Course Two Get Started with Python

Instructions

Use this PACE strategy document to record decisions and reflections as you work through this end-of-course project. You can use this document as a guide to consider your responses and reflections at different stages of the data analytical process. Additionally, the PACE strategy documents can be used as a resource when working on future projects.

Course Project Recap

Regardless of which track you have chosen to complete, your goals for this project are:

- Complete the questions in the Course 2 PACE strategy document
- Answer the questions in the Jupyter notebook project file
- Complete coding prep work on project's Jupyter notebook
- Summarize the column Dtypes
- Communicate important findings in the form of an executive summary

Relevant Interview Questions

Completing the end-of-course project will help you respond these types of questions that are often asked during the interview process:

- Describe the steps you would take to clean and transform an unstructured data set.
- What specific things might you look for as part of your cleaning process?
- What are some of the outliers, anomalies, or unusual things you might look for in the data cleaning process that might impact analyses or ability to create insights?

Reference Guide

This project has three tasks; the visual below identifies how the stages of PACE are incorporated across those tasks.

Data Project Questions & Considerations

- How can you best prepare to understand and organize the provided information?
 - Begin by thoroughly reading the project instructions and understanding the dataset structure.
 - Identify key variables, their data types, and how they relate to the analysis goals.
 - Create a data dictionary to document column names, data types, and descriptions.
 - Review similar datasets or projects to gain insights into potential challenges.
 - Outline a step-by-step plan for cleaning, analyzing, and interpreting the data.
 - Review emails from May Santner and Chidi Ga to align with project expectations.

• w	nat follow-along and self-review codebooks will help you perform this work?
	Python documentation for Pandas, NumPy, and Matplotlib for data manipulation and visualization.
	Google Data Analytics course materials and example Jupyter notebooks.
	Previous datasets from Kaggle or similar platforms to compare best practices.
	Online coding tutorials or Stack Overflow for troubleshooting.
	A checklist for common data cleaning and transformation steps.
	Review the provided Waze dataset documentation for key insights.

- What follow-along and self-review codebooks will help you perform this work?
 - Python documentation for Pandas, NumPy, and Matplotlib for data manipulation and visualization.
 - Google Data Analytics course materials and example Jupyter notebooks.
 - Previous datasets from Kaggle or similar platforms to compare best practices.
 - Online coding tutorials or Stack Overflow for troubleshooting.
 - A checklist for common data cleaning and transformation steps.
 - Review the provided Waze dataset documentation for key insights.

- What are some additional activities a resourceful learner would perform before starting to code?
 - Conduct exploratory data analysis (EDA) to understand trends and potential issues.
 - Perform a preliminary check for missing values and inconsistencies.
 - Research domain-specific knowledge relevant to the dataset.
 - Sketch out a rough workflow for cleaning and analysis.
 - Review similar case studies to understand expected outcomes.
 - Familiarize yourself with Waze's business model and how user churn impacts it.

PACE: Analyze Stage

- Will the available information be sufficient to achieve the goal based on your intuition and the analysis of the variables?
 - A preliminary review of the dataset should determine if it contains the necessary variables.
 - Checking for completeness (missing values, duplicates) ensures reliability.
 - If critical information is missing, consider external data sources or adjusting the scope of the analysis.
 - Review the dataset for inconsistencies between expected values and the provided data.
- How would you build summary dataframe statistics and assess the min and max range of the data?
 - Use Pandas functions such as .describe() to get summary statistics.
 - Apply .min() and .max() to find the range of numerical columns.
 - Check for inconsistencies such as negative values where they shouldn't exist.
 - Create histograms or boxplots to visualize data distribution.
 - Summarize the column data types to verify correct formatting.

- Do the averages of any of the data variables look unusual? Can you describe the interval data?
 - Calculate mean, median, and mode to detect skewness.
 - Compare calculated statistics to expected industry or domain benchmarks.
 - Investigate extreme values or outliers using standard deviation and interquartile range (IQR).
 - If the dataset includes time-series data, check for seasonality or trends.
 - Evaluate if user activity metrics (sessions, drives) correlate logically.

PACE: Construct Stage

Note: The Construct stage does not apply to this workflow. The PACE framework can be adapted to fit the specific requirements of any project.

PACE: Execute Stage

- Given your current knowledge of the data, what would you initially recommend to your manager to investigate further prior to performing exploratory data analysis?
 - Identify any discrepancies between expected and actual data distributions.
 - Look into missing values and determine if they need imputation or removal.
 - Verify consistency in categorical data entries (e.g., uniform spelling and formatting).
 - Ensure that numerical values align with business logic (e.g., no negative revenue figures).
 - Recommend focusing on key predictive features like sessions, drives, and n days after onboarding.

	What data	initially	presents as	containing	anomalies?
•	vviiat data	minuany	presents as	Containing	and intriduces:

- Outliers in numerical columns (extreme high or low values).
- Categorical values that do not fit expected categories.
- Unexpected null or blank entries in key columns.
- Duplicate records that may affect analysis outcomes.
- Anomalous values in driven_km_drives or duration_minutes_drives that don't match session counts.

What additional types of data could strengthen this dataset?

- External demographic or economic data to provide context.
- Additional timestamps or location data for deeper trend analysis.
- Data from similar datasets for cross-validation.
- Industry benchmarks for comparison to identify anomalies more effectively.
- Behavioral insights on user engagement with app features.
- Traffic condition data to analyze its effect on driving habits.