Date	29 October 2022
Team ID	PNT2022TMID31166
Project Name	Project – Smart Farmer-IoT Enabled smart
	Farming Application

Connecting Sensors with Arduino using C++ code

```
#include "Arduino.h"
#include "dht.h"
#include "SoilMoisture.h"
#define dht_apin A0
const int sensor_pin = A1; //soil moisture
int pin_out = 9;
dht DHT;
int c=0;
void setup()
{
pinMode(2, INPUT); //Pin 2 as INPUT
pinMode(3, OUTPUT); //PIN 3 as OUTPUT
pinMode(9, OUTPUT);//output for pump
void loop()
 if (digitalRead(2) == HIGH)
 {
```

```
digitalWrite(3, HIGH); // turn the LED/Buzz ON
delay(10000); // wait for 100 msecond
digitalWrite(3, LOW); // turn the LED/Buzz OFF
delay(100);
 }
 Serial.begin(9600);
  delay(1000);
  DHT.read11(dht_apin); //temprature
float h=DHT.humidity;
float t=DHT.temperature;
 delay(5000);
 Serial.begin(9600);
 float moisture_percentage;
int sensor_analog;
sensor_analog = analogRead(sensor_pin);
moisture_percentage = (100 - ((sensor_analog/1023.00) *
100);
float m=moisture_percentage;
delay(1000);
if(m<40)//pump
 {
 while(m<40)
 {
```

```
digitalWrite(pin_out,HIGH); //open pump
 sensor_analog = analogRead(sensor_pin);
 moisture_percentage = (100 - ((sensor_analog/1023.00) *
100);
 m=moisture_percentage;
 delay(1000);
 }
 digitalWrite(pin_out,LOW); //closepump
 }
 if(c>=0)
 mySerial.begin(9600);
 delay(15000);
 Serial.begin(9600);
 delay(1000);
 Serial.print("\r");
 delay(1000);
 Serial.print((String)"update-
>"+(String)"Temprature="+t+(String)"Humidity="+h+(String
)"Moisture="+m);
 delay(1000);
```

Circuit Diagram

Date	05 November 2022
Team ID	PNT2022TMID31166
Project Name	Project – Smart Farmer-IoT Enabled smart
	Farming Application

Sensor Connection

Device Details:

Date	12 November 2022
Team ID	PNT2022TMID31166
Project Name	Project – Smart Farmer-IoT Enabled smart
	Farming Application

Creating Mobile app using MIT app Inventor

SMART FARMER APPLICATION

App Inventor + IoT can work together to help us understand, and change, our everyday lives.

Blocks

QR Code for APK download:

Output Screen in Mobile:

Date	16 November 2022
Team ID	PNT2022TMID31166
Project Name	Project – Smart Farmer-IoT Enabled smart
	Farming Application

CONFIGURATION OF NODE-RED TO SEND COMMANDS TO IBM CLOUD

Here we add two buttons in UI

1 -> for motor on

 $2 \rightarrow \text{for motor off}$

We used a function node to analyses the data received and assigncommand to each number.

The Java script code for the analyses is:

```
if(msg.payload===1)
msg.payload={"command": "ON"};
else if(msg.payload===0)
msg.payload={"command": "OFF"};
```

Adjusting User Interface

In order to display the parsed JSON data a Node-Red dashboard is created

Here we are using Gauges, text and button nodes to display in the UI andhelps to monitor the parameters and control the farm equipment.

Below images we started to create the flow 1

COMPLETE PROGRAM FLOW:

SCREENSHOTS:

