\$.		Sto	chast	tic	Į,	rteg	rat	îoŋ													
4.2	Qu	adi	ratio	:	/arii	atio;	? ~~														
De.	ı		Let												The	1					
	_		, M].			-	•	_	_	_											
			ΔM											0 =	to <	< t.	< -	٠٠٧٠	tn =	17	
			mian											- 0	2/2						
			1.2.1 Ad											Y		use	M	Cy is	_		
T	1		Fe-	1									_							<u>.</u>	
			· Ma													1					
			ΕĪ		7										•						
						=	E	Ľ(v	Vt-	W.	s †	Ws) -	- t	1	Fs]					
						=	E	CV	Vt-	Ws	<u>^</u>	-2(WŁ	W	's)·[/	V ₅ .	+ N	15-	t ;	Fs_]
						=	E		Wt.	Ws Fe	ر کا	Fs] +	E	[20	WE	-w	J.V.	بالحا	Fs	Lie
							+							ΕĮ	-t1	Fs]	Fs-	meas	ar a.	
						=	E	_ •	s-m Nt-				_	Ws	E	Ιw	t-V	Vs]			
							t	· W	/s2 -	- t											
						-		t-	<	+	Ws	,	t								
							· W		2-												
						=	: /\	۱\د													

Theorem 4.2.1 Let M be a martingale w.r.t. a filtration (Ft)+20 Then for all $t \ge 0$, $E[Mt^2] < \infty \iff E[IM, M]_t] < \infty$ In this case, (Mt2-IM,M]t)tzo is a markingale w.r.t. the same filtration, and $E[M_t^2] - E[M_0^2] = E[[M_1M]_t]$ Example: M=W is a martingale => (Wt2-t)tro is a martingale Theorem 4.2.2. If M is a martingale and At is a continuous adapted increasing Stochastic process S.t. A.=O and (Mt2-At)to is a martingale, then At = [M,M]t (proof is omitted) Example: M=W, Az=t
At is continuous, adapted, Fo-measurable, increasing, and A. = 0 $Mt^2-At = Wt^2-t$ is a martingale $\Rightarrow At = [w,w]_t$ Remark: D intuition for first variation and quadratic variation: divide the interval [0, T] into T/(6t) intervals of Size 8t if X has finite first variation, then on each subinterval (kSt. (k+1)St) the increment of X should be of order St. Similarly. X has finite quadratic variation => increment D If a continuous process has finite first variation, \$\squarepsilon\$ \foto \foto \text{total} its quadratic variation will necessarily be zero. If a continuous process has finite and non-zero quadratic Variation, its first variation will necessarily be infinite

4.3. Construction of Itô integral. Let N be a standard BM, (Ft) to be the Brownian filtration and D be an adapted process. Let (Dt) to be our position in S at time t, that is invest DeSt at time t and the value of portfolio however, almost any continuous martingale S time ttl is Dt. Strl / will not have finite first variation, thus we need the Itô integral $\Rightarrow Pnl = \sum_{i=0}^{n+1} \Delta_i \left(S_{i+1} + S_i \right) \xrightarrow{n \to \infty} \int \Delta_t \cdot dS_t$ lemma 4.3.1 let TI= ? 0 = to < t, < - < tn 9 be an increasing sequence of times and assume that D is constant on Iti, tin) Vi (i.e. the asset is only traded at time to, ..- to) $[et] \frac{\pi}{T_{\tau}} = \sum_{i=0}^{n_{\tau}} D_{t_{i}} \Delta W_{i} + D_{t_{n}} (W_{\tau} - W_{t_{n}}) \quad if \quad T \in [t_{n}, t_{n_{\tau}}]$ where \(\Delta \tilde{Wi} = \tilde{Wti+1} - \tilde{Wti}

denote the cumulative earnings up to time T, then

Moreover, I^{π} is a mortingale and. $[T_{i}, T_{i}]_{T} = \sum_{i=0}^{n-1} D_{i}(t_{i+1} - t_{i}) + D_{i}(T - t_{n}) \text{ if } T \in [t_{n}, t_{n+1})$

 $E[(I_1^{n})] = E[\sum_{i=0}^{n} D_{ii}(t_{in_1} - t_i) + D_{in_1}(I - t_n)] if T \in [t_n, t_{n+1})$

Theorem 4.3.1 If $\int_0^T D_t^2 dt < \infty$, then as $||T|| \rightarrow 0$, the process

IT converge to a cost process I given by IT := lim IT = Dt dWt is sampled at the left endpoint of the time interval, i.e. terms in the

This is called the Ito integral of D w.r.t. W. sum are Doc(New-Wes

If further, $E[\int_{0}^{1}D_{t}^{2}dt]<\infty$, then the process I is a martingale and the quadratic variation II, II satisfies II, I], = Jo Dr dt almost surely Besides, E[Jo DrdW+]= 0 properity. 4.3.1 (linearity) If D', D' are two adapted process, 2, &R, then $\int_0^T \left(D_t + \lambda D_t^2 \right) dW_t = \int_0^T D_t dW_t + \lambda \int_0^T D_t^2 dW_t$ (Itô Isometry) If E[∫ D+ dt] < ∞, then $E[(\int_{0}^{T}D_{t}dW_{t})^{2}] = E[\int_{0}^{T}D_{t}^{2}dt]$ Example: Dt = 1, then EL(Jo DedWt)] = ELJo 12 dt] WT-W. ⇒ E[W+2]= T Remark: positivity is not preserved by Ito integrals. Namely, if D' = D', there is no reason to expect Jo Didwt & Jo Didwt. Def (GBM). We define Geometric Brownian Motion S as dSt = 6 StdWt + 2 Stdt , 6,2 ER => Stochastic differential equation (SDE) J. IdSt = J. 6StdWt + J. D. Stdt > St - So = Jo 6 St dWe + Jo 2 St dt

4.4. Ito formula Goal: Compute Jo We dwe =? Def 4.4.1 Let b, 6 be adapted process. Then a process X defined as Riemann integral Itô integral XT = Xo + Jobedt + Jo 6 dwe Xo ER is called an Itô process if Xo is deterministic (not random) and for all Too E[so dt] < 00 and so lbeldt < 00 Remark: the equation above is equivalent to dXt = bedt + 6 dWt properity 441 The quadratic Variation of X is $[X,X]_T = \int_0^T 6t^2 dt$ Def 4.4.2. Process X which can be decomposed as X=A+M (semi-MG) Where M is a martingale and A has finite variation are called Semi-martingale. D M is called the martingale part of X D A is called the finite variation part of X Drop 4.4.2 The semi-Ma decomposition is unique, that is if X=A,+M,=A2+M2, then $A_1 = A_2$, $M_1 = M_2$ (where A, A, are finite variation processes, M, M, are martingales)

proof: by (*) we have $A_1 - A_2 = M_1 - M_2 := M$ finite variation MG thus M is a MG with finite Variation = [M,M]7 = 0 $E[M_t] = E[[M,M]_T] = 0$ (M2-[M,M]+ \Rightarrow Mt²>0 thus Mt=0, that is A,=A₂ is a M.G.) M. = M2 Prop 4.4.3 Let x be an It's process, then X is a Ma (>> bt = 0 yt>0 (i.e. XT = X0+ ft 6+ dWt) Suppose X is a M.G. Define $A_T := \int_0^T b_t dt = X_T - X_0 - \int_0^T 6x dW_t$ M.G. M.G.⇒ A is a martingale. (also a semi-MG.) A = A + 0 = 0 + A thus $A = 0 \Leftrightarrow bt = 0$ Def 4.4.3. We define the integral of D w.r.t. X by So Dedxt := So De bedt + So De Ged We where dx = btdt + 6tdWt L Given an adapted process D, we interpret X as the price of an asset. and Das our position in it, which can be positive or negative). Theorem 4.4 (It o formula) - Recall that if f. R. R is continuously differentiable If $f: [0, \infty) \times \mathbb{R} \to \mathbb{R}$ is such that $f(y) = \int_{x}^{y} \frac{2f}{dx} \frac{2f}{(z)} dz$ t > f(t,x) is cont. differentiable Y XEIR Otf(t,x) exists X > f(t,X) is twice cont. differentiable. Vter. Dxfitx) dxfitx) exist

and if X is an It's process, then $f(T, X_{\tau}) - f(o, X_{o}) = \int_{o}^{T} \partial_{t} f(t, X_{t}) dt + \int_{o}^{T} \partial_{x} f(t, X_{t}) dX_{t}$ $+\frac{1}{2}\int_{0}^{1}\partial_{x}^{2}f(t,x_{\epsilon})d[x,x]_{t}$ Ito correction term Remark: Datf(t, Xx) Stands for taking derivative of f(t, Xx) w.r.t. t and then substitute Xt. Similar for dxf(t, Xt), dxf(t, Xt) The Ito formula is simply a version of the chain rule for Stochastic processes. Stochastic form: $df(t, x_t) = \partial_t f(t, x_t) dt + \partial_x f(t, x_t) dx_t$ + 2 22 fet, Xt) d[x, x]t Substitute $\int dXt = bt dt + 6t dWt$ we have (the Itô process) $\int d[X, X]t = 6t^2 dt$ ⇒ df(t, Xt) = Otf(t, Xt) dt + Oxf(t, Xt) [btdt + Ged We] + = 22 f(t, Xe) - 62 dt = $[\partial_t f(t, X_t) + \partial_x f(t, X_t)] bt + \frac{1}{2} \partial_x^2 f(t, X_t) 6e^2] dt$ + 2xf(t, Xx). GtdWt if the term before dt is zero, fit. Xt) is a martingale, Otherwise not

4.5 Examples ex 1. write W2 as a sum of dt and dWe-integral use the Itô formula and substitue f(t, X) = X2, X=WE $\Rightarrow \partial_t f(t,x) = 0$, $\partial_x f(t,x) = 2x$, $\partial_x^2 f(t,x) = 2$ > [W, W]t = t By Itô formula $d(W_t) = d(f(t, W_t)) = \partial_t f(t, W_t) dt + \partial_x f(t, W_t) dW_t$ + 1 2 2 fit, we) d[w, w]+ = 2W+dW+ + dt calculating the integral from 0 to T W_{7}^{2} - 0 = $\int_{0}^{7} 2W_{t} dW_{t} + \int_{0}^{7} dt = \int_{0}^{7} 2W_{t} dW_{t} + T$ $\Rightarrow \int_0^1 W_t dW_t = \frac{1}{2} (W_T^2 - T)$ Q: calculate [W, W]] [w, w] + = Jo (2Wt) dt = 4 fo widt y not constant. ex.2. Let Mt = Wt , Nt = Wt t , is MN a M. G? first method is to verify E[Mt Nt IFs] = Ms. Ns Vt >S another method is to use the Ito formula Note Mx. Nt = Wt (W+2-t) = Wt3 - Wt-t $f(t,x) = x^3 - tx$ $x_t = w_t$ $[x,x]_t = t$

$$\Rightarrow \partial_x f(t,x) = 3x^2 + t \quad \partial_x f(t,x) = -x \quad \partial_x^2 f(t,x) = 6x$$

$$\Rightarrow df(t,x) = \partial_t f(t,x_t) dt + \partial_x f(t,x_t) dx_t$$

$$+ \frac{1}{2} \partial_x^2 f(t,x_t) dIx_t xI_t$$

$$= -x dt + (3x^2 + t) dx_t + 3x dt$$

$$= 2x dt + (3x^2 + t) dx_t$$

$$= x dx_t + x dx_t + x dx_t$$

$$= x dx_t + x dx_t + x dx_t$$

$$= x dx_t + x dx_t + x dx_t$$

$$= x dx_t + x dx_t + x dx_t$$

$$= x dx_t + x dx_t + x dx_t$$

$$= x dx_t + x dx_t + x dx_t$$

$$= x dx_t + x dx_t + x dx_t$$

$$= x dx_t + x dx_t + x dx_t$$

$$= x dx_t + x dx_t + x dx_t$$

$$= x dx_t + x dx_t + x dx_t$$

$$= x dx_t + x dx_t + x dx_t$$

$$= x dx_t + x dx_t + x dx_t$$

$$= x dx_t + x dx_t + x dx_t$$

$$= x dx_t + x dx_t + x dx_t$$

$$= x dx_t + x dx_t + x dx_t$$

$$= x dx_t$$

4.6.1 Multidimensional Ito Def 4.6.1 (quadratic covariation) Let XX be two Itô Process. Define $[X,Y]_{T} = \lim_{t \to 0} \sum_{i=0}^{n-1} (X_{i+1} - X_{i})(Y_{i+1} - Y_{i})$ T= 10= to < --- < tn=T9 the quadratic covariation lemma, Va, b & IR ab = +[(a+b)2-(a-b)2] => let a = (xi+1-Xi) b = (Yi+1-Yi) thus [x, Y] = 4 [[x+Y, x+Y] - [x-Y, X+Y] -] Prop 4.6.1 (Product Rule) For It's processes X, Y, we have d(xY) = XdY + Ydx + d[x,Y] Prop 4.6.2 If X is an Itô process and A is adapted process of finite variation, then [x, A] = 0 (Note that [x + A, x + A] = [x.x]) Prop 4.6.4. If x, Y, Z are Itô processes and del R, then (Bi-linearity) [x, Y+ 2] = [x, Y] + 2 [x, Z] Prop 4.6.6 Let X,Y be two continuous martingales (e.g. Itô processes) w.r.t. a common filtration (Ft) to such that $E[x_t^2] < \infty$ and $E[Yt^2]<\infty$, if x, Y are independent, then [x,Y]=0the converse is not true, for example X = Jo 1 jus > 0 ydws Yt = Jot 1 iws coldWs , [x, Y] = 0 but X x Y

Theorem 4.6.1 Multidimensional Itô process Let X', X^2, \dots, X^n be Itô processes and $X = (X', X^2, \dots, X^n)$ Let $f: \Gamma_0, +\infty) \times \mathbb{R}^n \to \mathbb{R}$ $(t, \times) \to f(t, \times)$ be C'int (def exists) be c^2 in χ^2 ($\partial_{xx}f = \partial_x f$, $\partial_{xx}f = \partial_x^2 f$ exist) Then $f(T, X_T) = f(0, X_0) + \int_0^T \partial_t f(t, X_t) dt + \sum_{i=1}^n \int_0^T \partial_i f(t, X_t) dx_i$ $t = \sum_{i=1}^{n} \sum_{j=1}^{n} \int_{0}^{1} \partial_{i} \partial_{j} f(t, x_{t}) d[x^{i}, x^{i}]_{t}$ $\frac{\partial r}{\partial f(t, x_t)} = \frac{\partial r}{\partial t} f(t, x_t) dt + \sum_{i=0}^{t} \partial_i f(t, x_t) dx_t^i$ + = = = , = , did; f(t, Xt) d[xi, xi]t Remark: we most often use the two dimensions case $df(t, X_t, Y_t) = \partial t f dt + \partial x f d X_t + \partial y f d Y_t$ + = []x f d[x,x]+ + 2 dx dy f d[x,Y]+ + dy f d[x,Y]+ Prop 4.6.3. Let M, N be Martingales. Then (1) MN- [M,N] is a MG (when M=N, M= [M, M] is a Ma, which is mentioned before) (2) If A is adapted process of finite variation such that $A_0 = 0$ and MN - A is a MG, then A = [M,N]Example: M=W, N=-W [W,-W]t=-[W,W]t=-t(Typically, M. N are MG ≠ M·N is MG, eg M=N=W)

Prop 4.6.5. Let X', X^2 be Itô processes, $6', 6^2$ be adapted processes and $I_t^j = \int_0^t 6s^i dx^j = \int_{-1}^{2} (1-s)^2 dx^2 = \int_{-1}^{2} (1-s$

Then $[I', I^2]_t = \int_t^t 6s' 6s^2 d[x', x^2]_s$

Def 4-6.2. We say that $W = (W', W^2, \dots W^n)$ is a n-dimensional standard BM if

Deach Wisa Standard BM Vj=1, .-. n

@ Vitj Wi and Wi are independent.

Example.

o for a 2-dimensional SBM W=(W', W2)

 $[w',w']_{t}=0 \quad [w',w']_{t}=[w'',w'']_{t}=t$

$$df(w',w') = \partial_{x}f(w',w')dw' + \partial_{x}f(w',w')dw'$$

Theorem (Lévy)

Assume that M is a MG, MD=0 and $d[M^{2}, M^{2}]t = \begin{cases} dt & i=j \\ 0 & i\neq j \end{cases}$

L 0 i+

Then M is n-dimensional Brownian motion

Remark:

Cov (Xt, Yt) # [x, Y]t

a scalar a random variable