AI-Driven Guided Response for Security Operation Centers with Microsoft Copilot for Security (arxiv)

Key Highlights

問題

- 這篇論文旨在解決什麼問題?安全運營中心(SOCs)因威脅行爲者的急劇上升而 受到前所未有的安全事件數量的壓力。完全自動化系統需要極高的可信度閾值 (99%)以避免禁用關鍵企業資產,這使得完全自動化變得不切實際。SOCs 需要 能夠在大規模上指導分析師進行調查、分類和修復任務的解決方案。
- 現有的方法有哪些,並且它們有哪些限制? 現有的指導响应系统面臨若干限制:
 - (1) 安全事件的複雜性,數千個自定義檢測器創造出稀少標籤數據的複雜景觀,
 - (2) 同時實現高精度和高召回率的困難,(3) 缺乏針對百萬級推薦的可擴展架構,(4) 無法適應獨特的 SOC 偏好和工作流程,以及(5)有限的对不断发展威胁的持续学习能力。

解決方案

- 這篇論文提出了什麼解決方案? 作者提出了 Copilot Guided Response (CGR), 這是一個行業級的機器學習架構,提供三個核心能力:(1)通過相似事件識别进行 调查,(2)將事件分類為真陽性、假陽性或良性陽性进行分类,(3)通过推荐定 制化的遏制措施进行修复。系統使用三條管道架構:訓練、推理和嵌入管道。
- 是什麼啟發了這個想法?是否受其他論文的影響?這個解決方案的靈感來自 Microsoft Defender XDR 客戶的實際需求和能見度廣泛的擴展檢測和响应 (XDR) 產品的能力。這項工作建立在現有的相似事件識别、事件分类和入侵响应系 統的研究基礎上。
- 支持這種方法的理論基礎是什麼?這種方法基於包括分類的隨機森林模型、降維的 主成分分析 (PCA)、事件匹配的余弦相似性和特徵工程方法的機器學習技術。系統 利用分布式計算(PySpark)进行可扩展性。

實驗

• 實驗表現如何?系統在各項任務中表現出色:分類模型達到 87% 的精度和 41% 的召回率,並有 87% 的宏-F1 得分;行動模型達到 99% 的精度和 62% 的召回率;根據安全專家的評價,相似事件推薦顯示94%的相關性;客戶反饋顯示89%的正面互動率。系統每天處理數百萬個事件,批量延遲僅為幾分鐘。

與這種方法相關的限制或假設有哪些?主要的限制包括:(1)依赖现有的检测器,无法解决零日攻击,(2)因数据可用性导致的区域表现差异,(3)数据集不平衡影响模型覆盖率,(4)依赖客户提供的标注进行训练,以及(5)计算限制在某些区域内限制了历史数据处理。

創新

• 這篇論文做出了哪些重要或新穎的發現?這是第一家公開討論行業級指導響應能力的網絡安全公司。論文介紹了GUIDE,最大規模的公開真實世界安全事件集合(1300萬證據,涵蓋100萬事件),並展示了第一個地理分布框架,有能力每天處理數百萬個事件。這項工作為指導響應系統的評價和基准测试建立了新的標準。

評議/审评

- 這篇論文有哪些限制? 論文主要集中在呈現其框架,而不是與其他替代方法或競品 進行比較。評估主要內部進行,超過 Microsoft 安全專家的外部驗證有限。系统在 不同区域的性能差异显著,并且数据集中的类别不平衡影响模型覆盖率。
- 論文是否有效論证其主张? 论文提供了综合技术细节、广泛的实验结果(跨多个区域)以及现实世界部署的证据。但是,缺乏与替代方法的比较以及重点关注单一公司实现限制了主张的通用性。发布 GUIDE 数据集部分解决了这个问题,使未来比较研究成为可能。

Comprehensive Analysis

ABSTRACT

摘要

- 本摘要介紹了Microsoft Copilot for Security Guided Response (CGR), 這是一個大型機器學習系統,旨在幫助安全分析師處理網絡安全事件。
- 系統解決了三個核心功能:
 - 。**調查**:識別相似的歷史事件以提供上下文
 - · **分類**:將事件歸類為真實正面事件、虛假正面事件或良性正面事件
 - 。**修復**:建議適當的隔離措施

主要貢獻:

- 。CGR已在Microsoft Defender XDR中全球部署,為成千上萬的客戶提供了數以百萬計的建議。
- 本文首次詳細公開了由主要公司實施的此類網絡安全機器學習能力。
- 介紹了GUIDE數據集——這是最大的公開真實世界安全事件集合(包含1百萬個事件、1千3百萬件證據,以及專家註釋)。

• 驗證:

- 。系統的效果通過內部評估、專家合作和客戶反饋得到證實,顯示出在所有三個 任務上的高質量建議。
- 。GUIDE數據集代表了網絡安全研究社群的重要資源,用於開發和評估類似的 引導式響應系統。

1 INTRODUCTION

摘要

- 這個介紹部分確立了在網絡安全中開發AI驅動的引導回應(GR)系統的動機。
- 作者指出,日益增長的網絡威脅已經使安全運營中心(SOCs)不堪重負,完全自動化對於避免損害關鍵系統需要極高的信心(99%),因此是不切實際的。
- 他們提出引導回應系統,旨在幫助SOCs分析師進行決策。
- 論文將擴展檢測和回應(XDR)系統定位為實現GR的理想平台,因為它們能夠全面地可見企業環境中的數據。
- 作者識別了構建有效GR系統的五個關鍵技術挑戰:
 - 1. 事件複雜性 安全產品多樣化且標記數據有限。
 - 2. 高精度要求 需要高精度和高召回率。
 - 3. 可擴展性 必須處理數百萬個事件和數兆字節的數據。
 - 4. **定制化** 必須適應個別SOC的工作流程和偏好。
 - 5. 連續學習 必須隨著威脅景觀的變化而發展。
- 這設定了本文專注於通過創新的機器學習系統設計及深厚的網絡安全領域知識來解 決這些挑戰。

"This surge requires solutions that can either partially or fully automate the remediation process. Fully automated systems demand an exceptionally high confidence threshold (e.g., 99%) to ensure correct actions are taken to avoid inadvertently disabling critical enterprise assets."

此浪潮需要能夠部分或完全自動化修復過程的解決方案。完全自動化系統要求非常高的置信門檻(例如99%),以確保采取正確的行動,避免意外禁用重要企業資產。

"Extended Detection and Response (XDR) products are ideally positioned to deliver precise, context-rich guided response recommendations thanks to their comprehensive visibility across the entire enterprise security landscape."

擴展檢測與響應(XDR)產品憑藉其對整個企業安全景觀的全面可見性,理想地定位於 提供精確、富有上下文的引導式響應建議。 "Scalable and accurate GR systems face several key challenges that require a combination of innovative ML system design, and a deep understanding of cybersecurity: (1) Complexity of security incidents... (2) High precision and recall... (3) Scalable architecture... (4) Adaptive to unique SOC preferences... (5) Continuous learning and improvement."

可擴展且準確的GR系統面臨幾個需要創新機器學習系統設計和對網絡安全有深刻理解的關鍵挑戰: (1) 安全事件的複雜性... (2) 高精度和召回率... (3) 可擴展架構... (4) 適應獨特的SOC偏好... (5) 持續學習和改進。

1.1 Contributions

- **CGR框架**:一個大規模、地理分佈式的機器學習系統,每天處理數百萬的網絡安全 事件,延遲極低。
- 提供三個核心的安全運營中心(SOC)功能:調查、分級和補救。
- 從單一警報處理到包含數百個警報的複雜事件,涵蓋數千個威脅類別。
- **GUIDE數據集**:最大的公開可用網絡安全事件數據集,包含1300萬多條證據、 160萬條警報和100萬起事件,有專家註釋標籤。
- 在寬鬆的許可證下發布,以促進網絡安全研究。
- 全面評估:廣泛的性能測試顯示了強勁的結果。
- 分級模型達到87%精度/41%召回率。
- 動作模型達到99%精度/62%召回率。
- 專家驗證表明事件推薦的相關性達到94%。
- 89%客戶正面反饋。
- 實際影響:CGR已部署在Microsoft Defender XDR中。
- 為全球數十萬組織提供服務。
- 通過機器學習驅動的安全響應顯著增強了SOC的操作能力。
- 該框架代表了一個生產規模的網絡安全人工智慧系統。
- 通過技術框架和大規模數據集發布展示了行業影響和研究貢獻。

"The Copilot Guided Response architecture transforms cybersecurity guided response by detailing the first geo-distributed industry-scale framework capable of processing millions of incidents each day with batch latency of just a few minutes."

Copilot Guided Response 架構通過詳細説明首個地理分佈的大規模工業級框架來改變網絡安全指導回應,該框架能夠每天處理數百萬個事件,批量延遲僅需幾分鐘。

"We introduce GUIDE, the largest publicly available collection of realworld cybersecurity incidents under the permissive CDLA-2.0 license. This extensive dataset includes over 13 million pieces of evidence across 1.6 million alerts and 1 million incidents annotated with ground-truth triage labels by customer security analysts."

我們介紹 GUIDE,這是最大規模的在寬鬆 CDLA-2.0 許可下公開可用的實際網絡安全事件集合。該數據集包含超過 1300 萬條證據,橫跨 160 萬警報和 100 萬事件,並由客戶安全分析師標註了真實的分診標籤。

"Internal assessments on hundreds of thousands of unseen incidents show triage models achieve 87% precision and 41% recall, while action models reach 99% precision and 62% recall."

對數十萬未見事件的內部評估顯示,分診模型達到了 87% 的精確度和 41% 的召回率,而行動模型達到了 99% 的精確度和 62% 的召回率。

2 BACKGROUND

此背景部分介紹了Microsoft Copilot for Security,並在網絡安全背景下定義了引導回應的概念。

重點:

- Microsoft Copilot for Security: 一個由人工智能驅動的平台,通過提供來自Microsoft安全工具(Defender XDR、Sentinel、Intune)的實時洞察來協助安全專業人士。它推出了五個核心功能,包括事件總結、腳本分析、報告生成、查詢輔助和引導回應。
- **技術架構**:雖然其他四個功能使用帶有安全插件的大型語言模型(LLMs),但引導回應功能特別使用三個機器學習子組件:等級建議、行動建議和相似事件建議。
- **引導回應定義**:正式定義為機器學習功能,這些功能將安全事件置於上下文中,並從過去的調查中學習以生成適當的回應行動。
- 文獻框架:作者將引導回應研究分類為三個領域:
 - 。**調查:**建議下一步分析行動。
 - · **分級**:將事件分類為真陽性/假陽性/良性陽性。
 - · 補救:提出具體的遏制和解決行動。

這部分確立了理解AI/ML如何通過智能事件回應指導來增強安全運營中心(SOC)工作 流程的基礎背景。 "Microsoft Copilot for Security is an AI-driven solution that enhances security professionals' workflows by offering real-time insights and recommendations across Microsoft Defender XDR, Microsoft Sentinel, and Microsoft Intune."

Microsoft Copilot for Security 是一種由 AI 驅動的解決方案,它通過在 Microsoft Defender XDR、Microsoft Sentinel 和 Microsoft Intune 中提供即時的洞察和建議來加強安全專業人員的工作流程。

"guided response was formally defined as 'machine learning capabilities to contextualize an incident and learn from previous investigations to generate appropriate response actions'"

引導式響應被正式定義為 "機器學習能力,用於將事件情境化並從之前的調查中學習,以 產生適當的響應行動"。

"Our analysis of academic and industry literature contextualizes relevant contributions within the domain of guided response into three distinct categories: (1) investigation that suggests next steps for further analysis; (2) triaging to determine whether an incident is a true positive, false positive, or benign positive (e.g., informational); and (3) remediation which proposes specific response actions to contain and resolve incidents."

我們對學術和行業文獻的分析將引導式響應領域中的相關貢獻情境化為三個不同類別: (1)建議進一步分析的調查;(2)分類以確定事件是正確的、誤報的還是良性報告(例如信息性);(3)建議具體響應行動以遏制和解決事件的修復。

3 ARCHITECTURE OVERVIEW

這部分概述了Copilot Guided Response(CGR)架構,一個通過三個互相關聯的流程協助安全分析師進行事件管理的系統:

主要組成部分: - 訓練流程:每週運行一次,使用歷史安全運營中心(SOC)數據訓練機器學習模型,以提供評分和行動建議 - 推理流程:每15分鐘運行一次,以生成新的安全事件的即時建議並識別類似的歷史事件 - 嵌入流程:每30分鐘運行一次,在180天的周期內創建事件嵌入,實現類似性匹配能力

技術實現:-主要使用PySpark進行分佈式計算,並使用Python進行專門的推薦任務 - 系統地理複製以使用Synapse來遵守隱私規範 - 設計支持安全分析師調查、分類和補救企業安全事件

架構創建了一個持續的反饋循環,在其中歷史數據訓練模型,實時推理提供可行的建議, 嵌入使事件間模式識別成為可能。

"We detail the Copilot Guided Response (CGR) architecture, organized around three key pipelines: train, inference, and embedding, as illustrated in Figure 1."

我們詳細介紹了共駕導向回應(CGR)架構,其組織圍繞三個關鍵管道展開:訓練管道、推理管道和嵌入管道,如圖1所示。

"Train pipeline (Section 4). Running weekly, this process trains the grade and action recommendation models using historical SOC telemetry to provide tailored responses."

訓練管道(第4節)。每週運行一次,該過程使用歷史 SOC 遙測數據來訓練等級和動作推薦模型,以提供量身定制的回應。

"Inference pipeline (Section 5). Operating every 15 minutes, this pipeline generates grade and action recommendations for incoming incidents by leveraging the models developed in the train pipeline."

推理管道(第5節)。每15分鐘運行一次,該管道通過利用訓練管道中開發的模型,為新 出現的事件生成等級和動作推薦。

4 TRAIN PIPELINE

- 本節描述了微軟的Copilot Guided Response系統的訓練管道,該系統處理安全 警報和事件。
- 管道包含兩個主要組件:

數據預處理(T1-T7): - 從Azure存儲收集警報遙測數據並工程化72個特徵(5個類別特徵+67個數值特徵)-通過在獨熱編碼之前聚合不常見的值來解決高基數問題-通過聚合具有相同事件ID的警報來創建單獨的事件數據框-應用隨機採樣來管理處理過程中的內存限制-使用PCA將維數降到40個成分(捕獲95%的方差)-存儲事件嵌入以用於基於相似性的推薦系統

模型訓練(T8-T10): - 訓練兩個隨機森林模型:一個用於事件預分級預測,另一個用於緩解措施建議 - 由於性能更好(Macro-F1得分高10%),使用scikit-learn而不是

PySpark的MLlib - 對關鍵參數(例如nestimators、maxdepth等)執行網格搜索超參數優化 - 在部署到Azure存儲之前,針對之前版本驗證新模型

 該管道被設計為能夠在分布式計算中處理大規模的安全數據處理,同時保持模型性 能並管理計算約束。

"We collect alert telemetry from multiple Azure Data Lake Storage (ADLS) tables and join them into a PySpark alert dataframe. Each row in the alert dataframe contains columns for unique alert and incident identifiers, complemented by customer-provided grade and remediation action, when available. Additionally, each row contains 5 categorical feature columns—OrganizationId, DetectorId, ProductId, Category, and Severity—along with 67 engineered numerical feature columns, developed in close collaboration with Microsoft security research experts."

我們從多個 Azure Data Lake Storage (ADLS) 表格中收集警報遙測數據,並將其合併到一個 PySpark 警報數據框中。警報數據框中的每一行都包含唯一的警報和事故識別碼列,並在可用時補充有客戶提供的等級和補救措施。每一行還包含 5 個分類特徵列—OrganizationId、DetectorId、ProductId、Category 和 Severity—以及與Microsoft 安全研究專家密切合作開發的 67 個工程數值特徵列。

"In various geographic regions, DetectorIds can exceed 100k and OrgIds can reach up to 50k, creating an extremely large and sparse feature space that often leads to failures during dimensionality reduction in the PySpark cluster. To mitigate this, we aggregate the feature space by substituting infrequent values—those associated with fewer than 10 alerts—with a generic value."

在不同的地理區域中,DetectorId 可以超過 10 萬,OrgId 可以達到 5 萬,這將創建一個極大且稀疏的特徵空間,這通常會導致在 PySpark 集群中降維失敗。為了減輕這個問題,我們通過用通用值替換不頻繁的值(即與少於 10 個警報相關聯的值)來彙總特徵空間。

"We independently apply principal component analysis (PCA) to both the incident and alert dataframes, each containing tens of thousands of columns... Our objective is to condense the feature space to k principal components that captures 95% of the original variance in each dataframe. Empirically, we find that setting k= 40 meets this requirement."

我們獨立地將主成分分析(PCA)應用於事故和警報數據框,每個數據框包含數萬個列... 我們的目標是將特徵空間濃縮為 k 個主成分,這些主成分保留每個數據框中 95% 的原始 方差。經驗上,我們發現設定 k=40 即能滿足此要求。

5 INFERENCE PIPELINE

- 本節描述了一個用於網絡安全事件響應的三階段機器學習推論管道,它處理實時警報數據,以向安全運營中心 (SOC) 分析師提供自動化建議。
- **管道概覽:** 該系統每15分鐘處理一批警報數據,通過三個主要階段:分類、調查和 修復。
- 主要組件:
 - 預處理 (5.1):
 - 將15分鐘的遙測數據導入到PySpark數據框中
 - 應用特徵壓縮和One-Hot編碼
 - 為修復和事件分析創建不同的數據框
 - 使用主成分分析 (PCA) 進行維度縮減以生成警報/事件嵌入
 - 將事件嵌入存儲在Azure Data Lake Storage中以進行歷史比較
 - 分類建議 (5.2):
 - 將事件分類為真陽性、假陽性或良性陽性
 - 使用0.9精度閾值以確保只有高置信度的建議能到達分析師手中
 - 調查建議 (5.3):
 - 使用三步匹配過程查找相似的歷史事件:
 - 精確哈希匹配(相同的事件簽名)
 - 嵌入的余弦相似度(近似匹配)
 - Top-k選擇(最多5個類似事件)
 - 搜索長達180天的歷史數據
 - 修復建議 (5.4):
 - 建議具體的響應行動(隔離用戶、隔離機器、停止虛擬機)
 - 使用領域知識規則識別相關實體
 - 將警報級建議聚合成事件級行動
 - 保持0.9精度閾值以確保可靠性
- 該系統通過將建議存儲在表中並隨著事件的發展動態更新,確保快速響應。

"The core of our approach is to match new incidents with historically relevant incidents within the same organization through a three-step matching process: (1) Exact hash matching... (2) Approximate matching with cosine similarity... (3) Top-k similar incident selection."

我們的方法核心是通過三步匹配過程,在同一組織內匹配新的事件及具有歷史相關性的事件:(1)精確哈希匹配...(2)使用餘弦相似度進行近似匹配...(3)選擇前k個相似事件。

"The confidence of each recommendation is assessed against a precision threshold of 0.9 to ensure that only reliable recommendations are sent to SOC analysts."

每個推薦的置信度都會根據0.9的精度閾值進行評估,以確保僅向SOC分析師發送可靠的推薦。

"Using alert embeddings from preprocessing and the latest remediation model, we generate targeted response actions—contain user, isolate machine, or stop virtual machine—for each alert with confidence above a 0.9 precision threshold."

使用預處理的警報嵌入和最新的修復模型,我們針對每個置信度高於0.9精度閾值的警報生成定向響應動作——包含用戶、隔離機器或停止虛擬機器。

6 EMBEDDING PIPELINE

- 這部分描述了一個專門設計的管道,用於生成歷史事件嵌入,以用於相似事件推薦系統。關鍵點如下:
- 目標: 從最多180天的歷史事件數據中生成嵌入,以提高推薦質量,解決主要訓練管道在處理大量地區事件遙測數據方面的限制。

• 過程:

- 作為一個連續循環運行,每次迭代處理更早一天的數據
- · 包括重複數據消除機制,通過比較事件哈希值和分類推薦來消除冗餘數據
- 每個事件儲存最多5個嵌入(符合系統最多推薦5個相似事件的策略)
- 。將新生成的嵌入保存到ADLS(Azure資料湖存儲)表中,以供推理時使用
- **結果**: 確保推薦算法擁有涵蓋180天的全面歷史數據,基於廣泛的歷史背景,能夠更有效地推薦相似事件。

"We generate historical incident embeddings that allow the similar incident recommendation algorithm to leverage up to 180 days of historical data when making recommendations."

我們生成的歷史事件嵌入使相似事件推薦算法能夠在做推薦時利用多達 180 天的歷史數據。

"Due to the limitations of the training pipeline in processing huge volumes of incident telemetry across regions, we developed a specialized mechanism to generate historical embeddings."

由於訓練管道在處理跨區域的巨大事件遙測數據量方面的限制,我們開發了一種專門的機制來生成歷史嵌入。

"The embedding pipeline operates in a continuous loop, with each iteration processing data one day further back than the last."

嵌入管道以連續循環的方式運行,每次迭代處理比上一次更早一天的數據。

7 EXPERIMENTS

摘要

 本節描述了CGR(網絡安全圖表示)模型在三個核心安全任務中的實驗評估:分級 (將事件分類為良性/惡意/信息性)、調查(推薦類似事件)和修復(預測威脅緩解 行動)。

• 關鍵實驗設置:

- ∘ 在12個地區進行評估,並采用70/10/20的訓練/驗證/測試劃分。
- 。 進行了兩個主要參數優化:
 - 1. **PCA成分選擇**:保留捕捉95%變異性的前k個成分(最多100個),通常k=40表現良好。
 - 2. **隨機森林調優**:在驗證集上使用宏F1分數進行網格搜索優化。

• 數據集特徵:

- 顯著的地區差異(多達31k的檢測器散佈於數千個組織)。
- 長尾事件分佈(大多數事件僅有少量警報,大規模事件罕見且具挑戰性)。
- 。使用適合不平衡數據集的精確度/召回率度量性能。

• 研究限制:

- 。 著重於框架介紹,而非與其他模型的比較評估。
- 僅限於現有檢測器(無法處理零日攻擊或未監控的攻擊)。
- 。 競爭的安全產品通常是專有且不公開的。
- 。引入GUIDE數據集以促進未來研究和架構優化。
- 實驗設計強調在現實世界網絡安全環境中面臨的實際可擴展性挑戰,其組織結構多樣且威脅形勢多變。

沒有圖片摘要可用。

"We evaluate CGR's performance across three tasks: (1) triaging, assessing the model's ability to classify incidents as benign, malicious, or informational; (2) investigation, analyzing the relevance of similar incident recommendations; and (3) remediation, evaluating its ability to predict effective threat mitigation actions."

我們評估了CGR在三項任務中的表現: (1)分流,評估模型將事件分類為無害、惡意或信息性的能力; (2)調查,分析相似事件推薦的相關性; (3)修復,評估其預測有效 威脅緩解行動的能力。

"Regional variations are significant, with up to 31k detectors across thousands of organizations, complicating the training process. Incident size distribution (Figure 2) is long-tailed, with most incidents comprised of a few alerts, with larger incidents representing a greater challenge for triage and similar incident recommendations due to their rarity."

地區差異顯著,成千上萬個組織安裝了最多31k個檢測器,使訓練過程更加複雜。事件大小分佈(圖2)呈長尾,大多數事件包含少量警報,較大事件因其罕見性對分流和相似事件推薦構成更大挑戰。

"This work focuses on presenting a scalable, unified framework for incident triaging, remediation, and similar incident recommendations, rather than evaluating alternative models or competing security products, which are often undisclosed."

這項工作重點介紹了一個可擴展的統一框架,用於事件分流、修復和相似事件推薦,而不 是評估替代模型或競爭安全產品,這些通常不公開。

8 DEPLOYMENT

第1段落:

這一節描述了 Copilot Guided Response (CGR) 的成功實例,它是一個針對網絡安全 建議的機器學習系統在現實世界中的部署情況。

關鍵亮點包括:

部署規模與性能:-於2024年4月在全球範圍內推出,為成千上萬的 Microsoft Defender XDR 用戶服務。-生成了數百萬條安全建議,用戶正面回應率達到89%。

技術基礎架構: - 基於 Azure Synapse 構建,使用根據地理區域定制的 PySpark 集群。 - 利用高性能計算資源(XXL 池,擁有60個執行器,每個執行器擁有64個 CPU 核心和400GB RAM)。 - 具有自動擴展和自動化作業恢復功能以確保可靠性。 - 包含通過ADLS 數據庫管理的安全遙測。

定制解決方案: - 由於 Synapse 的本地功能的限制,我們開發了專有的基礎設施來處理 模型監控、版本控制和存儲。

• 該部署展示了將研究成功轉化為生產規模的網絡安全AI系統,並且具有較高的用戶採用率和穩健的技術架構。

'Copilot Guided Response has been successfully deployed across the world, serving thousands of Microsoft Defender XDR customers since its launch in April 2024. CGR has generated millions of guided response recommendations for triage, investigation, and remediation tasks, receiving a 'positive' user response rate of 89%, based on the confirmation or dismissal of recommendations.'

Copilot Guided Response 已成功部署在全球,自 2024 年 4 月推出以來,已為成千上萬的 Microsoft Defender XDR 客戶提供服務。CGR 已生成數百萬個用於分類、調查和修復任務的循導應對建議,根據建議的確認或拒絕,獲得 89% 的 "肯定" 使用者回應率。

'Our deployment infrastructure leverages a Synapse-based PySpark cluster, customized to each geographical region... an XXL PySpark pool featuring 60 executors, each equipped with 64 CPU cores and 400GB of RAM; (d) autoscaling to adjust executors based on fluctuating load; and (e) automated re-execution of failed jobs to ensure continuous coverage.'

我們的部署基礎架構利用基於 Synapse 的 PySpark 叢集,並根據每個地理區域進行客製化... 一個 XXL PySpark 群組包含 60 個執行器,每個執行器配備 64 個 CPU 核心和400GB 的 RAM;(d) 自動調整執行器以應對波動的負載;和 (e) 自動重新執行失敗的作業以確保連續覆蓋。

'Due to the absence of native support for model monitoring, versioning, and storage within Synapse, we developed a custom infrastructure to support these capabilities.'

由於 Synapse 缺乏對模型監控、版本控制和存儲的原生支持,我們開發了定制基礎架構來支持這些功能。

9 CONCLUSION

以下是上述便條翻譯成繁體中文:

任务

翻译提供的便条为指定的语言——繁体中文。翻译时遵循以下规则: - 盡量保持原意。 -使用數據科學家和AI研究人員常用的术语。 - 避免過度翻譯;尽量保持术语不变。

這裡是便條內容: - 此結論部分提出了**Copilot Guided Response (CGR)**,這是一個領先業界規模的網絡安全框架,幫助安全運營中心(SOC)分析師完成調查、分類及 補救任務,涵蓋各種事件複雜性。

表現與部署:

- 通過內部測試、專家合作及客戶反饋進行了廣泛驗證。
- 目前全球範圍內部署在Microsoft Defender XDR中。
- 每週生成數百萬條建議,89%的用戶反饋為正面評價。

研究貢獻:

- 介紹GUIDE數據集—最大的公開真實世界安全事件集合。
- 包含1300萬條證據,涵蓋100萬個事件。
- 包含來自實際安全分析師的真實分類標籤。

- 為引導響應系統的開發和評估建立了新的基準。
- 該工作既是網絡安全操作中的一個重要實踐部署,也是透過釋放GUIDE數據集對該領域的重大研究貢獻。

A APPENDIX

這個附錄介紹了**GUIDE**,是目前公開提供的最大型網絡安全數據集,包含: - **超過 1300 萬個證據片段** - **160 萬個警報** - **100 萬個註釋的事件** - 該數據集在 CDLA-2.0 許可下發布,用於機器學習研究和真實世界安全數據的基準測試。 - **數據結構**:GUIDE 以三級層次結構組織信息: - **證據**(底層):包括 IP 地址、電子郵件、用戶詳細信息等元數據的個別數據點 - **警報**(中層):彙總多個證據片段,以指示潛在的安全事件 - **事件**(頂層):組合一個或多個警報,以形成完整的安全違規或威脅敘述 - 這種分層結構允許研究者以不同的精細度層次處理網絡安全數據,從個別證據點到全面的事件情景。

"GUIDE represents the largest publicly available collection of realworld cybersecurity incidents, containing over 13 million pieces of evidence across 1.6 million alerts and 1M annotated incidents."

GUIDE 代表了最大的可公開獲取的真實世界網路安全事件集合,包含超過1300萬條證據,跨越160萬個警報和100萬個註釋的事件。

"We provide three hierarchies of data: (1) evidence, (2) alert, and (3) incident."

我們提供三層級的數據:(1)證據,(2)警報,(3)事件。

"At the highest level, incidents encompass one or more alerts, representing a cohesive narrative of a security breach or threat scenario."

在最高層級,事件包含一個或多個警報,代表了安全漏洞或威脅情境的完整敘述。

References

No references found.