ΘΕΜΑ 2

- **2.1.** Μία θερμική μηχανή Carnot έχει συντελεστή απόδοσης $e_{\mathcal{C}}=0$,5 και η θερμή δεξαμενή της έχει θερμοκρασία 600 Κ. Εάν γνωρίζετε ότι το ποσό θερμότητας που απορροφά η μηχανή από τη θερμή δεξαμενή ανά κύκλο λειτουργίας της είναι 1500 J.
- 2.1.Α. να συμπληρώσετε τον παρακάτω πίνακα:

$T_{\mathcal{C}}(K)$	W(J)	$ Q_c (J)$	$Q_h(J)$
			1500

Μονάδες 6

2.1.Β. Να αιτιολογήσετε τις επιλογές σας στην συμπλήρωση του πίνακα.

Μονάδες 6

2.2. Ηλεκτρόνιο εισέρχεται τη χρονική στιγμή t=0 σε ομογενές ηλεκτρικό πεδίο έντασης \vec{E} , με αρχική ταχύτητα \vec{v}_0 ίδιας κατεύθυνσης με αυτήν των δυναμικών γραμμών. Θεωρήστε αμελητέες τις βαρυτικές αλληλεπιδράσεις.

Δίνονται: m η μάζα του ηλεκτρονίου και e το στοιχειώδες ηλεκτρικό φορτίο.

Η ταχύτητα του ηλεκτρονίου θα μηδενιστεί στιγμιαία τη χρονική στιγμή t, που είναι ίση με:

(
$$\alpha$$
) $\frac{m \cdot v_0}{E \cdot e}$

(a)
$$\frac{m \cdot v_0}{E \cdot e}$$
 , (b) $\frac{m \cdot v_0}{2 \cdot E \cdot e}$, (c) $\frac{2 \cdot m \cdot v_0}{E \cdot e}$

(
$$\gamma$$
) $\frac{2 \cdot m \cdot v_0}{E \cdot e}$

2.2.Α. Να επιλέξετε την ορθή πρόταση.

Μονάδες 4

2.2.Β. Να αιτιολογήσετε την επιλογή σας.

Μονάδες 9