Book B

Chapter 1 Network Administration

Chapter 2 Simple Network Management Protocol (SNMP)

Revision Level History

Revision	Description
A	Initial release.

•

Contents

Network Administration	
Monitoring Network Activity	B-1
Displaying Network Statistics	
Testing the Network	
Managing the ARP Table	
Monitoring Annex Activity	
Logging User and Annex Events	
Displaying User Activity	
Displaying Annex Statistics	
Monitoring Serial Line Activity	
Managing the Host Table	
Disabling Software Modules	
Typical Configuration Problems	
Sessions not Terminated	
Connection Delays When Using Name Servers	B-39
Hosts not Appearing in Hosts Display	
Wrong Host Address in Host Table.	
Network Logins to BSD Hosts are Invisible	B-40
All Network Ports are in Use	B-40
Chapter 2	
Simple Network Management Protocol (SNMP)	
SNMP Protocol Overview	R-41
SNMP Management Stations	
Message Delivery	
Configuring the Annex for SNMP	
Configuring the SNMP Agent	
SNMP Commands	
Using SNMP set to Send Commands to the Annex	
Standard MIB Support	
MIB Object Hierarchy	
Describing and Naming Objects	
Annex Restrictions on Standard MIBs	
Annex Parameters vs. Annex Private Enterprise MIB	
Configuration Parameters vs. MIB Objects	
LAT-specific Configuration Parameters vs. MIB Objects	
LAT Statistic Objects	
TMux-specific Annex Parameters vs. MIB Objects	
IPX-specific Annex Parameters vs. MIB Objects	
T1-specific Annex Parameters vs. MIB Objects	
Interface Parameters vs. MIB Objects	
Asynchronous Port Parameters vs. MIR Objects	

•

Tables

Table B-1. Arguments for the netstat Command	B-2
Table B-2. Hardware Interface Statistics for Ethernet	B-4
Table B-3. Field Definitions for the netstat –ip Command	B-7
Table B-4. Displaying AppleTalk Statistics using the netstat Command	B-10
Table B-5. Field Definitions for the netstat –g Command	B-12
Table B-6. Displaying Routing Table Information using the netstat Command	B-13
Table B-7. IP Fields in the netstat –r Command Display	B-15
Table B-8. Flag Descriptions for the netstat –C Command	B-17
Table B-9. Field Definitions for the netstat –R Command	B-19
Table B-10. Field Definitions for the netstat –f Command	B-20
Table B-11. Arguments for the ping Command	B-23
Table B-12. Supported SNMP Traps	B-45
Table B-13. SNMP Commands Supported by the Annex	B-47
Table B-14. Standard MIBs Supported by the Annex	B-51
Table B-15. RFC 1213 MIB-II Objects	B-52
Table B-16. RFC 1243 AppleTalk	B-53
Table B-17. RFC 1389 RIPv2 MIB Objects	B-54
Table B-18. RFC 1398 Ethernet MIB Objects	B-54
Table B-19. RFC 1316 Character MIB Objects	B-55
Table B-20. RFC 1317 RS-232 MIB Objects	B-56
Table B-21. Prefixes for MIB Object Names	B-59
Table B-22. Configuration Parameter vs. MIB Object Name	B-59
Table B-23. LAT-specific Configuration Parameters vs. MIB Object Name	B-62
Table B-24. LAT Statistic Objects	B-63
Table B-25. TMux- specific Parameters vs. MIB Objects	B-65
Table B-26. IPX-specific Parameters vs. MIB Objects.	B-66
Table B-27. T1- specific Parameters vs. MIB Objects	B-67
Table B-28. Interface Parameters vs. MIB Objects	B-68
Table B-29. Asynchronous Port Parameters vs. MIB Object Names	B-70
Table R-30, PPP and SLIP Port Parameters vs. MIR Objects	B-7/

•

Book B

Chapter 1 Network Administration

his chapter discusses typical software configuration procedures as well as network administration using Annex tools and utilities. Using the Annex, you can:

- Monitor network activity.
- Monitor Annex activity.
- Secure the network.
- Manage the Annex's host table.

Monitoring Network Activity

The Annex provides three CLI commands (**netstat**, **ping**, and **arp**) to monitor network activity (for more details, see *Using the CLI Commands* on page A-121). Using the CLI commands, you can:

- Display network statistics.
- Test the network.
- Manage the ARP table.

Displaying Network Statistics

The CLI **netstat** command displays information that the Annex has obtained from the network. Using **netstat** you can display:

- Active connections.
- Ethernet statistics.
- PPP statistics.
- SLIP statistics.

- AppleTalk statistics.
- IPX statistics.
- RIP statistics.
- Routing table information.
- Route cache information.
- Dial-out route statistics.
- Rotary information.
- Filtering statistics.
- Memory statistics.
- Protocol statistics.

Active Connections

Entering the **netstat** command without arguments displays the local and remote addresses, send and receive queue sizes (in bytes), protocol, and the internal state of the protocol for all active connections. Table B-1 lists the arguments for this command.

Table B-1. Arguments for the netstat Command

Argument	Description
-A	Adds the protocol control block (PCB) addresses.
-а	Includes sockets used by server processes; can be used in combination with A .

•

The **netstat** –a command display looks like this:

annex01# netstat -a

Active connections (including servers)					
Proto	Recv-Q	Send-Q	Local Address	Foreign Address	(state)
tcp	0	2	annex1.telnet	test1.4759	ESTABLISHED
tcp	0	0	annex1.883	gibbs.login	ESTABLISHED
tcp	0	0	annex1.1085	ale.telnet	ESTABLISHED
tcp	0	0	annex1.1081	opus.telnet	ESTABLISHED
tcp	0	0	annex1.1022	test1.login	ESTABLISHED
tcp	211	0	annex1.953	xzyx.login	ESTABLISHED
tcp	0	0	annex1.1021	test1.login	ESTABLISHED
tcp	0	0	*.finger	*.*	ESTABLISHED
tcp	0	0	*.printer	*.*	ESTABLISHED
tcp	0	0	*.telnet	* . *	LISTEN
udp	0	0	*.bootp	*.*	
udp	0	0	*.snmp	* . *	
udp	0	0	*.who	*.*	
udp	0	0	*.erpc	*.*	
udp	0	0	*.route	* . *	

Interface Statistics

The **netstat** –**i** command displays interface statistics for an Annex running on an Ethernet LAN. Table B-2 describes the hardware interface statistics for Ethernet.

Table B-2. Hardware Interface Statistics for Ethernet

Statistic	Description
Frames Received	The number of packets received from the network interface.
Frames Transmitted	The number of packets transmitted on the network interface.
Bytes Received	The number of bytes received from the network interface.
Bytes Transmitted	The number of bytes transmitted on the network interface.
CRC Errors	The number of frames received from the network interface with a bad CRC.
Alignment Errors	The number of frames received from the network interface that were both misaligned and have a CRC error.
Bad Type/ Length Fields	The number of frames received from the network interface that have an unrecognized type field (ethernet) or an illegal length field (802.3).
Buffer Drops	The number of frames received from the network interface that were good, but dropped because no buffers were available.
FIFO Drops	The number of frames received from the network interface that were lost since the local system bus was not available.
Interface Resets	The number of times the network interface has been initialized from reset; typically, one.
TX DMA Underruns	The number of times a frame transmission is terminated due to lack of data.

(continued on next page)

•

Table B-2. Hardware Interface Statistics for Ethernet (continued)

Statistic	Description
RX DMA Overruns	The number of times a frame reception is terminated due to lack of system bus bandwidth.
Carrier Sense Losses	The number of times a frame transmission is terminated due to loss of the Carrier Sense signal. The transceiver cable may have a short or an open.
Clear to Send Losses	The number of times a frame transmission is terminated due to loss of the Clear to Send signal.
Collisions Detected	The number of times a frame transmission is terminated due to a collision.
Max Collision Retries	The number times consecutive collisions for a frame exceed the maximum collision retry limit.

The **netstat** –**i** command display looks like this:

annex01# **netstat -i**

Name	Mtu	Network	Address	Ipkts	Ierrs	Opkts	0errs	Collis
en0	1500	132.245.66.0	worm	26563	0	15085	744	0
en0	1500	10000-20000	18062.79	1626	0	823	0	0
100	1536	127	127.0.0.1	0	0	0	0	0
asy2	604	18358	18062.79	0	0	0	0	0
asy16	1006	132.245.6	annex01	14770	0	7468	0	0
asy3	1500	192.9.200	zipwad	3453	0	3002	0	0

*** Hardware Interface Statistics ***

Ethernet Address:	00-80-2d-00-00-9b		
Frames Received:	39861	Frames Transmitted:	45239
Bytes Received:	33965470	Bytes Transmitted:	29453
CRC Errors:	2	Alignment Errors:	10
Bad Type/Length Fields	:6	Buffer Drops:	0
FIFO Drops:	1	Interface Resets:	1
TX DMA Underruns:	241	RX DMA Overruns:	0
Carrier Sense Losses:	451	Clear to Send Losses:	0
Collisions Detected:	17526	Max Collision Retries	:125

PPP Statistics

The **netstat** –**ip** *port-number* command displays a summary of a PPP interface and its current state. Table B-3 describes the fields in the **netstat** –**ip** command display.

The **netstat** –**ip** command display looks like this:

annex01# netstat -ip 5

State MRU Auth type LQM ACFC ACCM Magic PFC	*** LCP Status *** Current: Open Local: 1500 PAP None 0x00000000 0x32ed028b On	Prior: Ack sent Remote: 1500 CHAP None 0x00000000 0x6694d55e On
State Options IP addresses Compression	*** NCP (IPCP) Status Current: Open Local: 192.0.5.242 [ACP] None	*** Prior: Ack sent Remote: 192.0.5.243 [ACP] None
State	*** NCP (ATCP) Status Current: Request sent	
State Options Network No Node No Compression Routing Prot Router Name	*** NCP (IPXCP) Statu Current: Open Local: 00000001 00802d00bb7f None RIP/SAP LM00BB7F	s *** Prior: Ack sent Remote: 00000001 00802d00abf6 None RIP/SAP LM00ABF6

If *compression* is set, the values that appear in the display are *Max–slot–id* and *Comp–slot–id*. These values are sub-options of VJ compression.

Table B-3. Field Definitions for the netstat -ip Command

Field	Definition
local	Refers to the Annex.
remote	Refers to the peer.
[xxx]	The origin of the value for <i>ip–addresses</i> : ANX=param; REM=peer–defined; and ACP=from security server ACP dial–up addresses.
LCP and NCP (IPCP) Options	Shows the current and the prior state of the connection. Any <i>current</i> setting other than <i>Open</i> indicates the link is not up. The states are:
Closed	The layer has shut down via an administrative or peer request.
Request sent	The Annex has sent a configure request and is waiting for an answer.
ACK received	The Annex has received a configure ACK and is waiting for a configure request.
ACK sent	The Annex received and answered a configure request.
Open	Layer negotiation has completed successfully.
Closing	The link is in process of closing. The Annex has sent a terminate request and is waiting for a terminate ACK.
Security	Shows the states based on the last security messages sent and received; this field appears only in superuser mode.

(continued on next page)

Table B-3. Field Definitions for the netstat –ip Command (continued)

Field	Definition			
Possible local states for PAP security:				
Initial	No PAP security has been initiated.			
AREQ received	The Annex has received the Authenticate-Request message and currently is processing it.			
ANAK sent	The Annex has rejected the peer's Authenticate-Request; the link will be coming down.			
AACK sent	The Annex has authenticated the peer.			
Possible remote states	for PAP security:			
Initial	No PAP security has been initiated.			
AREQ sent	The Annex has sent the Authenticate-Request message and is waiting for the response.			
ANAK received	The Annex's Authenticate-Request has been rejected by the peer; the link will be coming down.			
AACK received	The peer has authenticated the Annex.			
Possible states for CH	AP security:			
CHAP AACK Revd	CHAP Authentication Acknowledged Received.			
CHAP AACK Sent	CHAP Authentication Acknowledged Sent.			
CHAP CHAL Revd	CHAP Challenge Received.			
CHAP CHAL Sent	CHAP Challenge Sent.			
CHAP RESP Rcvd	CHAP Response Received.			
CHAP RESP Sent	CHAP Response Sent.			

SLIP Statistics

The **netstat** –**iS** command displays SLIP data after the hardware interface statistics:

annex01# netstat -iS

Name	Mtu	Network	Address	Ipkts	Ierrs	Opkts	0errs	Collis
en0	1500	192.9.200	annex1	648918	0	352845	0	0
100	1536	127	127.0.0.1	0	0	0	0	0
asy6	1006	192.9.200	annex1	0	0	0	0	0
asy13	256	192.9.200	annex1	0	0	0	0	0

```
*** Hardware Interface Statistics ***
Ethernet Address:
                       00-80-2d-00-14-3d
Frames Received:
                       705482
                                         Frames Transmitted:
                                                               35283
Bytes Received:
                       62425605
                                        Bytes Transmitted:
                                                               193578
CRC Errors:
                                         Alignment Errors:
                                                               0
                                         Buffer Drops:
Bad Type/Length Fields:0
                                                               0
FIFO Drops:
                       0
                                         Interface Resets:
                                                               1
TX DMA Underruns:
                       0
                                        RX DMA Overruns:
Carrier Sense Losses:
                       0
                                        Clear to Send Losses: 0
Collisions Detected:
                       2389
                                        Max Collision Retries:0
        SLIP rcvr:
             intrs 0, loops 0, bytes 0, pkts 0
             bytes/intr 0, bytes/loop 0, bytes/pkt 0
             hiwaters 0, overflows 0, mbuf waits 0, mbuf kicks 0
             overruns 0, ipintrq full 0
             FRAME_ENDs 0, FRAME_ESCs 0, proto errs 0, last proto err 0
        SLIP xmit:
             intrs 13, starts 22, vectors 108, bytes 1874, pkts 13
             FRAME_ENDs 22, FRAME_ESCs 32
```

bytes/intr 144, bytes/vec 17, vec/pkt 8, bytes/pkt 144

AppleTalk Statistics

The **netstat** –**i** command displays interface statistics. AppleTalk addresses display as *net.node* in hexadecimal, where *net* is 16 bits and *node* is 8 bits. ARAP interfaces display as *ara* plus the unit number. Table B-4 defines the arguments for displaying AppleTalk statistics.

Table B-4. Displaying AppleTalk Statistics using the netstat Command

Argument	Description
-i	Displays interface statistics.
	Displays a specific Annex PPP interface (see <i>PPP Statistics</i> on page A-6).
-z	Displays the network zone list.

The **netstat** –**i** command display looks like this:

annex01# netstat -i

Name	Mtu	Network	Address	Ipkts	Ierrs	Opkts	0errs	Collis
en0	1500	132.245.66.0) worm	26563	0	15085	744	0
en0	1500	10000-20000	18062.79	1626	0	823	0	0
100	1536	127	127.0.0.1	0	0	0	0	0
asy2	604	18358	18062.79	0	0	0	0	0

(continued on next page)

•

```
*** Hardware Interface Statistics ***
Ethernet Address: 00-80-2d-00-00
                  -9b
Frames Received:
                  39861
                                 Frames
                                                    452397
                                 Transmitted:
Bytes Received:
                  33965470
                                 Bytes Transmitted: 2945335
CRC Errors:
                  2
                                 Alignment Errors: 10
Bad Type/Length
                                 Buffer Drops:
                                                    0
                  6
Fields:
FIFO Drops:
                                 Interface Resets: 1
TX DMA Underruns: 241
                                 RX DMA Overruns:
Carrier Sense
                                 Clear to Send
                                                    0
Losses:
                                 Losses:
Collisions
                  17526
                                 Max Collision
                                                   125
Detected:
                                 Retries:
      *** IEEE 802.2 Data Link Layer Statistics ***
802.2 packets received:1
                         802.2 packets sent:
ATALK packets sent: 0 AARP packets sent:
                                                    0
ATALK packets received: 0 AARP packets received:
                                                    0
Unknown 802.2 types: 0
                                                    0
                          Unknown 802.2 SAP's:
Unknown SNAP org codes: 0 Unknown SNAP ether types: 0
```

RIP Statistics

The **netstat** –**g** command displays RIP statistics. Table B-5 describes the field definitions for the command display.

The **netstat** –**g** command display looks like this:

```
annex01# netstat -g
Input packets: 19942, Output packets:
Interface triggers: 2, Timer events: 4818
                                             Load trips: 0
Sources:
132.245.33.22:
                4661 packets
                                  132.245.33.34:
                                                   5632 packets
                                  132.245/33/238: 4816 packets
132.245.33.228: 4822 packets
132.245.33.138: 9
                                  132.245.33.254: 1 packet
Rooting Changes: 1 Queries received: 0
Intf Bad
                Trigg. Recv'd Sent Disc'd Update Queries
           Bad
     Pkts Rtes
                        19942
en0
     0
           0
                0
                                     0
                                             22
```

Table B-5. Field Definitions for the netstat -g Command

Field	Definition
Intf	Displays the interface.
Bad Pkts	Displays the number of packets the interface dropped due to invalid format or data.
Bad Rtes	Displays the number of routes the interface dropped due to invalid format or data.
Trigg.	Displays the number of triggered updates transmitted over the interface. The Annex sends triggered updates whenever it changes the hop count of a route. It transmits them immediately, even if it is not yet time for one of the regular update messages to be transmitted.
Rec'd	Displays the number of packets (with or without errors) received over the interface.
Sent	Displays the number of output packets the Annex tried to send over the interface. This number includes packets that were dropped because the Annex ran out of buffers or the link's output queue was full.
Disc'd	Displays the number of input packets discarded due to protocol errors or restrictions set by configuration parameters (e.g., rip_accept).
Update	Displays the number on lines in the routing table that were modified due to packets received on that interface.
Queries	Displays the number of routing-table queries received on the interface.

Routing Table Information

The **netstat** –**r** command displays statistics and information about all available routes in the RIP routing table, including dial-out routes; dynamic dialing routes that do not have a phone connection established appear with a *w* at the end of the route entry. Table B-6 lists the **netstat** command arguments that display routing information. Table B-7 describes the field definitions for the

netstat –**r** command display.

Table B-6. Displaying Routing Table Information using the netstat Command

Field	Definition
-r	Displays statistics and information about all available routes in the routing table. A route comprises a destination host or network and the gateway through which data is forwarded. If the dial-out route currently is not active, only do <route number=""> appears in the Interface field. If the route currently is active, asy<port number=""> appears in the Interface field.</port></route>
-ra	Displays only AppleTalk routes.
-ri	Displays only IP routes.

The **netstat** –**r** command display looks like this:

annex: netstat -r

tables						
Destination	NextHop	Flags	Usage	UseCount	Mtr	Interface
4400 - 4499	4475.129	UHF	1	3	0	en0
Apple default	4400.22	UGF	0	0	0	en0
IP default	132.245.44.22	US	+0	0	2	en0
127.0.0.0/8	*	UI	fixed	0	2	100
132.245.1.0/24	132.245.44.22	UR	-114	0	3	en0
132.245.2.0/24	132.245.44.22	UR	-114	0	2	en0
132.245.9.0/24	132.245.44.22	UR	-78	36	2	en0
132.245.10.0/24	132.245.44.22	UR	-114	0	2	en0
132.245.11.0/24	132.245.44.22	UR	-114	0	2	en0
132.245.12.0/24	132.245.44.22	UR	-114	0	2	en0
132.245.22.0/24	132.245.44.22	UR	-114	0	2	en0
132.245.33.0/24	132.245.44.22	UR	+33	147	2	en0
132.245.34.0/24	132.245.44.22	UR	-114	0	2	en0
132.245.44.0/24	*	UI	fixed	8382	1	en0
bermuda	132.245.44.22	USH	-114	0	2	en0
132.245.66.0/24	132.245.44.22	UR	-114	0	2	en0
132.245.77.0/24	132.245.44.22	UR	-114	0	2	en0

Table B-7. IP Fields in the netstat –r Command Display

Field	Explanation
Destination	The IP address of the route's destination, followed by a slash (/), followed by the number of 1 bits, counting from left to right, in the Destination's subnet mask. For example, the /24 following the IP address 132.254.1.0 indicates a subnet mask of 24 bits (eight octets), or 255.255.255.0. (For more information, see Entering Routes in the Remote Annex Configuration File on page A-194.) If IP Default appears in the Destination field, the entry specifies the route the Annex uses if it can find no other route for a destination. If a name appears in the Destination field, the entry is for a host route; name servers do not have names for network routes. (However, the Annex does not always know a host's name.)
NextHop	The next router to which packets with the given Destination are sent. If the Destination is a local interface, this field displays an asterisk (*); interface routes have no next hop.
Flags	The following three flags:
First flag (Status) U Q	The route is valid (up) and in use. The route is valid but the interface is quiescent, i.e., the interface is not up yet or was brought down by expiration of the timer set by the net_activity port parameter. The route is invalid (down) and has a metric of 16 (RIP infinity). It will stay in the routing table for two more minutes so that other routers can learn that it is invalid.

(continued on next page)

Table B-7. Fields in the netstat –r Command Display (continued)

Field	Explanation
Second flag (Source) C	The route was learned via an ICMP redirect. This can occur only when IP routing is disabled (by setting the routed parameter to N). The route is an interface route. The route was learned via RIP. The route is a static route, learned from a route defined in the gateway section of the Annex configuration file or a route entered using the CLI superuser route command.
Third flag H	The route is a hardwired static route.
Usage	A positive or negative integer indicating a route's usage. When RIP adds a route to the routing table, it sets its usage value to 0. Every time the route is used RIP adds one to the value; every thirty seconds RIP subtracts one from the value. When the routing table reaches its maximum size of 256 entries, RIP removes the route with the lowest usage value. If there is a tie, RIP removes the first route listed. The values range from -9999999, for a route that has not been used in 9.5 years, to +9999999, for a very frequently used route. Interface, hardwired, and <i>extremely</i> frequently used routes contain the word <i>fixed</i> in this field instead of a number.
UseCount	A positive integer indicating the number of times the route has been used to transmit a packet. If you subtract the value in this field from the value of <i>Usage</i> , you can determine how long a route has been in the routing table.
Mtr	The metric for the route.
Interface	The interface over which the Annex can reach the next hop.

Chapter 1 Network Administration

Route Cache Information

The **netstat** –**C** command displays the contents of the cache route, including both static routes added from the **gateways** section of the configuration file and routes added by the **route** command. Table B-8 describes the flags for the command display.

Table B-8. Flag Descriptions for the netstat -C Command

Flag	Definition
intf x	An interface route, where <i>x</i> is the interface name and number, e.g., asy8. This can be a back-up route for a an interface that has a duplicate definition in the routing table. For example, if you define a subnet mask for a Proxy-ARP serial interface, and that mask is the same as the Annex's en0 subnet mask, the routes to that interface will be considered duplicates. As a result, the Annex will store the en0 interface route in the routing table and the serial interface route in the cache, thus making the serial interface unreachable. The example below shows a dial-out route, <i>do67</i> .
hardwired	Route added either by the route – h command or a route defined as <i>hardwired</i> in the gateway section of the Annex configuration file.

The **netstat** –**C** command display looks like this:

annex01# netstat -C	annex01#	netstat	-C	
----------------------------	----------	---------	----	--

Destination	Subnet Mask	Gateway	Metric	Flags
default	0.0.0.0	132.245.33.22	1	
74.68.67.0	255.255.255.0	0.0.0.0	1	intf do67
132.245.124.0		132.245.71.72	2	hardwired

Dial-out Route Information

The **netstat** –**r** command displays statistics and information about all available routes in the routing table, including dial-out routes. If the dial-out route currently is not active, only *do<route number>* appears in the *Interface* field. If the route has been assigned to a port, either *slip* <*port number>* or *ppp* <*port number>* appears in the *Interface* field. Table B-7 on page A-15 describes the field definitions for the **netstat** –**r** command display.

The **netstat** –**i** command displays the dial-out route's interface name. A truncated view of the command display looks like this:

```
annex01# netstat -i
```

Name	Mtu	Netw	ork	Addre	SS			Ipkts	Ierrs	Opkts	0errs	Collis
en0	1500	132.	245.33	132.2	45.3	33.	50	16	0	16	0	0
100	1536	127		127.0	.0.2	1		0	0	0	0	0
do1	1500	1		132.2	45.3	33.	90	4	0	4	0	0

Rotary Information

The **netstat** –**R** command displays all rotaries configured for the Annex. Table B-9 describes the field definitions for the command display. The **netstat** –**R** command display looks like this:

```
annex01# netstat -R
```

```
Rotary nameAddress Proto Camp Flags Annex ports oemandy1 *.telnet telnet ask 11 tenned ask 16 borneo1 192.9.200.250.telnet telnet ask 1 brazil7 192.9.200.253.6003 telnet ask 7 annex3 *.6103 telnet ask 8,13,15
```

•

Table B-9. Field Definitions for the netstat -R Command

Field	Definition
Rotary name	Displays the name of the rotary.
Address	Displays the auxiliary address, if assigned, or an asterisk (*), indicating the rotary has the same address as the server.
Proto	Displays the assigned protocol.
Camp	Displays the camp-on options: ask, always, or never.
Flags	Displays <i>I</i> if the rotary is invisible.
Annex ports	Displays the port(s).

Filtering Statistics

The **netstat**—**f** command displays filtering statistics. The statistics are cumulative for the Ethernet ports, i.e., changing filters does not reset the counters. The counters for a SLIP and PPP line reset each time the connection resets. Table B-10 describes the field definitions for the command display.

The **netstat** –**f** command display looks like this:

annex01# netstat -f

Int	In-hits	Out-hits	Drop	ICMP	Syslog
en0	0	0	0	0	0
asy1	0	0	0	0	0
asy2	0	0		0	0

Table B-10. Field Definitions for the netstat -f Command

Field	Definition
Int	Displays the interface.
In-hits	Displays the number of packets that matched an input filter.
Out-hits	Displays the number of packets that matched an output filter.
Drop	Displays the number of discarded filtered packets.
ICMP	Displays the number of filtered packets that sent an ICMP message.
Syslog	Displays the number of filtered packets that were syslogged.

Memory Statistics

The **netstat** – **m** command displays statistics for the memory management routines:

```
annex01# netstat -m
1127/3599 mbufs in use:
    7 mbufs allocated to data
    2 mbufs allocated to packet headers
    9 mbufs allocated to socket structures
    14 mbufs allocated to protocol control blocks
    3 mbufs allocated to routing table entries
    2 mbufs allocated to socket name
    2 mbufs allocated to interface address
        64 mbufs allocated to incoming network i/f packets
    1024 mbufs allocated to SPD Layer RX Data/Status
899 Kbytes allocated to network (31% in use)
0 requests for memory denied
```

Chapter 1 Network Administration

Book B

Protocol Statistics

The **netstat** –**s** command displays statistics for the following protocols: ICMP, UDP, TCP, IP, TMux, LAT, and DDP. The LAT statistics display only if the correct **lat_key** value is set; TMux statistics display only if the **tmux_enable** parameter is set to **Y**; DDP statistics display only if the correct **option_key** value is set. A truncated view looks something like this:

```
annex01# netstat -s
   tcp:
    3097 data packets sent
    394865 packets sent
                  309577 data packets (1011910 bytes)
                  87 data packets (22401 bytes) retransmitted
   udp:
    0 incomplete headers
    0 bad data length fields
    0 bad checksums
    2755 no listening port
    77148 packets received
    956 packets sent
   ip:
    613422 total packets received
    0 bad header checksums
    4 output packets we did frag
    5 output fragments we created
```

(continued on next page)

```
icmp:
    2359 calls to icmp_error
    O errors not generated 'cuz old message too short
    O errors not generated 'cuz old message was icmp
    Output histogram:
       destination unreachable: 2358
    Input histogram:
       echo reply: 41
tmux:
    65 packets from upper levels
       0 TMUX packets sent
       0 not suitable to TMUX
       0 dropped by TMUX
       65 not able to TMUX
    0 packets from IP
       0 encapsulated packets received
       0 TMUX checksum fails
       0 TMUX other fails
    1 TMUX ENQ packets sent
lat:
    241 Total run messages received
    228 Total run messages transmit
    56382 Total service messages recv.
    3796 Total service messages used
ddp:
    0 short header packets received
    13838 long header packets received
    12120 no checksum
    1 packet too short
    5 not enough data
    13671 packets forwarded
    0 packets encapsulated
```

Testing the Network

The superuser CLI **ping** command tests and measures the LAN. Also, it can isolate a single-point hardware or software failure. The **ping** command sends out an Internet Control Message Protocol (ICMP) echo request packet each second, or until input from the terminal terminates the command. After completing, **ping** displays a summary of all echo replies received. This display includes a calculation of the time, in milliseconds, that it takes to return the message (if the number of data bytes is 8 or greater). Table B-11 lists the arguments for this command The syntax is:

ping [-artv] host [databytes [count]]

Table B-11. Arguments for the ping Command

Argument	Description
-a	Generates AppleTalk Echo Protocol (AEP) echo request packets to a target node.
-r	Bypasses the normal routing table and sends the message directly to a host on an attached network. An error returns if the host is not on a directly attached network.
-t	Traces the path of a packet from the local host to the destination host and back, displaying information about each router in the path. This option allows you to see whether a packet arrived at and/or returned from its remote destination and, if not, where it stopped. The option is based on the Traceroute facility described in RFC 1393 (see <i>Using the –t (traceroute) Option</i> on page A-165 for more details). You can use –t with the –r and/or –v argument(s), but not with –a.

(continued on next page)

Table B-11. Arguments for the ping Command (continued)

Argument	Description
-v	Displays the IP and ICMP packet headers for the reply from the host.
host	The host, router, or Annex to which the ping is sent.
databytes	The number of bytes of data in the ICMP Echo Request message. The default is 56 .
count	The number of ICMP Echo Request messages to be sent to the ping destination. The default is unlimited. When invoked with –t , ping ignores the <i>count</i> argument.

The **ping** command display looks like this:

```
annex01# ping caddy
PING caddy: 56 data bytes
64 bytes from 132.245.6.25: icmp_seq=0. time=37. ms
64 bytes from 132.245.6.25: icmp_seq=1. time=12. ms
64 bytes from 132.245.6.25: icmp_seq=2. time=12. ms
64 bytes from 132.245.6.25: icmp_seq=2. time=12. ms
64 bytes from 132.245.6.25: icmp_seq=3. time=12. ms
---caddy PING Statistics---
4 packets transmitted, 4 packets received, 0% packet loss
round-trip (ms) min/avg/max = 12/20/37
```

For more details, see *ping* on page A-161.

Managing the ARP Table

The Address Resolution Protocol (ARP) maps Internet addresses to hardware addresses. Hosts implementing ARP maintain a translation table for these address mappings. When an Annex receives a request for a host that does not have a translation entry in the ARP table, it broadcasts for the hardware address. The superuser CLI **arp** command displays and modifies entries in this translation table.

Since the Annex automatically builds the ARP table dynamically, you rarely need to modify the table. You can use **arp** to modify the table for hosts that do not implement ARP, enabling communications between the host and the Annex. Using **arp**, you can delete a specified entry and/or create an entry for a host.

A created entry is permanent unless it is defined as temporary, in which case the entry is deleted after 20 minutes. An entry defined as published causes the Annex to respond with its hardware address for the specified host, even though the IP address is not the Annex's. Publishing a hardware address for another host frequently is done to route data to a host connected to the Annex through a SLIP or PPP link.

Monitoring Annex Activity

The CLI commands assist in monitoring Annex activities (see *Using the CLI Commands* on page A-121 for more information). These activities include:

- Logging user and Annex activities.
- Displaying user activity.
- Displaying Annex statistics.
- Monitoring serial line activity.

Logging User and Annex Events

The Annex provides two mechanisms for logging events: host-based security and a 4.3BSD-style **syslog** daemon (see *Using Remote Annex Security* on page A-421 for details on host-based security and ACP).

Host-based Security Logging

Host-based security provides logging capabilities that maintain audit trails of user activity. The security server logs each event as a message to its ACP log file. Security logging is enabled automatically when host-based security is enabled for an Annex (using the Annex parameter **enable_security**).

Refer to the *Remote Annex Server Tools for Windows NT*[®] *User Guide* for information about host-based security logging in the Windows NT[®] environment.

Events are logged to the security server that responded to the security request, either granting or denying access requests. When using back-up security servers, the ACP log file is located on each server.

To change the name and/or format of the ACP log file, see *Modifying the Supplied Security Application* on page A-546.

Each logged message in the ACP log file contains the following fields:

- IP address of the Annex.
- Sequence number.
- Port number.
- Date.
- Time.
- Module.
- Event.

Book B Network Administration

- Packets in.
- Packets out.
- Bytes in.
- Bytes out.
- Protocol-dependent information
- Username.

All fields are separated by colons and are encoded for use by UNIX utilities that sort, merge, select, or filter streams.

When more than one host functions as a security server, the log files can be merged and sorted by the date and time fields. Following is a sample log file:

```
132.245.11.11:420b02bb:#01:950626:003015:cli hook:login:moseley
132.245.11.11:420b02bc:#01:950626:003015:telnet:login:132.245.77.1:23:moseley
132.245.11.11:420b02bd:#02:950626:010620:ipx:login:djones
132.245.11.11:420b02be:#02:950626:010900:ipx:logout:djones
132.245.11.11:420b02be:#02:950626:010900:ipx:acct:191:190:29486:12577:djones
132.245.11.11:420b02bf:#01:950626:011456:telnet:logout:132.245.77.1:moseley
132.245.11.11:420b02c0:#01:950626:011502:cli hook:logout:moseley
132.245.11.11:420b02c0:#01:950626:011502:cli hook:acct:0:0:1021:143882:moseley
132.245.11.11:420b02c1:#04:950626:012317:rlogin:logout:132.245.33.7:mildram
132.245.11.11:420b02c2:#04:950626:012317:rlogin:logout:132.245.33.16:mildram
132.245.11.11:420b02c3:#04:950626:012317:cli hook:logout:mildram
132.245.11.11:420b02c3:#04:950626:012317:clihook:acct:0:0:10286:196301:mildra
132.245.11.11:420b02c4:#01:950626:012420:cli hook:login:mildram
132.245.11.11:420b02c5:#01:950626:012421:rlogin:login:132.245.33.7:513:mildram
132.245.11.11:420b02c6:#01:950626:013758:rlogin:logout:132.245.33.7:mildram
132.245.11.11:420b02c9:#01:950626:064309:telnet:login:132.245.77.1:23:tetreault
132.245.11.11:420b02ca:#02:950626:064948:cli hook:login:mcgillivray
132.245.11.11:420b02cb:#02:950626:064949:telnet:login:132.245.77.1:23:mcgill
132.245.11.11:420b02cc:#01:950626:065207:telnet:logout:132.245.77.1:tetreault
132.245.11.11:420b02ce:#01:950626:070102:cli hook:login:pearson
132.245.11.11:420b02cf:#01:950626:070109:telnet:login:132.245.77.1:23:pearson
132.245.11.11:420b02d0:#02:950626:070434:telnet:logout:132.245.77.1:mcgillivray
132.245.11.11:420b02d1:#02:950626:070436:cli hook:logout:mcgillivray
132.245.11.11:420b02d1:#02:950626:070436:cli hook:acct:0:0:1063:69595:mcgill
132.245.11.11:420b02d2:#01:950626:071048:telnet:logout:132.245.77.1:pearson
```

Events are written continuously to the ACP log file. To prevent this file from overwhelming the file system on the hosts, and still obtain the record information for generating reports, move and compress the file at regular intervals. The size of your network, the number of Annexes, and the amount of activity generated at each Annex determines the frequency for moving and compressing the file.

Events written while using ARA or the dial-back security feature have their own messages:

bad access code

Users entered an unidentified access code for the defined username – the login was terminated.

call-back

Users logged in with a known username and access code – the Annex calls back a pre-defined phone number (this log can be generated by any of the features that perform a call-back, including dial-back security and ARA); possible status values are **request**, **ok**, **no answer**, or **no device**.

Including the call-back message, the new messages generated by ACP while processing ARA logins are:

• login

User is authenticated and session is started.

logout

Session exited via user hang-up, time-out, or administrator **reset**.

reject

Authentication failed.

New log messages are generated by the **acp_userinfo** file parser if an error is detected when processing the **acp_userinfo** file (see *Using include Files in the acp_userinfo File* on page A-477 for more details).

The demand dial and modem code include debug level syslog information that provides progress, status, and failure information. This information appears in the following format:

Apr 2 1:53:42 annex.site.com ppp[323]: asy15 configuring dynamic dial interface Apr 2 1:54:06 annex.site.com ppp[323]: asy15 type_of_modem is "Optima96" Apr 2 1:54:06 annex.site.com ppp[323]: asy15 use cli modem command to verify

modem information for "Optima96" Apr 2 1:54:06 annex.site.com ppp[323]: asy15 attempting to activate dynamic dial interface

Apr 2 1:54:06 annex.site.com ppp[323]: asy15 sending reset string "ATZ" Apr 2 1:55:36 annex.site.com ppp[323]: asy15 send/expect timed out (numeric result codes expected)

Apr 2 1:55:36 annex.site.com ppp[323]: asy15 sending reset string "ATZ"

Event Logging Using syslog

The Annex can log events for a system running a 4.3BSD-style **syslog** daemon or syslog to a serial port on the Annex. The Annex parameter **syslog_port** defines the port to which logged messages are sent (for more details, see *Using Event Logging* on page A-37 and *syslog_port* on page A-108). The logged message includes:

- The date and time of the event.
- The name or IP address of the Annex on which the event occurred.
- The name of the event and PID of the Annex process.
- A description of the event.

In the following example, on May 5, at 9:19 a.m., a user named *Worth* on port 8 of *annex01* issued the **rlogin** command to host *galago*.

```
May 5 9:19:03 annex01 cli[598]:Job-Begin:8:rlogin galago:Worth
```

The information display differs, depending on the event. In the following example of a typical message, a time server updates the Annex's time. The time server host's address displays in hexadecimal longword. Times are expressed in hexadecimal as the number of seconds since 00:00:00 January 1, 1970.

```
Jan 5 9:56:5 annex timed[38]:adjusting time from host
5fc809c0: old=25bf1398, new=25bf1399, delta=1
```

The next example shows a user on port 9 of *annex* issuing the **telnet** command to access another Annex.

```
May 5 8:56:3 annex telnet_cmd[35]:Telnet-Begin:9:telnet
annex1
```

The next example shows a request for the printer on *annex* through the port server.

```
May 5 8:17:5 annex
rdr[39]:Port-Begin:14:RDP:LPRt10:Actg:ager
```

You can create audit trails and accounting reports for the Annex and its serial ports by sorting and merging log entries.

Displaying User Activity

When the CLI **who** command is issued for an Annex, it displays the user name, the jobs the user is running, when the connection began, any idle time, and the source of the connection. This command also displays current users on other Annexes, and on other hosts, if those hosts have **fingerd** running for **who** *user@host*.

The **who** command display looks like this:

annex01# who

Port	What	User	Location	When	Idle	Address
1	CLI	bob	Ext 528	8:44am		[local]
2	CLI			9:02am		[local]
4	LPD			9:45am		oaxaca
6	ARAP	cobb	P-01-03-con	9:59am		[local]
16	PSVR	cody	lpq port	10:00am	:43	support
v1	CLI	ellis	Ext 632	10:00am	:41	192.9.200.133
v2	CLI	carey		10:43am		192.9.200.60

When the command is issued for a 4.3BSD host, the display is the same as for the **finger** command executed at the host. Using the **who** command, you can obtain a significant amount of information on users and their activities in the network. For example:

- All users connecting to or from a specific host(s).
- A single user or a group of users connected to the Annex.
- All users connected to specific port or virtual CLI.
- A specific user (**who** *user@host*) or all users (**who** *@host*) logged into a specific host.

Using abbreviations, you can display a range of hosts or user names.

Displaying Annex Statistics

The CLI **stats** command displays general Annex statistics, or statistics for one or more serial ports (see *stats* on page A-184 for more details). A typical **stats** command display for a Remote Annex on an Ethernet network looks like this:

```
annex: stats
S/W Version: Remote Access Rx.x Build #2: Thu Sep 14 20:37:27 EDT 1995
H/W: Remote Annex 4000 H/W Rev: 36. ROM Rev 0811.
Comm: eth-aui&twi/64asy/1par
Boot from: 132.245.88.5
Image: oper.46.enet

Mem: 5mDRM/64kEEPRM/16kSL1/16kSL2
Date: Thu Sep 21 13:27:50 1995 EDT
Image: oper.46.enet

Intime: 15 bours 40 mins
Inet addr: 132.245.88.170
                                   Uptime: 15 hours 48 mins
                                   Subnet mask: 255.255.255.0
Ethernet addr:00-80-2d-00-b4-42 Broadcast addr: 132.245.88.255
Default domain: <unknown>
      CPU current/average = 1%/0% procs active/max/limit = 87/88/800
      rescheds = 0/32 switches = 48/109401 activates = 49/109722
Loading:
      CPU current/average = 1%/0% procs active/max/limit = 87/88/800
     rescheds = 0/32 switches = 48/109401 activates = 49/109722
      total=5400 free=3273 minimum free=3200 denied=0
Serial Ports:
      Total bytes: rcv'd=24982 xmt'd=5934
      Errors: parity=0 framing=0 fifo overruns=0
Parallel Ports:
      Total bytes: xmt'd=0
Memory:
      total=5242880 avail=3894424 free=2073480 min free=1782488
      fails=0
```

The **stats** –**s** command displays statistics for all serial ports:

annex01# stats -s

annex:

P#	Control	Speed	CharTx	CharRx	Parity	/Overru	Framing
	Lines					n	
1	none	38400	255	0	0	0	0
2	CTS RTS	4800	255	0	0	0	0
3	none	19200	255	0	0	0	0
4	DTR DCD DSR	38400	176715	4123	0	0	0
5	DTR DCD DSR	9600	937802	7864	0	0	0
6	idle	idle	0	0	0	0	0
:							
tota	1		1118837	11987	0	0	0

The **stats** –**p** command displays statistics for all parallel ports:

```
annex01# stats -p
```

```
P# Type CharTx Status
1 CT 576 selected, paper error, busy
2 DP 1318 selected
total 1894
```

The superuser **stats** –**c** command clears all serial line statistics to zero.

The **stats** –**m** command displays statistics for active control lines, but displays the modem controls for inactive control lines rather than displaying *idle*.

annex01# stats -m

P#	Control Lines	Speed	lCharT	CharR	«Parit	Overrur	Framing
			х		У		
1	CTS RTS DTR DCD DS	R9600	0	0	Ō	0	0
2	CTS TRS DTR DCD DS	R9600	0	0	0	0	0
3	cts RTS DTR dcd ds:	r9600	0	0	0	0	0
4	cts RTS DTR dcd ds:	r9600	0	0	0	0	0
5	cts RTS DTR dcd ds:	r9600	0	0	0	0	0
:							
64	cts RTS DTR dcd ds:	r9600	0	0	0	0	0

Monitoring Serial Line Activity

The Annex provides two superuser CLI commands that display information about the state of the Annex's serial ports: **control** and **tap** (see *control* on page A-141 and *tap* on page A-205 for more details).

The superuser CLI **control** command is a diagnostic tool that, for a specified port, allows you to set DTR and RTS or output a short test message. The superuser CLI **tap** command accesses (wire taps) a serial port from a terminal.

The **tap** command will not work with PPP.

Using tap, you can:

- Observe the output to the port. The command also displays keystrokes entered from your terminal as output to the port you are tapping as if they had been entered on the port.
- Find out exactly what users are seeing on their terminals from a remote location.
- Provide on-line advice and instructions to users at their terminals.
- Monitor traffic in both directions on the port, especially incoming special conditions, such as line breaks and special characters.

Under certain circumstances, the order of displayed data may not match the actual time sequence of the events. All input and output data is displayed. Special characters and control line changes are stored in a limited buffer. If these changes occur too rapidly, they may be lost.

Managing the Host Table

The host table contains this information for each host:

- Host name.
- Aliases (if any).
- IP address.
- Multiple IP addresses (if any).
- System status (if the entry is updated by RWHO).
- Load factor (if the entry is updated by RWHO).
- Number of users (if the entry is updated by RWHO).

The CLI **hosts** command displays all entries in the host table. The Annex can build and update the host table from RWHO messages and from responses to DNS and/or IEN-116 queries. Entries are updated according to information received. Information for a host will be updated if new information received is different from what is currently in the host table. The Annex considers information from a DNS server the most reliable source; it considers an IEN-116 as the next reliable source; and it considers RWHO broadcasts as the least reliable source. Thus, information from a DNS server always updates current information received from either an IEN-116 server or an RWHO broadcast; information from an RWHO broadcast.

IEN-116 servers are not supported in a Windows NT[®] environment. As a result, an Annex in a Windows NT[®] environment never considers host table information from an IEN-116 server.

The Annex also deletes entries. The criteria for deletion depend on the source of the entry. Each DNS response includes a time to live (TTL). When an entry reaches its full life (default=60 minutes), the DNS server is queried again. If a DNS server recognizes the name, the entry is re-entered in the host table; otherwise, it is deleted. The Annex keeps track of how often each IEN-116 host table entry is referenced. If a name server entry has not been used for 32 days, it is deleted.

The Annex expects to receive an RWHO message from a host at least every six minutes; if no message is received in that time period, the host table status entry for that host is changed to *down?*. If there is no message for 12 minutes, the status is changed to *down*, and if no message is received for 60 minutes, the entry is removed from the table.

If the host table acquires a new entry after it is full, the Annex deletes the oldest, least-used entry to make room for the new one. If the host table is too small, it frequently changes. Increasing the size of the host table using the Annex parameter **host_table_size** reduces these changes.

Other tools for managing the host table are:

The CLI hosts –n and hosts –f commands.
 The hosts –n command displays name server information; hosts –f flushes all, or specified, entries in the host table.

The na or CLI admin command reset annex nameserver.

The **reset annex nameserver** command resets all name server parameters discussed in this section and flushes all entries from the host table.

Flushing the host table and resetting the name server does not remove down-loaded entries from the **gateway** section of the Annex configuration file.

Additionally, the **gateway** section of the configuration file permits a line entry containing a host name that is associated with an IP Address. This entry is identical to the /etc/hosts file entry, except aliasing is not supported. When the Annex boots, it adds this host name entry to the host table. Each entry lives in the host table until a nameserver overrides the information or until the administrator resets the Annex nameserver using the **na** or CLI **admin** commands. For more information, see *Loading the Host Table from the Configuration File* on page A-357.

Disabling Software Modules

The Annex parameter **disabled_modules** allows you to disable individual software modules to free memory space. If you enter more than one module, separate module names using commas. Valid options are **admin**, **atalk**, **dialout**, **edit**, **fingerd**, **ftpd**, **ipx**, **lat**, **nameserver**, **ppp**, **slip**, **snmp**, **tn3270**, **tstty**, **vci**, **all**, or **none**. The default is **vci** (disables the Annex VMS interface).

The syntax for disabling several modules is:

set annex disabled_modules lat,snmp,ppp,slip

You should exercise extreme caution when disabling modules:

- If disabled_modules is set to a value other than none and server_capability includes the operational image, no modules are disabled; a syslog message announces this override.
- The vci option disables the Annex interface for VMS environments along with the following commands: backwards, change, clear, crash, define, disconnect, forwardlis, forward, list, logout, resume, set, show.
- If lat_key is invalid and server_capability is set to none, the LAT code is freed for use by the system.
- Disabling LAT also disables the CLI commands services, connect, and queue.
- Disabling admin and snmp can cause problems if host-based
 na is not available. To change parameters in this case, return
 to monitor mode, erase the parameters in non-volatile
 memory, and reconfigure the Annex.

Typical Configuration Problems

Each Annex hardware platform provides a hardware installation guide that contains troubleshooting information. Many problems that occur after an Annex is running are due to improper configuration of the Annex or a host. The following subsections describe the symptoms of several common configuration problems.

Sessions not Terminated

Several situations can leave a session open.

- On CLI ports, the hangup command may not disconnect a
 modem or a switch. On CLI login ports, a modem, telephone, or
 switch disconnection (de-asserting DCD) may not terminate the
 CLI connection or UNIX session. Thus, the next port user finds
 a CLI connection with jobs already active and does not receive a
 security prompt or receives a shell prompt without logging in.
- A port configured as autobaud may retain the baud rate of the previous session.
- The port server session may not be terminated if you try to use an outgoing Annex port as a front-end to another host (or to connect to a modem or switch), and the interface at the other end drops DCD (see *Modems* on page A-99 for more information on using modems).

If any of these situations occur:

- Make sure the Annex port parameters are set correctly.
- Check the cable wiring, and pay close attention to the wiring of the Annex's DCD, DSR, and DTR control lines.

The superuser CLI **stats**, **tap**, and **control** commands provide useful information.

When changing parameters using **na** or **admin**, remember to use the **reset** command after entering the new values.

Connection Delays When Using Name Servers

Annex users may notice connection delays under certain circumstances. If name_server_1 and name_server_2 are defined, and name_server_1 is down or does not exist, there will be a 15–30 second delay until name_server_2 resolves the name during a connect to a host using rlogin or telnet. If both name servers are down or they do not exist, there will be up to a 45 second delay. If the host to which the user ID is trying to connect is in not in the RWHO host table, an error occurs; the terminal displays a message informing the user that the name server is unreachable.

Hosts not Appearing in Hosts Display

The Annex **hosts** command should list any hosts that broadcast RWHO packets if the configuration parameter **rwhod** is set to **Y**. If you expect to see a host in the **hosts** display and it does not appear, wait several minutes and then re-issue the **hosts** command before assuming there is a problem; the time between broadcasts can vary. Before proceeding, verify that the host not appearing in the **hosts** display is sending RWHO packets correctly by entering **ruptime** on another host on the network, or by checking that the host in question is running **rwhod**.

If the host is sending RWHO packets correctly, incompatible broadcast addresses may be causing the problem. Originally, a broadcast packet used a host address of all *zeros* (*network.0*). Later refinements required a change to the broadcast address, specifying a host address of all *ones* (*network.255*). A host configured with a *network.255* address will accept *network.0* broadcasts. Hosts configured with *network.0* addressing will not see *network.255* broadcasts. You can configure the Annex for either method of addressing by setting the **broadcast_addr** parameter.

Wrong Host Address in Host Table

The Annex assumes that the host described in the data part of the RWHO packet sent the packet, and the IP header's *source-Internet-address* field contains the host's address. Usually, this assumption is correct because routers do not forward broadcast packets. Some RWHO daemons do forward RWHO packets.

You can turn off RWHO at the Annex by setting the **rwho** parameter to **N**. RWHO entries are not added to the Annex's host table.

Network Logins to BSD Hosts are Invisible

An Annex user can **rlogin** or **telnet** to a host, but the pseudo-terminal does not show up in a **who** command display. This problem is caused by a mismatch between pseudo-terminals configured in the /**dev** directory and pseudo-terminal entries in /**etc/ttys**. Update the /**etc/ttys** file to contain the proper number of pseudo-terminals as indicated by the actual device entries in /**dev**.

All Network Ports are in Use

The **rlogin** or **telnet** command is rejected after the user name is entered in response to the login prompt. The error message *all network ports in use* indicates that all available pseudo-terminals are in use. On BSD hosts, update /etc/ttys and create more pseudo-terminals in /dev.

Book B

Chapter 2 Simple Network Management Protocol (SNMP)

his chapter describes the Simple Network Management Protocol (SNMP) and the SNMP agent provided by the Annex. This chapter includes the following sections:

- SNMP Protocol Overview
- Setting up the Annex for SNMP
- Standard MIB Support
- Annex Parameter vs. Annex Private Enterprise MIB

SNMP Protocol Overview

SNMP is a heavily used management protocol. It operates over the User Datagram Protocol (UDP), which is part of the TCP/IP protocol suite. SNMP provides an easier and more efficient means of managing the Annex.

- The SNMP protocol can send queries to the SNMP agents located in each Annex.
- Each SNMP agent collects information about its Annex and provides that information to the Network Management Station running the Annex. The agent process acts as a server in a typical client-server model.
- Management Information Bases (MIBs) located on the SNMP Network Management Station describe the information that comes from the agents.

SNMP Management Stations

An SNMP Network Management Station is a dedicated or shared network device that is the client in the client-server model. The management station can run an application specifically written for the Annex and its MIBs (e.g., the Xylogics graphical user interface, Annex Manager), or a generic application that communicates with other non-Xylogics devices (e.g. SunNet Manager, HP/OpenView, MetView for AIX MetView for AIX The generic application must include the definitions of the MIBs supported by the Annex.

The SNMP agent processes **get**, **set**, **get-next** commands, returns a response indicating the command's success or failure, and returns the requested data for the **get** and **get-next** commands (*SNMP Commands* on page A-46 describes these commands in greater detail).

Message Delivery

SNMP messages are encapsulated in UDP datagrams. The UDP layer does not guarantee delivery. The Annex uses a timeout and retry mechanism to guarantee the SNMP command's delivery. If a timeout occurs, the Annex does not know if the agent did not receive the command or if the agent's response was lost.

The SNMP agent can generate an unsolicited trap command and send it to one or more network addresses. Receivers of traps, i.e., trap hosts, do not respond to the SNMP agent (for more details, see *Defining Trap Hosts and Traps* on page A-44).

The Annex supports only the cold-start, link-up, and link-down traps defined in MIB-II.

Configuring the Annex for SNMP

Before an SNMP network management application can monitor or manage the Annex, you must define certain configuration data, including the SNMP agent and related Annex parameters.

Configuring the SNMP Agent

Entries in the **gateway** section of the configuration file, which is downloaded during Annex initialization, both enable the SNMP agent and define the operating characteristics of the SNMP daemon that controls the SNMP agent (for more details on creating and using the configuration file, see *Parsing the Configuration File* on page A-345).

The **gateway** section of the configuration file contains four optional keywords for configuring the Annex SNMP agent:

- community
- traphost
- contact
- location

The following subsections detail each of these keywords as well as the Annex parameters required for use with SNMP.

A sample entry in the **gateway** section of the configuration file looks like this:

```
annex 132.245.6.34

host 132.245.1.01 gateway 132.245.7 metric 1 hardwired net 132.245.9.0 gateway 132.245.2.3 metric 1 hardwired snmp contact john smith ext 370 snmp location computer room end snmp community public snmp traphost 132.245.6.50
```

Defining the Community String

Each SNMP message contains a community string in its header. The receiving SNMP agent tries to match the message's string with an existing community string list. If there is no match, the SNMP agent discards the message without responding to the sender.

The keyword **community** defines an SNMP community name from which the Annex responds to requests. At system start-up, the SNMP agent requires at least one community string to be defined in the configuration file. If the file does not contain a community string, the Annex defaults to the community name *public* (unless SNMP is disabled in the Annex parameter **disabled_modules**). There is no notion of read-only or read-write communities.

You can specify up to four SNMP community names in the **gateway** section of the configuration file, but each community requires a separate line. The Annex adds these communities to the SNMP agent's community table. The syntax is:

snmp community *name*

Defining Trap Hosts and Traps

The Annex employs two methods for defining the host addresses it uses when generating SNMP trap messages.

- The first method defines up to ten static trap hosts in the configuration file using the SNMP trap host syntax.
- The second method loads the trap hosts (if any) from the configuration file into the Trap Host Table (i.e., the anxTrapHostTable objects in the proprietary MIB). You can modify this table by adding or deleting trap hosts. However, the changes you make directly through the table will be lost when the Annex reboots. If you want your changes to be permanent, you must use the Annex configuration file.

Traps are unsolicited administrative messages generated by SNMP agents on the network. The keyword **traphost** defines the host to which SNMP traps are sent. For the Annex to generate traps, one or more trap host addresses must be defined in the **gateway** section of the configuration file along with the SNMP community string. All generated trap messages use the first community string defined in the configuration file (if the file does not contain a community string, the Annex defaults to *public*).

You can specify up to ten static trap hosts in the configuration file, but each host requires a separate line. Specify the trap host using its IP address (RFC 1157 provides more details on communities and traps). Table B-12 describes the supported SNMP traps. The syntax is:

snmp traphost ipaddr

Table B-12. Supported SNMP Traps

Trap	Description
coldstart	Upon initialization of the SNMP agent at boot time.
link-up	Upon initialization of each network interface.
link-down	Upon de-configuration of any network interface.

Defining the Contact String

The keyword **contact** defines the object that identifies the person responsible for managing the Annex, as supported by MIB-II. The syntax is:

snmp contact string

The *string* can include information about how to contact the person; e.g., *M. Law, x 370*.

Defining the Location String

The keyword **location** defines the object that describes the Annex's location; e.g., *computer room*. The syntax is:

snmp location string

Defining the disabled modules Parameter

The Annex parameter **disabled_modules** allows you to turn off certain features during Annex software initialization (e.g., enter *LAT*, *PPP*, *SLIP* to turn these features off). If you disable SNMP, the Annex will discard all SNMP messages it receives. By default, the SNMP agent on the Annex is enabled (for more details, see *disabled_modules* on page A-57).

Defining the allow_snmp_sets Parameter

The Annex's default setting for the **allow_snmp_sets** parameter does not permit parameter value changes because the SNMP **set** command's header transmits the community string in clear text, which may be a security risk. To modify parameters through SNMP, you must first set **allow_snmp_sets** to **yes** using the **na** utility or the **admin** command. You cannot set this parameter using SNMP (for more details, see *allow_snmp_sets* on page A-45).

SNMP Commands

The SNMP agent software in the Annex supports the SNMP commands **get**, **get-next**, **set**, and **trap** as defined in RFC 1157. Table B-13 describes these commands.

Table B-13. SNMP Commands Supported by the Annex

Action	Description
get	Retrieves the value of a specific object from one of the supported MIBs.
get-next	Traverses the MIB tree to retrieve the next object's management information.
set	Modifies the values of MIB objects. The Annex private enterprise MIB and several objects in the standard MIBs allow you to configure the Annex from an SNMP management station on the network rather than using the na utility or CLI admin command.
trap	Asynchronously reports significant events.

When the **allow_snmp_sets** parameter is enabled, the Annex accepts SNMP **set** commands from any source and processes them. When disabled, the Annex rejects all SNMP **set** commands; the Annex SNMP agent returns the error *no such name* for the first object in the **set** command (for more details, see *allow_snmp_sets* on page A-45).

The specifics of using the SNMP commands are management station-dependent (see your SNMP management station documentation). The MIB definitions in the files provided in the directory /annex_root/src/snmp must be compiled and included in your management station database before you can manage the Annex.

Using SNMP set to Send Commands to the Annex

The private enterprise MIB objects allow you to change the configuration of the Annex or its ports. These configuration changes do not take effect until the Annex is rebooted or the port is reset.

Using the SNMP **set** command, you can broadcast a message, reset a port or subsystem, and reboot the Annex.

- To broadcast a message, use SNMP set to write the message to the MIB object anxcBcastMsg and then set the broadcast type to the MIB object anxcBcast.
- To reset an Annex subsystem, use SNMP set to write the desired type (all, macros, motd, nameserver, security) to the MIB object anxcReset.
- To reset all printer, serial, or virtual ports on the Annex as a group, use SNMP set to write the desired value to the MIB object anxcReset.
- To reset a single serial port, use SNMP set to write the appropriate value to the character MIB object charPortReset (defined in RFC 1316) that corresponds to the serial port to reset.
- To reboot the Annex, set the desired image name to the MIB
 object anxcBootImage and set any boot warning message to the
 MIB object anxcBootMsg. For a delayed boot, set the boot time
 to the MIB object anxcBootTime. Then set the boot type to the
 MIB object anxcBoot.

To change the Annex's configuration using **set**, SNMP must be enabled at boot time. Make sure the argument **snmp** is not disabled in the **disabled_modules** parameter. For more details, see *disabled_modules* on page A-57).

You cannot configure filters through SNMP. For details on filtering, see *Enabling Filtering* on page A-251.

Standard MIB Support

The Annex supports the following standard MIBs:

- MIB-II (defined in RFC1213).
- Character MIBs (defined in RFCs 1316, (Character MIB), 1317 (RS232-like MIB), and 1318 (Parallel Printer MIB).
- Ethernet MIB (defined in RFC 1398).
- RIPv2 MIB (defined in RFC 1389).
- AppleTalk MIB (defined in RFC 1243).

Some standard MIB objects are not valid or meaningful for the Annex. For detailed information, see *Annex Restrictions on Standard MIBs* on page A-51.

Most Annex parameters do not map to standard MIB objects. Instead, they map to MIB objects in a proprietary (or private enterprise) MIB specific to the Annex. The private MIB also contains objects that provide status and statistics information to the network manager (see *Annex Parameters vs. Annex Private Enterprise MIB* on page A-58).

This section explains the relationship between the Annex and standard MIBs, listing the exceptions and restrictions placed on standard MIBs by the Annex SNMP agent. This section includes:

- MIB Object Hierarchy
- Describing and Naming Objects
- Annex Restrictions on Standard MIBs

MIB Object Hierarchy

MIBs define the hierarchy of managed objects. MIB objects represent data that the Annex can retrieve or configuration information that it can modify.

Describing and Naming Objects

RFC 1155 (Structure and Identification of Management Information for TCP/IP-based internets) describes the layout and encoding of exchanged data objects.

The SMI (Structure of Management Information) uses the ISO standard ASN.1 (Abstract Syntax Notation One) to define a method for describing a hierarchical name space for managed information. Each object has:

- A name (also referred to as an Object Identifier (OID)).
- A syntax and an encoding. In addition to the basic integer and octet string data types, several special types are defined (e.g, IP Address, Network Address, Counter, Gauge, TimeTicks). RFC 1212 (Concise MIB Definitions) is an easier-to-read form used in most standard MIBs today. It is used to define the Annex private enterprise MIB.

Annex Restrictions on Standard MIBs

The Annex SNMP Agent does not use all objects in the supported standard MIBs. This section lists the supported standard MIBs and outlines the differences between the Annex parameters and specific standard MIB objects. Table B-14 lists the supported standard MIBs.

Table B-14. Standard MIBs Supported by the Annex

MIB Name	RFC Number
MIB-II	RFC 1213
Character MIB	RFC 1316
RS-232 MIB	RFC 1317
Parallel Printer MIB	RFC 1318
AppleTalk MIB	RFC 1243
RIP version 2 MIB	RFC 1389
Ethernet MIB	RFC 1398

RFC 1213 MIB-II Restrictions

The Annex supports RFC1213's *system*, *interfaces*, *at*, *ip*, *icmp*, *tcp*, *udp*, and *snmp* groups. It does not support the *egp* group. In addition, some individual objects have the restrictions outlined in Table B-15.

Table B-15. RFC 1213 MIB-II Objects

Object Name	get/set Restrictions	Read Object Limitations
ifAdminStatus	read only	Returns only up (1) and down (2)
ifOperStatus	none	Returns only up (1) and down (2)
atEntry	Cannot create new rows	none
ipRouteEntry	Cannot create new rows	none
ipRouteProto	none	Returns only local (2), icmp (4), and rip (8)
ipRouteType	none	Returns only invalid (2), direct (3), indirect (4)
ipNetToMediaEntry	Cannot create new rows	none
ipNetToMediaType	Writes only invalid (2), dynamic (3), and static (4)	Returns only dynamic(3) and static(4)

RFC 1243 AppleTalk MIB Restrictions

The Annex does not support the *llap*, *rtmp*, *kip*, *zip*, and *nbp* groups. It supports the *aarp*, *atport*, *ddp*, and *atecho* groups with the restrictions listed in Table B-16.

Table B-16. RFC 1243 AppleTalk

Object Name	Restrictions	Read Object Limitations
atportType	Read only	None
atportNetStart	Not supported	None
atportNetEnd	Not supported	None
atportNetAddress	Not supported	None
atportStatus	Read only	None
atportZone	Read only	None
atportIfIndex	Read only	None
ddpOutRequests	Not supported	None
ddpInLocalDatagrams	Not supported	None
ddpNoProtocolHandlers	Not supported	None
ddpBroadcastErrors	Not supported	None
ddpShortDDPErrors	Not supported	None
ddpHopCountErrors	Not supported	None

RFC 1389 RIPv2 MIB Restrictions

The Annex supports *rip2GlobalGroup*, *rip2IfStatTable*, and *rip2IfConfTable*. It does not support *rip2PeerTable*. Table B-17 describes additional restrictions.

Table B-17. RFC 1389 RIPv2 MIB Objects

Object Name	Restrictions	Read Object Limitations
rip2IfStatStatus	Read only	None
rip2IfConfDomain	Not supported	None
RipIfConfAuthKey	Not supported	None
ripIfConfStatus	Read only	None

RFC 1398 Ethernet MIB Restrictions

The Annex supports RFC 1398's *dot3StatsTable* and *dot3CollTable* with the restrictions outlined in Table B-18.

Table B-18. RFC 1398 Ethernet MIB Objects

Object Name	Restrictions	Read Object Limitations
dot3StatsSQETestErrors	Not supported	None
dot3StatsInternalMac ReceiveErrors	Not supported	None

RFC 1316 Character MIB Restrictions

The Annex supports the *char* group with the restrictions outlined in Table B-19.

Table B-19. RFC 1316 Character MIB Objects

Object Name	Restrictions	Read Object Limitations
charPortAdminStatus	Read only	Returns only enabled (1), disabled (2), off (3)
charPortOperStatus	None	Returns only up (1), down (2), active (5)
charPortInFlowType	Supports only none (1), xonXoff (2), and hardware (3)	None
charPortOutFlowType	Supports only none (1), xonXoff (2), and hardware (3)	None
charPortAdminOrigin	Read only	None
charPortName	Read only	None
charPortSessionMaximum	Maximum value is 16	None
charSessKill	Read only	None
charSessState	None	Returns only connected (2)
charSessConnectionId	None	Returns only null
charPort objects for virtual ports	Read only, read-write objects apply only to physical ports	None

RFC 1317 RS-232 MIB Restrictions

The Annex supports this MIB with the restrictions described in Table B-20.

Table B-20. RFC 1317 RS-232 MIB Objects

Object Name	Restrictions	Read Object Limitations
rs232PortInSpeed rs232PortOutSpeed	Setting one sets both. Can set only to a supported value (see <i>Setting Port Speed</i> on page A-57).	None
rs232AsyncPortParity	none (1), mark (4), or space (5) all map to none (1)	Returns only none (1), odd (2), or even (3)
rs232AsyncPortStopBits	dynamic (4) maps to one (1)	Returns only <i>one</i> (1), two (2), or one-and-half (3)
rs232SyncPortTable	Not supported	

Setting Port Speed

The rs232PortInSpeed, rs232PortOutSpeed, and rs232AsyncPortAutobaud are related for the Annex's asynchronous ports.

- To set the port to autobaud, you must first set rs232AsyncPortAutobaud to *enabled* (1) and then set either rs232PortInSpeed or rs232PortOutSpeed to *zero*. Setting the port speed to zero when rs232AsyncPortAutobaud is disabled results in a bad value error.
- To disable autobaud, you must first set the port speed to a non-zero value, and then set rs232AsyncPortAutobaud to disabled(2). This ensures that the port is not left in a state without a declared speed.

For example, you can set a port to 9600/autobaud by setting 9600 in rs232PortInSpeed or rs232PortOutSpeed and then setting rs232AsyncPortAutobaud to *enabled(1)*.

RFC 1318 Parallel Printer MIB Restrictions

The Annex supports:

- paraNumber.
- paraPortTable.
- paraInSigTable.

The Annex does not support:

• paraOutSigTable.

Annex Parameters vs. Annex Private Enterprise MIB

The private enterprise MIB file provides the object descriptions for the hardware, software, ports, parameters, and commands groups. The Annex software distribution provides this information in the file /annex_root/src/snmp/anx-rx.x. Copies of the standard MIBs reside in the / annex_root/src/snmp directory.

Most of the configuration parameters are provided as objects with read-write access permission in the Annex private enterprise MIB. A number of these parameters can be found in the standard MIBs that the Annex SNMP agent supports.

Most MIB object names for the Annex parameters in the private enterprise MIB are preceded by the string

".iso.org.dod.internet.private.enterprises.xylogics.annex.".

One of the many exceptions is the object corresponding to the **image_name** parameter. The MIB object name for **image_name** is preceded by the string

".iso.org.dod.internet.private.enterprises.xylogics.annex.annexcmds.".

MIB Prefixes

All MIB object names have a prefix that indicates the MIB in which it is defined; Table B-21 lists these prefixes and their corresponding MIB. Table B-22 lists the configuration parameters and the corresponding MIB object names.

There are other settable MIB objects included in the standard MIBs supported by the Annex SNMP agent. The read-only objects defined in the various MIBs allow the SNMP management station to monitor many Annex variables.

Table B-21. Prefixes for MIB Object Names

Prefix	Corresponding MIB
anx	Annex private enterprise MIB
rs232	rs232 MIB
char	character MIB

Configuration Parameters vs. MIB Objects

Table B-22 lists the Annex configuration parameter and the corresponding MIB Object.

Table B-22. Configuration Parameter vs. MIB Object Name

Configuration Parameter	MIB Object
acp_key	anxAcpKey
allow_snmp_sets	** not applicable **
a_router	anxAppleTalkRouter
authoritative_agent	anxAuthAgent
broadcast_addr	anxBcastAddr
cli_prompt	anxCliPrompt
config_file	anxConfigFile
daylight_savings	anxDaylightSavings
default_zone_list	anxAppleTalkDefZones
disabled_modules	anxDisabledModules
enable_security	anxEnableSecurity
host_table_size	anxHostTableSize

(continued on next page)

Table B-22. Configuration Parameter vs. MIB Object Name (continued)

Configuration Parameter	MIB Object
image_name	anxDefaultImageName
inet_addr	anxInetAddr
ipencap_type	anxIpEncapType
ip_forward_broadcast	anxIpFwdBcast
lat_key	anxLatKey
load_broadcast	anxLoadBcast
load_dump_gateway	anxLoadDumpGateway
load_dump_sequence	anxLoadDumpSeq
loose_source_route	anxLooseSrcRoute
max_vcli	anxMaxVcli
min_unique_hostnames	anxMinUniqueHostNames
motd_file	anxMotdFile
name_server_1	anxNameServer1Type
name_server_2	anxNameServer2Type
nameserver_broadcast	anxNameServerBcast
network_turnaround	anxNetTurnAround
node_id	anxAppleTalkNodeId
option_key	anxOptionKey
password	anxPassword
pref_dump_addr	anxPrefDumpAddr
pref_load_addr	anxPrefLoadAddr

(continued on next page)

Table B-22. Configuration Parameter vs. MIB Object Name (continued)

Configuration Parameter	MIB Object
pref_name1_addr	anxNameServer1Addr
pref_name2_addr	anxNameServer2Addr
pref_secure1_host	anxSecurServer1Addr
pref_secure2_host	anxSecurServer2Addr
rip_auth	anxRipAuth
rip_routers	anxRipRouteList
routed	anxRouted
rwhod	anxRwhod
security_broadcast	anxSecurBcast
server_capability	anxServerCap
subnet_mask	anxSubnetMask
syslog_facility	anxSysLogFacility
syslog_host	anxSysLogHost
syslog_mask	anxSysLogMask
syslog_port	anxSysLogPort
tcp_keepalive	anxTcpKeepAlive
tftp_dump_name	anxTftpDumpName
tfpt_load_dir	anxTftpDirName
time_broadcast	anxTimeBcast
timezone_minuteswest	anxTimeZone
vcli_password	anxVcliPassword
vcli_security	anxVcliSecurity
zone	anxAppleTalkZone

LAT-specific Configuration Parameters vs. MIB Objects

Table B-23 lists the LAT-specific configuration parameters and the corresponding MIB object names. The string ".iso.org.dod.internet.private.enterprises.xylogics.annex." precedes the MIB object names.

Table B-23. LAT-specific Configuration Parameters vs. MIB Object Name

LAT-specific na Parameter	MIB Object
circuit_timer	anxCircuitTimer
facility_num	anxFacilityNum
group_value	anxLatGroupVal
keep_alive_timer	anxKeepAliveTimer
lat_queue_max	anxLatQueueMax
retrans_limit	anxReXmitLimit
server_name	anxServerName
service_limit	anxServiceLimit
sys_location	anxLatLocation
vcli_groups	anxLatVcliGroupVal

LAT Statistic Objects

Table B-24 lists the LAT statistic objects; these objects provide the same information available in the CLI **netstat** command. The following string precedes the MIB object names:

Table B-24. LAT Statistic Objects

MIB Object Name	Description
anxLatRecvRunMsgs	total received run messages
anxLatXmitRunMsgs	total transmitted run messages
anxLatRecvSlots	total received slots
anxLatXmitSlots	total transmitted slots
anxLatRecvBytes	total received bytes
anxLatXmitBytes	total transmitted bytes
anxLatDupMsgs	total duplicate messages
anxLatRexmitMsgs	total retransmitted messages
anxLatBadCircuitMsgs	total bad circuit messages
anxLatBadSlotMsgs	total bad circuit slots
anxLatAcceptHostInits	total accepted host-initiates
anxLatRejectHostInits	total rejected host-initiates
anxLatMultipleNodes	total multiple nodes seen
anxLatCreatedCircuits	total created circuits
anxLatCreatedSessions	total created sessions

(continued on next page)

[&]quot;.iso.org.dod.internet.private.enterprises.xylogics.annex.".

Table B-24. LAT Statistic Objects (continued)

MIB Object Name	Description
anxLatRecvFrames	total received frames
anxLatXmitFrames	total transmitted frames
anxLatIllegalFrames	total illegal frames
anxLatCircuitTimeouts	total circuit time-outs
anxLatXmitSvcMsgs	total transmitted service messages
anxLatRecvSvcMsgs	total received service messages
anxLatUsedSvcMsgs	total used service messages

TMux-specific Annex Parameters vs. MIB Objects

Table B-25 lists the TMux-specific Annex parameters and their corresponding MIB object names.

Remote Annex Server Tools For Windows NT® does not support TMux

The following string precedes the MIB object names: ".iso.org.dod.internet.private.enterprises.xylogics.annex.".

Table B-25. TMux- specific Parameters vs. MIB Objects

TMux Parameter	MIB Object Name
tmux_delay	anxTmuxDelay
tmux_enable	anxTmuxEnable
tmux_max_host	anxTmuxMaxHost
tmux_max_mpx	anxTmuxMaxMpx

IPX-specific Annex Parameters vs. MIB Objects

Table B-26 lists the IPX-specific Annex parameters and their corresponding MIB object names.

The following string precedes the MIB object names: ".iso.org.dod.internet.private.enterprises.xylogics.annex.".

Table B-26. IPX-specific Parameters vs. MIB Objects

IPX Parameter	MIB Object Name
ipx_do_checksum	anxIpxDoChecksum
ipx_dump_password	anxIpxDumpPasswd
ipx_dump_path	anxIpxDumpPath
ipx_dump_username	anxIpxDumpUsername
ipx_file_server	anxIpxFileServer
ipx_frame_type	anxIpxFrameType

T1-specific Annex Parameters vs. MIB Objects

Table B-27 lists the T1-specific Annex parameters and their corresponding MIB object names.

The following string precedes the MIB object names: ".iso.org.dod.internet.private.enterprises.xylogics.annex.".

Table B-27. T1- specific Parameters vs. MIB Objects

T1 Parameter	MIB Object Name
alarmsyslog	anxt1AlarmSyslog
bypass	anxt1EngineBypass
map	anxt1ChanMap
ring	anxt1ChanRing
sigproto	anxt1ChanSigProto
t1_info	anxt1Info
tdi_distance	anxt1DiiDistance
tdi_framing	anxt1DiiFraming
tdi_line_code	anxt1DiiLineCode
tni_line_buildout	anxt1Ds1LineBuildout
tni_ones_density	anxt1Ds1OnesDensity

Interface Parameters vs. MIB Objects

Table B-28 lists the interface parameters and the corresponding MIB object names. The string ".iso.org.dod.internet.mgmt.mib-2.interfaces." precedes the MIB object names.

Table B-28. Interface Parameters vs. MIB Objects

Interface Parameter	MIB Object
rip_accept	interfaceRipAccept
rip_advertise	interfaceRipAdvertise
rip_default_route	interfaceRipDefRoute
rip_horizon	interfaceRipHorizon
rip_recv_version	interfaceRipRecvVersion
rip_send_version	interfaceRipSendVersion
rip_sub_accept	interfaceRipSubAccept
rip_sub_advertise	interfaceRipSubAdvertise

Asynchronous Port Parameters vs. MIB Objects

Table B-29 lists the asynchronous port parameters corresponding to the MIB object names. Table B-30 lists the PPP and SLIP port parameters and the corresponding MIB object names. Table B-25 lists the T1-specific parameters and the corresponding MIB object names.

- All asynchronous port private MIB object names are preceded by the string ".iso.org.dod.internet.private .enterprises.xylogics.annex.ports.portTable.portEntry." and appended by the port instance number.
- The following string precedes the object names that are in the rs232 MIB:
 - ".iso.org.dod.internet.mgmt.mib-2.transmission.rs232."
- The string ".iso.org.dod.internet.mgmt.mib-2.char." precedes the MIB object names that are in the charlikeMIB.

Table B-29. Asynchronous Port Parameters vs. MIB Object Names

Async Port Parameter	MIB Object
allow_broadcast	anxpAllowBcast
arap_v42bis	anxpArapV42bis
at_guest	anxpAtGuest
at_nodeid	anxpAtNodeid
at_security	anxpAtSecurity
attn_string	anxpAttnChar
authorized_groups	anxpLatAuthGroupVal
backward_key	anxpBackwardKey
banner	anxpBanner
broadcast_direction	anxpBcastDirection
char_erase	anxpCharErase
cli_imask7	anxpCliImask7
cli_inactivity	anxpCliInactivity
cli_security	anxpCliSecurity
connect_security	anxpConnectSecurity
control_lines	anxpCtrlLines
data_bits	rs232AsyncPortTable.rs232AsyncPortEntry.rs232 AsyncPortBits
forward_key	anxpForwardKey
line_erase	anxpLineErase

(continued on next page)

Table B-29. Asynchronous Port Parameters vs. MIB Object Names (continued)

Async Port Parameter	MIB Object
location	anxpLocation
long_break	anxpLongBreak
dedicated_address	anxpDedicatedAddr
dedicated_arguments	anxpDedicatedArgs
dedicated_port	anxpDedicatedPort
echo	anxpEcho
erase_char	anxpEraseChar
erase_line	anxpEraseLine
erase_word	anxpEraseWord
forwarding_count	anxpForwardCount
forwarding_timer	anxpForwardTimer
hardware_tabs	anxpHardwareTabs
imask_7bits	anxpImask7Bits
inactivity_timer	anxpInactivityTimer
input_flow_control	charPortTable.charPortEntry.charPortInFlowType
input_is_activity	anxpInputIsActivity
input_start_char	anxpInputStartChar
input_stop_char	anxpInputStopChar
ixany_flow_control	anxpIxanyFlowCtl

(continued on next page)

Table B-29. Asynchronous Port Parameters vs. MIB Objects (continued)

Async Port Parameter	MIB Object
latb_enable	anxpLatbEnable
map_to_lower	anxpMapToLower
map_to_upper	anxpMapToUpper
max_session_count	charPortTable.charPortEntry. charPortSessionMaximum
mode	anxpMode
modem_var	anxpModemVar
need_dsr	anxpNeedDsr
newline_terminal	anxpNewLineTerm
net_inactivity	anxpNetInactivity
net_inactivity_units	anxpNetInactivityUnits
output_flow_control	charPortTable.charPortEntry. charPortOutFlowType
output_is_activity	anxpOutputIsActivity
output_start_char	anxpOutputStartChar
output_stop_char	anxpOutputStopChar
parity	rs232AsyncPortTable.rs232AsyncPortEntry. rs232AsyncPortParity
phone_number	anxpPhoneNumber
port_password	anxpPortPassword
port_server_security	anxpPortServerSecurity

(continued on next page)

Table B-29. Asynchronous Port Parameters vs. MIB Objects (continued)

Async Port Parameter	MIB Object
ppp_ipx_network	anxpPppIpxNetwork
ppp_ipx_node	anxpPppIpxNode
prompt	anxpPrompt
ps_history_buffer	anxpPsHistory
redisplay_line	anxpRedisplayLine
reset_idle_time_on	anxpResetIdleTimer
short_break	anxpShortBreak
tcp_keepalive	anxpTcpKeepAlive
speed	rs232PortTable.rs232PortEntry.rs232PortInSpeed rs232PortTable.rs232PortEntry.rs232PortOutSpeed
stop_bits	rs232AsyncPortTable.rs232AsyncPortEntry. rs232AsyncPortStopBits
tcp_keepalive	anxpTcpKeepAlive
telnet_crlf	anxpTeInetCRLF
telnet_escape	anxpTeInetEscape
term_var	anxpTermVar
tn3270_printer_host	anxpTn3270PrinterHost
tn3270_printer_name	anxpTn3270PrinterName
toggle_output	anxpToggleOutput
type	апхрТуре
user_name	anxpUserName

Table B-30. PPP and SLIP Port Parameters vs. MIB Objects

PPP/SLIP Port Parameter	MIB Object
allow_compression	anxpAllowCompression
dialup_addresses	anxpPppDialupAddr
do_compression	anxpDoCompression
local_address	anxpNetLocalAddr
metric	anxpNetMetric
ppp_acm	anxpPppAcm
ppp_mru	anxpPppMru
ppp_ncp	anxpPppNcp
ppp_password_remote	anxpPppPasswdRemote
ppp_security_protocol	anxpPppSecurityProto
ppp_username_remote	anxpPppUserRemote
remote_address	anxpNetRemoteAddr
slip_allow_dump	anxpSlipAllowDump
slip_load_dump_host	anxpSlipLoadDumpHost
slip_mtu_size	anxpSlipMtuSize
slip_no_icmp	anxpSlipNoIcmp
slip_ppp_security	anxpSlipSecure
slip_tos	anxpSlipTos
subnet_mask	anxpSlipSubnetMask

Numerics 4.3BSD event logging using syslog B-29	hardware interface statistics B-3 to B-5 statistics from netstat B-19 event logging B-26 to B-30 using syslog B-29
Α	F
acp_userinfo file B-29 Address Resolution Protocol. See ARP allow_snmp_sets parameter B-46, B-47 AppleTalk statistics B-10	filtering statistics B-19 finger command B-31
ARA logins B-28 ARP table management B-25	gateway entries for SNMP community B-44 for SNMP trap hosts B-45 uses for configuring SNMP agent B-43
call-back B-28 configuration parameters Annex allow_snmp_sets B-47 disabled_modules B-36 serial line port allow_snmp_sets B-47 vs. MIB objects B-59 to B-61 control command B-33	host table management B-34 to B-36 resetting B-36 host_table_size parameter B-35 host-based security logging B-26 hosts command B-35 hosts -f command B-36 hosts -n command B-36
dial-out routes information B-18 disabled_modules parameter B-36, B-46, B-48 disabling modules B-36, B-37 displaying Annex statistics B-31 to B-33 user activity B-30	image_name parameter B-58 interface parameters vs. MIB objects B-68 IPX-specific parameters vs. MIB objects B-66 L LAT protocol statistic objects B-63
enable_security parameter B-26 Ethernet	lat_key parameter B-21 logging

event	using to display filtering statistics B-19
using syslog B-29	netstat -g command
host-based security B-26	using for RIP statistics B-11
user and Annex events B-26 to B-30	netstat -i command
M	display B-5
IVI	using for AppleTalk statistics B-10
Management Information Bases. See MIBs memory statistics B-20	using to display dial-out route's interface name B-18
MIBS	using to display interface statistics B-3
serial port parameters vs. MIB objects B-69	netstat -ip command
to B-73	field definitions for B-7
MIBs	netstat -iS command
	using for SLIP statistics B-9
Annex private enterprise MIB vs. Annex	netstat -m command
parameters B-58 to B-74 Annex restrictions on B-51 to B-57	displays statistics for memory management
	routines B-20
configuration parameters vs. MIB objects B-59 to B-61	netstat -R command
	field definitions B-19
interface parameters vs. MIB objects B-68	using to display all rotaries configured for
IPX-specific parameters vs. MIB objects B-	Annex B-18
66	netstat -r command
MIB object hierarchy B-50	displaying routing table information using B
prefixes for MIB Object Names B-58	13
supported by Annex B-49 to B-57	using for dial-out route information B-18
T1-specific parameters vs. MIB objects B-67	using for dial-out route statistics B-13
TMux-specific parameters vs. MIB	netstat -s command
objects B-65	using to display statistics for protocols B-21
monitoring	network
Annex activity B-25 to B-34	active connections B-2
network activity B-1 to B-25	activity monitoring B-1 to B-25
serial line activity B-33	administration B-1 to B-40
N	displaying statistics B-1
	testing B-23
netstat -C command	troubleshooting B-37 to B-40
using to obtain route cache information B-17	troubleshooting D 37 to D 40
netstat command	0
arguments B-2	
displaying network statistics B-1	option_key parameter B-21
monitoring network B-1	Р
PPP statistics B-6	-
netstat -f command	ping command
field definitions B-20	arguments for B-23

using to test network B-23	LAT statistic objects B-63 PPP and SLIP port parameters vs. MIB
SLIP port parameters vs. MIB objects and B-	objects B-74
74	Annex restrictions on standard MIBs B-51 to
statistics B-6 to B-8	B-59
protocol statistics B-21	commands B-46
D	get B-46
R	get-next B-46
reset annex nameserver command	set B-46
using for host table management B-36	using to send commands to
RIP	Annex B-47
statistics B-11	configuring Annex for B-43 to B-46
rotaries	SNMP agent configuration B-43
statistics from netstat B-18	defining allow_snmp_sets
route	parameter B-46
cache	defining community string B-44
information B-17	defining contact string B-45
dial-out	defining disabled_modules
information B-18	parameter B-46
routing	defining location string B-46
table	defining trap hosts and traps B-44
statistics and information B-13 to B-16	describing and naming objects B-50
RWHO protocol B-34	gateway entry for community string B-44
	gateways file entry for trap hosts B-45
S	message delivery B-42
security	MIB object hierarchy B-50
host-based	MIBs supported by Annex B-49 to B-57
logging B-26	AppleTalk MIB, and restrictions B-53
serial line	Character MIB, and object
monitoring activity B-33	restrictions B-55
Simple Network Management Protocol. See	Ethernet MIB, and object restrictions B-
SNMP	54
SLIP	MIB-II, and object restrictions B-52
PPP port parameters vs. MIB objects and B-	RIPv2 MIB, and object restrictions B-54
74	RS-232 MIB, and object restrictions B-
statistics B-9	56
SNMP B-41 to B-74	overview B-41
Annex parameters vs. Annex private enter-	setting port speed B-57
prise MIB B-58 to B-74	supported traps B-45
configuration parameters vs. MIB	statistics filtowing P 10
objects B-59 to B-61	filtering B-19

for AppleTalk B-10 W interface B-3 to B-5 who command B-30, B-31 memory B-20 PPP B-6 to B-8 protocol B-21 **RIP B-11** SLIP B-9 stats -c command using to clear all serial line statistics to zero B-33 stats -m command using to display statistics for active control lines B-33 stats -p command using to display statistics for parallel ports B-33 stats -s command using to display statistics for serial ports B-32 syslog daemon B-26 syslog_port parameter B-29 syslogging using 4.3BSD-style syslog daemon B-29 T T1-specific parameters vs. MIB objects B-67 tap command B-33 tmux_enable parameter B-21 TMux-specific parameters vs. MIB objects B-65 troubleshooting B-37 to B-40 all network ports in use B-40 host table not displaying hosts B-39 network logins to BSD hosts invisible B-40 session not terminating B-38 wrong address in host table B-40 U User Datagram Protocol. See UDP