Determine whether memory recall is affected by age

Louise Carlo Salomon

A memory test was conducted to a group of 10 individuals.

Specific Problem: Is there a significant relationship regarding age and memory recall?

Hypothesis:

- $\ensuremath{H_0}$ There is no significant relationship regarding age and memory recall.
- $$H_{\rm 1}$$ There is a significant relationship regarding age and memory recall.

Level of Significance: .05 or 5%

Given Data:

Age: X	Memory Recall: Y
50	83
54	82
51	80
46	80
49	78
53	77
43	76
47	76
46	72
41	71
	50 54 51 46 49 53 43 47 46

Pearson r

Individual	Age: X	Memory Recall: Y	X^2	
\mathbf{A}	50	83	2500	
В	54	82	2916	
$^{\mathrm{C}}$	51	80	2601	
D	46	80	2116	
\mathbf{E}	49	78	2401	
F	53	77	2809	
G	43	76	1849	
Н	47	76	2209	
I	46	72	2116	
J	41	71	1681	
n=10	$\sum_{i=1}^{n} X_i = 480$ $\overline{X} = 48$	$\sum_{i=1}^{n} Y_i = 775$	$\sum_{i=1}^{n} X_i^2 = 23198$	
	$\overline{X} = 48$	$\overline{Y} = 77.5$		
	0			
	Y^2	XY		
	6889	4150		
	6724	4428		
	6400	4080		
	6400	3680		
	6084	3822		
	5929	4081		
	5776	3268		
	5776	3572		
	5184	3312		
	5041	2911		
	$\sum_{i=1}^{n} Y_i^2 = 60$	$203 \sum_{i=1}^{n} XY = 37$	304	

Pearson r, A.

r = 0.698018018

$$r = \frac{\sum_{i=1}^{n} XY - n(\overline{X})(\overline{Y})}{\sqrt{(\sum_{i=1}^{n} X_{i}^{2} - n(\overline{x})^{2})(\sum_{i=1}^{n} Y_{i} - n(\overline{y})^{2})}}$$

$$r = \frac{37304 - 10(48)(77.5)}{\sqrt{(23198 - 10(48)^{2})(60203 - 10(77.5)^{2})}}$$

$$r = \frac{104}{\sqrt{22199}}$$

$$r = \frac{104}{148.9932884}$$

$$(1)$$

Pearson r, B.

$$r = \frac{n(\sum_{i=1}^{n} XY) - (\sum_{i=1}^{n} X_i)(\sum_{i=1}^{n} Y_i)}{\sqrt{(n(\sum_{i=1}^{n} X_i^2)(\sum_{i=1}^{n} X_i)^2)(n(\sum_{i=1}^{n} Y_i^2)(\sum_{i=1}^{n} Y_i)^2)}}$$
(2)

$$r = \frac{10(37304) - (480)(775)}{\sqrt{(10(23198) - (480)^2)(10(60203) - (775)^2)}}$$

$$r = \frac{1040}{\sqrt{2219900}}$$

$$r = \frac{1040}{1489.932884}$$

$$r = 0.698018018$$

The computed r is 0.0698018018 and the table value r at 0.05 level of significance is

$$df = n - 2 = 10 - 2 = 8 = 0.632$$

since the computed value of r is greater than the table value of r at 0.05 level of significance,

therefore, the null hypothesis is rejected, indicating that there is a significant relationship regarding age and memory recall in this study.

Spearman, rho

Individual	Age: X	Memory Recall: Y	Rank of $X(R_x)$	Rank of $Y(R_y)$
A	50	83	4	1
В	54	82	1	2
$^{\mathrm{C}}$	51	80	3	3.5
D	46	80	7.5	3.5
${f E}$	49	78	5	5
\mathbf{F}	53	77	2	6
G	43	76	9	7.5
Н	47	76	6	7.5
I	46	72	7.5	9
J	41	71	10	10
n = 10				

Difference Bet.
$$R_x - R_y(D) \qquad D^2$$

$$3 \qquad 9$$

$$-1 \qquad 1$$

$$-.5 \qquad .25$$

$$4 \qquad 16$$

$$0 \qquad 0$$

$$-4 \qquad 16$$

$$1.5 \qquad 2.25$$

$$-1.5 \qquad 2.25$$

$$-1.5 \qquad 2.25$$

$$0 \qquad 0$$

$$\sum_{i=1}^n D^2 = 49$$

$$\rho = 1 - \frac{6(\sum_{i=1}^n D^2)}{n(n^2 - 1)}$$

$$\rho = 1 - \frac{6(49)}{10(10 - 1)}$$

$$\rho = 1 - \frac{294}{990}$$

$$\rho = 1 - 0.296969697$$

$$\rho = 0.70303030303$$

The computed rho = 0.945454545 and the table value rho with 0.05 level of significance is 0.5636, since the computed rho is greater than the table value rho,

$$0.70303030303 > .5636 \tag{4}$$

therefore we conclude that our null hypothesis is rejected which means that there is a significant relationship regarding age and memory recall.