AIR FORCE FLIGHT DYNAMICS LAB WRIGHT-PATTERSON AFB OHIO F/6 12/1
ADAPTIVE ROBUST ESTIMATION OF LOCATION AND SCALE PARAMETERS OF --ETC(U)
SEP 78 H L HARTER, A H MOORE, T F CURRY
AFFDL-TR-78-128 NL AD-A062 436 UNCLASSIFIED OF 2 AD A062436

AD AO 62436

AFFDL-TR-78-128

ADAPTIVE ROBUST ESTIMATION OF LOCATION AND SCALE PARAMETERS OF SYMMETRIC POPULATIONS

H. LEON HARTER
APPLIED MATHEMATICS GROUP
ANALYSIS AND OPTIMIZATION BRANCH
STRUCTURAL MECHANICS DIVISION
ALBERT H. MOORE
AIR FORCE INSTITUTE OF TECHNOLOGY
THOMAS F. CURRY
AIR FORCE MILITARY PERSONNEL CENTER

D D C 19 1978

DEC 19 1978

F

SEPTEMBER 1978

TECHNICAL REPORT AFFDL-TR-78-128 Final Report September 1977 — August 1978

Approved for public release; distribution unlimited.

AIR FORCE FLIGHT DYNAMICS LABORATORY
AIR FORCE WRIGHT AERONAUTICAL LABORATORIES
AIR FORCE SYSTEMS COMMAND
WRIGHT-PATTERSON AIR FORCE BASE, OHIO 45433

78 12 13 013

NOTICE

When Government drawings, specifications, or other data are used for any purpose other than in connection with a definitely related Government procurement operation, the United States Government thereby incurs no responsibility nor any obligation whatsoever; and the fact that the government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data, is not to be regarded by implication or otherwise as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use, or sell any patented invention that may in any way be related thereto.

This report has been reviewed by the Information Office (10) and is releasable to the National Technical Information Service (NTIS). At NTIS, it will be available to the general public, including foreign nations.

This technical report has been reviewed and is approved for publication.

H. LEON HARTER

Project Engineer

Chief, Analysis & Optimization Br.

FOR THE COMMANDER

KUSTER, Jr., Col, Chief. Structural Mechanics Division

"If your address has changed, if you wish to be removed from our mailing list, or if the addressee is no longer employed by your organization please notify AFFDL/FBRD, WPAFB, OH 45433 to help us maintain a current mailing list."

Copies of this report should not be returned unless return is required by security considerations, contractual obligations, or notice on a specific document.

AIR FORCE/56780/5 December 1978 - 475

REPORT DOCUMENTATION	PAGE	READ INSTRUCTIONS BEFORE COMPLETING FORM
AFFDL-TR-78-128	2. GOVT ACCESSION	NO. 3. RECIPIENT'S CATALOG NUMBER
Adaptive Robust Estimation of Lo Scale Parameters of Symmetric Po		5. TYPE OF REPORT & PERIOD COVERED Final Report September 1977-August 1978 FERFORMING ORG. REPORT NUMBER
Albert H. Moore		8. CONTRACT OR GRANT NUMBER(*) In-House
Thomas F. Curry PERFORMING ORGANIZATION NAME AND ADDRESS Air Force Flight Dynamics Labora Air Force Wright Aeronautical La Air Force Systems Command Wright-Patterson Air Force Base,	horatories	10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS 61102F 2304N101
11. CONTROLLING OFFICE NAME AND ADDRESS Air Force Flight Dynamics Laborat Air Force Wright Aeronautical Lab Air Force Systems Command Wright-Patterson Air Force Base, 14. MONITORING AGENCY NAME & ADDRESS(II different	Ohio 45433	12 September 1978 13. NUMBER OF PAGES 102 15. SECURITY CLASS. (of this report)
		UNCLASSIFIED 15a. DECLASSIFICATION/DOWNGRADING SCHEDULE
17. DISTRIBUTION STATEMENT (of the abstract entered	in Block 20, il differen	nt from Report)
18. SUPPLEMENTARY NOTES		
Scale parameter Likelihoo	statistic	Uniform population Normal population Double exponential population Mean square error Relative efficiency
In 1972 Harter proposed, as adaptive standard deviation (σ) of a symmetre estimators for the uniform (U), not according as K < 2.2, 2.2 < K < 3.8 authors have studied the use of other and the likelihood function, and the	ve robust esti ric population rmal (N) or do B, where K is her criteria,	mators of the mean (μ) and , the maximum likelihood (ML) uble exponential (D) population the sample kurtosis. Various based on Hogg's Q statistic

78 12 13 OTO

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (Warn Day Entered)

Uniform (U), Normal (N), and Double (D)

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE(When Date Entered)

(probabilities of misclassification), have now been established for sample sizes n=8 (4) 24 by means of a Monte Carlo study based on 5000 random samples of each size from each of the above populations (U, N and D). Mean square errors of the adaptive estimates are compared with those of the ML estimates if the population from which each sample came is known, and the effect of debiasing the ML estimates of σ is studied. Adaptive estimation of the canonical scale parameter F σ , where the factor F is defined as the multiplier of σ such that F σ is the 97.5% point of a population symmetric about zero, is also considered. Monte Carlo studies have also been conducted to determine the performance of the various criteria when applied to an independent set of random samples (obtained by using a different seed for the random number generator) from U, N and D and to random samples from several other symmetric populations, for the above values of n and for the intermediate values n=10 (4) 22, with critical values of the criteria determined by interpolation.

the standard deviation (signa)

UNCLASSIFIED

PREFACE

During the past several years, the first two authors have performed extensive research on adaptive robust estimation and have served as sponsor and faculty advisor, respectively, for several Air Force Institute of Technology M.S. theses on the subject. The work documented here represents an extension of all those efforts, especially that of the third author in the latest of the series of AFIT theses, which reported the results of a small Monte Carlo study of the performances of various estimators. The authors wish to thank Lt Michael Himmelberg of the ASD Computer Center for performing, on the CDC 6600 computer, the much more extensive Monte Carlo study which is described in Section III and whose results are reported in Appendix A of this report.

The work of the first author was performed under work unit 2304N101, Order Statistics and their Use in Testing and Estimation. This is the final report on that in-house work unit.

TABLE OF CONTENTS

Section			Page
I.	INTRODU	UCTION	1
II.	ESTIMA	TORS AND MEASURES OF PERFORMANCE	4
III.	MONTE (CARLO STUDY	11
IV.	CONCLUS	SIONS AND RECOMMENDATIONS	20
	REFERE	NCES	26
APPENDIX	A. RI	ESULTS OF MONTE CARLO STUDY	28
APPENDIX	B. RA	ANDOM NUMBER GENERATION AND PARAMETER	
	ES	STIMATIONSYMMETRIC BETA	91
APPENDIX	C. RA	ANDOM NUMBER GENERATION AND PARAMETER	
	E:	STIMATIONSTUDENT t	98

PRECEDENC PAGE NOT PILLED

LIST OF TABLES

Table		Page
1	Critical Values of Criteria for Classification as U, N or D (Determined in Phase I and Used Also in Phases II and III)	28
2	Contingency TablesClassification vs. True Population by Criteria (n=8)	29
3	Contingency TablesClassification vs. True Population by Criteria $(n=12)$	30
4	Contingency TablesClassification vs. True Population by Criteria (n=16)	31
5	Contingency TablesClassification vs. True Population by Criteria (n=20)	32
6	Contingency TablesClassification vs. True Population by Criteria (n=24)	33
7	Mean Square Errors of Parameter Estimates if Population is Known	34
8	Efficiencies of Adaptive Robust Estimates of Location Parameter (Relative to Maximum Likelihood Estimate if Population is Known)	35
9	Efficiencies of Adaptive Robust Estimates of Scale Parameter (Relative to Maximum Likelihood Estimate if Population is Known)	36
10	Efficiencies of Adaptive Robust Estimates of Canonical Scale Parameter (Relative to Maximum Likelihood Estimate if Population is Known)	37
11	Efficiencies of Debiased Adaptive Robust Estimates of Scale Parameter (Relative to Debiased Maximum Likelihood Estimate if Population is Known)	38
12	Efficiencies of Debiased Adaptive Robust Estimates of Canonical Scale Parameter	
	(Relative to Debiased Maximum Likelihood Estimate if Population is Known)	39
13	Debiasing Factors for Maximum Likelihood Estimators of Scale Parameter for Double Spike, Arc Sine, Symmetric Beta and Student t Populations (Phase III)	40
14	Contingency TablesClassification vs. True Population by Criteria (Phase III: n=8)	41
15	Contingency TablesClassification vs. True Population by Criteria (Phase III: $n=12$)	43
16	Contingency TablesClassification vs. True Population by Criteria (Phase III: $n=16$)	45
17	Contingency TablesClassification vs. True Population by Criteria (Phase III: $n=20$)	47
18	Contingency TablesClassification vs. True Population by Criteria (Phase III: n=24)	49

LIST OF TABLES (CONTINUED)

Table		Page
19	Mean Square Errors of Parameter Estimates (Phase III) if Population is Known	51
20	Efficiencies of Adaptive Robust Estimates of Location Parameter (Relative to Maximum Likelihood Estimate if Population is Known) (Phase III)	54
21	Efficiencies of Adaptive Robust Estimates of Scale Parameter (Relative to Maximum Likelihood Estimate if Population is Known) (Phase III)	57
22	Efficiencies of Adaptive Robust Estimates of Canonical Scale Parameter (Relative to Maximum Likelihood Estimate if Population is Known) (Phase III)	60
23	Efficiencies of Debiased Adaptive Robust Estimates of Scale Parameter (Relative to Debiased Maximum Likelihood Estimate if Population is Known) (Phase III)	63
24	Efficiencies of Debiased Adaptive Robust Estimates of Canonical Scale Parameter (Relative to Debiased Maximum Likelihood Estimate if Population is Known) (Phase III)	66
25	Critical Values of Criteria for Classification as U, N or D (Phase IV) (Determined by Five-Point Lagrangian Interpolation in Table 1)	69
26	Debiasing Factors for Maximum Likelihood Estimates of Scale Parameter for Double Spike, Arc Sine, Symmetric Beta and Student t Populations (Phase IV)	70
27	Contingency TablesClassification vs. True Population by Criteria (Phase IV: $n=10$)	71
28	Contingency TablesClassification vs. True Population by Criteria (Phase IV: $n=14$)	73
29	Contingency TablesClassification vs. True Population by Criteria (Phase IV: $n=18$)	75
30	Contingency TablesClassification vs. True Population by Criteria (Phase IV: $n=22$)	77
31	Mean Square Errors of Parameter Estimates (Phase IV) if Population is Known)	79
32	Efficiencies of Adaptive Robust Estimates of Location Parameter (Relative to Maximum Likelihood Estimate if Population is Known) (Phase IV)	81

LIST OF TABLES (CONTINUED)

Table			Page
33		of Adaptive Robust Estimates of Scale Parameter Maximum Likelihood Estimate if Population is Known)	83
34		of Adaptive Robust Estimates of Canonical Scale Parameter Maximum Likelihood Estimate if Population is Known)	85
35		of Debiased Adaptive Robust Estimates of Scale Parameter Debiased Maximum Likelihood Estimate if Population is Known)	87
36	Parameter	of Debiased Adaptive Robust Estimates of Canonical Scale Debiased Maximum Likelihood Estimate if Population is Known)	89

SECTION I

INTRODUCTION

One of the fundamental problems of statistics is that of estimating one or more population parameters on the basis of information contained in a random sample. Foremost among the parameters to be estimated are the location and scale parameters.

During the greater part of the nineteenth century, most statisticians, following Gauss (1809), pursued the dogma of normality, believing (or at least behaving as if they believed) that all errors in observations are normally distributed. The location parameter (mean) μ and the scale parameter (standard deviation) σ are sufficient to specify a normal distribution completely. If the distribution is indeed normal, the sample mean and standard deviation are maximum likelihood estimators of the corresponding population parameters.

In the 1880's, Edgeworth and Newcomb became concerned about the consequences of using the sample mean and standard deviation and the method of least squares, all based on the normal distribution, when the assumption of normality is not valid. Edgeworth (1886) declared that, on the grounds of precision, the arithmetic mean is superior for the normal distribution and others near it, but the median is better for long-tailed distributions, i.e. "when the apex of the curve is very high and its extremities very much extended." Newcomb (1886), after examining a collection of 684 residual errors based on observations of a transit of Mercury, developed an estimator based on a mixture of normal density functions. Unfortunately, even though many statisticians

recognized the problem, there was little progress in solving it during the following 60 years. In the late 1940's, however, Tukey and his colleagues in the Statistical Research Group at Princeton began to offer practical solutions to the problem by establishing several properties of alternative estimators.

Box (1953) coined the term "robustness." A robust procedure is one that still performs very well under moderate changes in assumptions concerning the underlying distribution. Box found, in particular, that analysis-of-variance tests are quite robust to departures from the assumption of homogeneity of variance. The concept of robustness soon came to be applied to estimation procedures as well as to test procedures. Starting in the early 1960's, several authors, including Hodges & Lehmann (1963) and Huber (1964), proposed various robust estimators of location parameters of symmetric distributions. Some of them also considered the problem of robust estimation of scale parameters, which involves certain complications not present in the case of location parameters. In the first place, as Huber pointed out, the standard deviation σ does not have the same properties for all distributions, since the interval $(\mu - k\sigma, \mu + k\sigma)$, where k is a constant, includes widely varying proportions of various populations, so that there is no natural "canonical" scale parameter to be estimated. Secondly, the sample mean and other common estimators of the location parameter of a symmetric distribution (median, mode, and midrange) are unbiased, but the sample standard deviation and other common estimators of the scale parameter are biased; moreover, the magnitude of the bias depends on the underlying distribution.

Adaptive robust estimators are estimators which are designed to achieve some degree of robustness by varying the estimation procedure according to the value of some measure of the sample indicative of the population type. Hogg (1967) proposed an adaptive robust estimator of the location parameter of a symmetric population based on varying the estimation procedure according to the value of the sample kurtosis K. Harter (1972) proposed another such estimator based on classifying the sample as having come from a uniform, normal, or double exponential population according as K < K $_{
m L}$, K $_{
m L}$ \leq K \leq K $_{
m U}$, or K > K $_{
m U}$, with K $_{
m L}$ and $K_{\overline{I}\overline{I}}$ tentatively taken to be 2.2 and 3.8, respectively, and then using the appropriate maximum likelihood estimators of μ and σ . At about the same time, Hogg (1972) proposed an alternative criterion based on the value of the statistic Q = $[\overline{U}(\alpha) - \overline{L}(\alpha)]/[\overline{U}(\beta) - \overline{L}(\beta)]$ where $\overline{U}(\beta)[\overline{L}(\beta)]$ is the average of the largest [smallest] $n\beta$ order statistics (where nis the sample size), and Hogg, Uthoff, Randles & Davenport (1972) proposed still another criterion based on maximizing weighted likelihood functions.

In what is commonly known as the "Princeton study," Andrews, Bickel, Hampel, Huber, Rogers & Tukey (1972) made a comprehensive theoretical and Monte Carlo study of robust estimates of location.

On a smaller scale, a similar study of robust estimates of both location and scale parameters has been carried out in a series of Air Force Institute of Technology Master's theses by Caso (1972), Jorgenson (1973), Forth (1974), Rugg (1974), Almquist (1975), and Curry (1977). In this series, both nonadaptive and adaptive procedures have been considered, with emphasis on the latter. The effect of varying the critical values for the K, Q and likelihood criteria

has been considered, along with objective methods of choosing the critical values. The purpose of the present work is to summarize and extend the results, to study the performance of adaptive robust estimators of location and scale parameters for samples from a broad spectrum of symmetric distributions, and to make recommendations concerning their use.

Section II will deal with the adaptive robust estimators and the measures of their performance to be considered. Section III will describe the various phases of the Monte Carlo study conducted to establish the critical values of the criteria and compare the performance of the estimators. Section IV will present conclusions and recommendations.

SECTION II

ESTIMATORS AND MEASURES OF PERFORMANCE

All of the adaptive robust estimation procedures to be considered will involve classifying the sample as having come from a uniform, normal, or double exponential population and then using the maximum likelihood estimators of the location and scale parameters for the appropriate population. If the sample actually came from the population into which it is classified (or from any symmetric population), the maximum likelihood estimator $\hat{\mu}$ of the location parameter μ (the population mean) is unbiased, but the maximum likelihood estimator $\hat{\sigma}$ of the scale parameter σ (the population standard deviation) is biased. The debiased maximum likelihood estimator of the scale parameter, $\overline{\sigma} = C\hat{\sigma}$, will be considered in addition to $\hat{\sigma}$. The debiasing factors C_U , C_N and C_D for

samples of size n = 8(2)24 from uniform, normal and double exponential populations, respectively, are:

Sample Size, n	$C_{U} = (n+1)/(n-1)$	$C_{N} = \sqrt{n/(n-1)/c_2}$	$C_{D} = n/E(V_{n})$
8	9/7 = 1.286	$\sqrt{8/7}/.9650 = 1.108$	8/7.449 = 1.074
10	11/9 = 1.222	$\sqrt{10/9}$ /.9727 = 1.084	10/9.449 = 1.058
12	13/11 = 1.182	$\sqrt{12/11}/.9776 = 1.068$	12/11.45 = 1.048
14	15/13 = 1.154	$\sqrt{14/13}/.9810 = 1.058$	14/13.45 = 1.041
16	17/15 = 1.133	$\sqrt{16/15}/.9835 = 1.050$	16/15.45 = 1.036
18	19/17 = 1.118	$\sqrt{18/17}/.9854 = 1.044$	18/17.45 = 1.032
20	21/19 = 1.105	$\sqrt{20/19}/.9869 = 1.040$	20/19.46 = 1.028
22	23/21 = 1.095	$\sqrt{22/21}/.9882 = 1.036$	22/21.51 = 1.025
24	25/23 = 1.087	$\sqrt{24/23}/.9892 = 1.033$	24/23.51 = 1.021

Values of c_2 used in obtaining the above table were taken from a table by Harter (1970) and those of $E(V_n)$ from a table (for $n \le 20$) and an asymptotic approximation (for $n \ge 20$) by Bain & Engelhardt (1973).

As mentioned in the introduction, another difficulty with estimating the scale parameter is that the standard deviation σ , which will be called the scale parameter, does not have the same properties for different populations. In particular, the percentage of the population contained in the interval $(\mu - k\sigma, \mu + k\sigma)$, where k is a constant, may vary widely from one population to another. For example, for k = 1, the interval $(\mu - \sigma, \mu + \sigma)$ contains 57.74% of the uniform population, 68.27% of the normal population, and 75.69% of the double exponential population. These proportions are approximately equalized for k = 1.5,

and their order is reversed for k=2. The interval $(\mu-1.5\sigma, \mu+1.5\sigma)$ contains 86.60% of the uniform population, 86.64% of the normal population, and 88.01% of the double exponential population. The interval $(\mu-2\sigma, \mu+2\sigma)$ contains 100% of the uniform population, 95.45% of the normal population, and 94.09% of the double exponential population. In an effort to resolve this problem, estimates $F\hat{\sigma}$ and $F\overline{\sigma}$ of the canonical scale parameter $F\sigma$ will be considered in addition to $\hat{\sigma}$ and $\overline{\sigma}$. The canonical scale factor F, which is defined as the value such that $(\mu-F\sigma, \mu+F\sigma)$ contains 95% of the population, so that $\mu+F\sigma$ is the 97.5% point of a symmetric population, is 1.64545, 1.95996 and 2.11833 for uniform, normal and double exponential populations, respectively.

The maximum likelihood estimators of the location parameter (population mean) μ are the sample midrange for the uniform population, the sample mean for the normal population, and the sample median for the double exponential population. These estimators are given by the following equations:

$$\hat{\mu}_{U} = (x_1 + x_n)/2 \tag{1}$$

$$\hat{\mu}_{N} = \sum_{i=1}^{n} x_{i}/n$$
 (2)

$$\hat{\mu}_{D} = \begin{cases} x_{(n+1)/2} & \text{(n odd)} \\ (x_{n/2} + x_{n/2+1})/2 & \text{(n even)} \end{cases}$$
 (3)

where $x_1 \le x_2 \le \dots \le x_n$ are the <u>ordered</u> sample values.

The maximum likelihood estimators of the scale parameter (population standard deviation) σ are the sample range divided by $2\sqrt{3}$ (or the sample semirange/ $\sqrt{3}$) for the uniform population, the sample standard deviation

for the normal population, and $\sqrt{2}$ times the mean deviation from the sample median for the double exponential population. These estimators are given by the following equations:

$$\hat{\sigma}_{U} = (x_{n} - x_{1})/2\sqrt{3} \tag{4}$$

$$\hat{\sigma}_{N} = \sqrt{\sum_{i=1}^{n} (x_{i} - \hat{\mu}_{N})^{2}/n}$$
 (5)

$$\hat{\sigma}_{D} = \sqrt{2} \sum_{i=1}^{n} |\mathbf{x}_{i} - \hat{\mu}_{D}|/n$$
 (6)

The adaptive robust estimators are $\hat{\mu}_U$ and $\hat{\sigma}_U$ if the sample is classified as having come from a uniform population, $\hat{\mu}_N$ and $\hat{\sigma}_N$ if it is classified as having come from a normal population, and $\hat{\mu}_D$ and $\hat{\sigma}_D$ if it is classified as having come from a double exponential population.

The criteria used in classifying a sample as having come from a uniform, normal or double exponential population are based on the sample kurtosis K, the sample value of Hogg's Q statistic, or the sample values of the likelihood for the three populations. These criteria are as follows:

(a) Criterion based on the sample kurtosis

$$K = \sum_{i=1}^{n} (x_i - \hat{\mu}_N)^4 / n \hat{\sigma}_N^4$$
 (7)

If K < K_L, classify the sample as U (uniform)

If K_L \leq K \leq K_U, classify the sample as N (normal)

If K > K_U, classify the sample as D (double exponential)

where the critical values K_L and K_U for each sample size may be calculated in either of two ways:

- (1) Choose $K_L = K_{L1}$ so that the proportion of N's (samples actually coming from a normal population) for which $K < K_{L1}$ equals the proportion of U's (samples actually coming from a uniform population) for which $K \geq K_{L1}$. Choose $K_U = K_{U1}$ so that the proportion of N's for which $K > K_{U1}$ equals the proportion of D's (samples actually coming from a double exponential population) for which $K \leq K_{U1}$.
- (2) Choose $K_L = K_{L2}$ so that the proportion of N's and D's for which K $\leq K_{L2}$ equals the proportion of U's for which K $\geq K_{L2}$. Choose $K_U = K_{U2}$ so that the proportion of U's and N's for which K $\leq K_{U2}$ equals the proportion of D's for which K $\leq K_{U2}$.
- (b) Criterion based on Hogg's statistic

$$Q = [\overline{U}(.04) - \overline{L}(.04)]/[\overline{U}(.5) - \overline{L}(.5)]$$
 (8)

(for convenience we have taken α = .04 instead of .05 as suggested by Hogg).

- (1) by replacing K by Q in (a)(1) above
- (2) by replacing K by Q in (a)(2) above
- (c) Criterion based on the largest likelihood:

If $L_U > L_N$ and $L_U > L_D$, classify the sample as U If $L_N \ge L_U$ and $L_N \ge L_D$, classify the sample as N If $L_D \ge L_U$ and $L_D > L_N$, classify the sample as D where the likelihood functions are given by the equations

$$L_{U} = (1/2 \hat{\sigma}_{U} \sqrt{3})^{n}$$
 (9)

$$L_{N} = (1/\hat{\sigma}_{N} \sqrt{2\pi})^{n} \exp \left[-\sum_{i=1}^{n} (x_{i} - \hat{\mu}_{N})^{2} / 2\hat{\sigma}_{n}^{2} \right]$$
 (10)

$$L_{D} = (1/\hat{\sigma}_{D}\sqrt{2})^{n} \exp \left[-\sqrt{2} \sum_{i=1}^{n} |x_{i} - \hat{\mu}_{D}|/\hat{\sigma}_{D}\right]$$
 (11)

(d) Criterion based on the ratio of the two larger likelihoods: If $L_U > L_D$, $L_N \ge L_D$ and $\lambda_1 < \lambda_1^*$, classify the sample as U If $L_U > L_D$, $L_N \ge L_D$ and $\lambda_1 \ge \lambda_1^*$, classify the sample as N If $L_U > L_N$, $L_D > L_N$ and $\lambda_2 < \lambda_2^*$, classify the sample as U If $L_U > L_N$, $L_D > L_N$ and $\lambda_2 \ge \lambda_2^*$, classify the sample as D If $L_N \ge L_U$, $L_D \ge L_U$ and $\lambda_3 \le \lambda_3^*$, classify the sample as N If $L_N \ge L_U$, $L_D \ge L_U$ and $\lambda_3 > \lambda_3^*$, classify the sample as D where

$$\lambda_1 = (L_N/L_U)^{1/n}, \ \lambda_2 = (L_D/L_U)^{1/n}, \ \lambda_3 = (L_D/L_N)^{1/n}$$
 (12)

and where the critical values λ_1^* , λ_2^* and λ_3^* for each sample size may be calculated in any of three ways:

(1) Choose $\lambda_1^\star = \lambda_{11}^\star$ so that, when $L_U > L_D$ and $L_N \ge L_D$, the proportion of N's for which $\lambda_1 < \lambda_{11}^\star$ equals the proportion of U's for which $\lambda_1 \ge \lambda_{11}^\star$. Choose $\lambda_2^\star = \lambda_{21}^\star$ so that, when $L_U > L_N$ and $L_D > L_N$, the proportion of D's for which

- $\begin{array}{l} \lambda_2 < \lambda_{21}^{\bigstar} \ \ \text{equals the proportion of U's for which} \\ \lambda_2 \geq \lambda_{21}^{\bigstar}. \quad \text{Choose } \lambda_3^{\bigstar} = \lambda_{31}^{\bigstar} \ \ \text{so that, when L}_N \geq \text{L}_U \ \ \text{and} \\ \text{L}_D \geq \text{L}_U, \ \ \text{the proportion of D's for which} \ \lambda_3 \leq \lambda_{31}^{\bigstar} \ \ \text{equals} \\ \text{the proportion of N's for which} \ \lambda_3 > \lambda_{31}^{\bigstar}. \end{array}$
- (2) Choose $\lambda_1^{\star} = \lambda_{12}^{\star}$ so that, when $L_U > L_D$ and $L_N \geq L_D$, the proportion of N's and D's for which $\lambda_1 < \lambda_{12}^{\star}$ equals the proportion of U's for which $\lambda_1 \geq \lambda_{12}^{\star}$. Choose $\lambda_2^{\star} = \lambda_{22}^{\star}$ so that, when $L_U > L_N$ and $L_D > L_N$, the proportion of D's and N's for which $\lambda_2 < \lambda_{22}^{\star}$ equals the proportion of U's and N's for which $\lambda_2 \geq \lambda_{22}^{\star}$. Choose $\lambda_3^{\star} = \lambda_{32}^{\star}$ so that, when $L_N \geq L_U$ and $L_D \geq L_U$, the proportion of D's for which $\lambda_3 \leq \lambda_{32}^{\star}$ equals the proportion of U's and N's for which $\lambda_3 \leq \lambda_{32}^{\star}$ equals the proportion of U's and N's for which $\lambda_3 \leq \lambda_{32}^{\star}$.
- (3) Choose $\lambda_1^{\star}=\lambda_{13}^{\star}$ so that the proportion of N's for which $\lambda_1<\lambda_{13}^{\star}$ equals the proportion of U's for which $\lambda_1\geq\lambda_{13}^{\star}$. Choose $\lambda_2^{\star}=\lambda_{23}^{\star}$ so that the proportion of D's for which $\lambda_2<\lambda_{23}^{\star}$ equals the proportion of U's for which $\lambda_2\geq\lambda_{23}^{\star}$. Choose $\lambda_3^{\star}=\lambda_{33}^{\star}$ so that the proportion of D's for which $\lambda_3\leq\lambda_{33}^{\star}$ equals the proportion of N's for which $\lambda_3>\lambda_{33}^{\star}$.
- (e) Criterion based on the dominant likelihood: If $\lambda_1 < \lambda_{13}^{\star}$ and $\lambda_2 < \lambda_{23}^{\star}$, classify the sample as U If $\lambda_1 \geq \lambda_{13}^{\star}$ and $\lambda_3 \leq \lambda_{33}^{\star}$, classify the sample as N If $\lambda_2 \geq \lambda_{23}^{\star}$ and $\lambda_3 > \lambda_{33}^{\star}$, classify the sample as D If none of the above pairs of inequalities holds, classify the sample as N.

The performance of an adaptive robust estimator may be measured in various ways, of which only two will be considered here. Of two or more adaptive estimators under consideration, we may prefer the one which (a) maximizes the number (or proportion) of samples classified correctly or (b) minimizes the mean square error (or maximizes the efficiency relative to the maximum likelihood estimator if the population is known). For adaptive robust estimators of the type under consideration, (a) is applicable only to samples from uniform, normal and/or double exponential populations, since otherwise correct classification is impossible, while (b) may be applied to samples from any population.

SECTION III

MONTE CARLO STUDY

A Monte Carlo simulation of the estimators based on the criteria [(a)(1), (a)(2), (b)(1), (b)(2), (c), (d)(1), (d)(2), (d)(3) and (e)] outlined in Section II was conducted in four phases. In Phase I, 5000 samples of each size n = 8(4)24 were drawn from each of the following populations (standardized so as to have mean zero and standard deviation one): uniform, normal and double exponential. The probability density functions of these populations are as follows:

(a) Uniform:
$$f_{U}(x) = 1/2\sqrt{3}, \quad (-\sqrt{3}, \sqrt{3})$$
 (13)

(b) Normal:
$$f_{N}(x) = \exp(-x^{2}/2)/\sqrt{2\pi}, (-\infty, \infty)$$
 (14)

(c) Double Exponential:
$$f_D(x) = \exp(-\sqrt{2}|x|)/\sqrt{2}$$
, $(-\infty, \infty)$ (15)

The standardized random variables were obtained by generating random variables uniformly distributed between 0 and 1 by use of the library subroutine RANF on the CDC 6600 computer and transforming them as follows:

(a) Uniform: If r is uniform between 0 and 1, then

$$U = \sqrt{3} (2r - 1)$$
 (16)

is standardized uniform.

(b) Normal: If r_1 and r_2 are independent uniform random variables between 0 and 1, then [see Box & Muller (1958)]

$$N_1 = \sqrt{-2\ell n(r_2)} \cos(2\pi r_1) \tag{17}$$

and

$$N_2 = \sqrt{-2\ln(r_2)} \quad \sin(2\pi r_1) \tag{18}$$

are standardized normal.

(c) Double Exponential: If r is uniform between 0 and 1, then

$$D = \begin{cases} \ell n(2r)/\sqrt{2}, & 0 < r < .5 \\ -\ell n(2-2r)/\sqrt{2}, & .5 \le r < 1 \end{cases}$$
 (19)

is standardized double exponential.

The values of $\hat{\mu}_U$, $\hat{\mu}_N$, $\hat{\mu}_D$, $\hat{\sigma}_U$, $\hat{\sigma}_N$, $\hat{\sigma}_D$, K, Q, L, L, L, L, λ_1 , λ_2 and λ_3 were then computed for each sample by use of Equations (1)-(12). For each sample size, the 15000 sample values of K (5000 from each population) were used to determine the critical values $K_{L,1}$ and $K_{L,1}$

satisfying the criterion (a)(1) and the critical values $K_{1,2}$ and $K_{U2}^{}$ satisfying the criterion (a)(2), as defined in Section II. Similarly, the sample values of Q were used to determine the critical values $Q_{1,1}$ and Q_{111} satisfying the criterion (b)(1) and the critical values \mathbf{Q}_{L2} and \mathbf{Q}_{U2} satisfying the criterion (b)(2), and the sample values of λ_1 , λ_2 and λ_3 were used to determine the critical values λ_{11}^{\star} , λ_{21}^{\star} and λ_{31}^{\star} satisfying the criterion (d)(1), the critical values λ_{21}^{\bigstar} , λ_{22}^{\bigstar} and λ_{32}^{\bigstar} satisfying the criterion (d)(2), and the critical values λ_{31}^{\star} , λ_{32}^{\star} and λ_{33}^{\star} satisfying the criteria (d)(3) and (e). These critical values for each combination of criterion and sample size are shown in Table 1 of Appendix A. As noted in the table, no critical values are required for criterion (c), which classifies a sample as having come from the population (U, N or D) for which the sample likelihood is greatest. These criteria were used, along with the critical values shown in Table 1, to classify each sample as U, N, D (having come from a uniform, normal or double exponential population, respectively). Tables 2-6 of Appendix A are contingency tables showing the number of samples from each population (U, N and D) classified by each criterion as U, N and D, for n = 8(4)24, respectively.

The adaptive robust estimates $\hat{\mu}_C$, $\hat{\sigma}_C$, $\overline{\sigma}_C$ = $C_C \hat{\sigma}_C$, $F_C \hat{\sigma}_C$ and $F_C \overline{\sigma}_C$ were computed for each sample, where the subscript C is U, N or D according as the sample was classified as U, N or D, where C_U , C_N and C_D are tabulated in the first paragraph of Section II, and where F_U = 1.64545, F_N = 1.95996 and F_D = 2.11833. The corresponding maximum likelihood (or debiased maximum likelihood) estimates $\hat{\mu}_T$, $\hat{\sigma}_T$, $\overline{\sigma}_T$ = $C_T \hat{\sigma}_T$, $F_T \hat{\sigma}_T$ and $F_T \overline{\sigma}_T$, where the subscript T is U, N or D according as

the true population from which the sample actually came is U, N or D, were also computed. Their mean square errors are shown in Table 7 of Appendix A. The ratios of those mean square errors to the mean square errors of the corresponding adaptive robust estimates, which are the efficiencies of the adaptive robust estimates relative to the maximum likelihood (or debiased maximum likelihood) estimates when the population from which each sample actually came is known, are shown in Tables 8-12 of Appendix A for $\hat{\mu}$, $\hat{\sigma}$, $\overline{\sigma}$, $F\hat{\sigma}$ and $F\overline{\sigma}$, respectively.

Phase II of the Monte Carlo study was a repetition of Phase I, with the following differences: (1) A different "seed" was used for the random number generator in order to obtain random samples independent of those obtained in Phase I; (2) For the various criteria, the critical values which were determined in Phase I (see Table 1 of Appendix A) were used instead of determining new ones from the new samples. In Appendix A, the contingency tables giving classification vs. true population for the samples of Phase II are shown in Tables 2-6 to the right of those for the samples in Phase I. The mean square errors of the maximum likelihood (or debiased maximum likelihood) estimates (if the population is known) which were obtained in Phase II are shown in Table 7 underneath those obtained in Phase I. The efficiencies of the adaptive robust estimates relative to the corresponding maximum likelihood (or debiased maximum likelihood) estimates for the samples of Phase II are shown in Tables 8-12 to the right of those for the samples in Phase I.

Phase III of the Monte Carlo study was similar to Phase II, the difference being that samples were drawn from other symmetric populations

instead of the uniform (kurtosis $\alpha_4=1.8$), normal ($\alpha_4=3$) and double exponential ($\alpha_4=6$) populations. The standardized populations considered were the following: double spike ($\alpha_4=1$); arc sine ($\alpha_4=1.5$); symmetric beta with parameters p = 1.5, 2.0, 2.5, 3.0, 3.5 and 4.0 [$\alpha_4=2$, 15/7 = 2.143, 2.25, 7/3 = 2.333, 2.4 and 27/11 = 2.455, respectively]; Student t with degrees of freedom $\nu=16$, 10, 8, 7, 6, 5 [$\alpha_4=3.5$, 4, 4.5, 5, 6 and 9 respectively]. Parenthetically, it may be remarked that the double spike, arc sine and uniform populations are symmetric beta populations with parameters 0, 0.5 and 1.0 respectively, while the normal population is both a symmetric beta population with parameter ∞ and a Student t population with ∞ degrees of freedom. The Student t population with 6 degrees of freedom and the double exponential population both have kurtosis $\alpha_4=6$, but they are not the same. The standardized double spike population is a discrete population whose probability mass function is given by

$$p_{DS}(\mathbf{x}) = (1/2)\delta_{\mathbf{x},-1} + (1/2)\delta_{\mathbf{x},-1}$$
 (20)

where δ is the Kronecker delta $[\delta_{ij} = 1 \text{ if } i = j \text{ and } \delta_{ij} = 0 \text{ if } i \neq j]$. The probability density functions of the standardized arc sine, symmetric beta and Student t populations are as follows:

(a) Arc sine:
$$f_{AS}(x) = 1/\pi \sqrt{2-x^2}$$
, $(-\sqrt{2}, \sqrt{r})$

(b) Symmetric beta:

$$f_{SB}(x) = \left[\Gamma(2p)/\Gamma^2(p)(2\sqrt{2p+1})^{2p-1}\right](2p+1-x^2)^{p-1}, (-\sqrt{2p+1}, \sqrt{2p+1})$$
 (22)

(c) Student t:

$$f_{ST}(x) = \{ \Gamma[(v+1)/2] / \Gamma(1/2) \Gamma(v/2) \sqrt{v-2} \} \left[1 + x^2 / (v-2) \right]^{-(v+1)/2}, (-\infty, \infty)$$
 (23)

The standardized random variables for the double spike and arc sine populations were obtained by generating random variables uniformly distributed between 0 and 1 by use of the library subroutine RANF on the CDC 6600 computer and transforming them as follows:

(a) Double spike: If r is uniform between 0 and 1, then

DS =
$$\begin{cases} -1, & r \leq .5 \\ +1, & r > .5 \end{cases}$$
 (24)

is standardized double spike.

(b) Arc sine: If r is uniform between 0 and 1, then

AS =
$$\sqrt{2} \sin [(r - 1/2)\pi]$$
 (25)

is standardized arc sine.

Just as it is for the uniform population, the sample midrange is the maximum likelihood estimator of the location parameter (population mean) μ for the double spike and arc sine populations. Replacing the subscript U by DS and then by AS in Equation (1), we have

$$\hat{\mu}_{DS} = (x_1 + x_n)/2 \tag{26}$$

$$\hat{\mu}_{AS} = (x_1 + x_n)/2 \tag{27}$$

The sample range (or semirange) is a sufficient statistic for the scale parameter (population standard deviation) σ for the double spike and arc sine populations, just as it is for the uniform populations, but division by different constants is required to obtain the

maximum likelihood estimators, which are given by

$$\hat{\sigma}_{DS} = (x_n - x_1)/2 \tag{28}$$

$$\hat{\sigma}_{AS} = (x_n - x_1)/2\sqrt{2} \tag{29}$$

The canonical scale factors for the double spike and arc sine populations are F_{DS} = 1.00000 and F_{AS} = 1.40986, respectively.

Generation of random numbers and iterative estimation of location and scale parameters will be discussed in Appendix B for symmetric beta populations and in Appendix C for Student t populations.

The debiasing factor for the maximum likelihood estimator $\hat{\sigma}_{DS}$ of the scale parameter of a double spike population from a sample of size n is $C_{DS} = 2^{n-1}/(2^{n-1}-1)$, since $\hat{\sigma}_{DS} = 0$ with probability $1/2^{n-1}$ and $\hat{\sigma}_{DS} = \sigma_{DS}$ (the true value) with probability $(2^{n-1}-1)/2^{n-1}$. Closed form expressions for the debiasing factors for the maximum likelihood estimators of the scale parameters of the arc sine population, the six symmetric beta populations, and the six Student t populations are not available. Therefore, the Monte Carlo sample results were used to obtain the approximation $C_{AS} \doteq 5000/\sum_{1}^{5000} \hat{\sigma}_{AS}$ for the arc sine population and analogous approximations for the other populations. The debiasing factors for samples of size n = 8(4)24 for all 14 populations (other than U, N and D) are shown in Table 13 of Appendix A.

In Phase III, as in Phases I and II, the values $\hat{\mu}_U$, $\hat{\mu}_N$, $\hat{\mu}_D$, $\hat{\sigma}_U$, $\hat{\sigma}_N$, $\hat{\sigma}_D$, K, Q, L, L, L, L, λ_1 , λ_2 and λ_3 were computed for each sample by use of Equations (1)-(12), and the results were used to classify each sample as U, N or D, after which the adaptive robust estimates of

location and scale parameters were calculated. An exception was necessary in the case of samples from the standardized double spike population that consisted of all +1's or all -1's. For such a sample, $\hat{\sigma}_U = \hat{\sigma}_N = \hat{\sigma}_D = 0$ and both the numerator and the denominator of the expression for Q in Equation (8) are zero, so K, Q, $L_{\rm H}$, $L_{\rm N}$, $L_{\rm D}$, $\lambda_1,~\lambda_2$ and λ_3 were not calculated and the sample was classified as U. The results of Phase III of the Monte Carlo study are shown in Tables 14-24 of Appendix A. Tables 14-18 are contingency tables showing the number of samples from each population [DS, AS, SB(1.5), SB(2.0), SB(2.5), SB(3.0), SB(3.5), SB(4.0), ST(16), ST(10), ST(8), ST(7), ST(6) and ST(5)] classified by each criterion as U, N and D, for n = 8(4)24, respectively. Criterion (c) was dropped because of its poor performance in Phases I and II. The mean square errors of $\hat{\mu}_{T}$, $\hat{\sigma}_{T}$, $\overline{\sigma}_{T}$ = $C_{T}\hat{\sigma}_{T}$, $F_{T}\hat{\sigma}_{T}$ and $F_{T}\overline{\sigma}_{T}$, where the subscript T designates the true population from which the sample actually came, are shown in Table 19. The efficiencies of the adaptive robust estimates, relative to the maximum likelihood (or debiased maximum likelihood) estimates when the population from which each sample actually came is known, are shown in Tables 20-24 for $\hat{\mu}$, $\hat{\sigma}$, $\overline{\sigma}$, $F\hat{\sigma}$ and $F\overline{\sigma}$, respectively.

In Phase IV of the Monte Carlo study, critical values of the criteria [(a)(1), (a)(2), b(1), b(2), (d)(1), (d)(2), (d)(3) and (e)] for sample sizes n = 10(4)22, obtained by interpolation from the corresponding critical values for n = 8(4)24, were used to classify (as U, N or D) 5000 samples of each size from each of the seventeen populations considered in Phases I-III and the adaptive robust estimates were then calculated. The five-point Lagrangian interpolation formulas used to

obtain the critical values V (where V can be K_{L1} , K_{U1} , K_{L2} , K_{U2} , Q_{L1} , Q_{U1} , Q_{L2} , Q_{U2} , λ_{11}^{\star} , λ_{21}^{\star} , λ_{31}^{\star} , λ_{12}^{\star} , λ_{22}^{\star} , λ_{32}^{\star} , λ_{13}^{\star} , λ_{23}^{\star} or λ_{33}^{\star} and the subscripts of V are values of the sample size n) are given by

$$v_{10} = 0.2734375v_8 + 1.09375v_{12} - 0.546875v_{16} + 0.21875v_{20} - 0.0390625v_{24}$$
 (30)

$$v_{14}^{-} = -0.0390625v_8 + 0.46875v_{12} + 0.703125v_{16} - 0.15625v_{20} + 0.0234375v_{24}$$
 (31)

$$v_{18}^{-} = 0.0234375v_8 - 0.15625v_{12} + 0.703125v_{16} + 0.46875v_{20} - 0.0390625v_{24}$$
 (32)

$$v_{22} = -0.0390625v_8 + 0.21875v_{12} - 0.546875v_{16} + 1.09375v_{20} + 0.2734375v_{24}$$
 (33)

In determining λ_{31}^* and λ_{32}^* for n = 14, 18, 22, use was made of the following four-point Lagrangian interpolation formulas, dropping the arbitrarily assigned values (1.0000) for n = 8 and using only the values determined in the usual manner for n = 12, 16, 20, 24:

$$V_{14}^{=} = 0.3125V_{12} + 0.9375V_{16} - 0.3125V_{20} + 0.0625V_{24}$$
 (31')

$$v_{18}^{-} = -0.0625v_{12} + 0.5625v_{16} + 0.5625v_{20} - 0.0625v_{24}$$
 (32')

$$v_{22} = 0.0625v_{12} - 0.3125v_{16} + 0.9375v_{20} + 0.3125v_{24}$$
 (33')

Equations (30)-(33) were also used to obtain the debiasing factors for the scale parameters of the arc sine population, the six symmetric beta populations, and the six Student t populations for n = 10(4)22 from the corresponding values for n = 8(4)24. The critical values for the various criteria for samples of size n = 10(4)22 are shown in Table 25 of Appendix A, and the debiasing factors for all 14 populations other than U, N and D for n = 10(4)22 are shown in Table 26.

The results of Phase IV of the Monte Carlo study are shown in Tables 27-36 of Appendix A. Tables 27-30 are contingency tables showing the number of samples from each of the 17 populations [U, N, D, DS, AS, SB(1.5), SB(2.0), SB(2.5), SB(3.0), SB(3.5), SB(4.0), ST(16), ST(10), ST(8), ST(7), ST(6) and ST(5)] classified by each criterion [other than (c)] as U, N or D, for n = 10(4)22, respectively. The mean square errors of $\hat{\mu}_T$, $\hat{\sigma}_T$, $\overline{\sigma}_T$ = $C_T\hat{\sigma}_T$, $F_T\hat{\sigma}_T$ and $F_T\overline{\sigma}_T$, where the subscript T designates the true population from which the sample actually came, are shown in Table 31. The efficiencies of the adaptive robust estimates, relative to the maximum likelihood (or debiased maximum likelihood) estimates when the population from which each sample actually came is known, are shown in Tables 32-36 for $\hat{\mu}$, $\hat{\sigma}$, $\overline{\sigma}$, $F\hat{\sigma}$ and $F\overline{\sigma}$ respectively.

SECTION IV

CONCLUSIONS AND RECOMMENDATIONS

The following conclusions may be drawn from the results of the Monte Carlo study tabulated in Appendix A:

(1) Table 1 shows that, with the exception of λ_{31}^{\star} and λ_{32}^{\star} , all of the critical values for the various classification criteria increase monotonically as the sample size n increases. This increase occurs because K, Q, λ_1 , λ_2 and λ_3 are all biased downward, but the amount of the bias decreases as n increases. The exception occurs because only samples for which $L_N \geq L_U$ and $L_D \geq L_U$ are used in determining λ_{31}^{\star} and λ_{32}^{\star} . The value 1.0000 was assigned arbitrarily to λ_{31}^{\star} and λ_{32}^{\star} for n = 8, since both of these

inequalities were never simultaneously satisfied for any of the 15000 samples of size n = 8 drawn in Phase I, which made both λ_{31}^{\star} and λ_{32}^{\star} indeterminate. For n \geq 12, λ_{31}^{\star} and λ_{32}^{\star} are monotone decreasing.

- (2) Tables 2-6 show that if the objective is to maximize the number (or proportion) of samples classified correctly, criterion (d)(3) is much better than criterion (c) and slightly better than all the others. Criterion (c) performs poorly because it is heavily biased in favor of the uniform population, especially for small samples. Criteria [other than (c)] based on the likelihood perform slightly better than those based on Q, which in turn perform slightly better than those based on K. For all of the criteria, the proportion of samples classified correctly increases monotonically as the sample size n increases. For criteria other than (c), the proportion of correct classifications increases from 47-49% for n = 8 to 70-74% for n = 24. The proportion of samples classified correctly in Phase II differs very little from that for Phase I, and the former actually exceeds the latter about half of the time. This leads to the conclusion that the differences observed are due to random sampling error, and not to any degradation of performance because the critical values determined in Phase I were used in Phase II.
- (3) Table 7 shows that the debiased estimator $\overline{\sigma}$ has a smaller mean square error than $\hat{\sigma}$ for samples from the uniform population and on the average over all three populations, but a slightly larger one for samples from the normal and double exponential populations. Also, the debiased estimator $F\overline{\sigma}$ has a smaller mean square error than $F\hat{\sigma}$ for samples from the uniform population and on the average over all three populations, but a larger one for samples from the normal and double exponential

populations. The differences between the mean square errors in Phases I and II give an indication of the magnitude of the random sampling errors.

- (4) Tables 8-12 show that if the objective is to maximize the efficiency of the estimates, criterion (c) still performs worse than any of the others, except in the case of Fo [Table 12], where it actually performs best for n = 8 and n = 12. The criteria based on the likelihood in general [and criterion (d)(3) in particular] do not enjoy the same superiority over those based on Q and K as when the objective is to maximize the proportion of samples classified correctly. For small samples (n = 8, 12, 16), criteria based on Q and K [especially criteria (b)(2) and (a)(2)] perform better than those based on the likelihood in the cases of $\hat{\mu}$, $\hat{\sigma}$ and $\hat{F\sigma}$, but not in the cases of $\overline{\sigma}$ and $\overline{F\sigma}$. As the sample size n increases, the efficiency of $\hat{\mu}$ for the best classification criterion increases from about 72% for n = 8 to about 79% for n = 24, that of $\hat{\sigma}$ (92-95%) and $F\hat{\sigma}$ (79-81%) remains almost constant, and that of $\overline{\sigma}$ and $F\overline{\sigma}$ decreases from about 102% for n = 8 to about 94% for n = 24 and from about 95% for n = 8 to about 86% for n = 24 respectively. As in Tables 2-6, the differences in the Phase I and Phase II results appear to reflect only random sampling error, with no degradation because the critical values determined in Phase I were used in Phase II.
- (5) Table 13 shows that the debiasing factors for maximum likelihood estimators of the scale parameters decrease monotonically as the sample size increases, for all 14 populations studied in Phase III, over the range of sample sizes considered. For the Student t populations with small numbers of degrees of freedom, the debiasing factors are less than one for the larger sample sizes.

- (6) Tables 14-18 show that all of the criteria considered tend to classify samples from platykurtic populations (those with α_4 considerably less than 3) as uniform, samples from mesokurtic populations (those with α_4 near 3) as normal, and samples from leptokurtic populations (those with α_4 considerably greater than 3) as double exponential, especially for the larger sample sizes. Since there is no such thing as a "correct" classification in Phase III, it is impossible to say, on the basis of these results, which criterion performs best.
- (7) Table 19 shows that the debiased maximum likelihood estimates $\overline{\sigma}$ and $F\overline{\sigma}$ tend to have smaller mean square errors than the corresponding maximum likelihood estimates $\hat{\sigma}$ and $F\hat{\sigma}$, respectively, for samples from symmetric beta populations (including arc sine but not double spike), but sometimes have larger ones for Student t populations, especially for large numbers of degrees of freedom and small sample sizes.
- (8) Tables 20-24 show that adaptive robust estimates using criteria based on the likelihood [especially (d)(2)] tend to have higher efficiency, relative to the maximum likelihood estimates if the population is known, than those based on K and Q, except in the cases of $\hat{\mu}$ for the Student t populations and $\hat{\sigma}$ for the symmetric beta populations (including double spike and arc sine). In the case of $\hat{\mu}$ for Student t populations, criteria based on K [especially (a)(2)] tend to have the highest efficiency, while in the case of $\hat{\sigma}$ for symmetric beta populations, criteria based on K [especially (a)(2)] or on Q [especially (b)(2)] tend to have the highest efficiency. For $\hat{\mu}$ and F $\hat{\sigma}$, the relative efficiency tends to increase with the sample size, but for $\hat{\sigma}$, $\overline{\sigma}$ and F $\overline{\sigma}$, it tends to decrease.

- (9) Table 25 shows that interpolation in Table 1 by use of Equations (30)-(33) [or (31')-(33')] is reasonably smooth. The minor irregularities that occur are not sufficient to have an appreciable effect on the performance of the adaptive robust estimators for n = 10 (4) 22, which is not very sensitive to minor variations in the critical values.
- (10) Table 26 shows that interpolation in Table 13 by use of Equations (30)-(33) is also reasonably smooth, with only minor irregularities incapable of having an appreciable effect on the performance of the debiased estimators $\overline{\sigma}$ and $F\overline{\sigma}$ for n = 10 (4) 22.
- (11) Tables 27-30 confirm the conclusion [see (2) above] reached from Tables 2-6 concerning the slight superiority of criterion (d)(3) as measured by the number (or proportion) of samples from U, N and D classified correctly. They also confirm the conclusion [see (6) above] reached from Tables 14-18 concerning the tendency to classify samples from platykurtic, mesokurtic and leptokurtic populations as uniform, normal and double exponential, respectively.
- (12) Table 31 confirms the conclusions [see (3) and (7) above] reached from Tables 7 and 19 concerning the magnitude of the mean square errors of $\hat{\sigma}$ and $\overline{\sigma}$ and those of $F\hat{\sigma}$ and $F\overline{\sigma}$ for the various populations included in the study.
- (13) Tables 32-36 show that, averaged over all 17 populations and all 4 sample sizes considered, estimates based on criterion (d)(2) tend to have the highest efficiency. However, those based on criterion (a)(2) have the highest efficiency in the case of $\hat{\mu}$ for Student t populations, while those based on K and Q [criteria (a)(1), (a)(2),

- (b)(1) and (b)(2)] tend to do well in the case of $\hat{\sigma}$ for symmetric beta populations, as do those based on criterion (d)(3) in the case of $\hat{\sigma}$ for samples of size 10 from all populations, especially Student t.
- (14) Taken as a whole, the results show that adaptive robust estimates of location and scale parameters based on all the criteria [except (c)] studied have, over a broad range of populations from the uniform (α_4 = 1.8) to the Student t with 5 d.f. (α_4 = 9), quite high efficiency relative to the maximum likelihood estimates if the population is known. The relative efficiency of the adaptive robust estimates is low for the double spike (α_4 = 1) and arc sine (α_4 = 1.5) populations, not because their mean square errors are very high, but because those of the maximum likelihood estimates are very low (zero for samples of size n \geq 16 from the double spike population).
- (15) The Monte Carlo results show one rather surprising phenomenon. Some of the relative efficiencies of the adaptive robust estimators are larger than 1 (100%). This is partially, but not completely, accounted for by the effects of bias and canonical scale factors. The maximum relative efficiency is 1.3453 for $\hat{\sigma}$, but only 1.3168 for $\overline{\sigma}$, 1.2349 for $F\hat{\sigma}$ and 1.1328 for $F\overline{\sigma}$. For $\hat{\mu}$, it never exceeds 1.0492. Another possible explanation is that if a sample from population A behaves more like a sample from population B, where A is any one of the 17 populations considered and B is U, N or D, it may actually be more efficient to use the estimator appropriate for population B, which would be the adaptive robust estimator.

If the population is known, it is recommended that the appropriate ML or debiased ML estimators of its location and scale parameters be used, but if nothing is known about the population other than that it is symmetric, it is recommended that adaptive robust estimators be used. Those based on criterion (c) should be avoided, but differences among the others are small.

REFERENCES

- Almquist, Kenneth C. (1975). Adaptive Robust Estimation of Population Parameters Using Likelihood Ratio Techniques.
 M. S. thesis (GOR/MA/75D-1), Air Force Institute of Technology, Wright-Patterson Air Force Base, Ohio.
- Andrews, D. F.; Bickel, P. J.; Hampel, F. R.; Huber, P. J.; Rogers, W. H.; Tukey, J. W. (1972). <u>Robust Estimates of Location</u>: <u>Survey and Advances</u>. Princeton University Press, Princeton, <u>New Jersey</u>.
- 3. Bain, Lee J.; Engelhardt, Max (1973). Interval estimation for the two-parameter double exponential distribution. <u>Technometrics</u> 15, 875-887.
- 4. Box, G. E. P. (1953a). Nonnormality and tests on variances. Biometrika 40, 318-335.
- 5. Box, G. E. P.; Muller, Mervin E. (1958). A note on the generation of random normal variates. Annals of Mathematical Statistics 29, 610-611.
- Caso, John (1972). Robust Estimates for Location Parameter Estimation of Symmetric Distributions. M. S. thesis (GSA/Math/72-3),
 Air Force Institute of Technology, Wright-Patterson Air Force
 Base, Ohio. AD-744695.
- 7. Curry, Thomas F. (1977). Adaptive Robust Estimation of Location and Scale Parameters. M. S. thesis (GOR/MA/77D-3), Air Force Institute of Technology, Wright-Patterson Air Force Base, Ohio.
- 8. Edgeworth, F. Y. (1886). Observations and statistics: An essay on the theory of errors of observation and the first principles of statistics. Transactions of the Cambridge Philosophical Society 14(2), 138-169.
- 9. Forth, Charles R. (1974). Robust Estimation Techniques for Population Parameters and Regression Coefficients. M. S. thesis (GSA/MA/74-1), Air Force Institute of Technology, Wright-Patterson Air Force Base, Ohio. AD777865.
- 10. Gauss, Carolo Friderico (1809). Theoria Motus Comporum Coelestium in Sectionibus Conicis Solem Ambientium. Frid. Perthes et I. H. Besser, Hamburgi.
- 11. Harter, H. Leon (1970). Order Statistics and their Use in Testing and Estimation, Volume 2: Estimates Based on Order Statistics of Samples from Various Populations. U. S. Government Printing Office, Washington, D.C.

- 12. Harter, H. Leon (1972). The Method of Least Squares and Some Alternatives. ARL TR 72-129, Aerospace Research Laboratories, Wright-Patterson Air Force Base, Ohio. AD 752211. Updated version, International Statistical Review 42 (1974), 147-174, 235-264, 282; 43 (1975), 1-44, 125-190, 269-278; 44 (1976), 113-159.
- 13. Hodges, J. L., Jr.; Lehmann, E. L. (1963). Estimates of location based on rank tests. Annals of Mathematical Statistics 34, 598-611.
- 14. Hogg, Robert V. (1967). Some observations on robust estimation.

 Journal of the American Statistical Association 62, 1179-1188.
- 15. Hogg, Robert V. (1972). More light on the kurtosis and related statistics. <u>Journal of the American Statistical Association</u> 67, 422-424.
- 16. Hogg, Robert V.; Uthoff, Vincent A.; Randles, Ronald A.;
 Davenport, Alan S. (1972). On the selection of the underlying distribution and adaptive estimation. Journal of the American Statistical Association 67, 597-600.
- 17. Huber, Peter J. (1964). Robust estimation of a location parameter.

 Annals of Mathematical Statistics 35, 73-101.
- 18. Jorgensen, Loren W. (1973). Robust Estimation of Location and Scale Parameters. M. S. thesis (GSA/MA/73-2), Air Force Institute of Technology, Wright-Patterson Air Force Base, Ohio. AD766882.
- 19. Newcomb, Simon (1886). A generalized theory of the combination of observations so as to obtain the best result. American Journal of Mathematics 8, 343-346.
- 20. Rugg, Bernard J. (1974). Adaptive Robust Estimation of Location and Scale Parameters Using Selected Discriminants. M. S. thesis (GRE/MA/74D-3), Air Force Institute of Technology, Wright-Patterson Air Force Base, Ohio.

APPENDIX A
RESULTS OF MONTE CARLO STUDY

 $\begin{tabular}{ll} Table 1 \\ Critical Values of Criteria for Classification as U, N or D \\ \end{tabular}$ (Determined in Phase I and Used Also in Phases II and III)

Criterion	Critical Values	n = 8	n = 12	n = 16	n = 20	n = 24
(a) (1)	K_{L1}	1.9966	2.0785	2.1236	2.1427	2.1495
	K _{U1}	2.3223	2.6278	2.7994	2.9123	3.0289
(a)(2)	K _{L2}	1.8952	2.0122	2.0796	2.1098	2.1342
	K _{U2}	2.4816	2.7103	2.8374	2.9277	3.0341
(b)(1)	Q_{L1}	1.8487	1.9807	2.0620	2.1207	2.1600
	Q _{U1}	2.0340	2.2914	2.4750	2.6139	2.7393
(b)(2)	Q _{L2}	1.7803	1.9414	2.0367	2.1015	2.1503
	Q_{U2}	2.1063	2.3253	2.4879	2.6191	2.7416
(c)	Noneclassi	fy as U, N	or D, which	ever gives g	greatest lik	kelihood
(d)(1)	λ_{11}^*	0.7276	0.7844	0.8202	0.8470	0.8627
	λ_{21}^{\star}	0.8150	0.8542	0.8865	0.8900	0.9066
	λ_{31}^{\star}	1.0000	1.0700	1.0260	1.0143	1.0073
(d)(2)	λ*12	0.7126	0.7734	0.8124	0.8403	0.8583
	λ* ₂₂ λ* ₃₂	0.8293	0.8821	0.9060	0.9224	0.9272
	λ* ₃₂	1.0000	1.0695	1.0270	1.0141	1.0091
(d)(3), (e)	λ_{13}^{*}	0.7368	0.7894	0.8238	0.8488	0.8640
	λ*23	0.7069	0.7685	0.8040	0.8272	0.8518
	λ*33	0.9632	0.9737	0.9801	0.9834	0.9860

 $\label{eq:Table 2} \mbox{ Contingency Tables--Classification vs. True Population by Criteria ($n=8$)}$

		Phase I					Phase II				
			C1	assified a	as		C	lassified	as		
Crite-											
rion			U	N	D	Sums	U	N	D	Sums	
(a)(1)	Number of	U	3091	881	1028	5000	3060	903	1037	5000	
		N	1909	1067	2024	5000	1899	1067	2034	5000	
	Samples from	D	1127	897	2976	5000	1110	865	3025	5000	
		Sums	6127	2845	6028	7134*	6069	2835	6096	7152*	
(a)(2)	Number of	υ	2641	1585	774	5000	2661	1554	785	5000	
		N	1517	1857	1626	5000	1515	1868	1617	5000	
	Samples from	D	842	1558	2600	5000	836	1521	2643	5000	
		Sums	5000	5000	5000	7098*	5012	4943	5045	7172*	
(b)(1)	Number of	U	3122	936	942	5000	3155	873	972	5000	
		N	1878	1093	2029	5000	1919	1105	1976	5000	
	Samples from	D	1127	902	2971	5000	1128	835	3037	5000	
		Sums	6127	2931	5942	7186*	6202	2813	5985	7297*	
(b)(2)	Number of	U	2688	1604	708	5000	2695	1571	734	5000	
		N	1473	1860	1667	5000	1474	1908	1618	5000	
	Samples from	D	839	1536	2625	5000	844	1493	2663	5000	
		Sums	5000	5000	5000	7173*	5013	4972	5015	7266*	
(c)	Number of	U	4961	0	39	5000	4960	0	40	5000	
		N	4858	0	142	5000	4854	0	146	5000	
	Samples from	D	4495	0	505	5000	4491	0	509	5000	
		Sums	14314	0	686	5466*	14305	0	695	5469*	
(d)(1)	Number of	U	3088	1533	379	5000	3104	1505	391	5000	
		N	1828	2180	992	5000	1790	2222	988	5000	
	Samples from	D	1264	1810	1926	5000	1251	1775	1974	5000	
		Sums	6180	5523	3297	7194*	6145	5502	3353	7300*	
(d)(2)	Number of	U	2753	1895	352	5000	2768	1887	345	5000	
		N	1583	2489	928	5000	1556	2532	912	5000	
	Samples from	D	1157	2024	1819	5000	1134	1993	1873	5000	
		Sums	5493	6408	3099	7061*	5458	6412	3130	7173*	
(d)(3)	Number of	U	3055	1317	628	5000	3075	1305	620	5000	
		N	1733	2007	1260	5000	1765	2013	1222	5000	
	Samples from		1070	1649	2281	5000	1073	1639	2288	5000	
		Sums	5858	4973	4169	7343*	5913	4957	4130	7376*	
(e)	Number of	U	3016	991	993	5000	3041	962	997	5000	
(-)		N	1698	1381	1921	5000	1736	1440	1824	5000	
	Samples from		1029	1081	2890	5000	1043	1071	2886	5000	
	- amp zeo z z om	Sums	5743	3453	5804	7287*	5820	3473	5707	7367*	

^{*} Numbers in this position are diagonal sums (the numbers of samples classified correctly)

^{*} Numbers in this position are diagonal sums (the numbers of samples classified correctly)

^{*} Numbers in this position are diagonal sums (the numbers of samples classified correctly)

 $\label{eq:Table 5}$ Contingency Tables--Classification vs. True Population by Criteria (n = 20)

^{*} Numbers in this position are diagonal sums (the number of samples classified correctly)

 $\label{eq:Table 6} Table \ 6$ Contingency Tables--Classification vs. True Population by Criteria (n = 24)

				Phase	e I	Phase II				
			C1:	assified a	as		Classified as			
Crite- rion			U	N	D	Sums	U	N	D	Sums
(a)(1)	Number of	U	4105	869	26	5000	4053	918	29	5000
(-/ (-/		N	895	2732	1373	5000	916	2732	1352	5000
	Samples from	D	111	1262	3627	5000	98	1230	3672	5000
		Sums	5111	4863	5026	10464*	5067	4880	5053	10457*
(a)(2)	Number of	U	4051	923	26	5000	4005	967	28	5000
		N	851 ,	2791	1358	5000	869	2791	1340	5000
	Samples from		98	1286	3616	5000	94	1244	3662	5000
		Sums	5000	5000	5000	10458*	4968	5002	5030	10458*
(b)(1)	Number of	U	4236	752	12	5000	4187	798	15	5000
		N	764	2862	1374	5000	817	2821	1362	5000
	Samples from	D	101	1273	3626	5000	86	1252	3662	5000
		Sums	5101	4887	5012	10724*	5090	4871	5039	10670*
(b)(2)	Number of	U	4186	803	11	5000	4141	844	15	5000
		N	719	2911	1370	5000	785	2862	1353	5000
	Samples from	D	95	1286	3619	5000	.80	1262	3658	5000
		Sums	5000	5000	5000	10716*	5006	4968	5026	10661*
(c)	Number of	U	4970	24	6	5000	4968	23	9	5000
		N	3109	1104	787	5000	3101	1128	771	5000
	Samples from	D	1098	702	3200	5000	1078	702	3220	5000
		Sums	9177	1830	3993	9274*	9147	1853	4000	9316*
(d)(1)	Number of	U	4266	712	22	5000	4211	759	30	5000
		N	720	3467	813	5000	716	3482	802	5000
	Samples from	D	138	1635	3227	5000	119	1608	3273	5000
		Sums	5124	5814	4062	10960*	5046	5849	4105	10966*
(d)(2)	Numbers of	U	4216	767	17	5000	4156	819	25	5000
		N	681	3538	781	5000	677	3565	758	5000
	Samples from	D	143	1678	3179	5000	128	1657	3215	5000
	100	Sums	5040	5983	3977	10933*	4961	6041	3998	10936*
(d)(3)	Number of	U	4266	692	42	5000	4214	741	45	5000
		N	727	3150	1123	5000	721	3174	1105	5000
	Samples from	D	125	1264	3611	5000	105	1241	3654	5000
		Sums	5118	5106	4776	11027*	5040	5156	4804	11042*
(e)	Number of	U	4265	669	66	5000	4212	707	81	5000
		N	727	3024	1249	5000	720	3035	1245	5000
	Samples from	D	124	1138	3738	5000	104	1112	3784	5000
		Sums	5116	4831	5053	11027*	5036	4854	5110	11031*

^{*} Numbers in this position are diagonal sums (the numbers of samples classified correctly)

Table 7

Mean Square Errors of Parameter Estimates if Population is Known

Estimate	Population	Phase	MSE(n=8)	MSE(n=12)	MSE(n=16)	MSE(n=20)	MSE(n=24)
û	U	I	.069054	.033113	.019490	.012646	.009254
		II	.068616	.032782	.018859	.012844	.009102
	N	I	.123065	.084018	.061762	.049432	.041521
		II	.122679	.086460	.061833	.049238	.041767
	D	I	.091123	.059292	.040708	.033023	.026357
	D	II	.092905	.057610	.042764	.033049	.027138
			.092903	.037010	.042704	.033043	.02/130
	Avg.	I	.094414	.058808	.040654	.031701	.025711
		II	.094733	.058951	.041152	.031711	.026002
ô	U	I	.067185	.033359	.019543	.013061	.009387
		II	.068304	.033136	.019486	.012860	.009051
	N	I	.069657	.044004	.032708	.026163	.022315
		II	.069162	.044913	.033501	.026587	.021940
	D	I	.121718	.086484	.062850	.050400	.041594
		II	.123134	.081256	.063581	.049865	.041672
	Avg.	I	.086187	.054616	.038367	.029875	.024432
		II	.086867	.053102	.038856	.029771	.024221
$\hat{F\sigma}$	U	I	.181905	.090319	.052913	.035362	.025415
		II	.184934	.089716	.052758	.034820	.024505
	N	I	.267585	.169040	.125645	.100505	.085724
		II	.265682	.172531	.128693	.102133	.084280
	D	I	.546186	.388081	.282027	.226161	.186645
		II	.552541	.364622	.285308	.223761	.186993
	Avg.	I	.331892	.215813	.153528	.120676	.099261
		II	.334386	.208956	.155586	.120238	.098593
σ	U	I	.029276	.013098	.007479	.004902	.003360
		II	.028841	.013312	.007248	.004691	.003286
	N	I	.073322	.045791	.033350	.026863	.022432
		II	.073047	.046188	.033408	.027211	.022423
	D	I	.135071	.093458	.066026	.052916	.042905
		II	.136590	.086380	.066893	.051937	.042798
	Avg.	I	.079223	.050782	.035619	.028227	.022899
		II	.079493	.048627	.036183	.027946	.022836
_				205160	000050	012070	000006
Fo	U	I	.079264	.035463	.020250	.013272	.009096
		II	.078087	.036041	.019624	.012701	.008898
	N	I	.281662	.175902	.128113	.103192	.086173
		II	.280607	.177429	.132175	.104531	.086136
	D	I	.606109	.419375	.296282	.237450	.192531
		II	.612922	.387617	.300172	. 233059	.192049
		*	2022/5	210247	149215	117071	.095933
	Avg.	I	.322345	.210247	.148215	.117971	.095694
		II	.323872	.200363	.150657	.116763	.093094

Canonical Scale Factors: F_U = 1.64545, F_N = 1.95996, F_D = 2.11833

Table 8

Efficiencies of Adaptive Robust Estimates of Location Parameter

(Relative to Maximum Likelihood Estimate if Population is Known)

			Phase	e I	Phase II					
Sample		San	ples from	1		Sam	ples from	1		
Size	Crite-									
n	rion	U	N	D	Avg.	U	N	D	Avg.	
8	(a)(1)	. 4672	.8304	.8073	.6928	.4689	.8264	.8079	.6935	
	(a)(2)	.4786	.8656	.8352	.7161	.4833	.8662	.8371	.7203	
	(b)(1)	.5251	.8081	.7722	.7049	.5253	. 7982	.7523	.6969	
	(b)(2)	.5287	.8556	.7875	.7260	.5299	. 8489	.7845	.7242	
	(c)	.9515	.6362	.2920	.4900	.9492	.6205	.2872	.4789	
	(d)(1)	.6147	.8222	.6007	.6846	.6219	.8230	.6014	.6867	
	(d)(2)	.6102	.8284	.5831	.6776	.6231	.8264	.5880	.6822	
	(d)(3)	.5257	.8265	.7465	.7040	.5337	.8212	.7367	.7034	
	(e)	.4898	.7996	.7776	.6874	.4961	.8024	.7556	.6862	
12	(a)(1)	. 4439	.8166	.8440	.7121	.4437	.8286	.8111	.7095	
	(a)(2)	.4400	.8379	.8447	.7180	.4430	.8490	.8205	.7188	
	(b)(1)	.5279	.7978	.7933	.7267	.5406	.7996	.7594	.7230	
	(b)(2)	.5203	.8225	.8140	.7393	.5260	.8247	.7703	.7309	
	(c)	.9706	.5258	.2838	.4380	.9513	.5369	.2804	.4411	
	(d)(1)	.5864	.7945	.6507	.6964	.5940	.8011	.6162	.6892	
	(d) (2)	.5855	.7917	.6087	.6783	.5932	.8048	.5785	.6743	
	(d) (3)	.5105	.8036	.7574	.7123	.5307	.8110	.7125	.7096	
	(e)	.4795	.7813	.7769	.6976	.4950	.7887	.7338	.6953	
16	(a)(1)	. 4209	.7991	.8637	.7143	.4094	.8181	.8629	.7211	
	(a)(2)	.4106	.8209	.8688	.7193	.4021	.8377	.8637	.7252	
	(b) (1)	.5312	.7881	.8292	.7430	.5167	.7980	.8275	.7453	
	(b) (2)	.5160	.8084	.8435	.7508	.5012	.8090	.8341	.7467	
	(c)	.9583	.4901	.3303	.4523	.9484	.4915	.3272	.4467	
	(d)(1)	.5688	.7950	.6987	.7165	.5494	.8100	.6966	.7176	
	(d) (2)	.5630	.8088	.6838	.7153	.5489	.8057	.6806	.7098	
	(d)(3)	.5207	.7974	.7790	.7297	.5053	.8135	.7833	.7352	
	(e)	.4959	.7763	.7997	.7184	. 4702	.7971	.8082	.7237	
. 20	(a)(1)	.4131	.8191	.8643	.7362	.4119	.7952	.8665	.7249	
1000	(a)(2)	.3990	.8307	.8732	.7371	.3930	.8099	.8719	.7241	
	(b)(1)	.5245	.8165	.8262	.7631	.5264	.7827	.8374	.7504	
	(b)(2)	.4958	.8253	.8348.	.7611	.5107	.7979	.8488	.7562	
	(c)	.9268	. 4945	.3824	.4756	.9586	.4748	. 3844	.4685	
	(d)(1)	.5526	.8216	.7618	.7524	.5769	.8058	.7579	.7492	
	(d) (2)	.5328	.8261	.7192	.7344	.5640	.8134	.7096	.7324	
	(d) (3)	.5308		.8102	.7564	.5439	.7839	.8103	.7478	
	(e)	.5185	.7947	.8297	.7524	.5169	.7718	.8229	.7386	
24	(a)(1)	.4144	.8328	.8925	.7583	. 3985	.8205	.8929	.7491	
	(a)(2)	.4061	.8360	.8953	.7570	.3930	.8248	.8950	.7492	
	(b)(1)	.5303	.8267	.8633	. 7854	.5125	.8153	.8730	.7795	
	(b)(2)	.5203	.8374	.8659	.7886	. 4991	.8242	.8735	.7802	
	(c)	.9457	.5045	.4714	.5212	.9530	. 5156	.4670	.5247	
	(d)(1)	.5666	.8301	.8352	.7878	.5357	.8461	. 8166	.7833	
	(d)(2)	. 5548	.8345	.8159	.7811	.5305	.8461	.7900	.7733	
	(d)(3)	.5392	.8213	.8673	.7862	.5197	.8325	.8889	.7943	
	(e)	.5309	.8161	.8757	.7838	.5030	.8290	.8976	.7903	

Table 9

Efficiencies of Adaptive Robust Estimates of Scale Parameter

(Relative to Maximum Likelihood Estimate if Population is Known)

			Phase	Phase II					
Sample		Sa	imples fro	om		Sa	imples fro	om	
Size	Crite-								
n	rion	U	N	D	Avg.	U	N	D	Avg.
8	(a)(1)	1.1468	.8169	.8939	.9234	1.1544	.8141	.8972	.9262
	(a)(2)	1.1915	.8386	.9038	.9432	1.1905	.8365	.9080	.9454
	(b)(1)	1.1390	.8115	.8862	.9163	1.1389	.8133	.8957	.9225
	(b)(2)	1.1785	.8332	.8976	.9361	1.1794	.8338	.9080	.9426
	(c)	.9925	.7852	.8569	.8663	.9925	. 7829	.8716	.8732
	(d)(1)	1.1058	.8226	.8963	.9194	1.1012	.8233	.9060	.9243
	(d)(2)	1.1517	.8379	.9044	.9366	1.1487	.8380	.9166	.9431
	(d)(3)	1.1110	.8244	.8934	.9195	1.1060	.8251	.9011	.9234
	(e)	1.1353	.8213	.8905	.9212	1.1361	.8252	.8997	.9281
12	(a)(1)	1.0387	.8774	.9324	.9361	1.0370	.8667	.9172	.9242
	(a)(2)	1.0538	.8880	.9348	.9431	1.0501	.8782	.9199	.9314
	(b)(1)	1.0236	.8725	.9307	.9312	1.0187	.8684	.9114	.9187
	(b)(2)	1.0353	.8808	.9346	.9378	1.0307	.8769	.9145	.9250
	(c)	.9866	.8560	.9122	.9101	.9833	. 8549	.8990	.9020
	(d)(1)	.9852	.8886	.9337	.9309	.9866	.8823	.9094	.9164
	(d)(2)	1.0039	.8928	.9381	.9378	1.0059	.8886	.9144	.9243
	(d)(3)	.9898	.8859	.9331	.9306	.9875	. 8806	.9065	.9145
	(e)	1.0102	.8773	.9327	.9315	1.0097	.8714	.9076	.9161
16	(a)(1)	.9474	.9169	.9402	.9347	.9513	.9176	.9583	.9451
	(a)(2)	.9497	.9210	.9394	.9358	.9537	.9238	.9580	.9472
	(b)(1)	.9245	.9200	.9357	.9293	.9248	.9203	.9617	.9432
	(b)(2)	.9283	.9228	.9361	.9310	.9256	.9275	.9608	.9450
	(c)	.9798	.8588	.9312	.9169	.9833	.8561	.9592	.9308
	(d)(1)	.9027	.9433	.9252	.9263	.9029	.9397	.9506	.9392
	(d)(2)	.9094	.9449	.9260	.9284	.9083	.9411	.9511	.9408
	(d)(3)	.9067	.9416	.9267	.9274	.9072	.9372	.9515	.9397
	(e)	.9228	.9333	.9310	.9302	.9223	.9303	.9525	.9409
20	(a)(1)	.8800	.9250	.9470	.9302		.9249	.9566.	.9367
	(a)(2)	.8796	.9308	.9466	.9316	.8869	.9277	.9563	.9371
	(b)(1)	.8561	.9309	.9428	.9257	.8577	.9341	.9516	.9317
	(b)(2)	.8549	.9330	.9433	.9263	.8563	.9352	.9520	.9320
	(c)	.9769	.8315	.9361	.9082	.9735	.8153	.9575	.9123
	(d)(1)	.8422	.9708	.9360	.9306	.8441	.9663	.9400	.9323
	(d)(2)	.8407	.9709	.9356	.9302	.8430	.9662	.9395	.9318
	(d)(3)	.8461	.9627	.9382	.9304	.8483	.9597	.9440	.9334
	(e)	.8563	.9605	.9403	.9327	.8587	.9519	.9468	.9345
24	(a)(1)	.8320	.9271	.9545	.9287	.8158	.9222	.9403	.9174
	(a)(2)	.8308	.9292	.9531	.9283	.8120	.9252	.9403	.9177
	(b)(1)	.8091	.9456	.9547	.9305	.7926	.9204	.9418	.9140
	(b)(2)	.8060	.9466	.9544	.9301	.7888	.9228	.9415	.9139
	(c)	.9685	.7867	.9592	.9002	.9656	.7826	.9499	.8940
	(d)(1)	.7995	.9738	.9424	.9302	.7813	.9727	.9323	.9217
	(d)(2)	. 7967	.9755	.9418	.9299	.7778	.9738	.9323	.9214
	(d)(3)	.8035	.9700	.9460	.9319	.7848	.9596	.9341	.9197
	(e)	.8098	.9657	.9473	.9324	.7928	.9466	.9354	.9181

Table 10

Efficiencies of Adaptive Robust Estimates of Canonical Scale Parameter

(Relative to Maximum Likelihood Estimate if Population is Known)

			Phas	se I		Phase II					
Sample		Sa	amples fro	om	Samples from						
Size	Crite-										
n	rion	U	N	D	Avg.	U	N	D	Avg.		
8	(a)(1)	1.0724	.6174	.7588	.7527	1.1194	.6114	.7627	.7575		
	(a)(2)	1.1727	.6654	.7831	.7935	1.2159	.6601	.7871	.7983		
	(b)(1)	1.1347	.6152	.7501	.7524	1.1781	.6132	.7585	.7607		
	(b)(2)	1.2253	.6631	.7758	.7927	1.2715	.6610	.7864	.8025		
	(c)	1.0023	.5116	.6078	.6211	1.0020	.5099	.6175	.6268		
	(d)(1)	1.2419	.6477	.7429	.7690	1.2601	.6454	.7540	.7769		
	(d)(2)	1.2907	.6784	.7574	.7924	1.3168	.6745	.7726	.8028		
	(d)(3)	1.2003	.6509	.7534	.7733	1.2293	.6466	.7602	.7787		
	(e)	1.1326	.6375	.7576	.7652	1.1804	.6377	.7657	.7747		
12	(a)(1)	1.0723	.6252	.8029	.7726	1.0784	.6248	.7828	.7597		
	(a)(2)	1.1091	.6573	.8143	.7942	1.1194	.6572	.7949	.7823		
	(b)(1)	1.1440	.6254	.8022	.7773	1.1321	.6276	.7743	.7598		
	(b)(2)	1.1779	.6541	.8163	.7988	1.1684	.6558	.7874	.7807		
	(c)	1.0037	.5505	.6767	.6671	1.0043	.5569	.6283	.6400		
	(d)(1)	1.1832	.6679	. 7859	.7865	1.1821	.6678	.7553	.7673		
	(d)(2)	1.1986	.6838	.7959	.7991	1.2092	.6851	.7642	.7805		
	(d)(3)	1.1452	.6618	.7962	.7879	1.1398	.6647	.7589	.7657		
	(e)	1.0901	.6387	.8042	.7800	1.0730	.6404	.7688	.7577		
16	(a)(1)	1.0354	.6466	.8169	.7798	1.0284	.6531	.8363	.7918		
	(a)(2)	1.0380	.6654	.8214	.7898	1.0421	.6720	.8410	.8028		
	(b)(1)	1.1259	.6554	.8133	.7867	1.1297	.6589	. 8444	.8049		
	(b)(2)	1.1312	.6698	.8190	.7959	1.1360	.6805	.8479	.8159		
	(c)	1.0022	.5977	.6794	.6792	1.0015	.6167	.7058	.7013		
	(d)(1)	1.1225	.7119	.7768	.7850	1.1296	.7107	.8023	.8001		
	(d)(2)	1.1358	.7255	.7792	.7918	1.1372	.7279	.8039	.8074		
	(d)(3)	1.1046	.7004	.7881	.7872	1.1051	.6972	.8158	.8019		
	(e)	1.0667	.6758	.8011	.7839	1.0663	.6739	.8262	.7968		
20	(a)(1)	1.0094	.6716	.8218	.7872	1.0200	.6592	.8431	.7937		
	(a)(2)	1.0095	.6813	.8259	.7933	1.0236	.6710	.8471	.8009		
	(b)(1)	1.0763	.6738	.8191	.7902	1.0807	.6690	.8370	.7977		
	(b)(2)	1.0799	.6813	.8246	.7965	1.0900	.6788	.8407	.8042		
	(c)	1.0002	.6563	.7185	.7193	1.0004	.6518	.7346	.7271		
	(d)(1)	1.0956	.7542	.7869	.7992	1.0807	.7385	.8003	.8014		
	(d)(2)	1.1019	.7570	.7860	.7999	1.0925	.7469	.7987	.8038		
	(d)(3)	1.0818	.7255	.8020	.7988	1.0662	.7129	.8179	.8025		
	(e)	1.0688	.7099	.8113	.7984	1.0298	.6918	.8276	.7983		
24	(a)(1)	.9899	.6856	.8449	.8013	.9710	.6670	.8352	.7877		
	(a)(2)	.9811	. 6917	.8459	.8038	.9679	.6717	.8351	.7894		
	(b)(1)	1.0573	.6957	.8479	.8105	1.0520	.6584	.8393	.7906		
	(b)(2)	1.0577	.7002	.8489	.8129	1.0562	.6636	.8398	.7932		
	(c)	.9967	.6965	.7616	.7565	.9961	.6814	.7576	.7486		
	(d)(1)	1.0600	.7670	.8102	.8134	1.0699	.7633	.8085	.8112		
	(d)(2)	1.0637	.7752	.8085	.8151	1.0731	.7745	.8070	.8140		
	(d)(3)	1.0505	.7407	.8290	.8157	1.0625	.7241	.8238	.8071		
	(e)	1.0378	.7270	.8356	.8142	1.0323	.6997	.8302	.8007		

Table 11

Efficiencies of Debiased Adaptive Robust Estimates of Scale Parameter

(Relative to Debiased Maximum Likelihood Estimate if Population is Known)

			Phas	e I		Phase II				
Sample		S	amples fro	m		S	amples fro	m		
Size	Crite-									
n	rion	U	N	D	Avg.	U	N	D	Avg.	
8	(a)(1)	.9266	.9427	1.0295	.9879	.9095	.9475	1.0377	.9919	
	(a)(2)	.9250	.9723	1.0361	1.0010	.9055	.9745	1.0437	1.0034	
	(b) (1)	.9473	.9531	1 0303	.9947	.9317	.9602	1.0378	.9993	
	(b)(2)	.9396	.9757	1.0364	1.0044	.9194	.9834	1.0469	1.0100	
	(c)	.9816	.7910	.8199	.8274	.9827	.7897	.8339	.8349	
	(d)(1)	.9421	.9963	1.0456	1.0163	.9174	1.0045	1.0547	1.0206	
	(d)(2)	. 9424	.9902	1.0412	1.0121	.9178	.9983	1.0488	1.0155	
	(d)(3)	.9402	1.0010	1.0505	1.0202	.9162	1.0070	1.0604	1.0243	
	(e)	.9420	.9760	1.0359	1.0046	.9263	.9874	1.0475	1.0126	
12	(a)(1)	.8453	.9222	1.0152	.9691	.8350	.9090	1.0050	.9553	
	(a)(2)	.8323	.9428	1.0178	.9758	.8232	.9328	1.0068	.9630	
	(b)(1)	.8469	.9307	1.0153	.9721	.8465	.9234	1.0043	.9613	
	(b)(2)	.8347	.9452	1.0173	.9766	.8375	.9426	1.0054	.9673	
	(c)	.9616	.6489	.8135	.7653	.9530	.6504	.8403	.7768	
	(d)(1)	.8161	.9802	1.0256	.9900	.8141	.9768	1.0059	.9757	
	(d)(2)	.8189	.9762	1.0167	.9840	.8146	.9710	.9982	.9696	
	(d)(3)	.8154	.9816	1.0276	.9914	.8153	.9802	1.0100	.9792	
	(e)	.8297	.9550	1.0184	.9797	.8302	.9529	1.0016	.9677	
16	(a)(1)	. 7660	.8945	.9977	.9438	.7656	.8967	1.0166	.9552	
	(a)(2)	. 7535	.9060	.9975	.9462	.7514.	.9156	1.0168	.9605	
	(b)(1)	. 7559	.9104	.9964	.9474	.7428	.9157	1.0205	.9616	
	(b)(2)	.7502	.9228	.9968	.9511	.7335	.9311	1.0199	.9655	
	(c)	.9472	.5769	.8747	.7568	.9566	.5737	.8902	.7607	
	(d)(1)	.7376	.9736	.9944	.9645	.7261	.9744	1.0214	.9798	
	(d)(2)	. 7352	.9740	.9927	.9633	.7249	.9688	1.0189	.9765	
	(d)(3)	.7387	.9659	.9965	.9634	.7280	.9704	1.0216	.9789	
	(e)	.7543	.9452	.9951	.9579	.7424	.9502	1.0157	.9706	
20	(a)(1)	. 6953	.8580	.9963	.9258	.6924	.8673	1.0003	.9308	
	(a)(2)	.6843	.8748	.9955	.9303	.6780	.8795	.9998	.9336	
	(b)(1)	.6825	.8885	.9927	.9334	.6740	.8953	.9971	.9374	
	(b)(2)	.6727	.8997	.9925	.9361	.6631	.9046	.9972	.9395	
	(c)	.9469	.5448	.8909	.7436	.9333	.5417	.9149	.7484	
	(d)(1)	.6650	.9622	.9974	.9586	.6630	.9619	.9958	.9579	
	(d)(2)	.6580	.9677	.9926	.9566	.6560	.9668	.9918	.9564	
	(d)(3)	.6694	.9452	.9944	.9519	.6683	.9485	. 9945	.9535	
	(e)	.6814	.9355	.9923	.9490	.6796	.9341	.9942	.9498	
24	(a)(1)	.6306	.8530	.9906	.9167	.6126	.8525	.9741	.9061	
	(a)(2)	.6262	.8594	.9889	.9178	.6051	.8607	.9744	.9085	
	(b)(1)	.6147	.8958	.9910	.9308	.5968	.8720	.9763	.9127	
	(b)(2)	.6080	.9007	.9905	.9315	.5891	.8770	.9760	.9134	
	(c)	.9239	.5293	.9332	.7467	.9183	.5316	.9237	.7439	
	(d)(1)	.6043	.9500	.9875	.9459	.5813	.9489	.9739	.9355	
	(d)(2)	. 5994	.9551	. 9864	.9464	.5755	.9523	.9733	.9356	
	(d)(3)	.6089	.9379	.9859	.9416	.5854	.9300	.9714	.9284	
	(e)	.6162	.9306	.9849	.9395	.5940	.9151	.9705	.9241	

Table 12

Efficiencies of Debiased Adaptive Robust Estimates of Canonical Scale Parameter

(Relative to Debiased Maximum Likelihood Estimate if Population is Known)

			Pha	se I	Phase II						
Sample		Sa	amples from	m		Samples from					
Size	Crite-										
n	rion	U	N	D	Avg.	U	N	D	Avg.		
8	(a)(1)	.5674	.7960	.9398	. 8494	.5866	.7887	.9420	.8526		
	(a)(2)	.5685	.8393	.9570	.8725	.5906	.8357	.9604	.8783		
	(b)(1)	.6375	. 7957	.9311	.8564	.6726	.8042	.9401	.8699		
	(b)(2)	.6257	.8343	.9495	.8770	.6500	.8380	.9629	.8902		
	(c)	.9992	.9401	.9388	.9439	.9998	.9414	.9559	.9550		
	(d)(1)	.7764	.8982	.9647	.9263	.7924	.8956	.9770	.9350		
	(d)(2)	.7155	.9071	.9749	.9272	.7315	.9032	.9912	.9381		
	(d)(3)	.7209	.8840	.9556	.9098	.7471	.8887	.9649	.9205		
	(e)	.6285	.8221	.9388	.8678	.6631	.8375	.9511	.8855		
12	(a)(1)	.5996	.7441	.9225	.8409	.5919	.7387	.9023	.8227		
	(a)(2)	.5765	.7702	.9317	.8523	.5721	.7701	.9113	.8363		
	(b) (1)	.6973	.7470	.9213	.8506	.6823	.7447	.8944	.8297		
	(b)(2)	.6650	.7664	.9322	.8608	.6539	.7693	.9044	.8415		
	(c)	.9973	.8679	.9205	.9091	.9948	.8708	.8673	.8751		
	(d) (1)	.7916	.8432	.9336	.8977	.7585	.8385	.9003	.8716		
	(d) (2)	.7317	.8514	.9451	.9026	.7158	.8513	.9111	.8785		
	(d)(3)	.7317	.8255	.9325	.8868	.7116	.8222	.8934	.8583		
	(e)	.6481	.7649	.9269	.8557	.6204	.7610	.8902	.8272		
16	(a)(1)	.6030	.7226	.9040	.8255	.5868	.7311	.9253	.8391		
	(a)(2)	.5688	.7376	.9069	.8296	.5595	.7448	.9284	.8435		
	(b)(1)	.7541	.7307	.8989	.8361	.7322	.7322	.9331	.8544		
	(b)(2)	.7105	.7400	.9029	.8393	.6955	.7482	.9349	.8593		
	(c)	.9941	.8268	.8582	.8542	.9944	.8485	.8944	.8843		
	(d)(1)	. 7905	.8400	.8845	.8666	.7819	.8326	.9146	.8827		
	(d)(2)	.7488	.8482	.8871	.8684	.7431	.8455	.9167	.8859		
	(d)(3)	.7570	.8099	.8857	.8560	.7397	.8059	.9169	.8726		
	(e)	.6898	.7585	.8913	.8379	.6720	.7557	.9175	.8507		
20	(a)(1)	.6162	.7181	.8947	.8218	.6130	.7124	.9112	.8277		
	(a)(2)	.5836	.7247	.8974	.8236	.5780	.7192	.9139	.8295		
	(b)(1)	.7741	.7161	.8913	.8276	.7579	.7228	.9048	.8361		
	(b)(2)	.7309	.7196	.8957	.8295	.7284	.7270	.9077	.8380		
	(c)	.9949	.8305	.8578	.8541	.9930	.8239	.8740	.8621		
	(d)(1)	.8279	.8430	.8761	.8643	.7975	.8350	.8843	.8656		
	(d)(2)	.7821	.8427	.8771	.8630	.7729	.8375	.8845	.8655		
	(d)(3)	.8044	.7941	.8817	.8513	.7759	.7906	.8927	.8550		
	(e)	.7724	.7639	.8856	.8419	.7084	.7545	.8975	.8417		
24	(a)(1)	.6160	.7148	.9010	.8246	.5827	.7017	.8863	.8093		
	(a)(2)	.5899	.7194	.9013	.8251	.5669	.7046	.8862	.8095		
	(b)(1)	. 7867	.7229	.9038	.8372	.7599	.6908	.8902	.8153		
	(b)(2)	.7643	.7248	.9045	.8375	.7457	.6947	.8904	.8165		
	(c)	.9870	.8218	.8686	.8572	.9850	.8093	.8595	.8471		
	(d)(1)	.8178	.8287	.8773	.8602	.8082	.8278	.8706	.8553		
	(d)(2)	.8008	.8354	.8766	.8613	.7879	.8378	.8706	.8578		
	(d)(3)	.7975	.7861	.8874	.8515	.7940	.7712	.8769	.8397		
	(e)	.7700	.7656	.8911	.8454	.7389	.7387	.8804	.8278		

TABLE 13

DEBIASING FACTORS FOR MAXIMUM LIKELIHOOD ESTIMATORS OF SCALE PARAMETER FOR DOUBLE SPIKE, ARC SINE, SYMMETRIC BETA AND STUDENT T POPULATIONS PHASE III: N=8(4)24

POPULATION	N=8	N=12	DEBIASING FAC N=16	10KS N=20	N=24
DS	1.0079	1.0005	1.0000	1.0000	1.0000
AS	1.1146	1.0537	1.0327	1.0208	1.0148
\$8(1.5)	1.3183	1.2255	1.1892	1.1554	1.1355
\$8(2.0)	1.2225	1.1690	1.1362	1.1130	1.0994
\$8(2.5)	1.1882	1.1328	1.1086	1.0848	1.0783
\$3(3.0)	1.1616	1.1163	1.0871	1.0745	1.0659
\$8(3.5)	1.1553	1.0997	1.0841	1.0639	1.0546
\$8(4.0)	1.1545	1.1015	1.0749	1.0597	1.0497
\$7(16)	1.0801	1.0400	1.0239	1.0102	1.0055
57(10)	1.0645	1.0233	1.0099	.9969	.9909
ST(8)	1.0490	1.0199	1.0003	.9871	.9756
ST(7)	1.0494	1.0065	.9896	.9833	.9721
ST(6)	1.0399	1.0044	.9830	•9763	.9664
ST(5)	1.0428	.9886	.9774	.9629	.9533

TABLE 14

CONTINGENCY TABLES--CLASSIFICATION VS. TRUE POPULATION BY CRITERIA (PHASE III N= 8)

		CF	RITERION	(A)(1)		C	RITERION	(A)(2)	
			CLASSIF	FD AS			CLASSIF	F0 45	
		U	N	D	SUMS	U	N	0	SUMS
NUMBER OF		3579	0	1421	5000	3556	1140	304	5000
SAMPLES FROM	45	3520	686	794	5000	3202	1195	603	5000
	SE(1.5)	2720	995	1285	5000	2274	1757	969	5000
	38(2.0)	2516	1098	1386	5000	2084	1839	1077	5000
	SB(2.5)	2416	1127	1457	5000	1980	1901	1119	5000
	38 (3.0)	2349	1066	1585	5000	1939	1842	1219	5000
	\$8(3.5)	2251	1118	1631	5000	1839	1861	1300	5000
	SB (4.0)	2169	1096	1735	5000	1756	1877	1367	5000
	ST (16)	1755	1036	2209	5000	1428	1739	1833	5000
	ST (10)	1675	1037	2288	5000	1320	1810	1870	5000
	ST (8)	1590	1069	2341	5000	1243	1774	1983	5000
	ST (7)	1562	986	2452	5000	1239	1723	2038	5000
	ST (6)	1515	948	2537	5000	1172	1672	2156	5000
	37 (5)	1379	1018	2603	5000	1085	1707	2208	5000
	SUMS	3099 6	13280	25724	70000	26117	23837	20046	70000
		C.F	RITERION	(B)(1)		C	RITERION	(8)(2)	
NUMBER OF	os	3559	1135	306	5000	3556	1140	304	5000
SAMPLES FROM		3823	588	589	5000	3497	1048	455	5000
	SB(1.5)	2694	1027	1279	5000	2232	1834	934	5000
	SB(2.0)		1039	1429	5000	2013	1900	1087	5000
	38 (2.5)	2403	1096	1501	5000	1909	1927	1164	5000
	SB (3.0)		1063	1574	5000	1895	1862	1243	5000
	38 (3.5)	2272	1094	1634	5000	1773	1887	1340	5000
	58 (4.0)	2131	1108	1761	5000	1690	1907	1403	5000
	ST (16)	1771	1063	2166	5000	1386	1818	1796	5000
	ST(10)	1689	1058	2253	5000	1324	1791	1885	5000
	57(8)	1617	1016	2367	5000	1232	1804	1964	5000
	ST (7)	1585	995	2420	5000	1217	1732	2051	5000
	ST (6)	1532	998	2470	5000	1160	1730	2110	5000
	ST (5)	1406	1012	2582	5000	1040	1778	2182	5000
	SUMS	31377	14292	24331	70000	25 9 24	24158	19918	70000

TABLE 14

CONTINGENCY TABLES--CLASSIFICATION VS. TRUE POPULATION BY CRITERIA (PHASE III: N= 8)

		CR	ITERION	(D)(1)		C	RITERION	(2)(2)		
			CLASSIFI	ED AS			CLASSIFI	ED AS		
		U	N	D	SUNS	U	N	D	SUMS	
NUMBER OF	DS	4690	12	298	5000	4689	13	298	5000	
SAMPLES FROM	AS	4013	707	280	5000	3811	944	245	5000	
	\$8(1.5)		1929	512	5000	2219	2313	468	5000	
	SE(2.0)	2332	2079	589	5000	2000	2464	536	5000	
	SB(2.5)		2094	653	5000	1933	2472	595		
	58 (3.0)	2198	2079	723	5000	1860	2479	661	5000	
	SB(3.5)		2059	780	5000	1857	2431	712	5000	
	Sa (4.0)	1991	2183	826	5000	1709	2528	763	5000	
		1699	2158	1143	5000	1475	2454	1071	5000	
	ST(10)	1625	2189	1186	5000	1445	2456	1099	5000	
	(8) T2	1585	2148	1267	5000	1390	2418	1192	5000	
	ST (7)	1516	2108	1376	5000	1383	2339	1278	5000	
	ST(6)	1505	2072	1423	5000	1308	2356	1336	5000	
	ST (5)	1454	2074	1472	5000	1299	2330	1371	5000	
	SUMS	31581	25891	12528	70000	28378	29997	11625	70000	
		CR	ITERION	(D)(3)		C	RITERION	(E)		
NUMBER OF	DS	3560	11	1429	5000	3560	5	1435	5000	
SAMPLES FROM	AS	3884	576	540	5000	3859	425	716	5000	
	\$8(1.5)	2602	1680	718	5000	2564	1228	1208	5000	
	SB(2.0)	2318	1870	812	5000	2288	1380	1332	5000	
	SB (2.5)	2236	1873	891	5000	2203	1391	1406	5000	
	\$8(3.0)	2176	1863	961	5000	2142	1393	1465	5000	
	SB(3.5)	2119	1840	1041	5000	2085	1367	1548	5000	
	3B (4.0)	1969	1975	1056	5000	1943	1472	1585	5000	
	ST (16)	1607	1984	1409	5000	1575	1359	2066	5000	
	ST (10)	1578	1996	1426	5000	1548	1367	2085	5000	
	ST (8)	1481	1978	1541	5000	1445	1368	2187	5000	
	ST (7)	1423	1942	1635	5000	1399	1325	2276	5000	
	ST (6)	1417	1912	1671	5000	1386	1311	2303	5000	
	ST (5)	1327	1893	1780	5000	1283	1256	2461	5000	
	SUMS	29697	23393	16910	70000	29280	16647	24073	70000	

TABLE 15

CONTINGENCY TABLES--CLASSIFICATION VS. TPUE POPUL-TION BY CRITERIA (PHASE III: N=12)

		CF	RITERION (A)(1)		C	RITERION	(A)(2)	
		U	CLASSIFIED N	AS D	SUMS	U	CLASSIF	ED AS	SUMS
NUMBER OF SAMPLES FROM	DS AS	4279 4110	530 608	191 282	5000 5000	4276 3962	531 800	193 238	5000 5000
	SB(1.5) SB(2.0)		1493 1518	672 8 55	5000 5000	252 8 2354	1911 1912	561 734	5000 5000
	SB(2.5) SB(3.0)		1683 1638	966 1171	5000 5000	2026 1892	2150 2078	824 1030	5000 5000
	SB(3.5) SB(4.0)		1798 1691	1193 1303	5000 5000	1749 1711	2243 2157	1008 1132	5000 5000
	ST(16) ST(10)	1346 1303	1645 1565	2009 2132	5000 5000	1113 1098	2084 1960	1803 1942	5000 5000
	ST (8) ST (7)	1177 1120	1506 144 8	2317 2432	5000 5000	972 924	1905 1846	2123 2230	5000 5000
	ST(6) ST(5)	1069 1009	1405 1372	2526 2619	5000 5000	884 842	1787 1725	2329 2433	5000 5000
	SUMS	29432	19900	20668	70000	26331	25089	18580	70000
		CF	RITERION (B	(1)		C	RITERION	(B)(2)	
NUMBER OF SAMPLES FROM	DS AS	4277 4420	530 455	193 125	5000 5000	4277 4304	530 582	193 114	5000 5000
	SB(1.5) SB(2.0)		1560 1557	654 885	5000 5000	2525 22 81	1913 1 9 51	562 768	5000 5000
	SB(2.5) SB(3.0)		1726 1635	1023 1254	5000 5000	1988 1855	2120 2028	892 1117	5000 5000
	SB(3.5)		1805 1749	1239 1338	5000 5000	1671 1673	2248	1081 1203	5000 5000
100	ST (16) ST (10)	1301 1278	1644 1582	2055	5000 5000	1128 1085	1970 1921	1902 1994	5000 5000
	ST (8) ST (7)	1154 1088	1538 1507	2308 2405	5000 5000	988 917	1865 1830	2147 2253	5000 5000
	ST(6) ST(5)	10 46 9 9 2	1438 1384	2516 2624	5000	895 854	1750 1673	2355 2473	5000 5000
	SUMS	29131	20110	20759	70000	26441	24505	19054	70000

CONTINGENCY TABLES--CLASSIFICATION VS. TRUE POPULATION BY CRITERIA (PHASE III: N=12)

	CRITERION (D)(1)					CRITERION (D)(2)				
			CLASSIFI	ED AS			CLASSIFI	ED AS		
		U			SUMS	U	N	0	SUMS	
NUMBER OF		4807	1	192	5000	4807	1	192	5000	
SAMPLES FROM	AS	4556	350	94	5000	4485	437	78	5000	
	SB(1.5)	2722	1953	325	5000	2497	2231	272	5000	
	SB(2.0)	2400	2149	451	5000	2194	2409	397	5000	
	SB (2.5)	2126	2332	542	5000	1923	2610	467	5000	
	SB(3.0)	1995	2374	631	5000	1817	2621	562	5000	
	SB (3.5)	1789	2622	589	5000	1605	2869	526	5000	
	58(4.0)	1784	2485	731	5000	1604	2731	665	5000	
	ST (16)	1223	2586	1191	5000	1162	2732	1106	5000	
	ST (10)	1210	2465	1325	5000	1118	2645	1237	5000	
	51(8)	1125	2445	1430	5000	1022	2621	1357	5000	
	ST (7)	1073	2384	1543	5000	987	2538	1475	5000	
	ST (6)	1015	2340	1645		973	2489	1538	5000	
	ST (5)	999	2249	1752	5000	958	2385	1657	5000	
	SUMS	28824	28735	12441	70000	27152	31319	11529	70000	
1		CF	RITERION	(D)(3)		C	RITERION	(E)		
NUMBER OF	ns	4807	0	193	5000	4807	. 0	193	5000	
SAMPLES FROM				181			263			
	SB (1.5)	2728	1824	448	5000	2714	1552	734	5000	
	SE(2.0)		2009	581	5000		1664		5000	
	38(2.5)	2131	2188	681	5000	2114	1821	1065	5000	
	\$8(3.0)	2016	2224	760	5000	2001	1807	1192	5000	
	\$8 (3.5)	1785	2477	738	5000	1768	2022	1210	5000	
	SB(4.0)		2319	876	5000	1789	1910	1301	5000	
	ST (16)	1213	2420	1367	5000	1200	1908	1892	5000	
	\$1(10)	1186		1517	5060	1176	1798	2026	5000	
	57 (8)	1105	2270	1625	5000	1097	1721	2182	5000	
	ST (7)	1020	2221	1759	5000	1012	1691	2297	5000	
	ST (6)	992	2162	1846	5000	985	1640	2375	5000	
	ST (5)	957	2043	2000	5000	944	1515	2541	5000	
	SUMS	28654	26774	14572	70000	28497	21312	20191	70000	

TABLE 16

CONTINGENCY TABLES--CLASSIFICATION VS. TRUE POPULATION BY CRITERIA (PHASE III: N=16)

		C	RITERION	(A)(1)		C	RITERION	(A)(2)	
			CLASSIFI	ED AS			CLASSIFI	ED AS	
		U		D	SUMS	U	N	0	SUMS
NUMBER OF	DS	4603	283	114	5000		283	114	5000
SAMPLES FROM	AS	4499	406	95	5000	4419	495	86	5000
	SB(1.5)		1559	335	5000	2903	1797	300	5000
	38(2.0)	2670	1819	511	5000	2469	2061	470	5000
	38 (2.5)	2328	2022	650	5000	2126	2266	608	5000
	38(3.0)	2125	2103	772	5000	1907	2376	717	5000
	SB(3.5)	1951	2160	889	5000	1730	2436	834	5000
	38(4.0)	1886	2140	974	5000	1697	2392	911	5000
	ST (16)	1077	1908	2015	5000	946	2117	1937	
	57 (10)	935	1920	2145	5000	826	2104	2070	5000
	ST (8)	855	1812	2333	5000	746	2015	2239	5000
	ST (7)	879	1693	2428	5000	769	1893	2338	5000
	ST (6)	692	1655	2653	5000	608	1824	2568	5000
	ST (5)	684	1603	2713	5000	582	1781	2637	5000
	SUPS	28290	230 8 3	18627	70000	26331	25840	17829	70000
		CF	RITERION	(B)(1)		C	RITERION	(8)(2)	
NUMBER OF	os	4886	0	114	5000	4886	0	114	5000
SAMPLES FROM		4776		15	5000	4738		14	5000
	SB(1.5)	3042	1633	325	5000	2863	1839	298	5000
	SB(2.0)	2514	1954	532	5000	2341	2155	504	5000
	SB(2.5)	2158	2133	709	5000	1984	2342	674	5000
	38(3.0)	1943	2237	820	5000	1760	2455	785	5000
	\$3 (3.5)	1800	2268	932	5000	1649	2468	883	5000
	SB(4.0)	1739	2278	983	5000	1585	2481	934	5000
	ST(16)	999	2042	1959	5000	902	2187	1911	5000
	ST(10)	901	1959	2140	5000	811	2111	2078	5000
	ST (8)	777	1898	2325	5000	676	2052	2272	5000
	ST (7)	809	1806	2385	5000	722	1963	2315	5000
	ST (6)	637	1763	2600	5000	556	1894	2550	5000
	ST (5)	626	1733	2641	5000	548	1862	2590	5000
	SUMS	27607	23913	18480	70000	26021	26057	17922	70000

TABLE 16

CONTINGENCY TABLES--CLASSIFICATION VS. TRUE POPULATION BY CRITERIA (PHASE III: N=16)

		CRITERION (D)(1)				CRITERION (D) (2)			
			CLASSIFI	ED AS			CLASSIFI	ED AS	1
		U	N	D	SUMS	U	N	D	SUMS
NUMBER OF	DS	4886	0	114	5000	4886	0	114	5000
SAMPLES FROM			111	22	5000	4838	147	15	5000
	\$3(1.5)	2932	1885	1.83	5000	2752	2089	159	5000
	\$8(2.0)	2394	2330	276	5000	2214	2539	247	5000
	SB(2.5)	2049	2571	380	5000	1891	2764	345	5000
	SB(3.0)	1829	2763	408	5000	1664	2946	390	5000
	58(3.5)		2839	465	5000	1560	3008	432	
	\$3 (4.0)	1629	2853	518	5000	1503	3011	486	5000
	ST (16)		2882		5000	910	2990	1100	5000
	ST(10)	872	2777	1351	5000	820	2876	1304	5000
	ST (8)	766	2759		5000	719	2841	1440	
	ST (7)	807	2660	1533	5000	764	2771	1465	5000
	ST(6)	656	2640	1704	5000	619	2723	1658	
	ST (5)	640	2542	1818	5000	605	2627	1768	5000
	SUMS	27009	31612	11379	70000	25745	33332	10923	70000
		CR	ITERION	(0)(3)		C	RITERION	(E)	
NUMBER OF	DS	4886	0	114	5000	4886	0	114	5000
SAMPLES FROM		48 40	101	59	5000	4838	93	69	5000
	SB (1.5)	2967	1772	261	5000	2961	1584	455	5000
	SB(2.0)	2418	2213	369	5000	2411	1960	629	5000
	SB(2.5)	8805	2419	493	5000	2078	2167	755	5000
	SE(3.0)	1858	2585	557	5000	1846	2328	826	5000
	SB(3.5)	1713	2652	635	5000	1710	2351	939	5000
	\$8(4.0)	1643	2658	699	5000	1635	2378	987	5000
	ST (16)	970	2567	1463	5000	966	2194	1840	
	ST(10)	859	2480	1661	5000	852	2122	2026	5000
	ST(8)	738	2437	1825	5000	730	2054	2216	5000
	ST (7)	788	2348	1864	5000	784	1968	2248	5000
	ST(6)	626	2310	2084	5000	621	1939	2440	5000
	ST (5)	609	2203	2188	5000	601	1812	2587	5000
	SUMS	27003	28745	14252	70000	26919	24950	18131	70000

TABLE 17

CONTINGENCY TABLES--CLASSIFICATION VS. TRUE POPULATION BY CRITERIA (PHASE III: N=20)

		CF	RITERION	(A)(1)		С	RITERION	(A)(2)	
			CLASSIFI	ED AS			CLASSIF.	IED AS	
		U	N	D	SUMS	U	Н	D	SUMS
NUMBER OF SAMPLES FROM	DS AS	4784 4660	146 303	70 37	5000 5000	4784 4619	146 344	70 37	5000
	SB(1.5) SB(2.0)		1635 2004	178 301	5000 5000	3020 2495	1814 2217	166 288	5000 5000
	SB(2.5) SE(3.0)		2294 2431	449 544	5000 5000	2077	2491 2612	432 521	5000 5000
	SB(3.5) SB(4.0)		2493 2512	626 7 5 7	5000 5000	1719 1562	2672 2700	609 738	5000 5000
	ST(16) ST(10)	851 747	2184 2046	1965 2207	5000 5000	76.7 650	2306 2177	1927 2173	5000
	ST (8)	620 601	1987 1881	2393 2518	5000 5000	555 542	2079 1966	2366 2492	5000 5000
	ST (6) ST (5)	506 473	1831 1678	2663 2849	5000 5000	453 407	1915 1774	2632 2819	5000 5000
	SUMS	27018	25425	17557	70000	25517	27213	17270	70000
		CF	RITERION	(8)(1)		C	RITERION	(8)(2)	
NUMBER OF SAMPLES FROM	DS AS	4930 4896	56 102	14	5000 5000	4930 4882	56 116	14	5000 5000
	SB(1.5) SB(2.0)		1730 2179	163 317	5000 5000	2972 2353	1869 2339	159 308	5000 5000
	SB(2.5) SB(3.0)		2447 25 9 3	477 572	5000 5000	1949 1711	2589 2727	462 562	5000 5000
	SB(3.5)		2662 2640	645 809	5000	1581 1446	2783 2767	636 787	5000 5000
	ST(16) ST(10)	760 672	2327 2175	1913 2153	5000 5000	686 607	2422 2265	1892 2128	5000 5000
	ST (8) ST (7)	566 524	205 8 1993	2376 2483	5000 5000	507 477	2142 2066	2351 2457	5000 5000
	ST (6) ST (5)	496 417	1930 1798	2574 2 78 5	5000 5000	452 3 78	2001 1856	2547 2766	5000 5000
	SUMS	26027	26690	17283	70000	24931	27998	17071	70000

TABLE 17

CONTINGENCY TABLES--CLASSIFICATION VS. TRUE POPULATION BY CRITERIA (PHASE III: N=20)

		CF	RITERION	(8)(1)		C	RITERION	(0)(2)	
			CLASSIFI	FO AS			CLASSIFI	FD 45	
		U		D	SUMS	U	N	0	SUMS
NUMBER OF SAMPLES FROM		4930 4937	0 55	70 8	5000 5000	4986 4929	0 68	14	5000 5000
	SB(1.5) SB(2.0)		1845 2434	138 187	5000 5000	2885 2239	1992 2588		5000 5000
	SB(2.5) SB(3.0)		2 738 2946	276 312	5000 5000	1843 1609	2906 3103		5000 5000
	SB(3.5) SB(4.0)		302 8 3122	351 415	5000 5000	1499 1368		328 383	5000 5000
	ST (16) ST (10)	72 8 640	3130 3055	1142 1305	5000 5000	680 588	3205 3131	1115 1281	5000 5000
	ST (8) ST (7)	533 531	2 89 2 2 8 25	1575 1644			2952 2876		5000 5000
	ST (6) ST (5)	502 433	2717 2580	1781 1987	5000 5000	462 420	2784 2624		
	SUMS	25442	33367	11191	70000	24536	34651	10813	70000
		CF	RITERION	(0)(3)		C	RITERION	(E)	
NUMBER OF SAMPLES FROM	DS AS	4930 4919	0 55	70 26	5000 5000	4930 4918	0 50	70 32	5000 5000
			1769 2335	18 4 272	5000 5000	3040 23 8 7	1669 2199		5000 5000
	SB(2.5)	_	25 9 4 27 8 6	387 457	5000 5000	2012 1746	2421 2590		5000 5000
	SB(3.5) SB(4.0)		2 8 52 2 9 19	511 601	5000 5000	1631 1476			5000 5000
	ST(16) ST(10)		2752 2627	1532 1726	5000 5000	713 642	2499 2403	1788 1955	5000 5000
	ST (8) ST (7)	535 527	2499 2420	1966 2053	5000 5000	532 520	2276 2181	21 9 2 22 99	
	ST(6) ST(5)	493 426	22 8 0 2 178		5000 5000	487 420			5000
	SUMS	25526	30066	14408	70000	25454	27734	16812	70000

TABLE 18

CONTINGENCY TABLES--CLASSIFICATION VS. TRUE POPULATION BY CRITERIA (PHASE III: N=24)

		CRITERION (A)(1)					CRITERION (A)(2)				
			CLASSIFI	ED AS			CLASSIFI	ED AS			
		U	11	С	SUMS	υ	N	D	SUMS		
NUMBER OF		4895	75	30	5000	4895	75	30	5000		
SAMPLES FROM	AS	4774	214	12	5000	4755	233	12	5000		
	\$8(1.5)		1624	73	5000	3225	1705	70	5000		
	3B(2.0)	2595	2246	159	5000	2507	2338	155	5000		
	58 (2.5)		2459	288	5000	2172	2544	284			
	58 (3.0)	1933	2712	355	5000	1850	2801	349	5000		
	SB(3.5)		2807	427	5000	1678	2904	418	5000		
	SB (4.0)	1567	2912	521	5000	1486	3003	511	5000		
	ST (16)	661	2516	1823	5000	625	2564	1811			
	ST(10)	527	2339	2134	5000	503	2375	2122	5000		
	ST(8)	457	2226	2317	5000	430	2261	2309			
	ST (7)	427	2091	2482	5000	401	2129	2470	5000		
	ST (6)	379	1903	2718	5000	354	1939	2707	5000		
	ST (5)	305	1780	2915	5000	288	1814	2898	5000		
	SMMS	25842	27904	16254	70000	2516 9	28685	16146	70000		
		GR	ITERION	(B)(1)		С	RITERION	(8)(2)			
NUMBER OF	OS	4970	24	6	5000	4970	24	6	5000		
SAMPLES FROM	AS ·	4943	57	0	5000	4938	62	0	5000		
	38(1.5)	3189	1737	74	5000	3108	1818	74	5000		
	58(2.0)	2427	2396	177	5000	2355	2470	175	5000		
	SB (2.5)	2038	2666	296	5000	1963	2744	293	5000		
	58(3.0)	1752	2871	377	5000	1685	2942	373	5000		
	\$8 (3.5)		2954	470	5000	1501	3034	465	5000		
	SB(4.0)	1405	3053	542	5000	1338	3123	539	5000		
	ST (16)	597	2619	1784	5000	565	2662	1773	5000		
	ST(10)	468	2438	2094	5000	451	2464	2085	5000		
	ST (8)	411	2305	2284	5000	396	2332	2272	5000		
	ST (7)	378	2195	2427	5000	360	2221	2419	5000		
	37(6)	342	2030	2628	5000	326	2052	2622	5000		
	ST(5)	274	1903	2823	5000	254	1927	2819	5000		
	SUMS	24770	29248	15982	70000	24210	29875	15915	70000		

TABLE 18

CONTINGENCY TABLES--CLASSIFICATION VS. TRUE POPULATION BY CRITERIA (PHASE III: N=24)

		CF	RITERION	(0)(1)		CP	RITERION	TERION (D)(2)		
			CLASSIF	ER 65			CLASSIFI	ED AS		
		U	N	0	SUMS	U	N	ם מ	SUMS	
NUMBER OF	DS	4994	0	6	5000	4994	0	6	5000	
SAMPLES FROM	AS	4979	19	2	5000	4975	24	1	5000	
	58(1.5)		1830	83	5000	2962	1970	68	5000	
	SB(2.0)	2280	2590	130	5000	2168	2712	120	5000	
	\$8(2.5)	1881	2924	195	5000	1793	3029	178	5000	
	SB(3.0)	1626	3132	242	5000	1545	3230	225	5000	
	\$8(3.5)	1409	32 9 5	296	5000	1314	3413	273	5000	
	SB(4.0)	1265	3391	344	5000	1196	3484	320	5000	
	ST (16)	541	3308	1151	5000	507	3379	1114	5000	
	ST(10)	467	3097	1436	5000	434	3178	1388	5000	
	ST (8)	402	2968	1630	5000	383	3032	1585	5000	
	ST (7)	354	2 9 35	1711	5000	344	2991	1665	5000	
	ST (6)	318	2731	1951	5000	305	2795	1900	5000	
	ST (5)	268	2526	2206	5000	261	2585	2154	5000	
	SUMS 2	23871	34746	11383	70000	23181	35822	10997	70000	
		CF	RITERION	(D)(3)		CF	RITERION	(E)		
NUMBER OF	os	4970	0	30	5000	4970	0	30	5000	
SAMPLES FROM		4975	18	7	5000	4975	15	10	5000	
	\$8(1.5)	3112	1778	11.0	5000	3108	1720	172	5000	
	SB(2.0)		2506	188	5000	2303	2416	281	5000	
	SB(2.5)	1892	2827	281	5000	1890	2726	384	5000	
	SB (3.0)		3018	346	5000	1636	2906	458	5000	
	\$8(3.5)	1421	3164	415	5000	1419	3052	529	5000	
	SB(4.0)	1274	3222	504	5000	1274	3091	635	5000	
	ST (16)	542	2914	1544	5000	541	2775	1684	5000	
	ST(10)	473	2708	1819	5000	471	2568	1961	5000	
	ST (8)	409	2563	2028	5000	409	2431	2160	5000	
	ST (7)	343	2501	2156	5000	343	2381	2276	5000	
	ST (6)	315	2311	2374	5000	314	2192	2494	5000	
	ST (5)	265	2109	2626	5000	263	1993	2744	5000	
	SUMS	23933	31639	14428	70000	23916	30266	15818	70000	

TABLE 19

MEAN SQUAR	E ERRORS O	F PARAMETER	ESTIMATES	(PHASE III)	IF POPULATI	ON IS KNOWN
SIZE, N PO	PULATION	MSE(µ)	MSE(o)	MSE (FÔ)	MSE (o)	MSE (Fo)
â	DS	.0056	.0056	.0056	.0057	.0057
	AS	.0285	.0219	.0 435	.0148	.0294
		\				
	\$8(1.5)	.0929	.0623	.1923	.0466	.1438
	SB(2.0)	.1032	.0564	.1857	.0442	. 1455
	\$8(2.5)	.1084	.0571	.1950	.0481	
	SB(3.0)	.1163	.0592	.2070	.0523	.1829
	SB(3.5)	.1210	.0605	.2149	.0561	.1993
	SB(4.0)	.1214	.0605	.2174	.0574	.2063
	3514.07	•12.	•0000	• 6 2 7 7	•0514	• 2003
	ST (16)	.1274	.0790	.3107	.0847	.3331
	ST(10)	.1426	.0870	.3455	.0945	. 3753
	ST(8)	.1431	.0994	.3964	.1064	. 4244
	ST (7)	.1467	.0996	.3978	.1073	. 4286
	ST(6)	.1475	.1164	• 4646	.1240	. 4950
	\$7(5)	.1579	.1410	.5590	•1517	.6015
	AVG	•1116	.0718	.2668	.0710	.2668
12	DS	.0006	.0006	.0006	.0006	.0006
	AS	.0092	.0067	.0133	.0044	.0087
	\$8(1.5)	.0530	.0337	.1040	.0246	
	\$8(2.0)	.0629	.0337	.1109	.0271	.0892
	5545 51	0.00			2221	0070
	S8(2.5) S8(3.0)	.0698	.0334	•1141	.0284	.0970
	55(3.0)	.0762	.0345	.1206	.0304	.1063
	\$8(3.5)	.0751	.0349	.1240	.0318	.1130
	58(4.0)	.0772	.0367	.1319	.0347	
	ST (16)	.0875	.0541	.2127	.0569	.2237
	ST(10)	.0954	.0597	.2371	.0620	. 2462
	ST(8)	.0930	.0689	.2748	.0712	
	ST(7)	.0974	.0735	.2936	.0744	. 2972
	ST(6)	.0951	.0876	.3497	.0884	. 3529
	ST(5)	.1015	.1044	.4139	.1021	
	31(9)	•1019	•1044	.4139	.1021	. 4040
	AVG	.0710	.0473	.1787	.0455	.1732

TABLE 19

	MARE ERPORS OF	PARAMETER	ESTIMATES	(PHASE III) I	F POPULATI	ON IS KNOWN
SAMPLE SIZE, N	POPULATION	MSE (Î)	MSE(ô)	MSE (Fô)	MSE(o)	MSE (Fa)
16	DS	0.0000	0.0000	0.0000	0.0000	0.0000
•	AS	.0035	.0025	.0050	.0017	.0034
	\$8(1.5)	.0351	.0222	.0685	.0174	.0537
	\$8(2.0)	.0459	.0219	.0721	.0184	.0606
	SB(2.5)	.0518	.0230	•0786	.0202	.0690
	SB(3.0)	.0539	.0232	.0811	.0209	.0731
	58(3.5)	.0576	.0247	.0877	.0225	.0799
	SB(4.0)	.0574	.0253		.0236	.0848
	5511657	• 0 > 1 1	••••			
	ST (16)	.0669	.0383	.1506	.0396	. 1557
	ST(10)	.0685	.0461	.1831	.0471	.1871
	ST(8)	.0681	.0511	.2038	.0511	.2038
	ST(7)	.0727	.0559	.2233	.0548	.2189
	ST (6)	0720	.0665	.2658	.0641	. 2559
	ST(5)	.0728	.0813	.3247	.0777	.3081
	31(3)	• 0 / 4 /	•0019	•3247	• 0 7 7 7	• 3001
	AVG	.0521	.0345	.1311	.0328	.1253
20	DS	0.0000	0.0000	0.0000	0.0000	0.0000
	AS	.0017	.0012	.0024	.0008	.0016
	SB(1.5)	.0270	.0162	.0500	.0120	.0370
	\$8(2.0)	.0344	.0164	.0540	.0137	.0451
	60/2 51	04.04	0474	.0584	.0142	.0485
	\$8(2.5) \$8(3.0)	.0401	.0171	.0629	.0161	.0563
	3013.07	• 0 431	•0100	• 0 02 9	•0101	• 0 > 0 0
	SB(3.5)	.0457	.0197	.0700	.0183	.0650
	SB(4.0)	.0484	.0207	.0744	.0192	.0690
	57 (16)	.0538	.0312	.1227	.0316	.1243
	ST(10)	.0538	.0359	.1426	.0356	. 1414
	ST(8)	.0579	.0426	.1699	.0412	.1643
	51(7)	.0586	.0483	.1929	.0465	.1857
	3. 117	.000	.0400	,.,		
	\$7(6)	.0570	.0527	.2104	.0497	. 1984
	ST (5)	.0607	.0721	.2859	.0657	.2605
	AVG	.0416	.0280	.1069	.0260	.0998

TARLE 19

	MARE ERRORS O	F PARAMETER	ESTIMATES	(PHASE III)	IF POPULATI	ON IS KNOWN
SIZE, N	POPULATION	MSE(µ̂)	MSE(ô)	MSE (Fô)	MSE (o)	MSE (Fo)
24	DS	0.0000	0.0000	0.0000	0.0000	0.0000
	AS	.0009	.0006	.0012	.0004	8000.
	SB(1.5)	.0202	.0121	.0373	.0097	.0299
	58(2.0)	.0279	.0129	.0425	.0106	.0349
	\$3(2.5)	.0327	.0139	.0475	.0120	.0410
	\$8(3.0)	.0343	.0148	.0517	.0133	.0465
	\$3(3.5)	.0371	.0156	• 0 554	.0145	.0515
	58(4.0)	.0376	.0157	.0564	.0148	.0532
	57(16)	.0453	.0265	.1042	•0268	.1054
	\$7(10)	.0467	.0311	.1235	.0304	.1207
	57(8)	.0469	.0370	.1476	.0349	.1392
	51(7)	.0462	.0400	.1598	.0374	.1494
	51(6)	.0493	.0471	.1880	.0429	.1712
	\$1(5)	.0502	.0639	.2534	.0567	.2248
	AVG	.0340	.0237	.0906	.0217	.0835

EFFICIENCIES OF ADAPTIVE ROBUST ESTIMATES OF
LOCATION PARAMETER
(RELATIVE TO MAXIMUM LIKELIHOOD ESTIMATE IF POPULATION IS KNOWN)
(PHASE III)

SAMPLE	SAMPLE	55			CRT	TERION			
SIZE, N	FROM	(4)(1)	(A)(2)	(8)(1)	(B) (2)	(D) (1)	(D)(2)	(D) (3)	(E)
8 0	S	.0193	.0465	.0465	.0465	.0875	.0875	.0193	.0193
٥	S	.1997	.2082	.2649	.2534	.3760	.3780	.2531	.2405
	D 14 E	.5974	6477	(772	.6570	.7218	7250	6570	641.0
7	B(1.5)		.6173	.6372			.7258	.6579	.6140
5	B(2.0)	.6611	.6866	.6898	.7192	.7690	.7812	.7088	.6723
S	B (2.5)	.7285	.7481	.7450	.7645	.7976	.8102	.7607	.7207
	88 (3.0)	.7347	.7692	.7498	.7816	.8004	.8190	.7651	.7324
					7000				
	B (3.5)	.7629	.7878	.7548	.7908	.8061	.8192	.7658	.7392
5	B (4.0)	.7564	.7863	.7503	.7909	.8104	.8259	.7732	.7421
5	7 (16)	.8476	.8798	.8235	.8626	.8079	.8257	.8230	.8079
	T (10)	.8963	.9314	.8468	.9008	.8079	.8098	.8503	.8418
						100			
	T (8)	.8844	.9203	.8388	.8828	.7977	.7924	.8373	.8349
5	T(7)	.9072	.9428	.8594	.9078	·B205	.8056	.8670	.8579
	67 (6)	.9755	1.0041	.9253	.9666	.8213	.8185	.9230	.9225
	T (5)	1.0194	1.0492	.9777	1.0220	·8531	.8306	.9570	.9587
	31 (3)	1.0194	1.0492	•9///	1.0220	•6931	• 6300	.9970	.9001
4	VG	.6766	.7553	.7331	.7632	.7656	.7684	.6835	.6667
12 [os	.0092	.0092	.0092	.0092	.0155	.0155	.0155	.0155
	S	.1444	.1435	.2493	.2353	.3297	.3370	.2341	.2249
	SB(1.5)	.5928	•5962	.6424	.6448	.6883	.6910	.6386	.6127
	SB(2.0)	.6485	.6614	•67 9 3	.6837	.7172	.7263	.6807	.6511
5	38 (2.5)	.7079	.7188	.7174	.7271	.7497	.7579	.7188	.6810
	B (3.0)	.7463	.7612	.7545	.7651	.7807	.7938	.7628	.7264
		7.00	7/07	7.77	7.05	7007	0075	7750	777/
	B(3.5)	.7488	.7687	.7473	.7695	.7897	.8075	.7758	.7334
	B(4.0)	.7452	.7689	.7481	.7674	.7674	.7902	.7576	.7318
5	T (16)	.8528	.8785	.8087	.8341	.7933	.7806	.8162	.8087
5	1 (10)	.8665	.8883	.8281	.8548	.7937	.7950	.8231	.8175
		007/	0467	01.1.7	0746	0070	0050	04.05	0.704
	ST (8)	.8934	.9163	.8447	.8716	.8230 .8130	.8059 .7938	.8485	.8394
	51(/)	.9163	•9456	.8673	.0944	.0130	. 1938	.8604	.8574
	T (6)	.9567	.9794	.9153	.9388	.8661	.8270	.8989	.8930
5	ST (5)	1.0130	1.0336	.9630	.9864	.9079	.8735	.9603	.9566
1	VG	.7402	.7555	.7448	.7595	.7630	.7589	.7607	.7417

EFFICIENCIES OF ADAPTIVE ROBUST ESTIMATES OF LOCATION PARAMETER

LOCATION FARAMETER
(RELATIVE TO MAXIMUM LIKELIHOOD ESTIMATE IF POPULATION IS KNOWN)
(PHASE III)

SAMPLE	SAMPL	FS			CRI	TERION			
SIZE, N	FROM	(A) (1)	(A)(2)	(B) (1)	(8)(2)	(0) (1)	(2)(2)	(D) (3)	(E)
16 D	S	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
A	5	.1151	.1097	.2632	.2465	.3977	.3977	.2482	.2431
	B(1.5)	.6021	.5980	.6429	.6417	.6724	.6763	.6452	.6158
S	8(2.0)	.6691	.6701	.6923	.6944	.7138	.7194	.6871	.6623
S	B (2.5)	.7175	.7214	.7348	.7421	.7629	.7708	.7430	.7896
	B (3.0)	.7414	.7528	.7434	.7486	.7581	.7744	.7497	.7254
	B(3.5)	.7471	.7629	.7549	.7660	.7752	.7826	.7619	.7356
S	B (4.0)	.7455	.7593	•7533	.7664	.7810	.7917	.7553	.7340
,	1 (16)	.8209	.8342	.8031	.8209	.7964	.8099	.8060	.7936
	1(10)	.8616	.8760	.8263	.8436	.8223	.8012	.8415	.8263
3	. (10)	.0010	•0700	•0200	.0430	.0223	.0012	.0415	.0200
5	7 (8)	.9020	.9129	.8833	.8949	.8513	.8481	.8810	.8708
	T (7)	.9238	.9429	.8920	.9042	.8463	.8309	.8748	.8655
5	T (6)	.9406	.9492	.9180	.9286	.8708	.8636	.9066	.9123
S	1(5)	.9829	1.0000	.9361	.9516	.9200	.9011	.9234	.9338
Δ	VG	.7578	.7657	.7784	.7873	.7813	.7810	.7774	.7620
	•	•	• • • • • • • • • • • • • • • • • • • •	•	•.0,0				•
20 D	S	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
٨	S	.0983	.0934	.2931	.2656	.4048	. 4359	.2576	.2537
	B(1.5)	.5684	.5649	.6164	.6095	.6236	.6250	.6027	.5857
S	B(2.0)	.6641	.6628	.6908	.6880	.6978	.7006	.6758	.6590
\$	8 (2.5)	.6926	.6938	.7123	.7161	.7110	.7199	.7023	.6843
	B (3.0)	.7509	.7575	.7601	.7655	.7752	.7908	.7588	.7317
S	8 (3.5)	.7591	.7642	.7566	.7642	.7707	.7785	.7591	7383
	8 (4.0)	.7610	.7695	.7695	.7769	.7844	.7934	.7744	.7551
	* * * * * * * * * * * * * * * * * * * *	0116	0506	0004	0767	0751	.8252	0.261	.8152
	T(16) T(10)	.8446	.8526	.8201	.8367	.8354		.8264	.8419
2	(10)	.8526	.8650	.8341	.8433	.8 526	.8526	.8472	.8419
S	T (3)	.9033	.9176	.8826	.8935	.8921	.8746	.8935	.8908
	T (7)	.9185	.9258	.8919	.9015	.8933	.8720	.8960	.8947
-	1 (6)	.9238	.9360	.8851	.8892	.8906	.8837	.8906	.8906
5	7 (5)	1.0202	1.0323	.9951	1.0100	.9712	.9514	.9790	.9806
	VG	.7733	.7783	.7983	.8041	.7994	.8098	.7892	.7775
А	V G	•1133	.1103	•1983	• 60 41	./994	.0090	.1092	.1115

EFFIGIENCIES OF ADAPTIVE ROBUST ESTIMATES OF LOCATION FARAMETER (RELATIVE TO MAXIMUM LIKELIHOOD ESTIMATE IF POPULATION IS KNOWN) (PHASE III)

SAMPLE	SAMPL	ES			CRI	TERION			
SIZE, N	FROM	(A) (1)	(A)(2)	(8)(1)	(8)(2)	(0)(1)	(0)(2)	(D) (3)	(E)
24 D	S	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
A	S	.0909	.0882	.3000	.2813	.6000	.5625	.4091	.3913
S	B (1.5)	.5674	.5627	.5959	.5924	.6012	.5994	.5976	.5805
S	8(2.0)	.6627	.6596	.6788	.6788	.6838	.6838	.6723	.6565
S	B(2.5)	.6972	.6957	.7093	.7063	.7078	.7140	.6972	.6813
S	B (3.0)	.7221	.7252	.7392	.7424	.7505	.7522	.7361	.7206
S	8 (3.5)	.7495	.7541	.7450	.7495	.7618	.7729	.7510	.7361
S	B (4.0)	.7627	.7689	.7658	.7721	.7737	.7817	.7642	.7535
5	1 (16)	.8547	.8547	.8312	.8389	.8404	.8436	.8389	.8358
S	7 (10)	.8778	.8811	.8616	.8713	.8713	.8778	.8553	.8491
S	1(8)	.9196	.9250	.9142	.9142	.9054	.9054	.9002	.8899
S	T (7)	.9077	.9112	.8868	.8971	.9077	.9006	.8953	.8868
S	7 (6)	.9463	.9517	.9302	.9337	.9499	.9444	.9373	.9373
S	T (5)	1.0183	1.0266	1.0000	1.0080	1.0101	.9901	1.0101	1.0121
Δ	VG	.7922	.7940	.8090	.8126	.8222	.8227	.8053	.7952

EFFICIENCIES OF ADAPTIVE ROBUST ESTIMATES OF SCALE PARAMETER (RELATIVE TO MAXIMUM LIKELIHOOD ESTIMATE IF POPULATION IS KNOWN) (PHASE III)

SAMPLE	SAMPL	ES			CRI	TERION			
SIZE, N	FROM	(A) (1)	(A)(2)	(B)(1)	(8)(2)	(0)(1)	(D)(2)	(D) (3)	(E)
3 3	15	.0318	.0348	.0348	.0348	.0284	.0284	.0318	.0318
	S	.3288	.3417	.3093	.3211	.2955	.3042	.3012	.3063
		. 0047	1 0070	1 0050		1 0 773	1 0727	1 0300	4 0524
		1.0613	1.0930	1.0650	1.0968	1.0332	1.0723	1.0298	1.0524
5	8(2.0)	.9674	.9930	.9559	.9930	.9416	.9724	.9447	.9608
	8 (2.5)	.9136	.9376	.9078	.9391	.9021	.9269	.9049	.9107
	8 (3.0)	.8757	.9036	.8732	.8983	.8719	.8916	.8706	.3757
	210.01	•0151	. 3000	•0,02	.0,00	•0115	.0,10	.0766	•0.5
	B (3.5)	.8705	.8897	.8594	.8897	.8521	.8680	. 8557	. 8594
	8 (4.0)	.8545	.8743	.8557	.8768	.8521	.8680	.8509	.8545
			•01.10	• • • • • • • • • • • • • • • • • • • •	• • • • • •	.0) . 1	• • • • • •	.0203	•0213
5	T (16)	.8485	.8672	.8541	.8768	.8720	.8837	.8749	.\$662
	7 (10)	.8546	.8850	.8597	.8806	.9025	.9139	.8932	.8815
	T (3)	.8971	.9247	.9036	.9298	.9413	.9558	.9342	.9170
5	1(7)	.9005	.9154	.9063	.9257	.9477	.9559	.9396	.9239
5	1 (6)	.9319	.9557	.9387	.9636	.9864	1.0009	.9700	.9494
	7 (5)	1.0658	1.0821	1.0674	1.0905	1.1102	1.1253	1.0990	1.0780
A	VG	.7716	.7982	.7793	.7984	.7694	.7815	.7795	.7758
12 [.0036	.0036	.0036	.0036	.0032	.0032	.0032	.0032
	15	.1348	.1370	.1274	.1288	.1245	.1255	.1255	.1264
	B (1.5)	1.1049	1 1159	1.1013	1.1086	1.0564	1.0698	1.3631	1.0871
		1.0306		1.0243	1.0243	.9912	1.0000	.9941	1.0120
	E (C. 0)	1.0300	1.0331	1.0243	1.0240	.9912	1.0000	• 5541	1.0120
	18 (2.5)	.9911	.9940	.9795	.9882	.9570	.9625	.9625	.9681
5	E (3.0)	.9557	.9610	.9504	.9504	.9249	.9324	.9299	.9401
	B (3.5)		.9588	.9510	.9562		.9407	.9382	.9357
5	8 (4.0)	.9315	.9362	.9221	.9291	.9129	.9152	.9129	.9152
	11161	0044	0013	0.000	0057	.9280	0726	0272	00.33
	1 (16)	.8811	.8942	.8869	.8957		.9328	.9232	.9032
	7 (10)	.8884	.8991	.8991	.9073	.9461	.9506	.9416	.9171
	7 (3)	.9374	.9517	.9477	.9569	.9928	.9971	.9871	.9663
	T (7)	.9671	.9787	.9751	.9839		1.0265	1.0138	.9919
		. 5011	• 7/0/	• 9, 01	. 3009	1.0260	1.0200	1.0100	• 5 7 1 5
	7 (6)	1.0318	1.0429	1.0330	1.0478	1.0882	1.0923	1.0801	1.0554
	1 (5)	1.1447	1.1574	1.1498	1.1626	1.1986		1.1904	1.1678
	VG	.7522	.7587	.7513	.7567	.7490	.7521	.7476	.7414

TABLE 21

EFFICIENCIES OF ADAPTIVE ROBUST ESTIMATES OF SCALE PARAMETER. (RELATIVE TO MAXIMUM LIKELIHOOD ESTIMATE IF POPULATION IS KNOWN) (PHASE III)

SAMPL	E SAMPL	ES			CRI	TERION			
SIZE,		(A) (1)	(A)(2)	(B)(1)	(8)(2)	(D)(1)	(D)(2)	(0)(3)	(E)
				2 2222	0 0000		0 0000	0 0000	0 0000
16	DS	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000
	AS	.0590	.0595	.0564	.0566	.0559	.0559	.0561	.0562
	58 (1.5)	1.1563	1.1563	1.1503	1.1503	1.1045	1.1100	1.1156	1.1385
	58 (2.0)		1.0896	1.0896	1.0896	1.0379	1.0429	1.0429	1.0580
	00,000	1.0,550	1,0030	1.0050	140000	1.00.5	200.00	200123	20000
	SB (2.5)		1.0314	1.0268	1.0268	.9871		.9957	1.0088
	\$8(3.0)	1.0131	1.0175	1.0131	1.0043	.9707	.9707	.9789	.9831
	\$8 (3.5)	.9880	.9920	.9920	.9880	.9648	.9648	.9724	.9841
	SB (4.0)	.9731	.9768		.9731	.9547	.9547	.9583	.9693
	55 (4.0)	.9/31	.9/00	.9731	.9/31	.9547	. 9541	. 9903	•9093
	57 (16)	.8928	.9012	.9076	.9097	.9672	.9672	.9504	.9364
	ST (10)	.9147	.9220	.9276	.9294	.9872	.9893	.9705	.9486
				0551	0607		. 0440	0000	
	ST (8)	.9534	.9569	.9551	.9623	1.0119	1.0119	.9980	.9733
	ST (7)	.9688	.9739	•9739	.9790	1.0508	1.0527	1.0352	1.0127
	ST (6)	1.0571	1.0622	1.0605	1.0639	1.1288	1.1307	1.1082	1.0882
	ST (5)	1.1904	1.1956	1.2062	1.2080	1.2581	1.2581	1.2409	1.2188
	AVG	.7042	.7067	.6957	.6967	.7102	.7107	.7061	.7013
20	0.0		0 0000	0 0000	0 0000	0.0000	0.0000	0 0000	0.0000
20	DS	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	
	AS	.0304	.0305	.0294	.0294	.0293	.0293	.0293	.0294
	SB (1.5)	1.1912	1.1825	1.1739	1.1655	1.1408	1.1329	1.1489	1.1655
	SE (2.0)		1.1007	1.1007	1.1007	1.0581	1.0581	1.0649	1.0789
	SB(2.5)		1.0688	1.0621	1.0621	1.0240	1.0240	1.0364	1.0427
	SB(3.0)	1.0112	1.0169	1.0227	1.0227	1.0000	.9945	1.0056	1.0169
	SE (3.5)	1-0103	1.0103	1.0103	1.0103	.9899	. 9899	1.0000	1.0000
	SB (4.0)		1.0049	1.0000	1.0049			.9952	1.0000
	0011001	1.0000	1.00.13	20000					
	ST (16)	.8940	.8966	.9096	.9096	.9750		.9455	.9286
	ST(10)	.8953	.9020	.9158	.9182	1.0000	1.0000	.9651	.9472
	55.401	0767	0707	0105	04.67	4 0246	4 0246	0057	0046
	ST (8)	.9363	.9383	.9425	.9467	1.0216	1.0216	.9953	.9816
	ST (7)	.9837	.9857	.9938	.9938	1.0639	1.0639	1.0343	1.0190
	ST (6)	1.0333	1.0354	1.0394	1.0436		1.1118	1.0777	1.0646
	ST (5)	1.2118	1.2138	1.2138	1.2159	1.2921	1.2921	1.2671	1.2561
	A 11 C	6574	6.503	6550	(550	6.746	6715	661.5	6643
	AVG	.6571	.6583	.6552	. 6559	.6716	. 6119	.0045	.6613

EFFICIENCIES OF ADAPTIVE ROBUST ESTIMATES OF
SCALE PARAMETER
(RELATIVE TO MAXIMUM LIKELIHOOD ESTIMATE IF POPULATION IS KNOWN)

(PHASE III)

SAMPL	E SAMPL	ES			CRI	TERION			
SIZE	N FROM	(A)(1)	(A)(2)	(8)(1)	(8)(2)	(D)(1)	(0)(2)	(0) (3)	(E)
24	DS	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
	AS	.0159	.0160	.0156	.0156	.0156	.0156	.0156	.0156
	\$8(1.5)	1.1524	1.1524	1.1415	1.1308	1.1204	1.1101	1.1308	1.1415
	SB(2.0)	1.0488	1.0488	1.6661	1.0661	1.0320	1.0320	1.0488	1.0488
	\$8 (2.5)	1.0000	1.0000	1.0146	1.0146	.9858	.9858	1.0000	1.0072
	SB (3.0)	1.0000	1.0000	1.0137	1.0137	.9867	.9867	1.0000	1.0068
	SB(3.5)	.9689	.9750	.9873	.9936	.9750	.9750	.9811	.9811
	SB (4.0)	.9632	.9691	•9752	.9813	.9691	.9691	.9813	.9813
	ST (16)	.8689	.8717	.8863	.8893	.9636	.9672	.9331	.9233
	ST (10)	.8937	.8937	.9067	.9094	.9873	.9904	.9569	.9424
	ST(B)	.9343	.9343	.9415	.9415	1.0137	1.0193	.9814	.9686
	ST (7)	.9547	.9547	.9 662	.9662	1.0390	1.0417	.9975	.9901
	ST (6)	1.0195	1.0217	1.0374	1.0397	1.1108	1.1135	1.0753	1.0729
	ST (5)	1.2704	1.2704	1.2883	1.2883	1.3424	1.3453	1.3148	1.3067
	AVG	.6119	.6124	.6140	.6145	.6298	.6305	.6226	.6206

EFFICIENCIES OF ADAPTIVE ROBUST ESTIMATES OF
CANONICAL SCALE PARAMETER
(RELATIVE TO MAXIMUM LIKELIHOOD ESTIMATE IF POPULATION IS KNOWN)
(PHASE III)

SAMPLE	SAMPL	ES			CRI	TERION			
	I FROM	(A)(1)	(A)(2)	(B)(1)	(8)(2)	(D) (1)	(0)(2)	(D) (3)	(E)
8	DS	.0836	.0463	.0463	.0463	.4828	. 4828	.0836	.0836
	AS	.4651	.4721	.6122	.6114	.7416	.7328	.6439	•5979
	\$8(1.5)	.8613	.9485	.8831	.9784	.9447	1.0013	.9238	.8896
	Se(2.0)	.7468	.8139	.7365	.8248	.7941	.8412	.7887	.7659
	SB(2.5)	.6887	.7542	.6858	.7630	.7362	.7786	.7346	.7094
	SB(3.0)	.6583	.7222	.6594	.7232	.7043	.7419	.6983	.6811
	SE (3.5)	.6625	.7155	.6547	.7212	.6841	.7138	.6856	.6691
	SB (4.0)	.6417	.6960	.6496	.7052	.6878	.7192	.6822	.6657
	\$1 (16)	.6509	.6899	.6561	.7044	.6919	.7183	.6970	.6802
	ST (10)	.6508	.7040	.6549	.6986	.7182	.7442	.7042	.6849
	ST (8)	.6980	.7469	.7022	.7541	.7582	.7893	.7504	.7258
	ST (7)	.6996	.7342	.7043	.7459	.7666	.7873	.7558	.7322
	ST (6)	.7277	.7712	.7337	.7815	.8041	.8333	.7823	.7519
	37 (5)	.8446	.8815	.8456	.8936	.9114	.9437	.8963	.8642
	AVG	.6997	.7393	.6985	.7506	.7686	.7997	.7500	.7267
12	DS	.0108	.0108	.0108	.0108	.1333	.1333	.1333	.1333
	AS	. 3141	.2999	• 4773	. 4592	.5202	.5182	. 4756	.4514
	SB (1.5)	.8919	.9361	.9146	.9480	.9335	.9558	.9319	.8965
	\$8(2.0)	.7521	.7868	.7506	.7840	.7862	.8068	.7774	.7486
	\$8 (2.5)	.7152	.7525	.7064	.7442	.7360	.7525	.7365	.7012
	\$8(3.0)	.6861	.7197	.6769	.7050	.7087	.7310	.7070	.6850
	\$8 (3.5)	.6677	.7081	.6680	.7077	.7154	.7384	.7109	.6727
	SB(4.0)	.6671	.7038	.6604	.6945	.7000	.7172	.6912	.6671
	ST (16)	.6540	.6845	.6582	.6810	.7251	.7392	.7144	.6823
	57 (10)	.6530	.6780	.6627	.6845	.7305	.7522	.7213	.6867
	ST (8)	.6996	.7293	.7116	.7344	.7767	.7981	.7653	.7348
	ST (7)	.7306	.7562	.7411	.7617	.8100	.8293	.7938	.7623
	ST (6)	.7884	.8147	.7890	.8181	.8696	.8863	.8539	.8177
	ST (5)	.8711	.8985	.8794	.9054	•9535	.9659	.9361	.9016
	AVG	.7182	.7468	.7256	.7515	.7966	.8153	.7854	.7529

EFFICIENCIES OF ADAPTIVE ROBUST ESTIMATES OF CANONICAL SCALE PARAMETER

(RELATIVE TO MAXIMUM LIKELIHOOD ESTIMATE IF FORULATION IS KNOWN)

(PHASE III)

SAMPL	E SAMPL	C.C.			COT	TERION			
SIZE,		(A)(1)	(A)(2)	(8)(1)	(8) (8)	(0) (1)	(5)(2)	(0)(3)	(E)
16	OS	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0030	0.0000
10	AS	.2079	.1941	.3227	.3165	.3451		.3248	.3185
	\$8(1.5)	.9171	.938,5	.9372	.9528	.9410	.9555	.9333	.9802
	SE(2.0)	.7940	. 80 46	.7948	.8118	.7992	.8174	.7931	.7533
	58 (2.5)		.7605	.7376	.7517	.7510	.7634	.7496	.7227
	SB (3.0)	.7217	.7462	.7115	.7204	.7275	.7449	.7172	.6903
	SB (3.5)	.6964	.7151	.6915	.7076	.7151	.7312	.7105	.6909
	SB (4.0)		.7131	.6909	.7081	.7142	.7274	.7043	.6914
	ST (16)	.6360	.6531	.6531	.6620	.7383	.7523	.7121	.6861
	ST (10)	.6643	.6806	.6769	.6870	.7597	.7768	.7309	.7010
	57(3)	.7109	.7240	.7166	.7315	.7967	.8052	.7726	.7368
	ST (7)	.7140	.7294	.7209	.7335	.8284	.8435	.7991	.7651
			•1234	• / 20 5	• , 5 5 7	•0204	.0403	.,,,,,	.,021
	ST (6)	.7931	.8075	.8012	.8120	.9005	.9092	.8617	.8328
	\$7 (5)	.8909	.9073	.9132	.9236	.9930	1.0032	.9639	.9280
		7701	7.75	75.0	70.74	0107	0.707	7011	7000
	AVG	.7321	.7475	.7510	.7631	.8197	.8327	.7966	.7668
20	DS	0.0000	0.0000	0.6000	0.0000	0.0000	0.0000	0.0000	0.0000
		.1482		.2272	.2250	.2316		.2188	.2168
	SB (1.5)		.9468	.9688	.9783	.9632	. 9745	.9486	.9173
	\$3 (2.0)	.8242	.8344	.8306	.8383	.8217	.8280	.8118	.7790
	38 (2.5)	.7893	.7968	.7840	.7925	.7808	.7850	.7819	.7478
	58 (3.0)		.7537	.7361	.7474	.7510	.7675	.7387	.7143
	SB (3.5)	.7437	.7550	.7283	.7351	.7477	.7607	.7406	.7105
	SB (4.0)	.7351	.7469	.7139	.7257	.7461	.7529	.7431	.7243
	CT / / C \			5670	5.5.07	7.70	7746	7450	6056
	ST (16) ST (10)	.6464 .6531	.6561 .6635	.6639	.6897 .6764	.7630 .7908	.7716	.7150	.6858 .7073
	51 (10)	.0331	.0032	• 0 / 1 0	.0/04	. 1900	. / 5/ 4	. / 331	.7075
	57 (8)	.6865	.6929	.6912	.6995	.8011	.8114	.7561	.7371
	57 (7)	.7302	.7349	.7431	.7489	.8384	.8513	.7916	.7701
	ST (6)	.7697	.7757	.7785	.7876	.8772	.8865	.8245	.8047
	51 (5)	.8931	.8990	.9021	.9045	1.0052	1.0126	.9651	.9488
	4VG	.7411	.7484	.7545	.7614	.8359	.8456	.7988	.7756
	- 7 5	* / 411	. / 404	• 1 5 4 5	. 1014	.0399	.0490	. 7 300	

EFFICIENCIES OF ADAPTIVE ROBUST ESTIMATES OF CANONICAL SCALE PARAMETER

CANONICAL SCALE PARAMETER
(RELATIVE TO MAXIMUM LIKELIHOOD ESTIMATE IF POPULATION IS KNOWN)
(PHASE III)

SAMPLE	SAMPL	ES			CRI	TERION			
SIZE, N	FROM	(A) (1)	(A)(2)	(B)(1)	(8)(2)	(D) (1)	(D)(2)	(D)(3)	(E)
24 D	S	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Д	S	.0994	.0970	.1437	.1437	.1472	.1472	.1454	•1437
S	B(1.5)	.9904	.9878	.9957	.9957	.9878	.9957	.9852	.9574
S	B(2.0)	.8847	.8774	.8720	.8756	.8544	.8596	.8493	.8198
S	8 (2.5)	.8214	.8228	.8157	.8186	.8060	.8074	.7993	.7720
S	B (3.0)	.8111	.8175	.7924	.7949	.7852	.7924	.7805	.7598
5	8 (3.5)	.8055	.8079	.7861	.7872	.7928	.8032	.7839	.7581
S	B (4.0)	.7858	.7913	.7624	.7655	.7782	.7858	.7676	.7433
S	7 (16)	.6259	.6285	.6405	.6444	.7475	.7584	.6956	.6784
S	T (10)	.6560	.6581	.6669	.6684	.7764	.7877	.7262	.7046
5	(8)	.6931	. 6948	.7001	.7021	.7934	.8042	.7449	.7273
S	7 (7)	.6976	.7004	.7123	.7142	.8147	.8222	.7504	.7400
5	T (6)	.7446	.7475	.7618	.7627	.8593	.8652	.8048	.7990
S	7 (5)	.9200	.9223	.9432	.9454	1.0155	1.0270	.9722	.9619
۵	VG	.7486	.7507	.7618	.7639	.8377	.8466	.7958	.7797

TABLE 23

EFFICIENCIES OF DEBIASED ADAPTIVE ROBUST ESTIMATES OF SCALE PARAMETER

(RELATIVE TO DEBIASED MAXIMUM LIKELIHOOD ESTIMATE IF POPULATION IS KNOWN)

(PHASE III)

SAMPLE	SAMPL	FS			CRI	TERION			
			(A) (2)	(8)(1)			(3)(2)	(3) (3)	(F)
0,									
8 D	<	.0646	.0755	.0755	-0755	.0633	.0633	.0646	.0646
A		.7437		.7437			.7327	.7255	
^		.,451	• 1 2 2 3	•1401	• 1 6 91	•1 = 31	. 1 3 2 1	. 1 2 7 7	• 7 400
		1.1563	1.1679	1.1827	1.1888	1.1918	1.1888	1 1010	4 4050
								1.1918	1.1858
2.	0 (2.0)	.9757	·9911	.9822	1.0045	1.0138	1.0068	1.0133	1.0045
		0			0706		0077		
	B(2.5)		.9698	.9601	.9796			.9959	
S	9 (3.0)	.9127	.9423	.9306	.9492	.9€85	.9632	.9685	.9526
	8 (3.5)	.9288	.9492	.9381	.9606	.9723		.9757	
S	8 (4.8)	.9349	.9583	. 9535	. 9712	.9880	.9829	.9914	.9729
S	7 (16)	.9167	.9390	.9328	.9581	.9758	.9713	.9803	.9571
3	(10)	.9000	.9292	.9148	.9356	.9594	.9517	.9692	.9422
9	(8) 7	.9040	.9309	.9157	.9399	.9638	.9551	.9699	.9424
5	(7)	.9032	.9195	.9163	.9371	.9589	.9504	.9675	.9429
S	7 (6)	.9192	.9401	.9351	.9531	.9695	.9642	.9795	.9524
		1.0564		1.0646			1.0875	1.1073	1.0789
-		1.0304	2.0.10	1.0010	1.0010	1.05.	1.00.5	1.10.0	1.3103
A	V.C.	.8748	.9027	.8964	.9133	.9159	.9104	.9227	.9039
14	7.0	.0740	. 30 21	•0304	• 21 00	• 11 2 3	. 5104		• 7000
12 0	c	.0061	.0061	.0061	.0061	.0055	.0055	.0055	.0055
12 0		.3465	.3411	.3333	.3333	.3284	.3284	.3284	.3333
	-	. 3465	. 3411	. 3333	• 3333	. 3204	. 3204	. 3204	• 3333
	014 51	1.0789	1.0885	1.1031	1.1081	1.0933	1.1031	1.0933	1.0982
	B(2.0)	.9644	.9783	.9819	.9927	.9927	.9963	.9891	.9891
31	6 (2.0)	. 9544	.9/03	. 9019	.9921	. 9921	. 9963	. 3031	.9091
		0015	0254	0101	07/0	.9435	01.67	01.01	0201
	B(2.5)	.9045	.9251	.9191	.9342		.9467	.9404	.9281
5	8 (3.0)	.8915	.9129	.9021	.9212	.9354	.9383	.9354	.9268
-		0000	0101	0.151	0706	01.76	01.61	0.51	2211
	B(3.5)	.9008	.9191	.9164	.9326	.9436	.9464	.9464	
S	8 (4.8)	.8990	.9180	.9156	.9303	.9429	.9455	.9429	.9278
	7 (16)	.8569	.8808	.8754	.8905	.9389	.9343	.9389	.9089
5	T(10)	.8470	.8635	.8611	.8745	.9199	.9104	.9185	.8683
	T (3)	.9013	.9152	.9117	.9223	.9635	.9557		
5	(7)	.8868	.9029	.9029	.9129	.9502	.9430	.9502	.9231
	1 (6)	.9374	.9505	.9434	.9567	.9966	.9888	.9989	.9704
S	(5)	1.0220	1.0344	1.0292	1.0408	1.0736	1.0669	1.0747	1.0493
A	VG	.7975	.8095	.8066	.8161	.8279	.8249	.8280	.8117

TABLE 23

EFFICIENCIES OF DEBIASED ADAPTIVE ROBUST ESTIMATES OF SCALE PARAMETER

(RELATIVE TO DEBIASED MAXIMUM LIKELIHOOD ESTIMATE IF POPULATION IS KNOWN)

(PHASE III)

SAMPLE	SAMPL	ES			CRI	TERION			
SIZE, N	FROM	(A) (1)	(A) (2)	(B)(1)	(8)(2)	(D) (1)	(0)(2)	(0)(3)	(E)
16	os	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
1	*5	.1382	.1382	•1339	.1328	.1339	.1328	.1328	.1339
	SB (1.5)	1.0875	1.0943	1.1083	1.1154	1.0943	1.1083	1.1013	1.1154
	SB(2.0)	.8846	.9020	.9200	.9293	.9200	.9293	.9200	.9200
	58 (2.5)	.8452	.8670	.8821	.8938	.8860	.8978	.8860	.8860
	SB (3.0)	.8228	.8427	.8636	.8782	.8782	.8856	.8782	.8708
	SB (3.5)	.8459	.8721	.8893	.9000	.9109	.9184	.9146	.9109
	SB (4.0)	.8369	.8613	.8741	.8872	.9112	.9147	.9077	.9077
5	ST (16)	.8337	.8480	.8627	.8703	.9362	.9362	.9188	.8980
5	ST (10)	.8381	.8486	.8533	.8579	.9.217	.9163	.9058	.8820
	T (8)	.8559	.8646	.8661	.8750	.9291	.9274	.9158	.8887
	ST (7)	.8470	.8549	.8603	.8657	.9272	.9241	.9195	.8940
	ET (6)	.9015	.9079	.9118	.9157	.9742	.9727	.9596	.9399
5	ST (5)	1.0091	1.0157	1.0251	1.0278	1.0777	1.0732	1.0615	1.0402
1	AVG	.7112	.7190	.7172	.7215	.7482	.7483	.7420	.7318
	os	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
,	45	.0559	.0559	.0544	.0544	.0548	.0544	.0548	.0548
	SB(1.5)	.9302	.9449	.9524	.9524	.9449	.9524	.9449	.9524
	B(2.0)	.7874	.8059	.8253	.8405	.8303	•8457	.8354	.8354
	88 (2.5)	.7594	.7802	.7889	.8023		.8208	.8023	.8023
	SB (3.0)	.7667	.7892	.8214	.8299	.8385	.8474	.8429	.83 8 5
	SB (3.5)	.7957	.8133	.8433	.8551	.8673	.8756	.8632	.8551
	SB (4.0)	.8136	.8384	.8571	.8688	.8848	.8972	.8807	.8807
	57 (16)	.8020	.8082	.8272	.8316	.9054	.9054	.8753	.8564
	ST (10)	.7756	.7859	.8036	.8091	.8878	.8900	.8558	.8396
	ST (8)	.7969	.8031	.8110	.8158	.8841	.8803	.8619	.8495
	51 (7)	.8394	.8439	.8532	.8564	.9263	.9190	.8994	.8840
	ST (6)	.8628	.8659	.8719	.8750	.9395	.9360	.9086	.8955
	ST (5)	.9910	.9955	.9970	1.0000	1.0666	1.0631	1.0429	1.0330
	VG	.6331	.6386	.6433	.6465	.6727	.6739	.6622	.6565

TABLE 23

EFFICIENCIES OF DEBIASED ADAPTIVE ROBUST ESTIMATES OF SCALE PARAMETER

(RELATIVE TO DEBIASED MAXIMUM LIKELIHOOD ESTIMATE IF POPULATION IS KNOWN)

(PHASE III)

SAMPLE	SAMPLES			CPITERION					
		(1) (1)(2)	(8)(1)	(8)(2)	(L) (1)	(0)(2)	(0)(3)	(E)	
24 55	0.0	000 0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	
AS	.0	250 .0250	.0247	.0247	.0247	.0247	.0247	.0248	
58	(1.5) .8	083 .8151	.8362	.8435	.8435	.8509	.8435	.8509	
88	(2.0) .6	752 .6883	.7260	.7361	.7413	.7518	.7413	.7413	
SB	(2.5) .6	780 .6897	.7317	.7407	.7547	.7643	.7595	.7547	
58	(3.0) .7	151 .7268	.7688	.7778	.7917	.8012	.7917	.7917	
SB	(3.5) .7	178 .7323	.7713	.7880	.8056	.8192	.8056	.8011	
SB	(4.0) .7	400 .7513	.7914	.8000	.8268	.8315	.8268	.8222	
51	(16) .7	768 .7813	.8024	.8072	.8874	.8904	.8562	.8454	
21	(10) .7	755 .7775	.7958	.7979	.8686	.8736	.8398	.8283	
ST	(8) .7	878 .7878	.8005	.8005	.8660	.8703	.8389	.8270	
51	(7) .8	043 .8060	.8184	.8202	.8863	.8863	.8500	.8442	
SY	(6) .8	346 .8379	.8546	.8563	.9186	.9226	.8900	.8864	
51	(5) 1.0	272 1.0290	1.0442	1.0442	1.0946	1.0967	1.0698	1.0638	
r v	G .5	761 .5787	.5883	.5904	.6141	.6164	.6042	.6013	

TABLE 24

EFFICIENCIES OF DEBIASED ADAPTIVE ROBUST ESTIMATES OF

CANONICAL SCALE PARAMETER

(RELATIVE TO DEBIASED MAXIMUM LIKELIHOOD ESTIMATE IF POPULATION IS KNOWN)

(PHASE III)

SAMPLE	SAMPL	FS			CRI	TERION			
SIZE , N		(A)(1)	(A)(2)	(B)(1)	(B) (2)	(0)(1)	(1)(2)	(D) (3)	(E)
		0.154	0.04.0	0000	0000	4050	4050	0151	0.54
	S	.0451	.0262	.0262	.0262		.1059	.0451	.0451
Δ	S	.2210	.2083	.3106	.2823	.4063	.3705	.3425	.3136
S	B (1.5)	.8606	.8915	.9033	.9374	1.0527	1.0120	1.0228	.9067
	B(2.0)	.7886	.8138	.7865	.8244	.9122	. 8 867	.8915	.8043
			.0200						
S	8 (2.5)	.7790	.8174	.7827	.8235	.9082	.8909	.8919	.8022
S	8 (3.0)	.7613	.8116	.7781	.8141	.8894	.8720	.8670	.7964
3	B (3.5)	.7975	.8301	.8014	.8356	.8949	.8784	.8822	.8138
	B (4.0)	.7813	.8218	.7980	.8318	.9051	.8945	.8849	.8169
	5 (4.0)	.,010	.0210	• 7 300	.0310	• ,0 ,1	.0342	.0043	.0103
S	7 (16)	.7904	.8236	.8088	.8471	.8997	.9048	.8896	.8318
5	T(10)	.7553	.8032	.7685	.8016	.8848	.8936	.8602	.8061
S	T (8)	.7714	.8099	.7822	.8218	.8854	.8983	.8639	.8088
S	T(7)	.7684	.7932	.7815	.8098	.8827	.8897	.8602	.8089
S	T(6)	.7688	.8003	.7833	.8153	.8846	.8954	.8551	.8013
5	T(5)	.8813	.9069	.8887	.9197	.9909	1.0056	.9641	.9065
Α	VG	.7579	.7726	.7609	.7895	.8925	.8927	.8541	.7959
12 D	S	.0071	.0071	.0071	.0071	.0364	.0364	.0364	.0364
A	S	.1705	.1559	.3026	.2742	.3706	.3527	.3215	.2995
-	B (1.5)	.9157	.9091	.9597	.9466	1.0413	.9989	1.0245	.9258
								.8930	The second second second
2	B(2.0)	.8353	.8464	.8345	.8384	.9131	.8939	.0930	.8103
S	8 (2.5)	.8043	.8138	.7835	.8010	.8584	.8413	.8516	.7644
S	B (3.0)	.7827	.7950	.7614	.7724	.8517	.8503	.8456	.7758
_		75	705.	3550		4577	0507	0707	7170
	B (3.5)	.7541	.7851	.7552	.7770	.8533	.8507	.8387	.7472
S	B (4.0)	.7823	.8045	.7683	.7912	.8576	.8518	.8409	.7736
S	T (16)	.7164	.7411	.7222	.7404	.8327	.8418	.8148	.7546
S	T(10)	.6882	.7076	.7001	.7148	.7997	.8127	.7840	.7279
S	T (8)	.7222	.7446	.7357	.7526	.8318	.8437	.8148	.7644
S	T (7)	.7228	.7416	.7352	.7487	.8291	.8394	.8062	.7584
_		****	7407	24.75	7057	0627	0771	0110	7010
	T(6)	.7618	.7803	.7639	. 7857	.8627	.8734	.8440	.7949
S	T (5)	.8098	.8290	.8181	.8367	.9083	.9175	.8870	.8411
	VG	.7282	.7449	.7383	.7531	.8484	.8532	.8300	.7727
,									

TABLE 24

EFFICIENCIES OF DEBIASED ADAPTIVE ROBUST ESTIMATES OF

CANONICAL SCALE PARAMETER

(RELATIVE TO DEBIASED MAXIMUM LIKELIHOOD ESTIMATE IF POPULATION IS KNOWN)

(PHASE III)

	E SAMPL					TERION			
SIZE,	N FROM	(A) (1)	(A)(2)	(8)(1)	(8)(2)	(0)(1)	(0)(2)	(0)(3)	(E)
16	DS	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0300	0.0006
		.1402						.3281	
		• • • • •	•1676		• 200,			. 32.01	.0100
	SB(1.5)	1.0675	1.0467	1.1117	1.0847	1.1328	1.6914	1.1186	1.0228
	\$5 (2.0)			.8829	.8740	.9095	.8947	.8960	.8098
	\$8 (2.5)		.8293					.8486	
	58(3.0)	.7995	.8057	.7757	.7644	.8247	.8192	.8057	.7464
	5517 51	7745	7770	7501	.7634	.8215	9227	.8082	.7584
	SB (3.5)		.7738					.8077	
	56 (4.0)	.7731	.7838	.7668	• // 31	.8307	. 6298	. 8077	.7689
	57 (16)	.6618	.6747	.6818	.6863	.8102	.8179	.7671	.7243
	ST (10)	.6598	.6717	.6729			7933		
		•	• • • • •						
	ST (3)	.6846	.6937	.6883	.6982	.7918	7961	. 7574	.7116
	ST (7)	.6669	.6774	.6730	.6814				.7186
	ST (6)	.7078	.7177						.7479
	ST (5)	.7813	.7915	.8000	.8056	8888.	.8945	.8546	.8154
	8 VG	.7098	.7172	.7307	.7353	.8276	.8314	.7944	.7501
20	DS	0.0000	0.0000	0.0000	0.0000		0.0000	6.0000	0.0000
	AS	.1223	.1112	.3534	.3383	.3975	.4077	.3383	.3313
	SE (1.5)	1.0090	.9745	1.0572	1.0373	1.0520	1.0286	1.0315	.9644
	SE (2.0)		.8690	.8826	.8673	.8808	.8623	.8607	
	35 12 07	•0010	•0096	.0020	•00.3	•0000	.0020	.0007	*0025
	SB(2.5)	.8165	.8030	.7964	.7899	.8138	.7990	.8097	.7496
	\$8(3.0)	.7840	.7840	.7700	.7690	.8123	.8123	.7873	.7397
	2017 51	. 7067	7076	7704	7/01	0010	0000	0026	7546
	\$8 (3.5)		.7938	.7721	.7694	.8219		.8026	.7516 .7641
	58 (4.0)	.7814	.7805	.7475	.7533	.8146	.8127	.7995	./641
	ST (15)	.6399	.6458	.6571	.6592	.7860	.7910	.7224	.6846
	ST (10)	.6142	.6207	.6318	.6343	.7684	.7769	.7024	.6720
	ST (3)	.6194	.6229	.6239	.6289	.7382	.7452	.6901	.6685
	ST (7)	.6558	.6581	.6659	.6690	.7706	.7797	.7204	.6961
	\$7 (6)	.6682	.6716	.6782	.6841	.7801	.7851	.7256	.7042
	\$1 (5)	.7473	.7503	.7542	.7553	.8546	.8591	.8140	.7966
	31 (3)	.1413	• 1 50 3	•1942	•1 223	•0540	.0791	.0140	. , 300
	AVG	.6848	.6863	.6982	.7002	.7979	.8011	.7522	.7227

TABLE 24

EFFICIENCIES OF DEBIASED ADAPTIVE ROBUST ESTIMATES OF

CANONICAL SCALE PARAMETER

(RELATIVE TO DEBIASED MAXIMUM LIKELIHOOD ESTIMATE IF POPULATION IS KNOWN)

(PHASE III)

SAMPL	E SAMPL	ES			CRI	TERION			
SIZE,	N FROM	(A)(1)	(A)(2)	(8)(1)	(B)(2)	(D) (1)	(0)(2)	(D) (3)	(E)
24	DS	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
	AS	.1060	.0994	.3614	.3457	• 4417	.4417	.3975	.3975
	\$8 (1.5)	1.0729	1.0503	1.0925	1.0729	1.0729	1.0466	1.0691	1.0181
	SB (2.0)	.8856	.8659	.8745	.8659	.8469	.8348	.8408	.7948
	SB (2.5)	.8451	.8365	.8314	.8263	.8214	.8116	.8084	.7675
	58(3.0)	.8379	.8363	.8144	.8101	.8130	.8115	.8004	.7699
	SB (3.5)	.8362	.8322	.8074	.8024	.8216	.8229	.8036	.7665
	SB (4.0)	.8120	.8120	.7833	.7810	.8120	.8120	.7903	.7544
	57 (16)	.6099	.6113	.6243	.6269	.7458	.7549	.6848	.6645
	ST (10)	.6061	.6073	.6160	.6170	.7317	.7407	.6779	•6555
	ST (8)	.6129	.6137	.6192	.6206	.7135	.7220	.6644	.6468
	ST (7)	.6112	.6127	.6234	.6247	.7230	.7294	.6607	.6500
	\$1(6)	.6284	.6305	.6438	.6440	.7337	.7384	.6830	.6763
	ST (5)	.7552	.7567	.7739	.7749	.8423	.8512	.8015	.7913
	AVG	.6756	.6757	.6888	.6889	.7710	.7762	.7249	.7067

TABLE 25

CRITICAL VALUES OF CRITERIA FOR CLASSIFICATION AS U, IN BRODIES OF CRITERIA FOR CLASSIFICATION IN TABLE 1)

CRITERION	CRITIC	AL VALUE	S N=10	N=14	N=18	N=22
(A) (1)		K _{L1}	2.0428	2.1050	2.1356	2.1467
		K _{U1}	2.4969	2.7253	2.8590	2.9668
(A)(2)		K _{L2}	1.9599	2.0518	2.0978	2.1200
		K _{U2}	2.6131	2.7822	2.8836	2.9760
(B)(1)		Q _{L1}	1.9238	2.0253	2.0934	2.1435
		Q _{U1}	2.1737	2.3907	2.5481	2.6762
(B)(2)		Q _{L2}	1.8721	1.9946	2.0715	2.1278
		Q _{U2}	2.2245	2.4120	2.5560	2.6802
(0)(1)		λ*11	.7600	.8038	8345	.8569
		λ [*] 21	.8316	.8741	.8907	.8915
		λ*31	1.0652	1.0423	1.0179	1.0120
(0)(2)		λ [*] 12	.7468	.7947	.8274	.8508
		λ [*] 22	.8616	.8957	•9148	•9275
		λ*32	1.0639	1.0432	1.0182	1.0119
(D) (3), (E)	λ ₁₃ *	.7663	.8081	.8373	.8580
		λ [*] 23	.7419	.7886	.8162	.8385
		λ*33	.9690	.9774	.9821	.9846

TABLE 26

DEBIASING FACTORS FOR MAXIMUM LIKELIHOOD ESTIMATORS OF SCALE PARAMETER FOR DOUBLE SPIKE, ARC SINE, SYMMETRIC BETA AND STUDENT T POPULATIONS PHASE IV: N=10(4)22

			DEBIASING FACTORS	
POPULATION	N=10	N=14	N=18	N= 22
DS	1.0020	1.0002	1.0000	1.0000
AS	1.0762	1.0408	1.0265	1.0162
\$8(1.5)	1.2589	1.2052	1.1728	1.1404
\$8(2.0)	1.1920	1.1510	1.1237	1.1046
\$8 (2.5)	1.1528	1.1198	1.0967	1.0765
SB(3.0)	1.1375	1.0993	1.0792	1.0710
\$8(3.5)	1.1174	1.0911	1.0750	1.0546
SB(4.0)	1.1234	1.0860	1.0665	1.0541
ST (16)	1.0546	1.0310	1.0170	1.0052
ST(10)	1.0374	1.0156	1.0037	.9913
ST (8)	1.0331	1.0091	.9932	.9815
ST(7)	1.0237	.9958	•9861	.9793
ST(6)	1.0211	•9915	•9785	.9736
ST (5)	1.0053	.9818	.9713	.9548

TABLE 27

CONTINGENCY TABLES--CLASSIFICATION VS. TRUE POPULATION BY GRITERIA (PHASE IV: N=10)

		CF	RITERION	(A)(1)		C	PITERION	(A)(2)	
			CLASSIFI	En As			CLASSIFI	ED AS	
		U			SUMS	υ	N	D	SUMS
NUMBER OF	U	3247	1051	702	5000	2895	1537	568	5000
SAMPLES FROM		1654		1909	5000		2018		
SAMELS TROM	D	784		3186	5000	599		2935	
		, 04	1000	0100	2000	733	1400	2900	2000
	อร	4481		519	5000	4469			5000
	AS	3843	662	495	5000	3644	957	399	5000
	Sa(1.5)	2835	1287	878	5000	2510	1785	705	5000
	SB(2.0)				5000	2250	1878		
	38 (2.5)			1176	5000	2014	2029		
	SB (3.0)		1424	1341	5000	1927			
	SB (3.5)		1450	1398	5000		2078	1114	
	SB (4.0)	2049	1474	1477	5000	1730	2050	1220	5000
	ST (16)	1554	1353	2093	5000	1279	1891	1830	5000
	ST(10)			2353	5000	1103		2061	
	ST (8)	1382	1289	2329	5000	1127		2063	
	ST (7)	1277		2441	5000				
	ST(6)	1229	-	2560	5000				
	ST (5)	1145	1260	25 9 5	5000	938	1726	2336	5000
	SUMS	36158	20307	28535	85000	31711	28541	24748	85000
		C	RITERION	(B)(1)		C	RITERION	(8)(2)	
NUMBER OF	U	3328	1037	635	5000	2988	1511	501	5000
SAMPLES FROM	N	1637	1438	1925	5000	1356	1975	1669	5000
	D	799	1024	3177	5000	622	1424	2954	5000
	DS	4468	3	529	5000	44.68	3	529	5000
		4171		276	5000		798	221	
	40	41.1	,,,,	210	2000	0,001	1 30		2000
	\$8(1.5)	2839	1260	901	5000	2489	1790	721	5000
	SB(2.0)	2537	1320	1143	5000		1851		5000
	SB(2.5)	2329	1441	1230	5000	1963	2020	1017	5000
	38(3.0)	2216	1420	1364	5000	1888	1965	1147	5000
	\$8 (3.5)		1464	1426	5000	1769		1186	5000
	38 (4.0)		1441	1515	5000	1717		1245	5000
			2 1 12						
	ST (16)	1543	1334	2123	5000	1285	1833		5000
	ST(10)	1357	1326	2317	5000	1090	2010	2070	5000
	ST (8)	1359	1303	2338	5000	1092	1816	2092	5000
	ST (7)	1283	1303	2414	5000	1040	1798	2162	5000
	ST (6)	1238	1265	2497	5000	1007	1737	2256	5000
	ST (5)	1145	1223	2632	5000	923	1708	2369	5000
			20155						

TABLE 27

CONTINGENCY TABLES--CLASSIFICATION VS. TRUE POPULATION BY CRITERIA (PHASE IV: N=10)

			• • • • • • • • • • • • • • • • • • • •							
		CI	RITERION	(0)(1)		С	RITERION	(D)(2)		
			01 400757				CI ASSTET			
			CLASSIFI		011115		CLASSIFI		CHAS	
		U	N	D	SUMS	U	N	D	SUMS	
NUMBER OF	U	3306	1379	315	5000	3026	1712	262	5000	
		1530	2423	1047	5000	1376	2679	945	5000	
SAMPLES FROM										
	D	883	1770	2347	5000	905	1912	2183	5000	
	DS	4469	8	523	5000	4469	8	523	5000	
	AS	4340	501	159	5000	4196	678	126	5000	
	M G	4340	301	1,,,	2000	4130	010	120	2000	
	58 (1.5)	2714	1849	437	5000	2408	2230	362	5000	
	SB(2.0)			560	5000	2156	2372	472	5000	
	\$8(2.5)		2216	591	5000	1942	2551	507	5000	
	00									
	\$8 (3.0)	2052	2243	705	5000	1806	2577	617	5000	
	SB (3.5)		2317	731	5000	1746	2631	623	5000	
	58 (4.0)		2309	776	5000	1715	2605	680	5000	
	ST (16)	1487	2278	1235	5000	1370	2501	1129	5000	
	ST(10)	1291	2277	1432	5000	1201	2499	1300	5000	
	ST (8)	1340	2205	1455	5000	1239	2426	1335	5000	
	ST(7)	1267	2213	1520	5000	1182	2419	1399	5000	
	ST (6)	1231	2170	1599	5000	1155	2370	1475	5000	
	ST(5)	1136	2130	1734	5000	1097	2300	1603	5000	
	SUMS	35492	32342	17166	85000	32989	36470	15541	85000	
		C	RITERION	(D) (3)		C	RITERION	(E)		
MINDED OF		3284	1252	464	5000	3258	1008	734	5000	
NUMBER OF	U N	1509		1201	5000	1495	1730	1775	5000	
SAMPLES FROM		770	1694	2536	5000	757	1134	3109	5000	
	0	110	1094	2556	9000	151	1134	3109	5000	
	DS	4469	8	523	5000	4469	3	528	5000	
	AS	4273	437	290	5000	4260	337	403	5000	
	43	4213	437	230	2000	4200	001	100	,000	
	SB (1.5)	2749	1680	571	5000	2728	1344	928	5000	
	\$8(2.0)			697	5000	2354	1520	1116	5000	
	SB (2.5)		2056	745	5000	2167	1615	1218	5000	
	SB(3.0)	2064	2092	844	5000	2045	1652	1303	5000	
	SB (3.5)		2166	870	5000	1947	1715	1338	5000	
	SB (4.0)		2186	940	5000	1853	1724	1423	5000	
	ST (16)	1427	2172	1401	5000	1406	1577	2017	5000	
	ST(10)	1249	2158	1593	5000	1234	1578	2188	5000	
	ST (8)	1280	2109	1611	5000	1270	1537	2193	5000	
	31101									
	ST (7)	1189		1691	5000	1176	1519	2305	5000	
	ST(7) ST(6)	1189 1169	2077	1754	5000	1146	1483	2371	5000	
	ST (7)	1189	2077							
	ST(7) ST(6) ST(5)	1189 1169 1067	2077	1754 1900	5000 5000	1146 1055	1483 1460	2371 2485	5000 5000	
	ST(7) ST(6)	1189 1169	2077	1754	5000	1146 1055	1483	2371	5000 5000	

TABLE 28

CONTINGENCY TABLES--CLASSIFICATION VS. TRUE POPULATION BY CRITERIA (PHASE IV: N=14)

		CI	RITERION ((A)(1)		C	RITERION	(A)(2)	
			CLASSIFIE	D AS			CLASSIF	YED AS	
		υ		D	SUMS	U	N	D	SUMS
NUMBER OF		3566		301	5000	3356	1382	262	5000
SAMPLES FROM	N	1443	1906	1651	5000	1261	2194	1545	5000
	D	481	1246	3273	5000	402	1452	3145	5000
	DS	4722	0	278	5000	4721	0	279	5000
	45	4317		175	5000	4213	636	151	5000
		1021	300	-	2000	1220	000		3000
	SB(1.5)	30 26	1502	472	5000	2796	1794	410	5000
	SB (2.0)	2619	1759	622	5000	2384	2068	548	5000
	\$8(2.5)	2351	1871	778	5000	2131	2200	669	5000
	SB(3.0)	2177	1952	871	5000	1961	2252	787	5000
	SB(3.5)			988	5000	1804	2313	683	
	SB(4.0)			1096	5000	1766	2246	988	5000
	35(4.0)	2010	1894	1090	5000	1/00	2240	900	5000
	ST (16)	1147	1915	1938	5000	990	2208	1802	5000
	ST (10)			2239	5000	923	1962	2115	5000
	ST (8)	1025	1621	2354	5000	880	1882	2238	5000
	31107	1027	1021	2024	2000	000	1002	2200	3000
	ST (7)	958	1597	2445	5000	816	1857	2327	5000
	ST(6)	942	1527	2531	5000	824	1771	2405	5000
	ST (5)	773	1509	2718	5000	662	1744	2594	5000
	SUMS	34691	25579	24730	85000	31890	29961	23149	85000
		CI	RITERION ((B)(1)		C	RITERION	(8)(2)	
NUMBER OF	U	3626	1131	243	5000	3452	1339	209	5600
SAMPLES FROM		1309		1663	5000	1155	2278		
	D	476		3296	5000	389	1393	3218	5000
	DS	4721	221	58	5000	4721	221	58	5000
	AS	4612	325	63	5000	4550	390	60	5000
	\$8(1.5)	2918	1628	454	5000	2715	1877	408	5000
	SB (2.0)	2506	1855	639	5000	2277	2135	588	5000
	SB (2.5)		1946	794	5000	2026	2245	729	5000
	SE(3.0)	2088	1986	926	5000	1862	2272	866	5000
	SB (3.5)		2041	1021	5000	1737	2305	958	5000
	58 (4.0)			1138	5000	1691	2239	1070	5000
	ST (16)	1101	1973	1926	5000	956	2220	1824	5000
	ST(10)	1008	1759	2233	5000	860	2013	2127	5000
	ST (8)	1014	1688	2298	5000	889	1894	2217	5000
	ST (7)	885	1679	2436	5000	773	1896	2331	5000
	ST (6)	886		2473	5000	776	1848	2376	5000
	ST(5)	746	1584	2670	5000	638	1781	2581	5000
	SUMS	33973	26696	24331	85000	31467	30346	23187	85000

TABLE 28

CONTINGENCY TABLES--CLASSIFICATION VS. TRUE POPULATION BY CRITERIA (PHASE IV: N=14)

		CR	RITERION (0)(1)		С	RITERION	(0)(2)	
			CLASSIFIE	AS			CLASSIFI	ED AS	
		U		0	SUMS	U	N		SUMS
NUMBER OF	U	3625	1245	130	5000	3454	1441	105	5000
SAMPLES FROM	И	1269		904	5000	1148		856	5000
	0	567	1891	2542	5000	557	1970	2473	5000
	05	4942	1	57	5000	4942		57	5000
	AS	4726	219	55	5000	4699	256	45	5000
	\$8(1.5)	2840	1915	245	5000	2629	2154	217	5000
	\$3(2.0)	2387	2276	337	5000	2168	2528	304	5000
	SB(2.5)	2113	2507	380	5000	1939	2716	345	5000
	SB(3.0)	1938	2573	489	5000	1775	2786	445	5000
	38(3.5)	1809	2707	484	5000	1668	2889	443	5000
	58(4.0)	1737	2661	602	5000	1578	2875	547	5000
	ST (16)	1090	2776	1134	5000	998	2935	1067	5000
	ST (10)		2684	1332	5000	898	2829	1273	5000
	ST (8)	1017	2527	1456	5000	913	2675	1412	5000
	ST (7)	917	2513	1570	5000	878	2528	1494	5000
	37(6)	888	2491	1621	5000	821	2616	1563	5000
	ST (5)	754	2454	1792	5000	704	2567	1729	5000
	SUMS	33603	36267	15130	85000	31769	38856	14375	85000
		CR	RITERION (0)(3)		c	RITERION	(E)	
NUMBER OF	U	3611	1159	230	5000	3601	1030	369	5000
SAMPLES FROM	N	1258	2605	1137	5000	1255	2149	1596	5000
	O .	500	1653	2847	5000	490	1229	3281	5000
	DS	4721	1	278	5000	4721	1	278	5000
	AS	4705	191	104	5000	4700	157	143	5000
	58(1.5)	2847	1798	355	5000	2840	1594	566	5000
	\$8(2.0)		2134	442		2412		727	5000
	39(2.5)	21 46	2339	515	5000	2139	2024	837	5000
	\$8(3.0)	1926	2429	645	5000	1918	2116	966	5000
	\$8(3.5)		2544	654	5000	1793	2165	1042	5000
	SB(4.0)	1781	2463	756	5000	1769	2128	1103	5000
	\$7 (16)	1062	2544	1394	5000	1048	2079	1873	5000
	ST(10)	946	2447	1607	5000	932	1945	2123	5000
	37 (8)	957	2285	1758	5000	953	1842	2205	5000
	ST (7)	863	2278	1859	5000	854	1821	2325	5000
	7 (6)	841	2242	1917	5000	833	1793	2374	5000
	SY (5)	741	2167	2092	5000	733	1728	2539	5000
	SUMS	33131	33279	18590	85000	32991	27662	24347	85000

TABLE 29

CONTINGENCY TABLES--CLASSIFICATION VS. TRUE POPULATION BY CRITERIA (PHASE IV: N=18)

		GR:	ITERION	(A)(1)		С	RITERION	(A)(2)	
		U	CLASSIFI	ED AS	SUMS	U	CLASSIFI	ED AS	SUMS
		O	18	U	30n3	U	, ,	U	3043
NUMBER OF	U	3858	1026	116	5000	3724	1165	111	5000
SAMPLES FROM	-	1228	2182	1590	5000	1103	2362	1535	5000
SAMELS TROM	0	237	1288	3475	5000	204	1376	3420	5000
	U	201	1200	5415	2000	204	1010	0 4 2 0	5000
	os	4818	134	48	5000	4818	134	48	5000
	AS	4560	391	49	5000	4509	443	48	5000
	58(1.5)	3095	1617	288	5000	2946	1785	269	5000
	SB (2.0)	2684	1943	373	5000	2486	2167	347	5000
	\$8 (2.5)	2212	2192	596	5000	2045	2389	566	5000
	SB (3.0)	2085	2215	700	5000	1905	2439	656	5000
	SB (3.5)	1959	2277	764	5000	1775	2497	728	5000
	58 (4.0)	1860	2302	838	5000	1695	2512	793	5000
	ST (16)	939	2113	1948	5000	837	2266	1897	5000
	ST(10)	821	2043	2136	5000	735	2186	2079	
	ST(8)	759	1861	2380	5000	671	1995	2334	5000
	09/71		10.7	0100		503	1071	2115	5000
	ST (7)	669	1843	2488	5000	583	1971	2446	5000
	ST (6)	621	1767	2612	5000	534	1916	2550	5000
	ST (5)	542	1633	2825	5000	473	1763	2764	5000
	SUMS	32947	28827	23226	85000	31043	31366	22591	85000
		CR	ITERION	(8)(1)		C	RITERION	(B)(2)	
NUMBER OF	U	3912	1003	85	5000	3804	1111	85	5000
SAMPLES FROM		1104	2315	1581	5000	982	2465	1553	5000
	0	237	1288	3475	5000	197	1356		5000
	DS	4818	134	48	5000	4818	134	48	5000
	AS	4827	166	7	5000	4804	190	6	5000
	SB(1.5)	3010	1728	262	5000	2863	1886	251	5000
	SB(2.0)	2516	2099	385	5000	2362	2270	368	5000
	\$8(2.5)	2084	2309	607	5000	1942	2465	593	5000
	\$8(3.0)	1898	2393	709	5000	1743	2567	690	5000
	SB (3.5)		2363	834	5000	1655	2535	810	5000
	SB(4.0)		2440	886	5000	1525	2624	851	5000
	ST (16)	852	2204	1944	5000	773	2325	1902	5000
	ST (10)	759	2145	2096	5000	678	2267	2055	5000
	ST (8)	686	1944	2370	5000	623	2042	2335	5000
							00.70	2	F0.55
	ST (7)	616	1939	2445	5000	552	2038		5000
	ST (6)	583	1880	2537	5000	500	1996	2504	5000
	ST (5)	503	1760	2737	5000	458	1842	2700	5000
	SUMS	31882	30110	23008	85000	30279	32113	22608	85000
				*7 F					

TABLE 29

CONTINGENCY TABLES--CLASSIFICATION Vs. TRUE POPULATION BY CRITERIA (PHASE IV: N=18)

		CI	RITERION	(0)(1)		С	RITERION	(D)(2)	
			CLASSIF	ED AS			CLASSIFI	ED AS	
		U		D	SUMS	U	14	0	SUMS
NUMBER OF	u	3943	990	67	5000	3814	1131	55	5000
SAMPLES FROM		1029		898	5000	943	3200	857	
SAMELS TROM	0	328			5000	341	1818	2841	
	DS	4952	0	48	5000	4952	0	48	5000
	AS	4900	92	8	5000	4883	110	7	5000
	SB(1.5)	2966	1870	164	5000	2810	2044	146	5000
	\$8(2.0)			233	5000		2547	205	
	\$8 (2.5)		2683	332	5000		2831	307	
	SB(3.0)	1770	2842	379	5000	1656	2995	349	5000
	SB(3.5)			411			3062		
	SB (4.0)		2990	460			3142	436	5000
	35(4,0)	1930	2 9 9 0	400	9000	1422	3142	430	5000
	ST (16)		3036	1146	5000	769	3119	1112	5000
	ST(10)	749	2953	1298	5000	688	3049	1263	5000
	ST (8)	686	2830	1484	5000	632	2926	1442	5000
	ST (7)	619	2729	1652	5000	581	2801	1618	5000
	ST(6)				5000		2732		
	ST (5)				5000		2574		
	SUMS	31516	38290	15194	85000	30225	40081	14694	85000
		C	RITERION	(D)(3)		С	RITERION	(E)	
NUMBER OF	U	3954	937	109	5000	3949	855	196	5000
SAMPLES FROM	N	1032		1192	5000	1026			5000
	0	282	1456	3262	5000	280	1201	3519	5000
	DS	4818	0	182	5000	4818	n	182	5000
		4888	83	29	5000	4885	75	40	5000
		1000			,,,,	1002			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
	SB(1.5)			256	5000	2979	1622	399	5000
	SB(2.0)			310	5000			483	
	58(2.5)	2022	2526	452	5000	2007	2316	677	5000
	\$8(3.0)	1796	2662	542	5000	1791	2430	779	5000
	3B (3.5)		2701	587	5000	1702	2477	821	5000
	58(4.0)		2797	631	5000	1566	2559	875	5000
	ST (16)	816	2678	1506	5000	812	2394	1794	5000
	ST(10)	738	2598	1664	5000	730	2309	1961	5000
	37 (8)	696	2416	1888	5000	688	2109	2203	5000
	31 (0)	3,0	2410	1000	2000	000	2703		2000
	ST(7)	611	2357	2032	5000	603	2065	2332	5000
	ST (6)	554	2289	2157	5000	546	2029	2425	5000
	ST (5)	525	2130	2345	5000	520	1834	2646	5000
	SUMS	31449	34407	19144	85000	31338	30831	22831	85000

TABLE 30

CONTINGENCY TABLES--CLASSIFICATION VS. TRUE POPULATION BY CRITERIA (PHASE IV: N=22)

		CF	RITERION	(A)(1)		С	RITERION	(A)(2)	
			CLASSIFIE	ED AS			CLASSIF	ED AS	
		U	N	D	SUMS	U	N	0	SUMS
NUMBER OF	U	4049	887	64	5000	3961	981	58	5000
SAMPLES FROM		1005	2548	1447	5000	920	2650	1430	5000
SAMELO TROM	0	162	1240	3598	5000	136	1282	3582	5000
	,	102	1240	0,30	2000	100	1202	0,700	2000
	DS	4907	69	24	5000	4907	69	24	5000
	AS	4730	250	20	5000	4702	278	20	5000
	SB(1.5)		1616	137	5000	3119		136	5000
	SB(2.0)		2095	231	5000	2532	2246	222	5000
	SB(2.5)	2284	2402	314	5000	2145	2548	307	5000
	SB(3.0)	100/	2570	436	5000	1848	2728	424	5000
	SB(3.5)		2606	590	5000	1667	2752	581	
	SB (4.0)			611	5000	1530	2872	598	5000
	5014.07	1049	2740	011	9000	1930	2012	290	5000
	ST (16)	749	2389	1862	5000	675	2481	1844	5000
	ST(10)	606	2206	2188	5000	564	2261	2175	
	ST (8)	543	2064	2393	5000	490	2138	2372	5000
		,,,		2000	3		2200	2012	,,,,,
	ST (7)	474	2017	2509	5000	427	2085	2488	5000
	ST (6)	430	1861	2709	5000	390	1918	2692	5000
	ST (5)	396	1720	2884	5000	352	1775	2873	5000
	SUMS	31703	31280	22017	85000	30365	32809	21826	85000
		C	RITERION	101111			DITEDION	(D) (2)	
		C	KITEKIUN	(8)(1)		C	KTIEKTON	(0)(2)	
NUMBER OF	U	4155	825	20	5000	4087	894	19	5000
SAMPLES FROM	N	897	2686	1417	5000	850	2746	1404	5000
	9	164	1227	3609	5000	149	1256	3595	5000
								-	
	DS	4907	69	24	5000	4907	69	24	5000
	AS	4936	62	2	5000	4922	76	2	5000
	SB(1.5)	3160	1711	129	5000	3051	1825	1.24	5000
	SB (2.0)		2213	243	5000	2413	2349	238	5000
	SB (2.5)		2526	354	5000	2000	2657	343	5000
	\$8 (3.0)	1821	2718	461	5000	1698	2854	448	5000
	\$8 (3.5)	1613	2754	633	5000	1514	2859	627	5000
	SB(4.0)	1496	2840	664	5000	1391	2956	653	5000
	CTIACS		2510	4000	E000	640	2504	4001	E000
	ST (16)	664	2510	1826	5000	612	2584	1804	5000
	ST(10)	566	2304	2130	5000	522	2369	2109	5000
	ST(8)	495	2184	2321	5000	448	2247	2305	5000
	ST (7)	442	2090	2468	5000	412	2134	2454	5000
	ST (6)	397	1935	2668	5000	362	1985	2653	5000
	ST (5)	355	1857	2788	5000	328	1908	2764	5000
	SMRS	30732	32511	21757	85000	29666	33768	21566	85000

TABLE 30

CONTINGENCY TABLES--CLASSIFICATION VS. TRUE POPULATION BY CRITERIA (PHASE IV: N=22)

		CF	RITERION	(D)(1)		C	RITERION	(D)(2)	
			CLASSIFIE	ED AS			CLASSIFI	ED AS	
		U		0	SUMS	U	N	0	SUMS
NUMBER OF	U	4229	731	40	5000	4161	818	21	5000
SAMPLES FROM		825	3375	800	5000	758		772	5000
	D	194	1656	3150	5000	213	1675		5000
	08	4976	0	24	5000	4976	0	24	5000
	15	4962	32	6	5000	4957	38	5	5000
	2014 61	7077	4004	422		2064	4074	400	5000
	38(1.5)			122 172	5000	2961	1931	108	5000
	SB(2.5)		2427	220	5000	2264 1 8 55	2589 2947	147 198	5000 5000
	3016.21	1300	2134	220	5000	1000	2941	150	2000
	38(3.0)	1678	3046	276	5000	1573	3178	249	5000
	SB (3.5)	1481	3179	340	5000	1366	3314	320	5000
	58(4.0)	1395	3244	361	5000	1296	3367	337	5000
			7.000						
	ST (16)		3292	1068	5000	589	3364		
	ST(10) ST(8)		3079 2970	1379	5000	519	3125		
	21 (0)	489	2970	1541	5000	452	3033	1515	5000
	ST (7)	460	2884	1656	5000	427	2941	1632	5000
	ST (6)	390	2696	1914	5000	382	2732	1886	5000
	SY (5)	374	2589	2037	5000	355	2635	2010	5000
	SUMS	30099	39795	15106	8 5000	29104	41157	14739	85000
		CI	RITERION	(D)(3)		C	RITERION	(∈)	
NUMBER OF	IJ	4224	716	60	5000	4217	687	96	5000
SAMPLES FROM		824	3044	1132	5000	819	2859		
	5	185	1276	3539	5000	179	1126	3695	5000
	os	4976	0	24	5000	4976	0	24	5000
	AS	4959		9	5000	4957		13	5000
		,,,,,			,,,,,	1331			,,,,,
	58 (1.5)			157	5000	3089	1679	232	5000
	SB(2.0)			240	5000	2412	2231	357	5000
	SB (2.5)	2000	2679	321	5000	1997	2558	445	5000
	\$3(3.0)	1690	2905	405	5000	1684	2774	542	5000
	\$8 (3.5)		2990	512	5000	1494	2836	670	5000
	58(4.0)		3060	532	5000	1402	2916	682	5000
	DT (15)	(36	2017	1515	FA66		2010	1710	E000
	ST (16)	639	2843	1518	5000	635	2646	1719	5000
	ST(10)	539		1801	5000	536	2490	1974	5000
	ST (8)	484	2522	1994	5000	481	2332	2187	5000
	31 (7)	456	2438	2106	5000	455	2261	2284	5000
	ST (6)	395	2254	2351	5000	391	2081	2528	5000
	ST (5)	366	2118	2516	5000	364	1968	2668	5000
	SUMS	30148	35635	19217	85000	30088	33484	21428	85000

TABLE 31

MEAN SQ SAMPLE	UARE ERRORS OF	PARAMETER	ESTIMATES	(PHASE IV) IF	POPULATION	IS KNOWN
	POPULATION	MSE (û)	MSE(ô)	MSE (F.O)	MSE (o)	MSE-(Fo)
10	U	.0465	.0460	.1246	.0184	.0499
	N	.0987	.0546	.2097	.0566	.2174
	D	.0715	.0963	. 4320	.1038	. 4657
	DS	.0028	.0028	.0028	.0028	.0028
	24	.0155	.0115	.0229	.0075	.0150
	\$8(1.5)	.0680	.0453	.1397	.0335	.1033
	\$3(2.0)	.0791	.0433	.1425	.0336	.1107
	58(2.5)	.0871	.0432	.1476	.0364	.1242
	58(3.0)	.0896	.0428	.1497	.0381	.1331
	SB(3.5)	.0905	.0449	.1597	.0415	.1474
	\$8(4.0)	.0945	.0455	.1635	.0431	.1549
	57(16)	.1088	.0614	.2414	.0652	. 2562
	ST(10)	.1110	.0702	.2787	.0742	. 2947
	ST(8)	.1117	.0773	.3082	.0817	.3258
	ST (7)	.1145	.0893	.3566	.0930	. 3714
	57(6)	.1150	.0905	.3611	.0936	.3736
	57(5)	.1170	.1068	. 4234	.1077	. 4271
	AVG	.0836	.0572	.2155	0547	.2102
14	U	.0246	.0251	.0681	.0098	.0266
	N	.0722	.0369	.1417	.0378	.1451
	D	.0484	.0711	.3189	.0751	.3372
	05	.0002	.0002	.0002	.0002	. 8002
	AS	.0063	.0045	.0090	.0031	.0061
	\$8(1.5)	.0407	.0271	.0837	.0208	.0643
	\$8(2.0)	.0532	.0271	.0892	.0226	.0743
	58(2.5)	.0584	.0281	.0959	.0244	.0835
	\$3(3.0)	.0617	.0277	.0969	.0246	.0862
	\$8(3.5)	.0652	.0290	.1031	.0258	.0952
	\$3(4.0)	.0658	.0290	.1044	.0272	.0977
	ST(16)	.0769	.0442	.1738	.0460	.1809
	ST(10)	.0784	.0544	.2161	.0564	. 2239
	57(8)	.0812	.0569	.2270	.0579	.2308
	ST (7)	.0821	.0648	.2589	.0643	. 2568
	ST(6)	.0815	.0747	.2980	.0734	.2928
	ST (5)	.0848	.0917	.3634	.0881	. 3493
	AVG	.0577	.0407	.1558	.0387	.1501

TABLE 31

MEAN SO	UARE ERRORS	OF PARAMETER	ESTIMATES	(PHASE IV) IF	POPULATION	IS KNOWN
SIZE, N	POPULATION	MSE(µ)	MSE(σ̂)	MSE (Fô)	MSE (o)	MSE (Fo)
18	U	.0161	.0159	.0431	.0059	.0159
	N	.0542	.0290	.1115	.0297	.1140
	D	.0385	.0544	.2439	.0573	.2573
	os	0.0000	0.0000	0.0000	0.0000	0.0000
	AS	.0026	.0018	.0036	.0012	.0025
	\$8(1.5)	.0302	.0183	.0566	.0154	.0474
	\$3(2.0)	.0389	.0184	.0605	.0150	.0493
	\$8(2.5)	.0462	.0194	.0663	.0168	.0572
	SB(3.0)	.0468	.0205	.0716	.0183	.0639
	SB(3.5)	.0487	.0213	.0758	.0199	.0707
	\$8(4.0)	.0492	.0222	.0798	.0209	.0753
	ST (16)	.0573	.0354	.1392	.0365	.1435
	ST(10)	.0603	.0402	.1598	.0405	.1609
	ST(e)	.0609	.0466	.1860	.0459	.1832
	ST (7)	.0650	.0522	.2087	.0506	.2020
	ST (6)	.0648	.0565	.2255	.0538	.2146
	57 (5)	.0669	.0763	.3024	.0708	.2808
	A VG	.0439	.0311	•1197	.0293	.1140
22	U	.0112	.0109	.0294	.0039	.0106
	N	.0448	.0239	.0918	.0240	.0921
	D	.0291	.0453	.2032	.0468	.2098
	DS	0.0000	0.0000	0.0000	0.0000	0.0000
	AS	.0012	.0009	.0017	.0006	.0012
	\$8(1.5)	.0220	.0136	.0419	.0102	.0315
	\$8(2.0)	.0315	.0145	.0478	.0113	.0371
	\$8(2.5)	.0359	.0149	.0508	.0128	.0436
	\$8(3.0)	.0388	.0162	.0567	.0149	.0520
	\$8(3.5)	.0402	.0172	.0610	.0161	. 0574
	\$8(4.0)	.0422	.0176	.0634	.0168	.0605
	51(16)	.0471	.0281	.1106	.0284	.1115
	ST(10)	.0510	.0331	.1314	.0325	.1293
	ST (8)	.0515	.0390	.1556	.0374	.1492
	ST(7)	.0534	.0438	.1750	.0414	.1653
	\$7(6)	.0531	.0516	.2058	.0480	.1914
	ST (5)	.0528	.0658	.2611	.0591	. 2342
	AVG	.0356	.0257	.0992	.0238	.0927
	N 4 0					

TABLE 32

EFFICIENCIES OF ADAPTIVE ROBUST ESTIMATES OF
LOCATION FARAMETER

(RELATIVE TO MAXIMUM LIKELIHOOD ESTIMATE IF POPULATION IS KNOWN)

(PHASE IV)

									2
SAMPL	E SAMPL	E¢.			CPT	TERION			
SIZE,		(A) (1)	(A)(2)	(8)(1)	(8)(2)	(D) (1)	(D)(2)	(E) (3)	(E)
,									
10	U	. 4367	.4361	.5199	.5106	.5848	.5800	.5145	.4844
	N	.8123	.8411	.8002	.8303	.8131	.8085	.8104	.7831
	D	.8358	.8510	.7734	.7961	.6499	.6012	.7529	.7716
	0	.0000	•0510	.,,,,,	., 301	.0433	.0012	. 1) 2 3	61110
	DS	.0263	.0263	.0263	.0263	.0263	.0263	.0263	.0263
	AS	.1620	.1652	.2586	.2456	.3603	.3613	.2500	.2393
	SB (1.5)	.6140	.6234	.6545	.6694	.7161	.7272	.6550	.6241
	SB(2.0)	.6814	.7006	.7050	.7185	.7553	.7658	.7161	.6791
	\$8 (2.5)	.7162	.7383	.7337	.7551	.7818	.7932	.7502	.7072
	SB(3.0)	.7384	.7639	.7481	.7715	.7790	.7931	. 7567	.7265
	SB (3.5)	.7405	.7737	.7525	.7813	.7855	. 81 43	.7655	.7303
	58 (4.0)	.7613	.7800	.7643	.7917	.8006	.8097	.7813	.7491
	ST (16)	.8567	.8828	.8224	.8435	.7974	.7935	.8303	-8106
	ST (10)	.8748	.9023	.8401	.8640	.7884	.7705	.8436	.8318
	ST (8)	.8859	.9205	.8537	.8857	.8160	.8017	.8569	.8475
								15.0	
	S1 (7)	.8975	.9267	.8747	.9095	.8254	.8116	.8780	.8619
	ST(6)	.9336	.9640	.8933	.9296	.8449	.8165	.8893	
	\$1 (5)	.9894	1.0132	.9500	.9798	.8793	.8287	.9396	.9313
	01107	• 5054	1.0102	.,,,,,	• 3, 30	.0130	.020	. 3030	*3010
	AVG	.7176	.7368	.7297	.7481	.7321	.7247	.7325	.7125
14	U	.4185	.4116	.5104	.5047	. 5656	.5606	. 4992	. 4767
	N	.7969	.8072	.7939	.8118	.8137	.8224	.8059	.7792
	0	.8309	.8435	.7841	.7987	.6777	.6450	.7455	.7585
	DS	.0036	.0036	.0077	.0077	.0172	.0172	.0036	.0036
	AS	.1332	.1321	.2507	.2373	.3364	.3419	.2553	.2441
							200		
	SB (1.5)	.5743	.5726	.6240	.6237	.6570	.6624	.6021	.5763
	SB (2.0)	.6646	.6747	.6924	.6971	.7186	.7306	.6852	
	SB (2.5)	.7128	.7233	.7272	.7365	.7558	.7708	.7329	*7036
		.,	•,,,,,			., ,,,,			
	SB (3.0)	.7362	.7501	.7435	.7571	.7688	.7754	.7350	.7118
	SB (3.5)	.7412	.7549	.7373	.7486	.7727	.7798	.7594	.7268
	SB (4.0)	.7428	.7621	.7449	.7647	.7739	.7932	.7596	.7303
	30 (4.0)	., 450	., 021	•1443	. 1041	.,,,,	•1 302	., 330	01000
	ST (16)	.8536	.8718	.8115	.8347	.8049	.8071	.8113	.7958
	ST (10)	.8591	. 8742	.8164	.8435	.8008	.7983	.8250	.8188
	ST (8)	.8946	.9060	.8526	.8794	.8154	.8133	.8579	.8432
	0,.0,	.05.10	.,,,,,	•0720	.0.54	*0154			10102
	ST (7)	.8855	.9030	.8578	.8781	.8110	.7983	.8560	.8464
	ST (6)	.9480	.9657	.8907	.9128	.8339	.8193	.8745	
	ST (5)	.9826	.9995	.9229	.9497	.8690	.8501	.9082	.9038
	AVG	.7323	.7420	.7557	.7695	.7634	.7621	.7358	.7199

EFFICIENCIES OF ADAPTIVE ROBUST ESTIMATES OF LOCATION PARAMETER (RELATIVE TO MAXIMUM LIKELIHOOD ESTIMATE IF FOPULATION IS KNOWN) (PHASE IV)

TABLE 32

SAMPL	E SAMPL	ES			CRI	TERION			
SIZE,	N FROM	(A) (1)	(A)(2)	(B)(1)	(8)(2)	(0)(1)	(D)(2)	(3)(3)	(E)
18	U	.4461	.4317	.5479	.5267	.5746	.5627	.5452	.5160
	14	.8075	.8148	.7957	.8155	.8078	.8181	.7886	.7726
	D	.8809	.8827	.8275	.8370	.7695	.7165	.8255	.8520
	DS	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
	AS	.1160	.1112	.2963	.2760	.4738	. 4494	.3400	.3199
	SE (1.5)	.5798	.5727	.6264	.6146	.6517	.6459	.6162	.5916
	\$8 (2.0)	.6640	.6639	.6893	.6909	.6892	.6901	.6718	.6536
	SB (2.5)	.6776	.6818	.7023	.7069	.7358	.7363	.7071	.6792
	SB(3.0)	.7179	.7244	.7218	.7301	.7501	.7603	.7334	.7066
	38 (3.5)	.7250	.7347	.7281	.7342	.7498	.7645	.7348	.7167
	SB (4.0)	.7537	.7715	.7607	.7763	.7813	.8002	.7720	.7468
	57 (16)	.8090	.8166	.7921	.8027	.7991	.7986	.7990	.7882
	ST (10)	.8343	.8453	.8098	.8249		.8069	.8165	.8093
	ST (8)	.8718	.8915	.8482	.8623	.8448	.8369	.8420	.8392
	51 (7)	.9078	.9178	.8702	.5785	.8633	.8475	.8764	.8675
	51 (6)	.9568	.9683	.9258	.9455	.9068	.8890	.9311	.9429
	57 (5)	1.0277	1.0379	.9788	.9926	.9542	.9429	.9745	.9793
	31131	1.0211	1.0379	. 97 00			. 3423		• 57 50
	AVG	.7610	.7662	.7703	.7778	.7847	.78.06	.7576	.7455
22	U	.4027	.3975	.5023	.4882	.5336	.5464	.5072	.4931
	1.	.8160	.8251	.8084	.8151	.8376	.8385	.8277	.8178
	D	.8413	-8488	.7978	.7960	.7608	.7121	.7892	.8052
	DS	0.0000	0.0000	0.0000	0.0000	0.0000	6.0000	0.0000	0.0000
	AS	.0914	.0867	. 3187	.2999	.4713	• 4586	.3795	.3615
	58(1.5)	.5638	.5572	.6088	.6030	.6032	.5983	.5936	.5792
	SE (2.0)	.6726	.6721	.6954	. 5946		.6924	.6703	.6546
	\$8 (2.5)	.7004	.6989	.7048	.7076	.7077	.7115	.6994	.6804
	SB(3.0)	.7472	.7472	.7462	.7548	.7560	.7687	.7453	.7264
	SB(3.5)	.7480	.7533	.7445	.7476	.7673	.7728	.7508	.7323
	\$8 (4.0)	.7940	.7998	.7778	.7854	.7886	.7953	.7757	.7671
	57 (16)	.8682	.8724	.8451	.8537	.8539	. 8553	.8360	.8323
	57 (10)	.8659	.8703	.8476	.8574	.8640	.8603	.8531	.8483
	\$1(3)	.8937		The second secon	.8749	.8748	.8644	.8572	.8681
	\$1(7)	.9354	.9453	.8896	.8947	.8919	.8888	.8940	.8556
		.9596		.9249	.9354	.9481	.9102	.9307	.9307
		1.0219		.9921	.9995	.9695	.9484	.9795	.9788
	AVG	.7865	.7894	.7912	.7955	.8036	.7985	.7943	.7855

TABLE 33

EFFICIENCIES OF ADAPTIVE ROBUST ESTIMATES OF

SCALE PARAMETER (RELATIVE TO MAXIMUM LIKELIHOOD ESTIMATE IF POPULATION IS KNOWN) (PHASE IV)

SAMPLE	SAMPL	ES			CRI	TERION			
SIZE, N		(A) (1)	(A)(2)	(B)(1)		(D)(1)	(0)(2)	(0) (3)	(E)
10 U		1.0928	1.1206	1.0762	1.0971	1.0375	1.0684	1.0394	1.0643
N		.8652	.8729	.8676	.8826	.8735	.8824	.8729	.8694
D		.9088	.9143	.9022	.9091	.9028			
U		. 9000	. 91 43	. 9022	. 9091	.9020	.9094	.9012	.9024
	0	0110	041.0	0440	0410	2410	0410	0410	2410
D		.0149	.0149	.0149		.0149	.0149		.0149
A	S	.2082	.2132	.1952	.1995	.1888	.1921	.1908	.1929
		1.0796	1.0925	1.0729	1.0842	1.0380	1.0641	1.0396	1.0572
	8(2.0)	.9981	1.0138	.9928	1.0011	.9599	.9768	.9632	.9839
S	B(2.5)	.9645	.9756	.9588	.9770	.9328	.9505	.9351	.9487
	B(3.0)	.9192	.9338	• 90 9 3	.9216	.9010			.9101
-	B(3.5)	.9101	.9239	.9041	.9179	.8977	.9087	.8974	.9012
S	8 (4.0)	.8981	.9043	.8863	.9029	.8811	.8892	.8841	.8878
	T (16)	.8625	.8802	.8719	.8878	.9017		.8972	.8785
S	1(10)	.8962	.9085	.9001	.9201	.9434	.9511	.9398	.9161
5	1(8)	.9042	.9188	.9092	.9223	.9485	.9573	.9478	.9267
S	T(7)	.9713	.9902	.9792	.9938	1.0172	1.0228	1.0168	1.0027
S	T(6)	.9370	.9541	.9539	.9634	.9903	.9959	.9840	.9635
S	T (5)	1.0238	1.0346	1.0282	1.0425	1.0589	1.0680	1.0593	1.0363
A	VG	.7723	.7820	.7706	.7805	.7774	.7848	.7774	.7736
14 U		.9892	.9957	.9693	.9758	.9402	.9520	.9423	.9600
N		.8932	.8956	.9028	.9066	.9139	.9173	.9125	.9045
D		.9387	.9381	.9341	.9354	.9258	.9283	.9262	.9246
D	5	.0011	.0011	.0011	.0011	.0011	.0011	.0011	.0011
A	S	.0978	.0988	.0928	.0933	.0914	.0916	.0917	.0922
S	B(1.5)	1.1404	1.1395	1.1391	1.1429	1.0969	1.1104	1.1024	1.1252
S	8(2.0)	1.0651	1.0661	1.0640		1.0272		1.0317	1.0506
		1.0271	1.0233	1.0177	1.0181			.9972	1.0097
S	B (3.0)	.9952	.9949	.9877	.9895	.9606	.9639	.9638	.9714
	B (3.5)	.9740		.9581	.9623			.9435	.9513
	B (4.0)	.9504	.9498	.9413	.9443			.9260	.9278
,	D 1 1 6 0 7	*****	. 3430	. 3413	. 3440	. ,	.,,,,	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	*******
	T(16)	.9010	.9120	.9047	.9150	.9493	.9519	.9447	.9249
			.9205	-9195	.9279	9828	. 9843		.9409
	T(8)	.9447			.9574				.9730
3		. , , , , ,	. , , , ,	• > > > 1	. 2514	TOUGE	1.0004	. , , , ,	
9	T (7)	.9866	.9936	.9934	1.0008	1.0485	1.0510	1.0383	1.0164
			1.0344						
	T (5)		1.1602		1.1647				1.1721
~		1.1700	2.2002	2020	101041	2007	20200		
	VG.	.7526	.7553	.7562	.7590	-7608	.7628	.7592	.7544
				., , , ,	4. 550				

EFFICIENCIES OF ADAPTIVE ROBUST ESTIMATES OF SCALE PARAMETER

(RELATIVE TO MAXIMUM LIKELIHOOD ESTIMATE IF FOPULATION IS KNOWN)

(PHASE IV)

TAPLE 33

SAMPL						TERTON			
SIZE,	N FROM	(A)(1)	(A)(2)	(B) (1)	(B) (2)	(D)(1)	(0)(2)	(D) (3)	(E)
18	U	.9046	.9055	.8800	.8811	.8629	.8649	.8672	.8806
10	N	.9170	.9187	.9272	.9293	.9524	.9527	.9445	.9362
	0	.9578	.9573	.9536	.9535	.9443	.9446	.9480	.9481
	U	.9576	.9573	. 3530	• 9555	• 9 443	. 5440	. 9400	.5401
	DS	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
	AS	.0445	.0448	.0428	.0428	.0426	.0426	.0427	.0427
	\$8 (1.5)	1.1601	1.1513	1.1382	1.1377	1.0949	1.0963	1.1074	1.1277
	SB(2.0)	1.1029	1.0973	1.0984	1.0919	1.0552	1.0560	1.0609	1.0784
	SB (2.5)	1.0416	1.0424	1.0430	1.0443	1.0041	1.0046	1.0161	1.0239
	S8 (3.0)		1.0185	1.0254	1.0264	.9839	.9837	.9967	1.0019
	SE (3.5)		1.0068	1.0087		.9794	.9791	.9896	.9947
	SB (4.0)	.9970	.9977	.9907	.9928	.9730	.9727	.9795	.9825
	C* / / C \	2020	0000	0000	.9105	.9725	.9730	04.03	.9355
	ST (16) ST (10)	.8980	.9009	.9060	.9233		.9934	.9492	
		.9100	.9133		.9521	.9922	1.0142		
	51 (8)	•9322	.9390	•9495	. 9521	1.0143	1.0142	.9893	.9696
	ST (7)	.9894	.9919	.9925	.9951	1.0618	1.0615	1.0378	1.0201
	ST (6)	1.0192	1.0234	1.0376	1.0377	1.1050	1.1050	1.0806	1.0680
	ST (5)	1.1671	1.1723	1.1738	1.1770	1.2382	1.2383	1.2126	1.1943
	31177	1.10/1	1.11/20	1.1100	1.1.0	1.000	1.000	1.110	1.1340
	AVG	.7096	.7107	.7105	.7114	.7210	.7212	.7169	.7135
22	U	.8561	.8527	.8248	.8223	.8171	.8145	.8201	.8267
	N	.9320	.9334	.9374	.9380	.9748	.9745	.9699	.9648
	D	.9527	.9515	.9487	.9486	.9394	.9390	.9413	.9430
	0.5	0 0000		2 2000	0.0000	0.0000	0.0000	0.0000	0 0000
	DS	0.0000	0.0000	0.0000			.0218		0.0000
	AS	.0224	.0225	.0210	.0219	.0218	.0218	.0218	.0218
	SB (1.5)	1.1819	1.1779	1.1599	1.1551	1.1246	1.1226	1.1339	1.1451
	\$8(2.0)		1.1169	1.1201	1.1209	1.0793	1.0802	1.0940	1.1027
	SB (2.5)		1.0196	1.0421	1.0416	1.0067	1.0066	1.0219	1.0269
	3012.77	1.0100	1.0170	100 101	200 120	1.000.	1.0000	1.0013	1.02.03
	SB (3.0)	.9964	1.0003	1.0172	1.0181	.9862	.9876	1.0016	1.0038
	SB (3.5)	.9680	.9733	.9826	.9843	.9657	.9664	.9792	.9764
	58 (4.0)	.9712	.9783	.9858	.9898	.9779	.9784	.9891	.9879
	ST (16)	.8831	.8859	.9027		.9760	.9752	.9383	.9281
	ST (10)	.9072	.9089	.9193	.9215	.9969	.9960	.9636	.9517
	ST (8)	.9260	.9276	.9448	.9460	1.0207	1.0200	.9902	.9822
	67 /71	0070	0050	0005	0005	1 0011	1 0044	1.0418	1 027/
	ST (7)	.9839	.9859	.9885	.9905	1.0814	1.0814	The second second	1.0274
	ST (6)	1.0713	1.0727	1.0802		1.1390	1.1373	1.1101	1.1011
	ST (5)	1.2457	1.2460	1.6997	1.2568	1.3220	1.3210	1.5000	1.2783
	AVG	.6727	.6736	.6754	.6763	.6893	.6893	.6824	.6801
		.0121	.0.00	.0154		.00,00	.00,0		*0001

EFFICIENCIES OF ADAPTIVE ROBUST ESTIMATES OF

TABLE 34

CANONICAL SCALE PARAMETER
(RELATIVE TO MAXIMUM LIKELIHOOD ESTIMATE IF POPULATION IS KNOWN)
(PHASE IV)

					077	* = = = = = =			
SAMPL	The second second					TERION			
SIZE,	N FROM	(A)(1)	(A)(2)	(B) (1)	(8)(2)	(D) (1)	(D) (S)	(D) (3)	(E)
10	U	1.0921	1.1577	1.1458	1.2023	1.2043	1.2349	1.1544	1.1029
	N	.6394	.6701	.6430	.6829	.6775	.7009	.6751	.6591
	D	.7744	.7920	.7662	.7850	.7512	.7589	.7584	.7677
	DS	.2521	.2521	.2521	. 2521	.2521	.2521	.2521	.2521
	AS	.3717	.3772	.5321	•5255	.6194	.6034	.5599	.5185
	\$8 (1.5)	.8790	.9291	.8805	.9295	.9208	.9585	.9093	.8694
								.7805	.7625
	\$8 (2.0)	.7593	.8156	.7545	.7979	.7831	.8139		
	\$8 (2.5)	.7184	.7652	.7114	.7709	.7427	.7779	.7379	.7162
	SB(3.0)	.6631	.7117	.6560	.6998	.7000	.7259	.6984	.6746
	SB (3.5)	.6566	.7065	.6543	.7018	.6965	.7246	.6898	.6680
	SB (4.0)	.6591	.6962	.6458	.6960	.6854	.7068	.6863	.6665
	3514.07	•0731	•0,02	•0450	•0300	.0024	.,,,,,	.0000	•0000
	ST (16)	.6340	.6716	.6427	.6781	.6940	.7162	.6874	.6583
	ST (10)	.6763	.7080	.6796	.7220	.7 453	.7673	.7400	.7050
	ST (8)	.6822	.7146	.6863	.7186	.7398	.7654	.7404	.7101
	31 (0)	.0022	./140	.0003	.1100	.1330	.1054	.1704	.1101
	ST (7)	.7508	.7878	.7583	.7909	.8107	.8271	.8129	.7896
	ST (6)	.7215	.7550	.7394	.7661	.7925	.8120	.7846	.7543
	\$1 (5)	.8024	.8285	.8057	.8384	.8547	.8770	.8564	.8209
	3117	.002.4	•0203	.0057	.0004	•0247	.0110	.0304	*0203
	AVG	.7200	.7550	.7253	.7617	.7666	.7883	.7637	.7400
14	U	1.0544	1.0734	1.1123	1.1449	1.1635	1.1837	1.1041	1.0613
	N	.6285	.6473	.6442	.6647	.6815	.7003	.6766	.6527
	D	.8066	.8124	.8001	.8110	.7688	.7781	.7797	.7863
		•0000	*0124	.0301	*0110	• 1 000			*, 000
	DS	.0292	.0292	.0102	.0102	.0589	.0589	.0292	.0292
	AS	.2777	.2736	.4222	.4117	• 4593	.4600	.4308	.4200
	58(1.5)	.8776	.9053	.9076	. 9388	.9238	.9578	.9145	.8832
	\$8(2.0)	.7797	.8060	.7840	.8066	.8053	.8266	.8001	.7720
	SB(2.5)	.7285	.7503	.7213	.7438	.7503	.7631	.7491	.7211
	SB(3.0)	.6991	.7210	.6898	.7114	.7137	.7318	.7075	.6828
	SB (3.5)	.6742	.7070	.6615	.6850	.6998	.7138	.6866	.6620
	\$8(4.0)	.6573	.6815	.6479	.6683	.6766	.6952	.6697	.6458
	57 (16)	.6619	.6870	•6656	.6897	.7332	.7527	.7231	.6898
	ST (10)	.6777	.6932	.6851	.7042	.7762	.7916	.7518	.7098
	ST (8)	.7021	.7177	.7125	.7234	.7778	.7961	.7605	.7310
	ST (7)	.7440	.7639	.7545	.7733	.8318	.8481	.8127	.7801
		.7676							
	51 (6)		.7906	.7932	.8061	.8681	.8815	.8416	.8083
	\$7 (5)	.8775	.8926	.8871	.8989	.9561	.9731	.9293	.8995
	AVG	.7416	.7605	.7480	.7654	.7995	.8158	.7854	.7591

TABLE 34

EFFICIENCIES OF ADAPTIVE ROBUST ESTIMATES OF CANONICAL SCALE PARAMETER (RELATIVE TO MAXIMUM LIKELIHOOD ESTIMATE IF POPULATION IS KNOWN) (PHASE IV)

SAMPLE	E SAMPL	FS			CRI	TERION			
SIZE,		(A)(1)	(A)(2)	(B)(1)		(D)(1)	(0)(2)	(0)(3)	(E)
3175	N FROM	(A)(1)	(A) (C)	(0)(1)	161121	(0)(1)	(0) (2)	(0)(3)	()
18	U	1.0476	1.0395	1.0954	1.1046	1.1031	1.1061	1.0831	1.0399
	N	.6478	.6596	.6636	.6752	.7302	.7447	.7068	.6843
	D	.8394	.8428	.8349	.8401	.7938	.7945	.8127	.8195
	DS	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
	AS	.1839	.1763	.2863	.2836	.3001	.3000	.2866	.2812
	SB(1.5)	.9223	.3280	.9443	.9602	.9323	. 9383	.9224	.8867
	SB (2.0)	.7915	.8009	.8009	.8059	.7951	.8061	.7852	.7625
	SB (2.5)	.7448	.7597	.7427	. 7541	.7562	.7664	.7508	.7165
	30 (2.5)	•1440	.1 221	.1461	. 1 2 4 1	. 1 702	. 1004	.1200	. 1 1 0)
					====	7500	7.0.	7.50	
	SB (3.0)	.7318	.7487	.7346	.7527	.7509	.7624	.7452	.7133
	SB (3.5)	.7118	.7275	.7037	.7154	.7302	.7388	.7187	.6950
	SB (4.0)	.7081	.7238	.6955	.7101	.7230	.7369	.7140	.6910
	ST (16)	.6531	.6625	.6590	.6679	.7567	.7680	.7158	.6925
	ST (10)	.6575	.6673	.6684	.6792	.7690	.7808	.7294	.7049
	ST(8)	.6857	.6980	.7043	.7124	.7948	.8063	.7543	.7269
	ST (7)	.7426	.7510	.7462	.7547	.8403	.8498	.7994	.7735
	ST (6)	.7511	.7610	.7709	.7761	.8661	.8746	.8245	.8054
	ST (5)	.8693	.8812	.8794	.8868	.9697	.9788	.9282	.9009
	AVG	.7432	.7532	.7534	.7623	.8157	.8249	.7897	.7677
22	U	.9908	.9910	1.0742	1.0687	1.0682	1.0744	1.0491	1.0214
22									
	N	.6697	.6752	.6759			.7604	.7251	.7090
	D	.8412	.8446	.8346	.8367	.8032	.8021	.8178	.8258
	DS	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
	AS	.1293	.1234	.1869	.1855		.1913	.1895	.1875
	- 3	.1530	.1234	.1009	.1022	. 1 301	. 1 110	.1032	.1012
					0716	0.551	0670	0.5.00	2100
	SB(1.5)	.9614	.9609	.9723	.9746	.9654	.9678	.9522	.9182
	SB(2.0)	.8622	.8729	.8751	.8751	.8502	. 8556	. 8495	.8138
	SB (2.5)	.7794	.7863	.7675	.7721	.7576	.7734	.7554	.7294
				312 613					
	58 (3.0)	.7719	.7851	.7672	.7701	.7587	.7674	.7565	.7304
	\$8 (3.5)	•7643	.7687	.7402			.7758		
	SB (4.0)	.7429	.7552	.7167	.7223	.7437	.7548	.7321	.7083
	57 (16)	.6436	.6494	.6590	.6653	.7706	.7814	.7025	.6847
	ST(10)	.6707	.6736	.6788	.6848	.7890	.7977	.7349	.7165
	51(8)	.6736	.6785	.6948	.7005	.7999	.8087	.7490	.7355
	ST (7)	.7229	.7278	.7273	.7322	.8462	.8506	.7861	.7662
	ST (6)	.7911	.7950	.7992	.8028	.8814	.8915	.8345	.8204
	51 (5)	.9080	.9102	.9181	.9216	1.0102	1.0144	.9552	.9424
	21171	. , , , ,	. 7102	. 7101	. ,	740105	2.02.77	. , , , , ,	. , , , ,
	445	7505	7640	7000	7711	0.771	91.05	7000	7070
	AVG	.7595	.7642	.7666	.7711	.8334	.8405	.7990	.7830

TABLE 35

EFFICIENCIES OF DEBIASED ADAPTIVE ROBUST ESTIMATES OF SCALE PARAMETER

(RELATIVE TO DEBIASED MAXIMUM LIKELIHOOD ESTIMATE IF POPULATION IS KNOWN)

(PHASE IV)

SAMPL	E SAMPL	ES			CRI	TERION			
SIZE,	N FROM	(A) (1)	(A) (2)	(B)(1)	(8)(2)	(D)(1)	(0)(2)	(D) (3)	(E)
10	U	.8747	.8689	.8914	.8794	.8669	.8686	.8645	.8773
	N	.9413	.9617	.9511	.9718	.9987	.9926	.9989	.9765
	D	1.0155	1.0176	1.0132	1.0164	1.0254	1.0166	1.0273	1.0189
	DS	.0274	.0274	.0274	.0274	.0274	.0274		.0274
	AS	.5467	.5411	.5326	.5272	.5179	.5201	.5179	.5294
	\$8(1.5)	1.1203	1.1271	1.1376	1.1373	1.1293	1.1313	1.1248	1.1225
	\$5 (2.0)		.9803	.9807	.9902	.9956	.9940	.9942	.9933
	58 (2.5)		.9495	.9441	.9600	.9658	.9653	.9634	.9549
	0017.01	0477	0770	0070	01.00	0001	0660	0.051	0.501
	\$2(3.0)		.9378	.9239	.9428	.9661	.9660	.9654	.9504
	SE(3.5)		.9243	.9098	.9322	.9471	.9417	.9468	.9323
	\$6 (4.0)	.9154	.9369	.9276	.9499	.9654	.9642	.9657	.9503
	51 (16)	.8943	.9159	.9090	.9298	.9594	.9515	.9630	.9301
	ST (10)	.8720	.8930	.8886	.9057	.9387	.9289	.9400	.9088
	\$1 (3)	.8786	.8961	.8890	.9030	.9405	.9284	.9414	.9137
			. 7.2	0770					
	51 (7)	.9185	.9383	.9330	.9501	.9831	.9765	.9838	.9619
	ST (6)	.8988	.9154	.9178	.9312	.9602	.9498	.9626	.9360
	\$1(5)	.9443	.9579	.9542	.9676	.9915	.9804	.9922	.9663
	AVG	.8395	.8528	.8489	.8603	.8783	.8727	.8789	.8629
14	U	.8123	.7981	.8116	.7998	.7705	.7690	.7747	.7906
	N	.8995	.9128	.9286	.9377	.9841	.9821	.9758	.9521
	D	1.0129	1.0129	1.0122	1.0110	1.0152	1.0070	1.0148	1.0058
	rs	.0017	.0017	.0018	.0018	.0017	.0017	.0017	.0017
	15	.2399	.2383	.2303	.2293	.2284	.2280	.2287	.2314
	, 0	• 60 33	. 2303	• 2000	• 6623	* 4 4 4 4 4	. 2 2 0 0	• 2 2 0 1	* 5014
	58(1.5)	1.1224	1.1279	1.1504	1.1503	1.1319	1.1345	1.1313	1.1416
	56 (2.0)	.9215	.9423	.9564	.9696	.9617	.9699	.9600	.9619
	\$8 (2.5)	.8948	.9122	.9157	.9313	.9403	. 9484	.9381	.9338
	\$8(3.0)	.8643	.8834	.8863	. 9046	.9110	.9155	91.00	.9025
	\$8(3.5)	.8766	.8958	.8908	.9072	.9245	.9285	.9295	.9200
	50 (4.0)	.8667	.8858	.8915	.9079	.9239	.9269	.9205	.9084
							1111		
	ST (16)	.8530	.8706	.8677	.8828	.9320	.9263	.9267	.8990
	51 (10)	.8261	.8401	.8367	.8499	.9037	.9002	.8975	.8564
	31(8)	.8629	.8738	.8787	.8868	.9381	.9353	.9334	.9088
	ST (7)	.8738	.8819	.8840	,8918	.9460	.9326	.9366	.9123
	51 (6)	.9054	.9164	.9214	.9294	.9693	.9662	.9629	.9389
	ST (5)	.9958	1.0014	1.0023	1.0077	1.0446	1.0377	1.0391	1.0180
					1. 1999	1.00			
	AVG	.7746	.7826	.7896	.7962	.8147	.8127	.8112	.7981

TABLE 35

EFFICIENCIES OF DEBIASED ADAPTIVE ROBUST ESTIMATES OF SCALE PARAMETER

(RELATIVE TO DEBIASED MAXIMUM LIKELIHOOD ESTIMATE IF POPULATION IS KNOWN)

(PHASE IV)

SAMPLE SIZE,N FROM (A)(1) (A)(2) (B)(1) (E)(2) (D)(1) (D)(2) (D)(3) (E) 18 U .7153 .7082 .7018 .6994 .6833 .6803 .6876 .7022 N .8708 .8834 .8997 .9118 .9592 .9597 .9437 .9257 D .10103 1.0096 1.0061 1.0059 1.0123 1.0084 1.0113 1.0066	5 - 451					001	T 53 T 0			
18 U .7153 .7082 .7018 .6946 .6833 .6803 .6876 .7022 N .8708 .8834 .8997 .9118 .9592 .9597 .9437 .9257 D 1.0103 1.0096 1.0061 1.0059 1.0123 1.0084 1.0113 1.0068 DS 0.0000				(1)(2)	(9) (1)			(0) (2)	(2) (3)	(5)
N	STYE,	N FROM	CATCLI	TATTE	(6)(1)	(6)(2)	(6) (1)	(0)(2)	(0) (3)	127
N	18	(1	.7153	.7082	.7018	.6946	-6833	.6803	.6878	.7022
D 1.0103 1.0096 1.0061 1.0059 1.0123 1.0084 1.0113 1.0068 DS 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 AS 0.0919 0.0895 0.0892 0.0899 0.0656 0.0903 0.0902 S8(1.5) 1.0404 1.0436 1.0577 1.0653 1.0418 1.0547 1.0456 1.0562 SB(2.0) .8234 .8387 .8568 .8674 .8644 .8775 .8622 .8650 SB(2.5) .8075 .8276 .8474 .8633 .8603 .8698 .8610 .8577 SB(3.0) .7902 .8080 .8377 .8506 .8410 .8499 .8438 .8384 SB(3.5) .8255 .8461 .8620 .8797 .8847 .8973 .8868 .8813 SB(4.0) .8229 .8414 .8565 .8734 .9386 .9018 .8896 .8816 CI (16) .8118 .8229 .8328 .8382 .9085 .9089 .8871 .8691 ST (10) .8142 .8212 .8328 .8382 .9085 .9089 .8871 .8691 ST (2) .8115 .8210 .8316 .8361 .9008 .8977 .8755 .8550 SI (7) .8414 .8469 .8516 .8552 .9191 .9160 .8989 .8812 SI (6) .8647 .8722 .8855 .8895 .9482 .9444 .9290 .9155 ST (5) .9631 .9687 .9733 .9771 1.0305 1.0275 1.0094 .9923 AVG .7016 .7076 .7139 .7183 .7416 .7415 .7323 .7250 22 U .6621 .6520 .6325 .6273 .6278 .6234 .6322 .6390 D .9915 .9896 .9883 .9883 .9886 .9860 .9854 .9846 DS .0.0000 .0.0000 .80000 .80000 .0.0000 .0.0000 .9854 .9846 DS .0.0000 .3855 .0378 .0378 .0379 .0378 .0379 .0378 SB(1.5) .8490 .8596 .7557 .7725 .7699 .7808 .7735 .7722 SP (3.0) .7325 .7508 .7677 .8063 .8108 .8243 .8148 .8121 SB (3.5) .7272 .7487 .7026 .7949 .1355 .8239 .8168 .8121 SB (3.5) .7272 .7487 .7026 .7949 .1355 .8239 .8168 .8121 SB (3.5) .7272 .7487 .7026 .7949 .1355 .8239 .8168 .8121 SB (3.5) .7272 .7487 .7026 .7949 .1355 .8239 .8168 .8121 SB (3.5) .7272 .7487 .7026 .7949 .1355 .8239 .8168 .8121 SB (3.5) .7272 .7487 .7026 .7949 .1355 .8239 .8168 .8121 SB (3.5) .7272 .7487 .7026 .7949 .1355 .8239 .8168 .8121 SB (3.5) .7272 .7487 .7026 .7949 .1355 .8239 .8168 .8168 .8168 .8587 .8693 SB (3.6) .7627 .7949 .8123 .8168 .8243 .8148 .8121 SB (3.5) .7272 .7487 .7026 .7949 .1355 .8239 .8168 .8168 .8168 .8243 .8148 .8121 SB (3.5) .7272 .7487 .7026 .7949 .1355 .8239 .8168 .8037 .8762 SB (3.6) .7623 .7959 .8182 .8253 .8995 .8884 .8637 .8516 SB (3.6) .7663 .7967 .8005 .8164 .8186 .8858 .8868 .8587 .8669 .8669 .86										
DS 0.0000										
\$8(1.5) 1.0404 1.0436 1.0577 1.0653 1.0418 1.0547 1.0456 1.0562 80(2.0) .8234 .8387 .8568 .8674 .8644 .8775 .86522 .8650 .862.5) .8075 .8276 .8474 .8633 .8603 .8669 .8610 .8577 .8262.5) .8075 .8276 .8474 .8633 .8603 .8669 .8610 .8577 .8263 .8650			1.0100	2.0000		2.0000	1.010	20000		
\$8(1.5) 1.0404 1.0436 1.0577 1.0653 1.0418 1.0547 1.0456 1.0562 80(2.0) .8234 .8387 .8568 .8674 .8644 .8775 .86522 .8650 .862.5) .8075 .8276 .8474 .8633 .8603 .8669 .8610 .8577 .8262.5) .8075 .8276 .8474 .8633 .8603 .8669 .8610 .8577 .8263 .8650		DS	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
\$8(1.5) 1.0404 1.0436 1.0577 1.0653 1.0418 1.0547 1.0456 1.0562		45	.0919			.0892				.0902
\$8(2.0)										
\$\text{SB}(2.5) \cdot \text{.8075} \cdot \text{.8276} \cdot \text{.8474} \cdot \text{.8633} \cdot \text{.8603} \cdot \text{.8696} \cdot \text{.8610} \cdot \text{.8577}\$ \text{SB}(3.0) \cdot \text{.7902} \cdot \text{.8080} \cdot \text{.8377} \cdot \text{.8506} \cdot \text{.8410} \cdot \text{.8499} \cdot \text{.8438} \cdot \text{.8384} \text{.8621} \text{.8620} \cdot \text{.8737} \cdot \text{.8847} \cdot \text{.8973} \cdot \text{.8866} \cdot \text{.8813} \text{.8936} \cdot \text{.9018} \cdot \text{.8866} \cdot \text{.8811} \text{.8621} \text{.8328} \cdot \text{.8382} \cdot \text{.9085} \cdot \text{.9089} \cdot \text{.8871} \cdot \text{.8691} \text{.8711} \text{.8710} \cdot \text{.8115} \cdot \text{.8210} \cdot \text{.8328} \cdot \text{.8382} \cdot \text{.9085} \cdot \text{.9989} \cdot \text{.8871} \cdot \text{.8691} \text{.8755} \text{.8550} \text{.8710} \text{.8115} \cdot \text{.8210} \cdot \text{.8316} \cdot \text{.8361} \cdot \text{.9088} \cdot \text{.9977} \cdot \text{.8755} \cdot \text{.8555} \text{.8895} \cdot \text{.9482} \cdot \cdot \text{.9444} \cdot \text{.9290} \cdot \text{.9155} \text{.9151} \text{.9631} \cdot \text{.9687} \cdot \text{.9733} \cdot \text{.9771} \text{1.0305} \text{1.0275} \text{1.0094} \cdot \text{.9923} \text{.7250} \text{.99631} \cdot \text{.9687} \cdot \text{.9733} \cdot \text{.9771} \text{1.0305} \text{1.0275} \text{1.0094} \cdot \text{.9923} \text{.7250} \text{.9991} \text{.9662} \cdot \text{.6324} \cdot \text{.6324} \cdot \text{.6326} \cd		\$8(1.5)	1.0404	1.0436	1.0577	1.0653	1.0418	1.0547	1.0456	1.0562
\$\text{SB}(2.5) \cdot \text{.8075} \cdot \text{.8276} \cdot \text{.8474} \cdot \text{.8633} \cdot \text{.8603} \cdot \text{.8696} \cdot \text{.8610} \cdot \text{.8577}\$ \text{SB}(3.0) \cdot \text{.7902} \cdot \text{.8080} \cdot \text{.8777} \cdot \text{.8546} \cdot \text{.8620} \cdot \text{.8797} \cdot \text{.8647} \cdot \text{.8643} \cdot \text{.8868} \cdot \text{.8813} \text{.8868} \cdot \text{.8813} \text{.8620} \cdot \text{.8734} \cdot \cdot \text{.8936} \cdot \text{.9018} \cdot \text{.8866} \cdot \text{.8811} \text{.8691} \text{.8711} \text{.8710} \cdot \text{.8115} \cdot \text{.8212} \cdot \text{.8328} \cdot \text{.8382} \cdot \cdot \text{.9085} \cdot \text{.9089} \cdot \text{.8871} \cdot \text{.8691} \text{.8755} \cdot \text{.8550} \text{.8710} \cdot \text{.8115} \cdot \text{.8212} \cdot \text{.8855} \cdot \text{.8895} \cdot \text{.9482} \cdot \cdot \text{.9444} \cdot \cdot \text{.9290} \cdot \text{.8555} \text{.8955} \text{.9191} \cdot \cdot \text{.9160} \cdot \text{.8989} \cdot \text{.8812} \text{.8722} \cdot \text{.88555} \cdot \text{.8895} \cdot \cdot \text{.9482} \cdot \cdot \text{.9444} \cdot \cdot \text{.9290} \cdot \text{.9155} \text{.9191} \cdot \text{.9160} \cdot \text{.8989} \cdot \text{.8812} \text{.9482} \cdot \cdot \text{.9444} \cdot \cdot \text{.9290} \cdot \text{.9953} \text{.9733} \cdot \cdot \text{.9711} \cdot \text{.0305} \cdot \text{.0275} \cdot \text{.0094} \cdot \cdot \text{.9923} \text{.7250} \text{.9941} \text{.9923} \text{.7250} \text{.9864} \cdot \text{.9866} \cdot \cdot \text{.98656} \cdot \cdot \text{.9686} \cdot \cdot \text{.9686} \cdot \cdot \text{.98656} \cdot \cdot \text{.9686} \cdot \cdot \text{.9686} \cdot \cdot \text{.9949}		58(2.0)	.8234	.8387	.8568	.8674	.8644	.8775	.8522	.8650
\$8(3,5)		SB (2.5)	.8075	.8276	.8474	.8633	.8603	.8698	.8610	.8577
\$8(3,5)										
\$8(4.0) .8229 .8414 .8565 .8734 .8936 .9018 .8896 .8816 \$\begin{array}{cccccccccccccccccccccccccccccccccccc										
\$\begin{array}{cccccccccccccccccccccccccccccccccccc										
\$7 (10)		58 (4.0)	.8229	.8414	.8565	.8734	.8938	.9018	.8896	.8818
\$7 (10)		CT (16)	8118	8200	9720	81.33	G134	9127	. 8686	.8711
\$\begin{array}{cccccccccccccccccccccccccccccccccccc										0.00
ST (7)										
\$\begin{array}{cccccccccccccccccccccccccccccccccccc		31 (3)	•0115	.0210	.6310	.0301	. 3000	.0311	.0133	•0550
\$\begin{array}{cccccccccccccccccccccccccccccccccccc		ST (7)	.8414	.8469	.8516	.8552	.9191	.9160	.8989	.8812
ST(5) .9631 .9687 .9733 .9771 1.0305 1.0275 1.0094 .9923 AVG .7016 .7076 .7139 .7183 .7416 .7415 .7323 .7250 22 U .6621 .6520 .6325 .6273 .6278 .6234 .6322 .6390 N .8640 .8756 .8910 .8944 .9656 .9689 .9516 .9419 DS 0.0000 <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th>.9482</th> <th></th> <th>.9290</th> <th>.9155</th>							.9482		.9290	.9155
22 U .6621 .6520 .6325 .6273 .6278 .6234 .6322 .6390 N .8640 .8756 .8910 .8944 .9656 .9689 .9516 .9419 DS .9915 .9896 .9883 .9883 .9888 .9860 .9854 .9846 DS 0.0000 0.						.9771		1.0275	1.0094	.9923
22 U .6621 .6520 .6325 .6273 .6278 .6234 .6322 .6390 N .8640 .8756 .8910 .8944 .9656 .9689 .9516 .9419 DS .9915 .9896 .9883 .9883 .9888 .9860 .9854 .9846 DS 0.0000 0.										
N .8640 .8756 .8910 .8944 .9656 .9689 .9516 .9419 .9915 .9896 .9883 .9883 .9888 .9860 .9854 .9846 .9846 .9854 .9846 .9854 .0385 .0378 .0378 .0379 .037		AVG	.7016	.7076	.7139	.7183	.7416	.7415	.7323	.7250
N .8640 .8756 .8910 .8944 .9656 .9689 .9516 .9419 .9915 .9896 .9883 .9883 .9888 .9860 .9854 .9846 .9846 .9854 .9846 .9854 .0385 .0378 .0378 .0379 .037	22	11	- 5621	- 6520	-6325	.6273	-6278	-6234	.6322	-6390
0										
DS										
SB(1.5) .8490 .8596 .8726 .8811 .8621 .8729 .8680 .8713 SB(2.0) .7241 .7356 .7537 .7716 .7637 .7809 .7681 .7683 SB(2.5) .6968 .7126 .7575 .7725 .7699 .7808 .7736 .7722 SP(3.0) .7325 .7508 .7877 .8063 .8108 .8243 .8148 .8121 SB(3.5) .7272 .7487 .7826 .7949 .8135 .8239 .8162 .8093 SB(4.0) .7633 .7822 .8183 .8360 .8560 .8659 .8579 .8521 ST(16) .7879 .7959 .8182 .8253 .8995 .8984 .8637 .8516 ST(10) .7921 .7970 .8123 .8164 .8902 .8868 .8587 .8469 ST(8) .7967 .8005 .8164 .8186 .8858 .8839 .8591 .8507 ST(7) .8275 .8312 .8362 .8385 .9177 .9186 .8847 .8720 ST(6) .8940 .8973 .9063 .9097 .9618 .9555 .9369 .9286 ST(5) 1.0164 1.0193 1.0315 1.0337 1.0916 1.0908 1.0611 1.0534		10.20								
\$\begin{array}{cccccccccccccccccccccccccccccccccccc		DS	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
\$\begin{array}{cccccccccccccccccccccccccccccccccccc		AS	.0384	.0385	.0378	.0378	.0379	.0378	.0379	.0379
\$\begin{array}{cccccccccccccccccccccccccccccccccccc										
\$8(2.5) .6968 .7126 .7575 .7725 .7699 .7808 .7736 .7722 \$2(3.0) .7325 .7508 .7877 .8063 .8108 .8243 .8148 .8121 \$3(3.5) .7272 .7487 .7826 .7949 .8135 .8239 .8162 .8093 \$3(4.0) .7633 .7822 .8183 .8360 .8560 .8659 .8579 .8521 \$3(16) .7879 .7959 .8182 .8253 .8995 .8984 .8637 .8516 \$3(10) .7921 .7970 .8123 .8164 .8902 .8868 .8587 .8469 \$3(8) .7967 .8005 .8164 .8186 .8658 .8839 .8591 .8507 \$3(7) .8275 .8312 .8362 .8385 .9177 .9186 .8847 .8720 \$3(6) .8940 .8973 .9063 .9097 .9618 .9555 .9369 .9286 \$3(5) 1.0164 1.0193 1.0315 1.0337 1.0916 1.0908 1.0611 1.0534										
SP(3.0) .7325 .7508 .7677 .8063 .8108 .8243 .8148 .8121 SB(3.5) .7272 .7487 .7826 .7949 .8135 .8239 .8162 .8093 SB(4.0) .7633 .7822 .8183 .8360 .8560 .8659 .8579 .8521 ST(16) .7879 .7959 .8182 .8253 .8995 .8984 .8637 .8516 ST(10) .7921 .7970 .8123 .8164 .8902 .8868 .8587 .8469 ST(8) .7967 .8005 .8164 .8186 .8858 .8839 .8591 .8507 ST(7) .8275 .8312 .8362 .8385 .9177 .9186 .8847 .8720 ST(6) .8940 .8973 .9063 .9097 .9618 .9555 .9369 .9286 ST(5) 1.0164 1.0193 1.0315 1.0337 1.0916 1.0908 1.0611 1.0534										
\$8 (3.5) .7272 .7487 .7826 .7949 .8135 .8239 .8162 .8093 \$8 (4.0) .7633 .7822 .8183 .8360 .8560 .8659 .8579 .8521 \$7 (16) .7879 .7959 .8182 .8253 .8995 .8984 .8637 .8516 \$7 (10) .7921 .7970 .8123 .8164 .8902 .8868 .8587 .8469 \$7 (8) .7967 .8005 .8164 .8186 .8858 .8839 .8591 .8507 \$7 (7) .8275 .8312 .8362 .8385 .9177 .9186 .8847 .8720 \$7 (6) .8940 .8973 .9063 .9097 .9618 .9555 .9369 .9286 \$7 (5) 1.0164 1.0193 1.0315 1.0337 1.0916 1.0908 1.0611 1.0534		\$8 (2.5)	.6968	.7126	.7575	.7725	.7699	.7808	.7736	.7722
\$8 (3.5) .7272 .7487 .7826 .7949 .8135 .8239 .8162 .8093 \$8 (4.0) .7633 .7822 .8183 .8360 .8560 .8659 .8579 .8521 \$7 (16) .7879 .7959 .8182 .8253 .8995 .8984 .8637 .8516 \$7 (10) .7921 .7970 .8123 .8164 .8902 .8868 .8587 .8469 \$7 (8) .7967 .8005 .8164 .8186 .8858 .8839 .8591 .8507 \$7 (7) .8275 .8312 .8362 .8385 .9177 .9186 .8847 .8720 \$7 (6) .8940 .8973 .9063 .9097 .9618 .9555 .9369 .9286 \$7 (5) 1.0164 1.0193 1.0315 1.0337 1.0916 1.0908 1.0611 1.0534		CD / 7 01	7725	7508	7877	9063	.8108	. 8243	. 8148	-8121
\$8(4.0) .7633 .7822 .8183 .8360 .8560 .8659 .8579 .8521 \$7(16) .7879 .7959 .8182 .8253 .8995 .8984 .8637 .8516 \$7(10) .7921 .7970 .8123 .8164 .8902 .8868 .8587 .8469 \$7(8) .7967 .8005 .8164 .8186 .8858 .8839 .8591 .8507 \$7(7) .8275 .8312 .8362 .8385 .9177 .9186 .8847 .8720 \$7(6) .8940 .8973 .9063 .9097 .9618 .9555 .9369 .9286 \$7(5) 1.0164 1.0193 1.0315 1.0337 1.0916 1.0908 1.0611 1.0534										
ST(16) .7879 .7959 .8182 .8253 .8995 .8984 .8637 .8516 ST(10) .7921 .7970 .8123 .8164 .8902 .8868 .8587 .8469 ST(8) .7967 .8005 .8164 .8186 .8658 .8839 .8591 .8507 ST(7) .8275 .8312 .8362 .8385 .9177 .9186 .8847 .8720 ST(6) .8940 .8973 .9063 .9097 .9618 .9555 .9369 .9286 ST(5) 1.0164 1.0193 1.0315 1.0337 1.0916 1.0908 1.0611 1.0534										
ST (10) .7921 .7970 .8123 .8164 .8902 .8868 .8587 .8469 ST (8) .7967 .8005 .8164 .8186 .8658 .8839 .8591 .8507 ST (7) .8275 .8312 .8362 .8385 .9177 .9186 .8847 .8720 ST (6) .8940 .8973 .9063 .9097 .9618 .9555 .9369 .9286 ST (5) 1.0164 1.0193 1.0315 1.0337 1.0916 1.0908 1.0611 1.0534		2014.07	• 1 0 3 3	.,022	.0103	.0300	.0300			•0 >22
\$T(10) .7921 .7970 .8123 .8164 .8902 .8868 .8587 .8469 \$T(8) .7967 .8005 .8164 .8186 .8658 .8839 .8591 .8507 \$T(7) .8275 .8312 .8362 .8385 .9177 .9186 .8847 .8720 \$T(6) .8940 .8973 .9063 .9097 .9618 .9555 .9369 .9286 \$T(5) 1.0164 1.0193 1.0315 1.0337 1.0916 1.0908 1.0611 1.0534		ST (16)	.7879	.7959	.8182	.8253	.8995	.8984	.8637	.8516
ST(7)			.7921	.7970		.8164	.8902	.8868	.8587	.8469
ST(6) .8940 .8973 .9063 .9097 .9618 .9555 .9369 .9286 ST(5) 1.0164 1.0193 1.0315 1.0337 1.0916 1.0908 1.0611 1.0534		ST (8)		.8005		.8186	.8858	.8839	.8591	.8507
ST(6) .8940 .8973 .9063 .9097 .9618 .9555 .9369 .9286 ST(5) 1.0164 1.0193 1.0315 1.0337 1.0916 1.0908 1.0611 1.0534										
ST(5) 1.0164 1.0193 1.0315 1.0337 1.0916 1.0908 1.0611 1.0534										
AVG .6451 .6493 .6581 .6618 .6846 .6858 .6750 .6710		51 (5)	1.0164	1.0193	1.0315	1.0337	1.0916	1.0908	1.0611	1.0534
		AVG	.6451	.6493	.6581	.6618	.6846	.6858	.6750	.6710

TABLE 36

EFFICIENCIES OF DEBIASED ADAPTIVE ROBUST ESTIMATES OF CANONICAL SCALE PARAMETER (RELATIVE TO DEBIASED MAXIMUM LIKELIHOOD ESTIMATE IF POPULATION IS KNOWN) (PHASE IV)

				•					
SAMPLE	SAMPL	FS			CRT	TERION			3.19 h
SIZE,N	FROM	(A) (1)	(A)(2)	(B) (1)	(B) (2)	(D) (1)	(0) (2)	(D) (3)	(E)
0222,11	, ,,,,,,,			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	157127	,,,,,,,			/
10 U		.5811	.5671	.6638	.6381	.7641	.7016	.7002	.6216
N		.7828	.8076	.7901	.8256	.8821	.8922	.8703	.8137
D		.9152	.9276	.9074	.9219	.9207			
U		. 9192	. 7210	. 90 / 4	. 9219	.9207	.9321	.9172	.9114
D	•	.0815	.0815	.0815	0015	0015	.0815	0015	0045
					.0815	.0815		.0815	.0815
	S	.1861	.1787	.2959	.2109	.3804	.3460	.3320	.3017
	B (1.5)	.9083	.9123	.9274	.9223	1.0253	.9792	1.0061	9065
	B(2.0)		.8517		.8240				.8965
		.8250		.8161		.8952	.8806	.8823	.8112
5	B(2.5)	.8041	.8303	.8012	.8325	.8903	.8831	.8748	.7954
-	0 / 7 01	7675	901.5	7620	7060	9670	0546	0570	7005
	B (3.0)	.7675	.8045	.7620	.7868	.8639	.8514	.8572	.7805
	B (3.5)	.7601	.7983	.7587	.7902	.8536	.8540	.8400	.7728
5	B(4.0)	.7853	.8089	.7735	.8140	.8744	.8689	.8610	.7938
		7754	7667	71.00	7700	0.546	0617		7/70
	1 (16)	.7351	.7667	.7489	.7786	.8516	.8647	.8334	.7670
	T (10)	.7298	.7537	.7388	.7710	.8428	.8558	.8296	.7664
S	T (8)	.7278	.7521	.7339	.7558	.8233	.8388	.8165	.7630
5	1 (7)	.7700	.7978	.7827	0000	0.70	9760	0605	0150
		.7340			.8060	.8678	.8760	.8605	.8158
	1 (6)		.7612	.7574	.7756	.8404	.8517	.8259	.7750
S	T (5)	.7776	.7959	.7829	.8059	.8544	.8695	.8488	.7988
	VG	.7610	.7830	.7737	.7953	.8552	.8601	.8431	.7897
14 U		.6034	.5747	.7009	.6830	.7847	.7427	.7069	.6414
N		.7282	.7409	.7423	.7570	.8339	.8435	.8155	.7597
D		.9130	.9167	.9058	.9132	.8963	.9060	.8980	.8929
D	S	.0137	.0137	.0064	.0064	.0201	.0201	.0137	.0137
	5	.1721	.1632	.3351	.3116	.4156	.4077	.3723	.3540
S	B (1.5)	.9741	.9641	1.0178	1.0092	1.0690	1.0486	1.0432	.9590
	B (2.0)	.8698	.8722	.8731	.8651	.9278	.9067	.9197	.8445
	B (2.5)	.8196	.8258	.8083	.8070	.8753	.8603	.8703	.7992
S	8(3.0)	.7921	.7980	.7755	.7765	.8328	.8286	.8124	.7514
S	8 (3.5)	.7735	.7885	.7458	.7555	.8308	.8273	.8035	.7408
	8 (4.0)	.7629	.7729	.7427	.7514	.8105	.8116	.7989	.7394
	5,,,,,,					.0103			
S	1 (16)	.7045	.7255	.7101	.7291	.8219	.8334	.7995	.7415
	T (10)	.6748	.6864	.6820	.6950	.8003	.8076	.7673	.7095
	7 (8)	.6968	.7068	.7113	.7169	.8062	.8155	.7776	.7342
S	T (7)	.7076	.7205	.7158	.7289	.8160	.8268	.7891	.7451
	T (6)	.7182	.7356	.7410	.7494	.8320	.8390	.7999	.7577
	T (5)	.7827	.7923	.7918	.7983	.8723	.8820	.8442	.8079
A	VG	.7475	.7576	.7548	.7629	.8401	.8454	.8156	.7698

TAPLE 36

EFFICIENCIES OF DEBIASED ADAPTIVE ROBUST ESTIMATES OF CANONICAL SCALE PARAMETER

(RELATIVE TO DEBIASED MAXIMUM LIKELIHOOD ESTIMATE IF POPULATION IS KNOWN)

(PHASE IV)

SAMPLE	E SAMPL	FS			CRI	TERION			
SIZE.		(A) (1)	(A) (2)	(8) (1)		(D) (1)	(D) (2)	(D) (3)	(E)
18	Ú	.6441	.6005	.7523	.7228	.7934	.7480	.7615	.6866
	N	.7103	.7174	.7255	.7306	.8403	.8484	.7966	.7537
	D	.9192	.9216	.9143	.9174	.8929	.8948	.9022	.9023
	DS	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
	AS	.1367	.1266	.3388	.3250	.4118	.4031	.3664	.3497
	56(1.5)	1.0749	1.0447	1.1267	1.1073	1.1300	1.0920	1.1054	1.0178
	58 (2.0)	.8616	.8410	.8630	.8428	.8692	.8527	.8536	.8009
	SB (2.5)	.7927	.7926	.7890	. 7847	.8 322	.8253	.8207	.7525
								,	
	SB(3.0)	.7861	.7886	.7822	.7846	.8226		.8057	.7458
	58 (3.5)	.7925	.7941	.7715	.7709	.8347	.8276	.8111	.7607
	58 (4.0)	.7823	.7870	.7544	.7581	.8170	.8172	.7961	.7490
	ST (16)	.6579	.6635	.6632	.6693	.7939	.8013	.7383	.7044
	ST (10)	.6372	.6437	.6483	.6553	.7725	.7794	.7222	.6894
	ST (8)	.6370	.6454	.6528	.6577	.7607	.7672	.7135	.6802
	CT /71		6720	6722	.6772	7761	7947	7747	7042
	ST (7)	.6684	.6729	.6722		.7764	.7817	.7313	.7012
	ST (6)	.6647	.6709	.6831	.6847 .7510	.7838	.7898	.7386	.7159
	ST (5)	.7367	.7444	.7463	./510	.8378	.8428	.7960	.7680
	AVG	.7166	.7205	.7274	.7304	.8163	.8189	.7790	.7463
	AVG	.7100	.1205	.1214	.7304	.0103	.0109	.,,,,,	• 1 403
22	U	.6087	.5847	.7859	.7501	.8239	.8048	.7878	.7344
	N	.7095	.7113	.7155	.7194	.8302	.8356	.7854	.7588
	0	.9027	.9047	.8957	.8972	.8767	.8770	.8826	.8869
	DS	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
	AS	.1255	.1142	.3841	.3643	.4407	.4402	.4268	.4089
	SB (1.5)	1.0220	.9885	1.0585	1.0326	1.0405	1.0130	1.0203	.9568
	\$8(2.0)	.8728	.8619	.8871	.8655	.8534	.8379	.8477	.7907
	\$8 (2.5)	-8047	.7962	.7919	.7831	.7843	.7844	.7754	.7342
	SB(3.0)	.8121	.8122	.8037	.7952	.8046		.7942	.7532
	SB(3.5)		.7874	.7626	.7605	.8045	.8067	.7829	
	58 (4.0)	.7813	.7851	.7504	.7483	.8031	.8049	.7806	.7432
	ST (16)	.6325	-6354	.6476	.6517	.7838	.7901		.6783
	ST (10)	.6287	.6301	.6385	.6424	.7614	.7673	.6998	.6785
	57 (8)	.6096	.6125	.6287	.6318	.7384	.7437	.6841	.6684
	CY / 71	6757	6740	6700	64.20	7505	7607	6000	6707
	ST (7)	.6353	.6380	.6398	.6429	.7586 .7735	.7607	.6988	.6787 .7126
	ST (6) ST (5)	.6830 .7560	.6852 .7566	.7656	.7677	.8547	.8572	.8022	.7894
	31 (9)	., 500	. 1 500	.,650		.0547	.03/2	.0022	
	AVG	.7116	.7121	.7204	.7215	.8037	.8065	.7605	.7397
				.,					

APPENDIX B

RANDOM NUMBER GENERATION AND PARAMETER ESTIMATION-SYMMETRIC BETA

The probability density function of the standardized symmetric beta population is given by Equation (22). Substitution of the values (1.5, 2.0, 2.5, 3.0, 3.5 and 4.0) of the parameter p considered in the Monte Carlo study (Phases III and IV) yields the following equations (after simplification):

$$f_{SB(1.5)}(x) = (1/2\pi)(4-x^2)^{1/2},$$
 (-2, 2) (34)

$$f_{SB(2.0)}(x) = (3/20\sqrt{5})(5-x^2), \qquad (-\sqrt{5}, \sqrt{5})$$
 (35)

$$f_{SB(2,5)}(x) = (2/27\pi)(6-x^2)^{3/2}, \quad (-\sqrt{6}, \sqrt{6})$$
 (36)

$$f_{SB(3.0)}(x) = (15/784\sqrt{7})(7-x^2)^2, \quad (-\sqrt{7}, \sqrt{7})$$
 (37)

$$f_{SB(3.5)}(x) = (1/160\pi)(8-x^2)^{5/2}, \quad (-2\sqrt{2}, 2\sqrt{2})$$
 (38)

$$f_{SB(4,0)}(x) = (35/69984)(9-x^2)^3, \quad (-3, 3)$$
 (39)

Integration over the range $(-\sqrt{2p+1}, \sqrt{2p+1})$ then yields the following equations for the cumulative distribution functions:

$$F_{SB(1.5)}(x) = (1/2\pi) \left[x\sqrt{4-x^2}/2 + 2 \sin^{-1}(x/2) \right] + 1/2$$
 (40)

$$F_{SR(2,0)}(x) = (3/20\sqrt{5})(5x-x^3/3) + 1/2$$
 (41)

$$F_{SB(2.5)}(x) = (2/27\pi) \left[x(6-x^2)^{3/2} / 4 + 9x(6-x^2)^{1/2} / 4 + 27 \sin^{-1}(x/\sqrt{6}) / 2 \right] + 1/2$$
 (42)

$$F_{SB(3,0)}(x) = (15/784\sqrt{7})(49x-14x^3/3+x^5/5) + 1/2$$
 (43)

$$F_{SB(3.5)}(x) = (1/160\pi) \left[x(8-x^2)^{5/2} / 6 + 5x(8-x^2)^{3/2} / 3 + 20x(8-x^2)^{1/2} + 160 \sin^{-1}(x/2\sqrt{2}) \right] + 1/2$$

$$F_{SB(4.0)}(x) = (35/69984)(729x-81x^3+27x^5/5-x^7/7) + 1/2$$
 (45)

The canonical scale factors were found, by setting $F(x) \approx .975$ and then solving for x (by iteration on the HP9830A calculator), to be 1.75668, 1.81435, 1.84812, 1.86984, 1.88482 and 1.89569 for p = 1.5, 2.0, 2.5, 3.0, 3.5 and 4.0 respectively. Random numbers from standardized symmetric beta populations for the same values of p were found, on the CDC 6600 computer, by using the library subroutine RANF to generate uniform random numbers p between 0 and 1, setting p and solving iteratively for p and p

The probability density function of a symmetric beta population with parameter p, mean μ and standard deviation σ is given by

$$f_{SB}(x) = \left[\Gamma(2p) / \Gamma^{2}(p) (2\sqrt{2p+1})^{2p-1} \right] \left[(2p+1)\sigma^{2} - (x-\mu)^{2} \right]^{p-1} / \sigma^{2p-1},$$

$$(\mu - \sigma \sqrt{2p+1}, \mu + \sigma \sqrt{2p+1})$$
(46)

Equation (22) for the p.d.f. of the standardized symmetric beta population is a special case of Equation (46) obtained by setting μ = 0 and σ = 1. The likelihood function of a sample of size n is given by

$$L = L_{SB} = C \prod_{i=1}^{n} \left[(2p+1)\sigma^2 - (x_i - \mu)^2 \right]^{p-1} / \sigma^{n(2p-1)}$$
(47)

where C = constant. The natural logarithm of the likelihood function is

$$\ell_{nL} = \ell_{nC} + (p-1) \sum_{i=1}^{n} \ell_{n} \left[(2p+1)\sigma^{2} - (x_{i} - \mu)^{2} \right] - n(2p-1)\ell_{n\sigma}$$
(48)

The likelihood equations are

$$\frac{\partial \ln L}{\partial \mu} = 2(p-1) \sum_{i=1}^{n} \left\{ (x_i - \mu) / \left[(2p+1)\sigma^2 - (x_i - \mu) \right]^2 \right\} = 0$$
 (49)

$$\partial \ell n L / \partial \sigma = 2(p-1)(2p+1)\sigma \sum_{i=1}^{n} \{1/[(2p+1)\sigma^2 - (x_i - \mu)^2]\} - n(2p-1)/\sigma = 0$$
 (50)

These equations apparently do not have a closed-form solution, and hence they must be solved numerically by iteration. This iteration, by the rule of false position, was performed on the CDC 6600 computer.

Listings follow of the subroutines SBRN15, SBRN20, SBRN25, SBRN30, SBRN35 and SBRN40 for generating random numbers from standardized symmetric beta populations with parameter p = 1.5, 2.0, 2.5, 3.0, 3.5 and 4.0, respectively, and the subroutine IESBP for iterative maximum likelihood estimation of the location parameter μ and the scale parameter σ of a symmetric beta population with p known. The subroutine SORTSUB called in IESBP and used in ordering the observations from smallest to largest is also listed.

```
F=C+(X+SQRT(4.-X++2)/2.+2+ASIN(X/2.))+.5
1
     IF (ABS (F-Y).LT.1.E-8)GO TO 2
     Z=(Y-.5)*X/(F-.5)
     X = Z
     GO TO 1
2
     RETURN
     END
     SUBROUTINE SBRN20(X)
     C=3./(20.*SQRT(5.))
     Y=RANF (DUM)
     X=2.*(Y-.5) +SQRT (5.)
1
     F=C+(5.+X-(X++3)/3.)+.5
     IF (ABS (F-Y).LT.1.E-8)GO TO 2
     Z=(Y-.5)*X/(F-.5)
     X=Z
     GO TO 1
2
     RETURN
     END
     SUBROUTINE SBRN25(X)
     C=2./(27.*3.1415926536)
     Y=RANF (DUM)
     X=2.*(Y-.5)*SQRT(6.)
     R=SORT (6.-X**2)
     F=C+(X+(R++3)/4.+2.25+X+R+13.5+ASIN(X/SQRT(6.)))+.5
     IF (ABS (F-Y).LT.1.E-8)GO TO 2
     Z=(Y-.5)*X/(F-.5)
     X = Z
     60 TO 1
     RETURN
2
```

SUBROUTINE SBRN15(X) C=1./(2.*3.1415926536)

Y=RANF (DUM) X=4.* (Y-.5)

END

```
SUBROUTINE SBRN30(X)
C=15./(784.*SORT(7.))
Y=RANF(DUM)
X=2.*(Y-.5)*SGRT(7.)

1 F=C*(49.*X-14.*(X**3)/3.+(X**5)/5.)+.5
IF(ABS(F-Y).LT.1.E-8)GO TO 2
Z=(Y-.5)*X/(F-.5)
X=Z
GO TO 1

2 RETURN
END
```

SUBROUTINE SBRN35(X)
C=1./(160.*3.1415926536)
Y=RANF(DUM)
X=2.*(Y-.5)*SQRT(8.)

1 R=SQRT(8.-X**2)
F=C*(X*(R**5)/6.+5.*X*(R**3)/3.+20.*X*R+160.*ASIN(X/SQRT(8.)))+.5
IF(ABS(F-Y).LT.1.E-8)GO TO 2
Z=(Y-.5)*X/(F-.5)
X=Z
GO TO 1
2 RETURN
END

COMMUNICATION OF THE COMMUNICATION OF THE PROPERTY OF THE PROP

SUBROUTINE SBRN40(X) C=35./69984. Y=RANF(DUM) X=6.*(Y-.5) 1 F=C*(729.*X-81.*(X**3)+5.4*(X**5)-(X**7)/7.)+.5 IF(ABS(F-Y).LT.1.E-8)GD TO 2 Z=(Y-.5)*X/(F-.5) X=Z GO TO 1 2 RETURN END

```
SUBROUTINE IESBP(P,N,T ,EMUL,SIGL)
     DIMENSION EM(50),SIG(50),DLS(50),DLM(50),T(24),SIGMA(50),EMU(50)
     DIMENSION EL (50)
     ST = 0.
     ST2=0.
     EN=FLOAT (N)
     00 1 I=1,N
     ST=ST+T(I)
     ST2=ST2+T(I)**2
1
     EMU(1)=ST/EN
     SIGMA(1)=SGRT (EN*ST2-ST**2)/EN
     CALL SORTSUB(T,N)
     EMU (2) = (T (1) +T (N))/2.
     EMU(3) = (T(N/2) + T(N/2+1))/2.
     SUM=0.
     00 26 I=1,N
     SUM=SUM+ABS (T (I) -EMU(3))/EN
26
     SIGMA(3)=SGRT(2.)+SUM
     SIGMA(2) = (T(N) - T(1)) / (2. + SQRT(3.))
     DO 25 J=1,3
     53=0.
     DO 24 I=1,N
     IF((2.*P+1.)*SIGMA(J)**2.LT.(T(I)-EMU(J))**2)GO TO 27
     S3=S3+ALOG((2.*P+1.)*SIGMA(J)**2-(T(I)-EMU(J))**2)
24
     EL(J) = (P-1.) *S3-EN*(2.*P-1.) *ALOG(SIGMA(J))
     GO TO 25
27
     EL(J)=-9.E99
25
     CONTINUE
     DO 28 J=2,3
     IF(EL(J).LE.EL(1))GO TO 28
     EMU(1) = EMU(J)
     SIGMA(1)=SIGMA(J)
     EL(1) = EL(J)
28
     CONTINUE
     DO 22 J=2,50
     JJ=J-1
     EMU(J) = EMU(JJ)
     KS=0
     DO 10 K=1,50
     S1=0.
     DO 2 I=1,N
     S1=S1+(T(I)-EMU(J))/((2.*P+1.)*(SIGMA(JJ)**2)-(T(I)-EMU(J))**2)
2
     KK=K-1
     DLM(K) =2.*(P-1.) *S1
     EM(K) = EMU(J)
     IF (DLM(K)) 3,11,4
3
     KS=KS-1
     IF (KS+K) 7,5
     KS=KS+1
     IF (KS-K) 7,6
     EMU(J) = EM(K) - . 01 * SIGMA (JJ)
     GO TO 10
     EMU(J) = EM(K) + .01 * SIGMA (JJ)
     GO TO 10
     IF (DLM(K) + DLM(KK)) 9,11,8
     KK=KK-1
     GO TO 7
```

```
9
     EMU(J) = EM(K) + DLM(K) + (EM(K) - EM(KK)) / (DLM(KK) - DLM(K))
     IF (ABS(EMU(J)-EM(K)).LE.1.E-6) GO TO 11
10
     CONTINUE
     SIGMA(J)=SIGMA(JJ)
11
     KS = 0
     DO 20 K=1,50
     S2=0.
     DO 12 I=1,N
12
     S2=S2+1./((2.*P+1.)*(SIGMA(J)**2)-(T(I)-EMU(J))**2)
     KK=K-1
     DLS(K) = 2.4(P-1.) + (2.4P+1.) + SIGMA(J) + S2-EN+(2.4P-1.)/SIGMA(J)
     SIG(K)=SIGMA(J)
     IF (DLS(K)) 13,21,14
13
     KS=KS-1
     IF (KS+K) 17,15
     KS=KS+1
14
     IF (KS-K) 17,16
15
     SIGMA(J) = . 99* SIG(K)
     GO TO 20
     SIGMA(J)=1.01*SIG(K)
16
     GO TO 20
     IF (DLS(K)*DLS(KK)) 19,21,18
17
     KK=KK-1
18
     GO TO 17
     SIGMA(J)=SIG(K)+DLS(K)+(SIG(K)-SIG(KK))/(DLS(KK)-DLS(K))
19
     IF (ABS(SIGMA(J)-SIG(K)).LE.1.E-6) GO TO 21
20
     CONTINUE
21
     IF (ABS(EMU(J)-EMU(JJ)).GT.1.E-6) GO TO 22
     IF (ABS (SIGMA(J) -SIGMA(JJ)).LE.1.E-6) GO TO 23
22
     CONTINUE
     JL=MIN0 (J,50)
23
     EMUL=EMU (JL)
     SIGL=SIGMA(JL)
     RETURN
     END
     SUBROUTINE SORTSUB(X, ISIZE)
     DIMENSION X(ISIZE)
     00 10 L=1, ISIZE, L
     M=2+L-1
     CONTINUE
10
20
     M=M/2
     IF (M.EQ. 0) GO TO 70
     K=ISIZE-M
     DO 60 J=1,K
     L=J
30
     IF (L.LT. 1) GO TO 60
     IF(X(L+M).GE.X(L))GO TO 60
     X(L)=X(L+M)
     X(L+M) = TEMP
     L=L-M
     GO TO 30
60
     CONTINUE
     GO TO 20
70
     RETURN
```

END

APPENDIX C

RANDOM NUMBER GENERATION AND PARAMETER ESTIMATION-STUDENT t

The probability density function of the standardized Student t population is given by Equation (22). The Student t population in its usual form has standard deviation $\sqrt{\nu/(\nu-2)}$, where $\nu(>2)$ is the number of degrees of freedom, while the standardized population has standard deviation 1. Therefore, to obtain the canonical scale factors (97.5% points) of the standardized Student t population, one must multiply the usual 97.5% points by $\sqrt{(\nu-2)/\nu}$. The usual 97.5% points (to 3 decimal places) can be read from Table 12 of <u>Biometrika Tables for Statisticians</u>, Volume I. For greater accuracy, one can take the square roots of the upper 5% points (two-sided) of the Fisher-Snedecor F distribution for ν_1 =1, ν_2 = ν degrees of freedom, which are given to 4DP in Table 5 of <u>Biometrika Tables for Statisticians</u>, Volume II. The latter method was used to obtain values of 1.9830, 1.9929, 1.9971, 1.9985, 1.9979 and 1.9912 for the canonical scale factors for ν = 16, 10, 8, 7, 6 and 5, respectively.

this method, making use of the library subroutine RANF to generate uniform random numbers r between 0 and 1.

The probability density function of a Student t population with ν degrees of freedom, mean μ and standard deviation σ is

$$f_{ST}(x) = \sqrt{1/(\nu-2)\sigma^2} \{\Gamma(\nu+1)/2\}/\Gamma(1/2)\Gamma(\nu/2)\}[1+(x-\mu)^2/(\nu-2)\sigma^2]^{-(\nu+1)/2}, (-\infty, \infty)$$

Equation (23) for the p.d.f. of the standardized Student t population is a special case of Equation (51) obtained by setting μ = 0 and σ = 1. The likelihood function of a sample of size n is given by

$$L = L_{ST} = (C/\sigma^{n}) \prod_{i=1}^{n} [1 + (x_{i} - \mu)^{2} / (\nu - 2)\sigma^{2}]^{-(\nu + 1)/2}$$
(52)

where C = constant. The natural logarithm of the likelihood function is

$$\ln L = \ln C - n \ln \sigma - [(\nu+1)/2] \sum_{i=1}^{n} \ln [1 + (x_i - \mu)^2 / (\nu - 2)\sigma^2]$$
 (53)

The likelihood equations are

$$\partial \ln L/\partial \mu = [(v+1)/(v-2)] \sum_{i=1}^{n} \{ [(x_i-\mu)/\sigma^2]/[1+(x_i-\mu)^2/(v-2)\sigma^2] \} = 0$$
 (54)

$$\frac{\partial \ln L}{\partial \sigma} = -n/\sigma + [(\nu+1)/(\nu-2)] \sum_{i=1}^{n} \{ [(\mathbf{x}_{i} - \mu)^{2}/\sigma^{3}] / [1 + (\mathbf{x}_{i} - \mu)^{2}/(\nu-2)\sigma^{2}] \} = 0$$
 (55)

These equations apparently do not have a closed form solution, and hence they must be solved numerically by iteration. This iteration, by the rule of false position, was performed on the CDC 6600 computer.

Listings follow of the subroutine STRN for generating random numbers from the standardized Student t population with V degrees of freedom and the subroutine IESTP for iterative maximum likelihood estimation of the location parameter μ and the scale parameter σ of a Student t population with v known. The subroutine SORTSUB listed in Appendix B is also used.

```
SUBROUTINE STRN(XNU,Z)
    DIMENSION X(20)
    NU=XNU
    N=NU+1
    NN=N+1
    H=L
    IF ( (NN/2-N/2) . EQ. 0) J=NU
    DO 1 I=1,J,2
    R1=RANF (DUM)
    R2=RANF (DUM)
    Y=SQRT (-2.*ALOG(R2))
    X(I)=Y*COS(R1*2.*3.1415926536)
    II=I+1
    X(II)=Y*SIN(R1*2.*3.1415926536)
1
    SX=0.
    SX2=0.
    DO 2 I=1,N
    SX=SX+X(I)
    SX2=SX2+X(I) **2
    EN=FLOAT (N)
    XBAR=SX/EN
    SIGMA=SQRT (EN*SX2-SX**2)/EN
    Z=SQRT(EN)*(XBAR/SIGMA)*SQRT((EN-3.)/(EN-1.))
    RETURN
    END
```

resucces form our ends no bears regular and trees relative also

```
SUBROUTINE IESTP (NU, N, T , EMUL, SIGL)
     DIMENSION EM(50), SIG(50), DLM(50), DLS(50), T(24), SIGMA(50), EMU(50)
     DIMENSION EL (50)
     ST=0.
     ST2=0.
     EN=FLOAT (N)
     ENU=FLOAT (NU)
     DO 1 I=1,N
     ST=ST+T(I)
     ST2=ST2+T(I) **2
     EMU(1)=ST/EN
     SIGMA(1)=SORT(EN+ST2-ST++2)/EN
     CALL SORTSUB(T,N)
     EMU(2) = (T(1)+T(N))/2.
     EMU (3) = (T(N/2)+T(N/2+1))/2.
     SUM=0.
     DO 26 I=1,N
     SUM=SUM+ABS (T (I) -EMU(3))/EN
     SIGMA(3)=SGRT(2.)+SUM
     SIGMA(2)=(T(N)-T(1))/(2.*SQRT(3.))
     DO 25 J=1,3
     S3=0.
     DO 24 I=1,N
     $3=$3+ALOG(1.+(T(I)-EMU(J))+*2/((ENU-2.)*$IGMA(J)+*2))
24
25
     EL(J) =- EN*ALOG(SIGMA(J)) - ((ENU+1.)/2.) *S3
     D0 28 J=2,3
     IF(EL(J).LE.EL(1))60 TO 28
     EMU(1) = EMU(J)
     SIGHA(1)=SIGMA(J)
     EL (1) = EL (J)
28
     CONTINUE
     DO 22 J=2,50
     JJ=J-1
     EMU(J) = EMU(JJ)
     KS = 0
     DO 10 K=1,50
     S=0 .
     DO 2 I=1,N
2
     S=S+((T(I)-EMU(J))/SIGMA(JJ)**2)/(1.+((T(I)-EMU(J))**2)/
    1((ENU-2.)*SIGMA(JJ)**2))
     KK=K-1
     DLM(K) = S * (ENU+1.)/(ENU-2.)
     EM(K)=EMU(J)
     IF (DLM(K)) 3,11,4
3
     KS=KS-1
     IF (KS+K) 7,5
     KS=KS+1
     IF (KS-K) 7,6
     EMU(J) = EM(K) - . 01 * SIGMA(JJ)
5
     GO TO 10
     EMU(J) = EM(K) + . 01 * SIGMA (JJ)
6
     GO TO 10
     IF (DLM(K)+DLM(KK)) 9,11,8
7
     KK=KK-1
     GO TO 7
```

```
EMU(J) = EM(K) + DLM(K) + (EM(K) - EM(KK)) / (DLM(KK) - DLM(K))
9
     IF (ABS(EMU(J)-EM(K)).LE.1.E-6) GO TO 11
10
     CONTINUE
     SIGMA(J)=SIGMA(JJ)
11
     KS = 0
     DO 20 K=1,50
     S=0.
     DO 12 I=1,N
     S=S+(((T(I)-EMU(J))**2)/SIGMA(J)**3)/(1.+((T(I)-EMU(J))**2)/
12
    1((ENU-2.)*SIGMA(J)**2))
     KK=K-1
     OLS(K) =- EN/SIGMA(J)+S*(ENU+1.)/(ENU-2.)
     SIG(K)=SIGMA(J)
     IF (DLS(K)) 13,21,14
13
     KS=KS-1
     IF (KS+K) 17,15
14
     KS=KS+1
     IF (KS-K) 17,16
     SIGMA(J) = . 99*SIG(K)
15
     GO TO 20
     SIGMA(J)=1.01*SIG(K)
16
     GO TO 20
     IF (DLS(K)*DLS(KK)) 19,21,18
17
     KK=KK-1
18
     GO TO 17
19
     SIGMA(J)=SIG(K)+DLS(K)+(SIG(K)-SIG(KK))/(DLS(KK)-DLS(K))
     IF (ABS(SIGMA(J)-SIG(K)).LE.1.E-6) GO TO 21
20
     CONTINUE
21
     IF (ABS(EMU(J)-EMU(JJ)).GT.1.E-6) GO TO 22
     IF (ABS(SIGMA(J)-SIGMA(JJ)).LE.1.E-6) GO TO 23
22
     CONTINUE
     JL=MIN0 (J,50)
23
     EMUL=EMU(JL)
     SIGL=SIGHA(JL)
     RETURN
     END
```