Curso Técnico em Informática

Portas e circuitos Lógicos.

- As portas lógicas: são elementos básicos para a produção de circuitos lógicos.
- Portas e circuitos lógicos: permitem a operação de instruções lógicas de uma ULA de um processador moderno.
- Toda esta teoria lógico-matemática surgiu com o trabalho de George Boole quando desenvolveu um sistema matemático de analise lógica denominada álgebra booleana.
- Um engenheiro pode projetar uma ULA para desempenhar praticamente qualquer calculo matemático e lógico (lógica booleana), e que quando mais complexo for um projeto de uma ULA, mais cara ela fica.

- Como é composta uma ULA?
- Quais os elementos básicos dela?
- Como funciona?

- São as portas e os circuitos lógicos corretamente projetados que permitem o bom funcionamento de um processador de uma ULA.
- Em um circuito lógico, sempre entra pelo menos uma corrente elétrica (por uma ou mais portas) em dois tipos diferentes de tensão que representa o número binário (corrente alta e corrente baixa) e sai uma corrente elétrica trabalhada de acordo com o tipo da porta.
- Cada porta lógica trata a(s) corrente(s) que entra(m) de uma forma diferente.

• **Exemplificando:** "A" e "B" são as portas de entrada de corrente, e "X" representa a saída da corrente, note o efeito que cada porta faz com as correntes que entram.

• **NOT:** É a ultima porta considerada básica, normalmente uma porta *not* tem apenas uma entrada. Em uma função booleana ela é considerada a porta que irá inverter qualquer sinal e seu símbolo é a **aspa simples.**

Representação gráfica

ENTRADA	SAÍDA	FUNÇÃO BOOLEANA
A	A'	
0	1	Α'
1	0	

Tabela verdade

• AND (E): É uma das portas básicas, em uma função booleana ela é representada pela multiplicação, ou sinal de ponto.

ENTRADA		SAÍDA	FUNÇÃO BOOLEANA
A	В	A and B	
0	0	0	
0	1	0	(A.B)
1	0	0	
1	1	1	

Representação gráfica

Tabela verdade

 NAND: É uma porta que é a junção de uma porta and (E) mais a inversão (not), logo seu resultado será sempre o inverso da and.

Note que a representação gráfica do not é apenas a "bolinha" antes da

saída.

ENTRADA		SAÍDA	FUNÇÃO	
A B		A and B – I*	BOOLEANA	
0	0	1	(A.B)'	
0	1	0		
1	0	0		
1	1	0		

^{*} Invertido

Representação gráfica

• **OR (OU):** É a outra portas básicas, em uma função booleana ela é representada pela soma, ou sinal de +.

Representação gráfica

ENTRADA		SAÍDA	FUNÇÃO BOOLEANA	
A	В	A or B		
0	0	0		
0	1	1	(A+B)	
1	0	1		
1	1	1		

• **OR (OU):** É a outra portas básicas, em uma função booleana ela é representada pela soma, ou sinal de +.

Representação gráfica

ENTRADA		SAÍDA	FUNÇÃO BOOLEANA	
A	В	A or B		
0	0	0		
0	1	1	(A+B)	
1	0	1		
1	1	1		

 NOR: Esta porta é a junção de uma porta or (OU) mais a inversão (not), logo seu resultado será sempre o inverso da or. Observe sua função booleana, é apenas a porta or mais a porta not.

Representação gráfica

ENTRADA		SAÍDA	FUNÇÃO BOOLEANA	
A	В	A or B – I*		
0	0	1		
0	1	0	(A+B)'	
1	0	0		
1	1	0		

* Invertido

 XOR A porta XOR traz o conceito de exclusividade às portas lógica. A função da exclusividade nas portas lógicas é permitir que a saída do circuito seja sempre 0 para as entradas iguais.

Correção gráfica

Representação gráfica

ENTI	RADA	SAÍDA	FUNÇÃO BOOLEANA	
A	В	$A \oplus B$		
0	0	0	2	
0	1	1	(A+B).(A.B)'	
1	0	1		
1	1	0		

Tabela verdade

XNOR: Esta porta é a inversão da porta XOR, portanto, os sinais iguais que entrarem, a saída sempre será 1, diferente da porta XOR que é 0. **Note** o símbolo da porta *not "bolinha"*.

Correção gráfica

Representação gráfica

ENTRADA		SAÍDA	FUNÇÃO BOOLEANA
A	В	$A \oplus B$	
0	0	1	
0	1	0	((A+B).(A.B)')'
1	0	0	
1	1	1	

Tabela verdade

- São com estas portas lógicas, que projeta-se a maioria dos circuitos digitais atualmente. São várias as literaturas sobre este assunto na Internet, você poderá pesquisar e se aprofundar neste assunto de acordo com seu interesse ou a necessidade.
- Mas agora me deu uma duvida como isso funciona na pratica?

- Porta lógica 7432 e 7408.
 - 4 Portas OR:

- 4 Portas AND

- E no computador como podemos ver isso?
- Porta lógica 7432.

E na pratica como isso poderia funciona?

Aplicação prática : Controle da porta de um elevador

- Em um prédio de três andares deseja-se projetar um circuito lógico para controlar a abertura da porta de um elevador. As variáveis de entrada são A, B, C, D em que :
 - A indica que o elevador está em movimento quando igual a 1.
 - B, C, D indicam que o elevador está posicionado nos andares 1, 2, 3 quando iguais a 1, respectivamente.
- Projete a saída Ab que indica, quando em nível alto, que o elevador deve abrir a porta. Para isto :
 - Determine a tabela verdade do problema.
 - Faça simplificações utilizando um dos métodos estudados.
 - Desenhe o circuito lógico correspondente.

• E na pratica como isso poderia funciona?

Aplicação prática : Controle da porta de um elevador

Tabela verdade:

Α	В	C	D	Ab
0	0	0	0	0
0	0	0	1	1
0	0	1	0	1
0	0	1	1	X
0	1	0	0	1
0	1	0	1	Χ
0	1	1	0	X
0	1	1	1	X
1	0	0	0	0
1	0	0	1	0
1	0	1	0	0
1	0	1	1	X
1	1	0	0	0
1	1	0	1	X
1	1	1	0	X
1	1	1	1	X

ALBICIDIAL

• E na pratica como isso poderia funciona?

Aplicação prática : Controle da porta de um elevador

Representação do circuito :

Processadores

Duvidas???

Processadores

Fim.

Ass. FEGS

