RESEARCH

A sample article title

Jane E. Doe* and John R.S. Smith

*Correspondence: jane.e.doe@cambridge.co.uk ETSI Informática, Universidad de Málaga, Málaga, España Full list of author information is available at the end of the article

Abstract

Keywords: sample; article; author

Content

Text and results for this section, as per the individual journal's instructions for authors. Here, we reference the figure 1 and figure 2 but also the table 1.

Section title

Text for this section...

In this section we examine the growth rate of the mean of Z_0 , Z_1 and Z_2 . In addition, we examine a common modeling assumption and note the importance of considering the tails of the extinction time T_x in studies of escape dynamics. We will first consider the expected resistant population at vT_x for some v > 0, (and temporarily assume $\alpha = 0$)

$$E[Z_1(vT_x)] = \int_0^{v \wedge 1} Z_0(uT_x) \exp(\lambda_1) du.$$

If we assume that sensitive cells follow a deterministic decay $Z_0(t) = xe^{\lambda_0 t}$ and approximate their extinction time as $T_x \approx -\frac{1}{\lambda_0} \log x$, then we can heuristically estimate the expected value as

$$E[Z_1(vT_x)]$$

$$= \frac{\mu}{r} \log x \int_0^{v \wedge 1} x^{1-u} x^{(\lambda_1/r)(v-u)} du.$$
(1)

Thus we observe that this expected value is finite for all v>0 (also see [1, 2, 3, 4, 5, 6]).

 $\textbf{Table 1} \ \, \textbf{Sample table title. This is where the description of the table should go}$

	B1	B2	В3
A1	0.1	0.2	0.3
A2			
А3			

Sub-heading for section

Text for this sub-heading...

Doe and Smith Page 2 of 3

 $Sub\text{-}sub\ heading\ for\ section$

Text for this sub-sub-heading...

 $Sub\text{-}sub\text{-}sub\text{-}heading\ for\ section}\quad \text{Text for this sub-sub-sub-heading.} \dots$

- 1 Introducción
- 2 Materiales y métodos
- 3 Resultados
- 4 Discusión
- 5 Conclusiones

Abbreviations

Text for this section...

Doe and Smith Page 3 of 3

Availability of data and materials

Text for this section...

Authors' contributions

Text for this section ...

Author details

ETSI Informática, Universidad de Málaga, Málaga, España.

References

- Koonin, E.V., Altschul, S.F., Bork, P.: Brca1 protein products: functional motifs. Nat. Genet. 13, 266–267 (1996)
- 2. Jones, X.: Zeolites and synthetic mechanisms. In: Smith, Y. (ed.) Proceedings of the First National Conference on Porous Sieves: 27-30 June 1996; Baltimore, pp. 16–27 (1996)
- 3. Margulis, L.: Origin of Eukaryotic Cells. Yale University Press, New Haven (1970)
- 4. Schnepf, E.: From prey via endosymbiont to plastids: comparative studies in dinoflagellates. In: Lewin, R.A. (ed.) Origins of Plastids, 2nd edn., pp. 53–76. Chapman and Hall, New York (1993)
- 5. Kohavi, R.: Wrappers for performance enhancement and obvious decision graphs. PhD thesis, Stanford University, Computer Science Department (1995)
- 6. ISSN International Centre: The ISSN register (2006). http://www.issn.org Accessed Accessed 20 Feb 2007