Note 12-Animation

Metaverse

Interpolation based animation

3 Types of Equations

```
Explicit y = f(x)
  good for generating points (y values from x values)
  dependent on the choice of the coordinate axis
  sometimes ambiguous, e.g. y = \sqrt{x}
\overline{\text{Implicit}} \quad f(x,y) = 0
  good for testing to see if a point is on a curve
  by testing f(x,y) = 0 for a given point (x, y)
  not generative (inconvenient to render the curve)
Parametric c(t) = (x(t), y(t))
  good for rendering
  "on" testing is not easy
```

Polynomial Equations

Contain only variables raised to a power

ex)
$$x^5 + 3x^4 - 4x^2 + 1$$

Linear Equation

Highest power is I, ex) 2x + 3, -5x, ...

Quadratic Equation

Highest power is 2, ex) $3x^2 + 4x - 1$, $-x^2$, $6x^2 + 5$, ...

Cubic Equation

Highest power is 3

Continuity

How well behaved the curve is in a mathematical sense.

C⁰ continuous: positional continuity

ex) F(t) is C^0 continuous for all t. (piecewise linear)

ex) F(t) and G(t) is C^0 continuous at t_0

Continuity

C1 continuous: tangential continuity

ex) F(t) and G(t) are C^{\dagger} continuous at t_0

$$\mathsf{F}'(\mathsf{t}_0) = \mathsf{G}'(\mathsf{t}_0)$$

C² continuous: curvature continuity

ex) F(t) and G(t) are C^2 continuous at t_0

$$F''(t_0) = G''(t_0)$$

Interpolation vs. Approximation

Interpolation

Approximation

De Casteljau Construction

Bezier curve construction

Example

How to compute P(1/3)?

Composite Bezier Curve

Figure B.35 Composite cubic Bezier curve showing tangents and colinear control points

Key-Frame Systems

Interpolating Key Frame Shapes — Linear Interpolation

Keys and three intermediate frames with linear interpolation of a single point (with reference lines showing the progression of the interpolation in x and y)

Simple animation

Complex Shape Interpolation

We don't know which vertex should go to which vertex.

Usually polygonal shape interpolation is not easy.

Kinematics of articulated figures

Kinematics

How to animate skeletons (articulated figures)

Kinematics is the study of motion without regard to the forces that caused it

<--> dynamics

Hierarchical Models

Tree structure of joints and links

The root link can be chosen arbitrarily

Joints

- Revolute (hinge) joint allows rotation about a fixed axis
- Prismatic joint allows translation along a line
- Ball-and-socket joint allows rotation about an arbitrary axis

Human Joints

Human joints are actually much more complicated

Forward and Inverse Kinematics

Forward Kinematics: A Simple Example

A simple robot arm in 2-dimensional space

- 2 revolute joints
- Joint angles are known
- Compute the position of the end-effector

$$x_e = l_1 \cos \theta_1 + l_2 \cos(\theta_1 + \theta_2)$$

$$y_e = l_1 \sin \theta_1 + l_2 \sin(\theta_1 + \theta_2)$$

Forward Kinematics: A Simple Example

Forward kinematics map as a coordinate transformation

Forward kinematics map transforms the position and orientation of the end-effector according to joint angles

A Chain of Transformations

$$T = (rot\theta_{1})(transl_{1})(rot\theta_{2})(transl_{2})$$

$$= \begin{pmatrix} \cos\theta_{1} & -\sin\theta_{1} & 0 \\ \sin\theta_{1} & \cos\theta_{1} & 0 \\ 0 & 0 & 1 \\ \end{pmatrix} \begin{pmatrix} 1 & 0 & l_{1} \\ 0 & 1 & 0 \\ \end{pmatrix} \begin{pmatrix} \cos\theta_{2} & -\sin\theta_{2} & 0 \\ \sin\theta_{2} & \cos\theta_{2} & 0 \\ \end{pmatrix} \begin{pmatrix} 1 & 0 & l_{2} \\ 0 & 1 & 0 \\ \end{pmatrix} \begin{pmatrix} 1 & 0 & l_{2} \\ 0 & 1 & 0 \\ \end{pmatrix}$$

$$T = (rot\theta_1)(transl_1)(rot\theta_2)(transl_2)$$

$$= \begin{pmatrix} \cos\theta_1 & -\sin\theta_1 & 0 \\ \sin\theta_1 & \cos\theta_1 & 0 \\ 0 & 0 & 1 \\ \end{pmatrix} \begin{pmatrix} 1 & 0 & l_1 \\ 0 & 1 & 0 \\ \end{pmatrix} \begin{pmatrix} \cos\theta_2 & -\sin\theta_2 & 0 \\ \sin\theta_2 & \cos\theta_2 & 0 \\ \end{pmatrix} \begin{pmatrix} 1 & 0 & l_2 \\ 0 & 1 & 0 \\ \end{pmatrix}$$

Floating Base

The position and orientation of the root segment are added

Representing Hierarchical Models

A tree structure

A node contains a joint transformation

A arc contains a link transformation

DOFs

Degree of Freedom (DOF): A variable φ describing a particular axis or dimension of movement within a joint

Joints typically have around I-6 DOFs $(\phi_1...\phi_N)$ Can have more (up to 9 for affine)

Changing the DOF values over time results in the animation of the skeleton

- Rigid body transformations: 6DOF
- Arbitrary rotations: 3DOF