Lecture 8: The wave equation: Applications
Reading: Stechmann Ch. 4.1-4.2 (Haberman 4.1-4.2)
(Haberman 9.1-9.2)
$U_{++} = c^2 \sqrt{2} U$ Second-order, linear. C: wave propagation speed.
C: Wave propagation speed.
Examples:
1. Vibrating Strings (ID) and drums (2D)
$ D: U_{++} = c^2 u \times x$
D: Uff = c uxx
$2D: U_{++} = c^2 \left(u_{xx} + u_{yy} \right)$
String: Ju(x,+)
Let $u(x,t)$ be the vertical "displacement" at position x and time t.
The tensile forces acting on a small segment of length DX are
$T(x) = (1, \frac{\partial u}{\partial x}) _{x+\Delta x}$ $T(x) = (1, \frac{\partial u}{\partial x}) _{x}$
Tension T [Force]
Force balance: mā=ZF.
The segment has mass m=pax (p: 1D density [mass])
Horizontal Force balance: $O = [-T(x) + T(x+ax)](x,)$
Vertical: $p \rightarrow x \frac{d^2u}{dt^2} = -pq \rightarrow x + \int -T(x) \frac{\partial u}{\partial x}(x) + T(x + \Delta x) \frac{\partial u}{\partial x}(x + \Delta x)$ (*

If sx<1, Taylor expansion yields:

$$(*) \quad -T(x) + \left(T(x) + T'(x) \Delta x + O(\Delta x^{2})\right) = 0$$

So
$$T'(x) \triangle x + O(\triangle x^2) = O$$
 (= $P \triangle x \times \hat{a}$, assumed 0)

$$A$$
, $T'(x)=0$. (Tension equilibrates through the string): $T(x)=T$.

$$A_2 \quad \rho u_{++} = -\rho g + \left(-T(x)u_x(x) + \left[T(x)u_x(x)\right] + \Delta x \xrightarrow{\partial} \left[T(x)u_x(x)\right] + O(\Delta x^2)\right)$$

Since
$$\frac{\partial}{\partial x} \left[T(x) u_x(x) \right] = T'(x) u_x + T(x) u_{xx}(x) = T u_{xx}$$

as ax - 0 we find:

$$u_{++} = \frac{T}{p} u_{xx} - g$$

$$\left[\frac{L}{T^2}\right] = \left[\frac{Force}{mass}\right]$$

If gravity is small compared to elastic forces, $U_{++} = C^2 U_{xx}$ ($C = \sqrt{F}$)

2D: same idea.

This model assumes the string can stretch, and that U(x,t) is small for all (x,t).

If
$$\beta = \beta(x)$$
, $u_{++} = c(x)^2 u_{\times X}$,

where $c(x) = \sqrt{\frac{T}{p(x)}}$ is the local wavespeed.

3. Maxwell's equations of electromagnetism

(a)
$$\frac{\partial \vec{E}}{\partial +} - \frac{1}{M_0 \epsilon_0} \nabla \times \vec{B} = \vec{O}$$
, $\nabla \cdot \vec{B} = \vec{O}$

(b)
$$\frac{\partial \vec{E}}{\partial t} + \nabla \times \vec{E} = \vec{O}$$
, $\nabla \cdot \vec{E} = \frac{\rho(x)}{z_0} O$ no charges right now.

Eo: Vaccum permittivity, No: Vaccum permeability

$$\partial_{+}(a) = \frac{\partial^{2} \vec{E}}{\partial +^{2}} - \frac{1}{N_{0} \epsilon_{0}} \nabla \times \vec{B}_{+} = \vec{O}$$

$$\nabla \times (b) = \nabla \times \overline{B}_{+} + \nabla \times \nabla \times \overline{E} = 0$$

$$\nabla (0 \cdot \overline{E}) - \nabla^{2} \overline{E}$$

So
$$\frac{\partial^2 \vec{E}}{\partial t^2} - \frac{1}{M_0 \epsilon_0} \nabla^2 \vec{E} = \vec{O}$$
, or $\vec{E}_{t+1} = \vec{C} \vec{Q}^2 \vec{E}$, $C = \sqrt{M_0 \epsilon_0}$ (3 wave equations...)

4. Pressure waves (acoustic/sound waves)

Let p(x,+) be a perturbation density around its equilibrium value, po.

and ti(x,+) be the gas velocity

For small disturbances,

(p: pressure)

$$\Rightarrow f_{++} = -f_0 \nabla \cdot \vec{u}_+ = \frac{\partial p}{\partial p} \cdot p \nabla^2 p$$

$$C^2$$

A Energy conservation

$$= \int_{10^{10}} u_1 u_{++} + c^2 (\nabla \cdot (u_1 \nabla u) - u_1 \nabla^2 u) dv$$

$$= \int_{1R^n} u_+(u_{++} - c^2 v^2 u) dv + Q$$

Boundary term, assuming a decaying wave signal as (x) - o.