第1章

層状化空間・因子化ホモロジー

[?], [?] のレビュー

1.1 多様体の層状化

1.1.1 層状化空間

定義 1.1: 半順序集合の位相

 (P,\leq) を半順序集合とする. P上の位相 $\mathscr{O}_{\leq} \subset 2^P$ を以下で定義する:

$$U \in \mathscr{O}_{\leq} \quad \stackrel{\mathrm{def}}{\Longleftrightarrow} \quad \forall x \in U, \, \forall y \in P, \, \left[\, x \leq y \quad \Longrightarrow \quad y \in U \, \right]$$

実際, 空集合の定義から $\emptyset \in \mathcal{O}_{<}$ であり, $\forall U_1, U_2 \in \mathcal{O}_{<}$ に対して $x \in U_1 \cap U_2$ であることは

$$\forall y \in P, \ x \leq y \implies y \in U_1$$
 かつ $y \in U_2$

と同値なので $U_1\cap U_2\in \mathscr{O}_{\leq}$ であり、さらに勝手な開集合族 $\{U_{\lambda}\in \mathscr{O}_{\leq}\}_{\lambda\in\Lambda}$ に対して $x\in\bigcup_{\lambda\in\Lambda}U_{\lambda}$ は

$$\exists \alpha \in \Lambda, \ \forall y \in P, \ x \leq y \quad \Longrightarrow \quad y \in U_{\alpha} \subset \bigcup_{\lambda \in \Lambda} U_{\lambda}$$

と同値であるから $\bigcup_{\lambda \in \Lambda} U_{\lambda} \in \mathscr{O}_{\leq}$ であり、 \mathscr{O}_{\leq} は集合 P の位相である.

【例 1.1.1】 [n] の位相

半順序集合 $[2] \coloneqq \{0 \le 1 \le 2\}$ を考える. このとき, 位相 \mathscr{O}_{\le} とは

$$\mathscr{O}_{\leq} = \{ \emptyset, \{2\}, \{1, 2\}, \{0, 1, 2\} \}$$

のことである. 同様に、半順序集合 $[n] := \{0 \le 1 \le \cdots \le n\}$ に対して

$$\mathcal{O}_{<} = \{ \emptyset, \{n\}, \{n-1, n\}, \dots, \{0, \dots, n\} \}$$

が成り立つ.

定義 1.2: 層状化空間・層状化写像

 (P, \leq) を半順序集合とし、定義 1.1 の位相を入れて位相空間にする.

このとき, 位相空間 X が P-層状化されている (P-stratified) とは, 連続写像 $s\colon X\longrightarrow P$ が存在することを言う. 組 ($X,s\colon X\longrightarrow P$) のことを P-層状化空間 (P-stratified space) と呼ぶ.

層状化空間 $(X, s: X \longrightarrow P)$, $(X', s': X' \longrightarrow P')$ の間の**層状化写像** (stratified map) とは、連続写像の組み $(f: X \longrightarrow X', g: P \longrightarrow P')$ であって以下の図式を可換にするもののこと:

$$\begin{array}{ccc}
X & \xrightarrow{f} & X' \\
\downarrow s & & \downarrow s' \\
P & \xrightarrow{g} & P'
\end{array}$$

【例 1.1.2】CW 複体

CW 複体 X を与える. $X_{\leq k}$ を X の k-骨格とするとき, $X_k \setminus X_{k-1}$ を $k \in \mathbb{Z}_{\geq 0}$ に写す写像 $s\colon X \longrightarrow \mathbb{Z}_{\geq 0}$ は X の層状化を与える.

定義 1.3: 層状化埋め込み

層状化写像 $(f,g)\colon (X,s\colon X\longrightarrow P)\longrightarrow (X',s'\colon X'\longrightarrow P')$ が層状化開埋め込み (stratified open embedding) であるとは、以下の 2 条件を充たすことを言う:

- (1) 連続写像 $f: X \longrightarrow X'$ は位相的埋め込みである^a
- $(2) \forall p \in P$ に対して、f の制限

$$f|_{s^{-1}(\{p\})}: s^{-1}(\{p\}) \longrightarrow s'^{-1}(\{g(p)\})$$

は位相的埋め込みである.

a i.e. $f: X \longrightarrow f(X)$ が同相写像

以下では混乱が生じにくい場合,層状化写像 (f,g): $(X,s:X\longrightarrow P)\longrightarrow (X',s':X'\longrightarrow P')$ のことを $f:(X\to P)\longrightarrow (X'\to P')$ と略記し,連続写像 $g:P\longrightarrow P'$ のことも f と書く.

圏 StTop を,

- 第2可算な Hausdorff 空間の層状化空間を対象とする
- 層状化埋め込みを射とする

ことで定義する.

1.1.2 C^0 級層状化空間

定義 1.4: コーン

層状化空間 $(X, s: X \to P)$ を与える. X のコーン (cone) とは、以下のようにして構成される層状化空間 $(C(X), C(s): C(X) \longrightarrow C(P))$ のこと:

• 位相空間 C(X) を, 押し出し位相空間

$$\mathsf{C}\left(X\right)\coloneqq\left\{ \mathrm{pt}\right\} \coprod_{\left\{ 0\right\} \times X}\left(\mathbb{R}_{\geq0}\times X\right)$$

と定義する:

$$\{0\} \times X \xrightarrow{\{0\} \times \mathrm{id}_X} \mathbb{R}_{\geq 0} \times X$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$\{\mathrm{pt}\} \xrightarrow{} \{\mathrm{pt}\} \coprod_{\{0\} \times X} (\mathbb{R}_{\geq 0} \times X)$$

• 半順序集合 $\mathbf{C}(P)$ を、P に最小の要素 $-\infty$ を付け足すことで定義する.これは半順序集合の圏における押し出し

$$\mathsf{C}(P) := \{-\infty\} \coprod_{\{0\} \times X} ([1] \times P)$$

である.

• 連続写像

$$\mathbb{R}_{\geq 0} \times X \longrightarrow [1] \times P,$$

$$(t, x) \longmapsto \begin{cases} (0, s(x)), & t = 0, \\ (1, s(x)), & t > 0 \end{cases}$$

が押し出しの普遍性により誘導する連続写像 $C(X) \longrightarrow C(P)$ を C(s) と書く.

定義 1.5: C^0 級層状化空間

以下を充たす \mathbf{StTop} の最小の充満部分圏を \mathbf{Snglr}^{C^0} と書き、圏 \mathbf{Snglr}^{C^0} の対象を $\mathbf{C^0}$ 級層状化空間 (C^0 stratified space) と呼ぶ:

(Snglr-1)
$$(\emptyset \to \emptyset) \in \mathrm{Ob}(\mathbf{Snglr}^{C^0})$$

(Snglr-2)

$$(X \to P) \in \mathrm{Ob}(\mathbf{Snglr}^{C^0})$$
 かつ X , P が位相空間としてコンパクト $\Longrightarrow \mathsf{C}(X \to P) \in \mathrm{Ob}(\mathbf{Snglr}^{C^0})$

(Snglr-3)

$$(X \to P) \in \mathrm{Ob}(\mathbf{Snglr}^{C^0}) \implies (X \times \mathbb{R} \to P) \in \mathrm{Ob}(\mathbf{Snglr}^{C^0})^a$$

(Snglr-4)

$$(X \to P) \in \mathrm{Ob}(\mathbf{Snglr}^{C^0})$$
 かつ $\mathrm{Hom}_{\mathbf{StTop}}((U \to P_U), (X \to P)) \neq \emptyset$
 $\Longrightarrow (U \to P_U) \in \mathrm{Ob}(\mathbf{Snglr}^{C^0})$

(Snglr-5)

 $(X \to P) \in \mathrm{Ob}(\mathbf{StTop})$ が開被覆 $\{(U_{\lambda} \to P_{\lambda}) \longrightarrow (X \to P)\}_{\lambda \in \Lambda}^{b}$ を持ち、かつ $\forall \lambda \in \Lambda$ に対して $(U_{\lambda} \to P_{\lambda}) \in \mathrm{Ob}(\mathbf{Snglr}^{C^{0}})$ $\Longrightarrow (X \to P) \in \mathrm{Ob}(\mathbf{Snglr}^{C^{0}})$

【例 1.1.3】位相多様体は C^0 級層状化空間

(Snglr-1) より、 $* := \mathsf{C}(\emptyset \to \emptyset) \in \mathsf{Ob}(\mathbf{Snglr}^{C^0})$ である. (Snglr-3) より、 $\forall n \geq 0$ に対して $\mathbb{R}^n = (\mathbb{R}^n \to [0]) \in \mathsf{Ob}(\mathbf{Snglr}^{C^0})$ であることが帰納的に分かる. \mathbb{R}^n の任意の開集合 $U \hookrightarrow \mathbb{R}^n$ に対して、

$$\begin{array}{ccc}
U & \longrightarrow \mathbb{R}^n \\
\downarrow & & \downarrow \\
[0] & \longrightarrow & [0]
\end{array}$$

は<mark>層状化埋め込み</mark>であり、従って **(Snglr-4)** より $U\coloneqq (U\to [0])\in \mathrm{Ob}(\mathbf{Snglr}^{C^0})$ が分かる. 以上の考察と **(Snglr-5)** を併せて、任意の位相多様体 M は^a圏 \mathbf{Snglr}^{C^0} の対象である.

 $[^]aX \times \mathbb{R}$ の層状化は、連続写像 $X \times \mathbb{R} \longrightarrow X$, $(x,t) \longmapsto x$ を前もって合成することにより定める.

 $[^]b$ i.e. $\{U_\lambda\}_{\lambda\in\Lambda},\ \{P_\lambda\}_{\lambda\in\Lambda}$ が、それぞれ位相空間 X,P の開被覆を成す.

 $[^]a$ より正確には,M を**層状化空間** ($M \rightarrow [0]$) と同一視している.