2.

brisanje 12 uz podešavanje (postoji alternativno brisanje)

3. RJEŠENJE: dobit = 13400 kn, pšenica = 8 ha, soja = 2 ha

$$\begin{array}{ll} max & 1300 \; p + 1500 \; s \\ & p + s <= 10 \\ & p + s >= 7 \\ & p + 2 \; s <= 12 \\ & 500 \; p + 1000 \; s <= 6000 \end{array}$$

Zadnja dva ograničenja su identična(!), pa je u svrhu lakšeg i bržeg rješavanja najbolje jedno maknuti, recimo zadnje.

Dvofazni simpleks:

I FAZA	P	S	x3	x4	x5'	x6	RHS
Z	1	1	-1	0	0	0	7
x4	1	1	0	1	0	0	10
x5'	1	1	-1	0	1	0	7
x6	1	2	0	0	0	1	12
	P	s	x3	x4	x5'	x6	RHS
z	0	0	0	0	-1	0	0
x4	0	0	1	1	-1	0	3
p	1	1	-1	0	1	0	7
P	1	1	1	ů.	-	•	,

II FAZA	p	S	x3	x4	x6	RHS
Z	0	-200	-1300	0	0	9100
x4	0	0	1	1	0	3
P	1	1	-1	0	0	7
x6	0	1	1	0	1	5
	p	S	x3	x4	x6	RHS
Z	0	-200	0	1300	0	13000
x3	0	0	1	1	0	3
P	1	1	0	1	0	10
x6	0	1	0	-1	1	2
	p	S	x3	x4	x6	RHS
Z	0	0	0	1100	200	13400
x3	0	0	1	1	0	3
P	1	0	0	2	-1	8
S	0	1	0	-1	1	2

4. Zbog sažetosti, preostala mreža se prikazuje tek nakon iskorištenja svih "očitih" puteva radi provjere postoji li možda još koji dopunski put.

Prikaz toka - zasićeni bridovi su obojani crveno

Preostala mreža – nema dopunskog puta!

5. Da bismo WFI algoritmom došli do informacija o ciklusima u grafu, polazna matrica na glavnoj dijagonali mora imati npr. ∞, umjesto nula.

Iz završnih matrica iščitavamo da su u ciklusima vrhovi 2, 3 i 5. Duljina najkraćeg ciklusa u kojem se nalazi vrh 2 je 8. Duljina najkraćeg ciklusa za vrhove 3 i 5 je 6.

Iteracija

D

 π

∞	∞	8	∞	∞
4	8	5	8	8
-1	∞	∞	∞	3
2	∞	-1	∞	∞
∞	0	3	∞	∞

NIL	NIL	NIL	NIL	NIL
2	NIL	2	NIL	NIL
3	NIL	NIL	NIL	3
4	NIL	4	NIL	NIL
NIL	5	5	NIL	NIL

2

∞	∞	∞	∞	∞
4	8	5	8	8
-1	8	8	8	3
2	8	-1	8	8
4	0	3	∞	∞

NIL	NIL	NIL	NIL	NIL
2	NIL	2	NIL	NIL
3	NIL	NIL	NIL	3
4	NIL	4	NIL	NIL
2	5	5	NIL	NIL

3,4

∞	∞	∞	∞	∞
4	8	5	8	8
-1	8	8	8	3
-2	8	-1	8	2
2	0	3	8	6

NIL	NIL	NIL	NIL	NIL
2	NIL	2	NIL	3
3	NIL	NIL	NIL	3
3	NIL	4	NIL	3
3	5	5	NIL	3

5

∞	∞	∞	∞	∞
4	8	5	8	8
-1	3	6	8	3
-2	2	-1	∞	2
2	0	3	∞	6

NIL	NIL	NIL	NIL	NIL
2	5	2	NIL	3
3	5	5	NIL	3
3	5	4	NIL	3
3	5	5	NIL	3

6. Konstrukcija MST Dijkstrinim algoritmom (prikaz uvijek netom nakon uklanjanja brida iz nastalog ciklusa). Redoslijed obrade bridova odgovara njihovim polaznim vrhovima.

Sada 2*MST obilazak (npr. DFS s preskakanjem povratnih bridova):

7. To je problem pronalaska Eulerove staze u grafu i slijedi da je crtež je nemoguće nacrtati poštujući navedena ograničenja. Naime, ako crtež modeliramo grafom, uočavamo da graf ima više od 2 vrha neparnog stupnja te prema Eulerovom teoremu u tom grafu ne postoji Eulerova staza.
Naza.