

ELCo: Bridging Emoji Mashup and Lexical Composition

Yang Zi Yun

Project Supervisor: A/Prof. Min-Yen Kan

PhD Advisor: Yisong Miao

Agenda for today's talk (30 min + 10 min)

"Bridge at Night" Emoji

- Problem statement (2 min)
 - Emoji mashup
 - Lexical composition
- Related work (2 min)
- Dataset (4 min)
 - ZWJ dataset
 - ELCo-AN dataset
- Benchmark (2 min)
- Ranking Problem (6 min)
- Evaluation (Research Questions) (12 min)
- Summary (2 min)
- QnA & Discussions (10 min)

Problem Statement

ELCo: Bridging Emoji Mashup and Lexical Composition

4

Emoji mashup (emoji + emoji)

A Twitter Celebrity!

https://twitter.com/dsandler/status/884116974367907841 https://twitter.com/emojimashupbot

Lexical Composition (word + word)

The composition of words.

- shift the meanings of the constituent words.
- introduce implicit information.

- Verb-Particle Constructions
 - carry vs carry on
- Light Verb Constructions
 - o make in "make a decision"
- Noun Compound Literality
 - flea in "flea market"
- Noun Compound Relations
 - "olive oil" is made of olives
 - o "baby oil" is made for babies
- Adjective-Noun (AN) Attributes
 - TEMPERATURE is conveyed in "hot water", but not in "hot argument".

Problem Statement

ELCo: Bridging Emoji Mashup and Lexical Composition

Representing concepts using emojis by making more sense.

We have a few preliminary studies in literature.

Our research gap.

Input: A lexical composition (phrase) w, an Emoji vocabulary V.

Output: A sequence of emojis E, $(e_1, e_2, ... e_n)$, $e_i \subseteq V$ which is able to uncover the implicit semantics in w.

Related Work

Natural Language (NL) Interface for Emoji

Emoji embeddings

• Skip-gram method: 700 emojis

Emoji2vec: 1661 emojis

EmojiNet: 2389 emojis

We have **3633 emojis** in Unicode Emoji 14.0.

Figure 3: Emoji vector embeddings, projected down into a 2-dimensional space using the t-SNE technique. Note the clusters of similar emojis like flags (bottom), family emoji (top left), zodiac symbols (top left), animals (left), smileys (middle), etc.

Problem Statement

Emojinating as a baseline

- Current state-of-the-art method for representing concepts using emojis.
- Emojinating is basically dictionary lookup, it does not require any training.
- We replicated it as baseline.

Cunha, I. M., Martins, P., & Machado, P. (2018). How shell and horn make a Unicorn: Experimenting with visual blending in emoj

Dataset

Emoji ZWJ Sequences

- **Zero Width Joiner (ZWJ)** is like an invisible glue character.
- Emoji ZWJ Sequence: a sequence of emojis joined together by ZWJ.

Dataset: ZWJ dataset

ZWI emoji categories

We select **33 ZWJ emojis** out of 1353 emojis that gives meaningful emoji composition.

Table 3.1: Statistics of Emoji ZWJ Sequences Version:14.0

Category	# of ZWJ emojis	# of unique ZWJ emojis
Family	332	32
Role	360	20
Gendered	572	0 33 ZWJ emoji
Hair	72	0
Others	13	13

IRB-approved data collection

I. Choose the correct attribute.

2. Key in an emoji sequence.

3. Rate the baseline output.

Our dataset: ELCo-AN dataset

Table 3.2: Samples of ELCo-AN dataset annotation

AN concept	Attribute	Human annotations	Emojinating Output	Average ratings
short flight	DURATION	\overline{Z} \overline{Z} and \overline{Q}	亚	2.5
short story	DURATION	$\overline{\underline{z}}$ \parallel and \diamondsuit		2.4
short money	QUANTITY	🤏 💵 and 🤷 💸 💸	<u> </u>	2.3
short supply	QUANTITY	→	<u> </u>	1.8
short hair	LENGTH		<u> </u>	1.6

Dataset

- Consists of **210 Adjective-Noun(AN) concepts**, which covers **45** adjectives and **77** attributes.
- o 1663 total annotations, an average of **7.92 annotations** per concept.
- Average length of emoji sequences: 2.59.
- Average ratings of baseline model: **2.32** out of **5**.
- Annotators: 40 NUS students and they were paid fairly.
 - Each annotate 41.5 concepts on average.
 - We allow a large spectrum of true responses.

Benchmark

Benchmarking on baseline model

- We aim at estimating the difficulty of our task.
- We do it by performing the **emoji generation task** on both ZWJ and ELCo-AN datasets using our **baseline model: Emojinating**.

Table 4.1: Sample outputs of Emojinating model on ZWJ dataset

ZWJ concept	Golden ZWJ annotation	Output of Emojinating	Path in ConceptNet
judge	<u> </u>	₹ 💅	$judge \rightarrow pass \ sentence$
teacher	6	1	$teacher \rightarrow school students$
office worker	<u>(0)</u>		-

Too literal and not making sense.

Benchmark results

Table 4.2: Benchmark result of Emojinating model on 33 ZWJ concepts and 210 ELCo-AN concepts (with 1663 responses).

	ZWJ	ELCO-AN
Both emojis matched	0/33 (0 %)	11/1663 (0.66 %)
One emoji matched	10/33 (30 %)	315/1663 (18.94 %)
No emoji matched	23/33 (70 %)	1337/1663 (80.40 %)

• Emoji generation task is challenging for SOTA.

- We re-formalize our problem under a simplistic ranking setting.
- To evaluate the intrinsic property of emoji & lexical composition.

2

Sampling

Using the concept "big group"

Ground-truth ranking:

- (Positive sample)
- 2. (Baseline sample)

- **I. Positive sample (ground truth)**, *Epos*
- 2. Baseline sample (plausible), Ebaseline
- 3. Negative sample, Eeasy-negative
 - Semi-hard negative sample, Esemineg
 - Easy negative sample, Eneg

2

Unsupervised approach

ELCoM Model

Supervised training

- Multilingual training: teacher—student model
- Multiple training objectives: MSE loss & Cos-sim Loss
- Emoji connector: special token [EM]

Background of special tokens

"man is riding horse. he is playing"

Special token [EM]

27

Evaluation

Research Questions

RQ1:What is the performance of vanilla Pretrained Language Model(PLM) in predicting emoji compositions?

RQ2: Can PLM be optimized on our ELCo-AN dataset?

RQ3:What has been learned by the model from training on our ELCo-AN dataset?

29

Problem Statement

Benchmark

RQ1

What is the performance of vanilla Pretrained Language Model(PLM) in predicting emoji compositions?

RQI:What is the general performance of vanilla PLM in predicting emoji compositions?

• SBERT (and PLM) can understand lexical composition and emoji composition to a certain extent.

RQI:What is the general performance of vanilla PLM in predicting emoji compositions?

To even stress test the model, we include Esemi-negative.

Epositive > Ebaseline ≈ Esemi-negative > Eeasy-negative

Esemi-negative is challenging to the model.

RQ2

Can PLM be optimized on our ELCo-AN dataset?

RQ2: Can PLM be optimized on our ELCo-AN dataset?

ELCoM model

Evaluation metrics:

- MSE Loss
- Cosine similarity score
- Translation score
- Information Retrieval score

RQ2: Can PLM be optimized on our ELCo-AN dataset?

RQ2: Can PLM be optimized on our ELCo-AN dataset?

RQ2: Can PLM be optimized on our ELCo-AN dataset?

Emoji sequences
— randneg
— baseline
— pos

RQ3

What has been learned by model from the training on our ELCo-AN dataset?

- RQ3.1 What has been learned by the special token [EM]?
- RQ3.2 What is the impact of emoji ordering on our ELCoM model?

RQ3.1

What has been learned by the special token [EM]?

Extract and clustering [EM] token

Based on the idea of contextual word embeddings:

- we extract [EM] token embeddings
- perform KMeans Clustering (k = number of clusters)

Figure 7: KMeans clustering visualisation results of [EM] embeddings for number of cluster k $\,=\,2$ to 10.

• The total number of [EM] tokens extracted from 1663 parallel data (EN-EM) is **5944**.

Figure 5.7: KMeans clustering of [EM] embeddings for number of cluster k = 4.

What does each cluster represent?

Each [EM] token can be associated to:

- [EM] position in the Emoji sentence
 [EM]₀dollar banknote[EM]₁briefcase[EM]₂
- 2. The original **English sentence (EN)**big business
- 3. The **Emoji sentence (EM)** that the [EM] token belongs to [EM]dollar banknote[EM]briefcase[EM]

I. [EM] **position** in the Emoji sentence

- Hypothesis: The position of [EM] token might be a feature that affects the embeddings learned.
- For each cluster, we count the occurrence of each [EM] position.

Table 5.8: Evaluation of position: Count of [EM] token in each cluster according to their position in emoji sequence.

[EM] position	Cl	uster 1	Cl	uster 2	Cl	uster 3	Cl	uster 4	Total
$[EM]_0$	283	(29.7%)	445	(27.7%)	517	(27.0%)	419	(28.5%)	1664
$[EM]_1$	283	(29.7%)	444	(27.7%)	517	(27.0%)	418	(28.4%)	1662
$[EM]_2$	265	(27.8%)	418	(26.1%)	480	(25.1%)	383	(26.0%)	1546
$[EM]_{>2}$	122	(12.8%)	297	(18.5%)	402	(21.0%)	251	(17.1%)	1072
Total		953	-	1604		1916		1471	5944

- Observation: For each cluster, the distribution of [EM]₀, [EM]₁, [EM], and [EM]₂ are mostly even.
- Conjecture: The position of [EM] token might not be related to its learning of embeddings.

2. The original English sentence (EN)

Adjectives

Table 5.9: Top 5 adjectives by frequency in each clusters and their count.

	Cluster 1	Cluster 2	Cluster 3	Cluster 4
Adj@Top1	short, 282	dirty, 222	high, 273	clear, 177
Adj@Top2	low, 197	wrong, 210	hot, 225	warm, 159
Adj@Top3	dull, 122	dark, 145	big, 212	fresh, 112
Adj@Top4	dry, 103	far, 104	common, 151	cool, 106
Adj@Top5	thin, 86	foreign, 88	deep, 145	right, 105

Figure 5.8: Sample points from each cluster annotated with their English sentence.

3. The **Emoji sentence (EM)** that the [EM] token belongs to

Emoji

Problem Statement

Table 5.10: Top 5 Emoji word by frequency in each clusters and their count.

	Cluster 1	Cluster 2	Cluster 3	Cluster 4
Emoji@Top1	pinching hand 🤏, 189	cross mark X, 258	men holding hands 👬, 168	speaking head 🛼 168
Emoji@Top2	down-right arrow N, 63	red question mark ?, 138	fire 🔥, 161	thumbs up 👍, 149
Emoji@Top3	expressionless face = , 54	microbe 🦠, 63	man standing 🧍 , 125	brain 🧠, 99
Emoji@Top4	down arrow U, 52	new moon , 59	dashing away 💨, 114	sparkles 🔑, 91
Emoji@Top5	sun * , 46	house 🏠, 58	package 🌍, 114	light bulb 💡 , 87

What does each cluster represent?

4

4. Distance from cluster centroids.

- Emoji sequence
 - We list out the Top 15 samples that are closest to each cluster centroids.
 - Observation:
 - Cluster 3 has a consistent pattern, in which most Emoji sequences consist of repeating emojis.
 - o For example,
 - "dark purpose": 😈 😈 😈 and "deep concentration": 😵 😵 😵

This is a good evidence that the model learned some latent features of emoji compositionality.

How is the learning process of [EM] embeddings?

- We managed to identify some evidence of patterns being learned by the [EM] token embeddings,
 - which is highly correlated with the English sentence and Emoji involved,
 - but not correlated with the position of [EM] tokens.
- We believe that more patterns of emoji compositionality could be discovered given a larger or more diverse dataset.

48

RQ3.2

What is the impact of emoji ordering on the model?

How important is emoji order in general, or specifically for Adjective-Noun compounds?

Linguistics research on emoji syntax:

- Positions of emojis ** are interchangeable. (McCulloch & Gawne, 2018)
- 😂 😂 👌 is more common than the order 👌 😂 😂 (Steinmetz, 2014)
- ♥️莪ౖo means "love send-fast I" (Herring & Ge, 2020)
 - Object-Verb-Subject (OVS) ordering is the most frequent ordering.

Emoji do not have a fixed syntax in the same way language does. For Adjective-Noun compound, we assume that humans can interpret the emoji sequences even after changing the order of emojis.

https://www.semanticscholar.org/paper/Emoij-Grammar-as-Beat-Gestures-McCulloch-Gawne/b2e0175bca066f3c293c56d7a5c6ff4f324e45f https://time.com/2993508/emoij-rules-tweets/

https://www.researchgate.net/publication/342283337 Do Emoji Sequences Have a Preferred Word Order

02.0)

Experiment: Perturb our ELCo-AN dataset.

- We **shuffle** the emoji ordering.
- We evaluate the model on information retrieval tasks.

Hypothesis:

• The performance drop is NOT significant, because position feature is NOT important as learned before.

General expectation:

- The model will decrease in performance given shuffled emoji sequences.
- This is because our ELCoM model is trained on the original sequence.
- Language model such as transformer is sensitive to word positioning.

Table 5.12: Comparison table of the ElCoM model performance on information retrieval setting for original AN dataset vs shuffled AN dataset.

	Orig	ginal AN datase	et	Shut	filed AN datase	et
k	Accuracy@k	Precision@k	Recall@k	Accuracy@k	Precision@k	Recall@k
1	99.52%	99.52%	13.18%	93.33%	93.33%	12.24%
3	99.52%	95.71%	37.60%	99.05%	86.83%	33.93%
5	100.00%	86.29%	55.85%	99.52%	77.62%	50.09%
10	100.00%	54.86%	70.04%	99.52%	49.38%	63.12%

Observation:

The model performance decreases for the shuffled dataset.

Error Type 1: Error due to dataset properties

Query (AN concepts)	Ground truth retrieval (Emoji sentences, EM)	Retrieved Emoji sentences @ Top3	Supposed query of Retrieved Emoji sentence @ Top1
big voice	'[EM]speaking head[EM]loudspeaker[EM]' '[EM]loudspeaker[EM]speaking head[EM]' '[EM]speaking head[EM]studio microphone[EM]' '[EM]microphone[EM]grinning face[EM]' '[EM]megaphone[EM]loudspeaker[EM]' '[EM]anger symbol[EM]speaking head[EM]'	'[EM]speaking head[EM]anger symbol[EM]' '[EM]speaking head[EM]loudspeaker[EM]' '[EM]man standing[EM]flexed biceps[EM]'	hot argument
ineffectual therapy	'[EM]cross mark[EM]spiral notepad[EM]skull[EM]' '[EM]person getting massage[EM]thumbs down[EM]' '[EM]car[EM]person[EM]cross mark[EM]cross mark[EM]' '[EM]woman health worker medium-dark skin tone[EM]mouse face[EM]' '[EM]woman gesturing NO[EM]pill[EM]' '[EM]deaf woman[EM]car[EM]thumbs down[EM]unamused face[EM]' '[EM]hospital[EM]thumbs down[EM]'	'[EM]pill[EM]woman gesturing NO[EM]' '[EM]deaf woman[EM]ear[EM]thumbs down[EM]unamused face[EM]' '[EM]ear[EM]person[EM]cross mark[EM]cross mark[EM]'	wrong medicine

Cases where ELCoM model fails at Accuracy@I in shuffled AN dataset.

Error Type 1: Error due to dataset properties

(Al concepts)	Correct retrieval (Emoji sentences, EM)	Retrieved Emoji sentences @ Top3	Supposed query of Retrieved Emoji sentence @ Top1
big voice	'[EM]speaking head[EM]loudspeaker[EM]' '[EM]loudspeaker[EM]speaking head[EM]' '[EM]speaking head[EM]studio microphone[EM]' '[EM]microphone[EM]grinning face[EM]' '[EM]megaphone[EM]loudspeaker[EM]' '[EM]anger symbol[EM]speaking head[EM]'	'[EM]speaking head[EM]anger symbol[EM]' '[EM]speaking head[EM]loudspeaker EM]' '[EM]man standing[EM]flexed biceps[EM]'	hot argument
ineffectual therapy	'[EM]cross mark[EM]spiral notepad[EM]skull[EM]' '[EM]person getting massage[EM]thumbs down[EM]' '[EM]car[EM]person[EM]cross mark[EM]cross mark[EM]' '[EM]woman health worker medium-dark skin tone[EM]mouse face[EM]' '[EM]woman gesturing NO[EM]pill[EM]' '[EM]deaf woman[EM]car[EM]thumbs down[EM]unamused face[EM]' '[EM]hospital[EM]thumbs down[EM]'	'[EM]pill[EM]woman gesturing NO[EM]' '[EM]deaf woman[EM]ear[EM]thumbs down[EM]unamused face[EM]' '[EM]ear[EM]person[EM]cross mark[EM]cross mark[EM]'	wrong medicine

Cases where ELCoM model fails at Accuracy@I in shuffled AN dataset.

Error Type 2: Error by the model

Query	Ground truth retrieval	Retrieved Emoji sentences @ Top3	Supposed query of
(AN concepts)	(Emoji sentence)	Retrieved Emoji sentences @ 10p3	Retrieved Emoji sentence @ Top1
	'[EM]glass of milk[EM]sunglasses[EM]'	'[EM]angry face with horns[EM]sunglasses[EM]'	
dark glass	'[EM]wine glass[EM]new moon[EM]'	'[EM]angry face with horns[EM]spade suit[EM]'	dark purpose
	'[EM]glass of milk[EM]black circle[EM]'	'[EM]glass of milk[EM]black circle[EM]'	
	$'[EM] double\ exclamation\ mark [EM] thinking\ face [EM]'$	'[EM]disappointed face[EM]face with steam from nose[EM]'	etrieval
deep sigh	'[EM]wind face[EM]face with steam from nose[EM]'	'[EM]wind face[EM]face with steam from nose[EM]'	dry critique
deep sign	'[EM]sad but relieved face[EM]face exhaling[EM]confused face[EM]'	'[EM]sad but relieved face[EM]face exhaling[EM]confused face[EM]'	dry critique
	'[EM]face exhaling[EM]hole[EM]'	EM sad but reneved face EM face exhalling EM confused face EM	

Cases where ELCoM model fails at Accuracy@I in shuffled AN dataset.

Conclusion:

- The model is robust in handling shuffled emoji sequences.
- This is a desired property if the emojis are not in a particular ordering.

Summary

Summary of key contributions

- (I) To address the lack of understanding of implicit emoji semantics, we propose a novel research problem in **bridging lexical composition and emoji mashup** (ELCo).
- (2) We overcome the emoji data scarcity problem by collating **ELCo-AN** dataset, which is a 210 Adjective-Noun compound to Emoji sequences parallel dataset.
- (3) We test the capability of **vanilla PLM/SBERT models** in ranking emoji samples given a concept. We show that PLM is good at distinguishing positive and random negative emoji pairs, but relatively weak when being tested on semi-hard negative samples.
- (4) We propose **ELCoM model** to learn our task. We fine-tune the model on ELCo-AN dataset, showing that our task is under the current model's capacity.
- (5) We perform **model interpretation and behavioral analysis**. We find out which latent features being learned or not by our model.

Future Work

"Bridge at Night" Emoji

Any Questions?

Thank you! Let's talk!

- **Dataset**: Expand our ELCo dataset by including more variants of lexical compositions.
- Model: Further experiment with our ELCoM model on more datasets and improve its interpretability.
- Finding better **emoji representations** (textual and visual) and **augmentation** approaches.
- Move towards a generation task
 - a. Explore **PLM prompting** methods to utilize knowledge in PLM for our task.
 - b. Using **commonsense knowledge graph** dynamically to uncover meaningful information.

Spare Slides.

Following slides are **not** going to be presented orally, but they do provide complementary information to the main slides.

Figure 5.6: Elbow method to determine the optimal number of cluster

Figure 7: KMeans clustering visualisation results of [EM] embeddings for number of cluster k $= 2 \ {\rm to} \ 10.$

- 3. The Emoji sentence (EM) that the [EM] token belongs to
 - Emoji (word-level)

Table 5.10: Top 5 Emoji word by frequency in each clusters and their count.

	Cluster 1	Cluster 2	Cluster 3	Cluster 4
Emoji@Top1	pinching hand 🤏, 189	cross mark X, 258	men holding hands 👬, 168	speaking head 🛼 168
Emoji@Top2	down-right arrow 🔼, 63	red question mark ?, 138	fire 🔥, 161	thumbs up 👍, 149
Emoji@Top3	expressionless face = , 54	microbe 🦠, 63	man standing 🧍 , 125	brain 🧠, 99
Emoji@Top4	down arrow U, 52	new moon , 59	dashing away 💨, 114	sparkles 🤲, 91
Emoji@Top5	sun 🔆, 46	house \hat{a} , 58	package 🂗, 114	light bulb 🦞, 87

• Emoji sequence (sentence-level)

Observation: [EM]s at different positions but from the same Emoji sequence tends to be clustered to the same group, with up to 99% of the EN-EM samples achieving this criterion.

4. Distance from cluster centroids.

Adjectives

Table 5.11: Top 5 adjectives by nearest distance from cluster centroids for each cluster.

	Cluster 1	Cluster 2	Cluster 3	Cluster 4
Adj@Top1	short	dry	big	hot
Adj@Top2	thin	thin	deep	high
Adj@Top3	cool	full	dark	clear
Adj@Top4	inadequate	low	high	cool
Adj@Top5	dull	dirty	immediate	warm

Table 5.9: Top 5 adjectives by frequency in each clusters and their count.

	Cluster 1	Cluster 2	Cluster 3	Cluster 4
Adj@Top1	short, 282	dirty, 222	high, 273	clear, 177
Adj@Top2	low, 197	wrong, 210	hot, 225	warm, 159
Adj@Top3	dull, 122	dark, 145	big, 212	fresh, 112
Adj@Top4	dry, 103	far, 104	common, 151	cool, 106
Adj@Top5	thin, 86	foreign, 88	deep, 145	right, 105

Emoji sequence

- We list out the Top 15 samples of which [EM] token belongs to that are closest to the cluster centroids.
- Observation: Cluster 3 has a consistent pattern, in which most Emoji sequences consist of repeating emojis. For example, "dark purpose": 👿 😈 😈 and "deep concentration": 😵 😵 😵
- This is a good evidence that the clustering represents some latent features of emoji compositionality.

Sample Parallel data

English sentence (EN)	Emoji sentence (EM)	Emoji sequence
big business	[EM]dollar banknote[EM]briefcase[EM]	\$ 0

Parallel data	English sentence (EN)	Emoji sentence (EM)	Emoji sequence
	big voice	[EM]speaking head[EM]anger symbol[EM]	
			1 1
Shuffled	English sentence (EN)	Emoji sentence (EM)	Emoji sequence
Shuffled	big voice	Emoji sentence (EM) [EM]anger symbol[EM]speaking head[EM]	Emoji sequence

RQ3.2 What is the impact of emoji ordering on the model?

Parallel data	English sentence (EN)	Emoji sentence (EM)	Emoji sequence Emoji sequence	
	big voice	[EM]speaking head[EM]anger symbol[EM]		
Shuffled	English sentence (EN)	Emoji sentence (EM)		
	big voice	[EM]anger symbol[EM]speaking head[EM]	×	
	query		expected correct retrieval	
Parallel data	English sentence (EN)	Emoji sentence (EM)	Emoji sequence	
	hot argument	[EM]anger symbol[EM]speaking head[EM]	≍ •	
Shuffled	English sentence (EN)	Emoji sentence (EM)	Emoji sequence	
	hot argument	[EM]speaking head[EM]anger symbol[EM]	● ××	
			retrieval	

-64

Dataset

RQ2: Can PLM be optimized on our ELCo-AN dataset?

Loss & Evaluation metrics

Loss	Evaluation Metrics	Data	Number of samples		
MSE loss Cosine Cosine similarity similarity score loss Translation Score		Parallel data	997 train, 333 validate and 333 test samples		
		All samples, including positive, baseline & negative samples.	2193 train, 732 validate and 732 test samples		
		Parallel data	997 train, 333 validate and 333 test samples		
-	Information Retrieval Score	Parallel data (Queries, corpus, related corpus)	210 queries (EN sentences) and 1757 corpus (EM sentences)		

- We train ELCoM model for around 200 epochs.
- AdamW optimizer with learning rate of 2e-5, eps of 1e-6.
- Warmup Linear scheduler with 5000 warm-up steps.

Benchmark baseline on ZWJ dataset

Number of ZWJ emojis tested: 33

- Both emojis match: 0/33
- One emoji matches: 10/33
- None matches: 23/33

Problem Statement |

							- 1
Table 3.1.	Statistics	of Emoii	ZWI	Sequences	Version:	14 (۱۱

Category	# of ZWJ emojis	# of unique ZWJ emojis
Family	332	32
Role	360	20
Gendered	572	0
Hair	72	0
Others	13	13

Background | Related Work

			 zwj 	emojinating	conceptnet
	0	health worker	· 📀 🛐 · · ·	· 🙎 · 🙎 · 🙎 · 🙎 · 🙎	' 'health', 'worker'] -> [':woman_health_worker:', ':constru
ĺ	1	- judge	⊕ T	- 4 - <i>ii</i> -	'' ['pass', 'sentence'] -> [':woman_playing_handball:', ':nai
	2	pilot	· 🌣 💥 · · ·	· 🚜 · 🎚 · · · · · · · [''and', 'plane'] -> [':tractor:', ':man_pilot:']
	3	farmer	· 🌝 🌾	- 🖷 - 🚅	 ['farm', 'land'] -> [':pig:', ':tractor:']
	4	cook	· 📀 🗨 · · ·	.1.	
	5 I	person feeding baby	◎ i	<u> </u>	' 'person', 'feeding'] -> [':person_pouting:', ':baby_bott]
	6 I	student	⊕ ⊜	:question_mark: 🕺 [' 'question', 'teacher'] -> [':question_mark:', ':woman_teac
	7	singer	· /	· 😢 · 😢	 - ['sore', 'throat']>-[':face_with_thermometer:', ':fac
ĺ	8	artist	⊕ ⊕		 ['paint', 'portrait'] -> [':artist_palette:', ':selfie_me
n:1	4.0	teacher	⊕ ±	₫ 🕏	 -['school', 'students']>-[':school:', ':graduation_cap
jis		factory worker 	⊕ <u></u>	<u> </u>	 ['factory', 'worker'] -> [':factory:', ':construction_w
		technologist	⊕ □		
	- 1	office worker	◎ 🗎	. 📰 - 🙎	 ['office', 'worker'] -> [':office_building:', ':construd
		mechanic	· /	⊞	['service', 'car'] -> [':Japanese_service_charge_button:
TIE CONTRACT		scientist	⊕ ए	:question_mark: 🐵 - -	'question', 'theories'] -> [':question_mark:', ':person_w
	15	astronaut	· 🍪 💉 · · ·	· 🖋 - 🔀 -	
. Ui					

Baseline model | Ranking Problem | Evaluation | Summary | Future Work