VPN Tunneling Lab

2018级 信息安全 管箫 18307130012

Task 1: Network Setup

我们将需要三台虚拟机。

Server

ens33 (Internet)

ip: 192.168.61.138 mac: 00:0c:29:01:41:ae

ens38 (Internel)

ip: 192.168.226.1 mac: 00:0c:29:01:41:b8

Host U

ens33 (Internet)

ip: 192.168.61.139 mac: 00:0c:29:a3:8a:e6

Host V

ens33 (Internel)

ip: 192.168.226.101 mac: 00:0c:29:aa:55:ad

Test

Host U can communicate with VPN Server

```
[12/16/20]seed@VM:~$ ping 192.168.61.138
PING 192.168.61.138 (192.168.61.138) 56(84) bytes of data.
64 bytes from 192.168.61.138: icmp_seq=1 ttl=64 time=0.970 ms
64 bytes from 192.168.61.138: icmp_seq=2 ttl=64 time=0.526 ms
64 bytes from 192.168.61.138: icmp_seq=3 ttl=64 time=0.403 ms
```

VPN Server can communicate with Host V

```
[12/16/20]seed@VM:~$ ping 192.168.226.101
PING 192.168.226.101 (192.168.226.101) 56(84) bytes of data.
64 bytes from 192.168.226.101: icmp_seq=1 ttl=64 time=0.516 ms
64 bytes from 192.168.226.101: icmp_seq=2 ttl=64 time=0.348 ms
```

Host U should not be able to communicate with Host V

```
Terminal Terminal File Edit View Search Terminal Help

To any the search Terminal Help

To any the
```

Task 2: Create and Configure TUN Interface

Task 2.a: Name of the Interface

```
valid_lft forever preferred_lft forever
3: Guan0: <POINTOPOINT,MULTICAST,NOARP> mtu :
    link/none
[12/16/20]seed@VM:~$
```

Task 2.b: Set up the TUN Interface

```
4: Guan0: <POINTOPOINT,MULTICAST,NOARP,UP,LOWER_UP> mtu 1500 qoate UNKNOWN group default qlen 500
link/none
inet 192.168.53.99/24 scope global Guan0
valid_lft forever preferred_lft forever
inet6 fe80::4ce4:f407:f730:9add/64 scope link flags 800
valid_lft forever preferred_lft forever
```

可以观察到该虚拟设备拥有了对应的ipv4和ipv6子网归属以及被启动。

Task 2.c: Read from the TUN Interface

```
[12/16/20]seed@VM:~/.../vpn tunneling$ sudo ./tun.py
Interface Name: Guan0
0.0.0.0 > 206.121.154.10 128 frag:6911 / Padding
0.0.0.0 > 206.121.154.10 128 frag:6911 / Padding
0.0.0.0 > 206.121.154.10 128 frag:6911 / Padding
IP / ICMP 192.168.53.99 > 192.168.53.3 echo-request 0 / Raw
IP / ICMP 192.168.53.99 > 192.168.53.3 echo-request 0 / Raw
IP / ICMP 192.168.53.99 > 192.168.53.3 echo-request 0 / Raw
IP / ICMP 192.168.53.99 > 192.168.53.3 echo-request 0 / Raw
IP / ICMP 192.168.53.99 > 192.168.53.3 echo-request 0 / Raw
```

ping 192.168.53.3

程序打印出了发送的icmp包的基本信息,这是因为icmp包的目标网段在TUN的网段中,经由TUN被路由。

ping 192.168.60.3

程序没有输出,这是因为这个地址不属于192.168.53.99/24网段,不由程序路由。

Task 2.d: Write to the TUN Interface

spoof icmp reply

```
[12/16/20]seed@VM:~$ ping 192.168.53.2 -c 1
PING 192.168.53.2 (192.168.53.2) 56(84) bytes of data.
8 bytes from 192.168.53.2: icmp_seq=1 ttl=64 (truncated)
--- 192.168.53.2 ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 2147483.647/0.000/0.000/0.000 ms
```

```
while True:
    # Get a packet from the tun interface
    packet = os.read(tun, 2048)
    ip = IP(packet)
    print(ip.summary())
    if ip.proto == 1:
        icmp = ip[ICMP]
        print(icmp.type)
        if icmp.type == 8:
            print("reply")
            newip = IP(src=ip.dst, dst=ip.src)
            newicmp = ICMP(type = 0, id = icmp.id, seq = icmp.seq)
            newpkt = newip/newicmp
            newpkt.show()
            os.write(tun, bytes(newpkt))
```

arbitrary data

```
Traceback (most recent call last):
   File "./tun.py", line 41, in <module>
      os.write(tun, b'12345')
OSError: [Errno 22] Invalid argument
[12/16/20]seed@VM:~/.../vpn tunneling$
```

出错,程序跳出

Task 3: Send the IP Packet to VPN Server Through a Tunnel

The server program tun_server.py

Implement the client program tun client.py

```
while True:
    # Get a packet from the tun interface
    packet = os.read(tun, 2048)
    if True:
        # Send the packet via the tunnel
        ssock.sendto(packet, (192.168.61.138, 9090))
```

Testing

IP address belonging to the 192.168.53.0/24

显示从Host U的外网地址向Server的外网地址的12345端口发送了包,内容是192.168.53.99向192.168.53.3的包。

```
192.168.61.139:42531 --> 192.168.61.138:12345
Inside: 192.168.53.99 --> 192.168.53.3
192.168.61.139:42531 --> 192.168.61.138:12345
Inside: 192.168.53.99 --> 192.168.53.3
192.168.61.139:42531 --> 192.168.61.138:12345
Inside: 0.0.0.0 --> 115.182.40.138
192.168.61.139:42531 --> 192.168.61.138:12345
Inside: 192.168.53.99 --> 192.168.53.3
```

IP address in the 192.168.60.0/24

```
[12/16/20]seed@VM:~/.../VPN Tunnel$ sudo ./tun_server.py
192.168.61.139:44043 --> 192.168.61.138:12345
Inside: 0.0.0.0 --> 168.237.64.105
192.168.61.139:44043 --> 192.168.61.138:12345
Inside: 0.0.0.0 --> 168.237.64.105
192.168.61.139:44043 --> 192.168.61.138:12345
Inside: 0.0.0.0 --> 168.237.64.105
192.168.61.139:44043 --> 192.168.61.138:12345
Inside: 192.168.53.99 --> 192.168.61.138:12345
Inside: 192.168.53.99 --> 192.168.226.2
192.168.61.139:44043 --> 192.168.61.138:12345
Inside: 192.168.53.99 --> 192.168.226.2
192.168.61.139:44043 --> 192.168.61.138:12345
Inside: 192.168.53.99 --> 192.168.226.2
```

Task 4: Set Up the VPN Server

rime		Source	Descinacion	Protocot L
61 2020-12-1	6 19:36:26.3179334	192.168.53.99	192.168.226.101	ICMP
64 2020-12-1	6 19:36:26.3185908	192.168.53.99	192.168.226.101	ICMP
65 2020-12-1	6 19:36:26.3190094	192.168.226.101	192.168.53.99	ICMP
66 2020-12-1	6 19:36:26.3190161	192.168.226.101	192.168.53.99	ICMP
68 2020-12-1	6 19:36:27.3401599	192.168.53.99	192.168.226.101	ICMP
69 2020-12-1	6 19:36:27.3401688	192.168.53.99	192.168.226.101	ICMP
70 2020-12-1	6 19:36:27.3405796	192.168.226.101	192.168.53.99	ICMP
71 2020-12-1	6 19:36:27.3405855	192.168.226.101	192.168.53.99	ICMP
73 2020-12-1	6 19:36:28.3645546	192.168.53.99	192.168.226.101	ICMP
74 2020-12-1	6 19:36:28.3645652	192.168.53.99	192.168.226.101	ICMP
75 2020-12-1	16 19:36:28.3649895	192.168.226.101	192.168.53.99	ICMP
76 2020-12-1	6 19:36:28.3649963	192.168.226.101	192.168.53.99	ICMP
78 2020-12-1	6 19:36:29.3882938	192.168.53.99	192.168.226.101	ICMP
79 2020-12-1	6 19:36:29.3883035	192.168.53.99	192.168.226.101	ICMP
80 2020-12-1	.6 19:36:29.3887530	192.168.226.101	192.168.53.99	ICMP
81 2020-12-1	16 19:36:29.3887600	192.168.226.101	192.168.53.99	ICMP

Task 5: Handling Traffic in Both Directions

ping

		· · · · · · · - · · · g · · · · · · · ·
1 2020-12-16 21:15:31.9747429 192.168.61.139	192.168.61.138	UDP 128 12345 → 12345 Len=84
2 2020-12-16 21:15:32.1942195 192.168.53.99	192.168.226.101	ICMP 100 Echo (ping) request id=0x2e07, seq=1/256, ttl=64 (reply in 3)
3 2020-12-16 21:15:32.1946067 192.168.226.101	192.168.53.99	ICMP 100 Echo (ping) reply id=0x2e07, seq=1/256, ttl=64 (request in 2)
4 2020-12-16 21:15:32.1946208 192.168.226.101	192.168.53.99	ICMP 100 Echo (ping) reply id=0x2e07, seq=1/256, ttl=63
5 2020-12-16 21:15:32.4204463 192.168.61.138	192.168.61.139	UDP 128 12345 → 12345 Len=84
6 2020-12-16 21:15:32.9761889 192.168.61.139	192.168.61.138	UDP 128 12345 → 12345 Len=84
7 2020-12-16 21:15:33.1978994 192.168.53.99	192.168.226.101	ICMP 100 Echo (ping) request id=0x2e07, seq=2/512, ttl=64 (reply in 8)
8 2020-12-16 21:15:33.1982532 192.168.226.101	192.168.53.99	ICMP 100 Echo (ping) reply id=0x2e07, seq=2/512, ttl=64 (request in 7)
9 2020-12-16 21:15:33.1982677 192.168.226.101	192.168.53.99	ICMP 100 Echo (ping) reply id=0x2e07, seq=2/512, ttl=63
10 2020-12-16 21:15:33.4206688 192.168.61.138	192.168.61.139	UDP 128 12345 → 12345 Len=84
11 2020-12-16 21:15:33.9771127 192.168.61.139	192.168.61.138	UDP 128 12345 → 12345 Len=84
12 2020-12-16 21:15:34.1940093 192.168.53.99	192.168.226.101	ICMP 100 Echo (ping) request id=0x2e07, seq=3/768, ttl=64 (reply in 13)
13 2020-12-16 21:15:34.1945020 192.168.226.101	192.168.53.99	ICMP 100 Echo (ping) reply id=0x2e07, seq=3/768, ttl=64 (request in 12)
14 2020-12-16 21:15:34.1945165 192.168.226.101	192.168.53.99	ICMP 100 Echo (ping) reply id=0x2e07, seq=3/768, ttl=63
15 2020-12-16 21:15:34.4164505 192.168.61.138	192.168.61.139	UDP 128 12345 → 12345 Len=84

telnet

Time Source	Destination	Protocol	Length Info
16 2020-12-16 21:16:33.7176064 192.168.6	1.138 192.168.61.139	UDP	96 12345 → 12345 Len=52
17 2020-12-16 21:16:33.7188684 192.168.6	1.139 192.168.61.138	UDP	96 12345 → 12345 Len=52
18 2020-12-16 21:16:33.9411879 192.168.5	3.99 192.168.226.101	TCP	68 56584 → 23 [ACK] Seq=1828932558 Ack=356166295 Win=29312
19 2020-12-16 21:16:33.9416306 192.168.2	26.101 192.168.53.99	TELNET	107 Telnet Data
20 2020-12-16 21:16:33.9416460 192.168.2	26.101 192.168.53.99	TCP	107 [TCP Retransmission] 23 → 56584 [PSH, ACK] Seq=35616629
21 2020-12-16 21:16:34.1565355 192.168.6	1.138 192.168.61.139	UDP	135 12345 → 12345 Len=91
22 2020-12-16 21:16:34.1575611 192.168.6	1.139 192.168.61.138	UDP	96 12345 → 12345 Len=52
23 2020-12-16 21:16:34.1581608 192.168.6	1.139 192.168.61.138	UDP	171 12345 → 12345 Len=127
24 2020-12-16 21:16:34.3777158 192.168.5	3.99 192.168.226.101	TCP	68 56584 → 23 [ACK] Seq=1828932558 Ack=356166334 Win=29312
25 2020-12-16 21:16:34.8214938 192.168.5	3.99 192.168.226.101	TELNET	143 Telnet Data
26 2020-12-16 21:16:34.8219541 192.168.2	26.101 192.168.53.99	TCP	68 23 → 56584 [ACK] Seq=356166334 Ack=1828932633 Win=29056
27 2020-12-16 21:16:34.8219696 192.168.2	26.101 192.168.53.99	TCP	68 [TCP Dup ACK 26#1] 23 → 56584 [ACK] Seq=356166334 Ack=1
28 2020-12-16 21:16:34.8221938 192.168.2	26.101 192.168.53.99	TELNET	71 Telnet Data
29 2020-12-16 21:16:34.8222007 192.168.2	26.101 192.168.53.99	TCP	71 [TCP Retransmission] 23 → 56584 [PSH, ACK] Seq=35616633
30 2020-12-16 21:16:35.0404933 192.168.6	1.138 192.168.61.139	UDP	96 12345 → 12345 Len=52
31 2020-12-16 21:16:35.0409664 192.168.6	1.138 192.168.61.139	UDP	99 12345 → 12345 Len=55
32 2020-12-16 21:16:35.0423879 192.168.6	1.139 192.168.61.138	UDP	99 12345 → 12345 Len=55
33 2020-12-16 21:16:35.2617344 192.168.5	3.99 192.168.226.101	TELNET	71 Telnet Data
34 2020-12-16 21:16:35.2668550 192.168.2	26.101 192.168.53.99	TELNET	71 Telnet Data
35 2020-12-16 21:16:35.2668731 192.168.2	26.101 192.168.53.99	TCP	71 [TCP Retransmission] 23 → 56584 [PSH, ACK] Seq=35616633
36 2020-12-16 21:16:35 4816889 192 168 6	1.138 192.168.61.139	UDP	99 12345 → 12345 Len=55

flow

应用程序(Host U)--> tun(Host U)--> ens33(Host U)--> ens33(Server)--> socket(Server)--> ens38(Server)--> ens33(Host V)--> 应用程序(Host V)--> ens33(Host V)--> ens33(Server)--> ens33(Host U)--> tun(Server)--> ens33(Server)--> ens33(Host U)--> cns33(Host U)--> cns33(Host

Task 6: Tunnel-Breaking Experiment

19 5050-15-10	21.21.30.1433203	121.0.0.1	127.0.0.1
14 2020-12-16	21:27:50.1513074	127.0.0.1	127.0.0.1
15 2020-12-16	21:27:50.1513106	127.0.0.1	127.0.0.1
16 2020-12-16	21:27:50.1532621	127.0.0.1	127.0.0.1
17 2020-12-16	21:27:50.1532654	127.0.0.1	127.0.0.1
18 2020-12-16	21:27:50.1553562	127.0.0.1	127.0.0.1
19 2020-12-16	21:27:50.1553590	127.0.0.1	127.0.0.1
20 2020-12-16	21:27:50.1573584	127.0.0.1	127.0.0.1
21 2020-12-16	21:27:50.1573614	127.0.0.1	127.0.0.1
22 2020-12-16	21:27:50.1593274	127.0.0.1	127.0.0.1
23 2020-12-16	21:27:50.1593324	127.0.0.1	127.0.0.1
24 2020-12-16	21:27:50.1612183	127.0.0.1	127.0.0.1
25 2020-12-16	21:27:50.1612208	127.0.0.1	127.0.0.1
26 2020-12-16	21:27:50.1632666	127.0.0.1	127.0.0.1
27 2020-12-16	21:27:50.1632689	127.0.0.1	127.0.0.1

可以观察到在tun连接断开期间,产生了大量tcp重传。这暗示我们tcp连接并没有断开。

Task 7: Routing Experiment on Host V

```
[12/16/20]seed@VM:~$ sudo ip route add 192.168.53.0/24 dev ens33 via 192.168.226
.1
[12/16/20]seed@VM:~$ ip route list
169.254.0.0/16 dev ens33 scope link metric 1000
192.168.53.0/24 via 192.168.226.1 dev ens33
192.168.226.0/24 dev ens33 proto kernel scope link src 192.168.226.101 metri
c 100
```

sudo ip route add 192.168.53.0/24 dev ens33 via 192.168.226.1

Task 8: Experiment with the TUN IP Address

Where are the packets dropped?

Server

Time	Source	Descrinación	FIULUCUL L	Lenguriniro
1 2020-12-16 21:41:24.8919366	::1	::1	UDP	64 56810 → 60757 Len=0
2 2020-12-16 21:41:26.9016027	192.168.61.139	192.168.61.138	UDP	128 12345 → 12345 Len=84
3 2020-12-16 21:41:27.1256353	192.168.30.99	192.168.226.101	ICMP	100 Echo (ping) request id=0x3335, seq=1/256, ttl=64 (no res
4 2020-12-16 21:41:27.9151846	192.168.61.139	192.168.61.138	UDP	128 12345 → 12345 Len=84
5 2020-12-16 21:41:28.1302946	192.168.30.99	192.168.226.101	ICMP	100 Echo (ping) request id=0x3335, seq=2/512, ttl=64 (no res
6 2020-12-16 21:41:28.9402636	192.168.61.139	192.168.61.138	UDP	128 12345 → 12345 Len=84
7 2020-12-16 21:41:29.1575879	192.168.30.99	192.168.226.101	ICMP	100 Echo (ping) request id=0x3335, seq=3/768, ttl=64 (no res
8 2020-12-16 21:41:32 0431923	Vmware a3:8a:e6		ΔPP	62 Who has 192 168 61 1382 Tell 192 168 61 139

Host V

.y a display ritter <cltr-j></cltr-j>								expres	
	Time	Source	Destination	Protocol	Length Info				
	1 2020-12-16 18:55:53.3932580	192.168.30.99	192.168.226.101	ICMP	100 Echo (ping) request	id=0x3335,	seq=1/256,	ttl=
	2 2020-12-16 18:55:54.3977751	192.168.30.99	192.168.226.101	ICMP	100 Echo (ping) request	id=0x3335,	seq=2/512,	ttl=
	3 2020-12-16 18:55:55.4256430	192.168.30.99	192.168.226.101	ICMP	100 Echo (1	ping) request	id=0x3335.	seg=3/768.	ttl=

可以观察到Server收到了数据并且进行了转发, Host V也收到了数据, 但是并没有进行回应

Why are the packets dropped?

这是因为一个叫做"反向路径过滤"的机制存在。

The default behavior of Linux is to consider asymmetric routing suspicious and therefore to drop any packet whose source IP address is not reachable through the device the packet was received from, according to the routing table.

-- 《Understanding Linux Network Internals》

在本案例中,Host V反向查找路由,发现收到的包的上一跳路由器和响应包所对应的默认路由器不是同一个,反向路径检查失败,所以抛弃了回应包。

How to solve this problem?

在Host V上增加一条路由记录:

sudo ip route add 192.168.30.0/24 via 192.168.226.1

Task 9: Experiment with the TAP Interface

Ping

```
Ether / ARP who has 192.168.53.6 says 192.168.53.99
Ether / IP / UDP / DNS Qry "b'_nfs._tcp.local.'"
Ether / ARP who has 192.168.53.6 says 192.168.53.99
Ether / ARP who has 192.168.53.6 says 192.168.53.99
Ether / IPv6 / UDP / DNS Qry "b'_nfs._tcp.local.'"
Ether / ARP who has 192.168.53.6 says 192.168.53.99
```

显示了ARP包的内容: who has 192.168.53.6 says 192.168.53.99。

Ether / ARP who has 192.168.53.33 says 192.168.53.99

这是因为当主机需要向某个同子网的主机发送数据包时,会广播ARP包请求该主机响应其mac地址,这样才能正确将数据包按照mac地址导向。

Spoof ARP

arping -I Guan0 192.168.53.33

```
[12/16/20]seed@VM:~/.../vpn tunneling$ arping -I Guar ARPING 192.168.53.33 from 192.168.53.99 Guan0 Unicast reply from 192.168.53.33 [00:0C:29:A3:8A:E6] Unicast reply from 192.168.53.33 [00:0C:29:A3:8A:E6]
```

***** Fake response: Ether / ARP is at 00:0c:29:a3:8a:e6 says 192.168.53.33

arping -I Guan0 1.2.3.4

```
[12/16/20]seed@VM:~/.../vpn tunneling$ arping -I Guan0 1.2.3.4

ARPING 1.2.3.4 from 192.168.53.99 Guan0

Unicast reply from 1.2.3.4 [00:0C:29:A3:8A:E6] 2.516ms

Unicast reply from 1.2.3.4 [00:0C:29:A3:8A:E6] 2.791ms

Unicast reply from 1.2.3.4 [00:0C:29:A3:8A:E6] 2.888ms

Unicast reply from 1.2.3.4 [00:0C:29:A3:8A:E6] 2.087ms
```