1、介绍鸢尾花分类问题

适用于:

- 对机器学习几乎一无所知
- 想要学习TensorFlow编程 ● 至少会一点Python

熟悉机器学习基本概念的TensorFlow新人可以跳去阅读: Getting Started with TensorFlow: for ML Experts。

2、鸢尾花分类问题

- 根据萼片和花瓣的长度和宽度来对鸢尾花进行分类
- 鸢尾花三种类别: (1) Iris setosa (2) Iris virginica (3) Iris versicolor

Sepal length	sepal width	petal length	petal width	species				
6.4	2.8	5.6	2.2	2				
5.0	2.3	3.3	1.0	1				
4.9	2.5	4.5	1.7	2				
4.9	3.1	1.5	0.1	0				
5.7	3.8	1.7	0.3	0				
● 类别标签编码: 0—setosa, 1—versicolor, 2—virginica								

- 3、模型与训练

• 四列特征(花萼长度,花萼宽度,花瓣长度,花瓣宽度),一列标签

4、获取示例程序

安裝tensorflow

● 监督学习, 非监督学习

• 安装pandas

- 示例程序: https://github.com/tensorflow/models
- 目录: models/samples/core/get_started/premade_estimator.py • 运行 premade_estimator.py 程序
- 5、TensorFlow编程堆栈
- TensorFlow编程环境

TensorFlow APIs

High-Level

```
Mid-Level
                                          Metrics
                   Layers
                              Datasets
TensorFlow APIs
Low-level
                               Python
                                                     C++
                                                                      Go
                                                             Java
TensorFlow APIs
TensorFlow
                            TensorFlow Distributed Execution Engine
Kernel
   重点关注的高级APIs:
     o <u>Estimators</u>: 代表一个完整的模型,提供训练、评估、预测的方法
```

Estimators

- TensorFlow程序的一般轮廓
 - 。 导入和解析数据集

SepalWidth

3.0

3.1

3.3

3.1

PetalLength

4.2

5.4

1.7

PetalWidth

1.5

2.1

0.5

o Datasets: 构建数据输入管道,提供加载和操作数据的方法

。 选择模型的类型 ο 训练模型

6、程序本身

。 评估模型有效性

o 创建feature columns描述数据

5.9

6.9

7、导入和解析数据集

● 训练集: <u>iris_training.csv</u>

利用Pandas打包数据

测试集: <u>iris_test.csv</u> 下载数据: tf.keras

o 预测

SepalLength

0

1

28

8,

5.1 27

	20	0.7	3.3	5.7	2.0					
	29	6.4	2.9	4.3	1.3					
描述数据(Describe the data)										
● feature column是一种数据结构,用来告诉模型如何解释数据的每个特种。										
• 例如,在鸢尾花分类问题中,我们希望模型将每个特征中的数据解释为其字面上的浮点值										
• Feature Columns										
•	tf.feature_colum	nn:构建featu	re_column对象	列表,每个对象描述-	一个输入					

Create feature columns for all features. my_feature_columns = []

创建feature column

- for key in train_x.keys(): my_feature_columns.append(tf.feature_column.numeric_column(key=key))
- 等价于: my_feature_columns = [

tf.feature_column.numeric_column(key='SepalLength'), tf.feature_column.numeric_column(key='SepalWidth'),

tf.feature_column.numeric_column: 告诉模型将数据解释为浮点值

tf.feature_column.numeric_column(key='PetalLength'), tf.feature_column.numeric_column(key='PetalWidth')

```
8、选择模型的类型
   全连接神经网络
   要指定一个模型类型,需要实例化一个Estimator类
  • TensorFlow提供了两类Estimators:
      o pre-made Estimators: 预创建好的
      o custom Estimators: 需要自定义的
   使用预创建的: tf.estimator.DNNClassifier
```

train_input_fn方法依赖于Dataset API(一个高级TensorFlow API,用于读取数据和转换数据格式)

下面的调用将输入特征和标签转换成一个tf.data.Dataset对象,它是Dataset API的一个基类

 $n_{classes}=3$ hidden_units=[10, 10],定义每个隐层的单元数

9、训练模型

hidden_units=[10, 10],

n_classes=3, 类别数

• 实例化之后,调用train方法

• input_fn: 提供训练数据的方法

train_label:标签值的数组

args.batch_size: batch大小, 整数

设置buffer_size参数 > 数据个数

return dataset.make_one_shot_iterator().get_next()

返回一个batch的数据:

eval_result = classifier.evaluate(

● optimizer, 可选参数(优化器控制模型如何训练), 默认是'Adagrad' 学习率

classifier = tf.estimator.DNNClassifier(

feature_columns=my_feature_columns,

classifier.train(input_fn=lambda:train_input_fn(train_feature, train_label, args.batch_size), steps=args.train_steps)

• steps=args.train_steps: 训练迭代次数,超参数

- def train_input_fn(features, labels, batch_size): • train_feature: python字典,每个key是一个特证名,每个value是数据值的数组
- dataset = tf.data.Dataset.from_tensor_slices((dict(features), labels)) • tf.dataset类:提供许多预处理训练数据的方法

• tf.data.Dataset.shuffle: 将训练数据的顺序随机化

tf.data.Dataset.repeat: 重复生成数据,不指定参数的话则为无限次 tf.data.Dataset.batch: 连接多个数据生成batch, 通常较小的batch size训练更快(有时牺牲准确率)

dataset = dataset.shuffle(buffer_size=1000).repeat(count=None).batch(batch_size)

- 10、评估模型 ● 调用评估方法: 在测试集上 # Evaluate the model
 - print('\nTest set accuracy: {accuracy:0.3f}\n'.format(**eval_result)) • eval_input_fn方法: 提供一个batch的测试数据

测试集数据不需要随机化顺序和重复生成

def eval_input_fn(features, labels=None, batch_size=None):

"""An input function for evaluation or prediction"""

No labels, use only features.

dataset = dataset.batch(batch_size)

inputs = (features, labels)

 $input_fn = lambda: eval_input_fn(test_x, \, test_y, \, args.batch_size))$

Convert inputs to a tf.dataset object. dataset = tf.data.Dataset.from_tensor_slices(inputs)

Batch the examples

inputs = features

if labels is None:

else:

11、预测

● 3条新数据

 $predict_x = {$

Return the read end of the pipeline. return dataset.make_one_shot_iterator().get_next() • Test set accuracy: 0.967

assert batch_size is not None, "batch_size must not be None"

'SepalLength': [5.1, 5.9, 6.9], 'SepalWidth': [3.3, 3.0, 3.1], 'PetalLength': [1.7, 4.2, 5.4], 'PetalWidth': [0.5, 1.5, 2.1],

labels=None,

batch_size=args.batch_size))

input_fn=lambda:eval_input_fn(predict_x,

调用预测方法:

predictions = classifier.predict(

eval_input_fn方法: 注意新数据没有标签 提供一个batch的新数据供预测 预测方法返回一个迭代器结果,每条数据结果的内容有:

12、总结

- 'probabilities': array([1.19127117e-08, 3.97069454e-02, 9.60292995e-01]) 'class_ids': array([2])
 - 输出每条预测:
 - for pred_dict, expec in zip(predictions, expected): template = ('\nPrediction is "{}" ({:.1f}%), expected "{}"") class_id = pred_dict['class_ids'][0] probability = pred_dict['probabilities'][class_id]

print(template.format(iris_data.SPECIES[class_id], 100 * probability, expec))

- 本文提供机器学习简介 ● 示例的高级APIs隐藏了机器学习的许多数学复杂性
- 因此推荐学习更多关于梯度下降、批处理(batching)和神经网络的知识 ● 推荐阅读Feature Columns 文档,关于如何表示机器学习中不同类型的数据