Attention!

Yifeng Liu CS 495

Preliminaries

- Definition of token
- Vector representation of token
- Softmax function

Today's Learning Objectives

Students will be able to:

- Describe the basic mechanism of attention in neural network
- Understand the function of components in scaled dot-product attention

Attention in Life

Attention in Life

Attention in context

- Try to predict the next word:
 - Paris is the capital of _____
- What are the most important words for your attention to predict?
 - Paris is the capital of (France)
- Each word(token) can be represented as a vector (1×d)
 - Hence we need to predict the vector for "France" mainly based on attentions to "Paris" and "capital"
 - But how to measure the extent of the "attention"?

Attention in context

- Inner product as attention
 - z stands for the vector for "
 - X=[x1, x2, x3, x4, x5] stands for the vectors for "Paris is the capital of"
 - Compute the inner product of z and $x_1 \sim x_5$ as $zx_1^T = [zx_1^T...zx_5^T]$
- Predict using the weighted average of given vectors (X)
 - **z**X^T· X
 - Normalize the weight using Softmax: Softmax(zXT). X
 - Suppose each element in z and X ~ N(0, 1)
 Var(zXT)=d

$$ext{Softmax}(ext{X})_i = rac{e^{X_i}}{\sum_j e^{X_j}}$$

• Therefore, divide by \sqrt{d} to reduce the variance: Softmax $(\frac{ZX}{\sqrt{d}}^T)\cdot X$

Attention in context

- How to learn with Softmax($\frac{ZX^T}{\sqrt{d}}$)· X?
 - Weighted average of given vectors by weights of inner products of given vectors
 - ➤ Weighted average of representation of given vectors by weights of inner products of representation of given vectors

•
$$z \rightarrow W_q z = q, X^T \rightarrow W_k X^T = K^T, X \rightarrow W_v X = V$$

• Softmax
$$(\frac{qK^T}{\sqrt{d}})$$
· V

Today's Learning Objectives

Students will be able to:

- Describe the basic mechanism of attention
 - Softmax $(\frac{qK^T}{\sqrt{d}})$ · V
- ✓ Understand the function of components in scaled dot-product attention
 - To normalize the weight and control variance

Thank you very much!

