FAKULTET ELEKTROTEHNIKE I RAČUNARSTVA

Projekt iz predmeta Raspoznavanje uzoraka

Ak. god. 2016/17

Lokalizacija karakterističnih točaka lica u videu

Generalić Boris

Gulan Filip

Kopljar Damir

Miličević Andrija

Nuić Hrvoje

Šarić Fredi

Zadro Tvrtko

SADRŽAJ

1.	Proj	ektni zadatak	1
	1.1.	Opis projektnog zadatka	1
	1.2.	Pregled i opis srodnih rješenja	1
	1.3.	Konceptualno rješenje zadatka	1
2.	Post	upak rješavanja zadatka	3
	2.1.	Pretvorba boje u nijanse sive	3
		2.1.1. Prvi algoritam	3
		2.1.2. Drugi algoritam	3
	2.2.	Drugi korak	3
3.	Ispit	ivanje rješenja	4
	3.1.	Ispitna baza	4
	3.2.	Rezultati učenja i ispitivanja	4
	3.3.	Analiza rezultata	4
4.	Opis	s programske implementacije rješenja	5
5.	Zak	ljučak	6
6	Lite	rafura	7

1. Projektni zadatak

1.1. Opis projektnog zadatka

Lokalizacija karakterističnih točaka lica u videu ili fotografiji je tehnika koja se danas koristi u mnogim sustavima i uređajima. Susrećemo je na raznim društvenim servisima, poput *Facebook-a*, koji ju koriste za automatsko označavanje ljudi na fotografijama. Većina algoritama lokalizacije točaka lica su iznimno kompleksni i zahtjevaju veliku količinu procesorske snage i memorije, pa je težnja usmjerena na poboljšavanje tih algoritama. No razvojem i napretkom tehnologije algoritmi lokalizacije točaka lica se danas uspješno, bez velikih problema, izvode i na mobilnim uređajima koji ih koriste u raznoraznim aplikacijama poput alata za šminkanje gdje osoba može uz pomoć praćenja lica vidjeti kako bi izgledali s određenim bojama na svom licu.

Kroz ovaj projekt pokušat će se dani problem lokalizacije karakterističnih točaka lica riješiti uporabom dubokih neuronskih mreža.

1.2. Pregled i opis srodnih rješenja

Iscrpan pregled srodne literature s predloženim rješenjima. Opis postojećih ispitnih baza (linkovi na javno dostupne baze).

1.3. Konceptualno rješenje zadatka

Sam sustav za lokalizaciju karakterističnih točaka lica je podijeljen u više segmenata, tj. podsustava. Prvi segment sustava na ulaz prima sliku ili jedan vremenski okvir video isječka. Dana slika ili isječak se zatim pretvaraju u sliku sivih nijansi. Tako obrađena slika se dovodi na ulaz podsustava za izlučivanje položaja svih lica na slici te kao rezultat vraća listu u obliku: koordinate gornjeg lijevog ugla, širina i visina lica.

Tako dobivena lista se zatim iskoristi na način da se iz slike sivih nijansi izrežu

prepoznata lica i skaliraju. Pojedina skalirana lica dovede se na ulaze duboke neuronske mreže koja kao izlaze daje koordinate odabranih karakterističnih točaka lica. Tako dobivene točke skaliraju se u prostor početne slike ili isječka te se iscrtavaju i prikazuju korisniku sustava.

2. Postupak rješavanja zadatka

2.1. Pretvorba boje u nijanse sive

Prvi korak koji je potrebno napraviti na ulaznoj slici je pretvoriti ju u sliku sivih nijansi. Kod prikaza boja slike korištenjem aditivnog RGB (engl. *Red Green Blue*) modela postoje tri komponente: crvena, zelena i plava. Kombinacijom te tri komponente u različitim omjerima dobivamo ostale boje. Da se uočiti da podjednakom raspodjelom svih triju komponenti dobivamo boje iz sivog spektra, pa se algoritam pretvorbe u sliku sivih nijansi temelji na odabiru jedne vrijednosti iz dane tri komponente kako bi se dobila siva nijansa.

Prvi algoritam je vrlo jednostavan i intuitivan. Siva nijansa pojedinog slikovnog elementa se dobiva tako da se boja slikovnog elementa rastavi na tri navedene komponente. Omjer pojedinih komponenti se zbraja te se uzima srednja vrijednost, kako je prikazano izrazom (??).

$$E_y = \frac{E_R + E_G + E_B}{3} (2.1)$$

2.1.1. Prvi algoritam

Opis/koraci/matematička formulacija, prednosti i mane, ulazi i izlazi te korišteni parametri.

2.1.2. Drugi algoritam

Opis/koraci/matematička formulacija, prednosti i mane, ulazi i izlazi te korišteni parametri.

2.2. Drugi korak

...

3. Ispitivanje rješenja

(do 10 stranica)

3.1. Ispitna baza

Opisati ispitnu bazu, tipove i broj različitih uzoraka u bazi te na koji su način uzorci iz baze korišteni prilikom učenja i ispitivanja rješenja projektnog zadatka.

3.2. Rezultati učenja i ispitivanja

Prikazati statističke podatke o uspješnosti rješenja prilikom učenja/ispitivanja te opisati eksperimente na temelju kojih su podaci dobiveni.

3.3. Analiza rezultata

Analizirati uzroke rezultata ispitivanja, povezati sa uzorcima u bazi i algoritmima korištenim u rješenju. Raspraviti moguća poboljšanja.

4. Opis programske implementacije rješenja

Opisati sučelje programske implementacije i način korištenja implementacije.

5. Zaključak

(do 2 stranice)

Ocijeniti uspješnost implementacije, navesti budući rad u smislu potrebnih poboljšanja.

6. Literatura

1. Ime i prezime autora: Naziv časopisa vol. br. godina izdanja, pp od-do (npr. pp 486-492)/knjige/članka/web resursa (s linkom i datumom pristupa web resursu) DVD/CD . kompletan tekst projekta izvorni kod projekta exe verzija readme file – upute za korištenje i pokretanje programa . baze slika (sve koje su korištene) E-oblik članaka koji su korišteni za izradu projekta primjeri obrade ..