## Finding Frequent Itemsets: Limited Pass Algorithms

Thanks for source slides and material to:

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets

http://www.mmds.org

#### **Limited Pass Algorithms**

- ◆ Algorithms so far: compute **exact** collection of frequent itemsets of size k in k passes
  - A-Priori, PCY, Multistage, Multihash
- Many applications where it is not essential to discover every frequent itemset
  - Sufficient to discover most of them
- Next: algorithms that find all or most frequent itemsets using at most 2 passes over data
  - Sampling
  - SON
  - Toivonen's Algorithm

## **Random Sampling of Input Data**

### **Random Sampling**

- Take a random sample of the market baskets that fits in main memory
  - Leave enough space in memory for counts
- Run a-priori or one of its improvements in main memory
  - **For sets of all sizes**, not just pairs
  - Don't pay for disk I/O each time we increase the size of itemsets
  - Reduce support threshold proportionally to match the sample size

Copy of sample baskets
Space

Space for counts

#### **How to Pick the Sample**

- Best way: read entire data set
- For each basket, select that basket for the sample with probability p
  - For input data with *m* baskets
  - At end, will have a sample with size close to pm baskets
- If file is part of distributed file system, can pick chunks at random for the sample

## Support Threshold for Random Sampling

- Adjust support threshold to a suitable, scaled-back number
  - To reflect the smaller number of baskets

## Support Threshold for Random Sampling

- Adjust support threshold to a suitable, scaled-back number
  - To reflect the smaller number of baskets
- Example
  - If sample size is 1% or 1/100 of the baskets
  - Use s/100 as your support threshold
  - Itemset is **frequent in the sample** if it appears in at least s/100 of the baskets in the sample

## Random Sampling: Not an exact algorithm

- With a single pass, cannot guarantee:
  - That algorithm will **produce all itemsets** that are frequent in the whole dataset
    - False negative: itemset that is frequent in the whole but not in the sample

## Random Sampling: Not an exact algorithm

- With a single pass, cannot guarantee:
  - That algorithm will **produce all itemsets** that are frequent in the whole dataset
    - False negative: itemset that is frequent in the whole but not in the sample
  - That it will **produce only itemsets** that are frequent in the whole dataset
    - False positive: frequent in the sample but not in the whole
- If the sample is large enough, there are unlikely to be serious errors

#### Random Sampling: Avoiding Errors

#### Improvement

- Make a second pass through the full dataset
- Count all itemsets that were identified as frequent in the sample
- Verify that the candidate pairs are truly frequent in entire data set

## Random Sampling: Avoiding Errors

#### Eliminate false positives

- Make a second pass through the full dataset
- Count all itemsets that were identified as frequent in the sample
- Verify that the candidate pairs are truly frequent in entire data set

#### But this doesn't eliminate false negatives

- Itemsets that are frequent in the whole but not in the sample
- Remain undiscovered

#### Reduce false negatives

- Before, we used threshold ps where p is the sampling fraction
- Reduce this threshold: e.g., 0.9ps
- More itemsets of each size have to be counted
- If memory allows: requires more space
- Smaller threshold helps catch more truly frequent itemsets

# Savasere, Omiecinski and Navathe (SON) Algorithm

#### **SON Algorithm**

- Avoids false negatives and false positives
- Requires two full passes over data

### SON Algorithm – (1)

- Repeatedly read small subsets of the baskets into main memory
- Run an in-memory algorithm (e.g., a priori, random sampling) to find all frequent itemsets
  - Note: we are not sampling, but processing the entire file in memory-sized chunks
- An itemset becomes a candidate if it is found to be frequent in any one or more subsets of the baskets

## SON Algorithm – (2)

 On a second pass, count all the candidate itemsets and determine which are frequent in the entire set

## SON Algorithm – (2)

- On a second pass, count all the candidate itemsets and determine which are frequent in the entire set
- Key "monotonicity" idea: an itemset cannot be frequent in the entire set of baskets unless it is frequent in at least one subset

## SON Algorithm – (2)

- On a second pass, count all the candidate itemsets and determine which are frequent in the entire set
- Key "monotonicity" idea: an itemset cannot be frequent in the entire set of baskets unless it is frequent in at least one subset
  - Subset or chunk contains fraction p of whole file
  - 1/p chunks in file
  - If itemset is not frequent in any chunk, then support in each chunk is less than ps
  - Support in whole file is less than s: not frequent

#### **SON – Distributed Version**

- SON lends itself to distributed data mining
  - MapReduce
- Baskets distributed among many nodes
  - Subsets of the data may correspond to one or more chunks in distributed file system
  - Compute frequent itemsets at each node
  - Distribute candidates to all nodes
  - Accumulate the counts of all candidates

## SON: Map/Reduce Phase 1: Find candidate itemsets

#### Map

- Input is a chunk/subset of all baskets; fraction p of total input file
- **Find itemsets frequent in that subset** (e.g., using random sampling algorithm)
- Use support threshold ps
- Output is set of key-value pairs (F, 1) where F is a frequent itemset from sample

#### Reduce

- Each reduce task is assigned set of keys, which are itemsets
- Produces keys that appear one or more time
- Frequent in some subset
- These are candidate itemsets

## SON: Map/Reduce Phase 2: Find true frequent itemsets

#### Map

- Each Map task takes output from first Reduce task AND a chunk of the total input data file
- All candidate itemsets go to every Map task
- Count occurrences of each candidate itemset among the baskets in the input chunk
- Output is set of key-value pairs (C, v), where C is a candidate frequent itemset and v is the support for that itemset among the baskets in the input chunk

#### Reduce

- Each reduce tasks is assigned a set of keys (itemsets)
- Sums associated values for each key: total support for itemset
- If support of itemset >= s, emit itemset and its count

## **Toivonen's Algorithm**

#### **Toivonen's Algorithm**

- Given sufficient main memory, uses one pass over a small sample and one full pass over data
- Gives no false positives or false negatives
- BUT, there is a small but finite probability it will fail to produce an answer
  - Will not identify frequent itemsets
- Then must be repeated with a different sample until it gives an answer
- Need only a small number of iterations

## Toivonen's Algorithm (1)

#### First find candidate frequent itemsets from sample

- Start as in the random sampling algorithm, but lower the threshold slightly for the sample
  - Example: if the sample is 1% of the baskets, use s /125 as the support threshold rather than s /100
  - For fraction p of baskets in sample, use 0.8ps or 0.9ps as support threshold
- Goal is to avoid missing any itemset that is frequent in the full set of baskets
- The smaller the threshold:
  - The more memory is needed to count all candidate itemsets
  - The less likely the algorithm will not find an answer

## Toivonen's Algorithm — (2)

## After finding frequent itemsets for the sample, construct the *negative border*

- ◆ Negative border: Collection of itemsets that are not frequent in the sample but all of their immediate subsets are frequent
  - Immediate subset is constructed by deleting exactly one item

#### **Example: Negative Border**

- ABCD is in the negative border if and only if:
  - 1. It is not frequent in the sample, but
  - 2. All of ABC, BCD, ACD, and ABD are frequent
    - Immediate subsets: formed by deleting an item
- A is in the negative border if and only if it is not frequent in the sample
  - Note: The empty set is always frequent

#### **Picture of Negative Border**



## Toivonen's Algorithm (1)

#### **First pass:**

- (1) First find candidate frequent itemsets from sample
  - Sample on first pass!
  - **Use lower threshold:** For fraction p of baskets in sample, use 0.8ps or 0.9ps as support threshold
- Identifies itemsets that are frequent for the sample
- (2) Construct the *negative border* 
  - Itemsets that are not frequent in the sample but all of their immediate subsets are frequent

## Toivonen's Algorithm — (3)

- In the second pass, process the whole file (no sampling!!)
- Count:
  - all candidate frequent itemsets from first pass
  - all itemsets on the negative border
- ◆ Case 1: No itemset from the negative border turns out to be frequent in the whole data set
  - Correct set of frequent itemsets is exactly the itemsets from the sample that were found frequent in the whole data
- Case 2: Some member of negative border is frequent in the whole data set
  - Can give no answer at this time
  - Must repeat algorithm with new random sample

## Toivonen's Algorithm – (4)

- Goal: Save time by looking at a sample on first pass
  - **Description** But is the set of frequent itemsets for the sample the correct set for the whole input file?
- If some member of the negative border is frequent in the whole data set, can't be sure that there are not some even larger itemsets that:
  - Are neither in the negative border nor in the collection of frequent itemsets for the sample
  - But are frequent in the whole
- So start over with a new sample
- Try to choose the support threshold so that probability of failure is low, while number of itemsets checked on the second pass fits in main-memory

#### A few slides on Hashing

Introduction to Data Mining with Case Studies Author: G. K. Gupta Prentice Hall India, 2006.

## Hashing

In PCY algorithm, when generating  $L_1$ , the set of frequent itemsets of size 1, the algorithm also:

- generates all possible pairs for each basket
- hashes them to buckets
- keeps a count for each hash bucket
- Identifies frequent buckets (count >= s)



32

#### **Example**

Consider a basket database in the first table below All itemsets of size 1 determined to be frequent on previous pass The second table below shows all possible 2-itemsets for each basket

| Basket ID | Items                      |
|-----------|----------------------------|
| 100       | Bread, Cheese, Eggs, Juice |
| 200       | Bread, Cheese, Juice       |
| 300       | Bread, Milk, Yogurt        |
| 400       | Bread, Juice, Milk         |
| 500       | Cheese, Juice, Milk        |

| 100 | (B, C) (B, E) (B, J) (C, E) (C, J) (E, J) |
|-----|-------------------------------------------|
| 200 | (B, C) (B, J) (C, J)                      |
| 300 | (B, M) (B, Y) (M, Y)                      |
| 400 | (B, J) (B, M) (J, M)                      |
| 500 | (C, J) (C, M) (J, M)                      |

#### **Example Hash Function**

- For each pair, a numeric value is obtained by first representing B by 1, C by 2, E 3, J 4, M 5 and Y 6.
- Now each pair can be represented by a two digit number
  - (B, E) by 13 (C, M) by 26
- Use hash function on these numbers: e.g., number modulo 8
  - Hashed value is the bucket number
- Keep count of the number of pairs hashed to each bucket
- Buckets that have a count above the support value are frequent buckets
  - Set corresponding bit in bit map to 1; otherwise, bit is 0
- All pairs in rows that have zero bit are removed as candidates

### **Hashing Example**

#### Support Threshold = 3

#### The possible pairs:

| 100 | (B, C) (B, E) (B, J) (C, E) (C, J) (E, J) |
|-----|-------------------------------------------|
| 200 | (B, C) (B, J) (C, J)                      |
| 300 | (B, M) (B, Y) (M, Y)                      |
| 400 | (B, J) (B, M) (J, M)                      |
| 500 | (C, J) (C, M) (J, M)                      |

$$(B,C) \rightarrow 12$$
,  $12\%8 = 4$ ;  $(B,E) \rightarrow 13$ ,  $13\%8 = 5$ ;  $(C,J) \rightarrow 24$ ,  $24\%8 = 0$ 

#### Mapping table

| В | 1 |  |
|---|---|--|
| С | 2 |  |
| Е | 3 |  |
| J | 4 |  |
| М | 5 |  |
| Υ | 6 |  |

| Bit map for      | Bucket number | Count | Pairs that hash |
|------------------|---------------|-------|-----------------|
| frequent buckets |               |       | to bucket       |
| 1                | 0             |       |                 |
| 0                | 1             |       |                 |
| 0                | 2             |       |                 |
| 0                | 3             |       |                 |
| 0                | 4             |       |                 |
| 1                | 5             |       |                 |
| 1                | 6             |       |                 |
| 1                | 7             |       |                 |

#### **Hashing Example**

Support Threshold = 3

The possible pairs:

| 100 | (B, C) (B, E) (B, J) (C, E) (C, J) (E, J) |
|-----|-------------------------------------------|
| 200 | (B, C) (B, J) (C, J)                      |
| 300 | (B, M) (B, Y) (M, Y)                      |
| 400 | (B, J) (B, M) (J, M)                      |
| 500 | (C, J) (C, M) (J, M)                      |

$$(B,C) \rightarrow 12$$
,  $12\%8 = 4$ ;  $(B,E) \rightarrow 13$ ,  $13\%8 = 5$ ;  $(C,J) \rightarrow 24$ ,  $24\%8 = 0$ 

#### Mapping table

| В | 1 |  |
|---|---|--|
| С | 2 |  |
| Е | 3 |  |
| J | 4 |  |
| М | 5 |  |
| Υ | 6 |  |

| Bit map for      | Bucket number | Count | Pairs that hash |
|------------------|---------------|-------|-----------------|
| frequent buckets |               |       | to bucket       |
| 1                | 0             |       |                 |
| 0                | 1             |       |                 |
| 0                | 2             |       |                 |
| 0                | 3             |       |                 |
| 0                | 4             | 2     | (B, C)          |
| 1                | 5             | 3     | (B, E) (J, M)   |
| 1                | 6             |       |                 |
| 1                | 7             |       |                 |

Bucket 5 is frequent. Are any of the pairs that hash to the bucket frequent? Does Pass 1 of PCY know which pairs contributed to the bucket?

### **Hashing Example**

#### Support Threshold = 3

#### The possible pairs:

| 100 | (B, C) (B, E) (B, J) (C, E) (C, J) (E, J) |
|-----|-------------------------------------------|
| 200 | (B, C) (B, J) (C, J)                      |
| 300 | (B, M) (B, Y) (M, Y)                      |
| 400 | (B, J) (B, M) (J, M)                      |
| 500 | (C, J) (C, M) (J, M)                      |

$$(B,C) \rightarrow 12$$
,  $12\%8 = 4$ ;  $(B,E) \rightarrow 13$ ,  $13\%8 = 5$ ;  $(C,J) \rightarrow 24$ ,  $24\%8 = 0$ 

#### Mapping table

| В | 1 |  |
|---|---|--|
| С | 2 |  |
| Е | 3 |  |
| J | 4 |  |
| М | 5 |  |
| Υ | 6 |  |

| Bit map for      | Bucket number | Count | Pairs that hash      |
|------------------|---------------|-------|----------------------|
| frequent buckets |               |       | to bucket            |
| 1                | 0             | 5     | (C, J) (B, Y) (M, Y) |
| 0                | 1             | 1     | (C, M)               |
| 0                | 2             | 1     | (E, J)               |
| 0                | 3             | 0     |                      |
| 0                | 4             | 2     | (B, C)               |
| 1                | 5             | 3     | (B, E) (J, M)        |
| 1                | 6             | 3     | (B, J)               |
| 1                | 7             | 3     | (C, E) (B, M)        |

At end of Pass 1, know only which buckets are frequent All pairs that hash to those buckets are candidates and will be counted

#### Reducing number of candidate pairs

- $\bullet$  Goal: reduce the size of candidate set  $C_2$ 
  - Only have to count candidate pairs
  - Pairs that hash to a frequent bucket
- Essential that the hash table is large enough so that collisions are few
- Collisions result in loss of effectiveness of the hash table
- ◆ In our example, three frequent buckets had collisions
- Must count all those pairs to determine which are truly frequent