MACHINE LEARNING Dhiya Salma Salsabila

Artificial Intelligence

Sistem yang dapat meniru kecerdasan manusia

Machine Learning

Sistem yang belajar dan membuat keputusan berdasarkan data tanpa program eksplisit

Deep Learning

Konsep sistem berupa jaringan saraf tiruan untuk mempelajari pola dari data yang kompleks

Generative Al

Sistem untuk membuat konten baru

DEFINISI MACHINE LEARNING

TRADITIONAL PROGRAMMING

MACHINE LEARNING

TERMINOLOGI DALAM ML

Model

Model komputer yang dibuat berdasarkan data untuk membuat prediksi atau keputusan

Feature

Variabel yang digunakan untuk membuat prediksi

Data

Data yang digunakan untuk melatih (training), validasi (validation), dan menguji model (test)

Label

Output yang diharapkan dalam supervised learning

PENGAMBILAN DATA

SIMULASI

DATA LAPANGAN

EKSPERIMEN

INTERNET

Klasifikasi

Memprediksi kelas atau kategori dari suatu kasus

Clustering

Mengelompokkan kasus berdasarkan kesamaan

Itemset = {Bread, Egg, Milk}

Asosiasi

Memprediksi kumpulan item/event yang akan terjadi secara bersamaan

TOOLS PENGEMBANGAN ML

Programming

🧝 Menggunakan bahasa pemrograman untuk membuat model. Contoh: Python, R

No Code/Minimal Code

Menggunakan program drag and drop untuk membuat model Contoh: Rapid Miner, Orange, WEKA

会会会会会 LLM

Menggunakan Generative Al untuk membuat model Contoh: blackbox.ai, chatGPT

TIPE TIPE MACHINE LEARNING

Supervised

- Belajar dengan "guru", data training di beri label
- Memprediksi luaran yang diberikkan

Unsupervised

- Belajar tanpa "guru", data training tanpa label
- Menentukan pola dari data

Reinforcement

- Belajar dari pengalaman dan interaksi dengan lingkungan
- Memaksimalkan "reward"

PEMANFAATAN UTAMA ML DALAM BIDANG TEKNIK

PERANCANGAN MATERIAL

OPTIMASI PROSES/DESAIN

PEMANFAATAN UTAMA ML DALAM BIDANG TEKNIK

PREDIKSI MAINTENANCE

INSPEKSI VISUAL

PEMANFAATAN ML DALAM NUKLIR

Journal of Environmental Radioactivity 241 (2022) 106772

Contents lists available at ScienceDirect

Journal of Environmental Radioactivity

Machine learning analysis of ¹³⁷Cs contamination of terrestrial plants after the Fukushima accident using the random forest algorithm

Igor Shuryak

Center for Radiological Research, Columbia University Irving Medical Center, 630 West 168th Street, VC-11-234/5, New York, NY, 10032, USA

ARTICLEINFO

Keywords:
Radioactive contamination

137 Cs
Radionuclides
Plants
Trees
Modeling
Machine learning
Random forests

ABSTRACT

Radioactive contamination of terrestrial plants was extensively investigated and quantitatively modeled after the Fukushima nuclear power plant accident. This phenomenon, which is important for ecosystem functioning and protection of human health, is influenced by multiple factors, including plant species, time after the accident, and climate. Machine learning algorithms such as random forests (RF) have a record of strong performance on large multi-dimensional data sets, but, to our knowledge, combined data on post-Fukushima plant contamination with radionuclides were not yet subjected to a machine learning analysis. Here we performed such analysis on two large published data sets: (1) 137Cs activity concentrations in four common Japanese forest tree species. (2) Plant/soil 137Cs concentration ratios in multiple perennial plant species. The goal was to show the usefulness of machine learning for identifying and quantifying the main trends of ¹³⁷Cs contamination in terrestrial plants. Each data set was split randomly into training and testing parts, RF was fitted and tuned on the training parts, and its performance was assessed on the testing parts by three metrics: coefficient of determination (R2), root mean squared error, and mean absolute error. Synthetic noise variables and the Boruta algorithm were used in a customized procedure to identify the most important predictor variables, which consistently outperformed random noise. Good agreement between observations and RF predictions (e.g. R2~0.9 on testing data) was obtained on both data sets. The effects of the most important predictors (e.g. time after the accident, 137Cs land contamination level, and plant species) and interactions between them were quantified by partial dependence plots. These results of machine learning analyses of large data collections can help to complement previous modeling efforts, and to clarify the patterns of 137Cs contamination of plants after the Fukushima accident.

<u>Sumber</u>

Data Preparation Model Evaluation Mengevaluasi hasil Memilah data pemodelan Membersihkan data Melakukan review proses Mengkonstruksi data • Menentukan label data pemodelan 02 04 05 01 03 **Data Understanding** Modeling

- Mengumpulkan data
- Mempelajari data
- Memvalidasi data

- Membangun skenario pengujian
- Membangun model

Deployment

- Membuat rencana deployment model
- Melakukan deployment model

Decision Tree (DT)

Metode pembelajaran berbasis pohon yang digunakan untuk tugas klasifikasi dan regresi.

Metode ini bekerja dengan membagi dataset menjadi subset yang lebih kecil secara bertahap berdasarkan fitur-fitur yang relevan

- Criterion: Membantu pohon memilih fitur terbaik untuk memisahkan data.
- Max Depth: Menentukan kedalaman maksimum dari tree.
- Min Samples Split: Jumlah minimum sampel yang diperlukan untuk membagi node.
- Min Samples Leaf: Jumlah minimum sampel yang diperlukan untuk menjadi sebuah leaf node.
- Max Features: Menentukan jumlah fitur maksimum yang dipertimbangkan untuk membuat split di setiap node.
- Splitter: Menentukan strategi pembagian pada setiap node: best: Membagi berdasarkan fitur terbaik, random: Membagi berdasarkan fitur yang dipilih secara acak.

Elements of a decision tree

THANK YOU