STA 199 Final Project Presentation

Ivy Shi, Katie Wilbur, Miles Turpin

].

Dataset and Background Information

What is Yelp?

Yelp is a web and mobile platform that publishes crowd-sourced reviews about local businesses, as well as online reservation service through Yelp reservations.

Dataset

The data is released by the Yelp Dataset Challenge to encourage student to conduct research and analysis. It contains a subset of Yelps' businesses, reviews, and user data.

The Dataset

5,200,000 reviews

174,000 businesses

200,000 pictures

11 metropolitan areas

1,100,000 tips by 1,300,000 users

Over 1.2 million business attributes like hours, parking, availability, and ambience Aggregated check-ins over time for each of the 174,000 businesses

Big Dataset → Narrow down to restaurant data within the business subset

2.

Research Question & Methods

66

Q: What attributes contribute to high restaurant star ratings? -

A: Build a regression model to predict star ratings based on restaurant characteristics

Initial Analysis

Data Filtering

Regression Methods

Initial Analysis of Data

Initial Restaurant Data

60970 observations 88 variable

Mean: 3.5 stars

Median: 3.5 stars

Initial Analysis

Data Filtering

Regression
Methods

Problem – Too Many NAs, Too Many Columns

GoodForKids +	WheelchairAccessible *	BikeParking [‡]	Alcohol
TRUE	NA	TRUE	full_bar
TRUE	FALSE	NA	beer_and_wine
NA	NA	FALSE	NA
TRUE	TRUE	TRUE	none
NA	NA	TRUE	NA
TRUE	NA	TRUE	NA
FALSE	FALSE	NA	full_bar
TRUE	TRUE	TRUE	full_bar
NA	TRUE	TRUE	NA
TRUE	NA	TRUE	full_bar
NA	NA	TRUE	NA
TRUE	NA	NA	NA
TRUE	NA	NA	NA

- Models need all columns to be non-null
- Very sparse dataset; unclear what is important

Solution - Optimizing Columns

Initial Analysis

Data Filtering

Regression Methods

```
[1] 0.2330068

Call:
lm(formula = stars ~ RestaurantsPriceRange2 + categories + BusinessAcceptsCreditCards +
    Alcohol + HasTV + NoiseLevel + RestaurantsGoodForGroups +
    Caters + WiFi + aggBusinessParking + aggAmbience + aggGoodForMeal +
    review_count + BikeParking + GoodForKids + RestaurantsReservations +
    RestaurantsTakeOut + RestaurantsAttire + RestaurantsGoodForGroups,
    data = food_reduce)
```

Residual vs Fitted Plot (colored by categories)

Regression Decision Tree Algorithm

Concept

Non-linear regression method that predicts a value by building a tree

Random Forest Algorithm

Concept

Train many decision trees and average their results, cancels out any bias/noise from any single tree 3.

Conclusion

- » Random forest algorithm most successful (R-squared of 0.277%)
- » Prevalence of lowR-squared values suggeststhat data is non-linear

	Random	Linear	Decision
	forest	regression	tree
R-squared	0.277	0.230	0.147