(19) **RU**(11) 2 250 262(13) **C1**

(51) MПК⁷ C 12 N 15/12, 15/64, 15/70

ФЕДЕРАЛЬНАЯ СЛУЖБА ПО ИНТЕЛЛЕКТУАЛЬНОЙ СОБСТВЕННОСТИ, ПАТЕНТАМ И ТОВАРНЫМ ЗНАКАМ

(12) ОПИСАНИЕ ИЗОБРЕТЕНИЯ К ПАТЕНТУ

(21), (22) Заявка: 2003123534/13, 29.07.2003

(24) Дата начала действия патента: 29.07.2003

(45) Опубликовано: 20.04.2005 Бюл. № 11

(56) Список документов, цитированных в отчете о поиске: БИОХИМИЯ, 2002, 67 (11). JP 2001285205, 19.09.2001. EP 1217068, 26.06.2002.

Адрес для переписки:

117871, Москва, В-437, ГСП-7, ул. Миклухо-Маклая, 16/10, ИБХ РАН, патентный отдел (72) Автор(ы): Липкин В.М. (RU), Шуваева Т.М. (RU), Радченко В.В. (RU), Меркулова М.И. (RU), Новоселов В.И. (RU), Фесенко Е.Е. (RU)

(73) Патентообладатель(ли): Институт биоорганической химии им. академиков М.М.Шемякина и Ю.А.Овчинникова РАН (RU), Институт биофизики клетки РАН (RU) 刀

2

S

N

0

(54) РЕКОМБИНАНТНАЯ ПЛАЗМИДНАЯ ДНК рЕТ23-a(+)PrxVIhum∆178, КОДИРУЮЩАЯ N-КОНЦЕВОЙ ФРАГМЕНТ ПЕРОКСИРЕДОКСИНА VI ЧЕЛОВЕКА, И ШТАММ E.coli BL21/DE3/pET23-a(+)/PrxVIhum∆178 - ПРОДУЦЕНТ N-КОНЦЕВОГО ФРАГМЕНТА ПЕРОКСИРЕДОКСИНА VI ЧЕЛОВЕКА (57) Реферат: пероксиредоксина VI человека разм

Изобретение обпасти относится к биотехнологии и генной инженерии и может быть использовано фармацевтической R промышленности. Сконструирована плазмидная ДНК pET23-a(+)/PrxVIhum_△178 с молекулярной массой 19691, 61 Da, которая содержит промотор РНК-полимеразы T7, участок инициации репликации, генетический маркер, детерминирующий устойчивость трансформированных данной плазмидой клеток и ампициллину, и последовательность нуклеотидов, кодирующих N-концевой фрагмент пероксиредоксина VI человека размером 177 аминокислотных остатков. Путем трансформации E.coli плазмидной ДНК клеток pET23-a(+)/PrxVIhum ∆178 получен штамм E.coli BL21/DE3/PeT23-a (+)/PrxVIhum_△178 - продуцент фрагмента пероксиредоксина VI N-концевого Использование человека. предложенного изобретения позволяет получить фрагмент пероксиредоксина VI человека, обладающий антиоксидантной активностью полноразмерного пероксиредоксина при пониженной молекулярной массе, что обеспечивает лучшую проницаемость в ткани. 2 н.п. ф-лы, 3 ил.

Структура *Nde*I-*Eco*RI – фрагмента длинной 552 п.о. с последовательностью, кодирующей N-концевой фрагмент PrxVI человека PrxVIhum∆178 и соответствующая ей аминокислотная последовательность. Подчёркнут сайт узнавания рестриктазой *Eco*RI . Инициирующий и терминирующий кодоны выделены жирным шрифтом.

- M P G G L L L G D V A P N F E A N T T ATGCCCGGAGGTCTGCTTCTCGGGGACGTGGCTCCCAACTTTGAGGCCAATACCACC TACGGGCCTCCAGACGAAGAGCCCCTGCACCGAGGGTTGAAACTCCGGTTATGGTGG
- H P R D F T P V C T T E L G R A A K L CACCTCGGGACTTTACCCCAGTGTGCACACAGAGCTTGGCAGAGCTGCAAAGCTGGTGGGAGCCCTGAAATGGGGTCACACGTGGTGTCTCGAACCGTCTCGACGTTTCGAC
- A P E F A K R N V K L I A L S I D S V GCACCAGAATTTGCCAAGAGGAATGTTAAGTTGATTGCCCTTTCAATAGACAGTGTT CGTGGTCTTAAACGGTTCTCCTTACAATTCAACTAACGGGAAAGTTATCTGACACAA
- E D H L A W S K D I N A Y N C E E P T GAGGACCATCTTGCCTGGAGCAAGGATATCAATGCTTACAATTGTGAAGAGCCCACA CTCCTGGTAGAACGGACCTCGTTCCTATAGTTACGAATGTTAACACTTCTCGGGTGT
- EKLPFPIIDDDRNRELAIL GAAAAGTTACCTTTTCCCATCATCGATGATAGGAATCGGGAGCTTGCCATCCTGTTG CTTTTCAATGGAAAAGGGTAGTAGCTACTATCCTTAGCCCTCGAACGGTAGGACAAC
- V F V F G P D K K L K L S I L Y P A T GTGTTTGTTTTTGGTCCTGATAAGAAGCTGACGTGTCTATCCTCTACCCAGCTACC CACAAACAAAACCAGGACTATTCTTCGACTTCGACAGATAGGAGATGGGTCGATGG
- E K R V A T #
 GAAAAAAGGGTTGCCACCTAAGTTGAATTCGAAGGATGG
 CTTTTTTCCCAACGGTGGATTCAACTTAAGCTTCCTACC

2

2 6

2 5

2

~

Фиг. 1

FEDERAL SERVICE FOR INTELLECTUAL PROPERTY, PATENTS AND TRADEMARKS

(12) ABSTRACT OF INVENTION

(21), (22) Application: 2003123534/13, 29.07.2003

(24) Effective date for property rights: 29.07.2003

(45) Date of publication: 20.04.2005 Bull. 11

Mail address:

117871, Moskva, V-437, GSP-7, ul. Miklukho-Maklaja, 16/10, IBKh RAN, patentnyj otdel

- (72) Inventor(s): Lipkin V.M. (RU), Shuvaeva T.M. (RU), Radchenko V.V. (RU), Merkulova M.I. (RU), Novoselov V.I. (RU), Fesenko E.E. (RU)
- (73) Proprietor(s): Institut bioorganicheskoj khimii im. akademikov M.M.Shemjakina i Ju.A.Ovchinnikova RAN (RU), Institut biofiziki kletki RAN (RU)

Z

2

S

2

0

2

(54) RECOMBINANT PLASMID DNA pET23-a(+)/PrxVIhum 178, ENCODING N-TERMINAL FRAGMENT OF HUMAN PEROXIREDOXINE VI, AND E.coli STRAIN BL21/DE3/pET23-a(+)/PrxVIhum △178 AS PRODUCER OF N-TERMINAL FRAGMENT OF HUMAN PEROXIREDOXINE VI

(57) Abstract:

FIELD: biotechnology, genetic engineering, pharmaceutical industry.

SUBSTANCE: plasmid DNA pET23-a(+)/PrxVIhum Δ 178 with molecular weight of 19691.61 Da is constructed. DNA contains RNA-polymerase T7 promoter; replication initiation site; genetic marker which determinates resistance of cells transformed by said plasmid to ampicillin; and nucleotide sequence encoding N-terminal fragment of human peroxiredoxine VI containing 177 of amino acid

BL21/DE3/pET23-a(+)/PrxVIhum Δ 178 being producer of N-terminal fragment of human peroxiredoxine VI is obtained by transformation of E.coli cells with plasmid DNA pET23-a(+)/PrxVIhum∆178. Method of present invention makes it possible to obtain human peroxiredoxine VI fragment having reduced molecular weight, improved tissue permeability, and antioxidant activity of full-scale peroxiredoxine.

EFFECT: human peroxiredoxine VI fragment with improved tissue permeability.

2 cl, 3 dwg, 4 ex

residues. E.coli strain

Структура Ndel-EcoRI — фрагмента длинной 552 н.о. с последовательностью, кодирующей N-концевой франмент PrxVI человека PrxVIhimAta178 и соответствующая ей аминовеклютия последова чльность. Подчёрквут сайт увяваяния рестриктаюй ЕсоRI. Иницикрующий подпользывалельных жирным шрифгом.

					L											N DDT	T	200
TAC	GGG	CCT	CCA	GAC	GAA	GAG	CCC	CTG	CAC	CGA	GGG	TTG	AAA	CTC	CGG	TTA	TGG	TG
ν	G	R	r	R	F	н	D	F	L	G	D	s	W	G	I	L	F	8
GTO	GGC	CGC	ATC	CG1	TTC	CAC	GAC	TIT	CTG	GCA	GAC	TCA	TGC	GGC	ATT	CTC	TTC	TC
CAG	CCG	GCG	TAG	GCA	AAG	CTG	CIG	AAA	SAC	CCT	CTG	AGT	ACC	CCG	TAA	GAG	AAG	AC
H	P	R	Ð	F	T	P	v	c	T	T	E	Ľ.	G	R	A	A	ĸ	I
CAC	CÇI	CGG	GAC	TTT	ACC	CCA	GTG	TGC	ACC	ACA	GAG	CTI	GGC	AGA	GCT	GCA	AAG	C7
GTG	GGA	.GCC	CTG	AAA	CGG	GGT	CAC	ACG	TGG	TGT	CIC	GAA	CCG	rct	CGA	CGT	TTC	GZ
A	P	E	F	A	ĸ	R	N	v	ĸ	L	I	А	L	s	1	Ð	s	١
GCA	CCA	GAA	TTT	3CC	AAG	AGG	AAT	GTT	AAG	TTG	ATT	GCC	CTT	TCA	ATA	GAC	AGT	G1
CGT	GGT	CTT	AAA	CGG	CTC	ICC	TTA	CAA	TIC	CAA	TAA	CGG	GAA	AGT	TAT	CTG	ACA	CZ
E	۵	H	L	A	W	s	ĸ	D	1	N	A	¥	N	c	E	E	P	1
GAG	GAC	CAT	CTI	GCC	TGG	AGC	AAG	GAT	ATC	AAF	GCT	TAC	AAT	TGT	GAA	GAG	CCC	AC
CTC	CTG	GTA	GAA	CGG	ACC	ICG	TTC	CCA	TAG	TTA	CGA	ATG	TTA	ACA	CTT	CTC	GGC	TO
					P					R				L		_	L	-
E GAA																_	_	-
	AAG	TTA	CCI	TT	ccc	ATC	ATC	GAT	GA'I	'AGG	AAT	CGG	GAG	CTT	GCC	ATC	CTG	11
GAA	AAG	TTA	CCI	TTT	ccc	ATC	TAG	GAT	GA'I CTA	AGS	AAT	CGG	GAG	CTT	CGG	TAG	CTG	T T AA
GAA	AAG TTC	TTA AAT	GGA GGA	TTT AAA	CCC GGG	ATC TAG	ATC TAG	GAT CTA	GA'I CTA	AGS TCC K	AAT TTA G	CGG GCC	GAG CTC	GAA	GCC .CGG	TAC	CTG GAC R	TT AA
GAA CTT	AAG TTC M ATG	TTA AAT L	GGA GGA D GA1	TTT AAA P	CCC GGG A GCA	ATC TAG E GAG	ATC TAG K AAG	GAT CTA D GAT	GAT CTA E GAA	AGS ECC K	AAT TTA G GGC	GGG GCC M ATG	GAG CTC	GAA V	GCC CGG T ACA	ATC TAG A GCT	CTG GAC R CGT	TT AA
GAA CTT G GGC	AAG TTC M ATG	TTA AAT L	CCI GGA D GAI CTA	TTT AAA P	CCC GGG A GCA	ATC TAG E GAG CTC	TAG TAG K AAG TIC	GAT CTA D CAT CTA	GAT CTA E GAA CTT	AGS ECC K	AAT TTA G GGC CCG	GGG GCC M ATG	GAG CTC P CCT GGA	GAA V GTG	GCC CGG T ACA	ATC TAG A GCT	CTG GAC R CGT	TT AF GT
GAA CTT G GGC CCG	AAG TTC MATG TAC	TTA AAT L CTG GAC	CCI GGA D GAI CTA	TTT AAA P CCA GGT	CCC GGG A GCA CGT	ATC TAG E GAG CTC	ATC TAG R AAG TIC	GAT CTA D GAT CTA	GATA E GAA CTT	AGS FCC K AAS TTC	AAT TTA G GGC CCG	GGG GCC M ATG TAC	GAG CTC P CCT GGA	GAA GAA GTG GAC	GCC CGG T ACA TGT	ATO TAG A GCT CGA	CTG GAC R CGT GCA	TT AA
GAA CTT G GGC CCG	AAG TTC M ATG TAC	L CTG GAC	CCI GGA D GAI CTA	TTT AAA PCCA GGT	A LGCA CGT	ATC TAG GAG CTC	TAG R AAG TTC	GAT CTA CAT CTA K	GATA E GAA CTT	AGS TCC K AAS TTC K	AAT G GGC CCG	GGG GCC M ATG TAC	GAG CTC P CCT GGA	GTT GAA GTG CAC	GCC CGG T ACA TGT TAC	A GCT	CTG GAC R CGT GCA	TT AA
GAA CTT GGC CCG V GTG CAC	AAG TTC M ATG TAC	L CTG GAC	GCT GGA GAT CTA F TTT AAA	TTT AAA PCCA GGT GGT	A LGCA CGT	ATC TAG E GAG CTC	ATC TAG R AAG TIC AAG	GAT CTA GAT CTA K AAG	GAT CTA GAA CTT L CTG	K AAS TTS K AAS	AAT G GGC CCG L CTG GAC	MATE TAC	GAG CTC F CCT GGA TATC	GTT GAA GTG CAC L CTC GAG	GCC CGG T ACA TGT TAC TAC	A GCT CGA	CTG GAC R CGT GCA A GCT	GT GT TG

EKRVÄT# GARARARGGSTTGCCACCTAAGTTGAATTCGARGGATGG CTTTTTTCCCARCGGTGGATTCARCTTRAGCTTCULRUU

~

Изобретение относится к области биотехнологии, генной инженерии и может быть использовано для получения антиоксидантного препарата пероксиредоксина, предназначенного для лечения заболеваний, связанных с окислительным стрессом.

Известно, что при неполном восстановлении молекулярного кислорода в процессе клеточного дыхания образуются активные формы кислорода - супероксидный анион радикал (\bigcirc_2), перекись водорода (H_2O_2), гидроксильный радикал (HO_2), которые являются крайне токсичными для клеток. Аэробные организмы выработали защитные механизмы для обезвреживания этих веществ. Одним из таких защитных механизмов является восстановление активных форм кислорода в результате реакций, катализируемых ферментами - антиоксидантами. Эти белки играют важную роль в поддержании окислительно-восстановительного потенциала клетки. К ним относятся хорошо изученные антиоксиданты, такие как супероксиддисмутаза, каталаза, глутатионпероксидаза, а, кроме того, открытые в последнее десятилетие пероксиредоксины [Chae H.Z., Robison K., Poole L.B., Church G., Storz G., and Rhee S.G. (1994) Proc. Natl. Acad. Sci. USA, 91, 7017-7021].

Пероксиредоксины - новое семейство белков, которое в настоящее время насчитывает более 100 представителей, обнаруженных во всех живых организмах от архебактерий до человека и являющихся тиоловыми пероксидазами [Lee S.P., Hwang Y.S., Kim Y.J., Kwon K.S., Kim H.J., Kim K., Chae H.Z. (2001) J. Biol. Chem., 276, 29826-29832].

У млекопитающих выявлено 6 типов пероксиредоксинов, различающихся по аминокислотной последовательности, механизму действия и локализации в организме и в клетке. Все пероксиредоксины в своей последовательности содержат высоко консервативный участок, являющийся активным центром ферментов, в состав которого входят один или два остатка Cys. В тестах in vitro было показано, что пероксиредоксины предотвращают инактивацию глутаминсинтетазы в присутствии Fe^{3+} , O_2 и дитиотреитол (ДТТ) - модельной окислительной системе, генерирующей свободные радикалы [Кіт K, Кіт І.Н., Lee K.Y., Rhee S.G., Stadtman E.R. (1988) J. Biol. Chem., 263, 4704-4711].

К настоящему времени 1-Cys пероксиредоксин (пероксиредоксин VI, PrxVI) идентифицирован во многих органах и тканях млекопитающих. Первые природные индивидуальные белковые препараты PrxVI млекопитающих были выделены из обонятельного эпителия [Peshenko I.V., Novoselov V.I., Evdokimov V.A., Nikolaev Yu.V.. Shuvaeva T.M., Lipkin V.M., Fesenko E.E. (1996) FEBS Letters, 381, 12-14] и легких крысы [Kim T.S., Sundaresh C.G., Feinstein S.I., Dodia C., Skach W.R., Jain M.R., Nagase T., Seki N.. Isherawa K., Nomura N., Fisher A.B. (1997) J. Biol. Chem., 272, 2542-2550]. Эти способы включают в себя накопление и гомогенизацию ткани, экстракцию целевого белка, а также фракционирование препарата тонкое С помощью трех последовательных хроматографических стадий. И хотя ткани, непосредственно контактирующие с кислородом воздуха, наиболее обогащены PrxVI [Novoselov S.V., Peshenko I.V., Popov V.I., Novoselov V.I., Bystrova M.F., Evdokimov V.J., Kamzalov S.S., Merkulova M.I., Shuvaeva T.M., Lipkin V.M., Fesenko E.E. (1999) Cell Tissue Res., 298, 471-480], эти трудоемкие и промышленно невоспроизводимые способы имеют лишь теоретическое значение. недостатками получения PrxVI из природных источников являются: необходимость накопления животных тканей, малый конечный выход чистого препарата (0,01 мг на одно животное) и возможность возникновения аллергических реакций при использовании чужеродного белка для лечения человека.

В настоящее время препаративные количества PrxVI млекопитающих получают более предпочтительными генноинженерными методами, позволяющими нарабатывать нужные количества однородного генетического материала (выбранного вектора, соединенного со структурным геном полипептида) и, как следствие, конечного продукта - белка.

Так, в клетках штамма Е. coli BL21 (DE3) был осуществлен биосинтез полноразмерного рекомбинантного PrxVI человека (PrxVIhum) [Chen L.-W., Dodia C., Feinstein S.I., Jain M.K., Fisher A.B. (2000) J. Biol. Chem., 275, 28421-28427]. Для этого был взят фрагмент кДНК PrxVIhum (PrxVIhum) HA0683 (GenBank™ D14662) длиной 1653 п.о., содержащий открытую рамку считывания для PrxVIhum (224 а.о.) размером 672 п.о. Большая часть исходного

фрагмента (длиной 1044 п.о.) была встроена в экспрессирующий вектор рЕТ28с по сайту рестрикции HindIII. Полученная конструкция обеспечивала наработку рекомбинантного белка, который, наряду с аминокислотной последовательностью PrxVIhum, содержал 42 дополнительных аминокислотных остатка, включая шесть остатков His на N-конце полипептидной цепи белка. Взяв за основу тот же фрагмент-PrxVIhum и искусственно введя сайты для узнавания рестриктаз Ndel и Xhol, авторы амплифицировали кодирующую область. Полученный фрагмент был клонирован по этим сайтам в экспрессирующий вектор pET21b. В результате рекомбинантный белок, биосинтез которого детерминировала эта плазмида, содержал только два дополнительных аминокислотных остатка, помимо шести остатков His на С-конце полипептидной цепи продукта. После трансформации E. coli ДНК индукции полученными рекомбинантными и экспрессии генов изопропилтиогалактозидом (ИПТГ) клетки наращивали в течение 6 ч и разрушали; белковые препараты подвергали последовательной очистке хроматографическими методами. К недостаткам обоих полученных продуктов можно отнести то, что, хотя и введение в состав полипептидной цепи дополнительных остатков His значительно упрощает выделение рекомбинантных белков, такого рода модификации заметно смещают изоэлектрическую точку белковых продуктов по сравнению с природным и, как следствие, меняют их электростатическое микроокружение. Кроме того, введение дополнительных аминокислотных остатков (42-х в первой конструкции и 2-х - во второй) увеличивает молекулярную массу продукта и, как следствие, ухудшает его проникновение в клетку.

Экспрессия рекомбинантного PrxVI была осуществлена также в бакуловирусной системе [Fujii T., Fujii J., Taniguchi N. (2001) Eur. J. Biochem., 268, 218-224]. Для этого из различных тканей крысы была выделена смесь мРНК, по которой обратной полимеразной реакцией синтезировали комплементарную цепь ДНК. Затем эту кДНК субклонировали в бакуловирусный челночный вектор pVL1392. Полученная конструкция обеспечивала наработку полноразмерного PrxVI крысы при инфекции эукариотических клеток Sf21. С помощью высаживания, фракционированием на ионообменной смоле с последующими стадиями гель-фильтрации функционально активный рекомбинантный белок был выделен из культуральной жидкости этих клеток. К недостаткам этого метода можно отнести длительность получения (5 дней) препарата, необходимость использования дорогостоящих питательных сред, невысокий по сравнению с бактериальными системами выход целевого продукта и возможность возникновения побочных аллергических реакций при использовании в лекарственных композициях крысиного PrxVI.

Наиболее близким по технической сущности к предлагаемому изобретению является полипептид массой 25034 Да, представляющий собой полноразмерный рекомбинантный PrxVIhum и кодирующая его рекомбинантная плазмидная ДНК pET23-a(+)/PrxVIhum [Меркулова М.И., Шуваева Т.М., Радченко В.В., Янин В.А., Бондарь А.А., Софин А.Д., Липкин В.М. (2002) Биохимия, 67, 1496-1501]. Получаемый пероксиредоксин обладает высокой антиоксидантной активностью. Однако высокая молекулярная масса, препятствующая проникновению молекулы антиоксиданта в клетки организма человека, ограничивает его применение.

Задачей предлагаемого изобретения является конструирование плазмиды, полипептида укороченного детерминирующей синтез PrxVIhum, сохраняющего антиоксидантную активность полноразмерного PrxVIhum. также создание высокопродуктивного штамма-продуцента для получения полипептида пероксиредоксина человека VI, являющегося N-концевым фрагментом PrxVIhum.

Поставленная задача решается за счет конструирования рекомбинантной плазмидной ДНК pET23-a(+)/PrxVIhum $_{\triangle}$ 178, кодирующей N-концевой фрагмент пероксиредоксина VI человека с молекулярной массой 19691,61 Да, содержащей EcoRI-Ndel-фрагмент плазмиды pET23-a(+), включающий промотор PHK-полимеразы фага T7, участок инициации репликации (ori) и терминатор транскрипции рибосомального оперона E.coli, Ndel-EcoRI фрагмент гена PrxVIhum длиной 552 п.о., кодирующий PrxVIhum $_{\triangle}$ 178, генетический маркер - Ар, детерминирующий устойчивость трансформированных плазмидой

рЕТ23-a(+)/PrxVIhum $_{\triangle}$ 178 клеток E.coli к ампициллину, уникальные сайты узнавания рестрикционными эндонуклеазами со следующими координатами: Ndel-790, EcoRI-192, PvuII-1531, а также за счет штамма E. coli BL21/DE3/pET23-a(+)/PrxVIhum $_{\triangle}$ 178- продуцента N-концевого фрагмента пероксиредоксина VI человека, обеспечивающего синтез N-концевого фрагмента PrxVIhum размером 177 аминокислотных остатков (PrxVIhum $_{\triangle}$ 178) с уровнем экспрессии в 30% от суммарного клеточного белка (30 мг/л культуральной жидкости).

Преимуществом заявленного технического решения является возможность получения антиоксиданта - пероксиредоксина VI человека с сохранением антиоксидантной активности полноразмерного пероксиредоксина при пониженной молекулярной массе, что обеспечивает проникновение препарата в клетки организма человека.

Исходной плазмидой для конструирования новой последовательности ДНК, кодирующей полипептид $PrxVIhum_{\triangle}178$, служит плазмида pET23-a(+)/PrxVIhum, детерминирующая экспрессию полноразмерного рекомбинантного PrxVIhum. Эту плазмиду конструируют на основе векторной плазмиды pET23-a(+)[Studier F.W., Moffatt, B.A. (1986) J. Mol. Biol., 189, 113-130]. Фрагмент PrxVIhum, предназначенный для клонирования с сохранением рамки считывания в экспрессирующем векторе, получают методом полимеразной цепной реакции (ПЦР) ITaylor G. In: Polymerase Chain Reaction. A Practical Approach, v.1. McPherson M.J., Quirke P., Taylor G. R. eds. Oxford Univ. Press. Oxford. 1994] с использованием в качестве праймеров олигонуклеотидов, в последовательности которых введены точечные замены для создания соответствующих участков рестрикции. В качестве прямого праймера используют 5'- ATCACCGTCATATGCCCGGAGG - 3' (подчеркнут сайт узнавания рестриктазы Ndel), в качестве обратного -5'-CCA GAATTC TTAAGGCTGGGGTGTG-3' (подчеркнут участок узнавания рестриктазы EcoRI). В качестве матрицы для проведения ПЦР используют плазмиду, содержащую последовательность PrxVIhum HA0683 (GenBank ™ D 14662). Реакционная смесь для проведения ПЦР содержит (в объеме 50 мкл): 1 нг плазмидной ДНК, 20 пмоль каждого праймера, 5 мкл буфера для ПЦР фирмы "Promega", 200 мкМ каждого dNTP, 5 единиц Тад-полимеразы. Реакцию начинают со стадии предварительной денатурации ДНК - 94°С, 5 мин, затем проводят 30 циклов ПЦР при следующих параметрах температурного цикла: денатурация - 30 с при 94 °C, отжиг с праймерами - 30 с при 60°С, элонгация - 45 с при 72°С с последующей инкубацией при 72 °C в течение 5 мин. После обработки продукта реакции соответствующими рестриктазами PrxVIhum клонируют в плазмиду pET23-a(+) по сайтам Ndel-EcoRI.

Рекомбинантная плазмидная ДНК pET23-a(+)/PrxVIhum _△178 характеризуется следующими признаками:

имеет размер 4210 п.о.

кодирует N-концевой фрагмент PrxVIhum длиной 177 a.o.

состоит из EcoRI-NdeI-фрагмента плазмиды pET23-a(+), включающего промотор PHК-полимеразы фага T7, участок инициации репликации (ori) и терминатор транскрипции рибосомального оперона E.coli, NdeI-EcoRI-фрагмента длиной 552 п.о. с последовательностью, кодирующей PrxVIhum∆178.

содержит генетический маркер - Ар, детерминирующий устойчивость трансформированных плазмидой pET23-a(+)/PrxVIhum∆178 клеток E.coli к ампициллину, а также уникальные сайты узнавания рестрикционными эндонуклеазами со следующими координатами: Ndel-790, EcoRI-192, PvuII-1531.

Преимущества предложенной конструкции достигаются за счет того, что входящий в ее состав фрагмент $PrxVIhum_{\triangle}178$ кодирует укороченный по сравнению с PrxVIhum полипептид, сохраняющий антиоксидантную активность природного белка. Это, во-первых, упрощает хроматографическую очистку $PrxVIhum_{\triangle}178$; во-вторых, делает более технологичным его использование в составе лечебных композиций за счет лучшей проницаемости в ткани и увеличения времени циркуляции с биологическими жидкостями по

сравнению с полноразмерным белком; в-третьих, увеличивает долю целевого продукта в общей биомассе штамма-продуцента, что в свою очередь ведет к снижению себестоимости конечного продукта.

Для получения штамма-продуцента полипептида PrxVIhum $_{\triangle}$ 178 компетентные клетки E. coli BL21/DE3 трансформируют рекомбинантной плазмидной ДНК pET23-a(+)/PrxVIhum $_{\triangle}$ 178.

Полученный штамм E. coli BL2VDE3/pET23-a(+)/PrxVIhum $_{\triangle}$ 178 характеризуется следующими признаками.

Морфологические признаки: клетки мелкие палочковидной формы, грамотрицательные, неспороносные, 1×3,5 мкм, подвижные.

Культуральные признаки: при росте на агаризованной среде LB колонии круглые, гладкие, полупрозрачные, блестящие, серые. Край ровный, диаметр колоний 1-3 мм, консистенция пастообразная. Рост в жидких средах (LB, минимальная среда с глюкозой) характеризуется ровным помутнением, осадок легко седиментирует.

Физико-биохимические признаки: клетки растут при 4-42°С, оптимум рН 6,8-7,6. В качестве источника азота используют как минеральные соли азота, так и органические соединения: аминокислоты, пептон, триптон, дрожжевой экстракт. В качестве источника углерода при росте на минимальной среде используют глицерин, углеводы, аминокислоты.

Устойчивость к антибиотикам: клетки штамма-продуцента проявляют устойчивость к ампициллину (до 300 мг/мл), обусловленную наличием в плазмиде гена β-лактамазы (bla).

На фиг.1 представлена нуклеотидная последовательность Ndel-EcoRl-фрагмента плазмиды pET23-a(+)/PrxVIhum $_{\triangle}$ 178 и кодируемая им аминокислотная последовательность полипептида PrxVIhum $_{\triangle}$ 178; на фиг.2 - физическая карта полученной плазмиды; на фиг.3 - результаты сравнительного исследования протекторных свойств рекомбинантного полноразмерного PrxVI человека и его N-концевого фрагмента (PrxVIhum $_{\triangle}$ 178) по защите глутаминсинтетазы E.coli от инактивации в модельной окислительной системе in vitro.

Изобретение иллюстрируется следующими примерами.

5

ДНК Пример 1. Конструирование рекомбинантной плазмидной pET23-a(+)/PrxVIhum _△178, кодирующей N-концевой фрагмент Prx VI человека. Используют фрагмент кДНК Prx VI человека, который ранее был клонирован с сохранением рамки считывания в экспрессирующем векторе [Меркулова М.И., Шуваева Т.М., Радченко В.В., Янин В.А., Бондарь А.А., Софин А.Д., Липкин В.М.(2002) Биохимия, 67, 1496-1501]. Этот вектор, pET23-a(+)/PrxVJhum, используют в качестве матрицы для ПЦР. Полученный таким образом фрагмент ДНК кодирует N-концевой фрагмент Prx VI длиной 177 аминокислотных остатков. В качестве прямого праймера на этой стадии используют 5'-GCG AAA TTA ATA CGA CTC ACT ATA GGG -3' (комплементарный промоторной области вектора pET23-a(+)/PrxVIhum). B качестве обратного для PrxVI ∆178 5'-CCA TTC GAA TTC AAC TTA GGT GGC-3' (подчеркнут сайт рестриктазы EcoRI, выделен стоп-кодон). Реакционная смесь содержит (в объеме 50 мкл): ~1 нг плазмидной ДНК, 20 пмоль каждого праймера, 5 мкл буфера для ПЦР ("Promega", США), 200 мкМ каждого dNTP, 5 единиц Таq-полимеразы. Реакцию начинают с предварительной денатурации ДНК при 94 °C в течение 3 мин, затем проводят 10 циклов ПЦР при следующих параметрах температурного цикла: денатурация - 30 с при 94°C, отжиг с праймерами - 30 с при 55°C, элонгация - 45 с при 72°C, затем еще 10 циклов реакции: денатурация - 30 с при 94°C, отжиг с праймерами - 30 с при 62°С, элонгация - 45 с при 72°С с последующей инкубацией при 72°C в течение 5 мин. После обработки соответствующими рестриктазами фрагмент PrxVIhum 178 лигируют с Ndel-EcoRI-фрагментом плазмиды pET23-a(+) с использованием ДНК-лигазы фага Т4. Точность сборки конструкции проверяют рестрикционным анализом и секвенированием полученой вставки по модифицированному методу Сенгера [Чемерис А.В., Ахунов Э.Д., Вахитов В.А. Секвенирование ДНК, М., "Наука", 1999]. На фиг.2 представлена физическая карта рекомбинантной плазмиды pET23-a(+)/PrxVIhum $_{\triangle}$ 178.

Пример 2. Экспрессия PrxVIhum $_{\wedge}$ 178-фрагмента кДНК PrxVI человека. Для экспрессии фрагмента PrxVIhum в качестве штамма-хозяина выбирают штамм E.coli BL-21(DE-3), несущий в хромосоме ген РНК-полимеразы фага Т7 под контролем индуцибельного lac-промотора [Studier F.W., Moffatt B.A. (1986) J. Mol. Biol., 189, 113-130]. Трансформацию компетентных клеток E.coli BL-21(DE-3) осуществляют химическим методом с использованием хлорида кальция [Sambrook J., Fritsch E., Maniatis T. (1989) Molecular Cloning, Cold Spring Harbor Laboratory Press, N.-Y.]. Для наработки рекомбинантного белка клетки выращивают при 37°C до достижения в жидкой культуре значения поглощения А 6000,6. Затем для индукции экспрессии белков добавляют индуктор Іас-промотора ИПТГ до конечной концентрации 0,4 мМ и продолжают инкубацию еще 5 ч. После этого суспензию клеток подвергают центрифугированию. Осадок, штамма-продуцента, разрушают ультразвуком и повторно центрифугируют. Белковую фракцию, содержащую в своем составе целевой продукт, высаживают насыщенным раствором $(NH_4)_2SO_4$ и диализуют против 12 мМ Трис-HCl буфера (pH 7,8), в состав которого входят 1 мМ MgCl 2 и 1 мМ ДДТ. Белковую смесь хроматографируют на ДЭАЭ-сефарозе в градиенте хлорида натрия. Фракции, содержащие целевой полипептид, подвергают дальнейшей очистке с помощью гель-фильтрации на сефакриле S-200 и анализируют с помощью полиакриламидного гель-электрофореза в присутствии додецилсульфата натрия.

Пример 3. Сравнение протекторных свойств рекомбинантного полноразмерного PrxVIhum и его N-концевого фрагмента PrxVIhum∆178 по защите глутаминсинтетазы E. coli от инактивации в модельной окислительной системе in vitro.

Глутаминсинтетазу выделяют из клеток E.coli штамма DH5 α [Streicher S.L., Tyier B. (1980) J. Bacteriol., 142, 69-78] и инактивируют в присутствии Fe³⁺, O₂ и ДТТ - в модельной окислительной системе, генерирующей свободные радикалы [Kim K., Kim I.H., Lee K.Y., Rhee S.G., Stadtman E.R. (1988) J. Biol. Chem., 263, 4704-4711]. Реакцию инактивации глутаминсинтетазы проводят в объеме 60 мкл реакционной смеси, содержащей 5 мкг фермента, 50 мМ Hepes (pH 7,4), 3 мМ ДТТ и 3 мкМ FeCl₃, в присутствии разных концентраций пероксиредоксина в течение 10 мин при 37°С. Затем определяют оставшуюся активность глутаминсинтетазы E.coli. Протекторные свойства пероксиредоксина по защите глутаминсинтетазы E.coli от инактивации определяют как отношение оставшейся активности фермента после инактивации в присутствии разных концентраций пероксиредоксина к активности неинактивированной глутаминсинтетазы. Результаты теста представлены на фиг.3.

Пример 4. Определение продуктивности штамма-продуцента PrxVIhum∆178.

С целью улучшения аэрации в 5 мл жидкой среды LB, содержащей 100 мкг/мл ампициплина, вносят индивидуальную колонию клеток E.coli BL21/DE3, содержащую сконструированную плазмиду pET23-a(+)/PrxVIhum∆178.

Выращивают при 37°С на качалке при 180 об/мин в течение 2,5 ч до достижения в жидкой культуре значения поглощения A_{600} 0,6. Затем добавляют ИПТГ до концентрации 0,4 мМ и продолжают инкубацию в тех же условиях в течение 6 ч. Отбирают пробу 1 мл и центрифугируют 5 мин при 6000 об/мин, после чего клетки суспендируют в 100 мкл буфера, содержащего 125 мМ Трис-HCI (рН 6,8), 20% глицерина, 3% додецилсульфата натрия и 0,01% бромфенолового синего. Клеточную суспензию прогревают 10 мин на кипящей водяной бане. Отбирают образцы 2,5 мкл, 5 мкл, 7,5 мкл, 10 мкл и 15 мкл и анализируют электрофорезом в 15%-ном полиакриламидном геле, содержащем 0,1% додецилсульфата натрия [Laemmli U.K. (1970) Nature, 227, 680-687]. Гель окрашивают Кумасси R-250 и сканируют на лазерном денситометре Ultrascan XL. По данным сканирования полипептид $PrxVIhum_{\triangle}178$ составлял 30% суммарного клеточного белка, что соответствует выходу конечного чистого белкового продукта 30 мг/л культуры клеток.

RU 2 250 262 C1

- 1. Рекомбинантная плазмидная ДНК pET23-a(+)/PrxVIhum △178, кодирующая N-концевой фрагмент пероксиредоксина VI человека, с молекулярной массой 19691,61 Да, содержащая EcoRI Ndel-фрагмент плазмиды pET23-a(+), включающий промотор PHK-полимеразы фага T7, участок инициации репликации (ori), генетический маркер (Ap), детерминирующий устойчивость трансформированных плазмидой pET23-a(+)/PrxVIhum △178 клеток E.coli к ампициллину, уникальные сайты узнавания рестрикционными эндонуклеазами со следующими координатами: Ndel-790, EcoRI-192, PvuII-1531, и Ndel EcoRI-фрагмент гена PrxVIhum длиной 552 п.о., кодирующий PrxVIhum △178.
- 2. Штамм E.coli BL21/DE3/pET23-a(+)/PrxVIhum∆178 продуцент N-концевого фрагмента пероксиредоксина VI человека.

Физическая карта рекомбинантной плазмиды pET23-a(+)/ $PrxVIhum\Delta178$. Указаны сайты эндонуклеаз рестрикции. Огі — участок инициации репликации плазмиды. Ар - генетический маркер, детерминирующий устойчивость трансформированных плазмидой pET23-a(+)/ $PrxVIhum\Delta178$ клеток E.coli к ампициллину.

Сравнение протекторных свойств полноразмерного рекомбинантного пероксиредоксина VI человека (PrxVIhum) и его N- концевого фрагмента $PrxVIhum\Delta 178$ по защите глутаминсинтетазы E.coli от инактивации в модельной окислительной системе $in\ vitro$.