

Guía de trabajo en laboratorio Nº 12:

Fundamentos de programación - Arduino

Secciones:	Apellidos:
Docente: Miguel Tupac Yupanqui Alanya	Nombres:
	Fecha :/2020

Instrucciones: Desarrollar las actividades que indica el docente en base a la guía de trabajo que se presenta.

1. Propósito: Comprender el funcionamiento de los sensores conectados a la placa del Arduino, empleando el Arduino IDE.

2. Equipos, herramientas o materiales

- Placa Arduino uno
- PC con Arduino IDE instalado
- 1 protoboard
- 12 LEDs
- 12 resistencias 220 Ω
- Sensores: Fotoresistencia (LDR), de Temperatura (LM35), de ultrasonido (HC SR04)
- Cables de conexión

3. Fundamento Teórico

 Arduino Uno – La tarjeta de desarrollo del microcontrolador la cual será el corazón de tus proyectos. Descrito en clase.

 Cables puente – Utilizarlos para conectar unos componentes con otros sobre la placa de prueba, y la tarjeta de Arduino.

 Protoboard (Placa de pruebas) - Placa con filas de agujeros sobre la cual se puede conectar cables y componentes sin necesidad de usar un soldador.

 Diodos Emisores de Luz (LEDs) – Diodo que emite luz cuando la corriente lo atraviesa.
 Como en todos los diodos, la corriente solo fluye en un sentido a través de estos componentes. El ánodo, que normalmente se conecta al positivo de la alimentación, es generalmente el terminal más largo, y el cátodo el terminal más corto.

• Resistencias – Se opone al paso de la corriente eléctrica en un circuito, dando como resultado a un cambio en la tensión y en dicha corriente. El valor de las resistencias se mide en ohmios (Ω) . Las bandas de colores en un lado de la resistencia indica su valor.

 $\frac{https://www.digikey.com/es/resources/conversion-calculators/conversion-calculator-resistor-color-code-4-band}{https://www.inventable.eu/paginas/ResCalculatorSp/ResCalculatorSp.html}$

• Fotoresistencia o LDR (Light Depending Resistor) – Componente foto electrónico cuya resistencia varía en función de la luz que incide sobre él (resistencia sensible a la luz).

- Sensor de temperatura LM35 Es un integrado con su propio circuito de control, que proporciona una salida de voltaje proporcional a la temperatura.
- **Sensor ultrasónico HC SR04 -** Dispositivo que permite medir distancias a través de ultrasonidos.

4. Procedimiento

Probando el sensor de luz (fotoresistencia o LDR)

Implementamos el siguiente circuito:

En el editor de código escribimos el siguinete programa:

```
1
   int valorLDR=0;
 2
   int led=12;
 3
 4
   void setup() {
 5
     pinMode(led,OUTPUT);
 6
     Serial.begin(9600);
 7
      delay(100);
 8
 9
10
   void loop(){
11
     valorLDR=analogRead(A0);
12
     Serial.println(valorLDR);
13
14
     if (valorLDR > 500) {
15
        digitalWrite(led, LOW);
16
     }
17
     else{
18
        digitalWrite(led, HIGH);
19
20
```


Compilamos y verificamos que no haya errores en el código escrito (Botón de **iniciar simulación**).

Podremos comprobar el funcionamiento del LDR. A medida que en el LDR se incida más o menos luz, se puede apreciar en el monitor serial como va cambiando los valores del pin A0, de acuerdo al programa, para valores mayores a 500 (Incide más luz en el LDR - día) el LED conectado al pin 12 se apaga y para valores menores a 500 (Incide menos luz en el LDR - oscuridad) el LED conectado al pin 12 se prende.

Probando el sensor de temperatura LM35

Implementamos el siguiente circuito:

En el editor de código escribimos el siguiente programa:

```
1
    void setup()
 2
    -{
 3
      Serial.begin(9600);
 4
 5
 6
   void loop()
 7
 8
      int valor = analogRead(A0);
 9
      Serial.print(valor);
10
      int temp=map(valor, 20, 358, -40, 125);
      Serial.println(" Temperatura = "+String(temp)+" C");
11
12
      delay(500);
13
```

Compilamos y verificamos que no haya errores en el código escrito (Botón iniciar

simulación)

Comprobamos el funcionamiento del sensor de temperatura, se puede apreciar en el monitor serial como va cambiando los valores de la temperatura, a medida que en el sensor se incida más o menos calor.

Monitor en serie 143 Temperatura = 20 C 143 Temperatura = 20 C 139 Temperatura = 18 C 176 Temperatura = 36 C 207 Temperatura = 51 C 207 Temperatura = 51 C 207 Temperatura = 51 C

> Probando el sensor ultrasónico HC SR04

Implementamos el siguiente circuito:

En el editor de código escribimos el siguiente programa:

```
1
   void setup() {
 3
     Serial.begin(9600);
 4
 5
 6
 7 void loop(){
 8
     int distancia = 0.01723 * readUltrasonicDistance(8, 7);
 9
     delay(10); // Delay a little bit to improve simulation performance
     Serial.println("Distancia = " + String(distancia) + " cm");
10
11
     delay(1000);
12 }
13
14 long readUltrasonicDistance(int triggerPin, int echoPin)
15 {
16
     pinMode(triggerPin, OUTPUT); // Clear the trigger
17
     digitalWrite(triggerPin, LOW);
18
     delayMicroseconds(2);
19
     // Sets the trigger pin to HIGH state for 10 microseconds
20
     digitalWrite(triggerPin, HIGH);
21
     delayMicroseconds(10);
22
     digitalWrite(triggerPin, LOW);
23
    pinMode(echoPin, INPUT);
24
    // Reads the echo pin, and returns the sound wave travel time in microseconds
    return pulseIn(echoPin, HIGH);
26 }
27
```

Compilamos y verificamos que no haya errores en el código escrito (Botón iniciar

simulación)

Comprobamos el funcionamiento del sensor ultrasónico HC SR04. Se puede apreciar en el monitor serie como va cambiando la distancia a medida que se va variando el sensor.

Distancia = 36 cm Distancia = 36 cm Distancia = 36 cm Distancia = 66 cm Distancia = 100 cm Distancia = 166 cm Distancia = 177 cm Distancia = 244 cm Distancia = 300 cm

5. Actividades

a. En base al circuito empleado para verificar el funcionamiento de la fotoresistencia (LDR) adiciona tres LEDs, como se muestra a continuación:

Luego, elaborar un programa para tener el siguiente funcionamiento:

	INPUT		OU	DUTPUT		
Fotoresistencia		Pin 12 Led_12	Pin 11 Led_11	Pin 10 Led_10	Pin 9 Led_9	
6 <=	<=170					
170 <	<=340				0	
340 <	<=500			0	0	
500 <	<=600		0	0	0	
600 <	<=680	0	0	0	0	

b. En base al circuito empleado para verificar el funcionamiento del sensor de temperatura, adiciona tres LEDs, como se muestra a continuación:

Luego, elaborar un programa para tener el siguiente funcionamiento:

INPUT		ОИТРИТ			
Fotoresistencia		Pin 12 Led_12	Pin 11 Led_11	Pin 10 Led_10	
-40 <=	TMP	<=10	•	0	0
10 <	TMP	<=50	0	•	0
50 <	TMP	<=120			

c. En base al circuito empleado para verificar el funcionamiento del sensor de ultrasónico, adiciona y ocho LEDs, como se muestra a continuación:

Implementar el programa para que funcione de la siguiente manera: A medida que se acerque al obstáculo los LEDs deben encender uno a uno, cuando está a muy cerca debe estar encendido los ocho LEDs y a medida que se aleja del obstáculo los LEDs deben ir apagándose y cuando esta fuera del rango deben estar apagados los ocho LEDs.

d. Crear un documento en Word (APELLIDOS Y NOMBRES) donde copiará el enlace correspondiente del ejercicio (actividad), luego subir este documento al Aula Virtual.

6. Referencias

- Arduino Libro de Proyectos, Traducido by Florentino Blas Fernández Cueto (Tino Fernández).
 http://www.futureworkss.com. Bajo una Licencia Creative Commons Reconocimiento –
 NoComercial -CompartirIgual 3.0 del 2015 por futureworkss.
- https://www.arduino.cc/reference/es/
- https://www.tinkercad.com/