

Evaluacion final - Escenario 8 Primer Bloque- Teorico Elementos EN Teoria DE Computacion-[Grupo B01]

Elementos de Teoría de la Computación (Politécnico Grancolombiano)

Evaluacion final - Escenario 8

Fecha de entrega 26 de oct en 23:55

Puntos 125

Preguntas 20

Disponible 23 de oct en 0:00 - 26 de oct en 23:55 4 días

Límite de tiempo 90 minutos

Intentos permitidos 2

Instrucciones

Apreciado estudiante, presenta tus exámenes como SERGIO EL ELEFANTE, quien con honestidad, usa su sabiduría para mejorar cada día.

Lee detenidamente las siguientes indicaciones y minimiza inconvenien

- Tienes dos intentos para desarrollar tu evaluación.
- Si respondiste uno de los intentos sin ningun inconveniente y tuviste problemas con el otro, el examen no será habilitado nuevamente.
- Cuando estés respondiendo la evaluación, evita abrir páginas diferentes a tu examen. Esto puede ocasionar el cierre del mismo y la pérdida de un intento.
- Asegurate de tener buena conexión a internet, cierra cualquier programa que pueda consumir el ancho de banda y no utilices internet móvil.
- Debes empezar a responder el examen por lo menos dos horas antes del cierre, es decir, máximo a las 9:55 p. m. Si llegada las 11:55 p. m. no lo has enviado, el mismo se cerrará y no podrá ser calificado.
- El tiempo máximo que tienes para resolver c'ada evaluación es de 90 minutos.

- 7. Solo puedes recurrir a intento en caso de un tecnológico.
- 8. Si tu examen incluye pre respuestas abiertas, estas calificadas automáticament requieren la revisión del tuto
- **9.** Si presentas inconvenien presentación del examer crear un caso explicando la : adjuntando siempre imá evidencia, con fecha y horà Soporte Tecnológico pueda una respuesta lo antes posibl
- Podrás verificar la soluc examen únicamente duran horas siguientes al cierre.
- Te recomendamos evitar teléfonos inteligentes o table presentación de tus a evaluativas.
- Al terminar de rest examen debes dar clic en "Enviar todo y terminar" de 🛭 el examen permanecerá abie

¡Confiamos en que sigas, paso a paso, en el camino hacia la excelencia Das tu palabra de que realizarás esta actividad asumiendo de corazó

PACTO DE HONOR?

Volver a realizar el examen

Historial de intentos

	Intento	Hora	Puntaje
MÁS RECIENTE	Intento 1	59 minutos	125 de 125

Las respuestas correctas ya no están disponibles.

Puntaje para este intento: **125** de 125

Entregado el 24 de oct en 21:48

Este intento tuvo una duración de 59 minutos.

Si se sabe que

$$mcd(a,b) = 12$$

У

$$mcm(a,b) = 36$$

, entonces es correcto afirmar:

$$left |ab|=432$$

- a > b
- \bigcirc 12mid(a+b)
- omega = amid72

Pregunta 2

6.25 / 6.25 pts

Si

$$7x \equiv 4 \mod 13$$

, entonces es correcto afirmar:

$$\bigcirc$$
 $2x \equiv 6 \mod 13$

$$-x \equiv 8 \mod 13$$

$$0$$
 $2x + 1 \equiv 7x - 1 \mod 13$

Pregunta 3

6.25 / 6.25 pts

Si se sabe que

$$mcd(a,b) = 7$$

con

, entonces es correcto afirmar:

- $extstyle 7 \mid mcm(a,b)$
- a < 7
- 0 7 | (3a+b+9)

Si

$$d \mid a$$

$$d \div b$$

, entonces

0 d > 7

Pregunta 4

Si

$$a=2^35^27^3$$

У

$$b = 2^4 7^2 11^3$$

, entonces es correcto afirmar:

$$mcd(a,b)=2^37^2$$

У

$$mcm(a,b) = 2^45^27^311^3$$

$$mcd(a,b) = 2^3 7^2$$

У

$$\bigcirc \ mcm(a,b) = 2^4 7^3$$

$$mcd(a,b) = 2^35^27^2$$

У

$$mcm(a,b) = 2^45^27^311^3$$

$$mcd(a,b) = 2^3 5^2 7^2$$

У

$$mcm(a,b) = 2^47^311^3$$

Pregunta 5

Si se sabe que

$$mcm(a,b) = 12$$

con

, entonces es correcto afirmar:

- lacksquare $mcd(a,b) \mid 12$
- \bigcirc 12 | mcd(a,b)

$$a = 12k$$

para algún

- $igcup k\in \mathbb{Z}$
- |ab|=12

Pregunta 6

6.25 / 6.25 pts

Sobre el conjunto

$$\mathbb{Z}/11\mathbb{Z}$$

es correcto afirmar:

$$a^{10}\equiv 1 \mod 11$$
para todo
 $aot\equiv 0 \mod 11$

.

Existe un elemento no nulo de
 $\mathbb{Z}/11\mathbb{Z}$
que no tiene inverso.

La ecuación
 $ax\equiv 1 \mod 11$
no tiene solución para
 $a\in \mathbb{Z}/11\mathbb{Z}$
no nulo.

Existen infinitos elementos en
 $\mathbb{Z}/11\mathbb{Z}$

0 1

Pregunta 8

6.25 / 6.25 pts

Si

$$5 \mid 11x$$

, entonces es correcto afirmar:

$$\circ$$
 5 | x

$$011x = 5$$

$$\circ$$
 5 | $(11x - 11)$

$$5 \div 11x$$

es un número entero.

Pregunta 9

6.25 / 6.25 pts

Si

 $5 \mid x$

У

$$12 \mid x$$

, entonces es correcto afirmar:

$left 60 \mid x$		
○ 17 <i>x</i>		
\circ 7 x		
5 12		

Pregunta 10		6.25 / 6.25 pts
Al calcular		
	$5^{1001} \mod 3$	
se obtiene:		
2		
0 0		
O 1		
O -2		

Pregunta 11		6.25 / 6.25 pts
El inverso de		
	$12 \mod 25$	
es:		

- © 23 mod 25
- 2 mod 25
- $-12 \mod 25$
- 8 mod 25

Pregunta 12

6.25 / 6.25 pts

Si se sabe que

$$13 \equiv x \mod 14$$

, entonces es correcto afirmar:

$$x^2 + x \equiv 1 \mod 14$$

$$x^2 \equiv 0 \mod 14$$

$$0 3x - 1 \equiv 7 \mod 14$$

$$(x+1)^2 \equiv x-13 \mod 14$$

Pregunta 13

Estimación de números primos.

¿Cuál es la cantidad apróximada de números primos menores o iguales a 324423?

- 25565
- 213312
- 7880
- 26055

Pregunta 14

6.25 / 6.25 pts

Sobre la congruencia lineal

$$12x \equiv 16 \mod 18$$

es correcto afirmar:

No tiene solución.

Su solución existe dado que

$$d = mcd(12, 18)$$

divide a

16

.

La solución es

$$x \equiv 2 \mod 18$$

Su solución es

$$x = \frac{4}{3}$$

.

Pregunta 15

6.25 / 6.25 pts

Si

$$7a \equiv 3 \mod 12$$

es correcto afirmar:

$$0$$
 $7a + 12 \equiv 15 \mod 12$

$$9a \equiv 15 \mod 60$$

$$\bigcirc \ a^2 + 1 \equiv 9 \mod 12$$

Pregunta 16

6.25 / 6.25 pts

Si

$$a \equiv 5 \mod 7$$

У

$$b\equiv 2 \mod 7$$

es correcto afirmar:

$$a^2 + b^2 \equiv 0 \mod 7$$

$$\bigcirc \ a(b+3) \equiv 3 \mod 7$$

$$\bigcirc 2b \equiv a-2 \mod 7$$

Pregunta 17

6.25 / 6.25 pts

Si se sabe que

$$11 \equiv x \mod 12$$

, entonces es correcto afirmar:

$$\circ x^2 \equiv 0 \mod 12$$

$$3x-1\equiv 7\mod 12$$

$$(x+1)^2 \equiv x \mod 12$$

Pregunta 18

Sobre el número
$16 \mod 18$
es correcto afirmar:
No tiene inverso, módulo 18.
Su cuadrado es congruente con 3.
Su opuesto es congruente con 3.
Si
$c \equiv 16 \mod 18$
, entonces el residuo de dividir
c
entre
18
o es 2.

Pregunta 19	6.25 / 6.25 pts
Solucionar el módulo usando el Teorema de Fermat.	
¿Cuál es resultado de	
$315^{61} \hspace{-0.2cm} \mod \hspace{0.1cm} 13$	
?	
3	
O 1	
O 315	

0

Pregunta 20

Sobre la solución de la congruencia lineal	

 $3x \equiv 5 \mod 14$

es correcto afirmar:

$$x \equiv 2 \mod 14$$

$$x \equiv 12 \mod 14$$

$$x \equiv 10 \mod 14$$

Puntaje del examen: 125 de 125

6.25 / 6.25 pts

×