Les principaux types de complexité :

- O(1), indépendant du contexte (complexité constante)
 - ○(log(n)), complexité logarithmique
 - O(n), complexité linéaire
 - O(n*log(n)), complexité quasi-linéaire
 - O(n²), complexité quadratique
 - O(n³), complexité cubique
 - O(2n), complexité exponentielle
 - O(n!), complexité factorielle

Propriétés importantes de l'analyse :

- f(n) + g(n) est en $O(\max(f(n),g(n))$
- Si f(n) est en $\mathcal{O}(g(n))$ et g(n) est en $\mathcal{O}(h(n))$, alors f(n) est en $\mathcal{O}(h(n))$
- Chaque fonction appartient à la classe O de la fonction suivante. Par exemple,
 n*log(n) est en O(n²)

$$\sum_{i=1}^{n} 1 = n = \Theta(n)$$

$$C_{worst}(n) = \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} 1$$

$$= \sum_{i=1}^{n-1} (n-i)$$

$$= \frac{n(n-1)}{2} \in \Theta(n^2)$$

Les principales classes de complexité

O(1) temps constant

 $O(\log n)$ logarithmique

O(n) linéaire

 $O(n \times \log n)$ tris (par échanges)

 $O(n^2)$ quadratique, polynomial

 $O(2^n)$ exponentiel (problèmes très difficiles)

Exemple: permutation

fonction permutation (S, i, j)

1 tmp := S[i], coût c_1

2 S[i] := S[j], coût c_2

3 S[j] := tmp, coût c_3

4 renvoyer S coût c_4

Coût total

$$T(n) = c_1 + c_2 + c_3 + c_4 = O(1)$$

Exemple : recherche séquentielle

fonction recherche (x, S, n)

- 1 i := 1,
- 2 tant que ((i < n) et $(S[i] \neq x))$ faire (n fois)
- i := i + 1,
- 4 renvoyer (S[i] = x)

Pire des cas : n fois la boucle

$$T(n) = 1 + \sum_{i=1}^{n} 1 + 1 = O(n)$$