04/29/2024

PHYS31.01: Analytical Physics 1

1. Equation of Motion of Linear Oscillation

 $a+\omega_f^2x=constant$

 $a:\ acceleration$

 ω_f^2 : proportionality constant

x: displacement of object about equilibrium point

2. Some Formulas

Linear Oscillation

$$a = -\omega_f^2 x$$
$$v_{max} = \omega_f A$$

Rotational Oscillation

$$\alpha = -\omega_f^2 \theta$$

$$\omega_{max} = \omega_f^2 A$$

3. Equation of Motion of Linear Oscillation Summary of Oscillation Parameters:

Amplitude: maximum angular displacement

Period: time to complete one cycle

Phase: indicates lead or lag of oscillation

INC

4. Plots

Just some calculus of trig functions lol

5. Phase Constant

When phase constant is zero, the position is max and velocity is zero.

When phase constant is negative, the position

When phase constant is *positive*, the position

INC

6. Problems Involving SHM Linear Oscillation (Horizontal)

Recall: Hooke's Law

$$F_{spring} = -kx$$

How??

$$ma = -kx$$

$$a = -\frac{k}{m}x$$

$$Recall : a = -\omega_f^2 x$$

$$\omega_f^2 = \frac{k}{m}$$

$$\omega_f = \sqrt{\frac{k}{m}}$$

$$f = \frac{\omega_f}{2\pi} = \frac{1}{2\pi} \sqrt{k/m}$$

$$Period(T_{per}) = 2\pi \sqrt{m/k}$$

$$Linear\ Osci$$

$$a + \frac{k}{m}x = 0$$

Linear Osci

$$a + \frac{k}{m}x = 0$$

 $Linear\ Osci$

$$a + \frac{k}{m}x = 0$$

Linear Oscillation (Vertical)

$$a + \frac{k}{m}y = -g$$
$$-ky - mg = ma$$

$$\omega_f = \sqrt{k/m}$$

Rotational Oscillation (Simple Pendulum)

The gravitational force does torque on a simple pendulum

Equation of Motion:

$$-mgLsin\theta = I\alpha = mL^{2}\alpha$$

$$-gsin\theta = L\alpha$$

$$sin\theta \approx \alpha (for small oscillations)$$

$$\alpha + \frac{g}{L}\theta = 0$$

Solution:

$$\theta(t) = \theta_0 cos(\omega_f t + \delta)$$

Angular Frequency:

$$\omega_f = \sqrt{\frac{g}{L}}$$

Rotational Oscillation (Physical Pendulum)

The gravitational force does torque on a physical pendulum

Equation of Motion:

??

Solution:

$$\theta(t) = \theta_0 cos(\omega_f t + \delta)$$

Angular Frequency:

$$\omega_f = \sqrt{\frac{MgL}{I}}$$

Math 10: Mathematics in the Modern World

1. Centrality

- a concept in graph theory used to measure the *importance* of certain vertices in a graph. It can be described in a variety of ways.
- assigns a numerical value to a vertex that helps you compare vertices in your network in terms of importance and criticality.

(a) Degree Centrality

- the higher the degree, the more important a node is (larger immediate connections).

Ex: (Social media connections)

(b) Closeness Centrality

- the geodesic distance between two vertices u and v is the number of edges, if any, on a shortest path between u and v. If the vertices are not connected by a path, their geodesic distance is inf.
- the *closeness centrality* of a vertex is the sum of the geodesic distance between that vertex and all the other vertices in the network, i.e.

$$C(u) = \sum_{i=1}^{n} d(u, v_i)$$

- vertices with high closeness centrality are those that can access the rest of the vertices with $\underline{\text{less work}}$.

(c) Betweenness Centrality

- measures the importance of a vertex in a network based upon how many times it occurs in the shortest path between all pairs of vertices in a graph.

- It is given as follows:

$$B(u) = \sum_{a,b \in V(G)} \frac{\textit{no. of shortest paths between a and b, passing through } u}{\textit{no. of shortest paths between a and b}}$$

- Vertices with high betweenness centrality are important because their absence or removal in the network would *disrupt* the paths between many pairs of vertices in the network.

2.