Compression Fold of the Strong Force

1) Setup — gauge field and notation

- Gauge field: $A_{\mu}(x)=A_{\mu}^a(x)T^a$ with T^a the SU(3) generators (trace normalized ${\rm Tr}\,T^aT^b=\frac{1}{2}\delta^{ab}$).
- Field strength: $F_{\mu\nu} \stackrel{?}{=} \partial_{\mu}A_{\nu} \partial_{\nu}A_{\mu} + g[A_{\mu}, A_{\nu}]$ (components $F_{\mu\nu}^{a}$). Covariant derivative in adjoint / matrix form: $D_{\mu} = \partial_{\mu} + g[A_{\mu}, \cdot]$.
- Inner product on Lie-algebra-valued fields: $\langle X, Y \rangle = \int d^4x \operatorname{Tr}(X_{\mu}(x)Y^{\mu}(x)).$

We consider a probability density functional $\rho[A]$ over gauge-field configurations A. Compression will be expressed as a Fisher-information penalty on ρ .

2) Candidate global compression functional (functional-Fisher + energy

Define the total functional:

$$\mathcal{S}[\rho] = \int \mathcal{D}A \; \rho[A] \; \mathcal{E}[A] + \frac{\lambda}{2} \, I_F[\rho]$$

where

• $\mathcal{E}[A]$ is the physical energy functional (gauge-invariant),

$$\mathcal{E}[A] = \int d^4x \, \mathrm{Tr}(\frac{1}{2}F_{\mu\nu}F^{\mu\nu}).$$

• $I_F[\rho]$ is the functional Fisher information:

$$I_F[\rho] = \int \mathcal{D}A \; \rho[A] \int d^4x \; \mathrm{Tr}\Big(\frac{\delta \ln \rho[A]}{\delta A_\mu(x)} \frac{\delta \ln \rho[A]}{\delta A^\mu(x)}\Big).$$

• $\lambda > 0$ is the compression tradeoff constant.

3) Stationary condition (variation in ρ)

Variation yields the stationary condition (schematic form):

$$\mathcal{E}[A] - \lambda \, \frac{1}{\rho^{1/2}[A]} \int d^4x \; \mathrm{Tr}\Big(\frac{\delta^2 \rho^{1/2}[A]}{\delta A_\mu(x) \, \delta A^\mu(x)}\Big) = \mu,$$

which implies

$$\rho[A] \propto \exp\Big(-\frac{1}{\lambda}\,\mathcal{E}_{\mathrm{eff}}[A]\Big).$$

4) Saddle-point / semiclassical limit \rightarrow Yang-Mills

In the small- λ limit, $\rho[A]$ peaks around A^* minimizing $\mathcal{E}[A]$:

$$D_{\mu}F^{\mu\nu}[A^*] = 0,$$

i.e. the classical Yang–Mills equations. Finite λ adds Fisher-information corrections $Q[\rho,A]$.

5) Local ansatz — field-level model

Introduce a compressibility field $\varphi(x)$:

$$\mathcal{L}(A,\varphi) = \mathrm{Tr}\big(\tfrac{1}{2}F_{\mu\nu}F^{\mu\nu}\big) + \frac{\kappa}{2}\,\mathrm{Tr}\big((D_{\mu}\varphi)(D^{\mu}\varphi)\big) + V(\varphi).$$

Here φ is Lie-algebra valued and acts as a local order parameter of compression.

6) Interpretations

- Confinement: compression favors color-singlet combinations and disfavors isolated color charges.
- **Asymptotic freedom:** at short distances the Fisher penalty is negligible → quarks behave nearly free.
- Gluon self-interaction: nonlinear commutators in $F_{\mu\nu}$ remain; compression biases preferred configurations.

7) Next steps

- 1. Lattice toy: add Fisher penalty to Wilson action; simulate.
- 2. Local model: simulate $\mathcal{L}(A,\varphi)$ with varying potentials $V(\varphi)$.
- 3. **Analytic checks:** expand for small λ ; compare corrections with known loop effects.
- 4. Relate λ to QCD scale $\Lambda_{\rm QCD}$.

8) Summary

- Defined a compression functional for SU(3) gauge fields.
- Variation recovers Yang–Mills in the saddle-point limit.
- Fisher terms give quantum-like corrections.
- Local ansatz couples compression field φ to the gauge field; could model confinement transitions.
- Suggests the strong force as the next fold in the Genesis Pattern.