Décidabilité de la rationnalité pour les WSTS

Lucas Bueri

Stage M2 - 2021

1 Réseaux de Petri

Un réseau de Petri $N = (P, T, B, F, M_0)$ est la donnée de

- un ensemble fini P de d emplacements,
- un ensemble fini T de transitions,
- une fonction de coût $B: P \times T \to \mathbb{N}$,
- une fonction de production $F: P \times T \to \mathbb{N}$,
- un marquage initial $M_0: P \to \mathbb{N}$.

Les configurations sont les marquages $M: P \to \mathbb{N}$, aussi considérés comme les valeurs possibles de d compteurs (vecteur de \mathbb{N}^d). On peut déclencher la transition t à partir du marquage M si et seulement si $M(p) \geqslant B(p,t)$ pour tout $p \in P$ (noté $M \geqslant B(\cdot,t)$).

On obtient alors un nouveau marquage M' défini par $M' := M + D(\cdot, t)$ où $D \stackrel{def}{=} F - B$. B représente donc le coût de la transition (le nombre de jetons requis et consommés dans chaque emplacement), et F représente sa production (les jetons créés lors du déclenchement).

On notera M(t) lorsque t peut se déclencher sur M, et M(t)M' si déclencher t sur M donne M'. On étendra naturellement cette notation (ainsi que $B(p,\cdot)$ et $F(p,\cdot)$) aux séquences de transitions, ou mots $w \in T^*$.

Deux ensembles nous intéresseront alors : le langage $\mathcal{L}(N) \stackrel{def}{=} \{w \in T^* \mid M_0(w)\}$ du réseau de Petri et les configurations accessibles $\mathcal{R}(N) \stackrel{def}{=} \{M' : P \to \mathbb{N} \mid \exists w \in T^*, M_0(w)M'\}$.

2 VAS

Un système d'addition de vecteurs de dimension $d \in \mathbb{N}$ (d-VAS) $S = (A, \mathbf{x}_{init})$ est la donnée d'un vecteur initial $\mathbf{x}_{init} \in \mathbb{N}^d$ et d'un ensemble fini A d'actions. À chaque action $a \in A$ est associé un unique vecteur $\overline{a} \in \mathbb{Z}^d$, de telle manière à ce que deux actions ne soient pas associées au même vecteur de \mathbb{Z}^d .

Les configurations de S sont alors les vecteurs de \mathbb{N}^d (à coordonnées positives), et chaque action $a \in A$ agit sur \mathbb{N}^d en additionnant à la configuration courante le vecteur \overline{a} associé. On a alors une transition entre \mathbf{x} et \mathbf{y} étiquetée par l'action a lorsque $\mathbf{x} + \overline{a} = \mathbf{y}$.

De manière équivalente, on dira que l'action $a \in A$ est franchissable à partir de la configuration $\mathbf{x} \in \mathbb{N}^d$ lorsque $\mathbf{x} + \overline{a} \geqslant \mathbf{0}$, et son déclenchement aboutit à la configuration $\mathbf{y} := \mathbf{x} + \overline{a}$ à travers la transition $(\mathbf{x}, a, \mathbf{y}) \in \mathbb{N}^d \times A \times \mathbb{N}^d$. On notera $\mathbf{x} \stackrel{a}{\longrightarrow} \mathbf{y}$ lorsqu'un tel déclenchement est possible.

Lorsqu'une séquence d'actions $w = a_1 \cdots a_k \in A^*$ permet d'aller de \mathbf{x} à \mathbf{y} par la séquence de transition $\mathbf{x} = \mathbf{x_0} \xrightarrow{a_1} \mathbf{x_1} \xrightarrow{a_2} \dots \xrightarrow{a_k} \mathbf{x_k} = \mathbf{y}$ (où $\mathbf{x_0}, \dots, \mathbf{x_k} \in \mathbb{N}^d$ et $\mathbf{x_{i-1}} + \overline{a_i} = \mathbf{x_i}$ pour tout $1 \leq i \leq k$), on dit que w est franchissable à partir de \mathbf{x} , et qu'on a une exécution $\rho : \mathbf{x} \xrightarrow{w} \mathbf{y}$. \mathbf{y} est alors dit accessible à partir de \mathbf{x} .

De plus, en notant $\overline{w} \stackrel{def}{=} \sum_{i=1}^k \overline{a_i}$ le vecteur associé à w, on obtient $\mathbf{x} + \overline{w} = \mathbf{y}$. Cependant, l'égalité peut-être vérifiée même si w n'est pas franchissable.

Nous allons étudier deux ensembles naturellement associés à un VAS $S = (A, \mathbf{x}_{\text{init}})$:

- 1. $\mathcal{L}(S) \stackrel{def}{=} \left\{ w \in A^* \mid \exists \mathbf{y} \in \mathbb{N}^d, \mathbf{x}_{\text{init}} \stackrel{w}{\longrightarrow} \mathbf{y} \right\}$ qui est le *langage* des séquences d'actions franchissables à partir de \mathbf{x}_{init} ,
- 2. $\mathcal{R}(S) \stackrel{def}{=} \left\{ \mathbf{y} \in \mathbb{N}^d \mid \exists w \in A^*, \mathbf{x}_{\text{init}} \xrightarrow{w} \mathbf{y} \right\}$ qui est l'ensemble des configurations accessibles à partir de \mathbf{x}_{init} .

Définition 1. Un VAS S est rationnel si $\mathcal{L}(S)$ est rationnel sur A^* .

3 Un algorithme de calcul du Graphe de couverture (pour les VAS)

On étend les configurations des VAS aux vecteurs à coordonnées dans $\mathbb{N}_{\omega} \stackrel{def}{=} \mathbb{N} \cup \{\omega\}$. Cela va nous permettre de représenter le graphe des configurations accessibles de manière finie (bien qu'il puisse exister une infinité de configurations accessibles).

Le graphe de couverture a pour sommets des configurations de \mathbb{N}^d_ω et pour arêtes des transitions du VAS, étiquetés par une action de A. Il est obtenu en partant d'un sommet initial $s_0: \mathbf{x}_{\text{init}}$ étiqueté par la configuration initiale $\mathbf{x}_{\text{init}} \in \mathbb{N}^d$, puis par récurrence sur la profondeur des noeuds en indiquant les voisins des noeuds accessibles :

Pour chaque noeud $s: \mathbf{x}$ associé à la configuration $\mathbf{x} \in \mathbb{N}^d_{\omega}$, on fait partir de s autant d'arêtes que d'actions $a \in A$ qui sont franchissables à partir de \mathbf{x} . Le sommet d'arrivée de l'arête associée à une action a est déterminé ainsi :

- Si $\mathbf{x} \stackrel{a}{\longrightarrow} \mathbf{y}$ (déclencher a aboutit à la configuration $\mathbf{y} := \mathbf{x} + \overline{a}$) et qu'il existe un sommet déjà existant $r : \mathbf{y}$ associé à cette configuration, alors on crée une arête étiquetée par a de $s : \mathbf{x}$ vers $r : \mathbf{y}$;
- Si $\mathbf{x} \stackrel{a}{\longrightarrow} \mathbf{y}$ et qu'il existe un ancêtre $r : \mathbf{z}$ de s (c'est-à-dire tel qu'il existe une chemin dans le graphe déjà créé de r à s) avec $\mathbf{y} > \mathbf{z}$, alors on crée un nouveau sommet $s' : \mathbf{y}'$ et une arête de $s : \mathbf{y}$ vers $s' : \mathbf{y}'$ étiquetée par a, où $\mathbf{y}' \in \mathbb{N}^d_\omega$ est la configuration de coordonnées $\mathbf{y}'(i) := \mathbf{y}(i)$ pour les $1 \le i \le d$ tels que $\mathbf{y}(i) = \mathbf{z}(i)$, et $\mathbf{y}'(i) := \omega$ si $\mathbf{y}(i) > \mathbf{z}(i)$;
- Si la configuration \mathbf{y} atteinte n'est pas dans les cas précédents, on crée simplement un nouveau sommet s': \mathbf{y} et une arête de s à s' étiquetée par a.

4 Une caractérisation pour la rationnalité

La preuve de décidabilité se divise en deux étapes. Tout d'abord, on va donner une caractérisation mathématique équivalente à la rationnalité. On montrera ainsi qu'un VAS est rationnel si et seulement s'il existe une borne sur la décroissance possible des coordonnées des configurations. je dirais un VAS est rationnel si et seulement s'il existe un entier k tel que pour toutes configurations accessibles x, y, si y est accessible à partir de x alors y n'est pas en dessous de x - k.

Ginzburg et Yoeli choisissent dans [2] d'introduire une relation sur les configurations :

Définition 2 ([2] section 3). On définit la relation $\equiv \sup \mathcal{R}(S)$ par

$$\mathbf{x} \equiv \mathbf{y} \text{ ssi } \forall w \in A^*, \left(\mathbf{x} + w \in \mathcal{R}(S) \Leftrightarrow \mathbf{y} + w \in \mathcal{R}(S)\right)$$

On remarque que \equiv compare les mots franchissables sur chaque configuration, ce qui nous permet de reconnaître en \equiv la plus grande congruence sur $\mathcal{R}(S)$ au sens de l'inclusion (aussi appelée congruence de Nérode). On rappelle qu'une congruence est une relation d'équivalence compatible avec les transitions : dans notre cas, $\mathbf{x} \equiv \mathbf{y}$ implique $\forall a \in A, \mathbf{x} + \overline{a} \equiv \mathbf{y} + \overline{a}$.

Proposition 3. Soit $\mathbf{x}, \mathbf{y} \in \mathcal{R}(S)$. Alors

$$\mathbf{x} \equiv \mathbf{y} \operatorname{ssi} \mathcal{L}(A, \mathbf{x}) = \mathcal{L}(A, \mathbf{y})$$

Est-ce que la relation d'ordre associée $x \sqsubseteq y$ if $\mathcal{L}(S,x) \subseteq \mathcal{L}(S,y)$ est intéressante à regarder? On peut désormais utiliser les résultats connus sur cette congruence, ce qui nous donne :

Théorème 4 ([2] théorème 1). Pour un VAS S, $\mathcal{L}(S)$ est rationnel si et seulement si le quotient $\mathcal{R}(S)/\equiv$ est fini.

Pour obtenir un nombre fini de classes d'équivalence pour ≡, on cherche une borne à partir de laquelle les configurations sont indiscernables. Comme la seule règle sur les actions franchissables est un test de positivité, on va vouloir que les configurations ne puisse pas trop décroître. Ginzburg et Yoeli proposent une telle caractérisation :

Lemme 5 ([2] lemme 1). Supposons que dans un VAS $S = (A, \mathbf{x}_{init})$ $n \leq d$ coordonnées (disons les n premières) soient non-bornées. Supposons aussi qu'il existe n entiers positifs k_1, k_2, \ldots, k_n tels que pour tout $\mathbf{x} \in \mathcal{R}(S)$, tout $w \in A^*$ et tout $i = 1, 2, \ldots, n$, $(\mathbf{x} + \overline{w}) \in \mathcal{R}(S) \implies \mathbf{x}(i) - (\mathbf{x} + \overline{w})(i) \geq k_i$. Alors $\mathcal{R}(S)/\equiv$ est fini.

On peut simplifier ce résultat en prenant une borne $k \in \mathbb{N}$ commune à toutes les coordonnées. On montrera donc le théorème suivant :

Théorème 6. Soit $S = (A, \mathbf{x}_{init})$ un VAS. Alors $\mathcal{L}(S)$ est rationnel si et seulement si

$$\exists k \in \mathbb{N}, \forall \mathbf{x}, \mathbf{y} \in \mathbb{N}^d, (\mathbf{x}_{\text{init}} \xrightarrow{*} \mathbf{x} \xrightarrow{*} \mathbf{y} \implies \mathbf{y} \geqslant \mathbf{x} - \mathbf{k})$$
 (1)

où **k** désigne le vecteur $(k, k, ..., k) \in \mathbb{N}^d$.

 $D\acute{e}monstration.$ (caractérisation \Rightarrow rationnel) Soit S un VAS vérifiant la caractérisation (1) pour un $k \in \mathbb{N}$.

Si $\mathbf{x}, \mathbf{y} \in \mathcal{R}(S)$ vérifient $\mathbf{x}(i) = \mathbf{y}(i)$ ou $\mathbf{x} \ge k \land \mathbf{y} \ge k$ pour toute coordonnée $i \in \{1, \ldots, d\}$, alors $\mathbf{x} \equiv \mathbf{y}$. En effet, on a $\mathbf{x} + \overline{w} \ge \mathbf{0} \Leftrightarrow \mathbf{y} + \overline{w} \ge \mathbf{0}$ pour tout $w \in A^*$, puisque les coordonnées qui diffèrent ne peuvent devenir négatives.

Ainsi, \equiv admet au plus $k \times d$ classes d'équivalences, donc $\mathcal{L}(S)$ est rationnel.

Méthode de Valk et Vidal-Naquet :

On prouve d'abord la réciproque en construisant un automate fini reconnaissant $\mathcal{L}(S)$. Pour cela, on restreint simplement les états aux configurations de $\{0,\ldots,c\}^d$ pour une certaine constante $c \in \mathbb{N}$ obtenue à partir de k. L'autre sens est montré par l'absurde, en s'appuyant sur les circuits dans le graphe de couverture de S.

5 Bornes

Détaillons maintenant plusieurs propriétés de bornes sur les coordonnées des vecteurs configurations. On regarde $\{1,\ldots,d\}$ l'ensemble des indices des vecteurs codant les configurations d'un VAS $S=(A,\mathbf{x}_{\mathrm{init}})$. On peut voir ces coordonnées comme des emplacements accueillant un certain nombre de jetons, qui sont ajoutés ou retirés lors du déclenchement d'une action (lien avec les réseaux de Petri).

Soit $I \subseteq \{1, \ldots, d\}$ un sous-ensemble d'indices. On dira que

— I est borné pour $\mathbf{x} \in \mathbb{N}^d_{\omega}$ lorsqu'il existe toujours une coordonnée d'indice dans I qui soit bornée pour toute configuration accessible depuis \mathbf{x} :

$$\exists k \in \mathbb{N}, \forall \mathbf{y} \in \mathcal{R}(\mathbf{x}), \exists i \in I, \mathbf{y}(i) \leqslant k$$

— I est uniformément borné pour $\mathbf{x} \in \mathbb{N}^d_{\omega}$ lorsque toutes les coordonnées d'indice dans I sont bornées pour toute configuration accessible depuis \mathbf{x} :

$$\exists k \in \mathbb{N}, \forall \mathbf{y} \in \mathcal{R}(\mathbf{x}), \forall i \in I, \mathbf{y}(i) \leqslant k$$

— I est borné inférieurement pour $\mathbf{x} \in \mathbb{N}^d_{\omega}$ lorsqu'au moins une coordonnée dans I ne diminue pas plus qu'une certaine borne (même en augmentant les ressources initiales) :

$$\exists k \in \mathbb{N}, \forall n \in \mathbb{N}, \forall \mathbf{y} \in \mathcal{R}(\mathbf{x} + n \cdot \mathbb{1}_I), \exists i \in I, \mathbf{y}(i) \geqslant \mathbf{x}(i) + n - k$$

— I est uniformément borné inférieurement pour $\mathbf{u} \in \mathbb{N}^d_\omega$ lorsque toutes les coordonnées de I ne décroissent pas plus d'une certaine valeur :

$$\exists k \in \mathbb{N}, \forall n \in \mathbb{N}, \forall \mathbf{y} \in \mathcal{R}(\mathbf{x} + n \cdot \mathbb{1}_I), \forall i \in I, \mathbf{y}(i) \geqslant \mathbf{x}(i) + n - k$$

6 Commentaires

biblio à commencer

vérifier qu'on peut énoncer Vidal-Naquet sur le graphe de couverture minimal défini par le graphe de Karp-Miller dans lequel on a gardé que les marquages maximaux.

vérifier que ce nouveau graphe peut être obtenu à partir de Clover en ajoutant les transitions possibles (prolongées par continuité sur \mathbb{N}^d). Vérifier qu'il ne manque pas de transitions utiles.

Références

- [1] R. Valk and G. Vidal-Naquet. Petri Nets and Regular Languages. *Journal of Computer and System Science* 23, pages 299-325, 1981.
- [2] A. Ginzburg and M. Yoeli. Vector Addition Systems and Regular Languages. *Journal of Computer and System Science* 20, pages 277-284, 1980.