Improving the efficiency of a bank's telemarking campaign aimed towards fixed term deposit subscriptions

BY: NUSAIR IMAM

MENTOR: ILYAS USTUN

PROGRAM MANAGER: JOSEPHINE PIKE

Presentation Outline

- Understanding the data
- 2. Data analysis, cleaning and preparation
- 3. Initial application of selected models
- 4. Feature engineering and parameter tuning
- 5. Conclusion and Future Considerations

The data - variables

Categorical (dtype = object)	Continuous (dtype = numerical)		
Job	Age		
Marital	Duration		
Education	Campaign		
Default	Pdays		
Housing	Previous		
Loan	Emp.var.rate		
Contact	cons.price.idx		
Month	Cons.conf.idx		
Day_of_week	Euribor3m		
Poutcome	Nr.employed		

Object Variables

- Job : Occupational information
- Marital: Marital status
- ▶ Education : Education level
- Housing: Housing loan (Yes/No)
- Default : Credit default (Yes/No)
- ▶ Loan: Personal loan (Yes/No)
- Contact : Method of contact (telephone/cellular)
- Month: Month of the year (last contact)
- Day_of_week: Day (last contact)
- Poutcome: Outcome of previous campaign

Object Variables

Key Takeaways

- Students and retired people have a greater chance of making a deposit
- People who identified as illiterate have a higher chance of making a deposit; large error bar indicates presence of outliers
- Certain months have a higher success rate (March, April, Sept, Oct, Dec)
- Class imbalance; only 11% of participants made a deposit

Numerical variables

- Age : Age of client
- Duration : Contact duration (seconds)
- Campaign : Number of calls made to client
- Pdays: Number of days since last contact (previous campaign)
- Previous: Number of calls in previous campaign
- Emp.var.rate : Employment variation rate (quarterly)
- cons.price.idx : Consumer price index (monthly)
- Cons.conf.idx : Consumer condfidence index (monthly)
- Euribor3m : Euro interbank interest rate (daily)
- Nr.employed : Number of employees (quarterly)

Numerical variables - heatmap

- High correlations between the output and the following variables:
 - ▶ Nr.employed
 - ▶ Euribor3m
 - Duration
 - ▶ Emp.var.rate
 - Pdays
 - ► Previous (outcome)

Numerical variables Key Takeaways

- Rememeber the variable 'campaign' is the number of calls rendered per client during the campaign
 - No person who was contacted more than 20 times subscribed to a fixed term deposit
- People at the ends of the age spectrum are more likely to subscribe

Data Cleaning

- No NaN values, missing data
- Converted output from Yes/No to numerical 1/0
- Creating dummy variables for object variables in order to have a numerical dataset with all the variables.
- Dealt with class imbalance (data skewed towards the negative outcome)
 - Oversampling via Sklearn's SMOTE

Oversampled data

- SMOTE (Synthetic Minority Oversampling Technique)
 - Potentially important information may have been simulated (risk of overfitting)

```
#dealing with class imbalance
from imblearn.over_sampling import SMOTE
smote = SMOTE(random_state = 1, ratio = 1.0)
xx = X
yy = Y

x_balanced,y_balanced = smote.fit_sample(xx,yy)

print(x_balanced.shape)
print(y_balanced.shape)

x_var = list(xx.columns)
bal_df = pd.DataFrame(data = x_balanced , columns = x_var)
bal_df.describe()
bal_df.describe()
```

Test, train methodology

- Data split on an 80:20 basis using Sklearn's train_test_split function
- Models trained on train dataset and tested on both train and dataset
- Initial modelling on Oversampled train dataset with 63 features
- Final modelling on reduced set of features based on feature importance from RFC, LogR and feature engineering

Terms and definitions – in context of what it means in this application

- ► Type 1 error: FP
 - Incorrectly identifying non-subscibers as subscribers
- ▶ Type 2 error: FN
 - Not identifying those that are predicted to subscribe
- Precision: TP/(TP+FP)
 - Out of those that we think will subscribe, what percentage actually did?
- Recall: TP/(TP+FN)
 - Out of those that did subscribe, what percentage did we predict would?

Terms and definitions – in context of what it means in this application

- Precision: TP/(TP+FP)
 - Out of those that we think will subscribe, what percentage actually did?
 - Example Scenario: sending coupons to those that think are likely to subscribe
 you do not want to waste coupons on those that will not subscribe!
- Recall: TP/(TP+FN)
 - Out of those that did subscribe, what percentage did we predict would?
 - ▶ Bank telemarketing this is the primary KPI for this application we do not want to misclassify people who end up subscribing

Models

- Random Forest Classifier
- ▶ K-nearest Classifier
- ► Logistic Regression
- ► SVM
 - ► SVC
 - ▶ Linear SVC

	RFC	LogR	KNN	SVC	ISVC
Accuracy (%)	83.5	88.5	90.7	91.0	88.4
Type 1 (%)	7.92	6.76	8.20	6.04	6.96
Type 2 (%)	8.56	4.75	1.11	2.93	4.61
Precision (%)	84.0	87.0	85.6	88.6	86.7
Recall (%)	82.9	90.5	97.8	94.1	90.8

*Initial Results: Trained and tested on entire dataset

Models – Initial training

- Overall accuracy is consistent and high
 - Slow to compute due to large number of features (n = 63)
- Tendency to predict False positive (Type 1)
 - ► This manifests itself in the Precision

	RFC	LogR	KNN	SVC	ISVC
Accuracy (%)	85.5	85.2	84.7	88.9	86.8
Type 1 (%)	12.6	11.2	14.6	11.9	11.7
Type 2 (%)	1.98	1.49	0.70	1.12	1.46
Precision (%)	41.9	46.0	41.17	45.3	45.0
Recall (%)	82.1	86.5	93.6	89.8	86.8

^{*}Initial Results: Test of test subset (after test/train split)

Parameter Tuning

- Sklearn's GridsearchCV
 - SVC left out due to computational constraints

```
from sklearn import metrics
from sklearn.model_selection import GridSearchCV
from sklearn import svm
Cs = [0.001, 0.01, 0.1, 1, 10]
penalty = ['l1','l2']
param_grid = {'C': Cs, 'penalty' : penalty, 'dual' : [False]}
grid_search = GridSearchCV(svm.LinearSVC(), param_grid, return_train_score=True)
grid_search.fit(X, Y)
```

```
{'C': [0.0001, 0.001, 0.01, 0.03, 0.1, 0.3, 0.6, 1, 1.3, 1.6, 2, 5, 10, 15, 20, 50, 100]}

from sklearn.linear_model import LogisticRegression
from sklearn import metrics
from sklearn.model_selection import GridSearchCV
lr = LogisticRegression()
grid = GridSearchCV(estimator=lr, param_grid=param_grid, scoring='accuracy', verbose=3, n_jobs=-1, return_train_score=True)
```

Feature engineering

- Features shortlisted based on RFC importance diagram
- Duration feature removed since this is not known until after the call (when the outcome is known)
- Conversion rate feature added (# of calls divided by outcome)

Feature engineering

- The reduced dataset exhibited overfitting
- Only after removal of the 'duration' column did results become more realistic

```
from sklearn import ensemble
from sklearn.model_selection import cross_val_score
rfc = ensemble.RandomForestClassifier(bootstrap=True, class weight=None, criterion='gini',
           max depth=5, max features='auto', max leaf nodes=40,
           min_impurity_decrease=0.0, min_impurity_split=None,
           min samples leaf=5, min samples split=2,
           min_weight_fraction_leaf=0.0, n_estimators=15, n_jobs=1,
           oob score=False, random state=None, verbose=0,
           warm start=False)
fit_and_train(rfc)
----Results based only on training dataset----
Accuracy: 0.9935187085299952
predicted
actual
                   244 29200
            135 29141 29276
          29091 29385 58476
Type I errors: 0.42%
Type II errors: 0.23%
Precision: 99.17%
Recall: 99.54%
----Results based on test dataset----
Accuracy: 0.9930916552667579
predicted
          0
                 1
actual
                  62 7348
            39 7233 7272
          7325 7295 14620
Type I errors: 0.42%
Type II errors: 0.27%
Precision: 99.15%
Recall: 99.46%
```

Results – reduced dataset with 'duration' column

	RFC	LogR	KNN	SVC	ISVC
Accuracy (%)	86.4	88.5	90.7	88.9	88.3
Type 1 (%)	7.09	6.81	7.96	7.74	7.07
Type 2 (%)	6.48	4.61	1.27	3.37	4.58
Precision (%)	85.9	86.9	85.90	85.7	86.5
Recall (%)	87.0	90.73	97.5	83.22	90.8

Results – without 'duration' column

- Consistent cross validation scores
- RFC is the best model despite KNN having better overall results
 - SMOTE method utilizes the same methodology (Euclidean distance) as KNN and therefore KNN is more prone to overfitting on SMOTE-oversampled dataset

	RFC	LogR	KNN	SVC	ISVC
Accuracy (%)	84.7	75.0	90.8	80.9	74.1
Type 1 (%)	5.16	7.05	4.17	6.25	9.17
Type 2 (%)	10.1	17.94	5.08	12.9	16.73
Precision (%)	88.5	81.8	91.4	85.5	78.2
Recall (%)	79.7	63.8	89.8	74.0	66.3

Final Recommendation - Observations

- Random Forest Classifier performed the best overall
 - No client should be called more than 20 times
 - Depending on industry standard hitrate, the number of calls should be optimized by putting a maximum limit.

Future considerations

- Data treatment can be altered
 - ▶ PCA on highly correlated columns to reduce multicollinearity
 - Undersampling via numpy's random choice function
- Unsupervised techniques should be explored (Nueral networks)
- More features should be added to model
 - Gross income
 - Registered residence location
 - Size of family