Ecuaciones no lineales

Vamos a analizar los casos en que dada una ecuación f(x)=0 no es posible depejar la variable x.

Ejercicio 1

Resuélvase la ecuación

$$x + bcosx - a = 0$$

siendo: a = 4; b = 2; -5 < x < 5.

Ejercicio 2

La magnetización de un cierto material viene dado por la expresión

$$m = tanh\left(\frac{Cm}{T}\right)$$

Representar m en el intervalo de temperaturas 0K a 2K. Suponer C=1

Sistema de ecuaciones no lineales

Un sistema

$$Ax = b \tag{1}$$

se dice que es no lineal si A o b o ambos dependen de las variables x_i .

La resolución de tales sistemas requiere de un proceso iterativo. Es necesario partir de una cierta aproximación inicial $x^{(0)}$ a partir de la cual se van obteniendo sucesivas aproximaciones $x^{(k)}$ hasta que ésta converja a la solución con la precisión deseada.

Ejercicio 3

Resolver el siguiente sistema de ecuaciones

$$1.4x_1 - x_2 = 0.6$$
$$x_1^2 - 1.6x_1 - x_2 = 4.6$$

Ejercicio 4

Resolver el siguiente sistema de ecuaciones

$$1.2x_1^3 - x_1^2 + x_2 = 0$$
$$3x_1 + x_2 = 1$$

Regresión no lineal

Ejercicio 5

$$y = \frac{A}{(x-B)^2 + (\frac{C}{2})^2}$$

Calcular los coeficientes A, B, C que mejor describan el comportamiento del siguiente conjunto de N pares (x,y)

x	У		X	у	s(y
0.0	10.1		0.0	10.1	1.0
10.0	12.9	1	10.0	12.9	1.3
20.0	16.8	2	20.0	16.8	1.7
30.0	22.5	ć	30.0	22.5	2.2
40.0	30.9	4	10.0	30.9	3.1
50.0	43.0	5	50.0	43.0	4.3
60.0	58.4	6	60.0	58.4	5.8
70.0	71.5	7	70.0	71.5	7.1
80.0	72.2	8	80.0	72.2	7.2
90.0	59.9	(90.0	59.9	6.0
100.0	44.4	1	0.00	44.4	4.4
110.0	31.9	1	10.0	31.9	3.2
120.0	23.2	1	20.0	23.2	2.3
130.0	17.3	1	30.0	17.3	1.7
140.0	13.2	1	40.0	13.2	1.3
150.0	10.4	1	50.0	10.4	1.0
160.0	8.3	1	60.0	8.3	0.8
170.0	6.8	1	70.0	6.8	0.7
180.0	5.7	1	80.0	5.7	0.6
190.0	4.8	1	90.0	4.8	0.5
200.0	4.1	2	0.00	4.1	0.4

* Ejercicio 6

$$y = \frac{A}{x} + B \ln x + C x + D$$

Calcular los coeficientes A, B, C, D que mejor describan el comportamiento del siguiente conjunto de N pares (x,y).

Pedimos: valores de los coeficientes con sus incertidumbres; coeficiente de regresión; representación gráfica de datos y de curva de ajuste.

x	У	s(y)
200.0	-6.87	0.34
240.0	-1.75	0.09
280.0	1.88	0.09
320.0	4.57	0.23
360.0	6.64	0.33
400.0	8.26	0.41
440.0	9.56	0.48
480.0	10.62	0.53
520.0	11.50	0.58
560.0	12.22	0.61
600.0	12.83	0.64

Modelo no lineal

** Ejercicio 7

Las magnitudes h y v de un cierto modelo de estado líquido vienen dadas en función de la fracción molar x por las siguientes expresiones

$$h = x(1-x)\left[A + Bx + Cx^2\right]$$

$$v = x(1-x)\left[\frac{B}{100} + Cx\right]$$

donde A, C, D, E son coeficientes constantes, mientras que B es función de la temperatura absoluta T según la expresión

$$B = D + E \left(T - T_0 \right)$$

siendo $T_0 = 298.15 \ K$

Obtener los parámetros del modelo A, C, D, E que describan simultáneamente el comportamiento experimental dado por las siguientes tablas de valores.

Calcúlense a continuación los valores de ${f B}$ correspondientes a cada una de las tres temperaturas indicadas.

Pedimos los mencionados valores; no pedimos incertidumbres ni coeficientes de regresión, pero sí la gráfica o gráficas que se consideren pertinentes.

$T=298.15 \ K$			$T{=}350.15~{\rm K}$			T=400.15 K		
X	h	V	X	h	V	X	h	V
0.1	26.5	0.13	0.1	27.4	0.47	0.1	28.5	0.63
0.2	48.0	0.25	0.2	55.5	0.78	0.2	62.8	1.14
0.3	63.7	0.40	0.3	80.0	1.08	0.3	95.9	1.57
0.4	73.4	0.55	0.4	99.2	1.32	0.4	124.2	1.89
0.5	77.1	0.69	0.5	111.2	1.48	0.5	144.1	2.08
0.6	74.6	0.77	0.6	114.1	1.53	0.6	152.3	2.11
0.7	65.8	0.78	0.7	106.1	1.46	0.7	145.1	1.95
0.8	50.4	0.68	0.8	85.3	1.22	0.8	119.0	1.57
0.9	28.3	0.46	0.9	49.7	0.79	0.9	70.6	0.96

Ejercicio a entregar:

Uno de los dos últimos: * o bien **, a elegir.

El Ejercicio 7 tiene más valor que el Ejercicio 6.