# Master Project Water Sterilizer Optimization

Mahmoud Fatene Frederic Durand Valene Pellissier Claire Yang

January 2008





- Subject
  - Methodology
  - Objectives
- Mathematical Models
  - Fluids Mechanic
  - UV Radiation
  - Bacteria Concentration
- Optimization
  - Problem Formulation
  - First Approximation
  - In the Future
- 4 Conclusion



- Subject
  - Methodology
  - Objectives
- Mathematical Models
  - Fluids Mechanic
  - UV Radiation
  - Bacteria Concentration
- Optimization
  - Problem Formulation
  - First Approximation
  - In the Future
- Conclusion







 Context: To model water sterilization by UV radiation with this device:



• **Goal:** To find the optimal radius *r* and *R* for which :



- **Goal:** To find the optimal radius *r* and *R* for which :
  - \* At the end of the pipe, the water is sterilized.



- **Goal:** To find the optimal radius *r* and *R* for which :
  - \* At the end of the pipe, the water is sterilized.
  - \* The flow must be 2 or 4  $l.min^{-1}$ .



- **Goal:** To find the optimal radius r and R for which :
  - \* At the end of the pipe, the water is sterilized.
  - \* The flow must be 2 or 4  $l.min^{-1}$ .
  - \*  $R \in [7mm 20mm]$  and  $r \in [2mm 6mm]$



- **Goal:** To find the optimal radius r and R for which :
  - \* At the end of the pipe, the water is sterilized.
  - \* The flow must be 2 or 4  $l.min^{-1}$ .
  - \*  $R \in [7mm 20mm]$  and  $r \in [2mm 6mm]$
- Expected Result: To create a computer program to search these radius.



- Subject
  - Methodology
  - Objectives
- Mathematical Models
  - Fluids Mechanic
  - UV Radiation
  - Bacteria Concentration
- Optimization
  - Problem Formulation
  - First Approximation
  - In the Future
- 4 Conclusion



#### Different concerned domains:

Micro-Biology (bacteria's concentration)

#### Different concerned domains:

- Micro-Biology (bacteria's concentration)
- Fluid Mechanics

#### Different concerned domains:

- Micro-Biology (bacteria's concentration)
- Fluid Mechanics
- Radiation

#### Different concerned domains:

- Micro-Biology (bacteria's concentration)
- Fluid Mechanics
- Radiation

#### Different concerned domains:

- Micro-Biology (bacteria's concentration)
- Fluid Mechanics
- Radiation

Our research approach:

#### Simplified case $\Rightarrow$ real case:

• 0D mean velocity

#### Different concerned domains:

- Micro-Biology (bacteria's concentration)
- Fluid Mechanics
- Radiation

Our research approach:

#### Simplified case $\Rightarrow$ real case:

- 0D mean velocity
- 1D mean velocity

#### Different concerned domains:

- Micro-Biology (bacteria's concentration)
- Fluid Mechanics
- Radiation

Our research approach:

### Simplified case $\Rightarrow$ real case:

- 0D mean velocity
- 1D mean velocity
- 2D axisymmetric with a Poiseuille's Profile

#### Different concerned domains:

- Micro-Biology (bacteria's concentration)
- Fluid Mechanics
- Radiation

Our research approach:

#### Simplified case $\Rightarrow$ real case:

- 0D mean velocity
- 1D mean velocity
- 2D axisymmetric with a Poiseuille's Profile
- 2D axisymmetric with simplified Navier-Stokes' equations



- Subject
  - Methodology
  - Objectives
- Mathematical Models
  - Fluids Mechanic
  - UV Radiation
  - Bacteria Concentration
- Optimization
  - Problem Formulation
  - First Approximation
  - In the Future
- 4 Conclusion

# Objectives

### **Frist:**

- ⇒ To complete the 0D model before mid-Febrary.
- $\Rightarrow$  To finish the 2D model and give representative results for r and R to obtain sterilized water.

#### If miracle:

 $\Rightarrow$  To do the same with the 3D model.

- Subject
  - Methodology
  - Objectives
- Mathematical Models
  - Fluids Mechanic
  - UV Radiation
  - Bacteria Concentration
- Optimization
  - Problem Formulation
  - First Approximation
  - In the Future
- Conclusion

## General Case

Incompressible fluids velocity are governed by Navier-Stokes equations. We look for the velocity  $\vec{u}$ 

#### The Navier-Stokes Equations

$$\begin{cases} \frac{\partial \vec{u}}{\partial t} + \vec{u} \cdot \nabla \vec{u} - u \Delta \vec{u} + \nabla p = f \\ div(\vec{u}) = 0 \end{cases}$$
 (1)

where :  $\vec{u}$ : the fluid velocity p: the pressure

# 0D Case

• RC-Lux gives us: the pressure loss  $\Delta p$ 

• We look for: the velocity v

#### The Darcy-Weisbach Equation (version 1)

$$h_l = f \cdot \frac{L}{D} \cdot \frac{v^2}{2g} \tag{2}$$

 $h_l$ : the head loss due to friction

where: f: a Darcy friction factor

L: the length of the pipe and D: the diameter of the pipe

g: the gravitational constant

#### The Darcy-Weisbach Equation (version 2)

Since  $\Delta p = \rho g h_l$ , where  $\rho$  is the flow's density, we have :

$$\Delta p = f \cdot \frac{L}{D} \cdot \frac{\rho v^2}{2} \tag{3}$$

### 0D Case

$$\Delta p = \left(\sum_{\rho=1}^{3} f_{\rho} \frac{L_{\rho}}{D_{\rho}} + K_{e} + K_{c}\right) \cdot \frac{\rho v^{2}}{2} \tag{4}$$

With:

#### Swamee-Jain Equation

$$f_p = \frac{0.25}{[\log(\frac{\varepsilon}{3.7D_p} + \frac{5.74 \cdot \nu^{0.9}}{(v.D_p)^{0.9}})]^2}$$
 (5)

And:



- Subject
  - Methodology
  - Objectives
- Mathematical Models
  - Fluids Mechanic
  - UV Radiation
  - Bacteria Concentration
- Optimization
  - Problem Formulation
  - First Approximation
  - In the Future
- Conclusion



## General Case

#### Single Stage Exponential Decay Equation

$$S(t) = e^{-kIt} \tag{6}$$

*S*: the surviving ratio of the initial population  $\frac{c}{c_0}$  *t*: the exposure time

Where

I: the UV radiation intensity

. the ovidation intensity

k: the sensitivity coefficient of the microorganisms to UV exposure.

#### Beer-Lambert Law

$$I(x) = I_0 \cdot e^{-\alpha x \rho} \tag{7}$$

 $I_0$  is the intensity of the incident light

Where  $\alpha$ , the absorption coefficient

ho the density of water.

- Subject
  - Methodology
  - Objectives
- Mathematical Models
  - Fluids Mechanic
  - UV Radiation
  - Bacteria Concentration
- Optimization
  - Problem Formulation
  - First Approximation
  - In the Future
- 4 Conclusion



### General Case

We are interested in solving this equation in order to know concentration at the end of the sterilizer.

#### Bacteria's Concentration Equation

$$\frac{\partial c}{\partial t} + \underbrace{\vec{u} \cdot \nabla c}_{advection} + \underbrace{\mu \cdot c}_{reaction} = f \tag{8}$$

c: the bacteria concentration

Where, u: the fluid velocity

 $\mu$ : a constant which represents the bacteria's destruction

### 0D Case

In a first approximation:

#### Simplified Bacteria's Concentration Equation

$$\begin{cases} \frac{\partial c}{\partial t} = -\mu \cdot c \\ c(t=0) = c_0 \end{cases}$$
 (9)

The solution of this problem is so:

$$c(t) = c_0 \cdot e^{-\mu t} \tag{10}$$

Using the formula about radiation explained earlier, we obtain:

#### The Concentration at time t:

$$c(t) = c_0 \cdot S(t) = c_0 \cdot e^{-klt}$$
 (11)

- Subject
  - Methodology
  - Objectives
- Mathematical Models
  - Fluids Mechanic
  - UV Radiation
  - Bacteria Concentration
- Optimization
  - Problem Formulation
  - First Approximation
  - In the Future
- 4 Conclusion



### **Problem Formulation**

#### Formula

$$\underset{r \in [2,6]; R \in [7,20]; C < C_s}{Min} \alpha C(r,R) + \beta Vol(r,R) \tag{12}$$

- The dimension of the radius is the millimeter.
- We use  $\Delta p = kQ^2$  to have the constraint on the flow.

- Subject
  - Methodology
  - Objectives
- Mathematical Models
  - Fluids Mechanic
  - UV Radiation
  - Bacteria Concentration
- Optimization
  - Problem Formulation
  - First Approximation
  - In the Future
- Conclusion



# First Approximation : $\beta = 0$ and $r = 2mm \Rightarrow \underset{R \in [7,20]}{Min} C(R)$

#### Formula

$$\left(f_1(v)\frac{L_1 + L_3}{2r} + f_2(v, R)\frac{L_2}{2R} + K_e + K_c\right) \cdot \frac{\rho v^2}{2} - \Delta p = 0$$
 (13)

$$c(R) = c_0 \cdot e^{-kI\frac{L_2}{v(R)}} \tag{14}$$

$$1^{st}$$
 Step :  $v(R)$ 



### $2^{nd}$ Step : C(R)



- Subject
  - Methodology
  - Objectives
- Mathematical Models
  - Fluids Mechanic
  - UV Radiation
  - Bacteria Concentration
- Optimization
  - Problem Formulation
  - First Approximation
  - In the Future
- Conclusion



# In the Future

- 0 Space Dimension :
  - \* To find the minimum bacteria concentration with r and R.
  - \* To optimize with the volume

1 Space Dimension

2 Space Dimension

## Conclusion

### **Negative Points:**

- Delay in our schedule.
- More complex than we expected.
- Almost no communication with the RC-Lux company.

#### **Positive Points:**

- Very interesting and concrete subject with different scientific domains.
- Learning of many things.
- Participation to an industrial project.

# Thank you for your attention