

Université de Montpellier

FACULTÉ DES SCIENCES

Session : 1 Durée de l'épreuve : 3 heures

Date: Janvier 2019

Tous documents autorisés

Master Informatique

Théorie des bases de connaissances (HMIN312)

Exercice 1. Comparaion de requêtes conjonctives (3 pts)

On considère les quatre requêtes conjonctives booléennes suivantes, où les lettres x, y, z et u désignent des variables, et la lettre a une constante :

- $q_1 = \exists x_1 \exists y_1 \exists z_1 \exists u_1 (r(x_1, y_1) \land s(y_1, z_1) \land s(z_1, u_1) \land r(x_1, u_1))$
- $q_2 = \exists x_2 \exists y_2 (r(x_2, y_2) \land s(y_2, y_2))$
- $q_3 = \exists x_3 \exists y_3 \exists z_3 (r(x_3, y_3) \land s(y_3, z_3) \land r(x_3, a) \land s(a, z_3))$
- $q_4 = \exists x_4 \exists y_4 (r(x_4, a) \land s(a, y_4) \land s(y_4, a))$

Question 1 Déterminer les relations de conséquence logique entre ces requêtes en utilisant la notion d'homomorphisme. Lorsqu'une requête est conséquence logique d'une autre, vous donnerez un homomorphisme prouvant cette relation.

Question 2 En déduire les liens d'inclusion (\sqsubseteq) entre ces requêtes.

Question 3 Pour chacune de ces requêtes q_i : q_i est-elle non redondante (autrement dit, est-elle un core)? Lorsqu'une requête est redondante, donner son core (ou l'un de ses cores).

Exercice 2. Modèles et chase (3 pts)

On considère la base de connaissances $\mathcal{K}=(F,\mathcal{R}),$ avec F=p(a,b) et $\mathcal{R}=\{R:p(x,y)\to\exists z\ p(z,y)\land q(z)\}$

Question 1 L'interprétation ci-dessous I de domaine D est-elle un modèle de \mathcal{K} ? Justifier.

$$D = \{a, b\}$$

$$I(p) = \{(a,b)\}$$

$$I(q) = \{a\}.$$

Question 2 Donnez la base de faits saturée obtenue en déroulant l'oblivious chase sur \mathcal{K} .

Question 3 Donnez la base de faits saturée obtenue en déroulant le restricted chase sur \mathcal{K} .

Question 4 L'interprétation I de la question 1 est-elle un modèle universel de K? Justifier.

Question 5 La base de connaissances \mathcal{K} admet-elle un modèle universel fini? Justifier.

Question 6 Nous avons étudié deux conditions suffisantes pour qu'un ensemble de règles \mathcal{R} soit un "finite expansion set" (rappel : \mathcal{R} est fes si et seulement si pour toute base de faits F, la base de connaissances (F, \mathcal{R}) admet un modèle universel fini). L'une de ces deux conditions vous permet-elle de conclure que l'ensemble \mathcal{R} de cet exercice est fes? Justifier.

Exercice 3. Vérification de consistance et réécriture de requête (3 pts)

On considère des ontologies de la forme $\mathcal{R} = \mathcal{R}^+ \cup \mathcal{R}^-$ où \mathcal{R}^+ est un ensemble de règles existentielles positives et \mathcal{R}^- est un ensemble de contraintes négatives.

Question 1 Etant donnée une telle ontologie \mathcal{R} , indiquez comment construire une union de requêtes conjonctives booléennes \mathcal{Q} qui vérifie la propriété suivante : pour toute base de faits F, (F,\mathcal{R}) est consistante (ou : satisfiable) si et seulement si F, $\mathcal{R}^+ \not\models \mathcal{Q}$ (autrement dit, la réponse à \mathcal{Q} sur (F,\mathcal{R}^+) est non.

Illustrez votre construction sur la base de règles $\mathcal R$ contenant les règles ci-dessous :

```
R_1: p(x,y) \to s(x)
```

 $R_2: r(x) \to \exists z \ p(x,z) \land r(z)$

 $C_1: s(x) \wedge r(x) \to \bot$

 $C_2: r(x) \wedge p(x,y) \wedge s(y) \rightarrow \bot$

Question 2 En vous basant sur la notion de réécriture de requête, indiquez comment construire un ensemble de requêtes conjonctives booléennes \mathcal{Q}' (vu comme une union de requêtes) qui vérifie la propriété suivante : pour toute base de faits F, (F, \mathcal{R}) est consistante si et seulement si $F \not\models \mathcal{Q}'$ (autrement dit, la réponse à \mathcal{Q}' sur F est non).

llustrez votre construction de Q' sur la base de règles \mathcal{R} , en indiquant clairement quels unificateurs par pièce sont utilisés à chaque étape de réécriture. Si l'union de requêtes construite n'est pas minimale, donnez ensuite une forme minimale.

Question 3 Quelle propriété abstraite doit vérifier l'ontologie pour que la construction de Q' soit finie?

Exercice 4 (*). Règles existentielles avec disjonction (4 pts)

On souhaite étendre les règles existentielles positives en autorisant la présence de disjonction (\vee) .

Question 1 L'introduction de \vee dans le corps des règles ajoute-t-elle en expressivité? Autrement dit, est-il possible ou non de transformer une telle règle en un ensemble de règles existentielles positives sans disjonction qui lui soit équivalent? Justifiez votre réponse, en vous aidant éventuellement d'exemple(s).

Question 2 Mêmes questions pour l'introduction de \vee dans la tête des règles.

Question 3 Proposez un mécanisme de chaînage avant qui, dans les cas où il se termine, permette de déterminer si une requête conjonctive booléenne q est conséquence logique d'une base de connaissances $\mathcal{K} = (F, \mathcal{R})$ où \mathcal{R} est un ensemble de règles positives avec disjonction.

Université de Montpellier

FACULTÉ DES SCIENCES

Exercice 5. Règles existentielles avec négation (4 pts)

On considère le programme Π suivant :

p(a), q(a).

 $(R_1): q(X), not \ r(X) \rightarrow \exists Y \ s(X,Y)$

 $(R_2): q(X), not \ s(X,Y) \rightarrow r(X)$

 $(R_3): r(X), \text{ not } t(X,Y) \to \exists Z \ t(X,Z)$

 $(R_4): s(X,Y), not \ q(X) \to \exists Z \ s(Y,Z)$

Question 1 Soit Π^+ le programme positif associé à Π (obtenu en supprimant le corps négatif de chaque règle). Ce programme est-il f.e.s.? Pouvez-vous en déduire qu'il y aura des modèles stables infinis de Π ?

Question 2 Donnez une skolémisation Π^s du programme Π . Quel est le domaine de skolem associé à ce programme Π^s ?

Question 3 En utilisant le domaine de skolem que vous avez donné à la question 2, donnez l'instanciation (grounding) de la règle (R_2) .

Question 4 Donnez le programme réduit associé à l'ensemble d'atomes $E_1 = \{p(a), q(a), r(a)\}$. Cet ensemble est-il un modèle stable de Π^s ?

Question 5 Donnez le programme réduit associé à l'ensemble d'atomes $E_2 = \{p(a), q(a), S\}$, où S est l'atome obtenu par votre skolémisation de R_1 quand X = a. Cet ensemble est-il un modèle stable de Π^s ?

Question 6 Soit l'ensemble d'atomes $E_3 = \{p(a), q(a), r(a), S\}$ (où S est l'atome obtenu par votre skolémisation de R_1 quand X = a). Pouvez-vous, sans calculer le programme réduit, dire si cet ensemble est un modèle stable de Π^s ?

Question 7 En utilisant l'algorithme ASPERIX vu en cours, donnez tous les modèles stables de Π^s .

Question 8 Dire si le programme Π^s est stratifiable. Pouviez vous le déduire de la question précédente?

Exercice 6 (*). Stratification et unificateurs (3 pts et +)

Question 1 Soit Π_1 le programme suivant.

p(a). q(X), not $r(X) \rightarrow s(X)$ q(X), not $s(X) \rightarrow r(X)$)

En utilisant la méthode vue en cours, montrez que le graphe de dépendance de Π_1 admet un circuit négatif. Pourtant, montrez que Π_1 n'a qu'une seule dérivation complète, qui est raisonnable. Pouvez vous améliorer la définition de "stratifiable" pour éliminer ce cas pathologique?

Question 2 (*) Soit Π_2 le programme suivant.

$$\begin{aligned} &p(a),q(b).\\ &p(X), not\ r(X) \rightarrow \exists Y\ s(X,Y)\\ &s(X,Y),q(Y) \rightarrow r(X) \end{aligned}$$

En utilisant la méthode vue en cours, montrez que le graphe de dépendance de Π_2 admet un circuit négatif. Pourtant, montrez que Π_2 n'a qu'une seule dérivation complète, qui est raisonnable. Pouvez vous améliorer la définition de "stratifiable" pour éliminer cet autre cas pathologique?

Question 3 (**) On voudrait maintenant lier la notion de stratification à l'existence d'une unique dérivation raisonnable et complète. Savoir si un programme admet une unique dérivation raisonnable et complète est-il un problème décidable?