

CATHOLIC UNIVERSITY INSTITUTE OF BUEA

2020/2021 ACADEMIC YEAR

First Semester Examinations – February 2021

School	ENGINEERING				
Course Code	EMA 201	Course Title	Engineering Mathematics II		
Status	С	Credit Value	6	Department	MEE
Date	26/02/2021	Venue	Ngongi Hall, LH 11	Time	10:30 - 12:30
Course Master(s)		Yagaka Fokoua Gabriel			J.

Instructions:

- · Answer ALL questions
- Penalty will be given for poor presentation of answers
- Electronic Calculators are allowed.

Question 1 (5 marks)

What do you understand by the following terms as used in numerical analysis

- a) Relative error
- b) Approximation error

Question 2 (16 marks)

- a) Consider the function $f(x) = x^2 3$ defined on the interval [1,2] and let ϵ =0.001 be the tolerance. Using the Bisection method, approximate the root of the function f(x) in the interval [1,2]. (6 marks)
- b) Let $g(x) = x \frac{1}{2}(x^2 3)$
 - (i) Find the fixed points of g. (2marks)
 - (ii) To which of the fixed points of g does the algorithm $x_{n+1} = x_n \frac{1}{2}((x_n)^2 3)$ converge? (3 marks)
 - (iii) Find the approximate value of the fixed point of g to which the algorithm converges using the starting point $x_0 = 1$. (5 marks)

Question 3 (15 marks)

Given the four data points (-1, 1), (0, 1), (1, 2), (2, 0), determine.

- a) The Vandermonde interpolating polynomial. (7 marks)
- b) The Lagrange interpolating polynomial. (8 marks)

Question 4 (14 marks)

Let f be an arbitrary continuous function and a and b with a < b be two real numbers.

- a) For the numerical integration of f from a to b, what is the formula for the :
 - The composite Trapezoidal rule; (2 marks)
 - The composite Simpson's rule. (2 marks)
- b) For $f(x) = xe^x$, a = 0, and b = 1, and taking n=5 find the approximate values of $\int_0^1 xe^x dx$ for each of the rules above. (4+4 marks)
- c) Which of the rules gives the best approximation? (2 mark)

Good Luck

