Exercises from Charles Pinter's 'A Book of Abstract Algebra'

Unathi Skosana

July 18, 2021

Exercises accompanying the notes from Charles Pinter's 'A Book of Abstract Algebra'

Contents

Operations 1

Operations

Exercise 1. For each rule, is it an operation, if not, why?

- 1. $a * b = \sqrt{|ab|}$, on the set \mathbb{Q} No. If a = b = 1, then $1 * 1 = \sqrt{2} \notin \mathbb{Q}$
- 2. $a * b = a \ln b$, on the set $\{x \in \mathbb{R} : x > 0\}$. No. It is not closed under *, e.g 0 < b < 1, then $a * b = a \ln b < 0$
- 3. a*b is a root of the equation, $x^2 = a^2b^2$, on the set \mathbb{R} No. The operation isn't uniquely defined. $x^2 = a^2b^2$ has to two roots, namely +ab and -ab
- 4. Subtraction, on the set \mathbb{Z} . Yes.
- 5. Subtraction, on the set $\{n \in \mathbb{Z} : n \ge 0\}$. No. e.g. b = a + 1 then a * b = -1 which is not in the set.
- 6. a * b = |a b|, on the set $\{n \in \mathbb{Z} : n \ge 0\}$ Yes. (distance metric)

Exercise 2. Indicate whether or not:

- I it is commutative,
- II it is associative,
- III \mathbb{R} has an identity element with respect to *
- IV every $x \in \mathbb{R}$ has an inverse with respect to *
- 1. x * y = x + 2y + 4
 - I Commutativity:

$$y * x = y + 4x + 4 \neq x + 4y + 4 \quad \forall x, y \in \mathbb{R}$$
 (1)

Not commutative

II Associativity:

$$x * (y * z) = x * (y + 2z + 4) = x + 2(y + 2z + 4) + 4$$

$$(x * y) * z = (x + 2y + 4) * z = x + 2y + 4 + 2z + 4$$

$$x * (y * z) \neq (x * y) * z$$
(2)

Not associative

III Existence of identity:

$$x * e = x + 2e + 4 = x$$

 $2e = 4 \implies e = -2$ (3)

Check

$$x * 2 = x + -2 * 2 + 4 = x$$

2 * x = -2 + 2x + 4 = 2 * (x + 1) (4)

No identity element, and thus no inverses.

2.
$$x * y = x + 2y - xy$$

I Commutativity:

$$y * x = y + 2x - yx \neq x + 2y - xy \quad \forall x, y \in \mathbb{R}$$
 (5)

II Associativity:

$$x * (y * z) = x * (y + 2z - yz) = x + 2(y + 2z - yz) - x(y + 2z - yz)$$

$$= x + 2y + 4z - 2yz - xy - 2xz + xyz$$

$$(x * y) * z = (x + 2y - yx) * z = x + 2y - yx + 2z - (x + 2y - yx)z$$

$$= x + 2y - yx + 2z - xz - 2yz + yxz$$

$$x * (y * z) \neq (x * y) * z$$
(6)

III Existence of identity:

$$x * e = x + 2e - xe = x$$

 $2e - xe = e(2 - x) = 0 \implies e = 0$ (7)

Check

$$x * 0 = x + 0 - 0 = x$$

$$0 * x = 0 + 2x - 0 = 2x$$
(8)

No identity element, thus no inverses.

3.
$$x * y = |x + y|$$

I Commutativity:

$$y * x = |y + x| = |x + y| = x * y$$
 (9)

II Associativity:

$$x * (y * z) = x * |y + z| = |x + |y + z||$$

(x * y) * z = |x + y| * z = ||x + y| + z| (10)

 $x * (y * z) \neq (x * y) * z$, to see this set x = 1, y = -2, z = 0

$$|1 + |-2|| \neq ||1 - 2||$$

III Existence of identity:

$$x * e = |x + e| = x \implies e = 0 \tag{11}$$

Check

$$x * 0 = |x + 0| = x$$

$$0 * x = |0 + x| = x$$
(12)

IV Existence of inverses:

$$x * x' = |x + x'| = 0 \implies x' = -x$$
 (13)

Check

$$x * (-x) = |x + (-x)| = 0$$

(-x) * x = |(-x) + x| = 0 (14)

4. x * y = |x - y|

I Commutativity:

$$y * x = |y - x| = |-(x - y)| = |x - y|$$
 (15)

II Associativity:

$$x * (y * z) = x * |y - z| = |x - |y - z||$$

(x * y) * z = |x - y| * z = ||x - y| - z| (16)

$$x * (y * z) \neq (x * y) * z$$
, to see this set $x = 1, y = -2, z = 0$

III Existence of identity:

$$x * e = |x - e| = x \implies e = 0 \tag{17}$$

Check

$$x * e = |x - 0| = x$$

 $e * x = |0 - x| = x$ (18)

IV Existence of inverses:

$$x * x' = |x - x'| = 0 \implies x' = x$$
 (19)

Check

$$x * x' = |x - x'| = |x - x| = 0$$

$$x' * x = |x' - x| = |x - x| = 0$$
 (20)

5. x * y = xy + 1

i Commutativity:

$$y * x = yx + 1 = xy + 1 = x * y \tag{21}$$

ii Associativity:

$$x * (y * z) = x * (yz + 1) = x(yz + 1) + 1 = xyz + x + 1$$

(x * y) * z = (xy + 1) * z = (xy + 1)z + 1 = xyz + z + 1 (22)

$$(x*y)*z\neq x*(y*z)$$

iii Existence of identity:

$$x * e = xe + 1 = x$$

$$xe = x - 1$$

$$e = \frac{x - 1}{x}$$
(23)

Check

$$x * e = x \frac{x-1}{x} + 1 = x - 1 + 1 = x$$

$$e * x = \frac{x-1}{x} x + 1 = x - 1 + 1 = x$$
(24)

6. $x * y = \max\{x, y\}$

I Commutativity:

$$y * x = \max\{y, x\} = x * y$$
 (25)

II Associativity:

$$x * (y * z) = x * \max\{y, z\} = \max\{x, \max\{y, z\}\}\$$

$$(x * y) * z = \max\{x, y\} * z = \max\{\max\{x, y\}, z\}$$
 (26)

Regardless of the how three numbers are compose with *, they produce the same result; that is larger of three numbers. Thus x * (y * z) = (x * y) * z.

III Existence of identity:

$$x * e = \max\{x, e\} = x \implies e \le x \quad \forall x \in \mathbb{R}$$
 (27)

No such element in \mathbb{R} unless you extend it to include $-\infty$ and ∞ . By this no inverses.

$$7. \quad x * y = \frac{xy}{x+y+1}$$

i Commutativity:

$$y * x = \frac{yx}{y + x + 1} = \frac{xy}{x + y + 1} = x * y$$
 (28)

ii Associativity:

$$x * (y * z) = x * \frac{yz}{y + z + 1} = \frac{\frac{xyz}{y + z + 1}}{x + \frac{yz}{y + z + 1} + 1} = \frac{xyz}{xy + xz + x + yz + y + z + 1}$$

$$(x * y) * z = \frac{xy}{x + y + 1} * z = \frac{\frac{xyz}{x + y + 1}}{\frac{xy}{x + y + 1} + z + 1} = \frac{xyz}{xy + xz + yz + z + x + y + 1}$$
(29)

$$(x*y)*z=x*(y*z)$$

iii Existence of Identity:

$$x * e = \frac{xe}{x+e+1} = x$$

$$x^2 + xe + x = xe$$

$$x(x+1) = 0$$
(30)

Only holds for x = 0, x = -1, thus no solution on the set of positive real numbers. Thus no inverses as well.

Exercise 3. Let *A* be the two-element set $A = \{a, b\}$

1. Write the tables of all operations on A and label these operations. There are four possible ordered pairs and for each ordered, we either assign it to a or b; thus there are $2 \times 2 \times 2 \times 2 = 16$ operations possible.

$(x,y)_{0_1}$	x * y	$(x,y)_{0_2}$	x * y	$(x,y)_{0_3}$	x * y	$(x,y)_{0_4}$	x * y
(a, a)	а	(a, a)	а	(a, a)	a	(a, a)	а
(a,b)	а	(a,b)	а	(a,b)	a	(a,b)	b
(b,a)	а	(b,a)	а	(b,a)	b	(b,a)	а
(b,b)	а	(b,b)	b	(b,b)	а	(b,b)	а
$(x,y)_{0_5}$	x * y	$(x,y)_{0_6}$	x * y	$(x,y)_{0_7}$	x * y	$(x,y)_{0_8}$	x * y
(a, a)	b	(a, a)	b	()	b	()	b
	U	(a, a)	U	(a, a)	U	(a, a)	b
(a,b)	a	(a, b)	b	(a, a) (a, b)	a	(a,a) (a,b)	a a
(a,b) (b,a)					-		

$(x,y)_{0_9}$	x * y	$(x,y)_{0_{10}}$	x * y	$(x,y)_{0_{11}}$	x * y	$(x,y)_{0_{12}}$	x * y
(a, a)	а	(a,a)	а	(a, a)	а	(a,a)	b
(a,b)	b	(a,b)	а	(a,b)	b	(a,b)	b
(b,a)	а	(b,a)	b	(b,a)	b	(b,a)	b
(b,b)	b	(b,b)	b	(b,b)	а	(b,b)	а
$(x,y)_{0_{13}}$	x * y	$(x,y)_{0_{14}}$	x * y	$(x,y)_{0_{15}}$	x*y	$(x,y)_{0_{16}}$	x * y
(a, a)	b	(a, a)	b	(a, a)	a	(a, a)	b
(a,b)	b	(a,b)	а	(a,b)	b	(a,b)	b
(b, a)	a	(b,a)	ь	(b, a)	b	(b,a)	b
(b,b)	b	(b,b)	b	(b,b)	b	(b,b)	b

2. Which of the operations are commutative?

$$0_1, 0_2, 0_5, 0_8, 0_{11}, 0_{12}, 0_{15}, 0_{16}$$

3. Which of the operations are associative?

$$0_1, 0_3, 0_9, 0_{10}, 0_{11}, 0_{12}, 0_{15}, 0_{16}$$

4. Which of the operations has an identity element?

$$0_2, 0_8, 0_{11}, 0_{15}$$

5. Which of the operations does every element have an inverse?

$$0_8, 0_{11}$$

Exercise 4. Let A^* be the set of all sequences of symbols in the alphabet A. Define an operation on A^* called concatenation: If \mathbf{a} and \mathbf{b} are in A^* , say $\mathbf{a} = a_1 a_2 \dots a_n$ and $\mathbf{b} = b_1 b_2 \dots b_m$. *e.g.*, in the alphabet $A = \{0, 1\}$, if $\mathbf{a} = 1001$ and $\mathbf{b} = 010$, then $\mathbf{ab} = 1001010$. Let the symbol λ denote the empty sequence

1. Show that the operation is associative

Let
$$\mathbf{a} = a_1 a_2 \dots a_n$$
, $\mathbf{b} = b_1 b_2 \dots b_m$, and $\mathbf{c} = c_1 c_2 \dots c_k$

$$\mathbf{a}(\mathbf{bc}) = a_1 a_2 \dots a_n (b_1 b_2 \dots b_m c_1 c_2 \dots c_k) = a_1 a_2 \dots a_n b_1 b_2 \dots b_m c_1 c_2 \dots c_k$$

$$(\mathbf{ab})\mathbf{c} = (a_1 a_2 \dots a_n b_1 b_2 \dots b_m) c_1 c_2 \dots c_k = a_1 a_2 \dots a_n b_1 b_2 \dots b_m c_1 c_2 \dots c_k$$
(31)

2. Explain why the operation is not commutative?

For this operation to be commutative, we demand that every input sequence \mathbf{a}, \mathbf{b} in the alphabet A,

$$a_1 a_2 \dots a_n b_1 b_2 \dots b_m = b_1 b_2 \dots b_m a_1 a_2 \dots a_n$$
 (32)

Consider the case n > m, this would mean

$$a_i = b_i$$
 $i = 0 ... m$
 $a_i = a_i$ $j = m + 1 ... n$ (33)

certainly this can't be true for all a, b in the alphabet A. e.g. a = 11, b = 0

3. Prove that there is an identity element for this operation

$$\mathbf{a}(\lambda) = a_1 a_2 \dots a_n() = \mathbf{a}$$
$$\lambda \mathbf{a} = ()a_1 a_2 \dots a_n = \mathbf{a}$$
(34)

Thus the empty sequence is the identity element.