

RADIO TEST REPORT FCC ID: 2AIOO-H8

Product: Intelligent bracelet

Trade Name: N/A

Model No.: H8

Serial Model: H6,H9,H18,W6,W8,W18,W29,W30

Report No.: NTEK-2016NT05175796F

Issue Date: 23 May. 2016

Prepared for

SHENZHEN CHUANGZHI JIEKE TECHNOLOGY CO., LTD. FLOOR3,BLOCK A,F&D TECHNOLOGY PARK,BAOAN RODE BAOAN DISTRICT,SHENZHEN,CHINA

Prepared by

NTEK TESTING TECHNOLOGY CO., LTD.

1/F, Building E, Fenda Science Park, Sanwei Community, Xixiang Street Bao'an District, Shenzhen, P.R. China

Tel.: +86-0755-61156588 Fax.: +86-0755-61156599 Website: www.ntek.org.cn

TABLE OF CONTENTS

	TEST RESULT CERTIFICATION	
2	SUMMARY OF TEST RESULTS	4
3	FACILITIES AND ACCREDITATIONS	5
3.1 3.2		5
3.3		
4	GENERAL DESCRIPTION OF EUT	6
5	DESCRIPTION OF TEST MODES	8
6	SETUP OF EQUIPMENT UNDER TEST	9
6.1	DECCREDITION OF THE PROPERTY O	
6.2		10
6.3		
7	TEST REQUIREMENTS	12
7.1	.1 CONDUCTED EMISSIONS TEST	12
7.2	- Turburibe of Cito of Elimonical manners and the city of the city	
7.3	022211020111	
7.4	2011 01 022	
7.5		
7.6		
7.7 7.8		
7.0	O ANTENNAALI LICATION	

1 TEST RESULT CERTIFICATION

Shenzhen Chuangzhi Jieke Technology Co., Ltd.
Floor3,Block A,F&D technology park,Baoan Rode Baoan District, Shenzhen,China
Shenzhen Chuangzhi Jieke Technology Co., Ltd.
Floor3,Block A,F&D technology park,Baoan Rode Baoan District, Shenzhen,China
Intelligent bracelet
Н8
H6,H9,H18,W6,W8,W18,W29,W30

Measurement Procedure Used:

APPLICABLE STANDARDS		
APPLICABLE STANDARD/ TEST PROCEDURE	TEST RESULT	
FCC 47 CFR Part 2, Subpart J:2015		
FCC 47 CFR Part 15, Subpart C:2015		
KDB 174176 D01 Line Conducted FAQ v01r01	Complied	
ANSI C63.10-2013		
FCC KDB 558074 D01 DTS Meas Guidance v03r04		

This device described above has been tested by NTEK Testing Technology Co., Ltd., and the test results show that the equipment under test (EUT) is in compliance with the FCC requirements. And it is applicable only to the tested sample identified in the report.

This report shall not be reproduced except in full, without the written approval of NTEK Testing Technology Co., Ltd., this document may be altered or revised by NTEK Testing Technology Co., Ltd., personnel only, and shall be noted in the revision of the document.

The test results of this report relate only to the tested sample identified in this report.

Date of Test	:	17 May. 2016 ~ 23 May. 2016
Testing Engineer	:	Eileen Wu.
		(Eileen Liu)
Technical Manager	:	Jason chen
		(Jason Chen)
Authorized Signatory		Sam. Chen
Additionized digitatory		(Sam Chen)

2 SUMMARY OF TEST RESULTS

FCC Part15 (15.247), Subpart C				
Standard Section	Verdict	Remark		
15.207	Conducted Emission	PASS		
15.247 (a)(2)	6dB Bandwidth	PASS		
15.247 (b)	15.247 (b) Peak Output Power			
15.247 (c)	Radiated Spurious Emission	PASS		
15.247 (d)	Power Spectral Density	PASS		
15.205	Band Edge Emission	PASS		
15.203	Antenna Requirement	PASS		

Remark:

- 1. "N/A" denotes test is not applicable in this Test Report.
- 2. All test items were verified and recorded according to the standards and without any deviation during the test.
- This EUT has also been tested and complied with the requirements of FCC Part 15, Subpart B, recorded in a separate test report.

3 FACILITIES AND ACCREDITATIONS

3.1 FACILITIES

All measurement facilities used to collect the measurement data are located at

1/F, Building E, Fenda Science Park, Sanwei Community, Xixiang Street, Bao'an District, Shenzhen P.R. China

The sites are constructed in conformance with the requirements of ANSI C63.7, ANSI C63.10 and CISPR Publication 22.

3.2 LABORATORY ACCREDITATIONS AND LISTINGS

Site Description

EMC Lab. : Accredited by CNAS, 2014.09.04

The certificate is valid until 2017.09.03

The Laboratory has been assessed and proved to be in compliance with

CNAS-CL01:2006 (identical to ISO/IEC 17025:2005) The Certificate Registration Number is L5516.

Accredited by Industry Canada, August 29, 2012 The Certificate Registration Number is 9270A-1.

Accredited by FCC, September 6, 2013

The Certificate Registration Number is 238937.

Name of Firm : NTEK Testing Technology Co., Ltd

Site Location : 1/F, Building E, Fenda Science Park, Sanwei Community, Xixiang

Street, Bao'an District, Shenzhen P.R. China.

3.3 MEASUREMENT UNCERTAINTY

The reported uncertainty of measurement y±U, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95 %.

No.	Item	Uncertainty
1	Conducted Emission Test	±1.38dB
2	RF power, conducted	±0.16dB
3	Spurious emissions, conducted	±0.21dB
4	All emissions, radiated(<1G)	±4.68dB
5	All emissions, radiated(>1G)	±4.89dB
6	Temperature	±0.5°C
7	Humidity	±2%

4 GENERAL DESCRIPTION OF EUT

Product Feature and Specification			
Equipment Intelligent bracelet			
Trade Name N/A			
FCC ID	2AIOO-H8		
Model No.	H8		
Serial Model	H6,H9,H18,W6,W8,W18,W29,W30		
Model Difference	All the model are the same circuit and RF module, except the model No. and colour.		
Operating Frequency	2402MHz~2480MHz		
Modulation	GFSK		
Number of Channels	40 Channels		
Antenna Type	Cable Antenna		
Antenna Gain	1 dBi		
Power supply	☑DC supply:DC 3.7V/50mAh from Li-ion Battery or DC 5V from USB Port.☐Adapter supply:N/A		
HW Version	N/A		
SW Version	N/A		

Note: Based on the application, features, or specification exhibited in User's Manual, the EUT is considered as an ITE/Computing Device. More details of EUT technical specification, please refer to the User's Manual.

Revision History

Report No.	Version	Description	Issued Date
NTEK-2016NT05175796F	Rev.01	Initial issue of report	May 23, 2016

5 DESCRIPTION OF TEST MODES

To investigate the maximum EMI emission characteristics generates from EUT, the test system was pre-scanning tested base on the consideration of following EUT operation mode or test configuration mode which possible have effect on EMI emission level. Each of these EUT operation mode(s) or test configuration mode(s) mentioned above was evaluated respectively.

The Transmitter was operated in the normal operating mode. The TX frequency was fixed which was for the purpose of the measurements.

Test of channel included the lowest and middle and highest frequency to perform the test, then record on this report.

Those data rates (1Mbps for GFSK modulation) were used for all test.

The EUT was pretested with 3 orientations placed on the table for the radiated emission measurement –X, Y, and Z-plane. The Y-plane results were found as the worst case and were shown in this report.

Carrier Frequency and Channel list:

Channel	Frequency(MHz)
0	2402
1	2404
	•••
19	2440
20	2442
	•••
38	2478
39	2480

Note: $fc=2402MHz+k\times 2MHz$ k=0 to 39

The following summary table is showing all test modes to demonstrate in compliance with the standard.

Test Cases			
Test Item	Data Rate/ Modulation		
rest item	Bluetooth 4.0_LE / GFSK		
AC Conducted Emission	Mode 4: normal link mode		
Radiated Test	Mode 1: Bluetooth Tx Ch00_2402MHz_1Mbps		
Cases	Mode 2: Bluetooth Tx Ch19_2440MHz_1Mbps		
Cases	Mode 3: Bluetooth Tx Ch39_2480MHz_1Mbps		
Conducted Test	Mode 1: Bluetooth Tx Ch00_2402MHz_1Mbps		
Conducted Test Cases	Mode 2: Bluetooth Tx Ch19_2440MHz_1Mbps		
Cases	Mode 3: Bluetooth Tx Ch39_2480MHz_1Mbps		

- 1. The engineering test program was provided and the EUT was programmed to be in continuously transmitting mode.
- 2. AC power line Conducted Emission was tested under maximum output power.
- 3. For radiated test cases, the worst mode data rate was reported only, because this data rate has the highest RF output power at preliminary tests, and no other significantly frequencies found in conducted spurious emission.

6 SETUP OF EQUIPMENT UNDER TEST 6.1 BLOCK DIAGRAM CONFIGURATION OF TEST SYSTEM	
For AC Conducted Emission Mode	
EUT C1 Notebook	
For Radiated Test Cases	
EUT	
For Conducted Test Cases	
Measurement Instrument Attenuator — C2 EUT	

6.2 SUPPORT EQUIPMENT

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

			4.		
Item	Equipment	Mfr/Brand	Model/Type No.	FCC ID	Note
E-1	Intelligent bracelet	N/A	H8	2AIOO-H8	EUT
E-2	Notebook	Lenove	Thinkpad Edge E430	N/A	Peripherals

Item	Cable Type	Shielded Type	Ferrite Core	Length
C-1	USB Cable	NO	NO	1.0m
C-2	RF Cable	NO	NO	0.5m

- (1) The support equipment was authorized by Declaration of Confirmation.
- (2) For detachable type I/O cable should be specified the length in cm in <code>[Length]</code> column.
- (3) "YES" is means "shielded" "with core"; "NO" is means "unshielded" "without core".

6.3 EQUIPMENTS LIST FOR ALL TEST ITEMS

Radiation Test equipment

Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Last calibration	Calibrated until	Calibration period
1	Spectrum Analyzer	Agilent	E4407B	MY45108040	2015.07.06	2016.07.05	1 year
2	Test Receiver	R&S	ESPI	101318	2015.06.07	2016.06.06	1 year
3	Bilog Antenna	TESEQ	CBL6111D	31216	2015.07.06	2016.07.05	1 year
4	50Ω Coaxial Switch	Anritsu	MP59B	6200264416	2015.06.07	2016.06.06	1 year
5	Spectrum Analyzer	ADVANTEST	R3132	150900201	2015.06.07	2016.06.06	1 year
6	Horn Antenna	EM	EM-AH-1018 0	2011071402	2015.07.06	2016.07.05	1 year
7	Horn Ant	Schwarzbeck	BBHA 9170	9170-181	2015.07.06	2016.07.05	1 year
8	Amplifier	EM	EM-30180	060538	2015.12.22	2016.12.21	1 year
9	Loop Antenna	ARA	PLA-1030/B	1029	2015.06.08	2016.06.07	1 year
10	Power Meter	R&S	NRVS	100696	2015.07.06	2016.07.05	1 year
11	Power Sensor	R&S	URV5-Z4	0395.1619.0 5	2015.07.06	2016.07.05	1 year
12	Test Cable	N/A	R-01	N/A	2015.07.06	2016.07.05	1 year
13	Test Cable	N/A	R-02	N/A	2015.07.06	2016.07.05	1 year

Conduction Test equipment

	chadelien reet equipment							
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Last calibration	Calibrated until	Calibration period	
1	Test Receiver	R&S	ESCI	101160	2015.06.06	2016.06.05	1 year	
2	LISN	R&S	ENV216	101313	2015.08.24	2016.08.23	1 year	
3	LISN	EMCO	3816/2	00042990	2015.08.24	2016.08.23	1 year	
4	50Ω Coaxial Switch	Anritsu	MP59B	6200264417	2015.06.07	2016.06.06	1 year	
5	Passive Voltage Probe	R&S	ESH2-Z3	100196	2015.06.07	2016.06.06	1 year	
6	Absorbing clamp	R&S	MOS-21	100423	2015.06.08	2016.06.07	1 year	
7	Test Cable	N/A	C01	N/A	2015.06.08	2016.06.07	1 year	
8	Test Cable	N/A	C02	N/A	2015.06.08	2016.06.07	1 year	
9	Test Cable	N/A	C03	N/A	2015.06.08	2016.06.07	1 year	
	•							
1	Attenuation	MCE	24-10-34	BN9258	2015.06.08	2016.06.07	1 year	

Note: Each piece of equipment is scheduled for calibration once a year.

7 TEST REQUIREMENTS

7.1 CONDUCTED EMISSIONS TEST

7.1.1 Applicable Standard

According to FCC Part 15.207(a) and KDB 174176 D01 Line Conducted FAQ v01r01

7.1.2 Conformance Limit

Fraguanov(MHz)	Conducted	I Emission Limit	
Frequency(MHz)	Quasi-peak	Average	
0.15-0.5	66-56*	56-46*	
0.5-5.0	56	46	
5.0-30.0	60	50	

Note: 1. *Decreases with the logarithm of the frequency

- 2. The lower limit shall apply at the transition frequencies
- 3. The limit decreases in line with the logarithm of the frequency in the range of 0.15 to 0.50MHz.

7.1.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.1.4 Test Configuration

7.1.5 Test Procedure

According to the requirements in Section 13.1.4.1 of ANSI C63.10-2013 Conducted emissions the EUT measured in the frequency range between 0.15 MHz and 30 MHz using CISPR Quasi-Peak and average detector mode.

- 1. The EUT was placed 0.4 meter from the conducting wall of the shielding room.
- 2. The EUT was placed on a table which is 0.8m above ground plane.
- 3. Connect EUT to the power mains through a line impedance stabilization network (LISN). All other support equipments powered from additional LISN(s). The LISN provide 50 Ohm/ 50uH of coupling impedance for the measuring instrument.
- 4. Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40cm long.
- 5. I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.
- 6. LISN at least 80 cm from nearest part of EUT chassis.
- 7. The frequency range from 150KHz to 30MHz was searched.
- 8. Set the test-receiver system to Peak Detect Function and specified bandwidth(IF bandwidth=9KHz) with Maximum Hold Mode
- 9. For the actual test configuration, please refer to the related Item -EUT Test Photos.

Humidity:

51 %

7.1.6 Test Results

Site NTEK 9*6*6 Chamber #1

Limit: FCC Part 15B_(0.15-30MHz) _Main_QP

Mode: Mode 4

Note:

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
		MHz	dBu∨	dB	dBu∨	dBu∀	dB	Detector	Comment
1		0.2540	30.26	10.14	40.40	61.62	-21.22	QP	
2		0.2540	16.47	10.14	26.61	51.62	-25.01	AVG	
3		0.3379	24.55	10.10	34.65	59.25	-24.60	QP	
4		0.3379	9.28	10.10	19.38	49.25	-29.87	AVG	
5		0.8780	23.82	9.82	33.64	56.00	-22.36	QP	
6		0.8780	9.72	9.82	19.54	46.00	-26.46	AVG	
7		1.8260	29.79	9.75	39.54	56.00	-16.46	QP	
8		1.8260	16.92	9.75	26.67	46.00	-19.33	AVG	
9	*	4.0658	30.35	9.75	40.10	56.00	-15.90	QP	
10		4.0658	18.72	9.75	28.47	46.00	-17.53	AVG	
11		5.8818	28.77	9.76	38.53	60.00	-21.47	QP	
12		5.8818	18.17	9.76	27.93	50.00	-22.07	AVG	

Power:

AC 120V/60Hz

Humidity:

Power:

AC 120V/60Hz

 $\begin{array}{ll} \mbox{Limit: FCC Part 15B_(0.15\text{-}30MHz) _Main_QP} \\ \mbox{Mode: } \mbox{Mode 4} \end{array}$

No. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
	MHz	dBu∨	dB	dBu∨	dBu∀	dB	Detector	Comment
1	0.2300	32.51	10.05	42.56	62.45	-19.89	QP	
2	0.2300	19.60	10.05	29.65	52.45	-22.80	AVG	
3	0.3860	27.07	10.06	37.13	58.15	-21.02	QP	
4	0.3860	15.13	10.06	25.19	48.15	-22.96	AVG	
5	0.5220	28.38	9.82	38.20	56.00	-17.80	QP	
6	0.5220	14.05	9.82	23.87	46.00	-22.13	AVG	
7	0.6460	28.34	9.81	38.15	56.00	-17.85	QP	
8	0.6460	12.34	9.81	22.15	46.00	-23.85	AVG	
9	1.7298	29.22	9.78	39.00	56.00	-17.00	QP	
10	1.7298	16.15	9.78	25.93	46.00	-20.07	AVG	
11 *	3.8380	30.58	9.72	40.30	56.00	-15.70	QP	
12	3.8380	18.38	9.72	28.10	46.00	-17.90	AVG	

 $\begin{array}{ll} \mbox{Limit: FCC Part 15B}_(0.15\mbox{-}30\mbox{MHz}) \ _\mbox{Main}_\mbox{QP} \\ \mbox{Mode: } \mbox{Mode 4} \end{array}$

Power: AC 240V/50Hz

Humidity: 51 %

			Reading	Correct	Measure-				
No.	Mk.	Freq.	Level	Factor	ment	Limit	Over		
-		MHz	dBu∨	dB	dBu∀	dBu∨	dB	Detector	Comment
1		0.2540	28.73	10.14	38.87	61.62	-22.75	QP	
2		0.2540	14.27	10.14	24.41	51.62	-27.21	AVG	
3		0.3659	25.05	10.07	35.12	58.59	-23.47	QP	
4		0.3659	12.19	10.07	22.26	48.59	-26.33	AVG	
5	*	1.0620	32.32	9.84	42.16	56.00	-13.84	QP	
6		1.0620	14.75	9.84	24.59	46.00	-21.41	AVG	
7		2.0659	32.16	9.73	41.89	56.00	-14.11	QP	
8		2.0659	18.09	9.73	27.82	46.00	-18.18	AVG	
9		3.9140	31.86	9.75	41.61	56.00	-14.39	QP	
10		3.9140	19.91	9.75	29.66	46.00	-16.34	AVG	
11		6.4058	30.37	9.77	40.14	60.00	-19.86	QP	
12		6.4058	19.24	9.77	29.01	50.00	-20.99	AVG	

Humidity:

51 %

Power:

AC 240V/50Hz

 $\begin{array}{ll} \mbox{Limit: FCC Part 15B_(0.15\text{-}30MHz) } \ \ _\mbox{Main_QP} \\ \mbox{Mode: } \mbox{Mode 4} \end{array}$

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
		MHz	dBu∨	dB	dBu∀	dBu∀	dB	Detector	Comment
1		0.2580	31.63	10.08	41.71	61.49	-19.78	QP	
2		0.2580	18.91	10.08	28.99	51.49	-22.50	AVG	
3		0.3537	28.93	10.09	39.02	58.87	-19.85	QP	
4		0.3537	15.81	10.09	25.90	48.87	-22.97	AVG	
5	*	0.5858	35.06	9.82	44.88	56.00	-11.12	QP	
6		0.5858	16.63	9.82	26.45	46.00	-19.55	AVG	
7		0.7258	32.35	9.82	42.17	56.00	-13.83	QP	
8		0.7258	14.72	9.82	24.54	46.00	-21.46	AVG	
9		1.8020	32.02	9.77	41.79	56.00	-14.21	QP	
10		1.8020	17.96	9.77	27.73	46.00	-18.27	AVG	
11		4.0377	32.43	9.72	42.15	56.00	-13.85	QP	
12		4.0377	19.33	9.72	29.05	46.00	-16.95	AVG	

7.2 RADIATED SPURIOUS EMISSION

7.2.1 Applicable Standard

According to FCC Part 15.247(d) and 15.209 and DA 00-705

7.2.2 Conformance Limit

According to FCC Part 15.247(d): radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

According to FCC Part15.205, Restricted bands

o, reconnece barras		
MHz	MHz	GHz
16.42-16.423	399.9-410	4.5-5.15
16.69475-16.69525	608-614	5.35-5.46
16.80425-16.80475	960-1240	7.25-7.75
25.5-25.67	1300-1427	8.025-8.5
37.5-38.25	1435-1626.5	9.0-9.2
73-74.6	1645.5-1646.5	9.3-9.5
74.8-75.2	1660-1710	10.6-12.7
123-138	2200-2300	14.47-14.5
149.9-150.05	2310-2390	15.35-16.2
156.52475-156.52525	2483.5-2500	17.7-21.4
156.7-156.9	2690-2900	22.01-23.12
162.0125-167.17	3260-3267	23.6-24.0
167.72-173.2	3332-3339	31.2-31.8
240-285	3345.8-3358	36.43-36.5
322-335.4	3600-4400	(2)
	MHz 16.42-16.423 16.69475-16.69525 16.80425-16.80475 25.5-25.67 37.5-38.25 73-74.6 74.8-75.2 123-138 149.9-150.05 156.52475-156.52525 156.7-156.9 162.0125-167.17 167.72-173.2 240-285	MHz MHz 16.42-16.423 399.9-410 16.69475-16.69525 608-614 16.80425-16.80475 960-1240 25.5-25.67 1300-1427 37.5-38.25 1435-1626.5 73-74.6 1645.5-1646.5 74.8-75.2 1660-1710 123-138 2200-2300 149.9-150.05 2310-2390 156.52475-156.52525 2483.5-2500 156.7-156.9 2690-2900 162.0125-167.17 3260-3267 167.72-173.2 3332-3339 240-285 3345.8-3358

20dBc in any 100 kHz bandwidth outside the operating frequency band. In case the emission fall within the restricted band specified on 15.205(a), then the 15.209(a) limit in the table below has to be followed.

	101200(01), 011011 0110 101200	(-)	
Restricted Frequency(MHz)	Field Strength (µV/m)	Field Strength (dBµV/m)	Measurement Distance
0.009~0.490	2400/F(KHz)	20 log (uV/m)	300
0.490~1.705	2400/F(KHz)	20 log (uV/m)	30
1.705~30.0	30	29.5	30
30-88	100	40	3
88-216	150	43.5	3
216-960	200	46	3
Above 960	500	54	3

Limits of Radiated Emission Measurement(Above 1000MHz)

Fraguanay(MHz)	Class B (dBuV	/m) (at 3M)
Frequency(MHz)	PEAK	AVERAGE
Above 1000	74	54

Remark :1. Emission level in dBuV/m=20 log (uV/m)

- 2. Measurement was performed at an antenna to the closed point of EUT distance of meters.
- 3. Distance extrapolation factor =40log(Specific distance/ test distance)(dB); Limit line=Specific limits(dBuV) + distance extrapolation factor.

7.2.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.2.4 Test Configuration

(a) For radiated emissions below 30MHz

(b) For radiated emissions from 30MHz to 1000MHz

(c) For radiated emissions above 1000MHz

7.2.5 Test Procedure

The test site semi-anechoic chamber has met the requirement of NSA tolerance 4 dB according to the standards: ANSI C63.10-2013. The test distance is 3m.The setup is according to the requirements in Section 13.1.4.1 of ANSI C63.10-2013 and CAN/CSA-CEI/IEC CISPR 22.

This test is required for any spurious emission that falls in a Restricted Band, as defined in Section 15.205. It must be performed with the highest gain of each type of antenna proposed for use with the EUT. Use the following spectrum analyzer settings:

Spectrum Parameter	Setting
Attenuation	Auto
Start Frequency	1000 MHz
Stop Frequency	10th carrier harmonic
RB / VB (emission in restricted band)	1 MHz / 1 MHz for Peak, 1 MHz / 10Hz for Average

Receiver Parameter	Setting			
Attenuation	Auto			
Start ~ Stop Frequency	9kHz~150kHz / RB 200Hz for QP			
Start ~ Stop Frequency	150kHz~30MHz / RB 9kHz for QP			
Start ~ Stop Frequency	30MHz~1000MHz / RB 120kHz for QP			

- a. The measuring distance of at 3 m shall be used for measurements at frequency up to 1GHz. For frequencies above 1GHz, any suitable measuring distance may be used.
- b. The EUT was placed on the top of a rotating table 0.8 m for below 1GHz and 1.5m for above 1GHz the ground at a 3 meter. The table was rotated 360 degrees to determine the position of the highest radiation
- c. The height of the equipment or of the substitution antenna shall be 0.8 m for below 1GHz and 1.5m for above 1GHz; the height of the test antenna shall vary between 1 m to 4 m. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. The initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- e. If the Peak Mode measured value compliance with and lower than Quasi Peak Mode Limit, the EUT shall be deemed to meet QP Limits and then no additional QP Mode measurement performed.
- f. For the actual test configuration, please refer to the related Item –EUT Test Photos.

Note

Both horizontal and vertical antenna polarities were tested and performed pretest to three orthogonal axis. The worst case emissions were reported

During the radiated emission test, the Spectrum Analyzer was set with the following configurations:

Frequency Band (MHz)	Function	Resolution bandwidth	Video Bandwidth
30 to 1000	QP	120 kHz	300 kHz
Above 1000	Peak	1 MHz	1 MHz
Above 1000	Average	1 MHz	10 Hz

Note: for the frequency ranges below 30 MHz, a narrower RBW is used for these ranges but the measured value should add a RBW correction factor (RBWCF) where RBWCF [dB] =10*lg(100 [kHz]/narrower RBW [kHz]). , the narrower RBW is 1 kHz and RBWCF is 20 dB for the frequency 9 kHz to 150 kHz, and the narrower RBW is 10 kHz and RBWCF is 10 dB for the frequency 150 kHz to 30 MHz.

7.2.6 Test Results

■ Spurious Emission below 30MHz (9KHz to 30MHz)

EUT:	Intelligent bracelet	Model No.:	Н8
Temperature:	20 ℃	Relative Humidity:	48%
Test Mode:	Mode1/Mode2/Mode3	Test By:	Eileen Liu

Freq.	Ant.Pol.	Emission Level(dBuV/m)		Limit 3m(dBuV/m)		Over(dB)	
(MHz)	H/V	PK \ AV ´		PK	AV	PK	AV

Note: the amplitude of spurious emission that is attenuated by more than 20dB below the permissible limit has no need to be reported.

Distance extrapolation factor =20log(Specific distance/ test distance)(dB); Limit line=Specific limits(dBuV) + distance extrapolation factor

Temperature:

50 %

Humidity:

All the modulation modes have been tested, and the worst result was report as below:

Polarization:

Power:

Vertical

Site NTEK 9*6*6 Chamber #1

Limit: FCC_PART15_B_03m_QP Mode: BTLink

No.	Mk	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		Antenna Height	Table Degree	
		MHz	dBu∨	dB	dBu∀/m	dBu∀/m	dB	Detector	cm	degree	Comment
1		31.1798	6.96	19.14	26.10	40.00	-13.90	QP			
2	*	133.1511	26.41	10.94	37.35	43.50	-6.15	QP			
3		163.1818	18.44	11.63	30.07	43.50	-13.43	QP			
4		201.3930	17.35	11.50	28.85	43.50	-14.65	QP			
5		423.5403	13.26	14.74	28.00	46.00	-18.00	QP			
6		665.8034	14.76	20.77	35.53	46.00	-10.47	QP			

Humidity:

50 %

Site NTEK 9*6*6 Chamber #1

Limit: FCC_PART15_B_03m_QP Mode: BT Link

Note:

No.	Mk	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		Antenna Height	Table Degree	
		MHz	dBu∨	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
1		37.1550	6.08	16.25	22.33	40.00	-17.67	QP			
2	*	136.4598	23.72	10.98	34.70	43.50	-8.80	QP			
3		149.4857	21.27	11.66	32.93	43.50	-10.57	QP			
4		166.6513	15.48	12.02	27.50	43.50	-16.00	QP			
5		299.3158	12.46	12.57	25.03	46.00	-20.97	QP			
6		423.5403	9.68	14.74	24.42	46.00	-21.58	QP			

Power:

■ Spurious Emission Above 1GHz (1GHz to 25GHz)

EUT: Intelligent bracelet Model No.: H8

Temperature: 20 °C Relative Humidity: 48%

Test Mode: Mode1/Mode2/Mode3 Test By: Eileen Liu

All the modulation modes have been tested, and the worst result was report as below:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Remark	Comment		
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Remark	Comment		
Low Channel (2402 MHz)-Above 1G									
4804.312	60.25	-3.64	56.61	74.00	-17.39	Pk	Vertical		
4804.312	45.74	-3.64	42.10	54.00	-11.90	AV	Vertical		
7206.157	63.59	-0.95	62.64	74.00	-11.36	Pk	Vertical		
7206.157	38.85	-0.95	37.90	54.00	-16.10	AV	Vertical		
4804.036	61.17	-3.64	57.53	74.00	-16.47	Pk	Horizontal		
4804.036	40.98	-3.64	37.34	54.00	-16.66	AV	Horizontal		
7206.273	65.58	-0.95	64.63	74.00	-9.37	Pk	Horizontal		
7206.273	43.39	-0.95	42.44	54.00	-11.56	AV	Horizontal		
	,	Mid Chanr	nel (2441 MHz)-Abo	ve 1G					
4880.419	62.25	-3.68	58.57	74.00	-15.43	Pk	Vertical		
4880.419	39.76	-3.68	36.08	54.00	-17.92	AV	Vertical		
7320.268	59.86	-0.82	59.04	74.00	-14.96	Pk	Vertical		
7320.268	41.14	-0.82	40.32	54.00	-13.68	AV	Vertical		
4880.169	60.22	-3.68	56.54	74.00	-17.46	Pk	Horizontal		
4880.169	41.19	-3.68	37.51	54.00	-16.49	AV	Horizontal		
7320.343	60.59	-0.82	59.77	74.00	-14.23	Pk	Horizontal		
7320.343	42.57	-0.82	41.75	54.00	-12.25	AV	Horizontal		
		High Chani	nel (2480 MHz)- Abo	ove 1G					
4960.111	55.56	-3.59	51.97	74.00	-22.03	Pk	Vertical		
4960.111	45.74	-3.59	42.15	54.00	-11.85	AV	Vertical		
7440.296	60.01	-0.68	59.33	74.00	-14.67	Pk	Vertical		
7440.296	42.32	-0.68	41.64	54.00	-12.36	AV	Vertical		
4960.132	60.56	-3.59	56.97	74.00	-17.03	Pk	Horizontal		
4960.132	42.67	-3.59	39.08	54.00	-14.92	AV	Horizontal		
7440.291	61.66	-0.68	60.98	74.00	-13.02	Pk	Horizontal		
7440.291	47.76	-0.68	47.08	54.00	-6.92	AV	Horizontal		

Note: (1) All Readings are Peak Value (VBW=3MHz) and Peak Value (VBW=10Hz).

⁽²⁾ Emission Level= Reading Level+Probe Factor +Cable Loss.

⁽³⁾All other emissions more than 20dB below the limit.

■ Spurious Emission in Restricted Bands 3260MMHz- 18000MHz								
EUT: Intelligent bracelet Model No.: H8								
Temperature: 20 ℃ Relative Humidity: 48%								
Test Mode: Mode1/Mode2/Mode3 Test By: Eileen Liu								

All the modulation modes were tested, the data of the worst mode are described in the following table

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector	Commont		
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Type	Comment		
	1Mbps								
3260	61.55	-13.06	48.49	74	-25.51	Pk	Vertical		
3260	52.69	-13.06	39.63	54	-14.37	AV	Vertical		
3260	61.43	-13.06	48.37	74	-25.63	Pk	Horizontal		
3260	52.58	-13.06	39.52	54	-14.48	AV	Horizontal		
3332	62.26	-12.78	49.48	74	-24.52	Pk	Vertical		
3332	51.78	-12.78	39	54	-15	AV	Vertical		
3332	61.98	-12.78	49.2	74	-24.8	Pk	Horizontal		
3332	51.64	-12.78	38.86	54	-15.14	AV	Horizontal		
17784	65.61	-12.24	53.37	74	-20.63	Pk	Vertical		
17784	52.28	-12.24	40.04	54	-13.96	AV	Vertical		
17722	65.26	-12.24	53.02	74	-20.98	Pk	Horizontal		
17722	52.62	-12.24	40.38	54	-13.62	AV	Horizontal		

Note: (1) All other emissions more than 20dB below the limit.

■ Spurious Emission in Band Edge

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector	0		
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре	Comment		
	1Mbps								
2324.15	61.39	-13.06	48.33	74	-25.67	Pk	Vertical		
2324.15	55.53	-13.06	42.47	54	-11.53	AV	Vertical		
2400	64.57	-13.06	51.51	74	-22.49	Pk	Vertical		
2400	55.04	-13.06	41.98	54	-12.02	AV	Vertical		
2375.66	61.27	-13.06	48.21	74	-25.79	Pk	Horizontal		
2375.66	56.42	-13.06	43.36	54	-10.64	AV	Horizontal		
2400	65.02	-13.06	51.96	74	-22.04	Pk	Horizontal		
2400	55.85	-13.06	42.79	54	-11.21	AV	Horizontal		
2483.5	62.1	-12.78	49.32	74	-24.68	Pk	Vertical		
2483.5	61.62	-12.78	48.84	54	-5.16	AV	Vertical		
2483.5	61.82	-12.78	49.04	74	-24.96	Pk	Horizontal		
2483.5	61.48	-12.78	48.7	54	-5.3	AV	Horizontal		

Note: (1) All other emissions more than 20dB below the limit.

7.3 6DB BANDWIDTH

7.3.1 Applicable Standard

According to FCC Part 15.247(a)(2) and KDB 558074 DTS 01 Meas. Guidance v03r04

7.3.2 Conformance Limit

The minimum permissible 6dB bandwidth is 500 kHz.

7.3.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.3.4 Test Setup

Please refer to Section 6.1 of this test report.

7.3.5 Test Procedure

The testing follows KDB 558074 DTS 01 Meas. Guidance v03r04

The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator.

The path loss was compensated to the results for each measurement.

Set to the maximum power setting and enable the EUT transmit continuously.

The EUT was operating in controlled its channel.

Use the following spectrum analyzer settings:

Span = the frequency band of operation

RBW = 100KHz

 $VBW \ge 3*RBW$

Sweep = auto

Detector function = peak

Trace = max hold

7.3.6 Test Results

EUT:	Intelligent bracelet	Model No.:	H8
Temperature:	20 ℃	Relative Humidity:	48%
Test Mode:	Mode1/Mode2/Mode3	Test By:	Eileen Liu

Channel	Frequency (MHz)	6dB bandwidth (kHz)	Limit (kHz)	Result
Low	2402	760.379	500	Pass
Middle	2440	758.199	500	Pass
High	2480	754.162	500	Pass

7.4 DUTY CYCLE

7.4.1 Applicable Standard

According to KDB 558074)6)b), issued 06/09/2015

7.4.2 Conformance Limit

No limit requirement.

7.4.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.4.4 Test Setup

Please refer to Section 6.1 of this test report.

7.4.5 Test Procedure

The zero-span mode on a spectrum analyzer or EMI receiver if the response time and spacing between bins on the sweep are sufficient to permit accurate measurements of the on and off times of the transmitted signal. Set the center frequency of the instrument to the center frequency of the transmission. Set RBW \geq OBW if possible; otherwise, set RBW to the largest available value. Set VBW \geq RBW. Set detector = peak or average. The zero-span measurement method shall not be used unless both RBW and VBW are > 50/T and the number of sweep points across duration T exceeds 100. (For example, if VBW and/or RBW are limited to 3 MHz, then the zero-span method of measuring duty cycle shall not be used if T \leq 16.7 microseconds.)

The transmitter output is connected to the Spectrum Analyzer. We tested accroding to the zero-span measurement method, 6.0)b) in KDB 558074(issued 06/09/2015)

The largest availble value of RBW is 8 MHz and VBW is 50 MHz. The zero-span method of measuring duty cycle shall not be used if $T \le 6.25$ microseconds. (50/6.25 = 8)

The zero-span method was used because all measured T data are > 6.25 microseconds and both RBW and VBW are > 50/T.

The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator.

The path loss was compensated to the results for each measurement.

Set to the maximum power setting and enable the EUT transmit continuously.

The EUT was operating in controlled its channel.

Use the following spectrum analyzer settings:

Span = Zero Span

RBW = 8MHz(the largest available value)

VBW = 8MHz (≥ RBW)

Number of points in Sweep >100

Detector function = peak

Trace = Clear write

Measure T_{total} and T_{on}

Calculate Duty Cycle = T_{on} / T_{total} and Duty Cycle Factor=10*log(1/Duty Cycle)

7.4.6 Test Results

EUT:	Intelligent bracelet	Model No.:	H8
Temperature:	20 ℃	Relative Humidity:	48%
Test Mode:	Mode5	Test By:	Eileen Liu

Modulation Mode	Data rate	Ton	T _{total}	Duty Cycle	Duty Cycle Factor (dB)
GFSK	1Mbps	-	-	100%	0

7.5 PEAK OUTPUT POWER

7.5.1 Applicable Standard

According to FCC Part 15.247(b)(3) and KDB 558074 DTS 01 Meas. Guidance v03r04

7.5.2 Conformance Limit

The maximum peak conducted output power of the intentional radiator for systems using digital modulation in the 2400 - 2483.5 MHz bands shall not exceed: 1 Watt (30dBm). If transmitting antenna of directional gain greater than 6dBi is used, the peak output power from the intentional radiator shall be reduced below the above stated value by the amount in dB that the directional gain of the antenna exceeds 6 dBi. In case of point-to-point operation, the limit has to be reduced by 1dB for every 3dB that the directional gain of the antenna exceeds 6dBi.

7.5.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.5.4 Test Setup

Please refer to Section 6.1 of this test report.

7.5.5 Test Procedure

The testing follows KDB 558074 DTS 01 Meas. Guidance v03r04

The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator.

The path loss was compensated to the results for each measurement.

Set to the maximum power setting and enable the EUT transmit continuously.

The EUT was operating in controlled its channel.

Use the following spectrum analyzer settings:

Set the RBW ≥ DTS bandwidth(about 1MHz).

Set VBW = 3*RBW(about 3MHz)

Set the span ≥3*RBW

Set Sweep time = auto couple.

Set Detector = peak.

Set Trace mode = max hold.

Allow trace to fully stabilize.

Use peak marker function to determine the peak amplitude level.

7.5.6 Test Results

EUT:	Intelligent bracelet	Model No.:	H8
Temperature:	20 ℃	Relative Humidity:	48%
Test Mode:	Mode1/Mode2/Mode3	Test By:	Eileen Liu

Test Channel	Frequency (MHz)	Power Setting	Peak Output Power (dBm)	LIMIT (dBm)	Verdict		
	1Mbps						
00	2402	Default	3.42	30	PASS		
19	2440	Default	3.33	30	PASS		
39	2480	Default	2.96	30	PASS		

7.6 POWER SPECTRAL DENSITY

7.6.1 Applicable Standard

According to FCC Part 15.247(e) and KDB 558074 DTS 01 Meas. Guidance v03r04

7.6.2 Conformance Limit

The transmitter power spectral density conducted from the transmitter to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

7.6.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.6.4 Test Setup

Please refer to Section 6.1 of this test report.

7.6.5 Test Procedure

The testing follows Measurement Procedure 10.3 Method AVGPSD of FCC KDB Publication No. 558074 D01 DTS Meas. Guidance v03r04

This procedure may be used when the maximum (average) conducted output power was used to demonstrate compliance to the output power limit. This is the baseline method for determining the maximum (average) conducted PSD level. If the instrument has an RMS power averaging detector, it must be used; otherwise, use the sample detector. The EUT must be configured to transmit continuously (duty cycle ≥ 98%); otherwise sweep triggering/signal gating must be implemented to ensure that measurements are made only when the EUT is transmitting at its maximum power control level (no transmitter off time is to be considered).

The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator.

The path loss was compensated to the results for each measurement.

Set to the maximum power setting and enable the EUT transmit continuously.

The EUT was operating in controlled its channel.

- a) Set instrument center frequency to DTS channel center frequency.
- b) Set span to at least 1.5 times the OBW.
- c) Set RBW to: 3 kHz ≤ RBW ≤ 100 kHz. .
- d) Set VBW ≥3 x RBW.
- e) Detector = power averaging (RMS) or sample detector (when RMS not available).
- f) Ensure that the number of measurement points in the sweep $\geq 2 \times \text{span/RBW}$.
- g) Sweep time = auto couple.
- h) Employ trace averaging (RMS) mode over a minimum of 100 traces.
- i) Use the peak marker function to determine the maximum amplitude level.
- j) If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat (note that this may require zooming in on the emission of interest and reducing

7.6.6 Test Results

EUT:	Intelligent bracelet	Model No.:	H8
Temperature:	20 ℃	Relative Humidity:	48%
Test Mode:	Mode1/Mode2/Mode3	Test By:	Eileen Liu

Test Channel	Frequency (MHz)	Power Density (dBm/3KHz)	Limit (dBm/3KHz)	Verdict		
	1Mbps					
00	2402	-13.90	8	PASS		
19	2440	-13.86	8	PASS		
39	2480	-14.35	8	PASS		

7.7 CONDUCTED BAND EDGE MEASUREMENT

7.7.1 Applicable Standard

According to FCC Part 15.247(d) and KDB 558074 DTS 01 Meas. Guidance v03r04

7.7.2 Conformance Limit

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB.

7.7.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.7.4 Test Setup

Please refer to Section 6.1 of this test report.

7.7.5 Test Procedure

The testing follows FCC KDB Publication No. 558074 D01 DTS Meas. Guidance v03r04.

The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator.

The path loss was compensated to the results for each measurement.

Set to the maximum power setting and enable the EUT transmit continuously.

The EUT was operating in controlled its channel.

Set RBW to 100 kHz and VBW of spectrum analyzer to 300 kHz with a convenient frequency span including 100 kHz bandwidth from band edge.

Measure the highest amplitude appearing on spectral display and set it as a reference level. Plot the graph with marking the highest point and edge frequency.

Repeat above procedures until all measured frequencies were complete.

7.7.6 Test Results

EUT:	Intelligent bracelet	Model No.:	H8
Temperature:	20 ℃	Relative Humidity:	48%
Test Mode:	Mode5/Mode7	Test By:	Eileen Liu

7.8 ANTENNA APPLICATION

7.8.1 Antenna Requirement

15.203 requirement: For intentional device, according to 15.203: an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

7.8.2 **Result**

The EUT antenna is permanent attached antenna. It comply with the standard requirement.

END OF REPORT