MAT 1200: Introduction à l'algèbre linéaire

Saïd EL MORCHID

Département de Mathématiques et de Statistique

Chapitre 7: Les valeurs et les vecteurs propres

Références

Définitions-Exemples

Exemple

Définitions

L'équation caractéristique

Définitions

Polynômes caractéristiques de degré 2

Polynômes caractéristiques de degré 3

Exemple

Valeurs propres d'une matrice triangulaire

Valeur propre d'ordre $k \ge 2$

Diagonalisation d'une matrice

Diagonalisation des matrices réelles symétriques (livre sect. 7.1)

Algorithme pour diagonaliser une matrice réelle symétrique:

Exemples

Références:

- Notes de cours chapitre 7 page 128 .
- Livre: section 5.1., 5.2, 5.3 pages 286-316. Section 7.1.pages 423-429

Définitions-Exemples

Dans cette section, on est à la recherche des vecteurs qui sont transformés par une matrice A en un multiple scalaire d'eux mêmes.

Exemple:

Soient

$$A = \left(\begin{array}{cc} 3 & -2 \\ 1 & 0 \end{array}\right), \vec{u} = \left(\begin{array}{c} -1 \\ 1 \end{array}\right), \vec{v} = \left(\begin{array}{c} 2 \\ 1 \end{array}\right).$$

On a

$$A\vec{u} = \begin{pmatrix} -5 \\ -1 \end{pmatrix}, A\vec{v} = \begin{pmatrix} 4 \\ 2 \end{pmatrix} = 2\vec{v}.$$

Donc A étire le vecteur \vec{v} .

Définition

- a) Soit A une matrice carrée d'ordre n. Un vecteur propre de A est un vecteur non nul \vec{x} tel que $A\vec{x} = \alpha \vec{x}$, pour un certain scalaire α .
- b) Un scalaire α est appelé une valeur propre de A si l'équation $A\vec{x}=\alpha\vec{x}$ admet une solution non triviale \vec{x} ; cet \vec{x} est appelé le vecteur propre associé à α .

Soient

$$A = \left(\begin{array}{cc} 1 & 6 \\ 5 & 2 \end{array}\right), \vec{u} = \left(\begin{array}{c} 6 \\ -5 \end{array}\right), \vec{v} = \left(\begin{array}{c} 3 \\ -2 \end{array}\right).$$

- a) Est ce que \vec{u} et \vec{v} sont des vecteurs propres de A?
- b) Montrer que 7 est une valeur propre de A et chercher des vecteurs propres associés.

Remarque-Définition

a) α est une valeur propre de A si et seulement si l'équation

$$(A - \alpha I)x = 0 \qquad (*)$$

admet une solution non triviale.

b) L'espace solution de (*) n'est autre que $Nul(A - \alpha I) = Ker(A - \alpha I)$. Cet espace est appelé l'**espace propre** de A associé à la valeur propre α

Soit

$$A = \left(\begin{array}{ccc} 4 & -1 & 6 \\ 2 & 1 & 6 \\ 2 & -1 & 8 \end{array}\right)$$

Une valeur propre de A est 2. Déterminez une base de l'espace propre associé.

L'équation caractéristique

Définition

Dire que α est une valeur propre de A revient à dire que la matrice $(A-\alpha I)$ est non inversible. C'est à dire que

$$\det(A - \alpha I) = 0$$

cette équation est appelée l'équation caractéristique de la matrice A et $P(\alpha) = \det(A - \alpha I)$ est appelé le polynôme caractéristique de A.

Proposition

Un scalaire α est une valeur propre d'une matrice carrée A si et seulement si α est solution de l'équation caractéristique

$$\det(A - \alpha I) = 0.$$

Polynômes caractéristiques de degré 2 et 3

Proposition

Si
$$A = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix}$$
 alors son polynôme caractéristique est

$$P(\alpha) = \alpha^2 - (a_{11} + a_{22})\alpha + det(A).$$

Proposition

Si
$$A = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix}$$
 alors son polynôme caractéristique est

$$P(\alpha) = -[\alpha^3 - (a_{11} + a_{22} + a_{33})\alpha^2 + (M_{11} + M_{22} + M_{33})\alpha - \det(A)].$$

où M_{11} , M_{22} , M_{33} sont respectivement les mineurs des éléments a_{11} , a_{22} et a_{33} .

Déterminez l'équation caractéristique, puis les valeurs propres de la matrice

$$A = \left(\begin{array}{cccc} 5 & -2 & 6 & -1 \\ 0 & 3 & -8 & 0 \\ 0 & 0 & 5 & 4 \\ 0 & 0 & 0 & 1 \end{array}\right)$$

Valeurs propres d'une matrice triangulaire

Théorème:

Les valeurs propres d'une matrice triangulaire sont les éléments de sa diagonale principale.

Exemple:

On pose

$$A = \left(\begin{array}{ccc} 3 & 6 & -8 \\ 0 & 0 & 6 \\ 0 & 0 & 2 \end{array}\right), B = \left(\begin{array}{ccc} 4 & 0 & 0 \\ -2 & 1 & 0 \\ 5 & 3 & 4 \end{array}\right).$$

Déterminer les valeurs propres de A et de B.

Valeur propre d'ordre $k \ge 2$

Définition:

Soit A une matrice carrée de type $n \times n$. On dit que α est une valeur propre réelle de multiplicité $k \le n$ de A si α est une racine de multiplicité k de son polynôme caractéristique P(X). C'est à dire que

$$P(X) = (X - \alpha)^k Q(X)$$
 avec $Q(\alpha) \neq 0$.

Exemple:

Le polynôme caractéristique d'une matrice $A \in M_{6,6}$ est

$$P(\alpha) = \alpha^6 - 4\alpha^5 - 12\alpha^4.$$

Déterminez les valeurs propres et leur ordre de multiplicité.

Proposition:

Soit A une matrice carrée de type $n \times n$ et α une valeur propre réelle de multiplicité $k \le n$ de A, la dimension de l'espace propre associé à α est au moins 1 et au plus k.

Définition:

Soit A une matrice carrée de type $n \times n$ et α une valeur propre réelle de multiplicité $k \le n$ de A. Si la dimension de l'espace propre associé à α est < k, la valeur propre α est dite dégénérée.

Proposition:

Soient $A \in M_{n,n}$ et $\alpha_1, \alpha_2, \dots, \alpha_k$, k valeurs propres réelles distinctes de A. Si $\vec{u}_1, \vec{u}_2, \dots, \vec{u}_k$ sont des vecteurs propres associés séparément à chacune des α_i alors ils sont linéairement indépendants.

Proposition:

Si une matrice $A \in M_{n,n}$ possède n valeurs propres distinctes, l'ensemble des vecteurs propres associés forment une bas de \mathbb{R}^n .

On considère la matrice

$$A = \left(\begin{array}{ccc} 4 & 1 & -1 \\ 2 & 5 & -2 \\ 1 & 1 & 2 \end{array}\right)$$

- a) Donner La transformation linéaire $T: \mathbb{R}^3 \longrightarrow \mathbb{R}^3$ associée à la matrice A par rapport à la base canonique.
- b) Trouver le polynôme caractéristique de A.
- c) Trouver les valeurs propres de A.
- d) Trouver les vecteurs propres associés à chacune des valeurs propres.
- e) Est ce qu'ils forment une base de \mathbb{R}^3 ? Si oui donner la matrice D de T dans cette base.
- f) Déterminer une matrice P telle que $D = P^{-1}AP$.

Diagonalisation d'une matrice

Définition:

Soit A une matrice carrée de type $n \times n$. On dit qu'elle est diagonalisable s'il existe une matrice P inversible telle que la matrice

$$B = P^{-1}AP$$

soit diagonale.

Remarque:

Soit T la transformation linéaire associée à A dans la base canonique de \mathbb{R}^n . Dire que A est diagonalisable revient à trouver une base \mathcal{B} de \mathbb{R}^n telle que la matrice B de T dans cette base soit diagonale.

Proposition:

Soit A une matrice carrée de type $n \times n$. A est diagonalisable si et seulement si elle possède n vecteurs propres linéairement indépendants.

Remarque:

Soit A une matrice carrée de type $n \times n$. Si A est diagonalisable, on désigne par P la matrice dont les colonnes sont les vecteurs propres $\vec{v}_1, \vec{v}_2, \cdots, \vec{v}_n$ et B la matrice dont la diagonale est formée de valeurs propres correspondantes aux vecteurs propres dans le même ordre. Alors

$$B = P^{-1}AP \Leftrightarrow A = PBP^{-1}$$
.

Exemple:

Soit la matrice

$$A = \left(\begin{array}{cc} 4 & 2 \\ 3 & -1 \end{array}\right)$$

- a) Trouver le polynôme caractéristique de A.
- b) Trouver les valeurs propres de A.
- c) Trouver les vecteurs propres associés à chacune des valeurs propres.
- d) Est ce qu'ils forment une base de \mathbb{R}^2 ? Si oui donner la matrice D de T dans cette base.
- e) Déterminer une matrice P telle que $D = P^{-1}AP$.

Soit la matrice

$$B = \left(\begin{array}{cc} 5 & -1 \\ 1 & 3 \end{array}\right)$$

- a) Trouver le polynôme caractéristique de B.
- b) Trouver les valeurs propres de B.
- c) Trouver les vecteurs propres associés à chacune des valeurs propres.
- d) Est ce que B est diagonalisable?

Diagonalisation des matrices réelles symétriques (livre sect. 7.1)

Théorème:

Soit A une matrice réelle symétrique. Alors toutes les racines de son polynôme caractéristique sont réelles.

Théorème:

Soit A une matrice réelle symétrique. Si \vec{u}, \vec{v} sont deux vecteurs propres de A correspondant à deux valeurs propres distinctes α_1, α_2 alors \vec{u} et \vec{v} sont orthogonaux.

Théorème:

Soit A une matrice réelle symétrique. Alors A est diagonalisable et il existe une matrice orthogonale P telle que la matrice

$$D = P^{-1}AP = P^tAP$$

soit diagonale.

Algorithme pour diagonaliser une matrice réelle symétrique:

Algorithme

On se donne une matrice symétrique A à éléments réels. Pour avoir $D=P^tAP$ diagonale, on utilise l'algorithme suivant

- Étape 1: Écrire le polynôme caractéristique $P(\alpha)$ de A.
- Étape 2: Trouver les solutions de l'équation $P(\alpha) = 0$, qui sont les valeurs propres de A.
- Étape 3: Construire la matrice diagonale *D* des valeurs propres, répétées autant de fois que leur multiplicité.
- Étape 4: Déterminer une base orthogonale de l'espace propre de chacune des valeurs propres trouvées à l'étape 2.
- Étape 5: Normaliser les vecteurs de l'étape 4.
- Étape 6: Écrire la matrice orthogonale P dont les colonnes sont les vecteurs unitaires de l'étape 5.

Exemple:

Diagonaliser la matrice

$$A = \left(\begin{array}{cc} 2 & -2 \\ -2 & 5 \end{array}\right)$$

Exemple:

Soit la matrice

$$A = \left(\begin{array}{ccc} 11 & -8 & 4 \\ -8 & -1 & -2 \\ 4 & -2 & -4 \end{array}\right)$$

Le polynôme caractéristique de A est

$$P(\alpha) = (\alpha + 5)^2(\alpha - 16).$$

Diagonaliser la matrice A.