For each of the following groups G, determine whether H is a normal subgroup of G. If H is a normal subgroup, write out a Cayley table for the factor group G/H.

a.
$$G = S_4$$
 and $H = A_4$

b.
$$G = A_5$$
 and $H = \{(1), (1\,2\,3), (1\,3\,2)\}$

c.
$$G=S_4$$
 and $H=D_4$

d.
$$G=Q_8$$
 and $H=\{1,-1,i,-i\}$

e.
$$G = \mathbb{Z}$$
 and $H = 5\mathbb{Z}$

Solution:

a. |G/H| = 2, so the only group that G/H could be is \mathbb{Z}_2 . Here is the Cayley table:

$$\begin{array}{c|cccc} + & 0 & 1 \\ \hline 0 & 0 & 1 \\ 1 & 1 & 0 \end{array}$$

b. Counterexample: $(1\ 5)(2\ 3)(1\ 2\ 3) = (1\ 3\ 5) \neq (1\ 2\ 3)(1\ 5)(2\ 3) = (1\ 5\ 2)$.

c. |G/H| = 15 and there is only one group of order 15 which is \mathbb{Z}_{15} . Here is the Cayley table:

+	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14
0	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14
1	1	2	3	4	5	6	7	8	9	10	11	12	13	14	0
2	2	3	4	5	6	7	8	9	10	11	12	13	14	0	1
3	3	4	5	6	7	8	9	10	11	12	13	14	0	1	2
4	4	5	6	7	8	9	10	11	12	13	14	0	1	2	3
5	5	6	7	8	9	10	11	12	13	14	0	1	2	3	4
6	6	7	8	9	10	11	12	13	14	0	1	2	3	4	5
7	7	8	9	10	11	12	13	14	0	1	2	3	4	5	6
8	8	9	10	11	12	13	14	0	1	2	3	4	5	6	7
9	9	10	11	12	13	14	0	1	2	3	4	5	6	7	8
10	10	11	12	13	14	0	1	2	3	4	5	6	7	8	9
11	11	12	13	14	0	1	2	3	4	5	6	7	8	9	10
12	12	13	14	0	1	2	3	4	5	6	7	8	9	10	11
13	13	14	0	1	2	3	4	5	6	7	8	9	10	11	12
14	14	0	1	2	3	4	5	6	7	8	9	10	11	12	13

d. Same as part a.

e. H is normal in G because $G = \mathbb{Z}$ is abelian and all subgroups of abelian groups are normal.

+	0	1	2	3	4
0	0	1	2	3	4
1	1	2	3	4	0
2	2	3	4	0	1
3	3	4	0	1	2
4	0 1 2 3 4	0	1	2	3

Let T be the group of nonsingular upper triangular 2×2 matrices with entries in \mathbb{R} ; that is, in the form

$$\begin{pmatrix} a & b \\ 0 & c \end{pmatrix}$$
,

where $a, b, c \in \mathbb{R}$ and $ac \neq 0$. Let U consist of matrices of the form

$$\begin{pmatrix} 1 & x \\ 0 & 1 \end{pmatrix}$$
,

where $x \in \mathbb{R}$.

- a. Show that U is a subgroup of T.
- b. Prove that U is abelian.
- c. Prove that U is normal in T.
- d. Show that T/U is abelian.
- e. Is T normal in $GL_2(\mathbb{R})$?

Solution:

- a. To prove that U is a subgroup of T, we have to prove the following criteria: associativity, identity, inverse, and closure.
 - (a) Associativity: Let $a,b,c \in \mathbb{R}$. Then $A = \begin{pmatrix} 1 & a \\ 0 & 1 \end{pmatrix}$, $B = \begin{pmatrix} 1 & b \\ 0 & 1 \end{pmatrix}$, $C = \begin{pmatrix} 1 & c \\ 0 & 1 \end{pmatrix}$. Then $A(BC) = \begin{pmatrix} 1 & a \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & b+c \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & a+b+c \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & a+b \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & c \\ 0 & 1 \end{pmatrix} = (AB)C$. Therefore, U is associative.
 - (b) Identity: Consider $u \in U$ where x = 0. Then $u = I_2$ which is the identity for all 2×2 matrices.
 - (c) Inverse: The inverse of $\begin{pmatrix} 1 & x \\ 0 & 1 \end{pmatrix}$ is $\begin{pmatrix} 1 & -x \\ 0 & 1 \end{pmatrix}$. This can be checked by multiplying the two matrices together and getting I_2 .
 - (d) Closure: Let $u, v \in U$. Then $u = \begin{pmatrix} 1 & x \\ 0 & 1 \end{pmatrix}, v = \begin{pmatrix} 1 & y \\ 0 & 1 \end{pmatrix}$. Then $uv = \begin{pmatrix} 1 & x+y \\ 0 & 1 \end{pmatrix} \in U$. Therefore, U is closed.

Therefore, U is a subgroup of T.

- b. U is abelian because if we have $u = \begin{pmatrix} 1 & x \\ 0 & 1 \end{pmatrix}$, $v = \begin{pmatrix} 1 & y \\ 0 & 1 \end{pmatrix}$, then $uv = \begin{pmatrix} 1 & x+y \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & y+x \\ 0 & 1 \end{pmatrix} = vu$.
- c. *U* is normal in *T* because *T* is abelian and all subgroups of abelian groups are normal.
- d. Consider the following:

$$\begin{pmatrix} a & b \\ 0 & c \end{pmatrix} = \begin{pmatrix} a & 0 \\ 0 & c \end{pmatrix} \begin{pmatrix} 1 & b/a \\ 0 & 1 \end{pmatrix}.$$

From this, we know that every coset in T/U has a representative diagonal matrix. We know that diagonal matrices commute, so we know that T/U is abelian.

e. Counterexample:

$$\begin{pmatrix} 0 & n \\ n & 0 \end{pmatrix} \begin{pmatrix} n & n \\ 0 & n \end{pmatrix} \begin{pmatrix} 0 & n \\ n & 0 \end{pmatrix} = \begin{pmatrix} n^3 & 0 \\ n^3 & n^3 \end{pmatrix}.$$

Question: 5

Show that the intersection of two normal subgroups is a normal subgroup.

Solution: Let H and K be two normal subgroups of G. Then, for $h \in H$ and $k \in K$ and $g \in G$, $ghg^{-1} \in H$ and $gkg^{-1} \in K$. Now, let $T = H \cap K$.

Let
$$t \in T \Rightarrow t \in H$$
 and $t \in K$
 $\Rightarrow gtg^{-1} \in H$ and $gtg^{-1} \in K$ $\Rightarrow gtg^{-1} \in H \cap K$
 $\Rightarrow gtg^{-1} \in T$

 \therefore for all $g \in G$, $t \in T$, $gtg^{-1} \in T$. Therefore, T is a normal subgroup of G.

Question: 11

If a group G has exactly one subgroup H of order k, prove that H is normal in G.

Solution: For $g \in G$, consider the conjugate subgroup $gHg^{-1} \leq G$. We also know that the order of gHg-1 is the same as the order of H, which we called k. But, since H is the only subgroup of order k, any subgroup that has order k must be H. Therefore, $gHg^{-1} = H$. Therefore, H is normal in G.

Recall that the **center** of a group G is the set

$$Z(G) = \{x \in G : xg = gx \text{ for all } g \in G\}.$$

- a. Calculate the center of S_3 .
- b. Calculate the center of $GL_2(\mathbb{R})$.
- c. Show that the center of any group G is a normal subgroup of G.
- d. If G/Z(G) is cyclic, show that G is abelian.

Solution:

- a. $Z(S_3) = \{(e)\}\$
- b. If we have $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ and $B = \begin{pmatrix} e & f \\ g & h \end{pmatrix}$, we can multiply out AB and BA to see the following equality:

$$ae + bg = ae + cf \Rightarrow bg = cf$$

However, this equality needs to hold true for all choices of g, f because our B was arbitrary and not related to A. This means that b = c = 0. This means that the equation

$$af + bh = be + df$$

reduces to af = df or a = d. This means that we can say

$$Z(GL_2(\mathbb{R})) = \left\{ \begin{pmatrix} a & 0 \\ 0 & a \end{pmatrix} : a \in \mathbb{R} \setminus \{0\} \right\}.$$

- c. By definition, for any $z \in Z(G)$, the following equation will hold true, zG = Gz. By the definition of a normal subgroup, Z(G) is normal in G.
- d. By definition $G/Z(G) = \langle xZ(G) \rangle$ for some $xZ(G) \in G/Z(G)$ where x is the representative for the coset xZ(G).

If we let $a \in G$, then we know that $aZ(G) = (xZ(G))^m$ for some m. We can also rewrite $(xZ(G))^m = x^m Z(G)$.

If we take another $b \in G$, then we know that $bZ(G) = (xZ(G))^n$ for some n. We can then rewrite $(xZ(G))^n = x^n Z(G)$.

From these two equations, we gets that ax^{-m} , $bx^{-n} \in Z(G)$. For shorthand purposes, we can say $p = ax^{-m}$ and $q = bx^{-n}$. Then, we get that $a = px^m$ and $b = qx^n$. Multiplying both gives us $ab = (px^m)(qx^n) = pqx^{m+n}$. The last step was done beacuse we know that Z(G) is abelian.

If we multiply the other way, we know see that $ba = (qx^n)(px^m) = pqx^{m+n}$. This means that ab = ba. Therefore, G/Z(G) is abelian.

Let G be a group and let $G' = \langle aba^{-1}b^{-1}\rangle$; that is, G' is the subgroup of all finite products of elements in G of the form $aba^{-1}b^{-1}$. The subgroup G' is called the **commutator subgroup** of G.

- a. Show that G' is a normal subgroup of G.
- b. Let N be a normal subgroup of G. Prove that G/N is abelian iff N contains the commutator subgroup of G.

Solution:

- a. Let $s = aba^{-1}b^{-1}$ be the generator of G'. We can say that for any $g \in G$, $gsg^{-1} = (gag^{-1})(gbg^{-1})(gag^{-1})^{-1}(gbg^{-1})^{-1}$. By this structure, we can see that $gsg^{-1} \in G'$. Effectively, conjugating by g is a homomorphism G' is normal in G.
- b. If $a,b \in G$ and we assume G/N is abelian, then we have $(aN)(bN) = (bN)(aN) \Leftrightarrow Nab = Nba \Leftrightarrow Naba^{-1}b^{-1} = N \Leftrightarrow aba^{-1}b^{-1} \in N$.

Now, if we assume that $aba^{-1}b^{-1} \in N$, this is the same as $ab(ba)^{-1} \in N$. This means that Nab = Nba, or as we showed before, (aN)(bN) = (bN)(aN). Therefore, G/N is abelian. Θ .