GDP per Capita and Life Expectancy: Statistical Analysis

Denys Chepeliuk

08.09.25

Contents

1	Data	1
2	Methods	1
3	3.2 Linear regression on log ₁₀ (GDP) (2020)	2 2 2 2 2
4	Figures	3
5	Assumptions & Diagnostics (brief)	3
6	Reproducibility	3
7	Limitations	3

Abstract

I study the relationship between GDP per capita and life expectancy at birth across countries, and I examine the time trend for the Czech Republic. In cross-sectional 2020 data (n=194), I find a strong positive association: Pearson r=0.624, $p\approx 2.64\times 10^{-22}$. A linear model life_expectancy $\sim \log_{10}(\text{GDP per capita})$ explains about 67% of cross-country variation. For the Czech Republic (2000–2020), life expectancy increased ≈ 2.24 years per decade; a paired t-test of year-over-year changes indicates a positive mean increase (t=2.996, t=0.0074).

1 Data

- Life expectancy: data/lex.csv (wide format by year).
- GDP per capita: data/gdp_pcap.csv (wide format by year; strings such as "24.5k" are parsed to numbers).
- I reshape both datasets to long format (country-year) and merge by country and year.
- For the 2020 cross-section I filter out invalid/extreme entries:
 - GDP per capita ≤ 0 or $> 10^6$ removed
 - Life expectancy ≤ 10 removed

2 Methods

• Pearson correlation (2020): association between raw GDP per capita and life expectancy.

• Linear regression (2020):

Life expectancy = $\beta_0 + \beta_1 \cdot \log_{10}(\text{GDP per capita})$.

• Time trend (Czech Republic, 2000-2020):

Life expectancy = $\alpha_0 + \alpha_1 \cdot \text{Year}$.

- Paired t-test (CZ): one-sample t-test of year-over-year differences against $\mu = 0$.
- Two-sided tests with $\alpha = 0.05$ unless otherwise stated.

3 Hypotheses, Results, and Decisions

Cross-sectional correlation (2020)

Null hypothesis H_0 : population correlation $\rho = 0$ (no linear correlation). Alternative H_1 : $\rho \neq 0$.

- n = 194 countries (after filtering)
- Pearson r = 0.624
- Test statistic: $t=r\sqrt{\frac{n-2}{1-r^2}}\Rightarrow t\approx 11.06, {\rm df}=192$
- $p \approx 2.64 \times 10^{-22}$

Decision: Reject H_0 at $\alpha = 0.05$.

Interpretation: Countries with higher GDP per capita tend to have higher life expectancy.

Linear regression on $log_{10}(GDP)$ (2020)

Model: life_expectancy = $\beta_0 + \beta_1 \cdot \log_{10}(\text{GDP per capita})$

Null hypothesis H_0 : $\beta_1 = 0$ (no linear effect of log-GDP).

Alternative $H_1: \beta_1 \neq 0$.

OLS estimates (n = 194): - $\beta_1 = 10.876,$ SE = 0.551 $\Rightarrow t \approx$ 19.77, $p \ll 0.001$

95% CI for β_1 : [9.790, 11.962]

- $\beta_0 = 28.226$ (95% CI [23.809, 32.644]) - $R^2 = 0.670$ (Adj. $R^2 = 0.669$)

Decision: Reject H_0 at $\alpha = 0.05$.

Interpretation: A $10\times$ increase in GDP per capita is associated with about +10.9 years higher life expectancy (diminishing returns captured by the log transform).

Time trend for the Czech Republic (2000–2020)

Model: life_expectancy = $\alpha_0 + \alpha_1 \cdot \text{Year}$

Null hypothesis H_0 : $\alpha_1 = 0$ (no temporal trend).

Alternative H_1 : $\alpha_1 \neq 0$.

OLS estimates (n=21 years): - Slope $\alpha_1=0.224$ years per year ($\approx +2.24$ years per decade)

 $-R^2 = 0.947$

- (From the OLS summary, the slope is highly significant; equivalent t/F tests give $p \ll 0.001$.)

Decision: Reject H_0 at $\alpha = 0.05$.

Interpretation: Czech life expectancy rose steadily over 2000–2020.

Paired t-test of Czech year-over-year changes 3.4

Let Δ_i be the change in life expectancy from year i to i+1, for 2000–2020 (20 differences).

Null hypothesis H_0 : $\mu_{\Delta}=0$ (no average year-over-year change). Alternative H_1 : $\mu_{\Delta}\neq 0$.

- Mean $\Delta \approx +0.18$ years/year; SD ≈ 0.269 ; n=20
- t = 2.996, df = 19, p = 0.0074

Decision: Reject H_0 at $\alpha = 0.05$.

Interpretation: On average, life expectancy increased from year to year.

4 Figures

- results/scatter_2020.png 2020 scatter of life expectancy vs GDP per capita
- results/regression_2020.png regression fit using $\log_{10}(\text{GDP})$
- results/trend_czech.png Czech Republic 2000–2020 trend line

5 Assumptions & Diagnostics (brief)

- **Correlation:** assumes approximate linearity and bivariate normality; the cross-section shows a clear positive pattern, with curvature handled in the regression via the log of GDP.
- **OLS:** linearity, independent errors, and roughly homoskedastic, normal residuals for inference. Crosscountry data may exhibit heteroskedasticity; robust SEs would be a natural extension.
- Time series (CZ): short series; autocorrelation could affect standard errors, but the trend is large.

6 Reproducibility

- Python 3.9+, pip install -r requirements.txt, then python src/main.py.
- Code is modular (src/), and plots/results are written to results/.

7 Limitations

- Cross-sectional associations do not imply causation.
- Data quality varies across countries/years; extreme/invalid entries were filtered.