	ACM 104 Midterm
(1) (A)	
B	live ternels are the same, so the ormenions are two.
0	Thus, the number of free variables and the rank are the sum False. (consider A= (1-1). Its Kernel's basis is (1,1) and
0	True UTAUZU and UTBUZO for all nonzero vectors U.
6	Thus, $u^{T}(A+B)u>0$ is valid as well. False. $ v^{+}u \leq v + u $, which is inconsistent with the claim
0	For every value of X, V, and Vy will be linearly
	dependent. If x is greater than or less than zero, v, can be multiplied by a scalar to become identical.
0	If x is 0, Vy is the zero vector, moking the entire set of vectors linearly dependent.
3	
	{x², x, 1} is a basis for the space of all quadratic pulynomials. (in general). We can have p(-1)=0 iff the factor (x+1) divides p(x). Thus we can have the form:
	form: $\rho(x) = (x+1)(\alpha x + \beta)$
	which is $dx(x+1) + \beta(x+1) = \rho(x)$
	and B are some real numbers will produce p(-1)=0.
	and B are some real humbers will produce p(-1)=0.

 $9A = \begin{bmatrix} 1 & -3 \\ 3 & -9 \end{bmatrix}$ R2-3-R1 $\begin{bmatrix} 1-3 \\ 0 & 0 \end{bmatrix}$ x = 34 (3) Kernel basis and image basis $A^{T} = \begin{bmatrix} 1 & 3 \\ -3 & -9 \end{bmatrix}$ $R2 + 3R1 \begin{bmatrix} 1 & 3 \\ 0 & 0 \end{bmatrix}$ X = -3y(1/3) cokernel basis and coimage basis $\bigcirc \cos \theta = \int_0^{\pi/4} \sin(x) \cos(x) dx$ 1 51 μ2 (x) dx = 1 (π/4 cos²(x) dx

$$= 0.25 = 0.8255$$

$$\sqrt{\frac{\pi-2}{8}} \cdot \sqrt{\frac{2+\pi}{8}}$$

$$\arccos(0.8255) = 0.60 \text{ rad}$$

6
$$f(x,y,z) = z - x - y - x^2 - y^2 - z^2 - xz$$

$$\frac{\partial f}{\partial x} = -1 - 2x - z \qquad \frac{\partial f}{\partial z} = 1 - 2z - x$$

$$\frac{\partial f}{\partial y} = -1 - 2y$$

$$1-2z-x=0$$

 $y=1-2z$
Plug in
 $-1-2x-z=0$

$$-1-2(1-2z)-z=-1-2+4z-z=-3+3z=0$$
or $z=1$

$$-1-2x-1=0$$
 $\rightarrow x=-1$
 $-1-2y=0$ $\rightarrow y=-\frac{1}{2}$

Max value:

$$f(-1, -\frac{1}{2}, 1) = 1 + 1 + \frac{1}{2} - 1 - \frac{1}{4} - |+|$$

$$= |5/4|$$

(8)
$$\ker(A^{T}A) = \ker(A)$$

For any $x \in \ker(A^{T}A)$ we have that $A^{T}A \times = 0$

We then have that: $x^TA^TAx = (Ax)^TAx = 0$ which means Ax must equal 0. Thus $\ker(A^TA) = \ker(A)$ for any matrix A.