Prune-and-search Strategy

Outlines

- The general method
- **■** The selection problem
- Linear programming with two variable
- The 1-center problem

學習目標

- Prune-and-Search 策略設計的概念
- Prune-and-Search演算法時間複雜度分析

The general method P&S

- The prune-and-search strategy always consists of several iterations.
- At each iteration, it prunes away a fraction, say f(0 < f < 1) of the input data, and then it invokes the same algorithm recursively to solve the problem for the remaining data.
- After p iterations, the size of input data will be q, which is so small that the problem can be solved directly in some constant time c'.

The time-complexity analysis

Assume that the time needed to execute the prune-and-search in each iteration is $O(n^k)$ for some constant k, and the worst case run time of the prune-and-search algorithm is T(n).

Then
$$T(n)=T((1-f)n)+O(n^k)$$

=> $T(n)=O(n^k)$

The general prune-and-search

- It consists of many iterations.
- At each iteration, it prunes away a fraction, say f, of the input data, and then it invokes the same algorithm recursively to solve the problem for the remaining data.
- After p iterations, the size of input data will be q which is so small that the problem can be solved directly in some constant time c.
- Assume that the time needed to execute the prune-and-search in each iteration is $O(n^k)$ for some constant k and the worst case run time of the prune-and-search algorithm is T(n). Then

$$T(n) = T((1-f)n) + O(n^k)$$

Time complexity

We have

```
T(n) \le T((1-f)n) + cn^k for sufficiently large n.

\le T((1-f)^2n) + cn^k + c(1-f)^kn^k

\vdots

\le c' + cn^k + c(1-f)^kn^k + c(1-f)^{2k}n^k + ... + c(1-f)^{pk}n^k

= c' + cn^k(1+(1-f)^k+(1-f)^{2k}+...+(1-f)^{pk}).

Since 1-f < 1, as n \to \infty,

\therefore T(n) = O(n^k)
```

Thus, the time-complexity of the whole prune-and-search process is of the same order as the time-complexity in each iteration.

A simple example: Binary search

sorted sequence : (search 9)

- After each comparison, a half of the data set are <u>pruned away</u>.
- Binary search can be viewed as a <u>special divide-and-conquer</u> method, since there exists no solution in another half and then no merging is done.

Question:

- Assume that the time needed to execute the prune-and-search in each iteration is $O(n^2)$. What is the time complexity of the algorithm?
- (1) $O(n^2)$
- (2) O(n)
- (3) $O(n^2 \log n)$
- (4) **O**(nlog n)

Ans. 1

The selection problem

學習目標

- Selection Problem 問題定義
- 以prune-and-search 策略設計Selection Problem的演算法
- 以prune-and-search 策略設計Selection Problem的演算 法時間複雜度分析

The selection problem

- Input: A set S of n elements
- Output: The kth smallest element of S
- The median problem: to find the $\lceil \frac{n}{2} \rceil$ th smallest element.
- The straightforward algorithm:
 - step 1: Sort the n elements
 - step 2: Locate the kth element in the sorted list.
 - Time complexity: **O(nlogn)**

Prune-and-search concept for the selection problem

- $S = \{a_1, a_2, ..., a_n\}$
- Let $p \in S$, use p to <u>partition</u> S into 3 subsets S_1 , S_2 , S_3 :
 - $S_1 = \{ a_i | a_i < p, 1 \le i \le n \}$
 - $S_2 = \{ a_i | a_i = p, 1 \le i \le n \}$
 - $S_3 = \{ a_i | a_i > p, 1 \le i \le n \}$

3 cases:

- If $|S_1| > k$, then the kth smallest element of S is in S_1 , prune away S_2 and S_3 .
- Else, if $|S_1| + |S_2| > k$, then p is the kth smallest element of S.
- Else, the kth smallest element of S is the $(k |S_1| |S_2|)$ -th smallest element in S_3 , prune away S_1 and S_2 .

How to select P?

The n elements are divided into $\left\lceil \frac{n}{5} \right\rceil$ subsets. (Each subset has 5 elements.)

At least 1/4 of S known to be less than or equal to P.

Prune-and-search approach

- Input: A set S of n elements.
- Output: The kth smallest element of S.

Step 1: Divide S into n/5 subsets. Each subset contains five elements. Add some dummy ∞ elements to the last subset if n is not a net multiple of S.

Step 2: Sort each subset of elements.

Step 3: Find the element p which is the median of the medians of the n/5 subsets.

Prune-and-search approach

Step 4: Partition S into S_1 , S_2 and S_3 , which contain the elements less than, equal to, and greater than p, respectively.

Step 5: If $|S_1| \ge k$, then discard S_2 and S_3 and solve the problem that selects the kth smallest element from S_1 during the next iteration;

else if $|S_1| + |S_2| \ge k$ then p is the kth smallest element of S; otherwise, let $k' = k - |S_1| - |S_2|$, solve the problem that selects the k'th smallest element from S_3 during the next iteration.

Example

S = {1, 25, 2, 24, 3, 23, 4, 22, 5, 21, 6, 20, 7, 19, 8, 18, 9, 17, 10, 16, 11, 15, 12, 14, 13}, 找第k小的元素。

Ans

```
[Step 1]
        1 23 6 18 11
       25 4 20 9 15
        2 22 7 17 12
       24 5 19 10 14
        3 21 8 16 13
[Step 2] 1 4 6 9 11
        2 5 7 10 12
        3 21 8 16 13
       24 22 19 17 14
       25 23 20 18 15
```

[Step 5] 利用三個判斷條件以找出第k小的元素

- 若 k = 11 (搜尋範圍 |S₁l)
- 若 k = 13 (搜尋範圍 |S₁|+ |S₂|)
- 若 k = 22 (搜尋範圍 |S₃|)

Time complexity

- At least n/4 elements are pruned away during each iteration.
- The problem remaining in step 5 contains at most 3n/4 elements.
- Time complexity: T(n) = O(n)
 - step 1: O(n)
 - step 2: O(n)
 - step 3: T(n/5)
 - step 4: O(n)
 - step 5: T(3n/4)
 - T(n) = T(3n/4) + T(n/5) + O(n)

Let
$$T(n) = a_0 + a_1 n + a_2 n^2 + \dots$$
, $a_1 \neq 0$
 $T(3n/4) = a_0 + (3/4)a_1 n + (9/16)a_2 n^2 + \dots$
 $T(n/5) = a_0 + (1/5)a_1 n + (1/25)a_2 n^2 + \dots$
 $T(3n/4 + n/5) = T(19n/20) = a_0 + (19/20)a_1 n + (361/400)a_2 n^2 + \dots$
 $T(3n/4) + T(n/5) \leq a_0 + T(19n/20)$
 $\Rightarrow T(n) \leq cn + T(19n/20)$
 $\leq cn + (19/20)cn + T((19/20)^2 n)$
 \vdots
 $\leq cn + (19/20)cn + (19/20)^2 cn + \dots + (19/20)^p cn + T((19/20)^p n)$
 $= \frac{1-(\frac{19}{20})^{p+1}}{1-\frac{19}{20}}cn+b$
 $\leq 20 \ cn + b$
 $\leq 20 \ cn + b$
Applying the formula obtained in Section 6.1

Question:

- What is the time complexity of the selection problem?
- $(1) O(n^2)$
- (2) O(n)
- $(3) O(n^2 \log n)$
- (4) O(nlog n)

Ans. 2

Linear programming with two variables

學習目標

- Linear Programming Problem 問題定義
- 以prune-and-search 策略設計Linear
 Programming Problem 的演算法
- 以prune-and-search 策略設計Linear
 Programming Problem 演算法時間複雜度分析

Linear Programming

Maximize or minimize $c_1 x_1 + c_2 x_2 + \dots + c_d x_d$ subject to: $a_{11} x_1 + a_{12} x_2 + \dots + a_{1d} x_d \le b_1$ $a_{21} x_1 + a_{22} x_2 + \dots + a_{2d} x_d \le b_2$ \vdots $a_{n1} x_1 + a_{n2} x_2 + \dots + a_{nd} x_d \le b_n$

Example in 2D

$$\max \quad \mathbf{x}_1 + 8\mathbf{x}_2$$

subject to:

$$(1) x_1 \geq 3$$

$$(2) x_2 \geq 2$$

$$(3) \quad -3x_1 + 4x_2 \leq 14$$

$$(4) 4x_1 - 3x_2 \le 25$$

$$(5) x_1 + x_2 \le 15$$

constraints

Linear programming with two variables

- Minimize ax + bysubject to $a_ix + b_iy \ge c_i$, i = 1, 2, ..., n
- Simplified two-variable linear programming problem:

Minimize y subject to $y \ge a_i x + b_i$, i = 1, 2, ..., n

• The boundary F(x):

$$F(x) = \max_{1 \le x \le n} \{a_i x + b_i\}$$

• The optimum solution x_0 :

$$F(x_0) = \min_{-\infty < x < \infty} F(x)$$

Minimize y subject to $y \ge a_i x + bi$, i = 1, 2, ..., n

Constraints deletion

- Assume x_m is known
- If $x_0 < x_m$ and the intersection of $a_3x + b_3$ and $a_2x + b_2$ is greater than x_m , then one of these two constraints is always smaller than the other for $x < x_m$. Thus, this constraint can be deleted.
- It is similar for $x_0 > x_m$.

FIGURE 6-4 An illustration of why a constraint may be eliminated.

Determining the direction of the optimum solution

Suppose an x_m is known. How do we know whether $x_0 < x_m$ or $x_0 > x_m$?

- Suppose x_m is chosen.
- Let $y_m = F(x_m) = \max_{1 < i < n} \{a_i x_m + b_i\}$
- Case 1: y_m is on only one constraint.
 - Let g denote the slope of this constraint.
 - If g > 0, then $x_0 < x_m$.
 - If g < 0, then $x_0 > x_m$.

The cases where x_m is on only one constrain.

Cases of x_m on the intersection of several constraints.

• Case 2: y_m is the intersection of several constraints.

$$\mathbf{g}_{\max} = \max_{1 < i < n} \{a_i \mid a_i x_m + b_i = F(x_m)\}$$

$$\max. \text{ slope}$$

$$\mathbf{g}_{\min} = \min_{1 < i < n} \{a_i \mid a_i x_m + b_i = F(x_m)\}$$

$$\min. \text{ slop}$$

- If $g_{min} > 0$, $g_{max} > 0$, then x_0 $< x_m$
- If $g_{min} < 0$, $g_{max} < 0$, then $x_0 > x_m$
- If $g_{min} < 0$, $g_{max} > 0$, then (x_m, y_m) is the optimum solution.

How to choose x_m?

• We arbitrarily group the n constraints into n/2 pairs. For each pair, find their intersection. Among these n/2 intersections, choose the median of their x-coordinates as x_m .

Prune-and-Search approach

- Input: Constrains S: $a_i x + b_i$, i=1, 2, ..., n.
- Output: The value x_0 such that y is minimized at x_0 subject to $y \ge a_i x + b_i$, i=1, 2, ..., n.

Step 1: If S contains no more than two constraints, solve this problem by a brute force method.

Step 2: Divide S into n/2 pairs of constraints. For each pair of constraints $a_i x + b_i$ and $a_j x + b_j$, find the intersection p_{ij} of them and denote its x-value as x_{ij} .

Step 3: Among the x_{ij} 's, find the median x_m .

Step 4: Determine
$$y_m = F(x_m) = \max_{1 < i < n} \{a_i x_m + b_i\}$$

$$g_{\min} = \min_{1 < i < n} \{a_i | a_i x_m + b_i = F(x_m)\}$$

$$g_{\max} = \max_{1 < i < n} \{a_i | a_i x_m + b_i = F(x_m)\}$$

Step 5:

Case 5a: If g_{min} and g_{max} are not of the same sign, y_m is the solution and exit.

Case 5b: otherwise, $x_0 < x_m$, if $g_{min} > 0$, and $x_0 > x_m$, if $g_{min} < 0$.

Step 6:

Case 6a: If $x_0 < x_m$, for each pair of constraints whose x-coordinate intersection is larger than x_m , prune away the constraint which is always smaller than the other for $x \le x_m$.

Case 6b: If $x_0 > x_m$, do similarly. Let S denote the set of remaining constraints. Go to Step 2.

- There are totally \[\ln/2 \] intersections. Thus, \[\ln/4 \] constraints are pruned away for each iteration.
- Time complexity: O(n)

Question:

- What is the time complexity of the linear programming problem with two variables?
- $(1) O(n^2)$
- (2) O(n)
- $(3) O(n^2 \log n)$
- (4) O(nlog n)

Ans. 2

The 1-center problem

學習目標

- 1-center problem 問題定義
- 以prune-and-search 策略設計constrained 1center problem的演算法
- 以prune-and-search 策略設計constrained 1-center problem的演算法時間複雜度分析

The 1-center problem

• Given n planar points, find a smallest circle to cover these n points.

The pruning rule

- L_{12} : bisector of segment connecting p_1 and p_2 ,
- L_{34} : bisector of segments connecting p_3 and p_4
- Assume that the center of optimum circle must be in the shaded area, then P_1 can be eliminated without affecting our solution.

The constrained 1-center problem

The center is restricted to lying on a straight line (y=y').

Median of the x_{ij}

Prune-and-search approach

- Input: n points and a straight line y = y'.
- Output: The constrained center on the straight line y = y'.
- Step 1: If n is no more than 2, solve this problem by a brute-force method.
- Step 2: Form disjoint pairs of points (p_1, p_2) , (p_3, p_4) , ..., (p_{n-1}, p_n) . If there are odd number of points, just let the final pair be (p_n, p_1) .
- Step 3: For each pair of points, (p_i, p_{i+1}) , find the point $x_{i,i+1}$ on the line y = y' such that $d(p_i, x_{i,i+1}) = d(p_{i+1}, x_{i,i+1})$.

Step 4: Find the **median** of the $\left\lfloor \frac{n}{2} \right\rfloor x_{i,i+1}$'s. Denote it as x_m .

Step 5: Calculate the distance between p_i and x_m for all i. Let p_j be the point which is farthest from x_m . Let x_j denote the projection of p_j onto y = y'. If x_j is to the left (right) of x_m , then the optimal solution, x^* , must be to the left (right) of x_m .

Step 6: If $\mathbf{x}^* < \mathbf{x_m}$, for each $\mathbf{x_{i,i+1}} > \mathbf{x_m}$, prune the point $\mathbf{p_i}$ if $\mathbf{p_i}$ is closer to $\mathbf{x_m}$ than $\mathbf{p_{i+1}}$, otherwise prune the point $\mathbf{p_{i+1}}$; If $\mathbf{x}^* > \mathbf{x_m}$, do similarly.

Step 7: Go to Step 1.

Time complexity O(n)

The general 1-center problem

- By the constrained 1-center algorithm, we can determine the center $(x^*,0)$ on the line y=0.
- We can do more
 - Let (x_s, y_s) be the center of the optimum circle.
 - We can determine whether $y_s > 0$, $y_s < 0$ or $y_s = 0$.
 - Similarly, we can also determine whether $x_s > 0$, $x_s < 0$ or $x_s = 0$

The sign of optimal y

- Let I be the set of points which are farthest from $(x^*, 0)$.
- Case 1: I contains one point $P = (x_p, y_p)$. y_s has the same sign as that of y_p .

the x-value of p must be equal to x* (proof by contradiction)

• Case 2: I contains more than one point.

Find the smallest arc spanning all points in I.

Let $P_1 = (x_1, y_1)$ and $P_2 = (x_2, y_2)$ be the two end points of the smallest spanning arc.

If this arc $\ge 180^{\circ}$, then $y_s = 0$.

else y_s has the same sign as that of

(See the figure on the next page.)

Optimal or not optimal

an acute triangle:

The circle is optimal.

■ an obtuse(鈍角)

The circle is not optimal.

The x-value of end points p1 and p2 must be of opposite signs

Assume $a > x^*$, b > 0region 2₽ And c<x*, d<0 (a, b). (c, d). (c, d). region 14 region 2₽ (a)₊ region 3₽ (a, b) (a, b) (c, d). region 4₽ (c)₊ (d)₊

The optimum center must be located in region 3. Thus, the sign of y_3 must be the sign of =. Similarly, x_s has the same sign as that of =.

$$\frac{b+d}{2} \qquad \frac{y_1 + y_2}{2}$$

$$\frac{a+c}{2} \qquad \frac{x_1 + x_2}{2}$$

An example of 1-center problem

- One point for each of n/4 intersections of L_{i+} and L_{i-} is pruned away.
- Thus, n/16 points are pruned away in each iteration.

Prune-and-search approach

- Input: A set $S = \{p_1, p_2, ..., p_n\}$ of n points.
- Output: The smallest enclosing circle for S.

Step 1: If S contains no more than 16 points, solve the problem by a brute-force method.

Step 2: Form disjoint pairs of points, (p_1, p_2) , (p_3, p_4) , ..., (p_{n-1}, p_n) . For each pair of points, (p_i, p_{i+1}) , find the perpendicular bisector of line segment .Denote them as $L_{i/2}$, for i = 2, 4, ..., n, and compute their slopes. Let the slope of L_k be denoted as $p_i s_k^{p_{i+1}}$ for k = 1, 2, 3, ..., n/2.

- Step 3: Compute the median of s_k 's, and denote it by s_m .
- Step 4: Rotate the coordinate system so that the x-axis coincide with $y = s_m x$. Let the set of L_k 's with positive (negative) slopes be I^+ (I^-). (Both of them are of size n/4.)
- Step 5: Construct disjoint pairs of lines, (L_{i+}, L_{i-}) for i = 1, 2, ..., n/4, where $L_{i+} \in I^+$ and $L_{i-} \in I^-$. Find the intersection of each pair and denote it by (a_i, b_i) , for i = 1, 2, ..., n/4.

- Step 6: Find the median of b_i's. Denote it as y*. Apply the constrained 1-center subroutine to S, requiring that the center of circle be located on y=y*. Let the solution of this constrained 1-center problem be (x', y*).
- Step 7: Determine whether (x', y^*) is the optimal solution. If it is, exit; otherwise, record $y_s > y^*$ or $y_s < y^*$.

- Step 8: If $y_s > y^*$, find the median of a_i 's for those (a_i, b_i) 's where $b_i < y^*$. If $y_s < y^*$, find the median of a_i 's of those those (a_i, b_i) 's where $b_i > y^*$. Denote the median as x^* . Apply the constrained 1-center algorithm to S, requiring that the center of circle be located on $x = x^*$. Let the solution of this contained 1-center problem be (x^*, y^*) .
- Step 9: Determine whether (x^*, y^*) is the optimal solution. If it is, exit; otherwise, record $x_s > x^*$ and $x_s < x^*$.

Step 10:

• Case 1: $x_s < x^*$ and $y_s < y^*$.

Find all (a_i, b_i) 's such that $a_i > x^*$ and $b_i > y^*$. Let (a_i, b_i) be the intersection of L_{i+} and L_{i-} . Let L_{i-} be the bisector of p_j and p_k . Prune away $p_j(p_k)$ if $p_j(p_k)$ is closer to (x^*, y^*) than $p_k(p_i)$.

- Case 2: $x_s > x^*$ and $y_s > y^*$. Do similarly.
- Case 3: $x_s < x^*$ and $y_s > y^*$. Do similarly.
- Case 4: $x_s > x^*$ and $y_s < y^*$. Do similarly.

Step 11: Let S be the set of the remaining points. Go to Step 1.

• Time complexity:

$$T(n) = T(15n/16) + O(n)$$

= O(n)