weight Initialization:

- → to tackle with vanishing and Exploding gradient problem.
- -> faster convergence

- fau_in = 3 fau_out = 2

1. zero initialization:

- -> highly ineffective as neurous learn the same feature during first few iterations
 - -> slow convergence

2. Randon Initialization:

- -> better them zero initialization or constinuitalization.
 - -> very high or low value may lead to vanishing or Exploding Gradient problem.

-> saturating tauk activations for large random neeights.

a> random uniform => winv(0,1) b) raudom normal => W; ~ N (0,1)

3. Xauier/Glorot Initialization:

- -> uniform distribution
- -> takes account of input and output counctions
- -> mastly used for sigmoid. -> neights do not saturate or vanish. during forward pass.

$$W \sim M(0,6)$$
 $G = \sqrt{\frac{\varepsilon}{\text{fin + fout}}}$

b> Glosot uniform:

$$Var(A) = \frac{(2a)^2}{12} = \frac{a^2}{3}$$

$$f(A)$$

$$\frac{1}{2a}$$

$$-a$$

$$Var(A)=rac{(2a)^2}{12}=rac{a^2}{3}$$

We know that the variance should be equal to $rac{2}{fan_{in}+fan_{out}}$; we can work backward to find the endpoints of the interval.

$$Var(w) = rac{(2a)^2}{12} = rac{a^2}{3}$$
 $We\ have,$
 $Var(w) = rac{2}{fan_{in} + fan_{out}}$
 $\Rightarrow rac{a^2}{3} = rac{2}{fan_{in} + fan_{out}}$
 $a^2 = rac{6}{fan_{in} + fan_{out}}$
 $\Rightarrow a = \sqrt{rac{6}{fan_{in} + fan_{out}}}$
 $-\sqrt{rac{6}{fan_{in} + fan_{out}}}, \sqrt{rac{6}{fan_{in} + fan_{out}}}$

4. <u>He Weight Initialization</u>: (naiming)

-> masty used for RelV and Leaky-RelV.

-> helps avoiding slow connergence -> avoid oscillations muite reach--ing minima.

as Normal:

 $W_i \sim \mathcal{N}(0, \mathcal{C})$

$$\int 2 \sqrt{\frac{2}{+in}}$$

b> Uniform:

* Another method to prement Explodi-- ner gradient problem is
Gradient Clipping

Batch Normalization

-> faster convergence

L> increase in LR

L> ress oscillation

L> reduce training time.

- -> remove necessity tropout
- -> prements from vannishing or exploding gradient problem.
 - -> saues from dead activation for signoid & tauh.
 - -> reduce dependency on Hyper--parameters.
 - -> sauls NN from Intornal covariate shift
 - -> smoothers the loss function curul.

Internal Covariate Shift

 During training, layers need to continuously adapt to the new distribution of their inputs

ICS: change in the distribution of the network activations output or feature map due to change in www parameters during training back propagation.

solution:

Input: Values of x over a mini-batch: $\mathcal{B} = \{x_{1...m}\};$ Parameters to be learned: γ, β

Output: $\{y_i = BN_{\gamma,\beta}(x_i)\}$

 $y_i \leftarrow \gamma \hat{x}_i + \beta \equiv BN_{\gamma,\beta}(x_i)$

$$\mu_{\mathcal{B}} \leftarrow \frac{1}{m} \sum_{i=1}^{m} x_{i} \qquad \qquad \text{// mini-batch mean}$$

$$\sigma_{\mathcal{B}}^{2} \leftarrow \frac{1}{m} \sum_{i=1}^{m} (x_{i} - \mu_{\mathcal{B}})^{2} \qquad \qquad \text{// mini-batch variance}$$

$$\hat{x}_{i} \leftarrow \frac{x_{i} - \mu_{\mathcal{B}}}{\sqrt{\sigma_{\mathcal{B}}^{2} + \epsilon}} \qquad \qquad \text{// normalize}$$

Algorithm 1: Batch Normalizing Transform, applied to activation x over a mini-batch.

// scale and shift

-> smoothers the loss surface that leads to faster convergence.

-> prement from saturation

Figure 2. Single crop validation accuracy of Inception and its batch-normalized variants, vs. the number of training steps.