Model dzienny z korekcją DST + model deszczu

Model ARX o wyższym rzędzie

Sprawdziliśmy podejście z użyciem modelu ARX o wyższym rzędzie do modelowania całego systemu. W tym podejściu niestety straciliśmy informację o czasie, tj. model działa na kolejnych próbkach sygnału i nie wykorzystuje informacji o cykliczności zjawisk. Wyniki niezadowalające.

Model ARX (uproszczony)

W drugim podejściu wykorzystaliśmy dwa modele: model deszczu i model dzienny.

Do modelowania deszczu wykorzystaliśmy model z czasem dyskretnym ARX:

$$y(k) + a1*y(k-1) + a2*y(k-2) = b1*u(k-1) + b2*u(k-2) + v(k),$$

gdzie: u(k) to prognoza deszczu, y(k) to pomiar poziomu(?) wody w rurach, k to moment próbkowania, v(k) to szum pomiarowy.

NOTE: Model dzienny jest średnią próbek dla danego momentu próbkowania. Przy ustalaniu odpowiedzi modelu uwzględniana jest korekta związana z przestawianiem czasu (DST).

Uwagi:

- 1. Zaimplementowaliśmy procedurę automatycznej identyfikacji modelu, ale wyniki nie były zadowalające.
- 2. Parametry modelu ostatecznie zostały dobrane ręcznie.
- 3. Do oceny modeli użyliśmy MAPE (mean absolute percentage error).

Omówienie wyników

- Otrzymane wyniki w bardzo dużym stopniu zależa od jakości modelu dziennego.
- W okresie bez opadów model zachowuje się jak standardowy model dzienny.
- W sytuacji z opadami do modelu dziennego dodawana jest korekta/predykcja wpływu deszczu.
- Prognoza deszczu nie zawsze daje identyczną odpowiedź systemu. Podobne próbki dają kompletnie różne wyniki. Taka sytuacja może być spowodowana nie identycznym rozkładem powierzchni na której wystąpi opad.

Wyniki MAPE dla danych z 2017 roku:

- Model dzienny: 95% percentyl 17.481%
- Model dzienny z korekcją DST: 95% percentyl 17.619%
- Model dzienny z korekcją DST + model deszczu: 95% percentyl 15.088 %

Wyniki MAPE dla danych z listopad 2017 roku:

- Model dzienny: 95% percentyl 12.192%
- Model dzienny z korekcją DST: 95% percentyl 12.048%
- Model dzienny z korekcją DST + model deszczu: 95% percentyl 10.993 %

Wykres danych i MAPE z 03-04-2017:

- flow niebieski
- deszcz szary
- predykcja:
 - o Model dzienny: 9.485% czerwony
 - o Model dzienny z korekcją DST: 7.816% pomarańczowy
 - Model dzienny z korekcją DST + model deszczu: 7.061% zielony

Wykres danych z 23-06-2017:

- flow niebieski
- deszcz szary
- predykcja:
 - Model dzienny: 23.363% czerwony
 - Model dzienny z korekcją DST: 21.776% pomarańczowy
 - o Model dzienny z korekcją DST + model deszczu: 7.116% zielony

Propozycje dalszych prac:

- Wykorzystanie techniki SMM (switching multiple models) lub IMM (interactive multiple models) do modelowania deszczu.
- Należałoby wykorzystać modele z różnymi stałymi czasowymi, tj. z różnym czasem reakcji na opad, w celu oddania wpływu różnego rozkładu powierzchniowego opadów.
- Wykorzystanie ważonej średniej do obliczenia modelu dziennego. Wagi powinny wyższe dla nowszych próbek.
- Przy obliczaniu modelu dziennego wykorzystanie tylko próbek dni bez opadów.