Gabriela Paris, LIRIS, Université Lyon 1 Séminaire des doctorants de première année

Sommaire

Jeu de coloration d'arêtes, définitions

Chenilles

On peut définir les mêmes notions sur les arêtes d'un graphe. Introduit en 1999 par $\mathsf{Z}\mathsf{h}\mathsf{u}$.

Données:

• Un graphe G

On peut définir les mêmes notions sur les arêtes d'un graphe. Introduit en 1999 par Zhu.

Données:

- Un graphe G
- k couleurs

On peut définir les mêmes notions sur les arêtes d'un graphe. Introduit en 1999 par Zhu.

Données:

- Un graphe G
- k couleurs
- deux joueurs : Alice et Bob

$$C = \{\bullet, \bullet, \bullet\}, A \text{ et } B$$

On peut définir les mêmes notions sur les arêtes d'un graphe. Introduit en 1999 par Zhu.

Données:

- Un graphe G
- k couleurs
- deux joueurs : Alice et Bob

$$C = \{\bullet, \bullet, \bullet\}, A \text{ et } B$$

On peut définir les mêmes notions sur les arêtes d'un graphe. Introduit en 1999 par Zhu.

Données:

- Un graphe G
- k couleurs
- deux joueurs : Alice et Bob

$$C = \{\bullet, \bullet, \bullet\}, A \text{ et } B$$

On peut définir les mêmes notions sur les arêtes d'un graphe. Introduit en 1999 par Zhu.

Données:

- Un graphe G
- k couleurs
- deux joueurs : Alice et Bob

$$C = \{\bullet, \bullet, \bullet\}, A \text{ et } B$$

On peut définir les mêmes notions sur les arêtes d'un graphe. Introduit en 1999 par Zhu.

Données:

- Un graphe G
- k couleurs
- deux joueurs : Alice et Bob

$$C = \{\bullet, \bullet, \bullet\}, A \text{ et } B$$

On peut définir les mêmes notions sur les arêtes d'un graphe. Introduit en 1999 par Zhu.

Données :

- Un graphe G
- k couleurs
- deux joueurs : Alice et Bob

À tour de rôle, ils colorient proprement une arête.

Alice gagne si G colorié proprement.

Bob gagne si une arête ne peut pas être coloriée.

$$C = \{\bullet, \bullet, \bullet\}, A \text{ et } B$$

On peut définir les mêmes notions sur les arêtes d'un graphe. Introduit en 1999 par Zhu.

Données:

- Un graphe G
- k couleurs
- deux joueurs : Alice et Bob

À tour de rôle, ils colorient proprement une arête.

Alice gagne si G colorié proprement. Bob gagne si une arête ne peut pas être coloriée.

$$C = \{\bullet, \bullet, \bullet\}, A \text{ et } B$$

Définition

Le nombre minimum de couleurs pour qu'Alice ait une stratégie gagnante est l'indice chromatique ludique, noté $\chi'_g(G)$.

Jeu du marquage d'arêtes

Données:

- Un graphe G
- un entier k
- deux joueurs : Alice et Bob

À tour de rôle, ils marquent une arête ayant au plus k-1 voisins marqués.

Alice gagne si G marqué.

Bob gagne si une arête ne peut pas être marquée.

k = 3, A et B, marque =—

Définition

Le nombre minimum de couleurs pour qu'Alice ait une stratégie gagnante est l'indice de marquage ludique, noté $col'_g(G)$.

Premiers résultats

De manière similaire que pour les sommets, on peut montrer :

Théorème

Soit G un graphe. Alors

$$\Delta(G) \leq \chi'(G) \leq \chi'_g(G) \leq col'_g(G) \leq 2\Delta(G) - 1.$$

Sommaire

- Jeu de coloration d'arêtes, définitions
- Porêts
 - Chenilles

Théorème (Lam, Shiu et Zhu en 1999)

Soit F une forêt. Alors $\chi'_g(F) \leq \Delta(F) + 2$.

Théorème (Lam, Shiu et Zhu en 1999)

Soit F une forêt. Alors $\chi'_g(F) \leq \Delta(F) + 2$.

Théorème (Lam, Shiu et Zhu en 1999)

Soit F une forêt. Alors $\chi'_g(F) \leq \Delta(F) + 2$.

Théorème (Lam, Shiu et Zhu en 1999)

Soit F une forêt. Alors $\chi'_g(F) \leq \Delta(F) + 2$.

Théorème (Lam, Shiu et Zhu en 1999)

Soit F une forêt. Alors $\chi'_{\sigma}(F) \leq \Delta(F) + 2$.

Théorème (Lam, Shiu et Zhu en 1999)

Soit F une forêt. Alors $\chi'_g(F) \leq \Delta(F) + 2$.

Théorème (Lam, Shiu et Zhu en 1999)

Soit F une forêt. Alors $\chi'_g(F) \leq \Delta(F) + 2$.

Théorème (Lam, Shiu et Zhu en 1999)

Soit F une forêt. Alors $\chi'_g(F) \leq \Delta(F) + 2$.

Théorème (Lam, Shiu et Zhu en 1999)

Soit F une forêt. Alors $\chi'_g(F) \leq \Delta(F) + 2$.

Théorème (Lam, Shiu et Zhu en 1999)

Soit F une forêt. Alors $\chi'_g(F) \leq \Delta(F) + 2$.

Théorème (Lam, Shiu et Zhu en 1999)

Soit F une forêt. Alors $\chi'_g(F) \leq \Delta(F) + 2$.

Quelques améliorations

Théorème (Erdös, Faigle, Hochtättler et Kern, 2003)

Pour tout $\Delta \geq 2$, il existe une forêt F de degré maximum Δ tel que $\chi'_g(F) = \Delta + 1$.

Théorème (Erdös, Faigle, Hochtättler et Kern, 2003; Andres, 2006)

Soit \mathcal{F}_{Δ} la classe des forêts de degré maximum Δ .

Alors pour $\Delta \neq 4$, $\chi_g'(\mathcal{F}_{\Delta}) = \Delta + 1$.

Le seul cas indéterminé est $\Delta = 4 : 5 \le \chi'_g(\mathcal{F}_4) \le 6$.

Sommaire

- 1 Jeu de coloration d'arêtes, définitions
- Porêts
 - Chenilles
- Graphes F^+ -décomposables

Définition

Définition

Une chenille est un arbre composé d'un chemin, appelé colonne, et d'arêtes incidentes à celle-ci, appelées pieds.

Théorème (Charpentier et P.)

Soit C une chenille de degré maximum Δ . Alors, $col'_g(C) \leq \max\{5, \Delta\}$.

- arêtes orientées
- Alice marque l'arête qui suit
- ou l'arête qui précède dans la colonne

Marquage sur les chenilles

Théorème (Charpentier et P.)

Soit C une chenille de degré maximum Δ . Alors, $col'_g(C) \leq \max\{5, \Delta\}$.

- arêtes orientées
- Alice marque l'arête qui suit
- ou l'arête qui précède dans la colonne

Marquage sur les chenilles

Théorème (Charpentier et P.)

Soit C une chenille de degré maximum Δ . Alors, $col'_g(C) \leq max\{5, \Delta\}$.

- arêtes orientées
- Alice marque l'arête qui suit
- ou l'arête qui précède dans la colonne

Quand une arête de la colonne est marquée, elle a au plus quatre arêtes voisines marquées.

Marquage sur les chenilles

Théorème (Charpentier et P.)

Soit C une chenille de degré maximum Δ . Alors, $col'_g(C) \leq \max\{5, \Delta\}$.

- arêtes orientées
- Alice marque l'arête qui suit
- ou l'arête qui précède dans la colonne

Quand une arête de la colonne est marquée, elle a au plus quatre arêtes voisines marquées. Quand un pied est marqué, il a au plus $\Delta-1$ arêtes voisines.

Coloration sur les chenilles

Donc, d'après ce qu'on vient de voir :

Théorème (Charpentier et P.)

Soit \mathcal{C}_{Δ} la classe des chenilles de degré maximum $\Delta.$

Pour $\Delta \geq 5$: $\chi'_g(\mathcal{C}_{\Delta}) = \Delta$

Coloration sur les chenilles

Donc, d'après ce qu'on vient de voir :

Théorème (Charpentier et P.)

Soit \mathcal{C}_{Δ} la classe des chenilles de degré maximum $\Delta.$

Pour $\Delta \geq 5$: $\chi'_{g}(\mathcal{C}_{\Delta}) = \Delta$

Théorème (Charpentier et P.)

Pour $2 \le \Delta \le 4$: $\chi'_{g}(\mathcal{C}_{\Delta}) = \Delta + 1$.

Coloration sur les chenilles

Donc, d'après ce qu'on vient de voir :

Théorème (Charpentier et P.)

Soit \mathcal{C}_{Δ} la classe des chenilles de degré maximum Δ .

Pour
$$\Delta \geq 5$$
: $\chi'_g(\mathcal{C}_{\Delta}) = \Delta$

Théorème (Charpentier et P.)

Pour $2 \le \Delta \le 4$: $\chi'_g(\mathcal{C}_{\Delta}) = \Delta + 1$.

- $\Delta = 2$: c'est le cas des chaines.
- $\Delta=3$ et $\Delta=4$: démontré par étude de situations perdantes pour Alice.

Sommaire

- Jeu de coloration d'arêtes, définitions
- Chenilles

Définitions

Définition

On dit qu'un graphe G(V, E) est $F^+(a, d_1, \dots, d_k, d)$ -décomposable s'il existe a forêts de degré maximum non borné, k forêts de degrés maximums respectivement d_1, d_2, \ldots, d_k avec $d_1 \geq d_2 \geq d_k$ et un graphe de degré maximum d.

Définitions

Définition

On dit qu'un graphe G(V, E) est $F^+(a, d_1, \dots, d_k, d)$ -décomposable s'il existe a forêts de degré maximum non borné, k forêts de degrés maximums respectivement d_1, d_2, \ldots, d_k avec $d_1 \geq d_2 \geq d_k$ et un graphe de degré maximum d.

Avec une modification de la stratégie d'activation on peut montrer :

Théorème

Pour tout graphe G admettant une $F^+(a, \{d_1, \dots, d_k\}, d)$ -décomposition :

$$col_g'(G) \leq \max \left\{ \begin{array}{c} \Delta + 3a + k + d - 1 \\ \min \left\{ \begin{array}{c} 6a + 6k + 4d + 4 \sum_{l \leq k} d_l - 2 \\ 6a + 2k + 4d + 2 \sum_{l \leq k} d_l - 2 \end{array} \right\} \end{array} \right\}$$

Merci pour votre attention!