- Ferret: Fast extension for correlated OT with small communication
 - Part 0 Overview
 - Contributions
 - Pre-knowledge
 - Correlated Oblivious Transfer (COT)
 - The primal-LPN assumption
 - The dual-LPN assumption
 - Single-point correlated OT (SPCOT)
 - Result: VOLE based on LPN assumption
 - Key ideas
 - Performance
 - Follow up work
 - Part 1 Preliminaries
 - Part 2 SPCOT
 - General Idea:
 - Detailed Protocol Discription:
 - Parameters
 - Inputs
 - Protocol
 - Part 3 MPCOT
 - Part 4 Final COT
 - Part 5 Evaluation

Ferret: Fast extension for correlated OT with small communication

published at the 27th ACM Conference on Computer and Communications Security

Part 0 Overview

Contributions

Protocol

- Efficient correlated OT for semi-honest and malicious security
- Based on Learning Parity with Noise (LPN) assumption

Open-sourced implementation

- Communication: 0.45 bits per COT
- Computation:
 - 50 Mbps = 17 ns per COT
 - ∘ 10 Gbps = 13 ns per COT

Application:

- Other variations of OT, ROT, OT...
- Semi-honest protocols: Garbled Circuit, GWM, ...
- Malicious protocols: SPDZ(MASCOT), TinyOT, Authenticated Garbling, ...
- Zero-knowledge proofs: GC-based ZK, ...
- Specific protocols: PSI, threshold ECDSA, ...

The primal-LPN assumption

$$\{(A,b) \mid A \leftarrow C(k,n,F_2), e \in D_{k,n}, u \in F_2^k, b = u \cdot A + e\} \approx \{(A,b) \mid A \leftarrow C(k,n,F_2), b \in F_2^k\}$$

Steps:

1. Obtain k COTs with choice bits **u.** (k<<n)

$$\circ W = V + U \cdot \Delta;$$

2. Obtain n COTs with choice bits e. (Comm. = O(log n))

$$\circ$$
 $r = s + e \cdot \Delta$;

$$s \in \mathbb{F}_{2^{\kappa}}^{k} \longleftarrow \mathcal{F}_{cot} \longrightarrow e \in \mathbb{F}_{2^{\kappa}}^{\ell}$$

$$r \in \mathbb{F}_{2^{\kappa}}^{\ell}$$

3. Combine them based on LPN assumption.

$$\circ \ \ z = y + x \cdot \Delta;$$

LPN

$$y = v \cdot A + s$$

$$x = u \cdot A + e$$
$$z = w \cdot A + r$$

The dual-LPN assumption

0

 $\{(H,b) \mid H \leftarrow C^{\perp}(N,n,F_2), \ e \in D_{k,n}, \ u \in F_2^k, \ b = e \cdot H\} \approx \{(H,b) \mid A \leftarrow C^{\perp}(N,n,F_2), \ b \in F_2^k\}$

Cheap communication: O(t);

Heavy computation: e.g. FFT

Single-point correlated OT (SPCOT)

General idea: The receiver's choice bit is "1" at only one position

$$w[i] = \{ v[i], & i \equiv \alpha \\ v[i] \oplus \Delta, & i = \alpha \}$$

Result: VOLE based on LPN assumption

Protocol	Assumption	Security	Communication	Computation
Boyle et al. [BCG19]	Dual-LPN	Malicious	Low	High
Schoppmann et al. [SGRR19]	Primal-LPN	Semi-honest	High	Low
Ferret	Primal-LPN	Malicious	Low	Low

Noise type	Security Comm./COT (bits)	Time/COT (ns)				
		(bits)	50Mbps	10Gbps	50Mbps	10Gbps
Pogular	Semi-honest	0.44	21.5	16.0	16.7	11.8
Regular	malicious	0.44	22.0	18.5	17.0	13.5

Key ideas

- 1. Iteration
- 2. SPCOT with malicious security for free (1ns)
 - Prior approach
 - Too many calls to PRG & hash a long string
 - Their approach random correlation check
 - The S and R have

•
$$V + W = I(n, \{\alpha\}) \cdot \Delta$$

• Check the random linear combination

• Performance gain from local computation + hardware support

Performance

Security	Protocol	Comm./COT (bits)	Time/COT (ns)		
			50Mbps	1Gbps	
Semi-honest	[ALSZ13]	128	2570.4	32.4	
	[BCG+19] (regular)	0.1	196.1	196.6	
	Ferret (regular)	0.44	21.5	16.0	
Malicious	[KOS15]	128	2573.6	34.4	
	[BCG+19] (regular)	0.1	209.9	209.5	
	Ferret (regular)	0.44	22.0	18.5	

Setup time < 184 ms (50 Mbps) < 30 ms (10 Gbps)

Uniform noise-LPN supported with some performance penalty

Follow up work

- Subfield VOLE for prime field F_p . (malicious, $p = 2^{61} 1$)
 - 87 ns/field element at 50 Mbps
- Zero-knowledge proofs of boolean & arithmetic circuits
 - Information-Theoretic MACs
 - In the pre-processing model

Circuit Type	Bandwidth	Performance
Binary	50 Mbps	<0.50 us/gate
Arithmetic (61-bit prime)	500 Mbps	<1 us/gate

Part 1 Preliminaries

- $x \leftarrow S$: denotes sampling ? uniformly at random from a finite set S;
- $x \leftarrow D$: denotes sampling ? according to the distribution D;
- u = I(n, S): For any $n \in \mathbb{N}$ and a subset $S \subseteq [n]$, u denotes an n-bit vector, where u[i] = 0 for all $i \in \{[n] \land \bar{S}\}$ and u[i] = 1 for all $i \in S$;
- $X \approx^c Y$: X and Y are computationally indistinguishable.

Functionality \mathcal{F}_{COT}

Initialize: Upon receiving (init, Δ) from a sender S where global key $\Delta \in \mathbb{F}_{2^K}$, and (init) from a receiver R, store Δ and ignore all subsequent (init) commands.

Extend: Upon receiving (extend, ℓ) from S and R, this functionality operates as follows:

- Sample $\boldsymbol{v} \leftarrow \mathbb{F}_{2^K}^{\ell}$. If S is corrupted, instead receive $\boldsymbol{v} \in \mathbb{F}_{2^K}^{\ell}$ from the adversary.
- Sample $\boldsymbol{u} \leftarrow \mathbb{F}_2^{\ell}$ and compute $\boldsymbol{w} := \boldsymbol{v} + \boldsymbol{u} \cdot \Delta \in \mathbb{F}_{2^{\kappa}}^{\ell}$.
- If R is corrupted, receive $\mathbf{u} \in \mathbb{F}_2^{\ell}$ and $\mathbf{w} \in \mathbb{F}_{2^K}^{\ell}$ from the adversary, and recompute $\mathbf{v} := \mathbf{w} + \mathbf{u} \cdot \Delta$.

Outputs: Send \boldsymbol{v} to S and $(\boldsymbol{u}, \boldsymbol{w})$ to R.

Figure 1: Correlated OT functionality.

Figure 2: Relations of the functionalities and protocols considered in this paper. $A \xrightarrow{C} B$ denotes that protocol C securely realizes functionality B in the A-hybrid model.

Part 2 SPCOT

General Idea:

The semi-honest SPCOT protocol works by the sender computing a GGM tree with n leaves (namely $\{v[i]\}$ i \diamondsuit \lozenge [n]) and the receiver obtaining all-but-one of the leaves (namely $\{v[i]\}$ \lozenge \lozenge [n]) using an OT protocol. Then the sender can send \diamondsuit \diamondsuit $+\sum_{i\in[n]}v[i]$ to the receiver who can compute $v[\alpha]$ + \diamondsuit \lozenge locally, which completes the semi-honest protocol.

Detailed Protocol Discription:

Parameters

• a length doubling PRG $G: \{0,1\}^{\kappa} \to \{0,1\}^{2\kappa}$;

- a tweakble CRHF $H: \{0,1\}^{2\kappa} \to \{0,1\}^{\kappa}$;
- a cryptographic hash function $H': \mathsf{F}_{2^{\kappa}} \to \{0,1\}^{2^{\kappa}}$ as a random oracle.

Inputs

Sender

- a gloabal secret key $\Delta \in \mathsf{F}_{2^\kappa}$;
- an integer $n = 2^h, h \in \mathbb{N}$.

Receiver

- same integer $n = 2^h$, $h \in \mathbb{N}$;
- a single point $\alpha \in [n]$.

Protocol

Initialize: (one time only execution)

- S sends (init, $\spadesuit \spadesuit$) to F_{COT} ;
- R sends (init) to F_{COT} .

Extend: (multiple execution allowed)

- 1. This step is preparing the corelated vectors over F_b^{κ} . Later in step 3 we will use those vectors to mask the information online, and reconstruct the GGM tree locally at the receiver site in step 4.
 - S and R send (extend, h) to F_{COT} ;
 - The functionality returns $q_i \in \{0,1\}^K$ to S;
 - The functionality returns $(r_i, t_i) \in \{0, 1\} \times \{0, 1\}^K$ to R, where $t_i = q_i \oplus r_i \cdot \Delta$, for $i \in$ {1, ..., *h*}.
- 2. This step is generating the GGM tree by using a length doubling PRG, and compute seeds K_0^i and K_1^i both locally at the sender's site.
 - S picks a random $\mathbf{s}_0^0 \in \{0,1\}^K$.
 - S computes $(s_{2j}^{i}, s_{2j+1}^{i}) = G(s_{j}^{i-1})$, for each $i \in \{1, ..., h\}, j \in [2^{i-1}]$; S computes $K_{0}^{i} = \bigoplus_{j \in [2^{i-1}]} s_{2j}^{i}$, and $K_{1}^{i} = \bigoplus_{j \in [2^{i-1}]} s_{2j+1}^{i}$;

 - (need a picture here)

3.

Part 3 MPCOT

Part 4 Final COT

Part 5 Evaluation