EE 5362 8/26/24 Notes

-Hashemi OH MW 9-10 am PHE 631

- Midtern is oct. 28th

- Final is Dec 13th

I(+) = f (v(+))

Any function can be a resistor!

- Linear Resistor > f = (# VC+)

Linear System

x(+) -> $\begin{array}{ccc}
(1 & 3 \times (4) & \longrightarrow 3 \times (4) \\
2 & (1 & \longrightarrow 3 \times (4) & \longrightarrow 3 \times (4) \\
(1 & (1 &) & \longrightarrow 3 \times (4) & \longrightarrow 3 \times (4) \\
(1 & (1 &) & \longrightarrow 3 \times (4) & \longrightarrow 3 \times (4) & \longrightarrow 3 \times (4) \\
(1 & (1 &) & (1 &) & (1 &) & (1 &) & (1 &) \\
(1 & (1 &) & (1 &) & (1 &) & (1 &) & (1 &) \\
(1 & (1 &) & (1 &) & (1 &) & (1 &) & (1 &) & (1 &) \\
(1 & (1 &) & (1 &) & (1 &) & (1 &) & (1 &) & (1 &) \\
(1 & (1 &) & (1 &) & (1 &) & (1 &) & (1 &) & (1 &) \\
(1 & (1 &) & (1 &) & (1 &) & (1 &) & (1 &) & (1 &) \\
(1 & (1 &) & (1 &) & (1 &) & (1 &) & (1 &) & (1 &) \\
(1 & (1 &) & (1 &) & (1 &) & (1 &) & (1 &) & (1 &) & (1 &) \\
(1 & (1 &) & (1 &) & (1 &) & (1 &) & (1 &) & (1 &) & (1 &) \\
(1 & (1 &) & (1 &) & (1 &) & (1 &) & (1 &) & (1 &) & (1 &) \\
(1 & (1 &) & (1 &) & (1 &) & (1 &) & (1 &) & (1 &) & (1 &) \\
(1 & (1 &) & (1 &) & (1 &) & (1 &) & (1 &) & (1 &) & (1 &) \\
(1 & (1 &) & (1 &) & (1 &) & (1 &) & (1 &) & (1 &) & (1 &) \\
(1 & (1 &) & (1 &) & (1 &) & (1 &) & (1 &) & (1 &) & (1 &) \\
(1 & (1 &) & (1 &) & (1 &) & (1 &) & (1 &) & (1 &) & (1 &) & (1 &) \\
(1 & (1 &) & (1 &) & (1 &) & (1 &) & (1 &) & (1 &) & (1 &) \\
(1 & (1 &) & (1 &) & (1 &) & (1 &) & (1 &) & (1 &) & (1 &) \\
(1 & (1 &) & (1 &) & (1 &) & (1 &) & (1 &) & (1 &) & (1 &) \\
(1 & (1 &) & (1 &) & (1 &) & (1 &) & (1 &) & (1 &) & (1 &) \\
(1 & (1 &) & (1 &) & (1 &) & (1 &) & (1 &) & (1 &) & (1 &) \\
(1 & (1 &) & (1 &) & (1 &) & (1 &) & (1 &) & (1 &) & (1 &) \\
(1 & (1 &) & (1 &) & (1 &) & (1 &) & (1 &) & (1 &) & (1 &) \\
(1 & (1 &) & (1 &) & (1 &) & (1 &) & (1 &) & (1 &) & (1 &) \\
(1 & (1 &) & (1 &) & (1 &) & (1 &) & (1 &) & (1 &) & (1 &) \\
(1 & (1 &) & (1 &) & (1 &) & (1 &) & (1 &) & (1 &) & (1 &) \\
(1 & (1 &) & (1 &) & (1 &) & (1 &) & (1 &) & (1 &) & (1 &) \\
(1 & (1 &) & (1 &) & (1 &) & (1 &) & (1 &) & (1 &) & (1 &) \\
(1 & (1 &) & (1 &) & (1 &) & (1 &) & (1 &) & (1 &) & (1 &) \\
(1 & (1 &) & (1 &) & (1 &) & (1 &) & (1 &) & (1 &)$ Scaling Property Superposition Property $x_1 + x_2 \longrightarrow y_1 + y_2$

$$\begin{cases} x_1 \to 2x_{1+1} \\ x_2 \to 2x_2 + 1 \end{cases}$$

Example
$$\begin{cases} x_1 \rightarrow 2x_{1+1} & x_1 + x_2 \rightarrow 2(x_1 + x_2) \neq 1 \\ x_2 \rightarrow 2x_2 + 1 & \text{Not linear} \end{cases}$$

$$i(t) = T_s \left(e^{\frac{V(t)}{nV_T}} - 1 \right)$$

$$V_T = \frac{kT}{2} \approx 25.8 \,\text{mV O room temp.}$$

K = boltsmann const.

T = absolute temp.

q = electron charge

n = non-ideality const. Ideally, n = 1
Is = saturation current (proportional to diode area)

-This class only deals with linear components.

Is with linear components.

$$T(t) = I_s \left[e^{\frac{V_0 + V_0 \cos ut}{nV_T}} - I \right]$$

$$= I_s e^{\frac{V_0}{nV_T}} e^{\frac{V_0}{nV_T} \cos ut} - I_s$$

Assumption

Vo
$$\angle \angle 1$$
 (factor of 10)

 0.17
 0.17
 0.17
 0.17
 0.17
 0.17
 0.17
 0.17
 0.17
 0.17
 0.17
 0.17
 0.17
 0.17
 0.17
 0.17
 0.17
 0.17
 0.17
 0.17
 0.17
 0.17
 0.17
 0.17
 0.17
 0.17
 0.17
 0.17
 0.17
 0.17
 0.17
 0.17
 0.17
 0.17
 0.17
 0.17
 0.17
 0.17
 0.17
 0.17
 0.17
 0.17
 0.17
 0.17
 0.17
 0.17
 0.17
 0.17
 0.17
 0.17
 0.17
 0.17
 0.17
 0.17
 0.17
 0.17
 0.17
 0.17
 0.17
 0.17
 0.17
 0.17
 0.17
 0.17
 0.17
 0.17
 0.17
 0.17
 0.17
 0.17
 0.17
 0.17
 0.17
 0.17
 0.17
 0.17
 0.17
 0.17
 0.17
 0.17
 0.17
 0.17
 0.17
 0.17
 0.17
 0.17
 0.17
 0.17
 0.17
 0.17
 0.17
 0.17
 0.17
 0.17
 0.17
 0.17
 0.17
 0.17
 0.17
 0.17
 0.17
 0.17
 0.17
 0.17
 0.17
 0.17
 0.17
 0.17
 0.17
 0.17
 0.17
 0.17
 0.17
 0.17
 0.17
 0.17
 0.17
 0.17
 0.17
 0.17
 0.17
 0.17
 0.17
 0.17
 0.17
 0.17
 0.17
 0.17
 0.17
 0.17
 0.17
 0.17
 0.17
 0.17
 0.17
 0.17
 0.17
 0.17
 0.17
 0.17
 0.17
 0.17
 0.17
 0.17
 0.17
 0.17
 0.17
 0.17
 0.17
 0.17
 0.17
 0.17
 0.17
 0.17
 0.17
 0.17
 0.17
 0.17
 0.17
 0.17
 0.17
 0.17
 0.17
 0.17
 0.17
 0.17
 0.17
 0.17
 0.17
 0.17
 0.17
 0.17
 0.17
 0.17
 0.17
 0.17
 0.17
 0.17
 0.17
 0.17
 0.17
 0.17
 0.17
 0.17
 0.17
 0.17
 0.17
 0.17
 0.17
 0.17
 0.17
 0.17
 0.17
 0.17
 0.17
 0.17
 0.17
 0.17
 0.17
 0.17
 0.17
 0.17
 0.17
 0.17
 0.17
 0.17
 0.17
 0.17
 0.17
 0.17
 0.17
 0.17
 0.17
 0.17
 0.17
 0.17
 0.17
 0.17
 0.17
 0.17
 0.17
 0.17
 0.17
 0.17
 0.17
 0.17
 0.17
 0.17
 0.17
 0.17
 0.17
 0.17
 0.17
 0.17
 0.17
 0.17
 0.17
 0.17
 0.17
 0.17
 0.17
 0.17
 0.17
 0.17
 0.17
 0.17
 0.17
 0.17
 0.17
 0.17
 0.17

 $e^{x} = 1 + x + \frac{1}{2!}x^{2} + \frac{1}{3!}x^{3} \dots$

if x << 1 > ex < 1+x

$$I(t) \approx I_{s} \left[e^{\frac{V_{0}}{nV_{T}}} \left(1 + \frac{V_{0}}{nV_{T}} \cos w_{s} + \right) - 1 \right]$$

$$= I_{s} \left[e^{\frac{V_{0}}{nV_{T}}} - 1 \right] + \left(\frac{I_{s} e^{\frac{V_{0}}{nV_{T}}}}{nV_{T}} \right) \left(V_{0} \cos w_{o} + \right)$$

$$= I_{0} \left(V_{0} \cos w + \right) = 0 \quad transconductance$$

$$= linear!$$

This process of linearizing a non-linear function is referred to small signal analysis assuming the input is very small.

$$\begin{array}{l}
x = \chi_{0} + \Delta x , \quad \Delta x = \chi_{0} \\
f(x) = f(x_{0} + \Delta x) \\
= f(x_{0}) + f'(x) \Big|_{x=\chi_{0}} \Delta x + \frac{1}{2!} f''(x) \Big|_{x=\chi_{0}} \approx f(\chi_{0}) + f'(x) \Big|_{x=\chi_{0}} \\
Taylor Series Expansion.$$

$$\begin{array}{l}
\text{if } \Delta x = \text{small.} \\
\text{if } \Delta x = \text{small.}
\end{array}$$

$$\frac{1}{V_{0}} + \frac{V_{d}}{AC} = V_{0}$$

$$\frac{1}{2} = \frac{1}{2} \left(\frac{V_{0}}{NV_{1}} - 1 \right) + \frac{dI_{0}}{V_{0}} \left(\frac{V_{0}}{V_{0}} \right)$$

$$\frac{dI_{0}}{dV_{0}} \left|_{V_{0}} = \frac{I_{0}}{NV_{1}} + \frac{dV_{0}}{V_{0}} \left(\frac{V_{0}}{V_{0}} \right) \right|_{V_{0}} = \frac{I_{0}}{NV_{1}} = \frac{V_{0}}{NV_{1}} = \frac{I_{0}}{NV_{1}} \stackrel{\text{dide eq.}}{=} \frac{g_{0}}{NV_{1}}$$

$$\approx \frac{I_{0} \left(\frac{V_{0}}{NV_{1}} - 1 \right)}{NV_{1}} = \frac{I_{0}}{NV_{1}} \stackrel{\text{dide eq.}}{=} \frac{g_{0}}{NV_{1}}$$

$$g_{1} = \frac{I_{0}}{nV_{T}} = \frac{3mh}{25mV} = 124 mA/V$$

$$V_{T} = 25mV$$

$$h \ge 1$$

Transister

