LE MODELE RELATIONNEL

Inventé par T. Codd (IBM Recherche)
Publication ACM 1970

- 1. Concepts pour la description
- 2. Concepts pour la manipulation
- 3. Concepts additionnels

1. CONCEPTS DESCRIPTIFS

 Ensemble de concepts pour formaliser la description d'articles de fichiers plats

- Modèle standardisé mais extensible
 - Introduction de types de données variés (SQL2)
 - Introduction de la dynamique (produits, SQL3)
 - Introduction des objets (SQL3)

Domaine

- ENSEMBLE DE VALEURS
- Exemples:
 - ENTIER
 - REEL
 - CHAINES DE CARACTERES
 - EUROS
 - SALAIRE = {4 000..100 000}
 - COULEUR= {VERT, ROUGE, JAUNE}
 - POINT = {(X:REEL,Y:REEL)}
 - TRIANGLE = {(P1:POINT,P2:POINT,P3:POINT)}

Produit cartésien

- LE PRODUIT CARTESIEN D1x D2x ... x Dn EST L'ENSEMBLE DES TUPLES (N-UPLETS) <V1,V2,....Vn> TELS QUE Vi∈ Di
- Exemple:
 - D1 = {Vert,Jaune,Rouge}
 - D2 = {Vrai, Faux}

Vert Vrai Vert Faux Jaune Vrai Jaune Faux Rouge Vrai Rouge Faux

Relation

 SOUS-ENSEMBLE DU PRODUIT CARTESIEN D'UNE LISTE DE DOMAINES

Une relation est caractérisée par un nom

- Exemple:
 - -D1 = COULEUR
 - -D2 = BOOLEEN

CoulVins	Coul	Choix
	Vert	Faux
	Jaune	Vrai
	Rouge	Vrai

Attribut

VISION TABULAIRE DU RELATIONNEL

- Une relation est une table à deux dimensions
- Une ligne est un tuple
- Un nom est associé à chaque colonne afin de la repérer indépendamment de son numéro d'ordre

ATTRIBUT

- nom donné à une colonne d'une relation
- prend ses valeurs dans un domaine

Graphe d'une relation

 Relation binaire R(A1,A2)

 Une relation n-aire est une généralisation à n

DOM(A1)

DOM(A2)

Exemple de relation

VINS	CRU	MILL	REGION	COL	ULEUR
	CHENAS	1983	BEAL	JJOLAIS	ROUGE
	TOKAY	1980	ALSA	CE	BLANC
	TAVEL	1986	6 RHON	ΝE	ROSE
	CHABLIS	1986	6 BOUR	GOGNE	BLANC
	ST-EMILIO	ON 1987	BORDE	LAIS	ROUGE

Clé

- GROUPE D'ATTRIBUTS MINIMUM QUI DETERMINE UN TUPLE UNIQUE DANS UNE RELATION
- Exemples:
 - {CRU,MILLESIME} DANS VINS ==> NV
 - NSS DANS PERSONNE
- CONTRAINTE D'ENTITE
 - Toute relation doit posséder au moins une clé documentée

Schéma

- NOM DE LA RELATION, LISTE DES ATTRIBUTS AVEC DOMAINES, ET LISTE DES CLES D'UNE RELATION
- Exemple:
 - VINS(<u>NV</u>: <u>Int</u>, CRU:texte, MILL:entier, DEGRE: Réel, REGION:texte)
 - Par convention, la clé primaire est soulignée
- INTENTION ET EXTENSION
 - Un schéma de relation définit l'intention de la relation
 - Une instance de table représente une extension de la relation
- SCHEMA D'UNE BD RELATIONNELLE
 - C'est l'ensemble des schémas des relations composantes

10

Clé Etrangère

- GROUPE D'ATTRIBUTS DEVANT APPARAITRE COMME CLE DANS UNE AUTRE RELATION
- Les clés étrangères définissent les contraintes d'intégrité référentielles
 - Lors d'une insertion, la valeur des attributs doit exister dans la relation référencée
 - Lors d'une suppression dans la relation référencée les tuples référençant doivent disparaître
 - Elles correspondent aux liens entité-association obligatoires

11

Exemple de Schéma

EXEMPLE

BUVEURS (NB, NOM, PRENOM, TYPE)

VINS (NV, CRU, MILL, DEGRE)
ABUS (NB, NV, DATE, QUANTITE)

CLES ETRANGERES

ABUS.NV REFERENCE VINS.NV ABUS.NB REFERENCE BUVEURS.NB

Diagramme des Liens

Concepts Descriptifs: Bilan

- RELATION ou TABLE
- ATTRIBUT ou COLONNE
- DOMAINE ou TYPE
- CLE
- CLE ETRANGERE

Questions?

Synthèse : Create Table

- CREATION DES TABLES EN SQL
 - CREATE TABLE < relation name >
 - (<attribute definition>+)
 - [{PRIMARY KEY | UNIQUE} (<attribute name>+)]
- avec:
 - <attribute definition> ::= <attribute name> <data type>
 - [NOT NULL [{UNIQUE | PRIMARY KEY}]]
- Exemple:
 - CREATE TABLE VINS
 - (NV INTEGER PRIMARY KEY
 - CRU CHAR VARYING
 - MILL INTEGER NOT NULL,
 - DEGRE FIXED 5.2)

2. CONCEPTS MANIPULATOIRES

- Un ensemble d'opérations formelles
 - Algèbre relationnelle
- Ces opérations permettent d'exprimer toutes les requêtes sous forme d'expressions algébriques
- Elles sont la base du langage SQL
 - Paraphrasage en anglais des expressions relationnelles
 - Origine SEQUEL
- Ces opérations se généralisent à l'objet
 - Algèbre d'objets complexes

Opérations Ensemblistes

- Opérations pour des relations de même schéma
 - UNION notée ∪
 - INTERSECTION notée ∩
 - DIFFERENCE notée
- Opérations binaires
 - Relation X Relation --> Relation

- Union externe pour des relations de schémas différents
- Ramener au même schéma avec des valeurs nulles

ion

Projection

 π (VINS)

 Elimination desvins attributs non désirés et suppression des tuples en double

Cru	Mill		Region	Qualite	
VOLNAY	1983	BOI	JRGOGNE	Α	
VOLNAY	1979	BO	JRGOGNE	В	
CHENAS	1983	BE	AUJOLAIS	Α	
JULIENAS	1986	BE	AUJOLAIS	С	
π	Cru,Rég	gion			

Relation ->
 Relation notée:

 $\pi_{A1,A2,...Ap}$ (R)

Cru	Region
VOLNAY	BOURGOGNE
CHENAS	BEAUJOLAIS
JULIENAS	BEAUJOLAIS

Restriction

- Obtention des tuples de R satisfaisant un critère Q
- Relation -> Relation, notée $\sigma_Q(R)$
- Q est le critère de qualification de la forme :
 - Ai θ Valeur
 - $-\theta = \{ =, <, >=, >, <=, != \}$

• Il est possible de réaliser des "ou" (union) et des "et" (intersection) de critères simples

19

Exemple de Restriction

Cru	Mill	Région	Qualité
VOLNAY	1983	BOURGOGNE	Α
VOLNAY	1979	BOURGOGNE	В
CHENAS	1983	BEAUJOLAIS	Α
JULIENAS	1986	BEAUJOLAIS	С
		1	
σMILL:	>1983		
	VOLNAY VOLNAY CHENAS JULIENAS	VOLNAY 1983 VOLNAY 1979	VOLNAY 1983 BOURGOGNE VOLNAY 1979 BOURGOGNE CHENAS 1983 BEAUJOLAIS JULIENAS 1986 BEAUJOLAIS

VINS	Cru	Mill	Région	Qualité
	JULIENAS	1986	BEAUJOLAIS	С

Jointure

- Composition des deux relations sur un domaine commun
- Relation X Relation -> Relation
 - notée
- Critère de jointure
 Attributs de même nom égaux :
 - Attribut = Attribut
 - Jointure naturelle
 - Comparaison d'attributs :
 - Attribut1
 ⊕ Attribut2
 - Théta-jointure

Exemple de Jointure

	VINS		Cru	Mill	Qualité
			VOLNAY	1983	Α
			VOLNAY	1979	В
/ I			CHABLIS	1983	Α
\times			JULIENAS	S 1986	С
ו	LOCALISATION	Cru	F	Région	QualMoy
		VO	LNAY E) Ouragano	
		• • • •		Bourgogne	Α
				Bourgogne	A
		СН	ABLIS E	0 0	_
		СН	ABLIS E	Bourgogne	Α

VINSREG	Cru	Mill	Qualité	Région	QualMoy	,			
			VOLNAY	′ 1983	Α	Bourg	jogne	Α	
			VOLNAY	1979	В	Bourg	jogne	Α	
			CHABLIS	S 1983	Α	Bourg	jogne	Α	
I			CHABLIS	S 1983	Α	Califo	rnie	B22	

Complétude

- L'algèbre relationnelle est complète
 - Les cinq (sept) opérations de base permettent de formaliser sous forme d'expressions toutes les questions que l'on peut poser avec la logique du premier ordre (sans fonction).

Exemple :

Nom et prénom des buveurs de volnay 1988 ?
 PROJECT (NOM, PRENOM,
 RESTRICT(CRU="VOLNAY" et MILL =1988,
 JOIN(VINS, ABUS, BUVEURS)))

SQL

- Une requête SQL est un paraphrasage d'une expression de l'algèbre relationnelle en anglais
- Requête élémentaire :

```
SELECT A1, A2, ...Ap
FROM R1, R2, ...Rk
WHERE Q [{UNION |INTERSECT | EXCEPT } ... ]
```

• Sémantique du bloc select :

```
PROJECT A1,A2,...Ap (

RESTRICT Q (

PRODUIT (R1, R2, ..., Rk)))
```

3. CONCEPTS ADDITIONNELS

- Ensemble de concepts pour :
 - Etendre les fonctionnalités de manipulation
 - Décrire les règles d'évolution des données
 - Supporter des objets complexes (SQL3)
- Introduits progressivement dans le modèle :
 - Complique parfois le modèle
 - Standardisés au niveau de SQL3 (1999)
 - Des extensions multiples ...

Fonction et Agrégat

FONCTION

- Fonction de calcul en ligne appliquée sur un ou plusieurs attributs
- Exemple : DEGRE * QUANTITE / 100

AGREGAT

 Partitionnement horizontal d'une relation selon les valeurs d'un groupe d'attributs, suivi d'un regroupement par une fonction de calcul en colonne (SUM, MIN, MAX, AVG, COUNT, ...)

Exemples d'agrégats

Vue

- Relation d'un schéma externe déduite des relations de la base par une question
- Exemple : GrosBuveurs
 - CREATE VIEW GrosBuveurs AS
 - SELECT NB, Nom, Prénom,
 - FROM Buveurs, Abus
 - WHERE Buveurs.NB = Abus.NB and Abus.Quantité > 100
- Calcul de la vue
 - Une vue est une fenêtre dynamique sur la BD et est recalculée à chaque accès.
 - Une vue peut être matérialisée (vue concrète).

Déclencheur (Trigger)

- Action base de données déclenchée suite à l'apparition d'un événement particulier
- Forme:
 - {BEFORE | AFTER} <événement> THEN <action>
 - Un événement peut être :
 - une opération sur une table (début ou fin)
 - un événement externe (heure, appel, etc.)
 - Une action peut être :
 - une requête BD (mise à jour)
 - Une annulation (abort) de transaction
 - l'appel à une procédure cataloguée

Le Relationnel

29

Déclencheur avec condition (Règle)

- Il est possible d'ajouter une condition afin de déclencher l'action seulement quand la condition est vérifiée
 - Une condition est une qualification portant sur la base.

Exemples :

BEFORE UPDATE EMPLOYE

IF SALAIRE > 100.000

THEN ABORT TRANSACTION

4. CONCLUSION

- Un ensemble de concepts bien compris et bien formalisés
- Un modèle unique, riche et standardisé
 - intégration des BD actives
 - intégration des BD objets
- Un formalisme qui s'étend plutôt bien
 - algèbre d'objets
- Un langage associé défini à plusieurs niveaux
 - SQL1, 2, 3