Biostat 2008 HW1.

1.
$$Sy = \sqrt{\frac{2}{4}(12i-9)^{4}}$$
 $S_{X} = \sqrt{\frac{2}{4}(12i-8)^{4}}$
 $|xy| = \frac{\frac{2}{4}(12i-9)^{4}}{\sqrt{2}(12i-2)^{4}}$
 $|xy| = \frac{\frac{2}{4}(12i-2)^{4}(12i-2)^{4}}{\sqrt{2}(12i-2)^{4}}$
 $|xy| = \frac{\frac{2}{4}(12i-2)^{4}(12i-2)^{4}}{\sqrt{2}(12i-2)^{4}}$
 $|xy| = \frac{\frac{2}{4}(12i-2)^{4}(12i-2)^{4}}{\sqrt{2}(12i-2)^{4}}$
 $|xy| = \frac{\frac{2}{4}(12i-2)^{4}(12i-2)^{4}}{\sqrt{2}(12i-2)^{4}(12i-2)^{4}}$
 $|xy| = \frac{\frac{2}{4}(12i-2)^{4}(12i-2)^{4}}{\sqrt{2}(12i-2)^{4}(12i-2)^{4}}$
 $|xy| = \frac{\frac{2}{4}(12i-2)^{4}(12i-2)^{4}}{\sqrt{2}(12i-2)^{4}(12i-2)^{4}}$
 $|xy| = \frac{\frac{2}{4}(12i-2)^{4}(12i-2)^{4}}{\sqrt{2}(12i-2)^{4}(12i-2)^{4}}$
 $|xy| = \frac{2}{4}(12i-2)^{4}(12i-2)^{4}$
 $|xy| = \frac{2}{4}(12i-2)^{4}$
 $|xy| = \frac{2}{4}(12i-2)^{4$

The estimated mean satisfaction with health care provider for parlants agad 24.7 (the mean age of 120 young adult patients) is 3.07. $\hat{\alpha}_i = 0.039$ (Score/years)

(e) 2 = 3,07 (score)

The satisfaction with health care provider will increase by 0.039 as the age of patients minus mean age of 120 young adult patients go up by 1 in general.

3. In the method of least squares, we consider the sum of squared deviations,
$$\frac{\Sigma}{in} (Yi - \beta_0)^2, \text{ then } Q(\beta_0) = \frac{\Sigma}{in} (Yi - \beta_0)^2$$

$$\frac{\partial Q}{\partial \beta_0} = -2 \frac{\Sigma}{in} (Yi - \beta_0) \text{ let.}, 0$$

$$\Rightarrow \frac{\Sigma}{in} Yi = n\beta_0$$

$$\Rightarrow \hat{\beta_0} = \frac{1}{n} \frac{\Sigma}{in} Yi = \frac{1}{n} \frac{\Sigma}{in} \frac{\Sigma}{in} Yi = \frac{1}{n} \frac{\Sigma}{in} \frac{\Sigma}{in} Yi = \frac{1}{n} \frac{\Sigma}{in} \frac$$

5.
$$cos\theta = \frac{|adjaconel|}{|byprecruse|} = \frac{|P|}{|u|} = \frac{|ay|}{|ay|} = \frac{|ay$$

4. (a)

```
proc reg data= hw1.senic;
  model risk = beds;
run;
```

Parameter Estimates						
Variable	DF	Parameter Estimate	Standard Error	t Value	Pr > t	
Intercept	1	3.72404	0.19517	19.08	<.0001	
beds	1	0.00250	0.00061579	4.06	<.0001	

The coefficient associated with **beds** is 0.0025, which means the infection risk will increase by 0.0025 as the average number of beds in hospital during study period goes up by 1 unit.

Parameter Estimates						
Variable	DF	Parameter Estimate		t Value	Pr > t	
Intercept	1	2.78402	0.34882	7.98	<.0001	
svcs	1	0.03640	0.00763	4.77	<.0001	

The coefficient associated with **svcs** is 0.0364, which means the infection risk will increase by 0.0364 as available facilities and services goes up by 1 unit (percent).

(c)
proc reg data= hw1.senic;
model nurses = age;

run;

Parameter Estimates						
Variable	DF	Parameter Estimate	Standard Error	t Value	Pr > t	
Intercept	1	311.06760	157.71376	1.97	0.0511	
age	1	-2.58905	2.95251	-0.88	0.3824	

The coefficient associated with **age** is -2.58905, which means the average number of full-time equivalent nurses during study period will decrease by 2.58905 as average age of patients goes up by 1 unit.

```
(d)
data hw1.senic1;
set hw1.senic;
med = msch;
if med = 2 then med = 0;
run;

proc reg data= hw1.senic1;
model nurses = med;
run;
```

Parameter Estimates						
Variable	DF	Parameter Estimate		t Value	Pr > t	
Intercept	1	138.92708	11.54610	12.03	<.0001	
med	1	228.13174	29.76803	7.66	<.0001	

The coefficient associated with **med** is 228.13174, which means the average number of full-time equivalent nurses during study period will increase by 228.13174 as medical school affiliation goes up by 1 unit. That is to say, if the hospital is medical school affiliation, the average number of full-time equivalent nurses during study period is 228.13174 higher than those which are not medical school affiliation in general.