

Table of contents

Problem statement

Application dataset - Analysis

Previous application dataset - Analysis

Merging both Application and previous application dataset - Analysis

Conclusions

Problem statement - I

- This case study aims to identify patterns which indicate if a client has difficulty paying their installments which may be used for taking actions such as denying the loan, reducing the amount of loan, lending (to risky applicants) at a higher interest rate, etc. This will ensure that the consumers capable of repaying the loan are not rejected. Identification of such applicants using EDA is the aim of this case study.
- In other words, the company wants to understand the driving factors (or driver variables) behind loan default, i.e. the variables which are strong indicators of default. The company can utilise this knowledge for its portfolio and risk assessment.
- To develop your understanding of the domain, you are advised to independently research a little about risk analytics understanding the types of variables and their significance should be enough).

Problem statement - II

- Present the overall approach of the analysis in a presentation. Mention the problem statement and the analysis approach briefly.
- Identify the missing data and use appropriate method to deal with it. (Remove columns/or replace it with an appropriate value)
- Identify if there are outliers in the dataset. Also, mention why do you think it is an outlier. Again, remember that for this exercise, it is not necessary to remove any data points.
- Identify if there is data imbalance in the data. Find the ratio of data imbalance.
- Explain the results of univariate, segmented univariate, bivariate analysis, etc. in business terms.
- Find the top 10 correlation for the Client with payment difficulties and all other cases (Target variable). Note that you have to find the top correlation by segmenting the data frame w.r.t to the target variable and then find the top correlation for each of the segmented data and find if any insight is there. Say, there are 5+1(target) variables in a dataset: Var1, Var2, Var3, Var4, Var5, Target. And if you have to find top 3 correlation, it can be: Var1 & Var2, Var2 & Var3, Var1 & Var3. Target variable will not feature in this correlation as it is a categorical variable and not a continuous variable which is increasing or decreasing.
- Include visualisations and summarise the most important results in the presentation. You are free to choose the graphs which explain the numerical/categorical variables. Insights should explain why the variable is important for differentiating the clients with payment difficulties with all other cases.

Application Dataset

- Verified the dimensions of dataset(i.e, no.of rows and columns)
- Dropping the columns having null values greater than 40%.
- Also dropping insignificant columns which are not useful in decision making
- Imputed missing values of some useful columns with median value.
- Done Outlier analysis for both categorical variables and continuous variables.
- Computed Imbalance percentage

Application Dataset

- Divided the dataset is divided into two different datasets
 - Target 1 Client facing some payment difficulties
 - Target 0 all other clients
- Created bins for amount income total and credit amount columns
- Done Univariate analysis separately for both Target 1 dataset and Target
 0 dataset
- Done Bivariate analysis separately for both Target 1 dataset and Target 0 dataset
- Correlation between the numerical variables

Inference:

Low-cadre jobs like Laborers, sales staff and core staff etc, have applied more when compared to High-cadre jobs

Outlier analysis

Numerical columns

Numerical columns

Univariate analysis

For Target=0 (All other clients)

Inference:

- Female application counts is more when compared to male application counts
- Working professional applicants count is more when compared to non-working professional applicants

For Target=0 (All other clients)

Inference:

- Female application counts is more when compared to male application counts
- Cash loan applications is more when compared to Revolving loans

Bivariate analysis

For Target=0 (All other clients)

For Target=1 (Client facing payment difficulties)

Correlation

EXT_SOURCE_2	1	0.12	0.15	0.065	0.11	0.14	0.1	0.085	1.0
EXT_SOURCE_3	0.12	1	0.19	0.11	0.055			0.031	-0.8
DAYS_BIRTH	0.15	0.19	1	0.12	0.15	0.045	0.16	0.085	
DAYS_ID_PUBLISH	0.065	0.11	0.12	1	0.037	0.033	0.035	0.023	-0.6
AMT_GOODS_PRICE	0.11	0.055	0.15	0.037	1	0.31	0.98	0.75	-0.4
AMT_INCOME_TOTAL	0.14	-0.068	0.045	0.033	0.31	1	0.31	0.38	
AMT_CREDIT	0.1	0.051	0.16	0.035	0.98	0.31	1	0.76	-0.2
AMT_ANNUITY	0.085	0.031	0.085	0.023	0.75	0.38	0.76	1	-0.0
	EXT_SOURCE_2	EXT_SOURCE_3	DAYS_BIRTH	DAYS_ID_PUBLISH	AMT_GOODS_PRICE	AMT_INCOME_TOTAL	AMT_CREDIT	AMT_ANNUITY	

Previous application Dataset

- Verified the dimensions of dataset(i.e, no.of rows and columns)
- Dropping the columns having null values greater than 40%.
- Also dropping insignificant columns which are not useful in decision making
- Imputed missing values of some useful columns with median value.
- Handling missing values.
- Done Univariate analysis
- Correlation chart

Univariate analysis

Correlation

Merging Application dataset and Previous application dataset

- Verified the dimensions of dataset(i.e, no.of rows and columns)
- Also dropping insignificant columns which are not useful in decision making
- Imputed missing values of some useful columns with median value.
- Handling missing values.
- Segmentation analysis
- Correlation chart

EXT_SOURCE_2 Vs TARGET VALUE & EXT_SOURCE_3 Vs TARGET VALUE

Box plot of EXT_SOURCE_3 for Target

TARGET VALUE Vs CASH_LOAN_PURPOSE

CORRELATION CHART

CODE_GENDER for Non-Defaulters (left) and Defaulters(Right)

NAME_EDUCATION_TYPE for Non-Defaulters (left) and Defaulters(Right)

NAME_INCOME_TYPE for Non-Defaulters (left) and Defaulters(Right)

NAME_FAMILY_STATUS for Non-Defaulters (left) and Defaulters(Right)

PRODUCT_COMBINATION for Non-Defaulters (left) and Defaulters(Right)

SEGMENTED NUMERICAL ANALYSIS

CONTINUOUS VARIABLES CORRELATION

Corrrelation matrix for Non-defaulters									Corrrelation matrix for Defaulters								1.0		
AMT_INCOME_TOTAL	1	0.29	0.37	0.29	0.18	0.036	0.05	0.15		ICOME_TOTAL	1	0.26	0.34	0.26	0.17	0.031	0.047	0.13	1.0
AMT_CREDIT_x	0.29	1	0.76	0.98	0.096	0.018	0.028	0.093	- 0.8 Al	MT_CREDIT_x	0.26	1	0.74	0.98	0.1	0.022	0.031	0.1	- 0.8
AMT_ANNUITY_x	0.37	0.76	1	0.75	0.13	0.037	0.045	0.09	АМ	IT_ANNUITY_x	0.34	0.74	1	0.74	0.11	0.026	0.029	0.081	
AMT_GOODS_PRICE_x	0.29	0.98	0.75	1	0.096	0.018	0.027	0.094	-0.6 AMT_GO	ODS_PRICE_x	0.26	0.98	0.74	1	0.11	0.024	0.031	0.11	- 0.6
AMT_ANNUITY_y	0.18	0.096	0.13	0.096	1	0.28	0.35	0.82	- 0.4	IT_ANNUITY_y	0.17	0.1	0.11	0.11	1	0.28	0.34	0.83	-0.4
AMT_APPLICATION	0.036	0.018	0.037	0.018	0.28	1	0.75	0.19	AMT_	_APPLICATION	0.031	0.022	0.026	0.024	0.28	1	0.78	0.2	
AMT_CREDIT_y	0.05	0.028	0.045	0.027	0.35	0.75	1	0.22	-0.2 Al	MT_CREDIT_y	0.047	0.031	0.029	0.031	0.34	0.78	1	0.23	- 0.2
AMT_GOODS_PRICE_y	0.15	0.093	0.09	0.094	0.82	0.19	0.22	1	AMT_GO	ODS_PRICE_y	0.13	0.1	0.081	0.11	0.83	0.2	0.23	1	
	AMT_INCOME_TOTAL	AMT_CREDIT_X	AMT_ANNUITY_X	AMT_GOODS_PRICE_x	AMT_ANNUITY_Y	AMT_APPLICATION	AMT_CREDIT_Y	AMT_GOODS_PRICE_y			AMT_INCOME_TOTAL	AMT_CREDIT_x	AMT_ANNUITY_X	AMT_GOODS_PRICE_x	AMT_ANNUITY_Y	AMT_APPLICATION	AMT_CREDIT_Y	AMT_GOODS_PRICE_y	

OBSERVATIONS

Observation from Heat Map

- •AMT CREDIT is closely associated with AMT GOODS PRICE. i.e. the loan credit amount is proportional to the price of the goods for which the loan is sought.
- •AMT CREDIT and AMT ANNUITY have a strong relationship. (The loan annuity and the loan credit amount are exactly proportionate.)
- AMT GOODS PRICE and AMT ANNUITY have a strong relationship.

Observation from correlation matrix

- •With the Categorical columns removed, we can see that the variables below are substantially connected for Non-defaulters.
- 1.AMT_ANNUITY_x & AMT_CREDIT_x
- 2.AMT_GOODS_PRICE_y & AMT_ANNUITY_y
- 3.AMT_GOODS_PRICE_x & AMT_CREDIT_x

CONCLUSIONS

- •Banks should consider lending to those who have a high credit score from external scoring firms.
- •Loan requests for the intention of 'repairs' are having more trouble making timely payments.
- •The percentage of defaulters among "labourers" and "drivers" is much higher. And "sales personnel," "core staff," "security staff," "kitchen staff," "cleaning staff," and "private sector workers" are all moderately high.
- •Because there are many defaulters with this combination, the bank should scrutinise their application when giving loans to persons living in co-op flats in Region 3.
- •In the case of pensioners, the percentage of defaulters is much lower, and in the case of state employees, it is moderately lower. Before authorising the loan, other categories must be thoroughly examined.
- •Clients with a lower secondary education are the most likely to fail when their previous loans are revoked or refused

THANK YOU