁰ 9のいずれか1項に記載のフィルター装置を有するカーボンナノ材料合成のための反応装 置。

【請求項21】

燃焼装置である請求項20記載の反応装置。

【請求項22】

前記フィルタークリーニング装置が、捕集されたカーボンナノ材料を除去するために前記 1又は2以上のフィルターへガスを送出する請求項20又は21に記載の反応装置。

【請求項23】

前記フィルタークリーニング装置が、ガス源と流体的に連通するガス注入口、及び前記1 又は2以上のフィルターに前記ガスを送出するために選択的に操作できるバルブを備える 30 請求項20~22のいずれか1項に記載の反応装置。

【請求項24】

前記ガス注入口がジェット形成オリフィスを有し、ガスパルスを前記フィルターに送出するために前記バルブが選択的に操作される請求項23記載の反応装置。

【請求項25】

前記ガスパルスが前記1又は2以上のフィルターの下流側に送出される請求項24記載の 反応装置。

【請求項26】

更に、前記1又は2以上のフィルターを備えており前記合成反応室と流体的に連通するフィルター室を有し、前記合成反応室からの前記生成ガス流が前記フィルター室に入り、前 40記1又は2以上のフィルターを通過する請求項20~25のいずれか1項に記載の反応装置。

【請求項27】

前記フィルタークリーニング装置が、バルブを通じて加圧ガス源と流体的に連通する1又は2以上のジェット形成オリフィスを前記フィルター室内に有する請求項20~25のいずれか1項に記載の反応装置。

【請求項28】

前記1又は2以上のジェット形成オリフィスが、前記フィルター室内に配設され、ガスパルスを前記1又は2以上のフィルターの下流側に導く請求項27記載の反応装置。

【請求項29】

50

前記フィルターがセラミック繊維でできている請求項20~25のいずれか1項に記載の 反応装置。

【請求項30】

前記フィルターの孔径が10ミクロン以下である請求項29記載の反応装置。

【請求項31】

カーボンナノ材料を生成するための1又は2以上のバーナーと、炭化水素燃料及び酸素からなる気流を該1又は2以上のバーナーに送流する、該1又は2以上のバーナーの上流にある1又は2以上の注入口と、該1又は2以上のバーナーのための少なくとも1つの点火源と、カーボンナノ材料を含む気流を発生させるために該1又は2以上のバーナーの下流に減圧を供しており、該1又は2以上のバーナーと流体的に連通している減圧室と、該1 10又は2以上のバーナーの下流にある該減圧室内にあって、該カーボンナノ材料を含む気流を受け取り、該気流中のカーボンナノ材料を捕集するために配置される1又は2以上のフィルターと、該1又は2以上のフィルターからカーボンナノ材料を除去するガスを選択的に導入する為の、該減圧室への1又は2以上のガス注入口と、該1又は2以上のフィルターから除去されたカーボンナノ材料を該減圧室から除去するための、該減圧室内にある1又は2以上の注出口とを有し、該1又は2以上のフィルターから該カーボンナノ材料を除去する際、及び該減圧室から該カーボンナノ材料を排除する際に、該1又は2以上のバーナーからのカーボンナノ材料の該気流を中断する必要の無いカーボンナノ材料を製造するための燃焼装置。

【請求項32】

前記気流が前記フィルターの下流側に導かれ、カーボンナノ材料を除去する請求項31記載の燃焼装置。

【請求項33】

前記1又は2以上のガス注入口が、加圧ガス源と流体的に連通するジェット形成オリフィスである請求項31及び32に記載の燃焼装置。

【請求項34】

少なくとも1種のカーボンナノ材料を運搬する生成ガス流を生成するカーボンナノ材料の 合成室を備える工程と、

前記生成ガス流を遮り、該カーボンナノ材料を捕集するために配置される1又は2以上のフィルターを備える工程と、

該生成ガス流中から1又は2以上の該フィルターを取り除かずに、該1又は2以上のフィルターによって捕集された該カーボンナノ材料の少なくとも一部を除去する工程と、カーボンナノ材料の合成を停止せずに、該フィルターから除去される該カーボンナノ材料を回収する工程とを有するカーボンナノ材料の回収方法。

【請求項35】

前記1又は2以上のフィルターと接触するガス流を導入することにより、前記フィルターからカーボンナノ材料を除去する請求項34記載の方法。

【請求項36】

前記ガス流がパルスジェット流である請求項35記載の方法。

【請求項37】

ガスの前記パルスジェット流が前記1又は2以上のフィルターの下流側に導かれる請求項36記載の方法。

【請求項38】

ガスのパルスジェットが定期的に導入され、カーボンナノ材料を除去する請求項36又は37に記載の方法。

【請求項39】

前記1又は2以上のフィルターの上流側の圧力が、選択された最大圧力を超えて増加する ことに反応してガスのパルスジェットが導入され、炭素材料を除去する請求項38記載の 方法。

【請求項40】

30

20

50

ガスのバルスジェットが、選択された時間間隔で自動的に導入される請求項35~39の いずれか1項に記載の方法。

【請求項41】

バルブを選択的に操作することにより、前記生成ガス流から選択的に隔離することができ る回収器に、除去されたカーポンナノ材料が回収される請求項34~40のいずれか1項 に記載の方法。

【請求項42】

動力を前記1又は2以上のフィルターに加えることにより、前記カーボンナノ材料が前記 1又は2以上のフィルターから除去される請求項34~41のいずれか1項に記載の方法

【発明の詳細な説明】

【技術分野】

[0001]

関連出願の相互参照

本発明は、2001年8月30日に出願された米国特許仮出願60/316,423号及 び2002年3月15日に出願された米国特許出願10/098,828号から優先権を 得ており、これらの出願は、本発明の開示に矛盾しない範囲で、ここでは参照として組み 入れられる。

発明の背景

本発明は、フラーレンなどのカーボンナノ材料についての分野にあり、特にこのような物 20 質の連続合成に関連する。更に具体的には、本発明は連続稼動を促進するその場での(in situ) クリーニングを提供する、カーポンナノ材料回収のためのフィルター装置及び方 法に関連する。

【背景技術】

[0 0 0 2]

ここでは「カーボンナノ材料」という用語は、一般的には炭素原子の位置によって形成さ れる6角形の間に5員環を含むことにより、グラファイト平面の曲面化を示す6員環を有 し、少なくとも一寸法がナノメートルオーダーである如何なる炭素材料にも本質的に及ぶ ものである。カーボンナノ材料の例は、これらに限定されているわけではないが、フラー レン、単層カーボンナノチューブ (SWNTs)、多層カーボンナノチューブ (MWNT 30 s)、ナノチューブル、及びナノメートル程度の寸法を有するネステッドカーボン構造体 を含む。ここでは「フラーレン」という用語は一般にその寸法とは別に、両6員及び5員 の炭素環を含む閉鎖籠状炭素複合物の全てに及ぶものであり、多量にある低分子量のCeo 及びC70フラーレンや、より大きな分子量のフラーレンとして知られるC76、C78、C84 及び高次フラーレン С 2 м (但し N が 5 0 以上) などを含む。「フラーレン」という用語は 当業者によって理解されている「溶媒抽出可能なフラーレン」(一般的にはトルエン又は キシレンに溶ける低分子量フラーレンを含む)と少なくとも C400 程度の大きさの巨大フ ラーレンなど抽出不可能なより高次のフラーレンも含むように解釈されるものである。カ ーポンナノ材料は煤中でも製造可能であり、場合によってはカーポンナノ材料は煤から分 離させることもでき、煤中に富化させることもできる。例えばフラーレンなどのカーポン 40 ナノ材料の合成中に生成された煤は通常はカーポンナノ材料の混合物を含み、これはカー ボンナノ材料の更なる純粋化及び富化の元となり、カーボンナノ材料の好ましい特質をそ れ自身で示し、それらの特質をもたらす付加物として用いることが可能となる。「カーボ ンナノ材料」という用語は限定なしで用いられる場合には、検知しうる量のカーポンナノ 材料を含有する煤も含む。例えば、フラーレンを含む煤は「カーポンナノ材料」という用 語に含有される。

様々な種類のカーポンナノ材料は、それらの多様な特質に基づく様々な利用可能性を有す る。フラーレンは治療法として、電子処理及びエネルギー変換において潜在的に有用であ る。フラーレン煤は、タイヤ製造において吸着材や添加物として使用するカーボンプラッ クとして優れた効果を発揮できる。ナノチューブは複合材料、電子装置及びディスプレイ 50

技術の強化材として潜在的な利用性を有する。

当業者の間では、カーボンナノ材料の商業的応用において大きな可能性が認められているが、コストが高く、用途開発のために必要な大量のカーボンナノ材料を入手するのが難しいことが、これらの材料を実用化するうえで大きな障害となっている。

フラーレン、単層カーボンナノチューブ(SWNTs)、多層カーボンナノチューブ(MWNTs)などのカーボンナノ材料は、制限なしに、例えばアーク法(例えば米国特許5,27,038号及び5,876,684号)、燃焼法(米国特許5,273,729号、5,985,232号及び6,162,411号、ハワードら(1991)『Nature』(352巻)139~141ページ、ハワード等(1992)『J. Phys. Chem.』(96巻)6657ページ、ハワード等(1992)『Carbon』(3 100巻)1183ページ、及びマキノン等(1992)『Comb. Flame』(88巻)102ページ、テイラー等(1993)『Nature』(366巻)728~731ページ)、電子ビーム蒸発(例えば米国特許5,316,636号)、レーザーアブレーション(ザング等(1999)『J. Phys. Chem. B』(103巻)9450ページ)などの様々な方法で製造可能である。

この様な方法において、カーポンナノ材料は処理室内で生成された後回収されるが、回収 は例えば、回収表面から(W. クラッチマー等(1990) 『Nature』(347卷) 3 5 4 ~ 3 5 7 ページ)、又は管状コンデンサー内の処理炉の外側から(ロレンツ等に よる米国特許5,304,366号)、グラスウール濾過装置内において(P.ヘブゲン とJ. B. ハワード (1999) Fifth Int'l Microgravity Combustion Workshop, K. R. サッチステダーと J. S. ティエン 編集『NASA/CP』(1999)208917、137ページ)、又は袋状濾紙内に おいて(海藤誠等による1995年に発行されたJP7138009公開公報の要約)擦 り取ったりすることにより行われる。追加的な生成物を捕集するためのバッグフィルター と、殆どの生成物を回収する生成物回収タンクとを組み合わせて使用する 2 段階回収方法 は、村田勝英等によって1994年に発行された公開公報TP6056414の要約に報 告されている。しかし、2つ以上の回収器が順次使用される場合を除き、これらの生成物 質回収方法のうち、カーポンナノ材料の製造が進行中に回収表面のクリーニングを可能に する方法は1つもない。ロレンツ等は米国特許5,304,366号において、1つの回 収器が工程から外れ、その間他の回収器が稼動する複数のカーボンナノ材料回収器の使用 30 を報告している。

当該分野では、カーボンナノ材料の実用化を促進するために、カーボンナノ材料のより大規模な生成とより低価格での製造が必要とされている。カーボンナノ材料合成の連続処理の開発は、合成を拡大しコストを下げる一つの手段である。より低コストでのカーボンナノ材料製造を可能にするには、合成工程を中断せずに操作出来る装置及び回収方法が必要である。また当該分野では、当業者には周知の様々なカーボンナノ材料合成方法と概して相性の良い回収器及び方法も必要とされている。本発明の装置及び方法は、このような汎用性を提供し連続処理を容易にする。

【発明の開示】

【発明が解決しようとする課題】

[0003]

発明の要約

カーポンナノ材料の連続合成を促進するため、本発明はフィルターを工程から外すことなく反応装置内においてその場でクリーニングでき、合成を妨げることなく回収される生成物を (カーボンナノ材料の) 反応装置から取り出す、カーボンナノ材料回収のためのフィルター装置を提供する。

【課題を解決するための手段】

[0004]

回収フィルター装置は、反応装置内においてその場でクリーニングされ、捕集されたカーボンナノ材料をフィルターに動力を加えることにより放出する。駆動力 (motive force)

40

s n

はフィルターが生成物を捕集する所定位置にある時に加えられる。カーボンナノ材料の合 成を妨げずに反応装置からカーボンナノ材料を収集して取り出すことができるようにして 、カーポンナノ材料をフィルターから除去する。駆動力は反応装置内のフィルターに選択 的に加えられ、反応炉を開けたり、フィルターを反応装置から外したりする必要無く、捕 集された生成物が解放される。駆動力は様々な方法でフィルターに加えられるが、通常は 処理質の外部からフィルターに選択的に加えられる。駆動力は機械的に直接加えるが、フ ィルターが生成物を含む気流中にある間に、例えば、軽く叩いたり、こつこつ叩いたり、 振ったり、振動させたり、又は別の方法で機械的にフィルターを動かしたりする。

例えば、駆動力を加えてフィルターを激しく動かし、そして収集されたカーボンナノ材料 は、重力によって受容器又は回収器に落下して除去される。あるいは気流をフィルターに 10 当てることもでき、特にフィルターの下流側に逆方向の気流を加えて、収集された生成物 をフィルター孔から直接除去する(ここで「下流」とは生成物を含む気流について定義す る)。駆動力はまた、フィルターに駆動力を加える気流を発生させ、収集された物(matr ial)を取り除くことによっても間接的に加えることが出来る。好ましい実施例では、外部 のガス源からの気流をフィルターへと導くことにより、駆動力をフィルターに加える。こ の実施例では、フィルターに接触する気流によって、フィルターに駆動力を加えて収集し た生成物を除去することもでき、収集した生成物をフィルター孔から除去することもでき る。逆気流は、収集した生成物をフィルター孔から除去するのに好ましい。具体的な実施 例では、気体流はパルス化されたガスジェット(pulsed jets of gas)の形態で供給される が、より好ましいのは、例えば、ペンチュリノズルを用いて供給される高圧ガスパルスで 20 ある。この実施例では、高圧ガスパルスは、収集した生成物を除去する駆動力を供給する ことで、気流により収集した生成物を孔から直接除去でき、またフィルターに沿って衝撃 波を起こすことができる。

本発明の回収装置及び方法は、カーボンナノ材料の連続合成を中断することなく、処理装 置からカーボンナノ材料を除去し、生成物を発生させる反応装置内での連続合成を可能に する。フィルターから除去され回収された生成物は、生成物の反応炉からの除去を促進す るように形成されている受容器、又は回収器中に落下する。これらの受容器又は回収器は 、生成気流を妨げたり、反応炉内での連続合成を中断させたりせずに生成物を除去できる ように、合成室の外からも扱うことができる。そのために多様な入口を設けることが出来

本発明のフィルター装置は、カーポンナノ材料を合成する反応炉と流体的に連通し、反応 炉からの生成ガス流 (product gas flow) を受け取るガス透過性のフィルターを1又は2 以上有する。生成物を含む気体流によって運ばれるカーポンナノ材料が、フィルター上で 捕集されるように、反応炉からの生成物を含む気流のうち少なくとも十分量が、1又は2 以上のフィルターを通過する。フィルターは、低分子量のカーボンナノ材料を含む煤やそ の他の粒子を捕集する。また、フィルター装置は、捕集されたカーボンナノ材料を除去す るフィルタークリーニング装置を有する。このフィルタークリーニング装置は、駆動力を フィルターに伝えて捕集されたカーポンナノ材料を取り除く。この駆動力は生成気流から フィルターを移動させることなく、及びフィルターを通過する生成ガス流を妨げること無 く、加えられる。更にフィルター装置は、解放されたカーボンナノ材料を、フィルターを 通る生成ガス流を阻害することなしに回収する排出口を反応装置内に有する。一実施例で は、合成を中断することなく反応炉から取り外すことができ、生成物を回収した上で元の 位置に戻すことができる生成物受容器又は回収器が用いられる。

本発明のフィルター装置は、1又は2以上のガス透過性フィルター、及びフィルタークリ ーニング装置を有する。フィルターは、カーポンナノ材料を合成する反応炉と流体的に連 通し、反応炉からの生成物を含む気流を受けるよう配設されている。生成物を含む気流は フィルターを上流から下流へ通過し、生成物を含む気体により運ばれるカーボンナノ材料 はフィルター上で捕集される。

フィルタークリーニング装置は、駆動力をフィルターに加えて生成物を除去する。好まし い実施例では、フィルタークリーニング装置は、気流をフィルターに供給し生成物を除去 50

40

する。好ましくは、この気流は逆に流れ(生成物を含む気流と比較して)、フィルターの下流側に加えられる。好ましくは、この気流はパルス化されたガスジェットとして供給される。気流を用いるフィルタークリーニングは駆動力をフィルターへ伝え、そしてまた気流をフィルター孔に通す。結果としてこれらの仕組みのどちらか一方又は両方によって捕集される物質を除去することができる。

また、フィルター装置は、フィルターから除去された生成物を回収する受容器、又は回収器を有する。生成物回収器は、単に収集した生成物を期待通り除去するのに利用できる反応炉の表面であってもよい。生成物回収器は、選択的に反応装置から隔離できる生成物回収のための空間も含み得る。

また、本発明は、本発明のフィルター装置を用いて、合成反応炉からカーボンナノ材料を 10 回収する方法も提供する。この方法は、反応炉からの生成気体流を遮るフィルターを1又は2以上備え、定期的に駆動力及び/又は気体流をフィルターに加えて、捕集された物質を除去する工程を含む。更に、この方法は、解放された物質を定期的に反応炉から回収する工程を有する。フィルターのクリーニング及び反応炉からの生成物の回収は、生成物を含む気流からフィルターを移動させたり、反応炉からの生成物を含む気流を止めたりすることなく行われる。

また、本発明は、カーボンナノ材料連続製造のための反応装置及び方法を提供する。本発明に係る連続製造方法は、カーボンナノ材料合成のための反応炉を用い、反応炉からの生成ガス流から生成物であるカーボンナノ材料が、本発明のフィルター装置内で連続的に収集され、反応炉の生成物を含む気流からフィルターを移動したり、反応装置内での合成を 20 中断したりすることなく、駆動力及び/又は気流をフィルターに加えて、カーボンナノ材料をフィルターから解放又は除去する。本発明に係るカーボンナノ材料連続製造方法は、カーボンナノ材料を運ぶ生成ガス流を発生させる如何なるカーボンナノ材料合成方法にも用いることができる。特に、当業者に周知であって理解されているアーク合成法又は燃焼合成法は、本発明の装置及び方法において用いることができる。

合成反応炉内にて生成されるカーボンナノ材料は、反応炉から送出される生成ガスによりフィルターへと運ばれる。このフィルターは生成物を含む気流を受け、その中にカーボンナノ材料を捕集するように配設されている。フィルター上で捕集される生成物は、上記の通り、駆動力及び/又は気流をフィルターに加えることによりフィルターから除去される。フィルターから放出されると、生成されたカーボンナノ材料は反応炉から回収され取り出される。一実施例では、フィルターから放出される生成物を受け取るために、生成物回収器は反応装置と選択的に接続するように配設されている。生成物回収器は反応炉から隔離でき(例えばバルブを閉じることにより)、反応炉内の気流を中断することなく生成物を除去できる。

本発明のフィルター装置と、カーボンナノ材料を合成する反応装置とを組み合わせることにより、カーボンナノ材料の連続製造中に回収表面をクリーニングすることができ、従来は一括合成法であったものを連続法に変えることができる。本発明の装置及び方法を用いることにより製造コストを下げ、炭素材料の製造規模を拡大し、実用化へ促進につながる量の炭素材料の入手可能性が向上するであろう。

【発明を実施するための最良の形態】

[0005]

発明の詳細な説明

本発明は、フラーレン、及びフラーレン煤を含むカーポンナノ材料を合成、及び回収するための改良された方法及び装置を提供する。具体的かつ好ましい実施例では、カーボンナノ材料の合成は連続的である。ここでは合成工程に関する「連続的」という用語は、バッチ処理と区別するために用いられるが、バッチ処理においてはひとまとまりの生成物が生成され、反応装置内の壁面、フィルター又はその他の表面にて回収され、工程を停止した上で装置から生成物を除去する(即ち、1又は2以上の壁面から生成物を除去される及び/又はフィルターをクリーニングして収集した生成物を取り除く)。

カーボンナノ材料用の改良された反応装置は、生成ガス流によって運ばれるカーボンナノ 50

材料を生成する合成反応炉と、生成ガス流で運ばれるカーポンナノ材料を受けて捕集する ために配設されるフィルターと、選択的に駆動力及び/又は気流をフィルターに加えて、 フィルターによって捕集されるカーボンナノ材料を放出するフィルタークリーニング装置 と、フィルターから放出されるカーポンナノ材料を受け取る回収器とを有する。この回収 器は、生成物の連続合成を中断することなく、回収された生成物を取り出すために選択的 に使用し得る。

フィルター内で捕集されるカーポンナノ材料は、フィルタークリーニング装置によって駆 動力及び/又は気流を加えることにより解放される。駆動力は例えば生成物を含む気流か らフィルターを除去せずに機械的に軽く叩いたり、こつこつ叩いたり、揺らしたり、振っ たり、振動させたり、又は別の方法でフィルターを動かして加えられる。具体的な実施例 10 では、バルス化された又は断続的なガスの流れをフィルターに加えることにより、フィル ターに駆動力を加えることが出来る。高圧パルス又はガスジェットを用いてフィルターに 衝撃波を加え、収集した物質を除去することができる。気流、特に逆洗流はフィルターに 加えられ、フィルター孔を通り収集した物質を直接除去する。

フィルターをクリーニングする気体パルスを用いる本発明に係るフィルタークリーニング 装置において、気流又は気体パルスをフィルターに向かって駆動して駆動力、衝撃波、又 は気体パルス、若しくは気流が選択的にフィルターに加えられる。 1又は2以上の気体パ ルスによって、捕集生成物をフィルターから解放する。気流は反応炉が稼動している間に 選択された間隔で定期的に駆動してもよいし、又は反応炉内を最大圧にするためのシステ ムパラメーターに応答して駆動してもよい。

具体的な実施例では、本発明のフィルタークリーニング装置は、フィルターに向かって断 続的な気流又は気体パルスを生成して、フィルターからカーボンナノ材料を除去するため に、1又は2以上の気体注入口をフィルター近傍の反応炉内に有する。好ましい実施例で は、気流は気体パルスジェットとして供給され、フィルターの下流側に導かれる。

フィルター装置の生成物受容器又は回収器は、反応炉の壁面(例えば壁面の凹部)と一体 であってよく、フィルターから除去される生成物を受け取るよう、フィルターに対して配 設されてもよい。あるいは、回収器は、放出される生成物を受け取る別個の、反応炉から 隔離することができる容器である。生成物回収器は、カーボンナノ材料の合成を中断せず に収集物質を取り出すために選択的に使用され得る。一実施例では、反応炉から生成物を 取り出すために外部のバルブ (例えば排出口) が開かれる。その他の実施例では、生成物 30 回収器は反応炉から選択的に隔離(例えばバルブによって)される。この場合、フィルタ ーがクリーニングされている間バルブは開いており、その後バルブを閉じ、反応炉から生 成物回収器を隔離し、生成物を除去することができる。回収器から生成物が除去され、フ ィルターに生成物が積層したのち、駆動力及び/又は気流を加えることにより再びフィル ターがクリーニングされ、バルブが再び開かれて生成物を回収できる。

本発明のフィルター装置は、生成物合成を停止したり、合成中に発生する生成ガス流中か らフィルターを移動したりする事なく、フィルタークリーニング及び生成物の回収を可能 にする。本発明以前には、カーポンナノ材料の製造において、回収器表面をクリーニング し、生成物を回収するために、生成物合成を中断したり合成中に発生する生成ガス流から フィルターを移動したりすることが必要であった。本発明のフィルター装置及び方法を利 40 用することにより、基本的に連続運転反応炉として稼動することができるよう、合成反応 炉の運転時間を大幅に延長できる。

図1は、カーボンナノ材料を回収するため、パルスジェットでクリーニングされるフィル ター装置を示す。フィルター室 (1)はカーポンナノ材料合成反応炉(10)に接続する 注入口 (3) を有する。カーボンナノ材料合成反応炉は、少なくとも1のカーボンナノ材 料を運ぶ生成物を含む気流を製造する。カーボンナノ材料は、合成工程の結果として運ば れるか、本発明の回収器を使用する目的で運ばれるかのどちらかが可能であり、例えば、 生成物を含む気流内で生成されないカーボンナノ材料は、濾過及び回収のための気流によ って運ばれ得る。本発明が適合できるカーポンナノ材料合成法は、燃焼法(即ち煤生成火 炎)、カーボンアーク法、炭化水素熱分解法 (プラズマ使用又は不使用)、レーザーアプ 50

レーション法、そしてRFプラズマ法である。好ましい実施例では、本発明は燃焼法、特に 煤生成火炎合成法と共に用いられる。

フィルター室(1)はガス透過性フィルター(2)を有する。前記ガス透過性フィルターは、カーボンナノ材料合成反応炉(10)からの生成物を含む気流の相当量、好ましくは全てがフィルターを通過するよう配設されている。生成物を含む気流はフィルターを通過し、気流によって運ばれるカーボンナノ材料はフィルターに衝突し、生成物を含む気流から分離され、そしてフィルターの表面又は内部に集まる。気流がフィルターの周囲を通る如何なる経路の存在も、生成物の回収率を低下させる結果となるので、避けるべきである。実質的にフィルターを迂回するような経路があると、回収効率は低下する。好ましくは、フィルターは広い表面積を備える袋形状である。袋形状のバッグフィルターはカーボン 10ナノ材料製造に用いられる合成方法に適合する (compatible) が選択される。バッグフィルターは柔軟性があるものが好ましく、通常は生成物を含む気流中に位置する支持構造内に設けられる。

様々な種類のバッグフィルターが市販されており、経済的なカーボンナノ材料を回収する手段を提供している。本発明に有用なセラミック繊維のバッグフィルターは 3M (登録商標) FB-900 バッグなどを含む。 3M (登録商標) Nextell (20 Nextell (20 Nextell (20 Nextell (20 Nextell (20 Nextell (21 Nextell (22 Nextell (22 Nextell (23 Nextell (24 Nextell (25 Nextell (26 Nextell (26 Nextell (27 Nextell (28 Nextell (29 Nextell (29 Nextell (20 N

バッグフィルターは濾過及びクリーニングの間、フィルターを通る気流が実質的に滞留することなしに、形状を保つように支持される。バッグフィルター支持材は図1においては詳細に示されていない。様々なバッグフィルター支持ケージは当業者には周知である。米 30 国特許4,259,095号及び5,800,580号にはバッグフィルター支持材の形状が複数記載されている。好ましい支持ケージはユタ州ソルトレイクシティのナショナルフィルター メディア インク (National Filter Media Inc.)から入手できるようなワイヤフレームである。

フィルター室は、フィルタークリーニング装置(20)に接続する注入口(5)を有し、 捕集された固体をフィルターから除去する働きをする。図1に示すように、注入口(5) はバルブ(22)を介しフィルター室と接続する。バルブ(22)はフィルター室の内側 又は外側に位置し得る。フィルタークリーニング装置の部品(例えばジェットを形成する に用いられるオリフィス)は図2の下部に示すように、注入口(5)を越えてフィルター 室(1)の中に延長することができる。

いくつかの実施例では、フィルタークリーニング装置は、気体透過性フィルターを通過する気流を作り出すためのガス送出導管を有する。フィルタークリーニングに好ましいガスは、進行中の合成に悪影響を与えたり、望ましくない汚染物質を導入したり、回収された生成物に悪影響を与えたりしないガスである。フィルタークリーニングに適する模範的なガスは窒素、アルゴン及び空気などである。ガス源は例えば業務用であり、固体を含まない気体のタンク(24)である。ガス源は好ましくは送出導管に供給される際に少なくとも約25psi(ポンド/平方インチ圧力)まで加圧されている。ガス圧力はフィルターから固体を除去するのに十分な威力のガスパルスを発生させるほど高いものが好ましい。好ましくは、圧力は少なくとも約100psia(ポンド/平方インチ絶対圧力)である。より好ましくは、圧力は約115psiaである。フィルタークリーニング装置に導入50

されるガスの圧力を調節するのに、適切な圧力調整装置を用いるのも可能である。好まし い構造では、クリーニングガスが運ばれ、フィルターの方へガスの逆流を作り出す。「逆 流」とは、クリーニングガスがフィルターの下流側(フィルター室の排気口側)からフィ ルターの上流側に流れることを意味する。より穏やかな逆流を発生させる方法も適切に機 能するが、好ましくはフィルターを通るガス逆流は、フィルターの下流側で作用する強い パルスジェットによって作り出される。

フィルタークリーニングに特に効果的な方法の1つは、バッグフィルターの全長を伝わる 衝撃波を生み出す1又は2以上のガスパルスを用いることによるものである。衝撃波はバ ッグフィルターを物理的に振動させ、表面に回収された物質を除去する。この様な方法は 、パッグフィルターの装置向けとして米国特許4,082,523号に記載されている。 ガスジェットパルスを形成するには、ジェットを作り出し、ジェットのパルス作用を作り 出す。ガスのジェットパルスを用いるバッグフィルタークリーニング装置は、「パルスジ ェット」クリーニング装置として知られる。ジェット形成オリフィスをフィルターの下流 側に適切に配置し、オリフィスを通じ高圧ガスを急速に排出しジェットを作り出すことに より、ジェットがフィルターの下流側で作用するように作られる。ジェット形成オリフィ スは図1には示されていない。最も効果が有るのはベンチュリノズルであるが、如何なる ガス注入口もある程度のクリーニング作用はある。ジェットはバッグフィルターから、主 にバッグフィルターの上流側から固体を除去するよう設計されている。ジェットのパルス 作用は高圧ガスタンクと注入口 (5) の間に位置するバルブ (22) を開閉することによ り作り出される。バッグフィルターから固体を除去するパルスジェット装置を作る模範的 20 な方法は米国特許3,739,557号、5,395,409号及び5,837,017 号に記載されており、ここでの方法及び装置に利用するのに有用である。カーボンナノ材 料生成のための反応炉に使用するために容易に適用可能なパルスジェット装置は、ネイシ ョン フィルター メディア インク (Nation Filter Media c.) (ユタ州ソルトレイクシティ) から市販されている。

2以上のバッグフィルター、及びパルスジェットクリーニング装置を同じ反応装置内で同 時に使用することが可能であり、これによりフィルターの表面積が増加するという利点が ある。反応装置内でクリーナーを伴った、サイズ、型、又は素材が異なる1又は2以上の フィルターを使用できる。カーポンナノ材料の生産率が増加するにつれ、追加のフィルタ ーを導入する、又は現存のフィルターのサイズを大きくすることにより、濾過容量を増や 30 すことが出来る。複数のフィルターのクリーニングは同時に又は順次行うことが可能であ る。

図1ではカーポンナノ材料は、フィルター室の底部にあるバルブ (9) を通じてフィルタ ー室から除去される。図で示した実施例では、フィルター室の底部又は床部が生成物受容 器又は回収器として機能する。ジェットパルスがフィルターからカーボンナノ材料を解放 すると、カーボンナノ材料は重力によってフィルター室の底部に落下する。そしてバルブ (9) を開き、回収された生成物を排除する。例えば生成物はバルブ (9) を介し密閉回 収容器に移される。

フィルター室からカーボンナノ材料を除去するために利用できるその他の取り出し装置は 、制限なしに、フィルター室底部のアルキメデススクリューを含み得る。カーポンナノ材 料回収を補助するために、フィルター室内の自動プラシ、又は貫通接続部を介して手動で 操作されるブラシが用いられる。人体がカーボンナノ材料にさらされるのを避け、エアロ ゾル (aerosol)形成によってカーボンナノ材料が失われるのを最小限にするために、カー ポンナノ材料は密閉容器に移す。回収器が交換され、バルブが再開され、合成を中断せず により多くのカーポンナノ材料を受け取ることが出来る。

フィルター室はまた排気口 (7) を有する。フィルター室からの排ガス(生成物が除去さ れた反応炉からの排ガス) は排出される前に熱交換器、真空ポンプ、及び/又はガス洗浄 装置(scrubbing system)に送出される。

クリーニング装置はオペレーターによって手動で作動するか、所定のスケジュールに従っ て、又はシステムバラメーターの変化に反応して自動化することが可能である。例えば、

フィルター上流の圧力上昇、又はフィルター下流の急な圧力低下又はガス流によってクリーニングが始動する。フィルタークリーニングの圧力反応作動には、反応装置内の圧力センサー及び、クリーニング装置を作動するための適切な電子リレー回路、例えばガス注入口の作動が必要である。

反応装置(フィルターの上流)の構成要素は用いられる合成法に特有であり、従って合成法ごとに異なる。例えば、異なる種類のカーボンナノ材料生成物(又はそのような生成物の異なる相対量)は異なる合成法(例えば、化合又はアーク合成法)を用いて生成される。たとえ同じ合成法を用いる場合でも、選択された種類の生成物を生成するのに最適な反応炉の条件(例えば気流速度、温度、出発物質及び出発物質の相対量)は異なる。特にフラーレンの燃焼合成は一般的に真空下(例えば20torrから200torr)で行われる。従って、フィルターからの排ガスは真空ボンブに送出されるが、熱交換器やガス洗浄装置のような構成要素を真空ポンブより前の排気管に配設することができる。カーボンナノ材料合成に最適な圧力は、フラーレンに最適な圧力よりも高い可能性がある。当業者は必要以上の実験を行うことなく所定のカーボンナノ材料の製造を最適化する圧力及び流速を選択することができる。

本発明の回収フィルター装置は、2つの重要な機能を果たす。第一に、気流によって運ばれるカーボンナノ材料を回収しながら濾過する。第二に、本装置のフィルタークリーニング装置はカーボンナノ材料合成工程を中断することなく、フィルター上の炭素積層を防止する。例えば、低圧を必要とする合成方法では、記述されているフィルタークリーニング装置は、カーボンナノ材料を製造するための低圧を維持するのに必要なポンプ機能を回復 20しながら、カーボンナノ材料を含む凝縮物の堆積をフィルターから効率的に除去することができる。

大気圧又はそれに近い圧力での単層カーポンナノチューブ (SWNT) 合成方法では、本発明のフィルタークリーニング装置の使用は、圧力増加を防止するので特に利点がある。フィルター上の炭素積層を防止することにより、現在可能な間隔よりも長い間隔でカーボンナノ材料合成を行うことができ、合成工程の連続運転を促進することができる。図2はカーボンナノ材料生成の連続運転のために構成される本発明の反応炉を示す。反応

炉はカーボンナノ材料製造、特にフラーレン製造の燃焼装置を例示する。反応炉は、逆流 を供給するために操作される本発明のパルスジェットクリーニングフィルター装置を有す る。図で示した実施例では、バーナー(60)はカーポンナノ材料合成反応炉(10)に 内包される。合成反応炉はフィルターバッグ(2)を有するフィルター室(1)に接続さ れている。このフィルターバッグは、例えば支持ケージによって支持され、生成物を含む 気流がフィルターを通過するよう形と位置を維持される。また、フィルター室は、合成反 応室に接続するために、合成室からのガス流の冷却と流通をさせる水冷配管 (6) を有す る。水冷配管の温度は、配管中の生成物堆積を回避するのに十分な温度に保たれている。 フィルタークリーニング装置(20)はパルスジェット装置である。パルスジェット装置 は100psiの窒素タンクを加圧ガス源として利用し、ベンチュリノズル (27)を介 して窒素を送ることにより、フィルターの下流側で作用するジェットを作りだすことがで きる。この実施例において、パルスジェット装置のバルブ(22)を素早く開閉し、ガス 貯蔵器(24)からフィルター室(1)へ流れ込む急速なガスパルスを作り出す。排ガス 40 は熱交換器(40)、圧力調整用スロットルバルブ(45)及び真空ポンプ(50)に連 通している。図2に示す燃焼装置は、2002年3月15日に出願された米国出願10/ 098,829号に記載されているように、多孔質耐火バーナープレートを有するバーナ ーを含むことができる。燃焼装置のその他の構成要素に関する更に詳しい情報は同引用中 に記載されている。

図2に示す装置と類似の装置に、米国出願10/098,829号に記載されているように、フラーレン合成に煤生成火炎が使用された場合、3M FB-900バッグフィルターは、フラーレン及びフラーレン煤を含む製造されたカーボンナノ材料のほぼ全てを回収した。

本発明のその他の実施例において、フィルター及び/又はジェットクリーニング装置は合 50

成反応室内に配置できる。これは重力によって生成物が受容器又は回収器に入るのを補助する水平型又は下降型の合成法に特に有用である。フィルターは水平配置でも又は傾斜配置でも機能するので、フィルター方向は変えてもよい。

本発明は、少なくとも1種のカーボンナノ材料を運搬する生成ガス流を生成するカーボンナノ材料合成反応炉を備える工程と、相当量の前記生成ガス流を妨げるように配置されたフィルターを少なくとも1つ備える工程と、前記フィルターで前記カーボンナノ材料を収集する工程と、不活性ガスの逆方向流を用いて前記フィルターで収集した、前記カーボンナノ材料の少なくとも一部を除去する工程と、前記フィルターから除去された前記カーボンナノ材料を回収する工程とを有するカーボンナノ材料の回収方法を提供する。

もしフィルターからカーボンナノ材料を除去するためのフィルタークリーニング方法に適 10 合する合成方法が選択されれば、カーボンナノ材料回収の方法を連続的にすることが可能である。フィルターからカーボンナノ材料を除去しても合成工程が大きく中断されない場合、その合成方法はフィルターからカーボンナノ材料を除去する方法に適合される。驚くべきことに、使用されるバーナーが冷却されない表面を有した場合、煤生成火炎フラーレン合成室の後方に位置するバッグフィルター装置のパルスジェットクリーニングは、火炎を消すことなく永続的に稼動することが出来た。パルスジェットクリーニング法と煤生成火炎フラーレン合成室の適合性のよさは高温のバーナー及び反応炉によって証明されたが、これはこの発明のフィルター装置を用いた米国出願10/098,829号に記載されている。

如何なる理論にも拘束されるものではなく、パルスジェットクリーニングにより火炎が消 20 火されると、高温のバーナーブレートが暖機後のバーナーを再点火すると確信する。米国出願10/098,829号に記載のバーナーの場合、暖機時間はおよそ10~20分であった。パルスジェットクリーニングによって炎が消された場合に自動的に再点火するパイロットライトを加えることにより、高温のバーナーを内蔵していないフラーレン合成室に対しても適合できる。ここでの装置を利用することにより、合成を中断することなく大量に(プローブで回収される比較的少量に比して)炭素生成物を回収できる燃焼装置を作り出すことが可能となる。

当分野で通常の知識を持つ者であれば、装置の構成要素、方法工程、及び材料の同等物、本発明に包含されるそれらの周知の機能的に同等な物全てを理解するであろう。また、当分野で通常の知識を持つ者は、ここで詳細に述べられている以外の装置部材、方法及び材 30料も本発明の装置及び方法に用いることが出来ることを理解するであろう。例えば、バルスジェットガスを用いるフィルタークリーニング装置がここに詳細に記載されているが、フィルターに駆動力を加える他の方法がこの分野では周知であり、本発明の装置にも容易に適合させて使用できる。例えば、米国特許出願3,955,947号は、バッグフィルター支持部材を叩くことによるその場でのフィルタークリーニング方法を記載している。ここに引用されるすべての引用文献はここに開示される発明と矛盾しない範囲で参照として組み入れられる。

【図面の簡単な説明】

[0006]

【図1】カーボンナノ材料を回収するパルスジェットクリーニングフィルター装置を略図 40 的に示す。

【図2】本発明のパルスジェットクリーニングフィルター装置を有するフラーレン製造の 燃焼装置を略図的に示す。

【図1】

【図2】

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

BLACK BORDERS

IMAGE CUT OFF AT TOP, BOTTOM OR SIDES

PADED TEXT OR DRAWING

BLURRED OR ILLEGIBLE TEXT OR DRAWING

SKEWED/SLANTED IMAGES

COLOR OR BLACK AND WHITE PHOTOGRAPHS

GRÁY SCALE DOCUMENTS

VINES OR MARKS ON ORIGINAL DOCUMENT

REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

IMAGES ARE BEST AVAILABLE COPY.

□ OTHER: ____

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.