Measures of Dispersion

Md. Ismail Hossain Riday

• In previous chapter, we learned how to summarize a raw data set using a single value that indicates the center of the distribution.

• It gives only partial information of the data set.

For example, Record the examination results of two students

Student A: 50, 49, 51, 50

Student B: 100, 100, 0, 0

• For example, Record the examination results of two students

• Student A: 50, 49, 51, 50 ($\bar{X}_A = 50$)

Student B: 100, 100, 0, 0

• For example, Record the examination results of two students

• Student A: 50, 49, 51, 50 ($\bar{X}_A = 50$)

• Student B: 100, 100, 0, 0 ($\bar{X}_B = 50$)

For example, Record the examination results of two students

• Student A: 50, 49, 51, 50 ($\bar{X}_A = 50$)

• Student B: 100, 100, 0, 0 ($\bar{X}_B = 50$)

On average both students are equal in getting final exam score

So it is also important to describe "How much the observation vary from one to another

Dispersion/Variation

Measures of Dispersion

 Dispersion may describe how much the observation vary from one to another.

 Descriptive measures that indicate the amount of variation in a data set are called measures of dispersion.

Why do we need?

To determine the reliability of an average

To compare the variability of two or more data sets.

Types of Measures of Dispersion

Two types of measures of dispersion

1. Absolute measure

2. Relative measure

Absolute measures

Only measure the inherent variation of a data set

Absolute measures

Only measure the inherent variation of a data set

- Important absolute measures are-
- 1. Range
- 2. Mean Deviation
- 3. Variance
- 4. Quartile Deviation

 \blacksquare Range = Highest value - Lowest value

 \blacksquare Range = Highest value - Lowest value

For example, weights of 5 newly born babies (in pounds)

7.5, 4.5, 10.1, 9.6, and 5.5

 \blacksquare Range = Highest value - Lowest value

For example, weights of 5 newly born babies (in pounds)

7.5, 4.5, 10.1, 9.6, and 5.5

(Range = ????)

 \blacksquare Range = Highest value - Lowest value

For example, weights of 5 newly born babies (in pounds)

7.5, 4.5, 10.1, 9.6, and 5.5

Range = 10.1 - 4.5 = 5.6 pounds

• Let $x_1, x_2, ..., x_n$ be n observations, where \bar{x} is average/ or mean

•
$$MD = \frac{\sum |x_i - \bar{x}|}{n}$$
 [for ungrouped data]

•
$$MD = \frac{\sum f_i |x_i - \bar{x}|}{\sum f_i}$$
 [for grouped data]

• For example, x = 1,2,4,5.

• For example, x = 1,2,4,5. Calculate the mean deviation.

x_i	
1	
2	
4	
5	

• For example, x = 1,2,4,5. Calculate the mean deviation.

x_i	\overline{x}	$ x_i - \overline{x} $
1		2
2	$\sum x_i$	1
4	$\frac{\sum x_i}{n} = 3$	1
5		2

$$MD = \frac{\sum |x_i - \bar{x}|}{n} = \frac{6}{4} = 1.5$$

Sale (in \$)	20-30	30-40	40-50	50-60	60-70
f_i	3	5	12	3	2

Calculate the mean deviation about mean. (Ans: 7.776)

Variance

Let $x_1, x_2, ..., x_n$ be n observations

For grouped,
$$\sigma^2 = \frac{\sum f_i(x_i - \mu)^2}{N}$$

• $\sigma^2 = \frac{\sum (x_i - \mu)^2}{N}$ [Population variance (ungrouped)]

$$\sigma^2 = \frac{\sum x_i^2 - N\mu^2}{N}$$

• $s^2 = \frac{\sum (x_i - \bar{x})^2}{n-1}$ [Sample variance (ungrouped)]

$$s^2 = \frac{\sum x_i^2 - n\bar{x}^2}{n-1}$$

For grouped,
$$s^2 = \frac{\sum f_i(x_i - \bar{x})^2}{n-1}$$

Square root of variance

•
$$\sigma = \sqrt{\frac{\sum (x_i - \mu)^2}{N}}$$
 [Population standard deviation (ungrouped)]

•
$$s = \sqrt{\frac{\sum (x_i - \bar{x})^2}{n-1}}$$
 [Sample variance (ungrouped)]

For example: weights of 10 newly born babies (in pounds)

7.5, 4.5, 10.1, 9.6, 5.5, 6.6, 7.8, 5.9, 6.0, 5.5

- a) Calculate the standard deviation

b) Interpretation

$\boldsymbol{x_i}$	\overline{x}	$(x_i - \overline{x})^2$

$\boldsymbol{x_i}$	$\overline{\boldsymbol{x}}$		$(x_i - \overline{x})^2$	
7.5	$\frac{\sum x_i}{n} = 6.9$		0.36	
4.5			0.57	
10.1			10.24	
9.6			7.29	
5.5			1.96	
6.6			0.09	
7.8			0.81	
5.9			1	
6.0			0.81	
5.5			1.96	

For example: weights of 10 newly born babies (in pounds)

7.5, 4.5, 10.1, 9.6, 5.5, 6.6, 7.8, 5.9, 6.0, 5.5

a) Calculate the standard deviation

b) Interpretation

For example: weights of 10 newly born babies (in pounds)

a) Calculate the standard deviation

$$s = \sqrt{\frac{\sum (x_i - \bar{x})^2}{n - 1}} = \sqrt{\frac{30.28}{10 - 1}} = \sqrt{3.36} = 1.83 \ pounds$$

• b) Interpretation

The average variation of the weights of the newly born babies from the mean weights is 1.83 pounds.

Standard Deviation (Alternative)

$$s^2 = \frac{\sum x_i^2 - n\bar{x}^2}{n-1} = 3.36$$

$\boldsymbol{x_i}$	$\overline{\boldsymbol{x}}$	x_i^2
7.5	$\frac{\sum x_i}{n} = 6.9$	56.25
4.5		20.25
10.1		102.01
9.6		92.16
5.5		30.25
6.6		43.56
7.8		60.84
5.9		34.81
6.0		36
5.5		30.25

Relative measures

 To compare the variation of two or more data sets having different or same units

Relative measures

 To compare the variation of two or more data sets having different or same units

Coefficient of Range

Coefficient of MD

Coefficient of variance

Coefficient of QD

Relative measures

 To compare the variation of two or more data sets having different or same units

Coefficient of Range

Coefficient of MD

Coefficient of variance

Coefficient of QD

Coefficient of variance (CV)

It is a ratio

Between standard deviation (SD) and mean

Expressed as percent

General formula of
$$CV = \frac{SD}{mean} \times 100$$

Coefficient of variance (CV)

•
$$CV = \frac{\sigma}{\mu} \times 100$$
; [For population]

•
$$CV = \frac{s}{\bar{x}} \times 100$$
; [For sample]

Higher CV = High variation

Lower CV = Low Variation

More consistent

More uniform

More homogeneous

More stable

Coefficient of variance (CV)

Section A: Mean = 30 and SD = 4

$$CV_A = \frac{4}{30} \times 100 = 13.3\%$$

Section B: Mean = 25 and SD = 6

$$CV_B = \frac{6}{25} \times 100 = 24\%$$

• Which section is more consistent in getting final exam mark?

Since, the CV of A is lower than the CV of B. Thus, section A is more consistent comparatively section B

OTHANK You