— Plano de Ensino 2023.2 —

Código	DCC831, DCC030, DCC049, MAT041
Disciplina	Métodos Formais
Turma	•••
Professor	Haniel Barbosa
Horário	$2a/4a \ 09:25-11:05$
Sala	2009 - ICEx

Ementa. Métodos formais tem como principal característica a especificação precisa de propriedades que um dado sistema deve satisfazer. Métodos formais permitem especificações precisas através do uso de linguagens munidas de sintaxe, semântica e teoria formalizadas. O formalismo ajuda no processo de especificação de ao menos duas maneiras:

- naturalmente leva a especificações não-ambíguas de alta qualidade; e
- provê uma plataforma para o uso de ferramentas de raciocínio lógico automático.

Como veremos, técnicas de especificação formal permitem a construção de ferramentas de verificação altamente automatizadas, as quais ajudam desenvolvedores a analisar especificações, e suas respectivas implementações, buscando por erros em requisitos, modelos, designs e implementações.

Nesta disciplina estudaremos diferentes técnicas para o desenvolvimento de sistemas formais, cobrindo todo o processo de desenvolvimento: da modelagem em alto nível da semântica do sistema até da sua implementação e como depurá-la. A disciplina não é meramente teórica, no entanto: estes tópicos serão cobertos principalmente através do uso de ferramentas para a aplicação destas técnicas.

Programa.

Class	Date	Content
_	14/08 (Mon)	No class
_	16/08 (Mon)	No class
1	21/08 (Mon)	Course Introduction; Set Theory Recap
2	23/08 (Wed)	Introduction to Alloy
3	$28/08 \; (Mon)$	Introduction to Alloy
4	$30/08 \; (Wed)$	Introduction to Alloy
5	$04/09 \; (Mon)$	Introduction to Alloy
6	$06/09 \; (Wed)$	Academia example
8	$11/09 \; (Wed)$	Dynamic Systems: State Machines
7	$13/09 \; (Mon)$	Laboratory: Memory Management
9	$18/09 \; (Mon)$	Temporal operators
10	$20/09 \; (Wed)$	Temporal operators
11	$25/09 \; (Mon)$	Family model as a Transition System
12	$27/09 \; (Wed)$	Family model as a Transition System
13	$02/10 \; (Mon)$	Exam 1
_	$04/10 \; (Wed)$	No class
14	$09/10 \; (Mon)$	Alloy Proof Obligations and SAT Encodings
15	$11/10 \; (Wed)$	SAT solving
16	$16/10 \; (Mon)$	Encoding Alloy into SAT
17	$18/10 \; (Wed)$	Encoding Alloy into SMT
18	21/10 (Sat)	Laboratory: SAT and SMT solving
19	$23/10 \; (Mon)$	Introduction to Dafny
20	$25/10 \; (Wed)$	Introduction to Dafny
21	$30/10 \; (Mon)$	Arrays, Invariants and Frame Conditions

$01/11 \; (Wed)$	Arrays, Invariants and Frame Conditions
$06/11 \; (Mon)$	OO programming and verification
$08/11 \; (Wed)$	OO programming and verification
$13/11 \; (Mon)$	Dynamic Heap Data Structures
$15/11 \; (Wed)$	No class
$20/11 \; (Mon)$	Laboratory: OO in Dafny
$22/11 \; (Wed)$	Exam 2
$27/11 \; (Mon)$	Project sync-up
29/11 (Wed)	Project sync-up
$04/12 \; (Mon)$	Make-up exam
	06/11 (Mon) 08/11 (Wed) 13/11 (Mon) 15/11 (Wed) 20/11 (Mon) 22/11 (Wed) 27/11 (Mon) 29/11 (Wed)

Bibliografia. A disciplina não possui um livro-texto. Diversos materiais de leitura, entre notas de aula, tutoriais, capítulos de livros e artigos, serão passados durante o semestre e serão disponibilizados na página da disciplina.

Material de apoio. https://hanielbarbosa.com/teaching/ufmg/2023-2/fm/

Avaliações.

1	Prova 1	20%	02/10
2	Prova 2	20%	22/11
3	Mini-Projeto 1 (Alloy)	15%	
4	Mini-Projeto 2 (Dafny)	15%	
5	Projeto (Alloy)	30%	