Les Langages Réguliers

S. Mazouz & B. Laichi
FEI-USTHB
Département Informatique
2019-2020
campusvirtuel.usthb.dz

Plan

- 1) Automates d'états finis
- 2) Grammaires régulières et automates d'états finis
- 3) Expressions régulières
- 4) Expressions régulières et automates d'états finis

Définition: Un automate (ou système de reconnaissance) est une machine abstraite qui permet de reconnaître les mots d'un langage. Il prend en entrée un mot w, et fournit comme résultat :

- accepté : si le mot est reconnu par l'automate (∈Langage)
- rejeté : si le mot n'est pas reconnu par l'automate (∉Langage)

A chaque type de langage, on associe un type d'automate :

- Aux langages de Type 3 Les Automates d'Etats Finis
- Aux langages de Type 2

 Les Automates à Piles
- Aux langages de Type 1 Les Automates à Bornes Linéaires
- Aux langages de Type 0

 Les Machines de Turing

AUTOMATES D'ETATS FINIS (AEF)

Un AEF lit les symboles d'un mot à reconnaitre un par un et va d'état en état selon les transitions. Le mot lu est soit accepté par l'automate soit rejeté

Fonctionnement:

Le ruban d'entrée contient le mot à reconnaître.

L'automate démarre à l'état initial.

La tête de lecture **est initialement sur le 1**er symbole du mot d'entrée

Les symboles du mot sont lus de la gauche vers la droite.

 L'automate avance d'une case vers la droite à chaque exécution d'une transition.

L'automate évolue d'un état à un autre en fonction du **symbole lu** et de **l'état courant**.

Le mot est **reconnu** si et seulement si :

- l'automate **a terminé** la lecture du mot
- o et se trouve dans un état final (état d'acceptation).

Ruban d'entrée de taille finie

(Ensemble des transitions)

an

Définition (Automate d'états finis)

Un automate d'états finis déterministe est un cinquplet

$$A = (X, Q, q_0, \delta, F)$$
 où :

- X est un alphabet d'entrée, fini et non vide
- Q est un ensemble d'états, fini et non vide
- q₀∈Q est un état initial
- F ⊂ Q est un ensemble d'états finaux
- δ est une fonction de transitions définie de Q x X dans Q et qui associe à un état donné p et un symbole donné a un état d'arrivée q i.e. δ(p, a)=q

Remarque : $\delta(p, a)$ =q signifie que l'automate réalise un déplacement (une transition) de l'état **p** vers l'état **q** en lisant la lettre **a**.

Représentation graphique :

Les automates d'états finis sont souvent représentés par des graphes orientés dont :

- les sommets correspondent aux états
- les arcs correspondent aux transitions
- l'arc ayant comme extrémité initiale p∈Q et pour extrémité terminale q∈Q et étiqueté par a∈X

représente la transition $\delta(p, a) = q$

Représentation graphique :

- un état final est représenté par deux cercles concentriques
- un état initial est représenté par une flèche incidente sur l'état initial

Remarque:

Un AEF possède un seul état initial mais peut avoir plusieurs états finaux

Notation : Deux transitions ou plus entre deux états seront représentées par un seul arc entre ces deux états comme suit :

Exemple: Soit l'AEF suivant

 $A = (X, Q, q0, \delta, F)$ tels que :

- $X = \{a, b\}$
- $Q = \{q0, q1, q2, q3\}$
- q0 est l'état initial
- $\delta(q0, a) = q3$

$$\delta(q0, b) = q1$$

$$\delta(q1, a) = q1$$

$$\delta(q1, b) = q2$$

$$\delta(q3, a) = q3$$

• $F = \{q2, q3\}$

Représentation matricielle :

Les automates d'états finis peuvent aussi être représentés par des matrices dont :

- les indices des lignes correspondent aux états
- les indices des colonnes correspondent aux éléments de X.

• un élément de la matrice de ligne \mathbf{q} et colonne \mathbf{a} correspond à la transition $\delta(\mathbf{q}, \mathbf{a})$.

				Symbole	
	état\lettre		a		
état					
	α		$\delta(q, a)$		Transition
	4		Ο(q , α)		

Exemple:

Langage reconnu par un automate d'états finis :

Question:

- Quelle est la succession de transitions permettant de lire un mot w à partir d'un état donné q, si elle existe ?
- Quel est l'état d'arrivée après cette succession de transitions.

Définir la fonction de succession de transitions.

Fonction de succession de transitions :

Illustration par un exemple : Quel est la succession de

transitions pour lire aab à partir de l'état q1?

q1

q1

q1

b

Soit A=(X, Q, q0, δ , F) un automate d'états fini déterministe.

On étend naturellement, la fonction de transition δ à la fonction de succession de transitions δ^* définie de $\mathbf{Q} \times \mathbf{X}^*$ dans \mathbf{Q} comme suit :

- $\delta^*(q, \epsilon) = q$
- $\delta^*(q, a) = \delta(q, a)$ $a \in X$
- $\delta^*(q, aw) = \delta^*(\delta(q, a), w)$ $a \in X$ et $w \in X^*$

Condition de reconnaissance :

Un mot w est **reconnu (accepté)** par l'automate A ssi :

- l'automate A lit le mot w à partir de q₀
- et atteint un état final.

Autrement dit, il existe un état final $q_F \in F$ tel que $\delta * (q_0, w) = q_F$.

On dit que **A accepte le mot w** (ou que w est accepté par A).

$$\delta^*(\mathbf{q0, bab}) = \delta^*(\mathbf{\delta(q0, b)}, \mathbf{ab})$$

$$= \delta^*(\mathbf{q1, ab})$$

$$= \delta^*(\mathbf{\delta(q1, a)}, \mathbf{b})$$

$$= \delta^*(\mathbf{q1, b})$$

$$= \delta(\mathbf{q1, b})$$

$$= \mathbf{q2} \text{ et } \mathbf{q2} \text{ est un état final}$$

$$\delta^*(q0, aaa) = \delta^*(\delta(q0, a), aa)$$
= $\delta^*(q3, aa)$
= $\delta^*(\delta(q3, a), a)$
= $\delta^*(q3, a)$
= $\delta(q3, a)$
= q3 et q3 est un état final

Les mots bab et aaa sont acceptés par cet automate

 $\delta^*(q, aw) = \delta^*(\delta(q, a), w), a \in X \text{ et } w \in X^*$

$$\delta^*(q0, ab) = \delta^*(\delta(q0, a), b)$$
$$= \delta^*(q3, b)$$
$$= \delta(q3, b)$$

mais à l'état q3, l'automate ne peut pas lire b

$$\delta^*(q0, ba) = \delta^*(\delta(q0, b), a)$$
$$= \delta^*(q1, a)$$
$$= \delta(q1, a)$$
$$= q1$$

mais q1 n'est pas final

Les mots ab et ba ne sont pas acceptés

Reconnaître les mots : ab, ba

Définition (Langage Reconnu par AEF)

Soit A=(X, Q, q_0 , δ , F) un automate déterministe.

Le langage reconnu par l'automate A est l'ensemble

$$L(A) = \{w \in X^* / \delta^*(q_0, w) \in F\}.$$

Un langage L sur X est **régulier** (ou **reconnaissable**) s'il existe au moins un automate d'états finis A ayant X comme alphabet d'entrée tel que L=L(A).

Notation: On note **Rec(X*)** la famille des langages reconnaissables sur l'alphabet X.

Exemples: Donner un AEF pour chacun des langages:

L1=
$$\{a\}^2$$
, L2= $\{a^n/ n \ge 0\}$ et L3= $\{a^n/ n \ge 1\}$,

AEF de L1=
$$\{a\}^2$$
:

AEF de L2= {aⁿ/ n≥0} :

AEF de L3= {aⁿ/ n≥1} :

Cet AEF n'est pas déterministe

Rappel: Pour un AEF déterministe

La fonction de transitions δ définie de Q x X dans Q

Exemples: Donner un AEF pour chacun des langages

L1=
$$\{a, b\}^2$$
, L2= $\{w \mid w \in \{a, b\}^*, |w| \le 2\}$ et L3= $\{a, b\}^*$

AEF de L1=
$$\{a,b\}^2$$
: $\xrightarrow{a/b}$ $\xrightarrow{a/b}$

AEF de L2 : on a
$$\{a,b\}^2 \subseteq L2$$
 :

L2=
$$\{a,b\}^2 \cup \{a,b,\epsilon\}$$
:

Exemple Donner un AEF déterministe reconnaissant le langage $\{ wb / w \in \{a, b\}^* \}$

Cet AEF n'est pas déterministe

Cet AEF est déterministe

Définition (Equivalence de deux AEFs)

Deux automates d'états finis A1 et A2 sont équivalents, noté A1=A2, si et seulement s'ils acceptent le même langage.

$$A1 \equiv A2 \Leftrightarrow L(A1) = L(A2)$$

Exemple: Ces deux automates sont équivalents.

Remarque: Un langage peut être reconnu par plusieurs automates. Par contre un automate ne peut reconnaitre qu'un seul langage.

LES VARIANTES DES AUTOMATES D'ÉTATS FINIS

Il existe plusieurs variantes d'automates d'états finis:

- 1) Les automates déterministes.
- 2) Les automates non-déterministes.
- 3) Les automates généralisés.

Un automate d'états fini est déterministe si et seulement si :

- · à un état
- à un symbole d'entrée

la fonction δ associe au plus une seule transition.

Autrement dit, la fonction δ est définie de $\mathbb{Q} \times \mathbb{X}$ dans \mathbb{Q} .

Remarque:

Dans les automates déterministes, il n y a pas de choix à faire pour l'état suivant après la lecture d'un certain symbole.

Un automate déterministe est dit complet ssi : à toute paire $(q,a) \in QxX$, la fonction δ associe exactement un état.

Ainsi, la fonction de transition δ est une application fonctionnelle : Q x X dans Q.

Remarque:

Dans un automate complet, il y a possibilité de lire n'importe quel symbole à partir de n'importe quel état.

Exemple:

état\lettre	а	b
q0	q3	q1
q1	q1	q2
q2	q3	q3
q3	q3	q3

Automate déterministe et complet

Exemple : Cet AEF est-il déterministe et complet ?

Cet automate est déterministe mais non complet.

En effet, dans l'état **q0**, on ne peut pas lire la lettre **b**.

Le langage reconnu par cet automate est : $\{ab^n / n \ge 0\}$.

Remarques:

- ✓ Un automate déterministe non complet ne permet pas de lire certains mots de X*.
- ✓ Un automate peut lire des mots mais ne pas les reconnaître.

26

Pour rendre complet un «automate déterministe non complet» il suffit de : rajouter un état, appelé «états puits» généralement noté Ø, et de rajouter toutes les transitions manquantes vers cet état.

Remarques:

- ✓ Un automate déterministe complet permet de lire tous les mots de l'alphabet (pas nécessairement les reconnaitre)
- ✓ L'automate complet obtenu reconnaît le même langage que l'automate initial (l'état puits n'est pas un état final).

Les automates d'états finis non déterministes sont des automates où : l'on permet plusieurs transitions correspondant à la même lettre à partir des états de l'automate.

Dans l'exemple, à partir de q0, on a le choix entre deux transitions par a : l'une vers q1 et l'autre vers q3. Donc, δ (q0, a)={q1, q3}

Dans ce cas, δ est une fonction de transition définie de : QxX dans l'ensemble des parties de Q. δ : QxX $\rightarrow \mathcal{F}$ (Q)

Exemple:

etat\lettre	а	b
q0	{q1, q3}	{q0}
q1	{q2}	{q1, q2}
q2	{q2}	{q2}
q3	{q3}	_

Remarque:

- ✓ Pour alléger les notations, on peut omettre les accolades.
- ✓ Dans les automates non déterministes, un choix est permis pour passer à l'état suivant.

AUTOMATES GÉNÉRALISÉS

Dans un automate généralisé, les transitions directes peuvent être causées par des mots (jusqu'a maintenant, les transitions se faisaient en lisant un seul symbole à la fois).

Les transitions directes causées par le mot vide sont appelées transitions spontanées ou ϵ -transitions.

Une ε-transition correspond à la situation où l'automate change d'état sans lire de symbole.

Dans l'exemple, à l'état q1, on a 3 possibilités :

- lire a et rester dans q1
- lire abb et passer à q2
- passer directement à q3 sans lecture.

q0 aab q1 abb $\delta(q0, aab) = \{q1\}$

 $\delta(q1, \epsilon) = \{q3\}$

La fonction δ est alors définie de: $QxX^* \rightarrow \mathcal{F}(Q)$

Définitions:

Un état **q** est **accessible** s'il existe un chemin de l'état initial de l'automate vers **q**.

Un état **q** est **co-accessible** s'il existe un chemin de l'état **q** vers un état final.

Un automate est **émondé** si tous ses états sont accessibles et co-accessibles.

Pour rendre un automate émondé, il suffit de supprimer tous les états non accessibles et non co-accessibles.

AUTOMATE SIMPLE VS GÉNÉRALISÉ

Remarques:

- 1. Dans les cas d'un automate déterministe et non déterministe, toute **transition directe** est causée par **une seule lettre de l'alphabet.**
- 2. Par opposition aux automates **généralisés**, les automates déterministes et non déterministes sont dits **simples** (toutes les transitions se font en lisant une seule lettre a la fois)

TRANSFORMATION DES AUTOMATES

En pratique, les automates simples déterministes, sont très intéressants pour la reconnaissance des mots. Donc, l'idéal serait de transformer n'importe quel type d'automate, vers un automate déterministe.

Cette transformation se fait en deux étapes :

- 1) Transformer un automate généralisé vers un automate simple (déterministe ou non déterministe)
- 2) Transformer l'automate simple vers un automate déterministe (s'il ne l'est pas déjà)

On commence d'abord par présenter la deuxième transformation

Passage AEF non déterministe vers AEF déterministe

Principe:

- Considérer des ensembles d'états plutôt que des états en regroupant toutes les transitions étiquetées par la même lettre issues du même état.
- 2. Un ensemble d'états (nouvel état obtenu par regroupement) est final ssi il contient un état final (de l'automate initial).

Passage AEF non déterministe vers AEF déterministe

Proposition: Pour tout automate fini non déterministe

A= (X, Q, q_0, δ, F) il existe un automate fini déterministe équivalent $A_d=(X_d, Q_d, q_{0d}, \delta_d, F_d)$ avec :

- $X_d = X$
- $Q_d = 2^{(Q)}$ (ou $\mathcal{P}(Q)$)
- $q_{0d} = \{q_0\}$
- Pour tout état $q_d \in Q_d$ avec $q_d = \{q_1, q_2, ..., q_n\}$, on a $\delta_d(q_d, a) = \delta(q_1, a) \cup \delta(q_2, a) \cup \cup \delta(q_n, a)$, $\forall a \in X$
- $F_d = \{q_d \in Q_d / q_d \cap F \neq \emptyset\}$

Les états de Q_d contenant au moins un état final de A sont **finaux.**

Pour déterminiser un automate, il est plus pratique d'établir la table des transitions.

La construction de l'automate déterministe se fait sur des ensembles d'états obtenus à partir de l'état initial comme suit :

 A partir de l'ensemble contenant seulement l'état initial {q0}, on regroupe les transitions étiquetées par la même lettre issue de q0 :

e	etat\lettre	a1	•••••	an
,	Op	δ (q0, a1)		δ (q0, an)

AEF Non déterministe

Il suffit de reprendre (recopier) la ligne de l'état initial.

etat\lettre	a1	•••••	an
→ {q0}	δ (q0, a1)		δ (q0, an)

AEF déterministe

Pour chaque ensemble d'états $q_d = \{q1, ..., qn\}$ nouvellement obtenu et donc accessibles à partir de q_{od} , on détermine les transitions issues de $q_d = \{q1, ..., qn\}$ i.e. $\delta_d(q_d, a)$, $\forall a \in X$.

On regroupe les transitions étiquetées par la même lettre :

$$\delta_{d}(q_{d}, a) = \delta(q_{d}, a) \cup \dots \cup \delta(q_{d}, a)$$

Pour chaque lettre, on fait l'union des cases des différentes lignes associées aux états q1, ..., qn.

etat\lettre	а	•••••
q1	δ (q1, a)	
qn	δ(qn, a)	

AEF non déterministe

etat\lettre	а
qd	δ (q1, a) \cup \cup δ (qn, a)

AEF déterministe

On arrêtera la procédure dés que tous les ensembles d'états obtenus seront traités.

Un ensemble d'états (nouvel état obtenu par regroupement) q_d est final s'il contient un état final (de l'automate initial).

$$F_d = \{q_d \in Q_d / q_d \cap F \neq \emptyset\}$$

Passage AEF non déterministe vers **AEF** DÉTERMINISTE

AEF non déterministe

Etat/Lettre	a \\	b //	
→ {q0}	{q1, q3}	{q1}	
(q1, q3)	{q2, q3}	{q1}	
{q1}	{q2}	{q1}	
(q2, q3)	{q2, q3}	-	
(q2)	{q2}	-	
AEF déterministe			

- Recopier la ligne de l'état initial.
- {q1,q3} et {q1} : nouveaux états accessibles
- Pour l'état {q1,q3}, on regroupe les transitions partant de q1 et celles partant de q3 par la même lettre et on obtient {q2,q3}.
- Pour l'état {q1}, il suffit de prendre les transitions de q1.
- On traite les nouveaux états accessibles de la même manière
- Les états {q1, q3}, {q2,q3} et {q2} sont finaux.

40

Proposition:

Pour tout automate fini généralisé $Ag=(X_g,Q_g,q0_g,\delta_g,F_g)$ il existe un automate simple équivalent $A_s=(X_s,Q_s,q_{0s},\delta_s,F_s)$.

Principe de la construction :

- Éliminer les transitions de longueur strictement supérieure à 1. On obtient un automate partiellement généralisé Ap.
- Éliminer les transitions spontanées dans l'automate partiellement généralisé obtenu. On obtient un automate simple.

Obtention d'un Automate Partiellement Généralisé :

Pour éliminer les transitions étiquetées par des mots de longueur supérieure ou égale à 2,

on ajoute des états intermédiaires.

Obtention de l'Automate Simple:

On élimine les transitions spontanées comme illustré dans le schéma. Ainsi pour éliminer (q,ε,p) on procède comme suit :

- pour toute transition reliant l'état
 p à un état p_i, on ajoute une
 transition reliant directement q
 à p_i et ayant la même étiquette.
- De plus, si l'état p est final alors
 l'état q devient final.
- On supprime la transition spontanée de q vers p .
- Cette opération est répétée jusqu'à l'obtention d'un automate simple (sans aucune transition spontanée).

Exemple:

En pratique, on utilise la table des transitions de l'automate partiellement généralisé dans laquelle on ajoute une colonne pour la ε-transition.

Pour éliminer la transition spontanée qui relie l'état q_1 à l'état q_3 , on reprend la ligne associée à l'état q_1 en lui ajoutant case par case (lettre par lettre) la ligne associée à l'état q_3 .

Comme **l'état** q₃ **est final**, **l'état** q₁ **devient aussi final**. L'automate obtenu est simple et dans ce cas il est non-déterministe.

Etat/let	а	b	3
q0	{q1, q3}	{q1}	-
q i	{q1, q2}	{q í}- -	{q3}-
q2 🔵	-	-	-
q3 🔘	{q2, q3}	{q2}	-
q1 ()	{q1, q2, q3}	{q1, q2}	-

Proposition : Pour toute grammaire régulière droite G=(T,N,S,P) il existe un **automate généralisé équivalent**.

Démonstration: Il s'agit de déterminer un automate fini $A=(X,Q, q_0, \delta, F)$ tel que L(G)=L(A).

L'automate A est construit comme suit :

•
$$Q = N \cup \{q_F\} \text{ et } q_F \notin N$$

•
$$q_0 = S$$

•
$$F = \{q_F\}$$

• Si
$$A \rightarrow wB \in P$$
 alors $B \in \delta(A, w)$

• Si
$$A \rightarrow w \in P$$
 alors $q_F \in \delta(A, w)$

Même alphabet pour L(G) et L(A)

Les non-terminaux deviennent des états

L'axiome devient l'état initial

Un seul état final = l'état spécial ajouté

Les productions deviennent des transitions

Les productions d'arrêt deviennent des

transitions vers l'état final

Les deux dernières règles sont schématisées comme suit :

Exemple:

Soit G =({a, b}, {S, A, B}, S, P) une grammaire régulière droite telle que P est défini par :

 $S \rightarrow aS/A$

 $A \rightarrow bbA/aS/abB/b$

 $B \rightarrow aB / bB / \epsilon$

AEF Equivalent

Proposition : Pour tout automate fini généralisé $A=(X,Q,q_0,\delta,F)$, il existe **une grammaire régulière droite** équivalente.

Démonstration : Il s'agit de déterminer une grammaire régulière droite G=(T, N, S, P) telle que L(A)=L(G).

La grammaire G est construite comme suit :

- T= X
- N=Q
- $S = q_0$
- Si $q \in \delta(p, w)$ alors $(p \rightarrow wq) \in P$
- Si q∈F alors (q→ε)∈P

Même alphabet pour (LA) et L(G)

Les états deviennent les non terminaux

L'état initial devient l'axiome

Transitions deviennent des productions

Etat final correspond à une production

d'arrêt avec ε

FERMETURES DES LANGAGES RÉGULIERS

Théorème:

La classe des langages réguliers est fermée par rapport aux opérations de l'union, la concaténation, l'étoile, le complément et le miroir.

Si L et M sont deux langages réguliers alors :

L∪M, L.M, L*, L et L^R sont des langages **réguliers**.