Elucidating gene networks precipitating relapse in CAR T-Cell treated diffuse large B-cell lymphoma

A case for multiple CCA and heirarchical tree trimming

Will Patterson Bo Hu (Advisor)

8/28/2020

Outline

Hypothesis: Integration of multi-omics signals will elucidate gene networks involved in DLBCL relapse after CAR T-cell therapy.

- **What**: Diffuse Large B-Cell Lymphoma
- Why: Approximately half of patients with DLBCL treated with CAR T-cells will relapse
- Mow: Multi-omics integration using sparse multiple cannonical correlation analysis

What: Diffuse Large B-Cell Lymphoma

Figure 1: Micrograph of DLBCL (Field stain)

- Most common non-Hodgkin lymphoma (5.6 per 100,000 persons per year), arises from mature B lymphocytes
- Average 5-year relative survival rate of 63% (72% for all NHL)
- Treatment: R-CHOP/EPOCH \rightarrow salvage/HCT \rightarrow CAR T-cell

Multiple Canonical Correlation Analysis: Definition

Canonical Correlation Analysis (CCA) finds the relationship between sets of variables by finding their maximally correlated linear combinations.

Given: K sets of observations on same n observations, $\mathbf{X}_1,...,\mathbf{X}_K$ of dimensions $n \times p_k$, all standardized to mean zero and SD of one

Find: Weights $\mathbf{w}_1,...,\mathbf{w}_k$, where $\mathbf{w}_k \in \mathbb{R}^{p_k}$, such that the objective function below is maximized

Multiple CCA objective function

$$\mathrm{maximize}_{\mathbf{w}_1, \dots, \mathbf{w}_K} \sum_{i < j} \mathbf{w}_i^T \mathbf{X}_i^T \mathbf{X}_j \mathbf{w}_j \text{ subject to } ||\mathbf{w}_i||^2 \leq 1, P_i(\mathbf{w}_i) \leq c_i, \forall i$$

(where P_i is the L_1 penalty for i^{th} set)

Extension of sparse mCCA to binary outcomes

Witten and Tibshirani (2009) suggest an extension of sparse mCCA that allows for the incorporation of a two-class outcome. Their method simply treats this $\mathbb{R}^{n\times 1}$ matrix as a third data set. Their objective function takes the form:

Sparse mCCA objective function with binary variables

$$\begin{split} \text{maximize}_{\mathbf{w}_1,\mathbf{w}_2,\mathbf{w}_3}\mathbf{w}_1^T\mathbf{X}_1^T\mathbf{X}_2\mathbf{w}_2 + \mathbf{w}_1^T\mathbf{X}_1^T\mathbf{y}\mathbf{w}_3 + \mathbf{w}_2^T\mathbf{X}_2^T\mathbf{y}\mathbf{w}_3 \\ \text{subject to } ||\mathbf{w}_i||^2 \leq 1, P_i(\mathbf{w}_i) \leq c_i, \forall i \end{split}$$

Extracting gene networks from multiple CCA

Three step process for gene network extraction:

- Ompute the similarity matrix based on the outer products of absolute canonical correlation weights.
- Apply hierarchical tree cutting to the similarity matrix and extract modules that contain all -omics data types.
- Visualize networks.

Diagnostic Samples Only: Gene Expression

Total = 42623 variables

Diagnostic Samples Only: Methylation Sites

Total = 753481 variables

Diagnostic Samples Only: Gene Network Analysis

Diagnostic vs. Relapsed Patients: Gene Expression

Total = 42623 variables

Diagnostic vs. Relapsed Patients: Methylation Sites

Total = 753481 variables

Diagnostic vs. Relapsed Patients: Gene Network Analysis

SmCCNet identifies key DLBCL genes from literature

[INSERT EXAMPLES OF GENES]

Gene	Function	OMIM	Citation
CREBBP	transcription factor	600140	Pasqualucci et al. (2011)
TNK1	tyrosine kinase	608076	May et al. (2010)
BCL3	NF - κB inhibitor	109560	Ibrahim et al. (2011)
ZCCHC7	TRAMP component	NA	Chong et al. (2018)

Conclusions

[INSERT CONCLUSIONS HERE]