Presentation 3

Fynn Lohren, Carsten Schubert, Leon Suchy

November 28, 2018

Structure

- Data Reductions
- Mirror branching
- Crown reduction
- Benchmarks
- Components

Data Reductions

- Degree 0
- Degree 1
- Degree 2
- Degree Greater k
- Crown
- Dominate
- Unconfined

2-fold Undo - Correct

2-fold Undo - Correct

2-fold Undo - Correct

Operation Stack

Undo order matters! \rightarrow Stack of operations

group 7	5
group 1	4
take 2	3
group 3	2
take 5	1
invalidate 0	0

$$\Rightarrow 5,4,3,2,1,0 \\$$

Reductions push their operations onto the stack

Configs

- 8 different reductions
 - → Many possible combinations to benchmark
- Enable/Disable
- Script can batch execute them
- Order of application
- Hierarchy
 - \rightarrow Apply a group of reductions before another \rightarrow Crown reduction

Hierarchy

Mirror branching is a strategy to enhance the standard Max Degree Branching that we use in our implementation.

Original source is the following paper:

"A Measure & Conquer Approach for the Analysis of Exact Algorithms" by Fedor V. Fomin, Fabrizio Grandoni and Dieter Kratsch

m is called mirror of v if:

- $m \in N^2(v)$
- $N(v) \setminus N(m)$ induces a clique

Refined branching rule:

• Either we take v with all its mirrors into the MVC

Refined branching rule:

- Either we take v with all its mirrors into the MVC
- Or we take N(v) into the MVC

Refined branching rule:

- Either we take v with all its mirrors into the MVC
- Or we take N(v) into the MVC
- ⇒ Always scan for mirrors before branching on a vertex!

Mirror branching enhancement

Previously, we built a branching tree from v with max size of

$$T(n-1) + T(n-|N[v]|)$$

Mirror branching enhancement

Previously, we built a branching tree from v with max size of

$$T(n-1) + T(n-|N[v]|)$$

Obviously the search tree is unbalanced.

With mirrors, we attend this issue:

$$T(n-|\mathcal{M}[v]|)+T(n-|\mathcal{N}[v]|)$$

Assume we branch on v and v has a mirror m.

Assume we branch on v and v has a mirror m.

 \rightarrow Then we do not want to include $N(v) \cap N(m)$ in the MVC.

Assume we branch on v and v has a mirror m.

- \rightarrow Then we do not want to include $N(v) \cap N(m)$ in the MVC.
- \Rightarrow Because if we did, we might as well just discard v and cover the clique with its remaining neighbours!

Assume we branch on v and v has a mirror m.

- \rightarrow Then we do not want to include $N(v) \cap N(m)$ in the MVC.
- \Rightarrow Because if we did, we might as well just discard v and cover the clique with its remaining neighbours!

Thus, we have to include m in the MVC in order to cover its edges to $N(v) \cap N(m)$.

Mirror branching runtime and further heuristics

Our implementation finds mirrors of v in $O(\delta(v)^3) \leq O(k^3)$, however it makes use of dynamic programming to remember already encountered edges.

Mirror branching runtime and further heuristics

Our implementation finds mirrors of v in $O(\delta(v)^3) \leq O(k^3)$, however it makes use of dynamic programming to remember already encountered edges.

Further branching improvement: From the max degree vertices, we select the vertex v that

minimizes E(N(v)).

Mirror branching runtime and further heuristics

Our implementation finds mirrors of v in $O(\delta(v)^3) \leq O(k^3)$, however it makes use of dynamic programming to remember already encountered edges.

Further branching improvement:

From the max degree vertices, we select the vertex v that minimizes E(N(v)).

- \rightarrow increases the chance to find mirrors
- \rightarrow reduces mirror searching time

Finding crowns is done by computing a maximal matching \rightarrow non matched vertices form an IS Build a bipartite graph with $V(IS \cup N(IS), E)$

Finding crowns is done by computing a maximal matching \rightarrow non matched vertices form an IS

Build a bipartite graph with $V(IS \cup N(IS), E)$

Observation:

size of IS depends on the maximal matching

ightarrow minimum maximal matching is edge dominating set

Finding crowns is done by computing a maximal matching

 \rightarrow non matched vertices form an IS

Build a bipartite graph with $V(IS \cup N(IS), E)$

Observation:

size of IS depends on the maximal matching

- ightarrow minimum maximal matching is edge dominating set
- \rightarrow our approach: randomize the matching!

```
Runtime: \mathcal{O}(m \cdot \sqrt{n}) Note: n \to |\mathit{IS}| + |\mathit{N}(\mathit{IS})| m \to \mathit{E}(\mathit{IS} \cup \mathit{N}(\mathit{IS})) \to no guarantee on runtime
```


0,1,2,k,dominate

0,1,2,k,unconfined

0,1,2,k,dominate, unconfined

0,1,2,k,crown

All Reductions

Unconfined and Dominate Comparison

Only instances solved by both variants are listed

0 and 1 to All Reductions comparison

Only instances solved by both variants are listed

Components

- 1. Use DFS to find components
- 2. Create subgraphs for each component
- 3. Sort them to process easy ones first
- 4. Solve on each subgraph
- 5. Combine the found solutions

Faster because we break earlier and reduce k early.

Outlook on Future Improvements

- Performance Improvements for Reductions
- LP reduction via Flow
- Degree 3 reduction
- Refactor Solver
- Priority Queue for Vertex Selection

Thanks for your attention

Questions?