

Banco de Dados

Profa. Dra. Vanessa Borges

Módulo 3 - SGBDs Relacionais

SGBDs Relacionais

- Unidade 1 Indexação
- Unidade 2 Processamento de transações e controle de concorrência

- Objetivo
 - Compreender princípios de armazenamento e acesso aos dados em SGBDs relacionais

Índices

- A ideia por trás de um índice ordenado é semelhante à que está por trás do índice usado em um livro, que lista termos importantes ao final, em ordem alfabética, junto com uma lista dos números de página onde o termo aparece no livro.
- Podemos pesquisar o índice do livro em busca de certo termo em seu interior e encontrar uma lista de endereços — números de página, nesse caso — e usar esses endereços para localizar as páginas especificadas primeiro e depois procurar o termo em cada página citada.
- Um índice recupera os registros de forma rápida por meio de uma chave de pesquisa
 - Qualquer subconjunto dos campos de uma relação pode ser uma chave de pesquisa
 - Chave de pesquisa não é necessariamente uma chave primária

Índices

Declaração de índices em SQL

- Existem duas maneiras de se declarar índices em SQL:
 - Implicitamente: isso ocorre quando se declara uma chave primária ou candidata;
 - A restrição de integridade PRIMARY KEY num comando CREATE TABLE ou ALTER TABLE corresponde à definição de uma chave primária em SQL.
 - A restrição de UNIQUE corresponde à definição de uma chave candidata em SQL.
 - Explicitamente: quando se usa o comando CREATE INDEX.

SGBDs Relacionais

- Unidade 1 Indexação
- Unidade 2 Processamento de transações e controle de concorrência

- Objetivo
 - Compreender princípios de armazenamento e acesso aos dados em SGBDs relacionais

Transações

 Um dos papéis de um SGBD é processar transações: um conjunto de várias operações que são executadas sobre os dados do banco de dados, e que devem ser vistas pelo usuário do sistema como uma única unidade de processamento

Exemplo:

 A transferência de valores entre contas correntes é uma operação única do ponto de vista de um cliente de um sistema bancário, porém, dentro do sistema de banco de dados, essa transferência envolve várias operações.

Propriedades de uma transação

- As transações devem possuir propriedades denominadas ACID
- Essas propriedades devem ser impostas pelos métodos de controle de concorrência e recuperação do SGBD.

- Atomicidade
- Consistência
- Isolamento
- Durabilidade ou permanência

Atomicidade

- Unidade atômica
- Executa em sua totalidade (nunca parcialmente)

```
read_item(A);
A:=A-50
write_item(A);
Falha!
```

Assegurar a **ATOMICIDADE** de uma transação é **responsabilidade do SGBD**, mais especificamente dos componentes de **Gerenciamento de Transações** e de **Recuperação de Falhas**.

Consistência

 Garante que se o banco de dados for inicialmente consistente, a execução da transação (por si só) deixa o banco de dados em um estado consistente

Assegurar a **CONSISTÊNCIA** de uma transação é **responsabilidade do programador.**

Isolamento

 Garante que transações executadas concorrentemente sejam isoladas umas das outras, de modo que cada uma tenha a impressão de que nenhuma outra transação está sendo executada concorrentemente a ela

```
read_item(A);
A:=A-50
write_item(A);
read_item(B);
B:=B+50
write_item(B);
```

```
read_item(A);
A:=A*1,5;
write_item(A);
```

Assegurar o **ISOLAMENTO** de uma transação é **responsabilidade do Controle de Concorrência.**

Durabilidade

 Garante que quando uma transação tiver sido confirmada (commit), as atualizações dessa transação não são perdidas, mesmo que haja uma falha no sistema

É responsabilidade do subsistema de recuperação a falhas do SGBD.

Por que o controle de concorrência é necessário?

- Vários problemas podem acontecer quando transações simultâneas são executadas de uma maneira descontrolada
 - O problema da atualização perdida
 - Ocorre quando duas transações que acessam os mesmos itens do banco de dados têm suas operações intercaladas podendo resultar em itens do banco de dados com valor incorreto

Controle de concorrência

 Na prática, é impraticável testar a serialização de um plano de execução (schedule).

- A técnica usada na maioria dos SGBDs comerciais é projetar protocolos (conjuntos de regras) que — se seguidos por toda transação individual ou se impostos por um subsistema de controle de concorrência do SGBD — garantirão a serialização de todos os schedules em que as transações participam.
 - A técnica mais comum, chamada bloqueio em duas fases, é baseada no bloqueio de itens de dados para impedir que transações concorrentes interfiram umas com as outras, e na imposição de uma condição adicional que garanta a serialização.

Licenciamento

BY

Respeitadas as formas de citação formal de autores de acordo com as normas da ABNT NBR 6023 (2018), a não ser que esteja indicado de outra forma, todo material desta apresentação está licenciado sob uma <u>Licença Creative Commons</u> - <u>Atribuição 4.0 Internacional.</u>