UPPER BOUNDS AND THE COMPLETENESS AXIOM

Let S be a set of real numbers.

- A number b is an upper bound for S provided for all $x \in S$ we have $b \ge x$.
- The set S is bounded above provided there exists at least one upper bound for S.
- \bullet A number m is the maximum of S provided
 - (1) $m \in S$, and
 - (2) m is an upper bound of S.
- A number ℓ is a *supremum* of S provided
 - (1) ℓ is an upper bound of S, and
 - (2) for any upper bound b for S, we have $\ell \leq b$.
- (1) Write, in simplified form, the negation of the statement "b is an upper bound for S".
- (2) Write, in simplified form, the negation of the statement "S is bounded above".
- (3) Let S be a set of real numbers and suppose that $\ell = \sup(S)$.
 - (a) If $x > \ell$, what is the most concrete thing you can say about x and S?
 - (b) If $x < \ell$, what is the most concrete thing you can say about x and S?
- (4) Let S be a set of real numbers, and set² $T = \{2s \mid s \in S\}$. Prove³ that if S is bounded above, then T is bounded above.

¹Hint: Use one of the previous problems.

²For example, if $S = \{-1, 1, 2\}$, then $T = \{-2, 2, 4\}$.

³First, before all else, this is an if then statement: start by assuming the "if" part. We now need to show the "then" part, which is about the existence of an upper bound. Use your assumption about S to find an upper bound for T (and prove that it is indeed an upper bound for T).