UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS

GCE Advanced Subsidiary Level and GCE Advanced Level

MARK SCHEME for the October/November 2008 question paper

9702 PHYSICS

9702/02

Paper 2 (AS Structured Questions), maximum raw mark 60

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

• CIE will not enter into discussions or correspondence in connection with these mark schemes.

CIE is publishing the mark schemes for the October/November 2007 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

	Page 2		Mark Scheme	Syllabus	Paper 02	
			GCE A/AS LEVEL – October/November 2008	9702		
1	(a)	(i)	Q = It (allow any subject for the equation)		B1	[1]
		(ii)	I t (allow 1 mark only if all three quoted)		B1 B1	[2]
	(b)	(i)	base unit of I is A base unit of n is m^{-3} (not $/m^{-3}$) base unit of S is m^{2} base unit of S is S (not S) base unit of S is S (not S) base unit of S is S (not S)		В3	[3]
		(ii)	$A = m^{-3} m^2 A s (m s^{-1})^k$		M1	
			e.g. for m: $0 = -3 + 2 + k$ k = 1		A1	[2]
2	(a)	(i)	$v^2 = 2as$ $v^2 = 2 \times 0.85 \times 9.8 \times 12.8$ $v = 14.6 \text{ m s}^{-1}$		C1 A1	[2]
		(ii)	time = 29.3 / 14.6 = 2.0 s (any acceleration scores 0 marks; allow 1 s.f.)		C1 A1	[2]
	(b)	or or so o	er 60 km h^{-1} = 16.7 m s^{-1} 14.6 m s^{-1} = 53 km h^{-1} 22.1 m s^{-1} = 79.6 km h^{-1} driving within speed limit reaction time is too long / too slow		M1 A1 B1	[3]
3	(a)	cou	nent: force × <u>perpendicular</u> distance of force from pivot / axis / point ole: (magnitude of) one force × <u>perpendicular</u> distant between the two forces nalise the 'perpendicular' omission once only)	nce	M1 A1 M1 A1	[4]
	(b)	(i)	$W \times 4.8 = (12 \times 84) + (2.5 \times 72)$ W = 250 N (248 N)		C1 A1	[2]
		(ii)	either friction at the pivot or small movement of we	ights	B1	[1]
4	(a)	(i)	either force = $e \times (V/d)$ or $E = V/d$ = $1.6 \times 10^{-19} \times (250 / 7.6 \times 10^{-3})$ = 5.3×10^{-15} N		C1 C1 A1	[3]
		(ii)	$= 4.0 \times 10^{-17} \text{ J}$	$^{-15} \times 7.6 \times 10^{-3}$	C1 M1 A0	[2]
			(allow full credit for correct working via calculation of a	a and v)		

Page 3			Mark Scheme Syllabus GCE A/AS LEVEL – October/November 2008 9702		Syllabus	Paper	
					02		
		. ,	$v = 9.4$ or $v^2 = 2as$ $v^2 = (2s)$	$2mv^2$ $0^{-17} = \frac{1}{2} \times 9.1 \times 10^{-31} \times v^2$ $\times 10^6 \text{ m s}^{-1}$ s and $a = F/m$ $\times 5.3 \times 10^{-15} \times 7.6 \times 10^{-3})/(9.11 \times 10^{-3})$ $\times 10^6 \text{ m s}^{-1}$	³¹) (C1) (A1)	C1 A1	[2]
	(b)	(İf st	ates ∆E _K does n	electric) potential difference ot depend on uniformity of field, then d as an M mark) same		M2 A1	[3]
5	(a)	•		/ erratic / zig-zag movement (do not allow molecules / atoms)		M1 A1	[2]
	(b)			qual / unbalanced collision rate <u>s</u> (on e re due to) random motion of (gas) mo	•	B1 B1	[2]
	(c)	eithe or	this prevent particle is m	th air molecules average out s haphazard motion ore massive / heavier / has large ine ause only small movements / accelera	` ,	M1 A1	[2]
6	(a)	wave incident at an edge / aperture / slit /(edge of) obstacle bending / spreading of wave (into geometrical shadow) (award 0/2 for bending at a boundary)			M1 A1	[2]	
	(b)		apparatus e.g. detector e.g. what is observed	laser & slit / point source & slit / lam microwave source & slit water / ripple tank, source & barrier screen aerial / microwave probe strobe / lamp	p and slit & slit	B1 B1 B1	[3]
			apparatus e.g. detector e.g. what is observed	loudspeaker, and slit / edge microphone & c.r.o. / ear		B1 B1 B1	[3]
7	(a)	eithe or	current in circ hence <i>V</i> = <i>EF</i>	same throughout the circuit $(N + Q)$	//1) \(\lambda\) \(\lambda\)	B1 B1 A0	[2]

	Page 4		Mark Scheme		Syllabus	Paper	
			GCE A/AS LEVEL – Octobe	r/November 2008	9702	02	
	(b)	(i)	(as temperature rises), resistance of (thermistor) decreases either resistance of parallel combination decreases			M1	
			or p.d. across 5 k Ω resistor / thermistor decreases			M1	
			p.d. across 2000 Ω resistor / voltmeter reading increases			A1	[3]
		(ii)	if R is the resistance of the parall				
		either $3.6 = (2 \times 6) / (2 + R)$ or current in $2 \text{ k}\Omega$ resistor = 1.8 mA				C1	
			$R = 1.33 \text{ k}\Omega$	current in 5 k Ω resi	istor = 0.48 mA	C1	
			$\frac{1}{1.33} = \frac{1}{5} + \frac{1}{T}$	current in thermisto	or = 1.32 mA	C1	
			$T = 1.82 \text{ k}\Omega$	T = 2.4 / 1.32 = 1.8	2 kΩ	A1	[4]
8	(a)	per	nucleus has constant probability of decay per unit time / in a given time (allow 1 mark for 'cannot predict which nucleus will decay next')			M1 A1	[2]
	(b)	(i)	count rate / activity decreases			B1	[1]
		(ii)	count rate fluctuates / is not smo	oth		B1	[1]
	(c)	eith or	er the (decay) curves are similar curves indicate same half-life	/ same		B1	[1]