

הנדסה - טפסים מר 028

טופס מלווה לשאלון מבחן

	ন প	שם הקורס:	
6729 Pull 12179	:שם מרצה	31910	מספר קורס:
8. 11 2015	ונאריך בחינה:	SNET	:מחלקה
\$ NIX8 3	:משך הבחינה	09400	שעת בחלנה:
א) בי, מיוחד	מועד בחינה	א, בי, קיץ תשעיי	:סמסטר

With notwitions

הוראות לנבחן ולמשגיח

- 1. יש לענות על הבחינה (לסמן 🗴 בסוגריים):
 - () במחברת הבחינה בלבד

במחברת הבחינה ועל גבי טופס שאלון הבחינה 🖊

- () בטופס שאלון הבחינה בלבד
- 2. המחברות ייבדקו /לא ייבדקו (מחק את המיותר).
- 3. טפסי השאלון ייבדקו / לא ייבדקו (מחק את המיותר).
- 4. ניתן /ילא ניתן להשתמש בכל חומר עזר פרט ל-
 - 5. ניתן /ילא ניתן להשתמש במחשבון (מחק את המיותר).
 - הישץ אין לחלק לסטודנטים פתקי שאלות (מחק את המיותר).
 - יש דאין להחזיר את השאלון המבחן בסוף הבחינה (מחק את המיותר).
 - 8. יש יאין לצרף את השאלון למחברת הבחינה בסוף הבחינה (מחק את המיותר).
 - 9. יש לענות על כל השאלות החלק השאלות (מחק את המיותר).
 - .10 מספר הנקודות לכל שאלה נתון בסוגריים (
 - .11 היכן שדרושים הסברים תן⁄י הסבר.
- 12. כל העבודה, כולל טיוטה וחישובי עזר, צריכה להיכתב במחברת הבחינה בלבד ו∕או בשאלון (כמסומן בסעיף 1) ואין להשתמש בכל נייר אחר.
 - .13 אין להעביר כל חומר בין הסטודנטים.

				הערות
	-	. '		
	 -			
			<u> </u>	

בהצלחה!

.

מבוא לבקרה --- 31910

מבחן סופי, מועד א — סמסטר א 2014/5 יש לענות על כל השאלות — 3 שעות

Control exam: 2014/5, semester 1, session A, 3 hours. Answer all questions.

1. Given is a 2DoF feedback system with controllers G and F. r and d are independent reference and disturbance signals respectively.

(a) Derive an equation that relates Y to R and D.

[3 pts]

(b) Assume a given loop transfer function L = FGP. Derive an equation for F as a function of L, so that the error (Y - R) is independent of the reference R.

[5 pts]

- 2. Given is a loop transfer function $L(s) = k \frac{10}{1-s} e^{-0.2s}$.
 - (a) Draw $L(j\omega)$ for k=1 on the attached S-Chart.

[10 pts]

- (b) Find the range of $k \subset [k_{\min} \ k_{\max}]$ in which the closed loop system is stable.
- (c) Draw $L(j\omega)$ for $k = [k_{\min} + k_{\max}]/2$ on the attached S-Chart.

[10 pts] [10 pts]

(d) Sketch the corresponding full Nyquist diagram on the attached EdS Chart.

[12 pts]

3. Given is a plant $P(s) = \frac{1}{1+s}$ and an uncertain sensor

$$H(s) = \frac{a-s}{1+s/1000}$$
, $a \subset [30 \ 100]$. Design a PI controller $G(s) = k\left(1 + \frac{\omega_c}{s}\right)$

such that the resulting loop has the highest possible $\omega_{\rm gc}$ while

 $|S(j\omega)| < 3$ dB, $\forall \omega, a$. The nominal loop transfer function is prescribed at a = 100.

(a) Calculate and draw loop templates with clearly marked handles at $\omega = 10$, 30, and 100 on the attached *EdS* Chart. (Four points per template suffice.)

[10 pts]

- (b) Draw the corresponding design bounds for $\omega = 10$, 30, and 100 on the attached *EdS* Chart. [10 pts]
- (c) Design the controller and report your k and ω_c on the attached EdS Chart.

[15 pts]

(d) Draw the final $L(j\omega)$ for a = 100 on the attached S Chart.

[15 pts]

Control even 2014/ ru. 1 session & 9. February 2015

a, see Eds Chart.

Template calculation : Tation and

September 1997	2		···		L-an	in A	-//
		30	50	70	100	-76	
W=10	ds	30	34	37-	42)	1-5/100
	11	-0.102	-0.063	-0.045	-0.032	L0	= 10) Tax Va . 3/
	db	33	35	28	40		
$\omega = 30$	71	-0.25	-1.12	-0.129	-0.093	Section of the sectio	
	dB	40	41	42,	43		

For the next, que Eds Chant.

1)

