02562 Rendering - Introduction

Measuring light (radiometry and photometry)

Jeppe Revall Frisvad

September 2023

Physics of light

- ▶ The three basic actions of quantum electrodynamics:
 - 1. A photon goes from place to place.
 - 2. An electron goes from place to place.
 - 3. An electron emits or absorbs a photon.
- \triangleright The probability for a photon to be at a position x follows a time-varying wave function.
- ▶ The energy E of the photon is related to the angular frequency ω of this wave:

$$E=\hbar\,\omega=hf=rac{hc}{\lambda}\,,\quad \hbar=rac{h}{2\pi}\,,\quad f=2\pi\omega\,,\quad h=6.626\cdot 10^{-34}\,\,\mathrm{Js}\,,$$

where λ is the wavelength and $c = 2.9979 \cdot 10^8$ m/s is the speed of light.

- Light can be a vector field if we average over a large number of photons.
- ► The number of photons arriving per second determines the magnitude of the energy flux (J/s or W) in an electromagnetic field.
- We can measure such radiant energy.

Physics	Radiometry			Photometry	
Energy	Radiant Energy	Q	joule J $(kg m^2/s^2)$	Luminous Energy	talbot T (Im s)
Flux (Power)	Radiant Flux	$\Phi = \frac{dQ}{dt}$	watt W (J/s)	Luminous Flux	lumen Im (T/s)
Flux Density (incoming)	Irradiance	$E = \frac{d\Phi}{dA}$	W/m ²	Illuminance	lux (lm/m ²)
Flux Density (outgoing)	Radiant Exitance	$M = \frac{d\Phi}{dA}$	W/m ²	Luminous Exitance	lux (lm/m ²)
Flux Density (outgoing)	Radiosity (diffuse)	$B = \frac{d\Phi}{dA}$	W/m ²	Luminosity	lux (lm/m ²)
Angular Flux Density	Radiance	$L = \frac{\mathrm{d}\Phi}{\mathrm{d}A^{\perp}\mathrm{d}\omega}$	$W/(m^2 sr)$	Luminance	nit (cd/m²)
Intensity	Radiant Intensity	$I = \frac{d\Phi}{d\omega}$	W/sr	Luminous Intensity	candela cd (lm/sr)

Light emission

▶ An electric light emits light according to its power P and emissivity/efficiency ε :

$$\Phi = \varepsilon P = \varepsilon VC,$$

where V is voltage (volts) and C is current (amps).

If the source emits light isotropically in the solid angle Ω , its intensity is

$$I = \frac{\mathsf{d}\Phi}{\mathsf{d}\omega} = \frac{\Phi}{\Omega} \,.$$

If the source emits light homogeneously across a surface, the radiant exitance is

$$M = \frac{\mathrm{d}\Phi}{\mathrm{d}A} = \frac{\Phi}{A}$$
.

► The radiance from an isotropic point light reaching an observer at the distance *r* is

$$L_i = \frac{I}{r^2}$$

Solid angles (radians vs. steradians)

Calculating solid angles using spherical coordinates

Full sphere:

$$\Omega = \int_0^{2\pi} \int_0^{\pi} \sin \theta \, d\theta \, d\phi$$

$$= \int_0^{2\pi} d\phi \int_{\cos \pi}^{\cos 0} d(\cos \theta)$$

$$= 2\pi (1 - (-1))$$

$$= 4\pi$$

$$\frac{\mathsf{d}(\cos\theta)}{\mathsf{d}\theta} = -\sin\theta$$

Integrating over a cosine-weighted hemisphere

A diffuse emitter

Total emitted radiant flux:

$$\Phi = \int_{A} \int_{2\pi} L \cos \theta \, d\omega \, dA_{o}$$

$$= L \int_{A} dA_{o} \int_{0}^{2\pi} d\phi \int_{0}^{\frac{\pi}{2}} \cos \theta \sin \theta \, d\theta$$

$$= LA 2\pi \frac{1}{2} = LA\pi.$$

► Radiosity:

$$B = \int_{2\pi} L \cos \theta \, d\omega$$
$$= L 2\pi \int_{0}^{\frac{\pi}{2}} \cos \theta \sin \theta \, d\theta = L\pi.$$

The measurement equation

- ► Radiance is flux per projected area per solid angle: $L = \frac{d\Phi}{dA^{\perp}d\omega} = \frac{d\Phi}{\cos\theta \, dA \, d\omega}$
- ▶ Suppose we let *R* denote the relative responsivity of the sensor.
- ightharpoonup The energy received per second by a sensor of area A and solid angle Ω is then

$$\Phi_i(A,\Omega) = \int_A \int_\Omega R(\mathbf{x}_i,\vec{\omega}_i) L_i(\mathbf{x}_i,\vec{\omega}_i) (\vec{\omega}_i \cdot \vec{n}) d\omega_i dA_i$$

where \vec{n} is the surface normal of the sensor area $(\cos \theta = \vec{\omega}_i \cdot \vec{n})$.

Irradiance due to a source of a given intensity

 \triangleright Element of solid angle subtended by an element of surface area at distance r:

$$d\omega = \frac{dA^{\perp}}{r^2} = \frac{dA\cos\theta}{r^2} \quad \Leftrightarrow \quad \frac{d\omega}{dA} = \frac{\cos\theta}{r^2} \,,$$

where θ is the angle between the surface normal and the central ray of the solid angle.

▶ Relation between irradiance and source intensity:

$$E = \frac{d\Phi}{dA} = \frac{d\Phi}{d\omega} \frac{d\omega}{dA} = I \frac{d\omega}{dA} = I \frac{\cos\theta}{r^2}.$$

- ▶ Intensity of an isotropic point light: $I = \frac{\mathrm{d}\Phi}{\mathrm{d}\omega} = \frac{\Phi}{\Omega} = \frac{\Phi}{4\pi}$.
- ► Irradiance due to an isotropic point light: $E = I \frac{\cos \theta}{r^2} = \frac{\Phi}{4\pi} \frac{\cos \theta}{r^2}$.

Colour perception

nm = nanometer, \mathring{A} = angstrom, μ m = micrometer, mm = millimeter, cm = centimeter, m = meter, km = kilometer, Mm = Megameter

Photopigment absorption

Luminous efficiency

Photometry

- For every spectral radiometric quantity $f_r(\lambda)$, there is a related photometric quantity f_p measuring the "usefulness" of this quantity to a human observer.
- Conversion formula:

$$f_p = 683 \frac{\text{Im}}{\text{W}} \int_{380 \text{ nm}}^{800 \text{ nm}} \overline{y}(\lambda) f_r(\lambda) \, d\lambda$$

where \overline{y} is the luminous efficiency function (sometimes called V).

Example: radiance to luminance

$$Y = 683 \frac{\text{Im}}{\text{W}} \int_{380 \text{ nm}}^{800 \text{ nm}} \overline{y}(\lambda) L(\lambda) \, d\lambda,$$

- Luminance Y is also one of three components in the XYZ color space, and \overline{y} is one of three color matching function: \overline{x} , \overline{y} , \overline{z} .
- ▶ Similarly, there are color matching functions for the RGB color space: \overline{r} , \overline{g} , \overline{b} .

Colorimetry

CIE color matching functions

The chromaticity diagram

$$R = \int_{\mathscr{V}} C(\lambda) \bar{r}(\lambda) \, d\lambda$$

$$G = \int_{\mathscr{V}} C(\lambda) \bar{g}(\lambda) \, d\lambda$$

$$B = \int_{\mathscr{V}} C(\lambda) \bar{b}(\lambda) \, d\lambda ,$$

where $\mathscr V$ is the interval of visible wavelengths and $C(\lambda)$ is the spectrum that we want to transform to RGB.