FFR 105 - Report Home Problem 1

Name: Pierre-Eliot Jourdan

Civic registration number: 20001219-T136

Problem 1.1, 3p, Penalty method (Mandatory)

In this first part of the problem, we want to solve the following problem using the penalty method:

$$f(x_1, x_2) = (x_1 - 1)^2 + 2(x_2 - 2)^2 \quad (1)$$

subject to the constraint: $g(x_1, x_2) = x_1^2 + x_2^2 - 1 \le 0$. (2)

1) According to the penalty method, minimizing f subject to g is equivalent to minimizing: $f_p(\mathbf{x}; \mu) = f(\mathbf{x}) + p(\mathbf{x}; \mu)$ without constraints. $p(\mathbf{x}; \mu)$ is the penalty term with p the penalty function:

$$p(\mathbf{x}; \mu) = \mu \times (\sum_{i=1}^{m} (\max\{g_i(\mathbf{x}), 0\})^2), \ \mathbf{x} = (x_1, x_2)$$

Thus, here is the expression of $f_p(\mathbf{x}; \mathbf{\mu})$:

$$f_p(\mathbf{x}; \mu) = (x_1 - 1)^2 + 2(x_2 - 2)^2 + \mu \times (\max\{x_1^2 + x_2^2 - 1, 0\})^2,$$

 $\mathbf{x} = (x_1, x_2)$

- 2) Let's now compute analytically the gradient $\nabla f_{_{p}}(\textbf{x};\boldsymbol{\mu})$:
- * 1st case: the constraints are fulfilled, so $g(x_1, x_2) = x_1^2 + x_2^2 1 \le 0$. Therefore:

$$f_p(x; \mu) = f(x_1, x_2) = (x_1 - 1)^2 + 2(x_2 - 2)^2$$

$$So \nabla f_{p}(\mathbf{x}; \mu) = \left(\frac{df_{p}(\mathbf{x}; \mu)}{dx_{1}}, \frac{df_{p}(\mathbf{x}; \mu)}{dx_{2}}\right) = \left(\frac{df(x_{1}, x_{2})}{dx_{1}}, \frac{df(x_{1}, x_{2})}{dx_{2}}\right) = (2(x_{1} - 1); 4(x_{2} - 2)).$$

* 2nd case: the constraints are not fulfilled, so $g(x_1, x_2) = x_1^2 + x_2^2 - 1 > 0$. Therefore: $f_p(\mathbf{x}; \mathbf{\mu}) = f(x_1, x_2) + \mu(g(x_1, x_2))^2 = (x_1 - 1)^2 + 2(x_2 - 2)^2 + \mu(x_1^2 + x_2^2 - 1)^2$ Let's compute both components of $\nabla f_p(\mathbf{x}; \mathbf{\mu}) = (\frac{df_p(\mathbf{x}; \mathbf{\mu})}{dx_1}, \frac{df_p(\mathbf{x}; \mathbf{\mu})}{dx_2})$:

$$\nabla f_{p}(\mathbf{x}; \mu) = (2(x_{1} - 1) + 4\mu x_{1}(x_{1}^{2} + x_{2}^{2} - 1); 4(x_{2} - 2) + 4\mu x_{2}(x_{1}^{2} + x_{2}^{2} - 1)).$$

3) Let's find out the unconstrained minimum i. e. the point \mathbf{x} such that $\nabla f_p(\mathbf{x}; \mu) = 0$ and we are considering that $\mu = 0$, which leads us to the same expression as the 1st case: $f_p(\mathbf{x}; \mu) = f(x_1, x_2) = (x_1 - 1)^2 + 2(x_2 - 2)^2.$

Thus we are looking for the point x such that $(\frac{df(x_1, x_2)}{dx_1}, \frac{df(x_1, x_2)}{dx_2}) = (0, 0)$:

$$\frac{df(x_{1}, x_{2})}{dx_{1}} = 0 \iff 2(x_{1} - 1) = 0 \iff x_{1} = 1$$

$$\frac{df(x_{1}, x_{2})}{dx_{2}} = 0 \iff 4(x_{2} - 2) = 0 \iff x_{2} = 2$$

Thus the unconstrained minimum of the function is x = (1, 2).

(We will use this point as the starting point for gradient descent).

- 4) See the Matlab scripts RunPenaltyMethod.m, ComputeGradient.m and RunGradientDescent.
- 5) Let's take a look at the results of our programm. I chose for the values of the parameters: $T=10^{-6}$, $\eta=0.0001$ (small value) and for the different values of μ (see the table below), here is the computation of the values of x_1 and x_2 :

Values of μ	Values of x ₁	$Values of x_2$
0 (Starting point)	1	2
1	0.4337	1.2101
5	0.3479	1.0326
10	0.3313	0.9955
50	0.3158	0.9601
100	0.3137	0.9952
500	0.3120	0.9512
1000	0.3117	0.9507

To prove that our results are reasonable, we are going to plot the values of x_1 and x_2 as function of μ . For more visibility, I chose not to plot the starting point (for $\mu=0$) and to plot the values of x_1 and x_2 for $\mu \in [1; 2; 3; 5; 10; 20; 30; 50; 70; 100; 200] and we kept the same values for the parameters: <math>T=10^{-6}$, $\eta=0.0001$. Here we plot the 2 figures:

Conclusion: We can observe on these 2 figures that both sequences of values of x_1 and x_2 are convergent. x_1 seem to converge towards around 0.31 and x_2 towards around 0.95. We also notice that the lower the value of the tolerance parameter T is, the faster x_1 and x_2 will converge.

Problem 1.2, 3p, Constrained optimization (Voluntary)

a)

In this part 1.2. a of the problem, we want to solve the following constrained optimization problem using the analytical method seen in the course. Let's find the minimum of the function:

 $f(x_1, x_2) = 4x_1^2 - x_1x_2 + 4x_2^2 - 6x_2$ on the closed set S shown in the figure below.

Figure 1: The set S used in Problem 1.2a.

* 1st step: Find the stationary points in the interior of SWe solve the equation $\nabla f(x_1, x_2) = 0$ and verify that the solutions are in the interior of S:

$$\frac{df(x_{1},x_{2})}{dx_{1}} = 0 \iff 8x_{1} - x_{2} = 0 \iff x_{2} = 8x_{1}$$
 (1)

 $\frac{df(x_1, x_2)}{dx_2} = 0 \iff -x_1 + 8x_2 - 6 = 0 \quad (2) \text{ we now use (1) to determine } x_2 \text{ and then } x_1:$

(2)
$$\Leftrightarrow 63x_1 = 6 \Leftrightarrow x_1 = \frac{6}{63} = \frac{2}{21}$$
 and then (1) $\Leftrightarrow x_2 = \frac{16}{21}$.

We, thus, notice that $0 < \frac{2}{21} < \frac{16}{21} < 1$ so the point $P_1 = (\frac{2}{21}, \frac{16}{21})^T$ is in the interior of S.

Conclusion: $P_1 = (\frac{2}{21}, \frac{16}{21})^T$ is the only stationary point in the interior of S.

- * 2nd step: Find the stationary points on the boundary of S In this case, the boundary consists of three parts, which will be considered in sequence:
- 1) 1st part: $x_1 = 0$ and $0 < x_2 < 1$. Taking the derivative, we get:

$$f'(0, x_2) = 8x_2 - 6$$
. So $f'(0, x_2) = 0 \Leftrightarrow 8x_2 = 6 \Leftrightarrow x_2 = \frac{6}{8} = \frac{3}{4}$.
Yet, $0 < \frac{3}{4} < 1$ so the point $P_2 = (0, \frac{3}{4})^T$ is on the boundary of S .

2) $2nd \ part: x_2 = 1 \ and \ 0 < x_1 < 1$. Taking the derivative, we get:

$$f'(x_1, 1) = 8x_1 - 1$$
. So $f'(x_1, 1) = 0 \Leftrightarrow 8x_1 = 1 \Leftrightarrow x_1 = \frac{1}{8}$.

Yet, $0 < \frac{1}{8} < 1$ so the point $P_3 = (\frac{1}{8}, 1)^T$ is on the boundary of S.

3) $3rd part: 0 < x_1 = x_2 < 1$. Here is the form of f in this case:

$$f(x_1, x_1) = 4x_1^2 - x_1^2 + 4x_1^2 - 6x_1 = 7x_1^2 - 6x_1.$$

So $f'(x_1, x_1) = 0 \Leftrightarrow 14x_1 - 6 = 0 \Leftrightarrow x_1 = \frac{6}{14} = \frac{3}{7}$.

Yet, $0 < \frac{3}{7} < 1$ so the point $P_4 = (\frac{3}{7}, \frac{3}{7})^T$ is on the boundary of S.

Conclusion: There are 3 stationary points on the boundary of S:
$$P_2 = \left(0, \frac{3}{4}\right)^T, \ P_3 = \left(\frac{1}{8}, 1\right)^T \ and \ P_4 = \left(\frac{3}{7}, \frac{3}{7}\right)^T$$

Finally, the corners must be considered as well, contributing the points:

$$P_{5} = (0,0)^{T}$$
, $P_{6} = (1,1)^{T}$, and $P_{7} = (0,1)^{T}$

* 3rd step: Examining these seven points one by one (computing $f(P_i)$ for i = [1, 7]): Starting with the corners: $f(P_5) = 0$, $f(P_6) = 4 - 1 + 4 - 6 = 1$ and $f(P_7) = 4 - 6 = -2.$

Then:
$$f(P_3) = 4 \times \frac{1}{64} - \frac{1}{8} + 4 - 6 = \frac{1}{16} - \frac{1}{8} - 2 = -2 - \frac{1}{16} = -\frac{33}{16} = -2.0625.$$

 $f(P_4) = 4 \times (\frac{3}{7})^2 - (\frac{3}{7})^2 + 4 \times (\frac{3}{7})^2 - 6 \times \frac{3}{7} = \frac{9}{7} - \frac{18}{7} = -\frac{9}{7} \approx -1.29.$

$$f(P_2) = 4 \times \left(\frac{3}{4}\right)^2 - 6 \times \frac{3}{4} = \frac{9}{4} - \frac{9}{2} = -\frac{9}{4} = -2.25.$$

$$f(P_1) = 4 \times \left(\frac{2}{21}\right)^2 - \frac{2}{21} \times \frac{16}{21} + 4 \times \left(\frac{16}{21}\right)^2 - 6 \times \frac{16}{21} = \frac{16}{21^2} - 2 \times \frac{16}{21^2} + 4 \times \frac{16}{21^2} - 6 \times \frac{16}{21^2} = -\frac{16}{7} \approx -2.29.$$

Thus, the global minimum of f on the set S occurs at the point $P_1 = (\frac{2}{21}, \frac{16}{21})^T$, where the function takes the value $-\frac{16}{7}$.

b)

In this part of the problem, we are going to use the Lagrange multiplier method to determine the minimum $(x_1^*, x_2^*)^T$ of the function :

$$f(x_1, x_2) = 15 + 2x_1 + 3x_2$$
 subject to the constraint $h(x_1, x_2) = x_1^2 + x_1x_2 + x_2^2 - 21 = 0$.

Let's consider the function:

$$L(x_1, x_2, \lambda) = f(x_1, x_2) + \lambda \times h(x_1, x_2) = 15 + 2x_1 + 3x_2 + \lambda \times (x_1^2 + x_1x_2 + x_2^2 - 21).$$
 The local optima of f subject to the equality constraint(s) $h(x_1, x_2) = 0$ can thus be found by computing the stationary points of f . We will find both minima and maxima.

Then, let's consider the equation $\nabla L(x_1, x_2, \lambda) = 0$:

$$\frac{dL(x_1, x_2, \lambda)}{dx_1} = 2 + \lambda \times (2x_1 + x_2) = 0 \quad (1)$$

$$\frac{dL(x_1, x_2, \lambda)}{dx_2} = 3 + \lambda \times (x_1 + 2x_2) = 0 \quad (2)$$

$$\frac{dL(x_1, x_2, \lambda)}{d\lambda} = x_1^2 + x_1 x_2 + x_2^2 - 21 = 0 \quad (3)$$

We notice with equations (1) and (2), that $\lambda \neq 0$ (otherwise 2 = 0 and 3 = 0, absurd!). Then: $(1) \Leftrightarrow x_2 = -\frac{2}{\lambda} - 2x_1$ (we replace this expression of x_2 in (2))

$$(2) \Leftrightarrow 3 + \lambda \times (x_1 - \frac{4}{\lambda} - 4x_1) = 0 \Leftrightarrow \lambda x_1 - 4 - 4\lambda x_1 = -3 \Leftrightarrow -3\lambda x_1 = 1 \Leftrightarrow x_1 = -\frac{1}{3\lambda}$$

Thus we deduce the expression of x_2 in function of λ : (1) $\Leftrightarrow x_2 = -\frac{4}{3\lambda}$.

We now can use the expression of x_1 and x_2 in the equation (3):

$$(3) \Leftrightarrow \left(-\frac{1}{3\lambda}\right)^2 + \left(-\frac{1}{3\lambda}\right) \times \left(-\frac{4}{3\lambda}\right) + \left(-\frac{4}{3\lambda}\right)^2 = 21 \Leftrightarrow \frac{1}{9\lambda^2} + \frac{4}{9\lambda^2} + \frac{16}{9\lambda^2} = 21 \Leftrightarrow 9\lambda^2 = \frac{21}{21} = 1.$$

$$Thus, (3) \Leftrightarrow \lambda^2 = \frac{1}{9} \Leftrightarrow \lambda = \pm \frac{1}{3}.$$

We can now find 2 couples $(x_1^*, x_2^*)^T$ solution of the equation $\nabla L(x_1, x_2, \lambda) = 0$:

If
$$\lambda = \frac{1}{3}$$
, $x_1^* = -\frac{1}{3\lambda} = -\frac{1}{3 \times \frac{1}{3}} = -1$ and $x_2^* = -\frac{4}{3\lambda} = -\frac{4}{3 \times \frac{1}{3}} = -4$.
In that case, $f(-1, -4) = 15 - 2 - 3 \times 4 = 1$.

If
$$\lambda = -\frac{1}{3}$$
, $x_1^* = -\frac{1}{3\lambda} = -\frac{1}{3\times(-\frac{1}{3})} = 1$ and $x_2^* = -\frac{4}{3\lambda} = -\frac{4}{3\times(-\frac{1}{3})} = 4$.
In that case, $f(1,4) = 15 + 2 + 3 \times 4 = 29 > f(-1,-4)$.

Thus, according to the Lagrange multiplier method, the maximum of f subject to h, occurs at the point $(1,4)^T$ and the function takes the value 29 and its minimum occur at the point $(-1,-4)^T$ and the function takes the value 1.

The minimum of the function f subject to the constraint h occurs at the point $(x_1^*, x_2^*)^T = (-1, -4)^T$ where the function f takes the value 1.

Problem 1.3, 4p, Basic GA program (Mandatory)

In this third part of the problem, we want to implement a genetic algorithm (GA) for finding the minimum of the following function:

$$g(x_1, x_2) = (1.5 - x_1 + x_1 x_2)^2 + (2.25 - x_1 + x_1 x_2^2)^2 + (2.625 - x_1 + x_1 x_2^3)^2$$
 (4)

a) Let's programm the genetic algorithm on Matlab (see Matlab scripts).

Let's select a set of parameters (see below) and run the file RunSingle. m 10 times. Then, we collect the values of x_1 , x_2 and $g(x_1, x_2)$ (i. e. the inverse of the fitness value). Here is the table of the results obtained:

Set of parameters: tournamentSize = 2, tournamentProbability = 0.75, crossoverProbability = 0.8, mutationProbability = 0.02, numberOfGenerations = 10000.

Run n°:	Values of x ₁	Values of x_2	Values of $g(x_1, x_2)$
1	3.9148	0. 6594	5.7×10^{-2}
2	3. 9148	0.6594	5.7×10^{-2}
3	3. 9148	0. 6594	5.7×10^{-2}
4	3. 9148	0. 6594	5.7×10^{-2}
5	3.9148	0. 6594	5.7×10^{-2}
6	3.9148	0. 6594	5.7×10^{-2}
7	3.9148	0.6594	5.7×10^{-2}
8	3.9148	0.6594	5.7×10^{-2}
9	3.9148	0. 6594	5.7×10^{-2}
10	3.9148	0. 6594	5.7 × 10 ⁻²

Note: *The point found is a bit too far from the actual one (see question c)).*

b) Our goal, in this question, is to make a parameter search in order to find the optimal value of the mutation probability p_{mut} for this problem (corresponding to the highest fitness value).

Let's collect the values of the median performance (= fitness value), over a 100 runs for different values of p_{mut} . We chose $p_{mut} = [0, 0.02, 0.1, 0.2, 0.4, 0.6, 0.8, 0.9, 0.98, 1]. The other parameters remain unchanged (same as the previous question a)).$

Values of p _{mut}	Values of median performance	
0	7.97	
0.01	17. 4881	
0.02	17. 4889036034	
0.05	17. 4889036034	
0.1	17. 4889033	
0.2	17. 4888	
0.5	17. 484	
0.8	17. 487	
0.9	17. 4888	
0.95	17. 488899	
0.98	17. 488904	
1	17. 488895	

Here is the figure of the median performance (= fitness value), over the 100 runs, as a function of the mutation probability p_{mut} :

I chose not to plot the first fitness value ($p_{mut} = 0$) for more visibility.

By observing the results we obtained, we can say that the optimal value of p_{mut} for this problem is around $p_{mut \ optimal} = 0.02$.

c) In this last part, we want to show that the minimum we can deduce from the runs of the file RunSingle is indeed a stationary point. The minimum found was the point: (3.9148, 0.6594)

Thus we can suppose the actual minimum should be: $(x_1^*, x_2^*)^T = (3, 0.5)$

Let's compute the gradient $\nabla g(x_1, x_2) = (\frac{dg(x_1, x_2)}{dx_1}, \frac{dg(x_1, x_2)}{dx_2})^T$ to determine if the point $(x_1^*, x_2^*)^T = (3, 0.5)$ is actually a stationary point of the function g:

$$\frac{dg(x_1, x_2)}{dx_1} = 2(x_2 - 1)(1.5 - x_1 + x_1x_2) + 2(x_2^2 - 1)(2.25 - x_1 + x_1x_2^2)$$

$$+ 2(x_2^3 - 1)(2.625 - x_1 + x_1x_2^3)$$

$$\frac{dg(x_1, x_2)}{dx_2} = 2x_1(1.5 - x_1 + x_1x_2) + 4x_1x_2(2.25 - x_1 + x_1x_2^2) + 6x_1x_2^2(2.625 - x_1 + x_1x_2^3)$$

Let's now compute $\nabla g(x_1^*, x_2^*)$. We notice that :

$$1.5 - x_1^* + x_1^* x_2^* = 1.5 - 3 + 3 \times 0.5 = 0.$$

$$2.25 - x_1^* + x_1^* (x_2^*)^2 = 2.25 - 3 + 3 \times (0.5)^2 = 0.$$

$$2.625 - x_1^* + x_1^* (x_2^*)^3 = 2.625 - 3 + 3 \times (0.5)^3 = 0.$$

Thus, according to the expression of $\frac{dg(x_1,x_2)}{dx_1}$ and $\frac{dg(x_1,x_2)}{dx_2}$ computed previously:

$$\frac{dg(x_1^*, x_2^*)}{dx_1} = 0 \quad and \quad \frac{dg(x_1^*, x_2^*)}{dx_2} = 0.$$

Thus, $\nabla g(x_1^*, x_2^*) = (0, 0)^T$ so we can say that the true minimum deduced from question a) is a stationary point of the function g.