# Metody Numeryczne – Zadanie NUM1

**Bartosz Bochniak** 

### Wstęp

#### Założenia

Zakładamy, że:

$$f(x) = \sin(x^3)$$
,  $f'(x) = 3x^2 \cos(x^3)$  dla  $x = 0.2$ 

W poleceniu zadania podane mamy dwa wzory wyliczające przybliżenia pochodnej zapisane poniżej:

$$D_{h_1}f(x) = \frac{f(x+h) - f(x)}{h}; \ D_{h_2}f(x) = \frac{f(x+h) - f(x-h)}{2h}$$

Za pomocą powyższych przybliżeń definiujemy także funkcję ich błędu w porównaniu do normalnej pochodnej:

$$E_1(x) = |D_{h_1}f(x) - f'(x)|; \ E_2(x) = |D_{h_2}f(x) - f'(x)|$$

#### Hipoteza

Rozpatrujemy wartości parametru dla  $h \in (0; 1)$ . Spodziewamy się dwóch rodzajów błędów:

- Dla  $h\cong 1$  otrzymamy błąd związany z parametrem h będącym "daleko" od zera, co powoduje niedokładność przybliżenia
- Dla  $h \cong 0$  otrzymamy błąd związany z niedokładnością naszego typu danych (float, double)

Biorąc pod uwagę zanotowane powyżej błędy przy obu "brzegach" zbioru  $(0,1) \ni h$ , możemy spodziewać się optymalnego h w tym oto przedziale, które oznaczymy jako  $h_*$ .

### Rozwiązanie

W pliku Numerycznel.cpp napisany jest kod definiujący wszystkie potrzebne funkcję z Założeń, oraz rysujący wykres w zależności od metody przybliżenia pochodnej jak i użytego typu danych, co daje nam cztery wykresy. Korzysta on z biblioteki gnuplot.

Program Numeryczne1.cpp tworzy tablicę dwuwymiarową w której przetrzymuję wartości h jak i odpowiadające temu parametrowi wartości  $E_1$  i  $E_2$ , dla obu typów danych. Następnie przechowuje ją w pliku FileTable, po czym gnuplot tworzy na podstawie tych danych wykres logarytmiczny błędu w zależności od h, i porównuje go między metodami i typami.

W pliku DisplayGraph.txt zawarte są dane potrzebne programowi gnuplot do generacji wykresu.

## **Wynik**



Powyżej posiadamy wszystkie cztery wykresy w zależności od typu danych oraz metody przybliżenia pochodnej (A -  $D_{h_1}$ ; B -  $D_{h_2}$ ).

#### Wnioski

- 1. Dzięki typowi danych double, jesteśmy w stanie osiągnąć o wiele mniejsze wartości błędu  $(E(h_{*1}) \approx 10^{-9}, E(h_{*2}) \approx 10^{-12})$ , niż gdybyśmy korzystali z typu float  $(E(h_{*1}) \approx 10^{-5}, E(h_{*2}) \approx 10^{-7})$ .
- 2. Możemy zauważyć (m. in. po pokrywającym się nachyleniu wykresów po prawej stronie), że metoda przybliżania  $D_{h_2}$  jest dokładniejsza oraz zwraca mniejszy błąd.
- 3. Po lewej stronie wykresu występują pewnego rodzaju "zaburzenia". Są one wynikiem utraty dokładności liczb zmiennoprzecinkowych przy dzieleniu przez bardzo małe liczby.
- 4. Dla typu float  $h_*$  jest znacznie bliższe 1, co wynika z tego, że mantysa tego typu danych korzysta z mniejszej ilości bitów.