# MA2001 LINEAR ALGEBRA

## **VECTOR SPACES**

Goh Jun Le / Wang Fei

gohjunle@nus.edu.sg / matwf@nus.edu.sg

Department of Mathematics Office: S17-06-25 / S17-06-16 Tel: 6601-1355 / 6516-2937

| Euclidean n-Spaces                                    | 2  |
|-------------------------------------------------------|----|
| Vectors in $xy$ -Plane                                | 3  |
| Operations on Vectors                                 | 5  |
| Vectors in $xyz$ -Space                               | 11 |
| Euclidean Spaces                                      | 12 |
| Implicit and Explicit Forms                           | 15 |
| Linear Combinations and Linear Spans                  | 24 |
| Linear Combination                                    | 25 |
| Linear Span                                           | 28 |
| Criterion for $\mathrm{span}(S) = \mathbb{R}^n$       | 32 |
| Properties of Linear Spans                            | 37 |
| Subspaces                                             | 45 |
| Subspaces                                             | 46 |
| Subspaces of $\mathbb{R}^1,\mathbb{R}^2,\mathbb{R}^3$ | 49 |
| Solution Space                                        | 52 |
| Linear Independence                                   | 56 |
| Linear Independence                                   | 57 |
| Properties                                            | 61 |
| Bases                                                 | 67 |
| Motivation                                            | 68 |
| Properties                                            | 74 |
| Coordinate Vector                                     | 76 |
| Properties                                            | 80 |
| Dimensions                                            | 85 |
| Criterion for Bases                                   | 86 |
| Dimension                                             | 88 |
| Proportion                                            | 01 |

| Transition Matrices | 98  |
|---------------------|-----|
| Coordinate Vector   | 99  |
| Transition Matrix   | 101 |
| Properties          | 104 |

## Vectors in xy-Plane

• Recall the xy-plane:



- $\circ$  Every point P on the plane is represented by (a,b).
  - a is the x-coordinate and b is the y-coordinate.
- The arrow from the origin O to the point P is called a **vector**, denoted by  $\overrightarrow{OP} = \mathbf{v} = (a, b)$ .

3 / 106

## $\ \, \text{Vectors in } xy\text{-Plane} \\$

A vector represents the change from the initial point to the end point.



If  $\overrightarrow{PQ}$  is parallel shifted to  $\overrightarrow{P'Q'}$ , then  $\circ \quad \overrightarrow{PQ} = \overrightarrow{P'Q'},$ 

- - that is,  $(a_2-a_1,b_2-b_1)=(a_2'-a_1',b_2'-b_1')$ ,
  - that is,  $a_2 a_1 = a_2' a_1'$  &  $b_2 b_1 = b_2' b_1'$ .

## Length

• Let  $v = (v_1, v_2)$  be a vector in xy-plane.



- $\circ$  Its length is  $\|oldsymbol{v}\| = \sqrt{v_1^2 + v_2^2}$
- $\circ$  If v is the vector from  $P(a_1,b_1)$  to  $Q(a_2,b_2)$ .

  - $\mathbf{v} = (a_2 a_1, b_2 b_1).$   $\|\mathbf{v}\| = \sqrt{(a_2 a_1)^2 + (b_2 b_1)^2}.$

5 / 106

#### **Scalar Multiplication**

- Scalar Multiplication. Let  ${m v}=(v_1,v_2)$  and  $c\in \mathbb{R}.$ 
  - $\circ$  Then  $c = (cv_1, cv_2)$

Geometric interpretation:

- $\circ$  cv is a vector parallel to v such that
  - its length is |c| times the length of v.
  - 1. If c = 0, then  $c\mathbf{v} = 0\mathbf{v} = \mathbf{0}$  is the zero vector.
  - 2. If c > 0, then cv has the same direction as v.
  - 3. If c < 0, then cv has the opposite direction of v.

In particular, (-1)v is the **negative** of v, denoted by -v.

- ullet Example. Let  $oldsymbol{v}=(2,1).$  Then
  - $0 \quad 0 \quad 0 = (0,0), -v = (-2,-1), 2v = (4,2).$
  - $\circ$  (-2)v = (-4, -2) = -(2v) = 2(-v).

## **Scalar Multiplication**

- Scalar Multiplication. Let  ${m v}=(v_1,v_2)$  and  $c\in \mathbb{R}.$ 
  - $\circ$  Then  $c \boldsymbol{v} = (c v_1, c v_2)$



- Properties & Exercises.
  - $\circ \quad c(d\mathbf{v}) = (cd)\mathbf{v} = d(c\mathbf{v}).$
  - $\circ$  In particular, -cv = (-c)v = c(-v), -(-v) = v.
  - $\circ \|c\boldsymbol{v}\| = |c| \|\boldsymbol{v}\|, \, \boldsymbol{v} = \boldsymbol{0} \Leftrightarrow \|\boldsymbol{v}\| = 0.$

7 / 106

#### **Addition and Subtraction**

- Addition. Let  $u = (u_1, u_2)$  and  $v = (v_1, v_2)$ .
  - $\circ$  Then  $u + v = (u_1 + v_1, u_2 + v_2)$

#### Geometric interpretation:

 $\circ$  Parallel shift v so that its initial point is the same as the end of u. Then u+v is the vector from the initial point of u to the end point of v.



#### **Addition and Subtraction**

- Subtraction. Let  $u = (u_1, u_2)$  and  $v = (v_1, v_2)$ .
  - $\circ$  Then  $oxed{u-v}=(u_1-v_1,u_2-v_2)$

Note that  $\boldsymbol{u}-\boldsymbol{v}=\boldsymbol{u}+(-\boldsymbol{v}).$ 

Geometric interpretation.

 $\circ$  Parallel shift v so that u and v have the same initial point. Then u-v is the vector from the end point of v to the end point of u.



9 / 106

#### **Addition and Subtraction**

- **Example**. Let u = (2, 3) and v = (4, -5).
  - u + v = (2 + 4, 3 + (-5)) = (6, -2).
  - u v = (2 4, 3 (-5)) = (-2, 8).
- Properties & Exercises. Let u, v, w be vectors in the xy-plane and  $c, d \in \mathbb{R}$ .
  - $\circ \quad \boldsymbol{u} + \boldsymbol{v} = \boldsymbol{v} + \boldsymbol{u}.$
  - (u + v) + w = u + (v + w).
  - $\circ$   $\mathbf{0} + v = v$ , where  $\mathbf{0}$  is the zero vector.
  - v + (-v) = 0.
  - $\circ \quad c(d\mathbf{v}) = (cd)\mathbf{v} = d(c\mathbf{v}).$
  - $\circ c(\boldsymbol{u} + \boldsymbol{v}) = c\boldsymbol{u} + c\boldsymbol{v}.$
  - $\circ (c+d)\mathbf{v} = c\mathbf{v} + d\mathbf{v}.$
  - $\circ$  1 $\boldsymbol{v} = \boldsymbol{v}$ .

#### Vectors in xyz-Space

• Consider the xyz-space:



The vector  $v = \overrightarrow{OP}$  is the arrow from the origin O to P, denoted by v = (a, b, c).

11 / 106

### **Euclidean Spaces**

- **Definition.** An n-vector or ordered n-tuple of real numbers is  $v = (v_1, v_2, \dots, v_i, \dots, v_n)$ .
  - $\circ v_i \in \mathbb{R}$  is the ith component or ith coordinate of v.

Let 
$$u = (u_1, u_2, \dots, u_n)$$
 and  $v = (v_1, v_2, \dots, v_n)$ .

- 1.  $\boldsymbol{u}$  and  $\boldsymbol{v}$  are equal if  $u_i = v_i$  for all  $i = 1, \dots, n$ .
- 2. The *n*-vector  $\mathbf{0} = (0, 0, \dots, 0)$  is the **zero vector**.
- 3. Let  $c \in \mathbb{R}$ . The scalar multiple  $c oldsymbol{v}$  is

$$\circ$$
  $c\mathbf{v} = (cv_1, cv_2, \dots, cv_n).$ 

- 4. The **negative** of v is (-1)v, denoted by -v.
- 5. The addition  $oldsymbol{u} + oldsymbol{v}$  is

$$\bullet$$
  $u + v = (u_1 + v_1, u_2 + v_2, \dots, u_n + v_n).$ 

- 6. The subtraction  $oldsymbol{u} oldsymbol{v}$  is
  - $\circ \ \mathbf{u} \mathbf{v} = (u_1 v_1, u_2 v_2, \dots, u_n v_n).$

#### **Euclidean Spaces**

- ullet Notation. An n-vector  $(v_1,v_2,\ldots,v_n)$  can be viewed as
  - $\circ$  a row matrix (row vector)  $(v_1 \ v_2 \ \cdots \ v_n)$ ,
  - $\circ$  a column matrix (column vector)  $egin{pmatrix} v_1 \\ v_2 \\ \vdots \\ v_n \end{pmatrix}$
- Properties. Let u, v, w be n-vectors and  $c, d \in \mathbb{R}$ .
  - $\circ \quad \boldsymbol{u} + \boldsymbol{v} = \boldsymbol{v} + \boldsymbol{u}.$
  - (u + v) + w = u + (v + w).
  - v + 0 = v and v + (-v) = 0.
  - $\circ c(\boldsymbol{u} + \boldsymbol{v}) = c\boldsymbol{u} + c\boldsymbol{v}.$
  - $\circ (c+d)\mathbf{v} = c\mathbf{v} + d\mathbf{v}.$
  - $\circ \quad c(d\mathbf{v}) = (cd)\mathbf{v}.$
  - $\circ \quad 1 \boldsymbol{v} = \boldsymbol{v}. \qquad \text{(Verification is left as exercise.)}$

13 / 106

#### **Euclidean Spaces**

- The Euclidean n-space (or simply n-space) is the set of all n-vectors of real numbers.
  - $\circ \ \mathbb{R}^n = \{ (v_1, v_2, \dots, v_n) \mid v_1, v_2, \dots, v_n \in \mathbb{R} \}.$
  - $oldsymbol{v} \in \mathbb{R}^n$  if and only if  $oldsymbol{v}$  is of the form
  - $\circ \quad v = (v_1, v_2, \dots, v_n)$  for real numbers  $v_1, v_2, \dots, v_n$ .
- In particular,
  - $\circ$  If n=1, then  $\mathbb{R}=\mathbb{R}^1$  is the real line.
  - $\circ$  If n=2, then  $\mathbb{R}^2$  is the xy-plane.
  - $\circ$  If n=3, then  $\mathbb{R}^3$  is the xyz-space.
- Linear system Ax = b in m equations and n variables.
  - $\circ$  x can be viewed as an n-vector, i.e.,  $x \in \mathbb{R}^n$ .

Then the solution set of Ax = b is a subset of  $\mathbb{R}^n$ .

#### **Implicit and Explicit Forms**

• A linear system is given in the implicit form:

$$\circ \begin{cases}
a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1 \\
a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2 \\
\vdots & \vdots & \vdots \\
a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = b_m
\end{cases}$$

- $\bullet \quad \text{Example.} \quad \left\{ \begin{array}{l} x+y+\ z=0, \\ x-y+2z=1. \end{array} \right.$ 
  - o An implicit form of the solution set is
    - $\{(x,y,z) \mid x+y+z=0 \text{ and } x-y+2z=1\}.$

Geometrically, the solution set is the intersection of two non-parallel planes, which is a straight line in  $\mathbb{R}^3$ .

15 / 106

#### **Implicit and Explicit Forms**

• A linear system is given in the **implicit form**:

$$\circ \begin{cases}
a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1 \\
a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2 \\
\vdots & \vdots & \vdots \\
a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = b_m
\end{cases}$$

Its general solution is in the explicit form.

• Example.  $\begin{cases} x+y+z=0, \\ x-y+2z=1. \end{cases}$ 

$$\begin{pmatrix} x - y + 2z = 1. \\ 0 & \begin{pmatrix} 1 & 1 & 1 & 0 \\ 1 & -1 & 2 & 1 \end{pmatrix} \xrightarrow{R_2 + (-1)R_1} \begin{pmatrix} 1 & 1 & 1 & 0 \\ 0 & -2 & 1 & 1 \end{pmatrix}.$$

- $\bullet \quad x=\tfrac12-\tfrac32t, y=-\tfrac12+\tfrac12t, z=t, \text{ where } t\in\mathbb{R}.$
- o An explicit form of the solution set is
  - $\{(\frac{1}{2} \frac{3}{2}t, -\frac{1}{2} + \frac{1}{2}t, t) \mid t \in \mathbb{R}\}.$

#### Lines in $\mathbb{R}^2$

- A straight line in  $\mathbb{R}^2$  is of the form
  - $\circ$  ax + by = c, where a and b are not both zero.

Implicit form:  $\{(x,y) \mid ax + by = c\}$ .

Explicit form:

- $\circ$  If  $a \neq 0$ , then y = t and  $x = \frac{c bt}{a}$ .
  - $\left\{ \left( \frac{c bt}{a}, t \right) \mid t \in \mathbb{R} \right\}.$
- $\circ \quad \text{If } b \neq 0 \text{, then } x = s \text{ and } y = \frac{c as}{b}.$ 
  - $\left\{ \left( s, \frac{c as}{b} \right) \mid s \in \mathbb{R} \right\}.$

17 / 106

#### Lines in $\mathbb{R}^2$

- A straight line in  $\mathbb{R}^2$  is determined by a point  $(x_0, y_0)$  on the line, and its direction vector  $(a, b) \neq \mathbf{0}$ .
  - $\circ$  A point on the line is of the form  $(x_0, y_0) + t(a, b)$ .

Explicit form of the line:

- $\circ \{(x_0+ta,y_0+tb) \mid t \in \mathbb{R}\}.$
- Example. Suppose a line has an explicit form:

$$\circ \{(2+5t, 3-2t) \mid t \in \mathbb{R}\}.$$

Find an implicit form of the line.

**Solution.** x = 2 + 5t and y = 3 - 2t.

$$\circ \quad t = \frac{x-2}{5} \text{ and } t = \frac{3-y}{2}.$$

$$\begin{array}{l} \circ \quad t=\dfrac{x-2}{5} \text{ and } t=\dfrac{3-y}{2}. \\ \circ \quad \dfrac{x-2}{5}=\dfrac{3-y}{2} \Rightarrow \{(x,y) \mid 2x+5y=19\}. \end{array}$$

#### Planes in $\mathbb{R}^3$

- A plane in  $\mathbb{R}^3$  is of the form
  - $\circ \quad ax + by + cz = d$ , where a, b, c are not all zero.

Implicit form:  $\{(x, y, z) \mid ax + by + cz = d\}$ .

Explicit form:

- $\circ \quad \text{If } a \neq 0, \, \bigg\{ \bigg( \frac{d-bs-ct}{a}, s, t \bigg) \mid s, t \in \mathbb{R} \bigg\}.$
- $\circ \quad \text{If } b \neq 0, \left\{ \left( s, \frac{d-as-ct}{b}, t \right) \mid s, t \in \mathbb{R} \right\}.$
- $\circ \quad \text{If } c \neq 0, \left\{ \left( s, t, \frac{d as bt}{c} \right) \mid s, t \in \mathbb{R} \right\}.$

19 / 106

## Planes in $\mathbb{R}^3$

• Three non-collinear points A, B, C determines a plane.



$$egin{aligned} oldsymbol{r} - oldsymbol{a} &= \overrightarrow{AB'} + \overrightarrow{AC'} \\ &= s\overrightarrow{AB} + t\overrightarrow{AC} \\ &= soldsymbol{u} + toldsymbol{v}. \end{aligned}$$

 $\circ \quad | \mathbf{r} = \mathbf{a} + s\mathbf{u} + t\mathbf{v}, \quad s, t \in \mathbb{R}$ 

#### Planes in $\mathbb{R}^3$

- A plane in  $\mathbb{R}^3$  can be explicitly represented as
  - $\circ \{(x_0, y_0, z_0) + s(a_1, b_1, c_1) + t(a_2, b_2, c_2) \mid s, t \in \mathbb{R}\},\$

 $(x_0,y_0,z_0)$  is a point on the plane, and  $(a_1,b_1,c_1)$  &  $(a_2,b_2,c_2)$  are non-parallel vectors parallel to the plane.

• Example. A plane is given by

$$\circ \{(1+s-t,2+s-2t,4-s-3t) \mid s,t \in \mathbb{R}\}.$$

Let 
$$x = 1 + s - t$$
,  $y = 2 + s - 2t$ ,  $z = 4 - s - 3t$ .

$$\circ \quad \left( \begin{array}{cc|c} 1 & -1 & x-1 \\ 1 & -2 & y-2 \\ -1 & -3 & z-4 \end{array} \right) \xrightarrow{\text{Gaussian}} \left( \begin{array}{cc|c} 1 & -1 & x-1 \\ 0 & -1 & -x+y-1 \\ 0 & 0 & 5x-4y+z-1 \end{array} \right).$$

The system is consistent. So 5x - 4y + z - 1 = 0.

- o Implicit form:
  - $\{(x,y,z) \mid 5x-4y+z=1\}.$

21 / 106

#### Lines in $\mathbb{R}^3$

- ullet A straight line in  $\mathbb{R}^3$  is the intersection of two non-parallel planes. An implicit form is
  - $\circ \{(x,y,z) \mid a_1x + b_1y + c_1z = d_1 \& a_2x + b_2y + c_2z = d_2\},\$

 $a_i, b_i, c_i$  not all zero, and the planes are not parallel.

• Example. Suppose a line is the intersection of

$$x + 2y + 3z = 4$$
 and  $2x + 3y + 4z = 5$ .

Solve the system to have

$$\circ x = t - 2, y = -2t + 3 \text{ and } z = t.$$

An explicit form of the line:

$$\circ \{(t-2,-2t+3,t) \mid t \in \mathbb{R}\}.$$

Note that (t-2, -2t+3, t) = (-2, 3, 0) + t(1, -2, 1).

## Lines in $\mathbb{R}^3$

- A straight line in  $\mathbb{R}^3$  is determined by a point  $(x_0, y_0, z_0)$  on the line, and its direction vector  $(a, b, c) \neq \mathbf{0}$ .
  - $\circ$  A point on the line:  $(x_0, y_0, z_0) + t(a, b, c)$ .

Explicit form:  $\{(x_0 + ta, y_0 + tb, z_0 + tc) \mid t \in \mathbb{R}\}.$ 

In order to have an implicit form, we need to find two non-parallel planes ax + by + cz = d containing the line.

- Example.  $\{(t-2, -2t+3, t+1) \mid t \in \mathbb{R}\}.$ 
  - $\circ \quad x = t 2 \text{ and } y = -2t + 3$ 
    - $y = -2(2+x) + 3 \Rightarrow 2x + y = -1$ .
  - $\circ$  x = t 2 and z = t + 1.
    - x z = -3.

An implicit form of the line is

 $\circ \{(x, y, z) \mid 2x + y = -1 \& x - z = -3\}.$ 

23 / 106

## **Linear Combinations and Linear Spans**

24 / 106

#### **Linear Combination**

- Recall the operations on vectors in  $\mathbb{R}^n$ .
  - $\circ \quad \text{If } \boldsymbol{v} = (v_1, \dots, v_n) \in \mathbb{R}^n \text{ and } c \in \mathbb{R},$ 
    - $c\mathbf{v} = (cv_1, \dots, cv_n).$
  - $\circ$  If  $\boldsymbol{u}=(u_1,\ldots,u_n)$  and  $\boldsymbol{v}\in(v_1,\ldots,v_n)\in\mathbb{R}^n$ ,
    - $u + v = (u_1 + v_1, \dots, u_n + v_n).$
- **Definition.** Let  $v_1, v_2, \ldots, v_k$  be vectors in  $\mathbb{R}^n$ .
  - $\circ$  A linear combination of  $oldsymbol{v}_1,oldsymbol{v}_2,\ldots,oldsymbol{v}_k$  has the form
    - $\bullet c_1 \boldsymbol{v}_1 + c_2 \boldsymbol{v}_2 + \cdots + c_k \boldsymbol{v}_k,$

where  $c_1, c_2, \ldots, c_k \in \mathbb{R}$ .

In particular,  $\mathbf{0}$  is a linear combination of  $v_1, v_2, \dots, v_k$ :

 $\circ \quad \mathbf{0} = 0\mathbf{v}_1 + 0\mathbf{v}_2 + \dots + 0\mathbf{v}_k.$ 

• Let  $v_1 = (2, 1, 3), v_2 = (1, -1, 2)$  and  $v_3 = (3, 0, 5)$ .

 $\circ$  Is  $oldsymbol{v}=(3,3,4)$  a linear combination of  $oldsymbol{v}_1,oldsymbol{v}_2,oldsymbol{v}_3$ ?

Suppose that  ${m v}=a{m v}_1+b{m v}_2+c{m v}_3$ , i.e.,

$$(3,3,4) = a(2,1,3) + b(1,-1,2) + c(3,0,5)$$
  
=  $(2a+b+3c,a-b,3a+2b+5c)$ .

$$\text{Solve the linear system} \left\{ \begin{array}{ll} 2a+\ b+3c=3\\ a-\ b=3\\ 3a+2b+5c=4. \end{array} \right.$$

$$\circ \quad \left( \begin{array}{cc|cc} 2 & 1 & 3 & 3 \\ 1 & -1 & 0 & 3 \\ 3 & 2 & 5 & 4 \end{array} \right) \xrightarrow[\text{elimination}]{\text{Gaussian}} \left( \begin{array}{cc|cc} 2 & 1 & 3 & 3 \\ 0 & -\frac{3}{2} & -\frac{3}{2} & \frac{3}{2} \\ 0 & 0 & 0 & 0 \end{array} \right)$$

The system is consistent.

 $\circ$  Therefore, v is a linear combination of  $v_1, v_2, v_3$ .

26 / 106

#### **Examples**

• Let  $v_1 = (2, 1, 3)$ ,  $v_2 = (1, -1, 2)$  and  $v_3 = (3, 0, 5)$ .

• Is v = (1, 2, 4) a linear combination of  $v_1, v_2, v_3$ ?

Suppose that  $oldsymbol{v} = aoldsymbol{v}_1 + boldsymbol{v}_2 + coldsymbol{v}_3$ , i.e.,

$$(1,2,4) = a(2,1,3) + b(1,-1,2) + c(3,0,5)$$
  
=  $(2a+b+3c,a-b,3a+2b+5c)$ .

 $\text{Solve the linear system} \left\{ \begin{array}{ll} 2a+\ b+3c=1\\ a-\ b &=2\\ 3a+2b+5c=4. \end{array} \right.$ 

$$\circ \quad \left( \begin{array}{cc|c} 2 & 1 & 3 & 1 \\ 1 & -1 & 0 & 2 \\ 3 & 2 & 5 & 4 \end{array} \right) \xrightarrow[\text{elimination}]{\text{Gaussian}} \left( \begin{array}{cc|c} 2 & 1 & 3 & 1 \\ 0 & -\frac{3}{2} & -\frac{3}{2} & \frac{3}{2} \\ 0 & 0 & 0 & 3 \end{array} \right)$$

The system is inconsistent.

• Therefore, v is not a linear combination of  $v_1, v_2, v_3$ .

#### **Linear Span**

- **Definition.** Let  $S = \{v_1, v_2, \dots, v_k\}$  be a subset of  $\mathbb{R}^n$ .
  - $\circ$  The set of all linear combinations of  $oldsymbol{v}_1,oldsymbol{v}_2,\ldots,oldsymbol{v}_k$ 
    - $\{c_1 \mathbf{v}_1 + c_2 \mathbf{v}_2 + \dots + c_k \mathbf{v}_k \mid c_1, c_2, \dots, c_k \in \mathbb{R}\}$

is called the **linear span** of S (or  $v_1, v_2, \ldots, v_n$ ).

- It is denoted by  $\operatorname{span}(S)$  or  $\operatorname{span}\{\boldsymbol{v}_1,\boldsymbol{v}_2,\ldots,\boldsymbol{v}_k\}$ .
- $oldsymbol{v}$  is a linear combination of  $oldsymbol{v}_1, oldsymbol{v}_2, \dots, oldsymbol{v}_k$

$$\Leftrightarrow \boldsymbol{v} \in \operatorname{span}\{\boldsymbol{v}_1, \boldsymbol{v}_2, \dots, \boldsymbol{v}_k\}.$$

- Example. Let  $S = \{(2,1,3), (1,-1,2), (3,0,5)\}.$ 
  - $\circ$   $(3,3,4) \in \operatorname{span}(S)$  but  $(1,2,4) \notin \operatorname{span}(S)$ .

**Example.** Let  $S = \{(1,0,0), (0,1,0), (0,0,1)\}.$ 

 $\circ (x, y, z) = x(1, 0, 0) + y(0, 1, 0) + z(0, 0, 1).$ 

Therefore, span $(S) = \mathbb{R}^3$ .

28 / 106

#### **Examples**

- Let  $S = \{(1,0,0,-1),(0,1,1,0)\}$  be a subset of  $\mathbb{R}^4$ .
  - $\circ$  Every vector in  $\operatorname{span}(S)$  is of the form
    - a(1,0,0,-1) + b(0,1,1,0) = (a,b,b,-a),

where  $a, b \in \mathbb{R}$ .

- $\circ \quad \operatorname{span}(S) = \{(a, b, b, -a) \mid a, b \in \mathbb{R}\}.$
- Let  $V = \{(2a+b, a, 3b-a) \mid a, b \in \mathbb{R}\} \subseteq \mathbb{R}^3$ .
  - $\circ$  Every vector in V is of the form
    - (2a + b, a, 3b a) = a(2, 1, -1) + b(1, 0, 3),

where  $a, b \in \mathbb{R}$ .

 $V = \operatorname{span}\{(2, 1, -1), (1, 0, 3)\}.$ 

- Prove that  $\operatorname{span}\{(1,0,1),(1,1,0),(0,1,1)\}=\mathbb{R}^3$ .
  - $\quad \text{o} \quad \text{It is clear: } \mathrm{span}\{(1,0,1),(1,1,0),(0,1,1)\} \subseteq \mathbb{R}^3.$

Is 
$$\mathbb{R}^3 \subseteq \text{span}\{(1,0,1),(1,1,0),(0,1,1)\}$$
?

- Let  $(x,y,z)\in\mathbb{R}^3$ . We shall find  $a,b,c\in\mathbb{R}$  such that
  - $\circ \quad (x,y,z) = a(1,0,1) + b(1,1,0) + c(0,1,1).$
  - $\circ \quad \text{Equivalently, } \left\{ \begin{array}{ll} a+b & =x \\ b+c=y \\ a & +c=z \end{array} \right.$ 
    - $\bullet \quad \left(\begin{array}{ccc|c} 1 & 1 & 0 & x \\ 0 & 1 & 1 & y \\ 1 & 0 & 1 & z \end{array}\right) \xrightarrow{\text{Gaussian}} \left(\begin{array}{ccc|c} 1 & 1 & 0 & x \\ 0 & 1 & 1 & y \\ 0 & 0 & 2 & z x + y \end{array}\right)$

The system is always consistent for any  $(x, y, z) \in \mathbb{R}^3$ .

Therefore, span $\{(1,0,1),(1,1,0),(0,1,1)\} = \mathbb{R}^3$ .

30 / 106

## **Examples**

- Prove that span $\{(1,1,1),(1,2,0),(2,1,3),(2,3,1)\} \neq \mathbb{R}^3$ .
  - Clear: span $\{(1,1,1),(1,2,0),(2,1,3),(2,3,1)\}\subseteq \mathbb{R}^3$ .

Is 
$$\mathbb{R}^3 \nsubseteq \text{span}\{(1,1,1), (1,2,0), (2,1,3), (2,3,1)\}$$
?

- Let  $(x,y,z)\in\mathbb{R}^3.$  Can we find  $a,b,c,d\in\mathbb{R}$  such that
  - (x, y, z) = a(1, 1, 1) + b(1, 2, 0) + c(2, 1, 3) + d(2, 3, 1)?
  - $\circ \quad \text{Equivalently,} \left\{ \begin{array}{ll} a+\ b+2c+2d=x\\ a+2b+\ c+3d=y\\ a & +3c+\ d=z \end{array} \right.$

$$\bullet \quad \left(\begin{array}{ccc|cccc} 1 & 1 & 2 & 2 & x \\ 1 & 2 & 1 & 3 & y \\ 1 & 0 & 3 & 1 & z \end{array}\right) \xrightarrow{\text{G.E.}} \left(\begin{array}{ccccccc} 1 & 1 & 2 & 2 & x \\ 0 & 1 & -1 & 1 & y - x \\ 0 & 0 & 0 & 0 & y + z - 2x \end{array}\right)$$

The system is consistent  $\Leftrightarrow y + z - 2x = 0$ .

Therefore, span $\{(1,1,1),(1,2,0),(2,1,3),(2,3,1)\} \neq \mathbb{R}^3$ .

 $\circ \ \ \operatorname{span}\{(1,1,1),(1,2,0),(2,1,3),(2,3,1)\}$ 

$$= \{(x, y, z) \mid y + z - 2x = 0\}.$$

## Criterion for $\operatorname{span}(S) = \mathbb{R}^n$

- Let  $S = \{ \boldsymbol{v}_1, \boldsymbol{v}_2, \dots, \boldsymbol{v}_k \} \subseteq \mathbb{R}^n$ . Is  $\mathrm{span}(S) = \mathbb{R}^n$ ?
  - $\circ$  For arbitrary  $oldsymbol{v} \in \mathbb{R}^n$ , we shall check the consistency of
    - $\bullet \quad c_1 \mathbf{v}_1 + c_2 \mathbf{v}_2 + \cdots + c_k \mathbf{v}_k = \mathbf{v}.$

View each 
$$v_j$$
 as a column vector  $v_j = \begin{pmatrix} a_{1j} \\ a_{2j} \\ \vdots \\ a_{nj} \end{pmatrix}$ . 
$$\begin{pmatrix} v_1 \\ v_2 \\ \vdots \\ v_n \end{pmatrix} = v = c_1 \begin{pmatrix} a_{11} \\ a_{21} \\ \vdots \\ a_{n1} \end{pmatrix} + c_2 \begin{pmatrix} a_{12} \\ a_{22} \\ \vdots \\ a_{n2} \end{pmatrix} + \dots + c_k \begin{pmatrix} a_{1k} \\ a_{2k} \\ \vdots \\ a_{nk} \end{pmatrix}$$

32 / 106

## Criterion for $\operatorname{span}(S) = \mathbb{R}^n$

- Let  $S = \{v_1, v_2, \dots, v_k\} \subseteq \mathbb{R}^n$ . Is  $\mathrm{span}(S) = \mathbb{R}^n$ ?
  - $\circ$  For arbitrary  $oldsymbol{v} \in \mathbb{R}^n$ , we shall check the consistency of
    - $\bullet \quad c_1 \mathbf{v}_1 + c_2 \mathbf{v}_2 + \cdots + c_k \mathbf{v}_k = \mathbf{v}.$

View  $v_i$  as column vectors. Let  $A = (v_1 \quad v_2 \quad \cdots \quad v_k)$ .

ullet The system can be written as Ax=v.

Let  ${m R}$  be a row-echelon form of  ${m A}$ .

- $\circ \quad (m{A} \mid m{v}) \xrightarrow{\mathsf{Gaussian}} (m{R} \mid m{v}').$ 
  - Since  $oldsymbol{v} \in \mathbb{R}^n$  is arbitrary,  $oldsymbol{v}' \in \mathbb{R}^n$  is also arbitrary.

$$\begin{split} \operatorname{span}(S) &= \mathbb{R}^n \Leftrightarrow \boldsymbol{A}\boldsymbol{x} = \boldsymbol{v} \text{ consistent for every } \boldsymbol{v} \in \mathbb{R}^n \\ &\Leftrightarrow \operatorname{last column of } (\boldsymbol{R} \mid \boldsymbol{v}') \text{ non-pivot for any } \boldsymbol{v}' \in \mathbb{R}^n \\ &\Leftrightarrow \boldsymbol{R} \text{ has no zero row.} \end{split}$$

## Criterion for $\mathrm{span}(S) = \mathbb{R}^n$

- Let  $S = \{ \boldsymbol{v}_1, \boldsymbol{v}_2, \dots, \boldsymbol{v}_k \} \subseteq \mathbb{R}^n$ .
  - 1. View each  $oldsymbol{v}_j$  as a column vector.
  - 2. Let  $A = (v_1 \quad v_2 \quad \cdots \quad v_k)$ .
  - 3. Find a row-echelon form R of A.
    - If R has a zero row, then  $\operatorname{span}(S) \neq \mathbb{R}^n$ .
    - $\circ$  If  $\boldsymbol{R}$  has no zero row, then  $\mathrm{span}(S) = \mathbb{R}^n$ .
- Example.

$$\circ \quad \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \end{pmatrix} \xrightarrow{\text{Gaussian}} \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 2 \end{pmatrix}.$$

 $\therefore \operatorname{span}\{(1,0,1),(1,1,0),(0,1,1)\} = \mathbb{R}^3.$ 

34 / 106

## Criterion for $\operatorname{span}(S) = \mathbb{R}^n$

- Let  $S = \{ oldsymbol{v}_1, oldsymbol{v}_2, \dots, oldsymbol{v}_k \} \subseteq \mathbb{R}^n$ .
  - 1. View each  $oldsymbol{v}_i$  as a column vector.
  - 2. Let  $A = (v_1 \quad v_2 \quad \cdots \quad v_k)$ .
  - 3. Find a row-echelon form R of A.
    - If R has a zero row, then  $\operatorname{span}(S) \neq \mathbb{R}^n$ .
    - If R has no zero row, then  $\operatorname{span}(S) = \mathbb{R}^n$ .
- Example.

$$\circ \quad \begin{pmatrix} 1 & 1 & 2 & 2 \\ 1 & 2 & 1 & 3 \\ 1 & 0 & 3 & 1 \end{pmatrix} \xrightarrow{\text{Gaussian}} \begin{pmatrix} 1 & 1 & 2 & 2 \\ 0 & 1 & -1 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix}.$$

 $\therefore$  span $\{(1,1,1),(1,2,0),(2,1,3),(2,3,1)\} \neq \mathbb{R}^3$ .

## Criterion for span $(S) = \mathbb{R}^n$

- Theorem. Let  $S = \{ \boldsymbol{v}_1, \boldsymbol{v}_2, \dots, \boldsymbol{v}_k \}$  be a subset of  $\mathbb{R}^n$ .
  - $\circ \quad \text{If } k < n \text{, then } \mathrm{span}(S) \neq \mathbb{R}^n.$

**Proof.** View each  $v_j$  as a column vector. Then

 $\circ$   $oldsymbol{A} = egin{pmatrix} oldsymbol{v}_1 & oldsymbol{v}_2 & \cdots & oldsymbol{v}_k \end{pmatrix}$  is an n imes k matrix.

Let R be a row-echelon form of A. Then R is  $n \times k$ .

- 1. R has at most k pivot columns.
- 2.  $\boldsymbol{R}$  has at most k nonzero rows.
- 3.  $\mathbf{R}$  has at least n k > 0 zero rows.

Therefore, span $(S) \neq \mathbb{R}^n$ .

- Examples.
  - One vector cannot span  $\mathbb{R}^2$ .
  - Two vectors cannot span  $\mathbb{R}^3$ .

36 / 106

#### **Properties of Linear Spans**

- Let  $S = \{ \boldsymbol{u}_1, \boldsymbol{u}_2, \dots, \boldsymbol{u}_k \} \subseteq \mathbb{R}^n$ .
  - $\circ \quad \text{Then } \mathbf{0} = 0\mathbf{u}_1 + 0\mathbf{u}_2 + \cdots + 0\mathbf{u}_k \in \operatorname{span}(S).$

Suppose  $v_1, v_2, \ldots, v_r \in \operatorname{span}(S)$ .

- $\circ$  Each  $v_i$  is a linear combination of  $u_1, u_2, \ldots, u_k$ .
  - $\mathbf{v}_1 = a_{11}\mathbf{u}_1 + a_{12}\mathbf{u}_2 + \dots + a_{1k}\mathbf{u}_k$ .
  - $\mathbf{v}_2 = a_{21}\mathbf{u}_1 + a_{22}\mathbf{u}_2 + \dots + a_{2k}\mathbf{u}_k$ .
  - $\bullet \quad \boldsymbol{v}_r = a_{r1}\boldsymbol{u}_1 + a_{r2}\boldsymbol{u}_2 + \dots + a_{rk}\boldsymbol{u}_k.$

Then for any  $c_1, c_2, \ldots, c_r \in \mathbb{R}$ ,

$$c_{1}\boldsymbol{v}_{1} + \dots + c_{r}\boldsymbol{v}_{r} = c_{1}(a_{11}\boldsymbol{u}_{1} + \dots + a_{1k}\boldsymbol{u}_{k})$$

$$+ \dots + c_{r}(a_{r1}\boldsymbol{u}_{1} + \dots + a_{rk}\boldsymbol{u}_{k})$$

$$= (c_{1}a_{11} + \dots + c_{r}a_{r1})\boldsymbol{u}_{1}$$

$$+ \dots + (c_{1}a_{1k} + \dots + c_{r}a_{rk})\boldsymbol{u}_{k}.$$

#### **Properties of Linear Spans**

- Theorem. Let  $S = \{u_1, u_2, \dots, u_k\}$  be a subset of  $\mathbb{R}^n$ .
  - $\circ$   $\mathbf{0} \in \operatorname{span}(S)$ , where  $\mathbf{0}$  is the zero vector in  $\mathbb{R}^n$ .
  - $\circ$  Let  $v_1, v_2, \ldots, v_r \in \operatorname{span}(S), c_1, c_2, \ldots, c_r \in \mathbb{R}$ .
    - $c_1 \mathbf{v}_1 + c_2 \mathbf{v}_2 + \cdots + c_r \mathbf{v}_r \in \operatorname{span}(S)$ .
- Remarks. In particular,
  - ∘ Since  $\mathbf{0} \in \operatorname{span}(S)$ ,  $\operatorname{span}(S) \neq \emptyset$ .
  - $\circ \quad \boldsymbol{v} \in \operatorname{span}(S) \text{ and } c \in \mathbb{R} \Rightarrow c\boldsymbol{v} \in \operatorname{span}(S).$ 
    - $\operatorname{span}(S)$  is **closed** under scalar multiplication.
  - $\circ$   $u \in \operatorname{span}(S)$  and  $v \in \operatorname{span}(S) \Rightarrow u + v \in \operatorname{span}(S)$ .
    - $\operatorname{span}(S)$  is closed under addition.

38 / 106

#### **Properties of Linear Spans**

- **Theorem.** Given two subsets of  $\mathbb{R}^n$ :
  - $\circ$   $S_1 = \{u_1, u_2, \dots, u_k\}, S_2 = \{v_1, v_2, \dots, v_m\}.$

Then  $\operatorname{span}(S_1) \subseteq \operatorname{span}(S_2)$ 

 $\Leftrightarrow$  Every  $u_i$  is a linear combination of  $v_1, v_2, \ldots, v_m$ .

**Proof.**  $\Rightarrow$ : Suppose that  $\operatorname{span}(S_1) \subseteq \operatorname{span}(S_2)$ .

- $\circ \quad \boldsymbol{u}_i = 0\boldsymbol{u}_1 + \dots + 1\boldsymbol{u}_i + \dots + 0\boldsymbol{u}_k \in \operatorname{span}(S_1).$ 
  - Then  $u_i \in \operatorname{span}(S_2)$  by assumption.

That is,  $u_i$  is a linear combination of  $v_1, v_2, \dots, v_m$ .

- $\Leftarrow$ : Suppose each  $u_i$  is a linear combination of  $v_1, v_2, \ldots, v_m$ .
- $\circ$  Let  ${m w} \in \operatorname{span}(S_1)$ . There exist  $c_1, c_2, \ldots, c_k \in \mathbb{R}$  s.t.
  - $w = c_1 u_1 + c_2 u_2 + \cdots + c_k u_k \in \text{span}(S_2).$

Therefore,  $\operatorname{span}(S_1) \subseteq \operatorname{span}(S_2)$ .

#### **Properties of Linear Spans**

- Theorem. Let  $v_1, v_2, \dots, v_{k-1}, v_k \in \mathbb{R}^n$ .
  - $\circ$  If  $oldsymbol{v}_k$  is a linear combination of  $oldsymbol{v}_1, oldsymbol{v}_2, \dots, oldsymbol{v}_{k-1}$ , then
    - $\operatorname{span}\{v_1,\ldots,v_{k-1}\}=\operatorname{span}\{v_1,\ldots,v_{k-1},v_k\}.$

Proof. It follows from the definition of linear span that

$$\circ \operatorname{span}\{\boldsymbol{v}_1,\ldots,\boldsymbol{v}_{k-1}\} \subseteq \operatorname{span}\{\boldsymbol{v}_1,\ldots,\boldsymbol{v}_{k-1},\boldsymbol{v}_k\}.$$

Since  $v_k$  is a linear combination of  $v_1, \ldots, v_{k-1}$ ,

- $\circ \operatorname{span}\{\boldsymbol{v}_1,\ldots,\boldsymbol{v}_{k-1},\boldsymbol{v}_k\} \subseteq \operatorname{span}\{\boldsymbol{v}_1,\ldots,\boldsymbol{v}_{k-1}\}.$
- $\therefore \text{ span}\{v_1,\ldots,v_{k-1}\} = \text{span}\{v_1,\ldots,v_{k-1},v_k\}.$
- Example. Let  $v_1 = (1, 1, 0, 2), v_2 = (1, 0, 0, 1).$ 
  - $\circ$  Let  $v_3 = v_1 v_2 = (0, 1, 0, 1)$ .

Then  $\operatorname{span}\{\boldsymbol{v}_1,\boldsymbol{v}_2\} = \operatorname{span}\{\boldsymbol{v}_1,\boldsymbol{v}_2,\boldsymbol{v}_3\}.$ 

40 / 106

## **Properties of Linear Spans**

• Let  $S = \{ \boldsymbol{v}_1, \boldsymbol{v}_2, \dots, \boldsymbol{v}_k \}$  be a subset of  $\mathbb{R}^n$ .

 $\boldsymbol{v} \in \operatorname{span}(S) \Leftrightarrow \boldsymbol{v} = c_1 \boldsymbol{v}_1 + \dots + c_k \boldsymbol{v}_k$  for some  $c_i \in \mathbb{R}$ 

$$\Leftrightarrow egin{pmatrix} oldsymbol{v}_1 & \cdots & oldsymbol{v}_k \end{pmatrix} egin{pmatrix} c_1 \ dots \ c_k \end{pmatrix} = oldsymbol{v}.$$

- 1. View each  $v_i$  as a column vector.
- 2. Let  $A = (v_1 \cdots v_k)$ .
- 3. Check if the linear system Ax = v is consistent.
  - If Ax = v is consistent, then  $v \in \text{span}(S)$ .
  - If Ax = v is inconsistent, then  $v \notin \text{span}(S)$ .

• Let  $u_1 = (1, 0, 1)$ ,  $u_2 = (1, 1, 2)$ ,  $u_3 = (-1, 2, 1)$ , and

$$v_1 = (1, 2, 3), v_2 = (2, -1, 1).$$

Prove that  $\operatorname{span}\{\boldsymbol{u}_1,\boldsymbol{u}_2,\boldsymbol{u}_3\} = \operatorname{span}\{\boldsymbol{v}_1,\boldsymbol{v}_2\}.$ 

**Solution.** Step 1:  $\operatorname{span}\{u_1, u_2, u_3\} \subseteq \operatorname{span}\{v_1, v_2\}.$ 

 $\circ$  Show that  $u_1, u_2, u_3 \in \operatorname{span}\{v_1, v_2\}.$ 

$$\left(\begin{array}{cc|cc|c} 1 & 2 & 1 & 1 & -1 \\ 2 & -1 & 0 & 1 & 2 \\ 3 & 1 & 1 & 2 & 1 \end{array}\right) \xrightarrow{\text{G.E.}} \left(\begin{array}{cc|cc|c} 1 & 2 & 1 & 1 & -1 \\ 0 & -5 & -2 & -1 & 4 \\ 0 & 0 & 0 & 0 & 0 \end{array}\right)$$

- $\circ$  The systems  $(oldsymbol{v}_1 \quad oldsymbol{v}_2) \, oldsymbol{x} = oldsymbol{u}_i$  are all consistent.
  - Then  $u_1, u_2, u_3 \in \text{span}\{v_1, v_2\}.$

Therefore, span $\{u_1, u_2, u_3\} \subseteq \text{span}\{v_1, v_2\}$ .

42 / 106

## **Examples**

- Let  $u_1 = (1,0,1)$ ,  $u_2 = (1,1,2)$ ,  $u_3 = (-1,2,1)$ , and
  - $v_1 = (1, 2, 3), v_2 = (2, -1, 1).$

Prove that span $\{u_1, u_2, u_3\} = \text{span}\{v_1, v_2\}.$ 

**Solution.** Step 2: span $\{v_1, v_2\} \subseteq \text{span}\{u_1, u_2, u_3\}$ .

 $\circ$  Show that  $v_1, v_2 \in \operatorname{span}\{u_1, u_2, u_3\}$ .

$$\left(\begin{array}{ccc|c} 1 & 1 & -1 & 1 & 2 \\ 0 & 1 & 2 & 2 & -1 \\ 1 & 2 & 1 & 3 & 1 \end{array}\right) \xrightarrow{\text{G.E.}} \left(\begin{array}{ccc|c} 1 & 1 & -1 & 1 & 2 \\ 0 & 1 & 2 & 2 & 2 & -1 \\ 0 & 0 & 0 & 0 & 0 \end{array}\right)$$

- $\circ$  The systems  $(oldsymbol{u}_1 \quad oldsymbol{u}_2 \quad oldsymbol{u}_3) \, oldsymbol{x} = oldsymbol{v}_j$  are all consistent.
  - Then  $v_1, v_2 \in \text{span}\{u_1, u_2, u_3\}.$

Therefore, span $\{v_1, v_2\} \subseteq \text{span}\{u_1, u_2, u_3\}$ .

We can conclude that  $\operatorname{span}\{u_1, u_2, u_3\} = \operatorname{span}\{v_1, v_2\}.$ 

- Let  $u_1 = (1, 0, 0, 1)$ ,  $u_2 = (0, 1, -1, 2)$ ,  $u_3 = (2, 1, -1, 4)$ .  $v_1 = (1, 1, 1, 1)$ ,  $v_2 = (-1, 1, -1, 1)$ ,  $v_3 = (-1, 1, 1, -1)$ .
  - $\circ \quad \left(\begin{array}{cc|c} \boldsymbol{v}_1 & \boldsymbol{v}_2 & \boldsymbol{v}_3 & \boldsymbol{u}_1 & \boldsymbol{u}_2 & \boldsymbol{u}_3 \end{array}\right)$

$$\xrightarrow{\text{G.E.}} \left( \begin{array}{ccc|c} 1 & -1 & -1 & 1 & 0 & 2 \\ 0 & 2 & 2 & -1 & 1 & -1 \\ 0 & 0 & 2 & -1 & -1 & -3 \\ 0 & 0 & 0 & 0 & 0 & 0 \end{array} \right)$$

- $\circ$  The systems  $(v_1 \ v_2 \ v_3) x = u_i$  are consistent.
  - Then  $\operatorname{span}\{u_1, u_2, u_3\} \subseteq \operatorname{span}\{v_1, v_2, v_3\}.$
- $\circ$  (  $\boldsymbol{u}_1$   $\boldsymbol{u}_2$   $\boldsymbol{u}_3$  |  $\boldsymbol{v}_1$  |  $\boldsymbol{v}_2$  |  $\boldsymbol{v}_3$  )

$$\xrightarrow{\text{G.E.}} \left( \begin{array}{ccc|ccc|c} 1 & 0 & 2 & 1 & -1 & -1 \\ 0 & 1 & 1 & 1 & 1 & 1 \\ 0 & 0 & 0 & 2 & 0 & 2 \\ 0 & 0 & 0 & 0 & 0 & 0 \end{array} \right)$$

- $\circ$   $(\boldsymbol{u}_1 \ \boldsymbol{u}_2 \ \boldsymbol{u}_3) \boldsymbol{x} = \boldsymbol{v}_i$  are inconsistent for j = 1, 3.
  - Then  $\operatorname{span}\{\boldsymbol{v}_1,\boldsymbol{v}_2,\boldsymbol{v}_3\} \nsubseteq \operatorname{span}\{\boldsymbol{u}_1,\boldsymbol{u}_2,\boldsymbol{u}_3\}.$

44 / 106

**Subspaces** 45 / 106

### **Subspaces**

- **Definition.** Let V be a subset of  $\mathbb{R}^n$ . Then V is called a subspace of  $\mathbb{R}^n$  if there exist  $v_1, v_2, \dots, v_k \in \mathbb{R}^n$  s.t.
  - $\circ V = \operatorname{span}\{\boldsymbol{v}_1, \boldsymbol{v}_2, \dots, \boldsymbol{v}_k\}.$

More precisely,

- $\circ$  V is the subspace spanned by  $S = \{v_1, v_2, \dots, v_k\};$
- $\circ \quad S = \{ oldsymbol{v}_1, oldsymbol{v}_2, \dots, oldsymbol{v}_k \}$  spans the subspace V.
- Remark.
  - $\circ$  Let  $\mathbf{0} \in \mathbb{R}^n$  be the zero vector. Then
    - $\{0\} = \operatorname{span}\{0\}$  is the zero space.
  - Let  $e_i$  denote the *n*-vector whose *i*th coordinate is 1 and elsewhere 0, e.g.,  $e_2 = (0, 1, 0, \dots, 0)$ .
    - Then for every  $\boldsymbol{v} = (v_1, v_2, \dots, v_n) \in \mathbb{R}^n$ 
      - $\circ \quad \boldsymbol{v} = v_1 \boldsymbol{e}_1 + v_2 \boldsymbol{e}_2 + \dots + v_n \boldsymbol{e}_n.$

 $\mathbb{R}^n = \operatorname{span}\{e_1, e_2, \dots, e_n\}$  is a subspace of  $\mathbb{R}^n$ .

- In order to show that a subset V of  $\mathbb{R}^n$  is a subspace:
  - $\circ$  Find  $v_1, v_2, \ldots, v_k \in \mathbb{R}^n$ .
  - $\circ$  Show that every  $oldsymbol{v} \in V$  is of the form
    - $v = c_1 v_1 + c_2 v_2 + \dots + c_k v_k, c_1, c_2, \dots, c_k \in \mathbb{R}$ .
- Let  $V_1 = \{(a+4b, a) \mid a, b \in \mathbb{R}\}.$ 
  - $\circ$  (a+4b,a) = a(1,1) + b(4,0) for all  $a,b \in \mathbb{R}$ .

Then  $V_1 = \operatorname{span}\{(1,1),(4,0)\}$  is a subspace of  $\mathbb{R}^2$ .

- Let  $V_2 = \{(x, y, z) \mid x + y z = 0\}.$ 
  - $\circ$  x + y z = 0 can be explicitly solved:
    - (x,y,z)=(-s+t,s,t), where  $s,t\in\mathbb{R}$ .
    - (-s+t, s, t) = s(-1, 1, 0) + t(1, 0, 1).

 $V_2 = \mathrm{span}\{(-1,1,0),(1,0,1)\}$  is a subspace of  $\mathbb{R}^3$ .

47 / 106

#### **Examples**

- Recall that a subspace V is of the form  $\mathrm{span}(S)$ . Then
  - $\circ$   $\mathbf{0} \in V$ ,
  - $\circ$   $c \in \mathbb{R} \& v \in V \Rightarrow cv \in V$ ,
  - $\circ \quad \boldsymbol{u} \in V \& \boldsymbol{v} \in V \Rightarrow \boldsymbol{u} + \boldsymbol{v} \in V.$

If any of the above fails, then V is not a subspace (of  $\mathbb{R}^n$ ).

- Let  $V_3 = \{(1, a) \mid a \in \mathbb{R}\}.$ 
  - $\circ$   $\mathbf{0} = (0,0) \notin V_3$ . So V is not a subspace of  $\mathbb{R}^2$ .
- Let  $V_4 = \{(x, y, z) \mid x^2 \le y^2 \le z^2\}.$ 
  - $\circ$   $(1,2,3) \in V_4$  because  $1^2 \le 2^2 \le 3^2$ .
  - $(1,2,-3) \in V_4$  because  $1^2 \le 2^2 \le (-3)^2$ .
    - $(1,2,3) + (1,2,-3) = (2,4,0) \notin V_4$ .

Therefore,  $V_4$  is not a subspace of  $\mathbb{R}^3$ .

## Subspaces of $\mathbb{R}^1, \mathbb{R}^2, \mathbb{R}^3$

- Let v be a nonzero vector in  $\mathbb{R}^n$ , n=1,2,3.
  - $\circ V = \operatorname{span}\{\boldsymbol{v}\} = \{c\boldsymbol{v} \mid c \in \mathbb{R}\}.$

This is a line through the origin.

- 1. n=1:  ${m v}=v\in \mathbb{R}$ , and V is the whole  $\mathbb{R}^1=\mathbb{R}$ .
- 2. n=2:  $\mathbf{v}=(v_1,v_2)\in\mathbb{R}^2$ .
  - $\circ V = \{(x, y) \mid v_2 x v_1 y = 0\}.$
- 3. n=3:  $\mathbf{v}=(v_1,v_2,v_3)\in\mathbb{R}^3$ .
  - $V = \{(cv_1, cv_2, cv_3) \mid c \in \mathbb{R}\}.$
  - $\circ$  If  $v_1 \neq 0$ , then V is the intersection of planes
    - $v_2x v_1y = 0$  and  $v_3x v_1z = 0$ .
    - $V = \{(x, y, z) \mid v_2x v_1y = 0 \& v_3x v_1z = 0\}$

49 / 106

## Subspaces of $\mathbb{R}^1, \mathbb{R}^2, \mathbb{R}^3$

- Let u, v be nonzero vectors in  $\mathbb{R}^n$ , n = 2, 3.
  - $\circ V = \operatorname{span}\{u, v\} = \{su + tv \mid s, t \in \mathbb{R}\}.$

If u and v are parallel, then  $V = \operatorname{span}\{u\} = \operatorname{span}\{v\}$ .

Suppose u and v are not parallel. Then

- $\circ V = \operatorname{span}\{u, v\}$  is a plane containing the origin.
- 1. n=2: Then V the the whole  $\mathbb{R}^2$ .
- 2. n = 3: Let  $\mathbf{u} = (u_1, u_2, u_3)$  and  $\mathbf{v} = (v_1, v_2, v_3)$ .
  - $\circ V = \{s(u_1, u_2, u_3) + t(v_1, v_2, v_3) \mid s, t \in \mathbb{R}\}.$

We can find an implicit form of V:

$$V = \{(x, y, z) \mid ax + by + cz = 0\},\$$

where a, b, c are not all zero.

## Subspaces of $\mathbb{R}^1, \mathbb{R}^2, \mathbb{R}^3$

- Subspaces of  $\mathbb{R}^1$ :
  - $\circ \quad \{0\},$
  - $\circ$   $\mathbb{R}$ .
- Subspaces of  $\mathbb{R}^2$ :
  - $\circ \ \{\mathbf{0}\} = \{(0,0)\},\$
  - $\circ$  A straight line passing through the origin (0,0),
  - $\circ$   $\mathbb{R}^2$ .
- Subspaces of  $\mathbb{R}^3$ :
  - $\circ \quad \{\mathbf{0}\} = \{(0,0,0)\},\$
  - $\circ$  A straight line passing through the origin (0,0,0),
  - $\circ$  A plane containing the origin (0,0,0),
  - $\circ \mathbb{R}^3$ .

A subspace of  $\mathbb{R}^i$ , i=1,2,3, is always the solution set of a homogeneous linear system.

51 / 106

#### **Solution Space**

• Theorem. The solution set of a homogeneous linear system of n variables is a subspace of  $\mathbb{R}^n$ .

**Proof.** Recall that a homogeneous system is consistent.

- o If the system has only the trivial solution,
  - then the solution set  $\{0\}$  is a subspace of  $\mathbb{R}^n$ .
- Suppose that the system has infinitely many solutions.
  - Use Gauss-Jordan elimination to find RREF. By setting the variables corresponding to non-pivot columns as arbitrary parameters  $t_1, \ldots, t_k$ , solve the variables corresponding to pivot columns.
    - $x_1 = r_{11}t_1 + r_{12}t_2 + \dots + r_{1k}t_k.$
    - $x_2 = r_{21}t_1 + r_{22}t_2 + \dots + r_{2k}t_k.$
    - 0 .....
    - $x_n = r_{n1}t_1 + r_{n2}t_2 + \dots + r_{nk}t_k.$

#### **Solution Space**

• Theorem. The solution set of a homogeneous linear system of n variables is a subspace of  $\mathbb{R}^n$ .

**Proof.** Recall that a homogeneous system is consistent.

- o If the system has only the trivial solution,
  - then the solution set  $\{0\}$  is a subspace of  $\mathbb{R}^n$ .
- o Suppose that the system has infinitely many solutions.

$$\bullet \quad \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} = t_1 \begin{pmatrix} r_{11} \\ r_{21} \\ \vdots \\ r_{n1} \end{pmatrix} + t_2 \begin{pmatrix} r_{12} \\ r_{22} \\ \vdots \\ r_{n2} \end{pmatrix} + \dots + t_k \begin{pmatrix} r_{1k} \\ r_{2k} \\ \vdots \\ r_{nk} \end{pmatrix}$$

The solution set is spanned by

•  $(r_{11}, r_{21}, \ldots, r_{n1}), \ldots, (r_{1k}, r_{2k}, \ldots, r_{nk}).$ 

So the solution set is a subspace of  $\mathbb{R}^n$ .

53 / 106

#### **Examples**

• The solution set of a homogeneous linear system is called the solution space of the system.

We will see later that a subspace of  $\mathbb{R}^n$  is always the solution space of a homogeneous linear system.

$$\bullet \quad \left\{ \begin{array}{l} x - 2y + 3z = 0 \\ 2x - 4y + 6z = 0 \\ 3x - 6y + 9z = 0 \end{array} \right. .$$

$$\circ \quad \left(\begin{array}{cc|c} 1 & -2 & 3 & 0 \\ 2 & -4 & 6 & 0 \\ 3 & -6 & 9 & 0 \end{array}\right) \xrightarrow[R_3 + (-3)R_1]{R_2 + (-2)R_1} \left(\begin{array}{cc|c} 1 & -2 & 3 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{array}\right)$$

$$(x, y, z) = (2s - 3t, s, t) = s(2, 1, 0) + t(-3, 0, 1).$$

The solution space is  $span\{(2, 1, 0), (-3, 0, 1)\}.$ 

$$\bullet \quad \left\{ \begin{array}{l} x-2y+3z=0 \\ -3x+7y-8z=0 \\ -2x+4y-6z=0 \end{array} \right. .$$

$$\circ \quad \left( \begin{array}{cc|c} 1 & -2 & 3 & 0 \\ -3 & 7 & -8 & 0 \\ -2 & 4 & -6 & 0 \end{array} \right) \xrightarrow{\text{G.-J.E.}} \left( \begin{array}{cc|c} 1 & 0 & 5 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{array} \right)$$

$$(x, y, z) = (-5t, -t, t) = t(-5, -1, 1)$$

The solution space is  $span\{(-5, -1, 1)\}.$ 

$$\bullet \quad \left\{ \begin{array}{l} x-2y+3z=0 \\ -3x+7y-8z=0 \\ 4x+\ y+2z=0 \end{array} \right. .$$

$$\circ \quad \left( \begin{array}{cc|cc|c} 1 & -2 & 3 & 0 \\ -3 & 7 & -8 & 0 \\ 4 & 1 & 2 & 0 \end{array} \right) \xrightarrow{\text{G.-J.E.}} \left( \begin{array}{cc|c} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{array} \right)$$

 $\circ \quad (x,y,z) = (0,0,0). \text{ The solution space is } \{(0,0,0)\}.$ 

55 / 106

## Linear Independence

56 / 106

#### **Linear Independence**

- In  $\mathbb{R}^3$ , a plane containing the origin can be spanned by two non-parallel vectors:  $V = \operatorname{span}\{u,v\}$ .
  - o If a plane is spanned by more than two vectors, then
    - some vectors in the spanning set is redundant.
- Suppose that  $V = \operatorname{span}\{v_1, \dots, v_k\}$ .
  - $\circ$  Recall that if  $v_k$  is a linear combination of  $v_1, \ldots, v_{k-1}$ ,
    - $\operatorname{span}\{v_1,\ldots,v_{k-1},v_k\}=\operatorname{span}\{v_1,\ldots,v_{k-1}\}.$

Continuing this procedure, we can remove the redundant vectors in the spanning set to obtain

•  $V = \operatorname{span}\{\boldsymbol{v}_1, \boldsymbol{v}_2, \dots, \boldsymbol{v}_r\},\$ 

so that any  $oldsymbol{v}_i$  is NOT a linear combination of the other vectors.

#### Linear Independence

- **Definition.** Let  $S = \{ \boldsymbol{v}_1, \dots, \boldsymbol{v}_k \}$  be a subset of  $\mathbb{R}^n$ .
  - $\qquad \text{ The equation } c_1 \boldsymbol{v}_1 + c_2 \boldsymbol{v}_2 + \dots + c_k \boldsymbol{v}_k = \boldsymbol{0}$

has a trivial solution  $c_1 = c_2 = \cdots = c_k = 0$ .

- 1. If the equation has a non-trivial solution, then
  - $\circ$  S is a linearly dependent set,
  - $\circ \quad oldsymbol{v}_1, oldsymbol{v}_2, \dots, oldsymbol{v}_k$  are linearly dependent.

There exist  $c_1, c_2, \dots, c_k \in \mathbb{R}$  not all zero such that

- $\circ c_1 \mathbf{v}_1 + c_2 \mathbf{v}_2 + \cdots + c_k \mathbf{v}_k = \mathbf{0}.$
- 2. If the equation has only the trivial solution, then
  - $\circ$  S is a linearly independent set,
  - $\circ$   $v_1, v_2, \ldots, v_k$  are linearly independent.

$$c_1 \mathbf{v}_1 + c_2 \mathbf{v}_2 + \dots + c_k \mathbf{v}_k = \mathbf{0} \Rightarrow c_1 = \dots = c_k = 0.$$

58 / 106

## **Examples**

- Let  $S = \{(1, -2, 3), (5, 6, -1), (3, 2, 1)\}.$ 
  - $c_1(1,-2,3) + c_2(5,6,-1) + c_3(3,2,1) = (0,0,0).$

• 
$$c_1 \begin{pmatrix} 1 \\ -2 \\ 3 \end{pmatrix} + c_2 \begin{pmatrix} 5 \\ 6 \\ -1 \end{pmatrix} + c_3 \begin{pmatrix} 3 \\ 2 \\ 1 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}.$$

• 
$$\begin{pmatrix} 1 & 5 & 3 \\ -2 & 6 & 2 \\ 3 & -1 & 1 \end{pmatrix} \begin{pmatrix} c_1 \\ c_2 \\ c_3 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}.$$

$$\bullet \quad \begin{pmatrix} 1 & 5 & 3 \\ -2 & 6 & 2 \\ 3 & -1 & 1 \end{pmatrix} \xrightarrow{\text{G.E.}} \begin{pmatrix} 1 & 5 & 3 \\ 0 & 16 & 8 \\ 0 & 0 & 0 \end{pmatrix}$$

The 3rd column is non-pivot.

• The system has infinitely many solutions.

Therefore, S is a linearly dependent set.

- Let  $S = \{(1,0,0,1), (0,2,1,0), (1,-1,1,1)\}.$ 
  - $c_1(1,0,0,1) + c_2(0,2,1,0) + c_3(1,-1,1,1) = \mathbf{0}.$

$$\bullet \quad \begin{pmatrix} 1 & 0 & 1 \\ 0 & 2 & -1 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \end{pmatrix} \begin{pmatrix} c_1 \\ c_2 \\ c_3 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}.$$

$$\bullet \quad \begin{pmatrix} 1 & 0 & 1 \\ 0 & 2 & -1 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \end{pmatrix} \xrightarrow{\text{Gaussian elimination}} \begin{pmatrix} 1 & 0 & 1 \\ 0 & 2 & -1 \\ 0 & 0 & \frac{3}{2} \\ 0 & 0 & 0 \end{pmatrix}$$

All the columns are pivot.

• The system has only the trivial solution.

Therefore,  ${\cal S}$  is a linearly independent set.

60 / 106

## **Properties**

- Let  $S_1, S_2$  be finite subsets of  $\mathbb{R}^n$  such that  $S_1 \subseteq S_2$ .
  - $\circ$   $S_1$  linearly dependent  $\Rightarrow$   $S_2$  linearly dependent.
  - $\circ$   $S_2$  linearly independent  $\Rightarrow S_1$  linearly independent.
- $c\mathbf{0} = \mathbf{0}$  has infinitely many solutions  $c \in \mathbb{R}$ .
  - $\circ$  {0} is linearly dependent.
  - $\circ$  If  $\mathbf{0} \in S \subseteq \mathbb{R}^n$  then S is linearly dependent.
- Let  $v \in \mathbb{R}^n$ . Then  $cv = \mathbf{0} \Leftrightarrow c = 0$  or  $v = \mathbf{0}$ .
  - $\circ \quad \{v\}$  is linearly independent  $\Leftrightarrow v \neq 0$ .
- ullet Let  $oldsymbol{u},oldsymbol{v}\in\mathbb{R}^n.$  Then

 $\{ oldsymbol{u}, oldsymbol{v} \}$  is linearly dependent  $\Leftrightarrow oldsymbol{u} = a oldsymbol{v}$  for some  $a \in \mathbb{R}$ 

or  $\boldsymbol{v} = a\boldsymbol{u}$  for some  $a \in \mathbb{R}$ 

#### **Properties**

- Theorem. Let  $S = \{v_1, v_2, \dots, v_k\} \subseteq \mathbb{R}^n, k \geq 2$ .
  - $\circ$  S is linearly dependent
    - $\Leftrightarrow$  there exists  $v_i$  such that it is a linear combination of other vectors  $v_1,\ldots,v_{i-1},v_{i+1},\ldots,v_k$ .
- **Proof.**  $\Rightarrow$ : Suppose S is linearly dependent.
  - $\circ$  There exist  $c_1, c_2, \ldots, c_k \in \mathbb{R}$  not all zero such that
    - $\bullet \quad c_1 \mathbf{v}_1 + c_2 \mathbf{v}_2 + \dots + c_k \mathbf{v}_k = \mathbf{0}.$

Suppose that  $c_i \neq 0$ . Then

• 
$$\mathbf{v}_i = -\frac{c_1}{c_i}\mathbf{v}_1 - \dots - \frac{c_{i-1}}{c_i}\mathbf{v}_{i-1} - \frac{c_{i+1}}{c_i}\mathbf{v}_{i+1} - \dots - \frac{c_n}{c_i}\mathbf{v}_n$$
.

 $\Leftarrow$ : Suppose  $v_i$  is a linear combination of other vectors. Then there exist  $c_1,\ldots,c_{i-1},c_{i+1},\ldots,c_k\in\mathbb{R}$  such that

• 
$$\mathbf{v}_i = c_1 \mathbf{v}_1 + \dots + c_{i-1} \mathbf{v}_{i-1} + c_{i+1} \mathbf{v}_{i+1} + \dots + c_k \mathbf{v}_k$$
.

$$c_1 \mathbf{v}_1 + \dots + c_{i-1} \mathbf{v}_{i-1} + (-1) \mathbf{v}_i + c_{i+1} \mathbf{v}_{i+1} + \dots + c_k \mathbf{v}_k = \mathbf{0}$$

$$\therefore$$
  $S = \{ \boldsymbol{v}_1, \dots, \boldsymbol{v}_{i-1}, \boldsymbol{v}_i, \boldsymbol{v}_{i+1}, \dots, \boldsymbol{v}_k \}$  is linearly dept.

62 / 106

#### **Properties**

- Theorem. Let  $S = \{v_1, v_2, \dots, v_k\} \subseteq \mathbb{R}^n, k \geq 2$ .
  - $\circ$  S is linearly dependent
    - $\Leftrightarrow$  there exists  $v_i$  such that it is a linear combination of other vectors  $v_1,\ldots,v_{i-1},v_{i+1},\ldots,v_k$ .
  - $\circ$  S is linearly independent
    - $\Leftrightarrow$  no vector in S can be written as a linear combination of other vectors.
- Remarks. Suppose  $S = \{v_1, v_2, \dots, v_k\}$  is linearly dependent. Let  $V = \operatorname{span}(S)$ .
  - $\circ$  Some  $v_i \in S$  is a linear combination of other vectors.
  - $\circ$  Remove  $v_i$  from S and repeat the procedure until we obtain a linearly independent set S'.
  - $\circ \quad \text{Then } \mathrm{span}(S') = V \text{ and } S' \text{ has no "redundant vector" to span } V.$

- Let  $S_1 = \{(1,0), (0,4), (2,4)\}.$ 
  - $\circ$  Note that (2,4) = 2(1,0) + 1(0,4).

Then  $S_1$  is linearly dependent. Moreover,

- $\circ$  span $(S_1)$  = span $\{(1,0),(0,4)\}.$
- Let  $S_2 = \{(-1,0,0), (0,3,0), (0,0,7)\}.$ 
  - $\circ \quad (-1,0,0)$  is the only vector whose 1st component  $\neq 0$
  - $\circ$  (0,3,0) is the only vector whose 2nd component  $\neq 0$ .
  - $\circ$  (0,0,7) is the only vector whose 3rd component  $\neq 0$ .

Any vector is NOT a linear combination of the other two vectors.

 $\therefore$   $S_2$  is linearly independent.

64 / 106

#### **Properties**

- Theorem. Let  $S = \{v_1, v_2, \dots, v_k\} \subseteq \mathbb{R}^n$ .
  - $\circ$  If k > n, then S is linearly dependent.

**Proof.** Consider  $c_1 \mathbf{v}_1 + c_2 \mathbf{v}_2 + \cdots + c_k \mathbf{v}_k = \mathbf{0}$ .

- $\circ$  View each  $v_j$  as a column vector.
- $\circ$  Let  $\boldsymbol{A} = (\boldsymbol{v}_1 \ \boldsymbol{v}_2 \ \cdots \ \boldsymbol{v}_k)$ .
  - ullet Determine if Ax=0 has only the trivial solution.
- $\circ$   ${\bf \it A}$  is of size  $n \times k$ ; so is the RREF  ${\bf \it R}$ .
  - ${m R}$  has at most n nonzero rows.
  - ${m R}$  has at most n pivot columns.
  - R has at least k n > 0 non-pivot columns.
- $\circ$  Then Ax=0 has non-trivial solutions.
- $\therefore$  S is linearly dependent.

#### **Properties**

- Theorem. Suppose  $\{m{v}_1,m{v}_2,\dots,m{v}_k\}\subseteq\mathbb{R}^n$  is linearly independent.
  - $\circ \quad \text{If } \boldsymbol{v}_{k+1} \in \mathbb{R}^n \text{ is not in } \mathrm{span} \{\boldsymbol{v}_1, \boldsymbol{v}_2, \dots, \boldsymbol{v}_k\}.$ 
    - then  $\{oldsymbol{v}_1,oldsymbol{v}_2,\dots,oldsymbol{v}_k,oldsymbol{v}_{k+1}\}$  is linearly independent.

**Proof.** Suppose  $c_1v_1 + \cdots + c_kv_k + c_{k+1}v_{k+1} = 0$ .

- $\circ$  If  $c_{k+1} \neq 0$ , then
  - $\begin{array}{ll} \bullet & \boldsymbol{v}_{k+1} = -\frac{c_1}{c_{k+1}} \boldsymbol{v}_1 \dots \frac{c_k}{c_{k+1}} \boldsymbol{v}_k, \\ \bullet & \boldsymbol{v}_{k+1} \in \mathrm{span} \{\boldsymbol{v}_1, \dots, \boldsymbol{v}_k\}, \text{ contradiction!} \end{array}$
- $\circ$  So  $c_{k+1}=0$ . This implies
  - $c_1 \mathbf{v}_1 + \cdots + c_k \mathbf{v}_k = \mathbf{0}$ .
  - $\{oldsymbol{v}_1,\ldots,oldsymbol{v}_k\}$  is linearly independent.  $\Rightarrow c_1 = c_2 = \cdots = c_k = 0.$

Therefore,  $\{v_1, \dots, v_k, v_{k+1}\}$  is linearly independent.

66 / 106

67 / 106 **Bases** 

#### Motivation

- Let  $\{v_1,\ldots,v_k\}\subseteq\mathbb{R}^n$  be linearly independent.
  - 1. Suppose  $\operatorname{span}\{\boldsymbol{v}_1,\ldots,\boldsymbol{v}_k\}\neq\mathbb{R}^n$ .
  - 2. Pick  $v_{k+1} \in \mathbb{R}^n$  but  $v_{k+1} \notin \operatorname{span}\{v_1, \dots, v_k\}$ .
  - 3. Then  $\{v_1, \dots, v_k, v_{k+1}\}$  is linearly independent.
  - 4. Repeat this procedure until
    - $\circ \ \{oldsymbol{v}_1,\ldots,oldsymbol{v}_k,oldsymbol{v}_{k+1},\ldots,oldsymbol{v}_m\}$  is linearly independent &
    - $\circ \operatorname{span}\{\boldsymbol{v}_1,\ldots,\boldsymbol{v}_k,\boldsymbol{v}_{k+1},\ldots,\boldsymbol{v}_m\} = \mathbb{R}^n.$
- ullet If m>n, then  $\{oldsymbol{v}_1,\ldots,oldsymbol{v}_m\}$  is linearly dependent.

If m < n, then  $\{ oldsymbol{v}_1, \dots, oldsymbol{v}_m \}$  cannot span  $\mathbb{R}^n$ .

 $\circ \quad \text{We must have } n=m.$ 

 $\{ oldsymbol{v}_1, \dots, oldsymbol{v}_n \}$  is linearly independent, and spans  $\mathbb{R}^n$ .

#### **Vector Spaces**

- ullet Definition. A set V is called a vector space if
  - $\circ$  V is a subspace of  $\mathbb{R}^n$  for some positive integer n.

If W and V are vector spaces such that  $W \subseteq V$ ,

- $\circ$  then W is a subspace of V.
- Examples.
  - $\text{ } \cdot \text{ } \operatorname{Let} U = \operatorname{span}\{(1,1,1)\}, \, V = \operatorname{span}\{(1,1,-1)\} \text{ and } \\ W = \operatorname{span}\{(1,0,0),(0,1,1)\}.$

Then U, V, W are vector spaces (subspace of  $\mathbb{R}^3$ ).

- $(1,1,1) = (1,0,0) + (0,1,1) \in W$ .
  - $\circ \quad \text{Then } U \subseteq W \text{; so } U \text{ is a subspace of } W.$
- $(1,1,-1) \notin \text{span}\{(1,0,0),(0,1,1)\}.$ 
  - $\circ$  Then  $V \not\subseteq W$ ; so V is NOT a subspace of W.

69 / 106

#### Bases

- **Definition.** Let  $S = \{v_1, \dots, v_k\}$  be a subset of a vector space V. Then S is called a basis (plural bases) for V if
  - S is linearly independent, and  $\operatorname{span}(S) = V$ .
- **Example.** Show that  $S = \{(1, 2, 1), (2, 9, 0), (3, 3, 4)\}$  is a basis for  $\mathbb{R}^3$ .
  - 1. Prove that S is linearly independent.
    - $\circ$  Let  $c_1(1,2,1) + c_2(2,9,0) + c_3(3,3,4) = \mathbf{0}$ .

$$\circ \quad \begin{pmatrix} 1 & 2 & 3 \\ 2 & 9 & 3 \\ 1 & 0 & 4 \end{pmatrix} \xrightarrow{\text{Gaussian}} \begin{pmatrix} 1 & 2 & 3 \\ 0 & 5 & -3 \\ 0 & 0 & -\frac{1}{5} \end{pmatrix}.$$

- All the three columns are pivot.
- The system has only the trivial solution.

Therefore,  ${\cal S}$  is linearly independent.

#### **Bases**

- **Definition.** Let  $S = \{v_1, \dots, v_k\}$  be a subset of a vector space V. Then S is called a **basis** (plural **bases**) for V if
  - S is linearly independent, and  $\operatorname{span}(S) = V$ .
- **Example.** Show that  $S = \{(1,2,1), (2,9,0), (3,3,4)\}$  is a basis for  $\mathbb{R}^3$ .
  - 2. Prove that  $\operatorname{span}(S) = \mathbb{R}^3$ .

$$\circ \quad \begin{pmatrix} 1 & 2 & 3 \\ 2 & 9 & 3 \\ 1 & 0 & 4 \end{pmatrix} \xrightarrow{\text{Gaussian}} \begin{pmatrix} 1 & 2 & 3 \\ 0 & 5 & -3 \\ 0 & 0 & -\frac{1}{\epsilon} \end{pmatrix}.$$

• A row-echelon form has no zero row.

Therefore,  $\operatorname{span}(S) = \mathbb{R}^3$ .

We can conclude that S is a basis for  $\mathbb{R}^3$ .

71 / 106

## **Examples**

- Let  $V = \text{span}\{(1, 1, 1, 1), (1, -1, -1, 1), (1, 0, 0, 1)\}.$ 
  - $\circ \quad S = \{(1,1,1,1), (1,-1,-1,1)\}. \text{ Is } S \text{ a basis for } V \text{?}$

1. 
$$\begin{pmatrix} 1 & 1 \\ 1 & -1 \\ 1 & -1 \\ 1 & 1 \end{pmatrix} \xrightarrow{\text{Guassian elimination}} \begin{pmatrix} 1 & 1 \\ 0 & -2 \\ 0 & 0 \\ 0 & 0 \end{pmatrix}$$

- All the two columns are pivot.
- $c_1(1,1,1,1) + c_2(1,-1,-1,1) = \mathbf{0}$

has only the trivial solution.

So S is linearly independent.

- 2.  $(1,0,0,1) = \frac{1}{2}(1,1,1,1) + \frac{1}{2}(1,-1,-1,1).$ 
  - So  $(1,0,0,1) \in \text{span}(S)$ .

So  $\operatorname{span}(S) = V$ .

Therefore, S is a basis for V.

- Let  $S = \{(1, 1, 1, 1), (0, 0, 1, 2), (-1, 0, 0, 1)\}.$ 
  - Let |S| be the number of vectors in S. Then |S| = 3.
  - So  $\operatorname{span}(S) \neq \mathbb{R}^4$ ; thus S is NOT a basis for  $\mathbb{R}^4$ .
- Let V = span(S),  $S = \{(1, 1, 1), (0, 0, 1), (1, 1, 0)\}.$ 
  - $\circ (1,1,1) = (0,0,1) + (1,1,0).$
  - $\circ$  So S is linearly dependent; thus S is not a basis for V.
- Remarks.
  - $\circ$  A basis for a vector space V contains
    - smallest possible number of vectors that spans V,
    - largest possible number of vectors that is linearly independent.
  - For convenience,  $\emptyset$  is said to be the basis for  $\{0\}$ .
  - $\circ$  Other than  $\{0\}$ , any vector space has infinitely many different bases.

73 / 106

#### **Properties**

- Theorem. Let  $S = \{v_1, v_2, \dots, v_k\}$  be a subset of a vector space V. Then the following are equivalent:
  - $\circ$  S is a basis for V.
  - $\circ$  Every vector  $oldsymbol{v} \in V$  can be uniquely expressed as
    - $\mathbf{v} = c_1 \mathbf{v}_1 + c_2 \mathbf{v}_2 + \cdots + c_k \mathbf{v}_k, c_i \in \mathbb{R}$ .
- **Proof.**  $\Rightarrow$ : Suppose S is a basis. Then  $\operatorname{span}(S) = V$ .
  - $\circ$  For every  $v \in V$ , there exist  $c_1, c_2, \ldots, c_k \in \mathbb{R}$  s.t.
    - $\mathbf{v} = c_1 \mathbf{v}_1 + c_2 \mathbf{v}_2 + \cdots + c_k \mathbf{v}_k$ .
  - $\circ$  Suppose  $v = d_1v_1 + d_2v_2 + \cdots + d_kv_k, d_i \in \mathbb{R}$ .
    - $\mathbf{0} = (c_1 d_1)\mathbf{v}_1 + \dots + (c_k d_k)\mathbf{v}_k$ .

Since S is linearly independent,

- $c_1 d_1 = c_2 d_2 = \dots = c_k d_k = 0$ ;
- that is,  $c_1 = d_1, c_2 = d_2, \dots, c_k = d_k$ .

- Theorem. Let  $S = \{v_1, v_2, \dots, v_k\}$  be a subset of a vector space V. Then the following are equivalent:
  - $\circ$  S is a basis for V.
  - $\circ$  Every vector  $oldsymbol{v} \in V$  can be uniquely expressed as
    - $\mathbf{v} = c_1 \mathbf{v}_1 + c_2 \mathbf{v}_2 + \cdots + c_k \mathbf{v}_k, c_i \in \mathbb{R}$ .
- ullet Proof.  $\Leftarrow$ : Suppose that every vector  $oldsymbol{v} \in V$  can be uniquely expressed as

$$\circ \quad \boldsymbol{v} = c_1 \boldsymbol{v}_1 + c_2 \boldsymbol{v}_2 + \cdots + c_k \boldsymbol{v}_k, c_i \in \mathbb{R}.$$

Then by definition  $\operatorname{span}(S) = V$ .

Let 
$$\mathbf{0} \in V$$
. Suppose  $\mathbf{0} = c_1 \mathbf{v}_1 + c_2 \mathbf{v}_2 + \cdots + c_k \mathbf{v}_k$ .

 $\circ \quad \text{Note that } \mathbf{0} = 0 \mathbf{v}_1 + 0 \mathbf{v}_2 + \cdots + 0 \mathbf{v}_k.$ 

By the uniqueness,  $c_1 = 0, c_2 = 0, \dots, c_k = 0$ .

 $\circ \quad \text{So } S \text{ is linearly independent}.$ 

75 / 106

#### **Coordinate Vector**

- **Definition**. Let  $S = \{v_1, v_2, \dots, v_k\}$  be a basis for a vector space V.
  - $\circ$  For every  $v \in V$ , there exist unique  $c_1, \ldots, c_k \in \mathbb{R}$  s.t.
    - $\mathbf{v} = c_1 \mathbf{v}_1 + c_2 \mathbf{v}_2 + \cdots + c_k \mathbf{v}_k$ .

 $c_1, c_2, \ldots, c_k$  are the **coordinates** of v relative to S.

- $(c_1, c_2, \dots, c_k)$  is the **coordinate vector** of v relative to the basis S, denoted by  $(v)_S$ .
- ullet Remark. The order of  $oldsymbol{v}_1, oldsymbol{v}_2, \dots, oldsymbol{v}_k$  is fixed.
  - - Let v = 2(1,1) + 3(-1,1) = (-1,5).
      - $\circ$  Then  $(v)_{S_1} = (2,3)$ .

Let  $S_2 = \{(-1,1), (1,1)\}$ . Then  $(\boldsymbol{v})_{S_2} = (3,2)$ .

## **Examples**

- Let  $S = \{(1,2,1), (2,9,0), (3,3,4)\}.$ 
  - $\circ$  One can check that S is a basis for  $\mathbb{R}^3$ . (Exercise!)

Let 
$$v = (5, -1, 9)$$
. Solve

- $\circ$   $\mathbf{v} = a(1,2,1) + b(2,9,0) + c(3,3,4).$ 
  - $\bullet \quad \left(\begin{array}{cc|cc|c} 1 & 2 & 3 & 5 \\ 2 & 9 & 3 & -1 \\ 1 & 0 & 4 & 9 \end{array}\right) \xrightarrow{\text{G.-J.E.}} \left(\begin{array}{cc|cc|c} 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & -1 \\ 0 & 0 & 1 & 2 \end{array}\right).$

$$(\mathbf{v})_S = (a, b, c) = (1, -1, 2).$$

Suppose that  $(w)_S = (-1, 3, 2)$ .

$$\mathbf{w} = (-1)(1, 2, 1) + 3(2, 9, 0) + 2(3, 3, 4)$$
  
=  $(11, 31, 7)$ .

77 / 106

## **Examples**

- $\bullet \quad \text{Let } \boldsymbol{v} = (2,3) \in \mathbb{R}^2.$ 
  - Let  $S_1 = \{(1,0), (0,1)\}$  be a basis for  $\mathbb{R}^2$ .
    - v = 2(1,0) + 3(0,1); so  $(v)_{S_1} = (2,3)$ .
  - Let  $S_2 = \{(1, -1), (1, 1)\}$  be a basis for  $\mathbb{R}^2$ .
    - $\bullet \quad \left( \begin{array}{c|c} 1 & 1 & 2 \\ -1 & 1 & 3 \end{array} \right) \xrightarrow{\text{G.-J.E.}} \left( \begin{array}{c|c} 1 & 0 & -\frac{1}{2} \\ 0 & 1 & \frac{5}{2} \end{array} \right).$
    - $(v)_{S_2} = (-\frac{1}{2}, \frac{3}{2}).$
  - $\circ$  Let  $S_3 = \{(1,0),(1,1)\}$  be a basis for  $\mathbb{R}^2$ .
    - $\bullet \quad \left(\begin{array}{cc|c} 1 & 1 & 2 \\ 0 & 1 & 3 \end{array}\right) \xrightarrow{R_1 + (-1)R_2} \left(\begin{array}{cc|c} 1 & 0 & -1 \\ 0 & 1 & 3 \end{array}\right).$
    - $(v)_{S_3} = (-1,3).$

## **Standard Basis**

- ullet Definition. Let  $E=\{oldsymbol{e}_1,oldsymbol{e}_2,\ldots,oldsymbol{e}_n\}$  be a subset of  $\mathbb{R}^n$ ,
  - $\circ$   $e_1 = (1, 0, \dots, 0), e_2 = (0, 1, \dots, 0), \dots, e_n = (0, 0, \dots, 1).$
  - 1. Let  $\boldsymbol{v}=(v_1,v_2,\ldots,v_n)\in\mathbb{R}^n$ . Then
    - $\circ \quad \boldsymbol{v} = v_1 \boldsymbol{e}_1 + v_2 \boldsymbol{e}_2 + \dots + v_n \boldsymbol{e}_n.$
    - So span $(E) = \mathbb{R}^n$ .
  - 2. Suppose that  $c_1 e_1 + c_2 e_2 + \cdots + c_n e_n = \mathbf{0}$ . Then
    - $\circ$   $(c_1, c_2, \dots, c_n) = (0, 0, \dots, 0).$

So E is linearly independent.

E is called the **standard basis** for  $\mathbb{R}^n$ .

- $\circ$  For any  $\boldsymbol{v}=(v_1,v_2,\ldots,v_n)\in\mathbb{R}^n$ ,
  - $(\mathbf{v})_E = (v_1, v_2, \dots, v_n) = \mathbf{v}.$

79 / 106

# **Properties**

- ullet Theorem. Let S be a basis for a vector space V.
  - $\circ \quad (\boldsymbol{v})_S = \mathbf{0} \Leftrightarrow \boldsymbol{v} = \mathbf{0}.$
  - $\circ$  For any  $c \in \mathbb{R}$  and  $v \in \mathbb{R}$ ,  $(cv)_S = c(v)_S$ .
  - $\circ$  For any  $u, v \in V$ ,  $(u + v)_S = (u)_S + (v)_S$ .

**Proof.** Let  $S = \{v_1, \dots, v_k\}$ .

$$\circ \ \, \Rightarrow : \ \, \mathsf{Suppose} \,\, (\boldsymbol{v})_S = (\overbrace{0,0,\dots,0}^k) = \boldsymbol{0} \in \mathbb{R}^k.$$

• 
$$v = 0v_1 + \cdots + 0v_k = 0 \in V$$
.

$$\Leftarrow$$
: Let  $\mathbf{v} = \mathbf{0} \in V$ . Then  $\mathbf{v} = 0\mathbf{v}_1 + \cdots + 0\mathbf{v}_k$ .

• 
$$(\boldsymbol{v})_S = (0,\ldots,0) = \mathbf{0} \in \mathbb{R}^k$$
.

- ullet Theorem. Let S be a basis for a vector space V
  - $\circ \quad (\boldsymbol{v})_S = \mathbf{0} \Leftrightarrow \boldsymbol{v} = \mathbf{0}.$
  - $\circ$  For any  $c \in \mathbb{R}$  and  $v \in \mathbb{R}$ ,  $(cv)_S = c(v)_S$ .
  - $\circ$  For any  $\boldsymbol{u}, \boldsymbol{v} \in V$ ,  $(\boldsymbol{u} + \boldsymbol{v})_S = (\boldsymbol{u})_S + (\boldsymbol{v})_S$ .

**Proof.** Let  $S = \{v_1, ..., v_k\}$ .

- $\circ$  Let  $(\boldsymbol{v})_S = (c_1, \ldots, c_k)$ . Then
  - $\mathbf{v} = c_1 \mathbf{v}_1 + \cdots + c_k \mathbf{v}_k$ .
  - $c\mathbf{v} = cc_1\mathbf{v}_1 + \cdots + cc_k\mathbf{v}_k$ .

$$(c\mathbf{v})_S = (cc_1, \dots, cc_k) = c(c_1, \dots, c_k) = c(\mathbf{v})_S.$$

- $\circ$  Let  $(u)_S = (c_1, \ldots, c_k), (v)_S = (d_1, \ldots, d_k).$ 
  - $\mathbf{u} = c_1 \mathbf{v}_1 + \dots + c_k \mathbf{v}_k, \mathbf{v} = d_1 \mathbf{v}_1 + \dots + d_k \mathbf{v}_k.$
  - $u + v = (c_1 + d_1)v_1 + \cdots + (c_k + d_k)v_k$ .
  - $(u + v)_S = (c_1 + d_1, \dots, c_k + d_k) = (u)_S + (v)_S.$

81 / 106

# **Properties**

- ullet Theorem. Let S be a basis for a vector space V.
  - $\circ$  For any  $u, v \in V$ ,  $u = v \Leftrightarrow (u)_S = (v)_S$ .
  - $\circ$  For any  $v_1, v_2, \ldots, v_r \in V$  and  $c_1, c_2, \ldots, c_r \in \mathbb{R}$ ,
    - $(c_1 v_1 + \cdots + c_r v_r)_S = c_1(v_1)_S + \cdots + c_r(v_r)_S$ .

Proof. Left as exercises.

- ullet Theorem. Let S be a basis for a vector space V.
  - $\circ$  Suppose |S|=k. Let  $v_1,v_2,\ldots,v_r\in V$ .
    - 1.  $v_1, \ldots, v_r$  are linearly independent

$$\Leftrightarrow (oldsymbol{v}_1)_S, \ldots, (oldsymbol{v}_r)_S$$
 are linearly independent.

2. span $\{v_1, ..., v_r\} = V$ 

$$\Leftrightarrow \operatorname{span}\{(\boldsymbol{v}_1)_S,\ldots,(\boldsymbol{v}_r)_S\} = \mathbb{R}^k.$$

- **Proof.** 1.  $\Rightarrow$ : Suppose  $v_1, \ldots, v_r$  are linearly independent.
  - $\circ$  Consider equation  $c_1(\boldsymbol{v}_1)_S + \cdots + c_r(\boldsymbol{v}_r)_S = \mathbf{0} \in \mathbb{R}^k$ .
    - $(c_1v_1 + \cdots + c_rv_r)_S = (\mathbf{0})_S$ , where  $\mathbf{0} \in V$ .

Then  $c_1 \mathbf{v}_1 + \cdots + c_r \mathbf{v}_r = \mathbf{0}$ .

•  $v_1, \ldots, v_r$  linearly independent  $\Rightarrow c_1 = \cdots = c_r = 0$ .

Therefore,  $(v_1)_S, \ldots, (v_r)_S$  are linearly independent.

- $\Leftarrow$ : Suppose  $(\boldsymbol{v}_1)_S,\ldots,(\boldsymbol{v}_r)_S$  are linearly independent.
- $\circ$  Consider equation  $c_1v_1 + \cdots + c_rv_r = 0 \in V$ .
  - $(c_1 v_1 + \cdots + c_r v_r)_S = (\mathbf{0})_S$ .

Then  $c_1(\boldsymbol{v}_1)_S + \cdots + c_r(\boldsymbol{v}_r)_S = \mathbf{0} \in \mathbb{R}^k$ .

•  $({m v}_1)_S,\ldots,({m v}_r)_S$  are linearly independent  $\Rightarrow c_1=\cdots=c_r=0.$ 

Therefore,  $v_1, \ldots, v_r$  are linearly independent.

83 / 106

# **Properties**

- **Proof.** 2.  $\Rightarrow$ : Suppose  $\operatorname{span}\{\boldsymbol{v}_1,\ldots,\boldsymbol{v}_r\}=V$ .
  - $\circ$  Let  $w = (c_1, \dots, c_k) \in \mathbb{R}^k$ . If  $S = \{u_1, \dots, u_k\}$ ,
    - then  $v = c_1 u_1 + \cdots + c_k u_k \in V$ ,  $(v)_S = w$ .

Since  $\operatorname{span}\{\boldsymbol{v}_1,\ldots,\boldsymbol{v}_r\}=V$  , there exist  $d_i\in\mathbb{R}$  s.t.

•  $\mathbf{v} = d_1 \mathbf{v}_1 + \cdots + d_r \mathbf{v}_r$ .

Then  $w = (v)_S = d_1(v_1)_S + \cdots + d_r(v_r)_S$ .

Therefore, span $\{(\boldsymbol{v}_1)_S,\ldots,(\boldsymbol{v}_r)_S\}=\mathbb{R}^k$ .

- 2.  $\Leftarrow$ : Suppose span $\{(\boldsymbol{v}_1)_S,\ldots,(\boldsymbol{v}_r)_S\}=\mathbb{R}^k$ .
  - $\circ$  Let  $oldsymbol{v} \in V$ . Then  $(oldsymbol{v})_S \in \mathbb{R}^k$ . There exist  $c_i \in \mathbb{R}^k$  s.t.
    - $(v)_S = c_1(v_1)_S + \cdots + c_r(v_r)_S$ .
    - $(v)_S = (c_1v_1 + \cdots + c_rv_r)_S$ .

Then  $\mathbf{v} = c_1 \mathbf{v}_1 + \cdots + c_r \mathbf{v}_r$ .

Therefore, span $\{v_1,\ldots,v_r\}=V$ .

Dimensions 85 / 106

# **Criterion for Bases**

- Let  $S = \{ \boldsymbol{v}_1, \dots, \boldsymbol{v}_k \}$  be a subset of  $\mathbb{R}^n$ .
  - $\circ$  If k > n, then S is linearly dependent.
  - $\circ$  If k < n, then  $\operatorname{span}(S) \neq \mathbb{R}^n$ .

If S is a basis, then k = n.

- ullet Theorem. Let V be a vector space having a basis with k vectors.
  - $\circ$  Any subset of V of > k vectors is linearly dependent.
  - $\circ$  Any subset of V of < k vectors cannot span V.
- Corollary. All bases of a vector space have same size.
  - $\circ$  To be more precise, if  $S_1$  and  $S_2$  are two bases of a vector space V,
    - then  $|S_1| = |S_2|$ .

86 / 106

## **Criterion for Bases**

- **Proof.** Let S be a basis of V with |S| = k.
  - $\circ$  Let  $T = \{v_1, \dots, v_r\}$  be a subset of V.
    - Then  $\{(\boldsymbol{v}_1)_S,\ldots,(\boldsymbol{v}_r)_S\}$  is a subset of  $\mathbb{R}^k$ .
    - 1. Suppose r > k.
      - $\{(v_1)_S,\ldots,(v_r)_S\}$  is linearly dependent in  $\mathbb{R}^k$ .

Then  $\{v_1, \dots, v_r\}$  is linearly dependent in V.

- 2. Suppose r < k.
  - span $\{(\boldsymbol{v}_1)_S,\ldots,(\boldsymbol{v}_r)_S\}\neq\mathbb{R}^k$ .

Then span $\{v_1,\ldots,v_r\}\neq V$ .

#### **Dimension**

- ullet Definition. Let V be a vector space and S a basis for V.
  - The dimension of V is  $\dim(V) = |S|$ .
- Examples.
  - $\circ$   $\varnothing$  is a (the) basis for  $\{0\}$ .
    - Then  $\dim(\{0\}) = |\emptyset| = 0$ .
  - $\circ \mathbb{R}^n$  has the standard basis  $E = \{e_1, e_2, \dots, e_n\}$ .
    - Then  $\dim(\mathbb{R}^n) = n$ .
  - $\circ$  In  $\mathbb{R}^2$  and  $\mathbb{R}^3$ , every straight line through the origin is of the form  $\mathrm{span}\{m{v}\}$  with  $m{v} 
    eq m{0}$ .
    - The dimension of such a straight line is 1.
  - $\circ$  In  $\mathbb{R}^3$ , every plane containing the origin is of the form  $\mathrm{span}\{u,v\}$ , where u,v are linearly independent.
    - $\bullet \quad \text{The dimension of such a plane is } 2.$

88 / 106

# **Dimension of Solution Space**

- Let Ax = 0 be a homogeneous linear system.
  - $\circ$  Recall that the solution set is a vector space V.

Let R be a row-echelon form of A.

no. of non-pivot colns of  $oldsymbol{R}$ 

= no. of arbitrary parameters in soln

= the dimension of V.

- **Example.** x + y + z = 0.
  - $\circ \quad \begin{pmatrix} 1 & 1 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = 0$ 
    - The 2nd and 3rd columns are non-pivot.
    - The dimension of the solution space is 2.

## **Example**

$$\begin{array}{l} \bullet \quad \left\{ \begin{array}{l} 2v + 2w - x & +z = 0 \\ -v - w + 2x - 3y + z = 0 \\ x + y + z = 0 \\ v + w - 2x & -z = 0 \end{array} \right. \\ \circ \quad \left\{ \begin{array}{l} 2 & 2 & -1 & 0 & 1 \\ -1 & -1 & 2 & -3 & 1 \\ 0 & 0 & 1 & 1 & 1 \\ 1 & 1 & -2 & 0 & -1 \end{array} \right. \\ \xrightarrow{\text{Gaussian}} \quad \left\{ \begin{array}{l} 2 & 2 & -1 & 0 & 1 \\ 0 & 0 & \frac{3}{2} & -3 & \frac{3}{2} \\ 0 & 0 & 0 & 3 & 0 \\ 0 & 0 & 0 & 0 & 0 \end{array} \right. \end{array} \right.$$

- The 2nd and 5th columns are non-pivot.
- The solution space has dimension 2.

90 / 106

## **Properties**

- ullet Theorem. Let S be a subset of a vector space V. The following are equivalent:
  - 1. S is a basis for V.
  - 2. S is linearly independent, and  $|S| = \dim(V)$ .
  - 3. S spans V, and  $|S| = \dim(V)$ .
- To check whether a subset S is a basis for a vector space V, simply check any two of the following three conditions:
  - $\circ$  S is linearly independent,
  - $\circ$  S spans V,
  - $\circ$   $|S| = \dim(V)$ .
- Example. Let  $S = \{(2, 0, -1), (4, 0, 7), (-1, 1, 4)\}.$ 
  - $\circ$  One can check that S is linearly independent.

Since |S| = 3, S is a basis for  $\mathbb{R}^3$ .

• **Proof.** "1  $\Rightarrow$  2" and "1  $\Rightarrow$  3" are clear.

"2  $\Rightarrow$  1": Suppose S is linearly indept. &  $|S| = \dim(V)$ .

 $\circ$  It suffices to show that  $\operatorname{span}(S) = V$ .

Assume  $\operatorname{span}(S) \neq V$ . Pick  $\boldsymbol{v} \in V$  but  $\boldsymbol{v} \notin \operatorname{span}(S)$ .

 $\circ \quad \text{Then } S \cup \{ \boldsymbol{v} \} \text{ is linearly independent}.$ 

But 
$$|S \cup \{v\}| = \dim(V) + 1 > \dim(V)$$
.

 $\circ$  Then  $S \cup \{v\}$  is linearly dependent.

Therefore, we must have span(S) = V.

 $\circ$  Since S is linearly independent, S is a basis for V.

92 / 106

# **Properties**

• **Proof.** "1  $\Rightarrow$  2" and "1  $\Rightarrow$  3" are clear.

"3  $\Rightarrow$  1": Suppose S spans V &  $|S| = \dim(V)$ .

 $\circ$  It suffices to show that S is linearly independent.

Assume that S is linearly dependent.

- $\circ$  Then there exists  $v \in S$  such that v is a linear combination of other vectors in S.
- Hence,  $\operatorname{span}(S \{v\}) = \operatorname{span}(S) = V$ .

On the other hand,  $|S - \{v\}| = \dim(V) - 1 < \dim(V)$ .

 $\circ$  Then span $(S - \{v\}) \neq V$ .

Therefore, S must be linearly independent.

 $\circ$  Since S spans V, S is a basis for V.

- ullet Theorem. Let U be a subspace of a vector space V.
  - $\circ \quad U = V \Leftrightarrow \dim(U) = \dim(V).$

**Proof.**  $\Rightarrow$ : Clear!

 $\Leftarrow$ : Suppose  $\dim(U) = \dim(V)$ .

- $\circ$  Let S be a basis for U. Then
  - S is linearly independent (in U, and thus) in V.
  - $|S| = \dim(U) = \dim(V)$ .

Then S is also a basis for V.

- $\circ$  Therefore,  $V = \operatorname{span}(S) = U$ .
- ullet Corollary. Let U be a subspace of a vector space V.
  - $\circ \quad U \neq V \Leftrightarrow \dim(U) < \dim(V).$

94 / 106

## **Properties**

- ullet Theorem. Let A be a square matrix of order n. Then the following are equivalent:
  - 1.  $\boldsymbol{A}$  is invertible.
  - 2. Ax = b has a unique solution.
  - 3. Ax = 0 has only the trivial solution.
  - 4. The reduced row-echelon form of A is  $I_n$ .
  - 5. A is a product of elementary matrices.
  - 6.  $\det(A) \neq 0$ .
  - 7. The rows of A form a basis for  $\mathbb{R}^n$ .
  - 8. The columns of A form a basis for  $\mathbb{R}^n$ .
- We have proved the equivalence of 1 to 6.
  - o It remains to show that "1  $\Leftrightarrow$  7" & "1  $\Leftrightarrow$  8".

- **Proof.** "1  $\Leftrightarrow$  8": Let  $a_j$  be the jth column of A.
  - $\circ \quad \boldsymbol{A} = (\boldsymbol{a}_1 \quad \boldsymbol{a}_2 \quad \cdots \quad \boldsymbol{a}_n).$

 $\{\boldsymbol{a}_1,\dots,\boldsymbol{a}_n\}$  is a basis for  $\mathbb{R}^n$ 

- $\Leftrightarrow \operatorname{span}\{\boldsymbol{a}_1,\ldots,\boldsymbol{a}_n\} = \mathbb{R}^n$
- $\Leftrightarrow$  a row-echelon form of  $oldsymbol{A}$  has no zero row
- $\Leftrightarrow A$  is invertible.

"1 ⇔ 7":

rows of  ${m A}$  form a basis for  ${\mathbb R}^n$ 

- $\Leftrightarrow$  columns of  $oldsymbol{A}^{\mathrm{T}}$  form a basis for  $\mathbb{R}^n$
- $\Leftrightarrow oldsymbol{A}^{\mathrm{T}}$  is invertible
- $\Leftrightarrow A$  is invertible.

96 / 106

# **Examples**

- Let  $v_1 = (1, 1, 1)$ ,  $v_2 = (-1, 1, 2)$  and  $v_3 = (1, 0, 1)$ .
  - $\circ \quad \text{Let } \boldsymbol{A} = \begin{pmatrix} \boldsymbol{v}_1 \\ \boldsymbol{v}_2 \\ \boldsymbol{v}_3 \end{pmatrix} = \begin{pmatrix} 1 & 1 & 1 \\ -1 & 1 & 2 \\ 1 & 0 & 1 \end{pmatrix} \text{. Then } \det(\boldsymbol{A}) = 3.$ 
    - A is invertible.
  - $\circ$  So  $\{v_1, v_2, v_3\}$  is a basis for  $\mathbb{R}^3$ .
- $\mathbf{v}_1 = (1, 1, 1, 1), \mathbf{v}_2 = (1, -1, 1, -1), \mathbf{v}_3 = (0, 1, -1, 0),$  $\mathbf{v}_4 = (2, 1, 1, 0).$

$$\circ \quad \begin{pmatrix} 1 & 1 & 0 & 2 \\ 1 & -1 & 1 & 1 \\ 1 & 1 & -1 & 1 \\ 1 & -1 & 0 & 0 \end{pmatrix} \xrightarrow{\text{Gaussian}} \begin{pmatrix} 1 & 1 & 0 & 2 \\ 0 & -2 & 1 & -1 \\ 0 & 0 & -1 & -1 \\ 0 & 0 & 0 & 0 \end{pmatrix}.$$

 $\circ$  So  $\{oldsymbol{v}_1,oldsymbol{v}_2,oldsymbol{v}_3,oldsymbol{v}_4\}$  is NOT a basis for  $\mathbb{R}^4.$ 

#### **Coordinate Vector**

- Let  $S = \{v_1, \dots, v_k\}$  be a basis for a vector space V.
  - $\circ$  Then every vector  $m{v} \in V$  can be uniquely expressed as a linear combination of  $m{v}_1, \dots, m{v}_k$ :
    - $v = c_1 v_1 + c_2 v_2 + \cdots + c_k v_k$ , where  $c_i \in \mathbb{R}$ .

Then  $(c_1, c_2, \dots, c_k) = (v)_S$  is the **coordinate vector** of v relative to the basis S.

View each  $oldsymbol{v}_i$  as a column vector. Then

99 / 106

#### **Coordinate Vector**

- Let  $S = \{v_1, \dots, v_k\}$  be a basis for a vector space V.
  - $\circ$  Then every vector  $m{v} \in V$  can be uniquely expressed as a linear combination of  $m{v}_1, \dots, m{v}_k$ :
    - $v = c_1 v_1 + c_2 v_2 + \cdots + c_k v_k$ , where  $c_i \in \mathbb{R}$ .

The column vector  $[v]_S = \begin{pmatrix} c_1 \\ c_2 \\ \vdots \\ c_k \end{pmatrix}$  is also called

- the coordinate vector of  $\boldsymbol{v}$  relative to S.
- ullet View  $oldsymbol{v}_1,\ldots,oldsymbol{v}_k$  as column vectors.
  - $\circ$  Let  $oldsymbol{A} = egin{pmatrix} oldsymbol{v}_1 & oldsymbol{v}_2 & \cdots & oldsymbol{v}_k \end{pmatrix}$  . Then
    - $A[v]_S = v$  for every  $v \in V$ .

#### **Transition Matrix**

• Let S and T be bases for a vector space V.

$$\circ S = \{u_1, u_2, \dots, u_k\} \text{ and } T = \{v_1, v_2, \dots, v_k\}.$$

Let  $\boldsymbol{w} \in V$ . What is the relation between  $[\boldsymbol{w}]_S$  and  $[\boldsymbol{w}]_T$ ?

ullet Suppose all  $oldsymbol{u}_j, oldsymbol{v}_j$  and  $oldsymbol{w}$  are viewed as column vectors.

$$\circ$$
 Let  $oldsymbol{A} = oldsymbol{(u_1 \ \cdots \ u_k)}$  and  $oldsymbol{B} = oldsymbol{(v_1 \ \cdots \ v_k)}.$ 

Let  $\boldsymbol{w} \in V$ . Then

$$egin{aligned} oldsymbol{w} &= oldsymbol{A}[oldsymbol{w}]_S = oldsymbol{a}[oldsymbol{u}_1]_T & \cdots & oldsymbol{B}[oldsymbol{u}_k]_T ig) [oldsymbol{w}]_S \ &= oldsymbol{B} \left( [oldsymbol{u}_1]_T & \cdots & [oldsymbol{u}_k]_T 
ight) [oldsymbol{w}]_S \end{aligned}$$

So  $([u_1]_T \cdots [u_k]_T)[w]_S$  is the coordinate vector of w relative to the basis T; that is,

$$\circ \quad \left( [\boldsymbol{u}_1]_T \quad \cdots \quad [\boldsymbol{u}_k]_T \right) [\boldsymbol{w}]_S = [\boldsymbol{w}]_T.$$

101 / 106

#### **Transition Matrix**

ullet Definition. Let V be a vector space, and

$$\circ$$
  $S = \{u_1, \dots, u_k\}$  and  $T$  be bases for  $V$ .

 $([\boldsymbol{u}_1]_T \quad \cdots \quad [\boldsymbol{u}_k]_T)$  is the **transition matrix** from S to T.

- o Denote it by P. Then  $P[w]_S = [w]_T$  for all  $w \in V$ .
- Example. Let  $S = \{u_1, u_2, u_3\}, T = \{v_1, v_2, v_3\}.$

$$\bullet$$
  $u_1 = (1, 0, -1), u_2 = (0, -1, 0), u_3 = (1, 0, 2).$ 

$$\circ$$
  $\mathbf{v}_1 = (1, 1, 1), \mathbf{v}_2 = (1, 1, 0), \mathbf{v}_3 = (-1, 0, 0).$ 

View all vectors as column vectors.

$$\circ$$
  $(egin{array}{ccc|c} oldsymbol{v}_1 & oldsymbol{v}_2 & oldsymbol{v}_3 & oldsymbol{u}_1 & oldsymbol{u}_2 & oldsymbol{u}_3 \end{array})$ 

$$\xrightarrow{\text{G.-J.E.}} \left( \begin{array}{ccc|c} 1 & 0 & 0 & -1 & 0 & 2 \\ 0 & 1 & 0 & 1 & -1 & -2 \\ 0 & 0 & 1 & -1 & -1 & -1 \end{array} \right) = \left( \boldsymbol{I} \mid \boldsymbol{P} \right).$$

#### **Transition Matrix**

- ullet Definition. Let V be a vector space, and
  - $\circ$   $S = \{u_1, \dots, u_k\}$  and T be bases for V.

 $([u_1]_T \quad \cdots \quad [u_k]_T)$  is the **transition matrix** from S to T.

- o Denote it by P. Then  $P[w]_S = [w]_T$  for all  $w \in V$ .
- Example. Let  $S = \{u_1, u_2, u_3\}, T = \{v_1, v_2, v_3\}.$ 
  - $\circ \ \ \boldsymbol{u}_1 = (1,0,-1), \, \boldsymbol{u}_2 = (0,-1,0), \, \boldsymbol{u}_3 = (1,0,2).$
  - $v_1 = (1, 1, 1), v_2 = (1, 1, 0), v_3 = (-1, 0, 0).$

Transition matrix from S to T is  $\mathbf{P}=\begin{pmatrix} -1 & 0 & 2 \\ 1 & -1 & -2 \\ -1 & -1 & -1 \end{pmatrix}$  .

- Suppose  $(w)_S = (2, -1, 2)$ .
  - $[\boldsymbol{w}]_T = \boldsymbol{P}[\boldsymbol{w}]_S = \begin{pmatrix} 2 \\ -1 \\ -3 \end{pmatrix}$ .  $(\boldsymbol{w})_T = (2, -1, -3)$ .

103 / 106

## **Properties**

- ullet Theorem. Let S and T be bases for a vector space V.
  - $\circ$  Let  ${m P}$  be the transition matrix from S to T. Then
    - P is an invertible matrix.
    - $P^{-1}$  is the transition matrix from T to S.
- **Proof.** Let Q be the transition matrix from T to S.
  - $\circ \;\;$  It suffices to show that  $oldsymbol{QP} = oldsymbol{I}.$

Let 
$$S = \{ \boldsymbol{v}_1, \boldsymbol{v}_2, \dots, \boldsymbol{v}_k \}$$
. Then

$$\circ [v_1]_S = e_1, [v_2]_S = e_2, \dots, [v_k]_S = e_k.$$

$$egin{aligned} oldsymbol{QP} &= oldsymbol{QPI} &= oldsymbol{QP} \left( oldsymbol{e}_1 & \cdots oldsymbol{e}_k 
ight) = \left( oldsymbol{QP} \left[ oldsymbol{v}_1 
ight]_S & \cdots oldsymbol{QP} \left[ oldsymbol{v}_k 
ight]_S 
ight) \ &= \left( oldsymbol{Q} \left[ oldsymbol{v}_1 
ight]_S & \cdots oldsymbol{v}_k 
ight]_S 
ight) \ &= \left( oldsymbol{e}_1 & \cdots & oldsymbol{e}_k 
ight) = oldsymbol{I}. \end{aligned}$$

## **Examples**

• Let  $S = \{u_1, u_2\}, u_1 = (1, 1), u_2 = (1, -1).$ 

$$T = \{v_1, v_2\}, v_1 = (1, 0), v_2 = (1, 1).$$

Note that both S and T are bases for  $\mathbb{R}^2$ .

$$\circ \quad \left(\begin{array}{cc|c} \boldsymbol{v}_1 & \boldsymbol{v}_2 & \boldsymbol{u}_1 & \boldsymbol{u}_2 \end{array}\right) \xrightarrow{R_1 + (-1)R_2} \left(\begin{array}{cc|c} 1 & 0 & 0 & 2 \\ 0 & 1 & 1 & -1 \end{array}\right)$$

- Transition matrix from S to T:  $\mathbf{P} = \begin{pmatrix} 0 & 2 \\ 1 & -1 \end{pmatrix}$ .
- $\circ \quad \left( \begin{array}{cc|c} \boldsymbol{u}_1 & \boldsymbol{u}_2 & \boldsymbol{v}_1 & \boldsymbol{v}_2 \end{array} \right) \xrightarrow{\mathsf{G.-J.E}} \left( \begin{array}{cc|c} 1 & 0 & \frac{1}{2} & 1 \\ 0 & 1 & \frac{1}{2} & 0 \end{array} \right)$ 
  - Transition matrix from T to S:  $\mathbf{Q} = \begin{pmatrix} \frac{1}{2} & 1 \\ \frac{1}{2} & 0 \end{pmatrix}$ .
- $\circ~$  One checks easily that PQ=QP=I.

105 / 106

# **Examples**

• Let  $S = \{u_1, u_2, u_3\}$  and  $T = \{v_1, v_2, v_3\}$ .

$$\circ \quad S = \{(1,0,-1), (0,-1,0), (1,0,2)\};$$

$$\circ \quad T = \{(1,1,1), (1,1,0), (-1,0,0)\}.$$

We have computed the transition matrix from S to T:

$$\circ \quad \mathbf{P} = \begin{pmatrix} -1 & 0 & 2 \\ 1 & -1 & -2 \\ -1 & -1 & -1 \end{pmatrix}.$$

Then the transition matrix from T to S is

$$\bullet \quad \mathbf{P}^{-1} = \dots = \begin{pmatrix} \frac{1}{3} & \frac{2}{3} & -\frac{2}{3} \\ -1 & -1 & 0 \\ \frac{2}{3} & \frac{1}{3} & -\frac{1}{3} \end{pmatrix}.$$

For any  $\boldsymbol{w} \in \mathbb{R}^3 = \operatorname{span}(S) = \operatorname{span}(T)$ ,

$$\circ \quad oldsymbol{P}[oldsymbol{w}]_S = [oldsymbol{w}]_T ext{ and } oldsymbol{P}^{-1}[oldsymbol{w}]_T = [oldsymbol{w}]_S.$$