

Universidade do Minho, Escola de Engenharia, Departamento de Produção e Sistemas

EXAME DE MÉTODOS NUMÉRICOS

Curso de Engenharia: CIVIL

1º chamada 20 de Junho de 2005 Duração: 3 horas APRESENTE TODOS OS CÁLCULOS QUE TIVER DE EFECTUAR

1. A posição de um determinado objecto O_1 no plano xy é descrita em função do tempo (t) pelas seguintes equações:

$$x_1(t) = t$$
 $y_1(t) = 1 - e^{-t}$

A posição de um segundo objecto O_2 é descrita pelas seguintes equações:

$$x_2(t) = 1 - t\cos(\alpha)$$
 $y_2(t) = -0.1t^2 + t\sin(\alpha)$

em que α representa o ângulo, como mostra a figura

Determine os valores de t e α na posição em que os dois objectos colidem, i.e., na posição em que se igualam as coordenadas x e y:

$$t = 1 - t\cos(\alpha)$$

$$1 - e^{-t} = -0.1t^2 + tsen(\alpha)$$

Considere os valores iniciais $(t, \alpha)^{(1)} = (4.3, 2.4)$ e $\varepsilon_1 = \varepsilon_2 = 0.015$ ou no máximo duas iterações.

2. Suponha que pretende resolver um sistema linear cuja matriz dos coeficientes é

$$\left[\begin{array}{cc} a & 1 \\ 1 & a \end{array}\right]$$

em que $a \neq 0$. Calcule a norma ∞ da matriz de iteração do método de Gauss-Seidel. Que conclusão poderia retirar relativamente à convergência do método na resolução do sistema, se a > 1?

1

3. A velocidade do som na água varia com a temperatura de acordo com a tabela abaixo:

Temperatura $({}^{o}C)$					
Velocidade (m/s)	1552	1548	1544	1538	1532

Pretende-se estimar a velocidade do som na água a uma temperatura de 100°C, utilizando:

- a) um polinómio interpolador de Newton de grau dois;
- b) um polinómio de grau dois no sentido dos Mínimos Quadrados, usando os mesmos pontos que utilizou na alínea a).

Comente e justifique os resultados.

4. A equação de Duffing,

$$\frac{d^2y}{dt^2} + ky + y^3 = B\cos t,$$

descreve a dinâmica caótica de um circuito com um inductor não linear. A representação gráfica das variáveis de estado $(y e \frac{dy}{dt})$ ao longo do tempo (t), origina uma figura denominada mapa de Poincaré:

Estime os valores das variáveis de estado, para $k=0.1,\,B=12$ e $0\leq t\leq 0.1$. Considere h=0.05 e as condições y(0)=0 e $\frac{dy}{dt}(0)=4$ usando o método de Runge-Kutta de 2^a ordem

5. Suponha que na construção de um templo egípcio com 150 m de altura foram necessários muitos anos, durante os quais cada operário realizou 1.742×10^6 Kg m de quantidade de trabalho. Sabe-se que a secção transversal horizontal do edifício, à altura x, é um quadrado cuja área é dada por $A(x) = \frac{9}{4}(200 - x)^2$.

Através da fórmula que dá a quantidade total de trabalho realizado

$$T = \rho \int_{a}^{b} x A(x) dx$$

em que $\rho=2014~{\rm Kg/m^3}$ representa a densidade da rocha, calcule:

- a) T, usando separadamente duas fórmulas compostas de integração, com base em 5 pontos;
- b) os erros de truncatura cometidos na alínea a) e comente os resultados;
- c) o número de operários utilizados na construção do templo.

FIM