Learning XML: VPAs and Discrimination Trees

Cinzia Di Giusto, Davide Fissore, Etienne Lozes

Université Nice Côte d'Azur, CNRS, I3S, Sophia Antipolis, France

Why VPA?

For \forall Non-Deterministic VPA V_1 , there ∃ a Deterministic VPA V₂ such that $L(V_1) = L(V_2)$ → Every binary operation

between 2 VPA is decidable!

Note: Push symbols ⇔ Open tags Pop symbols ⇔ Close tags

VPAs

VPA := Visibly pushdown automata. They can recognize context free languagages.

The alphabet is:

Acceptance for XML: Empty stack + final states

XML

XML (eXtensible Markup Language) is a standard format for data exchange. XML representable w/VPA!

And Communication?

Arthur : Does $w \in U$? Merlin: Yes/No

Arthur creates a conjecture C.

Arthur : Does C = U ? Merlin: if $C = U \rightarrow Yes$

else → a counter-example

What is Learning?

ඉමුම

Dana Angluin's framework:

The Learner wants to learn a language U The Teacher knows U

«Canonical» VPA

Regular automata have a unique minimal (or canonical) 4 representant, this is not true for VPA

k-SEVPA

Single entry VPA are VPAs where states are partitioned into **k** modules. Each module has only one entry for call transitions

An XML grammar to LEARN

G :=

d(XML) = Text + DIVd(DIV) = Text + DIV

 $d: X \rightarrow \langle X \rangle RULE \langle X \rangle$

Example:

<XML><DIV>Text</DIV></XML> ∈ G

The learning phase

In Visibly Pushdown Languages (VPL), we can adapt the Myhill-Nerode congruence : two words $(\omega_1,\omega_2)\in\hat{\Sigma}^2$ are equivalent if

 $\forall (u_1, u_2) \in \mathrm{WM}(\hat{\Sigma})$

 $u_1 \cdot \omega_1 \cdot u_2 \in L \leftrightarrow u_1 \cdot \omega_2 \cdot u_2 \in L$

Discrimination Tree

Thanks to Well-Matched words, we can build the Discrimination tree:

- Inner Nodes contain a couple (u₁, u₂) forming a WM
- Leaves are labelled with a string.

Leaves meaning

Leaves represent the states of the VPA and throught Membership queries

VPA from Disc. Tree?

From this discriminator tree, we can build, through membership queries the same VPA for the grammar G. Where:

state $0 := \varepsilon$

state 1 := Text

Text

The LCA L (Lowest Common Anchestor) of two leaves l1, l2 is the unique inner node such that l1 is on the right of $L \leftrightarrow l2$ is on the left of L

<XML>Text</XML>

Children on the right of

nore $(\varepsilon, \varepsilon)$ are accepting

LCA

It is a couple of words, called well-matched words, u₁, u₂ such that every call symbol of $u = u_1 \circ u_2$ has a corresponding ret symbol

state 2 := <XML>Text</XML>

<XML><Text>,</XML>

References

Demo

<DIV></DIV>

 ϵ is the initial state

<XML>,</XML>

