

General information

Designation

Poly Vinyl Chloride (Chlorinated, Molding and Extrusion); CPVC

Tradenames

Corzan; Lucalor; ProTherm; TempRite; Boltaron; Kydex

Typical uses

Hot water piping; fibers; lacquers.

Composition overview

Compositional summary

Compound of chlorinated PVC: (CH2CHCI)n with additional random substitution of H by Cl. 63-66% chlorine compared to 56.7% in standard PVC.

Material family

Base material

Plastic (thermoplastic, amorphous)

PVC-C (Polyvinyl chloride, chlorinated)

Polymer code PVC-C

Composition detail	(polymers and natural	materials)
Composition detail	(DUIVIII c i5 allu liatulai	IIIaltiais)

Polymer Polymer	naterials) 100			%	
Price Price	* 1.32	-	1.46	USD/lb	
Physical properties Density	0.0524	-	0.0564	lb/in^3	
Mechanical properties Young's modulus Yield strength (elastic limit) Tensile strength Elongation Elongation at yield Compressive modulus Compressive strength Flexural modulus Flexural strength (modulus of rupture) Shear modulus Bulk modulus Poisson's ratio Shape factor Hardness - Vickers Hardness - Rockwell M Hardness - Rockwell R Fatigue strength at 10^7 cycles Mechanical loss coefficient (tan delta) Impact & fracture properties	0.316 7.69 6.67 20 4 * 0.316 * 7.25 0.318 11.9 * 0.113 * 0.621 0.35 5.8 * 13.7 * 71.9 * 113 * 2.64 * 0.0122		8.41 8.41 50 7 0.495 9.72 0.405 13.1	10^6 psi ksi ksi % strain % strain 10^6 psi ksi 10^6 psi ksi 10^6 psi HV	
Fracture toughness Impact strength, notched 23 °C Impact strength, unnotched 23 °C	* 3.22 0.00581 0.361	- - -	3.52 0.00801 0.367	ksi.in^0.5 BTU/in^2 BTU/in^2	
Thermal properties Glass temperature	216	-	244	°F	

PVC (chlorinated, molding and extrusion)

Heat deflection temperature 0.45MPa	216	-	246	°F
Heat deflection temperature 1.8MPa	201	-	234	°F
Vicat softening point	* 216	-	246	°F
Maximum service temperature	185	-	212	°F
Minimum service temperature	* -59.8	-	-23.8	°F
Thermal conductivity	0.0768	_	U U833	RTII ft/k

Thermal conductivity 0.0768 - 0.0832 BTU.ft/hr.ft^2.°F

Specific heat capacity * 0.309 - 0.321 BTU/lb.°F

Thermal expansion coefficient 62 - 78 µstrain/°F

Electrical properties

Electrical resistivity
1e21 - 2e22 μohm.cm
Dielectric constant (relative permittivity)
3 - 3.2
Dissipation factor (dielectric loss tangent)
Dielectric strength (dielectric breakdown)
599 - 625 V/mil

Optical properties

Transparency Opaque

Magnetic properties

Magnetic type Non-magnetic

Bio-data

RoHS (EU) compliant grades?

Food contact

Yes

Absorption & permeability

Processing properties

Polymer injection molding Acceptable Polymer extrusion Acceptable Polymer thermoforming Acceptable Linear mold shrinkage 0.3 0.7 % ٥F Melt temperature 360 441 °F Mold temperature 104 158 14.9 ksi Molding pressure range 39.9

Durability

Water (fresh) Excellent Excellent Water (salt) Excellent Weak acids Strong acids Excellent Weak alkalis Excellent Strong alkalis Excellent Organic solvents Limited use Oxidation at 500C Unacceptable UV radiation (sunlight) Good

Flammability Self-extinguishing

Primary production energy, CO2 and water

Embodied energy, primary production 2.12e4 - 2.34e4 BTU/lb Sources

51.8 MJ/kg (Franklin Associates, 2008) CO2 footprint, primary production

	* 1.78	-	1.97	lb/lb
NOx creation	* 0.00638	-	0.00706	lb/lb
SOx creation	* 0.0192	-	0.0212	lb/lb
Water usage	* 5.48e3	-	6.06e3	in^3/lb

Processing energy, CO2 footprint & water

Polymer extrusion energy	* 2.47e3	-	2.73e3	BTU/lb
Polymer extrusion CO2	* 0.431	-	0.476	lb/lb
Polymer extrusion water	* 133	-	199	in^3/lb
Polymer molding energy	* 7.07e3	-	7.81e3	BTU/lb
Polymer molding CO2	* 1.23	-	1.36	lb/lb
Polymer molding water	* 322	-	484	in^3/lb
Coarse machining energy (per unit wt removed)	* 361	-	399	BTU/lb
Coarse machining CO2 (per unit wt removed)	* 0.063	-	0.0697	lb/lb
Fine machining energy (per unit wt removed)	* 1.78e3	-	1.96e3	BTU/lb
Fine machining CO2 (per unit wt removed)	* 0.31	-	0.342	lb/lb
Grinding energy (per unit wt removed)	* 3.35e3	-	3.7e3	BTU/lb
Grinding CO2 (per unit wt removed)	* 0.584	-	0.645	lb/lb

Recycling and end of life

Recycle	✓			
Embodied energy, recycling	* 7.18e3	-	7.95e3	BTU/lb
CO2 footprint, recycling	* 0.605	-	0.669	lb/lb
Recycle fraction in current supply	1.43	-	1.58	%
Downcycle	✓			
Combust for energy recovery	✓			
Heat of combustion (net)	* 5.52e3	-	5.8e3	BTU/lb
Combustion CO2	* 1.08	-	1.13	lb/lb
Landfill	✓			
Biodegrade	×			
Recycle mark				

Geo-economic data for principal component

Principal component	PVC (rigid)			
Annual world production	4.67e7	-	5.17e7	ton/yr
Reserves	6.46e8	-	7.14e8	I. ton

Eco-indicators for principal component

Eco-indicator 95	•	•	•	122			millipoints/lb
Eco-indicator 99				77.2			millipoints/lb
EPS value				564	-	624	

Links

ProcessUniverse

Producers

Reference

Page 4 of 4

Shape