Taming Pretrained Transformers <u>for Extreme Multi-label Text Classification</u>

Chang et al (2020)

NLP reading club 2021/07/08

Key Points

- Xtreme text classification: given an input text instance, return the most relevant labels from an enormous label collection, where the number of labels could be in the millions or more
- Proposes the X-Transformer, which uses a 2 step process to reduce the label space
- Enables Deep Transformer models to work on a real life scenario product2query on Amazon, as well as giving SOTA results on benchmark datasets

Dataset info

Dataset	ntrn	n_{tst}	$ D_{ m tm} $	$ D_{\mathrm{trn}} $	L	Ī	ñ	K
Eurlex-4K	15,449	3,865	19,166,707	4,741,799	3,956	5.30	20.79	64
Wiki10-31K	14,146	6,616	29,603,208	13,513,133	30,938	18.64	8.52	512
AmazonCat-13K	1,186,239	306,782	250,940,894	64,755,034	13,330	5.04	448.57	256
Wiki-500K	1,779,881	769,421	1,463,197,965	632,463,513	501,070	4.75	16.86	8192

Table 2: Data Statistics. n_{trn} , n_{tst} refer to the number of instances in the training and test sets, respectively. $|D_{trn}|$, $|D_{tst}|$ refer to the number of word tokens in the training and test corpus, respectively. L is the number of labels, \bar{L} the average number of labels per instance, \bar{n} the average number of instances per label, and K is the number of clusters. The four benchmark datasets are the same as AttentionXML [32] for fair comparison.

Modelling steps

Figure 3: The proposed X-Transformer framework. First, Semantic Label Indexing reduces the large output space. Transformers are then fine-tuned on the XMC sub-problem that maps instances to label clusters. Finally, linear rankers are trained conditionally on the clusters and Transformer's output in order to re-rank the labels within the predicted clusters.

- 1. XLNet used to embed labels (using label text or label text + info from +ve instances), these are then clustered
- 2. A Transformer trained to predict cluster from training instances (num clusters <<< num labels)
- 3. Another transformer model is trained to rank the labels on each cluster (more robust training since you only need the samples that belong to each instance)

Experimental results

Eurlex-4K					Wiki-500K					
Method	Source	Relative Improvement over Parabel (%)			Method	Source	Relative Improvement over Parabel (%)			
		Prec@1	Prec@3	Prec@5			Prec@1	Prec@3	Prec@5	
X-Transformer	Table 3	+6.27%	+9.08%	+8.55%	X-Transformer	Table 3	+12.49%	+15.94%	+17.26%	
SLICE	[7, Table 2]	+4.27%	+3.34%	+3.11%	SLICE	[7, Table 2]	+5.53%	+7.02%	+7.56%	
GLaS	[6, Table 3]	-5.18%	-5.48%	-5.34%	GLaS	[6, Table 3]	+4.77%	+3.37%	+4.27%	
ProXML	[2, Table 5]	+3.86%	+2.90%	+2.43%	ProXML	[2, Table 5]	+2.22%	+0.82%	+ 2.92%	
PPD-Sparse	[20, Table 2]	+1.92%	+2.93%	+2.92%	PPD-Sparse	[20, Table 2]	+2.39%	+2.33%	+ 2.88%	
SLEEC	[9, Table 2]	-3.53%	-6.40%	-9.04%	SLEEC	[9, Table 2]	-29.84%	-40.73%	-45.08%	

Table 6: Comparison of Relative Improvement over Parabel. The relative improvement for each state-of-the-art (SOTA) method is computed based on the metrics reported from its original paper as denoted in the Source column.

Resources

- Github repo
- <u>paper</u>