数理逻辑部分课后习题答案

- 1.将下列命题符号化
- (1) 我看到的既不是小张也不是小王。
- (2) 他生于1963年或1964年。
- (3) 只要下雨我就带伞
- (4) 只有下雨我才带伞
- (5) 除非天气好,否则我是不会出去的。

- 解(1)p: 我看到的是小张, q:我看到的是小王 命题符号化为: ¬p^¬q
- (2) p: 他生于1963年, q:他生于1964年 命题符号化为: p>q 或者 (p ^¬q) > (¬p ^q)
 - (3) p: 下雨, q:我带伞。命题符号化为: $p\rightarrow q$
 - (4) p,q同上。命题符号化为: q→p
 - (5) p: 天气好, q: 我出去。命题符号化为: q→p

- 2. 下列句子中哪些是命题?
- (1)中国有四大发明.
- (2)3是素数或4是素数.
- (3)2x+3<5.
- (4)这里的风景多美啊!
- (5)请保持安静!
- (6)2018年元旦下大雪.
- 解(1)(2)(6) 是命题.

3. 用真值表判断下列公式的类型

$$(1) p \rightarrow (p \lor q \lor r)$$

$$(2) \neg (q \rightarrow r) \land r$$

$$(3) (p \rightarrow \neg p) \rightarrow \neg q$$

$$(4) (p \land r) \leftrightarrow (\neg p \land \neg q)$$

p	\boldsymbol{q}	r	$p \rightarrow (p \lor q \lor r)$	$\neg (q \rightarrow r) \land r$	$(p \to \neg p) \to \neg q$	$(p \land r) \leftrightarrow (\neg p \land \neg q)$
0	0	0	1	0	1	0
0	0	1	1	0	1	0
0	1	0	1	0	0	1
0	1	1	1	0	0	1
1	0	0	1	0	1	1
1	0	1	1	0	1	0
1	1	0	1	0	1	1
1	1	1	1	0	1	0

显然(1)是重言式,(2)是矛盾式,(3)、(4)是可满足式。

4. 在什么情况下,下面一段论述是真的:"说小王不会唱歌或小李不会跳舞是正确的,而说如果小王会唱歌,小李就会跳舞是不正确的。"解 先找出原子命题.

设p:小王会唱歌,q:小李会跳舞,

符号化为 $(\neg p \lor \neg q) \land \neg (p \rightarrow q)$

令 $(\neg p \lor \neg q) \land \neg (p \to q)$ 为真,因此 $(\neg p \lor \neg q)$ 为真和 $(p \to q)$ 为假,所以满足条件的p,q的取值为1,0,显然在"小王会唱歌,而小李不会跳舞"情况下,论述是真的。

第1章22

22.已知公式¬ $(q\rightarrow p)$ ∧p是矛盾式,求公式¬ $(q\rightarrow p)$ ∧p∧¬r的成真和成假赋值.

解: $: \neg (q \rightarrow p) \land p$ 是矛盾式 $: \neg (q \rightarrow p) \land p \land \neg r$ 也是矛盾式。

由此可得:该式无成真赋值。而成假赋值为:

000,001,010,011,100,101,110,111

第1章24

24.已知 $(p \rightarrow (p \lor q)) \land ((p \land q) \rightarrow p)$ 是重言式,试判断公式 $p \rightarrow (p \lor q)$ 及 $(p \land q) \rightarrow p$ 的类型.

解: $\Box (p \rightarrow (p \lor q)) \land ((p \land q) \rightarrow p)$ 是重言式,而要使该式为重言式,其成真赋值只有11, $\Box p \rightarrow (p \lor q)$ 及 $(p \land q) \rightarrow p$ 都是重言式.

习题2: 3

3. 解

- (1) ¬ $(p \land q \rightarrow q)$ ⇔¬ $(\neg(p \land q) \lor q)$ ⇔ $p \land q \land \neg q$ ⇔0,是矛盾式
- (2) $(p \rightarrow (p \lor q)) \lor (p \rightarrow r) \Leftrightarrow (\neg p \lor p \lor q) \lor (p \rightarrow r) \Leftrightarrow 1 \lor (p \rightarrow r) \Leftrightarrow 1$ 是重言式。
- (3) $(p \lor q) \rightarrow (p \land r) \Leftrightarrow \neg (p \lor q) \lor (p \land r) \Leftrightarrow (\neg p \land \neg q) \lor (p \land r)$,可满足式,其真值表如下,成真赋值有000,001,101,111.

p	\boldsymbol{q}	r	$p \lor q$	$p \wedge r$	$(p \lor q) \rightarrow (p \land r)$
0	0	0	0	0	1
0	0	1	0	0	1
0	1	0	1	0	0
0	1	1	1	0	0
1	0	0	1	0	0
1	0	1	1	1	1
1	1	0	1	0	0
1	1	1	1	1	1

习题2: 4

4. 证明

- (1) $(p \land q) \lor (p \land \neg q) \Leftrightarrow p \land (q \lor \neg q) \Leftrightarrow p \land 1 \Leftrightarrow p$
- $(2) \quad (p \rightarrow q) \land (p \rightarrow r) \Leftrightarrow (\neg p \lor q) \land (\neg p \lor r) \Leftrightarrow \neg p \lor (q \land r) \Leftrightarrow p \rightarrow (q \land r)$
- $(3) \neg (p \leftrightarrow q) \Leftrightarrow \neg ((p \to q) \land (q \to p)) \Leftrightarrow \neg (p \to q) \lor \neg (q \to p)$ $\Leftrightarrow \neg (\neg p \lor q) \lor \neg (\neg q \lor p) \Leftrightarrow (p \land \neg q) \lor (\neg p \land q) \Leftrightarrow (p \lor q) \land \neg (p \land q)$ $\Leftrightarrow (p \lor q) \land \neg (p \land q)$
- $(4) \quad (p \land \neg q) \lor (\neg p \land q) \Leftrightarrow (p \lor \neg q) \land (p \lor q) \land (\neg p \lor \neg q) \land (\neg q \lor q)$ $\Leftrightarrow (p \lor q) \land \neg (p \land q)$

习题2:8(3)

8.解

(3) ¬ $(r\rightarrow q)\land p\land q\Leftrightarrow \neg(\neg r\lor q)\land p\land q\Leftrightarrow (r\land \neg q)\land p\land q\Leftrightarrow 0$ 是矛盾式,主合取范式由所有极大项构成, $(p\lor q\lor r)\land (p\lor q\lor \neg r)\land (p\lor \neg q\lor r)\land (p\lor \neg q\lor r)\land (\neg p\lor q\lor r)\land (\neg p\lor q\lor r)\land (\neg p\lor \neg q\lor \neg r)$ $\land (\neg p\lor \neg q\lor r)\land (\neg p\lor \neg q\lor \neg r)$ 主析取范式为0.

习题2: 12

12. 解 A的主析取范式由成真赋值对应的极小项的析取构成,因此, A的主析取范式 $\Leftrightarrow m_0 \land m_3 \land m_6 \Leftrightarrow (\neg p \land \neg q \land \neg r) \lor (\neg p \land q \land r) \lor (p \land q \land \neg r)$ A的所有成假赋值为001,010,100,101,111,对应的大项的合取构成主合取范式,因此

A的主合取范式 $\Leftrightarrow M_1 \land M_2 \land M_4 \land M_5 \land M_7$ $\Leftrightarrow (p \lor q \lor \neg r) \land (p \lor \neg q \lor r) \land (\neg p \lor q \lor r) \land (\neg p \lor q \lor \neg r) \land (\neg p \lor \neg q \lor \neg r)$

习题2: 27 (a)

27. 解

先符号化:

- $(1) \neg p \land \neg q \land r$
- (2) $p \land \neg q \land \neg r$
- $(3) \neg p \land q \land r$
- (4) $p \land q \land \neg r$

F的主析取范式为 $(\neg p \land \neg q \land r) \lor (p \land \neg q \land \neg r) \lor (\neg p \land q \land r) \lor (p \land q \land \neg r)$ $\Leftrightarrow m_1 \lor m_4 \lor m_3 \lor m_6$

习题3:6(1)

6. 解

设p:今天是星期一,q:明天是星期二,r:明天是星期三

(1) 推理的形式结构为 $(p \rightarrow r) \land p \rightarrow r$,显然,这是假言推理,所以推理正确.

方法1: 等值演算法

 $(p \rightarrow r) \land p \rightarrow r \Leftrightarrow \neg((\neg p \lor r) \land p) \lor r \Leftrightarrow ((p \land \neg r) \lor \neg p) \lor r \Leftrightarrow \neg r \lor \neg p \lor r \Leftrightarrow 1$

方法2: 真值表

p	q	r	$p \rightarrow r$	$(p \rightarrow r) \land p \rightarrow r$
0	0	0	1	1
0	0	1	1	1
0	1	0	1	1
0	1	1	1	1
1	0	0	0	1
1	0	1	1	1
1	1	0	0	1
1	1	1	1	1

习题3:6(4)

6. 解

设p:今天是星期一,q:明天是星期二,r:明天是星期三

(4) 推理的形式结构为 $(p \rightarrow q) \land \neg p \rightarrow \neg q$.

 $\phi(p\to q)\land \neg p$ 为1,: $p\to q$ 为1,p为0,: q可能为0也可能为1,当q为1时, $(p\to q)\land \neg p\to \neg q$ 为假,因此推理不成立。

方法1: 等值演算法

 $(p \rightarrow q) \land \neg p \rightarrow \neg q \Leftrightarrow \neg((\neg p \lor q) \land \neg p) \lor \neg q \Leftrightarrow ((p \land \neg q) \lor p) \lor \neg q$

 $\Leftrightarrow ((p \land \neg q) \lor \neg q) \lor p \Leftrightarrow \neg q \lor p$,因此该公式是非永真的可满足式.

方法2: 真值表(略)

习题3:6(5)

6. 解

设p:今天是星期一,q:明天是星期二,r:明天是星期三

- (5) 推理的形式结构为 $(p \rightarrow (q \lor r)) \land p \rightarrow q$.
- $\diamondsuit(p\to(q\lorr))\land p$ 为1,∴ $p\to(q\lorr)$ 为1,p为1,∴ $q\lorr$ 为1,∴ $q\lorr$ 至少一个为1,显然q既可为1,也可为0,因此推理不成立。

方法1: 主范式

$$(p \rightarrow (q \lor r)) \land p \rightarrow q \Leftrightarrow \neg ((\neg p \lor (q \lor r)) \land p) \lor q \Leftrightarrow (p \land \neg q \land \neg r)) \lor \neg p \lor q$$

$$\neg p \Leftrightarrow \neg p \land (q \lor \neg q) \land (r \lor \neg r) \Leftrightarrow (\neg p \land q \land r) \lor (\neg p \land q \land \neg r) \lor (\neg p \land \neg q \land r)$$

$$\lor (\neg p \land \neg q \land \neg r) \Leftrightarrow m_3 \lor m_2 \lor m_1 \lor m_0$$

习题3:6(5)

```
q \Leftrightarrow (\neg p \lor p) \land q \land (r \lor \neg r) \Leftrightarrow (\neg p \land q \land r) \lor (\neg p \land q \land \neg r) \lor (p \land q \land \neg r) \lor (p \land q \land \neg r)\Leftrightarrow m_3 \lor m_2 \lor m_7 \lor m_6
```

 $(p \rightarrow (q \lor r)) \land p \rightarrow q \Leftrightarrow m_0 \lor m_1 \lor m_2 \lor m_3 \lor m_4 \lor m_6 \lor m_7$ 成假赋值有101,因此不是重言式,推理不正确.

方法2: 真值表(略)

习题3:8(2)

8. 解

原子命题符号化.设p:天气热,q:我去游泳,r:我有时间.

(2) 符号化:

前提: $p \rightarrow q, \neg q$

有效结论: ¬p

无效结论: p

习题3:8(3)

8. 解

原子命题符号化.设p:天气热,q:我去游泳,r:我有时间.

(3) 符号化:

前提: $q \rightarrow (p \land r), \neg p \lor \neg r$

有效结论: ¬q

无效结论: q

习题3:9

9.解

原子命题符号化.设p:a是奇数,q:a能被2整除,r:a是偶数. 推理的形式化结构: $((p \rightarrow \neg q) \land (r \rightarrow q)) \rightarrow (r \rightarrow \neg p)$

等值演算:

$$((p \rightarrow \neg q) \land (r \rightarrow q)) \rightarrow (r \rightarrow \neg p) \Leftrightarrow \neg ((\neg p \lor \neg q) \land (\neg r \lor q)) \lor (\neg r \lor \neg p)$$

$$\Leftrightarrow (p \land q) \lor (r \land \neg q) \lor \neg r \lor \neg p \Leftrightarrow (p \lor r \lor \neg r \lor \neg p) \land (p \lor \neg q \lor \neg r \lor \neg p)$$

$$\land (q \lor r \lor \neg r \lor \neg p) \land (q \lor \neg q \lor \neg r \lor \neg p) \Leftrightarrow 1$$

习题3:9

主析取范式:

$$((p \rightarrow \neg q) \land (r \rightarrow q)) \rightarrow (r \rightarrow \neg p) \Leftrightarrow \neg ((\neg p \lor \neg q) \land (\neg r \lor q)) \lor (\neg r \lor \neg p)$$

$$\Leftrightarrow (p \land q) \lor (r \land \neg q) \lor \neg r \lor \neg p$$

$$p \land q \Leftrightarrow p \land q \land (r \lor \neg r) \Leftrightarrow (p \land q \land r) \lor (p \land q \land \neg r) \Leftrightarrow m_7 \lor m_6$$

$$r \land \neg q \Leftrightarrow (p \lor \neg p) \land r \land \neg q \Leftrightarrow (p \land \neg q \land r) \lor (\neg p \land \neg q \land r) \lor (\neg p \land \neg q \land \neg r) \lor (\neg p \land \neg q$$

$((p \rightarrow \neg q) \land (r \rightarrow q)) \rightarrow (r \rightarrow \neg p)$ 的真值表

p	q	r	$(p \rightarrow \neg q) \land (r \rightarrow q)$	$r \rightarrow \neg p$	A
0	0	0	1	1	1
0	0	1	0	1	1
0	1	0	1	1	1
0	1	1	1	1	1
1	0	0	1	1	1
1	0	1	0	0	1
1	1	0	0	1	1
1	1	1	0	0	1

习题3:14(4)

(4) 前提: $q \rightarrow p, q \leftrightarrow s, s \leftrightarrow t, t \land r$

结论: *p*∧*q*

证明

① $q \leftrightarrow s$ 前提引入

② $(q \rightarrow s) \land (s \rightarrow q)$ ①置换

③ *s→q* ②化简

④ $q \rightarrow p$ 前提引入

⑥ *s↔t* 前提引入

- \bigcirc $(s \rightarrow t) \land (t \rightarrow s)$
- $\otimes t \rightarrow s$
- $9 t \rightarrow p$
- $\bigcirc t \wedge r$
- 11) t
- $\bigcirc p$
- $\bigcirc 3 s$
- (14) q
- 15) $p \wedge q$

- ⑥置换
- ⑦化简
- ⑤⑧假言三段论
- 前提引入
- ⑩化简
- ⑨ ⑪ 假言推理
- ⑧ ① 假言推理
- ③ (13) 假言推理
- (12)(14)合取

习题3:14(6)

(6) 前提: $\neg p \lor r, \neg q \lor s, p \land q$

结论: $t \rightarrow r \land s$

证明

① $p \wedge q$ 前提引入

2p

①化简

 $\Im q$

① 化简

 $4 \neg p \lor r$

前提引入

 $\bigcirc p \rightarrow r$

④置换

6 r

②⑤假言推理

 $\bigcirc \neg q \lor s$

 $\otimes q \rightarrow s$

9 s

 $\bigcirc r \wedge s$

 $\bigcirc 11 \neg t \lor (r \land s)$

前提引入

⑦置换

③⑧假言推理

69合取

⑩附加

⑪置换

习题3:15(1)

(1) 前提: $p \rightarrow (q \rightarrow r), s \rightarrow p, q$

结论: $s \rightarrow r$

证明

 \bigcirc s

 $\bigcirc s \rightarrow p$

 \mathfrak{g}_p

 $\bigoplus p \rightarrow (q \rightarrow r)$

 $\bigcirc q \rightarrow r$

 $\bigcirc q$

 $\bigcirc r$

附加前提引入

前提引入

①②假言推理

前提引入

③④假言推理

前提引入

⑤⑥假言推理

习题3:16(2)

(2) 前提: $p \lor q, p \rightarrow r, q \rightarrow s$

结论: r\s

证明 ①¬(r\s)

附加前提引入

 $2 \neg r \wedge \neg s$

①置换

3 - r

②化简

4 -s

②化简

 $\bigcirc q \rightarrow s$

前提引入

⑥ ¬q

④⑤拒取式

 $\bigcirc p \lor q$

前提引入

 $\otimes p$

 $9p\rightarrow r$

(10) r

 $(11) \neg r \land r$

⑥⑦析取三段论

条件引入

⑧⑨假言推理

③⑩合取

习题3:17

17. 解

找出原子命题.设p:A曾到过受害者房间,q:A在11点之前离开受害者房间,r:A是谋杀犯,s:看门人看见A.

推理形式结构:

前提: $p \land \neg q \rightarrow r, p, q \rightarrow s, \neg s$

结论: r

证明

前提: $p \land \neg q \rightarrow r, p, q \rightarrow s, \neg s$

结论: r

证明

 \bigcirc \bigcirc S

 $\bigcirc q \rightarrow s$

 $\bigcirc q$

(4) p

 $\bigcirc p \land \neg q$

 $\bigcirc p \land \neg q \rightarrow r$

(7) r

前提引入

前提引入

①②拒取式

前提引入

34合取

前提引入

⑤⑥假言推理

4.解

(1) 设F(x):x是有理数,G(x):x是分数,H(x,y):x能表示成y,

符号化为: $\neg \exists x (F(x) \land \forall y (G(y) \rightarrow \neg H(x,y))$

或者

设F(x):x是有理数, G(x):x是能表示成分数

符号化为: $\neg \exists x (F(x) \land \neg G(x))$ 或 $\forall x (F(x) \rightarrow G(x))$

4.解

- (2) 设F(x):x是在北京买菜的人,G(x):x是外地人
- 符号化为: $\neg \forall x(F(x) \rightarrow G(x))$ 或 $\exists x(F(x) \land \neg G(x))$
 - (3) 设F(x):x是乌鸦, G(x):x是黑色的
- 符号化为: $\forall x(F(x) \rightarrow G(x))$
 - (4) 设F(x):x是人, G(x):x天天锻炼身体
- 符号化为: $\exists x(F(x) \land G(x))$

5.解

(1) 设F(x):x是火车,G(x):x是轮船,H(x,y):x比y快

符号化为: $\forall x(F(x) \rightarrow \forall y(G(y) \rightarrow H(x,y)))$

或 $\forall x \forall y (F(x) \land G(y) \rightarrow H(x,y))$

(2) 设F(x):x是火车,G(x):x是汽车,H(x,y):x比y快 符号化为: $\exists x(F(x) \land \exists y(G(y) \land H(x,y)))$ 或 $\exists x \exists y(F(x) \land G(y) \land H(x,y))$

(3) 设F(x):x是火车,G(x):x是汽车,H(x,y):x比y快符号化为: $\neg \exists x (G(x) \land \forall y (F(y) \rightarrow H(x,y)))$ 或 $\forall x (G(x) \rightarrow \exists y (F(y) \land \neg H(x,y)))$

(4) 设F(x):x是火车,G(x):x是汽车,H(x,y):x比y慢符号化为: $\neg \forall x (G(x) \rightarrow \forall y (F(y) \rightarrow H(x,y)))$ 或 $\exists x \exists y (F(x) \land G(y) \land \neg H(x,y))$

8.解

(1) $\forall x(F(x) \rightarrow G(x,y))$

量词 \forall 的指导变元是x,辖域是($F(x) \rightarrow G(x,y)$), x都是约束出现,y都是自由出现.

(2) $\forall x F(x,y) \rightarrow \exists y G(x,y)$

量词 \forall 的指导变元是x,辖域是F(x,y),量词 \exists 的指导变元是y,辖域是G(x,y),F(x,y)中的x是约束出现,y是自由出现,G(x,y)中的x是自由出现,y是约束出现.

(3) $\forall x \exists y (F(x,y) \land G(y,z)) \lor \exists x H(x,y,z)$

量词 \forall 的指导变元是x,辖域是($F(x,y) \land G(y,z)$),第1个3量词的指导变元是y,辖域($F(x,y) \land G(y,z)$),其中的x,y都是约束出现,z是自由出现.第2个3量词的指导变元是x,辖域是H(x,y,z),其中x是约束出现,y,z是自由出现.

- (1) $\forall x(G(x,y) \rightarrow \exists y F(x,y))$ 解释为 $\forall x(x<-1) \rightarrow \exists y(x=y)$),即对于任意的实数x,若x<-1,则存在实数使得x=y.真值为1.
- (2) $\forall y(F(f(x,y),a) \rightarrow \forall xG(x,y))$ 解释为 $\forall y(1-y=0 \rightarrow \forall x(x < y))$,即对于任意实数y,如果y=1,则对任意实数x,x < y.真值为0
- (3) $\exists x G(x,y) \rightarrow \forall y F(f(x,y),a)$ 解释为 $\exists x (x < -1) \rightarrow \forall y (1-y=0)$,即如果存在实数x使得x < -1,则对于任意实数y有y=1.真值为0
- (4) $\forall y G(f(x,y),a) \rightarrow \exists x F(x,y)$ 解释为 $\forall y (1-y<0) \rightarrow \exists x (x=-1),$ 即如果对于任意实数 $y \neq y = 1$,则存在实数 $x \neq x = -1$.真值为1.

12.解

(1) $F(x) \rightarrow \forall x F(x)$

取解释I:个体域是自然数集合N,F(x):x<2, $\sigma_1(x)=-1$, $\sigma_2(x)=3$,在I和 σ_1 下命题真值为0,在I和 σ_2 下命题真值为1,即该公式是非重言式的可满足式.

(分析:设 $\forall x F(x)$ 为假,则有部分或全部x使F(x)为假,当部分x使F(x)为假时,当自由出现的x使F(x)为假时,公式真值是1,否则是假)

(2) $\exists x F(x) \rightarrow F(x)$

取解释I、 σ_1 、 σ_2 与(1)相同,I和 σ_1 下命题真值为1,在I和 σ_2 下命题真值为0,即该公式是非重言式的可满足式.(分析与上同)

12.解

(3) $\forall x(F(x) \rightarrow G(x)) \rightarrow (\forall xF(x) \rightarrow \forall xG(x))$

令 $\forall x(F(x)\rightarrow G(x))$ 为1,任意的x都使 $F(x)\rightarrow G(x)$ 为真,当存在x使F(x)为假时, $\forall xF(x)$ 为假,从而 $\forall xF(x)\rightarrow \forall xG(x)$ 为真.当所有x使F(x)为真时, $\forall xF(x)$ 为真,由任意的x都使 $F(x)\rightarrow G(x)$ 为真可知, $\forall xG(x)$ 为,因而 $\forall xF(x)\rightarrow \forall xG(x)$ 为真.综上所述,公式是重言式.

12.解

(4) $(\forall x F(x) \rightarrow \forall x G(x)) \rightarrow \forall x (F(x) \rightarrow G(x))$

令 $\forall x(F(x)\rightarrow G(x))$ 为0,即存在x使 $F(x)\rightarrow G(x)$ 为假,设满足条件的x=a,则 F(a)=1,G(a)=0,显然 $\forall xG(x)$ 为0.但 $\forall xF(x)$ 既有可能为1也可能为0,因此 公式是非重言式的可满足式.

取解释 I_1 :个体域是自然数集合N,F(x):x是偶数,G(x):x ≥ 0 .真值为1.解释 I_7 : G(x):x ≥ 2 ,其余相同,在此解释下真值为0.

5. 解

- (1) $\forall x \exists y F(x,y) \Leftrightarrow \exists y F(3,y) \land \exists y F(4,y)$ $\Leftrightarrow (F(3,3) \lor F(3,4)) \land (F(4,3) \lor F(4,4)) \Leftrightarrow (0 \lor 1) \land (1 \lor 0) \Leftrightarrow 1$
- (2) $\exists x \forall y F(x,y) \Leftrightarrow \forall y F(3,y) \lor \forall y F(4,y)$ $\Leftrightarrow (F(3,3) \land F(3,4)) \lor (F(4,3) \land F(4,4)) \Leftrightarrow (0 \land 1) \lor (1 \land 0) \Leftrightarrow 0$
- (3) $\forall x \forall y (F(x,y) \rightarrow F(f(x),f(y)))$ $\Leftrightarrow \forall y (F(3,y) \rightarrow F(f(3),f(y))) \land \forall y (F(4,y) \rightarrow F(f(4),f(y)))$ $\Leftrightarrow (F(3,3) \rightarrow F(f(3),f(3))) \land (F(3,4) \rightarrow F(f(3),f(4)))$ $\land (F(4,3) \rightarrow F(f(4),f(3))) \land (F(4,4) \rightarrow F(f(4),f(4)))$ $\Leftrightarrow (0 \rightarrow 0) \land (1 \rightarrow 1) \land (1 \rightarrow 1) \land (0 \rightarrow 0) \Leftrightarrow 1$

5. 解

- (1) $\forall x \exists y F(x,y) \Leftrightarrow \exists y F(3,y) \land \exists y F(4,y)$ $\Leftrightarrow (F(3,3) \lor F(3,4)) \land (F(4,3) \lor F(4,4)) \Leftrightarrow (0 \lor 1) \land (1 \lor 0) \Leftrightarrow 1$
- (2) $\exists x \forall y F(x,y) \Leftrightarrow \forall y F(3,y) \lor \forall y F(4,y)$ $\Leftrightarrow (F(3,3) \land F(3,4)) \lor (F(4,3) \land F(4,4)) \Leftrightarrow (0 \land 1) \lor (1 \land 0) \Leftrightarrow 0$
- (3) $\forall x \forall y (F(x,y) \rightarrow F(f(x),f(y)))$ $\Leftrightarrow \forall y (F(3,y) \rightarrow F(f(3),f(y))) \land \forall y (F(4,y) \rightarrow F(f(4),f(y)))$ $\Leftrightarrow (F(3,3) \rightarrow F(f(3),f(3))) \land (F(3,4) \rightarrow F(f(3),f(4)))$ $\land (F(4,3) \rightarrow F(f(4),f(3))) \land (F(4,4) \rightarrow F(f(4),f(4)))$ $\Leftrightarrow (0 \rightarrow 0) \land (1 \rightarrow 1) \land (1 \rightarrow 1) \land (0 \rightarrow 0) \Leftrightarrow 1$

7. 解

第一步丢掉了一

第二步用错了等值式

 $\forall x \exists y (F(x) \land (G(y) \rightarrow H(x,y))) \Leftrightarrow \forall x \exists y (F(x) \land G(y)) \rightarrow H(x,y))$

- (1) $\forall x F(x) \rightarrow \forall y G(x,y) \Leftrightarrow \forall z F(z) \rightarrow \forall y G(x,y) \Leftrightarrow \exists z \forall y (F(z) \rightarrow G(x,y))$
- (2) $\forall x(F(x,y) \rightarrow \exists y G(x,y,z)) \Leftrightarrow \forall x(F(x,y) \rightarrow \exists s G(x,s,z))$ $\Leftrightarrow \forall x \exists s(F(x,y) \rightarrow G(x,s,z))$
- $(3) \forall x F(x,y) \leftrightarrow \exists x G(x,y) \Leftrightarrow \forall x F(x,y) \leftrightarrow \exists z G(z,y)$ $\Leftrightarrow (\forall x F(x,y) \to \exists z G(z,y)) \land (\exists z G(z,y) \to \forall x F(x,y))$ $\Leftrightarrow \exists x \exists z (F(x,y) \to G(z,y)) \land \forall z \forall x (G(z,y) \to F(x,y))$ $\Leftrightarrow \exists x \exists z (F(x,y) \to G(z,y)) \land \forall s \forall t (G(s,y) \to F(t,y))$ $\Leftrightarrow \exists x \exists z \forall s \forall t ((F(x,y) \to G(z,y)) \land (G(s,y) \to F(t,y)))$

$$(4) \ \forall x_1(F(x_1) \to G(x_1, x_2)) \to (\exists x_2 H(x_2) \to \exists x_3 L(x_2, x_3))$$

$$\Leftrightarrow \forall x_1(F(x_1) \to G(x_1, x_2)) \to (\exists x_4 H(x_4) \to \exists x_3 L(x_2, x_3))$$

$$\Leftrightarrow \forall x_1(F(x_1) \to G(x_1, x_2)) \to \forall x_4 \exists x_3 (H(x_4) \to L(x_2, x_3))$$

$$\Leftrightarrow \exists x_1 \forall x_4 \exists x_3 ((F(x_1) \to G(x_1, x_2)) \to (H(x_4) \to L(x_2, x_3)))$$

$$(5) \ \exists x_1 F(x_1, x_2) \to (F(x_1) \to \neg \exists x_2 G(x_1, x_2))$$

$$\Leftrightarrow \exists y_1 F(y_1, x_2) \to (F(x_1) \to \forall y_2 \neg G(x_1, y_2))$$

$$\Leftrightarrow \forall y_1 \forall y_2 (F(y_1, x_2) \to (F(x_1) \to \neg G(x_1, y_2))$$

15.解

- (1) 前提: $\exists x F(x) \rightarrow \forall y ((F(y) \lor G(y)) \rightarrow R(y)), \exists x F(x)$ 结论: $\exists x R(x)$
- ① $\exists x F(x)$

- $\textcircled{4} (F(y) \vee G(y)) \rightarrow R(y)$
- $\exists x F(x) \lor \exists x G(x)$
- **⑥** $\exists x(F(x)∨G(x))$
- \bigcirc $(F(y) \lor G(y)) \rightarrow \exists x R(x)$

前提引入

前提引入

- ①②假言推理
- ③ ∀-
- ④附加
- ⑤置换
- **4 3**+
- **6**(7) ∃-

15.解

- (2) 前提: $\forall x(F(x) \rightarrow (G(a) \land R(x))), \exists x F(x)$ 结论: $\exists x(F(x) \land R(x))$

- $\textcircled{4} (F(y) \rightarrow G(a)) \land (F(y) \rightarrow R(y))$

前提引入

前提引入

② ∀-

③ 置换

4化简

⑤置换

4 ∃+

①⑦∃-

15. 解

(3) 前提: $\forall x(F(x) \lor G(x)), \neg \exists x G(x)$

结论: $\exists x F(x)$

 \bigcirc $\neg \exists x G(x)$

② $\forall x \neg G(x)$

 $\Im \neg G(x)$

 $\textcircled{4} \forall x (F(x) \lor G(x))$

 \bigcirc $F(x) \lor G(x)$

 \bigcirc F(x)

 \bigcirc $\exists x F(x)$

前提引入

置换

② ∀-

前提引入

4化简

③ ⑤析取三段论

⊕ ∃+

- (4) 前提: $\forall x(F(x) \lor G(x)), \forall x(\neg G(x) \lor \neg R(x)), \forall x R(x)$
 - 结论: $\forall x F(x)$
- \bigcirc $\forall x R(x)$
- \bigcirc $\forall x (\neg G(x) \lor \neg R(x))$
- $\Im R(x)$
- $\textcircled{4} \neg G(x) \lor \neg R(x)$
- \bigcirc $\neg G(x)$
- $\textcircled{6} \forall x (F(x) \lor G(x))$
- $\bigcirc F(x) \vee G(x)$
- $\otimes F(x)$
- $\bigcirc \forall x F(x)$

- 前提引入
- 前提引入
- ∀-
- **②** ∀-
- ③④析取三段论
- 前提引入
- **6** ∀-
- ⑤⑦析取三段论
- +E (8)

25. 解

设F(x):x是科学工作者,G(x):x刻苦钻研,R(x):x聪明,H(x):x在事业中获得成功,a:王大海,推理形式化结构如下:

前提: $\forall x(F(x) \rightarrow G(x)), \forall x(G(x) \land R(x) \rightarrow H(x)), F(a), R(a)$

结论: *H*(a)

② $\forall x (G(x) \land R(x) \rightarrow H(x))$

 $\Im F(a) \rightarrow G(a)$

 $\textcircled{4} G(a) \land R(a) \rightarrow H(a)$

 \bigcirc F(a)

 \bigcirc G(a)

 \bigcirc R(a)

 \otimes $G(a) \wedge R(a)$

 $\mathfrak{D}H(a)$

前提引入

前提引入

∀-

② ∀-

前提引入

③⑤假言推理

前提引入

⑥⑦合取

④ ⑧ 假言推理

123456711121314151617181920

17.解

前提: $\forall x(F(x) \rightarrow \neg G(x)), \forall x(H(x) \rightarrow G(x))$

结论: $\forall x(H(x) \rightarrow \neg F(x))$

- ① $\forall x(F(x)\rightarrow \neg G(x))$ 前提引入
- ② $\forall x(H(x) \rightarrow G(x))$ 前提引入
- $\textcircled{4} H(y) \rightarrow G(y) \qquad \textcircled{2} \forall -$
- ⑤ $G(y) \rightarrow \neg F(y)$ ③置换

- 123456789101121314151617181920

20.解

(1) 前提: $\forall x(F(x) \rightarrow G(x))$

结论: $\forall x F(x) \rightarrow \forall x G(x)$

① $\forall x F(x)$ 附加前提引入

② $\forall x(F(x) \rightarrow G(x))$ 前提引入

 $\textcircled{4} F(y) \rightarrow G(y) \qquad \textcircled{2} \forall -$

⑤ G(y) ③ ④假言推理

20.解

(2) 前提: $\forall x(F(x) \lor G(x))$

结论: $\neg \forall x F(x) \rightarrow \exists x G(x)$

 \bigcirc $\neg \forall x F(x)$

附加前提引入

 \bigcirc $\forall x (F(x) \lor G(x))$

前提引入

 $\exists x \neg F(x)$

① 置换

(4) $F(y) \lor G(y)$

② ∀-

 $\bigcirc \neg F(y) \rightarrow G(y)$

4置换

 \bigcirc ¬F(y)→ $\exists xG(x)$

(5) ∃+

 \bigcirc $\exists x G(x)$

3 6∃-