МОДИФИКАЦИЯ ЭПОКСИДНОЙ СМОЛЫ DER-330 РЕАКЦИОННЫМ ПОЛИМЕРОМ НА ОСНОВЕ АНГИДРИДА 5-НОРБОРНЕН-2,3-ДИКАРБОНОВОЙ КИСЛОТЫ

Романов А.Н.⁽¹⁾, Безруков Н.П.⁽²⁾, Власова А.В.⁽²⁾, Мелехина В.Я.⁽²⁾, Моронцев А.А.⁽²⁾, Антонов С.В.⁽²⁾, Бермешев М.В.⁽²⁾

(1) МИРЭА — Российский технологический университет 119454, г. Москва, проспект Вернадского, д. 78

(2) Институт нефтехимического синтеза РАН 119991, ГСП-1, г. Москва, Ленинский проспект, д. 29

Эпоксидная смола DER-330 находит широкое применение в качестве компонентов композиционных материалов - заливочных и пропиточных компаундов, клеев, герметиков и др. Одним из вариантов улучшения свойств изделий на её основе является модификация данной смолы полимерами, которые способны принимать участи в реакции образования трехмерной матрицы в процессе отверждения смолы. В качестве модификатора мы решили использовать ряд полимеров на основе ангидрида 5-норборнен-2,3-дикарбоновой кислоты (ПНДА), отличающиеся различной молекулярной массой. Синтез модификаторов проводили в результате метатезисной полимеризации исходного циклоолефина под действием катализатора Граббса второго поколения в присутствии гексена-1, выступающего в качестве агента передачи цепи при 60 °C.

$$G_1$$
 G_2 G_1 G_2 G_1 G_2 G_2 G_3 G_4 G_4 G_4 G_5 G_5 G_6 G_7 G_8 G_8

Строение полимера подтверждали по данным ИК, ¹H, ¹³C, ¹H-¹³C HSQC ЯМР спектроскопии. Они также были охарактеризованы методами ГПХ, ДСК и ТГА.

Модификацию эпоксидной системы проводили частичной замены изометилтетрагидрофталевого ангидрида на ПНДА. Оптимальный режим отверждения подбирался на основании данных ДСК и ротационной реометрии. Участие модификатора в формировании трехмерной сетки подтверждено методом ИКспектроскопии. Модификация системы ПНДА позволила сохранить оптическую прозрачность отвержденных образцов, что может свидетельствовать о предотвращении протекания фазового расслоения на макроуровне. Для оценки физикомеханических свойств были подготовлены образцы согласно ГОСТам 4647-2015, 56810-2015, 14759-69. Показано, что введение модификатора позволяет повысить прочность три трехточечном изгибе, а также адгезионную прочность при сдвиге как к полярным, так и к слабополярным субстратам. Кроме того, все отвержденные образы были исследованы методами ДСК, ДМА и СЭМ.

Исследование выполнено при поддержке гранта Российского научного фонда N_2 24-73-00330, https://rscf.ru/project/24-73-00330/.