Testo dell'appello del 14 Gennaio 2021. L'esame è stato svolto in modalità remota. Il tempo a disposizione è stato di 1h15m.

Quesito 1 (4 punti). Dati i due numeri $A = -54_{10}$ e $B = +54_{8}$ effettuare la conversione in base 2, notazione complemento a 2, sul numero minimo di bit necessari a rappresentare entrambi gli operandi. Si effettuino quindi le operazioni A+B e A-B, **indicando esplicitamente se si verifica o non si verifica overflow e motivando la risposta**.

Quesito 2 (4 punti). Si definisca una funzione ricorsiva in C che, ricevuta in ingresso una stringa e ogni altro parametro ritenuto necessario, stampi la stringa al rovescio (N.B.: la funzione non deve invertire l'ordine dei caratteri nella stringa, ma stamparli in ordine inverso).

Quesito 3 (9 punti). Il sistema di controllo del traffico di una città registra gli accessi delle auto nella zona a traffico limitato (ZTL) memorizzandoli in una lista dinamica, *accessi*. Per ogni accesso, la lista è estesa con un nuovo nodo che memorizza la targa del veicolo (una stringa di 7 caratteri). Il sistema fa poi uso di una seconda lista, *permessi*, che memorizza le targhe dei veicoli che possiedono una autorizzazione per entrare nella ZTL. **Entrambe le liste sono ordinate in base alle targhe**.

Dopo aver opportunamente definito il tipo dei nodi delle due liste, si codifichi in C la funzione *controlla_accessi* che, ricevute come parametri le teste delle due liste e la targa di un veicolo, opera nel seguente modo:

1. Se la targa risulta già presente nella ZTL (cioè è già presente nella lista *accessi*), restituisce il valore 0

altrimenti:

2. Verifica che il veicolo sia dotato di permesso di accesso consultando la lista *permessi*; se il veicolo non è autorizzato restituisce il valore 1, altrimenti lo inserisce in ordine nella lista *accessi* e restituisce il valore 2

Quesito 4.1 (9 punti). Nell'ambito dell'elaborazione delle immagini, si vuole sviluppare una funzione in C che calcoli un filtro a media mobile. Ogni immagine è rappresentata da una matrice di dimensione MxN, **iniziale[M][N]**, i cui elementi corrispondono ai pixel dell'immagine e ne rappresentano il livello di grigio. Come illustrato nella figura sottostante, il filtro opera costruendo una nuova matrice, **risultato[M][N]**, in cui il valore di un elemento in posizione [i, j] è la media della sottomatrice di dimensione 3x3 per la quale la posizione [i,j] è il centro. Nel caso di posizioni sul bordo della matrice, per tutti gli elementi non esistenti nella sottomatrice a contorno si considera il valore 0.

Esempio di filtro applicato alla posizione [2,1]

0.7	1.5	7.7	2.2	1.1
-0.5	1.0	7.0	8.3	2.4
-0.6	4.0	2.8	-8.7	1.2
2.0	7.0	-2.0	5.4	0.0
9.0	5.6	-5.4	5.6	3.2

0.3	1.9	3.1	3.2	1.6
0.7	2.6	2.9	2.7	0.7
1.4	2.3	2.8	1.8	1.0
3.0	2.5	1.6	0.2	0.7
2.6	1.8	1.8	0.8	1.6

Matrice iniziale

Matrice risultato

Esempio di filtro applicato alla posizione [0,0]

	0.7	1.5	7.7	2.2	1.1
	-0.5	1.0	7.0	8.3	2.4
	-0.6	4.0	2.8	-8.7	1.2
	2.0	7.0	2.0	5.4	0.0
	9.0	5.6	-5.4	5.6	3.2

			_		
B A	-+	- 1		حاحا	

0.3	1.9	3.1	3.2	1.6
0.7	2.6	2.9	2.7	0.7
1.4	2.3	2.8	1.8	1.0
3.0	2.5	1.6	0.2	0.7
2.6	1.8	1.8	0.8	1.6

Matrice risultato

Si codifichi una funzione in C che, ricevendo come parametri di ingresso una matrice per l'immagine di partenza, una matrice per l'immagine filtrata che deve essere prodotta, e qualsiasi altro parametro ritenuto strettamente necessario, costruisce la matrice dell'immagine filtrata come spiegato sopra.

Quesito 4.2 (4 punti). Con riferimento al quesito 4.1, **si codifichi un main,** completo di parte dichiarativa globale, che legge da un primo file i valori della matrice iniziale, richiama la funzione per il calcolo del filtro, quindi scrive su un secondo file la matrice risultante.

Il main riceve come **parametri sulla linea di comando** il nome dei due file di testo su cui deve operare.

Si assuma che il file con l'immagine iniziale memorizzi una matrice di dimensione MxN (M ed N costanti predefinite) e sia organizzato in modo che ogni riga memorizzi i valori di una riga della matrice separati da spazi. Lo stesso formato di memorizzazione può essere usato per la scrittura su file della matrice risultato.