KMP算法实验报告

实验数据

暴力算法

模式串长度\文本串长度	1000	10000	100000	1000000
100	0.2906	2.8787	29.3743	332.712
200	0.4142	3.3447	29.5653	335.946
500	0.2889	3.2351	29.3689	286.795

KMP算法

模式串长度\文本串长度	1000	10000	100000	1000000
100	0.3414	3.4263	33.5082	340.191
200	0.4211	3.3051	33.5082	479.942
500	0.3615	3.6362	33.1937	512.904

实验总结

按照理论分析,KMP 算法省去了部分不必要的比对,应当比暴力算法更快,然而根据我们的得到的数据却是在觉大多是情况下暴力算法都要优于 KMP 算法,尤其是当模式串较长的时候,这与理论分析不符。

分析:

KMP 算法优于暴力算法之处在于,KMP 算法利用了匹配模式自身的特点与上一次匹配的信息,尽可能在保证安全的前提下向右移动匹配模式串,被匹配的串需要有尽可能多的与头子串相同的重复片段,才能发挥这一优势。 但是当模式串完全随机生成时这种优势变得不那么明显,使得 KMP 算法退化为暴力算法,另一方面,next 表的生成还需要消耗额外的时间,且模式串越长,需要的时间越长,这也和表格中的数据吻合。