Homework

Ding Yaoyao, 516030910572

2017-11-24

Exercise 2-4

1

If $(a,b) \in \mathbb{Z}_9 \oplus \mathbb{Z}_6$ and |(a,b)| = 9, we have

$$lcm(|a|, |b|) = 9.$$

Also |a| may be one of $\{1,3,9\}$ and |b| may be one of $\{1,2,3,6\}$. Thus |a|=9 and |b|=1 or 3. Thus there are totally $6\times 3=18$ elements whose order is 9.

3

 $Z \oplus Z$ is not a cyclic group.

Proof by contradiction:

If $Z \oplus Z$ is a cyclic group, we let (a,b) be a generator. Then we can get |a|=1 and |b|=1 (otherwise (1,1) can not be generated by (a,b),here |a| means the absolute value of a).

But it's obvious that any one of (1,1), (1,-1), (-1,1), (-1,-1) can not generate $Z \oplus Z$ (for example, none can generate (1,0)).

So $Z \oplus Z$ is not a cyclic group.

5

```
Let a=(1,0)\in Z_8\oplus Z_2, we have |a|=8.

If (b,c)\in Z_4\oplus Z_4, we have |(b,c)|=lcm(|b|,|c|)=max(|b|,|c|)\leq 4.

So Z_8\oplus Z_2 is not isomorpic to Z_4\oplus Z_4.
```

7

Let $S = \{1, -1\}.$

• $S \subseteq R^*$ and $R^+ \subseteq R^*$: Beacuse the group R^* is an abelian group, all of its subgroup are normal.

• $R^* = R^+ S$: By $R^+ \leq R^*$ and $S \leq R^*$, we can get $R^+ S \subseteq R^*$.

For any $x \in R^*$, we have

$$x = |x|\phi(x)$$

 $\phi(x)=1$ if x>0 and $\phi(x)=-1$ if x<0. Beacuse $\phi(x)\in\{-1,1\}$ and $|x|\in Z^+,$ we have $x\in R^+S.$ Then we can get $R^*\subseteq R^+S.$

Thus $R^* = R^+ S$.

• $R^+ \cap S = \{1\}: -1 \notin R^+ \text{ and } 1 \in R^+, \text{ so } R^+ \cap S = \{1\}.$

Thus R^* is the internal direct product of R^+ and $\{1, -1\}$.

8

Beacuse |(1,0) + H| = 2, |(0,1) + H| = 2 and $(1,0) + H \neq (0,1) + H$, we know that $G/H \cong Z_2 \oplus Z_2$.

Beacuse |(1,1) + K| = 4, we know that $G/K \cong \mathbb{Z}_4$.

14

Let $a = ord(a_1, a_2, \dots, a_n)$ and $b = lcm(ord(a_1), ord(a_2), \dots, ord(a_n))$.

• *a* | *b*:

$$(a_1, a_2, \dots, a_n)^b = (a_1^b, a_2^b, \dots, a_n^b) = (1, 1, \dots, 1)$$

Then $a \mid b$.

• *b* | *a*:

$$(a_1, a_2, \dots, a_n)^a = (a_1^a, a_2^a, \dots, a_n^a) = (1, 1, \dots, 1)$$

Then

$$a_i^a = 1 \Rightarrow ord(a_i) \mid a(\text{for all } i = 1, 2, \dots, n)$$

So

$$b = lcm(ord(a_1), ord(a_2), \dots, ord(a_n)) \mid a$$

Thus $b \mid a$.

So $ord(a_1, a_2, \dots, a_n) = lcm(ord(a_1), ord(a_2), \dots, ord(a_n)).$

Addition

Problem:Show that Z_{145} is a cyclic group.

By Sylow Theorem, there are Sylow 29-subgroup and Sylow 5-subgroup. Beacuse

$$n_{29} \equiv 1 \pmod{29}$$
 and $n_{29} \mid 5$

We have $n_{29} = 1$. Similarly, we can get $n_5 = 1$. So there are only one Sylow 29-subgroup and one Sylow 5-subgroup, we call them H and K, respectively. Then H and K are both normal subgroups.

 $\text{If } a \in H \cap K, \, |a| \mid 29 \text{ and } |a| \mid 5, \, \text{then } |a| = 1, \, \text{thus } H \cap K = \{1\}.$

$$|HK| = \frac{|H||K|}{|H \cap K|} = 145.$$

So $HK = Z_{145}$. So G = HK is an internal direct product of H and K, Thus $G \cong H \times K$. The order of $(1,1) \in H \times K$ is lcm(29,5) = 145, so $H \times K$ is a cylic group, thus G is a cylic group.