L3 - 1.3 - Factored Form Polynomial Functions Lesson MHF4U

In this section, you will investigate the relationship between the factored form of a polynomial function and the x-intercepts of the corresponding graph, and you will examine the effect of repeated factor on the graph of a polynomial function.

Factored Form Investigation

If we want to graph the polynomial function $f(x) = x^4 + 3x^3 + x^2 - 3x - 2$ accurately, it would be most useful to look at the factored form version of the function:

$$f(x) = (x+1)^2(x+2)(x-1)$$

Lets start by looking at the graph of the function and making connections to the factored form equation. Graph of f(x):

From the graph, answer the following questions...

a) What is the degree of the function?

The highest degree term is x^4 , therefore the function is degree 4 (quartic)

b) What is the sign of the leading coefficient?

The leading coefficient is 1, therefore the leading coefficient is POSITIVE

c) What are the *x*-intercepts?

The x-intercepts are (-2,0) of order 1, (-1,0) of order 2, and (1,0) of order 1

d) What is the *y*-intercept?

The *y*-intercept is the point (0, -2)

e) The x-intercepts divide the graph in to into four intervals. Write the intervals in the first row of the table. In the second row, choose a test point within the interval. In the third row, indicate whether the function is positive (above the x-axis) or negative (below the y-axis).

Interval	$(-\infty, -2)$	(-2, -1)	(-1,1)	(1,∞)
Test Point	$f(-3)$ = $(-3+1)^2(-3+2)(-3-1)$ = $(-2)^2(-1)(-4)$ = 16	$f(-1.5)$ = $(-1.5 + 1)^2(-1.5 + 2)(-1.5 - 1)$ = $(-0.5)^2(0.5)(-2.5)$ = -0.3125	$f(0)$ = $(0+1)^2(0+2)(0-1)$ = $(1)^2(2)(-1)$ = -2	$f(3)$ = $(3+1)^2(3+2)(3-1)$ = $(4)^2(5)(2)$ = 160
Sign of $f(x)$	+	_	_	+

f) What happens to the sign of the of f(x) near each x-intercept?

At (-2, 0) which is order 1, it changes signs

At (-1, 0) which is order 2, the sign does NOT change

At (1, 0) which is order 1, it changes signs

Conclusions from investigation:

The *x*-intercepts of the graph of the function correspond to the roots (zeros) of the corresponding equation. For example, the function f(x) = (x-2)(x+1) has *x*-intercepts at $\underline{2}$ and $\underline{-1}$. These are the roots of the equation (x-2)(x+1) = 0.

If a polynomial function has a factor (x - a) that is repeated n times, then x = a is a zero of ORDER n.

Order – the exponent to which each factor in an algebraic expression is raised.

For example, the function $f(x) = (x-3)^2(x-1)$ has a zero of order **two** at x=3 and a zero of order **one** at x=1.

The graph of a polynomial function changes sign at zeros of <u>odd</u> order but does not change sign at zeros of <u>even</u> order.

Shapes based on order of zero:

Example 1: Analyzing Graphs of Polynomial Functions

For each graph,

- i) the least possible degree and the sign of the leading coefficient
- ii) the x-intercepts and the factors of the function
- iii) the intervals where the function is positive/negative

- i) Three x-intercepts of order 1, so the least possible degree is 3. The graph goes from Q2 to Q4 so the leading coefficient is negative.
- ii) The *x*-intercepts are -5, 0, and 3. The factors are (x + 5), *x*, and (x - 3)

- i) Two *x*-intercepts of order 1, and one *x*-intercept of order 2, so the least possible degree is 4. The graph goes from Q2 to Q1 so the leading coefficient is positive.
- ii) The x-intercepts are -2, 1, and 3. The factors are (x + 2), (x - 1), and $(x - 3)^2$

Example 2: Analyze Factored Form Equations to Sketch Graphs

Degree	Leading Coefficient	End Behaviour	<i>x</i> -intercepts	y-intercept
The exponent on x when all factors of x are multiplied together OR Add the exponents on the factors that include an x .	The product of all the <i>x</i> coefficients	Use degree and sign of leading coefficient to determine this	Set each factor equal to zero and solve for x	Set $x = 0$ and solve for y

Sketch a graph of each polynomial function:

a)
$$f(x) = (x-1)(x+2)(x+3)$$

Degree	Leading Coefficient	End Behaviour	<i>x</i> -intercepts	y-intercept
The product of all	The product of all	Cubic with a	The <i>x</i> -intercepts	Set x equal to 0 and
factors of x is:	the <i>x</i> coefficients	positive leading	are 1, -2, and -3	solve:
$(x)(x)(x) = x^3$ The function is cubic. DEGREE 3	is: (1)(1)(1) = 1 Leading Coefficient is 1	coefficient extends from: Q3 to Q1	(1, 0) (-2, 0) (-3, 0)	y = (0 - 1)(0 + 2)(0 + 3) y = (-1)(2)(3) y = -6 The y-intercept is at (0, -6)

b)
$$g(x) = -2(x-1)^2(x+2)$$

Degree	Leading Coefficient	End Behaviour	<i>x</i> -intercepts	y-intercept
The product of all	The product of all	Cubic with a	The <i>x</i> -intercepts	Set x equal to 0 and
factors of <i>x</i> is:	the <i>x</i> coefficients	negative leading	are 1 (order 2),	solve:
$(x^2)(x) = x^3$	is:	coefficient extends from:	and -2.	$y = -2(0-1)^{2}(0+2)$ y = (-2)(1)(2)
The function is cubic.	$(-2)(1)^2(1) = -2$	Q2 to Q4	(1, 0) (-2, 0)	y = -4 The <i>y</i> -intercept is
DEGREE 3	Leading Coefficient is -2			at (0, -4)

c)
$$h(x) = -(2x+1)^3(x-3)$$

Degree	Leading Coefficient	End Behaviour	<i>x</i> -intercepts	y-intercept
The product of all	The product of all	A quartic with a	The <i>x</i> -intercepts	Set x equal to 0 and
factors of <i>x</i> is:	the <i>x</i> coefficients	negative leading	are $-\frac{1}{2}$ (order 3),	solve:
$(x^3)(x) = x^4$	is:	coefficient extends from:	and 3.	$y = -[2(0) + 1]^{3}[0 - 3]$ y = (-1)(1)(-3)
The function is quartic.	$(-1)(2)^3(1) = -8$	Q3 to Q4	$\left(-\frac{1}{2},0\right)$	y = 3 The <i>y</i> -intercept is
DEGREE 4	Leading Coefficient is –8		(3,0)	at (0, 3)

d)
$$j(x) = x^4 - 4x^3 + 3x^2$$

$$j(x) = x^{2}(x^{2} - 4x + 3)$$
$$j(x) = x^{2}(x - 3)(x - 1)$$

Note: must put in to factored form to find x-intercepts

Degree	Leading Coefficient	End Behaviour	x-intercepts	y-intercept
The product of all	The product of all	A quartic with a	The <i>x</i> -intercepts	Set x equal to 0 and
factors of x is:	the <i>x</i> coefficients	positive leading	are 0 (order 2), 3,	solve:
$(x^2)(x)(x) = x^4$	is:	coefficient extends from:	and 1.	$y = (0)^{2}(0-3)(0-1)$ y = (0)(-3)(-1)
The function is quartic.	$(1)^2(1)(1) = 1$ Leading	Q2 to Q1	(0,0) (3,0) (1,0)	y = 0 The <i>y</i> -intercept is
DEGREE 4	Coefficient is 1		(1,0)	at (0, 0)

Example 3: Representing the Graph of a Polynomial Function with its Equation

a) Write the equation of the function shown below:

The function has x-intercepts at -2 and 3. Both are of order 2.

$$f(x) = k(x+2)^{2}(x-3)^{2}$$

$$4 = k(2+2)^{2}(2-3)^{2}$$

$$4 = k(4)^{2}(-1)^{2}$$

$$4 = 16k$$

$$k = \frac{1}{4}$$

$$f(x) = \frac{1}{4}(x+2)^{2}(x-3)^{2}$$

Steps:

- 1) Write the equation of the family of polynomials using factors created from *x*-intercepts
- **2)** Substitute the coordinates of another point (x, y) into the equation.
- 3) Solve for a
- **4)** Write the equation in factored form

b) Find the equation of a polynomial function that is degree 4 with zeros -1 (order 3) and 1, and with a y-intercept of -2.

$$f(x) = k(x+1)^{3}(x-1)$$

$$-2 = k(0+1)^{3}(0-1)$$

$$-2 = k(1)^{3}(-1)$$

$$-2 = -1k$$

$$k = 2$$

$$f(x) = 2(x+1)^{3}(x-1)$$

