MAE 0311 2018 - INFERÊNCIA ESTATÍSTICA. PROF. ALEXANDRE PATRIOTA LISTA 2

1. Seja (X_1, \ldots, X_n) uma amostra aleatória de $X \sim f_{\theta}$, em que

$$f_{\theta}(x) = \begin{cases} \frac{2x}{\theta^2}, & \text{se} \quad 0 < x < \theta, \quad \theta > 0, \\ 0, & \text{c.c.} \end{cases}$$

- a) Especifique o espaço paramétrico e o suporte associado à distribuição de X.
- b) Verifique se $T_1 = \overline{X}$ e $T_2 = X_{(n)}$ são estimadores não-viciados para $g(\theta) = \theta$.
- c) Encontre e compare os EQM dos dois estimadores (considerando $g(\theta) = \theta$). Faça um gráfico dos EQM como função de θ utilizando o R. Comente os resultados.
- d) Verifique se f_{θ} pertence à família exponencial e indique a dimensão.
- 2. Seja (X_1, \ldots, X_n) uma amostra aleatória de $X \sim Unif(0, \theta)$. Considere os estimadores $T_1 = c_1 \overline{X}$, e $T_2 = c_2 X_{(n)}$.
 - a) Encontre c_1 e c_2 para os quais os estimadores T_1 e T_2 sejam não-viciados para $g(\theta) = \theta$.
 - b) Encontre e compare os EQM dos dois estimadores para valores de c_1 e c_2 genéricos.
 - c) Faça um gráfico dos EQM como função de θ utilizando o R. Comente os resultados.
 - d) Verifique se T_1 é uma estatística suficiente para $X \sim Unif(0, \theta)$.
 - e) Verifique se $Unif(0,\theta)$ pertence à família exponencial.
- 3. Seja (X_1,\ldots,X_n) uma amostra aleatória de $X\sim N(0,\theta)$. Seja $S^2=\sum_{i=1}^n X_i^2$, considere o estimador

$$T = cS^2$$
.

- a) Encontre o viés para estimar $g(\theta) = \theta$ e o EQM do estimador acima.
- b) Encontre o valor de c que minimize o EQM em (a).
- c) Verifique se T é suficiente para o modelo normal com média zero e variância θ .
- d) Verifique se T é suficiente para o modelo normal com média μ e variância σ^2 , ambos desconhecidos, com $\theta = (\mu, \sigma^2)$. Em caso negativo, proponha uma estatística suficiente para este modelo.
- e) Verifique se $N(0,\theta)$ pertence à família exponencial.
- 4. Seja (X_1, \ldots, X_n) uma amostra aleatória de $X \sim P_\theta$, com $\theta = (\mu, \sigma^2)$, $E_\theta(X) = \mu$, e $Var_\theta(X) = \sigma^2$. Seja $T = \sum_{i=1}^n a_i X_i$ um estimador não-viciado.
 - a) Calcule $\sum_{i=1}^{n} a_i$.
 - b) Para quais valores de a_i , i = 1, ..., n, $Var_{\theta}(T)$ é mínima?
- 5. Seja (X_1, X_2, X_3) uma amostra aleatória de $X \sim Ber(\theta)$. Considere dois estimadores;

$$T_1 = X_1 + X_2 + X_3$$
, e $T_2 = X_1 X_2 + X_3$,

mostre que T_1 é suficente e T_2 não é.

6. Seja (X_1, \ldots, X_n) uma amostra aleatória de $X \sim f_\theta$, em que

$$f_{\theta}(x) = \begin{cases} \frac{1}{2\theta} \exp\left(-\frac{|x|}{\theta}\right), & \text{se} \quad -\infty < x < \infty, \quad \theta > 0, \\ 0, & \text{c.c.} \end{cases}$$

Seja
$$T = \sum_{i=1}^{n} |X_i|/n$$
.

- a) Verifique se o viés (considerando a quantidade de interesse $g(\theta) = \theta$) e EQM de T convergem para zero quando $n \to \infty$.
- b) Verifique se T é uma estatística suficiente para o modelo estatístico proposto.
- c) Verifique se f_{θ} pertence à família exponencial.
- 7. Seja (X_1, \ldots, X_n) uma amostra aleatória de $X \sim f_\theta$, $\theta \in \Theta \subseteq \mathbb{R}$. Apresente as condições de regularidade e mostre que, se T é um estimador não-viciado para $g(\theta)$, em que $E_\theta(T^2) < \infty$, então;

$$Var_{\theta}(T) \ge \frac{[g'(\theta)]^2}{nI_F(\theta)}, \quad \theta \in \Theta.$$

Dica: veja a prova vista em classe para $g(\theta) = \theta$.

8. Considere a função de probabilidade de $X \sim f_{\theta}$,

$$f_{\theta}(x) = P_{\theta}(X = x) = \frac{a(x)\theta^x}{C(\theta)}, \quad x = 0, 1, \dots; \quad a(x) \ge 0, \quad \theta > 0.$$
 (1)

- a) Mostre que essa distribuição faz parte da família exponencial unidimensional.
- b) Encontre a sua função geradora de momentos.
- c) Utilizando (a), mostre que as distribuições Binomial e Poisson são casos especiais da distribuição (1), determine a(x) e $C(\theta)$.
- 9. Considere a função densidade de probabilidade

$$f_{\theta}(x) = \begin{cases} \frac{1}{B(\theta_1, \theta_2)} x^{\theta_1 - 1} (1 - x)^{\theta_2 - 1}, & \text{se} \quad 0 < x < 1 \\ 0, & \text{c.c.} \end{cases}$$

em que $\theta=(\theta_1,\theta_2),\, B(a,b)=rac{\Gamma(a)\Gamma(b)}{\Gamma(a+b)}$ e $\Gamma(a)$ é a função gama usual.

- a) Mostre que $f_{\theta}(x)$ pertence à família exponencial de dimensão 2.
- b) Considere $(X_1,...,X_n)$ uma amostra aleatória de $X \sim f_{\theta}$, em que f_{θ} é apresentada acima. Encontre a estatística suficiente para o modelo estatístico em questão.