

الاستعاريب

SEQUENCE LISTING

<110> Yuan, Chong-Sheng <120> METHODS AND COMPOSITIONS FOR ASSAYING HOMOCYSTEINE <130> 46699-20002.21 <140> 10/043,787 <141> 2002-01-10 <150> US 09/457,205 <151> 1999-12-06 <150> US 09/347,878 <151> 1999-07-06 <150> US 60/301,895 <151> 2001-06-29 <160> 188 <170> FastSEQ for Windows Version 4.0 <210> 1 <211> 432 <212> PRT <213> Homo sapiens <400> 1 Met Ser Asp Lys Leu Pro Tyr Lys Val Ala Asp Ile Gly Leu Ala Ala 10 Trp Gly Arg Lys Ala Leu Asp Ile Ala Glu Asn Glu Met Pro Gly Leu 25 Met Arg Met Arg Glu Arg Tyr Ser Ala Ser Lys Pro Leu Lys Gly Ala 40 Arg Ile Ala Gly Cys Leu His Met Thr Val Glu Thr Ala Val Leu Ile Glu Thr Leu Val Thr Leu Gly Ala Glu Val Gln Trp Ser Ser Cys Asn Ile Phe Ser Thr Gln Asn His Ala Ala Ala Ile Ala Lys Ala Gly 90 Ile Pro Val Tyr Ala Trp Lys Gly Glu Thr Asp Glu Glu Tyr Leu Trp 105 Cys Ile Glu Gln Thr Leu Tyr Phe Lys Asp Gly Pro Leu Asn Met Ile 120 Leu Asp Asp Gly Gly Asp Leu Thr Asn Leu Ile His Thr Lys Tyr Pro 135 140 Gln Leu Leu Pro Gly Ile Arg Gly Ile Ser Glu Glu Thr Thr Thr Gly 150 155 Val His Asn Leu Tyr Lys Met Met Ala Asn Gly Ile Leu Lys Val Pro 170 Ala Ile Asn Val Asn Asp Ser Val Thr Lys Ser Lys Phe Asp Asn Leu Tyr Gly Cys Arg Glu Ser Leu Ile Asp Gly Ile Lys Arg Ala Thr Asp

200

205

```
Val Met Ile Ala Gly Lys Val Ala Val Val Ala Gly Tyr Gly Asp Val
                        215
                                             220
Gly Lys Gly Cys Ala Gln Ala Leu Arg Gly Phe Gly Ala Arg Val Ile
                                        235
                    230
Ile Thr Glu Ile Asp Pro Ile Asn Ala Leu Gln Ala Ala Met Glu Gly
                                    250
                245
Tyr Glu Val Thr Thr Met Asp Glu Ala Cys Gln Glu Gly Asn Ile Phe
                                265
Val Thr Thr Gly Cys Ile Asp Ile Ile Leu Gly Arg His Phe Glu
                            280
Gln Met Lys Asp Asp Ala Ile Val Cys Asn Ile Gly His Phe Asp Val
Glu Ile Asp Val Lys Trp Leu Asn Glu Asn Ala Val Glu Lys Val Asn
                                                             320
                    310 .
                                         315
Ile Lys Pro Gln Val Asp Arg Tyr Arg Leu Lys Asn Gly Arg Arg Ile
                                    330
                325
Ile Leu Leu Ala Glu Gly Arg Leu Val Asn Leu Gly Cys Ala Met Gly
                                 345
His Pro Ser Phe Val Met Ser Asn Ser Phe Thr Asn Gln Val Met Ala
                            360
Gln Ile Glu Leu Trp Thr His Pro Asp Lys Tyr Pro Val Gly Val His
                        375
                                             380
Phe Leu Pro Lys Lys Leu Asp Glu Ala Val Ala Glu Ala His Leu Gly
                    390
                                         395
Lys Leu Asn Val Lys Leu Thr Lys Leu Thr Glu Lys Gln Ala Gln Tyr
                                     410
Leu Gly Met Ser Cys Asp Gly Pro Phe Lys Pro Asp His Tyr Arg Tyr
            420
                                 425
```

<210> 2 <211> 2211

<212> DNA

<213> Homo sapiens

<400> 2

ctgaggccca gccccttcg cccgtttcca tcacgagtgc cgccagcatg tctgacaaac 60 tgccctacaa agtcgccgac atcggcctgg ctgcctgggg acgcaaggcc ctggacattg 120 ctgagaacga gatgccgggc ctgatgcgta tgcgggagcg gtactcggcc tccaagccac 180 240 tgaagggege eegeateget ggetgeetge acatgacegt ggagaeggee gteetcattg agaccctcgt caccctgggt gctgaggtgc agtggtccag ctgcaacatc ttctccaccc 300 agaaccatgc ggcggctgcc attgccaagg ctggcattcc ggtgtatgcc tggaagggcg 360 420 aaacqqacqa qgaqtacctg tggtgcattg agcagaccct gtacttcaag gacgggcccc tcaacatgat tctggacgac gggggcgacc tcaccaacct catccacacc aaqtacccgc 480 540 agettetgee aggeateceqa ggeatetetg aggagaceae gaetggggte caeaacetet 600 acaaqatqat qqccaatqqq atcctcaaqq tgcctgccat caatqtcaat qactccgtca 660 ccaaqaqcaa qtttqacaac ctctatgqct gccgggagtc cctcataqat ggcatcaagc gggccacaga tgtgatgatt gccggcaagg tagcggtggt agcaggctat ggtgatgtgg 720 gcaagggctg tgcccaggcc ctgcggggtt tcggagcccg cgtcatcatc accgagattg 780 840 accecateaa egeactgeag getgeeatgg agggetatga ggtgaceaec atggatgagg cctqtcagga gggcaacatc tttgtcacca ccacaggctg tattgacatc atccttggcc 900 ggtaggtgcc agatgggggg tcccgggggag tgagggagga gggcagagtt gggacagctt 960 totqtccctg acaatctccc acggtcttgg gctgcctgac aggcactttg agcagatgaa 1020 1080 ggatgatgcc attgtgtgta acattggaca ctttgacgtg gagatcgatg tcaagtggct caacgagaac gccgtggaga aggtgaacat caagccgcag gtggaccggt atcggttgaa 1140 1200 gaatgggcgc cgcatcatcc tgctggccga gggtcggctg gtcaacctgg gttgtgccat 1260 gggccacccc agcttcgtga tgagtaactc cttcaccaac caggtgatgg cgcagatcga

```
1320
gctgtggacc catccagaca agtaccccgt tggggttcat ttcctgccca agaagctgga
                                                                      1380
tgaggcagtg gctgaagccc acctgggcaa gctgaatgtg aagttgacca agctaactga
qaagcaaqcc cagtacctgg gcatgtcctg tgatggcccc ttcaagccgg atcactaccg
                                                                      1440
ctactgagag ccaggtctgc gtttcaccct ccagctgctg tccttgccca ggccccacct
                                                                      1500
                                                                      1560
ctcctcccta agagctaatg gcaccaactt tgtgattggt ttgtcagtgt cccccatcga
                                                                      1620
ctctctqqqq ctqatcactt agtttttggc ctctgctgca gccgtcatac tgttccaaat
gtggcagcgg gaacagagta ccctcttcaa gccccggtca tgatggaggt cccagccaca
                                                                      1680
gggaaccatg ageteagtgg tettggaaca geteactaag teagteette ettageetgg
                                                                      1740
                                                                      1800
aagtcagtag tggagtcaca aagcccatgt gttttgccat ctaggccttc acctggtctg
tggacttata cctgtgtgct tggtttacag gtccagtggt tcttcagccc atgacagatg
                                                                      1860
                                                                      1920
aqaaqqqqct atattgaagg gcaaagagga actgttgttt gaattttcct gagagcctgg
cttagtgctg ggccttctct taaacctcat tacaatgagg ttagtacttt tagtccctgt
                                                                      1980
tttacagggg ttagaataga ctgttaaggg gcaactgaga aagaacagag aagtgacagc
                                                                      2040
taggggttga gaggggccag aaaaacatga atgcaggcag atttcgtgaa atctgccacc
                                                                      2100
actttataac cagatggttc ctttcacaac cctgggtcaa aaagagaata atttggccta
                                                                      2160
                                                                      2211
taatgttaaa agaaagcagg aaggtgggta aataaaaatc ttggtgcctg g
<210> 3
<211> 2226
<212> DNA
<213> Homo sapiens
<220>
<221> misc_feature
<222> (1)...(2226)
<223> n = A, T, C \text{ or } G
<400> 3
                                                                        60
gttgccagct tgcatctgcc atcatttgat gcccacctta cagagctgac agatgaccaa
                                                                       120
qcaaaatatc tgggactcaa caaaaatggg ccattcaaac ctaattatta cagatactaa
tggaccatac taccaaggac cagtccacct gaaccacaca ctctaaagaa atattttta
                                                                       180
                                                                       240
agataacttt tattttcttc ttactccttt cctcttgatt tttttcctat aatttcattc
                                                                       300
ttqttttttc atctcattat ccaagttctg cagaccacac aggaacttgc ttcatggctc
                                                                       360
tttaqatqaa atagaagttc agggttcctc actctagtca ctaaagaagg attttactct
                                                                       420
cccagcccag aaaggtgatt ctttctttac catttctggg gactttagtc ttaattaggt
accttattaa caggaaatgc taaggtacct tctctgtgga acaatctgca atgtctaaat
                                                                       480
                                                                       540
cqccttaaaa qaqcccattt cttagctgct gaaatcagtg ctctttcact tcttcagaga
agcagggatg gtacctaccc ggcaggtagg ttagatgtgg gtggtgcatg ttaatttccc
                                                                       600
ttagaagttc caagccctgt ttcctgcgta aaggtggtat gtccagttca gagatgtgta
                                                                       660
                                                                       720
taatgagcat ggcttgttaa gatcaggagg cccacttgga tttatagtat agcccttcct
                                                                       780
ccactccac cagacttgct catttttcga gtttttaact agactacact ctattgagtt
                                                                       840
taattttgtc ctctaggatt tatttctgtt gtccaaaaaa aaaanaaaag aaaagaaaaa
                                                                       900
ttaaggagaa tttttggtgt taatgctgag gaattgcttg agtggttagt tgttaccaat
                                                                       960
ttctcttttg aacctttgga gctaaggatg ctgagtctag agaaatgcta gtctcaagcc
ctgttaagtc cctctgtttc tagcccgtag ttcatagcat cagtgaactg gagccacaac
                                                                      1020
                                                                      1080
aqcaaattct atcagctqtg taccatacag cttgtgctga aggcgaattt cttgagccat
                                                                      1140
tactcagtat aaagcactqa qttctatctt taggatttat ctttaagagc aaatttctgg
                                                                      1200
tcagctgtgc ttctgcaacc taaaatattt aaagggaggt aggtgtgggc aggaggagga
                                                                      1260
atgataaatt gggccagggc aagaaaaatc tagcttcata taatttgtct gggactatac
                                                                      1320
accetatata atgttagttt tacagaagta atatgaettt tgattgetae ataccacaaa
                                                                      1380
gagtttatga actgagatca taaagggcaa ctgatgtgtg aagaaagtag tcagtacatc
ctggctcatg ctctgaaaga atatccagag aggctctctc aaagatcagg gagatgtatt
                                                                      1440
                                                                      1500
cccatgccat gcaccctgct tcccaqcatt tctgcatggt caagtgagct ttatgctcat
gagetttaag tatataatta teeaggattt taaateetea aettgtteta gettgtgate
                                                                      1560
cctcaaagtt gggtcatacg ttagtgctag atactagaaa ttttcacttt tccactgatc
                                                                      1620
                                                                      1680
agagagacag acattaaaaa caaaaataga agaaaggaaa gctttcaccc tgcagcttct
tagcagggaa caattgtctt gccaaaactt ttttcccttt tctctcccat tttctttac
                                                                      1740
```

ccaatcctt cttactctt gccagtgtga ccatgctttc ttctctgtag atgttaacag ttaaggccta ttttcctcgg gcacttaacc aaccaatcag aacaccacat ctgttagggg aggtaacctg gccaacagtg tatccatcac gttagccctg ctggagggaa gggacccaca ttcacctgcc ctctgacctg ccccttgatc ccatatctat taccgtgtcc ataggaataa taggtaaggg ctctgtctc gtcaagccat gtaacaaagg acactgttaa aaaaaaaaa aagtctggca tcagagggag catgtggaga gcaacttggg aagaacaagt tcattttgta ttgaatgatt tttaatgaat gcaatattaa tccttgcaga tgagcaataa tcattaaaat cgattaaaat grtaagrcct taaaaaaaaa aaanaaggnn gagaaggang gnngggggtg nngngg	1800 1860 1920 1980 2040 2100 2160 2220 2226
<210> 4 <211> 27 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 4 ggccccttcg agccggatca ctaccgc	27
<210> 5 <211> 27 <212> DNA <213> Artificial Sequence	
<220> <223> Oligonucleotide used for site-directed mutagenesis of human SAH hydrolases	
<400> 5 gacttcgtca ccgccagcaa gtttggg	27
<210> 6 <211> 27 <212> DNA <213> Artificial Sequence	·
<220> <223> Oligonucleotide used for site-directed mutagenesis of human SAH hydrolases	
<400> 6 cccaaacttg ctggcggtga cgaagtc	27
<210> 7 <211> 27 <212> DNA <213> Artificial Sequence	
<220> <223> Oligonucleotide used for site-directed mutagenesis of human SAH hydrolases	
<400> 7 aacattggac actctgacgt ggagatc	27

<210><211><212>	27 DNA	
<213>	Artificial Sequence	
<220> <223>	Oligonucleotide used for site-directed mutagenesis of human SAH hydrolases	
<400> gatcto	8 ccacg tcagagtgtc caatgtt	27
<210><211><211><212><213>	27	
<220> <223>	Oligonucleotide used for site-directed mutagenesis of human SAH hydrolases	
<400> tgtaac	9 cattg gagactttga cgtggag	27
<210><211><212><213>	27	
<220> <223>	Oligonucleotide used for site-directed mutagenesis of human SAH hydrolases	
<400> ctccac	10 cgtca aagtctccaa tgttaca	27
<210><211><212><213>	27	
<220> <223>	Oligonucleotide used for site-directed mutagenesis of human SAH hydrolases	
<400> tgtgc	11 catgg getececcag ettegtg	27
<210><211><211><212><213>	27	
<220> <223>	Oligonucleotide used for site-directed mutagenesis	

<400> 12 cacgaagctg ggggagccca t	ggcaca	2	27
<210> 13 <211> 27 <212> DNA <213> Artificial Sequen	ce		
<220> <223> Oligonucleotide u of human SAH hydr		l mutagenesis	
<400> 13 ctggccgagg gtgcgctggt c	aacctg	2	27
<210> 14 <211> 27 <212> DNA <213> Artificial Sequen	ce		
<220> <223> Oligonucleotide u of human SAH hydr		l mutagenesis	
<400> 14 caggttgacc agcgcaccct c	ggccag ,	2	27
<210> 15 <211> 27 <212> DNA <213> Artificial Sequen	ce		
<220> <223> Oligonucleotide u of human SAH hydr		l mutagenesis	
<400> 15 aagagcaagt ttgccaacct c	tatggc	2	27
<210> 16 <211> 27 <212> DNA <213> Artificial Sequen	ce		
<220> <223> Oligonucleotide u of human SAH hydr		l mutagenesis	
<400> 16 gccatagagg ttggcaaact t	gctctt	:	27
<210> 17 <211> 27 <212> DNA <213> Artificial Sequen	ce	•	
<220>			

<223>	Oligonucleotide used for site-directed mutagenesis of human SAH hydrolases	
<400>	17 caaca tegeeteeae eeaggae	27
<210>		
<211>		
<212>	DNA ,	
<213>	Artificial Sequence	
<220>		
<223>	Oligonucleotide used for site-directed mutagenesis of human SAH hydrolases	
<400>	18	
gtcctg	gggtg gaggcgatgt tgcagct	27
<210>	19	
<211>	27	
<212>		
<213>	Artificial Sequence	
<220>		
<223>	Oligonucleotide used for site-directed mutagenesis of human SAH hydrolases	
<400>	19	
gccato	caatg tcgacgactc cgtcacc	27
<210>	20	
<211>	•	
<212>		
<213>	Artificial Sequence	
<220>		
<223>	Oligonucleotide used for site-directed mutagenesis of human SAH hydrolases	
<400>	20	
ggtgad	eggag tegtegaeat tgatgge	27
<210>	21	
<211>	27	
<212>		
<213>	Artificial Sequence	
<220>		
<223>	Oligonucleotide used for site-directed mutagenesis of human SAH hydrolases	
<400>	21	
ccggat	tcact acgcctactg agaattc	27
<210>	22	•
<211>		
<212>	DNA	

<213>	Artificial Sequence	
<220> <223>	Oligonucleotide used for site-directed mutagenesis of human SAH hydrolases	
<400> gaatto	22 ctcag taggegtagt gateegg	27
<210><211><212><213>	27	
<220> <223>	Oligonucleotide used for site-directed mutagenesis of human SAH hydrolases	
<400> gatgg	23 cccct tccgcccgga tcactac	27
<210><211><212><213>	27	
<220> <223>	Oligonucleotide used for site-directed mutagenesis of human SAH hydrolases	
<400> gtagt	24 gatcc gggcggaagc catcaca	27
<210><211><211><212><213>	27	
<220> <223>	Oligonucleotide used for site-directed mutagenesis of human SAH hydrolases	
<400> aacct	25 ctatg gctcccggga gtccctc	27
<210><211><212><212><213>	27	
<220> <223>	Oligonucleotide used for site-directed mutagenesis of human SAH hydrolases	
<400>	26 actor caggagorat agagatt	27

<210>	27	
<211>	27	
<212>	DNA	
<213×	Artificial Sequence	
12200		
-2205	·	
<220>	and the state of t	
<223>	Oligonucleotide used for site-directed mutagenesis	
	of human SAH hydrolases	
. *		
<400>	27	
		27
gaccac		
010		
<210>		
<211>	27	
<212>	DNA	
<213>	Artificiaal sequence	
<220>		
	Oligonucleotide used for site-directed mutagenesis	
(443)		
	of human SAH hydrolases	
<400>	28	
ctcgaa	attct catcagcggt agtgatc	27
<210>	29	
<211>		
<212>		
<213>	Artificial Sequence	
<220>		
	Oligonucleotide used for site-directed mutagenesis	
(223)		
	of human SAH hydrolases	
<400>		
ggcato	ctctg aggcgaccac gactggg	27
<210>	3.0	
<211>		
<212>		
<213>	Artificial Sequence	
<220>	·	
<223>	Oligonucleotide used for site-directed mutagenesis	
	of human SAH hydrolases	
	or mailer bar nyarorabeb	
400	20	
<400>		
cccagt	togtg gtogootoag agatgoo	27
<210>	31	
<211>		
<211>		
<213>	Artificial Sequence	
	·	
<220>		
<223>	Oligonucleotide used for site-directed mutagenesis	
	of human SAH hydrolases	

<400> ggcato		27
<210><211><211>	27	
	Artificial Sequence	
<220> <223>	Oligonucleotide used for site-directed mutagenesis of human SAH hydrolases	
<400>		
cccagt	cegtg gtgteeteag agatgee	27
<210><211><211><212><213>	36	
<220> <223>	Oligonucleotide used for site-directed mutagenesis of human SAH hydrolases	
<400>		2.0
ctcaac	catga ttctggacaa gggggggac ctcacc	36
<210><211><212><212><213>	36	
<220>		
	Oligonucleotide used for site-directed mutagenesis of human SAH hydrolases	
<400>		
ggtgag	ggtcg cccccttgt ccagaatcat gttgag	36
<210><211><211><212><213>	36	
<220> <223>	Oligonucleotide used for site-directed mutagenesis of human SAH hydrolases	
<400> ctcaac	35 catga ttctggacaa cgggggcgac ctcacc	36
<210><211><211><212><213>	36	
-220		

\ 2237	of human SAH hydrolases	
<400>	36 ggtcg ccccgttgt ccagaatcat gttgag	36
55-5		
<210>		
<211><212>		
	Artificial Sequence	
\Z1J /	Altifetat bequence	
<220>		
<223>	Oligonucleotide used for site-directed mutagenesis of human SAH hydrolases	
<400>	37	
	egtca cegegageaa gtttgae	27
_		
<210>		
<211>		
<212>		
<213>	Artificial Sequence	
<220>		
<223>	Oligonucleotide used for site-directed mutagenesis of human SAH hydrolases	
<400>	38	
gtcaaa	acttg ctcgcggtga cggagtc	27
<210>	3.0	
<211>		
<212>		
	Artificial Sequence	
<220>		
<223>	Oligonucleotide used for site-directed mutagenesis of human SAH hydrolases	
<400>	39	
	cgtca ccgacagcaa gtttgac	27
- ,		
<210>		
<211>		
<212>	Artificial Sequence	
(213)	Arcificial Sequence	
<220>		
<223>	Oligonucleotide used for site-directed mutagenesis of human SAH hydrolases	
<400>	40	
	acttg ctgtcggtga cggagtc	27
0.5.0		
<210><211>		
<211>		

<213> Artificial Sequence	
<220> <223> Oligonucleotide used for site-directed mutagenesis of human SAH hydrolases	
<400> 41 gctggctgcc tgcccatgac cgtggagacg	30
<210> 42 <211> 30 <212> DNA <213> Artificial Sequence	
<220> <223> Oligonucleotide used for site-directed mutagenesis of human SAH hydrolases	
<400> 42 cgtctccacg gtcatgggca ggcagccagc	30
<210> 43 <211> 30 <212> DNA <213> Artificial Sequence	
<220> <223> Oligonucleotide used for site-directed mutagenesis of human SAH hydrolases	
<400> 43 ctgctggccg agggtgcgct ggtcaacctg	30
<210> 44 <211> 30 <212> DNA <213> Artificial Sequence	
<220> <223> Oligonucleotide used for site-directed mutagenesis of human SAH hydrolases	
<400> 44 caggttgacc agcgcaccct cggccagcag	30
<210> 45 <211> 39 <212> DNA <213> Artificial Sequence	
<220> <223> Oligonucleotide used for site-directed mutagenesis of human SAH hydrolases	
<400> 45 gtgtgtaaca ttggacactt tgaggtggag atcgatgtc	39

<210><211><212><213>	39	
<220> <223>	Oligonucleotide used for site-directed mutagenesis of human SAH hydrolases	
<400> gacate	46 cgatc tccacctcaa agtgtccaat gttacacac	39
<210><211><212><213>	33 ;	
<220> <223>	Oligonucleotide used for site-directed mutagenesis of human SAH hydrolases	
<400> gtgtg	47 taaca ttggacacat tgacgtggag atc	33
<210><211><212><212><213>	33	
<220> <223>	Oligonucleotide used for site-directed mutagenesis of human SAH hydrolases	
<400> gatct	48 ccacg tcaatgtgtc caatgttaca cac	33
<210><211><212><212><213>	33	
<220> <223>	Oligonucleotide used for site-directed mutagenesis of human SAH hydrolases	
<400> gccga	49 gggtc ggggggtcaa cctgggttgt gcc	33
<210><211><212><212><213>	33	
<220> <223>	Oligonucleotide used for site-directed mutagenesis of human SAH hydrolases	

<pre><400> 50 ggcacaaccc aggttgaccc cccgaccctc ggc</pre>	33
<210> 51 <211> 36 <212> DNA <213> Artificial Sequence	
<220> <223> Oligonucleotide used for site-directed mutagenesis of human SAH hydrolases	
<400> 51 cagtggtcca gctgcaacat ctcctccacc caggac	36
<210> 52 <211> 36 <212> DNA <213> Artificial Sequence	
<220> <223> Oligonucleotide used for site-directed mutagenesis of human SAH hydrolases	
<400> 52 gtcctgggtg gaggagatgt tgcagctgga ccactg	36
<210> 53 <211> 30 <212> DNA <213> Artificial Sequence	
<220> <223> Oligonucleotide used for site-directed mutagenesis of human SAH hydrolases	
<400> 53 gaggagacca cgtccggggt ccacaacctc	30
<210> 54 <211> 30 <212> DNA <213> Artificial Sequence	
<220> <223> Oligonucleotide used for site-directed mutagenesis of human SAH hydrolases	
<400> 54 gaggttgtgg accceggacg tggtctcctc	30
<210> 55 <211> 27 <212> DNA <213> Artificial Sequence	
-220 5	

<223> Oligonucleotide used for site-directed mutagenesis of human SAH hydrolases	
<400> 55 ggtcggctgg tcggcctggg ttgtgcc	27
<210> 56 <211> 27 <212> DNA <213> Artificial Sequence	
<220> <223> Oligonucleotide used for site-directed mutagenesis of human SAH hydrolases	
<400> 56 ggcacaaccc aggccgacca gccgacc	27
<210> 57 <211> 27 <212> DNA <213> Artificial Sequence	
<220> <223> Oligonucleotide used for site-directed mutagenesis of human SAH hydrolases	١
<400> 57 ggtcggctgg tcgacctggg ttgtgcc	27
<210> 58 <211> 27 <212> DNA <213> Artificial Sequence	
<220> <223> Oligonucleotide used for site-directed mutagenesis of human SAH hydrolases	
<400> 58 ggcacaaccc aggtcgacca gccgacc	27
<210> 59 <211> 33 <212> DNA <213> Artificial Sequence	
<220> <223> Oligonucleotide used for site-directed mutagenesis of human SAH hydrolases	
<400> 59 gtgcagtggt ccagcgccaa catcttctcc acc	33
<210> 60 <211> 33 <212> DNA	

<213> Artificial Sequence	
<220> <223> Oligonucleotide used for site-directed mutagenesis of human SAH hydrolases	
<400> 60 ggtggagaag atgttggcgc tggaccactg cac	33
<210> 61 <211> 33 <212> DNA <213> Artificial Sequence	
<220> <223> Oligonucleotide used for site-directed mutagenesis of human SAH hydrolases	
<400> 61 gtgcagtggt ccagcggcaa catcttctcc acc	33
<210> 62 <211> 33 <212> DNA <213> Artificial Sequence	
<220> <223> Oligonucleotide used for site-directed mutagenesis of human SAH hydrolases	
<400> 62 ggtggagaag atgttgccgc tggaccactg cac	33
<210> 63 <211> 30 <212> DNA <213> Artificial Sequence	
<220> <223> Oligonucleotide used for site-directed mutagenesis of human SAH hydrolases	
<400> 63 gtgtgtaaca ttggagcctt tgacgtggag	30
<210> 64 <211> 30 <212> DNA <213> Artificial Sequence	
<220> <223> Oligonucleotide used for site-directed mutagenesis of human SAH hydrolases	
<400> 64 ctccacqtca aaggctccaa tqttacacac	30

```
<210> 65
<211> 39
<212> DNA
<213> Artificial Sequence
<223> Oligonucleotide used for site-directed mutagenesis
      of human SAH hydrolases
<400> 65
                                                                         39
gtgtgtaaca ttggacactt tgccgtggag atcgatgtc
<210> 66
<211> 39
<212> DNA
<213> Artificial Sequence
<220>
<223> Oligonucleotide used for site-directed mutagenesis
      of human SAH hydrolases
<400> 66
gacatcgatc tccacggcaa agtgtccaat gttacacac
                                                                         39
<210> 67
<211> 33
<212> DNA
<213> Artificial Sequence
<223> Oligonucleotide used for site-directed mutagenesis
      of human SAH hydrolases
<400> 67
atctctgagg agacctatac tggggtccac aac
                                                                         33
<210> 68
<211> 33
<212> DNA
<213> Artificial Sequence
<220>
<223> Oligonucleotide used for site-directed mutagenesis
      of human SAH hydrolases
<400> 68
                                                                         33
qttgtggacc ccagtatagg tctcctcaga gat
<210> 69
<211> 33 '
<212> DNA
<213> Artificial Sequence ·
<223> Oligonucleotide used for site-directed mutagenesis
      of human SAH hydrolases
```

<400> atctct	69 Egagg agaccacgta tggggtccac aac	33
<210><211><211><212><213>	33	
<220> <223>	Oligonucleotide used for site-directed mutagenesis of human SAH hydrolases	
<400> gttgtg	70 ggacc ccatacgtgg tetcctcaga gat	33
<210><211><211><212><213>	30	
<220> <223>	Oligonucleotide used for site-directed mutagenesis of human SAH hydrolases	
<400> ggtcgg	71 gctgg tcaactttgg ttgtgccatg	30
<210><211><212><213>	30	
<220> <223>	Oligonucleotide used for site-directed mutagenesis of human SAH hydrolases	•
<400> catgg	72 cacaa ccaaagttga ccagccgacc	30
<210><211><212><212><213>	30	
<220> <223>	Oligonucleotide used for site-directed mutagenesis of human SAH hydrolases	
<400> atgcg	73 tatgc gggaggaata ctcggcctcc	30
<210><211><211><212><213>	30	
<220>		

<223>	of human SAH hydrolases	
<400> ggaggo	74 ccgag tattcctccc gcatacgcat	30
<210><211><212><212><213>	30	
<220> <223>	Oligonucleotide used for site-directed mutagenesis of human SAH hydrolases	
<400> gcccg	75 categ etggetetet geacatgace	30
<210><211><212><212><213>	30	
<220> <223>	Oligonucleotide used for site-directed mutagenesis of human SAH hydrolases	
<400> ggtcat	76 tgtgc agagagccag cgatgcgggc	30
<210><211><212><213>	30	
<220> <223>	Oligonucleotide used for site-directed mutagenesis of human SAH hydrolases	
<400> ggctg	77 cctgc acatgggggt ggagacggcc	30
<210><211><212><212><213>	30	
<220> <223>	Oligonucleotide used for site-directed mutagenesis of human SAH hydrolases	
<400> ggccg	78 tetee acceccatgt geaggeagee	30
<210><211><211>	30	

<213> Artificial Sequence	
<220> <223> Oligonucleotide used for site-directed mutagenesis of human SAH hydrolases	
<400> 79 ctgcacatga ccgtggatac ggccgtcctc	30
<210> 80 <211> 30 <212> DNA <213> Artificial Sequence	
<220> <223> Oligonucleotide used for site-directed mutagenesis of human SAH hydrolases	
<400> 80 gaggacggcc gtatccacgg tcatgtgcag	30
<210> 81 <211> 30 <212> DNA <213> Artificial Sequence	
<220> <223> Oligonucleotide used for site-directed mutagenesis of human SAH hydrolases	
<400> 81 ggctgcctgc acatgtctgt ggagacggcc	30
<210> 82 <211> 30 <212> DNA <213> Artificial Sequence	
<220> <223> Oligonucleotide used for site-directed mutagenesis of human SAH hydrolases	
<400> 82 ggccgtctcc acagacatgt gcaggcagcc	30
<210> 83 <211> 30 <212> DNA <213> Artificial Sequence	
<220> <223> Oligonucleotide used for site-directed mutagenesis of human SAH hydrolases	
<400> 83	30

<210><211><212><213>	30	
<220>	Oligonucleotide used for site-directed mutagenesis of human SAH hydrolases	
<400> catgg	84 cacaa ccatagttga ccagccgacc	30
<210><211><212><213>	30	
<220> <223>	Oligonucleotide used for site-directed mutagenesis of human SAH hydrolases	
<400> ggtcg	85 gctgg tcaacattgg ttgtgccatg	30
<210><211><212><212><213>	30	
<220> <223>	Oligonucleotide used for site-directed mutagenesis of human SAH hydrolases	
<400> catgg	86 cacáa ccaatgttga ccagccgacc	30
<210><211><212><213>	30	
<220> <223>	Oligonucleotide used for site-directed mutagenesis of human SAH hydrolases	
<400> tgcaa	87 catct teggtaceca ggaceatgeg	30
<210><211><211><212><213>	30	
<220> <223>	Oligonucleotide used for site-directed mutagenesis	

tgcaacatct tcggtaccca ggaccatgcg	30
<210> 89 <211> 30 <212> DNA <213> Artificial Sequence	
<220> <223> Oligonucleotide used for site-directed mutagenesis of human SAH hydrolases	
<400> 89 gcccgcatcg ctggctgcgg tcacatgacc	30
<210> 90 <211> 30 <212> DNA <213> Artificial Sequence	
<220> <223> Oligonucleotide used for site-directed mutagenesis of human SAH hydrolases	
<400> 90 ggtcatgtga ccgcagccag cgatgcgggc	30
<210> 91 <211> 30 <212> DNA <213> Artificial Sequence	
<220> <223> Oligonucleotide used for site-directed mutagenesis of human SAH hydrolases	
<400> 91 ggcattccgg tgactgcctg gaagggcgaa	30
<210> 92 <211> 30 <212> DNA <213> Artificial Sequence	
<220> <223> Oligonucleotide used for site-directed mutagenesis of human SAH hydrolases	
<400> 92 ttcgcccttc caggcagtca ccggaatgcc	30
<210> 93 <211> 30 <212> DNA <213> Artificial Sequence	
<220>	

of human SAH hydrolases	
<400> 93 accetgtact tegetgaegg geceetcaae	30
<210> 94 <211> 30 <212> DNA <213> Artificial Sequence	
<220> <223> Oligonucleotide used for site-directed mutagenesis of human SAH hydrolases	
<400> 94 gttgaggggc ccgtcagcga agtacagggt	30
<210> 95 <211> 30 <212> DNA <213> Artificial Sequence	
<220> <223> Oligonucleotide used for site-directed mutagenesis of human SAH hydrolases	
<400> 95 agcaagtttg acgctctcta tggctgccgg	30
<210> 96 <211> 30 <212> DNA <213> Artificial Sequence	
<220> <223> Oligonucleotide used for site-directed mutagenesis of human SAH hydrolases	
<400> 96 ccggcagcca tagagagcgt caaacttgct	30
<210> 97 <211> 30 <212> DNA <213> Artificial Sequence	
<220> <223> Oligonucleotide used for site-directed mutagenesis of human SAH hydrolases	
<400> 97 ctgggttgtg ccgctggcca ccccagcttc	30
<210> 98 <211> 30 <212> DNA	

<213> Artificial Sequence	
<220> <223> Oligonucleotide used for site-directed mutagenesis of human SAH hydrolases	
<400> 98 gaagctgggg tggccagcgg cacaacccag	30
<210> 99 <211> 30 <212> DNA <213> Artificial Sequence	
<220> <223> Oligonucleotide used for site-directed mutagenesis of human SAH hydrolases	
<400> 99 ctgggttgtg ccatgggccg tcccagcttc	30
<210> 100 <211> 30 <212> DNA <213> Artificial Sequence	
<220> <223> Oligonucleotide used for site-directed mutagenesis of human SAH hydrolases	
<400> 100 gaagctggga cggcccatgg cacaacccag	30
<210> 101 <211> 30 <212> DNA <213> Artificial Sequence	
<220> <223> Oligonucleotide used for site-directed mutagenesis of human SAH hydrolases	
<400> 101 ttcgtgatga gtaactccag taccaaccag	30
<210> 102 <211> 30 <212> DNA <213> Artificial Sequence	
<220> <223> Oligonucleotide used for site-directed mutagenesis of human SAH hydrolases	
<400> 102	3.0

<210> 103 <211> 30 <212> DNA <213> Artificial Sequence	
<220> <223> Oligonucleotide used for site-directed mutagenesis of human SAH hydrolases	
<400> 103 atgattctgg acgaaggggg cgacctcacc	30
<210> 104 <211> 30 <212> DNA <213> Artificial Sequence	
<220> <223> Oligonucleotide used for site-directed mutagenesis of human SAH hydrolases	
<400> 104 ggtgaggtcg ccccttcgt ccagaatcat	. 30
<210> 105 <211> 30 <212> DNA <213> Artificial Sequence	
<220> <223> Oligonucleotide used for site-directed mutagenesis of human SAH hydrolases	
<400> 105 atctctgagg agggtacgac tggggtccac	30
<210> 106 <211> 30 <212> DNA <213> Artificial Sequence	
<220> <223> Oligonucleotide used for site-directed mutagenesis of human SAH hydrolases	
<400> 106 gtggacccca gtcgtaccct cctcagagat	30
<210> 107 <211> 30 <212> DNA <213> Artificial Sequence	
<220> <223> Oligonucleotide used for site-directed mutagenesis of human SAH hydrolases	

<pre><400> 107 tggtccagct gcggtatctt ctccacccag</pre>	30
<210> 108 <211> 30 <212> DNA <213> Artificial Sequence	
<220> <223> Oligonucleotide used for site-directed mutagenesis of human SAH hydrolases	
<400> 108 ctgggtggag aagataccgc agctggacca	30
<210> 109 <211> 30 <212> DNA <213> Artificial Sequence	
<220> <223> Oligonucleotide used for site-directed mutagenesis of human SAH hydrolases	
<400> 109 atgattctgg acgacggggg cgaactcacc	30
<210> 110 <211> 30 <212> DNA <213> Artificial Sequence	
<220> <223> Oligonucleotide used for site-directed mutagenesis of human SAH hydrolases	
<400> 110 ggtgagttcg ccccgtcgt ccagaatcat	30
<210> 111 <211> 30 <212> DNA <213> Artificial Sequence	
<220> <223> Oligonucleotide used for site-directed mutagenesis of human SAH hydrolases	
<400> 111 atctctggtg agaccacgac tggggtccac	30
<210> 112 <211> 30 <212> DNA <213> Artificial Sequence	
-2205	

<223>	of human SAH hydrolases	
<400> gtggad		30
<210>	113	
<211>	30	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	Oligonucleotide used for site-directed mutagenesis of human SAH hydrolases	
<400>		2.0
gccato	caatg tegetgaete egteaceaag	30
<210><211>		
<212>		
	Artificial Sequence	
<220>		
<223>	Oligonucleotide used for site-directed mutagenesis of human SAH hydrolases	
<400>		2.0
cttggt	cgacg gagtcagcga cattgatggc	30
<210>	115	
<211>	30	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	Oligonucleotide used for site-directed mutagenesis of human SAH hydrolases	
<400>		
atgati	tgccg gcgctgtagc ggtggtagca	30
<210>	116	
<211>	30	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	Oligonucleotide used for site-directed mutagenesis of human SAH hydrolases	
<400>		
tgcta	ccacc gctacagcgc cggcaatcat	30
<210 ×	117	
<211>		
<212>	DNA	

<213> Artificial Sequence	
<220> <223> Oligonucleotide used for site-directed mutagenesis of human SAH hydrolases	
<400> 117 gtggtagcag gctctggtga tgtgggcaag	30
<210> 118 <211> 30 <212> DNA <213> Artificial Sequence	
<220> <223> Oligonucleotide used for site-directed mutagenesis of human SAH hydrolases	
<400> 118 cttgcccaca tcaccagagc ctgctaccac	30
<210> 119 <211> 30 <212> DNA <213> Artificial Sequence	
<220> <223> Oligonucleotide used for site-directed mutagenesis of human SAH hydrolases	
<400> 119 ggtgatgtgg gcgctggctg tgcccaggcc	30
<210> 120 <211> 30 <212> DNA <213> Artificial Sequence	
<220> <223> Oligonucleotide used for site-directed mutagenesis of human SAH hydrolases	
<400> 120 ggcctgggca cagccagcgc ccacatcacc	30
<210> 121 <211> 30 <212> DNA <213> Artificial Sequence	
<220> <223> Oligonucleotide used for site-directed mutagenesis of human SAH hydrolases	
<400> 121 gcctgcggg gttctggagc ccgcgtcatc	30

```
<210> 122
<211> 30
<212> DNA
<213> Artificial Sequence
<220>
<223> Oligonucleotide used for site-directed mutagenesis
      of human SAH hydrolases
<400> 122
                                                                         30
gatgacgcgg gctccagaac cccgcagggc
<210> 123
<211> 29
<212> DNA
<213> Artificial Sequence
<220>
<223> Oligonucleotide used for site-directed mutagenesis
      of human SAH hydrolases
<400> 123
ggagccgcgt ccttatcacc gagattgac
                                                                         29
<210> 124
<211> 30
<212> DNA
<213> Artificial Sequence
<220>
<223> Oligonucleotide used for site-directed mutagenesis
      of human SAH hydrolases
<400> 124
                                                                         30
gtcaatctcg gtgataagga cgcgggctcc
<210> 125
<211> 30
<212> DNA
<213> Artificial Sequence
<220>
<223> Oligonucleotide used for site-directed mutagenesis
      of human SAH hydrolases
<400> 125
                                                                         30
attgacccca tcgctgcact gcaggctgcc
<210> 126
<211> 30
<212> DNA
<213> Artificial Sequence
<223> Oligonucleotide used for site-directed mutagenesis
      of human SAH hydrolases
```

<400> ggcagc		30
<210><211><211><212><213>	30	
	Oligonucleotide used for site-directed mutagenesis of human SAH hydrolases	
<400> gtgacc	127 acca tgggtgaggc ctgtcaggag	30
<210><211><211><212><213>	30	
	Oligonucleotide used for site-directed mutagenesis of human SAH hydrolases	
<400> ctcctg	128 Jacag gcctcaccca tggtggtcac	30
<210><211><212><213>	30	
	Oligonucleotide used for site-directed mutagenesis of human SAH hydrolases	
<400> gaggco	129 etgtc aggaggataa catctttgtc	30
<210><211><211><212><213>	30	
	Oligonucleotide used for site-directed mutagenesis of human SAH hydrolases	
<400> gacaaa	130 agatg ttatcctcct gacaggcctc	30
<210><211><211><212><213>	30	
<220>		

_	AH hydrolases	
<400> 131 gacatcatcc ttggcg	gatca ctttgagcag	30
<210> 132 <211> 30 <212> DNA <213> Artificial	Sequence	
	otide used for site-directed mutagenesis AH hydrolases	
<400> 132 ctgctcaaag tgatcg	gccaa ggatgatgtc	30
<210> 133 <211> 30 <212> DNA <213> Artificial	Sequence	
	otide used for site-directed mutagenesis AH hydrolases	
<400> 133 cagatgaagg gtgatg	gccat tgtgtgtaac	30
<210> 134 <211> 30 <212> DNA <213> Artificial	Sequence	
	otide used for site-directed mutagenesis AH hydrolases	
<400> 134 gttacacaca atggca	atcac ccttcatctg	30
<210> 135 <211> 30 <212> DNA <213> Artificial	Sequence	
	otide used for site-directed mutagenesis AH hydrolases	
<400> 135 aacattggaa cttttg	gacgt ggagatcgat	30
<210> 136 <211> 30 <212> DNA		

<213> 1	Artificial Sequence	
	Oligonucleotide used for site-directed mutagenesis of human SAH hydrolases	
<400> 3		30
<210 > 1 <211 > 1 <212 > 1 <213 > 2	30	
	Oligonucleotide used for site-directed mutagenesis of human SAH hydrolases	
<400>		30
<210> (211> (212>) (213>)	30	
	Oligonucleotide used for site-directed mutagenesis of human SAH hydrolases	
<400>	138 gttg agccatctga catcgatctc	30
<210> : <211> : <211> : <212> : <213> : <	30	
	Oligonucleotide used for site-directed mutagenesis of human SAH hydrolases	
<400> gtgaac	139 atcg gtccgcaggt ggaccggtat	30
<210> :<211> :<211> :<212> :<213> :	30	
	Oligonucleotide used for site-directed mutagenesis of human SAH hydrolases	
<400>	140 gtcc acctgcggac cgatgttcac	30

<210><211><211><212><213>	30	
<220> <223>	Oligonucleotide used for site-directed mutagenesis of human SAH hydrolases	
<400> gaccgg	141 gtatg ctttgaagaa tgggcgccgc	30
<210><211><211><212><213>	30	
<220> <223>	Oligonucleotide used for site-directed mutagenesis of human SAH hydrolases	
<400> gcggcg	142 gccca ttcttcaaag cataccggtc	30
<210><211><212><213>	30	
<220> <223>	Oligonucleotide used for site-directed mutagenesis of human SAH hydrolases	
<400> atgagt	143 taacg gtttcaccaa ccaggtgatg	30
<210><211><212><213>	30	
<220> <223>	Oligonucleotide used for site-directed mutagenesis of human SAH hydrolases	
<400> catca	144 cctgg ttggtgaaac cgttactcat	30
<210><211><212><212><213>	30	
<220> <223>	Oligonucleotide used for site-directed mutagenesis	

<pre><400> 145 catccagaca agtctcccgt tggggttcat</pre>	30
<210> 146 <211> 30 <212> DNA <213> Artificial Sequence	
<220> <223> Oligonucleotide used for site-directed mutagenesis of human SAH hydrolases	
<400> 146 atgaacccca acgggagact tgtctggatg	30
<210> 147 <211> 30 <212> DNA <213> Artificial Sequence	
<220> <223> Oligonucleotide used for site-directed mutagenesis of human SAH hydrolases	
<400> 147 ggggttcatt tcgctcccaa gaagctggat	30
<210> 148 <211> 30 <212> DNA <213> Artificial Sequence	
<220> <223> Oligonucleotide used for site-directed mutagenesis of human SAH hydrolases	
<400> 148 atccagcttc ttgggagcga aatgaacccc	30
<210> 149 <211> 30 <212> DNA <213> Artificial Sequence	
<220> <223> Oligonucleotide used for site-directed mutagenesis of human SAH hydrolases	
<400> 149 cattteetge ceggtaaget ggatgaggea	30
<210> 150 <211> 30 <212> DNA <213> Artificial Sequence	
<220>	

<223>	Oligonucleotide used for site-directed mutagenesis of human SAH hydrolases	
<400> tgccto	150 catcc agcttaccgg gcaggaaatg	30
<210><211><212><212><213>	30	
<220> <223>	Oligonucleotide used for site-directed mutagenesis of human SAH hydrolases	
<400> gcagt	151 ggctg aageegetet gggeaagetg .	30
<210><211><212><213>	30	
<220> <223>	Oligonucleotide used for site-directed mutagenesis of human SAH hydrolases	
<400>	152 tgdcc agagcggctt cagccactgc	30
<210><211><212><212><213>	30	
<220> <223>	Oligonucleotide used for site-directed mutagenesis of human SAH hydrolases	
<400> cacct	153 gggcc gtctgaatgt gaagttgacc	30
<210><211><212><212><213>	30	
<220> <223>	Oligonucleotide used for site-directed mutagenesis of human SAH hydrolases	
<400> ggtca	154 acttc acattcagac ggcccaggtg	30
<210><211><211>	30	

<213>	Artificial Sequence	
<220> <223>	Oligonucleotide used for site-directed mutagenesis of human SAH hydrolases	
<400> cacct	155 gggcg atctgaatgt gaagttgacc	30
<210><211><212><213>	30	
<220> <223>	Oligonucleotide used for site-directed mutagenesis of human SAH hydrolases	
<400> ggtca	156 acttc acattcagat cgcccaggtg	30
<210><211><212><213>	30	
<220> <223>	Oligonucleotide used for site-directed mutagenesis of human SAH hydrolases	
<400> aatgt	157 gaagt tgtctaagct aactgagaag	30
<210><211><212><213>	30	
<220> <223>	Oligonucleotide used for site-directed mutagenesis of human SAH hydrolases	
<400>	158 cagtt agcttagaca acttcacatt	30
<210><211><212><213>	30	
<220> <223>	Oligonucleotide used for site-directed mutagenesis of human SAH hydrolases	
<400> gtgaa	159 gttga ccaagggtac tgagaagcaa	30

<210>	160	
<211>	30	
<212>	DNA	
<213>	Artificial Sequence	
1220		
<220>	·	
	Oligonucleotide used for site-directed mutagenesis	
	of human SAH hydrolases	
<400>	160	
ttactt	ctca gtacccttgg tcaacttcac	30
00300	Section generally seamers and	
<210>	161	
<211>		
<212>		
<213>	Artificial Sequence	
<220>		
<223>	Oligonucleotide used for site-directed mutagenesis	
12207	of human SAH hydrolases	
	of numerical san hydrorases	
<400>		
taccto	ggca tgacttgtga tggccccttc	30
<210>	162	
<211>	30	
<212>	· · · · · · · · · · · · · · · · · · ·	
<213>	Artificial Sequence	
<220>		
<223>	Oligonucleotide used for site-directed mutagenesis	
	of human SAH hydrolases	
	-	
<400>	162	
		30
gaaggg	geca teacaageca egeceaggea	-
010	3.03	
<210>		
<211>	30	
<212>	DNA	
<213>	Artificial Sequence	
	-	
<220>		
	Oligonucleotide used for site-directed mutagenesis	•
<223>		
	of human SAH hydrolases	
<400>	163	
tcctgt	gatg gegettteaa geeggateae	30
_		
<210>	164	
<211>		
<212>		
<213>	Artificial Sequence	
<220>	•	
<223>	Oligonucleotide used for site-directed mutagenesis	
	of human SAH hydrolases	
	-	

<400> gtgato		30
<210><211><212><213>	30	
<220> <223>	Oligonucleotide used for site-directed mutagenesis of human SAH hydrolases	
<400> tgtgat	165 tggcc cctctaagcc ggatcactac	30
<210><211><211><212><213>	30	
<220> <223>	Oligonucleotide used for site-directed mutagenesis of human SAH hydrolases	
<400> gtagto	166 gatcc ggcttagagg ggccatcaca	30
<210><211><211><212><213>	30	
<220> <223>	Oligonucleotide used for site-directed mutagenesis of human SAH hydrolases	
<400> tgtgat	167 tggcc ccttcaagcc gggtcactac	30
<210><211><212><213>	30	
<220> <223>	Oligonucleotide used for site-directed mutagenesis of human SAH hydrolases	
<400> gtagt	168 gaccc ggcttgaagg ggccatcaca	30
<210><211><212><213>	30	
-220-		

of human SAH hydrolases	
<400> 169 tgtgatggcc ccttcaaggc tgatcactac	30
<210> 170 <211> 30 <212> DNA <213> Artificial Sequence	
<220> <223> Oligonucleotide used for site-directed mutagenesis of human SAH hydrolases	·
<400> 170 gtagtgatca gccttgaagg ggccatcaca	30
<210> 171 <211> 30 <212> DNA <213> Artificial Sequence	·
<220> <223> Oligonucleotide used for site-directed mutagenesis of human SAH hydrolases	
<400> 171 tgtgatggcc ccttcaagcc ggatgcttac	30
<210> 172 <211> 30 <212> DNA <213> Artificial Sequence	
<220> <223> Oligonucleotide used for site-directed mutagenesis of human SAH hydrolases	
<400> 172 gtaagcatcc ggcttgaagg ggccatcaca	30
<210> 173 <211> 30 <212> DNA <213> Artificial Sequence	
<220> <223> Oligonucleotide used for site-directed mutagenesis of human SAH hydrolases	
<400> 173 ggccccttca agccggatca cactcgctac	30
<210> 174 <211> 30 <212> DNA	

<213>	Artificial Sequence	
<220> <223>	Oligonucleotide used for site-directed mutagenesis of human SAH hydrolases	
<400> gtagco	174 gagtg tgatccggct tgaaggggcc	30
<210><211><211><212><213>	30	
<220> <223>	Oligonucleotide used for site-directed mutagenesis of human SAH hydrolases	
<400> ggccc	175 ettca ageoggatea etacaaatae	30
<210><211><211><212><213>	30	
<220> <223>	Oligonucleotide used for site-directed mutagenesis of human SAH hydrolases	
<400> gtattt	176 gtag tgatccggct tgaaggggcc	30
<210><211><212><213>	30	
<220> <223>	Oligonucleotide used for site-directed mutagenesis of human SAH hydrolases	
<400> ggccc	177 ettca agccggatca ctacggttac	30
<210><211><212><213>	30	
<220> <223>	Oligonucleotide used for site-directed mutagenesis of human SAH hydrolases	
<400>	178	30

<210><211><212><212><213>	30	
<220> <223>	Oligonucleotide used for site-directed mutagenesis of human SAH hydrolases	
<400>	179 caago oggatoacta oogotottga	30
<210><211><211><212><213>	30	
<220> <223>	Oligonucleotide used for site-directed mutagenesis of human SAH hydrolases	
<400> tcaaga	180 agcgg tagtgatccg gcttgaaggg	30
<210><211><212><213>	30	
<220> <223>	Oligonucleotide used for site-directed mutagenesis of human SAH hydrolases	
<400>	181 caagc cggatcacta ccgcgcttga	30
<210><211><212><213>	30	
<220> <223>	Oligonucleotide used for site-directed mutagenesis of human SAH hydrolases	
<400> tcaage	182 egegg tagtgateeg gettgaaggg	30
<210><211><212><213>	30	
<220> <223>	Oligonucleotide used for site-directed mutagenesis	

```
<400> 183
                                                                       30
cccttcaagc cggatcacta ccgcttttga
<210> 184
<211> 30
<212> DNA
<213> Artificial Sequence
<220>
<223> Oligonucleotide used for site-directed mutagenesis
      of human SAH hydrolases
<400> 184
tcaaaagcgg tagtgatccg gcttgaaggg
                                                                       30
<210> 185
<211> 2057
<212> DNA
<213> Mus musculus
<400> 185
ccagcatgtc tgataaactg ccctacaaag tcgcggacat cggactggcc gcctggggac 60
qqaaqqctct qqatatagct gagaatgaga tgccaggatt gatgcgcatg cgggagatgt 120
actcagcete caagecactg aagggtgete geattgetgg etgeetgeac atgacegtgg 180
agactgctgt tctcattgag actctcgtgg ccctgggtgc tgaggtgcgg tggtccagct 240
qcaacatctt ctctactcaq qaccatgcaq cggctgccat tgccaaggct ggcattccag 300
tgtttgcctg gaagggcgag acagatgagg agtacctgtg gtgcattgag cagacgctgc 360
acttcaagga cggacccctc aacatgattc tggatgatgg tggtgacctt actaacctca 420
tccacaccaa atacccacag cttctgtcag gcatccgagg tatctctgag gagaccacga 480
ctggggtcca caacctctac aagatgatgt ccaatgggat actgaacgtg cctgccatca 540
atqtcaacqa ttctqtcacc aaqaqcaagt ttgacaacct ctatggctgc cgggagtccc 600
tcataqatqq catcaaacqq qccacagatg tgatgattgc gggcaaggtg gcggtggtgg 660
caqqctatqq tqatqtqqqc aaqqqctqtq cccaqqccct gaggggtttt gggqcccqag 720
tcatcatcac cgagatcgac cccatcaatg cactgcaagc tgccatggag ggctatgagg 780
taaccactat ggacgaagcc tgtaaggagg gcaacatctt tgtcaccacc acaggctgtg 840
tgqatatcat ccttggccgg cactttgagc agatgaagga tgacgccatt gtctgtaaca 900
ttggacactt cgatgtggag attgatgtga agtggctcaa tgagaacgcg gtggagaaag 960
tgaacatcaa geeccaggtg gaeegetaet ggetaaagaa tgggegeege atcatettge 1020
tggctgaagg ccgtctggtc aacctgggtt gtgccatggg acaccccagc ttcgtgatga 1080
gcaactcctt cacaaaccag gtgatggcac agattgagct gtggacccac ccagataaat 1140
accetgttgg ggttcacttc ctgcctaaga agetggatga ggeggtggct gaageecace 1200
tqqqcaagct gaatgtgaag ctgaccaagc tgactgagaa gcaagcccag tacctgggca 1260
tqcccatcaa cqqccccttc aaqcctgatc actaccqcta ctgagagctg gqgctqtcct 1320
tcaccttcca gctgccatcc aaqttccggg cccacctctc gtccccaaga gccaatgtca 1380
ccaactttqt qqttaqtttq cctqtqttct qatccqtccc ccqccccca tcctcactqt 1440
qqctqqtcac tccqtctttq qcctctqctq caccctcat actqttccat atqtqqcatc 1500
qaqaacaqaq aqaqqtacct qqtaqqcatc cacaqqqqac atqatctcaq aaqtcttqqa 1560
agtectgagg etggatgttg etagtgatgg teacaageca tgcacettat cattgatace 1620
ctcacttggt ctttagatct gtgtgcctgg tttgcagatc cattggtttc tcagtccagg 1680
acccaaqaac gaqctccacc aaagaqcagg aacccctgga gtttgaaggc ccccqagagc 1740
tqqqcctttt tactqttqqq caqtctctta aacctcatga tactgagttg gtactttttt 1800
tggtccctat ttcacaaggg ttcaggatag attaaccaag aaaggacaag tgacagactg 1860
aaaggggctg gaaaacaaga ggaaaggcct gtcactgtat agttgatggt tcctgtcaca 1920
agcccaggtc acaaacagat taatttgttt tataatgttt atatgctatt tagaatgtta 1980
acaaaggaag gtggataaaa tacagtttct actgcctaaa gaattttggc tctattaaaa 2040
                                                                  2057
```

tgtaagtgtg tggctgg

```
<211> 2029
<212> DNA
<213> Rattus rattus
<400> 186
ctcactctag cggacttcgc cagcatggct gataaactgc cctacaaagt cgcggacatt 60
ggactggctg cctggggacg gaaggccctg gacatagctg agaacgagat gccaggtttg 120
atgcgcatgc gggagatgta ctcagcctcc aagccactga agggcgctcg cattgctggc 180
tgcctgcaca tgactgtgga gactgctgtc ctcattgaga ctctcgtggc cctgggtgct 240
gaggtgeggt ggtecagetg caacatette tecaeteagg accatgeage ggetgecatt 300
gccaaggctg gcattccagt gtttgcctgg aagggagaga cggatgaaga gtacctgtgg 360
tgcattgagc agacgttgca cttcaaggac ggacccctca acatgattct ggatgatggc 420
ggtgacctta ctaacctcat ccacaccaaa cacccacagc ttctgtcagg catccgaggt 480
atctctgagg agaccacgac tggcgtccac aacctctaca agatgatggc caatgggata 540
ctgaaggtgc ctgccatcaa cgtcaacgat tctgtcacca agagcaagtt tgacaacctc 600
tatggctgcc gggagtccct catagatggc atcaaacggg caacagatgt gatgattgcg 660
ggcaaggtgg cagtggtagc aggctatggt gatgtgggca agggttgtgc ccaggccctg 720
cggggtttcg gggcccgagt catcatcacc gagattgacc ccatcaatgc actgcaagct 780
gccatggagg gctacgaggt aaccaccatg gacgaggcct gtaaggaggg caacatcttt 840
gtgaccacca cgggctgtgt tgatatcatc cttggtcggc actttgaaca gatgaaggat 900
gatgccattg tctgtaacat tggacacttc gacgtggaga ttgatgtgaa gtggctcaat 960
gagaacgctg tggagaaggt gaacatcaag ccccaggtgg accgctactt gctaaagaat 1020
gggcaccgca tcatcttgct ggctgagggc cgtctggtca acctgggttg tgccatgggc 1080
caccccagct tcgtgatgag caactccttc acaaaccagg tgatggcaca gattgagctg 1140
tggacccacc cagacaaata ccccgtgggg gttcacttcc tgcctaagaa gctggatgag 1200
gcagtggctg aagcccacct gggcaagctg aacgtcaagc tgaccaagct gactgagaag 1260
caggeteagt acetgggeat geceattaac ggeecettea ageetgatea etacegetae 1320
tgagagetgg gaetgeeett caecttecag etgecateet tgttecagge cetacetete 1380
gttcccaaga gcaaatgtca ccaactttgc agttacttct ccggtgttct gctccctccc 1440
ccggccctca tccacactgt gactggtctt tctgtctttg gcttctgctg tacccctcat 1500
actgttccct atgtggcata gagaacagag aggtacctgg gaggcatcca caggggatct 1560
gagetettgg aaggtetgag getggatgtt getggtggte acaageecat geacettaet 1620
atccaaactc tcgcttggtc tttagatccg tgtgcttggt ttacagacca atggtttctc 1680
ggcccaggac ccaagaagga gctctaccat gggggaagga accactggag tttgaaggct 1740
cctgagagct tggccttttt actgttgggc tgtctcttaa acctcctaat actgagttgg 1800
ctacttttgg tccctatttc acaagggtta ggacagatta accaagaaag gacaagtgac 1860
agagactgaa aggggctgga aaaacaaata gggaaaggcc tgtcacctac ggtataattg 1920
atggttccta tcacaagcct ggatcacaaa cagattaatt tgttctatgt ttatatactg 1980
                                                                  2029
tttagaatgt taacacagga aggtggataa aatacagttt ctagtgcct
<210> 187
<211> 2211
<212> DNA
<213> Homo sapiens
<400> 187
ctgaggccca gccccttcg cccgtttcca tcacgagtgc cgccagcatg tctgacaaac 60
tgccctacaa agtcgccgac atcggcctgg ctgcctgggg acgcaaggcc ctggacattg 120
ctgagaacga gatgccgggc ctgatgcgta tgcgggagcg gtactcggcc tccaagccac 180
tgaagggcgc ccgcatcgct ggctgcctgc acatgaccgt ggagacggcc gtcctcattg 240
agaccetegt caccetgggt getgaggtge agtggtecag etgeaacate ttetecacce 300
agaaccatgc ggcggctgcc attgccaagg ctggcattcc ggtgtatgcc tggaagggcg 360
aaacggacga ggagtacctg tggtgcattg agcagaccct gtacttcaag gacgggcccc 420
tcaacatgat tctggacgac gggggcgacc tcaccaacct catccacacc aagtacccgc 480
agettetgee aggeateega ggeatetetg aggagaceae gaetggggte cacaacetet 540
acaagatgat ggccaatggg atcctcaagg tgcctgccat caatgtcaat gactccgtca 600
```

<210> 186

```
ccaagagcaa gtttgacaac ctctatggct gccgggagtc cctcatagat ggcatcaagc 660
gggccacaga tgtgatgatt gccggcaagg tagcggtggt agcaggctat ggtgatgtgg 720
gcaagggctg tgcccaggcc ctgcggggtt tcggagcccg cgtcatcatc accgagattg 780
accccatcaa cgcactgcag gctgccatgg agggctatga ggtgaccacc atggatgagg 840
cctgtcagga gggcaacatc tttgtcacca ccacaggctg tattgacatc atccttggcc 900
ggtaggtgcc agatgggggg tcccggggag tgagggagga gggcagagtt gggacagctt 960
tetgteeetg acaateteee aeggtettgg getgeetgae aggeaetttg ageagatgaa 1020
ggatgatgcc attgtgtgta acattggaca ctttgacgtg gagatcgatg tcaagtggct 1080
caacgagaac gccgtggaga aggtgaacat caagccgcag gtggaccggt atcggttgaa 1140
gaatgggcgc cgcatcatcc tgctggccga gggtcggctg gtcaacctgg gttgtgccat 1200
gggccacccc agcttcgtga tgagtaactc cttcaccaac caggtgatgg cgcagatcga 1260
gctgtggacc catccagaca agtaccccgt tggggttcat ttcctgccca agaagctgga 1320
tgaggcagtg gctgaagccc acctgggcaa gctgaatgtg aagttgacca agctaactga 1380
gaagcaagcc cagtacctgg gcatgtcctg tgatggcccc ttcaagccgg atcactaccg 1440
ctactgagag ccaggtctgc gtttcaccct ccagctgctg tccttgccca ggccccacct 1500
ctcctcccta agagctaatg gcaccaactt tgtgattggt ttgtcagtgt cccccatcga 1560
ctctctgggg ctgatcactt agtttttggc ctctgctgca gccgtcatac tgttccaaat 1620
gtggcagcgg gaacagagta ccctcttcaa gccccggtca tgatggaggt cccagccaca 1680
gggaaccatg agctcagtgg tcttggaaca gctcactaag tcagtccttc cttagcctgg 1740
aagtcagtag tggagtcaca aagcccatgt gttttgccat ctaggccttc acctggtctg 1800
tggacttata cctgtgtgct tggtttacag gtccagtggt tcttcagccc atgacagatg 1860
agaaggggct atattgaagg gcaaagagga actgttgttt gaattttcct gagagcctgg 1920
cttagtgctg ggccttctct taaacctcat tacaatgagg ttagtacttt tagtccctgt 1980
tttacagggg ttagaataga ctgttaaggg gcaactgaga aagaacagag aagtgacagc 2040
taqqqqttqa gaqqqqccaq aaaaacatga atgcaggcag atttcgtgaa atctgccacc 2100
actitataac cagatggttc ctttcacaac cctgggtcaa aaagagaata atttggccta 2160
taatgttaaa agaaagcagg aaggtgggta aataaaaatc ttggtgcctg g
```

<210> 188 <211> 2084 <212> DNA

<213> Homo sapiens

<400> 188

ggcccagccc cettegeceg tttecateae gagtgcegee ageatgtetg acaaactgee 60 ctacaaagtc gccgacatcg gcctggctgc ctggggacgc aaggccctgg acattgctga 120 gaacgagatg ccgggcctga tgcgtatgcg ggagcggtac tcggcctcca agccactgaa 180 gggcgccgc atcgctggct gcctgcacat gaccgtggag acggccgtcc tcattgagac 240 cctcgtcacc ctgggtgctg aggtgcagtg gtccagctgc aacatcttct ccacccagga 300 ccatgcggcg gctgccattg ccaaggctgg cattccggtg tatgcctgga agggcgaaac 360 ggacgaggag tacctgtggt gcattgagca gaccctgtac ttcaaggacg ggcccctcaa 420 catgattctg gacgacgggg gcgacctcac caacctcatc cacaccaagt acccgcagct 480 tctgccaggc atccgaggca tctctgagga gaccacgact ggggtccaca acctctacaa 540 gatgatggcc aatgggatcc tcaaggtgcc tgccatcaat gtcaatgact ccgtcaccaa 600 gagcaagttt gacaacctct atggctgccg ggagtccctc atagatggca tcaagcgggc 660 cacagatgtg atgattgccg gcaaggtagc ggtggtagca ggctatggtg atgtgggcaa 720 gggctgtgcc caggccctgc ggggtttcgg agcccgcgtc atcatcaccg agattgaccc 780 catcaacgca ctgcaggctg ccatggaggg ctatgaggtg accaccatgg atgaggcctg 840 tcaggagggc aacatetttg tcaccaccac aggetgtatt gacateatee ttggceggca 900 ctttgagcag atgaaggatg atgccattgt gtgtaacatt ggacactttg acgtggagat 960 cgatgtcaag tggctcaacg agaacgccgt ggagaaggtg aacatcaagc cgcaggtgga 1020 ccggtatcgg ttgaagaatg ggcgccgcat catcctgctg gccgagggtc ggctggtcaa 1080 cctgggttgt gccatgggcc accccagctt cgtgatgagt aactccttca ccaaccaggt 1140 gatggcgcag atcgagctgt ggacccatcc agacaagtac cccgttgggg ttcatttcct 1200 gcccaagaag ctggatgagg cagtggctga agcccacctg ggcaagctga atgtgaagtt 1260 gaccaagcta actgagaagc aagcccagta cctgggcatg tcctgtgatg gccccttcaa 1320 geoggateae tacegetaet gagageoagg tetgegttte accetecage tgetgteett 1380

gcccaggccc	cacctctcct	ccctaagagc	taatggcacc	aactttgtga	ctggtttgtc	1440
					ctgcagccgt	
					ggtcatgatg	
					ctaagtcagt	
					gccatctagg	
					gtggttcttc	
					tgtttgaatt	
					tgaggttagt	
					tgagaaagaa	
					ggcagatttc	
					gtcaaaaaga	
			gcaggaaggt			2084