MSMS 308: Practical 03

Ananda Biswas

August 3, 2025

Question

Generate survival times from Gamma distribution with shape $\alpha=2$ and rate $\lambda=0.5$ and estimate the parameters. Then plot

- 1. the Probability Density Function f
- 2. the Cumulative Distribution Function F
- 3. the Survival Function S
- 4. the Hazard Function h
- 5. the Cumulative Hazard Function H

• R Program and Plot

```
Gamma_MLE <- function(gamma_sample, shape_initial, n_iteration){
    a <- c(shape_initial)

    n <- length(gamma_sample)

    f1 <- function(alpha){

        result <- - n * digamma(alpha) -
            n * log(mean(gamma_sample)) +
            n * log(alpha) +
            sum(log(gamma_sample))

        return(result)
    }

    f2 <- function(alpha){
        return(-n * trigamma(alpha) + n / alpha)
    }

    iterations <- n_iteration

    for (i in 2:iterations) {
        a[i] <- a[i-1] - f1(a[i-1]) / f2(a[i-1])</pre>
```

```
if(abs(f1(a[length(a)])) < 0.001) break
}
alpha_hat <- a[length(a)]
beta_hat <- mean(gamma_sample) / alpha_hat
return(c(alpha_hat, beta_hat))
}</pre>
```

```
n <- 50; rate <- 0.5
set.seed(2)
our_sample <- rgamma(n, shape = 2, scale = 1/rate)
temp <- Gamma_MLE(our_sample, shape_initial = 1, n_iteration = 1000)</pre>
```

```
estimated_shape <- temp[1]; estimated_shape
## [1] 1.731768</pre>
```

```
estimated_scale <- temp[2]; estimated_scale
## [1] 2.317431</pre>
```

```
t_values <- sort(our_sample)
```

PDF from Estimated Parameters

CDF from Estimated Parameters

Survival Function from Estimated Parameters

Hazard Function from Estimated Parameters

For shape parameter less than 1, the hazard function decreases monotonically.

Cumulative Hazard Function from Estimated Parameters

