

Wygenerowano przez Doxygen 1.8.6

Cz, 16 kwi 2015 11:26:30

Optymalizacja działania algorytmów sortowania -Quick Sort

Mateusz Bencer, nr: 209360

ncci, in. 20000

16 kwietnia 2015

Sprawozdanie zawiera wnioski wyciągnięte z optymalizacji algorytmów sortowania - Quick Sort. Celem pomiarów było sprawdzenie wpływu doboru elementu osiowego (ang. pivot) na czas sortowanie określonej liczby elementów w kontenerze. Na potrzeby tego zadania użyłem implementacji listy z programu Łukasza Saka. Doświadczenie z pracy nad cudzym kodem okazało się bardzo pouczające...

W celu możliwości implementacji algorytmu sortowania konieczne były drobne zmiany w kodzie, tj.:

- Musialem dodać metody set oraz get do klasy lista, ponieważ niemożliwym było zaimplementowanie algorytmu, gdzie przy pobieraniu elementu został on ściągany, a podczas dodawania inne zostały przesuwane. Metodom pośredniom (sprawdzoną przeze mnie) było pobieranie wszystkich elementów do zwykłej tablicy za pomocą metody pop, posortowanie tej tablicy, i późniesze powrotne dodanie tych elementów za pomocą metodu push do listy. Jednak jak było to do przewidzenia, miało to bardzo negatywny wpływ na złożoność oraz osiągane rezultaty czasowe. O wiele prostsza byłaby implementacja tego algorytmu na liście powiązanej (linked list), gdzie każdy element zwiera wskaźnik do poprzedniego i następnego elementu, ale na moment kiedy pobrałem kod z gita, była tam tylko implementacja tablicowa.
- Musiałem dokonać gruntownych zmian w klasie Benchmark, która była stricte dopoasowana do poprzednionego zadania (mało uniwersalna).
- Dodałem zaimplementowaną przez siebie wcześniej klasę Timer do pomiarów czasowych.

Zostało przeze mnie przetestowanych 5 sposobów doboru elementu osiowego. Pomiary zostały przeprowadzone dla 9 kolejno rosnących rozmiarach listy. Wszystkie elementy umieszczone w liście są pseudolosowe.

• 1. Pierwszy skrajny element.

Z rozważań teoretycznych wynikało, że jest to najprostsza, ale zarazem najbardziej naiwna metoda doboru elementu osiowego. W przypadku tablicy wstępnie posortowanej taki wybór może skutkować złożonościa nawet $0(n^2)$. Moje pomiary (na liście z elementami losowymi) potwierdziły to.

```
Quick sort, Pivot: FIRST
1. N=10 0.0386667 ms
2. N=100 0.368667 ms
3. N=500 1.60767 ms
4. N=1000 1.44067 ms
5. N=5000 7.364 ms
6. N=10000 15.005 ms
7. N=30000 46.3787 ms
8. N=50000 78.646 ms
9. N=80000 126.18 ms
```

Rysunek 1: Wyniki działania programu, gdy piwot jest pierwszym, skrajnym elementem

• 2. Ostatni skrajny element.

Wybór ostatniego elementu jest analogiczny do wyboru pierwszego skaranego elementu. W takim wypadku złożość rónież może wynieść $0(n^2)$. Moje pomiary również dają podobne rezultaty jak do tych z podpunktu 1.

```
Quick sort, Pivot: LAST
1. N=10 0.0326667 ms
2. N=100 0.343333 ms
3. N=500 1.10067 ms
4. N=1000 1.48567 ms
5. N=5000 7.232 ms
6. N=10000 14.9503 ms
7. N=30000 46.9187 ms
8. N=50000 78.8997 ms
9. N=80000 127.812 ms
```

Rysunek 2: Wyniki działania programu, gdy piwot jest ostatnim, skrajnym elementem

• 3. Element losowy.

Wybór elementu losowego ma na celu uśrednienie możliwości wystąpienia sytuacji najbardziej optymistyczne, jak i najbardziej pesymistycznej. Jest to metoda bardzo zapobiegawcza. Jest złożoność to około T(n)=2nln(n) (przy rozkładzie równomiernym). Jednak według moich pomiarów jest to metoda gorsza od dwóch poprzednich. Podejrzewam, że jest to związane z dodatkowym nakładem czasowym potrzebnym na wylosowanie elementu.

```
Quick sort, Pivot: RANDOM
1. N=10 0.048 ms
2. N=100 0.386667 ms
3. N=500 1.30567 ms
4. N=1000 1.62533 ms
5. N=5000 8.33433 ms
6. N=10000 17.263 ms
7. N=30000 54.5173 ms
8. N=50000 90.7563 ms
9. N=80000 148.93 ms
```

Rysunek 3: Wyniki działania programu, gdy piwot jest elementem losowym

• 4. Element środkowy.

Taki wybór jest chyba najbardziej popularny, przynajmniej wśród implementacji quick sorta znalezionych przeze mnie w internecie. Zapobiega on występowaniu (w prawie wszystkich przypadkach) sytuacji najbardziej pesymistycznej, a wyliczenie elementu środkowego wymaga małych nakładów obliczeniowych. Mimo wszystko uzyskane przeze mnie wyniki są podobne do tych z wyborem elementu pierwszego i ostatniego.

```
Quick sort, Pivot: CENTER
1. N=10 0.0123333 ms
2. N=100 0.133333 ms
3. N=500 0.683333 ms
4. N=1000 1.39167 ms
5. N=5000 7.38 ms
6. N=10000 14.9877 ms
7. N=30000 46.4457 ms
8. N=50000 78.272 ms
9. N=80000 129.781 ms
```

Rysunek 4: Wyniki działania programu, gdy piwot jest elementem środkowym

• 5. Mediana z trzech.

Metoda ta polega na wyliczeniu mediany z elementu najmniejszego, największego i środkowego i jego wyborze, jako elementu osiowego. Idealną sytuacją byłoby za każdym razem obliczanie mediany z całej listy, jednak takie podejście wymaga w praktyce wstępnie posortowanej tablicy do wyznaczenia mediany... (co oczywiście jest sprzeczne z celowością sortowania). Kompromisem dającym dobre rezultaty jest właśnie wyznaczenie mediany z trzech wartości. Według moich pomiarów jest to metoda najszybsza.

```
Quick sort, Pivot: MEDIAN_OF_THREE

1. N=10 0.011 ms

2. N=100 0.113667 ms

3. N=500 0.607333 ms

4. N=1000 1.25033 ms

5. N=5000 6.57433 ms

6. N=10000 13.436 ms

7. N=30000 42.4643 ms

8. N=50000 73.1447 ms

9. N=80000 121.15 ms
```

Rysunek 5: Wyniki działania programu, gdy piwot jest medianą z trzech elementów

Dla lepszego zoobrazowania otrzymanych wyników umieszczam jeszcze wykres ze wszystkimi metodami.

Możemy zaobserwować, że wszystkie metody dają dość podobne rezultaty.

Rysunek 6: Wykres przestawiający czasy sortowania, przy różnym wyborze piwota

Dla liczb losowych najlepsza jednak (według mojej implementacji) wydaję się być metoda mediany z trzech elementów.

Spis treści

1	Inde	s hierarchiczny	1
	1.1	Hierarchia klas	. 1
2	Inde	s klas	3
	2.1	Lista klas	. 3
3	Inde	s plików	5
	3.1	Lista plików	. 5
4	Dok	mentacja klas	7
	4.1	Dokumentacja szablonu klasy Benchmark $<$ T $>$ \dots	. 7
		4.1.1 Opis szczegółowy	. 7
		4.1.2 Dokumentacja konstruktora i destruktora	. 7
		4.1.2.1 Benchmark	. 7
	4.2	Dokumentacja szablonu klasy Kolejka < TYP >	. 8
		4.2.1 Opis szczegółowy	. 8
	4.3	Dokumentacja szablonu klasy Lista < TYP >	. 8
		4.3.1 Opis szczegółowy	. 9
	4.4	Dokumentacja szablonu klasy Stos< TYP >	. 9
		4.4.1 Opis szczegółowy	. 9
	4.5	Dokumentacja klasy Timer	. 10
		4.5.1 Opis szczegółowy	. 10
		4.5.2 Dokumentacja konstruktora i destruktora	. 10
		4.5.2.1 Timer	. 10
		4.5.3 Dokumentacja funkcji składowych	. 10
		4.5.3.1 diffTimeMs	. 10
		4.5.3.2 startTimer	. 11
		4.5.3.3 stopTimer	. 11
5	Dok	mentacja plików	13
	5.1	Dokumentacja pliku /home/mateusz/git/209365/Lab3/prj/inc/Benchmark.hh	. 13
		5.1.1 Opis szczegółowy	. 13
	5.2		. 13

iv SPIS TREŚCI

Indeks			16
	5.6.1	Opis szczegółowy	15
5.6	Dokum	nentacja pliku /home/mateusz/git/209365/Lab3/prj/src/Timer.cpp	15
	5.5.1	Opis szczegółowy	15
5.5	Dokum	nentacja pliku /home/mateusz/git/209365/Lab3/prj/inc/Timer.hh	14
	5.4.1	Opis szczegółowy	14
5.4	Dokum	nentacja pliku /home/mateusz/git/209365/Lab3/prj/inc/Stos.hh	14
	5.3.1	Opis szczegółowy	14
5.3	Dokum	nentacja pliku /home/mateusz/git/209365/Lab3/prj/inc/Lista.hh	14
	5.2.1	Opis szczegółowy	14

Indeks hierarchiczny

1.1 Hierarchia klas

Ta lista dziedziczenia posortowana jest z grubsza, choć nie całkowicie, alfabetycznie:

Benchmark< T >	7
$Lista < TYP > \dots $	8
Kolejka < TYP >	8
Stos< TYP >	9
Timer	10

Indeks hierarchiczny

Indeks klas

2.1 Lista klas

Tutaj znajdują się klasy, struktury, unie i interfejsy wraz z ich krótkimi opisami:

Benchmark< T >	
Klasa do przeprowadzenia testów na kontenerach danych	7
Kolejka< TYP >	
Klasa Kolejka	8
Lista < TYP >	
Klasa Lista	8
Stos< TYP >	
Klasa Stos	9
Timer	
Klasa do pomiaru różnicy czasów	(

Indeks klas

Indeks plików

3.1 Lista plików

Tutaj znajduje się lista wszystkich udokumentowanych plików z ich krótkimi opisami:

/home/mateusz/git/209365/Lab3/prj/inc/Benchmark.hh	
Deklaracja i definicja (razem, bo szablon) klasy Benchmark	3
/home/mateusz/git/209365/Lab3/prj/inc/Kolejka.hh	
Definicja klasy Kolejka	3
/home/mateusz/git/209365/Lab3/prj/inc/Lista.hh	
Definicja klasy Lista	4
/home/mateusz/git/209365/Lab3/prj/inc/ Pivot.hh	?
/home/mateusz/git/209365/Lab3/prj/inc/quick_sort.hh?	?
/home/mateusz/git/209365/Lab3/prj/inc/Stos.hh	
Definicja klasy Stos	4
/home/mateusz/git/209365/Lab3/prj/inc/Timer.hh	
Plik zawierający deklaracje klasy Timer służącej do pomiaru różnicy czasów	4
/home/mateusz/git/209365/Lab3/prj/src/Timer.cpp	
Plik zawierający definicje funkcji klasy Timer służącej do pomiaru różnicy czasów	5

6 Indeks plików

Dokumentacja klas

4.1 Dokumentacja szablonu klasy Benchmark< T >

Klasa do przeprowadzenia testów na kontenerach danych.

```
#include <Benchmark.hh>
```

Metody publiczne

- Benchmark (unsigned int *test_list_sizes, unsigned int size, unsigned int number_of_memeasurements)
 Konstruktor klasy Benchmark pomiarający wykładnik liczby określającej dla jakiej liczby elementów testujemy kontener.
- void testQuickSort (Lista < T > *list, PIVOT piv)

4.1.1 Opis szczegółowy

template < class T> class Benchmark < T>

Klasa do przeprowadzenia testów na kontenerach danych.

Klasa odpwiada za pomiar czasu koniecznego do umieszczenia określonej liczby danych na stosie, kolejce oraz liście

4.1.2 Dokumentacja konstruktora i destruktora

4.1.2.1 template<typename T > Benchmark < T >::Benchmark (unsigned int * test_list_sizes, unsigned int size, unsigned int number_of_memeasurements)

Konstruktor klasy Benchmark pomiarający wykładnik liczby określającej dla jakiej liczby elementów testujemy kontener.

Parametry

testPower	Liczba określająca wykładnik 10. Cała liczba (10 [^] (_testPower)) określa liczbe elementów,
	które będą wkładane do kontenerów.
Liczby	w tablicy określają jaką ilość danych (jak dużą listę) będziemy kolejno sortować (w celu po-
	miaru poptrzebnego czasu dla każdej wielkości)

Dokumentacja dla tej klasy została wygenerowana z pliku:

/home/mateusz/git/209365/Lab3/prj/inc/Benchmark.hh

8 Dokumentacja klas

4.2 Dokumentacja szablonu klasy Kolejka < TYP >

Klasa Kolejka.

```
#include <Kolejka.hh>
```

Diagram dziedziczenia dla Kolejka < TYP >

Metody publiczne

- void PUSH (TYP liczba)
- int **POP** ()
- · void SHOW ()
- unsigned int SIZE ()

4.2.1 Opis szczegółowy

template<typename TYP>class Kolejka< TYP>

Klasa Kolejka.

Klasa ta modeluje nam Kolejke Składa się z pól klasy Lista oraz metod PUSH, POP, SIZE, SHOW Klasa w calosci wykorzystuje implementacje listy

Dokumentacja dla tej klasy została wygenerowana z pliku:

/home/mateusz/git/209365/Lab3/prj/inc/Kolejka.hh

4.3 Dokumentacja szablonu klasy Lista < TYP >

Klasa Lista.

```
#include <Lista.hh>
```

Diagram dziedziczenia dla Lista < TYP >

Metody publiczne

- · void Rozmiar ()
- · void PUSH (TYP liczba, unsigned int index)
- void SET (TYP liczba, unsigned int index)
- void Powiekszenie_Pamieci ()
- TYP **POP** (unsigned int index)

- void Zmniejszenie_Pamieci ()
- TYP **GET** (unsigned int index)
- unsigned int SIZE ()
- void SHOW ()

4.3.1 Opis szczegółowy

template<typename TYP>class Lista< TYP>

Klasa Lista.

Klasa ta modeluje nam Liste wartosci typu TYP Składa się z pól:

Parametry

in	*tab	- tablica naszych liczb;
in	poczatek	- pierwsza liczba w naszej tablicy
in	koniec	- ostatnia liczba w naszej tablicy
in	_rozmiar_listy	- rozmiar stworzonej tablicy dynamicznej

Dokumentacja dla tej klasy została wygenerowana z pliku:

• /home/mateusz/git/209365/Lab3/prj/inc/Lista.hh

4.4 Dokumentacja szablonu klasy Stos < TYP >

Klasa Stos.

#include <Stos.hh>

Diagram dziedziczenia dla Stos< TYP >

Metody publiczne

- void PUSH (TYP liczba)
- int **POP** ()
- void SHOW ()
- unsigned int SIZE ()

Dodatkowe Dziedziczone Składowe

4.4.1 Opis szczegółowy

template<typename TYP>class Stos< TYP>

Klasa Stos.

Klasa ta modeluje nam Stos Składa się z pól klasy Lista ktore zostania uzyte oraz metod PUSH, POP, SIZE, SHOW Klasa w calosci wykorzystuje implementacje listy

Dokumentacja dla tej klasy została wygenerowana z pliku:

10 Dokumentacja klas

• /home/mateusz/git/209365/Lab3/prj/inc/Stos.hh

4.5 Dokumentacja klasy Timer

Klasa do pomiaru różnicy czasów.

```
#include <Timer.hh>
```

Metody publiczne

• Timer ()

Konstruktor zerujący parametry.

void startTimer ()

Zmierzenie czasu rozpoczęcia pomiaru.

void stopTimer ()

Zmierzenie czasu zakończenia pomiaru.

• double diffTimeMs ()

Funkcja zwracająca różnice czasu pomiędzy czasem rozpoczęcia i zakończenia pomiaru.

4.5.1 Opis szczegółowy

Klasa do pomiaru różnicy czasów.

Klasa pozwala na pomiar czasów w danych momentach oraz na zwrócenie czasu, który upłynał pomiędzy tymi momentami

4.5.2 Dokumentacja konstruktora i destruktora

```
4.5.2.1 Timer::Timer()
```

Konstruktor zerujący parametry.

Konstruktor ten odpowiada za zerowania zmięnnych startu i stopu w celu możliwości późniejszego sprawdzenia, czy pomiary czasu konieczne do wyznaczenia różnicy zostały zrealizowane.

4.5.3 Dokumentacja funkcji składowych

```
4.5.3.1 double Timer::diffTimeMs ( )
```

Funkcja zwracająca różnice czasu pomiędzy czasem rozpoczęcia i zakończenia pomiaru.

Różnica czasu zwracana jest w milisekundach.

Warunek wstępny

Czas zkończenia pomiaru musi być większy (późniejszy) od czasu jego rozpoczęcia

Zwraca

Zwracana jest różnica czasu zrzutowana do typu double

4.5.3.2 void Timer::startTimer ()

Zmierzenie czasu rozpoczęcia pomiaru.

Funkcja zapamiętuje bierzący czas, jako czas rozpoczęcia pomiaru.

4.5.3.3 void Timer::stopTimer()

Zmierzenie czasu zakończenia pomiaru.

Funkcja zapamiętuje bierzący czas, jako czas zakończenia pomiaru.

Dokumentacja dla tej klasy została wygenerowana z plików:

- /home/mateusz/git/209365/Lab3/prj/inc/Timer.hh
- /home/mateusz/git/209365/Lab3/prj/src/Timer.cpp

12 Dokumentacja klas

Dokumentacja plików

5.1 Dokumentacja pliku /home/mateusz/git/209365/Lab3/prj/inc/Benchmark.hh

Deklaracja i definicja (razem, bo szablon) klasy Benchmark.

```
#include "../inc/Lista.hh"
#include "../inc/quick_sort.hh"
#include "../inc/Timer.hh"
#include <iostream>
#include <cstdlib>
#include <cstdio>
#include <ctime>
#include <string>
```

Komponenty

class BenchmarkT >

Klasa do przeprowadzenia testów na kontenerach danych.

5.1.1 Opis szczegółowy

Deklaracja i definicja (razem, bo szablon) klasy Benchmark. Benchmark.hh

5.2 Dokumentacja pliku /home/mateusz/git/209365/Lab3/prj/inc/Kolejka.hh

```
Definicja klasy Kolejka.
```

```
#include <iostream>
#include "Lista.hh"
```

Komponenty

class Kolejka < TYP >
 Klasa Kolejka.

14 Dokumentacja plików

5.2.1 Opis szczegółowy

Definicja klasy Kolejka. Plik zawiera definicje klasy Kolejka, ktora bedzie struktura naszych danych. Klasa ta posiada szablon, dzieki czemu mozemy pracowac na roznych typach danych

5.3 Dokumentacja pliku /home/mateusz/git/209365/Lab3/prj/inc/Lista.hh

```
Definicja klasy Lista.
```

```
#include <iostream>
```

Komponenty

```
    class Lista < TYP >
    Klasa Lista.
```

5.3.1 Opis szczegółowy

Definicja klasy Lista. Plik zawiera definicje klasy Lista ktora bedzie struktura danych oparta na tablicy dynamicznej

5.4 Dokumentacja pliku /home/mateusz/git/209365/Lab3/prj/inc/Stos.hh

Definicja klasy Stos.

```
#include <iostream>
#include "Lista.hh"
```

Komponenty

```
    class Stos
    TYP >
    Klasa Stos.
```

5.4.1 Opis szczegółowy

Definicja klasy Stos. Plik zawiera definicje klasy Stos, ktora bedzie struktura naszych danych. Klasa ta posiada szablon, dzieki czemu mozemy pracowac na roznych typach danych

5.5 Dokumentacja pliku /home/mateusz/git/209365/Lab3/prj/inc/Timer.hh

Plik zawierający deklaracje klasy Timer służącej do pomiaru różnicy czasów.

```
#include <ctime>
```

Komponenty

· class Timer

Klasa do pomiaru różnicy czasów.

5.5.1 Opis szczegółowy

Plik zawierający deklaracje klasy Timer służącej do pomiaru różnicy czasów. Timer.h

5.6 Dokumentacja pliku /home/mateusz/git/209365/Lab3/prj/src/Timer.cpp

Plik zawierający definicje funkcji klasy Timer służącej do pomiaru różnicy czasów.

```
#include "../inc/Timer.hh"
#include <iostream>
```

5.6.1 Opis szczegółowy

Plik zawierający definicje funkcji klasy Timer służącej do pomiaru różnicy czasów. Timer.cpp

Skorowidz

```
/home/mateusz/git/209365/Lab3/prj/inc/Benchmark.hh,
/home/mateusz/git/209365/Lab3/prj/inc/Kolejka.hh, 13
/home/mateusz/git/209365/Lab3/prj/inc/Lista.hh, 14
/home/mateusz/git/209365/Lab3/prj/inc/Stos.hh, 14
/home/mateusz/git/209365/Lab3/prj/inc/Timer.hh, 14
/home/mateusz/git/209365/Lab3/prj/src/Timer.cpp,\ {15}
Benchmark
    Benchmark, 7
Benchmark< T >, 7
diffTimeMs
    Timer, 10
Kolejka < TYP >, 8
Lista < TYP >, 8
startTimer
    Timer, 10
stopTimer
    Timer, 11
Stos< TYP >, 9
Timer, 10
    diffTimeMs, 10
    startTimer, 10
    stopTimer, 11
    Timer, 10
```