

## uLory

# 사용자 매뉴얼



## <u>수정 이력</u>

| 수정일         | 버전  | 페이지  | 수정/추가/삭제 | 수정 내용                |
|-------------|-----|------|----------|----------------------|
| 2018.08.20  | 1.0 | All  | -        | 신규 작성                |
| 2019.03.13  | 1.1 | All  | 추가       | 암호화 내용               |
|             |     |      |          | LED 동작 설명 개선         |
| 2019.10.15  | 1.2 | All  | 추가       | 동일한 패킷 수신(무선) 설명     |
|             |     |      |          | STX/ETX 기능 설명        |
| 2020.06.12  | 1.3 | All  | 수정/추가    | 표지 추가, 차례 수정         |
|             | 7   |      |          | 사용하기 및 인증 추가         |
| 2020, 09,01 | 1.4 | All  | 추가       | 설정용 유틸리티 LoRaConfig  |
|             |     |      |          | 설명 추가                |
| 2021. 03.08 | 1.5 | All  | 추가       | 설정용 앱 LoRaConfig App |
|             |     | · "· |          | 설명 추가                |



## 목 차

| 1. 4            | 사용하기 전에             | 3  |
|-----------------|---------------------|----|
| 2. 9            | 알아두기                | 4  |
| 3               | 구성품                 | 5  |
| 4. 7            | 제품                  | 6  |
| 5. 2            | 기능                  | 8  |
| 6. <del>:</del> | 응용하기                | 9  |
| 7. <i>-</i>     | 설정 준비하기             | 12 |
| 8. <i>-</i>     | 설정하기                | 20 |
|                 | 참고 자료               |    |
|                 | 1. 사양               | 33 |
|                 | 2. 치수도              | 34 |
|                 | 3. AT COMMAND 목록표   | 35 |
|                 | 4. ASCII TABLE      | 41 |
|                 | 5. Spreading Factor | 42 |
|                 | 6. 인증               | 43 |
|                 | 7. 저작권              | 43 |



### 1. 사용하기 전에

사용 전 반드시 이 매뉴얼을 읽고 제품을 안전하고 정확하게 사용하십시오.

- 매뉴얼의 그림과 사진은 실물과 다를 수 있으며, 내용은 성능 개선을 위해 사용자에게 통보 없이 변경될 수 있습니다. 최신 정보는 당사 홈페이지(www.sysbas.com)에서 확인해 보시기 바랍니다.
- 이 제품에 대한 궁금증(자주 묻는 질문들)과 질문&답변은 당사 홈페이지의 고객지원〉기술지원 코너에서 확인할 수 있습니다.
- 이 제품에 대한 자료는 당사 홈페이지의 해당 제품의 다운로드나 자료실에서 다운 받을 수 있습니다.
- 이 기기는 업무용(A급)으로 전자파적합등록을 한 기기이니 판매자 또는 사용자는 이 점을 주의하시기 바라며, 가정 외의 장소에서 사용하는 것을 목적으로 합니다.
- 이 기기는 사용 중 전파 혼신 가능성이 있으며, 타 기기로부터 유해한 혼신을 받을 수 있습니다.
- 이 기기는 국내용(한국)입니다. 전원/주파수가 다른 해외에서는 사용할 수 없습니다.
- 제품 보증서는 이 제품의 포장에 포함되어 있습니다.
- 이 기기의 교환/반품은 기기에 같이 포함된 "교환/반품 사유서"에 설명된 절차로 처리하시면 됩니다.



## 2. 알아두기

온도, 습도, 무게, 위치 등 소량의 단순 정보/데이터를 측정해서 이것을 무선 네트워크로 연결하여 통신하는 것을 소물 인터넷, 즉 loST(Internet of Small Things)라고 합니다. loST는 사물 인터넷(loT)의 적용 범위를 축소한 개념입니다. 이런 소물들을 위해서 LTE 급 무선통신은 장비나 사용료 비용이 부담스러울 뿐만 아니라, 대역폭자체도 낭비가 되므로 소물인터넷을 위한 통신망인 LPWA 기술이 대두되었고, 그 중에 가장 각광받고 있는 무선기술이 LoRa 입니다.

LoRa는 Long Range의 약어로서 900MHz대 비 면허 주파수 대역을 사용하는 저전력 장거리 무선통신 기술로 대기 전력이 적고 모듈 가격이 저렴하여 IoT에 최적화 되어 있습니다.

LoRa는 LPWA(저전력 광대역: Low Power Wide Area) 무선통신 기술의 일종인 LoRa 신호의 무선 기술입니다.

LoRa는 개활지에서 장비들을 최대 20Km까지 연결할 수 있습니다.

LoRa를 사용하면 장거리에서 케이블을 포설하지 않아도 되므로 시간과 비용 절감 효과가 높습니다.



LoRa 기술을 사용할 때 얻을 수 있는 이점을 이해하기 쉽게 정리해 보면,

- 설치 비용이 저렴하고, 장거리 통신이 됩니다. (~20 k m)
- 단순한 접속 절차로 빠른 설치와 적용을 할 수 있습니다.
- 저전력 통신이므로 야외에서도 배터리로 구동할 수 있습니다
- 통신이 암호화 되어 이루어지므로 안전합니다.



## 3. 구성품







| 구성품                        | 주문 번호         |
|----------------------------|---------------|
| uLory-1010UIL, 2.5dBi 안테나, | uLory-1010UIL |
| 사용자 매뉴얼                    |               |



## 4. 제품

## 외관







#### **LED**



- TXD (녹색): USB포트에서 무선 LoRa로 데이터가 송신될 때 점멸되고, 송신이 없으면 소등 됩니다.
- RXD (적색): 무선 LoRa에서 USB포트로 데이터가 수신 될 때 점멸되고, 수신이 없으면 소등 됩니다.
- RDY (황색): 동작 모드일 때는 LED가 1.0초 주기로 점멸 됩니다.
- RDY (황색): 설정 모드일 때는 LED가 0.2초 주기로 빠르게 점멸 됩니다.
- \* 정격 전압 보다 전원 레벨이 떨어질 경우 동작 Error가 발생하며, RDY LED가 점등 되고 동작은 중지됩니다.

### 스위치



- 1번: 스위치가 ON이면 설정할 수 있는 설정 모드이고, OFF이면 동작되는 동작 모드(기본값)입니다.
- 2번: 사용하지 않는 스위치입니다.

#### 커넥터







USB 포트

- LoRa 안테나 커넥터: 제품에 동봉된 2.5 dBi Gain Load 안테나를 연결합니다.
- USB 포트: PC의 USB포트에 연결합니다.



### 5. 기능

uLory는 통달 거리가 짧고 유선인 시리얼통신을, 통달 거리가 길고 무선인 LoRa 통신으로 변환하는 컨버터로서 아래 기능을 수행합니다.

#### 1) 시리얼통신을 무선통신으로 변환합니다.

PC의 USB 포트에 연결하여 USB BUS에서 나오는 신호를 통달 거리가 길고(최장 20Km) 무선인 LoRa 통신으로 변환합니다.

#### 2) 저전력 구동 기능

uLory는 저전력 기술이 적용된 제품으로 USB의 VBUS전원 DC 5V, 소비전력 1.5W의 저전력으로 구동되는 제품입니다.

#### 3) 통신망 구성 기능

uLory는 기본적으로 1:1통신 뿐만 아니라, 당사에서 공급하는 sLory나 LoryGate 장비와 연동하면 통신사에 통신비 지불 안 하고 1:N 자체 통신망을 구축할 수 있습니다, 이 기능의 자세한 활용 방법은 6. 응용하기를 참고하십시오.

※ 같은 패킷을 무선으로 3초 이내에 재 수신하는 경우 무시하는 기능이 들어있습니다.



## 6. 응용하기

#### PC - 장비 연결 (uLory - sLory)



윈도 환경에서 PC의 USB포트에 uLory를 연결하고 드라이버를 설치하면, 시리얼통신 포트인 COMx 포트가 생성되고, PC의 응용 프로그램은 이 논리적인 포트를 경유하여 uLory를 통해 상대편 sLory와 통신하게 됩니다. 시리얼포트가 있는 PC는 PC에 uLory뿐만 아니라 sLory를 연결해서도 통신할 수 있습니다.

무선은 근처에 통달 가능한 모든 대상에 전달되므로 통신 할 대상의 주소를 필요로 합니다. 우편 발송 시 받는 사람의 정보가 필요한 것과 마찬가지입니다. 로리넷에서는 각 장비에 번호를 부여하여 이것, 즉 DNo(Device Number)으로 분간합니다.

DNo(Device Number)는 각 uLory/sLory가 갖는 고유한 식별 번호입니다. 이 번호에 의해 여러 대의 sLory가 있어도 원하는 sLory에 데이터를 전달할 수 있게 됩니다.

uLory가 위의 그림처럼 1:1 통신을 하려면 uLory의 DID(Destination ID) 설정 값에 상대편 sLory의 SID(Source ID) 값을 세팅해 주고 반대로 sLory의 DID(Destination ID) 설정 값에는 uLory의 SID(Source ID) 값을 세팅해 주어야합니다.

\* sLory와 uLory의 자세한 설정법은 8. 설정하기 에서 "설정방법 사용예"를 참고하시기 바랍니다.

sLory에 대한 자세한 내용은 당사 홈페이지(www.sysbas.com)에서 확인할 수 있습니다.



#### PC - 다수의 장비 연결 (uLory - 다수의 sLory)



다중 연결은 PC의 USB 포트에 당사가 공급하는 uLory를 꽃아서 무선으로 다수의 sLory와 통신함으로써, 이에 연결된 다수의 장비와 통신을 수행하는 방법입니다. 다중 연결은 PC에서 돌아가는 응용 프로그램을 필요로 합니다. DNo(Device Number)는 sLory의 고유한 번호입니다. DNo는 sLory간 통신에 필요한 자원이 될 수 있습니다.

위 그림과 같이 다수의 sLory와 통신하기 위해서는 uLory의 DID(Destination ID)를 모든 sLory에서 데이터를 받아볼 수 있도록 Broadcast(방송용) ID로 설정해 주고 sLory-1,2,3의 DID는 uLory를 바라볼 수 있도록 uLory의 SID 값을 설정해 줍니다.

Broadcast(방송용) ID는 Lory무선으로 연결된 제품 모두에게 시리얼데이타를 보내는 기능으로서, 상대방의 수신 여부에 상관없이 라디오처럼 시리얼데이터를 송신합니다.

\* uLory와 sLory의 자세한 설정법은 8. 설정하기 에서 "설정방법 사용예"를 참고하시기 바랍니다.



#### 네트워크 연결 (PC - 인터넷 - LoryGate - sLory)



제어하는 PC에서는 인터넷 망에 설치되어 있는 LoryGate로 접속하여 로컬의 sLory와 시리얼통신을 할 수 있습니다. LoryGate는 인터넷 망을 이용하여 LAN to Lory 통신을 할 수 있는 제품입니다.

LoryGate는 LoRa와 이더넷 인터페이스를 제공하며, LoRa망과 이더넷 망을 연결해 주는 관문 역할을 합니다. 또한 LoRa망에 산재되어 있는 각종 센서노드들로 부터 데이터를 수집하여, 서버로 연계 해주는 역할을 수행합니다. LoryGate는 복잡한 서버없이 접속 가능한 간단한 서버 역할을 수행할 수 있으며, 이더넷 네트워크를 통해 LoRa망에 연결된 장비와 통신이 가능합니다.

위의 구성도에서 PC에서 LoryGate로 접속하는 방법은 가상 COM 포트인 VCP인 COM로 접속하는 방법과 "LoryGate의 IP + 소켓포트 번호" 인 소켓접속 방법이 있습니다.

소켓접속 방법은 소켓접속을 대기해서 접속을 시켜주는 서버모드인 "TCP(UDP) Server"와 상대편의 PC 어플리케이션으로 접속하는 클라이언트 모드인 "TCP(UDP) Client" 방식을 지원됩니다.

sLory/LoryGate에 DID는 통신하고자 하는 목적지(Destination) ID가 입력되어야 하므로, LoryGate와 sLory의 DID를 상대편 SID로 세팅하면 시리얼 데이터는 LoRa망을 경유하여 상대편 LoryGate의 소켓접속 포트로 전송되어 통신을 할 수 있습니다.

\* LoryGate와 sLory에 대한 세부 사항은 당사 홈페이지 (www.sysbas.com)서 확인할 수 있습니다.



#### 7. 설정 준비하기

모든 통신 장비는 사용하기 전에 통신 환경을 맞추는 등 필요한 기능을 선택하기 위해 설정 과정을 필요로 합니다. uLory도 통신할 대상의 특성을 알고 이에 부합하게 설정해 주어야 제대로 작동합니다.

uLory는 무선으로 통신하는 장비이어서 근처에 통달 가능한 모든 무선 장비에 신호가 전달되므로 연결할 대상 장비를 지정할 필요가 있습니다. 장비를 지정하는 방법은 상위 목적지 장비 ID(DID), 채널 번호(CH), 스프레딩 팩터(SF), 하위 시리얼통신 환경을 설정하는 것입니다.

uLory의 설정 값을 보거나 설정하기 위해서는 안드로이드 스마트폰의 LoRaConfig App, 윈도우 PC의 LoRaConfig 유틸리티를 사용하여거나, COM포트에 직접 접속해서 AT Command 명령어를 사용하여 설정하는 방법이 있습니다.

[Tip] 우리는 사용하기 쉽고, 간편한 설정용 유틸리티인 LoRaConfig를 사용할 것을 권장해 드립니다.

#### LoRaConfig App 이용하여 설정준비하기

#### (1) 스마트폰의 USB 포트에 uLory 연결



본 매뉴얼에서는 USB포트로 설명합니다.

스마트폰의 USB 포트에 uLory의 USB포트를 연결합니다.

이 때 스마트폰 USB 포트 타입에 따라 젠더(USB-A/Female to 스마트폰 USB 포트 타입/Male)를 사용하여 연결하시면 됩니다.



#### (2) uLory 설정 스위치 1번 On



설정 모드로 전환하기 위해서 uLory의 SW1을 ON합니다. 이때 RDY LED가 0.2초 주기로 점멸합니다,

#### (3) LoRaConfig App 실행하기

LoRaConfig App을 실행하면 아래의 초기 화면이 나타납니다.



스마트폰 USB 포트에 맞는 젠더를 이용하여 uLory를 연결합니다.

USB 포트에 uLory가 정상 연결이 되었으면, 아래 화면과 같이 리스트가 출력됩니다.





메뉴 중 설정 메뉴 아이콘(태엽 모양 아이콘)을 선택하여 연결한 uLory의 시리얼 상태 값으로 설정합니다. uLory의 기본값은 9600-8-N-1 입니다.





[주의] uLory의 시리얼 설정 값에 따라 LoRaConfig App의 시리얼 속성을 설정해 주어야 합니다.

Device를 'uLory'로 선택 완료한 후 아래의 출력된 리스트를 선택합니다.





#### LoRaConfig 이용하여 설정준비하기

[Tip] 아래 내용은 LoRaConfig 매뉴얼의 내용과 같습니다.

LoRaConfig의 매뉴얼과 다운로드는 우리회사 홈페이지에 uLory페이지의 "다운로드"에서 다운이 가능합니다

#### (1) PC의 USB포트에 uLory 연결



PC의 USB포트에 uLory의 USB포트를 연결하면, uLory에 전원이 인가됩니다.

#### (2) uLory USB드라이브 설치

USB 2.0 A Type으로, uLory를 사용하기 위해 드라이버를 설치해야 합니다.

드라이버는 http://www.sysbas.com에 접속하여 자료실에서 다운로드 받을 수 있습니다.

uLory를 PC의 USB Port에 연결하고 다운로드 받은 파일을 이용하여 드라이버(USB One Click Driver)를 설치합니다.

#### (3) uLory 설정 스위치 1번 On



설정 모드로 전환하기 위해서 uLory의 SW1을 ON합니다. 이때 RDY LED가 0.2초 주기로 점멸합니다,

#### (4) LoRaConfig 실행하기

LoRaConfig를 실행하기 전에 현재 PC와 연결된 제품의 시리얼 포트 번호를 알기 위해서 다음과 같이 실행합니다. 장치 관리자에서 "포트(COM & LPT)" 항목에서 설치된 uLory의 COM 번호를 확인합니다.

(아래 그림에서는 제품이 컴퓨터의 'COM3'에 연결된 것을 확인 할 수 있습니다.)





LoRaConfig를 실행하고 uLory 설정을 위해서 우선 Device메뉴에서 uLory를 메뉴에서 선택해 줍니다.



[주의] LoRaConfig가 어떤 제품과 연결되었는지 알 수 없기 때문에 Device 선택을 사용자가 반드시 직접 선택해 주어야 합니다. 이 과정이 생략되었을 시에 제품의 정보를 정확하기 불러오지 못할 수 도 있으니 꼭 선행되어야 할 작업입니다.

Device를 'uLory'로 선택 완료한 후 Connection 메뉴에서 Connect 를 선택해 줍니다.



아래와 같이 Comport 설정 창이 팝업 되는데, 이때 port번호, 속도(Baudrate), Parity 등의 정보를 올바르게 입력하고 'Connect' 버튼을 눌러서 제품과의 접속을 시도합니다.





#### COM포트 직접 사용하여 설정준비하기

#### (1) PC의 USB포트에 uLory 연결



PC의 USB포트에 uLory의 USB포트를 연결하면, uLory에 전원이 인가됩니다.

#### (2) uLory USB드라이브 설치

- USB 2.0 A Type으로, uLory를 사용하기 위해 드라이버를 설치해야 합니다.
- 드라이버는 http://www.sysbas.com에 접속하여 자료실에서 다운로드 받을 수 있습니다.
- uLory를 PC의 USB Port에 연결하고 다운로드 받은 파일을 이용하여 드라이버(USB One Click Driver)를 설치합니다.



#### (3) uLory USB드라이브 설치 확인

장치 관리자에서 "포트(COM & LPT)" 항목에서 연결된 COM 번호를 확인합니다. (아래 그림에서는 제품이 컴퓨터의 'COM5'에 연결된 것을 확인 할 수 있습니다.)



#### (4) uLory 스위치(SW) 1번 On



설정 모드로 전환하기 위해서 uLory의 SW1을 ON합니다. 이때 RDY LED가 0.2초 주기로 빠르게 점멸 됩니다.



#### (5) PC의 RS232포트 오픈하기

PC의 COM포트를 Open할 수 있는 프로그램으로 Open합니다.



PC에 설치된 시리얼포트가 COM5인 경우 (장치관리자에서 확인 가능)

Tera Term 프로그램으로 COM포트를 Open시 아래 그림처럼 기본값 9600-8-N-1 (Speed-data bit-Parity bit-stop bit)로 Open합니다.



〈COM포트 Open전 설정 화면〉

\* 이 매뉴얼에서는 범용 프로그램인 Tera Term 프로그램을 이용하여 설정하는 것을 예로 들었습니다.

연결이 완료되면 터미널 창에 엔터(Enter)를 입력해보면 아래 그림과 같이 메시지가 출력되고, 설정 명령어인 AT Command를 입력할 수 있습니다.





## 8. 설정하기

#### LoRaConfig App 이용하여 설정하기

- 장비와 Connect한 LoRaConfig App에서 아래 내용으로 설정할 수 있습니다.

#### (1) 새로고침

우측 상단 메뉴 중 새로고침 버튼을 클릭하여 uLory의 정보를 다시 읽어올 수 있습니다.



#### (2) LoRa 설정

#### Device

Device 섹션은 장비와 관련된 사항(F/W Version, Source ID, Destination ID)을 확인 및 변경 가능합니다.

Destination ID(1~16777215, 16777215: Broadcast)를 변경할 경우 값을 변경한 뒤 SAVE버튼을 눌러 저장합니다.



#### LoRa

LoRa 섹션은 LoRa 관련 사항인 국가 코드, 로라 채널, Spreading Factor 등의 정보 확인 및 변경 가능한 섹션입니다.

이 중 로라 채널과 Spreading Factor를 변경할 수 있으며, 원하는 값으로 변경하고 Save 버튼을 눌러 저장합니다.





#### Encryption

Encryption 섹션은 암호화 관련 기능을 제공합니다. Encryption을 'Off' 했을 때는 AES Key 및 AES IV 입력 항목이 나타나지 않지만 'On' 했을 시에는 해당 항목이 나타납니다.

Encryption 기능을 'On' 했을 시에만 AES Key 및 AES IV 입력 항목이 나타납니다.

show 체크박스를 클릭하면 자신이 입력한 문자를 확인할 수 있습니다.

'SAVE' 버튼을 눌러서 암호화 현재 설정을 저장할 수 있습니다.

AES Key와 AES IV(Initialization Vector)는 정확하게 16자리를 입력해야만 설정 저장이 가능합니다.





#### (3) Serial 설정

#### Serial

Serial 섹션은 Serial 관련 사항인 Baudrate, Parity, Data bits, Stop bits, H/W Flow Control 등의 정보 확인 및 변경가능한 섹션입니다.

이 중 Baudrate, Parity, H/W Flow Control 을 변경할 수 있으며, 원하는 값으로 변경하고 Save 버튼을 눌러 저장합니다. (sLory의 Databits: 8 과 Stopbits: 1은 고정값 입니다.)





#### **Packet**

Packet 섹션은 Packet 관련 사항인 Message Timeout, Message Size, STX Length, STX(Hex), ETX Length, ETX(Hex)의 정보 확인 및 변경 가능한 섹션 입니다.

Message Timeout의 값은 10ms 단위로 저장됩니다. (56=50ms, 123=120ms)

STX(Hex), ETX(Hex) 항목은 STX Length, ETX Length의 값이 1 이상일 경우 확인 및 입력할 수 있습니다. 이때 입력되는 값은 Hex 값입니다. 원하는 값으로 변경하고 Save 버튼을 눌러 저장합니다.

#### LoRaConfig 이용하여 설정하기

- Connect한 LoRaConfig에서 아래 내용으로 설정할 수 있습니다.

[Tip] 아래 내용은 LoRaConfig 매뉴얼의 내용과 같습니다.

LoRaConfig의 매뉴얼과 다운로드는 우리회사 홈페이지에 uLory페이지의 "다운로드"에서 다운이 가능합니다.

#### (1) Information

좌측 메뉴 중 아래의 버튼을 클릭하여 information 화면으로 이동할 수 있습니다.





Information 메뉴에서는 uLory의 기본 설정 정보 확인이 가능합니다.

"Load" 버튼을 클릭하면 현재 상태를 제품으로부터 읽어서 화면에 표시해 줍니다.

"Factory Default" 기능은 공장 출하 상태로 되돌리는 작업이므로 신중하게 선택하고 실행해야 합니다.



#### (2) LoRa

좌측 메뉴 중 아래의 'LoRa' 버튼을 클릭하여 LoRa 화면으로 이동할 수 있습니다.



LoRa 메뉴에서는 uLory의 LoRa 설정 관련 정보를 확인 및 수정할 수 있으며, 크게 Device, LoRa, Encryption 섹션으로 나누어 관리 되도록 구성되어 있습니다.



'Load' 버튼을 클릭하면 현재 상태를 읽어 올 수 있습니다.

설정 변경 하고자 하는 항목을 수정 후, 'Save' 버튼을 클릭 시 제품에 적용 됩니다.



#### Device

Device 섹션은 장비와 관련된 사항(F/W Version, Source ID, DID)을 확인 및 변경 가능합니다.



#### LoRa

LoRa 섹션은 LoRa 관련 사항인 국가 코드, 로라 채널, Spreading Factor 등의 확인 및 변경 가능한 섹션 입니다.





#### Encryption

Encryption 섹션은 암호화 관련 기능을 제공합니다. Encryption을 'Off' 했을 때는 AES Key 및 AES IV 입력 항목이 나타나지 않지만 'On' 했을 시에는 해당 항목이 나타납니다.

Encryption 기능을 'On' 했을 시에만 AES Key 및 AES IV 입력 항목이 나타납니다.

show 체크박스를 클릭하면 자신이 입력한 문자를 확인할 수 있습니다.

'Load' 버튼을 눌러서 암호화 현재 설정을 가져올 수 있습니다.





AES Key와 AES IV(Initialization Vector)는 정확하게 16자리를 입력해야만 설정 저장이 가능합니다.

Save 버튼은 Device, LoRa, Encryption 의 변경된 설정 값을 일괄 저장 합니다.



#### (3) Serial

좌측 메뉴 중 아래와 같은 DB9 모양의 버튼을 클릭하여 Serial 설정 화면으로 이동할 수 있습니다.





Serial 메뉴에서는 uLory의 Serial 정보를 확인 및 수정합니다.

"Load" 버튼을 클릭하면 현재 상태를 제품으로부터 읽어서 화면에 표시해 줍니다.

설정 변경 하고자 하는 항목을 수정 후, 'Save' 버튼을 클릭 시 제품에 적용 됩니다.





[주의] Baudrate, Parity Bit, H/W Flow Control 변경 시에는 각각 "save"버튼을 눌러 적용해야 합니다.

또한 해당 설정 변경 시 통신 관련 설정이 변경되었으므로, Disconnect 후 다시 변경된 설정 값으로 재접속(Connect)상태로 전환 됩니다. 다시 연결하면 정상적인 설정 기능을 사용할 수 있습니다.



Save 버튼은 Baudrate, Parity Bit, H/W Flow Control 3가지 항목을 제외한 나머지 항목(우측에 나열된 Message Timeout, Message Size, STX/ETX 관련 설정 항목)을 일괄 저장합니다.



설정과 저장을 모두 하였으면, "Disconnect"로 포트의 연결을 끊고, 1번 스위치를 OFF하여 동작 모드로 전환합니다.



#### COM포트 직접 사용하여 설정하기

오픈한 COM포트의 터미널 창에 엔터(Enter)를 입력하면 아래 그림과 같이 메시지가 출력됩니다.



입력 창에 "?"나 "at&h"를 입력하면 AT명령어를 참고할 수 있는 명령어 예시가 나타납니다.



```
COM5 - Tera Term VT
 메뉴(F) 수정(E)
                                               설정(S) 제어(O) 창(W) 도움말(H)
Invalid Arguments!
AT&Z : System Reset
AT&H or ?: AT Command List
AT&F : Factory Reset
AT&W : View Config
AT&E : View AES KEY, AES IV
 < Device >
AT+PTP=<Peer to peer>, D=OFF, 1=ON
AT+PTYPE=<Port Type O"1>, D=LoryNet Mode, 1=Normal Mode
AT+DID=<Port Number 1"3>,<Manager ID 1"16777214>
AT+DIN=<Port Number 1"3>,<Manager ID 1"16777214>
AT+DIN=<Port Number 1"3>,<Manager ID 1"16777214>
AT+DIN=<Port Number 1"3>,<Manager ID 1"16777214>
< Serial >
 AT+HF=<Hardware Flow Control O~1>, O=OFF, 1=RTS/CTS
AT+PAB=<Parity bit N,O,E>
 AT+8AU=<Baudrate 0~13>, 0=600, 1=1200bps, 2=2400bps, 3=3600bps, 4=4800bps, 5=7200bps, 6=9600bps, 7=19200bps, 8=38400bps, 9=57600bps, 10=115200bps, 11=230400bps, 12=460800bps, 13=921600bps AT+STXL=<Length 0~3>
 AT+ETXL=<Length 0~3>
AT+ETXL=<Length U 3>
AT+STX=<STX1>
AT+STX=<STX1>,<STX2>
AT+STX=<STX1>,<STX2>,<STX3>
AT+ETX=<ETX1>,<ETX2>
AT+ETX=<ETX1>,<ETX2>
AT+ETX=<ETX1>,<ETX2>,<ETX3>
AT+ETX=<ETX1>,<ETX2>,<ETX3>
AT+DHS=<Length, U 116>
AT+DHS=<Length, U 255>, 1=10ms
 Encryption >
AT+AES=<0, 1>, O=OFF, 1=ON
AT+AESKEY=<16 Characters> and <16 Characters AES IV>
```

입력창에 at&v 를 입력하면 설정 값을 확인 할 수 있습니다.

```
때 COM5 - Tera Term VT

메뉴(F) 수정(E) 설정(S) 제어(O) 창(W) 도움말(H)

at &w
F/H Ver = 1.4

Source ID = 254

Destination ID = 16777214, Dtn = 3, Dent = 0

Main PID = 16777214

LoRa PID = 16777214

Serial PID = 16777214

< LoRa >------

Channel = 20, Spreading Factor = 9

Encryption = OFF

< Serial >------

Port Type = Normal

Peer to peer = ON

Message Tineout = 50ms, Hessage Size = 116byte

STX Length = 0, STX1 = 0X00, STX2 = 0X00, STX3 = 0X00

ETX Length = 0, ETX1 = 0X00, ETX2 = 0X00, ETX3 = 0X00

Baudrate = 9600, Parity Bit = None, Data Bit = 8

Stop Bit = 1, Hardware Flow Control = OFF
```



목적지 장비가 DID: 123, CH: 20, SF: 9일 경우, 설정하는 AT Command는 다음과 같습니다.

AT+DID=123

AT+CH=20

AT+SFT=9

\* 자세한 AT Command 명령어는 아래 참고자료의 AT Command 목록표를 참고하십시오.

설정이 완료되면 1번 스위치를 내려 동작 모드로 전환 합니다. 이때 RDY LED가 1초 주기로 점멸 됩니다.





#### 설정 방법 사용 예

위 내용을 바탕으로 다양한 연결로 알기 쉽게 설정할 수 있는 정보에 대해 설명하였습니다.

sLory의 설정은 기본적으로 DID, CH, SF를 설정하면 상대편 LoRa제품과 통신을 할 수 있으니, 아래 구성을 예로 설정 방법을 이해하시면 됩니다.

#### 1:1 연결



#### 1:1 설정법

| 구분            | sLory -1 (또는 ulory) | sLory-2           |
|---------------|---------------------|-------------------|
| SID, DID      | SID: 123, DID:456   | SID: 456, DID:123 |
| CH, SF        | CH: 20, SF: 9       | CH: 20, SF: 9     |
| LoRaConfig 사용 | LoRa 페이지에서 수정       | LoRa 페이지에서 수정     |
| AT Command    | AT+DID=456          | AT+DID=123        |
|               | AT+CH=20            | AT+CH=20          |
|               | AT+SFT=9            | AT+SFT=9          |

<sup>\*</sup> 세팅 값은 이해를 돕기 위해 예를 든 것입니다. 제품과 현장에 따라 값이 다를 수 있습니다.

위 설정으로 서로 CH과 SF를 동일하게 설정하고, DID를 서로 상대방의 SID로 설정하면 1:1 통신이 가능해집니다.



#### 1:N 연결



#### 다중 연결 설정 방법

| 구분         | uLory main      | sLory -1      | sLory -2      | sLory -3      |  |
|------------|-----------------|---------------|---------------|---------------|--|
| SID, DID   | SID: 123,       | SID: 456,     | SID: 567,     | SID: 678,     |  |
|            | DID:16777215    | DID:123       | DID:123       | DID:123       |  |
| CH, SF     | CH: 20, SF: 9   | CH: 20, SF: 9 | CH: 20, SF: 9 | CH: 20, SF: 9 |  |
| LoRaConfig | LoRa 페이지에서      | LoRa 페이지에서    | LoRa 페이지에서    | LoRa 페이지에서 수정 |  |
| 사용         | 수정              | 수정            | 수정            |               |  |
| AT Command | AT+DID=16777215 | At+DID=123    | At+DID=123    | At+DID=123    |  |
|            | AT+CH=20        | AT+CH=20      | AT+CH=20      | AT+CH=20      |  |
|            | AT+SFT=9        | AT+SFT=9      | AT+SFT=9      | AT+SFT=9      |  |

<sup>\*</sup> 세팅 값은 이해를 돕기 위해 예를 든 것입니다. 제품과 현장에 따라 값이 다를 수 있습니다.

위 설정으로 uLory의 data는 sLory-1,2,3으로 전달되게 되고, sLory-1,2,3의 data는 uLory로 전달 되어 1:N 통신이 가능해집니다.



#### A급 기기

이 기기는 업무용(A급)으로 전자파적합등록을 한 기기이니 판매자 또는 사용자는 이 점을 주의하시기 바라며, 가정 외의 지역에서 사용하는 것을 목적으로 합니다.

이 기기는 사용 중 전파 혼신 가능성이 있으며, 타 기기로부터 유해한 혼신을 받을 수 있음.



## ------ 참고 자료 ------

## 1. 사양

| 구분          | 항목             | 사양                     |  |
|-------------|----------------|------------------------|--|
|             | Frequency Band | 917 ~ 923MHz(ISM Band) |  |
| 무선<br>인터페이스 | Modulation     | LoRa                   |  |
|             | 안테나            |                        |  |
| 유선          | Standard       | USB 2.0 A Type         |  |
| 인터페이스       | Signal         | USB DP, DM             |  |
| 디스플레이       | LED            | TXD, RXD, RDY          |  |
| 드기리 거       | 온도             | -40°c ~ +85°c          |  |
| 동작환경        | 습도             | 5~95%, 비응축             |  |
| 전원          |                | DC 5V (USB VBUS)       |  |
| KC 인증번호     |                | R-CRM-STB-uLory1010UIL |  |



## 2. 치수도





unit:mm



## 3. AT Command 목록표

## 3.1 기본 명령어

| 명령어                                       | 디폴트(범위)                                            | 설명                                                                                                     |
|-------------------------------------------|----------------------------------------------------|--------------------------------------------------------------------------------------------------------|
| AT&Z                                      | -                                                  | 디바이스를 재 시작합니다.                                                                                         |
| AT&F                                      | -                                                  | 모든 설정을 공장 초기화 하며, 초기<br>값을 화면에 보여 줍니다.                                                                 |
| AT&V                                      | -                                                  | 현재의 설정 값을 보여 줍니다.                                                                                      |
| AT&H 또는 ?                                 | -                                                  | 명령 리스트를 보여 줍니다.                                                                                        |
| AT&E                                      | -                                                  | 현재 암호화 AES KEY, AES IV를<br>보여줍니다. 단, 초기 AES KEY, AES<br>IV 값은 보여주지 않으며, 변경한<br>AES KEY, AES IV 값에 대해서만 |
| AT+PTYPE= <mode></mode>                   | 1(0~1)<br>0=LoryNet 모드<br>1=일반 통신 모드               | 보여줍니다.  0: LoryNet 플랫폼과 연결하여  통신하는 경우 설정  1: 기본값으로 일반적인 Data  통신을 하는 경우에 설정                            |
| AT+PTP                                    | 1(0~1)<br>0=OFF(로리넷 테이블 통신)<br>1=ON (Peer to Peer) | 0: LoryNet 테이블통신을 하는<br>경우 설정<br>1: 기본값으로 일반적인 Data<br>통신을 하는 경우에 설정                                   |
| AT+DID= <destination id=""></destination> | 16777214(1~16777215)<br>단, 16777215은 Broadcast ID  | 통신하려는 상대 디바이스의 ID를<br>입력합니다.                                                                           |



#### 3.2 LoRa 설정 명령어

| 명령어                                                                                        | 디폴트(범위)                 | 설명                                        |  |  |  |  |
|--------------------------------------------------------------------------------------------|-------------------------|-------------------------------------------|--|--|--|--|
|                                                                                            | 20(1~20)                |                                           |  |  |  |  |
|                                                                                            | 1=917.3MHz 2=917.9MHz   |                                           |  |  |  |  |
|                                                                                            | 3=918.5MHz 4=919.1MHz   |                                           |  |  |  |  |
|                                                                                            | 5=919.7MHz 6=920.3MHz   | LoRa 채널을 변경합니다.                           |  |  |  |  |
|                                                                                            | 7=920.7MHz 8=920.9MHz   | Lond Tipe Lon Ti.                         |  |  |  |  |
| AT+CH=〈Channel No〉                                                                         | 9=921.1MHz 10=921.3MHz  | Ch(채널)은 LoRa주파수의 영역을                      |  |  |  |  |
| Al ren=\channerno/                                                                         | 11=921.5MHz 12=921.7MHz | 1~20까지 채널 별로 설정하기 쉽게 나눈                   |  |  |  |  |
|                                                                                            | 13=921.9MHz             | 값입니다.                                     |  |  |  |  |
|                                                                                            | 14=922.1MHz 15=922.3MHz | 짭니다.                                      |  |  |  |  |
|                                                                                            | 16=922.5MHz 17=922.7MHz |                                           |  |  |  |  |
|                                                                                            | 18=922.9MHz 19=923.1MHz |                                           |  |  |  |  |
|                                                                                            | 20=923.3MHz             |                                           |  |  |  |  |
|                                                                                            |                         | LoRa Spreading Factor를 변경합니다.             |  |  |  |  |
|                                                                                            |                         | SF(스프레딩 팩터)는 무선 주파수의 변조의                  |  |  |  |  |
| AT+SFT= <spreading< td=""><td></td><td colspan="4">회수를 7~12까지 설정하기 쉽게 나눈</td></spreading<> |                         | 회수를 7~12까지 설정하기 쉽게 나눈                     |  |  |  |  |
| Factor>                                                                                    | 9(7~12)                 | 값입니다.                                     |  |  |  |  |
| Tactor/                                                                                    |                         | SF가 낮으면 전송할 수 있는 data량은                   |  |  |  |  |
|                                                                                            |                         | 많아지나 거리가 짧아지게 되고, SF가                     |  |  |  |  |
|                                                                                            |                         | 높으면 그 반대입니다.                              |  |  |  |  |
|                                                                                            | 0(0, 1)                 | 0: 암호화 기능을 끕니다.<br>1: 암호화 기능을 켭니다.        |  |  |  |  |
| AT+AES=〈Encryption〉                                                                        | 0=OFF                   |                                           |  |  |  |  |
|                                                                                            | 1=ON                    |                                           |  |  |  |  |
|                                                                                            |                         | 새로운 Key 값을 입력(16 Bytes) 하면 "You           |  |  |  |  |
|                                                                                            |                         | must also type IV                         |  |  |  |  |
|                                                                                            |                         | (Initialization Vector) [16 Bytes] " 메시지가 |  |  |  |  |
| AT+AESKEY= <key></key>                                                                     | -                       | 출력됩니다. 연속하여 IV 값을 입력(16                   |  |  |  |  |
|                                                                                            |                         | Bytes) 합니다.                               |  |  |  |  |
|                                                                                            |                         | 암호 16byte 입력 후 IV값 16byte를                |  |  |  |  |
|                                                                                            |                         | 입력하여 암호를 설정합니다.                           |  |  |  |  |



#### 4.3 시리얼 설정 명령어

| 명령어                                                                                                                                                                                         | 디폴트(범위)                                                                                                                                                           | 설명                                                                                                                              |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|
| AT+PAB= <parity bit=""></parity>                                                                                                                                                            | N(N,O,E) N=None, O=Odd, E=Even                                                                                                                                    | Parity Bit를 설정합니다.                                                                                                              |
| AT+BAU=〈Baud rate〉                                                                                                                                                                          | 6(0~13) 0=600bps, 1=1200bps, 2=2400bps, 3=3600bps, 4=4800bps, 5=7200bps, 6=9600bps, 7=19200bps, 8=38400bps, 9=57600bps, 10=115200bps, 11=230400bps, 12=460800bps, | Baudrate를 설정합니다.                                                                                                                |
| AT+SER= <interface>  AT+HF=<hardware flow<="" td=""><td>13=921600bps  1(1~3)  1=RS232  2=RS422  3=RS485  0(0, 1)</td><td>시리얼 인터페이스를 설정합니다. Flow control을 설정합니다.</td></hardware></interface> | 13=921600bps  1(1~3)  1=RS232  2=RS422  3=RS485  0(0, 1)                                                                                                          | 시리얼 인터페이스를 설정합니다. Flow control을 설정합니다.                                                                                          |
| Control>  AT+DMT=〈Time〉                                                                                                                                                                     | 0=OFF, 1=RTS/CTS 5(1~255) 단위: 10ms 예시) 5=50ms                                                                                                                     | 시리얼 데이터를 모아서 무선으로 전송하는<br>경우에 사용합니다.<br>시리얼에서 마지막 데이터가 들어오고 다음<br>데이터가 올 때까지 기다리며, 이 시간이<br>지나면 그동안 읽은 시리얼 데이터를<br>LoRa로 전송합니다. |
| AT+STXL=〈Length〉                                                                                                                                                                            | 0(0~3) 단위: byte<br>0=사용 안 함                                                                                                                                       | uLory가 무선으로 송신하기 위해 시리얼데이터를 수신하여 데이터의 시작으로인정하는 STX(Start of text)의 길이를설정합니다.                                                    |



| AT+STX=\langleSTX1\rangle AT+STX=\langleSTX1\rangle,\langleSTX2\rangle AT+STX=\langleSTX1\rangle,\langleSTX2\rangle, \langleSTX3\rangle | 00(00~7F)                   | 일반적인 STX 기능과 달리 uLory가 무선으로 송신하기 위해 시리얼 데이터를 수신하여 데이터의 시작으로 인정하는 STX(Start of text)를 설정합니다. 아스키 코드 표를 참고하여 STX로 사용하고자 하는 문자에 해당하는 Hex 값에서 0x를 제외하고 입력합니다. 우선 AT+STXL=〈Length〉에서 길이를 설정한 후 사용하고자 하는 길이만큼 입력을 해야 합니다. |  |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| AT+ETXL=〈Length〉                                                                                                                        | 0(0~3) 단위: byte<br>0=사용 안 함 | uLory가 무선으로 송신하기 위해 시리얼<br>데이터를 수신하여 데이터의 끝으로<br>인정하는 ETX(End of text)의 길이를<br>설정합니다.                                                                                                                               |  |  |  |
| AT+ETX=〈ETX1〉,〈ETX2〉<br>AT+ETX=〈ETX1〉,〈ETX2〉,<br>〈ETX3〉                                                                                 | 00(00~7F)                   | 일반적인 ETX 기능과 달리 uLory가 무선으로 송신하기 위해 시리얼 데이터를 수신하여 데이터의 끝으로 인정하는 ETX(End of text)를 설정합니다. 아스키 코드 표를 참고하여 ETX로 사용하고자 하는 문자에 해당하는 Hex 값에서 0x를 제외하고 입력합니다. 우선 AT+ETXL=〈Length〉에서 길이를 설정한 후 사용하고자 하는 길이만큼 입력을 해야 합니다.    |  |  |  |
| AT+DMS=〈Length〉                                                                                                                         | 0(0~116)<br>단위: byte        | 설정한 길이만큼 시리얼 데이터가 수신되 <sup>1</sup><br>무선으로 전송합니다.                                                                                                                                                                   |  |  |  |



#### STX/ETX 기능 사용 예

uLory가 무선으로 데이터를 송신하기 전 시리얼 데이터를 수신하는 조건 중 Time(Message Timeout) 기능과 STX, ETX기능, Length(Message Size) 기능을 동시에 사용할 경우 세 가지 기능에 영향을 받으며, 최소 한 가지 조건을 만족하면 데이터가 전송됩니다. 적용 우선순위는 Time, STX/ETX, Length순입니다.

\* STX/ETX는 HEX로 입력해야 하며, 해당 기능은 송신 시 적용됩니다.

일반적인 STX/ETX 기능과 달리 uLory 제품에서 지원하는 기능으로 동작하는 형태는 아래와 같습니다.

- 예) 아래 그림과 같이 STX Length/ETX Length=1, STX1=02(STX), STX2=00, STX3=00, ETX1=03(ETX), ETX2=00, ETX3=00으로 설정합니다.
  - \* 설정 후 'Save' 버튼을 클릭 시 제품에 적용 됩니다.



설정이 끝나면 제품 뒷면의 1번 스위치를 off 시켜서 동작 모드로 전환 합니다.



아래 그림은 자사에서 제공하는 TestView 프로그램으로 Test를 한 예시입니다. 테스트 방법은 아래와 같습니다.

\* TestView 프로그램 실행 후 아래 절차대로 진행
Port → COM Port → COMx 선택 후 OK → Terminal → Send → AutoSend 체크 해제 → Hex Mode 체크
→ Hex로 Data 입력 → Send



"026162636403ff"를 입력할 경우, STX: 02/ETX: 03 조건을 만족하는 "026162636403"을 하나의 패킷으로 인식하여 무선으로 전송하게 됩니다.



\* Hex 값과 Char 값은 아래 ASCII Table 을 참고하십시오.



## 4. ASCII Table

| DEC | HEX | OCT | Char       | DEC | HEX | OCT | Char | DEC | HEX | OCT | Char |
|-----|-----|-----|------------|-----|-----|-----|------|-----|-----|-----|------|
| 0   | 00  | 000 | Ctrl-@ NUL | 43  | 2B  | 053 | +    | 86  | 56  | 126 | ٧    |
| 1   | 01  | 001 | Ctrl-A SOH | 44  | 2C  | 054 |      | 87  | 57  | 127 | W    |
| 2   | 02  | 002 | Ctrl-B STX | 45  | 2D  | 055 | -    | 88  | 58  | 130 | X    |
| 3   | 03  | 003 | Ctrl-C ETX | 46  | 2E  | 056 |      | 89  | 59  | 131 | Y    |
| 4   | 04  | 004 | Ctrl-D EOT | 47  | 2F  | 057 | /    | 90  | 5A  | 132 | Z    |
| 5   | 05  | 005 | Ctrl-E ENQ | 48  | 30  | 060 | 0    | 91  | 5B  | 133 | [    |
| 6   | 06  | 006 | Ctrl-F ACK | 49  | 31  | 061 | 1    | 92  | 5C  | 134 | ₩    |
| 7   | 07  | 007 | Ctrl-G BEL | 50  | 32  | 062 | 2    | 93  | 5D  | 135 | ]    |
| 8   | 08  | 010 | Ctrl-H BS  | 51  | 33  | 063 | 3    | 94  | 5E  | 136 | ^    |
| 9   | 09  | 011 | Ctrl-I HT  | 52  | 34  | 064 | 4    | 95  | 5F  | 137 | _    |
| 10  | 0A  | 012 | Ctrl-J LF  | 53  | 35  | 065 | 5    | 96  | 60  | 140 | 200  |
| 11  | 0B  | 013 | Ctrl-K VT  | 54  | 36  | 066 | 6    | 97  | 61  | 141 | a    |
| 12  | 0C  | 014 | Ctrl-L FF  | 55  | 37  | 067 | 7    | 98  | 62  | 142 | b    |
| 13  | 0D  | 015 | Ctrl-M CR  | 56  | 38  | 070 | 8    | 99  | 63  | 143 | С    |
| 14  | 0E  | 016 | Ctrl-N SO  | 57  | 39  | 071 | 9    | 100 | 64  | 144 | d    |
| 15  | 0F  | 017 | Ctrl-O SI  | 58  | ЗА  | 072 | :    | 101 | 65  | 145 | 0    |
| 16  | 10  | 020 | Ctrl-P DLE | 59  | 3B  | 073 |      | 102 | 66  | 146 | f    |
| 17  | 11  | 021 | Ctrl-Q DCl | 60  | 3C  | 074 | <    | 103 | 67  | 147 | g    |
| 18  | 12  | 022 | Ctrl-R DC2 | 61  | 3D  | 075 | -    | 104 | 68  | 150 | h    |
| 19  | 13  | 023 | Ctrl-S DC3 | 62  | 3E  | 076 | >    | 105 | 69  | 151 | 1    |
| 20  | 14  | 024 | Ctrl-T DC4 | 63  | 3F  | 077 | ?    | 106 | 6A  | 152 | 1    |
| 21  | 15  | 025 | Ctrl-U NAK | 64  | 40  | 100 | @    | 107 | 6B  | 153 | k    |
| 22  | 16  | 026 | Ctrl-V SYN | 65  | 41  | 101 | Α    | 108 | 6C  | 154 | 1    |
| 23  | 17  | 027 | Ctrl-W ETB | 66  | 42  | 102 | В    | 109 | 6D  | 155 | m    |
| 24  | 18  | 030 | Ctrl-X CAN | 67  | 43  | 103 | С    | 110 | 6E  | 156 | n    |
| 25  | 19  | 031 | Ctrl-Y EM  | 68  | 44  | 104 | D    | 111 | 6F  | 157 | 0    |
| 26  | 1A  | 032 | Ctrl-Z SUB | 69  | 45  | 105 | E    | 112 | 70  | 160 | р    |
| 27  | 1B  | 033 | Ctrl-[ ESC | 70  | 46  | 106 | F    | 113 | 71  | 161 | q    |
| 28  | 1C  | 034 | Ctrl-₩ FS  | 71  | 47  | 107 | G    | 114 | 72  | 162 | r    |
| 29  | 1D  | 035 | Ctrl-] GS  | 72  | 48  | 110 | Н    | 115 | 73  | 163 | s    |
| 30  | 1E  | 036 | Ctrl-^ RS  | 73  | 49  | 111 | 1    | 116 | 74  | 164 | t    |
| 31  | 1F  | 037 | Ctrl_ US   | 74  | 4A  | 112 | J    | 117 | 75  | 165 | u    |
| 32  | 20  | 040 | Space      | 75  | 48  | 113 | K    | 118 | 76  | 166 | ٧    |
| 33  | 21  | 041 | 1          | 76  | 4C  | 114 | L    | 119 | 77  | 167 | W    |
| 34  | 22  | 042 | .11        | 77  | 4D  | 115 | М    | 120 | 78  | 170 | х    |
| 35  | 23  | 043 | #          | 78  | 4E  | 116 | N    | 121 | 79  | 171 | У    |
| 36  | 24  | 044 | \$         | 79  | 4F  | 117 | 0    | 122 | 7A  | 172 | Z    |
| 37  | 25  | 045 | %          | 80  | 50  | 120 | Р    | 123 | 7B  | 173 | {    |
| 38  | 26  | 046 | &          | 81  | 51  | 121 | Q    | 124 | 7C  | 174 | 1    |
| 39  | 27  | 047 | 1          | 82  | 52  | 122 | R    | 125 | 7D  | 175 | }    |
| 40  | 28  | 050 | (          | 83  | 53  | 123 | S    | 126 | 7E  | 176 |      |



### 5. Spreading Factor

Spreading Factor 란 원래 데이터 신호 대역이 확산코드(Spreading Code)에 의해 스펙트럼이 얼마나 넓게 확산될 수 있는 지를 나타내는 값입니다. 이것을 사용 하는 이유는 여러 개의 무선 신호가 하나의 무선 채널을 경쟁하면서 공유 할 때 외부의 전자파 잡음에 강하도록 넓은 주파수 대역으로 분산시켜 노이즈에 의한 데이터 왜곡을 줄일 수 있습니다.



[그림] 노이즈에 따른 협대역 신호와 대역 확산 신호 비교

이 방식의 원리는 전송될 2진 데이터 신호를 확산 코드(Spreading Code)라고 하는 다른 2진 코드(비트 패턴)로 변조하여 사용 주파수 전역으로 확산시켜 전송하는 것입니다. 이 때, 확산 코드의 값이 크면 클수록 원래의 데이터로 복원될 가능성이 커지며, 이 확산 코드의 값이 Spreading Factor입니다.



Spreading Factor의 값이 크면 클수록 노이즈에 강하고 통달 거리가 늘어나지만 전송 속도는 반비례하여 줄어듭니다.

Ch(채널)은 LoRa주파수의 영역을 1~20까지 채널 별로 세분한 값입니다.

SF(스프레딩 팩터)는 무선 주파수의 변조의 회수를 7~12까지 설정하기 쉽게 나눈 값입니다.

SF가 낮으면 전송할 수 있는 data량은 많아지나 거리가 짧아지게 되고, SF가 높으면 그 반대입니다.



## 6. 인증

#### • KC 인증

인증번호: R-CRM-STB-uLory1010UIL

시험항목: KS X 3123:2017, 과학기술 정보통신부고시 제 2018-4호, 전파법 시행령 제 28464호

#### • FCC 인증

인증번호: PROULORY1010UIL

시험항목: FCC 47 CFR Part 15 subpart C 15.247, ANSI C63.10-2013

#### • TELEC 인증

인증번호: JN0997 i01

시험항목: MIC Notification NO.88, Annex 43, ARIB STD-T108 V1.2

## 7. 저작권

Copyright © 2020 시스템베이스㈜ 이 매뉴얼은 저작권법에 의해 보호 받는 저작물입니다. 시스템베이스의 사전 동의 없이 매뉴얼의 일부 또는 전체 내용을 무단 복사, 복제, 출판하는 것은 저작권법에 저촉됩니다.



www.sysbas.com



제품 사용 중 불편한 점이 있으시면 아래 연락처로 상담하여 주십시오.

문의

www.sysbas.com

전화: 02-855-0501

팩스: 02-855-0580

이메일:

• 구매/견적 문의: sales@sysbas.com

• 기술/지원 문의: tech@sysbas.com

• A/S 문의: as@sysbas.com

상담 시간

오전 09:00 ~ 오후 06:00

(토요일, 일요일, 공휴일은 휴무입니다.)