Differential Equations in Geophysical Fluid Dynamics

XIII. Wind-driven circulation: Stommel wind-driven circulation

Jang-Geun Choi

Center for Ocean Engineering University of New Hampshire

Apr, 2025

This seminar is supported by mathematics community EM (maintained by Prof. Gunhee Cho) and oceanography community COKOAA.

Recap

Stommel's wind-driven circulation problem in vorticity equation form is given by

$$\frac{-(\gamma/h)\nabla \times \vec{u}: \text{ Bottom stress curl}}{\beta \frac{\partial \psi}{\partial x}} = \frac{1}{\rho_0 h} \nabla \times \vec{\tau}^s - \frac{\gamma}{h} \left(\frac{\partial^2 \psi}{\partial x^2} + \frac{\partial^2 \psi}{\partial y^2} \right) \\
\frac{1}{\text{Wind stress curl}} \\
\beta \bar{v}: \text{ Planetary } \beta\text{-term}$$
(1)

where $\beta=\partial f/\partial y$ can be approximated to constant ($f\approx f_0$ if $y/R\ll 1$; f-plane) or linear polynomial ($f_0+\beta_0 y$ if y/R<1; β -plane).

Recap

Over the f-plane where $f \approx f_0$ so $\beta \approx 0$, the governing equation can be simplified to

$$0 = \frac{1}{\rho_0 h} \nabla \times \vec{\tau}^s - \frac{\gamma}{h} \left(\frac{\partial^2 \psi}{\partial x^2} + \frac{\partial^2 \psi}{\partial y^2} \right)$$
 (2)

that can be rewritten as $\nabla \times \vec{u} = (1/(\rho_0 \gamma))\nabla \times \vec{\tau}^s$ implying curl of ocean current is proportional to the wind stress curl (rotates in same direction).

Note that the momentum equation we used is

Recap

Over the β -plane where $f_0+\beta_0 y$, if length scale is large enough to ignore bottom frictional stress curl, the governing equation can be simplified to

$$\beta \frac{\partial \psi}{\partial x} = \frac{1}{\rho_0 h} \nabla \times \vec{\tau}^s - \frac{\gamma}{h} \left(\frac{\partial^2 \psi}{\partial x^2} + \frac{\partial^2 \psi}{\partial y^2} \right) \tag{4}$$

that is referred to as **Sverdrup balance** (Sverdrup, 1947). This is easy to solve and good enough "interior flow" but can consider only one boundary condition.

Governing equations

Stommel (1948) discussed

$$\frac{\gamma}{h} \left(\frac{\partial^2 \psi}{\partial x^2} + \frac{\partial^2 \psi}{\partial y^2} \right) + \beta \frac{\partial \psi}{\partial x} = \frac{1}{\rho_0 h} \nabla \times \vec{\tau}^s$$
 (5)

with simple forcing (wind stress fields), that idealized wind stress pattern, given by

$$\vec{\tau}^s = (\tau_x^s, \tau_y^s) = (-\tau_0 \cos(\pi y/L_y), 0).$$
 (6)

So, substituting (6) into (5) yields

$$\left| \frac{\gamma}{h} \left(\frac{\partial^2 \psi}{\partial x^2} + \frac{\partial^2 \psi}{\partial y^2} \right) + \beta \frac{\partial \psi}{\partial x} = -\frac{\tau_0 L_y}{\rho_0 \gamma \pi} \sin(\pi y / L_y) \right| \tag{7}$$

The boundary conditions are given by

$$|\psi|_{x=0} = 0, \quad \psi|_{x=L_x} = 0, \quad \psi|_{y=0} = 0, \quad \psi|_{y=L_y} = 0.$$
 (8)

Stommel's wind-driven circulation

Solution to (7) with boundary conditions (8) is given by

$$\psi = \frac{\tau_0 L_y}{\rho_0 \gamma \pi} \left(1 - \frac{(e^{k^- L_x} - 1)e^{k^+ x} + (1 - e^{k^+ L_x})e^{k^- x}}{e^{k^- L_x} - e^{k^+ L_x}} \right)$$
(9a)

$$k^{+} = \frac{-h\beta/\gamma + \sqrt{(h\beta/\gamma)^{2} + 4(\pi/L_{y})^{2}}}{2}$$
 (9b)

$$k^{-} = \frac{-h\beta/\gamma - \sqrt{(h\beta/\gamma)^2 + 4(\pi/L_y)^2}}{2}$$
 (9c)

Stommel's wind-driven circulation

Solution without β -term

$$\frac{\gamma}{h}\nabla^2\psi = \frac{1}{\rho_0 h}\nabla \times \vec{\tau}^s$$

Solution with β -term

$$\frac{\gamma}{h}\nabla^2\psi + \beta\frac{\partial\psi}{\partial x} = \frac{1}{\rho_0 h}\nabla\times\vec{\tau}^s$$

Consideration of the β -term tilts the stream function (and sea surface height) westward. This is referred to as " β -effect" yielding western boundary intensification.

Summary

- 1. Note that the governing equation of Stommel's wind-driven circulation problem is the "steady" advection-diffusion equation with forcing term.
- 2. The planetary β -term plays a role in advecting ψ toward the negative x-direction (westward).
- 3. Due to the β -term, the stream function (sea surface height) becomes asymmetric: steep along the narrow west coast and gentle in the other region. As a result, western boundary (geostrophic) currents are intensified.

References I

- Stommel, Henry (1948). "The westward intensification of wind-driven ocean currents". In: *Eos, Transactions American Geophysical Union* 29.2, pp. 202–206.
- Sverdrup, Harald Ulrich (1947). "Wind-driven currents in a baroclinic ocean; with application to the equatorial currents of the eastern Pacific". In: *Proceedings of the National Academy of Sciences* 33.11, pp. 318–326.