

Automatic Generation of Marketing Personas

Extracting insights from social networks

Supervisor

Alberto Montresor

Co-SupervisorsCarlo Caprini
Daniele Miorandi

Bachelor Degree in Computer Science

Department of Information Engineering and Computer Science

Academic Year 2020/2021

Student

Nicola Farina

Marketing Personas

A persona is a fictional character that communicates the primary

characteristics of a group of users. [1]

pros:

- personalized customer experience
- easier to plan marketing campaigns

cons:

- long time to create
- high costs

^[1] https://www.smartinsights.com/persuasion-marketing/marketing-personas/

Research Question

Is it possible to **automatically** generate marketing personas through the use of **machine learning**?

Automatically:

no need for user input

Machine learning:

- clustering
- classification

State of the Art

Current focus on using **social network data**, from which can be extracted:

demographics

gender age location job income

behavioral insights

personality interests attitude

customers **grouped** based on such insights

Legal Basis:

GDPR compliance

General Data Protection Regulation

Solution design

Web API

RESTful

Framework: Flask

Security: JWT

More operations and endpoints are provided (authentication, information retrieval, status checking...)

Collection

Twitter API

Activity enrichment

Dandelion API

User enrichment

Gender: male

Age: 19-29

Type: person

Attitude: 0.95

Interests: [Geography: 0.5...]

Gender, age, type, attitude

Gender, Age, Type [2]

Gender (alternative)

Map: First name -> gender

Name	Gender
Marco	M
Stefania	F
Gabriela	F
John	M

Attitude

Average sentiment score

[2] Wang et al., Demographic Inference and Representative Population Estimates from Multilingual Social Media Data

Nicola Farina

Interests

Football: 6

Basketball: 2

Guitar: 2

Mario Draghi: 1

Entity map

Interests

Sports: 0.4 Politics: 0.1

Music: 0.2

Nicola Farina 12/20

Clustering and Personas Generation modules

Clustering:

- K-Modes
- Custom distance metric
- Centroid: real user

Personas generation:

- Assign name and photo to each cluster
- Results via API or web interface

Persona

Queue System

Communication between modules

Modularity and scalability

Evaluation: Setup

Objectives:

- Measure quality of personas
- Tune parameters:
 - number of activities per user

Evaluation dataset:

- 90 Twitter profiles of public celebrities
 - 30 football players
 - 30 musicians
 - 30 politicians
- Ground truth: gender, age, language, main interest

Evaluation: Optimal number of clusters

- Trade off: minimum number of activities (per user) for good clusters
 - Too few: interests misclassification
 - Too many: API rate limitations (4750 activities per day, Dandelion API)

Activities per user	Optimal number of clusters	
20	10	
50	4	
100	4	

Evaluation: Personas

Evaluation: Clustering metrics

Cluster	Accuracy	Precision	Recall
Politicians	0.96	0.93	0.96
Musicians (F)	0.97	0.88	1.0
Musicians (M)	0.97	1.0	0.86
Footballers	0.98	1.0	0.96
Global	0.97	0.95	0.94

Conclusions

- System prototype allows to automatically generate accurate marketing personas
 - Collect users' data from Twitter (e.g. followers of a Twitter page)
 - Enrich users with gender, age, type, attitude, interests
 - Cluster users, output representative users for each cluster
 - Generate personas, one for each representative user
- Expandable (add/remove classifiers/data sources) due to queues

Future work:

- Provide web service with GUI
- Add classifiers and data sources

+: Distance Metric

$$D_{Gower}(x_1, x_2) = \frac{1}{p} \sum_{j=1}^{p} d_j(x_{1j}, x_{2j})$$

Ordinal features

Numerical features

$$d_{j,ord}(x_1, x_2) = \frac{|rank(x_{1j}) - rank(x_{2j})|}{range_j} \qquad d_{j,num}(x_1, x_2) = \frac{|x_{1j} - x_{2j}|}{range_j}$$
$$d_{j,nom}(x_1, x_2) = \begin{cases} 1 & \text{if } x_{1j} \neq x_{2j} \\ 0 & \text{otherwise} \end{cases}$$

Nominal features

Weights

Gender = 0.5 Age = 0.5 Language = 0.3 Interests = 13 Attitude = 0.3

+: Optimal number of clusters

- 20 activities
- 50 activities
- 100 activities

Silhuette score for a sample:

(b - a) / max(a, b)

- a = mean intra-cluster distance
- b = distance to nearest cluster

+: Evaluation metrics

$$Accuracy = \frac{TP + TN}{TP + TN + FP + FN}$$

(Fraction of correct predictions)

$$Precision = \frac{TP}{TP + FP}$$

(What portion of positive predictions was actually correct)

$$Recall = \frac{TP}{TP + FN}$$

(What portion of actual positives was correctly predicted)

+: Gender, age, type classificator

