## Borel-Complete O-Minimal Theories

Richard Rast

University of Maryland

May 20, 2014

## Isomorphisms

### Question

Given two countable models  $\mathcal{M}$  and  $\mathcal{N}$  of a sentence  $\Phi \in L_{\omega_1,\omega}$ , how hard is it to tell if  $\mathcal{M} \cong \mathcal{N}$ ?

### Sometimes it's easy:

- Φ is the theory of an infinite set
- $\Phi$  is  $\operatorname{Th}(\mathbb{Q}, <, c_n)_{n \in \omega}$

#### Sometimes it's hard:

- Φ is the theory of graphs (or groups, or fields, or....)
- $\Phi$  is  $\operatorname{Th}(\mathbb{Z},<)$

## Isomorphism and Borel Spaces

Give  $X = \text{Mod}(\omega, \Phi)$  the formula topology, so  $\cong$  is a subset of  $X \times X$ .

If  $\cong$  is a *Borel* set, there is a "computable" invariant that classifies models.

If  $\cong$  is *Borel-complete* then there is no such invariant, and this as difficult as any isomorphism problem could possibly be.

It turns out that if  $\Phi$  is an o-minimal first-order theory, then there is a dichotomy:  $\cong$  is either Borel (and very low) or Borel-complete.

## Nonsimplicity

From now on, T is a countable o-minimal theory.

## Definition (Mayer)

A type  $p \in S_1(A)$  is *nonsimple* if there is a non-degenerate A-definable function  $f: p^n \to p$ , for some n.

Some examples of nonsimple types:

- ullet ( $\mathbb{R}^{\mathrm{alg}},<,+,\cdot$ ): the type "at infinity" is nonsimple:  $x\mapsto x^2$
- $(\mathbb{Q},<,+,c_q)_{q\in\mathbb{Q}}$ : the type "at  $\pi$ " is nonsimple:  $(x,y)\mapsto \frac{1}{2}(x+y)$
- ( $\mathbb{Z}$ , <): the type "x = x" is nonsimple:  $x \mapsto x + 1$

### The Main Theorem

### Theorem (Sahota, 2013)

- If, for some finite A, there is a nonsimple type over A, then for some finite  $B \supset A$ ,  $T_B$  is Borel-complete.
- If there is no such A, then T is not Borel-complete it's  $\Pi_3^0$ .

But, to answer the question for T:

## Theorem (R. 2014)

If T admits a nonsimple type over some finite A, then T is Borel-complete.

### **Examples**

Most interesting o-minimal theories are Borel-complete:

### Corollary

Any nontrivial o-minimal theory is Borel-complete. In particular, any o-minimal theory which defines an infinite group is Borel-complete.

### Corollary

Any discretely ordered o-minimal theory is Borel-complete.

The paradigmatic non-Borel-complete o-minimal theory is  $(\mathbb{Q}, <)$  with some countable set of constants added.

## No Nonsimple Types

### Theorem (Mayer)

Suppose T has no nonsimple types over any finite set. Let  $\mathcal{M}, \mathcal{N} \models T$  be countable. Then  $\mathcal{M} \cong \mathcal{N}$  if and only if, for all  $p \in S_1(\emptyset)$ ,  $p(\mathcal{M}) \cong p(\mathcal{N})$ .

## Corollary (Sahota)

If T has no nonsimple types over any finite set, then  $(\mathit{Mod}(T),\cong)$  is  $\Pi^0_3$ .

# Archimedean Equivalence

For the case where there is a nonsimple type, we want to embed  $(LO, \cong)$  into  $(Mod(T), \cong)$ . This is how we do it:

#### Definition

In a nonsimple type  $p \in S_1(A)$ , if a and b realize p, say  $a \sim b$  if a < b and there is  $a' \in \operatorname{cl}_A^p(a)$  where  $b \leq a'$ .

 $\sim$  is an equivalence relation whose classes are convex, so  $p(\mathcal{M})/\sim$  is a linear order, called the *ladder*.

#### Some examples:

- Give  $\mathcal{M}_1 = (\mathbb{Q}^n, +, <)$  the lexicographic order. Then  $p = \{x > 0\}$  is a complete type and  $p(\mathcal{M}_1)/\sim$  is  $\{[e_1] > \ldots > [e_n]\}$ .
- If L is a linear order, let  $\mathcal{M}_2 = (L \times \mathbb{Z}, <)$ . So  $p(x) = \{x = x\}$  is a complete type and  $p(\mathcal{M}_2)/\sim$  is isomorphic to L.

# A Nonsimple Type

Fix a nonsimple type  $p \in S_1(\emptyset)$ . We build a Borel reduction  $(LO, \cong) \to (Mod(\mathcal{T}), \cong)$  where L appears as the ladder  $p(\mathcal{M}_L)/\sim$  as follows:

- For a countable linear order L, fix a set  $X_L = \{x_\alpha : \alpha \in L\}$  from p, where if  $\alpha < \beta$ , then  $[x_\alpha] < [x_\beta]$  in the Archimedean sense.
- 2 Let  $\mathcal{M}_L \models T$  be prime over  $X_L$ .
- **3** The map  $\alpha \mapsto [x_{\alpha}]$  should be an order-isomorphism  $L \to p(\mathcal{M}_L)/\sim$ .
- Then for any orders L and L', we have  $L \cong L'$  iff  $\mathcal{M}_L \cong \mathcal{M}_{L'}$ .

The tricky spot is surjectivity in (3); say that p is faithful if this map is surjective (in which case T is Borel-complete).

# Unfaithful Types

If p is nonsimple and nonisolated, then there is always a faithful type somewhere. In particular, non-cuts are faithful.

### Example

Let T = Th(Q, <, f), where f(x, y, z) = x + y - z. Then x = x is an isolated, nonsimple type which is not faithful.

If we pick two parameters (call them 0 and 1) then we get a nonsimple (faithful) type at "infinity" where we can build a ladder. But it will *not* be preserved under isomorphism.

### **Tails**

### Example

Let T = Th(Q, <, f), where f(x, y, z) = x + y - z. Then x = x is an isolated, nonsimple type which is not faithful.

Given two parameter choices  $\{0,1\}$  and  $\{0',1'\}$ , if x and y are "big enough" – infinite with respect to  $\{0,0',1,1'\}$  – then x and y are equivalent over (0,1) if and only if they're equivalent over (0',1').

So if we fix  $\{0,1\}$ , then build a long enough ladder above them, a *tail* of our intended linear order is preserved under isomorphism.

#### The Tail Picture

So suppose p is our nonsimple type, and  $\sigma: \mathcal{M} \to \mathcal{N}$  is an isomorphism. Then the situation looks like this:



So there is a common tail of the two linear orders.

### The General Proof

Fix a nonsimple type  $p \in S_1(\emptyset)$ . We would like build a Borel reduction from the LO to  $(\operatorname{Mod}(T), \cong)$  as follows:

- Fix a set  $A = \{0, ..., n\}$  of parameters to get a nonisolated type.
- ② For a countable linear order L, fix a set  $X_L = \{x_\alpha : \alpha \in L\}$  from p, where  $x_\alpha > \operatorname{cl}_A^p(X_\alpha)$ .
- **3** Let  $\mathcal{M}_L \models T$  be prime over  $A \cup X_L$ .
- **1** The map  $\alpha \mapsto [x_{\alpha}]$  will be an order-isomorphism  $L \to p(\mathcal{M}_L)/\sim_A$ .
- **5** Then for any orders L and L', if  $\mathcal{M}_L \cong \mathcal{M}_{L'}$ , then L and L' are isomorphic on a tail.

### The Last Piece

#### Lemma

There is an invariant, Borel-complete subclass  $S \subset LO$  where  $\cong$  is equivalent to tail isomorphism.

So if T admits a nonsimple type, then T is Borel-complete.

Thank you!