Lecture 28

Friday, 22 October 2021 10:00 AM

Oture 28

1,22 October 2021 10:00 AM

Application of mod. airth in String Matchy

Criven: Test $T = (t_{n-1} t_{n-2} - t_1 t_0) |T| = n$ Position $X = (x_{k-1} x_{k-2} - x_0) |X| = k$ stry

KMP (lee 16) - O(n+k) time algo, O(n+k) &pace

Convert / Represent X as decinal:

$$X = (\chi_{k-1} - \chi_1 \chi_0) \qquad k - \text{bit binary no.}$$

$$N_X = 2^{k-1} \chi_{k-1} + \dots + 2^k \chi_1 + 2^k \chi_0$$

R-bits

decimal eq of (tj+k-1, ..., tj)

Direct comparison - O(nk) time completely.

Take help of Hady.

[1,M] anall no will less no of lite

Hash Fn H: 3 -> 3 mod p

p - random prime in range [2, n4]

(3) mod p < no of buts that will be dealing with is (4 log n)

Sketch of Algo

- 1 ons = False
- for all values of $j \le n-k$:

 4 H(Nx) = H(NT(j)) ans "True" $\int_{-\infty}^{\infty} O(i) tive$

Return ans.

SHOW

* and is correct w.p.
$$> 1-1$$

* Algo can be implemented in O(n+k) time.

Prime No. Theorem: No of primes in range [1,1] is $\Theta(L)$ density of primes no.

Error

Case 1
$$N_{T}(j) = N_{X}$$
 $CASE 2$ $N_{T}(j) \neq N_{X}$
 $\Rightarrow H(N_{T}(j)) = H(N_{X})$ but $N_{T}(j)$ mod $\beta = N_{X}$ mod β
and $\beta = Tane$ $\Rightarrow (N_{T}(j) - N_{X})$ is integer

Prob (error at location j) = No of prine factors of
$$|N_{T_j} - N_x|$$

$$C n^4 / \log n$$

For any
$$3 \le 2^k$$

$$4 \quad 3 = b_1 - b_4 > 2^k$$

$$\Rightarrow \alpha \le k$$

$$\leq k \left(C^{\dagger} \log n\right)$$

$$C'$$
 by $n \leq n$, for begen

$$P(\text{evol}) \leq \sum_{j=1}^{n} P(\text{eob}(\text{eavorat}_{j})) \leq \frac{n}{n^{2}} \leq \frac{1}{n}$$

Union Bound

Buccoss prob 3 17

Tive complimity

$$H(N_X) - O(R)$$
 time

$$H(N_{-}(i))$$
 $H:$ 7

· · C 17 C () /

$$N_{T}(j) = 2 \quad t_{j+k-1} + \dots + 2 \quad t_{j+1} + 2 \quad t_{j+2} + 2 \quad t_{j+1}$$

$$N_{T}(j+1) = 2 \quad t_{j+1} + \dots + 2 \quad t_{j+2} + 2 \quad t_{j+2} + 2 \quad t_{j+1}$$

Drus: Relation 6/w NT (jH) 4 NT (j) ?

$$N_{T}(jH) = N_{T}(jH) = N_{T$$

$$\frac{1}{2} = 2^{b-2} \pmod{p}$$

) o, b-17

 $H(N_{T}(j+i))$ can be computed from $H(N_{T}(j))$ in O(i) time, if we know values of A + B.

- Oue of them will be prime.

* The to compute A, B - O(log n + logk).

