Stats 511 Notes

1.1 Fisher Information

Remark 1.1.1. Notes on Notation

- Fisher information is a way of measuring the amount of information that an observable random variable X carries about an unknown parameter θ .
- The probability function for a random variable *X* is a function

$$f(X;\theta)$$

- It is the probability mass (or probability density) of the random variable X conditional on the value of θ . The likelihood function for a parameter θ is a function

$$L(x; \theta)$$

- It is the likelihood of the parameter θ given an outcome x.
- When observing X = x,

$$f(X = x; \theta) = L(x; \theta)$$

- The expression $\mathbb{E}[...|\theta]$ denotes the conditional expectation over the values for X with respect to the probability function $f(X;\theta)$ given θ .

$$I(\theta) = \mathbb{E}_{\theta} \left[\frac{\partial}{\partial \theta} log f(X; \theta) \right] = \mathbb{E} \left[\left(\frac{\partial}{\partial \theta} log f(X; \theta) \right) | \theta \right]$$

Motivation:

- Intuitively, if $\mathbb{P}(A)$ is small, then the occurrence of this event brings us much information.
- For a random variable $X \sim f(X; \theta)$, if θ_0 were the true value of the parameter, the likelihood function should be really large, that is, $L(x; \theta_0)$ is large, or
- equivalently, the derivative of log-likelihood function should be close to zero, and this is the basic principle of MLE.
- Score function is the derivative of log-likelihood function.
- If score function $\ell'(X|\theta)$ is close to zero, then MLE is close to θ_0 , meaning that the random variable X does not provide much information about θ .
- If score function $|\ell'(X|\theta)|$ or $[\ell'(X|\theta)]^2$ is large, then MLE is far away from θ , meaning that the random variable provides much information about θ .
- Thus, we can use $[\ell'(X|\theta)]^2$ to measure the amount of information provided by X.
- Since X is random, we consider the average amount of information provided by X about the parameter θ .

Lemma 1.1.2. Fisher Information

If $f(x;\theta)$ satisfies (the regularity condition of interchange of derivative and integral)

$$\frac{\mathrm{d}}{\mathrm{d}\theta} \mathbb{E}_{\theta} \left[\frac{\partial}{\partial \theta} log f(X; \theta) \right] = \frac{\mathrm{d}}{\mathrm{d}\theta} \int \left(\frac{\partial}{\partial \theta} log f(X; \theta) \right) f(X; \theta) \mathrm{d}X = \int \frac{\partial}{\partial \theta} \left(\frac{\partial}{\partial \theta} log f(X; \theta) \right) f(X; \theta) \mathrm{d}X$$

(true for an exponential family), and $log f(X; \theta)$ is twice differentiable with respect to θ , then

$$I(\theta) = \mathbb{E}_{\theta} \left[\left(\frac{\partial}{\partial \theta} log f(X; \theta) \right)^{2} \right] = -\mathbb{E}_{\theta} \left[\frac{\partial^{2}}{\partial \theta^{2}} log f(X; \theta) \right]$$

1.2 Asymptotics: Point Estimation

1.2.1 Regularity Conditions (CB Ch10 Misc)

- 1 4 are sufficient to prove consistency of MLEs.
 - 1. We observe $X_1, ... X_n$, where $X_i \sim f(x|\theta)$ are iid.
 - 2. The parameter is *identifiable*; that is, if $\theta \neq \theta'$, then $f(x|\theta) \neq f(x|\theta')$.
 - 3. The densities $f(x|\theta)$ have common support, and $f(x|\theta)$ is differentiable in θ .
 - 4. The parameter space Ω contains an open set ω of which the true parameter value θ_0 is an interior point.
- 1 6 are sufficient to prove asymptotic normality and efficiency of MLEs.
 - 5. For every $x \in \mathcal{X}$, the density $f(x|\theta)$ is three times differentiable with respect to θ , the third derivative is continuous in θ and $\int f(x|\theta) dx$ can be differentiated three times under the integral sign. That is, interchange of integration and differentiation is allowed.
 - 6. For any $\theta_0 \in \Omega$, there exists a positive number c and a function M(x) (both of which depend on θ_0) such that

$$\frac{\partial^3}{\partial \theta^3} log f(x|\theta) \le M(x)$$
 for all $x \in \mathcal{X}$, $\theta_0 - c \le \theta \le \theta_0 + c$

with $\mathbb{E}_{\theta_0} < \infty$

1.2.2 UMVUE and Cramer-Rao (CB 7.3.2)

Definition 1.2.1. UMVUE

An estimator W is a best unbiased estimator/UMVUE of $\tau(\theta)$ if

- (i) (unbiasedness of W) $\mathbb{E}_{\theta}W = \tau(\theta)$ for all θ
- (ii) (unbiasedness of an arbitrary W) $\mathbb{E}_{\theta}W' = \tau(\theta)$ for all θ

Then, (W is the best) $Var_{\theta}W \leq Var_{\theta}W'$

Theorem 1.2.2. Cramer-Rao Inequality

Under the regularity condition 7 that allows interchange of integration and differentiation.

Let $X_1, ..., X_n$ be a sample with pdf $f(x; \theta)$.

Let $W(X^n)$ be **any** estimator satisfying

$$\frac{\mathrm{d}}{\mathrm{d}\theta}\mathbb{E}_{\theta}W(X^n) = \int_X \frac{\partial}{\partial\theta}[W(x^n)f(x^n;\theta)]\mathrm{d}x^n$$

(ii) $\operatorname{Var}_{\theta} W(X^n) < \infty$

Then,

$$\operatorname{Var}_{\theta} W(X^{n}) \geqslant \frac{\left(\frac{\mathrm{d}}{\mathrm{d}\theta} \mathbb{E}_{\theta} W(X^{n})\right)^{2}}{\mathbb{E}_{\theta} \left(\left(\frac{\partial}{\partial \theta} log f(X^{n}; \theta)\right)^{2}\right)}$$

Corollary 1.2.3. Cramer-Rao Inequality, iid case

If the assumptions of Theorem 1.2.2 are satisfied and, additionally, if $X_1, ..., X_n$ are iid with pdf $f(x; \theta)$, then

$$\operatorname{Var}_{\theta}W(X^{n}) \geqslant \frac{\left(\frac{\mathrm{d}}{\mathrm{d}\theta}\mathbb{E}_{\theta}W(X^{n})\right)^{2}}{n\mathbb{E}_{\theta}\left(\left(\frac{\partial}{\partial\theta}logf(X;\theta)\right)^{2}\right)}$$

$$= \frac{\left(\frac{\mathrm{d}}{\mathrm{d}\theta}\mathbb{E}_{\theta}W(X^{n})\right)^{2}}{nI(\theta)} = \frac{\left(\frac{\mathrm{d}}{\mathrm{d}\theta}\mathbb{E}_{\theta}W(X^{n})\right)^{2}}{I_{n}(\theta)}$$

Remark 1.2.4. Cramer-Rao Inequality, iid case + unbiased estimator

If the assumptions of Theorem 1.2.2 are satisfied and, additionally, if $X_1, ..., X_n$ are iid with pdf $f(x; \theta)$, and $\mathbb{E}_{\theta}W = \tau(\theta)$ for all θ , then

$$\operatorname{Var}_{\theta} W(X^{n}) \geqslant \frac{\left(\frac{\mathrm{d}}{\mathrm{d}\theta} \mathbb{E}_{\theta} W(X^{n})\right)^{2}}{n \mathbb{E}_{\theta} \left(\left(\frac{\partial}{\partial \theta} log f(X; \theta)\right)^{2}\right)}$$
$$= \frac{\left(\frac{\mathrm{d}}{\mathrm{d}\theta} \tau(\theta)\right)^{2}}{I_{n}(\theta)} = \frac{(\tau'(\theta))^{2}}{I_{n}(\theta)}$$

Corollary 1.2.5. Cramer-Rao Attainment

The CRLB is achieved by distributions of the exponential family.

1.2.3 Asymptotic Approximation for Large Samples

Theorem 1.2.6. Asymptotic Normality of MLE

Let $X_1, ..., X_n$ be iid $f(x|\theta)$.

Let $\hat{\theta}_n$ denote the MLE for θ .

Let $\tau(\theta)$ be a continuous function of θ .

Under regularity conditions on $f(x|\theta)$ *and hence* $L(\theta|x^n)$ *,*

$$\sqrt{n}(\tau(\hat{\theta}_n) - \tau(\theta)) \to N(0, \nu(\theta)),$$
 (1.2.1)

where $v(\theta) = \frac{(\tau'(\theta))^2}{I_n(\theta)}$ is the Cramer-Rao Lower Bound (iid case).

That is, $\tau(\hat{\theta}_n)$ is a consistent and asymptotically efficient estimator of $\tau(\theta)$

Definition 1.2.7. Asymptotically efficient A sequence of estimators $W_n = W_n(X_1, ..., X_n)$ is asymptotically efficient for a parameter $\tau(\theta)$ if

$$\sqrt{n}(W_n - \tau(\theta)) \to N(0, \nu(\theta))$$
 in distribution

and it just happens that

$$\upsilon(\theta) = \frac{\left(\tau'(\theta)\right)^2}{\mathbb{E}_{\theta}\left(\left(\frac{\partial}{\partial \theta} log f(X^n | \theta)\right)^2\right)}$$

That is, the asymptotic variance of W_n achieves the Cramer-Rao Lower Bound. *Comments:*

- Calculate the asymptotic variance of W_n by Delta method, and obtain $v(\theta) = Var(X_i) (\tau'(\theta))^2$
- Calculate the CRLB of $Var(W_n|\theta)$, and obtain $Var(W_n) \ge CRLB = \frac{\left(\tau'(\theta)\right)^2}{\mathbb{E}_{\theta}\left(\left(\frac{\partial}{\partial \theta}logf(X^n|\theta)\right)^2\right)}$ Compare Delta method $u(\theta)$ with CDLP If some t is t.
- Compare Delta method $v(\theta)$ with CRLB. If asymptotic variance obtained using Delta method $v(\theta)$ is the same as CRLB, then W_n is asymptotically efficient.

Theorem 1.2.8. Delta Method (A generalization of CLT)

Let Y_n be a sequence of random variables $(\mathbb{E}(Y_i) = \theta \text{ and } \text{Var}(Y_i) = \sigma^2)$ that satisfies

$$\sqrt{n}(Y_n - \theta)) \to N(0, \sigma^2)$$
 in distribution

For a given function τ and a specific value of θ , suppose that τ' exists and is not 0. Then,

$$\sqrt{n} \Big(\tau(Y_n) - \tau(\theta) \Big) \to N \Big(0, \sigma^2 \Big(\tau'(\theta) \Big)^2 \Big)$$

Comments:

True variance of Y_n is $Var(Y_n)$

Limiting variance of Y_n is $\lim_{n\to\infty} \sqrt{n} \operatorname{Var}(Y_n)$

Asymptotic variance of Y_n is σ^2

True variance of $\tau(Y_n)$ *is* $Var(\tau(Y_n))$

Limiting variance of $\tau(Y_n)$ is $\lim_{n\to\infty} \sqrt{n} \text{Var}(\tau(Y_n))$

Asymptotic variance of $\tau(Y_n)$ is $\sigma^2(\tau'(\theta))^2$

1.2.4 Approximate true variances of MLEs through asymptotic formulas

- $Var(\hat{\theta}_n)$ is the true variance of MLE.
- Under regularity conditions, the theorems for asymptotic distribution of MLEs can be used to approximate the true variances of MLEs, $Var(\hat{\theta}_n)$, for large samples, as $n \to \infty$.
- If an MLE, $\hat{\theta}_n$ is asymptotically efficient, then
 - (i) asymptotic variance $v(\theta)$ obtained from Delta method achives CRLB.
 - (ii) then CRLB can be approximated by evaluating at $\theta = \hat{\theta}_n$
- (iii) then true variance can be approximated by the approximated CRLB

Remark 1.2.9. Method of Approximation of $Var(\tau(\hat{\theta}_n))$

$$\operatorname{Var}(\tau(\hat{\theta}_n)) \approx CRLB = \frac{\left(\tau(\theta)\right)^2}{I(\theta)} = \frac{\left(\tau'(\theta)\right)^2}{\mathbb{E}_{\theta}\left(-\frac{\partial^2}{\partial \theta^2}logf(X^n|\theta)\right)}$$
$$\approx \frac{\left(\tau(\theta)\right)^2}{I(\theta)} = \frac{\left(\tau'(\theta)\right)^2}{-\frac{\partial^2}{\partial \theta^2}logf(X^n|\theta)|_{\theta=\hat{\theta}}} = \widehat{\operatorname{Var}}(\tau(\hat{\theta}_n))$$

Example 1.2.10. (Violation of regularity conditions – scale uniform Uniform $(0, \theta)$)

In general, if the range of the pdf depends on the parameter, the Cramer-Rao Theorem does not apply (due to the inability to differentiate under the integral sign)

1.3 UMP

1.4 Interval Estimation

1.4.1 Inverting a Test Statistic

Example 1.4.1. Inverting a normal test

Let $X_1, ..., X_n$ be iid $N(\mu, \sigma^2)$.

Consider testing $H_0: \mu = \mu_0 \text{ vs } H_1: \mu \neq \mu_0$

1.5 Asymptotic Interval Estimation