Pontificia Universidad Católica de Chile Facultad de Matemáticas Departamento de Estadística

Segundo Semestre 2011

Probabilidad y Estadística

Sigla EYP1113

Profesor

Ricardo Aravena (Sec. 1 y 3) y Ricardo Olea (Sec. 2) Erwin Agüero Meza, Tamara Fernandez Aguilar y Claudia Reyes Vizcarra.

Problema 1

Suponga que el número de accidentes automovilísticos en una carretera concesionada siguen un proceso de poisson con tasa mensual esperada λ . Sea T una variable aleatoria Exponencial(ν) que representa el período (en meses) de observación.

(a) [3.0 Ptos] Si Y representa al número de accidentes observados incondicional al tiempo de observación, muestre que

$$P(Y=y) = \left(\frac{\nu}{\lambda + \nu}\right) \left(\frac{\lambda}{\lambda + \nu}\right)^y, \quad y \in \mathbb{N}_0$$

- (b) [2.0 Ptos] Determine el valor esperado y varianza de Y.
- (c) [1.0 Ptos] Muestre que $Z = Y + 1 \sim \text{Geométrica}(p)$. Proponga una expresión para p en términos de los parámetros ν y λ .

Solución

(a) Del enunciado tenemos que

[0.5 Ptos]
$$Y \mid T = t \sim \text{Poisson}(\lambda t)$$
 y $T \sim \text{Exponencial}(\nu)$ [0.5 Ptos]

Se pide

$$P(Y = y) = \int_{0}^{\infty} P(Y = y \mid T = t) \cdot f_{T}(t) dt \quad [\mathbf{0.2 \ Ptos}]$$

$$= \int_{0}^{\infty} \frac{(\lambda t)^{y} e^{-\lambda t}}{y!} \cdot \nu e^{-\nu t} dt \quad [\mathbf{0.2 \ Ptos}]$$

$$= \frac{\nu \lambda^{y}}{y!} \int_{0}^{\infty} t^{y} e^{-(\lambda + \nu)t} dt \quad [\mathbf{0.2 \ Ptos}]$$

$$= \frac{\nu \lambda^{y}}{y!} \cdot \frac{\Gamma(y+1)}{(\lambda + \nu)^{y+1}} \int_{0}^{\infty} \frac{(\lambda + \nu)^{y+1}}{\Gamma(y+1)} t^{(y+1)-1} e^{-(\lambda + \nu)t} dt \quad [\mathbf{0.2 \ Ptos}]$$

$$= \frac{\nu \lambda^{y}}{y!} \cdot \frac{\Gamma(y+1)}{(\lambda + \nu)^{y+1}} \cdot 1, \quad \text{ya que se formo una Gamma}(y+1, \lambda + \nu) \quad [\mathbf{0.4 \ Ptos}]$$

$$= \frac{\nu \lambda^{y}}{y!} \cdot \frac{y!}{(\lambda + \nu)^{y+1}} \quad [\mathbf{0.2 \ Ptos}]$$

$$= \frac{\nu \lambda^{y}}{(\lambda + \nu)^{y+1}} \quad [\mathbf{0.2 \ Ptos}]$$

$$= \left(\frac{\nu}{\lambda + \nu}\right) \left(\frac{\lambda}{\lambda + \nu}\right)^{y} \quad [\mathbf{0.2 \ Ptos}]$$

con $y \in \mathbb{N}_0$. [0.2 Ptos]

(b) Se pide

$$\begin{split} \mathbf{E}(Y) &= \mathbf{E}[\mathbf{E}(Y \mid T)] \quad [\mathbf{0.2 \ Ptos}] \\ &= \mathbf{E}(\lambda T) \quad [\mathbf{0.2 \ Ptos}] \\ &= \lambda \mathbf{E}(T) \quad [\mathbf{0.2 \ Ptos}] \\ &= \lambda \frac{1}{\nu} \quad [\mathbf{0.2 \ Ptos}] \\ &= \frac{\lambda}{\nu} \quad [\mathbf{0.2 \ Ptos}] \end{split}$$

у

$$\begin{aligned} \mathbf{Var}(Y) &= \mathbf{Var}[\mathbf{E}(Y \mid T)] + \mathbf{E}[\mathbf{Var}(Y \mid T)] \quad [\mathbf{0.2 \ Ptos}] \\ &= \mathbf{Var}(\lambda T) + \mathbf{E}(\lambda T) \quad [\mathbf{0.2 \ Ptos}] \\ &= \lambda^2 \, \mathbf{Var}(T) + \lambda \, \mathbf{E}(T) \quad [\mathbf{0.2 \ Ptos}] \\ &= \lambda^2 \, \frac{1}{\nu^2} + \lambda \, \frac{1}{\nu} \quad [\mathbf{0.2 \ Ptos}] \\ &= \frac{\lambda^2}{\nu^2} + \frac{\lambda}{\nu} \quad [\mathbf{0.2 \ Ptos}] \\ &= \frac{\lambda}{\nu} \left(\frac{\lambda}{\nu} + 1\right) \end{aligned}$$

(c) Sea $Z = Y + 1 \Rightarrow \Theta_Z = \mathbb{N}$. [0.2 Ptos]

Tenemos que

$$\begin{split} P(Z=z) &= P(Y+1=z) \quad \textbf{[0.2 Ptos]} \\ &= P(Y=z-1) \quad \textbf{[0.2 Ptos]} \\ &= \left(\frac{\nu}{\lambda+\nu}\right) \left(\frac{\lambda}{\lambda+\nu}\right)^{z-1} \quad \textbf{[0.2 Ptos]} \\ &= \left(\frac{\nu}{\lambda+\nu}\right) \left(1-\frac{\nu}{\lambda+\nu}\right)^{z-1}, \quad z \in \mathbb{N} \quad \textbf{[0.1 Ptos]} \end{split}$$

Es decir

$$Z \sim \text{Geométrica}\left(p = \frac{\nu}{\lambda + \nu}\right)$$
 [0.1 Ptos]

Problema 2

La función generadora de momentos es una herramienta muy útil para determinar la distribución de sumas de variables aleatorias independientes tal como ocurre cuando se reconoce una función de densidad o de probabilidad.

(a) [3.0 Ptos] Sean X_1, X_2, \ldots, X_n variables aleatorias independientes y defina $S_n = \sum_{i=1}^n X_i$. Muestre que la función generadora de momentos de S_n es

$$M_{S_n}(t) = \prod_{i=1}^n M_{X_i}(t)$$

- (b) [1.5 Ptos] Si X_1, \ldots, X_n son variables aleatorias independientes con distribución Bernoulli(p). Muestre que la función generadora de momentos de S_n corresponde a la de una variable aleatoria Binomial(n, p).
- (c) [1.5 Ptos] Si X_1, \ldots, X_n son variables aleatorias independientes con distribución Exponencial (ν) . Muestre que la función generadora de momentos de S_n corresponde a la de una variable aleatoria Gamma (n, ν) .

Ayuda: Recuerde que si X e Y son variables aleatorias independientes, entonces g(X) y h(Y) también lo son.

Solución

(a) Tenemos que

$$M_{S_n}(t) = \mathbf{E} \left[\exp \left(t \, S_n \right) \right] \quad [\mathbf{0.5 \ Ptos}]$$

$$= \mathbf{E} \left[\exp \left(t \, \sum_{i=1}^n X_i \right) \right] \quad [\mathbf{0.5 \ Ptos}]$$

$$= \mathbf{E} \left[\prod_{i=1}^n \exp \left(t \, X_i \right) \right] \quad [\mathbf{0.5 \ Ptos}]$$

$$= \prod_{i=1}^n \mathbf{E} \left[\exp \left(t \, X_i \right) \right], \quad \text{por independencia entre } e^{t \, X_1}, \dots, e^{t \, X_n} \quad [\mathbf{1.0 \ Ptos}]$$

$$= \prod_{i=1}^n M_{X_i}(t) \quad [\mathbf{0.5 \ Ptos}]$$

(b) Si X_1, \ldots, X_n son variables aleatorias independientes con distribución Bernoulli(p), entonces

$$M_{X_i}(t) = [p e^t + (1-p)], \quad t \in \mathbb{R} \quad [0.5 \text{ Ptos}]$$

Por (a) tenemos que

$$M_{S_n}(t) = \prod_{i=1}^n [p e^t + (1-p)] = [p e^t + (1-p)]^n$$
 [0.5 Ptos]

la cual corresponde a la función generadora de momentos de una distribución Binomial(n, p).

[0.5 Ptos]

(c) Si X_1, \ldots, X_n son variables aleatorias independientes con distribución Exponencial (ν) , entonces

$$M_{X_i}(t) = \frac{\nu}{\nu - t}, \quad t < \nu \quad [0.5 \text{ Ptos}]$$

Por (a) tenemos que

$$M_{S_n}(t) = \prod_{i=1}^n \frac{\nu}{\nu - t} = \left(\frac{\nu}{\nu - t}\right)^n, \quad t < \nu \quad$$
[0.5 Ptos]

la cual corresponde a la función generadora de momentos de una distribución $\operatorname{Gamma}(n, \nu)$.

[0.5 Ptos]

Problema 3

En las celebraciones patrias recién pasadas fue común ver a algunos parroquianos pasados de copas. Uno de esos días a usted le llamó la atención un parroquiano que daba un paso hacia delante (50 cm) o hacia atrás (30 cm) de manera aleatoria cada 30 segundos. Después de un tiempo de observación se dio cuenta que la frecuencia de pasos hacia delante y atrás era la mismas. Calcule aproximadamente la probabilidad que después de una hora este parroquiano se encuentra a más de 3 metros y medio desde donde usted comenzó a observarlo.

Solución

Definamos como $X_1,\ldots,\,X_n$ la distancia hacia delante o hacia atrás en n pasos. Del enunciado se deduce que

$$P(X_i = 50) = P(X_i = -30) = 1/2, i = 1, ..., n$$
 [0.5 Ptos]

Luego, tenemos que

$$\mu = \mathbf{E}(X_i) = -30 \cdot \frac{1}{2} + 50 \cdot \frac{1}{2} = 10$$
 [0.5 Ptos]

у

$$\sigma^2 = \mathbf{Var}(X_i) = (-30 - 10)^2 \cdot \frac{1}{2} + (50 - 10)^2 \cdot \frac{1}{2} = 40^2$$
 [0.5 Ptos]

Se pide una probabilidad aproximada del siguiente evento

$$\{S_n < -350\} \cup \{S_n > 350\},$$
 [0.5 Ptos]

con
$$S_n = \sum_{i=1}^n X_i$$
 y $n = 120$. [0.5 Ptos]

Por el teorema del límite central tenemos que

$$S_n \stackrel{\text{aprox.}}{\sim} \text{Normal} (n \cdot \mu, \sqrt{n} \cdot \sigma) \quad [0.5 \text{ Ptos}]$$

Luego

$$P\left(\left\{S_{n}<-350\right\}\cup\left\{S_{n}>350\right\}\right) = P\left(S_{n}<-350\right) + P\left(S_{n}>350\right) \quad \begin{array}{l} \textbf{[0.5 Ptos]} \\ \\ \approx \Phi\left(\frac{-350-n\cdot\mu}{\sqrt{n}\,\sigma}\right) + \left[1-\Phi\left(\frac{350-n\cdot\mu}{\sqrt{n}\,\sigma}\right)\right] \quad \begin{array}{l} \textbf{[0.5 Ptos]} \\ \\ \approx \Phi(-3.537375) + \left[1-\Phi(-1.939851)\right] \quad \begin{array}{l} \textbf{[0.5 Ptos]} \\ \\ \approx \left[1-\Phi(3.537375)\right] + 1 - \left[1-\Phi(1.939851)\right] \quad \begin{array}{l} \textbf{[0.5 Ptos]} \\ \\ \approx 1-\Phi(3.54) + \Phi(1.94) \quad \begin{array}{l} \textbf{[0.5 Ptos]} \\ \\ \approx 1-0.9998 + 0.9738 \quad \begin{array}{l} \textbf{[0.3 Ptos]} \\ \\ \approx 0.974 \quad \begin{array}{l} \textbf{[0.2 Ptos]} \end{array} \end{array}$$

Problema 4

Suponga que usted llega a un Mall en vehículo y ingresar al área de estacionamiento demora T_1 minutos en encontrar un lugar para aparcar. Al ingresar al Mall usted permanece durante T_2 minutos y cuando se retira transcurren T_3 minutos entre que paga el estacionamiento, la fila se salida y otros. Considere que los tiempos se comportan como variables aleatorias independientes con distribución Normal(μ_i , σ_i), con i = 1, 2 y 3.

\overline{i}	μ_i	σ_i
1	12	4
2	150	20
3	7	3

Determine la probabilidad que:

- (a) [2.0 Ptos] El tiempo de búsqueda de estacionamiento sea superior al tiempo de salida del mall.
- (b) [2.0 Ptos] El tiempo de permanencia sea inferior a 120 minutos dado que el tiempo de búsqueda fue superior a 15 minutos.
- (c) [2.0 Ptos] El tiempo total en el mall (búsqueda de estacionamiento, permanencia y salida) sea inferior a 180 minutos.

Solución

(a) Se pide

$$P(T_1 > T_3) = P(T_1 - T_3 > 0)$$
 [0.2 Ptos]

Definamos como Z a la variable aleatoria $T_1 - T_3$. Por ser una combinación lineal de variables aleatorias normales independientes tenemos que

$$Z \sim \text{Normal}\left(\mu_Z = \mu_1 - \mu_3, \, \sigma_Z = \sqrt{\sigma_1^2 + \sigma_3^2}\right)$$
 [1.0 Ptos]

Luego, la probabilidad solicitada es

$$\begin{split} P(T_1 > T_3) &= P(Z > 0) \quad \textbf{[0.1 Ptos]} \\ &= 1 - \phi \left[\frac{0 - (\mu_1 - \mu_3)}{\sqrt{\sigma_1^2 + \sigma_3^2}} \right] \quad \textbf{[0.1 Ptos]} \\ &= 1 - \phi \left[\frac{0 - (12 - 7)}{\sqrt{4^2 + 3^2}} \right] \quad \textbf{[0.1 Ptos]} \\ &= 1 - \phi \left(\frac{-5}{\sqrt{25}} \right) \quad \textbf{[0.1 Ptos]} \\ &= 1 - \phi \left(-1 \right) \quad \textbf{[0.1 Ptos]} \\ &= 1 - \left[1 - \phi \left(1 \right) \right] \quad \textbf{[0.1 Ptos]} \\ &= \phi \left(1 \right) \quad \textbf{[0.1 Ptos]} \\ &= 0.8413 \quad \textbf{[0.1 Ptos]} \end{split}$$

(b) Se pide

$$P(T_2 < 120 \mid T_1 > 15) = P(T_2 < 120)$$
, por independencia [1.0 Ptos]
 $= \Phi\left(\frac{120 - \mu_2}{\sigma_2}\right)$ [0.2 Ptos]
 $= \Phi\left(\frac{120 - 150}{20}\right)$ [0.2 Ptos]
 $= \Phi\left(-\frac{3}{2}\right)$ [0.2 Ptos]
 $= 1 - \Phi\left(\frac{3}{2}\right)$ [0.2 Ptos]
 $= 1 - 0.9332$ [0.1 Ptos]
 $= 0.0668$ [0.1 Ptos]

(c) Se pide

$$P(T_1 + T_2 + T_3 < 180)$$
 [0.2 Ptos]

Definamos como W a la variable aleatoria $T_1 + T_2 + T_3$.

Por ser una combinación lineal de variables aleatorias normales independientes tenemos que

$$W \sim \text{Normal}\left(\mu_W = \mu_1 + \mu_2 + \mu_3, \, \sigma_W = \sqrt{\sigma_1^2 + \sigma_2^2 + \sigma_3^2}\right)$$
 [1.0 Ptos]

Luego, la probabilidad solicitada es

$$\begin{split} P(T_1 + T_2 + T3 < 180) &= P(W < 180) \quad \textbf{[0.2 Ptos]} \\ &= \phi \left[\frac{180 - (\mu_1 + \mu_2 + \mu_3)}{\sqrt{\sigma_1^2 + \sigma_2^2 + \sigma_3^2}} \right] \quad \textbf{[0.2 Ptos]} \\ &= \phi \left[\frac{180 - (12 + 150 + 7)}{\sqrt{4^2 + 20^2 + 3^2}} \right] \quad \textbf{[0.1 Ptos]} \\ &= \phi \left(0.5335784 \right) \quad \textbf{[0.1 Ptos]} \\ &\approx \phi \left(0.53 \right) \quad \textbf{[0.1 Ptos]} \\ &= 0.7019 \quad \textbf{[0.1 Ptos]} \end{split}$$

Distribuciones

Distribución	Densidad de Probabilidad	Θ_X	Parámetros	Esperanza y Varianza
Binomial	$\binom{n}{x} p^x (1-p)^{n-x}$	$x = 0, \ldots, n$	$n,\ p$	$\begin{split} \mu_X &= n p \\ \sigma_X^2 &= n p (1-p) \\ M(t) &= \left[p e^t + (1-p) \right]^n, t \in \mathbb{R} \end{split}$
Geométrica	$p(1-p)^{x-1}$	$x = 1, 2, \dots$	p	$\mu_X = 1/p$ $\sigma_X^2 = (1 - p)/p^2$ $M(t) = p e^t / [1 - (1 - p) e^t], t < -\ln(1 - p)$
Binomial-Negativa	$\binom{x-1}{r-1} p^r (1-p)^{x-r}$	$x=r,r+1,\ldots$	$r,\ p$	$\begin{split} \mu_X &= r/p \\ \sigma_X^2 &= r (1-p)/p^2 \\ M(t) &= \left\{ p e^t / [1-(1-p) e^t] \right\}^T, t < -\ln(1-p) \end{split}$
Poisson	$\frac{(\nut)^{x}e^{-\nut}}{x!}$	$x=0,1,\ldots$	ν	$\begin{array}{l} \mu_X = \nut \\ \sigma_X^2 = \nut \\ M(t) = \exp\left[\lambda\left(e^t - 1\right)\right], t \in \mathbb{R} \end{array}$
Exponencial	$_{ ue^{- ux}}$	$x \ge 0$	ν	$\mu_X = 1/\nu$ $\sigma_X^2 = 1/\nu^2$ $M(t) = \nu/(\nu - t), t < \nu$
Gamma	$\frac{\nu^k}{\Gamma(k)} x^{k-1} e^{-\nu} x$	$x \ge 0$	k,~ u	$\mu_X = k/\nu$ $\sigma_X^2 = k/\nu^2$ $M(t) = [\nu/(\nu - t)]^k , t < \nu$
Normal	$\frac{1}{\sqrt{2\pi}\sigma}\exp\left[-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2\right]$	$-\infty < x < \infty$	$\mu,~\sigma$	$\begin{split} \mu_X &= \mu \\ \sigma_X^2 &= \sigma^2 \\ M(t) &= \exp(\mu t + \sigma^2 t^2/2), t \in \mathbb{R} \end{split}$
Log-Normal	$\frac{1}{\sqrt{2\pi}(\zeta x)} \exp\left[-\frac{1}{2} \left(\frac{\ln x - \lambda}{\zeta}\right)^2\right]$	$x \ge 0$	λ, ζ	$\begin{split} \mu_X &= \exp\left(\lambda + \frac{1}{2}\zeta^2\right) \\ \sigma_X^2 &= \mu_X^2 \left(e^{\zeta^2} - 1\right) \\ E(X^T) &= e^{T\lambda} M_Z(r\zeta), \text{con} Z \sim &\text{Normal}(0,1) \end{split}$
Uniforme	$\frac{1}{(b-a)}$	$a \le x \le b$	$a,\ b$	$\begin{split} \mu_X &= (a+b)/2 \\ \sigma_X^2 &= (b-a)^2/12 \\ M(t) &= [e^{t\;b} - e^{t\;a}]/[t\;(b-a)], t \in \mathbb{R} \end{split}$
Beta	$\frac{1}{B(q, r)} \frac{(x-a)^{q-1} (b-x)^{r-1}}{(b-a)^{q+r-1}}$	$a \leq x \leq b$	$q,\ r$	$\mu_X = a + \frac{q}{q+r} (b-a)$ $\sigma_X^2 = \frac{q r (b-a)^2}{(q+r)^2 (q+r+1)}$
Hipergeométrica	$\frac{\binom{m}{x}\binom{N-m}{n-x}}{\binom{N}{n}}$	$\max\{0, n+m-N\} \leq x \leq \min\{n, m\}$	$N,\ m,\ n$	$\mu_X = n \frac{m}{N}$ $\sigma_X^2 = \left(\frac{N-n}{N-1}\right) n \frac{m}{N} \left(1 - \frac{m}{N}\right)$

Formulario

• Propiedades función $\Gamma(\cdot)$:

(1)
$$\Gamma(k) = \int_0^\infty u^{k-1} e^{-u} du;$$
 (2) $\Gamma(a+1) = a \Gamma(a);$

- (3) $\Gamma(n+1) = n!$, si $n \in \mathbb{N}_0$; (4) $\Gamma(1/2) = \sqrt{\pi}$
- Propiedades función $B(\cdot, \cdot)$:

(1)
$$B(q, r) = \int_0^1 x^{q-1} (1-x)^{r-1} dx;$$
 (2) $B(q, r) = \frac{\Gamma(q) \Gamma(r)}{\Gamma(q+r)}$

• Propiedad distribución Gamma:

Si
$$T \sim \text{Gamma}(k, \nu) \Rightarrow F_T(t) = 1 - \sum_{x=0}^{k-1} \frac{(\nu t)^x e^{-\nu t}}{x!}, \text{ si } k \in \mathbb{N}$$

Igualdades

$$\sum_{k=0}^n \binom{n}{k} a^x b^{n-k} = (a+b)^n, \quad \sum_{k=x}^\infty \phi^k = \frac{\phi^x}{1-\phi} \quad \text{si } |\phi| < 1, \quad \sum_{k=0}^\infty \frac{\lambda^k}{k!} = \exp(\lambda)$$

Tabla Normal Estándar

S_p	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
0.0	0.5000	0.5040	0.5080	0.5120	0.5160	0.5199	0.5239	0.5279	0.5319	0.5359
0.1	0.5398	0.5438	0.5478	0.5517	0.5557	0.5596	0.5636	0.5675	0.5714	0.5753
0.2	0.5793	0.5832	0.5871	0.5910	0.5948	0.5987	0.6026	0.6064	0.6103	0.6141
0.3	0.6179	0.6217	0.6255	0.6293	0.6331	0.6368	0.6406	0.6443	0.6480	0.6517
0.4	0.6554	0.6591	0.6628	0.6664	0.6700	0.6736	0.6772	0.6808	0.6844	0.6879
0.5	0.6915	0.6950	0.6985	0.7019	0.7054	0.7088	0.7123	0.7157	0.7190	0.7224
0.6	0.7257	0.7291	0.7324	0.7357	0.7389	0.7422	0.7454	0.7486	0.7517	0.7549
0.7	0.7580	0.7611	0.7642	0.7673	0.7704	0.7734	0.7764	0.7794	0.7823	0.7852
0.8	0.7881	0.7910	0.7939	0.7967	0.7995	0.8023	0.8051	0.8078	0.8106	0.8133
0.9	0.8159	0.8186	0.8212	0.8238	0.8264	0.8289	0.8315	0.8340	0.8365	0.8389
1.0	0.8413	0.8438	0.8461	0.8485	0.8508	0.8531	0.8554	0.8577	0.8599	0.8621
1.1	0.8643	0.8665	0.8686	0.8708	0.8729	0.8749	0.8770	0.8790	0.8810	0.8830
1.2	0.8849	0.8869	0.8888	0.8907	0.8925	0.8944	0.8962	0.8980	0.8997	0.9015
1.3	0.9032	0.9049	0.9066	0.9082	0.9099	0.9115	0.9131	0.9147	0.9162	0.9177
1.4	0.9192	0.9207	0.9222	0.9236	0.9251	0.9265	0.9279	0.9292	0.9306	0.9319
1.5	0.9332	0.9345	0.9357	0.9370	0.9382	0.9394	0.9406	0.9418	0.9429	0.9441
1.6	0.9452	0.9463	0.9474	0.9484	0.9495	0.9505	0.9515	0.9525	0.9535	0.9545
1.7	0.9554	0.9564	0.9573	0.9582	0.9591	0.9599	0.9608	0.9616	0.9625	0.9633
1.8	0.9641	0.9649	0.9656	0.9664	0.9671	0.9678	0.9686	0.9693	0.9699	0.9706
1.9	0.9713	0.9719	0.9726	0.9732	0.9738	0.9744	0.9750	0.9756	0.9761	0.9767
2.0	0.9772	0.9778	0.9783	0.9788	0.9793	0.9798	0.9803	0.9808	0.9812	0.9817
2.1	0.9821	0.9826	0.9830	0.9834	0.9838	0.9842	0.9846	0.9850	0.9854	0.9857
2.2	0.9861	0.9864	0.9868	0.9871	0.9875	0.9878	0.9881	0.9884	0.9887	0.9890
2.3	0.9893	0.9896	0.9898	0.9901	0.9904	0.9906	0.9909	0.9911	0.9913	0.9916
2.4	0.9918	0.9920	0.9922	0.9925	0.9927	0.9929	0.9931	0.9932	0.9934	0.9936
2.5	0.9938	0.9940	0.9941	0.9943	0.9945	0.9946	0.9948	0.9949	0.9951	0.9952
2.6	0.9953	0.9955	0.9956	0.9957	0.9959	0.9960	0.9961	0.9962	0.9963	0.9964
2.7	0.9965	0.9966	0.9967	0.9968	0.9969	0.9970	0.9971	0.9972	0.9973	0.9974
2.8	0.9974	0.9975	0.9976	0.9977	0.9977	0.9978	0.9979	0.9979	0.9980	0.9981
2.9	0.9981	0.9982	0.9982	0.9983	0.9984	0.9984	0.9985	0.9985	0.9986	0.9986
3.0	0.9987	0.9987	0.9987	0.9988	0.9988	0.9989	0.9989	0.9989	0.9990	0.9990
3.1	0.9990	0.9991	0.9991	0.9991	0.9992	0.9992	0.9992	0.9992	0.9993	0.9993
3.2	0.9993	0.9993	0.9994	0.9994	0.9994	0.9994	0.9994	0.9995	0.9995	0.9995
3.3	0.9995	0.9995	0.9995	0.9996	0.9996	0.9996	0.9996	0.9996	0.9996	0.9997
3.4	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9998
3.5	0.9998	0.9998	0.9998	0.9998	0.9998	0.9998	0.9998	0.9998	0.9998	0.9998