

Generative Al with Diffusion Models

Part 1: From U-Nets to Diffusion

Agenda

- Part 1: From U-Nets to Diffusion
- Part 2: Denoising Diffusion Probabilistic Models
- Part 3: Optimizations
- Part 4: Classifier Free Diffusion
- Part 5: CLIP
- Part 6: Wrap-up & Assessment

Prerequisites

- Basic familiarity with convolutional neural networks (CNNs)
- Basic familiarity with a deep learning framework such as:
 - PyTorch
 - TensorFlow

The Imitation Game

A.K.A The Turing Test

A robot looks in a mirror and the reflection is human, cyberpunk

IBM 704

The First Singing Computer

Eliza

The First Gen Al Chatbot?

```
Talk to Eliza
> Hello, I am Eliza.
* Nice to meet you
> Oh... ?
* How are you
> Would you prefer if I were not ?
* were not what?
> Have you asked anyone else?
```


Generative Al of the 70's, 80's and 90s?

- Electronic music
- Video games graphics
- Video game Al
- Computer animation
- Instant messaging chatbots

Deep Dreaming

Images by Martin Thoma

Original 10 Iterations 50 Iterations

GANS

Generative Adversarial Networks

Noise Vector

GANS

Image Segmentation

Image Segmentation + GANs

NVIDIA Spade

GANs U-Nets

The U shaped Autoencoder

U-Nets
The U shaped Autoencoder

Convolution Review

Kernel

Image

.25	.25
.25	.25

1	0	1
0	1	0
1	0	1

Convolution Review

Kernel

Image

.25	.25
.25	.25

1 • .25	0 • .25	1
0 • .25	1 • .25	0
1	0	1

Convolution Review

Kernel

Image

Convolution Review

Kernel

Image

.25	.25
.25	.25

1	0	1
0 • .25	1 • .25	0
1 • .25	0 • .25	1

Convolution Review

Kernel

Image

.25	.25
.25	.25

1	0	1
0	1 • .25	0 • .25
1	0 • .25	1 • .25

.5	.5
.5	.5

Image Upscaling

Kernel

Image

.25	.25
.25	.25

1	0	1
0	1	0
1	0	1

Image Upscaling

Kernel

.25 .25

Image

Stride = 2

1	0	0	0	1
0	0	0	0	0
0	0	1	0	0
0	0	0	0	0
1	0	0	0	1

Image Upscaling

Kernel

.25 .25

Image

Stride = 2

1 • .25	0 • .25	0	0	1
0 • .25	0 • .25	0	0	0
0	0	1	0	0
0	0	0	0	0
1	0	0	0	1

Image Upscaling

Kernel

.25 .25

Image

Stride = 2

1	0 • .25	0 • .25	0	1
0	0 • .25	0 • .25	0	0
0	0	1	0	0
0	0	0	0	0
1	0	0	0	1

.25	0	

Image Upscaling

Kernel

.25 .25

Image

Stride = 2

1	0	0	0	1
0	0	0	0	0
0	0	1	0	0
0	0	0	0	0
1	0	0	0	1

.25	0	0	.25
0	.25	.25	0
0	.25	.25	0
.25	0	0	.25

Stride

Image

Stride = 2

1	0	0	0	1
0	0	0	0	0
0	0	1	0	0
0	0	0	0	0
1	0	0	0	1

Image

Stride = 3

1	0	0	0	0	0	1
0	0	0	0	0	0	0
0	0	0	0	0	0	0
0	0	0	1	0	0	0
0	0	0	O	0	0	0
0	0	0	0	0	0	0
1	0	0	0	0	0	1

Padding

Image

Stride = 3

Padding = 0

0 0 Image

Stride = 3

Padding = 2

Padding

Image

Padding = 0 Stride = 3

0 0 0

Image

Stride = 3

Padding = 2

Out Padding

Image

Out Padding = 0

 1
 0
 1

 0
 1
 0

 1
 0
 1

Image

Out Padding = 1

1	0	1	0
0	1	0	0
1	0	1	0
0	0	0	0

Image

Out Padding = 2

1	0	1	0	0
0	1	0	0	0
1	0	1	O	0
0	0	0	0	0
0	0	0	0	0

Image Resizing

Upsampling

64 px

128 px

192 p

Image Resizing Upsampling

Nearest

Bilinear

Bicubic

Deconvolution?

Same as Transposed Convolution?

Deconvolved Convolved Image

FashionMNIST

Convolutional Neural Network "Hello World"

Hypothesis: Generate an image from Noise

The Experiment

From Coin Flips to Bells

$$Pr(X = k) = \binom{n}{k} p^k (1 - p)^{n-k}$$

$$\Pr(X = k) = \frac{n!}{k! (n - k)!} p^k (1 - p)^{n - k}$$

$$\Pr(X=2) = \frac{4!}{2!(4-2)!} \left(\frac{1}{2}\right)^2 (1 - \frac{1}{2})^{4-2}$$

$$Pr(X=2) = \frac{4 \cdot 3 \cdot 2 \cdot 1}{2 \cdot 1 \cdot 2 \cdot 1} \left(\frac{1}{4}\right) \left(\frac{1}{4}\right)$$

$$\Pr(X = 2) = \frac{6}{16}$$

A weighted coin flipping through the air like a cartoon

$$p = \frac{1}{2}$$

$$n = 4$$

$$k = 2$$

From Coin Flips to Bells

From Coin Flips to Bells

$$\Pr(X = k) = \binom{n}{k} p^k (1 - p)^{n-k}$$

$$\Pr(X = k) = \frac{n!}{k! (n - k)!} p^k (1 - p)^{n - k}$$

$$n! \approx \sqrt{2\pi} \left(\frac{n}{e}\right)^n$$

$$\binom{n}{k} p^k q^{n-k} \simeq \frac{1}{\sqrt{2\pi npq}} e^{-\frac{(k-np)^2}{2npq}}$$

$$N(\mathbf{x}; \mu, \sigma^2) = \frac{1}{\sigma\sqrt{2\pi}} e^{-\frac{1}{2}\left(\frac{\mathbf{x}-\mu}{\sigma}\right)^2}$$

A weighted coin flipping through the air like a cartoon

From Coin Flips to Bells

$$N(\mathbf{x}; \mu, \sigma^2) = \frac{1}{\sigma\sqrt{2\pi}} e^{-\frac{1}{2}\left(\frac{\mathbf{x}-\mu}{\sigma}\right)^2}$$

 $\mu = mean, a.k.a.$ average

 $\sigma = standard\ devaition, a.k.\ a.\ spread$

$$z = \frac{x - \mu}{\sigma}$$

