北京大学数学科学学院期中试题

2008 - 2009 学年第二学期

考试科目:	数	学分析	考试	考试时间:		2009	年	04	月	09 日	
姓 名:				学	号:						
本试题共	8	道大题.	满分	100	分						

1. (15 分) 设 f(x) 连续, 证明:

$$\int_0^x \left[\int_0^t f(x)dx \right] dt = \int_0^x (x-t)f(t)dt.$$

- 2. (15 分) 计算星形曲线 $x = \cos^3 \theta$, $y = \sin^3 \theta$ $(0 \le \theta \le 2\pi)$ 的周长.
- 3. (20 分) 判断广义积分 $\int_1^{+\infty} \sin(\frac{\sin x}{x}) dx$ 的收敛性和绝对收敛性.
- 4. (20分)判断下列级数的敛散性:
 - (1) $\sum_{n=1}^{+\infty} \sin(\pi \sqrt{n^2 + 1})$
 - $(2) \sum_{n=1}^{+\infty} (\sqrt[n]{n} 1)^n$
- 5. (10 分) 设 f(x) 是 $[0, +\infty)$ 区间上的正连续函数. 证明:

$$\int_0^{+\infty} \frac{\sqrt{1 + f'^2(x)}}{f(x)} dx = +\infty.$$

- 6. $(10 \, \text{分})$ 设 $\{a_n\}_{n=1}^{+\infty}\}$ 是单调递减的正项数列,级数 $\sum_{n=1}^{+\infty} a_n$ 发散. 证明级数 $\sum_{n=1}^{+\infty} a_n e^{-\frac{a_n}{a_{n+1}}}$ 也发散.
- 7. (5 分) 试判断级数 $\sum_{n=2}^{+\infty} \frac{(-1)^n}{\sqrt{n} + (-1)^{[\sqrt{n}]}}$ 的敛散性.
- 8. (5 分) 设 f(x) 在 $[0,\pi]$ 上黎曼可积, $0 \le f(x) \le 1$,且 $\int_0^\pi f(x) dx = 1$. 对满足上述条件的一切函数 f(x),求 $\int_0^\pi f(x) \sin x dx$ 的最大值 和最小值.