Universidade Federal de Pernambuco Departamento de Matemática - Geometria Analítica 1 Prof. Rodrigo Cavalcante

Décima Quarta Lista de Exercícios Superfícies Cilindricas e Cônicas

1. Determine a equação livre de parâmetros da superfície cilindrica \mathcal{S} de diretriz γ e geratrizes paralelas a \overrightarrow{v} , para os seguintes casos:

a)
$$\begin{cases} y^2 = 4x \\ z = 0 \end{cases}$$
 e $\vec{v} = (0, 0, 1)$

c)
$$\begin{cases} 4x^2 + z^2 + 4z = 0 \\ y = 0 \end{cases}$$
 e $\overrightarrow{v} = (4, 1, 0);$

a)
$$\begin{cases} y^2 = 4x \\ z = 0 \end{cases}$$
 e $\overrightarrow{v} = (0, 0, 1);$
b)
$$\begin{cases} y^2 + x = 1 \\ z = 0 \end{cases}$$
 e $\overrightarrow{v} = (2, 0, 1);$

c)
$$\begin{cases} 4x^2 + z^2 + 4z = 0 \\ y = 0 \end{cases}$$
 e $\overrightarrow{v} = (4, 1, 0);$
d)
$$\begin{cases} x + y + z = 1 \\ x + 2y + z = 0 \end{cases}$$
 e $\overrightarrow{v} = (1, 3, 1).$

- 2. Determine a equação livre de parâmetros da superfície cilíndrica S circunscrita à esfera Q de centro C = (2,1,3)e raio $\rho = 3$, cujas geratrizes são paralelas à reta $r: X = (-3,7,5) + \lambda(1,1,-2)$
- 3. Determine a equação livre de parâmetros da superfície cilíndrica \mathcal{S} cuja diretriz γ é a circunferência que contém o ponto A=(1,3,2) e está contida no plano ortogonal à reta $r: X=(0,1,4)+\lambda(2,3,1)$, sabendo que o centro da cincuferência pertence à esta reta e que as geratrizes são paralelas a ela.
- 4. Determine a equação livre de parâmetros da superfície cônica S de diretriz γ e vértice V, para os seguintes casos:

a)
$$\begin{cases} 4x^2 + z^2 = 4 \\ y = 1 \end{cases}$$
 e $V = (0, 0, 0);$
b)
$$\begin{cases} x^2 = y - 1 \\ z = 1 \end{cases}$$
 e $V = (0, 1, 0);$

c)
$$\begin{cases} yz = 1 \\ x = 1 \end{cases}$$
 e $V = (0, 0, 0);$

b)
$$\begin{cases} x^2 = y - 1 \\ z = 1 \end{cases}$$
 e $V = (0, 1, 0)$

c)
$$\begin{cases} yz = 1 \\ x = 1 \end{cases}$$
 e $V = (0, 0, 0);$
$$d) \begin{cases} x^2 + y^2 + z^2 = 4 \\ 2x + y - 2z = 0 \end{cases}$$
 e $V = (1, 0, 1).$

- 5. Determine a equação livre de parâmetros da superfefície cônica ${\mathcal S}$ que é tangente à superfície esférica $Q: x^2 + y^2 + z^2 - 2x - 2y + 1 = 0$ e tem vértice em V = (4, 4, 0).
- 6. Determine a equação livre de parâmetros da superfície cônica \mathcal{S} cuja diretriz γ é a circunferência que contém o ponto A = (1,3,2) e está contida no plano ortogonal à reta $r: X = (0,1,4) + \lambda(2,3,1)$, sabendo que o centro da cincuferência pertence à esta reta e o vértice de S é o ponto $V=(2,4,5)\in r$.