SEMAINE 23

COURBES PLANES

NAPPES PARAMÉTRÉES

EXERCICE 1:

Soit O un point du plan euclidien orienté, soit Γ un arc de classe \mathcal{C}^1 , régulier. À tout point M sur Γ , on associe le point T, intersection de la tangente à Γ en M avec la perpendiculaire à (OM) issue de O.

Déterminer Γ de sorte que la distance MT soit constante égale à 1. Calcul d'une abscisse curviligne sur Γ .

Notons s une abscisse curviligne sur Γ . Au point $M\begin{pmatrix} x(s) \\ y(s) \end{pmatrix}$, le vecteur tangent unitaire est

 $\overrightarrow{\tau}$ $\begin{pmatrix} x'(s) \\ y'(s) \end{pmatrix}$. Quitte à changer l'orientation de Γ , on peut supposer que $\overrightarrow{MT} = \overrightarrow{\tau}$. La condition à écrire est alors $\overrightarrow{OT} \cdot \overrightarrow{OM} = 0$, ce qui conduit à l'équation différentielle

(*):
$$x(x+x') + y(y+y') = 0$$
.

On peut supposer que l'arc recherché ne passe pas par O, et le théorème de relèvement permet de poser $\begin{cases} x(s) = \rho(s) \cos \theta(s) \\ y(s) = \rho(s) \sin \theta(s) \end{cases}$, les fonctions ρ et θ étant de classe \mathcal{C}^1 . On a alors la relation (**): $\rho'(s)^2 + \rho(s)^2 \, \theta'(s)^2 = 1$ qui exprime que s est un paramètre normal sur Γ .

En posant $R(s) = \rho(s)^2 = x(s)^2 + y(s)^2$, l'équation (*) s'écrit R'(s) + 2R(s) = 0, ce qui s'intègre en $R(s) = C^2 e^{-2s}$, puis $\rho(s) = C e^{-s}$. En réinjectant dans (**), on obtient $C^2 e^{-2s} (1 + \theta'(s)^2) = 1$, d'où

$$\theta'(s) = \frac{\mathrm{d}\theta}{\mathrm{d}s} = \pm \sqrt{\frac{e^{2s}}{C^2} - 1}$$
.

Cherchons maintenant une équation polaire de Γ :

$$\frac{\mathrm{d}\rho}{\mathrm{d}\theta} = \frac{\mathrm{d}\rho}{\mathrm{d}s} \frac{\mathrm{d}s}{\mathrm{d}\theta} = \pm \frac{C \, e^{-s}}{\sqrt{\frac{e^{2s}}{C^2} - 1}} = \pm \frac{C^2 \, e^{-2s}}{\sqrt{1 - C^2 \, e^{-2s}}} = \pm \frac{\rho^2}{\sqrt{1 - \rho^2}} \; .$$

Nous sommes donc ramenés à intégrer l'équation différentielle autonome (à variables séparables)

 $d\theta = \pm \frac{\sqrt{1-\rho^2}}{\rho^2} d\rho$. En posant $\rho = \sin u$ (on a nécessairement $0 < \rho \le 1$), on obtient

$$\int \frac{\sqrt{1-\rho^2}}{\rho^2} d\rho = \int \cot u du = -\cot u - u + k = -\sqrt{\frac{1}{\rho^2} - 1} - \arcsin \rho + k,$$

où k est une constante. Finalement,

$$\theta = \theta_0 \pm \left(\arcsin \rho + \sqrt{\frac{1}{\rho^2} - 1}\right) \qquad (0 < \rho \le 1) .$$

Les courbes solutions s'obtiennent à partir de l'une d'entre elles par toutes les isométries fixant O.

L'abscisse curviligne est $s=-\ln\left(\frac{\rho}{C}\right)$ soit, à une constante près, $s=-\ln\rho$. La spirale a donc une longueur infinie.

EXERCICE 2:

Dans le plan euclidien, soit Γ un arc de classe \mathcal{C}^4 , birégulier. On note I le centre de courbure de Γ en un point M. On note \mathcal{D} la développée de Γ (lieu des centres de courbure). Le centre de courbure de \mathcal{D} au point I (s'il existe) est noté J. On note enfin P le milieu de [MI], et \mathcal{C} le lieu des points P lorsque M parcourt Γ .

Montrer que la tangente à C au point P est orthogonale à la droite (MJ).

Soit s un paramètre normal ("une abscisse curviligne") sur Γ . Soit R le rayon de courbure de Γ en M. Notons enfin $(M; \overrightarrow{t}, \overrightarrow{n})$ le repère de Frenet de Γ en M. Alors $I = M + R \overrightarrow{n}$ et, en dérivant cette égalité (grâce aux formules de Frenet), on a

$$\frac{\mathrm{d}I}{\mathrm{d}s} = \overrightarrow{t} + \frac{\mathrm{d}R}{\mathrm{d}s} \overrightarrow{n} + R \cdot \left(-\frac{\overrightarrow{t}}{R} \right) = \frac{\mathrm{d}R}{\mathrm{d}s} \overrightarrow{n} \; .$$

Remarque : l'arc Γ étant de classe C^3 , la fonction $s \mapsto R(s)$ dont l'expression utilise des dérivées d'ordre deux, est de classe C^1 .

Les points singuliers sur la développée $\mathcal{D}\left(\frac{\mathrm{d}I}{\mathrm{d}s}=\overrightarrow{0}\right)$ correspondent donc aux "sommets" de la courbe Γ (extremums de la courbure), on exclut désormais ces points. On constate alors que la tangente à \mathcal{D} au point I est la normale à Γ au point M (propriété classique : la développée d'une courbe est l'enveloppe de ses normales). Orientons \mathcal{D} (c'est au moins possible localement) de façon que son vecteur tangent unitaire orienté $\overrightarrow{\tau}$ au point I soit \overrightarrow{n} ; le repère de Frenet de \mathcal{D} au point I est alors $(I; \overrightarrow{\tau}, \overrightarrow{\nu}) = (I; \overrightarrow{n}, -\overrightarrow{t})$.

Soit σ une abscisse curviligne sur \mathcal{D} . On a alors $\frac{\mathrm{d}I}{\mathrm{d}\sigma} = \overrightarrow{\tau} = \overrightarrow{n}$, mézôssi

$$\frac{\mathrm{d}I}{\mathrm{d}\sigma} = \frac{\mathrm{d}s}{\mathrm{d}\sigma}\,\frac{\mathrm{d}I}{\mathrm{d}s} = \frac{\mathrm{d}R}{\mathrm{d}s}\,\frac{\mathrm{d}s}{\mathrm{d}\sigma}\stackrel{\longrightarrow}{n} = \frac{\mathrm{d}R}{\mathrm{d}\sigma}\stackrel{\longrightarrow}{n}\,.$$

On en déduit la relation $\frac{dR}{d\sigma} = 1$ (ce qui traduit en fait que Γ est une développante de \mathcal{D}), ou encore $\frac{d\sigma}{ds} = \frac{dR}{ds}$ (interprétation : en intégrant cette égalité pour $s \in [s_1, s_2]$, avec des notations évidentes, on voit que la longueur de l'arc I_1I_2 sur la développée est égale à $|R_2 - R_1|$, c'est-à-dire à la variation du rayon de courbure de Γ entre les points M_1 et M_2 , à condition que la courbe Γ ne présente pas de "sommet" entre les points M_1 et M_2 , c'est-à-dire que la fonction $s \mapsto R(s)$ soit monotone sur l'intervalle $[s_1, s_2]$).

On a ensuite $\frac{d\overrightarrow{n}}{d\sigma} = \frac{ds}{d\sigma} \frac{d\overrightarrow{n}}{ds} = -\left(R\frac{dR}{ds}\right)^{-1} \overrightarrow{t}$ puisque $\frac{d\overrightarrow{n}}{ds} = -\frac{\overrightarrow{t}}{R}$. Soit alors ρ le rayon de

courbure de la développée \mathcal{D} au point I; les formules de Frenet montrent que $\frac{d\overrightarrow{\tau}}{d\sigma} = \frac{\overrightarrow{\nu}}{\rho}$,

c'est-à-dire $\frac{d\overrightarrow{n}}{d\sigma} = -\frac{\overrightarrow{t}}{\rho}$. Par comparaison avec la relation obtenue ci-dessus, on obtient une relation entre les courbures R et ρ :

$$\rho = R \frac{\mathrm{d}R}{\mathrm{d}s}$$

Le point J est donc défini par $\overrightarrow{IJ} = \rho \overrightarrow{\nu} = -R \frac{\mathrm{d}R}{\mathrm{d}s} \overrightarrow{t}$ et

$$\overrightarrow{MJ} = \overrightarrow{MI} + \overrightarrow{IJ} = R \left(\overrightarrow{n} - \frac{\mathrm{d}R}{\mathrm{d}s} \overrightarrow{t} \right) \ .$$

D'autre part, $P = M + \frac{1}{2} R \overrightarrow{n}$, donc la tangente à \mathcal{C} au point P est dirigée par le vecteur (s'il est non nul) :

$$\frac{\mathrm{d}P}{\mathrm{d}s} = \overrightarrow{t} + \frac{1}{2} \frac{\mathrm{d}R}{\mathrm{d}s} \overrightarrow{n} + \frac{1}{2} R \left(-\frac{\overrightarrow{t}}{R} \right) = \frac{1}{2} \left(\overrightarrow{t} + \frac{\mathrm{d}R}{\mathrm{d}s} \overrightarrow{n} \right) \ .$$

Ce vecteur est donc effectivement non nul et l'arc $s \mapsto P(s)$ est régulier, et on vérifie la nullité du produit scalaire $\overrightarrow{MJ} \cdot \frac{\mathrm{d}P}{\mathrm{d}s}$.

EXERCICE 3:

1. Soit a > 0, soit (H) l'hyperbole équilatère d'équation xy = a. Soit M un point de (H). Calculer les coordonnées de K, centre de courbure de (H) en M.

Vérifier la relation $\overrightarrow{OK} \cdot \overrightarrow{OM} = 2 \|\overrightarrow{OM}\|^2$. En déduire une construction géométrique du point K.

2. Réciproque : déterminer toutes les courbes planes Γ dont le centre de courbure peut s'obtenir par cette construction géométrique.

1. Paramétrons (H) par $\begin{cases} x = t \\ y = \frac{a}{t} \end{cases} \quad (t \in \mathbb{R}^*). \text{ Alors } \begin{cases} x' = 1 \\ y' = -\frac{a}{t^2} \end{cases} \text{ et } \begin{cases} x'' = 0 \\ y'' = \frac{2a}{t^3}, \text{ d'où } \end{cases}$ $\|\overrightarrow{F'}(t)\| = x'^2 + y'^2 = \frac{t^4 + a^2}{t^4}, \text{ Det } (\overrightarrow{F'}(t), \overrightarrow{F''}(t)) = x'y'' - x''y' = \frac{2a}{t^3} \text{ et le rayon de courbure est}$

$$R = \frac{\left(x'^2 + y'^2\right)^{\frac{3}{2}}}{x'y'' - x''y'} = \frac{\left(t^4 + a^2\right)^{\frac{3}{2}}}{2at^3} \ .$$

On détermine le repère de Frenet :

$$\overrightarrow{T}\left(\frac{t^2}{\sqrt{t^4+a^2}},\frac{-a}{\sqrt{t^4+a^2}}\right) \quad ; \qquad \overrightarrow{N}\left(\frac{a}{\sqrt{t^4+a^2}},\frac{t^2}{\sqrt{t^4+a^2}}\right) \; .$$

On détermine le centre de courbure K par $K = M + R\overrightarrow{N}$:

$$\begin{cases} x_K = t + \frac{t^4 + a^2}{2t^3} = \frac{3t^4 + a^2}{2t^3} \\ y_K = \frac{a}{t} + \frac{t^4 + a^2}{2at} = \frac{t^4 + 3a^2}{2at} \end{cases}$$

On vérifie immédiatement que $\overrightarrow{OK} \cdot \overrightarrow{OM} = 2 \|\overrightarrow{OM}\|^2 = 2 \frac{t^4 + a^2}{t^2}$. Cela signifie que le point N, projeté orthogonal de K sur la droite (OM), vérifie $\overrightarrow{ON} = 2\overrightarrow{OM}$.

Pour construire le point K, on place d'abord N tel que $\overrightarrow{ON} = 2\overrightarrow{OM}$; le point K est à l'intersection de la normale à (H) en M et de la perpendiculaire à (OM) issue de N.

- 2. Supposons l'arc Γ de classe \mathcal{C}^2 birégulier, ce qui permettra de considérer l'angle α comme paramètre admissible ; enfin, on suppose naturellement que l'arc ne passe pas par O, ce qui permet d'utiliser le théorème de relèvement pour paramétrer par l'angle θ des coordonnées polaires.
 - Soit M(x,y) un point de Γ , soit $K(\xi,\eta)$ le centre de courbure de Γ en ce point. On veut que soit satisfaite la relation $\overrightarrow{OK} \cdot \overrightarrow{OM} = 2 \|\overrightarrow{OM}\|^2$, c'est-à-dire (**R**) : $x\xi + y\eta = x^2 + y^2$.

Notons $(M; \overrightarrow{T}, \overrightarrow{N})$ le repère de Frenet de Γ en M, et soit l'angle $\alpha = (\overrightarrow{i}, \overrightarrow{T})$. De $K = M + R\overrightarrow{N}$ avec $R = \frac{\mathrm{d}s}{\mathrm{d}\alpha}$ et $\overrightarrow{T} = -\frac{\mathrm{d}x}{\mathrm{d}s}\overrightarrow{i} + \frac{\mathrm{d}y}{\mathrm{d}s}\overrightarrow{j}$, on déduit que les coordonnées du centre de courbure sont données par $\begin{cases} \xi = x - \frac{\mathrm{d}y}{\mathrm{d}\alpha} \\ \eta = y + \frac{\mathrm{d}x}{\mathrm{d}\alpha} \end{cases}$. On a donc

sont données par
$$\begin{cases} \xi = x - \frac{dy}{d\alpha} \\ \eta = y + \frac{dx}{d\alpha} \end{cases}$$
. On a donc

$$(\mathbf{R}) \iff x\left(x - \frac{\mathrm{d}y}{\mathrm{d}\alpha}\right) + y\left(y + \frac{\mathrm{d}x}{\mathrm{d}\alpha}\right) = 2(x^2 + y^2)$$

$$\iff y\frac{\mathrm{d}x}{\mathrm{d}\alpha} - x\frac{\mathrm{d}y}{\mathrm{d}\alpha} = x^2 + y^2$$

$$\iff y^2 \cdot \frac{\mathrm{d}}{\mathrm{d}\alpha}\left(\frac{x}{y}\right) = x^2 + y^2.$$

Passons en coordonnées polaires

$$(\mathbf{R}) \iff \rho^2 \sin^2 \theta \cdot \frac{\mathrm{d}}{\mathrm{d}\alpha} (\cot \theta) = \rho^2 \iff \frac{\mathrm{d}\theta}{\mathrm{d}\alpha} = -1 \iff \frac{\mathrm{d}\alpha}{\mathrm{d}\theta} = -1 .$$

Posons $\theta = \alpha + V$ (notation classique ; V est une mesure de l'angle que fait le vecteur tangent à Γ au point M avec le rayon vecteur \overrightarrow{OM} , on sait que $\tan V = \frac{\rho}{\rho'}$ avec ici $\rho' = \frac{\mathrm{d}\rho}{\mathrm{d}\theta}$). Alors

$$(\mathbf{R}) \iff \frac{\mathrm{d}V}{\mathrm{d}\theta} = 2 \iff V = 2\theta + \theta_0$$

$$\iff \frac{\rho}{\rho'} = \tan(2\theta + \theta_0) \iff \frac{\rho'}{\rho} = \cot(2\theta + \theta_0)$$

$$\iff \ln\left|\frac{\rho}{\rho_0}\right| = -\frac{1}{2}\ln|\sin(2\theta + \theta_0)|$$

$$\iff \rho = \frac{\rho_0}{\sqrt{|\sin(2\theta + \theta_0)|}} .$$

Les courbes solutions du problème se déduisent de l'une d'entre elles par les similitudes de centre O. Il suffit donc de reconnaître la courbe Γ_0 d'équation polaire (**E**) : $\rho = \frac{1}{\sqrt{\sin 2\theta}}$. Or,

$$(\mathbf{E}) \iff \rho^2 \sin 2\theta = 1 \iff (x^2 + y^2) \frac{2xy}{x^2 + y^2} = 1 \iff 2xy = 1.$$

Les courbes solutions sont donc les arcs d'hyperboles équilatères de centre O.

EXERCICE 4:

Soit Γ un arc fermé simple de classe \mathcal{C}^2 birégulier, soit r > 0. On suppose qu'en tout point M de Γ , le rayon de courbure algébrique R vérifie $R \geq r$. Donner une minoration de la longueur de l'arc Γ . Dans quel cas la minoration obtenue est-elle une égalité ?

Soit l la longueur de la courbe, on peut paramétrer Γ par une abscisse curviligne s décrivant [0,l]. En notant $\alpha=\alpha(s)$ l'angle $(\overrightarrow{i},\overrightarrow{t})$, où \overrightarrow{t} est le vecteur tangent unitaire orienté et c(s) la courbure au point M(s), on a $0< c(s) \leq \frac{1}{r}$ et

$$\int_0^l c(s) \, \mathrm{d}s = \int_0^l \frac{\mathrm{d}\alpha}{\mathrm{d}s} \, \mathrm{d}s = \alpha(l) - \alpha(0) \in 2\pi \, \mathbf{Z} \,,$$

donc $\int_0^l c(s) ds \ge 2\pi$ puisque la fonction $s \mapsto c(s)$ est strictement positive sur [0, l]. Mais on a aussi $\int_0^l c(s) ds \le \frac{l}{r}$, d'où l'inégalité $l \ge 2\pi r$.

Si $l=2\pi r$, alors nécessairement $\int_0^l c(s) \, \mathrm{d} s = 2\pi = \frac{l}{r}$ avec $c(s) \geq \frac{1}{r}$ sur l'intervalle [0,l], ce qui entraı̂ne que R(s)=r: le rayon de courbure est constant. L'arc Γ est alors un cercle de rayon r; en effet, le centre de courbure K de Γ au point M(s) vérifie $K=M+r\vec{n}$, donc (puisque R(s)=r est constant):

$$\frac{dK}{ds} = \frac{dM}{ds} + r\frac{d\overrightarrow{n}}{ds} = \overrightarrow{t} + r\left(-\frac{\overrightarrow{t}}{r}\right) = \overrightarrow{0} :$$

le centre de courbure K est constant ; il est alors immédiat que le support de Γ est le cercle de centre K et de rayon r.

EXERCICE 5:

L'espace euclidien orienté de dimension trois est rapporté à un repère orthonormal $\mathcal{R} = (O; \vec{i}, \vec{j}, \vec{k})$.

Soit \mathcal{T} le **tore** obtenu par rotation autour de l'axe Oz du cercle \mathcal{C} d'équations $\begin{cases} y = 0 \\ x^2 + z^2 - 4x + 3 = 0 \end{cases}$

- 1. Écrire une représentation cartésienne de \mathcal{T} . En déduire une équation cartésienne de \mathcal{T} .
- 2. Déterminer les plans tangents à \mathcal{T} passant par l'origine.
- 3. Montrer que l'intersection avec \mathcal{T} de l'un quelconque de ces plans est une réunion de deux cercles.

1. Le cercle $\mathcal C$ admet pour équations $\begin{cases} y=0\\ (x-2)^2+z^2=1 \end{cases}$, d'où le paramétrage $\begin{cases} x=2+\cos\theta\\ y=0\\ z=\sin\theta \end{cases}$ Par ailleurs, la rotation r_t d'axe Oz et d'angle t ($t\in\mathbb R$) admet pour expressions analy

tiques $\begin{cases} x = x \cos t - y \sin t \\ y' = x \sin t + y \cos t. \text{ Le tore } \mathcal{T} \text{ est la réunion des images du cercle } \mathcal{C} \text{ par toutes} \\ z' = z \end{cases}$ les rotations r_t , d'où un paramétrage $\begin{cases} x = (2 + \cos \theta) \cos t \\ y = (2 + \cos \theta) \sin t. \\ z = \sin \theta \end{cases}$

Pour obtenir une équation cartésienne de \mathcal{T} , on élimine les paramètres t et θ en écrivant que

$$x^2 + y^2 + z^2 = (2 + \cos \theta)^2 + \sin^2 \theta = 5 + 4\cos \theta$$
,

ce qui élimine t, donc $\cos \theta = \frac{1}{4}(x^2 + y^2 + z^2 - 5)$, puis

(E)
$$\frac{1}{16}(x^2+y^2+z^2-5)^2+z^2=1.$$

Nous avons ainsi prouvé que le tore \mathcal{T} est inclus dans la surface \mathcal{S} d'équation cartésienne (E). Réciproquement, si les coordonnées (x, y, z) d'un point M vérifie (E), il existe un réel θ tel

que
$$\begin{cases} \frac{1}{4}(x^2 + y^2 + z^2 - 5) = \cos\theta, & \text{d'où l'on tire } x^2 + y^2 = 5 - \sin^2\theta + 4\cos\theta = (2 + \cos\theta)^2, \\ z = \sin\theta & \text{et } \mathcal{S} \text{ est confondue avec } \mathcal{T}. \text{ Donc} \end{cases}$$
puis l'existence d'un réel t tel que
$$\begin{cases} x = (2 + \cos\theta)\cos t \\ y = (2 + \cos\theta)\sin t \end{cases}$$
et \mathcal{S} est confondue avec \mathcal{T} . Donc

- **2.** Soit M le point de \mathcal{T} de paramètres (t,θ) . Un vecteur normal à \mathcal{T} en M est

$$\overrightarrow{N} = \frac{\partial M}{\partial t} \wedge \frac{\partial M}{\partial \theta} = \begin{pmatrix} (2 + \cos \theta) & \cos \theta & \cos t \\ (2 + \cos \theta) & \cos \theta & \sin t \\ (2 + \cos \theta) & \sin \theta \end{pmatrix} , \quad \text{colin\'eaire à} \quad \begin{pmatrix} \cos \theta & \cos t \\ \cos \theta & \sin t \\ \sin \theta \end{pmatrix} .$$

On vérifie en effet que tout point est régulier, c'est-à-dire que ce dernier vecteur n'est jamais nul. Une équation du plan tangent à T au point M est alors $\overline{N} \cdot \overline{MX} = 0$ (où X est le point courant sur la tangente), soit

 $(x - (2 + \cos \theta)\cos t)\cos \theta\cos t + (y - (2 + \cos \theta)\sin t)\cos \theta\sin t + (z - \sin \theta)\sin \theta = 0.$

Ce plan passe par l'origine si et seulement si

$$-(2+\cos\theta)\cos\theta\cos^2t-(2+\cos\theta)\cos\theta\sin^2t-\sin^2\theta=0\;,$$
 soit $\cos\theta=-\frac{1}{2}.$

Les points du tore \mathcal{T} en lesquels le plan tangent passe par l'origine sont donc situés sur deux cercles C_1 et C_2 à l'intersection du tore \mathcal{T} avec les plans horizontaux de cotes $\frac{\sqrt{3}}{2}$ et $-\frac{\sqrt{3}}{2}$

respectivement, et qui ont pour équations $\begin{cases} x = \frac{3}{2}\cos t \\ y = \frac{3}{2}\sin t. \\ z = \pm \frac{\sqrt{3}}{2} \end{cases}$

Les plans tangents à \mathcal{T} aux points du cercle \mathcal{C}_1 ont pour équations

$$\mathcal{P}_t$$
: $x \cos t + y \sin t - z \sqrt{3} = 0$.

On peut remarquer que les plans tangents à $\mathcal T$ aux points de $\mathcal C_2$ sont les mêmes puisque le plan \mathcal{P}_t ci-dessus est tangent à \mathcal{T} au point de paramètres $\left(t, \frac{2\pi}{3}\right)$ sur \mathcal{C}_1 , mais aussi au point de paramètres $\left(t+\pi,-\frac{2\pi}{3}\right)$ sur \mathcal{C}_2 .

3. Le plan \mathcal{P}_t se déduit du plan \mathcal{P}_0 par la rotation d'axe Oz et d'angle t, il suffit donc d'étudier l'intersection du plan \mathcal{P}_0 : $x - z\sqrt{3} = 0$ avec le tore.

Pour cela, choisissons un repère orthonormal $\mathcal{R}' = (O; \overrightarrow{I}, \overrightarrow{J}, \overrightarrow{K})$ de sorte que les deux premiers vecteurs \overrightarrow{I} et \overrightarrow{J} dirigent \mathcal{P}_0 ; on peut choisir

$$\overrightarrow{I} = \overrightarrow{j} \ ; \quad \overrightarrow{J} = \frac{\sqrt{3}}{2} \ \overrightarrow{i} + \frac{1}{2} \ \overrightarrow{k} \ ; \quad \overrightarrow{K} = \frac{1}{2} \ \overrightarrow{i} - \frac{\sqrt{3}}{2} \ \overrightarrow{k} \ .$$

La matrice de passage est $P=\begin{pmatrix}0&\frac{\sqrt{3}}{2}&\frac{1}{2}\\1&0&0\\0&\frac{1}{2}&-\frac{\sqrt{3}}{2}\end{pmatrix}$, d'où les formules de changement de

coordonnées $\begin{cases} x = \frac{\sqrt{3}}{2} Y + \frac{1}{2} Z \\ y = X \end{cases}$. La courbe intersection du tore \mathcal{T} avec le plan \mathcal{P}_0 admet $z = \frac{1}{2} Y - \frac{\sqrt{3}}{2} Z$

alors pour équations dans le repère
$$\mathcal{R}'$$
:
$$\left\{ \begin{aligned} Z &= 0 \\ \frac{1}{16} \Big(\frac{3}{4} Y^2 + X^2 + \frac{1}{4} Y^2 - 5 \Big)^2 + \frac{1}{4} Y^2 &= 1 \end{aligned} \right., \text{ soit,}$$
 toujours avec $Z = 0$,
$$(X^2 + Y^2 - 5)^2 - 16 + 4Y^2 = 0 \; ; \\ (X^2 + Y^2)^2 - 10X^2 - 6Y^2 + 9 &= 0 \; ; \\ (X^2 + Y^2 - 3)^2 - 4X^2 &= 0 \; ; \\ (X^2 + Y^2 - 2X - 3)(X^2 + Y^2 + 2X - 3) &= 0 \; : \end{aligned}$$

on reconnaît bien, dans le plan \mathcal{P}_0 , une réunion de deux cercles, chacun de rayon 2. Ces cercles sont les **cercles de Villarceau** du tore \mathcal{T} .