Stat 330 Homework 2

Sean Gordon

January 27, 2020

- 1) (a) $|\Omega| \ge |A|$, $|\Omega| \ge 0$, therefore $|A| \div |\Omega| \ge 0$. This satisfies the first axiom.
 - (b) By definition, the sum of the probabilities of all outcomes (P(A)) is one, satisfying the second axiom.

(c)

- 2) (a) 12 * 11 * 10 = 1320 possible permutations
 - (b) 1320 possible permutations, 3*2*1=6 orders per group 1320 / 6 = 220 possible combinations.
 - (c) 3 * 2 * 1 = 6 possible permutations

3) (a) 26 + 26 + 3 = 55 letters, 10 numbers. 55 + 10 = 65 possible options per character. $65^8 = 3.186448129*10^{14}$ possible passwords.

Remove all with no letters (10^8) and those with no numbers (55^8) , resulting in $2.34910775*10^{14}$ possible permutations. This rounds to 235 trillion permutations.

- 4) (a) 8 * 7 * 6 * 5 * 4 * 3 * 2 * 1 = 8! = 40320 possible ways.
 - (b) Removing two letter choices effectively makes this a 6 letter word, thus there are 6!=720 possible ways.
 - (c) $720 \div 40320 = 1.79\%$

5) For a probability \geq .5, there must be at least 23 people in a room

fx	= 1-(PERMUT(365, <mark>A1</mark>)/(365^ <mark>A1</mark>))				
	A	В	С	D	E
4	1	0		21	0.4436883352
2	2	0.002739726027		22	0.475695307
3	3	0.008204165885		23	0.507297234
4	4	0.01635591247		24	0.538344257
5	5	0.0271355737		25	0.56869970
6	6	0.04046248365		26	0.598240820
7	7	0.0562357031		27	0.626859282
8	8	0.07433529235		28	0.654461472
9	9	0.09462383389		29	0.680968537
10	10	0.1169481777		30	0.706316242
11	11	0.1411413783		31	0.730454633
12	12	0.1670247888		32	0.753347527
13	13	0.1944102752		33	0.774971854
14	14	0.223102512		34	0.795316864
15	15	0.2529013198		35	0.814383238
16	16	0.2836040053		36	0.832182106
17	17	0.3150076653		37	0.848734008
18	18	0.3469114179		38	0.864067821
19	19	0.379118526		39	0.878219664
20	20	0.4114383836		40	0.891231809

(a)
$$\binom{7}{4} \binom{4}{0} \binom{1}{0}$$
 \div $\binom{12}{4} = 35 \div 495 = 7.1\%$ chance

(b)
$$\binom{7}{1}\binom{4}{2}\binom{1}{1}$$
 \div $\binom{12}{4}$ = 42 \div 495 = 8.5% chance

(c) P(At least 1 Comet) = 1 - P(No Comets):
$$\binom{5}{4} \cdot \div \binom{12}{4} = 1 - (5 \div 495) = 98.99\% \text{ chance}$$