7. 分離公理

岩井雅崇 2022/12/13

分離公理は正規や正則など色々あるが、ハウスドルフが一番大事だと思われるので、今回ハウスドルフの問題を集めた、1

問題の上に $^{\bullet}$ がついている問題は \underline{m} けてほしい問題である。問題の上に * がついている問題は面白いかちょっと難しい問題である。以下断りがなければ \mathbb{R}^n にはユークリッド位相を入れたものを考える。また位相空間 X は 2 点以上の点を含むものとする。

- 問 7.1 * 演習で出てきた位相空間を 1 つあげハウスドルフかどうか判定せよ. ただしこの問題はまだ発表していない人のみ解答でき、複数人の回答を可とする. 2
- 問 7.2 $f: X \to Y$ を連続な単射写像とする. Y がハウスドルフならば X もハウスドルフであることを示せ. またハウスドルフ空間 X の部分集合 $A \subset X$ に相対位相を入れたものはハウスドルフであることを示せ.
- 問 7.3 連続な全射写像 $f: X \to Y$ で X はハウスドルフだが Y がハウスドルフでない例を一つあ げよ.
- 問 7.4 「位相空間 (X, \mathcal{O}) について X が T_1 空間であるとは, 任意の異なる 2 点 $a,b \in X$ について ある $U \in \mathcal{O}$ があって $a \in U$ かつ $b \notin U$ となること」とする. 次の問いに答えよ.
 - (a) X が T_1 空間であることは、任意の点 $x \in X$ について $\{x\}$ が閉集合であることと同値であることを示せ.
 - (b) X がハウスドルフ空間 (T_2 空間) であれば T_1 空間であることを示せ.
 - (c) T_1 空間であるがハウスドルフ空間 (T_2 空間) でない例を一つあげよ.
- 問7.5 X を位相空間とする. 次は同値であることを示せ.
 - (i) X はハウスドルフである.
 - (ii) 対角集合 $\{(x,x) \in X \times X\}$ は $X \times X$ の閉集合である.
 - (iii) 任意の位相空間 T と任意の連続写像 $f,g:T\to X$ に対し, $\mathrm{Ker}(f,g)=\{t\in T|f(t)=g(t)\}$ は T の閉集合である.
 - (iv) 任意の位相空間 T と任意の連続写像 $f:T\to X$ について $\{(t,x)\in T\times X|f(t)=x\}$ は $T\times X$ の閉集合である.
- 問 $7.6~f,g:X\to Y$ を位相空間の間の連続写像とし, A を X の稠密な部分集合とする. Y がハウスドルフかつ $f|_A=g|_A$ ならば, f=g であることを示せ.

 $^{^1}T_{2\frac{1}{2}}$ 空間など出しても良かったが,無駄知識になる気がしたのでやめておきました.もし正規や正則などの分離公理が期末試験にでたらすみません.

 $^{^2}$ 例えば距離空間, 離散位相空間, 密着位相空間などが挙げられる。なお難しそうな空間に関して解答したい人は第 9 回の最後の問題を見てください。

問 $7.7 \mathbb{R}^2$ に対し同値関係 \sim を

$$(x_1,y_1)\sim (x_2,y_2)\Leftrightarrow x_1-x_2\in\mathbb{Z}$$
 かつ $y_1-y_2\in\mathbb{Z}$

で定め, 2 次元トーラス $T^2:=\mathbb{R}^2/\sim$ とする. $\pi:\mathbb{R}^2\to T^2$ という商写像により T^2 に商位相を入れるとき, T^2 はハウスドルフ空間であることを示せ.

- 問 7.8 問 6.8 を用いて \mathbb{RP}^n はハウスドルフ空間であることを示せ.
- 問 7.9 $M(n+1,\mathbb{R})$ を $(n+1) \times (n+1)$ 実行列の集合とし, $M(n+1,\mathbb{R})$ を $\mathbb{R}^{(n+1)^2}$ と同一視して位相を入れる. $\sigma:\mathbb{R}^{n+1}\setminus\{0\}\to M(n+1,\mathbb{R})$ を次で定める:

$$\sigma: \quad \mathbb{R}^{n+1} \setminus \{0\} \quad \to \quad M(n+1,\mathbb{R})$$

$$(x_1, \dots, x_{n+1}) \quad \mapsto \quad \frac{1}{x_1^2 + \dots + x_{n+1}^2} \begin{pmatrix} x_1^2 & x_1 x_2 & \dots & x_1 x_{n+1} \\ x_2 x_1 & x_2^2 & \dots & x_2 x_{n+1} \\ \vdots & \vdots & \ddots & \vdots \\ x_{n+1} x_1 & x_{n+1} x_2 & \dots & x_{n+1}^2 \end{pmatrix}$$

 σ は連続な単射写像 $\tilde{\sigma}:\mathbb{RP}^n\to M(n+1,\mathbb{R})$ を引き起こすことを示し、それを用いて \mathbb{RP}^n はハウスドルフ空間であることを示せ、

- 問 7.10~X を位相空間とする. 「任意の異なる 2 点 $p,q\in X$ について、ある連続関数 $f:X\to\mathbb{R}$ で $f(p)=0,f(q)\neq 0$ となるものが存在する」と仮定する. このとき X はハウスドルフ空間であること示せ. またこれを用いて \mathbb{RP}^n はハウスドルフ空間であることを示せ. 3
- 問 7.11 $\mathbb{C}^{n+1}\setminus\{0\}$ について、同値関係 \sim を

$$z \sim w \Leftrightarrow 0$$
 でない複素数 α が存在して $z = \alpha w$

と定義する. $\mathbb{CP}^n:=(\mathbb{C}^{n+1}\setminus\{0\})/\sim$ と書き複素射影空間と呼ぶ. 4 \mathbb{CP}^n に商位相を入れるとき, \mathbb{CP}^n はハウスドルフ空間であることを示せ.

問 $7.12*1 \le k < n$ となる自然数について, $A_{k,n}$ を $k \times n$ 実数行列でランクが k となる行列全体の集合とし, \mathbb{R}^{kn} の部分集合とみなすことで $A_{k,n}$ に \mathbb{R}^{kn} の相対位相を入れる. $A_{k,n}$ に同値関係 \sim を

$$A \sim B \Leftrightarrow$$
 正則な $k \times k$ 実数行列 G が存在して $A = GB$

と定義する. $G_{k,n}:=A_{k,n}/\sim$ と書き実グラスマン多様体と呼ぶ. $G_{k,n}$ に商位相を入れるとき, $G_{k,n}$ はハウスドルフ空間であることを示せ.

演習の問題は授業ページ (https://masataka123.github.io/2022_winter_generaltopology/) にもあります. 右下の QR コードからを読み込んでも構いません.

³ヒント:直線への射影を用いる.この手法は後の問題でも使える.

 $^{^4}$ 実射影空間と同様に $z=(z_1,z_2,\ldots,z_{n+1})$ を \mathbb{CP}^n の元とみなしたものを $(z_1:\cdots:z_{n+1})$ と書き複素同次座標と呼ぶ.