IC111 Linear Algebra

School of Basic Sciences

Indian Institute of Technology-Mandi

Linear Algebra Notes (Version 1.1)

Bachelor of Engineering

May 30, 2013

Chapter 1

Vector Spaces

1.1 Group

Binary Operator: A Binary operator on a non-empty set S is a map from its cartesian product $S \times S$ to S. Let * be the binary operation on S then we have

$$*: \mathbf{S} \times \mathbf{S} \longrightarrow \mathbf{S}$$

Group: A non-empty set G, together with a binary operation * is said to form a group, if it satisfies the following properties.

- 1. Associativity: $a*(b*c) = (a*b)*c \quad \forall a,b,c \in G.$
- 2. Existence of Identity: \exists an element $e \in G$ such that

$$a * e = e * a = a$$
 $\forall a \in G$

where, e is the identity element.

3. Existence of inverse: For every $a \in G$, $\exists a' \in G$ such that

$$a * a' = a' * a = e$$

Here, a' is called an inverse element of a.

Remarks

- 1. If * is a binary operation on G then G is said to satisfy closure property.
- 2. Identity element for a group is unique.
- 3. Inverse of an element is also unique.
- 4. Existence of right identity and left inverse does not form a group.
- 5. Existence of left identity and right inverse also does not form a group.
- 6. In above definition, existence of right identity and right inverse is sufficient to form a group because right identity is also left identity and right inverse is also left inverse.
- 7. If a' be the inverse element of a then, (a')' = a.