Generalised Serre-Green-Naghdi Model

May 27, 2020

1 Time Series of β_1

1.1 Smooth Dambreak

$$h(x,0) = h_0 + \frac{h_1 - h_0}{2} \left(1 + \tanh\left(\frac{x}{\alpha}\right) \right) \tag{1}$$

$$u(x,0) = 0 (2)$$

$$G(x,0) = 0 (3)$$

 $\alpha = 0.1$ and $\beta_2 = 0$

1.1.1 Fixed Beta

Even small changes from $\beta_1=-2/3$ can leade to significant dispersive wave trains.

1.1.2 Global Beta Transitionining

$$\beta_1(t) = \frac{b_1 - b_0}{t_1 - t_0} t + b_0 \tag{4}$$

Figure 1: SWWE to Serre, linear transition from 10s to 20s

Figure 2: SWWE to Serre, linear transition from 10s to 11s

Figure 3: Serre equations throughout, Solutions are smooth, only resolution issues stop it from appearing so

Figure 4: Serre to SWWE, linear transition from 10s to 20s

Figure 5: Serre to SWWE, linear transition from 10s to 20s, more times - does go above h_l and below h_r

Figure 6: Serre to SWWE, linear transition from 10s to 11s

Figure 7: Serre to SWWE, instant transition at 20s