Wacum Index-Rodukhons	•
+ Numerode Resultate (RKM/BD7) - nus jus Index-1 / 9-frei - Demi-explair (ndex-2)	•
* Kondante Koeffizienter - Ordnungreduction bei hohen Indices	· · · · · · · · · · · · · · · · · · ·
Wix bounen alon:	
* demande arrays + no gezebere Großen we abgeleitel	
destrative array to my genebere frozen we abgeleitet	: :
detrative array to me gezebere frozen we abgeleitet se lanomische form + differentiation DElimination (-> M-lindex)	
S-frex agrivatente Tormulaeungen + keine x-transprontion * derivative array + www. gegebene Großen we abgeleitet * kanomische Torm + differentiation & Elimination (-> u-lindex)	
Lider Redulation line in den Software Rabelen GENDA	•
	•
Lider Redulation line in den Software Rabelen GENDA	
Lider Redulation line in den Software Rabelen GENDA	
Lider Redulation line in den Software Rabelen GENDA	•

.

.

. . . .

.

.

Numersile Methoden aus Index Reduktion 1) Allgemen busics out "Destrative Grays" (2) Skulturist - speziell für Mehrkörpersysteme E(6) X(4) = A(4) X(8) ((1) Recap: Dedroitive Arrays (7lum 4.6 in Skript) $\int_{A} \int_{A} \int_{$ $\mathcal{M}_{\mu}(t) = \begin{bmatrix} \dot{\varepsilon} - A & \varepsilon \\ \dot{\varepsilon} - 2A & 2\dot{\varepsilon} - A & \varepsilon \end{bmatrix}$ 22 Nm (f) = 0 $9_{23}^{\mu} = \begin{bmatrix} 2_{2}^{\mu} \\ 2_{3}^{\mu} \end{bmatrix} M_{\mu}(\xi) = 0$ 23 [A] =: A2 had vollen lang [qu] $A_2T_2=0$, rank $(ET_2)=d\mu$ Ta so, dass 21 So, durs 21E = E1 Rang du lat (2, A =: A) $\begin{bmatrix} \vec{E}_1(0) \\ 0 \end{bmatrix} \dot{X} = \begin{bmatrix} \vec{A}_1 \\ \vec{A}_2 \end{bmatrix} \times + \begin{bmatrix} \vec{f}_1(1) \\ \vec{f}_2(1) \end{bmatrix}$ S-frère form EU ist aguivalent + S-frei.

Numer	ische Realisioning	
* due St	uldir, ist es unimôglish a-prìori 2	1,22,72 2n berchien
	Cols	Funktion von t)
e destills	Punziweise Beredinnz	
2.B	for eine BDF Approximation	Von $E(t)$ $\dot{x}(1) = A(1)x(1)t$ $\dot{y}(1)$ $\dot{y}(1) = A(1)x(1)t$
· · · · · · · · · · · · · · · · · · ·	$\hat{E}(t_i) D_h X_i = \hat{A}(t_i) X_i + \hat{f}(t_i)$	
	Dixi = 1 Zi ak-exi-e	(23 1/(X;-X;-1))
	É, à nur an Pentebou & benio	high in the second
· · · · · · · · · · · · · · · · · · ·	besedine 200 Laufzet	
lus 2et	(di) besedine (1) Mp(61), Np(41)	
	(1) Mp(61) (Np(41))	
	(2) 2 = R (MA) M, a Sp, da	
	$2_{2,i} M_{\mu}(4) = 0$	ag(2a) $A(n)$ $= a$
	2.1/2 mit SVP odes GR-Zecleganz	(und Maximal)
	(3) $\tilde{T}_{2 i}$ $\tilde{Q}_{1 i}$	
ind dam	A dann	$\frac{2i}{2i} \left[\begin{array}{c} A \\ A \end{array} \right] X_i + f_i$
	$\mathcal{E}(\mathcal{L}_{i})$	$A(t_i)$

Volete	des.	punkharersen	Beschmu	gi		
	*	2-1,22 kg	mueu odh	espual s	pwählt heilheft	losolen
	ooooo	-> bene	lie, wenn de	is Syllen	r sich an	(at
Nadrede	*	Muhoung C	i autwändig	i in tec	lum Zerbi	lint
		Numerodie	Bedimung	Van R	angen (ist problemulisch
L lung	* .	dusch Sch diffesensisen benutzen S	nw das w	hyse	hermz	
Веорн	el)		EKLENSI ON	fus Me	listorpes	système
		v = 0 = 0 = 0	f(x,v) - 6, g(x)	ξ(χ) λ		an Rendel
tddise Mlerungu		0 =	$G(x)^{*} = G(x)^{*}$	50(k)V		
Problem (dar S	ydem Cot	(b	is fedu	rdant)	

Louin sige Unbelianné hinzu! "Muind extension" : sage die "richtgen" lunen $G(x) = [G_1(x) \ G_{12}(x)] U$ _s orthogonal L3 unit $U = [U_1]$ _s orthogonal $U = [U_1]$ _s $u_{1}d su \qquad u_{1}^{T}v = \begin{bmatrix} v_{1} \\ v_{2} \end{bmatrix} = , \text{ Met } x$ $-50 = G(x)V = G(x)UU^{T}V = [G_{1}(y) G_{2}(x)][V_{2}]$ Subdifurou i $\chi_2 = \tilde{\chi}_2$, $V_2 = V_2$ and Strunder des System in den Variablen VA, V2, X1, X2, X2, X2, X2, X Them 62 in Kunhal (Melwinamn)

"dreses System Wt S-frei "