

Department of Computer Science

CS 1005– Discrete Structures

Fall 2024

Program: BSCS / BDS/SR Credit Hours: 3 Type: Core

Course Description/Objectives/Goals:

The goal of this course is to introduce the students to "Discrete Structures", which is an important area of mathematics and theoretical computer science. It deals with structures that are not continuous and do not vary smoothly, but are distinct with separate values. The course covers the basics of logic, set theory, proof techniques, counting, number theory and graph theory.

Course Learning Outcomes (CLOs):			
At the end of the course students will be able to:	Domain	BT* Level	
Express statements in terms of predicates, quantifiers and logical connectives.	С	2	
2. Apply formal logic proofs, logical reasoning to practical problems related to offered program.	С	3	
3. Apply mathematical induction to prove properties of sequences, recursive relations.	С	3	
4. Apply graph theory concepts to compute network related metrics and develope solutions for computing applications related to the program.	С	3	

^{*} BT= Bloom's Taxonomy, C=Cognitive domain, P=Psychomotor domain, A= Affective domain.

Bloom's taxonomy Levels: 1. Knowledge, 2. Comprehension, 3. Application, 4. Analysis, 5. Synthesis, 6. Evaluation

Course Textbook

1. Kenneth H. Rosen, Discrete Mathematics and Its Applications, eight Edition., McGraw-Hill.

Additional references and books related to the course:

- 1. Ralph P. Grimaldi, *Discrete and Combinatorial Mathematics: An Applied Introduction*, Fourth edition or later, Addison-Wesley.
- 2. Winifred K. Grassman, Jean P. Tremblay, *Logic and Discrete Mathematics: A Computer Science Perspective*, International Edition (or edition 1 or later), Prentice Hall.
- 3. Stuart Russell and Peter Norvig, *Artificial Intelligence, A Modern Approach*, Second edition or later, Pearson.

Tentative Weekly Schedule

Week	Topics to be covered	Section/chapter
1	Introduction to the course	1.1 and 1.2
	Propositional Logic	
	Applications of Propositional Logic	
2	Propositional Equivalences	1.3 and 1.4
	Predicates and Quantifiers	
3	Nested Quantifiers	1.5 and 1.6
	Rules of Inference	
4	Introduction to Proofs	1.7 and 1.8
	Proof Methods and Strategy	
5	Cardinality of sets. countable and	2.5
	uncountable sets	
6	Midterm Exam 1	
6	Divisibility and Modular Arithmetic	4.1
	Primes and Greatest Common Divisors	4.3
7	Solving Congruences	4.4
	Mathematical Induction	5.1
8	Strong Induction	5.2
	The Basics of Counting	6.1
9	The Pigeonhole Principle	6.2, 6.3 and 6.4
	Permutations and Combinations	
	Binomial Coefficients and Identities	
10	Generalized Permutations and	6.5 and 8.1
	Combinations	
	Applications of Recurrence Relations	
11	Solving Linear Recurrence	8.2 and 9.1
	Relations and Their Properties	
11	Mid term 2	
12	Representing Relations	9.3, 9.4
	Closures of Relations	
13	Equivalence Relations	9.5 and 10.1
	Graphs and Graph Models	
14	Graph Terminology and Special Types of	10.2
	Graphs	and 10.3
	Representing Graphs and Graph	
	Isomorphism	

Evaluations

1. Assignments: 10%

2. Quizzes: 10%

3. Midterm Exams:30%4. Final Exam: 50%

Course Policies

1. No makeup for missed quizzes or assignments.

2. 80% attendance is essential

Grading Scheme Absolute