Supporting Information: Improved community detection in weighted bipartite networks

Stephen Beckett

Biosciences, College of Life and Environmental Sciences, University of Exeter, EX4 4QE

Contents

1	Synthetic Networks	2
2	Plant-pollinator datasets	4
3	Details for viewing plant-pollinator partitions	6
4	Extra results from algorithm analysis on plant-pollinator datasets	7

1 Synthetic Networks

Figure 1: Histograms of 10,000 draws from the two negative binomial distributions used to generate edge weights in the synthetic networks. Both distributions have a mean of 2, (a) has a distribution parameter of 0.2 corresponding to a lower level of network connectance as there exist a greater number of zeroes, than in (b) where the distribution parameter is set to 1.

The results from the synthetic ensemble are saved in the folder paper/paper-code/syntheticEnsemble.RData in the supporting data repository [1].

Figure 2: Evaluation of the LPAwb+ and Exhautive LPAwb+ algorithms against synthetically generated weighted networks with known modular structure for four different treatments: LMLF - 3 modules and low connectance (dispersion parameter given as size=0.2), LMHF - 3 modules, higher connectance(dispersion parameter given as size=1), HMLF - 10 modules, lower connectance, HMHF - 10 modules, higher connectance . (a) shows the ratio of detected modules to known modules , (b) shows the ratio of detected modularity of the implanted structure. The dotted lines represent the ability to perfectly detect the synthetic community partitions. Finally (c) shows the normalised mutual information (NMI) between detected community structure and the embedded community structure.

2 Plant-pollinator datasets

Reference	[2, 3, 4]	[2]	[9]	[_]	8	6	[10]	[1]	[12]	[13]	[14]	[15]	[15]	[16]	[17]	[18]	[2, 3, 4]	[2, 3, 4]	[2, 3, 4]	[2, 3, 4]	[2, 3, 4]	[2, 3, 4]	[2, 3, 4]
≣	1130	220	28224	383	1459	3053	2392	2523	2183	134	2225	1512	1139	594	299	992	515	613	229	286	719	592	761
Edges	39	167	71	238	268	572	1206	312	299	38	143	25	30	103	29	141	43	45	45	36	21	47	31
Columns	27	102	13	118	83	257	629	114	62	18	44	13	12	26	32	34	29	33	29	26	35	27	24
Rows	တ ်	12	13	23	4	26	91	30	22	7	13	4	10	တ	7	13	10	တ	10	∞	∞	∞	7
Network	Safariland	barrett1987	bezerra2009	elberling1999	inouye1988	junker2013	kato1990	kevan1970	memmott1999	mosquin1967	motten1982	olesen2002aigrettes	olesen2002flores	ollerton2003	schemske1978	small1976	vazarr	vazcer	vazllao	vazmasc	vazmasnc	vazquec	vazquenc

Table 1: Network properties of the datasets used in this study.

3 Details for viewing plant-pollinator partitions

The modular partitions found for each plant-pollinator network for both binary and quantitative cases are described in the supporting data repository [1].

They can be found by navigating to paper/papercode/output/configurations

Each file in this folder is of a given format:

First the network name is given

Second a letter B or Q details whether this is a binary or quantitative network partition

Next are two sets of two letters, which together describe the two algorithms being compared (LP: LPAwb+, EX: Exhaustive LPAwb+, QB: QuanBiMo)

Then the final string of important characters again identifies whether it is binary or quantitative and the corresponding algorithm the partition was found by. If this string is preceded by either min or max - this means that multiple network configurations were found with the highest modularity score detected by one of the two competing algorithms (see column U in tables S2-S3). min and max correspond to partitions that either minimised or maximised the NMI score between the solutions each algorithm identified. If neither min or max are listed there is no range of NMI values – as identified in Table 3 in the main text.

Within each file the list of all row and column nodes is given at depth 0, whilst at depth 1 the modular configurations the nodes are assigned to is listed.

4 Extra results from algorithm analysis on plantpollinator datasets

	Quar	QuanBiMo				LPAwb+	+qv					EXT	aus	tive	Exhaustive LPAwb+
Network	R	\tilde{x}	U	F	$Q_R^{'}$	R	\tilde{x}	U	F	$Q_R^{'}$	R	\tilde{x}	U	F	$Q_R^{'}$
Safariland	83	0.558	_	0	0.538	100	0.519	7	0	0.519	40	0.554	-	0	0.538
barrett1987	_	0.077	~	0	0.593	86	0.470	_	0	0.470	_	0.481	_	0	0.317
bezerra2009	73	0.230	~	0	0.155	100	0.218	_	0	0.218	25	0.230	_	0	0.155
elberling1999	_	0.143	_	2	0.311	100	0.458	0	0	0.458	-	0.484	_	0	0.286
inouye1988	_	0.395	_	0	0.239	51	0.351	_	0	0.351	-	0.404	_	0	0.082
junker2013	_	0.024	_	0	0.619	4	0.430	27	0	0.433	-	0.479	_	0	0.112
kato1990	_	900.0	_	0	0.945	95	0.544	82	0	0.544	-	0.574	_	0	0.279
kevan1970	_	0.312	_	_	0.276	9	0.340	4	0	0.341	-	0.422	_	0	0.276
memmott1999	_	0.290	_	0	0.124	22	0.268	∞	0	0.268	-	0.328	_	0	0.097
mosquin1967	64	0.479	_	0	0.368	100	0.393	_	0	0.393	25	0.470	_	0	0.368
motten1982	9	0.304	_	0	-0.049	100	0.281	_	0	0.281	∞	0.304	_	0	-0.049
olesen2002aigrettes	19	0.334	_	0	0.269	86	0.314	_	0	0.314	80	0.340	_	0	0.269
olesen2002flores	24	0.441	_	0	0.467	86	0.422	7	0	0.422	61	0.444	_	0	0.467
ollerton2003	_	0.302	_	က	0.223	43	0.418	_	0	0.439	တ	0.439	_	0	0.223
schemske1978	53	0.370	_	0	0.119	100	0.370	_	0	0.370	100	0.370	_	0	0.119
small1976	6	0.256	_	0	0.007	100	0.242	_	0	0.242	13	0.262	_	0	0.007
vazarr	100	0.542	_	0	0.535	100	0.512	_	0	0.512	17	0.535	_	0	0.535
vazcer	28	0.547	_	0	0.644	100	0.565	_	0	0.565	73	0.619	_	0	0.644
vazllao	100	0.576	_	0	0.619	82	0.550	7	0	0.550	36	0.570	_	0	0.619
vazmasc	100	0.547	7	0	0.556	100	0.522	~	0	0.522	48	0.546	7	0	0.556
vazmasnc	4	0.526	~	0	0.451	100	0.512	7	0	0.512	∞	0.521	_	0	0.451
vazduec	26	0.488	~	0	0.532	100	0.474	~	0	0.474	73	0.497	_	0	0.532
vazquenc	100	0.549	~	0	0.677	100	0.514	_	0	0.514	74	0.549	_	0	0.677

partitions (with highest Q_B) were found from the 100 tests, \tilde{x} is the median Q_B score, U is the number of unique configurations found with the maxmium Q_B score (for each method) judged by comparing the normalised mutual information of partitions Table 2: Extra results from the evaluations of the binary version of these networks. R is the number of times that the best sharing this value, F is number of times that the algorithms reported a failure (from the 100 runs) and Q_R is the realised modularity of the partition with highest Q_B score (for each method). Numbers have been rounded to 3 d.p.

	Quar	QuanBiMo				LPAwb+	+qv					Exh	aus	ive	Exhaustive LPAwb+
Network	R	\tilde{x}	U	F	$Q_R^{'}$	R	\tilde{x}	U	F	$Q_R^{'}$	R	\ddot{x}	U	F	$Q_R^{'}$
Safariland	91	0.430	_	0	0.979	100	0.427	_	0	0.963	42	0.430	_	0	0.979
barrett1987	_	0.068	_	0	0.836	100	0.567	_	0	0.560	7	0.568	_	0	0.535
bezerra2009	21	0.222	_	0	-0.139	100	0.223	_	0	-0.139	100	0.223	_	0	-0.139
elberling1999	_	0.131	_	က	0.530	100	0.493	4	0	0.180	~	0.507	_	0	0.311
inouye1988	_	0.486	_	0	0.565	100	0.582	_	0	0.406	~	0.609	_	0	0.579
junker2013	_	0.007	_	0	0.743	100	0.533	_	0	0.452	-	0.559	_	0	0.590
kato1990	_	900.0	_	0	0.903	100	0.611	-	0	0.355	_	0.621	_	0	0.431
kevan1970	_	0.247	_	0	0.739	100	0.525	-	0	0.583	7	0.535	_	0	0.675
memmott1999	_	0.127	_	0	0.532	100	0.297	-	0	0.132	7	0.304	_	0	908.0
mosquin1967	78	0.444	_	0	0.478	100	0.440	-	0	0.403	83	0.444	_	0	0.478
motten1982	16	0.354	_	0	0.355	100	0.367	-	0	0.212	100	0.382	_	0	0.355
olesen2002aigrettes	96	0.259	_	0	0.148	100	0.259	_	0	0.148	100	0.259	_	0	0.148
olesen2002flores	29	0.497	_	0	0.403	100	0.497	_	0	0.403	100	0.497	_	0	0.403
ollerton2003	_	0.153	_	7	0.498	100	0.395	_	0	0.431	86	0.413	_	0	0.498
schemske1978	2	0.238	_	0	0.378	100	0.320	_	0	0.378	100	0.320	_	0	0.378
small1976	33	0.526	_	0	0.381	100	0.516	_	0	0.260	-	0.517	_	0	0.337
vazarr	21	0.428	_	0	0.456	100	0.441	-	0	0.449	93	0.442	_	0	0.456
vazcer	30	0.481	_	0	698.0	100	0.591	_	0	0.830	80	0.604	_	0	0.869
vazllao	100	0.561	_	0	0.625	100	0.558	_	0	0.586	61	0.561	_	0	0.635
vazmasc	31	0.656	_	0	0.769	100	0.655	_	0	0.727	80	0.663	_	0	0.769
vazmasnc	26	0.201	_	0	0.499	100	0.400	_	0	0.497	31	0.401	_	0	0.499
vazquec	26	0.511	_	0	0.581	100	0.504	_	0	0.544	22	0.508	_	0	0.581
vazquenc	100	0.450	_	0	0.963	100	0.450	_	0	0.963	100	0.450	~	0	0.963

partitions (with highest Q_W) were found from the 100 tests, \tilde{x} is the median Q_W score, U is the number of unique configurations found with the maxmium Q_W score (for each method) judged by comparing the normalised mutual information of partitions sharing this value, F is number of times that the algorithms reported a failure (from the 100 runs) and Q_R is the realised modularity of the partition with highest Q_W score (for each method). Numbers have been rounded to 3 d.p. Table 3: Extra results from the evaluations of the weighted version of these networks. R is the number of times that the best

References

- [1] S. J. Beckett, "weighted-modularity-LPAwbPLUS: Improved community detection in weighted bipartite networks," p. 10.5281/zenodo.19477, 2015.
- [2] D. P. Vázquez and D. Simberloff, "Ecological specialization and susceptibility to disturbance: conjectures and refutations," *The American Naturalist*, vol. 159, no. 6, pp. 606–623, 2002.
- [3] D. P. Vázquez, Interactions among introduced ungulates, plants, and pollinators: a field study in the temperate forest of the southern Andes. PhD thesis, University of Tennessee, Knoxville, Tennessee, USA., 2002.
- [4] D. P. Vázquez and D. Simberloff, "Changes in interaction biodiversity induced by an introduced ungulate," *Ecology Letters*, vol. 6, no. 12, pp. 1077–1083, 2003.
- [5] S. C. Barrett and K. Helenurm, "The reproductive biology of boreal forest herbs. i. breeding systems and pollination," *Canadian Journal of Botany*, vol. 65, no. 10, pp. 2036–2046, 1987.
- [6] E. L. Bezerra, I. C. Machado, and M. A. Mello, "Pollination networks of oil-flowers: a tiny world within the smallest of all worlds," *Journal of Animal Ecology*, vol. 78, no. 5, pp. 1096–1101, 2009.
- [7] H. Elberling and J. M. Olesen, "The structure of a high latitude plant-flower visitor system: the dominance of flies," *Ecography*, vol. 22, no. 3, pp. 314–323, 1999.
- [8] D. W. Inouye and G. H. Pyke, "Pollination biology in the snowy mountains of australia: comparisons with montane colorado, usa," *Australian Journal* of Ecology, vol. 13, no. 2, pp. 191–205, 1988.
- [9] R. R. Junker, N. Blüthgen, T. Brehm, J. Binkenstein, J. Paulus, H. Martin Schaefer, and M. Stang, "Specialization on traits as basis for the nichebreadth of flower visitors and as structuring mechanism of ecological networks," *Functional Ecology*, vol. 27, no. 2, pp. 329–341, 2013.
- [10] M. Kato, T. Kakutani, T. Inoue, and T. Itino, "Insect-flower relationship in the primary beech forest of ashu, kyoto: an overview of the flowering phenology and the seasonal pattern of insect visits," Contributions from the Biological Laboratory, Kyoto University, 1990.
- [11] P. Kevan, "High arctic insect-flower visitor relations: the inter-relationships of arthropods and flowers at lake hazen, ellesmere island, northwest territories, canada," *PhD thesis*, 1970.
- [12] J. Memmott, "The structure of a plant-pollinator food web," *Ecology Letters*, vol. 2, no. 5, pp. 276–280, 1999.

- [13] T. Mosquin and J. Martin, "Observations on the pollination biology of plants on melville island, nwt, canada," *Canadian Field Naturalist*, vol. 81, pp. 201–205, 1967.
- [14] A. F. Motten, "Pollination ecology of the spring wildflower community of a temperate deciduous forest," *Ecological Monographs*, pp. 21–42, 1986.
- [15] J. M. Olesen, L. I. Eskildsen, and S. Venkatasamy, "Invasion of pollination networks on oceanic islands: importance of invader complexes and endemic super generalists," *Diversity and Distributions*, vol. 8, no. 3, pp. 181–192, 2002.
- [16] J. Ollerton, S. D. Johnson, L. Cranmer, and S. Kellie, "The pollination ecology of an assemblage of grassland asclepiads in south africa," *Annals of Botany*, vol. 92, no. 6, pp. 807–834, 2003.
- [17] D. W. Schemske, M. F. Willson, M. N. Melampy, L. J. Miller, L. Verner, K. M. Schemske, and L. B. Best, "Flowering ecology of some spring woodland herbs," *Ecology*, pp. 351–366, 1978.
- [18] E. Small, "Insect pollinators of the mer bleue peat bog of ottawa," *Canadian field-naturalist*, 1976.