Chapter 6

Exercise (2). Suppose $n \in \mathbb{Z}$. If n^2 is odd, then n is odd.	
Proof: Write your answer here.	
Exercise (3). Prove that $\sqrt[3]{2}$ is irrational.	
Proof: Write your answer here.	
Exercise (4). Prove that $\sqrt{6}$ is irrational.	
Proof: Write your answer here.	
Exercise (8). Suppose $a, b, c \in \mathbb{Z}$. If $a^2 + b^2 = c^2$, then a or b is even.	
Proof: Write your answer here.	
Exercise (9). Suppose $a, b \in \mathbb{R}$. If a is rational and ab is irrational, then b is irrational.	
Proof: Write your answer here.	
Exercise (11). There exist no integers a and b for which $18a + 6b = 1$.	
Proof: Write your answer here.	
Exercise (12). For every positive $x \in \mathbb{Q}$, there is a positive $y \in \mathbb{Q}$ for which $y < x$.	
Proof: Write your answer here.	
Exercise (16). If a and b are positive real numbers, then $a + b \ge 2\sqrt{ab}$.	
Proof: Write your answer here.	
Exercise (19). The product of any five consecutive integers is divisible by 120. (For example, the product of 3, 4, 5, 6 and 7 is 2520, and $2520 = 120 \cdot 21$.)	ıple,
Proof: Write your answer here.	
Chapter 7	
Exercise (1). Suppose $x \in \mathbb{Z}$. Then x is even if and only if $3x + 5$ is odd.	
Proof: Write your answer here.	
Exercise (4). Let a be an integer. Then $a^2 + 4a + 5$ is odd if an d only if a is even.	

Proof: Write your answer here. \square Exercise (7). Suppose $x, y \in \mathbb{R}$. Then $(x + y)^2 = x^2 + y^2$ if and only if x = 0 or y = 0.

Proof: Write your answer here. \square Exercise (Reflection Problem). Proof: Write your answer here. \square

.