Байесовское машинное обучение

Евгений Бурнаев

Skoltech, Москва, Россия

Содержание

- Введение
- Вероятность
- 3 Байесовская вероятность
- Приближение функции по данным: Байесовская точка зрения
- 5 Модели с линейным функциональным базисом
- 6 Байесовская линейная регрессия

- Введение
- Вероятность
- Вайесовская вероятность
- u Приближение функции по данным: Байесовская точка зрения
- 5 Модели с линейным функциональным базисом
- 6 Байесовская линейная регрессия

Основные принципы

Томас Байес (с. 1701 – 7 Апреля 1761) был английским статистиком, философом и Пресвитерианским министром

$$\mathbb{P}(B|A) = \frac{\mathbb{P}(A|B)\mathbb{P}(B)}{\mathbb{P}(A)}$$

Вильям Окхам (с. 1287 – 1347) был английским был английским францисканским монахом и схоластическим философом и теологом

4/46

Пример: рукописные цифры

- Пример: распознавание рукописных цифр
- Каждой цифре соответствует 28×28 пиксельное изображение, представленное в виде 784-размерного вектора ${\bf x}$
- $\mathcal{D}_m = \{(\mathbf{x}_i,y_i)\}_{i=1}^m$ тренировочные примеры, где y_i метка класса, соответствующая \mathbf{x}_i
- ullet Используя \mathcal{D}_m мы хотим восстановить $y=f(\mathbf{x})$

Пример: рукописные цифры

- Пример: распознавание рукописных цифр
- Каждой цифре соответствует 28×28 пиксельное изображение, представленное в виде 784-размерного вектора ${\bf x}$
- $\mathcal{D}_m=\{(\mathbf{x}_i,y_i)\}_{i=1}^m$ тренировочные примеры, где y_i метка класса, соответствующая \mathbf{x}_i
- ullet Используя \mathcal{D}_m мы хотим восстановить $y=f(\mathbf{x})$

Пример: рукописные цифры

- Пример: распознавание рукописных цифр
- Каждой цифре соответствует 28×28 пиксельное изображение, представленное в виде 784-размерного вектора ${\bf x}$
- $\mathcal{D}_m=\{(\mathbf{x}_i,y_i)\}_{i=1}^m$ тренировочные примеры, где y_i метка класса, соответствующая \mathbf{x}_i
- ullet Используя \mathcal{D}_m мы хотим восстановить $y=f(\mathbf{x})$

Рис. – График тренировочных данных

Рис. – Остатки (невязка)

•
$$\mathcal{D}_m=\{\mathbf{X}_m,\mathbf{Y}_m\}=\{(x_i,y_i)\}_{i=1}^m$$
, где $y_i=\sin(2\pi x_i)+\varepsilon_i$, ε_i — гауссовский белый шум

Пример: полиномиальная регрессия

Рис. – График тренировочных данных

Рис. – Остатки (невязка)

• Мы обучаем модель

$$y(x, \mathbf{w}) = \sum_{j=0}^{M} w_j x^j,$$

минимизируя ошибку

$$E(\mathbf{w}) = \frac{1}{2} \sum_{i=1}^{m} \{y(x_i, \mathbf{w}) - y_i\}^2$$

Графики полиномов различного порядка ${\cal M}$

Рис. –
$$E_{RMS} = \sqrt{2E(\mathbf{w}^*)/n}$$

	M = 0	M = 1	M = 6	M = 9
w_0^{\star}	0.19	0.82	0.31	0.35
w_1^{\star}		-1.27	7.99	232.37
w_2^{\star}			-25.43	-5321.83
w_3^{\star}			17.37	48568.31
w_4^{\star}				-231639.30
w_5^{\star}				640042.26
w_6^{\star}				-1061800.52
w_7^*				1042400.18
w_8^{\star}				-557682.99
w_9^\star				125201.43

 $\mathsf{P}\mathsf{uc}$. – Коэффициенты w^*

Рис. – $\lambda = e^{-18} \approx 0$

- $Puc. \lambda = 0$
- Ограничение количества параметров M в соответствии с размером обучающей выборки?
- Вместо этого лучше выбрать сложность модели (количество гиперпараметров) в соответствии со сложностью проблемы!

$$\widetilde{E}(\mathbf{w}) = \frac{1}{2} \sum_{i=1}^{m} \{y(x_i, \mathbf{w}) - y_i\}^2 + \frac{\lambda}{2} ||\mathbf{w}||^2$$

$\ln \lambda = -\infty$	$\ln \lambda = -18$	$\ln \lambda = 0$
0.35	0.35	0.13
232.37	4.74	-0.05
-5321.83	-0.77	-0.06
48568.31	-31.97	-0.05
-231639.30	-3.89	-0.03
640042.26	55.28	-0.02
-1061800.52	41.32	-0.01
1042400.18	-45.95	-0.00
-557682.99	-91.53	0.00
125201.43	72.68	0.01
	0.35 232.37 -5321.83 48568.31 -231639.30 640042.26 -1061800.52 1042400.18 -557682.99	0.35 0.35 232.37 4.74 -5321.83 -0.77 48568.31 -31.97 -231639.30 -3.89 640042.26 55.28 -1061800.52 41.32 1042400.18 -45.95 -557682.99 -91.53

Рис. – Зависимость E_{RMS} от λ

- Мы должны найти способ определить подходящее значение сложности модели!
- Отложенное множество для выбора сложности модели (либо M, либо λ)? Слишком ресурсозатратно \Rightarrow Байесовские методы!

	$\ln \lambda = -\infty$	$\ln \lambda = -18$	$\ln \lambda = 0$
w_0^{\star}	0.35	0.35	0.13
w_1^{\star}	232.37	4.74	-0.05
w_2^{\star}	-5321.83	-0.77	-0.06
w_3^{\star}	48568.31	-31.97	-0.05
w_4^{\star}	-231639.30	-3.89	-0.03
w_5^{\star}	640042.26	55.28	-0.02
w_6^{\star}	-1061800.52	41.32	-0.01
w_7^{\star}	1042400.18	-45.95	-0.00
w_8^{\star}	-557682.99	-91.53	0.00
w_9^{\star}	125201.43	72.68	0.01

 ${\sf Puc.}$ – ${\sf 3a}$ висимость w^* от λ

Рис. – Зависимость E_{RMS} от λ

- Мы должны найти способ определить подходящее значение сложности модели!
- Отложенное множество для выбора сложности модели (либо M, либо λ)? Слишком ресурсозатратно \Rightarrow Байесовские методы!

- Введение
- Вероятность
- Вайесовская вероятность
- u Приближение функции по данным: Байесовская точка зрения
- 5 Модели с линейным функциональным базисом
- Байесовская линейная регрессия

Рис. – Две коробки с фруктами (яблоки, апельсины)

- Мы случайным образов выбираем красную коробку 40% процентов времени, а синюю 60%
- Из этой коробки мы случайно выбираем фрукт с одинаковой вероятностью
- Определив, что это за фрукт, мы кладём его назад в ту же коробку \Rightarrow повторяем эксперимент!
- $B \in \{r,b\}$ случайно выбранная коробка, $F \in \{a,o\}$ случайно выбранный фрукт

Рис. – Две коробки с фруктами (яблоки, апельсины)

- Мы случайным образов выбираем красную коробку 40% процентов времени, а синюю 60%
- Из этой коробки мы случайно выбираем фрукт с одинаковой вероятностью
- Определив, что это за фрукт, мы кладём его назад в ту же коробку ⇒ повторяем эксперимент!
- $B \in \{r,b\}$ случайно выбранная коробка, $F \in \{a,o\}$ случайно выбранный фрукт

Рис. – Две коробки с фруктами (яблоки, апельсины)

- Мы случайным образов выбираем красную коробку 40% процентов времени, а синюю 60%
- Из этой коробки мы случайно выбираем фрукт с одинаковой вероятностью
- Определив, что это за фрукт, мы кладём его назад в ту же коробку \Rightarrow повторяем эксперимент!
- $B \in \{r,b\}$ случайно выбранная коробка, $F \in \{a,o\}$ случайно выбранный фрукт

Рис. – Две коробки с фруктами (яблоки, апельсины)

- Мы случайным образов выбираем красную коробку 40% процентов времени, а синюю 60%
- Из этой коробки мы случайно выбираем фрукт с одинаковой вероятностью
- Определив, что это за фрукт, мы кладём его назад в ту же коробку \Rightarrow повторяем эксперимент!
- $B \in \{r,b\}$ случайно выбранная коробка, $F \in \{a,o\}$ случайно выбранный фрукт

- $\bullet \ \mathbb{P}(B=r)=\frac{4}{10} \text{, } \mathbb{P}(B=b)=\frac{6}{10}$
- Типичные вопросы:
 - "Какая вероятность, что мы выберем яблоко?"
 - "Какова вероятность того, что мы достали фрукт из синей коробки при условии, что это апельсин?"
- Более общий пример: 2 случайных величины (X,Y) $X \in \{x_1,\ldots,x_M\}, \ Y \in \{y_1,\ldots,y_L\}$

$$\bullet \ \mathbb{P}(B=r)=\frac{4}{10}$$
 , $\mathbb{P}(B=b)=\frac{6}{10}$

- Типичные вопросы:
 - "Какая вероятность, что мы выберем яблоко?",
 - "Какова вероятность того, что мы достали фрукт из синей коробки при условии, что это апельсин?"
- Более общий пример: 2 случайных величины (X,Y) $X \in \{x_1,\ldots,x_M\}, Y \in \{y_1,\ldots,y_L\}$

$$\bullet \ \mathbb{P}(B=r)=\frac{4}{10}$$
 , $\mathbb{P}(B=b)=\frac{6}{10}$

- Типичные вопросы:
 - "Какая вероятность, что мы выберем яблоко?",
 - "Какова вероятность того, что мы достали фрукт из синей коробки при условии, что это апельсин?"
- ullet Более общий пример: 2 случайных величины (X,Y), $X\in\{x_1,\dots,x_M\},\ Y\in\{y_1,\dots,y_L\}$

Рис. – Более общий пример

Стандартное определение:

$$\mathbb{P}(X = x_i, Y = y_j) = \frac{n_{ij}}{n},$$

где
$$P(X=x_i)=rac{c_i}{n},\,c_i=\sum_j n_{ij}$$
, тогда

$$\mathbb{P}(X = x_i) = \sum_{i=1}^{L} \mathbb{P}(X = x_i, Y = y_j).$$

Рис. – Более общий пример

Стандартные определения: так как

$$\mathbb{P}(Y = y_j | X = x_i) = \frac{n_{ij}}{c_i},$$

тогда

$$\mathbb{P}(X = x_i, Y = y_j) = \frac{n_{ij}}{n} = \frac{n_{ij}}{c_i} \cdot \frac{c_i}{n},$$
$$= \mathbb{P}(Y = y_j | X = x_i) \mathbb{P}(X = x_i)$$

Рис. – Пример совместного распределения

• Вычисления вероятностей

$$\mathbb{P}(X) = \sum_{Y} \mathbb{P}(X, Y)$$

$$\mathbb{P}(X, Y) = \mathbb{P}(Y|X)\mathbb{P}(X)$$

$$\mathbb{P}(X, Y) = \mathbb{P}(Y, X)$$

$$\mathbb{P}(Y|X) = \frac{\mathbb{P}(X|Y)\mathbb{P}(Y)}{\mathbb{P}(X)}$$

$$\mathbb{P}(X) = \sum_{Y} \mathbb{P}(X|Y)\mathbb{P}(Y)$$

• Пример

$$\mathbb{P}(F=a) = \mathbb{P}(F=a|B=r)\mathbb{P}(B=r) + \mathbb{P}(F=a|B=b)\mathbb{P}(B=b)$$

$$= \frac{1}{4} \frac{4}{10} + \frac{3}{4} \frac{6}{10} = \frac{11}{20}$$

$$= r|F=a| = \frac{\mathbb{P}(F=a|B=r)\mathbb{P}(B=r)}{10} = \frac{3}{4} \frac{4}{20} = \frac{2}{10}$$

• Вычисления вероятностей

$$\begin{split} \mathbb{P}(X) &= \sum_{Y} \mathbb{P}(X,Y) \\ \mathbb{P}(X,Y) &= \mathbb{P}(Y|X)\mathbb{P}(X) \\ \mathbb{P}(X,Y) &= \mathbb{P}(Y,X) \\ \mathbb{P}(Y|X) &= \frac{\mathbb{P}(X|Y)\mathbb{P}(Y)}{\mathbb{P}(X)} \\ \mathbb{P}(X) &= \sum_{Y} \mathbb{P}(X|Y)\mathbb{P}(Y) \end{split}$$

• Пример

$$\mathbb{P}(F=a) = \mathbb{P}(F=a|B=r)\mathbb{P}(B=r) + \mathbb{P}(F=a|B=b)\mathbb{P}(B=b)$$

$$= \frac{1}{4} \frac{4}{10} + \frac{3}{4} \frac{6}{10} = \frac{11}{20}$$

$$\mathbb{P}(B=r|F=o) = \frac{\mathbb{P}(F=o|B=r)\mathbb{P}(B=r)}{\mathbb{P}(F=o)} = \frac{3}{4} \frac{4}{10} \frac{20}{9} = \frac{2}{3}$$

Плотность вероятности

Рис. – Плотность вероятности: $\mathbb{P}(X \in (x, x + \delta x)) = p(x)\delta x$

• плотность

$$p(\mathbf{x}) \ge 0, \ \int_{\mathbb{R}} p(\mathbf{x}) d\mathbf{x} = 1$$

функция распределения

$$F(\mathbf{z}) = \mathbb{P}(X_1 \le z_1, \dots, X_M \le z_M)$$
$$= \int_{-\infty}^{z_1} \dots \int_{-\infty}^{z_M} p(\mathbf{x}) d\mathbf{x}$$

• маргинальное распределение

$$p(x) = \int p(x,y)dy, \ p(x,y) = p(y|x)p(x)$$

Плотность вероятности

Рис. – Плотность вероятности: $\mathbb{P}(X \in (x, x + \delta x)) = p(x)\delta x$

• плотность

$$p(\mathbf{x}) \ge 0, \ \int_{\mathbb{R}} p(\mathbf{x}) d\mathbf{x} = 1$$

• функция распределения

$$F(\mathbf{z}) = \mathbb{P}(X_1 \le z_1, \dots, X_M \le z_M)$$
$$= \int_{-\infty}^{z_1} \dots \int_{-\infty}^{z_M} p(\mathbf{x}) d\mathbf{x}$$

• маргинальное распределение

$$p(x) = \int p(x,y)dy, \ p(x,y) = p(y|x)p(x)$$

Плотность вероятности

Рис. – Плотность вероятности: $\mathbb{P}(X \in (x, x + \delta x)) = p(x)\delta x$

• плотность

$$p(\mathbf{x}) \ge 0, \ \int_{\mathbb{R}} p(\mathbf{x}) d\mathbf{x} = 1$$

• функция распределения

$$F(\mathbf{z}) = \mathbb{P}(X_1 \le z_1, \dots, X_M \le z_M)$$
$$= \int_{-\infty}^{z_1} \dots \int_{-\infty}^{z_M} p(\mathbf{x}) d\mathbf{x}$$

маргинальное распределение

$$p(x) = \int p(x,y)dy, \ p(x,y) = p(y|x)p(x)$$

$$\mathbb{E}[f] = \sum_{x} p(x)f(x), \ \mathbb{E}[f] = \int_{x} p(x)f(x)dx$$

Оценка мат. ожидания

$$\mathbb{E}[f] \approx \frac{1}{n} \sum_{i=1}^{n} f(x_i), \ x_i \sim p(\cdot)$$

• Условное мат. ожидание

$$\mathbb{E}_x[f|y] = \sum_x f(x)p(x|y)$$

• Дисперсия

$$var[f] = \mathbb{E}[(f(x) - \mathbb{E}[f(x)])^2] = \mathbb{E}[(f(x))^2] - (\mathbb{E}[f(x)])^2$$

• Ковариация

$$cov[x, y] = \mathbb{E}_{x,y}[(x - \mathbb{E}[x])(y - \mathbb{E}[y])] = \mathbb{E}_{x,y}[xy] - \mathbb{E}[x]\mathbb{E}[y]$$
$$cov[\mathbf{x}, \mathbf{y}] = \mathbb{E}_{\mathbf{x}, \mathbf{y}}[(\mathbf{x} - \mathbb{E}[\mathbf{x}])(y - \mathbb{E}[\mathbf{y}])^{\mathrm{T}}] = \mathbb{E}_{\mathbf{x}, \mathbf{y}}[\mathbf{x}\mathbf{y}^{\mathrm{T}}] - \mathbb{E}[\mathbf{x}]\mathbb{E}[\mathbf{y}^{\mathrm{T}}]$$

イロト (部) (意) (意) (意)

$$\mathbb{E}[f] = \sum_{x} p(x)f(x), \ \mathbb{E}[f] = \int_{x} p(x)f(x)dx$$

• Оценка мат. ожидания

$$\mathbb{E}[f] \approx \frac{1}{n} \sum_{i=1}^{n} f(x_i), \ x_i \sim p(\cdot)$$

• Условное мат. ожидание

$$\mathbb{E}_x[f|y] = \sum_x f(x)p(x|y)$$

• Дисперсия

$$var[f] = \mathbb{E}[(f(x) - \mathbb{E}[f(x)])^2] = \mathbb{E}[(f(x))^2] - (\mathbb{E}[f(x)])^2$$

• Ковариация

$$cov[x, y] = \mathbb{E}_{x,y}[(x - \mathbb{E}[x])(y - \mathbb{E}[y])] = \mathbb{E}_{x,y}[xy] - \mathbb{E}[x]\mathbb{E}[y]$$
$$cov[x, y] = \mathbb{E}_{x,y}[(x - \mathbb{E}[x])(y - \mathbb{E}[y])^{T}] = \mathbb{E}_{x,y}[xy^{T}] - \mathbb{E}[x]\mathbb{E}[y^{T}]$$

$$\mathbb{E}[f] = \sum_{x} p(x)f(x), \ \mathbb{E}[f] = \int_{x} p(x)f(x)dx$$

• Оценка мат. ожидания

$$\mathbb{E}[f] \approx \frac{1}{n} \sum_{i=1}^{n} f(x_i), \ x_i \sim p(\cdot)$$

• Условное мат. ожидание

$$\mathbb{E}_x[f|y] = \sum_x f(x)p(x|y)$$

Дисперсия

$$\operatorname{ar}[f] = \mathbb{E}[(f(x) - \mathbb{E}[f(x)])^2] = \mathbb{E}[(f(x))^2] - (\mathbb{E}[f(x)])^2$$

• Ковариация

$$\operatorname{cov}[x, y] = \mathbb{E}_{x,y}[(x - \mathbb{E}[x])(y - \mathbb{E}[y])] = \mathbb{E}_{x,y}[xy] - \mathbb{E}[x]\mathbb{E}[y]$$

$$\operatorname{cov}[\mathbf{x}, \mathbf{y}] = \mathbb{E}_{\mathbf{x}, \mathbf{y}}[(\mathbf{x} - \mathbb{E}[\mathbf{x}])(\mathbf{y} - \mathbb{E}[\mathbf{y}])^{\mathrm{T}}] = \mathbb{E}_{\mathbf{x}, \mathbf{y}}[\mathbf{x}\mathbf{y}^{\mathrm{T}}] - \mathbb{E}[\mathbf{x}]\mathbb{E}[\mathbf{y}^{\mathrm{T}}]$$

$$\mathbb{E}[f] = \sum_{x} p(x)f(x), \ \mathbb{E}[f] = \int_{x} p(x)f(x)dx$$

• Оценка мат. ожидания

$$\mathbb{E}[f] \approx \frac{1}{n} \sum_{i=1}^{n} f(x_i), \ x_i \sim p(\cdot)$$

• Условное мат. ожидание

$$\mathbb{E}_x[f|y] = \sum_x f(x)p(x|y)$$

• Дисперсия

$$var[f] = \mathbb{E}[(f(x) - \mathbb{E}[f(x)])^2] = \mathbb{E}[(f(x))^2] - (\mathbb{E}[f(x)])^2$$

Ковариация

$$\operatorname{cov}[x, y] = \mathbb{E}_{x,y}[(x - \mathbb{E}[x])(y - \mathbb{E}[y])] = \mathbb{E}_{x,y}[xy] - \mathbb{E}[x]\mathbb{E}[y]$$

$$\operatorname{cov}[\mathbf{x}, \mathbf{y}] = \mathbb{E}_{\mathbf{x}, \mathbf{y}}[(\mathbf{x} - \mathbb{E}[\mathbf{x}])(\mathbf{y} - \mathbb{E}[\mathbf{y}])^{\mathrm{T}}] = \mathbb{E}_{\mathbf{x}, \mathbf{y}}[\mathbf{x}\mathbf{y}^{\mathrm{T}}] - \mathbb{E}[\mathbf{x}]\mathbb{E}[\mathbf{y}^{\mathrm{T}}]$$

• Мат. ожидание

$$\mathbb{E}[f] = \sum_{x} p(x)f(x), \ \mathbb{E}[f] = \int_{x} p(x)f(x)dx$$

Оценка мат. ожидания

$$\mathbb{E}[f] \approx \frac{1}{n} \sum_{i=1}^{n} f(x_i), \ x_i \sim p(\cdot)$$

• Условное мат. ожидание

$$\mathbb{E}_x[f|y] = \sum_x f(x)p(x|y)$$

• Дисперсия

$$var[f] = \mathbb{E}[(f(x) - \mathbb{E}[f(x)])^2] = \mathbb{E}[(f(x))^2] - (\mathbb{E}[f(x)])^2$$

• Ковариация

$$cov[x, y] = \mathbb{E}_{x,y}[(x - \mathbb{E}[x])(y - \mathbb{E}[y])] = \mathbb{E}_{x,y}[xy] - \mathbb{E}[x]\mathbb{E}[y]$$
$$cov[\mathbf{x}, \mathbf{y}] = \mathbb{E}_{\mathbf{x}, \mathbf{y}}[(\mathbf{x} - \mathbb{E}[\mathbf{x}])(\mathbf{y} - \mathbb{E}[\mathbf{y}])^{\mathrm{T}}] = \mathbb{E}_{\mathbf{x}, \mathbf{y}}[\mathbf{x}\mathbf{y}^{\mathrm{T}}] - \mathbb{E}[\mathbf{x}]\mathbb{E}[\mathbf{y}^{\mathrm{T}}]$$

Гауссовское распределение

ullet Гауссово распределение $x \in \mathbb{R}^1$ с $\mathbb{E}[x] = \mu, \ \mathrm{var}[x] = \sigma^2$

$$\mathcal{N}(x|\mu,\sigma^2) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left\{-\frac{1}{2\sigma^2}(x-\mu)^2\right\}$$

• Многомерное гауссово распределение $\mathbf{x} \in \mathbb{R}^d$ с $\mathbb{E}[\mathbf{x}] = \mu$ $\mathrm{cov}[\mathbf{x}] = \mathbf{\Sigma}$

$$\mathcal{N}(\mathbf{x}|\boldsymbol{\mu}, \boldsymbol{\Sigma}) = \frac{1}{(2\pi)^{d/2}} \frac{1}{|\boldsymbol{\Sigma}|^{1/2}} \exp\left\{-\frac{1}{2\sigma^2} (\mathbf{x} - \boldsymbol{\mu})^{\mathrm{T}} \boldsymbol{\Sigma}^{-1} (\mathbf{x} - \boldsymbol{\mu})\right\}$$

Гауссовское распределение

ullet Гауссово распределение $x \in \mathbb{R}^1$ с $\mathbb{E}[x] = \mu, \ \mathrm{var}[x] = \sigma^2$

$$\mathcal{N}(x|\mu,\sigma^2) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left\{-\frac{1}{2\sigma^2}(x-\mu)^2\right\}$$

• Многомерное гауссово распределение $\mathbf{x} \in \mathbb{R}^d$ с $\mathbb{E}[\mathbf{x}] = \pmb{\mu},$ $\mathrm{cov}[\mathbf{x}] = \pmb{\varSigma}$

$$\mathcal{N}(\mathbf{x}|\boldsymbol{\mu}, \boldsymbol{\Sigma}) = \frac{1}{(2\pi)^{d/2}} \frac{1}{|\boldsymbol{\Sigma}|^{1/2}} \exp\left\{-\frac{1}{2\sigma^2} (\mathbf{x} - \boldsymbol{\mu})^{\mathrm{T}} \boldsymbol{\Sigma}^{-1} (\mathbf{x} - \boldsymbol{\mu})\right\}$$

Гауссовский метод максимального правдоподобия (ММП)

ullet Правдоподобие i.i.d. гауссовских величин $\mathbf{X}_m = \{x_1, \dots, x_m\}$

$$p(\mathbf{X}|\mu,\sigma^2) = \prod_{i=1}^{m} \mathcal{N}(x_i|\mu,\sigma^2)$$

• Логарифм правдоподобия раве

$$\log p(\mathbf{X}_m | \mu, \sigma^2) = -\frac{1}{2\sigma^2} \sum_{i=1}^m (x_i - \mu)^2 - \frac{m}{2} \log \sigma^2 - \frac{m}{2} \log(2\pi) \to \max_{\mu, \sigma^2}$$

ММП эквивалентен

$$\mu_{ML} = \frac{1}{m} \sum_{i=1}^{m} x_i, \ \sigma_{ML}^2 = \frac{1}{m} \sum_{i=1}^{m} (x_i - \mu_{ML})^2$$

Гауссовский метод максимального правдоподобия (ММП)

ullet Правдоподобие i.i.d. гауссовских величин ${f X}_m = \{x_1, \dots, x_m\}$

$$p(\mathbf{X}|\mu,\sigma^2) = \prod_{i=1}^{m} \mathcal{N}(x_i|\mu,\sigma^2)$$

• Логарифм правдоподобия равен

$$\log p(\mathbf{X}_m | \mu, \sigma^2) = -\frac{1}{2\sigma^2} \sum_{i=1}^m (x_i - \mu)^2 - \frac{m}{2} \log \sigma^2 - \frac{m}{2} \log(2\pi) \to \max_{\mu, \sigma^2}$$

ММП эквивалентен

$$\mu_{ML} = \frac{1}{m} \sum_{i=1}^{m} x_i, \ \sigma_{ML}^2 = \frac{1}{m} \sum_{i=1}^{m} (x_i - \mu_{ML})^2$$

Гауссовский метод максимального правдоподобия (ММП)

ullet Правдоподобие i.i.d. гауссовских величин ${f X}_m = \{x_1, \dots, x_m\}$

$$p(\mathbf{X}|\mu,\sigma^2) = \prod_{i=1}^{m} \mathcal{N}(x_i|\mu,\sigma^2)$$

• Логарифм правдоподобия равен

$$\log p(\mathbf{X}_m | \mu, \sigma^2) = -\frac{1}{2\sigma^2} \sum_{i=1}^m (x_i - \mu)^2 - \frac{m}{2} \log \sigma^2 - \frac{m}{2} \log(2\pi) \to \max_{\mu, \sigma^2}$$

• ММП эквивалентен

$$\mu_{ML} = \frac{1}{m} \sum_{i=1}^{m} x_i, \ \sigma_{ML}^2 = \frac{1}{m} \sum_{i=1}^{m} (x_i - \mu_{ML})^2$$

Skoltech

- Введение
- Вероятность
- Вайесовская вероятность
- 4 Приближение функции по данным: Байесовская точка зрения
- 5 Модели с линейным функциональным базисом
- Байесовская линейная регрессия

- Повторяемые события ⇒ классическая (частотная) интерпретация вероятности
- Байесовский подход: вероятности обеспечивают количественную оценку неопределенности
- Рассмотрим неопределенное (неповторяемое) событие:
 - "арктические льды исчезнут к концу века?"
 - мы можем иметь некоторое представление о том, как быстро, по нашему мнению, тает Полярный лел
 - мы получаем свежие данные: например, со спутника наблюдения земли мы можем пересмотреть наше мнение о скорости потери льда
 - нам нужно количественно оценить наше выражение неопределенности и внести точные изменения неопределенности в свете новых данных

- Повторяемые события \Rightarrow классическая (частотная) интерпретация вероятности
- Байесовский подход: вероятности обеспечивают количественную оценку неопределенности
- Рассмотрим неопределенное (неповторяемое) событие:
 - "арктические льды исчезнут к концу века
 - мы можем иметь некоторое представление о том, как
 - быстро, по нашему мнению, тает Полярный лед
 - мы получаем свежие данные: например, со спутника
 - наолюдения земли мы можем пересмотреть наше мнение о скорости потери льда
 - нам нужно количественно оценить наше выражение неопределенности и внести точные изменения
 - неопределенности в свете новых данных

- Повторяемые события \Rightarrow классическая (частотная) интерпретация вероятности
- Байесовский подход: вероятности обеспечивают количественную оценку неопределенности
- Рассмотрим неопределенное (неповторяемое) событие:
 - "арктические льды исчезнут к концу века?"
 - мы можем иметь некоторое представление о том, как быстро, по нашему мнению, тает Полярный лед
 - мы получаем свежие данные: например, со спутника наблюдения земли мы можем пересмотреть наше мнение о скорости потери льда
 - нам нужно количественно оценить наше выражение неопределенности и внести точные изменения неопределенности в свете новых данных

- Повторяемые события \Rightarrow классическая (частотная) интерпретация вероятности
- Байесовский подход: вероятности обеспечивают количественную оценку неопределенности
- Рассмотрим неопределенное (неповторяемое) событие:
 - "арктические льды исчезнут к концу века?"
 - мы можем иметь некоторое представление о том, как быстро, по нашему мнению, тает Полярный лед
 - мы получаем свежие данные: например, со спутника наблюдения земли мы можем пересмотреть наше мнение о скорости потери льда
 - нам нужно количественно оценить наше выражение неопределенности и внести точные изменения неопределенности в свете новых данных

- Повторяемые события ⇒ классическая (частотная) интерпретация вероятности
- Байесовский подход: вероятности обеспечивают количественную оценку неопределенности
- Рассмотрим неопределенное (неповторяемое) событие:
 - "арктические льды исчезнут к концу века?"
 - мы можем иметь некоторое представление о том, как быстро, по нашему мнению, тает Полярный лед
 - мы получаем свежие данные: например, со спутника наблюдения земли мы можем пересмотреть наше мнение о скорости потери льда
 - нам нужно количественно оценить наше выражение неопределенности и внести точные изменения неопределенности в свете новых данных

- ullet Модель данных: $y=f(x,{f w})+arepsilon$, arepsilon шум
- Количественная неопределенность параметров модели w?
- Априорное распределение $p(\mathbf{w})$ фиксирует наши предположения о \mathbf{w} перед наблюдением данных!

- Предсказать случайные редкие события практически невозможно ⇒ их описание очень длинное ⇒ сложное
- w определим "сложность" модели
- $-p(\mathbf{w})$ оценивает эту сложность

Рис. – Колмогоров А.Н. (1903-1987)

- ullet Модель данных: $y=f(x,\mathbf{w})+arepsilon$, arepsilon шум
- Количественная неопределенность параметров модели w?
- Априорное распределение $p(\mathbf{w})$ фиксирует наши предположения о \mathbf{w} перед наблюдением данных!

- Предсказать случайные редкие события практически невозможно ⇒ их описание очень длинное ⇒ сложное
- w определим "сложность" модели
- $-p(\mathbf{w})$ оценивает эту сложность

Рис. – Колмогоров А.Н. (1903-1987)

- ullet Модель данных: $y=f(x,{f w})+arepsilon$, arepsilon шум
- Количественная неопределенность параметров модели w?
- Априорное распределение $p(\mathbf{w})$ фиксирует наши предположения о \mathbf{w} перед наблюдением данных!

- Предсказать случайные редкие события практически невозможно \Rightarrow их описание очень длинное \Rightarrow сложное
- w определим "сложность" модели
- $-p(\mathbf{w})$ оценивает эту сложность

Рис. – Колмогоров А.Н. (1903-1987)

- ullet Модель данных: $y=f(x,{f w})+arepsilon$, arepsilon шум
- Количественная неопределенность параметров модели w?
- Априорное распределение $p(\mathbf{w})$ фиксирует наши предположения о \mathbf{w} перед наблюдением данных!

- Предсказать случайные редкие события практически невозможно \Rightarrow их описание очень длинное \Rightarrow сложное
- w определим "сложность" модели
- $p(\mathbf{w})$ оценивает эту сложность

Рис. – Колмогоров А.Н. (1903-1987)

- ullet Модель данных: $y=f(x,{f w})+arepsilon$, arepsilon шум
- Количественная неопределенность параметров модели w?
- Априорное распределение $p(\mathbf{w})$ фиксирует наши предположения о \mathbf{w} перед наблюдением данных!

- Предсказать случайные редкие события практически невозможно \Rightarrow их описание очень длинное \Rightarrow сложное
- w определим "сложность" модели
- $p(\mathbf{w})$ оценивает эту сложность

Рис. – Колмогоров А.Н. (1903-1987)

• Наблюдаемые данные $\mathcal{D}_m = \{(\mathbf{x}_i, y_i)\}_{i=1}^m$ влияют на условное распределение $p(\mathbf{w}|\mathcal{D}_m)$:

$$p(\mathbf{w}|\mathcal{D}_m) = \frac{p(\mathcal{D}_m|\mathbf{w})p(\mathbf{w})}{p(\mathcal{D}_m)}$$

- $p(\mathcal{D}_m|\mathbf{w})$ функция правдоподобия (насколько вероятен наблюдаемый набор данных для различных настроек вектора параметров \mathbf{w})
- Константа нормализации (фактические данные)

$$p(\mathcal{D}_m) = \int p(\mathcal{D}_m | \mathbf{w}) p(\mathbf{w}) d\mathbf{w}$$

Общая форма:

posterior \sim likelihood imes prior

• Наблюдаемые данные $\mathcal{D}_m = \{(\mathbf{x}_i, y_i)\}_{i=1}^m$ влияют на условное распределение $p(\mathbf{w}|\mathcal{D}_m)$:

$$p(\mathbf{w}|\mathcal{D}_m) = \frac{p(\mathcal{D}_m|\mathbf{w})p(\mathbf{w})}{p(\mathcal{D}_m)}$$

- $p(\mathcal{D}_m|\mathbf{w})$ функция правдоподобия (насколько вероятен наблюдаемый набор данных для различных настроек вектора параметров \mathbf{w})
- Константа нормализации (фактические данные)

$$p(\mathcal{D}_m) = \int p(\mathcal{D}_m | \mathbf{w}) p(\mathbf{w}) d\mathbf{w}$$

Общая форма:

posterior \sim likelihood imes prior

• Наблюдаемые данные $\mathcal{D}_m = \{(\mathbf{x}_i, y_i)\}_{i=1}^m$ влияют на условное распределение $p(\mathbf{w}|\mathcal{D}_m)$:

$$p(\mathbf{w}|\mathcal{D}_m) = \frac{p(\mathcal{D}_m|\mathbf{w})p(\mathbf{w})}{p(\mathcal{D}_m)}$$

- $p(\mathcal{D}_m|\mathbf{w})$ функция правдоподобия (насколько вероятен наблюдаемый набор данных для различных настроек вектора параметров \mathbf{w})
- Константа нормализации (фактические данные)

$$p(\mathcal{D}_m) = \int p(\mathcal{D}_m | \mathbf{w}) p(\mathbf{w}) d\mathbf{w}$$

• Общая форма:

posterior \sim likelihood \times prior

• Частотные подход:

- w фиксированный параметр,
- погрешности ее оценок, полученные с учетом распределения возможных наборов данных \mathcal{D}_m
- Байесовский подход:
 - существует только один (наблюдаемый) набор данных,
 - неопределенность параметров выражается через распределение вероятностей w
- Включение априорных знаний возникает естественным образом

• Частотные подход:

- w фиксированный параметр,
- погрешности ее оценок, полученные с учетом распределения возможных наборов данных \mathcal{D}_m

Байесовский подход:

- существует только один (наблюдаемый) набор данных,
- неопределенность параметров выражается через распределение вероятностей ${\bf w}$
- Включение априорных знаний возникает естественным образом

• Частотные подход:

- w фиксированный параметр,
- погрешности ее оценок, полученные с учетом распределения возможных наборов данных \mathcal{D}_m

• Байесовский подход:

- существует только один (наблюдаемый) набор данных,
- неопределенность параметров выражается через распределение вероятностей ${\bf w}$
- Включение априорных знаний возникает естественным образом

ΜΜΠ:

$$\mathbf{w}^* = \arg\max_{\mathbf{w}} \log p(\mathcal{D}_m | \mathbf{w})$$

- Оценка максимума апостериорной вероятности (МАП)
 - Апостериорное распределение

$$p(\mathbf{w}|\mathcal{D}_m) = \frac{p(\mathcal{D}_m|\mathbf{w})p(\mathbf{w})}{p(\mathcal{D}_m)}$$

MAП

$$\mathbf{w}^* = \arg\max_{\mathbf{w}} p(\mathbf{w}|\mathcal{D}_m)$$

• МАП ≡ регуляризованный ММП

$$\mathbf{w}^* = \arg\max_{\mathbf{w}} [\log p(\mathcal{D}_m | \mathbf{w}) + \log p(\mathbf{w})]$$

ΜΜΠ:

$$\mathbf{w}^* = \arg\max_{\mathbf{w}} \log p(\mathcal{D}_m | \mathbf{w})$$

- Оценка максимума апостериорной вероятности (МАП)
 - Апостериорное распределение

$$p(\mathbf{w}|\mathcal{D}_m) = \frac{p(\mathcal{D}_m|\mathbf{w})p(\mathbf{w})}{p(\mathcal{D}_m)}$$

ΜΑΠ

$$\mathbf{w}^* = \arg\max_{\mathbf{w}} p(\mathbf{w}|\mathcal{D}_m)$$

ullet МАП \equiv регуляризованный ММП:

$$\mathbf{w}^* = \arg\max_{\mathbf{w}} [\log p(\mathcal{D}_m | \mathbf{w}) + \log p(\mathbf{w})]$$

- Введение
- Вероятность
- Вайесовская вероятность
- u Приближение функции по данным: Байесовская точка зрения
- 5 Модели с линейным функциональным базисом
- Байесовская линейная регрессия

Приближение функции по данным

- ullet Данные $\mathcal{D}_m = \{\mathbf{X}_m, \mathbf{Y}_m\} = \{(x_i, y_i)\}_{i=1}^m$
- Вероятностная модель

$$p(y|x, \mathbf{w}, \beta) = \mathcal{N}(y|y(x, \mathbf{w}), \beta^{-1}),$$

где

- среднее значение задаётся полиномом $y(x,\mathbf{w})$
- точность шума задается параметром $eta^{-1}=\sigma^2$
- Правдоподобие

$$p(\mathbf{Y}_m|\mathbf{X}_m, \mathbf{w}, \beta) = \prod_{i=1}^m \mathcal{N}(y_i|y(x_i, \mathbf{w}), \beta^{-1})$$

Приближение функции по данным

- ullet Данные $\mathcal{D}_m = \{\mathbf{X}_m, \mathbf{Y}_m\} = \{(x_i, y_i)\}_{i=1}^m$
- Вероятностная модель

$$p(y|x, \mathbf{w}, \beta) = \mathcal{N}(y|y(x, \mathbf{w}), \beta^{-1}),$$

где

- среднее значение задаётся полиномом $y(x,\mathbf{w})$
- точность шума задается параметром $eta^{-1} = \sigma^2$
- Правдоподобие

$$p(\mathbf{Y}_m|\mathbf{X}_m, \mathbf{w}, \beta) = \prod_{i=1}^m \mathcal{N}(y_i|y(x_i, \mathbf{w}), \beta^{-1})$$

Приближение функции по данным

- ullet Данные $\mathcal{D}_m = \{\mathbf{X}_m, \mathbf{Y}_m\} = \{(x_i, y_i)\}_{i=1}^m$
- Вероятностная модель

$$p(y|x, \mathbf{w}, \beta) = \mathcal{N}(y|y(x, \mathbf{w}), \beta^{-1}),$$

где

- среднее значение задаётся полиномом $y(x,\mathbf{w})$
- точность шума задается параметром $eta^{-1} = \sigma^2$
- Правдоподобие

$$p(\mathbf{Y}_m|\mathbf{X}_m, \mathbf{w}, \beta) = \prod_{i=1}^m \mathcal{N}(y_i|y(x_i, \mathbf{w}), \beta^{-1})$$

• Логарифм правдоподобия

$$\log p(\mathbf{Y}_m|\mathbf{X}_m, \mathbf{w}, \beta) = -\frac{\beta}{2} \sum_{i=1}^m (y(x_i, \mathbf{w}) - y_i)^2 + \frac{m}{2} \log \beta - \frac{m}{2} (2\pi)$$

ΜΜΠ β

$$\frac{1}{\beta_{ML}} = \frac{1}{m} \sum_{i=1}^{m} (y(x_i, \mathbf{w}_{ML}) - y_i)^2$$

• Предсказательное распределение

$$p(y|x, \mathbf{w}_{ML}, \beta_{ML}) = \mathcal{N}(y|y(x, \mathbf{w}_{ML}), \beta_{ML}^{-1})$$

• Логарифм правдоподобия

$$\log p(\mathbf{Y}_m | \mathbf{X}_m, \mathbf{w}, \beta) = -\frac{\beta}{2} \sum_{i=1}^m (y(x_i, \mathbf{w}) - y_i)^2 + \frac{m}{2} \log \beta - \frac{m}{2} (2\pi)$$

ΜΜΠ β

$$\frac{1}{\beta_{ML}} = \frac{1}{m} \sum_{i=1}^{m} (y(x_i, \mathbf{w}_{ML}) - y_i)^2$$

• Предсказательное распределение

$$p(y|x, \mathbf{w}_{ML}, \beta_{ML}) = \mathcal{N}(y|y(x, \mathbf{w}_{ML}), \beta_{ML}^{-1})$$

• Априорное распределение над коэффициентами полиномов w

$$p(\mathbf{w}|\alpha) = \mathcal{N}(\mathbf{w}|\mathbf{0}, \alpha^{-1}\mathbf{I}) = \left(\frac{\alpha}{2\pi}\right)^{(M+1)/2} \exp\left\{-\frac{\alpha}{2}\mathbf{w}^{\mathrm{T}}\mathbf{w}\right\}$$

• Апостериорное распределение

$$p(\mathbf{w}|\mathbf{X}_m, \mathbf{Y}_m, \alpha, \beta) \sim p(\mathbf{Y}_m|\mathbf{X}_m, \mathbf{w}, \beta)p(\mathbf{w}|\alpha)$$

Максимум апостериорной вероятности

$$\mathbf{w}^* = \arg\min_{\mathbf{w}} \left[\frac{\beta}{2} \sum_{i=1}^{n} (y(x_i, \mathbf{w}) - y_i)^2 + \frac{\alpha}{2} \mathbf{w}^{\mathrm{T}} \mathbf{w} \right]$$

ullet МАП \equiv Гребневая регрессия с $\lambda=rac{lpha}{eta}$

• Априорное распределение над коэффициентами полиномов w

$$p(\mathbf{w}|\alpha) = \mathcal{N}(\mathbf{w}|\mathbf{0}, \alpha^{-1}\mathbf{I}) = \left(\frac{\alpha}{2\pi}\right)^{(M+1)/2} \exp\left\{-\frac{\alpha}{2}\mathbf{w}^{\mathrm{T}}\mathbf{w}\right\}$$

• Апостериорное распределение

$$p(\mathbf{w}|\mathbf{X}_m, \mathbf{Y}_m, \alpha, \beta) \sim p(\mathbf{Y}_m|\mathbf{X}_m, \mathbf{w}, \beta)p(\mathbf{w}|\alpha)$$

• Максимум апостериорной вероятности

$$\mathbf{w}^* = \arg\min_{\mathbf{w}} \left[\frac{\beta}{2} \sum_{i=1}^{n} (y(x_i, \mathbf{w}) - y_i)^2 + \frac{\alpha}{2} \mathbf{w}^{\mathrm{T}} \mathbf{w} \right]$$

ullet МАП \equiv Гребневая регрессия с $\lambda=rac{lpha}{eta}$

Байесовский подход к задаче приближения функции по данным

- Используя обучающую выборку входов \mathbf{X}_m и выходов \mathbf{Y}_m , нужно предсказать для тестового объекта x значение y
- Мы хотим оценить распределение для прогнозирования $p(y|x,\mathbf{X}_m,\mathbf{Y}_m)$
- Распределение для прогнозирования (predictive distribution)

$$p(y|x, \mathbf{X}_m, \mathbf{Y}_m) = \int p(y|x, \mathbf{w}) p(\mathbf{w}|\mathbf{X}_m, \mathbf{Y}_m) d\mathbf{w}$$

Рис. — Распределения для прогноза для полинома степени M=9 и фиксированными параметрами $\alpha=5\times 10^{-3}$ и известной дисперсией шума $\beta=11.1$

Байесовский подход к задаче приближения функции по данным

- Используя обучающую выборку входов \mathbf{X}_m и выходов \mathbf{Y}_m , нужно предсказать для тестового объекта x значение y
- ullet Мы хотим оценить распределение для прогнозирования $p(y|x,\mathbf{X}_m,\mathbf{Y}_m)$
- Распределение для прогнозирования (predictive distribution)

$$p(y|x, \mathbf{X}_m, \mathbf{Y}_m) = \int p(y|x, \mathbf{w}) p(\mathbf{w}|\mathbf{X}_m, \mathbf{Y}_m) d\mathbf{w}$$

Рис. — Распределения для прогноза для полинома степени M=9 и фиксированными параметрами $\alpha=5\times 10^{-3}$ и известной дисперсией шума $\beta=11.1$

Байесовский подход к задаче приближения функции по данным

- Используя обучающую выборку входов \mathbf{X}_m и выходов \mathbf{Y}_m , нужно предсказать для тестового объекта x значение y
- ullet Мы хотим оценить распределение для прогнозирования $p(y|x,\mathbf{X}_m,\mathbf{Y}_m)$
- Распределение для прогнозирования (predictive distribution)

$$p(y|x, \mathbf{X}_m, \mathbf{Y}_m) = \int p(y|x, \mathbf{w}) p(\mathbf{w}|\mathbf{X}_m, \mathbf{Y}_m) d\mathbf{w}$$

Рис. — Распределения для прогноза для полинома степени M=9 и фиксированными параметрами $\alpha=5\times 10^{-3}$ и известной дисперсией шума $\beta=11.1$

- Введение
- Вероятность
- Вайесовская вероятность
- Приближение функции по данным: Байесовская точка зрения
- 5 Модели с линейным функциональным базисом
- 6 Байесовская линейная регрессия

• Модель с линейным функциональным базисом

$$y(\mathbf{x}, \mathbf{w}) = w_0 + \sum_{j=1}^{M-1} w_j \phi_j(\mathbf{x}) = \mathbf{w}^{\mathrm{T}} \boldsymbol{\phi}(\mathbf{x})$$

где $\phi_j(\mathbf{x})$ — известные базисные функции

• Типичные базисные функции

$$\phi_j(\mathbf{x}) = x_{j_1}^{j_0}, \, \phi_j(\mathbf{x}) = \exp\left\{-\frac{\|\mathbf{x} - \boldsymbol{\mu}_j\|^2}{2s^2}\right\},$$

$$\phi(\mathbf{x}) = \sigma\left(\boldsymbol{\mu}_{j,1}^{\mathrm{T}}\mathbf{x} + \boldsymbol{\mu}_{j,0}\right), \ \sigma(a) = \frac{1}{1 + e^{-a}}$$

Мы предполагаем, что параметры базисных функций фиксированы

• Модель с линейным функциональным базисом

$$y(\mathbf{x}, \mathbf{w}) = w_0 + \sum_{j=1}^{M-1} w_j \phi_j(\mathbf{x}) = \mathbf{w}^{\mathrm{T}} \boldsymbol{\phi}(\mathbf{x})$$

где $\phi_j(\mathbf{x})$ — известные базисные функции

• Типичные базисные функции

$$\phi_j(\mathbf{x}) = x_{j_1}^{j_0}, \ \phi_j(\mathbf{x}) = \exp\left\{-\frac{\|\mathbf{x} - \boldsymbol{\mu}_j\|^2}{2s^2}\right\},$$

$$\phi(\mathbf{x}) = \sigma\left(\boldsymbol{\mu}_{j,1}^{\mathrm{T}}\mathbf{x} + \mu_{j,0}\right), \, \sigma(a) = \frac{1}{1 + e^{-a}}$$

Мы предполагаем, что параметры базисных функций фиксированы

Метод наименьших квадратов (МНК) = оценка максимального правдоподобия

• Оптимизируем логарифм правдоподобия:

$$\mathbf{w}_{ML} = (\boldsymbol{\Phi}^{\mathrm{T}} \boldsymbol{\Phi})^{-1} \boldsymbol{\Phi}^{\mathrm{T}} \mathbf{t}, \quad \boldsymbol{\Phi} = \{(\boldsymbol{\phi}_i(\mathbf{x}_j))_{j=0}^{M-1}\}_{i=1}^N$$
$$\frac{1}{\beta_{ML}} = \frac{1}{m} \sum_{i=1}^m \{y_i - \mathbf{w}_{ML}^{\mathrm{T}} \boldsymbol{\phi}(\mathbf{x}_i)\}^2$$

• Регуляризованный МНК

$$E_D(\mathbf{w}) + \lambda E_W(\mathbf{w}) \to \min_{\mathbf{w}}$$

$$\frac{1}{2} \sum_{i=1}^m \{y_i - \mathbf{w}^{\mathrm{T}} \boldsymbol{\phi}(\mathbf{x}_i)\}^2 + \frac{\lambda}{2} \mathbf{w}^{\mathrm{T}} \mathbf{w} \to \min_{\mathbf{w}}$$

$$\mathbf{w}_{LS} = (\lambda \mathbf{I} + \boldsymbol{\Phi}^{\mathrm{T}} \boldsymbol{\Phi})^{-1} \boldsymbol{\Phi}^{\mathrm{T}} \mathbf{Y}_m$$

Метод наименьших квадратов (MHK) = оценка максимального правдоподобия

• Оптимизируем логарифм правдоподобия:

$$\mathbf{w}_{ML} = (\boldsymbol{\Phi}^{\mathrm{T}} \boldsymbol{\Phi})^{-1} \boldsymbol{\Phi}^{\mathrm{T}} \mathbf{t}, \quad \boldsymbol{\Phi} = \{(\boldsymbol{\phi}_i(\mathbf{x}_j))_{j=0}^{M-1}\}_{i=1}^N$$
$$\frac{1}{\beta_{ML}} = \frac{1}{m} \sum_{i=1}^m \{y_i - \mathbf{w}_{ML}^{\mathrm{T}} \boldsymbol{\phi}(\mathbf{x}_i)\}^2$$

• Регуляризованный МНК

$$E_D(\mathbf{w}) + \lambda E_W(\mathbf{w}) \to \min_{\mathbf{w}}$$

$$\frac{1}{2} \sum_{i=1}^m \{y_i - \mathbf{w}^{\mathrm{T}} \boldsymbol{\phi}(\mathbf{x}_i)\}^2 + \frac{\lambda}{2} \mathbf{w}^{\mathrm{T}} \mathbf{w} \to \min_{\mathbf{w}}$$

$$\mathbf{w}_{LS} = (\lambda \mathbf{I} + \boldsymbol{\Phi}^{\mathrm{T}} \boldsymbol{\Phi})^{-1} \boldsymbol{\Phi}^{\mathrm{T}} \mathbf{Y}_m$$

Разложение на смещение и разброс

Зависимость смещения/разброса от сложности модели (регуляризации): L=100 наборов данных, m=25 точек (объектов) в каждом, M=25 гауссовских базисных функций. Правая колонка: среднее по 100 обучением (красные кривые)

- Введение
- Вероятность
- Вайесовская вероятность
- 🕢 Приближение функции по данным: Байесовская точка зрения
- Модели с линейным функциональным базисом
- 6 Байесовская линейная регрессия

• Правдоподобие $p(\mathcal{D}_m|\mathbf{w})$ — экспонента квадрата функции от \mathbf{w} . Таким образом, сопряженное априорное распределение

$$p(\mathbf{w}) = \mathcal{N}(\mathbf{w}|\mathbf{m}_0, \mathbf{S}_0)$$

ullet Апостериорное распределение на $\mathcal{D}_m = \{\mathbf{Y}_m, \mathbf{X}_m\}$

$$p(\mathbf{w}|\mathcal{D}_m) = \mathcal{N}(\mathbf{w}|\mathbf{m}_m, \mathbf{S}_m),$$

где

$$\mathbf{m}_m = \mathbf{S}_m \left(\mathbf{S}_0^{-1} \mathbf{m}_0 + \beta \mathbf{\Phi}^{\mathrm{T}} \mathbf{Y}_m \right)$$

$$\mathbf{S}_m^{-1} = \mathbf{S}_0^{-1} + \beta \mathbf{\Phi}^{\mathrm{T}} \mathbf{\Phi}$$

• Правдоподобие $p(\mathcal{D}_m|\mathbf{w})$ — экспонента квадрата функции от \mathbf{w} . Таким образом, сопряженное априорное распределение

$$p(\mathbf{w}) = \mathcal{N}(\mathbf{w}|\mathbf{m}_0, \mathbf{S}_0)$$

ullet Апостериорное распределение на $\mathcal{D}_m = \{\mathbf{Y}_m, \mathbf{X}_m\}$

$$p(\mathbf{w}|\mathcal{D}_m) = \mathcal{N}(\mathbf{w}|\mathbf{m}_m, \mathbf{S}_m),$$

где

$$\mathbf{m}_m = \mathbf{S}_m \left(\mathbf{S}_0^{-1} \mathbf{m}_0 + \beta \mathbf{\Phi}^{\mathrm{T}} \mathbf{Y}_m \right)$$
$$\mathbf{S}_m^{-1} = \mathbf{S}_0^{-1} + \beta \mathbf{\Phi}^{\mathrm{T}} \mathbf{\Phi}$$

• Типичное априорное распределение

$$p(\mathbf{w}) = \mathcal{N}(\mathbf{w}|\mathbf{0}, \alpha^{-1}\mathbf{I})$$

• Апостериорное распределение задаётся как

$$p(\mathbf{w}|\mathcal{D}_m) = \mathcal{N}(\mathbf{w}|\mathbf{m}_m, \mathbf{S}_m)$$
$$\mathbf{m}_m = \beta \mathbf{S}_m \mathbf{\Phi}^{\mathrm{T}} \mathbf{Y}_m$$
$$\mathbf{S}_m^{-1} = \alpha^{-1} \mathbf{I} + \beta \mathbf{\Phi}^{\mathrm{T}} \mathbf{\Phi}$$

• Типичное априорное распределение

$$p(\mathbf{w}) = \mathcal{N}(\mathbf{w}|\mathbf{0}, \alpha^{-1}\mathbf{I})$$

• Апостериорное распределение задаётся как

$$p(\mathbf{w}|\mathcal{D}_m) = \mathcal{N}(\mathbf{w}|\mathbf{m}_m, \mathbf{S}_m)$$
$$\mathbf{m}_m = \beta \mathbf{S}_m \mathbf{\Phi}^{\mathrm{T}} \mathbf{Y}_m$$
$$\mathbf{S}_m^{-1} = \alpha^{-1} \mathbf{I} + \beta \mathbf{\Phi}^{\mathrm{T}} \mathbf{\Phi}$$

Зависимость Байесовской модели от размера выборки

Модель $y(x, \mathbf{w}) = w_0 + w_1 x$

ullet Делаем предсказания y для нового значения ${f x}$:

$$p(y|\mathbf{x}, \mathcal{D}_m, \alpha, \beta) = \int p(y|\mathbf{x}, \mathbf{w}, \beta) p(\mathbf{w}|\mathcal{D}_m, \alpha, \beta) d\mathbf{w}$$

7 Т.к. $p(y|\mathbf{x},\mathbf{w},\beta)$ — нормальное, и апостериорное распределение $p(\mathbf{w}|\mathcal{D}_m,\alpha,\beta)$ тоже нормальное, тогда

$$p(y|\mathbf{x}, \mathcal{D}_m, \alpha, \beta) = \mathcal{N}(y|\mathbf{m}_m^{\mathrm{T}} \boldsymbol{\phi}(\mathbf{x}), \sigma_m^2(\mathbf{x})),$$
$$\sigma_m^2(\mathbf{x}) = \frac{1}{\beta} + \boldsymbol{\phi}(\mathbf{x})^{\mathrm{T}} \mathbf{S}_m \boldsymbol{\phi}(\mathbf{x}), \ \mathbf{S}_m^{-1} = \alpha^{-1} \mathbf{I} + \beta \boldsymbol{\Phi}^{\mathrm{T}} \boldsymbol{\Phi}$$

• $p(y|\mathbf{x}, \mathcal{D}_m, \alpha, \beta)$ зависит от α и $\beta!$ Как их задать? \Rightarrow Полный Байесовский вывод!

ullet Делаем предсказания y для нового значения ${f x}$:

$$p(y|\mathbf{x}, \mathcal{D}_m, \alpha, \beta) = \int p(y|\mathbf{x}, \mathbf{w}, \beta) p(\mathbf{w}|\mathcal{D}_m, \alpha, \beta) d\mathbf{w}$$

ullet Т.к. $p(y|\mathbf{x},\mathbf{w},eta)$ — нормальное, и апостериорное распределение $p(\mathbf{w}|\mathcal{D}_m,lpha,eta)$ тоже нормальное, тогда

$$p(y|\mathbf{x}, \mathcal{D}_m, \alpha, \beta) = \mathcal{N}(y|\mathbf{m}_m^{\mathrm{T}} \boldsymbol{\phi}(\mathbf{x}), \sigma_m^2(\mathbf{x})),$$
$$\sigma_m^2(\mathbf{x}) = \frac{1}{\beta} + \boldsymbol{\phi}(\mathbf{x})^{\mathrm{T}} \mathbf{S}_m \boldsymbol{\phi}(\mathbf{x}), \ \mathbf{S}_m^{-1} = \alpha^{-1} \mathbf{I} + \beta \boldsymbol{\Phi}^{\mathrm{T}} \boldsymbol{\Phi}$$

• $p(y|\mathbf{x}, \mathcal{D}_m, \alpha, \beta)$ зависит от α и $\beta!$ Как их задать? \Rightarrow Полный Байесовский вывод!

ullet Делаем предсказания y для нового значения ${f x}$:

$$p(y|\mathbf{x}, \mathcal{D}_m, \alpha, \beta) = \int p(y|\mathbf{x}, \mathbf{w}, \beta) p(\mathbf{w}|\mathcal{D}_m, \alpha, \beta) d\mathbf{w}$$

ullet Т.к. $p(y|\mathbf{x},\mathbf{w},eta)$ — нормальное, и апостериорное распределение $p(\mathbf{w}|\mathcal{D}_m,lpha,eta)$ тоже нормальное, тогда

$$p(y|\mathbf{x}, \mathcal{D}_m, \alpha, \beta) = \mathcal{N}(y|\mathbf{m}_m^{\mathrm{T}} \boldsymbol{\phi}(\mathbf{x}), \sigma_m^2(\mathbf{x})),$$
$$\sigma_m^2(\mathbf{x}) = \frac{1}{\beta} + \boldsymbol{\phi}(\mathbf{x})^{\mathrm{T}} \mathbf{S}_m \boldsymbol{\phi}(\mathbf{x}), \, \mathbf{S}_m^{-1} = \alpha^{-1} \mathbf{I} + \beta \boldsymbol{\Phi}^{\mathrm{T}} \boldsymbol{\Phi}$$

• $p(y|\mathbf{x}, \mathcal{D}_m, \alpha, \beta)$ зависит от α и $\beta!$ Как их задать? \Rightarrow Полный Байесовский вывод!

M=9 Гауссовских функций

Графики $y(\mathbf{x},\mathbf{w})$ используют реализации апостериорного распределения над $\mathbf{w}\sim p(\mathbf{w}|\mathcal{D}_m,\alpha,\beta)$ для некоторых α и β