

What Is Claimed Is:

¥.	A	system	for	providing	hi	gh frequ	ıency	data
communications in	a	satellite-bas	sed	communicatio	ns	network,	the	system
comprising:								

a plurality of communications satellites each having uplink and downlink antennas capable of receiving and transmitting a plurality of signals, each of said satellites having a communication control circuit;

at least one of said satellites being a reconfigurable satellite having,

- a programmable frequency synthesizer coupled to a communications control circuit;
- a controller located on said satellite coupled to said communications control circuit, said controller controlling a frequency reconfiguration of said communications control circuit through said programmable frequency synthesizer.
- 2. A system as recited in claim 1 wherein each of said satellites further comprising a beam forming network coupled to said uplink and downlink antennas.
- 3. A system as recited in claim 1 wherein said communications control circuit comprises an up converter and a down converter.
- 4. A system as recited in claim 1 wherein said communications control circuit comprises a transponder.
- 5. A system as recited in claim 4 wherein said transponder comprises an up converter and a down converter.
- 6. A system as recited in claim 1 wherein said communications control circuit comprises a time division multiple access switch.

.

	1	7. A system as recited in claim 1 wherein said communications
	2	control circuit comprises a packet switch.
1	1	8. A system as recited in claim 1 wherein said plurality of
	2 ·	communications satellites have an orbit selected from the group consisting of a
	3	LEO, MEO and GSO.
	1	9. A payload circuit for a satellite comprising:
	2	a receive array;
	3	a receive beam forming network;
	4	a transmit array;
	5	a transmit/beam forming network;
	6	a communications control circuit for controlling communications
	7	of satellite; and
	8	a reconfiguration circuit coupled to the communications control
	9	circuit for reconfiguring the communications control circuit.
ı	1	10. A payload circuit as recited in claim 9 wherein said
24/2	2	communications control circuit comprises an up converter and a down converter.
No	1	11. A payload circuit as recited in claim 9 wherein said
	2	communications control circuit comprises a transponder.
		.,
	1	A payload circuit as recited in claim 11 wherein said transponder
	2	comprises an up converter and a down converter.
1	1	13. A payload circuit as recited in claim 9 wherein said
, \	2	reconfiguration circuit comprises a programmable frequency synthesizer coupled
$\mathfrak{O}\setminus$	3	to said up converter and said down converter.

1 2

1

2 3

1

2

3

1

2

3

1	14. A payload circuit as recited in claim 9 wherein said
	reconfiguration circuit comprises an on-board computer.
1	15. A payload circuit as recited in claim 14 wherein said reconfiguration circuit comprises a routing table, said on-board computer
2	reconfiguration circuit comprises a routing table, said on-board computer
	updating said routing table with reconfiguration data.

payload circuit as recited in claim 9 wherein said communications control circuit comprises a time division multiple access switch.

17. A payload circuit as recited in claim 9 wherein said communications control circuit comprises a packet switch. 2

A method of configuring a satellite system having a plurality of 18. satellites comprising the steps of: deploying a reconfigurable satellite; 3

transmitting reconfiguration instructions to said satellite;

reconfiguring the payload of the reconfigurable satellite;

repositioning a satellite from a network position; and

moving the reconfigurable satellite into the network position.

19. A method as recited in claim 18 wherein the step of reconfiguring a satellite comprises the step of changing the up converter frequency and down converter frequency.

A method as recited in claim 19 wherein the step changing the up converter frequency and down converter frequency comprises the step of changing a frequency in a programmable frequency synthesizer.

A method as recited in claim 18 wherein the step of reconfiguring a satellite comprises changing the amplitude or phase coefficients of a transmit and receive beam.