Direction fields and Euler's method

Group work:

Problem 1 (a) The following is a direction field for the differential equation $\frac{dy}{dx} = y^2 - x^2.$

Sketch the solution such that $y\left(\frac{1}{2}\right) = 1$.

(b) Use Euler's Method to give a numerical estimate to the solution of the differential equation $y'=y^2-t^2$ at y(2) that goes through the point $\left(\frac{1}{2},1\right)$. Use $\Delta t=0.5$.

Problem 2 Describe why the following direction field could be the direction field for the differential equation

$$\frac{dy}{dt}y\cos(t)$$

but **not** for

$$\frac{dy}{dt} = y\sin(t)$$
 or $\frac{dy}{dt} = t\cos(y)$.

Problem 3 Match each of the following differential equations with a corresponding direction field (if it is present):

$$i. \ y' = \frac{t}{2+y}$$

iii.
$$y' = 1 + y^2$$

ii.
$$y' = \cos(t+y)$$

iv.
$$y' = ty$$

Direction fields and Euler's method

Problem 4 Which of the following are separable differential equations? For those that are, solve them, assuming that y(4) = 5.

- (a) $y' = x^2 + y^2$
- $(b) y' = x + xy^2$
- $(c) y' = e^{2x-y}$