ĐẠI HỌC QUỐC GIA THÀNH PHỐ HỒ CHÍ MINH ĐẠI HỌC KHOA HỌC TỰ NHIỀN KHOA CNTT

THỊ GIÁC MÁY TÍNH

ĐẶC TRƯNG CỰC BỘ

07 THÁNG SÁU 2020 HCMUS

I. Thành viên

MSSV	Họ và tên
1712791	Lâm Bá Thịnh

II. Bảng đánh giá

STT	Yêu cầu	Tên hàm đề nghị	Ghi chú	Mức độ
1	Phát hiện điểm đặc trưng sử dụng thuật toán hariss và hiển thị điểm đặc trưng trên ảnh gốc.	Mat detectHarrist(Mat img,)		100%
2	Phát hiện điểm đặc trưng sử dụng thuật toán blob và hiển thị điểm đặc trưng trên ảnh gốc.	Mat detectBlob(Mat img,)		100%
3	Phát hiện điểm đặc trưng sử dụng thuật toán DOG và hiển thị điểm đặc trưng trên ảnh gốc	Mat detectDOG(Mat img,)		100%
4	Đối sánh 2 ảnh sử dụng đặc trưng SIFT với thuật toán KNN.	int detectByCany(Mat sourceImage, Mat destinationImage);	Tham số detector là 1 trong 3 thuật toán phát hiện điểm đặc trưng ở trên Sinh viên tìm hiểu thuật toán KNN trong thư mục samples của OpenCV và biết báo cáo	100%

5	Thực nghiệm đối sánh		
	các phương pháp trên		
	tập dữ liệu ảnh bìa		1000/
	CD/DVD. Đánh giá kết		100%
	quả và nêu nhận xét về		
	các thuật toán trên.		

III. Chi tiết

1. Harris

a. Minh họa 3 kết quả thực nghiệm:Mẫu 1:

Mẫu 2:

Mẫu 3:

- b. Nhận xét:
- c. Hướng dẫn sử dụng:

Chương trình được chạy bằng command line với cú pháp như sau:

<tenchuongtrinh> <malenh> <duongdantaptinanh> [<thamso>] Trong đó:

- <tenchuongtrinh>: tên của tập tin *.exe.
- <duongdantaptinanh>: đường dẫn đến tập tin ảnh cần xử lý.
- <malenh>: 1.
- [<thamso>]: không có.

Ví du:

1712791_Lab03.exe 1 "D:\\HCMUS\\Computer Vision\\1712791_Lab03\\chess.jpg"

2. Blob - LoG

a. Minh họa 3 kết quả thực nghiệm:

Mẫu 1:

Mẫu 2:

Mẫu 3:

- b. Nhận xét:
- c. Hướng dẫn sử dụng:
 Chương trình được chạy bằng command line với cú pháp như sau:
 <tenchuongtrinh> <malenh> <duongdantaptinanh> [<thamso>]
 Trong đó:
 - <tenchuongtrinh>: tên của tập tin *.exe.
 - <duongdantaptinanh>: đường dẫn đến tập tin ảnh cần xử lý.

- <malenh>: 2.
- [<thamso>]: không có.

Ví dụ:

3. Blob - DoG

a. Minh họa 3 kết quả thực nghiệm:

Mẫu 1:

Mẫu 2:

Mẫu 3:

b. Nhận xét:

-

c. Hướng dẫn sử dụng:
 Chương trình được chạy bằng command line với cú pháp như sau:
 <tenchuongtrinh> <malenh> <duongdantaptinanh> [<thamso>]
 Trong đó:

- <tenchuongtrinh>: tên của tập tin *.exe.
- <duongdantaptinanh>: đường dẫn đến tập tin ảnh cần xử lý.
- <malenh>: 3.
- [<thamso>]: không có.

Ví dụ:

1712791_Lab03.exe 3 "D:\\HCMUS\\Computer Vision\\1712791_Lab03\\TestImages\\07.jpg

4. SIFT

a. Minh họa kết quả sau khi đối sánh:

Mẫu 1: Harris

Mẫu 2: Blob-LoG

Mẫu 3: Blob-DoG

b. Nhận xét:

- Tùy tính chất của ảnh mà ta sẽ sử dụng đặc trưng góc, hay blob.
- Đối với mẫu trên: góc khá nhiều. Do đó Harris cho kết quả ổn định hơn 2 đặc trưng còn lại.
- c. Hướng dẫn sử dụng:

Chương trình được chạy bằng command line với cú pháp như sau:

<tenchuongtrinh> <malenh> <ddtaptinanh1> <ddtaptinanh2>

[<thamso>]

Trong đó:

- <tenchuongtrinh>: tên của tập tin *.exe.

- <ddtaptinanh1>: đường dẫn đến tập tin ảnh 1.
- <ddtaptinanh2>: đường dẫn đến tập tin ảnh 2.
- <malenh>: 4.
- [<thamso>]: tham số detector là 1 trong 3 thuật toán phát hiện điểm đặc trưng ở trên (có giá trị 1-3).

Ví du:

1712791_Lab03.exe 4 "D:\\HCMUS\\Computer Vision\\1712791_Lab03\\TestImages\\01.jpg" "D:\\HCMUS\\Computer Vision\\1712791_Lab03\\training_images\\01_1.jpg" 2

IV. Tham khảo

 $\frac{https://medium.com/data-breach/introduction-to-sift-scale-invariant-feature-transform-65d7f3a72d40$