ГУАП

КАФЕДРА № 44

OTHET								
ОТЧЕТ ЗАЩИЩЕН С ОЦЕНКОЙ								
ПРЕПОДАВАТЕЛЬ								
доц., канд. техн. наук, доц. должность, уч. степень, звание	подпись, дата	О.О. Жаринов инициалы, фамилия						
ОТЧЕТ	О ЛАБОРАТОРНОЙ РАБО	OTE № 5						
РАЗРАБОТКА	А ФОРМИРОВАТЕЛЯ ИМ	ИПУЛЬСНОЙ						
ПОСЛЕДОВАТЕЛ	БНОСТИ С ЗАДАННЫМІ	И СВОЙСТВАМИ						
по курсу: СХЕМОТЕХНИКА								
РАБОТУ ВЫПОЛНИЛ СТУЛЕНТ ГР № 4143		F Л Тегай						

подпись, дата

инициалы, фамилия

Цель работы

Разработать проект формирователя импульсной последовательности с заданными свойствами в среде программирования Quartus.

Вариант задания

Соответствующий вариант задания выделен для удобства жёлтым цветом на рисунке 1.

	Таблица вариантов заданий														
Bap.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
$K_{\text{нач}}$	0	1	2	1	0	2	0	1	2	3	1	2	0	1	2
K_1	3	12	1	4	5	6	9	8	14	13	1	3	4	2	1
K_0	14	5	16	13	12	11	8	9	3	4	6	4	3	3	4
Bap.	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30
Кнач	0	1	2	0	1	2	3	1	2	3	1	2	3	1	2
K_1	3	4	3	1	5	9	8	7	6	5	5	4	3	2	1
K_0	2	1	6	8	1	2	3	4	5	4	6	7	7	7	7
Bap.	31	32	33	34	35	36	37	38	39	40	41	42	43	44	45
Кнач	0	1	2	0	1	2	3	1	2	3	1	2	3	1	2
K_1	1	2	3	10	9	10	7	7	7	7	8	8	2	10	2
K_0	10	10	10	1	2	3	1	2	3	4	1	2	8	2	9

Рисунок 1 – Индивидуальный вариант

Описание концепции разработки схемы

Для создания схемы воспользуемся таблицей, изображённой на рисунке 2.

Рисунок 2 – Таблица истинности

Рассмотрим её подробнее. Схема заполнения таблицы проста: в

столбике Dsi проставляются значения 1 и 0 в таком порядке, какой был задан индивидуальным вариантом, при этом учитывается начальная «задержка». Так как в данном случае она равна 0, то заполнение относительно единичного и нулевого выходов начинается с самого начала. Количество выходов (триггеров) берётся в соответствии с 1 периодом. В данном случае будет использоваться 8 D-триггеров (4 единицы + 3 нуля + первая единица = 8).

Далее заполняются строки выходов. Грубо говоря, везде, где на Dsi стоит единица, всё те же единицы проставляются далее по диагонали вниз. Это заполнение строк и столбцов длится до тех пор, пока не появится повторная строка, она выделена красным цветом на рисунке 2.

Затем для удобства на рисунке 2 выделены следующие области:

- Жёлтым выделены все необходимые для построения логического выражения единицы у Dsi;
- Зелёным выделены все выходы, которым соответствует единица по Dsi;
- Фиолетовым выделены необходимые для вычисления логического выражения единицы в рамках выходов.

Приступим к выводу логического выражения. Если присмотреться, то можно заметить то, что при 1 на Q_6 гарантированно будет 1 на Dsi. Это показано на рисунке 3.

Рисунок 3 — Вспомогательная таблица

Соответственно, «убираются» 6 из 10 возможных единиц. Осталось «убрать» последние 4 единицы. Это можно сделать двумя способами: просто расписать «уникальную» комбинацию, обращая внимание на «ненужные» выходы с сохранением корректности итогового выражения. Такими будут 4 комбинации для каждой единицы размером в 4, потому что если брать меньшее количество, то на какой-то да повторный случай тех же значений вывод на Dsi будет 0, чего не требуется.

Можно также заметить то, что при каждом нулевом значении выхода Q_3 на Dsi будет так же 1.

Итоговое выражение для каждого из случаев имеет вид:

$$Dsi = Q_6 \vee \overline{Q_3}(Q_0 \vee \overline{Q_1})(Q_1 \vee \overline{Q_2})$$
 (1)

$$Dsi = Q_6 \vee \overline{Q_3} \tag{2}$$

Схема устройства

Искомая схема для каждого из вариантов изображена на рисунках 4-5.

Рисунок 4 — Созданная схема первого варианта

Рисунок 5 — Созданная схема второго варианта

На самом деле никакой разницы нет между полученными схемами, кроме как в экономии времени и ресурсов – итог будет тот же.

Временная диаграмма

Искомая диаграмма изображена на рисунке 6.

Рисунок 6 – Временная диаграмма

ПЛИС

Искомая ПЛИС изображена на рисунке 7.

Рисунок 7 - ПЛИС

Выводы

В данной лабораторной работе был разработан проект формирователя импульсной последовательности с заданными свойствами в среде программирования Quartus.

Список используемых источников

- 1. Проектирование встраиваемых систем на ПЛИС. / 3. Наваби; перев. с англ. В.В. Соловьева. М.: ДМК Пресс, 2016. 464 с.
- 2. Проектирование цифровых устройств на ПЛИС: учеб. пособие / И.В. Ушенина. СПб: Лань, 2022. 408 с.
- 3. Цифровая схемотехника и архитектура компьютера / Д.М. Харрис, С.Л. Харрис; пер. с англ. ImaginationTechnologies. М.: ДМК Пресс, 2018. 792 с.
- 4. Логическое проектирование цифровых систем на основе программируемых логических интегральных схем / В. В. Соловьев, А. Климович. М.: Горячая линия Телеком, 2008. 376 с. [Библиотечный

шифр 681.3 С 60].

- 5. Проектирование на ПЛИС. Архитектура, средства и методы: Курс молодого бойца = The design warrior's guido to FPGA's: пер. с англ. / К. Максфилд. М.: ДОДЭКА-ХХІ, 2007. 408 с. [Библиотечный шифр 004.4 M 17].
- 6. Разработка систем цифровой обработки сигналов на базе ПЛИС / Д. С. Потехин, И.Е. Тарасов. М.: Горячая линия Телеком, 2007. 248 с. [Библиотечный шифр 004 П 64]