

Sommaire

- 1. Objectifs du projet
- 2. DOPE et la capture de pose 3D
- 3. API Blender
- 4. Calcul de rotations
- 5. Résultat

Motion Capture

- Très couteux
- Mise en place complexe
- Tenues rendant le jeu d'acteur difficile
- Dur d'adapter la scène

Notre objectif

DOPE et la capture de pose 3D

Entrée:

- Image
- Vidéo
- Flux live

Fonctionnement:

- Détection
- 3 sous-modèles experts
- Recombinaison des résultats

Sortie:

- Pose 2D
- Pose 3D

Blender

- Logiciel de haut niveau :
 - Gestion efficace des rigs et des modèles 3D
 - API Python très documentée
 - Possibilité de gérer le temps réel

Blender nous semblait donc plus indiqué que VCL.

L'API et le temps réel

Rigging et calcul des rotations

Entrée:

13 Keypoints

1ère tentative

Utiliser les plans définis par chaque membre pour calculer des rotations sur 3 axes

Bug de conversion en quaternion Pas assez familiers avec le logiciel

2^{nde} tentative

Se limiter à des rotations sur 2 axes

Fonctionne correctement Restriction de mouvement du rig

Objectif:

9 quaternions

- 4 rotules
- 4 pivots
- Orientation du corps

Résultats

- ✓ Capture de la pose 3D
- ✓ Calcul des rotations
- ✓ Script Blender en temps réel pour animer le modèle
- ✓ Retour vidéo avec pose 2D
- ☐ Liberté de mouvement complète du modèle
- ☐ Retour en temps réel de la pose 3D (presque)