Formale Sprachen und Automaten Prof. Dr. Uwe Nestmann - 07. April 2017

Schriftlicher Test

Studentenidentifikation:

NACHNAME	
VORNAME	
Matrikelnummer	
STUDIENGANG	□ Informatik Bachelor, □

Aufgabenübersicht:

AUFGABE	SEITE	Punkte	THEMENBEREICH
1	2	20	MODELLE REGULÄRER SPRACHEN
2	3	16	Untermengen-Konstruktion
3	4	22	MINIMIERUNG EINES DFA
4	5	17	Grenzen Regulärer Sprachen
5	6	10	Modelle Kontextfreier Sprachen I
6	7	15	Modelle Kontextfreier Sprachen II

Zwei Punkte in diesem Test entsprechen einem Portfoliopunkt.

Korrektur:

AUFGABE	1	2	3	4	5	6	\sum
PUNKTE	20	16	22	17	10	15	100
ERREICHT							
Korrektor							
EINSICHT							

Aufgabe 1: Modelle Regulärer Sprachen

(20 Punkte)

Gegeben seien das Alphabet $\Sigma \triangleq \{a, b\}$, die reguläre Sprache $A_1 \triangleq \{ axa, by \mid x \in \{ ab \}^* \land y \in \{ ba \}^* \}$, die reguläre Grammatik $G_2 \triangleq (\{ S, T, U \}, \Sigma, P_2, S)$ und der DFA $M_3 \triangleq (\{ q_0, q_1, q_2 \}, \Sigma, \Delta_3, q_0, \{ q_2 \})$ mit:

a. (**, 5 Punkte) Gib einen DFA M_1 mit $L(M_1) = A_1$ an.

b. (**, 4 Punkte) *Gib* eine Typ-3 Grammatik G_1 mit $L(G_1) = A_1$ an.

c. (**, 3 Punkte) Gib die Ableitung des Wortes bbaba in G_2 an.

d. (***, 3 Punkte) $Gib L(G_2)$ an, ohne auf Automaten oder Grammatiken zu verweisen.

e. (**, 3 Punkte) Gib eine Ableitung des Wortes babba in M_3 an.

f. (***, 2 Punkte) $Gib L(M_3)$ an, ohne auf Automaten oder Grammatiken zu verweisen.

Aufgabe 2: Untermengen-Konstruktion

(16 Punkte)

Gegeben sei der NFA $M \triangleq (\{q_0, q_1, q_2, q_3, q_4, q_5\}, \Sigma, \Delta, \{q_0, q_2\}, \{q_1, q_4\})$ mit $\Sigma = \{a, b\}$ und Δ :

a. (**, 13 Punkte) Berechne: Konstruiere nur mit Hilfe der Untermengen-Konstruktion den DFA M' zum NFA M. Gib die bei der Untermengen-Konstruktion entstehende Tabelle sowie das Tupel des entstehenden Automaten M' an.

Hinweis: Es ist nicht nötig die Übergangsfunktion δ' von M' graphisch anzugeben.

b. (***, 3 Punkte) $\mathit{Gib}\ \mathrm{L}(M)$ an, ohne auf Automaten oder Grammatiken zu verweisen.

Aufgabe 3: Minimierung eines DFA

(22 Punkte)

Gegeben sei der DFA $M \triangleq (Q, \Sigma, \delta, q_0, \{q_7\})$ mit $Q = \{q_0, q_1, q_2, q_3, q_4, q_5, q_6, q_7\}$, $\Sigma = \{a, b\}$ und δ :

- a. (**, 1 Punkt) Gib an: Welche Zustände sind nicht erreichbar?
- b. (**, 9 Punkte) *Gib an:* Fülle die folgende Tabelle entsprechend des Table-Filling-Algorithmus zum Minimieren von DFAs mit Kreuzen (x) und Kreisen (o) aus. *Hinweis: Bitte streiche zunächst alle Zeilen und Spalten für nicht erreichbare Zustände, falls es solche Zustände in M gibt. Die zweite Tabelle ist ein Ersatz für Verschreiber.*

c. (**, **4 Punkte**) Die Minimierung unterteilt *Q* in Äquivalenzklassen. *Gib* alle Äquivalenzklassen *an*, die sich aus der Tabelle ergeben.

Hinweis: Die Namen der Klassen in der Form [a₀] genügen hier nicht. Es müssen au

Hinweis: Die Namen der Klassen in der Form $[q_0]$ genügen hier nicht. Es müssen auch die zugehörigen Mengen, also so etwas wie $[q_0] = \{ \dots \}$, angegeben werden.

- d. (**, 5 Punkte) Gib den minimierten DFA M' an.
- e. (***, 3 Punkte) Gib L(M) an, ohne auf Automaten oder Grammatiken zu verweisen.

Aufgabe 4: Grenzen Regulärer Sprachen

(17 Punkte)

Gegeben sei das Alphabet $\Sigma \triangleq \{a, b, c\}.$

a. (***, 11 Punkte) Beweise nur mit Hilfe des Pumping Lemma, dass die Sprache $A \triangleq \{ a^l b^m c^n \mid l, m, n \in \mathbb{N} \land l \mod 3 = 0 \land m \leq 2n \}$ nicht regulär ist.

b. **(***, 6 Punkte)** *Gib alle* Myhill-Nerode Äquivalenzklassen für die Sprache $B \triangleq \{ xc^n \mid x \in \{ a, b \}^* \land n \in \mathbb{N} \land |x|_a = n \}$ über Σ an. Hinweis: Die Namen der Klassen in der Form [a] genügen hier nicht. Es müssen auch die zugehörigen Mengen, also so etwas wie $[a] = \{ \dots \}$ oder $[a] = L(\dots)$, angegeben werden.

Matrikelnummer: _	Name:	

Aufgabe 5: Modelle Kontextfreier Sprachen I

(10 Punkte)

Gegeben seien das Alphabet $\Sigma \triangleq \{\ a,\ b,\ c\ \}$ und die kontextfreie Sprache

$$A \triangleq \{ ba^n x \mid n = |x|_b \land x \in \{ b, c \}^* \land n \in \mathbb{N} \}$$

a. (**, 4 Punkte) Gib eine Typ-2 Grammatik G mit L(G)=A an.

b. (**, 6 Punkte) Gib einen PDA M mit $\mathcal{L}_{\mathrm{End}}(M) = \mathcal{L}_{\mathrm{Kel}}(M) = A$ an.

Aufgabe 6: Modelle Kontextfreier Sprachen II

(15 Punkte)

Gegeben seien das Alphabet $\Sigma \triangleq \{a, b, c\}$ und der PDA $M \triangleq (\{q_0, q_1, q_2, q_3\}, \Sigma, \{\Box, \bullet\}, \Box, \Delta, q_0, \{q_2\})$ mit Δ :

a. (*, 3 Punkte) Gib eine Ableitung von abaca in M an, die zeigt das $abaca \in L_{Kel}(M)$.

b. (***, 3 Punkte) $Gib \ L_{Kel}(M)$ an, ohne auf Automaten oder Grammatiken zu verweisen.

c. (*, 3 Punkte) Gib eine Ableitung von bbaca in M an, die zeigt das $aca \in L_{End}(M)$.

d. (***, 2 Punkte) $Gib \perp_{End}(M)$ an, ohne auf Automaten oder Grammatiken zu verweisen.

e. (**, 4 Punkte) Beweise nur mit Hilfe von Abschlusseigenschaften, dass die Sprache $A \triangleq \{ a^n b^{n-1}, a^n a^n \mid n \in \mathbb{N}^+ \}$ nicht regulär ist.

Hinweis: Es darf ohne Beweis benutzt werden, dass L(e) für einen regulären Ausdruck e regulär und $\{a^nb^n\mid n\in\mathbb{N}^+\}$ nicht regulär aber kontextfrei ist. Sprachen L(e) für reguläre Ausdrücke e sowie Operationen auf Mengen müssen nicht berechnet oder umgeformt werden.

Matrikelnummer:	Name:
Auf dieser Seite löse ich einen T	eil der Aufgabe <u> </u> :
Teilaufgabe:	_