# Matlab/Octave: Bestiario de comandos y sentencias

### A lo largo de este documento, x e y serán vectores fila o columna, z un número complejo, A y B matrices.

| Espacio de trabajo:  | básicos                                                                 |
|----------------------|-------------------------------------------------------------------------|
| Ctrl + C             | Aborta la operación o sentencia actual en la línea de comandos          |
| clc                  | Limpia la ventana de comandos                                           |
| clear                | Borra todas las variables                                               |
| clear x A            | Borra las variables $x$ y $A$                                           |
| diary 'fichero.txt'  | Registra en un fichero lo que se hace<br>en la ventana de comandos      |
| diary off            | Para el registro                                                        |
| diary on             | Reanuda el registro                                                     |
| save fichero         | Guarda las variables definidas en el fichero                            |
| save fichero x A     | Guarda las variables $\boldsymbol{x}$ y $\boldsymbol{A}$ en el fichero  |
| load fichero         | Carga las variables almacenadas en el fichero                           |
| pwd                  | Muestra la ubicación del directorio de trabajo actual                   |
| dir                  | Muestra el contenido del directorio de trabajo actual                   |
| cd carpeta           | Permite acceder a una carpeta del directorio de trabajo actual          |
| help comando         | Abre la documentación del comando                                       |
| lookfor 'texto'      | Busca el texto en la documentación de comandos                          |
|                      | Conecta una misma sentencia escrita<br>en dos lineas seguidas de código |
| comando;             | La ";" suprime la salida del comando                                    |
| nombreprograma       | Ejecuta nombreprograma.m                                                |
| tic, sentencias, toc | Devuelve el tiempo de ejecución to-<br>tal de las sentencias            |

| Espacio de trabajo: formato y salida |                                                             |
|--------------------------------------|-------------------------------------------------------------|
| format short                         | Muestra $n^{ m os}$ con 4 decimales                         |
| format short e                       | Muestra $n^{ m os}$ con 4 decimales en notación exponencial |
| format long                          | Muestra $n^{ m os}$ con 15 decimales                        |
| format long e                        | Muestra $n^{os}$ con 15 decimales en notación exponencial   |
| format rat                           | Muestra $n^{\mathrm{os}}$ en formato racional               |
| % Esto es un comentario Comentarios  |                                                             |
| disp('texto')                        | Muestra el texto                                            |
| disp(x)                              | Muestra el contenido de la variable $\boldsymbol{x}$        |

| Constantes numéricas |                                                                                          |
|----------------------|------------------------------------------------------------------------------------------|
| pi                   | $\pi \simeq 3.1415926535897$                                                             |
| <b>i</b> ó <b>j</b>  | Unidad imaginaria $\sqrt{-1}$                                                            |
| Inf                  | Infinito                                                                                 |
| NaN                  | "No es un número" (p.ej., $0/0$ )                                                        |
| eps                  | Precisión relativa de máquina en doble precisión (por defecto, $2.2204 \cdot 10^{-16}$ ) |
| realmax              | ${\rm N}^{\rm o}$ positivo más grande en doble precisión, $1.7977 \cdot 10^{308}$        |
| realmin              | ${\rm N}^{\rm o}$ positivo más pequeño en doble precisión $2.2251\cdot 10^{-308}$        |

| Operaciones aritméticas y funciones básicas |                                                                            |
|---------------------------------------------|----------------------------------------------------------------------------|
| 1.349                                       | Los decimales de un real se definen CON EL PUNTO "." NO con comas o tildes |
| 3+4, 7*4, 2-6                               | Suma, producto y resta                                                     |
| 8/3, 3\8                                    | División por la derecha y por la izquierda                                 |
| 3^7                                         | Calcula la potencia $3^7$                                                  |
| rem(17,3)                                   | Resto de la división de $17\ \mathrm{entre}\ 3$                            |
| sqrt(5)                                     | Calcula la raíz cuadrada $\sqrt{5}$                                        |
| log(3)                                      | Calcula el logaritmo neperiano $\ln(3)$                                    |
| log10(100)                                  | Calcula el logaritmo $\log_{10}(100)$                                      |
| abs(-5)                                     | Calcula el valor absoluto $ -5 $                                           |
| sin(5*pi/3)                                 | Calcula el seno $\sin(5\pi/3)$                                             |
| cos(-pi/3)                                  | Calcula el coseno $\cos(-\pi/3)$                                           |
| exp(3)                                      | Calcula la exponencial $e^3$                                               |

| Números complejos                                                           |  |
|-----------------------------------------------------------------------------|--|
| Crea el número complejo $z=1-2i$ (a partir de las partes real e imaginaria) |  |
| Módulo (valor absoluto) de $z$                                              |  |
| Argumento de $z$                                                            |  |
| Conjugado de $z$                                                            |  |
| Parte real de $z$                                                           |  |
| Parte imaginaria de $\emph{z}$                                              |  |
| Devuelve 1 si $z$ es real, 0 si no                                          |  |
|                                                                             |  |

| Definiendo variables básicas |                                                         |
|------------------------------|---------------------------------------------------------|
| a = 3                        | Define la variable $a$ como $3$                         |
| b = 4.321                    | Define la variable $b$ como $4.321$                     |
| c = 'texto'                  | Define en $\it c$ una cadena de caracteres con el texto |
| <pre>cond = logical(1)</pre> | Define en $cond$ el valor lógico $1$ ( $true$ )         |
|                              |                                                         |

| Valores lógicos y operaciones lógicas                                         |
|-------------------------------------------------------------------------------|
| <pre>a = 10;</pre>                                                            |
| ~(a == 5) % Comprobamos la negación de lo anterior<br>true                    |
| a == 10 % Comprobamos si a es igual a 10<br>true                              |
| <pre>a &gt;= 5 % Comprobamos si a es mayor o igual a 5 true</pre>             |
| a < 11 % Comprobamos si a es menor que 11<br>true                             |
| a ~= 4 % Comprobamos si a es no igual a 4<br>true                             |
| a > 1 && a ~= 10 % Comprobamos si a es mayor que 1 Y<br>false % no igual a 10 |
| a > 1    a ~= 10 % Comprobamos si a es mayor que 1 Ó<br>true % no igual a 10  |
| xor(a == 10, a < 100) % Si a es 10 Ó (exclusivo)<br>false % menor que 100     |
|                                                                               |

| Vectores y matrices:                              | generación y acceso                                                                                      |
|---------------------------------------------------|----------------------------------------------------------------------------------------------------------|
| x = [1, 2, 3] ó                                   | Define $x$ como el vector                                                                                |
| x = [1 2 3]                                       | $fila\ [1,2,3]$                                                                                          |
| x = [1; 2; 3] ó                                   | Define $x$ como el vector                                                                                |
| x = [1, 2, 3]'                                    | columna $[1,2,3]^t$                                                                                      |
| 7:15                                              | Vector fila con $7, 8, \ldots, 14, 15$                                                                   |
| 1.1:0.2:3.3                                       | Vector fila con $1.1, 1.3, \ldots, 3.3$                                                                  |
| linspace(2, 6.5, 100)                             | Genera un vector fila con $100~{\rm com}$ ponentes equiespaciadas entre el $2~{\rm y}$ el $6.3~{\rm cm}$ |
| A = [1, 2, 3, 4;<br>5, 6, 7, 8;<br>9, 10, 11, 12] | Define $A$ como una matriz $3\times 4$                                                                   |
| x(2:12)                                           | Del $2^{ m o}$ al $12^{ m o}$ elemento de $x$                                                            |
| x(2:end)                                          | Del $2^{\mathrm{o}}$ al último elemento de $x$                                                           |
| x(1:2:end)                                        | El 1 $^{\rm er}$ , 3 $^{\rm er}$ , 5 $^{\rm o}$ ,hasta el último elemento de $x$ .                       |
| A(3,4)                                            | El elemento de la $3^{\rm a}$ fila y la $4^{\rm a}$ columna de $A$                                       |
| A(3,:)                                            | La $3^{ m a}$ fila de $A$                                                                                |
| A(:,4)                                            | La 4 $^{ m a}$ columna de $A$                                                                            |
| A(2, 1:5)                                         | Del $1^{\rm o}$ al $5^{\rm o}$ elemento de la $2^{\rm a}$ fila                                           |
| A([1,3],4)                                        | Los elementos de la $1^{\rm a}$ y $3^{\rm a}$ fila que se encuentran en la $4^{\rm a}$ columna           |
| A(:)                                              | La matriz $\cal A$ vista como vector columna (con los elementos en orden columna)                        |
|                                                   |                                                                                                          |

## Matlab/Octave: Bestiario de comandos y sentencias

| Vectores y matrices: composición y borrado |                                                                                                        |  |
|--------------------------------------------|--------------------------------------------------------------------------------------------------------|--|
| [A ; B]                                    | Matriz compuesta por las filas de $A$ sobre las filas de $B$ (con mismo n $^{\mathrm{o}}$ de columnas) |  |
| [A , B]                                    | Matriz compuesta por las columnas de $A$ seguidas de las de $B$ (con mismo n $^{\mathrm{o}}$ de filas) |  |
| [3,v; c d]                                 | Matriz compuesta por 3 seguido de la fila de $v$ , sobre las columnas de $c$ seguidas de las de $d$    |  |
| A = []                                     | Borra todos los elementos de ${\cal A}$                                                                |  |
| x(4) = []                                  | Elimina la $4^{\mathrm{a}}$ componente de $x$                                                          |  |
| A(3,:) = []                                | Elimina la $3^{\mathrm{a}}$ fila $A$                                                                   |  |

### Operaciones de vectores y matrices Multiplica cada elemento de x por 33 \* X X + 2 Suma 2 a cada elemento de xx + vSuma elemento a elemento los vectores $x \in y$ A \* v Producto de una matriz y un vector Producto (matricial) de dos matrices $A \cdot B$ A \* B Producto (elemento a elemento) de dos matrices A .\* B A ^ 3 La matriz (cuadrada) A elevada a la 3ª potencia A .^ 3 La matriz con los elementos de A elevados al cubo Traspuesta de Ainv(A) Inversa de AA / 3 Divide cada elemento de A por 3Devuelve la matriz donde cada elemento es 3 dividido 3 ./ A por el correspondiente de AA / B Devuelve $A \cdot B^{-1}$ Devuelve $A^{-1} \cdot B$ A \ B División (elemento a elemento) de dos matrices A ./ B

```
Funciones auxiliares de vectores y matrices (I)
length(x)
                   N^{\circ} de componentes de x
                   Tamaño de A. Asigna a m el n<sup>o</sup> de filas y a n
[m,n]=size(A)
                   el n^{\rm o} de columnas de A
                   N^{o} de filas de A
size(A,1)
size(A,2)
                   N^{\rm o} de columnas de A
                   Suma todos los elementos de x
sum(x)
                   Vector de sumas de cada columna de {\cal A}
sum(A)
prod(x)
                   Multiplica todos los elementos de x
prod(A)
                   Vector de productos de cada columna de A
sort(x)
                   Ordena ascendentemente los elementos de x
                   Ordena ascendentemente de forma indepen-
sort(A)
                   diente cada columna de A
max(x)
                   Valor máximo de x
max(A)
                   Vector con el máximo de cada columna de A
min(x)
                   Valor mínimo de x
min(A)
                   Vector con el mínimo de cada columna de A
```

```
estructura básica de un programa

% CALCULO DEL AREA DE UN CIRCULO

% Entrada de datos
r = input('Introduce el radio del ciculo: ');

% Algoritmo
A = pi*r^2;

% Salida de datos
fprintf('El area del circulo es %.3f \n', A);
```

| Entrada y salida de datos           |                                                                                           |
|-------------------------------------|-------------------------------------------------------------------------------------------|
| a=input('Introduce dato: ')         | Saca en pantalla el texto de entrada de dato y se lo asigna a a al presionar <b>Enter</b> |
| c=input('¿Nombre?','s')             | Asigna la cadena de caracte-<br>res introducida por usuario                               |
| disp(A) ó disp('texto')             | Muestra $A$ o texto                                                                       |
| <pre>fprintf('Es a=%f \n', a)</pre> | Escribe en pantalla el texto combinado con el dato de $\it a$                             |
| c=sprintf('Es a=%f \n', a)          | Almacena en $c$ la cadena de caracteres del texto combinado con el dato de $a$            |

| Formato | de salida de datos                                                                                                                                |
|---------|---------------------------------------------------------------------------------------------------------------------------------------------------|
| %f      | Formato en coma flotante (escribe con 6 decimales)                                                                                                |
| %d      | Formato como enteros, lógicos,                                                                                                                    |
| %s      | Formato de cadenas de caracteres                                                                                                                  |
| %-6.3f  | Salida de datos en coma flotante, justificado a izqda. (con -), con 6 caracteres mínimos reservados para escritura, escrito con 3 decimales       |
| %4.2d   | Salida de datos de enteros etc, justificado a dcha.<br>(sin -), con 4 caracteres mínimos reservados para<br>escritura, con un mínimo de 2 dígitos |
| %7s     | Salida de cadenas de caracteres, justificado a dcha. (sin -) con mínimo de anchura de 7 caracteres                                                |

```
Redondeo de números

fix(3.2)

Elimina la parte decimal de 3.2 y devuelve el entero 3

floor(3.2)

Mayor entero por debajo de 3.2, es decir 3

floor(-3.2)

Mayor entero por debajo de -3.2, es decir -4

ceil(3.2)

Menor entero por encima de 3.2, es decir 4

ceil(-3.2)

Menor entero por encima de -3.2, es decir -3

round(3.2)

Entero más cercano a 3.2, es decir 3

round(3.7)

Entero más cercano a 3.7, es decir 4
```

```
Generación de elementos aleatorios
                   Genera nº aleatorio equiprobable en el inter-
rand()
                   valo ABIERTO (0,1)
                   Genera una matriz 3 \times 3 de n^{\mathrm{os}} aleatorios
rand(3)
                   equiprobables en (0,1)
                   Genera una matriz 4 \times 2 de reales aleatorios
rand(4,2)
                   equiprobables en (0,1)
                   Genera nº aleatorio equiprobable en el inter-
2+13*rand()
                   valo ABIERTO (2,15)
                   Genera no ENTERO aleatorio equiprobable
randi([2,14])
                   en el intervalo CERRADO [2, 14]
```

```
Bucle while (I)

% Bucle while como un for
i = 0;
while i < 7
disp(i);
i = i + 1;
end</pre>
```

```
Bucle while (II)

% Generamos los cubos de num naturales <100
i=1; c=1;
while c<100
    disp(c);
    i=i+1; c=i^3;
end</pre>
```

### 

```
Bucle for (III)

% Bucle con paso no trivial
for i=1.5:0.1:2
    disp(i)
end
```

```
Bucle for (III)

% Bucle sobre un vector predefinido

for i=[4,1,1,-2,0.4]

disp(i)

end
```

```
Bucle for anidado I

**Bucle anidado independiente

for i=1:2
    for j=1:4
        A(i,j)=1/(i+j-1);
    end
end
```

```
Bucle for anidado II

% Bucle anidado dependiente
for i=1:4
    for j=1:i
        suma = i+j;
        fprintf('a i=%d,\t sumo j=%d: da %d\n',i,j,suma)
    end
end
```

```
    Interrupciones de bucles y programas/funciones

    break
    Interrumpe el menor bucle que lo contiene y continua con el programa

    continue
    Pasa automáticamente a la siguiente iteración del menor bucle que lo contiene

    return
    Termina automáticamente el progreso del programa o función
```

```
Palgoritmo de la suma

v=input('Introduce un vector...');

%Variable para la suma parcial, "S"
S=0; %inicializacion (o es neutro para la suma)
for i=1:length(v)
    S=S+v(i); %suma parcial con elem. del vector
end

fprintf('La suma es %f \n', S)
```

```
v=input('Introduce un vector...');

%Variable para el producto parcial, "P"
P=1; %inicializacion (1 es neutro para el producto)
for i=1:length(v)
    P=P*v(i); %producto parcial con elem. del vector
end

fprintf('El producto es %f \n', P)
```

Algoritmo del producto

```
Algoritmo del máximo

v=input('Introduce un vector...');

%Variable para el CANDIDATO a maximo, "M"
M=v(1); %inicializacion (ier elem.)
for i=2:length(v) % seguimos desde 2a componente
if v(i)>M % Si supera al candidato...
M=v(i); % ...actualizamos el candidato
end
end
fprintf('El maximo es %f \n', M)
```

```
% Suma
% IMPORTANTE: en el fichero suma.m
function w = suma(x, y)
    w = x + y;
end %opcional
>> suma(10, -5)
5
```

```
Funciones sin argumentos

**FICHERO: escribodato.m
function escribodato(n)
fprintf('El valor del dato es %f\n',n);

**FICHERO: errores.m
function errores()
fprintf('DATOS ERRONEOS: fin del programa\n');

>> escribodato(12.5)
El valor del dato es 2.500000

>> errores()
DATOS ERRONEOS: fin del programa
```

```
Funciones anónimas (II)

>> h=inline('x*y*z-x^3+y^2*z');

>> h(1,1,0)
-1
```

| Funciones auxiliares de vectores y matrices (II) |                                 |
|--------------------------------------------------|---------------------------------|
| norm(x)                                          | Norma $\ x\ $                   |
| dot(x,y)                                         | Producto escalar $x \cdot y$    |
| cross(x,y)                                       | Producto vectorial $x \times y$ |
| det(A)                                           | Determinante de $A$             |
| trace(A)                                         | Traza de $A$                    |
| eig(A)                                           | Vector de autovalores de $A$    |

| Generando matrices y vectores |                                                                                                                                                                                                                              |  |
|-------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| zeros(5)                      | Crea una matriz $5 	imes 5$ de 0's                                                                                                                                                                                           |  |
| zeros(12, 5)                  | Crea una matriz $12 \times 5$ de 0's                                                                                                                                                                                         |  |
| ones(5)                       | Crea una matriz $5 \times 5$ de 1's                                                                                                                                                                                          |  |
| ones(12, 5)                   | Crea una matriz $12 \times 5$ de 1's                                                                                                                                                                                         |  |
| eye(5)                        | Crea una matriz identidad de $5 \times 5$                                                                                                                                                                                    |  |
| eye(12, 5)                    | Crea una matriz $12 \times 5$ con 1's en la diagonal                                                                                                                                                                         |  |
| repmat(A,3,2)                 | Crea una matriz por bloques compuesta por $3$ filas y $2$ columnas de matrices ${\cal A}$                                                                                                                                    |  |
| diag(x)                       | Crea una matriz con $\boldsymbol{x}$ en la diagonal y 0's en el resto                                                                                                                                                        |  |
| diag(A)                       | Devuelve un vector fila conteniendo la diagonal de $\boldsymbol{A}$                                                                                                                                                          |  |
| diag(diag(A))                 | Crea una matriz manteniendo la diagonal de ${\cal A}$ y con 0's en el resto                                                                                                                                                  |  |
| blkdiag(A,B)                  | Crea una matriz por bloques compuesta por $A$ y $B$ como bloques diagonales                                                                                                                                                  |  |
| triu(A)                       | ${\sf Matriz\ triangular\ superior\ de\ } A$                                                                                                                                                                                 |  |
| fliplr(A)                     | $\label{eq:matrix} Matriz formada por intercambiar las columnas de $A$ con respecto al eje vertical medio$                                                                                                                   |  |
| fliplr(A)                     | $\begin{array}{ll} {\sf Matriz} \ {\sf formada} \ {\sf por} \ {\sf intercambiar} \ {\sf las} \ {\sf filas} \\ {\sf de} \ A \ {\sf con} \ {\sf respecto} \ {\sf al} \ {\sf eje} \ {\sf horizontal} \ {\sf medio} \end{array}$ |  |
| reshape(A,[5,2])              | $\label{eq:matrix} \mbox{Matriz } 5\times 2 \mbox{ formada por los elementos} \\ \mbox{de } A \mbox{ manteniendo el orden}$                                                                                                  |  |

```
Funciones para búsqueda de condiciones lógicas
 >> b=[-1,0,1,2];
                %alguno es >0 ?
 >> any(b>0)
 >> all(b>0)
                %todos son >0 ?
 >> find(b>0)
                %donde es >0 ?
 %Para matrices, "any" y "all" funcionan por COLUMNAS
 >> A = [-2:2; linspace(0,1,5)]
    -2.0000 -1.0000 0 1.0000 2.0000
         0 0.2500 0.5000 0.7500 1.0000
 >> A>0
    0 0 0 1 1
    0 1 1 1 1
 >> any(A>0) %alguno en la columna es >0 ?
    0 1 1 1 1
 >> all(A>0) %todos en la columna son >0 ?
    0 0 0 1 1
 >> find(A>0)
                %dónde en A(:) (vect. colum.) son >0
     6
    9
    10
```

| 0 (0) 00                            |                                                                                                                     |
|-------------------------------------|---------------------------------------------------------------------------------------------------------------------|
| Gráficos 2D                         |                                                                                                                     |
| plot([2,4],[-1,3])                  | Dibuja el segmento entre puntos $(2,-1)$ y $(4,3)$                                                                  |
| plot( [1 6 5 2 1],<br>[2 0 4 3 2] ) | Dibuja el polígono de puntos $(1^{er} y)$ último punto iguales: p.ej. $(1,2)$                                       |
| plot(x,y)                           | Dibuja el gráfico de puntos con ordenadas $y$ con respecto a las abscisas $x$ (es decir, los puntos $(x(i),y(i))$ ) |
| axis equal                          | Fuerza a tener la misma escala en el eje $\boldsymbol{x}$ y en el $\boldsymbol{y}$                                  |
| axis([xmin, xmax,<br>ymin, ymax])   | Fija los límites del gráfico en valores particulares de los ejes                                                    |
| title('Un Título')                  | Añade un título al gráfico                                                                                          |
| <pre>xlabel('etiqueta x')</pre>     | Añade una etiqueta al eje $\boldsymbol{x}$                                                                          |
| ylabel('etiqueta y')                | Añade una etiqueta al eje $\emph{y}$                                                                                |
| legend('esta','este')               | Etiqueta dos curvas en el gráfico                                                                                   |
| grid                                | Añade una cuadrícula al gráfico                                                                                     |
| hold on,, hold off                  | Superpone gráficos                                                                                                  |
| figure                              | Comienza un nuevo gráfico                                                                                           |
| clf                                 | Limpia la ventana de gráficos                                                                                       |

```
Modificadores de formato del gráfico
                      Gráfico de con linea de trazos disconti-
plot(x,y,'--*r')
                     nuos ('--'), puntos estrellados ('*'), en
                     color rojo ('r')
. * x o + -
                     Tipos de puntos para rellenar el gráfico
                      Tipos de linea uniendo puntos
- -- -. :
                     Colores: amarillo, verde, magenta, azul,
ygmbwrk
                     blanco, rojo, negro
'Linewidth',0.5
                     Cambia el grosor de línea a la mitad
'Markersize',2
                     Cambia el grosor del punto al doble
```

```
Gráficos 2D
  %Dominio: [-3pi,3pi] (subdiv. en 1000 puntos)
  x = linspace(-3*pi, 3*pi, 1000);
  y1 = \sin(x); y2 = \cos(x);
  f=Q(x) 1-x.^2; %podemos usar funciones anonimas
  v3 = f(x);
                          %Para añadir varias curvas
  hold on
  plot(x, y1, 'r-'); %sen(x) linea continua roja
plot(x, y2, 'k--'); %cos(x) linea discontinua negra
plot(x, y3, 'g-.', 'Linewidth', 2); %1-x^2 linea verde
                                              %ptos&trazos doble
  hold off
  % Fijamos los limites de los ejes
  axis([-3*pi, 3*pi, -1.5, 1.5])
  % Etiquetas de ejes
  xlabel('x'); ylabel('y');
  % Titulo
  title('Grafico de sen(x), cos(x) y 1-x<sup>2</sup>');
  % Leyenda detallando las curvas
  legend('sen(x)', 'cos(x)', '1-x^2');
                    Grafico de sen(x), cos(x) y 1-x2
       1.5
                                                     sen(x)
                                                     cos(x)
                                                    - 1-x 2
       0.5
```

-2 0

-0.5

| Operaciones de ficheros    |                                                                                                                                                                                 |  |
|----------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| fid=fopen('datos.txt','r') | Asocia la var. <b>fid</b> al fichero ' <b>datos.txt</b> ' y permiso ' <b>r</b> '. Devuelve <b>-1</b> si hay un error                                                            |  |
| close(fid);                | Cierra el fichero asignado al<br>nombre interno <b>fid</b> y lo des-<br>vincula de Matlab/Octave.<br>Devuelve <b>-1</b> si hay un error                                         |  |
| frewind(fid)               | "Rebobina" el fichero: cursor<br>de lectoescritura al inicio                                                                                                                    |  |
| feof(fid)                  | Vale $1$ si estamos en el final del fichero asociado a ${f fid}$                                                                                                                |  |
| fprintf(fid,'a es%.2f', a) | Escribe en el fichero de nombre interno ${\bf fid}$ el texto combinado con el dato de $a$                                                                                       |  |
| c=fgetl(fid)               | Lee línea (sin incluir '\n') del<br>fichero <b>fid</b> y la almacena en<br><b>c</b> como cadena.<br><b>-1</b> si llega a final de fichero                                       |  |
| c=fgets(fid)               | Lee línea (incluyendo '\n') del fichero <b>fid</b> y la almacena en <b>c</b> como cadena1 si llega a final de fichero                                                           |  |
| c=fgets(fid,5)             | Similar, pero lee 5 caracteres siguientes a la última posición, salvo final de linea.  -1 si llega a final de fichero                                                           |  |
| [A,cont]=fscanf(fid,'%f')  | Lee todos los datos con for-<br>mato '%f' en fid hasta que<br>encuentra algo que no lo es o<br>EOF. Los almacena en A (en<br>orden columna), y en cont el<br>nº de datos leídos |  |
| A=fscanf(fid,'%f',2)       | Igual, pero <b>A</b> columna $1 \times 2$ . Para de leer cuando rellena <b>A</b>                                                                                                |  |
| A=fscanf(fid,'%f',[3,2])   | Igual, pero en <b>A</b> siendo $3 \times 2$ , añade <b>0</b> 's hasta completar                                                                                                 |  |
| A=fscanf(fid,'%f',[2,inf]) | Igual, pero en <b>A</b> con 2 filas                                                                                                                                             |  |

### Tipos de permisos para apertura de ficheros

'r' Abre un fichero existente para solo lectura

'r+' Abre un fichero existente para lectura y escritura

'w' Crea un fichero **nuevo** (borrándolo si ya existe) para solo escritura

'w+' Crea un fichero nuevo (borrándolo si ya existe) para lectura y escritura

'a' Abre un fichero para escritura. Si ya existe, comienza a escribir al final de lo ya escrito

### **E** Comprobación de apertura de fichero

```
% Si el fichero no se encuentra en la carpeta
% de trabajo, se ha de dar la RUTA COMPLETA
% de su ubicacion en la maquina
fid=fopen('C:\ejercicios\puntos.txt','r');

if fid==-1 % En caso de error, fid toma el valor -1
        disp('ERROR: El fichero no se encuentra');
    return;
end
```

### **E** Escritura de resultados en fichero (I)

```
% Ejemplo secillo de escritura de una frase con dato
% en fichero 'resultados.txt' usando fprintf.
% Los datos se mostrarán con 3 decimales cada uno.

%Entrada: dato numérico
x = input('Dame un dato: ');

%Apertura (nuevo, escritura)
fid = fopen('resultado.txt','w');

%Escritura del resultado
y=sqrt(x+3);
fprintf(fid,'Con dato %.3f, resultado: %.3f.\n',x,y);

%Cierre
fclose(fid);
```

### resultado.txt

```
Con dato 10.000, resultado: 3.606.
```

### **E** Escritura de resultados en fichero (II)

```
% Datos
x=0:.1:1;
y=[x;exp(x)];

% Apertura (nuevo + escritura)
fid=fopen('resultados.txt','w');

% Escritura
fprintf(fid,'%4s %12s \n', 'x','exp(x)'); %Titulo
fprintf(fid,'%6.2f %12.8f \n', y); %Datos

% Cierre
fclose(fid);
```

# x exp(x) 0.00 1.00000000 0.10 1.10517092 0.20 1.22140276 0.30 1.34985881 0.40 1.49182470 0.50 1.64872127 0.60 1.82211880 0.70 2.01375271

### Lectura de líneas con fgetl hasta final de fichero

0.80 2.22554093 0.90 2.45960311 1.00 2.71828183

### **☐** Conteo de número de datos en fichero con feof

```
fid=fopen('res.txt','r');
n=0;
while ~feof(fid)
    fscanf(fid,'%f',1);
    n=n+1;
end
```

### **☐** Gráfica a partir de datos de un archivo

```
% Datos de gráfica en un archivo 'misteriosa.txt'
% cada linea contiene una ordenada con su abscisa
fid=fopen('misteriosa.txt','r'); %Apertura (lectura)
aux=fgetl(fid); %retiramos 1ª linea (cabecera)
%datos en matriz de 2 filas (columnas las necesarias)
datos = fscanf(fid,'%f', [2,inf]);
x = datos(1,:); y = datos(2,:); %abs & ords.
plot(x,y,'Linewidth',2); %grafica
fclose(fid); %Cierre
```

# Calificaciones del examen final Nombre y apellidos Ej1 Ej2 Ej3 Sandra Joan Segundo 9 4.5 6 Pedro Díaz Sánchez 7 8.1 3.9

# fid=fopen('notas.txt','r'); %Apertura (lectura) %retiramos dos 1ªs lineas aux=fgetl(fid); aux=fgetl(fid); n=0; medias=[]; while ~feof(fid) fscanf(fid,'%3oc',1); %nombre (30 caracteres) notas=fscanf(fid,'%f',[1,3]); medias=[medias,sum(notas)/3]; n=n+1; end fprintf('El número de alumnos presentados es %d\n',n); fprintf('La media de notas es: %f\n',sum(medias)/n); fclose(fid);

# fid=fopen('notas.txt','r'); %Apertura (lectura) %retiramos dos 12s lineas aux=fgetl(fid); aux=fgetl(fid); % usamos \* en el formato para ignorar los 30 primeros % caracteres, almacenamos los 3 números siguientes notas\_todos = fscanf(fid,'%\*30c %f %f %f', [3,inf]); % cada columna corresponde a 3 notas de un estudiante n = size(notas\_todos,2); medias = sum(notas\_todos)/3; fprintf('El número de alumnos presentados es %d\n',n); fprintf('La media de notas es: %f\n',sum(medias)/n); fclose(fid);

```
Matriz de 4 columnas numéricas desde fichero

fid=fopen('matriz.txt','r'); %Apertura (lectura)

% Leemos la matriz por filas EN ORDEN COLUMNA
[A,cont] = fscanf(f1,'%f',[4,inf]);

% Tomamos la traspuesta para obtener matriz original
A=A';
fclose(fid);
```

```
### Gráfico paramétrico: cardioide

### Ec. en polares: rho = 1-cos(theta)
### Dominio del parametro theta: [0,2*pi]
### Discretizamos con 100 puntos

tt=linspace(0,2*pi,100);
### Pasamos de coordenadas polares a cartesianas

x = (1-cos(tt)).*cos(tt);
y = (1-cos(tt)).*sin(tt);
plot(x,y)

1.5

1

0.5

1

0.5

1

0.5

1

0.5

0

0.5
```



```
Superficies: gráficas de funciones z = f(x, y)
 % GRAFICA DE z = x^2 \times v^2
 % Creamos el mallado para (x,y) en [0,5]x[3,4]
 X = 0:0.5:5:
  V = 3:0.1:4;
  [Mx,My] = meshgrid(x,y);
  % Se aplica la función declarada ELEMENTO
  % A ELEMENTO A los puntos de la malla
  f=0(x,y)(x.^2).*(y.^2);
  Mz=f(Mx,My);
  % Dibujamos la superficie definida por
  % los puntos Mx, My, Mz
  surf(Mx,Mv,Mz)
  % Ahora solo el mallado
 figure
  mesh(Mx,My,Mz)
     300
     200
            3.6
     100
```