OpenFlow

Daphné Tuncer
Department of Computing
Imperial College London (UK)
dtuncer@ic.ac.uk

Reminder: SDN Architecture

OpenFlow Highlights

- Open standardised implementation of the southbound interface between the control plane and switches in the data plane
- Originally designed at Stanford University for the purpose of network research in labs
- Open Network Foundation (ONF): non-profit consortium created in 2011 for the standardisation and commercial the use of OpenFlow in production networks
 - Members include: academic organisations, enterprises, service providers, equipment vendors
- "De facto" network platform for supporting SDN-based research and experiments

OpenFlow Architecture

Software

Hardware

Principles

- Control intelligence in the controller
- OpenFlow switches process incoming traffic according to the rules provided by the controller
- Switching pipeline constituted of flow tables with specific rules on to how treat individual traffic flows
- Communication between the controller and OpenFlow switches via OpenFlow protocol

Switching pipeline in OpenFlow

Sequence of flow tables implemented in TCAM

Flow Table Construct

- Each flow table follows a match action table model:
 - ➤ Header bits of incoming packets belonging to individual flows are matched against some pre-computed bit sequences and a set of actions is applied to the packets in case of positive match
- A table is constituted of multiple entries with each entry containing:
 - > A rule field
 - An action set field
 - A statistics field

Flow Table Entry

Flow Table Entry Details

Rule

- > The flow table supports layer 2, layer 3 and layer 4 protocols
- > Flexible definition a flow rule based on the combination of different matching fields (typically across different layers)

Example: {Source IP Address, Destination IP address, Source port, Destination port}

> If there is no matching rule, the packet is dropped by default

Flow Table Entry Details (con't)

Action

- Define how to act on each incoming packet belonging to the flows
- > Some actions have immediate effects (e.g., forward packet to next table), some are only applied at the end of the pipeline (e.g., forward packet to port x)

Statistics

- Counters for keeping statistics of each flow
- Used for monitoring purposes

Packet Forwarding Illustration

Per Table Operations

- 1. Find highest priority matching flow entry
- 2. Apply instructions
- 3. Send match data and action set to next table

Controller – Switch Communication

- Bi-directional communication between the control plane and the data plane
- Control plane to data plane
 - > Instructions on the processing of incoming packets at the device side (*i.e.*, flow entries)
- Data plane to control plane
 - > Event-based messages triggered at the devices upon anomalies
 - Report of flow statistics back to the controller
 - Query on how to process incoming packet in the absence of matching flow rule
 - Packet directly sent to the controller upon the action of "Encapsulate and forward to the controller" in the flow record

Examples of OpenFlow Controllers

- OpenDaylight (https://www.opendaylight.org/)
- ONOS (https://onosproject.org/)
- Floodlight (http://www.projectfloodlight.org/floodlight/)
- NOX/POX (https://github.com/noxrepo/pox)
- Ryu (https://osrg.github.io/ryu/)

14

Flow Table Management Strategies

- Granularity of the flow entries
 - > Flow-based
 - Aggregated

- Insertion scheme of the flow entries
 - Reactive
 - > Proactive

Flow Entry Granularity

Flow-based

- > The entry corresponds to one specific flow (one entry per flow)
- > Follows an exact-match pattern
- Suitable to enforce fine grained control
- > Entries can all be defined as flow-based only in the case of smallscale networks, i.e., campus networks

Aggregated

- > The entry covers a (large) group of flows
- Works using wildcard rules
- > Particularly suitable in the case of large-scale networks, e.g., backbone

Flow Entry Granularity Illustration

Exact Match

[Switch	MAC	MAC	Eth	VLAN	IP	IP	IP	ТСР	TCP D_port
	Port	Src	Dst	Type	ID	Src	Dst	Prot	S_port	D_port
	port3	00:20	00:1f.	0800	vlan1	1.2.3.4	5.6.7.8	4	17264	80

Wildcard

Switch Port	MAC	MAC	Eth	VLAN	IP	IP	IP	ТСР	TCP
Port	Src	Dst	Type	ID	Src	Dst	Prot	S_port	D_port
*	*	*	*	*	*	5.6.7.8	*	*	*

Flow Entry Insertion

Reactive

- A new entry is added to the table upon receiving the first packet a previously unseen flow
- > The first packet of every new flow is redirected to the controller
- Incurs a delay on the processing time of the first packet due to flow setup at run-time, as well as communication overhead on the control channel

Proactive

- > Flow entries are pre-populated by the controller
- No delay on the processing time of the first packet
- ➤ More appropriate for aggregated flow entries → very difficult to anticipate the occurrence of specific individual flows

Short Demo

- Mininet network emulator
 - Runs a collection of end-hosts, switches, routers, and links on a single Linux kernel.
 - Uses lightweight virtualization
- Use case

Suggested Reading Material

[1] N. McKeown, et al., "OpenFlow: enabling innovation in campus networks," in *SIGCOMM Comput. Commun. Rev.* 38, 2, 69-74, March 2008.

Contact

Dr. Daphné Tuncer

Department of Computing Imperial College London United-Kingdom

dtuncer@ic.ac.uk

http://www.doc.ic.ac.uk/~dtuncer/