

UNCLASSIFIED

AD NUMBER

AD203830

NEW LIMITATION CHANGE

TO

Approved for public release, distribution
unlimited

FROM

Distribution authorized to U.S. Gov't.
agencies and their contractors;
Administrative/Operational Use; NOV 1957.
Other requests shall be referred to
Springfield Armory, Research and
Development Division, MA.

AUTHORITY

USASA ltr, 17 Aug 1965

THIS PAGE IS UNCLASSIFIED

UNCLASSIFIED

**AUDIOPAC
AD 203830**

Armed Services Technical Information Agency

**ARLINGTON HALL STATION
ARLINGTON 12 VIRGINIA**

**FOR
MICRO-CARD
CONTROL ONLY**

1 OF 1

**NOTICE: WHEN GOVERNMENT OR OTHER DRAWINGS, SPECIFICATIONS OR OTHER DATA
ARE USED FOR ANY PURPOSE OTHER THAN IN CONNECTION WITH A DEFINITELY RELATED
GOVERNMENT PROCUREMENT OPERATION, THE U. S. GOVERNMENT THEREBY INCURS
NO RESPONSIBILITY, NOR ANY OBLIGATION WHATSOEVER; AND THE FACT THAT THE
GOVERNMENT MAY HAVE FORMULATED, FURNISHED, OR IN ANY WAY SUPPLIED THE
SAID DRAWINGS, SPECIFICATIONS, OR OTHER DATA IS NOT TO BE REGARDED BY
IMPLICATION OR OTHERWISE AS IN ANY MANNER LICENSING THE HOLDER OR ANY OTHER
PERSON OR CORPORATION, OR CONVEYING ANY RIGHTS OR PERMISSION TO MANUFACTURE,
USE OR SELL ANY PATENTED INVENTION THAT MAY IN ANY WAY BE RELATED THERETO.**

UNCLASSIFIED

SPRINGFIELD ARMORY

RESEARCH AND DEVELOPMENT

FC

TECHNICAL REPORT

PROJECT TITLE: Basic Studies in Ordnance Engineering

PROJECT NO.: TB1-0004

REPORT TITLE: Periodic Reverse in Chromium Plating

ITEM: Chromium Plating DATE: 8 November 1957 SA-TR16-1113

REPORT
SA-TR16-1113

ABSTRACT

AD _____ Accession No. _____ **UNCLASSIFIED**
Springfield Armory, Springfield, Mass., 1. Plating, Chromium
PERIODIC REVERSE IN CHROMIUM
PLATING, by R. E. Bessey, Tech Rpt 2. Chromium Plating
SA-TR16-1113, 8 Nov 57, 26 pp incl
illus, Ord Proj TB1-0004, DA Proj
572-01-004, Contract DA 19-059-504-
ORD-2548.

Unclassified report

Preliminary investigation was conducted to determine the effect of periodic reversal of current in chromium plating upon the corrosion resistance of chromium plated steel.

Corrosion resistance of chromium plated WD1045 steel was, in some instances, greatly improved by the use of periodic reversal of current during plating. Improvement was dependent upon preplating surface treatment. Corrosion resistance of chromium plated FS1020 steel was not improved when periodic reversal of current was used during plating.

The use of periodic reverse in chromium plating can modify the structure and mechanical properties of the plate. An investigation should be made to determine optimum method of surface preparation.

FOR READER'S USE - DO NOT REMOVE.

REPORT
SA-TR16-1113

8 November 1957

SPRINGFIELD ARMORY
RESEARCH AND DEVELOPMENT DIVISION

Periodic Reverse in Chromium Plating

Initial distribution of this report has been made in accordance with the attached distribution list.
Requests for additional copies will be made to ASTIA. ✓

PROJECT NO: TB1-0004

PROJECT TITLE: Basic Studies in Ordnance Engineering

PREPARED FOR PUBLICATION BY:

Associated Engineers, Inc.

Contract DA-19-059-504-ORD-2548

REPORT
SA-TR16-1113

SUBJECT

Periodic Reverse in Chromium Plating.

REFERENCE

OOR Project No. N-15E, Springfield Armory File 121.24/908.

OBJECT

To conduct a preliminary investigation of the effect of periodic reversal of current in chromium plating upon the corrosion resistance of chromium plated steel.

SUMMARY

1. Panels of WD 1045 steel and rods of FS 1020 steel were chromium plated with and without periodic reversal of the current. The panels and rods were tested for corrosion resistance in the salt spray after plating. The hardness of the plate was also determined, and cross-sections of the plate were examined with a microscope.

2. The corrosion resistance of chromium plated WD 1045 steel was, in some cases, greatly improved by the use of periodic reversal of current during plating. The improvement was dependent upon the preplating surface treatment.

3. The corrosion resistance of chromium plated FS 1020 steel was not improved by having used periodic reversal of current during plating.

4. The use of periodic reverse in chromium plating can modify the structure and mechanical properties of the plate. Bend tests and microscopic examination indicate that the adhesion of the deposited plate was satisfactory when periodic reversal had been used.

SPRINGFIELD ARMORY
RESEARCH AND DEVELOPMENT DIVISION
TECHNICAL REPORT SA-TR16-1113

REBessey/mwp/rd/5185
8 November 1957

1. INTRODUCTION:

- a. Chromium plate as ordinarily deposited contains a crack system which is detrimental to the corrosion resistance of chromium plated steel. When chromium is made anodic in the plating solution, the dissolution rate, in the plate, is more rapid in the cracks than elsewhere in the plate. This fact is taken advantage of to produce what is known as porous chromium which has the property of retaining oil.
- b. Because of the good micro-throwing power of chromium plating, it was believed possible to anodic etch the plate first in order to attack selectively the cracks in the plate and then to deposit a layer of chromium, part of which would fill the crack system. It is thought that this process, if continued, would result in a plate with less porosity than ordinarily deposited plate.
- c. Accordingly, it was decided to determine whether the use of periodic reversal of the current in chromium plating would result in improved corrosion resistance of the chromium plated steel.
- d. Ordinarily, when chromium is to be plated on a previously chromium plated surface, the use of special techniques is necessary to prepare the surface because of the oxide layer present. It was, therefore, further necessary to check the adhesion of the individual "layers" of plate deposited when periodic reversal of current had been used.

REPORT
SA-TR16-1113

2. MATERIALS AND PROCEDURE:

a. WD 1045 Steel.

- (1) Panels of WD 1045 steel, 1-1/4" x 3-1/8" x .078", were chromium plated either by conventional plating procedures or by using periodic reversal of the current. The periodic reverse cycle used was five seconds reverse every three minutes. Reversal of the direction of current flow was accomplished by means of a manually operated reversing switch. All plating was done at 131°F. in a conventional plating solution consisting of 250 grams of chromium trioxide per liter and 2.5 grams of sulfuric acid per liter. The panels were prepared for plating by the various procedures listed in Table I, Appendix A. Several panels were electropolished in a sulfuric-phosphoric acid solution before cleaning.
- (2) The plated panels were corrosion tested in the salt spray in accordance with Federal Specification QQ-M-151. All specimens were inclined at an angle of 45 degrees from the vertical.
- (3) The Knoop hardness values of the two types of plate were determined on cross-sections from panels No. 171 (periodic reverse) and No. 148 (standard). A photomicrograph was taken of the unetched chromium plate.

b. FS 1020 Steel.

- (1) Rods of FS 1020 steel, one-half inch in diameter, were chromium plated either by conventional procedures or by using periodic reversal of the current. The cycle for periodic reverse was five seconds reverse every three minutes. The surfaces of the rods were prepared for plating in accordance with procedure No. 7, Table I, Appendix A. After plating, the rods were tested for corrosion resistance in the salt spray.

REPORT
SA-TR16-1113

2. MATERIALS AND PROCEDURE: (Contd.)

b. FS 1020 Steel. (Contd.)

- (2) Rods of FS 1020 steel were also plated at current densities of eight, sixteen, and thirty-two amperes per square inch. These rods, before plating, were cleaned in accordance with procedure No. 1, Table 1, Appendix A, excepting that steps 10 and 11 were done before steps 5 and 8. A relay-operated periodic reverse unit was used in the plating of the rods. The periodic reverse cycle was fifteen seconds plate and three-fourths second reverse. These rods were also tested for corrosion resistance in the salt spray.
- (3) Cross-sections were cut from rods No. 22 (standard) and No. 23 (periodic reverse), mounted in lucite, and prepared for examination. Knoop hardness values were obtained. Photo-micrographs were taken of the chromium plate both before etching and after etching in one to one hydrochloric acid solution.

3. RESULTS:

a. WD 1045 Steel.

- (1) The results of the salt spray corrosion tests of the WD 1045 steel plated with chromium by standard procedures and by using periodic reversal of the current are listed in Table II, Appendix A. A photograph of representative panels after completion of the salt spray tests is shown in Figure 1, Appendix B. Figure 2, Appendix B, shows the appearance of chromium plated panels with first, medium, and heavy rust. The terms "medium" and "heavy rust" are relative and are best described by the photographic view.

REPORT
SA-TR16-1113

3. RESULTS: (Contd.)

a. WD 1045 Steel. (Contd.)

- (2) In general, the time to the first appearance of rust for panels plated with periodic reverse was similar to the time for the panels plated without the use of periodic reverse. Panels which were pretreated by procedures No. 3 or No. 5, Table I, Appendix A, and plated using periodic reverse showed no improvement in corrosion resistance, but panels pretreated by the remaining procedures and plated using periodic reverse showed less extensive corrosion than panels similarly pretreated but plated by the standard procedure.
- (3) The adhesion of the plates was checked by bend tests on several panels. It can be seen by examining the bent panels shown in Figure 1, Appendix B, that the adhesion for panels plated using periodic reverse is similar to the adhesion for panels plated without using periodic reverse.
- (4) The hardness values of the plate on panels No. 148 (standard) and No. 171 (periodic reverse) were identical, 831 Knoop for 200 gram load. The cross-sections of the two types of plate appeared identical when viewed through a microscope at a magnification of 1000 X. There was no indication of lamination of the plate on panel No. 171. A photomicrograph of these plates is shown as Figure 1, Appendix C. After etching, the appearances of the plates were similar except for some indication of lamination on the edge (high current density area) of panel No. 171.

REPORT
SA-TR16-1113

3. RESULTS: (Contd.)

b. FS1020 Steel.

- (1) The results of the salt spray corrosion test of the FS 1020 steel rods plated with chromium either by standard procedures or by the use of periodic reversal of current are listed in Table III, Appendix A. In no case was there any improvement in the salt spray resistance of the rods plated with periodic reversal of current.
- (2) A photomicrograph of the plate deposited at a current density of eight amperes per square inch by the standard procedure and using periodic reverse is shown as Figure 2, Appendix C. The plate deposited when periodic reverse was used appears to be sounder than that deposited by the standard procedure. What appear to be voids in the standard plate were caused by the removal of small bits of chromium during the preparation for examination. On the right side of the photograph there is a large piece missing from the plate deposited with periodic reverse. This plate was removed during the preliminary grinding of the specimen. There is also a macro crack through the plate deposited with periodic reverse. There are several cracks of the same type around the circumference of the rod. These cracks appear to be the cause of the poor corrosion resistance of the plated specimens.
- (3) The heavy, dark lines between the plate and the steel are shadows caused by the steel having been removed faster than the chromium during the polishing operation.

REPORT
SA-TR16-1113

3. RESULTS: (Contd.)

b. FS 1020 Steel. (Contd.)

(4) Figure 3, Appendix C, shows photomicrographs (250 X) of the same plates as are shown in Figure 2, Appendix C. The specimens were mounted separately and prepared for examination by grinding, abrading with emery, and polishing with aluminum oxide. Again, there appear to be voids in the standard plate. The pattern is different, however, thus providing additional evidence that the voids are actually caused by particles removed during processing. The photomicrographs of the etched specimens of standard plate show the crack pattern characteristic of chromium plate applied in the ordinary manner. There is no crack pattern visible in the etched specimens of plate deposited when periodic current reverse was used. In addition, the acid attack on the latter plate was more uniform, indicating the presence of a more homogeneous structure.

(5) Knoop hardness values for the plate deposited at a current density of eight amperes per square inch either with or without periodic reverse are listed in Table IV, Appendix A. The Knoop hardness value of the standard plate could not be taken with a load greater than 200 grams because of cracking of the plate. The Knoop hardness value for the plate deposited with periodic reverse was about 100 points lower than the standard and independent of the applied load within the limits tested.

4. DISCUSSION:

a. Although, in many cases, the use of periodic reverse greatly improved the corrosion resistance of chromium plated WD 1045 steel panels, the improvement in corrosion resistance was dependent upon the preplating procedure. The corrosion resistance of chromium plated FS 1020 steel was not improved by the use of periodic reverse, although the preplating procedure used was similar to that for WD 1045 steel for which improved corrosion resistance was obtained.

REPORT
SA-TR16-1113

4. DISCUSSION: (Contd.)

b. The mechanism by which improved corrosion resistance was obtained is unknown. It does not appear to be that suggested in the Introduction whereby the improvement would be expected to be independent of the preplating treatment of the steel.

c. It is of interest to note that the plate deposited with periodic reversal of current (three-fourths second reverse, fifteen seconds plate) at a current density of eight amperes per square inch has a structure different from the plate deposited by the standard procedure at the same current density. The crack pattern was eliminated, but there was no increase in corrosion resistance apparently because of the macro cracks extending through the plate.

d. The plate deposited with periodic reversal of current was duller than the standard plate. Hardness values for standard plate and hardness values for plate deposited using a periodic reverse cycle of five seconds reverse every three minutes were identical. When a reverse cycle of three-fourths second reverse, fifteen seconds plate was used, the hardness value obtained was lower than that for standard plate. These data indicate that it is possible to alter to some extent the mechanical properties of chromium plate by the use of periodic reverse.

e. Indications of some ductility at the slow rate of loading (0.1 mm/min.) used in the Knoop hardness tests are shown by the ability of plate deposited with periodic current reversal to support a greater load without cracking than the standard plate and by the deformation visible in the photomicrograph, Figure 2, Appendix C. There was, however, no evidence of ductility in bend tests.

REPORT
SA-TR16-1113

5. CONCLUSIONS:

a. The corrosion resistance of chromium plated steel can, under certain conditions, be improved by the use of periodic reversal of current during plating. As a result of this preliminary investigation, it appears that the improvement is dependent both upon the surface preparation before plating and upon the type of steel.

b. The use of periodic reverse during plating can modify the structure and mechanical properties of the chromium plate.

6. RECOMMENDATIONS:

a. An investigation should be made to determine the optimum method of surface preparation to be used prior to plating with periodic reversal of current. The factors responsible for improved corrosion resistance under certain conditions should be evaluated.

b. The effect of the type of steel upon results obtained should also be evaluated.

c. The effect of other periodic reverse cycles should be investigated.

d. The mechanism of the process should be investigated.

REPORT
SA-TR16-1113

PREPARED: R. E. Bessey
R. E. BESSEY
Chemical Engineer

SUBMITTED: W. M. Kisner
W. M. KISNER
Supv Chemical Engineer

REVIEWED: J. Szanto
J. SZANTO
Head, Res Chem Lab

A. ZAVARELLA
A. Zavarella
Chief, Tech Res Lab

APPROVED: H. F. Hawthorne
H. F. HAWTHORNE
Chief, Res and Dev Div

REPORT
SA-TR16-1113

DISTRIBUTION

	<u>No.,</u> <u>Copies</u>
Chief of Ordnance Department of the Army Washington 25, D. C. ATTN: ORDTS (2) ORDIR (1) ORDTB (1)	4
Commanding Officer Diamond Ordnance Fuze Laboratories Washington 25, D. C. ATTN: Technical Reference Section ORDTL 06.33	1
Commanding General Ordnance Weapons Command Rock Island, Illinois ATTN: ORDOW-FM (1) ORDOW-TX (1)	2
Armed Services Technical Information Agency Document Service Center, Knott Building Dayton 2, Ohio ATTN: TICSCP-2	5
Commanding Officer Office of Ordnance Research Box CM, Duke Station Durham, North Carolina ATTN: ORDOR-LO	2

(i)

REPORT
SA-TR16-1113

DISTRIBUTION (Contd.)

	<u>No., Copies</u>
Commanding Officer Rock Island Arsenal Rock Island, Illinois ATTN: Mr. A. C. Hanson	1
Commanding Officer Watertown Arsenal Watertown 72, Massachusetts ATTN: Mr. C. Levy	1
Commanding Officer Frankford Arsenal Bridge-Tacony Streets Philadelphia 37, Pennsylvania ATTN: ORDBA-LC	1
Commanding Officer Watervliet Arsenal Watervliet, New York ATTN: Mr. Paul Netzer	1
National Bureau of Standards Washington, D. C. ATTN: Electrochemical Section Chemistry Division	1
Associated Engineers, Inc. 1 Silver Street Agawam, Massachusetts ATTN: Special Services, Mr. M. W. Pastore	1

**REPORT
SA-TR16-1113**

APPENDICES

APPENDIX A - Tables

APPENDIX B - Photographs

APPENDIX C - Photomicrographs

TABLES

Table I - Preplating Procedures for WD 1045 Steel Panels

Table II - Results of Salt Spray Corrosion Tests on Chromium Plated WD 1045 Steel Panels

Table III - Results of Salt Spray Corrosion Tests on Chromium Plated FS 1020 Steel Rods

Table IV - Knoop Hardness of Chromium Plate as a Function of Applied Load

REPORT
SA-TR16-1113

APPENDIX A

TABLE I
Preplating Procedure for WD 1045 Steel Panels

<u>No.</u>	<u>Operation</u>	<u>Procedure No.</u>						
		1	2	3	4	5	6	7
1.	Degrease with acetone or trichlorethylene.	1	1	1	1	1	1	1
2.	Abrade with emery paper.			2	2	2		
3.	Soak and scrub with fiber brush in alkali cleaner.	3	3					
4.	Cold water rinse.	4	4					
5.	Scrub with pumice on copper brush in 1-1 HCl.	5	6			5		
6.	Scrub with pumice on steel wool in 1-1 HCl.			7				
7.	Scrub with pumice on fiber brush in 1-1 HCl.				8			
8.	Cold water rinse.					8		
9.	Grit blast.					9		
10.	Soak and scrub with fiber brush in alkali cleaner.				10		10	
11.	Cold water rinse.				11		11	
12.	Cathode clean (1 min.) in commercial electrolytic alkali cleaner.					12		
13.	Cold water rinse.					13		
14.	Dip in 1-1 HCl until gassing is uniform.	14	14	14	14	14	14	
15.	Cold water rinse.	15	15	15	15	15	15	
16.	Apply immersion coating of copper in $\text{CuSO}_4\text{-H}_2\text{SO}_4$ solution.				16			
17.	Copper strike for 30 seconds in conventional cyanide solution.					17		
18.	Anodic etch for five minutes in plating solution.	18	18	18	18	18	18	18

REPORT
SA-TR16-1113

APPENDIX A

TABLE II
Results of Salt Spray Corrosion Tests on Chromium Plated
WD 1045 Steel Panels

Panel No.	Electro-polished	Cleaning Procedure	Current Density (a.s.i.)	Plate Thickness (in.)		Hours in Salt Spray			Total Hours in Salt Spray
				Standard	Reverse	First Rust	Medium Rust	Heavy Rust	
150	x	1	2.7	.0014	21	---	---	---	114
180	x	1	2.7	.0011	23	---	---	---	114
149	x	1	2	.001	4	25	27-92	92	92
181	x	1	2	.001	4	25	27-92	92	92
120	x	1	2.7	.001	5	9-15	28-45	101	101
187	x	1	2.7	.0009	5	9-15	28-45	101	101
118	x	1	2.7	.0008	1	45-53	53-69	101	101
162	x	1	2.7	.0009	2	28-45	53-69	101	101
144	x	2	2.7	.0009	3-5	---	---	---	83
151	x	2	2.7	.0009	3-5	---	---	---	83
152	x	2	2	.0009	1-2	8-24	8-24	80	80
153	x	2	2	.0009	1-2	5	8	80	80
155	x	2	2	.0015	3-4	4	6	23	23
156	x	2	2	.0019	4	7	7-23	23	23
157	x	2	2	.0011	5	---	---	31	31
158	x	2	2	.001	6	---	---	31	31

REPORT
SA-TR16-1113

APPENDIX A

**Results of Salt Spray Corrosion Tests on Chromium Plated
WD 1045 Steel Panels (Contd.)**

Panel No.	Electro- polished	Cleaning Procedure	Current Density (a.s.t.)	Plate Thickness (in.)			Hours in Salt Spray			Total Hours in Salt Spray
				Standard	Reverse	Rust	First	Medium	Heavy	
167	x		3	3	.001	1	2	3	115	
168	x		3	3	.001	1	3	4	115	
169	x		3	3	.0011	1	2	3	115	
121	x		3	3		1	2	6	115	
159	x		3	3		1	2	6	115	
161	x		3	3		1	2	6	115	
166	x	x	2	2	.0008	1	3	5-6	115	
188	x	x	2	2	.0009	1	3	5-6	115	
182	x	x	2	2	.0008	1	3	5-6	115	
134	x	x	2	2		1	6-9	6-9	115	
146	x	x	2	2		1	2	6-9	115	
195	x		2	2		1	2	4-6	115	
170	x	x	4	2.7	.001	2	105-113	---	129	
171	x	x	4	2.7	.001	2	105-113	---	129	
147	x	x	4	2.7	.001	1	9-11	35	129	
148	x	x	4	2.7	.0011	7-8	14-19	35	129	

REPORT
SA-TR16-1113

APPENDIX A

TABLE II (Contd.)

Results of Salt Spray Corrosion Tests on Chromium Plated
WD 1045 Steel Panels (Contd.)

Panel No.	Electro-polished	Cleaning Procedure	<u>Current Density (A.S.I.)</u>	Plate Thickness (In.)	Hours in Salt Spray			Total Hours in Salt Spray
					Periodic Standard	First Rust	Medium Rust	
					Reverse	Rust	Heavy Rust	
140	5	2.7	.0012	2	5	11	97	97
141	5	2.7	.0011	2	5	11	97	97
174	5	2.7	.001	1	6	22	97	97
201	5	2.7	.0008	1	6	22	97	97
103	5	2.7	.0013	2	15-23	36-53	101	101
105	5	2.7	.0014	3-4	15-23	36-53	101	101
107	5	2.7	.0011	2	61-77	77-85	101	101
108	5	2.7	.0008	1	15-23	36-53	101	101
116	6	2.7	.001	13	21-38	38-46	100	100
185	6	2.7	.001	11	21-38	38-46	100	100
136	6	2.7	.0009	9-11	---	---	100	100
163	6	2.7	.0008	3	---	---	100	100
106	7	2.7	.001	8-10	14-16	16-32	104	104
164	7	2.7	.0011	8-10	14-16	16-32	104	104
102	7	2.7	.001	3-5	---	---	104	104
186	7	2.7	.001	8	32-48	---	104	104

REPORT
SA-TR16-1113

APPENDIX A

TABLE III

**Results of Salt Spray Corrosion Tests
on Chromium Plated F8 1020 Steel Rods**

Rod No.	Cleaning Procedure	Current Density (a.s.i.)	Plate Thickness (in.)		Hours in Salt Spray		
			Standard	Reverse	First	Medium	Heavy
					Rust	Rust	Rust
5	7	2.5	.0020	.0020	2-4	6-11	11-27
6	7	2.5	.0020	.0016	6	6-11	11-27
7	7	2.5	.0015	.0015	1	2-4	6
8	7	2.5	.0008	.0008	2	2-4	6-11
38	7	2.5	.0013	.0013	1	1	3
39	7	2.5	.0012	.0012	1	3	4
40	7	2.5	.0007	.0007	2	2	3
41	7	2.5	.0036	.0036	12-14	29-45	29-45
14	1A	8	.0032	.0032	9-11	9-11	12-14
15	1A	8	.0033	.0033	1	3	5-7
16	1A	8	.0057	.0057	16	26	26-42
17	1A	16	.0054	.0054	2	8-10	12
18	1A	32	.0041	.0041	8	11	50-66
19	1A	32	.0063	.0063	19	20	22
22	1A	8	.004	.004	1	2-4	4-6
23	1A	8					

TABLE IV

Knoop Hardness of Chromium Plate
as a Function of Applied Load

<u>Standard Plate</u>		<u>Plate Applied with Periodic Reversal of Current</u>	
<u>Load (grams)</u>	<u>Hardness (Knoop)</u>	<u>Load (grams)</u>	<u>Hardness (Knoop)</u>
200	840	200	753
400	plate cracked	400	764
500 ✓	plate cracked	500	758
		600	762
		800	745
		1000	740, 748

Note: Both plates were deposited at a current density of 8 amperes per square inch and at a temperature of 131° F.

REPORT
SA-TR16-1113

APPENDIX B

PHOTOGRAPHS

**Figure 1 - Chromium Plated WD 1045 Steel Panels
After Exposure to Salt Spray. (12846-SA)**

**Figure 2 - Chromium Plated WD 1045 Steel Panels
After Exposure to Salt Spray Showing
First, Medium and Heavy Rust. (12845-SA)**

REPORT
SA-TR16-1113

Standard Procedure

Periodic Current
Reversal

APPENDIX B

Pretreatment

- (1)
- (2)
- (3)
- (4)
- (5)
- (6)
- (7)

12-40-SV SPRINGFIELD ARMORY - ORDNANCE CORPS - June 57
WD-1045 Steel Panels Plated with Chromium by Standard Procedure
and with Periodic Current Reversal after Exposure to Salt Spray

Figure 1

-21-

Best Available Copy

REPORT
SA-TR16-1113

APPENDIX B

FIRST MEDIUM HEAVY

Figure 2

12845-SA SPRINGFIELD ARMORY - ORDNANCE CORPS - June 1957
CHROMIUM PLATED - WD1045 STEEL PANELS AFTER EXPOSURE TO SALT SPRAY
Showing First, Medium and Heavy Rust

PHOTOMICROGRAPHS

Figure 1 - a. Plate Deposited on WD 1045 Steel By Using Periodic Current Reversal (Panel No. 171).

b. Plate Deposited on WD 1045 Steel By Standard Procedure (Panel No. 148).

Figure 2 - a. Plate Deposited on FS 1020 Steel By Using Periodic Current Reversal.

b. Plate Deposited on FS 1020 Steel By Standard Procedure.

Figure 3 - a. Plate Deposited on FS 1020 Steel By Using Periodic Current Reversal- Unetched Specimen.

b. Plate Deposited on FS 1020 Steel By Using Periodic Current Reversal- Etched Specimen.

c. Plate Deposited on FS 1020 Steel By Standard Procedure-Unetched Specimen.

d. Plate Deposited on FS 1020 Steel By Standard Procedure-Etched Specimen.

REPORT
SA-TR16-1113

APPENDIX C

TOP: Plate deposited on WD 1045 steel with periodic current reversal,
5 seconds reverse every 3 minutes. Total time - 3 hours at current density
of 2.7 a.s.i.

BOTTOM: Plate deposited on WD 1045 steel by standard procedure.
Time - 2 hours at current density of 2.7 a.s.i.

Mag. 250X

Figure 1

REPORT
SA-TR16-1113

APPENDIX C

TOP: Plate deposited on FS 1020 steel with periodic current reversal,
3/4 second reverse, 15 second plate. Total time - 1 1/2 hours at current
density of 8 a.s.i.

BOTTOM: Plate deposited on FS 1020 steel by standard procedure.
Time - 1 1/2 hours at current density of 8 a.s.i.

Mag. 100X

Figure 2

REPORT
SA-TR16-1113

APPENDIX C

(a)

(d)

TOP ROW: Plate deposited on FS 1020 steel with periodic current reversal, 3/4 second reverse, 15 second plate - total time 1 1/2 hours at current density of 8 a. s. i. - (a) unetched (b) etched 10 seconds in solution of 1-1 HCl.

BOTTOM ROW: Plate deposited on FS 1020 steel by standard procedure. Time 1 1/2 hours at current density of 8 a. s. i. (c) unetched (d) etched 10 seconds in solution of 1-1 HCl.

Mag. 250X

Figure 3

-36-

Best Available Copy