A. 16 wierzchołków
B. 9 wierzchołków
c. 16 krawędzi
D. 8 krawędzi
Zadanie 16. (1pkt) Przekątna ściany sześcianu ma długość 2 . Pole powierzchni całkowitej tego sześcianu jest równe:
A. 24
B. $12\sqrt{2}$
c. 12
D. $16\sqrt{2}$
Takich nie robiliśmy, obejmują one szukanie miar kątów w bryłach, ale dasz radę:
Zadanie 18. (1pkt) Podstawą ostrosłupa prawidłowego czworokątnego $ABCDS$ jest kwadrat $ABCD$. Wszystki ściany boczne tego ostrosłupa są trójkątami równobocznymi. Miara kąta ASC jest równa:
A. $45\degree$
B. $30\degree$
c. 75°
D. 90°

Zadanie 19. (1pkt) Podstawą graniastosłupa prawidłowego czworokątnego jest kwadrat o boku długości 2, a przekątna ściany bocznej ma długość 3 (zobacz rysunek). Kąt, jaki tworzą przekątne ścian bocznych tego graniastosłupa wychodzące z jednego wierzchołka, ma miarę α .

Wtedy wartość $sinrac{lpha}{2}$ jest równa:

- **A.** $\frac{2}{3}$
- **B.** $\frac{\sqrt{7}}{3}$
- **c.** $\frac{\sqrt{7}}{7}$
- **D.** $\frac{\sqrt{2}}{3}$

Odpowiedź

Wyjaśnienie

Zadanie 20. (1pkt) Różnica liczby krawędzi i liczby wierzchołków ostrosłupa jest równa 11. Podstawą tego ostrosłupa jest:

- A. dziesięciokąt
- **B.** jedenastokąt
- **C.** dwunastokąt
- **D.** trzynastokąt

Odpowiedź

Wyjaśnienie

https://szaloneliczby.pl/bryly-obrotowe-zadania-maturalne/

Zadanie 19. (1pkt) Dany jest stożek o wysokości 4 i średnicy podstawy 12. Objętość tego stożka jest równa:

- A. 576π
- B. 192π
- c. 144π
- D. 48π

Zadanie 18. (1pkt) Promień AS podstawy walca jest równy wysokości OS tego walca. Sinus kąta OAS (zobacz rysunek) jest równy:

- **A.** $\frac{\sqrt{3}}{2}$
- **B.** $\frac{\sqrt{2}}{2}$
- **C.** $\frac{1}{2}$
- **D**. 1

Zadanie 17. (1pkt) Dany jest walec, w którym promień podstawy jest równy r, a wysokość walca jest od tego promienia dwa razy większa. Objętość tego walca jest równa:

- A. $2\pi r^3$
- B. $4\pi r^3$
- c. $\pi r^2(r+2)$
- D. $\pi r^2(r-2)$

Chodzi o to, żeby zamiast literki h, wysokość wyrazić za pomocą r (promienia podstawy), bo jak widzisz w zadaniu, jest jakaś zależność między nimi.

Zadanie 15. (1pkt) Kąt rozwarcia stożka ma miarę $120\,^\circ$, a tworząca tego stożka ma długość 4. Objętość tego stożka jest równa: **A.** 36π

B. 18π

D. 8π

Odpowiedź Wyjaśnienie

Zadanie 16. (1pkt) Kąt rozwarcia stożka ma miarę 120° , a tworząca tego stożka ma długość 6. Promień podstawy stożka jest równy:

A. 3

B. 6

c. $3\sqrt{3}$

D. $6\sqrt{3}$