Formalisation of Ground Resolution and CDCL in Isabelle/HOL

Mathias Fleury and Jasmin Blanchette

April 4, 2016

Contents

1	Rev	write systems and properties	2
	1.1	Lifting of rewrite rules	2
	1.2	Consistency preservation	4
	1.3	Full Lifting	
2	Tra	nsformation testing	6
	2.1	Definition and first properties	6
	2.2	Invariant conservation	8
		2.2.1 Invariant while lifting of the rewriting relation	
		2.2.2 Invariant after all rewriting	
3	Rev	write Rules	12
	3.1	Elimination of the equivalences	12
	3.2	Eliminate Implication	13
	3.3	Eliminate all the True and False in the formula	15
	3.4	PushNeg	21
	3.5	Push inside	26
		3.5.1 Only one type of connective in the formula (+ not)	35
		3.5.2 Push Conjunction	38
		3.5.3 Push Disjunction	36
4	The	e full transformations	40
	4.1	Abstract Property characterizing that only some connective are inside the others	40
		4.1.1 Definition	40
	4.2	Conjunctive Normal Form	42
		4.2.1 Full CNF transformation	42
	4.3	Disjunctive Normal Form	43
		4.3.1 Full DNF transform	44
5	Mo	re aggressive simplifications: Removing true and false at the beginning	4 4
	5.1	Transformation	44
	5.2	More invariants	46
	5.3	The new CNF and DNF transformation	50

6	Lin	k with Multiset Version	51		
	6.1	Transformation to Multiset	51		
	6.2	Equisatisfiability of the two Version	51		
theory Prop-Abstract-Transformation					
im	port	s Main Prop-Logic Wellfounded-More			

begin

This file is devoted to abstract properties of the transformations, like consistency preservation and lifting from terms to proposition.

1 Rewrite systems and properties

1.1 Lifting of rewrite rules

We can lift a rewrite relation r over a full formula: the relation r works on terms, while propo-rew-step works on formulas.

```
inductive propo-rew-step :: ('v propo \Rightarrow 'v propo \Rightarrow bool) \Rightarrow 'v propo \Rightarrow 'v propo \Rightarrow bool for r :: 'v propo \Rightarrow 'v propo \Rightarrow bool where global-rel: r \varphi \psi \Rightarrow propo-rew-step r \varphi \psi \mid propo-rew-one-step-lift: propo-rew-step r \varphi \varphi' \Rightarrow wf-conn c (\psi s @ \varphi \# \psi s') \Rightarrow propo-rew-step r (conn c (\psi s @ \varphi \# \psi s')) (conn c (\psi s @ \varphi' \# \psi s'))
```

Here is a more precise link between the lifting and the subformulas: if a rewriting takes place between φ and φ' , then there are two subformulas ψ in φ and ψ' in φ' , ψ' is the result of the rewriting of r on ψ .

This lemma is only a health condition:

```
lemma propo-rew-step-subformula-imp:

shows propo-rew-step r \varphi \varphi' \Longrightarrow \exists \psi \psi'. \psi \preceq \varphi \wedge \psi' \preceq \varphi' \wedge r \psi \psi'

apply (induct rule: propo-rew-step.induct)

using subformula-simps subformula-into-subformula apply blast

using wf-conn-no-arity-change subformula-into-subformula wf-conn-no-arity-change-helper

in-set-conv-decomp by metis
```

The converse is moreover true: if there is a ψ and ψ' , then every formula φ containing ψ , can be rewritten into a formula φ' , such that it contains φ' .

```
{f lemma} propo-rew-step-subformula-rec:
  fixes \psi \ \psi' \ \varphi :: \ 'v \ propo
  shows \psi \preceq \varphi \Longrightarrow r \psi \psi' \Longrightarrow (\exists \varphi'. \psi' \preceq \varphi' \land propo-rew-step \ r \ \varphi \ \varphi')
proof (induct \varphi rule: subformula.induct)
  case subformula-refl
 hence propo-rew-step r \psi \psi' using propo-rew-step.intros by auto
 moreover have \psi' \leq \psi' using Prop-Logic.subformula-refl by auto
  ultimately show \exists \varphi'. \psi' \preceq \varphi' \land propo-rew-step \ r \ \psi \ \varphi' by fastforce
next
  case (subformula-into-subformula \psi'' l c)
 note IH = this(4) and r = this(5) and \psi'' = this(1) and wf = this(2) and incl = this(3)
  then obtain \varphi' where *: \psi' \preceq \varphi' \land propo-rew-step \ r \ \psi'' \ \varphi' by metis
  moreover obtain \xi \xi' :: 'v \ propo \ list \ where
    l: l = \xi @ \psi'' \# \xi'  using List.split-list \psi'' by metis
  ultimately have propo-rew-step r (conn c l) (conn c (\xi \otimes \varphi' \# \xi'))
    using propo-rew-step.intros(2) wf by metis
```

```
moreover have \psi' \leq conn \ c \ (\xi @ \varphi' \# \xi')
    \mathbf{using}\ wf*wf-conn-no-arity-change\ Prop-Logic.subformula-into-subformula
    by (metis (no-types) in-set-conv-decomp l wf-conn-no-arity-change-helper)
  ultimately show \exists \varphi'. \psi' \preceq \varphi' \land propo-rew-step \ r \ (conn \ c \ l) \ \varphi' by metis
qed
lemma propo-rew-step-subformula:
  (\exists \psi \ \psi'. \ \psi \preceq \varphi \land r \ \psi \ \psi') \longleftrightarrow (\exists \varphi'. \ propo-rew-step \ r \ \varphi \ \varphi')
 using propo-rew-step-subformula-imp propo-rew-step-subformula-rec by metis+
lemma consistency-decompose-into-list:
  assumes wf: wf-conn c l and wf': wf-conn c l'
 and same: \forall n. (A \models l! n \longleftrightarrow (A \models l'! n))
 shows (A \models conn \ c \ l) = (A \models conn \ c \ l')
proof (cases c rule: connective-cases-arity-2)
  case nullary
  thus (A \models conn \ c \ l) \longleftrightarrow (A \models conn \ c \ l') using wf \ wf' by auto
  case unary note c = this
  then obtain a where l: l = [a] using wf-conn-Not-decomp wf by metis
  obtain a' where l': l' = [a'] using wf-conn-Not-decomp wf' c by metis
 have A \models a \longleftrightarrow A \models a' \text{ using } l \ l' \text{ by } (metis \ nth\text{-}Cons\text{-}0 \ same)
  thus A \models conn \ c \ l \longleftrightarrow A \models conn \ c \ l' \ using \ l \ l' \ c \ by \ auto
next
  case binary note c = this
  then obtain a b where l: l = [a, b]
    using wf-conn-bin-list-length list-length2-decomp wf by metis
  obtain a' b' where l': l' = [a', b']
    using wf-conn-bin-list-length list-length2-decomp wf' c by metis
  have p: A \models a \longleftrightarrow A \models a' A \models b \longleftrightarrow A \models b'
    using l \ l' same by (metis diff-Suc-1 nth-Cons' nat.distinct(2))+
 show A \models conn \ c \ l \longleftrightarrow A \models conn \ c \ l'
    using wf c p unfolding binary-connectives-def l l' by auto
qed
Relation between propo-rew-step and the rewriting we have seen before: propo-rew-step r \varphi \varphi'
means that we rewrite \psi inside \varphi (ie at a path p) into \psi'.
lemma propo-rew-step-rewrite:
 fixes \varphi \varphi' :: 'v \ propo \ and \ r :: 'v \ propo \Rightarrow 'v \ propo \Rightarrow bool
 assumes propo-rew-step r \varphi \varphi'
 shows \exists \psi \ \psi' \ p. \ r \ \psi \ \psi' \land path-to \ p \ \varphi \ \psi \land replace-at \ p \ \varphi \ \psi' = \varphi'
  using assms
proof (induct rule: propo-rew-step.induct)
  \mathbf{case}(global\text{-}rel\ \varphi\ \psi)
  moreover have path-to [] \varphi \varphi by auto
  moreover have replace-at [ \varphi \psi = \psi \text{ by } auto ]
  ultimately show ?case by metis
  case (propo-rew-one-step-lift \varphi \varphi' c \xi \xi') note rel = this(1) and IH0 = this(2) and corr = this(3)
 obtain \psi \psi' p where IH: r \psi \psi' \wedge path-to p \varphi \psi \wedge replace-at p \varphi \psi' = \varphi' using IH0 by metis
     \mathbf{fix} \ x :: 'v
     assume c = CT \lor c = CF \lor c = CVar x
```

```
hence False using corr by auto
     hence \exists \psi \ \psi' \ p. \ r \ \psi \ \psi' \land path-to \ p \ (conn \ c \ (\xi@ \ (\varphi \# \xi'))) \ \psi
                        \land replace-at p (conn c (\xi @ (\varphi \# \xi'))) \psi' = conn \ c \ (\xi @ (\varphi' \# \xi'))
       by fast
  }
  moreover {
     assume c: c = CNot
     hence empty: \xi = [|\xi'=|] using corr by auto
     have path-to (L\#p) (conn c (\xi@ (\varphi \# \xi'))) \psi
       using c empty IH wf-conn-unary path-to-l by fastforce
     moreover have replace-at (L\#p) (conn c (\xi@ (\varphi # \xi'))) \psi' = conn c (\xi@ (\varphi' # \xi'))
       using c empty IH by auto
     ultimately have \exists \psi \ \psi' \ p. \ r \ \psi \ \psi' \land path-to \ p \ (conn \ c \ (\xi@ \ (\varphi \ \# \ \xi'))) \ \psi
                                 \land replace-at p (conn c (\xi @ (\varphi \# \xi'))) \psi' = conn \ c \ (\xi @ (\varphi' \# \xi'))
     using IH by metis
  }
  moreover {
     assume c: c \in binary\text{-}connectives
     have length (\xi @ \varphi \# \xi') = 2 using wf-conn-bin-list-length corr c by metis
     hence length \xi + length \xi' = 1 by auto
     hence ld: (length \xi = 1 \land length \ \xi' = 0) \lor (length \xi = 0 \land length \ \xi' = 1) by arith
     obtain a b where ab: (\xi=[] \land \xi'=[b]) \lor (\xi=[a] \land \xi'=[])
       using ld by (case-tac \xi, case-tac \xi', auto)
     {
        assume \varphi: \xi = [] \land \xi' = [b]
        have path-to (L\#p) (conn c (\xi@ (\varphi \# \xi'))) \psi
          using \varphi c IH ab corr by (simp add: path-to-l)
        moreover have replace-at (L\#p) (conn\ c\ (\xi@\ (\varphi\ \#\ \xi')))\ \psi' = conn\ c\ (\xi@\ (\varphi'\ \#\ \xi'))
          using c IH ab \varphi unfolding binary-connectives-def by auto
        ultimately have \exists \psi \ \psi' \ p. \ r \ \psi \ \psi' \land path-to \ p \ (conn \ c \ (\xi@ \ (\varphi \ \# \ \xi'))) \ \psi
          \land replace-at p (conn c (\xi@ (\varphi \# \xi'))) \psi' = conn \ c (\xi@ (\varphi' \# \xi'))
          using IH by metis
     }
     moreover {
        assume \varphi: \xi = [a] \xi' = []
        hence path-to (R\#p) (conn c (\xi@ (\varphi \# \xi'))) \psi
          using c IH corr path-to-r corr \varphi by (simp add: path-to-r)
        moreover have replace-at (R\#p) (conn\ c\ (\xi @\ (\varphi \# \xi')))\ \psi' = conn\ c\ (\xi @\ (\varphi' \# \xi'))
          using c IH ab \varphi unfolding binary-connectives-def by auto
        ultimately have ?case using IH by metis
     }
     ultimately have ?case using ab by blast
  ultimately show ?case using connective-cases-arity by blast
qed
1.2
         Consistency preservation
We define preserves-un-sat: it means that a relation preserves consistency.
definition preserves-un-sat where
preserves-un-sat r \longleftrightarrow (\forall \varphi \ \psi. \ r \ \varphi \ \psi \longrightarrow (\forall A. \ A \models \varphi \longleftrightarrow A \models \psi))
{\bf lemma}\ propo-rew-step-preservers-val-explicit:
\textit{propo-rew-step } r \not \varphi \ \psi \Longrightarrow \textit{preserves-un-sat} \ r \Longrightarrow \textit{propo-rew-step } r \ \varphi \ \psi \Longrightarrow (\forall \ A. \ A \models \varphi \longleftrightarrow A \models \psi)
```

```
unfolding preserves-un-sat-def
proof (induction rule: propo-rew-step.induct)
  case global-rel
  thus ?case by simp
next
  case (propo-rew-one-step-lift \varphi \varphi' c \xi \xi') note rel = this(1) and wf = this(2)
   and IH = this(3)[OF\ this(4)\ this(1)] and consistent = this(4)
  {
   \mathbf{fix} \ A
   from IH have \forall n. (A \models (\xi @ \varphi \# \xi') ! n) = (A \models (\xi @ \varphi' \# \xi') ! n)
     by (metis (mono-tags, hide-lams) list-update-length nth-Cons-0 nth-append-length-plus
       nth-list-update-neq)
   hence (A \models conn \ c \ (\xi @ \varphi \# \xi')) = (A \models conn \ c \ (\xi @ \varphi' \# \xi'))
     by (meson consistency-decompose-into-list wf wf-conn-no-arity-change-helper
       wf-conn-no-arity-change)
  }
 thus \forall A. A \models conn \ c \ (\xi @ \varphi \# \xi') \longleftrightarrow A \models conn \ c \ (\xi @ \varphi' \# \xi') by auto
lemma propo-rew-step-preservers-val':
  assumes preserves-un-sat r
  shows preserves-un-sat (propo-rew-step r)
  using assms by (simp add: preserves-un-sat-def propo-rew-step-preservers-val-explicit)
lemma preserves-un-sat-OO[intro]:
preserves-un-sat f \Longrightarrow preserves-un-sat g \Longrightarrow preserves-un-sat (f \ OO \ g)
  unfolding preserves-un-sat-def by auto
lemma star-consistency-preservation-explicit:
 assumes (propo-rew-step \ r)^* * \varphi \psi and preserves-un-sat \ r
 shows \forall A. A \models \varphi \longleftrightarrow A \models \psi
  using assms by (induct rule: rtranclp-induct)
    (auto simp add: propo-rew-step-preservers-val-explicit)
{\bf lemma}\ star-consistency-preservation:
preserves-un-sat r \Longrightarrow preserves-un-sat (propo-rew-step r)^**
  \mathbf{by}\ (simp\ add:\ star-consistency-preservation-explicit\ preserves-un-sat-def)
```

1.3 Full Lifting

In the previous a relation was lifted to a formula, now we define the relation such it is applied as long as possible. The definition is thus simply: it can be derived and nothing more can be derived.

```
lemma full-ropo-rew-step-preservers-val[simp]: preserves-un-sat r \Longrightarrow preserves-un-sat (full (propo-rew-step r)) by (metis full-def preserves-un-sat-def star-consistency-preservation) lemma full-propo-rew-step-subformula: full (propo-rew-step r) \varphi' \varphi \Longrightarrow \neg (\exists \ \psi \ \psi'. \ \psi \preceq \varphi \land r \ \psi \ \psi') unfolding full-def using propo-rew-step-subformula-rec by metis
```

2 Transformation testing

2.1 Definition and first properties

To prove correctness of our transformation, we create a *all-subformula-st* predicate. It tests recursively all subformulas. At each step, the actual formula is tested. The aim of this *test-symb* function is to test locally some properties of the formulas (i.e. at the level of the connective or at first level). This allows a clause description between the rewrite relation and the *test-symb*

```
definition all-subformula-st :: ('a propo \Rightarrow bool) \Rightarrow 'a propo \Rightarrow bool where
all-subformula-st test-symb \varphi \equiv \forall \psi. \ \psi \preceq \varphi \longrightarrow test-symb \ \psi
lemma test-symb-imp-all-subformula-st[simp]:
  test-symb FT \implies all-subformula-st test-symb FT
  test-symb FF \implies all-subformula-st test-symb FF
  test-symb (FVar \ x) \Longrightarrow all-subformula-st test-symb (FVar \ x)
  unfolding all-subformula-st-def using subformula-leaf by metis+
\mathbf{lemma}\ all\text{-}subformula\text{-}st\text{-}test\text{-}symb\text{-}true\text{-}phi:
  all-subformula-st test-symb \varphi \Longrightarrow test-symb \varphi
  unfolding all-subformula-st-def by auto
lemma all-subformula-st-decomp-imp:
  wf-conn c \ l \Longrightarrow (test-symb (conn \ c \ l) \land (\forall \varphi \in set \ l. \ all-subformula-st test-symb (\varphi)
  \implies all-subformula-st test-symb (conn c l)
  unfolding all-subformula-st-def by auto
To ease the finding of proofs, we give some explicit theorem about the decomposition.
{\bf lemma}\ all-subformula-st-decomp\text{-}rec:
  all-subformula-st test-symb (conn c l) \Longrightarrow wf-conn c l
    \implies (test\text{-}symb\ (conn\ c\ l) \land (\forall \varphi \in set\ l.\ all\text{-}subformula\text{-}st\ test\text{-}symb\ \varphi))
  unfolding all-subformula-st-def by auto
\mathbf{lemma}\ \mathit{all-subformula-st-decomp} :
  fixes c :: 'v \ connective \ and \ l :: 'v \ propo \ list
  assumes wf-conn c l
 shows all-subformula-st test-symb (conn c l)
    \longleftrightarrow (test-symb (conn c l) \land (\forall \varphi \in set l. all-subformula-st test-symb <math>\varphi))
  using assms all-subformula-st-decomp-rec all-subformula-st-decomp-imp by metis
lemma helper-fact: c \in binary-connectives \longleftrightarrow (c = COr \lor c = CAnd \lor c = CEq \lor c = CImp)
  unfolding binary-connectives-def by auto
lemma all-subformula-st-decomp-explicit[simp]:
  fixes \varphi \psi :: 'v \ propo
  shows all-subformula-st test-symb (FAnd \varphi \psi)
      \longleftrightarrow (test-symb (FAnd \varphi \psi) \land all-subformula-st test-symb \varphi \land all-subformula-st test-symb \psi)
  and all-subformula-st test-symb (FOr \varphi \psi)
     \longleftrightarrow (test-symb (FOr \varphi \psi) \land all-subformula-st test-symb \varphi \land all-subformula-st test-symb \psi)
  and all-subformula-st test-symb (FNot \varphi)
     \longleftrightarrow (test\text{-}symb\ (FNot\ \varphi) \land all\text{-}subformula\text{-}st\ test\text{-}symb\ \varphi)
  and all-subformula-st test-symb (FEq \varphi \psi)
     \longleftrightarrow (test-symb (FEq \varphi \psi) \land all-subformula-st test-symb \varphi \land all-subformula-st test-symb \psi)
  and all-subformula-st test-symb (FImp \varphi \psi)
```

 \longleftrightarrow (test-symb (FImp $\varphi \psi$) \land all-subformula-st test-symb $\varphi \land$ all-subformula-st test-symb ψ)

```
proof -
  have all-subformula-st test-symb (FAnd \varphi \psi) \longleftrightarrow all-subformula-st test-symb (conn CAnd [\varphi, \psi])
  moreover have ... \longleftrightarrow test-symb (conn CAnd [\varphi, \psi])\land(\forall \xi \in set [\varphi, \psi]. all-subformula-st test-symb
    using all-subformula-st-decomp wf-conn-helper-facts (5) by metis
  finally show all-subformula-st test-symb (FAnd \varphi \psi)
    \longleftrightarrow (\textit{test-symb}\ (\textit{FAnd}\ \varphi\ \psi)\ \land\ \textit{all-subformula-st}\ \textit{test-symb}\ \varphi\ \land\ \textit{all-subformula-st}\ \textit{test-symb}\ \psi)
    by simp
  have all-subformula-st test-symb (FOr \varphi \psi) \longleftrightarrow all-subformula-st test-symb (conn COr [\varphi, \psi])
    by auto
  \mathbf{moreover}\ \mathbf{have}\ \ldots \longleftrightarrow
    (test\text{-}symb\ (conn\ COr\ [\varphi,\psi]) \land (\forall \xi \in set\ [\varphi,\psi].\ all\text{-}subformula-st\ test\text{-}symb\ \xi))
    using all-subformula-st-decomp wf-conn-helper-facts(6) by metis
  finally show all-subformula-st test-symb (FOr \varphi \psi)
    \longleftrightarrow (test-symb (FOr \varphi \psi) \land all-subformula-st test-symb \varphi \land all-subformula-st test-symb \psi)
    by simp
  have all-subformula-st test-symb (FEq \varphi \psi) \longleftrightarrow all-subformula-st test-symb (conn CEq [\varphi, \psi])
    by auto
  moreover have ...
    \longleftrightarrow (\textit{test-symb} \; (\textit{conn} \; \textit{CEq} \; [\varphi, \, \psi]) \; \land \; (\forall \, \xi \in \textit{set} \; [\varphi, \, \psi]. \; \textit{all-subformula-st} \; \textit{test-symb} \; \xi))
    using all-subformula-st-decomp wf-conn-helper-facts (8) by metis
  finally show all-subformula-st test-symb (FEq \varphi \psi)
    \longleftrightarrow (test-symb (FEq \varphi \psi) \land all-subformula-st test-symb \varphi \land all-subformula-st test-symb \psi)
    by simp
  have all-subformula-st test-symb (FImp \varphi \psi) \longleftrightarrow all-subformula-st test-symb (conn CImp [\varphi, \psi])
    by auto
  moreover have ...
    \longleftrightarrow (test-symb (conn CImp [\varphi, \psi]) \land (\forall \xi \in set [\varphi, \psi]. all-subformula-st test-symb \xi))
    using all-subformula-st-decomp wf-conn-helper-facts (7) by metis
  finally show all-subformula-st test-symb (FImp \varphi \psi)
    \longleftrightarrow (test-symb (FImp \varphi \psi) \land all-subformula-st test-symb \varphi \land all-subformula-st test-symb \psi)
    by simp
  have all-subformula-st test-symb (FNot \varphi) \longleftrightarrow all-subformula-st test-symb (conn CNot [\varphi])
  moreover have ... = (test\text{-}symb\ (conn\ CNot\ [\varphi]) \land (\forall \xi \in set\ [\varphi].\ all\text{-}subformula\text{-}st\ test\text{-}symb\ \xi))
    using all-subformula-st-decomp wf-conn-helper-facts(1) by metis
  finally show all-subformula-st test-symb (FNot \varphi)
        \rightarrow (test\text{-}symb \ (FNot \ \varphi) \land all\text{-}subformula\text{-}st \ test\text{-}symb \ \varphi) \ \mathbf{by} \ simp
qed
As all-subformula-st tests recursively, the function is true on every subformula.
\mathbf{lemma}\ \mathit{subformula-all-subformula-st}\colon
  \psi \preceq \varphi \Longrightarrow all\text{-subformula-st test-symb } \varphi \Longrightarrow all\text{-subformula-st test-symb } \psi
  by (induct rule: subformula.induct, auto simp add: all-subformula-st-decomp)
```

The following theorem no-test-symb-step-exists shows the link between the test-symb function and the corresponding rewrite relation r: if we assume that if every time test-symb is true, then a r can be applied, finally as long as \neg all-subformula-st test-symb φ , then something can be rewritten in φ .

 $\mathbf{lemma}\ no\text{-}test\text{-}symb\text{-}step\text{-}exists$:

```
fixes r:: 'v propo \Rightarrow 'v propo \Rightarrow bool and test-symb:: 'v propo \Rightarrow bool and x :: 'v
  and \varphi :: 'v \ propo
  assumes test-symb-false-nullary: \forall x. test-symb FF \land test-symb FT \land test-symb (FVar x)
  and \forall \varphi'. \varphi' \preceq \varphi \longrightarrow (\neg test\text{-symb } \varphi') \longrightarrow (\exists \psi. r \varphi' \psi) and
  \neg all-subformula-st test-symb \varphi
  shows (\exists \psi \ \psi' . \ \psi \leq \varphi \land r \ \psi \ \psi')
  using assms
proof (induct \varphi rule: propo-induct-arity)
  case (nullary \varphi x)
  thus \exists \psi \ \psi'. \psi \leq \varphi \wedge r \ \psi \ \psi'
    using wf-conn-nullary test-symb-false-nullary by fastforce
next
   case (unary \varphi) note IH = this(1)[OF\ this(2)] and r = this(2) and nst = this(3) and subf =
this(4)
  from r IH nst have H: \neg all-subformula-st test-symb \varphi \Longrightarrow \exists \psi. \ \psi \prec \varphi \land (\exists \psi'. \ r \ \psi \ \psi')
    by (metis subformula-in-subformula-not subformula-refl subformula-trans)
  {
    assume n: \neg test\text{-}symb \ (FNot \ \varphi)
    obtain \psi where r (FNot \varphi) \psi using subformula-refl r n nst by blast
    moreover have FNot \varphi \leq FNot \varphi using subformula-refl by auto
    ultimately have \exists \psi \ \psi' . \ \psi \leq FNot \ \varphi \wedge r \ \psi \ \psi' by metis
  moreover {
    assume n: test-symb (FNot \varphi)
    hence \neg all-subformula-st test-symb \varphi
      using all-subformula-st-decomp-explicit(3) nst subf by blast
    hence \exists \psi \ \psi' . \ \psi \leq FNot \ \varphi \land r \ \psi \ \psi'
      using H subformula-in-subformula-not subformula-refl subformula-trans by blast
  ultimately show \exists \psi \ \psi' . \ \psi \prec FNot \ \varphi \land r \ \psi \ \psi' by blast
next
  case (binary \varphi \varphi 1 \varphi 2)
  note IH\varphi 1-0 = this(1)[OF\ this(4)] and IH\varphi 2-0 = this(2)[OF\ this(4)] and r = this(4)
    and \varphi = this(3) and le = this(5) and nst = this(6)
  obtain c :: 'v \ connective \ \mathbf{where}
    c: (c = CAnd \lor c = COr \lor c = CImp \lor c = CEq) \land conn \ c \ [\varphi 1, \varphi 2] = \varphi
    using \varphi by fastforce
  hence corr: wf-conn c [\varphi 1, \varphi 2] using wf-conn.simps unfolding binary-connectives-def by auto
  have inc: \varphi 1 \preceq \varphi \varphi 2 \preceq \varphi using binary-connectives-def c subformula-in-binary-conn by blast+
  from rIH\varphi 1-0 have IH\varphi 1: \neg all\text{-subformula-st test-symb} \varphi 1 \Longrightarrow \exists \psi \psi'. \psi \preceq \varphi 1 \land r \psi \psi'
    using inc(1) subformula-trans le by blast
  from rIH\varphi 2-0 have IH\varphi 2: \neg all-subformula-st test-symb \varphi 2 \Longrightarrow \exists \psi. \ \psi \preceq \varphi 2 \land (\exists \psi'. \ r \ \psi \ \psi')
    using inc(2) subformula-trans le by blast
  have cases: \neg test-symb \varphi \lor \neg all-subformula-st test-symb \varphi 1 \lor \neg all-subformula-st test-symb \varphi 2
    using c nst by auto
  show \exists \psi \ \psi' . \ \psi \prec \varphi \land r \ \psi \ \psi'
    using IH\varphi 1 IH\varphi 2 subformula-trans inc subformula-refl cases le by blast
qed
```

2.2 Invariant conservation

If two rewrite relation are independent (or at least independent enough), then the property characterizing the first relation all-subformula-st test-symb remains true. The next show the

same property, with changes in the assumptions.

The assumption $\forall \varphi' \psi$. $\varphi' \leq \Phi \longrightarrow r \varphi' \psi \longrightarrow all$ -subformula-st test-symb $\varphi' \longrightarrow all$ -subformula-st test-symb ψ means that rewriting with r does not mess up the property we want to preserve locally.

The previous assumption is not enough to go from r to propo-rew-step r: we have to add the assumption that rewriting inside does not mess up the term: $\forall c \ \xi \ \varphi \ \xi' \ \varphi'. \ \varphi \ \preceq \ \Phi \longrightarrow propo-rew$ -step $r \ \varphi \ \varphi' \longrightarrow wf$ -conn $c \ (\xi \ @ \ \varphi \ \# \ \xi') \longrightarrow test$ -symb $(conn \ c \ (\xi \ @ \ \varphi \ \# \ \xi')) \longrightarrow test$ -symb $(conn \ c \ (\xi \ @ \ \varphi' \ \# \ \xi'))$

2.2.1 Invariant while lifting of the rewriting relation

The condition $\varphi \leq \Phi$ (that will by used with $\Phi = \varphi$ most of the time) is here to ensure that the recursive conditions on Φ will moreover hold for the subterm we are rewriting. For example if there is no equivalence symbol in Φ , we do not have to care about equivalence symbols in the two previous assumptions.

```
lemma propo-rew-step-inv-stay':
  fixes r:: 'v \ propo \Rightarrow 'v \ propo \Rightarrow bool \ \mathbf{and} \ test-symb:: 'v \ propo \Rightarrow bool \ \mathbf{and} \ x:: 'v
  and \varphi \psi \Phi :: 'v \ propo
  assumes H: \forall \varphi' \psi. \varphi' \leq \Phi \longrightarrow r \varphi' \psi \longrightarrow all\text{-subformula-st test-symb } \varphi'
    \longrightarrow all-subformula-st test-symb \psi
  and H': \forall (c:: 'v \ connective) \ \xi \ \varphi \ \xi' \ \varphi'. \ \varphi \preceq \Phi \longrightarrow propo-rew-step \ r \ \varphi \ \varphi'
    \longrightarrow wf-conn c (\xi @ \varphi \# \xi') \longrightarrow test-symb (conn c (\xi @ \varphi \# \xi')) \longrightarrow test-symb \varphi'
    \longrightarrow test\text{-symb} (conn \ c \ (\xi @ \varphi' \# \xi')) \text{ and }
    propo-rew-step r \varphi \psi and
    \varphi \leq \Phi and
    all-subformula-st test-symb \varphi
  shows all-subformula-st test-symb \psi
  using assms(3-5)
proof (induct rule: propo-rew-step.induct)
  case global-rel
  thus ?case using H by simp
  case (propo-rew-one-step-lift \varphi \varphi' c \xi \xi')
  note rel = this(1) and \varphi = this(2) and corr = this(3) and \Phi = this(4) and nst = this(5)
  have sq: \varphi \prec \Phi
    using \Phi corr subformula-into-subformula subformula-refl subformula-trans
    \mathbf{by}\ (\mathit{metis}\ \mathit{in\text{-}set\text{-}conv\text{-}decomp})
  from corr have \forall \psi. \psi \in set \ (\xi @ \varphi \# \xi') \longrightarrow all\text{-subformula-st test-symb } \psi
    using all-subformula-st-decomp nst by blast
  hence *: \forall \psi. \psi \in set \ (\xi @ \varphi' \# \xi') \longrightarrow all\text{-subformula-st test-symb } \psi \text{ using } \varphi \text{ sq by } fastforce
  hence test-symb \varphi' using all-subformula-st-test-symb-true-phi by auto
  moreover from corr nst have test-symb (conn c (\xi @ \varphi \# \xi'))
    using all-subformula-st-decomp by blast
  ultimately have test-symb: test-symb (conn c (\xi \otimes \varphi' \# \xi')) using H' sq corr rel by blast
  have wf-conn c (\xi @ \varphi' \# \xi')
    by (metis wf-conn-no-arity-change-helper corr wf-conn-no-arity-change)
  thus all-subformula-st test-symb (conn c (\xi \otimes \varphi' \# \xi'))
    using * test-symb by (metis all-subformula-st-decomp)
qed
```

The need for $\varphi \leq \Phi$ is not always necessary, hence we moreover have a version without inclusion.

```
lemma propo-rew-step-inv-stay:
fixes r:: 'v \ propo \Rightarrow 'v \ propo \Rightarrow bool \ and \ test-symb:: 'v \ propo \Rightarrow bool \ and \ x:: 'v
and \varphi \psi :: 'v \ propo
assumes

H: \forall \varphi' \psi . \ r \ \varphi' \psi \longrightarrow all-subformula-st \ test-symb \ \varphi' \longrightarrow all-subformula-st \ test-symb \ \psi \ and
H': \forall (c:: 'v \ connective) \ \xi \ \varphi \ \xi' \ \varphi'. \ wf-conn \ c \ (\xi \ @ \ \varphi \ \# \ \xi') \longrightarrow test-symb \ (conn \ c \ (\xi \ @ \ \varphi \ \# \ \xi'))
\longrightarrow test-symb \ \varphi' \longrightarrow test-symb \ (conn \ c \ (\xi \ @ \ \varphi' \ \# \ \xi')) \ and
propo-rew-step \ r \ \varphi \ \psi \ and
all-subformula-st test-symb \psi
shows all-subformula-st test-symb \psi
using propo-rew-step-inv-stay'[of \varphi \ r \ test-symb \varphi \ \psi] assms \ subformula-refl \ by \ metis
```

The lemmas can be lifted to propo-rew-step r^{\downarrow} instead of propo-rew-step

2.2.2 Invariant after all rewriting

```
lemma full-propo-rew-step-inv-stay-with-inc:
  fixes r:: 'v propo \Rightarrow 'v propo \Rightarrow bool and test-symb:: 'v propo \Rightarrow bool and x :: 'v
  and \varphi \psi :: 'v \ propo
  assumes
    H: \forall \varphi \psi. propo-rew-step \ r \ \varphi \ \psi \longrightarrow all-subformula-st \ test-symb \ \varphi
       \longrightarrow all-subformula-st test-symb \psi and
    H': \forall (c:: 'v \ connective) \ \xi \ \varphi \ \xi' \ \varphi'. \ \varphi \leq \Phi \longrightarrow propo-rew-step \ r \ \varphi \ \varphi'
       \longrightarrow wf-conn c (\xi @ \varphi \# \xi') \longrightarrow test-symb (conn c (\xi @ \varphi \# \xi')) \longrightarrow test-symb \varphi'
      \longrightarrow test\text{-symb} (conn \ c \ (\xi @ \varphi' \# \xi')) \text{ and }
      \varphi \leq \Phi and
    full: full (propo-rew-step r) \varphi \psi and
    init: all-subformula-st test-symb \varphi
  shows all-subformula-st test-symb \psi
  using assms unfolding full-def
proof -
  have rel: (propo-rew-step \ r)^{**} \ \varphi \ \psi
    using full unfolding full-def by auto
  thus all-subformula-st test-symb \psi
    using init
    proof (induct rule: rtranclp-induct)
      case base
      then show all-subformula-st test-symb \varphi by blast
    next
      case (step b c) note star = this(1) and IH = this(3) and one = this(2) and all = this(4)
      then have all-subformula-st test-symb b by metis
      then show all-subformula-st test-symb c using propo-rew-step-inv-stay' H H' rel one by auto
    qed
qed
lemma full-propo-rew-step-inv-stay':
  fixes r:: 'v \ propo \Rightarrow 'v \ propo \Rightarrow bool \ and \ test-symb:: 'v \ propo \Rightarrow bool \ and \ x:: 'v
  and \varphi \psi :: 'v \ propo
  assumes
    H: \forall \varphi \psi. propo-rew-step \ r \varphi \psi \longrightarrow all-subformula-st \ test-symb \ \varphi
       \longrightarrow all-subformula-st test-symb \psi and
    H': \forall (c:: 'v \ connective) \ \xi \ \varphi \ \xi' \ \varphi'. \ propo-rew-step \ r \ \varphi \ \varphi' \longrightarrow wf-conn \ c \ (\xi @ \varphi \ \# \ \xi')
       \longrightarrow test\text{-symb} \ (conn \ c \ (\xi @ \varphi \# \xi')) \longrightarrow test\text{-symb} \ \varphi' \longrightarrow test\text{-symb} \ (conn \ c \ (\xi @ \varphi' \# \xi')) \ \text{and}
    full: full (propo-rew-step r) \varphi \psi and
    init: all-subformula-st test-symb \varphi
  shows all-subformula-st test-symb \psi
```

using full-propo-rew-step-inv-stay-with-inc[of r test-symb φ] assms subformula-refl by metis

```
lemma full-propo-rew-step-inv-stay:
  fixes r:: 'v \ propo \Rightarrow 'v \ propo \Rightarrow bool \ and \ test-symb:: 'v \ propo \Rightarrow bool \ and \ x:: 'v
  and \varphi \psi :: 'v \ propo
  assumes
    H: \forall \varphi \ \psi. \ r \ \varphi \ \psi \longrightarrow all\text{-subformula-st test-symb} \ \varphi \longrightarrow all\text{-subformula-st test-symb} \ \psi and
    H': \forall (c:: 'v \ connective) \ \xi \ \varphi \ \xi' \ \varphi'. \ wf-conn \ c \ (\xi \ @ \ \varphi \ \# \ \xi') \longrightarrow test-symb \ (conn \ c \ (\xi \ @ \ \varphi \ \# \ \xi'))
       \longrightarrow test\text{-symb }\varphi' \longrightarrow test\text{-symb }(conn\ c\ (\xi\ @\ \varphi'\ \#\ \xi')) and
    full: full (propo-rew-step r) \varphi \psi and
    init: all-subformula-st test-symb \varphi
  shows all-subformula-st test-symb \psi
  unfolding full-def
proof -
  have rel: (propo-rew-step \ r)^* * \varphi \psi
    using full unfolding full-def by auto
  thus all-subformula-st test-symb \psi
    using init
    proof (induct rule: rtranclp-induct)
      {f case}\ base
      thus all-subformula-st test-symb \varphi by blast
    next
      case (step \ b \ c)
      note star = this(1) and IH = this(3) and one = this(2) and all = this(4)
      hence all-subformula-st test-symb b by metis
      thus all-subformula-st test-symb c
        using propo-rew-step-inv-stay subformula-refl H H' rel one by auto
    qed
qed
lemma full-propo-rew-step-inv-stay-conn:
  fixes r:: 'v \ propo \Rightarrow 'v \ propo \Rightarrow bool \ and \ test-symb:: 'v \ propo \Rightarrow bool \ and \ x:: 'v
  and \varphi \psi :: 'v \ propo
  assumes
    H: \forall \varphi \ \psi. \ r \ \varphi \ \psi \longrightarrow all\text{-subformula-st test-symb} \ \varphi \longrightarrow all\text{-subformula-st test-symb} \ \psi \ \mathbf{and}
    H': \forall (c:: 'v \ connective) \ l \ l'. \ wf-conn \ c \ l \longrightarrow wf-conn \ c \ l'
       \longrightarrow (test\text{-}symb\ (conn\ c\ l) \longleftrightarrow test\text{-}symb\ (conn\ c\ l')) and
    full: full (propo-rew-step r) \varphi \psi and
    init: all-subformula-st test-symb \varphi
  shows all-subformula-st test-symb \psi
proof -
  have \bigwedge(c:: 'v \ connective) \ \xi \ \varphi \ \xi' \ \varphi'. \ wf\text{-}conn \ c \ (\xi @ \varphi \ \# \ \xi')
    \implies test-symb (conn c (\xi @ \varphi \# \xi')) \implies test-symb (\varphi' \implies test-symb (conn c (\xi @ \varphi' \# \xi'))
    using H' by (metis wf-conn-no-arity-change-helper wf-conn-no-arity-change)
  thus all-subformula-st test-symb \psi
    using H full init full-propo-rew-step-inv-stay by blast
qed
theory Prop-Normalisation
imports Main Prop-Logic Prop-Abstract-Transformation ../lib/Multiset-More
begin
```

Given the previous definition about abstract rewriting and theorem about them, we now have the detailed rule making the transformation into CNF/DNF.

3 Rewrite Rules

The idea of Christoph Weidenbach's book is to remove gradually the operators: first equivalencies, then implication, after that the unused true/false and finally the reorganizing the or/and. We will prove each transformation separately.

3.1 Elimination of the equivalences

The first transformation consists in removing every equivalence symbol.

```
inductive elim-equiv :: 'v \ propo \Rightarrow 'v \ propo \Rightarrow bool where elim-equiv [simp]: elim-equiv \ (FEq \ \varphi \ \psi) \ (FAnd \ (FImp \ \varphi \ \psi) \ (FImp \ \psi \ \varphi))

lemma elim-equiv-transformation-consistent: A \models FEq \ \varphi \ \psi \longleftrightarrow A \models FAnd \ (FImp \ \varphi \ \psi) \ (FImp \ \psi \ \varphi)
by auto

lemma elim-equiv-explicit: elim-equiv \varphi \ \psi \Longrightarrow \forall A. \ A \models \varphi \longleftrightarrow A \models \psi
by (induct \ rule: \ elim-equiv.induct, auto)

lemma elim-equiv-consistent: preserves-un-sat elim-equiv unfolding \ preserves-un-sat-def by (simp \ add: \ elim-equiv-explicit)

lemma elimEquv-lifted-consistant: preserves-un-sat (full \ (propo-rew-step elim-equiv))
by (simp \ add: \ elim-equiv-consistent)

This function ensures that there is no equivalencies left in the formula tested by no-equiv-symb. fun no-equiv-symb :: v propo \Rightarrow bool where
```

```
fun no-equiv-symb :: 'v propo \Rightarrow bool where no-equiv-symb (FEq - -) = False | no-equiv-symb - = True
```

Given the definition of *no-equiv-symb*, it does not depend on the formula, but only on the connective used.

```
lemma no-equiv-symb-conn-characterization[simp]:

fixes c :: 'v \ connective \ and \ l :: 'v \ propo \ list

assumes wf :: wf-conn \ c \ l

shows no-equiv-symb (conn c \ l) \longleftrightarrow c \neq CEq

by (metis connective.distinct(13,25,35,43) wf no-equiv-symb.elims(3) no-equiv-symb.simps(1)

wf-conn.cases \ wf-conn-list(6))
```

 ${\bf definition}\ \textit{no-equiv}\ {\bf where}\ \textit{no-equiv} = \textit{all-subformula-st}\ \textit{no-equiv-symb}$

```
lemma no-equiv-eq[simp]:
fixes \varphi \psi :: 'v \ propo
shows
\neg no-equiv \ (FEq \ \varphi \ \psi)
no-equiv \ FT
no-equiv \ FF
using no-equiv-symb.simps(1) all-subformula-st-test-symb-true-phi unfolding no-equiv-def by auto
```

The following lemma helps to reconstruct *no-equiv* expressions: this representation is easier to use than the set definition.

lemma all-subformula-st-decomp-explicit-no-equiv[iff]:

```
fixes \varphi \psi :: 'v \ propo

shows

no\text{-}equiv \ (FNot \ \varphi) \longleftrightarrow no\text{-}equiv \ \varphi

no\text{-}equiv \ (FAnd \ \varphi \ \psi) \longleftrightarrow (no\text{-}equiv \ \varphi \land no\text{-}equiv \ \psi)

no\text{-}equiv \ (FOr \ \varphi \ \psi) \longleftrightarrow (no\text{-}equiv \ \varphi \land no\text{-}equiv \ \psi)

no\text{-}equiv \ (FImp \ \varphi \ \psi) \longleftrightarrow (no\text{-}equiv \ \varphi \land no\text{-}equiv \ \psi)

by (auto \ simp: no\text{-}equiv\text{-}def)
```

A theorem to show the link between the rewrite relation *elim-equiv* and the function *no-equiv-symb*. This theorem is one of the assumption we need to characterize the transformation.

```
\mathbf{lemma}\ \textit{no-equiv-elim-equiv-step} :
  fixes \varphi :: 'v \ propo
  assumes no-equiv: \neg no-equiv \varphi
  shows \exists \psi \ \psi' . \ \psi \leq \varphi \land elim\text{-}equiv \ \psi \ \psi'
proof
  have test-symb-false-nullary:
    \forall x::'v. \ no\text{-}equiv\text{-}symb \ FF \land no\text{-}equiv\text{-}symb \ FT \land no\text{-}equiv\text{-}symb \ (FVar \ x)
    unfolding no-equiv-def by auto
  moreover {
    fix c:: 'v connective and l:: 'v propo list and \psi:: 'v propo
      assume a1: elim-equiv (conn c l) \psi
      have \bigwedge p pa. \neg elim-equiv (p::'v \ propo) pa \lor \neg no-equiv-symb p
        using elim-equiv.cases no-equiv-symb.simps(1) by blast
      then have elim-equiv (conn c l) \psi \Longrightarrow \neg no-equiv-symb (conn c l) using a1 by metis
  }
  moreover have H': \forall \psi. \neg elim-equiv FT \psi \forall \psi. \neg elim-equiv FF \psi \forall \psi x. \neg elim-equiv (FVar x) \psi
    using elim-equiv.cases by auto
  moreover have \bigwedge \varphi. \neg no-equiv-symb \varphi \Longrightarrow \exists \psi. elim-equiv \varphi \psi
    by (case-tac \varphi, auto simp: elim-equiv.simps)
  then have \bigwedge \varphi'. \varphi' \preceq \varphi \Longrightarrow \neg no\text{-}equiv\text{-}symb \ \varphi' \Longrightarrow \exists \psi. elim\text{-}equiv \ \varphi' \ \psi by force
  ultimately show ?thesis
    using no-test-symb-step-exists no-equiv test-symb-false-nullary unfolding no-equiv-def by blast
qed
```

Given all the previous theorem and the characterization, once we have rewritten everything, there is no equivalence symbol any more.

```
lemma no-equiv-full-propo-rew-step-elim-equiv:

full (propo-rew-step elim-equiv) \varphi \psi \Longrightarrow no-equiv \psi

using full-propo-rew-step-subformula no-equiv-elim-equiv-step by blast
```

3.2 Eliminate Implication

by auto

After that, we can eliminate the implication symbols.

```
\begin{array}{l} \textbf{inductive} \ \textit{elim-imp} :: 'v \ \textit{propo} \Rightarrow 'v \ \textit{propo} \Rightarrow \textit{bool} \ \textbf{where} \\ [\textit{simp}] : \textit{elim-imp} \ (\textit{FImp} \ \varphi \ \psi) \ (\textit{FOr} \ (\textit{FNot} \ \varphi) \ \psi) \end{array}
```

lemma elim-imp-transformation-consistent: $A \models FImp \ \varphi \ \psi \longleftrightarrow A \models FOr \ (FNot \ \varphi) \ \psi$

```
lemma elim-imp-explicit: elim-imp \varphi \ \psi \Longrightarrow \forall A. \ A \models \varphi \longleftrightarrow A \models \psi by (induct \varphi \ \psi rule: elim-imp.induct, auto)
```

lemma elim-imp-consistent: preserves-un-sat elim-imp

```
unfolding preserves-un-sat-def by (simp add: elim-imp-explicit)
lemma elim-imp-lifted-consistant:
  preserves-un-sat (full (propo-rew-step elim-imp))
 by (simp add: elim-imp-consistent)
fun no-imp-symb where
no\text{-}imp\text{-}symb \ (FImp - -) = False \ |
no\text{-}imp\text{-}symb - = True
{f lemma} no-imp-symb-conn-characterization:
  wf-conn c \ l \Longrightarrow no-imp-symb (conn \ c \ l) \longleftrightarrow c \neq CImp
 by (induction rule: wf-conn-induct) auto
definition no-imp where no-imp \equiv all-subformula-st no-imp-symb
declare no\text{-}imp\text{-}def[simp]
lemma no\text{-}imp\text{-}Imp[simp]:
  \neg no\text{-}imp \ (FImp \ \varphi \ \psi)
  no\text{-}imp\ FT
  no-imp FF
 unfolding no-imp-def by auto
lemma all-subformula-st-decomp-explicit-imp[simp]:
  fixes \varphi \psi :: 'v \ propo
  shows
    no\text{-}imp\ (FNot\ \varphi) \longleftrightarrow no\text{-}imp\ \varphi
    no\text{-}imp\ (FAnd\ \varphi\ \psi) \longleftrightarrow (no\text{-}imp\ \varphi \land no\text{-}imp\ \psi)
    no\text{-}imp\ (FOr\ \varphi\ \psi) \longleftrightarrow (no\text{-}imp\ \varphi \land no\text{-}imp\ \psi)
  by auto
Invariant of the elim-imp transformation
lemma elim-imp-no-equiv:
  elim-imp \ \varphi \ \psi \implies no-equiv \ \varphi \implies no-equiv \ \psi
 by (induct \varphi \psi rule: elim-imp.induct, auto)
lemma elim-imp-inv:
 fixes \varphi \psi :: 'v \ propo
  assumes full (propo-rew-step elim-imp) \varphi \psi and no-equiv \varphi
  shows no-equiv \psi
 using full-propo-rew-step-inv-stay-conn[of elim-imp no-equiv-symb \varphi \psi] assms elim-imp-no-equiv
    no-equiv-symb-conn-characterization unfolding no-equiv-def by metis
lemma no-no-imp-elim-imp-step-exists:
  fixes \varphi :: 'v \ propo
 assumes no-equiv: \neg no-imp \varphi
  shows \exists \psi \ \psi' . \ \psi \preceq \varphi \land elim-imp \ \psi \ \psi'
proof -
 have test-symb-false-nullary: \forall x. \ no\text{-}imp\text{-}symb\ FF \land no\text{-}imp\text{-}symb\ FT \land no\text{-}imp\text{-}symb\ (FVar\ (x:: 'v))
    by auto
  moreover {
     fix c:: 'v \ connective \ {\bf and} \ l:: 'v \ propo \ list \ {\bf and} \ \psi:: 'v \ propo
     have H: elim-imp (conn c l) \psi \Longrightarrow \neg no-imp-symb (conn c l)
       by (auto elim: elim-imp.cases)
```

}

```
moreover have H': \forall \psi. \neg elim\text{-}imp \ FT \ \psi \ \forall \psi. \neg elim\text{-}imp \ FF \ \psi \ \forall \psi \ x. \neg elim\text{-}imp \ (FVar \ x) \ \psi by (auto elim: elim-imp.cases)+ moreover have \bigwedge \varphi. \neg no\text{-}imp\text{-}symb \ \varphi \Longrightarrow \exists \psi. \ elim\text{-}imp \ \varphi \ \psi by (case-tac \varphi) (force simp: elim-imp.simps)+ then have (\bigwedge \varphi'. \ \varphi' \preceq \varphi \Longrightarrow \neg no\text{-}imp\text{-}symb \ \varphi' \Longrightarrow \exists \ \psi. \ elim\text{-}imp \ \varphi' \ \psi) by force ultimately show ?thesis using no-test-symb-step-exists no-equiv test-symb-false-nullary unfolding no-imp-def by blast qed
```

lemma no-imp-full-propo-rew-step-elim-imp: full (propo-rew-step elim-imp) $\varphi \psi \Longrightarrow$ no-imp ψ using full-propo-rew-step-subformula no-no-imp-elim-imp-step-exists by blast

3.3 Eliminate all the True and False in the formula

Contrary to the book, we have to give the transformation and the "commutative" transformation. The latter is implicit in the book.

```
inductive elimTB where
Elim TB1: elim TB \ (FAnd \ \varphi \ FT) \ \varphi
Elim TB1': elim TB (FAnd FT \varphi) \varphi
Elim TB2: elim TB (FAnd \varphi FF) FF
Elim TB2': elim TB (FAnd FF \varphi) FF |
ElimTB3: elimTB (FOr \varphi FT) FT |
ElimTB3': elimTB (FOr FT \varphi) FT |
Elim TB4: elim TB (FOr \varphi FF) \varphi
Elim TB4 ': elim TB (FOr FF \varphi) \varphi |
ElimTB5: elimTB (FNot FT) FF |
ElimTB6: elimTB (FNot FF) FT
lemma elimTB-consistent: preserves-un-sat elimTB
proof -
    fix \varphi \psi:: 'b propo
    have elimTB \varphi \psi \Longrightarrow \forall A. A \models \varphi \longleftrightarrow A \models \psi by (induction rule: elimTB.inducts) auto
 then show ?thesis using preserves-un-sat-def by auto
inductive no-T-F-symb :: 'v propo \Rightarrow bool where
no\text{-}T\text{-}F\text{-}symb\text{-}comp: c \neq CF \implies c \neq CT \implies wf\text{-}conn \ c \ l \implies (\forall \varphi \in set \ l. \ \varphi \neq FT \land \varphi \neq FF)
  \implies no\text{-}T\text{-}F\text{-}symb \ (conn \ c \ l)
lemma wf-conn-no-T-F-symb-iff[simp]:
  wf-conn c \psi s \Longrightarrow
    no\text{-}T\text{-}F\text{-}symb\ (conn\ c\ \psi s)\longleftrightarrow (c\neq CF\ \land\ c\neq CT\ \land\ (\forall\ \psi\in set\ \psi s.\ \psi\neq FF\ \land\ \psi\neq FT))
  unfolding no-T-F-symb.simps apply (cases c)
          using wf-conn-list(1) apply fastforce
         using wf-conn-list(2) apply fastforce
```

```
using wf-conn-list(3) apply fastforce
      apply (metis (no-types, hide-lams) conn-inj connective.distinct(5,17))
      using conn-inj apply blast+
  done
lemma wf-conn-no-T-F-symb-iff-explicit[simp]:
  no-T-F-symb (FAnd \varphi \psi) \longleftrightarrow (\forall \chi \in set [\varphi, \psi]. \chi \neq FF \land \chi \neq FT)
  no-T-F-symb (FOr \varphi \psi) \longleftrightarrow (\forall \chi \in set [\varphi, \psi]. \chi \neq FF \land \chi \neq FT)
  no-T-F-symb (FEq \varphi \psi) \longleftrightarrow (\forall \chi \in set [\varphi, \psi]. \chi \neq FF \land \chi \neq FT)
  no\text{-}T\text{-}F\text{-}symb \ (FImp \ \varphi \ \psi) \longleftrightarrow (\forall \ \chi \in set \ [\varphi, \ \psi]. \ \chi \neq FF \land \chi \neq FT)
     apply (metis\ conn.simps(36)\ conn.simps(37)\ conn.simps(5)\ propo.distinct(19)
       wf-conn-helper-facts(5) wf-conn-no-T-F-symb-iff)
    apply (metis\ conn.simps(36)\ conn.simps(37)\ conn.simps(6)\ propo.distinct(22)
      wf-conn-helper-facts(6) wf-conn-no-T-F-symb-iff)
  using wf-conn-no-T-F-symb-iff apply fastforce
  by (metis\ conn.simps(36)\ conn.simps(37)\ conn.simps(7)\ propo.distinct(23)\ wf-conn-helper-facts(7)
    wf-conn-no-T-F-symb-iff)
lemma no-T-F-symb-false[simp]:
  fixes c :: 'v \ connective
  shows
    \neg no\text{-}T\text{-}F\text{-}symb \ (FT :: 'v \ propo)
    \neg no-T-F-symb (FF :: 'v propo)
    by (metis\ (no\text{-}types)\ conn.simps(1,2)\ wf\text{-}conn\text{-}no\text{-}T\text{-}F\text{-}symb\text{-}iff\ wf\text{-}conn\text{-}nullary})+
lemma no-T-F-symb-bool[simp]:
  fixes x :: 'v
 shows no-T-F-symb (FVar x)
  using no-T-F-symb-comp wf-conn-nullary by (metis connective distinct (3, 15) conn. simps (3)
    empty-iff list.set(1))
lemma no-T-F-symb-fnot-imp:
  \neg no\text{-}T\text{-}F\text{-}symb \ (FNot \ \varphi) \Longrightarrow \varphi = FT \lor \varphi = FF
proof (rule ccontr)
  assume n: \neg no\text{-}T\text{-}F\text{-}symb (FNot \varphi)
  assume \neg (\varphi = FT \lor \varphi = FF)
  then have \forall \varphi' \in set \ [\varphi]. \ \varphi' \neq FT \land \varphi' \neq FF \ by \ auto
  moreover have wf-conn CNot [\varphi] by simp
  ultimately have no-T-F-symb (FNot \varphi)
    using no-T-F-symb.intros by (metis conn.simps(4) connective.distinct(5,17))
  then show False using n by blast
qed
lemma no-T-F-symb-fnot[simp]:
  \textit{no-T-F-symb} \ (\textit{FNot} \ \varphi) \longleftrightarrow \neg (\varphi = \textit{FT} \ \lor \ \varphi = \textit{FF})
  using no-T-F-symb.simps no-T-F-symb-fnot-imp by (metis conn-inj-not(2) list.set-intros(1))
Actually it is not possible to remover every FT and FF: if the formula is equal to true or false,
we can not remove it.
inductive no-T-F-symb-except-toplevel where
no-T-F-symb-except-toplevel-true[simp]: no-T-F-symb-except-toplevel FT
no-T-F-symb-except-toplevel-false [simp]: no-T-F-symb-except-toplevel FF
noTrue-no-T-F-symb-except-toplevel[simp]: no-T-F-symb \varphi \implies no-T-F-symb-except-toplevel \varphi
```

```
\mathbf{lemma}\ no\text{-}T\text{-}F\text{-}symb\text{-}except\text{-}toplevel\text{-}bool:}
  fixes x :: 'v
  shows no-T-F-symb-except-toplevel (FVar x)
  by simp
\mathbf{lemma}\ no\text{-}T\text{-}F\text{-}symb\text{-}except\text{-}toplevel\text{-}not\text{-}decom\text{:}}
  \varphi \neq FT \Longrightarrow \varphi \neq FF \Longrightarrow no\text{-}T\text{-}F\text{-}symb\text{-}except\text{-}toplevel (FNot }\varphi)
  by simp
lemma no-T-F-symb-except-toplevel-bin-decom:
  fixes \varphi \psi :: 'v \ propo
  assumes \varphi \neq FT and \varphi \neq FF and \psi \neq FT and \psi \neq FF
  and c: c \in binary\text{-}connectives
  shows no-T-F-symb-except-toplevel (conn c [\varphi, \psi])
  by (metis (no-types, lifting) assms c conn.simps(4) list.discI noTrue-no-T-F-symb-except-toplevel
    wf-conn-no-T-F-symb-iff no-T-F-symb-fnot set-ConsD wf-conn-binary wf-conn-helper-facts(1)
    wf-conn-list-decomp(1,2))
\mathbf{lemma}\ no\text{-}T\text{-}F\text{-}symb\text{-}except\text{-}toplevel\text{-}if\text{-}is\text{-}a\text{-}true\text{-}false\text{:}}
  fixes l :: 'v propo list and <math>c :: 'v connective
  assumes corr: wf-conn c l
  and FT \in set \ l \lor FF \in set \ l
  shows \neg no\text{-}T\text{-}F\text{-}symb\text{-}except\text{-}toplevel (conn c l)
  by (metis assms empty-iff no-T-F-symb-except-toplevel.simps wf-conn-no-T-F-symb-iff set-empty
    wf-conn-list(1,2))
lemma no-T-F-symb-except-top-level-false-example[simp]:
  fixes \varphi \psi :: 'v \ propo
  assumes \varphi = FT \lor \psi = FT \lor \varphi = FF \lor \psi = FF
  shows
    \neg no\text{-}T\text{-}F\text{-}symb\text{-}except\text{-}toplevel (FAnd <math>\varphi \psi)
    \neg no-T-F-symb-except-toplevel (FOr \varphi \psi)
    \neg no-T-F-symb-except-toplevel (FImp \varphi \psi)
    \neg no\text{-}T\text{-}F\text{-}symb\text{-}except\text{-}toplevel (FEq <math>\varphi \psi)
  using assms no-T-F-symb-except-toplevel-if-is-a-true-false unfolding binary-connectives-def
    by (metis\ (no-types)\ conn.simps(5-8)\ insert-iff\ list.simps(14-15)\ wf-conn-helper-facts(5-8))+
lemma no-T-F-symb-except-top-level-false-not[simp]:
  fixes \varphi \psi :: 'v \ propo
  assumes \varphi = FT \vee \varphi = FF
  shows
    \neg no\text{-}T\text{-}F\text{-}symb\text{-}except\text{-}toplevel (FNot <math>\varphi)
  by (simp add: assms no-T-F-symb-except-toplevel.simps)
This is the local extension of no-T-F-symb-except-toplevel.
definition no-T-F-except-top-level where
no\text{-}T\text{-}F\text{-}except\text{-}top\text{-}level \equiv all\text{-}subformula\text{-}st\ no\text{-}T\text{-}F\text{-}symb\text{-}except\text{-}toplevel
This is another property we will use. While this version might seem to be the one we want to
prove, it is not since FT can not be reduced.
definition no\text{-}T\text{-}F where
```

 $no\text{-}T\text{-}F \equiv all\text{-}subformula\text{-}st\ no\text{-}T\text{-}F\text{-}symb$

```
lemma no-T-F-except-top-level-false:
   fixes l :: 'v propo list and <math>c :: 'v connective
   assumes wf-conn c l
   and FT \in set \ l \lor FF \in set \ l
   shows \neg no\text{-}T\text{-}F\text{-}except\text{-}top\text{-}level (conn c l)
   by (simp add: all-subformula-st-decomp assms no-T-F-except-top-level-def
       no-T-F-symb-except-toplevel-if-is-a-true-false)
lemma no-T-F-except-top-level-false-example[simp]:
   fixes \varphi \psi :: 'v \ propo
   assumes \varphi = FT \lor \psi = FT \lor \varphi = FF \lor \psi = FF
   shows
        \neg no\text{-}T\text{-}F\text{-}except\text{-}top\text{-}level (FAnd <math>\varphi \psi)
       \neg no-T-F-except-top-level (FOr \varphi \psi)
       \neg no-T-F-except-top-level (FEq \varphi \psi)
       \neg no\text{-}T\text{-}F\text{-}except\text{-}top\text{-}level (FImp <math>\varphi \psi)
    by (metis all-subformula-st-test-symb-true-phi assms no-T-F-except-top-level-def
       no-T-F-symb-except-top-level-false-example)+
lemma no-T-F-symb-except-toplevel-no-T-F-symb:
    no\text{-}T\text{-}F\text{-}symb\text{-}except\text{-}toplevel } \varphi \Longrightarrow \varphi \neq FF \Longrightarrow \varphi \neq FT \Longrightarrow no\text{-}T\text{-}F\text{-}symb } \varphi
   by (induct rule: no-T-F-symb-except-toplevel.induct, auto)
The two following lemmas give the precise link between the two definitions.
\mathbf{lemma}\ no\text{-}T\text{-}F\text{-}symb\text{-}except\text{-}toplevel\text{-}all\text{-}subformula\text{-}st\text{-}no\text{-}}T\text{-}F\text{-}symb\text{:}
    no\text{-}T\text{-}F\text{-}except\text{-}top\text{-}level\ \varphi \Longrightarrow \varphi \neq FF \Longrightarrow \varphi \neq FT \Longrightarrow no\text{-}T\text{-}F\ \varphi
    unfolding no-T-F-except-top-level-def no-T-F-def apply (induct \varphi)
    using no-T-F-symb-fnot by fastforce+
lemma no-T-F-no-T-F-except-top-level:
    no\text{-}T\text{-}F \varphi \Longrightarrow no\text{-}T\text{-}F\text{-}except\text{-}top\text{-}level \varphi
   unfolding no-T-F-except-top-level-def no-T-F-def
   unfolding all-subformula-st-def by auto
lemma\ no-T-F-except-top-level\ FF\ no-T-F-except-top-level\ FT
    unfolding no-T-F-except-top-level-def by auto
lemma no-T-F-no-T-F-except-top-level'[simp]:
   no\text{-}T\text{-}F\text{-}except\text{-}top\text{-}level\ \varphi \longleftrightarrow (\varphi = FF \lor \varphi = FT \lor no\text{-}T\text{-}F\ \varphi)
   \textbf{using} \ \textit{no-T-F-symb-except-top-level-all-subformula-st-no-T-F-symb} \ \textit{no-T-F-no-T-F-except-top-level-all-subformula-st-no-T-F-symb} \ \textit{no-T-F-no-T-F-symb} \ \textit{no-T-
   by auto
lemma no-T-F-bin-decomp[simp]:
   assumes c: c \in binary\text{-}connectives
   shows no-T-F (conn\ c\ [\varphi,\psi]) \longleftrightarrow (no-T-F\ \varphi \land no-T-F\ \psi)
proof -
   have \textit{wf} : \textit{wf-conn} \ c \ [\varphi, \ \psi] \ \mathbf{using} \ c \ \mathbf{by} \ \textit{auto}
   then have no-T-F (conn c [\varphi, \psi]) \longleftrightarrow (no-T-F-symb (conn c [\varphi, \psi]) \land no-T-F \varphi \land no-T-F \psi)
       by (simp add: all-subformula-st-decomp no-T-F-def)
    then show no-T-F (conn c [\varphi, \psi]) \longleftrightarrow (no-T-F \varphi \land no-T-F \psi)
       \mathbf{using}\ c\ wf\ all\text{-}subformula\text{-}st\text{-}decomp\ list.discI\ no\text{-}T\text{-}F\text{-}def\ no\text{-}T\text{-}F\text{-}symb\text{-}except\text{-}toplevel\text{-}bin\text{-}decomp\ list.}
           no-T-F-symb-except-toplevel-no-T-F-symb\ no-T-F-symb-false (1,2)\ wf-conn-helper-facts (2,3)
           wf-conn-list(1,2) by metis
qed
```

```
lemma no-T-F-bin-decomp-expanded[simp]:
  assumes c: c = CAnd \lor c = COr \lor c = CEq \lor c = CImp
 shows no-T-F (conn c [\varphi, \psi]) \longleftrightarrow (no-T-F \varphi \land no-T-F \psi)
  using no-T-F-bin-decomp assms unfolding binary-connectives-def by blast
lemma no-T-F-comp-expanded-explicit[simp]:
  fixes \varphi \psi :: 'v \ propo
  shows
    no\text{-}T\text{-}F \ (FAnd \ \varphi \ \psi) \longleftrightarrow (no\text{-}T\text{-}F \ \varphi \land no\text{-}T\text{-}F \ \psi)
    no\text{-}T\text{-}F \ (FOr \ \varphi \ \psi) \ \longleftrightarrow \ (no\text{-}T\text{-}F \ \varphi \land no\text{-}T\text{-}F \ \psi)
    no\text{-}T\text{-}F \ (FEq \ \varphi \ \psi) \ \longleftrightarrow (no\text{-}T\text{-}F \ \varphi \land no\text{-}T\text{-}F \ \psi)
    no\text{-}T\text{-}F \ (FImp \ \varphi \ \psi) \longleftrightarrow (no\text{-}T\text{-}F \ \varphi \land no\text{-}T\text{-}F \ \psi)
  using assms conn.simps(5-8) no-T-F-bin-decomp-expanded by (metis (no-types))+
lemma no-T-F-comp-not[simp]:
  fixes \varphi \psi :: 'v \ propo
  shows no-T-F (FNot \varphi) \longleftrightarrow no-T-F \varphi
  by (metis all-subformula-st-decomp-explicit(3) all-subformula-st-test-symb-true-phi no-T-F-def
    no-T-F-symb-false(1,2) no-T-F-symb-fnot-imp)
lemma no-T-F-decomp:
  fixes \varphi \ \psi :: 'v \ propo
  assumes \varphi: no-T-F (FAnd \varphi \psi) \vee no-T-F (FOr \varphi \psi) \vee no-T-F (FEq \varphi \psi) \vee no-T-F (FImp \varphi \psi)
 shows no-T-F \psi and no-T-F \varphi
  using assms by auto
lemma no-T-F-decomp-not:
  fixes \varphi :: 'v \ propo
 assumes \varphi: no-T-F (FNot \varphi)
 shows no-T-F \varphi
 using assms by auto
lemma no-T-F-symb-except-toplevel-step-exists:
  fixes \varphi \psi :: 'v \ propo
 assumes no-equiv \varphi and no-imp \varphi
  shows \psi \prec \varphi \Longrightarrow \neg no\text{-}T\text{-}F\text{-}symb\text{-}except\text{-}toplevel } \psi \Longrightarrow \exists \psi'. elimTB \ \psi \ \psi'
proof (induct \psi rule: propo-induct-arity)
  case (nullary \varphi'(x))
  then have False using no-T-F-symb-except-toplevel-true no-T-F-symb-except-toplevel-false by auto
  then show ?case by blast
next
  case (unary \psi)
  then have \psi = FF \lor \psi = FT using no-T-F-symb-except-toplevel-not-decom by blast
  then show ?case using ElimTB5 ElimTB6 by blast
  case (binary \varphi' \psi 1 \psi 2)
  note IH1 = this(1) and IH2 = this(2) and \varphi' = this(3) and F\varphi = this(4) and n = this(5)
    assume \varphi' = FImp \ \psi 1 \ \psi 2 \lor \varphi' = FEq \ \psi 1 \ \psi 2
    then have False using n F\varphi subformula-all-subformula-st assms
      by (metis\ (no-types)\ no-equiv-eq(1)\ no-equiv-def\ no-imp-Imp(1)\ no-imp-def)
    then have ?case by blast
  moreover {
```

```
assume \varphi': \varphi' = FAnd \ \psi 1 \ \psi 2 \lor \varphi' = FOr \ \psi 1 \ \psi 2
    then have \psi 1 = FT \vee \psi 2 = FT \vee \psi 1 = FF \vee \psi 2 = FF
     using no-T-F-symb-except-toplevel-bin-decom conn.simps(5,6) n unfolding binary-connectives-def
      by fastforce+
    then have ?case using elimTB.intros \varphi' by blast
  ultimately show ?case using \varphi' by blast
qed
lemma no-T-F-except-top-level-rew:
 fixes \varphi :: 'v \ propo
 assumes noTB: \neg no-T-F-except-top-level \varphi and no-equiv: no-equiv \varphi and no-imp: no-imp
 shows \exists \psi \ \psi' . \ \psi \leq \varphi \land elimTB \ \psi \ \psi'
proof -
  have test-symb-false-nullary: <math>\forall x. no-T-F-symb-except-toplevel (FF:: 'v propo)
    \land no-T-F-symb-except-toplevel FT \land no-T-F-symb-except-toplevel (FVar (x::'v)) by auto
 moreover {
     fix c:: 'v connective and l:: 'v propo list and \psi:: 'v propo
     have H: elimTB (conn c l) \psi \Longrightarrow \neg no\text{-}T\text{-}F\text{-}symb\text{-}except\text{-}toplevel} (conn c l)
       by (cases (conn c l) rule: elimTB.cases, auto)
  moreover {
     \mathbf{fix} \ x :: 'v
    have H': no\text{-}T\text{-}F\text{-}except\text{-}top\text{-}level FT no\text{-}T\text{-}F\text{-}except\text{-}top\text{-}level FF}
       no-T-F-except-top-level (FVar x)
       by (auto simp: no-T-F-except-top-level-def test-symb-false-nullary)
  }
 moreover {
     fix \psi
     have \psi \prec \varphi \Longrightarrow \neg no\text{-}T\text{-}F\text{-}symb\text{-}except\text{-}toplevel }\psi \Longrightarrow \exists \psi'. elimTB \psi \psi'
       using no-T-F-symb-except-toplevel-step-exists no-equiv no-imp by auto
  }
 ultimately show ?thesis
    using no-test-symb-step-exists noTB unfolding no-T-F-except-top-level-def by blast
qed
lemma elimTB-inv:
 fixes \varphi \psi :: 'v \ propo
  assumes full (propo-rew-step elimTB) \varphi \psi
 and no-equiv \varphi and no-imp \varphi
 shows no-equiv \psi and no-imp \psi
proof -
  {
     \mathbf{fix} \ \varphi \ \psi :: \ 'v \ propo
     have H: elimTB \varphi \psi \Longrightarrow no\text{-}equiv \varphi \Longrightarrow no\text{-}equiv \psi
       by (induct \varphi \psi rule: elimTB.induct, auto)
  then show no-equiv \psi
    using full-propo-rew-step-inv-stay-conn[of elimTB no-equiv-symb \varphi \psi]
      no-equiv-symb-conn-characterization assms unfolding no-equiv-def by metis
next
     fix \varphi \psi :: 'v \ propo
     have H: elimTB \varphi \psi \Longrightarrow no\text{-}imp \varphi \Longrightarrow no\text{-}imp \psi
       by (induct \varphi \psi rule: elimTB.induct, auto)
```

```
}
  then show no-imp \psi
    using full-propo-rew-step-inv-stay-conn[of elimTB no-imp-symb \varphi \psi] assms
      no-imp-symb-conn-characterization unfolding no-imp-def by metis
qed
\mathbf{lemma}\ elimTB-full-propo-rew-step:
  fixes \varphi \psi :: 'v \ propo
  assumes no-equiv \varphi and no-imp \varphi and full (propo-rew-step elimTB) \varphi \psi
 shows no-T-F-except-top-level \psi
  using full-propo-rew-step-subformula no-T-F-except-top-level-rew assms elimTB-inv by fastforce
3.4
        PushNeg
Push the negation inside the formula, until the litteral.
inductive pushNeg where
PushNeg1[simp]: pushNeg (FNot (FAnd \varphi \psi)) (FOr (FNot \varphi) (FNot \psi))
PushNeg2[simp]: pushNeg (FNot (FOr \varphi \psi)) (FAnd (FNot \varphi) (FNot \psi))
PushNeg3[simp]: pushNeg (FNot (FNot \varphi)) \varphi
lemma pushNeg-transformation-consistent:
A \models FNot \ (FAnd \ \varphi \ \psi) \longleftrightarrow A \models (FOr \ (FNot \ \varphi) \ (FNot \ \psi))
A \models \mathit{FNot} \; (\mathit{FOr} \; \varphi \; \psi) \; \longleftrightarrow A \models (\mathit{FAnd} \; (\mathit{FNot} \; \varphi) \; (\mathit{FNot} \; \psi))
A \models FNot (FNot \varphi) \longleftrightarrow A \models \varphi
 by auto
lemma pushNeg-explicit: pushNeg \varphi \psi \Longrightarrow \forall A. A \models \varphi \longleftrightarrow A \models \psi
  by (induct \varphi \psi rule: pushNeg.induct, auto)
lemma pushNeg-consistent: preserves-un-sat pushNeg
  unfolding preserves-un-sat-def by (simp add: pushNeg-explicit)
lemma pushNeg-lifted-consistant:
preserves-un-sat (full (propo-rew-step pushNeg))
 by (simp add: pushNeg-consistent)
fun simple where
simple FT = True
simple FF = True
simple (FVar -) = True \mid
simple \, \text{--} = \mathit{False}
lemma simple-decomp:
  simple \ \varphi \longleftrightarrow (\varphi = FT \lor \varphi = FF \lor (\exists x. \ \varphi = FVar \ x))
 by (cases \varphi) auto
lemma subformula-conn-decomp-simple:
  fixes \varphi \psi :: 'v \ propo
 assumes s: simple \ \psi
  shows \varphi \leq FNot \ \psi \longleftrightarrow (\varphi = FNot \ \psi \lor \varphi = \psi)
proof -
  have \varphi \leq conn \ CNot \ [\psi] \longleftrightarrow (\varphi = conn \ CNot \ [\psi] \lor (\exists \ \psi \in set \ [\psi]. \ \varphi \leq \psi))
```

```
using subformula-conn-decomp wf-conn-helper-facts(1) by metis
  then show \varphi \leq FNot \ \psi \longleftrightarrow (\varphi = FNot \ \psi \lor \varphi = \psi) using s by (auto simp: simple-decomp)
qed
lemma subformula-conn-decomp-explicit[simp]:
  fixes \varphi :: 'v \ propo \ {\bf and} \ x :: 'v
  shows
    \varphi \leq FNot \ FT \longleftrightarrow (\varphi = FNot \ FT \lor \varphi = FT)
    \varphi \leq FNot \ FF \longleftrightarrow (\varphi = FNot \ FF \lor \varphi = FF)
    \varphi \leq FNot \ (FVar \ x) \longleftrightarrow (\varphi = FNot \ (FVar \ x) \lor \varphi = FVar \ x)
  by (auto simp: subformula-conn-decomp-simple)
fun simple-not-symb where
simple-not-symb (FNot \varphi) = (simple \varphi)
simple-not-symb -= True
definition simple-not where
simple-not = all-subformula-st\ simple-not-symb
declare \ simple-not-def[simp]
lemma simple-not-Not[simp]:
  \neg simple-not (FNot (FAnd \varphi \psi))
  \neg simple-not (FNot (FOr \varphi \psi))
 by auto
\mathbf{lemma}\ simple-not-step-exists:
 fixes \varphi \psi :: 'v \ propo
 assumes no-equiv \varphi and no-imp \varphi
  shows \psi \preceq \varphi \Longrightarrow \neg simple-not-symb \ \psi \Longrightarrow \exists \ \psi'. \ pushNeg \ \psi \ \psi'
 apply (induct \psi, auto)
 apply (rename-tac \psi, case-tac \psi, auto intro: pushNeg.intros)
  by (metis\ assms(1,2)\ no-imp-Imp(1)\ no-equiv-eq(1)\ no-imp-def\ no-equiv-def
    subformula-in-subformula-not\ subformula-all-subformula-st)+
lemma simple-not-rew:
  fixes \varphi :: 'v \ propo
 assumes noTB: \neg simple-not \varphi and no-equiv: no-equiv \varphi and no-imp: no-imp \varphi
 shows \exists \psi \ \psi' . \ \psi \leq \varphi \land pushNeg \ \psi \ \psi'
proof -
  have \forall x. \ simple-not-symb \ (FF:: 'v \ propo) \land simple-not-symb \ FT \land simple-not-symb \ (FVar \ (x:: 'v))
   by auto
 moreover {
     fix c:: 'v \ connective \ {\bf and} \ \ l:: 'v \ propo \ list \ {\bf and} \ \psi:: 'v \ propo
     have H: pushNeg (conn c l) \psi \Longrightarrow \neg simple\text{-not-symb} (conn c l)
       by (cases (conn c l) rule: pushNeg.cases) auto
  }
 moreover {
     \mathbf{fix} \ x :: \ 'v
     have H': simple-not FT simple-not FF simple-not (FVar x)
       by simp-all
 moreover {
     \mathbf{fix} \ \psi :: \ 'v \ propo
     have \psi \preceq \varphi \Longrightarrow \neg simple-not-symb \psi \Longrightarrow \exists \psi'. pushNeg \psi \psi'
```

```
using simple-not-step-exists no-equiv no-imp by blast
  }
 ultimately show ?thesis using no-test-symb-step-exists noTB unfolding simple-not-def by blast
qed
lemma no-T-F-except-top-level-pushNeg1:
  no\text{-}T\text{-}F\text{-}except\text{-}top\text{-}level (FNot (FAnd <math>\varphi \psi)) \Longrightarrow no\text{-}T\text{-}F\text{-}except\text{-}top\text{-}level (FOr (FNot <math>\varphi)) (FNot \psi)
 using no-T-F-symb-except-toplevel-all-subformula-st-no-T-F-symb-no-T-F-comp-not-no-T-F-decomp(1)
    no-T-F-decomp(2) no-T-F-no-T-F-except-top-level by (metis\ no-T-F-comp-expanded-explicit(2)
      propo.distinct(5,17)
lemma no-T-F-except-top-level-pushNeg2:
  no\text{-}T\text{-}F\text{-}except\text{-}top\text{-}level (FNot (FOr <math>\varphi \psi)) \Longrightarrow no\text{-}T\text{-}F\text{-}except\text{-}top\text{-}level (FAnd (FNot <math>\varphi)) (FNot \psi))
  by auto
lemma no-T-F-symb-pushNeg:
  no-T-F-symb (FOr (FNot \varphi') (FNot \psi'))
  no-T-F-symb (FAnd (FNot \varphi') (FNot \psi'))
  no-T-F-symb (FNot (FNot \varphi'))
 by auto
lemma propo-rew-step-pushNeg-no-T-F-symb:
  propo-rew-step pushNeg \varphi \psi \Longrightarrow no-T-F-except-top-level \varphi \Longrightarrow no-T-F-symb \varphi \Longrightarrow no-T-F-symb \psi
 apply (induct rule: propo-rew-step.induct)
 apply (cases rule: pushNeg.cases)
 apply simp-all
  apply (metis\ no-T-F-symb-pushNeg(1))
 apply (metis\ no\text{-}T\text{-}F\text{-}symb\text{-}pushNeg(2))
 apply (simp, metis all-subformula-st-test-symb-true-phi no-T-F-def)
proof -
 fix \varphi \varphi':: 'a propo and c:: 'a connective and \xi \xi':: 'a propo list
 assume rel: propo-rew-step pushNeg \varphi \varphi'
 and IH: no-T-F \varphi \Longrightarrow no-T-F-symb \varphi \Longrightarrow no-T-F-symb \varphi'
 and wf: wf-conn c (\xi @ \varphi \# \xi')
  and n: conn \ c \ (\xi @ \varphi \# \xi') = FF \lor conn \ c \ (\xi @ \varphi \# \xi') = FT \lor no-T-F \ (conn \ c \ (\xi @ \varphi \# \xi'))
 and x: c \neq CF \land c \neq CT \land \varphi \neq FF \land \varphi \neq FT \land (\forall \psi \in set \ \xi \cup set \ \xi'. \ \psi \neq FF \land \psi \neq FT)
  then have c \neq CF \land c \neq CF \land wf\text{-}conn \ c \ (\xi @ \varphi' \# \xi')
    using wf-conn-no-arity-change-helper wf-conn-no-arity-change by metis
  moreover have n': no-T-F (conn c (\xi @ \varphi \# \xi')) using n by (simp add: wf wf-conn-list(1,2))
  moreover
  {
    have no-T-F \varphi
      \textbf{by} \ (\textit{metis Un-iff all-subformula-st-decomp list.set-intros} (\textit{1}) \ \ \textit{n' wf no-T-F-def set-append})
    moreover then have no-T-F-symb \varphi
      by (simp add: all-subformula-st-test-symb-true-phi no-T-F-def)
    ultimately have \varphi' \neq \mathit{FF} \land \varphi' \neq \mathit{FT}
      using IH no-T-F-symb-false(1) no-T-F-symb-false(2) by blast
    then have \forall \psi \in set \ (\xi @ \varphi' \# \xi'). \ \psi \neq FF \land \psi \neq FT \ using \ x \ by \ auto
 ultimately show no-T-F-symb (conn c (\xi @ \varphi' \# \xi')) by (simp add: x)
qed
\mathbf{lemma}\ propo-rew-step-pushNeg-no-T-F:
  propo-rew-step pushNeg \varphi \psi \Longrightarrow no-T-F \varphi \Longrightarrow no-T-F \psi
proof (induct rule: propo-rew-step.induct)
```

```
case global-rel
  then show ?case
   by (metis (no-types, lifting) no-T-F-symb-except-toplevel-all-subformula-st-no-T-F-symb
     no-T-F-def no-T-F-except-top-level-pushNeg2 no-T-F-except-top-level-pushNeg2
     no-T-F-no-T-F-except-top-level \ all-subformula-st-decomp-explicit (3) \ pushNeq.simps
     simple.simps(1,2,5,6))
next
 case (propo-rew-one-step-lift \varphi \varphi' c \xi \xi')
 note rel = this(1) and IH = this(2) and wf = this(3) and no-T-F = this(4)
 moreover have wf': wf-conn c (\xi @ \varphi' \# \xi')
   using wf-conn-no-arity-change wf-conn-no-arity-change-helper wf by metis
 ultimately show no-T-F (conn c (\xi @ \varphi' \# \xi'))
   using \ all-subformula-st-test-symb-true-phi
   by (fastforce simp: no-T-F-def all-subformula-st-decomp wf wf')
qed
lemma pushNeq-inv:
 fixes \varphi \ \psi :: 'v \ propo
 assumes full (propo-rew-step pushNeg) \varphi \psi
 and no-equiv \varphi and no-imp \varphi and no-T-F-except-top-level \varphi
 shows no-equiv \psi and no-imp \psi and no-T-F-except-top-level \psi
proof -
  {
   \mathbf{fix} \ \varphi \ \psi :: \ 'v \ propo
   assume rel: propo-rew-step pushNeg \varphi \psi
   and no: no-T-F-except-top-level \varphi
   then have no-T-F-except-top-level \psi
     proof -
         assume \varphi = FT \vee \varphi = FF
         from rel this have False
          apply (induct rule: propo-rew-step.induct)
            using pushNeg.cases apply blast
          using wf-conn-list(1) wf-conn-list(2) by auto
         then have no-T-F-except-top-level \psi by blast
       moreover {
         assume \varphi \neq FT \land \varphi \neq FF
         then have no-T-F \varphi
          by (metis no no-T-F-symb-except-toplevel-all-subformula-st-no-T-F-symb)
         then have no-T-F \psi
          using propo-rew-step-pushNeg-no-T-F rel by auto
         then have no-T-F-except-top-level \psi by (simp add: no-T-F-no-T-F-except-top-level)
       ultimately show no-T-F-except-top-level \psi by metis
     qed
 }
 moreover {
    fix c :: 'v \ connective \ and \ \xi \ \xi' :: 'v \ propo \ list \ and \ \zeta \ \zeta' :: 'v \ propo
    assume rel: propo-rew-step pushNeg \zeta \zeta'
    and incl: \zeta \leq \varphi
    and corr: wf-conn c (\xi \otimes \zeta \# \xi')
    and no-T-F: no-T-F-symb-except-toplevel (conn c (\xi \otimes \zeta \# \xi'))
    and n: no-T-F-symb-except-toplevel \zeta'
```

```
have no-T-F-symb-except-toplevel (conn c (\xi \otimes \zeta' \# \xi'))
    proof
      have p: no-T-F-symb (conn c (<math>\xi \otimes \zeta \# \xi'))
        using corr wf-conn-list(1) wf-conn-list(2) no-T-F-symb-except-toplevel-no-T-F-symb no-T-F
      have l: \forall \varphi \in set \ (\xi @ \zeta \# \xi'). \ \varphi \neq FT \land \varphi \neq FF
        using corr wf-conn-no-T-F-symb-iff p by blast
      from rel incl have \zeta' \neq FT \land \zeta' \neq FF
        apply (induction \zeta \zeta' rule: propo-rew-step.induct)
        apply (cases rule: pushNeg.cases, auto)
        by (metis assms(4) no-T-F-symb-except-top-level-false-not no-T-F-except-top-level-def
          all-subformula-st-test-symb-true-phi subformula-in-subformula-not
          subformula-all-subformula-st\ append-is-Nil-conv\ list.distinct(1)
          wf-conn-no-arity-change-helper wf-conn-list(1,2) wf-conn-no-arity-change)+
      then have \forall \varphi \in set \ (\xi @ \zeta' \# \xi'). \ \varphi \neq FT \land \varphi \neq FF \ using \ l \ by \ auto
      moreover have c \neq CT \land c \neq CF using corr by auto
      ultimately show no-T-F-symb (conn c (\xi \otimes \zeta' \# \xi'))
        by (metis corr no-T-F-symb-comp wf-conn-no-arity-change wf-conn-no-arity-change-helper)
    \mathbf{qed}
  }
  ultimately show no-T-F-except-top-level \psi
   using full-propo-rew-step-inv-stay-with-inc[of pushNeq no-T-F-symb-except-toplevel \varphi] assms
     subformula-refl unfolding no-T-F-except-top-level-def full-unfold by metis
next
  {
   \mathbf{fix} \ \varphi \ \psi :: \ 'v \ propo
   have H: pushNeg \varphi \psi \Longrightarrow no-equiv \varphi \Longrightarrow no-equiv \psi
     by (induct \varphi \psi rule: pushNeg.induct, auto)
  then show no-equiv \psi
   using full-propo-rew-step-inv-stay-conn[of pushNeg no-equiv-symb \varphi \psi]
   no-equiv-symb-conn-characterization assms unfolding no-equiv-def full-unfold by metis
next
   \mathbf{fix} \ \varphi \ \psi :: \ 'v \ propo
   have H: pushNeg \varphi \psi \Longrightarrow no\text{-imp } \varphi \Longrightarrow no\text{-imp } \psi
     by (induct \varphi \psi rule: pushNeq.induct, auto)
  then show no-imp \psi
   using full-propo-rew-step-inv-stay-conn[of pushNeg no-imp-symb \varphi \psi] assms
     no-imp-symb-conn-characterization unfolding no-imp-def full-unfold by metis
qed
lemma pushNeg-full-propo-rew-step:
  fixes \varphi \psi :: 'v \ propo
 assumes
   no-equiv \varphi and
   no-imp \varphi and
   full (propo-rew-step pushNeg) \varphi \psi and
   no-T-F-except-top-level <math>\varphi
  shows simple-not \psi
  using assms full-propo-rew-step-subformula pushNeg-inv(1,2) simple-not-rew by blast
```

3.5 Push inside

```
inductive push-conn-inside :: 'v connective \Rightarrow 'v connective \Rightarrow 'v propo \Rightarrow 'v propo \Rightarrow bool
  for c c':: 'v connective where
push-conn-inside-l[simp]: c = CAnd \lor c = COr \Longrightarrow c' = CAnd \lor c' = COr
  \implies push-conn-inside c c' (conn c [conn c' [\varphi 1, \varphi 2], \psi])
         (conn \ c' \ [conn \ c \ [\varphi 1, \psi], \ conn \ c \ [\varphi 2, \psi]])
push-conn-inside-r[simp]: c = CAnd \lor c = COr \Longrightarrow c' = CAnd \lor c' = COr
  \implies push-conn-inside c c' (conn c [\psi, conn c' [\varphi 1, \varphi 2]])
    (conn \ c' \ [conn \ c \ [\psi, \varphi 1], \ conn \ c \ [\psi, \varphi 2]])
lemma push-conn-inside-explicit: push-conn-inside c c' \varphi \psi \Longrightarrow \forall A. A \models \varphi \longleftrightarrow A \models \psi
  by (induct \varphi \psi rule: push-conn-inside.induct, auto)
lemma push-conn-inside-consistent: preserves-un-sat (push-conn-inside c c')
  unfolding preserves-un-sat-def by (simp add: push-conn-inside-explicit)
lemma propo-rew-step-push-conn-inside[simp]:
 \neg propo-rew-step (push-conn-inside c c') FT \psi \neg propo-rew-step (push-conn-inside c c') FF \psi
 proof -
  {
      fix \varphi \psi
      have push-conn-inside c\ c'\ \varphi\ \psi \Longrightarrow \varphi = FT\ \lor \varphi = FF \Longrightarrow False
         by (induct rule: push-conn-inside.induct, auto)
    } note H = this
    \mathbf{fix} \ \varphi
    have propo-rew-step (push-conn-inside c c') \varphi \psi \Longrightarrow \varphi = FT \vee \varphi = FF \Longrightarrow False
      apply (induct rule: propo-rew-step.induct, auto simp: wf-conn-list(1) wf-conn-list(2))
      using H by blast+
  }
  then show
     \neg propo-rew-step (push-conn-inside c c') FT \psi
     \neg propo-rew-step (push-conn-inside c c') FF \psi by blast+
qed
inductive not-c-in-c'-symb:: 'v connective \Rightarrow 'v connective \Rightarrow 'v propo \Rightarrow bool for c c' where
not\text{-}c\text{-}in\text{-}c'\text{-}symb\text{-}l[simp]: wf\text{-}conn \ c \ [conn \ c' \ [\varphi, \ \varphi'], \ \psi] \Longrightarrow wf\text{-}conn \ c' \ [\varphi, \ \varphi']
  \implies not\text{-}c\text{-}in\text{-}c'\text{-}symb\ c\ c'\ (conn\ c\ [conn\ c'\ [\varphi,\ \varphi'],\ \psi])\ |
not\text{-}c\text{-}in\text{-}c'\text{-}symb\text{-}r[simp]: wf\text{-}conn \ c \ [\psi, conn \ c' \ [\varphi, \varphi']] \Longrightarrow wf\text{-}conn \ c' \ [\varphi, \varphi']
  \implies not\text{-}c\text{-}in\text{-}c'\text{-}symb\ c\ c'\ (conn\ c\ [\psi,\ conn\ c'\ [\varphi,\ \varphi']])
abbreviation c-in-c'-symb c c' \varphi \equiv \neg not-c-in-c'-symb c c' \varphi
lemma c-in-c'-symb-simp:
  not\text{-}c\text{-}in\text{-}c'\text{-}symb\ c\ c'\ \xi \Longrightarrow \xi = FF\ \lor\ \xi = FT\ \lor\ \xi = FVar\ x\ \lor\ \xi = FNot\ FF\ \lor\ \xi = FNot\ FT
    \lor \xi = FNot \ (FVar \ x) \Longrightarrow False
  apply (induct rule: not-c-in-c'-symb.induct, auto simp: wf-conn.simps wf-conn-list(1-3))
  using conn-inj-not(2) wf-conn-binary unfolding binary-connectives-def by fastforce+
lemma c-in-c'-symb-simp'[simp]:
  \neg not\text{-}c\text{-}in\text{-}c'\text{-}symb\ c\ c'\ FF
  \neg not\text{-}c\text{-}in\text{-}c'\text{-}symb\ c\ c'\ FT
```

```
\neg not\text{-}c\text{-}in\text{-}c'\text{-}symb\ c\ c'\ (FVar\ x)
  \neg not\text{-}c\text{-}in\text{-}c'\text{-}symb\ c\ c'\ (FNot\ FF)
  \neg not\text{-}c\text{-}in\text{-}c'\text{-}symb\ c\ c'\ (FNot\ FT)
  \neg not\text{-}c\text{-}in\text{-}c'\text{-}symb\ c\ c'\ (FNot\ (FVar\ x))
  using c-in-c'-symb-simp by metis+
definition c-in-c'-only where
c\text{-in-}c'\text{-only }c\ c' \equiv all\text{-subformula-st }(c\text{-in-}c'\text{-symb }c\ c')
lemma c-in-c'-only-simp[simp]:
  c-in-c'-only c c' FF
  c-in-c'-only c c' FT
  c-in-c'-only c c' (FVar x)
  c-in-c'-only c c' (FNot FF)
  c-in-c'-only c c' (FNot FT)
  c-in-c'-only c c' (FNot (FVar x))
  unfolding c-in-c'-only-def by auto
lemma not-c-in-c'-symb-commute:
  not\text{-}c\text{-}in\text{-}c'\text{-}symb\ c\ c'\ \xi \Longrightarrow wf\text{-}conn\ c\ [\varphi,\,\psi] \Longrightarrow \xi = conn\ c\ [\varphi,\,\psi]
    \implies not\text{-}c\text{-}in\text{-}c'\text{-}symb\ c\ c'\ (conn\ c\ [\psi,\,\varphi])
proof (induct rule: not-c-in-c'-symb.induct)
  case (not-c-in-c'-symb-r \varphi' \varphi'' \psi') note H = this
  then have \psi: \psi = conn \ c' \ [\varphi'', \psi'] using conn-inj by auto
  have wf-conn c [conn c' [\varphi'', \psi'], \varphi]
    using H(1) wf-conn-no-arity-change length-Cons by metis
  then show not-c-in-c'-symb c c' (conn c [\psi, \varphi])
    unfolding \psi using not-c-in-c'-symb.intros(1) H by auto
next
  case (not\text{-}c\text{-}in\text{-}c'\text{-}symb\text{-}l\ \varphi'\ \varphi''\ \psi') note H=this
  then have \varphi = conn \ c' \ [\varphi', \varphi''] using conn-inj by auto
  moreover have wf-conn c [\psi', conn \ c' \ [\varphi', \varphi'']]
    using H(1) wf-conn-no-arity-change length-Cons by metis
  ultimately show not-c-in-c'-symb c c' (conn c [\psi, \varphi])
    using not-c-in-c'-symb.intros(2) conn-inj not-c-in-c'-symb-l.hyps
      not-c-in-c'-symb-l.prems(1,2) by blast
qed
lemma not-c-in-c'-symb-commute':
  wf-conn c [\varphi, \psi] \Longrightarrow c-in-c'-symb c c' (conn c [\varphi, \psi]) \longleftrightarrow c-in-c'-symb c c' (conn c [\psi, \varphi])
  using not-c-in-c'-symb-commute wf-conn-no-arity-change by (metis length-Cons)
lemma not-c-in-c'-comm:
  assumes wf: wf-conn c [\varphi, \psi]
  shows c-in-c'-only c c' (conn \ c \ [\varphi, \ \psi]) \longleftrightarrow c-in-c'-only c c' (conn \ c \ [\psi, \ \varphi]) (\mathbf{is} \ ?A \longleftrightarrow ?B)
proof -
  have ?A \longleftrightarrow (c\text{-in-}c'\text{-symb } c \ c' \ (conn \ c \ [\varphi, \psi])
                \land (\forall \xi \in set \ [\varphi, \psi]. \ all\text{-subformula-st} \ (c\text{-in-}c'\text{-symb} \ c \ c') \ \xi))
    using all-subformula-st-decomp wf unfolding c-in-c'-only-def by fastforce
  also have ... \longleftrightarrow (c\text{-in-}c'\text{-symb }c\ c'\ (conn\ c\ [\psi,\ \varphi])
                      \land (\forall \xi \in set \ [\psi, \varphi]. \ all\text{-subformula-st} \ (c\text{-in-}c'\text{-symb} \ c \ c') \ \xi))
    using not-c-in-c'-symb-commute' wf by auto
  also
    have wf-conn c [\psi, \varphi] using wf-conn-no-arity-change wf by (metis length-Cons)
```

```
then have (c\text{-}in\text{-}c'\text{-}symb\ c\ c'\ (conn\ c\ [\psi,\,\varphi])
              \land (\forall \xi \in set \ [\psi, \varphi]. \ all\text{-subformula-st} \ (c\text{-in-}c'\text{-symb} \ c \ c') \ \xi))
            \longleftrightarrow ?B
      using all-subformula-st-decomp unfolding c-in-c'-only-def by fastforce
  finally show ?thesis.
qed
lemma not-c-in-c'-simp[simp]:
  fixes \varphi 1 \varphi 2 \psi :: 'v \text{ propo and } x :: 'v
  shows
  c-in-c'-symb c c' FT
  c-in-c'-symb c c' FF
  c-in-c'-symb c c' (FVar x)
  wf-conn c [conn c' [\varphi 1, \varphi 2], \psi] \Longrightarrow wf-conn c' [\varphi 1, \varphi 2]
    \implies \neg c\text{-in-}c'\text{-only }c\ c'\ (conn\ c\ [conn\ c'\ [\varphi 1,\ \varphi 2],\ \psi])
  apply (simp-all add: c-in-c'-only-def)
  using all-subformula-st-test-symb-true-phi not-c-in-c'-symb-l by blast
lemma c-in-c'-symb-not[simp]:
  fixes c c' :: 'v connective and \psi :: 'v propo
  shows c-in-c'-symb c c' (FNot \psi)
proof -
  {
    fix \xi :: 'v propo
    have not-c-in-c'-symb c c' (FNot \psi) \Longrightarrow False
      apply (induct FNot \psi rule: not-c-in-c'-symb.induct)
      using conn-inj-not(2) by blast+
 then show ?thesis by auto
qed
lemma c-in-c'-symb-step-exists:
  fixes \varphi :: 'v \ propo
  assumes c: c = CAnd \lor c = COr and c': c' = CAnd \lor c' = COr
  shows \psi \preceq \varphi \Longrightarrow \neg c\text{-in-}c'\text{-symb }c\ c'\ \psi \Longrightarrow \exists\ \psi'.\ push\text{-conn-inside }c\ c'\ \psi\ \psi'
  apply (induct \psi rule: propo-induct-arity)
  apply auto[2]
proof -
  fix \psi 1 \ \psi 2 \ \varphi' :: 'v \ propo
  assume IH\psi 1: \psi 1 \leq \varphi \Longrightarrow \neg c\text{-}in\text{-}c'\text{-}symb\ c\ c'\ \psi 1 \Longrightarrow Ex\ (push-conn\text{-}inside\ c\ c'\ \psi 1)
  and IH\psi 2: \psi 1 \leq \varphi \implies \neg c\text{-in-}c'\text{-symb } c \ c' \ \psi 1 \implies Ex \ (push-conn-inside \ c \ c' \ \psi 1)
  and \varphi': \varphi' = FAnd \ \psi 1 \ \psi 2 \ \lor \ \varphi' = FOr \ \psi 1 \ \psi 2 \ \lor \ \varphi' = FImp \ \psi 1 \ \psi 2 \ \lor \ \varphi' = FEq \ \psi 1 \ \psi 2
  and in\varphi: \varphi' \preceq \varphi and n\theta: \neg c\text{-}in\text{-}c'\text{-}symb\ c\ c'\ \varphi'
  then have n: not-c-in-c'-symb c c' \varphi' by auto
    assume \varphi': \varphi' = conn \ c \ [\psi 1, \psi 2]
    obtain a b where \psi 1 = conn \ c' [a, b] \lor \psi 2 = conn \ c' [a, b]
      using n \varphi' apply (induct rule: not-c-in-c'-symb.induct)
      using c by force+
    then have Ex (push-conn-inside c c' \varphi')
      unfolding \varphi' apply auto
      using push-conn-inside.intros(1) c c' apply blast
      using push-conn-inside.intros(2) c c' by blast
  }
  moreover {
```

```
assume \varphi': \varphi' \neq conn \ c \ [\psi 1, \psi 2]
     have \forall \varphi \ c \ ca. \ \exists \varphi 1 \ \psi 1 \ \psi 2 \ \psi 1' \ \psi 2' \ \varphi 2'. \ conn \ (c::'v \ connective) \ [\varphi 1, \ conn \ ca \ [\psi 1, \ \psi 2]] = \varphi
               \lor conn \ c \ [conn \ ca \ [\psi 1', \psi 2'], \varphi 2'] = \varphi \lor c -in -c' -symb \ c \ ca \ \varphi
       by (metis not-c-in-c'-symb.cases)
     then have Ex (push-conn-inside c c' \varphi')
       by (metis (no-types) c c' n push-conn-inside-l push-conn-inside-r)
  ultimately show Ex (push-conn-inside c c' \varphi') by blast
qed
lemma c-in-c'-symb-rew:
  fixes \varphi :: 'v \ propo
  assumes noTB: \neg c\text{-}in\text{-}c'\text{-}only\ c\ c'\ \varphi
  and c: c = CAnd \lor c = COr and c': c' = CAnd \lor c' = COr
  shows \exists \psi \ \psi' . \ \psi \preceq \varphi \land push-conn-inside \ c \ c' \ \psi \ \psi'
proof -
  have test-symb-false-nullary:
    \forall x. \ c\text{-in-}c'\text{-symb} \ c \ c' \ (FF:: 'v \ propo) \land c\text{-in-}c'\text{-symb} \ c \ c' \ FT
      \land c\text{-in-}c'\text{-symb}\ c\ c'\ (FVar\ (x::\ 'v))
    by auto
  moreover {
    \mathbf{fix} \ x :: \ 'v
    have H': c-in-c'-symb c c' FT c-in-c'-symb c c' FF c-in-c'-symb c c' (FVar x)
  }
  moreover {
    fix \psi :: 'v \ propo
    have \psi \preceq \varphi \Longrightarrow \neg \ c\text{-in-}c'\text{-symb} \ c \ c' \ \psi \Longrightarrow \exists \ \psi'. \ push-conn-inside \ c \ c' \ \psi \ \psi'
      by (auto simp: assms(2) c' c-in-c'-symb-step-exists)
  }
  ultimately show ?thesis using noTB no-test-symb-step-exists[of c-in-c'-symb c c']
    unfolding c-in-c'-only-def by metis
qed
lemma push-conn-insidec-in-c'-symb-no-T-F:
  fixes \varphi \psi :: 'v \ propo
  shows propo-rew-step (push-conn-inside c c') \varphi \psi \Longrightarrow no\text{-}T\text{-}F \ \varphi \Longrightarrow no\text{-}T\text{-}F \ \psi
\mathbf{proof}\ (induct\ rule:\ propo-rew-step.induct)
  case (global-rel \varphi \psi)
  then show no-T-F \psi
    by (cases rule: push-conn-inside.cases, auto)
\mathbf{next}
  case (propo-rew-one-step-lift \varphi \varphi' c \xi \xi')
  note rel = this(1) and IH = this(2) and wf = this(3) and no-T-F = this(4)
  have no-T-F \varphi
    using wf no-T-F no-T-F-def subformula-into-subformula subformula-all-subformula-st
    subformula-refl by (metis (no-types) in-set-conv-decomp)
  then have \varphi': no-T-F \varphi' using IH by blast
  have \forall \zeta \in set \ (\xi @ \varphi \# \xi'). no-T-F \zeta by (metis wf no-T-F no-T-F-def all-subformula-st-decomp)
  then have n: \forall \zeta \in set \ (\xi @ \varphi' \# \xi'). \ no\text{-}T\text{-}F \ \zeta \ using \ \varphi' \ by \ auto
  then have n': \forall \zeta \in set \ (\xi @ \varphi' \# \xi'). \ \zeta \neq FF \land \zeta \neq FT
    using \varphi' by (metis\ no\text{-}T\text{-}F\text{-}symb\text{-}false(1)\ no\text{-}T\text{-}F\text{-}symb\text{-}false(2)\ no\text{-}T\text{-}F\text{-}def
      all-subformula-st-test-symb-true-phi)
```

```
have wf': wf-conn c (\xi @ \varphi' \# \xi')
   using wf wf-conn-no-arity-change by (metis wf-conn-no-arity-change-helper)
   \mathbf{fix} \ x :: \ 'v
   assume c = CT \lor c = CF \lor c = CVar x
   then have False using wf by auto
   then have no-T-F (conn c (\xi \otimes \varphi' \# \xi')) by blast
  }
 moreover {
   assume c: c = CNot
   then have \xi = [] \xi' = [] using wf by auto
   then have no-T-F (conn c (\xi @ \varphi' \# \xi'))
     using c by (metis \varphi' conn.simps(4) no-T-F-symb-false(1,2) no-T-F-symb-fnot no-T-F-def
       all-subformula-st-decomp-explicit(3) all-subformula-st-test-symb-true-phi self-append-conv2)
 }
 moreover {
   assume c: c \in binary\text{-}connectives
   then have no-T-F-symb (conn c (\xi \otimes \varphi' \# \xi')) using wf' n' no-T-F-symb.simps by fastforce
   then have no-T-F (conn c (\xi @ \varphi' \# \xi'))
     \mathbf{by}\ (\mathit{metis}\ \mathit{all-subformula-st-decomp-imp}\ \mathit{wf'}\ \mathit{n}\ \mathit{no-T-F-def})
 ultimately show no-T-F (conn c (\xi \otimes \varphi' \# \xi')) using connective-cases-arity by auto
qed
\mathbf{lemma}\ simple-propo-rew-step-push-conn-inside-inv:
propo-rew-step (push-conn-inside c c') \varphi \psi \Longrightarrow simple \varphi \Longrightarrow simple \psi
 apply (induct rule: propo-rew-step.induct)
 apply (rename-tac \varphi, case-tac \varphi, auto simp: push-conn-inside.simps)
 by (metis append-is-Nil-conv list.distinct(1) simple.elims(2) wf-conn-list(1-3))
\mathbf{lemma}\ simple-propo-rew-step-inv-push-conn-inside-simple-not:
 fixes c\ c':: 'v\ connective\ {\bf and}\ \varphi\ \psi:: 'v\ propo
 shows propo-rew-step (push-conn-inside c c') \varphi \psi \Longrightarrow simple-not \varphi \Longrightarrow simple-not \psi
proof (induct rule: propo-rew-step.induct)
 case (global-rel \varphi \psi)
  then show ?case by (cases \varphi, auto simp: push-conn-inside.simps)
next
  case (propo-rew-one-step-lift \varphi \varphi' ca \xi \xi') note rew = this(1) and IH = this(2) and wf = this(3)
  and simple = this(4)
 show ?case
   proof (cases ca rule: connective-cases-arity)
     case nullary
     then show ?thesis using propo-rew-one-step-lift by auto
   next
     case binary note ca = this
     obtain a b where ab: \xi @ \varphi' \# \xi' = [a, b]
       using wf ca list-length2-decomp wf-conn-bin-list-length
       by (metis (no-types) wf-conn-no-arity-change-helper)
     have \forall \zeta \in set \ (\xi @ \varphi \# \xi'). simple-not \zeta
       by (metis wf all-subformula-st-decomp simple simple-not-def)
     then have \forall \zeta \in set \ (\xi @ \varphi' \# \xi'). simple-not \zeta using IH by simp
     moreover have simple-not-symb (conn ca (\xi @ \varphi' # \xi')) using ca
```

```
by (metis\ ab\ conn.simps(5-8)\ helper-fact\ simple-not-symb.simps(5)\ simple-not-symb.simps(6)
        simple-not-symb.simps(7) simple-not-symb.simps(8))
     ultimately show ?thesis
      by (simp add: ab all-subformula-st-decomp ca)
   next
     case unary
     then show ?thesis
       using rew simple-propo-rew-step-push-conn-inside-inv[OF rew] IH local.wf simple by auto
   qed
qed
lemma propo-rew-step-push-conn-inside-simple-not:
 fixes \varphi \varphi' :: 'v \text{ propo and } \xi \xi' :: 'v \text{ propo list and } c :: 'v \text{ connective}
 assumes
   propo-rew-step (push-conn-inside c c') \varphi \varphi' and
   wf-conn c (\xi @ \varphi \# \xi') and
   simple-not-symb (conn c (\xi @ \varphi \# \xi')) and
   simple-not-symb \varphi'
 shows simple-not-symb (conn c (\xi @ \varphi' \# \xi'))
 using assms
proof (induction rule: propo-rew-step.induct)
print-cases
 case (global-rel)
 then show ?case
   by (metis conn.simps(12,17) list.discI push-conn-inside.cases simple-not-symb.elims(3)
     wf-conn-helper-facts(5) wf-conn-list(2) wf-conn-list(8) wf-conn-no-arity-change
     wf-conn-no-arity-change-helper)
next
 case (propo-rew-one-step-lift \varphi \varphi' c' \chi s \chi s') note tel = this(1) and wf = this(2) and
   IH = this(3) and wf' = this(4) and simple' = this(5) and simple = this(6)
 then show ?case
   proof (cases c' rule: connective-cases-arity)
     case nullary
     then show ?thesis using wf simple simple' by auto
     case binary note c = this(1)
     have corr': wf-conn c (\xi @ conn c' (\chi s @ \varphi' # \chi s') # \xi')
      using wf wf-conn-no-arity-change
      by (metis wf' wf-conn-no-arity-change-helper)
     then show ?thesis
      using c propo-rew-one-step-lift wf
      by (metis conn.simps(17) connective.distinct(37) propo-rew-step-subformula-imp
        push-conn-inside.cases\ simple-not-symb.elims(3)\ wf-conn.simps\ wf-conn-list(2,8))
   next
     case unary
     then have empty: \chi s = [ | \chi s' = [ ]  using wf by auto
     then show ?thesis using simple unary simple' wf wf'
      by (metis connective.distinct(37) connective.distinct(39) propo-rew-step-subformula-imp
        push-conn-inside.cases\ simple-not-symb.elims(3)\ tel\ wf-conn-list(8)
        wf-conn-no-arity-change wf-conn-no-arity-change-helper)
   qed
qed
lemma push-conn-inside-not-true-false:
 push-conn-inside c\ c'\ \varphi\ \psi \Longrightarrow \psi \neq FT\ \land\ \psi \neq FF
```

```
lemma push-conn-inside-inv:
  fixes \varphi \psi :: 'v \ propo
 assumes full (propo-rew-step (push-conn-inside c c')) \varphi \psi
 and no-equiv \varphi and no-imp \varphi and no-T-F-except-top-level \varphi and simple-not \varphi
  shows no-equiv \psi and no-imp \psi and no-T-F-except-top-level \psi and simple-not \psi
proof -
  {
    {
       \mathbf{fix} \ \varphi \ \psi :: \ 'v \ propo
       have H: push-conn-inside c c' \varphi \psi \Longrightarrow all-subformula-st simple-not-symb \varphi
          \implies all-subformula-st simple-not-symb \psi
         by (induct \varphi \psi rule: push-conn-inside.induct, auto)
    } note H = this
   \mathbf{fix} \ \varphi \ \psi :: \ 'v \ propo
   have H: propo-rew-step (push-conn-inside c c') \varphi \psi \Longrightarrow all-subformula-st simple-not-symb \varphi
      \implies all-subformula-st simple-not-symb \psi
      apply (induct \varphi \psi rule: propo-rew-step.induct)
      using H apply simp
      proof (rename-tac \varphi \varphi' ca \psi s \psi s', case-tac ca rule: connective-cases-arity)
       fix \varphi \varphi' :: 'v \text{ propo and } c:: 'v \text{ connective and } \xi \xi':: 'v \text{ propo list}
       and x:: 'v
       assume wf-conn c (\xi @ \varphi \# \xi')
       and c = CT \lor c = CF \lor c = CVar x
       then have \xi @ \varphi \# \xi' = [] by auto
       then have False by auto
       then show all-subformula-st simple-not-symb (conn c (\xi \otimes \varphi' \# \xi')) by blast
      next
       fix \varphi \varphi' :: 'v \text{ propo and } ca:: 'v \text{ connective and } \xi \xi':: 'v \text{ propo list}
       and x :: 'v
       assume rel: propo-rew-step (push-conn-inside c c') \varphi \varphi'
       and \varphi-\varphi': all-subformula-st simple-not-symb \varphi \Longrightarrow all-subformula-st simple-not-symb \varphi'
       and corr: wf-conn ca (\xi @ \varphi \# \xi')
       and n: all-subformula-st simple-not-symb (conn ca (\xi @ \varphi \# \xi'))
       and c: ca = CNot
       have empty: \xi = [ ] \xi' = [ ] using c corr by auto
       then have simple-not:all-subformula-st\ simple-not-symb\ (FNot\ \varphi) using corr\ c\ n by auto
       then have simple \varphi
         using all-subformula-st-test-symb-true-phi simple-not-symb.simps(1) by blast
       then have simple \varphi'
         using rel simple-propo-rew-step-push-conn-inside-inv by blast
       then show all-subformula-st simple-not-symb (conn ca (\xi @ \varphi' \# \xi')) using c empty
         by (metis simple-not \varphi-\varphi' append-Nil conn.simps(4) all-subformula-st-decomp-explicit(3)
            simple-not-symb.simps(1))
      next
       fix \varphi \varphi' :: 'v \text{ propo and } ca :: 'v \text{ connective and } \xi \xi' :: 'v \text{ propo list}
       and x :: 'v
       assume rel: propo-rew-step (push-conn-inside c c') \varphi \varphi'
       and n\varphi: all-subformula-st simple-not-symb \varphi \implies all-subformula-st simple-not-symb \varphi'
       and corr: wf-conn ca (\xi @ \varphi \# \xi')
       and n: all-subformula-st simple-not-symb (conn ca (\xi @ \varphi \# \xi'))
```

by (induct rule: push-conn-inside.induct, auto)

and $c: ca \in binary\text{-}connectives$

```
have all-subformula-st simple-not-symb \varphi
         using n \ c \ corr \ all-subformula-st-decomp by fastforce
       then have \varphi': all-subformula-st simple-not-symb \varphi' using n\varphi by blast
       obtain a b where ab: [a, b] = (\xi @ \varphi \# \xi')
         using corr c list-length2-decomp wf-conn-bin-list-length by metis
       then have \xi @ \varphi' \# \xi' = [a, \varphi'] \lor (\xi @ \varphi' \# \xi') = [\varphi', b]
         using ab by (metis (no-types, hide-lams) append-Cons append-Nil append-Nil2
           append-is-Nil-conv\ butlast.simps(2)\ butlast-append\ list.sel(3)\ tl-append2)
       moreover
       {
          fix \chi :: 'v \ propo
          have wf': wf-conn ca [a, b]
            using ab corr by presburger
          have all-subformula-st simple-not-symb (conn ca [a, b])
            using ab n by presburger
          then have all-subformula-st simple-not-symb \chi \vee \chi \notin set \ (\xi @ \varphi' \# \xi')
            using wf' by (metis (no-types) \varphi' all-subformula-st-decomp calculation insert-iff
              list.set(2)
       then have \forall \varphi. \ \varphi \in set \ (\xi @ \varphi' \# \xi') \longrightarrow all\text{-subformula-st simple-not-symb} \ \varphi
           by (metis\ (no-types))
       moreover have simple-not-symb (conn ca (\xi \otimes \varphi' \# \xi'))
         using ab conn-inj-not(1) corr wf-conn-list-decomp(4) wf-conn-no-arity-change
           not-Cons-self2 self-append-conv2 simple-not-symb.elims(3) by (metis (no-types) c
           calculation(1) wf-conn-binary)
       moreover have wf-conn ca (\xi @ \varphi' \# \xi') using c calculation(1) by auto
       ultimately show all-subformula-st simple-not-symb (conn ca (\xi @ \varphi' \# \xi'))
         by (metis all-subformula-st-decomp-imp)
     qed
  }
  moreover {
    fix ca :: 'v \ connective \ and \ \xi \ \xi' :: 'v \ propo \ list \ and \ \varphi \ \varphi' :: 'v \ propo
    have propo-rew-step (push-conn-inside c c') \varphi \varphi' \Longrightarrow wf-conn ca (\xi @ \varphi \# \xi')
      \implies simple-not-symb (conn ca (\xi @ \varphi \# \xi')) \implies simple-not-symb \varphi'
      \implies simple-not-symb (conn ca (\xi @ \varphi' \# \xi'))
      \mathbf{by} \ (\mathit{metis} \ \mathit{append-self-conv2} \ \mathit{conn.simps}(4) \ \mathit{conn-inj-not}(1) \ \mathit{simple-not-symb.elims}(3)
        simple-not-symb.simps(1) simple-propo-rew-step-push-conn-inside-inv
        \textit{wf-conn-no-arity-change-helper wf-conn-list-decomp}(\textit{4}) \textit{ wf-conn-no-arity-change})
  }
  ultimately show simple-not \ \psi
   using full-propo-rew-step-inv-stay'[of push-conn-inside c c' simple-not-symb] assms
   unfolding no-T-F-except-top-level-def simple-not-def full-unfold by metis
next
  {
   fix \varphi \psi :: 'v \ propo
   have H: propo-rew-step (push-conn-inside c c') \varphi \psi \Longrightarrow no-T-F-except-top-level \varphi
     \implies no-T-F-except-top-level \psi
     proof -
       assume rel: propo-rew-step (push-conn-inside c c') \varphi \psi
       and no-T-F-except-top-level \varphi
       then have no-T-F \varphi \lor \varphi = FF \lor \varphi = FT
         by (metis no-T-F-symb-except-toplevel-all-subformula-st-no-T-F-symb)
       moreover {
```

```
assume \varphi = FF \vee \varphi = FT
          then have False using rel propo-rew-step-push-conn-inside by blast
          then have no-T-F-except-top-level \psi by blast
        }
       moreover {
          assume no-T-F \varphi \land \varphi \neq FF \land \varphi \neq FT
          then have no-T-F \psi using rel push-conn-insidec-in-c'-symb-no-T-F by blast
          then have no-T-F-except-top-level \psi using no-T-F-no-T-F-except-top-level by blast
       ultimately show no-T-F-except-top-level \psi by blast
      qed
  }
  moreover {
     fix ca :: 'v \ connective \ and \ \xi \ \xi' :: 'v \ propo \ list \ and \ \varphi \ \varphi' :: 'v \ propo
     assume rel: propo-rew-step (push-conn-inside c c') \varphi \varphi'
     assume corr: wf-conn ca (\xi @ \varphi \# \xi')
     then have c: ca \neq CT \land ca \neq CF by auto
     assume no-T-F: no-T-F-symb-except-toplevel (conn ca (\xi @ \varphi \# \xi'))
     have no-T-F-symb-except-toplevel (conn ca (\xi \otimes \varphi' \# \xi'))
     proof
      have c: ca \neq CT \land ca \neq CF using corr by auto
      have \zeta: \forall \zeta \in set \ (\xi @ \varphi \# \xi'). \ \zeta \neq FT \land \zeta \neq FF
        using corr no-T-F no-T-F-symb-except-toplevel-if-is-a-true-false by blast
       then have \varphi \neq FT \land \varphi \neq FF by auto
       from rel this have \varphi' \neq FT \land \varphi' \neq FF
        apply (induct rule: propo-rew-step.induct)
        by (metis append-is-Nil-conv conn.simps(2) conn-inj list.distinct(1)
           wf-conn-helper-facts(3) wf-conn-list(1) wf-conn-no-arity-change
           wf-conn-no-arity-change-helper push-conn-inside-not-true-false)+
      then have \forall \zeta \in set \ (\xi @ \varphi' \# \xi'). \ \zeta \neq FT \land \zeta \neq FF \ using \ \zeta \ by \ auto
      moreover have wf-conn ca (\xi @ \varphi' \# \xi')
        using corr wf-conn-no-arity-change by (metis wf-conn-no-arity-change-helper)
      ultimately show no-T-F-symb (conn ca (\xi @ \varphi' \# \xi')) using no-T-F-symb intros c by metis
     qed
  }
  ultimately show no-T-F-except-top-level \psi
   using full-propo-rew-step-inv-stay'[of push-conn-inside c c' no-T-F-symb-except-toplevel]
   assms unfolding no-T-F-except-top-level-def full-unfold by metis
next
  {
   \mathbf{fix} \ \varphi \ \psi :: \ 'v \ propo
   have H: push-conn-inside c c' \varphi \psi \Longrightarrow no-equiv \varphi \Longrightarrow no-equiv \psi
      by (induct \varphi \psi rule: push-conn-inside.induct, auto)
  then show no-equiv \psi
    \textbf{using} \ \textit{full-propo-rew-step-inv-stay-conn} [\textit{of} \ \textit{push-conn-inside} \ \textit{c} \ \textit{c'} \ \textit{no-equiv-symb}] \ \textit{assms} 
   no-equiv-symb-conn-characterization {f unfolding} no-equiv-def {f by} metis
next
   \mathbf{fix} \ \varphi \ \psi :: \ 'v \ propo
   have H: push-conn-inside c\ c'\ \varphi\ \psi \implies no\text{-imp}\ \varphi \implies no\text{-imp}\ \psi
      by (induct \varphi \psi rule: push-conn-inside.induct, auto)
  }
```

```
then show no-imp \psi
   using full-propo-rew-step-inv-stay-conn[of push-conn-inside c c' no-imp-symb] assms
   no-imp-symb-conn-characterization unfolding no-imp-def by metis
qed
lemma push-conn-inside-full-propo-rew-step:
 fixes \varphi \psi :: 'v \ propo
 assumes
   no-equiv \varphi and
   no-imp \varphi and
   full (propo-rew-step (push-conn-inside c c')) \varphi \psi and
   no-T-F-except-top-level <math>\varphi and
   simple-not \varphi and
   c = CAnd \lor c = COr and
   c' = CAnd \lor c' = COr
 shows c-in-c'-only c c' \psi
 using c-in-c'-symb-rew assms full-propo-rew-step-subformula by blast
3.5.1
         Only one type of connective in the formula (+ \text{ not})
inductive only-c-inside-symb :: 'v connective \Rightarrow 'v propo \Rightarrow bool for c:: 'v connective where
simple-only-c-inside[simp]: simple \varphi \implies only-c-inside-symb \ c \ \varphi \ |
simple-cnot-only-c-inside[simp]: simple \varphi \implies only-c-inside-symb \ c \ (FNot \ \varphi)
only-c-inside-into-only-c-inside: wf-conn c \ l \implies only-c-inside-symb c \ (conn \ c \ l)
lemma only-c-inside-symb-simp[simp]:
  only-c-inside-symb c FF only-c-inside-symb c FT only-c-inside-symb c (FVar x) by auto
definition only-c-inside where only-c-inside c = all-subformula-st (only-c-inside-symb c)
lemma only-c-inside-symb-decomp:
  only-c-inside-symb c \psi \longleftrightarrow (simple \psi)
                            \vee (\exists \varphi'. \psi = FNot \varphi' \wedge simple \varphi')
                             \vee (\exists l. \ \psi = conn \ c \ l \land wf\text{-}conn \ c \ l))
 by (auto simp: only-c-inside-symb.intros(3)) (induct rule: only-c-inside-symb.induct, auto)
lemma only-c-inside-symb-decomp-not[simp]:
 fixes c :: 'v \ connective
 assumes c: c \neq CNot
 shows only-c-inside-symb c (FNot \psi) \longleftrightarrow simple \psi
 apply (auto simp: only-c-inside-symb.intros(3))
 by (induct FNot \psi rule: only-c-inside-symb.induct, auto simp: wf-conn-list(8) c)
lemma only-c-inside-decomp-not[simp]:
 assumes c: c \neq CNot
 shows only-c-inside c (FNot \psi) \longleftrightarrow simple \psi
 by (metis (no-types, hide-lams) all-subformula-st-def all-subformula-st-test-symb-true-phi c
   only\-c-inside\-def only\-c-inside\-symb\-decomp\-not simple\-only\-c-inside
   subformula-conn-decomp-simple)
lemma only-c-inside-decomp:
```

only-c-inside $c \varphi \longleftrightarrow$

```
(\forall \psi. \ \psi \preceq \varphi \longrightarrow (simple \ \psi \lor (\exists \ \varphi'. \ \psi = FNot \ \varphi' \land simple \ \varphi')
                   \vee (\exists l. \ \psi = conn \ c \ l \land wf\text{-}conn \ c \ l)))
  unfolding only-c-inside-def by (auto simp: all-subformula-st-def only-c-inside-symb-decomp)
lemma only-c-inside-c-c'-false:
  fixes c\ c':: 'v\ connective\ {\bf and}\ l:: 'v\ propo\ list\ {\bf and}\ \varphi:: 'v\ propo
  assumes cc': c \neq c' and c: c = CAnd \lor c = COr and c': c' = CAnd \lor c' = COr
  and only: only-c-inside c \varphi and incl: conn c' l \preceq \varphi and wf: wf-conn c' l
  shows False
proof -
  let ?\psi = conn \ c' \ l
  have simple ?\psi \lor (\exists \varphi'. ?\psi = FNot \varphi' \land simple \varphi') \lor (\exists l. ?\psi = conn \ c \ l \land wf\text{-}conn \ c \ l)
   using only-c-inside-decomp only incl by blast
 moreover have \neg simple ?\psi
   using wf simple-decomp by (metis c' connective.distinct(19) connective.distinct(7,9,21,29,31)
     wf-conn-list(1-3)
  moreover
     fix \varphi'
     have ?\psi \neq FNot \varphi' using c' conn-inj-not(1) wf by blast
  ultimately obtain l: 'v propo list where ?\psi = conn \ c \ l \wedge wf-conn c \ l \ by \ metis
  then have c = c' using conn-inj wf by metis
  then show False using cc' by auto
qed
lemma only-c-inside-implies-c-in-c'-symb:
  assumes \delta: c \neq c' and c: c = CAnd \lor c = COr and c': c' = CAnd \lor c' = COr
 shows only-c-inside c \varphi \Longrightarrow c-in-c'-symb c c' \varphi
 apply (rule ccontr)
  apply (cases rule: not-c-in-c'-symb.cases, auto)
  by (metis \delta c c' connective distinct (37,39) list distinct (1) only-c-inside-c-c'-false
   subformula-in-binary-conn(1,2) wf-conn.simps)+
lemma c-in-c'-symb-decomp-level1:
  fixes l :: 'v \text{ propo list and } c \ c' \ ca :: 'v \ connective
  shows wf-conn ca l \implies ca \neq c \implies c-in-c'-symb c c' (conn ca l)
proof -
  have not\text{-}c\text{-}in\text{-}c'\text{-}symb\ c\ c'\ (conn\ ca\ l) \implies wf\text{-}conn\ ca\ l \implies ca = c
   by (induct conn ca l rule: not-c-in-c'-symb.induct, auto simp: conn-inj)
 then show wf-conn ca l \Longrightarrow ca \neq c \Longrightarrow c-in-c'-symb c c' (conn ca l) by blast
qed
lemma only-c-inside-implies-c-in-c'-only:
  assumes \delta: c \neq c' and c: c = CAnd \lor c = COr and c': c' = CAnd \lor c' = COr
  shows only-c-inside c \varphi \Longrightarrow c-in-c'-only c c' \varphi
  {\bf unfolding} \quad c\hbox{-}in\hbox{-}c'\hbox{-}only\hbox{-}def \ all\hbox{-}subformula\hbox{-}st\hbox{-}def
  using only-c-inside-implies-c-in-c'-symb
   by (metis all-subformula-st-def assms(1) c c' only-c-inside-def subformula-trans)
lemma c-in-c'-symb-c-implies-only-c-inside:
  assumes \delta: c = CAnd \lor c = COr c' = CAnd \lor c' = COr c \neq c' and wf: wf-conn c [\varphi, \psi]
 and inv: no-equiv (conn c l) no-imp (conn c l) simple-not (conn c l)
```

```
shows wf-conn c l \Longrightarrow c\text{-in-}c'\text{-only }c c' (conn \ c \ l) \Longrightarrow (\forall \psi \in set \ l. \ only\text{-}c\text{-inside } c \ \psi)
using inv
proof (induct conn c l arbitrary: l rule: propo-induct-arity)
  case (nullary x)
  then show ?case by (auto simp: wf-conn-list assms)
next
  case (unary \varphi la)
  then have c = CNot \wedge la = [\varphi] by (metis (no-types) wf-conn-list(8))
  then show ?case using assms(2) assms(1) by blast
next
  case (binary \varphi 1 \varphi 2)
 note IH\varphi 1 = this(1) and IH\varphi 2 = this(2) and \varphi = this(3) and only = this(5) and wf = this(4)
   and no-equiv = this(6) and no-imp = this(7) and simple-not = this(8)
  then have l: l = [\varphi 1, \varphi 2] by (meson \ wf\text{-}conn\text{-}list(4-7))
 let ?\varphi = conn \ c \ l
  obtain c1 l1 c2 l2 where \varphi 1: \varphi 1 = conn c1 l1 and wf \varphi 1: wf-conn c1 l1
   and \varphi 2: \varphi 2 = conn \ c2 \ l2 and wf \varphi 2: wf-conn \ c2 \ l2 using exists-c-conn by metis
  then have c-in-only \varphi 1: c-in-c'-only c c' (conn c1 l1) and c-in-c'-only c c' (conn c2 l2)
    using only l unfolding c-in-c'-only-def using assms(1) by auto
  have inc\varphi 1: \varphi 1 \leq ?\varphi and inc\varphi 2: \varphi 2 \leq ?\varphi
   using \varphi 1 \varphi 2 \varphi local wf by (metric conn.simps(5-8) helper-fact subformula-in-binary-conn(1,2))+
  have c1-eq: c1 \neq CEq and c2-eq: c2 \neq CEq
   unfolding no-equiv-def using inc\varphi 1 inc\varphi 2 by (metis \varphi 1 \varphi 2 wf\varphi 1 wf\varphi 2 assms(1) no-equiv
     no-equiv-eq(1) no-equiv-symb.elims(3) no-equiv-symb-conn-characterization wf-conn-list(4,5)
     no-equiv-def subformula-all-subformula-st)+
 have c1-imp: c1 \neq CImp and c2-imp: c2 \neq CImp
   using no-imp by (metis \varphi 1 \varphi 2 all-subformula-st-decomp-explicit-imp(2,3) assms(1)
     conn.simps(5,6) l no-imp-Imp(1) no-imp-symb.elims(3) no-imp-symb-conn-characterization
     wf\varphi 1 \ wf\varphi 2 \ all-subformula-st-decomp \ no-imp-symb-conn-characterization) +
 have c1c: c1 \neq c'
   proof
     assume c1c: c1 = c'
     then obtain \xi 1 \ \xi 2 where l1: l1 = [\xi 1, \xi 2]
       by (metis assms(2) connective. distinct(37,39) helper-fact wf\varphi 1 wf-conn. simps
         wf-conn-list-decomp(1-3))
     have c-in-c'-only c c' (conn c [conn c' l1, \varphi 2]) using c1c l only \varphi 1 by auto
     moreover have not-c-in-c'-symb c c' (conn c [conn c' l1, \varphi 2])
       using l1 \varphi 1 c1c l local.wf not-c-in-c'-symb-l wf \varphi 1 by blast
     ultimately show False using \varphi 1 c1c l l1 local.wf not-c-in-c'-simp(4) wf\varphi 1 by blast
  qed
  then have (\varphi 1 = conn \ c \ l1 \land wf\text{-}conn \ c \ l1) \lor (\exists \psi 1. \ \varphi 1 = FNot \ \psi 1) \lor simple \ \varphi 1
   by (metis \ \varphi 1 \ assms(1-3) \ c1-eq c1-imp simple.elims(3) \ wf \varphi 1 \ wf-conn-list(4) \ wf-conn-list(5-7))
  moreover {
   assume \varphi 1 = conn \ c \ l1 \land wf\text{-}conn \ c \ l1
   then have only-c-inside c \varphi 1
     by (metis IH\varphi 1 \ \varphi 1 all-subformula-st-decomp-imp in c\varphi 1 no-equiv no-equiv-def no-imp no-imp-def
       c-in-only\varphi1 only-c-inside-def only-c-inside-into-only-c-inside simple-not simple-not-def
       subformula-all-subformula-st)
  moreover {}
   assume \exists \psi 1. \ \varphi 1 = FNot \ \psi 1
   then obtain \psi 1 where \varphi 1 = FNot \ \psi 1 by metis
   then have only-c-inside c \varphi 1
```

```
by (metis all-subformula-st-def assms(1) connective.distinct(37,39) inc\varphi 1
       only\-c\-inside\-decomp\-not\ simple\-not\-def\ simple\-not\-symb\-simps(1))
  }
 moreover {
   assume simple \varphi 1
   then have only-c-inside c \varphi 1
     by (metis\ all-subformula-st-decomp-explicit(3)\ assms(1)\ connective.distinct(37,39)
       only-c-inside-decomp-not only-c-inside-def)
  }
 ultimately have only-c-inside \varphi 1: only-c-inside \varphi \varphi 1 by metis
 have c-in-only\varphi 2: c-in-c'-only c c' (conn c2 l2)
   using only l \varphi 2 wf \varphi 2 assms unfolding c-in-c'-only-def by auto
 have c2c: c2 \neq c'
   proof
     assume c2c: c2 = c'
     then obtain \xi 1 \ \xi 2 where l2: l2 = [\xi 1, \xi 2]
      by (metis assms(2) wf\varphi 2 wf-conn.simps connective.distinct(7,9,19,21,29,31,37,39))
     then have c-in-c'-symb c c' (conn c [\varphi 1, conn c' l2])
       using c2c l only \varphi2 all-subformula-st-test-symb-true-phi unfolding c-in-c'-only-def by auto
     moreover have not-c-in-c'-symb c c' (conn c [\varphi 1, conn c' l2])
       using assms(1) c2c l2 not-c-in-c'-symb-r wf \varphi 2 wf-conn-helper-facts(5,6) by metis
     ultimately show False by auto
   qed
  then have (\varphi 2 = conn \ c \ l2 \land wf\text{-}conn \ c \ l2) \lor (\exists \psi 2. \ \varphi 2 = FNot \ \psi 2) \lor simple \ \varphi 2
   using c2-eq by (metis \varphi 2 assms(1-3) c2-eq c2-imp simple.elims(3) wf\varphi 2 wf-conn-list(4-7))
  moreover {
   assume \varphi 2 = conn \ c \ l2 \land wf\text{-}conn \ c \ l2
   then have only-c-inside c \varphi 2
     by (metis IH\varphi 2 \varphi 2 all-subformula-st-decomp inc\varphi 2 no-equiv no-equiv-def no-imp no-imp-def
       c-in-only\varphi 2 only-c-inside-def only-c-inside-into-only-c-inside simple-not simple-not-def
       subformula-all-subformula-st)
  }
 moreover {
   assume \exists \psi 2. \ \varphi 2 = FNot \ \psi 2
   then obtain \psi 2 where \varphi 2 = FNot \ \psi 2 by metis
   then have only-c-inside c \varphi 2
     by (metis all-subformula-st-def assms(1-3) connective.distinct(38,40) inc\varphi 2
       only-c-inside-decomp-not simple-not simple-not-def simple-not-symb.simps(1))
  }
 moreover {
   assume simple \varphi 2
   then have only-c-inside c \varphi 2
     by (metis\ all-subformula-st-decomp-explicit(3)\ assms(1)\ connective.distinct(37,39)
       only-c-inside-decomp-not only-c-inside-def)
 ultimately have only-c-inside \varphi 2: only-c-inside \varphi \varphi 2 by metis
 show ?case using l only-c-inside\varphi 1 only-c-inside\varphi 2 by auto
qed
3.5.2
         Push Conjunction
\textbf{definition} \ \textit{pushConj} \ \textbf{where} \ \textit{pushConj} = \textit{push-conn-inside} \ \textit{CAnd} \ \textit{COr}
lemma pushConj-consistent: preserves-un-sat pushConj
 unfolding pushConj-def by (simp add: push-conn-inside-consistent)
```

```
definition and-in-or-symb where and-in-or-symb = c-in-c'-symb CAnd COr
definition and-in-or-only where
and-in-or-only = all-subformula-st (c-in-c'-symb CAnd\ COr)
lemma pushConj-inv:
 fixes \varphi \psi :: 'v \ propo
 assumes full (propo-rew-step pushConj) \varphi \psi
 and no-equiv \varphi and no-imp \varphi and no-T-F-except-top-level \varphi and simple-not \varphi
 shows no-equiv \psi and no-imp \psi and no-T-F-except-top-level \psi and simple-not \psi
 {\bf using} \ push-conn-inside-inv \ assms \ {\bf unfolding} \ pushConj-def \ {\bf by} \ metis+
lemma pushConj-full-propo-rew-step:
 fixes \varphi \psi :: 'v \ propo
 assumes
   no-equiv \varphi and
   no-imp \varphi and
   full (propo-rew-step pushConj) \varphi \psi and
   no-T-F-except-top-level <math>\varphi and
   simple-not \varphi
  shows and-in-or-only \psi
 \mathbf{using}\ assms\ push-conn-inside-full-propo-rew-step
 unfolding pushConj-def and-in-or-only-def c-in-c'-only-def by (metis (no-types))
3.5.3 Push Disjunction
definition pushDisj where pushDisj = push-conn-inside COr CAnd
lemma pushDisj-consistent: preserves-un-sat pushDisj
 unfolding pushDisj-def by (simp add: push-conn-inside-consistent)
definition or-in-and-symb where or-in-and-symb = c-in-c'-symb COr CAnd
definition or-in-and-only where
or-in-and-only = all-subformula-st (c-in-c'-symb COr CAnd)
lemma not-or-in-and-only-or-and[simp]:
  \sim or-in-and-only (FOr (FAnd \psi 1 \ \psi 2) \ \varphi')
 unfolding or-in-and-only-def
 by (metis all-subformula-st-test-symb-true-phi conn.simps(5-6) not-c-in-c'-symb-l
   wf-conn-helper-facts(5) wf-conn-helper-facts(6))
lemma pushDisj-inv:
 fixes \varphi \psi :: 'v \ propo
 assumes full (propo-rew-step pushDisj) \varphi \psi
 and no-equiv \varphi and no-imp \varphi and no-T-F-except-top-level \varphi and simple-not \varphi
 shows no-equiv \psi and no-imp \psi and no-T-F-except-top-level \psi and simple-not \psi
 using push-conn-inside-inv assms unfolding pushDisj-def by metis+
\mathbf{lemma} \ \mathit{pushDisj-full-propo-rew-step} :
 fixes \varphi \psi :: 'v \ propo
 assumes
   no-equiv \varphi and
```

```
no-imp \varphi and full (propo-rew-step pushDisj) \varphi \psi and no-T-F-except-top-level \varphi and simple-not \varphi shows or-in-and-only \psi using assms push-conn-inside-full-propo-rew-step unfolding pushDisj-def or-in-and-only-def c-in-c'-only-def by (metis (no-types))
```

4 The full transformations

4.1 Abstract Property characterizing that only some connective are inside the others

4.1.1 Definition

```
The normal is a super group of groups inductive grouped-by :: 'a connective \Rightarrow 'a propo \Rightarrow bool for c where simple_i is a grouped-by c \Rightarrow grouped-by c \Rightarrow
```

```
simple-is-grouped[simp]: simple \varphi \Longrightarrow grouped-by c \varphi \mid
simple-not-is-grouped[simp]: simple \varphi \Longrightarrow grouped-by c (FNot \varphi) |
connected-is-group[simp]: grouped-by c \varphi \Longrightarrow grouped-by c \psi \Longrightarrow wf-conn c [\varphi, \psi]
\Longrightarrow grouped-by c (conn c [\varphi, \psi])
```

```
lemma simple-clause[simp]:
grouped-by c FT
grouped-by c FF
grouped-by c (FVar x)
grouped-by c (FNot FT)
grouped-by c (FNot FF)
```

lemma only-c-inside-symb-c-eq-c':

grouped-by c (FNot (FVar x))

by simp+

```
only-c-inside-symb c (conn c' [\varphi 1, \varphi 2]) \Longrightarrow c' = CAnd \lor c' = COr <math>\Longrightarrow wf-conn c' [\varphi 1, \varphi 2] \Longrightarrow c' = c
by (induct conn c' [\varphi 1, \varphi 2] rule: only-c-inside-symb.induct, auto simp: conn-inj)
```

lemma only-c-inside-c-eq-c':

```
only-c-inside c (conn c' [\varphi 1, \varphi 2]) \Longrightarrow c' = CAnd \lor c' = COr \Longrightarrow wf\text{-}conn \ c' [\varphi 1, \varphi 2] \Longrightarrow c = c' unfolding only-c-inside-def all-subformula-st-def using only-c-inside-symb-c-eq-c' subformula-refl by blast
```

lemma only-c-inside-imp-grouped-by: assumes $c: c \neq CNot$ and $c': c' = CAnd \lor c' = COr$ shows only-c-inside $c \varphi \Longrightarrow grouped$ -by $c \varphi$ (is $?O \varphi \Longrightarrow ?G \varphi$) proof (induct φ rule: propo-induct-arity) case (nullary φ x) then show $?G \varphi$ by auto next case (unary ψ) then show ?G (FNot ψ) by (auto simp: c) next case (binary $\varphi \varphi 1 \varphi 2$)

note $IH\varphi 1 = this(1)$ and $IH\varphi 2 = this(2)$ and $\varphi = this(3)$ and only = this(4)

```
proof -
      obtain c'' l'' where \varphi-c'': \varphi = conn \ c'' l'' and wf: wf-conn \ c'' l''
        using exists-c-conn by metis
      then have l'': l'' = [\varphi 1, \varphi 2] using \varphi by (metis \ wf\text{-}conn\text{-}list(4-7))
      have only-c-inside-symb c (conn c'' [\varphi 1, \varphi 2])
        using only all-subformula-st-test-symb-true-phi
        unfolding only-c-inside-def \varphi-c'' l'' by metis
      then have c = c''
        by (metis \varphi \varphi-c" conn-inj conn-inj-not(2) l" list.distinct(1) list.inject wf
          only-c-inside-symb.cases simple.simps(5-8))
      then show \varphi = conn \ c \ [\varphi 1, \ \varphi 2] and wf-conn c \ [\varphi 1, \ \varphi 2] using \varphi-c" wf l" by auto
    qed
  have grouped-by c \varphi 1 using wf IH \varphi 1 IH \varphi 2 \varphi-conn only \varphi unfolding only-c-inside-def by auto
  moreover have grouped-by c \varphi 2
    using wf \varphi IH\varphi1 IH\varphi2 \varphi-conn only unfolding only-c-inside-def by auto
  ultimately show ?G \varphi using \varphi-conn connected-is-group local.wf by blast
qed
lemma grouped-by-false:
  grouped-by c \ (conn \ c' \ [\varphi, \ \psi]) \Longrightarrow c \neq c' \Longrightarrow wf\text{-}conn \ c' \ [\varphi, \ \psi] \Longrightarrow False
  apply (induct conn c' [\varphi, \psi] rule: grouped-by.induct)
  apply (auto simp: simple-decomp wf-conn-list, auto simp: conn-inj)
 by (metis\ list.distinct(1)\ list.sel(3)\ wf\text{-}conn\text{-}list(8))+
Then the CNF form is a conjunction of clauses: every clause is in CNF form and two formulas
in CNF form can be related by an and.
inductive super-grouped-by: 'a connective \Rightarrow 'a connective \Rightarrow 'a propo \Rightarrow bool for c c' where
grouped-is-super-grouped[simp]: grouped-by c \varphi \Longrightarrow super-grouped-by c c' \varphi
connected-is-super-group: super-grouped-by c\ c'\ \varphi \implies super-grouped-by c\ c'\ \psi \implies wf-conn c\ [\varphi,\ \psi]
  \implies super-grouped-by c c' (conn c' [\varphi, \psi])
lemma simple-cnf[simp]:
  super-grouped-by c c' FT
  super-grouped-by c c' FF
  super-grouped-by \ c \ c' \ (FVar \ x)
  super-grouped-by c c' (FNot FT)
  super-grouped-by c c' (FNot FF)
  super-grouped-by \ c \ c' \ (FNot \ (FVar \ x))
  by auto
lemma c-in-c'-only-super-grouped-by:
  assumes c: c = CAnd \lor c = COr and c': c' = CAnd \lor c' = COr and cc': c \neq c'
 shows no-equiv \varphi \Longrightarrow no-imp \varphi \Longrightarrow simple-not \varphi \Longrightarrow c-in-c'-only c c' \varphi
    \implies super-grouped-by c c' \varphi
    (is ?NE \varphi \Longrightarrow ?NI \varphi \Longrightarrow ?SN \varphi \Longrightarrow ?C \varphi \Longrightarrow ?S \varphi)
proof (induct \varphi rule: propo-induct-arity)
  case (nullary \varphi x)
  then show ?S \varphi by auto
next
  case (unary \varphi)
  then have simple-not-symb (FNot \varphi)
    using all-subformula-st-test-symb-true-phi unfolding simple-not-def by blast
  then have \varphi = FT \vee \varphi = FF \vee (\exists x. \varphi = FVar x) by (cases \varphi, auto)
  then show ?S (FNot \varphi) by auto
```

```
next
  case (binary \varphi \varphi 1 \varphi 2)
  note IH\varphi 1 = this(1) and IH\varphi 2 = this(2) and no-equiv = this(4) and no-imp = this(5)
   and simpleN = this(6) and c\text{-}in\text{-}c'\text{-}only = this(7) and \varphi' = this(3)
   assume \varphi = FImp \ \varphi 1 \ \varphi 2 \lor \varphi = FEq \ \varphi 1 \ \varphi 2
   then have False using no-equiv no-imp by auto
   then have ?S \varphi by auto
  }
  moreover {
   assume \varphi: \varphi = conn \ c' \ [\varphi 1, \varphi 2] \land wf\text{-}conn \ c' \ [\varphi 1, \varphi 2]
   have c-in-c'-only: c-in-c'-only c c' \varphi1 \wedge c-in-c'-only c c' \varphi2 \wedge c-in-c'-symb c c' \varphi
     using c-in-c'-only \varphi' unfolding c-in-c'-only-def by auto
   have super-grouped-by c c' \varphi1 using \varphi c' no-equiv no-imp simpleN IH\varphi1 c-in-c'-only by auto
   moreover have super-grouped-by c c' \varphi 2
     using \varphi c' no-equiv no-imp simpleN IH\varphi2 c-in-c'-only by auto
   ultimately have ?S \varphi
     using super-grouped-by.intros(2) \varphi by (metis c wf-conn-helper-facts(5,6))
  }
  moreover {
   assume \varphi: \varphi = conn \ c \ [\varphi 1, \varphi 2] \land wf\text{-}conn \ c \ [\varphi 1, \varphi 2]
   then have only-c-inside c \varphi 1 \wedge only-c-inside c \varphi 2
     using c-in-c'-symb-c-implies-only-c-inside c c' c-in-c'-only list.set-intros(1)
       wf-conn-helper-facts(5,6) no-equiv no-imp simpleN last-ConsL last-ConsR last-in-set
       list.distinct(1) by (metis (no-types, hide-lams) cc')
   then have only-c-inside c (conn c [\varphi 1, \varphi 2])
     unfolding only-c-inside-def using \varphi
     by (simp add: only-c-inside-into-only-c-inside all-subformula-st-decomp)
   then have grouped-by c \varphi using \varphi only-c-inside-imp-grouped-by c by blast
   then have ?S \varphi using super-grouped-by.intros(1) by metis
 ultimately show ?S \varphi by (metis \varphi' c c' cc' conn.simps(5,6) wf-conn-helper-facts(5,6))
qed
4.2
        Conjunctive Normal Form
definition is-conj-with-TF where is-conj-with-TF == super-grouped-by COr CAnd
lemma or-in-and-only-conjunction-in-disj:
  shows no-equiv \varphi \Longrightarrow no-imp \varphi \Longrightarrow simple-not \varphi \Longrightarrow or-in-and-only \varphi \Longrightarrow is-conj-with-TF \varphi
  using c-in-c'-only-super-grouped-by
  unfolding is-conj-with-TF-def or-in-and-only-def c-in-c'-only-def
  by (simp add: c-in-c'-only-def c-in-c'-only-super-grouped-by)
definition is-cnf where
is-cnf \varphi \equiv is-conj-with-TF \varphi \wedge no-T-F-except-top-level \varphi
         Full CNF transformation
```

4.2.1

The full CNF transformation consists simply in chaining all the transformation defined before.

```
definition cnf-rew where cnf-rew =
 (full (propo-rew-step elim-equiv)) OO
 (full (propo-rew-step elim-imp)) OO
 (full\ (propo-rew-step\ elim\ TB))\ OO
 (full\ (propo-rew-step\ pushNeg))\ OO
```

```
(full\ (propo-rew-step\ pushDisj))
lemma cnf-rew-consistent: preserves-un-sat cnf-rew
  \mathbf{by} \ (simp \ add: \ cnf-rew-def \ elim Equv-lifted-consistant \ elim-imp-lifted-consistant \ elim TB-consistent 
   preserves-un-sat-OO pushDisj-consistent pushNeg-lifted-consistant)
lemma cnf-rew-is-cnf: cnf-rew \varphi \varphi' \Longrightarrow is-cnf \varphi'
 apply (unfold cnf-rew-def OO-def)
 apply auto
proof -
 \mathbf{fix} \ \varphi \ \varphi Eq \ \varphi Imp \ \varphi TB \ \varphi Neg \ \varphi Disj :: 'v \ propo
 assume Eq. full (propo-rew-step elim-equiv) \varphi \varphi Eq
 then have no-equiv: no-equiv \varphi Eq using no-equiv-full-propo-rew-step-elim-equiv by blast
 assume Imp: full (propo-rew-step elim-imp) \varphi Eq \varphi Imp
 then have no-imp: no-imp \varphiImp using no-imp-full-propo-rew-step-elim-imp by blast
 have no-imp-inv: no-equiv \varphiImp using no-equiv Imp elim-imp-inv by blast
 assume TB: full (propo-rew-step elimTB) \varphiImp \varphiTB
  then have no TB: no-T-F-except-top-level \varphi TB
   using no-imp-inv no-imp elimTB-full-propo-rew-step by blast
 have no TB-inv: no-equiv \varphi TB no-imp \varphi TB using elim TB-inv TB no-imp no-imp-inv by blast+
 assume Neg: full (propo-rew-step pushNeg) \varphi TB \varphi Neg
  then have noNeg: simple-not \varphi Neg
   using noTB-inv noTB pushNeg-full-propo-rew-step by blast
 have noNeg-inv: no-equiv \varphiNeg no-imp \varphiNeg no-T-F-except-top-level \varphiNeg
   using pushNeg-inv Neg noTB noTB-inv by blast+
  assume Disj: full (propo-rew-step pushDisj) \varphi Neg \varphi Disj
  then have no-Disj: or-in-and-only \varphi Disj
   using noNeg-inv noNeg pushDisj-full-propo-rew-step by blast
 have noDisj-inv: no-equiv \varphiDisj no-imp \varphiDisj no-T-F-except-top-level \varphiDisj
    simple-not \varphi Disj
  using pushDisj-inv Disj noNeg noNeg-inv by blast+
 moreover have is-conj-with-TF \varphi Disj
   using or-in-and-only-conjunction-in-disj noDisj-inv no-Disj by blast
  ultimately show is-cnf \varphi Disj unfolding is-cnf-def by blast
qed
4.3
       Disjunctive Normal Form
definition is-disj-with-TF where is-disj-with-TF \equiv super-grouped-by CAnd COr
lemma and-in-or-only-conjunction-in-disj:
 shows no-equiv \varphi \Longrightarrow no-imp \varphi \Longrightarrow simple-not \varphi \Longrightarrow and-in-or-only \varphi \Longrightarrow is-disj-with-TF \varphi
 using c-in-c'-only-super-grouped-by
 unfolding is-disj-with-TF-def and-in-or-only-def c-in-c'-only-def
 by (simp add: c-in-c'-only-def c-in-c'-only-super-grouped-by)
definition is-dnf :: 'a propo \Rightarrow bool where
```

 $is\text{-}dnf \ \varphi \longleftrightarrow is\text{-}disj\text{-}with\text{-}TF \ \varphi \land no\text{-}T\text{-}F\text{-}except\text{-}top\text{-}level \ \varphi$

4.3.1 Full DNF transform

The full DNF transformation consists simply in chaining all the transformation defined before.

```
definition dnf-rew where dnf-rew \equiv
 (full (propo-rew-step elim-equiv)) OO
 (full (propo-rew-step elim-imp)) OO
 (full\ (propo-rew-step\ elim\ TB))\ OO
 (full\ (propo-rew-step\ pushNeg))\ OO
 (full\ (propo-rew-step\ pushConj))
lemma dnf-rew-consistent: preserves-un-sat dnf-rew
 by (simp add: dnf-rew-def elimEquv-lifted-consistant elim-imp-lifted-consistant elimTB-consistent
   preserves-un-sat-OO pushConj-consistent pushNeg-lifted-consistant)
theorem dnf-transformation-correction:
   dnf-rew \varphi \varphi' \Longrightarrow is-dnf \varphi'
 apply (unfold dnf-rew-def OO-def)
 by (meson and-in-or-only-conjunction-in-disj elimTB-full-propo-rew-step elimTB-inv(1,2)
   elim-imp-inv is-dnf-def no-equiv-full-propo-rew-step-elim-equiv
   no-imp-full-propo-rew-step-elim-imp\ push Conj-full-propo-rew-step\ push Conj-inv(1-4)
   pushNeg-full-propo-rew-step\ pushNeg-inv(1-3))
```

5 More aggressive simplifications: Removing true and false at the beginning

5.1 Transformation

We should remove FT and FF at the beginning and not in the middle of the algorithm. To do this, we have to use more rules (one for each connective):

```
inductive elimTBFull where
Elim TBFull1 [simp]: elim TBFull (FAnd \varphi FT) \varphi
Elim TBFull1 '[simp]: elim TBFull (FAnd FT \varphi) \varphi
ElimTBFull2[simp]: elimTBFull (FAnd \varphi FF) FF
ElimTBFull2'[simp]: elimTBFull (FAnd FF \varphi) FF
ElimTBFull3[simp]: elimTBFull (FOr \varphi FT) FT
ElimTBFull3'[simp]: elimTBFull (FOr FT \varphi) FT
ElimTBFull4[simp]: elimTBFull (FOr \varphi FF) \varphi
ElimTBFull4'[simp]: elimTBFull (FOr FF \varphi) \varphi
ElimTBFull5[simp]: elimTBFull (FNot FT) FF |
ElimTBFull5'[simp]: elimTBFull (FNot FF) FT |
ElimTBFull6-l[simp]: elimTBFull\ (FImp\ FT\ \varphi)\ \varphi
ElimTBFull6-l'[simp]: elimTBFull (FImp FF \varphi) FT
ElimTBFull6-r[simp]: elimTBFull\ (FImp\ \varphi\ FT)\ FT
ElimTBFull6-r'[simp]: elimTBFull (FImp \varphi FF) (FNot \varphi)
ElimTBFull?-l[simp]: elimTBFull (FEq FT <math>\varphi) \varphi
Elim TBFull7-l'[simp]: elim TBFull (FEq FF \varphi) (FNot \varphi)
Elim TBFull 7-r[simp]: elim TBFull (FEq \varphi FT) \varphi |
ElimTBFull?-r'[simp]: elimTBFull (FEq \varphi FF) (FNot \varphi)
```

The transformation is still consistent.

```
{f lemma}\ elim TBFull-consistent:\ preserves-un-sat\ elim TBFull
proof -
  {
    fix \varphi \psi:: 'b propo
    have elimTBFull \varphi \psi \Longrightarrow \forall A. A \models \varphi \longleftrightarrow A \models \psi
      by (induct-tac rule: elimTBFull.inducts, auto)
 then show ?thesis using preserves-un-sat-def by auto
Contrary to the theorem [no\text{-}equiv ?\varphi; no\text{-}imp ?\varphi; ?\psi \preceq ?\varphi; \neg no\text{-}T\text{-}F\text{-}symb\text{-}except\text{-}toplevel]
?\psi \parallel \implies \exists \psi'. elimTB ?\psi \psi', we do not need the assumption no-equiv \varphi and no-imp \varphi, since
our transformation is more general.
lemma no-T-F-symb-except-toplevel-step-exists':
  fixes \varphi :: 'v \ propo
  shows \psi \preceq \varphi \Longrightarrow \neg no\text{-}T\text{-}F\text{-}symb\text{-}except\text{-}toplevel }\psi \Longrightarrow \exists \psi'. \ elimTBFull \ \psi \ \psi'
proof (induct \psi rule: propo-induct-arity)
  case (nullary \varphi')
  then have False using no-T-F-symb-except-toplevel-true no-T-F-symb-except-toplevel-false by auto
  then show Ex (elimTBFull \varphi') by blast
\mathbf{next}
  case (unary \psi)
  then have \psi = FF \lor \psi = FT using no-T-F-symb-except-toplevel-not-decom by blast
 then show Ex (elimTBFull (FNot \psi)) using ElimTBFull5 ElimTBFull5 by blast
  case (binary \varphi' \psi 1 \psi 2)
  then have \psi 1 = FT \vee \psi 2 = FT \vee \psi 1 = FF \vee \psi 2 = FF
    \mathbf{by}\ (\mathit{metis}\ \mathit{binary-connectives-def}\ \mathit{conn.simps}(5-8)\ \mathit{insertI1}\ \mathit{insert-commute}
      no-T-F-symb-except-toplevel-bin-decom\ binary.hyps(3))
  then show Ex (elimTBFull \varphi') using elimTBFull.intros\ binary.hyps(3) by blast
qed
The same applies here. We do not need the assumption, but the deep link between \neg no-T-F-except-top-level
\varphi and the existence of a rewriting step, still exists.
lemma no-T-F-except-top-level-rew':
 fixes \varphi :: 'v \ propo
 assumes noTB: \neg no-T-F-except-top-level <math>\varphi
 shows \exists \psi \ \psi' . \ \psi \preceq \varphi \land elimTBFull \ \psi \ \psi'
proof -
  have test-symb-false-nullary:
    \forall x. \ no\text{-}T\text{-}F\text{-}symb\text{-}except\text{-}toplevel (FF:: 'v \ propo)} \land no\text{-}T\text{-}F\text{-}symb\text{-}except\text{-}toplevel FT
      \land no-T-F-symb-except-toplevel (FVar (x:: 'v))
    by auto
  moreover {
    fix c:: 'v connective and l:: 'v propo list and \psi:: 'v propo
```

have H: $elimTBFull\ (conn\ c\ l)\ \psi \Longrightarrow \neg no\text{-}T\text{-}F\text{-}symb\text{-}except\text{-}toplevel\ (conn\ c\ l)}$

using no-test-symb-step-exists[of no-T-F-symb-except-toplevel φ elimTBFull] noTB no-T-F-symb-except-toplevel-step-exists' unfolding no-T-F-except-top-level-def by metis

 $\mathbf{by}\ (\mathit{cases}\ (\mathit{conn}\ \mathit{c}\ \mathit{l})\ \mathit{rule} \colon \mathit{elimTBFull.cases})\ \mathit{auto}$

ultimately show ?thesis

qed

```
lemma elimTBFull-full-propo-rew-step: fixes \varphi \psi :: 'v \ propo assumes full (propo-rew-step \ elimTBFull) \ \varphi \ \psi shows no-T-F-except-top-level \psi using full-propo-rew-step-subformula no-T-F-except-top-level-rew' assms by fastforce
```

5.2 More invariants

As the aim is to use the transformation as the first transformation, we have to show some more invariants for *elim-equiv* and *elim-imp*. For the other transformation, we have already proven it.

```
lemma propo-rew-step-ElimEquiv-no-T-F: propo-rew-step elim-equiv \varphi \psi \Longrightarrow no-T-F \varphi \Longrightarrow no-T-F \psi
proof (induct rule: propo-rew-step.induct)
 fix \varphi' :: 'v \ propo \ and \ \psi' :: 'v \ propo
 assume a1: no-T-F \varphi'
 assume a2: elim-equiv \varphi' \psi'
 have \forall x0 \ x1. \ (\neg \ elim-equiv \ (x1 :: 'v \ propo) \ x0 \lor (\exists v2 \ v3 \ v4 \ v5 \ v6 \ v7. \ x1 = FEq \ v2 \ v3
    \wedge x0 = FAnd (FImp v4 v5) (FImp v6 v7) <math>\wedge v2 = v4 \wedge v4 = v7 \wedge v3 = v5 \wedge v3 = v6))
 = (\neg elim\text{-}equiv x1 x0 \lor (\exists v2 v3 v4 v5 v6 v7. x1 = FEq v2 v3)
    \land x0 = FAnd \ (FImp \ v4 \ v5) \ (FImp \ v6 \ v7) \land v2 = v4 \land v4 = v7 \land v3 = v5 \land v3 = v6))
    by meson
  then have \forall p \ pa. \ \neg \ elim-equiv \ (p :: 'v \ propo) \ pa \ \lor \ (\exists \ pb \ pc \ pd \ pe \ pf \ pg. \ p = FEq \ pb \ pc
    \land pa = FAnd \ (FImp \ pd \ pe) \ (FImp \ pf \ pq) \ \land \ pb = pd \ \land \ pd = pq \ \land \ pc = pe \ \land \ pc = pf)
    using elim-equiv.cases by force
  then show no-T-F \psi' using a1 a2 by fastforce
next
  fix \varphi \varphi' :: 'v \text{ propo and } \xi \xi' :: 'v \text{ propo list and } c :: 'v \text{ connective}
 assume rel: propo-rew-step elim-equiv \varphi \varphi'
  and IH: no-T-F \varphi \Longrightarrow no-T-F \varphi'
 and corr: wf-conn c (\xi @ \varphi \# \xi')
 and no-T-F: no-T-F (conn c (\xi @ \varphi \# \xi'))
    \mathbf{assume}\ c{:}\ c = \mathit{CNot}
    then have empty: \xi = [ ] \xi' = [ ] using corr by auto
    then have no-T-F \varphi using no-T-F c no-T-F-decomp-not by auto
    then have no-T-F (conn c (\xi @ \varphi' \# \xi')) using c empty no-T-F-comp-not IH by auto
  }
  moreover {
    assume c: c \in binary\text{-}connectives
    obtain a b where ab: \xi @ \varphi \# \xi' = [a, b]
      using corr c list-length2-decomp wf-conn-bin-list-length by metis
    then have \varphi: \varphi = a \lor \varphi = b
      by (metis append.simps(1) append-is-Nil-conv list.distinct(1) list.sel(3) nth-Cons-0
        tl-append2)
    have \zeta: \forall \zeta \in set \ (\xi @ \varphi \# \xi'). no-T-F \zeta
      using no-T-F unfolding no-T-F-def using corr all-subformula-st-decomp by blast
    then have \varphi': no-T-F \varphi' using ab IH \varphi by auto
    have l': \xi @ \varphi' \# \xi' = [\varphi', b] \lor \xi @ \varphi' \# \xi' = [a, \varphi']
      by (metis (no-types, hide-lams) ab append-Cons append-Nil append-Nil2 butlast.simps(2)
        butlast-append list.distinct(1) list.sel(3))
    then have \forall \zeta \in set \ (\xi @ \varphi' \# \xi'). no-T-F \zeta using \zeta \varphi' ab by fastforce
    moreover
```

```
have \forall \zeta \in set \ (\xi @ \varphi \# \xi'). \ \zeta \neq FT \land \zeta \neq FF
       using \zeta corr no-T-F no-T-F-except-top-level-false no-T-F-no-T-F-except-top-level by blast
     then have no-T-F-symb (conn c (\xi @ \varphi' \# \xi'))
       by (metis \varphi' l' ab all-subformula-st-test-symb-true-phi c list.distinct(1)
         list.set	ext{-}intros(1,2) no-T-F-symb-except-toplevel-bin-decom
         no-T-F-symb-except-toplevel-no-T-F-symb no-T-F-symb-false(1,2) no-T-F-def wf-conn-binary
         wf-conn-list(1,2))
   ultimately have no-T-F (conn c (\xi @ \varphi' \# \xi'))
     by (metis l' all-subformula-st-decomp-imp c no-T-F-def wf-conn-binary)
  }
 moreover {
    \mathbf{fix} \ x
    assume c = CVar \ x \lor c = CF \lor c = CT
    then have False using corr by auto
    then have no-T-F (conn c (\xi \otimes \varphi' \# \xi')) by auto
  }
 ultimately show no-T-F (conn c (\xi \otimes \varphi' \# \xi')) using corr wf-conn.cases by metis
qed
lemma elim-equiv-inv':
  fixes \varphi \psi :: 'v \ propo
  assumes full (propo-rew-step elim-equiv) \varphi \psi and no-T-F-except-top-level \varphi
  shows no-T-F-except-top-level \psi
proof -
  {
   \mathbf{fix} \ \varphi \ \psi :: \ 'v \ propo
   have propo-rew-step elim-equiv \varphi \psi \Longrightarrow no\text{-}T\text{-}F\text{-}except\text{-}top\text{-}level \varphi
     \implies no-T-F-except-top-level \psi
     proof -
       assume rel: propo-rew-step elim-equiv \varphi \psi
       and no: no-T-F-except-top-level \varphi
         assume \varphi = FT \vee \varphi = FF
         from rel this have False
           apply (induct rule: propo-rew-step.induct, auto simp: wf-conn-list(1,2))
           using elim-equiv.simps by blast+
         then have no-T-F-except-top-level \psi by blast
       }
       moreover {
         assume \varphi \neq FT \land \varphi \neq FF
         then have no-T-F \varphi
           by (metis no no-T-F-symb-except-toplevel-all-subformula-st-no-T-F-symb)
         then have no-T-F \psi using propo-rew-step-ElimEquiv-no-T-F rel by blast
         then have no-T-F-except-top-level \psi by (simp add: no-T-F-no-T-F-except-top-level)
       ultimately show no-T-F-except-top-level \psi by metis
     qed
  }
  moreover {
    fix c :: 'v \ connective \ {\bf and} \ \xi \ \xi' :: 'v \ propo \ list \ {\bf and} \ \zeta \ \zeta' :: 'v \ propo
    assume rel: propo-rew-step elim-equiv \zeta \zeta'
    and incl: \zeta \leq \varphi
    and corr: wf-conn c (\xi \otimes \zeta \# \xi')
    and no-T-F: no-T-F-symb-except-toplevel (conn c (\xi \otimes \zeta \# \xi'))
    and n: no-T-F-symb-except-toplevel \zeta'
```

```
have no-T-F-symb-except-toplevel (conn c (\xi \otimes \zeta' \# \xi'))
    proof
      have p: no-T-F-symb (conn c (<math>\xi \otimes \zeta \# \xi'))
        using corr wf-conn-list(1) wf-conn-list(2) no-T-F-symb-except-toplevel-no-T-F-symb no-T-F
      have l: \forall \varphi \in set \ (\xi @ \zeta \# \xi'). \ \varphi \neq FT \land \varphi \neq FF
        using corr wf-conn-no-T-F-symb-iff p by blast
      from rel incl have \zeta' \neq FT \land \zeta' \neq FF
        apply (induction \zeta \zeta' rule: propo-rew-step.induct)
        apply (cases rule: elim-equiv.cases, auto simp: elim-equiv.simps)
        by (metis append-is-Nil-conv list.distinct wf-conn-list(1,2) wf-conn-no-arity-change
          wf-conn-no-arity-change-helper)+
      then have \forall \varphi \in set \ (\xi \otimes \zeta' \# \xi'). \ \varphi \neq FT \land \varphi \neq FF \ using \ l \ by \ auto
      moreover have c \neq CT \land c \neq CF using corr by auto
      ultimately show no-T-F-symb (conn c (\xi \otimes \zeta' \# \xi'))
        by (metis corr wf-conn-no-arity-change wf-conn-no-arity-change-helper no-T-F-symb-comp)
    qed
  }
 ultimately show no-T-F-except-top-level \psi
   using full-propo-rew-step-inv-stay-with-inc of elim-equiv no-T-F-symb-except-toplevel \varphi
     assms subformula-refl unfolding no-T-F-except-top-level-def by metis
qed
lemma propo-rew-step-ElimImp-no-T-F: propo-rew-step elim-imp \varphi \psi \Longrightarrow no-T-F \varphi \Longrightarrow no-T-F \psi
proof (induct rule: propo-rew-step.induct)
 case (global-rel \varphi' \psi')
 then show no-T-F \psi'
   using elim-imp. cases no-T-F-comp-not no-T-F-decomp(1,2)
   by (metis\ no-T-F-comp-expanded-explicit(2))
 case (propo-rew-one-step-lift \varphi \varphi' c \xi \xi')
 note rel = this(1) and IH = this(2) and corr = this(3) and no-T-F = this(4)
  {
   assume c: c = CNot
   then have empty: \xi = [ ] \xi' = [ ] using corr by auto
   then have no-T-F \varphi using no-T-F c no-T-F-decomp-not by auto
   then have no-T-F (conn c (\xi @ \varphi' \# \xi')) using c empty no-T-F-comp-not IH by auto
  }
  moreover {
   assume c: c \in binary\text{-}connectives
   then obtain a b where ab: \xi @ \varphi \# \xi' = [a, b]
     using corr list-length2-decomp wf-conn-bin-list-length by metis
   then have \varphi: \varphi = a \lor \varphi = b
     by (metis append-self-conv2 wf-conn-list-decomp(4) wf-conn-unary list.discI list.sel(3)
       nth-Cons-0 tl-append2)
   have \zeta \colon \forall \zeta \in set \ (\xi @ \varphi \# \xi'). no-T-F \zeta using ab c propo-rew-one-step-lift.prems by auto
   then have \varphi': no-T-F \varphi'
     using ab IH \varphi corr no-T-F no-T-F-def all-subformula-st-decomp-explicit by auto
   have \chi: \xi @ \varphi' \# \xi' = [\varphi', b] \lor \xi @ \varphi' \# \xi' = [a, \varphi']
     by (metis (no-types, hide-lams) ab append-Cons append-Nil append-Nil2 butlast.simps(2)
       butlast-append list.distinct(1) list.sel(3))
   then have \forall \zeta \in set \ (\xi @ \varphi' \# \xi'). no-T-F \zeta using \zeta \varphi' ab by fastforce
   moreover
```

```
have no-T-F (last (\xi @ \varphi' \# \xi')) by (simp add: calculation)
      then have no-T-F-symb (conn c (\xi @ \varphi' \# \xi'))
        by (metis \chi \varphi' \zeta ab all-subformula-st-test-symb-true-phi c last.simps list.distinct(1)
          list.set-intros(1) no-T-F-bin-decomp no-T-F-def)
    ultimately have no-T-F (conn c (\xi @ \varphi' \# \xi')) using c \chi by fastforce
  moreover {
    \mathbf{fix} \ x
    \mathbf{assume}\ c = \mathit{CVar}\ x \ \lor \ c = \mathit{CF}\ \lor \ c = \mathit{CT}
    then have False using corr by auto
    then have no-T-F (conn c (\xi @ \varphi' \# \xi')) by auto
 ultimately show no-T-F (conn c (\xi @ \varphi' \# \xi')) using corr wf-conn.cases by blast
lemma elim-imp-inv':
 fixes \varphi \psi :: 'v \ propo
 assumes full (propo-rew-step elim-imp) \varphi \psi and no-T-F-except-top-level \varphi
 shows no-T-F-except-top-level \psi
proof -
  {
      \mathbf{fix} \ \varphi \ \psi :: \ 'v \ propo
      have H: elim-imp \varphi \psi \Longrightarrow no\text{-}T\text{-}F\text{-}except\text{-}top\text{-}level } \varphi \Longrightarrow no\text{-}T\text{-}F\text{-}except\text{-}top\text{-}level } \psi
        by (induct \varphi \psi rule: elim-imp.induct, auto)
    } note H = this
    fix \varphi \psi :: 'v \ propo
    have propo-rew-step elim-imp \varphi \psi \implies no\text{-}T\text{-}F\text{-}except\text{-}top\text{-}level } \varphi \implies no\text{-}T\text{-}F\text{-}except\text{-}top\text{-}level } \psi
      proof -
        assume rel: propo-rew-step elim-imp \varphi \psi
        and no: no-T-F-except-top-level \varphi
          assume \varphi = FT \vee \varphi = FF
          from rel this have False
            apply (induct rule: propo-rew-step.induct)
            by (cases rule: elim-imp.cases, auto simp: wf-conn-list(1,2))
          then have no-T-F-except-top-level \psi by blast
        }
        moreover {
          assume \varphi \neq FT \land \varphi \neq FF
          then have no-T-F \varphi
            by (metis no no-T-F-symb-except-toplevel-all-subformula-st-no-T-F-symb)
          then have no-T-F \psi
            using rel propo-rew-step-ElimImp-no-T-F by blast
          then have no-T-F-except-top-level \psi by (simp add: no-T-F-no-T-F-except-top-level)
        ultimately show no-T-F-except-top-level \psi by metis
      qed
  }
  moreover {
     fix c :: 'v \ connective \ {\bf and} \ \xi \ \xi' :: 'v \ propo \ list \ {\bf and} \ \zeta \ \zeta' :: 'v \ propo
     assume rel: propo-rew-step elim-imp \zeta \zeta
     and incl: \zeta \leq \varphi
     and corr: wf-conn c (\xi \otimes \zeta \# \xi')
```

```
and no-T-F: no-T-F-symb-except-toplevel (conn c (\xi \otimes \zeta \# \xi'))
    and n: no-T-F-symb-except-toplevel \zeta'
    have no-T-F-symb-except-toplevel (conn c (\xi \otimes \zeta' \# \xi'))
    proof
      have p: no-T-F-symb (conn c (<math>\xi \otimes \zeta \# \xi'))
        by (simp add: corr\ no-T-F\ no-T-F-symb-except-toplevel-no-T-F-symb wf-conn-list(1,2))
      have l: \forall \varphi \in set \ (\xi @ \zeta \# \xi'). \ \varphi \neq FT \land \varphi \neq FF
        using corr wf-conn-no-T-F-symb-iff p by blast
      from rel incl have \zeta' \neq FT \land \zeta' \neq FF
        apply (induction \zeta \zeta' rule: propo-rew-step.induct)
        apply (cases rule: elim-imp.cases, auto)
        using wf-conn-list(1,2) wf-conn-no-arity-change wf-conn-no-arity-change-helper
        by (metis\ append-is-Nil-conv\ list.distinct(1))+
      then have \forall \varphi \in set \ (\xi @ \zeta' \# \xi'). \ \varphi \neq FT \land \varphi \neq FF \ using \ l \ by \ auto
      moreover have c \neq CT \land c \neq CF using corr by auto
      ultimately show no-T-F-symb (conn c (\xi \otimes \zeta' \# \xi'))
        using corr wf-conn-no-arity-change no-T-F-symb-comp
        by (metis wf-conn-no-arity-change-helper)
    \mathbf{qed}
  ultimately show no-T-F-except-top-level \psi
   using full-propo-rew-step-inv-stay-with-inc of elim-imp no-T-F-symb-except-toplevel \varphi
   assms subformula-refl unfolding no-T-F-except-top-level-def by metis
qed
5.3
       The new CNF and DNF transformation
The transformation is the same as before, but the order is not the same.
definition dnf\text{-}rew' :: 'a \ propo \Rightarrow 'a \ propo \Rightarrow bool \ \textbf{where}
dnf-rew' =
  (full (propo-rew-step elimTBFull)) OO
  (full (propo-rew-step elim-equiv)) OO
  (full\ (propo-rew-step\ elim-imp))\ OO
  (full\ (propo-rew-step\ pushNeg))\ OO
  (full\ (propo-rew-step\ pushConj))
lemma dnf-rew'-consistent: preserves-un-sat dnf-rew'
 by (simp add: dnf-rew'-def elimEquv-lifted-consistant elim-imp-lifted-consistant
   elimTBFull-consistent preserves-un-sat-OO pushConj-consistent pushNeg-lifted-consistant)
theorem cnf-transformation-correction:
   dnf\text{-}rew' \varphi \varphi' \Longrightarrow is\text{-}dnf \varphi'
 unfolding dnf-rew'-def OO-def
  by (meson and-in-or-only-conjunction-in-disj elim TBFull-full-propo-rew-step elim-equiv-inv'
   elim-imp-inv elim-imp-inv' is-dnf-def no-equiv-full-propo-rew-step-elim-equiv
   no-imp-full-propo-rew-step-elim-imp\ push\ Conj-full-propo-rew-step\ push\ Conj-inv(1-4)
   pushNeg-full-propo-rew-step pushNeg-inv(1-3))
Given all the lemmas before the CNF transformation is easy to prove:
definition cnf\text{-}rew':: 'a \ propo \Rightarrow 'a \ propo \Rightarrow bool \ \textbf{where}
cnf-rew' =
  (full (propo-rew-step elimTBFull)) OO
  (full (propo-rew-step elim-equiv)) OO
  (full (propo-rew-step elim-imp)) OO
```

```
(full\ (propo-rew-step\ pushNeg))\ OO
 (full\ (propo-rew-step\ pushDisj))
lemma cnf-rew'-consistent: preserves-un-sat cnf-rew'
 by (simp add: cnf-rew'-def elimEquv-lifted-consistant elim-imp-lifted-consistant
   elimTBFull-consistent preserves-un-sat-OO pushDisj-consistent pushNeg-lifted-consistant)
theorem cnf'-transformation-correction:
 cnf\text{-}rew' \varphi \varphi' \Longrightarrow is\text{-}cnf \varphi'
 unfolding cnf-rew'-def OO-def
 by (meson elimTBFull-full-propo-rew-step elim-equiv-inv' elim-imp-inv elim-imp-inv' is-cnf-def
   no-equiv-full-propo-rew-step-elim-equiv no-imp-full-propo-rew-step-elim-imp
   or-in-and-only-conjunction-in-disj\ pushDisj-full-propo-rew-step\ pushDisj-inv(1-4)
   pushNeg-full-propo-rew-step\ pushNeg-inv(1)\ pushNeg-inv(2)\ pushNeg-inv(3))
end
theory Prop-Logic-Multiset
imports ../lib/Multiset-More Prop-Normalisation Partial-Clausal-Logic
begin
```

6 Link with Multiset Version

6.1 Transformation to Multiset

```
fun mset-of-conj :: 'a propo \Rightarrow 'a literal multiset where mset-of-conj (FOr \varphi \psi) = mset-of-conj \varphi + mset-of-conj (FVar v) = \{\# Pos v \#\} \mid mset-of-conj (FNot (FVar v)) = \{\# Neg v \#\} \mid mset-of-conj (FNot (FVar v)) = \{\# Neg v \#\} \mid mset-of-formula :: 'a propo \Rightarrow 'a literal multiset set where mset-of-formula (FAnd \varphi \psi) = mset-of-formula \varphi \cup mset-of-formula \psi \mid mset-of-formula (FOr \varphi \psi) = \{mset-of-conj (FOr \varphi \psi)\} \mid mset-of-formula (FNot \psi) = \{mset-of-conj (FNot \psi)\} \mid mset-of-formula FF = \{\{\#\}\} \mid mset-of-formula FT = \{\}
```

6.2 Equisatisfiability of the two Version

```
lemma is-conj-with-TF-FNot: is-conj-with-TF (FNot \varphi) \longleftrightarrow (\exists \, v. \, \varphi = FVar \, v \, \lor \, \varphi = FF \, \lor \, \varphi = FT) unfolding is-conj-with-TF-def apply (rule iffI) apply (induction FNot \varphi rule: super-grouped-by.induct) apply (induction FNot \varphi rule: grouped-by.induct) apply simp apply (cases \varphi; simp) apply auto done lemma grouped-by-COr-FNot: grouped-by-COr (FNot \varphi) \longleftrightarrow (\exists \, v. \, \varphi = FVar \, v \, \lor \, \varphi = FF \, \lor \, \varphi = FT) unfolding is-conj-with-TF-def apply (rule iffI) apply (induction FNot \varphi rule: grouped-by-induct) apply simp
```

```
apply (cases \varphi; simp)
  apply auto
  done
lemma
  shows no\text{-}T\text{-}F\text{-}FF[simp]: \neg no\text{-}T\text{-}F FF and
    no-T-F-FT[simp]: \neg no-T-F FT
  unfolding no-T-F-def all-subformula-st-def by auto
lemma grouped-by-CAnd-FAnd:
  grouped-by CAnd (FAnd \varphi 1 \varphi 2) \longleftrightarrow grouped-by CAnd \varphi 1 \land grouped-by CAnd \varphi 2
 apply (rule iffI)
 apply (induction FAnd \varphi 1 \varphi 2 rule: grouped-by.induct)
 using connected-is-group of CAnd \varphi 1 \varphi 2 by auto
lemma grouped-by-COr-FOr:
  grouped-by COr (FOr \varphi 1 \varphi 2) \longleftrightarrow grouped-by COr \varphi 1 \wedge grouped-by COr \varphi 2
 apply (rule iffI)
 apply (induction FOr \varphi 1 \varphi 2 rule: grouped-by.induct)
  using connected-is-group[of COr \varphi1 \varphi2] by auto
lemma grouped-by-COr-FAnd[simp]: \neg grouped-by COr (FAnd \varphi1 \varphi2)
  apply clarify
  apply (induction FAnd \varphi 1 \varphi 2 rule: grouped-by.induct)
  apply auto
  done
lemma grouped-by-COr-FEq[simp]: \neg grouped-by COr (FEq \varphi1 \varphi2)
 apply clarify
  apply (induction FEq \varphi1 \varphi2 rule: grouped-by.induct)
  apply auto
  done
lemma [simp]: \neg grouped-by COr (FImp \varphi \psi)
  apply clarify
 by (induction FImp \varphi \psi rule: grouped-by.induct) simp-all
lemma [simp]: \neg is-conj-with-TF (FImp \varphi \psi)
  unfolding is-conj-with-TF-def apply clarify
  by (induction FImp \varphi \psi rule: super-grouped-by.induct) simp-all
lemma [simp]: \neg grouped-by COr (FEq \varphi \psi)
  apply clarify
 by (induction FEq \varphi \psi rule: grouped-by.induct) simp-all
lemma [simp]: \neg is-conj-with-TF (FEq \varphi \psi)
  unfolding is-conj-with-TF-def apply clarify
  by (induction FEq \varphi \psi rule: super-grouped-by.induct) simp-all
lemma is-conj-with-TF-Fand:
  is\text{-}conj\text{-}with\text{-}TF \ (FAnd \ \varphi 1 \ \varphi 2) \implies is\text{-}conj\text{-}with\text{-}TF \ \varphi 1 \ \land \ is\text{-}conj\text{-}with\text{-}TF \ \varphi 2
  unfolding is-conj-with-TF-def
  apply (induction FAnd \varphi 1 \varphi 2 rule: super-grouped-by.induct)
  apply (auto simp: grouped-by-CAnd-FAnd intro: grouped-is-super-grouped)[]
```

When a formula is in CNF form, then there is equisatisfiability between the multiset version and the CNF form. Remark that the definition for the entailment are slightly different: $op \models$ uses a function assigning True or False, while $op \models s$ uses a set where being in the list means entailment of a literal.

```
theorem
 fixes \varphi :: 'v \ propo
 assumes is-cnf \varphi
 shows eval A \varphi \longleftrightarrow Partial\text{-}Clausal\text{-}Logic.true\text{-}clss} (\{Pos \ v | v. \ A \ v\} \cup \{Neg \ v | v. \ \neg A \ v\})
   (mset-of-formula \varphi)
 using assms
proof (induction \varphi)
 case FF
 then show ?case by auto
next
 case FT
 then show ?case by auto
next
 case (FVar\ v)
 then show ?case by auto
next
  case (FAnd \varphi \psi)
 then show ?case
 unfolding is-cnf-def by (auto simp: is-conj-with-TF-FNot dest: is-conj-with-TF-Fand
    dest!:is-conj-with-TF-FOr)
 case (FOr \varphi \psi)
 then have [simp]: mset-of-formula \varphi = \{mset-of-conj \varphi\} mset-of-formula \psi = \{mset-of-conj \psi\}
   unfolding is-cnf-def by (auto dest!:is-conj-with-TF-FOr simp: grouped-by-COr-mset-of-formula
     split: if-splits)
 have is-conj-with-TF \varphi is-conj-with-TF \psi
   using FOr(3) unfolding is-cnf-def no-T-F-def
   by (metis grouped-is-super-grouped is-conj-with-TF-FOr is-conj-with-TF-def)+
 then show ?case using FOr
   unfolding is-cnf-def by simp
next
 case (FImp \varphi \psi)
  then show ?case
   unfolding is-cnf-def by auto
\mathbf{next}
 case (FEq \varphi \psi)
```

```
then show ?case unfolding is-cnf-def by auto next case (FNot \ \varphi) then show ?case unfolding is-cnf-def by (auto simp: is-conj-with-TF-FNot) qed end
```