

Lecture 2

Forces acting on ions

Equilibrium potential

Typical ion concentrations

Resting state potential

Equvivalent circuit model

$$c_{\rm m}\frac{dV}{dt} = -i_{\rm m} + \frac{I_{\rm e}}{A}.$$

$$i_{\rm m} = \sum_i g_i (V - E_i)$$

Passive neuron model

$$c_{\rm m}\frac{dV}{dt} = -i_{\rm m} + \frac{I_{\rm e}}{A}.$$

Angus Chadwick

$$V(t) - E_m = e^{-t/\tau_m} (V(0) - E_m) + \frac{1}{g_m \tau_m} \int_0^t e^{-(t-t')/\tau_m} I_{ext}(t') dt'$$
 Decay of initial membrane potential

towards resting potential

Low-pass filter of external current input

(also called a "leaky integrator")

Angus Chadwick

Action potentials

Action potentials are the "unit of communication"

Action potentials are discrete events

 "All or none"-dynamics at approx. -50 mV

• Due to non-linearities and voltage dependence of conductances g_i

Action potentials

$$c_m \frac{dV(t)}{dt} = -g_{leak}[V(t) - E_{leak}] - g_{Na}(V, t)[V(t) - E_{Na}] - g_K(V, t)[V(t) - E_K] + I_{ext}$$

Ion channels opening and closing WHERTIE INSTITUTE FOR ALIN BRAIN HEALTH

Voltage gated ion channels

- Opening of K+-channel $P_{\rm K} = n^k$
- $n \in [0,1]$ is a gating variable modelling probability of being open
- Voltage dependence:

$$\frac{dn}{dt} = \alpha_n(V)(1-n) - \beta_n(V)n$$
opening closing

Opening and closing functions

- Determine channel kinetics
- Fit to experimental data

$$\alpha_n = \frac{.01(V+55)}{1-\exp(-.1(V+55))}$$

$$\beta_n = 0.125 \exp(-0.0125(V+65))$$

Modelling transient channel kinetics

- Two voltage-dependent processes:
 - Opening m
 - Inactivating h

$$P_{\text{Na}} = m^k h$$
.

• Rate functions:

$$\alpha_m = \frac{.1(V+40)}{1-\exp(-.1(V+40))}$$
$$\alpha_h = .07\exp(-.05(V+65))$$

$$\beta_m = 4 \exp(-.0556(V + 65))$$
$$\beta_h = 1/(1 + \exp(-.1(V + 35)))$$

02.03.2025 45

The Hodgkin-Huxley model

Dayan & Abbott, 2001

$$i_{\rm m} = \overline{g}_{\rm L}(V - E_{\rm L}) + \overline{g}_{\rm K}n^4(V - E_{\rm K}) + \overline{g}_{\rm Na}m^3h(V - E_{\rm Na})$$

Actual data

Stochastic ion channel models

Why is the HH model a good model?

- Explained measured data
- Led to predictions:
 - Kinetics of ion channels
 - Changes with temperature
 - Effect of toxins like TTX
- Can be extended

General conductance-based models

Transient K+-channel

- Rapidly inactivating
- Linearizes firing over threshold

$$i_{\rm m} = \overline{g}_L(V - E_{\rm L}) + \overline{g}_{\rm Na} m^3 h(V - E_{\rm Na}) + \overline{g}_K n^4 (V - E_{\rm K}) + \overline{g}_{\rm A} a^3 b(V - E_{\rm A})$$

Conductance-based models

$$i_{\text{CaT}} = \overline{g}_{\text{CaT}} M^2 H (V - E_{\text{Ca}})$$

Transient Ca²⁺-channel

- Multiple types of Ca²⁺ channels, including persistent/transient
- Slower Na⁺ conductance, depolarization can be called "Ca spike"

Conductance-based models

- Ca²⁺-conductance is important for modelling state dependency
- Positive current: regular firing
- Negative current: oscillatory bursty firing

Conductance-based models

- Not only voltage dependence:
 Ca²⁺-dependent K+-channel
- Important for modelling adaptation
- Requires Ca²⁺-model

$$i_{KCa} = \overline{g}_{KCa}c^4(V - E_K)$$

$$\frac{d[\mathrm{Ca}^{2+}]}{dt} = -\gamma i_{\mathrm{Ca}} - \frac{[\mathrm{Ca}^{2+}]}{\tau_{\mathrm{Ca}}}$$

Neurons are cables

 Until now: membrane potential across entire neuron as one variable

 Neurons have long and narrow processes -> delay, attenuation

Longitudinal current:

$$I_{\rm L} = -\frac{\pi a^2}{r_{\rm L}} \frac{\partial V}{\partial x}$$

The cable equation

 Short segment with radius a and length Δx

Currents:

- Capacitative membrane
- Neighboring segments
- Conductances
- Electrodes / Input

$$2\pi a \Delta x c_{\rm m} \frac{\partial V}{\partial t} = -\left. \left(\frac{\pi a^2}{r_{\rm L}} \frac{\partial V}{\partial x} \right) \right|_{\rm left} + \left. \left(\frac{\pi a^2}{r_{\rm L}} \frac{\partial V}{\partial x} \right) \right|_{\rm right} - 2\pi a \Delta x (i_{\rm m} - i_{\rm e}) \,.$$

$$c_{\rm m} \frac{\partial V}{\partial t} = \frac{1}{2ar_{\rm L}} \frac{\partial}{\partial x} \left(a^2 \frac{\partial V}{\partial x} \right) - i_{\rm m} + i_{\rm e} \,.$$

The cable equation — analytic solution by linear approximation

 Linear approximation of membrane currents

$$i_{\rm m} = (V - V_{\rm rest})/r_{\rm m}$$

Electrotonic length

$$\lambda = \sqrt{\frac{ar_{\rm m}}{2r_{\rm L}}}$$

• Simplified: $\tau_{\rm m}$

$$\tau_{\rm m} \frac{\partial v}{\partial t} = \lambda^2 \frac{\partial^2 v}{\partial x^2} - v + r_{\rm m} i_{\rm e}$$

Branching cables

$$p_i = \frac{a_i^{3/2}}{a_1^{3/2} + a_2^{3/2} + a_3^{3/2}}$$

$$\lambda_i = \sqrt{\frac{a_i r_{\rm m}}{2r_{\rm L}}} \ ,$$

$$R_{\lambda_i} = \frac{r_{\rm L} \lambda_i}{\pi a_i^2}$$

$$v_{1}(x) = p_{1}I_{e}R_{\lambda_{1}} \exp(-x/\lambda_{1} - y/\lambda_{2})$$

$$v_{2}(x) = \frac{I_{e}R_{\lambda_{2}}}{2} \left[\exp(-|y - x|/\lambda_{2}) + (2p_{2} - 1) \exp(-(y + x)/\lambda_{2}) \right]$$

$$v_{3}(x) = p_{3}I_{e}R_{\lambda_{3}} \exp(-x/\lambda_{3} - y/\lambda_{2}),$$
(6.2)

Rall modell

Multicompartment models

