2.	a)	Suppose an organization has four departments to manage. These are sales and			
		purchase department with 128 computers, development department with 60			
		computers, accounts department with 16 computers and management department			
		with 4 computers. If the network administrator has IP 172.160.0.0, identify the			
		Network Address, Broadcast Address, Usable IP range and subnet mask for each			
		department.			

Ans:

IP 172.160.0.0.

Network Address, Broadcast Address, Usable IP range, and Subnet Mask for each department based on their computer requirements.

Steps:

IP Allocation:

Sales and Purchase:

```
128 computers \rightarrow Nearest power of 2 = 128 IPs (2^7)
```

Oevelopment:

```
60 computers \rightarrow Nearest power of 2 = 64 IPs (2<sup>6</sup>)
```

O Accounts:

```
16 computers \rightarrow Nearest power of 2 = 16 IPs (2<sup>4</sup>)
```

o Management:

```
4 computers \rightarrow Nearest power of 2 = 4 IPs (2^2)
```

Subnet Mask Calculation:

- Sales and Purchase: /25 (Subnet mask = 255.255.255.128)
- Development: /26 (Subnet mask = 255.255.255.192)
- Accounts: /28 (Subnet mask = 255.255.255.240)
- Management: /30 (Subnet mask = 255.255.255.252)

Subnet Allocation:

o Start with **172.160.0.0** and allocate subnets sequentially.

Department	Network Address	Broadcast Address	Usable IP Range	Subnet Mask
Sales and Purchase	172.160.0.0	172.160.0.127	172.160.0.1- 172.160.0.126	255.255.255.128 (/25)
Development	172.160.0.128	172.160.0.191	172.160.0.129- 172.160.0.190	255.255.255.192 (/26)
Accounts	172.160.0.192	172.160.0.207	172.160.0.193- 172.160.0.206	255.255.255.240 (/28)
Management	172.160.0.208	172.160.0.211	172.160.0.209- 172.160.0.210	255.255.255.252 (/30)

Ans:

Source NAT (SNAT):

• Original Source: 172.17.0.12 (private IP)

• **Translated Source**: Public IP of the router (181.65.30.9)

Update NAT table entry:

Private IP	Translated Public IP
172.17.0.12	181.65.30.9

Destination Address:

The original destination 138.56.27.7 remains unchanged as it's a public IP.

Return Path (DNAT):

- When the destination replies, it sends the packet back to 181.65.30.9 (translated public IP).
- The NAT router maps it back to the original private IP **172.17.0.12**.

Translation Table:

Step	Source Address	Destination Address	Translation
1	172.17.0.12	138.56.27.7	Source translated to 181.65.30.9
2	138.56.27.7	181.65.30.9	Destination translated to 172.17.0.12

Subnetting:

at Bubnet mark two types:

ODefault stebnet mask (classful)

Ocustom u u (classless)

Default 6.M (Classful)

Class A = 255.0.0.0
$$\rightarrow$$
 Nef ID = 28 + Host ID = 24

class B = 255.255.0.0 \rightarrow Nef ID = 216 + Host ID = 216

class C = 255.255.255.0 \rightarrow Nef ID = 224 Host ID = 28

Class D = 255.255.255.255 \rightarrow Nef ID = 20 + Host ID = 232

Net ID of an IP = 2 (number of 1 in subnet mark)

A Host ID of an IP = 2 (numbers of o in subnet mark)

* Usable Net ID = 2(num. of 1) -2 * Usable Host ID= 2 (num. of 0) -2

Range class A = (0 - 127) Closs B = (128-191) class c = (192-123)

class D=(224-239)

Class E = (240 - 255)

** VLSMS

[P-3] 17.12.14.0/26 190.100.0.0/16 192.168.10.0/29

1. Arest group has 64 customers and each need 254 address. Which class - they should use?

2. 62

62 customers

186 address

3.

256 chatameros

125 address

50/78 Herce, 17.12.14.0/26

It's class-A IP.

Herre, 32-26=6

i. Subnet available = 26 = 64

Total IP available = (64/256) = 0.

190.100.0.0/16

It's class-B IP

Herce, 32-16=16

: Subnet available = 216 = 65536

Total IP available = (5536) = 256

192.168.10.0/24

It's a class-e I

Horse, 32-24=8

. Subnet available = 28 = 2

Total IP available = (256)=1

