

	$\sigma_{2^{+}lphaeta}^{\#1}$	$ au_2^{\#1}_{lphaeta}$	$\sigma_{2}^{\#1}{}_{\alpha\beta\chi}$
$\sigma_{2^+}^{\sharp 1} \dagger^{lphaeta}$		$-\frac{2i\sqrt{2}k}{(1+2k^2)^2t_1}$	0
$ au_{2^+}^{\#1} \dagger^{lphaeta}$	$\frac{2 i \sqrt{2} k}{(1+2 k^2)^2 t_1}$	$\frac{4k^2}{(1+2k^2)^2t_1}$	0
$\sigma_{2}^{\#1}\dagger^{lphaeta\chi}$	0	0	$\frac{2}{t_1}$
	_		

 $_{\kappa}^{\prime}$ - t_{1} $\omega_{\prime\lambda}^{\lambda}$ $\partial^{\kappa}f'_{\kappa} + \frac{1}{2}t_{1}\partial^{\alpha}f^{\lambda}_{\kappa}$ $\partial^{\kappa}f_{\lambda\alpha} + \frac{1}{2}t_{1}\partial^{\alpha}f^{\lambda}_{\kappa}$

 $\alpha \partial^{\kappa} f'$

 $\omega_{_{IK}\theta} \partial_{^{K}} f^{^{I}\theta} - t_{1} \omega_{_{I}\alpha}^{c}$

 $_{\lambda}\partial^{\kappa}f'_{}+2\,t_{1}$

 $+2t_1\partial^{\alpha}f_{\kappa\alpha}\partial^{\kappa}f'_{\kappa}$

 $\partial^K f'$

 $+t_1 \omega_{\kappa\lambda}^{}$

 $_{\kappa}^{}\partial^{\kappa}f_{\alpha\lambda}+t_{1}\;\omega_{\kappa\alpha}^{\;\;\;}\partial^{\kappa}f_{'}$

 $\frac{1}{2} t_1 \partial^{\alpha} f^{\lambda}_{\kappa}$

 $_{\alpha}^{}\partial^{\kappa}f_{\lambda\kappa} + \frac{1}{3}\,r_{2}\,\partial_{\kappa}\omega^{\alpha\beta\theta}\,\partial^{\kappa}\omega_{\alpha\beta\theta} +$

 $\frac{1}{2}t_1 \partial_k f_{\beta}^{\ \lambda} \partial^k f_{\lambda}^{\ \theta} + \frac{1}{2}t_1 \partial_k f^{\lambda}_{\ \theta} \partial^k f_{\lambda}^{\ \theta} - t_1 \partial^{\alpha} f^{\lambda}_{\ \alpha} \partial^k f_{\lambda k} + \frac{1}{3}r_2 \partial_k \omega$ $\frac{2}{3}r_2 \partial_k \omega^{\theta \alpha \beta} \partial^k \omega_{\alpha \beta \theta} - \frac{2}{3}r_2 \partial^{\beta} \omega^{\alpha \lambda}_{\ \alpha} \partial_{\lambda} \omega_{\alpha \beta}^{\ \prime} + \frac{2}{3}r_2 \partial^{\beta} \omega^{\lambda \alpha}_{\ \alpha} \partial_{\lambda} \omega_{\alpha \beta}^{\ \prime}$

 $_{\kappa}^{\chi}\partial_{\theta}\omega_{\alpha\beta}^{}$ -

 $\frac{1}{3}r_2\,\partial_\theta\omega_{\alpha\beta}^{\beta}\,\partial_\kappa\omega^{\alpha\beta\theta} - \frac{2}{3}r_2\,\partial_\theta\omega_{\alpha\beta}^{\beta}\,\partial_\kappa\omega^{\theta\alpha\beta} - \frac{1}{2}t_1\,\partial^\alpha f_{\beta}\,\partial^\kappa f_{\beta}^{\beta} - \frac{1}{2}t_1\,\partial^\alpha f_{\beta}^{\beta} + \frac{1}{2}t_1\,\partial^\alpha f_{\beta}^{\beta} + \frac{1}{2}t_2\,\partial^\alpha f_{\beta}^{\beta} + \frac{1}{2}t_3\,\partial^\alpha f_{\phantom$

Lagrangian density

	$\omega_{0^+}^{\sharp 1}$	$f_{0^{+}}^{#1}$	$f_{0}^{#2}$	$\omega_0^{\#1}$
$\omega_{0^+}^{\sharp 1}$ †	-t ₁	$i \sqrt{2} kt_1$	0	0
$f_{0^{+}}^{#1}\dagger$	$-\bar{\imath} \sqrt{2} kt_1$	$-2 k^2 t_1$	0	0
$f_{0}^{#2} \dagger$	0	0	0	0
$\omega_{0}^{\sharp 1}$ †	0	0	0	$k^2 r_2 - t$

Source constraints

$\omega_{2}^{\#1}_{+}$ $\beta_{2}^{\#1}_{+}$ $\omega_{2}^{\#1}_{-}$ $\alpha_{\beta\chi}$	0	0	<u>t1</u> 2
$f_2^{\#1}$	$-\frac{ikt_1}{\sqrt{2}}$	$k^2 t_1$	0
	<u>t1</u> 2	$\frac{ikt_1}{\sqrt{2}}$	0
·	$\omega_{2}^{#1} +^{\alpha\beta}$	$f_{2}^{#1} + \alpha \beta$	$\omega_2^{#1} +^{\alpha\beta\chi}$

² ² ¹2-t₁

0

0

$f_{1}^{\#2}$	0	0	0	īkt ₁	0	0	0
$f_{1^-}^{\#1} \alpha$	0	0	0	0	0	0	0
$\omega_{1^{-}\alpha}^{\#2}$	0	0	0	$\frac{t_1}{\sqrt{2}}$	0	0	0
$\omega_{1^{\bar{-}}}^{\#1}{}_{\alpha}$	0	0	0	$-\frac{t_1}{2}$	$\frac{t_1}{\sqrt{2}}$	0	$-ikt_1$
$f_{1}^{\#1}$	$-\frac{ikt_1}{\sqrt{2}}$	0	0	0	0	0	0
$\omega_{1}^{\#2}$	$-\frac{t_1}{\sqrt{2}}$	0	0	0	0	0	0
$\omega_{1}^{\#1}{}_{\alpha\beta}$	$-\frac{t_1}{2}$	$-\frac{t_1}{\sqrt{2}}$	$\frac{ikt_1}{\sqrt{2}}$	0	0	0	0
	$\omega_1^{#1} + \alpha^{\beta}$	$\omega_1^{\#2} + \alpha^{\beta}$	$f_1^{\#_1} + ^{\alpha \beta}$	$\omega_{1}^{\#1} +^{lpha}$	$\omega_{1}^{\#2} +^{\alpha}$	$f_{1}^{#1} \dagger^{\alpha}$	$f_{1}^{#2} +^{\alpha}$

													- 4
								† *	$t_{0}^{#2}$	0	0	0	0
#	1	1	٣	е	м	2	16	- ‡	$ au_0^{\#\pm}$	$i \sqrt{2} k $ (1+2 k ²) ² t ₁	$\frac{2k^2}{(1+2k^2)^2t_1}$	0	0
			0 ==		3== 0	0 == _θ ;					I		
50(3) irreps	0	$2\bar{l}k\sigma_{0}^{\#1} == 0$	$+2ik\sigma_{1}^{\#2}\alpha$	0 ==	$+ik \sigma_1^{\#2\alpha\beta}$	$-2ik\sigma_{2+}^{\#1}\alpha\beta$:#	‡	σ_{0}^{*+}	$-\frac{1}{(1+2k^2)^2t_1}$	$-\frac{i\sqrt{2}k}{(1+2k^2)^2t_1}$	0	0
50(3)	r#2 ==	$r_0^{\#1} - 2$	$ au_1^{\#2}\alpha$ -	$t_{1}^{\#1}\alpha$:	$t_1^{\#1}\alpha\beta$	$t_2^{\#1}\alpha\beta$	Fotal			$\sigma_{0}^{\#1}$ †	$ au_0^{\#1}\dagger$	$\tau_0^{\#2} +$	$\sigma_{0}^{\#1}$ †

 $\sigma_{0^{\text{-}}}^{\#1}$

0

	Massive particle					
?, , ,	Pole residue:	$-\frac{1}{r_2} > 0$				
$J^P = 0^-$	Polarisations:	1				
k^{μ}	Square mass:	$\frac{t_1}{r_2} > 0$				
?	Spin:	0				
	Parity:	Odd				

(No massless particles)