Linear Regression

 $\begin{bmatrix} z_1 \\ z_2 \end{bmatrix} = \phi(x)$

Linear Regression: Pictorially

■ Linear regression is like fitting a line or (hyper)plane to a set of points

(e.g., using kernel methods or a deep neural network

■ The line/plane must also predict outputs the unseen (test) inputs well

Simplest Possible Linear Regression Model

- This is the base model for <u>all</u> statistical machine learning
- *x* is a one feature data variable
- *y* is the value we are trying to predict
- The regression model is

$$y = w_0 + w_1 x + \varepsilon$$

Two parameters to estimate – the slope of the line w_1 and the *y*-intercept w_0

• E is the unexplained, random, or error component.

Solving the regression problem

We basically want to find {w0, w1} that minimize deviations from the predictor line

$$\arg\min_{w_0, w_1} \sum_{i}^{n} (y_i - w_0 - w_1 x_i)^2$$

- How do we do it?
 - Iterate over all possible w values along the two dimensions?
 - Same, but smarter? [next class]
 - No, we can do this in *closed form* with just plain calculus
- Very few optimization problems in ML have closed form solutions
 - The ones that do are interesting for that reason

Parameter estimation via calculus

• We just need to set the partial derivatives to zero (<u>full derivation</u>)

$$\frac{\partial \epsilon^2}{\partial w_0} = \sum_{i=1}^{n} -2(y_i - w_0 - w_1 x_i) = 0$$

$$\frac{\partial \epsilon^2}{\partial w_1} = \sum_{i=1}^{n} -2x_i(y_i - w_0 - w_1 x_i) = 0$$

Simplifying

$$w_0 = \bar{y} - w_1 \bar{x}$$

$$w_1 = \frac{n \sum_{i=1}^{n} x_i y_i - \sum_{i=1}^{n} x_i \sum_{i=1}^{n} y_i}{n \sum_{i=1}^{n} x_i x_i - \sum_{i=1}^{n} x_i \sum_{i=1}^{n} x_i}$$

$$= \frac{(\bar{x}\bar{y}) - (\bar{x})(\bar{y})}{(\bar{x}_i^2) - (\bar{x})^2}$$

Problem

Xi(week)	Yi (Sales in Thousands)
1	1.2
2	1.8
3	2.6
4	3.2
5	3.8

Evaluation

x	у	x ²	x * y
1	1.2	1	1.2
2	1.8	4	3.6
3	2.6	9	7.8
4	3.2	16	12.8
5	3.8	25	19
Average=15/5=3	Average=12.6/5=2.52	Average=55/5=11	Average=44.4/5=8.88
Slope=(8.88-3(2.52))/(11-3 ²)=0.66	Intercept=2.52-0.66*3= 0.54	Line: y=0.54-0.66*x	

Validation

- Standard Error: difference between actual and predicted value
- Mean Absolute Error(MAE) : $\frac{1}{n}\sum_{i=0}^{n-1}|y_i-\widehat{y}_i|$
- Mean squared Error (MSE): $\frac{1}{n}\sum_{i=0}^{n-1}(y_i-\widehat{y}_i)^2$
- Root Mean Square Error(RMSE): Root of MSE
- Relative MSE: ratio of the prediction ability of y cap to the average of the trivial population

•
$$\frac{\sum_{i=0}^{n-1} (y_i - \widehat{y_i})^2}{\sum_{i=0}^{n-1} (y_i - \overline{y_i})^2}$$

• Coefficient of variation: RMSE/ \bar{y}