Project 2: Creating a HDB Regression Model

- Samuel
- Ron
- Leila
- Benjamin

Agenda

- 1. Problem Statement
- 2. Exploratory Data Analysis
- 3. Feature Selection / Engineering
- 4. Model Evaluation
- 5. Interpretation of Results
- 6. Recommendations
- 7. Conclusion

Problem Statement

As real estate analysts, we are tasked with creating a regression model based on a Singapore HDB dataset. Through this analysis, our goal is to:

- Educate buyers/sellers if a house is being priced fairly
- Understand the main factors affecting HDB prices
- Predict HDB prices given a set of variables

Exploratory Data Analysis

- We identified the positive and negative variables with the highest correlation (>0.3) to Resale Price
- Due to the huge presence of outliers, "exec_sold" will be removed

3room_sold -

Correlation of variables vs. Resale Price

-0.41

Exploratory Data Analysis - Positively Correlated

- Flat Type
 - Encoded as an ordinal variable
 with a score from 0 to 6
- Floor Area (sqm)

Exploratory Data Analysis - <u>Positively</u> Correlated

- Max Floor Level
- No. of 5-room units

Exploratory Data Analysis - Negatively Correlated

- No. of 3-room units
- HDB Age

1e6

Storey Range

Quartile Groups:

storey 1-4, 5-7, 8-10, 11-49

MRT NAME

Planning Area

Flat Model

Feature Selection / Engineering

- Features selected in EDA process:
 - Categorical Features
 - One Hot Encoding Flat Model
 - Target Encoding Planning Area, MRT Name
 - Label Encoding Flat Type
 - Binning Storey Range
 - Continuous Features
 - Floor Area in sqm
 - HDB Age
 - Max Floor Level
 - Number of 3R Flat in the Block of Resale Flat
 - Number of 5R Flat in the Block of Resale Flat

Standard Scalar

Modeling

Baseline Model

First Iteration

Second Iteration

>0.5 corr

- 1. Flat Type
- 2. Floor Area

Selected in EDA Process

- 1. Flat Model (20 variables)
- 2. Planning Area
- 3. MRT Name
- 1. Flat Type
- 5. Storey Range
- 6. Floor Area
- 7. HDB Age
- 8. Max Floor Level
- 9. Number of 3R in the Block
- 10. Number of 5R in the Block

K-best Feature Selection, K=15

(Additional 10 variables)

- 1. Total Dwelling Unit
- 2. Number of 2R in the Block
- 3. Number of Exec in the Block
- Number of Hawker within 2km
- 5. MRT Nearest Distance
- . Latitude
- 7. MRT Latitude
- 8. Bus Stop Latitude
- 9. Pri Sch Latitude
- 10. Sec Sch Latitude

Model Evaluation

3 models:

- Baseline
 - LinearRegression (OLS)
 - 2 features
- First attempt
 - RidgeCV (L2)
 - 29 features selected from EDA
- Second attempt
 - RidgeCV (L2)
 - 39 features after K-best feature selection (K=15)

Baseline

We chose the LinearRegression model as the baseline.

- 2 features, both of which have relatively high correlation with resale price.
- Benchmark for trained models

Scores:

- Cross Val score (R2): 0.44
- Training RMSE: 106, 713
- Validation RMSE: 106, 783

First feature iteration

29 features identified in the EDA process are added into our model:

 Ridge and LinearRegression did not have any real difference. Ridge was chosen at random

Scores:

- Cross Val score (R2): 0.77
- Training RMSE: 68, 183
- Validation RMSE: 68, 033

Second feature iteration

K-best feature selection found 15 features:

- Applied only to continuous features
- 5 of the features can already be found on the previous model, for a total of 39 features
- Ridge was chosen again

Scores:

- Cross Val score (R2): 0.83
- Training RMSE: 58, 176
- Validation RMSE: 58, 281

Interpretation of Results

In the final model:

- Cross val score of 0.83 means that these 39 features explain 83% of the variation of the predicted price
- Training RMSE of 58, 176 as compared to Validation RMSE of 58, 281 indicates that bias is high, and hence the model is still under-fitted.
- Add more features, create new features to avoid under-fitting

Interpretation of Results

Conclusion

Order of Importance

flat model (particularly terrace) floor area in sqm mrt latitude pri school latitude hdb age sec school latitude max floor lvl hawker within 2km bus stop latitude latitude based on postal code mrt nearest distance planning area flat type

Model	CV R2 Score (Train)	CV RMSE (Train)
Baseline Model	0.4453	106873.66
<u></u>	7419	1 <u>287</u> 9
OLS using EDA feature selection	0.7734	68205.74
Ridge Regression using EDA feature selection	0.7734	68205.58
Lasso Regression using EDA feature selection	0.7713	68519.83
<u></u>	744	222
OLS using K-best (k=15, f-reg)	0.8350	58200.76
Ridge Regression using K-best (k=15, f-reg)	0.8350	58200.69
Lasso Regression using K-best (k=15, f-reg)	0.8329	58562.00
222	922	
Kaggle Submission Score (public)	25	57657.40
Kaggle Submission Score (private)	<u> </u>	59412.28

Recommendations

- Improve Model Complexity
 - Polynomial features
 - Additional dataset: GDP, interest rate related to Macroeconomic factors
- Target Encoding Method (MRT Name, Planning Area)
 - Some variables have disproportionate groups. Consider apply weightage in each group for target encoding.
- Method to Manage Outliers
 - Use Robust Scaling instead of Standard Scaler
- Applied K-best on Categorical Variables to Rely More on Stats
 - Using chi-square method

Thank you