东南大学数字逻辑电路

实 验 报 告

学号: 04022212

姓名: ___ 钟 源

2023年12月13日

实验名称:实验8 综合实验

实验类型:综合性

成绩:

一、实验内容提要

使用 LED 设计一种彩灯花灯:

- 1.选取并熟悉相关芯片
- 2.列出状态转移真值表和转换图
- 3.给出电路实现方案
- 4.调试电路,实现控制 8 路 LED 以 2 种速度(0.5 秒和 1 秒)连续显示 3 种显示式样。两种速度交替进行,彩灯花型为:
 - 1) 依次点亮, 反序熄灭;
 - 2) 两边到中间依次点亮, 反序熄灭;
 - 3) 两个灯亮右移

二、实验仪器与元器件

1.ADALM2000 1台

2.面包板 1 块

3.集成芯片:

1) SN74HC138N 1片

2) SN74HC151N 3片

3) SN74HC194N 2片

4) SN74HC161N 2片

5) SN74HC153N 2片

6) SN74HC74N 1片

7) SN74HC04N 1片

8) SN74HC20N 1片

4.红色 LED 灯 8 个, 1kΩ电阻 8 个。

5.杜邦线 3条, 导线若干。

三、设计过程及步骤

1: 列出真值表:

计数					FF0 输出				FF1 输出				74194 状态设置			
Q ₄	Q ₃	Q ₂	Q ₁	Qo	Z ₀	Z ₁	Z ₂	Z ₃	Z ₄	Z ₅	Z ₆	Z ₇	S ₁	S ₀	D _{SR(0)}	D _{SL(1)}
0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	Х
	依次点亮															
		0	0	1	1	0	0	0	0	0	0	0			1	Х
		0	1	0	1	1	0		0			1	Х			
0	0	0	1	1	1	1	1	0	0	0	0	0	0	1	1	Х
		1	0	0	1	1	1	1	0	0	0	0			1	Х
		1	0	1	1	1	1	1	1	0	0	0			1	Х

		1	1	0	1	1	1	1	1	1	0	0			1	Х
		1	1	1	1	1	1	1	1	1	1	0			1	Х
0	1	0	0	0	1	1	1	1	1	1	1	1	1	0	х	0
反序熄灭																
		0	0	1	1	1	1	1	1	1	1	0			х	0
		0	1	0	1	1	1	1	1	1	0	0			Х	0
		0	1	1	1	1	1	1	1	0	0	0			Х	0
0	1	1	0	0	1	1	1	1	0	0	0	0	1	0	Х	0
		1	0	1	1	1	1	0	0	0	0	0			Х	0
		1	1	0	1	1	0	0	0	0	0	0			Х	0
		1	1	1	1	0	0	0	0	0	0	0			Х	0
1	0	0	0	0	0	0	0	0	0	0	0	0	1	1	х	х
两边到中间同时点亮,反序熄灭																
		0	0	1	1	0	0	0	0	0	0	1			х	Х
		0	1	0	1	1	0	0	0	0	1	1			х	Х
		0	1	1	1	1	1	0	0	1	1	1			Х	Х
1	0	1	0	0	1	1	1	1	1	1	1	1	1	1	х	х
		1	0	1	1	1	1	0	0	1	1	1			Х	Х
		1	1	0	1	1	0	0	0	0	1	1			Х	Х
		1	1	1	1	0	0	0	0	0	0	1			Х	Х
1	1	0	0	0	0	0	0	0	0	0	0	0	1	1	0	Х
							两个	灯亮右	移				F	F		
		0	0	1	1	1	0	0	0	0	0	0			0	Х
		0	1	0	0	1	1	0	0	0	0	0			0	Х
		0	1	1	0	0	1	1	0	0	0	0			0	Х
1	1	1	0	0	0	0	0	1	1	0	0	0	0	1	0	х
		1	0	1	0	0	0	0	1	1	0	0			0	Х
		1	1	0	0	0	0	0	0	1	1	1			0	х
		1	1	1	0	0	0	0	0	0	1	1			0	Х

注: 此处计数使用了两片级联的 74HC161 计数器,输出则取自两片级联的 74HC194 的并行输出端。

即 Q₄Q₃Q₂Q₁Q₀ 是级联的 74HC161 的并行输出端,Z₀Z₁Z₂Z₃Z₄Z₅Z₆Z₇ 是级联的 74HC194 的并行输出端。

2: 画出状态转移图:

3. 设计逻辑函数表达式:

由状态转移真值表可得:

 $Q_4Q_3Q_2Q_1Q_0$ 序列处于 00000-00111 状态时,使用级联的 74HC194 的右移功能; $Q_4Q_3Q_2Q_1Q_0$ 序列处于 01000-01111 状态时,使用级联的 74HC194 的左移功能; $Q_4Q_3Q_2Q_1Q_0$ 序列处于 10000-11000 状态时,使用级联的 74HC194 的送数功能; $Q_4Q_3Q_2Q_1Q_0$ 序列处于 11001-11111 状态时,使用级联的 74HC194 的右移功能。 设计控制端函数如下:

$$S_1 = (Q_4 \oplus Q_3) + (Q_4 Q_3 \overline{Q_2} \overline{Q_1} \overline{Q_0})$$

$$S_0 = Q_4 + \overline{Q_3}$$

设计串行输入端函数如下:

$$D_{SL} = 0$$

$$D_{SR} = \overline{Q_3}$$

设计置数函数如下:

$$\begin{split} D_0 &= \overline{Q_2} \overline{Q_1} \overline{Q_0} \\ D_1 &= \overline{Q_3} (\overline{\overline{Q_2} \cdot \overline{Q_1} \cdot \overline{Q_0}} + Q_2 \cdot Q_1 \cdot \overline{Q_0} + Q_2 \cdot Q_1 \cdot Q_0) + Q_3 \\ D_2 &= D_5 = Q_2 \cdot \overline{Q_1} \cdot \overline{Q_0} + \overline{Q_2} \cdot Q_1 \cdot \overline{Q_0} + \overline{Q_2} \cdot Q_1 \cdot Q_0 \\ D_3 &= D_4 = \overline{Q_2} \cdot Q_1 \cdot Q_0 \\ D_1 &= \overline{\overline{Q_2} \cdot \overline{Q_1} \cdot \overline{Q_0}} + Q_2 \cdot Q_1 \cdot \overline{Q_0} + Q_2 \cdot Q_1 \cdot Q_0 \\ D_7 &= \overline{Q_3} (\overline{Q_2} \overline{Q_1} \overline{Q_0}) \end{split}$$

注: 此处 Dn 是级联的 74HC194 的各并行输入端,同时也将变成下一状态的 Zn 输出。

参考的置数真值表(非完整)如下:

Q ₄	Q ₃	Q ₂	Q ₁	Q_0	D ₀	D ₁	D ₂	D ₃	D ₄	D ₅	D ₆	D ₇
		0	0	0	1	0	0	0	0	0	0	1
		0	0	1	1	1	0	0	0	0	1	1
		0	1	0	1	1	1	0	0	1	1	1
1	0	0	1	1	1	1	1	1	1	1	1	1
		1	0	0	1	1	1	0	0	1	1	1
		1	0	1	1	1	0	0	0	0	1	1
		1	1	0	1	0	0	0	0	0	0	1
		1	1	1	0	0	0	0	0	0	0	0
1	1	0	0	0	1	1	0	0	0	0	0	0

4.设计交替变速:

通过将 D 触发器的 \overline{Q} 接入 D,CLK 端再接入时钟信号 CP,即可获得一个二分频,如下:

每次循环之后,计数器中 Q_5 会由 0 变成 1,将 Q_5 接入另一个 D 触发器的 CLK 端,则可以记录下 Q_5 的上升沿,这时再将 D 触发器的 \overline{Q} 接入 D,则可以做到每次循环后翻转一次的信号 fl,如下:

再将 fl 接入数据选择器的控制端、输入端接两个不同频率的信号即可实现变速。

5.电路设计图:

6.实现方法:

1) 获得分频器, 并实现交替变速:

使用一片 SN74HC74N 和一片 SN74HC153N。

2) 获得级联的模 162的计数器:

使用两片 SN74HC161N。

3) 获得级联的 8 位双向寄存器:

使用两片 SN74HC194N。

4) 获得相应的 S₁ S₀ D_{SR} D_{SL} D₀D₁D₂D₃D₄D₅D₆D₇:

使用 3 片 SN74HC151N,1 片 SN74HC04N,1 片 SN74HC20N,1 片 SN74HC153N,1 片 SN74HC138N。

5.电路照片:

原图:

fxg

注解:

四、结果分析

(见文件中视频)

得到实验结论:

输出结果与实验要求真值一致。

成功实现了控制 8 路 LED 以 2 种速度 (0.5 秒和 1 秒) 连续显示 3 种显示式样。两种速度交替进

行,彩灯花型为:

- 1) 依次点亮,反序熄灭;
- 2) 两边到中间依次点亮,反序熄灭;
- 3) 两个灯亮右移