ষষ্ঠ অধ্যায়

ত্রিকোণমিতিক অনুপাত (Trigonometric Ratios)

6. ত্রিকোণমিতি

ত্রিকোণমিতির ইংরেন্ডি প্রতিশব্দ "Trigonometry". এ শব্দটি গ্রীক ভাষায় ব্যবহৃত হয়। এ শব্দের বিশ্লেষণ করলে ত্রিকোণমিতি বলতে আমরা ঐ বিজ্ঞানকেই বুঝি যার সাহায্যে ত্রিভ্রুজের বিভিন্ন অংশের পরিমাপ করা যায়। গোড়ার দিকে ত্রিকোণমিতি আবিক্ষারের মূল উদ্দেশ্য এর মধ্যেই সীমাবন্ধ ছিল। কিন্তু নতুন নতুন অনুপাত ও তত্ত্ব আবিক্ষারের ফলে এ বিজ্ঞানের পরিধি হয়েছে ব্যাপক। সূতরাং, আধুনিককালে গণিতের যে কোন শাখায় শিক্ষালাভ করতে হলে ত্রিকোণমিতিতে জ্ঞানার্জন হল অপরিহার্য।

ত্রিকোণমিতিকে দুইটি শাখায় বিভক্ত করা হয়েছে। এদের একটি সমতলীয় ত্রিকোণমিতি (Plane Trigonometry) এবং অপরটি গোলকীয় ত্রিকোণমিতি (Spherical Trigonometry)। এ পুস্তকে আমাদের আলোচনা সমতলীয় ত্রিকোণমিতির মধ্যে সীমাবন্ধ থাকবে।

6.1. ত্রিকোণমিতিতে কোণের সংজ্ঞা

সাধারণ জ্যামিতির সংজ্ঞানুসারে একই প্রান্তবিশিষ্ট দুইটি ভিন্ন রিশ্মি কোণ উৎপন্ন করে। এ ধারণায় কোণের পরিমাণ হয় ধনাত্মক। আবার এর পরিমাণ কখনও চার সমকোণের, বা 360 ডিগ্রির বেশি হতে পারে না। অর্থাৎ, সাধারণ জ্যামিতিতে কোণের পরিমাণ শূন্য ডিগ্রি এবং 360 ডিগ্রির মধ্যে সীমাবন্ধ থাকে।

কিন্তু ত্রিকোণমিতিতে কোণের ধারণা হল যে, এর উৎপত্তি হয় একটি রশ্মির ঘূর্ণনের ফলে। একটি রশ্মি অপর একটি স্থির রশ্মির প্রেক্ষিতে ঘূরে নির্দিষ্ট অবস্থানে পৌছতে যে পরিমাণে আবর্তিত হয় তা রশ্মি দারা সৃষ্ট কোণের পরিমাণ। রশ্মিটি যদি এর আদি অবস্থান থেকে ঘড়ির কাঁটার ঘূর্ণনের বিপরীতক্রমে ঘূরে কোণ উৎপন্ন করে, তবে একে প্রচলিত রীতি অনুযায়ী ধনাত্মক কোণ (Positive angle) ধরা হয় এবং ঘড়ির কাঁটার ঘূর্ণনের দিকে আবর্তনের ফলে যে কোণ উৎপন্ন করে তা ক্ষণাত্মক কোণ (Negative angle)।

উপরের চিত্রগুলিতে $\angle XOP$ ধনাত্মক এবং $\angle XOQ$ ঋণাত্মক। চিত্রগুলি থেকে স্পফতঃ বুঝা যায় কোণের পরিমাণ ধনাত্মক বা ঋণাত্মক এবং 360 ডিগ্রির বেশি হতে পারে না।

6.1.1. চতুৰ্ভাগ বা চৌকণ (Quadrant) ঃ

পাশের চিত্র লক্ষ করলে দেখা যাবে যে, লম্বভাবে পরস্পরচ্ছেদী দুইটি সরলরেখা অর্থাৎ অক্ষরেখাদ্বর দারা সমতলটি চারটি অংশে বিভক্ত হয়েছে। এদের প্রত্যেকটি অংশকে একটি চতুর্ভাগ (কোয়াড্রেন্ট) বলা হয়। সমতলের XOY, YOX', X'OY' এবং Y'OX অংশকে যথাক্রমে প্রথম, দিতীয়, তৃতীয় ও চতুর্থ চতুর্ভাগ বলা হয়।

নির্দিষ্ট পরিমাণের কোণ উৎপন্ন করে ঘূর্ণায়মান রশ্যি যে অবস্থানে পৌছায় ঐ অবস্থানকে শেষ অবস্থান বলা হয়।

6.2. কোণের ডিগ্রি ও রেডিয়ান পরিমাপ

ত্তিকোণমিতিতে কোণের পরিমাপের জন্য সাধারণত তিন প্রকারের পন্ধতি ব্যবহার করা হয়। এ পন্ধতিগুলি ঃ

- (ক) বাটমূলক পন্ধতি (Sexagesimal system),
- (খ) শতমূলক পন্ধতি (Centesimal system),
- (গ) वृद्धीय शन्धि (Circular system) ।

আমরা কেবল যাটমূলক ও বৃদ্ধীয় পদ্ধতি বিষয়ে আলোচনা করব।

সংজ্ঞানুসারে, সমকোণের পরিমাপ স্থির, বা ধ্ব (Constant)। ত্রিকোণমিভিতে এক সমকোণকে মূল একক ধরা হয়।

- (क) যাটমূলক পশ্বতি : এই পশ্বতিতে সমকোণকে সমান নকাই অংশে বিভক্ত করলে প্রতি অংশে যে পরিমাপের কোণ পাওয়া যায় তাকে এক ডিগ্রি বলা হয়। প্রতি ডিগ্রিকে যাট ভাগে বিভক্ত করলে এক অংশকে বলা হয় এক মিনিট । আবার প্রতি মিনিটকে সমান যাট ভাগে বিভক্ত করলে এক অংশকে বলা হয় এক সেকেভ। সূতরাং, আমরা পাই, এক সমকোণ = 90° (নকাই ডিগ্রি), $1^\circ = 60^\circ$ (যাট মিনিট), $1' = 60^\circ$ (যাট সেকেভ)
- (খ) বৃষ্টীয় পদ্ধতি: গণিতের জন্যান্য শাখার পুস্তকে এই পদ্ধতির ব্যবহারই সাধারণত করা হয়। এই পদ্ধতিতে মূল একক হলো এক রেডিয়ান। 1° প্রতীকের মাধ্যমে এক রেডিয়ান প্রকাশ করা হয়। যেকোনো বৃত্তের ব্যাসার্ধের সমান বৃত্তচাপ এর কেন্দ্রে যে কোণ উৎপন্ন করে তাকে বলা হয় এক রেডিয়ান। রেডিয়ান একটি ধ্রক (Constant) কোণ।

কোণের ডিগ্রি ও রেডিয়ান পরিমাপের মধ্যে সম্পর্ক:

ষাটমূলক পশ্বতিতে 1 সমকোণ = 90° বা, 2 সমকোণ = 180° .

বৃত্তীয় পশ্বতিতে, $\frac{2}{\pi}$ সমকোণ = 1 রেডিয়ান বা , 2 সমকোণ = π রেডিয়ান অর্থাৎ, π^{c}

 \therefore 2 সমকোণ = 180° = π^{c} অর্থাৎ, π^{c} = 180° .

মন্তব্য ${f z}$ উচ্চতর গণিতশান্তে কোণের পরিমাপকে সাধারণত রেডিয়ানে ধরা হয় এবং এজন্য এককের উল্লেখ থাকে না। সুতরাং কোনও কোণের পরিমাপকে ${f \pi}$ দারা নির্দেশ করলে বুঝতে হবে যে, ঐ কোণের পরিমাপ হলো ${f \pi}$ রেডিয়ান ; অর্থাৎ ডিগ্রিতে প্রকাশ করলে 180° হয়। কিন্তু মনে রাখতে হবে ${f \pi}$ হল একটি ধ্র সংখ্যা যার আসন্ন মানকে $\frac{22}{7}$ বা 3.14159 (পাঁচ দশমিক স্থান পর্যন্ত) ধরা হয়।

6.2.1. উপপাদ্য : বেকোনো বৃত্তের পরিধি ও এর ব্যাসের অনুপাত হলো ধ্রুক।

প্রমাণ : মনে করি, O হলো দুইটি বৃত্তের সাধারণ কেন্দ্র। বড় বৃত্তিতে n সংখ্যক সমান বাছবিশিষ্ট ABC বহুছুছ অঙ্কন করি। OA, OB, OC, OD, বোগ করি। এই রেখাগুলি ছোট বৃত্তিকে বথাক্রমে A', B', C', D', বিশুতে ছেন করল। এখন AB, BC, CD, যোগ করি। ভাহলে A'B'C'D'... কেন্দ্রটি ছোট বৃত্তে অন্তর্লিখিঙ n সংখ্যক সমান বাছবিশিষ্ট বহুছুছা হবে।

ভাহলে,

OA = OB (বড় বুডের দুইটি ব্যাসার্থ)

এবং OA' = OB' (ছোট বৃত্তের দুইটি ব্যাসার্ধ)

সূভরাং, $\frac{OA}{OA'} = \frac{OB}{OB'}$ এবং AOB কোণটি OAB এবং OA'B' ত্রিভূজন্বয়ের সাধারণ কোণ। জভএব, OAB এবং OA'B' ত্রিভূজন্বয় সদৃশ।

$$\therefore \frac{AB}{A'B'} = \frac{OA}{OA'} \quad \text{al}, \frac{n.AB}{n.A \notin B \notin} = \frac{OA}{OA \notin}$$

$$\text{al}, \frac{n.AB}{OA'} = \frac{n.A'B'}{OA'}$$

.... (i)

এখন, বহুতুজের বাহুসংখ্যা, n যতই বেশি হবে, AB এবং জন্যান্য বাহুর দৈর্ঘ্য ডডই ছোট হবে। এডাবে যদি n এর মানকে অসীম পর্বস্ক বাড়ানো হয়, তবে উভয় বহুতুজের বাহুগুলি বৃত্তের পরিধির উপর সমাপাতিত হবে। অতএব, এক্টেরে (i) নং হতে পাওয়া বায় :

এই ধ্বৰকে π বারা প্রকাশ করা হয়। অধিকাংশ গণিতশাস্ত্রবিদ 500 দশমিক স্থান পর্যন্ত π এর আসনু মান নির্ণয় করেছেন। সাধারণত এর আসনু মানকে (Approximate value) ধরা হয় $\frac{22}{7}$ বা, 3.14159 (পাঁচ দশমিক স্থান পর্বন্ত)।

যদি কোনো ৰৃষ্ণের ব্যাসার্ধকে r এবং ব্যাসকে d ধরা হয়, তবে (ii) নং থেকে পাই,

পরিধি
$$rac{1}{d}=\pi$$
 বা, পরিধি = $\pi d=2\pi r$.

6.2.2. রেডিয়ান একটি ধ্রুব কোণ

O কেন্দ্রবিশিষ্ট বৃত্তের ব্যাসার্থ r এর সমান AB বৃত্তচাপ চিহ্নিত করি। তাহলে, সংজ্ঞানুযায়ী

$$\angle AOB = 1^c$$
.

OA সরলরেখার উপর OC লম্ম আঁকি। তাহলে, $\angle AOC =$ এক সমকোণ এবং বৃত্তচাপ AC = বৃত্তের পরিধির এক চতুর্থাংশ $= \frac{1}{4}.\ 2\pi r = \frac{\pi r}{2}.$

সাধারণ জ্যামিতি হতে আমরা জানি যে, একটি বৃত্তচাপ দারা সৃষ্ট কেন্দ্রস্থ কোণ বৃত্তচাপটির সমানুপাতিক।

সুতরাং,
$$\frac{\angle AOB}{$$
বৃস্তচাপ AB = $\frac{\angle AOC}{$ বৃস্তচাপ AC

বা,
$$\frac{\angle AOB}{\angle AOC} = \frac{\overline{\text{qebin}} AB}{\overline{\text{qebin}} AC} = \frac{r}{\overline{n}r}$$

বা,
$$\frac{\sqrt{4\pi}}{\sqrt{4\pi}}$$
 সমকোণ $=\frac{2}{\pi}$ বা, এক রেডিয়ান $=\frac{2}{\pi}\times \sqrt{4\pi}$ সমকোণ

সৃতরাং, এক রেডিয়ান একটি ধ্বক কোণ, কারণ π এবং এক সমকোণের মান ধ্বক।

মনে করি, O কেন্দ্রবিশিফ বৃত্তের ব্যাসার্ধ r এবং বৃত্তিটির AQ চাপ এর কেন্দ্রে $\angle AOQ = \theta$ রেডিয়ান কোণ উৎপন্ন করে। যদি $\angle AOB = 1^c$ রেডিয়ান হয়, তাহলে

$$\frac{\angle AOQ}{AQ}$$
 চাপ $=\frac{\angle AOB}{AB}$ চাপ $\angle AOQ$ 1 রেডিয়

বা,
$$\frac{\angle AOQ}{AQ}$$
 চাপ = $\frac{1$ রেডিয়ান

মনে করি, O কেন্দ্রবিশিষ্ট বৃষ্টের ব্যাসার্ধ r একক এবং বৃস্তটির AB চাপ এর কেন্দ্রে θ রেডিয়ান কোণ উৎপন্ন করে। OA রেখাংশের উপর শব্দ OC রেখাংশ জ্বন্ধন করি। তাহশে,

$$\frac{\sqrt{2000}}{2000} = \frac{\sqrt{2000}}{\sqrt{2000}} = \frac{\sqrt{2000}}{\sqrt{2000}}$$

বা,
$$\frac{\overline{4}$$
ত্তকলা AOB এর ক্ষেত্রফল $=\frac{\theta}{\pi}$ $=\frac{2\theta}{\pi}$

$$\therefore$$
 বৃত্তকলা AOB এর ক্ষেত্রফল $=\dfrac{2\theta}{\pi} imes\dfrac{1}{4}\,\pi\mathrm{r}^2$ বর্গ একক $=\dfrac{1}{2}\,\mathrm{r}^2 heta$ বর্গ একক , যেখানে $\, heta$ রেডিয়ান পরিমাপে

 $[\because$ বৃত্তকলা ক্ষেত্র = $\frac{1}{4} \times$ বৃত্তক্ষেত্র এবং বৃত্তক্ষেত্রের ক্ষেত্রফল = πr^2 .]

সমস্যা ও সমাধান

উদাহরণ 1. একটি ত্রিভুজের কোণগুলি সমান্তর প্রগমণ শ্রেণিভুক্ত। এর বৃহত্তম ও ক্ষুদ্রতম কোণ দুইটিকে যথাক্রমে রেডিয়ান ও ডিগ্রীতে প্রকাশ করলে এদের অনুপাত হয় π ঃ 90; কোণগুলির পরিমাপকে রেডিয়ানে নির্ণয় কর।

সমাধান ঃ মনে করি, কোণগুলি হলো $(\alpha-\beta)^c$, α^c , $(\alpha+\beta)^c$ যেহেতু ত্রিভুজের কোণগুলির সমষ্টি = 2 সমকোণ = π^c , সূতরাং, $(\alpha-\beta)+\alpha+(\alpha+\beta)=\pi$ বা, $3\alpha=\pi$ \therefore $\alpha=\frac{\pi}{3}$ আবার ক্ষুদ্রতম কোণ = $(\alpha-\beta)^c=(\alpha-\beta)\times\frac{180}{\pi}$ ডিগ্রি এখন শর্তানুসারে, $(\alpha+\beta)$ ঃ $\frac{(\alpha-\beta)180}{\pi}=\pi$ ঃ 90 বা, $\frac{(\alpha+\beta)\pi}{2(\alpha-\beta)}=\pi$

বা,
$$\alpha + \beta = 2(\alpha - \beta)$$

বা, $3\beta = \alpha = \frac{\pi}{3}$ [α এর মান বসিয়ে]
 $\therefore \beta = \alpha = \frac{\pi}{9}$

সূতরাং কোণগুলি হলো $\frac{2\pi^c}{9}$, $\frac{\pi^c}{9}$ এবং $\frac{4\pi^c}{9}$.

উদাহরণ 2. একটি বৃত্তচাপ 30 মিটার ব্যাসার্ধবিশিক্ট একটি বৃত্তের কেন্দ্রে 60° কোণ উৎপন্ন করে। বৃত্তচাপটির দৈর্ঘ্য এবং চাপটির উপর দন্ডায়মান বৃত্তকলার ক্ষেত্রকল নির্ণয় কর।

সমাধান ঃ আমরা জানি, $60^\circ = \frac{\pi \times 60}{180}$ রেডিয়ান $= \frac{\pi}{3}$ রেডিয়ান যেহেতু বৃস্তচাপের দৈর্ঘ্য, $s = r\theta$, যেখানে θ রেডিয়ান পরিমাপে \therefore নির্ণেয় চাপের দৈর্ঘ্য $= 30 \times \frac{\pi}{3}$ মিটার = 31.42 মিটার। যেহেতু বৃস্তকলার ক্ষেত্রফল $= \frac{1}{2} r^2\theta$, যেখানে θ রেডিয়ান পরিমাপে

 \therefore নির্ণেয় বৃত্তকলার ক্ষেত্রফল = $\frac{1}{2} \times 30 \times \frac{\pi}{3}$ বর্গ মিটার = 471.24 বর্গ মিটার

প্রশুমালা 6.1

- 1. দুইটি কোণের যোগফল ও অন্তরফল যথাক্রমে 25^c এবং 35° হলে, কোণ দুইটির মান ডিগ্রিতে প্রকাশ কর। $(\pi=3.1416)$
- 2. একটি ত্রিভূজের কোণগুলি যথাক্রমে x° , 25° এবং $\frac{11\pi}{36}$ হলে, x এর মান নির্ণয় কর।
- একটি গাড়ির চাকা 200 বার আবর্তিত হয়ে 800 মিটার অতিক্রম করে। চাকার ব্যাসার্ধ নির্ণয় কর।
- 4. একটি বৃস্তচাপ বৃত্তের কেল্রে 24° কোণ উৎপন্ন করে। যদি বৃত্তের ব্যাস 49 মিটার হয়, তবে বৃস্তচাপটির দৈর্ঘ্য এবং এর উপর দন্ডায়মান বৃত্তকশার ক্ষেত্রফশ নির্ণয় কর।
- 5. এক ব্যক্তি বৃস্তাকার পথে ঘণ্টায় 5 কি. মি. গতিবেগে পরিভ্রমণ করে 15 সেকেন্ডে একটি বৃস্তচাপ অতিক্রম করে। যদি ঐ বৃস্তচাপ কেন্দ্রে $\frac{5\pi}{12}$ কোণ উৎপন্ন করে, তবে বৃস্তাকার পথের ব্যাসার্থ নির্ণয় কর।
- 6. একটি গাড়ি বৃত্তাকার পথে প্রতি সেকেন্ডে একটি বৃত্তচাপ অতিক্রম করে। যদি চাপটি কেন্দ্রে 28° কোণ উৎপন্ন করে এবং বৃত্তের ব্যাস 60 মিটার হয়, তবে গাড়িটির গতিবেগ নির্ণয় কর।

6.4. ত্রিকোণমিতিক কোণের অনুপাত

আমরা জানি, একটি রশ্মির যূর্ণনের ফলে কোণের উৎপত্তি হয়। নির্দিষ্ট পরিমাপের কোণ উৎপন্ন করে যূর্ণায়মান রিশ্মি যে অবস্থানে থাকে তার যে কোন বিশ্ম (প্রান্ত বিশ্মু ছাড়া) থেকে আদি অবস্থানের উপর শব্ম অক্তন করলে একটি সমকোণী ত্রিভুজ্ব পাওয়া যায়। এ ত্রিভুজের তিনটি বাহুর পরিমাপকে পরস্পর ভাগ করলে ছয়টি অনুপাত পাওয়া যায়। এ অনুপাতগুলিকে ত্রিকোণমিতিতে বিশিষ্ট নামে অভিহিত করা হয়।

(a) এখানে ত্রিকোণমিতিক জনুপাতপুলির আলোচনা করার সময় নির্দিষ্ট কোণকে সৃত্মকোণের মধ্যে সীমাবন্দ রাখা হবে। অবশ্য যেকোনো পরিমাপের কোণের জন্য ত্রিকোণমিতিক অনুপাতপুলির বিস্তারিত আলোচনা পরের অনুচ্ছেদে করা হবে।

মনে করি, ঘূর্ণায়মান রশ্মিটি OX অবস্থান থেকে শুরু করে OB অবস্থানে যেতে যে কোণ উৎপন্ন করেছে তাকে Θ ঘারা সূচিত করা হলো। এখন রশ্মিটির শেষ অবস্থান OB এর O বিন্দু ব্যতীত যে কোন বিন্দু P(x, y) থেকে রশ্মিটির আদি অবস্থান, OX এর উপর PM লম্ম অঞ্জন করলে একটি সমকোণী ত্রিভুজ POM গঠিত হবে। তাহলে, OM = x, PM = y.

OP বাহুকে r ঘারা সূচিত করণে $r = \sqrt{x^2 + y^2}$.

এখন POM ত্রিভ্জের বাহুগুলি হারা নিচের অনুগাতগুলি গঠিত হয় ঃ

 $\frac{PM}{OP} \cdot \frac{OM}{OP} \cdot \frac{PM}{OM} \cdot \frac{OP}{PM} \cdot \frac{OP}{OM}$ এবং $\frac{OM}{PM}$

\varTheta কোশের জন্য ত্রিকোণমিভির বিভিন্ন অনুপাতের নামকরণ উপরের অনুপাতগুলি থেকে করা হয়েছে।

$$\frac{PM}{OP}$$
 অনুপাতের নামকরণ করা হরেছে θ কোপের সাইন $(sine)$ অর্থাৎ, $\sin \theta = \frac{PM}{OP} = \frac{y}{r}$

$$\frac{OM}{OP}$$
 " कांग्राहेन $(cosine)$ वर्षार, $cos \theta = \frac{OM}{OP} = \frac{x}{r}$
 $\frac{PM}{OM}$ " θ " টেনজেট $(tangent)$ वर्षार, $tan \theta = \frac{PM}{QM} = \frac{y}{x}$
 $\frac{OP}{PM}$ " θ " কােসেকেট $(cosecant)$ वर्षार, $cosec \theta = \frac{OP}{PM} = \frac{r}{y}$
 $\frac{OP}{OM}$ θ " সেকেট $(secant)$ वर्षार, $sec \theta = \frac{OP}{OM} = \frac{r}{x}$
 $\frac{OM}{PM}$ " θ " কােটেনজেট $(cotangent)$ वर्षार, $cot \theta = \frac{OM}{PM} = \frac{x}{y}$.

(b) বেকোনো কোণের জন্য ত্রিকোণমিতিক জনুপাত

মনে করি, XOX' এবং YOY' শব্দতাবে পরস্পরক্ষেদী দৃইটি সরলরেখা অর্থাৎ স্থানাক্ষের অক্ষয়। তাহলে, এ দৃইটি সরলরেখা দারা সমতলক্ষেত্রটি চারটি চতুর্ভাগে বিভক্ত হয়েছে।

এখন কোণ উৎপন্নকারী একটি ঘূর্ণারমান রশ্মি আদি অবস্থান, OX থেকে ঘূর্ণন শূরু করে যে কোন পরিমাণের কোণ উৎপন্ন করে এ চারটি চতুর্ভাগের যে কোন একটিতে অবস্থান করবে। ধরি, এ শেষ অবস্থানে পৌছতে রশ্মিটি ও কোণ উৎপন্ন করেছে। রশ্মিটির এ শেষ অবস্থান, OP এর যে কোন বিন্দু P থেকে XOX' উপর PM লম্ম অংকন করায় POM সমকোণী ক্রিভুঞ্জটি গঠিত হল।

সুভরাং,
$$\sin \theta = \frac{PM}{OP} = \frac{y}{r}$$
, $\cos \theta = \frac{OM}{OP} = \frac{x}{r}$, $\tan \theta = \frac{PM}{OM} = \frac{y}{x}$, $\csc \theta = \frac{OP}{PM} = \frac{r}{y}$, $\sec \theta = \frac{OP}{OM} = \frac{r}{x}$, $\cot \theta = \frac{OM}{PM} = \frac{x}{y}$.

কিন্তু এক্ষেত্রে ব্রিকোপমিতিক অনুপাতের মান নির্ণয়ের সময় প্রচলিত রীতি অনুযায়ী বাছুর চিহ্নের বিবেচনাও করতে হবে। এ প্রচলিত রীতির বিশদ্ আলোচনা পরের অনুচ্ছেদে করা হবে। মন্তব্য : উপরের আলোচনার ও কে অকীয় কোপ ও P বিশুকে মুখবিশু ধরা হয়নি। ৩°, 90°, 180°, 270°, 360° ইত্যাদি কোপকে অকীয় কোপ বলা হয়।

6.5. চতুর্ভাগ অনুযায়ী ত্রিকোণমিডিক অনুপাতের চিহ্ন (Signs of trigonometrical ratios)

লেখচিত্রের মত OX ও OY এর সমান্তরাল দিকে দূরত্ব পরিমাপ করলে ঐ দূরত্বকে ধনাত্মক এবং OX' ও OY' এর সমান্তরাল দিকের দূরত্বের পরিমাপকে ঋণাত্মক ধরা হয়। অবশ্য ব্যাসার্ধ ভেষ্টর, OP এর দিকে দূরত্ব পরিমাপ করলে তাকে সব সময় ধনাত্মক বিবেচনা করা হয়।

মনে করি, আদর্শ অবস্থানে কোণ উৎপন্নকারী ঘূর্ণায়মান রিশার আদি অবস্থান OX ও শেষ অবস্থান OP. তাহলে, $\angle XOP = \theta$. কোণটি অক্ষীয় কোণ এবং P মূলবিন্দু না হলে (অর্থাৎ, আদর্শ অবস্থানে), P বিন্দুটি চারটি চতুর্ভাগের যে কোন একটিতে অবস্থান করবে।

নিচের চারটি চিত্র লক্ষ করি:

P(x,y) বিন্দু থেকে x- অক্ষের উপর PM লম্ম আঁকি। তাহলে, OM=x এবং PM=y. এখন OP=r ধরা হলে, $r=\sqrt{x^2+y^2}$.

$$\sin \theta = \frac{PM}{\overline{OP}} = \frac{y}{r}, \qquad \cos \theta = \frac{OM}{\overline{OP}} = \frac{x}{r}, \qquad \tan \theta = \frac{PM}{\overline{OM}} = \frac{y}{x}$$

$$\csc \theta = \frac{OP}{PM} = \frac{r}{y}, \quad \sec \theta = \frac{OP}{OM} = \frac{r}{x}, \quad \cot \theta = \frac{OM}{PM} = \frac{x}{y}.$$

আগেই বলা হয়েছে r এর মান ধনাত্মক, সূতরাং ব্রিকোণমিতিক অনুগাতগুলির চিহ্ন ও y এর চিহ্নের উপর নির্ভর করে । চিত্র থেকে আমরা সহজেই xও y এর চিহ্ন বের করতে পারি । অর্ধাৎ চারটি চতুর্ভাগে ব্রিকোণমিতিক অনুপাতগুলির চিহ্ন কি হবে ? — তা নির্ণয় করা যায় ।

নিচের ছকে অনুপাতগুলোর চিহ্ন দেখানে হলো:

চতুর্ভাগ	x	у	r	$\sin \theta = \frac{y}{r}$	$\cos \theta = \frac{x}{r}$	$\tan^2 \theta = \frac{y}{x}$
প্রথম	+	+	+	+	+	+
দ্বিতী য়	_	+	+	+	-	_
তৃতীয়]-	_	+	_	_	+
<u>চত</u> ূৰ্থ	÷.		+	_	+	-

নির্দিষ্ট কোণ উৎপন্ন করে ঘূর্ণায়মান রশ্মিটি শেষ পর্যায়ে কোন্ চতুর্ভাগে অবস্থান করবে তা জানতে পারলে শিক্ষার্থীরা পাশের চিত্রের সাহায্যে অতি সহজেই অনুপাতের চিহ্ন নির্ণয় করতে পারবে।

sin, cosec } ধনাত্মক	সৰ} ধনাত্মক
tan, cot } यनाज्यक	cos, sec }ধনাত্মক

6.6. ত্রিকোণমিতিক কোণের অনুপাতসমূহের মধ্যে সম্পর্ক

অনুচ্ছেদ 6.4 থেকে আমরা পাই,

(i)
$$\sin \theta = \frac{x}{r}$$
 and $\cos \theta = \frac{r}{x}$

$$\therefore \sin \theta = \frac{x}{r} = \frac{1}{\frac{r}{x}} = \frac{1}{\cos \sec \theta} \text{ age cosec } \theta = \frac{r}{x} = \frac{1}{\frac{x}{r}} = \frac{1}{\sin \theta}$$

(ii)
$$\cos \theta = \frac{y}{r}$$
 and $\sec \theta = \frac{r}{y}$

$$\therefore \cos \theta = \frac{y}{r} = \frac{1}{\frac{r}{y}} = \frac{1}{\sec \theta} \text{ and } \sec \theta = \frac{r}{y} = \frac{1}{\frac{y}{r}} = \frac{1}{\cos \theta}$$

(iii)
$$\sin \theta = \frac{x}{r}$$
, $\cos \theta = \frac{y}{r}$, $\tan \theta = \frac{x}{y}$, এবং $\cot \theta = \frac{y}{x}$

(iv) অনুচ্ছেদ 6.4 এর চিত্র থেকে,
$$x^2 + y^2 = r^2$$

$$\Rightarrow \frac{x^2}{r^2} + \frac{y^2}{r^2} = 1 \Rightarrow \sin^2 \theta + \cos^2 \theta = 1 \dots (1)$$

(v) জনুচ্ছেদ 6.4 এর চিত্র থেকে,
$$x^2 + y^2 = r^2 \Rightarrow \frac{x^2}{y^2} + 1 = \frac{r^2}{y^2} \left[y^2$$
 দারা ভাগ করে $y^2 + y^2 + 1 = \frac{r^2}{y^2} \right]$

$$\therefore 1 + \tan^2\theta = \sec^2\theta \dots (1)$$

আবার
$$x^2$$
 দারা ভাগ করে, $1 + \frac{y^2}{r^2} = \frac{r^2}{r^2}$

$$\therefore 1 + \cot^2 \theta = \csc^2 \theta \dots (3)$$

অনুসিন্ধান্ত : (1), (2) এবং (3) সূত্রগুলি থেকে আমরা পাই

$$\cos^2 \theta = 1 - \sin^2 \theta$$
, $\sin^2 \theta = 1 - \cos^2 \theta$,

$$\sec^2 \theta - \tan^2 \theta = 1$$
, $\sec^2 \theta - 1 = \tan^2 \theta$,

$$\csc^2 \theta - \cot^2 \theta = 1$$
, $\csc^2 \theta - 1 = \cot^2 \theta$ ইত্যাদি।

মন্তব্য ঃ প্রচলিত রীতি অনুযায়ী $(\sin \theta)^2$ এর পরিবর্তে $\sin^2 \theta$ লেখা হয়। অন্যান্য অনুপাতের ক্ষেত্রেও তা প্রযোজ্য।

6.6.1. ত্রিকোণমিডিক অনুপাতের সীমাবন্ধতা

আমরা জানি, $\sin^2\theta + \cos^2\theta = 1$. যেহেত্ বাস্তব সংখ্যার বর্গ সর্বদা অঞ্চণাত্মক, সূতরাং $\sin^2\theta$ এবং $\cos^2\theta$ এর প্রত্যেকটির মান অঞ্চণাত্মক হবে। আবার এদের যোগফল =1. অতএব এদের কোনটির মান 1 অপেকা বৃহস্তর হতে পারে না। অর্থাৎ, $\sin\theta$ বা $\cos\theta$ এর মান +1 অপেকা বৃহস্তর কিংবা -1 অপেকা কুম্রতর হতে পারে না।

তাহলে, θ এর পরিমাণ যত বড় বা ছোটই হয়, $\sin \theta$ বা $\cos \theta$ এর মান +1 এবং -1 এর মধ্যে সীমাবন্ধ থাকবে অর্থাৎ, $(-1 \le \sin \theta \le 1)$ এবং $(-1 \le \cos \theta \le 1)$.

যেহেতু আমরা জানি, $\csc\theta=\frac{1}{\sin\theta}$ এবং $\sec\theta=\frac{1}{\cos\theta}$; সূতরাং $\sec\theta$ বা $\csc\theta$ এর মান + 1 অপেক্ষা ক্ষুদ্রতর কিংবা -1 অপেক্ষা বৃহন্তর হতে পারে না। যেমন, $\sec\theta$ এবং $\csc\theta$ এর মান $\cdot 3$, $\frac{1}{2}$. $-\frac{1}{2}$, $-\cdot 7$ ইত্যাদি হতে পারে না।

মন্তব্য st an heta বা $\cot heta$ এর মান + 1 অপেক্ষা বৃহত্তর বা, -1 অপেক্ষা ক্ষুদ্রতর হতে পারে।

সমস্যা ও সমাধান:

উদাহরণ 1.যদি A সৃহ্মকোণ এবং $\sin A = \frac{12}{13}$ হয়, তবে $\cot A$ এর মান নির্ণয় কর ।

সমাধান: প্রদন্ত শর্তানুসারে OPN সমকোণী ত্রিভূঞ্চি অজ্ঞন করি।

তাহলে, y = 12 এবং r = 13.

যেহেতু $\sin A = \frac{y}{r}$, সূতরাং, $\angle PON = \angle A$.

$$\therefore x = \sqrt{r^2 - y^2} = \sqrt{169 - 144} = 5.$$

স্তরাং,
$$\cot A = \frac{x}{y} = \frac{5}{12}$$
.

উদাহরণ 2. যদি A কোণের পরিমাণ 270 ডিগ্রি ও 360 ডিগ্রির মধ্যে সীমাবন্ধ থাকে এবং $\cos A = \cdot 5$ হয়, তাহলে অন্যান্য ত্রিকোণমিতিক অনুপাতের মান নির্ণয় কর।

সমাধান ঃ মনে করি, প্রদন্ত শর্তানুসারে *OPM* সমকোণী ত্রিভূজটি অজ্জন করা হয়েছে। যেহেত্ কোণের পরিমাণ 270 ডিগ্রি ও 360 ডিগ্রির মধ্যে সীমাবন্ধ থাকে, সূতরাং *OP* রেখা, অর্থাৎ ঘূর্ণায়মান রশ্মিটির শেষ অবস্থানটি চতুর্থ চতুর্ভাগে অবস্থান করবে।

যেহেতু
$$\cos A = .5 = \frac{1}{2}$$
,

∴ চিত্র থেকে আমরা পাই, OM = 1 এবং OP = 2.

আবার যেহেতু চতুর্থ চতুর্ভাগে PM এর মান ঋণাত্মক , সুতরাং

$$PM = -\sqrt{OP^2 - OM^2} = -\sqrt{4-1} = -\sqrt{3}.$$

 $\therefore \sin A = -\sqrt{3}/2$, $\tan A = -\sqrt{3}$, $\csc A = -2/\sqrt{3}$, $\sec A = 2$ এবং $\cot A = -1/\sqrt{3}$. উদাহরণ 3. যদি $\tan \theta + \sec \theta = x$ হয়, তবে দেখাও যে, $\sin \theta = \frac{x^2 - 1}{x^2 + 1}$.

সমাধান ঃ এখানে
$$\tan \theta + \sec \theta = x$$
 $\Rightarrow \frac{\sin \theta}{\cos \theta} + \frac{1}{\cos \theta} = x$ $\Rightarrow \frac{1 + \sin \theta}{\cos \theta} = x$ $\Rightarrow \frac{(1 + \sin \theta)^2}{\cos^2 \theta} = x^2$ [উভয়পক্ষকে বৰ্গ করে] $\Rightarrow \frac{1 + \sin \theta}{1 - \sin \theta} = x^2$ $\therefore \sin \theta = \frac{x^2 - 1}{x^2 + 1}$.

উদাহরণ 4. যদি $\cos \alpha + \sec \alpha = \frac{5}{2}$ হর, ভবে প্রমাণ কর যে, $\cos^n \alpha + \sec^n \alpha = 2^n + 2^{-n}$.

সমাধান ঃ এখানে
$$\cos \alpha + \sec \alpha = \frac{5}{2}^2 \Rightarrow \cos \alpha + \frac{1}{\cos \alpha} = \frac{5}{2}$$

$$\Rightarrow \frac{1 + \cos^2 \alpha}{\cos \alpha} = \frac{5}{2} \Rightarrow 2 \cos^2 \alpha - 5 \cos \alpha + 2 = 0$$

$$\Rightarrow$$
 (2 cos α - 1) (cos α - 2) = 0

য়েহেডু
$$(\cos \alpha - 2) \neq 0$$
, $\therefore 2 \cos \alpha - 1 = 0$, অৰ্থাৎ, $\cos \alpha = \frac{1}{2}$

$$\therefore \cos^n \alpha + \sec^n \alpha = \left(\frac{1}{2}\right)^n + 2^n = \frac{1}{2^n} + 2^n = 2^{-n} + 2^n = 2^n + 2^{-n}.$$

উদাহরণ 5. $\cot A + \cot B + \cot C = 0$ হলে, প্রমাণ কর যে, $(\Sigma \tan A)^2 = \Sigma \tan^2 A$.

সমাধান ঃ আমরা পাই , $(\sum \tan A)^2 = (\tan A + \tan B + \tan C)^2$

=
$$\tan^2 A + \tan^2 B + \tan^2 C + 2 \tan B \tan C + 2 \tan C \tan A + 2 \tan A \tan B$$

$$= \sum \tan^2 A + 2 \tan A \tan B \tan C \left(\cot A + \cot B + \cot C\right)$$

$$= \Sigma \tan^2 A + 2 \tan A \tan B \tan C \times 0 = \Sigma \tan^2 A$$
.

প্রশুমালা 6.2

নিচের অভেদাবলীর সভ্যতা প্রমাণ কর :

- 1. $(a \cos x b \sin x)^2 + (a \sin x + b \cos x)^2 = a^2 + b^2$.
- 2. $\sec^4 A \sec^2 A = \tan^4 A + \tan^2 A$.

3. (i)
$$\sqrt{\frac{1+\cos\theta}{1-\cos\theta}} = \csc\theta + \cot\theta$$
; (ii) $\sqrt{\frac{1-\sin\theta}{1+\sin\theta}} = \sec\theta - \tan\theta$.

4.
$$(\tan \theta + \sec \theta)^2 = \frac{1 + \sin \theta}{1 - \sin \theta}$$

5.
$$\frac{1 + (\cos c x \tan y)^2}{1 + (\cos c z \tan y)^2} = \frac{1 + (\cot x \sin y)^2}{1 + (\cot z \sin y)^2}.$$

6.
$$(\sin \theta + \sec \theta)^2 + (\cos \theta + \csc \theta)^2 = (1 + \sec \theta \csc \theta)^2$$
.

7.
$$\frac{\cos^4 x}{\cos^2 y} + \frac{\sin^4 x}{\sin^2 y} = 1$$
 হলে, প্রমাণ কর যে, $\frac{\cos^4 y}{\cos^2 x} + \frac{\sin^4 y}{\sin^2 x} = 1$.

8. যদি
$$\tan \theta = \frac{a}{b}$$
 হয়, তবে $\frac{a \sin \theta - b \cos \theta}{a \sin \theta + b \cos \theta}$ এর মান নির্ণয় কর।

9. যদি
$$7 \sin^2 \theta + 3 \cos^2 \theta = 4$$
 হয়, তবে দেখাও যে, $\tan \theta = \pm \frac{1}{\sqrt{3}}$.

10. যদি
$$\sin \alpha + \csc \alpha = 2$$
 হয়, তবে প্রমাণ কর যে, $\sin^n \alpha + \csc^n \alpha = 2$.

11. যদি
$$\tan \theta + \sin \theta = m$$
 এবং $\tan \theta - \sin \theta = n$ হয়, তবে প্রমাণ কর যে, $m^2 - n^2 = 4\sqrt{mn}$.

12. যদি
$$\tan^2\theta = 1 - e^2$$
 হয়, তবে দেখাও যে, $\sec\theta + \tan^3\theta \csc\theta = (2 - e^2)^{3/2}$.

13. যদি
$$x \sin^3 \alpha + y \cos^3 \alpha = \sin \alpha \cos \alpha$$
 এবং $x \sin \alpha - y \cos \alpha = 0$ হয়, তাহলে দেখাও যে, $x^2 + y^2 = 1$.

- 14. যদি $\sin^2 A + \sin^4 A = 1$ হয়, তবে প্রমাণ কর যে, $\tan^4 A \tan^2 A = 1$.
- 15. যদি A কোণ 90° ও 180° এর মধ্যে সীমাবন্ধ থাকে এবং $\sin A = 8$ হয়, তবে $\tan A$ এর মান নির্ণয় কর।
- 16. যদি $a\cos\theta-b\sin\theta=c$ হয়, তবে দেখাও যে, $a\sin\theta+b\cos\theta=\pm\sqrt{a^2+b^2-c^2}$.
- 17. যদি $\operatorname{cosec} A + \operatorname{cosec} B + \operatorname{cosec} C = 0$ হয়, তবে দেখাও যে, $(\sum \sin A)^2 = \sum \sin^2 A$.

6.7. ত্রিকোণমিতিক কাংশনের মানের পরিবর্তন

উপরের চিত্র থেকে লক্ষ করি.

ফাল
$$\theta = 0$$
, $a = 0$. অভ্যাব, $\sin \theta = \frac{0}{b} = 0$, $\cos \theta = \frac{b}{b} = 1$, $\tan \theta = \frac{0}{b} = 0$,

$$\cot 0 = \frac{b}{0}$$
 , যা অসংজ্ঞায়িত; $\sec 0 = \frac{b}{b} = 1$ এবং $\csc 0 = \frac{b}{0}$, যা অসংজ্ঞায়িত।

এখন [0, 2π] ব্যবধিতে $0,\frac{\pi}{2}$, π , $\frac{3\pi}{2}$, 2π কোণের জন্য ত্রিকোণমিতিক ফাংশনের মান নিচের ছকে দেখানো হলো :

θ	sin θ	cos θ	tan 0	cot θ	sec θ	cosec θ
0	0	1	0	অসংক্রায়িত	1	অসংজ্ঞায়িত
$\frac{\pi}{2}$	1	0	অসংজ্ঞা য়িত	0	অসংজ্ ৰায়িত	1
π	0	- 1	0	অসংজ্ঞায়িত	1	অসংজ্ঞায়িত
$\frac{3\pi}{2}$	- 1	0	অসংজ্ঞা য়িত	0	অসংজ্ঞায়িত	- 1
2π	0	1	0	অস্জোয়িত	1	অসংজ্ঞায়িত

উপরের হকটি সতর্কভাবে পর্যবেক্ষণ করে প্রত্যেক ত্রিকোণমিতিক ফাংশনের মানের পরিবর্তন নিয়োক্তাবে দেখানো হলো :

(i) যখন $\theta = 0$, $\sin \theta = 0$, $\cos \theta = 1$, $\tan \theta = 0$, $\cot \theta$ অসংজ্ঞায়িত, $\sec \theta = 1$, $\csc \theta$ অসংজ্ঞায়িত।

কিছু $\theta \to 0+$ হলে, $\cot \theta \to + \infty$ এবং $\csc \theta \to + \infty$.

(ii) ফাল
$$0 < \theta < \frac{\pi}{2}$$
;
$$0 < \sin \theta < 1$$

$$1 > \cos \theta > 0$$

$$0 < \tan \theta < + \infty \left[\because \theta \to \frac{\pi}{2} - \text{হল, } \tan \theta \to + \infty \right]$$

$$+ \infty > \cot \theta > 0$$

$$1 < \sec \theta < + \infty \left[\because \theta \to \frac{\pi}{2} - \text{হল, } \sec \theta \to + \infty \right]$$

$$+ \infty > \csc \theta > 1$$

- (iii) যখন $\theta = \frac{\pi}{2}$, $\sin \theta = 1$, $\cos \theta = 0$, $\tan \theta$ অসংজ্ঞায়িত, $\cot \theta = 0$, $\sec \theta$ অসংজ্ঞায়িত এবং $\csc \theta = 1$.
- (ν) বৰ্থন $\theta=\pi$, $\sin\theta=0$, $\cos\theta=-1$, $\tan\theta=0$, $\cot\theta$ জসংজ্ঞায়িত, $\sec\theta=-1$ এবং $\csc\theta$ জসংজ্ঞায়িত।

(vi) যধন
$$\pi < \theta < \frac{3\pi}{2}$$
;
$$0 > \sin \theta > -1$$

$$-1 < \cos \theta < 0$$

$$0 < \tan \theta < + \infty \qquad [\because \theta \rightarrow \frac{3\pi}{2} - \sqrt[3]{\pi}, \tan \theta \rightarrow + \infty]$$

$$+ \infty > \cot \theta > 0 \qquad [\because \theta \rightarrow \pi_{+} \sqrt[3]{\pi}, \cot \theta \rightarrow + \infty]$$

$$-1 > \sec \theta > -\infty \qquad [\because \theta \rightarrow \frac{3\pi}{2} - \sqrt[3]{\pi}, \sec \theta \rightarrow + \infty]$$

$$-\infty < \csc \theta < -1. \quad [\because \theta \rightarrow \pi_{+} \sqrt[3]{\pi}, \csc \theta \rightarrow -\infty]$$

(vii) যখন $\theta = \frac{3\pi}{2}$, $\sin \theta = -1$, $\cos \theta = 0$, $\tan \theta$ অসংজ্ঞায়িত, $\cot \theta = 0$, $\sec \theta$ অসংজ্ঞায়িত এবং $\cos \cot \theta = -1$.

(ix) যখন $\theta=2\pi$, $\sin\theta=0$, $\cos\theta=1$, $\tan\theta=0$, $\cot\theta$ অসংজ্ঞায়িত, $\sec\theta=1$ এবং $\csc\theta$ অসংজ্ঞায়িত।

6.8. ত্রিকোণমিতিক ফাংশনের লেখচিত্র

বীজগাণিতিক ফাংশনের মত ত্রিকোণমিতিক ফাংশনেরও লেখচিত্র অঞ্জন করা যায়। লেখচিত্র অঞ্জন করার নিয়ম সম্পর্কে জ্যামিতিতে বিস্তারিতভাবে আলোচনা করা হয়েছে। এ অধ্যায়ে লেখচিত্র অঞ্জনের নিয়ম সম্পর্কে অতি প্রয়োজনীয় বিষয়ের উল্লেখ করা হবে মাত্র।

ধরি $y = \sin x$ এর লেখচিত্র অঞ্চন করতে হবে।

প্রথমে ছক-কাগজে শম্বভাবে দন্তায়মান দুইটি পরস্পরক্ষেদী সরশরেখা XOX' এবং YOY' অঞ্চন করি। এরাই যথাক্রমে x —অক্ষ এবং y—অক্ষ।

এখন x এর করেকটি সুবিধান্ধনক মানের জন্য y এর আনুষ্ট্পিক মান বের করে কার্তেসীয় স্থানাজ্ঞ্চ পশ্বতিতে ছক—কাগজ্ঞে করেকটি বিন্দু স্থাপন করে স্থাপিত বিন্দুগুলি পেন্সিলের সাহায্যে যোগ করলে প্রদন্ত ফাংশনের লেখচিত্র পাওয়া যায়। কখনও কখনও নির্দিষ্ট সীমাবন্ধতার মধ্যে লেখচিত্র অজ্ঞান করার জন্য বলা হয়ে থাকে। শিক্ষার্থীদের সমরণ রাখতে হবে যে, x-স্থানাজ্ঞের জন্য এক রকম স্কেল নির্বাচন করলেও y-স্থানাজ্ঞের জন্য সৃবিধানুযায়ী অন্যরকম স্কেল ব্যবহার করা যায়। সুতরাং, ছক-কাগজের আকার ও লেখচিত্র অজ্ঞানের সীমাবন্ধতার কথা মনে রেখে সুবিধান্ধনভাবে স্কেল নির্বাচন করা সম্ভব।

(ক) সাইন ফাপেনের দেখচিত্র

মনে করি, $y = \sin x$.

এখানে $x=-180^\circ$ থেকে শুরু করে $x=360^\circ$ পর্যন্ত x এর কয়েকটি মানের জন্য $y=\sin x$ এর আনুষঞ্জিক মান নেয়া হল। এ মানগুলি নিচের তালিকায় সাজানো হয়েছে।

x	-180°	-150°	-120°	-90°	0°	60°	90°	180°	240°	360°
y বা, sin x	0	- ·50	- ∙87	-1	0	·87	1	0	87	0

ন্দেল : x – অক্ষের দিকে ছোট বর্গক্ষেত্রের এক বাহু $= 10^\circ$; y – অক্ষের দিকে ছোট বর্গক্ষেত্রের এক বাহু = 0.1.

এখন তালিকাভুক্ত বিন্দুগুলি নির্বাচিত ফেল অনুযায়ী ছক—কাগজে স্থাপন করা হল। বিন্দুগুলি পেন্সিলের সাহায্যে যোগ করলে সাইন—লেখচিত্র পাওয়া যায়। এখানে লেখচিত্রটি $x=-180^\circ$ থেকে $x=360^\circ$ পর্যস্ত অন্তক্তন করা হয়েছে।

মস্তব্য 2. সাইন লেখচিত্রের বৈশিষ্ট্য :

- (i) শেষচিত্রের কোথাও ছেদ (Break) নেই এবং এর আকার ঢেউয়ের মত।
- (ii) লেখচিত্র থেকে সহচ্ছেই বুঝা যায় যে, সাইন অনুপাতের সর্বোচ্চ এবং সর্বনিম্ন মান হলো যথাক্রমে 1 এবং 1.
 - (iii) সর্বোচ্চ এবং সর্বনিম্ন মান তখনই পাওয়া যায় যখন x এর মান 90° এর বিজ্ঞোড় গুণিতকের সমান হয়।
- (iv) মৃশবিন্দুতে এবং যে সকল বিন্দুর জন্য x এর মান 90° এর জ্বোড় গুণিতকের সমান হয়, ঐক্বেগ্রে সাইন জনুপাতের মান শূন্য হয়।
- (v) যেহেতু $\sin(360^\circ + x) = \sin x$, সূতরাং 0° এবং 360° এর মধ্যে অঞ্চিত্রটি ডানে এবং বামে পর্যায়ক্রমে আবির্ভৃত হয়।

(খ) কোসাইন ফাংশনের লেখচিত্র

মনে করি, $y = \cos x$.

 -180° থেকে শুরু করে 360° পর্যন্ত x এর কয়েকটি মান নিয়ে y এর, অর্থাৎ, $\cos x$ এর আনুবঙ্গিক মান বের করে নিচের তালিকায় সাজানো হলো :

x	-180°	-120°	-90°	-30°	0°	60°	90°	150°	180°	360°
y वा ,	- 1	50	0	⋅87	1	·50	0	- ⋅87	-· 1	1
cos x					į					i

েক্স x — অক্সের দিকে ছোট বর্গক্ষেত্রের এক বাহু $=10^\circ$; y— অক্সের দিকে ছোট বর্গক্ষেত্রের এক বাহু =0.1.

এখন তালিকাভুক্ত বিন্দুগুলি নির্বাচিত ফেবল অনুযায়ী ছক কাগজে স্থাপন করে এদেরকে পেলিলের সাহায্যে যোগ করলে কোসাইন-লেখচিত্র পাওয়া যায়। এখানে লেখচিত্রটি $x=-180^\circ$ থেকে $x=360^\circ$ পর্যন্ত অঞ্জন করা হয়েছে।

মন্তব্য ঃ কোসাইন – লেখচিত্রের বৈশিষ্ট্য ঃ

- (i) শেখচিত্রটিকে 90° ডানে অথবা 90° বামে সরানো হলে তা সাইন লেখচিত্রের অনুরূপ হবে, যেহেত্ $\sin (90^\circ + x) = \cos x$, বা, $\cos (x 90^\circ) = \sin x$.
- (ii) শেশচিত্র থেকে স্পাইত বুঝা যায় যে কোসাইন অনুপাতের সর্বোচ্চ মান =1 এবং সর্বনিম্ন মান =-1.
- (iii) মৃশ বিন্দুতে এবং যে সকল বিন্দুতে x এর মান 180° এর গুণিতকের সমান হয়, ঐক্লেত্রে কোসাইন অনুপাতের সর্বোচ্চ এবং সর্বনিম্ন মান পাওয়া যায়।
- (iv) x এর পরিবর্তে x স্থাপন করলে $y=\cos x$ অপরিবর্তিত থাকে বলে লেখচিত্রটি y—অক্ষের স্ঞোসাদৃশ্যপূর্ণ (symmetrical) হবে।

(গ) টেনজেন্ট ফাংশনের লেখচিত্র

মনে করি, $y = \tan x$.

x এর করেকটি মানের জন্য y এর আনুষ্ট্রোক মান টেনজেন্ট-সারণী থেকে বের করে নিচের তালিকায় সাজানো হল :

x		-60°	-40°	0°	80°	120°	160°	180°	240°	260°
y বা, tan x	- 5.67	-1.73	0.84	0	5.67	- 1.73	- 0.36	0	1.73	5.67

ন্দেল : x -অক্সের দিকে ছোট বর্গক্ষেত্রের এক বাহু = 10° ; y - অক্সের দিকে ছোট বর্গক্ষেত্রের এক বাহু = $\cdot 28$.

এখন তালিকাভুক্ত বিন্দুগুলি ছক-কাগজে স্থাপন করে পেলিলের সাহায্যে যোগ করলে টেনজেন্ট-লেখচিত্র পাওয়া যায়।

মন্তব্য : টেনজেন্ট-লেখচিত্রের বৈশিক্ট্য ঃ

- (i) শেখচিত্রটি অবিচ্ছিন্ন (Continuous) নয়। এটি ভিন্ন ভিন্ন শাখায় বিভক্ত । যখন x-এর মান 90° কোণের বিজ্ঞোড় গুণিতকের সমান হয়, তখনই শেখচিত্রটি বিচ্ছিন্ন হয়ে যায়।
- (ii) 90° এবং 90° কোণের মধ্যে যে শেখচিত্র অঞ্জন করা যায়, তা ডানে এবং বামে পর্যায়ক্রমে আবির্ভূত হয়।
- (iii) 90° এর বিজ্ঞাড় গুণিতকের সমান কোণের ভূজের বিন্দুগামী y-অক্ষের সমান্তরাল করে যে রেখাগুলি টানা যায় এদের এবং লেখচিত্রের মধ্যবর্তী দূরত্ব ক্রমশঃ কমতে থাকে, কিন্তু এরা কখনও লেখচিত্রকে স্পর্শ করে না।

(च) কোসেকেন্ট ফাংশনের **লে**খচিত্র।

মনে করি, $y = \csc x$.

এখন, $\csc x = \frac{1}{\sin x}$ সম্পর্কের সাহায্যে গ্রহণ করে x-এর কয়েকটি মানের জন্য y-এর আনুষজ্ঞাক মান বের করে নিচের তালিকায় সাজ্ঞানো হলো:

x	-90°	–70°	-50°	-10°	10°	70°	100°	120°	150°	170°
y বা, cosec x	- 1	- 1.06	- 1.31	- 5.76	5.76	1.06	1.02	1.16	2	5.76

ন্দেল: x-অক্ষের দিকে ছোট বর্গক্ষেত্রের এক বাহু = 10° ;

y-অক্ষের দিকে ছোট বর্গক্ষেত্রের তিন বাহু = 1.

এ স্কেলের সাহায্যে তালিকাভুক্ত বিন্দুগুলি ছক-কাগজে স্থাপন করে সংযুক্ত করলে কোসেকেন্ট লেখচিত্র পাওয়া যায়।

মস্তব্য: কোসেকেন্ট লেখচিত্রের বৈশিষ্ট্য।

- (i) শেখচিত্রটি বিভিন্ন অংশে বিভক্ত হয়ে বিচ্ছিন্ন থাকে। 180° এর যে কোন গুণিতকের সমান কোণের জন্য যে সব বিন্দু পাওয়া যায় ঐ সব বিন্দুতে শেখচিত্রটি বিচ্ছিন্ন হয়ে যায়।
 - (ii)~0 এবং 2π কোণের মধ্যে যে শেখচিত্র অঙ্কন করা যায় তা ডানে এবং বামে পর্যায়ক্রমে আবির্ভূত হয়।
- (iii) শেখচিত্র হতে সহজেই শক্ষ করা যায় যে, x-এর যেকোনো মানের জন্য $\cos x$ এর +1 এবং -1 এর মধ্যবর্তী কোনও মান নাই।

(ঙ) সেকেন্ট ফাংশনের লেখচিত্র।

মনে করি, $y = \sec x$.

এখন, $\sec x = \frac{1}{\cos x}$ সম্পর্কের সাহায্যে গ্রহণ করে x-এর কয়েকটি মানের জন্য y-এর আনুষ্ঠ্গিক মান বের করে নিচের তালিকায় সাজানো হলো :

x	-180°	-120°	-100°	0°	80°	120°	150°	180°
y বা, sec x	- 1	- 2	0.17	1	0.17	- 2	- 1.15	- 1

x-অক্ষের দিকে ছোট বর্গক্ষেত্রের এক বাহু = 10° ;

y-অক্ষের দিকে ছোট বর্গক্ষেত্রের তিন বাহু = 1.

এখন তালিকাভুক্ত বিন্দুগুলি ছক কাগজে স্থাপন করে পেন্সিলের সাহায্যে সংযুক্ত করে যে লেখচিত্র পাওয়া যায় তা হলো সেকেউ–লেখচিত্র।

মস্তব্য: (i) কোসেকেন্ট লেখচিত্রের মতই সেকেন্ট লেখচিত্র বিচ্ছিন্ন থাকে। 90° এর বিজ্ঞাড় গুণিতকের সমান কোণের জন্য যে বিন্দুগুলি পাওয়া যায় সেই বিন্দুগুলিতে লেখচিত্রটি বিচ্ছিন্ন হয়ে যায়।

(ii) শেখচিত্র হতে সহচ্ছেই শক্ষ করা যায় যে, sec x এর জন + 1 এবং – 1 এর মধ্যবর্তী কোনো মান নাই।

(b) কোটেনজেন্ট কাংশনের লেখচিত্র।

মনে করি $y = \cot x$.

 $\cot x = \frac{1}{\tan x}$ সম্পর্কের সাহায্যে গ্রহণ করে x-এর কয়েকটি মানের জন্য y-এর আনুষঞ্জিক মান বের করে

নিচের তালিকায় সাজ্বানো হলো:

х	- 170°	-140°	-100°	–60°	-10°	10°	50°	120°	150°	160°	240°
y, বা cot x	5.67	1.19	0.18	- 0.38	- 5.67	5.67	0.84	-0.58	-1.73	-2.75	-5.76

ন্দেল: x-জন্দের দিকে ছোট বর্গন্দেত্রের এক বাহু = 10° ;

y-অক্সের দিকে ছোট বর্গক্ষেত্রের এক বাহু = .34.

এখন এই নির্বাচিত ক্ষেলের সাহায্যে বিন্দুগুলি ছক কাগজে স্থাপন করে সংযুক্ত করে কোটেনজেন্ট-শেখচিত্র পাওয়া যায়।

धनुमाना 6.3

1. নিচের কাংশনের লেখচিত্র অক্সন কর ঃ

- (ক) $y = \sin 2x$; যখন $0 \le x \le 2\pi$;
- (খ) $y = \sin 3x$; (x = 0 হতে $x = 2\pi$ পর্যন্ত)
- (গ) $y = \cos^2 x$, যধন $\pi \le x \le \pi$;
- (%) $y = \cos 2x$, যখন $0 \le x \le 2\pi$.
- (চ) $y = \cos 3\theta$, যখন $0 \le \theta \le \pi$.

প্রশ্নমালা 6.4

সৃজনশীল প্রশ্ন :

- 1. (a) বৃত্তকলা বলতে কী বুঝায়?
 - (b) রেডিয়ান পরিমাপে বৃত্তকলার সূত্র প্রতিষ্ঠা কর।
 - (c) 20 সেন্টিমিটার ব্যাসার্ধবিশিষ্ট একটি বৃষ্ণের কোনো বৃশুচাপ এর কেন্দ্রে 50° কোণ উৎপন্ন করলে ঐ বৃশুচাপের দৈর্ঘ্য এবং চাপটির উপর দন্ডায়মাণ বৃশুকলার ক্ষেত্রফল নির্ণয় কর।
- 2. (a) 75° কে রেডিয়ান পরিমাপে প্রকাশ কর।
 - (b) একটি ত্রিভুজের দুইটি কোণ যথাক্রমে 50° এবং $\frac{\pi^c}{3}$. তৃতীয় কোণটি ডিগ্রিতে প্রকাশ কর।
 - (c) একটি ত্রিভূজের কোণগুলি সমান্তর প্রগমণ শ্রেণিভূক্ত। এদের সাধারণ অন্তর 20° হলে, কোণগুলি রেডিয়ান পরিমাপে নির্ণয় কর।
- 3. $\tan \theta = \frac{a}{b}$ হলে, $\frac{a \sin \theta + b \cos \theta}{a \sin \theta b \cos \theta}$ এর মাণ নির্ণয় কর।
 - (a) যখন 0° < θ < 90°.
 - (b) যখন 180° < θ < 270°.
 - (c) যখন a=b.
- 4. (a) θ কোণের যেকোনো মানের জন্য কি $9 \sin^2 \theta + 3 \sin \theta = 20$ হতে পারে?
 - (b) যদি $a \neq b$ হয়, তবে $\sec \theta = \frac{a^2 + b^2}{2ab}$ কি সম্ভব? যদি হাঁ৷ সূচক হয়, তবে কেন ?
 - (c) $\cos^2 \theta = \frac{(a+b)^2}{4ab}$ কি সম্ভব? যদি এরূপ হয়, তবে কখন?

वर्निर्वाह्मी श्रम् :

- 5. $\sin \theta = \frac{12}{13}$ হলে, $\tan \theta$ এর মান
 - (a) $\frac{12}{5}$

(b) $\frac{5}{12}$

(c) $\pm \frac{12}{5}$

- (d) $\pm \frac{5}{12}$
- 6. পাশের সমকোণী ত্রিভূজ থেকে $(\sin\theta+\cos\theta)$ এবং $(\tan\theta+\cot\theta)$ এর অনুপাত হবে
 - (a) 3 8 7

(b) 25 * 12

(c) 84 \$ 125

(d) 7 8 25

(a) $\pm \sqrt{2} \sin \theta$

(b) $2 \sin \theta$

(c) $\sqrt{2} \sin \theta$

(d) $\sqrt{2 \sin \theta}$

8. $\sin A = \frac{1}{2}$ এবং $\cos B = \frac{1}{\sqrt{3}}$ হলে, $\tan A \tan B$ এর মান হবে –

(a)
$$\frac{2}{3}$$

(b)
$$\frac{\sqrt{2}}{\sqrt{3}}$$

(c)
$$\frac{\sqrt{3}}{\sqrt{2}}$$

(d)
$$\frac{3}{2}$$

9. $\cot \theta = \frac{12}{5}$ হলে, $\sin \theta + \cos \theta$ এর মান হবে –

(a)
$$\frac{13}{17}$$

(b)
$$\frac{17}{13}$$

(c)
$$-\frac{7}{13}$$

(d)
$$-\frac{13}{17}$$

10. $\csc^2 \theta \tan \theta + \sec^2 \theta \cot \theta$ এর সমান হবে –

(a) $2 \sin \theta \cos \theta$

(b) $\sin \theta \cos \theta$

(c) $2 \sec \theta \csc \theta$

(d) $\sec \theta \csc \theta$

11. $\tan \theta = \frac{3}{4}$ হলে, $\frac{\sin \theta - \cos \theta}{\sin \theta + \cos \theta}$ এর মান-

(a) 7

(b) $\frac{1}{7}$

(c) $-\frac{1}{7}$

(d) - 7

প্রশালা 6.1

1. 733°.7, 698°.7. 2. 100. 3. 0.6376 মিটার। 4. 10.26 মিটার, 125.72 বর্গ মিটার। 5. 15.91 মিটার। 6. প্রতি ঘণ্টায় 52.78 কিলোমিটার।

श्रुयाना 6.2

8.
$$\frac{a^2-b^2}{a^2+b^2}$$
 15. - 1.3.

প্রশ্নমালা 6.4

1. (a)
$$\frac{5\pi^c}{12}$$
; (b) $\frac{7\pi^c}{18}$; (c) $\frac{5\pi^c}{18}$, $\frac{\pi^c}{3}$, $\frac{7\pi^c}{18}$,

2. (b) $\frac{1}{2} r^2 \theta$; (c) 17.45 সেন্টিমিটার,, 174.53 বর্গ সেন্টিমিটার।

3. (a)
$$\frac{a^2+b^2}{a^2-b^2}$$
; (b) $\frac{a^2+b^2}{a^2-b^2}$ (c) অসংজ্ঞায়িত।

4. (a) না ; (b) হাঁা, কারণ $2ab \le (a^2 + b^2)$; (c) তা কেবল তখন সম্ভব, যখন a = b.

5. c. 6. c. 7. a. 8. b. 9. b. 10. c. 11. c.

সক্তম অধ্যায়

সংযুক্ত কোণের ত্রিকোণমিতিক অনুপাত (Trigonometrical Ratios of Associated Angles)

7.1. সংযুক্ত কোণের ত্রিকোণমিতিক অনুপাত

n একটি পূর্ণ সংখ্যা হলে, $(n.360^\circ + \theta)$ কোণের অনুপাত :

ত্রিকোণমিতিক কোণের সংজ্ঞা থেকে আমরা জানি কোণ উৎপন্নকারী ঘূর্ণায়মান রিশ্ম আদি অবস্থান থেকে শুরু করে θ , 360° + θ , -360° + θ , $2 \times 360^\circ$ + θ , $-2 \times 360^\circ$ + θ , $3 \times 360^\circ$ + θ , $-3 \times 360^\circ$ + θ ইত্যাদি কোণের যেকোনো কোণই উৎপন্ন করুক না কেন এর শেষ অবস্থান হবে একই স্থানে। অর্থাৎ n যদি একটি পূর্ণ সংখ্যা হয়, তবে $(n. 360^\circ$ + θ) থেকে প্রাণ্ড যে কোন কোণ উৎপন্ন করে ঘূর্ণায়মান রিশ্মিটি একই স্থানে অবস্থান করবে।

যেহেতু ঘূর্ণায়মান রশ্মি একই আদি অবস্থান থেকে ঘূর্ণন শুরু করলে এর শেষ অবস্থানের উপর ত্রিকোণমিতিক অনুপাতের মান নির্ভর করে, সুতরাং এটি স্পষ্ট যে, $(n.360^\circ + \theta)$ থেকে প্রাণ্ড প্রত্যেকটি কোণের জন্য একটি নির্দিষ্ট ত্রিকোণমিতিক অনুপাতের মান একই হবে। তাহলে , আমরা নিচের সম্পর্কগুলি সহজেই পাই ঃ

 $sin (n.360^{\circ} + \theta) = sin \theta$, $cos (n.360^{\circ} + \theta) = cos \theta$, $cosec (n.360^{\circ} + \theta) = cosec \theta$, $sec (n.360^{\circ} + \theta) = sec \theta$, $tan (n.360^{\circ} + \theta) = tan \theta$ 43? $cot (n.360^{\circ} + \theta) = cot \theta$.

রেডিয়ান পরিমাপে সম্পর্কগুলি $\sin{(2n\pi+\theta)}=\sin{\theta}, \quad \cos{(2n\pi+\theta)}=\cos{\theta}$ ইত্যাদি। উদাহরণ $\sin{(1110^\circ)}=\sin{(3.360^\circ+30^\circ)}=\sin{30^\circ}=\frac{1}{2}$

(*)
$$sec (-1755^\circ) = sec (-5.360^\circ + 45^\circ) = sec 45^\circ = \sqrt{2}$$

(4)
$$cos(-31\pi/4) = cos(-4.2\pi + \pi/4) = cos\frac{\pi}{4} = \frac{1}{\sqrt{2}}$$

7.1.1. (- ৪) কোণের ত্রিকোণমিতিক অনুপাত

মনে করি, কোণ উৎপন্নকারী ঘূর্ণায়মান রশ্মি একই আদি অবস্থান, OX থেকে শুরু করে ঘড়ির কাঁটার ঘূর্ণনের বিপরীতক্রমে ঘুরে $\angle XOP = \theta$ কোণ উৎপন্ন করে। যদি অপর একটি ঘূর্ণায়মান রশ্মি ঐ একই অবস্থান OX থেকে ঘড়ির কাঁটার ঘূর্ণনের দিকে ঘুরে θ কোণের সম-পরিমাপের XOQ কোণ উৎপন্ন করে; তাহলে, $\angle XOQ = -\theta$.

OP এর যে কোন বিন্দু P থেকে XOX' এর উপর PM সম্ম অঞ্জন করে এমনভাবে বর্ধিত করা হল যেন তা OQ কে Q বিন্দুতে ছেদ করে। এখন সাধারণ জ্যামিতি থেকে আমরা জানি যে, OPM এবং OQM ত্রিভূজ্বয় সর্বতোভাবে সমান। [:: উভয় চিত্রানুযায়ী, $\angle POM = \angle QOM$, $\angle OMP = \angle OMQ$ এবং OM বাহু সাধারণ]

সূতরাং আমরা পাই, PM = QM এবং OP = OQ. অতএব, ত্রিকোণমিতিক অনুপাতের সংজ্ঞানুযায়ী,

$$\sin (-\theta) = \sin XOQ = \frac{-QM}{OO} = -\frac{PM}{OP} = -\sin XOP = -\sin \theta,$$

$$\cos (-\theta) = \cos XOQ = \frac{OM}{OQ} = \frac{OM}{OP} = \cos XOP = \cos \theta,$$

$$\tan (-\theta) = \tan XOQ = \frac{-QM}{OM} = -\frac{PM}{OM} = -\tan XOP = -\tan \theta.$$

উপরোক্ত অনুপাতের ফলাফল থেকে সহজেই পাওয়া যায়

$$\csc(-\theta) = -\csc\theta$$
, $\sec(-\theta) = \sec\theta$ এবং $\cot(-\theta) = -\cot\theta$.

উদাহরণ | $\sin (-60^\circ) = -\sin 60^\circ = -\frac{\sqrt{3}}{2}$

7.1.2. (90° - 0) কোণের ত্রিকোণমিতিক অনুপাত

মনে করি, কোণ উৎপন্নকারী ঘূর্ণায়মান রশ্মি একই আদি অবস্থান, OX থেকে শুরু করে ঘড়ির কাঁটার ঘূর্ণনের বিপরীতক্রমে ঘূরে $\angle XOP = \theta$ কোণ উৎপন্ন করে এবং অপর একটি ঘূর্ণায়মান রশ্মিটি একই আদি অবস্থান OX থেকে ঐ একই দিকে ঘূরে প্রথমে $\angle XOY = 90^\circ$ উৎপন্ন করে এবং পরে এর বিপরীত দিকে ঘূরে $\angle YOQ = \theta$ কোণ উৎপন্ন করে । তাহলে, $\angle XOQ = 90^\circ - \theta$.

 θ এবং $(90^{\circ}-\theta)$ কোণদায় উৎপন্ন করে ঘূর্ণায়মান রশ্মিদায় যে অবস্থানে থাকে ঐ বাহুদায় থেকে যথাক্রমে OP এবং OQ এমনভাবে নেয়া হল যেন OP=OQ হয়। XOX' এর উপর PM এবং QN লম্মদায় অজ্ঞকন করি। তাহলে, OPM এবং OQN তি জুজন্বয় সর্বতোভাবে সমান। $\therefore QN=OM$ এবং ON=PM.

অতএব, ত্রিকোণমিতিক অনুপাতের সংজ্ঞানুযায়ী,

$$\sin (90^{\circ} - \theta) = \sin XOQ = \frac{QN}{OQ} = \frac{OM}{OP} = \cos XOP = \cos \theta,$$

$$\cos (90^{\circ} - \theta) = \cos XOQ = \frac{ON}{OQ} = \frac{PM}{OP} = \sin XOP = \sin \theta,$$

 $\tan (90^{\circ} - \theta) = \tan XOQ = \frac{QN}{ON} = \frac{OM}{PM} = \cot XOP = \cot \theta.$

উপরোক্ত অনুপাতের ফলাফল থেকে সহচ্ছেই দেখানো যায়

 $\cos (90^{\circ} - \theta) = \sec \theta$, $\sec (90^{\circ} - \theta) = \csc \theta$ এবং $\cot (90^{\circ} - \theta) = \tan \theta$. রেডিয়ান পরিমাপে উপরোক্ত অনুপাতগুলি হলো :

$$\sin\left(\frac{\pi}{2} - \theta\right) = \cos\theta$$
, $\cos\left(\frac{\pi}{2} - \theta\right) = \sin\theta$, $\tan\left(\frac{\pi}{2} - \theta\right) = \cot\theta$ ইত্যাদি।

মস্তব্য ঃ ত্রিকোণমিতিক অনুপাতকে ত্রিকোণমিতিক ফাংশনও বলা হয়। সাইন এবং কোসাইনকে পরস্পরের সহ-ফাংশন বলে। অনুরূপভাবে, সেকেন্ট এবং কোসেকেন্টকেও পরস্পরের সহ-ফাংশন বলা হয়। তদুপ, টেনজেন্ট ও কোটেনজেন্ট হল পরস্পরের সহ-ফাংশন। যদি দুইটি কোণের সমস্টি এক সমকোণ হয়, তবে একটিকে অপরটির পরিপূরক বলা হয়। তাহলে, 30° এবং 60° কোণছয়ের একটি অপরটির পরিপূরক।

সুতরাং, একটি কোণের ত্রিকোণমিতিক ফাংশন = এর পরিপূরকের সহ-ফাংশন।

উদাহরণ । (ক) cos 30° = sin 60°, (ব) tan 25° = cot 65°, (গ) sec 80° = cosec 10°.

7.1.3. (90° + 0) কোণের ত্রিকোণমিতিক অনুপাত

মনে করি, কোণ উৎপন্নকারী একটি ঘূর্ণায়মান রিশ্মি আদি অবস্থান, OX থেকে শুরু করে ঘড়ির কাঁটার ঘূর্ণনের বিপরীতক্রমে ঘুরে $\angle XOP = 0$ কোণ এবং রিশাটি ঐ একই দিকে আরও ঘুরে $\angle POQ = 90^\circ$ কোণ চিহ্নিত করে।

তাহলে, $\angle XOQ = 90^{\circ} + \theta$.

 θ এবং $(90^{\circ} + \theta)$ কোণদ্বয় উৎপন্ন করে ঘূর্ণায়মান রশ্মি যে দুইটি অবস্থানে থাকে তা থেকে যথাক্রমে OP এবং OQ এমনভাবে নেয়া হল যেন OP = OQ হয়। XOX' এর উপর PM এবং QN লম্বদ্বয় অজ্ঞকন করি। তাহলে, OPM এবং OQN গ্রিভূজদ্বয় সর্বতোভাবে সমান। সূতরাং QN = OM এবং ON = PM.

.. ত্রিকোণমিতিক অনুপাতের সংজ্ঞানুযায়ী,

$$\sin (90^{\circ} + \theta) = \sin XOQ = \frac{QN}{OQ} = \frac{OM}{OP} = \cos XOP = \cos \theta,$$

$$\cos (90^{\circ} + \theta) = \cos XOQ = \frac{-ON}{OQ} = -\frac{PM}{OP} = -\sin XOP = -\sin \theta,$$

$$\tan (90^{\circ} + \theta) = \tan XOQ = \frac{QN}{-ON} = -\frac{OM}{PM} = -\cot XOP = -\cot \theta.$$

উপরোক্ত অনুপাতের ফলাফল থেকে জামরা পাই, $\csc (90^\circ + \theta) = \sec \theta$, $\sec (90^\circ + \theta) = -\csc \theta$ এবং $\cot (90^\circ + \theta) = -\tan \theta$. রেডিয়ান পরিমাপে অনুপাতগুলি হলো :

$$\sin\left(\frac{\pi}{2} + \theta\right) = \cos\theta$$
, $\cos\left(\frac{\pi}{2} + \theta\right) = -\sin\theta$, $\tan\left(\frac{\pi}{2} + \theta\right) = -\cot\theta$ ইত্যাদি।

উদাহরণ। $sin\ 120^\circ = \sin\ (90^\circ + 30^\circ) = \cos\ 30^\circ = \frac{\sqrt{3}}{2}$

7.1.4. (180° - 0) কোণের ত্রিকোণমিতিক অনুপাত

মনে করি, কোণ উৎপন্নকারী ঘূর্ণায়মান রিশা আদি অবস্থান, OX থেকে শুরু করে ঘড়ির কাঁটার ঘূর্ণনের বিপরীতক্রমে ঘুরে $\angle XOP = \theta$ কোণ উৎপন্ন করে এবং কোণ উৎপন্নকারী অপর একটি ঘূর্ণায়মান রিশা একই আদি অবস্থান, OX থেকে ঐ একই দিকে ঘুরে $XOX' = 180^\circ$ কোণ উৎপন্ন করে বিপরীত দিকে ঘুরে $\angle X'OQ = \theta$ কোণ উৎপন্ন করে ।

তাহলে, $\angle XOQ = 180^{\circ} - \theta$.

 θ এবং $(180^{\circ}-\theta)$ কোণদ্বয় উৎপন্ন করে ঘূর্ণায়মান রিশা যে দুইটি অবস্থানে থাকে ঐ রেখা থেকে যথাক্রমে OP এবং OQ এমনভাবে নেয়া হল যেন OP=OQ হয়। XOX' রেখার উপর PM এবং QN লম্মদ্বয় অজ্ঞকন করি। তাহলে, OPM এবং OQN ত্রিভূজদ্বয় সর্বতোভাবে সমান।

$$\therefore PM = QN$$
 এবং $OM = ON$.

∴ ত্রিকোণমিতিক অনুপাতের সংজ্ঞানুযায়ী,

$$\sin (180^{\circ} - \theta) = \sin XOQ = \frac{QN}{OQ} = \frac{PM}{OP} = \sin XOP = \sin \theta,$$

$$\cos (180^{\circ} - \theta) = \cos XOQ = \frac{-ON}{OQ} = -\frac{OM}{OP} = -\cos XOP = -\cos \theta,$$

$$\tan (180^{\circ} - \theta) = \tan XOQ = \frac{QN}{-ON} = -\frac{PM}{OM} = -\tan XOP = -\tan \theta.$$

উপরোক্ত অনুপাতের ফলাফল থেকে আমরা পাই

$$cosec$$
 $(180^\circ - \theta) = cosec$ θ , sec $(180^\circ - \theta) = -sec$ θ এবং cot $(180^\circ - \theta) = -cot$ θ . রেডিয়ান পরিমাপে উপরোক্ত অনুপাতগুলি হলো :

$$\sin (\pi - \theta) = \sin \theta$$
, $\cos (\pi - \theta) = -\cos \theta$, $\tan (\pi - \theta) = -\tan \theta$ ইত্যাদি

উদাহরণ ৷ (ক)
$$\sin 150^\circ = \sin (180^\circ - 30^\circ) = \sin 30^\circ = \frac{1}{2}$$

(4)
$$\cos 120^\circ = \cos (180^\circ - 60^\circ) = -\cos 60^\circ = -\frac{1}{2}$$

(7)
$$\cot\left(\frac{3\pi}{4}\right) = \cot\left(\pi - \frac{\pi}{4}\right) = -\cot\frac{\pi}{4} = -1$$
.

$7.1.5. \ (180^{\circ} + \theta)$ কোণের ত্রিকোণমিতিক অনুপাত

মনে করি, কোণ উৎপন্নকারী ঘূর্ণায়মান রিশ্ম আদি জবস্থান, OX থেকে শুরু করে ঘড়ির কাঁটার ঘূর্ণনের বিপরীতক্রমে ঘূরে $\angle XOP = \theta$ কোণ উৎপন্ন করে। আবার রিশ্মিটি ঐ একই দিকে ঘূরে $\angle POQ = 180^\circ$ কোণ উৎপন্ন করে। তাহলে, $\angle XOQ = 180^\circ + \theta$.

 θ এবং $(180^{\circ} + \theta)$ কোণদর উৎপন্ন করে ঘূর্ণায়মান রিশ্মি যে অবস্থানে থাকে ঐ অবস্থানের রিশ্মিদয় থেকে যথাক্রমে OP এবং OQ এমনভাবে নেয়া হল যেন OP = OQ হয়। XOX রেখার উপর PM এবং QN লম্মদয় অংকন করি। তাহলে, OPM এবং OQN ত্রিভূজদয় সর্বতোভাবে সমান। $\therefore QN = PM$ এবং ON = OM.

∴ ত্রিকোণমিতিক অনুপাতের সংজ্ঞানুযায়ী

$$\sin (180^{\circ} + \theta) = \sin XOQ = \frac{-QN}{OQ} = -\frac{PM}{OP} = -\sin XOP = -\sin \theta,$$

$$\cos (180^{\circ} + \theta) = \cos XOQ = \frac{-ON}{OQ} = -\frac{PM}{OP} = -\cos XOP = -\cos \theta,$$

$$\tan (180^{\circ} + \theta) = \tan XOQ = \frac{-QN}{-ON} = \frac{PM}{OM} = \tan XOP = \tan \theta.$$

উপরোক্ত অনুপাতের ফলাফল থেকে আমরা পাই.

 $\cos \cot (180^\circ + \theta) = -\csc \theta$, $\sec (180^\circ + \theta) = -\sec \theta$ এবং $\cot (180^\circ + \theta) = \cot \theta$. রেডিয়ান পরিমাপে উপরোক্ত অনুপাতগুলি হল : $\sin (\pi + \theta) = -\sin \theta$, $\cos (\pi + \theta) = -\cos \theta$, ইত্যাদি। উদাহরণ । (ক) $\cot 225^\circ = \cot (180^\circ + 45^\circ) = \cot 45^\circ = 1$,

(4)
$$\sin 210^\circ = \sin (180^\circ + 30^\circ) = -\sin 30^\circ = -\frac{1}{2}$$

(9)
$$\csc\left(\frac{4\pi}{3}\right) = \csc\left(\pi + \frac{\pi}{3}\right) = -\csc\frac{\pi}{3} = -\frac{2}{\sqrt{3}}$$

7.1.6. (270° - 0) কোণের ত্রিকোণমিতিক অনুপাত

জ্যামিতিক পদ্ধতিতে (270° – 0) কোণের ত্রিকোণমিতিক অনুপাতগুলি নির্ণয় করা যায়। কিন্তু নিচের প্রক্রিয়ায়ও এদের ফলাফল বের করা যায়। যেমন,

$$\sin (270^\circ - \theta) = \sin \{180^\circ + (90^\circ - \theta)\} = -\sin (90^\circ - \theta) = -\cos \theta;$$
 অনুরপভাবে, $\cos (270^\circ - \theta) = -\sin \theta$, $\tan (270^\circ - \theta) = \cot \theta$ ইত্যাদি।

7.1.7. (270° + 0) কোণের ত্রিকোণমিতিক অনুপাত

(270° + 0) কোণের ত্রিকোণমিতিক অনুপাতগুলি জ্যামিতিক পন্ধতিতে বের করতে পারি। কিন্তু এ ফলাফল নিচের প্রক্রিয়ায়ও নির্ণয় করা যায়। যেমনঃ

$$\sin (270^\circ + \theta) = \sin \{180^\circ + (90^\circ + \theta)\} = -\sin (90^\circ + \theta) = -\cos \theta$$
, তদুপ, $\cos (270^\circ + \theta) = \sin \theta$, $\tan (270^\circ + \theta) = -\cot \theta$ ইত্যাদি।

7.1.8. (360° – 0) কোণের ত্রিকোণমিতিক অনুপাত

জ্যামিতিক পন্ধতিতে (360° – 0) কোণের ত্রিকোণমিতিক অনুপাতগুলি নির্ণয় করা যায়। কিন্তু অনুপাতগুলি নির্চের প্রক্রিয়ায়ও বের করা যায়। যেমন :

$$\sin (360^\circ - \theta) = \sin \{270^\circ + (90^\circ - \theta)\} = -\cos (90^\circ - \theta) = -\sin \theta$$
, অনুরূপভাবে, $\cos (360^\circ - \theta) = \cos \theta$, $\tan (360^\circ - \theta) = -\tan \theta$ ইত্যাদি।

7.1.9. দুইটি প্রয়োজনীয় নিয়ম

প্রথম নিয়ম । যদি ৫ কে 90 ডিগ্রির জোড় গুণিতকের সজো ধনাত্মক বা, ঋণাত্মক চিহ্ন দ্বারা সংযুক্ত করা হয় (যেমন 180° – ৫ , 180° + ৫ , 360° – ৫ ইত্যাদি), তবে ঐ কোণের অনুপাতকে কেবল ৫ কোণের অনুপাতে প্রকাশ করলে মূল অনুপাতের রূপান্তর হয় না। কিন্তু এর চিহ্ন (ধনাত্মক বা ঋণাত্মক) নির্ণয় করতে ৫ কে ধনাত্মক এবং সৃক্ষকোণ কল্পনা করে দেখতে হবে যে, সংযুক্ত কোণ উৎপন্ন করে ঘূর্ণায়মান রশ্মি কোন্ চতুর্ভাগে অবস্থান করবে? এরপর চতুর্ভাগ–নিয়ম অনুযায়ী অনুপাতের চিহ্ন সহজেই নির্ণয় করা যায়।

দিতীয় নিয়ম । যদি θ কে 90 ডিগ্রির বিজ্ঞাড় গুণিতকের সজ্ঞো ধনাত্মক বা ঋণাত্মক চিহ্ন দারা সংযুক্ত করা হয় (যেমন 90° – θ , 90° + θ , 270° – θ ইত্যাদি), তবে ঐ কোণের অনুপাতকে কেবল θ কোণের অনুপাতে প্রকাশ করলে মূল অনুপাতটি এর সহ—অনুপাতে রূপান্তরিত হয়। কিন্তু এর চিহ্ন (ধনাত্মক বা ঋণাত্মক) নির্ণয় করতে θ কে ধনাত্মক এবং সূক্ষকোণ কল্পনা করে দেখতে হবে যে, সংযুক্ত কোণ উৎপন্ন করে ঘূর্ণায়মান রশ্মি কোন্ চতুর্ভাগে অবস্থান করবে? এরপর চতুর্ভাগ–নিয়ম অনুযায়ী অনুপাতের চিহ্ন সহজেই নির্ণয় করা যায়।

7.1.10. যেকোনো পরিমাপের কোণের ত্রিকোণমিতিক অনুপাতকে ধনাত্মক এবং সৃক্ষকোণের অনুপাতে প্রকাশ করা

যেকোনো পরিমাপের কোণের ত্রিকোণমিতিক অনুপাতকে ধনাত্মক এবং সৃক্ষকোণের ত্রিকোণমিতিক অনুপাতে প্রকাশ করা যায়। এর জন্য নিচের পদক্ষেপ গ্রহণ করতে হবে :

(1) যদি প্রদন্ত কোণের পরিমাপ 360° অপেক্ষা বৃহত্তর হয়, তবে ঐ কোণ থেকে 360° কিংবা 360 ডিগ্রির গুণিতক বাদ দিলে তা 360° কোণ অপেক্ষা ক্ষুদ্রতর কোণে পরিবর্তিত হয়। আগেই প্রমাণ করা হয়েছে যে, প্রদন্ত কোণের ত্রিকোণমিতিক অনুপাত এরূপ পরিবর্তিত কোণের ঐ একই ত্রিকোণমিতিক অনুপাতের মানের সমান। যেমন ঃ

$$sec (1270^\circ) = sec (360^\circ \times 3 + 190^\circ) = sec 190^\circ.$$

- (2) আবার যদি প্রদন্ত কোণের পরিমাপ 360° অপেক্ষা ক্ষুদ্রতর হয়, তবে ঐ কোণ থেকে 360° কিংবা 360° ডিগ্রির গুণিতক বাদ দিয়ে এটিকে ধনাত্মক এবং 360° কোণ অপেক্ষা ক্ষুদ্রতর কোণে পরিবর্তন করা যায়। এ ক্ষেত্রেও প্রমাণ করা হয়েছে যে, প্রদন্ত কোণের ত্রিকোণমিতিক অনুপাত এরূপ পরিবর্তিত কোণের ঐ একই ত্রিকোণমিতিক অনুপাতের মানের সমান হয়। যেমন,
 - (ক) cos (- 1000°) = cos (- 360° x 3 + 80°) = cos 80° এবং
 - (খ) tan (- 1880°) = tan (- 360° x 6 + 280°) = tan 280° ইত্যাদি।
- (3) উপরে বর্ণিত দুইটি পদক্ষেপের একটির সাহায্যে যে কোন পরিমাপের কোণের ত্রিকোণমিতিক অনুপাতকে কোনো কোনো ক্ষেত্রে ধনাত্মক ও সৃক্ষকোণের ত্রিকোণমিতিক অনুপাতে পরিবর্তন করা সম্ভব না হলেও এদেরকে 360° অপেক্ষা ক্ষুদ্রতর কোণের ত্রিকোণমিতিক অনুপাতে প্রকাশ করা যায়। তখন ত্রিকোণমিতিক অনুপাতের সাথে এমন কোণ সংযুক্ত থাকে যাকে $90^\circ \pm \theta$, বা $180^\circ \pm \theta$, বা $360^\circ \theta$ আকারে প্রকাশ করে অনুচ্ছেদ 7.1.9 এর নিয়মানুযায়ী অনুপাতটিকে θ (ধনাত্মক এবং সৃক্ষকোণ) কোণের ত্রিকোণমিতিক অনুপাতে প্রকাশ করা যায়।

টদাহরণ 1
$$\sin (3825^\circ) = \sin (360^\circ \times 10 + 225^\circ) = \sin (180^\circ + 45^\circ) = -\sin 45^\circ = -\frac{1}{\sqrt{2}}$$

সমস্যা ও সমাধান:

উদাহরণ 1. মান নির্ণয় কর : cos 18° + cos 162° + cos 234° + cos 1386°.

সমাধান ঃ cos 18° + cos 162° + cos 234° + cos 1386°

=
$$\cos 18^{\circ} + \cos (180^{\circ} - 18^{\circ}) + \cos (270^{\circ} - 36^{\circ}) + \cos (360^{\circ} \times 4 - 54^{\circ})$$

$$= \cos 18^{\circ} - \cos 18^{\circ} - \sin 36^{\circ} + \cos 54^{\circ}$$

$$= - \sin 36^\circ + \cos (90^\circ - 36^\circ) = - \sin 36^\circ + \sin 36^\circ = 0$$

উদাহরণ 2. যদি $x = r \sin (\theta + 45^\circ)$ এবং $y = r \sin (\theta - 45^\circ)$ হয়, তবে প্রমাণ কর যে, $x^2 + y^2 = r^2$.

সমাধান ঃ আমরা পাই $x^2 + y^2 = r^2 \sin^2(\theta + 45^\circ) + r^2 \sin^2(\theta - 45^\circ)$ = $r^2 \left\{ \sin^2(90^\circ + \theta - 45^\circ) + \sin^2(\theta - 45^\circ) \right\}$ = $r^2 \left\{ \cos^2(\theta - 45^\circ) + \sin^2(\theta - 45^\circ) \right\} = r^2$.

উদাহরণ 3. মান নির্ণয় কর ৈ $\cos^2\frac{\pi}{12}+\cos^2\frac{3\pi}{12}+\cos^2\frac{5\pi}{12}+\cos^2\frac{7\pi}{12}+\cos^2\frac{9\pi}{12}+\cos^2\frac{11\pi}{12}$

সমাধান ঃ $\cos^2\frac{\pi}{12} + \cos^2\frac{3\pi}{12} + \cos^2\frac{5\pi}{12} + \cos^2\frac{7\pi}{12} + \cos^2\frac{9\pi}{12} + \cos^2\frac{11\pi}{12}$

$$=\cos^2\frac{\pi}{12} + \left(\cos\frac{\pi}{4}\right)^2 + \cos^2\frac{5\pi}{12} + \cos^2\left(\pi - \frac{5\pi}{12}\right) + \left(\cos\frac{3\pi}{4}\right)^2 + \cos^2\left(\pi - \frac{\pi}{12}\right)$$

$$=\cos^2\frac{\pi}{12} + \left(\frac{1}{\sqrt{2}}\right)^2 + \cos^2\frac{5\pi}{12} + \cos^2\frac{5\pi}{12} + \left\{\cos\left(\pi - \frac{\pi}{4}\right)\right\}^2 + \cos^2\frac{\pi}{12}$$

$$= 2\left(\cos^2\frac{\pi}{12} + \cos^2\frac{5\pi}{12}\right) + \frac{1}{2} + \left(-\cos\frac{\pi}{4}\right)^2 = 2\left\{\cos^2\frac{\pi}{12} + \cos^2\left(\frac{\pi}{2} - \frac{\pi}{12}\right)\right\} + \frac{1}{2} + \frac{1}{2}$$

$$= 2 \left\{ \cos^2 \frac{\pi}{12} + \sin^2 \frac{\pi}{12} \right\} + 1 = 2 \times 1 + 1 = 2 + 1 = 3.$$

উদাহরণ 4. মান নির্ণয় কর $\cot \frac{\pi}{20} \cot \frac{3\pi}{20} \cot \frac{5\pi}{20} \cot \frac{7\pi}{20} \cot \frac{9\pi}{20}$.

সমাধান ঃ নির্ণেয় মান = cot 9° cot 27° cot 45° cot 63° cot 81° [∵ π =180°]

=
$$\cot 9^{\circ} \cot 27^{\circ}$$
 .1. $\cot (90^{\circ} - 27^{\circ}) \cot (90^{\circ} - 9^{\circ})$

উদাহরণ 5. যদি $\sin \theta = \frac{5}{13}$ এবং $\frac{\pi}{2} < \theta < \pi$ হয়, তবে প্রমাণ কর যে,

$$\frac{\tan\theta + \sec(-\theta)}{\cot\theta + \csc(-\theta)} = \frac{3}{10}.$$

সমাধান ঃ আমরা পাই, $\cos\theta = -\sqrt{1-\sin^2\theta} = -\sqrt{1-\frac{25}{169}} = -\frac{12}{13}$

 $[\because \frac{1}{2}\pi < \theta < \pi$, অর্থাৎ কোণ উৎপন্নকারী ঘূর্ণায়মান রেখাটি দ্বিতীয় চতুর্ভাগে অবস্থান করে এবং এ চতুর্ভাগে সাইন এবং কোসেকেন্ট ছাড়া অন্যান্য অনুপাত ঋণাত্মক]

অতএব,
$$\tan \theta = \frac{\sin \theta}{\cos \theta} = \frac{5/13}{-12/13} = -\frac{5}{12}$$

$$\frac{\tan \theta + \sec (-\theta)}{\cot \theta + \csc (-\theta)} = \frac{\tan \theta + \sec \theta}{\cot \theta - \csc \theta} = \frac{-\frac{5}{12} - \frac{13}{12}}{-\frac{12}{5} - \frac{13}{5}} = \frac{-\frac{18}{12}}{-\frac{25}{5}} = \frac{3}{10}.$$

প্রশালা 7.1

1. মান নির্ণয় কর ঃ

- (i) sin 675°, (ii) tan 1305°, (iii) sec 510°, (iv) cosec 765°, (v) cot 3750°,
- (vi) $\sin (-1395^{\circ})$, (vii) $\sec (-2580^{\circ})$, (viii) $\cot (-1530^{\circ})$, (ix) $\tan (-1590^{\circ})$.
- 2. মান নির্ণয় কর $\cot\left(\frac{3\pi}{2} + \frac{\pi}{3}\right)$, $\sin\left(-\frac{29\pi}{4}\right)$, $\cos\left(\frac{49\pi}{6}\right)$ এবং $\tan\left(\frac{5\pi}{2} \frac{19\pi}{3}\right)$

3. মান নির্ণয় কর ঃ

- (i) $\cos 198^\circ + \sin 432^\circ + \tan 168^\circ + \tan 12^\circ$;
- (ii) cos 420° sin (-300°) sin 870° cos 570°;
- (iii) $\sin 780^{\circ} \cos 390^{\circ} \sin 330^{\circ} \cos (-300^{\circ})$;

(iv)
$$\tan \frac{17\pi}{4} \cos \left(-\frac{11\pi}{4}\right) + \sec \left(-\frac{34\pi}{3}\right) \csc \left(\frac{25\pi}{6}\right)$$

- 4. সেখাও যে, $\cos A + \sin \left(\frac{23\pi}{2} + A\right) \sin \left(\frac{23\pi}{2} A\right) + \cos \left(17\pi + A\right) = 0.$
- 5. নিচের অনুপাতগুলোকে 45° অপেক্ষা ক্ষুদ্রতর এবং ধনাত্মক কোণের ত্রিকোণমিতিক অনুপাতে প্রকাশ করঃ (i) sin (– 65°), (ii) tan (– 246°), (iii) sin 843°, (iv) cot (– 1054°), (v) sec 1327° এবং (vi) cosec (– 756°).

6. মান নির্ণয় কর ঃ

(i)
$$\sin^2 \frac{17\pi}{18} + \sin^2 \frac{5\pi}{8} + \cos^2 \frac{37\pi}{18} + \cos^2 \frac{3\pi}{8}$$
;

(ii)
$$\sin^2 \frac{\pi}{7} + \sin^2 \frac{5\pi}{14} + \sin^2 \frac{8\pi}{7} + \sin^2 \frac{9\pi}{14}$$
;

(iii)
$$\cos^2 \frac{\pi}{8} + \cos^2 \frac{3\pi}{8} + \cos^2 \frac{5\pi}{8} + \cos^2 \frac{7\pi}{8}$$
;

[ঢা. '১৩ <u>]</u>

(iv)cos²
$$\frac{\pi}{24}$$
 + cos² $\frac{19\pi}{24}$ + cos² $\frac{31\pi}{24}$ + cos² $\frac{37\pi}{24}$.

(v)
$$\sec^2 \frac{14\pi}{17} - \sec^2 \frac{39\pi}{17} + \cot^2 \frac{41\pi}{34} - \cot^2 \frac{23\pi}{34}$$

- 7. যদি n এর মান যে কোন পূর্ণ সংখ্যা হয় , তবে দেখাও যে , $\cos{(2n\pi \pm \frac{\pi}{4})}$ এর মান সব সময় $\frac{1}{\sqrt{2}}$ হয়।
- 8. যদি $\alpha=\frac{11\pi}{4}$ হয়, তবে $\sin^2\alpha-\cos^2\alpha-2$ $\tan\alpha-\sec^2\alpha$ এর মান নির্ণয় কর।
- 9. যদি $\tan \theta = \frac{5}{12}$ এবং $\cos \theta$ ঋণাত্মক হয়, তবে $\frac{\sin \theta + \cos (-\theta)}{\sec (-\theta) + \tan \theta}$ এর মান কত?

10. প্রমাণ কর:

(i)
$$\cos^2 10^\circ + \cos^2 20^\circ + \cos^2 30^\circ + \dots + \cos^2 80^\circ = 4$$
,

(ii)
$$\sin^2 15^\circ + \sin^2 20^\circ + \sin^2 25^\circ + \dots + \sin^2 75^\circ = \frac{13}{2}$$

(iii)
$$\sin^2 3^\circ + \sin^2 9^\circ + \sin^2 15^\circ + \dots + \sin^2 177^\circ = 15$$
.

- 11. প্রমাণ কর : $\sin \theta + \sin (\pi + \theta) + \sin (2\pi + \theta) + ... + \sin (n\pi + \theta)$ = $\sin \theta$, বা θ ; যখন θ যথাক্রমে জোড় ও বিজোড় সংখ্যা ।
- 12. যদি ABCD চতুর্ভূজের কোণগুলি যথাক্রমে A, B, C, D হয়, তবে দেখাও যে,

(i)
$$\cos \frac{1}{2}(A+C) + \cos \frac{1}{2}(B+D) = 0$$
; (ii) $\sin (A+B+C) + \sin (A+B+C+2D) = 0$.

13. যদি $\theta = \frac{\pi}{20}$ হয়, তবে দেখাও যে, $\cot \theta$. $\cot 3\theta$. $\cot 5\theta$. $\cot 7\theta$ $\cot 19\theta = -1$.

7.2. যৌগিক কোণের ত্রিকোণমিতিক অনুপাত (Trigonometrical ratios of compound angle)

যৌগিক কোণ (compound angle) ঃ দুই বা ততোধিক কোণের বীচ্চগণিতীয় যোগফলকে যৌগিক কোণ বলা হয় । যেমন ঃ A+B, A-B, A+B-C, A-B-C ইত্যাদি যৌগিক কোণ ।

7.2.1. সূত্র a A এবং B কোণহয় ধনাত্মক ও সূচ্ছা এবং $(A + B) < 90^\circ$ হলে,

প্রমাণ % মনে করি, একটি ঘূর্ণায়মান রিশ্ম আদি অবস্থান, OX থেকে শুরু করে ঘড়ির কাঁটার ঘূর্ণনের বিপরীতক্রমে ঘুরে $\angle XOY = A$ কোণ উৎপন্ন করে এবং ঐ একই রিশ্মি আরও অধিক দূর একই দিকে অগ্রসর হয়ে $\angle YOZ = B$ কোণ উৎপন্ন করল। তাহলে, $\angle XOZ = A + B$.

এখন ঘূর্ণায়মান রশ্মির শেষ অবস্থান, OZ এর উপর একটি বিন্দু P থেকে OX এবং OY এর উপর যথাক্রমে PH এবং PD শদ্বয় জাঁকি। আবার D বিন্দু থেকে OX এবং PH এর উপর যথাক্রমে DK এবং DE শদ্বয় আঁকি। তাহলে, স্পষ্টতঃ

$$\angle DPE = 90^{\circ} - \angle PDE = \angle EDO = \angle A$$
.

এখন POH সমকোণী ত্রিভূজ থেকে আমরা পাই

$$\sin (A + B) = \frac{PH}{OP} = \frac{EH + PE}{OP} = \frac{DK + PE}{OP} = \frac{DK}{OP} + \frac{PE}{OP} = \frac{DK}{OD} \cdot \frac{OD}{OP} + \frac{PE}{PD} \cdot \frac{PD}{OP}$$

$$= \sin A \cos B + \cos \angle DPE. \sin B = \sin A \cos B + \cos A \sin B$$

 $\therefore \sin (A + B) = \sin A \cos B + \cos A \sin B.$

পুনরায়
$$\cos (A + B) = \frac{OH}{OP} = \frac{OK - HK}{OP} = \frac{OK - DE}{OP} = \frac{OK}{OP} - \frac{DE}{OP} = \frac{OK}{OD} \cdot \frac{OD}{OP} - \frac{DE}{PD} \cdot \frac{PD}{OP}$$

 $= \cos A \cos B - \sin \angle DPE$. $\sin B = \cos A \cos B - \sin A \sin B$

 $\therefore \cos (A + B) = \cos A \cos B - \sin A \sin B.$

7.2.2. সূতাঃ A B কোণদয় সূচ্ছা ও ধনাত্মক এবং A > B হলে,

 $\sin (A - B) = \sin A \cos B - \cos A \sin B \, \text{agg} \cos (A - B) = \cos A \cos B + \sin A \sin B$.

প্রমাণ ঃ (i) মনে করি, একটি কোণ উৎপন্নকারী রিশ্মি আদি অবস্থান, OX থেকে শুরু করে ঘড়ির কাঁটার ঘূর্ণনের বিপরীতক্রমে ঘুরে $\angle XOY = \angle A$ কোণ উৎপন্ন করে এবং ঐ একই রিশ্মি এখন ঘড়ির কাঁটার ঘূর্ণনের দিকে ঘুরে $\angle YOZ = \angle B$ উৎপন্ন করল।

এখন কোণ উৎপন্নকারী ঘূর্ণায়মান রশ্মির শেষ অবস্থান, OZ এর উপর যে কোন একটি বিন্দু P নিয়ে OX এবং OY এর উপর যথাক্রমে PH এবং PD লম্বদ্বয় অংকন করি। আবার D বিন্দু থেকে OX এবং HP এর বর্ধিতাংশের উপর যথাক্রমে DK এবং DE লম্মদ্বয় আঁকি । তাহলে, স্পাইত $\angle DPE = 90^\circ - \angle PDE =$

এখন POH সমকোণী ত্রিভুজ্ব থেকে

 $\angle EDY = \angle A$.

তাহলে, $\angle XOZ = A - B$.

$$\sin (A - B) = \frac{PH}{OP} = \frac{EH - PE}{OP} = \frac{DK - PE}{OP} = \frac{DK}{OP} - \frac{PE}{OP} = \frac{DK}{OP} \cdot \frac{OD}{OP} - \frac{PE}{PD} \cdot \frac{PD}{OP}$$

$$= \sin A \cos B - \cos \angle DPE \sin B = \sin A \cos B - \cos A \sin B$$

 $\therefore \sin (A - B) = \sin A \cos B - \cos A \sin B'.$

$$\cos (A - B) = \frac{OH}{OP} = \frac{OK + KH}{OP} = \frac{OK + DE}{OP}$$

$$= \frac{OK}{OP} + \frac{DE}{OP} = \frac{OK}{OD} \cdot \frac{OD}{OP} + \frac{DE}{PD} \cdot \frac{PD}{OP}$$

$$= \cos A \cos B + \sin \angle DPE. \sin B = \cos A \cos B + \sin A \sin B$$

$$\therefore \cos (A - B) = \cos A \cos B + \sin A \sin B.$$

মন্তব্য : যেকোনো পরিমাপের $A \, \, \, \, \, B \,$ এরজন্য 7.2.1 এবং 7.2.2 অনুচ্ছেদের সূত্রগুলি প্রতিষ্ঠিত করা যায়। 7.2.3. প্রমাণ কর যে,

(i)
$$\tan (A + B) = \frac{\tan A + \tan B}{1 - \tan A \tan B}$$
, (ii) $\tan (A - B) = \frac{\tan A - \tan B}{1 + \tan A \tan B}$

প্রমাণ থ (i)
$$\tan (A + B) = \frac{\sin (A + B)}{\cos (A + B)} = \frac{\sin A \cos B + \cos A \sin B}{\cos A \cos B - \sin A \sin B}$$

$$= \frac{\frac{\sin A \cos B}{\cos A \cos B} + \frac{\cos A \sin B}{\cos A \cos B}}{\frac{\cos A \cos B}{\cos A \cos B} - \frac{\sin A \sin B}{\cos A \cos B}} = \frac{\tan A + \tan B}{1 - \tan A \tan B}$$

(ii)
$$\tan (A - B) = \frac{\sin (A - B)}{\cos (A - B)} = \frac{\sin A \cos B - \cos A \sin B}{\cos A \cos B + \sin A \sin B}$$

$$= \frac{\frac{\sin A \cos B}{\cos A \cos B} - \frac{\cos A \sin B}{\cos A \cos B}}{\frac{\cos A \cos B}{\cos A \cos B} + \frac{\sin A \sin B}{\cos A \cos B}} = \frac{\tan A - \tan B}{1 + \tan A \tan B}$$

মস্তব্য ঃ উপরোক্ত সূত্র দুইটি জ্যামিতিক নিয়মেও প্রতিষ্ঠিত করা যায়।

7.2.3. অনুসিম্পাস্ত : (i) $\sin{(A+B)}\sin{(A-B)} = \sin^2\!A - \sin^2\!B = \cos^2\!B - \cos^2\!A$; (ii) $\cos{(A+B)}\cos{(A-B)} = \cos^2\!A - \sin^2\!B = \cos^2\!B - \sin^2\!A$. প্রমাণ ঃ

- (i) $\forall A = (\sin A \cos B + \cos A \sin B)(\sin A \cos B \cos A \sin B)$ $= \sin^2 A \cos^2 B - \cos^2 A \sin^2 B$ $= \sin^2 A (1 - \sin^2 B) - \sin^2 B (1 - \sin^2 A) = \sin^2 A - \sin^2 B$ $= (1 - \cos^2 A) - (1 - \cos^2 B) = \cos^2 B - \cos^2 A$.

সমস্যা ও সমাধান ঃ

উদাহরণ 1. মান নির্ণয় কর : sin 75°, cos 75°, tan 15°.

সমাধান ঃ $\sin 75^\circ = \sin (45^\circ + 30^\circ) = \sin 45^\circ \cos 30^\circ + \cos 45^\circ \sin 30^\circ$ $= \frac{1}{\sqrt{2}} \cdot \frac{\sqrt{3}}{2} \cdot + \frac{1}{\sqrt{2}} \cdot \frac{1}{2} = \frac{\sqrt{3} + 1}{2\sqrt{2}} = \frac{1}{4} \left[\sqrt{6} + \sqrt{2} \right]$ $\cos 75^\circ = \cos (45^\circ + 30^\circ) = \cos 45^\circ \cos 30^\circ - \sin 45^\circ \sin 30^\circ$ $= \frac{1}{\sqrt{2}} \cdot \frac{\sqrt{3}}{2} - \frac{1}{\sqrt{2}} \cdot \frac{1}{2} = \frac{\sqrt{3} - 1}{2\sqrt{2}} = \frac{1}{4} \left[\sqrt{6} - \sqrt{2} \right]$

$$\tan 15^\circ = \tan (45^\circ - 30^\circ) = \frac{\tan 45^\circ - \tan 30^\circ}{1 + \tan 45^\circ \tan 30^\circ} = \frac{1 - \frac{1}{\sqrt{3}}}{1 + \frac{1}{\sqrt{3}}} = \frac{\sqrt{3} - 1}{\sqrt{3} + 1}$$
$$= \frac{(\sqrt{3} - 1)(\sqrt{3} - 1)}{(\sqrt{3} + 1)(\sqrt{3} - 1)} = \frac{4 - 2\sqrt{3}}{2} = 2 - \sqrt{3}.$$

উদাহরণ 2. দেখাও যে, cot 0 – cot 20 = cosec 20.

সমাধান ঃ বাম পক্ষ =
$$\frac{\cos \theta}{\sin \theta} - \frac{\cos 2\theta}{\sin 2\theta} = \frac{\sin 2\theta \cos \theta - \cos 2\theta \sin \theta}{\sin \theta \sin 2\theta}$$

= $\frac{\sin (2\theta - \theta)}{\sin \theta \sin 2\theta} = \frac{\sin \theta}{\sin \theta \sin 2\theta} = \frac{1}{\sin 2\theta} = \csc 2\theta$.

উদাহরণ 3. প্রমাণ কর যে, $\cos 68^\circ$ 20' $\cos 8^\circ$ 20' + $\cos 81^\circ$ 40' $\cos 21^\circ$ 40' = $\frac{1}{2}$.

সমাধান ঃ বাম পক্ষ = cos (90° - 21° 40′) cos 8° 20′ + cos (90° - 8° 20′) cos 21° 40′ = sin 21° 40′ cos 8° 20′ + sin 8° 20′ cos 21° 40′ = sin (21° 40′ + 8° 20′) = sin 30° = $\frac{1}{2}$.

উদাহরণ 4. প্রমাণ কর যে, $\frac{\cos 27^{\circ} - \cos 63^{\circ}}{\cos 27^{\circ} + \cos 63^{\circ}} = \tan 18^{\circ}$

সমাধান ঃ বাম পক
$$\frac{\cos 27^\circ - \cos (90^\circ - 27^\circ)}{\cos 27^\circ + \cos (90^\circ - 27^\circ)} = \frac{\cos 27^\circ - \sin 27^\circ}{\cos 27^\circ + \sin 27^\circ}$$

$$= \frac{1 - \tan 27^\circ}{1 + \tan 27^\circ} = \frac{\tan 45^\circ - \tan 27^\circ}{1 + \tan 45^\circ \tan 27^\circ}$$

$$= \tan (45^\circ - 27^\circ) = \tan 18^\circ.$$

উদাহরণ 5. যদি $a \sin(x + \theta) = b \sin(x - \theta)$ হয়, তবে প্রমাণ কর যে, $(a-b)\tan x + (a+b)\tan \theta = 0$

সমাধান ঃ দেওয়া আছে, $a \sin(x+\theta) = b \sin(x-\theta)$

বা, (a-b) tan x + (a+b) tan $\theta = 0$. [উভয়পক্ষকে $\cos \theta \cos x$ দারা ভাগ করে]

উদাহরণ 6.0 কোণকে α ও β অংশে এমনভাবে বিভক্ত করা হল যেন $an \alpha$ $\sin \beta = x \sin \beta$ হয়,

প্রমাণ কর যে, $\sin (\alpha - \beta) = \frac{x - y}{x + v} \sin \theta$.

সমাধান \boldsymbol{s} যেহেতু $\boldsymbol{\theta}$ কোণকে $\boldsymbol{\alpha}$ ও $\boldsymbol{\beta}$ অংশে বিভক্ত করা হয়েছে, $\boldsymbol{\beta}$ $\boldsymbol{\beta}$ কেন্দ্র করা হয়েছে, $\boldsymbol{\beta}$

আবার,
$$\tan \alpha$$
 : $\tan \beta = x$: $y \Rightarrow \frac{\tan \alpha}{\tan \beta} = \frac{x}{y} \Rightarrow \frac{\sin \alpha \cos \beta}{\cos \alpha \sin \beta} = \frac{x}{y}$

 $\therefore \frac{\sin \alpha \cos \beta - \cos \alpha \sin \beta}{\sin \alpha \cos \beta + \cos \alpha \sin \beta} = \frac{x - y}{x + y}$ [যোজন ও বিয়োজন প্রক্রিয়ায়]

প্রশালা 7.2

- 1. মান নির্ণয় কর :
 - (i) sin 15°, (ii) sin 105°, (iii) tan 75°, (iv) sec 165°, (v) cosec 375°.
- 2. A এবং B কোণম্বয়ের প্রত্যেকটি ধনাত্মক ও সূক্ষ্ম হলে এবং
 - যদি $\cos A = \frac{4}{5}$ $\cos B = \frac{3}{5}$ হয়, তবে $\sin (A + B)$ এবং $\cos (A + B)$ এর মান নির্ণয় কর।
 - (ii) যদি $\cot A = \frac{11}{2}$ $\tan B = \frac{7}{24}$ হয়, তবে $\cot (A B)$ এবং $\tan (A + B)$ এর মান নির্ণয় কর।
 - (iii) যদি $\sec A = \frac{17}{8}$ cosec $B = \frac{5}{4}$ হয়, তবে $\sec (A + B)$ এর মান নির্ণয় কর।
- 3. মান নির্ণয় কর:
 - (i) sin 28° 32′ sin 88° 32′ + sin 61° 28′ sin 1° 28′
 - (ii) cos 17°40′ sin 77°40′ + cos 107° 40′ sin 12° 20′
 - (iii) $\frac{\tan 68^{\circ} 35' \cot 66^{\circ} 25'}{1 + \tan 68^{\circ} 35' \cot 66^{\circ} 25'}$

প্রমাণ কর : (4-18)

- $\cos x \sin (y z) + \cos y \sin (z x) + \cos z \sin (x y) = 0.$ $\sin x \sin (x + 30^\circ) + \cos x \sin (x + 120^\circ) = \frac{\sqrt{3}}{2}.$
- $\cos (x 60^{\circ}) \cos (x 30^{\circ}) \sin (x 60^{\circ}) \sin (x + 330^{\circ}) = \sin 2x$. 6.
- $\sin (n+1)\theta \sin (n-1)\theta + \cos (n+1)\theta \cos (n-1)\theta = \cos 2\theta$ 7.
- $\frac{\tan (3\theta 2\phi) + \tan 2\phi}{1 \tan (3\theta 2\phi) \tan 2\phi} = \tan 3\theta.$
- $\tan 36^{\circ} + \tan 9^{\circ} + \tan 36^{\circ} \tan 9^{\circ} = 1.$

[**4.** '08]

 $\frac{\sin (B-C)}{\sin B \sin C} + \frac{\sin (C-A)}{\sin C \sin A} + \frac{\sin (A-B)}{\sin A \sin B} = 0.$

- 11. $1 + \tan 2A \tan A = \sec 2A$.
- 12. $\sin A + \sin (A + 120^\circ) + \sin (A 120^\circ) = 0$.
- 13. $\csc (x y) = \frac{\sec x \sec y}{\tan x \tan y}$
- 14. $\tan 3A \tan 2A \tan A = \tan 3A \tan 2A \tan A$.
- 15. $\tan \left(\alpha + \frac{\pi}{3}\right) + \tan \left(\alpha \frac{\pi}{3}\right) = \frac{4 \sin 2\alpha}{1 4 \sin^2 \alpha}$.
- 16. (i) $\frac{\cos 8^{\circ} + \sin 8^{\circ}}{\cos 8^{\circ} \sin 8^{\circ}} = \tan 53^{\circ}$. (ii) $\frac{\sin 75^{\circ} + \sin 15^{\circ}}{\sin 75^{\circ} \sin 15^{\circ}} = \sqrt{3}$.
- 17. যদি $\frac{\sin{(\alpha + \gamma)}}{\sin{\alpha}} = \frac{2\sin{(\beta + \gamma)}}{\sin{\beta}}$ হয়, তবে দেখাও যে, $\cot{\alpha} \cot{\gamma} = 2\cot{\beta}$.
- 18. যদি $\tan \beta = \frac{2 \sin \alpha \sin \gamma}{\sin (\alpha + \gamma)}$ হয়, তবে দেখাও যে, $\cot \gamma + \cot \alpha = 2 \cot \beta$.
- 19. যদি $A+B+C=\pi$ এবং $\cos A=\cos B$ $\cos C$ হয়, তবে দেখাও যে,
 - (i) $\tan A = \tan B + \tan C$; [পি. ব. কু. '১৩] (ii) $\tan B \tan C = 2$.
- 20. যদি $A + B = \frac{\pi}{4}$ হয়, তবে দেখাও যে, $(1 + \tan A)(1 + \tan B) = 2$.
- 21. (i) $\sin (A B C)$ এবং $\cos (A B + C)$ কে বিস্তৃত কর।
 - (ii) $\cot (A + B + C)$ কে $\cot A$, $\cot B$, $\cot C$ পদে প্রকাশ কর।
- 22. যদি $\sin \alpha \sin \beta \cos \alpha \cos \beta + 1 = 0$ হয়, তবে দেখাও যে, $1 + \cot \alpha \tan \beta = 0$. [য. '০৭]
- 23. (i) যদি $\cot \alpha + \cot \beta = a$, $\tan \alpha + \tan \beta = b$ এবং $\alpha + \beta = \theta$ হয়, তবে প্রমাণ কর যে, $(a-b)\tan \theta = ab$.
 - (ii) যদি $\theta + \varphi = \alpha$ এবং $\tan \theta = k \tan \varphi$ হয়, তবে দেখাও যে, $\sin (\theta \varphi) = \frac{k-1}{k+1} \sin \alpha$.
- 24. (i) যদি $m \sin (\theta \alpha) = n \sin (\theta + \alpha)$ হয়, তবে দেখাও যে, $(m n) \tan \theta = (m + n) \tan \alpha$.
 - (ii) যদি $a\cos(x+a)=b\cos(x-a)$ হয়, তবে প্রমাণ কর যে, $(a+b)\tan x=(a-b)\cot \alpha$.
- 25. (i) যদি $\cot \theta = \frac{a \cos x b \cos y}{a \sin x + b \sin y}$ হয়, তবে দেখাও যে, $\frac{\sin (\theta x)}{\sin (\theta + y)} = \frac{b}{a}$
 - (ii) $a \sin (\theta + \alpha) = b \sin (\theta + \beta)$ হলে, প্রমাণ কর যে, $\cot \theta = \frac{a \cos \alpha b \cos \beta}{b \sin \beta a \sin \alpha}$.
- 26. যদি $\tan \theta = \frac{x \sin \phi}{1 x \cos \phi}$ এবং $\tan \phi = \frac{y \sin \theta}{1 y \cos \theta}$ হয়, তবে প্রমাণ কর যে, $\frac{\sin \theta}{\sin \phi} = \frac{x}{y}$
- 27. যদি $\cos{(A+B)}\sin{(C+D)}=\cos{(A-B)}\sin{(C-D)}$ হয়, তবে দেখাও যে, $\cot{A}\cot{B}\cot{C}=\cot{D}$.
- 28. যদি $\tan \theta = \frac{a \sin x + b \sin y}{a \cos x + b \cos y}$ হয়, তবে দেখাও যে, $a \sin (\theta x) + b \sin (\theta y) = 0$.
- 29. যদি $\tan \beta = \frac{n \sin \alpha \cos \alpha}{1 n \sin^2 \alpha}$ হয়, তবে দেখাও যে, $\tan (\alpha \beta) = (1 n) \tan \alpha$.
- 30. যদি $\sqrt{2}\cos A = \cos B + \cos^3 B$ এবং $\sqrt{2}\sin A = \sin B \sin^3 B$ হয়, তবে প্রমাণ কর যে, $\sin (A B) = \pm \frac{1}{3}$ [ঢা. '08]

7.2.4. থেয়ীগিক কোণের ত্রিকোণমিতিক অনুপাত থেকে কয়েকটি অনুসিন্ধান্ত

যৌগিক কোণের অনুপাত থেকে আমরা পাই $\sin A \cos B + \cos A \sin B = \sin (A + B) \dots \dots (i)$

এবং $\sin A \cos B - \cos A \sin B = \sin (A - B) \dots \dots$ (ii)

- (i) এবং (ii) যোগ করে আমরা পাই, 2 sin A cos B = sin (A + B) + sin (A − B) (1)
- (i) থেকে (ii) বিয়োগ করে আমরা পাই, $2 \cos A \sin B = \sin (A + B) \sin (A B)$ (2)

আবার, $\cos A \cos B - \sin A \sin B = \cos (A + B) \dots$ (iii)

এখন (iii) এবং (iv) যোগ করে আমরা পাই, $2\cos A\cos B = \cos (A+B) + \cos (A-B)$ (3)

(iv) থেকে (iii) বিয়োগ করে আমরা পাই, $2 \sin A \sin B = \cos (A - B) - \cos (A + B)$ (4) মনে করি, A + B = C এবং A - B = D তাহলে, $A = \frac{C + D}{2}$ এবং $B = \frac{C - D}{2}$.

এখন (1) থেকে (4) পর্যন্ত সূত্রে A এবং B এর পরিবর্তে এদের জন্য উপরে প্রান্ত মান স্থাপন করে আমরা যথাক্রমে পাই

$$\sin C + \sin D = 2 \sin \frac{C+D}{2} \cos \frac{C-D}{2}; \quad \sin C - \sin D = 2 \cos \frac{C+D}{2} \sin \frac{C-D}{2}$$

$$\cos C + \cos D = 2 \cos \frac{C+D}{2} \cos \frac{C-D}{2}; \quad \cos C - \cos D = 2 \sin \frac{C+D}{2} \sin \frac{D-C}{2}.$$

সমস্যা ও সমাধান:

উদাহরণ 1. দেখাও যে, (ক) $\cos 70^{\circ} - \cos 10^{\circ} + \sin 40^{\circ} = 0$,

(4) $\sin 10^{\circ} \sin 50^{\circ} \sin 70^{\circ} = \frac{1}{8}$.

সমাধান **ঃ** (ক) বাম পক্ষ =
$$\cos 70^\circ - \cos 10^\circ + \sin 40^\circ$$

= $2 \sin 40^\circ \sin (-30^\circ) + \sin 40^\circ = -2 \sin 40^\circ \sin 30^\circ + \sin 40^\circ$
= $-2 \sin 40^\circ \cdot \frac{1}{2} + \sin 40^\circ = -\sin 40^\circ + \sin 40^\circ = 0$.

(4)
$$\sqrt[4]{4} = \sin 10^{\circ} \left(\frac{1}{2}\right) \cdot 2 \sin 70^{\circ} \sin 50^{\circ} = \frac{1}{2} \sin 10^{\circ} (\cos 20^{\circ} - \cos 120^{\circ})$$

$$= \frac{1}{2} \sin 10^{\circ} \left(\cos 20^{\circ} + \frac{1}{2}\right) = \frac{1}{2} \cos 20^{\circ} \sin 10^{\circ} + \frac{1}{4} \sin 10^{\circ}$$

$$= \frac{1}{4} \cdot 2 \cos 20^{\circ} \sin 10^{\circ} + \frac{1}{4} \sin 10^{\circ} = \frac{1}{4} (\sin 30^{\circ} - \sin 10^{\circ}) + \frac{1}{4} \sin 10^{\circ}$$

$$= \frac{1}{4} \left(\frac{1}{2} - \sin 10^{\circ}\right) + \frac{1}{4} \sin 10^{\circ} = \frac{1}{8} - \frac{1}{4} \sin 10^{\circ} + \frac{1}{4} \sin 10^{\circ} = \frac{1}{8}$$

উদাহরণ 2. প্রমাণ কর যে, $\frac{1}{2}$ cosec $10^{\circ} - 2 \sin 70^{\circ} = 1$.

সমাধান ঃ বাম পক্ষ =
$$\frac{1}{2\sin 10^\circ} - 2\sin 70^\circ = \frac{1-4\sin 70^\circ \sin 10^\circ}{2\sin 10^\circ}$$

$$= \frac{1-2\left(\cos 60^\circ - \cos 80^\circ\right)}{2\sin 10^\circ} = \frac{1-2\left(\frac{1}{2} - \cos 80^\circ\right)}{2\sin 10^\circ} = \frac{2\cos 80^\circ}{2\sin 10^\circ}$$

$$= \frac{\cos (90^\circ - 10^\circ)}{\sin 10^\circ} = \frac{\sin 10^\circ}{\sin 10^\circ} = 1.$$

উদাহরণ 3. দেখাও যে, sin 27° + cos 27° = √2 cos 18°.

সমাধান ঃ বাম পক্ষ = $\sin 27^\circ + \cos (90^\circ - 63^\circ) = \sin 27^\circ + \sin 63^\circ$ $= 2 \sin \frac{27^\circ + 63^\circ}{2} \cos \frac{63^\circ - 27^\circ}{2} = 2 \sin 45^\circ \cos 18^\circ = 2 \cdot \frac{1}{\sqrt{2}} \cos 18^\circ$ $= \sqrt{2} \cos 18^\circ.$

উদাহরণ 4. প্রমাণ কর যে, $\frac{\sin \theta + \sin 5\theta + \sin 9\theta + \sin 13\theta}{\cos \theta + \cos 5\theta + \cos 9\theta + \cos 13\theta} = \tan 7\theta$.

সমাধান ঃ বাম পক্ষ =
$$\frac{(\sin 13\theta + \sin \theta) + (\sin 9\theta + \sin 5\theta)}{(\cos 13\theta + \cos \theta) + (\cos 9\theta + \cos 5\theta)}$$

= $\frac{2 \sin 7\theta \cos 6\theta + 2 \sin 7\theta \cos 2\theta}{2 \cos 7\theta \cos 6\theta + 2 \cos 7\theta \cos 2\theta}$
= $\frac{2 \sin 7\theta (\cos 6\theta + \cos 2\theta)}{2 \cos 7\theta (\cos 6\theta + \cos 2\theta)} = \frac{\sin 7\theta}{\cos 7\theta} = \tan 7\theta$.

উদাহরণ 5. প্রমাণ কর যে, tan 54° = tan 36° + 2 tan 18°.

সমাধান : আমাদের প্রমাণ করতে হবে যে, tan 54° = tan 36° + 2 tan 18°,

ष्रवी९, tan 54° - tan 36° = 2 tan 18°

এখন,
$$\tan 54^\circ - \tan 36^\circ$$

$$= \frac{\sin 54^\circ}{\cos 54^\circ} - \frac{\sin 36^\circ}{\cos 36^\circ} = \frac{\sin 54^\circ \cos 36^\circ - \sin 36^\circ \cos 54^\circ}{\cos 54^\circ \cos 36^\circ}$$

$$= \frac{\sin (54^\circ - 36^\circ)}{\cos 54^\circ \cos 36^\circ} = \frac{2 \sin 18^\circ}{2 \cos 54^\circ \cos 36^\circ} = \frac{2 \sin 18^\circ}{\cos 90^\circ + \cos 18^\circ} = \frac{2 \sin 18^\circ}{\cos 18^\circ} = 2 \tan 18^\circ.$$

সূতরাং, tan 54° = tan 36° + 2 tan 18°.

প্রশুমালা 7.3

প্রমাণ কর ঃ (প্রশ্ন 1 - 15)

1.
$$\frac{\cos A + \cos B}{\cos A - \cos B} = \cot \frac{1}{2}(A + B) \cot \frac{1}{2}(B - A)$$
.

2.
$$\sin A = \frac{1}{\sqrt{2}}$$
 are $\sin B = \frac{1}{\sqrt{3}}$ are, $\tan \frac{1}{2}(A + B) \cot \frac{1}{2}(A - B) = 5 + 2\sqrt{6}$.

3.
$$\cos 40^{\circ} + \cos 80^{\circ} + \cos 160^{\circ} = 0$$
.

4. (a)
$$\cos A + \cos (120^{\circ} - A) + \cos (120^{\circ} + A) = 0$$
.

(b)
$$\sin \theta + \sin (120^{\circ} + \theta) + \sin (240^{\circ} + \theta) = 0.$$

[ঢা. '১২]

5.
$$\sin \theta \sin (60^{\circ} - \theta) \sin (60^{\circ} + \theta) = \frac{1}{4} \sin 3\theta$$
.

6.
$$\sec\left(\frac{\pi}{4} + \theta\right) \sec\left(\frac{\pi}{4} - \theta\right) = 2 \sec 2\theta$$
.

7. (i)
$$\cos 20^\circ \cos 40^\circ \cos 60^\circ \cos 80^\circ = \frac{1}{16}$$

(ii)
$$\sin 20^\circ \sin 40^\circ \sin 60^\circ \sin 80^\circ = \frac{3}{16}$$

(iii)
$$\tan 20^{\circ} \tan 40^{\circ} \tan 80^{\circ} = \sqrt{3}$$
.

[ব. '০৭; কু. '০৯; রা. '১০]

(iv)
$$16 \cos \frac{2\pi}{15} \cos \frac{4\pi}{15} \cos \frac{8\pi}{15} \cos \frac{14\pi}{15} = 1.$$

[সিঁ. '১১; দি. '১২; ব. '১৩]

[v. 'o€]

8.
$$\frac{\sin \alpha + \sin 3\alpha + \sin 5\alpha}{\cos \alpha + \cos 3\alpha + \cos 5\alpha} = \tan 3\alpha.$$
9.
$$\frac{\sin 7\theta - \sin 3\theta - \sin 5\theta + \sin \theta}{\cos 7\theta + \cos 3\theta - \cos 5\theta - \cos \theta} = \tan 2\theta.$$
10.
$$\frac{\cos 8\theta + 6\cos 6\theta + 13\cos 4\theta + 8\cos 2\theta}{\cos 7\theta + 5\cos 5\theta + 8\cos 3\theta} = 2\cos \theta.$$

11.
$$4\cos\theta\cos\left(\frac{2\pi}{3}+\theta\right)\cos\left(\frac{4\pi}{3}+\theta\right)=\cos 3\theta$$

12. (i)
$$\cos 85^{\circ} + \sin 85^{\circ} = \sqrt{2} \cos 40^{\circ}$$
,
(ii) $\sin 18^{\circ} + \cos 18^{\circ} = \sqrt{2} \cos 27^{\circ}$.

14.
$$\tan \frac{45^{\circ} + \theta}{2} \tan \frac{45^{\circ} - \theta}{2} = \frac{\sqrt{2} \cos \theta - 1}{\sqrt{2} \cos \theta + 1}$$
 [vi. \(\frac{\pi}{2}\). 'ob; \(\frac{\pi}{2}\). '

15.
$$\cot (A + 15^\circ) - \tan (A - 15^\circ) = \frac{4 \cos 2A}{2 \sin 2A + 1}$$

16. যদি
$$A \neq B$$
 এবং $\sin A + \cos A = \sin B + \cos B$ হয়, তবে প্রমাণ কর যে, $A + B = \frac{\pi}{2}$ [কু. '১২]

17. যদি
$$\sin x = m \sin y$$
 হয়, তবে দেখাও যে, $\tan \frac{1}{2}(x - y) = \frac{m-1}{m+1} \tan \frac{1}{2}(x + y)$.

18. যদি
$$\alpha+\beta=\theta$$
 এবং $\cos\alpha=k\cos\beta$ হয়, ভবে দেখাও যে, $\tan\frac{1}{2}(\alpha-\beta)=\frac{1-k}{1+k}\cot\frac{1}{2}\theta$.

19. যদি $(\theta-\phi)$ সুন্ধ এবং $\sin\theta+\sin\phi=\sqrt{3}(\cos\phi-\cos\theta)$ হয়, তবে দেখাও যে, $\sin3\theta+\sin3\phi=0$.

7.2.5. গুণিতক কোণের ত্রিকোণমিতিক অনুপাত (Trigonometrical ratios of multiple angles)

2A, 3A, 4A ইত্যাদি কোণকে A কোণৈর গুণিতক কোণ বলা হয়। এখন আমরা 2A, 3A ইত্যাদি কোণের ত্রিকোণমিতিক অনুপাতকে A কোণের ত্রিকোণমিতিক অনুপাতে প্রকাশ করব।

(ক) 2A কোণের ত্রিকোণমিতিক অনুপাত

আমরা জ্বানি
$$\sin (A + B) = \sin A \cos B + \cos A \sin B$$
 এবং $\cos (A + B) = \cos A \cos B - \sin A \sin B$.

প্রথম সূত্রে B = A বসিয়ে আমরা পাই, $\sin 2A = \sin A \cos A + \cos A \sin A = 2 \sin A \cos A$ (i)

ৰিতীয় সূত্ৰে B=A বসিয়ে আমরা পাই, $\cos 2A=\cos A.\cos A-\sin A\sin A=\cos^2 A-\sin^2 A...(ii)$ আবার (ii) সূত্রের ডান পক্ষকে কেবল $\sin A$, বা $\cos A$ অনুপাতে পরিবর্তন করে আমরা পাই

$$\cos 2A = 1 - \sin^2 A - \sin^2 A = 1 - 2 \sin^2 A$$
 ... (iii)

এবং
$$\cos 2A = \cos^2 A - (1 - \cos^2 A) = 2 \cos^2 A - 1$$
 ... (iv)

পক্ষ পরিবর্তন করে (iii) এবং (iv) থেকে আমরা পাই

$$1-\cos 2A=2\sin^2 A;\qquad \ldots \qquad \ldots \qquad (v)$$

এবং
$$1 + \cos 2A = 2 \cos^2 A$$
; ... (vi)

(v) কে (vi) দ্বারা ভাগ করে আমরা পাই, $\frac{1-\cos 2A}{1+\cos 2A}=\tan^2 A$ (vii)

আবার
$$\tan (A + B) = \frac{\tan A + \tan B}{1 - \tan A \tan B}$$
 সূত্রে $B = A$ বসিয়ে আমরা পাই

$$\tan 2A = \frac{\tan A + \tan A}{1 - \tan A \cdot \tan A} = \frac{2 \tan A}{1 - \tan^2 A} \dots (viii)$$

উদাহরণ :

(i)
$$\sin 4\theta = \sin (2.2\theta) = 2 \sin 2\theta \cos 2\theta$$
;

(ii)
$$\sin 8\theta = \sin (2.4\theta) = 2 \sin 4\theta \cos 4\theta$$
;

(iii)
$$\cos 16\theta = \cos (2.8\theta) = \cos^2 8\theta - \sin^2 8\theta = 1 - 2\sin^2 8\theta = 2\cos^2 8\theta - 1$$
.

(খ) sin 2A এবং cos 2A অনুপাতকে tan A অনুপাতে প্রকাশ করা

$$\sin 2A = 2 \sin A \cos A = 2 \cdot \frac{\sin A}{\cos A} \cdot \cos^2 A = 2 \tan A \cdot \frac{1}{\sec^2 A} = \frac{2 \tan A}{\sec^2 A} = \frac{2 \tan A}{1 + \tan^2 A}$$

$$\cos 2A = \cos^2 A - \sin^2 A = \cos^2 A \left(1 - \frac{\sin^2 A}{\cos^2 A} \right)$$
$$= \frac{1}{\sec^2 A} \cdot (1 - \tan^2 A) = \frac{1 - \tan^2 A}{\sec^2 A} = \frac{1 - \tan^2 A}{1 + \tan^2 A} .$$

(গ) 3A কোণের ত্রিকোণমিতিক অনুপাত

$$\sin 3A = \sin (2A + A) = \sin 2A \cos A + \cos 2A \sin A$$

$$= 2 \sin A \cos A \cdot \cos A + (1 - 2 \sin^2 A) \sin A$$

$$= 2 \sin A \cos^2 A + (1 - 2 \sin^2 A) \sin A$$

$$= 2 \sin A (1 - \sin^2 A) + (1 - 2 \sin^2 A) \sin A = 3 \sin A - 4 \sin^3 A$$

$$\cos 3A = \cos (2A + A) = \cos 2A \cos A - \sin 2A \sin A$$

= $(2 \cos^2 A - 1) \cos A - 2 \sin A \cos A \cdot \sin A$

$$= (2\cos^2 A - 1)\cos A - 2\cos A (1 - \cos^2 A) = 4\cos^3 A - 3\cos A.$$

$$\frac{2\tan A}{\cos^2 A} + \tan A$$

$$\tan 3A = \tan (2A + A) = \frac{\tan 2A + \tan A}{1 - \tan 2A \tan A} = \frac{\frac{2 \tan A}{1 - \tan^2 A} + \tan A}{1 - \frac{2 \tan A}{1 - \tan^2 A} \cdot \tan A}$$

$$= \frac{2 \tan A + \tan A (1 - \tan^2 A)}{1 - \tan^2 A} = \frac{3 \tan A - \tan^3 A}{1 - 3 \tan^2 A}.$$

সমস্যা ও সমাধান:

উদাহরণ 1. cos 59 এর মান cos 9 অনুপাতে প্রকাশ কর।

[রা. '১১]

সমাধান
$$\cos 5\theta = \cos (\theta + 4\theta) = \cos \theta \cos 4\theta - \sin \theta \sin 4\theta$$

$$= \cos \theta (2 \cos^2 2\theta - 1) - \sin \theta.2 \sin 2\theta \cos 2\theta$$

$$=\cos \theta \{2(2\cos^2 \theta - 1)^2 - 1\} - 2\sin \theta.2\sin \theta\cos \theta(2\cos^2 \theta - 1)$$

$$= \cos\theta \{8\cos^4\theta - 8\cos^2\theta + 1\} - 4\cos\theta (1 - \cos^2\theta) (2\cos^2\theta - 1)$$

$$= \cos \theta \{ 8 \cos^4 \theta - 8 \cos^2 \theta + 1 \} - 4 \cos \theta (3 \cos^2 \theta - 2 \cos^4 \theta - 1)$$

$$= 8 \cos^{5} \theta - 8 \cos^{3} \theta + \cos \theta - 12 \cos^{3} \theta + 8 \cos^{5} \theta + 4 \cos \theta$$

$$= 16 \cos^5 \theta - 20 \cos^3 \theta + 5 \cos \theta.$$

উদাহরণ 2. প্রমাণ কর যে, $\cos^4 x = \frac{3}{8} + \frac{1}{2}\cos 2x + \frac{1}{8}\cos 4x$.

সমাধান ៖
$$\cos^4 x = \frac{1}{4} 4 \cos^4 x = \frac{1}{4} (2 \cos^2 x)^2 = \frac{1}{4} (1 + \cos 2x)^2 = \frac{1}{4} (1 + 2 \cos 2x + \cos^2 2x)$$

$$= \frac{1}{4} + \frac{1}{2} \cos 2x + \frac{1}{8} \cdot 2 \cos^2 2x = \frac{1}{4} + \frac{1}{2} \cos 2x + \frac{1}{8} (1 + \cos 4x)$$

$$= \frac{3}{8} + \frac{1}{2} \cos 2x + \frac{1}{8} \cos 4x.$$

উদাহরণ 3. যদি $\tan \theta = \frac{y}{r}$ হয়, তবে প্রমাণ কর যে, $x \cos 2\theta + y \sin 2\theta = x$.

সমাধান ঃ দেওয়া আছে $\tan \theta = \frac{y}{r}$, বা $\frac{\sin \theta}{\cos \theta} = \frac{y}{r}$ বা $y \cos \theta = x \sin \theta$

 $\therefore x \cos 2\theta + y \sin 2\theta = x (1 - 2 \sin^2 \theta) + y \cdot 2 \sin \theta \cos \theta$ $= x - 2x \sin^2 \theta + 2 \sin \theta$. $y \cos \theta$

 $= x - 2x \sin^2 \theta + 2x \sin^2 \theta = x$.

উদাহরণ 4. প্রমাণ কর যে, $4\cos^3 x \sin 3x + 4\sin^3 x \cos 3x = 3\sin 4x$.

সমাধান ঃ বা, প, = $2 \cos^2 x.2 \sin 3x \cos x + 2 \sin^2 x.2 \cos 3x \sin x$

 $= 2 \cos^2 x \cdot (\sin 4x + \sin 2x) + 2 \sin^2 x (\sin 4x - \sin 2x)$

 $= 2 \sin 4x \cdot (\cos^2 x + \sin^2 x) + 2 \sin 2x \cdot (\cos^2 x - \sin^2 x)$

 $= 2 \sin 4x + 2 \sin 2x \cos 2x = 2 \sin 4x + \sin 4x = 3 \sin 4x$.

উদাহরণ 5. প্রমাণ কর যে, $\cos^3 x + \cos^3(120^\circ + x) + \cos^3(240^\circ + x) = \frac{3}{4}\cos 3x$.

সমাধান ঃ আমরা জানি $\cos 3\theta = 4 \cos^3 \theta - 3 \cos \theta$ বা, $\cos^3 \theta = \frac{1}{4} (\cos 3\theta + 3 \cos \theta)$

$$\therefore \cos^3 x + \cos^3 (120^\circ + x) + \cos^3 (240^\circ + x)$$

$$= \frac{1}{4} (\cos 3x + 3\cos x) + \frac{1}{4} {\cos 3(120^\circ + x) + 3\cos (120^\circ + x)} + \frac{1}{4} {\cos 3(240^\circ + x) + 3\cos (240^\circ + x)}$$

$$= \frac{1}{4} (\cos 3x + 3 \cos x) + \frac{1}{4} {\cos (360^{\circ} + 3x) + 3 \cos (120^{\circ} + x)} + \frac{1}{4} {\cos (720^{\circ} + 3x) + 3 \cos (240^{\circ} + x)}$$

$$= \frac{1}{4}\cos 3x + \frac{3}{4}\cos x + \frac{1}{4}\cos 3x + \frac{3}{4}\cos (120^{\circ} + x) + \frac{1}{4}\cos 3x + \frac{3}{4}\cos (240^{\circ} + x)$$

 $= \frac{3}{4}\cos 3x + \frac{3}{4}\cos x + \frac{3}{4}\cdot 2\cos (180^{\circ} + x)\cos 60^{\circ}$

$$= \frac{3}{4}\cos 3x + \frac{3}{4}\cos x + \frac{3}{4}\cdot 2(-\cos x)\cdot \frac{1}{2} = \frac{3}{4}\cos 3x + \frac{3}{4}\cos x - \frac{3}{4}\cos x = \frac{3}{4}\cos 3x.$$

প্রশালা 7.4

প্রমাণ কর ঃ (প্রশ্ন 1-3)

$$1. \quad \frac{\sin 2A}{1 + \cos 2A} = \tan A.$$

1.
$$\frac{\sin 2A}{1+\cos 2A} = \tan A.$$
 2.
$$\frac{1-\cos 2\theta + \sin 2\theta}{1+\cos 2\theta + \sin 2\theta} = \tan \theta.$$

3.
$$\sin^2\left(\frac{\pi}{8} + \frac{\theta}{2}\right) - \sin^2\left(\frac{\pi}{8} - \frac{\theta}{2}\right) = \frac{1}{\sqrt{2}}\sin\theta$$
.

[সি. '০৫; রা. '১০]

4. যদি $\tan \theta = \frac{1}{2}$ হয়, তবে দেখাও যে, $10 \sin 2\theta - 6 \tan 2\theta + 5 \cos 2\theta = 3$.

প্রমাণ কর: (প্রশু 5 - 16)

 $\cos nA \cos (n+2)A - \cos^2 (n+1)A + \sin^2 A = 0.$ 5.

6.
$$\frac{\cos{(45^{\circ} + A)}}{\cos{(45^{\circ} - A)}} = \sec{2A} - \tan{2A}$$

 $\frac{\sin \alpha - \sqrt{1 + \sin 2\alpha}}{\cos \alpha - \sqrt{1 + \sin 2\alpha}} = \cot \alpha$; যখন α ধনাত্মক ও সৃক্ষকোণ।

8.
$$\frac{3 \sin x - \sin 3x}{3 \cos x + \cos 3x} = \tan^3 x$$
.

9.
$$\cot 3A = \frac{\cot^3 A - 3 \cot A}{3 \cot^2 A - 1}$$

10.
$$\tan 2A = (\sec 2A + 1) \sqrt{\sec^2 A - 1}$$
. 11. $\cos^3 A \cos 3A + \sin^3 A \sin 3A = \cos^3 2A$.

12.
$$\tan A \tan (60^{\circ} + A) \tan (120^{\circ} + A) = -\tan 3A$$
.

13.
$$\sec x = \frac{2}{\sqrt{2 + \sqrt{2 + 2\cos 4x}}}$$

যে. '০৫: দি. '০১।

14. (i)
$$4(\sin^3 10^\circ + \cos^3 20^\circ) = 3 (\sin 10^\circ + \cos 20^\circ);$$

(ii)
$$4 (\sin^3 25^\circ + \cos^3 5^\circ) = 3\sqrt{3} \sin 55^\circ$$
.

15. (i)
$$\cos^2(A - 120^\circ) + \cos^2 A + \cos^2(A + 120^\circ) = \frac{3}{2}$$

। দি. '১৩ ।

(ii)
$$\sin^2 (60^\circ + A) + \sin^2 A + \sin^2 (60^\circ - A) = \frac{3}{2}$$

[রা. '১২; চ. '১১]

16.
$$\sin^3 x + \sin^3 (120^\circ + x) + \sin^3 (240^\circ + x) = -\frac{3}{4} \sin 3x$$
. [রা. '০৬, সি. '১০; চ. '০৭]

17. যদি
$$\cos A + \cos B + \cos C = 0$$
 হয়, তবে প্রমাণ কর যে, $\cos 3A + \cos 3B + \cos 3C = 12 \cos A \cos B \cos C$.

18. যদি
$$\tan \theta = \frac{1}{7}$$
 এবং $\tan \phi = \frac{1}{3}$ হয়, তবে দেখাও যে, $\cos 2\theta = \sin 4\phi$.

19. যদি 2
$$\tan \alpha = 3 \tan \beta$$
 হয়, তবে প্রমাণ কর যে, $\tan (\alpha - \beta) = \frac{\sin 2\beta}{5 - \cos 2\beta}$

20. যদি
$$\tan \alpha = 2 \tan \beta$$
 হয়, তবে দেখাও যে, $\tan (\alpha + \beta) = \frac{3 \sin 2\alpha}{1 + 3 \cos 2\alpha}$

21. যদি
$$(A+B) \neq 0$$
 এবং $\sin A + \sin B = 2 \sin (A+B)$ হয়, তবে দেখাও যে, $\tan \frac{A}{2} \tan \frac{B}{2} = \frac{1}{3}$

22. প্রমাণ কর যে,
$$\tan \theta + 2 \tan 2\theta + 4 \tan 4\theta + 8 \cot 8\theta = \cot \theta$$
. [সি. 'o৮]

22. প্রমাণ কর যে,
$$\tan \theta + 2 \tan 2\theta + 4 \tan 4\theta + 8 \cot 8\theta = \cot \theta$$
.
23. প্রমাণ কর যে, (i) $\frac{1}{\sin 10^{\circ}} - \frac{\sqrt{3}}{\cos 10^{\circ}} = 4$.

[সি. চ. '১২; দি. '১১; য. রা. '১৩]

(ii)
$$\frac{\sqrt{3}}{\sin 20^{\circ}} - \frac{1}{\cos 20^{\circ}} = 4.$$

[য. ঢা. '১০]

24. যদি
$$a\cos\alpha + b\sin\alpha = a\cos\beta + b\sin\beta$$
 হয়, তবে দেখাও যে,
$$\cos^2\frac{\alpha+\beta}{2} - \sin^2\frac{\alpha+\beta}{2} = \frac{\alpha^2-b^2}{\alpha^2+b^2}$$

[সি. '০৩; কু. '০৮]

7.2.6. উপগুণিতক কোণের ত্রিকোণমিতিক অনুপাত (Trigonometrical ratios of sub-multiple angles)

 $\frac{\theta}{2}$, $\frac{\theta}{3}$, $\frac{\theta}{4}$ ইত্যাদি কোণকে θ কোণের উপ-গুণিতক কোণ বলা হয়।

$$\sin\theta = \sin\left(\frac{1}{2}\theta + \frac{1}{2}\theta\right) = \sin\frac{1}{2}\theta\cos\frac{1}{2}\theta + \cos\frac{1}{2}\theta\sin\frac{1}{2}\theta = 2\sin\frac{1}{2}\theta\cos\frac{1}{2}\theta; \quad (i)$$

$$\cos \theta = \cos \left(\frac{1}{2}\theta + \frac{1}{2}\theta\right) = \cos^2 \frac{1}{2}\theta - \sin^2 \frac{1}{2}\theta = 2\cos^2 \frac{1}{2}\theta - 1 = 1 - 2\sin^2 \frac{1}{2}\theta \; ; \; \dots \quad \text{(ii)}$$

$$\tan \theta = \tan \left(\frac{1}{2}\theta + \frac{1}{2}\theta\right) = \frac{2 \tan \frac{1}{2}\theta}{1 - \tan^2 \frac{1}{2}\theta} \dots (iii)$$

(ii) থেকে আমরা পাই,
$$1 + \cos \theta = 2\cos^2 \frac{1}{2} \theta$$
 (iv) $1 - \cos \theta = 2\sin^2 \frac{1}{2} \theta$ (v)

$$(v) + (iv) \Rightarrow \tan^2 \frac{1}{2} \theta = \frac{1 - \cos \theta}{1 + \cos \theta}$$
 (vi)

7.2.7. 18° এবং 36° কোণের ত্রিকোণমিডিক অনুপাড

মনে করি, $\theta = 18^\circ$. তাহলে, $5\theta = 90^\circ$; $\therefore 2\theta = 5\theta - 3\theta = 90^\circ - 3\theta$ সূতরাং, $\sin 2\theta = \sin (90^\circ - 3\theta) = \cos 3\theta$ বা, $2\sin \theta\cos \theta = 4\cos^3\theta - 3\cos\theta$ যেহেতু $\cos \theta$, অধাৎ $\cos 18^\circ$ এর মান শূন্য নয়, অতএব উভয়পক্ষকে $\cos \theta$ ছারা ভাগ করে আমরা পাই, $2\sin \theta = 4\cos^2\theta - 3 = 4(1-\sin^2\theta) - 3$ বা, $4\sin^2\theta + 2\sin\theta - 1 = 0$

$$\therefore \sin \theta = \frac{-2 \pm \sqrt{4 + 16}}{8} = \frac{\pm \sqrt{5} - 1}{4} = \frac{-\sqrt{5} - 1}{4}, \frac{-\sqrt{5} - 1}{4}$$

অধাৎ, $\sin 18^{\circ} = \frac{1}{4}(\sqrt{5} - 1)$. [: $\sin 18^{\circ}$ ধনাত্মক]

জাবার
$$\cos 18^\circ = \sqrt{1-\sin^2 18^\circ} = \sqrt{1-\frac{6-2\sqrt{5}}{16}} = \frac{1}{4}\sqrt{10+2\sqrt{5}}$$
.
 $\sin 36^\circ = 2\sin 18^\circ\cos 18^\circ = 2\cdot\frac{1}{16}\left(\sqrt{5}-1\right)\sqrt{10+2\sqrt{5}}$

$$= \frac{1}{8}\sqrt{(6-2\sqrt{5})(10+2\sqrt{5})} = \frac{1}{4}\sqrt{10-2\sqrt{5}}$$

$$\cot \cos 36^\circ = 1-2\sin^2 18^\circ = 1-2\cdot\frac{6-2\sqrt{5}}{16} = \frac{1}{4}\left(\sqrt{5}+1\right).$$

সমস্যা ও সমাধান:

উদাহরণ 1. প্রমাণ কর $2 \tan 7\frac{1^{\circ}}{2} = \sqrt{6} - \sqrt{3} + \sqrt{2} - 2$.

সমাধান ঃ আমরা পাই,
$$\tan 7\frac{1^\circ}{2} = \frac{\sin 7\frac{1^\circ}{2}}{\cos 7\frac{1^\circ}{2}} = \frac{2\sin^2 7\frac{1^\circ}{2}}{2\sin 7\frac{1^\circ}{2}\cos 7\frac{1^\circ}{2}} = \frac{1-\cos 15^\circ}{\sin 15^\circ}$$

$$= \frac{1-\frac{\sqrt{3}+1}{2\sqrt{2}}}{\frac{\sqrt{3}-1}{2\sqrt{2}}} \quad [\sin 15^\circ \text{ এবং } \cos 15^\circ \text{ এর মান স্থাপন করে }]$$

$$= \frac{2\sqrt{2}-\sqrt{3}-1}{\sqrt{3}-1} = \frac{(2\sqrt{2}-\sqrt{3}-1)(\sqrt{3}+1)}{(\sqrt{3}-1)(\sqrt{3}+1)}$$

$$= \frac{2\sqrt{6}-2\sqrt{3}+2\sqrt{2}-4}{2} = \sqrt{6}-\sqrt{3}+\sqrt{2}-2.$$

উদাহরণ 2. যদি $\sin \alpha + \sin \beta = a$ এবং $\cos \alpha + \cos \beta = b$ হয়, তবে প্রমাণ কর যে,

$$\tan \frac{1}{2}(\alpha - \beta) = \pm \sqrt{\frac{4 - a^2 - b^2}{a^2 + b^2}}$$

সমাধান ঃ আমরা জানি, $\sin \alpha + \sin \beta = a$ (i) এবং $\cos \alpha + \cos \beta = b$ (ii) প্রথমে (i) এবং (ii) কে বর্গ এবং পরে যোগ করে আমরা পাই

প্রশুমালা 7.5

প্রমাণ কর: (প্রশু 1-9)

1.
$$\frac{1+\sin\alpha+\cos\alpha}{1+\sin\alpha-\cos\alpha}=\cot\frac{\alpha}{2}.$$

2.
$$\cos^2 \frac{A}{2} \left(1 + \tan \frac{A}{2} \right)^2 = 1 + \sin A$$
.

3.
$$(\cos \alpha + \cos \beta)^2 + (\sin \alpha - \sin \beta)^2 = 4 \cos^2 \frac{\alpha + \beta}{2}$$

4.
$$\cos^4 \frac{A}{2} + \sin^4 \frac{A}{2} = \frac{1}{4} (3 + \cos 2A)$$
 5. $\cos 2A = 8 \cos^4 \frac{A}{2} - 8 \cos^2 \frac{A}{2} + 1$

5.
$$\cos 2A = 8 \cos^4 \frac{A}{2} - 8 \cos^2 \frac{A}{2} + 1$$
.

6.
$$\cos^2 \frac{\alpha}{2} + \cos^2 \left(\frac{\alpha}{2} + 60^{\circ} \right) + \cos^2 \left(\frac{\alpha}{2} - 60^{\circ} \right) = \frac{3}{2}$$

7. (i)
$$2 \sin \frac{\pi}{16} = 2 \sin 11^{\circ}15' = \sqrt{2 - \sqrt{2 + \sqrt{2}}}$$
,

(ii)
$$2\cos\frac{\pi}{16} = \sqrt{2 + \sqrt{2 + \sqrt{2}}} \cdot [\P, '\"]$$
 (iii) $2\cos7\frac{1^{\circ}}{2} = \sqrt{2 + \sqrt{2 + \sqrt{3}}}$. $[\P, F, '\"]$

8.
$$\cos^4\frac{\pi}{8} + \cos^4\frac{3\pi}{8} + \cos^4\frac{5\pi}{8} + \cos^4\frac{7\pi}{8} = \sin^4\frac{\pi}{8} + \sin^4\frac{3\pi}{8} + \sin^4\frac{5\pi}{8} + \sin^4\frac{7\pi}{8} = \frac{3}{2}$$

9.
$$\tan 6^{\circ} \tan 42^{\circ} \tan 66^{\circ} \tan 78^{\circ} = 1$$
.

10. যদি
$$\sin \alpha + \sin \beta = a$$
 এবং $\cos \alpha + \cos \beta = b$ হয়, তবে প্রমাণ কর যে, $\cos (\alpha + \beta) = \frac{b^2 - a^2}{b^2 + a^2}$ [রা. '৩৩, '০৮; সি. '১১]

11. যদি
$$\tan \frac{\theta}{2} = \sqrt{\frac{1-e}{1+e}} \tan \frac{\phi}{2}$$
 হয়, তবে প্রমাণ কর যে, $\cos \phi = \frac{\cos \theta - e}{1-e \cos \theta}$.[সি. '১২; রা. '০৯]

12.
$$(A + B) \neq 0$$
 এবং $\sin A + \sin B = 2 \sin (A + B)$ হলে, প্রমাণ কর যে, $\tan \frac{A}{2} \cdot \tan \frac{B}{2} = \frac{1}{3}$

7.2.8. বিশেষ ধরনের ত্রিকোণমিতিক অভেদাবলি

উদাহরণ 1. যদি $A + B + C = \pi$ হয়, তবে প্রমাণ কর যে.

$$\tan\frac{B}{2}\tan\frac{C}{2} + \tan\frac{C}{2}\tan\frac{A}{2} + \tan\frac{A}{2}\tan\frac{B}{2} = 1.$$

সমাধান ঃ যেহেতু $A+B+C=\pi$, $\therefore \frac{B}{2}+\frac{C}{2}=\frac{\pi}{2}-\frac{A}{2}$

$$\therefore \tan\left(\frac{B}{2} + \frac{C}{2}\right) = \tan\left(\frac{\pi}{2} - \frac{A}{2}\right) = \cot\frac{A}{2} \quad \text{at}, \frac{\tan\frac{B}{2} + \tan\frac{C}{2}}{1 - \tan\frac{B}{2}\tan\frac{C}{2}} = \frac{1}{\tan\frac{A}{2}}$$

বা,
$$\tan \frac{A}{2} \tan \frac{B}{2} + \tan \frac{C}{2} \tan \frac{A}{2} = 1 - \tan \frac{B}{2} \tan \frac{C}{2}$$

$$\therefore \tan \frac{B}{2} \tan \frac{C}{2} + \tan \frac{C}{2} \tan \frac{A}{2} + \tan \frac{A}{2} \tan \frac{B}{2} = 1.$$

উদাহরণ 2. যদি $A + B + C = \pi$ হয় , তবে প্রমাণ কর যে,

 $\sin 2A + \sin 2B + \sin 2C = 4 \sin A \sin B \sin C.$

[F. '55]

সমাধান ঃ বা, প, =
$$(\sin 2A + \sin 2B) + \sin 2C = 2 \sin (A + B) \cos (A - B) + \sin 2C$$

$$= 2 \sin C \cos (A - B) + 2 \sin C \cos C = 2 \sin C [\cos (A - B) + \cos C]$$

$$= 2 \sin C \left[\cos (A - B) - \cos (A + B) \right]$$

 $= 2 \sin C$. $2 \sin A \sin B = 4 \sin A \sin B \sin C$.

উদাহরণ 3. যদি
$$A+B+C=\pi$$
 হয়, তবে প্রমাণ কর যে, $\cos A+\cos B+\cos C=1+4\sin\frac{A}{2}\sin\frac{B}{2}\sin\frac{C}{2}$ [5. '১৩; ব. '১২] সমাধান ? বাম পক = $(\cos A+\cos B)+\cos C=2\cos\frac{A+B}{2}\cos\frac{A-B}{2}+\cos C$ = $2\sin\frac{C}{2}\cos\frac{A-B}{2}+1-2\sin^2\frac{C}{2}\left[\cdot\cdot\cdot\cos\frac{A+B}{2}=\sin\frac{C}{2}\right]$ = $2\sin\frac{C}{2}\left[\cos\frac{A-B}{2}-\sin\frac{C}{2}\right]+1=2\sin\frac{C}{2}\left[\cos\frac{A-B}{2}-\cos\frac{A+B}{2}\right]+1$ = $2\sin\frac{C}{2}\left[\cos\left(\frac{A-B}{2}\right)-\cos\left(\frac{A+B}{2}\right)\right]+1$ = $2\sin\frac{C}{2}\cdot2\sin\frac{A}{2}\sin\frac{A}{2}\sin\frac{B}{2}+1=1+4\sin\frac{A}{2}\sin\frac{B}{2}\sin\frac{C}{2}$.

উদাহরণ 4. যদি $A + B + C = \pi$ হয়, তবে প্রমাণ কর যে,

 $\cos^2 A + \cos^2 B + \cos^2 C + 2\cos A \cos B \cos C = 1.$

[রা, '১৩; ঢা, '১১, '১৩; দি, '০১]

সমাধান $\cos^2 A + \cos^2 B + \cos^2 C$

$$= \frac{1}{2}(2\cos^2 A + 2\cos^2 B) + \cos^2 C = \frac{1}{2}(1 + \cos 2A + 1 + \cos 2B) + \cos^2 C$$

$$= \frac{1}{2}(2 + \cos 2A + \cos 2B) + \cos^2 C = 1 + \frac{1}{2}(\cos 2A + \cos 2B) + \cos^2 C$$

$$= 1 + \cos (A + B)\cos (A - B) + \cos^2 C$$

$$= 1 - \cos C\cos (A - B) + \cos^2 C$$

$$= 1 - \cos C\cos (A - B) + \cos^2 C$$

 $= 1 - \cos C [\cos (A - B) - \cos C] = 1 - \cos C [\cos (A - B) + \cos (A + B)]$

 $= 1 - \cos C. \ 2 \cos A \cos B = 1 - 2 \cos A \cos B \cos C$

এখন পক্ষান্তর করে আমরা পাই

 $\cos^2 A + \cos^2 B + \cos^2 C + 2\cos A\cos B\cos C = 1.$

উদাহরণ 5. যদি $\alpha + \beta + \gamma = \frac{\pi}{2}$ হয়, তবে প্রমাণ কর যে,

 $\sin^2 \alpha + \sin^2 \beta + \sin^2 \gamma + 2 \sin \alpha \sin \beta \sin \gamma = 1.$

[ঢা. ব. '০১]

সমাধান $\sin^2 \alpha + \sin^2 \beta + \sin^2 \gamma = \frac{1}{2}(2 \sin^2 \alpha + 2 \sin^2 \beta) + \sin^2 \gamma$

$$= \ \frac{1}{2}(1-\cos 2\alpha + 1 - \cos 2\beta) + \sin^2 \gamma \ [\because 2 \sin^2 \alpha = 1 - \cos 2\alpha \ \P \ 2 \sin^2 \beta = 1 - \cos 2\beta]$$

$$= \frac{1}{2} \left\{ 2 - (\cos 2\alpha + \cos 2\beta) \right\} + \sin^2 \gamma = 1 - \frac{1}{2} (\cos 2\alpha + \cos 2\beta) + \sin^2 \gamma$$

=
$$1 - \cos (\alpha + \beta) \cos (\alpha - \beta) + \sin^2 \gamma$$

= 1-
$$\sin \gamma \cos (\alpha - \beta) + \sin^2 \gamma [\cdot \cdot \cdot \alpha + \beta = \frac{\pi}{2} - \gamma, \text{ which } \cos (\alpha + \beta) = \cos \left(\frac{\pi}{2} - \gamma\right) = \sin \gamma]$$

=
$$1 - \sin \gamma [\cos (\alpha - \beta) - \sin \gamma] = 1 - \sin \gamma [\cos (\alpha - \beta) - \cos (\alpha + \beta)]$$

= $1 - \sin \gamma$. $2 \sin \alpha \sin \beta = 1 - 2 \sin \alpha \sin \beta \sin \gamma$

এখন পক্ষান্তর করে আমরা পাই

 $\sin^2 \alpha + \sin^2 \beta + \sin^2 \gamma + 2 \sin \alpha \sin \beta \sin \gamma = 1.$

প্রশুমালা 7.6

 $A + B + C = \pi$ হলে, প্রমাণ করঃ (প্রশ্ন 1-10)

- 1. $\cot B \cot C + \cot C \cot A + \cot A \cot B = 1$.
- 2. $\tan 3A + \tan 3B + \tan 3C = \tan 3A \tan 3B \tan 3C$.

3. $\sin 2A - \sin 2B + \sin 2C = 4 \cos A \sin B \cos C$.

【季. '05】

4. $\cos A - \cos B + \cos C + 1 = 4 \cos \frac{A}{2} \sin \frac{B}{2} \cos \frac{C}{2}$

5. (i) $\sin A + \sin B - \sin C = 4 \sin \frac{A}{2} \sin \frac{B}{2} \cos \frac{C}{2}$

[য. '০৮]

(ii) $\sin A + \sin B + \sin C = 4 \cos \frac{A}{2} \cos \frac{B}{2} \cos \frac{C}{2}$

[য. '০২]

6. $\sin^2 A - \sin^2 B + \sin^2 C = 2 \sin A \cos B \sin C$.

[রা. '১১, সি. '০৭, '১৩]

- 7. $\cos^2 A + \cos^2 B \cos^2 C = 1 2 \sin A \sin B \cos C$.
- 8. $\cos^2 2A + \cos^2 2B + \cos^2 2C = 1 + 2\cos 2A \cos 2B\cos 2C$.

9. $\sin^2 \frac{A}{2} + \sin^2 \frac{B}{2} + \sin^2 \frac{C}{2} = 1 - 2 \sin \frac{A}{2} \sin \frac{B}{2} \sin \frac{C}{2}$

[ব. '০৪; কু. '০৯]

10. $\sin (B + C - A) + \sin (C + A - B) + \sin (A + B - C) = 4 \sin A \sin B \sin C$. [5. '08, \(\frac{1}{2}\).

$A + B + C = \frac{\pi}{2}$ হলে, প্রমাণ কর ঃ (প্রশ্ন 11-12)

- 11. $\tan B \tan C + \tan C \tan A + \tan A \tan B = 1$.
- 12. $\cos^2 A + \cos^2 B \cos^2 C 2 \cos A \cos B \sin C = 0$.

[কু. '১১; দি. '১২; ব. '১**০**|

13. যদি $\alpha + \beta + \gamma = 2\pi$ হয়, তবে দেখাও যে, $\cos^2 \alpha + \cos^2 \beta + \cos^2 \gamma - 2\cos \alpha \cos \beta \cos \gamma = 1$.

[সি. '০১]

- 14. যদি $\alpha + \beta + \gamma = 0$ হয়, তবে প্রমাণ কর যে,
 - (i) $\cos \alpha + \cos \beta + \cos \gamma = 4 \cos \frac{\alpha}{2} \cos \frac{\beta}{2} \cos \frac{\gamma}{2} 1$.

[রা. '০২, কু. '০৩]

- (ii) $\sin 2\alpha + \sin 2\beta + \sin 2\gamma = 2(\sin \alpha + \sin \beta + \sin \gamma) (1 + \cos \alpha + \cos \beta + \cos \gamma)$.
- 15. যদি $\alpha + \beta = \gamma$ হয়, তবে প্রমাণ কর যে,

 $\cos^2 \alpha + \cos^2 \beta + \cos^2 \gamma = 1 + 2 \cos \alpha \cos \beta \cos \gamma.$

- 16. যদি $A+B+C=n\pi$ হয়, তবে প্রমাণ কর যে, $\tan A+\tan B+\tan C=\tan A$ $\tan B$ $\tan C$.
- 17. যদি $A+B+C=\pi$ এবং $\cot A+\cot B+\cot C=\sqrt{3}$ হয়, ভবে দেখাও যে, A=B=C. [ব. '০৭]
- 7.3. ত্রিভূজের সাইন সূত্র: ABC ত্রিভূজে, $\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$ ্চা. '১৩; রা. '১২; রু. ব. '১০]

(a) ABC একটি সৃহ্মকোণী ত্রিভূজ (চিত্র 1)। শীর্ষ A থেকে BC এর উপর AD লম্ম অজ্ঞকন করি।

ABD ত্রিভূচ্চ থেকে, $AD = c \sin B$, ACD ত্রিভূচ্চ থেকে, $AD = b \sin C$

$$\therefore c \sin B = b \sin C \implies \frac{b}{\sin B} = \frac{c}{\sin C} \dots (i)$$

অনুরূপভাবে, শীর্ষ B থেকে AC এর উপর সম্ম অঞ্চন করে পাই, $\frac{a}{\sin A} = \frac{c}{\sin C}$ (ii)

$$\therefore$$
 (i) এবং (ii) থেকে $\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$.

ABC ত্রিভূচ্ছের C কোণটি স্থূল (চিত্র 2)। শীর্ষ A থেকে BC এর বর্ধিতাংশের উপর AD লম্ম জ্ঞান করি।

ABD থিভুজ থেকে, $AD = c \sin B$

ACD আডুজ থেকে, $AD = b \sin (180^\circ - C) = b \sin C$

$$\therefore c \sin B = b \sin C \Rightarrow \frac{b}{\sin B} = \frac{c}{\sin C}$$

অনুর্পভাবে,
$$\frac{a}{\sin A} = \frac{c}{\sin C}$$
 : $\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$.

চিত্র 3 এর ত্রিভূচ্চটি একটি সমকোণী ত্রিভূচ্চ। শীর্ষ A থেকে BC এর উপর AD শব্দ অচ্চন করগে তা AC এর সংক্ষো মিলে যাবে।

$$\therefore AD = b = b \sin C \left[\because C = 90^{\circ} \right]$$

আবার,
$$ABC$$
 আিভুজ থেকে $AD = c \sin B$: $b \sin C = c \sin B \Rightarrow \frac{b}{\sin B} = \frac{c}{\sin C}$

অনুরূপভাবে,
$$\frac{a}{\sin A} = \frac{c}{\sin C}$$
 : $\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$.

সূতরাং, যেকোনো ধরনের ABC গ্রিভূচ্ছ থেকে $\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$.

(b) $\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C} = 2R$, যখন ত্রিত্জের পরিশিখিত বৃত্তের ব্যাসার্থের পরিমাণ R হয়। [রা. '০৮] প্রমাণ :

প্রথম চিত্রে ∠ে সৃক্ষ এবং দিতীয় চিত্রে ∠ে স্থৃল।

মনে করি, ABC ঝিতুজের পরিশিখিত বৃত্তের কেন্দ্র O এবং ব্যাসার্ধ R.

প্রথম এবং দিতীয় চিত্রে BO যোগ করে এমনভাবে বর্ধিত করি যেন তা বৃত্তের পরিধিকে D বিন্দৃতে ছেদ করে। D, C যোগ করি।

ভূতীর চিত্রানুযায়ী, ABC একটি সমকোণী ত্রিভূজ এবং এক্ষেত্রে BD রেখা BC এর সঞ্চো মিলে যাবে। এখন প্রথম এবং বিতীয় চিত্র থেকে আমরা পাই

$$BD = 2R$$
 এবং $\angle BCD = 90^{\circ}$.

সূতরাং,
$$BCD$$
 ঝিতুছ থেকে $\sin \angle BDC = \frac{BC}{BD} = \frac{a}{2R}$ (i)

যেহেতু প্রথম চিত্রানুযায়ী, $\angle BDC = \angle A$ এবং দিতীয় চিত্রানুযায়ী $\angle BDC = \pi - A$; অতএব, উভয়ক্ষেত্রে $\sin \angle BDC = \sin A$.

সূতরাং, (i) থেকে আমরা পাই $\sin A = \frac{a}{2R}$ বা, $\frac{a}{\sin A} = 2R$.

এখন তৃতীয় চিত্রানুযায়ী, BD=a অর্থাৎ, 2R=a বা, $\frac{a}{1}=2R$

অর্থাৎ, $\frac{a}{\sin 90^\circ} = 2R$, $\therefore \frac{a}{\sin A} = 2R$. সূতরাৎ, প্রত্যেক ক্ষেত্রেই আমরা পাই, $\frac{a}{\sin A} = 2R$.

জনুরূপভাবে, A,O যোগ করে বর্ধিত করলে তা বৃত্তের পরিধিকে E বিন্দুতে ছেদ করবে। এখন C,E এবং B,E যথাক্রমে যোগ করে দেখান যায় যে,

$$\frac{b}{\sin B} = 2R$$
 এবং $\frac{c}{\sin C} = 2R$. অতএব, আমরা পাই $\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C} = 2R$.

7.4. ত্রিভুজের কোসাইন সূত্র: ABC ত্রিভুজে

$$\cos A = \frac{b^2 + c^2 - a^2}{2bc}$$
, $\cos B = \frac{c^2 + a^2 - b^2}{2ca}$, $\cos C = \frac{a^2 + b^2 - c^2}{2ab}$.

প্রমাণ:

BC বাহুর উপর AD শব্দ অঙ্কন করি [প্রথম চিত্র]। মনে করি, CD=x এবং AD=h.

ADC ত্রিভুজ থেকে $h^2 = b^2 - x^2$

ADB ট্রিভুজ থেকে $h^2 = c^2 - (a - x)^2$

$$b^2 - x^2 = c^2 - (a - x)^2 \implies b^2 = c^2 - a^2 + 2ax \dots (i)$$

আবার ACD ত্রিভূজ থেকে, $\frac{x}{b} = \cos C$ অর্থাৎ, $x = b \cos C$

∴ (i) থেকে আমরা পাই $b^2 = c^2 - a^2 + 2ab \cos C$. [x-এর মান বসিয়ে] $\Rightarrow \cos C = \frac{a^2 + b^2 - c^2}{2ab}$.

BC বাহুর বর্ধিতাংশের উপর AD শব্দ অঞ্চন করি [দিতীয় চিত্র]। ADC ত্রিভূজ থেকে $h^2=b^2-x^2$ ADB ত্রিভূজ থেকে $h^2=c^2-(a+x)^2$

$$b^2 - x^2 = c^2 - (a + x)^2 \implies b^2 = c^2 - a^2 - 2ax \dots (i)$$

আবার ACD গ্রিভূচ্চ থেকে, $\frac{x}{b}=\cos{(180^{\circ}-C)}=-\cos{C}$ অর্থাৎ, $x=-b\cos{C}$

: (i) থেকে $b^2 = c^2 - a^2 + 2ab \cos C$. [x-এর মান বসিয়ে]

$$\Rightarrow \cos C = \frac{a^2 + b^2 - c^2}{2ab}.$$

মস্তব্য : যখন $C=90^\circ$, সূত্রটি হবে $c^2=a^2+b^2$ [পীথাগোরাসের উপপাদ্য]

অধাৎ,
$$a^2 + b^2 - c^2 = 2ab \cos C$$
 : $\cos C = \frac{a^2 + b^2 - c^2}{2ab}$.

সূতরাং, যেকোনো ধরনের ত্রিভূজ থেকে $\cos C = \frac{a^2 + b^2 - c^2}{2ab}$.

অনুরূপভাবে, $\cos A=rac{b^2+c^2-a^2}{2b\,c}$ এবং $\cos B=rac{c^2+a^2-b^2}{2c\,a}$ সূত্র দুইটি প্রতিষ্ঠিত করা যায়।

7.4.1. যে কোন ত্রিভূজ ABC-এ প্রমাণ কর :

$$a = b \cos C + c \cos B$$
,

$$b = c \cos A + a \cos C,$$

$$c = a \cos B + b \cos A$$
.

প্রমাণ: অনুচ্ছেদ 7.4 এর চিত্রগুলি লক্ষ করি।

যদি C একটি সৃক্ষকোণ হয়, তবে ১ম চিত্রানুযায়ী,

 $BC = BD + DC = AB \cos \angle ABD + AC \cos \angle ACD$: $a = c \cos B + b \cos C$.
যদি C একটি স্থূলকোণ হয়, তবে ২য় চিত্রানুযায়ী,

$$BC = BD - CD = AB \cos \angle ABD - AC \cos \angle ACD$$

 $= c \cos B - b \cos (\pi - C) = c \cos B + b \cos C \quad \therefore \quad a = c \cos B + b \cos C.$

আবার C একটি সমকোণ হলে, ৩য় চিত্রানু্থায়ী,

 $BC=AB\cos B$, $\therefore a=c\cos B=c\cos B+b\cos C$. [$\because \cos C=\cos 90^\circ=0$] সূতরাং, প্রত্যেক ক্ষেত্রেই আমরা পাই, $a=b\cos C+c\cos B$.

অনুরূপভাবে, অন্যান্য সম্পর্কও গঠন করা যায়।

7.4.2. যেকোনো ত্রিভুঞ্ ABC-এ

$$\tan \frac{B-C}{2} = \frac{b-c}{b+c} \cot \frac{A}{2}, \tan \frac{C-A}{2} = \frac{c-a}{c+a} \cot \frac{B}{2}, \tan \frac{A-B}{2} = \frac{a-b}{a+b} \cot \frac{C}{2},$$

প্রমাণ: যে কোন ত্রিভূচ্চ ABC-এ

$$\frac{b}{\sin B} = \frac{c}{\sin C}$$
 [গ্রিভুঞ্জ সূত্র থেকে] বা, $\frac{b}{c} = \frac{\sin B}{\sin C}$

$$\therefore \frac{b-c}{b+c} = \frac{\sin B - \sin C}{\sin B + \sin C} = \frac{2\cos\frac{B+C}{2}\sin\frac{B-C}{2}}{2\sin\frac{B+C}{2}\cos\frac{B-C}{2}}$$

$$\Rightarrow \frac{b-c}{b+c} = \cot \frac{B+C}{2} \tan \frac{B-C}{2} = \tan \frac{A}{2} \tan \frac{B-C}{2} \left[\therefore A+B+C = \pi \right]$$

$$\therefore \tan \frac{B-C}{2} = \frac{b-c}{b+c} \cot \frac{A}{2}.$$

অনুরূপভাবে অন্য দুইটি সূত্রও প্রমাণ করা যায়।

$7.4.3. \sin rac{A}{2} \cdot \cos rac{A}{2} \cdot an rac{A}{2}$ অনুপাতগুলিকে ত্রিভুজের বাহুর পরিমাপে প্রকাশ করা

(i) আমরা জালি,
$$2\sin^2\frac{A}{2} = 1 - \cos A = 1 - \frac{b^2 + c^2 - a^2}{2bc} = \frac{2bc - b^2 - c^2 + a^2}{2bc}$$
$$= \frac{a^2 - (b - c)^2}{2bc} = \frac{(a - b + c)(a + b - c)}{2bc}.$$

যদি ত্রিভুজের পরিসীমার অর্ধেককে 🔊 ধারা সূচিত করা হয়, তবে

$$2s = a + b + c$$

এখন
$$a-b+c=a+b+c-2b=2s-2b=2(s-b)$$
 এবং $a+b-c=a+b+c-2c=2s-2c=2(s-c)$.

সূতরাং,
$$2 \sin^2 \frac{A}{2} = \frac{2(s-b).2(s-c)}{2bc}$$

$$\exists 1, \ \sin^2 \frac{A}{2} = \frac{(s-b)(s-c)}{bc}, \ \therefore \ \sin \frac{A}{2} = \sqrt{\frac{(s-b)(s-c)}{bc}}.$$

: গ্রিভুজের যে কোন কোণ 180° অপেক্ষা ক্ষুদ্রতর , $\therefore \frac{A}{2} < 90^\circ$, অর্থাৎ $\sin \frac{A}{2}$ এর মান ধনাত্মক]

(ii) স্থামরা জানি
$$2\cos^2\frac{A}{2} = 1 + \cos A = 1 + \frac{b^2 + c^2 - a^2}{2bc} = \frac{2bc + b^2 + c^2 - a^2}{2bc}$$

$$= \frac{(b+c)^2 - a^2}{2bc} = \frac{(b+c+a)(b+c-a)}{2bc} = \frac{2s(2s-2a)}{2bc}$$

$$\therefore 2\cos^2\frac{A}{2} = \frac{2s.\ 2(s-a)}{2bc} \quad \forall \text{els}, \quad \cos^2\frac{A}{2} = \frac{s(s-a)}{bc}, \quad \therefore \quad \cos\frac{A}{2} = \sqrt{\frac{s(s-a)}{bc}}.$$

(iii) স্বাবার
$$\tan \frac{A}{2} = \frac{\sin \frac{A}{2}}{\cos \frac{A}{2}} = \frac{\sqrt{\frac{(s-b)(s-c)}{bc}}}{\sqrt{\frac{s(s-a)}{bc}}} = \sqrt{\frac{(s-b)(s-c)}{s(s-a)}}.$$

অনুরূপভাবে, $\sin\frac{B}{2}$, $\cos\frac{B}{2}$, $\tan\frac{B}{2}$, $\sin\frac{C}{2}$ ইত্যাদির মান ত্রিভুজের বাহুর পরিমাপে প্রকাশ করা যায়। সূতরাং, আমরা পাই

$$\sin\frac{B}{2} = \sqrt{\frac{(s-c)(s-a)}{ca}}, \cos\frac{B}{2} = \sqrt{\frac{s(s-b)}{ca}}, \tan\frac{B}{2} = \sqrt{\frac{(s-c)(s-a)}{s(s-b)}},$$

$$\sin\frac{C}{2} = \sqrt{\frac{(s-a)(s-b)}{ab}}, \cos\frac{C}{2} = \sqrt{\frac{s(s-c)}{ab}}, \tan\frac{C}{2} = \sqrt{\frac{(s-a)(s-b)}{s(s-c)}}.$$

7.4.3. ত্রিভুঞ্জের ক্ষেত্রফল

মনে করি, ABC একটি ত্রিভুজ এবং এর ক্ষেত্রফলকে Δ ঘারা সৃচিত করা হল। BC বাহুর উপর লম্ম, AD অজ্জন করি।

তাহলে, ACD গ্রিভুঞ্জ থেকে আমরা পাই $AD = AC \sin \angle ACD = b \sin C$.

এখন জ্যামিতি থেকে আমরা জানি , $\Delta=\frac{1}{2}BC$. AD \therefore $\Delta=\frac{1}{2}a.b$ $\sin C=\frac{1}{2}ab$ $\sin C$.

আবার যেহেত্ ABC ঝিভুজ থেকে আমরা পাই $AD=c\sin B$, $\therefore \Delta=\frac{1}{2}\ ca\sin B$.

অনুরূপভাবে, B বিন্দু থেকে AC এর উপর লম্ম অঙ্কন করে দেখান যায় যে, $\Delta = \frac{1}{2}bc \sin A$.

সুতরাং, $\Delta = \frac{1}{2}bc \sin A = \frac{1}{2}ca \sin B = \frac{1}{2}ab \sin C$.

অর্থাৎ, $\Delta = \frac{1}{2} \times (দুই বাহুর দৈর্ঘ্যের গুণফল) <math>\times (এদের অন্তর্ভুক্ত কোণের সাইন অনুপাত)।$

আবার
$$\Delta = \frac{1}{2}bc \sin A = \frac{1}{2}bc.2 \sin \frac{A}{2}\cos \frac{A}{2}$$

$$= bc. \sqrt{\frac{(s-b)(s-c)}{bc}} \cdot \sqrt{\frac{s(s-a)}{bc}} \left[\text{ अনুছেদ 6.6 अनুযায়ী } \right]$$

$$= \sqrt{s(s-a)(s-b)(s-c)}.$$

উপরোক্ত সম্পর্কে $s = \frac{1}{2}(a+b+c)$ স্থাপন করে আমরা পাই

$$\Delta = \frac{1}{4} \sqrt{(a+b+c)(b+c-a)(c+a-b)(a+b-c)}$$

$$= \frac{1}{4} \{ 2 b^2 c^2 + 2 c^2 a^2 + 2 a^2 b^2 - a^4 - b^4 - c^4 \}^{1/2}.$$

সমস্যা ও সমাধান ঃ

উদাহরণ 1. ABC ত্রিভূজে দেখাও যে, $a(\cos B + \cos C) = 2(b+c)\sin^2\frac{A}{2}$.

সমাধান ঃ বা, প, = $a \cos B + a \cos C = (c - b \cos A) + (b - c \cos A)$ [অনুছেদ 6.5 অনুযায়ী] = $(b + c) - (b + c) \cos A = (b + c) (1 - \cos A) = (b + c) \cdot 2 \sin^2 \frac{A}{2} = 2(b + c) \sin^2 \frac{A}{2}$.

উদাহরণ 2. যে কোন ত্রিভুঞ্জে প্রমাণ কর যে, $bc \cos^2 \frac{A}{2} + ca \cos^2 \frac{B}{2} + ab \cos^2 \frac{C}{2} = s^2$.

সমাধান \$ বামপক =
$$bc \cdot \frac{s(s-a)}{bc} + ca \cdot \frac{s(s-b)}{ca} + ab \cdot \frac{s(s-c)}{ab} = s(s-a) + s(s-b) + s(s-c)$$

= $3s^2 - s(a+b+c) = 3s^2 - 2s^2 = s^2 \cdot [\because 2s = a+b+c]$

উদাহরণ 3. যে কোন ত্রিভূজে প্রমাণ কর যে, $\frac{b^2-c^2}{a^2}\sin 2A+\frac{c^2-a^2}{b^2}\sin 2B+\frac{a^2-b^2}{c^2}\sin 2C=0$.

সমাধান ঃ বাম পক্ষের ১ম পদ = $\frac{b^2-c^2}{a^2}$. $\sin 2A = \frac{4R^2\sin^2 B - 4R^2\sin^2 C}{4R^2\sin^2 A}$. $2\sin A\cos A$

$$= \frac{\sin^2 B - \sin^2 C}{\sin A} \cdot 2 \cos A = \frac{\sin (B + C) \sin (B - C)}{\sin A} \cdot 2 \cos A$$

 $= 2 \sin (B - C) \cos A \left[\because \sin (B + C) = \sin A \right]$

 $=-2 \sin (B-C) \cos (B+C)[\cdot \cdot \cdot \cos A = -\cos (B+C)]$

 $= -(\sin 2B - \sin 2C) = \sin 2C - \sin 2B$

জনুর্পভাবে, ২য় পদ = $\sin 2A - \sin 2C$ এবং ৩য় পদ = $\sin 2B - \sin 2A$.

এখন তিনটি পদ যোগ করলে বাম পক্ষ = 0 .

উদাহরণ 4. যদি একটি ত্রিভুঞ্জে $a^4+b^4+c^4=2c^2\;(a^2+b^2)$ হয়, তবে প্রমাণ কর যে, $C = 45^{\circ}$ বা, 135° .

সমাধান ঃ দেওয়া আছে. $a^4 + b^4 + c^4 = 2c^2a^2 + 2b^2c^2$

$$\overline{A}, (a^2 + b^2 - c^2)^2 = 2a^2b^2$$

$$\sqrt{a^2 + b^2 - c^2} = \pm \sqrt{2ab}$$

বা,
$$\frac{a^2 + b^2 - c^2}{2ab} = \pm \frac{1}{\sqrt{2}}$$

বা, $\cos C = \pm \frac{1}{\sqrt{2}} = \pm \cos 45^\circ = \cos 45^\circ$, বা $\cos (180^\circ - 45^\circ)$ ∴ $C = 45^\circ$ বা, 135° .

अनुमाना 7.7

ABC ত্রিভুজ থেকে প্রমাণ কর ঃ (প্রশ্ন 1 - 22)

1.
$$\frac{a+b}{a-b} = \frac{\sin A + \sin B}{\sin A - \sin B}$$

1.
$$\frac{a+b}{a-b} = \frac{\sin A + \sin B}{\sin A - \sin B}$$
 2.
$$\sin \frac{B-C}{2} = \frac{b-c}{a} \cos \frac{A}{2}$$

3.
$$\cos (B-C) + \cos A = \frac{bc}{2R^2}$$

3.
$$\cos (B-C) + \cos A = \frac{bc}{2R^2}$$
. 4. $a \sin \left(\frac{A}{2} + B\right) = (b + c) \sin \frac{A}{2}$. [4. $\forall i$. '50; δ . $\forall i$. '51.

5.
$$\cos C - \cos B = 2\left(\frac{b-c}{a}\right)\cos^2\frac{A}{2}$$
.

6. যে কোন ত্রিভূজ
$$ABC$$
 এ $\angle A=60^\circ$ হলে, দেখাও যে $b+c=2a\cos\frac{B-C}{2}$.

7.
$$(b+c)\cos A + (c+a)\cos B + (a+b)\cos C = a+b+c$$
.

8.
$$a (\sin B - \sin C) + b(\sin C - \sin A) + c(\sin A - \sin B) = 0$$
.

9.
$$a^2(\sin^2 B - \sin^2 C) + b^2(\sin^2 C - \sin^2 A) + c^2(\sin^2 A - \sin^2 B) = 0$$
.

10.
$$\frac{(b+c)\cos A + (c+a)\cos B + (a+b)\cos C}{\sin A + \sin B + \sin C} = \frac{a}{\sin A} = 2R.$$

11.
$$\frac{\sin (B-C)}{\sin A} = \frac{b \cos C - c \cos B}{b \cos C + c \cos B}$$

12.
$$a \sin (B - C) + b \sin (C - A) + c \sin (A - B) = 0$$
.

13.
$$a \sin \frac{A}{2} \sin \frac{B-C}{2} + b \sin \frac{B}{2} \sin \frac{C-A}{2} + c \sin \frac{C}{2} \sin \frac{A-B}{2} = 0.$$

14.
$$b^2 \sin 2C + c^2 \sin 2B = 2bc \sin A$$
.

15.
$$a^2 + b^2 + c^2 = 2 (bc \cos A + ca \cos B + ab \cos C)$$
.

16.
$$a^3 \sin (B-C) + b^3 \sin (C-A) + c^3 \sin (A-B) = 0$$
.

17.
$$a^2(\cos^2 B - \cos^2 C) + b^2(\cos^2 C - \cos^2 A) + c^2(\cos^2 A - \cos^2 B) = 0.$$

18.
$$(b^2 - c^2) \cot A + (c^2 - a^2) \cot B + (a^2 - b^2) \cot C = 0.$$

19.
$$c^2 = (a-b)^2 \cos^2 \frac{C}{2} + (a+b)^2 \sin^2 \frac{C}{2}$$
.

20.
$$(b-c) \cot \frac{A}{2} + (c-a) \cot \frac{B}{2} + (a-b) \cot \frac{C}{2} = 0.$$

21.
$$\sin A + \sin B + \sin C = \frac{s}{R}$$
.

- 22. $\frac{1}{a} \sin A + \frac{1}{b} \sin B + \frac{1}{c} \sin C = \frac{6\Delta}{abc}$.
- 23. (a) ABC গ্রিভুজের বাহুগুলি a, b, c এবং $\frac{1}{a+c} + \frac{1}{b+c} = \frac{3}{a+b+c}$ হলে, দেখাও যে, ABC গ্রিভুজে $C=60^\circ$.
 - (b) ABC ত্রিভুজের বাহুগুলি a, b, c এবং (a+b+c)(b+c-a)=3bc হলে, A কোণের মান নির্ণয় কর।
 - (c) যদি a=2b, এবং A=3B হয়, তবে ত্রিভুজের কোণগুলি নির্ণয় কর।

【 季. '〉 ~ 〕

- 24. যদি ABC ত্রিভুচ্ছে $A = 75^{\circ}$, $B = 45^{\circ}$ হয়, তবে দেখাও যে $c * b = \sqrt{3} * \sqrt{2}$.
- 25. যদি ABC ত্রিভুচ্ছে $\cos A = \sin B \cos C$ হয়, তবে দেখাও যে, ত্রিভুচ্চটি সমকোণী।

[চ. '১২; ব. '১০; সি. '১১; কু. '১৩]

- 26. যদি একটি ত্রিভূজের বাহুগুলি যথাক্রমে m, n এবং $\sqrt{m^2+mn+n^2}$ হয়, তবে ত্রিভূজটির বৃহস্তম কোণ নির্ণয় কর।
- 27. একটি ত্রিভুজের বাহুগুলির পরিমাপ যথাক্রমে 3,5 ও 7 হলে, প্রমাণ কর যে, ত্রিভুজটি স্থূলকোণী। স্থূলকোণাটি নির্ণয় কর। [কু. চ. '১০]
- 28. একটি ত্রিভুজের বাহুগুলির পরিমাপ যথাক্রমে 13, 14 ও 15 হলে, ত্রিভুজটির ক্ষেত্রফল নির্ণয় কর। [ঢা. '০৯]

প্রশুমালা 7.8

সৃজনশীল প্রশ্ন :

1. ক্যালকুলেটার ব্যবহার না করে মান নির্ণয় কর:

(a) cot 855°

(b) sin 15°

- (c) $\frac{\sin 135^{\circ} + \cot 830^{\circ}}{\sec 600^{\circ} + \csc 930^{\circ}}$
- 2. (a) $\sin (A + B) = \sin A \cos B + \cos A \sin B$ থেকে $\sin (A B)$ নির্ণয় কর।
 - (b) cot 2θ কে cot θ এর মাধ্যমে প্রকাশ কর।
 - (c) sin 4A কে sin A এর মাধ্যমে প্রকাশ কর।
- 3. (a) একটি ঝিভুজের দুইটি কোণ যথাক্রমে 30° এবং 60° হলে, দেখাও যে, ঝিভুজটির বাহুগুলির অনুপাত হবে $1:\sqrt{3}:2$.
 - (b) ABC ত্রিভুন্দে a=3 cm., b=4 cm., $c=\sqrt{19}$ cm. হলে, A কোণের মান নির্ণয় কর।
 - (c) একটি ত্রিভূচ্ছের বাহুগলি a, b, c এবং (a+b+c) (b+c-a)=3bc হলে, A কোণের মান নির্ণয় কর।

वर्गनिवीवनी अनु :

- 4. নিচের কোন দুইটি সঠিক
 - (a) $\sin (270^\circ + \theta) = -\cos \theta$;
- (b) $\cos(-\theta) = -\cos\theta$;

(c) $\tan (180^{\circ} + \theta) = \tan \theta$;

- (d) $\tan (360^{\circ} \theta) = \tan \theta$.
- 5. sin 50° + sin 70° cos 80° এর মান
 - (a) 1
- (b) 0

(c) sin 10°

(d) $\frac{1}{2}$.

tan 40° tan 50° tan 60° এর মান ~

(b)
$$\sqrt{3}$$

(c)
$$\frac{1}{\sqrt{3}}$$

$$(\mathbf{d})-\sqrt{3}.$$

7. sin 26° 20' cos 63° 40' + sin 153° 40' sin 423° 40' এর মান –

$$(a) - 1$$

(b)
$$\frac{1}{\sqrt{3}}$$

(d)
$$\frac{1}{2}$$
.

tan 17° + tan 28° + tan 17° tan 28° = Φ७?

$$(b) - 1$$

(c)
$$\sqrt{3}$$

(d)
$$\frac{1}{\sqrt{3}}$$
.

9. $\frac{1+\cos 2\theta + \sin 2\theta}{1-\cos 2\theta + \sin 2\theta} = \overline{\Phi\Phi}?$

(b)
$$\sin \theta$$

(d)
$$-\cos \theta$$
.

10. $A \neq B$ এবং $\sin A + \cos A = \sin B + \cos B$ হলে, $A + B = \overline{\Phi}$ ত?

(a)
$$\frac{\pi}{4}$$

$$(b) - \frac{\pi}{2}$$

(c)
$$\frac{\pi}{2}$$

$$(d)-\frac{\pi}{4}$$

প্রশ্নালা 7.1

1. (i) $-\frac{1}{\sqrt{2}}$ (ii) 1, (iii) $-\frac{2}{\sqrt{3}}$ (iv) $\sqrt{2}$, (v) $-\sqrt{3}$, (vi) $\frac{1}{\sqrt{2}}$ (vii) 2, (viii) 0, (ix) $\frac{1}{\sqrt{3}}$.

2.
$$-\sqrt{3}$$
, $\frac{1}{\sqrt{2}} \cdot \frac{\sqrt{3}}{2}$ and $\frac{1}{\sqrt{3}} \cdot 3$. (i) 0, (ii) $\frac{\sqrt{3}}{2} \cdot (iii)$ 1, (iv) $-(\frac{\sqrt{2}}{2} + 4)$.

(ii)
$$\frac{\sqrt{3}}{2}$$
 · (iii) 1

$$(iv) - \left(\frac{\sqrt{2}}{2} + 4\right).$$

5. $-\cos 25^{\circ}$, (ii) $-\cot 24^{\circ}$, (iii) $\cos 33^{\circ}$, (iv) $\cot 26^{\circ}$, (v) $-\csc 23^{\circ}$, (vi) $-\csc 36^{\circ}$.

6. (i) 2, (ii) 2, (iii) 2, (iv) 2. (u). 0.

প্রশুমালা 7.2

1. (i) $\frac{1}{4}(\sqrt{6}-\sqrt{2})$, (ii) $\frac{1}{4}(\sqrt{6}+\sqrt{2})$, (iii) $2+\sqrt{3}$, (iv) $\sqrt{2}-\sqrt{6}$, (v) $\sqrt{2}+\sqrt{6}$.

(i) 1 and 0, (ii) $-\frac{278}{29}$ and $\frac{1}{2}$. (iii) $-\frac{85}{36}$. 3. (i) $\frac{1}{2}$. (ii) $\frac{\sqrt{3}}{2}$. (iii) 1.

21. (i) $\cos A \cos B \cos C$ ($\tan A - \tan B - \tan C - \tan A \tan B \tan C$); এবং $\cos A \cos B \cos C (1 + \tan A \tan B + \tan B \tan C - \tan C \tan A)$.

(ii) $\frac{\cot A \cot B \cot C - \cot A - \cot B - \cot C}{\cot B \cot C + \cot C \cot A + \cot A \cot B - 1}$

প্রশুমালা 7.7

23. (b) 60°, (c) 90°, 30°, 60°. 26. 120°. 27. 120°. 28. 84 বৰ্গ একক।

প্রশ্রমানা 7.8

1. (a) -1; (b)
$$\frac{1}{4}(\sqrt{6} + \sqrt{2})$$
; (c) $-\frac{1}{24}\sqrt{6}(\sqrt{3} - \sqrt{2})$

(a) $\sin A \cos B - \cos A \sin B$; (b) $\frac{\cot^2 \theta - 1}{2\cot \theta}$; (c) $4 \sin A (1 - 2\sin^2 A) \sqrt{1 - \sin^2 A}$.

(b) 77°.98; (c) 60°. 4. (a) \(\) (c). 5. (b). 6. b. 7. c. 8. a. 9. c. 10. c.

ব্যবহারিক

ব্রিভূচ্ছে তিনটি কোণ ও তিনটি বাহু আছে। এদের মধ্যে যেকোনো চারটি ত্রিকোণমিতিক সূত্রের সাহায্যে পরস্পর সম্পর্কযুক্ত। সূতরাং ব্রিভূচ্জের তিনটি রাশি (তাদের মধ্যে কমপক্ষে একটি বাহু) জানা থাকদে সংশ্লিফ সূত্রের সাহায্যে চতুর্থটি নির্দিষ্টভাবে নির্ণয় করা যায়। ব্রিভূচ্জের তিনটি রাশির পরিমাপ (প্রদন্ত) ব্যবহার করে ব্রিভূচ্জের অপর তিনটির পরিমাপ নির্ণয় করাকেই ব্রিভূচ্জের সমাধান বোঝায়।

ত্রিভূচ্চের যে তিনটি রাশির মান জানা থাকলে এর অপর রাশিগুলি নির্দিষ্টভাবে নির্ণয় করা সম্ভব তা শ্রেণিভূক্ত করে নিচে দেওয়া হলো:

- (ক) তিনটি বাহু, অথবা
- (খ) দুইটি বাহু এবং এদের অন্তর্ভুক্ত কোণ, অথবা
- (গ) দুইটি কোণ ও একটি বাহু, অথবা
- (घ) দুইটি বাহু ও এদের একটির বিপরীত কোণ।

7.5. ত্রিভুজের তিনটি বাহুর দৈর্ঘ্য দেওয়া আছে

মনে করি, যেকোনো ত্রিভূচ্চ, ABC এর তিনটি বাহুর দৈর্ঘ্য যথাক্রমে a, b, c. এখন ত্রিভূচ্চের পরিসীমার অর্থেককে s অর্থাৎ, $s=\frac{1}{2}\left(a+b+c\right)$ ধরলে, ত্রিকোণমিতি থেকে আমরা পাই,

$$\sin \frac{A}{2} = \sqrt{\frac{(s-b)(s-c)}{bc}}, \cos \frac{A}{2} = \sqrt{\frac{s(s-a)}{bc}}, \tan \frac{A}{2} = \sqrt{\frac{(s-b)(s-c)}{s(s-a)}} \text{ agg}$$

$$\cos A = \frac{b^2 + c^2 - a^2}{2bc}$$

সূত্রগৃণির যেকোনো একটি ব্যবহার করে A কোণের পরিমাপ নির্ণয় করা যায়। অনুরূপ সূত্র থেকে B এবং C কোণদ্বয় নির্ণয় করা হয়।

সমস্যা নং 7.5

সমস্যা : একটি ত্রিভূজের বাহুগুলি যথাক্রমে 9cm, 10 cm, 11cm. হলে, দ্বিতীয় বাহুর বিপরীত কোণ নির্ণয় করতে হবে।

সমাধান : মনে করি, a=9 cm. b=10 cm. এবং c=11 cm. তাহলে, b এর বিপরীত কোণ B নির্ণয় করতে হবে। পর্যায়ক্রমে অনুচ্ছেদ 7.5 এ উল্লেখিত চারটি সূত্র এবং 'সায়েন্টিফিক ক্যালকুলেটার' ব্যবহার করে B এর মান নির্ণয় করি।

(a) প্রথম পন্ধতি:

ভদ্ধ : সূত্ৰ
$$\sin \frac{B}{2} = \sqrt{\frac{(s-c)(s-a)}{ca}}$$
, যেখানে $s = \frac{1}{2}(a+b+c)$.

কার্যপন্ধতি:

- 1. প্রদন্ত তথ্য থেকে $s = \frac{1}{2} (9 + 10 + 11)$ cm. = 15 cm. নির্ণয় করি।
- 2. সূত্রে a, b, c, s এর মান বসিয়ে

$$\sin\frac{B}{2} = \sqrt{\frac{(15 - 11)(15 - 9)}{11 \times 9}} = \sqrt{\frac{4 \times 6}{11 \times 9}} = 0.492366$$

$$\therefore \frac{B}{2} = 29^{\circ}29'46''$$
 (প্রায়) বা, $B = 58^{\circ}59'32''$ (প্রায়)।

ফল সংকলন:

а	b	С	S	ষিতীয় বাহু, <i>b</i>	$\sin \frac{B}{2}$	$\frac{B}{2}$	В
9 cm.	10 cm.	11 cm.	15 cm.	10 cm.	0.492366	29°29′46″	58°59′32″

(b) দ্বিতীয় পশ্বতি:

তত্ত্ব : সূত্র
$$\cos \frac{B}{2} = \sqrt{\frac{s(s-b)}{ca}}$$
, যেখানে $s = \frac{1}{2}(a+b+c)$.

কার্যপন্ধতি:

- 1. প্রদন্ত তথ্য থেকে s = $\frac{1}{2}$ (9 + 10 + 11) cm. = 15 cm. নির্ণয় করি।
- 2. সূত্রে a, b, c, s এর মান বসিয়ে

$$\cos\frac{B}{2} = \sqrt{\frac{15(15-10)}{9\times11}} = \sqrt{\frac{15\times5}{9\times11}} = 0.870388$$

$$\therefore \frac{B}{2} = 29^{\circ}29'46''$$
 (প্রায়) বা, $B = 58^{\circ}59'32''$ (প্রায়)।

यन সংকলन :

а	b	С	S	দ্বিতীয় বাহু, b	$\cos \frac{B}{2}$	$\frac{B}{2}$	В
9 cm.	10 cm.	11 cm.	15 cm.	10 cm.	0.870388	29°29′46″	58°59′32″

(c) তৃতীয় পন্ধতি:

তম্ব : সূত্র
$$\tan \frac{B}{2} = \sqrt{\frac{(s-c)(s-a)}{s(s-b)}}$$
, যেখানে $s = \frac{1}{2}(a+b+c)$

কার্যপন্ধতি:

1. প্রদন্ত তথ্য থেকে s =
$$\frac{9+10+11}{2}$$
 cm. = 15 cm. নির্ণয় করি।

2. সূত্রে
$$a, b, c, s$$
 এর মান বসিয়ে $\tan \frac{B}{2} = \sqrt{\frac{(15-11)(15-9)}{15(15-10)}} = \sqrt{\frac{4\times6}{15\times5}} = 0.565685$

$$\therefore \frac{B}{2} = 29^{\circ}29'46''$$
(প্রায়) বা, $B = 58^{\circ}59'32''$ (প্রায়)

कन সংকলন :

а	b	c	S	দ্বিতীয় বাহু, b	$\tan \frac{B}{2}$	<u>B</u> 2	В
9 cm.	10 cm.	11 cm.	15 cm.	10 cm.	0.565685	29°29′46″	

(d) চতুর্থ পন্ধতি :

তত্ত্ব : সূত্র
$$\cos B = \frac{c^2 + a^2 - b^2}{2ca}$$

কার্যপন্ধতি:

1. সূত্রে a, b, c এর মান বসিয়ে

$$\cos B = \frac{11^2 + 9^2 - 10^2}{2 \times 11 \times 9} = \frac{121 + 81 - 100}{2 \times 11 \times 9} = 0.515151$$
 ∴ $B = 58^{\circ}59'32''$ (প্রায়)।

а	b	c	cos B	В
9 cm.	10 cm.	11 cm.	0.515151	58°59′32″

শ্রেণির কাজ:

1. ABC ঝিস্থুন্সে a=74 cm. b=26 cm. c=60 cm. হলে, $\angle A$ এর মান নির্ণয় কর।

উ : 112°37′12″(প্রায়)

- 2. একটি ত্রিভূজের বাহুগুলি যথাক্রমে 5 cm., 6 cm. এবং 7 cm. হলে, ঐ ত্রিভূজের বৃহত্তম কোণটি নির্ণয় কর। উ : 78°27'48"(প্রায়)
- 3. একটি ত্রিভূজের বাহগুলি যথাক্রমে 24 cm., 19 cm. এবং 15 cm. হলে, ঐ ত্রিভূজের প্রথম বাহুর বিপরীত কোণ নির্ণয় কর। উ : 88°59′42″(প্রায়)
- 4. একটি ত্রিভুজের বাহুগুলি যথাক্রমে 56 cm, 65 cm. এবং 33 cm. হলে, ঐ ত্রিভুজের ক্ষুদ্রতম কোণটি নির্ণয় কর। উ: 30°30′38″ (প্রায়)

7.6. ত্রিভুজের তিনটি কোণের পরিমাপ দেওয়া আছে

মনে করি, যেকোনো ত্রিভূজ, ABC এর তিনটি কোণ যথাক্রমে A, B, C. তাহলে, ত্রিভূজ সূত্র

$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$$
 অধাৎ $a \wr b \wr c = \sin A \wr \sin B \wr \sin C$ থেকে $a \wr b \wr c$ নির্ণয় করা যায়।

সমস্যা नং 7.6	তারিখ :

সমস্যা : একটি ত্রিভূজের ভিনটি কোণের পরিমাপ যথাক্রমে 50°, 60°, 70° . বাহুগুলির দৈর্ঘ্যের অণুপাত a ៖ b ៖ c নির্ণয় করতে হবে।

সমাধান : ডছে : সূত্ৰ
$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$$

অধাৎ $a:b:c=\sin A:\sin B:\sin C$

কার্য পন্ধতি:

- 1. $\sin 50^\circ = 0.766$, $\sin 60^\circ = 0.866$ এবং $\sin 70^\circ = 0.940$ নির্নয় করি।
- 2. সূত্রে sin 50°, sin 60°, sin 70° এর মান বসিয়ে a ខ b ខ c = 0.766 ខ 0.866 ខ 0.940 নির্ণয় করি।

সুজরাং a : b : c = 766 : 866 : 940 = 383 : 433 : 470.

कन সংকলन :

sin A	sin B	sin C	a & b & c
0.766	0.866	0.940	766 : 866 : 940 = 383 : 433 : 470

শ্রেণির কাজ:

1. ABC ত্রিভূজের তিনটি কোণ যথাক্রমে $70^\circ, 80^\circ, 30^\circ$ হলে, a:b:c নির্ণয় কর।

ቼ: 188 ፡ 177 ፡ 100.

2. একটি ত্রিভূচ্জের বৃহত্তম ও ক্ষুদ্রতম কোণ দুইটি যথাক্রমে 95° ও 30°. ত্রিভূচ্চটির বাহুগুলির জনুপাত নির্ণয় কর। উ : 996 ঃ 819 ঃ 500.

3. ABC গ্রিভুন্ধের তিনটি কোণ যথাক্রমে $\frac{\pi}{4}$, $\frac{5\pi}{18}$ এবং $\frac{17\pi}{36}$ হলে, a:b:c নির্ণয় কর।

ቴ : 707 ፣ 766 ፣ 996.

7.7. দুইটি কোণ ও একটি বাহু দেওয়া আছে

আমরা জানি, $A+B+C=180^\circ$, যেখানে প্রদন্ত কোণদ্বয়ের মান বসিয়ে তৃতীয় কোণের মান বের করা যায়। এরপর $\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}$ সূত্র প্রয়োগ করে অপর বাহুদ্বয়ের মান নির্ণয় করতে হবে।

সমস্যা নং 7.7	ক্রাবিখ -
भाषणा गर् १०१	: FRIIS

সমস্যা : ABC ট্রিভূচ্ছে $a=39~\mathrm{cm.}$, $A=81^\circ$ এবং $B=27^\circ$ হলে, ট্রিভূচ্ছটির অপর বাহুদ্ব নির্ণয় করতে হবে।

সমাধান:

ডৰ : সূত্ৰ
$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$$

কার্যপন্ধতি:

1. $A + B + C = 180^{\circ}$ থেকে $C = 180^{\circ} - 81^{\circ} - 27^{\circ} = 72^{\circ}$ নির্ণয় করি।

2. প্রদন্ত সূত্র থেকে $\frac{a}{\sin A} = \frac{b}{\sin B}$ বা, $b = \frac{a \sin B}{\sin A} = \frac{39 \sin 27^{\circ}}{\sin 81^{\circ}}$ [a, A, B এর মান বসিয়ে] ∴ b = 17.93 cm. (প্রায়) |

3. জাবার প্রদন্ত সূত্রে থকে $\frac{a}{\sin A} = \frac{c}{\sin C}$ বা, $c = \frac{a \sin C}{\sin A} = \frac{39 \sin 72^{\circ}}{\sin 81^{\circ}}$ [a, C, A এর মান বসিয়ে] $\therefore c = 37.55 \text{ cm.}$ (প্রায়)।

कन সংকলন :

а	A	В	$C = 180^{\circ} - A - B$	$b = \frac{a \sin B}{\sin A}$	$c = \frac{a \sin C}{\sin A}$
39 cm.	81°	27°	72°	17.93 cm.	37.55 cm.

শ্রেণির কাজ:

1. ABC আিছুন্দে $A = 38^{\circ}20'$, $B = 45^{\circ}$ এবং b = 64 cm. হলে, c এর মান নির্ণয় কর।

উ: 89.9 cm. (প্রায়)।

2. ABC গ্রিভুছে $B=45^{\circ}, C=10^{\circ}$ এবং $a=200 \; \mathrm{cm}$. হলে, b এর মান নির্ণয় কর।

উ: 172.64 cm. (প্রায়)।

3. ABC আভুজে $B = 70^{\circ}30'$, $C = 78^{\circ}10'$ এবং a = 102 cm. হলে, b ও c এর মান নির্ণয় কর। উ: b = 185 cm. c = 192 cm.

4. ABC ত্রিভূজের $B = 52^{\circ}28'$, $C = 93^{\circ}40'$ এবং a = 19 সে.মি. হলে, ত্বপর বাহুদ্য নির্ণয় কর। উ: b = 27.04 সে.মি., c = 34.02 সে.মি.।

7.8.1. ত্রিভুজের দুইটি বাহু এবং এদের অন্তর্ভুক্ত কোণ দেওয়া আছে

মনে করি, যে কোন ত্রিভূজ ABC এর দুইটি বাহু a, b এবং তাদের অন্তর্ভূক্ত কোণ C দেওয়া আছে। আমরা জানি, $\tan \frac{A-B}{2} = \frac{a-b}{a+b} \cot \frac{C}{2}$. এ সূত্রে প্রদণ্ড a, b, C এর মান বসিয়ে (A-B) নির্ণয় করা যায়।

জাবার $A+B+C=180^\circ$. যা থেকে A+B নির্ণয় করা যায় [$\because \angle C$ দেওয়া আছে]। এরপর সমাধান করে A ও B এর মান নির্ণয় করা হয়।

সমস্যা নং 7.8.1

তারিখ:

সমস্যা : ABC গ্রিভূজে a=7 cm., b=3 cm. এবং $C=60^\circ$ হলে, A এবং B এর মান নির্ণয় করতে হবে।

সমাধান:

ডছ : সূত্ৰ
$$\tan \frac{A-B}{2} = \frac{a-b}{a+b} \cot \frac{C}{2}$$
.

কার্যপন্ধতি:

1. সূত্রে a, b এবং C এর মান বসিয়ে

$$\tan \frac{A-B}{2} = \frac{7-3}{7+3} \cot 30^{\circ} = \frac{4}{10 \tan 30^{\circ}} = 0.692820$$

$$\therefore \frac{A-B}{2} = 34^{\circ}.42'54'' \text{ di, } \frac{A}{2} - \frac{B}{2} = 34^{\circ}.42'54'' \dots$$
 (i)

2. যেহেতু
$$A + B + C = 180^{\circ}$$
, সূতরাং $A + B + 60^{\circ} = 180^{\circ}$ বা, $\frac{A}{2} + \frac{B}{2} = 60^{\circ}$ (ii)

3. (i) এবং (ii) সমাধান করে, $A = 94^{\circ}42'54''$, $B = 25^{\circ}.17'6''$.

कन সংকলন :

a	ь	ZC	$\frac{A}{2}$ $-\frac{B}{2}$	$\frac{A}{2} + \frac{B}{2}$	∠A	∠B
7 cm.	3 cm.	60°	34°.42′54″	60°	94°.42′54″	25°.17′6″

শ্রেণির কাজ:

- 1. ABC আভুজে a=100 cm., b=80 cm. এবং $C=60^\circ$ হলে, ত্রিভুজটি সমাধান কর। উ: $A=70^\circ53'36''$, $B=49^\circ6'24''$, c=91.5 cm.
- 2. ABC আছুছে b=9 cm., c=6 cm. এবং $A=60^\circ$ হলে, B এবং C এর মান নির্ণয় কর। উ: $B=79^\circ6'24''$, $C=40^\circ53'36''$.
- 3. ABC ত্রিভূজে a = 21, b = 11 এবং C = 34°42′30″ হলে, A ও B এর মান নির্ণয় কর : উ: A = 117°38′44″, B = 27°38′46″.

7.8.2. দুইটি বাহু এবং ভাদের একটির বিপরীভ কোণ দেওয়া আছে

মনে করি, ABC ত্রিভূজের b, c এবং B দেওয়া আছে। তাহলে, $\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$ থেকে ত্রিভূজের অপর রাশিগুলো নির্ণয় করা যায়।

नयना नः 7.8.2

তারিখ:

সমস্যা : ABC ত্রিভূজে b=16 cm., c=25 cm. এবং $B=33^\circ$ হলে, C এর মান নির্ণয় করতে হবে। সমাধান :

ভদ্ধ : সূত্র
$$\frac{b}{\sin B} = \frac{c}{\sin C}$$

কার্যপন্ধতি:

1. প্রদন্ত তথ্য সূত্রে বসিয়ে $\frac{16}{\sin 33^\circ} = \frac{25}{\sin C}$

$$41, \sin C = \frac{25 \sin 33^{\circ}}{16} = 0.850998$$

2. আমরা পাই sin C = sin 58°19′13″ = sin (180° — 58°19′13″)

সুতরাং, $C = 58^{\circ}19'13''$ বা, $121^{\circ}40'47''$.

যেহেতৃ c>b (প্রদন্ত), $\therefore C>B$. সূতরাং, C এর উভয় মানই গ্রহণযোগ্য।

कन সংকলন : $C = 58^{\circ}19'13''$ বা, $121^{\circ}40'47''$.

মন্তব্য : সূত্র থেকে আমরা পাই $\sin C = \frac{c \sin B}{b}$

- (i) যদি $c \sin B > b$ হয়, তবে ডানপক্ষের মান 1 অপেক্ষা বৃহন্তর হবে। যেহেতু $\sin C$ এর মান 1 অপেক্ষা বৃহন্তর হতে পারে না, সূতরাং এক্ষেত্রে C এর সমাধান পাওয়া যাবে না। অর্থাৎ প্রদন্ত তথ্য নিয়ে কোন ত্রিভুক্ত অক্ষন করা যায় না।
- (ii) যদি $c \sin B = b$ হয়, তবে C এর মান 90° হবে। অর্থাৎ, ত্রিভূজটি হবে সমকোণী।
- (iii) যদি $c\sin B < b$ হয়, এবং b < c হয়, তবে C এর জন্য প্রাশ্ত স্থূলকোণটি গ্রহণযোগ্য হবে না।
- (iv) যদি $c \sin B < b$ হয়, এবং b < c হয়, তবে C এর জন্য প্রাণ্ড উভয় মানই গ্রহণযোগ্য। এক্ষেত্রে ত্রিভুজ সমাধানে দ্বর্থক্ষেত্র (ambiguous case) বলা হয়।

শ্রেণির কাব্দ :

- 1. যদি ABC ত্রিভুজে $A=30^\circ$, a=4 cm, b=8 cm. হয়, তাহলে C এর মান নির্ণয় কর। $\,$ উ: 60° .
- 2. যদি ABC ত্রিভূচ্ছে a=5 cm., b=4 cm. এবং $A=45^\circ$ হয়, তাহলে ত্রিভূচ্ছটির অপর কোণুগুলি নির্ণয় কর। উ: $B=34^\circ 26' 58''$, $C=100^\circ 33' 2''$,
- 3. ABC ঞিভূজে a=9 cm., b=12 cm. এবং $A=30^\circ$ হলে, C এর মান নির্ণয় কর ৷

 $5: 11^{\circ}48'36'', C = 108^{\circ}11'24'',$