

Let's see if you can use the tactics we've learnt to prove $x+1=y+1 \Longrightarrow$

 $y+1 \Longrightarrow x=y$. Try this one by yourself; if you need help then click on

"Show more

help!".

Jd:

Level completed!

intro h
apply succ_i
repeat rw [s
exact h

Objects:

y x : ℕ

Assumptions:

h: succ x = y + 1

Goal:

x = y

Active Goal

Objects:

y x: ℕ

Assumptions:

h: succ x = succ y

Goal:

x = y

apply succ_inj at h

Retry

Active Goal

Objects:

y x: ℕ

Assumptions:

h: x = y

Goal:

x = y

exact h Retry

level completed! 🞉

succ_inj ×

(a b : N) (h
: MyNat.succ
a =
MyNat.succ b)

: a = b

Statement

If a and b are numbers, then succ_inj a b is the proof that $(\operatorname{succ}(a) = \operatorname{succ}(b)) \implies a = b$.

More technical details

There are other ways to think about succ_inj.

You can think about $succ_inj$ itself as a function which takes two numbers a and b as input, and outputs a proof of $(succ(a) = succ(b)) \implies$