Mediation analysis with a binary outcome

Denote by Y an oucome, M a mediator, E an exposure, and C possible confounders (between Y and E, or Y and M, or E and M).

- Y(e, m) = Y(e, m, c) will be the counterfactual outcome, i.e. the outcome value had the exposure be set to e, the mediator to m, and the confounder set to c.
- M(e) = M(e, c) will be the counterfactual mediator, i.e. the mediator value had the exposure be set to e and the confounder set to c.

We define (all at a fixed confounder value c):

- the total effect as $Y(e, M(e)) Y(e^*, M(e^*))$
- the natural direct effect as $Y(e, M(e)) Y(e^*, M(e))$
- the indirect direct effect as $Y(e^*, M(e)) Y(e^*, M(e^*))$

1 Theory

We consider the following models:

logit (
$$\mathbb{P}[Y = 1|E, M, C]$$
) = $\beta_0 + \beta_1 E + \beta_2 M + \beta_3 C$
 $\mathbb{E}[M|E, C] = \alpha_0 + \alpha_1 E + \alpha_3 C$

Therefore the counterfactual probability can be expressed as:

$$Y(e, M(e^*), c) = \frac{1}{1 + \exp^{-\beta_0 - \beta_1 e - \beta_2 M(e^*) + \beta_3 c}}$$

$$= \frac{1}{1 + \exp^{-(\beta_0 + \beta_2 \alpha_0) - (\beta_1 e + \beta_2 \alpha_1 e^*) + (\beta_3 + \beta_2 \alpha_3) c}}$$

$$\log it \left(\mathbb{P} \left[Y(e, M(e^*), c) \right] \right) = (\beta_0 + \beta_2 \alpha_0) + (\beta_1 e + \beta_2 \alpha_1 e^*) + (\beta_3 + \beta_2 \alpha_3) c$$

So the odd for the total effect is:

$$OR^{TE} = \frac{\mathbb{P}[Y(e, M(e))] / \mathbb{P}[Y(e, M(e))]}{\mathbb{P}[Y(e^*, M(e^*))] / \mathbb{P}[Y(e^*, M(e^*))]} = \exp((\beta_1 + \beta_2 \alpha_1)(e - e^*))$$

for the natural direct effect:

$$OR^{NDE} = \frac{\mathbb{P}[Y(e, M(e))] / \mathbb{P}[Y(e, M(e))]}{\mathbb{P}[Y(e^*, M(e))] / \mathbb{P}[Y(e^*, M(e))]} = \exp(\beta_1(e - e^*))$$

for the natural indirect effect:

$$OR^{NIE} = \frac{\mathbb{P}[Y(e^*, M(e))] / \mathbb{P}[Y(e^*, M(e))]}{\mathbb{P}[Y(e^*, M(e^*))] / \mathbb{P}[Y(e^*, M(e^*))]} = \exp(\beta_2 \alpha_1 (e - e^*))$$

This matches formula in VanderWeele and Vansteelandt (2010)

Note that we can also express the total effect, natural direct effect, and natural indirect effect on the probability scale, e.g.:

$$\begin{split} & \mathbb{P}\left[Y(e, M(e), c) = 1\right] - \mathbb{P}\left[Y(e^*, M(e), c) = 1\right] \\ & = \frac{1}{1 + \exp^{-(\beta_0 + \beta_2 \alpha_0) - (\beta_1 e + \beta_2 \alpha_1 e) + (\beta_3 + \beta_2 \alpha_3)c}} - \frac{1}{1 + \exp^{-(\beta_0 + \beta_2 \alpha_0) - (\beta_1 e^* + \beta_2 \alpha_1 e) + (\beta_3 + \beta_2 \alpha_3)c}} \end{split}$$

which will be a function of the confounder value. To get a single estimate we could average it out over the confounder distribution in our population.

2 In •

```
library(medflex)
data(UPBdata)
head(UPBdata)
sum(is.na(UPBdata))
```

```
att attbin attcat
                              negaff initiator gender educ age UPB
1 1.0005617
                 1
                        M 0.8404610
                                        myself
                                                                 1
2 -0.7085889
                 0
                        L -1.2574650
                                                         M 42
                                           both
                                                    Μ
                                                                 0
                 0 L -1.2022564 both
1 M -0.3741277 ex-partner
3 -0.7085889
                                                    F
                                                         H 43
4 0.6061423
                1
                                                    M
                                                         H 52
                                                                 1
5 0.2117230
                 1
                        M 1.9446325 ex-partner
                                                         M 32
                                                                 1
             1
                        H -0.8157964 ex-partner
6 2.0523467
                                                    М
                                                         H 47
                                                                 0
[1] 0
```

Manually

```
e.lm <- glm(negaff ~ factor(attbin) + gender + educ + age, data = UPBdata)
e.logit <- glm(UPB ~ attbin + negaff + gender + educ + age, family =
   binomial("logit"), data = UPBdata)</pre>
```

```
exp(coef(e.logit)["attbin"])
exp(coef(e.logit)["negaff"]*coef(e.lm)["factor(attbin)1"])
```

```
attbin
1.550122
negaff
1.41916
   Using Medflex
expData <- neWeight(negaff \sim factor(attbin) + gender + educ + age, family
   = gaussian, data = UPBdata)
neMod1 <- neModel(UPB \sim attbin0 + attbin1 + gender + educ + age, family =
   binomial("logit"), expData = expData)
exp(cbind(estimate = coef(neMod1),confint(neMod1))[c("attbin01", "attbin11
   "),])
         estimate 95% LCL 95% UCL
attbin01 1.485757 0.946311 2.294548
attbin11 1.421865 1.188970 1.678737
e.lm <- glm(negaff \sim factor(attbin), data = UPBdata)
e.logit <- glm(UPB \sim attbin + negaff, family = binomial("logit"), data =
   UPBdata)
exp(coef(e.logit)["attbin"])
exp(coef(e.logit)["negaff"]*coef(e.lm)["factor(attbin)1"])
 attbin
1.541862
 negaff
1.430096
expData <- neWeight(negaff \sim factor(attbin), family = gaussian, data =
neMod1 \leftarrow neModel(UPB \sim attbin0 + attbin1, family = binomial("logit"),
   expData = expData)
exp(cbind(estimate = coef(neMod1),confint(neMod1))[c("attbin01", "attbin11
   "), ])
                                                                               0%
```

1%

= -		1%
 =	Ī	2%
 ==	Ī	2%
 ==	T	3%
 ==	i I	
l		4%
=== 		4%
=== 		5%
==== 	T	5%
 ====	I	6%
 ====	Ī	6%
 =====	1	7%
 =====	T	8%
 =====	ı	8%
l		
===== 	1	9%
====== 		9%
====== 	1	10%
 ======	I	11%
 =======	Ī	11%
 ======	Ī	12%
 =======	l l	12%
 	ı	13%
====== 		14%
=======	1	14%

1		
 ======== 	Ī	15%
 ======== 	Ī	15%
 ======== 	Ī	16%
 ========= 	I	16%
 ========= 	Ī	17%
 ========= 	I	18%
 ========== 	Ī	18%
 ========== 	Ī	19%
 ===================================	I	19%
 ===================================	Ī	20%
 ===================================	I	21%
 ===================================	I	21%
' ============= !	I	22%
 ===================================	I	22%
' ====================================	I	23%
' ============== !	I	24%
' ====================================	I	24%
' ====================================	I	25%
' ====================================	I	25%
 ===================================	I	26%
 ===================================	I	26%
 ===================================	I	27%
1		

	1	28%
 ===================================	T	28%
 ===================================	T	29%
 ===================================	T	29%
 ===================================	T	30%
 ===================================	I	31%
 ===================================	I	31%
 ===================================	I	32%
 ===================================	T	32%
 ===================================	T	33%
 ===================================	I	34%
 ===================================	T	34%
 ===================================	T	35%
 ===================================	I	35%
 ===================================	T	36%
 ===================================	T	36%
 ===================================	I	37%
 ===================================	I	38%
' ====================================	I	38%
ı ====================================	I	39%
ı ====================================	T	39%
 ===================================	I	40%
ı ====================================	I	41%

 ===================================	T	41%
 ===================================	I	42%
 ===================================	Ī	42%
 ===================================	Ī	43%
' ====================================	I	44%
' ====================================	I	44%
====================================	I	45%
====================================	I	45%
====================================	I	46%
====================================	I	46%
====================================	I	47%
====================================	I	48%
====================================	I	48%
====================================	I	49%
====================================	I	49%
====================================	I	50%
====================================	I	51%
====================================	I	51%
====================================	I	52%
====================================	I	52%
====================================	I	53%
' ====================================	I	54%

======================================	1	54%
 	I	55%
 ===================================	1	55%
ı ======= ı	1	56%
ı ======= ı	1	56%
' ======= 	1	57%
' ======= 	I	58%
' !	I	58%
' ======== 	I	59%
' ======== !	I	59%
' ======== 	I	60%
' ======== 	I	61%
' ======== 	1	61%
 	I	62%
 	I	62%
 	I	63%
 	1	64%
 	I	64%
' ========= 	1	65%
' ========= 	I	65%
' ====================================	I	66%
' 	1	66%
· 	ī	67%

	 ===================================	T	68%
	 ===================================	T	68%
	 ===================================	T	69%
	 ===================================	T	69%
	 ===================================	T	70%
	 ===================================	T	71%
	 ===================================	T	71%
	 ===================================	T	72%
	 ===================================	T	72%
	 ===================================	T	73%
	 ===================================	I	74%
	 ===================================	T	74%
	 ===================================	I	75%
	 ===================================	T	75%
	 ===================================	T	76%
	 ===================================	T	76%
	 ===================================	T	77%
	 ===================================	T	78%
	 ===================================	T	78%
	 ===================================	I	79%
	 ===================================	I	79%
	 ===================================	I	80%

	1	81%
 ===================================	I	81%
' 	I	82%
' ====================================	I	82%
' 	1	83%
====================================	I	84%
====================================	I	84%
====================================	I	85%
	I	85%
====================================	I	86%
====================================	1	86%
	I	87%
====================================	1	88%
====================================	I	88%
	1	89%
====================================	1	89%
	1	90%
	1	91%
	1	91%
====================================	I	92%
====================================	I	92%
====================================	I	93%
· 	ī	94%

```
94%
 |-----
                                          95%
                                          95%
                                          96%
                                          96%
                                          97%
                                          98%
                                          98%
                                          99%
                                          99%
 |-----|
 |==========| 100%>
attbin01 1.467847 0.9419685 2.253654
attbin11 1.437643 1.2003462 1.711461
expData <- neImpute(UPB ~ factor(attbin) + negaff + gender + educ + age,
```

```
expData <- neImpute(UPB ~ factor(attbin) + negaff + gender + educ + age,
    family = binomial("logit"), data = UPBdata)
neMod1 <- neModel(UPB ~ attbin0 + attbin1 + gender + educ + age, family =
    binomial("logit"), expData = expData, se = "robust")
exp(cbind(estimate = coef(neMod1),confint(neMod1))[c("attbin01", "attbin11"), ])</pre>
```

```
estimate 95% LCL 95% UCL attbin01 1.494111 0.9833185 2.270238 attbin11 1.405922 1.2006238 1.646326
```

3 References

VanderWeele, T. J. and Vansteelandt, S. (2010). Odds ratios for mediation analysis for a dichotomous outcome. *American journal of epidemiology*, 172(12):1339–1348.