Algorithm

- [BOJ]11659 구간 합 구하기4
- [BOJ]11659 구간 합 구하기5

- N개의 수(1<N<100,000)
- M개의 구간 합 구하기 (1<M<100,000)
 - i번째 수 ~j번째 수의 합은? (M번 반복)

idx : 0	idx:1	idx:2	idx:3	idx : 4
5	4	3	2	1

- N개의 수(1<N<100,000)
- M개의 구간 합 구하기 (1<M<100,000)
 - i번째 수 ~j번째 수의 합은? (M번 반복)

idx : 0	idx:1	idx:2	idx:3	idx : 4
5	4	3	2	1

10만번 합을 구하는데, 범위가 1~100,000이면? 10만 * 10만 *

- N개의 수(1<N<100,000)
- M개의 구간 합 구하기 (1<M<100,000)
 - i번째 수 ~j번째 수의 합은? (M번 반복)

idx : 0	idx:1	idx:2	idx:3	idx : 4
5	4	3	2	1

계산의 횟수를 줄이기 위해서 미리 계산해두기! ======> (memoization) <=======

- N개의 수(1<N<100,000)
- M개의 구간 합 구하기 (1<M<100,000)
 - i번째 수 ~j번째 수의 합은? (M번 반복)

idx : 0	idx : 1	idx : 2	idx : 3	idx : 4	7	
5	4	3	2	1		
입력 받으	면서, 입력	값+이전 -	무적값 형 티	내로 누적		누적합 배열
5	9	12	14	15		

- N개의 수(1<N<100,000)
- M개의 구간 합 구하기 (1<M<100,000)
 - i번째 수 ~j번째 수의 합은? (M번 반복)

- N개의 수(1<N<100,000)
- M개의 구간 합 구하기 (1<M<100,000)
 - i번째 수 ~j번째 수의 합은? (M번 반복)

- idx 1~idx 3 더한 값을 구하려면?

idx : 0	idx:1	idx : 2	idx : 3	idx : 4
5	4	3	2	1

5	9	12	14	15
---	---	----	----	----

누적합 배열

- idx 1~idx 3 더한 값을 구하려면?

5	9	12	14	15
---	---	----	----	----

누적합 배열

- idx 1~idx 3 더한 값을 구하려면?

- → 더하는 범위 끝 값에서 추가로 더해진 부분만 빼주면 됨
- → 즉, idx[0]+idx[1]+idx[2]+idx[3] idx[0] 해주면 됨

- idx 1~idx 3 더한 값을 구하려면?

5 9 12 14 15

누적합 배열

- → 더하는 범위 끝 값에서 추가로 더해진 부분만 빼주면 됨
- → 즉, idx[0]+idx[1]+idx[2]+idx[3] idx[0] 해주면 됨

- idx 1~idx 3 더한 값을 구하려면?

- → 더하는 범위 끝 값에서 추가로 더해진 부분만 빼주면 됨
- → 즉, idx[0]+idx[1]+idx[2]+idx[3] idx[0] 해주면 됨

- N개의 수(1<N<1,024) → NXN 배열이면 약 10만
- M개의 구간 합 (1<M<100,000)
 - (X1,Y1) ~(X2,Y2) 범위의 합은? (M번 반복)

1	2	3	4
2	3	4	5
3	4	5	6
4	5	6	7

- 누적 합 배열 만들기 1

- 1차원 배열 활용 : 각 줄마다 누적합 배열 만들기

1	2	3	4	1	3	6	10
2	3	4	5	2	5	9	14
3	4	5	6	3	7	12	18
4	5	6	7	4	9	15	22

- arr[1,1]~arr[2,3] 합을 구하려면?

누적합 배열

[SSAFY10] 광주 4반

- arr[1,1]~arr[2,3] 합을 구하려면? 누적합 배열

- arr[1,1]~arr[2,3] 합을 구하려면? 누적합 배열

[SSAFY10] 광주 4반

- arr[1,1]~arr[2,3] 합을 구하려면? 누적합 배열

- arr[1,1]~arr[2,3] 합을 구하려면?

- N개의 수(1<N<1,024) → NXN 배열이면 약 10만
- M개의 구간 합 (1<M<100,000)
 - (X1,Y1) ~(X2,Y2) 범위의 합은? (M번 반복)

```
map[X1,Y2]-map[X1,Y1-1]+
```

map[X1+1, Y2] - map[X1+1, Y1-1]+

••••

map[X2-1,Y2]-map[X2-1,Y1-1]+ +map[X2,Y2]-map[X2,Y1-1]

- 누적 합 배열 만들기 2

- 2차원 누적합 배열 만들기

1	2	3	4
2	3	4	5
3	4	5	6
4	5	6	7

1	3	6	10
3	8	15	30
6	15	27	48
10	24	42	70

<u>배열명 : arr</u>

- 누적 합 배열 만들기 2

- 2차원 누적합 배열 만들기

1	2	3	4
2	3	4	5
3	4	5	6
4	5	6	7

map[2,3]의 누적합을 구하려면?

1	3	6	10
3	8	15	30
6	15	27	48
10	24	42	70

<u>배열명 : map</u>

<u>배열명 : arr</u>

- 앞서 누적된 값을 활용하여 구하려는 위치의 값을 계산하기 현재계산값: 27

- map[2,3] = map[2,2]

2 3 4 5 3 8 15 30 3 4 5 6 6 15 27 48 4 5 6 7 입력받은 값 10 24 42 70	1	2	3	4	1	3	6	10
	2	3	4	5	3	8	15	30
4 5 6 7 입력 받은 값 10 24 42 70	3	4	5	6	6	15	27	48
	4	5	6	7 입력 받은	<mark>값</mark> 10	24	42	70

<u>배열명 : arr</u>

배열명 : map

현재 계산 값:57

- map[2,3] = map[2,2] + map[1,3]
 - 겹치는 부분 발생!

1	2	3	4		1	3	6	10
2	3	4	5		3	8	15	30
3	4	5	6		6	15	27	48
4	5	6	7 입력	<u>받은 값</u>	10	24	42	70

<u>배열명 : arr</u>

현재 계산 값: 42

- map[2,3] = map[2,2] + map[1,3] map[1,2]
 - 겹치는 부분 발생! 빼주기.

1	2	3	4		1	3	6	10
2	3	4	5		3	8	15	30
3	4	5	6		6	15	27	48
4	5	6	7 입력 받	<u>은 값</u>	10	24	42	70

배열명: arr

현재 계산 값: 48

- map[2,3] = map[2,2] + map[1,3] map[1,2] + <u>arr[2,3]</u>
- 입력 받은 값 잊지 말기

1	2	3	4		1	3	6	10
2	3	4	5		3	8	15	30
3	4	5	6		6	15	27	48
4	5	6	7 입력	<u>받은 값</u>	10	24	42	70

<u>배열명 : arr</u>

- 누적 합 배열 만들기 2

- map[x,y] = map[x,y-1] + map[x-1,y] - map[x-1,y-1] + arr[x,y]

1	2	3	4
2	3	4	5
3	4	5	6
4	5	6	7

1	3	6	10
3	8	15	30
6	15	27	48
10	24	42	70

- 누적 합 배열 만들기 2
 - arr[1,1]~arr[2,3]까지의 합은?

1	2	3	4
2	3	4	5
3	4	5	6
4	5	6	7

1	3	6	10
3	8	15	30
6	15	27	48
10	24	42	70

- 누적 합 배열 만들기 2

- arr[1,1]~arr[2,3]까지의 합은? 우리가 아는 건...arr[0,0]~arr[2,3]까지의 합

1	2	3	4
2	3	4	5
3	4	5	6
4	5	6	7

1	3	6	10
3	8	15	30
6	15	27	48
10	24	42	70

- 누적 합 배열 만들기 2

- 2차원 누적합 배열 만들기

1	2	3	4
2	3	4	5
3	4	5	6
4	5	6	7

map[2,3] - map[2,0]

1	3	6	10
3	8	15	30
6	15	27	48
10	24	42	70

- 누적 합 배열 만들기 2

- 2차원 누적합 배열 만들기

1	2	3	4
2	3	4	5
3	4	5	6
4	5	6	7

map[2,3] - map[2,0]-map[0,3]

1	3	6	10
3	8	15	30
6	15	27	48
10	24	42	70

- 누적 합 배열 만들기 2

map[2,3] - map[2,0]-map[0,3]+map[0,0]

- 2차원 누적합 배열 만들기

1	2	3	4
2	3	4	5
3	4	5	6
4	5	6	7

1	3	6	10
3	8	15	30
6	15	27	48
10	24	42	70

- N개의 수(1<N<1,024) → NXN 배열이면 약 10만
- M개의 구간 합 (1<M<100,000)
 - (X1,Y1) ~(X2,Y2) 범위의 합은? (M번 반복)

2차원 누적합 배열을 만들었다면,

map[X2,Y2]-map[X1-1,Y2]-map[X2,Y1-1]+map[X1-1,Y1-1]