МАШИННОЕ ОБУЧЕНИЕ

ОБУЧЕНИЕ БЕЗ УЧИТЕЛЯ

ПЛАН

- > Задача понижения размерности (вспомним)
- > Задача кластеризации

ОБУЧЕНИЕ С УЧИТЕЛЕМ

- Раньше рассматривали задачи, где у нас том или ином смысле были правильные ответы и задача состояла в том, чтобы приблизиться к ним
- В реальности получение таких ответов может быть связано с высокой стоимостью (ручная разметка, обзвон пользователей, проведение исследования)
- Но зато могут получаться модели хорошего качества

ОБУЧЕНИЕ БЕЗ УЧИТЕЛЯ

- Но можно что-то делать и когда ответов нет
- Типичные методы пытаются из самих данных выделить некоторую структуру:
 - Кластеризация
 - Понижение размерности
 - Поиск аномалий

ЧЕМ ОТЛИЧАЮТСЯ ТРИ КАРТИНКИ?

ЧЕМ ОТЛИЧАЮТСЯ ТРИ КАРТИНКИ?

Данные независимы по компонентам

Есть линейная зависимость

Очень сильная линейная зависимость

И ЧТО С ТОГО?

Данные независимы по компонентам

Есть линейная зависимость

Очень сильная линейная зависимость

Здесь ничего не сделать

А здесь зачем нам две координаты?

СМОТРИМ НА КОВАРИАЦИОННЫЕ МАТРИЦЫ

Данные независимы по компонентам

Есть линейная зависимость

Очень сильная линейная зависимость

$$\begin{pmatrix} \sigma_{11} & 0 \\ 0 & \sigma_{22} \end{pmatrix}$$

Почти нули вне диагонали

• • • •

Нечто среднее

$$egin{pmatrix} \sigma_{11} & \sigma_{12} \ \sigma_{21} & \sigma_{22} \end{pmatrix}$$

Большие элементы вне диагонали

НАБЛЮДЕНИЯ

- В данных могут быть избыточные размерности (координаты)
- Доп. размерности могут быть обусловлены шумом / сильно скорелированными признаками / просто мусором. Это все только мешает при обучении или анализе данных
- Мы хотели бы привести данные к виду, когда ковариационная матрица диагональная. А далее, мы бы убрали компоненты с маленькой дисперсией

АЛГОРИТМ ТАКОЙ:

- Вычитаем среднее из каждого вектора фичей X
- Применяя SVD к X находим собственные векторы XX^T
- Умножая эти собственные векторы на наши исходные фичи, получаем фичи в новом пространстве
- Элементы матрицы Sigma показывают значимость координат
- Отсортировав собственные векторы по значимости
 Sigma, можем отрезать сколько угодно последних компонент

ЧТО ТАКОЕ КЛАСТЕРИЗАЦИЯ?

• По данным получить что-то такое:

ЧТО ТАКОЕ КЛАСТЕРИЗАЦИЯ?

• По данным получить что-то такое:

 Что именно из себя должно представлять это разбиение зависит от наших критериев близости/ плотности/разрозненности

ВИДЫ КЛАСТЕРИЗАЦИЙ

- Иерархическая кластеризация
- На основе центроидов
- На основе распределений
- На основе плотности
- Графовая кластеризация
- ••••

САМЫЙ ПОПУЛЯРНЫЙ АЛГОРИТМ:

- 1. Задаем k число кластеров
- 2. Случайно задаем к центров кластеров (центроидов)
- 3. По каждой точке определяем к какому кластеру она относится по близости к центроиду
- 4. Определяем внутри каждого кластера новый центроид как центр масс
- 5. Повторяем шаги 3-4 пока не сойдемся

ЗАМЕЧАНИЯ

• Откуда взять k?

ЗАМЕЧАНИЯ

- Откуда взять k?
 - Попробовать для разных k и посмотреть как себя ведут метрики.
 - В качестве метрики можно взять silhouette_score: среднее расстояние внутри кластера должно быть маленьким, среднее расстояние между кластерами должно быть большим

НЕДОСТАТКИ

- Необходимость выбора k (но иногда наоборот хорошо)
- Зависимость от начального выбора точек (можно делать несколько итераций)
- Выделяет только шарообразные кластеры