

M2 - TSI UE31 Laboratory Report

Signal Estimation

Authors: Arthur Scharf Andreas Wenzel

January 7, 2017

1 Introduction

In this report various methods for the estimation of parameters of a given data set are evaluated and compared. To cut down the problem's complexity, we use a simple model for the flux of an elliptic galaxy, as is described by the Sersic profile, which provides us an initial data set. This data set - a noisy image of a elliptic galaxy as it would have been taken by a ground-based telescope - is then used to evaluate different estimation approaches as the least square estimation, maximum likelihood estimation and Bayesian estimation.

2 Modelling a galaxy

The Sersic profile is very common amongst astrophysicists to model the flux of observed elliptic galaxies in a simple way, and is given by the equation

$$I(l,c) = exp(-R(l,c)^{\frac{1}{n}}) \tag{1}$$

which describes the variation of intensity with respect to the distance of the galaxy's centre. The distance R of a pixel with the coordinates (l, c) from the galaxies centre is given by

$$R(l,c)^{2} = \left(\frac{(l-l_{0})\sin(\alpha) - (c-c_{0})\cos(\alpha)}{\sigma_{l}}\right)^{2} + \left(\frac{(l-l_{0})\cos(\alpha) - (c-c_{0})\sin(\alpha)}{\sigma_{c}}\right)^{2}$$
(2)

with (l_0, c_0) being the galaxy's centre coordinates, (σ_l, σ_c) the two galaxy's axes length and the horizontal angle α .

This leads to the following equation modelling the data

$$d(l,c) = s + aI(l,c) + n(l,c)$$
(3)

with a as the amplitude of the galaxy, s the amplitude of the sky's background and n(l,c) as noise.

By assuming a white Gaussian noise with the known variance σ_n^2 and using the given Sersic-function (see Appendix) we can create a "initial image" that will be used as the initial data set as previously mentioned, see figure ??.

The parameters used to create fig. ?? are given below.

add ref here

 \mathbf{S}

Figure 1: Initial Data Set, with a artificial elliptic galaxy

$$L, C = 30px$$
 $l_0, c_0 = 15$ $\sigma_l = 10$ $\sigma_c = 5$
 $\alpha = 0.3$ $n = 0.4$ $a = 10$ $s = 3$ (4)

with L, C as height respectively width of image in pixels, l_0, c_0 the galaxy's centre in pixel coordinates and σ_l, σ_c as length parameters.

3 Estimation with known Galaxy's location and shape parameters

Having successfully modelled a simple elliptic galaxy

probably
don't
need
this
explananation
here,
see
above
text

- 4 Maximum likelihood estimation of all parameters
- 5 Estimation in the Bayesian framework
- 5.1 Maximum a posteriori estimator
- 5.2 Posterior mean estimator

- A Sersic function
- B Least Square estimation