ECOLES PRIVEES ERRAJA

Ingénierie de la réussite

مدارس الرجاء الحرة

7C DEVOIR DE MATHS **DUREE 4H** 18/02/2013

Présentation et rédaction : 2 points

Exercice 1 (3 points)

Dans le plan complexe, soit ABCD un parallélogramme direct de centre O. On considère les points O₁;O₂;O₃;O₄ du plan tels que chacun des triangles O₁AB; O₂BC; O₃CD; O₄DA soit direct, rectangle isocèle en O_i où 1≤i≤4. On se propose de déterminer la nature du quadrilatère O₁O₂O₃O₄. On muni le plan complexe d'un repère orthonormal direct (0, u, v) d'origine O centre du parallélogramme ABCD. Soient

- 1) Faire une figure illustrant la configuration précédente.
- 2.a) Ecrire ω_1 ; ω_2 , en fonction de a et b.
- b) Montrer que $\omega_1 + \omega_3 = 0$; $\omega_2 + \omega_4 = 0$. Déduire.
- c) Calculer $\frac{\omega_1-\omega_2}{\omega_1-\omega_4}$. En déduire la nature du quadrilatère $\,O_1O_2O_3O_4$.

Exercice 2 (5 points)

Le plan complexe est muni d'un repère orthonormé (O; u, v).

- 1. Pour tout nombre complexe z, on pose : $P(z) = z^3 (4-2i)z^2 + (4-6i)z 4 + 8i$.
 - a) Calculer P(-2i) et déterminer les nombres a et b tels que pour tout z de \mathbb{C} : P(z) = (z+2i)(z²+az+b)
 - b) Résoudre, dans l'ensemble des nombres complexes, l'équation P(z) = 0.
- 2. Soient A, B et C les images des solutions de l'équation P(z) = 0 avec $|z_A| < |z_B| < |z_C|$.
 - a) Placer les points A, B et C.
- b) Calculer l'affixe du point G barycentre du système {(O;3),(A;-4),(B;1),(C;2)}. Vérifier que A est le barycentre du système $\{(O;5),(B;-5),(G;2)\}$.
- 3) On pose $Z = \frac{z z_B}{z z}$. Déterminer et construire l'ensemble des points M d'affixe z dans chacun des cas suivants :

a) arg
$$Z = \frac{\pi}{2} [\pi]$$

b)
$$2 \operatorname{arg} Z = 2(\overrightarrow{CA}; \overrightarrow{CB}) \quad [2\pi] \quad c) |Z| = 2$$

c)
$$|Z| = 2$$

Exercice 3 (5 points)

On muni le plan complexe d'un repère orthonormal direct (O,\vec{u},\vec{v}) . Soit f_a l'application qui associe au point M d'affixe z le point M' d'affixe z' telle que :

$$z' = (a + \frac{1}{2}i)z + 4 - 4a - 2i, \quad a \in \mathbb{C}$$

1) Reconnaître l'application f_a et la caractériser pour chacune des valeurs suivantes du nombre complexe a :

a)
$$a = 1 - \frac{1}{2}i$$

b)
$$a = 2 - \frac{1}{2}i$$
 c) $a = \frac{\sqrt{3}}{2}$

c)
$$a = \frac{\sqrt{3}}{2}$$

d)
$$a = \frac{1}{2}$$

7C E.P. ERRAJA DEVOIR DE MATHS **DUREE 4H** 18/11/2013 Horma Ould Hamoud

2) Dans la suite de l'exercice on suppose que $a \in \mathbb{R}$ et on note $\theta = \arg(a + \frac{1}{2}i)$. Soit les points $M_0(3;0)$ et $\Omega(4;0)$.

Pour tout entier naturel $n \in \mathbb{N}$ on pose $M_{n+1} = f_a(M_n)$. On note z_n l'affixe du point M_n .

- a) Calculer et écrire sous forme algébrique : z_1 et z_2 en fonction de a.
- b) Montrer que pour tout $n \in \mathbb{N}$ on a : $z_n \neq 4 \left(\frac{1}{2\sin\theta}\right)^n e^{in\theta}$.
- c) Pour tout $n \in \mathbb{N}$ on pose : $V_n = |z_n 4|$. Pour quelles valeurs de θ ; la suite (V_n) est elle convergente ?
- d) Calculer en fonction de n : $d_n = \|\overline{M_n M_{n+1}}\|$ et $S_n = \sum_{k=1}^{n} d_k$.
- e) Pour $a = \frac{1}{2}$; déterminer la nature du triangle $\Omega M_n M_{n+1}$. Placer les points M_0 ; M_1 et M_2 . Calculer S_n et $\lim_{n \to \infty} S_n$ puis interpréter géométriquement.

Exercice 4 (5 points)

Soit f l'application de $E = C \setminus \{-i\}$ dans $F = C \setminus \{i\}$ qui à tout z associe $z' = f(z) = \frac{iz}{z+i}$.

Dans le plan complexe rapporté à un repère orthonormal direct (O, \vec{u}, \vec{v}) on note M et M' les points d'affixes z et z' respectivement.

1) Déterminer l'ensemble des points M d'affixe z dans les cas suivants :

a)
$$|f(z)| = 2$$

(b)
$$|f(z) - i| = 2$$

b)
$$|f(z)-1|=2$$
 c) $f(z)$ est imaginaire pur

d)
$$\arg f(z) = \frac{\pi}{3} [\pi].$$

- 2) Dans cette question on suppose que M décrit le cercle Γ de centre $\Omega(0,-1)$ et de rayon r ou r>0.
- a) Montrer que (z'-i)(z+i)=1, en déduire le lieu géométrique Γ' du point M'.
- b) Construire Γ et Γ' dans le cas où r=1. Que peut on dire de Γ et Γ' ?
- c) Dans le cas où r = 1; à partir d'une position donnée de M sur Γ ; distinct de O, donner une construction de M'. Justifier.
- 3) Montrer que f est une bijection, donner sa bijection réciproque; puis vérifier que : $\forall z \in F$, $f^{-1}(z) = -f(-z)$.
- 4) Démontrer que, si $f(z) = e^{i\theta}$ avec $\theta \neq \frac{\pi}{2} + k\pi$, $k \in \mathbb{Z}$, alors $z = \frac{1}{2} \left(\tan \left(\frac{\pi}{4} + \frac{\theta}{2} \right) i \right)$.
- 5) Déduire de ce qui précède une méthode de résolution de l'équation : $(iz)^5 = 16(1+i\sqrt{3})(z+i)^5$.

Bonus: DM **3points**

Fin.