Elementary Number Theory

Daniel Mao

Copyright \bigodot 2021 Daniel Mao All Rights Reserved.

Contents

1	Greatest Common Divisor		
	1.1 Definition	1	
	1.2 Properties	1	

ii CONTENTS

Chapter 1

Greatest Common Divisor

1.1 Definition

Definition (Greatest Common Divisor). Let a and b be two integers, not all zero. We define the **greatest common divisor** of a and b, denoted by gcd(a,b), to be the greatest positive integer d that is a divisor of both a and b. i.e., $\exists e, f \in \mathbb{Z}$ such that a = de and b = df.

Proposition 1.1.1.

$$\forall a \in \mathbb{Z}, \quad \gcd(a,0) = |a|.$$

1.2 Properties

Proposition 1.2.1. Let A and B be two non-empty, finite sets of integers, not both $\{0\}$. Let gcd(A) denote the GCD of the elements in A and gcd(B) denote that of B. Then I claim that

$$gcd(A \cup B) = gcd(gcd(A), gcd(B)).$$

Proof. Let a denote the number $\gcd(\gcd(A), \gcd(B))$. Then $a|\gcd(A)$ and $a|\gcd(B)$. Since $\gcd(A)$ is the GCD of elements in A, by definition, it divides all elements in A. Similarly, $\gcd(B)$ divides all elements in B. Since $a|\gcd(A)$ and $\gcd(A)$ divides all elements in A, a divides all elements in a. Similarly, a also divides all elements in a. Since a divides all elements in a and all elements in a are common divisor of elements in a and a elements in a elements in a and a elements in a and a elements in a elements in a and a elements in a and a elements in a elements in a and a elements in a elements in a and a elements in a

is the greatest common divisor, $a \ge a'$. That is, any common divisor of elements in $A \cup B$ is $\le a$. Since a is a common divisor of elements in $A \cup B$ and any common divisor a' is $\le a$, a is the GCD of $A \cup B$. That is, $a = \gcd(A \cup B)$. That is,

$$\gcd(A \cup B) = \gcd(\gcd(A), \gcd(B)),$$

as claimed.