DEVOIR DE MATHEMATIQUES N°1-NOVEMBRE 2020 DUREE : 02 HEURES

EXERCICE 1 (08 Pts)

- 1°) On considère l'équation : $-\sqrt{2}$. $x^2 + 2x + 1 = 0$
 - a) Justifier qu'elle a deux racines distinctes x_1 et x_2 .
 - b) Sans calculer ces racines, donner la valeur de A = $\frac{x_1}{x_1^2 + 2} + \frac{x_2}{x_2^2 + 2}$
- **2**°) Résoudre dans \mathbb{R}^2 le système : $\begin{cases} x^2 + y^2 = 65 \\ x + y = -3 \end{cases}$
- **3**°)-a) Résoudre dans IR 1'équation $x^4 3x^2 4 = 0$
 - b) En utilisant le changement de variable $X = x^2$, donner la forme factorisée de $x^4 3x^2 4$ (on la mettra sous forme d'un produit de deux trinômes du second degré).
 - c) Résoudre dans IR l'inéquation $x^4 3x^2 4 \le 0$

EXERCICE 2 (06 Pts)

Résoudre dans IR les équations irrationnelles suivantes :

1°)
$$\sqrt{-2x^2 + 3x - 1} = \sqrt{-2x + 1}$$

2°)
$$\sqrt{(x+1)(4x-3)} = -2x+5$$

3°)
$$2x + \sqrt{x^2 - 4x - 5} = 18$$

EXERCICE 3: (06 Pts)

Résoudre les systèmes suivants par la méthode du pivot de Gauss:

(E₁)
$$\begin{cases} 2x - 3y - z = 0 \\ -x + 2y + 2z = 3 \\ x - y - 3z = -5 \end{cases}$$
 (E₂) :
$$\begin{cases} 2x + y + z = 1 \\ x + 3y - z = 4 \\ 4x + 2y + 2z = 2 \end{cases}$$