Homework #2

Sam Fleischer

May 2, 2016

Problem 1	 		 •			 		 •	 		•	•					 •					2
Problem 2	 					 			 						•	•						2
Problem 3	 					 			 													2
Problem 4	 					 			 													2
Problem 5	 					 			 													3

Problem 1

Let $i = \sqrt{-1}$ and set

$$A = \left[\begin{array}{ccc} i & 0 & -i \\ 0 & i & -i \end{array} \right].$$

Using the null space property, show that ℓ_1 -minimization will recover any 1-sparse vector x, given Ax = y.

Proof. Given $x = [x_1, x_2, x_3]^T \in \mathbb{C}^3$, $Ax = i[x_1 - x_3, x_2 - x_3]^T = 0$ if $x_1 = x_2 = x_3$. Thus null $A = \text{span}([1, 1, 1]^T)$. Let $h \in \text{null } A$. Then $h = [a, a, a]^T$ for some $a \in \mathbb{C}$. Then choose $S_i = \{i\}$ for i = 1, 2, 3. Then

$$h_{S_1} = \begin{bmatrix} a \\ 0 \\ 0 \end{bmatrix}, \quad h_{S_2} = \begin{bmatrix} 0 \\ a \\ 0 \end{bmatrix}, \quad \text{and} \quad h_{S_3} = \begin{bmatrix} 0 \\ 0 \\ a \end{bmatrix}$$

which gives

$$h_{S_1^C} = \begin{bmatrix} 0 \\ a \\ a \end{bmatrix}, \quad h_{S_2^C} = \begin{bmatrix} a \\ 0 \\ a \end{bmatrix}, \quad \text{and} \quad h_{S_3^C} = \begin{bmatrix} a \\ a \\ 0 \end{bmatrix}$$

Clearly $||h_{S_i}||_1 = |a|$ and $||h_{S_i^c}||_1 = 2|a|$ for i = 1,2,3. Thus $||h_S||_1 \le ||h_{S^c}||_1$ for all $h \in \text{null}A$ and all $S \subset \{1,2,3\}$ with |S| = 1. This shows the null space property holds and hence ℓ_1 -minimization will recover any 1-sparse vector x.

Problem 2

On the connection between (in)coherence parameter μ and restricted isometry constant δ_s : Show that $\delta_1 = 0$, $\delta_2 = \mu$, and $\delta_s \le (s-1)\mu$.

Proof.

Problem 3

Let $A = \mathbb{R}^{k \times d}$ be a Gaussian random matrix. Given an estimate for the coherence μ of A.

Proof.

Problem 4

Consider y = Ax, where A is a 100×400 Gaussian random matrix and x is a s-sparse vector of length 400. The locations of the non-zero entries of x are chosen uniformly at random and the non-zero coefficients of x are normal-distributed. For $s = 1, 2, \ldots$, solve

$$\min_{z} \|z\|_1 \quad \text{subject to } Az = y,$$

(e.g. using the toolbox CVX). For each fixed s repeat the experiment 10 times. Create a graph plotting s versus the relative reconstruction error (averaged over the ten experiments for each s). Starting with which value of s approximately does ℓ_1 -minimization fail to recover x?

Proof. The following graph shows the mean ℓ^2 -norm errors of 10 experiments at each s for s = 1, 2, ..., 40. The non-zero entries of x are normally distributed around 0 with standard deviation of 1. In this experi-

ment, this method failed for $s \ge 21$.

Problem 5

Same setup as in Problem 4, but now the non-zero entries of *x* are non-negative. Taking this information into account, we now solve

$$\min_{z} \|z\|_1$$
 subject to $Ax = y$ and $z \ge 0$

(here, $z \ge 0$ is meant entrywise, i.e., for each k, $z_k \ge 0$). (The positivity constraint is easy to include in CVX). Repeat the simulations as described in Problem 4. Compare your findings to the results from your experiments of Problem 4 and try to quantify the difference regarding the range for s for which recovery is still possible in this case.

Proof. The following graph shows the mean ℓ^2 -norm errors of 10 experiments at each s for s = 1, 2, ..., 40. The non-zero entries of s are the absolute value of a normal distribution around 0 with standard deviation of 1. In this experiment, this method failed for $s \ge 24$.

