Задача №4.

Огромные достижения синтетической органической химии в период с 1830-х гг. поддерживали предположения, что подобная обширная химия может базироваться и на элементе **X**. Бинарные вещества **A**₁-**A**₃, образованные **X**, имеют одинаковый качественный состав, бурно реагируют с кислородом. Наиболее термически устойчивым является газ **A**₁, который получают обработкой бинарного соединения **Б**₁ (ω (**X**) = 36,84%) водным раствором серной кислоты (*реакция 1*).

Для получения газа A_2 , сначала газ A_1 обрабатывают йодоводородом в присутствии каталитических количеств йодида алюминия, при этом основным продуктом реакции являются жидкость $\mathbf{W}(\omega(\mathbf{X}) = 17,72\%)$ и легкий газ $\mathbf{J}(pe-akuus 2)$. Затем вещество \mathbf{W} обрабатывают амальгамой натрия (реакция 3) и получают газ \mathbf{A}_2 .

Для получения жидкости A_3 бинарное соединение \mathbf{F}_2 ($\omega(\mathbf{X}) = 22,83\%$) обрабатывают избытком гидрида натрия (*реакция 4*).

Разложением A_1 (реакция 5) получают сверхчистое простое вещество Π , образованное элементом X, которое имеет широкое применение в электронике.

- 1) Определите все зашифрованные вещества и запишите уравнения *реак- ций 1-5*. Ответ подтвердите расчётом.
 - 2) Как называются вещества A₁-A₃. Приведите их структурные формулы.
- 3) Вещества **A₁-A₃** легко воспламеняются на воздухе. Напишите уравнение реакции сгорания одного из веществ **A₁-A₃** в избытке кислорода.

Решение:

Органическая химия базируется на углероде, тогда вероятнее всего X принадлежит IVA подгруппе. Широкое применение X в электронике указывает на кремний. Тогда соединение $S_1 - S_4Si_n$, составим уравнение:

$$0,3684 = \frac{28n}{M(Э) + 28n}$$
 $M(Э) = 12n,$ при $n = 2,$ получаем $\mathbf{F_1} - \mathbf{Mg_2Si}$

Следовательно, в задаче речь идёт о силанах, газ Л скорее всего это H_2 . Тогда Ж вероятнее всего – SiH_3I , проверим $\omega(Si) = 28/158 = 0,1772$. При обработке натрием соединения Ж будет образовываться дисалан – Si_2H_6 (A_2). Продолжая цепочку соединений A, вероятнее всего $A_3 - Si_3H_8$, тогда E_2 вероятнее всего галогенопроизводное – Si_3Hal_8 , тогда E_2 м(E_3) вероятнее всего галогенопроизводное – E_3 0, тогда E_3 1 гогда E_4 2 вероятнее всего галогенопроизводное – E_3 1 гогда E_4 3 гогда E_5 4 гогда E_6 6 гогда E_7 8 гогда E_8 9 гогда E_8 9

Х, П	$\mathbf{A_1}$	A ₂	A ₃	Б1	Б2	Л	Ж
Si	SiH ₄	Si ₂ H ₆	Si ₃ H ₈	Mg ₂ Si	Si ₃ Cl ₈	H_2	SiH ₃ I

(за каждое вещество -1 балл, вещества $\boldsymbol{\mathcal{E}}_1$, $\boldsymbol{\mathcal{E}}_2$, $\boldsymbol{\mathcal{K}}$ без расчёта -0 баллов)

Уравнения реакций:

1)
$$Mg_2Si + 2H_2SO_4 = 2MgSO_4 + SiH_4$$

$$2) \operatorname{SiH}_4 + \operatorname{HI} = \operatorname{SiH}_3 I + \operatorname{H}_2$$

3)
$$2SiH_3I + 2Na = Si_2H_6 + 2NaI$$

4)
$$Si_3Cl_8 + 8NaH = Si_3H_8 + 8NaCl$$

5)
$$SiH_4 = Si + 2H_2$$

(за каждое уравнение – 1 балл)

A ₁	A ₂	A 3	
H H H	H Si—Si—H H	H H H H	
Силан	Дисилан	Трисилан	

(за каждую структуру -1 балл, название -1 балл)

6)
$$SiH_4 + 2O_2 = SiO_2 + 2H_2O$$

1 балл

Итого 20 баллов