<110> Ledbetter, Jeffrey
Hayden-Ledbetter, Martha

<120> Binding Domain-Immunoglobulin Fusion Proteins

<130> 390069.401

<140> US

<141> 2002-01-17

<150> US 09/765,208

<151> 2001-01-17

<160> 38

<170> PatentIn version 3.0

<210> 1

<211> 812

<212> DNA

<213> Artificial Sequence

<220>

<223> SYNTHETIC MOUSE SCFV FUSION GENE

<220>

<221> sig_peptide

<222> (13)..(78)

<220>

```
<221> V region
<222> (79)..(396)
<223> light chain variable region for anti-CD20 scFv
<220>
<221>
      misc feature
      (397)..(444)
      asp-gly3ser(gly4ser)2-ser peptide linker
<220>
<221> V_region
<222> (445)..(808)
<223> heavy chain variable region for anti-CD20 scFv
<400> 1
aagcttgccg ccatggattt tcaagtgcag attttcagct tcctgctaat cagtgcttca
                                                                      60
                                                                     120
gtcataattg ccagaggaca aattgttctc tcccagtctc cagcaatcct gtctgcatct
                                                                     180
ccaggggaga aggtcacaat gacttgcagg gccagctcaa gtgtaagtta catgcactgg
                                                                     240
taccagcaga agccaggatc ctcccccaaa ccctggattt atgccccatc caacctggct
                                                                     300
totggagtoc otgotogott cagtggcagt gggtotggga cotottacto totcacaato
agcagagtgg aggctgaaga tgctgccact tattactgcc agcagtggag ttttaaccca
                                                                     360
cccacgttcg gtgctgggac caagctggag ctgaaaggtg gcggtggctc gggcggtggt
                                                                     420
                                                                     480
ggatctggag gaggtgggag ctctcaggct tatctacagc agtctggggc tgagctggtg
                                                                     540
aggeetgggg ceteagtgaa gatgteetge aaggettetg getacacatt taccagttae
                                                                     600
aatatgcact gggtaaagca gacacctaga cagggcctgg aatggattgg agctatttat
ccaggaaatg gtgatacttc ctacaatcag aagttcaagg gcaaggccac actgactgta
                                                                     660
gacaaatcct ccagcacagc ctacatgcag ctcagcagcc tgacatctga agactctgcg
                                                                     720
                                                                     780
gtctatttct gtgcaagagt ggtgtactat agtaactctt actggtactt cgatgtctgg
```

aatatgcact gggtaaagca gacacctaga cagggcctgg aatggattgg agctatttat

ccaggaaatg	gtgatacttc	ctacaatcag	aagttcaagg	gcaaggccac	actgactgta	660
gacaaatcct	ccagcacagc	ctacatgcag	ctcagcagcc	tgacatctga	agactctgcg	720
gtctatttct	gtgcaagagt	ggtgtactat	agtaactctt	actggtactt	cgatgtctgg	780
ggcacaggga	ccacggtcac	cgtctctgat	caggagccca	aatcttgtga	caaaactcac	840
acatgcccac	cgtgcccagc	acctgaactc	ctggggggac	cgtcagtctt	cctcttcccc	900
ccaaaaccca	aggacaccct	catgatctcc	cggacccctg	aggtcacatg	cgtggtggtg	960
gacgtgagcc	acgaagaccc	tgaggtcaag	ttcaactggt	acgtggacgg	cgtggaggtg	1020
cataatgcca	agacaaagcc	gcgggaggag	cagtacaaca	gcacgtaccg	tgtggtcagc	1080
gtcctcaccg	tcctgcacca	ggactggctg	aatggcaagg	agtacaagtg	caaggtctcc	1140
aacaaagccc	tcccagcccc	catcgagaaa	acaatctcca	aagccaaagg	gcagccccga	1200
gaaccacagg	tgtacaccct	gcccccatcc	cgggatgagc	tgaccaagaa	ccaggtcagc	1260
ctgacctgcc	tggtcaaagg	cttctatccc	agcgacatcg	ccgtggagtg	ggagagcaat	1320
gggcagccgg	agaacaacta	caagaccacg	cctcccgtgc	tggactccga	cggctccttc	1380
ttcctctaca	gcaagctcac	cgtggacaag	agcaggtggc	agcaggggaa	cgtcttctca	1440
tgctccgtga	tgcatgaggc	tctgcacaac	cactacacgc	agaagagcct	ctccctgtct	1500
ccgggtaaat	gatctaga					1518

<210> 3

<211> 1518

<212> DNA

<213> Artificial Sequence

<220>

<223> SYNTHETIC MOUSE-HUMAN CHIMERIC FUSION GENE

<220>

<221> misc_feature
<222> (13)..(807)<223> MOUSE ANTI-HUMAN CD20 SCFV

<220>

<400>

<221> C_region <222> (808)..(1513)

<223> HINGE CYSTEINES (826-829; 844-847; 853-856) MUTATED TO SERINES PROLINE TO SERINE MUTATION (880-883) IN CH2 DISRUPTS EFFECTOR FUN CTION

aagcttgccg ccatggattt tcaagtgcag attttcagct tcctgctaat cagtgcttca 60 gtcataattg ccagaggaca aattgttctc tcccagtctc cagcaatcct gtctgcatct 120 180 ccaggggaga aggtcacaat gacttgcagg gccagctcaa gtgtaagtta catgcactgg 240 taccagcaga agccaggatc ctcccccaaa ccctggattt atgccccatc caacctggct 300 tctggagtcc ctgctcgctt cagtggcagt gggtctggga cctcttactc tctcacaatc 360 agcagagtgg aggctgaaga tgctgccact tattactgcc agcagtggag ttttaaccca 420 cccacgttcg gtgctgggac caagctggag ctgaaagatg gcggtggctc gggcggtggt 480 ggatctggag gaggtgggag ctctcaggct tatctacagc agtctggggc tgagctggtg aggcctgggg cctcagtgaa gatgtcctgc aaggcttctg gctacacatt taccagttac 540 600 aatatgcact gggtaaagca gacacctaga cagggcctgg aatggattgg agctatttat 660 ccaggaaatg gtgatacttc ctacaatcag aagttcaagg gcaaggccac actgactgta 720 gacaaateet ecageacage etacatgeag eteageagee tgacatetga agaetetgeg 780 gtctatttct gtgcaagagt ggtgtactat agtaactctt actggtactt cgatgtctgg 840 ggcacaggga ccacggtcac cgtctctgat caggagccca aatcttctga caaaactcac 900 acatececae egtececage acetgaacte etggggggat egteagtett eetetteece 960 ccaaaaccca aggacaccct catgatctcc cggacccctg aggtcacatg cgtggtggtg 1020 gacgtgagcc acgaagaccc tgaggtcaag ttcaactggt acgtggacgg cgtggaggtg 1080 cataatgcca agacaaagcc gcgggaggag cagtacaaca gcacgtaccg tgtggtcagc 1140 gtcctcaccg tcctgcacca ggactggctg aatggcaagg agtacaagtg caaggtctcc 1200 aacaaagccc tcccagcccc catcgagaaa acaatctcca aagccaaagg gcagccccga gaaccacagg tgtacaccct gcccccatcc cgggatgagc tgaccaagaa ccaggtcagc 1260 1320 ctgacctgcc tggtcaaagg cttctatccc agcgacatcg ccgtggagtg ggagagcaat 1380 gggcagccgg agaacaacta caagaccacg cctcccgtgc tggactccga cggctccttc

	ttcctc	taca gcaagctcac cgtggacaag agcaggtggc agcaggggaa cgtcttctca	1440												
	tgctcc	gtga tgcatgaggc tctgcacaac cactacacgc agaagagcct ctccctgtct	1500												
	ccgggt	aaat gatctaga	1518												
	<210>	4													
		1518													
1.1	<212>	DNA													
	<213> Artificial Sequence														
der der dry dry der be	<220>														
	<223>	SYNTHETIC MOUSE-HUMAN CHIMERIC FUSION GENE													
## #	<220>														
HB., H., B.	<221> misc_feature <222> (13)(807) <223> MOUSE ANTI-HUMAN CD20 SCFV														
The that the go to	<223>	MOUSE ANTI-HUMAN CD20 SCrV													
	<220>														
	<221> <222>	C_region (808)(1513)													
	<223>	HINGE CYSTEINES MUTATED TO SERINES (826-829; 844-847; 853-85) WILD TYPE CH2 AND CH3 DOMAINS MEDIATE EFFECTOR FUNCTIONS	6)												
	<400>	4 gccg ccatggattt tcaagtgcag attttcagct tcctgctaat cagtgcttca	60												
		latty ccagaggaca aattyttete teecagtete cageaateet gtetgeatet	120												
		gaga aggtcacaat gacttgcagg gccagctcaa gtgtaagtta catgcactgg	180												
	taccag	gcaga agccaggatc ctcccccaaa ccctggattt atgccccatc caacctggct	240												
	tctgga	gtcc ctgctcgctt cagtggcagt gggtctggga cctcttactc tctcacaatc	300												
	agcaga	agtgg aggetgaaga tgetgeeact tattactgee ageagtggag ttttaaceea	360												
	cccacg	tteg gtgetgggae caagetggag etgaaagatg geggtggete gggeggtggt	420												

						400
ggatctggag	gaggtgggag	ctctcaggct	tatctacagc	agtctggggc	tgagctggtg	480
aggcctgggg	cctcagtgaa	gatgtcctgc	aaggcttctg	gctacacatt	taccagttac	540
aatatgcact	gggtaaagca	gacacctaga	cagggcctgg	aatggattgg	agctatttat	600
ccaggaaatg	gtgatacttc	ctacaatcag	aagttcaagg	gcaaggccac	actgactgta	660
gacaaatcct	ccagcacagc	ctacatgcag	ctcagcagcc	tgacatctga	agactctgcg	720
gtctatttct	gtgcaagagt	ggtgtactat	agtaactctt	actggtactt	cgatgtctgg	780
ggcacaggga	ccacggtcac	cgtctctgat	caggagccca	aatcttctga	caaaactcac	840
acatccccac	cgtccccagc	acctgaactc	ctggggggac	cgtcagtctt	cctcttcccc	900
ccaaaaccca	aggacaccct	catgatctcc	cggacccctg	aggtcacatg	cgtggtggtg	960
gacgtgagcc	acgaagaccc	tgaggtcaag	ttcaactggt	acgtggacgg	cgtggaggtg	1020
cataatgcca	agacaaagcc	gcgggaggag	cagtacaaca	gcacgtaccg	tgtggtcagc	1080
gtcctcaccg	tcctgcacca	ggactggctg	aatggcaagg	agtacaagtg	caaggtctcc	1140
aacaaagccc	tcccagcccc	catcgagaaa	acaatctcca	aagccaaagg	gcagccccga	1200
gaaccacagg	tgtacaccct	gcccccatcc	cgggatgagc	tgaccaagaa	ccaggtcagc	1260
ctgacctgcc	tggtcaaagg	cttctatccc	agcgacatcg	ccgtggagtg	ggagagcaat	1320
gggcagccgg	agaacaacta	caagaccacg	cctcccgtgc	tggactccga	cggctccttc	1380
ttcctctaca	gcaagctcac	cgtggacaag	agcaggtggc	agcaggggaa	cgtcttctca	1440
tgctccgtga	tgcatgaggc	tctgcacaac	cactacacgc	agaagagcct	ctccctgtct	1500
ccgggtaaat	gatctaga					1518

<210> 5

<211> 1524

<212> DNA

<213> Artificial Sequence

<220>

<223> SYNTHETIC MOUSE HUMAN CHIMERIC FUSION GENE

<220>

<221> misc_feature <222> (1)..(796)<223> MOUSE ANTI HUMAN CD20 SCFV <220> <221> N region (797)..(864)<222> HUMAN IGA HINGE REGION <223> <220> <221> C region (865)..(1518)<223> HUMAN IGG1 CH2 AND CH3 WILD TYPE FC DOMAIN <400> 5 60 atggattttc aagtgcagat tttcagcttc ctgctaatca gtgcttcagt cataattgcc 120 agaggacaaa ttgttctctc ccagtctcca gcaatcctgt ctgcatctcc aggggagaag 180 gtcacaatga cttgcagggc cagctcaagt gtaagttaca tgcactggta ccagcagaag 240 ccaggatect eccecaaace etggatttat gececateca acetggette tggagteeet 300 gctcgcttca gtggcagtgg gtctgggacc tcttactctc tcacaatcag cagagtggag gctgaagatg ctgccactta ttactgccag cagtggagtt ttaacccacc cacgttcggt 360 420 gctgggacca agctggagct gaaagatggc ggtggctcgg gcggtggtgg atctggagga 480 ggtgggagct ctcaggctta tctacagcag tctggggctg agctggtgag gcctggggcc tcagtgaaga tgtcctgcaa ggcttctggc tacacattta ccagttacaa tatgcactgg 540 600 gtaaagcaga cacctagaca gggcctggaa tggattggag ctatttatcc aggaaatggt gatacttcct acaatcagaa gttcaagggc aaggccacac tgactgtaga caaatcctcc 660 agcacageet acatgeaget cagcageetg acatetgaag actetgeggt etatttetgt 720 780 gcaagagtgg tgtactatag taactcttac tggtacttcg atgtctgggg cacagggacc acggtcaccg tctctgatca gccagttccc tcaactccac ctaccccatc tccctcaact 840 900 ccacctaccc catctccctc atgcgcacct gaactcctgg ggggaccgtc agtcttcctc

ttcccc	ccaa aacccaagga c	accctcatg	atctcccgga	cccctgaggt	cacatgcgtg	960
gtggtg	gacg tgagccacga a	gaccctgag	gtcaagttca	actggtacgt	ggacggcgtg	1020
gaggtg	cata atgccaagac a	aagccgcgg	gaggagcagt	acaacagcac	gtacegtgtg	1080
gtcagc	gtee teacegteet g	caccaggac	tggctgaatg	gcaaggagta	caagtgcaag	1140
gtctcca	aaca aagccctccc a	gccccatc	gagaaaacaa	tctccaaagc	caaagggcag	1200
ccccga	gaac cacaggtgta c	accetgeee	ccatcccggg	atgagctgac	caagaaccag	1260
gtcagc	ctga cctgcctggt c	aaaggcttc	tatcccagcg	acatcgccgt	ggagtgggag	1320
agcaat	gggc agccggagaa c	aactacaag	accacgcctc	ccgtgctgga	ctccgacggc	1380
tccttc	ttcc tctacagcaa g	ctcaccgtg	gacaagagca	ggtggcagca	ggggaacgtc	1440
ttctca	tgct ccgtgatgca t	gaggctctg	cacaaccact	acacgcagaa	gagcctctcc	1500
ctgtct	ccgg gtaaatgatc t	aga				1524
.010:						
<210>	6					
<211>	711					
<212>	DNA					
<213>	Artificial Seque	ence				
<220>						
<223>	SYNTHETIC HUMAN	PARTIAL FU	JSION GENE			
<220>						
<221>	misc feature					
<222>	(1)(705)					
<223>	HINGE CYSTEINES	MUTATED TO	SERINES (19-21; 37-3	9; 46-48)	

<400> 6 gatcaggagc	ccaaatcttc	tgacaaaact	cacacatccc	caccgtcccc	agcacctgaa	60
ctcctggggg	gaccgtcagt	cttcctcttc	ccccaaaac	ccaaggacac	cctcatgatc	120
tcccggaccc	ctgaggtcac	atgcgtggtg	gtggacgtga	gccacgaaga	ccctgaggtc	180
aagttcaact	ggtacgtgga	cggcgtggag	gtgcataatg	ccaagacaaa	gccgcgggag	240
gagcagtaca	acagcacgta	ccgtgtggtc	agcgtcctca	ccgtcctgca	ccaggactgg	300

ctgaatq	ggca aggagtacaa	gtgcaaggtc	tccaacaaag	ccctcccagc	ccccatcgag	360
aaaacaa	atct ccaaagccaa	agggcagccc	cgagaaccac	aggtgtacac	cctgccccca	420
tcccgg	gatg agctgaccaa	gaaccaggtc	agcctgacct	gcctggtcaa	aggcttctat	480
cccagc	gaca tegeegtgga	gtgggagagc	aatgggcagc	cggagaacaa	ctacaagacc	540
acgcct	cccg tgctggactc	cgacggctcc	ttcttcctct	acagcaagct	caccgtggac	600
aagagca	aggt ggcagcaggg	gaacgtcttc	tcatgctccg	tgatgcatga	ggctctgcac	660
aaccact	taca cgcagaagag	cctctccctg	tctccgggta	aatgatctag	a	711
<210>	7					
<211>	729					
<212>	DNA					
	Artificial Sec	uence				
12107						
<220>						
<223>	SYNTHETIC HUMA	N PARTIAL F	JSION GENE			
<220>						
	N_region (1)(69)					
<223>	HUMAN IGA HING	E				
<220>						
<222>	C_region (70)(723)					
<223>	HUMAN WILD TYPE	PE IGG1 CH2 .	AND CH3, FC			
	7					
	ccag ttccctcaad					60
	tgcg cacctgaact					120
aaggac	accc tcatgatcto	c ccggacccct	gaggtcacat	gcgtggtggt	ggacgtgagc	180

cacgaagacc ctgaggtcaa gttcaactgg tacgtggacg gcgtggaggt gcataatgcc

aagacaaagc cgcgggagga gcagtacaac agcacgtacc gtgtggtcag cgtcctcacc 30	0
gtcctgcacc aggactggct gaatggcaag gagtacaagt gcaaggtctc caacaaagcc 36	0
ctcccagccc ccatcgagaa aacaatctcc aaagccaaag ggcagccccg agaaccacag 42	0 :
gtgtacaccc tgcccccatc ccgggatgag ctgaccaaga accaggtcag cctgacctgc 48	0 (
ctggtcaaag gcttctatcc cagcgacatc gccgtggagt gggagagcaa tgggcagccg 54	0 ا
gagaacaact acaagaccac gcctcccgtg ctggactccg acggctcctt cttcctctac 60	0
agcaagctca ccgtggacaa gagcaggtgg cagcagggga acgtcttctc atgctccgtg 66	50
atgcatgagg ctctgcacaa ccactacacg cagaagagcc tctccctgtc tccgggtaaa 72	20
tgatctaga 72	29
<210> 8	
<211> 825	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> SYNTHETIC MOUSE SCFV FUSION GENE	
<220>	
<221> misc_feature	
<222> (13)(72)	
<223> LIGHT CHAIN LEADER PEPTIDE	
<220>	
<221> V_region <222> (73)(405)	
<223> LIGHT CHAIN VARIABLE DOMAIN FOR MOUSE ANTI-HUMAN CD19: HD37	
<220>	
<221> misc_feature	

and the first time with the state of the sta

<222> (406)..(450)

<223> SYNTHETIC (GLY4SER)3 LINKER PEPTIDE

<220>

<221> V_region <222> (454)..(825)

<223> HEAVY CHAIN VARIABLE DOMAIN FOR MOUSE ANTI-HUMAN CD19: HD37

<400> 8						
	ccatggagac	agacacactc	ctgctatggg	tgctgctgct	ctgggttcca	60
ggctccactg	gtgacattgt	gctgacccaa	tctccagctt	ctttggctgt	gtctctaggg	120
cagagggcca	ccatctcctg	caaggccagc	caaagtgttg	attatgatgg	tgatagttat	180
ttgaactggt	accaacagat	tccaggacag	ccacccaaac	tcctcatcta	tgatgcatcc	240
aatctagttt	ctgggatccc	acccaggttt	agtggcagtg	ggtctgggac	agacttcacc	300
ctcaacatcc	atcctgtgga	gaaggtggat	gctgcaacct	atcactgtca	gcaaagtact	360
gaggatccgt	ggacgttcgg	tggaggcacc	aagctggaaa	tcaaaggtgg	cggtggctcg	420
ggcggtggtg	ggtcgggtgg	cggcggatcg	tcacaggttc	agctgcagca	gtctggggct	480
gagctggtga	ggcctgggtc	ctcagtgaag	atttcctgca	aggcttctgg	ctatgcattc	540
agtagctact	ggatgaactg	ggtgaagcag	aggcctggac	agggtcttga	gtggattgga	600
cagatttggc	ctggagatgg	tgatactaac	tacaatggaa	agttcaaggg	taaagccact	660
ctgactgcag	acgaatcctc	cagcacagcc	tacatgcaac	tcagcagcct	agcatctgag	720
gactctgcgg	tctatttctg	tgcaagacgg	gagactacga	cggtaggccg	ttattactat	780
gctatggact	actggggtca	aggaacctca	gtcaccgtct	cctca		825

<210> 9

<211> 795

<212> DNA

<213> Artificial Sequence

```
<223> SYNTHETIC MOUSE SCFV FUSION GENE
    <220>
    <221> misc_feature
    <222>
          (13)..(72)
    <223> LIGHT CHAIN LEADER PEPTIDE SEQUENCE
    <220>
ļ
    <221> V region
(\overline{7}3)..(393)
    <222>
    <223> LIGHT CHAIN VARIABLE DOMAIN FOR MOUSE ANTI-HUMAN CD37: G28-1
    <220>
<221> misc_feature
    <222>
           (394)..(441)
    <223> SYNTHETIC LINKER PEPTIDE ENCODED (GLY4SER)3
    <220>
    <221>
           V region
           (442)..(795)
    <222>
    <223> HEAVY CHAIN VARIABLE DOMAIN FOR MOUSE ANTI-HUMAN CD37: G28-1
    <400> 9
    aagettgeeg ceatggtate cacageteag tteettgggt tgetgetget gtggettaca
                                                                           60
    ggtggcagat gtgacatcca gatgactcag tctccagcct ccctatctgc atctgtggga
                                                                          120
    gagactgtca ccatcacatg tcgaacaagt gaaaatgttt acagttattt ggcttggtat
                                                                          180
    cagcagaaac agggaaaatc tcctcagctc ctggtctctt ttgcaaaaac cttagcagaa
                                                                          240
                                                                          300
    ggtgtgccat caaggttcag tggcagtgga tcaggcacac agttttctct gaagatcagc
    agcctgcagc ctgaagattc tggaagttat ttctgtcaac atcattccga taatccgtgg
                                                                          360
                                                                          420
     acgttcggtg gaggcaccga actggagatc aaaggtggcg gtggctcggg cggtggtggg
                                                                          480
     tcgggtggcg gcggatcgtc agcggtccag ctgcagcagt ctggacctga gctggaaaag
```

atgaact tattato	gett cagtgaagat tteetgeaag gettetggtt acteatteae tggetaeaat tggg tgaageagaa taatggaaag ageettgagt ggattggaaa tattgateet ggtg gtaetaeeta caaceggaag tteaagggea aggeeaeatt gaetgtagae teea geaeageeta catgeagete aagagtetga catetgagga etetgeagte	540600660											
tattato	ggtg gtactaccta caaccggaag ttcaagggca aggccacatt gactgtagac												
aaatcct		660											
	tcca gcacagecta catgeagete aagagtetga catetgagga etetgeagte												
	aaatcctcca gcacagccta catgcagctc aagagtctga catctgagga ctctgcagtc												
gtctctt	tctg atcag	795											
<210>	10												
<211>	824												
<212>	DNA												
<213>	Artificial Sequence												
<220>													
<223>	SYNTHETIC MOUSE FUSION GENE												
<220>													
<221>	sig_peptide												
<222>	(1)(61)												
<223>	native light chain leader peptide												
<220>													
<221> <222>	V_region (62)(397)												
<223>	LIGHT CHAIN VARIABLE DOMAIN FOR MOUSE ANTI-HUMAN CD22: G28-7												
<220>													
	miga footuro												
<221> <222>	(398)(445)												
<223>	(gly4ser)3 linker peptide												
	gtetet: <210> <211> <212> <213> <220> <223> <220> <221> <222> <223> <222> <223> <221> <222> <221> <222> <223>	tattactgtg caagatcggt cggccctatg gactactggg gtcaaggaac ctcagtcacc gtctcttctg atcag <210> 10 <211> 824 <212> DNA <213> Artificial Sequence <220> <223> SYNTHETIC MOUSE FUSION GENE <221> sig_peptide <222> (1)(61) <223> native light chain leader peptide <220> <221> LIGHT CHAIN VARIABLE DOMAIN FOR MOUSE ANTI-HUMAN CD22: G28-7 <220> <221> misc_feature <220> <221> misc_feature <222> (3987)(445)											

<213> Mus musculus

<220> <221> V region (445)..(818)<223> HEAVY CHAIN VARIABLE DOMAIN FOR MOUSE ANTI-HUMAN CD22: G28-7 <220> <221> misc feature <222> (819)..(824)<223> BclI restriction site <400> 10 60 atggagtcac attcccaggt ctttctctcc ctgctgctct gggtatctgg tacctgtggg 120 aacattatga tgacacagtc gccatcatct ctggctgtgt cagcaggaga aaaggtcact 180 atgaactgta agtccagtca aagtgttttc tacagttcaa atcagaggaa ttatttggcc 240 tggtatcagc agaaaccagg gcagtctccc aaattgctga tctactgggc atctactagg 300 gaatetggtg teeetgateg etteaeagge agtggateeg ggacagaett tactettace 360 atcagcagtg tacatactga agacctggca gtttattact gtcatcaatt cctctcttcg tggacgttcg gtggaggcac caagctggaa atcaaaggcg gtggtggttc gggtggtggt 420 480 ggttcgggtg gcggcggatc ttctcaggtc caactgcagc agcctggggc tgaactggtg 540 aagcctggga cttcagtgaa gctgtcctgc aaggcctctg gctacacctt caccaactac 600 tggatggtct gggtgaagca gacgcctgga gaaggccttg agtggattgg agaaattatt 660 cctagcaacg gtcgtactaa atacaatgag aagttcaaga gcaaggccac actgactgca gacaaatcct cccgcacagc ctacatgcaa ctcagcagcc tggcatctga ggactctgcg 720 780 gtctattatt gtgcaagaga gatgtccatt attactacgg tactgactcc cggtttgctt 824 actggggcca agggactctg gtcactgtct ctgcagcctg atca <210> 11 <211> 266 <212> PRT

```
<220>
    <221> INIT MET
    <222> (1)..(1)
    <220>
    <221> SIGNAL
    <222> (1)..(22)
their the same the same that their
    <220>
    <221> DOMAIN
    <222> (23)..(128)
    <223> LIGHT CHAIN VARIABLE DOMAIN FOR MOUSE ANTI-HUMAN CD20
2
<220>
ha
ha
    <221> SITE
    <222> (129)..(144)
    <223> ASP-(GLY3SER)-(GLY4SER)2-SER LINKER PEPTIDE
    <220>
    <221> DOMAIN
    <222> (145)..(266)
    <223> HEAVY CHAIN VARIABLE DOMAIN FOR MOUSE ANTI-HUMAN CD20
    <400> 11
    Met Asp Phe Gln Val Gln Ile Phe Ser Phe Leu Leu Ile Ser Ala Ser
                                                                15
                     5
                                           10
    Val Ile Ile Ala Arg Gly Gln Ile Val Leu Ser Gln Ser Pro Ala Ile
    Leu Ser Ala Ser Pro Gly Glu Lys Val Thr Met Thr Cys Arg Ala Ser
                                                       45
                                  40
             35
    Ser Ser Val Ser Tyr Met His Trp Tyr Gln Gln Lys Pro Gly Ser Ser
```

	Ala	Arg	Phe	Ser	Gly 85	Ser	Gly	Ser	Gly	Thr 90	Ser	Tyr	Ser	Leu	Thr 95	Ile
	Ser	Arg	Val	Glu 100	Ala	Glu	Asp	Ala	Ala 105	Thr	Tyr	Tyr	Cys	Gln 110	Gln	Trp
	Ser	Phe	Asn 115	Pro	Pro	Thr	Phe	Gly 120	Ala	Gly	Thr	Lys	Leu 125	Glu	Leu	Lys
	Asp	Gly 130	Gly	Gly	Ser	Gly	Gly 135	Gly	Gly	Ser	Gly	Gly 140	Gly	Gly	Ser	Ser
first gave green green greet fresh facts these modd flees small fleets fleets	Gln 145	Ala	Tyr	Leu	Gln	Gln 150	Ser	Gly	Ala	Glu	Leu 155	Val	Arg	Pro	Gly	Ala 160
	Ser	Val	Lys	Met	Ser 165	Cys	Lys	Ala	Ser	Gly 170	Tyr	Thr	Phe	Thr	Ser 175	Tyr
#	Asn	Met	His	Trp 180	Val	Lys	Gln	Thr	Pro 185	Arg	Gln	Gly	Leu	Glu 190	Trp	Ile
The state of the s	Gly	Ala	Ile 195	Tyr	Pro	Gly	Asn	Gly 200	Asp	Thr	Ser	Tyr	Asn 205	Gln	Lys	Phe
. Berlin	Lys	Gly 210	Lys	Ala	Thr	Leu	Thr 215	Val	Asp	Lys	Ser	Ser 220	Ser	Thr	Ala	Tyr
I L	Met 225	Gln	Leu	Ser	Ser	Leu 230	Thr	Ser	Glu	Asp	Ser 235	Ala	Val	Tyr	Phe	Cys 240
	Ala	Arg	Val	Val	Tyr 245	Tyr	Ser	Asn	Ser	Tyr 250	Trp	Tyr	Phe	Asp	Val 255	Trp
	Gly	Thr	Gly	Thr 260	Thr	Val	Thr	Val	Ser 265	Asp						
	<210)>]	12													
	<211	L> 2	271													
	<212	2> I	PRT													
	<213	3> 1	Aus r	nuscı	ılus											
	<220)>														

<221> SITE <222> (1)..(271) <223> MOUSE ANTI-HUMAN CD19 SCFV

Pro Lys Pro Trp Ile Tyr Ala Pro Ser Asn Leu Ala Ser Gly Val Pro 65 70 75 80

<400> 12

Met Glu Thr Asp Thr Leu Leu Leu Trp Val Leu Leu Trp Val Pro Gly Ser Thr Gly Asp Ile Val Leu Thr Gln Ser Pro Ala Ser Leu Ala Val Ser Leu Gly Gln Arg Ala Thr Ile Ser Cys Lys Ala Ser Gln Ser Val Asp Tyr Asp Gly Asp Ser Tyr Leu Asn Trp Tyr Gln Gln Ile Pro Gly Gln Pro Pro Lys Leu Leu Ile Tyr Asp Ala Ser Asn Leu Val Ser Gly Ile Pro Pro Arg Phe Ser Gly Ser Gly Ser Gly Thr Asp Phe Thr Leu Asn Ile His Pro Val Glu Lys Val Asp Ala Ala Thr Tyr His Cys Gln Gln Ser Thr Glu Asp Pro Trp Thr Phe Gly Gly Gly Thr Lys Leu 115 Glu Ile Lys Gly Gly Gly Ser Gly Gly Gly Gly Ser Gly Gly Gly Gly Ser Ser Gln Val Gln Leu Gln Gln Ser Gly Ala Glu Leu Val Arg Pro Gly Ser Ser Val Lys Ile Ser Cys Lys Ala Ser Gly Tyr Ala Phe Ser Ser Tyr Trp Met Asn Trp Val Lys Gln Arg Pro Gly Gln Gly Leu 185 Glu Trp Ile Gly Gln Ile Trp Pro Gly Asp Gly Asp Thr Asn Tyr Asn 200 205 Gly Lys Phe Lys Gly Lys Ala Thr Leu Thr Ala Asp Glu Ser Ser Ser 215 Thr Ala Tyr Met Gln Leu Ser Ser Leu Ala Ser Glu Asp Ser Ala Val 235 225 230 Tyr Phe Cys Ala Arg Arg Glu Thr Thr Thr Val Gly Arg Tyr Tyr 250 Ala Met Asp Tyr Trp Gly Gln Gly Thr Ser Val Thr Val Ser Ser

```
<210> 13
```

<211> 259

<212> PRT

<213> Mus musculus

<220>

<221> SITE

<222> (1)..(259)

<223> MOUSE ANTI-HUMAN CD37 SCFV

<400> 13

Met Val Ser Thr Ala Gln Phe Leu Gly Leu Leu Leu Trp Leu Thr 1 5 10 15

Gly Gly Arg Cys Asp Ile Gln Met Thr Gln Ser Pro Ala Ser Leu Ser 20 25 30

Ala Ser Val Gly Glu Thr Val Thr Ile Thr Cys Arg Thr Ser Glu Asn 35 40 45

Val Tyr Ser Tyr Leu Ala Trp Tyr Gln Gln Lys Gln Gly Lys Ser Pro 50 55 60

Gln Leu Leu Val Ser Phe Ala Lys Thr Leu Ala Glu Gly Val Pro Ser 65 70 75 80

Arg Phe Ser Gly Ser Gly Ser Gly Thr Gln Phe Ser Leu Lys Ile Ser 85 90 95

Ser Leu Gln Pro Glu Asp Ser Gly Ser Tyr Phe Cys Gln His His Ser 100 105 110

Asp Asn Pro Trp Thr Phe Gly Gly Gly Thr Glu Leu Glu Ile Lys Gly 115 120 125

Gly Gly Gly Ser Gly Gly Gly Gly Ser Gly Gly Gly Ser Ser Ala 130 135 140

Val Gln Leu Gln Gln Ser Gly Pro Glu Leu Glu Lys Pro Gly Ala Ser 145 150 155 160

Val Lys Ile Ser Cys Lys Ala Ser Gly Tyr Ser Phe Thr Gly Tyr Asn 165 170 175

Met Asn Trp Val Lys Gln Asn Asn Gly Lys Ser Leu Glu Trp Ile Gly
180 185 190

Asn Ile Asp Pro Tyr Tyr Gly Gly Thr Thr Tyr Asn Arg Lys Phe Lys

Gly Lys Ala Thr Leu Thr Val Asp Lys Ser Ser Ser Thr Ala Tyr Met 215 Gln Leu Lys Ser Leu Thr Ser Glu Asp Ser Ala Val Tyr Tyr Cys Ala Arg Ser Val Gly Pro Met Asp Tyr Trp Gly Gln Gly Thr Ser Val Thr Val Ser Ser <210> 14 <211> 272 <212> PRT <213> Mus musculus <220> <221> SITE <222> (1)..(272)MOUSE ANTI-HUMAN CD22 SCFV <223> <400> 14 Met Glu Ser His Ser Gln Val Phe Leu Ser Leu Leu Trp Val Ser Gly Thr Cys Gly Asn Ile Met Met Thr Gln Ser Pro Ser Ser Leu Ala Val Ser Ala Gly Glu Lys Val Thr Met Asn Cys Lys Ser Ser Gln Ser Val Phe Tyr Ser Ser Asn Gln Arg Asn Tyr Leu Ala Trp Tyr Gln Gln Lys Pro Gly Gln Ser Pro Lys Leu Leu Ile Tyr Trp Ala Ser Thr Arg

Glu Ser Gly Val Pro Asp Arg Phe Thr Gly Ser Gly Ser Gly Thr Asp

Phe Thr Leu Thr Ile Ser Ser Val His Thr Glu Asp Leu Ala Val Tyr

105

100

U

ļà

<u>Ļ</u>z

n,

Tyr Cys His Gln Phe Leu Ser Ser Trp Thr Phe Gly Gly Gly Thr Lys 120 Leu Glu Ile Lys Gly Gly Gly Gly Ser Gly Gly Gly Ser Gly Gly 135 Gly Gly Ser Ser Gln Val Gln Leu Gln Gln Pro Gly Ala Glu Leu Val 150 Lys Pro Gly Thr Ser Val Lys Leu Ser Cys Lys Ala Ser Gly Tyr Thr Phe Thr Asn Tyr Trp Met Val Trp Val Lys Gln Thr Pro Gly Glu Gly 185 Leu Glu Trp Ile Gly Glu Ile Ile Pro Ser Asn Gly Arg Thr Lys Tyr Asn Glu Lys Phe Lys Ser Lys Ala Thr Leu Thr Ala Asp Lys Ser Ser Arg Thr Ala Tyr Met Gln Leu Ser Ser Leu Ala Ser Glu Asp Ser Ala 230 Val Tyr Tyr Cys Ala Arg Glu Met Ser Ile Ile Thr Thr Val Leu Thr Pro Gly Leu Leu Thr Gly Ala Lys Gly Leu Trp Ser Leu Ser Leu Gln <210> 15 <211> 499 <212> PRT <213> Artificial Sequence <220> <223> MOUSE-HUMAN HYBRID FUSION PROTEIN <220> <221> SITE <222> (1)..(265)<223> MOUSE ANTI-HUMAN CD20 SCFV: 2H7 <220>

1

<221> DOMAIN

<222> (266)..(499) <223> HUMAN IGG1 WILD TYPE HINGE, CH2, CH3 FC

<400> 15

Met Asp Phe Gln Val Gln Ile Phe Ser Phe Leu Leu Ile Ser Ala Ser Val Ile Ile Ala Arg Gly Gln Ile Val Leu Ser Gln Ser Pro Ala Ile Leu Ser Ala Ser Pro Gly Glu Lys Val Thr Met Thr Cys Arg Ala Ser Ser Ser Val Ser Tyr Met His Trp Tyr Gln Gln Lys Pro Gly Ser Ser Pro Lys Pro Trp Ile Tyr Ala Pro Ser Asn Leu Ala Ser Gly Val Pro Ala Arg Phe Ser Gly Ser Gly Ser Gly Thr Ser Tyr Ser Leu Thr Ile Ser Arg Val Glu Ala Glu Asp Ala Ala Thr Tyr Tyr Cys Gln Gln Trp Ser Phe Asn Pro Pro Thr Phe Gly Ala Gly Thr Lys Leu Glu Leu Lys Asp Gly Gly Ser Gly Gly Gly Ser Gly Gly Gly Ser Ser Gln Ala Tyr Leu Gln Gln Ser Gly Ala Glu Leu Val Arg Pro Gly Ala Ser Val Lys Met Ser Cys Lys Ala Ser Gly Tyr Thr Phe Thr Ser Tyr Asn Met His Trp Val Lys Gln Thr Pro Arg Gln Gly Leu Glu Trp Ile Gly Ala Ile Tyr Pro Gly Asn Gly Asp Thr Ser Tyr Asn Gln Lys Phe Lys Gly Lys Ala Thr Leu Thr Val Asp Lys Ser Ser Ser Thr Ala Tyr 215 Met Gln Leu Ser Ser Leu Thr Ser Glu Asp Ser Ala Val Tyr Phe Cys 235 Ala Arg Val Val Tyr Tyr Ser Asn Ser Tyr Trp Tyr Phe Asp Val Trp 245 250

Gly Thr Gly Thr Thr Val Thr Val Ser Asp Gln Glu Pro Lys Ser Cys

260		265	270
Asp Lys Thr His 275	Thr Cys Pro Pro 280	Cys Pro Ala Pro	Glu Leu Leu Gly 285
Gly Pro Ser Val	Phe Leu Phe Pro	Pro Lys Pro Lys	Asp Thr Leu Met
290	295	300	
Ile Ser Arg Thr	Pro Glu Val Thr	Cys Val Val Val	Asp Val Ser His 320
305	310	315	
Glu Asp Pro Glu	Val Lys Phe Asn	Trp Tyr Val Asp	Gly Val Glu Val
	325	330	335
His Asn Ala Lys	Thr Lys Pro Arg	Glu Glu Gln Tyr	Asn Ser Thr Tyr
340		345	350
Arg Val Val Ser	Val Leu Thr Val	Leu His Gln Asp	Trp Leu Asn Gly
355	360		365
Lys Glu Tyr Lys	Cys Lys Val Ser	Asn Lys Ala Leu	Pro Ala Pro Ile
370	375	380	
Glu Lys Thr Ile	Ser Lys Ala Lys	Gly Gln Pro Arg	Glu Pro Gln Val
385	390	395	400
Tyr Thr Leu Pro	Pro Ser Arg Asp	Glu Leu Thr Lys	Asn Gln Val Ser
	405	410	415
Leu Thr Cys Leu	Val Lys Gly Phe	Tyr Pro Ser Asp	Ile Ala Val Glu
420		425	430
Trp Glu Ser Asn 435	Gly Gln Pro Glu 440	Asn Asn Tyr Lys	Thr Thr Pro Pro 445
Val Leu Asp Ser	Asp Gly Ser Phe	Phe Leu Tyr Ser	Lys Leu Thr Val
450	455	460	
Asp Lys Ser Arg	Trp Gln Gln Gly	Asn Val Phe Ser	Cys Ser Val Met
465	470	475	480
His Glu Ala Leu	His Asn His Tyr	Thr Gln Lys Ser	Leu Ser Leu Ser
	485	490	495
Pro Gly Lys			
<210> 16			
<211> 499			
<212> PRT			
<213> Artificia	al Sequence		

<220>
<223> MOUSE-HUMAN HYBRID FUSION PROTEIN
<220>

<221> SITE <222> (1)..(265)

<223> 2H7 SCFV TARGETED TO HUMAN CD20

<220>

<221> DOMAIN

<222> (265)..(499)

<223> HINGE CYSTEINES MUTATED TO SERINES (AMINO ACIDS 272, 278, 281) PROLINE IN CH2 MUTATED TO SERINE (AMINO ACID 290)

<400> 16

Met Asp Phe Gln Val Gln Ile Phe Ser Phe Leu Leu Ile Ser Ala Ser 1 5 10 15

Val Ile Ile Ala Arg Gly Gln Ile Val Leu Ser Gln Ser Pro Ala Ile 20 25 30

Leu Ser Ala Ser Pro Gly Glu Lys Val Thr Met Thr Cys Arg Ala Ser 35 40 45

Ser Ser Val Ser Tyr Met His Trp Tyr Gln Gln Lys Pro Gly Ser Ser 50 55 60

Pro Lys Pro Trp Ile Tyr Ala Pro Ser Asn Leu Ala Ser Gly Val Pro 65 70 75 80

Ala Arg Phe Ser Gly Ser Gly Ser Gly Thr Ser Tyr Ser Leu Thr Ile 85 90 95

Ser Arg Val Glu Ala Glu Asp Ala Ala Thr Tyr Tyr Cys Gln Gln Trp 100 105 110

Ser Phe Asn Pro Pro Thr Phe Gly Ala Gly Thr Lys Leu Glu Leu Lys 115 120 125

Asp Gly Gly Gly Ser Gly Gly Gly Gly Ser Gly Gly Gly Ser Ser 130 135 140

Gln Ala Tyr Leu Gln Gln Ser Gly Ala Glu Leu Val Arg Pro Gly Ala 145 150 155 160

Ser	Val	Lys	Met	Ser 165	Cys	Lys	Ala	Ser	Gly 170	Tyr	Thr	Phe	Thr	Ser 175	Tyr
Asn	Met	His	Trp 180	Val	Lys	Gln	Thr	Pro 185	Arg	Gln	Gly	Leu	Glu 190	Trp	Ile
Gly	Ala	Ile 195	Tyr	Pro	Gly	Asn	Gly 200	Asp	Thr	Ser	Tyr	Asn 205	Gln	Lys	Phe
Lys	Gly 210	Lys	Ala	Thr	Leu	Thr 215	Val	Asp	Lys	Ser	Ser 220	Ser	Thr	Ala	Tyr
Met 225	Gln	Leu	Ser	Ser	Leu 230	Thr	Ser	Glu	Asp	Ser 235	Ala	Val	Tyr	Phe	Cys 240
Ala	Arg	Val	Val	Tyr 245	Tyr	Ser	Asn	Ser	Tyr 250	Trp	Tyr	Phe	Asp	Val 255	Trp
Gly	Thr	Gly	Thr 260	Thr	Val	Thr	Val	Ser 265	Asp	Gln	Glu	Pro	Lys 270	Ser	Ser
Asp	Lys	Thr 275	His	Thr	Ser	Pro	Pro 280	Ser	Pro	Ala	Pro	Glu 285	Leu	Leu	Gly
Gly	Ser 290	Ser	Val	Phe	Leu	Phe 295	Pro	Pro	Lys	Pro	Lys 300	Asp	Thr	Leu	Met
Ile 305	Ser	Arg	Thr	Pro	Glu 310	Val	Thr	Cys	Val	Val 315	Val	Asp	Val	Ser	His 320
Glu	Asp	Pro	Glu	Val 325	Lys	Phe	Asn	Trp	Tyr 330	Val	Asp	Gly	Val	Glu 335	Val
His	Asn	Ala	Lys 340	Thr	Lys	Pro	Arg	Glu 345	Glu	Gln	Tyr	Asn	Ser 350	Thr	Tyr
Arg	Val	Val 355	Ser	Val	Leu	Thr	Val 360	Leu	His	Gln	Asp	Trp 365	Leu	Asn	Gly
Lys	Glu 370	Tyr	Lys	Cys	Lys	Val 375	Ser	Asn	Lys	Ala	Leu 380	Pro	Ala	Pro	Ile
Glu 385	Lys	Thr	Ile	Ser	Lys 390	Ala	Lys	Gly	Gln	Pro 395	Arg	Glu	Pro	Gln	Val 400
Tyr	Thr	Leu	Pro	Pro 405	Ser	Arg	Asp	Glu	Leu 410	Thr	Lys	Asn	Gln	Val 415	Ser
Leu	Thr	Cys	Leu 420	Val	Lys	Gly	Phe	Tyr 425	Pro	Ser	Asp	Ile	Ala 430	Val	Glu
Trp	Glu	Ser 435	Asn	Gly	Gln	Pro	Glu 440	Asn	Asn	Tyr	Lys	Thr 445	Thr	Pro	Pro
Val	Leu 450	Asp	Ser	Asp	Gly	Ser 455	Phe	Phe	Leu	Tyr	Ser 460	Lys	Leu	Thr	Val

Asp Lys Ser Arg Trp Gln Gln Gly Asn Val Phe Ser Cys Ser Val Met

```
His Glu Ala Leu His Asn His Tyr Thr Gln Lys Ser Leu Ser Leu Ser
    Pro Gly Lys
    <210> 17
    <211> 499
    <212> PRT
ļ.
<213> Artificial Sequence
Ų.J
    <220>
U
    <223> MOUSE-HUMAN HYBRID FUSION PROTEIN
Ξ
    <220>
ij
<u></u>
    <221> SITE
    <222> (1)..(265)
١,.
    <223> MOUSE ANTI-HUMAN CD20 SCFV: 2H7
    <220>
    <221> DOMAIN
    <222>
           (266)..(499)
    <223> HINGE CYSTEINES MUTATED TO SERINES (AMINO ACIDS 272, 278, 281)
           CH2 AND CH3 DOMAINS ARE WILD TYPE IN SEQUENCE
    <400> 17
    Met Asp Phe Gln Val Gln Ile Phe Ser Phe Leu Leu Ile Ser Ala Ser
                    5
    Val Ile Ile Ala Arg Gly Gln Ile Val Leu Ser Gln Ser Pro Ala Ile
    Leu Ser Ala Ser Pro Gly Glu Lys Val Thr Met Thr Cys Arg Ala Ser
            35
                                 40
                                                     45
```

Ser Ser Val Ser Tyr Met His Trp Tyr Gln Gln Lys Pro Gly Ser Ser

55

Pro 65	Lys	Pro	Trp	Ile	Tyr 70	Ala	Pro	Ser	Asn	Leu 75	Ala	Ser	Gly	Val	Pro 80
Ala	Arg	Phe	Ser	Gly 85	Ser	Gly	Ser	Gly	Thr 90	Ser	Tyr	Ser	Leu	Thr 95	Ile
Ser	Arg	Val	Glu 100	Ala	Glu	Asp	Ala	Ala 105	Thr	Tyr	Tyr	Cys	Gln 110	Gln	Trp
Ser	Phe	Asn 115	Pro	Pro	Thr	Phe	Gly 120	Ala	Gly	Thr	Lys	Leu 125	Glu	Leu	Lys
Asp	Gly 130	Gly	Gly	Ser	Gly	Gly 135	Gly	Gly	Ser	Gly	Gly 140	Gly	Gly	Ser	Ser
Gln 145	Ala	Tyr	Leu	Gln	Gln 150	Ser	Gly	Ala	Glu	Leu 155	Val	Arg	Pro	Gly	Ala 160
Ser	Val	Lys	Met	Ser 165	Cys	Lys	Ala	Ser	Gly 170	Tyr	Thr	Phe	Thr	Ser 175	Tyr
Asn	Met	His	Trp 180	Val	Lys	Gln	Thr	Pro 185	Arg	Gln	Gly	Leu	Glu 190	Trp	Ile
Gly	Ala	Ile 195	Tyr	Pro	Gly	Asn	Gly 200	Asp	Thr	Ser	Tyr	Asn 205	Gln	Lys	Phe
Lys	Gly 210	Lys	Ala	Thr	Leu	Thr 215	Val	Asp	Lys	Ser	Ser 220	Ser	Thr	Ala	Tyr
Met 225	Gln	Leu	Ser	Ser	Leu 230	Thr	Ser	Glu	Asp	Ser 235	Ala	Val	Tyr	Phe	Cys 240
Ala	Arg	Val	Val	Tyr 245	Tyr	Ser	Asn	Ser	Tyr 250	Trp	Tyr	Phe	Asp	Val 255	Trp
Gly	Thr	Gly	Thr 260	Thr	Val	Thr	Val	Ser 265	Asp	Gln	Glu	Pro	Lys 270	Ser	Ser
Asp	Lys	Thr 275	His	Thr	Ser	Pro	Pro 280	Ser	Pro	Ala	Pro	Glu 285	Leu	Leu	Gly
Gly	Pro 290	Ser	Val	Phe	Leu	Phe 295	Pro	Pro	Lys	Pro	Lys 300	Asp	Thr	Leu	Met
Ile 305	Ser	Arg	Thr	Pro	Glu 310	Val	Thr	Cys	Val	Val 315	Val	Asp	Val	Ser	His 320
Glu	Asp	Pro	Glu	Val 325	Lys	Phe	Asn	Trp	Tyr 330	Val	Asp	Gly	Val	Glu 335	Val
His	Asn	Ala	Lys 340	Thr	Lys	Pro	Arg	Glu 345	Glu	Gln	Tyr	Asn	Ser 350	Thr	Tyr
Arg	Val	Val 355	Ser	Val	Leu	Thr	Val 360	Leu	His	Gln	Asp	Trp 365	Leu	Asn	Gly

Lys Glu Tyr Lys Cys Lys Val Ser Asn Lys Ala Leu Pro Ala Pro Ile 375 Glu Lys Thr Ile Ser Lys Ala Lys Gly Gln Pro Arg Glu Pro Gln Val Tyr Thr Leu Pro Pro Ser Arg Asp Glu Leu Thr Lys Asn Gln Val Ser 405 Leu Thr Cys Leu Val Lys Gly Phe Tyr Pro Ser Asp Ile Ala Val Glu Trp Glu Ser Asn Gly Gln Pro Glu Asn Asn Tyr Lys Thr Thr Pro Pro Val Leu Asp Ser Asp Gly Ser Phe Phe Leu Tyr Ser Lys Leu Thr Val Asp Lys Ser Arg Trp Gln Gln Gly Asn Val Phe Ser Cys Ser Val Met His Glu Ala Leu His Asn His Tyr Thr Gln Lys Ser Leu Ser Leu Ser Pro Gly Lys <210> 18 <211> 505 <212> PRT <213> Artificial Sequence <220> <223> MOUSE-HUMAN FUSION PROTEIN <220> <221> SITE <222> (1)..(265) <223> MOUSE ANTI-HUMAN CD20 SCFV: 2H7 <220> <221> DOMAIN <222> (266)..(288)

<223> WILD TYPE IGA HINGE

<220>

<221> DOMAIN

<222> (289)..(505)

<223> HUMAN IGG1 CH2 AND CH3 DOMAINS, WILD TYPE SEQUENCE

<400> 18

Met Asp Phe Gln Val Gln Ile Phe Ser Phe Leu Leu Ile Ser Ala Ser 1 5 10 15

Val Ile Ile Ala Arg Gly Gln Ile Val Leu Ser Gln Ser Pro Ala Ile 20 25 30

Leu Ser Ala Ser Pro Gly Glu Lys Val Thr Met Thr Cys Arg Ala Ser 35 40 45

Ser Ser Val Ser Tyr Met His Trp Tyr Gln Gln Lys Pro Gly Ser Ser 50 55 60

Pro Lys Pro Trp Ile Tyr Ala Pro Ser Asn Leu Ala Ser Gly Val Pro 65 70 75 80

Ala Arg Phe Ser Gly Ser Gly Ser Gly Thr Ser Tyr Ser Leu Thr Ile 85 90 95

Ser Arg Val Glu Ala Glu Asp Ala Ala Thr Tyr Tyr Cys Gln Gln Trp 100 105 110

Ser Phe Asn Pro Pro Thr Phe Gly Ala Gly Thr Lys Leu Glu Leu Lys 115 120 125

Asp Gly Gly Ser Gly Gly Gly Gly Ser Gly Gly Gly Ser Ser 130 135 140

Gln Ala Tyr Leu Gln Gln Ser Gly Ala Glu Leu Val Arg Pro Gly Ala 145 150 155 160

Ser Val Lys Met Ser Cys Lys Ala Ser Gly Tyr Thr Phe Thr Ser Tyr 165 170 175

Asn Met His Trp Val Lys Gln Thr Pro Arg Gln Gly Leu Glu Trp Ile 180 185 190

Gly Ala Ile Tyr Pro Gly Asn Gly Asp Thr Ser Tyr Asn Gln Lys Phe 195 200 205

Lys Gly Lys Ala Thr Leu Thr Val Asp Lys Ser Ser Ser Thr Ala Tyr 210 215 220

Met Gln Leu Ser Ser Leu Thr Ser Glu Asp Ser Ala Val Tyr Phe Cys

225					230					235					240
Ala	Arg	Val	Val	Tyr 245	Tyr	Ser	Asn	Ser	Tyr 250	Trp	Tyr	Phe	Asp	Val 255	Trp
Gly	Thr	Gly	Thr 260	Thr	Val	Thr	Val	Ser 265	Asp	Gln	Pro	Val	Pro 270	Ser	Thr
Pro	Pro	Thr 275	Pro	Ser	Pro	Ser	Thr 280	Pro	Pro	Thr	Pro	Ser 285	Pro	Ser	Cys
Ala	Pro 290	Glu	Leu	Leu	Gly	Gly 295	Pro	Ser	Val	Phe	Leu 300	Phe	Pro	Pro	Lys
Pro 305	Lys	Asp	Thr	Leu	Met 310	Ile	Ser	Arg	Thr	Pro 315	Glu	Val	Thr	Cys	Val 320
Val	Val	Asp	Val	Ser 325	His	Glu	Asp	Pro	Glu 330	Val	Lys	Phe	Asn	Trp 335	Tyr
Val	Asp	Gly	Val 340	Glu	Val	His	Asn	Ala 345	Lys	Thr	Lys	Pro	Arg 350	Glu	Glu
Gln	Tyr	Asn 355	Ser	Thr	Tyr	Arg	Val 360	Val	Ser	Val	Leu	Thr 365	Val	Leu	His
Gln	Asp 370	Trp	Leu	Asn	Gly	Lys 375	Glu	Tyr	Lys	Cys	Lys 380	Val	Ser	Asn	Lys
Ala 385	Leu	Pro	Ala	Pro	Ile 390	Glu	Lys	Thr	Ile	Ser 395	Lys	Ala	Lys	Gly	Gln 400
Pro	Arg	Glu	Pro	Gln 405	Val	Tyr	Thr	Leu	Pro 410	Pro	Ser	Arg	Asp	Glu 415	Leu
Thr	Lys	Asn	Gln 420	Val	Ser	Leu	Thr	Cys 425	Leu	Val	Lys	Gly	Phe 430	Tyr	Pro
Ser	Asp	Ile 435	Ala	Val	Glu	Trp	Glu 440	Ser	Asn	Gly	Gln	Pro 445	Glu	Asn	Asn
Tyr	Lys 450	Thr	Thr	Pro	Pro	Val 455	Leu	Asp	Ser	Asp	Gly 460	Ser	Phe	Phe	Leu
Tyr 465	Ser	Lys	Leu	Thr	Val 470	Asp	Lys	Ser	Arg	Trp 475	Gln	Gln	Gly	Asn	Val 480
Phe	Ser	Cys	Ser	Val 485	Met	His	Glu	Ala	Leu 490	His	Asn	His	Tyr	Thr 495	Gln
Lys	Ser	Leu	Ser 500	Leu	Ser	Pro	Gly	Lys 505							
<21	0> :	19													
<21	1> :	234													

<212> PRT

<213> Homo sapiens

<220>

<221> DOMAIN

<222> (1)..(234)

<223> MUTANT IGG1 HINGE (AMINO ACIDS 7, 13, 16)
WILD TYPE CH2 AND CH3 DOMAINS
ALTERNATIVE CARBOXY TERMINUS OF SCFVIG FUSION PROTEINS

<400> 19

Asp Gln Glu Pro Lys Ser Ser Asp Lys Thr His Thr Ser Pro Pro Ser 1 10 15

Pro Ala Pro Glu Leu Leu Gly Gly Pro Ser Val Phe Leu Phe Pro Pro 20 25 30

Lys Pro Lys Asp Thr Leu Met Ile Ser Arg Thr Pro Glu Val Thr Cys 35 40 45

Val Val Val Asp Val Ser His Glu Asp Pro Glu Val Lys Phe Asn Trp 50 55 60

Tyr Val Asp Gly Val Glu Val His Asn Ala Lys Thr Lys Pro Arg Glu 65 70 75 80

Glu Gln Tyr Asn Ser Thr Tyr Arg Val Val Ser Val Leu Thr Val Leu 85 90 95

His Gln Asp Trp Leu Asn Gly Lys Glu Tyr Lys Cys Lys Val Ser Asn 100 105 110

Lys Ala Leu Pro Ala Pro Ile Glu Lys Thr Ile Ser Lys Ala Lys Gly 115 120 125

Gln Pro Arg Glu Pro Gln Val Tyr Thr Leu Pro Pro Ser Arg Asp Glu 130 135 140

Leu Thr Lys Asn Gln Val Ser Leu Thr Cys Leu Val Lys Gly Phe Tyr 145 150 155 160

Pro Ser Asp Ile Ala Val Glu Trp Glu Ser Asn Gly Gln Pro Glu Asn 165 170 175

Asn Tyr Lys Thr Thr Pro Pro Val Leu Asp Ser Asp Gly Ser Phe Phe 180 185 190

Leu Tyr Ser Lys Leu Thr Val Asp Lys Ser Arg Trp Gln Gln Gly Asn 195 200 205

Val Phe Ser Cys Ser Val Met His Glu Ala Leu His Asn His Tyr Thr Gln Lys Ser Leu Ser Leu Ser Pro Gly Lys 230 <210> 20 <211> 240 <212> PRT <213> Homo sapiens į. the the true that <220> <221> SITE <222> (1)..(23) U <223> ALTERNATIVE CARBOXY TERMINUS OF SCFVIG FUSION PROTEINS <u>=</u> <220> -≟ <u></u> <221> DOMAIN <222> (24)..(240) <223> HUMAN IGG1 WILD TYPE CH2 AND CH3 FC <400> 20 Asp Gln Pro Val Pro Ser Thr Pro Pro Thr Pro Ser Pro Ser Thr Pro Pro Thr Pro Ser Pro Ser Cys Ala Pro Glu Leu Leu Gly Gly Pro Ser Val Phe Leu Phe Pro Pro Lys Pro Lys Asp Thr Leu Met Ile Ser Arg Thr Pro Glu Val Thr Cys Val Val Val Asp Val Ser His Glu Asp Pro Glu Val Lys Phe Asn Trp Tyr Val Asp Gly Val Glu Val His Asn Ala Lys Thr Lys Pro Arg Glu Glu Gln Tyr Asn Ser Thr Tyr Arg Val Val Ser Val Leu Thr Val Leu His Gln Asp Trp Leu Asn Gly Lys Glu Tyr 105

Lys Cys Lys Val Ser Asn Lys Ala Leu Pro Ala Pro Ile Glu Lys Thr Ile Ser Lys Ala Lys Gly Gln Pro Arg Glu Pro Gln Val Tyr Thr Leu Pro Pro Ser Arg Asp Glu Leu Thr Lys Asn Gln Val Ser Leu Thr Cys Leu Val Lys Gly Phe Tyr Pro Ser Asp Ile Ala Val Glu Trp Glu Ser 165 Asn Gly Gln Pro Glu Asn Asn Tyr Lys Thr Thr Pro Pro Val Leu Asp Ser Asp Gly Ser Phe Phe Leu Tyr Ser Lys Leu Thr Val Asp Lys Ser Arg Trp Gln Gln Gly Asn Val Phe Ser Cys Ser Val Met His Glu Ala Ųį U Leu His Asn His Tyr Thr Gln Lys Ser Leu Ser Leu Ser Pro Gly Lys <210> 21 <211> 1470 <212> DNA <213> Artificial Sequence <220> <223> MOUSE-HUMAN HYBRID <220> <221> misc_feature <222> (1)..(808) <223> MOUSE ANTI-HUMAN CD20 SCFV <220> <221> misc_feature <222> (814)..(1455) <223> HUMAN EXTRACELLULAR DOMAIN LONG FORM, CD154

<400> 21 aagcttgccg	ccatggattt	tcaagtgcag	attttcagct	tcctgctaat	cagtgcttca	60
gtcataattg	ccagaggaca	aattgttctc	tcccagtctc	cagcaatcct	gtctgcatct	120
ccaggggaga	aggtcacaat	gacttgcagg	gccagctcaa	gtgtaagtta	catgcactgg	180
taccagcaga	agccaggatc	ctccccaaa	ccctggattt	atgccccatc	caacctggct	240
tctggagtcc	ctgctcgctt	cagtggcagt	gggtctggga	cctcttactc	tctcacaatc	300
agcagagtgg	aggctgaaga	tgctgccact	tattactgcc	agcagtggag	ttttaaccca	360
cccacgttcg	gtgctgggac	caagctggag	ctgaaagatg	gcggtggctc	gggcggtggt	420
ggatctggag	gaggtgggag	ctctcaggct	tatctacagc	agtctggggc	tgagctggtg	480
aggcctgggg	cctcagtgaa	gatgtcctgc	aaggcttctg	gctacacatt	taccagttac	540
aatatgcact	gggtaaagca	gacacctaga	cagggcctgg	aatggattgg	agctatttat	600
ccaggaaatg	gtgatacttc	ctacaatcag	aagttcaagg	gcaaggccac	actgactgta	660
gacaaatcct	ccagcacagc	ctacatgcag	ctcagcagcc	tgacatctga	agactctgcg	720
gtctatttct	gtgcaagagt	ggtgtactat	agtaactctt	actggtactt	cgatgtctgg	780
ggcacaggga	ccacggtcac	cgtctctgat	ccaagaaggt	tggacaagat	agaagatgaa	840
aggaatcttc	atgaagattt	tgtattcatg	aaaacgatac	agagatgcaa	cacaggagaa	900
agatccttat	ccttactgaa	ctgtgaggag	attaaaagcc	agtttgaagg	ctttgtgaag	960
gatataatgt	taaacaaaga	ggagacgaag	aaagaaaaca	gctttgaaat	gcaaaaaggt	1020
gatcagaatc	ctcaaattgc	ggcacatgtc	ataagtgagg	ccagcagtaa	aacaacatct	1080
gtgttacagt	gggctgaaaa	aggatactac	accatgagca	acaacttggt	aaccctggaa	1140
aatgggaaac	agctgaccgt	taaaagacaa	ggactctatt	atatctatgo	ccaagtcacc	1200
ttctgttcca	atcgggaagc	ttcgagtcaa	gctccattta	tagccagcct	ctgcctaaag	1260
tcccccggta	gattcgagag	aatcttactc	agagctgcaa	atacccacag	ttccgccaaa	1320
ccttgcgggc	aacaatccat	tcacttggga	ggagtatttg	aattgcaacc	aggtgcttcg	1380
gtgtttgtca	atgtgactga	tccaagccaa	gtgagccatg	gcactggctt	cacgtccttt	1440
ggcttactca	aactcgagtg	ataatctaga	ı			1470

```
<211> 1290
    <212>
           DNA
    <213> Artificial Sequence
    <220>
    <223> MOUSE-HUMAN HYBRID
    <220>
           misc feature
    <221>
Hay day day day the first first first
    <222>
           (13)..(808)
           MOUSE ANTI-HUMAN CD20 SCFV
     <223>
     <220>
Ξ
     <221>
           misc feature
<222>
           (814)..(1275)
     <223> HUMAN EXTRACELLULAR DOMAIN, SHORT FORM, CD154
ļ.
ļå
7,4
Ŋ
     <400> 22
     aagcttgccg ccatggattt tcaagtgcag attttcagct tcctgctaat cagtgcttca
                                                                              60
     gtcataattg ccagaggaca aattgttctc tcccagtctc cagcaatcct gtctgcatct
                                                                             120
     ccaggggaga aggtcacaat gacttgcagg gccagctcaa gtgtaagtta catgcactgg
                                                                             180
     taccagcaga agccaggate etececcaaa eeetggattt atgeeecate caacetgget
                                                                             240
     tctggagtcc ctgctcgctt cagtggcagt gggtctggga cctcttactc tctcacaatc
                                                                             300
     agcagagtgg aggctgaaga tgctgccact tattactgcc agcagtggag ttttaaccca
                                                                             360
     cccacgttcg gtgctgggac caagctggag ctgaaagatg gcggtggctc gggcggtggt
                                                                             420
     ggatctggag gaggtgggag ctctcaggct tatctacagc agtctggggc tgagctggtg
                                                                             480
     aggcctgggg cctcagtgaa gatgtcctgc aaggcttctg gctacacatt taccagttac
                                                                             540
                                                                             600
     aatatgcact gggtaaagca gacacctaga cagggcctgg aatggattgg agctatttat
     ccaggaaatg gtgatacttc ctacaatcag aagttcaagg gcaaggccac actgactgta
                                                                             660
     gacaaateet ecageacage etacatgeag eteageagee tgacatetga agactetgeg
                                                                             720
     gtctatttct gtgcaagagt ggtgtactat agtaactctt actggtactt cgatgtctgg
                                                                             780
```

840

ggcacaggga ccacggtcac cgtctctgat ccagaaaaca gctttgaaat gcaaaaaggt

	gatcaga	atc ctcaaattgc	ggcacatgtc	ataagtgagg	ccagcagtaa	aacaacatct	900							
	gtgttad	agt gggctgaaaa	aggatactac	accatgagca	acaacttggt	aaccctggaa	960							
	aatggga	aaac agctgaccgt taaaagacaa ggactctatt atatctatgc ccaagtcacc 102												
	ttctgtt	ttcca atcgggaagc ttcgagtcaa gctccattta tagccagcct ctgcctaaag 108												
	tccccc	gta gattcgagag	aatcttactc	agagctgcaa	atacccacag	ttccgccaaa	1140							
_	ccttgc	ggc aacaatccat	tcacttggga	ggagtatttg	aattgcaacc	aggtgcttcg	1200							
ļ. Cl	gtgttt	stca atgtgactga	tccaagccaa	gtgagccatg	gcactggctt	cacgtccttt	1260							
Prof. Ages, asset these could have the	ggcttad	ctca aactcgagtg	ataatctaga				1290							
u. Ui	<210>	23												
u.i Fa	<211>	43												
⊕	<212>	DNA												
	<213>	> Artificial Sequence												
## ##	<220>	0>												
	<223>	OLIGONUCLEOTID	E											
	<400> gtcaag	23 cttg ccgccatgga	ttttcaagtg	cagatttttc	agc		43							
	<210>	24												
	<211>	74												
	<212>	DNA												
	<213>	Artificial Sec	luence											
	<220>													
	<223>	OLIGONUCLEOTIC	Σ											

gtcgtcgagc tcccacctcc tccagatcca ccaccgcccg agccaccgcc acctttcagc 60

<400> 24

	tccagct	ttgg tccc	74
	<210>	25	
	<211>	37	
	<212>	DNA	
	<213>	Artificial Sequence	
	<211> 37 <212> DNA		
ļ.A	<223>	OLIGONUCLEOTIDE	
hin and his his			37
	<210>	26	
	<211>	32	
<pre></pre>	<212>	DNA	
	<213>	Artificial Sequence	
	<220>		
E 122	<223>	OLIGONUCLEOTIDE	
			32
	<210>	27	
	<211>	34	
	<212>	DNA	
	<213>	Artificial Sequence	
	<220>		
	<223>	OLIGONUCLEOTIDE	
	<400>	27	

gttgtc	ggat ccagaaaaca gctttgaaat gcaa	34
<210>	28	
<211>	4 4	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	OLIGONUCLEOTIDE	34
<400> gttgtt	28 tcta gattatcact cgagtttgag taagccaaag gacg	44
<210>	29	
<211>	35	
<212>	DNA	
<pre><210> 28 <211> 44 <212> DNA <213> Artificial Seque <220> <223> OLIGONUCLEOTIDE <400> 28 gttgtttcta gattatcact c <210> 29 <211> 35 <212> DNA <213> Artificial Seque <220> <223> OLIGONUCLEOTIDE</pre> <pre><400</pre>	Artificial Sequence	
<220>		
<223>	OLIGONUCLEOTIDE	
		35
<210>	30	
<211>	23	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	OLIGONUCLEOTIDE	
<400>	30	
	<210> <211> <212> <213> <223> <223> <400> <2213> <211> <212> <213> <211> <212> <213> <220> <223> <400> <2213> <220> <223>	<pre><211> 44 <212> DNA <213> Artificial Sequence <220> <223> OLIGONUCLEOTIDE <400> 28 gttgttteta gattateact egagtttgag taagecaaag gaeg <210> 29 <211> 35 <212> DNA <213> Artificial Sequence <220> <223> OLIGONUCLEOTIDE <400> 29 gttgteggat ceaagaaggt tggacaagat agaag <210> 29 <221> Artificial Sequence <220> <223> OLIGONUCLEOTIDE </pre> <pre> <400> 29 gttgteggat ceaagaaggt tggacaagat agaag <210> 30 <211> 23 <212> DNA <213> Artificial Sequence <220> <213> Artificial Sequence <2210> OLIGONUCLEOTIDE</pre>

	gtctat	ataa gcagagetet gge	23
	<210>	31	
	<211>	25	
	<212>	DNA	
	<213>	Artificial Sequence	
	<220>		
	<223>	OLIGONUCLEOTIDE	
free and the state of the first that the first the	<400> cgaggc	31 tgat cagcgagctc tagca	25
	<210>	32	
= Cj	<211>	25	
Thus that the Mary Her that the	<212>	DNA	
	<213>	Artificial Sequence	
	<220>		
	<223>	OLIGONUCLEOTIDE	
	<400> ccgcaa	32 atttg aggattetga teace	25
	<210>	33	
	<211>	482	
	<212>	PRT	
	<213>	Artificial Sequence	
	<220>		
	<223>	MOUSE-HUMAN HYBRID FUSION PROTEIN	

<220>

<221> SITE

<222> (1)..(266)

<223> MOUSE ANTI-HUMAN CD20 SCFV

<220>

<221> DOMAIN

<222> (268)..(481)

<223> EXTRACELLULAR DOMAIN, LONG FORM, HUMAN CD154

<400> 33

Met Asp Phe Gln Val Gln Ile Phe Ser Phe Leu Leu Ile Ser Ala Ser 1 5 10 15

Val Ile Ile Ala Arg Gly Gln Ile Val Leu Ser Gln Ser Pro Ala Ile 20 25 30

Leu Ser Ala Ser Pro Gly Glu Lys Val Thr Met Thr Cys Arg Ala Ser 35 40 45

Ser Ser Val Ser Tyr Met His Trp Tyr Gln Gln Lys Pro Gly Ser Ser 50 55 60

Pro Lys Pro Trp Ile Tyr Ala Pro Ser Asn Leu Ala Ser Gly Val Pro 65 70 75 80

Ala Arg Phe Ser Gly Ser Gly Ser Gly Thr Ser Tyr Ser Leu Thr Ile 85 90 95

Ser Arg Val Glu Ala Glu Asp Ala Ala Thr Tyr Tyr Cys Gln Gln Trp 100 105 110

Ser Phe Asn Pro Pro Thr Phe Gly Ala Gly Thr Lys Leu Glu Leu Lys 115 120 125

Asp Gly Gly Gly Ser Gly Gly Gly Gly Ser Gly Gly Gly Ser Ser 130 135 140

Gln Ala Tyr Leu Gln Gln Ser Gly Ala Glu Leu Val Arg Pro Gly Ala 145 150 155 160

Ser Val Lys Met Ser Cys Lys Ala Ser Gly Tyr Thr Phe Thr Ser Tyr 165 170 175

Asn Met His Trp Val Lys Gln Thr Pro Arg Gln Gly Leu Glu Trp Ile 180 185 190

Gly Ala Ile Tyr Pro Gly Asn Gly Asp Thr Ser Tyr Asn Gln Lys Phe

			195					200					205			
	Lys	Gly 210	Lys	Ala	Thr	Leu	Thr 215	Val	Asp	Lys	Ser	Ser 220	Ser	Thr	Ala	Tyr
The tien the the table the time time time time time time the time time time time time time time tim	Met 225	Gln	Leu	Ser	Ser	Leu 230	Thr	Ser	Glu	Asp	Ser 235	Ala	Val	Tyr	Phe	Cys 240
	Ala	Arg	Val	Val	Tyr 245	Tyr	Ser	Asn	Ser	Tyr 250	Trp	Tyr	Phe	Asp	Val 255	Trp
	Gly	Thr	Gly	Thr 260	Thr	Val	Thr	Val	Ser 265	Asp	Pro	Arg	Arg	Leu 270	Asp	Lys
	Ile	Glu	Asp 275	Glu	Arg	Asn	Leu	His 280	Glu	Asp	Phe	Val	Phe 285	Met	Lys	Thr
	Ile	Gln 290	Arg	Cys	Asn	Thr	Gly 295	Glu	Arg	Ser	Leu	Ser 300	Leu	Leu	Asn	Cys
	Glu 305	Glu	Ile	Lys	Ser	Gln 310	Phe	Glu	Gly	Phe	Val 315	Lys	Asp	Ile	Met	Leu 320
	Asn	Lys	Glu	Glu	Thr 325	Lys	Lys	Glu	Asn	Ser 330	Phe	Glu	Met	Gln	Lys 335	Gly
	Asp	Gln	Asn	Pro 340	Gln	Ile	Ala	Ala	His 345	Val	Ile	Ser	Glu	Ala 350	Ser	Ser
	Lys	Thr	Thr 355	Ser	Val	Leu	Gln	Trp 360	Ala	Glu	Lys	Gly	Tyr 365	Tyr	Thr	Met
	Ser	Asn 370	Asn	Leu	Val	Thr	Leu 375	Glu	Asn	Gly	Lys	Gln 380	Leu	Thr	Val	Lys
	Arg 385	Gln	Gly	Leu	Tyr	Tyr 390	Ile	Tyr	Ala	Gln	Val 395	Thr	Phe	Cys	Ser	Asn 400
	Arg	Glu	Ala	Ser	Ser 405	Gln	Ala	Pro	Phe	Ile 410	Ala	Ser	Leu	Cys	Leu 415	Lys
	Ser	Pro	Gly	Arg 420	Phe	Glu	Arg	Ile	Leu 425	Leu	Arg	Ala	Ala	Asn 430	Thr	His
	Ser	Ser	Ala 435		Pro	Cys	Gly	Gln 440	Gln	Ser	Ile	His	Leu 445	Gly	Gly	Val
	Phe	Glu 450		Gln	Pro	Gly	Ala 455		Val	Phe	Val	Asn 460	Val	Thr	Asp	Pro
	Ser 465		Val	Ser	His	Gly 470	Thr	Gly	Phe	Thr	Ser 475	Phe	Gly	Leu	Leu	Lys 480
	Leu	Glu														

```
<211> 422
    <212> PRT
    <213> Artificial Sequence
    <220>
    <223> MOUSE-HUMAN HYBRID FUSION PROTEIN
<220>
           SITE
    <221>
    <222>
           (1)..(266)
    <223> MOUSE ANTI-HUMAN SCFV
O
€
    <220>
ļā
    <221>
    DOMAIN
    <222> (268)..(421)
    <223> EXTRACELLULAR DOMAIN, SHORT FORM, HUMAN CD154
    <400> 34
    Met Asp Phe Gln Val Gln Ile Phe Ser Phe Leu Leu Ile Ser Ala Ser
    Val Ile Ile Ala Arg Gly Gln Ile Val Leu Ser Gln Ser Pro Ala Ile
    Leu Ser Ala Ser Pro Gly Glu Lys Val Thr Met Thr Cys Arg Ala Ser
     Ser Ser Val Ser Tyr Met His Trp Tyr Gln Gln Lys Pro Gly Ser Ser
         50
     Pro Lys Pro Trp Ile Tyr Ala Pro Ser Asn Leu Ala Ser Gly Val Pro
    Ala Arg Phe Ser Gly Ser Gly Ser Gly Thr Ser Tyr Ser Leu Thr Ile
     Ser Arg Val Glu Ala Glu Asp Ala Ala Thr Tyr Tyr Cys Gln Gln Trp
                                     105
```

<210> 34

Ser Phe Asn Pro Pro Thr Phe Gly Ala Gly Thr Lys Leu Glu Leu Lys Asp Gly Gly Gly Ser Gly Gly Gly Gly Ser Gly Gly Gly Ser Ser Gln Ala Tyr Leu Gln Gln Ser Gly Ala Glu Leu Val Arg Pro Gly Ala Ser Val Lys Met Ser Cys Lys Ala Ser Gly Tyr Thr Phe Thr Ser Tyr 170 Asn Met His Trp Val Lys Gln Thr Pro Arg Gln Gly Leu Glu Trp Ile Gly Ala Ile Tyr Pro Gly Asn Gly Asp Thr Ser Tyr Asn Gln Lys Phe 200 Lys Gly Lys Ala Thr Leu Thr Val Asp Lys Ser Ser Ser Thr Ala Tyr 215 Met Gln Leu Ser Ser Leu Thr Ser Glu Asp Ser Ala Val Tyr Phe Cys 230 Ala Arg Val Val Tyr Tyr Ser Asn Ser Tyr Trp Tyr Phe Asp Val Trp Gly Thr Gly Thr Thr Val Thr Val Ser Asp Pro Glu Asn Ser Phe Glu 265 Met Gln Lys Gly Asp Gln Asn Pro Gln Ile Ala Ala His Val Ile Ser 280 Glu Ala Ser Ser Lys Thr Thr Ser Val Leu Gln Trp Ala Glu Lys Gly 295 Tyr Tyr Thr Met Ser Asn Asn Leu Val Thr Leu Glu Asn Gly Lys Gln 310 Leu Thr Val Lys Arg Gln Gly Leu Tyr Tyr Ile Tyr Ala Gln Val Thr Phe Cys Ser Asn Arg Glu Ala Ser Ser Gln Ala Pro Phe Ile Ala Ser Leu Cys Leu Lys Ser Pro Gly Arg Phe Glu Arg Ile Leu Leu Arg Ala Ala Asn Thr His Ser Ser Ala Lys Pro Cys Gly Gln Gln Ser Ile His Leu Gly Gly Val Phe Glu Leu Gln Pro Gly Ala Ser Val Phe Val Asn Val Thr Asp Pro Ser Gln Val Ser His Gly Thr Gly Phe Thr Ser Phe 410

```
Gly Leu Leu Lys Leu Glu
                 420
    <210> 35
    <211> 63
    <212> DNA
    <213> Homo sapiens
    <220>
Ļż
    <221> N_region
Hoft then the the the think that the
    <222>
           (\overline{1})..(63)
    <223> PORTION OF HUMAN IGA HINGE DOMAIN CONTAINING ONLY 1 CYSTEINE
     <400> 35
    ccagtteect caacteeace taccecatet eceteaacte caectaeece atetecetea
                                                                                 60
Ξ
                                                                                 63
£3
    tgc
11
Ļå
    <210> 36
.
.
     <211> 21
Ŋ
     <212> PRT
     <213> Homo sapiens
     <400> 36
     Pro Val Pro Ser Thr Pro Pro Thr Pro Ser Pro Ser Thr Pro Pro Thr
                                            10
     Pro Ser Pro Ser Cys
     <210> 37
     <211> 763
     <212> DNA
     <213> Homo sapiens
```

<220> <221> misc_feature <222> (1)..(6)<223> BCLI SITE FOR FUSION TO AMIN TERMINAL SCFVS <220> <221> N region <222> (8)..(752)WILD TYPE IGA HINGE, CH2, CH3 DOMAINS <223> TRUNCATED TO REMOVE SECRETORY COMPONENT ATTACHMENT <400> 37 60 tgatcagcca gttccctcaa ctccacctac cccatctccc tcaactccac ctaccccatc 120 teceteatge tgecaecece gaetgteact geaeegaeeg geeetegagg acetgetett 180 aggttcagaa gcgatcctca cgtgcacact gaccggcctg agagatgcct caggtgtcac 240 cttcacctgg acgccctcaa gtgggaagag cgctgttcaa ggaccacctg accgtgacct 300 ctgtggctgc tacagcgtgt ccagtgtcct gccgggctgt gccgagccat ggaaccatgg 360 gaagacette acttgeactg etgeetacee egagteeaag acceegetaa eegeeaceet 420 ctcaaaatcc ggaaacacat tccggcccga ggtccacctg ctgccgccgc cgtcggagga 480 gctggccctg aacgagctgg tgacgctgac gtgcctggca cgtggcttca gccccaagga 540 tgtgctggtt cgctggctgc aggggtcaca ggagctgccc cgcgagaagt acctgacttg 600 ggcatcccgg caggagccca gccagggcac caccaccttc gctgtgacca gcatactgcg 660 cgtggcagcc gaggactgga agaaggggga caccttctcc tgcatggtgg gccacgaggc cctgccgctg gccttcacac agaagaccat cgaccgcttg gcgggtaaac ccacccatgt 720 763 caatgtgtct gttgtcatgg cggaggtgga ctgataatct aga <210> 38 <211> 250

<212> PRT

<213> Homo sapiens

<220>

<221> DOMAIN

<222> (3)..(250)

<223> TRUNCATED FORM, REMOVAL OF LAST THREE AMINO ACIDS THAT MEDIATE AT TACHMENT TO SECRETORY COMPONEN

<400> 38

Asp Gln Pro Val Pro Ser Thr Pro Pro Thr Pro Ser Pro Ser Thr Pro 1 5 10 15

Pro Thr Pro Ser Pro Ser Cys Cys His Pro Arg Leu Ser Leu His Arg 20 25 30

Pro Ala Leu Glu Asp Leu Leu Gly Ser Glu Ala Ile Leu Thr Cys 35 40 45

Thr Leu Thr Gly Leu Arg Asp Ala Ser Gly Val Thr Phe Thr Trp Thr 50 55 60

Pro Ser Ser Gly Lys Ser Ala Val Gln Gly Pro Pro Asp Arg Asp Leu 65 70 75 80

Cys Gly Cys Tyr Ser Val Ser Ser Val Leu Pro Gly Cys Ala Glu Pro 85 90 95

Trp Asn His Gly Lys Thr Phe Thr Cys Thr Ala Ala Tyr Pro Glu Ser 100 105 110

Lys Thr Pro Leu Thr Ala Thr Leu Ser Lys Ser Gly Asn Thr Phe Arg 115 120 125

Pro Glu Val His Leu Leu Pro Pro Pro Ser Glu Glu Leu Ala Leu Asn 130 135 140

Glu Leu Val Thr Leu Thr Cys Leu Ala Arg Gly Phe Ser Pro Lys Asp 145 150 155 160

Val Leu Val Arg Trp Leu Gln Gly Ser Gln Glu Leu Pro Arg Glu Lys 165 170 175

Tyr Leu Thr Trp Ala Ser Arg Gln Glu Pro Ser Gln Gly Thr Thr 180 185 190

Phe Ala Val Thr Ser Ile Leu Arg Val Ala Ala Glu Asp Trp Lys Lys 195 200 205

Gly Asp Thr Phe Ser Cys Met Val Gly His Glu Ala Leu Pro Leu Ala 210 215 220

Phe Thr Gln Lys Thr Ile Asp Arg Leu Ala Gly Lys Pro Thr His Val 225 230 235 240 Asn Val Ser Val Val Met Ala Glu Val Asp 245