

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ ИНФОРМАТИКА И СИСТЕМЫ УПРАВЛЕНИЯ

КАФЕДРА КОМПЬЮТЕРНЫЕ СИСТЕМЫ И СЕТИ (ИУ6)

НАПРАВЛЕНИЕ ПОДГОТОВКИ 09.03.04 Программная инженерия

ОТЧЕТ

	по лабораторно	й работе №	1	
Название:	Синхронные однос и динамическим уг	•		со статическим
Дисциплина:	Архитектура ЭВМ			
Студент	<u>ИУ7И - 46Б</u> (Группа)	(I	Подпись, дата)	Андрич К. (И.О. Фамилия)
Преподаватель				А. Ю. Попов

(Подпись, дата)

(И.О. Фамилия)

Цель работы

Изучить схемы асинхронного RS-триггера, который является запоминающей ячейкой всех типов триггеров, синхронных RS- и D-триггеров со статическим управлением записью и DV-триггера с динамическим управлением записью.

Задания

- **1.** Исследовать работу асинхронного RS-триггера с инверсными входами (см. рис. 3) в статическом режиме.
 - Для этого необходимо:
 - собрать схему RS-триггера на ЛЭ И-НЕ;
 - к выходам Q и Q триггера подключить световые индикаторы;
 - задавая через переключатели необходимые сигналы на входах \bar{S} и \bar{R} триггера, составить таблицу переходов.

Схема в Multisim

$$\overline{S} \rightarrow 0, \overline{R} \rightarrow 1$$

Триггер $\rightarrow 1$

Светит диод на Q выходе

$$\overline{S} \rightarrow 1, \overline{R} \rightarrow 0$$

Триггер $\rightarrow 0$

Светит диод на Q выходе

Таблина:

\bar{S}_n	\overline{R}_n	Q _n	Q_{n+1}	\overline{Q}_{n+1}
0	0	0	X	X
0	0	1	X	X
0	1	0	1	0
0	1	1	1	0
1	0	0	0	1
1	0	1	0	1
1	1	0	0	1
1	1	1	1	0

1)
$$\overline{S} \rightarrow 0$$
, $\overline{R} \rightarrow 0 \Rightarrow$ триггер \rightarrow неопределен (X) [на выходе получается 1 что запрещено]

2)
$$\overline{S} \rightarrow 0$$
, $\overline{R} \rightarrow 1 \Rightarrow триггер \rightarrow 1$

3)
$$\overline{S} \rightarrow 1$$
, $\overline{R} \rightarrow 0 \Rightarrow \text{триггер} \rightarrow 0$

4)
$$\bar{S} \rightarrow 1, \bar{R} \rightarrow 1 \Rightarrow$$
 триггер \rightarrow в состоянии в t_n

Вывод

RS-триггер может хранить некоторую информацию размера 1 бит (1 или 0). Если на входе и S и R будут 1 триггер сохраняет своё состояние. Если на входе S 0, а R 1 тогда состояние триггера будет 1. Если наоборот S 1, R 0, тогда состояние будет 0. В случае когда и S и R 0, состояние триггера неопределено.

- **2.** Исследовать работу синхронного RS-триггера (см. рис. 4) в статическом режиме. Для этого необходимо:
 - собрать схему RS-триггера на ЛЭ И-НЕ (рис. 4);
 - к выходам Q и Q триггера подключить световые индикаторы;]
 - задавая через переключатели необходимые сигналы на входах S, R и C, протестировать и составить таблицу переходов триггера. В таблице теста каждому набору S, R и Q будет соответствовать 3 строки: сначала задать C=0 (момент времени tn), затем при C=1 (момент времени tn+1) определяется Qn+1 и снова при C=0 переход в режим хранения.

Схема в Multisim

Таблица:

S	R	Q _n (C=0)	$Q_{n+1}(C=1)$	$Q_{n+2}(C=0)$
0	0	0	0	0
0	0	1	1	1
0	1	0	0	0
0	1	1	0	0
1	0	0	1	1
1	0	1	1	1
1	1	0	X	X
1	1	1	X	X

Вывод

Состояние RS-триггера можно изменить только если C=1. Если на входе и S и R будут 0 триггер сохраняет своё состояние. Если на входе С 0, а R 1 тогда состояние триггера будет 1. Если наоборот С 1, R 0, тогда состояние будет 0. В случае когда и S и R 1, состояние триггера неопределено.

- **3.** Исследовать работу синхронного D-триггера (см. рис. 5) в статическом режиме. Для этого необходимо:
 - собрать схему D-триггера на ЛЭ И-НЕ (рис. 5); в приложении Multisim можно использовать макросхему D-триггера;
 - к выходам Q и Q триггера подключить световые индикаторы;
 - задавая через переключатели необходимые сигналы на входах D и C, протестировать и составить таблицу переходов триггера. В таблице теста каждому набору D и Q будет 10 соответствовать 3 строки: сначала задать C=0 (момент времени tn), затем при C=1 (момент времени tn+1) определяется Qn+1 и снова при C=0 происходит переход в режим хранения.

Схема в Multisim

Таблица:

D	Q _n (C=0)	Q_{n+1} (C=1)	$Q_{n+2}(C=0)$
0	0	0	0
0	1	0	0
1	0	1	1
1	1	1	1

Вывод

Если C = 0, триггер хранит состояние. Если C = 1 состояние изменяется. Тогда если D = 0 триггер переходит в 0, а если D = 1 триггер переходит в 1.

Если C = 1, на выходе триггера получаем сигнал который передаем на D-вход.

- **4.** Исследовать схему синхронного D-триггера с динамическим управлением записью (рис. 6) в статическом режиме. В приложениях Electronics Workbench и Multisim имеются макросхемы такого триггера. Для этого необходимо:
 - к выходам Q и Q триггера подключить световые индикаторы;
 - задавая через переключатели необходимые сигналы на входах D и C, протестировать и составить таблицу переходов триггера. В таблице теста следует отметить реакцию триггера на изменения сигнала D при C=0 и при C=1, а также способность триггера принимать сигнал D только по перепаду 0/1 сигнала C.

Рис.6

Схема в Multisim

Таблица:

D_n	Q _n	$t_n(C=0)$	$t_{n+1}(C=1)$	$t_{n+2}(C=1)$	$t_{n+3}(C=0)$	t _{n+4} (C=0)
0	0	D=0 Q=0	D=0 Q=0	D=1 Q=0	D=1 Q=0	D=0 Q=0
0	1	D=0 Q=1	D=0 Q=0	D=1 Q=0	D=1 Q=0	D=0 Q=0
1	0	D=1 Q=0	D=1 Q=1	D=0 Q=1	D=0 Q=1	D=1 Q=1
1	1	D=1 Q=1	D=1 Q=1	D=0 Q=1	D=0 Q=1	D=1 Q=1

<u>Вывод</u>

Состояние триггера можно поменять только тогда изменяется сигнал в С из 0 в 1. Состояние на входе D во время изменения станет состояние триггера.

- **5.** Исследовать схему синхронного DV-триггера с динамическим управлением записью в динамическом режиме.
 - Для этого необходимо:
 - построить схему синхронного DV-триггера на основе синхронного D-триггера и мультиплексора MS 2-1 (выход MS 2-1 соединить с D-входом триггера, вход 0 MS 2-1 соединить с выходом Q триггера. Тогда вход 1 MS 2-1 будет D-входом, адресный вход A MS 2-1 входом V синхронного DV-триггера), вход C D-триггера входом C DVтриггера;
 - подать сигнал генератора на вход счетчика и на С-вход DV-триггера; подать на входы D и V триггера сигналы с выходов 2-го и 3-го разрядов счетчика;
 - снять временные диаграммы синхронного DV-триггера;
 - объяснить работу синхронного DV-триггера по временным диаграммам

Вывод

DV- триггер сохраняет свое состояние, кроме ситуации когда сигнал в C изменяется с 0 на 1. Тогда состояние будет как на входе D.

У нас есть V вход который влияет на приём информации. Если V = 1, тогда D и DV работают одинаково. Если V = 0, тогда состояние триггера сохраняется.

- **6.** Исследовать работу DV-триггера, включенного по схеме TV-триггера (рис. 8). Для этого необходимо:
 - на вход D подать сигнал Q , на вход C подать сигналы генератора, а на вход V с выхода 3-го разряда счетчика;
 - снять временные диаграммы Т-триггера;
 - объяснить работу синхронного Т-триггера по временным диаграммам.

<u>Вывод</u>

У нас есть V вход который влияет на приём информации. Если V=1, тогда T и TV-триггер работают одинаково. Если V=0, тогда состояние триггера сохраняется.