НАЦІОНАЛЬНИЙ ТЕХНІЧНИЙ УНІВЕРСИТЕТ УКРАЇНИ «КИЇВСЬКИЙ ПОЛІТЕХНІЧНИЙ ІНСТИТУТ ІМЕНІ ІГОРЯ СІКОРСЬКОГО

Факультет інформатики та обчислювальної техніки Кафедра інформатики та програмної інженерії

Звіт з комп'ютерного практикуму №5 «Формалізація дискретно-подійних систем стохастичною мережею петрі.»

роботи з дисципліни: « Моделювання систем »

Студент: Мєшков Андрій Ігорович
Група: <u>III-15</u>
Викладач: асистент Дифучин А. Ю.

Завдання

5.1 Завдання до виконання

1. Розробити мережу Петрі для наступної задачі (20 балів):

Конвеєрна система складається з п'ятьох обслуговуючих пристроїв, розташованих уздовж стрічки конвеєра. Деталі надходять на опрацювання на перший пристрій із постійною швидкістю, рівної 4 одиниці за 1 хвилину. Тривалість обслуговування на кожному пристрої розподілена експоненціальним законом з математичним сподіванням 1 хвилина. Вільного місця перед кожним конвеєром немає, тому пристрій може зняти деталь із конвеєра, тільки якщо знаходиться в стані «вільний». Якщо перший пристрій вільний, то деталь обробляється на ньому. По закінченні обробляння деталь залишає систему. Якщо перший пристрій зайнятий у момент надходження деталі, деталь по конвеєру надходить до другого пристрою. Інтервал проходження деталі між пристроями дорівнює 1 хвилина. Якщо при прямуванні деталі по конвеєру всі пристрої були зайняті, вона повертається до першого пристрою з затримкою 5 хвилин.

Метою моделювання ϵ визначення статистичних характеристик часу перебування деталі в системі, завантаження обслуговуючих пристроїв і кількості зайнятих пристроїв.

2. Розробити мережу Петрі для наступної задачі (25 балів):

Експериментальна роботизована гнучка виробнича система має два верстати із числовим пультом керування, три роботи, пункт прибуття і склад оброблених деталей. Деталі прибувають на пункт прибуття кожні 40 секунд згідно з експоненціальним законом розподілу, захоплюються одним з вільних роботів і переміщуються ним до першого верстата, після чого робот звільняється. Після завершення обробки на першому верстаті деталь захоплюється одним з роботів і переміщується на другий верстат, а після обробки на другому верстаті — одним з роботів переміщується на склад оброблених деталей. Кожний з верстатів може одночасно обробляти до трьох деталей.

Час переміщення робота між пунктом прибуття та першим верстатом, першим і другим верстатом, другим верстатом та пунктом зберігання оброблених деталей складає відповідно 6, 7, і 5 секунд незалежно від того, холостий це хід, чи ні. Роботу потрібний час 8±1 секунд на захоплення або вивільнення деталей. Час обробки на першому верстаті розподілений за нормальним законом із середнім значення 60 секунд і стандартним відхиленням 10 секунд. Середній час обробки на другому верстаті дорівнює 100 секунд і має експоненціальний закон розподілу.

Метою моделювання є визначення найкращого (з точки зору підвищення

пропускної здатності гнучкої виробничої системи) способу закріплення роботів до операцій. Можливі варіанти закріплення:

- 1) по одному роботу на кожний з трьох шляхів переміщення деталей (пункт прибуття перший верстат, перший верстат другий верстат, другий верстат, склад);
- 2) кожний робот може використовуватися на кожному шляху переміщення деталей(при цьому повинен займатися найближчий з роботів).

3. Розробити мережу Петрі для наступної задачі (25 балів):

На маршруті приміського сполучення працюють два мікроавтобуси (A і B), кожний з яких має n місць. Мікроавтобус A користується більшою популярністю, ніж автобус B, оскільки водій мікроавтобуса A їздить акуратніше і швидше. Тому пасажир, який підійшов до зупинки, сідає в мікроавтобус B тільки у випадку, коли автобуса A немає. Мікроавтобус відправляється на маршрут, якщо всі місця в ньому зайняті. Пасажири підходять до зупинки через 0.5 ± 0.2 хвилин і , якщо немає мікроавтобусів, утворюють чергу. Якщо черга більша, ніж 30 осіб, то пасажир не стає у чергу і йде до іншого маршруту. Припускається, що всі пасажири їдуть до кінця маршруту. На проходження маршруту мікроавтобус A витрачає 20 ± 5 хвилин, а мікроавтобус B -30 ± 5 хвилин. Після того, як пасажири звільнили автобус (протягом часу 5 ± 1 хвилин), він їде у зворотному напрямку тим же чином.

Плата за проїзд складає 20 гривень. Авто підприємство стільки ж втрачає (недоотримує), якщо пасажир, прийшовши на зупинку, не стає у чергу і обирає інший маршрут.

Метою моделювання є визначення таких характеристик:

- час очікування пасажира у черзі;
- кількість місць n (не більше 25), при якому час очікування в черзі пасажира буде мінімальним;
- виручку автопідприємства за день від маршруту, якщо мікроавтобуси працюють 10 годин на добу.

4. Розробити мережу Петрі для наступної задачі (30 балів):

У супермаркеті планується ввести систему управління запасами холодильників. Час між надходженнями замовлень на холодильники має експоненціальний розподіл з математичним сподіванням 0,2 тижні. Якщо покупцю знадобився холодильник тоді, коли його в запасі немає, він у 80% випадків відправляється в інший найближчий магазин, представляючи тим самим продаж, що не відбувся для даного універмагу. У 20% таких випадків робиться повторне замовлення, і покупці чекають надходження наступної партії вантажу. Магазин використовує періодичну систему перегляду стана запасів, у якому запас проглядається кожні 4 тижні і приймається рішення про необхідність здійснення замовлення. Стратегія прийняття рішення складається в розміщенні замовлення, що доводить запас до контрольного рівня, що складає 72 холодильники. Поточний стан запасу визначається як наявний запас плюс

замовлені раніше приймачі і мінус невдоволений попит. Якщо поточний стан запасів менше або дорівнює 18 холодильникам (точка замовлення), здійснюється розміщення замовлення. Час доставки (час між розміщенням замовлення і його одержання) постійний і складає 3 тижні. Початкові умови: стан запасу - 72 холодильника, невдоволеного попиту немає.

Визначити середню кількість холодильників у запасі, середній час між продажами, що не здійснилися.

Хід роботи

Задача 1

Розробимо схему задачі

Розрахуємо показники

Перепишемо формули, використовуючи змінні:

1. Час перебування деталі в системі (Т):

$$T = \sum_{i=1}^{m} (\frac{L_i * t_i}{N})$$

Де:

 \circ L_i — завантаженість i-го переходу,

 \circ t_i — час проходження i-го переходу,

o *m* — кількість переходів,

 $\sim N$ — кількість оброблених деталей.

2. Завантаження обслуговуючих пристроїв (Р):

$$P = \sum_{j=1}^{k} \frac{L_j}{N}$$

Де:

- $\circ \ \ \, L_{j}$ завантаженість j-го пристрою, $\circ \ \ \, k$ кількість пристроїв,
- *N* кількість оброблених деталей.

3. Кількість зайнятих пристроїв (R):

$$R = \sum_{j=1}^{k} L_j$$

Де:

- L_j завантаженість j-го пристрою,
 k кількість пристроїв.

Задача 2

1 варіант:

2 варіант:

Очевидно, що 2й варіант ϵ кращим, оскільки роботи використовуються раціональніше.

Задача 3

1. Час очікування пасажира у черзі (Т):

$$T = \sum_{i=1}^{n} (\frac{t_i}{P})$$

Де:

- \circ t_i час роботи,
- o *n* кількість черг,
- Р кільксть пасажирів у черзі.

2. **Виручка** (R):

R = маркер доходу при симуляції за 600 хв.

Задача 4

1. Середня кількість холодильників у запасі (N):

N = середня значення у маркері холодильників

2. Середній час між продажами, що не здійснилися (Т):

$$T = \frac{T_{sim}}{N_{fail}}$$

Де:

- T_{sim} загальний час симуляції,
 N_{fail} кількість випадків, коли продажі не були здійснені через відсутність холодильників.

ВИСНОВКИ

У результаті виконання практичної роботи було розроблено 5 мереж Петрі для 4 задач.