Tarea 5

Álgebra Lineal

Transformaciones Lineales

- 1 Verifica que la transformación $T: \mathbb{R}^2 \to \mathbb{R}^2$ tal que $T \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} -x \\ -y \end{pmatrix}$ cumple la definición de una transformación lineal.
- **2** Explique por qué las siguientes aseveraciones son falsas o verdaderas para cualquier $A \in \mathcal{L}(V; W)$, en caso de ser falsas, dar un contraejemplo.
 - a) Para cualquier $A \in \mathcal{L}(V; W)$ se cumple que $A\mathbf{0} = \mathbf{0}$.
 - b) Si $\mathbf{v} \in V$ tal que $A\mathbf{v} = 0$ entonces $\mathbf{v} = \mathbf{0}$.
 - c) Si $\mathbf{w} = \mathbf{v} + \mathbf{u}$ entonces $A\mathbf{w} = A\mathbf{v} + A\mathbf{u}$.
 - d) Si \mathbf{v} es combinación lineal de $\mathbf{u}_1, \mathbf{u}_2, \dots \mathbf{u}_n$ entonces $A\mathbf{v}$ es combinación lineal de $A\mathbf{u}_1, A\mathbf{u}_2, \dots A\mathbf{u}_n$.
 - e) Si combinación lineal de $\mathbf{u}, \mathbf{v}, \mathbf{w}$ son colineales entonces $A\mathbf{u}, A\mathbf{v}, A\mathbf{w}$ también son colineales. (Los vectores son colineales si estan en una misma recta).
- **3** Dados los vectores $\mathbf{u}_1=(2,-1),\ \mathbf{u}_2=(1,1),\ \mathbf{u}_3=(-1,-4),\ \mathbf{v}_1=(1,3),\ \mathbf{v}_2=(2,3)\ \mathrm{y}\ \mathbf{v}_2=(-5,-6).$ Justifique si existe una transformación lineal $A:\mathbb{R}^2\to\mathbb{R}^2$ tal que $A\mathbf{u}_1=\mathbf{v}_1,\ A\mathbf{u}_2=\mathbf{v}_2\ \mathrm{y}\ A\mathbf{u}_3=\mathbf{v}_3.$
- **4** Determine la matriz del operador $A : \mathbb{R}^2 \to \mathbb{R}^2$ de modo que transforme los vectores $\mathbf{u} = (1, 2)$ y $\mathbf{v} = (3, 4)$, a $A\mathbf{u} = (1, 1)$ y $A\mathbf{v} = (2, 2)$.
- **5** Dada la expresión general de una transformación lineal $f: \mathbb{R}^3 \to \mathbb{R}$, f(x, y, z) = ax + by + cz. Determinar la transformación lineal que asocie los vectores $\mathbf{u} = (1, 2, 3)$ con 1, $\mathbf{v} = (-1, 2, 3)$ con 0 y $\mathbf{u} = (1, -2, 3)$ con 0.
- **6** Suponga que \mathbb{R}^2 y \mathbb{R}^3 se expresan en las bases canónicas. $A:\mathbb{R}^2\to\mathbb{R}^3$ es una transformación lineal tal que

$$A \begin{pmatrix} -1 \\ 1 \end{pmatrix} = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}, A \begin{pmatrix} 2 \\ 3 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$$
. Determinar la matriz de la transformación A .

- 7 Determinar la transformación $T: \mathbb{R}^3 \to \mathbb{R}^3$ tal que T(1,0,1) = (1,0,0), T(0,1,1) = (0,1,0), T(0,0,1) = (1,1,1).
- 8 Determinar la transformación $T: \mathbb{R}^3 \to \mathbb{R}^3$ tal que T(0,1,1) = (1,2,3), T(1,0,1) = (1,-1,2) y T(1,1,0) = (-1,-1,-1).
- 9 ¿Cuál de las transformaciones definidas a continuación son lineales? En caso de que no sean lineales, dar un contraejemplo a una de las propiedades de las transformaciones lineales
 - Sea $A: \mathbb{R}^3 \to \mathbb{R}^3$, A(x, y, z) = (3x, a, 5z) con $a \in \mathbb{R}$, un número fijo.
 - Sea $A: \mathbb{R}^4 \to \mathbb{R}^3$, A(x, y, z, w) = (x w, y w, x + z)
 - Sea $A: \mathbb{R}^3 \to \mathbb{R}^3$, $A(x, y, z) = (x y, 2^y, z)$
- 10 Sean \mathcal{B}_V y \mathcal{B}_W las bases canónicas de V y W. Calcular la matriz asociada a la transformación lineal

- a) $T(x_1, x_2) = (2x_1 x_2, 3x_1 + 4x_2, x_1).$
- b) $T(x_1, x_2, x_3) = (2x_1 + 3x_2 x_3, x_1 + x_3).$
- c) $T(x_1, x_2, x_3) = (x_1 + 2x_2 x_3, x_2 + x_3, x_1 + x_2 2x_3).$
- 11 Sea $U = \{(x, y, z) \in \mathbb{R}^3 \mid x + 2y + 3z = 0\}$ y $W = \{(x, y, z) \in \mathbb{R}^3 \mid 2x y + z = 0\}$. Encontrar una transformación lineal $T : \mathbb{R}^3 \to \mathbb{R}^3$ tal que T(U) = W. (sugerencia: encontrar bases de cada subespacio).

Operaciones con transformaciones lineales

Suponga que $T, S: V \to W$ se definen a continuación.

1 - Para $V=\mathbb{R}^2, W=\mathbb{R}^2$. Encontrar TS y la representación matricial de la transformación resultante

$$T\begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} x_1 - x_2 \\ x_1 + x_2 \end{pmatrix}, \quad S\begin{pmatrix} y_1 \\ y_2 \end{pmatrix} = \begin{pmatrix} 2y_1 \\ -y_2 \end{pmatrix}$$

2- Para $V=\mathbb{R}^2, W=\mathbb{R}^2$. Encontrar TS y la representación matricial de la transformación resultante

$$T\begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} x_1 + 2x_2 \\ -3x_1 + x_2 \end{pmatrix}, S\begin{pmatrix} y_1 \\ y_2 \end{pmatrix} = \begin{pmatrix} y_1 + 3y_2 \\ y_1 - y_2 \end{pmatrix}$$

3- Para $V=\mathbb{R}^3, W=\mathbb{R}^2, Y=\mathbb{R}^3$. Encontrar TS y la representación matricial de la transformación resultante

$$T \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} x_1 + 2x_2 \\ 2x_2 - x_3 \end{pmatrix}, S \begin{pmatrix} y_1 \\ y_2 \end{pmatrix} = \begin{pmatrix} y_1 - y_2 \\ y_1 + y_2 \\ -y_1 + y_2 \end{pmatrix}$$

4- Para $V=\mathbb{R}^3, W=\mathbb{R}^2, Y=\mathbb{R}^2$. Encontrar TS y la representación matricial de la transformación resultante

$$T\begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} x_1 + x_2 - x_3 \\ 2x_1 - x_2 + x_3 \end{pmatrix}, \quad S\begin{pmatrix} y_1 \\ y_2 \end{pmatrix} = \begin{pmatrix} y_1 - y_2 \\ y_1 + y_2 \\ -y_1 + y_2 \end{pmatrix}$$

- 5- Considere a los operadores lineales $R, S, P : \mathbb{R}^2 \to \mathbb{R}^2$. Con R la transformación que rota 30^o a un vector, S la reflexión en torno a la recta y = 2x y P la proyección ortogonal sobre la misma recta.
 - i) Explicar por que PS = SP = P.
 - ii) Verificar que RSR = S.
- iii) Determinar todos los vectores $\mathbf{x} \in \mathbb{R}^2$ con $PR\mathbf{x} = 0$.
- **6-** Sea $A: \mathbb{R}^3 \to \mathbb{R}^3$ definido como A(x, y, z) = (ax + by + cz, 0). Mostrar que $A^3 = A \cdot A \cdot A = 0$. Esta es otra diferencia del espacio vectorial $\mathcal{M}^{n,n}(\mathbb{R})$ y los números reales.
- 7- Sea $A, B, C, D : \mathbb{R}^2 \to \mathbb{R}^2$ dados por
 - A(x,y) = (x+y,0)
 - B(x,y) = (-y,x)

obtener las expresiones de los operadores A + B, AB, BA, A^2 , B^2

8 En el espacio vectorial \mathcal{P} de polinomios de grado $\leq n$, sean $D, A : \mathcal{P} \to \mathcal{P}$, con Dp(x) = p'(x) y A(x) = xp(x). Determinar DA - AD.

9 Sea $V = \mathbb{R}^n$ un espacio vectorial de dimensión n, Para todo $k = 2, 3, \ldots, n$ encontrar un operador lineal $A : \mathbb{R}^n \to \mathbb{R}^n$ tal que $A^k = 0$ pero $A^j \neq 0$.

10 Sea V el espacio de plinomios con grado menor o igual a 2. Considere las transformaciones lineales

- $T: \mathbb{R}^3 \to V, T(a, b, c) = a + 2bx + 2cx^2.$
- $S: V \to \mathcal{M}^2(\mathbb{R}), S(a+bx+cx^2) = \begin{pmatrix} a & a+b \\ a-c & b \end{pmatrix}$

Con respecto a $\mathcal{B}_1 = \{1, x, x^2\}$ de V, la base canónica en \mathbb{R}^3 y la base canónica $\mathcal{B}_3 = \{E_{11}, E_{12}, E_{21}, E_{22}\}$

- Probar que T y S son mapeos lineales.
- Encontrar las matrices de las transformaciones lineales T y S con respecto a las bases.
- Encontrar la matriz de composición ST con respecto a las bases,
- Calcular explicitamente ST.

Transformaciones y cambios de base

- 1. Sea $T: \mathbb{R}^2 \to \mathbb{R}^2$ tal que $T(x,y) = (x-2y,\ 3x+y)$ y sea $\mathcal{B} = \{(1,1),(0,3)\}$ y $\Gamma = \{(-1,2),\ (-1,0)\}$.
- Calcular la matriz asociada a T, $[T]_{\mathcal{B}}^{\Gamma}$.
- Calcular los vectores $[u]_{\mathcal{B}}$ y $[Tu]_{\Gamma}$ con u = (1, 1).
- Verificar que $[T]^{\Gamma}_{\mathcal{B}}[u]_{\mathcal{B}} = [Tu]_{\Gamma}$
- 2. Sea $A = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$ y $\mathcal{B} = \{(1,1), (-1,3)\}$ y $\Gamma = \{(0,-2), (-5,1)\}$
- Calcular la matriz cambio de base $Q_{\mathcal{B}\to\Gamma}$
- Calcular la matriz asociada a T, $[T]_{\mathcal{B}}^{\mathcal{B}}$.
- Calcular la matriz asociada a T, $[T]_{\Gamma}^{\Gamma}$.
- 3. Sea $A = \begin{pmatrix} 1 & 2 \\ -1 & 0 \end{pmatrix}$, sea $T \mathbf{v} = A \mathbf{v}$ y sean $\mathcal{B} = \{(1,0), (0,1)\}$ y $\Gamma = \{(1,1), (1,-1)\}$
- Calcular $[T_A]_{\mathcal{B}}$
- Calcular la matriz $Q_{\mathcal{B}\to\Gamma}$
- Calcular $[T_A]_-$
- 4. Considere las 2 bases de \mathbb{R}^3 y $\mathcal{B} = \{(1,0,0), (0,1,0), (0,0,1)\}$ y $\Gamma = \{u_1 = (1,0,1), u_2 = (2,1,2), u_3 = (1,2,2)\}$ y

$$A = \begin{bmatrix} 1 & 3 & -2 \\ 2 & -4 & 1 \\ 3 & -1 & 2 \end{bmatrix}$$

- Encontrar la matriz cambio de base $Q_{B\to\Gamma}$
- $[T]_B$
- $[T]_{\Gamma}$
- 5. Considere el operador $G: \mathbb{R}^2 \to \mathbb{R}^2$, G(x,y) = (2x 7y, 4x + 3y) y $S = \{(1,3), (2,5)\}$
- Calcular la matriz cambio de base
- Usando $Q_{C->S}$ encontrar $[G]_S$
- Comprobar que $[Gv]_S = [G]_S[v]_S$

Transformaciones invertibles

1 Sea T el operador en \mathbb{R}^3 definido por

$$T \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 3x_1 \\ x_1 - x_2 \\ 2x_1 + x_2 + x_3 \end{pmatrix} \tag{1}$$

- a) Obtener la representación matricial de T en la base canónica $\mathcal{B} = \{\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3\}$.
- b) Demostrar que T es invertible y encontrar una expresión para T^{-1} .
- c) Verificar que

$$\left[T^{-1}\right]_{\mathcal{B}} = \left[T\right]_{\mathcal{B}}^{-1} \tag{2}$$

- **2** Sea V y W espacios vectoriales de dimensión finita y $T:\to W$ un isomorfismo. Si \mathcal{B}_V es una base para V probar que $\{T(\mathbf{v})\}_{\mathbf{v}\in\mathcal{B}_V}$ es una base para W.
- **3** Sea $B \in \mathcal{M}^{n,n}(\mathbb{R})$ con B invertible. Definir $\varphi_B : \mathcal{M}^{n,n}(\mathbb{R}) \to \mathcal{M}^{n,n}(\mathbb{R})$ como $\varphi_B(A) = B^{-1}AB$. Probar que φ_B es un isomorfismo.
- **4** Sea W el conjunto de todas las matrices 2×2 hermitianas. Sea $\phi : \mathbb{R}^4 \to W$ dada por

$$\phi(x, y, z, t) = \begin{pmatrix} t + x & y + iz \\ y - iz & t - x \end{pmatrix}$$
 (3)

Probar que ϕ es un isomorfismo.

5 Mostrar que cada uno de los siguientes operadores es inverible y encontrar a la inversa.

- T(x, y, z) = (x 3y 2z, y 4z, z)
- S(x, y, z) = (x + z, x z, y)
- 6 Mostrar que si $T:V\to V$ es un operador lineal tal que $T^2-T+I_V=\mathbf{0}_V$
- 7 Mostrar que si $f: \mathbb{R}^3 \to \mathbb{R}^3$ es un operador lineal dado por

$$f(x, y, z) = (x + y + z, 2x - y - z, x + 2y - z)$$

es una biyección y por tanto es invertible.

8 Sea $T: \mathbb{R}^2 \to \mathbb{R}^2$ la transformación lineal definida por

$$T(x, y, z) = \begin{pmatrix} x + y \\ x + 2y \end{pmatrix}$$

- a) Calcular la matriz que representa T en la base canónica.
- b) Calcular la base del kernel de T. ¿Es inyectiva?
- c) Mostrar que por b) entonces T es biyectiva y calcular $T^{-1}(x, y, z)$.
- d) Resolver la ecuación $T(x, y, z) = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$
- 9 Sea $T: \mathbb{R}^3 \to \mathbb{R}^3$ la transformación lineal definida por

$$T(x,y,z) = \begin{pmatrix} x+y+z\\ x+2y-4z\\ z \end{pmatrix}$$

- a) Calcular la matriz que representa T en la base canónica.
- b) Calcular la base del kernel de T. ¿Es inyectiva?
- c) Mostrar que por b) entonces T es biyectiva y calcular $T^{-1}(x, y, z)$.
- d) Resolver la ecuación $T(x, y, z) = \begin{pmatrix} 1 \\ 1 \\ 2 \end{pmatrix}$
- e) ¿Existe algún valor de **b** para el cual $T(x, y, z) = \mathbf{b}$ no tenga solución?
- f) ¿Existe algún vector $\begin{pmatrix} a \\ b \end{pmatrix} \in \mathbb{R}^2$ tal que la ecuación $T(x,y,z) = \begin{pmatrix} a \\ b \end{pmatrix}$ no tenga solución?
- 10 Sea $T: \mathbb{R}_2[x] \to \mathbb{R}_2[x]$ la transformación lineal definida por

$$T(p(t)) = p'(t) - 2p(t)$$

- a) Calcular la matriz que representa T en la base canónica $\{p_1(t)=1,p_2(t)=t,p_3(t)=t^2\}$
- b) Calcular la base del kernel de T. ¿Es inyectiva?
- c) Mostrar que por b) entonces T es biyectiva y calcular la matriz asociada a T^{-1} en la misma base. Obtener una expresión para $T^{-1}(q(t))$
- d) Resolver la ecuación diferencial

$$p'(t) - 2p(t) = 1 + t + t^2$$

Espacios de una transformación lineal

- 1 Para las siguientes transformaciones lineales encuentra la representación matricial, encuentra una base para el espacio nulo de T y una base para el rango. Encuentra el rango y la nulidad de T.
 - a) Para $T: \mathbb{R}^3 \to \mathbb{R}^3$ definida como

$$T \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} x - 2y \\ y + 3z \\ 2x - 3y + 3z \end{pmatrix} \tag{4}$$

b) Para $T: \mathbb{R}^4 \to \mathbb{R}^3$ definida como

$$T \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix} = \begin{pmatrix} x_1 - x_4 \\ x_2 - x_3 \\ x_1 + x_2 - x_3 - x_4 \end{pmatrix}$$
 (5)

2 Sea $T: \mathcal{P}^3(\mathbb{R}) \to \mathbb{R}^3$ una transformación lineal dada por: $T(1+x) = \mathbf{e}_1$, $T(2x^2+x+1) = \mathbf{e}_1 + \mathbf{e}_2$, $T(x^3+x) = \mathbf{e}_3 + 2\mathbf{e}_1$, $T(x+x^2-x^3) = \mathbf{e}_1 - \mathbf{e}_2 + \mathbf{e}_3$.

Determina $T(a + bx + cx^2 + dx^3)$. kerT, nulidad de T y el rango de T.

- **3** Sea $V = \{f : (-1,1) \to \mathbb{R} \mid f \text{ es derivable }, f \in \mathcal{P}^n\}$. Sea $T : V \to V$ dada por T(f)(x) = xf'(x) para todo $x \in (-1,1)$. a) Demostrar que es una transformación lineal. b) Encontrar una representación lineal en la base canónica. c) Encontrar una base para ker T e ImT. d) Calcular la nulidad y el rango de T.
- **4** En el espacio vectorial de funciones continuas, sea $W = \mathcal{G}(\sin, \cos)$. Determinar la nulidad de $\varphi : W \to \mathbb{R}$ dado por
 - a) $\varphi(f) = \int_0^{\pi} f(s) ds$
 - b) $\varphi(f) = f'(0)$

5 En el espacio vectorial de funciones continuas, sea $W = \mathcal{G}(e^x, e^{-x}, x)$ sea $T: W \to W$ dado por

$$T(f) = f''(x) - x$$

Determinar el rango y nulidad de T

- $\mathbf{6}$ Considerando a la base canónica en \mathbb{R}^3 describir al espacio nulo para la transformación y a la imagen.
 - T(x, y, z) = (x 2y + z, 2x 3y + z, x + y 2z)
- 7- Considerando a la base canónica en \mathbb{R}^4 describir al espacio nulo para la transformación y a la imagen. $S: \mathbb{R}^4 \to \mathbb{R}^3$, definida por

$$S \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix} = \begin{pmatrix} x_1 + x_2 + x_3 + x_4 \\ 2x_1 + x_2 - x_3 + x_4 \\ x_1 - x_2 + x_3 - x_4 \end{pmatrix}$$

8 Sea V el espacio de polinomios con coeficientes reales cuyo grado es menor o igual a 3. Y sea $T:V\to\mathbb{R}^4$ definido como

$$T(p) = (p(0), p(1), p(-1), p(2))$$
(6)

- a) ¿Es T una transformación inyectiva? (puede considerar al espacio nulo de T).
- b) Calcular la imagen de T.
- 9 Sea $S: \mathbb{R}^3 \to \mathbb{R}_3[x]$ la transformación lineal tal que

$$f(1,0,0) = 2x + x^3;$$
 $f(0,1,0) = -2x + x^2;$ $f(0,0,1) = x^2 + x^3$

Determinar

- a) S(x, y, z) para todo $(x, y, z) \in \mathbb{R}^3$
- b) Dejando fija a la base canónica, \mathcal{B} en \mathbb{R}^3 y la base canónica en $\mathbb{R}_3[x] = 1, t, t^2, t^3$ determinar la matriz asociada a la transformación lineal S.

- c) Im(S) y una base del subespacio.
- d) Ker(S) y una base del subespacio.

10 Determinar Im(f), Ker(f) y encontrar una base para Ker(f). Calcular la nulidad y el rango de f.

- a) Sea $f: \mathbb{R}^3 \to \mathbb{R}^2$, f(x, y, z) = (x y + 2z, 2x z).
- b) Sea $h: \mathbb{R}^3 \to \mathbb{R}^3$, h(x, y, z) = (x y + 2z, 2x z, 4x + 2y7z). Adicionalmente, deducir una base para Im(h).
- c) Sea $f: \mathbb{R}^3 \to \mathbb{R}^3$, f(x, y, z) = (x + y + z, y + z, 2y + z). Determinar Ker(f). Explicar por que f es un isomorfismo.
- d) Sea $D: \mathcal{P}^3 \to \mathcal{P}^3$ definida por

$$Dp(x) = p'(x) - p(1) \tag{7}$$

e) Sea $I: \mathcal{P}^3(\mathbb{R}) \to \mathcal{P}^4(\mathbb{R})$

$$Ip(x) = \int_0^x p(t)dt \tag{8}$$

11 Sea $T: \mathbb{R}^3 \to \mathbb{R}^2$ la transformación lineal definida por

$$T(x, y, z) = \begin{pmatrix} x + y \\ x + y - z \end{pmatrix}$$

- a) Calcular la matriz que representa T en la base canónica.
- b) Calcular la base del kernel de T. ¿Es inyectiva?
- c) Calcular una base para la imagen de T ξ Es suprayectiva?
- d) Resolver la ecuación $T(x, y, z) = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$
- e) ¿Existe algún vector $\begin{pmatrix} a \\ b \end{pmatrix} \in \mathbb{R}^2$ tal que la ecuación $T(x,y,z) = \begin{pmatrix} a \\ b \end{pmatrix}$ no tenga solución?
- 12 Sea $T: \mathbb{R}^3 \to \mathbb{R}^3$ la transformación lineal que en la base $v_1 = (1, 1, 1), v_2 = (1, 1, 0)$ y $v_3 = (1, 0, 0)$ tiene como matriz a

$$\begin{pmatrix} 1 & 2 & 2 \\ 2 & 4 & 4 \\ 0 & 0 & 2 \end{pmatrix}$$

- a) Calcular la base del kernel de T. ¿Es inyectiva?.
- b) Calcular una base para la imagen de T $\stackrel{.}{\iota}$ Es suprayectiva?
- c) Mostrar que la ecuación $T(x,y,z)=\begin{pmatrix} 2\\4\\0 \end{pmatrix}$ no tiene soluciones
- d) ¿Existe algún vector $\begin{pmatrix} a \\ b \\ c \end{pmatrix} \in \mathbb{R}^3$ tal que la ecuación $T(x,y,z) = \begin{pmatrix} a \\ b \\ c \end{pmatrix}$ no tenga solución?

Valores y vectores propios

1 Determinar el polinomio característico de

$$\begin{pmatrix} 1 & 2 & 3 \\ 0 & 1 & 2 \\ 0 & 0 & 1 \end{pmatrix}, \qquad \begin{pmatrix} 1 & 1 & 0 \\ -1 & 1 & 1 \\ 0 & 1 & -1 \end{pmatrix}, \qquad \begin{pmatrix} 1 & -4 & 0 \\ 2 & -2 & -2 \\ -\frac{3}{2} & 1 & -2 \end{pmatrix}$$

2 Encontrar los valores propios y vectores propios de

$$\begin{pmatrix} 1 & -2 \\ -2 & 1 \end{pmatrix}, \quad \begin{pmatrix} 3 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 3 \end{pmatrix}, \quad \begin{pmatrix} 1 & -4 & 0 \\ 2 & -2 & -2 \\ -\frac{3}{2} & 1 & -2 \end{pmatrix}$$
$$\begin{pmatrix} -1 & -1 & 4 \\ 1 & 3 & -2 \\ 1 & 1 & -1 \end{pmatrix}, \quad \begin{pmatrix} 1 & -3 & 11 \\ 2 & -6 & 16 \\ 1 & -3 & 7 \end{pmatrix}, \quad \begin{pmatrix} 2 & -1 & -1 \\ -2 & 1 & 1 \\ 1 & 0 & 1 \end{pmatrix}$$

3 Considere a $K = \mathbb{C}$. Encontrar los valores propios y vectores propios de $R_{\theta} = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}$

4 Encontrar los valores propios y vectores propios de

$$\begin{pmatrix}
0 & c & -b \\
-c & 0 & a \\
b & -a & 0
\end{pmatrix}$$

Diagonalización

6. Determinar si $\begin{pmatrix} 3 & 2 \\ -2 & -1 \end{pmatrix}$ es diagonalizable.

7. Explicar por que la matriz $\begin{pmatrix} 5 & 2 \\ 2 & 4 \end{pmatrix}$ es diagonalizable.

8. Explicar por que la matriz $\begin{pmatrix} 5 & -2 & 6 \\ 0 & -1 & 9 \\ 0 & 0 & 3 \end{pmatrix}$ es diagonalizable.

9. Sea
$$A = \begin{pmatrix} 1 & 2 \\ 2 & -2 \end{pmatrix}$$

a) Explicar por que $\lambda = 2$ es un valor propio y encontrar la base del correspondiente espacio propio.

b) Si se sabe que $\lambda=2,-3$ son valores propios de la matriz ¿Cuál es su polinomio característico?

c) ¿Por que es fácil ver que A es diagonalizable?

d) Verificar que $\binom{-1}{2}$ es un vector propio del valor propio $\lambda = -3$.

e) Encontrar una matriz P tal que $P^{-1}AP = \begin{pmatrix} -3 & 0 \\ 0 & 2 \end{pmatrix}$

10. Sea
$$A = \begin{pmatrix} 4 & 2 & 2 \\ -5 & -3 & -2 \\ 5 & 5 & 4 \end{pmatrix}$$
.

- a) Calcular el polinomio característico de A.
- b) Explicar por que A es diagonalizable.
- c) Obtener la diagonalización de A y la base en la cual $[A]_{\mathcal{B}'}$ es igual a $\begin{pmatrix} 4 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 2 \end{pmatrix}$

11. Sea
$$A = \begin{pmatrix} 4 & 0 & 1 \\ 2 & 3 & 2 \\ 1 & 0 & 4 \end{pmatrix}$$
.

- a) Calcular el polinomio característico de A.
- b) Determinar los valores propios y vectores propios.
- c) Determinar si la matriz es diagonalizable.
- 12. Determinar si la matriz

$$A = \begin{pmatrix} 1 & 3 & 0 \\ 2 & 2 & 1 \\ -4 & 0 & -2 \end{pmatrix}$$

13. Para las siguientes matrices, calcular su polinomio característico de A. Explicar si es diagonalizable, si lo es, encontrar su diagonalización y la base con respecto a la cual A es una matriz diagonal.

$$1)A = \begin{pmatrix} 3 & 1 & 1 \\ -4 & -2 & -5 \\ 2 & 2 & 5 \end{pmatrix}$$

$$2)A = \begin{pmatrix} -1 & 3 & 0 \\ 0 & 2 & 0 \\ 2 & 1 & -1 \end{pmatrix}$$

$$4)A = \begin{pmatrix} 3 & 0 & 6 \\ 0 & -3 & 0 \\ 5 & 0 & 2 \end{pmatrix}$$

14. Sea $V = \mathbb{R}_2[x]$ el espacio vectorial de polinomios con grado ≤ 2 , sea $T: V \to V$ la transformación dada por

$$Tp(x) = x^2 \frac{d^2p}{dx^2} + x \frac{dp}{dx}$$

Calcular los valores y vectores propios de T.

Formas cuadráticas

1 Comprobar que
$$f(x,y) = Ax^2 + Bxy + cy^2 = \begin{pmatrix} x & y \end{pmatrix} \begin{pmatrix} A & \frac{1}{2}B \\ \frac{1}{2}B & C \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}$$

 ${\bf 2}$ Hallar un cambio de base para que el término xy desaparezca en las siguientes curvas

a)
$$5x^2 + 4xy + 2y^2 = 6$$

b)
$$x^2 - 8xy - 5y^2 = 16$$

c)
$$x^2 + xy + y^2 = 6$$

d)
$$4x^2 + 10xy + 4y^2 = 9$$