Universidad de Granada

Análisis Matemático I

Doble Grado de Informática y Matemáticas ${\it Curso~2016/17}$

${\bf Contents}$

1 Teorema de Bolzano-Weierstrass.

Sea $\{x_n\}$ una sucesión de \mathbb{R}^N acotada. Entonces existe una sucesión parcial suya $\{x_{\sigma(n)}\}$ convergente.

1.1 Demostración.

Notaremos $x_n = (x_n^1, \dots, x_n^N)$. Como $\{x_n^1\}$ es acotada en \mathbb{R} , existe $\sigma_1 : \mathbb{N} \to \mathbb{N}$ estrictamente creciente tal que $\{x_{\sigma_1(n)}^1\}$ es convergente.

Ahora, como $\{x_n^2\}$ es acotada, $\{x_{\sigma_1(n)}^2\}$ también es acotada, y existe $\sigma_2: \mathbb{N} \to \mathbb{N}$ estrictamente creciente tal que $\{x_{(\sigma_2 \circ \sigma_1)(n)}^1\}$ es convergente.

Procediendo de esta forma con cada componente de x_n , obtenemos $\sigma_1, \ldots, \sigma_N$, y $\{x_{\sigma_1(n)}^1\}, \{x_{(\sigma_2 \circ \sigma_1)(n)}^2\}, \ldots, \{x_{(\sigma_N \circ \cdots \circ \sigma_2 \circ \sigma_1)(n)}^N\}$ sucesiones convergentes en \mathbb{R} . Al ser σ_i estrictamente creciente $\forall i = 1, \ldots, N, \{x_{(\sigma_N(n) \circ \cdots \circ \sigma_{i+1} \sigma_i \circ \cdots \circ \sigma_1)(n)}^i\}$ también es convergente (toda sucesión parcial de una sucesión convergente es convergente).

Así, tomando $\sigma = \sigma_1 \circ \cdots \circ \sigma_N$, $\{x_{\sigma(n)}\}$ es convergente.

2 \mathbb{R}^N es completo.

Sea $\{x_n\} \subseteq \mathbb{R}^N$. Entonces:

 $\{x_n\}$ es de Cauchy \iff $\{x_n\} \to x$ es convergente

2.1 Demostración.

 \Leftarrow

Dado $\varepsilon > 0$, existe $m \in \mathbb{N}$ tal que si $n \ge m$ entonces $d(x_n, x) < \frac{\varepsilon}{2}$, y si $p, q \ge m$ entonces $d(x_p, x_q) \le d(x_p, x) + d(x, x_q) < \varepsilon$

 \Rightarrow

Como $\{x_n\}$ es de Cauchy, $\{x_n^i\}$ es de Cauchy $\forall i = 1, ..., N$ (porque $|x_n^i - x_m^i| \le |x_n - x_m|$). $\implies \{x_n^i\} \to x^i$ es convergente, por ser $\mathbb R$ completo. Luego $\{x_n\}$ es convergente.

3 Teorema de Weierstrass generalizado.

Sean (X,d), (Y,d) espacios métricos, $\emptyset \neq A \subseteq X$ compacto, y $f:A \to Y$ continua. Entonces, f(A) es compacto.

3.1 Demostración.

Sea $\{x_n\} \subseteq A$ cualquiera. Entonces $\{f(x_n)\} \subseteq f(A)$. Como A es compacto, existe $\sigma : \mathbb{N} \to \mathbb{N}$ estrictamente creciente tal que $\{x_{\sigma(n)}\} \to a \in A$. Luego, $\{f(x_{\sigma(n)})\} \to f(a) \in A$ y queda probado que f(A) es compacto.

4 Teorema del valor intermedio.

Sea $\emptyset \neq A \subseteq \mathbb{R}^N$ arco conexo, y $f: A \longrightarrow \mathbb{R}^M$ continua. Entonces, f(A) es arco-conexo en \mathbb{R}^M .

4.1 Demostración.

Sean $X, Y \in f(A)$. Entonces, $\exists x, y \in A : X = f(x), Y = f(y)$. Como A es arco-conexo, $\exists \varphi : [a, b] \longrightarrow \mathbb{R}^N$ continua tal que $\varphi(a) = x$, $\varphi(b) = y$, $\varphi([a, b]) \subseteq A$.

Ahora, definimos $\psi := f \circ \varphi : [a,b] \longrightarrow \mathbb{R}^M$, que es continua por ser composición de funciones continuas. Entonces, se verifica que:

$$\psi(a) = f(\varphi(a)) = f(x) = X; \quad \psi(b) = f(\varphi(b)) = f(y) = Y; \quad \psi([a, b]) = f(\varphi([a, b])) \subseteq f(A).$$

Por tanto, queda probado que f(A) es arco-conexo en \mathbb{R}^M .

5 Teorema de Heine-Cantor.

Sea $\emptyset \neq A \subseteq \mathbb{R}^N$ compacto, y $f: A \longrightarrow \mathbb{R}^N$ continua. Entonces f es uniformemente continua en A.

5.1 Demostración.

f es continua en $A \implies f$ es continua en $a \ \forall a \in A$. Ahora, sea $\varepsilon > 0$ fijo.

$$\forall a \in A \quad \exists \delta = \delta_a > 0 \quad \forall x \in A \quad d(x, a) < \delta_a \implies d(f(x), f(a)) < \varepsilon$$

Tomamos un recubrimiento abierto de A, y como A es compacto, encontramos un subrecubrimiento finito.

$$A \subseteq \bigcup_{a \in A} B(a, \frac{\delta_a}{2}) \implies \exists a_1, \dots, a_n \in A : A \subseteq \bigcup_{i=1}^n B\left(a_i, \frac{\delta_{a_i}}{2}\right)$$

Por esta última inclusión:

$$\forall x \in A \quad \exists i \in \{1, \dots, n\} : x \in B\left(a_i, \frac{\delta_{a_i}}{2}\right) \cap A \implies f(x) \in B(f(a_i), \varepsilon)$$

Sean $\delta = \min \left\{ \frac{\delta_{a_i}}{2} : i \in \{1, \dots, n\} \right\} > 0$ y $y \in A : d(x, y) < \delta < \delta_{a_i}$ para un $x \in A$ fijo. Tomamos el a_i proporcionado por la proposición anterior para x.

$$d(y, a_i) \le d(y, x) + d(x, a_i) < \delta_{a_i} \implies y \in B(a_i, \delta_{a_i}) \implies f(y) \in B(f(a_i), \varepsilon)$$

Finalmente,

$$d(f(x), f(y)) \le d(f(x), f(a_i)) + d(f(a_i), f(y)) < \varepsilon$$

Para cualquier ε para el que se desee que se verifique la condición de la continuidad uniforme, basta tomar $\frac{\varepsilon}{2}$ en la continuidad.

5.2 Demostración alternativa.

La condición para la continuidad uniforme es la siguiente:

$$\forall \varepsilon > 0 \ \exists \delta > 0 \ \forall x,y \in A: d(x,y) < \delta \implies d(f(x),f(y)) < \varepsilon$$

Vamos a proceder por reducción al absurdo, para lo cual negamos esta condición:

$$\exists \varepsilon_0 > 0 \ \forall \delta > 0 \ \exists x, y \in A : d(x, y) < \delta \land d(f(x), f(y)) \ge \varepsilon_0$$

Tomamos este ε_0 , lo que nos da, para cada $\delta > 0$, un par de puntos x e y que cumplen la propiedad expresada arriba. Tomamos $\delta = \frac{1}{n} \ \forall n \in \mathbb{N}$. Esto nos da dos sucesiones $\{x_n\}$ e $\{y_n\}$ tales que

$$d(x_n, y_n) < \frac{1}{n} \wedge d(f(x_n), f(y_n)) \ge \varepsilon_0$$

Por ser A compacto, el teorema de Bolzano-Weierstrass nos da dos sucesiones parciales $\{x_{n_k}\}$ a x_0 e $\{y_{n_k}\}$ a y_0 . Por tanto:

$$d(x_{n_k}, y_{n_k}) < \frac{1}{n_k} \wedge d(f(x_{n_k}), f(y_{n_k})) \ge \varepsilon_0$$

Sin embargo, $\{x_{n_k}\}$ e $\{y_{n_k}\}$ convergen al mismo punto (por converger su distancia a cero), y como f es continua, esta proposición no puede ser verdadera. Hemos llegado por tanto a una contradicción, luego f debe ser uniformemente continua.