SVKM'S NMIMS MUKESH PATEL SCHOOL OF TECHNOLOGY MANAGEMENT & ENGINEERING

Programme: B. Tech (COMPUTER)

Year: III

Semester: V

03

03

Batch: 2014-2015/ 2015-2016

Academic Year: 2016-2017

Subject: Theoretical Computer Science

2.00 pm to 5.00

Duration ! 3 (hrs)

Date: 24 November 2016

Re-Examination

Instruction: Candidates should read carefully the instructions printed on the question paper and on the cover of the Answer Book, which is provided for their use.

NB:

- 1) Question No. **ONE** is compulsory.
- 2) Out of remaining questions, attempt any **FOUR** questions.
- 3) In all **FIVE** questions to be attempted.
- 4) All questions carry equal marks.
- 5) Answer to each new question to be started on a fresh page.
- 6) Figures in brackets on the right hand side indicate full marks.
- 7) Assume Suitable data if necessary.
- Q.1 a Match all items in Group 1 with correct options from those given in Group 2.

	(G1)		(G2)
1.	$QX \Sigma \to Q$	a.	DFA
2.			Multi town turing and in
	$Q \times \Sigma \to 2^n$	b.	Multi-tape turing machine
3.	$Q X \Gamma \rightarrow (Q X \Gamma X \{L,R,H\}$	C.	Turing Machine
4.	$Q X \Gamma^k \to (Q X \Gamma^k X (L,R,H)^k)$	d.	NFA
5.	$Q X (\sum U \{\lambda\}X \Gamma \rightarrow (Q, \Gamma)$	e.	Two -stack PDA
6.	$Q X (\sum U \{\lambda\}X \Gamma X \Gamma \rightarrow (Q, \Gamma, \Gamma)$	f.	PDA

- b Choose the correct option with justification.
 - Which one of the following is FALSE?
 - There is unique minimal DFA for every regular language.
 - ii. Every NFA can be converted to an equivalent PDA.
 - iii. Complement of every context-free language is recursive.
 - iv. Every nondeterministic PDA can be converted to an equivalent deterministic PDA.

		ii	The turing machine accepts	
		iii	 i. Regular language ii. Context free language iii. Context sensitive language iv. All of these Given an arbitrary non-deterministic finite automaton (NFA) with N states, the maximum number of states in an equivalent minimized DFA is at least. 	
	С		 i. N^2 ii. 2^N iii. 2N iv. N! Answer the following and justify in short.	06
		i	Find the highest type of the following grammar	
			$S \rightarrow aS/A$, $aS \rightarrow aa$, $A\rightarrow a$.	
		ii	Find the languages generated by the following grammar.	
			$S \rightarrow 0S1/0A1, A\rightarrow 1A/1.$	
		iii	Construct the grammar for the language	
			0^m1^n , where $m \ge 1$ and $n \ge 1$ and $m < n$.	
Q.2	а		Construct an FA accepting all strings in {0,1}* having even number of 0's.	06
	b		Apply the theorem of Pumping Lemma to prove that the following language L is regular.	06
			$L = \{ a^{2n} n \ge 1 \}$	
Q.3	а		For a left linear grammar given below, obtain an equivalent right linear grammar.	06
			S→S10 A1	
			A	
	b		Convert following grammar into CNF	06
			$S \to abAB$	
			A →bAB/€	
			. B →BAa/€	
Q.4	а		Consider the Mealy describe by transition table given by construct to Moore machine	06

which is equivalent Mealy machine by the transitional format.

	I/P =0	I/P =1		
Present State	Next State	Output	Next State	Output
А	C	0	В	0
В	А	1	D	0
С	В	1	Α	1
D	D	1	С	0

b Construct an RE from the given FA in Fig. by the algebraic method using Arden's 06 theorem

- Q.5 a Design the accepting string { WWR where W \in (a,b)* and WR is the reverse of W} by 06 the empty stack and by the final state.
 - b Design a PDA for the language L={ a^nb^{2n} , where $n\ge 1$ } by empty stack and by final 06 stack.
- Q.6 a Design the TM to accept the language $L=a^nb^n$, where n>=1.
 - b Prove that. multi-tape Turing machine has an equivalent single-tape turing machine 06

06

04

- Q.7 a Explain Kuroda Normal form.
 - b Convert the following NFA with €- moves to equivalent DFA.

