High-order Solution Transfer between Curved Meshes and Ill-conditioned Bézier Curve Intersection

Danny Hermes August 9, 2018

dhermes@berkeley.edu
UC Berkeley

Outline

- 1. Introduction and motivation
- 2. Curved Elements
- 3. Solution Transfer
- 4. Compensated Evaluation
- 5. Modified Newton's for Intersection

Introduction and motivation

Solve simple transport equation

$$u_t + cu_x = 0, \quad u(x,0) = u_0(x).$$

Solve simple transport equation

$$u_t + cu_x = 0$$
, $u(x, 0) = u_0(x)$.

Divide physical domain

$$x(t) = x_0 + ct$$

Solve simple transport equation

$$u_t + cu_x = 0, \quad u(x,0) = u_0(x).$$

Divide physical domain

$$x(t) = x_0 + ct$$

PDE becomes a (trivial) ODE

$$\frac{d}{dt}u(x(t),t) = 0.$$

• Each point in physical domain is a **particle**

- Each point in physical domain is a **particle**
- Carry value (e.g. heat, pressure, density) along characteristic curve

- Each point in physical domain is a **particle**
- Carry value (e.g. heat, pressure, density) along characteristic curve
- Transform PDE to family of ODEs

Add viscosity term to transport equation

$$u_t + cu_x - \varepsilon u_{xx} = 0.$$

Add viscosity term to transport equation

$$u_t + cu_x - \varepsilon u_{xx} = 0.$$

Same characteristics used, but solution no longer constant

Add viscosity term to transport equation

$$u_t + cu_x - \varepsilon u_{xx} = 0.$$

Same characteristics used, but solution no longer constant

$$\frac{d}{dt}u(x(t),t) = \varepsilon u_{xx}.$$

• Problems caused by flow-based mesh changes

- Problems caused by flow-based mesh changes
 - Distortion

- Problems caused by flow-based mesh changes
 - Distortion
 - Tangling

- · Problems caused by flow-based mesh changes
 - Distortion
 - Tangling
 - · Travel outside relevant physical domain

- Problems caused by flow-based mesh changes
 - Distortion
 - Tangling
 - · Travel outside relevant physical domain
- Adaptivity

- Problems caused by flow-based mesh changes
 - Distortion
 - Tangling
 - Travel outside relevant physical domain
- Adaptivity
 - · Dynamically focus computational effort

- Problems caused by flow-based mesh changes
 - Distortion
 - Tangling
 - Travel outside relevant physical domain
- Adaptivity
 - · Dynamically focus computational effort
 - · Resolve sensitive features

Consider

$$u_t + \begin{bmatrix} y^2 \\ 1 \end{bmatrix} \cdot \nabla u + F(u, \nabla u) = 0$$

Consider

$$u_t + \begin{bmatrix} y^2 \\ 1 \end{bmatrix} \cdot \nabla u + F(u, \nabla u) = 0$$

with cubic characteristics

$$\begin{bmatrix} x(t) \\ y(t) \end{bmatrix} = \begin{bmatrix} x_0 \\ y_0 \end{bmatrix} + \frac{1}{3} \begin{bmatrix} (y_0 + t)^3 - y_0^3 \\ 3t \end{bmatrix}.$$

8

Benefits

- Benefits
 - · High-order shape functions, highly accurate solutions

- Benefits
 - · High-order shape functions, highly accurate solutions
 - Low dissipation and dispersion error

- Benefits
 - · High-order shape functions, highly accurate solutions
 - Low dissipation and dispersion error
 - Greater geometric flexibility

- Benefits
 - · High-order shape functions, highly accurate solutions
 - · Low dissipation and dispersion error
 - · Greater geometric flexibility
 - · Fewer elements

- Benefits
 - · High-order shape functions, highly accurate solutions
 - · Low dissipation and dispersion error
 - · Greater geometric flexibility
 - · Fewer elements

- Benefits
 - · High-order shape functions, highly accurate solutions
 - · Low dissipation and dispersion error
 - · Greater geometric flexibility
 - · Fewer elements
- Drawbacks

- Benefits
 - · High-order shape functions, highly accurate solutions
 - · Low dissipation and dispersion error
 - · Greater geometric flexibility
 - · Fewer elements
- Drawbacks
 - Harder to implement

- Benefits
 - · High-order shape functions, highly accurate solutions
 - · Low dissipation and dispersion error
 - · Greater geometric flexibility
 - · Fewer elements
- Drawbacks
 - · Harder to implement
 - · Loss of accuracy in high degree (e.g. Runge's phenomenon)

Curved Meshes

Benefits

- · High-order shape functions, highly accurate solutions
- · Low dissipation and dispersion error
- · Greater geometric flexibility
- · Fewer elements

Drawbacks

- · Harder to implement
- · Loss of accuracy in high degree (e.g. Runge's phenomenon)
- More challenging geometry

Curved Meshes

Curved Meshes

Necessary for High-order

- Necessary for High-order
- With non-linear shape functions (i.e. not straight sided), non-vertex nodes used

- Necessary for High-order
- With non-linear shape functions (i.e. not straight sided), non-vertex nodes used
- Lagrangian method must either curve mesh or information about flow of geometry will be lost

Curved Elements: Necessary for High-order

Curved Elements: Necessary for High-order

Curved Elements: Necessary for High-order

- Image $\mathcal{T}=b\left(\mathcal{U}\right)$ of reference triangle under polynomial map b(s,t)

- Image $\mathcal{T}=b\left(\mathcal{U}\right)$ of reference triangle under polynomial map b(s,t)
- Barycentric coordinates $\lambda_1=1-s-t, \lambda_2=s, \lambda_3=t$

- Image $\mathcal{T}=b\left(\mathcal{U}\right)$ of reference triangle under polynomial map b(s,t)
- Barycentric coordinates $\lambda_1 = 1 s t, \lambda_2 = s, \lambda_3 = t$
- · Bernstein basis via trinomial expansion:

$$1 = (\lambda_1 + \lambda_2 + \lambda_3)^n$$

- Image $\mathcal{T}=b\left(\mathcal{U}\right)$ of reference triangle under polynomial map b(s,t)
- Barycentric coordinates $\lambda_1 = 1 s t, \lambda_2 = s, \lambda_3 = t$
- · Bernstein basis via trinomial expansion:

$$1 = (\lambda_1 + \lambda_2 + \lambda_3)^n$$

Convex combination of control points

$$b(s,t) = \sum_{\substack{i+j+k=n\\i,j,k\geq 0}} \binom{n}{i,j,k} \lambda_1^i \lambda_2^j \lambda_3^k \ \boldsymbol{p}_{i,j,k}$$

 \cdot b(s,t) can be defined by data other than control net

- b(s,t) can be defined by data other than control net
- · Regular grid in \mathcal{U} , $oldsymbol{u}_{i,j,k} = \left(rac{j}{n},rac{k}{n}
 ight)$

- b(s,t) can be defined by data other than control net
- Regular grid in \mathcal{U} , $oldsymbol{u}_{i,j,k} = \left(rac{j}{n}, rac{k}{n}
 ight)$
- $\cdot \ b\left(oldsymbol{u}_{i,j,k}
 ight) = oldsymbol{n}_{i,j,k}$; refer to $oldsymbol{n}_{i,j,k}$ as standard nodes

- b(s,t) can be defined by data other than control net
- Regular grid in \mathcal{U} , $oldsymbol{u}_{i,j,k} = \left(rac{j}{n}, rac{k}{n}
 ight)$
- $\cdot \ b\left(oldsymbol{u}_{i,j,k}
 ight) = oldsymbol{n}_{i,j,k}$; refer to $oldsymbol{n}_{i,j,k}$ as standard nodes

- b(s,t) can be defined by data other than control net
- Regular grid in \mathcal{U} , $oldsymbol{u}_{i,j,k} = \left(rac{j}{n},rac{k}{n}
 ight)$
- $b\left(oldsymbol{u}_{i,j,k}
 ight) = oldsymbol{n}_{i,j,k}$; refer to $oldsymbol{n}_{i,j,k}$ as standard nodes
- For example, taking $n_{i,j,k}=\delta_{(i,j,k)}$ $_{(i_0,j_0,k_0)}$ gives degree n shape functions on $\mathcal U$

- b(s, t) can be defined by data other than control net
- Regular grid in \mathcal{U} , $oldsymbol{u}_{i,j,k} = \left(rac{j}{n},rac{k}{n}
 ight)$
- $b\left(u_{i,j,k}\right) = n_{i,j,k}$; refer to $n_{i,j,k}$ as standard nodes
- For example, taking $n_{i,j,k}=\delta_{(i,j,k)}$ $_{(i_0,j_0,k_0)}$ gives degree n shape functions on $\mathcal U$
- Conversion between $m{n}_{i,j,k}$ and $m{p}_{i,j,k}$ has condition number exponential in n

Valid Element

- Element ${\mathcal T}$ is valid if diffeomorphic to ${\mathcal U}$

Valid Element

- \cdot Element ${\mathcal T}$ is **valid** if diffeomorphic to ${\mathcal U}$
- b(s,t) bijective, i.e. Jacobian Db is everywhere invertible

Valid Element

- \cdot Element ${\mathcal T}$ is **valid** if diffeomorphic to ${\mathcal U}$
- b(s,t) bijective, i.e. Jacobian Db is everywhere invertible
- $\cdot \det(Db)$ positive, preserves orientation

Consider element given by map

$$b(s,t) = \lambda_1^2 \begin{bmatrix} 1 \\ 0 \end{bmatrix} + \lambda_2^2 \begin{bmatrix} 1 \\ 1 \end{bmatrix} + \lambda_3^2 \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

Shape Functions

 \cdot Based on $u_{oldsymbol{lpha}}\in\mathcal{U}$ or $n_{oldsymbol{lpha}}\in\mathbf{R}^2$ ($oldsymbol{lpha}$ is a multi-index)

- · Based on $u_{\alpha} \in \mathcal{U}$ or $n_{\alpha} \in \mathbf{R}^2$ (lpha is a multi-index)
- · Pre-Image Basis: $\phi_{m{lpha}}\left(m{n_{m{eta}}}\right) = \widehat{\phi}_{m{lpha}}\left(m{u_{m{eta}}}\right) = \widehat{\phi}_{m{lpha}}\left(b^{-1}\left(m{n_{m{eta}}}\right)\right)$

- · Based on $u_{\alpha} \in \mathcal{U}$ or $n_{\alpha} \in \mathbf{R}^2$ (lpha is a multi-index)
- · Pre-Image Basis: $\phi_{m{lpha}}\left(m{n_{m{eta}}}\right) = \widehat{\phi}_{m{lpha}}\left(m{u_{m{eta}}}\right) = \widehat{\phi}_{m{lpha}}\left(b^{-1}\left(m{n_{m{eta}}}\right)\right)$

- · Based on $u_{\alpha} \in \mathcal{U}$ or $n_{\alpha} \in \mathbf{R}^2$ (α is a multi-index)
- · Pre-Image Basis: $\phi_{\alpha}\left(n_{\beta}\right) = \widehat{\phi}_{\alpha}\left(u_{\beta}\right) = \widehat{\phi}_{\alpha}\left(b^{-1}\left(n_{\beta}\right)\right)$
- · Global Coordinates Basis: $\phi_{m{lpha}}\left(m{n}_{m{eta}}
 ight)=\delta_{m{lpha}m{eta}}$

- · Based on $u_{\alpha} \in \mathcal{U}$ or $n_{\alpha} \in \mathbf{R}^2$ (α is a multi-index)
- · Pre-Image Basis: $\phi_{\alpha}\left(n_{\beta}\right) = \widehat{\phi}_{\alpha}\left(u_{\beta}\right) = \widehat{\phi}_{\alpha}\left(b^{-1}\left(n_{\beta}\right)\right)$
- · Global Coordinates Basis: $\phi_{\alpha}\left(n_{\beta}\right) = \delta_{\alpha\beta}$
- Element is **isoparametric** when numerical solution expressed in span of shape functions

- · Based on $u_{\alpha} \in \mathcal{U}$ or $n_{\alpha} \in \mathbf{R}^2$ (lpha is a multi-index)
- · Pre-Image Basis: $\phi_{\alpha}\left(n_{\beta}\right) = \widehat{\phi}_{\alpha}\left(u_{\beta}\right) = \widehat{\phi}_{\alpha}\left(b^{-1}\left(n_{\beta}\right)\right)$
- · Global Coordinates Basis: $\phi_{\alpha}\left(n_{\beta}\right) = \delta_{\alpha\beta}$
- Element is **isoparametric** when numerical solution expressed in span of shape functions
- supp $(\phi) = \mathcal{T}$

Solution Transfer

· Given:

- · Given:
 - Donor mesh \mathcal{M}_D and target mesh \mathcal{M}_T

- · Given:
 - Donor mesh \mathcal{M}_D and target mesh \mathcal{M}_T
 - Shape function bases $\phi_D^{(j)}$ and $\phi_T^{(j)}$

· Given:

- Donor mesh \mathcal{M}_D and target mesh \mathcal{M}_T
- · Shape function bases $\phi_D^{(j)}$ and $\phi_T^{(j)}$
- · Known discrete field ${m q}_D = \sum_j d_j \phi_D^{(j)}$

- · Given:
 - \cdot Donor mesh \mathcal{M}_D and target mesh \mathcal{M}_T
 - · Shape function bases $\phi_D^{(j)}$ and $\phi_T^{(j)}$
 - · Known discrete field $oldsymbol{q}_D = \sum_j d_j \phi_D^{(j)}$
- Want: L_2 -optimal interpolant $q_T = \sum_j t_j \phi_T^{(j)}$:

$$\|\boldsymbol{q}_T - \boldsymbol{q}_D\|_2 = \min_{\boldsymbol{q} \in \mathcal{V}_T} \|\boldsymbol{q} - \boldsymbol{q}_D\|_2$$

Differentiating w.r.t. each t_j in $oldsymbol{q}_T = \sum_j t_j \phi_T^{(j)}$ gives weak form

$$\int_{\Omega} \boldsymbol{q}_D \phi_T^{(j)} \; dV = \int_{\Omega} \boldsymbol{q}_T \phi_T^{(j)} \; dV, \qquad \text{for all } j.$$

Differentiating w.r.t. each t_j in $oldsymbol{q}_T = \sum_j t_j \phi_T^{(j)}$ gives weak form

$$\int_{\Omega} \boldsymbol{q}_D \phi_T^{(j)} \; dV = \int_{\Omega} \boldsymbol{q}_T \phi_T^{(j)} \; dV, \qquad \text{for all } j.$$

If $(x \mapsto 1) \in \mathcal{V}_T$, then q_T is globally conservative

$$\int_{\Omega} \mathbf{q}_D \, dV = \int_{\Omega} \mathbf{q}_T \, dV.$$

Weak form gives rise to a linear system in coefficients \emph{d} and \emph{t}

Weak form gives rise to a linear system in coefficients \emph{d} and \emph{t}

$$M_T \mathbf{t} = M_{TD} \mathbf{d}$$
.

Weak form gives rise to a linear system in coefficients \emph{d} and \emph{t}

$$M_T \mathbf{t} = M_{TD} \mathbf{d}.$$

 M_T is (symmetric) mass matrix for target mesh

$$(M_T)_{ij} = \int_{\Omega} \phi_T^{(i)} \phi_T^{(j)} dV.$$

Each shape function ϕ has $\operatorname{supp}(\phi) = \mathcal{T}$ for some (curved) element, hence M_T is block diagonal in DG, sparse but globally coupled in CG.

Compensated Evaluation

Modified Newton's for Intersection