浙江大学 2017 - 2018 学年 春夏 学期

《数据库系统》课程期末考试试卷(A卷)

参考答案

```
Answers of Problem 1:
(12 points, 3 points per part)
 (1)
                   select c1.cno, c1.name
                   from (card as c1) natural join (detail as d1),
                            detail as d2
                   where c1.depart= 'CS' and d2.cno ='c0002' and
                           d1.cdate = d2.cdate and d1.pno=d2.pno;
         another answer:
                  select c1.cno, c1.name
                  from
                           card as c1, detail as d1, detail as d2
                  where c1.cno=d1.cno and
                           c1.depart= 'CS' and d2.cno = 'c0002'
                           d1.cdate = d2.cdate and d1.pno=d2.pno;
 (2)
           \Pi_{c1.cno, c1.name} (\sigma_{d1.cdate} = d2.cdate \land d1.pno = d2.pno
               ( (\sigma_{c1.depart = 'CS'}(\rho_{c1} (card))) \bowtie \sigma(\rho_{d1} (detail)) \times
                (\sigma_{d2.cno} + c_{0002}, (\rho_{d2} (detail))))
 (3)
             select cno
             from detail natural join pos
             where year(detail.cdate)=2018
             group by cno
             having count(distinct campus)=1;
         another answer:
             select *
             from card c1
             where exists(
                           from (detail natural join pos) as r1
                           where r1.cno=c1.cno)
```

and not exists(

select *

```
(detail natural join pos) as r1,
                      from
                              (detail natural join pos) as r2
                      where r1.cno=c1.cno and r2.cno=c1.cno and
                              year(r1.cdate)=2018 and year(r2.cdate)=2018
                              and r1.campus > r2.campus
                       )
(4)
          select pno
          from detail natural join pos
          where pos.campus='紫金港' and year(detail.cdate)=2018
          group by pno
          having sum(amount)>=all (
              select sum(amount)
              from detail natural join pos
              where pos.campus=' 紫金港' and year(detail.cdate)=2018
              group by pno
           )
(5)
          update card set balance = balance -20 where cno='c0002';
          insert into detail(cno, pno, cdate, ctime, amount)
                     values('c0002', 'p001','2018-07-02', '08:08:08', 20);
          commit;
```

Answers of Problem 2:

(11 points)

Answers of Problem 3:

(12 points, 3 points per part)

- (1) $Fc = \{A \rightarrow C, C \rightarrow B, B \rightarrow DE\}$
- (2) $(B)^+ = (B,D,E)$
- (3) R1(B,D,E), F1={B \rightarrow DE} R2(C,B), F2={C \rightarrow B} R3(A,C), F3={A \rightarrow C}
- (4) The decomposition is dependency preserving, because $(F1 \cup F2 \cup F3) + = F+$

Answers of Problem 4:

(12 points, 4 points per part)

```
<name> 王浩<name>
           <depart> CS </depart>
           <balence> 300<balence>
           <detail pno=" p003">
                  <cdate> 2018-07-03</cdate>
                  <ctime> 08:10:10 </ctime>
                  <amount>25 </amount>
                  <remark>餐饮<remark>
           </detail>
       </card>
     </campus cards>
 (2)
/campus cards/card[name="张帅"]/detail[amount=50] /id(@pno) /location/text()
评分细则:
(3)
    for $x in /campus cards/card/detail
       $y in /campus cards/card[name="张帅"]/detail
```

where \$x/@pno=\$y/@pno and \$x/cdate=\$y/cdate

return <cno> {\$x../@cno} </cno>

Answers of Problem 5:

(12 points, 4 points per part)

3) 3+2+2+1=8

Answers of Problem 6:

(16 points, 4 points per part)

- 1) (10000000*10000000) / (100 * 365)) *3/12 = 684.93M
- 2) Record number per block of card=4096/25=163
 Blocks of card = 10000/163=61.3→62
 Record number per block of detail=4096/29=141.24 →141
 Blocks of detail = 10000000/141=70922
- 3) Fan-out rate n of the B+-tree = (4096-4)/(5+4)+1=455
- 4) Min height of B+tree = \log_{455} (10000) \rightarrow 2 (向上取整) Max height of B+tree = \log_{228} (10000/2) +1= \rightarrow 2 (向下取整) So height of B+tree = 2
- 5) Cost for evaluating σ operation (2分, 各1分) block transfer = 62 t_T seek time =1 t_S

cost for the natural join operation (2分, t_S 和 t_T 各1分) return number of σ name='张帅' (card) = (10000/5000)=2

block number for each card one in detail = (10000000/10000)/141 = 7.09 = 8

cost for the natural join operation =
$$2*(2 t_S + 2 t_{T+1} t_{S+8} t_{T})$$

= $2*(3 t_S + 10 t_{T}) = 6 t_S + 20 t_{T}$

pipeline evaluation:

Total cost =
$$(1 t_S + 62 t_T) + (6 t_S + 20 t_T) = 7 t_S + 82 t_T$$

Answers of Problem 7:

(12 points, 3 points per part)

1) <u>评分细则</u>:

- S is not serializable, because there are cycles in the graph : $T3\sim T4\sim T3$; $T3\sim T4\sim T5\sim T3$
- 3) no
- 4) w3(B), or w4(B), or w3(C)

Answers of Problem 8:

(10 points, 2 points per part)

- 1) 1006
- 2) 1005

3)

		_
PageID	PageLSN	RecLSN
8001	1010	1010
8002	1014	1006
8003	1015	1015

1019: <T3 abort>