Continuous exposures and g-computation Malcolm Barrett Stanford University

Normal regression estimates associations. But we want causal estimates: what would happen if everyone in the study were exposed to x vs if no one was exposed.

G-Computation/G-Formula

- Fit a model for y ~ x + z where z is all covariates
- Create a duplicate of your data set for each level of x
- Set the value of x to a single value for each cloned data set (e.g x = 1 for one, x = 0 for the other)

G-Computation/G-Formula

- Make predictions using the model on the cloned data sets
- Calculate the estimate you want, e.g. mean(x_1) mean(x_0)

Advantages of the parametric G-formula

Often more statistically precise than propensity-based methods Incredibly flexible

Basis of other important causal models, e.g. causal survival analysis and TMLE

Greek Pantheon data (greek_data)

The name of a Greek god	A prognostic factor	The treatment, a heart transplant	The outcome, death
Rheia	0	0	0
Kronos	0	0	1
Demeter	0	0	0
Hades	0	0	0
Hestia	0	1	0
Poseidon	0	1	0
Hera	0	1	0
Zeus	0	1	1
Artemis	1	0	1
Apollo	1	0	1

+ 10 more rows

1. Fit a model for y ~ a + 1

```
1 greek_model <- lm(y ~ a + 1, data = greek_data)</pre>
```

2. Create a duplicate of your data set for each level of a

The name of a Greek god	A prognostic factor	The treatment, a heart transplant	The outcome, death
Rheia	0	0	0
Kronos	0	0	1
Demeter	0	0	0
Hades	0	0	0
Hestia	0	1	0
Poseidon	0	1	0
Hera	0	1	0
Zeus	0	1	1
Artemis	1	0	1
Apollo	1	0	1

2. Create a duplicate of your data set for each level of a

The name of a Greek god	A prognostic factor	The treatment, a heart transplant	•	The name of a Greek god	A prognostic factor	The treatment, a heart transplant	•	
Rheia	0	0	0	Rheia	0	0	0	
Kronos	0	0	1	Kronos	0	0	1	
Demeter	0	0	0	Demeter	0	0	0	
Hades	0	0	0	Hades	0	0	0	
Hestia	0	1	0	Hestia	0	1	0	
Poseidon	0	1	0	Poseidon	0	1	0	
Hera	0	1	0	Hera	0	1	0	
Zeus	0	1	1	Zeus	0	1	1	
Artemis	1	0	1	Artemis	1	0	1	
Apollo	1	0	1	Apollo	1	0	1	

3. Set the value of a to a single value for each cloned data set

The name of a Greek god	A prognostic factor	а	The outcome, death	The name of a Greek god	A prognostic factor		The outcome, death
Rheia	0	0	0	Rheia	0	1	0
Kronos	0	0	1	Kronos	0	1	1
Demeter	0	0	0	Demeter	0	1	0
Hades	0	0	0	Hades	0	1	0
Hestia	0	0	0	Hestia	0	1	0
Poseidon	0	0	0	Poseidon	0	1	0
Hera	0	0	0	Hera	0	1	0
Zeus	0	0	1	Zeus	0	1	1
Artemis	1	0	1	Artemis	1	1	1
Apollo	1	0	1	Apollo	1	1	1

3. Set the value of a to a single value for each cloned data set

```
1 # set all participants to have a = 0
2 untreated_data <- greek_data |>
3    mutate(a = 0)
4
5 # set all participants to have a = 1
6 treated_data <- greek_data |>
7    mutate(a = 1)
```

4. Make predictions using the model on the cloned data sets

```
1  # predict under the data where everyone is untreated
2  predicted_untreated <- greek_model |>
3    augment(newdata = untreated_data) |>
4    select(untreated = .fitted)
5
6  # predict under the data where everyone is treated
7  predicted_treated <- greek_model |>
8    augment(newdata = treated_data) |>
9    select(treated = .fitted)
10
11 predictions <- bind_cols(
12    predicted_untreated,
13    predicted_treated
14 )</pre>
```

5. Calculate the estimate you want

Continuous exposures

We recommend g-computation over propensity scores for continuous exposures because of stability issues

Do posted wait times at 8 am affect actual wait times at 9 am?

Your Turn

Work through Your Turns 1-3 in 10-continuousg-computation-exercises.qmd

10:00