- 1. Аксиомы сложения и следствия из них (с доказательствами)
- 2. Аксиомы умножения и следствия из них (с доказательствами)
- 3. Аксиомы связи сложения и умножения, следствия из них (с доказательствами)
- 4. Аксиомы порядка и следствия из них (с доказательствами)
- 5. <u>Аксиома непрерывности. Леммы о существовании и иррациональности числа,</u> квадрат которого равен 2.
- 6. <u>Индуктивные множества. Лемма о пересечении индуктивных множеств.</u> <u>Множество натуральных чисел.</u>
- 7. Принцип математической индукции. Неравенство Бернулли.
- 8. Модуль вещественного числа и его свойства.
- 9. Промежутки числовой прямой и окрестности.
- 10. <u>Ограниченность множества. Максимум, минимум, супремум и инфимум множества.</u> Принцип точной грани и следствие из него. Эквивалентные определения супремума и инфимума.
- 11. <u>Теорема о существовании максимума у любого непустого подмножества натуральных чисел. Следствия.</u>
- 12. Принцип Архимеда и следствия из него.
- 13. <u>Предел последовательности: через неравенства, через эпсилон-окрестности, через окрестности. Утверждение о том, что число не является пределом.</u> <u>Бесконечные пределы. Сходящиеся последовательности.</u>
- 14. Три свойства последовательностей, имеющих предел.
- 15. <u>Арифметические свойства пределов в R и R∪±∞.</u>
- 16. Предельный переход в неравенствах.
- 17. Теорема о сжатой переменной.
- 18. Теорема Вейерштрасса. Дополнение и обобщение.
- 19. Второй замечательный предел.

1. Аксиомы сложения и следствия из них (с доказательствами) (7 шт)

Определено отображение $+ : R \times R \to R$, называемое операцией сложения, сопоставляющее каждой упорядоченной паре (x, y) из $R \times R$ элемент $x + y \in R$, называемый суммой x и y, обладающее свойствами:

(a) Операция + коммутативна, то есть для любых x, y ∈ R

$$x + y = y + x$$
.

- (б) Операция + ассоциативна, то есть для любых x, y, z \in R (x + y) + z = x + (y + z).
- (в) Существует нейтральный элемент 0 ∈ R (называемый нулем), такой, что для любого x ∈ R

(г) Для каждого элемента х ∈ R существует противоположный элемент −х такой, что

$$x + (-x) = 0$$
.

Следствия из аксиом сложения.

Лемма 1.3 В множестве R ноль единственен.

Доказательство. Пусть 0_1 и 0_2 - нули в R. Тогда, используя свойство (а) в блоке аксиом сложения и определение нуля имеем

$$0_1 \stackrel{1(c)}{=} 0_1 + 0_2 \stackrel{1(a)}{=} 0_2 + 0_1 \stackrel{1(c)}{=} 0_2.$$

ЧТД.

Лемма 1.4. В множестве R каждый элемент имеет единственный противоположный.

Доказательство. Пусть $x_1 \le x_2$ - противоположные к $x \in R$ элементы. Тогда:

$$x_1 \stackrel{\text{1(c)}}{=} x_1 + 0 \stackrel{\text{1(d)}}{=} x_1 + (x + x_2) \stackrel{\text{1(b)}}{=} (x_1 + x) + x_2 \stackrel{\text{1(d)}}{=} 0 + x_2 \stackrel{\text{1(a)}}{=} x_2 + 0 \stackrel{\text{1(c)}}{=} x_2.$$

ЧТД.

Лемма 1.5. В множестве R уравнение x + a = b имеет единственное решение x = b + (-a).

Доказательство. Добавляя к обеим частям равенства -а, получаем

$$(x+a+(-a)=b+(-a)) \iff (x+0=b+(-a)) \iff (x=b+(-a)).$$

Единственность решения следует из единственности противоположного элемента. ЧТД.

2. Аксиомы умножения и следствия из них (с доказательствами) (7 шт)

Определено отображение \cdot : R × R \to R, называемое операцией умножения, сопоставляющее каждой упорядоченной паре (x, y) из R × R элемент x \cdot y \in R, называемый произведением элементов x и y, обладающее свойствами:

(a) Операция · коммутативна, то есть для любых x, y \in R

$$x \cdot y = y \cdot x$$
.

- (б) Операция · ассоциативна, то есть для любых x, y, z \in R $(x \cdot y) \cdot z = x \cdot (y \cdot z)$.
- (в) Существует нейтральный элемент 1 ∈ R \ {0} (называемый единицей), такой, что для любого х ∈ R

$$x \cdot 1 = x$$
.

(г) Для каждого элемента $x \in \mathbb{R}\setminus\{0\}$ существует обратный элемент x^{-1} такой, что

$$x \cdot x^{\wedge}(-1) = 1.$$

Замечание 1.3. Условие, что 1 ∕= 0, чрезвычайно важно. Без него мы бы могли построить R, состоящее лишь из одного элемента - из нуля.

Следствия аксиом умножения.

Лемма 1.6. В множестве R единица единственна.

Доказательство. Пусть 1, и 1₂ - единицы в R. Тогда:

ЧТД.

Лемма 1.7. В множестве R\{0} каждый элемент имеет единственной обратный.

Доказательство. Пусть X_1 и X_2 - обратные элементы к $x \in R \setminus 0$. Тогда:

$$X_{1} = X_{1} * 1 = X_{1} * (X * X_{2}) = (X_{1} * X) * X_{2} = 1 * X_{2} = X_{2} * 1 = X_{2}$$

ЧТД.

Лемма 1.8. В множестве R уравнение $a \cdot x = b$ при а не равном 0 имеет единственное решение $x = b \cdot a^{(-1)}$.

Доказательство. Умножим обе части на а^(-1):

$$(x * a * a^{-1} = b * a^{-1}) \le (x * 1 = b * a^{-1}) \le (x = b * a^{-1})$$

Единственность решения следует из единственности обратного элемента. ЧТД.

3. Аксиомы связи сложения и умножения, следствия из них (с доказательствами) (6 шт)

Умножение дистрибутивно по отношению к сложению, то есть \forall x, y, z, ∈ R

$$(x + y) \cdot z = x \cdot z + y \cdot z$$
.

Замечание 1.5. Первые три группы аксиом устанавливают, что R - поле. В то же время, введенные операции не исчерпывают ни наших, ни сугубо математических потребностей в свойствах множества R. Например, мы так и не научились сравнивать элементы из R.

Следствия аксиом связи сложения и умножения.

Лемма 1.9. Для любого x ∈ R выполняется x * 0 = 0 Доказательство.

$$(x\cdot 0=x\cdot (0+0)) \ \Leftrightarrow \ (x\cdot 0=x\cdot 0+x\cdot 0) \ \Leftrightarrow$$

$$\Leftrightarrow \ (x\cdot 0+(-x\cdot 0)=x\cdot 0+x\cdot 0+(-x\cdot 0)) \ \Leftrightarrow \ 0=x\cdot 0$$
 ЧТД.

Следствие 1.0.1. $(x \cdot y = 0) \Leftrightarrow (x = 0) \lor (y = 0)$.

Доказательство. Если и х, и у равны нулю, то утверждение следует из предыдущей леммы. Если хотя бы одно из х, у не равны нулю, то утверждение следует из предыдущей леммы и третьей леммы следствия аксиом умножения. ЧТД

Лемма 1.10. Для любого $x \in R$ выполняется $-x = (-1) \cdot x$. Доказательство. Так как $x + (-1) \cdot x = (1 + (-1)) \cdot x = 0 \cdot x = 0$, то в силу единственности противоположного элемента, $-x = (-1) \cdot x$. ЧТД. **Следствие 1.0.2.** Для любого $x \in R$ выполняется $(-1) \cdot (-x) = x$. Доказательство. $(-1) \cdot (-x) = (-1) \cdot ((-1) \cdot x) = ((-1) \cdot (-1)) \cdot x = 1 \cdot x = x$. ЧТД. **Следствие 1.0.3.** Для любого $x \in R$ выполняется $(-x) \cdot (-x) = x \cdot x$. Доказательство. $(-x) \cdot (-x) = (-1) \cdot x \cdot (-x) = x \cdot (-1) \cdot (-x) = x \cdot x$. ЧТД.

4. Аксиомы порядка и следствия из них (с доказательствами) (8 шт)

Между элементами R введено отношение порядка ≤, то есть для элементов x, y ∈ R установлено: справедливо x ≤ y, или нет. При этом выполняются следующие условия:

(а) Отношение ≤ рефлексивно, то есть

$$\forall x \in R \ x \leq x$$
.

(б) Отношение ≤ антисимметрично, то есть

$$(x \le y) \land (y \le x) \Rightarrow (x = y).$$

(в) Отношение ≤ транзитивно, то есть

$$(x \le y) \land (y \le z) \Rightarrow (x \le z).$$

(г) Для любых двух элементов x, y ∈ R выполнено либо x ≤ y, либо y ≤ x.

Замечание 1.6. Само отношение, обозначенное нами как ≤, и первые три рассмотренных пункта устанавливают общее понятие "порядка" на множестве. Последний же пункт наделяет порядок на множестве R свойством полной (линейной) упорядоченности: любые два элемента из R сравнимы между собой.

Замечание 1.7. Рассмотрим множество натуральных чисел и отношение делимости на нем. Точнее, для натуральных а и b будем писать

в случае, когда а делится на b нацело. Легко видеть, что введенное отношение - отношение порядка. Однако, таким образом введенный

порядок не устанавливает полную (линейную) упорядоченность так как, например, числа 2 и 3 оказываются несравнимыми.

Связь сложения и порядка.

Если $x, y, z \in R$, то $(x \le y) \Rightarrow (x + z \le y + z)$.

Связь умножения и порядка.

Если $x, y \in R$, то $(0 \le x) \land (0 \le y) \Rightarrow (0 \le x \cdot y)$.

Следствия из аксиом порядка.

Следствие 1.0.4. Для любых $x, y \in R$ всегда имеет место ровно одно из соотношений: x < y, x = y, x > y.

Лемма 1.11. Для любых чисел x, y, z ∈ R выполняется

$$(x < y) \land (y \le z) \Rightarrow (x < z),$$

 $(x \le y) \land (y < z) \Rightarrow (x < z).$

Доказательство. Докажем первое утверждение. Из свойства транзитивности для отношения порядка получаем, что $(x < y) \land (y \le z) \Rightarrow (x \le z)$. Покажем, что x = z, то

$$(x < y) \land (y \leqslant z) \Leftrightarrow (z < y) \land (y \leqslant z) \Leftrightarrow$$

$$\Leftrightarrow$$
 $(z \leqslant y) \land (y \leqslant z) \land (z \neq y) \Leftrightarrow (z = y) \land (z \neq y).$

Второе утверждение доказывается аналогичным образом. ЧТД.

5. Аксиома непрерывности. Леммы о существовании и иррациональности числа, квадрат которого равен 2. (3 шт)

Лемма 1.1. Если существует с ∈ \mathbb{R} , что $\mathbb{C}^2 = 2$, то \mathbb{C} - не рациональное число.

Доказательство. Предположим противное. Пусть c = m/n, n - натуральное, m - целое, и последняя дробь несократима. Тогда если c^2 = 2, то

$$2 = \frac{m^2}{n^2} \implies m^2 = 2n^2 \implies m \stackrel{.}{:} 2 \implies m = 2k,$$

где k - натуральное. Но тогда

$$(2k)^2 = 2n^2 \implies 2k^2 = n^2 \implies n \stackrel{.}{:} 2 \implies n = 2p,$$

где p - целое. Но тогда дробь, соответствующая числу c, сократима на 2, что противоречит предположению. ЧТД.

Аксиома непрерывности (полноты)

Пусть X, Y \subset R, причем X \neq \varnothing и Y \neq \varnothing . Тогда

$$(\forall x \in X \ \forall y \in Y \ x \leqslant y) \ \Rightarrow \ (\exists c \in \mathbb{R}: \ x \leqslant c \leqslant y \ \forall x \in X \ \forall y \in Y).$$

Лемма 1.2. Существует с ∈ R такой, что: c^2 = 2.

Доказательство. Рассмотрим множества

$$X = \{x > 0 : x^2 < 2\}, \quad Y = \{y > 0 : y^2 > 2\}.$$

Рассматриваемые множества не пусты. И правда, $1 \in X$, ведь $1^2 < 2$ и 1 > 0, а $2 \in Y$, так как $2^2 > 2$ и 2 > 0. Кроме того, так как при x, y > 0

$$(x < y) \Leftrightarrow (x^2 < y^2),$$

TO

$$\forall x \in X \ \forall y \in Y \ x < y.$$

Исходя из аксиомы непрерывности:

$$\exists c \in \mathbb{R}: x \leqslant c \leqslant y \ \forall x \in X \ \forall y \in Y.$$

Покажем, что с не принадлежит Х. От противного, если с^2 < 2, то число

$$c + \frac{2 - c^2}{3c},$$

большее c, тоже лежит в X. Действительно, так как c > 1, то и c^2 > 1, а значит 2 - c^2 ≤ 1 и

$$\left(c + \frac{2 - c^2}{3c}\right)^2 = c^2 + 2 \cdot \frac{2 - c^2}{3} + \left(\frac{2 - c^2}{3c}\right)^2 < c^2 + 2 \cdot \frac{2 - c^2}{3} + \frac{2 - c^2}{3} = 2.$$

Но это приводит к противоречию, так как полученное неравенство несовместимо с тем, что $\forall x \in X \ x \le c$. Аналогичным образом доказывается, что с не принадлежит Y, откуда $c^2 = 2$. ЧТД.

6. Индуктивные множества. Лемма о пересечении индуктивных множеств. Множество натуральных чисел. (3 шт)

Понятие индуктивного множества. Множество X ⊂ R называется индуктивным, если \forall x ∈ X (x + 1) ∈ X.

Лемма 1.14. Пересечение $\bigcap_{\alpha \in A} X_{\alpha}$ любого семейства $X_{\alpha}, \ \alpha \in A,$ индуктивных множеств, если оно не пусто, является индуктивным множеством.

Доказательство.

$$\left(x \in \bigcap_{\alpha \in A} X_{\alpha}\right) \Rightarrow (x \in X_{\alpha} \ \forall \alpha \in A) \Rightarrow$$

$$\Rightarrow$$
 $((x+1) \in X_{\alpha} \ \forall \alpha \in A) \ \Rightarrow \ \left((x+1) \in \bigcap_{\alpha \in A} X_{\alpha}\right),$

где переход с первой на вторую строчку справедлив в силу индуктивности всех множеств семейства X_{α} . ЧТД.

Понятие множества натуральных чисел. Множеством натуральных чисел называется пересечение всех индуктивных множеств, содержащих число 1. Обозначается множество натуральных чисел, как N.

7. Принцип математической индукции. Неравенство Бернулли. (2 шт)

Принцип математической индукции. Если множество $X \subset N$ таково, что $1 \in X$ и $\forall x \in X$ $(x + 1) \in X$, то X = N.

Доказательство. Действительно, X - индуктивное множество. Так как $X \subset N$, а N - наименьшее индуктивное множество, то X = N.

Неравенство Бернулли. $(1+x)^n \geqslant 1+nx, \quad x > -1, \quad n \in \mathbb{N}.$

Доказательство. База индукции. Пусть n = 1, тогда 1 + x ≥ 1 + x, что верно

при всех х \in R. Допустим, что при n = k выполнено $(1+x)^k \geqslant 1+kx$.

Покажем, что при n = k + 1 выполняется $(1+x)^{k+1}\geqslant 1+(k+1)x$.

$$(1+x)^{k+1} = (1+x)(1+x)^k \ge (1+x)(1+kx) =$$
$$= 1 + kx + x + kx^2 = 1 + (k+1)x + kx^2.$$

Так как $\ \mathbf{k} \in \mathbb{N}$, то $kx^2 \geqslant 0$, а значит $1 + (k+1)x + kx^2 \geqslant 1 + (k+1)x$, откуда и следует требуемое. ЧТД.

8. Модуль вещественного числа и его свойства. (8 шт)

Понятие модуля. Модулем вещественного числа x называется число, равное x, если оно положительно или равно нулю, и равное -x, если оно

$$|x| = \begin{cases} x, & x \geqslant 0 \\ -x, & x < 0 \end{cases}$$

отрицательно. Иными словами:

Свойства модуля вещественного числа:

(a)
$$|x| \geqslant 0$$
, npurem $|x| = 0 \Leftrightarrow x = 0$.

(6)
$$|x| = |-x|$$
.

$$(e) -|x| \leqslant x \leqslant |x|.$$

(2)
$$|x| = |y| \Leftrightarrow \left[\begin{array}{c} x = y \\ x = -y \end{array} \right]$$

(
$$\partial$$
) $|xy| = |x||y|$.

(e)
$$\frac{|x|}{|y|} = \left|\frac{x}{y}\right|$$
.

(энс)
$$|x + y| \leq |x| + |y|$$
.

(3)
$$|x - y| \ge ||x| - |y||$$
.

Доказательство. 1. При $x \ge 0$ очевидно, что $|x| \ge 0$. В случае x < 0: |x| = -x = (-1) * x > 0

2.
$$|x| => (x, x>=0) \land (-x, x<0)$$

$$|-x| => (-x, (-x)>=0) \land (-(-x), (-x)<0) => (-x, x<0) \land (x, x>=0)$$

3. При x >= 0:

$$-|x| <= x <= |x|$$

При x < 0:

$$-|\chi| <= \chi <= |\chi|$$

$$-(-x) <= x <= -x$$

$$x \le x \le -x$$
 (Верно для всех $x \le 0$)

4. При
$$(x \ge 0 \land y \ge 0)$$
 или $(x < 0 \land y < 0)$:

$$x = y$$
 или $-x = -y => x = y$

При
$$(x < 0 \land y >= 0)$$
 или $(x >= 0 \land y < 0)$:

$$-x = y$$
 или $x = -y => -x = y$

5.

6.

7. Сложим неравенства $\pm x \leqslant |x|$ и $\pm y \leqslant |y|$, для любых x, y:

$$\pm(x+y) \leqslant |x| + |y|,$$

Это неравенство эквивалентно доказываемому.

8.
$$|x| = |x - y + y| \le |x - y| + |y| \implies |x - y| \ge |x| - |y|$$

Поменяв х и у местами, получим $|x-y|\geqslant |y|-|x|$. Совместно полученные неравенства эквивалентны доказываемому. ЧТД.

9. Промежутки числовой прямой и окрестности. (9 шт)

Понятия промежутков. Пусть a, b ∈ R.

Множество $[a,b]=\{x\in\mathbb{R}:a\leqslant x\leqslant b\}$ при а <= b называется отрезком.

Множество $(a,b) = \{x \in \mathbb{R} : a < x < b\}$ при а < b называется интервалом.

Множества $[a,b) = \{x \in \mathbb{R} : a \leqslant x < b\}, \quad (a,b] = \{x \in \mathbb{R} : a < x \leqslant b\}$ при а < b называются полуинтервалами.

$$[a,+\infty) = \{x \in \mathbb{R} : x \geqslant a\}, \quad (a,+\infty) = \{x \in \mathbb{R} : x > a\},$$

Множества $[a,+\infty]=\{x\in\overline{\mathbb{R}}:x\geqslant a\},\quad (a,+\infty]=\{x\in\overline{\mathbb{R}}:x>a\}$ и

$$(-\infty,b] = \{x \in \mathbb{R} : x \leqslant b\}, \quad (-\infty,b) = \{x \in \mathbb{R} : x < b\},$$

$$[-\infty,b]=\{x\in\overline{\mathbb{R}}:x\leqslant b\},\quad [-\infty,b)=\{x\in\overline{\mathbb{R}}:x< b\}, \quad \text{называются лучами}.$$

Определение окрестности. Окрестностью точки $x \in R$ называется произвольной интервал, содержащий x.

Определение эпсилон-окрестности. Эпсилон-окрестностью (или ϵ -окрестностью) точки $x \in R$ называется интервал

$$(x_0 - \varepsilon, x_0 + \varepsilon), \quad \varepsilon > 0.$$

Определение окрестности +∞.

Окрестностью элемента + ∞ в R расширенном называется множество вида $(a, +\infty], \quad a \in \mathbb{R}.$

ε-окрестностью элемента +∞ в R расширенном называется множество

$$\left(\frac{1}{\varepsilon}, +\infty\right], \quad \varepsilon > 0.$$

Окрестностью элемента -∞ в R расширенном называется множество

вида
$$\left[-\infty,\ -\frac{1}{\varepsilon}
ight),\quad \varepsilon>0.$$

ε-окрестностью элемента -∞ в R расширенном называется множество

вида
$$\left[-\infty,\ -\frac{1}{\varepsilon}\right),\quad \varepsilon>0.$$

Определение проколотой окрестности. Проколотой окрестностью точки $x \in R$ расширенному называется множество $U(x) \setminus \{x\}$, то есть

произвольная окрестность точки х без самой этой точки. (аналогично для эпсилон-окрестности)

10. Ограниченность множества. Максимум, минимум, супремум и инфимум множества. Принцип точной грани и следствие из него. Эквивалентные определения супремума и инфимума. (8 шт)

Понятие границы множества. Множество X \subset R расширенное называется ограниченным сверху, если $\exists M \in \mathbb{R} : \forall x \in X \ x \leqslant M.$ (аналогично для ограниченности снизу)

Понятие ограниченности множества. Множество X \subset R расширенное называется ограниченным, если оно ограничено как сверху, так и снизу, то есть $\exists M, m \in \mathbb{R} : \forall x \in X \ m \leqslant x \leqslant M$.

Лемма об ограниченности множества. Множество X \subset R расширенное ограничено т.и.т.т., когда $\exists C \in \mathbb{R}, C \geqslant 0: \forall x \in X - C \leqslant x \leqslant C.$ Доказательство. Необходимость. Пусть множество X ограничено, то есть $\exists M, m \in \mathbb{R}: \forall x \in X \ m \leqslant x \leqslant M.$

Положив, что C = max{|m|, |M|}, согласно свойствам модуля приходим к тому, что $\forall x \in X - C \leqslant x \leqslant C$.

Достаточность очевидна, так как можно положить m = -C, M = C. ЧТД. Наибольший (максимальный) элемент множества. Элемент M ∈ X ⊂ R расширенное называется максимальным (наибольшим) элементом

множества X, если $\forall x \in X \ x \leqslant M$.

Обозначают: М = max X

(для минимального (наименьшего) аналогично)

Понятие точной грани. Пусть X ⊂ R расширенное ограничено сверху и не пусто. Наименьший элемент множества верхних границ называется супремумом (или точной верхней гранью) множества X и обозначается sup X. В свою очередь, наибольший элемент множества нижних границ называется инфимумом (или точной нижней гранью) множества X и обозначается inf X.

Принцип точной грани. Пусть $X \subset R$ расширенное, не пусто и ограничено сверху (снизу). Тогда существует единственный sup X (inf X).

Доказательство. Пусть множество X ограничено сверху. Тогда множество его верхних границ В не пусто. В силу определения верхней границы

$$\forall b \in B \ \forall x \in X \ x \leq b.$$

Согласно аксиоме непрерывности: $\exists c: x \leqslant c \leqslant b, \quad \forall x \in X \ \forall b \in B.$ Ясно, что $c \in B$. С другой стороны, в силу неравенства $c \le b$ для всех $b \in B$, получается, что $c = \min B$. Тем самым, $c = \sup X$.

Единственность. Пусть есть c1 и c2 (c1 != c2) - супремумы X. Тогда или c1 < c2 => c2 - не наименьший из B

c2 < c1 => c1 - не наименьший из В => противоречие. ЧТД. (ограниченность снизу - аналогично)

Следствие. У любого непустого множества $X \subseteq R$ расширенное существуют супремум и инфимум (может быть, равные $\pm \infty$).

Эквивалентные определения супремума и инфимума. Для супремума и инфимума можно дать следующие эквивалентные определения:

$$s = \sup X \iff (\forall x \in X \ s \geqslant x) \land (\forall s' < s \ \exists x \in X : x > s'),$$
$$i = \inf X \iff (\forall x \in X \ i \leqslant x) \land (\forall i' > i \ \exists x \in X : x < i').$$

Доказательство. Необходимость. $s = \sup X => s$ - верхняя граница, т.е. для любого x из $X: x \le s$. От противного: существует s < s такой, что для любого s из s и

Достаточность. От противного: существует $s1 = \sup X : s1 < s =>$ найдется x из X такой, что s1 < x => s1 - не верхняя грань, т.е. $s1 != \sup X$. ЧТД. (аналогично для инфимума)

11. Теорема о существовании максимума у любого непустого подмножества натуральных чисел. Следствия. (5 шт)

Теорема о существовании максимума у любого непустого подмножества натуральных чисел. Пусть $X \subset N$ - непустое ограниченное множество. Тогда \exists max X.

Доказательство. Согласно принципу точной грани, существует s = sup X < +∞. Согласно эквивалентному определению супремума:

$$\exists k \in X : s - 1 < k \leq s,$$

что означает, что k = max X. Действительно, во-первых k ∈ X. Во-вторых, так как любые натуральные числа, большие k, не меньше (k + 1), а по установленному неравенству s < k + 1, получаем, что k - верхняя грань для X. Эти два наблюдения устанавливают требуемое. ЧТД.

Следствие 1. Множество натуральных чисел N не ограничено сверху.

Доказательство. От противного: пусть существует $k = \max N$, но так как N - индуктивное множество, то существует $(k + 1) \in N => k != \max N$. Противоречие. ЧТД.

Следствие 2. (а) Пусть $X \subset Z$ - непустое ограниченное сверху множество. Тогда существует max X.

- (б) Пусть $X \subseteq Z$ непустое ограниченное снизу множество. Тогда существует min X.
- (в) Z неограниченное ни сверху, ни снизу множество.

12. Принцип Архимеда и следствия из него. (4 шт)

Принцип Архимеда. Пусть $x \in \mathbb{R}$, x > 0. Для любого $y \in \mathbb{R}$ существует единственное целое $k \in \mathbb{Z}$ такое, что $(k-1)x \leqslant y < kx$. Доказательство. Пусть

$$T = \left\{ l \in \mathbb{Z} : \ \frac{y}{x} < l \right\}.$$

Это множество не пусто, так как множество Z не ограничено сверху. Кроме того, T ограничено снизу. Тогда, по доказанному, существует k =

min Т. Значит, $k-1\leqslant \frac{y}{x} < k$ и, в силу положительности х, мы получаем требуемое. ЧТД.

Следствие 1. Для любого $\varepsilon > 0$ существует натуральное число n такое,

$$\begin{array}{c} 0<\frac{1}{n}<\varepsilon. \end{array}$$

Доказательство. Достаточно положить в принципе Архимеда y = 1, $x = \varepsilon$. ЧТД.

Следствие 2. Пусть $x \in R$. Если $\forall \varepsilon > 0$ выполняется $0 \le x < \varepsilon$, то x = 0. Доказательство. От противного, пусть x > 0. Тогда, по предыдущему следствию найдется $n \in N$ такое, что 1/n < x. Но тогда, положив $\varepsilon = 1/n$, получим, что $x > \varepsilon$, что противоречит условию. ЧТД.

Следствие 3. Для любого числа $x \in R$ существует единственное $k \in Z$ такое, что k <= x < k + 1.

Доказательство. Это сразу следует из принципа Архимеда, если положить в нем x = 1. ЧТД.

13. Предел последовательности: через неравенства, через эпсилон-окрестности, через окрестности. Утверждение о том, что число не является пределом. Бесконечные пределы. Сходящиеся последовательности. (6 шт)

Определение предела через неравенства. Число $A \in R$ называется пределом последовательности x_n , если

$$\forall \varepsilon > 0 \exists n0 = n0(\varepsilon) \in \mathbb{N} : \forall n > n0 \mid \mathcal{X}_n - A \mid < \varepsilon.$$
 Обозначение: $\lim_{n \to \infty} x_n = A, \quad x_n \xrightarrow[n \to \infty]{} A, \quad x_n \longrightarrow A.$

Определение предела через ϵ -окрестности. Число A называется пределом последовательности x_n , если

$$\forall \varepsilon > 0 \exists n0 = n0(\varepsilon) \in \mathbb{N} : \forall n > n0 \Rightarrow x_n \in U\varepsilon(A).$$

Определение предела через окрестности. Число А называется

пределом последовательности x_n , если $\forall U(A) \exists n0 = n0(\epsilon) \in N : \forall n > n0 xn \in U(A)$.

Утверждение о том, что число A не является пределом последовательности. Число A не является пределом последовательности, если существует такой положительный эпсилон, для которого при любом натуральном n нулевом найдется n большее n нулевого такое, что $| x_n - A | >= \epsilon$.

Бесконечные пределы. Элемент $+\infty$ называется пределом последовательности x_n , если:

$$\forall \varepsilon > 0 \ \exists n_0 = n_0(\varepsilon) \in \mathbb{N} : \forall n > n_0 \ x_n > \frac{1}{\varepsilon}.$$

Элемент $-\infty$ называется пределом последовательности x_n , если:

$$\forall \varepsilon > 0 \ \exists n_0 = n_0(\varepsilon) \in \mathbb{N} : \forall n > n_0 \ x_n < -\frac{1}{\varepsilon}.$$

Сходящиеся последовательности. Если последовательность имеет предел $A \in R$, то говорят, что она сходится, иначе - расходится.

14. Три свойства последовательностей, имеющих предел. (3 шт)

Арифметические свойства пределов. Пусть $\lim_{n\to\infty}x_n=A, \quad \lim_{n\to\infty}y_n=B,$ A, B \in R, тогда:

(а) Предел суммы равен сумме пределов.

$$x_n + y_n \xrightarrow[n \to \infty]{} A + B.$$

(б) Предел произведения равен произведению пределов.

$$x_n y_n \xrightarrow[n \to \infty]{} AB.$$

(в) Предел частного равен (при естественных ограничениях) частному пределов.

$$\frac{x_n}{y_n} \xrightarrow[n \to \infty]{} \frac{A}{B}, \quad y_n \neq 0, \quad B \neq 0.$$

Доказательство. 1. Пусть $\epsilon > 0$. Так как $\lim_{n \to \infty} x_n = A$, то

$$\exists n_0 : \forall n > n_0 \ |x_n - A| < \frac{\varepsilon}{2}.$$

$$\exists n_1 : \forall n > n_1 \ |y_n - B| < \frac{\varepsilon}{2}.$$

Аналогично

Тогда, используя неравенство треугольника и свойства модуля, при $n>n_2=\max(n_0,n_1)$ имеем:

$$|x_n + y_n - (A + B)| = |(x_n - A) + (y_n - B)| \le |x_n - A| + |y_n - B| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon.$$

2. Так как $\lim_{n\to\infty}y_n=B\in\mathbb{R},$ то последовательность ограничена, а значит $\exists C>0: |y_n|\leqslant C.$

Пусть
$$\epsilon$$
 > 0. Так как $\lim_{n \to \infty} x_n = A$, то $\exists n_0 : \forall n > n_0 \ |x_n - A| < rac{arepsilon}{2C}.$

$$\exists n_1 : \forall n > n_1 \ |y_n - B| < \frac{\varepsilon}{2(|A| + 1)}.$$

Аналогично:

Тогда, используя неравенство треугольника, при

$$n > n_2 = \max(n_0, n_1)$$
 имеем:

$$|x_n y_n - AB| = |x_n y_n + Ay_n - Ay_n - AB| \le |x_n y_n - Ay_n| + |Ay_n - AB| =$$

$$= |y_n| \cdot |x_n - A| + |A| \cdot |y_n - B| \le C \cdot \frac{\varepsilon}{2C} + \frac{|A|\varepsilon}{2(|A|+1)} < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon.$$

3. Достаточно показать, что
$$\lim_{n \to \infty} \frac{1}{y_n} = \frac{1}{B},$$
 так как тогда, по доказанному в

пункте 2,
$$\lim_{n \to \infty} \frac{x_n}{y_n} = \lim_{n \to \infty} x_n \lim_{n \to \infty} \frac{1}{y_n}$$
.

$$\lim_{n \to \infty} y_n = B \in \mathbb{R}, \ B \neq 0,$$
 то $\exists n_0: \forall n > n_0 \ |y_n - B| < rac{|B|}{2},$ откуда $B - rac{|B|}{2} < y_n < B + rac{|B|}{2}.$

Если положить
$$C = \min\left(\left|B - \frac{|B|}{2}\right|, \left|B + \frac{|B|}{2}\right|\right), \ _{\mathsf{TO}} \ |y_n| \geqslant C \ \Rightarrow \ 0 < \frac{1}{|y_n|} \leqslant \frac{1}{C}.$$

Пусть $\epsilon > 0$, тогда, пользуясь определением предела,

$$\exists n_1 : \forall n > n_1 \ |y_n - B| < \varepsilon CB.$$

Значит при
$$n>\max(n_0,n_1)$$
 : $\left|\frac{1}{y_n}-\frac{1}{B}\right|=\left|\frac{B-y_n}{By_n}\right|\leqslant \frac{|B-y_n|}{C|B|}<\varepsilon$. ЧТД.

15. Арифметические свойства пределов в R и R∪±∞. (3 шт)

Теорема об арифметических свойствах пределов в R∪±∞. Пусть

$$\lim_{n\to\infty}x_n=A,\ \lim_{n\to\infty}y_n=B,\ A,B\in\overline{\mathbb{R}},$$
 тогда, если определена соответствующая операция (сложения, умножения и деления) в RU± $^\infty$, то:

(а) Предел суммы равен сумме пределов:

$$x_n + y_n \xrightarrow[n \to \infty]{} A + B.$$

(б) Предел произведения равен произведению пределов:

$$x_n y_n \xrightarrow[n \to \infty]{} AB.$$

(в) Предел частного равен частному пределов:

$$\frac{x_n}{y_n} \xrightarrow[n \to \infty]{} \frac{A}{B}, \quad y_n \neq 0.$$

Доказательство. Докажем, например, что если $\lim_{n\to\infty}x_n=+\infty, \lim_{n\to\infty}y_n=B\neq 0, B\in\mathbb{R}$, то

$$x_n y_n \underset{n \to \infty}{\longrightarrow} \begin{cases} +\infty, & B > 0 \\ -\infty, & B < 0 \end{cases}$$

Пусть $\varepsilon > 0$, тогда

$$\exists n_0: \forall n > n_0 \ x_n > \frac{1}{\varepsilon}$$

и

$$\exists n_1 : \forall n > n_1 \ B - \frac{|B|}{2} < y_n < B + \frac{|B|}{2}.$$

Значит, при $n > \max(n_0, n_1)$

$$\begin{cases} x_n y_n > \frac{1}{\varepsilon} \left(B - \frac{|B|}{2} \right), & B > 0 \\ x_n y_n < \frac{1}{\varepsilon} \left(B + \frac{|B|}{2} \right), & B < 0 \end{cases},$$

что и доказывает утверждение.

16. Предельный переход в неравенствах. (2 шт)

 $\lim_{n \to \infty} x_n = A, \ \lim_{n \to \infty} y_n = B, \ A < B, \ A, B \in \overline{\mathbb{R}}.$ Тогда $\exists n_0: \forall n > n_0 \ x_n < y_n.$

Доказательство. Пусть A, B \in R и пусть $\varepsilon=\frac{B-A}{2}$. Тогда, так как $\lim_{n\to\infty}x_n=A,$ то

$$\exists n_0 : \forall n > n_0 \ |x_n - A| < \frac{B - A}{2} \Rightarrow x_n < A + \frac{B - A}{2} = \frac{A + B}{2}$$

Так как $\lim_{n\to\infty}y_n=B,$ то

$$\exists n_1 : \forall n > n_1 \ |y_n - B| < \frac{B - A}{2} \Rightarrow y_n > B - \frac{B - A}{2} = \frac{A + B}{2}$$

Значит при $n>n_2=\max(n_0,n_1)$ выполняется $x_n<\frac{A+B}{2}< y_n$, откуда следует требуемое. ЧТД.

Следствие (предельный переход в неравенствах). Пусть

$$\lim_{n \to \infty} x_n = A, \lim_{n \to \infty} y_n = B, A, B \in \overline{\mathbb{R}},$$

- (a) Если $x_n > y_n$ начиная с какого-либо номера, то A >= B.
- (б) Если $x_n \geqslant y_n$ начиная с какого-либо номера, то A >= B.

Доказательство. 1. От противного: А < В, тогда согласно теореме выше

$$\exists n_0: \forall n > n_0 \;\; x_n < y_n.$$
 - противоречие

2. По аналогии. ЧТД.

17. Теорема о сжатой переменной. (1 шт)

Теорема о сжатой переменной. Пусть начиная с какого-то номера $\,n_0$

выполняется
$$x_n\leqslant z_n\leqslant y_n$$
 . Пусть, кроме того, $\lim_{n\to\infty}x_n=\lim_{n\to\infty}y_n=A$, $A\in\overline{\mathbb{R}}$, тогда $\lim_{n\to\infty}z_n=A$

Доказательство. Пусть $A \in \mathbb{R}$ и пусть $\varepsilon > 0$. Тогда

$$\exists n_1 : \forall n > n_1 \ |x_n - A| < \varepsilon \iff A - \varepsilon < x_n < A + \varepsilon,$$

$$\exists n_2 : \forall n > n_2 \ |y_n - A| < \varepsilon \Leftrightarrow A - \varepsilon < y_n < A + \varepsilon.$$

Тогда при $n > n_2 = \max(n_0, n_1, n_2)$ выполняется

$$A - \varepsilon < x_n \le z_n \le y_n < A + \varepsilon \iff |z_n - A| < \varepsilon.$$

ЧТД.

18. Теорема Вейерштрасса. Дополнение и обобщение. (3 шт)

Теорема Вейерштрасса. Возрастающая (убывающая) последовательность сходится т.и.т.т., когда она ограничена сверху

(снизу), причем
$$\lim_{n\to\infty} x_n = \sup_n x_n \lim_{n\to\infty} x_n = \inf_n x_n$$
.).

Доказательство. Пусть последовательность возрастает. Необходимость следует из того факта, что сходящаяся последовательность ограничена. Докажем достаточность. Так как последовательность ограничена сверху, то существует $A = \sup x < +\infty$. Пусть $\epsilon > 0$. По свойству супремума:

$$\exists n_0 : A - \varepsilon < x_{n_0} \leqslant A.$$

Так как последовательность возрастает, то

$$\forall n > n_0 \ A - \varepsilon < x_{n_0} \leqslant x_n \leqslant A < A + \varepsilon \ \Rightarrow \ A - \varepsilon < x_n < A + \varepsilon,$$

что и означает, что $\lim_{n \to \infty} x_n = A$.

Для убывающей последовательности - аналогично. ЧТД.

Лемма (Дополнение к теореме Вейерштрасса). Если последовательность возрастает (убывает) и не ограничена

сверху(снизу), то ее предел равен
$$+\infty(-\infty,)$$
, то есть $\lim_{n\to\infty} x_n = \sup_n x_n$ ($\lim_{n\to\infty} x_n = \inf_n x_n$.

Доказательство. Пусть последовательность возрастает. Так как последовательность не ограничена сверху, то по $\epsilon > 0$ найдется такой

 n_0 , что $\frac{x_{n_0}>rac{1}{arepsilon}}{}$ Так как последовательность возрастает, то при $n>n_0$

 $x_n\geqslant x_{n_0}>rac{1}{arepsilon}$. Тем самым установлено, что $\lim_{n o\infty}x_n=+\infty$. Убывание доказывается аналогично. ЧТД.

Теорема (Обобщенная теорема Вейерштрасса). Возрастающая (убывающая) последовательность имеет предел в R∪±∞, причем

$$\lim_{n \to \infty} x_n = \sup_n x_n \lim_{n \to \infty} x_n = \inf_n x_n.$$

19. Второй замечательный предел. (2 шт)

Теорема. Существует предел (в R) $\lim_{n\to\infty} \left(1+\frac{1}{n}\right)^n$

Доказательство. Рассмотрим вспомогательную последовательность

 $y_n = \left(1 + \frac{1}{n}\right)^{n+1}$ и докажем, что она строго убывает. Действительно, используя неравенство Бернулли в последнем переходе при n >= 2 имеем:

$$\frac{y_{n-1}}{y_n} = \frac{\left(1 + \frac{1}{n-1}\right)^n}{\left(1 + \frac{1}{n}\right)^{n+1}} = \frac{\left(\frac{n}{n-1}\right)^n}{\left(\frac{n+1}{n}\right)^{n+1}} = \frac{n}{n+1} \cdot \left(\frac{n^2}{n^2 - 1}\right)^n = \frac{n}{n+1} \cdot \left(1 + \frac{1}{n^2 - 1}\right)^n > \frac{n}{n+1} \cdot \left(1 + \frac{1}{n^2}\right)^n \geqslant \frac{n}{n+1} \cdot \left(1 + \frac{1}{n}\right) = 1$$

откуда, в силу положительности y_n при всех n,

$$y_{n-1} > y_n \quad \forall n \geqslant 2,$$

что и означает строгое убывание $\,^{y_n}\,$

Поскольку члены последовательности y_n положительны и последовательность строго убывает, то согласно теореме Вейерштрасса

$$\lim_{n \to \infty} \left(1 + \frac{1}{n} \right)^{n+1}$$

существует предел

Тогда:

$$\lim_{n \to \infty} \left(1 + \frac{1}{n} \right)^n = \lim_{n \to \infty} \left(1 + \frac{1}{n} \right)^{n+1} \left(1 + \frac{1}{n} \right)^{-1} =$$

$$= \lim_{n \to \infty} \left(1 + \frac{1}{n} \right)^{n+1} \cdot \lim_{n \to \infty} \frac{1}{\left(1 + \frac{1}{n} \right)} = \lim_{n \to \infty} \left(1 + \frac{1}{n} \right)^{n+1},$$

где предел в правой части цепочки равенств существует по только что доказанному. Это доказывает и существование предела в левой части, что и требуется. ЧТД.

Определение (понятие второго замечательного предела).

Рассмотренный выше предел называют вторым замечательным

пределом, а его значение - числом е, то есть $e = \lim_{n \to \infty} \left(1 + \frac{1}{n}\right)^n$.

Операции определенные в RU±∞:

$$x + (\pm \infty) = (\pm \infty) + x = \pm \infty, \quad x \in \mathbb{R},$$

$$x \cdot (\pm \infty) = (\pm \infty) \cdot x = \begin{cases} \pm \infty, & x > 0 \\ \mp \infty, & x < 0 \end{cases},$$

$$\frac{x}{\pm \infty} = 0, \quad x \in \mathbb{R},$$

$$(\pm \infty) + (\pm \infty) = \pm \infty,$$

$$(+\infty) \cdot (+\infty) = (-\infty) \cdot (-\infty) = +\infty,$$

$$(+\infty) \cdot (-\infty) = (-\infty) \cdot (+\infty) = -\infty,$$

$$-\infty < x < +\infty, \quad x \in \mathbb{R}.$$

$$\frac{1}{k+1} + \frac{1}{k+2} + \dots + \frac{1}{3k+1} = m$$