

Description

The vs80n06-rc uses advanced trench technology and design to provide excellent $R_{DS(ON)}$ with low gate charge. It can be used in a wide variety of applications.

General Features

- V_{DS} =60V, I_{D} =80A $R_{DS(ON)}$ <8.5mΩ @ V_{GS} =10V
- High density cell design for ultra low Rdson
- Fully characterized avalanche voltage and current
- Good stability and uniformity with high E_{AS}
- Excellent package for good heat dissipation

Application

- PWM
- Load Switching

Schematic diagram

Package Marking and Ordering Information

Device Marking	Device	Device Package	Reel Size	Tape width	Quantity
VS80N06-TC	VS80N06-TC	TO-220-3L	-	H	-

Absolute Maximum Ratings (T_c=25℃unless otherwise noted)

Parameter	Symbol	Limit	Unit	
Drain-Source Voltage	VDS	60	V	
Gate-Source Voltage	V _G S	±20	V	
Drain Current-Continuous	I _D	80	А	
Drain Current-Continuous(T _C =100 °C)	I _D (100℃)	56.5	А	
Pulsed Drain Current	I _{DM}	180	А	
Maximum Power Dissipation	P _D	110	W	
Derating factor		0.73	W/℃	
Single pulse avalanche energy (Note 5)	E _{AS}	390	mJ	
Operating Junction and Storage Temperature Range	T_{J}, T_{STG}	-55 To 175	$^{\circ}$	

Thermal Characteristic

Thermal Resistance, Junction-to-Case (Note 2) ReJC 1.36 °C/W
--

Electrical Characteristics (T_C=25°C unless otherwise noted)

Parameter	Symbol	Condition	Min	Тур	Max	Unit	
Off Characteristics	•						
Drain-Source Breakdown Voltage	BV _{DSS}	V _{GS} =0V I _D =250μA	60	-	-	V	
Zero Gate Voltage Drain Current	I _{DSS}	V _{DS} =60V,V _{GS} =0V	-	-	1	μA	
Gate-Body Leakage Current	I _{GSS}	V _{GS} =±20V,V _{DS} =0V	-	-	±100	nA	
On Characteristics (Note 3)	-	,	'			•	
Gate Threshold Voltage	V _{GS(th)}	$V_{DS}=V_{GS}$, $I_{D}=250\mu A$	2	2.8	4	V	
Drain-Source On-State Resistance	R _{DS(ON)}	V _{GS} =10V, I _D =20A	-	7	8.5	mΩ	
Forward Transconductance	uctance g _{FS} V _{DS} =5V,I _D =20A		20	-	-	S	
Dynamic Characteristics (Note4)							
Input Capacitance	C _{lss}	\\ -20\\\\ -0\\	-	4000	-	PF	
Output Capacitance	Coss	V_{DS} =30V, V_{GS} =0V, F=1.0MHz	-	290	-	PF	
Reverse Transfer Capacitance	C _{rss}	F=1.UIVITZ	-	210	-	PF	
Switching Characteristics (Note 4)			'				
Turn-on Delay Time	t _{d(on)}		-	8.5	=	nS	
Turn-on Rise Time	t _r	V_{DD} =30V,R _L =1 Ω	-	7	-	nS	
Turn-Off Delay Time	t _{d(off)}	V_{GS} =10V, R_{G} =3 Ω	-	40	-	nS	
Turn-Off Fall Time	t _f		=	15	=	nS	
Total Gate Charge	Qg)/ - 00)/ I - 00 A	-	90		nC	
Gate-Source Charge	Q_{gs}	V _{DS} =30V,I _D =20A,	-	9		nC	
Gate-Drain Charge	Q_{gd}	V _{GS} =10V	-	18		nC	
Drain-Source Diode Characteristics						I .	
Diode Forward Voltage (Note 3)	V _{SD}	V _{GS} =0V,I _S =20A	=		1.2	V	
Diode Forward Current (Note 2)	Is		-	-	80	А	
Reverse Recovery Time	t _{rr}	TJ = 25°C, IF = 20A	-	32	=	nS	
Reverse Recovery Charge	Qrr	di/dt = 100A/µs ^(Note3)	-	45	-	nC	
Forward Turn-On Time	t _{on}	Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD)					

Notes:

- 1. Repetitive Rating: Pulse width limited by maximum junction temperature.
- 2. Surface Mounted on FR4 Board, t ≤ 10 sec.
- Pulse Test: Pulse Width ≤ 300µs, Duty Cycle ≤ 2%.
- 4. Guaranteed by design, not subject to production
- 5. E_{AS} condition : Tj=25 $^{\circ}\text{C}$,V_{DD}=20V,V_G=10V,L=0.5mH,Rg=25 Ω

Test circuit

1) E_{AS} Test Circuit

2) Gate Charge Test Circuit

3) Switch Time Test Circuit

Typical Electrical and Thermal Characteristics (Curves)

Figure 1 Output Characteristics

Figure 2 Transfer Characteristics

Figure 3 Rdson- Drain Current

Figure 4 Rdson-JunctionTemperature

Figure 5 Gate Charge

Figure 6 Source- Drain Diode Forward

Figure 7 Capacitance vs Vds

Figure 9 Power De-rating

Figure 8 Safe Operation Area

Figure 10ID Current- Junction Temperature

Square Wave Pluse Duration(sec)

Figure 11 Normalized Maximum Transient Thermal Impedance