BANKRUPTCY PREVENTION PROJECT

P_334 TEAN MEMBER

- 1 SURESH RATHOD
- **2 DIPALI PATIL**
- **3 SAURABH MESHRAM**
- 4 HARSHAL BHENDARE
- **5 AMEY ZENDE**
- **6 HARSHA MALLISETTY**
- 7 GANDAMALLA ARAVIND

MENTOR NAME

ROHIT MISHRA

DATE: 06/02/2024

BANKRUPTCY PREVENTION PROJECT

CONTENT

- Business Objective
- Project Architecture
- Data Collection and Details
- Exploratory Data Analysis
- Visualization
- Modeling
- Evaluating
- Deployment

Objectives of Bankruptcy

To maximize the return to creditors.

01

To restore the debtor company to profitable trading where possible.

02

To establish a fair and equitable system for the ranking of claims and the distribution of assets among creditors. 03

To provide a mechanism by which the causes of failure can be identified and those guilty of mismanagement brought to book.

04

Types of Bankruptcy

Risk Identification in Bankruptcy

Misconceptions about Bankruptcy

Pros & Cons of Bankruptcy

Data Set Includes The Following Variables

- 1. industrial_risk: 0=low risk, 0.5=medium risk, 1=high risk.
- 2. management_risk: 0=low risk, 0.5=medium risk, 1=high risk.
- 3. financial flexibility: 0=low flexibility, 0.5=medium flexibility, 1=high flexibility.
- 4. credibility: 0=low credibility, 0.5=medium credibility, 1=high credibility.
- 5. competitiveness: 0=low competitiveness, 0.5=medium competitiveness, 1=high

competitiveness.

- 6. operating_risk: 0=low risk, 0.5=medium risk, 1=high risk.
- 7. class: bankruptcy, non-bankruptcy (target variable).

PROJECT WORKFLOW

DATASET INFORMATION

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 250 entries, 0 to 249
Data columns (total 7 columns):

#	Column	Non-Null Count	Dtype		
0	industrial_risk	250 non-null	float64		
1	management_risk	250 non-null	float64		
2	financial_flexibility	250 non-null	float64		
3	credibility	250 non-null	float64		
4	competitiveness	250 non-null	float64		
5	operating_risk	250 non-null	float64		
6	class	250 non-null	object		
<pre>dtypes: float64(6), object(1)</pre>					
memo	memory usage: 13.8+ KB				

bank.describe()

		industrial_risk	management_risk	financial_flexibility	credibility	competitiveness	operating_risk
	count	250.000000	250.000000	250.000000	250.000000	250.000000	250.000000
	mean	0.518000	0.614000	0.376000	0.470000	0.476000	0.570000
	std	0.411526	0.410705	0.401583	0.415682	0.440682	0.434575
2	min	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000
	25%	0.000000	0.500000	0.000000	0.000000	0.000000	0.000000
	50%	0.500000	0.500000	0.500000	0.500000	0.500000	0.500000
	75%	1.000000	1.000000	0.500000	1.000000	1.000000	1.000000
	max	1.000000	1.000000	1.000000	1.000000	1.000000	1.000000

bank.value_counts().sum()

250

EDA (Exploratory Data Analysis)

0	bank.corr()							
•		industrial_risk	management_risk	financial_flexibility	credibility	competitiveness	operating_risk	target
	industrial_risk	1.000000	0.255127	-0.162624	-0.014438	-0.257814	0.144507	-0.227823
	management_risk	0.255127	1.000000	-0.254845	-0.303341	-0.306568	0.213874	-0.370838
	financial_flexibility	-0.162624	-0.254845	1.000000	0.524951	0.686612	-0.116903	0.751020
	credibility	-0.014438	-0.303341	0.524951	1.000000	0.675689	-0.288458	0.755909
	competitiveness	-0.257814	-0.306568	0.686612	0.675689	1.000000	-0.211383	0.899452
	operating_risk	0.144507	0.213874	-0.116903	-0.288458	-0.211383	1.000000	-0.279786
	target	-0.227823	-0.370838	0.751020	0.755909	0.899452	-0.279786	1.000000

```
bank.isnull().sum()
```

```
industrial_risk 0
management_risk 0
financial_flexibility 0
credibility 0
competitiveness 0
operating_risk 0
class 0
dtype: int64
```

```
[ ] bank.drop(' class', axis=1, inplace=True)
```

```
[ ] le = LabelEncoder()
    bank['target'] = le.fit_transform(bank[' class'])
```

DATA VISUALIZATION

Scatter Plot

MODEL BUILDING

```
    1. LOGISTIC REGRESSION
```

```
[ ] from sklearn.linear_model import LogisticRegression 
lr=LogisticRegression()
```

```
lr.fit(x_train,y_train)

#Coefficients of features

lr.coef_
```

```
2. KNN MODEL
```

```
[ ] from sklearn.neighbors import KNeighborsClassifier as knc import warnings warnings.filterwarnings("ignore")
```

To choose the K value

```
import math
math.sqrt(len(y_test))
```

8.660254037844387

```
3. Random Forest Classifier
```

```
[ ] from sklearn.ensemble import RandomForestClassifier
    from sklearn.model_selection import train_test_split
    from sklearn.metrics import accuracy_score
```

Create a Random Forest Classifier

```
rf= RandomForestClassifier(n_estimators=100, random_state=42)
rf
```



```
4. Support Vector Machine
```

```
[] from sklearn.svm import SVC

[] # Creating and training the model
    model_bankruptcy = SVC(kernel='linear').fit(x_train, y_train)

# Making predictions on the test set
    pred_test_linear = model_bankruptcy.predict(x_test)
```

MODEL EVALUATION

STREAMLIT

PROJECT Deployment

This model gives the prediction of bankruptcy

Bankruptcy Detector

Streamlit Bankruptcy Detector

	Streamitt Bankruptcy Detector
Industrial Risk	
Type Here	
Management Risk	
Type Here	
Financial Flexibilit	ty.
Type Here	
Credibility	
Type Here	
Competitiveness	
Type Here	
Operating Risk	
Type Here	
Predict	

#