Mineração de Dados

Regras de Associação

Sumário

- Introdução
- Mineração de Itemsets Frequentes
- Regras de Associação
- Algoritmo Força Bruta pra Minerar Itemsets
- Opriorial
- 6 Eclat
- dEclat
- B Gerando Regras de Associação

Introdução

Mineração de Itens Frequentes

- Em muitas situações, é importante conhecer as relações entre dois ou mais objetos da base de dados
 - Esses conjuntos de itens são chamados de itemsets
- Análises de cestas de compras é uma aplicação tradicional
 - Itens que são comprados juntos em mercados
 - Um caso popular é a compra de fraldas e cervejas
- A mineração de itemsets frequentes é uma tarefa exploratória básica
 - Busca por co-ocorrências
 - Fornece uma estimativa da probabilidade conjunta
- Uma vez determinado os itemsets frequentes, pode-se extrair regras de associação desses conjuntos
 - Fornece informação da ocorrência condicional dos itens
- Este conteúdo é baseado no material de Zaki & Meira Jr., Data Mining and Analysis

Mineração de Itens Frequentes: Terminologia

- Itemsets
 - ▶ Seja $I = \{x_1, x_2, \dots, x_m\}$ um conjunto de elementos chamados itens
 - ▶ Um conjunto $X \subseteq I$ é chamado de *itemset* e um *itemset* de cardinalidade k é chamado de k-itemset
 - $ightharpoonup I^{(k)}$ é o conjunto de todos os k-itemsets
- ► Tidsets
 - Seja $T = \{t_1, t_2, \dots, t_n\}$ um conjunto de identificadores de transações ou tids
 - ▶ Um conjunto $T \subseteq T$ é chamado de *tidset*
- Na prática, itemsets e tidsets são mantidos ordenados
- Transações
 - ▶ Uma transação é uma tupla < t, X > onde $t \in T$ e X é um *itemset*
- ▶ Uma base de dados binária D é um conjunto que relaciona tids e itens, ou seja, $D \subseteq T \times I$

Representação de Bases de Dados

- Bases de dados binárias podem ser representadas por uma base transacional/horizontal ou vertical
- ▶ $\mathbf{i}(t)$ é o conjunto de itens do *tid* $t \in T$
- ightharpoonup $\mathbf{t}(x)$ é o conjunto de *tids* que contem o item x

Bases Transacionais e Verticais

D	A	В	C	D	E
1	1	1	0	1	1
2	0	1	1	0	1
3	1	1	0	1	1
4	1	1	1	0	1
5	1	1	1	1	1
6	0	1	1	1	0

	t	$\mathbf{i}(t)$
	1	ABDE
Г	2	BCE
Γ	3	ABDE
Γ	4	ABCE
	5	ABCDE
	6	BCD

х	A	В	C	D	E
	1	1	2	1	1
	3	2	4	3	2
t (x)	4	3	5	5	3
	5	4	6	6	4
		5			5
		6			

(a) Binary database

(b) Transaction database

- (c) Vertical database
- ▶ A base de dados D tem 5 itens ($I = \{A, B, C, D, E\}$) e 6 *tids* ($T = \{1, 2, 3, 4, 5, 6\}$)
- ightharpoonup A primeira transação é $<1, \{A,B,D,E\}>$ ou <1,ABDE>

Mineração de Itemsets Frequentes

Suporte e Itemsets Frequentes

 \blacktriangleright Suporte de um $\mathit{itemset}\ X$ é a quantidade de transações em D que contem X

$$sup(X) = |\{t| < t, i(t) > \in D \text{ e } X \subseteq i(t)\}| = |t(X)|$$

- O suporte relativo pode ser definido como $rsup(X) = \frac{sup(X)}{|D|}$
- $lackbox{ O suporte relativo \'e uma estimativa da probabilidade conjunta dos itens em <math>X$
- ▶ X é chamado de *itemset* frequente quando $sup(X) \ge minsup$, one minsup é um limiar de suporte mínimo (definido pelo usuário)
- $lackbox{ O conjunto } F$ denota o conjunto de todos os *itemsets* frequentes e $F^{(k)}$ é o conjunto de k-itemsets frequentes

Itemsets Frequentes

ightharpoonup minsup = 3

t	$\mathbf{i}(t)$
1	ABDE
2	BCE
3	ABDE
4	ABCE
5	ABCDE
6	BCD

sup	itemsets
6	В
5	E, BE
4	A, C, D, AB, AE, BC, BD, ABE
3	AD, CE, DE, ABD, ADE, BCE, BDE, ABDE

Transaction Database

Frequent Itemsets

The 19 frequent itemsets shown in the table comprise the set \mathcal{F} . The sets of all frequent k-itemsets are

$$\mathcal{F}^{(1)} = \{A, B, C, D, E\}$$

$$\mathcal{F}^{(2)} = \{AB, AD, AE, BC, BD, BE, CE, DE\}$$

$$\mathcal{F}^{(3)} = \{ABD, ABE, ADE, BCE, BDE\}$$

$$\mathcal{F}^{(4)} = \{ABDE\}$$

Regras de Associação

Regras de Associação

- ▶ Uma regra de associação é definida como $X \to Y$, onde X e Y são itemsets disjuntos
- Seja o suporte da regra o número de transações em que X e Y ocorrem conjuntamente $(X \cup Y \text{ ou } XY)$ $sup(X \to Y) = sup(XY) = |t(XY)|$
- A fração em que XY ocorre é o suporte relativo da regra $rsup(X \to Y) = \frac{sup(XY)}{|D|} = P(X \land Y)$
- A confiança de uma regra é a probabilidade condicional das transações conterem Y tal que contém X $conf(X \to Y) = P(Y|X) = \frac{P(X \land Y)}{P(X)} = \frac{sup(XY)}{sup(X)}$

Algoritmo Força Bruta pra Minerar Itemsets

Algoritmo Força Bruta

- Determina todos os itemsets, computa seus valores de suporte e guarda os itemsets frequentes
- lacktriangle Complexidade computacional $O(|I|\;|D|\;2^{|I|})$


```
BRUTEFORCE (D, \mathcal{I}, minsup):
1 \mathcal{F} \leftarrow \emptyset // set of frequent itemsets
2 foreach X \subset \mathcal{I} do
 \begin{array}{c|c} \mathbf{3} & sup(X) \leftarrow \mathsf{COMPUTESUPPORT} \; (X, \mathbf{D}) \\ \mathbf{4} & \mathsf{if} \; sup(X) \geq minsup \; \mathsf{then} \\ \mathbf{5} & \mathcal{F} \leftarrow \mathcal{F} \cup \big\{ (X, sup(X)) \big\} \\ \end{array} 
6 return F
     COMPUTESUPPORT (X, D):
1 sup(X) \leftarrow 0
2 foreach \langle t, i(t) \rangle \in D do
\begin{array}{c|c} \mathbf{3} & \mathbf{if} \ X \subseteq \mathbf{i}(t) \ \mathbf{then} \\ \mathbf{4} & \mathbf{sup}(X) \leftarrow \mathbf{sup}(X) + \mathbf{1} \end{array}
5 return sup(X)
```

Algoritmo Força Bruta

Itemset search space is a lattice where any two itemsets X and Y are connected by a link iff X is an *immediate subset* of Y, that is, $X \subseteq Y$ and |X| = |Y| - 1.

Frequent itemsets can enumerated using either a BFS or DFS search on the *pref ix tree*, where two itemsets *X*, *Y* are connected by a link iff *X* is an immediate subset and prefix of *Y*. This allows one to enumerate itemsets starting with an empty set, and adding one more item at a time.

- $lackbox{ Se } X\subseteq Y \ {\it ent{ iny 3o}} \ sup(X)\geq sup(Y) \ {\it e, assim}$
 - \blacktriangleright se X é um $\it itemset$ frequente então qualquer subconjunto $Z\subseteq X$ também é frequente
 - \blacktriangleright se X não é frequente então qualquer superconjunto $Z\supseteq X$ não é frequente
- O algoritmo *Apriori* explora essas propriedades
 - Reduz as buscas por evitar os candidatos a itemsets infrequentes
 - Subconjuntos infrequentes não compõem itemsets frequentes


```
APRIORI (D, \mathcal{I}, minsup):
 1 \mathcal{F} \leftarrow \emptyset
 2 \mathcal{C}^{(1)} \leftarrow \{\emptyset\} // Initial prefix tree with single items
 3 foreach i \in \mathcal{I} do Add i as child of \emptyset in \mathcal{C}^{(1)} with \sup(i) \leftarrow 0
 4 k \leftarrow 1 // k denotes the level
 5 while C^{(k)} \neq \emptyset do
         COMPUTESUPPORT (\mathcal{C}^{(k)}, \mathbf{D})
         foreach leaf X \in \mathcal{C}^{(k)} do
 7
               if sup(X) \ge minsup then \mathcal{F} \leftarrow \mathcal{F} \cup \{(X, sup(X))\}
 8
              else remove X from C^{(k)}
 9
         C^{(k+1)} \leftarrow \mathsf{EXTENDPREFIXTREE} (C^{(k)})
10
         k \leftarrow k + 1
12 return \mathcal{F}^{(k)}
```



```
COMPUTESUPPORT (C^{(k)}, D):
1 foreach \langle t, \mathbf{i}(t) \rangle \in \mathbf{D} do
       foreach k-subset X \subseteq \mathbf{i}(t) do
        if X \in \mathcal{C}^{(k)} then sup(X) \leftarrow sup(X) + 1
  EXTENDPREFIXTREE (C^{(k)}):
  foreach leaf X_a \in \mathcal{C}^{(k)} do
       foreach leaf X_b \in SIBLING(X_a), such that b > a do
2
           X_{ab} \leftarrow X_a \cup X_b
3
           // prune candidate if there are any infrequent
                subsets
           if X_i \in \mathcal{C}^{(k)}, for all X_i \subset X_{ab}, such that |X_j| = |X_{ab}| - 1 then
               Add X_{ab} as child of X_a with sup(X_{ab}) \leftarrow 0
5
       if no extensions from X_a then
6
           remove X_a, and all ancestors of X_a with no extensions, from \mathcal{C}^{(k)}
8 return C^{(k)}
```


Eclat

Eclat

- Melhora o desempenho da contagem do suporte
- Método baseado na intersecção de tidsets e os indexa na estrutura de dados
- O suporte de um itemset candidato pode ser computado pela intersecção dos tidsets dos subconjuntos
 - ▶ Dados t(X) e t(Y), então $t(XY) = t(X) \cap t(Y)$

Eclat


```
// Initial Call: \mathcal{F} \leftarrow \emptyset, P \leftarrow \{\langle i, \mathbf{t}(i) \rangle \mid i \in \mathcal{I}, |\mathbf{t}(i)| \geq minsup\}
    ECLAT (P, minsup, \mathcal{F}):
   foreach \langle X_a, \mathsf{t}(X_a) \rangle \in P do
          \mathcal{F} \leftarrow \mathcal{F} \cup \{(X_a, sup(X_a))\}
       P_2 \leftarrow \emptyset
          foreach \langle X_b, \mathbf{t}(X_b) \rangle \in P, with X_b > X_a do
                X_{ab} = X_a \cup X_b
                \mathsf{t}(X_{ab}) = \mathsf{t}(X_a) \cap \mathsf{t}(X_b)
6
            if sup(X_{ab}) \geq minsup then
7
                 P_a \leftarrow P_a \cup \{\langle X_{ab}, \mathbf{t}(X_{ab}) \rangle\}
8
          if P_a \neq \emptyset then ECLAT (P_a, minsup, \mathcal{F})
9
```


dEclat

dEclat

- Melhora o desempenho do Eclat reduzindo os tidsets intermediários
- Guarda as diferenças ao invés de todos os tidsets
- ▶ Sejam $X_a=\{x_1,\ldots,x_j,x_a\}$ e $X_b=\{x_1,\ldots,x_j,x_b\}$, então $X_{ab}=X_a\cup X_b=\{x_1,\ldots,x_j,x_a,x_b\}$
- No processo de busca, pode-se guardar apenas as diferenças $d(X_{ab}) = t(X_a) \setminus t(X_{ab}) = t(X_a) \setminus t(X_b)$
- Pode-se determinar $d(X_{ab})$ com base nas diferenças como $d(X_{ab}) = d(X_b) \setminus d(X_a)$
- $sup(X_{ab}) = sup(X_a) |d(X_{ab})|$
- Assim, é possível substituir as operações de intersecção do Eclat por operações de diferença entre conjuntos

dEclat


```
// Initial Call: \mathcal{F} \leftarrow \emptyset.
            P \leftarrow \{\langle i, \mathbf{d}(i), sup(i) \rangle \mid i \in \mathcal{I}, \mathbf{d}(i) = \mathcal{T} \setminus \mathbf{t}(i), sup(i) \geq minsup\}
     DECLAT (P, minsup, \mathcal{F}):
 1 foreach \langle X_a, \mathbf{d}(X_a), \sup(X_a) \rangle \in P do
           \mathcal{F} \leftarrow \mathcal{F} \cup \{(X_a, sup(X_a))\}
 2
          P_2 \leftarrow \emptyset
 3
           foreach \langle X_b, \mathbf{d}(X_b), \sup(X_b) \rangle \in P, with X_b > X_a do
 4
                 X_{ab} = X_a \cup X_b
 5
                d(X_{ab}) = d(X_b) \setminus d(X_a)
 6
                sup(X_{ab}) = sup(X_a) - |\mathbf{d}(X_{ab})|
 7
               if sup(X_{ab}) \geq minsup then
 8
                 P_a \leftarrow P_a \cup \{\langle X_{ab}, \mathbf{d}(X_{ab}), sup(X_{ab}) \rangle\}
 9
           if P_a \neq \emptyset then DECLAT (P_a, minsup, \mathcal{F})
10
```


Gerando Regras de Associação

Gerando Regras de Associação

- Para cada itemset frequente $Z \in F$, deve-se gerar as regras $X \to Y$, onde $Y = Z \setminus X$
- ▶ A regra XY deve ser frequente (sup(XY) > minsup)
- Depois computa-se a confiança $conf(X \to Y) = \frac{sup(XY)}{sup(X)}$
 - $\blacktriangleright \ conf(X \to Y) \ge minconf$, ou seja, as confianças devem atender a um limiar de confiança mínima
 - ▶ Se $conf(X \to Y) < minconf$, então $conf(W \to Z \setminus W) < minconf \ \forall \ W \subset X \ pois \ sup(W) \ge sup(X)$
 - ▶ Não é necessário investigar os subconjuntos de X

Gerando Regras de Associação

```
ASSOCIATION RULES (\mathcal{F}, minconf):
 1 foreach Z \in \mathcal{F}, such that |Z| \geq 2 do
          \mathcal{A} \leftarrow \{X \mid X \subset Z, X \neq \emptyset\}
 2
 3
          while A \neq \emptyset do
                X \leftarrow \text{maximal element in } A
 4
                \mathcal{A} \leftarrow \mathcal{A} \setminus X// remove X from \mathcal{A}
 5
                c \leftarrow \sup(Z)/\sup(X)
 6
                if c > minconf then
 7
 8
                      print X \longrightarrow Y, sup(Z), c
                else
                    \mathcal{A} \leftarrow \mathcal{A} \setminus \{ W \mid W \subset X \}
// remove all subsets of X from \mathcal{A}
10
```

Lift

- Uma vez encontradas as regras de associação que atendem às restrições impostas, essas podem ser ordenadas segundo um critério de interesse
- O Lift é uma medida de correlação
- $lift(X \to Y) = \frac{conf(X \to Y)}{sup(Y)} = \frac{sup(XY)}{sup(X)sup(Y)}$
 - \blacktriangleright se $lift(X \to Y) > 1$ então X e Y são positivamente correlacionados e a ocorrência de um implica na ocorrência do outro
 - se $lift(X \to Y) < 1$ então a ocorrência de X é negativamente correlata a Y
 - ▶ se $lift(X \to Y) = 1$, então X e Y são independentes (P(XY) = P(X)P(Y))