Average Variance

J. Poland

How to Look Clever and Have Envious Neighbors: Average Volatility Managed Investment

Jeramia Poland

Indian School of Business

August 27, 2018

J. Poland

Risk and Reward

Results

Data

Result

Investment

Performanc

Systematic

Systematic

Regression

. .

0

Global Result

Asset Results

Conclusion

Background

• Risk (Portfolio Variance) = Reward : Markowitz (1952)

Results Preview

Data

Results

Investment Performance

Suggestivel

Systematic

Regression

In Sample

Global Result

Conclusion

- Risk (Portfolio Variance) = Reward : Markowitz (1952)
- Risk != Reward : Haugen and Heins (1972), Campbell (1987), French et al. (1987), Golsten et al. (1993)

Results Preview

Data

Results
Investment

Suggestively Systematic

Regression Subsamples In Sample Out of Sample

Asset Results

- Risk (Portfolio Variance) = Reward : Markowitz (1952)
- Risk != Reward : Haugen and Heins (1972), Campbell (1987), French et al. (1987), Golsten et al. (1993)
- Moreira and Muir (2017) scaling month t+1 investment in the market by month t daily return variance

Data

Results
Investment
Performance

Suggestively Systematic Regression

In Sample
Out of Sample
Global Results

Conclusion

- Risk (Portfolio Variance) = Reward : Markowitz (1952)
- Risk != Reward : Haugen and Heins (1972), Campbell (1987), French et al. (1987), Golsten et al. (1993)
- Moreira and Muir (2017) scaling month t+1 investment in the market by month t daily return variance
- Stock market return variance : $SV_t = \sum_{m=1}^{N} \sum_{n=1}^{N} w_{m,t} w_{n,t} cov(r_{m,t}, r_{n,t})$

Data

Results
Investment
Performance

Suggestively Systematic Regression

In Sample
Out of Sampl
Global Result

Conclusion

- Risk (Portfolio Variance) = Reward : Markowitz (1952)
- Risk != Reward : Haugen and Heins (1972), Campbell (1987), French et al. (1987), Golsten et al. (1993)
- Moreira and Muir (2017) scaling month t+1 investment in the market by month t daily return variance
- Stock market return variance : $SV_t = \sum_{m=1}^{N} \sum_{n=1}^{N} w_{m,t} w_{n,t} cov(r_{m,t}, r_{n,t})$
- Pollet and Wilson (2010) decomposition of market variance into a compensated and uncompensated component

Data

Investment
Performance

Suggestively Systematic Regression

In Sample
Out of Sample
Global Results

Conclusion

- Risk (Portfolio Variance) = Reward : Markowitz (1952)
- Risk != Reward : Haugen and Heins (1972), Campbell (1987), French et al. (1987), Golsten et al. (1993)
- Moreira and Muir (2017) scaling month t+1 investment in the market by month t daily return variance
- Stock market return variance : $SV_t = \sum_{m=1}^{N} \sum_{n=1}^{N} w_{m,t} w_{n,t} cov(r_{m,t}, r_{n,t})$
- Pollet and Wilson (2010) decomposition of market variance into a compensated and uncompensated component
 - average variance (AV) : $\bar{\sigma}_t^2 = \sum_{m=1}^N w_{m,t} \sigma_t^2$

- Risk (Portfolio Variance) = Reward : Markowitz (1952)
- Risk != Reward : Haugen and Heins (1972), Campbell (1987), French et al. (1987), Golsten et al. (1993)
- Moreira and Muir (2017) scaling month t+1 investment in the market by month t daily return variance
- Stock market return variance : $SV_t =$ $\sum_{m=1}^{N} \sum_{n=1}^{N} w_{m,t} w_{n,t} cov(r_{m,t}, r_{n,t})$
- Pollet and Wilson (2010) decomposition of market variance into a compensated and uncompensated component
 - average variance (AV) : $\bar{\sigma}_t^2 = \sum_{m=1}^N w_{m,t} \sigma_t^2$ average correlation (AC) : $\bar{\rho}_t = \sum_{m=1}^N \sum_{n=1}^N w_{m,t} w_{n,t} \rho_{m,n,t}$

- Risk (Portfolio Variance) = Reward : Markowitz (1952)
- Risk != Reward : Haugen and Heins (1972), Campbell (1987), French et al. (1987), Golsten et al. (1993)
- Moreira and Muir (2017) scaling month t+1 investment in the market by month t daily return variance
- Stock market return variance : $SV_t =$ $\sum_{m=1}^{N} \sum_{n=1}^{N} w_{m,t} w_{n,t} cov(r_{m,t}, r_{n,t})$
- Pollet and Wilson (2010) decomposition of market variance into a compensated and uncompensated component
 - average variance (AV) : $\bar{\sigma}_t^2 = \sum_{m=1}^N w_{m,t} \sigma_t^2$ average correlation (AC) : $\bar{\rho}_t = \sum_{m=1}^N \sum_{n=1}^N w_{m,t} w_{n,t} \rho_{m,n,t}$

 - $SV_{t} \approx AV * AC$

- Risk (Portfolio Variance) = Reward : Markowitz (1952)
- Risk != Reward : Haugen and Heins (1972), Campbell (1987), French et al. (1987), Golsten et al. (1993)
- Moreira and Muir (2017) scaling month t+1 investment in the market by month t daily return variance
- Stock market return variance : $SV_t =$ $\sum_{m=1}^{N} \sum_{n=1}^{N} w_{m,t} w_{n,t} cov(r_{m,t}, r_{n,t})$
- Pollet and Wilson (2010) decomposition of market variance into a compensated and uncompensated component
 - average variance (AV) : $\bar{\sigma}_t^2 = \sum_{m=1}^N w_{m,t} \sigma_t^2$ average correlation (AC) : $\bar{\rho}_t = \sum_{m=1}^N \sum_{n=1}^N w_{m,t} w_{n,t} \rho_{m,n,t}$

 - SV₊ ≈ AV * AC
 - $r_{t+1} = \alpha_1 + \beta_1 A C_t + \epsilon_{1,t}$, β_1 positive and significant

- Risk (Portfolio Variance) = Reward : Markowitz (1952)
- Risk != Reward : Haugen and Heins (1972), Campbell (1987), French et al. (1987), Golsten et al. (1993)
- Moreira and Muir (2017) scaling month t+1 investment in the market by month t daily return variance
- Stock market return variance : SV_t = $\sum_{m=1}^{N} \sum_{n=1}^{N} w_{m,t} w_{n,t} cov(r_{m,t}, r_{n,t})$
- Pollet and Wilson (2010) decomposition of market variance into a compensated and uncompensated component
 - average variance (AV) : $\bar{\sigma}_t^2 = \sum_{m=1}^N w_{m,t} \sigma_t^2$ average correlation (AC) : $\bar{\rho}_t = \sum_{m=1}^N \sum_{n=1}^N w_{m,t} w_{n,t} \rho_{m,n,t}$

 - SV₊ ≈ AV * AC
 - $r_{t+1} = \alpha_1 + \beta_1 A C_t + \epsilon_{1,t}$, β_1 positive and significant
 - $r_{t+1} = \alpha_2 + \beta_2 AV_t + \epsilon_{2,t}$, β_2 insignificant

- Risk (Portfolio Variance) = Reward : Markowitz (1952)
- Risk != Reward : Haugen and Heins (1972), Campbell (1987), French et al. (1987), Golsten et al. (1993)
- Moreira and Muir (2017) scaling month t+1 investment in the market by month t daily return variance
- Stock market return variance : $SV_t =$ $\sum_{m=1}^{N} \sum_{n=1}^{N} w_{m,t} w_{n,t} cov(r_{m,t}, r_{n,t})$
- Pollet and Wilson (2010) decomposition of market variance into a compensated and uncompensated component
 - average variance (AV) : $\bar{\sigma}_t^2 = \sum_{m=1}^N w_{m,t} \sigma_t^2$ average correlation (AC) : $\bar{\rho}_t = \sum_{m=1}^N \sum_{n=1}^N w_{m,t} w_{n,t} \rho_{m,n,t}$

 - SV₊ ≈ AV * AC
 - $r_{t+1} = \alpha_1 + \beta_1 A C_t + \epsilon_{1,t}$, β_1 positive and significant
 - $r_{t+1} = \alpha_2 + \beta_2 AV_t + \epsilon_{2,t}$, β_2 insignificant
 - $SV_{t+1} = \alpha_3 + \beta_3 AV_t + \epsilon_{3,t}$, β_3 positive and significant

J. Poland

Risk and Reward

Results

Data

Results

Investment

Suggestivel

Systematic

Regression

In Sample Out of Samp

Global Result

Conclusion

Central Idea I

• If $SV_t \approx AV*AC$, there maybe something to looking at AV and/or AC separately

Results Preview

Data

Results

Investment Performance

Suggestively Systematic

Systematic Regression

In Sample
Out of Samp

/ LUGUE TYCSUTES

- If $SV_t \approx AV^*AC$, there maybe something to looking at AV and/or AC separately
- Moreira and Muir (2017) : weight $=\frac{c_{SV}}{SV_t}$, c is scaling factor used to match variance to buy and hold for comparison

Results Preview

Data

Results

Investment Performance

Suggestively Systematic

Regression Subsamples

Out of Sample Global Results Asset Results

Conclusion

- If $SV_t \approx AV^*AC$, there maybe something to looking at AV and/or AC separately
- Moreira and Muir (2017) : weight = $\frac{c_{SV}}{SV_t}$, c is scaling factor used to match variance to buy and hold for comparison
- Me : weight = $\frac{c_{AV}}{AV_t}$

Data

Results

Investment Performance

Suggestively Systematic

Systematic Regression Subsamples

In Sample
Out of Samp
Global Result
Asset Results

Conclusion

- If $SV_t \approx AV^*AC$, there maybe something to looking at AV and/or AC separately
- Moreira and Muir (2017) : weight = $\frac{c_{SV}}{SV_t}$, c is scaling factor used to match variance to buy and hold for comparison
- Me : weight = $\frac{c_{AV}}{AV_t}$
- AV_t management decreases investment when AV_t is high (future risk will be high)

Results Preview

Data

Results

Investment Performance

Suggestively Systematic

Systematic Regression Subsamples

In Sample
Out of Samp
Global Result

Conclusio

- If $SV_t \approx AV^*AC$, there maybe something to looking at AV and/or AC separately
- Moreira and Muir (2017) : weight = $\frac{c_{SV}}{SV_t}$, c is scaling factor used to match variance to buy and hold for comparison
- Me : weight = $\frac{c_{AV}}{AV_t}$
- AV_t management decreases investment when AV_t is high (future risk will be high)
- AV_t management avoids decreasing investment when SV_t is high because AC is high (future returns are coming)

J. Poland

Risk and Reward

Results Preview

Data

Result

Investment

Systemati

Systematic

Regression Subsamples

In Sample

Out of Sam

Accet Popult

Conclusion

More Pollet and Wilson (2010)

• Roll (1972) : relevant for time-series, variance-in-mean relation of stock market return

Results

Data

Result

Investment

Suggestive

Systematic

Subsamples

Out of Samp Global Result

Conclusion

- Roll (1972) : relevant for time-series, variance-in-mean relation of stock market return
- Variance of observed returns ≠ variance of "market" returns ≠ variance of aggregate wealth

Data

Investment

Performance

Suggestively Systematic Regression

In Sample Out of Sampl Global Result

Conclusion

- Roll (1972) : relevant for time-series, variance-in-mean relation of stock market return
- Variance of observed returns ≠ variance of "market" returns ≠ variance of aggregate wealth
- Shocks to true market returns are positively related to the common component of observed stock market variance, AC

Data

Investment
Performance

Suggestively Systematic

In Sample
Out of Sample
Global Results

Conclusion

- Roll (1972) : relevant for time-series, variance-in-mean relation of stock market return
- Variance of observed returns ≠ variance of "market" returns ≠ variance of aggregate wealth
- Shocks to true market returns are positively related to the common component of observed stock market variance, AC
- AC is positively related to the covariance of stock market returns and aggregate wealth

Results Preview

Data

Results
Investment
Performance

Suggestively Systematic

Regression Subsamples In Sample Out of Sample

Asset Results

Conclusio

- Roll (1972) : relevant for time-series, variance-in-mean relation of stock market return
- Variance of observed returns ≠ variance of "market" returns ≠ variance of aggregate wealth
- Shocks to true market returns are positively related to the common component of observed stock market variance, AC
- AC is positively related to the covariance of stock market returns and aggregate wealth
- AV is negatively related to the covariance of stock market returns and aggregate wealth

Results Preview

Data

Results Investment

Suggestively Systematic

Systematic Regression Subsamples

Out of Sample Global Results Asset Results

Conclusio

- Roll (1972) : relevant for time-series, variance-in-mean relation of stock market return
- Variance of observed returns ≠ variance of "market" returns ≠ variance of aggregate wealth
- Shocks to true market returns are positively related to the common component of observed stock market variance, AC
- AC is positively related to the covariance of stock market returns and aggregate wealth
- AV is negatively related to the covariance of stock market returns and aggregate wealth
- The relationships depend on the proportion of the true market observed, $w_{s,t}$, and the aggregate wealth β_t for stock market returns

Results Preview

Data

Results
Investment

Suggestively Systematic

Systematic Regression Subsamples

Out of Sampl Global Results Asset Results

Conclusio

- Roll (1972) : relevant for time-series, variance-in-mean relation of stock market return
- Variance of observed returns ≠ variance of "market" returns ≠ variance of aggregate wealth
- Shocks to true market returns are positively related to the common component of observed stock market variance, AC
- AC is positively related to the covariance of stock market returns and aggregate wealth
- AV is negatively related to the covariance of stock market returns and aggregate wealth
- The relationships depend on the proportion of the true market observed, $w_{s,t}$, and the aggregate wealth β_t for stock market returns
- Details

Results Preview

Data

Results

Suggestively Systematic

Systematic Regression Subsamples

Out of Sample Global Results Asset Results

Conclusio

- Roll (1972) : relevant for time-series, variance-in-mean relation of stock market return
- Variance of observed returns ≠ variance of "market" returns ≠ variance of aggregate wealth
- Shocks to true market returns are positively related to the common component of observed stock market variance, AC
- AC is positively related to the covariance of stock market returns and aggregate wealth
- AV is negatively related to the covariance of stock market returns and aggregate wealth
- The relationships depend on the proportion of the true market observed, $w_{s,t}$, and the aggregate wealth β_t for stock market returns
- Details
- PW Return

Data

Result

Investment

Suggestivel

Systematic

Regression Subsamples

In Sample

Global Resul

Conclusion

Central Idea II

• Pollet and Wilson (2010) : $cov(r_{s,t+1}, r_{u,t+1})$ approximation has to many unobservables to test.

Data

Result

Investment

Suggestively

Systematic Regression Subsamples

In Sample
Out of Sampl
Global Result

Conclusion

- Pollet and Wilson (2010) : $cov(r_{s,t+1}, r_{u,t+1})$ approximation has to many unobservables to test.
- If it is correct, when AC is high and higher $r_{s,t+1}$ is expected higher $r_{u,t+1}$

Results Preview

Data

Investment

Suggestively Systematic

Systematic Regression Subsamples

Out of Sample Global Results Asset Results

Conclusion

- Pollet and Wilson (2010) : $cov(r_{s,t+1}, r_{u,t+1})$ approximation has to many unobservables to test.
- If it is correct, when AC is high and higher $r_{s,t+1}$ is expected higher $r_{u,t+1}$
- This holds so long as AC (AV) is calculated from daily returns which are sufficiently representative of all asset returns and asset returns are significantly related to returns no aggregate wealth

Data

Investment
Performance

Suggestively Systematic

Regression Subsamples In Sample

Out of Sample Global Results Asset Results

Conclusion

- Pollet and Wilson (2010) : $cov(r_{s,t+1}, r_{u,t+1})$ approximation has to many unobservables to test.
- If it is correct, when AC is high and higher $r_{s,t+1}$ is expected higher $r_{u,t+1}$
- This holds so long as AC (AV) is calculated from daily returns which are sufficiently representative of all asset returns and asset returns are significantly related to returns no aggregate wealth
- Suggestive evidence is support of Pollet and Wilson (2010) relation

Data

Investment Performance

Suggestively Systematic

Regression Subsamples

Out of Sample
Global Results
Asset Results

Conclusion

- Pollet and Wilson (2010) : $cov(r_{s,t+1}, r_{u,t+1})$ approximation has to many unobservables to test.
- If it is correct, when AC is high and higher $r_{s,t+1}$ is expected higher $r_{u,t+1}$
- This holds so long as AC (AV) is calculated from daily returns which are sufficiently representative of all asset returns and asset returns are significantly related to returns no aggregate wealth
- Suggestive evidence is support of Pollet and Wilson (2010) relation
 - In a subset where daily returns are unrepresentative, AC won't predict

Data

Investment Performance

Suggestively Systematic

Regression Subsamples

Out of Sample Global Results Asset Results

Conclusion

- Pollet and Wilson (2010) : $cov(r_{s,t+1}, r_{u,t+1})$ approximation has to many unobservables to test.
- If it is correct, when AC is high and higher $r_{s,t+1}$ is expected higher $r_{u,t+1}$
- This holds so long as AC (AV) is calculated from daily returns which are sufficiently representative of all asset returns and asset returns are significantly related to returns no aggregate wealth
- Suggestive evidence is support of Pollet and Wilson (2010) relation
 - In a subset where daily returns are unrepresentative, AC won't predict
 - AV management has higher investments in time of higher AC relative to SV management - this should work globally

Results Preview

Data

Results
Investment
Performance

Suggestively Systematic

Regression

Out of Sample
Global Results

Conclusion

- Pollet and Wilson (2010) : $cov(r_{s,t+1}, r_{u,t+1})$ approximation has to many unobservables to test.
- If it is correct, when AC is high and higher $r_{s,t+1}$ is expected higher $r_{u,t+1}$
- This holds so long as AC (AV) is calculated from daily returns which are sufficiently representative of all asset returns and asset returns are significantly related to returns no aggregate wealth
- Suggestive evidence is support of Pollet and Wilson (2010) relation
 - In a subset where daily returns are unrepresentative, AC won't predict
 - AV management has higher investments in time of higher AC relative to SV management - this should work globally
 - AV management has higher investment in times of higher $cov(r_{s,t+1}, r_{u,t+1})$, so it should work across asset classes

Average Variance

J. Poland

Risk and Reward

Results Preview

Data

Result

Investment

Suggestive

Suggestively Systematic

Regression Subsamples

Out of Samp Global Result

Conclusion

US Equity Performance

AV: 9.68% SV: 8.60% BH: 5.93%

Average Variance

J. Poland

Risk and Reward

Results Preview

Data

Result

Investmen

Performan

Suggestivel

Systematic

Regression Subsamples

In Sample

Out of Sam

Global Result

_ . . .

Equity Performance

Unconstrained

J. Poland

Risk and Reward

Results Preview

Data

Result

Investment

Suggestively

Systematic Regression

In Sample

Global Result

Conclusion

Equity Performance

Unconstrained

• Outperforms with higher returns for the same variance

Data

Results

Investment Performance

Suggestively Systematic

Regression Subsamples In Sample

Out of Sampl Global Results Asset Results

Conclusion

Equity Performance

Unconstrained

- Outperforms with higher returns for the same variance
- Outperforms with other risk specifications downside, skewness, kurtosis, α

Risk and Reward

Results Preview

Data

Results

Investment Performance

Suggestively Systematic

Regression Subsamples

In Sample
Out of Sampl
Global Result

Conclusion

Equity Performance

Unconstrained

- Outperforms with higher returns for the same variance
- Outperforms with other risk specifications downside, skewness, kurtosis, α

Dat

Results Investment

Suggestivel

Systematic Regression

In Sample Out of Sample Global Results

Conclusion

Equity Performance

Unconstrained

- Outperforms with higher returns for the same variance
- Outperforms with other risk specifications downside, skewness, kurtosis, $\boldsymbol{\alpha}$

Leverage

As leverage constraints tighten AV outperforms SV

Risk and Reward

Results Preview

Dat

Results

Performance

Suggestively Systematic

Systematic Regression Subsamples

Out of Sample
Global Results
Asset Results

Conclusio

Equity Performance

Unconstrained

- Outperforms with higher returns for the same variance
- Outperforms with other risk specifications downside, skewness, kurtosis, $\boldsymbol{\alpha}$

- As leverage constraints tighten AV outperforms SV
- ullet AV and SV management outperforms the buy and hold gains hedging (months < 1)

Risk and Reward

Results Preview

Dat

Results

Investment Performance

Suggestively Systematic

Systematic Regression Subsamples

Out of Sample Global Results Asset Results

Conclusio

Equity Performance

Unconstrained

- Outperforms with higher returns for the same variance
- Outperforms with other risk specifications downside, skewness, kurtosis, $\boldsymbol{\alpha}$

- As leverage constraints tighten AV outperforms SV
- ullet AV and SV management outperforms the buy and hold gains hedging (months < 1)
- SV needs more than 1500% leverage, AV \approx 300%

Results Investment

Suggestivel

Systematic Regression

In Sample
Out of Sample
Global Results
Asset Results

Conclusio

Equity Performance

Unconstrained

- Outperforms with higher returns for the same variance
- Outperforms with other risk specifications downside, skewness, kurtosis, α

- As leverage constraints tighten AV outperforms SV
- ullet AV and SV management outperforms the buy and hold gains hedging (months < 1)
- SV needs more than 1500% leverage, AV $\approx 300\%$
- AV management is cheaper and more practical

Average Variance

J. Poland

Risk and Reward

Results Preview

Data

Result

Investmen

Performan

Suggestivel Systematic

Systematic

Regression

In Sample

Out of Sam

Asset Results

Conclusion

Not US Equity Performance

Global Equity

Risk and Reward

Results Preview

Data

Resul

Investment

Suggestive

Systematic

Regression Subsamples

In Sample

Global Results

Conclusion

Not US Equity Performance

Global Equity

• AV better in 8 of 9 international markets

Risk and Reward

Results Preview

Data

Result

Investment

Suggestivel

Systematic Regression

In Sample
Out of Sampl

Global Results Asset Results

Conclusion

Not US Equity Performance

Global Equity

- AV better in 8 of 9 international markets
- AV better for globally diversified equity portfolio

Data

Result

Investment Performance

Suggestively Systematic

Systematic Regression Subsamples

In Sample Out of Sample Global Results

Conclusion

Not US Equity Performance

Global Equity

- AV better in 8 of 9 international markets
- AV better for globally diversified equity portfolio

Other Asset Classes

Data

Results

Investment Performance

Suggestively Systematic

Systematic Regression

In Sample
Out of Sample
Global Results
Asset Results

Conclusion

Not US Equity Performance

Global Equity

- AV better in 8 of 9 international markets
- AV better for globally diversified equity portfolio

Other Asset Classes

AV better across currency indices

Dat

Results

Performance

Suggestivel Systematic

Systematic Regression Subsamples

Out of Sample Global Results Asset Results

Conclusion

Not US Equity Performance

Global Equity

- AV better in 8 of 9 international markets
- AV better for globally diversified equity portfolio

Other Asset Classes

- AV better across currency indices
- AV better real estate investment management

Dat

Investment

Performance

Suggestively Systematic

In Sample
Out of Sample
Global Results

Conclusio

Not US Equity Performance

Global Equity

- AV better in 8 of 9 international markets
- AV better for globally diversified equity portfolio

Other Asset Classes

- AV better across currency indices
- AV better real estate investment management

This is consistent with the notion that AV management times investment to systematic risk for which investors are compensated and minimizes non-systematic risk.

Contribution

Risk and Reward

Results Preview

Data

Result

Investment

Performan

Suggestivel Systematic

Systematic

Regression Subsamples

In Sample

Out of Sam

Global Result

....

Variance Management

Data

Result

Investment

Suggestivel

Systematic

Subsamples
In Sample
Out of Sampl

Global Result
Asset Results

Conclusion

Contribution

Variance Management

 AV is a better dynamic volatility management signal returns, ratios, drawdowns, costs Data

Result

Investment

Suggestively Systematic

Regression Subsamples

Out of Sampl Global Results

Conclusion

Contribution

Variance Management

- AV is a better dynamic volatility management signal returns, ratios, drawdowns, costs
- AV management works globally and for a globally diversified equity portfolio

Result

Investment Performance

Suggestively Systematic

In Sample
Out of Sampl
Global Result

Conclusion

Contribution

Variance Management

- AV is a better dynamic volatility management signal returns, ratios, drawdowns, costs
- AV management works globally and for a globally diversified equity portfolio
- AV management works across asset class

Risk and Reward

Results Preview

Data

Investment

Suggestivel

Systematic Regression Subsamples In Sample

Out of Sampl Global Results Asset Results

Conclusion

Variance Management

- AV is a better dynamic volatility management signal returns, ratios, drawdowns, costs
- AV management works globally and for a globally diversified equity portfolio
- AV management works across asset class

Risk Dynamics

Dat

Investment Performance

Suggestively Systematic

Subsamples
In Sample
Out of Sample
Global Results

Conclusion

Variance Management

- AV is a better dynamic volatility management signal returns, ratios, drawdowns, costs
- AV management works globally and for a globally diversified equity portfolio
- AV management works across asset class

Risk Dynamics

AV comes from the foundations of investment risk

Risk and Reward

Results Preview

Dat

Results
Investment
Performance

Suggestively Systematic

Subsamples
In Sample
Out of Sample
Global Results

Conclusion

Variance Management

- AV is a better dynamic volatility management signal returns, ratios, drawdowns, costs
- AV management works globally and for a globally diversified equity portfolio
- AV management works across asset class

Risk Dynamics

- AV comes from the foundations of investment risk
- AV management is better because it responds not just to total risk, but the mix of systematic and non-systematic

Risk and Reward

Results Preview

Dat

Results
Investment
Performance

Suggestively Systematic

Subsamples
In Sample
Out of Sample
Global Results

Conclusion

Variance Management

- AV is a better dynamic volatility management signal returns, ratios, drawdowns, costs
- AV management works globally and for a globally diversified equity portfolio
- AV management works across asset class

Risk Dynamics

- AV comes from the foundations of investment risk
- AV management is better because it responds not just to total risk, but the mix of systematic and non-systematic
- AV is related to global non-systematic risk across asset classes

Suggestivel Systematic

Regression Subsamples

Out of Samp Global Result

Conclusio

Equity Data

Equity Data

Country	Start	Obs	Index	Assets
USA	1926 - 8	1085	CRSP	500
AUS	2000 - 5	212	ASX	200
BRA	1995 - 2	275	iShares MSCI Brazil ETF	60
CHN	2005 - 5	152	CSI 300	300
DEU	1993 - 11	290	HDAX	110
FRA	1993 - 9	292	SBF 120	120
IND	2000 - 5	212	Nifty 50	50
ITA	2003 - 8	173	FTSE MIB	40
JPN	1993 - 6	295	Nikkei	255
UK	1993 - 6	295	FTSE	100
World	1995 - 3	274	MSCI ACWI	1735

Data

Investment

Investment Performance

Systematic

Regression Subsamples

Out of Samp Global Result

Conclusio

Non-Equity Data

Other Asset Data

Index	Start	Obs	Asset Class
Bloomberg US Spot	2005 - 6	158	Currency
Deutsche Bank Currency	2005 - 6	158	Currency
Deutsche Bank Carry	2005 - 6	158	Currency
Deutsche Bank Momentum	2005 - 6	158	Currency
S&P REIT Index	2005 - 6	158	Real Estate
Bloomberg Commodity	2005 - 6	158	Commodities

Conclusion

AV Construction

- $SV_t = \sigma_{S,t}^2$
- With m assets in the market, $AV_t = \sum_{m=1}^{M} w_{m,t} \sigma_{m,t}^2$
- $W_t = \frac{c}{X}$ is the investment weight in the portfolio, where X $\in \{AV_{t-1}, SV_{t-1}\}$
- The constant c_{target} is used to control the volatility of the strategy
- c_{BH} matching the buy and hold
- For robustness, c_{10} and c_{12} targeting 10% or 12% annual return volatility

Risk and

Results

Data

Results

Investment

Performano

Systematic

Systematic

In Sample Out of Samp Global Result

Conclusio

Investment Weights

Strategy Investment Weight

1927 1932 1937 1942 1947 1952 1957 1962 1967 1972 1977 1982 1987 1992 1997 2002 2007 2012 2017

Risk and Reward

Results

Data

Results

Investment

Performanc

Suggestively

Systematic

Regression Subsamples

In Sample Out of Samp

Global Result

Conclusion

Investment Weights Again

Risk and

Results

Data

Results

Investment Performance

Suggestively Systematic

Regression Subsamples

Out of Sample Global Results

Asset Result

Conclusion

Investment Weight Again Again

Portfolio	Target	Mean	St. Dev.	Min	Pctl(25)	Median	Pctl(75)	Max
SV	C ₁₀	0.697	0.762	0.009	0.246	0.512	0.874	8.743
AV	c ₁₀	0.702	0.383	0.018	0.425	0.667	0.915	2.296
SV	c ₁₂	0.841	0.920	0.011	0.297	0.618	1.055	10.552
AV	C ₁₂	0.848	0.463	0.022	0.513	0.805	1.104	2.772
SV	СВН	1.290	1.412	0.017	0.455	0.948	1.619	16.193
AV	c _{BH}	1.301	0.710	0.033	0.787	1.235	1.694	4.253

Risk and Reward

Results Preview

Data

Results

Investment

Performance

Suggestive

Systematic

Regression

In Sample

Out of Sami

Global Result

Asset Results

Conclusion

Performance Measures

ullet RET = annualized average log excess return

Risk and Reward

Results Preview

Data

Results

Investment

Performance

Suggestivel

Systematic

Regression

In Sample

Out of Samu

Global Resul

Asset Results

- RET = annualized average log excess return
- Sharpe = $\frac{\mathbb{E}[R_x]}{\sigma(R_x)}$, dollar of returns for dollar of variance

Results Preview

Data

Results

Investment

Performance

Suggestively

Systematic

Subsamples In Sample

Out of Samp Global Result

Global Results
Asset Results

Conclusion

- RET = annualized average log excess return
- Sharpe = $\frac{\mathbb{E}[R_x]}{\sigma(R_x)}$, dollar of returns for dollar of variance

• Sortino =
$$\frac{\mathbb{E}[R_x - 0]}{\sqrt{\int_{-\infty}^0 (0 - R_x)^2 f(R_x) dR}}$$
, return for downside

Results Preview

Data

Results

Investment

Performance

Suggestively Systematic

Subsamples
In Sample
Out of Sample

Global Results

Conclusion

- RET = annualized average log excess return
- Sharpe = $\frac{\mathbb{E}[R_x]}{\sigma(R_x)}$, dollar of returns for dollar of variance
- Sortino = $\frac{\mathbb{E}[R_x-0]}{\sqrt{\int_{-\infty}^0 (0-R_x)^2 f(R_x) dR}}$, return for downside
- Kappa $_n = \frac{\mathbb{E}[R_{\times}-0]}{\sqrt[n]{LPM_n}}$, where LPM is lower partial moment Kappa $_2 = \mathsf{Sortino}$

- RET = annualized average log excess return
- Sharpe = $\frac{\mathbb{E}[R_x]}{\sigma(R_x)}$, dollar of returns for dollar of variance
- Sortino = $\frac{\mathbb{E}[R_x 0]}{\sqrt{\int_{-\infty}^{0} (0 R_x)^2 f(R_x) dR}}$, return for downside
- Kappa $_n = rac{\mathbb{E}[R_{ ext{x}} 0]}{\sqrt[n]{LPM_n}}$, where LPM is lower partial moment $Kappa_2 = Sortino$
- Drawdown peak to valley loss in portfolio value

Results Preview

Data

Results

Investment Performance

renormano

Suggestively Systematic

Regression Subsamples

In Sample Out of Sam

Global Results Asset Results

Conclusion

- RET = annualized average log excess return
- Sharpe = $\frac{\mathbb{E}[R_x]}{\sigma(R_x)}$, dollar of returns for dollar of variance
- Sortino = $\frac{\mathbb{E}[R_x 0]}{\sqrt{\int_{-\infty}^{0} (0 R_x)^2 f(R_x) dR}}$, return for downside
- Kappa $_n = \frac{\mathbb{E}[R_{\times} 0]}{\sqrt[n]{LPM_n}}$, where LPM is lower partial moment Kappa $_2 = \mathsf{Sortino}$
- Drawdown peak to valley loss in portfolio value
- Break Even trading costs, basis points, which erase gains

Conclusio

- RET = annualized average log excess return
- Sharpe = $\frac{\mathbb{E}[R_x]}{\sigma(R_x)}$, dollar of returns for dollar of variance
- Sortino = $\frac{\mathbb{E}[R_x 0]}{\sqrt{\int_{-\infty}^{0} (0 R_x)^2 f(R_x) dR}}$, return for downside
- Kappa $_n = \frac{\mathbb{E}[R_x 0]}{\sqrt[n]{LPM_n}}$, where LPM is lower partial moment Kappa $_2 =$ Sortino
- Drawdown peak to valley loss in portfolio value
- Break Even trading costs, basis points, which erase gains
- Certainty Equivalent Return gain (CER) = Average utility from AV Average utility from SV for mean-variance investor with risk aversion γ

Risk and Reward

Results

Data

Results

Investment

Performance

Suggestivel

Systematic Regression

In Sample Out of Sample

Asset Results

Conclusion

Returns

Risk and

Results

Data

Results

Investment

Performance

Suggestively

Regression Subsamples In Sample Out of Sample

Global Result Asset Results

Conclusion

Performance

 $c_{\textit{BH}}{:}\ 1926{:}07\text{-}2016{:}12$

	Return	Sharpe	Sortino	Kappa ₃	Kappa ₄	α_{FF5}	$lpha_{\it FF5+Mom}$
ВН	5.932	0.319	0.129	0.082	0.061		
SV	8.598	0.462	0.208	0.132	0.097	5.477	3.201
AV	9.677***	0.520*	0.225	0.150*	0.112*	5.594***	3.164***

Risk and

Results

Data

Results

Investmen

Performance

Systematic

Systematic

Regression Subsamples In Sample

Out of Sampl

Conclusion

Drawdowns: c_{BH}

Strategy	N	Max DD	Avg DD	Max Length	Avg Length	Max Recovery	Avg Recovery
ВН	82	-84.803	-8.069	188	11.549	154	7.207
SV	65	-63.637	-11.196	246	14.954	135	7.446
AV	87	-60.264	-9.026	205	10.851	135	5.034

Data

Results

Investmen

Performance

Systematic

Regression Subsamples

Out of Sampl Global Results Asset Results

Conclusion

Drawdown Insurance: c_{BH}

Knockout

- Drawndown large enough to shutter fund (investor pull-out), cost manager job
- Assuming 45% loss in a 12-month period as knockout
- SV 1.06% and AV .55% using Pav (2016)
- AV \approx half the cost to insure, Carr, Zhang, and Hadjiliadis (2011)

Risk and Reward

Results Preview

Data

Results

Investment Performance

Suggestivel Systematic

Systematic Regression

In Sample Out of Sampl Global Result

Conclus

	c _{BH} : Constraint - 1.5							
Portfolio	Return	Sharpe	Sortino	$Kappa_3$	$Kappa_4$			
ВН	5.932	0.319	0.129	0.082	0.061			
SV	6.171	0.467	0.200	0.128	0.091			
AV	7.885***	0.486	0.204	0.133	0.097			

		c _{BH} : Constraint - 3									
Portfolio	Return	Sharpe	Sortino	Kappa ₃	Kappa ₄						
BH	5.932	0.319	0.129	0.082	0.061						
SV	7.606	0.456	0.199	0.129	0.096						
AV	9.677***	0.522**	0.226**	0.150**	0.112**						

Notes: ***, **, and * Significant at the 1, 5, and 10 percent levels.

J. Poland

Risk and

Results

Data

Results

Investment

Performance

Suggestively

Systematic

Regression

Subsamples

In Sample Out of Samr

Global Result

Conclusion

Leverage

Results

Performance

Leverage

Risk averse, mean-variance investors see substantial utility gains switching from the SV to AV managed portfolio and these gains increase with leverage usage and risk aversion

J. Poland

Risk and

Results Preview

Data

Result

Investment Performance

Suggestively Systematic

Systematic Regression Subsamples

In Sample
Out of Sample
Global Results

Asset Results

AC/AV and Systematic Risk

 Pollet and Wilson (2010) - AC is positively related to the correlation of market returns and aggregate wealth, including the unobserved component of the "true market"

Data

Result

Investment Performance

Suggestively Systematic

Regression Subsamples

Out of Sample Global Results

Conclusion

AC/AV and Systematic Risk

- Pollet and Wilson (2010) AC is positively related to the correlation of market returns and aggregate wealth, including the unobserved component of the "true market"
- AC signal changes in systematic risk when the daily returns used are a good proxy for the "true market" and the market is a significant part of aggregate wealth.

Data

Investment

Suggestively Systematic

Systematic Regression Subsamples

Out of Sample Global Results Asset Results

Conclusion

AC/AV and Systematic Risk

- Pollet and Wilson (2010) AC is positively related to the correlation of market returns and aggregate wealth, including the unobserved component of the "true market"
- AC signal changes in systematic risk when the daily returns used are a good proxy for the "true market" and the market is a significant part of aggregate wealth.
- This is similar to the difference in results between Goyal and Santa Clara (2003) and Bali et all (2005) when the latter removes a significant number of daily returns and the forecasting ability of idiosyncratic volatility disappears

Data

Investment
Performance

Suggestively Systematic Regression Subsamples

In Sample
Out of Sample
Global Results
Asset Results

Conclusion

AC/AV and Systematic Risk

- Pollet and Wilson (2010) AC is positively related to the correlation of market returns and aggregate wealth, including the unobserved component of the "true market"
- AC signal changes in systematic risk when the daily returns used are a good proxy for the "true market" and the market is a significant part of aggregate wealth.
- This is similar to the difference in results between Goyal and Santa Clara (2003) and Bali et all (2005) when the latter removes a significant number of daily returns and the forecasting ability of idiosyncratic volatility disappears
- Thus we can run a placebo-like test on a sub-sample where the daily returns are not representative

Suggestively Systematic

Regression

Subsamples

Subsample Tests

 The CRSP daily return data contains only returns for assets traded on the New York Stock Exchange (NYSE) prior to 1962.

Risk and

Results Preview

Data

Investment

Suggestively Systematic

Regression Subsamples

In Sample
Out of Sample

Addet Iteduted

- The CRSP daily return data contains only returns for assets traded on the New York Stock Exchange (NYSE) prior to 1962.
- The prior data is much shallower with fewer than 400 assets

Data

Results
Investment
Performance

Suggestively Systematic Regression Subsamples

In Sample
Out of Sample
Global Results

Conclusion

- The CRSP daily return data contains only returns for assets traded on the New York Stock Exchange (NYSE) prior to 1962.
- The prior data is much shallower with fewer than 400 assets
- As much as 13% of market capitalization is not captured by CRSP data as of the 1950s.

In Sample Out of Sample Global Results Asset Results

Conclusion

- The CRSP daily return data contains only returns for assets traded on the New York Stock Exchange (NYSE) prior to 1962.
- The prior data is much shallower with fewer than 400 assets
- As much as 13% of market capitalization is not captured by CRSP data as of the 1950s.
- Twice as many firms covering twice as many industries are available at the end of 1962 as compared to the end of 1961.

Data

Results
Investment
Performance

Suggestively Systematic Regression Subsamples

In Sample
Out of Sample
Global Results
Asset Results

Conclusion

- The CRSP daily return data contains only returns for assets traded on the New York Stock Exchange (NYSE) prior to 1962.
- The prior data is much shallower with fewer than 400 assets
- As much as 13% of market capitalization is not captured by CRSP data as of the 1950s.
- Twice as many firms covering twice as many industries are available at the end of 1962 as compared to the end of 1961.
- As shown in Taylor (2014) the NYSE market was not a significant part of marginal wealth in the US following the Great Depression before the late 1950s.

J. Poland

Risk and

Results Preview

Data

Results

Investment

Suggestively

Systematic Regression

Regression Subsamples

Out of Sample Global Results

Conclusion

Regressions

 Expect AC not to predict returns in the pre-1962 data but it should post-1962

Data

Results

Investment Performance

Suggestively Systematic

Regression Subsamples

Out of Sample Global Results

Conclusion

- Expect AC not to predict returns in the pre-1962 data but it should post-1962
- In-sample regression coefficients can be corrected for possible "volatility feedback" - Campbell and Hentschel (1992)

Data

Investment

Suggestively

Systematic Regression Subsamples

In Sample

Out of Sample Global Results Asset Results

Conclusion

- Expect AC not to predict returns in the pre-1962 data but it should post-1962
- In-sample regression coefficients can be corrected for possible "volatility feedback" - Campbell and Hentschel (1992)
- Amihud and Hurvich (2004) bias correction

Data

Investment
Performance

Suggestively Systematic Regression Subsamples

In Sample Out of Sample Global Results

Conclusion

- Expect AC not to predict returns in the pre-1962 data but it should post-1962
- In-sample regression coefficients can be corrected for possible "volatility feedback" - Campbell and Hentschel (1992)
- Amihud and Hurvich (2004) bias correction
- Omit variance (SV_{t+1}) prediction by AV as it works in both sub-samples

Data

Results
Investment
Performance

Suggestively Systematic Regression Subsamples

In Sample
Out of Sample
Global Results
Asset Results

Conclusio

- Expect AC not to predict returns in the pre-1962 data but it should post-1962
- In-sample regression coefficients can be corrected for possible "volatility feedback" - Campbell and Hentschel (1992)
- Amihud and Hurvich (2004) bias correction
- Omit variance (SV_{t+1}) prediction by AV as it works in both sub-samples
- Goyal and Welch (2008) forecasting relationships maybe unstable and quite sensitive to sample period choice; they may not respond dynamically with the limited information available to investors in real-time and may not explain or support a trading strategy

J. Poland

Risk and Reward

Results Preview

Data

Results

Suggestively Systematic

Systematic Regression

In Sample

Global Results
Asset Results

Conclus

Return Prediction

1962:07 - 2016:12

			RET_{t+1}		
AV	-0.131 p = 0.166			-0.168** $p = 0.020$	0.016 $p = 0.739$
AC		0.047^{***} $p = 0.001$		0.106^{***} $p = 0.0001$	
SV			-0.109 p = 0.746		0.254 $p = 0.893$
Constant	-0.000 $p = 1.000$	-0.000 $p = 1.000$	-0.000 $p = 1.000$	-0.000 $p = 1.000$	-0.000 $p = 1.000$
N R ²	655 0.017	655 0.002	655 0.012	655 0.027	655 0.017
Adjusted R ²	0.015	0.001	0.010	0.024	0.014

Notes:

^{***}Significant at the 1 percent level.

 $[\]ensuremath{^{**}\mathsf{Significant}}$ at the 5 percent level.

^{*}Significant at the 10 percent level.

Asset Results

Conclusion

Return Prediction

1926:08 - 1962:07

 RET_{t+1} - 1926M7:1962M6

AV	0.061			0.121	U 31E
AV	0.061			0.121	0.315
	p = 0.609			p = 0.741	p = 0.954
AC		-0.032		-0.099	
		p = 0.520		p = 0.862	
SV			-0.028		-0.264
			p = 0.418		p = 0.948
N	431	431	431	431	431
R^2	0.004	0.001	0.001	0.010	0.026
Adjusted R ²	0.002	-0.002	-0.002	0.005	0.021

In Sample

Out of Sample

Global Resu

Conclusion

Out of Sample Stats

Diebold-Marino Statistic (1995)

• DM =
$$\frac{\bar{d}}{\sqrt{\frac{2\pi f_d(0)}{T}}}$$

 Asymptotically normally statistic comparing significance of accuracy ratio

In Sample

Out of Sample

Global Resu

Conclusion

Out of Sample Stats

Diebold-Marino Statistic (1995)

• DM =
$$\frac{\bar{d}}{\sqrt{\frac{2\pi f_d(0)}{T}}}$$

 Asymptotically normally statistic comparing significance of accuracy ratio

Out of Sample Stats

Diebold-Marino Statistic (1995)

• DM =
$$\frac{\bar{d}}{\sqrt{\frac{2\pi f_d(0)}{T}}}$$

 Asymptotically normally statistic comparing significance of accuracy ratio

MSE-F Mcracken (2004)

• MSE-F =
$$T \times \frac{\frac{1}{T} \sum_{1}^{T} (e_{b,t}^2 - e_{x,t}^2)}{MSFE_x}$$

MSE-F = F-type test for significance in squared residual

Out of Sample Stats

Diebold-Marino Statistic (1995)

• DM =
$$\frac{\bar{d}}{\sqrt{\frac{2\pi f_d(0)}{T}}}$$

 Asymptotically normally statistic comparing significance of accuracy ratio

MSE-F Mcracken (2004)

• MSE-F =
$$T \times \frac{\frac{1}{T} \sum_{1}^{T} (e_{b,t}^2 - e_{x,t}^2)}{MSFE_x}$$

MSE-F = F-type test for significance in squared residual

Suggestively Systematic

Regression

In Sample

Out of Sample

Global Result
Asset Result

Conclusio

Out of Sample Stats

Diebold-Marino Statistic (1995)

• DM =
$$\frac{\bar{d}}{\sqrt{\frac{2\pi f_d(0)}{T}}}$$

 Asymptotically normally statistic comparing significance of accuracy ratio

MSE-F Mcracken (2004)

• MSE-F =
$$T \times \frac{\frac{1}{T} \sum_{1}^{T} (e_{b,t}^2 - e_{x,t}^2)}{MSFE_x}$$

• MSE-F = F-type test for significance in squared residual

ENC-HLN Harvey, Lebourne and Newbold (1998)

- Optimal forecast $=\hat{y}_t^* = (1-\lambda)\hat{y}_{b,t} + \lambda\hat{y}_{x,t}$
- $\lambda =$ measure of the optimal combination of forecasts

Suggestively Systematic

Regression

In Sample

Out of Sample

Global Result
Asset Result

Conclusio

Out of Sample Stats

Diebold-Marino Statistic (1995)

• DM =
$$\frac{\bar{d}}{\sqrt{\frac{2\pi f_d(0)}{T}}}$$

 Asymptotically normally statistic comparing significance of accuracy ratio

MSE-F Mcracken (2004)

• MSE-F =
$$T \times \frac{\frac{1}{T} \sum_{1}^{T} (e_{b,t}^2 - e_{x,t}^2)}{MSFE_x}$$

• MSE-F = F-type test for significance in squared residual

ENC-HLN Harvey, Lebourne and Newbold (1998)

- Optimal forecast $=\hat{y}_t^* = (1-\lambda)\hat{y}_{b,t} + \lambda\hat{y}_{x,t}$
- $\lambda =$ measure of the optimal combination of forecasts

Out of Sample Stats

Diebold-Marino Statistic (1995)

• DM =
$$\frac{\bar{d}}{\sqrt{\frac{2\pi f_d(0)}{T}}}$$

 Asymptotically normally statistic comparing significance of accuracy ratio

ENC-HLN Harvey, Lebourne and Newbold (1998)

- Optimal forecast = $\hat{y}_t^* = (1 \lambda)\hat{y}_{b,t} + \lambda\hat{y}_{x,t}$
- $\lambda =$ measure of the optimal combination of forecasts

Rossi and Inoue (2012)

- Calculate OOS stats on all feasible window specifications
- Use asymptotic distribution \rightarrow stat critical values
 - Different critical values for Type I (R_T) and Type II (A_T) and Type II (A_T)

Data

Result

Investment

Suggestively

Systematic

In Sample
Out of Sample

Global Results
Asset Results

Conclusion

Out of Sample Results

Table: Sample 1939:12 to 2016:12

	DM	MSE-F	ENC-HLN
AC_{t+1}	1.604*	46.251***	1**
SV_{t+1}	1.041	21.57***	0.956**
AV_{t+1}	3.104***	198.267***	1***
RET_{t+1}	-2.027	-8.702	0

Data

Investment

Suggestively Systematic

Systematic

Regression Subsamples

In Sample
Out of Sample

Global Results Asset Results

Conclusio

Robust Out of Sample Results

Table: Sample 1939:12 to 2016:12

Stat	Variable	DM	ENC-HLN
R_T	SV_{t+1}	8.874***	1.838***
R_T	RET_{t+1}	29.124***	4.871***
A_T	SV_{t+1}	2.647***	0.949***
A_T	RET_{t+1}	13.347***	1.68***

Notes: ***,**, and * Significant at the 1, 5, and 10 percent levels.

 These results compare the use AV to SV in forecasting not case either is good (RET) but AV is better Average Variance

J. Poland

Risk and Reward

Results Preview

Data

Investment
Performance

Suggestively Systematic

In Sample
Out of Sample

Conclusio

Global Equity

- If AV management times investment to compensated risk because it changes in response to changes in systematic vs non-systematic risk it should work outside the US
- World AV and SV are market cap weighted averages of country values, US included

	Д	AV		V	ВН		
Country	RET	Sharpe	RET	Sharpe	RET	Sharpe	
AUS	12.477	0.981	11.993	0.943	7.805	0.614	
BRA	11.000	0.291	9.037	0.240	6.163	0.164	
CHN	27.381	0.868	24.926	0.790	12.286	0.390	
DEU	11.064	0.537	7.633	0.371	5.399	0.262	
FRA	7.243	0.404	6.128	0.341	4.904	0.273	
IND	14.893	0.633	12.256	0.521	11.460	0.487	
ITA	3.838	0.194	3.912	0.198	1.451	0.073	
JPN	1.375	0.068	0.129	0.006	-0.775	-0.038	
UK	6.591	0.485	5.984	0.441	5.111	0.376	
World	8.604	0.551	8.306	0.536	4.484	0.29032/38	

J. Poland

Risk and

Results Preview

Data

Result

Investment

Performance

Suggestively Systematic

Regression Subsamples

Out of Sample
Global Results

Asset Results

Conclus

Global Equity Again

Drawdown Statistics

	AV				SV		ВН		
Country	Avg DD	Avg Length	Avg Recovery	Avg DD	Avg Length	Avg Recovery	Avg DD	Avg Length	Avg Recovery
AUS	-6.302	7.174	3.348	-5.322	9.263	5.421	-6.318	8.600	4.550
BRA	-8.059	9.560	4.208	-17.469	15.235	5.500	-15.064	17.067	4.286
CHN	-9.511	10.333	5.917	-10.074	10.583	3.727	-19.374	27.400	2.000
DEU	-11.051	10.625	5.783	-12.587	16.812	9.933	-10.706	17.125	12.333
FRA	-10.263	14.111	5.941	-15.260	18.267	10.214	-11.590	19.071	15.077
IND	-8.170	6.500	2.885	-12.545	12.467	5.733	-10.862	8.318	4.500
ITA	-14.625	19.500	2.143	-18.174	22.571	2.333	-8.919	15.400	1.667
JPN	-30.655	72.750	41.750	-78.514	294.000	175.000	-40.792	148.00	2.000
UK	-6.060	11.609	4.652	-7.872	14.158	8.158	-6.018	10.560	7.240
World	-6.982	9.909	7.333	-9.776	12.500	7.059	-8.209	10.091	6.429

Results
Investment
Performance

Suggestively Systematic

In Sample
Out of Sample
Global Results

Conclusio

Global Equity Again Again

Trading Costs

		AV			SV			
Country	RET	$ \Delta\omega $	Break Even	RET	$ \Delta\omega $	Break Even	RET_{BH}	
AUS	12.477	0.486	80.139	11.993	0.466	74.914	7.805	
BRA	11.000	0.253	159.118	9.037	0.623	38.462	6.163	
CHN	27.381	0.305	412.715	24.926	0.538	195.972	12.286	
DEU	11.064	0.499	94.545	7.633	0.581	32.052	5.399	
FRA	7.243	0.468	41.656	6.128	0.536	19.041	4.904	
IND	14.893	0.710	40.316	12.256	0.507	13.097	11.460	
ITA	3.838	0.448	44.366	3.912	0.603	33.991	1.451	
JPN	1.375	0.442	40.518	0.129	0.551	13.675	-0.775	
UK	6.591	0.473	26.113	5.984	0.509	14.287	5.111	
World	8.604	0.439	78.113	8.306	0.642	49.586	4.484	

Data

Investment

Suggestively Systematic

Regression

In Sample Out of Sam

Asset Results

Conclusio

Asset Classes

- If AV management times to changes systematic vs non-systematic risk, equity AV should provide a management signal for more than equities
- Moriera and Muir (2017) show that equity SV does not work as a signal for currency investment
- World AV and SV used with c calculated to match buy and hold for each index

		AV		V	ВН	
Index	RET	Sharpe	RET	Sharpe	RET	Sharpe
Bloomberg Dollar	1.324	0.170	0.606	0.078	-0.296	-0.038
DB Currency	1.195	0.272	-0.668	-0.152	-0.244	-0.056
DB Carry	1.440	0.134	-0.361	-0.033	-2.071	-0.192
DB Mom	1.942	0.214	0.413	0.045	1.095	0.120
S&P REIT	26.706	0.995	14.980	0.558	5.302	0.198
Bloomberg Commodity	-5.579	-0.303	-6.431	-0.349	-5.279	-0.286

J. Poland

Risk and

Results Preview

Data

Result

Investment

Performano

Suggestively Systematic

Regression Subsamples

In Sample
Out of Sample
Global Results
Asset Results

Conclusion

Asset Classes Again

Drawdown Statistics

	AV			SV			ВН		
Index	Avg DD	Avg Length	Avg Recovery	Avg DD	Avg Length	Avg Recovery	Avg DD	Avg Length	Avg Recovery
Discoult on Dellan	-8.393	29.000	12.750	-10.632	39.333	21.333	-13.565	60.000	27.000
Bloomberg Dollar									
DB Currency	-2.236	9.750	2.667	-10.471	59.500	20.500	-8.839	59.500	41.500
DB Carry	-7.336	14.250	7.375	-33.972	121.000	98.000	-30.332	60.000	21.000
DB Mom	-4.748	11.900	3.300	-14.679	59.000	17.000	-12.278	38.333	18.333
S&P REIT	-7.692	4.400	1.800	-15.016	9.455	5.000	-17.004	15.143	9.286
Bloomberg Commodity	-9.784	12.222	2.111	-31.116	39.000	12.333	-26.638	39.333	4.333

J. Poland

Risk and

Results

Data

Result

Investment

Performano

Suggestively Systematic

Subsamples
In Sample
Out of Sampl

Asset Results

Conclusi

Asset Classes Again Again

Trading Costs

	AV						
Index	RET	$ \Delta\omega $	Break Even	RET	$ \Delta\omega $	Break Even	RET _{BH}
Bloomberg Dollar	1.324	0.411	32.846	0.606	0.620	12.126	-0.296
DB Currency	1.195	0.430	27.851	-0.668	0.482	-7.339	-0.244
DB Carry	1.440	0.427	68.600	-0.361	0.510	27.947	-2.071
DB Mom	1.942	0.441	16.010	0.413	0.599	-9.501	1.095
S&P REIT	26.706	0.592	301.254	14.980	0.807	99.908	5.302
Bloomberg Commodity	-5.579	0.460	-5.430	-6.431	0.555	-17.285	-5.279

Data

Result

Investment Performance

Suggestively Systematic

In Sample Out of Sampl Global Result

Conclusion

Conclusion

- AV management is better than SV: higher returns, better ratios, lower costs
- AV management is better because it times moving in and out of investments to changes in systematic risk which is compensated and non-systematic risk which is not
- As such, AV management is a useful signal both globally and across assets classes where SV management does not perform
- Thank you

More Pollet and Wilson (2010)

PW Details

- Start with Campbell and Viceira (2002) : $r_{i,t+1} \approx \gamma \sigma_{i,m,t} \frac{\sigma_{i,t}^2}{2}$, m is true market
- holds for i = s, stock market portfolio
- $r_{s,t+1} \approx \gamma cov_t(r_{s,t+1}, r_{m,t+1}) \frac{\sigma_{s,t}^2}{2}$
- $r_{s,t+1} \approx \gamma cov_t(r_{s,t+1}, w_{s,t}r_{s,t+1} + (1-w_{s,t})r_{u,t+1}) \frac{\sigma_{s,t}^2}{2}$, u is observable component
- $r_{s,t+1} \approx \gamma cov_t(r_{s,t+1}, w_{s,t}r_{s,t+1} + (1 w_{s,t})r_{u,t+1}) \frac{\sigma_{s,t}^2}{2}$
- $r_{s,t+1} \approx \gamma w_{s,t} var_t(r_{s,t+1}) + cov(r_{s,t}, (1-w_{s,t})r_{u,t+1}) \frac{\sigma_{s,t}^2}{2}$

More Pollet and Wilson (2010)

- assume shocks to stock returns : $\bar{\epsilon}_{z,t+1} + \epsilon_{i,t+1}$, z common i idiosyncratic
- $r_{s,t+1} = \beta_t r_{m,t} + \overline{\epsilon}_{z,t+1}$
- $\operatorname{var}(\overline{\epsilon}_{z,t+1} + \epsilon_{i,t+1}) = \sigma_{z,t}^2 = \theta_t \sigma_{z,t}^2 + (1 \theta_t) \sigma_{i,t}^2$, θ common part
- $r_{u,t+1} = \frac{1 w_{s,t}\beta_t}{1 w_{s,t}} r_{m,t} \frac{w_{s,t}\beta_t}{1 w_{s,t}}$
- substitute and simplify (many steps)
- $cov(r_{s,t}, r_{u,t+1}) = \frac{1 w_{s,t}\beta_t}{1 w_{s,t}} \frac{\bar{\sigma}_t^2}{\beta_t} \frac{\bar{\rho}_t \theta_t}{1 \theta_t} \bar{\rho}_t \frac{w_{s,t}\theta_t}{1 w_{s,t}} \frac{\bar{\sigma}_t^2}{\beta_t} \frac{1 \bar{\rho}_t}{1 \theta_t} \bar{\sigma}_t^2$
- more simplification
- $cov(r_{s,t}, r_{u,t+1}) = \pi_0 + \zeta_1 \bar{\rho_t} + \zeta_2 \bar{\sigma}_t^2$
- ζ_1 positive but small for plausible values of $w_{s,t}$ and β_t , ζ_2 negative but small for plausible values
- Return