문제 1. 두 안테나

입력 파일: standard input 출력 파일: standard output

시간 제한: 3 seconds 메모리 제한: 512 megabytes

1번부터 N번까지의 번호가 붙어있는 N개의 안테나가 일렬로 놓여 있다. 각 안테나는 다른 연속된 안테나와 1km 떨어져 있다. i번 $(1 \le i \le N)$ 안테나의 높이는 H_i 이다. i번 안테나는 자신으로 부터 A_i km 이상 B_i km 이하 떨어져 있는 안테나에게만 정보를 보낼 수 있다. 만약 x번 안테나와 y번 안테나가 $(1 \le x < y \le N)$ 서로 정보를 주고 받을 수 있다면, 이 둘은 통신할 수 있고, 통신 비용은 $|H_x - H_y|$ 이다.

JOI 공화국의 수상 K씨는 시민들로부터 연결상태에 관한 불만 Q개를 들었다. 조사 결과 j 번째 $(1 \le j \le Q)$ 불만은, L_j , $L_j + 1, \cdots, R_j$ 번 안테나 중 무언가가 이상이 있는것으로 밝혀졌다. 당신은, 이 안테나들중 서로 통신할 수 있는 안테나 쌍이 있는지, 만약 있다면 그 중 가장 통신 비용이 높은 쌍의 통신 비용은 얼마인지 알아보는 일을 맡았다.

안테나의 정보와 불만의 정보가 주어졌을 때, L_j , L_j+1,\cdots,R_j 번 안테나 중 서로 통신할 수 있는 쌍이 있는지, 있다면 통신 비용의 최댓값은 얼마인지를 알려주는 프로그램을 작성하여라.

입력 형식

표준 입력에서 다음과 같은 형식으로 주어진다. 모든 값은 정수이다.

N

 H_1 A_1 B_1

:

 $H_N A_N B_N$

Q

 $L_1 R_1$

:

 $L_Q R_Q$

출력 형식

표준 출력으로 Q개의 줄을 출력하여라. j번째 $(1 \le j \le Q)$ 줄은 $L_j, L_j + 1, \cdots, R_j$ 번 안테나 중 서로 통신할 수 있는 쌍이 없으면 -1, 있다면 통신 비용의 최댓값이어야 한다.

제한

- $2 \le N \le 200\ 000$.
- $0 \le H_i \le 1\ 000\ 000\ 000\ (1 \le i \le N)$.
- $1 \le A_i \le B_i \le N 1 \ (1 \le i \le N)$.
- $1 \le Q \le 200\ 000$.
- $1 \le L_j < R_j \le N$. $(1 \le j \le Q)$

서브태스크 1 (2 점)

- *N* < 300
- $Q \le 300$

서브태스크 2 (11 점)

 $\bullet \ N \leq 2 \ 000$

서브태스크 3 (22 점)

- Q = 1
- $L_1 = 1$
- $R_1 = N$

서브태스크 4 (65 점)

추가 제한조건이 없다.

예제

standard input	standard output
5	-1
10 2 4	1
1 1 1	8
2 1 3	8
1 1 1	99
100 1 1	
5	
1 2	
2 3	
1 3	
1 4	
1 5	

1번 안테나와 2번 안테나는 서로 통신할 수 없으므로, 첫 번째 불만에 대한 답은 -1이다.

두 번째, 세 번째, 네 번째, 다섯 번째 불만에 대한 최대 통신 비용을 가진 안테나 쌍은 각각 (2,3), (1,3), (1,3), (4,5) 이다.

제 18회 일본 정보올림피아드 (JOI 2018/2019) 여름 캠프 / 선발 고사 Day 2, 2019년 3월 19-25일, (도쿄 코마바, 요요기)

standard input	standard output
20	806460109
260055884 2 15	
737689751 5 5	
575359903 1 15	
341907415 14 14	
162026576 9 19	
55126745 10 19	
95712405 11 14	
416027186 8 13	
370819848 11 14	
629309664 4 13	
822713895 5 15	
390716905 13 17	
577166133 8 19	
195931195 10 17	
377030463 14 17	
968486685 11 19	
963040581 4 10	
566835557 1 12	
586336111 6 16	
385865831 8 9	
1	
1 20	

이 입력은 서브태스크 3의 조건을 만족한다.

문제 2. 두 요리

입력 파일: standard input 출력 파일: standard output

시간 제한: 5 seconds

메모리 제한: 1024 megabytes

요리사 비타로는 요리 대회에 참여했다. 이 대회에서 참가자는 IOI 돈부리와 JOI 카레를 요리해야 한다.

IOI 돈부리를 요리하는 방법은 N단계로 이루어져 있다. i 번째 $(1 \le i \le N)$ 단계는 정확히 A_i 분이 걸린다. 처음에, 그는 첫 번째 단계만 실행할 수 있다. i번째 $(2 \le i \le N)$ 단계를 실행하려면, (i-1)번째 단계를 끝마쳐야 한다.

JOI 카레를 요리하는 방법은 M단계로 이루어져 있다. j 번째 $(1 \le j \le M)$ 단계는 정확히 B_j 분이 걸린다. 처음에, 그는 첫 번째 단계만 실행할 수 있다. j번째 $(2 \le j \le M)$ 단계를 실행하려면, (j-1)번째 단계를 끝마쳐야 한다.

각 단계를 집중해야 하기 때문에, 한 단계를 시작하면, 그 단계를 끝날 때 까지 다른 단계를 실행할 수 없다. 한 단계가 끝난 이후에는 다른 요리의 단계를 시작해도 상관 없다. 대회가 시작하면 두 요리가 끝나기 까지의 쉬는 시간은 없다.

이 대회에서는, 각 참가자는 예술 점수를 다음 기준에 따라 받는다.

- IOI 돈부리를 만드는 i번째 $(1 \le i \le N)$ 단계를 처음부터 S_i 시간 안에 끝냈을 경우 P_i 점을 얻는다. P_i 는 음수 일 수도 있다.
- JOI 카레를 만드는 j번째 $(1 \le j \le M)$ 단계를 처음부터 T_j 시간 안에 끝냈을 경우 Q_j 점을 얻는다. Q_j 는 음수 일 수도 있다.

비타로는 예술 점수를 최대화 하고 싶다.

요리 단계의 수와, 각 단계에 걸리는 시간과, 예술 점수의 정보가 주어졌을 때, 비타로가 얻을 수 있는 예술 점수의 최댓값을 구하여라.

입력 형식

표준 입력에서 다음과 같은 형식으로 주어진다. 모든 값은 정수이다.

N M

 $A_1 S_1 P_1$

:

 $A_N S_N P_N$

 B_1 T_1 Q_1

:

 $B_M T_M Q_M$

출력 형식

표준 출력으로 한 개의 줄을 출력하여라. 이는 비타로가 얻을 수 있는 예술 점수의 최댓값이다.

제한

- $1 \le N \le 1\ 000\ 000$.
- $1 < M < 1\ 000\ 000$.
- $1 \le A_i \le 1\ 000\ 000\ 000$. $(1 \le i \le N)$

- $1 \le B_j \le 1$ 000 000 000. $(1 \le j \le M)$
- $1 \le S_i \le 2\ 000\ 000\ 000\ 000\ 000 = 2 \times 10^{15}\ (1 \le i \le N)$
- $1 \le T_j \le 2\ 000\ 000\ 000\ 000\ 000 = 2 \times 10^{15}\ (1 \le j \le M)$
- $-1\ 000\ 000\ 000 \le P_i \le 1\ 000\ 000\ 000.\ (1 \le i \le N)$
- $-1~000~000~000 \le Q_j \le 1~000~000~000. \ (1 \le j \le M)$

서브태스크 1 (5 점)

- $\bullet \ N \leq 200\ 000$
- $M \le 200~000$
- $S_1 = \cdots = S_N$
- $T_1 = \cdots = T_N$

서브태스크 2 (3 점)

- $N \le 12$
- $M \le 12$
- $P_i = 1 \ (1 \le i \le N)$
- $Q_j = 1 \ (1 \le j \le M)$

서브태스크 3 (7 점)

- $N \le 2000$
- $M \le 2~000$
- $P_i = 1 \ (1 \le i \le N)$
- $Q_j = 1 \ (1 \le j \le M)$

서브태스크 4 (39 점)

- $N \le 200\ 000$
- $M \le 200~000$
- $P_i = 1 \ (1 \le i \le N)$
- $Q_j = 1 \ (1 \le j \le M)$

서브태스크 5 (11 점)

- $N \le 200\ 000$
- $M \le 200~000$

- $1 \le P_i \ (1 \le i \le N)$
- $1 \le Q_j \ (1 \le j \le M)$

서브태스크 6 (9 점)

- $1 \le P_i \ (1 \le i \le N)$
- $1 \le Q_j \ (1 \le j \le M)$

서브태스크 7 (17 점)

- $N \le 200\ 000$
- $M \le 200~000$

서브태스크 8 (9 점)

추가 제한조건이 없다.

예제

standard input	standard output
5	-1
10 2 4	1
1 1 1	8
2 1 3	8
1 1 1	99
100 1 1	
5	
1 2	
2 3	
1 3	
1 4	
1 5	

- 이 입력은 서브태스크 2의 조건을 만족한다.
- 이 입력에서 비타로는 다음과 같은 방식으로 요리 할 수 있다.
 - 1. JOI 돈부리의 첫 번째 단계를 요리한다. 그는 대회가 시작한 후 3분 후에 단계를 끝낸다. 6분 안이므로, 1점을 얻는다.
 - 2. IOI 카레의 첫 번째 단계를 요리한다. 그는 대회가 시작한 후 5분 후에 단계를 끝낸다. 1분 밖이므로, 아무 점수도 얻지 못한다.
 - 3. IOI 돈부리의 두 번째 단계를 요리한다. 그는 대회가 시작한 후 8분 후에 단계를 끝낸다. 8분 안이므로, 1점을 얻는다.
 - 4. JOI 카레의 두 번째 단계를 요리한다. 그는 대회가 시작한 후 10분 후에 단계를 끝낸다. 11분 안이므로, 1점을 얻는다.
 - 5. IOI 돈부리의 세 번째 단계를 요리한다. 그는 대회가 시작한 후 12분 후에 단계를 끝낸다. 13분 안이므로, 1점을 얻는다.
 - 6. IOI 돈부리의 네 번째 단계를 요리한다. 그는 대회가 시작한 후 13분 후에 단계를 끝낸다. 13분 안이므로, 1점을 얻는다.

제 18회 일본 정보올림피아드 (JOI 2018/2019) 여름 캠프 / 선발 고사 Day 2, 2019년 3월 19-25일, (도쿄 코마바, 요요기)

- 7. JOI 커리의 세 번째 단계를 요리한다. 그는 대회가 시작한 후 15분 후에 단계를 끝낸다. 15분 안이므로, 1점을 얻는다.
- 총 예술점수는 6점이다. 6점 보다 더 많은 점수를 얻을 수는 없으므로 6을 출력해야 한다.

standard input	standard output
5 7	63
16 73 16	
17 73 10	
20 73 1	
14 73 16	
18 73 10	
3 73 2	
10 73 7	
16 73 19	
12 73 4	
15 73 15	
20 73 14	
15 73 8	

이 입력은 서브태스크 1의 조건을 만족한다.

standard input	standard output
9 11	99
86 565 58	
41 469 -95	
73 679 28	
91 585 -78	
17 513 -63	
48 878 -66	
66 901 59	
72 983 -70	
68 1432 11	
42 386 -87	
36 895 57	
100 164 10	
96 812 -6	
23 961 -66	
54 193 51	
37 709 82	
62 148 -36	
28 853 22	
15 44 53	
77 660 -19	

문제 3. 두 운송수단

입력 파일: standard input 출력 파일: standard output

시간 제한: 1.5 seconds 메모리 제한: 256 megabytes

JOI 나라에는 0부터 N-1까지의 번호가 붙은 도시 N개가 있다. JOI 나라에는 A개의 전철노선이 있고, 0번 부터 A-1번 까지의 번호가 붙어 있다. i번 $(0 \le i \le A-1)$ 전철 노선은 U_i 번 도시와 V_i 번 도시를 양방향으로 잇는다. 이 노선의 운임은 C_i 이다. 서로 다른 전철 노선은 서로 다른 쌍의 도시를 잇는다. 또한, B개의 버스노선이 있고, 0번 부터 B-1번 까지의 번호가 붙어 있다. j번 $(0 \le j \le B-1)$ 버스 노선은 S_j 번 도시와 T_j 번 도시를 양방향으로 잇는다. 이 노선의 운임은 D_j 이다. 서로 다른 버스 노선은 서로 다른 쌍의 버스를 잇는다. 하지만, 전철 노선과 버스 노선은 같은 쌍의 도시를 이을수도 있다. 전철 혹은 버스를 사용하면 어떠한 쌍의 도시도 오갈 수 있다.

Azer는 0번 도시로 부터 각 도시까지 가기 위한 최소 운임을 알고 싶다. Azer는 전철 노선만 알고 있기 때문에, 그는 버스 노선만 아는 Baijan과 협력해야 한다.

그들은 서로 문자 0 혹은 1을 주고 받으면서 통신한다. 보내는 총 문자의 갯수는 58 000개 이하여야 한다. 전철노선의 정보가 주어진 Azer과, 버스노선의 정보가 주어진 Baijan 사이에서 서로 통신하고 Azer가 0번 도시부터 각 도시까지 가기 위한 최소 운임을 출력하여라.

구현 명세

당신은 파일 두 개를 제출해야 한다.

첫째 파일의 이름은 Azer.cpp이다. 이 파일은 Azer의 일을 나타내고, 다음 함수를 구현해야 한다. 또한, Azer.h를 include해야 한다.

- void InitA(int N, int A, std::vector<int> U, std::vector<int> V, std::vector<int> C)
 - 이 함수는 프로그램 시작시에 정확히 한 번 불린다.
 - 인자 N은 도시의 수 N을 나타낸다.
 - 인자 A는 전철노선의 수 A를 나타낸다.
 - 인자 U, V는 길이 A의 배열이다. U[i]와 V[i]는 전철노선이 연결하는 두 도시 U_i 번과 V_i 번을 나타낸다. $(0 \le i \le A-1)$
 - 인자 C는 길이 A의 배열이다. C[i]는 i번 전철노선의 운임 C_i 를 나타낸다. $(0 \le i \le A-1)$
- void ReceiveA(bool x) 이 함수는 Baijan으로 부터 문자를 받았을 때 마다 호출 된다.
 - 인자 x는 Baijan으로부터 받은 문자를 나타낸다. true이면 1, false이면 0을 받은 것이다.
- std::vector<int> Answer() 이 함수는 보내진 모든 문자를 받았을 때 실행된다. 이 함수는 0번 도시로부터 각 도시간의 최단거리를 담은 배열 Z를 반환해야 한다.
 - 배열 Z는 길이가 N이어야 한다. 길이가 N이 아닌 경우에, 프로그램은 **오답** [1]이 된다. Z[k] $(0 \le k \le N-1)$ 은 0번 도시 부터 k번 도시까지 가는데 필요한 운임의 최솟값이어야 한다. 특히, Z[0] = 0 이어야 함에 유의하여라.
- 이 프로그램은 다음 함수를 호출 할 수 있다.
 - void sendA(bool y)

Baijan에게 문자를 보내려면 이 함수를 사용해야 한다.

- 인자 y는 Baijan에게 보내는 문자를 나타낸다. true이면 1, false이면 0을 보낸 것이다.

제 18회 일본 정보올림피아드 (JOI 2018/2019) 여름 캠프 / 선발 고사 Day 2, 2019년 3월 19-25일, (도쿄 코마바, 요요기)

둘째 파일의 이름은 Baijan.cpp이다. 이 파일은 Baijan의 일을 나타내고, 다음 함수를 구현해야 한다. 또한, Baijan.h를 include해야 한다.

- void InitB(int N, int B, std::vector<int> S, std::vector<int> T, std::vector<int> D)
 - 이 함수는 프로그램 시작시에 정확히 한 번 불린다.
 - 인자 N은 도시의 수 N을 나타낸다.
 - 인자 B는 버스노선의 수 A를 나타낸다.
 - 인자 S, T는 길이 B의 배열이다. S[j]와 T[j]는 전철노선이 연결하는 두 도시 S_j 번과 T_j 번을 나타낸다. $(0 \le j \le B 1)$
 - 인자 D는 길이 A의 배열이다. D[j]는 i번 버스노선의 운임 D_i 를 나타낸다. $(0 \le j \le B 1)$
- void ReceiveB(bool y) 이 함수는 Azer로 부터 문자를 받았을 때 마다 호출 된다.
 - 인자 y는 Azer로부터 받은 문자를 나타낸다. true이면 1, false이면 0을 받은 것이다.
- 이 프로그램은 다음 함수를 호출 할 수 있다.
 - void sendB(bool x)

Azer에게 문자를 보내려면 이 함수를 사용해야 한다.

- 인자 x는 Azer에게 보내는 문자를 나타낸다. true이면 1, false이면 0을 보낸 것이다.

당신은 프로그램이 다음과 같은 방법으로 실행된다는 것을 가정해도 좋다. 각 테스트 케이스 마다 Azer가 보낸 문자들을 담는 큐 Q_Y 와 Baijan이 보낸 문자들을 담는 큐 Q_X , 두 개의 큐가 준비된다. 처음에, InitA와 InitB가 실행되고, 보낸 문자들은 각각 큐에 push된다.

- Q_X 나 Q_Y 가 비어있지 않으면, 문자 하나가 비어있지 않은 큐로 부터 pop되고, 해당하는 ReceiveA 혹은 ReceiveB가 호출된다. 단, Q_X 와 Q_Y 가 모두 비어있지 않을 경우에, ReceiveA와 ReceiveB중 어느쪽이 호출되는지는 결정되어있지 않다.
- ReceiveA의 호출 도중에 SendA가 실행 된 경우, 보내진 문자는 Q_Y 에 push된다.
- ReceiveB의 호출 도중에 SendB가 실행 된 경우, 보내진 문자는 Q_X 에 push된다.
- 두 큐가 모두 빈 경우에는, Answer이 호출되고 프로그램이 종료된다.

Azer와 Baijan이 보낸 문자의 총 갯수는 58 000보다 작거나 같아야 한다. 만약 더 큰 경우에는, **오답** [2]가 된다.

참고 사항

- 당신의 프로그램은 내부에서 사용할 목적으로 함수나 전역변수를 사용할 수 있다. 제출된 파일들은 같이 컴파일 되어 하나의 실행 파일이 된다. 모든 글로벌 변수나 함수는 충돌을 피하기 위하여 이름이 없는 namespace에 구현되어야 한다. 채점 될 때는, Azer과 Baijan에 해당하는 두 프로세스로 나누어서 실행 될 것이다. Azer의 프로세스와 Baijan의 프로세스는 전역변수를 공유할 수 없다.
- 당신의 프로그램은 표준 입출력을 사용해서는 안된다. 당신의 프로그램은 어떠한 방법으로도 다른 파일에 접근해서는 안된다. 단, 당신의 프로그램은 디버그 목적으로 표준 에러출력에 출력할 수 있다.

당신은 대회 홈페이지의 아카이브에서 프로그램을 테스트 하기 위한 목적의 샘플 그레이더를 받을 수 있다. 아카이브는 당신의 프로그램의 예제 소스 또한 첨부되어 있다. 샘플 그레이더는 파일 grader.cpp이다. 당신의 프로그램을 테스트 하기 위해서, grader.cpp, Azer.cpp, Baijan.cpp, Azer.h, Baijan.h를 같은 디렉토리 안에 놓고, 컴파일 하기 위해 다음 커맨드를 실행하여라. • g++ -std=gnu++14 -02 -o grader grader.cpp Azer.cpp Baijan.cpp

컴파일이 성공적이면, 파일 grader가 생성된다.

실제 그레이더와 샘플 그레이더는 다름에 주의하여라. 샘플 그레이더는 하나의 프로세스에서 실행 되며, 입력을 표준 입력으로 부터 받고, 출력을 표준 출력에 출력한다.

입력 형식

샘플 그레이더는 표준 입력에서 다음과 같은 형식으로 입력받는다.

N A B

 $U_0 \ V_0 \ C_0$

:

 $U_{A-1} \ V_{A-1} \ C_{A-1}$

 $S_0 T_0 D_0$

:

 $S_{A-1} T_{A-1} D_{A-1}$

출력 형식

프로그램이 정상적으로 종료되었다면, 샘플 그레이더는 다음과 같은 정보를 표준 출력 및 표준 에러에 출력한다. (따옴표는 출력하지 않는다.)

- 오답[1] 혹은 오답 [2]로 판단 된 경우, 오답의 종류를 "Wrong Answer [1]"과 같은 형식으로 표준 에러에 출력한다. 표준 출력에는 아무것도 출력되지 않는다.
- 아닌 경우, 보낸 문자의 총 갯수 L을 "Accepted: L"과 같은 형식으로 표준 에러에 출력한다. 또한, 표준 출력에 답 Z를 다음과 같은 형식으로 출력한다:

Z[0]

:

Z[N-1]

샘플 그레이더는 Z가 올바른지 검사하지 않는다.

프로그램이 다양한 오답의 종류에 속해 있을 경우, 샘플 그레이더는 그 중 하나만 출력 할 것이다.

제한

- $3 \le N \le 2000$.
- $0 \le A \le 500\ 000$.
- $0 \le B \le 500~000$.
- $0 \le U_i \le N 1$. $(0 \le i \le A 1)$
- $0 \le V_i \le N 1$. $(0 \le i \le A 1)$
- $U_i \neq V_i$. $(0 \le i \le A 1)$
- $(U_{i_1}, V_{i_1}) \neq (U_{i_2}, V_{i_2})$ 이고, $(U_{i_1}, V_{i_1}) \neq (V_{i_2}, U_{i_2})$ 이다. $(0 \leq i_1 < i_2 \leq A 1)$
- $0 \le S_j \le N 1$. $(0 \le j \le B 1)$

- $0 \le T_j \le N 1$. $(0 \le j \le B 1)$
- $S_j \neq T_j$. $(0 \le j \le B 1)$
- $(S_{j_1}, T_{j_1}) \neq (S_{j_2}, T_{j_2})$ 이코, $(S_{j_1}, T_{j_1}) \neq (T_{j_2}, S_{j_2})$ 이다. $(0 \leq j_1 < j_2 \leq B 1)$
- 전철 혹은 버스를 사용하면 어떠한 쌍의 도시도 오갈 수 있다.
- $1 \le C_i \le 500$. $(0 \le i \le A 1)$
- $1 \le D_j \le 500$. $(0 \le j \le B 1)$

서브태스크 1 (6 점)

 $\bullet \ A=0$

서브태스크 2 (8 점)

• $B \le 1 000$

서브태스크 3 (8 점)

• A + B = N - 1

서브태스크 4 (38 점)

• $N \le 900$

서브태스크 5 (14 점)

 $\bullet \ N \leq 1 \ 100$

서브태스크 6 (10 점)

 $\bullet \ N \leq 1 \ 400$

서브태스크 7 (16 점)

추가 제한조건이 없다.

예제

이 함수는 그레이터의 예제 입력과 해당하는 함수 호출을 보여준다.

예제 입력	예제 함수 호출		
세세 합덕	호출	호출	반환값
4 3 4	InitA(4, 3, {0,2,2}, {1,1,0}, {6,4,10})		
		SendA(true)	
2 1 4		SendA(false)	
2 0 10	InitB(4, 4, {1,3,3,3}, {2,1,2,0}, {3,1,3,7}		
1 2 3	ReceiveB(true)		
		SendB(true)	
3 1 1 Re	ReceiveA(true)		
3 2 3	ReceiveB(false)		
3 0 7	Answer()		{0,6,9,7}