Camera Distortion-aware 3D Human Pose Estimation in Video with Optimization-based Meta-Learning

Hanbyel Cho, Yoonshin Cho, Jaemyung Yu, Junmo Kim (ICCV 2021)

03.30.2022 전북대학교 학부생 김세희

Introduction

- Existing 3D human pose estimation algorithms trained on distortion-free datasets suffer performance drop when applied to new scenarios with a specific camera distortion.
- Propose a simple yet effective model for 3D human pose estimation in video that can quickly adapt to any distortion environment by utilizing MAML, a representative optimization-based meta-learning algorithm.

Human3.6M

Condition	MPJPE(↓)	P-MPJPE(↓)	PCKh@0.5(↑)
Undistorted	48.5	37.1	87.1
Distortion 1	94.4(+45.9)	65.6(+28.5)	57.7(-29.4)
Distortion 2	133.8(+85.3)	79.2(+42.1)	38.2(-48.9)

Background

• What is Human Pose Estimation?

: a way of identifying and classifying the joints in the human body.

Background

- Human Pose Estimation Applications
 - : Autonomous driving, Robotics, Game, Sports etc.

Background

Techniques of Human Pose Estimation

Background

· Approaches of single-person

Background

· Approaches of multi-person

Background

- What is Meta-Learning?
 - If you've learned 100 tasks already, can you figure out how to *learn* more efficiently?
 - Meta-learning = *learning to learn*

- Why is meta-Learning a good idea?
 - Deep learning algorithms require a huge number of data.
 - If we can meta-learn a learner, we can learn new tasks efficiently.

Background

Meta-Learning with supervised learning

Background

MAML (Model-Agnostic Meta-Learning)

Chelsea Finn, Pieter Abbeel, Sergey Levine: Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks (5679 quotes)

Figure 1. Diagram of our model-agnostic meta-learning algorithm (MAML), which optimizes for a representation θ that can quickly adapt to new tasks.

For each task
$$T_i$$

$$\theta'_i = \theta - \alpha \nabla_{\theta} \mathcal{L}_{T_i}(\theta, D_i)$$

Background

- Camera Distortion
 - There are two kinds of camera distortion.

Synthetic Distorted Task Generation

(a) Generating distorted 2D keypoints from predicted ones.

(b) Generating distorted 2D keypoints from 3D ground-truth.

Overall Framework

Figure 3: Overall framework of our methods. (a) We train a 2D-keypoint-conditioned 3D pose estimator that can quickly adapt to any distortions using only an undistorted large-scale dataset. Before the trained network can be used in practice, it must be adapted to a certain distortion. (b) and (c) represent adaptation method for *Scenario 1* and *Scenario 2*, respectively.

Algorithm

Algorithm 1: Training Phase Input: \mathcal{D} : a large-scale 3D human pose dataset Input: α , β : learning rate hyperparameters Output: Model parameters θ 1 Randomly initialize θ 2 while not done do 3 | Sample batch of tasks $\mathcal{T}_{rand,i} \sim p_{rand}(\mathcal{T})$ 4 | for all $\mathcal{T}_{rand,i}$ do 5 | Calculate loss by MPJPE: $\mathcal{L}_{\mathcal{T}_{rand,i}}(g_{\theta})$ Compute updated parameters: $\theta = \theta - \beta \nabla_{\theta} \mathcal{L}_{\mathcal{T}_{rand,i}}(g_{\theta})$

8 end

16

17 end

9 while not done do

end

```
Sample batch of tasks \mathcal{T}_{strat,i} \sim p_{strat}(\mathcal{T})

for all \mathcal{T}_{strat,i} do

Calculate loss by MPJPE: \mathcal{L}_{\mathcal{T}_{strat,i}}(g_{\theta})

Compute updated parameters:
\theta'_i = \theta - \alpha \nabla_{\theta} \mathcal{L}_{\mathcal{T}_{strat,i}}(g_{\theta})

end

Update \theta with respect to average test loss:
```

 $\theta \leftarrow \theta - \beta \nabla_{\theta} \sum_{\mathcal{T}_{rand,i} \sim p_{rand}(\mathcal{T})} \mathcal{L}_{\mathcal{T}_{rand,i}}(g_{\theta'_i})$

random distortion pretraining

Task-level training

Task-level testing

A k_1 of ith sample in the meta-batch is sampled as follow:

- $k_1, k_2, k_3 \sim u[-\lambda_1, \lambda_1]$: parameters related to radial distortion.
- p_1 , p_2 , $p_3 \sim u[-\lambda_2, \lambda_2]$: parameters related to tangential distortion.
- λ_1 , λ_2 : the maximum value of each distribution.

$$k_{1,i} \sim -\lambda_1 + 2 \cdot \lambda_1 \cdot u \left[\frac{\mathrm{i}-1}{N}, \frac{\mathrm{i}}{N} \right]$$

Perform only one gradient descent update when the parameters θ is adapted to a new task T_i . θ'_i are obtained by :

$$\theta_i' = \theta - \alpha \nabla_{\theta} \mathcal{L}_{T_i}(g\theta)$$

The mata-objective is expressed as follows:

$$\arg\min \sum_{T_i \sim p(T)} \mathcal{L}_{T_i}(g\theta_i')$$

$$= \arg\min \sum_{T_i \sim p(T)} \mathcal{L}_{T_i} \left(g\theta - \alpha \nabla_{\theta} \mathcal{L}_{T_i} (g\theta) \right)$$

For the stochastic gradient descent, model parameters θ are updated as follows :

$$\theta \leftarrow \theta - \beta \nabla_{\theta} \sum_{T_i \sim p(T)} \mathcal{L}_{T_i}(g\theta_i')$$

Evaluation Metrics

- MPJPE (mean per joint position error)
 - : the L2 distance between ground-truth 3D joints and predicted ones

MPJPE =
$$\frac{1}{T} \frac{1}{N} \sum_{t=1}^{T} \sum_{i=1}^{N} ||(J_i^{(t)} - J_{root}^{(t)}) - (\hat{J}_i^{(t)} - \hat{J}_{root}^{(t)})||_2$$

- P-MPJPE: calculates the error between the joints after alignment using Procrustes Analysis
- PCkh@0.5 : percentage of correct 3D joints with a threshold as 50% of the head segment length

Comparison with State-of-the-Art

(a) B+T (d_1) (b) P+T (d_2) (c) B+T (d_3) (d) P+T (d_4)

 The proposed method outperforms other methods regardless of the kinds of distortions and scenarios.

		Scenario 1			Scenario 2	
Method	MPJPE(↓)	P-MPJPE(↓)	PCKh@0.5(†)	MPJPE(↓)	P-MPJPE(↓)	PCKh@0.5(↑)
Martinez et al. [17] ICCV'17 Zhao et al. [36] CVPR'19	78.3 / 63.1 86.3 / 64.0	58.1 / 48.7 64.2 / 47.4	66.6 / 76.5 63.2 / 76.9	128.0 / 68.3 119.7 / 71.4	86.8 / 49.1 85.5 / 51.9	47.3 / 74.1 45.0 / 72.2
Pavllo <i>et al</i> . [21] CVPR'19 Chen <i>et al</i> . [4] TCSVT'21 Liu <i>et al</i> . [16] CVPR'20	79.9 / 65.0 89.4 / <u>62.7</u> 81.5 / 68.8	59.4 / 48.3 61.9 / <u>46.3</u> 60.9 / 51.0	67.3 / 76.7 59.2 / <u>77.8</u> 66.4 / 74.7	114.1 / 64.5 107.3 / 65.1 110.7 / 64.0	72.4 / <u>45.7</u> <u>71.0</u> / 46.3 77.5 / 46.5	47.9 / 76.6 49.0 / <u>77.3</u> 49.5 / 76.8
Ours	62.0 / 53.6	46.4 / 40.6	78.4 / 83.3	66.1 / 51.6	47.8 / 39.2	76.3 / 85.7

Table 2: Comparison of average performance on (heavy) / (moderate) with other state-of-the-art models. The top two rows [17, 36] are based on a single-frame and others [21, 4, 16], including our method, are based on a video with a frame length of 27. Best in bold, second-best underlined. More results can be seen in the supplementary material (Appendix A.3).

Comparison with State-of-the-Art

Figure 6: Qualitative results on heavily distorted videos of Human3.6M. The five columns from the leftmost are the result under the *Scenario 1* setting, while the rest columns are the result under the *Scenario2* setting. **Top row:** 3D reconstruction results on d_1 . **Bottom row:** 3D reconstruction results on d_2 . More results can be seen in Appendix A.4.

Ablation Studies

 Notice that each method provides a positive contribution under all metrics

	MPJPE(↓)	P-MPJPE(↓)	PCKh@0.5(↑)
base model [21]	84.2 / 79.6	62.8 / 59.7	64.8 / 66.9
+ MAML (with synthetic tasks)	73.5 / 67.5	55.6 / 51.7	72.0 / 74.5
+ stratified sampling	71.7 / 66.2	54.3 / 50.4	72.8 / 75.2
+ random distortion pretraining	67.2 / 61.9	51.0 / 47.0	75.7 / 78.2

Table 3: Effectiveness of each proposed method based on input frame length of 9 under *Scenario 1* setting. Each value denotes performance on (distortion d_1) / (distortion d_2).

Ablation Studies

 Notice that the former method shows better performance under all metrics and scenarios since there is less domain gap between training and testing.

Method	MPJPE(↓)	P-MPJPE(↓)	PCKh@0.5(↑)
Predicted 2D keypoints	62.0 / 53.6	46.4 / 40.6	78.4 / 83.3
Ground-truth 3D joints	64.7 / 56.1	48.2 / 42.0	77.0 / 82.0
Predicted 2D keypoints	66.1 / 51.6	47.8 / 39.2	76.3 / 85.7
Ground-truth 3D joints	71.3 / 55.6	51.9 / 42.6	72.8 / 83.5

Table 4: Comparison of average performance on (heavy) / (moderate) between the methods generating synthetic 2D keypoints. **Top rows:** *Scenario 1.* **Bottom rows:** *Scenario 2.*

Ablation Studies

- No additional computational cost is required compared to the base model when testing after adaptation to the test environment

Model	Parameters	\approx FLOPs	MPJPE	P-MPJPE	PCKh@0.5
Pavllo <i>et al</i> . [21] 27f	8.56M	17.11M	72.4	53.8	72.0
Ours 3f	0.16M	0.32M	75.0	56.1	69.6
Ours 9f	4.36M	8.71M	59.8	45.4	79.5
Ours 27f	8.56M	17.11M	57.6	43.4	80.9

Table 5: Performance and computational complexity of various models under *Scenario 1*. The reported performance is the average value for all kinds of distortions.

Performance Changes during Adaptation

 Demonstrate the superior potential of MAML to adapt to various distortion environments.

Thank you

AP	AP^M	AP^L
67.1	61.5	76.1
68.5	64.3	75.3
68.5	64.9	73.8
	AP 67.1 68.5 68.5	AP AP ^M 67.1 61.5 68.5 64.3 68.5 64.9

Table 5. Ablation study of HigherHRNet with different training image size on COCO2017 val dataset.