On Extensions of Elementary Logic

bу

PER LINDSTRÖM

(University of Gothenburg)

In this paper we present some results to the effect that certain combinations of theorems from the theory of models of elementary logic (EL) cannot be generalized to proper extensions of EL satisfying various conditions depending on the theorems in question. For example, we prove (Theorem 2) that Löwenheim's theorem together with the compactness theorem for denumerable sets of sentences cannot be extended to any generalized first order logic (defined below) which properly extends EL. Some of our results are improvements of earlier theorems of Mostowski [6] and Lindström [5].

We use the following notation and terminology. By a type we understand a sequence $t = \langle t_0, \ldots, t_{m-1} \rangle$ of positive integers; $Dt = m = \{0, \ldots, m-1\}$. A structure of type t, $\mathfrak{A} = \langle |\mathfrak{A}|, R_k^{\mathfrak{A}} \rangle_{k < m}$, consists of a non-empty set $|\mathfrak{A}|$ and relations $R_k^{\mathfrak{A}!} \subseteq |\mathfrak{A}|^{l_k}$ for k < m; $t^{\mathfrak{A}!} = t$. Structures are said to be similar if they are of the same type. By the cardinality of $\mathfrak{A}!$ we understand that of $|\mathfrak{A}!|$. $\mathfrak{A}!$ is an expansion of $\mathfrak{A}!$ if $Dt^{\mathfrak{A}!} \leq Dt^{\mathfrak{A}!}$ and $R_k^{\mathfrak{A}!} = R_k^{\mathfrak{A}!}$ for $k < Dt^{\mathfrak{A}!}$. If π is a permutation of $Dt^{\mathfrak{A}!}$, then $\mathfrak{A}_n = \langle |\mathfrak{A}|, R_{n(k)}^{\mathfrak{A}!} \rangle_{k < m}$, where $m = Dt^{\mathfrak{A}!}$. If $t^{\mathfrak{A}!} \geq 2$ for $k < m = Dt^{\mathfrak{A}!}$ and $a \in |\mathfrak{A}!,$ then $\mathfrak{A}^{(a)}$ is the structure $\langle |\mathfrak{A}|, S_k \rangle_{k < m}$ such that for any k < m and any $b_0, \ldots, b_{n-2} \in |\mathfrak{A}!$, where $n = t^{\mathfrak{A}!}$, $\langle b_0, \ldots, b_{n-2} \rangle \in S_k$ iff $\langle b_0, \ldots, b_{n-2}, a \rangle \in R_k^{\mathfrak{A}!}$. K, M, K are classes of pairwise similar structures. K is said to be a free expansion of K if for some type K if K is of type K and K is an expansion of a member of K. K is the complement of K with respect to the class of structures similar to the members of K. K is said to characterize the class K of K.

structures of type t if for every $\mathfrak A$ of type t, $\mathfrak A$ is isomorphic to a member of M iff some expansion of $\mathfrak A$ is a member of K. K characterizes the structure $\mathfrak B$ if K characterizes $\{\mathfrak B\}$. We write $K\in F$ $(K\in F_\omega)$ to mean that K is a class of structures of type $\langle 1\rangle$ such that (K has no finite member and) if $\langle A,R\rangle\in K$, then R is finite and $\neq 0$ and for every n, there is a countable member $\langle B,S\rangle$ of K such that S is of power n+1.

Let $L=(\Sigma,T)$, where Σ is an arbitrary non-empty set and T is a binary relation between members of Σ on the one hand and structures on the other; $\Sigma_L=\Sigma$, $T_L=T$. Members of Σ_L will be called L-sentences. If ϕ is an L-sentence, then $Mod_{t,L}(\phi)$ is the class of structures of type t, $\mathfrak A$, such that $T_L(\phi,\mathfrak A)$. $K\in C_L$ means that there are $\phi\in \Sigma_L$ and t such that $K=Mod_{t,L}(\phi)$. $K(\mathfrak A)$ is said to be L-characterizable if some $M\in C_L$ characterizes $K(\mathfrak A)$. We say that L is a generalized first order logic if L satisfies the following conditions:

- (i) If $K \in C_L$, then K is closed under isomorphism.
- (ii) If $K \in C_L$, the members of K are of type t, and π is a permutation of Dt, then $K_{\pi} \in C_L$.
- (iii) If $K \in C_L$ and M is a free expansion of K, then $M \in C_L$.
- (iv) If $K \in C_L$, then $\overline{K} \in C_L$.
- (v) If K, $M \in C_L$, then $K \cap M \in C_L$.

From now on we assume that L and L' are generalized first order logics. L is a strong generalized first order logic if L satisfies the following condition:

(vi) If $K \in C_L$, then K^+ is L-characterizable.

Let t be any type. By a t-formula (t-sentence) we understand an elementary formula (sentence) with no non-logical symbols other than the predicates P_k for k < Dt, where P_k is t_k -ary. Let Γ be the union of the sets of t-sentences for arbitrary t and let T_0 be the relation such that $T_0(\varphi, \mathfrak{A})$ iff $\varphi \in \Gamma$ and φ holds in \mathfrak{A} . Set $EL = (\Gamma, T_0)$. Thus $K \in C_{EL}$ iff K is elementarily definable. Next let Q_0, \ldots, Q_{k-1} be arbitrary (generalized) quantifiers and let Q be the set of the corresponding quantifier symbols. (For definitions of the relevant notions pertaining to logic with generalized

quantifiers see [5]. We assume here that Q-formulas may contain the ordinary quantifier symbols and sentential connectives.) Let Δ be the set of Q-sentences and let T_1 be the relation such that $T_1(\phi, \mathfrak{A})$ iff $\phi \in \Delta$ and ϕ holds in \mathfrak{A} . Set $L(Q) = (\Delta, T_1)$. Clearly EL and L(Q) are strong generalized first order logics. If ϕ is a Q-formula with no free variables other than v_0, \ldots, v_{m-1} and $x \in |\mathfrak{A}|^m$, then $\mathfrak{A} \models \phi[x]$ means that x satisfies ϕ in \mathfrak{A} .

L' is an extension of L, in symbols $L \subseteq L'$, if for every L-sentence ϕ and every type t, there is an L'-sentence ψ such that $\mathsf{Mod}_{t,L}(\phi) = \mathsf{Mod}_{t,L'}(\psi)$. L is equivalent to L', $L \equiv L'$, if $L \subseteq L'$ and $L' \subseteq L$. $L \subseteq \mathsf{int} L'$ means that for every L-sentence ϕ and every type t, there is an L'-sentence ψ such that $\mathsf{Mod}_{t,L}(\phi)$ and $\mathsf{Mod}_{t,L'}(\psi)$ have the same infinite members. $L \equiv \mathsf{int} L'$ iff $L \subseteq \mathsf{int} L'$ and $L' \subseteq \mathsf{int} L$.

Consider now the following conditions on L:

- (I) If $K_n \in C_L$ for every n and $\bigcap_{m < \omega} K_m = 0$, then $\bigcap_{m \le m} K_m = 0$ for some m.
- (II) If $K \in C_L$ and K has an infinite member, then K has a denumerable member.
- (III) If $K \in C_L$ and K has a denumerable member, then K has an uncountable member.

As is well-known, EL satisfies these conditions and certain much stronger conditions as well. In what follows we shall obtain some results in the converse direction. These results are simple consequences of the following

THEOREM I. If L satisfies (II), $EL \subseteq infL$, and $L \not\subseteq infEL$, then some member of F_{ω} is L-characterizable.

For the proof of Theorem 1 we require the following two lemmas the first of which is due to R. Fraissé [4] and A. Ehrenfeucht [2] and the second to R. Fraissé [3]. To state these lemmas we need the following additional notation and terminology. If $x = \langle x_0, ..., x_{m-1} \rangle$, then $x^{\hat{}} = \langle x_0, ..., x_{m-1}, a \rangle$. By an I-sequence of length m+1 for $\langle \mathfrak{A}, \mathfrak{B} \rangle$, where \mathfrak{A} and \mathfrak{B} are of type t, we understand a sequence $\langle I_k \rangle_{k < m}$ of relations such that

- (1) $I_k \subseteq |\mathfrak{A}|^k \times |\mathfrak{B}|^k$ for $k \le m$,
- (2) $\langle \rangle I_0 \langle \rangle$,
- (3) if $k \le m$ and xI_ky , then for every $a \in |\mathfrak{A}|(b \in |\mathfrak{B}|)$, there is a $b \in |\mathfrak{B}|$ ($a \in |\mathfrak{A}|$) such that $x \cap aI_{k+1}y \cap b$,
- (4) if $xI_m y$, then for any atomic t-formula φ with no variables other than $v_0, \ldots, v_{m-1}, \mathfrak{A} \models \varphi[x]$ iff $\mathfrak{B} \models \varphi[y]$.

 $\langle I_k \rangle_{k < \omega}$ is an I-sequence of length ω for $\langle \mathfrak{A}, \mathfrak{B} \rangle$ if for every m, $\langle I_k \rangle_{k < m}$ is an I-sequence of length m+1 for $\langle \mathfrak{A}, \mathfrak{B} \rangle$.

LEMMA 1. Let \varkappa be any cardinal. If K does not have the same members of power \varkappa as any member of C_{EL} , then for every m, there are structures \mathfrak{A} , \mathfrak{B} of power \varkappa such that $\mathfrak{A} \in K$ and an I-sequence of length m+1 for $\langle \mathfrak{A}, \mathfrak{B} \rangle$.

PROOF. Suppose the members of K are of type t. For $n \le m$ we define the notions of an (m, n)-condition and of a complete (m, n)-condition as follows. An (m, m)-condition is an atomic t-formula with no variables other than v_0, \ldots, v_{m-1} . Let $\varphi^{(1)}$ be φ or $\neg \varphi$ according as i=0 or i=1. Next let $\varphi_0, \ldots, \varphi_k$ be all (m, n)-conditions. Then for any $i_0, \ldots, i_k, \varphi_0^{(i_0)} \land \ldots \land \varphi_k^{(i_k)}$ is a complete (m, n)-condition. Finally, if n>0 and φ is a complete (m, n)-condition, then $\exists v_{n-1}\varphi$ is an (m, n-1)-condition. No other formulas are (complete) (m, n)-conditions. Note that the free variables of an (m, n)-condition are among v_0, \ldots, v_{n-1} .

By hypothesis, the class of members of K of power × does not coincide with the class of models of power × of any disjunction of complete (m, 0)-conditions. It follows that there are $\mathfrak A$ and $\mathfrak B$ of power × such that $\mathfrak A \in K$, $\mathfrak B \in \overline{K}$, and the same (m, 0)-conditions hold in $\mathfrak A$ and $\mathfrak B$. Now for $k \le m$, define the relation I_k thus: xI_ky iff $x \in |\mathfrak A|^k$, $y \in |\mathfrak B|^k$, and for every (m, k)-condition φ , $\mathfrak A \models \varphi[x]$ iff $\mathfrak B \models \varphi[y]$. Obviously, the sequence $\langle I_k \rangle_{k \le m}$ satisfies conditions (1), (2), and (4). To show that it also satisfies (3) suppose k < m, xI_ky , and $a \in |\mathfrak A|$. Let φ be the complete (m, k+1)-condition such that $\mathfrak A \models \varphi[x^a]$. Then $\psi = \exists v_k \varphi$ is an (m, k)-condition and $\mathfrak A \models \psi[x]$. Hence $\mathfrak A \models \psi[y]$, whence there is a $b \in |\mathfrak A|$ such that $\mathfrak A \models \varphi[y^b]$. Clearly $x a I_{k+1} y b$. This proves one half of (3). The proof of the other half is the same. Thus

 $\langle I_k \rangle_{k \le m}$ is an I-sequence of length m+1 for $\langle \mathfrak{A}, \mathfrak{B} \rangle$ and Lemma 1 is proved.

LEMMA 2. If $\mathfrak A$ and $\mathfrak B$ are denumerable and there is an I-sequence of length ω for $\langle \mathfrak A, \mathfrak B \rangle$, then $\mathfrak A$ is isomorphic to $\mathfrak B$.

PROOF. Let $|\mathfrak{A}| = \{a_n: n \in \omega\}$, $|\mathfrak{B}| = \{b_n: n \in \omega\}$, and let $\langle I_k \rangle_{k < \omega}$ be an I-sequence for $\langle \mathfrak{A}, \mathfrak{B} \rangle$. We define sequences $\langle c_n \rangle_{n < \omega}$ and $\langle d_n \rangle_{n < \omega}$ such that for every n,

- $(5) \quad c_{20} = a_n,$
- (6) $d_{2n+1} = b_n$,
- (7) $\langle c_0, ..., c_{n-1} \rangle I_n \langle d_0, ..., d_{n-1} \rangle$

as follows. Suppose c_n and d_n have been defined for n < k. If k is even, k = 2r, set $c_k = a_r$. By (3), there is a least index s such that $\langle c_0, \ldots, c_k \rangle$ $I_{k+1} \langle d_0, \ldots, d_{k-1}, b_s \rangle$. Set $d_k = b_s$. If, on the other hand, k is odd, k = 2r + 1, set $d_k = b_r$. Again by (3), and (2) if r = 0, there is a least index s such that $\langle c_0, \ldots, c_{k-1}, a_s \rangle$ $I_{k+1} \langle d_0, \ldots, d_k \rangle$. Set $c_k = a_s$.

Now let $f = \{\langle c_n, d_n \rangle : n \in \omega \}$. Then, by (4)—(7), f is an isomorphism on $\mathfrak A$ onto $\mathfrak B$.

PROOF OF THEOREM 1. Let $K_0 \in C_L$ be such that there is no $M \in C_{EL}$ such that K_0 and M have the same infinite members. Then

(8) there is no $M \in C_{EL}$ such that K_0 and M have the same denumerable members.

Indeed, Suppose $M \in C_{EL}$. There is then a class $M_0 \in C_L$ such that M and M_0 have the same infinite members. Let $M_1 = (\overline{K_0} \cap M_0) \cup (K_0 \cap \overline{M_0})$. By (iv) and (v), $M_1 \in C_L$. Clearly M_1 has an infinite member. Hence, by (II), M_1 has a denumerable member and so (8) follows.

Suppose, for simplicity, that the members of K_0 are of type $\langle 2 \rangle$. Let K_1 be the class of structures $\langle A, R_k \rangle_{k < 7}$ of type $t = \langle 1, 2, 2, 2, 2, 3, 3 \rangle$ such that

- (9) R₀ is non-empty,
- (10) R₃ is a one-one function on A into a proper subset of A,

- (11) R₄ is a linear ordering of R₀ such that R₀ has an R₄-first member and every member of R₀ which has an R₄-successor has an immediate R₄-successor,
- (12) for every $a \in A$, the relation $f_a = \{\langle x, y \rangle : \langle a, x, y \rangle \in R_5\}$ is a function on R_0 into A,
- (13) if x is the R_4 -first member of R_0 , then there are a, b such that $\langle x, a, b \rangle \in R_6$,
- (14) if $\langle x, a, b \rangle \in R_6$, $x \in R_0$, y is the immediate R_4 -successor of x, and z is any member of A, then there are c, d, u such that $\langle y, c, d \rangle \in R_6$, $f_c(y) = z$, $f_d(y) = u$, and for every $v \in R_0$, if $v \neq y$, then $f_c(v) = f_a(v)$ and $f_d(v) = f_b(v)$,
- (15) (Like (14) except that a and b are interchanged.),
- (16) if $\langle x, a, b \rangle \in R_6$ and y, z are R_4 -predecessors of x, then $\langle f_a(y), f_a(z) \rangle \in R_1$ iff $\langle f_b(y), f_b(z) \rangle \in R_2$.

It is easily seen that $K_1 \in C_{EL}$ and that it has no finite members, whence $K_1 \in C_L$. Next, it follows at once from (ii)—(v) that there is a class $K_2 \in C_L$ of structures of type t such that $\mathfrak{A} \in K_2$ iff $\langle |\mathfrak{A}|, R_1^{\mathfrak{A}} \rangle \in K_0$ and $\langle |\mathfrak{A}|, R_2^{\mathfrak{A}} \rangle \in \overline{K}_0$. Now set $K = K_1 \cap K_2$. Then, by (v), $K \in C_L$. We propose to show that K characterizes a member of F_{op} .

Let n be any natural number $\neq 0$. By (8) and Lemma 1, there are relations R_1 , $R_2 \subseteq \omega^2$ such that $\mathfrak{A} = \langle \omega, R_1 \rangle \in K_0$, $\mathfrak{B} = \langle \omega, R_2 \rangle \in \overline{K}_0$, and an I-sequence $\langle I_k \rangle_{k < n}$ of length n for $\langle \mathfrak{A}, \mathfrak{B} \rangle$. Let $R_0 = n$ and let R_4 be the <-relation restricted to R_0 . Let g be a one-one function on ω onto the set of functions on R_0 into ω . We write g_x for g(x). Next let $R_5 = \{\langle m, x, y \rangle : x \in R_0 \text{ and } g_m(x) = y\}$. Let $R_6 = \{\langle m, x, y \rangle : m \in R_0 \text{ and } \langle g_x(0), \ldots, g_x(m-1) \rangle$ Im $\langle g_y(0), \ldots, g_y(m-1) \rangle$. Finally, let R_3 be a one-one function on ω into a proper subset of ω . The verification that $\langle \omega, R_k \rangle_{k < 7}$ is a member of K presents no difficulties.

Suppose now, for reductio ad absurdum, that there is a structure $\mathfrak{A} \in K$ such that $R_0^{\mathfrak{A}}$ is infinite. Let M_1 be the free expansion of K whose members are of type $t'=t^2$. Next let M_2 be the class of structures \mathfrak{B} of type t' such that $R_7^{\mathfrak{B}}$ is a one-one function on $R_0^{\mathfrak{B}}$ into a proper subset of $R_0^{\mathfrak{B}}$. Clearly $M_0 = M_1 \cap M_2 \in C_L$ and M_0 has an infinite member. Hence, by (II), M_0 has a denumer-

able member \mathfrak{C} . Clearly $R_0^{\mathfrak{C}}$ is infinite. Hence, by (11), for every n, there is a member c_n of $R_0^{\mathfrak{C}}$ which has exactly n $R_4^{\mathfrak{C}}$ -predecessors. For $a \in |\mathfrak{C}|$ let $f_a = \{\langle x, y \rangle : \langle a, x, y \rangle \in R_6^{\mathfrak{C}} \}$. Now, for each n, define the relation I_n as follows: $\langle a_0, \ldots, a_{n-1} \rangle$ $I_n \langle b_0, \ldots, b_{n-1} \rangle$ iff there are $a, b \in |\mathfrak{C}|$ such that $\langle c_n, a, b \rangle \in R_6^{\mathfrak{C}}$ and $f_a(c_k) = a_k$ and $f_b(c_k) = b_k$ for k < n. It is then easily checked, using (12)—(16), that $\langle I_n \rangle_{n < \omega}$ is an I-sequence of length ω for $\langle \mathfrak{C}_1, \mathfrak{C}_2 \rangle$, where $\mathfrak{C}_m = \langle |\mathfrak{C}|, R_m^{\mathfrak{C}} \rangle$, m = 1, 2. Hence, by Lemma 2, \mathfrak{C}_1 is isomorphic to \mathfrak{C}_2 . But $\mathfrak{C}_1 \in K_0$ and $\mathfrak{C}_2 \in \overline{K}_0$. Hence, by (i), \mathfrak{C}_1 is not isomorphic to \mathfrak{C}_2 . A contradiction from which it follows that if $\mathfrak{A} \in K$, then $\mathfrak{A}_0^{\mathfrak{A}}$ is finite. Since, finally, in view of (9) and (10), if $\mathfrak{A} \in K$, then $\mathfrak{A}_0^{\mathfrak{A}}$ is infinite and $R_0^{\mathfrak{A}} \neq 0$, this concludes our proof that K characterizes a member of F_{ω} .

COROLLARY I. If L satisfies (II), $EL \subseteq L$, and $L \not\subseteq EL$, then some member of F is L-characterizable.

PROOF. If $L \not\subseteq_{inf} EL$, then the conclusion follows from Theorem 1. Suppose then $L \subseteq_{inf} EL$. There are then classes K, M such that $K \in C_L$, $K \notin C_{EL}$, $M \in C_{EL}$, and K and M have the same infinite members. It follows that for every m, there is an n > m such that K and M does not have the same members of power n. Indeed, otherwise, as is easily seen, we would have $K \in C_{EL}$. Suppose the members of K are of type $t = \langle t_0, \ldots, t_{m-1} \rangle$. Set $t' = \langle 1, t_0, \ldots, t_{m-1} \rangle$. Let N be the class of structures such that $\mathfrak{A} \in \mathbb{N}$ iff \mathfrak{A} is of type t', $R^{\mathfrak{A}}_{0} \neq 0$ and $\langle |\mathfrak{A}|, R^{\mathfrak{A}}_{k+1} \rangle_{k < Dt} \in (\overline{K} \cap M) \cup (K \cap \overline{M})$. Then, clearly, $N \in C_L$ and N characterizes a member of F.

COROLLARY 2. If L is strong, L satisfies (II), $EL \subseteq \inf L$, and $L \not\subseteq \inf EL$, then $\langle \omega, \leq \rangle$ is L-characterizable.

PROOF. By Theorem 1, there is a class $K \in C_L$ such that K characterizes a member of F_ω . Since L is strong, it follows that there is a class $M \in C_L$ which characterizes K^+ . Let N be the class of structures of the same type as the members of M, \mathfrak{A} , such that $R^{\mathfrak{A}}_0$ is a reflexive linear ordering of $|\mathfrak{A}|$ such that every member of $|\mathfrak{A}|$ has an $R^{\mathfrak{A}}_0$ -successor. Then $M \cap N \in C_L$ and characterizes $\langle \omega, \leq \rangle$.

From Corollary 1 we can now easily derive the following THEOREM 2. If L satisfies (I) and (II) and $EL \subseteq L$, then L = EL.

PROOF. Suppose L satisfies (II), $EL \subseteq L$, and $L \not\subseteq EL$. Then, by Corollary 1, there is a class $K_0 \in C_L$ which characterizes a member of F. Let t be the type of the members of K_0 . For n>0 let K_n be the class of structures $\mathfrak A$ of type t such that $R_0^{\mathfrak A}$ has at least n members. Then clearly $K_n \in C_L$ for every n, $n \in K_n = 0$, and $n \in K_n \neq 0$ for every n. Thus L does not satisfy (I).

If K characterizes $\langle \omega, \leq \rangle$, then, obviously, K has a denumerable member but no uncountable member. Hence, in view of Corollary 2, we have the following

THEOREM 3. If L is strong, L satisfies (II) and (III), and $EL \subseteq Int$ L, then $L \equiv Int$ EL.

Theorems 2 and 3 are improvements of Theorems 5.1 and 5.6 [5]. The present proofs are, however, almost the same as those given in [5].

In order to be able to apply the concepts of recursive function theory we now assume that the members of Σ_L and $\Sigma_{L'}$ are finite configurations of symbols from certain given finite sets or, equivalently, natural numbers. We write L⊆errL' to mean that there is an effective method whereby, given any type t and any Lsentence φ , an L'-sentence ψ can be found such that $Mod_{t,L}(\varphi) =$ $= \text{Mod}_{t,L'}(\psi)$. $L \equiv _{eff}L'$ iff $L \subseteq _{eff}L'$ and $L' \subseteq _{eff}L$. L is n.c.-effective if (a) there is an effective method by means of which for any type t and any L-sentence φ , an L-sentence ψ can be found such that $Mod_{t,L}(\psi) = Mod_{t,L}(\varphi)$ and (b) there is an effective method by means of which for any type t and any L-sentences φ , ψ , an L-sentence θ can be found such that $Mod_{t,L}(\theta) = Mod_{t,L}(\varphi) \cap$ $\cap Mod_{t,L}(\psi)$. Clearly $EL \subseteq effL(Q)$ and EL and L(Q) are both n.c.-effective. Set $V_L = \{ \langle \varphi, t \rangle : t \text{ is any type, } \varphi \in \Sigma_L, \text{ and } T_L(\varphi, \mathfrak{A}) \}$ for every \mathfrak{A} of type t. L is said to be axiomatizable if V_L is recursively enumerable. As is well-known, EL is axiomatizable. In the converse direction we have the following

THEOREM 4. If L is n.c.-effective and axiomatizable, L satisfies (II), and $EL \subseteq effL$, then $L \equiv effEL$.

In the proof of Theorem 4 we use the following result due to Trakhtenbrot [7]. A t-sentence is said to be finitely valid if it holds in all finite structures of type t.

LEMMA 3. There is a type t such that the set of finitely valid t-sentences is not recursively enumerable.

PROOF OF THEOREM 4. We first prove that $L \subseteq EL$. Suppose not. Then, by Corollary 1, there is an L-sentence θ and a type $t' = = \langle t'_0, \ldots, t'_{m'-1} \rangle$ such that $Mod_{t',L}(\theta)$ characterizes a member of F. Let $t = \langle t_0, \ldots, t_{m-1} \rangle$ be as in Lemma 3, set $t^+ = \langle t'_0, \ldots, t'_{m'-1}, t_0, \ldots, t_{m-1} \rangle$, and let θ^+ be an L-sentence such that $Mod_{t^+,L}(\theta^+)$ is a free expansion of $Mod_{t',L}(\theta)$. Now let φ be any t-sentence. For every r, replace P_r everywhere in φ by $P_{m'+r}$ and then relativize all quantifier expressions to P_0 , i.e. replace $\exists v_k \psi$ by $\exists v_k (P_0 v_k \wedge \psi)$ and $\forall v_k \psi$ by $\forall v_k (P_0 v_k \rightarrow \psi)$. Let φ_0 be the sentence thus obtained. Since $EL \subseteq ertL$, we can now effectively find an L-sentence ψ such that $Mod_{t^+,L}(\psi) = Mod_{t^+,EL}(\varphi_0)$. Next, since L is n.c.-effective, we can find an L-sentence η such that

$$Mod_{t+,L}(\eta) = \overline{Mod_{t+,L}(\theta^+)} \cup Mod_{t+,L}(\psi).$$

Clearly, $\langle \eta, t^+ \rangle \in V_L$ iff ϕ is finitely valid. Since η was found effectively from ϕ and since V_L is recursively enumerable, we may now conclude that the set of finitely valid t-sentences is recursively enumerable. But this contradicts Lemma 3. Thus the assumption that $L \not\subseteq EL$ was false and so $L \subseteq EL$.

That $L\subseteq_{eff}EL$ can now be shown as follows. Let ϕ be any L-sentence and t any type. Given t we can obviously find an effective enumeration ψ_0 , ψ_1 , ψ_2 , ... of all t-sentences. Next, for each n, an L-sentence η_n can be found such that $Mod_{t,L}(\eta_n) = Mod_{t,EL}(\psi_n)$. Finally, we can find L-sentences ξ_n such that for every n,

$$\frac{Mod_{t,L}(\xi_n) = (Mod_{t,L}(\phi) \cap Mod_{t,L}(\eta_n)) \cup}{(Mod_{t,L}(\phi) \cap Mod_{t,L}(\eta_n))}.$$

Clearly $\langle \xi_n, t \rangle \in V_L$ iff $Mod_{t,L}(\phi) = Mod_{t,EL}(\psi_n)$. But, since $L \subseteq EL$, there is an n for which this equation holds. Hence, since V_L is recursively enumerable, we can find an n such that $\langle \xi_n, t \rangle \in$

 \in V_L. Thus, given a type t and an L-sentence ϕ a t-sentence ψ_n can be found effectively such that $Mod_{t,EL}(\psi_n) = Mod_{t,L}(\phi)$; in other words, $L \subseteq errEL$, as was to be proved.

Theorem 4 is a generalization of a theorem of Mostowski (Theorem 4 [6]).

We conclude this paper by discussing the possibility of extending Beth's theorem on definability together with (II) to proper extensions of EL of the form L(Q). Let φ be an L(Q)-sentence which contains the q-ary predicate P_s . φ is said to define P_s implicitly if for any two structures $\mathfrak A$ and $\mathfrak B$, if $t^{\mathfrak A}=t^{\mathfrak B}$, $\mathfrak A \models \varphi$, $|\mathfrak A|=|\mathfrak B|$, and $R_k^{\mathfrak A}=R_k^{\mathfrak A}$ for $k< Dt^{\mathfrak A}$ and $k\neq s$, then $R_s^{\mathfrak A}=R_s^{\mathfrak A}$. φ is said to L(Q)-define P_s explicitly if there is a Q-formula ψ which contains no predicates other than those occurring in φ , does not contain P_s , contains no free variables othen than v_0,\ldots,v_{q-1} , and is such that

$$\mathfrak{A} \models \varphi \rightarrow \forall v_0 \dots v_{q-1} (P_s v_0 \dots v_{q-1} \longleftrightarrow \psi),$$

for every structure $\mathfrak A$ of suitable type. We say that L(Q) has Beth's property if for every L(Q)-sentence ϕ and every predicate P_s , if ϕ defines P_s implicitly, then ϕ L(Q)-defines P_s explicitly. As is well-known, EL (Q empty) has Beth's property. In the converse direction we have the following

THEOREM 5. If L(Q) has Beth's property and satisfies (II), then $L(Q) \equiv \inf EL$.

PROOF IN OUTLINE. Let L=L(Q). As noted above, L is a strong generalized first order logic. Suppose L satisfies (II) and $L\not\subseteq_{inf}EL$. Then, by Corollary 2, there is an L-sentence θ and a type t such that $Mod_{t,L}(\theta)$ characterizes $\langle \omega, \leq \rangle$. Suppose now we have defined a Gödel numbering of the Q-formulas satisfying the usual effectiveness conditions. Then, by a suitable modification of the construction used in the proof of Theorem 2.1[1] and using the sentence θ , we can find a type t' and an L-sentence φ such that $Mod_{t',L}(\varphi)$ is non-empty and if $\mathfrak{A} \in Mod_{t',L}(\varphi)$, then there is a structure \mathfrak{B} isomorphic to \mathfrak{A} such that $|\mathfrak{B}| = \omega$, $R_0^{\mathfrak{B}} = \{\langle m, n \rangle : m \leq n\}$, $R_1^{\mathfrak{B}} = \{\langle k, m, n \rangle : k + m = n\}$, and $R_3^{\mathfrak{B}} = \{\langle m, n \rangle : n$ is the Gödel number of a formula ψ such

that ψ does not contain P_3 and for some r, ψ contains no free variables other than $v_0, \ldots, v_{r-1}, m = 2^{m_0} \cdot \ldots \cdot p_{r-1}^{m_{r-1}}$, where p_{k-1} is the kth prime, and $\mathfrak{B} \models \psi[m_0, \ldots, m_{r-1}]$. Clearly φ defines P_3 implicitly. Suppose now L has Beth's property and let \mathfrak{B} be as described. There is then a Q-formula η not containing P_3 such that

$$\mathfrak{B} \models \forall \mathbf{v_0} \mathbf{v_1} (\mathbf{P_3} \mathbf{v_0} \mathbf{v_1} \longleftrightarrow \eta).$$

It follows that there is a Q-formula ξ with no free variable other than v_0 and not containing P_3 such that for every n, $\mathfrak{B} \models \xi[n]$ iff $\langle 2^n, n \rangle \in R_3^{\mathfrak{B}}$. Let p be the Gödel number of $\neg \xi$. Then $\mathfrak{B} \models \xi[p]$ iff $\langle 2^p, p \rangle \in R_3^{\mathfrak{B}}$ iff $\mathfrak{B} \models \neg \xi[p]$; a contradiction. Thus L does not have Beth's property and our proof is finished.

BIBLIOGRAPHY

- [1] W. Craig and R. L. Vaught. Finite axiomatizability using additional predicates. J. Symb. Logic, vol. 23 (1958), pp. 289—308.
- [2] A. Ehrenfeucht. An application of games to the completeness problem for formalized theories. Fund. Math., vol. 49 (1961), pp. 129—141.
- [3] R. Fraissé. Sur l'extension aux relations de quelques propriétés des ordres. Ann. Sci. École Norm. Sup., 3ième série, vol. 71 (1954), pp. 363—388.
- [4] R. Fraissé. Sur quelques classifications des relations, basées sur des isomorphismes restreints. Alger-Mathématiques, vol. 2 (1955), pp. 16—60, 273—295.
- [5] P. Lindström. First order predicate logic with generalized quantifiers. Theoria, vol. 32 (1966), pp. 186—195.
- [6] A. Mostowski. On a generalization of quantifiers. Fund. Math., vol. 44 (1957), pp. 12—36.
- [7] B. A. Trakhtenbrot. On recursive separability. Dodkl. Akad. Nauk SSSR, vol. 88 (1953), pp. 953—956.

Received on November 30, 1968