ข้อสอบฟิสิกส์วิชาสามัญปี 2564

ขอขอบคุณข้อสอบจาก Tonsonphysics

1. นักเรียนคนหนึ่งต้องการวัดความยาวของวัตถุชิ้นหนึ่ง ซึ่งมีความยาวประมาณ 8 เซนติเมตร ด้วยไม้บรรทัดที่ มีการแบ่งช่องสเกลที่มีความละเอียด 0.1 เซนติเมตร ทำการวัดความยาว 5 ครั้ง ได้ความยาวในหน่วย ${\rm cm}$ ดังนี้

นักเรียนต้องการรายงานผลการวัดความยาวของวัตถุด้วยค่าเฉลี่ย (\bar{x}) และรายงานความคลาดเคลื่อนของค่า เฉลี่ย (\bar{x}) ด้วยสูตร

$$\Delta \bar{x} = \frac{x_{\text{max}} - x_{\text{min}}}{2}$$

เมื่อ $x_{
m max}$ และ $x_{
m min}$ คือค่าที่มากที่สุดและน้อยที่สุดที่วัดได้ตามลำดับ ข้อใดแสดงผลรายงานการวัดความยาว ได้ถูกต้อง

- 1. $8 \pm 0.2 \, \text{cm}$
- $2.8.0 \pm 0.2 \,\mathrm{cm}$
- $3.8.00 \pm 0.2 \,\mathrm{cm}$
- $4.9.2 \pm 3.2 \,\mathrm{cm}$
- $5.9.23 \pm 3.15 \,\mathrm{cm}$
- 2. คนขับรถคนหนึ่งกำลังขับรถด้วยความเร็วเนื่องจากมีกล้องตรวจจับอยู่ข้างหน้า จึงตัดสินใจชะลอความเร็วที่เวลา $t=4.0\,\mathrm{s}$ โดยชะลอรถด้วยความเร่ง $-0.5\,\mathrm{m/s^2}$ จนกระทั่งผ่านกล้องตรวจจับเวลาที่ $t=34.0\,\mathrm{s}$ กำหนด ให้กฎจราจรจำกัดความเร็วในการขับรถไม่เกิน $120\,\mathrm{km/h}$ หรือ $33.3\,\mathrm{m/s}$ ถ้าทำผิดกฎจราจรจะต้องเสียค่า ปรับ ได้กราฟแสดงอัตราเร็วของรถกับเวลาดังนี้

กราฟนี้สอดคล้องกับสถาณการณ์ของโจทย์หรือไม่และคนขับรถต้องเสียค่าปรับหรือไม่

3. วัตถุมวล $0.5\,\mathrm{kg}$ มีแรงสามแรงมากระทำดังภาพ

จงแสดงขนาดและทิศทางของความเร่งของวัตถุ (กำหนดให้ $\sin heta = rac{3}{5}$ และ $\cos heta = rac{4}{5})$

4. ยกวัตถุมวล $1.0\,\mathrm{kg}$ ขึ้นไปจากพื้นจากหยุดนิ่งด้วยแรงคงที่ค่าหนึ่ง เมื่อผ่านไป $\sqrt{10}\,\mathrm{s}$ ระบบมีพลังงานศักย์ โน้มถ่วงเท่ากับ $98\,\mathrm{J}$ เทียบกับพื้น จงหาขนาดของแรงที่ใช้ดึงวัตถุขึ้น

5. นาย A และนาย B ต้องการแบกคานสม่ำเสมอยาว $3\,\mathrm{m}$ หนัก $50\,\mathrm{N}$ ซึ่งมีกล่องหนัก $150\,\mathrm{N}$ แขวนไว้ที่จุด ห่างจากจุดกึ่งกลางเป็นระยะ $0.2\,\mathrm{m}$ ไปทางนาย A โดยที่นาย A และ B แบกคานที่จุดที่ห่างจากปลายคาน $0.5\,\mathrm{m}$ ดังภาพ

ถ้าต้องการให้นาย A และ B แบกคานด้วยแรงที่เท่ากันและนาย B แบกคานที่ตำแหน่งเดิม ถามว่านาย A จะต้องขยับตัวเข้าหาหรือออกจากกล่องเป็นระยะเท่าใด

6. กำหนดระบบรอกซึ่งแขวนมวลหนัก W ไว้ดังรูป

ถ้าต้องการดึกปลายเชือกที่จุด a ด้วยแรง T ลงไปเป็นระยะ D ทำให้ยกวัตถุหนัก W ขึ้นได้พอดี จงหาความ สัมพันธ์ของ T ในรูปของ W และวัตถุจะยกขึ้นไปได้เป็นระยะทางเท่าใด

7. ถ้าดาวเทียม A มวล m โคจรรอบโลกโดยรัศมี $R_{ m A}$ และอัตราเร็ว $v_{ m A}$ ดังภาพ

ถ้าต้องการส่งดาวเทียม B ที่มีมวล 2m ให้โคจรด้วยรัศมี $R_{\rm B}$ และอัตราเร็ว $v_{\rm B}$ จงเปรีบเทียบ $R_{\rm B},v_{\rm B}$ เทียบ กับ $R_{\rm A},v_{\rm A}$ (มากกว่า, น้อยกว่า, เท่ากัน)

8. เมื่อวัตถุมวล M ติดด้วยสปริงและทำให้สั่นแบบ SHM ตามภาพ ก พบว่าเวลาที่ทำให้วัตถุเคลื่อนที่ครบหนึ่ง รอบเท่ากับ $\sqrt{2}\,\mathrm{s}$ แต่ถ้านำวัตถุมวล $1\,\mathrm{kg}$ วางซ้อนไว้ด้านบนตามภาพ ข พบว่าเวลาที่ทำให้วัตถุเคลื่อนที่ครบ หนึ่งรอบเท่ากับ $\sqrt{3}\,\mathrm{s}$ จงหาความถี่เชิงมุมในการสั่นของรูป ก และขนาดของมวล M

9. พิจารณาคลื่นสองขบวนที่กำลังเคลื่อนที่เข้าหากันที่เวลา $t=0.0\,\mathrm{s}$ ด้วยอัตราเร็ว $1.0\,\mathrm{m/s}$

สถาณการณ์ใดบ้างที่เกิดการแทรกสอดแบบหักล้างที่เวลา $t=4.0\,\mathrm{s}$

10. นาย A และนาย B ยืนอยู่ห่างกันเป็นระยะ $100\,\mathrm{m}$ ถ้านาย A เป่านกหวีด ทำให้นาย B ได้ยินเสียงนกหวีด ด้วยระดับเสียง $30\,\mathrm{d}B$ จงหากำลังเสียงที่เกิดจากนาย A เป่านกหวีด

11. ทำการทดลองสลิตคู่ที่มีระยะระหว่างสลิต 0.05 mm เมื่อฉายแสงผ่านสลิต จึงพบริ้วรอยแถบมือแถบสว่าง บนฉาก จากนั้นเปลี่ยนจากสลิตคู่เป็นสลิตเดี่ยว แล้วฉายแสงความยาวคลื่นเดิมผ่านสลิต พบว่าตำแหน่งของ แถบมือลำดับแรกของสลิตเดี่ยว เป็นตำแหน่งเดียวกับแถบมืดลำดับแรกของสลิตคู่ จงหาความกว้างของสลิต เดี่ยว

12. นักเรียนคนหนึ่งกำลังมองวัตถุผ่านกล้องที่ประกอบจากเลนส์นูน 2 ชิ้นที่อยู่ห่างกัน $18\,\mathrm{cm}$ พบว่าภาพที่เกิด จากการหักเหครั้งแรก เกิดที่ระยะ $15\,\mathrm{cm}$ ห่างจากเลนส์ 1 ดังภาพ

ถ้าต้องการเห็นภาพเสมือนที่มีขนาดเป็น 2 เท่าของภาพจากกการหักเหครั้งแรกเลนส์ 2 จะต้องมีความยาว โฟกัสเท่าไร

13. กำหนดประจุไฟฟ้าขนาด -q และ +2q วางอยู่ที่จุดยอดของสี่เหลี่ยมจัตุรัสที่มีความยาวด้านละ d ดังภาพ จงหาความต่างศักย์ระหว่างจุด ${\bf A}$ และจุด ${\bf B}$ $(V_{
m A}-V_{
m B})$

 $14.\,$ กำหนดวงจรตัวเก็บประจุที่มีตัวเก็บประจุ 2 ตัว คือ C และ 2C ต่ออนุกรมกันเข้ากับแบตเตอรี่ขนาด $6\,\mathrm{V}$ ดังภาพ ถ้า

- วงจรนี้มีค่าความสมมูลเท่ากับ $4\,\mu\mathrm{F}$
- ความต่างศักย์คร่อมตัวเก็บประจุ C เท่ากับ $4\,\mathrm{V}$
- ความต่างศักย์คร่อมตัวเก็บประจุ 2C เท่ากับ $2\,\mathrm{V}$

พลังงานที่สะสมในตัวเก็บประจุ 2C มีค่าเท่ากับกี่ไมโครจูล

15. กำหนดอุปกรณ์ไฟฟ้าอันหนึ่งมีความต้านทาน $40\,\Omega$ ซึ่งจะทำงานได้เมื่อมีกระแสไฟฟ้าไหลผ่าน $0.10\,$ ถึง $0.15\,$ แอมแปร์ ถ้ามีวงจรไฟฟ้าที่นำอุปกรณ์ชิ้นนี้ต่อเข้ากับแบตเตอรี่ขนาด $24\,\mathrm{V}$ และตัวต้านทาน $100\,\Omega$ ใน $3\,$ ลักษณะ ดังภาพ วงจรแบบใดบ้างที่ทำให้อุปกรณ์ทำงานได้

16. ประจุไฟฟ้า A,B,C มีอัตราส่วนประจุต่อมวลเท่ากัน วิ่งเข้าไปในบริเวณที่มีสนามแม่เหล็กพุ่งเข้าไปในกระดาษ ได้เส้นทางการเคลื่อนที่ดังภาพ

ข้อใดต่อไปนี้ถูกต้อง

- $1.\,$ อนุภาค A และ B เป็ยนประจุชนิดเดียวกัน
- 2. อนุภาค \boldsymbol{B} และ \boldsymbol{C} เป็นประจุต่างชนิดกัน
- 3. อนุภาค C เป็นประจุบวก
- 4. อัตราเร็วของอนุภาค A มากกว่าของอนุภาค B
- 5. อัตราเร็วของอนุภาค C มากกว่าของอนุภาค A
- 17. จงพิจารณาความถูกผิดของข้อความต่อไปนี้
 - (๑) เครื่องรับวัทยุ้ทำงานโดยการแปลงสัญญาณเสียงจากสถานีให้เป็นสัญญาณไฟฟ้า
 - (๒) คลื่นไมโครเวฟ เป็นคลื่นแม่เหล็กไฟฟ้าที่ใช้ในระบบ GPS
 - (๓) สัญญาณที่ใช้ในการสื่อสาร ที่มีการเปลี่ยนแปลงเพียง 2 ค่า คือ +1 และ -1 คือสัญญาณอนาลอก ข้อใดถูกต้อง
 - 1. ข เท่านั้น
 - ค เท่านั้น
 - 3. ก และ ข
 - 4. ก และ ค
 - 5. ข และ ค
- 18. วงจรไฟฟ้ากระแสสลับ ประกอบดวัยตัวต้านทาน $2\,\Omega$ ต่อเข้ากับแหล่งกำเนิดไฟฟ้ากระแสสลับ ดังภาพ

ถ้าทำการวัดค่ายังผลของกระแสไฟฟ้าที่ไหลในวงจร พบว่ามีค่าเท่ากับ $7.0\,\mathrm{A}$ ข้อใดแสดงกราฟแสดงความสัมพันธ์ ระหว่างกระแสไฟฟ้า (i) และความต่างศักย์ระหว่างปลายตัวต้านทาน (v) ที่เปลี่ยนแปลงตามเวลาได้ถูกต้อง (กำหนดให้ $\sqrt{2}=1.4, \frac{1}{\sqrt{2}}=0.7)$

19. ของแข็ง A มวล $1.0\,\mathrm{kg}$ มีอุณหภูมิตั้งต้น $-10\,^\circ\mathrm{C}$ ของเหลว B มวล $2.0\,\mathrm{kg}$ มีอุณหภูมิตั้งต้น $80\,^\circ\mathrm{C}$ นำวัตถุ A และ B ไว้ด้วยกันในระบบปิด จนกระทั่งเข้าสู่สมดุลความร้อนที่เวลา t_B ได้กราฟการเปลี่ยนแปลง ของอุณหภูมิของ A และ B ตามเวลาดังนี้ กำหนดให้

ความร้อนจำเพาะในสถานะของแข็งของ $A=1.0\times 10^3\,\mathrm{J/kg\cdot K}$ ความร้อนแผงในการหลอมเหลวของ $A=10^4\,\mathrm{J/kg}$ ความร้อนจำเพาะในสถานะของเหลวของ $A=2.0\times 10^3\,\mathrm{J/kg\cdot K}$ จงหาว่า ความร้อนจำเพาะในสถานะของเหลว B เท่ากับเท่าใดและหลังจากที่เวลา t_B ของเหลว B จะมีการ เปลี่ยนแปลงอุณหภูมิอย่างไร (เพิ่มขึ้น, เท่าเดิม, ลดลง)

- 20. แก๊ส He และ Ar ปริมาณเท่ากัน ถูกบรรจุในภาชนะเดียวกัน จนกระทั่งอยู่ในสภาวะสมดุลความร้อน จง พิจารณาความถูกผิดของข้อความต่อไปนี้
 - (๑) Ar มีพลังงานจลน์เฉลี่ยมากกว่า He
 - (๒) He มีอัตราเร็วเฉลี่ยมากกว่า Ar
 - (๓) ${
 m Ar}$ ทุกโมเลกุลมีอัตราเร็วเท่ากันหมด

21. ทำการทดลองเพื่อหาค่า Young modulus ของแท่งวัตถุอันหนึ่ง ซึ่งมีพื้นที่หน้าตัด A และความยาวตั้งต้น L_0 โดยนำมวล m มาห้อยกับแท่งวัตถุที่ยึดกับเพดานได้ดังภาพ แล้วดูระยะยืด ΔL ของแท่งโลหะโดยปรับ ค่า m หลายค่า จากนั้นนำข้อมูลที่ได้ไปพล็อตกราฟ $\Delta L - m$ ได้กราฟเส้นตรงที่มีความชั้น = k ถ้าต้องการ นำความชั้น k ไปคำนวณเพื่อหาค่า Young modulus Y จงหาค่า Y ในรูปของค่าคงที่ในโจทย์

22. ท่อน้ำท่อหนึ่งมีน้ำความหนาแน่น ho ไหลเข้าที่ความดันเป็น 10 เท่าของความดันบรรยากาศ P_0 และไหลออก ผ่านท่อที่เปิดสู่ความดันบรรยากาศ P_0 ที่ความสูง H เหนือระดับขาเข้า ผ่านพื้นที่หน้าตัด $\frac{1}{\sqrt{2}}$ เท่าของท่อขา เข้า จงหาอัตราเร็วของน้ำที่ไหลผ่านท่อขาออก

23. กำหนดข้อมูลของอนุภาคมูลฐาน ดังนี้

ชื่อ	มวล $({ m GeV/e^2})$	ประจุ (e)
down	4.7	-1/3
up	2.2	2/3
strange	96	-1/3
charm	1.28	2/3
bottom	4.18	-1/3
top	173.1	2/3
electron	0.51	-1
electron neutrino	< 2.2	0
muon	105.66	-1
muon neutrino	< 0.17	0
tau	1.78	-1
tau neutrino	<18.2	0
photon	0	0
W	80.39	±1
Z	91.19	0
gluon	0	0

ถ้ามีอนุภาคหนึ่งซึ่งประกอบด้วย up quark และ strange antiquark อย่างละ 1 อนุภาค จงพิจารณา ความถูกผิดของข้อความต่อไปนี้

- (๑) อนุภาคนี้มีประจุเท่ากับ Z-boson
- (๒) อนุภาคนี้มีมวลเท่ากับ Tau neutrino
- (๓) อนุภาคนี้มี photon เป็นอนุภาคสื่อแรงที่เชื่อม quark เข้าด้วยกัน

24. อะตอมของไฮโดรเจนในสภาวะกระตุ้น มีการปลดปล่อยโฟตอนที่มีควอนตัมของพลังงาน $1.89\,\mathrm{eV}$ จนอะตอม มีพลังงานรวม $-3.4\,\mathrm{eV}$ จงหาอะตอม H_2 มีการเปลี่ยนแปลงระดับพลังงานจากชั้นใดเป็นชั้นใด

25. ถ้านิวเคลียสของธาตุกัมมันตรังสีหนึ่งมีจำนวน 1.85×10^9 นิวเคลียสมีกัมมตภาพรังสี 1 มิลลิคูรี จงหาว่า ต้องใช้เวลาเท่าใด นิวเคลียสของธาตุนี้จึงจะสลายตัวจนเหลือครึ่งหนึ่ง กำนหดให้ 1 คูรี $=3.7 \times 10^{10}$ วินาที $^{-1}$

26. ปืนใหญ่มวล $400\,\mathrm{kg}$ อยู่บนพื้นฝืดที่มีสัมประสิทธิ์ความเสียดทานจลน์เท่ากับ $0.5\,$ ยิงกระสุนมวล $9.8\,\mathrm{kg}$ ออก ไปด้วยอัตราเร็ว $40\,\mathrm{m/s}$ จงหาว่าปืนใหญ่จพถอยหลังเป็นระยะกี่<u>เซนติเมตร</u>

27. วางลูกบาศก์ A ยาวด้านละ $1\,\mathrm{m}$ ลอยในน้ำที่มีความหนาแน่น $1.0 \times 10^3\,\mathrm{kg/m^3}$ จากนั้วางมวล B ทับ มวล A ทำให้มวล A จมลงไป $5.0\,\mathrm{cm}$ จงหาว่ามวล B มีค่ากี่กิโลกรัม

28. นักยิงธนู ต้องการยิงธนูเพื่อจุดคบเพลิงที่อยู่สูงจากพื้น $21.6\,\mathrm{m}$ โดยยิงทำมุม 45° กับแนวระดับที่ความสูง $2\,\mathrm{m}$ ดังภาพ ถ้าธนูใช้เวลาเคลื่อนที่ $4\,\mathrm{s}$ จงหาว่าระยะระหว่างนักยิงธนูกับแท่นคบเพลิงในแนวระดับมีค่าเท่ากับ ก็เมตร

29. น้ำเคลื่อนที่ผ่านรอบต่อจากบริเวณน้ำลึก (บริเวณที่แรเงา) ไปยังบริเวณน้ำตื้น โดยบริเวณน้ำลึกคลื่นเคลื่อนที่ ด้วยอัตราเร็ว $\sqrt{2}\,\mathrm{m/s}$ จงหาว่าคลื่นจะเคลื่อนที่ผ่านบริเวณน้ำตื้นด้วยอัตราเร็วกี่<u>เมตรต่อวินาที</u> (กำหนดให้ $\sqrt{2}=1.41,\sqrt{3}=1.73$)

30. จงหากระแสไฟฟ้าที่ผ่านตัวต้านทาน $2.4\,\Omega$ ในหน่วยแอมแปร์

เฉลย

- 1. 2
- 2. กราฟผิดและโดนปรับ
- $3. \ 2\,\mathrm{m/s^2}$ ทำมุม θ กับแกน -x
- 4. 11.8 N
- $5.\,$ ขยับออก $0.3\,\mathrm{m}$
- 6. $\frac{W}{4}$
- 7. เท่ากัน
- 8. 2 kg
- 9. ข และ ค
- $10.~4\pi\times10^{-5}$
- 11. $1.00 \times 10^{-4} \,\mathrm{m}$
- $12.6 \mathrm{cm}$
- 13. $(1 \sqrt{2}) \frac{kq}{d}$
- $14. 24 \mu J$
- 15. ค
- 16. 5
- 17. 1
- 18.
- $19.\ 1250\, {
 m J/kg\cdot K}$ และ อุณหภูมิเท่าเดิม
- 20. ข
- 21. $\frac{gL}{kA}$
- $22. \ 2\sqrt{\frac{9P_0}{\rho} gH}$
- 23. ข
- 24. n=3 ไป n=2

- 25. $34.65 \,\mathrm{s}$
- $26.~9.8\,\mathrm{cm}$
- $27.50 \,\mathrm{kg}$
- $28.\ 100\,\mathrm{m}$
- $29.~1\,\mathrm{m/s}$
- 30. 2 A