Low-rank in Uncertainty Management Efficient linear algebra and an overview of the \mathcal{H} -matrix framework

Kieran Delamotte

IMACS

May, 2020

First encounter with low rank

Large and dense systems

 \mathcal{H} -matrices

Applications

Conclusions & perspectives

Large and dense systems

 \mathcal{H} -matrices

Applications

Conclusions & perspectives

Key ideas for fast computation

Uncertainty quantification (UQ) typically requires a high number of simulations using basic linear algebra operations. Then two things come in handy:

- fast linear algebra decomposition (QR, LL^T, ...)
- efficient data structures.

If many simulations are 'similar' there is most likely a low-rank property somewhere to be exploited. Low-rank property in linear algebra leads to fast computations AND efficient structures! We shall present two efficient methods:

- random linear algebra for medium-sized problems (on a simple example!)
- the H-matrix framework (much more detailed)

Model problem

Suppose we are interested in eigenvalues (and/or eigenvectors) of a covariance matrix of the form $C_X = X^T X$ where X is of size $m \times n$. Several methods:

- eigenvalue decomposition of $C_X : \mathcal{O}(n^3)$ operations and conditionning of normal equations is bad!
- SVD decomposition of X : (better, still expensive) $\mathcal{O}(mn^2)$ operations
- what else?

Basic idea: using random test matrix Ω and the fact that any orthogonal basis of ran(Y) with $Y = A\Omega$ is a good approximate basis for ran(A). Y has a less columns than A so QR is cheaper!

Algorithm 1 A simple random QR decomposition

Require: A matrix **A** of size $m \times n$, an oversampling parameter 1. **Ensure:** An orthogonal basis $\mathbf{Q}_{\mathbf{Y}}$ of ran(\mathbf{A}).

- 1: Draw a random matrix **W** of size $n \times l$.
- 2: Form product $\mathbf{Y} : \mathbf{Y} = \mathbf{AW}$.
- 3: Form the QR decomposition of the matrix $\mathbf{Y}: \mathbf{Y} = \mathbf{Q}_{\mathbf{Y}}\mathbf{R}$.
- 4: return

A random SVD

Algorithm 2 A simple random SVD decomposition

Require: A matrix **A** of size $m \times n$, an orthogonal matrix **Q** to $A \simeq QR$.

Ensure: An approximate *SVD* decomposition of **A**, $\mathbf{A} \simeq \mathbf{U} \mathbf{\Sigma} \mathbf{V}^T$. Construct the projection matrix $\mathbf{B} = \mathbf{Q}^T \mathbf{A}$.

- 2: Form the SVD of **B** : $\mathbf{B} = \tilde{\mathbf{U}} \boldsymbol{\Sigma} \mathbf{V}^T$. Build the matrix $\mathbf{U} = \mathbf{Q}\mathbf{U}$.
- 4: return

First encounter with low rank

A numerical example

Say $X \in \mathbb{R}^{m \times n}$ is a discrete approximate of a random process $X(t,\omega)$ over [-1,1] with exponential covariance function $C(s,t)=e^{-|t-s|}$. We are still interested in eigenvalues of C_X . In that case, we can prove that $\lambda_n/\lambda_1=\mathcal{O}(n^{-2})$. In the following example we choose m=6400 and n=1000.

FIGURE - Eigenvalues decay.

FIGURE - Eigenvalues decay the first 10.

Case summary

test matrix # cols.	elapsed time (s)	$\sum \lambda_n$	rel. error
5	0.021	4950345.8	0.253
10	0.027	5894250.4	0.111
20	0.038	6309314.4	0.048
40	0.060	6478969.3	0.023
80	0.068	6556588.8	0.011
160	0.131	6598333.6	0.005

TABLE – Example summary for random SVD

- For reference : $trace(C_X) = 6632269.0$
- elapsed time for full SVD: 0.663s
- elapsed time for numpy.linalg.eigs: 107.307.

many articles in the literature,

First encounter with low rank

- random SVD is implemented in OPENTURNS,
- generally behave better than classical methods,
- what if the probleme is larger?

Large and dense systems

Introduction

Several applications in statistics lead to large and dense matrices :

- Kriging;
- applications using large covariance matrices (ex : random Gaussian sampling).

Kriging

- Symetric Positive Definite (SPD) matrix;
- Many solves;
- Usually.
 - Cholesky decomposition $M = LL^T$;
 - Forward/Backward substitutions.

Kriging

in a nutshell

Let $Z: \mathbb{R}^d \mapsto \mathbb{R}$ be some random process, stationnary of order 2. We have N observation points $\left\{x_i \in \mathbb{R}^d / i = 1, \ldots, N\right\}$ with values $Z(x_i)$. Let assume that the covariance of these points is known and given by a matrix $K \in \mathbb{R}^{N \times N}$ with

$$K_{ij} = \operatorname{Cov}(Z(x_i), Z(x_j))$$

An estimation of the mean trajectory is a linear interpolation $\tilde{Z}(x_0)$ of Z at $x_0 \in \mathbb{R}^d$:

$$\tilde{Z}(x_0) = \sum_{i=1}^{N} \alpha_i(x_0) Z(x_i)$$

The weights α_i are solution of the linear system

$$K\alpha = K_0$$
 where $(K_0)_i := \text{Cov}(Z(x_0), Z(x_i))$

writing the systems

- K is SPD (covariance matrix);
- usually K is not known exactly :
 - modelled as a convolution matrix of a kernel $k : \mathbb{R}^d \mapsto \mathbb{R}$:

$$K_{ij} := k(x_i, x_j)$$

- what is k?
 - Exponential :

$$k(x, y) = e^{-|x-y|/\lambda}$$

Gaussian:

$$k(x, y) = e^{-|x-y|^2/(2\lambda^2)}$$

• Quadratic :

$$k(x,y) = \left(1 + \frac{|x-y|}{2\lambda}\right)^{-2}$$

- N can be large. For instance, every node in a FEM discretization:
- The interpolation is sought at many points x₀.

Kriging solving the system

- K is ill-conditionned, many RHS: direct solver;
- K is SPD : Cholesky.

Complexity (LAPACK)

- Cholesky factorization (DPOTRF) : $1/3N^3 + 1/2N^2 + 1/6N$
- Solving (DPOTRS) : $N_{\rm RHS} \times 2N^2$
- Storage : 8N²/2

Need of a fast direct solver: \mathcal{H} -matrix framework.

First encounter with low rank

Let X_N be a uniform discretization of [0,1] with the discretization step $h = \frac{1}{N-1}$:

$$X_N = \{0 = x_1, \dots, x_N = 1\}$$

The correlation length λ is set to $\lambda := 5h$ and the exponential kernel in 1D reads as

$$K_{\lambda}(x_i, x_i) = e^{-|x_i - x_j|/\lambda}$$

FIGURE – the covariance matrix $K_{\lambda}([0,1],[0,1])$

Toy model: exponential kernel in 1D

FIGURE – small extra-diagonal block : $K_{\lambda}([0,0.2],[0.8,1])$

Toy model: exponential kernel in 1D

FIGURE – large extra-diagonal block : $K_{\lambda}([0,0.5],[0.5,1])$

Toy model: exponential kernel in 1D

FIGURE – taking a part of the diagonal : $K_{\lambda}([0,0.6],[0.4,1])$

Whenever x_i and x_i are in disjoint sets the kernel reads as a separated one. For instance; if $x_i > x_i$ then

$$K_{\lambda}(x_i, x_i) = e^{(x_j - x_i)/\lambda} = e^{x_j/\sqrt{\lambda}} e^{-x_i/\sqrt{\lambda}},$$

which is of rank 1.

First encounter with low rank

 \mathcal{H} -matrices

Admissibility gives low-rank

Usual condition:

$$\min(\operatorname{diam}(B_t),\operatorname{diam}(B_s))\leqslant \eta\operatorname{dist}(B_t,B_s)$$
 (admissibility condition)

The separation condition R = 0 gives the **HODLR**(Hierarchically Off-Diagonal Low-Rank) structure described by the 1D toy model.

Low-rank approximation: compression techniques

- SVD · $M \approx U \Sigma V^H$
 - Rank and precision controlled:
 - Costly $\mathcal{O}(4m^2n + 8mn^2 + 9n^3)$ (hyp: m > n)
- Existence of cross approximations : row/col. extraction (Goreinov & Tyrtyshnikov '97);
- Gaussian/LU rank-revealing scheme known as Full Cross Approximations:
- 1: **while** $||M|| > \varepsilon ||M_0||$: **do**
- $\operatorname{rank}(M) \leftarrow \operatorname{rank}(M) + 1$ 2:
- Find the coefficient $M_{i^*i^*}$ so that $M_{i^*i^*} = \max_{i,j} |M_{ij}|, \alpha =$ 3: $M_{i^*i^*}$
- $M \leftarrow M \frac{1}{\alpha}M(:,j^*)M(i^*,:)$
- 5: end while

Variants

The fast determination of the pivot is the main idea of all fast algorithms. Key points to speed up the full cross approximation:

- Partially pivoted Cross Approximation.
 - We seek the largest pivot over a column and/or a row in $\mathcal{O}(m)$ instead of $\mathcal{O}(m^2)$ operations.
 - Only the modified coefficients of the remainder are computed at each step.
- Adaptive CA algorithm: a fast (linear) estimation of the remainder.
- ACA+ and other variants use other heuristics.
- Trade-off between robustness (SVD) and efficiency (ACA/ACA+): computations from $O(m^2n + mn^2)(SVD)$ to $\mathcal{O}(mnr)$ (fullCA) to $\mathcal{O}((m+n)r^2)$ (ACA).

Space partitioning : clustering

- Use of bounding boxes: easier to handle than point clouds;
- Recursive splitting strategy (Divide and Conquer strategy) thanks to nested bisection:
 - geometric : the box is split in two halves along the largest axis;
 - median: each half contains roughly the same number of unknowns;
 - others (PCA,...).
- Split the boxes until each box contains a fixed small number of unknowns;
- Result : binary tree.

 \mathcal{H} -matrices

Blockclustering: Clustering & Admissibility

It is a quad-tree whose nodes are matrix blocks and the leaves are admissible (or small) blocks; a block is split in a 2×2 block structure.

TABLE - Blockclustering and the geometry

The \mathcal{H} -matrix structure

A \mathcal{H} -matrix is a **quadtree** (with Binary Space Partitioning) :

- Internal nodes : subdivided H-matrix;
- Leaves :
 - admissible block : large & low-rank;
 - inadmissible block : dense & full rank, but small.

Remarks

- Only the leaves carry data;
- Big admissible blocks ($10^4 \times 10^4$ and more)
- Small (and few) inadmissible blocks (100×100).

Each admissible block is compressed with a fast method thus determining a numerical rank with a prescribed relative error ε .

Operations: three kinds

- H -BLAS1&2: Assembly, AXPY, GEMV Simple. Operating only on leaves.
- H -BLAS3: GEMM, TRSV
 More involved. Operations at many different levels of the same sub-tree.
- H -LAPACK: Inverse, LU, LL^T.
 Uses BLAS2 and BLAS3 operations, harder to implement in parallel.

Base operations

All operations use BLAS/LAPACK. Typical subroutines are : SVD, QR, LU, TRSV, GEMM and GEMV.

Addition

- Usually structures must be the same;
- 3 different base cases :
 - sum of two dense matrices (usual dense operation);
 - sum of a dense and a low-rank matrix;
 - sum of two low-rank matrices.

Useful pointers

- Adding two low-rank matrices: unknown final rank
- Costly operation!

Multiplication

Main issues

Let $C = A \times B$ the product of 2 \mathcal{H} -matrices.

- What is the 'best' structure of C?
- Uniqueness?
- What if it is imposed?

Multiplication

Main issues

Let $C = A \times B$ the product of 2 \mathcal{H} -matrices.

- What is the 'best' structure of C?
- Uniqueness? (here the literature definition)
- What if it is imposed?

Multiplication

Main issues

Let $C = A \times B$ the product of 2 \mathcal{H} -matrices.

- What is the 'best' structure of C?
- Uniqueness?
- What if it is imposed? (e.g. in a LL^T factorization)

 \mathcal{H} -matrices

Multiplication: exemple 1

Multiplication: exemple 2

Multiplication: exemple 2

Cholesky factorization

Recall : recursive block splitting based on the 2×2 block structure.

$$A_{11} = L_{11}L_{11}^{T}$$

$$A_{21} = L_{21}L_{11}^{T}$$

$$A_{22} = L_{21}L_{21}^{T} + L_{22}L_{22}^{T}$$

Recall : recursive block splitting based on the 2×2 block structure.

$$A_{11} = L_{11}L_{11}^T$$
 (recursive call)
 $A_{21} = L_{21}L_{11}^T$
 $A_{22} = L_{21}L_{21}^T + L_{22}L_{22}^T$

Cholesky factorization

Recall : recursive block splitting based on the 2×2 block structure.

$$\begin{array}{lcl} A_{11} & = & L_{11}L_{11}^T \\ A_{21} & = & L_{21}L_{11}^T & \text{(upper triangular solve)} \\ A_{22} & = & L_{21}L_{21}^T + L_{22}L_{22}^T \end{array}$$

Cholesky factorization

Recall : recursive block splitting based on the 2×2 block structure.

$$A_{11} = L_{11}L_{11}^T$$
 $A_{21} = L_{21}L_{11}^T$
 $A_{22} = L_{21}L_{21}^T + L_{22}L_{22}^T$ (\mathcal{H} -matrix GEMM then recursive call)

Typical issues

The \mathcal{H} -matrix algorithms are not nice for the hardware :

- Very small operations;
- Oddly-shaped matrices: "Tall & skinny";
- High memory band.

Observations

- Most (70-80%) of the time spent in :
 - QR decompositions of T&S matrices;
 - SVD decompositions of small matrices.
- BLAS implementions cannot reach the peak performance;
- Very high memory bandwidth.

Complexity estimates

Useful pointers

- Most complexity estimates assume a fixed upper bound k for the low-rank matrices involved:
- The structure of the matrix (as represented by a tree) is important as well: a large depth with small blocks is typically a bad omen.

Common operations

For a matrix size of $N \times N$ with the previous assumptions :

- assembly: time and storage is in O(kN log N);
- addition : $\mathcal{O}(k^2N\log N)$ operations;
- multiplication and Cholesky factorisation : $\mathcal{O}(k^3 N \log^3 N)$ operations;
- in practice a $\mathcal{O}(N \log^2 N)$ complexity is observed.

Applications

Applications

Recall the 1D toy model?

- exponential kernel : $K(s,t) = e^{-|s-t|/\lambda}$
- prescribed relative error $\varepsilon = 10^{-4}$:
- HODLR admissibility;
- 1D exponential kernel: provably rank-one when HODLR.
- 'exact model' is the second Hermite function $\psi_2(x) = (2x^2 - 1)e^{-\frac{1}{2}x}$:
- input data as a gaussian distribution;
- here: one iteration of optimization loop, correlation length $\lambda = 0.01$.

Recall the 1D toy model?

FIGURE – Lower part of the covariance matrix : rank map.

- matrix size 1000×1000 ;
- compression ratio : $\approx 12\%$ (small case!)

FIGURE – Cholesky factor : rank map.

- matrix size 1000 × 1000;
- compression ratio : $\approx 12\%$ (small case!)

FIGURE - Surface response using kriging

- compression ratio : $\approx 12\%$ (small case!);
- same response with LAPACK and HMAT solver;
- maximum absolute error between two approximates : 1.55×10^{-15} .

Performances - computational time

the exponential kernel in 1D

FIGURE - Computational time vs matrix size

Applications

Performances - memory the exponential kernel in 1D

FIGURE - Memory vs matrix size

3D exemple: a cantilever beam

 The vertical deflection y of a cantilever beam's free end of fixed length L reads as

$$y = \frac{FL^3}{3EI},$$

where:

- E is the Young modulus;
- F is the load:
- *I* is the moment of inertia.
- Input variables x = (F, E, I) are assumed random;
- Variable of interest (output) is the deflection y estimated thanks to the model \mathcal{M}

$$\mathcal{M}: x \mapsto y$$

• Building a metamodel $\bar{\mathcal{M}}$ through Kriging and optimization loop for parameters : one \mathcal{H} -matrix at each iteration to treat the covariance matrix associated with a specified covariance

$$e^{-(s_1-t_1)/\lambda_1}e^{-(s_2-t_2)/\lambda_2}e^{-(s_3-t_3)/\lambda_3}$$
.

- Let $\lambda_1 = 3.96528$, $\lambda_2 = 5.8237$ and $\lambda_3 = 9.0679$ be the starting coefficients for the optimization.
- Degrees of freedom to be clustered within the \mathcal{H} -matrix framework:

```
"Young modulus";"Load";"Inertia"
3.6258375026+07;4.797336026+04;3.5171332517+02
3.1382130227 + 07; 3.350317520 + 04; 3.5324327901 + 02
```

Results

FIGURE – Input data : 5×10^4 entries.

• covariance matrix of size $5.10^4 \times 5.10^4$, symmetric and double precision : full size in memory is $10 \, \mathrm{Go}$.

Results

FIGURE – Lower part of the covariance matrix : rank map.

- memory: 167Mo (compression ratio: 1.67%);
- assembly time : 11.83s

Results

FIGURE - Cholesky factor: rank map.

- memory: 263Mo (compression ratio: 2.63%);
- Cholesky time: 17.84s

Conclusions & perspectives

- Three key components for assembling a \mathcal{H} -matrix :
 - The clustering of degrees of freedom (e.g. geometric);
 - An admissibility condition = which block to compress;
 - A fast on-the-fly algorithm to assembly low-rank admissible blocks.
- An algebra on H-matrices :
 - Multiplications and additions of *H*-matrices;
 - Fast factorization of an \mathcal{H} -matrix with the same structure :
 - Fast direct solver;
 - Good preconditioner for iterative solver.

Conclusion

- The \mathcal{H} -matrix framework is an enabler for many statistics problems;
- Sequential solver is freely available through OpenTurns;
- Efficient parallel solver through licensing (contact Airbus & Imacs).