The Two-Phase Simplex Method

LI Xiao-lei

Preview

- When a basic feasible solution is not readily available, the two-phase simplex method may be used as an alternative to the big M method.
- In the two-phase simplex method, we add artificial variables to the same constraints as we did in big M method. Then we find a bfs to the original LP by solving the Phase I LP.
- In the Phase I LP, the objective function is to minimize the sum of all artificial variables.
- At the completion of Phase I, we reintroduce the original LP's objective function and determine the optimal solution to the original LP.

Step 1

Modify the constraints so that the right-hand side of each constraint is nonnegative. This requires that each constraint with a negative right-hand side be multiplied through by -1.

Step 1'

Identify each constraint that is now an = or ≥ constraint. In step 3, we will add an the artificial variable to each of these constraints.

Step 2

Convert each inequality constraint to standard form.

For \leq constraint i, we add a slack variable s_i ;

For \geq constraint i, we add an excess variable e_i ;

Step 4

For now, ignore the original LP's objective function. Instead solve an LP whose objective function is min w'=(sum of all the artificial variables). This is called the **Phase I LP**. The act of solving the phase I LP will force the artificial variables to be zero.

Since each $a_i \ge 0$, solving the Phase I LP will result in one of the following three cases:

Case 1

The optimal value of w is greater than zero. In this case, the original LP has no feasible solution.

Case 2

The optimal value of w' is equal to zero, and no artificial variables are in the optimal Phase I basis. In this case, we drop all columns in the optimal Phase I tableau that correspond to the artificial variables. We now combine the original objective function with the constraints from the optimal Phase I tableau. This yields the Phase II LP. The optimal solution to the Phase II LP is the optimal solution to the original LP.

Case 3

The optimal value of w' is equal to zero and at least one artificial variable is in the optimal Phase I basis. In this case, we can find the optimal solution to the original LP if at the end of Phase I we drop from the optimal Phase I tableau all nonbasic artificial variables and any variable from the original problem that has a negative coefficient in row 0 of the optimal Phase I tableau.

Phase I and II feasible solutions

- Suppose the original LP is infeasible. Then the only way to obtain a feasible solution to the Phase I LP is to let at least one artificial variable be positive. In this situation, w'>0 will result.
- On the other hand, if the original LP has a feasible solution, this feasible solution is feasible in the Phase I LP and yields w'=0. This means that if the original LP has a feasible solution, the optimal Phase I solution will have w'=0.

The Bevco problem

```
min z=2x_1+3x_2

s.t. 1/2x_1+1/4x_2 \le 4 (sugar constraint)

x_1+3x_2 \ge 20 (vitamin C constraint)

x_1+x_2=10 (10 oz in bottle of Oranj)

x_1,x_2 \ge 0
```

Solution

As in the Big M method, step 1-3 transform the constraints into

$$1/2 x_1+1/4x_2+s_1 =4$$

 $x_1+3x_2-e_2+a_2=20$
 $x_1+x_2+a_3=10$

Step 4 yields the following Phase I LP:

min w'=
$$a_2+a_3$$

s.t. $1/2 x_1+1/4x_2+s_1 =4$
 $x_1+3x_2-e_2+a_2=20$
 $x_1+x_2+a_3=10$

This set of equations yields a starting bfs for Phase $I(s_1=4,a_2=20,a_3=10)$.

Note:

The row 0 for this tableau (w'- a_2 - a_3 =0) contains the basic variables a_2 and a_3 .as in the Big M method, a_2 and a_3 must be eliminated from row 0 before we can solve Phase I.

To eliminate a_2 and a_3 from row 0,

```
Row 0: w' -a_2-a_3=0
+Row 2: x_1+3x_2-e_2+a_2=20
+Row 3: x_1+x_2+a_3=10
=New row 0: w' +2x_1+4x_2-e_2=30
```

Combining the new row 0 with the Phase I constraints yields the initial Phase I tableau:

Initial Phase I tableau for Bevco

W'	X ₁	X_2	S ₁	$\mathbf{e_2}$	a_2	a_3	rhs	Basic variable	ratio
1	2	4	0	-1	0	0	30	W'=30	
0	1/2	1/4	1	0	0	0	4	s ₁ =4	16
0	1	3	0	-1	1	0	20	a ₂ =20	20/3*
0	1	1	0	0	0	1	10	a ₃ =10	10

Note: Phase I problem is always a min problem, even if the original LP is a max problem.

After performing the necessary ero's, we obtain the second tableau.

Racic

Phase I tableau for Bevco after one iteration

W'	x ₁	X ₂	s ₁	e ₂	a ₂	a_3	rhs	variable	ratio	
1	2/3	0	0	1/3	-4/3	0	10/3	W'=10/3		
0	5/12	0	1	1/12	-1/12	0	7/3	$s_1 = 7/3$	28/5	
0	1/3	1	0	-1/3	1/3	0	20/3	x ₂ =20/3	20	
0	2/3	0	0	1/3	-1/3	1	10/3	a ₃ =10/3	5*	

After performing the necessary ero's, we obtain the third tableau.

Pacie

Phase I tableau for Bevco after two iteration

W'	X ₁	X_2	S ₁	$\mathbf{e_2}$	a_2	a_3	rhs	variable
1	0	0	0	0	-1	-1	0	W'=0
0	0	0	1	-1/8	1/8	-5/8	1/4	s ₁ =1/4
0	0	1	0	-1/2	1/2	-1/2	5	x ₂ =5
0	1	0	0	1/2	-1/2	3/2	5	x ₁ =5

- Since w'=0, Phase I has been concluded. The basic feasible solution $s_1=1/4, x_2=5, x_1=5$ has been found.
- Since no artificial variables are in the optimal Phase I basis, the problem is an example of Case 2.
- We now drop the columns for the artificial variables a_2 and a_3 and reintroduce the original objective function.

min
$$z=2x_1+3x_2$$
 or $z-2x_1-3x_2=0$

Since x_1 and x_2 are both in the optimal Phase I basis, they must be eliminated from the Phase II row 0.

```
Phase II row 0: z-2x_1-3x_2 = 0
+3(row 2): 3x_2-3/2e_2=15
+2(row 3): 2x_1 + e_2=10
= New Phase II row 0: z -1/2e_2=25
We now begin Phase II with the following set of equations: min z -1/2e_2=25
s.t s_1-1/8e_2=1/4
x_2 -1/2e_2=5
x_1 +1/2e_2=5
```

This is optimal.

The optimal solution is $z=25 x_1=5 x_2=5 s_1=1/4 e_2=0$.

We modify Bevco's problem that 36 mg of vitamin C are required. Then, we know that this problem is infeasible. We begin with the original problem:

```
min z=2x_1+3x_2

s.t. 1/2x_1+1/4x_2 \le 4 (sugar constraint)

x_1+3x_2 \ge 36 (vitamin C constraint)

x_1+x_2=10 (10 oz in bottle of Oranj)

x_1,x_2 \ge 0
```

Solution

After completing steps 1-4 of the two-phase simplex, we obtain the following Phase I problem:

min w'=
$$a_2+a_3$$

s.t. $1/2 x_1+1/4x_2+s_1 =4$
 $x_1+3x_2-e_2+a_2=36$
 $x_1+x_2+a_3=10$

From this set of equations, we see that the initial Phase I bfs is s1=4,a2=36 and a3=10.

Since the basic variables a2 and a3 occur in the Phase I objective function, they must be eliminated from the Phase I row 0.

```
Row 0: w' -a_2-a_3=0
+Row 2: x_1+3x_2-e_2+a_2=36
+Row 3: x_1+x_2+a_3=10
=New row 0: w' +2x_1+4x_2-e_2=46
```

With the new row 0, the initial Phase I tableau is:

W'	x ₁	X_2	s ₁	$\mathbf{e_2}$	a_2	a_3	rhs	Basic variable	ratio	
1	2	4	0	-1	0	0	46	W'=46		_
0	1/2	1/4	1	0	0	0	4	s ₁ =4	16	
0	1	3	0	-1	1	0	36	a ₂ =36	12	
0	1	1	0	0	0	1	10	a ₃ =10	10*	

 x_2 to enter, a_3 to leave the basis, the new tableau is:

W'	x ₁	\mathbf{X}_2	s ₁	\mathbf{e}_{2}	a_2	a_3	rhs	Basic variable
1	-2	0	0	-1	0	-4	6	W'=6
0	1/4	0	1	0	0	-1/4	3/2	s ₁ =3/2
0	-2	0	0	-1	1	-3	6	a ₂ =6
0	1	1	0	0	0	1	10	x ₂ =10

- Since no variable in row 0 has a positive coefficient, this is an optimal Phase I tableau.
- Since the optimal value of w' is 6>0, the original LP must have no feasible solution.

Remarks

- As with the Big M method, the column for any artificial variable may be dropped from future tableaus as soon as the artificial variable leaves the basis.
- The Big M method and Phase I of the twpphase method make the same sequence of pivots. The two-phase method does not cause roundoff errors and other computational difficulties.