Data Cleaning

Recap on summarization

- summary(x): quantile information
- summarize: creates a summary table of columns of interest
 - combine with across() to programmatically select columns
- count(variable): how many of each unique value do you have
- group_by(): changes all subsequent functions
 - combine with summarize() to get statistics per group
- plot() and hist() are great for a quick snapshot of the data
- Cheatsheet

Recap on data classes

- tibbles show column classes!
- as.CLASS_NAME(x) can be used to change the class of an object x
- Logic class objects only have TRUE or False (without quotes)
- The repeat rep() and seq() functions help you create vectors with to and from arguments (and others)
- sample() makes random vectors. Can be used for integers or double depending on what it is sampling from.
- matrix has columns and rows but is all one data class
- lists can contain multiples of any other class of data including lists!
- The lubridate package is helpful for dates and times
 Cheatsheet

Data Cleaning

In general, data cleaning is a process of investigating your data for inaccuracies, or recoding it in a way that makes it more manageable.

MOST IMPORTANT RULE - LOOK [] AT YOUR DATA! []

Dealing with Missing Data

Missing data types

One of the most important aspects of data cleaning is missing values.

Types of "missing" data:

- NA general missing data
- Nan stands for "Not a Number", happens when you do 0/0.
- Inf and -Inf Infinity, happens when you divide a positive number (or negative number) by 0.

Finding Missing data

```
· is.na - looks for NAN and NA
· is.nan-looks for NAN
· is.infinite - looks for Infor - Inf
test<-c(0, NA, -1)
test/0
[1]
          NA -Inf
     NaN
test <-test/0
is.na(test)
     TRUE
           TRUE FALSE
[1]
is.nan(test)
[1]
     TRUE FALSE FALSE
is.infinite(test)
```

[1] FALSE FALSE TRUE

Useful checking functions

any will be TRUE if ANY are true
 - any(is.na(x)) - do we have any NA's in x?

A = C(1, 2, 4, NA)
B = C(1, 2, 3, 4)
any(is.na(A)) # are there any NAs - YES/TRUE

[1] TRUE

any(is.na(B)) # are there any NAs- NO/FALSE

[1] FALSE

Fining NA values with count ()

Check the values for your variables, are they what you expect?

count() is a great option because it gives you:

- 1. The unique values
- 2. The amount of these values

Check if rare values make sense.

naniar

Sometimes you need to look at lots of data though... the naniar package is a good option.

The pct_complete() function shows the percentage that is complete for a given data object.

```
#install.packages("naniar")
library(naniar)
x = c(0, NA, 2, 3, 4, -0.5, 0.2)
naniar::pct_complete(x)

[1] 85.71429

test

[1] NaN NA -Inf
naniar::pct_complete(test) # doesn't count infinite values as missing

[1] 33.33333
```

Air quality data

The airquality dataset comes with R about air quality in New York in 1973.

?airquality # use this to find out more about the data airqual <-tibble(airquality) airqual

```
# A tibble: 153 × 6
   Ozone Solar.R Wind
                         Temp Month
                                        Day
   <int>
            <int> <dbl> <int> <int> <int>
      41
              190
                   7.4
                            67
                                    5
 1
 2
                                    5
                                           2
      36
                            72
              118
                    8
 3
                                    5
                                           3
      12
              149
                   12.6
                            74
 4
                                    55555
                                           4
                            62
      18
              313
                   11.5
 5
                                           5
                            56
      NA
                   14.3
               NA
 6
                                           6
      28
                   14.9
                            66
               NA
      23
              299
                   8.6
                            65
 8
                                          8
      19
               99
                   13.8
                            59
                                    5
 9
                                          9
       8
               19
                   20.1
                            61
10
                                         10
      NA
              194
                    8.6
                            69
    with 143 more rows
```

naniar: pct_complete()

pct_complete(airquality)
[1] 95.20697

naniar plots

The gg_miss_var() function creates a nice plot about the number of missing values for each variable.

naniar::gg_miss_var(airqual)

Missing Data Issues

Recall that mathematical operations with NA often result in NAs.

```
sum(c(1,2,3,NA))
[1] NA
mean(c(2,4,NA))
[1] NA
median(c(1,2,3,NA))
[1] NA
```

Missing Data Issues

This is also true for logical data. Recall that **TRUE** is evaluated as 1 and **FALSE** is evaluated as 0.

```
x = c(TRUE, TRUE, TRUE, TRUE, FALSE, NA)
sum(x)
[1] NA
sum(x, na.rm = TRUE)
[1] 4
```

filter() and missing data

Be careful with missing data using subsetting:

filter() removes missing values by default. Because R can't tell for sure if an NA value meets the condition. To keep them need to add is.na() conditional.

filter() and missing data

```
df
# A tibble: 6 × 2
   Dog Cat
  <dbl> <dbl>
      0
          NA
    NA
3
          6
          NA
5
     1
          2
6
     1
          NA
df %>% filter(Dog < 3)</pre>
# A tibble: 4 × 2
   Dog Cat
  <dbl> <dbl>
1
      0
          NA
2
     2
          6
3
     1
          2
4
     1
          NA
```

filter() and missing data

```
df %>% filter(Dog < 3 | is.na(Dog))
# A tibble: 5 × 2
    Dog Cat
    <dbl> <dbl>
1    0    NA
2    NA    8
3    2    6
4    1    2
5    1    NA
```

To remove rows with NA values for a variable use drop_na()

A function from the tidyr package.

```
df %>% drop_na(Dog)
# A tibble: 5 × 2
    Dog Cat
    <dbl> <dbl>
1    0    NA
2    2    6
3    3    NA
4    1    2
5    1   NA
```

To remove rows with NA values for a data frame use drop_na()

This function of the tidyr package drops rows with **any** missing data in **any** column when used on a df.

```
df %>% drop_na()

# A tibble: 2 × 2
        Dog Cat
        <dbl> <dbl>
1        2      6
2        1      2
```

Drop columns with any missing values

Use the miss_var_which() function from naniar

```
df < -df \% > \% mutate(test = c(1, 2, 3, 4, 5, 6))
df
# A tibble: 6 × 3
    Dog
         Cat test
  <dbl> <dbl> <dbl>
     0
           NA
                  1
    NA
         6
4
          NA
   1
      1
           NA
                  6
miss_var_which(df) # which columns have missing values
[1] "Dog" "Cat"
```

Drop columns with any missing values

```
df %>% select(!miss_var_which(df))
# A tibble: 6 × 1
    test
    <dbl>
1     1
2     2
3     3
4     4
5     5
6     6
```

Removing columns with threshold of percent missing row values

```
is.na(df) \%>% head(n = 3)
       Dog
             Cat test
[1,] FALSE TRUE FALSE
[2,] TRUE FALSE FALSE
[3,] FALSE FALSE FALSE
colMeans(is.na(df))#TRUE and FALSE treated like 0 and 1
      Dog
                Cat
                         test
0.1666667 0.5000000 0.00000000
df %>% select(which(colMeans(is.na(df)) < 0.2))# remove if over 20% missing</pre>
# A tibble: 6 × 2
    Dog test
  <dbl> <dbl>
      0
            1
     NA
5
     1
            5
6
     1
            6
```

Change a value to be NA

The na_if() function of dplyr can be helpful for this. Let's say we think that all 0 values should be NA.

```
df \%>\% head(n = 3)
# A tibble: 3 \times 3
           Cat test
    Dog
  <dbl> <dbl> <dbl>
            NA
2
             8
     NA
df %>% mutate(Dog = na_if(Dog, 0))
# A tibble: 6 \times 3
           Cat
               test
    Dog
  <dbl> <dbl> <dbl>
     NA
            NA
2
3
4
     NA
             6
      3
            NA
5
      1
                    5
      1
            NA
```

Think about NA

Sometimes removing NA values leads to distorted math - be careful! Think about what your NA means for your data (are you sure ?).

Is an NA for values so low they could not be reported? Or is it this and also if there was a different issue?

Think about NA

If it is something more like a zero then you might want it included in your data like a zero.

Example: - survey reports NA if student has never tried cigarettes - survey reports 0 if student has tried cigarettes but did not smoke that week

You might want to keep the NA values so that you know the original sample size.

Word of caution

Calculating percentages will give you a different result depending on your choice to include NA values.

```
red blue
# A tibble: 3 \times 2
  color col_count
  <chr>
            <int>
1 blue
                 3
2 red
                 3
3 <NA>
                 3
red_blue %>% mutate(percent =
                       col_count/sum(pull(red_blue, col_count)))
# A tibble: 3 \times 3
  color col_count percent
  <chr>
            <int> <dbl>
1 blue
                    0.333
                    0.333
2 red
3 <NA>
                    0.333
```

Word of caution

Should you be dividing by 9 or 6? It depends on your data and what NA might mean. Pay attention to your data and your NA values!

Summary

- is.na(),any(is.na()), count(), and functions from naniar like gg_miss_var() can help determine if we have NA values
- filter() automatically removes NA values can't confirm or deny if condition is met (need | is.na() to keep them)
- drop_na() can help you remove NA values from a variable or an entire data frame
- NA values can change your calculation results
- think about what NA values represent

Lab Part 1

- Class Website
- Lab

Recoding Variables

Example of Recoding

Say we have some data about samples in a diet study:

data_diet

# A tibble: 12 × 4				
	Diet	Gender	Weight_start	Weight_change
	<chr></chr>	<chr></chr>	<int></int>	<int></int>
1	Α	Male	195	9
2	В	m	169	6
3	В	Other	226	-5
4	Α	F	171	11
5	В	Female	147	15
6	В	M	159	18
7	Α	f	135	10
8	В	0	218	14
9	В	Man	118	2
10	Α	f	236	19
11	В	F	225	-9
12	В	0	162	16

Oh dear...

This needs lots of recoding.

dplyr can help!

Using Excel to find all of the different ways gender has been coded, could be hectic!

In dplyr you can use the recode function (need mutate here too!):

recode()

Or you can use case_when()

The case_when() function of dplyr can help us to do this as well.

Note that automatically values not reassigned explicitly by case_when() will be NA unless otherwise specified.

36/82

```
data diet %>%
  mutate(Gender = case when(Gender == "M" ~ "Male"))
# A tibble: 12 \times 4
   Diet Gender Weight_start Weight_change
   <chr> <chr>
                                       <int>
                        <int>
         <NA>
                          195
 1 A
 2 B
         <NA>
                          169
 3 B
         <NA>
                          226
      <NA>
                          171
                                          11
 5
  В
         <NA>
                          147
                                          15
 6 B
         Male
                          159
                                          18
 7 A
         <NA>
                          135
                                          10
 8 B
         <NA>
                          218
                                          14
 9 B
         <NA>
                          118
                          236
10 A
         <NA>
                                          19
                          225
11 B
         <NA>
                                          -9
12 B
                          162
         <NA>
                                          16
```

Use of case_when() without automatic NA

12 B

```
# General Format - this is not code!
{data input} %>%
  mutate({variable_to_fix} = case_when({Variable_fixing})
             /some condition/ ~ {value_for_con},
                          TRUE ~ {value_for_not_meeting_condition})
Here we use the original values of Gender to replace all values of Gender that
do not meet the condition == "M".
data diet %>%
  mutate(Gender = case_when(Gender == "M" ~ "Male",
                                      TRUE ~ Gender))
# A tibble: 12 \times 4
   Diet Gender Weight start Weight change
   <chr> <chr>
                       <int>
                                      <int>
         Male
 1 A
                          195
 2 B
                          169
         m
 3 B
     0ther
                          226
                          171
                                         11
     Female
 5 B
                         147
                                         15
 6 B
         Male
                         159
                                         18
 7 A
                          135
                                         10
 8 B
                         218
                                         14
9 B
                          118
         Man
                          236
10 A
                                         19
                          225
11 B
                                         -9
```

162

16

More complicated case_when()

```
data diet %>%
  mutate(Gender = case_when(
    Gender %in% c("M", "male", "Man", "m", "Male") ~ "Male", Gender %in% c("F", "Female", "f", "female")~ "Female", Gender %in% c("O", "Other") ~ "Other"))
# A tibble: 12 \times 4
   Diet Gender Weight start Weight change
   <chr> <chr>
                          <int>
                                     <int>
          Male
                            195
 1 A
 2 B
                                               6
          Male
                            169
 3 B
          0ther
                            226
                                              -5
 4 A Female
                            171
                                             11
 5 B Female
                            147
                                             15
 6 B
          Male
                            159
                                             18
          Female
                            135
                                             10
 8 B
          Other
                            218
                                             14
 9 B
          Male
                            118
10 A Female
                            236
                                             19
                            225
11 B Female
                                             -9
12 B
          Other
                            162
                                             16
```

Another reason for case_when()

case_when can do very sophisticated comparisons

```
data diet <-data diet %>%
      mutate(Effect = case_when(Weight_change > 0 ~ "Increase",
                                Weight_change == 0 ~ "Same",
                                Weight_change < 0 ~ "Decrease"))</pre>
head(data_diet)
# A tibble: 6 \times 5
  Diet Gender Weight_start Weight_change Effect
  <chr> <chr>
                      <int>
                                    <int> <chr>
       Male
                        195
1 A
                                        9 Increase
2 B
                        169
                                        6 Increase
    Other
3 B
                       226
                                       -5 Decrease
4 A
                        171
                                       11 Increase
5 B
    Female
                        147
                                       15 Increase
6 B
                        159
                                       18 Increase
# A tibble: 3 \times 3
  Diet Effect
                     n
  <chr> <chr>
                 <int>
1 A
        Increase
2 B Decrease
       Increase
```

Working with strings

Strings in R

· R can do much more than find exact matches for a whole string!

The stringr package

The stringr package:

- Modifying or finding part or all of a character string
- · We will not cover grep or gsub base R functions
 - are used on forums for answers
- Almost all functions start with str_*

stringr

str_detect, and str_replace search for matches to argument pattern within each element of a character vector (not data frame or tibble!).

- str_detect returns TRUE if pattern is found
- str_replace replaces pattern with replacement

str_detect()

The string argument specifies what to check
The pattern argument specifies what to check for

```
x<-c("cat", "dog", "mouse")
str_detect(string = x, pattern = "d")
[1] FALSE TRUE FALSE</pre>
```

str_replace()

The string argument specifies what to check
The pattern argument specifies what to check for
The replacement argument specifies what to replace the pattern with

```
x<-c("cat", "dog", "mouse")
str_replace(string = x, pattern = "d", replacement = "D")
[1] "cat" "Dog" "mouse"</pre>
```

Subsetting part of a string

str_sub() allows you to subset part of a string
The string argument specifies what strings to work with The start argument
specifies position of where to start
The start argument specifies position of where to end

```
x<-c("cat", "dog", "mouse")
str_sub(string = x, start = 1, end = 2)
[1] "ca" "do" "mo"</pre>
```

filter and stringr functions

```
head(data\_diet, n = 4)
# A tibble: 4 \times 5
  Diet Gender Weight_start Weight_change Effect
                                     <int> <chr>
  <chr> <chr>
                       <int>
1 A
        Male
                         195
                                         9 Increase
2 B
                         169
                                         6 Increase
        m
3 B
    Other
                         226
                                        -5 Decrease
4 A
                         171
                                        11 Increase
data diet %>%
  filter(str_detect(string = Gender,
                     pattern = "M"))
# A tibble: 3 \times 5
  Diet Gender Weight_start Weight_change Effect
  <chr> <chr>
                       <int>
                                     <int> <chr>
1 A
        Male
                         195
                                         9 Increase
2 B
                         159
        M
                                        18 Increase
3 B
                         118
        Man
                                         2 Increase
```

case_when() improved with stringr

```
count(data_diet, Gender)
# A tibble: 9 \times 2
  Gender n
  <chr> <int>
1 f
2 F
3 Female
4 m
5 M
6 Male
7 Man
8 0
9 Other
data diet %>%
  mutate(Gender = case_when(
     Gender %in% c("M", "male", "Man", "m", "Male") ~ "Male", Gender %in% c("F", "Female", "f", "female")~ "Female", Gender %in% c("O", "Other") ~ "Other"))
```

case_when() improved with stringr

^ indicates the beginning of a character string \$ indicates the end

```
data_diet %>%
  mutate(Gender = case_when(
    str_detect(string = Gender, pattern = "^m|^M") ~ "Male",
    str_detect(string = Gender, pattern = "^f|^F") ~ "Female",
    str_detect(string = Gender, pattern = "^o|^O") ~ "Other")) %>%
  count(Gender)

# A tibble: 3 × 2
  Gender    n
    <chr>    <int>
1 Female     5
2 Male     4
3 Other     3
```


Separating and uniting data

What if our data looked like this?

diet_comb

Separating columns based on a separator

The separate() function from tidyr can split a column into multiple columns. The col argument specifies what column to work with The into argument specifies names of new columns The sep argument specifies what to separate by

Uniting columns

4 4_1

The col argument specifies new column name The sep argument specifies what separator to use when combining # A tibble: 4×2 id visit <int> <int> df_united <- df %>% unite(col = "unique_id", id, visit, sep = "_") head(df_united, 4) # A tibble: 4×1 unique_id <chr> 1 1 1 2 2_1 3 3 1

The unite() function can instead help combine columns.

Summary

- recode() can help with simple recoding (not based on condition but simple swap)
- case_when() can recode entire values based on conditions
 - remember case_when() needs TRUE ~ varaible to keep values that aren't specified by conditions, otherwise will be NA
- stringr package has great functions for looking for specific parts of values especially filter() and str_detect() combined
 - also has other useful string manipulation functions like str_replace() and more!
 - separate() can split columns into additional columns
 - unite() can combine columns

Lab Part 2

- Class Website
- Lab

Extra Slides

String Splitting

A bit on Regular Expressions

- http://www.regular-expressions.info/reference.html
- They can use to match a large number of strings in one statement
- matches any single character
- * means repeat as many (even if 0) more times the last character
- · ? makes the last thing optional
- ^ matches start of vector ^a starts with "a"
- \$ matches end of vector b\$ ends with "b"

Let's look at modifiers for stringr

?modifiers

- fixed match everything exactly
- ignore_case is an option to not have to use tolower

Using a fixed expression

One example case is when you want to split on a period ".". In regular expressions . means **ANY** character, so we need to specify that we want R to interpret "." as simply a period.

Pasting strings with paste and paste0

Paste can be very useful for joining vectors together:

```
paste("Visit", 1:5, sep = "_")
[1] "Visit_1" "Visit_2" "Visit_3" "Visit_4" "Visit_5"
paste("Visit", 1:5, sep = "_", collapse = "_")
[1] "Visit_1_Visit_2_Visit_3_Visit_4_Visit_5"
# and paste0 can be even simpler see ?paste0
paste0("Visit",1:5) # no space!
[1] "Visit1" "Visit2" "Visit3" "Visit4" "Visit5"
!- # Before Cleaning - Subsetting with Brackets ->
->
-> -> ->
```

Comparison of stringr to base R - not covered

Splitting Strings

Substringing

stringr

str_split(string, pattern) - splits strings up - returns list!

Splitting String:

In stringr, str_split splits a vector on a string into a list

'Find' functions: stringr compared to base R

Base R does not use these functions. Here is a "translator" of the stringr function to base R functions

- str_detect similar to grep1 (return logical)
- grep(value = FALSE) is similar to which(str_detect())
- str_subset similar to grep(value = TRUE) return value of matched
- str_replace similar to sub replace one time
- str_replace_all similar to gsub replace many times

Important Comparisons

Base R:

- Argument order is (pattern, x)
- Uses option (fixed = TRUE)

stringr

- Argument order is (string, pattern) aka (x, pattern)
- Uses function fixed(pattern)

some data to work with

```
Sal = jhur::read_salaries() # or
```

Showing difference in str_extract

```
str_extract extracts just the matched string
ss = str_extract(Sal$Name, "Rawling")
Warning: Unknown or uninitialised column: `Name`.
head(ss)
character(0)
ss[ !is.na(ss)]
character(0)
```

Showing difference in str_extract and str_extract_all

str_extract_all extracts all the matched strings

```
head(str_extract(Sal$AgencyID, "\\d"))

[1] "0" "2" "6" "9" "4" "9"

head(str_extract_all(Sal$AgencyID, "\\d"), 2)

[[1]]
[1] "0" "3" "0" "3" "1"

[[2]]
[1] "2" "9" "0" "4" "5"
```

Using Regular Expressions

- Look for any name that starts with:
 - Payne at the beginning,
 - Leonard and then an S
 - Spence then capital C

```
head(grep("^Payne.*", x = Sal$name, value = TRUE), 3)

[1] "Payne El,Boaz L" "Payne El,Jackie"
[3] "Payne Johnson,Nickole A"

head(grep("Leonard.?S", x = Sal$name, value = TRUE))

[1] "Payne,Leonard S" "Szumlanski,Leonard S"

head(grep("Spence.*C.*", x = Sal$name, value = TRUE))

[1] "Spencer,Charles A" "Spencer,Clarence W" "Spencer,Michael C"
```

Using Regular Expressions: stringr

```
head(str_subset( Sal$name, "^Payne.*"), 3)

[1] "Payne El,Boaz L" "Payne El,Jackie"
[3] "Payne Johnson,Nickole A"

head(str_subset( Sal$name, "Leonard.?S"))

[1] "Payne,Leonard S" "Szumlanski,Leonard S"

head(str_subset( Sal$name, "Spence.*C.*"))

[1] "Spencer,Charles A" "Spencer,Clarence W" "Spencer,Michael C"
```

Replace

Let's say we wanted to sort the data set by Annual Salary:

class(Sal\$AnnualSalary)

[1] "character"

sort(c("1", "2", "10")) # not sort correctly (order simply ranks the data)

[1] "1" "10" "2"

order(c("1", "2", "10"))

[1] 1 3 2

Replace

So we must change the annual pay into a numeric:

head(Sal\$AnnualSalary, 4)

[1] "\$55314.00" "\$74000.00" "\$64500.00" "\$46309.00"

head(as.numeric(Sal\$AnnualSalary), 4)

Warning in head(as.numeric(Sal\$AnnualSalary), 4): NAs introduced by coercion

[1] NA NA NA NA

R didn't like the \$ so it thought turned them all to NA.

sub() and gsub() can do the replacing part in base R.

Replacing and subbing

Now we can replace the \$ with nothing (used fixed=TRUE because \$ means ending):

Replacing and subbing: stringr

We can do the same thing (with 2 piping operations!) in dplyr

```
dplyr_sal = Sal
dplyr_sal = dplyr_sal %>% mutate(
   AnnualSalary = AnnualSalary %>%
        str_replace(
        fixed("$"),
        "") %>%
        as.numeric) %>%
        arrange(desc(AnnualSalary))
check_Sal = Sal
rownames(check_Sal) = NULL
all.equal(check_Sal, dplyr_sal)
[1] TRUE
```

Website

Website

Extra slides

A two-way table. If you pass in 2 vectors, table creates a 2-dimensional table.

```
tab <- table(c(0, 1, 2, 3, 2, 3, 3, 2,2, 3), c(0, 1, 2, 3, 2, 3, 3, 4, 4, 3), useNA = "always") tab
```

```
0 1 2 3 4 <NA>
0 1 0 0 0 0 0
1 0 1 0 0 0
2 0 0 2 0 2
3 0 0 0 4 0
<NA> 0 0 0 0 0
```