

Hochschule Luzern - Technik & Architektur

MESSTECHNIK UND SENSORIK

Labor: Potentiometrischer & Kapazitiver Sensor

Andreas Caduff Pascal Häfliger

Inhaltsverzeichnis

1	Einleitung	2
2	Messaufbau 2.1 Elektrisches Ersatzschaltbild	2 2
3	Potentiometer3.1 Hysterese und Nichtlinearität3.2 Berechnungen	3 3
4	Kapazitiver Sensor4.1 Linearisierung4.2 Hysterese und Nichtlinearität4.3 Berechnungen	4 4 5
5	Ergebnisse5.1 Gaussische Fehlerfortpflanzung5.2 Dielektrikum	6 6
6	Diskussion	7

1 Einleitung

In diesem Labor wurden Sensordaten von einem Potentiometrischen- und Kapazitiven- Sensor ausgewertet und mit den Sensor-Spezifikationen verglichen.

Für die Auswertung wurde der Datensatz 'C' verwendet.

2 Messaufbau

Abbildung 2: Messaufbau

Folgende Messgeräte wurden verwendet:

Hersteller	Typ	Verwendung
Agilent	E3634A Power Supply	Speisung Spannungsteiler
Agilent	34401A Mulitmeter	Spannung Potentiometer
Fluke	187 TRMS multimeter	Spannung kapazitiver Sensor
Rechner	KAS-80-A14-IL	kapazitiver Sensor
Genge& Thoma	HP15C	Potentiometrischer Sensor

2.1 Elektrisches Ersatzschaltbild

Ist das Messgerät genug hoch- Ω oder wird der Spannungsteiler belastet?

3 Potentiometer

3.1 Hysterese und Nichtlinearität

Dieses Diagramm zeigt die Hysterese und die Nicht-linearität des Potentiometers im Bereich von 0 bis $20 \mathrm{mm}$ mit einer Schrittweite von $0.5 \mathrm{mm}$.

Abbildung 3: Potentiometrischer Sensor

Eine Hysterese ist nicht erkennbar aus der Grafik. Die Abweichung gegenüber der Nominalspannung liegt innerhalb 5mV. Die enstspricht $\frac{5mV}{20V}=0.025\%$

Der Spannungsteiler wird von Potentiometer nicht signifikant belastet. Aus diesem Grund ist die Nicht-linearität sehr schwach ausgefallen.

3.2 Berechnungen

Max. Nicht-linearität:
$$\varepsilon_L = \frac{|max(\epsilon_L)|}{|Messbereich|} = \frac{|45mV|}{|20V|} = 0.225\%$$
 Max. Hysterese:
$$\varepsilon_H = \frac{|max(\epsilon_H)|}{|Messbereich|} = \frac{|5mV|}{|20V|} = 0.025\%$$

4 Kapazitiver Sensor

Der Kapazitive Sensor gibt einen Strom, in Abhängigkeit der Distanz zum Objekt, aus. Dieser Strom generiert einen Spannungsabfall über einen "Bürde-Widerstand" von 100 Ohm.

4.1 Linearisierung

Dieses Diagramm zeigt den Mittelwert und die Linearisierung des Kapazitiven Sensors im Bereich von 0 bis $16 \mathrm{mm}$ mit einer Schrittweite von $0.5 \mathrm{mm}$.

Abbildung 4: Kapazitiven Sensor

Die Linearisung wurde anhand der Methode der kleinsten Quadrate vorgenommen. Die Geradengleichung der Linearisierung entspricht: y=0.0917x+0.2228

Diese Gleichung dient zur Rekonstruktion, damit die Spannung des Sensors in eine Distanz umgerechnet werden kann.

4.2 Hysterese und Nichtlinearität

Diese zwei Diagramme zeigen die Hysterese und die Nichtlinearität des Kapazitiven Sensors im Bereich von 0 bis $16 \mathrm{mm}$ mit einer Schrittweite von $0.5 \mathrm{mm}$.

Abbildung 5: Kapazitiver Sensor

Abbildung 6: Kapazitiver Sensor

Die Abweichung in mm ist proportional zur Spannungsabweichung um den Faktor: $\frac{1}{0.0917}\approx 10.$

4.3 Berechnungen

Max. Nicht-linearität:
$$\varepsilon_L = \frac{|max(\epsilon_L)|}{|Messbereich|} = \frac{|0.5mm|}{|16mm|} = 3.2\%$$
 Max. Hysterese:
$$\varepsilon_H = \frac{|max(\epsilon_H)|}{|Messbereich|} = \frac{|0.45mm|}{|16mm|} = 0.27\%$$

5 Ergebnisse

	Potentiometer	Kapazitiver Sensor
Messbereich [mm]	0mm - 20mm	0mm - 16mm
max. Nichtlinearität [%]	\pm 0.22 $\%$	\pm 3.2 %
max. Hysterese [%]	$\pm 0.025 \%$	\pm 0.27 $\%$
Rel. Genauigkeit [%]	\pm 0.22 $\%$	± 3.2 %

5.1 Gaussische Fehlerfortpflanzung

Die Fehlerfortpflanung nach Gauss verläuft über die Euklidische Norm. Genauigkeit = $||Genauigkeit|| = \sqrt{(Nichtlinearit"at)^2 + (Hysterese)^2}$

5.2 Dielektrikum

Der kapazitive Sensor baut ein elektrisches Feld auf zwischen den Platten. Das Dielektrikum beeinflusst das elektrische Feld signifikant. Je nach Material muss ein Reduktionsfaktor einbezogen werden. Luft hat $\epsilon_{Luft}=1$.

Material	Reduktionsfaktor
FE360	1
ST37	1
Wasser	1
Weizen	0.8
Holz	0.7
Glas	0.6
Öl	0.4
PVC	0.4
PVC	0.4
PE	0.37
Keramik	0.3

6 Diskussion

• Die Lineasierung für die Rekonstruktion des kapazitiven Sensors wurde nur bis 16mm vorgenommen. Falls der Bereich überschritten wird, steigt der Fehler sehr stark an.

٠

- Es wurde die Hystere sowie Nicht-linearität für beide Sensoren vorgenommen. Jedoch liegt weiterhin eine Exemplarstreuung der Typen vor. Die Messdaten gelten nicht für alle Sensoren des selben Types.
- Das Potentiometer zeigt als Prozess eine Gerade durch den Nullpunkt auf. Aus diesem Grund ist keine Linearisierung nötig. Dadurch wird der Fehler kleiner als bei einer Linearisierung.

•