

✓ Congratulations! You passed!

TO PASS 80% or higher

GRADE 92%

MCTS

LATEST SUBMISSION GRADE

92%			
1.	What is true about planning in RL? Planning allows to <i>compute</i> (contrast with <i>learn</i>)the best possible action.	1/1 point	
	✓ Correct		
	 □ For planning, we do not need to explore – we already know all we need to compute optimal policy. ✓ Planning is computationally intensive. 		
	✓ Correct		
	Planning does not make use of Dynamic Programming		
	✓ Planning algorithms that can output a valid policy (or value function) at each moment of planning (even before the end of planning) are called <i>anytime planning algorithms</i> .		
	✓ Correct		
2.	What are the differences between model-free and model-based settings?	1/1 point	
	In a model-free setting, we know which (reward, next state) pairs are possible given current state and action.		
	In a model-based setting, we know nothing about environment dynamics. An agent is learning by optimizing some parametric model.		
	Model-free learning requires probabilities of possible next states and rewards but does not require a sample model (aka simulator, aka generative model)		
	✓ In a model-free setting, we know nothing about environment dynamics. Optimization of agent decisions is based solely on sample-based experiences of the world.		
	✓ Correct		
	✓ In a model-based setting, we can find out which (reward, next state) pairs are possible given current state and action.		
	✓ Correct		
3.	What are different types of planning?	1/1 point	
	☑ Background planning is synonymous to model-free learning from precollected samples of the given environment model with the goal to improve policy / value function in all the sampled states .		
	✓ Correct		
	Background planning starts after an agent's transition into a new state; it is used to select an optimal action for the current state only.		
	Decision time planning starts after an agent's transition into a new state; it is used to select an optimal action for the current state only.		

	✓ Correct	
	Decision time planning is synonymous to model-free learning from precollected samples of the given environment model with the goal to improve policy / value function in all the sampled states .	
4.	What is true about <i>rollout policy</i> (RP) and <i>tree policy</i> (TP) in MCTS?	0.8 / 1 point
	MCTS is relatively insensitive to the quality of RP. So we can use random RP, but it is always better to make RP as good as possible.	
	For long episodes and very short planning time RP should be as fast as possible, TP can be much slower.	
	✓ Correct	
	Random RP is best, since improving the quality of RP may reduce the quality of MCTS planning.	
	RP <i>and</i> TP are conflicting policies the one that performs the best becomes the final result of planning.	
	For long episodes and short planning time TP should be as fast as possible, RP can be much slower.	
	You didn't select all the correct answers	
5.	What is true about MCTS?	0.8 / 1 point
5.	What is true about MCTS? The backup phase of MCTS performs Policy Evaluation: it makes value estimates in tree nodes consistent with the compound policy (rollout + tree policy)	0.8 / 1 point
5.	☐ The backup phase of MCTS performs Policy Evaluation: it makes value estimates in tree nodes	0.8 / 1 point
5.	 ☐ The backup phase of MCTS performs Policy Evaluation: it makes value estimates in tree nodes consistent with the compound policy (rollout + tree policy) ✓ The MAX action selection strategy (classic MCTS) is an instance of Policy Improvement greedy 	0.8 / 1 point
5.	 □ The backup phase of MCTS performs Policy Evaluation: it makes value estimates in tree nodes consistent with the compound policy (rollout + tree policy) ✓ The MAX action selection strategy (classic MCTS) is an instance of Policy Improvement greedy action selection with respect to action-value function. 	0.8/1 point
5.	 □ The backup phase of MCTS performs Policy Evaluation: it makes value estimates in tree nodes consistent with the compound policy (rollout + tree policy) ✓ The MAX action selection strategy (classic MCTS) is an instance of Policy Improvement greedy action selection with respect to action-value function. ✓ Correct □ MCTS uses binary search to select the best action in each node in the tree since it is the fastest 	0.8/1 point
5.	 □ The backup phase of MCTS performs Policy Evaluation: it makes value estimates in tree nodes consistent with the compound policy (rollout + tree policy) ✓ The MAX action selection strategy (classic MCTS) is an instance of Policy Improvement greedy action selection with respect to action-value function. ✓ Correct □ MCTS uses binary search to select the best action in each node in the tree since it is the fastest strategy out there. ✓ MCTS balances between exploration and exploitation by treating action selection in each node as an 	0.8/1 point
5.	 □ The backup phase of MCTS performs Policy Evaluation: it makes value estimates in tree nodes consistent with the compound policy (rollout + tree policy) ☑ The MAX action selection strategy (classic MCTS) is an instance of Policy Improvement greedy action selection with respect to action-value function. ☑ Correct □ MCTS uses binary search to select the best action in each node in the tree since it is the fastest strategy out there. ☑ MCTS balances between exploration and exploitation by treating action selection in each node as an independent multiarmed bandit problem. 	0.8/1 point