

Contents

데이터 수집 및 전처리 01 프로젝트 소개 02 03 EDA 패션 e커머스 현황 데이터 정의 프로젝트 주제 웹 크롤링 리뷰감성분석 파생변수 생성 데이터 전처리 04 모델 학습과 평가 05 결론 OLS 새로운 제품에 대한 예측 (기대효과) Multiple Regerssion + Lasso 결론 및 결과

lesson & learned

Lasso LGBM

XGBoost

모델 평가 결과

MUSINSA 2024.01

1. 프로젝트 소개

한국 e커머스 내 무신사의 위치

- 1. 국내 e커머스 시장은 5년 이상 꾸준히 성장세
- 2. 그 중 패션 분야에서 트렌드로 자리잡은 무신사

성장하는 시장규모

- 1. 220조 규모의 온라인 쇼핑시장
- 2. 팬데믹 상황에서도 꾸준한 성장

3개월 이내 사용경험

- I. 소비자 대상 3개월 설문
- 2. 높아진 무신사의 비율

실제 설치경험

- I. 사용자 대상 실제 설치 경험
- 2. 가장 높은 비율의 무신사

1

2

3

4

66

무신사의 제품 정보를 크롤링하여, 제품의 1년 누적 판매량을 예측해 보자

"

2. 데이터 수집 및 전처리

Steps

1. 수집 데이터 정의

1. 1) 모델링에 사용할 피쳐가 될 제품 데이터 종류 정의

Features	Туре	Example
상위 카테고리	String	바지
하위 카테고리	String	데님 팬츠(토피)
아이템 품번	String	T3F-HWWDPT204VI
아이템 이름	String	헤이즈 워시드 와이드…
한정판매(숨겨두기)	String	T/F
단독판매(숨겨두기)	String	T/F
타겟 성별	String	남성
구매 성별	String	남성
구매 나이	INT	19~28세
1개월 조회수	INT	13.5만 회
좋아요 수	INT	25,640
가격(회원가 기준)	INT	44,850
할인률(회원가 기준 상시)	INT	35
배송정보	INT	3(일)
평점	Float	4.9
후기 수	INT	1,847
1년 누적 판매량	INT	1.1만개 이상

1. 수집 데이터 정의

1. 2) 리뷰감성분석점수 파생변수 생성을 위한 데이터 종류 정의

Features	Туре	Example
아이템 품번	String	T3F-HWWDPT204VI
아이템 이름	String	헤이즈 워시드 와이드…
유저 ID	String	뉴비_29b21242
유저 평점	Float	5.0
유저 리뷰	String	최고예요 ㄷㄷ…

리뷰감성분석점수(score) 파생변수 생성

1

2

3

4

2. 웹크롤링

- 1. 상품 데이터 크롤링
 - 대분류가 상의, 바지, 아우터인 카테고리의 데이터 크롤링 진행
 - 무신사 추천순으로 상의, 바지, 아우터 카테고리별로 총 8000여개 수집

8	major_category	middle_category	name	number	linit	exclusive	target_gende	r buy_gen	nder	buy_age	view	like	price	discount_rate	delivery_date	rating	review	buy
0	상의	셔츠/블라우스	오버사이즈 16골 에센셜 코 듀로이 셔츠 블랙	22FWGS28BK					0.0	('29~33세', 0)	1200.0	493	39800.0	20	19.0	4.6	36	50.0
1	상의	니트/스웨터	TD5-SW01 램스울 라운드 니 트-만다린오렌지	TD5-SW01_MAO					0.0	('29~33세', 0)	4900.0	650	53550.0	10	5.0	4.9	61	200.0
2	상의	후드 티셔츠	[SET UP] PPP 플라워 후드 셋 업_멜란지 그레이	KBCS1TH003MGKBCS1PL003MGKBCS1PS003MG					1.0	('19~23세', 0)	3600.0	2536	49900.0	49	5.0	4.8	41	150.0
	상의	후드 티셔츠	TIE DYE 후드티 Olive Green	CTTZPHD01UG4					0.0	('40세~', 0)	1000.0	569	19800.0	80	5.0	4.8	62	150.0
4	상의	긴소매 티셔츠	essential turtleneck logo top - pink	BT23WTS002PIKF					1.0	('24~28세', 0)	11000.0	2561	43000.0		28.0	4.8	34	100.0
8043	아우터	숏패딩/숏헤비 아우 터	숏 미니멀 덕다운 패딩 블랙	3001					0.0	('29~33세', 0)	3300.0	2028	238400.0	20	7.0	4.8	87	100.0
8044	아우터	아노락 재킷	Pocket Tidy Hood Anorak H7 Navy/Green	409					1.0	('34~39세', 0)	400.0	368	53000.0	40	5.0	5.0	22	50.0
8045	스포츠/용품	아우터	아웃런 더 스톰 재킷 1376794-002	1376794-002					0.0	('24~28세', 0)	1100.0	228	129000.0		5.0	5.0	37	50.0
8046	아우터	레더/라이더스 재킷	비건 레더 싱글 카 코트 (블 랙)	CXC2JK06K-BLK				2 1	NaN	('29~33세', 0)	1000.0	500	175500.0	10	5.0	4.8	20	NaN
8047	아우터	패딩 베스트	컴포트 베스트_BROWN	BR				0 1	NaN	('24~28세', 0)	1700.0	154	193000.0		5.0	4.9	25	NaN
8048 ro	ws × 17 columns																	

3

4

2. 웹크롤링

2. 리뷰 데이터 크롤링

- 수집한 각 상품별 리뷰 데이터 데이터 크롤링 진행
- 각 상품 별 스타일/이미지/일반 각각 최대 15개의 리뷰 수집
- 총 180,000여개 수집

	product_names	product_i ds	user_names	user_ratings	user_reviews
0	오버사이즈 16골 에센셜 코듀로이 셔츠 블랙	22FWGS28BK	킴오복	80	깔끔하고 입기 편안해요 손이 자주가는 편한 느낌
1	오버사이즈 16골 에센셜 코듀로이 셔츠 블랙	22FWGS28BK	web	100	오버한 사이즈고 입으면 더 예쁩니다. 부드럽고 적당한 두께감이라 겨울에 아주 잘입을
2	오버사이즈 16골 에센셜 코듀로이 셔츠 블랙	22FWGS28BK	퓨블릭a.	100	많이 길고 오버할 줄 알았는데 그렇지 않아서 좋구여 예쁩니다. 다른 색깔도 살듯
3	오버사이즈 16골 에센셜 코듀로이 셔츠 블랙	22FWGS28BK	YANGMAL2	80	굿굿 생각한거보다 이쁘네영 자주 손이가네요 추천합니다
4	오버사이즈 16골 에센셜 코듀로이 셔츠 블랙	22FWGS28BK		100	살짝 얇은 원단이 아쉽지만 전체적으로 가격을 뛰어 넘는 품질입니다.
179870	UNISEX Vegan Leather Goose-Down Puffer Blouson	MS22FWUJK01BK	뉴비_a5e777a1e703	100	굳~~!!!아주아주이쁘고좋아여~~~이브랜드 옷을참잘만드네여
179871	UNISEX Vegan Leather Goose-Down Puffer Blouson	MS22FWUJK01BK	GoodLuck_DK	100	불프 할인으로 좋은 가격에 샀습니다. 생각 이상으로 따듯하고 예뻐요!!
179872	UNISEX Vegan Leather Goose-Down Puffer Blouson	MS22FWUJK01BK	배넷	100	오늘따라 좀 섹.시하고 싶다 싶을때 입으면 좋을것같아요
179873	UNISEX Vegan Leather Goose-Down Puffer Blouson	MS22FWUJK01BK	3335	100	안에 두꺼운 옷은 못 입고 티 두개 레이어드나 두껍지 않은 니트정도만 입을 수 있는
179874	UNISEX Vegan Leather Goose-Down Puffer Blouson	MS22FWUJK01BK	개짖는소리좀안나게하라	100	이전부터 눈여겨봤던 패딩인데블프 +랜덤쿠폰으러 거의18만원에 구매했구요 디테일 핏

- 1. 무신사에서 학습용 리뷰 데이터 약 2만 건을 추가 수집
 - pos, neu, neg 3가지 클래스를 골고루 수집하기 위해 '평점 높은 순', '평점 낮은 순'필터 이용
 - 중복 제거
- 2. 지도 학습 진행을 위해 user_rating 기준으로 label 부여
 - 80점 이상이면 'pos', 60점이면 'neu', else 'neg'

1

2

3

4

- 3. 1) 한국어 분석을 위해 Okt().pos()를 이용해 형태소별 토큰화
 - 한국어의 경우 동음이의어 구별을 위해 품사를 함께 사용하면 분석 정확도가 향상됨
 - stopwords를 지정하여 사용

	product_names	product_ids	user_names	user_ratings	user_reviews	label	token
0	[기모버전추가]시그니처 오버핏 맨투맨(4col)	P00000NE	뉴비_cc4a349fa2d6	100	색상무난하고 기본스타일의 맨투맨입니다편해요	pos	[색상/Noun, 무난/Noun, 기/Modifier, 본/Modifier, 스타일
1	[기모버전추가]시그니처 오버핏 맨투맨(4col)	P00000NE	은비파파	100	기모인줄 알고 구입했는데 기모가 아니네요. 그럼에도 두께감도있고 기모가 아니라 부해	pos	[기모/Noun, 인/Josa, 줄/Noun, 알/Noun, 고/Josa, 구입/N
2	[기모버전추가]시그니처 오버핏 맨투맨(4col)	P00000NE	거누임니닷	100	옷 색감이 딱 생각한거라 너무 좋아요 추천합니다!	pos	[옷/Noun, 색감/Noun, 딱/Adverb, 생각/Noun, 한/Determi

stopwords =

['의/Josa','가/Josa','이/Josa','은/Josa','들/Josa','는/Josa','좀/Noun','강/Noun','과/Josa','도/Josa','를/Josa','의로/Josa','에/Josa','와/Josa','한/Noun','하다 /Verb','을/Josa', '에서/Josa','에게/Josa', '하고/Josa', '이다/Verb', './Punctuation'] 1

2

3

4

- 3. 2) 등장 빈도수가 낮은 토큰 정리
 - threshold = 3
 - 등장 빈도가 threshold 미만인 희귀 단어 조사
 - 희귀 단어의 수는 많지만, 훈련 데이터에서 희귀 단어 등장 빈도 비율은 매우 적은 수치인 2.35%
 - 등장 빈도가 3회 미만 단어들은 제거

```
ko.vocab()
```

'핏/Noun': 3597, '사이즈/Noun': 3416, '예쁘다/Adjective': 3329, '이다/Adjective': 3305, ...})

단어 집합(vocabulary)의 크기: 11359

등장 빈도가 2번 이하인 희귀 단어의 수: 6560

단어 집합에서 희귀 단어의 비율: 57.75156263755612

전체 등장 빈도에서 희귀 단어 등장 빈도 비율: 2.352789995385541

1

2

3

4

4. TfidfVectorize와 Oversampling

- 토큰을 하나의 text로 합치고 TfidfVectorize 진행
- 클래스 간 비율 차이가 큰 것을 보완하기 위해 학습데이터에 SMOTE Oversampling 진행

X_train_vectorized.shape	(15770, 3831)
y_train.shape	(15770,)
X_train_vectorized_over.shape	(39231, 3831)
y_train_over.shape	(39231,)

2

3

4

5. 1) 모델 학습과 성능 평가

- MultinomialNB, LightGBMClassifier, LogisticRegression 학습 후 성능 평가
- 모델 별로 Precision과 Recall에서 큰 차이가 없기 때문에 Accuracy가 가장 높은 LightGBMClassifier 모델 채택

	model_names	Accuracy_score	Precision	Recall	F1
0	MultinomialNB	0.7208	0.5276	0.6087	0.5472
1	LightGBMClassifier	0.8428	0.6179	0.5244	0.5540
2	LogisticRegression	0.7446	0.5303	0.6095	0.5552

5. 2) 변수화

- 실제 제품 리뷰를 위 LightGBMClassifier를 이용해 예측값 도출
- 'pos'는 1, 'neu'는 0.5, 'neg'는 0으로 치환하여 제품별 리뷰스코어(score) 파생변수 생성 및 추가

4. 데이터 전처리

1. feature별 NaN값 처리

	Feature	NaN값 처리	처리 근거
0	buy	- 0 - drop()	● 평점이 없고 리뷰수가 '0'이어도, 조회수가 200 이하인 상품: 정말 판매가 이루어지지 않은 제품이기 때문에 buy가 없는 것으로 판단하여 0 처리 ● 그 외 판매량의 NaN값은 삭제(drop)
1	buy_gender	- target_gender 값 사용	● buy_gender 칼럼은 구매 성별, target_gender 칼럼은 상품 타겟 성별을 의미 ● 상품 생산 시 타겟으로 한 성별이 구매에 가장 큰 영향을 줄 것이라고 봄
2	delivery_d ate	- 5(median)	 해당 컬럼의 통계량 확인 max값이 60, mean 5.6, median 5.0으로 이상치를 제거하면 평균이 감소할 것으로 예상 중앙값인 5로 처리
3	rating	- 0 - 4.8(median)	● buy 값이 '0'이 아니면서 rating이 '0'인 값: 중앙값 4.8점 처리 ● buy 값이 '0'이 면서 rating이 '0'인 값: 0 처리
4	view	- RandomforestRe gressor 적용	 RandomForestRegressor 모델을 이용한 view 예측값 사용 여러가지 파라미터 조정 결과 Best r2_Score: 0.47624328080184863 Best trial parameter {'n_estimators': 281, 'max_depth': 20, 'min_samples_split': 5, 'min_samples_leaf': 1, 'max_features': 0.8499303073699949}

데이터 수집 및 전처리_데이터 전처리

4. 데이터 전처리

2. 논리적 이상치 제거

리뷰수(review)가 판매량(buy)보다 많은 경우
 웹에서 표기가 잘못된 데이터는 고쳐주되
 그렇지 않은 데이터들에 한에서 제거를 진행하였음

3

4

4. 데이터 전처리

3. buy_age 범주형 데이터 맵핑

- 해당 상품을 가장 많이 구매한 연령대를 나타내는 buy_age의 값
- 동률이 아닐 경우 ('나이구간', 0)이고 동률일 경우 ('나이구간', '나이구간')으로 수집
- buy_age의 경우 동률인 경우가 있기 때문에 buy_age1, buy_age2로 컬럼을 나눔
- 범위를 0(NaN),1,2,3,4,5,6으로 구분지어주었음

	buy_age	buy_age1	buy_age2
0	('19~23세', 0)	2	0
1	('19~23세', '24~28세')	2	3
2	('29~33세', 0)	3	0

1

2

3

4

MUSINSA 2024.01

1. 데이터 분포

- feature별 값의 단위 차이가 크다.
- 모델링을 위해 스케일러 또는 로그 변환 등의 처리가 필요할 수 있다.
- view 있는 이상치를 확인할 수 있으며, 사분위수들을 초과하는 값이 많이 보이기 때문에 IQR을 이용한 이상치 정리가 필요할 수 있다.

1

2

3

4

2. 상관관계

- target 데이터인 누적 판매량(buy)과 상관도가 높은 feature:
 - o 조회수(view)
 - o 좋아요(like)
 - o 후기수(review)

3

5

한정판매 또는 단독판매인 상품들이 아닌 상품들보다 누적판매량의 평균이 약 2배 더 높다.

- 타겟 성별: 상품 생산 시 타겟으로 한 성별 (예: 스커트, 여자)
- 누적 판매량 평균이 가장 높은 상품: 남녀 공용 타겟
- 누적 판매량 평균이 가장 낮은 상품: 여성 타겟

- 상품들은 2.3 ~ 5.0까지의 평점을 받았다.
- 4.7 이상 좋은 평점을 받은 상품들이 많은 것으로 보아
 무신사 고객들은 구매한 상품에 대한 만족도가 높다.

1

2

3

4

- 판매량과 평점은 상관관계 0.03으로 높지 않음
- 판매량이 적더라도 평점이 높을 수 있기 때문
- 하지만 평점이 높은 제품에서는 판매량이 높게 나타남.

♥ 평점 5점인 상품의 수는 많았지만 평균 판매량은 낮은 것으로 보아, 아직 다양한 고객 의견이 반영되지 않은 것이며, 판매량도 높으면서 5점인 상품은 존재하기 힘들다는 것을 알 수 있다.

2

3

4

- 주로 20대인 고객을 만족시키는 상품이 많은 것으로 보인다.
- 30대에서 줄어들다가 40대 이상이 높아지는 이유로 '힙한 브랜드'를 판매하는 무신사의 이미지를 고려하여 학부모 계정으로 구매한 미성년자를 고려할 수 있다.

1

2

3

4

데이터 수집 및 전처리_EDA

3. feature 탐색

- 남성은 남성 제품보다 공용 제품을 더 많이 구매
- 남성이 여성 제품을 구매한 경우도 적지 않다.
- 여성도 여성 겨냥 제품보다 남자 혹은 공용제품을 더 많이 구매

- 20대 이상의 모든 연령층에서 공용 제품 판매량이 가장 많다.
- 10대에서는 남성 타겟 제품이 가장 많다
- 여성 타겟 제품은 비교적 판매량이 떨어진다.

review

rating

3

4. 구매성별에 따른 구매전환율 및 리뷰작성전환율

구매전환율: 판매량/조회수

• 리뷰작성전환율: 리뷰수/판매량

- 남성의 구매전환율이 여성의 구매전환율보다 약 0.07% 정도 더 높음.
- 여성이 남성보다 실제 구매를 하기까지 더 많은 시간과 노력을 투자한다고 추측
- 남성의 리뷰작성전환율이 여성의 리뷰작성전환율보다 0.04% 더 높음.
- 남성이 여성의 경우보다 리뷰 작성에 좀 더 긍정적이거나 조금 더 성실하다고 볼 수 있음.

1

2

3

4

4. 구매나이에 따른 구매전환율 및 리뷰작성전환율

- 구매 전환율을 10대 후반에서 20대 초반이 가장 높고, 이후로 점점 떨어지다가 40세 이상에서 다시 상승
- 리뷰 작성은 10대를 제외하고 대부분 비슷한 것을 확인
- 구매 나이에 따른 리뷰작성전환율은 구매 나이에 따른 구매전환율과 다소 상반됨

1

2

3

4

5. 리뷰 분석

1. 등장 빈도수

• stopword 반영, 100위까지 추출

3

stopwords_for_wc = ['.', '(', ')', ',', "'", '%', '-', 'X', ') .', 'x', '의', '자', '에', '안', '번', '호', '을', '이', '다', '만', '로', '가', '를', '것', '좀', '더', '대', '맘', '거', '입', '조금', '진짜', '티', '안', '살짝', '수', '제', '아주', '부분', '감', '정말', '정도', '저', '완전',...]

9 100개를 추출을 반복하면서 계속 stopword를 추가하며 유의미한 단어만 나올 수 있도록 진행

5. 리뷰 분석

- 1. 워드클라우드로 시각화
 - 150위까지 추출

2

3

4

5

{'핏': 27162, '사이즈': 25136, '옷': 19212, '생각': 17872, '구매': 15783, '색감': 13758, '가격': 12371, '디자인': 11760, '바지': 11357, '배송': 11075, ...}

4. 모델 학습과 평가

1. Ridge

• "buy"와 상관계수가 높았던 피처만 선정

StandardScaler 적용

test_size=0.2, random_state=13 으로 X, y 트레인 테스트 데이터 스플릿 1

2

3

4

1. Ridge

- "Ridge" 모델 및 GridSearch를 통한 최적의
 alpha 값 적용
 - o alpha=100

```
from sklearn.linear_model import Ridge
from sklearn.model_selection import GridSearchCV

ridge = Ridge()
params = {'alpha' : [0.0001, 0.001, 0.01, 0.1, 1, 10, 100] }
gridsearch = GridSearchCV(ridge, param_grid = params)
# 적절한 알파값을 찾기 위해 그리드 서치를 사용
gridsearch.fit(X_train, y_train)

r_ridge_estimator = gridsearch.best_estimator_
r_y_train_pred = r_ridge_estimator.predict(X_train)
r_y_test_pred = r_ridge_estimator.predict(X_test)
```

데이터 학습 및 결과 도출

R-Squared : 0.8205681389537077

RMSE: 1749.1967235277361

• StandardScaler 적용 및 중요 feature 추출 df

r2: 0.8205681389537077RMSE: 1749.1967235277361

2

3

4

모델 학습_OLS

2. OLS

• LabelEncoder로 범주형 변수 맵핑

○ 대분류(major_category)

```
['바지', '상의', '아우터'] => [1, 0, 2]
```

○ 중분류(middle_category)

```
['기타바지', '기타상의', '긴소매 티셔츠'...]
=> [7,8,10,2,9,...]
```

o 구매나이(buy_gender)

```
[('19~23세', '24~28세'), ('19~23세', '29~33세'),
...]
=> [11, 4, 14, 8, 0, 19, 13, ...]
```

● feature 추출

• OLS 모델에 학습시킬 데이터 set

- 1. name, number, buy_age를 제외한 모든 칼럼을 feature로 두고 상수항을 추가한 경우
- 2. 1에서 데이터를 분리하여 4개 칼럼 모두 변수로 고려한 경우
- 3. 상위 3개 상관관계를 feature로 두고 상수항을 추가한 경우
- 4. 3번에서 데이터를 분리하여 4개 칼럼 모두 변수로 고려한 경우

1

2

3

4

모델 학습_OLS

2. OLS

OLS

```
Im = sm.OLS(y, sm.add_constant(X)).fit()

y_pred = Im.predict(sm.add_constant(X))

mae = mean_absolute_error(y, y_pred)
mse = mean_squared_error(y, y_pred)
rmse = np.sqrt(mse)
```

● 성능 평가

r2: 0.821

MAE: 582.847048883963
 MSE: 8787599.0122890175
 RMSE: 2695.8885429958785

• 실제값와 예측값 대조 그래프

♀ 4가지를 돌려본 결과 1번 data set의 결과가 우수했다. 1

2

3

4

3. Multiple Regression + Lasso

• 모델링에 사용할 피쳐 총 14개 추출

```
X = df.drop(['name', 'number', 'buy_age', 'buy', 'major_category', 'middle_category'], axis=1)
print(X)
y = df["buy"]
print('\n')
print(y)
```

```
<class 'pandas.core.frame.DataFrame'>
Int64Index: 4931 entries, 0 to 4930
Data columns (total 14 columns):
    Column
                   Non-Null Count Dtype
     limit
                   4931 non-null
                                   int64
    exclusive
                   4931 non-null
                                  int64
    target gender 4931 non-null
                                  int64
    buy_gender
                   4931 non-null
                                  float64
    view
                   4931 non-null
                                  float64
    like
                   4931 non-null
                                   int64
                   4931 non-null
    price
                                  float64
    discount rate 4931 non-null
                                  int64
    delivery date 4931 non-null
                                  float64
                   4931 non-null
                                  float64
     rating
                   4931 non-null
                                  int64
 10 review
                   4931 non-null
 11 score
                                  float64
12 buy_age1
                   4931 non-null
                                   int64
13 buy_age2
                   4931 non-null
                                  int64
dtypes: float64(6), int64(8)
memory usage: 577.9 KB
```

• 데이터 분할 후 다항회귀PolynomialFeatures

```
# 데이터 분할
from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, y,random_state=13)

from sklearn.preprocessing import PolynomialFeatures

poly=PolynomialFeatures(include_bias=False)
poly.fit(X_train)
train_poly=poly.transform(X_train)
print(train_poly.shape)

(3698, 119)
```

```
from sklearn.linear_model import LinearRegressio
# 모델링
reg = LinearRegression()
reg.fit(train_poly, y_train)

print(reg.score(train_poly, y_train))
print(reg.score(test_poly,y_test))

0.955703045779865
-1.5662402481561664
```

2

3

4

3. Multiple Regression + Lasso

• 상관계수 상위 3개 피쳐 이상치 제거

view: 0.562318like: 0.814722review: 0.890346

StandardScaler 적용 및 라쏘회귀

```
from sklearn.preprocessing import StandardScaler

ss = StandardScaler()
ss.fit(train_poly)

train_scaled = ss.transform(train_poly)
test_scaled = ss.transform(test_poly)
```

```
lasso = Lasso(alpha=1)
lasso.fit(train_scaled, y_train)
print(lasso.score(train_scaled,y_train))
print(lasso.score(test_scaled, y_test))
```

- 0.7519617771509419
- 0.7401587127140274
 - StandardScaler 적용 df
 - o r2: 0.740158712740274
 - RMSE train: 110.564242905521
 - o RMSE test: 112.51141758526

1

2

3

4

4. LGBM Regressor

Original df

	limit	exclusive	•••	view	price	like
0	2	0		1200.0	39800.0	493
1	2	3		4900.0	53550.0	650

• StandardScaler 적용 df

	limit	exclusive	•••	ss_view	ss_price	ss_like
0	2	0		-0.276859	-0.506499	-0.293186
1	2	3		-0.067121	-0.350067	-0.278775

• Log scale 적용 df

	limit	exclusive	•••	log_view	log_price	log_like
0	2	0	•••	7.090910	10.591647	6.202536
1	2	3		8.497195	10.888390	6.478510

LGBM Regressor + GridSearchCV

Original df

o r2: 0.69, RMSE: 2296.00

• StandardScaler df

o r2: 0.69, RMSE: 2281.20

Log scale df

o r2: 0.69, RMSE: 2299.72

2

3

4

4. LGBM Regressor

Original df에서 'view', 'like', 'delivery_date',
 'review' feature 이상치 제거

• IQR 기준 이상치 제거된 데이터

```
print('original_df :', len(df_refined))
print('IQR_df :', len(IQR_df))
```

- original_df : 4931
- IQR_df : 3690
- LGBM Regressor + GridSearchCV 최종
- IQR 이상치 제거된 Original df:
 - MAE: 51.89890706639263
 - o MSE: 12835.762996669655
 - o r2 score train: 0.9389638944944941
 - o r2_score_test: 0.7625633360665581
 - o RMSE train: 54.513610478476295
 - RMSE test: 113.29502635451239
- ♥ 상관관계가 높았던 feature만 선별해서 학습해도 성능은 유사했다.

1

2

3

4

5. XGBoost Regressor

• 총 14개 feature 사용

```
'limit', 'exclusive', 'target_gender', 'buy_gender',
'buy_age1','buy_age2','view', 'like', 'price',
'discount_rate', 'delivery_date', 'rating',
'review','score'
```

- 총 8개의 데이터 set으로 모델 학습
 - 아래에서 각각 하이퍼파라미터 적용/미적용

0	Original df
1	상관관계 상위 10개 feature 추출 df
2	이상치 제거 df
3	Log scale 적용 df

♥ Original df에 하이퍼파라미터 적용한 경우의 성능이 가장 우수했다. • RandomSearch를 이용한 하이퍼파라미터 튜닝

```
param = {'n_estimators': 277, 'max_depth': 77,
'subsample': 0.7955167781453465, 'colsample_bytree':
0.5842153210611298, 'gamma': 0.7819910241112622,
'min_child_weight': 1,}
```

2

3

4

5. XGBoost Regressor

● 모델 생성 및 cross_val_score

```
train mae scores = cross val score(model, X train,
val mse scores = cross val score(model, X val, y val,
```

명가 및 과적합 그래프

2

3

4

모델 성능 비교

모델링	이상치 제거	R2_score	MAE	MSE	RMSE
OLS	Х	0.82	563	6740000	2595.69
Multiple Regression + Lasso	0	0.74	58.56	12658.82	112.51
Ridge	Х	0.82	498.20	3059689.18	1749.20
LGBM Regressor	0	0.77	51.86	12423.76	111.46
XGB00ST Regressor	Х	0.76	633.16	11986432.66	3462.14

MUSINSA 2024.01

5. 결론

1. 최종 모델 Multiple Regression + Lasso

- R2_score 만으로 보았을 때 설명력이 가장 높은 모델은 아니지만 종합적인 성능지표를 비교했을 때 우수한 것으로 판단
- 트레인, 테스트 데이터의 과적합을 가장 효과적으로 해결한 모델
 - Lasso의 alpha값 도출 그래프 참고
 - o train, test set의 RMSE
 - StandardScaler 적용 df
 - o r2: 0.740158712740274
 - o RMSE train: 110.564242905521
 - o RMSE test: 112.51141758526

모델링	이상치 제거	R2_score	MAE	MSE	RMSE
Multiple Regression + Lasso	0	0.74	58.56	12658.82	112.51

1

2

3

4

2. Battle! 어떤 제품이 가장 잘 팔릴까?

- 이번 프로젝트의 목적은 판매량을 예측하여 제조사와 무신사 플랫폼의 리스크를 줄이는 것.
- 팀원이 모두 제조사가 되어 Lasso 모델을 이용해 가상 제품 feature를 넣어 예측값을 확인해 보자!

지현

병찬

승현

4

2. Battle! 어떤 제품이 가장 잘 팔릴까?

브랜드 명	limit	exclusive	target _gender	buy _gender	view	like	price	descount _rate	delivery _date	rating	review	score	buy_age1	buy_age2
하승현(a)	1	1	2	1	5000	600	10000	30	4	4.8	2000	0.9	2	2 2
이청하(b)	1	1	2	1	10000	10000	35000	26	4	4.8	5000	0.9	2	2 2
이병찬(c)	1	1	0	1	5000	700	45000	25	5	4.8	700	0.9	2	2 2
김지현(d)	1	1	2	1	16875	9450	34500	20	5	4.8	7420	0.96	2	2 0
김주희(e)	1	0	2	1	4000	500	37500	35	5	4.7	500	0.94	. 2	2 2

Winner is,

브랜드 명	predicted buy
하승현(a)	73
이청하(b)	284
이병찬(c)	37
김지현(d)	445
김주희(e)	5

3. Lesson & learned

주요 이슈와 문제

- 결측치 처리에 대한 기준 설정
- 무신사 웹 내의 태그값과 웹 구조 변동
- 웹크롤링할 때 수집할 범위 설정의 중요성
- 수집한 데이터에서 예측값이 없는 데이터가 대량 수집되는 경우 많은 양의 데이터가 drop 되었음
- 모델의 과적합 판단

교훈과 배운 점

- 실제로 머신러닝에 적용시킬 수 있는 데이터를 빨리 확보하는 것이 중요
- XGBoost나 LGBM과 같은 앙상블 모델이 성능이 가장 좋을 것이라 생각했으나 그렇지 않았음
- 데이터에 맞는 모델을 사용하는 것이 바람직함
- 예측값이 포함된 파생변수를 생성한 경우 다루는 데 있어 주의 필요
- 모델 학습 과정에서는 data leakage(학습 데이터에 이미 예측 대상이 반영된 데이터가 흘러들어가는 것) 방지 필수

회고

• 데이터 수집의 양이 좀 더 많았으면 과적합을 방지할 수 있을까?

- 데이터 수집을 일찍 끝내고 더 많은 종류의 모델과 하이퍼 파리미터를 학습 및 테스트하면 좋은 성능의 모델을 찿을 수 있지 않을까?
- 데이터를 좀 더 수집하고 전처리를좀 더 효과적으로 했다면 어땠을까?

2

3

4

