Tutorial Sheet - Lecture 15

Excitons and Free Carriers

RA Hogg r.hogg@shef.ac.uk

- 1) Briefly describe, in your own words, what an exciton is. What is the difference between a Wannier-Mott and Frenkel exciton?
- 2) InP has a relative permittivit ε_r =12.5, effective masses m_e^* = 0.08 m_o , m_h^* = 0.6 m_o , and a unit cell size of 0.587nm. Calculate;
 - a. The exciton Rydberg energy
 - b. The exciton Bohr radius
 - c. The energy difference between the n=1 and n=2 exciton

Estimate;

- d. The number of unit cells contained within the orbit of the n=1 exciton
- e. The temperature range over which you would expect this exciton to be stable
- f. The Mott density for excitons in InP
- 3) Describe in your own words, using figures as necessary, excitonic effects upon the absorption spectrum of a semiconductor.
- 4) Describe in your own words, using figures as necessary, the effect of an electric field on a bulk semiconductor material.
- 5) Describe in your own words, using figures as necessary, the reason for an observed shrinkage in the energy gap of a semiconductor under high carrier densities.

Constants you may need -

Rydberg energy of the atom R_H = 13.6 eV Bohr radius of the hydrogen atom (a_H =5.29 x10⁻¹¹ m) Boltzman constant =8.617 x10⁻⁵ eVK⁻¹