Data visualization

"The simple graph has brought more information to the data analyst's mind than any other device." — John Tukey

MKT 566

Instructor: Davide Proserpio

What we will learn

- This chapter will teach you how to visualize your data
 - (We are going to use ggplot2, an R library for data viz)
 - You can find an intro to ggplot2 here: https://raw.githack.com/dadepro/mkt-615/main/lectures/07-dataviz/07-dataviz.html#4
- What types of charts exist & what they are used for
- How to pick the best visual option for different types of data
- How to create compelling figures
- Content partially based on <u>Chapter 3 of R for Data Science</u>

R Scripts

There are two R scripts on the course website:

- Chart types (reproduces all the different charts we will discuss today)
- Beautify figure (reproduces a simple figure beautification process)
- Download and open them with RStudio
- (Try to) Install the required libraries

An (almost) perfect example

Source: The Groupon Effect on Yelp Ratings: A Root Cause Analysis (Byers et al. 2012)

Category Comparisons: Show how discrete groups or items stack up against one another.

Part-to-Whole & Composition: Break down totals into components.

Category Comparisons: Show how discrete groups or items stack up against one another.

Part-to-Whole & Composition: Break down totals into components.

- Bar Chart
- Pareto Chart (Sorted bars + cumulative line)
- Treemap Chart
- Pie Chart
- Waterfall Chart
- Heatmap (for categorical grids)

- Bar Chart
- Pareto Chart
- Treemap Chart
- Pie Chart
- Waterfall Chart

- Bar Chart
- Pareto Chart
- Treemap Chart
- Pie Chart
- Waterfall Chart

- Bar Chart
- Pareto Chart
- Treemap Chart
- Pie Chart
- Waterfall Chart

- Bar Chart
- Pareto Chart
- Treemap Chart
- Pie Chart
- Waterfall Chart

- Bar Chart
- Pareto Chart
- Treemap Chart
- Pie Chart
- Waterfall Chart

Market Share of Coding Skills

- Bar Chart
- Pareto Chart
- Treemap Chart
- Pie Chart
- Waterfall Chart

Trends Over Time: Reveal how values evolve or accumulate.

Trends Over Time: Reveal how values evolve or accumulate.

- Line Chart
- Area Chart (stacked or cumulative)
- Bar + Line Combo

New dataset

```
> store.df <- read.csv("http://goo.gl/QPDdMl")</pre>
> head(store.df)
  storeNum Year Week p1sales p2sales p1price p2price p1prom p2prom country
       101
                        127
                                106
                                       2.29
                                               2.29
                                                         0
                                                                0
                                                                       US
       101
                                105
                                       2.49
                                               2.49
                        137
                                                                       US
       101
                                 97
                                       2.99
                                              2.99
                        156
                                                                       US
       101
                  4
                        117
                                106
                                       2.99
                                              3.19
                                                                       US
5
       101
                        138
                                100
                                       2.49
                                              2.59
                                                                       US
6
                                127
                                       2.79
                                               2.49
       101
                        115
                                                                       US
```

* Sales are in units counts

- Line Chart
- Area Chart
- Bar + Line Combo

- Line Chart
- Area Chart
- Bar + Line Combo

- Line Chart
- Area Chart
- Bar + Line Combo

Distribution & Density: Understand the shape, spread, and outliers of a variable.

Distribution & Density: Understand the shape, spread, and outliers of a variable.

- Histogram
- Density Plot
- Box Plot
- Violin Plot

- Histogram
- Density Plot
- Box Plot
- Violin Plot

- Histogram
- Density Plot
- Box Plot
- Violin Plot

- Histogram
- Density Plot
- Box Plot
- Violin Plot

- Histogram
- Density Plot
- Box Plot
- Violin Plot

Box plot vs violin plot

Aspect	Boxplot	Violin plot
What it shows	Five-number summary (Q1, median, Q3; whiskers; outliers)	Distribution shape (smoothed density), can show quantiles if you add them
Outliers	Explicit points beyond whiskers (1.5×IQR rule)	Not shown by default
Multimodality	Hard to see	Easy to see (multiple "bulges")
Robustness	Robust: based on quantiles	Depends on bandwidth and smoothing
Small samples	Reliable	Can be misleading (noisy density)
When to use	Compare medians/spread cleanly	Understand shape and differences beyond the median

Relationships & Correlation: Explore how two (or more) variables move together.

Relationships & Correlation: Explore how two (or more) variables move together.

- Scatter Plot
- Bubble Chart (scatter + size)

- Scatter Plot
- Bubble Chart

- Scatter Plot
- Bubble Chart

• Geospatial & Matrix Data: Map values over space or grid layouts.

- Geospatial & Matrix Data: Map values over space or grid layouts.
 - Geospatial Map (choropleth, points)
 - Heatmap (correlation matrix or spatial grid)

- Geospatial Map
- Heatmap

Total P1 sales by Country

- Geospatial Map
- Heatmap

Choosing the best chart

- **Define your question**: Comparison? Trend? Distribution? Relationship?
- Inspect your variables: Categorical vs. numeric; panel vs cross-section, time vs. location vs. hierarchy

- For example:
 - You want to see price trends over time → go with a line chart.
 - You want to compare current job-post counts across languages → a bar chart
 - You're exploring salary distributions by city → a box or violin plot

Best practice for good viz

Simplify & Declutter

- Reduce "chart junk": eliminate unnecessary gridlines, backgrounds, and 3D effects
 - I often use theme_few() in R
- **Legends only when needed**: if you label directly on the plot, drop the legend, don't be redundant

Best practice for good viz

Use Readable Scales & Labels

- Descriptive titles & subtitles: tell viewers what they're looking at and why it matters.
- Clear axis labels: include units (e.g., "Sales (USD Millions)") and avoid abbreviations when possible
- Consistent breaks: choose nice, round numbers or evenly spaced dates
- Always add figure notes at the bottom of the figure in documents and reports

Choose Accessible Color & Style

- Color-blind-friendly palettes
 - In R, palettes from RColorBrewer ("Set2", "Dark2") or viridis.
- **Limit colors**: no more than 4–6 distinct colors in a single plot. For many categories, consider facets or small multiples instead
- Transparency to manage overplotting in dense scatter or area charts
 - Alpha parameter in R

Leverage Facets

- In R, facet_wrap() / facet_grid() for splitting by a categorical variable rather than cramming everything into one panel.
- Ensures consistent scales and easy side-by-side comparisons

Leverage Facets

- In R, facet_wrap() / facet_grid() for splitting by a categorical variable rather than cramming everything into one panel.
- Ensures consistent scales and easy side-by-side comparisons

P1 Sales by Year

Leverage Facets

- In R, facet_wrap() / facet_grid() for splitting by a categorical variable rather than cramming everything into one panel.
- Ensures consistent scales and easy side-by-side comparisons

P1 Sales by Year

Annotate & Highlight Key Insights

- Direct labels with geom_text() or ggrepel for calling out peaks, thresholds, or outliers
- **Annotations** (annotate() or geom_vline()/geom_hline()) to mark events—product launches, policy changes, seasonal holidays

Consistency Across Plots

- Define a **custom theme** and apply it to every chart to ensure that the colors, fonts, and margins are consistent.
- Use the same color mapping for the same variables across multiple plots.

Validate & Iterate

- **Peer review**: show rough drafts to classmates: do they "get" the story without explanation?
- **Test in grayscale**: to verify that patterns and contrasts remain readable when printed without color

Break the rules **only** when doing so tells a clearer story. Good visualization is as much art as science!

Dataset: mpg

Dataset of car manufacturers and car models information:

https://rpubs.com/shailesh/mpg-exploration

This dataset provides fuel economy data from 1999 and 2008 for 38 popular models of cars. The dataset is shipped with *ggplot2* package.

Variable	Туре	Description	Details
manufacturer	string	car manufacturer	15 manufacturers
model	string	model name	38 models
displ	numeric	engine displacement in liters	1.6 - 7.0, median: 3.3
year	integer	year of manufacturing	1999, 2008
cyl		number of cylinders	4, 5, 6, 8
trans	string	type of transmission	automatic, manual (many sub types)
drv	string	drive type	f, r, 4, f=front wheel, r=rear wheel, 4=4 wheel
cty	integer	city mileage	miles per gallon
hwy	integer	highway mileage	miles per gallon
fl	string	fuel type	5 fuel types (diesel, petrol, electric, etc.)
class	string	vehicle class	7 types (compact, SUV, minivan etc.)

Dataset: mpg

Dataset of car manufacturers and car models information:

https://rpubs.com/shailesh/mpg-exploration

```
> head(mpg)
# A tibble: 6 \times 11
  manufacturer model displ year
                                     cyl trans
                                                    drv
                                                             cty
                                                                    hwy fl
                                                                              class
  <chr>>
                <chr> <dbl> <int> <int> <chr>
                                                     <chr> <int> <int> <chr> <chr>
1 audi
               a4
                        1.8 1999
                                       4 auto(15)
                                                              18
                                                                     29 p
                                                                              compact
2 audi
                        1.8
                             1999
                                       4 manual(m5) f
                                                                     29 p
               a4
                                                              21
                                                                              compact
3 audi
               a4
                        2
                             2008
                                       4 manual(m6) f
                                                              20
                                                                     31 p
                                                                              compact
                             2008
                                       4 auto(av)
                                                                     30 p
4 audi
                                                              21
               a4
                                                                              compact
                                                                     26 p
                        2.8
5 audi
                             1999
                                       6 auto(15)
                                                              16
                                                                              compact
               a4
                                                                     26 p
6 audi
                        2.8
                             1999
                                       6 manual(m5) f
                                                              18
               a4
                                                                              compact
```

Dataset: mpg

```
> str(mpg)
tibble [234 \times 11] (S3: tbl_df/tbl/data.frame)
$ manufacturer: chr [1:234] "audi" "audi" "audi" "audi" ...
              : chr [1:234] "a4" "a4" "a4" "a4" ...
$ model
              : num [1:234] 1.8 1.8 2 2 2.8 2.8 3.1 1.8 1.8 2 ...
$ displ
$ year
              : int [1:234] 1999 1999 2008 2008 1999 1999 2008 1999 1999 2008 ...
$ cyl
              : int [1:234] 4 4 4 4 6 6 6 4 4 4 ...
$ trans
              : chr [1:234] "auto(l5)" "manual(m5)" "manual(m6)" "auto(av)" ...
              : chr [1:234] "f" "f" "f" "f" ...
$ drv
              : int [1:234] 18 21 20 21 16 18 18 18 16 20 ...
$ cty
              : int [1:234] 29 29 31 30 26 26 27 26 25 28 ...
$ hwy
$ fl
              : chr [1:234] "p" "p" "p" "p" ...
$ class
              : chr [1:234] "compact" "compact" "compact" "compact" ...
```

Useful to understand the relationship between two variables

 Let's try to use it to learn the relationship between engine size (displ) and highway fuel efficiency (hwy)

```
ggplot(data = mpg) +
geom_point(mapping = aes(x = displ, y = hwy))
```


- Axis labels are not easy to interpret
- The units in which the variables are measured are unclear
- Axis font is very small
- Little space between axis labels and axis names
- Let's fix these issues...

• Code to reproduce this exercise is: w1-2-data-viz.R