TEXAS A&M HIGH PERFORMANCE RESEARCH COMPUTING

RNA-seq and Differential Expression

16 April 2024

High Performance Research Computing

Course Outline

- Commonly used RNA-seq applications
- RNA-seq library preparation strategies
- Experimental design considerations for differential expression
- Accessing the ACES cluster
- Command line tools (including QC, genome alignment, sorting/binary conversion, and count generation
- Differential expression analysis and visualization in R

RNA-seq Applications

- Transcriptome Assembly
 - de novo: Trinity, Oases,
 SOAPdenovo-Trans
 - Reference-based: Trinity, StringTie, Cufflinks
- Splice-aware alignment
 - HISAT2
 - STAR
 - Clara Parabricks (GPU-accelerated STAR)
 - TopHat

RNA-seq Applications

- File conversion and formatting
 - SAMtools
 - Picard tools
- Variant Calling
 - GATK (HaplotypeCaller in RNA-seq mode)
- Scaffolding Assemblies
 - L_RNA_scaffolder
 - Rascaf

Spatial Transcriptomics - 10X Genomics

Sequencing RNA

- Poly-A selection
 - Enriches for mRNA
- Ribosomal depletion
 - Removes rRNA
 - Leaves mRNA, IncRNA, and pre-RNA
- Size selection
 - Used for smRNA (e.g. miRNA)

Kukurba and Montgomery, 2016

Experimental Design (for Differential Expression)

- Sequencing Depth
 - Minimum 30 million aligned reads per replicate (ENCODE)
 - 30-60 million reads per replicate (Illumina)
- Replicate Number
 - 3 replicates per condition minimum (will likely recover 20-40% of true DEGs)
 - Schurch et al. (2016) suggest 6 replicates per condition minimum, 12 replicates per condition optimal

Experimental Design (for Differential Expression)

Biological Replicates

 Independent samples from different populations or individuals

Technical Replicates

 Multiple libraries from the same individual

Experimental Design (for Differential Expression)

Replicates - Which to use?

- Biological replicates generally increase statistical power more than technical replicates
- Biological variability > Technical Variability
- Biological replicates contain both biological and technical variability

Accessing the HPRC ACES Portal

HPRC webpage: https://hprc.tamu.edu

Accessing ACES via the Portal (ACCESS)

Log-in using your ACCESS credentials.

Select an Identity Provider

ACCESS CI (XSEDE) -

O

Select the Identity Provider appropriate for your account.

Accessing ACES shell in OOD Portal

Accessing ACES shell in OOD Portal

```
Texas A&M University High Performance Research Computing
    Website:
                         https://hprc.tamu.edu
                         help@hprc.tamu.edu (preferred) or (979) 845-0219
    Consulting:
    ACES Documentation: https://hprc.tamu.edu/kb/User-Guides/ACES
    FASTER Documentation: https://hprc.tamu.edu/kb/User-Guides/FASTER
    Grace Documentation: https://hprc.tamu.edu/kb/User-Guides/Grace
    Terra Documentation: https://hprc.tamu.edu/kb/User-Guides/Terra
    YouTube Channel:
                         https://www.youtube.com/texasamhpro
                   === IMPORTANT POLICY INFORMATION ===
 * - Unauthorized use of HPRC resources is prohibited and subject to
    criminal prosecution.
 * - Use of HPRC resources in violation of United States export control
     laws and regulations is prohibited. Current HPRC staff members are
     US citizens and legal residents.
 * - Authorized users must also adhere to ALL policies at:
                      https://hprc.tamu.edu/policies/
  To see these messages again, run the motd command.
Your current disk quotas are:
Disk
                             Disk Usage
                                            Limit
                                                    File Usage
                                                                   Limit
/home/u.wb109972
                                  1.6G
                                            10.0G
                                                          4746
                                                                   10000
/scratch/user/u.wb109972
                                  1.1T
                                            5.0T
                                                         98855
                                                                  250000
Type 'showquota' to view these quotas again.
[u.wb109972@aces-login1 ~]$
```

Example Data

Create a new directory in your scratch space

```
$ mkdir $SCRATCH/RNA_class
```

 Change your working directory to the one you just created

```
$ cd $SCRATCH/RNA_class
```

Copy the example data to your directory

```
$ cp -r /scratch/training/rna-seq/* .
```


Quality Control

- NGS libraries should be assessed for adapter content and low-quality reads before downstream analysis
- Low-quality bases and adapters can introduce errors and reduce map rates
- Avoid overly aggressive trimming practices

Quality Control

- Will use FastQC to examine the quality of our example data
- Look for the appropriate module on ACES:

```
$ module spider fastqc
```

Clear any previously loaded modules and load FastQC:

```
$ module purge
```

```
$ module load FastQC/0.11.9-Java-11
```

Running jobs on ACES

- Small jobs can be run on the login nodes (< 60 minutes, up to 8 cores)
- Larger jobs should be submitted to the compute nodes:
 - Slurm job scheduler
 - Can specify computing requirements:
 - Amount of memory required
 - Number of cores
 - Which modules to load
- Template job scripts are available:
 - https://hprc.tamu.edu/kb/Software/useful-tools/GCATemplates/

Quality Control

Run FastQC on our example fastqs:

```
$ fastqc -t 2 -o . Control1_R1.fastq.gz Control1_R2.fastq.gz
```

- Go to "Files" tab in ACES portal and navigate to the RNA_class directory
- FastQC results saved as html files

@ERR504787.2.1 M00368:15:000000000-A0HKH:1:5:21261:10968-1 length=100

@ERR504787.3.1 M00368:15:000000000-A0HKH:1:3:12724:25677-1 length=100

@ERR504787.2.1 M00368:15:000000000-A0HKH:1:5:21261:10968-1 length=100

@ERR504787.3.1 M00368:15:000000000-A0HKH:1:3:12724:25677-1 length=100

Failed QC Examples

Example 1. Failed per base sequence quality - expired MiSeq kit

Failed QC Examples

Example 2. Faulty flowcell

MiSeq flowcell

good quality poor quality

Failed QC Examples

Example 3. Contamination

Library Trimming

Library Trimming

Remove loaded modules:

```
$ module purge
```

• Find and load the appropriate modules:

```
$ module spider trim_galore

$ module load GCCcore/11.2.0 Trim_Galore/0.6.10
```

• Run Trim_Galore!

```
$ trim_galore --paired --fastqc \
Control1_R1.fastq.gz Control1_R2.fastq.gz
```

- Popular splice-aware aligners
 - STAR (now available for GPUs!)
 - HISAT2
- Alignment software needs to have and indexed genome (software specific)
 - Only needs to be done once
 - HPRC maintains indexed genomes for popular aligners
 - Email <u>help@hprc.tamu.edu</u> if you would like us to add another indexed genome

Clear any previously loaded modules:

```
$ module purge
```

• Search for and load the appropriate modules:

```
$ module spider hisat
```

```
$ module load GCC/11.3.0 OpenMPI/4.1.4 HISAT2/2.2.1
```

• Get information on how to run the program:

```
$ hisat2 -h
```

- Align our trimmed reads to the mouse genome:
 - o Path to previously indexed genome:

```
/scratch/data/bio/mm39/GCF_000001635.27_GRCm39_genomic
```

Set the path to the indexed genome as a new variable:

```
$ idx_genome=/path/to/genome
```

Run the HISAT2 command

```
$ hisat2 -x $idx_genome -p 2 \
   -1 Control1_R1_val_1.fq.gz \
   -2 Control1_R2_val_2.fq.gz \
   -S Control1.sam
```

```
236499 reads; of these:
  236499 (100.00%) were paired; of these:
    30736 (13.00%) aligned concordantly 0 times
    197200 (83.38%) aligned concordantly exactly 1 time
    8563 (3.62%) aligned concordantly >1 times
    30736 pairs aligned concordantly 0 times; of these:
    3583 (11.66%) aligned discordantly 1 time
    27153 pairs aligned 0 times concordantly or discordantly; of these:
    54306 mates make up the pairs; of these:
    30660 (56.46%) aligned 0 times
    21188 (39.02%) aligned exactly 1 time
    2458 (4.53%) aligned >1 times
93.52% overall alignment rate
```

Processing Alignment Files

- Alignment files may need to be modified and/or converted before any downstream analyses:
 - Sorting (name or pos/coord)
 - Adding read groups
 - Converting to binary format
- We will use SAMtools to process our alignment file:

```
$ module purge
```

\$ module spider SAMtools

```
$ module spider SAMtools/1.17
```

\$ module load GCC/12.2.0 SAMtools/1.17

Processing Alignment Files

 Run SAMtools sort to convert and sort the alignment file in one step:

```
$ samtools sort --threads 2 \
   -o Control1_sorted.bam Control1.sam
```

Index the new bam file:

```
$ samtools index Control1_sorted.bam
```

Generating Count Files

- There are many packages available to generate read counts:
 - featureCounts
 - GenomicRanges (R package)
 - HTSeq
- Load the required modules and produce the count table:

```
$ module purge
```

```
$ module load GCC/11.3.0 OpenMPI/4.1.4 HTSeq/2.0.2
```

```
$ htseq-count -r pos -i gene Control1_sorted.bam \
    GCF_000001635.27_GRCm39_genomic.gff > Control1_counts.txt
```

Differential Expression Analysis with DESeq2

Analyzing RNA-seq data with DESeq2

Michael I. Love, Simon Anders, and Wolfgang Huber 10/27/2021

Abstract

A basic task in the analysis of count data from RNA-seq is the detection of differentially expressed genes. The count data are presented as a table which reports, for each sample, the number of sequence fragments that have been assigned to each gene. Analogous data also arise for other assay types, including comparative ChIP-Seq, HiC, shRNA screening, and mass spectrometry. An important analysis question is the quantification and statistical inference of systematic changes between conditions, as compared to within-condition variability. The package DESeq2 provides methods to test for differential expression by use of negative binomial generalized linear models; the estimates of dispersion and logarithmic fold changes incorporate data-driven prior distributions. This vignette explains the use of the package and demonstrates typical workflows. An RNA-seq workflow on the Bioconductor website covers similar material to this vignette but at a slower pace, including the generation of count matrices from FASTQ files. DESeq2 package version: 1.35.0

- Standard workflow
 - Quick start
 - How to get help for DESeq2
 - Acknowledgments
 - Funding
 - Input data
 - Why un-normalized counts?
 - The DESegDataSet
 - Transcript abundance files and tximport / tximeta
 - Tximeta for import with automatic metadata
 - Count matrix input
 - htseq-count input
 - SummarizedExperiment input
 - Pre-filtering
 - Note on factor levels
 - Collapsing technical replicates
 - About the pasilla dataset
 - Differential expression analysis

http://bioconductor.org/packag es/devel/bioc/vignettes/DESeq 2/inst/doc/DESeq2.html

RStudio on ACES

Open RStudio in the "Interactive Apps" tab on the ACES portal

RStudio on ACES

- Set the number of hours to 2
- Set the number of cores to 1
- Set the Total GB memory to 12
- Click Launch Button
- Wait for the session to start
- Click "Connect to RStudio Server"

Differential Expression Analysis

Open a new R script and set your working directory

```
setwd("/scratch/user/username/RNA_class/counts")
```

• Let's look at the contents of the directory and the sample table (in the console):

```
> list.files()
```

```
> system("cat sampleTable.csv")
```

Load the all of the required packages:

```
library(ggplot2)
library(pheatmap)
library(DESeq2)
library(EnhancedVolcano)
```

Highlight this section of code in the script and click "Run"

Read in the sample table and reformat it:

```
sampleTable <- read.csv("sampleTable.csv", header=TRUE)
sampleTable <- as.data.frame(sampleTable)
sampleTable$condition <- factor(sampleTable$condition)
sampleTable</pre>
```

Output:

```
> sampleTable
   sampleName
                         fileName
                                       condition
     Control1 Control1_counts.txt
                                         Control
    Control2 Control2_counts.txt
                                         Control
    Control3 Control3_counts.txt
                                         Control
    Control4 Control4 counts.txt
                                         Control
    Control5 Control5_counts.txt
                                         Control
         NAD1
                  NAD1_counts.txt NAD_supplement
         NAD2
                  NAD2_counts.txt NAD_supplement
         NAD3
                  NAD3_counts.txt NAD_supplement
         NAD4
                  NAD4_counts.txt NAD_supplement
10
         NAD5
                  NAD5_counts.txt NAD_supplement
>
```

Create the dds object

• Output:

```
> dds
class: DESeqDataSet
dim: 46316 10
metadata(1): version
assays(1): counts
rownames(46316): 0610005C13Rik 0610006L08Rik ... n-TYgta9 n-Tcgca44
rowData names(0):
colnames(10): Control1 Control2 ... NAD4 NAD5
colData names(1): condition
> |
```

Filter out genes with low read counts:

```
keep <- rowSums(counts(dds)) >= 10
dds <- dds[keep,]</pre>
```

Run the differential expression analysis:

```
dds <- DESeq(dds)
res <- results(dds)
res
```

DESeq Results Explained:

```
> res
log2 fold change (MLE): condition NAD supplement vs Control
Wald test p-value: condition NAD supplement vs Control
DataFrame with 46316 rows and 6 columns
                       baseMean
                                    loa2FoldChange
                                                               lfcSE
                                                                                    stat
                                                                                                     pvalue
                                                                                                                         padj
                      <numeric>
                                         <numeric>
                                                           <numeric>
                                                                               <numeric>
                                                                                                  <numeric>
                                                                                                                    <numeric>
0610005C13Rik
              5.99463012842517
                                 0.847110388480526
                                                     1.0536757176372
                                                                      0.803957398183298
                                                                                            0.4214215791485 0.626767086797856
0610006L08Rik 0.595406936513421
                                 -1.33338402962542
                                                    2.80181545117752 -0.475900020133387
                                                                                         0.634145607845708
0610009B22Rik 229.572854136365
                                 -0.46059738889209 0.272726760296267
                                                                         -1.688860265827 0.0912462113650002 0.227131423458176
0610009E02Rik
              52.7148015454124
                                 -1.18516447577791 0.483501805720158
                                                                       -2.45121003015211 0.0142376849790884 0.058533268492583
0610009L18Rik 5.27096640148362
                                 0.500548878654153
                                                     1.0060551707554
                                                                      0.497536211933899
                                                                                         0.618810973397835 0.779869206330055
```

DESeq Results Explained:

```
> res
log2 fold change (MLE): condition NAD supplement vs Control
Wald test p-value: condition NAD supplement vs Control
DataFrame with 46316 rows and 6 columns
                       baseMean
                                    log2FoldChange
                                                               lfcSE
                                                                                    stat
                                                                                                     pvalue
                                                                                                                         padi
                      <numeric>
                                         <numeric>
                                                           <numeric>
                                                                               <numeric>
                                                                                                  <numeric>
                                                                                                                    <numeric>
0610005C13Rik
              5.99463012842517
                                 0.847110388480526
                                                     1.0536757176372
                                                                       0.803957398183298
                                                                                            0.4214215791485 0.626767086797856
                                 -1.33338402962542
0610006L08Rik 0.595406936513421
                                                    2.80181545117752 -0.475900020133387
                                                                                          0.634145607845708
0610009B22Rik
              229.572854136365
                                 -0.46059738889209 0.272726760296267
                                                                         -1.688860265827 0.0912462113650002 0.227131423458176
0610009E02Rik
              52.7148015454124
                                 -1.18516447577791 0.483501805720158
                                                                       -2.45121003015211 0.0142376849790884 0.058533268492583
0610009L18Rik
              5.27096640148362
                                 0.500548878654153
                                                     1.0060551707554
                                                                       0.497536211933899
                                                                                          0.618810973397835 0.779869206330055
```

Mean of normalized counts for all samples

DESeq Results Explained:

```
> res
log2 fold change (MLE): condition NAD supplement vs Control
Wald test p-value: condition NAD supplement vs Control
DataFrame with 46316 rows and 6 columns
                       baseMean
                                    log2FoldChange
                                                               lfcSE
                                                                                    stat
                                                                                                     pvalue
                                                                                                                         padi
                      <numeric>
                                         <numeric>
                                                           <numeric>
                                                                               <numeric>
                                                                                                  <numeric>
                                                                                                                    <numeric>
0610005C13Rik
              5.99463012842517
                                 0.847110388480526
                                                     1.0536757176372
                                                                       0.803957398183298
                                                                                            0.4214215791485 0.626767086797856
0610006L08Rik 0.595406936513421
                                 -1.33338402962542
                                                    2.80181545117752 -0.475900020133387
                                                                                          0.634145607845708
0610009B22Rik
              229.572854136365
                                 -0.46059738889209
                                                   0.272726760296267
                                                                         -1.688860265827 0.0912462113650002 0.227131423458176
0610009E02Rik
              52.7148015454124
                                 -1.18516447577791
                                                   0.483501805720158
                                                                       -2.45121003015211 0.0142376849790884 0.058533268492583
0610009L18Rik 5.27096640148362
                                 0.500548878654153
                                                     1.0060551707554
                                                                       0.497536211933899
                                                                                          0.618810973397835 0.779869206330055
```

Log2 fold change: NAD supplement vs Control

DESeq Results Explained:

```
> res
log2 fold change (MLE): condition NAD supplement vs Control
Wald test p-value: condition NAD supplement vs Control
DataFrame with 46316 rows and 6 columns
                       baseMean
                                    log2FoldChange
                                                               lfcSE
                                                                                    stat
                                                                                                     pvalue
                                                                                                                         padi
                      <numeric>
                                         <numeric>
                                                           <numeric>
                                                                               <numeric>
                                                                                                  <numeric>
                                                                                                                    <numeric>
0610005C13Rik
              5.99463012842517
                                 0.847110388480526
                                                     1.0536757176372
                                                                       0.803957398183298
                                                                                            0.4214215791485 0.626767086797856
0610006L08Rik 0.595406936513421
                                 -1.33338402962542
                                                    2.80181545117752
                                                                      -0.475900020133387
                                                                                          0.634145607845708
0610009B22Rik
              229.572854136365
                                 -0.46059738889209 0.272726760296267
                                                                         -1.688860265827 0.0912462113650002 0.227131423458176
0610009E02Rik
              52.7148015454124
                                 -1.18516447577791 0.483501805720158
                                                                       -2.45121003015211 0.0142376849790884 0.058533268492583
0610009L18Rik 5.27096640148362
                                 0.500548878654153
                                                     1.0060551707554
                                                                       0.497536211933899
                                                                                          0.618810973397835 0.779869206330055
```

Log fold change standard error

DESeq Results Explained:

```
> res
log2 fold change (MLE): condition NAD supplement vs Control
Wald test p-value: condition NAD supplement vs Control
DataFrame with 46316 rows and 6 columns
                       baseMean
                                    loa2FoldChange
                                                               lfcSE
                                                                                    stat
                                                                                                     pvalue
                                                                                                                         padi
                      <numeric>
                                         <numeric>
                                                           <numeric>
                                                                               <numeric>
                                                                                                  <numeric>
                                                                                                                    <numeric>
0610005C13Rik
              5.99463012842517
                                 0.847110388480526
                                                     1.0536757176372
                                                                      0.803957398183298
                                                                                            0.4214215791485 0.626767086797856
0610006L08Rik 0.595406936513421
                                 -1.33338402962542
                                                    2.80181545117752
                                                                      -0.475900020133387
                                                                                          0.634145607845708
0610009B22Rik 229.572854136365
                                 -0.46059738889209 0.272726760296267
                                                                         -1.688860265827 0.0912462113650002 0.227131423458176
0610009E02Rik
              52.7148015454124
                                 -1.18516447577791 0.483501805720158
                                                                       -2.45121003015211 0.0142376849790884 0.058533268492583
0610009L18Rik 5.27096640148362
                                 0.500548878654153
                                                     1.0060551707554
                                                                      0.497536211933899
                                                                                         0.618810973397835 0.779869206330055
```

Wald statistic: NAD supplement vs Control

DESeq Results Explained:

```
> res
log2 fold change (MLE): condition NAD supplement vs Control
Wald test p-value: condition NAD supplement vs Control
DataFrame with 46316 rows and 6 columns
                       baseMean
                                    log2FoldChange
                                                               lfcSE
                                                                                    stat
                                                                                                     pvalue
                                                                                                                         padj
                      <numeric>
                                         <numeric>
                                                           <numeric>
                                                                                                  <numeric>
                                                                               <numeric>
                                                                                                                    <numeric>
0610005C13Rik
              5.99463012842517
                                 0.847110388480526
                                                     1.0536757176372
                                                                       0.803957398183298
                                                                                            0.4214215791485 0.626767086797856
0610006L08Rik 0.595406936513421
                                 -1.33338402962542
                                                    2.80181545117752 -0.475900020133387
                                                                                          0.634145607845708
0610009B22Rik
              229.572854136365
                                 -0.46059738889209 0.272726760296267
                                                                         -1.688860265827 0.0912462113650002 0.227131423458176
0610009E02Rik
              52.7148015454124
                                 -1.18516447577791 0.483501805720158
                                                                       -2.45121003015211 0.0142376849790884 0.058533268492583
0610009L18Rik
              5.27096640148362
                                 0.500548878654153
                                                     1.0060551707554
                                                                       0.497536211933899
                                                                                         0.618810973397835 0.779869206330055
```

Wald test p value (unadjusted)

DESeq Results Explained:

```
> res
log2 fold change (MLE): condition NAD supplement vs Control
Wald test p-value: condition NAD supplement vs Control
DataFrame with 46316 rows and 6 columns
                       baseMean
                                    log2FoldChange
                                                                lfcSE
                                                                                    stat
                                                                                                     pvalue
                                                                                                                          padj
                      <numeric>
                                         <numeric>
                                                            <numeric>
                                                                               <numeric>
                                                                                                  <numeric>
                                                                                                                     <numeric>
0610005C13Rik
               5.99463012842517
                                 0.847110388480526
                                                      1.0536757176372
                                                                       0.803957398183298
                                                                                            0.4214215791485 0.626767086797856
0610006L08Rik 0.595406936513421
                                 -1.33338402962542
                                                    2.80181545117752 -0.475900020133387
                                                                                          0.634145607845708
                                                                                                                            NA
0610009B22Rik
               229.572854136365
                                 -0.46059738889209
                                                   0.272726760296267
                                                                         -1.688860265827 0.0912462113650002 0.227131423458176
0610009E02Rik
               52.7148015454124
                                 -1.18516447577791 0.483501805720158
                                                                       -2.45121003015211 0.0142376849790884
                                                                                                            0.058533268492583
0610009L18Rik
               5.27096640148362
                                 0.500548878654153
                                                      1.0060551707554
                                                                       0.497536211933899
                                                                                          0.618810973397835 0.779869206330055
```

BH corrected p values (corrected for multiple testing)

How many genes are differentially expressed?

```
sum(res$padj <= 0.05, na.rm = TRUE)</pre>
```

Collect all the DEGs and write them to file:

Log transform the results and calculate the row variance

```
logTran <- rlog(dds)
rv <- rowVars(assay(logTran))</pre>
```

Create a list of genes with the greatest variance:

```
select <- order(rv, decreasing = TRUE)[seq_len(min(100, length(rv)))]</pre>
```

Run the principal component analysis (PCA)

```
PCA <- prcomp(t(assay(logTran)[select, ]), scale = FALSE)
summary(PCA)</pre>
```

Output:

```
> summary(PCA)
Importance of components:
                           PC1
                                   PC2
                                           PC3
                                                   PC4
                                                           PC5
                                                                   PC6
                                                                           PC7
                                                                                   PC8
                                                                                            PC9
                                                                                                     PC10
Standard deviation
                       13.1129 2.50384 1.94479 1.45805 1.42247 1.24092 1.08253 0.52065 0.38289 3.066e-15
Proportion of Variance 0.9084 0.03312 0.01998 0.01123 0.01069 0.00814 0.00619 0.00143 0.00077 0.000e+00
                       0.9084 0.94156 0.96154 0.97278 0.98347 0.99160 0.99779 0.99923 1.00000 1.000e+00
Cumulative Proportion
>
```

Set up the PCA for ggplot2

```
percentVar <- round(100*PCA$sdev^2/sum(PCA$sdev^2),1)
ggPCA_out <- as.data.frame(PCA$x)
ggPCA_out <- cbind(ggPCA_out, sampleTable)
head(ggPCA_out)</pre>
```

Output:

```
> head(ggPCA_out)
               PC1
                            PCZ
                                       PC3
                                                  PC4
                                                            PC5
                                                                        PC6
                                                                                   PC7
                                                                                               PC8
                                                                                                            PC9
Control1 -12.576882 0.679757091 1.4677571 1.4408177 -0.9772907 -2.58170153 -0.8901816
                                                                                        0.12856743
Control2 -11.362119 -0.789437801 -4.1149258 0.5846590 -1.6247299 0.15350772 1.1461662 -0.21539578
Control3 -12.038043 0.002152241
                                 0.5811305 -3.0992919 1.4657618 -0.97863917 1.0515499 -0.04523746 -0.046467189
                                0.6723550 2.2531953 2.6066210 1.29314839 0.3152618
Control4 -13.139919 0.487982477
                    0.265744874 1.7077315 -1.1646465 -1.8470308 2.10751112 -1.1715371
Control5 -12.530993
                                                                                       0.07993858 -0.013573324
NAD1
          8.795471 0.517771986 -2.7475597 -0.6142266 1.1887028 -0.04330035 -1.5880439 0.71154077 0.323683075
                PC10 sampleName
                                           fileName
                                                         condition
Control1 3.175046e-15
                      Control1 Control1 counts.txt
                                                          Control
                      Control2 Control2_counts.txt
Control2 2.950899e-15
                                                          Control
Control3 2.730071e-15 Control3 Control3_counts.txt
                                                          Control
                       Control4 Control4_counts.txt
Control4 3.300727e-15
                                                          Control
Control5 2.949020e-15
                       Control5 Control5 counts.txt
                                                          Control
                                    NAD1_counts.txt NAD_supplement
NAD1
        2.826141e-15
                           NAD1
```

Plot the PCA

```
ggplot(ggPCA out, aes(x=PC1,y=PC2,color=condition)) +
    geom point(size=4) +
   labs(x = paste0("PC1 - variance explained: ", percentVar[1], "%"),
        y = paste0("PC2 - variance explained: ", percentVar[2], "%")) +
    theme bw()
```


Volcano Plot

```
EnhancedVolcano (res,
                lab = rownames(res),
                x = 'log2FoldChange',
                y = 'padj',
                pCutoff = 0.05,
                FCcutoff = 1.0,
                pointSize = 3.0,
                labSize = 4.0,
                colAlpha = 1/2,
                drawConnectors = FALSE,
                legendPosition = "right")
```

Volcano plot

Enhanced Volcano

total = 23595 variables

- Reorder the results based on adjusted p-values
- Assign genes with adjusted p-values below 0.05 and absolute log2 fold changes >= 6.5 to the variable 'sig'

- Assign the gene names from 'sig' to a new variable named 'selected'
- We will use the list of gene names for the heatmap

```
selected <- rownames(sig)
selected</pre>
```

```
> selected
                                                         "Slc6a7"
 [1] "Kcnip1"
                       "Kcnk9"
                                        "Grin2a"
                                                                           "L0C118567965"
                                                                                            "Lyz2"
     "Pou3f3"
                       "Kcnj5"
                                        "Mal2"
                                                         "8030451A03Rik" "Gm30223"
                                                                                            "Fibcd1"
     "Gm3687"
                       "Shh"
                                        "Mgat4c"
                                                         "Cntnap5c"
                                                                           "Epha6"
                                                                                            "Cybb"
[19] "Dcn"
```

- We need to normalize the data
- Then we can create a heatmap using the pheatmap package

```
transformed readcounts <- normTransform(dds)</pre>
pheatmap(assay(transformed readcounts)[selected,],
             cluster rows = TRUE, show rownames = TRUE,
             cluster cols = TRUE,
             labels col = colData(dds)$sampleName)
```


Thank You! Need Help? Contact the HPRC Helpdesk

Website: hprc.tamu.edu

Email: help@hprc.tamu.edu

Phone: (979) 845-0219

Help us help you -- we need more info

- Which Cluster (ACES, FASTER, Terra, Grace)
- Username
- Job id(s) if any
- Location of your jobfile, input/output files
- Application used, if any
- Module(s) loaded, if any
- Error messages
- Steps you have taken, so we can reproduce the problem

