

Advancing Recommendation Systems Using Graph Neural Networks

Yusuf ŞAHİN, 150200016 Mustafa Can ÇALIŞKAN, 150200097

Advisor: Assoc. Prof. Dr. Yusuf YASLAN

Abstract

We introduce an adaptive graph-based recommender system that balances accuracy and diversity through a multi-channel architecture. By decomposing the interaction graph into $\alpha\text{-}\beta$ cores, residuals, and a diffusion-enhanced view, our model captures both dense and long-tail patterns. Trainable channel gating and contrastive alignment enable dynamic control over recommendation behavior. With tunable hyperparameters, the system flexibly targets accuracy-oriented, diversity-promoting, or balanced objectives—making it well-suited for real-world, long-tail recommendation scenarios. Our architecture outperforms the SOTA models in all metrics.

Related Work

In recent literature, LightGCN[1] simplifies GCN-based collaborative filtering by removing feature transformations and nonlinear activations—relying solely on linear neighborhood aggregation and a weighted sum of layer-wise embeddings—to achieve ≈ 16 % relative improvement over NGCF[2] with far less complexity. Building on this, DGRec[3] tackles diversity shortfalls by combining submodular neighbor selection, layer attention, and long-tail loss reweighting, boosting recommendation variety without sacrificing accuracy.

Methodology

- Heterogeneous Graph Neural Networks (GNNs) handling distinct user-item interactions.
- Flexible layer factory enabling the interchange of convolutional layers, such as LightGCN and diffusion-based PPR.
- Diffusion-based Personalized PageRank (PPR) to refine embedding propagation.
- Alpha-beta core decomposition to effectively isolate and prioritize core useritem interactions from peripheral ones.
- Bayesian Personalized Ranking (BPR) loss combined with category-balanced weighting to address data imbalance.
- Contrastive learning using InfoNCE loss differentiating between core and peripheral user-item interactions, improving representation quality.
- Weighted random sampling based on category and item popularity distributions to enhance diversity and accuracy.

Experiment and Dataset

- Used NVIDIA GeForce GTX 1080 8-GB GPU.
- Training takes ~4.8 hours.
- Hyper-parameter tuning based on the validation set.
- Dataset Taobao[3]
 - Users: 82,633
 - Items: 136,710
 - Interactions: 4,230,631
 - Categories: 3,108
 - Mean Category Size: 43,986

Formulation

$$\mathcal{L}\text{InfoNCE} = -\frac{1}{N} \sum_{i=1}^{N} i = 1^{N} \log \frac{\exp\left(\frac{\mathbf{p}_{i}^{\top} \mathbf{q}_{i}}{\tau}\right)}{\sum_{j=1}^{N} \exp\left(\frac{\mathbf{p}_{i}^{\top} \mathbf{q}_{j}}{\tau}\right)}$$
(1)

 $\mathbf{h}^{(k)}$ item = GNN($\mathcal{G}u \to i, \mathbf{h}^{(k-1)}$) $\mathbf{h}^{(k)}$ user = GNN($\mathcal{G}_{i \to u}, \mathbf{h}^{(k-1)}$) $\mathbf{h}^{(k)} = \alpha_d \cdot \mathbf{h}^{(0)} + (1-) \cdot \mathbf{h}^{(k)}$ GNN

$$\mathcal{L}BPR = -\frac{1}{R} \sum_{i} (u, i^{+}, i^{-}) \log \sigma \left(sui^{+} - sui^{-} \right)$$
(3)

 $\mathcal{L}\alpha - \beta = \text{InfoNCE}(\text{ecore}, \text{erest}) \tag{4}$

 $\mathcal{L}diff = InfoNCE(\mathbf{e}core, \mathbf{e}diff) + InfoNCE(\mathbf{e}rest, \mathbf{e}diff)$ (5)

 $\mathcal{L}\text{total} = \lambda \text{bpr} \cdot \mathcal{L}\text{BPR} + \lambda \text{con} \cdot \mathcal{L}\alpha - \beta + \lambda \text{diff} \cdot \mathcal{L}_{\text{diff}}$ (6)

Model Architecture

Evaluation and Metrics

- Recall@k: Measures system's ability to retrieve relevant items.
- Hit Ratio@k: Indicates the proportion of users for whom relevant items were successfully recommended.
- Coverage@k: Assesses the diversity and breadth of recommendations across categories.

Ablation Study

Our model outperforms both DGRec and LightGCN in all metrics. Adding the diffusion channel improves Recall@100 by 9.4% over the no-diffusion variant, confirming the benefit of global smoothing. The diversity-oriented setup achieves the highest Coverage@300 (107.77), highlighting its strength in long-tail recommendation. The balanced version delivers competitive accuracy and diversity, demonstrating the effectiveness of our gated multi-channel fusion and tunable training objectives.

Method	Recall@100	Recall@300	HR@100	HR@300	Cov.@100	Cov.@300
LightGCN (raw)	0.05280	0.10630	0.32610	0.50970	32.7069	69.3502
DGRec (raw)	0.04720	0.09510	0.30260	0.48170	39.0597	89.1684
Ours w/o Diffusion	0.05035	0.09547	0.30625	0.46798	41.9031	100.4957
Ours + Diffusion (Acc-Oriented)	0.05507	0.10533	0.32831	0.49753	36.6667	87.8693
Ours + Diffusion (Div-Oriented)	0.04940	0.09600	0.30930	0.47670	44.9904	107.7740
Ours + Diffusion (Balanced)	0.05040	0.09990	0.31550	0.49230	40.2589	93.8764

Conclusion

In conclusion, our adaptive multi-channel framework effectively balances accuracy and diversity, demonstrating superior performance across all metrics and offering a practical solution for real-world, long-tail, and graph-based over-smoothing recommendation tasks.

References

- [1] X. He, K. Deng, X. Wang, Y. Li, Y. Zhang, and M. Wang, "LightGCN: Simplifying and Powering Graph Convolution Network for Recommendation," arXiv:2002.02126 [cs], Jul. 2020, Available: https://arxiv.org/abs/2002.02126
- [2] X. Wang, X. He, M. Wang, F. Feng, and T.-S. Chua, "Neural graph collaborative filtering," in Proc. 42nd Int. ACM SIGIR Conf. Research and Development in Information Retrieval (SIGIR '19), Paris, France, Jul. 2019, pp. 165–174, doi: 10.1145/3331184.3331267.
- [3] L. Yang et al., "DGRec: Graph Neural Network for Recommendation with Diversified Embedding Generation," arXiv (Cornell University), pp. 661–669, Feb. 2023,: Available: https://doi.org/10.1145/3539597.3570472.

Department of Computer Engineering

(2)