Useful sets

$$\mathcal{F}_0 = \{\phi, \Omega\} \quad \mathcal{F}_1 = \{\{\omega_1, \omega_2, \omega_3\}, \cdots, \Omega\} \quad \mathcal{F}_2 = \{\{\omega_1\}, \cdots, \Omega\} \quad \mathcal{F}_3 \text{ with 64 items}$$

$$A = \{\omega_1, \omega_4\} \quad B = \{\omega_1, \omega_2, \omega_3\} \quad C = \{\omega_3, \omega_4, \omega_5\}$$

$$X_1(\omega_i) = \begin{cases} 1, & i = 1, 2, 3, 4, 5, 6 \\ X_2(\omega_i) = \begin{cases} 2, & i = 1, 4 \\ 4, & i = 2, 3, 5, 6 \end{cases}$$

$$X_4(\omega_i) = \begin{cases} 1, & i = 1, 2, 3 \\ 3, & i = 4, 5, 6 \end{cases} \quad X_5(\omega_i) = \begin{cases} i, & i = 1, 2, 3, 4, 5, 6 \end{cases}$$

1 Find Conditional Probability

Conidtional Probability

1.
$$P(A|\mathcal{F}_0) = P(A|\{\phi,\Omega\}) = P(\{\omega_1,\omega_4\}|\{\phi,\Omega\}) = \frac{1}{3}$$

2.
$$P(C|\mathcal{F}_1) = P(C|\{\{\omega_1, \omega_2, \omega_3\}, \cdots, \Omega\}) = P(\{\omega_3, \omega_4, \omega_5\}|\{\{\omega_1, \omega_2, \omega_3\}, \cdots, \Omega\}) = \begin{cases} \frac{1}{2}, & i = 1, 2, 3 \\ \frac{2}{3}, & i = 4, 5, 6 \end{cases}$$

3.
$$P(A|\mathcal{F}_2) = P(A|\{\{\omega_1\}, \dots, \Omega\}) = P(\{\omega_1, \omega_4\}|\{\{\omega_1\}, \dots, \Omega\}) = \begin{cases} 1, & i = 1, 4 \\ 0, & i = 2, 3, 5, 6 \end{cases}$$

Proof.
$$A \in \mathcal{F}_2 \Rightarrow P(A|\mathcal{F}_2) = \mathbb{1}_A$$

$$P(A|\mathcal{F}_2)(\omega) = \frac{P(A \cap G_\omega)}{P(G_\omega)} = 1$$

$$\forall k \notin A \text{ then } A \cap G_k = 0 \Rightarrow P(A \cap G_k) = 0 \Rightarrow P(A|\mathcal{F}_2)(k) = 0$$

$$Hence, \ P(A|\mathcal{F}) = \mathbb{1}_A$$

2 Find conditional expectation

Proof. $E(X_2|\mathcal{F}_1)$ is an expectation of X_4 on \mathcal{F}_1

$$E(X_{2}|\mathcal{F}_{1})(\omega_{1}) = E(X_{2}|\mathcal{F}_{1})(\omega_{4}) = 2$$

$$E(X_{2}|\mathcal{F}_{1})(\omega_{3}) = \dots = E(X_{2}|\mathcal{F}_{1})(\omega_{6}) = 4$$

$$E(X_{2}|\mathcal{F}_{1}) = 2 \times \frac{1}{3} + 4 \times \frac{2}{3} = \frac{10}{3}$$

Find $E(X_4)$

According to Law of Iterated Expectation (L.I.E), $E(X_4) = E[E(X_4|\mathcal{F}_1)]$. We know that X_4 is measurable in \mathcal{F}_1 , so $E(X_4|\mathcal{F}_1) = X_4 = 2$. So $E(X_4) = E[E(X_4|\mathcal{F}_1)] = E(2) = 2$

Conditional expectation

1.
$$E(X_5|\mathcal{F}_2) = \begin{cases} 1, & i = 1\\ \frac{13}{5}, & i = 2, 3\\ 4, & i = 4\\ \frac{16}{5}, & i = 5, 6 \end{cases}$$

2.
$$E(X_0|\mathcal{F}_2) = 1, i = 1, 2, 3, 4, 5, 6$$

3.
$$E(X_4|\mathcal{F}_0) = 2$$

4.
$$E(X_4|\mathcal{F}_2) = \begin{cases} 1, & i = 1\\ 1, & i = 2, 3\\ 3, & i = 4\\ 3, & i = 5, 6 \end{cases}$$

5.
$$E(X_4|\mathcal{F}_3) = \begin{cases} 1, & = 1, 2, 3\\ 3, & = 4, 5, 6 \end{cases}$$

6.
$$E(X_4|X_2=4) = E(X_4|X_2(\omega_i), i=2,3,5,6) = \frac{1\times 5 + 3\times 3}{8} = \frac{7}{4}$$

Varify $E(X_2X_4|\mathcal{F}_1) = X_4E(X_2|\mathcal{F}_1)$

X is \mathcal{G} measurable $\Rightarrow X(\omega) = \sum C_i \mathbb{1}_{G_i}$ Suppose X_4 is \mathcal{F} measurable, then $X_4 = \sum C_i \mathbb{1}_{G_i}$

$$\int_{G} X_{4}E(X_{2}|\mathcal{F}_{1})dP = \int_{G\cap B} E(X_{2}|\mathcal{F}_{1})dP = \int_{G\cap B} X_{2}dP = \int_{G} X_{4}X_{2}dP = \int_{G} E(X_{4}X_{2}|\mathcal{F}_{1})dP$$

Proof.
$$E(X|\mathcal{F}_0) = E(X)$$

If X is \mathcal{F}_0 measurable, that X must be \mathcal{G} measurable. According to Law of Iterated Expectation (L.I.E)

$$E(X|\mathcal{F}_0) = E[E(X|\mathcal{F}_0)|\mathcal{G}] = E[E(X|\mathcal{G})|\mathcal{F}_0] = E[E(X|\mathcal{G})] = E(X)$$