30 - Cham Oute Tu - 1/5 - Mr.

$Cau \perp xe^{2x}(y+2y) = x-e^{2x}y (x > 0) (x)$
$\dots \dots $
$Cau 1: x e^{2x}(y + 2y) = x - e^{2x}y (x > 0) (x)$ $= x - e^{2x}y (x > 0) (x > 0)$
,
$y' + y(2 + \frac{1}{2}) = \frac{1}{e^{2x}} (-x. > 0.)$
$\frac{\text{Datp.(n)} = 2 + 1}{x}, q(k) = \frac{1}{e^{2\pi}}$
$\int \rho(x) dx = \int (2 + 1) dx = 2x + \ln(x)$ $\int \rho(x) dx = 2x$
$= \int \frac{e^{y} \rho(x) dx}{e^{y} x^{2}} = \frac{e^{2x}}{x}$ $= \int \frac{e^{2x} x}{e^{2x} x}$ $= \int \frac{e^{2x} x}{e^{2x} x}$
==
- (P(x) d):
= 1
$e^{2\chi}$ χ
Nghiem tong quai cuá phương trunh (*)
$y = e^{-\int P(x) dx} \left[\int g(x) e^{\int P(x) dx} dx + C \right]$
$-1/(x.e^{2x}dx+c)$
$= \frac{1}{e^{2x}x} \left(\int \frac{x e^{2x}}{e^{2x}} dx + C \right)$
$=\frac{1}{e^{2x}}\left(\frac{x^2}{2}+C\right)$
e^{2x} , χ (2)
= x + C
$\frac{\chi}{2e^{2\chi}} + \frac{\zeta}{e^{2\chi}\chi}$
•••••••••••••••••••••••••••••••••••••••

30 - Pham Quốc Tú - 2/5 - Mr.
Cau 2 y" + 6y + 8y = (x+2) ex (1)
D. Coai pluvny trinh y" + by + 8 y = 0 (2)
Phung triah dae trung: k2 + 6 k + 8 = 0 (*)
k=-4
Phuiry tríoh đặc trường. $k^2 + 6k + 8 = 0$ (*) $= \sum_{k=-4} k = -2$ Nghiễm tổng quát cuố (2), $= C_1 e^{2x} + C_2 e^{4x}$
O Tim một nghiêm wêng y* cuá phương trunh (1)
To co. $f(x) = (x+2)e^{-x}$ \Rightarrow $\int d = -1$ (Không là nghiệm cuả (*)). Do do: $y^* = e^{-x}(Ax+B)$
$Do.do: y^* = e^{-x}(Ax + B)$
$(y^{*})' = -e^{-x}(Ax + B) + e^{-x}(A) = e^{-x}(-Ax + A - B)$
$(y^*)'' = -e^{x}(-Ax + A - B) + e^{x}(-A)$ = $e^{-x}(Ax - 2A + B)$
Thay van (1), to ditte
$[(y^*)'' = e^{-x}(Ax - 2A + B)]$
$+ \int 6(y^*)' = e^x (-6Ax + 6A - 6B)$
[8y* = e" (8Ax + 8B)
$VT(1) = e^{x}(3Ax + 4A + 3B) = VP(1) = (x + 2)e^{-x}$
$ \begin{cases} 3A = 1 \\ 4A + 3B = 2 \end{cases} $ $ \begin{cases} A = \frac{1}{3} \Rightarrow y^* = e^{x}(\frac{x}{3} + \frac{2}{9}) \\ 3 = \frac{2}{9} \end{cases} $
Vây, nghiêm cuá phương tunh (1)
$y = y + y^* = C_1 e^{2x} + C_2 e^{-4x} + e^{-x} \left(\frac{x}{3} + \frac{2}{9}\right)$

30 - Pham Que			
Câu 3: Σ n=1	$(e^{h^2} - \tan^2 \frac{1}{n})^r$	ζ4·····	
	(en-2 - tan2 1)	·n+·····	
	lim len-2 - tons 1		
	(im n4 ln (en-2	- tour 1) [
	In (e ⁿ² - tan ² 1		
	4 Ln [] 1 + (e		
*************************	4 (en 2 - tan 1 -		- 1
	2	(. vi tan x + L.	(m²x)
	4 (en (w, 1 +		
= lim b n→∞ c	nois no	(ent Cus 21 -1)
= lim n ^h	(en (un' 1 -1)		
		•••••••••••••••••••••••••••••••••••••••	

the same of the sa

30 - Phano Quốc Tú - 4/5 - 12
$C\widehat{a}u \stackrel{\circ}{4} \stackrel{\circ}{\Sigma} \stackrel{(-1)^n}{(2x-1)^n} \stackrel{(1)}{(1)}$
Dut $t = 2x - 1$ os $(-1)^n + 1^n$ (2) $(1) \text{ tab though } \sum_{n=1}^{\infty} (-1)^n + 1^n$
@ Tion boxo kinh hoi tu cuá (2)
Ta co : $a_{n} = \frac{(-1)^{n}}{6^{n}(3\sqrt{n}+7)} \Rightarrow a_{n+1} = \frac{(-1)^{n+1}}{6^{n+1}(3\sqrt{n}+7)}$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
R = 1 = 6, Chowing his tru cuá (2) la (-6; 6)
To ω $\frac{1}{3\sqrt{n}+3}$ $\frac{1}{3\sqrt{n}}$ $\sim \frac{1}{n^{1/2}}$ ($hhi n \to \infty$)
$\sum_{n=1}^{\infty} \frac{1}{n^{4/2}} \cdot \text{phim. ky} \left(\angle = \frac{1}{2} < 1 \right)$
Theo trêu chuẩn so sánh & 2, chuẩn (3) phân ky
Ta.có; $U_{n} = \frac{(-1)^{n}}{3\sqrt{n}} U_{n} = \frac{1}{4\sqrt{n}} \int_{-\infty}^{\infty} day gian + n \in (1, +\infty)$
Lim Un = lim 1 = 0 n=60
Vay, micro hus tu cuá chuix (2) lat :-6 < t 5.6
7 mién his tu cuá dhus (1) la -5 < t < 7

30 - Charo Owe Tu - 515 - My 13 U=T farctant.