Exercice1

- 1-Une solution réalisable est une solution pour laquelle toutes les contraintes sont satisfaites.
- 2-Un programme linéaire n'a pas de solution si son domaine admissible est vide ou sa fonction objectif est non bornée.
- 3-Une solution de base est réalisable si tous les bi ≥ 0 .
- 4-Une solution de base réalisable est dégénérée lorsqu'au moins une variable de base est nulle.
- 5-une solution de base réalisable est optimale est une solution donnant la meilleure valeur objectif.

$\begin{aligned} \mathbf{Max} \ \mathbf{F} &= \mathbf{x}_1 + \mathbf{x}_2 + \mathbf{x}_3 \\ &= 2\mathbf{x}_1 + \mathbf{x}_2 - \mathbf{x}_3 & \leq 18 \\ &= -4\mathbf{x}_1 + \mathbf{x}_2 - \mathbf{x}_3 & \leq -12 \\ &= -8\mathbf{x}_1 - \mathbf{x}_2 + 5\mathbf{x}_3 & \leq 0 \\ &= -2\mathbf{x}_1 + 2\mathbf{x}_2 - 2\mathbf{x}_3 & \leq 6 \\ &= -\mathbf{x}_2 & \leq -5 \\ &= \mathbf{x}_1, \ \mathbf{x}_2, \ \mathbf{x}_3 & \geq 0 \end{aligned}$

On remplace chaque solution dans les contraintes et on vérifie si elles sont satisfaites :

1. (20, 5, 25) est une solution non réalisable car la contrainte (1) n'est pas vérifiée :

$$2*20 + 5 - 25 = 20 > 18$$

2. (5, 20, 12) est une solution de base (au moins 3 contraintes sont satisfaites) et réalisable (toutes les contraintes sont satisfaites):

$$2*5 + 20 - 12 = 18$$
 $-4*5 + 20 - 12 = -12$
 $-8*5 - 20 + 5*12 = 0$
 $-2*5 + 2*20 - 2*12 = 6$
 $-20 < -5$

3. (5, 5, -3) est une solution de base mais non réalisable car x_3 doit être ≥ 0

$$2*5 + 5 + 3 = 18$$
 $-4*5 + 5 + 3 = -12$
 $-8*5 - 5 - 3*5 = -60 < 0$
 $-2*5 + 2*5 + 2*3 = 6$
 $-5 = -5$
 $x_3 < 0$

4. (35, 5, 57) est une solution de base réalisable

$$2*35 + 5 - 57 = 18$$
 $-4*35 + 5 - 57 < -12$
 $-8*35 - 5 - 3*57 = 0$
 $-2*35 + 2*5 - 2*57 < 6$
 $-5 = -5$

5. (0, 22.5, 4.5) est une solution non réalisable ni de base

$$2*0 + 22.5 - 4.5 = 18$$
 $-4*0 + 22.5 - 4.5 > -12$
 $-8*0 - 22.25 + 5*4.5 = 0$
 $-2*0 + 2*22.5 - 2*4.5 = 6$
 $-2*0 + 2*22.5 - 2*4.5 > 6$
 $-22.5 < -5$

6. (40, 2, 64) est une solution ni de base ni réalisable

$$2*40 + 2 - 64 = 18$$
 $-4*40 + 2 - 64 < -12$
 $-8*40 - 2 + 5*64 < 0$
 $-2*40 + 2*2 - 2*64 < 6$
 $-2 > -5$

7. (5, 10, 2) est une solution réalisable mais pas de base

$$2*5 + 10 - 2 = 18$$
 $-4*5 + 10 - 2 = -12$
 $-8*5 - 10 + 5*2 < 0$
 $-2*5 + 2*10 - 2*2 = 6$
 $-10 < -5$

Exercice2: Forme standard

(1) Max $F=6x_1 + 20x_2$

$$\begin{cases} 2x_1 + x_2 \le 32 \\ 3x_1 + 4x_2 \le 80 \\ x_1 \ge 8 \\ x_2 \ge 10 \end{cases}$$

On pose $x=x_1-8$ et $y = x_2-10$

Max F = 6x + 48 + 20y + 200

$$\begin{cases} 2x+16 + y+10 \le 32 \\ 3x+24 + 4y+40 \le 80 \\ x \ge 0 \\ y \ge 0 \end{cases}$$

Max F = 6x + 20y + 248

$$\begin{cases}
2x+y \le 6 \\
3x+4y \le 16 \\
x \ge 0 \\
y \ge 0
\end{cases}$$

Le standard: Max F = 6x + 20y + 248

$$\begin{cases} 2x+y+e_1 = 6\\ 3x+4y+e_2 = 16\\ x,y,e_1,e_2 \ge 0 \end{cases}$$

(2) Max $F=x_1 + 2x_2$

$$\begin{cases} 3x_1 + 3x_2 \le 40 \\ x_1 - x_2 \ge 30 \\ x_1 \ge 0 \\ x_2 \text{ qcq} \end{cases}$$

On pose $x_2 = x_2^+ - x_2^-$

Le standard:
$$\mathbf{Max} \mathbf{F} = \mathbf{x_1} + 2 \mathbf{x_2}^+ - 2\mathbf{x_2}^+$$

$$\begin{aligned} \text{Max } \mathbf{F} &= \mathbf{x_{1}} + 2 \ \mathbf{x_{2}}^{+} - 2\mathbf{x_{2}}^{-} \\ & \begin{cases} 3x_{1} + 3 \ x_{2}^{+} - 3x_{2}^{-} + e_{1} = 40 \\ x_{1} - x_{2}^{+} + x_{2}^{-} - e_{2} = 30 \\ x_{1}, \ x_{2}^{+}, x_{2}^{-}, e_{1}, e_{2} \ge 0 \end{aligned}$$

Exercice3

1-Solution : Affecter le projet 2 à l'ingénieur 1 pour un gain de 6. Affecter le projet 3 à l'ingénieur 2 pour un gain de 5. Affecter le projet 1 à l'ingénieur 3 pour un gain de 6

Le gain total = 6+5+6=17 est un gain maximal

2-Programme linéaire

Soit x_{ii} la variable d'affectation du projet j à l'ingénieur i

On a donc

$$\begin{array}{c} \text{Max } \mathbf{Z} = 3x_{11} + 6x_{12} + 4x_{13} + 6x_{21} + 4x_{22} + 5x_{23} + 6x_{31} + 5x_{32} + 4x_{33} \\ & \left\{ \begin{array}{c} x_{11} + x_{12} + x_{13} \leq 1 \\ x_{21} + x_{22} + x_{23} \leq 1 \\ x_{31} + x_{32} + x_{33} \leq 1 \\ x_{11} + x_{21} + x_{31} \leq 1 \\ x_{12} + x_{22} + x_{32} \leq 1 \\ x_{13} + x_{23} + x_{33} \leq 1 \end{array} \right. \\ & \left\{ \begin{array}{c} x_{12} + x_{22} + x_{33} \leq 1 \\ x_{13} + x_{23} + x_{33} \leq 1 \end{array} \right. \\ & \left\{ \begin{array}{c} x_{1j} \geq 0 & x_{ij} \in IN \ \ i = 1, \, 2, \, 3 \ \ \text{et} \ j = 1, \, 2, \, 3 \end{array} \right. \end{array} \right.$$

3- Le dictionnaire final des données

Les variables définies dans le dictionnaire sont les variables de base et celles qui ne sont pas définies dans le dictionnaire sont les variables hors-base.

La solution optimale est obtenue en annulant les variables hors-base :

$$x_{12} = x_{23} = x_{31} = 1$$
 pour Z= 17

Le projet 2 est affecté à l'ingénieur 1. Le projet 3 est affecté à l'ingénieur 2.Le projet 1 est affecté à l'ingénieur 3.

Exercice4

1-Le standard

2-Dictionnaire des données

1^{ère} solution de base réalisable (e₁, e₂, e₃)

$$x_1=x_2=x_3=x_4=0$$
 et $e_1=6$, $e_2=8$, $e_3=3$ avec $F=0$

$$\begin{array}{l} \mathbf{e}_{1} = \mathbf{6} - 6\mathbf{x}_{1} - 8\mathbf{x}_{2} - 5\mathbf{x}_{3} - \mathbf{9} \mathbf{x}_{4} \\ \mathbf{e}_{2} = \mathbf{8} - \mathbf{x}_{1} - 3\mathbf{x}_{2} - \mathbf{x}_{3} - \mathbf{2} \mathbf{x}_{4} \\ \mathbf{e}_{3} = 3 - \mathbf{x}_{1} \\ F = 2\mathbf{x}_{1} + 1\mathbf{x}_{2} + 1\mathbf{x}_{3} + 3\mathbf{x}_{4} \\ \text{Variable entrante } \mathbf{x}_{e} : \text{Max } (\mathbf{2}, \mathbf{1}, \mathbf{1}, \mathbf{3}) = \mathbf{3} \text{ donc } \mathbf{x}_{e} = \mathbf{x}_{4} \\ \text{Variable entrante } \mathbf{x}_{e} : \text{Max } (\mathbf{2}, \mathbf{1}, \mathbf{1}, \mathbf{3}) = \mathbf{3} \text{ donc } \mathbf{x}_{e} = \mathbf{x}_{4} \\ \text{Variable entrante } \mathbf{x}_{e} : \text{Max } (\mathbf{2}, \mathbf{1}, \mathbf{1}, \mathbf{3}) = \mathbf{3} \text{ donc } \mathbf{x}_{e} = \mathbf{x}_{4} \\ \text{Variable entrante } \mathbf{x}_{e} : \text{Max } (\mathbf{2}, \mathbf{1}, \mathbf{1}, \mathbf{3}) = \mathbf{3} \text{ donc } \mathbf{x}_{e} = \mathbf{x}_{4} \\ \text{Variable entrante } \mathbf{x}_{e} : \text{Max } (\mathbf{2}, \mathbf{1}, \mathbf{1}, \mathbf{3}) = \mathbf{3} \text{ donc } \mathbf{x}_{e} = \mathbf{x}_{4} \\ \text{Variable entrante } \mathbf{x}_{e} : \text{Max } (\mathbf{2}, \mathbf{1}, \mathbf{1}, \mathbf{3}) = \mathbf{3} \text{ donc } \mathbf{x}_{e} = \mathbf{x}_{4} \\ \text{Variable entrante } \mathbf{x}_{e} : \text{Max } (\mathbf{2}, \mathbf{1}, \mathbf{1}, \mathbf{3}) = \mathbf{3} \text{ donc } \mathbf{x}_{e} = \mathbf{x}_{4} \\ \text{Variable entrante } \mathbf{x}_{e} : \text{Max } (\mathbf{2}, \mathbf{1}, \mathbf{1}, \mathbf{3}) = \mathbf{3} \text{ donc } \mathbf{x}_{e} = \mathbf{x}_{4} \\ \text{Variable entrante } \mathbf{x}_{e} : \text{Max } (\mathbf{2}, \mathbf{1}, \mathbf{1}, \mathbf{3}) = \mathbf{3} \text{ donc } \mathbf{x}_{e} = \mathbf{x}_{4} \\ \text{Variable entrante } \mathbf{x}_{e} : \text{Max } (\mathbf{2}, \mathbf{1}, \mathbf{1}, \mathbf{3}) = \mathbf{3} \text{ donc } \mathbf{x}_{e} = \mathbf{x}_{4} \\ \text{Variable entrante } \mathbf{x}_{e} : \text{Max } (\mathbf{2}, \mathbf{1}, \mathbf{1}, \mathbf{3}) = \mathbf{3} \text{ donc } \mathbf{x}_{e} = \mathbf{x}_{4} \\ \text{Variable entrante } \mathbf{x}_{e} : \text{Max } (\mathbf{2}, \mathbf{1}, \mathbf{1}, \mathbf{3}) = \mathbf{3} \text{ donc } \mathbf{x}_{e} = \mathbf{x}_{4} \\ \text{Variable entrante } \mathbf{x}_{e} : \mathbf{$$

Variable sortante x_s : Min (6/9, 8/2) = 2/3 ce qui correspond à $x_s = e_1$

Tous les coûts sont ≤ 0 donc on atteint l'optimum :

$$x_4 = 2/3$$
; $e_2 = 20/3$; $e_3 = 3$; $x_1 = x_2 = x_3 = e_1 = 0$; $F = 2$

Exercice 5

1-Standard

$$Max F = 1000x_1 + 1200x_2$$

$$\begin{cases} 10x_1 + 5 x_2 + e_1 = 200 \\ 2x_1 + 3 x_2 + e_2 = 60 \\ x_1 + e_3 = 18 \\ x_2 + e_4 = 20 \\ x_1, x_2, e_1, e_2, e_3, e_4 \ge 0 \end{cases}$$

La 1ère solution de base réalisable ($e_1 = 200$, $e_2 = 60$, $e_3 = 18$, $e_4 = 20$) avec ($x_1 = x_2 = x_3 = 0$)

2-Méthode des tableaux

Tableau 1

	c_{j}	1000	1200	0	0	0	0		θ
C_{B}	X_{B}	\mathbf{x}_1	XX ₂	e_1	e_2	e_3	e_4	b	
0	e_1	10	5	1	0	0	0	200	200/5
0	← e ₂	2	3	0	1	0	0	60	60/3
0	e_3	1	0	0	0	1	0	18	/
0	e_4	0	1	0	0	0	1	20	20/1
Zj		0	0	0	0	0	0		
c _i - z	'i	1000	1200	0	0	0	0	F=0	

Tableau 2

c_{j}		1000	1200	0	0	0	0		θ
C_{B}	X_{B}	X_1	\mathbf{X}_2	e_1	e_2	e_3	e_4	b	
0	$-e_1$	20/3	0	1	-5/3	0	0	100	100/(20/3) = 15
1200	\mathbf{x}_2	2/3	1	0	1/3	0	0	20	20/(2/3) = 30
0	e_3	1	0	0	0	1	0	18	18
0	e_4	-2/3	0	0	-1/3	0	1	0	/
Zį		800	1200	0	400	0	0		
c _i - z _i		200	0	0	-400	0	0	F=24000	

Tableau 3

c_{j}		1000	1200	0	0	0	0		θ
C_{B}	X_{B}	\mathbf{x}_1	\mathbf{X}_2	e_1	e_2	e_3	e_4	b	
1000	\mathbf{x}_1	1	0	3/20	-1/4	0	0	15	100/(20/3) = 15
1200	\mathbf{x}_2	0	1	-1/10	1/2	0	0	10	20/(2/3) = 30
0	e_3	0	0	-3/20	1/4	1	0	3	18
0	e_4	0	0	1/10	-1/2	0	1	10	/
Zį		1000	1200	30	350	0	0		
$c_i - z_i$		0	0	-30	-350	0	0	F=27000	

Tous les cj-zj sont ≤ 0 donc on atteint l'optimum :

$$x_1 = 15$$
, $x_2 = 10$, $e_3 = 3$, $e_4 = 10$
 $e_1 = e_2 = 0$

3- Résolution graphique :

Points extrêmes 18	Valeur objectif
(0,0)	0
(0,20)	24000
(18,4)	22800
(15,10)	27000

4-Analyse post-optimale du Coefficient c_1 :

On reprend le dernier tableau en remplaçant 1200 par un coût $\mathbf{c_1}$ et on refait le calcul:

c _i		c_1	1200	0	0	0	0		
$C_{\rm B}$	X_{B}	X ₁	X ₂	e_1	e_2		e_3	e_4	b
$\mathbf{c_1}$	X ₁	1	0	3/20	-1/4	0	0		15
1200	\mathbf{x}_2	0	1	-1/10	1/2	0	0		10
0	e_3	0	0	-3/20	1/4	1	0		3
0	e_4	0	0	1/10	-1/2	0	1		10
Zį		c ₁	1200	$(3/20)*c_1)-120$	(-1/4)*c ₁ +600	0	0		
$c_i - z_i$		0	0	120-(3/20)*c ₁	(1/4)* c ₁ -600	0	0		F*=15c ₁ +12000

 $\begin{array}{lll} 120\text{-}3/20^* \ c_1 \leq 0 & 1/4^* \ c_1\text{-}\ 600 \leq 0 \\ 3/20^* \ c_1 \geq 120 & 1/4^* \ c_1 \leq 600 \\ c_1 & \geq 20^*120/3 & c_1 \leq 4^*600 \\ c_1 & \geq 800 & c_1 \leq 2400 \end{array}$

 $800 \le c_1 \le 2400$

Pour c1 = 2400 on a $F^* = 15^*2400 + 12000 = 48000$ dF = 48000 - 27000 = 21000

5-Analyse post-optimale du Coefficient b₂:

- On reprend le système initial

$$\begin{cases} 10x_1 + 5 x_2 + e_1 = 200 \\ 2x_1 + 3 x_2 + e_2 = \mathbf{b_2} \\ x_1 + e_3 = 18 \\ x_2 + e_4 = 20 \end{cases}$$

- On reprend le dernier tableau

	onrepr		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,					
c_{i}		1000	1200	0	0	0	0	
C_B	X_{B}	\mathbf{x}_1	\mathbf{x}_2	$\mathbf{e_1}$	\mathbf{e}_{2}	e_3	e_4	
1000	\mathbf{x}_1	1	0	3/20	-1/4	0	0	
1200	\mathbf{X}_2	0	1	-1/10	1/2	0	0	
0	e ₃	0	0	-3/20	1/4	1	0	
0	$\mathbf{e_4}$	0	0	1/10	-1/2	0	1	
Zį		1000	1200	30	350	0	0	
C _i - Z _i	•	0	0	-30	-350	0	0	

Les variables de base : x_1 , x_2 , e_3 , e_4 et les variables hors-base : e_1 , e_2 .

La Matrice de base correspondante à (x_1, x_2, e_3, e_4) à partir du système principal :

- On utilise la Condition de faisabilité de la solution de base :

$$\left(\begin{array}{c|cccc} \frac{3/20 & -1/4 & 0 & 0 \\ \hline -1/10 & 1/2 & 0 & 0 \\ \hline -3/20 & 1/4 & 1 & 0 \\ \hline 1/10 & -1/2 & 0 & 1 \end{array}\right) \quad \downarrow \quad \left(\begin{array}{c} 200 \\ \mathbf{b}_2 \\ 18 \\ 20 \end{array}\right) \; \succeq \; \mathbf{0}$$

$$48 \leq b_2 \leq 80$$

Exercice 6 : Méthode des pénalités

$$\begin{cases} \textbf{Max F=} \textbf{x_1 - x_2} + \textbf{x_3} \\ 2\textbf{x_1 - x_2} + 2\textbf{x_3} & \leq 4 \\ 2\textbf{x_1 - 3}\textbf{x_2 + x_3} & \leq -5 \\ -\textbf{x_1 + x_2 - 2}\textbf{x_3} & \leq -1 \\ \textbf{x_1, x_2, x_3} \geq 0 \end{cases}$$

Standard

La 1ère solution de base (e₁, e₂, e₃) n'est pas réalisable

$$e_1 = 4$$
 $e_2 = -5$ $e_3 = -1$

On applique la méthode des pénalités en ajoutant deux variables artificielles $(a_1$ et $a_2)$ aux contraintes (2) et (3)) et on réapplique la méthode des tableaux :

$$\begin{aligned} & \textbf{Max F=} \textbf{x_1 - x_2 + x_3 - Ma_1 - Ma_2} & \textbf{M} >> \\ & 2\textbf{x_1 - x_2 + 2 x_3 + e_1 = 4} \\ & -2\textbf{x_1 + 3x_2 - x_3 - e_2 + a_1 = 5} \\ & \textbf{x_1 - x_2 + 2x_3 - e_3 + a_2 = 1} \\ & \textbf{x_1, x_2, x_3, e_1, e_2, e_3, a_1, a_2, a_3 \ge 0} \end{aligned}$$

Tableau 1

c_{j}		1	-1	1	0	0	0	-M	-M		θ
C_{B}	X_{B}	\mathbf{x}_1	\mathbf{X}_2	X ₃	e_1	e_2	e_3	a_1	a_2	b	
0	e_1	2	-1	2	1	0	0	0	0	4	4/1
-M	\mathbf{a}_1	-2	3	-1	0	-1	0	1	0	5	5/3
-M	a_2	1	-1	2	0	0	-1	0	1	1	/
\mathbf{z}_{j}		M	-4M	-M	0	M	M	-M	-M		
$c_i - z_i$		1-M	-1+2N	I 1+N	<i>I</i> 0	-M	-M	0	0	-6M	

Tableau 2

c_{j}		1	-1	1	0	0	0 -M	I -M		θ
C_{B}	X_{B}	\mathbf{x}_1	\mathbf{X}_2	X 3	e_1	e_2	e_3	a_1 a_2	b	
0	e_1	4/3	0	5/3	1	-1/3	0	0	17/3	17/5
-1	\mathbf{X}_2	-2/3	1	-1/3	0	-1/3	0	0	5/3	/
-M	\mathbf{a}_2	1/3	0	5/3	0	-1/3	-1	1	8/3	8/5
Zį		2/3-M	[/3 -1	1/3-5/3	*M 0	1/3+1/3*M	I M	-M		
c _i - z _i		1/3+N	1/3 0	2/3+5/	3*M 0	-1/3-1/3*N	И -M	0	-5/3-8/3M	

Tableau3

c_{j}		1	-1	1	0	0	0	-M	-M		θ
C_{B}	X_{B}	\mathbf{x}_1	\mathbf{x}_2	X ₃	e_1	e_2	e ₃	a_1	a_2	b	
0	$\mathbf{e_1}$	1	0	0	1	0	1			3	3/1
-1	\mathbf{X}_2	-3/5	1	0	0	-2/5	-1/5			11/5	/
1	\mathbf{x}_3	1/5	0	1	0	-1/5	-3/5			8/5	/
Zį		4/5	-1	1	0	1/5	-2/5				
c _i - z _i		1/5	0	0	0	-1/5	2/5			-3/5	

Tableau 4

c_{j}		1	-1	1	0	0	0	-M	-M		θ
C_{B}	X_{B}	\mathbf{x}_1	\mathbf{x}_2	\mathbf{x}_3	e_1	e_2	\mathbf{e}_3	a_1	a_2	b	
0	\mathbf{e}_3	1	0	0	1	0	1			3	3/1
-1	X ₂	-2/5	1	0	1/5	-2/5	0			14/5	/
1	X ₃	4/5	0	1	3/5	-1/5	0			17/5	/
Zį		6/5	-1	1	2/5	1/5	0				
$c_i - z_i$		-1/5	0	0	-2/5	-1/5	0			3/5	

Tous les $cj-zj \le 0$, le maximum est atteint :

$$x_1=e_1=e_2=0$$
; $x_2=14/5$; x_3 17/5 $e_3=3$.

Exercice 6 : Méthode des pénalités

$$\begin{cases} \textbf{Min F=195x}_1 + 160 \ x_2 + 120x_3 \\ x_1 + 2 \ x_2 + x_3 & \geq 16 \\ 5/2 \ x_1 + x_2 + 3/2 \ x_3 & \geq 10 \\ x_1, \ x_2, x_3 \geq 0 \end{cases}$$

Standard

Min F=195x₁ +160x₂ + 120x₃

$$\begin{cases}
x_1 + 2 x_2 + x_3 - e_1 = 4 \\
5/2 x_1 + x_2 + 3/2 x_3 - e_2 = 5 \\
x_1, x_2, x_3, e_1, e_2, e_3 \ge 0
\end{cases}$$

La 1ère solution de base (e₁, e₂, e₃) n'est pas réalisable

$$e_1 = -16$$
 $e_2 = -10$

On applique la méthode des pénalités en ajoutant deux variables artificielles (a_1 et a_2 aux contraintes) et on réapplique la méthode des tableaux :

$$\begin{array}{ll} \textbf{Min F=195x}_1 + 160x_2 + 120x_3 + Ma_1 + Ma_2 & M >> \\ \begin{cases} x_1 + 2 x_2 + x_3 - e_1 + a_1 = 16 \\ 5/2 x_1 + x_2 + 3/2 x_3 - e_2 + a_2 = 10 \\ x_1, x_2, x_3, e_1, e_2, a_1, a_2 \ge 0 \end{cases}$$

Tableau 1

c_{j}		195	160	120	0	0	M	M		θ
C_{B}	X_{B}	\mathbf{x}_1	\mathbf{X}_2	\mathbf{x}_3	e_1	e_2	a_1	a_2	b	
M	\mathbf{a}_1	1	2	1	-1	0	1	0	16	16/1
M	\mathbf{a}_2	5/2	1	3/2	0	-1	0	1	10	20/5
Zį		7M/2	3M	5M/2	2 -M	-M	M	M		
c _i - z _i	•	195-7M	/2 160-3M	120-5M	I/2 M	M	0	0	26M	

Tableau 2

C) j	195	160	120	0	0	M M			θ
C_{B}	X_{B}	\mathbf{x}_1	\mathbf{x}_2	\mathbf{x}_3	e_1	e_2	a_1	a_2	b	
M	\mathbf{a}_1	0	8/5	2/5	-1	2/5	1		12	12*5/8
195	\mathbf{x}_1	1	2/5	3/5	0	-2/5	0		4	4*5/2
$\mathbf{z}_{\mathbf{j}}$		195	78+8M/5	5 117+2M/5	-M	2M/5-78	M			
c _i - z _i		0	82-8M/5	3-2M/5	M	78-2M/5	0		780+12M	

Département d'Informatique - Module de Programmation linéaire - Corrigé - TD3

Tableau3

C) j	195	160	120	0	0	M M			θ
C_{B}	X_{B}	\mathbf{x}_1	\mathbf{x}_2	\mathbf{x}_3	e_1	e_2	a_1	\mathbf{a}_2	b	
160	X ₂	0	1	1/4	-5/8	1/4			15/2	30
195	\mathbf{x}_1	1	0	1/2	1/4	-1/2			1	2
z _i		195	160	275/2	-205/4	-115/2				
c _i - z _i		0	0	-35/2	205/4	115/2			1395	

Tableau 4

С	j	195	160	120	0	0	M M		θ
C_{B}	X_{B}	\mathbf{x}_1	\mathbf{X}_2	X 3	e_1	e_2	a_1 a_2	b	
160	\mathbf{X}_2	-1/2	1	0	-3/4	1/2		7	
120	X ₃	2	0	1	1/2	-1		2	
Zį		160	160	120	-60	-40			
c _i - z _i		35	0	0	60	40		1360	

Tous les c_j - $z_j \ge 0$, le minimum est atteint :

$$x_1=e_1=e_2=0$$
; $x_2=7$; $x_3=2$; $F=1360$.

Exercice 6: Méthode des deux phases

Standard

$$\begin{cases} x_1 + 2 x_2 + x_3 - \mathbf{e_1} + \mathbf{a_1} = 16 \\ 5/2 x_1 + x_2 + 3/2 x_3 - \mathbf{e_2} + \mathbf{a_2} = 10 \\ x_1, x_2, x_3, \mathbf{e_1}, \mathbf{e_2}, \mathbf{a_1}, \mathbf{a_2} \ge 0 \end{cases}$$

1ère phase : Soit la fonction objectif W des variables artificielles à minimiser

Min W =
$$\mathbf{a_1} + \mathbf{a_2}$$

$$\begin{cases}
x_1 + 2 x_2 + x_3 - \mathbf{e_1} + \mathbf{a_1} = 16 \\
5/2 x_1 + x_2 + 3/2 x_3 - \mathbf{e_2} + \mathbf{a_2} = 10 \\
x_1, x_2, x_3, \mathbf{e_1}, \mathbf{e_2}, \mathbf{a_1}, \mathbf{a_2} \ge 0
\end{cases}$$

Tableau 1

c_{j}		0	0	0	0	0	1	1		θ
C_{B}	X_{B}	\mathbf{x}_1	\mathbf{X}_2	\mathbf{x}_3	e_1	e_2	a_1	a_2	b	
1	\mathbf{a}_1	1	2	1	-1	0	1	0	16	16/1
1	\mathbf{a}_2	5/2	1	3/2	0	-1	0	1	10	20/5
Zį		7/2	3	5/2	-1	-1	1	1		
c _i - z _i		-7/2	-3	-5/2	1	1	0	0	W=26	

Université d'Oran

Département d'Informatique - Module de Programmation linéaire – Corrigé – TD3

Tableau 2

(c_j	0	0	0	0	0	1 1		θ
C_{B}	X_{B}	\mathbf{x}_1	\mathbf{x}_2	X ₃	e_1	e_2	a_1 a_2	b	
1	\mathbf{a}_1	0	8/5	2/5	-1	2/5	1	12	12*5/8
0	\mathbf{x}_1	1	2/5	3/5	0	-2/5	0	4	4*5/2
\mathbf{z}_{j}		0	8/5	2/5	-1	2/5	1		
c _i - z	i	0	-8/5	-2/5	1	-2/5	0	W=12	

Tableau3

(c_{j}	0	0	0	0 0)	1	1			θ
C_{B}	X_{B}	\mathbf{x}_1	\mathbf{x}_2	\mathbf{x}_3	e_1	e_2		a_1	a_2	b	
0	\mathbf{X}_2	0	1	1/4	-5/8	1/4				15/2	30
0	\mathbf{x}_1	1	0	1/2	1/4	-1/2				1	2
Zį		0	0	0	0	0					
c _i - z	i	0	0	0	0	0				W=0	

W=0 le minimum est atteint, on passe à la $2^{\text{ème}}$ phase en reprenant le tableau 3

2^{ème} phase

Tableau 1

C	 }j	195	160	120	0	0				θ
C_{B}	X_{B}	\mathbf{x}_1	\mathbf{X}_2	\mathbf{x}_3	e_1	e_2	a_1	\mathbf{a}_2	b	
160	\mathbf{X}_2	0	1	1/4	-5/8	1/4			15/2	30
195	\mathbf{x}_1	1	0	1/2	1/4	-1/2			1	2
Zį		195	160	275/2	-205/	4 -115/2				
$c_i - z_i$		0	0	-35/20	205/4	4 115/2			F=1395	

Tableau 2

С	j	195	160	120	0	0				θ
C_{B}	X_{B}	\mathbf{x}_1	\mathbf{X}_2	X ₃	e_1	e_2	a_1	a_2	b	
160	\mathbf{x}_2	-1/2	1	0	-3/4	1/2			7	
120	X ₃	2	0	1	1/2	-1			2	
Zį		160	160	120	-60	-40				
$c_i - z_i$		35	0	0	60	40			F=1360	

Tous les cj-zj sont ≥ 0 , le minimum est atteint :

$$x_1 = e_1 = e_2 = 0$$

 $x_2=7$; $x_3=2$ pour F=1360