SECTION 26 56 00 EXTERIOR LIGHTING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. Exterior luminaires with lamps and ballasts.
 - 2. Luminaire-mounted photoelectric relays.
 - 3. Poles and accessories.
 - 4. Luminaire lowering devices.

B. Related Sections:

- 1. Division 26 Section "Interior Lighting" for exterior luminaires normally mounted on exterior surfaces of buildings.
- 2. Division 26 Section "Basic Electrical Requirements" applies to this section with the additions and modifications specified herein.

1.3 DEFINITIONS

- A. CCT: Correlated color temperature.
- B. CRI: Color-rendering index.
- C. HID: High-intensity discharge.
- D. LER: Luminaire efficacy rating.
- E. Luminaire: Complete lighting fixture, including ballast housing if provided.
- F. Pole: Luminaire support structure, including tower used for large area illumination.
- G. Standard: Same definition as "Pole" above.

1.4 STRUCTURAL ANALYSIS CRITERIA FOR POLE SELECTION

A. Dead Load: Weight of luminaire and its horizontal and vertical supports, lowering devices, and supporting structure, applied as stated in AASHTO LTS-4-M.

- B. Live Load: Single load of 500 lbf (2224 N), distributed as stated in AASHTO LTS-4-M.
- C. Ice Load: Load of 3 lbf/sq. ft. (145 Pa), applied as stated in AASHTO LTS-4-M Ice Load Map.
- D. Wind Load: Pressure of wind on pole and luminaire and banner arms, calculated and applied as stated in AASHTO LTS-4-M.
 - 1. Basic wind speed for calculating wind load for poles exceeding 49.2 feet (15 m) in height is 100 mph (45 m/s).

a. Wind Importance Factor: 1.0.

b. Minimum Design Life: 50 years.

c. Velocity Conversion Factors: 1.0.

2. Basic wind speed for calculating wind load for poles 50 feet (15 m) high or less is 100 mph (45 m/s).

a. Wind Importance Factor: 1.0

- b. Minimum Design Life: 25 years.
- c. Velocity Conversion Factors: 1.0.

1.5 ACTION SUBMITTALS

- A. Product Data: For each luminaire, pole, and support component, arranged in order of lighting unit designation. Include data on features, accessories, finishes, and the following:
 - 1. Physical description of luminaire, including materials, dimensions, effective projected area, and verification of indicated parameters.
 - 2. Details of attaching luminaires and accessories.
 - Details of installation and construction.
 - 4. Luminaire materials.
 - 5. Photometric data based on laboratory tests of each luminaire type, complete with indicated lamps, ballasts, and accessories.
 - a. Testing Agency Certified Data: For indicated luminaires, photometric data shall be certified by a qualified independent testing agency. Photometric data for remaining luminaires shall be certified by manufacturer.
 - b. Manufacturer Certified Data: Photometric data shall be certified by manufacturer's laboratory with a current accreditation under the National Voluntary Laboratory Accreditation Program for Energy Efficient Lighting Products.
 - 6. Photoelectric relays.
 - 7. Ballasts, including energy-efficiency data.
 - 8. Lamps, including life, output, CCT, CRI, lumens, and energy-efficiency data.
 - 9. Materials, dimensions, and finishes of poles.
 - 10. Means of attaching luminaires to supports, and indication that attachment is suitable for components involved.
 - 11. Anchor bolts for poles.
 - 12. Manufactured pole foundations.
- B. Shop Drawings: Include plans, elevations, sections, details, and attachments to other work.

- 1. Detail equipment assemblies and indicate dimensions, weights, loads, required clearances, method of field assembly, components, and location and size of each field connection.
- 2. Anchor-bolt templates keyed to specific poles and certified by manufacturer.
- 3. Design calculations, certified by a qualified professional engineer, indicating strength of screw foundations and soil conditions on which they are based.
- 4. Wiring Diagrams: For power, signal, and control wiring.
- C. Samples: For products designated for sample submission in the Exterior Lighting Device Schedule. Each Sample shall include lamps and ballasts.

1.6 INFORMATIONAL SUBMITTALS

- A. Pole and Support Component Certificates: Signed by manufacturers of poles, certifying that products are designed for indicated load requirements in AASHTO LTS-4-M and that load imposed by luminaire and attachments has been included in design. The certification shall be based on design calculations by a professional engineer.
- B. Qualification Data: For qualified agencies providing photometric data for lighting fixtures.
- C. Field quality-control reports.
- D. Warranty: Sample of special warranty.

1.7 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For luminaires and poles to include in emergency, operation, and maintenance manuals.

1.8 MAINTENANCE MATERIAL SUBMITTALS

- A. Furnish extra materials that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.
 - 1. Lamps: One for every 100 of each type and rating installed. Furnish at least one of each type.
 - 2. Glass and Plastic Lenses, Covers, and Other Optical Parts: One for every 100 of each type and rating installed. Furnish at least one of each type.
 - 3. Ballasts: One for every 100 of each type and rating installed. Furnish at least one of each type.
 - 4. Globes and Guards: One for every 20 of each type and rating installed. Furnish at least one of each type.

1.9 QUALITY ASSURANCE

A. Luminaire Photometric Data Testing Laboratory Qualifications: Provided by manufacturers' laboratories that are accredited under the National Volunteer Laboratory Accreditation Program for Energy Efficient Lighting Products.

- B. Luminaire Photometric Data Testing Laboratory Qualifications: Provided by an independent agency, with the experience and capability to conduct the testing indicated, that is an NRTL as defined by OSHA in 29 CFR 1910.
- C. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
- D. Comply with IEEE C2, "National Electrical Safety Code."
- E. Comply with NFPA 70.

1.10 DELIVERY, STORAGE, AND HANDLING

- A. Package aluminum poles for shipping according to ASTM B 660.
- B. Store poles on decay-resistant-treated skids at least 12 inches (300 mm) above grade and vegetation. Support poles to prevent distortion and arrange to provide free air circulation.
- C. Retain factory-applied pole wrappings on fiberglass and laminated wood poles until right before pole installation. Handle poles with web fabric straps.
- D. Retain factory-applied pole wrappings on metal poles until right before pole installation. For poles with nonmetallic finishes, handle with web fabric straps.

1.11 WARRANTY

- A. Special Warranty: Manufacturer's standard form in which manufacturer agrees to repair or replace products that fail in materials or workmanship; that corrode; or that fade, stain, perforate, erode, or chalk due to effects of weather or solar radiation within specified warranty period. Manufacturer may exclude lightning damage, hail damage, vandalism, abuse, or unauthorized repairs or alterations from special warranty coverage.
 - 1. Warranty Period for Luminaires: Five years from date of Substantial Completion.
 - 2. Warranty Period for Metal Corrosion: Five years from date of Substantial Completion.
 - 3. Warranty Period for Color Retention: Five years from date of Substantial Completion.
 - 4. Warranty Period for Poles: Repair or replace lighting poles and standards that fail in finish, materials, and workmanship within manufacturer's standard warranty period, but not less than three years from date of Substantial Completion.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

A. Products: Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to, product(s) indicated on Drawings.

2.2 GENERAL REQUIREMENTS FOR LUMINAIRES

A. Luminaires shall comply with UL 1598 and be listed and labeled for installation in wet locations by an NRTL acceptable to authorities having jurisdiction.

- LER Tests Incandescent Fixtures: Where LER is specified, test according to NEMA LE 5A.
- 2. LER Tests Fluorescent Fixtures: Where LER is specified, test according to NEMA LE 5 and NEMA LE 5A as applicable.
- 3. LER Tests HID Fixtures: Where LER is specified, test according to NEMA LE 5B.
- B. Lateral Light Distribution Patterns: Comply with IESNA RP-8 for parameters of lateral light distribution patterns indicated for luminaires.
- C. Metal Parts: Free of burrs and sharp corners and edges.
- D. Sheet Metal Components: Corrosion-resistant aluminum unless otherwise indicated. Form and support to prevent warping and sagging.
- E. Housings: Rigidly formed, weather- and light-tight enclosures that will not warp, sag, or deform in use. Provide filter/breather for enclosed luminaires.
- F. Doors, Frames, and Other Internal Access: Smooth operating, free of light leakage under operating conditions, and designed to permit relamping without use of tools. Designed to prevent doors, frames, lenses, diffusers, and other components from falling accidentally during relamping and when secured in operating position. Doors shall be removable for cleaning or replacing lenses. Designed to disconnect ballast when door opens.
- G. Exposed Hardware Material: Stainless steel.
- H. Plastic Parts: High resistance to yellowing and other changes due to aging, exposure to heat, and UV radiation.
- I. Light Shields: Metal baffles, factory installed and field adjustable, arranged to block light distribution to indicated portion of normally illuminated area or field.
- J. Reflecting surfaces shall have minimum reflectance as follows unless otherwise indicated:
 - 1. White Surfaces: 85 percent.
 - 2. Specular Surfaces: 83 percent.
 - 3. Diffusing Specular Surfaces: 75 percent.
- K. Lenses and Refractors Gaskets: Use heat- and aging-resistant resilient gaskets to seal and cushion lenses and refractors in luminaire doors.
- L. Luminaire Finish: Manufacturer's standard paint applied to factory-assembled and -tested luminaire before shipping. Where indicated, match finish process and color of pole or support materials.
- M. Factory-Applied Finish for Steel Luminaires: Comply with NAAMM's "Metal Finishes Manual for Architectural and Metal Products" for recommendations for applying and designating finishes.
 - Surface Preparation: Clean surfaces to comply with SSPC-SP 1, "Solvent Cleaning," to remove dirt, oil, grease, and other contaminants that could impair paint bond. Grind welds and polish surfaces to a smooth, even finish. Remove mill scale and rust, if present, from uncoated steel, complying with SSPC-SP 5/NACE No. 1, "White Metal Blast Cleaning," or SSPC-SP 8, "Pickling."
 - 2. Exterior Surfaces: Manufacturer's standard finish consisting of one or more coats of primer and two finish coats of high-gloss, high-build polyurethane enamel.

- a. Color: As selected from manufacturer's standard catalog of colors.
- b. Color: Match Architect's sample of manufacturer's standard color.
- c. Color: As selected by Architect from manufacturer's full range.
- N. Factory-Applied Finish for Aluminum Luminaires: Comply with NAAMM's "Metal Finishes Manual for Architectural and Metal Products" for recommendations for applying and designating finishes.
 - 1. Finish designations prefixed by AA comply with the system established by the Aluminum Association for designating aluminum finishes.
 - 2. Natural Satin Finish: Provide fine, directional, medium satin polish (AA-M32); buff complying with AA-M20; and seal aluminum surfaces with clear, hard-coat wax.
 - 3. Class I, Clear Anodic Finish: AA-M32C22A41 (Mechanical Finish: medium satin; Chemical Finish: etched, medium matte; Anodic Coating: Architectural Class I, clear coating 0.018 mm or thicker) complying with AAMA 611.
 - 4. Class I, Color Anodic Finish: AA-M32C22A42/A44 (Mechanical Finish: medium satin; Chemical Finish: etched, medium matte; Anodic Coating: Architectural Class I, integrally colored or electrolytically deposited color coating 0.018 mm or thicker) complying with AAMA 611.
 - a. Color: As selected by Architect from manufacturer's full range.
- O. Factory-Applied Labels: Comply with UL 1598. Include recommended lamps and ballasts. Labels shall be located where they will be readily visible to service personnel, but not seen from normal viewing angles when lamps are in place.
 - 1. Label shall include the following lamp and ballast characteristics:
 - a. "USES ONLY" and include specific lamp type.
 - b. Lamp diameter code (T-4, T-5, T-8, T-12), tube configuration (twin, quad, triple), base type, and nominal wattage for fluorescent and compact fluorescent luminaires.
 - Lamp type, wattage, bulb type (ED17, BD56, etc.) and coating (clear or coated) for HID luminaires.
 - d. Start type (preheat, rapid start, instant start) for fluorescent and compact fluorescent luminaires.
 - e. ANSI ballast type (M98, M57, etc.) for HID luminaires.
 - f. CCT and CRI for all luminaires.

2.3 LUMINAIRE-MOUNTED PHOTOELECTRIC RELAYS

- A. Comply with UL 773 or UL 773A.
- B. Contact Relays: Factory mounted, single throw, designed to fail in the on position, and factory set to turn light unit on at 1.5 to 3 fc (16 to 32 lx) and off at 4.5 to 10 fc (48 to 108 lx) with 15-second minimum time delay. Relay shall have directional lens in front of photocell to prevent artificial light sources from causing false turnoff.
 - 1. Relay with locking-type receptacle shall comply with ANSI C136.10.
 - 2. Adjustable window slide for adjusting on-off set points.

2.4 FLUORESCENT BALLASTS AND LAMPS

- A. Ballasts for Low-Temperature Environments:
 - 1. Temperatures 0 Deg F (Minus 17 Deg C) and Higher: Electronic type rated for 0 deg F (minus 17 deg C) starting and operating temperature with indicated lamp types.
 - 2. Temperatures Minus 20 Deg F (Minus 29 Deg C) and Higher: Electromagnetic type designed for use with indicated lamp types.

B. Ballast Characteristics:

- 1. Power Factor: 90 percent, minimum.
- 2. Sound Rating: Class A.
- 3. Total Harmonic Distortion Rating: Less than 10 percent.
- 4. Electromagnetic Ballasts: Comply with ANSI C82.1, energy-saving, high power factor, Class P, automatic-reset thermal protection.
- 5. Case Temperature for Compact Lamp Ballasts: 65 deg C, maximum.
- 6. Transient-Voltage Protection: Comply with IEEE C62.41.1 and IEEE C62.41.2, Category A or better.
- C. Low-Temperature Lamp Capability: Rated for reliable starting and operation with ballast provided at temperatures 0 deg F (minus 18 deg C) and higher.

2.5 BALLASTS FOR HID LAMPS

- A. Comply with ANSI C82.4 and UL 1029 and capable of open-circuit operation without reduction of average lamp life. Include the following features unless otherwise indicated:
 - 1. Ballast Circuit: Constant-wattage autotransformer or regulating high-power-factor type.
 - 2. Minimum Starting Temperature: Minus 22 deg F (Minus 30 deg C).
 - 3. Normal Ambient Operating Temperature: 104 deg F (40 deg C).
 - 4. Ballast Fuses: One in each ungrounded power supply conductor. Voltage and current ratings as recommended by ballast manufacturer.
- B. Auxiliary, Instant-On, Quartz System: Factory-installed feature automatically switches quartz lamp on when fixture is initially energized and when momentary power outages occur. System automatically turns quartz lamp off when HID lamp reaches approximately 60 percent of light output.
- C. High-Pressure Sodium Ballasts: Electromagnetic type with solid-state igniter/starter and capable of open-circuit operation without reduction of average lamp life. Igniter/starter shall have an average life in pulsing mode of 10,000 hours at an igniter/starter-case temperature of 90 deg C.
 - 1. Instant-Restrike Device: Integral with ballast, or solid-state potted module, factory installed within fixture and compatible with lamps, ballasts, and mogul sockets up to 150 W.
 - a. Restrike Range: 105- to 130-V ac.
 - b. Maximum Voltage: 250-V peak or 150-V ac rms.
 - 2. Minimum Starting Temperature: Minus 40 deg F (Minus 40 deg C).

2.6 HID LAMPS

- A. High-Pressure Sodium Lamps: ANSI C78.42, CRI 21 (minimum), CCT color temperature 1900 K, and average rated life of 24,000 hours, minimum.
 - 1. Dual-Arc Tube Lamp: Arranged so only one of two arc tubes is lighted at one time and, when power is restored after an outage, the cooler arc tube, with lower internal pressure, lights instantly, providing an immediate 8 to 15 percent of normal light output.
- B. Low-Pressure Sodium Lamps: ANSI C78.43.
- C. Metal-Halide Lamps: ANSI C78.43, with minimum CRI 65, and CCT color temperature 4000 K.
- D. Pulse-Start, Metal-Halide Lamps: Minimum CRI 65, and CCT color temperature 4000 K.
- E. Ceramic, Pulse-Start, Metal-Halide Lamps: Minimum CRI 80, and CCT color temperature 4000 K.

2.7 GENERAL REQUIREMENTS FOR POLES AND SUPPORT COMPONENTS

- A. Structural Characteristics: Comply with AASHTO LTS-4-M.
 - 1. Wind-Load Strength of Poles: Adequate at indicated heights above grade without failure, permanent deflection, or whipping in steady winds of speed indicated in "Structural Analysis Criteria for Pole Selection" Article.
 - 2. Strength Analysis: For each pole, multiply the actual equivalent projected area of luminaires and brackets by a factor of 1.1 to obtain the equivalent projected area to be used in pole selection strength analysis.
- B. Luminaire Attachment Provisions: Comply with luminaire manufacturers' mounting requirements. Use stainless-steel fasteners and mounting bolts unless otherwise indicated.
- C. Mountings, Fasteners, and Appurtenances: Corrosion-resistant items compatible with support components.
 - 1. Materials: Shall not cause galvanic action at contact points.
 - 2. Anchor Bolts, Leveling Nuts, Bolt Caps, and Washers: Hot-dip galvanized after fabrication unless otherwise indicated.
 - 3. Anchor-Bolt Template: Plywood or steel.
- D. Handhole: Oval-shaped, with minimum clear opening of 2-1/2 by 5 inches (65 by 130 mm), with cover secured by stainless-steel captive screws.
- E. Concrete Pole Foundations: Cast in place, with anchor bolts to match pole-base flange. Concrete, reinforcement, and formwork are specified in Division 03 Section "Cast-in-Place Concrete."
- F. Power-Installed Screw Foundations: Factory fabricated by pole manufacturer, with structural steel complying with ASTM A 36/A 36M and hot-dip galvanized according to ASTM A 123/A 123M; and with top-plate and mounting bolts to match pole base flange and strength required to support pole, luminaire, and accessories.
- G. Breakaway Supports: Frangible breakaway supports, tested by an independent testing agency acceptable to authorities having jurisdiction, according to AASHTO LTS-4-M.

2.8 STEEL POLES

- A. Poles: Comply with ASTM A 500, Grade B, carbon steel with a minimum yield of 46,000 psig (317 MPa); one-piece construction up to 40 feet (12 m) in height with access handhole in pole wall.
 - 1. Shape: Round, straight or Square, straight as indicated on plans.
 - 2. Mounting Provisions: Butt flange for bolted mounting on foundation or breakaway support.
- B. Steel Mast Arms: Single-arm type, continuously welded to pole attachment plate. Material and finish same as pole.
- C. Brackets for Luminaires: Detachable, cantilever, without underbrace.
 - 1. Adapter fitting welded to pole, allowing the bracket to be bolted to the pole mounted adapter, then bolted together with galvanized-steel bolts.
 - 2. Cross Section: Tapered oval, with straight tubular end section to accommodate luminaire.
 - 3. Match pole material and finish.
- D. Pole-Top Tenons: Fabricated to support luminaire or luminaires and brackets indicated, and securely fastened to pole top.
- E. Steps: Fixed steel, with nonslip treads, positioned for 15-inch (381-mm) vertical spacing, alternating on opposite sides of pole; first step at elevation 10 feet (3 m) above finished grade.
- F. Intermediate Handhole and Cable Support: Weathertight, 3-by-5-inch (76-by-127-mm) handhole located at midpoint of pole with cover for access to internal welded attachment lug for electric cable support grip.
- G. Grounding and Bonding Lugs: Welded 1/2-inch (13-mm) threaded lug, complying with requirements in Division 26 Section "Grounding and Bonding for Electrical Systems," listed for attaching grounding and bonding conductors of type and size listed in that Section, and accessible through handhole.
- H. Cable Support Grip: Wire-mesh type with rotating attachment eye, sized for diameter of cable and rated for a minimum load equal to weight of supported cable times a 5.0 safety factor.
- I. Platform for Lamp and Ballast Servicing: Factory fabricated of steel with finish matching that of pole.
- J. Prime-Coat Finish: Manufacturer's standard prime-coat finish ready for field painting.
- K. Galvanized Finish: After fabrication, hot-dip galvanize complying with ASTM A 123/A 123M.
- L. Factory-Painted Finish: Comply with NAAMM's "Metal Finishes Manual for Architectural and Metal Products" for recommendations for applying and designating finishes.
 - 1. Surface Preparation: Clean surfaces to comply with SSPC-SP 1, "Solvent Cleaning," to remove dirt, oil, grease, and other contaminants that could impair paint bond. Grind welds and polish surfaces to a smooth, even finish. Remove mill scale and rust, if present, from uncoated steel, complying with SSPC-SP 5/NACE No. 1, "White Metal Blast Cleaning," or with SSPC-SP 8, "Pickling."

- 2. Interior Surfaces of Pole: One coat of bituminous paint, or otherwise treat for equal corrosion protection.
- 3. Exterior Surfaces: Manufacturer's standard finish consisting of one or more coats of primer and two finish coats of high-gloss, high-build polyurethane enamel.
 - a. Color: As selected by Architect from manufacturer's full range.

2.9 ALUMINUM POLES

- A. Poles: Seamless, extruded structural tube complying with ASTM B 429/B 429M, Alloy 6063-T6 with access handhole in pole wall.
- B. Poles: ASTM B 209 (ASTM B 209M), 5052-H34 marine sheet alloy with access handhole in pole wall.
 - 1. Shape: Round, straight, or Square, straight as indicated on plans.
 - 2. Mounting Provisions: Butt flange for bolted mounting on foundation or breakaway support.
- C. Pole-Top Tenons: Fabricated to support luminaire or luminaires and brackets indicated, and securely fastened to pole top.
- D. Grounding and Bonding Lugs: Welded 1/2-inch (13-mm) threaded lug, complying with requirements in Division 26 Section "Grounding and Bonding for Electrical Systems," listed for attaching grounding and bonding conductors of type and size listed in that Section, and accessible through handhole.
- E. Brackets for Luminaires: Detachable, with pole and adapter fittings of cast aluminum. Adapter fitting welded to pole and bracket, then bolted together with stainless-steel bolts.
 - 1. Tapered oval cross section, with straight tubular end section to accommodate luminaire.
 - 2. Finish: Same as luminaire.
- F. Prime-Coat Finish: Manufacturer's standard prime-coat finish ready for field painting.
- G. Aluminum Finish: Comply with NAAMM's "Metal Finishes Manual for Architectural and Metal Products" for recommendations for applying and designating finishes.
 - 1. Finish designations prefixed by AA comply with the system established by the Aluminum Association for designating aluminum finishes.
 - 2. Natural Satin Finish: Provide fine, directional, medium satin polish (AA-M32); buff complying with AA-M20; and seal aluminum surfaces with clear, hard-coat wax.
 - 3. Class I, Clear Anodic Finish: AA-M32C22A41 (Mechanical Finish: medium satin; Chemical Finish: etched, medium matte; Anodic Coating: Architectural Class I, clear coating 0.018 mm or thicker) complying with AAMA 611.
 - 4. Class I, Color Anodic Finish: AA-M32C22A42/A44 (Mechanical Finish: medium satin; Chemical Finish: etched, medium matte; Anodic Coating: Architectural Class I, integrally colored or electrolytically deposited color coating 0.018 mm or thicker) complying with AAMA 611.
 - a. Color: As selected by Architect from manufacturer's full range.

2.10 PRESTRESSED CONCRETE POLES

- A. Poles: Manufactured by centrifugal spin-casting process.
 - 1. Shape: Round, tapered.
 - 2. Mounting Provisions: Steel butt flange for bolted mounting to foundation or breakaway support.
 - 3. Finishing: Capped at top and plugged at bottom. Seat each steel reinforcing strand with epoxy adhesive.
 - 4. Grounding: Continuous copper ground wire cast into pole. Terminate at top of pole.
- B. Cure with wet steam and age for a minimum of 15 days before installation.
- C. Fabricate poles with a hard, nonporous surface that is resistant to water, frost, and road and soil chemicals and that has a maximum water-absorption rate of 3 percent.
- D. Cast aluminum nameplate into pole wall at approximately 5 feet (1.5 m) above ground line, listing name of manufacturer, Project identifier, overall height, and approximate weight.
- E. Pole Brackets: Comply with ANSI C136.13.
- F. Finish Color: Provided by color material complying with ASTM C 979, uniformly impregnated throughout the pole concrete. Color material shall provide a uniform, stable, permanent color and be as follows:
 - 1. Inert. and carbon free.
 - 2. Unaffected by environmental conditions and contaminants including, but not limited to, UV solar radiation, salts, and alkalis.
- G. Finish Texture: Standard form.

2.11 POLE ACCESSORIES

- A. Duplex Receptacle: 120 V, 20 A in a weatherproof assembly complying with Division 26 Section "Wiring Devices" for ground-fault circuit-interrupter type.
 - 1. Recessed, 18 inches (300 mm) above finished grade.
 - 2. Nonmetallic polycarbonate plastic or reinforced fiberglass, weatherproof in use, cover, that when mounted results in NEMA 250, Type 3R enclosure.
 - 3. With cord opening.
 - 4. With lockable hasp and latch that complies with OSHA lockout and tag-out requirements.
- B. Minimum 1800-W transformer, protected by replaceable fuses, mounted behind access cover.
- C. Base Covers: Manufacturers' standard metal units, arranged to cover pole's mounting bolts and nuts. Finish same as pole.
- D. Transformer Type Base: Same material and color as pole. Coordinate dimensions to suit pole's base flange and accept indicated accessories.

2.12 LOWERING SYSTEM FOR LUMINAIRES

- A. Arrange system to lower luminaire assembly to a servicing position within 36 inches (900 mm) of finished grade in winds up to 30 mph (49 km/h) and to provide for manual plug connection to electrical power in the lowered position for testing.
- B. Coordinate with luminaire and pole manufacturers for assembly details, wind-load and vibration analysis, and compatibility of materials for electrolysis-free attachment and connection for luminaire mounting assembly, lowering device, lowering cable, and portable winch.
- C. Structural and Mechanical Design: Use a minimum safety factor of 5.0 for static and dynamic loads of load-bearing components, including cable.
- D. Luminaire Mounting and Disconnect Arrangement: Multiple ring-mounted luminaires, arranged for lowering and rising as a group.
 - 1. Electrical cable for normal operating power to luminaires manually disconnects inside pole base, using weatherproof multipin connector, and shall be arranged to move within the pole during lowering and rising of luminaire assembly.
 - 2. Electrical cable for normal operating power to luminaires automatically disconnects at a weatherproof multipin connector within the pole-top lowering head at the beginning of the lowering cycle and reconnects when luminaire or luminaire assembly is raised to the operating position.
- E. Lowering Device: Weatherproof, cast-aluminum housing and multiple mechanical latches. Moving parts of latching assembly shall be located in the portion of the unit that is lowered to the servicing position. Positive latching in the operating position shall be indicated to the operator at the base of the pole by a clear visual signal, or by other means acceptable to Owner or authorities having jurisdiction.
- F. Lowering Cable: stainless-steel aircraft cable.
- G. Portable Winch: Manual type. One required.
 - 1. Winch Power Connection: Cord and plug.
 - 2. Winch Raise-Lower Control: Remote-control station with 15 feet (5 m) of cable.
- H. Winch Transformer: Portable, totally enclosed, encapsulated, single-phase, dry type. Primary rated at lighting-circuit voltage; secondary rated at 120 V. Permanent, primary and secondary, twist-locking plug connectors on pigtails shall match pole-base power outlet and winch plug.

PART 3 - EXECUTION

3.1 LUMINAIRE INSTALLATION

- A. Install lamps in each luminaire.
- B. Fasten luminaire to indicated structural supports.
 - 1. Use fastening methods and materials selected to resist seismic forces defined for the application and approved by manufacturer.

C. Adjust luminaires that require field adjustment or aiming. Include adjustment of photoelectric device to prevent false operation of relay by artificial light sources, favoring a north orientation.

3.2 POLE INSTALLATION

- A. Alignment: Align pole foundations and poles for optimum directional alignment of luminaires and their mounting provisions on the pole.
- B. Clearances: Maintain the following minimum horizontal distances of poles from surface and underground features unless otherwise indicated on Drawings:
 - 1. Fire Hydrants and Storm Drainage Piping: 60 inches (1520 mm).
 - 2. Water, Gas, Electric, Communication, and Sewer Lines: 10 feet (3 m).
 - 3. Trees: 15 feet (5 m) from tree trunk.
- C. Concrete Pole Foundations: Set anchor bolts according to anchor-bolt templates furnished by pole manufacturer. Concrete materials, installation, and finishing requirements are specified in Division 03 Section "Cast-in-Place Concrete."
- D. Foundation-Mounted Poles: Mount pole with leveling nuts, and tighten top nuts to torque level recommended by pole manufacturer.
 - 1. Use anchor bolts and nuts selected to resist seismic forces defined for the application and approved by manufacturer.
 - 2. Grout void between pole base and foundation. Use nonshrink or expanding concrete grout firmly packed to fill space.
 - 3. Install base covers unless otherwise indicated.
 - 4. Use a short piece of 1/2-inch- (13-mm-) diameter pipe to make a drain hole through grout. Arrange to drain condensation from interior of pole.
- E. Embedded Poles with Tamped Earth Backfill: Set poles to depth below finished grade indicated on Drawings, but not less than one-sixth of pole height.
 - 1. Dig holes large enough to permit use of tampers in the full depth of hole.
 - 2. Backfill in 6-inch (150-mm) layers and thoroughly tamp each layer so compaction of backfill is equal to or greater than that of undisturbed earth.
- F. Embedded Poles with Concrete Backfill: Set poles in augered holes to depth below finished grade indicated on Drawings, but not less than one-sixth of pole height.
 - 1. Make holes 6 inches (150 mm) in diameter larger than pole diameter.
 - 2. Fill augered hole around pole with air-entrained concrete having a minimum compressive strength of 3000 psi (20 MPa) at 28 days, and finish in a dome above finished grade.
 - 3. Use a short piece of 1/2-inch- (13-mm-) diameter pipe to make a drain hole through concrete dome. Arrange to drain condensation from interior of pole.
 - 4. Cure concrete a minimum of 72 hours before performing work on pole.
- G. Poles and Pole Foundations Set in Concrete Paved Areas: Install poles with minimum of 6-inch- (150-mm-) wide, unpaved gap between the pole or pole foundation and the edge of adjacent concrete slab. Fill unpaved ring with pea gravel to a level 1 inch (25 mm) below top of concrete slab.
- H. Raise and set poles using web fabric slings (not chain or cable).

3.3 BOLLARD LUMINAIRE INSTALLATION

- A. Align units for optimum directional alignment of light distribution.
- B. Install on concrete base with top 4 inches (100 mm) above finished grade or surface at bollard location. Cast conduit into base, and shape base to match shape of bollard base. Finish by troweling and rubbing smooth. Concrete materials, installation, and finishing are specified in Division 03 Section "Cast-in-Place Concrete."

3.4 INSTALLATION OF INDIVIDUAL GROUND-MOUNTING LUMINAIRES

A. Install on concrete base with top 4 inches (100 mm) above finished grade or surface at luminaire location. Cast conduit into base, and finish by troweling and rubbing smooth. Concrete materials, installation, and finishing are specified in Division 03 Section "Cast-in-Place Concrete."

3.5 CORROSION PREVENTION

- A. Aluminum: Do not use in contact with earth or concrete. When in direct contact with a dissimilar metal, protect aluminum by insulating fittings or treatment.
- B. Steel Conduits: Comply with Division 26 Section "Raceway and Boxes for Electrical Systems." In concrete foundations, wrap conduit with 0.010-inch- (0.254-mm-) thick, pipe-wrapping plastic tape applied with a 50 percent overlap.

3.6 GROUNDING

- A. Ground metal poles and support structures according to Division 26 Section "Grounding and Bonding for Electrical Systems."
 - 1. Install grounding electrode for each pole unless otherwise indicated.
 - 2. Install grounding conductor pigtail in the base for connecting luminaire to grounding system.
- B. Ground nonmetallic poles and support structures according to Division 26 Section "Grounding and Bonding for Electrical Systems."
 - 1. Install grounding electrode for each pole.
 - 2. Install grounding conductor and conductor protector.
 - 3. Ground metallic components of pole accessories and foundations.

3.7 FIELD QUALITY CONTROL

- A. Inspect each installed fixture for damage. Replace damaged fixtures and components.
- B. Illumination Observations: Verify normal operation of lighting units after installing luminaires and energizing circuits with normal power source.
 - 1. Verify operation of photoelectric controls.
- C. Illumination Tests:

FRANKLIN CO. WINCHESTER, TN ANIMAL CONTROL FACILITY

- 1. Measure light intensities at night. Use photometers with calibration referenced to NIST standards. Comply with the following IESNA testing guide(s):
 - a. IESNA LM-5, "Photometric Measurements of Area and Sports Lighting Installations."
 - b. IESNA LM-50, "Photometric Measurements of Roadway Lighting Installations."
 - c. IESNA LM-52, "Photometric Measurements of Roadway Sign Installations."
 - d. IESNA LM-64, "Photometric Measurements of Parking Areas."
 - e. IESNA LM-72, "Directional Positioning of Photometric Data."
- D. Prepare a written report of tests, inspections, observations, and verifications indicating and interpreting results. If adjustments are made to lighting system, retest to demonstrate compliance with standards.

3.8 DEMONSTRATION

A. Engage a factory-authorized service representative to train Owner's maintenance personnel to adjust, operate, and maintain luminaire lowering devices.

- END OF SECTION -