BECA / Dr. Huson / 11.1 IB Math

Unit 1: Algebra Review

Name:

Quadratic functions: solve for the roots or zeros of the function, f(x) = 0

For each function, first factor it (always show this step), then state the roots using the form, "x = 3, 4" (or whatever the values are).

1.
$$f(x) = x^2 + 7x + 12$$

2.
$$f(x) = x^2 + 13x + 12$$

3.
$$f(x) = x^2 - 4x - 12$$

4.
$$f(x) = 2x^2 - 10x - 12$$

5.
$$f(x) = -3x^2 + 6x - 3$$

6.
$$f(x) = \frac{1}{2}x^2 + 2x + 2$$

Model situations with quadratic functions

- 7. Expand from vertex form to standard form, $ax^2 + bx + c$ where $a, b, c \in \mathbb{R}$
 - (a) $f(x) = (x-2)^2 + 6$
 - (b) $f(x) = (x-5)^2 9$
- 8. Factor each function.
 - (a) $f(x) = x^2 + 5x + 6$
 - (b) $f(x) = x^2 7x + 10$
 - (c) $f(x) = x^2 + 6x + 8$
 - (d) $f(x) = x^2 2x 8$
 - (e) $f(x) = x^2 7x 8$
 - (f) $f(x) = x^2 + 3x 10$

Completing the square

Rewrite the function in vertex form, $f(x) = (x - h)^2 + k$. Include the step showing the $(-\frac{b}{2a})^2$ term.

9.
$$f(x) = x^2 - 6x + 11$$

10.
$$f(x) = x^2 + 8x + 9$$

Expand the function from vertex form to standard form, $ax^2 + bx + c$ where $a, b, c \in \mathbb{R}$. Then factor the result and state the roots. Sketch the function, labeling the intercepts with values and the vertex as an ordered pair.

11.
$$f(x) = (x-2)^2 - 9$$

BECA / Dr. Huson / 11.1 IB Math Unit 1: Algebra Review

Name:

Unit 1: Algebra Review

Name:

Graphing quadratics

12. Graph the function $f(x) = -x^2 - 4x + 5$. You may use a graphing calculator rather than factoring the function and completing the square.

Label the scales with at least a few values. Mark the vertex as an ordered pair and label each intercept with its value.

Model situations with quadratic functions

Use a graphing calculator to view the graph and a table of values for the following function:

$$h(x) = -\frac{1}{225}x^2 + \frac{2}{3}x$$

where h(x) represents the height of an object and x it's horizontal position.

Make a table of values to the left of the graph, below. Include key values. Graph the function over domain where $h(x) \geq 0$. Use a horizontal scale of 1 square equals 10 units and vertical scale of 1 square equals 2.5 units. Label the intercepts and vertex.

The inverse of a function

Derive the inverse of each function. Simplify the expression.

13.
$$f(x) = \frac{1}{2}x + 2$$

14.
$$f(x) = \frac{2}{3}x^2 - 3$$

15.
$$f(x) = \sqrt{x-1} + \frac{1}{2}$$

 $\rm BECA$ / Dr. Huson / 11.1 IB Math

Unit 1: Algebra Review

Name:

Function substitution

- 16. Given $f(x) = x^2 1$. Simplify f(2x 1)?
- 17. Given $f(x) = x^3$. Simplify f(x+1)?
- 18. Given $f(x) = 4 (2x^2 + x)$. Simplify $f(\frac{1}{2}x 3)$?

Function composition

In each exercise, perform the composition $f \circ g$ and simplify.

- 19. Given $f(x) = \frac{1}{2}x^2 + 1$ and g(x) = 2x
- 20. Given $f(x) = \sqrt{x-4}$ and $g(x) = x^2 + 4$
- 21. Given $f(x) = \frac{1-x}{x^2} + 1$ and g(x) = 2x + 3
- 22. Given f(x) = 3x + 2. What is the inverse of the function $f^{-1}(x)$?
 - (a) Rewrite the function reversing x and y. (assume that y and f(x) are interchangeable)
 - (b) Solve for x. Finish by putting y on the left side of the equality.
 - (c) State the answer as $f^{-1}(x)$ equals an expression.

Function substitution

- 23. Given f(x) = 3x + 2. What is f(2x 1)?
 - (a) Perform the substitution, putting 2x 1 in parenthesis.

Unit 1: Algebra Review

Name:

(b) Simplify, beginning each line with a leading equals sign if it is equal to the line above.

Function composition

- 24. Given $f(x) = x^2 + 2$ and $g(x) = x^2$ What is $(f \circ g)(x)$?
 - (a) Rewrite $f \circ g$ and perform the inner substitution (i.e. for g): $f(g(x)) = f(x^2)$
 - (b) Perform the substitution, putting x^2 in parenthesis (and using a leading equals sign).
 - (c) Simplify, beginning each line with a leading equals sign.