Sprawozdanie 1 - Obliczenia Naukowe

Michał Kallas

24 listopada 2024

1 Zadanie 1

1.1 Opis problemu

Napisać funkcję rozwiązującą równanie f(x) = 0 metodą bisekcji.

1.2 Opis metody

Metoda bisekcji jest jedną z najprostszych metod numerycznych służących do znajdowania pierwiastków funkcji. Jej podstawowe założenie opiera się na twierdzeniu Darbaux: jeśli funkcja f(x) jest ciągła na przedziale [a,b] i spełnia warunek $f(a)\cdot f(b)<0$, to w tym przedziale istnieje co najmniej jeden pierwiastek. Metoda polega na iteracyjnym dzieleniu przedziału na połowę i wybieraniu podprzedziału, w którym funkcja zmienia znak.

1.3 Pseudokod

Dane:

- f funkcja f(x) zadana jako anonimowa funkcja (ang. anonymous function),
- $\bullet \ a,b$ końce przedziału początkowego,
- δ, ϵ dokładności obliczeń.

Wyniki:

- r przybliżenie pierwiastka równania f(x) = 0,
- v wartość f(r),
- it liczba wykonanych iteracji,
- err sygnalizacja błędu:
 - -0 brak błędu,
 - -1 funkcja nie zmienia znaku w przedziale [a, b].

Algorytm 1 Metoda bisekcji

```
1: f_a \leftarrow \overline{f(a)}, \ \overline{f_b \leftarrow f(b)}
 e \leftarrow b - a
 3: it \leftarrow 0
 4: if sign(f_a) = sign(f_b) then
        return (Nothing, Nothing, Nothing, 1)
 6: end if
 7: while true do
        it \leftarrow it + 1
        e \leftarrow e/2
 9:
        r \leftarrow a + e
10:
        v \leftarrow f(r)
11:
12:
        if |e| < \delta or |v| < \epsilon then
           return (r, v, it, 0)
13:
14:
        end if
        if sign(v) \neq sign(f_a) then
15:
           b \leftarrow r, f_b \leftarrow v
16:
        else
17:
           a \leftarrow r, f_a \leftarrow v
18:
        end if
19:
20: end while
```

2 Zadanie 2

2.1 Opis problemu

Napisać funkcje rozwiązującą równanie f(x) = 0 metodą Newtona.

2.2 Opis metody

Metoda Newtona, znana również jako metoda stycznych, jest iteracyjną techniką przybliżania pierwiastków funkcji. Opiera się na założeniu, że funkcja może być dobrze przybliżona przez styczną do wykresu funkcji w pobliżu punktu, który chcemy znaleźć.

W każdej iteracji zaczynamy od aktualnego przybliżenia x_n , obliczamy styczną do wykresu funkcji f(x) w tym punkcie, a następnie wyznaczamy punkt przecięcia tej stycznej z osią OX. Nowe przybliżenie pierwiastka, x_{n+1} , to właśnie to miejsce przecięcia. Iteracyjny wzór ma postać:

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$$

Metoda Newtona jest bardzo szybka, gdy punkt początkowy jest bliski rzeczywistego pierwiastka, ale może nie działać poprawnie, jeśli początkowe przybliżenie jest dalekie lub jeśli pochodna funkcji w danym punkcie jest bliska zeru.

2.3 Pseudokod

Dane:

- f, pf funkcje f(x) oraz pochodną f'(x) zadane jako anonimowe funkcje,
- x_0 przybliżenie początkowe,
- δ , ϵ dokładności obliczeń,
- maxit maksymalna dopuszczalna liczba iteracji.

Wyniki:

- r przybliżenie pierwiastka równania f(x) = 0,
- v wartość f(r),
- it liczba wykonanych iteracji,
- \bullet err sygnalizacja błędu:
 - 0 metoda zbieżna,
 - $-\,$ 1 nie osiągnięto wymaganej dokładności w maxititeracjach,
 - 2 pochodna bliska zeru.

Algorytm 2 Metoda Newtona

```
1: v \leftarrow f(x_0)
 2: if |v| < \epsilon then
       return (x_0, v, 0, 0)
 4: end if
 5: for it = 1 to maxit do
       dfx \leftarrow f'(x_0)
 7:
       if |dfx| < \epsilon then
          return (x_0, v, it, 2)
 8:
       end if
 9:
       x_1 \leftarrow x_0 - \frac{v}{dfx}
10:
       v \leftarrow f(x_1)
11:
       if |x_1 - x_0| < \delta or |v| < \epsilon then
12:
          return (x_1, v, it, 0)
13:
14:
       end if
15:
       x_0 \leftarrow x_1
16: end for
17: return (x_0, v, maxit, 1)
```

3 Zadanie 3

3.1 Opis problemu

Napisać funkcję rozwiązującą równanie f(x) = 0 metodą siecznych.

3.2 Opis metody

Metoda siecznych jest modyfikacją metody Newtona, która nie wymaga obliczania pochodnej. Zamiast tego, przybliża jej wartość na podstawie 2 ostatnich przybliżeń. Geometrycznie, aproksymujemy pierwiastek funkcji za pomocą stycznej do wykresu. Iteracyjny wzór ma postać:

$$x_{n+1} = x_n - f(x_n) \cdot \frac{x_n - x_{n-1}}{f(x_n) - f(x_{n-1})}.$$

Metoda ta wymaga dwóch początkowych przybliżeń x_0 i x_1 i jest szczególnie użyteczna, gdy obliczenie pochodnej f'(x) jest trudne lub niemożliwe.

3.3 Pseudokod

Dane:

- f funkcja f(x) zadana jako anonimowa funkcja,
- \bullet x_0, x_1 przybliżenia początkowe,
- δ, ϵ dokładności obliczeń,
- maxit maksymalna dopuszczalna liczba iteracji.

Wyniki:

- r przybliżenie pierwiastka równania f(x) = 0,
- v wartość f(r),
- it liczba wykonanych iteracji,
- err sygnalizacja błędu:
 - 0 metoda zbieżna,
 - 1 nie osiągnięto wymaganej dokładności w maxit iteracjach.

Algorytm 3 Metoda siecznych

```
1: fx_0 \leftarrow f(x_0)
 2: fx_1 \leftarrow f(x_1)
 3: for it = 1 to maxit do
        if |fx_0| > |fx_1| then
            x_0, x_1 \leftarrow x_1, x_0
 5:
            fx_0, fx_1 \leftarrow fx_1, fx_0
 6:
 7:
        end if
        s \leftarrow \frac{x_1 - x_0}{fx_1 - fx_0}x_1 \leftarrow x_0
 8:
 9:
        fx_1 \leftarrow fx_0
10:
        x_0 \leftarrow x_0 - fx_0 \cdot s
11:
12:
        fx_0 \leftarrow f(x_0)
        if |x_1 - x_0| < \delta or |fx_0| < \epsilon then
13:
            return (x_0, fx_0, it, 0)
14:
        end if
15:
16: end for
17: return (x_0, fx_0, maxit, 1)
```

4 Zadanie 4

4.1 Opis problemu

W celu wyznaczenia pierwiastka równania $\sin x - \left(\frac{1}{2}x\right)^2 = 0$ zastosować wcześniej zaprogramowane metody:

- 1. bisekcji z przedziałem początkowym [1.5,2] i $\delta = \frac{1}{2}10^{-5}$, $\epsilon = \frac{1}{2}10^{-5}$,
- 2. Newtona z przybliżeniem początkowym $x_0=1.5$ i $\delta=\frac{1}{2}10^{-5},\,\epsilon=\frac{1}{2}10^{-5},$
- 3. siecznych z przybliżeniami początkowym $x_0=1,~x_1=2$ i $\delta=\frac{1}{2}10^{-5},~\epsilon=\frac{1}{2}10^{-5}.$

4.2 Wyniki

Metoda	Parametry	Pierwiastek r	Wartość funkcji dla r	Liczba iteracji	Błąd
bisekcji	a = 1.5, b = 2	1.9337539672851562	-2.7027680138402843e-7	16	0
Newtona	$x_0 = 1.5$	1.933753779789742	-2.2423316314856834e-8	4	0
siecznych	$x_0 = 1, x_1 = 2$	1.933753644474301	1.564525129449379e-7	4	0

Tabela 1: Wyniki aproksymacji pierwiastka funkcji $f(x) = \sin x - \left(\frac{1}{2}x\right)^2$ z $\delta = \epsilon = \frac{1}{2}10^{-5}$.

4.3 Obserwacje i wnioski

Każda z metod dobrze poradziła sobie z przybliżeniem pierwiastka funkcji. Żadna z nich nie zwróciła błędu. Metody Newtona i siecznych potrzebowały tylko 4 iteracji, podczas gdy metoda bisekcji potrzebowała ich aż 16. To wynika ze współczynników zbieżności tych funkcji - dla metody bisekcji wynosi on 1(zbieżność liniowa), dla metody Netwona 2(zbieżność kwadratowa), a dla metody siecznych około 1.618.

Zatem, w tym przypadku metody Netwona i siecznych poradziły sobie lepiej. Należy jednak pamiętać, że ogólnie, mimo bycia wolniejszym, metoda bisekcji jest bardziej niezawodna. Wynika to z tego, że jest zbieżna globalnie, a nie lokalnie, jak 2 pozostałe metody.

5 Zadanie 5

5.1 Opis problemu

Metodą bisekcji znaleźć wartości zmiennej x, dla której przecinają się wykresy funkcji y=3x i $y=e^x$. Wymagana dokładność obliczeń: $\delta=10^{-4}$, $\epsilon=10^{-4}$.

5.2 Rozwiązanie

Metoda bisekcji jest stosowana do znajdowania miejsc
 zerowych funkcji, także musimy trochę przekształcić problem. Wiemy, że szukamy miejsca gdzie $3x = e^x$, czyli $e^x - 3x = 0$. W takim wypadku wystarczy znaleźć miejsca zerowe funkcji:

$$f(x) = e^x - 3x$$

Musimy jeszcze dobrać przedziały, w których wartości funkcji mają różny znak. W tym celu posłużyłem się następującym wykresem:

Rysunek 1: Wykres $f(x) = e^x - 3x$ z Desmos.

Na podstawie wykresu można ocenić, że do znalezienia miejsc zerowych dobrze sprawdzą się na przykład przedziały [0,1] oraz [1,2].

5.3 Wyniki

Przedział	Pierwiastek r	Wartość funkcji dla r	Liczba iteracji	Błąd
[0, 1]	0.619140625	-9.066320343276146e-5	9	0
[1, 2]	1.5120849609375	-7.618578602741621e-5	13	0

Tabela 2: Wyniki aproksymacji pierwiastka funkcji $f(x)=e^x-3x$ metodą bisekcji z $\delta=\epsilon=10^{-4}.$

5.4 Obserwacje i wnioski

Jak widać, metodę bisekcji można za sprawą prostego przekształcenia zastosować do znalezienia miejsca przecięcia się 2 funkcji. Dzięki znajomości wykresu funkcji, zastosowanie tej metody było w tym przypadku proste i skuteczne. Jednak, jak łatwo zauważyć, bez wiedzy o przebiegu funkcji byłoby to zadanie znacznie trudniejsze. Nie wiedzielibyśmy gdzie szukać miejsc zerowych, a w przypadku niektórych funkcji nawet ile ich się spodziewać.

6 Zadanie 6

6.1 Opis problemu

Znaleźć miejsce zerowe funkcji $f_1(x)=e^{1-x}-1$ oraz $f_2(x)=xe^{-x}$ za pomocą metod bisekcji, Newtona i siecznych. Wymagana dokładność obliczeń: $\delta=10^{-5}$, $\epsilon=10^{-5}$. Dobrać odpowiednio przedział i przybliżenia początkowe.

Sprawdzić co stanie się, gdy w metodzie Newtona dla f_1 wybierzemy $x_0 \in (1,\infty]$ a dla f_2 wybierzemy $x_0>1$, czy mogę wybrać $x_0=1$ dla f_2 ?

6.2 Funkcje

Rysunek 2: Wykres $f_1(x) = e^{1-x} - 1$ oraz $f_2(x) = xe^{-x}$ z Desmos.

Na podstawie wykresu możemy ocenić, że zarówno f1, jak i f2 mają jedno miejsce zerowe. Dla f1 jest to 1, a dla f2 jest to 0.

6.3 Wyniki

6.3.1 Metoda bisekcji

Funkcja	Przedział	Pierwiastek r	Wartość funkcji dla r	Liczba iteracji	Błąd
f1	[0, 2]	1.0	0.0	1	0
f1	[0, 2.5]	1.0000038146972656	-3.814689989667386e-6	17	0
f1	[-10, 15]	1.0000014305114746	-1.4305104514278355e-6	21	0
f1	[-500, 500]	1.0000020265579224	-2.026555868894775e-6	26	0
f1	[-10000, 10000]	0.9999983012676239	1.6987338189444756e-6	30	0
f2	[-0.5, 0.5]	0	0	1	0
f2	[-0.5, 1]	-7.62939453125e-6	-7.629452739132958e-6	16	0
f2	[-10, 20]	-9.5367431640625e-6	-9.53683411396636e-6	20	0
f2	[-1000, 1000.5]	3.390014171600342e-7	3.390013022380928e-7	27	0
f2	[-20000, 15000]	6250.0	0	2	0

Tabela 3: Wyniki aproksymacji pierwiastka funkcji $f_1(x)=e^{1-x}-1$ oraz $f_2(x)=xe^{-x}$ za pomocą metody bisekcji z $\delta=\epsilon=10^{-5}$.

6.3.2 Metoda Newtona

Funkcja	x_0	Pierwiastek r	Wartość funkcji dla r	Liczba iteracji	Błąd
f1	0.5	0.9999999998878352	1.1216494399945987e-10	4	0
f1	1.01	0.9999999987416528	1.2583472042138055e-9	2	0
f1	1.5	0.9999999984736215	1.5263785790864404e-9	4	0
f1	5	0.9999996427095682	3.572904956339329e-7	54	0
f1	7	0.9999999484165362	5.15834650549607e-8	401	0
f1	20	_	-	1	1
f1	100	-	-	1	1
f2	0.01	-1.0202010000017587e-8	-1.0202010104098596e-8	2	0
f2	0.8	-1.5586599258811135e-6	-1.5586623553037713e-6	9	0
f2	20.5	20.5	2.5628133760928222e-8	0	0
f2	30	30.0	2.8072868906520526e-12	0	0
f2	1	-	-	1	2

Tabela 4: Wyniki aproksymacji pierwiastka funkcji $f_1(x)=e^{1-x}-1$ oraz $f_2(x)=xe^{-x}$ za pomocą metody Newtona z $\delta=\epsilon=10^{-5}$.

6.3.3 Metoda siecznych

Funkcja	Parametry	Pierwiastek r	Wartość funkcji dla r	Liczba iteracji	Błąd
f1	$x_0 = 0.5, x_1 = 1.5$	0.9999999624498374	3.755016342310569e-8	5	0
f1	$x_0 = -2, x_1 = 3$	0.9999993443793663	6.556208484997939e-7	15	0
f1	$x_0 = -5, x_1 = 2$	1.000000147648643	-1.4764863220939617e-7	8	0
f1	$x_0 = 0.5, x_1 = 1000$	1.0000000135075802	-1.3507580054472612e-8	13	0
f2	$x_0 = -1.5, x_1 = 0.5$	1.7791419742860986e-8	1.779141942632637e-8	8	0
f2	$x_0 = -1.5, x_1 = 4$	14.637124064985773	6.4362594367553056e-6	14	0
f2	$x_0 = -10, x_1 = 1$	0.9999816281598148	0.3678794411093574	3	0
f2	$x_0 = -10, x_1 = 1.2$	14.451486746639073	7.650883333713024e-6	12	0
f2	$x_0 = -10, x_1 = 3$	2.9999911847212903	0.1493620828792939	1	0

Tabela 5: Wyniki aproksymacji pierwiastka funkcji $f_1(x) = e^{1-x} - 1$ oraz $f_2(x) = xe^{-x}$ za pomocą metody siecznych z $\delta = \epsilon = 10^{-5}$.

6.4 Obserwacje i wnioski

6.4.1 Metoda bisekcji

Zgodnie z oczekiwaniami metoda bisekcji znajduje pierwiastek od razu, jeśli znajduje się on na środku przedziału. Można zauważyć, że im większe przedziały, tym większa ilość iteracji potrzebna do osiągnięcia wyniku.

Dla f_1 wszystkie przetestowane przeze mnie przypadki zwróciły poprawne wyniki, ale dla f_2 metoda bisekcji stwierdziła, że 6250 jest miejscem zerowym, podczas gdy w rzeczywistości jest to 1. Wynika to z faktu, że wartości f_2 są bardzo bliskie zeru dla dużych argumentów. Jako że są mniejsze od ϵ , to metoda kończy działanie i zwraca niewłaściwy wynik. Jest to całkiem groźne, jako że nie mamy informacji o błedzie.

6.4.2 Metoda Newtona

W przypadku f_1 dla odpowiednio małych $x_0 > 1$ metoda Newtona zwraca poprawne wyniki, ale zauważalny jest szybki wzrost ilości iteracji. Dla większych punktów początkowych pochodna jest zbyt bliska zeru i dostajemy błąd.

Dla f_2 , dla punktów początkowych bliskich pierwiastkowi metoda Newtona zwróciła poprawne wyniki. W przypadku $x_0=1$ dostajemy błąd, jako że $f_2'(1)=0$, co oznacza że styczna jest równoległa do osi OX. Dla większych x_0 metoda też nie zadziałała, jako że wartość funkcji była zbyt bliska zeru i został zwrócony niepoprawny wynik, podobnie jak w przypadku metody bisekcji.

6.4.3 Metoda siecznych

Dla f_1 wyniki są zadowalające. Metoda siecznych zdaje się radzić sobie lepiej niż metoda Newtona.

Jednakże, dla f_2 pojawiło się duży niepoprawnych wyników. Należy w tym przypadku unikać $x_1 > 1$, gdyż prowadzą one do fałszywych rezultatów. Dla ujemnych x_0 sieczna przecina się z osią OX bardzo blisko x_1 , co prowadzi do końca algorytmu przez warunek z δ .

6.4.4 Podsumowanie

Powyższe eksperymenty pokazują nam, że musimy być bardzo uważni korzystając z metod aproksymacyjnych. Bez dobrej analizy przebiegu funkcji nie będziemy wiedzieli gdzie szukać miejsc zerowych i jakie wyniki możemy odrzucić jako niepoprawne.

Metody Newtona i siecznych wymagają bardzo starannie dobranych parametrów w celu otrzymywania sensownych wyników. Co istotne, nawet najbezpieczniejsza, globalnie zbieżna metoda bisekcji zwracała w eksperymentach niepoprawne wyniki. Nie możemy po prostu wybrać ogromnego przedziału i liczyć na znalezienie pierwiastka, bo takie podejście może prowadzić do błędów. Trzeba bardzo uważać na złośliwe funkcje.