Computer Lab 1 - GP Regression and Classification

The labs are the only examination, so you should do the labs **individually**. You can use any programming language you prefer, but do **submit the code**. Submit a readable report in:

- **PDF** (no Word documents!)
- JuPyteR/Quarto notebook compiled to PDF/HTML
 - 1. Homoscedastic GP regression
 - (a) Consider the following GP regression

$$y_i = f(\mathbf{x}_i) + \varepsilon_i, \quad \varepsilon_i \sim N\left(0, \sigma_{\varepsilon}^2\right)$$

 $f(\mathbf{x}) \sim GP\left(0, k(\mathbf{x}, \mathbf{x}')\right)$

with a squared exponential kernel

$$k(x, x') = \sigma_f^2 \cdot \exp\left(-\frac{(x - x')^2}{2\ell^2}\right).$$

Write your own code to compute the posterior distribution of f_*

$$p(f_*|y, X, X_*)$$

where \boldsymbol{y} $(n \times 1)$ is the training response data and \boldsymbol{X} $(n \times p)$ is the training covariate data for p covariates, $\boldsymbol{X_*}$ $(n_* \times p)$ is a matrix of test inputs and $\boldsymbol{f_*}$ $(n_* \times 1)$ is the corresponding function values at the test points. Let the kernel hyperparameters σ_f and ℓ , and the noise standard deviation σ_{ε} be inputs to your posterior function.

- (b) Use your code to analyze the Lidar data (available on the course web page) with the Distance variable as the only covariate/feature in both the mean and variance. Set $\ell=1, \, \sigma_f=0.5$ and $\sigma_\varepsilon=0.05$ (but also play around to learn!). In particular, do a scatterplot of the data and overlay:
 - the posterior mean of $f(\cdot)$ (computed over a suitable grid)
 - 95% credible bands for $f(\cdot)$
 - 95% predictive bands for y.

2. Heteroscedastic GP regression

(a) Consider the following heteroscedastic GP regression

$$y_i = f(\boldsymbol{x}_i) + \varepsilon_i, \quad \varepsilon_i \sim N\left(0, \sigma_{\varepsilon,i}^2\right) \ f(\boldsymbol{x}) \sim \operatorname{GP}\left(0, k(\boldsymbol{x}, \boldsymbol{x}')\right) \ \log \sigma_{\varepsilon,i}^2 = w_0 + \boldsymbol{w}_1^T \boldsymbol{x}_i$$

Implement an algorithm that samples from the joint posterior

$$p(\mathbf{f_*}, w_0, \mathbf{w}_1 | \mathbf{y}, \mathbf{X}, \mathbf{X}_*) = p(\mathbf{f_*} | w_0, \mathbf{w}_1, \mathbf{y}, \mathbf{X}, \mathbf{X}_*) p(w_0, \mathbf{w}_1 | \mathbf{y}, \mathbf{X}, \mathbf{X}_*).$$

Use the prior $(w_0, \mathbf{w}_1)^T \sim N(0, \tau^2 I)$, independent of f.

Hint: $p(f_*|w_0, w_1, y, X, X_*)$ is really close to the formulas (2.22) to (2.24) in the GPML book, and to what you coded in Problem 1 above. The distribution

$$p(w_0, \boldsymbol{w}_1 | \boldsymbol{y}, \boldsymbol{X}, \boldsymbol{X}_*)$$

is available in closed form and its expression is close to an expression in the GPML book (if you think a little ...). However, $p(w_0, \boldsymbol{w}_1|\boldsymbol{y}, \boldsymbol{X}, \boldsymbol{X}_*)$ is not a standard (known) distribution, and you need to use use MCMC or HMC, or something else, to simulate from it. It is OK to use a package for MCMC/HMC.

(b) Re-analyze the Lidar data using the heteroscedastic GP regression. Plot the marginal posterior distributions for w_0 and w_1 . Do a similar plot as the one in 1(b) using the heteroscedastic model.

HAVE FUN!