Compito di "Fondamenti di Automatica" - 01/07/2004

FILA: A

Cognome: Nome: Matricola:

Esercizio 1.

Con riferimento allo schema di controllo riportato in figura, dove

$$P(s) = \frac{e^{-sT}}{(s+\alpha)^2} ,$$

si risponda ai seguenti punti:

/8 Assumendo T=0, determinare per quali valori di $\alpha>0$ esiste un regolatore PI

$$C(s) = K_P + \frac{K_I}{s} \qquad (K_P, K_I > 0)$$

che rende il sistema stabile internamente;

- /8 Posto T=0 ed $\alpha=2$, determinare un regolatore PI tale che:
 - il sistema sia internamente stabile;
 - l'errore a regime corrispondente ad una rampa lineare unitaria sia non superiore a 1;
 - la pulsazione di attraversamento sia uguale a $\omega_a^0 = 1 \text{ rad/s}.$

Tracciare il diagramma di Nyquist ed il luogo delle radici del sistema di controllo progettato (C(s)P(s))

Posto $\alpha = 2$, determinare per quale valore del ritardo T esiste un controllore PI che soddisfi le precedenti specifiche.

Esercizio 2.

Assegnato il sistema di controllo schematizzato in figura, dove

$$P(s) = \frac{2}{s(s+2)(s+4)},$$

- /12 Progettare C(s) in modo da soddisfare le seguenti specifiche:
 - l'errore a regime corrispondente ad un disturbo $d_1(t)$ a gradino unitario sia non superiore a 0.1;
 - il picco di risonanza sia non superiore a 3dB;
 - la banda passante sia circa uguale a 4 rad/s.
- /8 Con riferimento al controllore progettato al punto precedente:
 - valutare per quali valori del guadagno K_c del controllore il sistema di controllo rimane stabile;
 - Progettare una sua realizzazione digitale.

Compito di "Fondamenti di Automatica" - 20/07/2004

FILA: A

Cognome:	Nome:	Matricola:	

Esercizio 1.

Con riferimento all'impianto descritto dalla funzione di trasferimento

$$P(s) = \frac{K(s+7)^2}{7s(s+1)^2} ,$$

utilizzare:

- /8 il luogo delle radici;
- /8 il criterio di stabilità di Nyquist;

per studiare la stabilità al variare di K, in presenza di retroazione unitaria.

Esercizio 2.

Con riferimento all'impianto dell' Esercizio 1 con K=1, progettare un controllore che garantisca le seguenti specifiche del sistema di controllo:

- /12
- errore di regime permanente, per un riferimento a rampa lineare, inferiore a 0.05;
- la risposta di regime corrispondente ad un disturbo costante presente all'ingresso dell'impianto inferiore al 25% dell'ampiezza del disturbo stesso;
- sovraelongazione massima inferiore al 20%;
- tempo di salita di circa 0.5 s;

/8 Con riferimento al controllore progettato al punto precedente:

- valutare per quali valori del guadagno K_c del controllore il sistema di controllo rimane stabile;
- Progettare una sua realizzazione digitale.

Compito di "Fondamenti di Automatica" - 14/09/2004

FILA: A

Cognome: Nome: Matricola:

Esercizio 1.

Assegnato il sistema di controllo schematizzato in figura, dove

$$P(s) = \frac{2s - 1}{s(s+5)^2(s-5)},$$

e C(s) = K, $K \in \mathbf{R}$, si risponda ai seguenti punti:

- 6 tracciare il diagramma di Nyquist di P(s);
- 6 tracciare il luogo delle radici (positivo e negativo) di P(s);
- 6 determinare per quali valori del guadagno K il sistema di controllo risulta stabile internamente;
- determinare per quali valori di K l'errore a regime prodotto dal disturbo $d(t) = \sin 3t$ risulta non superiore a $e_d = 2$.

Esercizio 2.

Con riferimento allo schema di controllo riportato in figura, dove

$$P(s) = \frac{s+1}{s(5s+1)^2} \ .$$

si risponda ai seguenti punti:

- 14 utilizzando la sintesi per tentativi progettare C(s) in modo da soddisfare alle specifiche:
 - l'errore a regime di inseguimento ad una rampa unitaria in ingresso sia non superiore a $e_{rp} = 0.25$;
 - la banda passante sia circa uguale a 0.8 rad/s;
 - la sovraelongazione sia inferiore al 40%.

Compito di "Fondamenti di Automatica" - 16/11/2004

FILA: A

Cognome:	Nome:	Matricola:

Esercizio 1.

Con riferimento allo schema di controllo riportato in figura, dove

$$P(s) = \frac{(s+1)}{(5s+1)(s+2)}$$

si risponda ai seguenti punti:

- /16 utilizzando la sintesi per tentativi progettare C(s) in modo da soddisfare alle specifiche:
 - l'errore a regime corrispondente ad un disturbo d(t) = 3t sia non superiore a $e_d = 0.1$;
 - l'errore a regime corrispondente ad un ingresso a rampa unitaria sia non superiore a $e_{rp} = 0.005$;
 - la sovraelongazione sia non superiore al 10%;
 - la banda passante sia circa uguale a $B_3^o = 20$ rad/s.
- /4 disegnare l'andamento qualitativo del luogo delle radici per il guadagno d'anello L(s) = C(s)P(s)

Esercizio 2. Assegnato il sistema di controllo schematizzato in figura, dove

$$P(s) = \frac{s - 2}{s(s + 5)^2}$$

si risponda ai seguenti punti:

- tracciare il diagramma di Nyquist di P(s) e studiare la stabilità del sistema con retroazione unitaria quando C(s) = K;
- 78 tracciare il Luogo delle Radici (diretto e inverso) di P(s), verificando le condizioni di stabilità;
- /4 studiare la stabilità interna del sistema di controllo quando si impieghi un compensatore

$$C(s) = \frac{s+2}{s-2} \ .$$

Compito di "Fondamenti di Automatica" - 04/02/2005

FILA: A

Cognome: Nome: Matricola:

Esercizio 1. Assegnato il sistema di controllo schematizzato in figura, dove

$$P(s) = \frac{s}{(s+1)(s^2+1)},$$

e C(s) = K, $K \in \mathbf{R}$, si risponda ai seguenti punti:

- 6 tracciare il diagramma di Nyquist di P(s);
- 6 tracciare il luogo delle radici (positivo e negativo) di P(s);
- 6 determinare per quali valori del guadagno K il sistema di controllo risulta stabile internamente;
- determinare per quali valori di K l'errore a regime prodotto dal disturbo $d(t) = \sin t$ risulta non superiore a $e_d = 2$.

Esercizio 2.

Con riferimento allo schema di controllo riportato in figura, dove

$$P(s) = \frac{8}{(2s+1)(s^2+4s+16)},$$

si risponda ai seguenti punti:

/14 utilizzando la sintesi per tentativi progettare C(s) in modo da soddisfare alle specifiche:

- l'errore a regime di inseguimento ad una rampa unitaria in ingresso sia non superiore a $e_{rp} = 0.1;$
- -l'errore a regime a fronte di un disturbo $d(t)=0.1\ t,$ sia non superiore a $e_{rp}=0.02;$
- il picco di risonanza sia inferiore a 3 dB;
- la banda passante sia circa uguale a 2 rad/s.

Compito di "Fondamenti di Automatica" - 17/02/2005

FILA: A

Cognome: Nome: Matricola:

Esercizio 1.

Con riferimento allo schema di controllo riportato in figura, dove

$$P(s) = \frac{K}{(s+1)^2(s+10)},$$

si risponda ai seguenti punti:

- /6 con K = 1 e utilizzando un regolatore industriale di tipo PI, progettare C(s) in modo da garantire un margine di guadagno di 6dB. Valutare inoltre la banda passante del sistema controllato;
- /10 con K = 10 e utilizzando la sintesi per tentativi progettare C(s) in modo da soddisfare alle specifiche:
 - l'errore a regime di inseguimento ad una rampa unitaria in ingresso sia non superiore a $e_{rp} = 0.2$;
 - l'errore a regime a fronte di un disturbo $d_2(t) = 0.1 t$, sia non superiore a $e_{rp} = 0.02$;
 - la sovraelongazione della risposta al gradino sia inferiore al 20%.
 - la banda passante sia circa uguale a 2 rad/s;

Esercizio 2.

Assegnato il sistema di controllo con regolatore PI dell'Esercizio 1, si risponda ai seguenti punti:

- /5 tracciare il luogo delle radici (positivo e negativo) di C(s)P(s);
- /5 tracciare il diagramma di Nyquist di C(s)P(s);
- $\sqrt{5}$ determinare per quali valori del guadagno K il sistema di controllo risulta stabile internamente;
- determinare per quali valori di K l'errore a regime prodotto dal disturbo $d_1(t) = \cos t$ risulta non superiore a $e_d = 0.1$.