Задача. Окружности ω_1 и ω_2 пересекаются в точках A и B. В точке A к окружностям ω_1 и ω_2 соответственно построены касательные l и k, пересекающие окружности соответственно в точках D и C. Докажите, что $AC^2 \cdot BD = AD^2 \cdot BC$.

Решение. Пусть $\angle BAC = \alpha$, а $\angle BAD = \beta$. Тогда $\angle BDA = \alpha$ по теореме об угле между хордой и касательной. Аналогично $\angle BCA = \beta$. Из подобия $\triangle ABC \sim \triangle DBA$ следует, что $\frac{AC}{AD} = \frac{BC}{BA} = \frac{BA}{BD}$. Отсюда сразу следует, что $\frac{AC^2}{AD^2} = \frac{BC}{BA} \cdot \frac{BA}{BD} = \frac{BC}{BD}$ Домножая обе части полученного равенства $(\frac{AC^2}{AD^2} = \frac{BC}{BD})$ на $\frac{AD^2}{BD}$ (метод креста) получим требуемое утверждение: $AC^2 \cdot BD = AD^2 \cdot BC$.

Комментарий. Несложно видеть интересный факт, как следствие доказаной задачи, а именно DD'=CC'. Это верно в силу того что $deg(C,\omega_2)=AC^2=CB\cdot CC'$, а также $deg(D,\omega_1)=AD^2=DB\cdot DD'$.

$$AC^{2} \cdot BD = AD^{2} \cdot BC$$

$$AC^{2} = BC \cdot CC'$$

$$AD^{2} = BD \cdot DD'$$

$$\Rightarrow DD' = CC'$$