Лекція 11. Півгрупи та півгрупи з одиницею.

Визначення півгрупи та півгрупи з одиницею

Множину X із заданою на ній бінарною асоціативною операцією називають півгрупою. Іншими словами, півгрупою називають множину X, на якій задана бінарна операція T з наступною властивістю:

(G1) операція $T \in$ асоціативною: (x T y) T z = x T (y T z) для всіх $x, y, z \in X$;

Півгрупа, в якій операція є комутативною, тобто для будь-яких $x, y \in X$ виконується умова x T y = y T x, називають комутативною (абелевою) півгрупою.

Півгрупу з (двостороннім) нейтральним елементом прийнято називати півгрупою з одиницею або моноїдом. Інакше кажучи, півгрупою з одиницею називають множину X, на якій задана бінарна операція T з такими властивостями:

- (G1) операція $T \in$ асоціативною: (x T y) T z = x T (y T z) для всіх $x, y, z \in X$;
- (G2) X містить двосторонній нейтральний елемент e: e T x = x T e = x для всіх x \in X.

Півгрупа з одиницею, в якій операція є комутативною, тобто для будьяких $x, y \in G$ виконується умова $x \mid Ty = y \mid Tx$, називають комутативною (абелевою) півгрупою з одиницею.

Наведемо деякі приклади півгруп та півгруп з одиницею.

1) Нехай Ω - довільна множина й $M(\Omega)$ - множина всіх її перетворень (відображень Ω в себе). Задамо на $M(\Omega)$ операцію, яка є композицією відображень. Тоді $M(\Omega)$ стає некомутативною півгрупою з одиницею. Нейтральним елементом є тотожне відображення.

Так, у частковому випадку $\Omega = \{1,2\}$, алгебра $M(\Omega)$ складається з усіх відображень множини $\{1,2\}$ в себе: $a = \begin{pmatrix} 1 & 2 \\ 1 & 1 \end{pmatrix}$, $b = \begin{pmatrix} 1 & 2 \\ 2 & 2 \end{pmatrix}$, $c = \begin{pmatrix} 1 & 2 \\ 1 & 2 \end{pmatrix}$, $d = \begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix}$. Операцією є композиція \circ відображень. Таблиця Келі для операції в заданій алгебрі наведена в табл. 7.

Табл. 7.

0	а	b	С	d
a	a	b	a	b
b	a	b	b	a
С	a	b	c	d
d	а	b	d	С

Як відомо композиція відображень є асоціативною, отже алгебра $A = (X; \circ)$ є півгрупою, де $X = \{a, b, c, d\}$. У півгрупі A є одиничний (нейтральний) елемент c, оскільки $\forall x \in X$, $x \circ c = c \circ x = x$. Отже, півгрупа A є півгрупою з одиницею. Оскільки $a \circ b = b$, а $b \circ a = a$, то ця півгрупа з одиницею не є абелевою.

- 2) Нехай n > 1 деяке фіксоване натуральне число. Множина $M_n(\mathbf{R})$ матриць розміру $n \times n$ з дійсними значеннями відносно множення матриць є некомутативним моноїдом з нейтральним елементом одиничною матрицею.
- 3) Нехай знову Ω довільна множина й $P(\Omega)$ множина всіх підмножин цієї множини. Задаємо на $P(\Omega)$ операцію перетину множин. Тоді $P(\Omega)$ стає комутативним моноїдом. Нейтральним елементом тут є множина Ω .
- 4) Множина цілих чисел, які діляться на деяке фіксоване натуральне число n > 1, відносно операції множення утворює комутативну півгрупу без одиниці.