Package 'sistmr'

October 14, 2022

Type Package	
Title A Collection of Utility Function from the Inserm/Inria SISTM Team	
Version 0.1.1	
Author Boris Hejblum [aut], Mélanie Huchon [aut, cre]	
Maintainer Mélanie Huchon <melanie.huchon@u-bordeaux.fr></melanie.huchon@u-bordeaux.fr>	
Description Functions common to members of the SISTM team.	
License MIT + file LICENSE	
Encoding UTF-8	
RoxygenNote 7.1.2	
Imports BlandAltmanLeh, dplyr, ggbeeswarm, ggplot2, ggrepel, rlang, scales, stats	
NeedsCompilation no	
Repository CRAN	
Date/Publication 2022-03-24 08:30:02 UTC	
R topics documented: BlandAltmanPlot	
sistmr	
volcanoPlot	•
Index	(

2 BlandAltmanPlot

BlandAltmanPlot

Bland-Altman plot function

Description

Bland-Altman plot function

Usage

```
BlandAltmanPlot(
  var1,
  var2,
  with_gradient = FALSE,
  line_color = c("blue", "lightblue"),
  extremum_pctg = TRUE
)
```

Arguments

var1 a vector of numerics for the 1rst group to be compared. var2 a vector of numerics for the 2nd group to be compared.

with_gradient a logical indicating if you have a lot of measures, use with_gradient=TRUE to

have gradient scale and not points. Default value is FALSE.

line_color a vector of color for the three lines: average difference and upper and lower

limits of the confidence interval for the average difference.

extremum_pctg a logical indicating if you want to add the percentage of points outside the con-

fidence interval for the upper and lower limits. Default is TRUE.

Value

```
a ggplot2 object
```

Examples

```
library(ggplot2)

#Small sample
#Generate data
x <- rnorm(30)
y <- rnorm(30, mean = 5, sd = 3)

#Plotting
BlandAltmanPlot(var1 = x, var2 = y)
#Add color by group
gr <- c(rep("G1", 15), rep("G2", 15))
BlandAltmanPlot(var1 = x, var2 = y) + geom_point(aes(color = gr))</pre>
```

multipleBoxplots 3

```
#High sample
#Generate data
x <- rnorm(10000)
y <- rnorm(10000, mean = 5, sd = 3)
#Plotting with gradient
BlandAltmanPlot(var1 = x, var2 = y, with_gradient = TRUE)</pre>
```

multipleBoxplots

Multiple boxplots for many times

Description

Multiple boxplots for many times

Usage

```
multipleBoxplots(data, x_var, y_var, add_points = TRUE)
```

Arguments

data a dataset from which the variable x_var and y_var should be taken.

x_var corresponding to the x coordinates for the plot, it must be a factor to obtain

multiple boxplots.

y_var corresponding to the y coordinates for the plot.

add_points if you want to add points on boxplots. Default value is TRUE.

Value

```
a ggplot2 object
```

Examples

```
library(ggplot2)

#Generate data
x_ex <- factor(c(rep("J0", 10), rep("J7", 10), rep("J14", 10)), levels = c("J0", "J7", "J14"))
y_ex <- rnorm(30)

data_ex <- cbind.data.frame(x_ex, y_ex)

#Plotting
multipleBoxplots(data = data_ex, x_var = x_ex, y_var = y_ex)

multipleBoxplots(data = data_ex, x_var = x_ex, y_var = y_ex) +
labs(x = "Time", y = "Value") +
theme(legend.position = "none")</pre>
```

4 volcanoPlot

normal_distribution

Functions

Description

Functions

Usage

```
normal_distribution(vec)
```

Arguments

vec

a vector

Value

a vector

sistmr

sistmr.

Description

This package contains functions common to members of the SISTM team.

volcanoPlot

Volcano plot function

Description

Volcano plot function

Usage

```
volcanoPlot(
  log2fc,
  pValue,
  data,
  FDR_threshold = 0.05,
  LFC_threshold = log2(1.5),
  color = c("red", "black"),
  geneNames = NULL,
  nb_geneTags = 20,
  logTransformPVal = TRUE
)
```

volcanoPlot 5

Arguments

log2fc a magnitude of change (fold-change) in base log 2 corresponding to the x-axis.

pValue a statistical significance (p-value) corresponding to the y-axis.

data a data frame of differentially expressed results from which the variable log2fc,

pValue and geneNames (if it is used) should be taken.

FDR_threshold a threshold of false discovery rate. LFC_threshold a threshold of log fold change.

color a vector of two colors for significant or not significant points.

geneNames a vector of gene names if you want to put gene tags on the volcano plot. Default

is NULL.

nb_geneTags number of tags for the significant genes if geneNames is not NULL. Default is

20 to obtain the 20 first significant genes.

logTransformPVal

If TRUE, the p-values will have a negative logarithm transformation (base 10).

Default is TRUE.

Value

```
a ggplot2 object
```

Examples

```
genes <- paste0("G", 1:500)
pval <- runif(500, max = 0.5)
log2FC <- runif(500, min = -4, max = 4)

data <- cbind.data.frame(genes, pval, log2FC)
rm(genes, pval, log2FC)
volcanoPlot(log2FC, pval, data, geneNames = genes)</pre>
```

Index

```
BlandAltmanPlot, 2
multipleBoxplots, 3
normal_distribution, 4
sistmr, 4
volcanoPlot, 4
```