Database Security

Slides by Rayford Vaughn, Modifications by Rogers and Brown

Data Sensitivity

- Sensitive Data is data that should not be made public
- Three cases
 - Data is either sensitive or not
 - Sensitivity varies from element to element
 - Sensitivity varies from user to user
- Sensitive (Attribute within a record or entire record) when
 - Inherently sensitive
 - Declared sensitive
 - Source is sensitive
 - Only sensitive with respect to previously disclosed data

Traditional Security Concerns

- Confidentiality
- Integrity
- Availability
- Accountability

Availability

- Data is accessible all the time
- Management of multiple requests for the same data

9

Accountability

- Log access to database
- Helps with non-repudiation
 - Reconstruction of events
- Example where auditing helps
 - Query P → R

//No

- Query A + Query B + Query C → R

//Yes

Integrity

- DB integrity types
 - Physical database integrity
 - Data in the database is safe
 - Data can be reconstructed
 - Logical database integrity
 - Structure of the database is preserved
 - No inconsistency
 - Element integrity
 - Correctness/accuracy of the data is maintained

Integrity Goals

- Database integrity production must achieve:
 - Internal consistency: Database entries must obey prescribed rules
 - External consistency : Database entries are correct
 - Combine checking data entered with auditing to check consistent state

19 \ 15

Integrity Rules

- Most rules are application specific, but two rules inherent to relational model
 - Entity integrity rule:
 - No component of the primary key can accept null values
 - Referential integrity rule :
 - Database must not contain unmatched foreign key values

Application Specific Integrity Checks

- Field checks
 - Check that entries are valid elements of domain
- Consistency checks
 - Check that entries in different relations do not conflict
- Scope checks
 - Checks that query results are not computed for too small a sample (for specialized DB)
- Change logs
 - Check that all changes are recorded with original and modified entry values

Confidentiality

- More complex than OS
 - Deals with information (data with semantic/context)
- Uses access control for maintaining confidentiality

9 \ 1 =

Access Control Goals

- Database access control must achieve :
 - Completeness : all database entries must be protected
 - Consistent: access control rules must not conflict
 - Example:
 - List employees with maximum salary
 - List employees for salary > average (salary)
- //No //Yes
- Security policy is consistent if no elements in database for which access in two ways gives different access control decisions

SQL Model Security

- Basic SQL security model implements Discretionary Access Control (DAC)
 - Owner of an object defines controls for other users' access to the object

Security Controls in SQL

- SQL provides ability to protect
 - Data: Tables, records, columns, domains, vies
 - Transactions
- SQL provides controlled access to six DBMS functions
 - Creating, modifying, seeing, deleting, referencing, using
- SQL security based on privileges and views

Privileges

- When object is created, a user is designated as "owner" of the object
- Users other than owner have to be granted privileges in order to access an object
- The basic components of privilege are
 - Grantor
 - Grantee
 - Object
 - Action
 - Grantable

Granting / Revoking Privileges

- Privileges can be granted/revoked to entities in base relations
- In SQL, privileges are managed
 - Using GRANT and REVOKE operations
 - Apply to particular actions
 - Can be restricted to certain attributes of a table

Granting Privileges to Users

```
• GRANT privilege-list ON object TO user-list [WITH GRANT OPTION]
                 Grant Select, Update (Salary)
on table Employee
to Joe, Shelby
                  Grant Update(Salary)
                 on table Employee to Mary with grant option
Privilege

√ [TABLE] table-name

✓ SELECT

✓ User-list

✓ DELETE

√ Login-id | PUBLIC

√ INSERT [column name]

                                                   ✓ WITH GRANT OPTION

✓ UPDATE [column name]

                                                       ✓ Provides right to delegate
✓ REFERENCES
✓ USAGE
```


Revoking Privilege

- REVOKE [GRANT OPTION FOR] privilege-list ON object FROM user-list [RESTRICT|CASCADE]
- GRANT OPTION FOR
 - Revokes grant option for specified privileges
- CASCADE
 - Revokes privilege of grantee and any one else who have been granted privilege by grantee
- RESTRICT
 - Revokes privilege of grantee
- REVOKE GRANT OPTION FOR UPDATE ON Retail_Price FROM Sales_Manager;
 REVOKE SELECT ON customer FROM John;
 REVOKE UPDATE ON Retail_Price FROM Sales_Manager CASCADE;

Access Control Through Views

- Many security policies are better expressed by granting privileges to views derived from base relations
 - Views are flexible
 - Views allow access control to be defined at a description level appropriate to the application

Views Based Access Control - Example

```
• Create a view containing only information about the employee
```

```
- CREATE VIEW My_Info AS SELECT *
          FROM employee
          WHERE employee name = Current User()
```

• Create a view containing only the employee's peers information

```
- CREATE VIEW My_Peers AS
         SELECT *
         FROM employee
         WHERE rank = ( SELECT rank
                       FROM employee
                       WHERE employee_name = Current_User())
```


Data Association

- Occurs when two items are not sensitive, but their association is
- Example :
 - Longitude + Latitude
 - Plane + Cargo

9

15

Example Relation employee

SSN	employee_name	birth_date	gender	salary	criminal_conviction	department
123456789	Adam	1/12/58	М	40k	0	AC1
246813579	Ruth	7/4/76	F	30k	1	AC2
987654321	Collin	3/3/67	М	66k	0	AC2
357951264	Diane	8/7/66	F	100k	0	AC3
456789123	Ellis	1/25/73	М	85k	0	AC2
654978321	Jane	11/10/65	F	86k	0	AC1

Data Aggregation

- Occurs when a combination of allowed queries results in disclosure of sensitive information
- Examples
 - SELECT name FROM employee WHERE salary = MAX (salary)
 - SELECT MAX (salary) AS H FROM employee GROUP BY salary
 - SELECT MIN (salary) AS L FROM employee GROUP BY salary
 - SELECT name FROM employee WHERE salary BETWEEN 2L AND H
 - SELECT name FROM employee WHERE salary BETWEEN 3L AND H

Data Inference

- Attacker combines information from outside the database with database responses to infer something about information that is not authorized for disclosure
- Example :
 - Knows:
 - Diane works in the AC3 department
 - Conducts queries (Aggregation):
 - SELECT MAX (salary) AS H FROM employee GROUP BY salary
 - SELECT MIN (salary) AS L FROM employee GROUP BY salary
 - SELECT COUNT (*), department FROM employee WHERE salary BETWEEN 2L AND H GROUP BY department
 - SELECT COUNT (*), department FROM employee WHERE salary BETWEEN 2L AND H GROUP BY department
 - Infers:
 - Diane's Salary

Security – A Persistent Problem

- Why?
 - Financial Motivation
 - Religious / Political Motivation
 - Personal Grudge
 - Boredom
- How?
 - Physical Access
 - Exploit lack of awareness and training
 - Exploit weak security policies and procedures
 - Exploit vulnerabilities in applications and security mechanisms

Security – A Persistent Problem

- Victim?
 - Financial Institutions
 - Educational Institutions
 - Government Agencies
 - E-Commerce Web Sites
 - ANYONE

Some Statistics

- Probability of a data breach involving a minimum of 10,000 records
 - US 22.9%
 - Highest Brazil 37.2%, Lowest Germany 15.6%
- Average cost of a data breach
 - US \$6.69 Million
 - Highest US, Lowest India \$1.53 Million
 - Strange correlation the US spends the most to notify about data breaches, India spends the least

Biggest Costs in US Cyber Crime Malicious insiders Denial of service Web-based attacks Malicious code Phishing & social engineering Stolen devices Viruses, worms, rojans Stolen devices Stolen devices Stolen Sto

Security Job Demand

- Bureau of Labor and Statistics, US Dept of Labor
 - Number of Jobs in 2016: 100,000
 - 2016 Median Pay: \$92,600 per year
 - 2016-2026 Job Outlook: 28% growth much faster than the average of all occupations
 - Demand expected to be very high
 - Means we are looking at needing an additional 28,000 professionals every year for the next 8 years

Problems With Security

- Most do not understand or know about it
- Those who do understand have a tendency to underestimate it
- Those who do understand and do not underestimate it, address it insufficiently

Two Sides in Security

- Offensive
 - Threats and Attacks using Vulnerabilities to cause Harm or Loss
- Defensive
 - Goals include Integrity, Confidentiality and Available through the use of a security perimeter to avoid loss and maintain control

Terms

- Threat
 - Potential to inflict harm to an asset or cause security violations
- Attach
 - Infliction of harm to an asset or causing security violations
- Vulnerability
 - A weakness in security procedures or system design, implementation or operation that can be used to cause security policy violations

General Classes of Threats

- Disclosure
- Deception
- Disruption
- Usurpation

Specific Types of Attacks

- Snooping / Sniffing
- Spoofing
- Modification
- Repudiation of Origin
- Delay
- Denial of Receipt
- Denial of Service

CIA Model of Information Assurance

- Confidentiality
 - Keeping data and resources hidden
- Integrity (Data and Origin)
 - Keeping data (and data sources) and resources uncorrupted
- Availability
 - Keeping data and resources usable
- Accountability (a.k.a. Non-repudiation)
 - Holding one accountable for actions

Goals of Security – Defense in Depth

- Prevent
 - Securing an environment to avoid penetration
- Deter
 - Applying protection mechanisms to hurdle intruder efforts and thus causing delays in achieving a malicious gain
- Detect
 - Ensuring visibility of suspicious activities
- Response
 - Reacting to security incidents by notification, eradication, interdiction, prosecution
 - Continuing to survive to some extent
- Recover
 - Assessing and repairing damage
 - Improving

Security Policy

- An organizational security policy applies to all systems and its users and sets out what should and should not be allowed
- Types
 - Military
 - Readers may not access documents above his/her privilege level
 - Commercial
 - Customer may not change the price of the product

Venues for Security Controls

- Hardware
- Software
- Data
 - In processing
 - In transit
 - In storage
- People

