Exercise. 1.1 Which of the following are sets?

$$(d) \{1, \{2\}, 3\} [correct \checkmark]$$

(e)
$$\{1, 2, a, b\}$$
 [correct \checkmark]

Exercise. 1.3 Determine the cardinality of each of the following sets:

(a)
$$A = \{1, 2, 3, 4, 5\}$$

$$|A| = 5$$
 [correct \checkmark]

(b)
$$B = \{0, 2, 4, ..., 20\}$$

$$|B| = 11 [\text{correct } \checkmark]$$

(c)
$$C = \{25, 26, 27..., 75\}$$

$$|C| = 51 [\text{correct } \checkmark]$$

(d)
$$D = \{\{1, 2\}, \{1, 2, 3, 4\}\}$$

$$|D| = 2 [\text{correct } \checkmark]$$

(e)
$$E = \{\emptyset\}$$

$$|E| = 1$$
 [correct \checkmark]

(f)
$$F = \{2, \{2, 3, 4\}\}$$

$$|F| = 2$$
 [correct \checkmark]

Exercise. 1.5

(a)
$$A = \{-1, -2, -3, \ldots\}$$

$$A = \{x = -y, y \in \mathbb{N}\} \text{ [correct } \checkmark \text{]}$$

(b)
$$B = \{-3, -2, \dots, 3\}$$

$$B = \{x \in \mathbb{Z} : -3 \le x \le 3\} \text{ [correct \checkmark]}$$

(c)
$$C = \{-2, -1, 1, 2\}$$

$$C = \{x \in Z : -2 \le x \le 2, x \ne 0\} \text{ [correct \checkmark]}$$

Exercise. 1.7

(a)
$$A = \{\ldots, -4, -1, 2, 5, 8, \ldots\}$$

$$A = \{3x - 1 : x \in \mathbb{Z}\} \text{ [correct } \checkmark \text{]}$$

(b)
$$B = \{\dots, -10, -5, 0, 5, 10, \dots\}$$

 $B = \{5x : x \in \mathbb{Z}\} \text{ [correct } \checkmark \text{]}$

(c) $C = \{1, 8, 27, 64, 125, \ldots\}$

 $C = \{x^3 : x \in \mathbb{N}\} \text{ [correct } \checkmark \text{]}$

Exercise. 1.9

For $A = \{2, 3, 5, 7, 8, 10, 13\}$, let $B = \{x \in A : x = y + z, y \in A, z \in A\}$ and $C = \{r \in B : (r + s) \in B \text{ for some s} \in B\}$. Determine C

 $B = \{5, 7, 8, 10, 13\}$ [correct \checkmark]

 $C = \{10, 13\}$ [incorrect] $C = \{5, 8\}$ (I was looking for $r + s \in B$, should have been looking for r)

Exercise, 1.11

Let (a,b) be an open interval of real numbers, and let $c \in (a,b)$. Describe an open interval I centered at c such that $I \subseteq (a,b)$.

Let $d, e \in \mathbb{R} : a < d \le c \le e < b$ and c - d = e - c. Then (c, e) describes an open interval I centered at c

[correct ✓]

Exercise. 1.13

For a universal set $U = \{1, 2, ..., 8\}$ and two sets $A = \{1, 3, 4, 7\}$ and $B = \{4, 5, 8\}$ draw a venn diagram that represents these sets (done on paper)

Exercise. 1.15

Find P(A) for $A = \{0, \{0\}\}$

 $\mathcal{P}(A) = \{\emptyset, \{0\}, \{\{0\}\}, \{0, \{0\}\}\}\} \text{ [correct \checkmark]}$

Exercise. 1.17

Find $\mathcal{P}(A)$ and $|\mathcal{P}(A)|$ for $A = \{0, \emptyset, \{\emptyset\}\}$

 $\mathcal{P}(\mathbf{A}) = \left\{\emptyset, \left\{0\right\}, \left\{\emptyset\right\}, \left\{\left\{\emptyset\right\}\right\}, \left\{0, \emptyset\right\}, \left\{0, \left\{\emptyset\right\}\right\}, \left\{\emptyset, \left\{\emptyset\right\}\right\}, \left\{0, \emptyset, \left\{\emptyset\right\}\right\}\right\}\right\}$

 $|\mathcal{P}(A)| = 8 \text{ [correct } \checkmark \text{]}$

Exercise. 1.19

Give an example of a set S such that

(a) $S \subseteq \mathcal{P}(\mathbb{N})$

 $S = \{\emptyset\} \text{ [correct } \checkmark]$

(b) $S \in \mathcal{P}(\mathbb{N})$

 $S = \emptyset$ [correct \checkmark]

(c) $S \subseteq \mathcal{P}(\mathbb{N})$ and |S| = 5

 $S = \{\{1\}, \{2\}, \{3\}, \{4\}, \{5\}\} \text{ [correct \checkmark]}$

(d) $S \in \mathcal{P}(\mathbb{N})$ and |S| = 5

 $S = \{1, 2, 3, 4, 5\}$ [correct \checkmark]

Exercise. 1.21

Three subsets A, B, C of $\{1, 2, 3, 4, 5\}$ have the same cardinality. Furthermore,

- (a) 1 belongs to A and B, but not to C
- (b) 2 belongs to A and C, but not to B
- (c) 3 belongs to A and exactly one of B and C
- (d) 4 belongs to an even number of A, B and C
- (e) 5 belongs to an odd number of A, B and C
- (f) The sums of the elements in two of the sets A, B and C differ by 1

What is B?

 $A = \{1, 2, 3\}$

 $B = \{1, (3), 4\}$

 $C = \{2, (3), 4\}$

(d) 4 belongs to an even number of A, B and C i.e. to none or two of A,B,C

If $4 \notin A, B, C$, then |B| or |C| = 2, therefore 4 belongs to two of A,B,C

If $4 \in A$, then |A| = 4 and |B| or |C| = 3

Therefore $4 \notin A$, so $4 \in B, C$

(e) 5 belongs to an odd number of A, B and C

If $5 \in A, B, C$ then |A| = 4, while either |B| or |C| = 3

Therefore 5 belongs to **one** of A,B,C and $5 \notin A$

If 3 and 5 are both in the same set B or C, then |B| or |C| = 4 and the other will be 3

Therefore 3 and 5 must belong to different sets B and C

If $B = \{1, 3, 4\}$ then $C = \{2, 4, 5\}$

the sum of the elements of B=8

the sum of the elements of A=6

the sum of the elements of C=11 , which contradicts (f)

Therefore

 $B = \{1, 4, 5\}, \text{ sum of elements } 10 \text{ [correct } \checkmark\text{]}$

 $C = \{2, 4, 5\}$, sum of elements 11

 $A = \{1, 2, 3\}$, sum of elements 6