전산통계 과제#3

컴퓨터소프트웨어 학부 2018008559 신상윤

data deer; input hindleg foreleg @@; diff = hindleg - foreleg; cards; 142 138 140 136 144 147 144 139 142 143 146 141 149 143 150 145 142 136 148 146 ; run; proc univariate data = deer normal plot; var diff; run;

결과

(가) diff = 뒷다리 - 앞다리로 설정한 것으로 보아 평균적으로 사슴의 뒷다리가 일반적으로 앞다리보다 길다는 생각으로 표본을 생산한 것 같다. (나)

귀무가설(H0) : 평균적으로 뒷다리 <= 앞다리 대립가설(H1) : 평균적으로 뒷다리 > 앞다리

m : diff 들의 모평균이라 할 때

H0: m <= 0, H1: m > 0

(다)

1종오류 : H0이 참이지만 H0을 기각 m <= 0이지만 m > 0으로 결론 냄

2종오류 : H0이 거짓이지만 H0을 기각하지 않음

m > 0이지만 m <= 0으로 결론 냄

(라) 유의수준을 5%로 한다는 의미는 1종오류 즉, m <= 0이지만 m > 0으로 결론 낼 확률은 최대 5%라는 의미이다. 1종오류로 정하는 이유는 1종오류가 더 심각한 오류이기 때문이다. 2종오류는 자신의 연구가 맞는데 틀렸다고 생각하여 다시 연구할 가능성이 있지만, 1종오류는 자신의 연구가 틀렸는데 맞았다고 생각하여 피해를 줄 수 있다.

(마)

	적률				분위수(정의 5)		
N		10	가중합		10	레벨	분위수
평균		3,3 관측값 합 33		100% 최댓값	6,0		
표준	편차	3,0568684	분산	9,3444	14444	99%	6,0
왜도		-1,3466487	첨도	0,7893	35489	95%	6,0
제곱	제곱합 193 수정 제곱합 84.1		90%	6,0			
변동	계수	92,6323759	평균의 표준 오치	0,9666	66667	75% Q3	5,0
					1	50% 중위수	4,5
	기본 통계 측도						
	위치측도 변이측의				25% Q1	2,0	
	평균	3,300000	표준 편차	3,05687		10%	-2,0
	중위수	4,500000	분산	9.34444	-	5%	-3,0
	최빈깂	5,000000	범위	9,00000		1%	-3,0

사분위수 범위 3,00000

평균 3.3, 중앙값 4.5, 최빈값 5, 표준편차 3.057이다. Q1의 값이 2로 대부분 값들이 0보다 크다. 최소값은 -3이고, 최대값은 6으로 평균에는 6이더 가깝다. 4, 5, 6이 2번 이상 나타났고, 그중 5는 3번으로 최빈값이다. (바)

0% 최솟값

-3,0

줄기잎 그림에서 대부분 값이 0보다 큰 것을 알 수 있고, 상자 그림에서 -3이 극단값임을 알 수 있다. 요약하면 3이상인 값이 많이 분포하고, -3인 극단값을 가진다.

(사)

위치모수 검정: Mu0=0				
검정	통계량		p값	
스튜던트의 t	t	3,413793	Pr > [t]	0,0077
부호	М	3	Pr >= M	0,1094
부호 순위	S	23,5	Pr >= S	0,0117

검정통계량 : 3.413793, 유의수준 5%에서 기각역 : T >= $T_{\alpha}(9)$ = 1.83311 $\alpha=0.05$ 하에서 H0를 기각한다. 따라서 평균적으로 사슴의 뒷다리가 앞다리보다 길다고 할 수 있다.

```
data exe5;
      L1 = 171 - 1.96 * 6 / 10;
      R1 = 171 + 1.96 * 6 / 10;
      L2 = 171 - 1.96 * 6 / 20;
      R2 = 171 + 1.96 * 6 / 20;
      ok1 = 0;
      ok2 = 0;
      do i = 1 to 100000;
             sum = 0;
             do j = 1 to 100;
                    x = rand('normal', 171, 6);
                    sum = sum + x;
             end;
             x = sum / 100; /* 점추정 */
             if(L1 \leq x and x \leq R1) then do;
                    ok1 = ok1 + 1;
             end;
             sum = 0;
             do j = 1 to 400;
                    x = rand('normal', 171, 6);
                    sum = sum + x;
             end;
             x = sum / 400; /* 점추정 */
             if(L2 \leq x and x \leq R2) then do;
                    ok2 = ok2 + 1;
             end;
      end;
      p1 = ok1 / 100000;
      p2 = ok2 / 100000;
run;
proc print data = exe5(drop = i j x sum ok1 ok2);id;run;
```

L1	R1	L2	R2	p1	p2
169,824	172,176	170,412	171,588	0,94919	0,95046

- (가) 구간은 (169.824, 172.176)이다. 실제로 점 추정 해봤을 때 약 95%가 포함되었다.
- (나) 구간은 (170.412, 171.588)이다. 마찬가지로 실제로 약 95%가 포함되었다. (나)의 경우 더 많은 표본을 뽑아 평균이 모평균에 가까울 확률이 높으므로 구간이 (가)보다 작아진다. 이는 식에서도 확인할 수 있다.

4-7

코드

data exe7;

 $t_{inv} = tinv(0.975,49);$

 $L = 114 - t_{inv} * 8.4 / sqrt(50);$

 $R = 114 + t_{inv} * 8.4 / sqrt(50);$

run;

proc print data = exe7;id;run;

결과

t_inv	L	R
2,00958	111,613	116,387

모분산이 주어지지 않았으므로 T분포로 근사한다. T = $\frac{\overline{X}-\mu}{s/\sqrt{n}}$ 이고,

95%의 신뢰구간은 $(114-t_{a/2}(49)*\frac{s}{\sqrt{n}},114+t_{a/2}(49)*\frac{s}{\sqrt{n}})$ 이다.

lpha=0.025이므로 신뢰구간은 (111.613, 116.387)이다.

```
코드
data exe8;
       input name $ cnt;
cards;
A 55
B 45
run;
data exe8 1;
       L = 0.55 - 1.96 * sqrt(0.55 * 0.45 / 100);
       R = 0.55 + 1.96 * sqrt(0.55 * 0.45 / 100);
       L1 = 1;
       do while(1 - cdf('binomial',54,L1,100) > 0.025);
             L1 = L1 - 0.0001;
       end;
       R1 = 0;
       do while(cdf('binomial',55,R1,100) > 0.025);
              R1 = R1 + 0.0001;
       end;
run;
proc print data = exe8_1;id;run;
proc freq data = exe8 order = data;
      weight cnt;
       exact binomial;
      table name / alpha = 0.05;
run;
```

이항비		
name = i	A	
비율(P)	0,5500	
ASE	0.0497	
95% 신뢰하한	0,4525	
95% 신뢰상한	0,6475	
정확 신뢰한계		
95% 신뢰하한	0,4473	
95% 신뢰상한	0,6497	
22% 전환경원	0,6497	

L	R	L1	R1
0,45249	0,64751	0.4472	0,6497

정규근사 신뢰구간은 (0.4525, 0.6475) 정확한 신뢰구간은 (0.4473, 0.6497)로 직접 구한 값과 차이가 없었다. 주의할 점은

 $P(X \ge 55) = 1 - P(X \le 54)$ 라는 것이다.

4-12

코드

```
data exe12;
    reject = quantile('chisquared',0.05,70);
    test = 70 * 16 / 30;
run;
proc print data = exe12;id;run;
```

결과

reject	test	
51,7393	37,3333	

기각역은 $\chi^2 \le 51.7393$ 이고, 검정통계량은 37.333이다. 기각역에 포함되므로, $\alpha = 5\%$ 하에서 H0는 기각된다. 따라서 분산이 30보다 작다고할 수 있다.

4-13

코드

결과

표본은 1537개 이상 추출해야 한다.

4-16

H0 : 맥박의 변화가 없다. μ = 60

 $\mathrm{H1}$: 맥박의 변화가 있다(증가했다). μ > 60

$$\overline{X}$$
~ $N(60,5^2/16)$, $Z=\frac{70-60}{5/4}=8$. 기각역 : $Z\geq Z_{0.05}=1.645$

8≥1.645이므로 기각역에 포함 H0기각.

 α =0.05하에서 H0기각. 따라서 맥박의 변화가 있다고 할 수 있다.

4-18

```
data exe18;
input Mn @@;
cards;
1269 1271 1263 1265
;
```

```
run;
proc means data = exe18 n mean;run;
```

분석	분석 변수: Mn		
N	평균		
4	1267,00		

```
H0 : \mu = 1267, H1 : \mu \neq 1267 Z = \frac{1267 - 1267}{\sqrt{5}/\sqrt{4}} = 0, \text{ 기각역 } |Z| \geq Z_{\alpha/2} = 1.645 \text{ 기각역에 포함하지 않는다.} 않는다. \alpha=0.1하에서 H0기각하지 않는다. 따라서 망간이 녹는 평균 온도가 1267이
```

아니라고 할 수 없다.

4-20

```
data exe20;
            input work $ cnt;

cards;

YES 160

NO 40
;

run;

proc freq data = exe20 order = data;
            weight cnt;
            exact binomial;
            table work / binomial(p=0.9) alpha=0.05;
run;
```

H0: P = 0,9의 검정		
HO 하에서의 ASE	0,0212	
Z	-4,7140	
단측 Pr 〈 Z	<.0001	
양측 Pr > Z	<.0001	
정확 검정		
단측검정 Pr <= P	<.0001	
양측 = 2*단측	<.0001	

H0 : p = 0.9, H1 : p \neq 0.9 $Z = -4.714, \ 71 + 2 = 1.96 \$

4-22

```
data exe22;
     input six $ cnt;

cards;

YES 52

NO 188
;

run;

proc freq data = exe22 order=data;
     weight cnt;
     exact binomial;
     table six / binomial(p=0.1666666) alpha=0.1;

run;
```

H0: P = 0.1666666의 검정		
0,0241		
2,0785		
0,0188		
0,0377		
0,0261		
0,0521		

H0 : 바른 주사위다. p = $\frac{1}{6}$

H1 : 바른 주사위가 아니다. p $\neq \frac{1}{6}$

Z=2.0785, 기각역 : $|Z|\geq Z_{\alpha/2}=1.645$ 기각역에 포함됨. H0 기각 lpha=0.1하에서 H0를 기각한다. 따라서 바른 주사위가 아니다.

4-24

```
data exe24;
            input PF $ cnt;

cards;
P 66
F 54
;
run;
proc freq data = exe24 order=internal;
            weight cnt;
            exact binomial;
            table PF / binomial(p=0.4) alpha=0.05;
run;
```

H0: P = 0,4의 검정		
HO 하에서의 ASE	0.0447	
Z	1,1180	
단측 Pr > Z	0,1318	
양측 Pr > Z	0,2636	
정확 검정		
단측검정 Pr >= P	0,1528	
양측 = 2*단측	0,3055	

H0 : 열등하지 않다. p ≤ 0.4

H1 : 열등하다. 불합격률이 높다. p > 0.4

Z = 1.118, 기각역 : $Z \geq Z_{\alpha} = 1.645$ 기각역에 포함되지 않는다.

lpha=0.05하에서 H0를 기각하지 않는다. 강남고등학교 학생들이 열등하다고 할 수 없다.

4-26

코드

data exe26;

test = 8 * 0.038 / 0.04;

reject = quantile('chisquared',0.05,8);

run;

proc print data = exe26;id;run;

결과

test	reject
7,6	2,73264

H0 : $\sigma^2 \ge$ 0.04 ,H1 : 좋은 제품 σ^2 < 0.04

 χ^2 =7.6, 기각역 $\chi^2 \leq \chi^2_{0.95}(8)$ =2.73264, 기각역에 포함되지 않음.

 α =0.05하에서 H0 기각하지 않음. 따라서 좋은 제품이라 할 수 없다.