MA2252 Introduction to Computing

Lecture 8
Part 1: Iteration

Sharad Kumar Keshari

School of Computing and Mathematical Sciences
University of Leicester

Learning outcomes

At the end of lecture, students will be able to understand and create

- For-Loop
- While-Loop

Iteration

Iteration means to perform a task repeatedly.

Example:

To find the sum of first n natural numbers, addition of two numbers taken at a time should be done repeatedly.

Iteration (contd.)

In MATLAB, iteration can be done via

- For-loop
- While-loop

For-Loop

Construction:

for looping variable = looping array
 code block
end

Function: For-loop executes the code block for values of looping variable from first to last element of looping array.

Example 1:

Find the sum of first n natural numbers.

```
clc
clear all
sum=1;
N=10;
for n=2:N
sum=sum+n;
end
```

Example 2:

Find the following sum:

```
1x2 + 2x3 + 3x4 + \cdots + 10x11
```

```
clc
clear all
product=0;
for n=1:10
    product = product + n*(n+1);
end
```

Demo

Nested For-Loops

A for-loop entirely contained in other for-loop is called a nested for-loop.

Example: Create a 4x4 identity matrix using nested for-loops.

```
N=4:
A=zeros(N);
for i=1:N
  for j=1:N
    if i==i
      A(i,j)=1;
    else
      A(i,j)=0;
    end
  end
end
disp(A)
```

Demo

Using break and continue keywords

- break is used to exit the for-loop.
- continue skips the rest of for-loop's code and begins the next iteration.

Note: In nested for-loops, break only exits the inner-most for-loop in which it is contained.

Example:

end

```
Write a function to test if a given number (greater than 2) is prime or not.
function s = test prime(x)
for i = 2:x-1
  if mod(x,i) == 0
    s=sprintf('%d is not prime',x);
    break
  elseif i==x-1
    s=sprintf('%d is prime',x);
  else
    continue
  end
```

Demo

While-Loop

A while loop executes the code as long as a given logical expression is true.

Construction:

while logical expression code block end

While-Loop (contd.)

Example:

Find all square numbers less than 50.

```
clc
clear all
x=1;
while x^2<50
disp(x^2)
x=x+1;
end
```

While-Loop (contd.)

Demo

Activity

A student wrote an alternative code to find all square numbers less than 50. What is happening with this code?

```
clc
clear all
x=1;
y=x^2;
while y<50
disp(y)
x=x+1;
end
```

Open your MATLAB, write this code and interpret the output.

Infinite Loop

An infinite loop runs forever.

Note: In this scenario, use ctrl+c to stop the code execution by MATLAB.

End of Part 1

Please provide your feedback here

MA2252 Introduction to Computing

Lecture 8
Part 2: Recursion

Sharad Kumar Keshari

School of Computing and Mathematical Sciences
University of Leicester

Learning outcomes

At the end of lecture, students will be able to

- understand recursion
- create recursive functions
- understand the difference between recursion and iteration
- solve recursion problems e.g. games

Recursion

Recursion occurs when something is defined in terms of itself.

Examples:

• Romanesco broccoli¹

Recursion (contd.)

Sierpiński triangle²

¹Picture credit: Ivar Leidus

²Picture credit: Beojan Stanislaus

Recursive functions

A recursive function is defined in terms of itself.

Examples:

Factorial function

$$n! = \begin{cases} 1, & n = 0 \\ n(n-1)!, & n \in \mathbb{N}. \end{cases}$$

•

$$f(n) = \begin{cases} \sqrt{2}, & n = 1 \\ \sqrt{2 + f(n-1)}, & n > 1. \end{cases}$$

The definition of a recursive function includes

- Base case: Function's value is given or can be calculated without using recursion.
- Recursive step: Function's value is calculated by calling to itself.

For example, in factorial function's definition, the cases n=0 and n>0 are base case and recursive step respectively.

Example: Write a recursive function in MATLAB to find n!

```
function out = myfactorial(n)
if n==0
out=1;
else
out=n*myfactorial(n-1);
end
end
```

Demo

The factorial function can also be calculated using while loop. Observe how tricky it is to code now!

```
function out = myfactorial while(n)
if n = 0 | | n = 1
  out=1:
else
  fact=n:
  while n > 1
    fact=fact*(n-1);
     n=n-1;
  end
  out=fact:
end
end
```

Recursion vs Iteration

Recursion	Iteration
Easier to code recursive functions	Harder to code recursive functions
creates extra workspace	uses only one workspace
consumes more memory	consumes less memory
code runs rather slow	code runs faster

Recursion in Games

Tower of Hanoi

Figure: Tower of Hanoi game with 3 pegs ³

Goal: To move an entire stack of disks from one peg to another.

Rules:

- Only one disk can be used at a time.
- Only top disk of a stack can be moved to an empty peg or top of other stack.
- Larger diameter disk cannot go on top of smaller diameter disk.

Question:

What is the minimum number of moves required to move a stack of n disks to other peg?

Possible strategy:

Exploit the recursive property of Tower of Hanoi game.

The recursive definition of minimum number of moves function f(n) is given as

$$f(n) = \begin{cases} 1, & n = 1 \\ 2 * f(n-1) + 1, & n > 1. \end{cases}$$

Write a recursive MATLAB function to find the minimum number of moves needed to play Tower of Hanoi game with n disks and 3 pegs.

```
function moves = tower_of_hanoi(n)
if n==1
    moves=1;
else
    moves=2*tower_of_hanoi(n-1)+1;
end
end
```

Demo

Beyond 3 pegs?

Frame-Stewart algorithm can be used to find minimum number of moves. The proof of optimality of this algorithm is still an unsolved problem in Mathematics.

³Picture credit: Evanherk

End of Part 2

Please provide your feedback • here