CHAPITRE 1

MODÉLISATION DES SYSTÈMES PAR REPRÉSENTATION D'ÉTAT

With Laberta

Enseignant anercheur al JPS

CAAS

UPOSTITECH - 19 Année Systems Robottiques & Internette

Introduction

CARS

Section 1.1

Notions de base

Système

Définition : tout procédé évoluant en fonction du temps sous l'action d'entrées de commande notées u,, u,, u,,

- Exemple : Voiture
- Système évoluant sous l'action de 2 commandes
- Direction Noture (4.0) Représentation graphique -- schéma-bloc
 - Un système est équipe de capteurs
- Renseignent sur « ce qui se passe dans le système »
- On appelle sortie l'ensemble des informations fournies par les capteurs: y: y.

UPSSITECH - 1- FAIRF SYSTEM RODULING & CHARACTER

Sommaire

- Introduction Slide 3
- Notion de système
- 2. Notion de modèle
- Slide 6 // Focus sur la représentation d'état
- 1. Un modèle temporel en deux parties
- 2. Changement de base
- 3. La solution de l'équation d'état ou comment déterminer X(t) ?
- Analyse dans l'espace d'état sliden
- 1. Stabilité
- 2. Commandabilité
- 3. Observabilité

Introduction

- Notions de base
- > Système
- Définition affinée : tout procédé évoluant au cours du temps sous l'action de ses entrées de commande et produisant des sorties.
 - Représentation graphique : schéma-bloc

Système Y(t)

UPSSITECH +14 Année Systemes Robotiques & Imenatific

CAAS

In modele remporel en deux parties

Von exemple « linéaire » : un circuit électronique = Entrée de conseque u(t):tension d'antrée Focus sur la représentation d'état commonde ici. Un modèle temporel en deux parties morio-entrio 3 Syxtone

Ouestion 1: quelle est la représentation d'état du robot? $\hat{X}(t) = \begin{pmatrix} 0 & 1/C \\ -1/L & -R/L \end{pmatrix} X(t) + \begin{pmatrix} 0 \\ 1/L \end{pmatrix} U(t)$ $(0,0)(0,1)(0,1)(0,1) \qquad (0,0)(1) = 0_{0}(1) + \frac{1}{12} \frac$ = (C:(H)+1 &(E)

3 x(t) = Ax(t), by(t)

NB. C depend des (t) = Cs(t) $\frac{d}{dt}$ capteurs disponibles $\frac{d}{dt}$ $\frac{d}{dt}$

 Combien de représentations d'état peut-on déterminer pour Focus sur la représentation d'état Un modèle temporel en deux parties représenter un même système ?

> X(t)=(3(t)) (32'adre du système = n=2 = Nb var d'état

(voiraile) arrièra-

(Varanta

Section 2.2

Equa oiffeys

Focus sur la représentation d'état

Il existe une infinité de représentations d'état pour un même

Combien de représentations d'état peut-on déterminer pour représenter un même système ?

Focus sur la représentation d'état

Un modèle temporel en deux parties

Pour passer d'une définition de l'état à une autre, on utilise une

NI - ANI - BUT

stème dans la base initiale

Y et U ne changent pas!

Rappels (cf. cours de math)

- Polynôme caractéristique de A: $det(A-\lambda I) = \lambda^n + a_{n-1}\lambda^{n-1} + ... + a_1\lambda + a_0$
- Toutes les matrices de la forme $T^{-1}AT$ ont le même polynôme caractéristique Valeurs propres de A : racines du polynôme caractéristique
 - A et A sont des matrices semblables

- on effectue un changement de base matrice de passage M inversible

- M est aussi appelée matrice de changement de base 3 bases intéressantes
- Base diagonale
- Base compagne de commande (CC)
 - Base compagne d'observation (CO)
- Remarque; X(t) appartient à un espace vectoriel de dimension n appelé classiquement 'espace d'étal', Les variables d'état sont linéairement indépendantes (cf. stide 5) → elles roment donc une base de l'espace d'état

Vi oft in vertical propre de A SSI AVI=NIVI Chaque vector propre V oft associé à 1 vectour propre de A M M est contra à 1 constante près (4 TD) UPSSITECH - 12 THREE SYSTEMS ROUGHOUSE & MARKET

Focus sur la représentation d'état

Changement de base

- Base diagonale
- Matrice de passage $T = [V_1 \dots V_n]$
- V, : vecteur propre de A associé à la valeur propre λ,
- Par définition (cf. cours math) : A V₁ = λ₁ V₁ Structure

$\dot{X}_d(t) = A_d X_d(t) + B_d U(t)$

$$X_d(t) = A_d X_d(t) + B_d U(t)$$
$$Y(t) = C_d X_d(t) + DU(t)$$

Forme particulière de A_d

$$A_d = T^{-1}AT = \begin{pmatrix} \lambda_1 & 0 \\ \vdots & \ddots & 0 \\ 0 & \lambda_m \end{pmatrix}$$

$$B_d = T^{-1}B \qquad C_d = CT$$

Valeurs propres de A

UPSSITECH - 19 Année Systèmes Robotques & Interestiffs Focus sur la représentation d'état CAAS

- Changement de base
- Base compagne d'observation

• Matrice de passage
$$P=[P_1 \dots P_n]$$
 et $M_{co}=P^{-T}$
$$P_1=C^T \quad P_j=A^{T^{-1}}+a_{n-1}A^{T^{-2}}+\dots+a_1I)C^T$$

Structure

$$\dot{X}_{co}(t) = A_{co}X_{co}(t) + B_{co}U(t)$$

$$\dot{Y}(t) = C_{co}X_{co}(t) + DU(t)$$

Forme particulière de A_{co} et C_{co}

$$A_{ro} = \begin{pmatrix} -a_{r-1} & 1_{...0} \\ \vdots & \ddots & \ddots \\ -a_{0} & 0_{...1} \\ 0 & ... & 0 \end{pmatrix} \qquad C_{co} = |0|$$

$$|0 \dots 0 1| B_{co} =$$

UPSSITEON - 19 Limits Systems Foundation & Impropriet

Focus sur la représentation d'état

- Changement de base
- Base compagne de commande

• Matrice de passage
$$M_{cc} = (M_1 \dots M_n)$$

$$M_n = B$$
 $M_{n-j} = (A^j + a_{n-1}A^{j-1} + ... + a_{n-j}I)B$

Structure

$$\begin{bmatrix} \dot{X}_{\alpha}(t) = A_{\alpha}X_{\alpha}(t) + B_{\alpha}U(t) \\ Y(t) = C_{\alpha}X_{\alpha}(t) + DU(t) \end{bmatrix}$$

Forme particulière de A_{cc} et B_{cc}

$$A_{cc} = \begin{bmatrix} 0 & 1 & 0 \\ \vdots & \ddots & \vdots \\ 0 & 0 & 1 \end{bmatrix} \qquad B_{cc} = \begin{bmatrix} 0 \\ \vdots \\ 0 \\ 1 \end{bmatrix}$$

teristique de à

LAAS

UPSSITECH - 19 Annés Systemes Roboriques & unements

Focus sur la représentation d'état

Section 2.3

- " La solution de l'équation d'état ou comment trouver X(t) ?
- \Rightarrow Équation d'état : $\dot{X}(t) = AX(t) + BU(t)$.

Matrice de fransition d'étai

 $X(t) = e^{t} \lambda(0) + \int e^{t} BU(\tau) d\tau$

Régime libre Régime forcé

- > Calcul de exp(At) (cf. cours math)
- Attention: exp(At) est l'exponentielle d'une matrice carrée qui n'est pas égale à l'exponentielle de chaque terme de la matrice!
 - Exploiter la base diagonale

$$A_{d} = \begin{pmatrix} \lambda_{1} & 0 \\ 0 & \lambda_{n} \end{pmatrix} \longrightarrow e^{A_{d}t} = \begin{pmatrix} e^{\lambda_{d}t} & 0 \\ 0 & e^{\lambda_{d}t} \end{pmatrix} \longrightarrow e^{At} = T e^{A_{d}t}T^{-1}$$

- Théorème de Sylvester (cf. cours math) → calcul de f(A)
- Numériquement : sous matlab, utiliser expm et non exp.

UPSSTEECH - 19 Année Systems Robotques & martielle

Analyse dans l'espace d'état

Stabilité

Intuitivement: le système diverge t-il?

Section 3.1

> Définition :

- Stabilité au sens « entrée bornée / sortie bornée » (EBSB ou BIBO)
- Un système est stable si, lorsqu'il est excité par une entrée bornée, il produit une sortie bornée.
- . Un système est instable si, lorsqu'il est excité par une entrée bornée, il produit une sortie non bornée

Critère mathématique

- Un système est stable au sens EBSB ssi toutes les valeurs propres de la matrice A sont à partie réelle strictement négative.
- Pourquoi?

Softe du système dépend de ses modes et donc des valeurs propres de A (vp) -- cf. TD1: $Y(t) = 2/3 e^{-t} + 16/21 e^{-t} + 12/21 - 2 \text{ vp} \cdot \lambda_1 = -1 \text{ et } \lambda_1 = -7$

La sortie ne peut se stabiliser que si les exponentielles → 0 quand t → ∞

CAAS

UPSSITEORI - 19 Aunés Systémes Robustiques de Infernatifis

Section 3.3

Analyse dans l'espace d'état

Intuitivement; possibilité de déterminer l'état du système à

partir des mesures de sa sortie.

- Observabilité > Définition
- Une variable d'état $x_i(t)$ est observable ssi, en mesurant la sortie y(t) sur un intervalle de temps $\{t_c,\,t_i\}$ fini, il est possible de déterminer la valeur initiale de l'état $x_i(t_0)$.
- Si cela est vrai pour toutes les variables d'état du système, alors celui-ci est observable.

Critères mathématiques

		,
Base quelconque	Base diagonale	
Mublica Oservabilite = CA	Le système est observable sa aucune colonne de C n'est noile.	0
Systems Divervable ssr		

Perchanted in a dimon

NB : observable # mesurable

Base compagne d'observation

Le système est observable par

construction,

West Was	
10	
nds sys	
n	
Pasireon - 14 Au	
98 W.	
5	
THE STATE OF	
150	
342	
73	
1	
THE SECTION	
200	
UPSSITE	
1 3	
.0.6	
44	
SAS.	
7- 1	
<u> </u>	
1 1 1	
14 15	
121 1	
1 1	
economia!	
20-20-20-20	
THE STATE OF	
SECTION .	
CONC.	
100 min 117	
1995	
開催 11日	

orsmas Robodiques & Imarabilis

Section 3.2

Analyse dans l'espace d'état

à voir son comportement dynamique évoluer sous l'action de sa commande. Intuitivement : Capacité d'un système

Commandabilité > Définition

 Une variable d'état x_i(t) est commandable ssi, quel que soit x_i(t₀), il existe une commande u(t) permettant de transférer x_i(t) de sa valeur initiale x(t₀) à une valeur finale x_i(t_i) en un temps t_r fini.

Si cela est vrai pour toutes les variables d'état du système, alors celui-ci est commandable.

Critères mathématiques

Base guelconque	Base diagonale	Base compagne de commande
L/ Matrice de commandabilité	Le système ess commandable	Le système est commandable
(= B AB A' B	ssi aucune ligne de 6 mest pulle.	par construction.
2/ Système commandable		
ssi Rg(c) = n ou n = :dim(x)		

