CHAPTER 03

Circle

A circle is the set of all points in a plane that are equidistant from a fixed point in that plane.

01

A circle is defined as the locus of a point in a plane, which moves in a plane such that its distance from a fixed point in that plane is always constant.

Centre The fixed point C is called the centre of the circle. **Radius** The constant distance CP from the centre C to a point P on the circle, is called radius r.

Different forms of Equations of a Circle

(i) Centre-radius Form Circle having centre (h, k) and radius r

Equation of the circle is $(x - h)^2 + (y - k)^2 = r^2$. It is also known as standard equation and centre-radius form.

(ii) Standard Form Circle having centre (0, 0) and radius r

Equation of the circle is $x^2 + y^2 = r^2$.

(iii) Diameter Form If (x_1, y_1) and (x_2, y_2) are the end points of one of the diameter, then the equation of the circle is

$$(x - x_1)(x - x_2) + (y - y_1)(y - y_2) = 0$$

$$(x_1, y_1) \qquad (x_2, y_2)$$

The diametric form of a circle can also be written as $x^{2} + y^{2} - x(x_{1} + x_{2}) - y(y_{1} + y_{2}) + x_{1}x_{2} + y_{1}y_{2} = 0$ or $x^{2} + y^{2} - x \text{ (sum of abscissae)}$ - y (sum of ordinates) + product of abscissae + product of ordinates = 0

General Form of Equation of a Circle

The general form of the equation of a circle is

$$x^2 + y^2 + 2gx + 2fy + c = 0$$
 ...(i)

Its centre is (-g, -f) and radius is $\sqrt{g^2 + f^2 - c}$.

Important Terms

- If $g^2 + f^2 c > 0$, the equation (i) represents a circle in the *xy*-plane.
- If $g^2 + f^2 c = 0$, then the equation (i) represents a point which is true degenerate conic and is the limiting position (radius is 0).
- If $g^2 + f^2 c < 0$, then the equation (i) does not represent any point in the *xy*-plane.
- The equation of a circle is a second degree equation in x and y. It contains no term of xy
 and coefficient of x² = Coefficient of y²

Parametric Form of a Circle

Consider the circle $(x - h)^2 + (y - k)^2 = r^2$, centred at $A \equiv (h, k)$ and radius r.

Let P = (x, y), the coordinates of P can be expressed as $x = h + r \cos\theta$ and $y = k + r \sin\theta$

These equations represent the coordinates of any point on the circle in terms of the parameter θ .

Tangent

A tangent to a circle is a line that intersects or touches the circle at only one point. The common point of the tangent and the circle is called the **point of contact**.

Equation of Tangent

• Equation of tangent at the point $P(x_1, y_1)$ to a circle $x^2 + y^2 + 2gx + 2fy + c = 0$ is

$$xx_1 + yy_1 + g(x + x_1) + f(y + y_1) + c = 0$$

• Equation of tangent to circle $x^2 + y^2 = a^2$ at (x_1, y_1) is given by

$$xx_1 + yy_1 = a^2$$

Note To find equation of tangent to the curve at (x_1, y_1) replace x^2 by xx_1 , 2x by $(x + x_1)$, y^2 by yy_1 , 2y by $(y + y_1)$.

Equation of Tangent in Parametric Form

The equation of tangent to the circle $x^2 + y^2 = r^2$ at the point $(r\cos\theta, r\sin\theta)$ is

$$x \cdot r \cos \theta + y \cdot r \sin \theta = r^2$$
$$x \cos \theta + y \sin \theta = r$$

Condition of Tangency

A line y = mx + c is a tangent to the circle $x^2 + y^2 = a^2$,

if
$$c^2 = a^2 m^2 + a^2$$
 i.e. $c = \pm \sqrt{a^2 m^2 + a^2}$

and the point of contact is $\left(\frac{-a^2m}{c}, \frac{a^2}{c}\right)$.

Thus, there are two tangents with the same slope, m, $y = mx + \sqrt{a^2(1+m^2)}$ and $y = mx - \sqrt{a^2(1+m^2)}$.

Note To check the tangency of a straight line to a circle, it is enough to show that the perpendicular from the center to the line is equal to the radius.

Tangents from a Point to the Circle

Let $P(x_1, y_1)$ be a point in the plane, outside the circle. If a tangent from P to the circle has slope m, the equation of the tangent is $y - y_1 = m(x - x_1)$

i.e.
$$mx - y_1 - mx_1 + y_1 = 0$$

The condition that this is tangent to the circle is

$$\left| \frac{y_1 - mx_1}{\sqrt{1 + m^2}} \right| = a$$
, (the radius).

: $(x_1^2 - a^2) m^2 - 2x_1y_1m + (y_1^2 - a^2) = 0$ is quadratic equation in m.

It has two roots say m_1 and m_2 , which are the slopes of two tangents.

Sum of the roots $(m_1 + m_2) = \frac{-(-2x_1y_1)}{(x_1^2 - a^2)} = \frac{2x_1y_1}{x_1^2 - a^2}$

Product of the roots $(m_1 m_2) = \frac{(y_1^2 - a^2)}{(x_1^2 - a^2)}$

Director Circle

The locus of the point of intersection of two perpendicular tangents to a given circle is known as director circle.

If the equation of circle is $x^2 + y^2 = a^2$, then the equation of the director circle to this circle is $x^2 + y^2 = 2a^2$.

MHT CET Mathematic

Extra Information

(i) Circles touching each other externally.

If $d(c_1c_2) = r_1 + r_2$.

Exactly three common tangents can be drawn.

(ii) Circles touching each other internally.

If $d(c_1c_2) = |r_1 - r_2|$

Exactly one common tangent can be drawn.

(iii) Disjoint circles.

If $|r_1 + r_2| < d(c_1c_2)$

Exactly four common tangents can be drawn.

(iv) Circles intersecting each other.

If $d(c_1c_2) < r_1 + r_2$

Line joining the point of intersection is the common chord also called as the radical axis. Exactly two common tangent can be drawn.

(v) Concentric circles

If $d(c_1c_2) = 0$ No common tangent can be drawn.