This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problems Mailbox.

先行技術

㈱エムテック関東

(19) 日本国特許庁 (JP)

(12) 公開特許公報 (A)

(11) 特許出願公開番号

特開平8-242452

(43)公開日 平成8年 (1996) 9月17日

(51) Int. Cl. *

識別記号

庁内整理番号

FΙ

技術表示箇所

HO4N 7/32

HO4N 7/137

2

審査請求 有 請求項の数6 (全 4 頁)

(21)出願番号

(22)出願日

特願平7-42890

i

平成7年 (1995) 3月2日

(71)出願人 000005821

松下電器産業株式会社

大阪府門真市大字門真1006番地。

(72)発明者 川上 真一

大阪府門真市大字門真1006番地 松下電器

産業株式会社内

(72)発明者 本城 正博

大阪府門真市大字門真1006番地 松下電器

産業株式会社内

(74)代理人 弁理士 滝本 智之 (外1名)

(54) 【発明の名称】映像信号圧縮符号化装置

(57)【要約】

【目的】 任意のフレームを「フレームとすることにより、そのフレームでの頭出しを可能とし、また、シーンチェンジ直後のフレームを「フレームとする事を可能とし、大幅な画質改善を図ることを目的とする。

【構成】 映像信号を「フレーム、Pフレーム、Bフレームにより圧縮符号化する装置において、「フレームが現れる周期のフレーム数をNとし、「フレームから一定のフレーム間隔で現れるPフレームの周期のフレーム数をMとした場合、「フレームから次の「フレームまでのGOPのGOP構造は、N=N1、M=M1とする第1のGOP構造で圧縮符号化を行い、強制的に「フレームにしたいフレーム「1が、第1のGOP構造を続けたときの「フレームと一致しない場合、「1から1または2個前のGOPにおいて、GOP構造は第1のGOP構造と異なる第2または第3のGOP構造で圧縮符号化行う構成を有する。

2

【特許請求の範囲】

【請求項1】映像信号をフレーム内もしくはフィールド内圧縮符号化方法により生成したフレームを「フレームでしたのとし、前記映像信号を前方向予測フレーム間もしたフレームとし、前記映像信号を両方向予測フレームをPレームとし、前記「フレームが現れる同とし、前記「フレームがらした別のフレーム数をNとし、前記「フレームから一定のフレーム数をNとし、前記「フレームからでを1つの日隔で現れる前記Pフレームの周期のフレーム数をNとし、前記「フレームからでを1つの日隔で現れる前記Pフレームの周期のフレームをリナックループ(以下GOPと呼ぶ)とした場合、前記GOPのGOP構造は、

$N = N_1$, $M = M_1$

とする第1のGOP構造で圧縮符号化を行い、強制的に I フレームにしたいフレーム I 1が、前記第1のGOP 構造を続けたときの I フレームと一致しない場合、前記 I 1から1または2個前の前記GOPにおいて、GOP 構造を前記第1のGOP構造と異なる第2または第3の GOP構造とすることを特徴とする映像信号圧縮符号化 装置。

【請求項2】第1のGOP構造は、M=3(【フレームからPフレームの間またはPフレームから次のPフレームの間に存在するBフレームの個数は2個)であり、第2のGOP構造は、M=1(Bフレームは存在しない)であることを特徴とする請求項1記載の映像信号圧縮符号化装置

【請求項3】第1のGOP構造は、M=3(IフレームからPフレームの間またはPフレームから次のPフレームの間に存在するBフレームの個数は2個)であり、第2のGOP構造はM=2(IフレームからPフレームの間またはPフレームから次のPフレームの間に存在するBフレームの個数は1個)であることを特徴とする請求項1記載の映像信号圧縮符号化装置、

【請求項4】強制的にIフレームにしたいフレームI1 が、前記第1のGOP構造を続けたときのIフレームと一致しない場合、I1の直前のGOPのGOP構造を第2のGOP構造とし、さらに1つ前のGOPにおけるGOP構造を第3のGOP構造とする場合、第1のGOP構造は、 $N=N_1$. M=3であり、第2のGOP構造は、 $N=N_2$. M=3であり、第3のGOP構造は、 $N=N_3$. M=2であり、前記第1のGOP構造の最終フレームから、前記I1フレーム迄のフレーム数をI12とした場合、

$N_2 + N_3 = N_4$

であり、かつN2は3の倍数、N3は2の倍数であることを特徴とする請求項1記載の映像信号圧縮符号化装置。 (請求項5)前記第2のGOP構造と前記第3のGOP 構造の順は入れ替わっていることを特徴とする請求項4 記載の映像信号圧縮符号化装置。 【請求項6】強制的に【フレームにしたいフレーム【】は、頭だし指定フレームまたはシーンチェンジ直後のフレームであって、一連の映像信号中任意の個数存在することを特徴とする請求項1記載の映像信号圧縮符号化装置。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は、映像信号を圧縮符号化 する装置に関するものである。

0 [0002]

【従来の技術】近年、ディジタル蓄積メディアの発展にともない、映像信号の圧縮符号化に関する手法が検討されている。国際標準化機関(ISO)においても、国際電気標準会議(IEC)のムービング・ピクチャー(パーヴ・コーディング・エキスパーツ グループ(Moving Picture Image Coding Experts Group(MPEG))で動画像の圧縮符号化方式の標準化活動が行われている。

【0003】ディジタル化された動画像データは、情報量が非常に多い。そこで、原画に対して情報劣化が目立) たない程度に、ディジタル化された動画像データを圧縮 符号化する。

【0004】ここで、圧縮符号化処理の方法としては、数フレームもしくは数フィールトを1つのグループとし、その中で少なくとも1フレームもしくは1フィールト分データに対して比較的圧縮率の小さいフレーム内あるいはフィールト内での圧縮符号化処理を行い、残りのフレームまたはフィールトに対しては比較的圧縮率の大きいフレーム間圧縮符号化処理を行う。

【0005】このようにフレームもしくはフィールド内 30 圧縮符号化処理とフレームもしくはフィールド間圧縮処 理とを組み合わせることにより、比較的劣化を少なく抑 えるとともに、圧縮率の向上を図ることができる。

【発明が解決しようとする課題】しかし、上記の従来の方法では、「フレームが所定の周期(例えば15フレームおき)で構成されるため、場面の頭出し(エントリーポイント)をGOP単位でしか構成できず、フレーム単位の頭出しを行うことは不可能であった。さらに、「フレームが所定の周期(例えば15フレームおき)で構成40 されるため、シーンチェンジ後のフレームをGOPの先頭にすることも不可能であり、再生画像の画質劣化の原因となっていた。

[0007]

[0006]

【課題を解決するための手段】この問題を解決するために本発明は、【フレームが現れる周期のフレーム数をNとし、【フレームから一定のフレーム間隔で現れるPフレームの周期のフレーム数をMとした場合、【フレームから次の【フレームまでのGOPのGOP構造は、

 $N = N_1$, $M = M_1$

50 とする第1のGOP構造で圧縮符号化を行い、強制的に

「フレームにしたいフレーム I₁が、第1のG ○ P構造を続けたときの「フレームと一致しない場合、「1から」または2個前のG ○ Pにおいて、G ○ P構造は第1のG ○ P構造と異なる第2または第3のG ○ P構造で圧縮符号化行う構成を有する。

[0008]

【作用】この構成により、強制的に【フレームにしたいフレームを自由に設定できるため、任意のフレームをGOPの先頭にでき、エントリーポイントを自由に設定でき、また、シーンチェンジ後のフレームを【フレームとする事ができるため、大幅に画質改善を可能とする事ができるものである。

[0009]

【実施例】以下本発明の一実施例について図面を参照し ながら説明する。

【0010】図1は第1のGOP構造のフレーム数を12個($N_1=12$)とし、Iフレームから一定のフレーム間隔で現れるPフレームのフレーム周期のフレーム数 M を 3 ($M_1=3$) とし、第2のGOP構造のフレーム数を 9個($N_2=9$)とし、Iフレームから一定のフレーム間隔で現れるPフレームのフレーム周期のフレーム数 M を 3 ($M_2=3$) とした模式図である。

【0011】同図において、「はフレーム内圧縮符号化方法で符号化されたフレーム、Pは前方向予測フレーム間圧縮符号化方法で符号化されたフレーム、Bは両方向予測フレーム間圧縮符号化方法で符号化されたフレームである

【0012】なお、図1全てにおいてPフレームとBフレームの配置は任意である。図1のように強制的にIフレームとするIlが存在した場合、上記のように第1のGOP構造と第2のGOP構造を持つことにより、画像劣化が少なくかつ任意のフレームをエントリーポイントとする事ができる。

【0013】図2は第1のGOP構造のフレーム数を12個 (N_1 =12) とし、【フレームから一定のフレーム間隔で現れるPフレームのフレーム周期のフレーム数Mを3 (M_1 =3) とし第2のGOP構造を【フレームとPフレームのみにした場合である。

【0014】図2のように強制的に【フレームとする [1が存在した場合、上記のように第1のGOP構造と第2のGOP構造を持つことにより、画像劣化が少なくかつ任意のフレームをエントリーポイントとする事ができる。

【0015】図3は第1のGOP構造のフレーム数を12個(N₁=12)とし、「フレームから一定のフレーム間隔で現れるPフレームのフレーム周期のフレーム数 Mを3(M₁=3)とし、第2のGOP構造のフレーム数を9個(N₂=9)とし、「フレームから一定のフレーム間隔で現れるPフレームのフレーム周期のフレーム数を6個(N₃=6)とし、「フレームから一定のフレーム間隔で現れるPフレームのフレーム周期のフレーム間隔で現れるPフレームのフレーム周期のフレーム別を6個(N₃=2)とした場合である。

【0016】図3のように強制的にIフレームとするI 1が存在した場合、上記のように第1のGOP構造、第 2のGOP構造、第3のGOP構造を持つことにより、 画像劣化が少なくかつ任意のフレームをエントリーポイ ントとする事ができる。

【0017】なお、画像のフレーム単位で行った処理を フィールド単位で行ってもよい。

[0018]

【発明の効果】以上、第1図、第2図、第3図を用いて20 説明したように、強制的にIフレームにしたいフレーム (I1) が存在し、かつ第1のGPO構造を続けるとI1フレームがIフレームにならない場合、直前の1または2GOPのGOP構造におけるN、Mの値を変更することにより、I1をGOPの先頭であるIフレームとすることが可能となるので、任意のフレームでの頭だしが可能となり、また、シーンチェンジ後のフレームをIフレームとする事ができる。

【図面の簡単な説明】

30 【図1】図1は、2個のGOP構造が一連のフレームに 存在した模式図

【図2】図2は、2個のGOP構造が一連のフレームに存在した棋式図

【図3】図3は、3個のGOP構造が一連のフレームに存在した模式図

【符号の説明】

II 強制的にフレーム内圧縮符号化方法で符号化するフレーム

I フレーム内圧縮符号化方法で符号化されたフレーム 40 P 前方向干測フレーム間圧縮符号化方法で符号化されたフレーム

B 両方向予測フレーム間圧縮符号化方法で符号化されたフレーム

[図1]

[22]

[2]3]

