SUPPLEMENT FILE

TABLE I Comparison on the NFEs $_{\epsilon}$ values of ECHT-DE, ECHT-ARMOR-DE1, and ECHT-ARMOR-DE2 for the CEC 2006 functions. All results are averaged over 50 runs.

=	T/	NITE DE (1)		DOLLE	DI COR DEL	(2)	DOLLE	DI COD DEA	(2)	4.5	4.5
Prob		CHT-DE (1)			ARMOR-DE1	(/		ARMOR-DE2	(-)	AR	AR
1100	Mean	Std	SR	Mean	Std	SR	Mean	Std	SR	(1) vs (2)	(1) vs (3)
g01	1.384E+05	4.06E+03	1.00	9.739E+04	3.14E+03	1.00	1.064E+05	3.28E+03	1.00	1.42	1.30
g02	8.205E+04	6.25E+03	0.42	6.689E+04	1.41E+04	0.30	7.672E+04	3.34E+04	0.40	0.88	1.02
g03	1.161E+05	1.53E+03	1.00	1.136E+05	3.20E+03	1.00	1.149E+05	2.64E+03	1.00	1.02	1.01
g04	6.470E+04	2.43E+03	1.00	4.283E+04	1.45E+03	1.00	4.599E+04	1.75E+03	1.00	1.51	1.41
g05	1.204E+05	1.45E+03	1.00	1.195E+05	8.75E+02	1.00	1.201E+05	1.23E+03	1.00	1.01	1.00
g06	2.224E+04	1.24E+03	1.00	1.536E+04	7.04E+02	1.00	1.630E+04	6.67E+02	1.00	1.45	1.36
g07	1.088E+05	4.87E+03	1.00	6.718E+04	2.80E+03	1.00	7.013E+04	2.97E+03	1.00	1.62	1.55
g08	2.644E+03	4.15E+02	1.00	2.216E+03	3.07E+02	1.00	2.340E+03	3.77E+02	1.00	1.19	1.13
g09	4.194E+04	1.81E+03	1.00	2.902E+04	1.15E+03	1.00	3.054E+04	1.14E+03	1.00	1.44	1.37
g10	1.855E+05	7.49E+03	1.00	1.023E+05	3.75E+03	1.00	1.071E+05	3.47E+03	1.00	1.81	1.73
g11	5.820E+04	1.85E+04	1.00	6.265E+04	1.55E+04	1.00	6.272E+04	1.42E+04	1.00	0.93	0.93
g12	3.072E+03	7.83E+02	1.00	2.552E+03	5.69E+02	1.00	2.424E+03	6.06E+02	1.00	1.20	1.27
g13	1.109E+05	4.39E+03	1.00	1.092E+05	4.70E+03	1.00	1.092E+05	4.70E+03	1.00	1.01	1.01
g14	1.401E+05	6.59E+03	1.00	1.302E+05	3.33E+03	1.00	1.318E+05	3.26E+03	1.00	1.08	1.06
g15	1.083E+05	5.58E+03	1.00	1.074E+05	5.01E+03	1.00	1.076E+05	4.96E+03	1.00	1.01	1.01
g16	3.019E+04	1.37E+03	1.00	2.005E+04	1.06E+03	1.00	2.200E+04	1.04E+03	1.00	1.51	1.37
g17	1.174E+05	1.59E+03	1.00	1.167E+05	1.04E+03	1.00	1.170E+05	1.12E+03	1.00	1.01	1.00
g18	1.431E+05	2.02E+04	1.00	8.000E+04	9.28E+03	1.00	7.895E+04	1.09E+04	1.00	1.79	1.81
g19	NA	NA	0.00	1.830E+05	1.60E+04	1.00	1.868E+05	1.73E+04	0.98	NA	NA
g21	1.734E+05	6.82E+03	1.00	1.476E+05	1.34E+04	1.00	1.517E+05	3.10E+03	1.00	1.17	1.14
g23	2.274E+05	5.72E+03	0.72	1.706E+05	4.29E+03	1.00	1.751E+05	4.19E+03	1.00	1.85	1.80
g24	8.120E+03	7.81E+02	1.00	6.032E+03	4.97E+02	1.00	6.348E+03	5.48E+02	1.00	1.35	1.28
avg	_		0.915	_		0.968	_		0.972	1.30	1.27

 $TABLE\ II$ Compared the quality of final solutions of our approach with other state-of-the-art EAs for all CEC 2006 functions.

Prob	Criteria	ECHT-ARMOR-DE1	ECHT-ARMOR-DE2	EHCT-DE	AIS-ZYH	ISAMODE-CMA	SAMODE	ECHT-EP2	εDE	ATMES
	Mean	-15	-15	-15	-15	-15	-15	-15	-15	-15
g01	Std	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	1.60E-14
02	Mean	-0.7900342	-0.7952637	-0.7936387	-0.8021930	-0.79244	-0.79873521	-0.799822	-0.8036191	-0.790148
g02	Std	1.23E-02	8.10E-03	1.12E-02	5.19E-10	2.80E-02	8.80E-03	1.26E-02	1.75E-08	1.30E-02
0.2	Mean	-1.0005	-1.0005	-1.0005	-1.0005	-1.0005	-1.0005	-1.0005	-1.0005	-1
g03	Std	0.00E+00	0.00E+00	0.00E+00	1.77E-11	0.00E+00	0.00E+00	0.00E+00	2.96E-31	5.90E-05
-04	Mean	-30665.539	-30665.539	-30665.539	-30665.539	-30665.539	-30665.5386	-30665.539	-30665.539	-30665.539
g04	Std	0.00E+00	0.00E+00	0.00E+00	3.69E-13	0.00E+00	0.00E+00	0.00E+00	0.00E+00	7.40E-12
g05	Mean	5126.497	5126.497	5126.497	5126.498	5126.497	5126.497	5126.497	5126.497	5127.648
gus	Std	0.00E+00	0.00E+00	0.00E+00	1.70E-02	0.00E+00	0.00E+00	0.00E+00	0.00E+00	1.80E+00
g06	Mean	-6961.813875	-6961.813875	-6961.814	-6961.81385	-6961.813875	-6961.813875	-6961.814	-6961.813875	-6961.814
goo	Std	0.00E+00	0.00E+00	0.00E+00	1.90E-12	0.00E+00	0.00E+00	0.00E+00	0.00E+00	4.60E-12
g07	Mean	24.3062	24.3062	24.3062	24.3557	24.3062	24.3096	24.3063	24.3062	24.316
go/	Std	0.00E+00	0.00E+00	1.14E-10	8.20E-03	0.00E+00	1.59E-03	3.19E-05	2.18E-15	1.10E-02
g08	Mean	-0.095825	-0.095825	-0.095825	-0.095825	-0.095825	-0.09582504	-0.095825	-0.095825	-0.095825
goo	Std	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	2.61E-08	1.23E-32	2.80E-17
g09	Mean	680.63	680.63	680.63	680.65	680.63	680.63	680.63	680.63	680.639
gor	Std	0.00E+00	0.00E+00	0.00E+00	1.20E-08	0.00E+00	1.16E-05	0.00E+00	0.00E+00	1.00E-02
g10	Mean	7049.24802	7049.24802	7049.24802	7049.57032	7049.24802	7059.81345	7049.249	7049.24802	7250.437
g10	Std	0.00E+00	0.00E+00	4.18E-07	4.50E-04	5.42E-06	7.86E+00	6.60E-04	4.24E-13	1.20E+02
g11	Mean	0.7499	0.7499	0.7499	0.7499	0.7499	0.7499	0.7499	0.7499	0.75
5	Std	0.00E+00	0.00E+00	0.00E+00	1.40E-08	0.00E+00	0.00E+00	0.00E+00	0.00E+00	3.40E-04
g12	Mean	-1	-1	-1	-1	-1	-1	-1	-1	-1
512	Std	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	1.00E-03
g13	Mean	0.05394	0.05394	0.05394	0.05394	0.05394	0.05394	0.05394	0.05394	0.05396
8	Std	0.00E+00	0.00E+00	0.00E+00	7.80E-10	0.00E+00	1.75E-08	1.00E-12	0.00E+00	1.30E-05
g14	Mean	-47.764888	-47.764888	-47.764888	-47.764881	-47.764888	-47.68115	-47.7648	-47.764888	NA
8	Std	0.00E+00	0.00E+00	3.26E-13	1.00E-12	0.00E+00	4.04E-02	2.72E-05	1.39E-15	NA
g15	Mean	961.71502	961.71502	961.71502	961.71502	961.71502	961.71502	961.71502	961.71502	NA
8	Std	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	2.01E-13	0.00E+00	NA
g16	Mean	-1.905155	-1.905155	-1.905155	-1.905155	-1.905155	-1.905155	-1.905155	-1.905155	NA
Ŭ	Std	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	1.12E-10	1.58E-30	NA
g17	Mean	8853.5397	8853.5397	8853.5397	8853.5397	8853.5397	8853.5397	8853.5397	8853.5397	NA
Ŭ	Std	0.00E+00	0.00E+00	0.00E+00	1.90E-09	0.00E+00	1.15E-05	2.13E-08	1.21E-27	NA
g18	Mean	-0.866025	-0.866025	-0.866024	-0.866025	-0.866025	-0.866024	-0.866025	-0.866025	NA
Ŭ	Std	0.00E+00 32,65560	0.00E+00 32.65560	5.15E-06 32.65654	1.30E-15 32.65559	0.00E+00 32.65559	7.04E-07	1.00E-09 32.66230	2.18E-17 32.65560	NA NA
g19	Mean				0-10000		32.75734		0-10000	
Ľ.	Std	8.39E-06	1.90E-05	7.76E-04 193.72451	0.00E+00	6.46E-07 193.72451	6.15E-02	3.40E-03	1.26E-05 193.72451	NA NA
g21	Mean Std	193.72451 0.00E±00	193.72451 0.00E±00	193.72451 0.00E±00	196.72451 1.10E+00	0.00E+00	193.771375	193.7438 1.65E-02	3.34E-14	NA NA
_		-400.0551	-400.0551	-400.0546	-399.8743	-395.62403	1.96E-02 -360.817656	-373.2178	3.34E-14 -400.0551	NA NA
g23	Mean Std	-400.0551 2.68E-09	1.76E-08	2.18E-03	-399.8743 2.00E+00	-395.62403 7.79E+00	-360.817636 1.96E+01	-3/3.21/8 3.37E+01	-400.0551 1.11E-14	NA NA
_						7177				
g24	Mean Std	-5.508013 0.00E±00	-5.508013 0.00E±00	-5.508013 0.00E+00	-5.508013 0.00E±00	-5.508013 0.00E+00	-5.508013 0.00E±00	-5.508013 0.00E+00	-5.508013 2.52E-29	NA NA
	310	0.00E+00	0.00E+00	0.00E±00	0.00E±00	0.00E±00	0.00E±00	0.00E±00	2.34E-29	INA

TABLE III

Ranks computed by the Wilcoxon test for state-of-the-art EAs on CEC 2006 benchmark functions. Hereinafter, \bullet = the method in the row improves the method of the column. \circ = the method in the column improves the method of the row. Upper diagonal of level significance at $\alpha=0.1$, lower diagonal level of significance at $\alpha=0.05$.

	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
ECHT-ARMOR-DE1 (1)	-	116.0	145.5	187.0●	127.0	183.5●	170.5	116.0
ECHT-ARMOR-DE2 (2)	137.0	-	167.5	187.0●	148.0	183.5●	171.5	116.0
EHCT-DE (3)	107.5	85.5	-	173.5	128.5	173.5	165.5	85.5
AIS-ZYH (4)	66.0	66.0	79.50	-	87.0	139.5	108.0	50.00
ISAMODE-CMA (5)	126.0	105.0	124.5	166.0	-	183.5●	170.5	105.0
SAMODE (6)	69.5	69.5	79.50	113.5	69.5	-	52.50	52.50
ECHT-EP2 (7)	82.5	81.5	87.5	145.0	82.5	200.5●	-	63.50
ε DE (8)	137.0	137.0	167.5	203.0●	148.0	200.5●	189.5●	-

 ${\it TABLE~IV} \\ {\it Comparison~on~the~performance~of~ECHT-DE~and~ECHT-ARMOR-DE~for~functions~in~the~CEC~2010~test~suite~at~D=10}.$

Prob			ECHT-DE						ECHT-ARMOR	-DE		
F100	Best	Median	Worst	Mean	Std	FR	Best	Median	Worst	Mean	Std	FR
C01	-7.4730E-01	-7.4730E-01	-7.4060E-01	-7.4700E-01	1.4E-03	1.00	-7.4730E-01	-7.4730E-01	-7.4060E-01	-7.4700E-01	1.4E-03	1.00
C02	-2.2777E+00	-2.2777E+00	-2.2612E+00	-2.2744E+00	6.7E-03	1.00	-2.2777E+00	-2.2777E+00	-2.2612E+00	-2.2770E+00	3.3E-03	1.00
C03	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00	0.0E+00	1.00	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00	0.0E+00	1.00
C04	-1.0000E-05	-1.0000E-05	-1.0000E-05	-1.0000E-05	0.0E+00	1.00	-1.0000E-05	-1.0000E-05	-1.0000E-05	-1.0000E-05	0.0E+00	1.00
C05	-4.8361E+02	-4.3495E+02	-2.7057E+02	-4.1145E+02	7.6E+01	1.00	-4.8361E+02	-4.8361E+02	-4.8361E+02	-4.8361E+02	0.0E+00	1.00
C06	-5.7866E+02	-5.7866E+02	-3.6855E+02	-5.6247E+02	4.5E+01	1.00	-5.7866E+02	-5.7866E+02	-5.7866E+02	-5.7866E+02	4.0E-13	1.00
C07	0.0000E+00	0.0000E+00	3.9866E+00	1.3290E-01	7.3E-01	1.00	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00	0.0E+00	1.00
C08	0.0000E+00	7.0979E+00	2.6115E+01	6.1566E+00	6.5E+00	1.00	0.0000E+00	1.0942E+01	1.0942E+01	7.5262E+00	5.0E+00	1.00
C09	0.0000E+00	0.0000E+00	4.4082E+00	1.4691E-01	8.0E-01	1.00	0.0000E+00	0.0000E+00	4.4082E+00	1.7633E-01	8.8E-01	1.00
C10	0.0000E+00	0.0000E+00	4.1727E+01	1.7117E+00	7.7E+00	1.00	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00	0.0E+00	1.00
C11	-1.5000E-03	-1.5000E-03	-8.7300E-02 [‡]	-4.4000E-03	1.6E-02	NA	-1.5227E-03	-1.5227E-03	-8.7342E-02 [‡]	-4.2716E-02	4.4E-02	0.52
C12	-1.9920E-01	-1.9920E-01	-5.5435E+02 [‡]	-1.7187E+02	2.2E+02	NA	-1.9925E-01	-1.9925E-01	-1.9925E-01	-1.9925E-01	1.6E-13	1.00
C13	-6.8429E+01	-6.3518E+01	-6.1649E+01	-6.5121E+01	2.4E+00	1.00	-6.8429E+01	-6.8429E+01	-6.2276E+01	-6.7169E+01	2.1E+00	1.00
C14	0.0000E+00	0.0000E+00	1.7191E+07	7.0242E+05	3.2E+06	1.00	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00	0.0E+00	1.00
C15	0.0000E+00	1.2216E+10	1.8693E+14	2.3392E+13	5.3E+13	1.00	0.0000E+00	3.6732E+00	4.4974E+00	2.8246E+00	1.6E+00	1.00
C16	0.0000E+00	3.0437E-02	1.6351E-01	3.9327E-02	4.3E-02	1.00	0.0000E+00	0.0000E+00	2.3426E-01	2.8478E-02	5.0E-02	1.00
C17	0.0000E+00	0.0000E+00	1.0884E+00	1.1152E-01	3.3E-01	1.00	0.0000E+00	6.1630E-33	6.1630E-33	3.6978E-33	3.1E-33	1.00
C18	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00	0.0E+00	1.00	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00	0.0E+00	1.00

[‡] indicates the solution is infeasible.

TABLE V Compared the results of ECHT-ARMOR-DE with other EAS for functions in the CEC 2010 test suite at D=10.

Prob	ECHT-DE	AIS-ZYH	εDEg	IEMA	ECHT-ARMOR-DE
C01	-7.4700E-01 ± 1.40E-03	-7.4705 E-01 \pm 1.30E-03	-7.4704 E-01 \pm 1.32E-03	-7.4319E-01 ± 4.33E-03	-7.4700E-01 ± 1.40E-03
C02	$-2.2744E+00 \pm 6.70E-03$	$-2.2748E+00 \pm 2.00E-03$	$-2.2588E+00 \pm 2.38E-02$	$-2.2777\mathrm{E}$ +00 \pm 1.82E-07	$-2.2770\mathrm{E}$ +00 \pm 3.30 E -03
C03	$0.0000\text{E} + 00 \pm 0.00\text{E} + 00$	$3.7472E-09 \pm 4.81E-04$	$0.0000\text{E} + 00 \pm 0.00\text{E} + 00$	$6.2346\text{E-}07 \pm 1.40\text{E-}06$	$0.0000\text{E} + 00 \pm 0.00\text{E} + 00$
C04	$-1.0000 ext{E-05} \pm 0.00 ext{E+00}$	-9.9712E-06 ± 4.28E-03	-9.9185E-06 ± 1.54E-07	-9.3702E-06 ± 8.99E-08	-1.0000 E-05 \pm 0.00E+00
C05	-4.1145E+02 ± 7.63E+01	$-4.7996E+02 \pm 6.30E+00$	-4.8361 E $+02 \pm 3.89$ E -13	$-3.7916E+02 \pm 1.79E+02$	$-4.8361E+02 \pm 0.00E+00$
C06	-5.6247E+02 ± 4.51E+01	-5.7995 E $+02 \pm 7.30$ E -08	$-5.7865E+02 \pm 3.62E-03$	-5.5147E+02 ± 7.36E+01	$-5.7866E+02 \pm 4.00E-13$
C07	1.3290E-01 ± 7.28E-01	1.1735E-08 ± 2.70E+00	$0.0000\text{E} + 00 \pm 0.00\text{E} + 00$	$3.2569E-09 \pm 3.39E-09$	$0.0000\text{E} + 00 \pm 0.00\text{E} + 00$
C08	$6.1566E+00 \pm 6.45E+00$	$4.0919E+00 \pm 1.46E+00$	$6.7275E+00 \pm 5.56E+00$	$4.0702E+00 \pm 6.38E+00$	$7.5262E+00 \pm 5.00E+00$
C09	1.4691 E-01 \pm 8.05E-01	$2.6980E+01 \pm 7.50E+01$	$0.0000\text{E} + 00 \pm 0.00\text{E} + 00$	$1.9511E+12 \pm 5.40E+12$	1.7633E-01 ± 8.82E-01
C10	$1.7117E+00 \pm 7.66E+00$	$1.6200E+03 \pm 5.00E+02$	$0.0000\text{E} + 00 \pm 0.00\text{E} + 00$	$2.5613E+12 \pm 3.97E+12$	$0.0000\text{E} + 00 \pm 0.00\text{E} + 00$
C11	-4.4000 E-03 \pm 1.57E-02 [‡]	-9.1995E-04 ± 8.23E-04	$-1.5227 ext{E}-03 \pm 6.34 ext{E}-11$	$1.5227 ext{E-}03 \pm 2.73 ext{E-}08$	$-4.2716E-02 \pm 4.38E-02^{\ddagger}$
C12	$-1.7187E+02 \pm 2.21E+02^{\ddagger}$	$-4.3577E+02 \pm 6.02E+01$	$-3.3673E+02 \pm 1.78E+02$	-6.4817E-01 ± 2.19E+00	-1.9925E-01 ± 1.61E-13
C13	-6.5121E+01 ± 2.38E+00	-6.7874E+01 ± 3.11-E01	$-6.8429\text{E}+01 \pm 1.02\text{E}-06$	$-6.8018E+01 \pm 1.40E+00$	$-6.7169E+01 \pm 2.15E+00$
C14	$7.0242E+05 \pm 3.19E+06$	1.2213E-04 ± 2.90E-08	$0.0000\text{E} + 00 \pm 0.00\text{E} + 00$	5.6308E+01 ± 1.82E+02	$0.0000\text{E} + 00 \pm 0.00\text{E} + 00$
C15	$2.3392E+13 \pm 5.30E+13$	5.1855 E-09 \pm 1.10E-08	1.7990 E-01 \pm 8.81E-01	$1.5753E+08 \pm 6.04E+08$	$2.8246E+00 \pm 1.63E+00$
C16	$3.9327E-02 \pm 4.28E-02$	$9.9593 ext{E-}18 \pm 6.27 ext{E-}15$	$3.7021E-01 \pm 3.71E-01$	$3.3030\text{E-}02 \pm 2.26\text{E-}02$	$2.8478 ext{E}-02 \pm 4.99 ext{E}-02$
C17	$1.1152\text{E-}01 \pm 3.32\text{E-}01$	$2.9340E+00 \pm 2.29E+00$	1.2496E-01 ± 1.93E-01	$3.1509 ext{E-03} \pm 1.57 ext{E-02}$	3.6978E -33 \pm 3.08E-33
C18	0.0000 E+00 \pm 0.00E+00	$1.6590E+00 \pm 1.27E+00$	9.6788E-19 ± 1.81E-18	$1.6179E-14 \pm 3.82E-14$	0.0000E +00 \pm 0.00E+00

[‡] indicates that there are infeasible solutions in this function over 25 independent runs.

 ${\it TABLE~VI} \\ {\it Ranks~computed~by~the~Wilcoxon~test~for~state-of-the-art~EAs~on~CEC~2010~benchmark~functions~at~D=10}.$

	(1)	(2)	(3)	(4)	(5)
ECHT-DE (1)	_	46.0	37.00	63.0	22.00
AIS-ZYH (2)	90.0	-	50.0	98.0	52.0
$\varepsilon DEg(3)$	99.0	86.0	-	105.0●	73.0
IEMA (4)	73.0	38.0	31.0	_	24.00
ECHT-ARMOR-DE (5)	114.0●	84.0	63.0	112.0●	_

 ${\it TABLE~VII} \\ {\it Comparison~on~the~performance~of~ECHT-DE~and~ECHT-ARMOR-DE~for~functions~in~the~CEC~2010~test~suite~at~D=30.}$

Prob	1		ECHT-DE						ECHT-ARMOR	R-DE		
F100	Best	Median	Worst	Mean	Std	FR	Best	Median	Worst	Mean	Std	FR
C01	-8.2170E-01	-8.0120E-01	-7.5570E-01	-7.9940E-01	1.79E-02	1.00	-8.1806E-01	-8.0029E-01	-7.3601E-01	-7.8992E-01	2.51E-02	1.00
C02	-2.2251E+00	-2.0662E+00	-1.3511E+00	-1.9943E+00	2.10E-01	1.00	-2.2607E+00	-2.1900E+00	-1.9746E+00	-2.1706E+00	7.36E-02	1.00
C03	3.2433E-21	1.0983E+02	1.8496E+02	9.8920E+01	6.26E+01	1.00	2.5801E-24	2.8673E+01	2.8673E+01	2.6380E+01	7.94E+00	1.00
C04	-3.3015E-06	-2.9456E-06	4.6205E-01	-1.0257E-06	9.01E-02	1.00	-3.3326E-06	9.9236E-05	1.0886E+00	8.3713E-02	2.89E-01	1.00
C05	-2.1368E+02	-1.6300E+02	4.7719E+02	-1.0642E+02	1.67E+02	1.00	-4.8122E+02	-4.7647E+02	7.6414E+01	-4.3335E+02	1.46E+02	1.00
C06	-2.9572E+02	-1.4732E+02	2.6353E+02	-1.3762E+02	9.89E+01	1.00	-5.3010E+02	-5.2465E+02	1.2454E+02	-4.8931E+02	1.32E+02	1.00
C07	0.0000E+00	0.0000E+00	3.9866E+00	1.3290E-01	7.28E-01	1.00	0.0000E+00	3.4286E-26	1.1045E-24	1.0789E-25	2.20E-25	1.00
C08	0.0000E+00	0.0000E+00	5.8567E+02	3.3585E+01	1.11E+02	1.00	0.0000E+00	8.5541E-26	1.5113E+02	2.0101E+01	4.70E+01	1.00
C09	0.0000E+00	0.0000E+00	6.5710E+02	4.2441E+01	1.38E+02	1.00	0.0000E+00	2.2153E-25	1.1527E+02	4.6110E+00	2.31E+01	1.00
C10	0.0000E+00	3.1309E+01	4.7510E+02	5.3381E+01	8.83E+01	1.00	6.0209E-13	3.1309E+01	5.3332E+02	6.5536E+01	1.07E+02	1.00
C11	-4.0000E-04	-2.0000E-04	2.0400E-02 [‡]	2.6000E-03	6.00E-03	NA	-3.9234E-04	-3.9234E-04	1.8671E-02 [‡]	1.1327E-03	5.28E-03	0.92
C12	-1.9930E-01	-1.9930E-01	-7.4816E+02 [‡]	-2.5129E+01	1.37E+02	NA	-1.9926E-01	-1.9926E-01	7.6343E-01	-1.6076E-01	1.93E-01	1.00
C13	-6.8429E+01	-6.4619E+01	-6.0939E+01	-6.4583E+01	1.67E+00	1.00	-6.7416E+01	-6.4908E+01	-6.0769E+01	-6.4646E+01	1.97E+00	1.00
C14	0.0000E+00	0.0000E+00	3.7101E+06	1.2368E+05	6.77E+05	1.00	1.5809E-27	4.4875E-26	1.1507E+04	6.6135E+02	2.47E+03	1.00
C15	1.9922E+09	8.5527E+10	2.3252E+12	1.9409E+11	4.35E+11	1.00	1.1716E-04	2.1603E+01	5.9937E+09	3.1316E+08	1.20E+09	1.00
C16	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00	0.00E+00	1.00	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00	0.00E+00	1.00
C17	0.0000E+00	1.9273E-01	1.8986E+00	2.7496E-01	3.78E-01	1.00	3.3564E-16	4.2103E-01	1.2633E+00	4.0336E-01	3.51E-01	1.00
C18	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00	0.00E+00	1.00	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00	0.00E+00	1.00

[‡] indicates the solution is infeasible.

 ${\it TABLE~VIII} \\ {\it Compared~the~results~of~ECHT-ARMOR-DE~with~other~EAs~for~functions~in~the~CEC~2010~test~suite~at~D=30}.$

Prob	ECHT-DE	AIS-ZYH	$\varepsilon \mathrm{DEg}$	IEMA	ECHT-ARMOR-DE
C01	-7.9940E-01 ± 1.79E-02	-8.2011 E-01 \pm 3.25E-04	-8.2087 E-01 \pm 7.10E-04	-8.1777E-01 ± 4.79E-03	$-7.8992E-01 \pm 2.51E-02$
C02	-1.9943E+00 ± 2.10E-01	$-2.2125\text{E}+00 \pm 2.84\text{E}-03$	$-2.1745\text{E}+00 \pm 1.20\text{E}-02$	$-1.5045E+00 \pm 2.14E+00$	$-2.1706E+00 \pm 7.36E-02$
C03	9.8920E+01 ± 6.26E+01	$6.6758E+01 \pm 4.26E+02$	$2.8838E+01 \pm 8.00E-01$	_	$2.6380E+01 \pm 7.94E+00$
C04	-1.0257 E-06 \pm 9.01E-02	1.9761 E-03 \pm 1.61 E-03	$8.1630\text{E}-03 \pm 3.06\text{E}-03$	_	$8.3713\text{E-}02 \pm 2.89\text{E-}01$
C05	-1.0642E+02 ± 1.67E+02	$-4.3611E+02 \pm 2.51E+01$	$-4.4955E+02 \pm 2.89E+00$	$-2.7093E+02 \pm 1.41E+00$	$-4.3335E+02 \pm 1.46E+02$
C06	-1.3762E+02 ± 9.89E+01	$-4.5426E+02 \pm 4.79E+01$	$-5.2791\text{E}+02 \pm 4.74\text{E}-01$	$-1.3288E+02 \pm 5.61E+02$	$-4.8931E+02 \pm 1.32E+02$
C07	1.3290E-01 ± 7.28E-01	$1.0730E+00 \pm 1.61E+00$	$2.6036 ext{E}$ - $15 \pm 1.23 ext{E}$ - 15	8.4861E-10 ± 4.84E-10	$1.0789 ext{E-25} \pm 2.20 ext{E-25}$
C08	$3.3585E+01 \pm 1.11E+02$	$1.6531E+00 \pm 6.41E-01$	7.8315E - $14 \pm 4.85\text{E}$ - 14	1.7703E+01 ± 4.08E+01	$2.0101E+01 \pm 4.70E+01$
C09	4.2441E+01 ± 1.38E+02	$1.5654E+00 \pm 1.96E+00$	$1.0721E+01 \pm 2.82E+01$	$2.9879E+07 \pm 4.50E+07$	$4.6110E+00 \pm 2.31E+01$
C10	5.3381E+01 ± 8.83E+01	$1.7847E+01 \pm 1.88E+01$	$3.3262E+01 \pm 4.54E-01$	$1.5834E+07 \pm 1.68E+07$	$6.5536E+01 \pm 1.07E+02$
C11	2.6000 E-03 ± 6.00 E-03 [‡]	$-1.5790 ext{E}-04 \pm 4.67 ext{E}-05$	-2.8638E -04 \pm 2.71E-05	_	1.1327E-03 ± 5.28E-03
C12	$-2.5129E+01 \pm 1.37E+02^{\ddagger}$	$4.2881 ext{E-06} \pm 4.52 ext{E-04}$	$3.5623E+02 \pm 2.89E+02^{\ddagger}$	-	-1.6076E-01 ± 1.93E-01 [‡]
C13	-6.4583E+01 ± 1.67E+00	$-6.6236\text{E} + 01 \pm 2.27\text{E} - 01$	$-6.5353E+01 \pm 5.73E+01$	$-6.7487E+01 \pm 9.83E-01$	-6.4646E+01 ± 1.97E+00
C14	$1.2368E+05 \pm 6.77E+05$	$8.6828 ext{E-07} \pm 3.14 ext{E-07}$	3.0894E - $13 \pm 5.61\text{E}$ - 13	$6.1524\text{E}-02 \pm 3.07\text{E}-01$	$6.6135E+02 \pm 2.47E+03$
C15	1.9409E+11 ± 4.35E+11	$3.4128E+01 \pm 3.82E+01$	$2.1603E+01 \pm 1.10E-04$	$2.2949E+08 \pm 4.64E+08$	3.1316E+08 ± 1.20E+09
C16	$0.0000\text{E} + 00 \pm 0.00\text{E} + 00$	$8.2062\text{E}-02 \pm 1.12\text{E}-01$	$2.1684E-21 \pm 1.06E-20$	1.6329E-03 ± 8.16E-03	$0.0000\text{E} + 00 \pm 0.00\text{E} + 00$
C17	$2.7496 ext{E-01} \pm 3.78 ext{E-01}$	$3.6051E+00 \pm 2.54E+00$	$6.3265E+00 \pm 4.99E+00$	$8.8397\text{E-}02 \pm 1.51\text{E-}01$	4.0336E-01 ± 3.51E-01
C18	0.0000E +00 \pm 0.00E +00	$4.0152E+01 \pm 1.80E+01$	$8.7546E+01 \pm 1.66E+02$	4.7384E-14 ± 6.57E-14	0.0000E + $00 \pm 0.00\text{E}$ + 00

 $[\]ddagger$ indicates that there are infeasible solutions in this function over 25 independent runs.

Table IX Ranks computed by the Wilcoxon test for state-of-the-art EAs on CEC 2010 benchmark functions at D=30.

	(1)	(2)	(3)	(4)
ECHT-DE (1)	-	27.00	22.00	24.50
AIS-ZYH (2)	109.0●	-	60.0	82.0
$\varepsilon DEg(3)$	114.0●	76.0	-	95.0
ECHT-ARMOR-DE (4)	111.5•	54.0	41.0	-

TABLE X Influence of ARMOR to ($\mu + \lambda$)-CDE and DSS-MDE in all benchmark functions. The NFEs $_\epsilon$, SR, and AR results are reported. All results are averaged over 50 independent runs.

	(µ.	+ λ)-CDE		$(\mu + \lambda)$)-ARMOR-CI	DE.	I I	Ι Γ	OSS-MDE		DSS-/	ARMOR-MDI	3	1 1
Prob	Mean	Std	SR	Mean	Std	SR	AR	Mean	Std	SR	Mean	Std	SR	AR
g01	89,000.0	893.7	1.00	49,109.2	2,676.3	1.00	1.81	196,659.0	5,186.6	1.00	97,245.0	2,480.2	1.00	2.02
g02	277,379.0	7,489.7	0.96	103,954.8	10,080.5	0.58	1.61	169,979.1	12,339.6	0.64	93,802.5	9,282.4	0.48	1.36
g03	111,025.0	5,474.4	1.00	91,499.8	22,335.8	1.00	1.21	207,981.0	22,060.7	1.00	69,120.0	6,957.7	1.00	3.01
g04	30,620.0	296.5	1.00	19,478.2	847.6	1.00	1.57	73,305.0	2,073.7	1.00	44,667.0	1,562.6	1.00	1.64
g05	165,079.0	78.3	1.00	165,235.0	225.5	1.00	1.00	64,782.0	2,378.7	1.00	29,088.0	996.6	1.00	2.23
g06	11,032.0	158.1	1.00	8,852.2	490.6	1.00	1.25	25,398.0	1,070.2	1.00	15,813.0	525.5	1.00	1.61
g07	141,038.0	1,177.3	1.00	77,602.0	3,654.6	1.00	1.82	171,423.0	6,752.6	1.00	89,496.0	3,123.6	1.00	1.92
g08	2,010.0	62.1	1.00	1,636.6	272.4	1.00	1.23	4,563.0	682.8	1.00	3,141.0	438.7	1.00	1.45
g09	39,953.0	466.7	1.00	28,831.6	1,733.2	1.00	1.39	59,616.0	2,091.1	1.00	32,949.0	1,404.0	1.00	1.81
g10	188,725.0	1,945.9	1.00	94,750.6	5,013.0	1.00	1.99	256,455.0	12,864.6	1.00	127,998.0	5,273.4	1.00	2.00
g11	79,475.0	3,214.4	1.00	78,122.8	14,321.2	1.00	1.02	26,118.0	7,315.2	1.00	8,064.0	2,481.5	1.00	3.24
g12	4,908.0	219.1	1.00	4,131.4	917.4	1.00	1.19	4,545.0	1,210.4	1.00	3,825.0	976.0	1.00	1.19
g13	148,237.0	380.9	1.00	146,805.4	2,616.0	1.00	1.01	77,922.0	16,135.1	1.00	48,310.0	40,194.5	0.90	1.45
g14	176,671.0	697.5	1.00	170,703.4	3,689.9	1.00	1.03	286,848.0	9,003.9	1.00	160,938.0	7,599.4	1.00	1.78
g15	130,622.0	2,276.8	1.00	134,344.0	13,350.4	1.00	0.97	47,376.0	2,576.0	1.00	18,027.0	1,181.9	1.00	2.63
g16	19,154.0	231.4	1.00	12,707.8	812.4	1.00	1.51	38,853.0	1,867.6	1.00	23,931.0	1,194.0	1.00	1.62
g17	183,962.0	535.3	1.00	170,535.4	673.2	1.00	1.08	103,734.0	10,994.0	1.00	93,222.0	43,174.0	1.00	1.11
g18	215,068.0	6,770.8	1.00	73,645.6	9,800.9	1.00	2.92	190,935.0	11,554.7	1.00	95,319.0	7,405.9	1.00	2.00
g19	268,374.0	3,178.6	1.00	123,995.2	6,145.9	1.00	2.16	385,794.0	13,514.3	1.00	208,179.0	16,856.6	1.00	1.85
g21	209,896.0	1,151.1	0.92	192,138.6	4,465.7	0.98	1.16	198,980.6	8,054.9	0.96	95,002.5	13,796.7	0.98	2.14
g23	263,695.0	2,096.2	1.00	205,609.6	4,235.1	1.00	1.28	464,537.4	29,660.9	0.38	239,121.0	41,365.4	1.00	5.11
g24	5,059.0	84.2	1.00	3,854.2	286.2	1.00	1.31	11196	1022.3	1.00	6858.0	588.9	1.00	1.63
avg	_		0.99	_		0.98	1.43	_		0.95	_		0.97	2.04

TABLE XI On the Robustness of ARMOR to ($\mu + \lambda$)-CDE with Different F Values in All Benchmark Functions. The NFEs $_\epsilon$, SR, and AR results are reported. All results are averaged over 50 independent runs.

			F = 0	0.7, Cr = 0.9						F =	0.9, Cr = 0.			
Prob	(1.	$+\lambda$)-CDE			A)-ARMOR-CD		AR		$+\lambda$)-CDE)-ARMOR-CI		AR
	Mean	Std	SR	Mean	Std	SR		Mean	Std	SR	Mean	Std	SR	
g01	57,715.0	2,699.4	1.00	37,874.2	1,717.3	1.00	1.52	110,101.6	5,804.8	1.00	65,405.2	3,182.2	1.00	1.68
g02	110,626.5	11,284.8	0.74	59,500.0	7,949.9	0.48	1.21	250,282.3	21,290.2	0.78	135,377.5	13,903.2	0.56	1.33
g03	62,137.6	13,323.8	1.00	60,365.2	14,130.9	1.00	1.03	135,608.2	39,116.5	1.00	115,297.0	31,331.6	1.00	1.18
g04	26,076.4	1,264.5	1.00	18,289.6	1,088.8	1.00	1.43	32,519.2	1,443.3	1.00	22,775.2	1,157.7	1.00	1.43
g05	165,592.0	334.1	1.00	165,671.8	1,339.0	1.00	1.00	164,651.2	379.6	1.00	164,042.2	615.8	1.00	1.00
g06	10,200.4	440.0	1.00	8,197.0	394.0	1.00	1.24	11,775.4	673.2	1.00	10,074.4	644.5	1.00	1.17
g07	82,461.4	5,190.4	1.00	53,809.0	3,509.2	1.00	1.53	197,898.4	10,933.1	1.00	117,875.8	6,665.3	1.00	1.68
g08	1,792.0	268.3	1.00	1,540.0	224.5	1.00	1.16	2,136.4	312.8	1.00	1,687.0	345.3	1.00	1.27
g09	28,197.4	1,384.8	1.00	20,834.8	1,005.5	1.00	1.35	57,043.0	3,429.8	1.00	41,515.6	2,205.7	1.00	1.37
g10	NA	NA	0.00	172,912.4	135,380.0	0.68	NA	227,227.0	10,175.6	1.00	140,186.2	8,647.6	1.00	1.62
g11	74,851.0	15,790.3	1.00	73,557.4	13,074.6	1.00	1.02	83,137.6	18,846.3	1.00	82,231.2	1,029.7	1.00	1.01
g12	4,799.2	1,088.5	1.00	3,921.4	908.6	1.00	1.22	4,286.8	891.8	1.00	3,505.6	752.7	1.00	1.22
g13	145,852.0	3,453.0	1.00	143,764.6	3,624.4	1.00	1.01	147,099.4	2,201.3	1.00	142,139.2	4,512.8	1.00	1.03
g14	169,514.8	4,572.9	1.00	167,234.2	3,096.4	1.00	1.01	188,129.2	4,194.7	1.00	180,434.8	10,629.5	1.00	1.04
g15	126,716.8	9,819.8	1.00	113,432.2	11,834.4	1.00	1.12	141,110.2	7,286.3	1.00	120,328.6	10,598.6	1.00	1.17
g16	15,072.4	1,025.4	1.00	11,103.4	551.9	1.00	1.36	21,137.2	1,476.1	1.00	15,089.2	1,142.6	1.00	1.40
g17	170,753.8	743.7	1.00	170,417.8	615.8	1.00	1.00	168,884.8	1,336.0	1.00	168,494.2	1,232.9	1.00	1.00
g18	86,669.8	12,945.1	1.00	46,446.4	5,000.4	1.00	1.87	185,080.0	23,037.5	1.00	97,539.4	12,953.4	1.00	1.90
g19	125,427.4	6,384.4	1.00	80,155.6	5,063.5	1.00	1.56	338,665.6	13,775.0	1.00	185,966.2	9,905.3	1.00	1.82
g21	239,855.0	107,912.4	0.12	184,525.0	3,367.7	0.28	3.03	216,785.5	6,734.3	0.94	196,390.0	3,847.6	0.94	1.10
g23	210,065.8	3,884.4	1.00	201,968.2	22,026.7	1.00	1.04	274,430.8	12,279.3	1.00	230,011.6	6,849.2	1.00	1.19
g24	4,774.0	422.1	1.00	3,795.4	284.0	1.00	1.26	5248.6	454.2	1.00	4446.4	394.3	1.00	1.18
avg	_		0.90	_	-	0.93	1.33	_		0.99	-	-	0.98	1.31

TABLE XII INFLUENCE OF DIFFERENT MODELS IN ARMOR. THE NFES $_{\epsilon}$ values of ECHT-DE, ECHT-ARMOR-DE3, and ECHT-ARMOR-DE4 for the CEC 2006 functions are reported.

Prob		CHT-DE (1)			ARMOR-DE3	()		ARMOR-DE4	(-)	AR	AR
	Mean	Std	SR	Mean	Std	SR	Mean	Std	SR	(1) vs (2)	(1) vs (3)
g01	1.384E+05	4.06E+03	1.00	1.011E+05	3.91E+03	1.00	1.130E+05	3.50E+03	1.00	1.37	1.22
g02	8.205E+04	6.25E+03	0.42	6.509E+04	8.91E+03	0.26	7.411E+04	2.34E+04	0.30	0.78	0.79
g03	1.161E+05	1.53E+03	1.00	1.137E+05	2.53E+03	1.00	1.150E+05	2.46E+03	1.00	1.02	1.01
g04	6.470E+04	2.43E+03	1.00	4.450E+04	1.32E+03	1.00	4.946E+04	1.44E+03	1.00	1.45	1.31
g05	1.204E+05	1.45E+03	1.00	1.196E+05	6.85E+02	1.00	1.204E+05	1.27E+03	1.00	1.01	1.00
g06	2.224E+04	1.24E+03	1.00	1.549E+04	7.53E+02	1.00	1.722E+04	7.64E+02	1.00	1.44	1.29
g07	1.088E+05	4.87E+03	1.00	7.144E+04	3.18E+03	1.00	7.645E+04	3.42E+03	1.00	1.52	1.42
g08	2.644E+03	4.15E+02	1.00	2.172E+03	2.80E+02	1.00	2.328E+03	4.17E+02	1.00	1.22	1.14
g09	4.194E+04	1.81E+03	1.00	2.956E+04	1.09E+03	1.00	3.268E+04	1.48E+03	1.00	1.42	1.28
g10	1.855E+05	7.49E+03	1.00	1.109E+05	4.18E+03	1.00	1.203E+05	5.02E+03	1.00	1.67	1.54
g11	5.820E+04	1.85E+04	1.00	6.264E+04	1.11E+04	1.00	6.178E+04	1.34E+04	1.00	0.93	0.94
g12	3.072E+03	7.83E+02	1.00	2.588E+03	5.63E+02	1.00	2.316E+03	5.38E+02	1.00	1.19	1.33
g13	1.109E+05	4.39E+03	1.00	1.090E+05	4.76E+03	1.00	1.090E+05	4.76E+03	1.00	1.02	1.02
g14	1.401E+05	6.59E+03	1.00	1.293E+05	3.06E+03	1.00	1.317E+05	3.48E+03	1.00	1.08	1.06
g15	1.083E+05	5.58E+03	1.00	1.057E+05	7.51E+03	1.00	1.074E+05	7.56E+03	1.00	1.03	1.01
g16	3.019E+04	1.37E+03	1.00	2.055E+04	9.11E+02	1.00	2.329E+04	1.19E+03	1.00	1.47	1.30
g17	1.174E+05	1.59E+03	1.00	1.168E+05	9.70E+02	1.00	1.171E+05	1.06E+03	1.00	1.00	1.00
g18	1.431E+05	2.02E+04	1.00	9.254E+04	1.26E+04	1.00	8.807E+04	1.05E+04	1.00	1.55	1.63
g19	NA	NA	0.00	1.863E+05	1.34E+04	1.00	2.016E+05	1.41E+04	1.00	NA	NA
g21	1.734E+05	6.82E+03	1.00	1.468E+05	2.57E+03	1.00	1.564E+05	3.05E+03	1.00	1.18	1.11
g23	2.274E+05	5.72E+03	0.72	1.719E+05	6.00E+03	1.00	1.799E+05	5.70E+03	1.00	1.84	1.76
g24	8.120E+03	7.81E+02	1.00	6.132E+03	3.78E+02	1.00	6.556E+03	6.01E+02	1.00	1.32	1.24
avg	_		0.915	_		0.966	_		0.968	1.26	1.21

 ${\it TABLE~XIII}\\ {\it Comparison~on~the~NFEs}_f~{\it Values~of~ECHT-DE, ECHT-ARMOR-DE1, and~ECHT-ARMOR-DE3~for~the~CEC~2006~functions}.$

Prob	ECHT-DE (1)			ECHT-ARMOR-DE1 (2)			AR'	ECHT-	ARMOR-DE3	(3)	AR'
F100	Mean	Std	FR	Mean	Std	FR	(1) vs (2)	Mean	Std	FR	(1) vs (3)
g01	3.292E+03	6.14E+02	1.00	2.352E+03	3.99E+02	1.00	1.40	2.720E+03	4.64E+02	1.00	1.21
g03	4.296E+04	1.00E+04	1.00	4.375E+04	1.01E+04	1.00	0.98	4.426E+04	1.09E+04	1.00	0.97
g05	1.160E+05	2.33E+03	1.00	1.165E+05	2.11E+03	1.00	1.00	1.160E+05	2.79E+03	1.00	1.00
g06	1.448E+03	3.25E+02	1.00	1.104E+03	2.56E+02	1.00	1.31	1.168E+03	2.47E+02	1.00	1.24
g07	2.412E+03	5.35E+02	1.00	1.936E+03	3.91E+02	1.00	1.25	2.232E+03	4.49E+02	1.00	1.08
g08	2.440E+02	1.09E+02	1.00	2.360E+02	7.76E+01	1.00	1.03	2.400E+02	9.04E+01	1.00	1.02
g09	2.960E+02	1.35E+02	1.00	2.800E+02	1.07E+02	1.00	1.06	2.920E+02	1.29E+02	1.00	1.01
g10	2.480E+03	5.92E+02	1.00	1.920E+03	3.59E+02	1.00	1.29	2.040E+03	3.81E+02	1.00	1.22
g11	2.248E+04	1.35E+04	1.00	2.090E+04	1.15E+04	1.00	1.08	2.082E+04	1.14E+04	1.00	1.08
g13	1.109E+05	4.39E+03	1.00	1.092E+05	4.70E+03	1.00	1.01	1.090E+05	4.76E+03	1.00	1.02
g14	1.109E+05	6.80E+03	1.00	1.136E+05	4.79E+03	1.00	0.98	1.122E+05	6.07E+03	1.00	0.99
g15	1.033E+05	6.46E+03	1.00	1.010E+05	6.33E+03	1.00	1.02	9.962E+04	7.84E+03	1.00	1.04
g16	1.236E+03	4.38E+02	1.00	1.028E+03	3.18E+02	1.00	1.20	1.088E+03	3.86E+02	1.00	1.14
g17	1.116E+05	3.05E+03	1.00	1.129E+05	2.44E+03	1.00	0.99	1.132E+05	2.45E+03	1.00	0.99
g18	7.568E+03	6.94E+02	1.00	5.416E+03	5.83E+02	1.00	1.40	6.232E+03	7.68E+02	1.00	1.21
g21	1.095E+05	5.52E+03	1.00	1.131E+05	3.01E+03	1.00	0.97	1.127E+05	4.15E+03	1.00	0.97
g22	NA	NA	0.00	2.183E+05	1.12E+04	0.88	NA	2.273E+05	9.15E+03	0.30	NA
g23	1.061E+05	2.69E+03	1.00	1.076E+05	4.25E+03	1.00	0.99	1.060E+05	3.38E+03	1.00	1.00
avg	- 0.944		0.944	-		0.993	1.11	- 0.961		0.961	1.07

Fig. 2. Convergence graphs of ECHT-DE, ECHT-ARMOR-DE1, and ECHT-ARMOR-DE2 for the selected functions in CEC 2006. (a) g01; (b) g07; (c) g13; (d) g16; (e) g18 (f) g23.

Fig. 3. Average rankings of different algorithms by the Friedman test for the CEC 2006 functions. The lower the ranking, the better the performance obtained by the algorithm. The p-value computed by the Friedman test is 0.209197.

Fig. 4. Average rankings of different algorithms by the Friedman test for the CEC 2010 functions with respect to the mean quality of final solutions. (a) D=10; The p-value computed by the Friedman test is 0.260226. (b) D=30; The p-value computed by the Friedman test is 0.059022.