Tobin deKorne 4/30/18

CS443 -- Lab 5

Question 1:

A PARTS file with Part# as hash key includes records with the following

Part# values: 2369, 3760, 4692, 4871, 5659, 1821, 1074, 7115, 1620, 2428, 3943, 4750, 6975, 4981, 9208

The file uses 8 buckets, numbered 0 to 7.

Each bucket is one disk block and holds two records.

Load these records into the file in the given order using the hash function

 $h(K)=K \mod 8$.

 $2369 \mod 8 = 1$

 $3760 \mod 8 = 0$

 $4692 \mod 8 = 4$

 $4871 \mod 8 = 7$

 $5659 \mod 8 = 3$

 $1821 \mod 8 = 5$

 $1074 \mod 8 = 2$

 $7115 \mod 8 = 3$

 $1620 \mod 8 = 4$

 $2428 \mod 8 = 4$

 $3943 \mod 8 = 7$

 $4750 \mod 8 = 6$

 $6975 \mod 8 = 7$

 $4981 \mod 8 = 5$

 $9208 \mod 8 = 0$

Note: highlighted values must go into overflow area

Bucket 0	Bucket 1	Bucket 2	Bucket 3	Bucket 4	Bucket 5	Bucket 6	Bucket 7
3760	2369	1074	5659	4692	1821	4750	4871
9208			7115	1620	4981		3943
Our millions are as							

Overflow area:								
				2428			6975	

Calculate the average number of block accesses for a random retrieval on Part#.

average block accesses =
$$\left(\frac{Accesses\ without\ overflow}{Total\ accesses}\right) + 2\left(\frac{Total\ overflow\ accesses}{Total\ accesses}\right)$$

 $\frac{13}{15} + 2\left(\frac{2}{15}\right) \approx 1.133$

Question 2:

Consider the following records of question 1:

Load the records into expandable hash files based on extendible hashing. You can put two records per block. Show the directory at each step, and the global and local depths. Use the hash function $h(k) = K \mod 32$ to find the bucket number. For example,

Record#	Κ	h(K) bucket number	binary h(K)
record1	2369	1	00001
record2	3760	16	10000
record3	4692	20	10100
record4	4871	7	00111
record5	5659	27	11011
record6	1821	29	11101
record7	1074	18	10010
record8	7151	15	01111
record9	1620	20	10100

Question 3:

Insert the following into B-tree of order **4**. Show your work step by step with proper illustration of pointers as shown in pages 20-29 in multi-way trees lecture

8, 2, 80, 25, 26, 27, 28, 55, 71, 15, 51, 20, 21, 22, 23, 24, 63, 90, 35

Question 4:

Insert the following into B⁺ tree of order **3**. Show your work step by step with proper illustration of pointers as shown in pages 47-54 in multi-way trees lecture

Question 5:

Consider the following B-tree.

- a) Redraw the tree after deleting 14.
- b) Again, redraw the tree after deleting 15.
- c) Again, redraw the tree after deleting 25.

Question 6:

Consider the following B+ tree:

a) Delete 29 and redraw the tree after that

b) Next delete 10 and redraw the tree after that

c) Next delete 26 and redraw the tree after that

d) Next delete 24 and redraw the tree after that

e) Next delete 9 and redraw the tree after that

