# Monte Carlo Algorithm and its Application Applied Math Tutorial

Tianlu Zhu

Shanghaitech Unversity

February 23, 2023

#### Introduction

In the presentation, I would first introduce Monte Carlo Integration, which requires enormous random sample. Then we introduce common ways of sampling from a given distribution, including Transformation method, Accept-rejection method, and Markov Chain Monte Carlo Algorithm. In each method I would show code implementation, analyse the pros and cons, and a brief proof.

## MC Integration

Suppose we want to evaluate an integral

$$\int_{D} \phi(x) dx$$

for which there is no closed analytic solution. If the integration has the form

$$\phi(x) = \tilde{\phi}(x)f(x)$$

for some density function f, then the integral has the form:

$$\int_{D} \phi(x)dx = \int_{D} \tilde{\phi}(x)f(x)dx = E[\tilde{\phi}(X)]$$

where X is an RV with PDFf.

Beamer More

Introduction

If we know how to simulate realisations of X, say  $x^{(1)}, \ldots, x^{(n)}$ , then we have an estimate

$$\int_{D} \phi(x)dx = E[\tilde{\phi}(X)] \approx \frac{1}{n} \sum_{i=1}^{n} \tilde{\phi}\left(x^{(i)}\right) = \hat{I}$$

Also, the variance should be

$$\operatorname{Var}(I) = \frac{1}{n^2} \sum_{i=1}^{n} \operatorname{Var}\left(\tilde{\phi}(x)\right)$$
$$\approx \frac{1}{n(n-1)} \sum_{i=1}^{n} \left(\tilde{\phi}\left(x^{(i)}\right) - \hat{I}\right)$$

So it is crucial to generate sample from a specific distribution.

# Derivation of the Algorithm

Introduction

The easiest distribution for computer to generate is  $\mathrm{Unif}[0,1]$ . If X owns CDF  $F(\cdot)$ , Then  $F(X) \sim \mathrm{Unif}[0.1]$ . By *inversion*, setting  $X \sim F^{-1}(U)$ , which  $U \sim \mathrm{Unif}[0,1]$ . Then From the uniform distribution sample we can generate sample follows  $F(\cdot)$ .

Consider discrete random variable, simply left

$$F^{-1}(u) = \min\{x : F(x) \ge u\}$$

And the algorithm goes on as continuous situation.

## Pros and Cons

#### Pros

- Naive way to generate a sample
- ?

#### Cons

• The CDF is not invertible, i.e. PDF  $f(\cdot) = 0$  somewhere.



### Intuition

Introduction



- f(x): object function
- g(x): proposal function
- M: auxiliary constant
- Make sure that  $Mg(x) \geq f(x)$  for all  $x \in \Omega$

Beamer More

# Proof of Algorithm

Introduction

Let  $U \sim \text{Unif}[0,1]$  and Y owns PDF  $g(\omega)$ , one obtain that

$$P\left(U \le \frac{f(Y)}{Mg(Y)} \middle| Y = y\right) = \frac{f(y)}{Mg(y)}$$

The total probability is:

$$P\left(U \leq \frac{f(Y)}{Mg(Y)}\right) = \int_{-\infty}^{\infty} \frac{f(y)}{Mg(y)} g(y) dy = \frac{1}{M}$$

By Bayesian's formula,

$$P\left(Y = y \middle| U \le \frac{f(Y)}{Mg(Y)}\right) = P(A|B) = \frac{p(B|A)P(A)}{P(B)}$$

$$= M \int_{-\infty}^{y} P\left(U \le \frac{f(Y)}{Mg(Y)}\middle| Y = \omega \le y\right) g(\omega)d\omega$$

$$= M \int_{-\infty}^{y} \frac{f(\omega)}{Mg(\omega)} g(\omega)d\omega = F(y)$$

Introduction

# An Implementation of the Algorithm in R

```
N < -50000
  M < -3.858
  |y| < - \text{runif}(N, \text{min} = 0, \text{max} = 2)
 |u| < - \text{runif}(N, \text{min} = 0, \text{max} = 1)
 |gv| < -0.5
   fv < -6 * (v - 0.5)^2 / 7
   x < -y[u < fy / gy / M]
   sample < length(x)
   hist (x, breaks = 50, freq = FALSE, col = "#adabab",
   main = "f(x) = 6(x - 0.5)^2/7"
   curve(6 * (x - 0.5)^2 / 7, from = 0,
11
        to = 2. add = TRUE. col = "red")
12
```

## Output

Introduction



Conclusion

### Pros and Cons

#### Pros

Introduction

- Deal with almost every distribution
- ?

#### Cons

- Lack of efficient.
- Do not perform perfectly with unbounded PDF, i.e. Beta distribution.

# Minipage

Introduction



- 1 item
- 2 another
- 3 more
  - first
  - second
  - third

#### Columns

Introduction

This is a text in first column.

$$E = mc^2$$

- First item
- Second item

#### first block

columns achieves splitting the screen

#### second block

stack block in columns

## Create Tables

| second | third |
|--------|-------|
| 2      | 3     |
| 5      | 6     |
| 8      | 9     |
|        | 2 5   |

## Equation1

Introduction

A matrix in text must be set smaller:  $\begin{pmatrix} a & b \\ c & d \end{pmatrix}$  to not increase leading in a portion of text.

$$f(n) = \begin{cases} n/2 & \text{if } n \text{ is even} \\ -(n+1)/2 & \text{if } n \text{ is odd} \end{cases}$$

 $50apples \times 100apples = lots of apples^2$ 

Conclusion

## Equation2

Introduction

$$\sum_{\substack{0 < i < m \\ 0 < j < n}} P(i,j) = \int_{a}^{b} \prod P(i,j)$$

$$P\left(A = 2 \left| \frac{A^2}{B} > 4 \right) \right)$$

$$(a), [b], \{c\}, [d], \|e\|, \langle f \rangle, [g], [h], \lceil i \rceil$$

Conclusion

## Equation3

$$Q(\alpha) = \alpha_i \alpha_j y_i y_j (x_i \cdot x_j)$$
$$Q(\alpha) = \alpha^i \alpha^j y^{(i)} y^{(j)} (x^i \cdot x^j)$$

$$\Gamma = \beta + \alpha + \gamma + \rho$$



## End

The last page.