

UNITED STATES DEPARTMENT OF COMMERCE United States Patent and Trademark Office Address COMMISSIONER FOR PATENTS PO Box 1450 Alexandria, Virginia 22313-1450 www.unpto.gov

APPLICATION NO.	FILING DATE	FIRST NAMED INVENTOR	ATTORNEY DOCKET NO.	CONFIRMATION NO.		
10/057,523	01/22/2002	George M. White	2222.0820005	5053		
26111 STERNE KES	7590 03/08/201 SSLER, GOLDSTEIN &	EXAM	EXAMINER			
1100 NEW YO	ORK AVENUE, N.W.	LERNER, MARTIN				
WASHINGTO	N, DC 20005		ART UNIT	PAPER NUMBER		
			2626	•		
			MAIL DATE	DELIVERY MODE		
			03/08/2011	PAPER		

Please find below and/or attached an Office communication concerning this application or proceeding.

The time period for reply, if any, is set in the attached communication.

Office Action Summary

Application No.	Applicant(s)	
10/057,523	WHITE ET AL.	
Examiner	Art Unit	
MARTIN LERNER	2626	

-- The MAILING DATE of this communication appears on the cover sheet with the correspondence address --Period for Reply

A SHORTENED STATUTORY PERIOD FOR REPLY IS SET TO EXPIRE 3 MONTH(S) OR THIRTY (30) DAYS. WHICHEVER IS LONGER, FROM THE MAILING DATE OF THIS COMMUNICATION

- Extensions of time may be available under the provisions of 37 CFR 1.136(a). In no event, however, may a reply be timely filed after SIX (6) MONTHS from the mailing date of this communication.
- If NO period for reply is specified above, the maximum statutory period will apply and will expire SIX (6) MONTHS from the mailing date of this communication. Failure to reply within the set or extended period for reply will, by statute, cause the application to become ABANDONED (35 U.S.C. § 133).

Any reply received by the Office later than three months after the mailing date of this communication, even if timely filed, may reduce any earned patent term adjustment. See 37 CFR 1.704(b).
Status
1) Responsive to communication(s) filed on 09 February 2011.
2a) ☐ This action is FINAL . 2b) ☐ This action is non-final.
3) Since this application is in condition for allowance except for formal matters, prosecution as to the merits is
closed in accordance with the practice under Ex parte Quayle, 1935 C.D. 11, 453 O.G. 213.
Disposition of Claims
4) Claim(s) 59, 61 to 66, 68 to 73, 75 to 79, 81, and 83 to 88 is/are pending in the application.
4a) Of the above claim(s) is/are withdrawn from consideration.
5) Claim(s) is/are allowed.
6) ☑ Claim(s) 59, 61 to 66, 68 to 73, 75 to 79, 81, and 83 to 88 is/are rejected.
7) Claim(s) is/are objected to.
8) Claim(s) are subject to restriction and/or election requirement.
Application Papers
9) ☐ The specification is objected to by the Examiner.

9)[The	spec	ific	ation is	s objected	to by th	ne Examiner	٠.		
							. —			

10) ☐ The drawing(s) filed on _____ is/are: a) ☐ accepted or b) ☐ objected to by the Examiner. Applicant may not request that any objection to the drawing(s) be held in abeyance. See 37 CFR 1.85(a).

12) Acknowledgment is made of a claim for foreign priority under 35 U.S.C. § 119(a)-(d) or (f).

Replacement drawing sheet(s) including the correction is required if the drawing(s) is objected to. See 37 CFR 1.121(d).

11) The oath or declaration is objected to by the Examiner. Note the attached Office Action or form PTO-152.

Priority under 35 U.S.C. § 119

a)□ All	b) ☐ Some * c) ☐ None of:
1.	Certified copies of the priority documents have been received.
2.	Certified copies of the priority documents have been received in Application No
3.□	Copies of the certified copies of the priority documents have been received in this National Sta

application from the International Bureau (PCT Rule 17.2(a)). * See the attached detailed Office action for a list of the certified copies not received.

Attac	hment(s)
1)	Notice o

2 3

Notice of References Cited (PTO-892)	4) Interview Summary (PTO-413)
Notice of Draftsperson's Patent Drawing Review (PTO-948)	Paper No(s)/fixail Date
Information Disclosure Statement(s) (PTO/SB/08)	 Notice of Informal Patent Application
Paner Na/a)Mail Data	e) Other:

Art Unit: 2626

DETAILED ACTION

Claim Rejections - 35 USC § 103

- The following is a quotation of 35 U.S.C. 103(a) which forms the basis for all obviousness rejections set forth in this Office action:
 - (a) A patent may not be obtained though the invention is not identically disclosed or described as set forth in section 102 of this title, if the differences between the subject matter sought to be patented and the prior art are such that the subject matter as a whole would have been obvious at the time the invention was made to a person having ordinary skill in the art to which said subject matter pertains. Patentability shall not be negatived by the manner in which the invention was made.
- Claims 59, 61 to 66, 68 to 73, 75 to 79, 81, and 83 are rejected under 35 U.S.C.
 103(a) as being unpatentable over *Jacobs et al.* in view of *Odinak*.

Concerning independent claims 59, 81, and 83, *Jacobs et al.* discloses a distributed voice recognition system and method, comprising:

"a transceiver configured to receive input from the device via a communications network, wherein the input is the result of preliminary signal processing comprising keyword detection by the device prior to receipt of the input at the transceiver" – central communications center or base station 42 has receiver 46 and transmitter 50 ("a transceiver"), which receives features ("the input") from portable phone 40 ("the device") through a wireless network ("via a communications network"); a speech signal received at microphone 20 of portable phone 40 is provided to feature extraction element 22, which extracts relevant characteristics of the input speech ("preliminary signal processing") (column 5, lines 21 to 56: Figure 2); in one embodiment, handset 100 ("the device") recognizes a small number of simple, special voiced commands by local VR (voice recognition) ("keyword detection by the device prior to receipt of the input at the

Art Unit: 2626

transceiver"); however, if local VR of handset 100 fails to decode the input string, the features are transmitted to base station 110 for recognition by remote VR (column 8, lines 46 to 56; column 9, lines 6 to 20: Figure 5); implicitly, the words to be decoded for these small number of simple, special voiced commands are "keywords";

"a memory configured to store an acoustic model of the input; and a processing module coupled to the transceiver and configured to: perform speech recognition on the received input based at least in part on a previously stored acoustic model in order to recognize a command" - remote VR recognizes regular voiced commands with a larger vocabulary table at remote word decoder of base station 110 (column 8, lines 28 to 56: Figure 5); implicitly, words recognized by remote word decoder for a regular voiced command involves "keyword detection"; acoustic pattern matching in a word decoder requires a mathematical model to describe the speaker's phonological and acousticphonetic variations for acoustic pattern matching (column 2, lines 31 to 40); acoustic pattern matching in a word decoder can be based on hidden Markov models (HMM's) (column 4, lines 13 to 21); speech signals are provided to acoustic processor 52, which requires an acoustic feature sequence as input for both recognition and training tasks (column 6, lines 62 to 67: Figure 3); thus, acoustic pattern matching by remote word decoder 114 ("a processing module") involves a stored "acoustic model" to perform speech recognition by matching an acoustic feature sequence to a stored mathematical model of a speaker's phonological and acoustic-phonetic variations;

"wherein the transceiver is further configured to transmit data to the device responsive to the command via the communication network" – at central

Art Unit: 2626

communications center 42, an action signal is provided to transmitter 50, so that estimated words or a command signal are transmitted to portable phone 40 ("to transmit data to the device responsive to the command"); at portable phone 40, the estimated words or command signals are received, and then provided to control element 38; in response to the received command signal or estimated words, control element 38 provides the intended response; an intended response can be providing information on a display screen (column 5, lines 44 to 65; Figure 2).

Concerning independent claims 59, 81, and 83, the only elements omitted by Jacobs et al. are "using communications channels comprising: a high bandwidth communication channel configured to transmit data supporting audio or video output at the device, and a low bandwidth communication channel configured to transmit data supporting control signals for operation of a primary functionality component of the device." Jacobs et al. discloses a command signal that is provided to a control element for controlling a response in a portable phone ("a primary functionality component") for performing operations that include dialing a phone number and displaying information on a display screen, but omits disclosure of a low bandwidth communication channel for transmitting the control signals and a high bandwidth communication channel for transmitting audio or video output. However, Odinak teaches a home control system for controlling components that include a VCR and a TV that receive control commands using a low-bandwidth communications channel, while also being configured to receive an audio/video signal over a high-bandwidth communications channel. (Column 2, Lines 32 to 65) An audio system 20 is connected to receive an audio signal, and a

Art Unit: 2626

receiver is tunable between any of twenty available high-bandwidth audio channels. Audio system 20 has a control receiver 54 that receives and demodulates control data using the low-bandwidth channel. Video monitor 18 has components that are similar to those of audio system 20, for receiving a video signal. (Column 5, Lines 5 to 23: Figure 5) An objective is to provide high bandwidth communications required for audio, video, and computer networking applications so that a controller can issue commands to a VCR and a TV over a low-bandwidth channel to instruct the components on what high-bandwidth channel to use. (Column 2, Lines 26 to 31; Column 2, Line 66 to Column 3, Line 20) It would have been obvious to one having ordinary skill in the art to utilize a distributed voice recognition system of *Jacobs et al.* for a home control system having low-bandwidth communication channels for control commands and high-bandwidth communication channels for audio and video as taught by *Odinak* for a purpose of providing commands on a low-bandwidth channel to instruct components on what high-bandwidth channel to use

Concerning independent claims 66 and 73, *Jacobs et al.* discloses a distributed voice recognition system and method, comprising:

"receiving an audio input from a device via a communication network, the audio input based at least in part on speech input, wherein the audio input is the result of preliminary signal processing comprising keyword detection by the device prior to receipt of the audio input" – central communications center or base station 42 receives speech features ("audio input") transmitted over a wireless communication network ("a

Art Unit: 2626

network") from portable phone 40 ("the device"); a speech signal received at microphone 20 of portable phone 40 is provided to feature extraction element 22, which extracts relevant characteristics of the input speech ("preliminary signal processing") (column 5, lines 21 to 56: Figure 2); in one embodiment, handset 100 recognizes a small number of simple, special voiced commands by local VR (voice recognition) ("keyword detection by the device prior to receipt of the input at the transceiver"); however, if local VR of handset 100 fails to decode the input string, the features are transmitted to base station 110 for recognition by remote VR (column 8, lines 46 to 56; column 9, lines 6 to 20: Figure 5); implicitly, the words to be decoded for these small number of simple, special voiced commands are "keywords";

"storing an acoustic model of the audio input; performing speech recognition on the received audio input based at least in part on a previously stored acoustic model in order to recognize a command" – remote VR recognizes regular voiced commands with a larger vocabulary table at remote word decoder of base station 110 (column 8, lines 28 to 56: Figure 5); implicitly, words recognized by remote word decoder for a regular voiced command involves "keyword detection"; acoustic pattern matching in a word decoder requires a mathematical model to describe the speaker's phonological and acoustic-phonetic variations for acoustic pattern matching (column 2, lines 31 to 40); acoustic pattern matching in a word decoder can be based on hidden Markov models (HMM's) (column 4, lines 13 to 21); speech signals are provided to acoustic processor 52, which requires an acoustic feature sequence as input for both recognition and training tasks (column 6, lines 62 to 67: Figure 3); thus, acoustic pattern matching by

Art Unit: 2626

remote word decoder 114 involves a stored "acoustic model" to perform speech recognition by matching an acoustic feature sequence to a stored mathematical model of a speaker's phonological and acoustic-phonetic variations;

"transmitting data to the device over the network, responsive to the command, via the communication network" – at central communications center 42, an action signal is provided to transmitter 50, so that estimated words or a command signal are transmitted to portable phone 40 ("transmitting data to the device . . . responsive to the command"); at portable phone 40, the estimated words or command signals are received, and then provided to control element 38; in response to the received command signal or estimated words, control element 38 provides the intended response; an intended response can be providing information on a display screen (column 5, lines 44 to 65: Figure 2).

Concerning independent claims 66 and 73, the only elements omitted by Jacobs et al. are "using communications channels comprising: a high bandwidth communication channel configured to transmit data supporting audio or video output at the device, and a low bandwidth communication channel configured to transmit data supporting control signals for operation of a primary functionality component of the device." Jacobs et al. discloses a command signal that is provided to a control element for controlling a response in a portable phone ("a primary functionality component") for performing operations that include dialing a phone number and displaying information on a display screen, but omits disclosure of a low bandwidth communication channel for transmitting the control signals and a high bandwidth communication channel for transmitting audio

Art Unit: 2626

or video output. However, Odinak teaches a home control system for controlling components that include a VCR and a TV that receive control commands using a low bandwidth communications channel, while also being configured to receive an audio/video signal over a high-bandwidth communications channel. (Column 2. Lines 32 to 65) An audio system 20 is connected to receive an audio signal, and a receiver is tunable between any of twenty available high-bandwidth audio channels. Audio system 20 has a control receiver 54 that receives and demodulates control data using the lowbandwidth channel. Video monitor 18 has components that are similar to those of audio system 20, for receiving a video signal. (Column 5, Lines 5 to 23; Figure 5) An objective is to provide high bandwidth communications required for audio, video, and computer networking applications so that a controller can issue commands to a VCR and a TV over a low-bandwidth channel to instruct the components on what highbandwidth channel to use. (Column 2, Lines 26 to 31; Column 2, Line 66 to Column 3, Line 20) It would have been obvious to one having ordinary skill in the art to utilize a distributed voice recognition system of Jacobs et al. for a home control system having low-bandwidth communication channels for control commands and high-bandwidth communication channels for audio and video as taught by Odinak for a purpose of providing commands on a low-bandwidth channel to instruct components on what highbandwidth channel to use

Art Unit: 2626

Concerning claims 61 to 62, 68 to 69, and 75 to 76, *Odinak* teaches a VCR and TV that transmit and receive an audio/video signal over a high-bandwidth communication channel. (Column 2, Lines 56 to 65: Figure 1)

Concerning claims 63, 70, and 77, *Jacobs et al.* discloses that portable phone 40 may receive a command signal or estimated words, and control element 38 provides an intended response; the intended response may be to provide information to display screen on the portable phone (column 5, lines 62 to 65: Figure 2); thus, the response will be "a text message" of information on a display of portable phone 40.

Concerning claims 64, 71, and 78, *Jacobs et al.* discloses that features are provided to local word decoder 106 which searches its small vocabulary to recognize the input speech; if local word decoder 106 fails to decode the input string and determines that remote VR should decode it, the features are transmitted to remote word decoder 110 (column 9, lines 6 to 15: Figure 5); thus, handset 100 will transmit the speech features ("the input") for remote VR when the input string at handset ("the device") "is not capable of being processed by the device".

Concerning claims 65, 72, and 79, *Jacobs et al.* discloses that central communications center 42 has a transmitter 50 that may transmit estimated words to portable phone 40. At portable phone 40, the estimated words are provided to control element 38, and the estimated words may be provided as information to display on a display screen of a portable phone. (Column 5, Lines 44 to 65: Figure 2) Here, the information displayed from the estimated words are "remote data" that is retrieved "in response to the input received from the device." Moreover, *Jacobs et al.* discloses that

Art Unit: 2626

a portable phone may inquire for messages on a remote answering machine coupled via a communications network to a central communication center, in which case the signal transmitted from central communication center to portable telephone may be messages ("to retrieve remote data") from the answering machine. (Column 66 to Column 6, Lines 12)

3. Claims 84 to 88 are rejected under 35 U.S.C. 103(a) as being unpatentable over Jacobs et al. in view of Odinak as applied to claims 59, 66, 73, 81, and 83 above, and further in view of Mivazawa et al.

Concerning claims 84 to 88, Jacobs et al. omits a processing module that is configured to "update or modify the keyword detection based on words within the additional input, and update the previously stored acoustic model based on the additional input". Jacobs et al. reasonably discloses "an acoustic model" for acoustic pattern matching by a word decoder, and keywords for special voiced commands, and even suggests training of the acoustic model. (See Column 6, Line 64 to 67) However, Jacobs et al. does not disclose updating or modifying keyword detection or updating a previously stored acoustic model with additional input. Still, it is known to update both acoustic models and keyword grammars during speech recognition so as to improve recognition performance by adaptation.

Concerning claims 84 to 88, specifically, *Miyazawa et al.* teaches a speech recognition method for a speech interactive device, where an initial word enrollment is followed by additional word enrollment that creates standard patterns that are speaker-

Art Unit: 2626

adapted and stored for speaker specific word enrollment. (Abstract; Column 3, Lines 39 to 48) Pre-registered words can be speaker-adapted to permit more accurate and quicker recognition, and to allow specific speakers to enroll new words suited to the user's individual needs and tastes which are not included in the non-speaker specific word registry storage. (Column 4, Lines 43 to 60) Miyazawa et al. refers to these words as "keywords" for keyword-spotting processing technology, and keywords include "time", "tomorrow", and "weather" for responding to commands for information about the weather. (Column 7, Lines 50 to 57; Column 8, Lines 7 to 11; Column 9, Lines 21 to 51) Keywords are stored in the form of patterns in standard pattern memory unit 31 for the predetermined word registry. (Column 8, Lines 7 to 14) Word enrollment 81 creates standard patterns for the input voice as standard characteristic voice data, and the standard pattern is stored in standard pattern memory unit 82. (Column 10, Lines 26 to 30) Here, a standard pattern is equivalent to "an acoustic model". Thus, Miyazawa et al. teaches both updating or modifying keyword detection by additional word enrollment, and updating a stored acoustic model when a standard pattern is stored for speakerspecific word registration. Objectives include accommodating a wider range of conversation responses and detected phrases on an as needed basis. (Column 3. Lines 2 to 5) It would have been obvious to one having ordinary skill in the art to update and modify keyword detection and update acoustic models as taught by Miyazawa et al. in a distributed voice recognition system and method of Jacobs et al. for a purpose of accommodating a wider range of conversation responses and detected phrases as needed.

Application/Control Number: 10/057,523 Page 12

Art Unit: 2626

Response to Arguments

 Applicants' arguments filed 09 February 2011 have been fully considered but they are not persuasive.

Applicants argue that the rejection of independent claims 59, 66, 73, 81, and 83 under 35 U.S.C. §103(a) as being obvious over Jacobs et al. in view of Odinak is improper because Odinak fails to provide a necessary teaching or suggestion to enable one skilled in the art to employ its communication protocols, and that one skilled in the art would not know how to apply the low- and high-bandwidth channels of Odinak to transmit data responsive to a command. Applicants maintain that they are not attacking the references individually, but rather argue that it would not have been obvious to one of ordinary skill in the art at the time Applicants' invention was made to modify the teachings of Odinak for use with the teachings of Jacobs et al. Specifically, Applicants state that Odinak concentrates on home control systems with an emphasis on home entertainment functions, but that there is no component described by Odinak that has a transceiver 'configured to transmit data to the device' via both 'a high bandwidth communication channel' and 'a low bandwidth communication channel'. Applicants say that Odinak would have required one of ordinary skill in the art to modify it to not only provide high- and low-bandwidth transmission capabilities, but to be able to transmit data to a device responsive to a command, where the command is recognized through speech recognition on a received input based at least in part on a previously stored acoustic model. Applicants contend that the proposed modification can only be made

Art Unit: 2626

through the application of impermissible hindsight analysis. Applicants allege that transmitting a control signal as a low-bandwidth communication fundamentally changes the principle of operation of *Odinak*. These arguments are not persuasive.

It is respectfully maintained that 'attacking the references individually' is exactly what Applicants are doing. One cannot show nonobviousness by attacking references individually where the rejections are based on combinations of references. See *In re Keller*, 642 F.2d 413, 208 USPQ 871 (CCPA 1981); *In re Merck & Co.*, 800 F.2d 1091, 231 USPQ 375 (Fed. Cir. 1986). It is true that any obviousness rejection is, in a sense, necessarily a reconstruction based upon hindsight reasoning. Applying prior art against the claims necessarily implies reading the specification, and searching the prior art for those features disclosed by the specification. However, it is contended that one skilled in the art at the time of invention would have known that a command information signal could be transmitted over a relatively low-bandwidth channel, but that a media information signal would require a higher-bandwidth channel. Generally, it was known that a command signal would have less information content than a media signal at the time of Applicants' invention, even if sufficiently high-bandwidth channels were not readily available for transmitting high quality video at the time of Applicants' invention.

Applicants' argument that *Odinak* would need to teach the low- and highbandwidth channels for speech recognition that recognizes a command based at least in part on a previously stored acoustic model raises too high a standard for what patent case law requires the prior art to teach. Ideally, *Odinak* could teach low- and highbandwidth channels for speech recognition, where the low-bandwidth channel is Art Unit: 2626

employed to transmit a command generated from speech. However, patent case law does not require this. It is sufficient that Odinak is analogous art, and is reasonably pertinent to the particular problem with which the applicant was concerned, in order to be relied upon as a basis for rejection of the claimed invention. See In re Oetiker, 977 F.2d 1443, 24 USPQ2d 1443 (Fed. Cir. 1992). Here, Odinak is directed to solving the same problem - as proposed by Applicants' Specification, Page 15, Line 20 to Page 16, Line 15 and Page 21, Line 10 to Page 22, Line 12 - of providing wireless remote control of household appliances including a television set, video cassette recorder, or a microwave oven, where the commands are received by a local device. That is, Odinak is similarly concerned with providing control signals for home appliances including a video system or a video cassette recorder. Admittedly, Odinak does not contemplate that the commands originate by speech recognition. However, once a spoken command is recognized in speech recognition, it is simply transformed into a control signal. Thus, it is this control signal that is transmitted by a low-bandwidth channel in Odinak, where the low-bandwidth channel provides control signals for selecting audio and video transmitted over the high-bandwidth channel. Jacobs et al. supplies the disclosure of transforming a spoken command into a control signal by speech recognition. To require *Odinak* to redundantly supply the teaching of speech recognition amounts to 'attacking the references individually'. Applicants' claims do not expressly require that the high-bandwidth audio or video is transmitted from the same remote system that performs speech recognition.

Art Unit: 2626

Similarly, a combination of Odinak and Jacobs et al. is not found to 'fundamentally change the principle of operation', Odinak, Figure 4, shows at least one embodiment where both the control receiver and the video transmitter are in the same device of a video cassette recorder. Thus, a low-bandwidth channel supports receiving control signal data and a high-bandwidth channel supports audio and video data at the same device. Admittedly, Jacobs et al. supplies a command signal to a portable phone after distributed voice recognition instead of supplying the command signal to a household appliance. Still, the same local handset device transmits spoken input and receives a corresponding command signal from a remote word decoder of a central communications center after speech recognition in Jacobs et al. The combination does not 'fundamentally change the principle of operation' because Jacobs et al. can be viewed as a generic distributed speech recognition architecture using speech to generate a command signal that is then provided to a control element, and Odinak teaches an application of generating a command signal to a control element employing low- and high-bandwidth channels for a home entertainment system.

Therefore, the rejections of claims 59, 61 to 66, 68 to 73, 75 to 79, 81, and 83 under 35 U.S.C. 103(a) as being unpatentable over *Jacobs et al.* in view of *Odinak*, and of claims 84 to 88 under 35 U.S.C. 103(a) as being unpatentable over *Jacobs et al.* in view of *Odinak*, and further in view of *Mivazawa et al.* are proper.

Art Unit: 2626

Conclusion

 THIS ACTION IS MADE FINAL. Applicants are reminded of the extension of time policy as set forth in 37 CFR 1.136(a).

A shortened statutory period for reply to this final action is set to expire THREE MONTHS from the mailing date of this action. In the event a first reply is filed within TWO MONTHS of the mailing date of this final action and the advisory action is not mailed until after the end of the THREE-MONTH shortened statutory period, then the shortened statutory period will expire on the date the advisory action is mailed, and any extension fee pursuant to 37 CFR 1.136(a) will be calculated from the mailing date of the advisory action. In no event, however, will the statutory period for reply expire later than SIX MONTHS from the mailing date of this final action.

Any inquiry concerning this communication or earlier communications from the examiner should be directed to Martin Lerner whose telephone number is (571) 272-7608. The examiner can normally be reached on 8:30 AM to 6:00 PM Monday to Thursday.

If attempts to reach the examiner by telephone are unsuccessful, the examiner's supervisor, David R. Hudspeth can be reached on (571) 272-7843. The fax phone number for the organization where this application or proceeding is assigned is 571-273-8300.

Information regarding the status of an application may be obtained from the Patent Application Information Retrieval (PAIR) system. Status information for Application/Control Number: 10/057,523 Page 17

Art Unit: 2626

published applications may be obtained from either Private PAIR or Public PAIR.

Status information for unpublished applications is available through Private PAIR only.

For more information about the PAIR system, see http://pair-direct.uspto.gov. Should you have questions on access to the Private PAIR system, contact the Electronic Business Center (EBC) at 866-217-9197 (toll-free). If you would like assistance from a USPTO Customer Service Representative or access to the automated information system, call 800-786-9199 (IN USA OR CANADA) or 571-272-1000.

/Martin Lerner/ Primary Examiner Art Unit 2626 March 4, 2011