Universität zu Köln

MATHEMATISCH-NATURWISSENSCHAFTLICHE FAKULTÄT

Praktikum B

B3.1 Statistik der Kernzerfälle

CATHERINE TRAN
CARLO KLEEFISCH
OLIVER FILLA

Inhaltsverzeichnis

1	Einleitung	3
2		4 4 4
3	Durchführung	5
4	Auswertung	6
5	Fazit	7
6	Literatur	8

1 Einleitung

2 Theoretische Grundlagen

2.1 Der χ^2 -Anpassungstest

Der χ^2 -Anpassungstest (Chi-Quadrat-Test) dient dazu, eine Verteilung von Zufallsvariablen mit einer theoretischen Verteilung zu vergleichen. Man kann mithilfe des Tests bewerten, ob die Zufallsvariablen der Verteilung entsprechen können.

2.1.1 Hypothesentest

Ein Hypothesentest oder Statistischer Test dient dazu, durch eine Hypothese mittels statistischer Messungen zu prüfen.

Dazu verwendet man eine $Nullhypothese^1$ H_0 und eine Gegenhypothese oder Alternativhypothese H_1 , die sich unterscheiden. Ziel des Tests ist es, die Alternativhypothese H_1 zu belegen. Falls dies nicht gelingt, muss man die Nullhypothese H_0 als wahr annehmen. Diese wird nicht überprüft. [2]

Aufgrund der Zufälligkeit der Ereignisse kann es dabei zwei Arten von Fehlern geben. Ein α -Fehler beschreibt das irrtümliche Ablehnen von H_0 , während ein β -Fehler das fälschliche Annehmen von H_0 bezeichnet.

2.1.2 Fehlerarten

Ein Fehler erster Art oder α -Fehler beschreibt die fälschliche Ablehnung der Nullhypothese H_0 in einem Statistischen Test. Man nimmt z.B. an, dass ein Würfel gezinkt ist (H_1) , obwohl er in Wahrheit fair ist (H_0) . Hierbei ist die H_0 die Annahme eines fairen Würfels. Man spricht hier auch von einem falsch-positiven Ergebnis. [3]

Ein Fehler zweiter Art oder β -Fehler beschreibt umgekehrt die fälschliche Akzeptanz der Nullhypothese H_0 . Beispielsweise geht man davon aus, dass ein Würfel fair ist (H_0) , obwohl er tatsächlich unfair ist (H_1) . Man spricht hier auch von einem falsch-negativen Ergebnis. [3]

Die statistische Signifikanz beschreibt die erlaubte Wahrscheinlichkeit, einen α -Fehler zu begehen. [4]

¹Hypothesis to be nullified [5]

3 Durchführung

4 Auswertung

5 Fazit

6 Literatur

- 1. Universität zu Köln, "B3.1: Statistik der Kernzerfälle", Januar 2021, Online verfügbar unter https://www.ikp.uni-koeln.de/fileadmin/data/praktikum/B3.1_statistik_de.pdf
- 2. Wikipedia, "Statistischer Test", https://de.wikipedia.org/wiki/Statistischer Test, Abruf am 18.04.2024
- 3. Wikipedia, "Fehler 1. und 2. Art", https://de.wikipedia.org/wiki/Fehler_1 ._und_2._Art, Abruf am 18.04.2024
- 4. Wikipedia, "Statistische Signifikanz", https://de.wikipedia.org/wiki/Statistische_Signifikanz, Abruf am 18.04.2024
- 5. G. Gigerenzer, "Mindless statistics", 2004, The Journal of Socio-Economics, DOI 0.1016/j.socec.2004.09.033