Git, Emacs org-mode and mlflow: making applied machine learning research fully reproducible

An extension of Stanisic et al, 2015

Alex Seltmann 1,2

¹Institute of Applied Optic and Biophysics, Friedrich-Schiller University Jena, Max-Wien-Platz 1, 07743 Jena, Germany

²Leibniz-Institute of Photonic Technologies, Albert-Einstein Strasse 9, 07745 Jena, Germany

June 21, 2022

Git, org-mode and mlflow for reproducibility

Alex Seltmann Twitter @aseltmann aseltmann.github.io

Scope

Computational research life cycle

. .

10018

Org-mode Millow

D ... 1 ... 11 ... 10

Scope

Git, org-mode and mlflow for reproducibility

Alex Seltmann Twitter @aseltmann aseltmann.github.io

Scope

Computational research lif cycle

10018

Org-mode Miflow

Git

Reproducible Workflow

Individual exploration

- = single investiator tests idea, algorithm, question with small-scale dataset / simulation
- tools: Excel, Matlab, Mathematica, Sage, R, SPSS, ...

Git, org-mode and mlflow for reproducibility

Alex Seltmann Twitter @aseltmann aseltmann.github.io

Scope

Computational research life cycle

......

DIS

Org-mode

it

producible Workfl

Individual exploration

- = single investiator tests idea, algorithm, question with small-scale dataset / simulation
- · tools: Excel, Matlab, Mathematica, Sage, R, SPSS, ..

Collaboration

- = bring together complementary expertise from colleagues
- tools: email, VCS, Dropbox, Github, (paper-final-v2-REALLY-FINAL-john.doc)

Git, org-mode and mlflow for reproducibility

Alex Seltmann Twitter @aseltmann aseltmann.github.io

Scope

Computational research life cycle

ennitions: reproducibility

Ora-mode

Miflow

coucolon

cussion

^[1]Millman Pérez (2018)

Individual exploration

- = single investiator tests idea, algorithm, question with small-scale dataset / simulation
- · tools: Excel, Matlab, Mathematica, Sage, R. SPSS. ..

Collaboration

- = bring together complementary expertise from colleagues
- tools: email, VCS, Dropbox, Github, (paper-final-v2-REALLY-FINAL-john.doc

Production-scale execution

- = large data sets, complex simulations, supercomputers...
- tools: compiled code (C, C++, ...) and parallel computing libraries (MPI, Hadoop)

Git, org-mode and mlflow for reproducibility

Alex Seltmann Twitter @aseltmann aseltmann.github.io

Scope

Computational research life cycle

finitions: reproducibili

ools

Org-mode

it

producible Workflow

^[1]Millman Pérez (2018)

Individual exploration

- = single investiator tests idea, algorithm, question with small-scale dataset / simulation
- * tools: Event Matleh Mathematics Core D CDCC

Collaboration

- = bring together complementary expertise from colleagues
- tools: email, VCS, Dropbox, Github, (paper-final-v2-REALLY-FINAL-john.doc)

Production-scale execution

- = large data sets, complex simulations, supercomputers..
- tools: compiled code (C, C++, ...) and parallel computing libraries (MPI, Hadoop)

Publication & Education

- ullet = paper, internal report, visualization o share with students and colleagues, cycle starts again
- tools: LATEX, Google Docs, Word, PowerPoint

[1] Millman Pérez (2018)

Git, org-mode and mlflow for reproducibility

Alex Seltmann Twitter @aseltmann aseltmann.github.io

Scope

Computational research life cycle

initions: reproducibil

1018

g-mode

OW

Discussion

scussion

Git, org-mode and mlflow for reproducibility

Twitter @aseltmann aseltmann.github.io

Scone

Computational research life

nitions: reproducibil

ls

Org-mode

roducible Workflo

scussion

Individual exploration

Collaboration

•

Production-scale execution

Publication & Education

.

Goal: Use one setup for everything! Reduce manual data transfer!

^[1]Millman Pérez (2018)

What are we talking about?[2]

Methods reproducibility

- = get same results, use same data and tools
- topics: provide study protocols, reusable (meta)data, code, results, ...

Today: tools for methods reproducibility

Git, org-mode and mlflow for reproducibility

Alex Seltmann Twitter @aseltmann aseltmann.github.io

Scope

Computational research life

Definitions: reproducibility

nls

Org-mode

Miflow

...

lacusaion

Tools

Git, org-mode and mlflow for reproducibility

Alex Seltmann Twitter@aseltmann aseltmann.github.io

Scope

Computational research life cycle

Delinitions: reproducib

Tools

Miflow

Reproducible Workflow

for outlining, note-taking, spreadsheets, project planning, ...

Git, org-mode and mlflow for reproducibility

Alex Seltmann
Twitter @aseltmann
aseltmann.github.io

Scope

Computational research life cycle

0018

Org-mode

Reproducible Workfloy

- plain text-based fool for outlining, note-taking, spreadsheets, project planning, ...
- literate programming via notebook-like environment for >70 programming languages

```
File Edit Options Buffers Tools Org Tbl Text Help
* Working with source code
** Simple C++ example
#+name: demo
#+begin src cpp
#include <iostream>
int main() {
    std::cout << "You can write *and* execute code!":</pre>
    return 0:
#+end src
#+RESULTS: demo
: You can write *and* execute code!
** Reusing results, and mixing languages
#+begin src python :noweb ves
return "<<demo()>>"[::-1]
#+end src
#+RESULTS:
: !edoc etucexe *dna* etirw nac uoY
U:**- OrgBabelDemo.org All L18
                                 (Org +1)
```

Git, org-mode and mlflow for reproducibility

Alex Seltmann
Twitter @aseltmann
aseltmann.github.io

Scope

Computational research life cycle

Tools

Org-mode

Reproducible Workflow

Discussion

3]

- plain text-based fool for outlining, note-taking, spreadsheets, project planning....
- literate programming via notebook-like environment for >70 programming languages
- one-click publishing as HTML (or full-fledged modern website), LaTeX, ODT,

```
...
```

```
File Edit Options Buffers Tools Org Tbl Text Help
* Working with source code
** Simple C++ example
#+name: demo
#+begin src cpp
#include <iostream>
int main() {
    std::cout << "You can write *and* execute code!":</pre>
    return 0:
#+end src
#+RESULTS: demo
: You can write *and* execute code!
** Reusing results, and mixing languages
#+begin src python :noweb ves
return "<<demo()>>"[::-1]
#+end src
#+RESULTS:
: !edoc etucexe *dna* etirw nac uoY
U:**- OrgBabelDemo.org All L18
                                 (0rg +1)
```

Alex Seltmann
Twitter @aseltmann
aseltmann.github.io

Scone

Computational research life cycle

remittons. reproduci

Org-mode

Alflow

Reproducible Workflow

Discussion

3]

- plain text-based fool for outlining, note-taking, spreadsheets, project
- literate programming via notebook-like environment for >70 programming
- one-click publishing as HTML (or full-fledged modern website), LaTeX, ODT,

 seemless git compatibility

```
File Edit Options Buffers Tools Org Tbl Text Help
* Working with source code
** Simple C++ example
#+name: demo
#+begin src cpp
#include <iostream>
int main() {
    std::cout << "You can write *and* execute code!":</pre>
    return 0:
#+end src
#+RESULTS: demo
: You can write *and* execute code!
** Reusing results, and mixing languages
#+begin src python :noweb ves
return "<<demo()>>"[::-1]
#+end src
#+RESULTS:
: !edoc etucexe *dna* etirw nac uoY
U:**- OrgBabelDemo.org All L18
                                 (Org +1)
```

Alex Seltmann Twitter @aseltmann aseltmann.github.io

Scone

Computational research life cycle

Tools
Org-mode

it

Reproducible Workflow

What is Mlflow

 Tracking: API to log parameters, code, and results

Scenario 1: MLflow on the localhost

Git, org-mode and mlflow for reproducibility

Alex Seltmann Twitter@aseltmann aseltmann.github.io

[4]

What is Mlflow

- Tracking: API to log parameters, code, and results
- Projects: code packaging format for reproducible runs using Conda and Docker

```
name: My Project
conda env: my env.yaml
# Can have a docker env instead of a conda env, e.g.
# docker env:
    image: mlflow-docker-example
entry points:
 main:
    parameters:
      data file: path
      regularization: {type: float, default: 0.1}
    command: "python train.py -r {regularization} {data file}"
 validate:
    parameters:
      data file: path
    command: "python validate.py {data file}"
```

```
Git, org-mode and mlflow for reproducibility
```

Alex Seltmann Twitter @aseltmann aseltmann.github.io

Scope

Computational research life cycle

Org-mode Miflow

it

Reproducible Workflow

What is Mlflow

- Tracking: API to log parameters, code, and results
- Projects: code packaging format for reproducible runs using Conda and Docker
- Models: model packaging format and tools for deployment (from any ML library)

And its MLmodel file describes two flavors:

```
time_created: 2018-05-25T17:28:53.35

flavors:
    sklearn:
    sklearn_version: 0.19.1
    pickled_model: model.pkl
    python_function:
    loader_module: mlflow.sklearn
```

Alex Seltmann
Twitter @aseltmann
aseltmann.github.io

cone

computational research life ycle

ols

Mlflow

Git, org-mode and mlflow for reproducibility

 $[\]begin{tabular}{l} \begin{tabular}{l} \begin{tab$

Distributed Version Control with Git

[5]

Git, org-mode and mlflow for reproducibility

Alex Seltmann Twitter @aseltmann aseltmann.github.io

Scone

Computational research life cycle

ools

Org-mode Miflow

Git

producible Workflow

 $[\]label{eq:continuous} \begin{tabular}{l} \begin{t$

Reproducible Workflow

Git, org-mode and mlflow for reproducibility

Alex Seltmann Twitter@aseltmann aseltmann.github.io

Scope

Computational research lif cycle

Ora-m

Mlflow

Git

Reproducible Workflow

Motivation: bridge author-reader gap^[6]

^[6] Stanisic, L., Legrand, A., Danjean, V. (2015). An Effective Git And Org-Mode Based Workflow For Reproducible Research. ACM SIGOPS Operating Systems Review, 49(1), 61–70. https://doi.org/10/gfbx5x

Git, org-mode and mlflow for reproducibility

Alex Seltmann Twitter @aseltmann aseltmann.github.io

Scor

Computational research

ools

rg-mode

Reproducible Workflow

Org-mode and Git for Reproducible Research [7]

 data file organization: clear, coherent, hierarchical

```
data

— art-220620-first-article

                                          <- reproducible article
    — data-100101-third-party
                                          <- data from third party sources
   — exp-201231-simulate-data
                                          <- all (meta)data related to one experiment

— 201231-results

       — 210105-results
       — docs
       - plots
   — exp-210807-machine-learning
      exp-220120-test-experimental-data
                                          <- source code for use in this project

    analvsis

      experiment

    presentation

    processina

                                          <- make src a python module
       init .pv
 - tests
                                          <- ensure correctness of code
                                          <- reproducible environment
environment.yaml
LabBook.org
                                          <- reproducible notebook template
— LICENSE
                                          <- open license

    MLproject

                                          <- reproducible machine learning
```

Alex Seltmann Twitter @aseltmann aseltmann.github.io

Scope

Computational research life cycle

0018

Ilflow

Reproducible Workflow

^[7] Stanisic, L., Legrand, A., Danjean, V. (2015). An Effective Git And Org-Mode Based Workflow For Reproducible Research. ACM SIGOPS Operating Systems Review, 49(1), 61–70. https://doi.org/10/gfbx6x

Org-mode and Git for Reproducible Research [7]

- data file organization: clear, coherent, hierarchical
- git branching structure; version code, data, and results

Fig. 1. Different phases in git workflow

Alex Seltmann Twitter @aseltmann aseltmann.github.io

Scone

Computational research life cycle

rg-mode

Git

Reproducible Workflow

Git, org-mode and mlflow for reproducibility

^[7] Stanisic, L., Legrand, A., Danjean, V. (2015). An Effective Git And Org-Mode Based Workflow For Reproducible Research. ACM SIGOPS Operating Systems Review, 49(1), 61–70. https://doi.org/10/gfbx5x

Org-mode and Git for Reproducible Research^[7]

- data file organization: clear, coherent, hierarchical
- git branching structure; version code, data, and results
- org-mode LabBook: key analysis details

```
File Edit Options Buffers Tools Org Tbl Text Help
   1 a × 1 5 × 6 a
* Working with source code
** Simple C++ example
#+name: demo
#+begin src cpp
#include <iostream>
int main() {
    std::cout << "You can write *and* execute code!";</pre>
    return 0:
#+end src
#+RESILLTS: demo
. You can write *and* execute code!
** Reusing results, and mixing languages
#+begin_src python :noweb ves
return "<<demo()>>"[::-1]
#+end src
#+RESULTS:
· ledoc etuceve *dna* etirw nac uoV
U:**- OrgBabelDemo.org All L18
                               (Org +1)
```

Git, org-mode and mlflow for reproducibility

Alex Seltmann Twitter @aseltmann aseltmann.github.io

Scope Computational research life cycle

Org-mode

Reproducible Workflow

^[7] Stanisic, L., Legrand, A., Danjean, V. (2015). An Effective Git And Org-Mode Based Workflow For Reproducible Research. ACM SIGOPS Operating Systems Review, 49(1), 61–70. https://doi.org/10/gfbx5x

Workflow Extension: mlflow + more

 mlflow: open source tool, that covers entire ML lifecycle and bridges the gap from ML research to application (e.g. model serving)

Git, org-mode and mlflow for reproducibility

Alex Seltmann Twitter @aseltmann aseltmann.github.io

Scone

Computational research life cycle

Tools

Org-mode

Cit

Reproducible Workflow

Workflow Extension: mlflow + more

- mlflow: open source tool, that covers entire ML lifecycle and bridges the gap from ML research to application (e.g. model serving)
- more practices adapted from open source development: single-click dependency setup (e.g. Docker), automated unit testing (e.g. tox), automated code documentation (e.g. sphinx)

Git, org-mode and mlflow for reproducibility

Alex Seltmann Twitter@aseltmann aseltmann.github.io

Reproducible Workflow

Workflow Extension: mlflow + more

- mlflow: open source tool, that covers entire ML lifecycle and bridges the gap from ML research to application (e.g. model serving)
- more practices adapted from open source development: single-click dependency setup (e.g. Docker), automated unit testing (e.g. tox), automated code documentation (e.g. sphinx)
- leveraging org-mode single-click publishing: host website documenting every step of your experiments (Open Notebook Science), easiest way to share experimental results including provenance

Git, org-mode and mlflow for reproducibility

Alex Seltmann Twitter@aseltmann aseltmann.github.io

Scope

Computational research life cycle

ools

Org-mode

Reproducible Workflow

Discussion

Git, org-mode and mlflow for reproducibility

Alex Seltmann Twitter @aseltmann aseltmann.github.io

Scope

Computational research lif cycle

Delinitions: reprodu

10018

Org-mode Mlflow

Git
Reproducible Workflow

Pros and Cons, Alternative Tools

Pros

- combination of well-known, leightweight, open-source technologies
- facilitates reproducibility without taking away too much flexibility

Cons

- some conventions not commonly used (git branching model)
- steep learning curve (org-mode preferably with Emacs)
- large files (possible solutions: git lfs, git-annex)

Git, org-mode and mlflow for reproducibility

Alex Seltmann Twitter@aseltmann aseltmann.github.io

Scone

Computational research life cycle

0015

Jrg-mode Alflow

Reproducible Workflow

Pros and Cons, Alternative Tools

Pros

- combination of well-known, leightweight, open-source technologies
- facilitates reproducibility without taking away too much flexibility

Cons

- some conventions not commonly used (git branching model)
- steep learning curve (org-mode preferably with Emacs)
- large files (possible solutions: git lfs, git-annex)

Alternatives

- jupyter notebooks instead org-mode more commonly used, more intuitive, but not plain text (git integration), not the same flexbility
 - R + knitr for literal programming

Git, org-mode and mlflow for reproducibility

Alex Seltmann Twitter @aseltmann aseltmann.github.io

Scope

Computational research life cycle

.

0018

WIIIOW

eproducible Workflo

Questions?

Git, org-mode and mlflow for reproducibility

Alex Seltmann Twitter @aseltmann aseltmann.github.io

Scor

Computational research li cycle

efinitions: reproducibil

Tools

Org-mode Miflow

Git

Reproducible Workflow

Acknowledgements

Thank you!

This work is licensed under a Creative Commons. Attribution 4.0 International License.

Alex Seltmann Twitter@aseltmann aseltmann.github.io

Extra: Resources

- from comment after talk: DataLad as alternative to git
- Open online course to learn git and org-mode

[8][9]

Git, org-mode and mlflow for reproducibility

Alex Seltmann Twitter @aseltmann aseltmann.github.io

^[8] http://handbook.datalad.org/en/latest/index.html#

^[9] https://www.fun-mooc.fr/en/courses/reproducible-research-methodological-principles-transparent-scie/

Extra: Mlflow UI

				Parameters		Metrics		
Date	User	Source	Version	alpha	I1_ratio	mae	r2	rmse
2018-06-04 23:00:10	mlflow	train.py	05e956	1	1	0.649	0.04	0.862
2018-06-04 23:00:10	mlflow	train.py	05e956	1	0.5	0.648	0.046	0.859
2018-06-04 23:00:10	mlflow	train.py	05e956	1	0.2	0.628	0.125	0.823
2018-06-04 23:00:09	mlflow	train.py	05e956	1	0	0.619	0.176	0.799
2018-06-04 23:00:09	mlflow	train.py	05e956	0.5	1	0.648	0.046	0.859
2018-06-04 23:00:09	mlflow	train.py	05e956	0.5	0.5	0.628	0.127	0.822
2018-06-04 23:00:09	mlflow	train.py	05e956	0.5	0.2	0.621	0.171	0.801
2018-06-04 23:00:09	mlflow	train.py	05e956	0.5	0	0.615	0.199	0.787
2018-06-04 23:00:09	mlflow	train.py	05e956	0	1	0.578	0.288	0.742
2018-06-04 23:00:09	mlflow	train.py	05e956	0	0.5	0.578	0.288	0.742
2018-06-04 23:00:09	mlflow	train.py	05e956	0	0.2	0.578	0.288	0.742
2018-06-04 23:00:08	mlflow	train.py	05e956	0	0	0.578	0.288	0.742

[10]

Git, org-mode and mlflow for reproducibility

Alex Seltmann Twitter@aseltmann aseltmann.github.io

^[10] From MLflow documentation, CC BY 4.0, https://mlflow.org/docs/latest/projects.html

Extra: fields of Open Science covered

This work by Peter Baumgartner is licensed under a
→ Creative Commons Attribution-ShareAlike 4.0 International License.

Git, org-mode and mlflow for reproducibility

Alex Seltmann Twitter @aseltmann aseltmann.github.io

Extra: other definitions of reproducibility^[11]

Methods reproducibility

- = get same results, use same data and tools
- · topics: provide study protocols, reusable (meta)data, code, results, ...

Results reproducibility = replication

- = get similar results, use similar procedures and tools (maybe different data)
- topics: statistical significance, cumulative evidential weight, heterogeneity tests, effect sizes...

Inferential reproducibility

- = get same scientific conclusions from independent study or re-analysis of the data, use different tools and methods
- topics: bayesian perspectives, avoiding multiplicity, HARKing, p-hacking