Elements Of Data Science - F2023

Week 6: Intro to Machine Learning Models Continued

10/23/2023

TODOs

- Readings:
 - PDSH 05.03 <u>Hyperparameters and Model Validation</u>
 - Recommended: PML Chapter 6 (Except for Pipelines) and sklearn model selection
 - Reference: PML Chapter Chap 3, 7, and sklearn supervised learning

Current Timeline (subject to change)

- HW2 (Due Nov 13th)
- HW3 (Due Nov 20th)
- HW4 (Due Dec 11nd)
- Final (Dec 18th)

Today

- Review Linear Models
- Distance Based: kNN
- Tree Based: Decision Tree
- Ensembles: Bagging, Boosting, Stacking
- Multiclass/Multilabel and One Vs. Rest Classification
- Model Review

Questions?

Environment Setup

Environment Setup

```
In [1]:

1 import numpy as np
2 import pandas as pd
3 import matplotlib.pyplot as plt
4 import seaborn as sns

5 from mlxtend.plotting import plot_decision_regions

7 rom sklearn.linear_model import LinearRegression,LogisticRegression

9 sns.set_style('darkgrid')
11 %matplotlib inline
```

Environment Setup

```
im [1]: import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns

from mlxtend.plotting import plot_decision_regions

from sklearn.linear_model import LinearRegression,LogisticRegression

sns.set_style('darkgrid')
matplotlib inline
```

```
In [2]:
         1 def my plot decision regions(X,y,model,figsize=(5,5),ax=None):
               '''Plot classifier decision regions, classification predictions and training data'''
               if not ax:
                   fig,ax = plt.subplots(1,1,figsize=figsize)
               # use mlxtend plot decision regions
               model = model.fit(X.values,y.values)
               plot decision regions(X.values, y.values, model, ax=ax)
               ax.set xlabel(X.columns[0]); ax.set ylabel(X.columns[1]);
        10 def my plot regression(X,y,model,label='yhat',figsize=(5,5),ax=None):
               '''Plot regression predictions and training data'''
        11
        12
               # generate test data and make predictions
               X \text{ test} = \text{np.linspace}(X.iloc[:,0].min(),X.iloc[:,0].max(),1000).reshape(-1,1)
        13
        14
               model = model.fit(X.values,y.values)
        15
               y hat = model.predict(X test)
        16
               fig,ax = plt.subplots(1,1,figsize=figsize)
               ax.scatter(X, y, s=20, edgecolor="black", c="darkorange", label="data")
        17
        18
               ax.plot(X test, y hat, color="cornflowerblue", label=label, linewidth=2)
        19
               ax.set xlabel(X.columns[0]); ax.set ylabel(y.name); ax.legend();
```

Linear Models (Review)

- Simple/Multiple Linear Regression
- Logistic Regression
- SVM
- Perceptron, Multi-Layer Perceptron

Wine as Binary Classification

Wine as Binary Classification

Distance Based: k-Nearest Neighbor (kNN)

- What category do most of the k nearest neighbors belong to?

KNN in sklearn

KNN in sklearn

```
In [4]: 1 from sklearn.neighbors import KNeighborsClassifier
         3 knn = KNeighborsClassifier(n_neighbors=3)
         4 knn.fit(X_2c,y_2c)
         6 my_plot_decision_regions(X_2c,y_2c,knn)
           2.5
           2.0 -
           0.5
           0.0 -
                                   1200
                                        1400
                                             1600
                             proline
```

Effects of Standardization on Distance Based Methods

Effects of Standardization on Distance Based Methods

Curse of Dimensionality Cont.

Curse of Dimensionality Cont.

```
In [7]: 1 fig,ax = plt.subplots(1,2,figsize=(16,7))
         2 ax[0].plot(dimensions, avg_distances, label='avg_distance');
         3 ax[0].plot(dimensions,min_distances,label='min_distance');
         4 \operatorname{ax}[0].legend()
         5 ax[0].set_title('average and min distance'); ax[0].set_xlabel('dimensions'); ax[0].set_ylabel('euclidean distance');
         6 ax[1].plot(dimensions,min_avg_ratio)
         7 ax[1].set_title('min / average distance ratio'); ax[1].set_xlabel('dimensions'); ax[1].set_ylabel('euclidean distance');
                                                                                          min / average distance ratio
                              average and min distance
                                                                                 MMM MMM
                                                                        0.7
           3.5
           3.0
          euclidean distance
                                                                        0.2
           1.0
           0.5
                                                                        0.1
           0.0
                                                                        0.0
                                                    80
                                                                                     20
                                                                                                dimensions
                                    dimensions
```

Regression with kNN

Approximates the association between independent variables and the continuous outcome by averaging the observations in the same neighbourhood.

Regression with kNN

Approximates the association between independent variables and the continuous outcome by averaging the observations in the same neighbourhood.

```
In [8]: 1 from sklearn.neighbors import KNeighborsRegressor
        3 knnr = KNeighborsRegressor(n_neighbors=5)
        4 knnr.fit(X_2c_zscore[['proline']],alcohol_2c_zscore)
         6 my_plot_regression(X_2c_zscore[['proline']],alcohol_2c_zscore,knnr)
                    -0.5 0.0
                           proline
```

Decision Tree

• What answer does a series of yes/no questions lead us to?

From PML

Decision Tree Classifier in sklearn

Decision Tree Classifier in sklearn

```
In [10]: 1 from sklearn.tree import DecisionTreeClassifier
          3 dtc_md3 = DecisionTreeClassifier(max_depth=3) # max_depth: max number of questions
          4 dtc_md3.fit(X_2c,y_2c)
          6 my_plot_decision_regions(X_2c,y_2c,dtc_md3)
            2.5 -
            2.0 -
            0.5
            0.0
                                         1400
                              proline
```

Building a Decision Tree

- How to decide which question to choose (eg. Should I choose question A or B)?
- Reduce Impurity

Building a Decision Tree

- How to decide which question to choose (eg. Should I choose question A or B)?
- Reduce Impurity

From PML

• Information Gain: Tie, Gini: B, Entropy: B

Plot Learned Decision Tree Using sklearn

Plot Learned Decision Tree Using sklearn

```
In [12]: 1 from sklearn.tree import plot_tree
           2 fig,ax = plt.subplots(1,1,figsize=(24,12))
           3 plot_tree(dtc_md3,ax=ax,fontsize=18,feature_names=X_2c.columns,filled=True);
                                                                                  proline <= 755.0
                                                                                    gini = 0.496
                                                                                  samples = 130
                                                                                  value = [59, 71]
                                    proline <= 679.0
                                                                                                                                 hue <= 1.295
                                                                                                                                  gini = 0.123
                                     gini = 0.056
                                    samples = 69
                                                                                                                                 samples = 61
                                    value = [2, 67]
                                                                                                                                 value = [57, 4]
                                                     hue <= 0.89
                                                                                                                proline <= 953.5
                       gini = 0.0
                                                                                                                                                  gini = 0.0
                                                     qini = 0.32
                                                                                                                  qini = 0.095
                     samples = 59
                                                                                                                                                 samples = 1
                                                    samples = 10
                                                                                                                  samples = 60
                     value = [0, 59]
                                                                                                                                                 value = [0, 1
                                                    value = [2, 8]
                                                                                                                 value = [57, 3]
                                      gini = 0.0
                                                                    gini = 0.198
                                                                                                   gini = 0.337
                                                                                                                                   gini = 0.0
                                     samples = 1
                                                                    samples = 9
                                                                                                  samples = 14
                                                                                                                                 samples = 46
                                     value = [1, 0]
                                                                    value = [1, 8]
                                                                                                                                 value = [46, 0]
                                                                                                  value = [11, 3]
```

Decision Tree: Increase Maximum Depth

Decision Tree: Increase Maximum Depth

```
In [13]: 1 dtc_md10 = DecisionTreeClassifier(max_depth=10)
          2 dtc_md10.fit(X_2c,y_2c)
          4 fig,ax = plt.subplots(1,2,figsize=(16,7))
          5 my_plot_decision_regions(X_2c, y_2c, model=dtc_md3, ax=ax[0]);
          6 my_plot_decision_regions(X_2c, y_2c, model=dtc_md10, ax=ax[1]);
          7 ax[0].set_title('max_depth:3');ax[1].set_title('max_depth:10');
                                    max_depth:3
                                                                                                 max_depth:10
                                                              0
            2.5 -
            2.0
                                                                          2.0 -
            0.5
            0.0
                                                                          0.0 -
                                        1000
                                                1200
                                                       1400
                                                                                                                    1400
                                                                                                                            1600
                                                                                                     proline
                                       proline
```

Plot Learned Decision Tree Using sklearn

- For tree with max_depth=10

Plot Learned Decision Tree Using sklearn

- For tree with max_depth=10

Regression with Decision Trees

Regression with Decision Trees

```
In [15]: 1 from sklearn.tree import DecisionTreeRegressor
         3 dtr = DecisionTreeRegressor(max_depth=3)
         4 dtr.fit(X_2c_zscore[['proline']],alcohol_2c_zscore)
         6 my_plot_regression(X_2c_zscore[['proline']],alcohol_2c_zscore,dtr)
```

Ensemble Methods

- "Wisdom of the crowd"
- Can often achieve better performance with collection of learners
- Often use shallow trees as base learners

Ensemble Methods

- "Wisdom of the crowd"
- Can often achieve better performance with collection of learners
- Often use shallow trees as base learners

Common methods for generating ensembles:

- Bagging (Bootstrap Aggregation)
 - Random Forest
- Boosting
 - Gradient Boosting
- Stacking

Random Forest and Gradient Boosted Trees

From <a href="https://www.researchgate.net/publication/301638643_Electromyographic_Patterns_during_Golf_Swing_Activation_Sequence_Profiling_and_Prediction_of_Shot_Effectiveness_end_Profiling_and_

Bagging with Random Forests

- Trees built with bootstrap samples and subsets of features
- Achieve variation with random selection of observations and features

Sample indices	Bagging round I	Bagging round 2	
1	2	7	•••
2	2	3	
3	I	2	
4	3	I	
5	7	I	
6	2	7	
7	4	7	
	<i>C</i> ₁	C_2	C_m

Random Forests with sklearn

Random Forests with sklearn

```
In [16]: 1
from sklearn.ensemble import RandomForestClassifier

rfc = RandomForestClassifier(n_estimators=10, # number of trees in ensemble
max_depth=3, # same as decision trees
n_jobs=-1, # parallelize using all available cores, default: None=1
random_state=0) # for demonstration only
rfc.fit(X_2c,y_2c)
my_plot_decision_regions(X_2c,y_2c,rfc,figsize=(7,7))
```


Regression with RandomForests

Regression with RandomForests

```
In [17]: 1 from sklearn.ensemble import RandomForestRegressor
         3 rfr = RandomForestRegressor(n_estimators=3, n_jobs=-1)
         4 rfr.fit(df_wine[['proline']],df_wine.alcohol)
         6 my_plot_regression(X_2c_zscore[['proline']],alcohol_2c_zscore,rfr)
```

Gradient Boosted Trees

- Trees built by adding weight to mis-classification
- Achieve variation due to changes in weights on observations

From PML

Gradient Boosted Trees in sklearn

Gradient Boosted Trees in sklearn

```
In [18]: 1 from sklearn.ensemble import GradientBoostingClassifier
          3 gbc = GradientBoostingClassifier(n_estimators=10)
          4 gbc.fit(X_2c,y_2c)
          6 my_plot_decision_regions(X_2c,y_2c,gbc)
            2.5
            2.0 -
            0.5
            0.0
                                    1200
                                         1400
                              proline
```

Regression with Gradient Boosted Trees

Regression with Gradient Boosted Trees

```
In [19]: 1 from sklearn.ensemble import GradientBoostingRegressor
         3 gbr = GradientBoostingRegressor(n_estimators=10)
         4 gbr.fit(X_2c_zscore[['proline']],alcohol_2c_zscore)
         6 my_plot_regression(X_2c_zscore[['proline']],alcohol_2c_zscore,gbr)
```

Stacking

From https://blogs.sas.com/content/subconsciousmusings/2017/05/18/stacked-ensemble-models-win-data-science-competitions/

Stacking for Classification

Stacking for Classification

Stacking for Regression

Stacking for Regression

Wine as Multi-Class Classification

Wine as Multi-Class Classification

```
In [22]: 1 X_mc = df_wine[['proline','hue']]
2 y_mc = df_wine.target
3 4 X_mc_zscore = X_mc.apply(zscore,axis=0)
5 alcohol_mc_zscore = zscore(df_wine.alcohol)
6 7 y_mc.value_counts().sort_index()
Out[22]: 0 59
1 71
2 48
Name: target, dtype: int64
```

Multiclass and Multilabel

- Multiclass Classification: more than two categories/classes
 - red/green/blue, flower type, integer 0-10
- Multilabel Classification: can assign more than one category to an instance
 - paper topics, entities in image
- Multiclass-Multilabel/Multitask Classification : > 1 one property with > 2 one categories
 - type of fruit AND color of fruit
- Multioutput Regression: more than one numeric targets
 - temperature AND humidity

See sklearn docs (https://scikit-learn.org/stable/modules/multiclass.html#)

Sklearn Inherantly Multiclass

- LogisticRegression(multi_class='multinomial')
- KNeighborsClassifier
- DecisionTreeClassifier
- RandomForestClassifier

Sklearn Inherantly Multiclass

- LogisticRegression(multi class='multinomial')
- KNeighborsClassifier
- DecisionTreeClassifier
- RandomForestClassifier

One Vs. Rest (OvR) Classification For Multiclass

One Vs. Rest (OvR) Classification For Multiclass

What about other models (eg Perceptron)?

- Can use any binary classifier for Multiclass classification by training multiple models:
 - model 1: class 1 vs (class 2 and class 3)
 - model 2 : class 2 vs (class 1 and class 3)
 - model 3 : class 3 vs (class 1 and class 2)
- Then
 - Predict \hat{y} using the model with highest $P(y = \hat{y} \mid x)$, or distance from boundary, or ...

Sklearn OvR for Multiclass

- LogisticRegression(multi_class="ovr")
- GradientBoostingClassifier
- Perceptron

OvR For Logistic Regression

OvR For Logistic Regression

OvR For Logistic Regression

One vs. One Classification

• Train one classifier for each pair-wise comparison of classes

• SVC

Inherantly Multilabel (aka Multioutput)

- KNeighborsClassifier
- DecisionTreeClassifier
- MLPClassifier
- RandomForestClassifier

Inherantly Multilabel (aka Multioutput)

- KNeighborsClassifier
- DecisionTreeClassifier
- MLPClassifier
- RandomForestClassifier

Sklearn MultiOutputClassifier meta-estimator

• fits one classifier per target (One vs. Rest)

Sklearn MultiOutputClassifier meta-estimator

• fits one classifier per target (One vs. Rest)

Review of Models

Model Review: Simple/Multiple Linear Regression

- Use for: Regression
- Pros:
 - fast to train
 - interpretable coefficients
- Cons:
 - assumes linear relationship
 - depends on removing colinear features

Model Review: Logistic Regression

- Use for: Classification
- Pros:
 - fast to train
 - interpretable coefficients (log odds)
- Cons:
 - assumes linear boundary
 - depends on removing colinear features

Model Review: Support Vector Machine (SVM)

- Use for: Classification and Regression
- Pros:
 - fast to evaluate
 - can use kernel trick to learn non-linear functions
- Cons:
 - slow to train
 - can fail to converge on very large datasets

Model Review: Multi-Layer Perceptron

- Use for Classification or Regression
- Pros:
 - non-linear boundary
- Cons:
 - non-convex loss function (sensitive to initial weights)
 - sensitive to feature scaling
 - no GPU support in sklearn: use tensorflow or pytorch

Model Review: k Nearest Neighbor (kNN)

- Use for: Classification or Regression
- Pros:
 - fast to train
 - non-linear boundary
- Cons:
 - potentially slow to predict
 - curse of dimensionality

Model Review: Decision Tree

- Use for: Classification or Regression
- Pros:
 - very interpretable
 - quick to predict
 - can handle numeric and categorical variables without transformation
- Cons:
 - tendency to overfit (learn training set too well, more next class!)

Model Review: Random Forest (Ensemble via Bagging)

- Use for: Classification or Regression
- Pros:
 - less likely to overfit than decision tree
 - quick to train (through parallelization, quick to predict)
- Cons:
 - less interpretible, though still possible

Model Review: Gradient Boosted Trees (Ensemble via Boosting)

- Use for: Classification or Regression
- Pros:
 - pays more attention to difficult decision regions
 - quick to predict
 - tends to work well on difficult tasks
- Cons:
 - slow to train (parallelization not possible)
 - less interpretible, though still possible

Model Review: Ensemble via Stacking

- Use for: Classification or Regression
- Pros:
 - combines benefits of multiple learning types
 - easy to implement
 - tends to win competitions
- Cons:
 - difficult to interpret
 - training/prediction time depends on component models

Neural Networks (aka Deep Learning)

- Pros and Cons of Deep Learning
 - sensitive to initialization and structure
 - high complexity -> needs more data
 - low interpretability
 - can learn complex interactions
 - performs well on tasks involving complex signals (ex images, sound, etc)

Playing with synthetic classification datasets

Playing with synthetic classification datasets

```
In [28]:
          1 from sklearn.datasets import make_classification, make_multilabel_classification
          3 X_syn,y_syn = make_classification(n_samples=50,
                                              n features=2,
                                              n_informative=2,
                                              n redundant=0,
                                              n clusters per class=1,
                                              class sep=1,
                                              n classes=3,
         10
                                              random state=0,
         11
         12 fig,ax = plt.subplots(1,1,figsize=(3,3))
         plot_decision_regions(X_syn,y_syn,LogisticRegression().fit(X_syn,y_syn));
```

Playing with synthetic classification datasets - multilabel

Playing with synthetic classification datasets - multilabel

```
In [29]: 1 X_syn_ml,y_syn_ml = make_multilabel_classification(n_samples=100,
                                                                   n features=2,
                                                                   n classes=5,
                                                                   random state=0
          6 print(X syn ml[:10])
          7 print()
          8 print(y_syn_ml[:10])
          [[24. 25.]
           [38. 15.]
           [39. 14.]
           [23. 20.]
           [26. 29.]
           [30. 16.]
           [22. 30.]
           [25. 22.]
           [29. 12.]
          [25. 21.]]
          [[0 0 0 0 0]]
           [0 0 1 0 1]
           [0 \ 1 \ 1 \ 1 \ 1]
           [1 \ 1 \ 1 \ 1 \ 1]
           [1 0 0 1 0]
           [0 1 0 1 1]
           [1 0 0 0 0]
           [1 1 1 1 0]
           [0 \ 0 \ 0 \ 0]
           [0 0 1 1 0]]
```

Questions?