Infierno y Purgatorio Saga de la Divina Comedia

Universidad de Murcia

Jesús González Abril

October 21, 2025

Contents

Chapter 1

Grupos

1.1 Operaciones binarias

Definition 1.1.1: Operación binaria

Sea X un conjunto. Una operación binaria en X es una aplicación $*: X \times X \to X$. Por lo general escribimos *(a,b) = a*b.

Remark. En general, si por el contexto se sobreentiende que una operación es binaria, se simplifica el lenguaje hablando simplemente de operaciones. De igual manera, normalmente se omite el conjunto sobre el que está definida la operación.

Definition 1.1.2: Tipos de operaciones

Una operación * se dice

- Conmutativa si x * y = y * x para todo $x, y \in X$.
- Asociativa si x * (y * z) = (x * y) * z para todo $x, y, z \in X$.

Definition 1.1.3: Terminología sobre elementos

Un elemento $x \in X$ se dice que es:

- Neutro por la izquierda (neutro por la derecha) si x*y = y para todo $y \in X$ (y*x = y para todo $y \in X$).
- Cancelable por la izquierda (cancelable por la derecha) si para cada dos elementos distintos a ≠ b de X se verifica x * a ≠ x * b (a * x ≠ b * x).
- Neutro si es neutro por la derecha y por la izquierda.
- Cancelable si es cancelable por la izquierda y por la derecha.

Supongamos que e es un elemento neutro de e con respecto e e y elementos de e e Decimos que e es simétrico de e por la izquierda e que e es simétrico de e por la derecha con respecto e e si se verifica e e e . En este contexto decimos que e es:

• **Simétrico** de y si lo es por ambos lados. En tal caso decimos que x es invertible, siendo y su inverso ($y = x^{-1}$ si el inverso es único).

Example 1.1.4

Si x es cancelable por la izquierda, entonces para cualesquiera $\alpha, b \in X$ se tiene

$$x * a = x * b \implies a = b$$

Proof

Supongamos que x * a = x * b, si a = b ya hemos terminado. En caso contrario, a y b son elementos distintos, y, como x es cancelable por la izquierda, entonces debe ser $x * a \neq x * b$, pero eso contradice la suposición inicial, luego ha de ser a = b.

Example 1.1.5

Si x es cancelable por la derecha entonces, para cualesquiera $a,b\in X$ se tiene

$$a * x = b * x \implies a = b$$

Remark. Notemos que esta caracterización no es más que el contrarrecíproco de la primera definición que hemos dado de elemento cancelable.

Definition 1.1.6: Tipos de conjuntos con operaciones

Un par (X, *) formado por un conjunto y una operación * decimos que es un:

- **Semigrupo** si * es asociativa.
- **Monoide** si es un semigrupo que tiene un elemento neutro con respecto a *.
- **Grupo** si es un monoide y todo elemento de X es invertible con respecto a *.
- **Grupo abeliano** si es un grupo y * es conmutativa.

Example 1.1.7

Si tomamos la suma de elementos sobre distintos conjuntos de números obtenemos un ejemplo de cada uno de los tipos de conjuntos con operaciones:

- 1. $(\mathbb{N} \setminus \{0\}, +)$ es un semigrupo, ya que la suma es asociativa, pero no tiene neutro.
- 2. $(\mathbb{N}, +)$ es un monoide, ya que la suma es asociativa y tiene el 0 como neutro.
- 3. $(\mathbb{Z}, +)$ es un grupo, ya que la suma es asociativa, tiene neutro y todos los elementos tienen inverso. De hecho, como la suma es conmutativa es un grupo abeliano.

Example 1.1.8: Grupo no abeliano

Un ejemplo de grupo no abeliano es $GL_n(\mathbb{R})$ si $n \geq 2$. $GL_n(\mathbb{R})$ es el grupo de las matrices invertibles $n \times n$ con entradas reales, donde la operación es la multiplicación de matrices.

Proof

En primer lugar, es inmediato que la operación es asociativa. También es fácil ver que tiene elemento neutro, la matriz identidad I_n . Si tomamos una matriz cualquiera $A \in GL_n(\mathbb{R})$ esta ha de tener inversa, por lo que su elemento inverso es A^{-1} que claramente pertenece a $GL_n(\mathbb{R})$.

Finalmente, para ver que el grupo no es conmutativo notemos que para n=2 podemos tomar las matrices

$$A = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}, B = \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}$$

ambas invertibles por tener determinante no nulo, que verifican

$$AB = \begin{pmatrix} 2 & 1 \\ 1 & 0 \end{pmatrix} \neq BA = \begin{pmatrix} 1 & 2 \\ 1 & 1 \end{pmatrix}.$$

En el caso de que sea n > 2 podemos tomar matrices de la forma

$$A' = \begin{pmatrix} A & 0 \\ 0 & I_{n-2} \end{pmatrix}, B' = \begin{pmatrix} B & 0 \\ 0 & I_{n-2} \end{pmatrix}$$

cuyo producto no conmuta por las propiedades de la multiplicación de matrices por bloques.

Example 1.1.9

Sean A un conjunto y sea $X = A^A$ el conjunto de las aplicaciones de A en A. Probar que la composición de aplicaciones define una operación asociativa en X para la que la identidad 1_X es neutro. Esto prueba que (A^A, \circ) es un monoide.

Proposition 1.1.10

Sea * una operación en un conjunto X.

- 1. Si e es un neutro por la izquierda y f es un neutro por la derecha de X con respecto a *, entonces e = f. En particular, X tiene a lo sumo un neutro.
- 2. Supongamos que (X, *) es un monoide y sea $a \in X$.
 - (a) Si x es un simétrico por la izquierda de α e y es un simétrico por la derecha de α , entonces x=y. Por tanto, en tal caso α es invertible y tiene a lo sumo un simétrico.
 - (b) Si a tiene un simétrico por un lado entonces es cancelable por ese mismo lado. En particular, todo elemento invertible es cancelable.

Proof

(1) Como e es neutro por la izquierda y f es neutro por la derecha tenemos

$$f = e * f = e$$
.

(2a) Ahora suponemos que (X,*) es un monoide. Por (1), (X,*) tiene un único neutro que vamos a denotar por e. Como x es inverso por la izquierda de α e y es inverso por la derecha de α , usando la propiedad asociativa, tenemos que

$$y = e * y = (x * a) * y = x * (a * y) = x * e = x.$$

(2b) Supongamos que a es un elemento de X que tiene un inverso por la izquierda b y que a*x=a*y para $x,y\in X$. Usando la asociatividad una vez más concluimos que

$$x = e * x = (b * a) * x = b * (a * x) = b * (a * y) = (b * a) * y = e * y = y.$$

Remark. Por la proposición anterior si X es un monoide cada elemento invertible α tiene un único inverso que denotaremos α^{-1} .

1.1.1 Subconjuntos y operaciones

Sea * una operación en un conjunto A y sea B un subconjunto de A. Decimos que B es cerrado con respecto a * si para todo $a, b \in B$ se verifica que $a * b \in B$. En tal caso podemos considerar * como una operación en B que se dice inducida por la operación en A.

- Un subsemigrupo de un semigrupo es un subconjunto suyo que con la misma operación es un semigrupo.
- Un submonoide de un monoide es un subconjunto suyo que con la misma operación es un monoide con el mismo neutro.
- Un subgrupo de un grupo es un subconjunto suyo que con la misma operación es un grupo.

1.2 Definiciones y ejemplos

Definition 1.2.1: Grupo

Un grupo es una pareja (G, \cdot) , formada por un conjunto no vacío G junto con una operación binaria, que denotaremos por \cdot , que satisface los siguientes axiomas:

- 1. (Asociativa) $(a \cdot b) \cdot c = a \cdot (b \cdot c)$, para todo $a, b, c \in G$.
- 2. (Neutro) Existe un elemento $e \in G$, llamado elemento neutro del grupo, tal que $e \cdot a = a = a \cdot e$, para todo $a \in G$.
- 3. (Inverso) Para todo $\alpha \in G$ existe otro elemento $\alpha^{-1} \in G$, llamado elemento inverso de α , tal que $\alpha \cdot \alpha^{-1} = e = \alpha^{-1} \cdot \alpha$.

Si además se verifica el siguiente axioma se dice que el grupo es abeliano o conmutativo:

4. (Conmutativa) $a \cdot b = b \cdot a$, para todo $a, b \in G$.

Demostraremos ahora algunas propiedades de los grupos.

Lemma 1.2.2: Propiedades básicas de grupos

Sea (G, \cdot) un grupo.

- 1. (Unicidad del neutro) El neutro de G es único y lo denotaremos e. De hecho, si $a,b \in G$ satisfacen que $a \cdot b = a$ ó $b \cdot a = a$ entonces b = e.
- 3. (Propiedad Cancelativa) Todo elemento de G es cancelativo.
- 4. Para todo $a,b\in G$, las ecuaciones $a\cdot X=b$ y $X\cdot a=b$ tienen una única solución en G.
- 5. $(a \cdot b)^{-1} = b^{-1} \cdot a^{-1}$.

Proof

1. Haremos solo el caso por la derecha, en efecto, si $a \cdot b = a$ entonces

$$b = e \cdot b = a^{-1} \cdot a \cdot b = a^{-1} \cdot a = e$$
.

2. De nuevo hacemos solo el caso $a \cdot b = e$

$$a^{-1} = a^{-1} \cdot e = a^{-1} \cdot a \cdot b = e \cdot b = b.$$

3. Sea $x \in G$, entonces x debe ser cancelable puesto que en caso contrario existirían $a,b \in G$ con $a \neq b$ tales que $x \cdot a = x \cdot b$, pero entonces

$$a = e \cdot a = x^{-1} \cdot x \cdot a = x^{-1} \cdot x \cdot b = e \cdot b = b$$

una contradicción.

4. Sean $a, b \in G$ arbitrarios y x, y dos soluciones cualesquiera, entonces

$$x = e \cdot x = a^{-1} \cdot a \cdot x = a^{-1} \cdot b$$

6

y de igual manera

$$y = e \cdot y = a^{-1} \cdot a \cdot y = a^{-1} \cdot b$$

luego x = y. Para la otra ecuación se razona igual. Notemos que también hemos demostrado la existencia de una solución ($x = a^{-1} \cdot b$).

5. Basta realizar un sencillo cálculo y aplicar el apartado 2

$$(\mathbf{a} \cdot \mathbf{b}) \cdot (\mathbf{b}^{-1} \cdot \mathbf{a}^{-1}) = \mathbf{a} \cdot \mathbf{b} \cdot \mathbf{b}^{-1} \cdot \mathbf{a}^{-1} = \mathbf{a} \cdot \mathbf{e} \cdot \mathbf{a}^{-1} = \mathbf{a} \cdot \mathbf{a}^{-1} = \mathbf{e}.$$

1.2.1 Ejemplos

Example 1.2.3: Grupo trivial

Sea X un conjunto y consideremos la aplicación identidad $1_X : X \to X$ tal que $1_X(x) = x$ para todo $x \in X$. Entonces el conjunto $T = \{1_X\}$ con la operación de composición es un grupo (T, \circ) que llamaremos el grupo trivial (lo denotaremos 1).

En general, podríamos haber definido este grupo como un único elemento $\{x\}$ con la operación descrita por $x \cdot x = x$.

En términos de grupos de transformaciones, el grupo trivial de X es el grupo de transformaciones más pequeño que podemos construir. Que en efecto se trata de un grupo es inmediato.

Example 1.2.4: Grupo simétrico

Sean X un conjunto y S_X el conjunto de todas las biyecciones de X en sí mismo. Entonces (S_X, \circ) es un grupo, llamado grupo simétrico o grupo de las permutaciones de X.

En términos de grupos de transformaciones, el grupo de permutaciones de X es el grupo de transformaciones más grande que podemos construir. Probemos ahora que en efecto es un grupo.

Proof

Prescindiremos del uso de o para simplificar la notación.

1. Asociativa: sean f, g, h biyecciones, dado $x \in X$ cualquiera

$$((fg)h)x = (fg)(h(x)) = f(g(h(x))) = f(gh(x)) = (f(gh))x \implies (fg)h = f(gh)$$

- 2. Neutro: basta considerar la aplicación identidad id(x) = x.
- 3. Inverso: claramente el inverso de una biyección cualquiera f es su inversa f⁻¹, que verifica

$$(ff^{-1})(x) = f(f^{-1}(x)) = x$$

luego $ff^{-1} = id$.

Remark. En general S_X no es un grupo abeliano.

Example 1.2.5: Producto de grupos

Si (G, *) y (H, *) son dos grupos, entonces el producto directo $G \times H$ es un grupo en el que la operación viene dada componente a componente:

$$(g_1, h_1) \cdot (g_2, h_2) = (g_1 * g_2, h_1 * h_2).$$

Más generalmente, si $(G_i)_{i\in I}$ es una familia arbitraria de grupos, entonces el producto directo $\prod_{i\in I}G_i$ tiene una estructura de grupo en el que el producto se realiza componente a componente. Para más información ver la Definición $\ref{eq:componente}$.

Probemos que el producto directo de dos grupos es un grupo:

Proof

1. Asociativa:

$$((g_1, h_1) \cdot (g_2, h_2)) \cdot (g_3, h_3) = (g_1 * g_2, h_1 * h_2) \cdot (g_3, h_3) = (g_1 * g_2 * g_3, h_1 * h_2 * h_3) =$$

$$= (g_1, h_1) \cdot (g_2 * g_3, h_2 * h_3) = (g_1, h_1) \cdot ((g_2, h_2) \cdot (g_3, h_3))$$

donde hemos usado la asociatividad de los grupos G, H.

- 2. Neutro: basta considerar el elemento (e_G,e_H) donde e_G es el neutro de G y e_H el de H.
- 3. Inverso: claramente el inverso de un elemento cualquiera (g_1,h_1) es (g_1^{-1},h_1^{-1}) , que verifica

$$(g_1,h_1)\cdot(g_1^{-1},h_1^{-1})=(g_1\ast g_1^{-1},h_1\ast h_1^{-1})=(e_G,e_H).$$

Example 1.2.6: Tabla de Cayley

Dado un grupo finito podemos construir lo que llamaremos su tabla de Cayley (también llamada tabla de multiplicación o de suma, dependiendo del nombre que le demos a la operación del grupo). Esta tabla se obtiene disponiendo cada uno de los elementos del grupo tanto por columnas como por filas y calculando sus productos. Si el grupo tiene 2 elementos a, b la tabla será de la forma:

$$\begin{array}{c|cccc}
 & a & b \\
\hline
 a & a \cdot a & a \cdot b \\
\hline
 b & b \cdot a & b \cdot b
\end{array}$$

Como ejemplo concreto, la tabla del grupo \mathbb{Z}_3 (enteros módulo 3) es la siguiente:

+	0	1	2
0	0	1	2
1	1	2	0
2	2	0	1

1.2.2 El grupo diédrico

Veamos ahora un grupo con especial significado geométrico. Consideremos un polígono regular de n lados y las transformaciones que lo dejan invariantes (rotaciones y reflexiones), a las que llamaremos simetrías. La composición de dos simetrías de un polígono regular es nuevamente una simetría de este objeto. Considerando la composición de simetrías como operación binaria, esto le da a las simetrías la estructura algebraica de un grupo finito.

8

La siguiente tabla de Cayley muestra el efecto de la composición en el grupo diédrico de orden 6, D_3 – las simetrías de un triángulo equilátero. Aquí, r_0 denota la identidad, r_1 y r_2 denotan rotaciones en sentido antihorario de 120° y 240° respectivamente, mientras que s_0 , s_1 y s_2 denotan reflexiones a través de las tres líneas mostradas en la imagen adyacente.

0	r_0	r_1 r_2 r_0 s_2 s_0 s_1	r_2	s_0	81	s_2
r_0	ro	r_1	r ₂	so	s ₁	s ₂
\mathbf{r}_1	r_1	r_2	r_0	s_1	s_2	s_0
r_2	r_2	r_0	\mathbf{r}_1	s_2	s_0	s_1
s_0	so	s_2	s_1	r_0	\mathbf{r}_2	\mathbf{r}_1
s_1	s ₁	s_0	s_2	\mathbf{r}_1	r_0	r_2
s_2	s ₂	s_1	s_0	r_2	r_1	r_0

Por ejemplo, $s_2s_1=r_1$, porque la reflexión s_1 seguida de la reflexión s_2 resulta en una rotación de 120° . El orden de los elementos que denotan la composición es de derecha a izquierda, reflejando la convención de que el elemento actúa sobre la expresión a su derecha. La operación de composición no es conmutativa.

Él siguiente ejemplo abstrae y generaliza el concepto de grupo diédrico prescindiendo de la interpretación geométrica.

Example 1.2.7: Grupo diédrico

Para cada número natural positivo n definimos un grupo formado por 2n elementos

$$D_n = \{1, \alpha, \alpha^2, \dots, \alpha^{n-1}, b, \alpha b, \alpha^2 b, \dots, \alpha^{n-1} b\}$$

en el que la multiplicación viene dada por la siguiente regla:

$$(a^{i_1}b^{j_1})(a^{i_2}b^{j_2}) = a^{[i_1+(-1)^{j_1}i_2]_n}b^{[j_1+j_2]_2}$$

con notación como en el ejemplo anterior. Este grupo se llama grupo diédrico de orden 2n.

El grupo diédrico infinito D_{∞} está formado por elementos de la forma a^nb^m , con $n\in\mathbb{Z}$ y m=0,1 con el producto $(a^{i_1}b^{j_1})(a^{i_2}b^{j_2})=a^{i_1+(-1)^{j_1}i_2}b^{[j_1+j_2]_2}$.

Si ahora consideramos únicamente las rotaciones que dejan invariante un polígono de n lados obtenemos otro grupo, en este caso con n elementos, cada uno de ellos correspondiente a rotar por un múltiplo de $\frac{360^{\circ}}{n}$. El siguiente ejemplo abstrae este grupo de rotaciones.

Example 1.2.8: Grupo cíclico

Para cada número natural positivo n definimos un grupo C_n formado por n elementos

$$C_n = \{1, \alpha, \alpha^2, \dots, \alpha^{n-1}\},\$$

donde a es un símbolo, y en el que la multiplicación viene dada por la siguiente regla:

$$a^{i}a^{j} = a^{[i+j]_n}$$

donde $[x]_n$ denota el resto de dividir x entre n. Este grupo se llama cíclico de orden n. También definimos el grupo cíclico infinito como el conjunto $C_\infty = \{a^n : n \in \mathbb{Z}\}$, donde a es un símbolo y consideramos $a^n = a^m$ si y solo si n = m, y en el que el producto viene dado por $a^n \cdot a^m = a^{n+m}$.

Remark. Es fácil notar la similitud entre C_n y \mathbb{Z}_n , así como entre C_∞ y \mathbb{Z} . Más tarde formalizaremos esta intuición probando que estos grupos son equivalentes (isomorfos).

Chapter 2

Anillos

2.1 Anillos

Definition 2.1.1: Anillo

Un anillo es una terna $(A, +, \cdot)$ formada por un conjunto no vacío A y dos operaciones + (suma) y \cdot (producto) en A que verifican:

- 1. (A, +) es un grupo abeliano.
- 2. (A, \cdot) es un monoide.
- 3. Distributiva del producto respecto de la suma: $a \cdot (b+c) = (a \cdot b) + (a \cdot c)$ para todo $a,b,c \in A$.

Si además \cdot es conmutativo en A, decimos que $(A, +, \cdot)$ es un anillo conmutativo.

Remark.

- El neutro de A con respecto a + se llama cero y se denota 0.
- *El neutro de* A *con respecto a · se llama uno y se denota* 1.
- El simétrico de un elemento a con respecto a + se llama opuesto y se denota -a.
- Si α es invertible con respecto $a \cdot$, su simétrico se llama inverso y se denota α^{-1} .
- En general para $+ y \cdot usamos$ la notación usual para sumas y productos

$$a \cdot (b+c) = a(b+c) = ab + ac$$
.

Como (A,+) es un grupo, todo elemento de A es invertible respecto de la suma y por tanto cancelable. Diremos que un elemento de A es regular en A si es cancelable con respecto al producto. En caso contrario decimos que el elemento es singular en A o divisor de cero. El termino divisor de cero se justifica por lo siguiente. Supongamos que $x \in A$ no es cancelable respecto al producto, en tal caso existen dos elementos distintos $a \neq b$ tales que ax = bx. Pero entonces es inmediato que

$$(a - b)x = 0$$

sin embargo, ni (a - b) ni x son cero, por lo que podemos interpretar que ambos son «divisores del cero».

2.1.1 Ejemplos de anillo

Example 2.1.2

Los conjuntos \mathbb{Z} , \mathbb{Q} , \mathbb{R} y \mathbb{C} son anillos conmutativos con la suma y el producto usuales. Notemos que todo elemento no nulo de \mathbb{Q} , \mathbb{R} o \mathbb{C} es invertible. Sin embargo, en \mathbb{Z} solo hay dos elementos invertibles (1 y -1) aunque todos los elementos son regulares menos el 0.

Proof

Demostrar que se trata de anillos conmutativos es muy sencillo, basta comprobar que se verifican todas las propiedades pertinentes.

Probaremos que en $\mathbb C$ todos los elementos salvo el 0 son invertibles, el resto de afirmaciones quedan como ejercicio. Sea z=a+bi un número complejo cualquiera no nulo, en tal caso el número $w=\frac{a-bi}{a^2+b^2}$ verifica

$$zw = \frac{(a+bi)(a-bi)}{a^2+b^2} = \frac{a^2-abi+abi-b(-1)}{a^2+b^2} = \frac{a^2+b^2}{a^2+b^2} = 1$$

luego $w = z^{-1}$ y por tanto z tiene inverso.

Example 2.1.3: Producto de anillos

Sean A y B dos anillos. Entonces el producto cartesiano $A \times B$ tiene una estructura de anillo con las operaciones definidas componente a componente:

$$(a_1, b_1) + (a_2, b_2) = (a_1 + a_2, b_1 + b_2)$$

 $(a_1, b_1) \cdot (a_2, b_2) = (a_1 \cdot a_2, b_1 \cdot b_2)$

Obsérvese que $A \times B$ es conmutativo si y solo si lo son A y B, y que esta construcción se puede generalizar a productos cartesianos de cualquier familia (finita o no) de anillos.

Example 2.1.4

Dados un anillo A y un conjunto X, el conjunto A^X de las aplicaciones de X en A es un anillo con las siguientes operaciones:

$$(f+g)(x) = f(x) + g(x)$$

$$(f \cdot g)(x) = f(x) \cdot g(x)$$

Si definimos la familia de conjuntos $\{A_i = A : i \in X\}$ entonces es inmediato que $\cup_{i \in X} A_i = A$. Recordemos ahora que el producto $\prod_{i \in X} A_i$ es el conjunto de funciones $f: X \to \cup_{i \in X} A_i$, es decir, el conjunto de funciones $f: X \to A$, luego A^X es un anillo correspondiente a un producto «infinito» del anillo A consigo mismo. Para más información ver la Definición $\ref{eq:conjunto}$.

Example 2.1.5: Anillo de polinomios

Dado un anillo A, un polinomio en una indeterminada es una expresión:

$$P = a_0 + a_1 X + a_2 X^2 + \cdots + a_n X^n$$

donde $n \ge 0$ y $a_i \in A$ para todo i. El conjunto de polinomios con coeficientes en A se denota A[X]. La suma y producto en A[X] se definen de la forma usual.

Example 2.1.6: Sucesiones

Dado un anillo A, denotamos por A[[X]] el conjunto de sucesiones $(a_0, a_1, a_2, ...)$ de elementos de A. Con las operaciones:

$$(a_0, a_1, \ldots) + (b_0, b_1, \ldots) = (a_0 + b_0, a_1 + b_1, \ldots),$$

$$(a_0, a_1, \ldots)(b_0, b_1, \ldots) = (a_0b_0, a_0b_1 + a_1b_0, \ldots),$$

A[[X]] es un anillo llamado anillo de series de potencias con coeficientes en A.

2.1.2 Propiedades de los anillos

Lemma 2.1.7

Sea A un anillo y sean $a, b, c \in A$. Se verifican las siguientes propiedades

- 1. Todo elemento de A es cancelable respecto de la suma.
- 2. Todo elemento invertible de A es regular en A.
- 3. Si b + a = a entonces b = 0. Si ba = a para todo a, entonces b = 1. En particular, el cero y uno son únicos.
- 4. El opuesto de a es único y si a es invertible, entonces a tiene un único inverso.
- 5. 0a = 0 = a0.
- 6. a(-b) = (-a)b = -(ab).
- 7. a(b c) = ab ac.
- 8. a y b son invertibles si y solo si ab y ba son invertibles. En tal caso $(ab)^{-1} = b^{-1}a^{-1}$.
- 9. Si 0 = 1 entonces $A = \{0\}$.

Proof

- 1. Como A es un grupo respecto de la suma todo elemento tiene inverso, y por la Proposición ?? todo elemento invertible (respecto a la suma) es cancelable (respecto a la suma).
- 2. De nuevo por la Proposición ?? todo elemento invertible (respecto al producto) es cancelable (respecto al producto).
- 3. Si b + a = a entonces como a es cancelable por el apartado 1, tenemos b = 0. Si ba = a para todo a, entonces como el neutro es único b = 1.
- 4. De nuevo se sigue de la Proposición ??.

5. Basta aplicar un pequeño truco

$$0a = (0+0)a = 0a + 0a \implies 0 = 0a$$

para el caso a0 se procede igual.

6. Basta notar que

$$ab+a(-b)=a(b-b)=0,$$
 $ab+(-a)b=(a-a)b=0 \implies -(ab)=a(-b)=(-a)b$ ya que los opuestos son únicos.

- 7. a(b-c) = a(b+(-c)) = ab + a(-c) = ab + (-ac) = ab ac.
- 8. En primer lugar si a, b son invertibles entonces existen a^{-1} , b^{-1} y es fácil ver que

$$ab(b^{-1}a^{-1}) = e = (b^{-1}a^{-1})ab, ba(a^{-1}b^{-1}) = e = (a^{-1}b^{-1})ba$$

luego ab, ba son invertibles. Para el recíproco, si ab, ba son invertibles entonces

$$a(b(ab)^{-1}) = ab(ab)^{-1} = e, ((ba)^{-1}b)a = (ba)^{-1}ba = e$$

por tanto, por la Proposición ?? ambos simétricos $b(ab)^{-1}$, $(ba)^{-1}b$ son iguales (ambos son a^{-1}) y a es invertible. Para ver que b es invertible se procede igual.

9. Si 0 = 1 entonces dado $x \in A$ tenemos

$$x = x1 = x0 = 0 \implies A = \{0\}.$$

Dados un anillo A, un elemento $a \in A$ y un entero positivo n, la notación na (respectivamente a^n) representa el resultado de sumar (respectivamente multiplicar) a consigo mismo n veces, y si n=0 convenimos que 0a=0 y $a^0=1$. Más rigurosamente, a partir de estas últimas igualdades se definen na y a^n de forma recurrente poniendo (n+1)a=a+na y $a^{n+1}=aa^n$ para $n\geq 0$. Por último, si $n\geq 1$ se define (-n)a=-(na), y si además a es invertible se define $a^{-n}=(a^{-1})^n$.

Lemma 2.1.8

Sea A un anillo, $a, b \in A$, $y m, n \in \mathbb{Z}$. Se verifican:

- 1. n(a + b) = na + nb.
- 2. (n + m)a = na + ma.
- 3. Si $n, m \ge 0$, entonces $a^{n+m} = a^n a^m$. Si a es invertible, la igualdad vale para n, m arbitrarios.
- 4. Si A es conmutativo y $n \ge 0$, entonces $(ab)^n = a^n b^n$. Si a y b son invertibles, la igualdad vale para todo n.

Proof

1. Por inducción: el caso base n = 0 es inmediato, si lo suponemos para n entonces

$$(n+1)(a+b) = (a+b) + na + nb = (n+1)a + (n+1)b.$$

- 2. Basta aplicar recursivamente que (n + 1)a = a + na.
- 3. Basta aplicar recursivamente que $\mathfrak{a}^{n+1}=\mathfrak{a}\mathfrak{a}^n$. Si \mathfrak{a} es invertible entonces podemos usar que $\mathfrak{a}^{-n}=(\mathfrak{a}^{-1})^n$ distinguiendo casos. Por ejemplo si n>0, m<0, n>m

entonces

$$\alpha^n\alpha^m=\alpha^n(\alpha^{-1})^{-m}=\alpha^{n+m}\alpha^{-m}(\alpha^{-1})^{-m}=\alpha^{n+m}.$$

4. Por inducción: el caso base $\mathfrak{n}=\mathfrak{0}$ es inmediato, si lo suponemos para \mathfrak{n} entonces

$$(\mathfrak{a}\mathfrak{b})^{n+1}=\mathfrak{a}\mathfrak{b}(\mathfrak{a}\mathfrak{b})^n=\mathfrak{a}\mathfrak{b}\mathfrak{a}^n\mathfrak{b}^n=\mathfrak{a}\mathfrak{a}^n\mathfrak{b}\mathfrak{b}^n=\mathfrak{a}^{n+1}\mathfrak{b}^{n+1}.$$

Cuando a y b son invertibles, si $\mathfrak{n} < 0$

$$(\alpha b)^n = ((\alpha b)^{-1})^{-n} = (b^{-1}\alpha^{-1})^{-n} = (b^{-1})^{-n}(\alpha^{-1})^{-n} = b^n\alpha^n.$$

2.2 Subanillos

Remark. A partir de ahora supondremos que todos los anillos que aparecen son conmutativos.

Sea * una operación en un conjunto A y sea B un subconjunto de A. Decimos que B es cerrado con respecto a * si para todo a, $b \in B$ se verifica que $a * b \in B$. En tal caso podemos considerar * como una operación en B que se dice inducida por la operación en A.

Definition 2.2.1: Subanillo

Un subanillo de un anillo es un subconjunto suyo que con la misma suma y producto es un anillo con el mismo uno.

Proposition 2.2.2: Caracterización de subanillos

Las siguientes condiciones son equivalentes para $B \subseteq A$:

- 1. B es un subanillo de A.
- 2. B contiene al 1 y es un anillo, luego es cerrado para sumas, productos y opuestos.
- 3. B contiene al 1 y es cerrado para restas y productos.

Proof

- $(1) \implies (2)$: Si B es un subanillo de A entonces contiene al 1 y es cerrado para sumas y productos. Por otro lado, como B es un anillo, tiene un cero, que de momento denotamos 0_B y cada elemento $b \in B$ tiene un opuesto en B. En realidad $0_B + 0_B = 0_B = 0 + 0_B$, con lo que aplicando la propiedad cancelativa de la suma deducimos que $0_B = 0$, o sea, el cero de A está en B y por tanto es el cero de B (el único que puede tener). Por la unicidad del opuesto, el opuesto de b ha de ser el de A, con lo que B es cerrado para opuestos.
- $(2) \implies (3)$: Inmediato.
- (3) \implies (1): Si B contiene al 1 y es cerrado para restas, entonces $0 = 1 1 \in B$, y para $b \in B$, $-b = 0 b \in B$. Además, $a + b = a (-b) \in B$, luego B es cerrado para sumas, por tanto, es un subanillo de A.

Example 2.2.3: Subanillo impropio

Todo anillo A es un subanillo de si mismo, al que llamamos impropio por oposición al resto de subanillos, que se dicen propios.

Example 2.2.4

En la cadena de contenciones $\mathbb{Z}\subset\mathbb{Q}\subset\mathbb{R}\subset\mathbb{C}$ cada uno es un subanillo de los posteriores.

Example 2.2.5

Si A es un anillo, el subconjunto $\{0\}$ es cerrado para sumas, productos y opuestos. Si $A = \{0\}$ entonces $\{0\}$ sería subanillo de A, pero este es el único caso en el que esto pasa pues en todos los demás casos $1 \neq 0$.

En efecto si 1 = 0 entonces para cualquier $a \in A$, a = 1 a = 0 $a = 0 \implies A = \{0\}$.

Example 2.2.6

Si A y B son anillos entonces $A \times \{0\}$ es un anillo, pero no es un subanillo de $A \times B$ porque no contiene a $(1_A, 1_B)$.

De igual manera, $A \times \{1_B\}$ con las operaciones

$$(a, 1_B) + (b, 1_B) = (a + b, 1_B), (a, 1_B) \cdot (b, 1_B) = (ab, 1_B)$$

es un anillo, pero no es subanillo de $A \times B$ porque las operaciones no son las inducidas por la operaciones de $A \times B$.

Proof

Veamos que $A \times \{1_B\}$ es un anillo con las operaciones indicadas. Claramente es un grupo abeliano para la suma con $-(\mathfrak{a},1_B)=(-\mathfrak{a},1_B)$. También es un monoide para el producto con neutro $(1_A,1_B)$ ya que $(1_A,1_B)(\mathfrak{a},1_B)=(\mathfrak{a},1_B)$. Finalmente la conmutatividad es fácil de comprobar gracias a que A es un anillo

$$(a, 1_B)[(b, 1_B) + (c, 1_B)] = (a, 1_B)(b + c, 1_B) = (ab + ac, 1_B)$$

= $(ab, 1_B) + (ac, 1_B) = (a, 1_B)(b, 1_B) + (a, 1_B)(c, 1_B).$

Example 2.2.7: Subanillo primo

Si A es un anillo entonces el conjunto:

$$\mathbb{Z}1 = \{n1 : n \in \mathbb{Z}\}$$

es un subanillo de A contenido en cualquier otro subanillo de A. Este se conoce como el subanillo primo de A.

Remark. \mathbb{Z} y los \mathbb{Z}_n son sus propios subanillos primos, por tanto, no tienen subanillos propios.

Example 2.2.8

Dado un número entero m, los conjuntos:

$$\begin{split} \mathbb{Z}[\sqrt{m}] &= \{a + b\sqrt{m} : a, b \in \mathbb{Z}\} \\ \mathbb{Q}[\sqrt{m}] &= \{a + b\sqrt{m} : a, b \in \mathbb{Q}\} \end{split}$$

son subanillos de \mathbb{C} .

Observaciones:

- Si m > 0, ambos son subanillos de $\mathbb R$
- Si m es un cuadrado perfecto, estos conjuntos coinciden con $\mathbb Z$ y $\mathbb Q$ respectivamente
- Cuando m no es cuadrado perfecto, la igualdad $a + b\sqrt{m} = 0$ implica a = 0 y b = 0

Caso particular importante:

• $\mathbb{Z}[i] = \{a + bi : a, b \in \mathbb{Z}\}\ \text{con } i = \sqrt{-1}\ \text{es el anillo de los enteros de Gauss}$

Example 2.2.9

Todo anillo A puede verse como un subanillo del anillo de polinomios A[X] identificando los elementos de A con los polinomios constantes (del tipo $P = a_0$).

Example 2.2.10: Diagonal

Sea A un anillo y X un conjunto. Entonces la diagonal:

$$B = \{ f \in A^X : f(x) = f(y) \text{ para todo } x, y \in X \}$$

(es decir, el conjunto de las aplicaciones constantes de X en A) es un subanillo de A^X .

Proof

Claramente B contiene a la aplicación $1: A \to X$ dada por $1(x) = 1_A$, $\forall x \in X$. Es fácil notar que esta aplicación es el elemento neutro del producto en A^X . Sean $f, g \in B$, entonces h = f - g está en B ya que

$$\forall x, y \in X \quad h(x) = f(x) - g(x) = f(y) - g(y) = h(y)$$

luego B es cerrado para restas, de igual manera sea H = fg, entonces

$$\forall x, y \in X \quad H(x) = f(x)g(x) = f(y)g(y) = H(y)$$

lo que prueba que B es cerrado para productos. Por tanto, por $\ref{eq:B}$ B es un subanillo de A^X .

Example 2.2.11

Sea $A = M_n(B)$, donde B es un anillo. Son subanillos:

- El conjunto de las matrices diagonales
- El conjunto de las matrices escalares: $\{aI_n : a \in B\}$
- El conjunto de las matrices triangulares superiores

Example 2.2.12

Sea $A = B \times B$, con B un anillo. Son subanillos:

- $A_1 = \{(b, b) : b \in B\}$ (la diagonal)
- $A_2 = B_1 \times B_2$, donde B_1 y B_2 son subanillos de B_1

Example 2.2.13

Sea A un anillo cualquiera y B un subanillo de A. Para $\alpha \in A$, el conjunto:

$$A_1 = \{\alpha_0 + \alpha_1 \alpha + \alpha_2 \alpha^2 + \dots + \alpha_n \alpha^n : n \ge 0, \alpha_0, \alpha_1, \dots, \alpha_n \in B\}$$

es un subanillo de A llamado subanillo generado por B y α .

2.3 Homomorfismos de anillos

Definition 2.3.1: Homomorfismo de anillos

Sean A y B dos anillos. Un homomorfismo de anillos entre A y B es una aplicación $f: A \rightarrow B$ que satisface:

- 1. f(x + y) = f(x) + f(y)
- 2. $f(x \cdot y) = f(x) \cdot f(y)$
- 3. f(1) = 1

Un isomorfismo es un homomorfismo biyectivo. Dos anillos A y B son isomorfos ($A \cong B$) si existe un isomorfismo entre ellos.

Remark. En la definición anterior hemos usado el mismo símbolo para las operaciones en ambos anillos, pero es importante notar que:

- En f(x + y), la suma se realiza en A
- En f(x) + f(y), la suma se realiza en B
- Lo mismo aplica para el producto

Definition 2.3.2: Tipos de homomorfismos

- Un endomorfismo es un homomorfismo de un anillo en sí mismo.
- Un isomorfismo es un homomorfismo biyectivo.
- Un automorfismo es un isomorfismo de un anillo en sí mismo.

Example 2.3.3

Si B = $\{0\}$ entonces la aplicación $f(a) = 0_B, \forall a \in A$ es un homomorfismo. Si B $\neq \{0\}$ entonces f no es un homomorfismo ya que $f(1) = 0_B \neq 1_B$.

Proposition 2.3.4: Propiedades básicas

Sea $f:A\to B$ un homomorfismo de anillos. Entonces para todo $a,b,a_1,\ldots,a_n\in A$ se verifica:

- 1. $f(O_A) = O_B$
- 2. $f(-\alpha) = -f(\alpha)$
- 3. f(a b) = f(a) f(b)
- 4. $f(a_1 + \cdots + a_n) = f(a_1) + \cdots + f(a_n)$
- 5. f(na) = nf(a) para todo $n \in \mathbb{Z}$
- 6. Si a es invertible en A, entonces f(a) es invertible en B y $f(a^{-1}) = f(a)^{-1}$
- 7. $f(a_1 \cdots a_n) = f(a_1) \cdots f(a_n)$

Proof

En la mayoría de apartados usaremos los anteriores.

- 1. $f(O_A) = f(O_A + O_A) = f(O_A) + f(O_A)$, luego por cancelación en B, $f(O_A) = O_B$.
- 2. $f(a) + f(-a) = f(a + (-a)) = f(0_A) = 0_B$, luego f(-a) = -f(a).
- 3. f(a-b) = f(a+(-b)) = f(a) + f(-b) = f(a) f(b).
- 4. Por inducción, el caso n = 2 es inmediato. Si lo suponemos cierto para n entonces

$$f(a_1 + \cdots + a_{n+1}) = f(a_1 + \cdots + a_n) + f(a_{n+1}) = f(a_1) + \cdots + f(a_n) + f(a_{n+1}).$$

5. Por inducción, el caso n = 1 es inmediato. Si lo suponemos cierto para n entonces

$$f((n+1)\alpha)=f(n\alpha+\alpha)=f(n\alpha)+f(\alpha)=nf(\alpha)+f(\alpha)=(n+1)f(\alpha).$$

- 6. Si α es invertible $\alpha\alpha^{-1}=1_A$, luego $f(\alpha)f(\alpha^{-1})=f(\alpha\alpha^{-1})=f(1_A)=1_B$, por tanto $f(\alpha^{-1})=f(\alpha)^{-1}$.
- 7. Por inducción, el caso n = 1 es inmediato. Si lo suponemos cierto para n entonces

$$f(\alpha_1 \cdots \alpha_{n+1}) = f(\alpha_1 \cdots \alpha_n) f(\alpha_{n+1}) = f(\alpha_1) \cdots f(\alpha_n) f(\alpha_{n+1}).$$

Definition 2.3.5: Núcleo e imagen

Sea $f : A \rightarrow B$ un homomorfismo de anillos. Definimos:

- El núcleo de f: $\ker f = \{\alpha \in A : f(\alpha) = 0_B\}$
- La imagen de f: Im $f = \{f(a) \in B : a \in A\}$

Resulta interesante ahora estudiar algunas propiedades del núcleo y la imagen, en concreto, su relación con los ideales (ver ??).

Proposition 2.3.6: Propiedades del núcleo e imagen

Sea $f : A \rightarrow B$ un homomorfismo de anillos. Entonces:

- 1. ker f es un ideal de A
- 2. Im f es un subanillo de B
- 3. f es inyectivo si y solo si ker $f = \{0_A\}$
- 4. f es sobreyectivo si y solo si Im f = B

Proof

- 1. Para ver que ker f es un ideal:
 - $0_A \in \ker f$ pues $f(0_A) = 0_B$, luego $\ker f$ es no vacío.
 - Si $x, y \in \ker f$, entonces $f(x+y) = f(x) + f(y) = 0_B + 0_B = 0_B$, luego $x+y \in \ker f$.
 - Si $x \in \ker f$ y $a \in A$, entonces $f(ax) = f(a)f(x) = f(a)0_B = 0_B$, luego $ax \in \ker f$
- 2. Basta notar lo siguiente:

- $1_B = f(1_A) \in Im f$.
- Si $a, b \in \text{Im } f$, entonces f(x) = a, f(y) = b para ciertos $x, y \in A$, luego $a b = f(x) f(y) = f(x y) \in \text{Im } f$.
- Si $a, b \in \text{Im } f$, entonces f(x) = a, f(y) = b para ciertos $x, y \in A$, luego $ab = f(x)f(y) = f(xy) \in \text{Im } f$.
- 3. Si f es inyectivo y $x \in \ker f$, entonces $f(x) = 0_B = f(0_A)$, luego $x = 0_A$. Recíprocamente, si $\ker f = \{0_A\}$ y f(a) = f(b), entonces $f(a-b) = 0_B$, luego $a-b \in \ker f = \{0_A\}$, por tanto a = b.
- 4. Es inmediato.

2.3.1 Ejemplos de homomorfismos

Example 2.3.7: Homomorfismo inclusión

Si B es un subanillo de A, la aplicación inclusión $i: B \hookrightarrow A$ dada por i(b) = b es un homomorfismo inyectivo ya que ker $i = \{0\}$.

Example 2.3.8: Homomorfismo proyección

Si I es un ideal de A, la proyección canónica $\eta:A\to A/I$ dada por $\pi(\mathfrak{a})=\mathfrak{a}+I$ es un homomorfismo suprayectivo con ker $\eta=I$.

Remark. Usamos indiscriminadamente η o p para denominar a esta proyección canónica.

Example 2.3.9: Homomorfismo de sustitución

Sea A un anillo y $b \in A$. La aplicación $\phi_b : A[X] \to A$ dada por:

$$\varphi_b(\alpha_0 + \alpha_1 X + \dots + \alpha_n X^n) = \alpha_0 + \alpha_1 b + \dots + \alpha_n b^n$$

es un homomorfismo suprayectivo llamado homomorfismo de sustitución en b. Para ver que es suprayectivo notemos que dado $a \in A$ el polinomio $a = aX^0 \in A[X]$, luego $\eta(aX^0) = a$.

Example 2.3.10: Homomorfismo único $\mathbb{Z} \to A$

Para cualquier anillo A, existe un único homomorfismo $f: \mathbb{Z} \to A$ dado por $f(n) = n1_A$.

Example 2.3.11: Conjugación en $\mathbb C$

La conjugación compleja $f: \mathbb{C} \to \mathbb{C}$ dada por f(a + bi) = a - bi es un automorfismo de \mathbb{C} . Claramente es inyectivo ($f(z) = 0 \iff z = 0 \implies \ker f = \{0\}$) y también sobreyectivo.

2.3.2 Propiedades de los homomorfismos

Proposition 2.3.12: Composición de homomorfismos

Si $f:A\to B$ y $g:B\to C$ son homomorfismos de anillos, entonces la composición $g\circ f:A\to C$ es un homomorfismo de anillos.

Proof

Claramente $g \circ f(1) = g(f(1)) = g(1) = 1$. Para la suma

$$g \circ f(x + y) = g(f(x + y)) = g(f(x) + f(y)) = g(f(x)) + g(f(y)) = g \circ f(x) + g \circ f(y)$$

y para el producto

$$g \circ f(xy) = g(f(xy)) = g(f(x)f(y)) = g(f(x))g(f(y)) = g \circ f(x)g \circ f(y).$$

Proposition 2.3.13: Propiedades de isomorfismos

- 1. La composición de isomorfismos es un isomorfismo.
- 2. Si f : A \rightarrow B es un isomorfismo, entonces f⁻¹ : B \rightarrow A es un isomorfismo.
- 3. La relación «ser isomorfo» es una relación de equivalencia en la clase de todos los anillos.

Proof

- 1. La composición de homomorfismos es homomorfismo y la composición de aplicaciones biyectivas es biyectiva.
- 2. Claramente $f^{-1}(1) = 1$. Para la suma

$$f(f^{-1}(x+y)) = x + y = f(f^{-1}(x)) + f(f^{-1}(y)) = f(f^{-1}(x) + f^{-1}(y))$$

luego por la inyectividad de f debe ser $f^{-1}(x+y)=f^{-1}(x)+f^{-1}(y)$. Para el producto hacemos el mismo truco

$$f(f^{-1}(xy)) = xy = f(f^{-1}(x))f(f^{-1}(y)) = f(f^{-1}(x)f^{-1}(y))$$

luego por la inyectividad de f tenemos $f^{-1}(xy) = f^{-1}(x)f^{-1}(y)$.

- 3. Resumidamente
 - Reflexividad: basta considerar la identidad id que es isomorfismo.
 - Simetría: si $A \cong B$ entonces existe $f : A \to B$ isomorfismo, luego $f^{-1} : B \to A$ es isomorfismo y, por tanto, $B \cong A$.
 - Transitividad: se sigue de que la composición de isomorfismos es isomorfismo.

Proposition 2.3.14: Preservación de subestructuras

Sea $f : A \rightarrow B$ un homomorfismo de anillos.

- 1. Si A_1 es un subanillo de A, entonces $f(A_1)$ es un subanillo de B
- 2. Si B_1 es un subanillo de B, entonces $f^{-1}(B_1)$ es un subanillo de A
- 3. Si I es un ideal de B, entonces $f^{-1}(I)$ es un ideal de A
- 4. Si f es sobreyectivo e I es un ideal de A, entonces f(I) es un ideal de B.

Proof

- 1. Como A_1 es subanillo contiene al uno, luego $f(A_1)$ también, que es cerrado para restas y productos es inmediato.
- 2. Como B_1 es subanillo contiene al uno, luego $f^{-1}(B_1)$ también. Sean $x,y\in f^{-1}(B_1)$, es cerrado para restas ya que

$$f(x-y) = f(x) - f(y) \in B_1 \implies x-y \in f^{-1}(B_1)$$

al ser B₁ cerrado para restas. Para el producto se razona igual.

3. Si I es un ideal contiene al 0, luego $f^{-1}(I)$ es no vacío. Si $x,y\in f^{-1}(I)$ entonces $f(x),f(y)\in I$, por tanto, $f(x+y)=f(x)+f(y)\in I$ y finalmente $x+y\in f^{-1}(I)$. De igual manera, sea $\alpha\in A$, entonces

$$f(\alpha x) = f(\alpha)f(x) \in I \implies \alpha x \in f^{-1}(I)$$

ya que $f(a) \in B$ e I es un ideal.

4. Claramente f(I) es no vacío ya que $0 \in I \implies f(0) \in f(I)$. Si $x,y \in f(I)$, entonces, x = f(a), y = f(b) y

$$x + y = f(a) + f(b) = f(a + b) \in f(I)$$

ya que $a+b \in I$ al ser ideal. Para el producto necesitaremos la sobreyectividad, dado $z \in B$ entonces existe $c \in A$ tal que z = f(c), luego

$$zx = f(c)f(a) = f(ca) \in f(I)$$

porque $ca \in I$ al ser ideal.

Remark. La imagen de un ideal por un homomorfismo no necesariamente es un ideal si el homomorfismo no es suprayectivo.

Example 2.3.15: Contraejemplo

Sea $i: \mathbb{Z} \hookrightarrow \mathbb{Q}$ la inclusión. El conjunto $2\mathbb{Z}$ es un ideal de \mathbb{Z} , pero $i(2\mathbb{Z}) = 2\mathbb{Z}$ no es un ideal de \mathbb{Q} , pues por ejemplo $\frac{1}{2} \in \mathbb{Q}$ y $2 \in 2\mathbb{Z}$, pero $\frac{1}{2} \cdot 2 = 1 \notin 2\mathbb{Z}$ en \mathbb{Q} .

Theorem 2.3.16: Homomorfismos en productos

Sean A, B, C anillos. Existe una biyección natural Φ tal que

$$Hom(A, B \times C) \cong Hom(A, B) \times Hom(A, C)$$

dada por $f\mapsto (\pi_B\circ f,\pi_C\circ f)$, donde π_B y π_C son las proyecciones canónicas.

Example 2.3.17: Aplicación

Para determinar todos los homomorfismos $f: \mathbb{Z} \to \mathbb{Z}_2 \times \mathbb{Z}_3$, basta determinar los homomorfismos $\mathbb{Z} \to \mathbb{Z}_2$ y $\mathbb{Z} \to \mathbb{Z}_3$ por separado.

Proof

Si $f:\mathbb{Z}\to\mathbb{Z}_2$ es un homomorfismo entonces

$$f(1) = [1]_2, f(n) = nf(1) = n[1]_2 = [n]_2$$

luego solo existe un homomorfismo de ese tipo.

Similarmente, si $f:\mathbb{Z}\to\mathbb{Z}_3$ es un homomorfismo entonces

$$f(1) = [1]_3, f(n) = nf(1) = n[1]_3 = [n]_3$$

por tanto este homomorfismo también esta totalmente determinado. Finalmente deducimos que el único homomorfismo de \mathbb{Z} a $\mathbb{Z}_2 \times \mathbb{Z}_3$ es

$$g(n) = ([n]_2, [n]_3).$$

2.4 Ideales y anillos cociente

Supongamos que queremos construir un anillo cociente A/I que herede la estructura algebraica de A. Para ello, necesitamos definir una relación de equivalencia compatible con las operaciones del anillo. Si consideramos (A, +) como grupo abeliano bajo la suma, para formar el grupo cociente (A/I, +) necesitamos que I sea un subgrupo normal de (A, +). Como A es abeliano, todo subgrupo es normal, por lo que basta con que I sea un subgrupo de (A, +), es decir:

- 0 ∈ I
- Si $a, b \in I$, entonces $a + b \in I$
- Si $a \in I$, entonces $-a \in I$

Esto nos permite definir el grupo cociente (A/I, +) con la operación:

$$(a + I) + (b + I) = (a + b) + I$$

que está bien definida gracias a que I es subgrupo.

Sin embargo, para que A/I herede la estructura de anillo, necesitamos definir también una multiplicación. La definición natural sería:

$$(a+I)(b+I) = ab + I$$

Sin embargo, debemos verificar que esta operación esta bien definida. Supongamos que tomamos diferentes representantes de las clases:

$$a + I = a' + I, \quad b + I = b' + I$$

esto significa que

$$a - a' \in I$$
 y $b - b' \in I$.

Para que el producto esté bien definido, debemos tener:

$$ab + I = a'b' + I$$

es decir

$$ab - a'b' \in I$$
.

Finalmente observemos que:

$$ab - a'b' = ab - ab' + ab' - a'b' = a(b - b') + (a - a')b'$$

Como $b-b'\in I$ y $\mathfrak{a}-\mathfrak{a}'\in I$, para garantizar que $\mathfrak{a}b-\mathfrak{a}'b'\in I$, necesitamos que:

- 1. Si $x \in I$ y $a \in A$, entonces $ax \in I$
- 2. Si $x \in I$ y $a \in A$, entonces $xa \in I$

En un anillo conmutativo, estas dos condiciones son equivalentes. Esto nos lleva a la siguiente definición.

Definition 2.4.1: Ideal

Un subconjunto I de un anillo A es un ideal si:

- 1. $I \neq \emptyset$
- 2. Para todo $x, y \in I$, se verifica que $x + y \in I$
- 3. Para todo $x \in I$ y $a \in A$, se verifica que $ax \in I$

Si I es un ideal de A escribiremos $I \leq A$.

Remark.

- La condición $I \neq \emptyset$ puede sustituirse por $0 \in I$, ya que si $a \in I$ entonces $0 = a + (-1)a \in I$.
- Si I es un ideal de A, entonces para todo $a_1, \ldots, a_n \in A$ y $x_1, \ldots, x_n \in I$ se tiene que $\sum_{i=1}^n a_i x_i \in I$.
- Todo ideal es un grupo respecto de la suma.

Example 2.4.2: Ideales triviales

- El ideal cero: {0}
- El ideal impropio: A

Todo aquel ideal que no sea impropio, es decir, que verifique $I \le A$, $I \ne A$ se llama ideal propio. En ocasiones nos interesará trabajar solo con ideales que sean propios, por lo que resulta muy útil caracterizar aquellos que no lo son.

Lemma 2.4.3: Caracterización de ideales impropios

Sea A un anillo. Para un ideal $I \le A$, las siguientes condiciones son equivalentes:

- 1. I = A, es decir, I es un ideal impropio.
- 2. $1 \in I$
- 3. I contiene una unidad de A (i.e., $I \cap A^* \neq \emptyset$)

Proof

- (1) \Longrightarrow (2): si I = A, entonces 1 \in I
- (2) => (3): 1 es una unidad
- (3) \Longrightarrow (1): $\operatorname{si} \mathfrak{u} \in I \cap A^*$, entonces $1 = \mathfrak{u}\mathfrak{u}^{-1} \in I$, luego I = A

2.4.1 Ejemplos de ideales

Example 2.4.4: Ideales principales

Sea A un anillo y $b \in A$. El conjunto:

$$(b)=bA=\{b\alpha:\alpha\in A\}$$

es un ideal de A llamado ideal principal generado por b. Observaciones:

- (1) = A
- $(0) = \{0\}$
- (b) es el menor ideal de A que contiene a b

Example 2.4.5: Ideal generado por un conjunto

Sea $T \subseteq A$. El ideal generado por T es:

$$(T) = \left\{ \sum_{i=1}^{n} \alpha_i t_i : n \ge 0, \alpha_i \in A, t_i \in T \right\}$$

Este es el menor ideal de A que contiene a T.

Remark. Frecuentemente, cuando el conjunto sea finito escribiremos

$$(\{x_1, x_2, \dots, x_n\}) = (x_1, x_2, \dots, x_n)$$

Example 2.4.6: Ideales en anillos producto

Si A y B son anillos, entonces $A \times \{0\} = \{(\alpha, 0) : \alpha \in A\}$ es un ideal de $A \times B$.

Proof

Claramente es no vacío. Si $x, y \in A \times \{0\}$ entonces

$$x = (a, 0), y = (b, 0) \implies x + y = (a + b, 0) \in A \times \{0\}.$$

Si $(a', b') \in A \times B$ entonces

$$(a',b')x = (a',b')(a,0) = (aa',0) \in A \times \{0\}.$$

Example 2.4.7: Ideales en anillos de polinomios

Sea A[X] el anillo de polinomios.

- I = $\{a_1X+\cdots+a_nX^n:a_i\in A\}$ (polinomios sin coeficiente independiente) es un ideal
- Si I es ideal de A, entonces $J = \{a_0 + a_1X + \cdots + a_nX^n : a_0 \in I\}$ es un ideal de A[X]
- $I[X] = \{a_0 + a_1X + \cdots + a_nX^n : a_i \in I\}$ es un ideal de A[X]

Proof

• Que I es no vacío es inmediato. Si $P, Q \in I$ entonces son de la forma

$$P = a_1X + \cdots + a_nX^n$$
, $Q = b_1X + \cdots + b_mX^m$

donde podemos suponer sin pérdida de generalidad que $m\ge n$, luego definiendo $c_k=a_k+b_k$ (tomando $a_k=0$ si k>n) tenemos

$$P + Q = c_1X + \cdots + c_mX^m \in I.$$

De igual manera, el producto de polinomios sin término independiente es un polinomio sin término independiente. Sea d_0 , $d_1=0$, $d_k=\sum_{i+j=k}a_ib_j$

$$PQ = a_1b_1X^2 + \dots + a_nb_mX^{n+m} = d_2X^2 + \dots + d_{n+m}X^{n+m} \in I.$$

• Como I es no vacío existe $y \in I$, luego el polinomio $y = yX^0 \in J$ y J es no vacío. Dados $P,Q \in J$ su suma es el polinomio con coeficientes obtenidos sumando los de

P y Q, como ambos coeficientes independiente están en I, que es un ideal, su suma también está en I, luego P + Q \in J. Para el producto, notemos que el coeficiente independiente de PQ es el producto de dos elementos de I, luego está en I y por tanto PQ \in J.

• Como I es no vacío existe $y \in I$, luego el polinomio $y = yX^0 \in I[X]$ e I[X] es no vacío. Dados $P, Q \in I[X]$ su suma es el polinomio con coeficientes obtenidos sumando los de P y Q, como estos coeficientes están en I, que es un ideal, su suma también está en I, luego $P + Q \in I[X]$. Para el producto, notemos que los coeficientes de PQ son combinaciones de elementos obtenidos como producto de dos elementos de I, luego los coeficientes de PQ están en I y por tanto $PQ \in I[X]$.

Proposition 2.4.8: Intersección de ideales

La intersección de cualquier familia de ideales de A es un ideal de A.

Proof

Si I_{α} es una familia de ideales indexada por X y $J = \bigcap_{\alpha \in X} I_{\alpha}$ entonces

$$0 \in I_{\alpha} \ \forall \alpha \in X \implies 0 \in J \implies J \neq \emptyset$$

Además,

$$x, y \in J \implies x, y \in I_{\alpha} \ \forall \alpha \in X \implies x + y \in I_{\alpha} \ \forall \alpha \in X \implies x + y \in J$$

y para cualquier $a \in A$

$$x \in J \implies x \in I_\alpha \ \forall \alpha \in X \implies \alpha x \in I_\alpha \ \forall \alpha \in X \implies \alpha x \in J.$$

Proposition 2.4.9: Ideales de \mathbb{Z}

Todos los ideales de \mathbb{Z} son principales. Es decir, para todo ideal $I \subset \mathbb{Z}$, existe $n \in \mathbb{Z}$ tal que I = (n).

Proof

Sea I un ideal de \mathbb{Z} . Si I=0 entonces I=(0) con lo que I es principal. Supongamos que $I\neq 0$ y sea $n\in I\setminus 0$. Entonces $-n\in I$, con lo que I tiene un elemento positivo, o sea $I\cap \mathbb{N}\neq \emptyset$. Como \mathbb{N} está bien ordenado, $I\cap \mathbb{N}$ tiene un mínimo que denotamos como \mathfrak{a} . Como $\mathfrak{a}\in I$ se tiene que $(\mathfrak{a})\subseteq I$.

Para ver que se da la igualdad tomamos $b \in I$ y sean q y r el cociente y el resto de la división entera de b entre a. Entonces b = qa + r y $0 \le r < a$. Pero $r = b - qa \in I$, por que I es un ideal de $\mathbb Z$ que contiene a a y b y $q \in \mathbb Z$. Como r es estrictamente menor que a y a es mínimo en $I \cap \mathbb N$, necesariamente $r \notin \mathbb N$, es decir r no es positivo. Luego r = 0, con lo que $b = qa \in (a)$.

2.4.2 Anillos cociente

Definition 2.4.10: Congruencia módulo un ideal

Sea I un ideal de un anillo A. Decimos que $a,b \in A$ son congruentes módulo I, y escribimos $a \equiv b \pmod{I}$, si $b-a \in I$.

Lemma 2.4.11: Propiedades de la congruencia

Sea I ideal de A. Para todo $a, b, c, d \in A$:

- 1. $a \equiv a \pmod{I}$ (reflexiva).
- 2. Si $a \equiv b \pmod{I}$, entonces $b \equiv a \pmod{I}$ (simétrica).
- 3. Si $a \equiv b \pmod{I}$ y $b \equiv c \pmod{I}$, entonces $a \equiv c \pmod{I}$ (transitiva).
- 4. $a \equiv b \pmod{(0)}$ si y solo si a = b.

Proof

- 1. Como $0 \in A$, dado $x \in I$ debe ser $0x = 0 \in I$, luego $a a = 0 \in I \implies a \equiv a \pmod{I}$.
- 2. Si $a \equiv b \pmod{I}$, entonces

$$b-a \in I \implies (-1)(b-a) = a-b \in I \implies b \equiv A \pmod{I}.$$

3. Si $a \equiv b \pmod{I}$ y $b \equiv c \pmod{I}$, entonces

$$b-a\in I, c-b\in I \implies c-a\in I \implies a\equiv c\pmod{I}.$$

4. $a \equiv b \pmod{(0)} \iff b - a = 0 \iff a = b$.

Del Lema ?? se deduce que la relación «ser congruente módulo I» es una relación de equivalencia en A y, por tanto, las clases de equivalencia por esta relación definen una partición de A.

La clase de equivalencia que contiene a un elemento $\alpha \in A$ es

$$\alpha + I = \{\alpha + x : x \in I\}$$

(en particular 0 + I = I), de modo que

$$a + I = b + I \Leftrightarrow a \equiv b \pmod{I}$$

(en particular $a + I = 0 + I \Leftrightarrow a \in I$).

El conjunto de las clases de equivalencia se denota

$$A/I = \frac{A}{I} = \{\alpha + I : \alpha \in A\}.$$

Definition 2.4.12: Anillo cociente

Sea I un ideal de A. El conjunto de clases de equivalencia:

$$A/I = \{\alpha + I : \alpha \in A\}$$

con las operaciones:

$$(a + I) + (b + I) = (a + b) + I$$

 $(a + I) \cdot (b + I) = (ab) + I$

es un anillo llamado anillo cociente de A módulo I.

Proposition 2.4.13: Buena definición del cociente

Las operaciones en A/I están bien definidas y dotan a A/I de estructura de anillo con:

• Elemento cero: 0 + I

• Elemento uno: 1 + I

Proof

Sean a + I = a' + I y b + I = b' + I. Entonces $a - a', b - b' \in I$. Luego

• La suma está bien definida, para ello veamos que (a + b) + I = (a' + b') + I, o equivalentemente, $(a + b) - (a' + b') \in I$, en efecto

$$(a+b) - (a'+b') = (a-a') + (b-b') \in I$$

ya que $a - a', b - b' \in I$.

• El producto está bien definido, para ello veamos que (ab) + I = (a'b') + I, es decir, $(ab) - (a'b') \in I$

$$ab - a'b' = ab - ab' + ab' - a'b' = a(b - b') + (a - a')b' \in I$$

de nuevo porque $a - a', b - b' \in I$.

Por tanto las operaciones están bien definidas. La comprobación del cero y el uno son inmediatas.

Definition 2.4.14: Proyección canónica

La aplicación $\eta:A\to A/I$ dada por $\eta(\mathfrak{a})=\mathfrak{a}+I$ es un homomorfismo sobreyectivo llamado proyección canónica.

Proof

Que la proyección es sobreyectiva es inmediato, dado $\alpha+I\in A/I$ es inmediato que $\eta(\alpha)=\alpha+I$. Comprobar que es un homomorfismo es trivial por la manera en que hemos definido las operaciones en A/I.

Example 2.4.15: Anillos \mathbb{Z}_n

Para n > 0, \mathbb{Z}_n es el anillo cociente $\mathbb{Z}/(n)$. Tiene exactamente n elementos: $0 + (n), 1 + (n), \ldots, n-1+(n)$.

Example 2.4.16: Cocientes triviales

- $A/\{0\} \cong A$
- $A/A \cong \{0\}$

Example 2.4.17: Cociente por ideales en polinomios

Sea $I = \{a_1X + \cdots + a_nX^n\} \le A[X]$. Entonces:

$$A[X]/I \cong A$$

mediante el isomorfismo que envía P(X) + I al término constante de P.

Proof

Sea $P(X) \in A[X], P(X) = a_0 + a_1X + \cdots + a_nX^n$ entonces $P(X) + I \in A[X]/I$ es de la forma $P(X) + I = a_0 + I$ ya que

$$P(X) - \alpha_0 = \alpha_1 X + \cdots + \alpha_n X^n \in I.$$

luego el isomorfismo es $\varphi(\alpha_0+I)=\alpha_0$. Claramente es un homomorfismo sobreyectivo, para ver que es inyectivo supongamos

$$\varphi(\alpha_0+I)=\varphi(b_0+I) \implies \alpha_0=b_0 \implies \alpha_0-b_0=0 \in I \implies \alpha_0+I=b_0+I.$$

Example 2.4.18: Cociente en productos

Sean A, B anillos, $I = A \times \{0\}$. Entonces:

$$(A \times B)/I \cong B$$

2.4.3 Teorema de correspondencia

Recordemos algunas definiciones y caracterizaciones útiles.

Definition 2.4.19: Núcleo de un homomorfismo

Sea $f: A \to B$ un homomorfismo de anillos. El núcleo de f es:

$$\ker f = \{\alpha \in A : f(\alpha) = 0\}$$

Proposition 2.4.20: Inyectividad y núcleo

Un homomorfismo $f : A \rightarrow B$ es invectivo si y solo si ker $f = \{0\}$.

Proof

- Si f es inyectivo y $\alpha \in \ker f$, entonces $f(\alpha) = 0 = f(0)$, luego $\alpha = 0$
- Si $\ker f = \{0\}$ y f(a) = f(b), entonces f(a b) = 0, luego $a b \in \ker f = \{0\}$, por tanto a = b

El siguiente resultado describe los ideales de un anillo cociente. Consideremos la proyección canónica $\eta:A\to A/I$. La imagen de un subconjunto $J\subset A$ es

$$\eta(J) = \{\alpha + I : \alpha \in J\}$$

si J contiene a I denotaremos a este conjunto $\eta(J) = J/I$.

Theorem 2.4.21: Teorema de correspondencia

Sea I un ideal de un anillo A. Sea \mathcal{A} el conjunto de ideales de A que contienen a I

$$\mathcal{A} = \{J \leq A : I \subseteq J\}.$$

Sea K el conjunto de todos los ideales de A/I

$$\mathcal{K} = \{K \leq A/I\}.$$

Entonces las asignaciones

$$\begin{split} \Phi: \mathcal{A} \to \mathcal{K}, \ \Phi(J) &= J/I \\ \Psi: \mathcal{K} \to \mathcal{A}, \ \Psi(K) &= \eta^{-1}(K) \end{split}$$

definen aplicaciones biyectivas, una inversa de la otra, que conservan la inclusión en $\mathcal A$ y $\mathcal K$.

Proof

En primer lugar, veamos que son aplicaciones, para ello necesitamos que se cumpla

- Si J es un ideal que contiene a I entonces $\eta(J) = J/I$ es un ideal.
 - Como J es un ideal 0 ∈ J, luego 0 + I = η (0) ∈ η (J) = J/I ≠ \emptyset .
 - Sean $x+I,y+I\in J/I$ (es decir, $x,y\in J$ tales que $\eta(x)=x+I,\eta(y)=y+I$). Es claro que

$$\eta(x + y) = (x + y) + I = (x + I) + (y + I) \in J/I$$

como necesitamos.

− Sea $x + I \in J/I$, $\alpha + I \in A/I$ entonces

$$(a+I)(x+I) = ax + I = \eta(ax) \in J/I$$

ya que $ax \in J$ al ser J ideal.

- Si K es un ideal de A/I entonces $\eta^{-1}(K)$ es un ideal que contiene a I.
 - Como K es un ideal $0 + I \in K$, y al ser $0 + I = \eta(0) \implies 0 \in \eta^{-1}(K) \neq \emptyset$.
 - Sean $x, y \in \eta^{-1}(K)$, entonces $x + I, y + I \in K \implies (x + y) + I \in K$. Finalmente

$$\eta(x+y) = (x+y) + I = \in K \implies (x+y) \in \eta^{-1}(K)$$

como necesitamos.

- Sean x ∈ η-1(K), α ∈ A entonces

$$\eta(\alpha x) = \alpha x + I = (\alpha + I)(x + I) \in K$$

ya que $a+I\in A/I$ y K es un ideal, pero entonces $ax\in \eta^{-1}(K)$ como queríamos ver.

- Sea x ∈ I, entonces

$$\eta(x) = 0 + I \in K \implies x \in \eta^{-1}(K).$$

Veamos ahora que una es inversa de la otra, lo cual implica directamente que son biyectivas.

• Dado $J \in A$

$$\Psi(\Phi(J)) = \eta^{-1}(\eta(J)) \supset J$$

por las propiedades de conjuntos. Para la otra inclusión, si $x \in \eta^{-1}(\eta(J))$ entonces $\eta(x) \in \eta(J)$, luego existe $y \in J$ tal que

$$x + I = \eta(y) = y + I \implies x - y \in I \subseteq J \implies x = (x - y) + y \in J$$

usando que J es ideal.

• Sea ahora $K \in \mathcal{K}$, entonces

$$\Phi(\Psi(K)) = \eta(\eta^{-1}(K)) \subseteq K$$

por conjuntos. Por otro lado, si $x+I\in K$ entonces, al ser η sobreyectiva existe $y\in \eta^{-1}(K)$ tal que $\eta(y)=x+I\in K$. Por tanto $x+I\in \eta(\eta^{-1}(K))$

Finalmente veamos que respetan las inclusiones.

• Si $J, J' \in A, J \subseteq J'$ entonces dado

$$x + I \in \Phi(J) = \eta(J) \implies x + I = \eta(j), j \in J \subseteq J' \implies x + I \in \eta(J') = \Phi(J').$$

• De igual manera, si K, K' $\in \mathcal{K}$, K \subseteq K' entonces

$$x \in \Psi(K) = \eta^{-1}(K) \implies \eta(x) \in K \subseteq K' \implies x \in \eta^{-1}(K') = \Phi(J').$$

Remark. En ?? ya habíamos probado casi todo lo que necesitabamos para ver que Φ, Ψ son aplicaciones.

Remark. Recordemos que

$$\eta(\eta^{-1}(K)) = K$$

es una de las caracterizaciones vista en Conjuntos y Números para que una aplicación η sea sobreyectiva.

Example 2.4.22: Aplicación del teorema de correspondencia

En $\mathbb{Z}_n = \mathbb{Z}/(n)$, los ideales son de la forma $d\mathbb{Z}_n = (d)/(n)$ donde $d \mid n$. Además, $d\mathbb{Z}_n \subseteq d'\mathbb{Z}_n$ si y solo si $d' \mid d$.

2.5 Operaciones con ideales

Definition 2.5.1: Suma de ideales

Si I y J son ideales de A, su suma es:

$$I + J = \{x + y : x \in I, y \in J\} = (I \cup J)$$

Definition 2.5.2: Producto de ideales

Si I y J son ideales de A, su producto es:

$$IJ = \left\{ \sum_{i=1}^{n} x_i y_i : x_i \in I, y_i \in J, n \ge 0 \right\} = \left(\left\{ xy : x \in I, y \in J \right\} \right)$$

Remark. Más generalmente, para ideales I_1, \ldots, I_n :

- $\bullet \ I_1+\cdots+I_n=\{x_1+\cdots+x_n:x_i\in I_i\}$
- $I_1 \cdots I_n$ está generado por productos $x_1 \cdots x_n$ con $x_i \in I_i$

Proposition 2.5.3: Propiedades de las operaciones

Para ideales I, J, K de A:

- 1. $IJ \subseteq I \cap J$
- 2. $I(J \cap K) \subseteq IJ \cap IK$
- 3. I(JK) = (IJ)K
- 4. I(J + K) = IJ + IK
- 5. IA = I

Proof

- 1. Sea $x \in IJ$, entonces $x = \sum_{i=1}^n x_i y_i$ con cada $x_i \in I, y_i \in J$. Por tanto $x_i y_i \in I$ al ser I un ideal, de hecho $\sum_{i=1}^n x_i y_i \in I$ al ser suma de elementos de I. Para J ocurre igual ya que los $y_i \in J$, luego $\sum_{i=1}^n x_i y_i \in J$ y finalmente $x \in I \cap J$.
- 2. Sea $x \in I(J \cap K)$, entonces $x = \sum_{i=1}^n x_i y_i$ con cada $x_i \in I, y_i \in J \cap K$. En concreto $x \in IJ$ ya que cada $y_i \in J$, de igual manera $x \in IK$, por tanto $x \in IJ \cap IK$.
- 3. Sea $x \in I(JK)$, entonces $x = \sum_{i=1}^n x_i y_i$ con cada $x_i \in I, y_i \in JK$, en concreto cada $y_i = \sum_{k=1}^m \alpha_k b_k$ con $\alpha_k \in J, b_k \in K$. Entonces

$$x = \sum_{i=1}^n \left(x_i \left[\sum_{k=1}^m \alpha_k b_k \right] \right) = \sum_{k=1}^m \left(\alpha_k b_k \left[\sum_{i=1}^n x_i \right] \right) = \sum_{k=1}^m \left(b_k \left[\sum_{i=1}^n x_i \alpha_k \right] \right)$$

sea $c_k = \sum_{i=1}^n x_i a_k$, entonces cada $c_k \in IJ$ ya que $x_i \in J$, $a_k \in J$, por tanto

$$x = \sum_{k=1}^{m} (b_k c_k) \in (IJ)K$$

34

ya que cada $c_k \in IJ$, $b_k \in K$. Esto prueba que $I(JK) \subseteq (IJ)K$.

El otro contenido es inmediato ya que IJ = JI, luego $(IJ)K = K(IJ) \subseteq (KI)J = J(KI) \subseteq (JK)I = I(JK)$ usando lo anterior.

4. Sea $x \in I(J + K)$, entonces

$$x = \sum_{i=1}^{n} x_i y_i = \sum_{i=1}^{n} x_i (a_i + b_i)$$

con $a_i \in J, b_i \in K$ ya que cada $y_i \in J + K$. Finalmente

$$x = \sum_{i=1}^{n} x_i a_i + \sum_{i=1}^{n} x_i b_i \in IJ + IK$$

ya que $\sum_{i=1}^{n} x_i a_i \in IJ, \sum_{i=1}^{n} x_i b_i \in IK$.

Para la otra inclusión, si $x \in IJ + IK$ entonces x = a + b con $a \in IJ$, $b \in IK$, luego

$$\alpha = \sum_{i=1}^n x_i \alpha_i, \ b = \sum_{k=1}^m y_k b_k; \quad x_i, y_k \in I, \alpha_i \in J, b_k \in K$$

pero notemos que $a_i=a_i+0\in J+K$ ya que $0\in K$, de igual manera $b_k=0+b_k\in J+K$, luego definiendo

$$\begin{split} c_l &= \begin{cases} x_l, & 1 \leq l \leq n \\ y_{n-l}, & n < l \leq n+m \end{cases} \\ d_l &= \begin{cases} a_l, & 1 \leq l \leq n \\ b_{n-l}, & n < l \leq n+m \end{cases} \end{split}$$

tenemos que $c_l \in I, d_l \in J + K y$

$$x = \sum_{l=1}^{n+m} c_l d_l$$

luego $x \in I(J + K)$.

5. Por 1. tenemos que IA \subseteq I \cap A = I. Por otro lado, si $x \in$ I entonces definiendo $x_1 = x, a_1 = 1_A$ tenemos

$$x = x1_A = \sum_{i=1}^{1} x_i a_i \implies x \in IA.$$

Example 2.5.4: Operaciones en \mathbb{Z}

Sean (n) y (m) ideales de \mathbb{Z} . Entonces:

$$(n)(m) = (nm)$$
$$(n) \cap (m) = (mcm(n, m))$$
$$(n) + (m) = (mcd(n, m))$$

35

Example 2.5.5: Ideal no principal

En $\mathbb{Z}[X]$, el ideal (2) + (X) (polinomios con término constante par) no es principal.

Proof

Supongamos que (2) + (X) = (a) para algún $a \in \mathbb{Z}[X]$. Entonces:

- $2 = \alpha P$ para algún $P \in \mathbb{Z}[X]$, pero entonces P ha de ser un polinomio solo con término independiente y α también.
- Como $a \in (2) + (X)$, a debe ser par.
- Si suponemos $X \in (a)$ debe ser X = aP para algún $P \in \mathbb{Z}[X]$, pero aP tiene coeficiente par en la X porque a es par, luego $X \notin (a) = (2) + (X)$ lo cual es contradictorio.

Example 2.5.6

Sea A un anillo y sean $a, b \in A$, entonces (a, b) = (a) + (b)

Proof

En efecto si $x \in (a, b)$ entonces

$$x = ax_1 + bx_2 \implies x \in (a) + (b)$$
.

De igual manera, si $x \in (a) + (b)$ entonces

$$x = a_1 + b_1$$

con $a_1 \in (a) \implies a_1 = ax_1, b_1 \in (b) \implies b_1 = bx_2$, por tanto

$$x = ax_1 + bx_2 \in (a, b).$$

2.6 Teoremas de isomorfía y Teorema chino de los restos

Theorem 2.6.1: Primer teorema de isomorfía

Sea $f:A\to B$ un homomorfismo de anillos. Entonces existe un único isomorfismo de anillos $\bar f:A/\ker f\to Im\, f$ que hace conmutativo el diagrama

$$\begin{array}{ccc} A & \xrightarrow{f} & B \\ \downarrow p & \downarrow & \uparrow \\ A / \ker f & \xrightarrow{\bar{f}} & Im f \end{array}$$

es decir, $i \circ \bar{f} \circ p = f$, donde i es la inclusión y p es la proyección. En particular

$$\frac{A}{\ker f} \cong \operatorname{Im} f.$$

Proof

Sean $K = \ker f$ e $I = \operatorname{Im} f$. La aplicación $\bar{f} : A/K \to I$ dada por $\bar{f}(x+K) = f(x)$ está bien definida (no depende de representantes) pues si x+K=y+K entonces $x-y\in K$ y por lo tanto f(x)-f(y)=f(x-y)=0; es decir, f(x)=f(y). Además es elemental ver que es un homomorfismo de anillos y que es suprayectiva.

Para ver que es inyectiva usamos la Proposición ??: si x+K está en el núcleo de \bar{f} entonces $0=\bar{f}(x+K)=f(x)$, de modo que $x\in K$ y así x+K=0+K. Es decir ker $\bar{f}=0$ y por lo tanto \bar{f} es inyectiva. En conclusión, \bar{f} es un isomorfismo, y hace conmutativo el diagrama porque, para cada $x\in A$, se tiene

$$i(\bar{f}(p(x))) = i(\bar{f}(x+K)) = i(f(x)_{Im}) = f(x).$$

En cuanto a la unicidad, supongamos que otro homomorfismo $\bar{f}':A/K\to I$ verifica $i\circ \bar{f}'\circ p=f;$ entonces para cada $x\in K$ se tiene

$$i(\bar{f}'(p(x))) = i(\bar{f}'(x+K)) = f(x) = i(\bar{f}(p(x))) = i(\bar{f}(x+K)).$$

Por la inyectividad de i debe ser entonces

$$\bar{f}'(p(x)) = \bar{f}(p(x))$$

como p es sobreyectiva, dado $y + K \in A / \ker f$ existe $x_0 \in A$ tal que $y + K = p(x_0)$, por tanto para cualquier y + K

$$\bar{f}'(y + K) = \bar{f}'(p(x_0)) = \bar{f}(p(x_0)) = \bar{f}(y + K)$$

y finalmente $\bar{f}' = \bar{f}$.

Theorem 2.6.2: Segundo teorema de isomorfía

Sea A un anillo y sean I y J dos ideales tales que I \subseteq J. Entonces J/I es un ideal de A/I y existe un isomorfismo de anillos

$$\frac{A/I}{J/I} \cong \frac{A}{J}$$
.

Proof

Por el Teorema de la Correspondencia ??, J/I es un ideal de A/I. Sea $f: A/I \to A/J$ la aplicación definida por f(a+I) = a+J. Es elemental ver que f está bien definida, sean $a+I=b+I\in A/I$, entonces $a-b\in I\subset J$, luego

$$a-b \in J \implies a+J=b+J \implies f(a+I)=f(b+I).$$

Que es un homomorfismo suprayectivo de anillos se deja como ejercicio. Veamos que $\ker f = J/I$

$$f(\alpha+I)=\alpha+J=0+J\iff \alpha\in J\implies \alpha+I\in \eta(J)=J/I$$

si por el contrario $a + I \in J/I$ entonces

$$a + I = n(j) = j + I \implies f(a + I) = f(j + I) = j + J = 0 + J \implies a + I \in \ker f$$
.

Entonces el isomorfismo buscado se obtiene aplicando el Primer teorema de isomorfía a f.

Theorem 2.6.3: Tercer teorema de isomorfía

Sea A un anillo con un subanillo B y un ideal I. Entonces:

- 1. $B \cap I$ es un ideal de B.
- 2. B + I es un subanillo de A que contiene a I como ideal.
- 3. Se tiene un isomorfismo de anillos $\frac{B}{B \cap I} \cong \frac{B+I}{I}$.

Proof

Los dos primeros apartados se dejan como ejercicio. En cuanto al último, sea $f: B \to A/I$ la composición de la inclusión $j: B \to A$ con la proyección $\eta: A \to A/I$

$$f(b) = \eta(j(b)) = b + I.$$

Es claro que ker $f = B \cap I$, puesto que dado $b \in B$

$$f(b) = b + I = 0 + I \iff b \in I \iff b \in B \cap I$$

y que $\operatorname{Im} f = (B+I)/I$, ya que dado $b+I \in \operatorname{Im} f$ existe un cierto $b_0 \in B$ tal que

$$b+I=f(b_0)=b_0+I\iff b-b_0\in I\iff b-b_0=i\in I\implies b=b_0+i\in B+I.$$

Por tanto, el resultado se sigue del Primer Teorema de Isomorfía.

Example 2.6.4: Aplicaciones del Primer Teorema de Isomorfía

- 1. Si A y B son anillos, el homomorfismo $A \times B \to A$ de proyección en la primera componente es suprayectivo y tiene núcleo $I = 0 \times B$, por lo que $\frac{A \times B}{0 \times B} \simeq A$. En realidad ya habíamos visto esto en ??.
- 2. Sea n un entero positivo. Hemos visto que todo ideal de $\mathbb{Z}_n = \mathbb{Z}/(n)$ es de la forma $(\overline{d}) = (d)/(n)$, para cierto divisor positivo d de n. El Segundo Teorema de Isomorfía nos permite identificar el cociente $\mathbb{Z}_n/(\overline{d})$, pues

$$\frac{\mathbb{Z}_n}{(\overline{d})} = \frac{\mathbb{Z}/(n)}{(d)/(n)} \simeq \frac{\mathbb{Z}}{(d)} = \mathbb{Z}_d.$$

- 3. Si A es un anillo, el homomorfismo $f:A[X]\to A$ de sustitución en 0 (dado por $a_0+a_1X+\cdots\mapsto a_0$) es suprayectivo y tiene por núcleo el ideal (X) generado por X (consistente en los polinomios con coeficiente independiente nulo), de modo que $A[X]/(X)\simeq A$, como ya habíamos observado en el Ejemplo ??.
- 4. Sean A un anillo e I un ideal de A. Para cada $a \in A$, sea $\overline{a} = a + I$. La aplicación $f: A[X] \to (A/I)[X]$ dada por $f(a_0 + a_1X + \dots + a_nX^n) = \overline{a_0} + \overline{a_1}X + \dots + \overline{a_n}X^n$ es un homomorfismo suprayectivo de anillos cuyo núcleo es $I[X] = \{a_0 + a_1X + \dots + a_nX^n : a_i \in I\}$ (estas afirmaciones quedan como ejercicio para el lector). Del Primer Teorema de Isomorfía se deduce entonces que

$$\frac{A[X]}{I[X]} \simeq (A/I)[X].$$

Definition 2.6.5: Característica

Sea A un anillo, y recordemos que si $n \in \mathbb{Z}^+$ escribimos $n1 = 1 + \cdots + 1$ (n veces). Si existe $n \in \mathbb{Z}^+$ tal que n1 = 0, definimos la característica de A como el menor $n \in \mathbb{Z}^+$ que verifica tal igualdad. Si no existe un tal n, decimos que la característica de A es 0.

Proposition 2.6.6: Caracterización de la característica

Sea A un anillo y sea $f: \mathbb{Z} \to A$ el único homomorfismo de anillos (dado por f(n) = n1). Para un número natural n las condiciones siguientes son equivalentes:

- 1. n es la característica de A.
- 2. nℤ es el núcleo de f.
- 3. El subanillo primo de A es isomorfo a \mathbb{Z}_n (recuérdese que $\mathbb{Z}_0 = \mathbb{Z}$ y $\mathbb{Z}_1 = 0$).
- 4. A contiene un subanillo isomorfo a \mathbb{Z}_n .

Proof

La equivalencia entre (1) y (2) se deja como ejercicio para el lector, y es obvio que (3) implica (4).

- (2) implica (3). Se obtiene aplicando el Primer Teorema de Isomorfía y observando que Im f es el subanillo primo de A.
- (4) implica (2). Si B es un subanillo de A y $g: \mathbb{Z}_n \to B$ es un isomorfismo, considerando la proyección $\pi: \mathbb{Z} \to \mathbb{Z}_n$ y la inclusión $\mathfrak{u}: B \hookrightarrow A$ se obtiene un homomorfismo de anillos $\mathfrak{u} \circ g \circ \pi: \mathbb{Z} \to A$ que debe coincidir con f por su unicidad (Ejemplo 1.12.(3)). Como $\mathfrak{u} \circ g$

es inyectiva, es elemental ver que ker $f = n\mathbb{Z}$.

Theorem 2.6.7: Teorema Chino de los Restos

Sea A un anillo y sean I_1, \ldots, I_n ideales de A tales que $I_i + I_j = A$ para todo $i \neq j$. Entonces $I_1 \cap \cdots \cap I_n = I_1 \cdots I_n$. Además

$$\frac{A}{I_1 \cap \cdots \cap I_n} \cong \frac{A}{I_1} \times \cdots \times \frac{A}{I_n}.$$

Proof

Razonamos por inducción sobre n, empezando con el caso n=2. La hipótesis $I_1+I_2=A$ nos dice que existen $x_1\in I_1$ y $x_2\in I_2$ tales que $x_1+x_2=1$, y entonces para cada $\alpha\in I_1\cap I_2$ se tiene $\alpha=\alpha x_1+\alpha x_2\in I_1I_2$, de modo que $I_1\cap I_2\subseteq I_1I_2$, y la otra inclusión es clara. Claramente la aplicación $f:A\to A/I_1\times A/I_2$ dada por $f(\alpha)=(\alpha+I_1,\alpha+I_2)$ es un homomorfismo de anillos con núcleo $I_1\cap I_2$, y es suprayectiva pues, dado un elemento arbitrario $(\alpha_1+I_1,\alpha_2+I_2)$ de $A/I_1\times A/I_2$, el elemento $\alpha=\alpha_1x_2+\alpha_2x_1$ verifica $f(\alpha)=(\alpha_1+I_1,\alpha_2+I_2)$. Ahora el resultado se obtiene aplicando el Primer Teorema de Isomorfía. En el caso general (n>2) basta ver que las hipótesis implican que $(I_1\cap\cdots\cap I_{n-1})+I_n=A$, pues entonces la hipótesis de inducción nos da

$$I_1\cap \cdots \cap I_{n-1}\cap I_n=(I_1\cap \cdots \cap I_{n-1})I_n=I_1\cdots I_{n-1}I_n$$

y

$$\frac{A}{I_1\cap\cdots\cap I_n}=\frac{A}{(\cap_{i=1}^{n-1}I_i)\cap I_n}\simeq \frac{A/(\cap_{i=1}^{n-1}I_i)}{I_n}\times \frac{A}{I_n}\simeq \frac{A}{I_1}\times\cdots\times \frac{A}{I_{n-1}}\times \frac{A}{I_n}.$$

Para ver que $(I_1 \cap \dots \cap I_{n-1}) + I_n = A$ notemos que, para cada $i \leq n-1$, existen $a_i \in I_i$ y $b_i \in I_n$ tales que $1 = a_i + b_i$, y multiplicando todas esas expresiones se obtiene

$$1 = \prod_{i=1}^{n-1} (a_i + b_i) = a_1 \cdots a_{n-1} + b,$$

donde b engloba a todos los sumandos que se obtendrían desarrollando los productos (excepto $a_1 \cdots a_{n-1}$) y está en I_n porque en cada sumando hay al menos un factor del ideal I_n . Como además $a_1 \cdots a_{n-1} \in I_1 \cap \cdots \cap I_{n-1}$, deducimos que $1 \in (I_1 \cap \cdots \cap I_{n-1}) + I_n$ y así $(I_1 \cap \cdots \cap I_{n-1}) + I_n = A$, como queríamos ver.

Chapter 3

Divisibilidad en dominios

3.1 Cuerpos y dominios

Definition 3.1.1

Un elemento a de un anillo A se dice regular si la relación ab = ac con $b, c \in A$ implica que b = c; es decir, si a es cancelable respecto del producto. Claramente, el 0 nunca es regular^a.

Un cuerpo es un anillo en el que todos los elementos no nulos son invertibles, y un dominio (o dominio de integridad) es un anillo en el que todos los elementos no nulos son regulares. Un subanillo de un anillo A que sea un cuerpo se llama un subcuerpo de A, y un homomorfismo de anillos entre dos cuerpos se llama homomorfismo de cuerpos.

Remark. Si A es un dominio y $0 \neq a, b \in A$, luego a y b son regulares. Supongamos que ab = 0, entonces

$$\alpha b = 0 = \alpha 0 \implies b = 0$$

ya que a es cancelable, pero esto es una contradicción, luego no puede cumplirse ab = 0 si $a, b \neq 0$. En otras palabras

$$a, b \neq 0 \implies ab \neq 0$$

el contrarrecíproco de esta afirmación es

$$ab = 0 \implies a = 0 \ \text{o} \ b = 0$$

Proposition 3.1.2

Todo cuerpo es un dominio.

Proof

Si A es un cuerpo y $a \in A$, $a \neq 0$, entonces a es invertible. Si ab = ac, multiplicando por a^{-1} obtenemos b = c, luego a es regular. Como esto vale para todo $a \neq 0$, A es un dominio.

a Obsérvese la importancia de la hipótesis 1 \neq 0 en este caso.

Proposition 3.1.3

Sea A un anillo.

- 1. Las condiciones siguientes son equivalentes:
 - (a) A es un cuerpo.
 - (b) Los únicos ideales de A son 0 y A.
 - (c) Todo homomorfismo de anillos $A \rightarrow B$ con $B \neq 0$ es inyectivo.
- 2. Un elemento $a \in A$ es regular si y solo si la relación ab = 0 con $b \in A$ implica b = 0 (por este motivo, los elementos no regulares se suelen llamar divisores de cero).
- 3. A es un dominio si y solo si, para cualesquiera $a, b \in A$ no nulos, se tiene $ab \neq 0$.
- 4. Todo subanillo de un dominio es un dominio.
- 5. La característica de un dominio es cero o un número primo.

Proof

- 1. Demostramos las equivalencias.
 - (a) \Rightarrow (b) Si A es cuerpo e I es un ideal no nulo de A, entonces I tiene un elemento a \neq 0. Como A es cuerpo, a es invertible, luego I = A.
 - (b) \Rightarrow (c) Si f : A \rightarrow B es un homomorfismo con B \neq 0, entonces ker f es un ideal pero ker f \neq A, pues f(1) = 1 \neq 0. Entonces, por (b), ker f = 0, luego f es inyectivo.
 - (c) \Rightarrow (a) Haremos el contrarrecírpoco. Si A no es cuerpo, existe $a \neq 0$ no invertible. Entonces (a) es un ideal propio no nulo, y el homomorfismo canónico

$$\pi: A \to A/(a), \quad \pi(x) = x + (a)$$

no es inyectivo ya que

$$a \in \ker \pi \neq 0$$
.

- 2. Si a es regular y ab = 0, entonces ab = 0 = a0, luego b = 0. Recíprocamente, si a no es regular, existen $b \neq c$ con ab = ac, luego a(b c) = 0 con $b c \neq 0$.
- 3. Es consecuencia inmediata de (2).
- 4. Si B es subanillo de un dominio A y x, y \in B son no nulos, entonces xy \neq 0 en A, luego también en B ya que su cero es el mismo que el de A.
- 5. Sea D un dominio y consideremos el homomorfismo $f: \mathbb{Z} \to D$ dado por $f(n) = n \cdot 1$. Como ker f es un ideal de \mathbb{Z} , existe $n \geq 0$ tal que ker f = (n). Si n = ab con 0 < a, b < n, entonces f(a)f(b) = f(ab) = 0, luego f(a) = 0 o f(b) = 0, contradicción. Así que n es primo o n = 0.

Example 3.1.4: Dominios y cuerpos

- 1. Los anillos \mathbb{Q} , \mathbb{R} y \mathbb{C} son cuerpos y \mathbb{Z} es un dominio que no es un cuerpo (aunque es subanillo de un cuerpo).
- 2. Para $n \ge 2$, el anillo \mathbb{Z}_n es un dominio si y solo si es un cuerpo, si y sólo si n es primo.

Proof

Si n es primo y $\overline{a} \neq 0$ en \mathbb{Z}_n , entonces mcd(a,n)=1, luego existen x, y con ax+ny=1, así que $\overline{ax}=\overline{1}$. Recíprocamente, si n no es primo, existen a, b con 1 < a,b < n y n=ab, luego $\overline{ab}=\overline{0}$ con $\overline{a},\overline{b}\neq 0$.

- 3. Si m es un entero que no es el cuadrado de un número entero entonces $\mathbb{Z}[\sqrt{m}]$ es un dominio (subanillo de \mathbb{C}) que no es un cuerpo (el 2 no tiene inverso). Sin embargo, $\mathbb{Q}[\sqrt{m}]$ sí que es un cuerpo; de hecho, si $a+b\sqrt{m}\neq 0$, entonces $q=(a+b\sqrt{m})(a-b\sqrt{m})=a^2-b^2m$ es un número racional no nulo y $(a+b\sqrt{m})^{-1}=\frac{a}{q}-\frac{b}{q}\sqrt{m}$.
- 4. Un producto de anillos diferentes de 0 nunca es un dominio, pues (1,0)(0,1)=(0,0).
- 5. Los anillos de polinomios no son cuerpos, pues la indeterminada genera un ideal propio y no nulo. Por otra parte, A[X] es un dominio si y solo si lo es A.

Proof

Si A es dominio y P, $Q \in A[X]$ son no nulos, sean $a_n X^n$ y $b_m X^m$ sus términos de mayor grado. Entonces el coeficiente de X^{n+m} en PQ es $a_n b_m \neq 0$, luego PQ $\neq 0$. El recíproco es claro pues A es subanillo de A[X].

3.2 Ideales primos y maximales

Definition 3.2.1: Ideal primo

Un ideal propio $P \le A$, $P \ne A$ es primo si para todo $a, b \in A$:

$$\mathfrak{a}\mathfrak{b}\in P\Rightarrow \mathfrak{a}\in P\ o\ \mathfrak{b}\in P$$

Definition 3.2.2: Ideal maximal

Un ideal propio $M \le A$, $M \ne A$ es maximal si no existe ningún ideal I tal que $M \subsetneq I \subsetneq A$.

Proposition 3.2.3: Caracterizaciones de ideales maximales y primos

Sean A un anillo e I un ideal propio de A. Entonces:

- 1. I es maximal si y solo si A/I es un cuerpo.
- 2. I es primo si y solo si A/I es un dominio.
- 3. Si I es maximal entonces es primo.
- 4. A es un cuerpo si y solo si el ideal 0 es maximal.
- 5. A es un dominio si y solo si el ideal 0 es primo.

Proof

1. Por el teorema de correspondencia, los ideales de A/I corresponden a los ideales de A que contienen a I.

Así, si I es maximal entonces el único ideal distinto de I que contiene a I es A. Pero entonces, dado un ideal $J/I \le A/I$ este ha de corresponder a A/I o a I/I = 0, luego los únicos ideales de A/I son 0 y A/I, lo cual es una de las caracterizaciones para que un anillo sea un cuerpo.

De igual manera, si A/I es un cuerpo, entonces los únicos ideales son 0 y A/I, pero entonces los únicos ideales que contienen a I son I, A, es decir, I es maximal.

2. Si I es primo y tomamos (a + I)(b + I) = ab + I = 0 + I entonces

$$ab \in I \implies a \in I \land b \in I \implies a + I = 0 + I \land b + I = 0 + I$$

luego A/I es dominio.

Por el contrario, si A/I es dominio entonces dados a, b tales que $ab \in I$

$$0+I=ab+I=(a+I)(b+I)\iff a+I=0+I\ \delta\ b+I=0+I\iff a\in I\ \delta\ b\in I$$
 es decir, si $ab\in I$ entonces $a\in I$ o $b\in I$.

3. Se sigue de (1) y (2) ya que

I maximal
$$\iff$$
 A/I cuerpo \implies A/I dominio \iff I primo.

44

- 4. Es inmediato aplicando (1) ya que $A \cong A/(0)$.
- 5. Es inmediato aplicando (2) ya que $A \cong A/(0)$

Remark. La parte 3. de la proposición anterior se puede probar directamente.

Proof

Supongamos que I es maximal pero no primo. Entonces existen $a,b \in A$ tales que $ab \in I$ pero $a,b \notin I$. Consideremos entonces el siguiente ideal

$$I + (a) = \{x + ay : x \in I, y \in A\}.$$

Claramente $I \subseteq I + (a) \subseteq A$, y claramente $I \ne I + (a)$ ya que $a = 0 + a1 \in I + (a)$, $a \notin I$. Pero también tenemos $I + (a) \ne A$ ya que si no fuera así entonces existirían $x_0 \in I$, $y_0 \in A$ tales que

$$x_0 + ay_0 = 1 \implies bx_0 + aby_0 = b \implies b \in I$$

ya que bx_0 , $aby_0 \in I$, lo cual es contradictorio.

Luego I + (a) es un ideal propio que contiene a I, pero eso contradice la maximalidad de I, por tanto I debe ser primo.

Example 3.2.4: Ejemplos en \mathbb{Z}

- Los ideales primos de \mathbb{Z} son (0) y (p) con p primo
- Los ideales maximales de \mathbb{Z} son (p) con p primo

Example 3.2.5: D

la Proposición 1.15 sabemos que todos los ideales de $\mathbb Z$ son principales. Además si n y m son enteros entonces $(\mathfrak n)\subseteq (\mathfrak m)$ si y solo si m divide a n. Por tanto, $(\mathfrak n)$ es un ideal maximal de $\mathbb Z$ si y solo si $\mathfrak n\not\in\{0,1,-1\}$ y los únicos divisores de n son ± 1 y $\pm \mathfrak n$, o sea si n es un número primo. En tal caso $(\mathfrak n)$ es ideal primo de $\mathbb Z$ por la Proposición 2.6.(3). Observese que $(\mathfrak 0)$ es un ideal primo de $\mathbb Z$ que no es maximal pues $\mathbb Z$ es un dominio que no es un cuerpo. Sin embargo si $\mathfrak n\not=\mathfrak 0$ y n no es primo entonces $(\mathfrak n)$ no es un ideal primo de $\mathbb Z$, pues o bien $\mathfrak n=\pm 1$ en cuyo caso $(\mathfrak n)=\mathbb Z$ o bien $\mathfrak n=\mathfrak a\mathfrak b$ con $\mathfrak a$ y $\mathfrak b$ dos divisores propios de $\mathbb Z$, con lo que $\mathfrak a\mathfrak b\in(\mathfrak n)$ pero ni $\mathfrak a$ ni $\mathfrak b$ están en $(\mathfrak n)$.

En resumen, los ideales maximales de \mathbb{Z} son los de la forma (n) con n un número primo y los ideales primos \mathbb{Z} son los de la forma (n) con n=0 o un número primo.

Proposition 3.2.6: T

do ideal propio de un anillo está contenido en un ideal maximal.

Proof. Sea I un ideal propio de A y sea Ω el conjunto de los ideales propios de A que contienen a I. Observese que la unión de una cadena $I_1 \subseteq I_2 \subseteq I_3 \subseteq \ldots$ de elementos de Ω es un ideal, que además es propio, pues si no lo fuera, contendría a 1 y por tanto algún I_n contendría a 1 en contra de que todos los I_n son ideales propios. Aplicando el Lema de Zorn deducimos que Ω tiene un elemento maximal que obviamente es un ideal maximal de A.

Remark. El uso del Lema de Zorn en la demostración anterior implica que este resultado depende del Axioma de Elección. En anillos noetherianos (como \mathbb{Z} o K[X] con K cuerpo) se puede demostrar sin el Axioma de Elección.

Appendix A

Teoría de conjuntos

A.1 Conjuntos y clases

Introducimos de manera informal en esta sección la teoría de conjuntos de von Neumann-Bernays-Gödel (denotada NBG). Para más información consultar [?]. Las nociones primitivas en esta teoría son las de clase, pertenencia e igualdad. Intuitivamente consideramos que una clase es una colección A de objetos tal que dado un objeto cualquiera x podemos determinar si este pertenece a la clase ($x \in A$) o no ($x \notin A$).

Los axiomas de la teoría se formulan en terminos de estas nociones primitivas y del cálculo de predicados lógicos de primer orden (es decir, las afirmaciones construidas usando conectores de tipo y, o, negación, implica, y cuantificadores \forall , \exists). Por ejemplo, se asume que la igualdad tiene las siguientes propiedades para cualesquiera clases A, B, C:

$$A = A$$
, $A = B \implies B = A$, $(A = B) \land (B = C) \implies A = C$, $(A = B) \land (x \in A) \implies x \in B$.

Por otro lado, el **axioma de extensionalidad** afirma que dos clases con los mismos elementos son iguales:

$$(x \in A \iff x \in B) \implies A = B.$$

Una clase A es un conjunto si y solo si existe una clase B tal que $A \in B$. Por tanto, un conjunto es un tipo particular de clase. Una clase que no es un conjunto se llama una clase propia. Informalmente un conjunto es una clase «pequeña», mientras que una clase propia es «grande». El **axioma de formación** de clases asegura que para cualquier enunciado P(y) de primer orden involucrando a la variable y existe una clase A tal que

$$x \in A \iff (x \text{ es un conjunto } \land x \text{ es verdadero})$$

en tal caso denotamos a la clase A como $\{x : P(x)\}$, llamada clase de todos los x tal que se cumple P(x). En ocasiones podemos describir una clase listando sus elementos: $\{a, b, c\}$.

Example A.1.1: C

nsideremos la clase $M = \{X : X \text{ es un conjunto y } X \notin X\}$. La afirmación $X \notin X$ tiene sentido como predicado, de hecho muchos conjuntos la satisfacen (por ejemplo, el conjunto de todos los libros no es un libro). Veamos que M es una clase propia. En efecto, si M fuera un conjunto, entonces tendríamos que $M \in M$ o $M \notin M$. Pero por la definición de M, $M \in M$ implica $M \notin M$ y $M \notin M$ implica $M \in M$. Así, en ambos casos, la suposición de que M es un conjunto lleva a una contradicción: $M \in M$ y $M \notin M$.

Una clase A es una subclase de una clase B, $A \subset B$ si

$$\forall x \in A, x \in A \implies x \in B$$

por el axioma de extensionalidad y las propiedades de la igualdad tenemos

$$A = B \iff (A \subset B) \land (B \subset A).$$

Una subclase A de un conjunto B es un conjunto en sí misma, y en tal caso decimos que es un subconjunto.

El conjunto vacío \emptyset es el conjunto sin elementos, es decir, $\forall x, x \notin \emptyset$. Como la afirmación $x \in \emptyset$ es siempre falsa tenemos de manera trivial que $\emptyset \subset B$ para cualquier clase B. Se dice entonces que A es una subclase propia de B si $A \subset B$ pero $A \neq \emptyset$, $A \neq B$.

El **axioma de partes** establece que para cualquier conjunto A la clase $\mathcal{P}(A)$ de todos sus subconjuntos es ella misma un conjunto, que usualmente llamamos las partes de A.

A.2 Uniones, intersecciones, complementos

Una familia de conjuntos indexada por una clase (no vacía) I es una colección de conjuntos $\{A_i:i\in I\}$. Dada una familia su unión e intersección son las clases:

$$\cup_{i \in I} A_i = \{x : x \in A_i \text{ para algún } i \in I\}$$

$$\cap_{i \in I} A_i = \{x : x \in A_i \text{ para todo } i \in I\}$$

Si I es un conjunto entonces las construcciones anteriores son conjuntos.

Si A y B son clases su diferencia es la subclase de B

$$B \setminus A = \{x : x \in B, x \notin A\}.$$

A.3 Aplicaciones

Dadas dos clases A, B la definición de aplicación es idéntica a la ya conocida para conjuntos. Se dan por conocidos los conceptos ya conocidos de dominio, rango, restricciones, etc. Dos aplicaciones son iguales si tienen el mismo dominio, rango y asignan el mismo valor a cada elemento de su dominio común.

Dada una clase A la aplicación identidad en A (denotada $1_A:A\to A$) es la aplicación dada por $a\mapsto a$. Si $S\subseteq A$, la aplicación $1_A|_S:S\to A$ se llama la aplicación inclusión de S en A.

Sean $f:A\to B$ y $g:B\to C$ aplicaciones. La composición de f y g es la aplicación $A\to C$ dada por

$$a\mapsto g(f(a)),\quad a\in A.$$

La aplicación compuesta se denota $g \circ f$ o simplemente gf. Si $h : C \to D$ es una tercera aplicación, es fácil verificar que h(gf) = (hg)f. Si $f : A \to B$, entonces $f \circ 1_A = f = 1_B \circ f : A \to B$.

Un diagrama:

$$\begin{array}{c}
A \xrightarrow{f} B \\
\downarrow \downarrow \qquad \qquad g
\end{array}$$

se dice que es conmutativo si gf = h. De manera similar, el diagrama:

$$\begin{array}{ccc} A & \stackrel{f}{\longrightarrow} & B \\ \downarrow^h & & \downarrow^g \\ C & \stackrel{k}{\longrightarrow} & D \end{array}$$

es conmutativo si kh = gf. Frecuentemente se trabaja con diagramas más complicados compuestos por varios triángulos y cuadrados como los anteriores. Tal diagrama se dice conmutativo si todo triángulo y cuadrado en él es conmutativo.

Las nociones de inyectividad y sobreyectividad son las usuales. Una aplicación $f:A\to B$ se dice inyectiva si

$$\forall \alpha, \alpha' \in A, \quad \alpha \neq \alpha' \implies f(\alpha) \neq f(\alpha').$$

Una aplicación f es sobreyectiva si f(A) = B; es decir,

$$\forall b \in B$$
, $b = f(a)$ para algún $a \in A$.

Una aplicación f se dice biyectiva si es a la vez inyectiva y sobreyectiva. Se sigue inmediatamente de estas definiciones que, para cualquier clase A, la aplicación identidad $1_A:A\to A$ es biyectiva.

Enunciamos ahora el siguiente teorema que permite caracterizar las nociones anteriores en aplicación de inversas por la derecha e izquierda.

Theorem A.3.1

Sea $f : A \rightarrow B$ una aplicación, con $A \neq \emptyset$.

- 1. f es inyectiva si y solo si existe una aplicación $g : B \to A$ tal que $gf = 1_A$.
- 2. Si A es un conjunto, entonces f es sobreyectiva si y solo si existe una aplicación h : $B \to A$ tal que $fh = 1_B$.

La aplicación g del teorema anterior se llama una inversa por la izquierda de f, y h se llama una inversa por la derecha de f. Si una aplicación $f:A\to B$ tiene inversas por ambos lados entonces

$$g = g1_B = g(fh) = (gf)h = 1_A h = h$$

y la aplicación g = h se llama la inversa de f. Este argumento también muestra que la inversa de una aplicación (si existe) es única. Por el Teorema ??, si A es un conjunto y $f : A \to B$ una aplicación, entonces

f es biyectiva \iff f tiene inversa por ambos lados

La única inversa de una biyección f se denota f^{-1} ; claramente f es una inversa de f^{-1} , por lo que f^{-1} también es una biyección.

Remark. La caracterización de biyectividad como existencia de una inversa es válida incluso cuando A es una clase propia

A.4 Relaciones

El **axioma de formación de pares** establece que para dos conjuntos (elementos) a, b, existe un conjunto $P = \{a, b\}$ tal que $x \in P$ si y solo si x = a o x = b; si a = b, entonces P es el conjunto unitario $\{a\}$. El par ordenado (a, b) se define como el conjunto $\{\{a\}, \{a, b\}\}\}$; su primera componente es a y su segunda componente es b. Es fácil verificar que (a, b) = (a', b') si y solo si a = a' y b = b'. El producto cartesiano de las clases A y B es la clase

$$A \times B = \{(a, b) : a \in A, b \in B\}.$$

Nótese que $A \times \emptyset = \emptyset = \emptyset \times B$.

Una subclase R de $A \times B$ se llama una relación en $A \times B$. Por ejemplo, si $f: A \to B$ es una aplicación, el grafo de f es la relación $R = \{(\alpha, f(\alpha)) : \alpha \in A\}$. Como f es una aplicación, R tiene la propiedad especial:

cada elemento de A es la primera componente de uno y solo un par ordenado en R. (*)

Recíprocamente, cualquier relación R en $A \times B$ que satisfaga (*) determina una única aplicación $f:A\to B$ cuyo grafo es R (definiendo $f(\mathfrak{a})=\mathfrak{b}$, donde $(\mathfrak{a},\mathfrak{b})$ es el único par ordenado en R

con primera componente a). Por esta razón es habitual identificar una aplicación con su grafo, es decir, definir una aplicación como una relación que satisface (*).

Otra ventaja de este enfoque es que permite definir funciones con dominio vacío. Dado que $\emptyset \times B = \emptyset$ es el único subconjunto de $\emptyset \times B$ y satisface trivialmente (*), existe una única aplicación $\emptyset \to B$. También es claro por (*) que solo puede haber una aplicación con rango vacío si el dominio también es vacío.

A.5 Productos

En esta sección solo tratamos con conjuntos. No hay clases propias involucradas.

Consideremos el producto cartesiano de dos conjuntos $A_1 \times A_2$. Un elemento de $A_1 \times A_2$ es un par (α_1,α_2) con $\alpha_i \in A_i$, i=1,2. Así, el par (α_1,α_2) determina una aplicación $f:\{1,2\} \to A_1 \cup A_2$ mediante: $f(1)=\alpha_1$, $f(2)=\alpha_2$. Recíprocamente, toda aplicación $f:\{1,2\} \to A_1 \cup A_2$ con la propiedad de que $f(1) \in A_1$ y $f(2) \in A_2$ determina un elemento $(\alpha_1,\alpha_2)=(f(1),f(2))$ de $A_1 \times A_2$. Por lo tanto, no es difícil ver que hay una correspondencia biyectiva entre el conjunto de todas las aplicaciones de este tipo y el conjunto $A_1 \times A_2$. Este hecho nos lleva a generalizar la noción de producto cartesiano como sigue.

Definition A.5.1: Producto

Sea $\{A_i: i \in I\}$ una familia de conjuntos indexada por un conjunto (no vacío) I. El producto (cartesiano) de los conjuntos A_i es el conjunto de todas las aplicaciones $f: I \to \bigcup_{i \in I} A_i$ tales que $f(i) \in A_i$ para todo $i \in I$. Se denota $\prod_{i \in I} A_i$.

Si $I = \{1, 2, \ldots, n\}$, el producto $\prod_{i \in I} A_i$ a menudo se denota por $A_1 \times A_2 \times \cdots \times A_n$ y se identifica con el conjunto de todas las n-tuplas ordenadas $(\alpha_1, \alpha_2, \ldots, \alpha_n)$, donde $\alpha_i \in A_i$ para $i = 1, 2, \ldots, n$, como en el caso mencionado anteriormente donde $I = \{1, 2\}$. Una notación similar es a menudo conveniente cuando I es infinito. A veces denotaremos la aplicación $f \in \prod_{i \in I} A_i$ por $(\alpha_i)_{i \in I}$ o simplemente (α_i) , donde $f(i) = \alpha_i \in A_i$ para cada $i \in I$.

Si algún $A_i = \emptyset$, entonces $\prod_{i \in I} A_i = \emptyset$, ya que no puede haber una aplicación $f: I \to \bigcup A_i$ tal que $f(i) \in A_i$. Si $\{A_i: i \in I\}$ y $\{B_i: i \in I\}$ son familias de conjuntos tales que $B_i \subset A_i$ para cada $i \in I$, entonces toda aplicación $I \to \bigcup B_i$ puede considerarse como una aplicación $I \to \bigcup_{i \in I} A_i$. Por lo tanto, consideramos $\prod_{i \in I} B_i$ como un subconjunto de $\prod_{i \in I} A_i$.

A.5.1 Caracterización del producto

Sea $\prod_{i\in I}A_i$ un producto cartesiano. Para cada $k\in I$, definamos una aplicación $\pi_k:\prod_{i\in I}A_i\to A_k$ mediante $f\mapsto f(k)$, o en la otra notación, $(a_i)\mapsto a_k$. π_k se llama la proyección canónica del producto sobre su k-ésima componente. Se deja como ejercicio probar que si cada A_i es no vacío, entonces cada π_k es sobreyectiva.

El producto $\prod_{i \in I} A_i$ y sus proyecciones son precisamente lo que necesitamos para el siguiente teorema

Theorem A.5.2: Propiedad universal del producto

Sea $\{A_i: i \in I\}$ una familia de conjuntos indexada por I. Entonces existe un conjunto D, junto con una familia de aplicaciones $\{\pi_i: D \to A_i: i \in I\}$, con la siguiente propiedad: para cualquier conjunto C y familia de aplicaciones $\{\phi_i: C \to A_i: i \in I\}$, existe una única aplicación $\phi: C \to D$ tal que $\pi_i \phi = \phi_i$ para todo $i \in I$. Además, D está determinado de manera única salvo biyección.

La última frase significa que si D' es un conjunto y $\{\pi_i': D' \to A_i: i \in I\}$ una familia de aplicaciones que tienen la misma propiedad que D y $\{\pi_i\}$, entonces existe una biyección D \to D'.

Proof

(Existencia) Sea $D=\prod_{i\in I}A_i$ y sean las aplicaciones π_i las proyecciones sobre las i-ésimas componentes. Dado C y las aplicaciones ϕ_i , definamos $\phi:C\to\prod_{i\in I}A_i$ por $c\mapsto f_c$, donde $f_c(i)=\phi_i(c)\in A_i$. Se sigue inmediatamente que $\pi_i\phi=\phi_i$ para todo $i\in I$. Para mostrar que ϕ es única, supongamos que $\phi':C\to\prod_{i\in I}A_i$ es otra aplicación tal que

 $\pi_i \phi' = \phi_i$ para todo $i \in I$ y demostremos que $\phi = \phi'$. Para ello, debemos mostrar que para cada $c \in C$, $\phi(c)$ y $\phi'(c)$ son el mismo elemento de $\prod_{i \in I} A_i$, es decir, $\phi(c)$ y $\phi'(c)$ coinciden como funciones en I: $(\phi(c))(i) = (\phi'(c))(i)$ para todo $i \in I$. Pero por hipótesis y la definición de π_i , tenemos para todo $i \in I$:

$$(\varphi'(c))(i) = \pi_i \varphi'(c) = \varphi_i(c) = f_c(i) = (\varphi(c))(i).$$

(Unicidad) Supongamos que D' (con aplicaciones $\pi_i':D'\to A_i$) tiene la misma propiedad que $D=\prod_{i\in I}A_i$. Si aplicamos esta propiedad (para D) a la familia de aplicaciones $\{\pi_i':D'\to A_i\}$ y también la aplicamos (para D') a la familia $\{\pi_i:D\to A_i\}$, obtenemos (únicas) aplicaciones $\phi:D'\to D$ y $\psi:D\to D'$ tales que los siguientes diagramas son conmutativos para cada $i\in I$:

$$\begin{array}{ccc}
D & \xrightarrow{\psi} & D' \\
& & \downarrow^{\pi'_i} \\
& & A_i
\end{array}$$

$$\begin{array}{ccc}
D' & \xrightarrow{-\varphi} & D \\
& & \downarrow^{\pi'_i} \\
& & A_i
\end{array}$$

Combinando estos, obtenemos para cada $i \in I$ un diagrama conmutativo:

$$D \xrightarrow{\phi\psi} D$$

$$\downarrow^{\phi_i} \qquad \downarrow^{\pi_i}$$

$$A_i$$

Nótese que el enunciado del Teorema ?? no menciona elementos; involucra solo conjuntos y aplicaciones. Establece que el producto $\prod_{i \in I} A_i$ se caracteriza por una cierta propiedad universal que cumplen todas las aplicaciones. Esta propiedad se resume en el siguiente diagrama conmutativo:

$$\begin{array}{ccc} C & \xrightarrow{\phi_i} & D \\ & & \downarrow^{\pi_i} \\ & & A_i \end{array}$$