q13

Due Oct 12 at 9am **Points** 5 **Questions** 5

Available Oct 11 at 9am - Oct 12 at 9am 1 day Time Limit 20 Minutes

Attempt History

	Attempt	Time	Score
LATEST	Attempt 1	14 minutes	2 out of 5

① Correct answers will be available on Oct 12 at 9:01am.

Score for this quiz: **2** out of 5 Submitted Oct 11 at 10:46pm This attempt took 14 minutes.

Incorrect

Question 1	0 / 1 pts
Let A have SVD $A=U\Sigma V'$. The solution to $\widehat{x}=\arg\max_{x:\ x\ _2=1}\ AA'x\ _2$, where A is a $M\times N$ matrix of rank r is	
u_M	
\circ σ_1^2	
\circ σ_1	
\circ v_r	
\circ v_1	
$\bigcirc u_1$	

V			
V			
M			
one of these			
$=U\Sigma\Sigma'U'$			
principal right sing	gular vector is <i>u</i>	11.	
	N N M	N M	r M one of these

Question 2	1 / 1 pts
A Hermitian matrix having some elements that are negative car positive definite.	ı be
True	
○ False	
Yes, consider [3 -1; -1 2]	

Question 3 0 / 1 pts

The pseudoinverse of

 $A = \begin{bmatrix} 0 & 0 \\ 1 & 1 \end{bmatrix}$

is

- $\begin{bmatrix} 1/2 & 1/2 \\ 0 & 0 \end{bmatrix}$
- $\begin{bmatrix} 0 & 1 \\ 0 & 1 \end{bmatrix}$
- $\bigcirc \begin{bmatrix} 0 & 0 \\ 1/2 & 1/2 \end{bmatrix}$
- $\begin{bmatrix} 0 & 1/2 \\ 0 & 1/2 \end{bmatrix}$
- None of these.

Here we have an outer product:

$$A = \begin{bmatrix} 0 \\ 1 \end{bmatrix} \begin{bmatrix} 1 & 1 \end{bmatrix}$$

٠

Incorrect

Question 4

0 / 1 pts

Let U be an $N \times N$ unitary matrix and let y be an N-dimensional vector. Which is the most computationally efficient Julia code for solving $\min_x \|Ux - y\|_2^2$?

- \bigcirc $x = U \setminus y$
- x = U / y
- y = U * y
- The question cannot be answered with the given information.

Because U is unitary $U^+ = U'$.

Question 5 1 / 1 pts

If U_1,U_2,U_3 are all $N\times N$ unitary matrices and $\Phi=\begin{bmatrix}U_1&U_2&U_3\end{bmatrix}/\sqrt{3}$ then the frame bound of Φ is

- $0 1/\sqrt{3}$
- **3**
- 0 1/3
- 1/9

O 9
O 2
\bigcirc $\sqrt{3}$
None of these.
1
$\Phi\Phi'=I$
so $\sigma_1 = \sigma_N = 1$

Quiz Score: 2 out of 5