PATENT ABSTRACTS OF JAPAN

(11)Publication number:

10-222856

(43)Date of publication of application: 21.08.1998

(51)Int.CI.

G11B 7/09 G11B 7/135

(21)Application number: 09-025220

(71)Applicant:

OLYMPUS OPTICAL CO LTD

(22)Date of filing:

07.02.1997

(72)Inventor:

HORIKAWA YOSHIAKI

(54) OPTICAL INFORMATION RECORDING/REPRODUCING DEVICE

(57)Abstract

PROBLEM TO BE SOLVED: To provide an optical system information recording/reproducing device miniaturized by an integrated optical system capable of high speed tracking.

SOLUTION: A beam from a laser diode 1 is reflected successively by beam splitter 3, member 4, vibration mirror 6 provided on a transparent substrate 2 to be converged on an optical disk 8 by an objective lens 7. The vibration mirror 6 is supported vibratably for a semiconductor substrate 5 by a torsion bar 15, and a change of a direction of its surface moves a spot formed on the optical disk 8 in the direction traversing a track. The beam containing information from the optical disk 8 transmits through the objective lens 7, vibration mirror 6, member 4 and beam splitter 3, and is reflected by the bottom surface of the transparent substrate 2, and astigmatism is imparted to the beam by a cylindrical reflection mirror 9, and the beam is separated to S polarization and P polarization by a polarizing beam splitter 10, and respective polarization are made incident on photodiode units 12, 13.

LEGAL STATUS

[Date of request for examination]

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

Copyright (C); 1998,2003 Japan Patent Office

(32) (19) 日本西本田(1 b)

€ 獓 4 盂

华

噩

4

(11)特許出願公開番号

特開平10-222856

(43)公開日 平成10年(1998) 8 月21日

ഥ

原別記号

7/09

G11B (51) Int C.

O 4 7/135 7/09 G11B

(全9頁) 審査請求 未請求 請求項の数3 01

1000年	特國平9-25220 (71)出國人 000000376
平成9年(1997)2月7日	
	(72)発明者
	(74) 代理人
	-

光学式情報記錄再生裝置 (54) [発野の名称]

【課題】高速トラッキングが可能な集積光学系で小型化 された光学式情報記録再生装置を提供する。 [解決手段] レーザーダイオード1からのビームは、透 ョンパー15により半導体基板5に対して振動可能に支 **梅されており、その面の向きの変化は光ディスク8に形** る。光ディスク8からの情報を含んだピームは、対物レ を通り、透明基板2の下面で反射され、シリンドリカル **して光ディスク8に鎮光される。複動ミラー6はトーツ** ンメ1、板動ミラー6、部材4、ピームスプリッター3 反射鏡 9 により非点収益が与えられ、偏光ビームスプリ ッター10により S 偏光と P 偏光に分離され、各偏光は 仮動ミラー6によって順に反射され、対物レンメ1によ 明基板2に設けられたピームスプリッター3、部材4、 成されるスポットをトラックを横切る方向に移動させ フォトダイオードユニット12と13に入射する。

[特許請求の範囲]

【精水項1】透明基板の中を通過させながら光学系の作 用を生じさせる集積光学系と半導体基板に設けられた検 において、トラッキング用の複動ミラーと球面収差補正 出器を一体的に組み上げてなる光学式情報記録再生装置 機構の少なくとも一方を備えている光学式情報配録再生

出器を一体的に組み上げてなる光学式情報配録再生装置 【請求項2】透明基板の中を通過させながら光学系の作 において、光記録媒体の内部に多層に記録された情報を 共焦点検出により各記録層毎に分離して検出する共焦点 用を生じさせる集積光学系と半導体基板に設けられた検 検出機構を備えている光学式情報記録再生装置。

録圏毎に分離して検出する共焦点検出機構を備えている 【精水項3】透明基板の中を通過させながら光学系の作 用を生じさせる集積光学系と半導体基板に設けられた検 において、トラッキング用の短動ミラーと映函収整補正 の内部に多層に記録された情報を共焦点検出により各記 出器を一体的に組み上げてなる光学式情報記録再生装置 機構の少なくとも一方を備えており、さらに光記録媒体 光学式情報記錄再生装置。

[発明の詳細な説明] [0000]

【発明の属する技術分野】本発明は、情報を光により記 碌再生する光学式情報記録再生装置に関する。 [0002]

107に対して情報の記録再生を行なう光ピックアップ **であり、この光ピックアップは、光ピームを嵌内する笛** 【従来の技術】特公平1-21874は、小型化された 光学式情報記録再生装置を開示している。この光学式情 長い透明基板101に、レーザー102、ソーン・グレ ート103、個光ビームスプリッター104、1/4板 長板105、模光機能を符0回折格子106、光検出器 108が設けられている。このように種々の光学禁子が とができる。この例では、透明基板に平板状のものを用 報記録再生装置は、図5に示されるように、光ディスク 透明基板に集積一体化されたものは集積光学系というこ ブリズム状のものを用いてもよい。 いているが、

8

【0003】一般に、光ディスクにおいては、配錄媒体 は、この透明保護層自体が光ディスクの剛性を担う構造 体となっている。現在普及しているCDやCD-ROM と呼ばれる光ディスクでは、保護層の厚さは1.2mm 層を薄くすることにより光ピックアップ光学糸の関ロ数 保護層の厚さは0.6mmとなっている。これは、保護 であるが、新しく考えられているDVD苺の規格では、 面は保護用の透明保護層の裏に設けられている。実際 を大きくし、記録密度を高めるためである。

9

が好ましい。しかし、CDとDVDでは保護圏の厚さが [0004] 互換性を考えると、一つの光学式情報記録 再生装置で両方の規格のディスクに記録再生できること

特開平10-222856

3

べる。いのため、一つの対物フンドが阻断に対応する光 大きく異なっており、この保護層の厚さの違いは同一の **対物レンズによってCDに集光される光とDVDに象光** される光との間に無視できない程の大きな球面収整を与 学式情報記録再生装置を実現することは離しい。 [0005] 光技術コンタクトvol. 33. ppf0 7-625 (1995) には、保護層の原さの異なる光 ディスクに対応回能な二無点光ピックアップのいくつか 倒を示している。この二無点光アックアップでは、ワン ズホルダー111にDVD用の対物レンズ112とCD 用の対物レンズ113が散けられており、図6 (A) に 示されるように、DVD114に対して記録再生する場 合には、DVD用の対物レンズ112が光路上に配置さ れ、図6 (B) に示されるように、CD115に対して 記録再生する場合には、CD用の対物レンズ113が光 の倒が示されている。図6(A)と図6(B)はその一 路上に配置される。 9

いる。この光学式情報記録再生装配では、図りに示され め、記録面を多層化した光学式情報記録再生装置が本出 類人による特開平3-306546において提案されて るように、半導体ワーゲー131から射出されたワーザ **ムに投えられ、ピーセスブリッター133によって対物** は、所定の間隔を置いて稍層された複数の記録面140 4に入射したレーザービームは記録面140a、140 a、140b、140cを在しており、対物レンズ13 **ーピームは、コリメートレンメ132によって平行ピー** レンズ134に向けて反射される。光ディスク140 【0006】また、光ディスクの記録容量を高めるた b、140cのいずれかに集光される。 20

[0007] 記録面に記録されている情報を含んだ記録 35によって集光される。亀光レンズ135の集光位置 **にはアンボール136が配幅かれたがり、アンボーチ1** 36を通過した光はその後ろ側に配置された光検出器1 37に入射する。光検出器137は入射光の強度に応じ た信号を出力し、それは悄幅器138を経て再生信号と し、ピームスプリッター133を通過し、観光レンメ1 **| 居せ心のフーボーガームは、草をフンメー3451大学** して出力される。

きず、従って光検出器137には至らないので、情報が ずしも記録面を循層した型でなくともよい。均質な媒体 [0008]この装置の検出光学系は、観光レンズ13 り、いわゆる共焦点検出光学系を構成している。このた め、レーザービームが亀光された記録面からの光はピン それ以外の記録面からの光はピンホール136を通過で 高いS/Nで検出される。なお、光ディスク140は必 でもよい。 (Oplus E、1996年8月号pp7 ホール136と通過して光検出器137に入射するが、 5による現光位置にピンホール136が配置されてお

[0000]

8

<u>|</u>

関するための高速トラッキングは対物レンズのみを高速 出光学系(フォトダイオードを含む)は個別部品で構成 に制御することで達成可能であった。 れていても問題がなかった。光ディスクのトラックに追 れているため、多くの信号ラインが電気回路系に接続さ メクの半径方向に比較的低速度で移動する機構に設けら されており、レーザーグイオードと模出光学深は光ディ ダイオードと光ディスクに光を採光する対物ワンズと模 【0010】それ以前の装置では、光原であるレーザー 70

信号ラインの束がパネ定数となって高速移動を困難にす 出来ないため、情報の読み善き時間の短縮が難しい。集 ンズ単体よりも慣性が大きへ影御が難しいうえ、さらに やフォトタイオード海が一体化されているため、対物レ **復光学ぶいは、対物ワンメの他にもワーギーダイオード** すると対物レンズを単組た尾浜トラッキングすることが 【0011】しかし、対物レンズを含めて集積光学系に 20

キングが可能で読み書き時間を大幅に短縮できる光学式 あり、その目的は集積光学系にもかかわらず高速トラッ 情報記録再生装置を提供することである。 【0012】本発明はこの点に若目して成されたもので

対物フンスを用いているため小型代が購しい。 フンズや スクに対応した小型の光学式情報記録再生装置を実現す ることは困難である。従って、異なる保護層厚の光ディ であり、また両方の保護層厚に対して開口数を大きくす ップがあるが、光査を分け合って用いるので記録が困難 る。他の例としてポログラムレンズを用いた光ピックア 切り換えを集積光学系の中で実現することも困難であ 護魔の厚さの異なる光ディスクに対応できるが、複数の る二〇の対物ァンズを用いた二無点光ピックアップは保 【0013】先述の光学技術コンタクトに記載されてい

き、しかも無欄光学系で小型化された光学式情報記録再 生装置を提供することである。 で、その目的は異なる保護層庫のディスクにも対応で 【0014】本発明はこの点に着目してなされたもの

【0015】本出願人による共焦点検出方式を用いた先

には非常に効果があるが、最近重要性が増加した、装置 学式情報記録再生装置は、記録容量の増大化、高密度化 【0016】本発明はこの点に着目してなされたもの

の小型化に関しては地種がされていない。 で、その目的は多層記録された光ディスクに対応し、し

> を提供することである。 かも集積光学系で小型化された光学式情報記録再生装置

[0017]

基板に設けられた検出器を一体的に組み上げてなる光学 ラーと球面収整補正機構の少なくとも一方を備えてい 式情報記録再生装置において、トラッキング用の振動に せながら光学系の作用を生じさせる集積光学系と半導体 **ろく光学式情報記録再生装置は、透明基板の中を通過さ** 【課題を解決するための手段】本発明の第一の主題に基

収差補正機構としては、薄膜を利用した変形ミラーや、 位相変化を生じさせる液晶や電気光学素子などがあげら ず、平板状でも直方体状でもプリズム状でもよい。 球面 光学菜子を集積化する基板のことであり、形状は問わ 【0018】ここで、透明基板とは、光学的作用をする

検出器を一体的に組み上げてなる光学式情報記録再生装 段再生装置は、透明基板の中を通過させながら光学系の 点夜田嶽犇を編えている。 を共焦点検出により各記録層毎に分離して検出する共焦 置において、光記録媒体の内部に多層に記録された情報 作用を生じさせる集積光学系と半導体基板に設けられた 【0019】本発明の第二の主題に基づく光学式情報記

路、集光レンズとピンホールの組合せなどが上げられ 光ファイバー、集光レンズと点状ミラーの組合せ、導筋 成する構成であればどのようなものでもよく、例えば、 【0020】共焦点検出機能としては、共焦点検出を遠

30 録再生装置は、透明基板の中を通過させながら光学系の 置において、トラッキング用の扱動ミラーと球面収差補 記録層毎に分離して検出する共無点検出機構を備えてい 体の内部に多層に記録された情報を共焦点検出により各 正機構の少なくとも一方を備えており、さらに光記録媒 検出器を一体的に組み上げてなる光学式情報記録再生装 作用を生じさせる集積光学系と半導体基板に設けられた 【0021】本発明の第三の主題に基づく光学式情報記

[0022]

S の実施の形態について説明する。まず、第一の実施の形 を逼過したフーギーアー441、威男茘枝2の欠郎を伝説 残りはこれによって反射される。ピームスプリッター3 されるように、フーザーダイギード1から射出されたフ の径方向に移動可能に保持されている。図1 (A)に示 録再生装置は、図示しない機構によって、光ディスク8 学式情報記録再生装置の側断面図であり、光学式情報記 態の光学式情報記録再生装置について図1 (A) と図1 ピームスプリッター 3 に入射し、一部はこれを通過し、 ーザードームは、プリメム状の透明基板2に設けられた (B)を用いて説明する。図1 (A) は本実施形態の光 【発明の実施の形態】以下、図面を参照しながら本発明

> 性の向上を図るための光量変動のモニターに利用され する。フォトダイオード14は、入射したレーザードー ムの独度に応じた信号を出力し、これは信号検出の安定

るビームスポットをトラックを横切る方向に移動させ

材4を経てピームスプリッター3に到達する。ピームス ット12に入射し、P偏光はフォトダイオードユニット の下面で反射された、続いて、上面に設けられたシリン れ、S偏光は切り欠き11を経てフォトダイオードユニ ームスプリッター10によって5偏光とP偏光に分離さ れる。非点収差が与えられたワーザーアームは、偏光で ドリカル反射鏡9によって反射され、非点収差が与えら プリッター 3 を通過したレーザービームは、透明基板 2 やフーギーパースは、紅色フンメロ、破鬱パレー6、寒

C2とD2を有している。光ディスク8に配録されてい オードA1とB1とC1とD1を有し、フォトダイオー 体基板5の平面図である。図1(B)に示されるよう B2) - (C1+C2+D1+D2) によって得られ て得られる。焦点を合わせるためのフォーカッシングエ 1+C1+D1) - (A2+B2+C2+D2) によっ る情報を示す光磁気信号MOSは、MOS=(A1+B に、フォトダイオードユニット12は四つのフォトダイ グエラー信号TESは、TES= (A1+A2+B1+ +A2+C1+C2) - (B1+B2+D1+D2) (ラー信号FESは、非点収益法により、FES=(A.1 よって得られる。 トラッキング制御のためのトラッキン ドユニット13は四つのフォトダイオードA2とB2と

れらが直線的に配置されたものに比べて小型に構成され の三つの光学菜子はプリズム状の透明基板2に一体的に 偏光パー 4スプリッター 10 とシリンドリカル反射機9 に、トラッキングは、トーションパー15によって半導 オードが一枚の半導体基板5の同一の面に設けられてい 内铝で炉り曲げられている。いのため、その光学系はい 設けられ、これらの光学素子を通る光軸は透明基板2の **るため、小型化と低コスト化が実現されている。さら** ている。また、信号校出に用いられる複数のフォトダイ

し、切り欠き11を経て、フォトダイオード14に入射

材 4 に一体的に形成された対物レンズ 7 によって光ディ ており、その面の向きの変化は光ディスク8に形成され 15によって半導体基板5に対して扱動可能に支持され スク8上に集光される。彼動ミラー6はトーションバー 基板5に設けられた援助ミラー6によって反射され、部 ーピー4は、餌材4によって反射され、続いて、半導体 【0023】ピームスプリッター3で反射されたレーサ

【0024】光ディスク8によって反射された情報を含

【0025】図1(B)は透明基板2の側から見た半導

【0026】本実施形態では、ビームスプリッター3と S

£

特開平10-222856

速トラッキングが実現されている。 体基板5に扱動可能に支持された扱動ミラー6によって 対物レンメ1を仮位させることなく行なわれるため、感

あり、フォトダイオードユニット12と13はいずれか 用する場合でh、偏光ピームスプリッター10は不要で 式にも適用できる。また、強度変化を検出する方式に適 相変化記録方式やフォトンモード記録方式などの他の方 光斑気アイスクに限らず、信号の強度の変化を模出する 【0027】本実施形態の光学式情報記録再生装置は

図示しない機構によって、光ディスク8の径方向に移動 生装置の側断面図であり、光学式情報記録再生装置は、 照符号で示されている。図2(A)は光学式情報記録再 する。第一の実施の形態の部材と同等の部材は、同じ参 再生装置について図2 (A) と図2 (B) を用いて説明 可能に保持されている。 [0028] 衣に、第二の実施の形態の光学式情報記録

状の透明基板2に設けられたビームスプリッター3に入 力し、これは信号検出の安定性の向上を図るための光量 4は、入射したシーザードームの強度に応じた信号を出 フォトダイオード14に入射する。フォトダイオード1 は、透明基板2の内部を伝搬し、切り欠き11を経て、 射し、一部はこれを通過し、残りはこれによって反射さ イオード1から転出されたワーザーピームは、プリズム 変動のモニターに利用される。 れる。ピームスプリッター 3 を通過したワーザーピーム 【0029】図2(A)に示されるように、レーザーダ

される亀圧に依存して平面形状が変化する。変形ミラー イスク8上に集光される。変形ミラー16は薄膜で作ら 基板5に設けられた変形ミラー16によって反射され、 ーピームは、街材4によって反射され、鋭いて、半導体 クに対しても対物レンメ7の球面収磨の変動を補圧する 16の表面形状により、保護膜の厚さが異なる光ディス れており、その真下に設けられた電極17との間に印加 筃材 4 に一体的に形成された対物 アンメコによって光ア 【0030】ピームスプリッター3で反射されたレーサ

スプリッター 3 を通過したレーザーピームは、透明基板 むフー丼ーパースは、紅物ワンメロ、紋形パルー16、 ニット12に入射し、P偏光はフォトダイオードユニッ され、S偏光は切り欠き11を絶てフォトダイオードユ 2の下面で反射された、続いて、上面に設けられたシリ 朗材4を経てピームスブリッター3に到達する。ピーム ビームスプリッター 1 0によって S偏光と P偏光に分離 られる。非点収益が与えられたレーザーピームは、偏光 ンドリカル反射鏡9によって反射され、非点収差が与え 【0031】光ディスク8によって反射された情報を含

体基板5の平面図である。図2 (B)に示されるよう 【0032】図2(B)は透明基板2の側から見た半導

3-

+A2+C1+C2) - (B1+B2+D1+D2) 1 よって得られる。トラッキング制御のためのトラッキン グエラー信号TESは、TES= (A1+A2+B1+ ドユニット13は四つのフォトダイオードA2とB2と C2とD2を有している。光ディスク8に配録されてい る情報を示す光磁気信号MOSは、MOS= (A1+B 1+C1+D1) - (A2+B2+C2+D2)によっ て得られる。無点を合わせるためのフォーカッシングエ ラー(18号FESは、非点収差法により、FES= (A1 **に、フォトダイオードコニット 1 2 は囚つのフォトダイ** オードA1とB1とC1とD1を有し、フォトダイオー B2) - (C1+C2+D1+D2) によって得られ

ている。また、信号検出に用いられる複数のフォトダイ 偏光ピームスプリッター10とシリンドリカル反射鏡9 致けられ、これらの光学素子を通る光軸は透明基板2の 内部で折り曲げられている。このため、その光学系はこ れらが直線的に配置されたものに比べて小型に構成され オードが一枚の半導体基板5の同一の面に設けられてい **一16の表面形状を変えることにより対物レンメ1の**球 イスクや多層記録された光ディスクに対しても適用可能 【0033】 本実徳形態では、ピームスプリッター3と の三つの光学兼子はプリズム状の透明基板2に一体的に に、本実施形態の光学式情報記録再生装置は、変形ミラ 面収差の補正ができるので、保護層の厚さの異なる光デ るため、小型化と低コスト化が実現されている。さら

相変化記録方式やフォトンモード記録方式などの他の方 式にも適用できる。また、強度変化を検出する方式へ適 用する場合では、偏光ピームスプリッター10は不要で あり、フォトダイオードユニット12と13はいずれか 光磁気ディスクに限らず、信号の油度の変化を検出する 【0034】本奥施形態の光学式情報配録再生装置は、 一方があればよい。

【0036】光後出部33に含まれるレーザーダイオー **施形態の光学式情報記録再生装置の側断面図であり、光** [0035] 続いて、第三の実施の形態の光学式情報記 除再生装置について図3を用いて説明する。図3は本実 学式情報記録再生装置は、図示しない機構によって、光 パー20から牡田されたワーザーピームは、一部は甲板 れ、その矯面かのワーザパームが射出される。光ファイ ド338で生成された光は光ファイバー20に導入さ ディスク28の径方向に移動可能に保持されている。

ガラス基板21の内部に進入し、残りは平板ガラス基板 21の猫面22で反射される。

によって反射されたレーザーピームは、半導体基板32 【0037】 平板ガラス基板21の端面22で反射され たフーチーアームは、半導体基板32に敷けられた映画 収差補正用の変形ミラー23によって反射され、ガラス 板25に設けられたミラー24に入射する。ミラー24

に設けられたトラッキング用の複動ミラー26によって ワーザーピームは、回竹格子 ワンズ21によった、多幅 反射され、ガラス板25に形成された集光用の回折格子 レンズ21に入射する。回折格チレンズ21に入射した 記録光ディスク28の内部に異なる深さに記録された複 数の記録層の中のひとつに集光される。このガラス板2 5 に設けられた回折格子レンズ2 7 が通常の光ピックア ップにおける対物 ワンメに枯当したいる。 ワーザーピー ムが縄光される記録面の遊択は、回折格子レンメ21と 多層記録光ディスク28の間隔を変えることによって行

たおり、レーザーアームが供光される記録面の深さに応 【0038】擬動ミラー26は、第一の実施の形態のも のと実質的に同じ構成をしており、その面の方向が変更 可能に支持されており、仮動ミラー26の面の方向の変 **更は、ワーボードームの集光位置すなわち記録面に形成** されるピームスポットを、記録面のトラックを横切る方 向に移動させる。また、球面収整補正用の変形ミラー2 3 は、第二の実施の形態のものと実質的に同じ構成をし じて表面形状が変えられ、これにより記録面の深さの連 いのために生じる球面収差を補正する。

動ミラー26、ミラー24、変形ミラー23を経て、ガ 【0039】多層記録光ディスク28の所定の記録面で 反射された レーザーピームは、回炉格子レンメ21、板 ラス基板21の端面22に入射する。 変形ミラー23か ら協画22に入射した光は、一部はこれを通過してガラ **ス基板21の内部に進入し、費りは反射されて光ファイ** ベー20の雑層に向かう。 [0040] ガラス基板21に進入したレーザーピーム れにより非点収差が与えられる。非点収差が与えられた レーザービームは、ガラス基板21の上面と下面で反射 された後、エラー信号検出器30に入射する。エラー信 号検出器30は、上述した実施の形態と同様に、四つの フォトダイオードを有しており、非点収整法に基づく手 法によりフォーカッシングエラー信号とトラッキングエ は、回好格子型シリンドリカルレンズ29に入射し、こ ラー信号が得られる。 30

[0041] ガラス基板21の端面22で反射されたレ **ーザービームは、ファイバー20の端面に入射する。光** ファイバー20に 猫入した光は内部を伝搬して光検出部 33に含まれるフォトダイオード33bに達する。光検 出部33は、戻り光の強度すなわちフォトダイオード3 3bの出力に基づいて、多層記録光ディスク28の情報 を検出する。 【0042】光ファイバー20の端面はピンホールと見 なせるので、光ディスク28の情報を検出する光学系は 実質的に共焦点光学系を構成している。従って、焦点が 合っていない記録面からの戻り光は光ファイバー20の **左郎に袖入しなこれを、フー护ーアー4が継光がたたこ** る記録面に記録されている情報が共焦点検出により高い

S/NA被用やため。

に、球面収差補正用の変形ミラー23、トラッキング用 の振動ミラー26、トラッキングエラー信号とフォーカ オード出力モニター用の検出器31が集約されているた シングエラー信号の検出用の検出器30、レーザーダイ [0043] 本実施形態では、一つの半導体基板32 め、装置の小型化と低コスト化が実現されている。

306546に詳述されているように、多層記録と共焦 点検出を用いることにより、それぞれの記録面に記録さ れている情報を分離して既み出すことが可能であり、記 [0044] 本実施形態は、本出願人による特開昭3-録容量の増大と記録密度の向上を達成している。

2

[0045] 本奥施形糖は、ワーザーピームを集光する 記録面を変更する際に各記録面の深さが異なることが原 因で生じる球画収差を補正する変形ミラー23を備えて いるので、ディスク28の上面から異なる距離に位置し ている複数の記録面のいずれに対して正確な情報の読み 魯きが行なえる。また、面の方向を高速で変更できる版 動ミラー26を用いてトラッキングを行なうので、高速 トラッキングが実現でき、情報の記録再生速度を高速化 できる。また、光検出部33を除く全ての構ガラス基板 板25によったすべての機能体が一体化されているのか 21を中心とする集積光学系と半導体基板32とガラス 非常に小型の光学式情報記録再生装置を提供できる。

2

[0046] 続いて、第四の実施の形態の光学式情報記 学式情報記録再生装置は、図示しない機構によって、光 録再生装置について図4を用いて説明する。図4は本実 施形態の光学式情報記録再生装置の側断面図であり、光 ディスク50の径方向に移動可能に保持されている。

[0041] 図4に示されるように、レーザーダイオー 折格子42に照射され、そこで発生した1次回折光は点 ド41は、透明基板40に形成された切り欠きに設けら ザーピームは、レーザーピームの整形と棋光を兼ねる回 状ミラー43に集光される。回折格子42はリングラフ れている。レーザーダイオード41から射出されたレー **ィーの技術によって透明基板40上に形成される。**

ーピームはコリメート用の回折格子44に入射し、そこ で回折された光は半導体基板45に設けられた球面収差 [0048] 点状ミラー43は、その反射面上にレーザ **ービームが集光され、これを反射するので、点光顔と見** 回折格子42と同様に、リングラフィー技術により作製 される。夜形ミラー46はシリコンの薄膜で構成されて おり、与えられる静鶴界に応じて変形し、後述する映画 なすことができる。点状ミラー43で反射されたレーザ 補正用の変形ミラー46に入射する。回折格子44は、 収差を補正する。

4は、透明基板40の上面に設けられたミラー41で反 る。変形ミラー46と観動ミラー48はリングラフィー [0049] 変形ミラー46で反射されたレーザービー 射され、高速トラッキング用の板動ミラー48に入射す

特閣平10-222856

9

技術によって一つの半導体基板45の上に作製され、こ の半導体基板45は図示しないウェッジ状の部材によっ て透明基板40と一体化されている。

- ピームは、対物レンズとして作用する回炉格子 4 9 に 入射し、その反射回折光は、多層配線光ディスク50の 内部に異なる深き位置に記録されている複数の記録面の 中のひかしには光される。フーチーアームがは光される 【0050】 嶽勢ミラー48によって反針されたワーザ **記録面には、そこに記録されている情報に対応するピッ** ト51が形成されており、従って、記録面で反射された 光はそこに記録された情報を含んだ光となる。

入財するレーザーピームの一部を点状ミラー43に向け [0051] 多層記録光ディスク50から戻ってくる情 数を含んだレーザービームは、回折格子49、複動ミラ 44に入射する。回折格子44は、変形ミラー46から て回折し、残りを基板40の下面に設けられたミラー5 ―48、ミラー47、変形ミラー46を経て、回折格子 3に向けて回折する。

光のうち、焦点の合っている所留の記録面からの情報を 【0052】回折格子44によって回折された点状ミラ -43に向かうレーザーピームは、それを構成している ず、その周囲を通過する。点状ミラー43の周囲を通過 焦点合っていない不所質な配録面からの光は点状ミラー 含んでいる光は点状ミラー43によって反射されるが、 43の周囲に広がるため点状ミラー43では反射され する光は量的には少ないので不都合はない。

[0053] 点状ミラー43で反射された所盤の記録面 からの情報を含んだ光は、回折格子42によって回折さ れ、検出器52に入射する。検出器52は入射した光量 に応じた信号を出力し、これは情報信号として処理され

5。回折格子54は、レーザービームの瞳の半分に対応 する部分を別の方向に回折し、その回折光は検出器56 で検出される。検出器56は複数のフォトダイオードか ら構成されており、良く知られたプッシュプル法による [0054] 回折格子44によって回折されたミラー5 3に向かうレーザーピームは、ミラー53で反射され、 職分割作用と無光作用を有する回折格子 5 4 に入射す

5と半導体基板55とが一体化されているので、装置金 [0055] 本鉄施形糖では、110の検出器52と56 は一枚の半導体基板55の同じ面に共通の半導体製造工 **程によって作製され、また、四つの回折格子42と44** と54と49は透明基板40の同じ面に共通のリングラ フィー工程によって作製されるので、装置金体の低コス ト化が違成される。また、透明基板40と半導体基板4 **体の小型化が達成される。さらに、トラッキングは複動** ミラー48を用いることにより高速で行なわれるので、 高速応答の可能な光学式情報記録再生装置が実現され 焦点検出とトラッキング信号の検出を行なう。 6

-6-

る。また、球面収差を補正する変形ミラー46と共焦点

2

-5-

S

®

対応可能である。 で、記憶容量の増大化を達成する多層記録光ディスクに 検出を可能にする点状ミラー43が設けられているの

れるものではない。発明の要旨を逸脱しない範囲で行な われる実施は、すべて本発明に含まれる。 【0056】本発明は、上述の実施の形態に何等限定さ

とを特徴とする光学的情報記録再生装置。 トラッキング用の優動ミラーを前記透明基板に設けたこ 明基板に固定されると共に、半導体基板上に形成された 的情報記録再生装置において、前記対物マンズが前記透 学案子と光検出器とを取り付けた透明基板よりなる光学 (1) 少なくとも対物レンズを含む光学的作用をする光 70

用の仮動ミラー行なうので、高速なトラッキングが可能 トラッキングは半導体基板上に形成されたトラッキング して、本発明は対物マンズは透明搭板に固定したままた 移動させてトラッキングを行なっていた従来の装置に対 【0057】(作用・効果)対物レンズごと透明甚板を

よりなる光学的情報記録再生装置において、前記対物レ けたことを特徴とする光学的情報記録再生装置。 化する変形ミラーを前記光学業子が形成する光路中に設 れると共に、澤康で作られ、印加鶴圧により面形状が数 ンズが異なる保護層厚の記録媒体に対して共通に用いる 作用をする光学素子と光検出器とを取り付けた透明基板 【0058】 (2) 少なへとも対物レンズを含む光学的

面収磨を補正するので、装置全体を小型にできる。 えることなく、面形状が変化する変形ミラーを用いて球 【0059】(作用・効果)複数の対物ワンズを切り楔

れめの光導液路 かもして、煎貯光アームの集光位置に煎 再生装置において、向記記録媒体からの光ビーム検出の の記録と再生の少なくとも--方を行なう光学的情報記録 学素子と光検出器とを取り付けた透明基板よりなり、光 記光導成路の端面を設置したことを特徴とする光学的情 ガームを用いて複数の記録層を備えた記録媒体から情報 (3)少なくとも対物レンズを含む光学的作用をする光 8

路を含む。この場合、光導液路の端面がピンホールと見 の記録層を備えた記録媒体からの情報の読み出しが可能 な中、実質的に共焦点光学系を構成しているので、複数 パーおよび透明基板等の基板に設けられた三次元光導故 【0060】(作用・効果)ここで光導液路は光ファイ 6

一を設置したことを特徴とする光学的情報記録再生装 **ドーム検出のために前記光ドームの集光位置に点状ミラ** 学的情報記録再生装置において、前記記録媒体からの光 媒体から情報の記録と再生の少なくとも一方を行なう光 よりなり、光ピームを用いて複数の記録層を備えた記録 作用をする光学索子と光検出器とを取り付けた透明基板 【0061】(4)少なへとも丼勉フン人を留む光料的

> 数の記録層を備えた記錄媒体からの情報の読み出しが可 見なせ、実質的に共焦点光学系を構成しているので、複 【0062】(作用・効果)点状:ラーがピンホールと

能となる。

[0063] 【発明の効果】本発明によれば、半導体基板にリングラ

再生装置が提供され、これにより読み書き時間が大幅に 短縮される。 ングが可能な集積光学系で小型化された光学式情報記録 **一が集積光学系と一体化されているので、高速トラッキ** フィー技術により作製されたトラッキング用の版動ミラ

横光学系と一体化されているため、保護層の厚さの異な 光学式情報記録再生装置が提供される。 る光ディスクにも対応できる集積光学系で小型化された より発生する球面収差を補正する球面収差補正機構が集 【0064】また、光ディスクの保護層の厚さの違いに

が提供される。 した集積光学系で小型化された光学式情報記録再生装置 体化されているので、多層記録された光ディスクに対応 【0065】さらに、共無点検出機構が集積光学系と!

【図面の簡単な説明】

20

板とを示している。 録再生装置の側断面と、透明基板の側から見た半導体基 【図1】本発明の第一の実施の形態による光学式情報記

録再生装置の側断面と、透明基板の側から見た半導体基 板とを示している。 【図2】本発明の第二の実施の形態による光学式情報記

9

再生装置の側断面を示している。 【図3】本発明の第三の施の形態による光学式情報記録

録再生装置の側断面を示している。 【図4】本発明の第四の実施の形態による光学式情報記

た光学式情報記録再生装置を示している。 とDDVDに対応した二無点光ピックアップを示してい 【図6】 徐栄技能と つたの川しの対物フンバや体しのロ 【図5】従来技術としての集積光学系により小型化され

生装置を示している。 スクに対して情報の読み書きを行なう光学式情報記録再 【図1】従来技術としての記録面が多層化された光ディ

【符号の説明】 ワーザーダイオード

ピームスプリッター 透明基板

複動ミラー

丼包フソメ

ツョンドリカル反射観

0 偏光ピームスプリッター

フォトダイオードユニット

<u>~</u> フォトダイオードユニット

> 図1] 8 Ê SCORE SECOND Ξ [図2]

S

-7-

[図4]

[88]

6-