Chương 0

0.11. (a)
$$S_n = \arctan \frac{n}{n+1}$$
 (b) $S_{cos} = \frac{\cos \frac{(n+1)x}{2} \sin \frac{nx}{2}}{\sin \frac{x}{2}}$ (c) $\Rightarrow S_{sin} = \frac{\sin \frac{(n+1)x}{2} \sin \frac{nx}{2}}{\sin \frac{x}{2}}$

0.12.
$$S_n^{(m)} = \frac{1}{m} \left[\frac{1}{m!} - \frac{1}{(n+1)(n+2)...(n+m)} \right]$$

$$\textbf{0.13.} \ S_n^{(m)} = \frac{(n+1)[(n+1)^m - 1] - \sum_{k=2}^m C_{m+1}^k S_n^{(m+1-k)}}{m+1} (m \ge 2)$$

$$S_{n}^{(1)} = \frac{n(n+1)}{2}, \ S_{n}^{(2)} = \frac{n(n+1)(2n+1)}{6}, \ S_{n}^{(3)} = \left\lceil \frac{n(n+1)}{2} \right\rceil^{2}, \\ S_{n}^{(4)} = \frac{n(n+1)(2n+1)(3n^{2}+3n-1)}{30}$$

0.14.
$$S_n(a_1,d) = \frac{n}{a_1(a_1 + nd)}$$

0.15.
$$S_n^{(a)} = \frac{a}{81} (10^{n+1} - 9n - 10)$$
.

Chương 1

1.2. (a)
$$\frac{(n-1)n}{2}$$
, (b) $\frac{(n-2)(n-1)n}{6}$

- 1.3. (a) supA = $+\infty$ (không có maxA), infA=4 (minA = 4 tại x = 1)
 - (b) $\sup B = +\infty$ (không có maxB), $\inf B = 4$ (minB = 4 khi m = 2n)
 - (c) $\sup C = 1/4$ (max C = 1/4 tại m = 2n), $\inf C = -1/4$ (min C = -1/4 tại m = -2n)

1.4. (a)
$$D(f) = (-\infty,0] \cap (-2,+\infty) = (-2,0]$$
; (b) $D(f) = [-1,1)$;

$$\text{(c)} \ D(f) = [0, +\infty) \cap \left(\bigcup_{k \in N} \left[4k^2\pi^2, (2k+1)^2\pi^2 \right] \right) = \bigcup_{k \in N} \left[4k^2\pi^2, (2k+1)^2\pi^2 \right] (k \in \mathbf{N})$$

(d)
$$D(f) = \begin{cases} 0 \le |x| \le \sqrt{\frac{\pi}{2}} \\ \sqrt{-\frac{\pi}{2} + 2k\pi} \le |x| \le \sqrt{\frac{\pi}{2} + 2k\pi} \end{cases} (k \in \mathbb{N}^*)$$

1.5.
$$f(x) = x^2 - 3x + 2$$

Đồ thị của y=f(x) là parabol có phần lõm hướng lên trên, giao với trục hoành Ox tại 2 điểm {1;2}, giao với trục tung Oy tại 1 điểm {2}, trục đối xứng $x=\frac{3}{2}$, $y_{min}=f\left(\frac{3}{2}\right)=-\frac{1}{4}$.

Ánh xạ f: $\mathbf{R} \to \mathbf{R}$ không phải là đơn ánh và cũng không phải là toàn ánh.

$$D(f) = \mathbf{R}, R(f) = \left[-\frac{1}{4}, +\infty\right), f(\mathbf{R}) = R(f), f(0) = 2, f^{-1}(0) = \{1; 2\}, f([0,5]) = \left[-\frac{1}{4}, 12\right],$$

$$f^{-1}[0,5] = \left[\frac{3-\sqrt{21}}{2},1\right] \cup \left[2,\frac{3+\sqrt{21}}{2}\right].$$

1.6. (a)
$$y = f(x) = 2x + 1$$
, $y = f^{-1}(x) = (x - 1)/2$

(b)
$$y = f(x) = x^3$$
, $y = f^{-1}(x) = \sqrt[3]{x}$

1.7.
$$f(x) = g(x) + h(x) \text{ v\'oi}$$

$$\begin{cases} g(x) = \frac{f(x) + f(-x)}{2} \\ h(x) = \frac{f(x) - f(-x)}{2} \end{cases}$$

- **1.8.** Chu kỳ $k \in \mathbb{N}^*$, T = 1 là chu kỳ cơ sở.
- **1.9.** (a) Đồ thị của $y = f(x) = \sqrt{1 x^2} + \sqrt{x^2 1}$ là hai điểm $\{(-1,0); (1,0)\}$
 - (b) Đồ thị của y = f(x) = |x 2| + |x 1|

(c) Đồ thị của $y = f(x) = \lfloor x \rfloor$

(d) Đồ thị của $y = f(x) = \{x\}$

1.10. (a) $f[g(x)] = 9x^2 + 6x + 3$, $g[f(x)] = 3x^2 + 7$, (b) $f[g(x)] = \sin[g(x-2)]$, không tồn tại g[f(x)]

Chương 2

2.1. (a) -1/2, (b) 1/3, (c) 0, (d) a, (e)
$$\sqrt{2}$$
, (f) $\frac{1-b}{1-a}$, (g) $\frac{x}{3}$. **2.2.** (a) $\frac{1}{m+1}$, (b) $\frac{1}{m.m!}$. **2.3.** (a) $\frac{1}{2}$, (b) $\frac{1}{2}$,

(c)
$$\frac{1}{3}$$
, (d) $\frac{2}{3}$. **2.4.** (a) $\frac{\pi}{4}$, (b) $\frac{1}{a_1d}$, (c) $\frac{1+y}{1-xy}$. **2.5.** (a) $\frac{1-q^n}{(1-q)^2} - n\frac{q^n}{1-q}$, (b) $\frac{1}{(1-q)^2}$. **2.6.** (a) Không tồn

tại, (b) Không tồn tại, (c) Không tồn tại, (d) Không tồn tại, (e) 12, (f) Không tồn tại, (g) 1. 2.7. Không

$$\label{eq:continuous_problem} \dot{\text{t\'on}} \; t \dot{\hat{\text{o}}} \; t \; \dot{a} \; , \; (c) \; \frac{1}{2} \; . \; \textbf{2.9.} \; (a) \; \frac{P_{\scriptscriptstyle m-1}(a)}{Q_{\scriptscriptstyle n-1}(a)} \; \; \\ \dot{\text{v\'oi}} \; \begin{cases} P_{\scriptscriptstyle m-1}(x) = P_{\scriptscriptstyle m}(x)/(x-a) \\ Q_{\scriptscriptstyle n-1}(x) = Q_{\scriptscriptstyle n}(x)/(x-a) \end{cases} \; , \; \\ \dot{\text{(b)}} \; \lim_{x \to +\infty} f(x) = \begin{cases} 0 & \text{khi} \quad m < n \\ \frac{a_{\scriptscriptstyle n}}{b_{\scriptscriptstyle n}} & \text{khi} \quad m = n \\ \pm \infty & \text{khi} \quad m > n \end{cases} \; .$$

$$\boldsymbol{2.10.}\,(a)\frac{17}{9}\,,\,(b)\,\,2,\,(c)\,-\frac{1}{8}\,,\,(d)\,\frac{m}{n}\,,\,(e)\,\frac{n+1}{2}\,,\,(f)\,\frac{1}{n}\,,\,(g)\,\frac{(n-1)(n-2)}{2}\,a^{n-2}\,.\,\boldsymbol{2.11.}(a)\,\frac{1}{4}\,,\!(b)\,+\infty,\,(c)\,\,0,\,(d)\,\,2.$$

2.12. (a) -1, (b) 1, (c) 1, (d)
$$-\frac{1}{49}$$
, (e) $\frac{n}{m}$, (f) $\frac{1}{m} - \frac{1}{n}$. **2.13.** (a) $\frac{4}{3}$, (b) $\frac{a}{b}$, (c) cosa, (d) -sina, (e) 1, (f) $\frac{1}{2}$,

(g) 0, (h)
$$\frac{1}{2}$$
, (i) $a^a \ln \frac{a}{e}$, (k) 3a, (l) 1, (m) $\frac{a^2}{b^2}$. **2.14.** (a) $\frac{1}{4\sqrt{2}}$, (b) $\sqrt{2}$ khi $x \to +\infty$, $-\sqrt{2}$ khi $x \to -\infty$, (c) 1

khi x
$$\rightarrow +\infty$$
, -1 khi x $\rightarrow -\infty$. **2.15.** (a) -1, (b) -1, (c) 1, (d) e^{-2} , (e) e^{-8} , (f) e^{-2} , (g) $e^{-\frac{1}{2}}$, (h) e^{-1} , (i) e^{2} , (k) $e^{\frac{1}{4}}$,

(l) 3, (m)
$$e^{-\frac{9}{2}}$$
, (n) 1, (o) $e^{-\frac{1}{2}}$, (p) 1. **2.16.** (a) $a = 2$, (b) $a = \frac{9}{2}$, (c) $a = \frac{2}{3}$, (d) $a = -1$, (e) $\begin{cases} a = -8/3 \\ b = 3 \end{cases}$,

$$(f) \begin{cases} a = -1 \\ b = 4 \end{cases}. \ \textbf{2.17.} \ (a) \ a = 1, \ (b) \begin{cases} a = 1 \\ b = \pi/2 \end{cases}. \ \textbf{2.18.} \ f(2) = 1. \ \textbf{2.19.} \ (a) \ f(x) \ liên tục trên \ D(f) = \textbf{R} \setminus \{-2\}, \ gián \}$$

đoạn tại điểm x = -2, điểm này là điểm gián đoạn loại 1 và có bước nhảy bằng 2, (b) f(x) liên tục trên $D(f) = \mathbf{R} \setminus \{0;1\}$, gián đoạn tại các điểm x = 0, x = 1; trong đó điểm x = 0 là điểm gián đoạn loại 2, điểm x = 1 là điểm gián đoạn loại 1 và có bước nhảy bằng -4, (c) f(x) liên tục trên $D(f) = \mathbf{R} \setminus \{-1;3\}$, gián đoạn tại các điểm x = -1, x = 3; trong đó điểm x = -1 là điểm gián đoạn khử được và điểm x = 3 là điểm gián đoạn loại 2, (d) f(x) liên tục trên $D(f) = \mathbf{R} \setminus \{2\}$, gián đoạn tại điểm x = 2, điểm này là điểm gián đoạn loại 1 và có bước nhảy bằng 2, (e) f(x) liên tục tại $\forall x \neq 0$ và gián đoạn tại điểm x = 0, điểm này là điểm gián đoạn loại 2, (f) f(x) liên tục trong mọi khoảng f(x)0, gián đoạn loại 1 tại mọi điểm f(x)1, gián đoạn loại 1, (g) f(x)2, gián đoạn này đều là điểm gián đoạn loại 1 và có bước nhảy tương ứng bằng -1, trong đó điểm f(x)2, liên tục tại điểm gián đoạn loại 1 và tại điểm gián đoạn này, hàm số có bước nhảy bằng -1, f(x)3.