

# ECE3110J/VE311 Electronic Circuits

# **Bipolar Junction Transistor (BJT)**

Microelectronic Circuit Design, Chapter 5 Fundamentals of Microelectronics, Chapter 4

Yuljae Cho, *PhD*Associate Professor
UM-SJTU Joint Institute, SJTU



## **Before the invention of transistors**



**ENIAC** is composed of

- **20,000** vacuum tubes
- 7,200 crystal diodes
- 1,500 relays
- 70,000 resistors
- 10,000 capacitors
- Approximately 5,000,000 hand-soldered joints

Consumed 150 kW of electricity, occupied 167 m<sup>2</sup>, weighed over 27 tones

## From Vacuum tube to Transistor

Instead of controlling an electron in vacuum, transistor controls it in solid materials



The original triode vacuum tube, the Audion, invented by Lee de Forest in 1906. (Image courtesy of Gregory F. Maxwell.)



A replica of the first transistor created in 1947.



In 1947, the world's first transistor was created, which was the beginning of the end for the vacuum tube. The transistor could replicate all the functions of tubes, like switching and amplification, but was made out of semiconductor materials.

### **BJT** and Nobel Prize



Photo from the Nobel Foundation archive. William Bradford Shockley



John Bardeen



Photo from the Nobel
Foundation archive.

Walter Houser
Brattain

Amoy Xiamen

The transistors replaced the vacuum tubes and made a dramatic change in the world of electronics. Bardeen and Brattain together with William Shockley received the Nobel Prize in Physics in 1956 "for their researches on semiconductors and their discovery of the transistor effect.".

# **Device Schematics**







BJT has n+-p-n or p+-n-p structure.

e.g. n<sup>+</sup>-p-n structure

- Emitter: heavily doped n-type
- Base: p-region
- Collector: lower n-region Prain
- Electron diffusion length  $(L_n)$  in base  $\gg W_b$
- Emitter doping  $N_{de} \gg$  base doping  $N_{ab}$   $(I_n \approx I)$





# \*Energy Band of BJT



How can we make the current flow in BJT from C to E, i.e. electrons flow from E to C

## **Modes in BJT**



Saturation mode - both EBJ and BCJ are forward biased, for switching Cutoff mode -both EBJ and BCJ are reverse biased.

Forward active mode - EBJ is forward biased, BCJ is reverse biased, for amplifiers

# (Forward) Active Mode

EBJ (emitter base junction) – forward bias — reduce barrier

BCJ (base collector junction) – reverse bias / Zero (built - in Putertail)

\*Note: voltage notation



EB diode (n<sup>+</sup>-p) is forward biased  $(V_{BE} > 0)$  or  $V_{EB} < 0$ )

→ diffusion of electrons into the p-side

BC diode (p-n) is reversed biased  $(V_{BC} < 0)$  or  $V_{CB} > 0$ )

 $\rightarrow$  transfer of injected electrons into the n-side

# **BJT** as Amplifier

In its simplest form, the bipolar transistor can be viewed as a voltage-dependent current source. We will see how a current source can form an amplifier and hence why bipolar devices are useful and interesting.



Since  $V_1 = V_{in}$  and  $V_{out} = -R_L I_1$ , we have  $V_{out} = \bigcirc KR_L V_{in}$ . If  $KR_L > 1$ , then the circuit is an (inverting) amplifier.

The amplification factor, or voltage gain, of the circuit is  $A_v = \frac{V_{out}}{V_{in}} = -KR_L$ 

## **Structure of BJT**

The BJT consists of three doped regions forming a sandwich. Below is an example comprising of a p layer sandwiched between two n regions and called an npn BJT.



There are three terminal voltages  $V_E$ ,  $V_B$ , and  $V_C$ , and consequently the voltage differences between terminals  $V_{BE}$ ,  $V_{CB}$ , and  $V_{CE}$ . Among various biasing conditions, for amplification of BJT, there is only one biasing condition.  $V_{BE} > 0$   $V_{BC} < 0$ 

# **Transport Model for NPN BJT**



There are also three terminal currents, collector current  $i_C$ , emitter current  $i_E$ , and base current  $i_B$ . The base-emitter voltage  $v_{BE}$  and the base-collector voltage  $v_{BC}$  applied to the two pn junctions determine the magnitude of these three currents in the BJT and are defined as positive when they forward-bias their respective pn junctions.

#### **Forward Characteristics**



The base-emitter voltage establishes emitter current  $i_E$ , which equals the total current crossing the base-emitter junction.

$$i_E = i_C + i_B$$

$$i_C = i_F = I_S [e^{v_{BE}/v_T} - 1], I_S \text{ is the transistor saturation current } 10^{-18} \sim 10^{-9} \text{ [A]}.$$

$$i_B = {}^{i_F}/_{\beta_F} = {}^{I_S}/_{\beta_F} [e^{v_{BE}/v_T} - 1], \beta_F \text{ is Forward common-emitter current gain } 10 \sim 500.$$



By KCL, 
$$i_E = i_C + i_B$$
  
Therefore,  $i_E = I_S \left[ e^{v_{BE}/v_T} - 1 \right] + {I_S}/{\beta_F} \left[ e^{v_{BE}/v_T} - 1 \right] = \left[ I_S + {I_S \over \beta_F} \right] \left[ e^{v_{BE}/v_T} - 1 \right]$ 

By defining  $\alpha_F = \frac{\beta_F}{\beta_F + 1}$ ,  $i_E = \frac{I_S}{\alpha_F} \left[ e^{v_{BE}} / v_T - 1 \right]$ ,  $\alpha_F$  is the forward common-base current gain in the range of  $0.95 \sim 1.0$ 

Finally, 
$$\frac{i_C}{i_B} = \beta_F$$
,  $\frac{i_C}{i_E} = \alpha_F$ 

#### **Reverse Characteristics**



The base-collector voltage establishes the collector current  $i_C$ , now crossing the base-collector junction. The largest portion of the collector current, the reverse-transport current  $i_R$ , enters the emitter, travels completely across the narrow base region, and exits the collector terminal. Current  $i_R$  has a form identical to  $i_F$ :

$$i_{R} = -i_{E} = I_{S}[e^{v_{BC}/V_{T}} - 1]$$



A fraction of the current  $i_R$  must also be supplied as base current through the base terminal:  $i_B = {}^{i_R}/_{\beta_R} = {}^{I_S}/_{\beta_R} \left[ e^{v_{BC}}/_{V_T} - 1 \right], \ \beta_R \text{ is the reverse common-emitter current gain.}$   $i_C = \left( -\frac{I_S}{\alpha_R} \right) \left[ e^{v_{BC}}/_{V_T} - 1 \right], \ \alpha_R \text{ is the reverse common-base current gain in the range of } 0 \sim 0.95.$  The bias condition for the Forward active mode of BJT (a normal BJT operation mode) is  $v_{BE} > 0$  and  $v_{BC} < 0$ .



#### Forward bias

Barrier ↓ and charges flow



$$\mathbf{i}_{C} = \mathbf{i}_{F} = I_{S} \left[ e^{v_{BE}/v_{T}} - \mathbf{1} \right] 
i_{B} = {}^{i_{F}}/_{\beta_{F}} = {}^{I_{S}}/_{\beta_{F}} \left[ e^{v_{BE}/v_{T}} - 1 \right] 
i_{E} = I_{S} \left[ e^{v_{BE}/v_{T}} - 1 \right] + {}^{I_{S}}/_{\beta_{F}} \left[ e^{v_{BE}/v_{T}} - 1 \right] = \left( I_{S} + \frac{I_{S}}{\beta_{F}} \right) \left[ e^{v_{BE}/v_{T}} - 1 \right]$$

## **Example 1**. Find the terminal voltages and currents



$$V_{BE} = 0.75 \text{ V}$$
 and  $V_{BC} = -4.25 \text{ V}$  thus Forward active

$$i_{C} = i_{F} = I_{S} \left[ e^{v_{BE}/V_{T}} - 1 \right] = 0.00107 \text{ A}$$
 $i_{B} = {}^{i_{F}}/\beta_{F} = {}^{I_{S}}/\beta_{F} \left[ e^{v_{BE}/V_{T}} - 1 \right] = 2.14 \times 10^{-5} \text{ A}$ 
 $i_{E} = i_{C} + i_{B} = 0.00109 \text{ A}$ 

**Example 2**. Consider the circuit shown below where  $I_S = 5 \times 10^{-17}$  A and  $V_{BE} = 800$  mV. Assume  $\beta = 100$ . (a) Determine the transistor terminal currents and voltages and verify that the device indeed operates in the active mode. (b) Determine the maximum value of  $R_C$  that permits

operation in the active mode.

$$V_{g} = 0.8V$$
 $V_{E} = 0.V$ 
 $V_{C} = ?$ 
 $I_{C} = I_{S} \left( \frac{e^{2}}{e^{2}} \right) - 1$ 
 $= 6 \times 10^{-11} \left[ \frac{e^{2}}{6.686} \right] - 1$ 
 $= 0.00 / 153 A$ 



# Large-Signal Model of analysis -> brasing

Large signal model can be used for **arbitrarily large voltage and current changes** in the BJT as long as the device operates **in the active mode**.

Since the B-E junction is forward-biased in the active mode, we can place a diode between B-E. Moreover, since  $I_C$  flowing into the emitter depends on only  $V_{BE}$ , we add a voltage-controlled current source between the collector and the emitter.



Large-signal model of BJT

### IV characteristics – Transfer characteristic



Transfer characteristic plots  $I_C$  vs  $V_{BE}$  with the assumption that the  $V_{CE}$  is constant and no lower than the  $V_{BE}$ . If  $V_{CE} > V_{BE}$ , then  $v_{CB} > 0$  or  $v_{BC} < 0$ , meaning that  $v_{CB}$  is reverse biased. Thus, the BJT is in the forward active mode.

 $I_C$  is independent of  $V_{CE}$ ; thus, different values of  $V_{CE}$  do not alter the characteristic.

$$i_{C} = I_{S}[e^{v_{BE}/V_{T}} - 1]$$

## IV characteristics – Output characteristic





Output characteristic shows  $I_C$  for a given  $V_{BE}$  but with  $V_{CE}$  varying.

 $V_{CE} < V_{BE}$ , then  $v_{CB} < 0$  or  $v_{BC} > 0$ , meaning that  $v_{CB}$  is forward biased. Both diodes (B-E and C-B) are on, which is called as saturation.

 $V_{CE} > V_{BE}$ , then  $v_{CB} > 0$  or  $v_{BC} < 0$ , meaning that  $v_{CB}$  is **reverse biased**  $\rightarrow$  Forward active. If  $V_{BE}$  increases  $I_C$  increases because  $i_C = I_S[e^{v_{BE}/V_T} - 1]$ 

#### **Transconductance**

The BJT acts as a voltage-dependent current source when operating in the forward active **region**. What is the measure of the **goodness** of a voltage-dependent current source?

The transistor becomes a better amplifying device by producing larger changes in  $I_C$  in response to a given signal level (V<sub>BE</sub>) applied (I<sub>C</sub>/V<sub>BE</sub>), i.e. a better voltage-dependent current source or voltage-to-current converter.



$$dI_{c} = \int m dV_{c}$$

$$g_{m} = \frac{dI_{C}}{dV_{BE}} = \frac{d}{dV_{BE}} \left(I_{S}exp\frac{V_{BE}}{V_{T}}\right) = \frac{1}{V_{T}}I_{S}exp\frac{V_{BE}}{V_{T}}$$

$$= \frac{I_{C}}{V_{T}}$$

 $g_m = dI_C/dV_{BE}$  simply represents the slope of  $I_C-V_{BE}$  characteristic at a given  $I_{C0}$ , and the corresponding  $V_{BE0}$ . In other words, if  $V_{BE}$  experiences a small perturbation  $\pm \Delta V$  around  $V_{BE0}$ , then the  $I_C$  displays a change of  $\pm g_m \Delta V$  around  $I_{C0}$ .



The transconductance is **fundamentally a function of the I**<sub>C</sub> rather than the I<sub>B</sub>. For example, if I<sub>C</sub> remains constant but  $\beta$  varies, then  $g_m$  does not change but I<sub>B</sub> does.

# Small-Signal Model ? Small changes (ac)

To find a small-signal model of the BJT, we **perturb the voltage difference** between every two terminals while the third terminal remains at a constant potential. And we **determine the changes in the currents** flowing through all terminals, and **represent the results by proper circuit elements.** 



(1) Begin with a change in  $V_{BE}$  while the  $V_{CE}$  is constant. By the definition of the transconductance  $g_m$ ,  $\Delta I_C = g_m \Delta V_{BE} \rightarrow a$  voltage-controlled current source

As 
$$I_C = I_S[e^{V_{BE}/V_T} - 1]$$
,  $\Delta I_C = I_S[e^{V_{BE} + \Delta v_{BE}/V_T} - 1]$ 



For simplicity, we denote  $V_{BE}$  by  $v_{\pi}$  and the change in the  $I_C$  by  $g_m v_{\pi}$ . The change in  $V_{BE}$  creates another change in  $I_B$  as well.

$$\Delta I_{B} = \frac{\Delta I_{C}}{\beta} = \frac{g_{m}}{\beta} \Delta V_{BE} \rightarrow r_{\pi} = \frac{\Delta V_{BE}}{\Delta I_{B}} = \frac{\beta}{g_{m}}$$

This represents a small signal model of the B-E diode as a resistance.

On the contrary,  $V_{CE}$  and  $V_{BC}$  do not result in any change of the small signal result as  $I_{C}$  and  $I_{B}$  are the function of  $V_{BE}$ . The simple small-signal model serves as a powerful tool in the analysis and design of BJT circuits.

Note that small-signal analysis deals with **only small changes** in voltages and currents in a circuit around their quiescent values. Thus, **all constant sources**, **i.e.**, **voltage and current sources that do not vary with time**, **must be set to zero for small-signal analysis**.

e.g., the supply voltage is constant and, while establishing proper bias points, plays no role in the response to small signals. We therefore ground all constant voltage sources and open all constant current sources while constructing the small-signal equivalent circuit.



**Example 3.**  $I_S = 3 \times 10^{-16}$  A,  $\beta = 100$ ,  $V_T = 0.026$  V (a) When  $v_1 = 0$ , verify that the transistor operates in the active mode. (b) Determine the voltage gain of the circuit if the  $v_1$  changes by 1 mV (c) suppose we raise  $R_C$  to 200 and  $V_{CC}$  to 3.6 V. Verify that the device operates in the active mode

and compute the voltage gain.

$$R_{\text{C}} = 100 \Omega$$

$$V_{1} = 0$$

$$V_{1} = 0$$

$$V_{1} = 0$$

$$V_{2} = 1.8 \text{ V}$$

$$V_{3} = 0$$

$$V_{4} = 0$$

$$V_{5} = 0$$

$$V_{5} = 0$$

$$V_{7} = 0$$

(a) 
$$V_{g} = 0.8V$$
  $I_{c} = I_{s} \left[ \exp \left( \frac{V_{be}}{V_{T}} \right) - 1 \right]$ 
 $V_{E} = 0V$   $= 3 \times 10^{-16} \left[ \exp \left( \frac{0.8}{V_{T}} \right) - 1 \right]$ 
 $= (6.92 \text{ mA})$ 
 $V_{c} = I_{c} R_{c} = 100 \times 6.92 \times 10^{-3} = 0.692 V$ 
 $V_{c} = V_{cE} = V_{ow} = 1.8 - 0.692 = 1.108 V$ 
 $V_{cE} = V_{cE} = 0.002 = 0.002 = 0.002 = 0.002 V$ 

$$|b| V_{RE} = 0.80/V$$

$$I_{C} = 0.00719...$$

$$V_{C} = V_{CE} = V_{OUT} = 1.P - 0.71P = 1.0PV$$

$$V_{R_{C}} = 100 \times I_{C} = 0.719V$$

$$A_{V} = \frac{0.001 - 1.100}{0.80 - 0.8} = 27$$

## **Early Effect**

Example 3 points to an important trend if  $\mathbf{R}_{\mathbf{C}} \to \infty$  would the gain also grows indefinitely? The **Early effect** translates to a nonideality in the device which **limits the gain of amplifiers**.



As  $V_{CE} < V_{CE2}$ , the depletion region in C-B areas increases, and thus the slope of the profile increases. Equivalently, the effective  $W_B$  decreases, thereby increasing  $I_C$ . Early effect indicates that the  $V_{CE}$  does affect the  $I_C$ .

With the Early effect, 
$$I_C \approx \left(I_S exp \frac{V_{BE}}{V_T}\right) \left(1 + \frac{V_{CE}}{V_A}\right) V_A = \text{Early voltage}$$

Without the Early effect,  $i_C = I_S[e^{v_{BE}/V_T} - 1]$ 





With the Early effect,  $I_C \approx \left(I_S exp \frac{V_{BE}}{V_T}\right) \left(1 + \frac{V_{CE}}{V_A}\right)$ 



With the Early effect, 
$$I_C \approx \left(I_S exp \frac{V_{BE}}{V_T}\right) \left(1 + \frac{V_{CE}}{V_A}\right)$$

$$\frac{\delta I_C}{\delta V_{CE}} = I_S \left(exp \frac{V_{BE}}{V_T}\right) \left(\frac{1}{V_A}\right) \approx \frac{I_C}{V_A}$$
If  $\mathbf{V_A} \gg \mathbf{V_{CE}}$ , we can see that  $I_C \approx \left(I_S exp \frac{V_{BE}}{V_T}\right) \left(1 + \frac{V_{CE}}{V_A}\right)$  and thus  $I_C \approx \left(I_S exp \frac{V_{BE}}{V_T}\right)$ 

The variation of  $I_C$  with  $V_{CE}$  reveals that the BJT in fact does not operate as an ideal current source, requiring modification of the perspective.

## **Large-Signal and Small-Signal Models with Early Effect**



The presence of Early effect alters the BJT's large signal model as follows:

$$I_C = \left(I_S \exp \frac{V_{BE}}{V_T}\right) \left(1 + \frac{V_{CE}}{V_A}\right)$$

$$I_B = \frac{1}{\beta} \left( I_S \exp \frac{V_{BE}}{V_T} \right)$$

$$I_E = I_C + I_B$$
.

For the small-signal model,  $g_m$  and  $r_{\pi}$  are expressed as below. Thus, the controlled current source remains unchanged.

$$g_{m} = \frac{dI_{C}}{dV_{BE}} = \frac{d}{dV_{BE}} \left( I_{S} exp \frac{V_{BE}}{V_{T}} \right) \left( 1 + \frac{V_{CE}}{V_{A}} \right) = \frac{1}{V_{T}} I_{S} exp \frac{V_{BE}}{V_{T}} \left( 1 + \frac{V_{CE}}{V_{A}} \right)$$

$$= \frac{I_{C}}{V_{T}}$$

$$r_{\pi} = \frac{\beta}{g_{m}} = \beta \frac{V_{T}}{I_{C}}$$

Considering that the  $I_C$  does vary with  $V_{CE}$ , we apply a voltage change at the collector and measure the resulting current change

$$I_{C} + \Delta I_{C} = \left(I_{S}exp\frac{V_{BE}}{V_{T}}\right)\left(1 + \frac{V_{CE} + \Delta V_{CE}}{V_{A}}\right)$$

$$Thus, \quad \Delta I_{C} = \left(I_{S}exp\frac{V_{BE}}{V_{T}}\right)\frac{\Delta V_{CE}}{V_{A}}$$



Since the voltage and current change correspond to the same two terminals, they satisfy Ohm's law, yielding an equivalent resistor  $r_0$ 

$$\Delta I_{C} = \left(I_{S}exp\frac{V_{BE}}{V_{T}}\right)\frac{\Delta V_{CE}}{V_{A}} \rightarrow r_{O} = \frac{\Delta V_{CE}}{\Delta I_{C}} = \frac{V_{A}}{I_{S}exp\frac{V_{BE}}{V_{T}}} \approx \frac{V_{A}}{I_{C}}$$

The small-signal model contains only one extra element  $r_0$  to represent the Early effect. This output resistance  $r_0$  plays a critical role in high gain amplifiers

## **Summary**



**Without Early Effect** 







We must create **proper DC voltages and currents at the device terminals to accomplish two goals**: (1) guarantee **operation in the active mode** (e.g. for npn BJT  $V_{BE} > 0$ ,  $V_{CE} \ge 0$ ); (2) establish the  $I_C$  that yields the required values for the **small signal parameters**  $\mathbf{g}_{m}$ ,  $\mathbf{r}_{O}$ , and  $\mathbf{r}_{\pi}$ .

**Example 4** Draw the small-signal equivalent circuit. Please include the Early effect.



**Example 3.**  $I_S = 3 \times 10^{-16}$  A,  $\beta = 100$ ,  $V_T = 0.026$  V (a) When  $v_1 = 0$ , verify that the transistor operates in the active mode. (b) Determine the voltage gain of the circuit if the  $v_1$  changes by 1 mV (c) suppose we raise  $R_C$  to 200 and  $V_{CC}$  to 3.6 V. Verify that the device operates in the active mode and compute the voltage gain.



(c) 
$$A_V = -9mRc$$
  
 $= -0.266 - x200 = |-53.2|$ 

rnall-Signal mode

$$V_{in} = -\frac{1}{2} \sum_{k=1}^{N} V_{in}$$
 $V_{in} = -\frac{1}{2} \sum_{k=1}^{N} V_{in}$ 
 $V_{in} = -\frac{1}{2} \sum_{k=1}^{N} V_{in}$ 

# PNP BJT - hale current.



Operation of PNP in the active region requires forward biasing the base-emitter junction and reverse-biasing the collector junction. Thus,  $V_{BE} < 0$  (Forward) and  $V_{BC} > 0$  (Reverse). All of the operation principles and equations described for npn transistors apply to pnp devices as well.







$$i_{C} = i_{F} = I_{S} \left[ e^{v_{BE}/V_{T}} - 1 \right]$$
 $i_{B} = {}^{i_{F}}/\beta_{F} = {}^{I_{S}}/\beta_{F} \left[ e^{v_{BE}/V_{T}} - 1 \right]$ 
 $i_{E} = \left( I_{S} + \frac{I_{S}}{\beta_{F}} \right) \left[ e^{v_{BE}/V_{T}} - 1 \right]$ 
 $= I_{C} + I_{A}$ 

$$i_{C} = i_{F} = I_{S} \left[ e^{v_{EB}/v_{T}} - 1 \right]$$

$$i_{B} = {^{i_{F}}/\beta_{F}} = {^{I_{S}}/\beta_{F}} \left[ e^{v_{EB}/v_{T}} - 1 \right]$$

$$i_{E} = \left( I_{S} + \frac{I_{S}}{\beta_{F}} \right) \left[ e^{v_{EB}/v_{T}} - 1 \right]$$

$$= \boxed{1}$$

# PNP BJT Large Signal model DC analy 57.5.





Large-signal model of NPN BJT



Large-signal model of PNP BJT

The difference between the npn and pnp equations relates to the base-emitter voltage that appears in the exponent, and the direction of current flow.

Also, the Early effect can be included as  $I_C = \left(I_S \exp \frac{V_{EB}}{V_T}\right) \left(1 + \frac{V_{EC}}{V_A}\right)$ 

**Example 5.** Determine the terminal currents of  $Q_1$  and verify operation in the forward active region. Assume  $I_S = 2 \times 10^{-16}$  A and  $\beta = 50$  where  $V_A = \infty$  and  $V_T = 0.026$  V.

$$V_{g} = 1.2V$$
 $V_{\overline{e}} = 2V$ 
 $V_{\overline{e}B} = 0.2V$ 

$$I_{c}=I_{s}[exp(\frac{1}{2})-1]$$

$$= 2x10^{-16}[exp(\frac{1}{2})-1]$$



$$V_{c} = 0.92V$$
.  
 $V_{Sc} = 1.2 - 0.92 > 0$ .  $V_{cs} < 0$ .  
 $V_{Es} > 0$ 

# **PNP BJT Small Signal model**



Since the small-signal model represents changes in the voltages and currents, we expect npn and pnp transistors to have similar models. The small signal model of the pnp transistor is indeed identical to that of the npn device.



The direction of currents in the **large-signal model** shows how currents could flow when the pnp transistor is **properly DC biased**.

The direction of currents in the **small-signal model** shows how the ac currents flow when ac voltage **across base-emitter increases**.

**Example 6** Draw the small-signal equivalent circuits for the topologies shown below.





