Document made available under the Patent Cooperation Treaty (PCT)

International application number: PCT/JP05/000562

International filing date:

19 January 2005 (19.01.2005)

Document type:

Certified copy of priority document

Document details:

Country/Office: JP

Number:

2004-011603

Filing date:

20 January 2004 (20.01.2004)

Date of receipt at the International Bureau: 10 March 2005 (10.03.2005)

Remark: Priority document submitted or transmitted to the International Bureau in

compliance with Rule 17.1(a) or (b)

日本国特許庁 JAPAN PATENT OFFICE

19.01.2005

別紙添付の書類に記載されている事項は下記の出願書類に記載されている事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office.

出願年月日 Date of Application:

2004年 1月20日

出 願 番 号 Application Number: 特願2004-011603

[ST. 10/C]:

[JP2004-01160.3]

出 願 人
Applicant(s):

横浜ゴム株式会社

特許庁長官 Commissioner, Japan Patent Office 2005年 2月25日

.)· "

特許願 【書類名】 P2003339 【整理番号】 平成16年 1月20日 【提出日】 【あて先】 特許庁長官殿 B60C 19/00 【国際特許分類】 【発明者】 神奈川県平塚市追分2番1号 横浜ゴム株式会社 平塚製造所内 【住所又は居所】 池田 俊之 【氏名】 【発明者】 神奈川県平塚市追分2番1号 横浜ゴム株式会社 平塚製造所内 【住所又は居所】 丹野 篤 【氏名】 【特許出願人】 000006714 【識別番号】 横浜ゴム株式会社 【氏名又は名称】 【代理人】 100066865 【識別番号】 【弁理士】 【氏名又は名称】 小川 信一 【選任した代理人】 100066854 【識別番号】 【弁理士】 野口 賢照 【氏名又は名称】 【選任した代理人】 100068685 【識別番号】 【弁理士】 斎下 和彦 【氏名又は名称】 【手数料の表示】 002912 【予納台帳番号】 21,000円 【納付金額】 【提出物件の目録】 特許請求の範囲 1 【物件名】 明細書 1 【物件名】 図面 1 【物件名】

要約書 1

【物件名】

【曹類名】特許請求の範囲

【請求項1】

空気入りタイヤと、該空気入りタイヤに嵌合するリムを備えたホイールとを含み、これら 空気入りタイヤとリムとの間に空洞部を形成するタイヤホイール組立体において、空洞共 鳴波長の1/4に相当する基準長さ L_0 の55~110%の長さを有すると共に一端が閉 . 塞された少なくとも 1 本の管を前記空洞部に開口するように設けたタイヤホイール組立体

【請求項2】

空気入りタイヤと、該空気入りタイヤに嵌合するリムを備えたホイールとを含み、これら 空気入りタイヤとリムとの間に空洞部を形成するタイヤホイール組立体において、空洞共 鳴波長の1/4に相当する基準長さ L_0 の55~110%の長さを有すると共に一端が閉 塞された複数本の管を前記空洞部に開口するように設け、これら管の開口部を周上の任意 の1箇所又はタイヤ回転軸を挟んで対向する2箇所に配置したタイヤホイール組立体。

【請求項3】

前記管の開口部が配置される各箇所の範囲を規定するタイヤ回転軸廻りの角度を35°以 下にした請求項2に記載のタイヤホイール組立体。

【請求項4】

前記管の長さを基準長さし。の85~105%とした請求項1~3のいずれかに記載のタ イヤホイール組立体。

【請求項5】

前記管の断面積を前記空洞部の断面積の0.2~10%にした請求項1~4のいずれかに 記載のタイヤホイール組立体。

【請求項6】

前記管の内部に通気性を有する多孔質材又は不織布を充填した請求項1~5のいずれかに 記載のタイヤホイール組立体。

【請求項7】

前記管を前記空気入りタイヤに配設した請求項1~6のいずれかに記載のタイヤホイール 組立体。

【請求項8】

前記管を前記ホイールに配設した請求項1~6のいずれかに記載のタイヤホイール組立体

【書類名】明細書

【発明の名称】タイヤホイール組立体

【技術分野】

[0001]

本発明は、空気入りタイヤとホイールと含むタイヤホイール組立体に関し、さらに詳し くは、空洞共鳴音を効果的に低減するようにしたタイヤホイール組立体に関する。

【背景技術】

[0002]

空気入りタイヤにおいて、騒音を発生させる原因の一つにタイヤ内部に充填された空気 の振動による空洞共鳴音がある。この空洞共鳴音は、タイヤを転動させたときにトレッド 部が路面の凹凸によって振動し、トレッド部の振動がタイヤ内部の空気を振動させること によって生じるのである。

[0003]

このような空洞共鳴現象による騒音を低減する手法として、タイヤとホイールとにより 形成される閉空間の断面積をタイヤ周方向に変化させることにより、単一の共鳴周波数で 共鳴する時間を短縮することが提案されている(例えば、特許文献1参照)。より具体的 には、閉空間の断面積を変化させるために、タイヤ内面又はリム外周面に所定の体積を有 するバルクヘッドを装着するようにしている。

[0004]

しかしながら、上記手法において、空洞共鳴音の低減効果を高めるために閉空間の断面 積変化を大きくすると、バルクヘッドがタイヤの変形と干渉したり、リム組み作業性を悪 化させることがある。そのため、バルクヘッドの大きさが制限され、空洞共鳴音の低減効 果を高めることが困難である。

【特許文献1】特開2001-113902号公報

【発明の開示】

【発明が解決しようとする課題】

[0005]

本発明の目的は、タイヤの変形への悪影響やリム組み作業性の悪化を生じることなく、 空洞共鳴音を効果的に低減することを可能にしたタイヤホイール組立体を提供することに ある。

【課題を解決するための手段】

[0006]

上記目的を解決するための本発明のタイヤホイール組立体は、空気入りタイヤと、該空 気入りタイヤに嵌合するリムを備えたホイールとを含み、これら空気入りタイヤとリムと の間に空洞部を形成するタイヤホイール組立体において、空洞共鳴波長の1/4に相当す る基準長さ L_0 の $55\sim110\%$ (好ましくは、 $85\sim105\%$)の長さを有すると共に 一端が閉塞された少なくとも1本の管を前記空洞部に開口するように設けたことを特徴と するものである。

[0007]

更に、本発明のタイヤホイール組立体は、空気入りタイヤと、該空気入りタイヤに嵌合 するリムを備えたホイールとを含み、これら空気入りタイヤとリムとの間に空洞部を形成 するタイヤホイール組立体において、空洞共鳴波長の1/4に相当する基準長さLoの5 $5 \sim 1 \; 1 \; 0 \; \%$ (好ましくは、 $8 \; 5 \sim 1 \; 0 \; 5 \; \%$)の長さを有すると共に一端が閉塞された複 数本の管を前記空洞部に開口するように設け、これら管の開口部を周上の任意の1箇所又 はタイヤ回転軸を挟んで対向する2箇所に配置したことを特徴とするものである。

【発明の効果】

[0008]

本発明者等は、空気入りタイヤの空洞共鳴について鋭意研究を重ねた結果、空気入りタ イヤとリムとの間に形成される空洞部に連通する管を設けた場合、その管内の空気の振動 と空洞部内の空気の振動とが互いに干渉することにより、共鳴周波数が分裂することを知 見した。特に、空洞共鳴波長の1/4程度の長さを有する一端閉塞の管は、空洞共鳴波長 より短い長さでありながら共鳴周波数の分裂を引き起し、転動に伴う共鳴周波数の変化を 発現させることを見い出したのである。そのため、上記のような一端閉塞の管を設けるこ とにより、従来のように単なる閉空間の断面積変化に基づいて空洞共鳴音を低減する場合 とは異なって、タイヤ変形への悪影響やリム組み作業性の悪化を生じることなく、空洞共 鳴音を効果的に低減することが可能になる。

[0009]

空洞共鳴波長 (λ) とは、空気入りタイヤとリムとの間に形成される空洞部の平均的な 周長である。この空洞共鳴波長の1/4に相当する基準長さLo (mm)は、下式(1) に基づいて、タイヤサイズから算出することが可能である。

 \cdots (1) $L_0 = \alpha \cdot A \cdot B + \beta \cdot C$

但し、Aは断面幅の呼び、Bは偏平比の呼び、Cはリム径の呼び、 α (定数)は8.3 3×10^{-3} であり、 β (定数)は1. 7.8×10^{1} である。

[0010]

例えば、タイヤサイズが215/60R16の場合、A=215,B=60,C=16 となり、 $L_0=392$ mmとなる。つまり、上式(1)はタイヤサイズから空洞共鳴波長 の1/4に相当する基準長さLoを簡便に算出するための式である。

[0011]

本発明では、少なくとも1本の管を空洞部に開口するように設けることが必要であるが 、複数本の管を空洞部に開口するように設け、これら管の開口部を周上の任意の1箇所又 はタイヤ回転軸を挟んで対向する2箇所に配置することで、空洞共鳴音の低減効果を高め ることができる。このとき、管の開口部が配置される各箇所の範囲を規定するタイヤ回転 軸廻りの角度は35°以下にすることが好ましい。このように管の開口部が配置される箇 所の角度範囲を規定することにより、共鳴周波数の分裂が顕著になる。

[0012]

管の断面積は空洞部の断面積の0.2~10%にすることが好ましい。また、管の内部 に通気性を有する多孔質材又は不織布を充填することが好ましい。これら多孔質材又は不 織布は、それ自体が吸音効果を有し、しかも共鳴周波数の分散を阻害することがない。管 は空気入りタイヤ及びホイールのいずれに配設しても良い。

【発明を実施するための最良の形態】

[0013]

以下、本発明の構成について添付の図面を参照しながら詳細に説明する。

[0014]

図1は本発明のタイヤホイール組立体を概略的に示すものである。図1において、1は 空気入りタイヤ、2はホイールである。このホイール2は空気入りタイヤ1に嵌合するリ ム21を備えている。そして、空気入りタイヤ1とホイール2のリム21との間には空洞 部3が形成されている。そして、このタイヤホイール組立体には2本の管4,4が空洞部 3に開口するように形成されている。

[0015]

各管4は、空洞共鳴波長λの1/4に相当する基準長さし。に近似した長さしを有する と共に、一端が閉塞されている。これら管4の開口部4 a は周上の任意の1箇所又はタイ ヤ回転軸を挟んで対向する2箇所に配置されている。

[0016]

上述のように構成されるタイヤホイール組立体では、空洞部3内の振動と管4内の振動 とが干渉し、また、その干渉は管4の開口部の位置によって変化するため、結果として、 転動時に図2(a),(b)及び(d)に示す3つの共鳴が存在することになる。但し、 図中の「+」と「-」は音圧の振幅が大きい腹の箇所を表し、符号の違いは互いに逆位相 となっていることを表している。管4の開口部が接地位置から90°の位置にある図2(b) では、空洞部3の音圧変化の節の位置に開口部があるため、空洞部3内の振動は管4 の干渉を受けず、共鳴周波数は管4が無い場合とほぼ一致したfbとなる。管4の開口部 が接地位置とその反対位置にある図2 (a) 及び (d) の時には、空洞部3内の振動と管 4内の振動とが干渉し、共鳴周波数が変化する。図2 (a) では管4内の振動が空洞部3 内の振動と同位相となって共鳴周波数を下げるように作用して f b より低い共鳴周波数 f aとなり、図2 (d)では管4内の振動が空洞部3内の振動と逆位相となって共鳴周波数 を上げるように作用して f b より高い共鳴周波数 f d となる。つまり、管 4 の開口部が接 地位置とその反対位置にある時には、fa及びfdの2つの共鳴を持つようになる。

[0017]

このように転動時に伴って管4の開口位置が変化すると、共鳴周波数がfbからfa及 びfdへ、更にはfbへと繰り返し変化するため、空洞共鳴が持続しなくなり、空洞共鳴 音を低減することができる。特に、図3に示すように、共鳴周波数が3つに分裂し、かつ 分裂幅 (faとfdとの差)が大きくなるので、各共鳴周波数での騒音レベルが小さくな り、フィーリングでの改善効果が大きくなる。

[0018]

ここで、ホイールのウエル部に同一長さ及び同一断面積を有する2本の管を空洞部に開 口するように設け、これら管の開口部をタイヤ回転軸を挟んで対向する2箇所(180° 対向位置)に配置し、その長さLを変化させつつ共鳴周波数を測定した結果について説明 する。図4は、共鳴周波数と管の長さLとの関係を示すものである。一方、図5は、共鳴 周波数の差の絶対値と管の長さLとの関係を示すものである。但し、管の長さLは基準長 さし。(ҳ/4)を100とする指数にて示す。

[0019]

これら図4及び図5に示すように、管の長さLが基準長さL。の55~110%の範囲 にあるとき、分裂した共鳴周波数の差の絶対値が十分に大きくなることが判る。特に、管 の長さLが基準長さ L_0 の $85 \sim 105$ %の範囲にあるとき、より大きな効果があること が判る。なお、管の開口部を閉塞した場合、それら管は空洞部の断面積をタイヤ周方向に 変化させる要因となるが、図5において、閉塞された管による断面積変化に基づいて共鳴 周波数を分散させた場合の測定値を一点鎖線にて示した。この結果より、断面積変化に基 づく空洞共鳴音の低減効果よりも、管の干渉作用に基づく空洞共鳴音の低減効果の方が遙 に大きいことが判る。

[0020]

本発明では、管の断面積を増やして共鳴周波数の分散効果を高めることは有効である。 ここで、管のタイヤ子午線断面での断面積は、空洞部のタイヤ子午線断面での断面積の0 2~10%にすると良い。管の断面積が空洞部の断面積の0.2%未満であると共鳴周 波数の分散効果が不十分になり、逆に10%を超えると管が必要以上に大きくなり、その 結果、管がタイヤの変形に干渉したり、リム組み作業性を悪化させる恐れがある。

[0021]

また、管の本数を増やして管の総断面積を増やすことも可能であるが、その場合、開口 部の位置が重要である。図6は周上の任意の1箇所に複数本の管の開口部を開口させた構 造を概略的に示し、図7はタイヤ回転軸を挟んで対向する2箇所にそれぞれ複数本の管の 開口部を開口させた構造を概略的に示すものである。これら図6及び図7に示すように、 複数本の管4を設ける場合、それら管4の開口部4aを周上の任意の1箇所又はタイヤ回 転軸を挟んで対向する2箇所に配置することが好ましい。

[0022]

ここで、ホイールのウエル部に同一長さ及び同一断面積を有する2本の管を空洞部に開 口するように設け、これら管の開口部の相対的な位置を変化させつつ共鳴周波数の分裂幅 を測定した結果について説明する。図8は、開口部のタイヤ回転軸廻りの相対的な角度と 共鳴周波数の分裂幅との関係を示すものである。但し、共鳴周波数の分裂幅は、2本の管 の開口部の位置が互いに一致する場合(0°)を100とする指数にて示す。

図8に示すように、2本の管の開口部のタイヤ回転軸廻りの角度が0°又は180°で あるときに共鳴周波数の分散効果が最も大きくなり、特に、上記角度が0~35°又は1

出証特2005-3015033

 $45\sim180$ °の範囲にあるときに共鳴周波数分散幅の最大値の80%以上となることが 判る。従って、複数本の管の開口部をタイヤ周方向の任意の1箇所に配置する場合、図9 に示すように、その箇所の範囲を規定する角度 heta を 3.5 $^\circ$ 以下にすると良い。一方、複数 本の管の開口部をタイヤ回転軸を挟んで対向する2箇所に配置する場合、図10に示すよ うに、2箇所の中心を180°の角度αで対向する位置に設定し、各箇所の範囲を規定す る角度 heta を 3 5 $^{\circ}$ 以下にすると良い。つまり、管の開口部が配置される 2 つの箇所を 1 45°以上の角度 β で離間させるのである。

[0024]

図11は管を備えた空気入りタイヤの一例を示すものである。図11において、空気入 りタイヤ1は、トレッド部11と、左右一対のビード部12と、これらトレッド部11と ビード部12とを互いに連接するサイドウォール部13とを備えている。そして、トレッ ド部11の内面には一端閉塞の管4がタイヤ周方向に延長するように形成されている。

[0025]

図12は管を備えた空気入りタイヤの他の例を示すものである。図12において、左右 一対のビード部12の内面にはそれぞれ一端閉塞の管4がタイヤ周方向に延長するように 形成されている。

[0026]

図13は管を備えたホイールの一例を示すものである。図13において、ホイール2は 、空気入りタイヤのビード部に嵌合するリム21と、リム21と不図示の車軸とを連結す るスポーク部22とを備えている。そして、リム21の外周面には一端閉塞の管4がリム 周方向に延長するように形成されている。

[0027]

図14は管を備えたホイールの他の例を示すものである。図14において、リム21と スポーク部22との結合部分には一端閉塞の管4がリム周方向に延長するように形成され ている。この管4はリム21の外周面においてタイヤ内の空洞部に連通するようになって いる。

[0028]

図15は管を備えたホイールの更に他の例を示すものである。図15において、リム2 1及びスポーク部22には一端閉塞の管4がリム径方向に延長するように形成されている 。この管4は十分な長さを確保するために折り返し構造を有し、リム21の外周面におい てタイヤ内の空洞部に連通するようになっている。

[0029]

図11~図15において、管4を構成する材料は樹脂や金属のように通気性が無いもの が適当である。また、管4の長さを可変とし、必要に応じて調整できるようにしても良い 。管4の内部には通気性を有する多孔質材又は不織布を充填すると良い。多孔質材として は、連続気泡の発泡ウレタンフォーム等が挙げられる。不織布としては、グラスウール等 が挙げられる。これら多孔質材又は不織布は、それ自体が吸音効果を有し、しかも共鳴周 波数の分散を阻害することがない。なお、通気性が悪い材料を用いると、管4の通気路と しての断面積が実質的に小さくなったり、その干渉作用が低下することになる。多孔質材 又は不織布を管4の全体に充填した場合に最も高い吸音効果が期待されるが、一部に充填 する場合は管4の開口部付近に配置するのが最も効果的である。

【図面の簡単な説明】

[0030]

- 【図1】本発明のタイヤホイール組立体を概略的に示す赤道断面図である。
- 【図2】 (a), (b)及び(d)は本発明における共鳴の状態を示す説明図である
- 【図3】本発明における騒音レベルと周波数との関係を示すグラフである。
- 【図4】本発明における共鳴周波数と管の長さLとの関係を示すグラフである。
- 【図5】本発明における共鳴周波数の差の絶対値と管の長さLとの関係を示すグラフ である。

- 【図 6 】本発明のタイヤホイール組立体において、周上の任意の1箇所に複数本の管の開口部を開口させた構造を概略的に示す説明図である。
- 【図7】本発明のタイヤホイール組立体において、タイヤ回転軸を挟んで対向する2箇所にそれぞれ複数本の管の開口部を開口させた構造を概略的に示す説明図である。
- 【図8】本発明における開口部のタイヤ回転軸廻りの相対的な角度と共鳴周波数の分 裂幅との関係を示すグラフである。
- 【図9】本発明における管の開口部の配置箇所(1箇所)を示す説明図である。
- 【図10】本発明における管の開口部の配置箇所(2箇所)を示す説明図である。
- 【図11】本発明における管を備えた空気入りタイヤの一例を示す子午線断面図である。
- 【図12】本発明における管を備えた空気入りタイヤの他の例を示す子午線断面図である。
- 【図13】本発明における管を備えたホイールの一例を示す子午線断面図である。
- 【図14】本発明における管を備えたホイールの他の例を示す子午線断面図である。
- 【図15】本発明における管を備えたホイールの更に他の例を示す子午線断面図である。

【符号の説明】

[0031]

- 1 空気入りタイヤ
- 2 ホイール
- 3 空洞部
- 4 管
- 4 a 開口部
- 11 トレッド部
- 12 ビード部
- 13 サイドウォール部
- 21 リム
- 22 スポーク部

【書類名】図面 【図1】

【図2】

【図3】

【図4】

【図5】

【図6】

【図7】

【図8】

【図9】

[図10]

[図11]

【図12】

【図14】

【図15】

【要約】

タイヤの変形への悪影響やリム組み作業性の悪化を生じることなく、空洞共鳴 【課題】 音を効果的に低減することを可能にしたタイヤホイール組立体を提供する。

【解決手段】 空気入りタイヤ1と、該空気入りタイヤ1に嵌合するリム21を備えたホ イール2とを含み、これら空気入りタイヤ1とリム21との間に空洞部3を形成するタイ ヤホイール組立体において、空洞共鳴波長の1/4に相当する基準長さLoの55~11 0%の長さしを有する一端閉塞の管4を空洞部3に開口するように設ける。

【選択図】 図1

特願2004-011603

出願人履歴情報

識別番号

[000006714].

1. 変更年月日 [変更理由] 住 所

氏 名

1990年 8月 7日 新規及母

新規登録

東京都港区新橋5丁目36番11号

横浜ゴム株式会社