UMP	Universiti Malaysia PAHANG Engineering · Technology · Creativity	MATAPELAJARAN: Formal Methods	MARKAH:			
		TOPIK:	KOD: BCS2213			
		PENILAIAN: QUIZ 4	BIL: 1	MASA: 90 Minutes		

SESI 2015/2016 SEMESTER 1

NO METRIK :	NAMF:
NO MEIRIK :	NAME:

Quiz 4. TLA specification of the FIFO Protocol.

1. Modelling the FIFO (First In First Out) protocol.

- Sender and Receiver interact by messages passing (like in Async Interface);
- they communicate not directly, but via *Buffer*;
- Buffer has a FIFO inside, storing a *finite* number of messages.
- 2. Specification of FIFO.
- specification of FIFO Extends modules Naturals and Sequences.
- the **Sequences** module defines operations on finite sequences (tuples).
- TLA tuple is represented in ASCII with << >>
- the basic operations on the sequences are:

Head(s) The first element of sequence s. For example, $Head(\langle 3,7 \rangle)$ equals 3.

Tail(s) The tail of sequence s. For example, $Tail(\langle 3,7 \rangle)$ equals $\langle 7 \rangle$.

Append(s, e) The sequence obtained by appending element e to the tail of sequence s. For example, $Append(\langle 3, 7 \rangle, 3)$ equals $\langle 3, 7, 3 \rangle$.

UMP	Universiti Malaysia PAHANG Ergheerig • Technolog • Creativity	MATAPELAJARAN: Formal Methods	MARKAH:			
		TOPIK:	KOD: BCS2213			
		PENILAIAN: QUIZ 4	BIL: 1	MASA: 90 Minutes		

SESI 2015/2016 SEMESTER 1

NO METRIK :	NAME:

- 3. Run TLA+ Toolbox and create new module with name Quiz_4_<your_ID>.tla
- 4. Define variable *Buf* as a tuple and apply to it all considered above operations on sequences.

Don't forget to define initial, next state predicates and combining it specification.

- 5. To understand the sense of the operations on sequences print the resulted *Buf* (for it, extend your module by TLC). Add inside the module commented output and your explanations.
- 6. Write TLA specification of FIFO protocol.

Send action appends a message to the *Buf*, **Rcv** action deletes a message from the *Buf*. In order to TLC be able to generate state space, you also need define the constant **Data**.

7. You have specified an unbounded FIFO, which can hold any number of messages.

However, any real system has a finite amount of resources, so FIFO can contain only a bounded number of messages. So action *Send* is enabled if there are fewer than *N* messages in the buffer, i.e. Len(*Buf*) is less than N, where N is some constant.

Add corresponding precondition to the action *Send*.

- 8. Specification of the *upper* bound on FIFO was its *safety* property.

 Specify *other safety* property for FIFO and check it. Give your explanations in comments.
- 9. Define a *liveness* property: a Buffer is *infinitely often* full or *infinitely often* empty.
- 10. Specify any other *livness* property for FIFO and check it with TLC. Give your explanations in comments.
- 11. Upload the Quiz into Kalam. It will be evaluated in max 2.5% of your total marks.