FICHE DE VALIDATION DU LOGICIEL MASCARET V7P0

Validation des noyaux de calcul fluvial permanent et transitoire

Canal rectangulaire avec un seuil défini au moyen d'un profil de crête

Numéro du cas test: 9

Auteur: Kamal EL KADI ABDERREZZAK

Description

Ce cas test a pour but de valider le noyau de calcul en régime fluvial permanent, et de comparer les résultats obtenus avec ceux du noyau transitoire après convergence, dans le cas d'un canal rectangulaire avec un seuil défini au moyen d'un profil de crête. Le profil en travers de la crête du seuil est défini au moyen de points (Y, Z). La loi de déversement est, pour la tranche $[Y, Y + \Delta Y]$:

$$\Delta Q = C\mu H(Y)\Delta Y \sqrt{2gH(Y)} \tag{1}$$

où H(Y) est la charge spécifique à l'abscisse latérale $Y, \Delta Y$ est un élément de largeur, μ est le coefficient de débit et C un coefficient défini comme dans le cas-test 8. Le débit s'écoulant au-dessus du seuil s'obtient en intégrant cette relation sur la crête du seuil.

Données géométriques

Le calcul est réalisé dans un canal de pente uniforme (0.0005) et de longueur $5000 \ m$, dont chaque section en travers est de forme rectangulaire de $100 \ m$ de large. La géométrie du canal est décrite par 2 profils en travers situés aux abscisses 0 et $5000 \ m$. Le seuil se situe à l'aval immédiat du point d'abscisse égal à $4000 \ m$.

Données physiques

Le coefficient de frottement est choisi de manière à ce que la hauteur normale soit 5 m. Ainsi, on trouve un coefficient de Strickler égal à $30.59~m^{1/3}.s^{-1}$.

- Conditions aux limites :
 - Cote imposée à l'aval égale à 12.5 m (correspondant à la hauteur normale)
 - Débit imposé à l'amont constant et égal à 1000 $m^3.s^{-1}$

Pour le noyau permanent, aucune condition initiale n'est nécessaire.

Pour le noyau transitoire, la condition initiale est la ligne d'eau obtenue à partir d'un calcul avec le noyau permanent sans présence d'ouvrage.

- Seuils:

- Coefficient de débit du seuil μ : 0.435

- Crête du seuil : 10.5 m

- Loi de seuil

Largeur $Y(m)$	Cote $Z(m)$
0	10.2
100	10.8

Données numériques

Le pas de maillage longitudinal est de 100 m.

Le pas de planimétrage est homogène dans le domaine et égal à $0.25\ m.$

Pour le calcul non permanent, le pas de temps utilisé est 10 s et le calcul a été mené pendant 1000 pas de temps.

Solution analytique

En imposant la hauteur normale à l'aval du canal (de géométrie uniforme), l'écoulement sera uniforme dans tout le canal jusqu'à la section aval de la singularité. Dans la section amont, nous devons retrouver le débit imposé et la cote amont résultant directement de la loi de la singularité, c'est-à-dire $Z_{amont} = 13.509 \ m$. Plus en amont, l'écoulement doit se rapprocher asymptotiquement du régime uniforme.

Résultats

Les figures suivantes comparent les lignes d'eau obtenues avec la version MASCARET V7P0 noyaux permanent et transitoire. Les écarts sont quasi - nuls. D'autre part, les cotes d'eau calculées à l'amont de la singularité sont $13.509 \ m$ pour le noyau permanent et $13.508 \ m$ pour le noyau transitoire, ce qui correspond à la valeur théorique. Enfin, en comparant les lignes d'eau calculées avec la ligne d'eau du régime uniforme, on remarque que, vers l'amont, l'écoulement tend bien à se rapprocher de l'écoulement uniforme.

FIGURE 1 – Profils en long de la ligne d'eau. Résultats obtenus avec un pas de discrétisation spatiale de $100\ m$

Conclusion

Le traitement d'un seuil défini au moyen d'un profil de crête est donc satisfaisant. D'autre part, il n'y a quasiment aucun écart entre les différentes versions et la solution analytique. Le noyaux de calcul permanent de la version MASCARET V7P0 peut donc être validé dans ce cas. Enfin, le noyau transitoire de cette version fournit des résultats identiques.