Math 121, Winter 2023, Homework 4 Solutions

Section 13.5

Problem 3. Prove that d divides n if and only if $x^d - 1$ divides $x^n - 1$.

Solution. Using the hint, if n = qd + r with $0 \le r < d$, then $x^n - 1 = (x^{qd+r} - x^r) + x^r - 1$. Unless r = 0, $x^d - 1$ can't divide $x^r - 1$ since r < d, so the result follows since $x^d - 1$ divides $x^{qd+r} - x^r = x^r(x^d - 1)(x^{(q-1)d} + x^{(q-2)d} + \cdots + 1)$.

(Alternatively, the roots of $x^n - 1$ are the *n*th roots of 1, while the roots of $x^d - 1$ are the *d*th roots of 1, so the latter divides the former if and only if *n*th roots are *d*th roots, so if and only if d|n.)

Problem 6. Prove that $x^{p^n-1}-1=\prod_{\alpha\in\mathbb{F}_{p^n}^\times}(x-\alpha)$. Conclude that $\prod_{\alpha\in\mathbb{F}_{p^n}^\times}\alpha=(-1)^{p^n}$ so the product of the nonzero elements of a finite field is +1 if p=2 and -1 if p is odd. For p odd and n=1 derive Wilson's Theorem: $(p-1)!=-1\pmod{p}$.

Solution. The degrees of both sides match up, so for the first part we only need to show that if $\alpha \in \mathbb{F}_p^{\times}$ that $\alpha^{p^n-1} = 1$. $\mathbb{F}_{p^n}^{\times}$ is a group under multiplication with order $p^n - 1$, so by Lagrange's Theorem the order of every element divides $p^n - 1$, so $\alpha^{p^n-1} = 1$ for all $\alpha \in \mathbb{F}_{p^n}$, and the first statement holds.

The statements in the second sentence follow from the specialization x = 0. Finally, Wilson's Theorem is just a reinterpretation of the second sentence: up to a multiple of p, (p-1)! is the product of all nonzero elements of \mathbb{F}_p .

Section 13.6

Problem 2. Let ζ_n be a primitive nth root of unity and let d be a divisor of n. Prove that ζ_n^d is a primitive (n/d)th root of unity.

Solution. ζ_n^d is an (n/d)th root of unity since $(\zeta_n^d)^{n/d} = \zeta_n^n = 1$. Furthermore, if m < n/d and $(\zeta_n^d)^m = 1$, then md < n and $\zeta_n^{md} = (\zeta_n^d)^m = 1$, so the primitivity of ζ_n as an nth root implies the primitivity of ζ_n^d as an (n/d)th root.

Problem 3. Prove that if a field contains the nth roots of unity for n odd then it also contains the 2nth roots of unity.

Solution. Direct method: Let ζ_n be a primitive nth root of unity. Then $(-\zeta_n)^{2n} = (-1)^{2n}\zeta^{2n} = 1$, so $-\zeta_n$ is a 2n-th root of unity. Conversely, if $(-\zeta_n)^a = 1$, then either a is even and $\zeta_n^a = 1$, in which case a is a multiple of 2n or a is odd and $\zeta_n^a = -1$. But no power of ζ_n can equal -1; otherwise let $b \geq 1$ be minimal with $\zeta_n^b = -1$, and ζ_n^{2b} must be a multiple of n, but since n is odd, this would mean that b is a multiple of n.

Indirect method: The map

$$a \mapsto \begin{cases} a, & \text{if } a \text{ is odd} \\ a+n, & \text{if } a \text{ is even} \end{cases}$$

is a bijection between integers $1, \ldots, n$ that are coprime to n and integers $1, \ldots, 2n$ that are coprime to 2n. This means that $\phi(n) = \phi(2n)$, so the cyclotomic extensions $\mathbb{Q}(\zeta_n)/\mathbb{Q}$ and $\mathbb{Q}(\zeta_{2n})/\mathbb{Q}$ have the same degree. Since $\mathbb{Q}(\zeta_n) \subseteq \mathbb{Q}(\zeta_{2n})$, the fields must be equal.

Problem 7. Use the Mobius Inversion formula indicated in Section 14.3 to prove

$$\Phi_n(x) = \prod_{d|n} (x^d - 1)^{\mu(n/d)}.$$

Solution. Note that we don't need to know anything about the Mobius Inversion formula except the formula itself:

if
$$F(n) = \sum_{d|n} f(d)$$
, then $f(n) = \sum_{d|n} \mu(d) F\left(\frac{n}{d}\right)$.

We use the formula $x^n - 1 = \prod_{d|n} \Phi_d(x)$; to turn multiplication into addition set $F(n) := \log(x^n - 1)$ and $f(n) := \log(\Phi_d(x))$. Plugging these into the Mobius Inversion formula produces

$$\log(\Phi_n(x)) = \sum_{d'|n} \mu(d) \log(x^{n/d'} - 1),$$

SO

$$\Phi_n(x) = \prod_{d'|n} (x^{n/d'} - 1)^{\mu(d')},$$

and the substitution d = n/d' gives the desired formula.

Section 14.1

Problem 3. Determine the fixed field of complex conjugation on \mathbb{C} .

Solution. If $z \in \mathbb{C}$, z can be written uniquely as z = a + bi. (You already know this from long ago, but it also follows from Theorem 13.4 using the polynomial $x^2 + 1$). The complex compugate $\overline{z} = a - bi$, and by uniqueness, that equals a + bi precisely if b = 0 i.e. $z \in \mathbb{R}$.

Problem 5 Determine the automorphisms of the extension $\mathbb{Q}(\sqrt[4]{2})/\mathbb{Q}(\sqrt{2})$ explicitly.

Solution. By the Tower Law, this is a degree 2 field extension, so by Proposition 14.5 we have at most 2 automorphisms of $\mathbb{Q}(\sqrt[4]{2})$ fixing $\mathbb{Q}(\sqrt{2})$. The identity is such an automorphism, and for the other, we let $a \mapsto a$ for any $a \in \mathbb{Q}$ and let $\sqrt[4]{2} \mapsto -\sqrt[4]{2}$. (How do we guess this? It must be one of $\pm \sqrt[4]{2}$, $\pm i\sqrt[4]{2}$, and choosing one of the latter pair would give a map of order > 2). The powers of $\sqrt[4]{2}$ give us a basis of $\mathbb{Q}(\sqrt[4]{2})$, so our automorphism is

$$a + b\sqrt[4]{2} + c\sqrt{2} + d(\sqrt[4]{2})^3 \mapsto a - b\sqrt[4]{2} + c\sqrt{2} - d(\sqrt[4]{2})^3.$$

We see this fixes $\sqrt{2}$, so it is indeed an element of $\operatorname{Aut}(\mathbb{Q}(\sqrt[4]{2})/\mathbb{Q}(\sqrt{2}))$.

Problem 10. Let K be an extension of the field F. Let $\phi: K \to K'$ be an isomorphism of K with a field K' which maps F to the subfield F' of K'. Prove that the map $\sigma \mapsto \phi \sigma \phi^{-1}$ defines a group isomorphism $Aut(K/F) \to Aut(K'/F)$.

Solution. If $\sigma \in \operatorname{Aut}(K/F)$, then we first need to show that $\sigma' := \phi \sigma \phi^{-1}$ is indeed an element of $\operatorname{Aut}(K'/F')$. Since σ is the composition of three isomorphisms, it is itself an isomorphism, hence in $\operatorname{Aut}(K')$. Since σ fixes F, if $a \in F'$, then $\phi^{-1}(a) \in F$, so $\sigma'(a) = \phi(\sigma(\phi^{-1}(a))) = a$, and $\sigma' \in \operatorname{Aut}(K'/F')$.

Now, if $\sigma, \tau \in \operatorname{Aut}(K/F)$, then $\sigma\tau \mapsto \phi\sigma\tau\phi^{-1} = \phi\sigma\phi^{-1} \cdot \phi\tau\phi^{-1}$, so this map is a homomorphism. It is injective since if $\phi\sigma\phi^{-1} = \phi\tau\phi^{-1}$, $\sigma = \phi^{-1}\phi\sigma\phi^{-1}\phi = \phi^{-1}\phi\tau\phi^{-1}\phi = \tau$. Finally, for surjectivity, suppose that $\sigma' \in \operatorname{Aut}(K'/F')$. Then setting $\sigma := \phi^{-1}\sigma'\phi$, we have $\sigma \mapsto \phi\sigma\phi^{-1} = \phi\phi^{-1}\sigma'\phi\phi^{-1} = \sigma'$.