date: monday, january 8, 2024

Objectives: Groups-fundamental theorem of finite abelian groups, Jordan-Hölder theorem, Sylow theorems

· Rings-polynomial rings. special integral domains

· Fields-extensions, aplitting field · Other topics

I Groups and Basic Definition

Def": A group G is a set with a binary operation * such that 1) a*(b*c) = (a*b) * c for all a,b,ceG (associativity)

2) $\exists e \in G$ such that a * e = e * a = a for all $a \in G$ (identity) 3) For all aeG, JaieG such that a*ai=e (inverse) G is abelian if

4) a*b=b*a for all a, beG

Deft: Order of G is IGI. Say G is finite if IGI < 00.

1) eeG is unique 2) for all aeG, the inverse is unique

3) if a*b=a*c, then b=c 4) (a-')-' = a

5) (ab) = b'a-'

Notation Write ab for a*b,

Basic Properties:

 $0^{n} = \begin{cases} \underbrace{(0, +\infty)}_{n} & \text{if } n > 1 \\ \underbrace{(0, +\infty)}_{n} & \text{if } n < 0 \end{cases}$

Defⁿ: The order of aeG, denoted IaI, is the smallest $n \ge 0$ such that $a^n = e$. (If no such n, $|a| = \infty$)

eq. $\mathbb{Z}_n = \{0, 1, ..., n-1\}$ with operation + and identity 0 eq GL, (R)= 2 all n×n invertible matrices with entries in R3 <- not abelian eg. Dn = dihedral group of order 2n = all rotations of the n-gon eq $S_n = {0 \mid \sigma \mid s}$ a permutation of ${1,...,n}$ I. Subgroups Def^a: A subgroup of a group G is a subset H⊆G such that H is also a group under the same operation. H=G is a subgroup iff i) eeH 2) if a,beH, then a*beH { <=> ab eH 3) if aeH, then a eH Def^{-1} Let aeG, and $\langle a \rangle = \{a^{-1} | neZ \}$ Thm: $\langle a \rangle$ is a subgroup of G. Proot' 1) ee(a) Since $e=a^e(a)$ 2) Suppose $\alpha, y \in \langle a \rangle$, then $\alpha = a^n$ and $y = a^m$. So $\alpha y = a^n a^m = a^{n+m} \in \langle a \rangle$. 3) Let $\alpha \in \langle \alpha \rangle$, then $\alpha = \alpha^n$. So $\alpha^n \in \langle \alpha \rangle$ and $\alpha \alpha^{-n} = \alpha^n \alpha^{-n} = \alpha^n = 0$. So $\alpha^n \in \langle \alpha \rangle$. Def^a : A group G is cyclic if $\mathsf{G} = \langle \mathsf{a} \rangle$ for some aeG. We call $\langle \mathsf{a} \rangle$ the cyclic group generated by a. eg. $\mathbb{Z}_n = \{0, 1, ..., n-1\}$ is a cyclic group generated by $1 < 1 > = \{0.1, 1.1, 2.1, ..., 3 = \{0, 1, ..., n-1\}$ Thm: $\mathbb{Z}_n = \langle a \rangle$ iff $\gcd(a,n) = 1$

Lagrange's Thm: If H is a subgroup of G (both finite), then IHIIGI.	
Cor: If aeG, then IallIGI.	
Proof Given acG. consider the subgroup <a>. Then Ial=I<a>I. By Lagrange's, I<a>IIIGI.	
Con: If $ G =p$ is a prime, then G is cyclic.	
Proof Let aeG such that $a\neq e$. So $ a G =p$. But $ a \neq 1$, so $ a =p$. So $ \langle a\rangle =$ But $ G =p$. So $\langle a\rangle=G$.	p.
Theme: If we know factorization of IGI, what can we say about the structure?	
Sketch of Lagrange's Proof Fix a subgroup H of G. The left coset of H with representative g is	tha
Set $gH = \xi gh h \in HS$. Facts 1) $g_1H = g_2H$ iff $g_1 = g_2H$ 2) $g_1H = g_2H$ or $g_1H = g_2H$ 3) $g_1H = g_2H$	
Suppose g.H, g ₂ H,, g _n H are the distinct left cosets. Then $G=g.Huug.h$ is a disjoint partition by ²⁾ . So $ G = g.H ++ g.H $. But by ³⁾ , $ g.H = H $. So $ G = H ++ H =n H $. So $ H G $.	1
So IGI = HI + + IH = n H . So IHI IGI .	

date: wednesday, january 10, 2024

Equivalence Relations

that

Equivalence relations appear throughout algebra:

guotient groupsgroup actions

 Def^n : An equivalence relation R on a set X is a subset $R \subseteq X \times X$ such O Reflexive: $(x,x) \in \mathbb{R}$ for all $x \in X$

② Symmetric: if $(x,y) \in \mathbb{R}$, then $(y,x) \in \mathbb{R}$ 3 Transitive if $(x,y),(y,z) \in \mathbb{R}$, then $(x,z) \in \mathbb{R}$

Notation: We sometimes write $x \sim y$ for (x,y)

An equivalence relation "partitions" the set X. Fix $x \in X$. Then the equivalence class of x is the set: $[x] = \{y \in X \mid (x,y) \in R\}$

Lemma: If \sim is an equivalence relation, then for any $x,y\in X$, either $[x]\cap [y]=\emptyset$ or [x]=[y].

Proof

Suppose that $[\alpha] \cap [\gamma] \neq \emptyset$. So there is an $\alpha \in [\alpha] \cap [\gamma]$. Since $\alpha \in [\alpha]$, have $x\sim a$ and $a\in [y]$ implies $y\sim a$. So $a\sim y$. So by transitivity, $x\sim y$. Let $b \in [x]$. Then $x \sim b$. So $b \sim x'$ and $x \sim y$, so $b \sim y'$. So $y \sim b$, i.e. $b \in [y]$.

Thus, $[x] \subseteq [y]$. Let be[y]. Then y~b. Since $x \sim y$ and $y \sim b$, $x \sim b$. So be[x]. So [y] $\subseteq [x]$.

Theorem: Let X be a set and R an equivalence relation on X. Let $[\alpha,1,...,[\alpha_n]]$ be the distinct equivalence classes. Then,

 $X = [x,] \cup [x_2] \cup \cdots \cup [x_n] < -a$ partition.

Proof Since each $[x_{\iota}] \subseteq X$, it's clear that $[x_{\iota}] \cup [x_{2}] \cup \cdots \cup [x_{n}] \subseteq X$.

Let yeX. Then [y] is an equivalence class, and [y]=[x;] for some So ye[y]=[x;]=[x;]\cdot\cdot\cdot\cdot\cdot\cdot\cdot\cdot	; i.
eg. $X = \{all \ McMaster \ students \}$ $R = \{(x,y) x \ and \ y \ have \ same \ height \} < -equivalence \ relation$ $[Bob] = \{all \ students \ same \ height \ as \ Bob\}$	
eg. Let G be a group and H a subgroup. Let $R = \{(g_1, g_2) g_1^{-1} g_2 \in H\}$. This is an equivalence relation: 1) reflexive: $(g_1, g_2) \in R$ since $g^{-1} g = e \in H$ 2) symmetric: $(g_1, g_2) \in R$, then	
3) transitive: $(g_1, g_2), (g_2, g_3) \in \mathbb{R} = g_1, g_2, g_2, g_3 \in \mathbb{R} = g_1, g_3 \in \mathbb{R}$ $g_1, g_2, g_3 \in \mathbb{R} = g_1, g_2, g_2, g_3 \in \mathbb{R}$ $g_1, g_2, g_3 \in \mathbb{R} = g_1, g_3 \in \mathbb{R}$ $g_2, g_3 \in \mathbb{R}$	
Note: [g]=gH= {gh heH}	
Proof Let be[g]. So $(g,b)\in R => g'b=h\in H$. So $b=gh\in gH$. So $k=gh$ for som heH. Thus, $g''k=h\in H$. So $(g,k)\in R => k\in [g]$.	ie
Last class: For Lagrange's theorem, used the partition $G = q_1 H \cup q_2 H \cup \cdots \cup q_n H$. This is the same as $G = [q_1] \cup [q_2] \cup \cdots \cup [q_n]$.	
Factor Groups/Quotient Groups	
Given a group G and subgroup H, can form $G_H = \SgH \mid g \in G \S$.	
eg. $G = \mathbb{Z}_{12} = \{0.1,, 11\}$ $H = \langle 3 \rangle = \{0.3, 6, 9\}$ $Cosets: 0 + H = \{0, 3, 6, 9\}, 1 + H = \{1, 4, 7, 10\}, 2 + H = \{2, 5, 8, 11\}$ $G_H = \{0 + H, 1 + H, 2 + H\}$	10

Q: Does 9'H have a group structure? Need an operation! (aH)*(bH)=(ab)H? Almost right... This operation depends upon the coset representative, ie if a.H = a2H and biH = b2H, then why is a.b.H = a2b2H? False in general $eq S_3 = \{(1), (12), (13), (23), (123), (132)\}$ $H = \{(1), (12)\}$ but (13)(23)H = (132)H + (123)(132)H = (1)H(13)H=(123)H $(2\ 3)H = (1\ 3\ 2)H$ $Def^{n}: A subgroup N \subseteq G$ is normal if gN = Ng for all $g \in G <=> gNg^{-1} \subseteq N$ for all $g \in G$.

Fix: only allow special subgroups

Egng-IneNz Lemma If N is a normal subgroup, then (aN)*(bN)=(ab)N is welldefined.

Proof Suppose $a.N = a_2N$ and $b_1N = b_2N$. Want to show that $a_1b_1N = a_2b_2N <=>$ $(a_1b_1)^{-1}a_2b_2 \in \mathbb{N} <=> b_1^{-1}a_1^{-1}a_2b_2 \in \mathbb{N}$

Since $a_2 \in a_2 N = a_1 N$, there is nieN such that $a_2 = a_1 n_1$.

Since $b_2 \in b_2 N = b_1 N = Nb_1$, there is $n_2 \in N$ such that $b_2 = n_2 b_1$. So, bia. a2b2 = bia. a.n.n2b.

= bi'n,n2b, EbiNb,⊆N.

Remark: The identity is eN=N.

Theorem: If N is any normal subgroup of G, then $G_N = \{gN | g \in G\}$ is a group under the operation (aN)*(bN)=(ab)N.

