北京科技大学 2014--2015 学年第一学期

3. 矩

(A) 4. 设

> (A) (B) (C)

(D)

5. 设

则非

(A)

(C)

得:

线性代数___试卷(B卷)

			4 -	24	IT-1	17X		476-	(1)			
	院(系)		班级				学号			_ 姓名		
				试卷卷面成绩							平时成	课程考
題号	-	=	三	四	五	六	七	^	小计	考核成 绩 70%	绩 占 30%	核成绩
得分											1	(
评阅		*										
审												
核											4	
设矩阵已知知	B 都 非 A 满	是3阶 足A ² ·	-A-6	$\mathbb{E} A $ $\delta E = 0$	=3,	B = 2 $ A - 2I$,则 2 E) ⁻¹ =	$2A^*B^{-1}$		是 $Ax = 0$ 自		(B)的最 γ(B)≤5
			引相似,	且 A	-3 <i>E</i>	= 0 则	B^2-3	E的一	个特征值为	为		•
若 f ($x_1, x_2,$	$(x_3) =$	$x_1^2 + 2x$	$\frac{1}{2} + \lambda x$	$\frac{2}{3} + 2x_1$	$x_2 + 6x$	(1, X3 为)	正定二	火型 ,则 λ	的取值范围	为	
身分	=,	选择	题 (z	上题共	15 分	,每小	卜题 3	分)				
如果	矩阵A	, B	, A+	B , A	-1 + B	-1 均可	逆,则	(A+I)	3)-1 =		· · ·	1
A) A	+ B	(B) B -	(B^{-1})	$+A^{-1}$	A^{-1}		(C) A	$A^{-1} + B^{-1}$	(D	$) A(B^{-1} +$	A^{-1}) B
设 <i>A</i> ,	B为	2 阶可	逆方阵	,且 A	=a,	B = b	,分块			$\binom{A}{O}$, $\mathbb{M} M $		
(A) 4	ab			(B)	-4 <i>ab</i>			(C)	2ab		(D) $-2a$	ıb .

- 4. 设A为n阶矩阵(n ≥ 3),下列命题IC确 的是 _____
- (A) 矩阵 A 的两个不同的特征值可以有同一个特征向量
- (B) 若存在数 λ 和向量 α ,使得 $A\alpha = \lambda \alpha$ 成立,则向量 α 是矩阵 A 的属于特征值 λ 的特征向量
- (C) 若 $\lambda_1, \lambda_2, \lambda_3$ 是A 的三个互不相同的特征值, $\alpha_1, \alpha_2, \alpha_3$ 分别是矩阵A 的属于特征值 $\lambda_1, \lambda_2, \lambda_3$ 的特 征向量,则 a_1, a_2, a_3 必线性相关
- (D) 若存在数 λ 和非零向量 α ,使得 $(A-\lambda E)\alpha=0$ 成立,则 λ 是矩阵A的特征值
- 5. 设 4 阶矩阵 A 的秩 r(A)=3, α_1,α_2 为 4 维非零列向量,且满足 $A\alpha_1=0$, $A\alpha_2=\alpha_2$, k 为任意常数, 则非齐次方程组 $Ax = \frac{1}{2}\alpha_2$ 的通解为

(A)
$$k\alpha_2 + \frac{\alpha_1 + \alpha_2}{2}$$

(B)
$$k\alpha_2 + \frac{\alpha_1 - \alpha_2}{2}$$

(C)
$$k\alpha_1 + \frac{\alpha_1 + \alpha_2}{2}$$

(D)
$$k\alpha_1 + \frac{\alpha_1 - \alpha_2}{2}$$

值

得分 三、(本题 12分,每小题 6分)

1. 计算 4 阶行列式
$$D = \begin{vmatrix} 1 & 2^2 & 3^2 & 4^2 \\ 2^2 & 3^2 & 4^2 & 5^2 \\ 3^2 & 4^2 & 5^2 & 6^2 \\ 4^2 & 5^2 & 6^2 & 7^2 \end{vmatrix}$$
 的值

2. 计算n阶行列式
$$D = \begin{vmatrix} x_1 & a & \cdots & a \\ a & x_2 & \cdots & a \\ \vdots & \vdots & \ddots & \vdots \\ a & a & \cdots & x_n \end{vmatrix}$$
 $(a \neq x_i, i = 1, 2, \cdots n)$ 的值。

四、(本题 12 分)已知矩阵 A 满足 $(2E-C^{-1}B)A^{T}=C^{-1}$,其中

$$B = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 2 & 1 & 0 & 0 \\ -3 & 2 & 1 & 0 \\ -2 & -3 & 2 & 1 \end{pmatrix}$$
 $C = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 2 & 1 & 0 & 0 \\ 0 & 2 & 1 & 0 \\ 1 & 0 & 2 & 1 \end{pmatrix}$
 试求矩阵 A .

五、(本题 12 分) 已知向量组
$$B: \beta_1 = \begin{pmatrix} 1 \\ 1 \\ 2 \\ 3 \end{pmatrix}, \beta_2 = \begin{pmatrix} 2 \\ 3 \\ 7 \\ 7 \end{pmatrix}, \beta_3 = \begin{pmatrix} 3 \\ 4 \\ 9 \\ 10 \end{pmatrix}, \beta_4 = \begin{pmatrix} 1 \\ 2 \\ 3 \\ 2 \end{pmatrix}, \beta_5 = \begin{pmatrix} 3 \\ 2 \\ 7 \\ 12 \end{pmatrix};$$

- (1) 试求该向量组的秩,
- (II) 求向量组B的一个极大线性无关组;并将向量组中的其余向量用该极大线性无关组线性表示。

得分

六、(本题 12分)设非齐次线性方程组

$$\begin{cases} x_1 + x_2 - 2x_3 + 3x_4 = 0 \\ 2x_1 + x_2 - 6x_3 + 4x_4 = -1 \\ 3x_1 + 3x_2 - 7x_3 + 9x_4 = -1 \\ x_1 - x_2 - 6x_3 - x_4 = b \end{cases}$$

当 b 为何值时, 方程组无解? 当 b 为何值时, 方程组有无穷多解? 并在有解时求出方程组的通解。

得 分

七、(本題 12 分) 已知二次型 $f(x_1,x_2,x_3) = (1-t)x_1^2 + (1-t)x_2^2 + 2x_3^2 + 2(1+t)x_1x_2 的秩为 2,$

- (I) 试求t的值。
- (II) 用正交变换化二次型为标准形,并写出所用的正交变换。

得 分

八、(本题 10 分) 设A 为 3 阶方阵,向量 α_1 , α_2 是A 的分别属于特征值-1,1 的特征向量,向量 α_3 满足 $A\alpha_3=\alpha_2+\alpha_3$; 试证明:

- (I) 向量组 $\mathbf{a}_1, \mathbf{a}_2, \mathbf{a}_3$ 线性无关;

北京科技大学 2014-2015 学年 第 一 学期 线性代数 A 期末试卷 答案

一、 填空题(本题共15分,每空3分)

$$2, \frac{1}{4}(A+E)$$
 $3, 2$ $4, 6$ $5, (18,+\infty)$

- 二、 选择题(本题共15分,每题3分)
- 1-5 BACDC
- 三、 计算行列式

答案 (1) 19960 (2)
$$\left(1 + \sum_{i=1}^{n} \frac{1}{x_i - a}\right) \prod_{i=1}^{n} (x_i - a)$$

解析 略

四、 解矩阵方程

$$(1) \begin{pmatrix} 1 & -2 & 1 & 0 \\ 0 & 1 & -2 & 1 \\ 0 & 0 & 1 & -2 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

解析

求极大无关组并表示其余向量

$$(1) r = 3, \boldsymbol{\beta}_1, \boldsymbol{\beta}_2, \boldsymbol{\beta}_2$$

答案 (1)
$$r = 3$$
, $\beta_1, \beta_2, \beta_4$ (2) $\beta_3 = \beta_2$, $\beta_5 = 2\beta_1 + \beta_2 - 2\beta_4$

解析 略

六、 对参数分类讨论非齐次线性方程组解的情况并求通解

答案 (1) b ≠ -2 时无解

(2)
$$b = -2$$
 时,有无穷个解,通解为 $X = \begin{pmatrix} 3 \\ -1 \\ 1 \\ 0 \end{pmatrix} + c \begin{pmatrix} -1 \\ -2 \\ 0 \\ 1 \end{pmatrix}$.

解析 略

七、 正交变换化二次型为标准型并写正交矩阵或正交变换

答案 (1)
$$t = 0$$
 (2) $f(y_1, y_2, y_3) = 2y_2^2 + 2y_3^2$, $X = \begin{pmatrix} 1 & 1 & 0 \\ -1 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} Y$

解析 略

八、 证明题

证明

(I) 方法一: 向量 $\alpha_1, \alpha_2, \alpha_3$ 的分别属于特征值-1, 1

的特征向量,则 α_1,α_2 线性无关,且 $A\alpha_1 = -\alpha_1$, $A\alpha_2 = \alpha_2$

两边同时乘A得:

$$A(k_1\boldsymbol{\alpha}_1 + k_2\boldsymbol{\alpha}_2 + k_3\boldsymbol{\alpha}_3) = k_1A\boldsymbol{\alpha}_1 + k_2A\boldsymbol{\alpha}_2 + k_3A\boldsymbol{\alpha}_3$$

$$= -k_1\boldsymbol{\alpha}_1 + k_2\boldsymbol{\alpha}_2 + k_3(\boldsymbol{\alpha}_2 + \boldsymbol{\alpha}_3)$$

$$= -k_1\boldsymbol{\alpha}_1 + (k_2 + k_3)\boldsymbol{\alpha}_2 + k_3\boldsymbol{\alpha}_3 = 0$$

$$= -k_1\boldsymbol{\alpha}_1 + (k_2 + k_3)\boldsymbol{\alpha}_2 + k_3\boldsymbol{\alpha}_3 = 0$$

(I) 方法一: ① - ②得
$$2k_1\alpha_1 - k_3\alpha_2 = 0$$
。

由 α_1, α_2 线性无关知 $k_1 = k_3 = 0$,再代入①式,可得 $k_2 \alpha_2 = 0$,

又由于 $\alpha_2 \neq 0$,则有 $k_2 = 0$,所以向量组 $\alpha_1, \alpha_2, \alpha_3$ 线性无关。

解答: (II)
$$P = [a_1, a_2, a_3]$$
, 由(I)得 P 可逆,且

$$\mathbf{AP} = \mathbf{A} \begin{bmatrix} \boldsymbol{\alpha}_1, \boldsymbol{\alpha}_2, \boldsymbol{\alpha}_3 \end{bmatrix} = \begin{bmatrix} \mathbf{A}\boldsymbol{\alpha}_1, \mathbf{A}\boldsymbol{\alpha}_2, \mathbf{A}\boldsymbol{\alpha}_3 \end{bmatrix} = \begin{bmatrix} \boldsymbol{\alpha}_1, \boldsymbol{\alpha}_2, \boldsymbol{\alpha}_3 \end{bmatrix} \begin{bmatrix} -1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix}$$

$$= \mathbf{P} \begin{bmatrix} -1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix}$$

$$\mathbf{P}^{-1}\mathbf{A}\mathbf{P} = \mathbf{P}^{-1}\mathbf{P} \begin{bmatrix} -1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} -1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix}$$