

Javid Huseynov, Ph.D. Thursday, March 12, 2020

Week 8 Agenda

- Association Rule Mining
 - Definition
 - Approaches
 - Apriori Algorithm
- Topic Modeling
- Lexical Semantics Challenges
- Latent Semantic Analysis
- Latent Dirichlet Allocation
- Class Exercises

Association Rule Mining (ARM)

- Task of finding frequent patterns, correlations, associations, or causal structures found in databases
- Based on "market-basket" analysis
- Given a set of transactions, ARM finds the rules which predict the occurrence of some items in the transaction based on the occurrence of other items:
 {bread} ⇒ {milk} {soda} ⇒ {chips} {bread} ⇒ {jam}

TID	Items
1	Bread, Peanuts, Milk, Fruit, Jam
2	Bread, Jam, Soda, Chips, Milk, Fruit
3	Steak, Jam, Soda, Chips, Bread
4	Jam, Soda, Peanuts, Milk, Fruit
5	Jam, Soda, Chips, Milk, Bread
6	Fruit, Soda, Chips, Milk
7	Fruit, Soda, Peanuts, Milk
8	Fruit, Peanuts, Cheese, Yogurt

ARM Definitions

Itemset

- Collection of items (e.g. {milk, bread})
- *k*-itemset contains k items

Support count (σ)

- Frequency of occurrence of an itemset
- $\sigma(\{\text{Milk, Bread}\}) = 3$

Support (s)

• Fraction of transactions that contain both X and Y, e.g. $s = \frac{\sigma(\{\text{Milk, Bread}\})}{\# \ of \ transactions} = 0.38$

Confidence (c)

• How often items in Y appear in transactions with X, e.g. $c = \frac{\sigma(\{\text{Milk, Bread}\})}{\sigma(\{\text{Bread}\})} = 0.75$

TID	Items
1	Bread, Peanuts, Milk, Fruit, Jam
2	Bread, Jam, Soda, Chips, Milk, Fruit
3	Steak, Jam, Soda, Chips, Bread
4	Jam, Soda, Peanuts, Milk, Fruit
5	Jam, Soda, Chips, Milk, Bread
6	Fruit, Soda, Chips, Milk
7	Fruit, Soda, Peanuts, Milk
8	Fruit, Peanuts, Cheese, Yogurt

ARM Approaches

Brute-force approach:

- ▶ Each itemset in the lattice is a candidate frequent itemset
- Count the support of each candidate by scanning the database

- ▶ Match each transaction against every candidate
- ► Complexity ~ O(NMw) => Expensive since M = 2^d

Given a set of transactions *T*, find all rules having:

- Support >= minimum support
- Confidence >= minimum confidence

Apriori Principle

- If an itemset is frequent, then its subsets must also be frequent
- Support of an itemset never exceeds the support of its subsets

$$\forall X, Y : (X \subseteq Y) \Rightarrow s(X) \ge s(Y)$$

ARM: Apriori Algorithm

- \square Let k=1
- Generate frequent itemsets of length 1
- Repeat until no new frequent itemsets are identified
 - ▶ Generate length (k+1) candidate itemsets from length k frequent itemsets
 - ▶ Prune candidate itemsets containing subsets of length k that are infrequent
 - ▶ Count the support of each candidate by scanning the DB
 - ▶ Eliminate candidates that are infrequent, leaving only those that are frequent

```
C_k: Candidate itemset of size k
L_k: frequent itemset of size k
L_1 = \{ \text{frequent items} \};
for (k = 1; L_k! = \emptyset; k++) do begin
    C_{k+1} = candidates generated from L_k;
   for each transaction t in database do
        increment the count of all candidates in C_{k+1}
        that are contained in t
   L_{k+1} = candidates in C_{k+1} with min_support
   end
return \cup_k L_k;
```

Topic Modeling

Unsupervised method to organize, understand, summarize a set of documents

- Discovering hidden topical patterns that are present across the collection
- Annotating documents according to these topics
- Using these annotations to organize, search and summarize texts

Useful applications:

- Search
- Automated tagging
- Summarization

Problems in lexical semantics

- Polysemy (Ambiguity)
- Same word may have different meanings when it appears in different contexts
- Vector-space model is unable to discriminate between these different meanings

$$sim_{true}(d, q) < cos(\angle(\vec{d}, \vec{q}))$$

- Synonymy (Association)
- *Different words* may have *same meaning* when they appear in a similar context
- No associations between words are captured in the vector-space representations

$$\sin_{\text{true}}(d, q) > \cos(\angle(\vec{d}, \vec{q}))$$

Problems in lexical semantics

• Document similarity on a single word level: polysemy and context

School of Professional Studies © 2019 Columbia University

Latent semantic indexing (LSI), aka Latest Semantic Analysis (LSA)

- Term-document (TFIDF)
 matrices can be large (sparse),
 while topic space is small
- LSI takes documents that are semantically similar (talk about the same topics), but are not similar in the vector space (because they use different words) and re-represents them in a reduced vector space in which they have higher similarity.
- Perform a low-rank
 approximation of term-document matrix
 - Map documents and terms to a low dimensional representation (sparsity reduction) using Singular Value Decomposition (SVD)
 - Design a mapping such that the low-dimensional or latent semantic space reflects semantic associations
 - Compute document similarity based on the inner product in this latent semantic space

LSA: ABSTRACT Illustrative example

Singular Value Decomposition (SVD)

• Any real *m x n* matrix *C* can be decomposed into:

$$C = U\Sigma V^{T}$$

- U is $m \times n$, column orthonormal $(U^TU = I)$
- Σ is $n \times n$ and diagonal:

•
$$\Sigma = diag(\sigma_1, \sigma_2, ..., \sigma_n)$$

- σ_1 are called *singular* values of C
- $\sigma_1 \ge \sigma_2 \ge \dots \ge \sigma_n \ge 0$
- V is $\mathbf{n} \times \mathbf{n}$ and orthonormal $(\nabla \nabla^T = \nabla^T \nabla = \mathbf{I})$

SVD Example (LSA)

Term-Document Matrix $C = U\Sigma V^T$

U	1	2	3	4	5
ship	-0.44	-0.30	0.57	0.58	0.25
boat	-0.13	-0.33	-0.59	0.00	0.73
ocean	-0.48	-0.51	-0.37	0.00	-0.61
wood	-0.70	0.35	0.15	-0.58	0.16
tree	-0.26	0.65	-0.41	0.58	-0.09

Σ	1	2	3	4	5
1	2.16	0.00	0.00	0.00	0.00
2	0.00	1.59	0.00	0.00	0.00
3	0.00	0.00	1.28	0.00	0.00
4	0.00	0.00	0.00	1.00	0.00
5	0.00	0.00 0.00 0.00	0.00	0.00	0.39

С	d_1	d_2	d_3	d_4	d_5	<i>d</i> ₆
ship	1	0	1	0	0	0
boat	0	1	0	0	0	0
ocean	1	1	0	0	0	0
wood	1	0	0	1	1	0
tree	0	0	0	1	0	1

V^T	d_1	d_2	d ₃	d_4	d_5	<i>d</i> ₆
1	-0.75	-0.28	-0.20	-0.45	-0.33	-0.12
2	-0.29	-0.53	-0.19	0.63	0.22	0.41
3	0.28	-0.75	0.45	-0.20	0.12	-0.33
4	0.00	0.00	0.58	0.00	-0.58	0.58
5	-0.53	0.29	0.63	0.19	0.41	-0.22

SVD Example (LSA)

Dimensionality reduction $C_2 = U\Sigma_2 V^T$

U	1	2	3	4	5
ship	-0.44	-0.30	0.00	0.00	0.00
boat	-0.13	-0.33	0.00	0.00	0.00
ocean	-0.48	-0.51	0.00	0.00	0.00
wood	-0.70	0.35	0.00	0.00	0.00
tree	-0.26	0.65	0.00	0.00	0.00

Σ_2	1	2	3	4	5
1	2.16	0.00	0.00	0.00	0.00
2	0.00	1.59	0.00	0.00	0.00
3	0.00		0.00		
4	0.00	0.00	0.00	0.00	0.00
5	0.00	0.00	0.00	0.00	0.00

C_2	d_1	d ₂	<i>d</i> ₃	d ₄	<i>d</i> ₅	<i>d</i> ₆
ship	0.85	0.52	0.28	0.13	0.21	-0.08
boat	0.36	0.36	0.16	-0.20	-0.02	-0.18
ocean	1.01	0.72	0.36	-0.04	0.16	-0.21
wood	0.97	0.12	0.20	1.03	0.62	0.41
tree	0.12	-0.39	-0.08	0.90	0.41	0.49

V^T	d_1	d_2	d_3	d_4	d_5	<i>d</i> ₆
1	-0.75	-0.28	-0.20	-0.45	-0.33	-0.12
2	-0.29	-0.53	-0.19	0.63	0.22	0.41
3	0.00	0.00	0.00	0.00	0.00	0.00
4	0.00	0.00	0.00	0.00	0.00	0.00
5	0.00	0.00	0.00	0.00	0.00	0.00

SVD Example (LSA)

- Similarity of d₂ and d₃ in the original space: 0.
- Similarity of d_2 and d_3 in the reduced space: $0.52 * 0.28 + 0.36 * 0.16 + 0.72 * 0.36 + 0.12 * 0.20 + -0.39 * -0.08 <math>\approx$ **0.52**

C	d_1	d_2	d_3	d_4	d_5	d_6
ship	1	0	1	0	0	0
boat	0	1	0	0	0	0
ocean	1	1	0	0	0	0
wood	1	0	0	1	1	0
tree	0	0	0	1	0	1

C_2	d_1	d_2	d_3	d_4	d_5	d_6
ship	0.85	0.52	0.28	0.13	0.21	-0.08
boat	0.36	0.36	0.16	-0.20	-0.02	-0.18
ocean	1.01	0.72	0.36	-0.04	0.16	-0.21
wood	0.97	0.12	0.20	1.03	0.62	0.41
tree	0.12	0.52 0.36 0.72 0.12 -0.39	-0.08	0.90	0.41	0.49

Latent Dirichlet Allocation (LDA)

History:

- 1988: Latent Semantic Analysis (LSA)
 - Singular Value Decomposition (SVD) of word-document count matrix
- 1999: Probabilistic Latent Semantic Analysis (PLSA)
 - Non-negative matrix factorization (NMF)
- 2003: Latent Dirichlet Allocation (LDA)
 - Bayesian version of PLSA

Intuition:

• Each document can be described by a distribution of topics and each topic can be described by a distribution of words

LDA Graphical Model

- α Distribution related parameter that governs what the distribution of topics is for all the documents in the corpus looks like
- θ Random matrix where $\theta(i,j)$ represents the probability of the i th document to containing the j th topic
- $^{\bullet}$ $^{\bullet}$ Distribution related parameter that governs what the distribution of words in each topic looks like
- β A random matrix where $\beta(i,j)$ represents the probability of i th topic containing the j th word.

Each document d has a distribution over topics $\Theta_{k,d} \sim Dirichlet(\alpha)$ Topic assignments for each word are drawn from document's mixture $z_{id} \sim \Theta_{k,d}$ The specific word is drawn from the topic z_{id} $x_{id} \sim \Phi_{w,z}$

Each topic k is a distribution over words $\Phi_{wk} \sim Dirichlet(\beta)$

LDA: Simpler Explanation

- Given a set of M documents, each having N words, where each word is generated by a single topic from a set of K topics:
- Find the joint posterior probability of:
 - θ A distribution of topics, one for each document
 - z N Topics for each document,
 - β A distribution of words, one for each topic

$$P(\theta_{1:M}, \mathbf{z}_{1:M}, \beta_{1:k} | \mathcal{D}; \alpha_{1:M}, \eta_{1:k})$$

- Assuming:
 - D the corpus of documents
 - α A parameter vector for each document (document Topic distribution)
 - η A parameter vector for each topic (topic word distribution)

LDA: Another Explanation

- Go through each document and randomly assign each word to one of *K* topics [This random assignment gives topic representations of all documents and word distributions of all the topics, albeit not very good ones]
- For each document *d*, go through each word *w* and compute:
 - p(topic $t \mid$ document d): proportion of words in document d assigned to topic t
 - p(word w| topic t): proportion of assignments to topic t, over all documents d that come from word w
- Reassign word w a new topic t', where we choose topic t' with probability p(topic t') document $d) * p(\text{word }w \mid \text{topic }t')$
- This generative model predicts the probability that topic t' generated word w