지능화 캡스톤 프로젝트-01

강의 소개 및 조 편성

2023. 03. 08

김 현 용

충북대학교 산업인공지능학과

목차

- 1. 교과목 설명
- 2. 강의일정
- 3. 평가방법
- 4. 산업인공지능학과 프로그램
- 5. 조편성 및 조별 주제 발표 일정 선정

- 지능화 캡스톤 프로젝트 (3학기)
 - 지능화 관련 교과목을 통해 배운 AI 지식을 바탕으로 <mark>공통주제</mark>의 **딥러닝 비전 프로젝트**를 수행
 - 선수과목 : 인공지능 개론, 딥러닝 실제, 컴퓨터 비전 실제
 - 실무능력과 문제해결 능력을 향상
 - 파이썬 프로그래밍: 파이썬 문법 + 딥러닝 프레임워크(Tensorflow, Pytorch) + OpenCV
 - 논문 리뷰를 통한 **학위논문(프로젝트) 작성방법**
 - 논문의 구성, 접근방법 및 평가방법 등
 - 팀을 구성하여 프로젝트를 진행하면서 리더십과 팀워크를 배움

foundation stone(주춧돌, 초석礎石)

- 지능화 파일럿 프로젝트 (4학기)
 - 지도교수의 지도 하에 개별적으로 논문 주제를 선정
 - 매주 수업시간 가디언의 멘토링을 받으며 석사학위 프로젝트 보고서를 작성

3

강의 일정

주차	날짜	발표 주제	비고
1	3/08	[강의] 오리엔테이션/조편성	비대면수업
2	3/15	[강의] Project #1: CNN을 이용한 불량 검출	대면수업(1)
3	3/22	조별토의 및 멘토링, [강의] OpenCV 기본 명령어	비대면수업
4	3/29	조별토의 및 멘토링, [강의] Numpy와 Matplotlib 시각화	비대면수업
5	4/05	Project #1 주제발표 : Dataset → Data 증량/분할 → CNN 구현(Tensorflow, Pytorch) → 학습	대면수업(2)
6	4/12	조별토의 및 멘토링, [강의] CNN 과 회귀분석, Multi-tasking, Transfer Learning	비대면수업
7	4/19	프로젝트 최종점검(사전발표)	비대면수업
8	4/26	Project #1 발표평가	대면수업(3)
9	5/03	[강의] Project #2 : YOLO를 이용한 객체 검출	대면수업(4)
10	5/10	조별 토의 및 멘토링, [강의] CUDA 및 YOLO 환경구성, Numpy와 Pytorch, 전과정 시연	비대면수업
11	5/17	조별토의 및 멘토링, [강의] YOLOv8과 객체분할	비대면수업
12	5/24	Project #2 주제발표 : Annotation(변환) → Data 증량 → YOLO 사용법 → mAP, TensorRT 등	대면수업(5)
13	5/31	조별 토의 및 멘토링	비대면수업
14	6/07	프로젝트 최종점검(사전발표): 테스트 데이터 공개 → 검출결과 제출	비대면수업
15	6/14	Project #2 발표평가	대면수업(6)

딥러닝 비전 기술

■ 딥러닝 비전 기술의 종류

구분	내용
Classification(분류)	객체의 종류(class, label)를 구분하는 것
Localization(위치검출)	하나의 객체의 위치를 찾아 Bounding box로 표시
Object Detection(객체검출)	여러 개의 객체에 대한 Localization + Classification
Instance Segmentation(객체분할)	픽셀 단위로 분류하는 작업 → polygon으로 표시

Classification + localization Object detection Instance segmentation

CAT CAT DOG DUCK CAT CAT DOG DUCK

Single object

Multiple objects

프로젝트 소개

5

- Project #1 [영상분류] CNN을 이용한 불량 검출
 - 전형적인 이미지 분류 관련 SCI 논문을 구현함으로써 CNN 구현능력 배양
 - 논문 리뷰를 통해 학위논문(보고서) 작성법 학습

43

IEEE TRANSACTIONS ON SEMICONDUCTOR MANUFACTURING, VOL. 33, NO. 3, AUGUST 2020

A Deep Convolutional Neural Network for Wafer Defect Identification on an Imbalanced Dataset in Semiconductor Manufacturing Processes

Muhammad Saqlain[®], Qasim Abbas, and Jong Yun Lee

https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9093073

- Project #1 [영상분류] CNN을 이용한 불량 검출
 - 불량 유형별 데이터의 숫적 불균형이 심한 경우 사용할 수 있는 데이터 증량(augmentation) 기법
 - 영상 분류의 성능평가 방법 학습

프로젝트 소개

7

- Project #2 [**객체검출**] YOLO를 이용한 객체 검출
 - 객체검출은 인공지능 관련 경진대회에서 가장 많이 출제되고 가장 흥미로운 기술분야
 - 딥러닝 비전분야에서 영상분류 다음 단계의 학습 내용

객체검출(Object Detection) = 영상분류(Classification) + 위치추정(Localization, Region proposal)

Classification

CAT

Object Detection

CAT, DOG, DUCK

- Project #2 [**객체검출**] YOLO를 이용한 안전모 검출
 - 제2회 +AI 메이커톤(make-a-thon) 출제문제

제1회 방역마스크 착용여부 검출

제2회 안전모 착용여부 검출

산업인공지능연구센터 +AI 메이커톤 경진대회 출제문제

프로젝트 소개

- 지능화 캡스톤 프로젝트 교과목의 중요성
 - '21학번 딥러닝 비전 기술의 적용 논문 : 14편 중 9편 (CNN 4, YOLO 5 / CV, RNN 2, 통계 2)

번호	재학생	프로젝트명	관련기술
1	김대훈	CNN 기반 전도성 돌기 지름 추정	CNN
2	김상순	딥러닝을 이용한 PCB 박리 장치의 필름 검출 방법	CNN
3	김원우	격자 기반의 템플릿 매칭을 사용한 RGB와 적외선 이미지 정합 알고리즘 개발	CV
4	김준태	특이값 분해를 활용한 주문 제작 기반 자동화 설비 3차원 부품 모델 형상 유사도 비교	통계
5	방창현	교차로 대기행렬길이 산출 개선을 위한 딥러닝 기반의 차량검출	YOLO
6	봉은정	전기차 자율 충전을 위한 AVM 영상 기반 무선충전패드 추적 및 추정 알고리즘	YOLO+
7	우상진	YOLOv5를 이용한 PCB 불량검출	YOLO
8	유대건	진동 데이터를 이용한 산업장비 부품의 유효수명 예측	통계
9	이용규	딥러닝 앙상블 기법을 이용한 해상 객체 검출	YOLO
10	이지연	해상기상부이 데이터를 이용한 딥러닝 기반 해상풍력단지 풍력 발전량 예측	RNN
11	이지호	오토 인코더를 이용한 융용 적층 모델링 3D 프린터의 출력 이상 감지	CNN+
12	정수현	딥러닝을 사용한 동박 필링 후 필름 유무 검사	CNN
13	정원용	딥러닝 기법 활용 항공영상을 이용한 노후건축물 객체 검출 적용 가능성 제시	YOLO
14	최준혁	설비데이터와 기상데이터를 고려한 LSTM 기반 태양광 발전량 예측	RNN

■ 지능화 캡스톤 프로젝트 교과목의 중요성

- '20학번 학술지 게재/발표 논문의 적용 사례 : 5편 중 3편

번호	재학생 (주저자)	논문제목	학술지	관련기술
1	이효중	다수 조명의 채널별 융합을 이용한 CNN 기반 머신 비전 분류기	제어로봇시스템학회 논문지 제28권 제10호('22.10)	CNN
2	박성범	딥러닝 기반의 반도체 패키지 다이면 스크래치 검출 방법	제어로봇시스템학회 논문지 제28권 제10호('22.10)	CNN
3	윤재웅	적응적 뉴로-퍼지 추론 시스템을 이용한 UV LED 광 출력 보상 알고리즘 개발	한국지능시스템학회논문지 제32권 4호('22.8)	_
4	김병근	딥러닝을 이용한 카메라 모듈 불량 분류	한국빅데이터서비스학회 국내 학술 대회("22. 05)	CNN
5	강윤구	다익스크라 알고리즘을 이용한 화재 피난 방향 안내 시스템의 개발	한국빅데이터서비스학회 국내 학술 대회('22. 05)	-

11

평가방법

■ 교과목 평가방법

• 조별 평가 : 2인 1조 원칙 (코딩 가능자 포함)

- 1~3명 범위에서 조 편성 가능 : 조 인원에 따라 차등 평가

• 개인별 평가: 주제발표, 출석, AI-Ex 포트폴리오, 기타

항목		비율	내 용	비고
프로젝트 수행	1차 발표	30%	Project #1. CNN을 이용한 불량검출	조별
ニエゴニナö	2차 발표	30%	Project #2. YOLO를 이용한 안전모 검출	工工
주제 발표		10%	조별 발표	
출석		20%	[학칙] 총 수업시간의 ¾ 미달시 F → 4회 결석 시 F	개인별
AI-Ex 포트폴리오		5%	학기말 Github 반영여부 점검	
기티	-	5%	<mark>과제</mark> *, 참여도 등	
합 겨	l	100%		

* 졸업종합시험('23.09) 대비 과제

■ 발표평가 기준

• 조별 역할 명시 (자료수집, 전처리, 레이블링, 프로그래밍 등)

- 팀점수: 프로젝트별 순위를 점수로 환산

- 1인 수행 시 팀점수*1.1, 3인 수행 시 팀점수*0.9

항목	내용	점수
우수성	결과 정확도, 속도	25
창의성	접근방법의 차별성, 아이디어의 독창성	25
발표력	발료자료, 설득력, 전달력	25
난이도	적용기술의 난이도	25

• 주제발표

항목	내용	점수
발표자료의 충실도	논문, 인터넷, 책자 등 활용 가능출처를 명시할 것	40
발표의 전달력	• 이해하기 쉽도록 발표 자료 작성 및 설명력	30
개념의 이해도	• 질의응답에 대한 답변 능력	30

13

개인별 발표 주제 선정

■ 발표 주제 선정

- 논문, 인터넷, 책자 등 활용 → 출처를 명시할 것
- 아래 주제나 자율주제로 발표 가능
 - Project #1 : Dataset → Data 증량/분할 → CNN 구현(Tensorflow, Pytorch) → 학습기법 등
 - Project #2 : Annotation(변환) → Data 증량 → YOLO 사용법, YOLO 변종 → mAP → TensorRT 등

학년	성명	주제
	한희주	
	이선명	
1	명성구	
	김홍열	
	임강혁	
	박영제	
	권진관	
2	백정흠	
	안성인	
	송동건	

학년	성명	주제
	김현기	
	이재익	
	신건철	
2	이정현	
2	원윤재	
	장현우	
	한병엽	
	이진우	
총	18명	

■ 조 편성

• 각 조에는 코딩 가능자를 포함할 것

조	조원
1	
2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	

학년	성명				
1	한희주, 이선명 명성구, 김홍열 임강혁				
2	김현기, 이재익 신건철, 이정현 원윤재, 장현우 한병엽, 이진우 박영제, 권진관 백정흠, 안성인 송동건				
	총 18명				

15

산업인공지능학과 프로그램

- 교육과정 흐름도
 - 석사학위 이수조건 : 프로젝트(필수) 교과 12학점 (50%) + 선택 교과 2학점 (50%)
 - 프로젝트 보고서 제출을 통한 석사학위 수여 → 프로젝트 교과목 연계 프로그램 운영
 - 지능화 과제 (AI-Ex20 포트폴리오) 제출

■ AI-Ex 포트폴리오 관리

- (정량평가) 학위과정 중 지능화 기술적용 프로젝트(프로그램 코드 또는 시스템 설계) 결과물 20개 제출
- (정성평가) 연 1회 AI-Ex 포트폴리오 경진대회를 개최하여 포트폴리오 평가 및 우수사례 시상

문제 발굴

- 산업현장의 문제 및 애로사항
- 수요조사 등

지능화 교과목 수강

- AI 기술의 개념 이해
- 실습을 통한 실무능력 배양
- 현장문제 해결 능력 강화

포트폴리오 구성

- 지능화 기술 적용 프로젝 트 수행
- 프로그램 코딩 또는 시스 템 설계

GitHub 등록

- GitHub 등록 및 관리
- 코드 재사용
- 가디언의 정기점검을 통한 진행상황 점검

경진대회 및 졸업요건

- 평가 및 시상(1회/년)을 통해 품질 제고
- 필수 30개 졸업요건화로 정량적 목표 관리

산업인공지능학과 프로그램

17

■ 포트폴리오 관리

- 현장에서 손쉽게 재사용할 수 있도록 프로젝트 결과물을 GitHub에 등록 관리
- 재학생 대상으로 GitHub 이용 방법 및 포트폴리오 작성에 관한 교육 실시 https://www.youtube.com/watch?v=bhfYR9qXjs0

포트폴리오의 구성

□ 포트폴리오에 포함되는 내용

- ◈ 자기 소개
- 간략하게 기술
- 이력 및 학력○ 인턴, 외주, 산학, 수상경력 등
- 6 년년, 되구, 년호
 ★ 여란치
- ◉ 이메일, 핸드폰, SNS, LinkedIn, GitHub
- ◆ 프로젝트
- 프로젝트 이름 및 기간
- ◉ 큰 기술 위주의 적용 기술
- ◉ 프로젝트 내용(되도록 자세히 서술)
- 사진, 동영상, 웹사이트 형식의 프로젝트 데모

- 등록 건수 : 20학번 250건, 21학번 92건

학기	포트폴리오	합계	
꼭기	20학번	21학번	84
20-2	123	-	123
21-1	211	86	297
21-2	250	92	342

산업인공지능학과 프로그램

■ 포트폴리오 경진대회(2022.12.01)

• 매년 1회 개최

이동로봇 모니터링 시스템 개발

Mounter interface & control system 개발

수상작 전시(2021.11.02)

수상작 전시 포스터

시상식(2021.10.28)

산업인공지능학과 프로그램

19

- 가디언(Guardian) 제도
 - 지도교수(전임교수): 논문의 주제 선정 및 지도
 - 가디언(전임연구원)
 - 박사급 전임연구원이 입학과 동시에 재학생의 가디언으로 배정
 - 재직자의 학위과정 중 애로사항과 프로젝트 수행의 세부내용을 지원하는 재직자 맞춤형 역량관리제도

산업인공지능학과 프로그램

■ 가디언(초빙교수) 배정

이름	전공분야	경력	22학번
김재영	전자 공 학 네트워크	010-4952-2800 jaykim@cbnu.ac.kr 한국과학기술원전기및전자공학과석사 팬텍,KT 등 산업체경력 25년	(포트폴리오전담)
김현용	스마트팩토리 머신비전	010-3023-3601 <u>kimhy365@cbnu.ac.kr</u> 충북대스마트팩토리학박사수료 ㈜선일등산업체경력 18년	박영제,조유하 한병엽,안성인 조태상,김홍열 임강혁
윤성철	머신비전 전자공학	010-5205-0356 <u>steveyun@cbnu.ac.kr</u> 한양대전자공학석사 ㈜코그넥스코리아등산업체경력25년	백정흠, 이재익 이정현, 김현기 오세광, 원윤재 명선구
이광연	빅데이터 분석 지식 학습	010-3773-3913 kylee22@cbnu.ac.kr 연세대정보산업공학박사 ㈜포위즈시스템 등산업체경력 20년	권진관,송동건 신건철,이진우 장현우,한희주 이선명

21

산업인공지능학과 프로그램

■ 창의자율과제

- 학생 연구원들이 팀을 구성하여 자율적으로 주제를 선정하고 연구의 제반 과정을 주도하여 수행
- 모집인원 : 총 10+α팀 모집 (팀당 3인 이내)
- 참여기간 : 선정 후 약 6개월 간 연구 진행 및 결과 도출
- 참여혜택 : 팀당 380만원~540만원 차등 지원

• 주요 실적

- (2020) 대학생 자율주행경진대회 우승, 국무총리상 수상, 상금 1억원
- (2021) 현대자동차그룹 자율주행 챌린지 2위 수상, 상금 5천만원 ICT 챌린지 1위, 과기정통부 장관상 수상, 상금 1,200만원
- (2022) ICT 챌린지 3위, 과기정통부 장관상 수상, 부상 미국 견학 ICT 챌린지 3년 연속 수상
- (2023) 학생창의자율과제(대회)에서도 수상하는 것이 목표!!!

산업인공지능학과 프로그램

▶ 대학생/현대자동차 자율주행경진대회 수상

▶ ICT 챌린지 3년 연속 수상

23

참고문헌

- Tensorflow 사용자
 - 오일석, **컴퓨터 비전과 딥러닝**, 한빛아카데미 (2023.01)
 - Deep learning for Vision Systems, Mohamed Clgendy (역저, 2021.12)
- Pytorch 사용자
 - 서지영, **딥러닝 파이토치 교과서**, 길벗 (2022.03)
 - V Kishore Ayyadevara, Yeshwanth Reddy, Modern Computer Vision with PyTorch, Packt Publishing (2020.11)

■ 논문 리뷰

436

IEEE TRANSACTIONS ON SEMICONDUCTOR MANUFACTURING, VOL. 33, NO. 3, AUGUST 2020

A Deep Convolutional Neural Network for Wafer Defect Identification on an Imbalanced Dataset in Semiconductor Manufacturing Processes

Muhammad Saqlain[®], Qasim Abbas, and Jong Yun Lee

- 개인별 발표 주제 선정
- 조 편성

25

