openmic

December 17, 2019

```
[1]: import librosa as lb
    import librosa.display
    import pandas as pd
    import scipy
    import json
    import numpy as np
    import sklearn
    from sklearn.metrics import classification_report
    from sklearn.model_selection import train_test_split
    import os
    from pylab import plot, show, figure, imshow, xlim, ylim, title
    import matplotlib.pyplot as plt
    import keras
    from keras.utils import np_utils
    from keras import layers
    from keras import models
```

Using TensorFlow backend.

```
[5]: y, sr = lb.load(DATA_DIR + 'audio/000/000135_483840.ogg')
S = lb.feature.melspectrogram(y=y, sr=sr)

S_dB = lb.power_to_db(S, ref=0) # 10 * log10(S / ref)

print(y.shape)
print(sr)
print(S.shape)
print(S_dB.shape)

(220544,)
22050
(128, 431)
(128, 431)
(128, 431)
[6]: librosa.display.specshow(S_dB, x_axis='s', y_axis='mel')
plt.colorbar(format='%+2.0f dB')
```

[6]: <matplotlib.colorbar.Colorbar at 0x234e4671278>


```
[7]: OPENMIC = np.load(os.path.join(DATA_DIR, 'openmic-2018.npz'), allow_pickle=True) print(list(OPENMIC.keys()))
```

['X', 'Y_true', 'Y_mask', 'sample_key']

```
[8]: X, Y_true, Y_mask, sample_key = OPENMIC['X'], OPENMIC['Y_true'],
              →OPENMIC['Y_mask'], OPENMIC['sample_key']
            #print(X.shape)
           \#X = []
           #print(len(sample_key))
            #for key in sample_key:
                       key_dir = key[:3]
                       y, sr = lb.load(DATA_DIR + 'audio/' + key_dir + '/' + key + '.ogg')
                       X.append(lb.feature.melspectrogram(y=y, sr=sr))
                      print(len(X))
  [9]: with open(os.path.join(DATA_DIR, 'class-map.json'), 'r') as f:
                      class_map = json.load(f)
[21]: split_train, split_test, X_train, X_test, Y_true_train, Y_true_test, U_
              →Y_mask_train, Y_mask_test = train_test_split(sample_key, X, Y_true, Y_mask)
           split_val, split_test, X_val, X_test, Y_true_val, Y_true_test, Y_mask_val,__
              →Y_mask_test = train_test_split(split_test, X_test, Y_true_test, Y_mask_test, U_mask_test, U_ma
             \rightarrowtest_size=0.5)
           train_set = np.asarray(set(split_train))
           test_set = np.asarray(set(split_test))
           print('# Train: {}, # Val: {}, # Test: {}'.format(len(split_train),__
              →len(split_test), len(split_val)))
          # Train: 15000, # Val: 2500, # Test: 2500
[23]: print(X_train.shape)
           print(X_val.shape)
           print(X_test.shape)
          (15000, 10, 128)
          (2500, 10, 128)
           (2500, 10, 128)
[29]: THRESHOLD = 0.3
            # This dictionary will include the classifiers for each model
           mymodels = dict()
           # We'll iterate over all istrument classes, and fit a model for each one
            # After training, we'll print a classification report for each instrument
           for instrument in class_map:
                      # Map the instrument name to its column number
                     inst_num = class_map[instrument]
```

```
# Step 1: sub-sample the data
   # First, we need to select down to the data for which we have annotations
  # This is what the mask arrays are for
  train_inst = Y_mask_train[:, inst_num]
  val_inst = Y_mask_val[:, inst_num]
  test_inst = Y_mask_test[:, inst_num]
  # Here, we're using the Y mask train array to slice out only the training
\rightarrow examples
   # for which we have annotations for the given class
  X_train_inst = X_train[train_inst]
  X_val_inst = X_val[val_inst]
  # Step 3: simplify the data by averaging over time
  # Let's arrange the data for a sklearn Random Forest model
  # Instead of having time-varying features, we'll summarize each track by
\rightarrowits mean feature vector over time
  X_train_inst_sklearn = np.mean(X_train_inst, axis=1)
  # Again, we slice the labels to the annotated examples
  # We thresold the label likelihoods at 0.5 to get binary labels
  Y_true_train_inst = Y_true_train[train_inst, inst_num] >= THRESHOLD
  Y_true_val_inst = Y_true_val[val_inst, inst_num] >= THRESHOLD
  # Repeat the above slicing and dicing but for the test set
  X_test_inst = X_test[test_inst]
  X_test_inst_sklearn = np.mean(X_test_inst, axis=1)
  Y_true_test_inst = Y_true_test[test_inst, inst_num] >= THRESHOLD
  X train inst = X train inst.astype('float32')
  X_val_inst = X_val_inst.astype('float32')
  X_train_inst_sklearn = X_train_inst_sklearn.astype('float32')
  X_train_inst_sklearn = lb.util.normalize(X_train_inst_sklearn)
  \# X_train_inst = S_dB
  print(X_train_inst.shape)
  shape = X_train_inst.shape
  X_train inst = X_train inst.reshape(shape[0],1, shape[1], shape[2])
  shape = X_val_inst.shape
  X_val_inst = X_val_inst.reshape(shape[0],1, shape[1], shape[2])
  shape = X_test_inst.shape
  X_test_inst = X_test_inst.reshape(shape[0],1, shape[1], shape[2])
  \#X_train_inst = X_train_inst.reshape(1,1,431,128)
  print(X_train_inst.shape)
```

```
print(Y_true_train_inst[0])
  # Step 3.
   # Initialize a new classifier
   import keras, os
  from keras.models import Sequential
  from keras.layers import Dense, Conv2D, MaxPool2D , Flatten
  from keras.preprocessing.image import ImageDataGenerator
   import numpy as np
  model = models.Sequential()
   # model.add(layers.Conv2D(filters=8, kernel size=(3,3), activation='relu',,,
→ input_shape=(10,128,1,)))
  model.
→add(Conv2D(input_shape=(1,10,128),data_format="channels_first",filters=64,kernel_size=(3,3)
→activation="relu"))
  model.add(Conv2D(filters=32,kernel_size=(3,3),padding="same",_
→activation="relu"))
  model.add(MaxPool2D(pool_size=(3,3),strides=(2,2)))
  model.add(Conv2D(filters=128, kernel_size=(3,3), padding="same", __
→activation="relu"))
  model.add(Conv2D(filters=128, kernel_size=(3,3), padding="same", __
→activation="relu"))
  model.add(MaxPool2D(pool_size=(2,2),strides=(2,2)))
  model.add(Conv2D(filters=256, kernel_size=(3,3), padding="same", __
→activation="relu"))
  model.add(Conv2D(filters=256, kernel size=(3,3), padding="same",
→activation="relu"))
   model.add(Conv2D(filters=256, kernel_size=(3,3), padding="same", __
→activation="relu"))
  model.add(MaxPool2D(pool_size=(2,2),strides=(2,2)))
  model.add(Conv2D(filters=512, kernel_size=(3,3), padding="same",__
→activation="relu"))
  model.add(Conv2D(filters=512, kernel_size=(3,3), padding="same",__
⇔activation="relu"))
  model.add(Conv2D(filters=512, kernel size=(3,3), padding="same",
→activation="relu"))
  model.add(layers.Flatten())
  model.add(layers.Dense(units=4096, activation='relu'))
  model.add(layers.Dense(units=4096, activation='relu'))
  model.add(layers.Dense(units=1, activation='sigmoid'))
  model.compile(loss='binary_crossentropy',
                 optimizer=keras.optimizers.Adam(lr=0.0001),
                  metrics = ['accuracy'])
  # model.summary()
```

```
# Step 4.
  history = model.fit(X_train_inst,Y_true_train_inst , epochs=10,__
→batch_size=64, validation_data=(X_val_inst,Y_true_val_inst))
  plt.figure(figsize=(9,4))
  plt.subplot(1,2,1)
  plt.plot(history.history['acc'])
  plt.plot(history.history['val_acc'])
  plt.title('Model accuracy')
  plt.ylabel('Accuracy')
  plt.xlabel('Epoch')
  plt.legend(['Train accuracy', 'Validation accuracy'], loc='upper left')
  plt.subplot(1,2,2)
  plt.plot(history.history['loss'])
  plt.plot(history.history['val_loss'])
  plt.title('Model loss')
  plt.ylabel('Loss')
  plt.xlabel('Epoch')
  plt.legend(['Train loss', 'Validation loss'], loc='upper left')
  plt.show()
  loss, acc = model.evaluate(X_test_inst, Y_true_test_inst)
  print('Test loss: {}'.format(loss))
  print('Test accuracy: {:.2%}'.format(acc))
  # Step 5.
  # Finally, we'll evaluate the model on both train and test
  Y_pred_train = model.predict(X_train_inst)
  Y_pred_test = model.predict(X_test_inst)
  Y_pred_train_bool = Y_pred_train > THRESHOLD - 0.2 #THRESHOLD (should be_
\rightarrow lower than 0.5)
  Y_pred_test_bool = Y_pred_test > THRESHOLD - 0.2 \#THRESHOLD (should be_u)
\rightarrow lower than 0.5)
  print(Y_pred_train[0])
  print('-' * 52)
  print(instrument)
  print('\tTRAIN')
  print(classification_report(Y_true_train_inst, Y_pred_train_bool))
  print(Y_true_train_inst[3])
  print(Y_pred_train[3])
  print('\tTEST')
  print(classification report(Y_true_test_inst, Y_pred_test_bool))
  sum = 0
 # for i, prob in enumerate(Y_pred_train):
```

```
# print (i)
# print (prob)
# sum += prob
# print(sum)
# Store the classifier in our dictionary
mymodels[instrument] = model
```

```
(1566, 10, 128)
(1566, 1, 10, 128)
False
Train on 1566 samples, validate on 249 samples
Epoch 1/10
0.7625 - val_loss: 0.5340 - val_acc: 0.7671
Epoch 2/10
0.7842 - val_loss: 0.4145 - val_acc: 0.8233
Epoch 3/10
0.8225 - val_loss: 0.3986 - val_acc: 0.8313
Epoch 4/10
0.8276 - val_loss: 0.4120 - val_acc: 0.7831
Epoch 5/10
0.8621 - val_loss: 0.4202 - val_acc: 0.8233
Epoch 6/10
0.8838 - val_loss: 0.4195 - val_acc: 0.7992
Epoch 7/10
0.9023 - val_loss: 0.4760 - val_acc: 0.7952
Epoch 8/10
0.9374 - val_loss: 0.6051 - val_acc: 0.7912
0.9508 - val_loss: 0.6610 - val_acc: 0.8032
Epoch 10/10
0.9764 - val_loss: 0.5946 - val_acc: 0.8112
```


256/256 [===========] - 2s 9ms/step

Test loss: 0.7445437833666801

Test accuracy: 75.00%

[0.03150272]

accordion

TRAIN

	precision	recall	II-score	support
False	1.00	0.98	0.99	1194
True	0.94	0.99	0.97	372
accuracy			0.98	1566
macro avg	0.97	0.99	0.98	1566
weighted avg	0.98	0.98	0.98	1566

False

[0.01145008]

TEST

	precision	recall	f1-score	support
False	0.89	0.77	0.82	197
True	0.47	0.68	0.55	59
accuracy			0.75	256
accuracy macro avg	0.68	0.72	0.73	256
weighted avg	0.79	0.75	0.76	256

(1669, 10, 128)

```
(1669, 1, 10, 128)
True
Train on 1669 samples, validate on 279 samples
1669/1669 [============== ] - 100s 60ms/step - loss: 0.6433 -
acc: 0.6465 - val_loss: 0.6155 - val_acc: 0.6559
Epoch 2/10
0.7358 - val_loss: 0.5193 - val_acc: 0.7491
Epoch 3/10
0.7921 - val_loss: 0.4306 - val_acc: 0.8029
Epoch 4/10
0.7999 - val_loss: 0.4494 - val_acc: 0.7993
Epoch 5/10
0.8089 - val_loss: 0.4588 - val_acc: 0.7563
Epoch 6/10
0.8340 - val_loss: 0.4518 - val_acc: 0.7706
Epoch 7/10
0.8616 - val_loss: 0.4496 - val_acc: 0.7491
Epoch 8/10
0.8634 - val_loss: 0.4336 - val_acc: 0.7814
Epoch 9/10
acc: 0.8814 - val_loss: 0.5598 - val_acc: 0.7670
Epoch 10/10
0.9005 - val_loss: 0.5422 - val_acc: 0.7921
```


270/270 [=======] - 3s 10ms/step

Test loss: 0.5628210295129705

Test accuracy: 79.63%

[0.93295425]

banjo

	precision	recall	il-score	support
	_			
False	0.97	0.85	0.91	1123
True	0.76	0.95	0.84	546
accuracy			0.89	1669
macro avg	0.87	0.90	0.88	1669
weighted avg	0.90	0.89	0.89	1669

False

[0.00056961]

TEST

	precision	recall	f1-score	support
False	0.87	0.73	0.80	180
True	0.59	0.78	0.67	90
accuracy			0.75	270
macro avg	0.73	0.76	0.73	270
weighted avg	0.78	0.75	0.75	270

(1401, 10, 128)

```
(1401, 1, 10, 128)
False
Train on 1401 samples, validate on 258 samples
0.7059 - val_loss: 0.5531 - val_acc: 0.7364
0.7281 - val_loss: 0.4700 - val_acc: 0.7674
Epoch 3/10
0.7844 - val_loss: 0.4689 - val_acc: 0.7791
Epoch 4/10
-----
      KeyboardInterrupt
                                      Traceback (most recent call_
→last)
      <ipython-input-29-b6a7d116500e> in <module>
           # model.summary()
      92
            # Step 4.
   ---> 93
            history = model.fit(X_train_inst,Y_true_train_inst , epochs=10,__
→batch_size=64, validation_data=(X_val_inst,Y_true_val_inst))
      94
      95
            plt.figure(figsize=(9,4))
      ~\Documents\Conda\lib\site-packages\keras\engine\training.py in__
→fit(self, x, y, batch_size, epochs, verbose, callbacks, validation_split, u
→validation_data, shuffle, class_weight, sample_weight, initial_epoch,
→steps_per_epoch, validation_steps, **kwargs)
     1037
                                        initial_epoch=initial_epoch,
     1038
                                       ш
→steps_per_epoch=steps_per_epoch,
   -> 1039
                                       1.1
→validation_steps=validation_steps)
     1040
     1041
            def evaluate(self, x=None, y=None,
      ~\Documents\Conda\lib\site-packages\keras\engine\training arrays.py in_
→fit_loop(model, f, ins, out_labels, batch_size, epochs, verbose, callbacks, u
→val f, val ins, shuffle, callback metrics, initial epoch, steps per epoch,
→validation_steps)
```

```
ins_batch[i] = ins_batch[i].toarray()
           197
           198
       --> 199
                               outs = f(ins_batch)
           200
                               outs = to_list(outs)
                               for 1, o in zip(out_labels, outs):
           201
           ~\Documents\Conda\lib\site-packages\keras\backend\tensorflow_backend.py_
    →in __call__(self, inputs)
          2713
                               return self._legacy_call(inputs)
          2714
      -> 2715
                           return self._call(inputs)
          2716
                       else:
          2717
                           if py_any(is_tensor(x) for x in inputs):
           ~\Documents\Conda\lib\site-packages\keras\backend\tensorflow_backend.py_
    →in _call(self, inputs)
          2673
                           fetched = self._callable_fn(*array_vals,_
    →run_metadata=self.run_metadata)
          2674
                       else:
      -> 2675
                           fetched = self._callable_fn(*array_vals)
                       return fetched[:len(self.outputs)]
          2676
          2677
           ~\Documents\Conda\lib\site-packages\tensorflow\python\client\session.py_
    →in __call__(self, *args, **kwargs)
                         ret = tf_session.TF_SessionRunCallable(
          1437
                             self._session._session, self._handle, args, status,
          1438
      -> 1439
                             run_metadata_ptr)
                       if run metadata:
          1440
          1441
                         proto_data = tf_session.TF_GetBuffer(run_metadata_ptr)
          KeyboardInterrupt:
[]: print(X_train_inst_sklearn)
   print(Y_pred_train)
```

[]: