

APPLICATION NO. 10/772,597

INVENTION: Decisioning rules for turbo and convolutional decoding

INVENTORS: Urbain A. von der Embse

5

CLAIMS

WHAT IS CLAIMED IS:

- 10 Claim 1. (currently amended) A method for performing a new
turbo decoding algorithm using a-posteriori probability $p(s, s' | y)$
in equations (13) for defining the maximum a-posteriori
probability MAP, comprising:
using a new statistical definition of the MAP logarithm
15 likelihood ratio $L(d(k) | y)$ in equations (18)

$$L(d(k)) | y = \ln [\sum_{(s, s' | d(k)=+1)} p(s, s' | y)] - \ln [\sum_{(s, s' | d(k)=-1)} p(s, s' | y)]$$

- 20 equal to the natural logarithm of the ratio of the
a-posteriori probability $p(s, s' | y)$ summed over all state
transitions $s' \rightarrow s$ corresponding to the transmitted data
 $d(k)=1$ to the $p(s, s' | y)$ summed over all state transitions
 $s' \rightarrow s$ corresponding to the transmitted data $d(k)=0$,
25 using a factorization of the a-posteriori probability $p(s, s' | y)$
in equations (13) into the product of the a-posteriori
probabilities

$$p(s, s' | y) = p(s | s', y(k)) p(s | y(j>k)) p(s' | y(j<k)),$$

30

using a turbo decoding forward recursion equation

$$p(s | y(j<k), y(k)) = \sum_{\text{all } s'} p(s | s', y(k)) p(s' | y(j<k))$$

for evaluating said a-posteriori probability $p(s'|y(j<k))$ in equations (14) using $p(s|s',y(k))$ as the state transition a-posteriori probability of the trellis
5 transition path $s \rightarrow s'$ to the new state s at k from the previous state s' at $k-1$ and given the observed symbol $y(k)$ to update these recursions for the assumed value of the user data bits $d(k)$ equivalent to the transmitted symbol $x(k)$ which is the modulated symbol corresponding to $d(k)$,

10 using a turbo decoding backward recursion equation

$$p(s'|y(j>k-1)) = \sum_{\text{all } s} p(s|y(j>k))p(s'|s,y(k))$$

for evaluating the a-posteriori probability $p(s|y(j>k))$ in
15 equations (15) using said $p(s'|s,y(k)) = p(s|s',y(k))$ as the state transition a-posteriori probability of the trellis transition path $s \rightarrow s'$ to the new state s' at $k-1$ from the previous state s at k and given said observed symbol $y(k)$ to update these recursions for said assumed value of $d(k)$,
20 evaluating the natural logarithm of the state transition posteriori probability $p(s|s',y(k)) = p(s'|s,y(k))$ equal to a new decisioning metric DX in equations (11), (16), defined by equation

25

$$\begin{aligned} \ln[p(s|s',y(k))] &= \ln[p(s'|s,y(k))] \\ &= \ln[y(k)x^*(k)]/\sigma^2 - |x(k)|^2/2\sigma^2 + p(d(k)) \\ &= DX \end{aligned}$$

wherein p is the natural logarithm \ln of p , x^* is the complex conjugate of x , and $\ln[\sigma]$ is the natural logarithm of $[\sigma]$,

30 whereby said new state transition probabilities in said MAP equations use said DX linear in $y(k)$ in place of the current use of the maximum likelihood decisioning metric

DM=[-|y(k) - x(k)|²/2σ²] which is a quadratic function of y(k),

whereby said MAP turbo decoding algorithms provide some of the performance improvements demonstrated in FIG. 5,6
5 using said DX, and

whereby this new a-posteriori mathematical framework enables said MAP turbo decoding algorithms to be restructured and to determine the intrinsic information as a function of said DX linear in said y(k).

10

Claim 2. (currently amended) A method for performing a new convolutional decoding algorithm using the MAP a-posteriori probability p(s,s'|y) in equations (13), comprising::

15 using a new maximum a-posteriori principle which maximizes the a-posteriori probability p(x|y) of the transmitted symbol x given the received symbol y to replace the current maximum likelihood principle which maximizes the likelihood probability p(y|x) of y given x for deriving the forward
20 and the backward recursive equations to implement convolutional decoding,

25 using the factorization of the a-posteriori probability p(s,s'|y) in equations (13) into the product of said a-posteriori probabilities p(s'|y(j<k)), p(s|s',y(k)), p(s|y(j>k)) to identify the convolutional decoding forward state metric a_{k-1}(s'), backward state metric b_k(s), and state transition metric p_k(s|s') as the a-posteriori probability factors

30

$$\begin{aligned} p_k(s|s') &= p(s|s',y(k)) \\ b_k(s) &= p(s|y(j>k)) \\ a_{k-1}(s') &= p(s'|y(j<k)), \end{aligned}$$

using a convolutional decoding forward recursion equation in

equations (14) for evaluating said a-posteriori probability $a_k(s)=p(s|y(j<k),y(k))$ using said $p_k(s|s')=p(s|s',y(k))$ as said state transition probability of the trellis transition path $s' \rightarrow s$ to the new state s at k from the previous state 5
 s' at $k-1$,

using a convolutional decoding backward recursion equation in equations (15) for evaluating said a-posteriori probability $b_k(s)=p(s|y(j>k))$ using said $p_k(s'|s)=p(s'|s,y(k))$ as said state transition probability of the trellis transition path $s \rightarrow s'$ to the new state s' at 10
 $k-1$ from the previous state s at k ,
evaluating the natural logarithm of said state transition a-posteriori probabilities

$$\begin{aligned} 15 \quad \ln[p_k(s'|s)] &= \ln[p(s'|s,y(k))] \\ &= \ln[p(s|s',y(k))] \\ &= \ln[p_k(s|s')] \\ &= DX \end{aligned}$$

20 equal to a new decisioning metric DX in equations (16), and
implementing said convolutional decoding algorithms to obtain some of the performance improvements demonstrated in FIG. 5,6 using said DX .

25

Claim 3. (currently amended) Wherein in claim 2 a method for implementing the new convolutional decoding recursive equations, said method comprising:
30 implementing in equations (14) a forward recursion equation for evaluating the natural logarithm, a_k , of a_k using the natural logarithm of the state transition a-posteriori probability $p_k=\ln[p(s|s',y(k))]$ of the trellis transition

path $s' \rightarrow s$ to the new state s at k from the previous state s' at $k-1$, which is equation

$$\begin{aligned} \underline{a}_k(s) &= \max_{s'} [\underline{a}_{k-1}(s') + p_k(s|s')] \\ 5 &= \max_{s'} [\underline{a}_{k-1}(s') + DX(s|s')] \\ &= \max_{s'} [\underline{a}_{k-1}(s') + \text{Re}[y(k)x^*(k)]/\sigma^2 - |x(k)|^2/2\sigma^2 + p(d(k))] \end{aligned}$$

wherein said $DX(s|s') = p_k(s|s') = p_k(s'|s) = DX(s'|s) = DX$ is a new decisioning metric, and

10 implementing in equations (15) a backward recursion equation for evaluating the natural logarithm, b_k . of b_k using the natural logarithm of said state transition a-posteriori probability $p_k = \ln[p(s'|s, y(k))] = \ln[p(s|s', y(k))]$ of the trellis transition path $s \rightarrow s'$ to the new state s' at $k-1$ and
15 is equation

$$b_{k-1}(s') = \max_s [b_k(s) + DX(s'|s)].$$

20

25