Econometria - Cheat Sheet

Tiago Afonso

Table of contents

Importar dados	1
csv	
excel	2
Estimar modelo	2
Função lm	2
Testes de diagnóstico	2
Multicolineariedade	2
Heterocedasticidade	3
Autocorrelação	3
Normalidade dos Resíduos	3
Especificação	4
Estabilidade	4
Graficamente	4
Comparar modelos	4

Importar dados

csv

```
# Carregar biblioteca
library(readxl)

#importar ficheiro

dados <- read.csv("Nome_do_ficheiro.csv")</pre>
```

excel

```
# Carregar biblioteca
library(readxl)

#importar ficheiro

dados <- read_xlsx("Nome_do_ficheiro.xlsx")</pre>
```

Estimar modelo

Função 1m

```
# Estimar modelo
modelo <- lm(y~x, dados)

#ver resultados
summary(modelo)</pre>
```

Testes de diagnóstico

Multicolineariedade

Teste VIF

```
# Carregar biblioteca
library(car)

# Teste VIF
vif(modelo)

#ou
library(performande)
check_collinearity(modelo)
```

Matriz das correlações

```
cor(dados$x1,dados$x2,dados$x3)
```

Matriz das correlações (gráfico)

```
cor_matrix <- cor(dados$x1,dados$x2,dados$x3)
library(corrplot)
cor_3 <- corrplot.mixed(cor_matrix)</pre>
```

Heterocedasticidade

```
#teste BP
library(skedastic)
breusch_pagan(modelo)

#ou
library(performance)
check_heteroscedasticity(modelo)
```

Autocorrelação

```
library(lmtest)
bftest(modelo))

#ou
library(performance)
check_autocorrelation(modelo)
```

Normalidade dos Resíduos

```
#Shapiro
shapiro.test(m_reg$residuos)
# Jarque Bera
```

```
library(moments)
jarque.test(m_reg$residuos)

#OU
library(performance)
check_normality(modelo)
```

Especificação

```
library(lmtest)
resettest(modelo)
```

Estabilidade

```
library(strucchange)
sctest(modelo, type = "CUSUM")
plot(efp(modelo, data = dados, type = "Rec-CUSUM"))
```

Graficamente

```
library(performance)
check_model(modelo, check = "all")
```

Comparar modelos