Rules of differentiation: sum, product, etc.

Definition (28.1)

Suppose I is an open interval, $a \in I$. $f: I \to \mathbb{R}$ is differentiable at a if the derivative $f'(a) = \lim_{x \to a} \frac{f(x) - f(a)}{x - a}$ exists, and is finite.

Theorem (part of 28.3 – read the whole theorem in textbook!)

Suppose f and g are differentiable at a. Then fg is differentiable at a, with [fg]'(a) = f'(a)g(a) + f(a)g'(a).

Proof. Let p = fg, then

$$p(x) - p(a) = f(x)g(x) - f(x)g(a) + f(x)g(a) - f(a)g(a) = f(x)(g(x) - g(a)) + (f(x) - f(a))g(a).$$

$$\frac{p(x) - p(a)}{x - a} = f(x) \frac{g(x) - g(a)}{x - a} + g(a) \frac{f(x) - f(a)}{x - a}.$$

$$p'(a) = \lim_{x \to a} \frac{p(x) - p(a)}{x - a} = \lim_{x \to a} f(x) \lim_{x \to a} \frac{g(x) - g(a)}{x - a} + g(a) \lim_{x \to a} \frac{f(x) - f(a)}{x - a} = f(a)g'(a) + g(a)f'(a).$$

Corollary. For $m \in \mathbb{N}$, $\left[x^m\right]' = mx^{m-1}$. Proof: induction.

Chain Rule

Theorem (28.4 – Chain Rule)

Suppose f is differentiable at a, g is differentiable at f(a). Then $g \circ f$ is differentiable at a, with $(g \circ f)'(a) = g'(f(a))f'(a) = (g' \circ f)(a) \cdot f'(a)$.

False proof.
$$(g \circ f)'(a) = \lim_{X \to a} \frac{g(f(x)) - g(f(a))}{x - a}$$

$$= \lim_{X \to a} \frac{g(f(x)) - g(f(a))}{f(x) - f(a)} \frac{f(x) - f(a)}{x - a}$$

$$= \lim_{X \to a} \frac{g(f(x)) - g(f(a))}{f(x) - f(a)} \lim_{X \to a} \frac{f(x) - f(a)}{x - a}.$$

$$\lim_{X \to a} \frac{f(x) - f(a)}{x - a} = f'(a).$$

$$f(x) \to f(a) \text{ (differentiability } \Rightarrow \text{ continuity), hence}$$

$$\lim_{X \to a} \frac{g(f(x)) - g(f(a))}{f(x) - f(a)} = \lim_{Y \to f(a)} \frac{g(y) - g(f(a))}{y - f(a)} = g'(f(a)).$$

This does not work! f(x) might equal f(a); can't divide by 0.

On the road to Chain Rule: Caratheodory Theorem

Theorem (Caratheodory – Exercise 28.16)

Suppose I is an interval, $f: I \to \mathbb{R}$. f is differentiable at $a \in I$ iff \exists function $\phi: I \to \mathbb{R}$, continuous at a, s.t. $f(x) - f(a) = \phi(x)(x - a)$ $\forall x \in I$. Then $\phi(a) = f'(a)$.

Proof: existence of
$$\phi \Rightarrow$$
 differentiability.

$$\phi(a) = \lim_{x \to a} \phi(x) = \lim_{x \to a} \frac{f(x) - f(a)}{x - a} = f'(a).$$

Proof: differentiability \Rightarrow existence of ϕ .

Define
$$\phi(a) = f'(a)$$
, $\phi(x) = \frac{f(x) - f(a)}{x - a}$ for $x \neq a$. $\lim_{x \to a} \phi(x) = \lim_{x \to a} \frac{f(x) - f(a)}{x - a} = f'(a) = \phi(a)$, so ϕ is continuous at a .

Remark. We re-prove that, if f is differentiable at a, then it is continuous at a (as a product of two continuous functions).

Chain Rule

Theorem (28.4 - Chain Rule)

Suppose f is differentiable at a, g is differentiable at f(a). Then $g \circ f$ is differentiable at a, with $(g \circ f)'(a) = g'(f(a))f'(a) = (g' \circ f)(a) \cdot f'(a)$.

Proof. Let b=f(a). Caratheodory: $\exists \ \phi: J \to \mathbb{R}$ and $\psi: I \to \mathbb{R}$ (I, J) intervals), continuous at a and b=f(a) respectively, so that $f(x)-f(a)=\phi(x)(x-a),\ g(y)-g(b)=\psi(y)(y-b).$ Then $g(f(x))-g(f(a))=\psi(f(x))(f(x)-f(a))=\psi(f(x))\phi(x)(x-a).$ $\lim_{x\to a}\frac{g(f(x))-g(f(a))}{x-a}=\lim_{x\to a}\psi(f(x))\phi(x)=\psi(f(a))\phi(a)=g'(f(a))f'(a)$, since f,ϕ are continuous at f(a).

Examples of derivatives

- (a) If f is differentiable at a, then so is f^n $(n \in \mathbb{N})$, and $(f^n)'(a) = nf^{n-1}(a)f'(a)$. $f^n = g \circ f$, where $g(y) = y^n$. $g'(y) = ny^{n-1}$. $(f^n)'(a) = g'(f(a))f'(a) = nf^{n-1}(a)f'(a)$.
- (b) If f is differentiable at a and $f(a) \neq 0$, then $\frac{1}{f}$ is differentiable at a, and $\left(\frac{1}{f}\right)'(a) = -\frac{f'(a)}{f^2(a)}$. $\frac{1}{f} = g \circ f$, where $g(y) = \frac{1}{y}$. $g'(y) = -\frac{1}{y^2}$. $(f^n)'(a) = g'(f(a))f'(a) = -\frac{f'(a)}{f^2(a)}$.
- If $f(x) = x^n$ $(n \in \mathbb{N})$, then $f'(x) = nx^{n-1}$, hence $(x^{-n})' = -\frac{nx^{n-1}}{(x^n)^2} = -nx^{-n-1}$.

Conclusion. For $k \in \mathbb{Z}$, $\left[\left(x^{k}\right)' = kx^{k-1}\right]$.

Example: a derivative can be discontinuous

Example (p. 168).
$$f(x) = \begin{cases} x^2 \sin \frac{1}{x} & x \neq 0 \\ 0 & x = 0 \end{cases}$$
. Compute f' ; find all points where it exists. Where is f' continuous?

f is differentiable everywhere.

For
$$x \neq 0$$
, $f'(x) = 2x \sin \frac{1}{x} + x^2 \left(-\frac{1}{x^2} \right) \cos \frac{1}{x} = 2x \sin \frac{1}{x} - \cos \frac{1}{x}$.

$$f'(0)=\lim_{t\to 0}\frac{f(t)-f(0)}{t-0}=\lim_{t\to 0}t\sin\frac{1}{t}=0$$
 (use Squeeze Theorem: $-|t|\leqslant t\sin\frac{1}{t}\leqslant |t|$).

f' is discontinuous at 0, continuous everywhere else. 1

Let
$$x_n = \frac{1}{n\pi}$$
. $x_n \to 0$; however, $f'(x_n) = \frac{2}{n\pi} \sin(n\pi) - \cos(n\pi) = (-1)^{n-1}$, so $f'(x_n) \not\to f'(0) = 0$.

 $^{^{1}}f$ differentiable $\Rightarrow f$ continuous

Criterion for min and max of a function

Theorem (29.1 – criterion for max and min)

Suppose f is defined on an open interval I, has max or min at $x_0 \in I$. If f is differentiable at x_0 , then $f'(x_0) = 0$.

We assume I is open, to avoid the possibility of x_0 being an endpoint.

Corollary

Suppose $f:[a,b]\to\mathbb{R}$ is a continuous function. We know that f attains its maximum and minimum. If f attains its maximum (or minimum) at x_0 , then one of the following holds:

- **1** $x_0 \in \{a, b\}.$
- 2 f is not differentiable at x_0 .
- **3** $f'(x_0) = 0$.

Criterion for min and max: a proof

Theorem (29.1 – criterion for max and min)

Suppose f is defined on an open interval I, has max or min at $x_0 \in I$. If f is differentiable at x_0 , then $f'(x_0) = 0$.

Proof of the case when f has max at x_0 .

f is defined on open interval $I \ni x_0$, $f(x) \leqslant f(x_0)$ for $x \in I$. We rule out the possibility of $f'(x_0) > 0$; $f'(x_0) < 0$ is handled similarly.

Suppose, for the sake of contradiction, that

$$f'(x_0) = \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} > 0$$
. Find $\delta > 0$ s.t. $(x_0 - \delta, x_0 + \delta) \subset I$, and $f(x) - f(x_0) > 0$ for $0 < \delta = 0$.

$$\frac{f(x)-f(x_0)}{x-x_0} > 0 \text{ for } 0 < |x-x_0| < \delta.$$

Then $f(x) > f(x_0)$ for $x \in (x_0, x_0 + \delta)$, which contradicts the assumption that we have max at x_0 .

Rolle's Theorem

Theorem (29.2)

Suppose $f:[a,b]\to\mathbb{R}$ is continuous, differentiable on (a,b). If f(a) = f(b), then $\exists x \in (a, b)$ s.t. f'(x) = 0.

Proof. f attains its max and min; say $f(y_0) \leq f(x) \leq f(x_0)$ for any $x \in [a, b]$. In particular, $f(y_0) \leqslant f(a) = f(b) \leqslant f(x_0)$. If $f(y_0) = f(a) = f(b) = f(x_0)$, then f is a constant, hence f' = 0 on (a,b).

If
$$f(x_0) > f(a) = f(b)$$
, then $x_0 \in (a, b)$, hence $f'(x_0) = 0$.

If
$$f(y_0) < f(a) = f(b)$$
, then $y_0 \in (a, b)$, hence $f'(y_0) = 0$.

Mean Value Theorem

Theorem (29.2 – MVT)

If $f:[a,b]\to\mathbb{R}$ is continuous, differentiable on (a,b), then $\exists x\in(a,b)$ s.t. $f'(x)=\frac{f(b)-f(a)}{b-a}$.

Proof. Let
$$L(x) = f(a) + \frac{f(b) - f(a)}{b - a}(x - a)$$
, $g(x) = f(x) - L(x)$. g is continuous on $[a, b]$, differentiable on (a, b) , $g(a) = 0 = g(b)$. By Rolle's Theorem, $\exists x \in (a, b)$ s.t. $g'(x) = 0$. Then $f'(x) = g'(x) + L'(x) = 0 + \frac{f(b) - f(a)}{b - a}$.

Example. For $x, y \in \mathbb{R}$, $|\sin x - \sin y| \leq |x - y|$.

Apply MVT to
$$f(t) = \sin t$$
 on $[x, y]$: $\exists z \in (x, y)$ s.t. $\frac{f(x) - f(y)}{x - y} = f'(z) = \cos z$. $|\cos z| \le 1$, hence $\frac{|f(x) - f(y)|}{|x - y|} = |\cos z| \le 1$.

Consequences of Mean Value Theorem

Corollary (29.4)

If f is differentiable on (a, b), and f' = 0 on (a, b), then f is a constant function.

Proof. Suppose f is not a constant. Find x < y s.t. $f(x) \neq f(y)$. By MVT, $\exists z \in (x, y)$ s.t. $f'(z) = \frac{f(y) - f(x)}{y - x} \neq 0$.

Corollary (29.5)

If f, g are differentiable on (a, b), and f' = g' on (a, b), then $\exists c \in \mathbb{R}$ s.t. $f(x) = g(x) + c \ \forall x \in (a, b)$.

Proof. Apply Corollary 29.4 to h = f - g.