SUSY Lectures in 2017 Summer

Kwang Sik Jeong ¹

Noted by Yeji Park, T.G. Kim

Contents

1	Int	troduction	2
	1)	[L1] Quantum Field Theory	2
	2)	[L2] Effective Field Theory	5

¹Dept. of Physics, Pusan National University

1 Introduction

1) [L1] Quantum Field Theory

: basic framework to study elementary particles and their interactions.

"special relativity + Quantum mechanics"

On special relativity
$$\begin{cases} \text{spacetime}: (ct, \vec{x}) \\ \text{force: mediated by fields. (e.g. EM)} \end{cases}$$

S: action

 $\delta S = 0$: classical action(least action)

$$\langle f|i \rangle \sim \sum_{\mathrm{path}} e^{iS/\hbar}$$
 ; path integral
$$\begin{cases} \Delta S \gg \hbar & ; \mathrm{Classical} \\ \Delta S \sim \hbar & ; \mathrm{Quantum} \end{cases}$$

We use the natural unit, $\hbar = c = 1$.

Theory
$$\begin{cases} action(S) \\ + \\ regularization \\ + \\ renormalization \end{cases}$$

1-a) S(action)

$$S = \int \underbrace{d^4x}_{dtdxdydz} \mathcal{L}(\phi, \partial_{\mu}\phi)$$

where ϕ is a field, $\phi(x)$. Lagrange has a symmetry.

- i) symmetry
- Important role to better understand natural.
- Defining an elementary particle according to the behavior of the corresponding field with respect to symmetries.
- Determining interactions among particles. (can be hidden; spontaneous breaking)

Noether Theorem(classical field theory)

: continuous symmetry \rightarrow conserved quantity

Symmetry

- 1. Spacetime Symmetry $(x \to x')$
 - (a) Poincaré Transformation: transformation leaving the line element invariant. $ds^2 = \eta_{\mu\nu} dx^\mu dx^\nu$
 - i. Lorentz transformation; action conservation
 - ii. Translations; energy-momentum conservation
 - (b) General coordinate Transformation→ general relativity
- 2. Internal Symmetry

$$\Phi^a(x) \to \Phi'^a(x) = M^a_{\ b} \Phi^b(x)$$

where $\Phi^a(x)$ is general field and a, b are internal indices.

$$M^a_{\ b} \begin{cases} \text{global symmetry: } M^a_{\ b} \text{ is spacetime-independent} \\ \text{local(gauge) symmetry: } M^a_{\ b}(x) \text{ is spacetime-dependent} \end{cases}$$

QFT: the most general symmetry of the S-matrix(Scattering matrix).

Note 1.1 Coleman-Mandula(1967)

Poincaré symmetry

Internal symmetry

where \bigotimes is a direct product.

- assumption on QFT (local, relativity, $4D, \ldots$) & scattering interactions.
- considered only bosonic generator.

Extended to include spinor generators(spin: $\frac{1}{2}$, $\frac{3}{2}$),

Note 1.2 Haag-Lopuszański-Sohnius (1975)

Super-Poincaré symmetry \bigotimes Internal symmetry

1-b) Regularization & Renormalization

- 1. Regularization
 - (a) UV divergence

: we need to regulate the theory.

(Infinities \rightarrow absorbed by appropriate counter terms.)

e.g. cutoff regulation, dimensional regularization

- 2. Renormalization
 - : determine how to absorb the infinities into counter terms. (arbitraty renormalization point $\mu(\text{unphysical})$)
 - (a) Perturbation Theory : expansion w.r.t renormalized parameters. \rightarrow large logs: $\ln(\frac{E}{\mu}), \ln(\frac{M}{\mu})$ \rightarrow physical amplitude(independent of μ) \rightarrow "set $\mu \sim E$ "
 - (b) RGE(Renormalization Group Equation)

2) [L2] Effective Field Theory