全国信息学奥林匹克联赛 (NOIP2008) 复赛

提高组

一、题目概览

中文题目名称	笨小猴	火柴棒等式	传纸条	双栈排序
英文题目名称	word	matches	message	twostack
可执行文件名	word	matches	message	twostack
输入文件名	word,in	matches.in	message.in	twostack.in
输出文件名	word.out	matches.out	message.out	twostack.out
每个测试点时限	1秒	1秒	1秒	1秒
测试点数目	10	10	10	10
每个测试点分值	10	10	10	10
比较方式	全文比较	全文比较	全文比较	全文比较
题目类型	传统	传统	传统	传统

二、提交源程序文件名

对于 Pascal 语言	word.pas	matches.pas	message.pas	twostack.pas
对于C语言	word.c	matches.c	message.c	twostack.c
对于 C++语言	word.cpp	matches.cpp	message.cpp	twostack.cpp

三、编译命令 (不包含任何优化开关)

对于 Pascal 语言	fpc word.pas	fpc matches.pas	fpc message.pas	fpc twostack.pas
对于C语言	gcc –o word	gcc –o matches	gcc –o message	gcc –o twostack
	word.c	matches.c	message.c	twostack.c
对于 C++语言	g++ -o word	g++-o matches	g++ -o message	g++ -o twostack
	word.cpp	matches.cpp	message.cpp	twostack.cpp

四、运行内存限制

运行内存上限	50M	50M	50M	50M
--------	-----	-----	-----	-----

注意事项:

- 1. 文件名(程序名和输入输出文件名)必须使用大写。
- 2. C/C++中函数 main()的返回值类型必须是 int,程序正常结束时的返回值必须是 0。
- 3. 全国统一评测时采用的机器配置为: CPU 1.9GHz, 内存 512M, 上述时限以此配置为准。

各省在自测时可根据具体配置调整时限。

1. 笨小猴

(wird.pas/c/cpp)

【问题描述】

笨小猴的词汇量很小,所以每次做英语选择题的时候都很头疼。但是他找到了一种方 法,经试验证明,用这种方法去选择选项的时候选对的几率非常大!

这种方法的具体描述如下:假设 maxn 是单词中出现次数最多的字母的出现次数,minn 是单词中出现次数最少的字母的出现次数,如果 maxn-minn 是一个质数,那么笨小猴就认为这是个 Lucky Word,这样的单词很可能就是正确的答案。

【输入】

输入文件 word.in 只有一行,是一个单词,其中只可能出现小写字母,并且长度小于 100。

【输出】

输出文件 word.out 共两行,第一行是一个字符串,假设输入的的单词是 Lucky Word,那么输出"Lucky Word",否则输出"No Answer";

第二行是一个整数,如果输入单词是 Lucky Word,输出 maxn-minn 的值,否则输出 0。

【输入输出样例1】

word.in	word.out
error	Lucky Word
	2

【输入输出样例1解释】

单词 error 中出现最多的字母 r 出现了 3 次,出现次数最少的字母出现了 1 次,3-1=2,2 是质数。

【输入输出样例2】

word.in	word.out
Olympic	No Answer
	0

【输入输出样例2解释】

单词 olympic 中出现最多的字母 i 出现了 2 次,出现次数最少的字母出现了 1 次,2-1=1,1 不是质数。

2. 火柴棒等式

(matches.pas/c/cpp)

【问题描述】

给你 n 根火柴棍,你可以拼出多少个形如"A+B=C"的等式?等式中的 A、B、C 是用火柴棍拼出的整数(若该数非零,则最高位不能是 0)。用火柴棍拼数字 0-9 的拼法如图所示:

注意:

- 1. 加号与等号各自需要两根火柴棍
- 2. 如果 A≠B,则 A+B=C 与 B+A=C 视为不同的等式 (A、B、C>=0)
- 3. n 根火柴棍必须全部用上

【输入】

输入文件 matches.in 共一行,又一个整数 n (n<=24)。

【输出】

输出文件 matches.out 共一行,表示能拼成的不同等式的数目。

【输入输出样例1】

matches.in	matches.out
14	2

【输入输出样例1解释】

2个等式为0+1=1和1+0=1。

【输入输出样例2】

matches.in	matches.out
18	9

【输入输出样例2解释】

9个等式为:

0+4=4

0+11=11

1+10=11

2+2=4

2+7=9

4+0=4

7+2=9

10+1=11

11+0=11

3. 传纸条

(wassage.pas/c/cpp)

【问题描述】

小渊和小轩是好朋友也是同班同学,他们在一起总有谈不完的话题。一次素质拓展活动中,班上同学安排做成一个 m 行 n 列的矩阵,而小渊和小轩被安排在矩阵对角线的两端,因此,他们就无法直接交谈了。幸运的是,他们可以通过传纸条来进行交流。纸条要经由许多同学传到对方手里,小渊坐在矩阵的左上角,坐标(1,1),小轩坐在矩阵的右下角,坐标(m,n)。从小渊传到小轩的纸条只可以向下或者向右传递,从小轩传给小渊的纸条只可以向上或者向左传递。

在活动进行中,小渊希望给小轩传递一张纸条,同时希望小轩给他回复。班里每个同学都可以帮他们传递,但只会帮他们一次,也就是说如果此人在小渊递给小轩纸条的时候帮忙,那么在小轩递给小渊的时候就不会再帮忙。反之亦然。

还有一件事情需要注意,全班每个同学愿意帮忙的好感度有高有低(注意:小渊和小轩的好心程度没有定义,输入时用0表示),可以用一个0-100的自然数来表示,数越大表示越好心。小渊和小轩希望尽可能找好心程度高的同学来帮忙传纸条,即找到来回两条传递路径,使得这两条路径上同学的好心程度只和最大。现在,请你帮助小渊和小轩找到这样的两条路径。

【输入】

输入文件 message.in 的第一行有 2 个用空格隔开的整数 m 和 n , 表示班里有 m 行 n 列 $(1 \le m, n \le 50)$ 。

接下来的 m 行是一个 m*n 的矩阵,矩阵中第 i 行 j 列的整数表示坐在第 i 行 j 列的学生的好心程度。每行的 n 个整数之间用空格隔开。

【输出】

输出文件 message.out 共一行,包含一个整数,表示来回两条路上参与传递纸条的学生的好心程度之和的最大值。

【输入输出样例】

message.in	message.out
33	34
0 3 9	
285	
570	

【限制】

30%的数据满足:1<=*m*,*n*<=10 100%的数据满足:1<=*m*,*n*<=50

4. 双栈排序

(twostack.pas/c/cpp)

【问题描述】

Tom 最近在研究一个有趣的排序问题。如图所示,通过 2 个栈 S1 和 S2, Tom 希望借助以下 4 种操作实现将输入序列升序排序。

操作a		
如果输入序列不为空,将第一个元素压入栈 S1	S1	
操作b		
如果栈 S1 不为空,将 S1 栈顶元素弹出至输出序列		
操作c	S2	
如果输入序列不为空,将第一个元素压入栈 S2		
操作 d		

如果栈 S2 不为空,将 S2 栈顶元素弹出至输出序列

如果一个 $1\sim n$ 的排列 P 可以通过一系列操作使得输出序列为 1 , 2 , \cdots , (n-1) , n , Tom 就称 P 是一个"可双栈排序排列"。例如(1,3,2,4)就是一个"可双栈排序序列",而(2,3,4,1)不是。下图描述了一个将(1,3,2,4)排序的操作序列:<a,c,c,b,a,d,d,b>

3, 2, 4	3
3, 2	3, 2 1
3, 2 1	3 1, 2

当然,这样的操作序列有可能有几个,对于上例(1,3,2,4),<a,c,c,b,a,d,d,b>是另外一个可行的操作序列。Tom希望知道其中字典序最小的操作序列是什么。

【输入】

输入文件 twostack.in 的第一行是一个整数 n。

第二行有 n 个用空格隔开的正整数,构成一个 1~n 的排列。

【输出】

输出文件 twostack.out 共一行,如果输入的排列不是"可双栈排序排列",输出数字 0; 否则输出字典序最小的操作序列,每两个操作之间用空格隔开,行尾没有空格。

【输入输出样例1】

twostack.in	twostack.out
4	a b a a b b a b
1324	

【输入输出样例2】

twostack.in	twostack.out
4	0
2341	

【输入输出样例3】

twostack.in	twostack.out
3	a c a b b d
2 3 1	

【限制】

30%的数据满足: n<=10 50%的数据满足: n<=50 100%的数据满足: n<=1000