IN THE SPECIFICATION:

Please amend the paragraph beginning at page 8, line 9 as follows:

As shown in Fig. 1, the surgery system according to the first embodiment of the present invention comprises an electric scalpel device 1 which generates and supplies high-frequency electric current for an electric scalpel to treatment equipment, an ultrasonic output device 2 which generates and supplies ultrasonic vibration driving signals to treatment equipment, a water-supply/suction device 3 which performs water-supply and suction driving of water-supply/suction treatment equipment, and a pneumoperitoneum device 4 which supplies air and vents air to and from the abdominal cavity, with the treatment devices 1 through 4 performing later-described information communication through a communication cable 8.

Please amend the paragraph beginning at page 8, line 22 as follows:

An HF foot switch 5 for instructing performing driving instructions of the electric scalpel device 1 is connected to the electric scalpel device 1, and control of the driving output of the electric scalpel device 1 is performed by input of instructions from the HF foot switch 5.

Please amend the paragraph beginning at page 10, line 15 as follows:

Upon driving instructions being input to the ultrasonic output device 2 from the double foot switch 6, the ultrasonic output device 2 supplies ultrasonic vibration signals to the ultrasonic coagulation incision treatment equipment 9, ultrasonic trocar 10, or ultrasonic suction treatment equipment 11, via the ultrasonic cable 14, whereby ultrasonic coagulation/incision is performed on the body tissue with the ultrasonic coagulation incision treatment equipment 9, the body cavity is bloodlessly punctured from the skin with the

ultrasonic trocar 10, and the body tissue is subjected to treatment such as erushing/suction crushing, suction or the like with the ultrasonic suction treatment equipment 11. Note that each of the ultrasonic treatment equipment 9, 10, and 11 have individual ultrasonic transducers, and can generate ultrasonic vibrations upon receiving ultrasonic vibration signals from the ultrasonic output device 2. Or, an arrangement may be made wherein ultrasonic vibrations are output from the ultrasonic output device 2, and supplied to the ultrasonic treatment equipment 9, 10, and 11.

Please amend the paragraph beginning at page 11, line 15 as follows:

Upon input of driving instructions from the triple foot switch 7, the water-supply/suction device 3 supplies water and suctions suction from the tip of the ultrasonic suction treatment equipment 11 via the water-supply/suction tube 15. This water feeding and suctioning action is performed by operating a water feed pedal and suction pedal, not shown in the drawings, which are provided on the triple foot switch 7, thereby supplying cleaning fluid to the body tissue, and recovering and suctioning the cleaning fluid following cleaning the body tissue as well as the crushed body tissue and the like.

Please amend the paragraph beginning at page 12, line 9 as follows:

The pneumoperitoneum device 4 vents gas within the body cavity from the trocar 12 via the air-supply/vent tube 16. Also, though not shown in the drawings, gas in is fed into the body cavity via the air-supply/vent tube 16, thereby performing control to maintain the pneumoperitoneum pressure within the body at a constant level.

Please amend the paragraph beginning at page 15, line 14 as follows:

Further, the control unit 55 performs driving control of the communicating unit 54 to generate and transmit, via the communication cable 8, the type and driving conditions of the ultrasonic treatment equipment 56 connected to the electric scalpel device 1 and also driving information such as whether synchronized driving with the ultrasonic output device 2, water-supply/suction device 3, and pneumoperitoneum device 4, which are other medical devices, is necessary, and so forth, and also receives driving information from the other medical devices 2 through 4, so as to control the electric scalpel device 1.

Please amend the paragraph beginning at page 21, line 9 as follows:

The switch detecting unit 83 detects the on/off information of a button switch 86 such as an air-supply button, of vent button or the like provided on the operation panel of the pneumoperitoneum device 4, and the switch information of the button switched on, and outputs to the control unit 85.

Please amend the paragraph beginning at page 24, line 1 as follows:

Also, in the case of performing ultrasonic vibration treatment by providing driving control to this ultrasonic coagulation incision treatment equipment 9 from the ultrasonic output device 2, there is the need for to forbid supply of the electric scalpel high-frequency output from the electric scalpel device 1 to the ultrasonic coagulation incision treatment equipment 9 to be forbidden. This is to avoid the danger of excessive temperature rise due to applying both the ultrasonic vibration output and electric scalpel high-frequency output to the body tissue from the ultrasonic coagulation incision treatment equipment 9.

Please amend the paragraph beginning at page 26, line 8 as follows:

Thus, the pneumoperitoneum device 4 can be driven synchronously with the treatment using the ultrasonic coagulation incision treatment equipment 9 based on driving control from the ultrasonic output device 2 in a sure manner, and <u>forbidding</u> driving of the electric scalpel device 1 and water-supply/suction device 3 synchronous with the ultrasonic output device 2 can be <u>forbidden achieved</u> in a sure manner.

Please amend the paragraph beginning at page 27, line 17 as follows:

In a case of performing treatment by providing ultrasonic driving output to the ultrasonic trocar 10, water supply and suction by the water-supply/suction device 3 is unnecessary, but there is need for the abdominal cavity to be bloated expanded in order to puncture with the ultrasonic trocar 10, so there is the need to stop the air-supply/ventilation driving of the pneumoperitoneum device 4 to maintain the pressure of gas within the body cavity constant.

Please amend the paragraph beginning at page 28, line 10 as follows:

Also, while the ultrasonic trocar 10 is being driven and controlled by the ultrasonic output device 2, the ultrasonic trocar 10 is not connected to the electric scalpel device 1, so there is no transmission of the driving information forbidding which forbids synchronized driving from the water-supply/suction device 3 to the electric scalpel device 1, and the electric scalpel device 1 execute electric scalpel treatment of the other portions with the ultrasonic coagulation incision treatment equipment 9 or ultrasonic suction treatment equipment 11 connected thereto by operating input by the HF foot switch 5.

Please amend the paragraph beginning at page 30, line 8 as follows:

That is to say, forbidding synchronized driving of the pneumoperitoneum device 4 synchronously with the treatment driving of the ultrasonic suction treatment equipment 11 by the ultrasonic output device 2 keeps the suctioning functions of the ultrasonic suction treatment equipment 11 and air-supply/venting functions of the pneumoperitoneum device 4 from being carried out simultaneously. Consequently, the bloating expansion of the abdominal cavity necessary for ultrasonic suction processing can be maintained.

Please amend the paragraph beginning at page 30, line 17 as follows:

In other words, bloating expansion of the abdominal cavity can be balanced to a predetermined degree between the amount of suction by the ultrasonic suction treatment equipment 11 and the amount of air fed into the abdominal cavity by the pneumoperitoneum device 4. However, in the event that the venting functions of the pneumoperitoneum device 4 are driven and the sum of the air volume displacement of the pneumoperitoneum device 4 and the suction amount of the ultrasonic suction treatment equipment 11 exceeds the amount of air supplied by the pneumoperitoneum device 4, the abdominal cavity shrinks, and treatment with the ultrasonic suction treatment equipment 11 becomes difficult.