$$V(k_0) = \sum_{t=0}^{\infty} \left[\beta^t \ln(1 - \alpha \beta) + \beta^t \alpha \ln k_t \right]$$

Machine Learning Note

$$= \frac{\alpha}{1 - \lambda \eta} \Re \frac{1 - \alpha \beta}{2 - \alpha} \Re \frac{2 \alpha \Re \beta}{1 - \alpha} \sum_{t=0}^{\infty} \left[\frac{\beta^t}{1 - \alpha} - \frac{(\alpha \beta)^t}{1 - \alpha} \right]$$

$$= \frac{\alpha}{1 - \alpha \beta} \ln k_0 + \frac{\ln(1 - \alpha \beta)}{1 - \beta} + \frac{\alpha \beta}{(1 - \beta)(1 - \alpha \beta)} \ln(\alpha \beta)$$

左边 =
$$V(k) = \frac{\alpha}{1 - \alpha\beta} \ln k + \frac{\ln(1 - \alpha\beta)}{1 - \beta} + \frac{\alpha\beta}{(1 - \beta)(1 - \alpha\beta)} \ln(\alpha\beta)$$

$$\stackrel{\triangle}{=} \frac{\alpha}{1 - \beta}$$

右边 =
$$\max \left\{ u(f(x) - y) + \beta V(y) \right\}$$

利用 FOC 和包络条件求解得到 $\gamma = \alpha \beta k^{\alpha}$,代入,求右边。

ElegantLaTeX

右边 = max
$$\left\{ u(f(k) - y) + \beta V(y) \right\}$$

= $u(f(k) - g(k)) + \beta \left[\frac{\alpha}{1 - \alpha \beta} \ln g(k) + A \right]$

There is no good end for the fuck thieves country.

$$= \ln(1 - \alpha\beta) + \alpha \ln k + \beta \left[\frac{\alpha}{1 - \alpha\beta} \left[\ln \alpha\beta + \alpha \ln k \right] + k \right]$$

$$= \alpha \ln k + \frac{\alpha\beta}{1 - \alpha\beta} \alpha \ln k + \ln(1 - \alpha\beta) + \frac{\alpha\beta}{1 - \alpha\beta} \ln \alpha\beta + \beta A$$

$$= \frac{\alpha}{1 - \alpha \beta} \ln k + \ln(1 - \alpha \beta) + \frac{\alpha \beta}{1 - \alpha \beta} \ln \alpha \beta + \beta A$$

$$= \frac{\alpha}{1 - \alpha \beta} \ln k + (1 - \beta)A + \beta A$$

整理时间: March 11, 2018

Email: luomin5417@gmail.com

整理: LMin

■ 录

1	绪论	: 初识机器学习	1
	1.1	欢迎参加机器学习课程	1
	1.2	什么是机器学习?	2
	1.3	监督学习	2
	1.4	无监督学习	2
	1.5	问题	2
2	单变	量线性回归	3
	2.1	模型描述	3
	2.2	代价函数	3
	2.3	代价函数 (一)	4
		2.3.1 编译方式	4
		2.3.2 选项设置	4
		2.3.3 数学环境简介	5
		2.3.4 可编辑的字段	5
	2.4	代价函数 (二)	6
	2.5	梯度下降	6
	2.6	梯度下降知识点总结	6
	2.7	线性回归的梯度下降	6
	2.8	本章课程总结	6
3 线性回归回顾		回归回顾	7
	3.1	矩阵和向量	7
	3.2	加法和标量乘法	11
	3.3	矩阵向量乘法	11
	3.4	矩阵乘法	11
	3.5	矩阵乘法特征	11
	3.6	逆和转制	11
4	配置		12
	4.1	安装 MTLAB 并设置编程任务环境	12
	4.2	安装 MATLAB	12

E	录	-3/17	_

	4.3	在 Windows 上安装 Octave	12			
	4.4	在 Mac OS X 上安装 Octave	12			
	4.5	GNU/Linux 上安装 Octave	12			
	4.6	更多 Octave/MATLAB 资源	12			
5	多变	量线性回归	13			
	5.1	多功能	13			
	5.2	多元梯度下降法	13			
	5.3	多元梯度下降法演练 I-特征缩放	13			
	5.4	多元梯度下降法演练 II-学习率	13			
	5.5	特征和多项式回归	13			
	5.6	正规方程(区别于迭代方法的直接解决)	13			
	5.7	正规方程在矩阵不可逆情况下的解决方法	13			
	5.8	完成并提交编程作业	13			
6	Octa	we/Matlab 教程	14			
	6.1	基本操作	14			
	6.2	移动数据	14			
	6.3	计算数据	14			
	6.4	数据绘制	14			
	6.5	控制语句:for, while, if 语句	14			
	6.6	矢量	14			
	6.7	本章课程总结	14			
7	Logistic 回归					
	7.1	分类	15			
	7.2	假设陈述	15			
	7.3	决策界限	15			
	7.4	代价函数	15			
	7.5	简化代价函数与梯度下降	15			
	7.6	高级优化	15			
	7.7	多元分类: 一对多	15			
	7.8	本章课程总结	15			
8	正则	化	16			
	8.1	过拟合问题	16			
	8.2	代价函数	16			
	8.3	线性回归的正则化	16			

-4/17-			目	录	
8.4	Logistic 回归的正则化			16	
参考文献					

第1章 绪论:初识机器学习

学而不思则罔,思而不学则怠!

一孔子

1.1 欢迎参加机器学习课程

写 ElegantNote 模板的初衷是为了简化我在写笔记中的工作,因为我不会写类文件和包文件,所以,最当初是想拜托小L做出一个华丽,清爽的 LaTeX 模板,最好是类文件,而且因为这样可以简化导言区复杂的内容。后来,和小L一拍即合,遂开始一起做 Elegant LaTeX 的设计。

在学校的时候,搞定了定理环境样式的代码。因为不想重复 ChinaT_EX 那个经典的页眉页脚,我找到了计量书上的一个图案,小 L 拿 TikZ 一点一点把那个画出来了,不过我最后还是用的截取的方式得到的图案。慢慢地,我们把初步的样子做出来了。

2013年的暑假开始后,我对那个初步的模板做了一点改动,然后用它写了 Dynamic Programing 的笔记,并且,在写的过程中,对模板加了封面,也就是模板现在的封面 (logo 在 Version 2.00 中已经改了)。至此,模板的大致样子终于出来了,不过当时也在写笔记的过程中知道了某些不足,比如

- 1. 定理类的环境在我们这个模板中不能浮动,也不能跨页,在 Version 2.00 版本中已经添加。
- 2. 某些环境不足,比如例子、假设、性质、结论等环境,在1.00版本中已经增加了这几个环境,在2.00版本中,环境设置更加全面。
- 3. 一些我们不可预知的错误将会不期而遇。
- 4. 一些我们目前没有需求,但是可以继续改进的地方,比如表格样式,比如抄录样式等。

写完那个笔记之后越发让我对 Elegant La 模板的制作更有激情,在和小 L 相互讨论的几天里,我们终于得到了 1.00 版本的 Elegant Note 模板。

1.2 什么是机器学习?

在实际应用中,我们发现了一个比较重要的问题,因为在一般的笔记中,定义、定理经常一起出现,和课本区别比较大的是,通常是一堆定义之后,出现一堆性质或者定理。如果出现这种情况,使用 ElegantNote 模板会导致分块很严重,影响排版质量和美观。思前想后,我们决定将 ElegantNote 模板更新为 ElegantBook 模板,并在未来重新设计一个简洁版本的 ElegantNote。至此 ElegantBook 才横空出世,由于更名原因,ElegantBook 1.00 版本也即原来的 ElegantNote,而 ElegantBook 2.00 为目前的正式版本。

1.3 监督学习

我以前从未写过类文件,所以,写这个模板的过程必然是折腾的过程,在写模板的过程中,最主要参考了《写给图EX 2_{ε} 类与宏包的作者》[1]、moderncv.cls 文件、武汉大学黄正华老师的论文模板、《图EX 2_{ε} 完全学习手册》[2]、The Not So Short Introduction to EXT_{ε} X 2_{ε} [3] 以及各大图EX 疑问解答网站,在此为无私奉献的组织和个人表示感谢!忍不住插个图!

图 1.1: Happiness,we have it!

1.4 无监督学习

1.5 问题

第2章 单变量线性回归

故不登高山,不知天之高也;不临深溪,不知地之厚也;不闻先王之遗言,不知学问之大也。

- 荀子

2.1 模型描述

我们目前都是学生,接触 Land Tex 的时间也不是很长,因此,对于此模板的错误还请多多包涵!目前,模板的拓展性或者可移植性有待完善,所以,我们强烈建议用户不要大幅修改模板文件,我们的初衷是提供一套模板,让初学者能够使用一些比较美观,优雅的模板。如果在使用过程中,想修改一些简单的东西需要帮忙,请联系我们,我们的邮箱是:elegantlatex2e@gmail.com。我们将竭尽全力提供帮助!

值此版本发行之际,我们 Elegant Latex 项目组向大家重新介绍一下我们的工作,我们的主页是 http://elegantlatex.tk,我们这个项目致力于打造一系列美观、优雅、简便的模板方便使用者记录学习历史。其中目前在实施或者在规划中的子项目有书籍模板 ElegantBook、笔记模板 ElegantNote、幻灯片模板 ElegantSlide。这些子项目的名词是一体的,请在使用这些名词的时候不要将其断开(如 Elegant Note 是不正确的写法)。并且,Elegant Latex Book 指的即是 ElegantBook。

2.2 代价函数

基于本模板追求视觉上的美观的角度,强烈建议使用者安装./fonts/文件夹下的字体。 出于版权的考虑,务必不能将此模板用于涉及盈利目的的商业行为,否则,后果自负, 本模板带的字体仅供学习使用,如果您喜欢某种字体,请自行购买正版。本文主要使 用的字体如下

- Adobe Garamond Pro
- Minion Pro & Myriad Pro & Inconsolata
- 方正字体
- 华文中宋

Note: 中文正文使用了华文中宋, Minion Pro 为英文衬线字体(\rmfamily), Myriad Pro 为英文非衬线字体(\sffamily), Inconsolata 为英文打字机字体(\ttfamily)。

并且,如果系统内安装了Adobe 字体,大家可以把模板中使用到的黑体,楷体, 宋体等字替换成Adobe 字体,这样可以达到最佳效果。

2.3 代价函数(一)

2.3.1 编译方式

本模板基于 book 文类,所以 book 的选项对于本模板也是有效的。但是,只支持 XqLVTEX,编码为 UTF-8,推荐使用 TeXlive 编译。作者编写环境为 Win8.1(64bit)+TeXlive 2013,由于使用了参考文献,所以,编译顺序为 XqLVTeX->BibTeX->XqLVTeX->XqLVTeX。

本文特殊选项设置共有3类,分为颜色、数学字体以及章标题显示风格。

2.3.2 选项设置

第一类为颜色主题设置,内置3组颜色主题,分别为green(默认),cyan,blue,另外还有一个自定义的选项 nocolor,用户必须在使用模板的时候选择某个颜色主题或选择 nocolor 选项。调用颜色主题 green 的方法为\documentclass[green]{elegantbook}或者使用\documentclass[color=green]{elegantbook}。需要改变颜色的话请选择 nocolor 选项或者使用 color=none,然后在导言区定义 main、seco、thid 颜色,具体的方法如下:

\definecolor{main}{RGB}{70,70,70} %定义main颜色值 \definecolor{seco}{RGB}{115,45,2} %定义seco颜色值 \definecolor{thid}{RGB}{0,80,80} %定义thid颜色值

第二类为数学字体设置,有两个可选项,分别是 mathpazo(默认)和 mtpro2 字体,调用 mathpazo 字体使用 \documentclass[mathpazo]{elegantbook},调用 mtpro2 字体时需要把 mathpazo 换成 mtpro,mathpazo 不需要用户自己安装字体,mtpro2 的字体需要自己安装。

第三类为章标题显示风格,包含 hang(默认)与 display 两种风格,区别在于章标题单行显示(hang)与双行显示(display),本说明使用了 hang。调用方式为 \documentclass[hang]{elegantbook}或者 \documentclass[titlestyle=hang]{elegantbook}。

综合起来,同时调用三个选项使用 \documentclass[color=X,Y,titlestyle=Z] {elegantbook}。其中 X 可以选择 green,cyan,blue,none; Y 可以选择 mathpazo 或者 mtpro; Z 可以选择 hang 或者 display。

表 2.1: ElegantBook 模板中的三套颜色主题

2.3.3 数学环境简介

在我们这个模板中, 定义了三大类环境

- 1. 定理类环境,包含标题和内容两部分。根据格式的不同分为3种
 - newthem、newlemma、newcorol 环境,颜色为主颜色 main,三者编号均以章节为单位;
 - newdef 环境,含有一个可选项,编号以章节为单位,颜色为 seco;
 - newprop 环境,含有一个可选项,编号以章节为单位,颜色为 thid。
- 2. 证明类环境,有newproof、note、remark、solution 环境,特点是,有引导符和引导词,并且 newproof、solution 环境有结束标志。
- 3. 结论类环境,有conclusion、assumption、property 环境,三者均以粗体的引导词为开头,和普通段落格式一致。
- 4. 示例类环境— example、exercise环境,编号以章节为单位,其中 exercise 环境有引导符。
- 5. 自定义环境— custom,带一个必选参数,格式与 conclusion 环境很类似。

2.3.4 可编辑的字段

在模板中,可以编辑的字段分别为作者\author、\email、\zhtitle、\zhend、\entitle、\enend、\version。并且,可以根据自己的喜好把封面水印效果的cover.pdf 替换掉,以及封面中用到的logo.pdf。

- 2.4 代价函数 (二)
- 2.5 梯度下降
- 2.6 梯度下降知识点总结
- 2.7 线性回归的梯度下降
- 2.8 本章课程总结

第3章 线性回归回顾

为往圣继绝学,为万世开太平!

一张载

3.1 矩阵和向量

Nulla malesuada porttitor diam. Donec felis erat, congue non, volutpat at, tincidunt tristique, libero. Vivamus viverra fermentum felis. Donec nonummy pellentesque ante. Phasellus adipiscing semper elit. Proin fermentum massa ac quam. Sed diam turpis, molestie vitae, placerat a, molestie nec, leo. Maecenas lacinia. Nam ipsum ligula, eleifend at, accumsan nec, suscipit a, ipsum. Morbi blandit ligula feugiat magna. Nunc eleifend consequat lorem. Sed lacinia nulla vitae enim. Pellentesque tincidunt purus vel magna. Integer non enim. Praesent euismod nunc eu purus. Donec bibendum quam in tellus. Nullam cursus pulvinar lectus. Donec et mi. Nam vulputate metus eu enim. Vestibulum pellentesque felis eu massa.

考虑如下的随机动态规划问题

$$\max(\min) \quad \mathbb{E} \int_{t_0}^{t_1} f(t, x, u) dt$$

s.t.
$$dx = g(t, x, u) dt + \sigma(t, x, u) dz$$

$$k(0) = k_0 \text{ given}$$

where *z* is stochastic process or white noise or wiener process.

Definition 3.1 Wiener Process

If z is wiener process, then for any partition t_0, t_1, t_2, \ldots of time interval, the random variables $z(t_1) - z(t_0), z(t_2) - z(t_1), \ldots$ are independently and normally distributed with zero means and variance $t_1 - t_0, t_2 - t_1, \ldots$

Fusce mauris. Vestibulum luctus nibh at lectus. Sed bibendum, nulla a faucibus semper, leo velit ultricies tellus, ac venenatis arcu wisi vel nisl. Vestibulum diam. Aliquam pellentesque, augue quis sagittis posuere, turpis lacus congue quam, in hendrerit risus eros eget felis. Maecenas eget erat in sapien mattis porttitor. Vestibulum porttitor. Nulla facilisi. Sed a turpis

eu lacus commodo facilisis. Morbi fringilla, wisi in dignissim interdum, justo lectus sagittis dui, et vehicula libero dui cursus dui. Mauris tempor ligula sed lacus. Duis cursus enim ut augue. Cras ac magna. Cras nulla. Nulla egestas. Curabitur a leo. Quisque egestas wisi eget nunc. Nam feugiat lacus vel est. Curabitur consectetuer.

Example 3.1: E and F be two events such that $\mathbf{P}(E) = \mathbf{P}(F) = 1/2$, and $\mathbf{P}(E \cap F) = 1/3$, let $\mathscr{F} = \sigma(Y)$, X and Y be the indicate function of E and F respectively. How to compute $\mathbb{E}[X \mid \mathscr{F}]$?

Quisque ullamcorper placerat ipsum. Cras nibh. Morbi vel justo vitae lacus tincidunt ultrices. Lorem ipsum dolor sit amet, consectetuer adipiscing elit. In hac habitasse platea dictumst. Integer tempus convallis augue. Etiam facilisis. Nunc elementum fermentum wisi. Aenean placerat. Ut imperdiet, enim sed gravida sollicitudin, felis odio placerat quam, ac pulvinar elit purus eget enim. Nunc vitae tortor. Proin tempus nibh sit amet nisl. Vivamus quis tortor vitae risus porta vehicula.

Exercise 3.1: let $S = l^{\infty} = \{(x_n) \mid \exists M \text{ such that } \forall n, |x_n| \leq M, x_n \in \mathbb{R} \}, \rho_{\infty}(x, y) = \sup_{n \geq 1} |x_n - y_n|, \text{ show that } (l^{\infty}, \rho_{\infty}) \text{ is complete.}$

Theorem 3.1 勾股定理

勾股定理的数学表达(Expression)为

$$a^2 + b^2 = c^2$$

其中a,b为直角三角形的两条直角边长,c为直角三角形斜边长。

Note: 在本模板中,引理(lemma),推论(corollary)的样式和定理的样式一致,包括颜色,仅仅只有计数器的设置不一样。在这个例稿中,我们将不给出引理推论的例子。

Quisque ullamcorper placerat ipsum. Cras nibh. Morbi vel justo vitae lacus tincidunt ultrices. Lorem ipsum dolor sit amet, consectetuer adipiscing elit. In hac habitasse platea dictumst. Integer tempus convallis augue. Etiam facilisis. Nunc elementum fermentum wisi. Aenean placerat. Ut imperdiet, enim sed gravida sollicitudin, felis odio placerat quam, ac pulvinar elit purus eget enim. Nunc vitae tortor. Proin tempus nibh sit amet nisl. Vivamus quis tortor vitae risus porta vehicula.

Proposition 3.1 最优性原理

如果 u^* 在 [s,T] 上为最优解,则 u^* 在 [s,T] 任意子区间都是最优解,假设区间为 $[t_0,t_1]$ 的最优解为 u^* ,则 $u(t_0)=u^*(t_0)$,即初始条件必须还是在 u^* 上。

3.1 矩阵和向量 -9/17-

Fusce mauris. Vestibulum luctus nibh at lectus. Sed bibendum, nulla a faucibus semper, leo velit ultricies tellus, ac venenatis arcu wisi vel nisl. Vestibulum diam. Aliquam pellentesque, augue quis sagittis posuere, turpis lacus congue quam, in hendrerit risus eros eget felis. Maecenas eget erat in sapien mattis porttitor. Vestibulum porttitor. Nulla facilisi. Sed a turpis eu lacus commodo facilisis. Morbi fringilla, wisi in dignissim interdum, justo lectus sagittis dui, et vehicula libero dui cursus dui. Mauris tempor ligula sed lacus. Duis cursus enim ut augue. Cras ac magna. Cras nulla. Nulla egestas. Curabitur a leo. Quisque egestas wisi eget nunc. Nam feugiat lacus vel est. Curabitur consectetuer.

Suspendisse vel felis. Ut lorem lorem, interdum eu, tincidunt sit amet, laoreet vitae, arcu. Aenean faucibus pede eu ante. Praesent enim elit, rutrum at, molestie non, nonummy vel, nisl. Ut lectus eros, malesuada sit amet, fermentum eu, sodales cursus, magna. Donec eu purus. Quisque vehicula, urna sed ultricies auctor, pede lorem egestas dui, et convallis elit erat sed nulla. Donec luctus. Curabitur et nunc. Aliquam dolor odio, commodo pretium, ultricies non, pharetra in, velit. Integer arcu est, nonummy in, fermentum faucibus, egestas vel, odio.

Corollary 3.1

假设 $V(\cdot,\cdot)$ 为值函数,则跟据最大值原理,有如下推论

$$V(k,z) = \max \left\{ u(zf(k) - y) + \beta \mathbb{E}V(y,z') \right\}$$

Proof: 因为 $y^* = \alpha \beta z k^{\alpha}$, $V(k,z) = \alpha/1 - \alpha \beta \ln k_0 + 1/1 - \alpha \beta \ln z_0 + \Delta_{\circ}$

利用 $\mathbb{E}[\ln z'] = 0$,并将对数展开得

右边 =
$$\ln(1 - \alpha\beta) + \ln z + \alpha \ln k + \frac{\alpha\beta}{1 - \alpha\beta} \left[\ln \alpha\beta + \ln z + \alpha \ln k \right] + \frac{\beta}{1 - \alpha\beta} \mu + \beta\Delta$$

= $\frac{\alpha}{1 - \alpha\beta} \ln k + \frac{1}{1 - \alpha\beta} \ln z + \Delta$

所以左边 = 右边,证毕。

Properties: Properties of Cauchy Sequence

- 1. $\{x_k\}$ is cauchy sequence then $\{x_k^i\}$ is cauchy sequence.
- 2. $x_k \in \mathbb{R}^n$, $\rho(x, y)$ is Euclidean, then cauchy is equivalent to convergent, (\mathbb{R}^n, ρ) metric space is complete.

Sed commodo posuere pede. Mauris ut est. Ut quis purus. Sed ac odio. Sed vehicula hendrerit sem. Duis non odio. Morbi ut dui. Sed accumsan risus eget odio. In hac habitasse platea dictumst. Pellentesque non elit. Fusce sed justo eu urna porta tincidunt. Mauris felis odio, sollicitudin sed, volutpat a, ornare ac, erat. Morbi quis dolor. Donec pellentesque, erat ac sagittis semper, nunc dui lobortis purus, quis congue purus metus ultricies tellus. Proin et quam. Class aptent taciti sociosqu ad litora torquent per conubia nostra, per inceptos hymenaeos. Praesent sapien turpis, fermentum vel, eleifend faucibus, vehicula eu, lacus.

Application: This is one example of the custom environment, the key word is given by the option of custom environment.

Suspendisse vel felis. Ut lorem lorem, interdum eu, tincidunt sit amet, laoreet vitae, arcu. Aenean faucibus pede eu ante. Praesent enim elit, rutrum at, molestie non, nonummy vel, nisl. Ut lectus eros, malesuada sit amet, fermentum eu, sodales cursus, magna. Donec eu purus. Quisque vehicula, urna sed ultricies auctor, pede lorem egestas dui, et convallis elit erat sed nulla. Donec luctus. Curabitur et nunc. Aliquam dolor odio, commodo pretium, ultricies non, pharetra in, velit. Integer arcu est, nonummy in, fermentum faucibus, egestas vel, odio.

Definition 3.2 Contraction mapping

 (S, ρ) is the metric space, $T: S \to S$, If there exists $\alpha \in (0,1)$ such that for any x and $y \in S$, the distance

$$\rho(Tx, Ty) \le \alpha \rho(x, y) \tag{3.1}$$

Then T is a contraction mapping.

🛞 Remarks:

- 1. $T: S \to S$, where S is a metric space, if for any $x, y \in S$, $\rho(Tx, Ty) < \rho(x, y)$ is not contraction mapping.
- 2. Contraction mapping is continuous map.

Conclusions: 看到一则小幽默,是这样说的:别人都关心你飞的有多高,只有我关心你的翅膀好不好吃!说多了都是泪啊!

- 3.2 加法和标量乘法
- 3.3 矩阵向量乘法
- 3.4 矩阵乘法
- 3.5 矩阵乘法特征
- 3.6 逆和转制

第4章 配置

为往圣继绝学,为万世开太平!

--张载

- 4.1 安装 MTLAB 并设置编程任务环境
- 4.2 安装 MATLAB
- 4.3 在 Windows 上安装 Octave
- 4.4 在 Mac OS X 上安装 Octave
- 4.5 GNU/Linux 上安装 Octave
- 4.6 更多 Octave/MATLAB 资源

第5章 多变量线性回归

- 5.1 多功能
- 5.2 多元梯度下降法
- 5.3 多元梯度下降法演练 Ⅰ-特征缩放
- 5.4 多元梯度下降法演练 Ⅱ-学习率
- 5.5 特征和多项式回归
- 5.6 正规方程(区别于迭代方法的直接解决)
- 5.7 正规方程在矩阵不可逆情况下的解决方法
- 5.8 完成并提交编程作业

第6章 Octave/Matlab 教程

- **6.1** 基本操作
- **6.2** 移动数据
- **6.3** 计算数据
- **6.4** 数据绘制
- 6.5 控制语句:for, while, if 语句
- 6.6 矢量
- 6.7 本章课程总结

第7章 Logistic 回归

- 7.1 分类
- 7.2 假设陈述
- 7.3 决策界限
- 7.4 代价函数
- 7.5 简化代价函数与梯度下降
- 7.6 高级优化
- 7.7 多元分类:一对多
- 7.8 本章课程总结

第8章 正则化

- 8.1 过拟合问题
- 8.2 代价函数
- 8.3 线性回归的正则化
- 8.4 Logistic 回归的正则化

参考文献

- [1] T. LaTeX. . Project, "LaTeX $2_{\mathcal{E}}$ for class and package writers," 1999.
- [2] 胡大伟,"LYTEX 2₈ 完全学习手册," 2011.
- [3] T. Oetiker, H. Partl, I. Hyna, and E. Schlegl, "The not so short introduction to \LaTeX 2010.