Claims

1. A process for preparing a compound of formula (I)

5

where R^4 and R^5 are independently selected from hydrogen, halo, nitro, cyano, hydroxy, fluoromethyl, difluoromethyl, trifluoromethyl, trifluoromethoxy, amino, carboxy, carbamoyl, mercapto, sulphamoyl, ureido, C_{1-6} alkyl, C_{2-6} alkenyl, C_{2-6} alkynyl, C_{1-6} alkoxy, C_{1-6} alkanoyl, C_{1-6} alkyl)amino, N_1N_2 - $(C_{1-6}$ alkyl)amino, C_{1-6} alkyl)amino, C_{1-6} alkyl)amino,

N-(C₁₋₆alkyl)carbamoyl, N,N-(C₁₋₆alkyl)₂carbamoyl, C₁₋₆alkylS(O)_a wherein a is 0 to 2, C₁₋₆alkoxycarbonyl, C₁₋₆alkoxycarbonylamino, N-(C₁₋₆alkyl)sulphamoyl, N,N,-(C₁₋₆alkyl)₂sulphamoyl, C₁₋₆alkylsulphonylamino and C₁₋₆alkylsulphonyl-N-(C₁₋₆alkyl)amino; and R⁶ is hydrogen or a protecting group, which process comprises cyclisation of a compound of formula (II)

15

where R⁴, R⁵ and R⁶ are as defined in relation to formula (I) and R⁷ is a nitrogen protecting group, and removing protecting group R⁷, and thereafter if desired or necessary, removing any protecting group R⁶ to obtain the corresponding carboxylic acid.

- 20 2. A process according to claim 1 wherein the protecting group R⁷ is removed during the same reaction step as the cyclisation.
 - 3. A process according to claim 1 or claim 2 wherein in structure of formula (II), R⁷ is a groups of sub-formula (i)

where R⁸ is a straight chain alkyl group of from 1 to 6 carbon atoms.

- A process according to any one of the preceding claims wherein R⁴ and R⁵ are independently selected from hydrogen, halo, nitro, cyano, fluoromethyl, difluoromethyl,
 trifluoromethyl, trifluoromethoxy, carboxy, carbamoyl, sulphamoyl, C₁₋₄alkyl, C₂₋₄alkenyl,
 C₂₋₄alkynyl, C₁₋₄alkoxy, C₁₋₄alkanoyl, and C₁₋₄alkanoyloxy.
 - 5. A compound of formula (II) as defined in claim 1.
- 10 6. A process for preparing a compound according to claim 5 which comprises reacting a compound of formula (III)

where R^4 , R^5 are as defined in claim 1, R^6 and R^7 are as defined in claim 1, with a compound of formula (IV)

15

where L is a leaving group.

- 7. A compound of formula (III) as defined in claim 6.
- 20
- 8. A process for preparing a compound according to claim 7 which comprises reacting a compound of formula (V)

where R^4 , R^5 and R^7 are as defined in claim 1, with a compound of formula (VI)

(VI)

where R⁹ and R¹⁰ are alkyl groups in the presence of phosphorus oxychloride.

9. A process for preparing a compound of formula (III) as defined in claim 6 by reacting 5 a compound of formula (VII)

where R⁴ and R⁵ are as in claim 1 and R⁹ and R¹⁰ are as defined in claim 8, with a compound of formula (VIII)

$$(R^7)_2O$$

10

15

(VIII)

where R⁷ are as defined in claim 1.

- 10. A compound of formula (VII) as defined in claim 9.
- 11. A method according to claim 1 for the production of a compound of formula (I) where R⁶ is hydrogen, and further comprising reacting the compound of formula (I) obtained with an amine of formula (XI),

20

where R¹⁴ is selected from hydrogen and C₁₋₈alkyl,

m is an integer of from 0 to 4,

each R¹⁵ is the same or different and is selected from hydrogen, halo, nitro, cyano, hydroxy, amino, carboxy, carbamoyl, mercapto, sulphamoyl, ureido, C₁₋₆alkyl, C₂₋₆alkenyl, C₂₋₆alkynyl,

- C_{1-6} alkoxy, C_{1-6} alkanoyl, C_{1-6} alkanoyloxy, $N-(C_{1-6}$ alkyl)amino, $N.N-(C_{1-6}$ alkyl)₂amino, C_{1-6} alkanoylamino, $N-(C_{1-6}$ alkyl)carbamoyl, $N.N-(C_{1-4}$ alkyl)₂carbamoyl, C_{1-6} alkylS(O)_a wherein a is 0 to 2, C_{1-6} alkoxycarbonyl, C_{1-6} alkoxycarbonylamino, $N-(C_{1-6}$ alkyl)sulphamoyl, $N.N-(C_{1-6}$ alkyl)₂sulphamoyl, C_{1-6} alkylsulphonylamino,
- 5 C₁₋₆alkylsulphonyl-*N*-(C₁₋₆alkyl)amino, C₃₋₈cycloalkyl, C₃₋₈cycloalkylC₁₋₆alkyl, aryl, arylC₁₋₆alkyl, heterocyclic group and (heterocyclic group)C₁₋₆alkyl; wherein R¹⁵ may be optionally substituted on carbon by one or more groups selected from P and wherein if said heterocyclic group contains an -NH- moiety that nitrogen may be optionally substituted by a group selected from R;
- each R¹⁶ is the same or different and is selected from hydrogen and C₁₋₆alkyl;

 R¹⁷ is selected from hydrogen, halo, nitro, cyano, hydroxy, fluoromethyl,
 difluoromethyl, trifluoromethyl, trifluoromethoxy, amino, carboxy, carbamoyl, mercapto,
 sulphamoyl, ureido, C₁₋₆alkyl, C₂₋₆alkenyl, C₂₋₆alkynyl, C₁₋₆alkoxy, C₁₋₆alkanoyl,
 C₁₋₆alkanoyloxy, N-(C₁₋₆alkyl)amino, N,N-(C₁₋₆alkyl)₂amino, C₁₋₆alkanoylamino,
- N-(C₁₋₆alkyl)carbamoyl, N,N-(C₁₋₄alkyl)₂carbamoyl, N-(C₁₋₆alkyl)-N-(C₁₋₆alkoxy)carbamoyl,
 C₁₋₆alkylS(O)_a wherein a is 0 to 2, C₁₋₆alkoxycarbonyl, C₁₋₆alkoxycarbonylamino,
 N-(C₁₋₆alkyl)sulphamoyl, N,N-(C₁₋₆alkyl)₂sulphamoyl, sulphamoylamino,
 N-(C₁₋₆alkyl)sulphamoylamino, N,N-(C₁₋₆alkyl)₂sulphamoylamino, C₁₋₆alkylsulphonylamino,
 C₁₋₆alkylsulphonylaminocarbonyl, C₁₋₆alkylsulphonyl-N-(C₁₋₆alkyl)amino and a group
 -E-F-G-H;

wherein E and G are independently selected from a direct bond, -O-, -S-, -SO-, -SO₂-, -OC(O)-, -C(O)O-, -C(O)-, -NR^a-, -NR^aC(O)-, -C(O)NR^a-, -SO₂NR^a-, -NR^aSO₂-, -NR^aC(O)NR^b-, -OC(O)NR^a-, -NR^aC(O)O-, -NR^aSO₂NR^b-, -SO₂NR^aC(O)- and -C(O)NR^aSO₂-; wherein R^a and R^b are independently selected from hydrogen or C₁₋₆alkyl which is optionally substituted by a group V;

F is C₁₋₆alkylene optionally substituted by one or more Q or a direct bond;

H is selected from aryl, C₃₋₈cycloalkyl and heterocyclic group; wherein H may be optionally substituted on carbon by one or more groups selected from S and wherein if said heterocyclic group contains an -NH- moiety that nitrogen may be optionally substituted by a group selected from T;

P, S and Q are independently selected from halo, nitro, cyano, hydroxy, trifluoromethyl, trifluoromethoxy, amino, carboxy, carbamoyl, mercapto, sulphamoyl, ureido, C₁₋₆alkyl, C₂₋₆alkenyl, C₂₋₆alkynyl, C₁₋₆alkoxy, C₁₋₆alkanoyl, C₁₋₆alkanoyloxy,

N-(C_{1-6} alkyl)amino, N,N-(C_{1-6} alkyl)₂amino, C_{1-6} alkanoylamino, N-(C_{1-6} alkyl)carbamoyl, N-(C_{1-6} alkyl)-N-(C_{1-6} alkyl)-N-(C_{1-6} alkoxy)carbamoyl, C_{1-6} alkylS(O)_a wherein a is 0 to 2, C_{1-6} alkoxycarbonyl, C_{1-6} alkoxycarbonylamino, N-(C_{1-6} alkyl)₂sulphamoyl, C_{1-6} alkylsulphonylamino,

5 C₁₋₆alkylsulphonyl-N-(C₁₋₆alkyl)amino, C₃₋₈cycloalkyl, aryl and heterocyclic group; wherein P, S and Q may be optionally and independently substituted on carbon by one or more groups selected from V and wherein if said heterocyclic group contains an -NH- moiety that nitrogen may be optionally substituted by a group selected from U;

V is selected from halo, nitro, cyano, hydroxy, trifluoromethoxy, trifluoromethyl, amino, carboxy, carbamoyl, mercapto, sulphamoyl, methyl, ethyl, methoxy, ethoxy, acetyl, acetoxy, methylamino, ethylamino, dimethylamino, diethylamino, N-methyl-N-ethylamino, acetylamino, N-methylcarbamoyl, N-ethylcarbamoyl, N,N-dimethylcarbamoyl, N,N-diethylcarbamoyl, N-methyl-N-ethylcarbamoyl, methylthio, ethylthio, methylsulphinyl, ethylsulphinyl, mesyl, ethylsulphonyl, methoxycarbonyl, ethoxycarbonyl,

15 *N*-methylsulphamoyl, *N*-ethylsulphamoyl, *N*,*N*-dimethylsulphamoyl, *N*,*N*-diethylsulphamoyl, *N*-methyl-*N*-ethylsulphamoyl, morpholino, morpholinocarbonyl, *N*- benzylcarbamoyl, and 4-hydroxypiperidinocarbonyl;

R, T and U are independently selected from C_{1-4} alkyl, C_{1-4} alkanoyl, C_{1-4} alkylsulphonyl, C_{1-4} alkoxycarbonyl, carbamoyl, N- $(C_{1-4}$ alkyl)carbamoyl,

20 N,N-(C₁₋₄alkyl)carbamoyl, phenyl, benzyl, benzyloxycarbonyl, benzoyl and phenylsulphonyl wherein R, T and U may be optionally and independently substituted on carbon by one or more groups selected from V;

to produce a compound of formula (XII)

$$\begin{array}{c|c}
R^{4} & R^{14} & R^{15} \\
R^{5} & N & R^{16}
\end{array}$$
(XIII)

where R⁴, R⁵, R¹⁵, R¹⁶, R¹⁷ and m are as defined above, or a pharmaceutically acceptable salt or an *in vivo* hydrolysable ester thereof.

25