Pairs of Quantifiers

Pairs of Quantifiers

Paired quantifiers \exists , \exists

▶ There exists $x \in A$ so that there exists $y \in B$ so that P(x, y)

There exists $x \in \mathbb{N}$ so that there exists $y \in \mathbb{N}$ so that x + y = 5.

 \forall , \forall

▶ For all $x \in A$ and for all $x \in B$, P(x, y).

For all $x \in \mathbb{N}$ and for all $y \in \mathbb{N}$, xy > 0.

For all $x \in \mathbb{Z}$ and for all $y \in \mathbb{N}$, xy > 0.

Fodall XEM and finall
YEM, XY70 TRUE
became product of positive numbers is positive

For all XE Z For all yEM

xy50 FALSES x = -1, y = 1 - 1.1 > 0

- FALSE For all (x,y) E # ZxIV, xy 70

 \forall , \exists

For all $x \in A$ there exists $y \in B$ so that P(x, y).

For all $x \in \mathbb{N}$ there exists $y \in \mathbb{N}$ so that 2y = x.

For all $x \in \mathbb{Z}$ there exists $y \in \mathbb{Q}$ so that 2y = x.

For all $\epsilon \in \mathbb{R}$ with $\epsilon > 0$, there exists $\delta \in \mathbb{R}$ with $\delta > 0$ so that

 $x^2 < \epsilon$ when $x < \delta$.

For all $x \in \mathbb{N}$, (thre exists $y \in \mathbb{N}$ so that 2y = X.)

FOR all $x \in \mathbb{N}$, (thre exists $y \in \mathbb{N}$ so that 2y = X.)

FOR all $x \in \mathbb{N}$, (thre exists $y \in \mathbb{N}$ so that 2y = X.)

FOR all $x \in \mathbb{N}$, (three exists $y \in \mathbb{N}$ so that 2y = X.)

FOR all $x \in \mathbb{N}$, (three exists $y \in \mathbb{N}$ so that 2y = X.)

FOR all $x \in \mathbb{N}$, (three exists $y \in \mathbb{N}$ so that 2y = X.)

FOR all $x \in \mathbb{N}$, (three exists $y \in \mathbb{N}$ so that 2y = X.)

FOR all $x \in \mathbb{N}$, (three exists $y \in \mathbb{N}$ so that 2y = X.)

FOR all $x \in \mathbb{N}$, (three exists $y \in \mathbb{N}$ so that 2y = X.)

FOR all $x \in \mathbb{N}$, (three exists $y \in \mathbb{N}$ so that 2y = X.)

FOR all $x \in \mathbb{N}$, (three exists $y \in \mathbb{N}$ so that 2y = X.)

FOR all $x \in \mathbb{N}$, (three exists $y \in \mathbb{N}$) and $y \in \mathbb{N}$.

 \exists, \forall

▶ There exists $x \in A$ so that for all $y \in B$ we have P(x, y).

ightharpoonup There exists $x \in \mathbb{N}$ so that for all $y \in \mathbb{N}$ we have xy > 1.

There exists $x \in \mathbb{Q}$ so that for all $y \in \mathbb{Q}$ we have xy < y.

Find anx [for all yell xy7]
is there short yes! x=2

For all yell, 2y71,

[For all yell we have xy < y] x = 0? No y70 xy = 0 xy = 0 xy = 0 Hen

X=0, 100 J/0 Xy=0 & Xy=0 & Xy=0 & Y = 0 & Y =

