- 1. Let us define $gcd(a_1, a_2, ..., a_k)$ as $gcd(a_1, gcd(a_2, a_3, ..., a_k))$, for $k \geq 3$. Prove that if $gcd(a_1, a_2, ..., a_k) = d$, then there exist integers $x_1, x_2, ..., x_k$ such that $\sum_{i=1}^k a_i x_i = d$.
- 2. Prove that any two consecutive integers (n and n+1) are always relatively prime.
- 3. Prove that any two consecutive Fibonacci numbers are always relatively prime.
- 4. Prove that two integers a and b are relatively prime if and only if there is no prime number p such that $p \mid a$ and $p \mid b$.
- 5. Let a and b be relatively prime. Prove that, for any integer n, we have that both $a \mid n$ and $b \mid n$ if and only if $ab \mid n$.
- 6. Let a and b be relatively prime. Prove that, for every integer m, there exist integers x and y such that ax + by = m.
- 7. We would like to understand that relative primality was mandatory for the Chinese Remainder Theorem. Considering two integers n and m that are not necessarily relatively prime.
 - (a) Prove that, for some $a \in \mathbb{Z}_n$ and $b \in \mathbb{Z}_m$, it may be the case that no $x \in \mathbb{Z}_{nm}$ satisfies $x \mod n = a$ and $x \mod m = b$.
 - (b) Prove that, for some $a \in \mathbb{Z}_n$ and $b \in \mathbb{Z}_m$, there may be more than one $x \in \mathbb{Z}_{nm}$ satisfies $x \mod n = a$ and $x \mod m = b$.
- 8. Prove or disprove: for any $n \geq 2$, there exists one and only one $b \in \mathbb{Z}_n$ such that $b^2 \equiv_n 0$.
- 9. Prove or disprove: for any $n \neq 2$, and for any $a \in \mathbb{Z}_n$ with $a \neq 0$, there is not exactly one $b \in \mathbb{Z}_n$ such that $b^2 \equiv_n a$.
- 10. Prove that the multiplicative inverse is unique: that is, for arbitrary $n \geq 2$ and $a \in \mathbb{Z}_n$, suppose that $ax \equiv_n 1$ and $ay \equiv_n 1$. Prove that $x \equiv_n y$.
- 11. Prove or disprove: for arbitrary $n \geq 2$, $(n-1)^{-1} = n-1$ in \mathbb{Z}_n .
- 12. Prove that $(a^{-1})^{-1} = a$ for any $n \ge 2$ and $a \in \mathbb{Z}_n$: that is, prove that a is the multiplicative inverse of the multiplicative inverse of a.
- 13. Prove that, for any $n \geq 2$ and $a \in \mathbb{Z}_n$, there exists $x \in \mathbb{Z}$ with $ax \equiv_n 1$ if and only if there exists $y \in \mathbb{Z}_n$ with $ay \equiv_n 1$.
- 14. Suppose that the multiplicative inverse a^{-1} exists in \mathbb{Z}_n . Let $k \in \mathbb{Z}_n$ be any exponent. Prove that a^k has a multiplicative inverse in \mathbb{Z}_n , and, in particular, prove that the multiplicative inverse of a^k is the kth power of the multiplicative inverse of a. (That is, prove that $(a^k)^{-1} \equiv_n (a^{-1})^k$.)
- 15. Prove or disprove: if n is composite, then there exists $a \in \mathbb{Z}_n$ (with $a \neq 0$) that does not have a multiplicative inverse in \mathbb{Z}_n .
- 16. [4 marks] Recall the key generation protocol of RSA. Prove that:
 - (a) [2 marks] the number e that is chosen will always be odd.
 - (b) [2 marks] the number d that is chosen will always be odd.