Baba And Fitness Revolution

Input file: standard input
Output file: standard output

Time limit: 2 seconds Memory limit: 64 megabytes

Majumdar has started a fitness revolution in his wing. He (and his friends) have sworn not to eat junk food and to exercise regularly. All that remains is coming up with a Training Plan for the same purpose. So he approaches BabaSevaDal for help regarding the Training Plan. Training involves jogging around IIIT. We have a directed graph representation of IIIT.

IIIT's graph representation contains N nodes for places and M edges for roads. A training plan should consist of good places only. A place u is good if there exists a path of the form

$$u, a_1, a_2, ..., a_k, u : a_i \neq a_j \ \forall \ i, j \ \&\& \ a_i \neq u \ \forall \ i \ \&\& \ k \geq 1$$

Now while Baba comes up with a plan, he would like you to evaluate the product of indices of all *good* nodes.

Input

First line contains $T(1 \le T \le 10^5)$, the number of test cases. For every test case the first line contains 3 integers $N(1 \le N \le 10^5)$, $M(1 \le M \le 2 \times 10^5)$ and $MOD(1 \le MOD \le 10^{18})$. The next M lines contain 2 integers each X and Y ($X \ne Y$), denoting that there is a directed edge between X and Y.

Output

For every test case output a single integer in a new line, the value of the product modulo MOD. If there is no good node in the graph, output -1.

Example

standard input	standard output
2	12
4 4 32	3
2 1	
3 4	
4 1	
1 3	
7 14 29	
6 3	
2 7	
4 6	
3 5	
3 1	
1 6	
6 7	
4 5	
1 3	
2 4	
6 1	
4 3	
5 1	
1 5	

Note

 $1 \leq \text{Sum of } N \text{ over all test cases} \leq 5 \times 10^5$

$1 \leq \text{Sum of } M \text{ over all test cases} \leq 10^6$