

Report No.: FR8D1931B

FCC RADIO TEST REPORT

FCC ID : Z64-CC3135MOD

Equipment : Dual-Band Wi-Fi® Network Processor Module

Brand Name : Texas Instruments

Model Name : CC3135MODRNMMOB

Marketing Name : SimpleLink™ Wi-Fi CC3135MOD Dual-Band Network

Processor Module

Applicant : Texas Instruments Incorported

12500 TI BLVD., Dallas Texas, 75243

Manufacturer : Texas Instruments Incorported

12500 TI BLVD., Dallas Texas, 75243

Standard : FCC Part 15 Subpart E §15.407

The product was received on Dec. 19, 2018 and testing was started from May 20, 2019 and completed on Aug. 03, 2019. We, SPORTON INTERNATIONAL INC., EMC & Wireless Communications Laboratory, would like to declare that the tested sample has been evaluated in accordance with the test procedures and has been in compliance with the applicable technical standards.

The report must not be used by the client to claim product certification, approval, or endorsement by TAF or any agency of government.

The test results in this report apply exclusively to the tested model / sample. Without written approval of SPORTON INTERNATIONAL INC. EMC & Wireless Communications Laboratory, the test report shall not be reproduced except in full.

Approved by: Jones Tsai

InexTsur

SPORTON INTERNATIONAL INC. EMC & Wireless Communications Laboratory

No. 52, Huaya 1st Rd., Guishan Dist., Taoyuan City, Taiwan (R.O.C.)

TEL: 886-3-327-3456 Page Number : 1 of 27
FAX: 886-3-328-4978 Report Issued Date : Aug. 08, 2019

Report Template No.: BU5-FR15EWL AC MA Version 2.4

Report Version : 01

Table of Contents

Report No. : FR8D1931B

His	tory o	of this test report	3
Sui	nmar	y of Test Result	4
1	Gene	eral Description	5
	1.1	Product Feature of Equipment Under Test	5
	1.2	Modification of EUT	
	1.3	Testing Location	6
	1.4	Applicable Standards	6
2	Test	Configuration of Equipment Under Test	7
	2.1	Carrier Frequency and Channel	7
	2.2	Test Mode	8
	2.3	Connection Diagram of Test System	
	2.4	Support Unit used in test configuration and system	9
	2.5	EUT Operation Test Setup	
	2.6	Measurement Results Explanation Example	9
3	Test	Result	10
	3.1	26dB & 99% Occupied Bandwidth Measurement	10
	3.2	Maximum Conducted Output Power Measurement	12
	3.3	Power Spectral Density Measurement	
	3.4	Unwanted Emissions Measurement	
	3.5	AC Conducted Emission Measurement	
	3.6	Automatically Discontinue Transmission	
	3.7	Antenna Requirements	24
4	List o	of Measuring Equipment	25
5	Unce	ertainty of Evaluation	27
Ap	pendi	x A. Conducted Test Results	
Ap	pendi	x B. AC Conducted Emission Test Result	
Ар	pendi	x C. Conducted Spurious Emission	
Ap	pendi	x D. Conducted Spurious Emission Plots	
Ap	pendi	x E. Radiated Spurious Emission	
•		x F. Radiated Spurious Emission Plots	
•		x G. Duty Cycle Plots	
Ap	pendi	x H. Setup Photographs	

TEL: 886-3-327-3456 Page Number : 2 of 27 FAX: 886-3-328-4978 Report Issued Date : Aug. 08, 2019 : 01

Report Version

Report Template No.: BU5-FR15EWLAC MA Version 2.4

History of this test report

Report No.: FR8D1931B

Report No.	Version	Description	Issued Date
FR8D1931B	01	Initial issue of report	Aug. 08, 2019

TEL: 886-3-327-3456 Page Number : 3 of 27 FAX: 886-3-328-4978 Report Issued Date : Aug. 08, 2019 : 01

Summary of Test Result

Report No.: FR8D1931B

Report Clause	Ref Std. Clause	Test Items	Result (PASS/FAIL)	Remark
3.1	15.403(i)	26dB Bandwidth	Pass	-
3.1	2.1049	99% Occupied Bandwidth	Reporting only	-
3.2	15.407(a)	Maximum Conducted Output Power Pass		-
3.3	15.407(a)	Power Spectral Density	Pass	-
3.4	15.407(b)	Unwanted Emissions	Pass	Under limit 7.15 dB at 7308 MHz
3.5	15.207	AC Conducted Emission	Pass	Under limit 11.46 dB at 2.47875 MHz
3.6	15.407(c)	Automatically Discontinue Transmission	Pass	-
3.7	15.203 15.407(a)	Antenna Requirement	Pass	-

Declaration of Conformity:

The test results with all measurement uncertainty excluded are presented in accordance with the regulation limits or requirements declared by manufacturers.

Comments and Explanations:

The declared of product specification for EUT presented in the report are provided by the manufacturer, and the manufacturer takes all the responsibilities for the accuracy of product specification.

Reviewed by: Wii Chang Report Producer: Dara Chiu

TEL: 886-3-327-3456 Page Number : 4 of 27
FAX: 886-3-328-4978 Report Issued Date : Aug. 08, 2019

1 General Description

1.1 Product Feature of Equipment Under Test

Wi-Fi 2.4GHz 802.11b/g/n and Wi-Fi 5GHz 802.11a

	VVIII 2.4-C112 002.11b/g/ii alia VVIII 00112 002.11a							
	Antenna Information							
	Antenna Type	Brand Name	Model	2.4GHz Gain(dBi)	5GHz Gain(dBi)			
1.		Pulse	W3078	1.7	4.3			
2.	Chip	Yageo	ANT5320LL04R2455A	2.17	3.51			
3.		Cth ortropics	M830520	1	2.6			
4.		Ethertronics	1000423	-0.6	4.5			
5.	PCB	Laird	CAF94504	2	4			
6.		Lallu	CAF94505	2	4			
7.			001-0012	2	2			
8.	Dipole		080-0013	2	2			
9.		LSR	080-0014	2	2			
10.	PIFA		001-0016	2.5	3			
11.	FIFA	PIFA	001-0021	2.5	3			
Note	e: The EUT used	a dual-band chip	antenna (Antenna 3 from	Ethertronics)				

Report No.: FR8D1931B

1.2 Modification of EUT

No modifications are made to the EUT during all test items.

TEL: 886-3-327-3456 Page Number : 5 of 27
FAX: 886-3-328-4978 Report Issued Date : Aug. 08, 2019

1.3 Testing Location

Test Site	SPORTON INTERNATIONAL INC. EMC & Wireless Communications Laboratory				
Test Site Location	No. 52, Huaya 1st Rd., Guishan Dist., Taoyuan City, Taiwan (R.O.C.) TEL: +886-3-327-3456 FAX: +886-3-328-4978				
Test Site No.	Sportor	n Site No.			
rest Site No.	TH05-HY CO05-HY	CO05-HY			
Test Site	SPORTON INTERNATIONAL INC. EMO	C & Wireless Communications Laboratory			
Test Site Location	No. 58, Huaya 1st Rd., Guishan Dist., Taoyuan City, Taiwan (R.O.C.) TEL: +886-3-327-3456 FAX: +886-3-328-4978				
Test Site No.	Sportor	n Site No.			
rest site No.	03CF	H15-HY			

Report No.: FR8D1931B

Note: The test site complies with ANSI C63.4 2014 requirement.

FCC designation No.: TW1190 and TW0007

1.4 Applicable Standards

According to the specifications of the manufacturer, the EUT must comply with the requirements of the following standards:

- FCC Part 15 Subpart E
- FCC KDB 789033 D02 General UNII Test Procedures New Rules v02r01.
- FCC KDB 414788 D01 Radiated Test Site v01r01.
- ANSI C63.10-2013

Remark:

- 1. All test items were verified and recorded according to the standards and without any deviation during the test.
- 2. This EUT has also been tested and complied with the requirements of FCC Part 15, Subpart B, recorded in a separate test report.

TEL: 886-3-327-3456 Page Number : 6 of 27
FAX: 886-3-328-4978 Report Issued Date : Aug. 08, 2019

2 Test Configuration of Equipment Under Test

- a. The EUT has been associated with peripherals and configuration operated in a manner tended to maximize its emission characteristics in a typical application. Frequency range investigated: conduction emission (150 kHz to 30 MHz), radiation emission (9 kHz to the 10th harmonic of the highest fundamental frequency or to 40 GHz, whichever is lower). For radiated measurement, pre-scanned in three orthogonal panels, X, Y, Z. The worst cases (Y plane) were recorded in this report.
- b. AC power line Conducted Emission was tested under maximum output power.

2.1 Carrier Frequency and Channel

Frequency Band	Channel	Freq. (MHz)	Channel	Freq. (MHz)
5150-5250 MHz Band 1	36	5180	44	5220
(U-NII-1)	40	5200	48	5240

Frequency Band	Channel	Freq. (MHz)	Channel	Freq. (MHz)
5250-5350 MHz	52	5260	60	5300
Band 2 (U-NII-2A)	56	5280	64	5320

Frequency Band	Channel	Freq. (MHz)	Channel	Freq. (MHz)
	100	5500	116	5580
5470-5725 MHz Band 3	104	5520	132	5660
(U-NII-2C)	108	5540	136	5680
(6 1 111 20)	112	5560	140	5700

TEL: 886-3-327-3456 Page Number : 7 of 27
FAX: 886-3-328-4978 Report Issued Date : Aug. 08, 2019

Report Template No.: BU5-FR15EWL AC MA Version 2.4

Report Version : 01

Report No.: FR8D1931B

2.2 Test Mode

Final test modes are considering the modulation and worse data rates as below table.

Modulation	Data Rate
802.11a	6 Mbps

Report No.: FR8D1931B

: 01

	Test Cases					
AC						
Conducted	Mode 1: WLAN 5G Link + USB Cable(Charging from Notebook)					
Emission						

Ch. #		Band I: 5150-5250 MHz	Band II: 5250-5350 MHz	Band III:5470-5725MHz
		802.11a	802.11a	802.11a
L	Low	36	52	100
М	Middle	44	60	116
Н	High	48	64	140

2.3 Connection Diagram of Test System

TEL: 886-3-327-3456 Page Number : 8 of 27
FAX: 886-3-328-4978 Report Issued Date : Aug. 08, 2019

2.4 Support Unit used in test configuration and system

Item	Equipment	Trade Name	Model Name	FCC ID	Data Cable	Power Cord
1.	WLAN AP	ASUS	RT-AC66U	MSQ-RTAC66U	N/A	Unshielded,1.8m
2.	Notebook	Dell	Latitude E3340	FCC DoC	N/A	AC I/P: Unshielded, 1.2m DC O/P: Shielded, 1.8m
3.	Notebook	Lenovo	L570	FCC DoC	N/A	AC I/P: Unshielded, 1.2m DC O/P: Shielded, 1.8m
4.	iPod	Apple	A1285	FCC DoC	Shielded, 1.0m	N/A

Report No.: FR8D1931B

2.5 EUT Operation Test Setup

The RF test items, utility "CC31XX/CC32XX Radio Tool v1.0.3.10" was installed in Notebook which was programmed in order to make the EUT get into the engineering modes to provide channel selection, power level, data rate and the application type and for continuous transmitting signals.

2.6 Measurement Results Explanation Example

For all conducted test items:

The offset level is set in the spectrum analyzer to compensate the RF cable loss and attenuator factor between EUT conducted output port and spectrum analyzer. With the offset compensation, the spectrum analyzer reading level is exactly the EUT RF output level.

Example:

The spectrum analyzer offset is derived from RF cable loss and attenuator factor.

Offset = RF cable loss + attenuator factor.

Following shows an offset computation example with cable loss 4.10 dB and 20.00dB attenuator.

Offset(dB) = RF cable loss(dB) + attenuator factor(dB). = 4.10 + 20.00 = 24.10(dB)

TEL: 886-3-327-3456 Page Number : 9 of 27
FAX: 886-3-328-4978 Report Issued Date : Aug. 08, 2019

Report Version

: 01

Report Template No.: BU5-FR15EWL AC MA Version 2.4

3 Test Result

3.1 26dB & 99% Occupied Bandwidth Measurement

3.1.1 Description of 26dB & 99% Occupied Bandwidth

This section is for reporting purpose only.

There is no restriction limits for bandwidth.

3.1.2 Measuring Instruments

See list of measuring equipment of this test report.

3.1.3 Test Procedures

- The testing follows FCC KDB 789033 D02 General UNII Test Procedures New Rules v02r01.
 Section C) Emission bandwidth
- 2. Set RBW = approximately 1% of the emission bandwidth.
- 3. Set the VBW > RBW.
- Detector = Peak.
- 5. Trace mode = max hold
- 6. Measure the maximum width of the emission that is 26 dB down from the peak of the emission. Compare this with the RBW setting of the analyzer. Readjust RBW and repeat measurement as needed until the RBW/EBW ratio is approximately 1%.
- 7. For 99% Bandwidth Measurement, the spectrum analyzer's resolution bandwidth (RBW) is set 1-5% of the emission bandwidth and set the Video bandwidth (VBW) ≥ 3 * RBW.
- 8. Measure and record the results in the test report.

3.1.4 Test Setup

3.1.5 Test Result of 26dB & 99% Occupied Bandwidth

Please refer to Appendix A.

TEL: 886-3-327-3456 Page Number : 10 of 27
FAX: 886-3-328-4978 Report Issued Date : Aug. 08, 2019

Report Template No.: BU5-FR15EWL AC MA Version 2.4

Report Version : 01

Report No.: FR8D1931B

Report No.: FR8D1931B

Note: The occupied channel bandwidth is maintained within the band of operation for all of the modulations.

TEL: 886-3-327-3456 Page Number : 11 of 27
FAX: 886-3-328-4978 Report Issued Date : Aug. 08, 2019

3.2 Maximum Conducted Output Power Measurement

3.2.1 Limit of Maximum Conducted Output Power

<FCC 14-30 CFR 15.407>

For the 5.15-5.25 GHz bands:

■ For mobile and portable client devices in the 5.15–5.25 GHz band, the maximum conducted output power over the frequency band of operation shall not exceed 250 mW. For an indoor access point operating in the band 5.15-5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W.

Report No.: FR8D1931B

: 01

For the 5.25-5.725 GHz bands:

■ The maximum conducted output power over the frequency bands of operation shall not exceed the lesser of 250 mW or 11 dBm 10 log B, where B is the 26 dB emission bandwidth in megahertz.

If transmitting antennas of directional gain greater than 6 dBi are used, the peak output power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

Note that U-NII-2 band, devices with a maximum e.i.r.p. greater than 500 mW shall implement TPC in order to have the capability to operate at least 6 dB below the maximum permitted e.i.r.p. of 1 W.

3.2.2 Measuring Instruments

See list of measuring equipment of this test report.

3.2.3 Test Procedures

The testing follows Method PM-G of FCC KDB 789033 D02 General UNII Test Procedures New Rules v02r01.

Method PM-G (Measurement using an RF average power meter):

- 1. Measurement is performed using a wideband RF power meter.
- 2. The EUT is configured to transmit at its maximum power control level.
- 3. Measure the average power of the transmitter
- Since the measurement is made only during the ON time of the transmitter, no duty cycle correction factor is required.

TEL: 886-3-327-3456 Page Number : 12 of 27
FAX: 886-3-328-4978 Report Issued Date : Aug. 08, 2019

3.2.4 Test Setup

Report No.: FR8D1931B

3.2.5 Test Result of Maximum Conducted Output Power

Please refer to Appendix A.

TEL: 886-3-327-3456 Page Number : 13 of 27
FAX: 886-3-328-4978 Report Issued Date : Aug. 08, 2019

3.3 Power Spectral Density Measurement

3.3.1 Limit of Power Spectral Density

<FCC 14-30 CFR 15.407>

For the 5.15-5.25 GHz bands:

For mobile and portable client devices in the 5.15–5.25 GHz band, the maximum power spectral density shall not exceed 11 dBm in any 1.0 MHz band. For an indoor access point operating in the band 5.15-5.25 GHz, the maximum power spectral density shall not exceed 17 dBm in any 1.0 MHz band.

Report No.: FR8D1931B

For the 5.25-5.725 GHz bands:

The maximum power spectral density shall not exceed 11 dBm in any 1.0 MHz band.

If transmitting antennas of directional gain greater than 6 dBi are used, the peak output power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

3.3.2 Measuring Instruments

See list of measuring equipment of this test report.

3.3.3 Test Procedures

The testing follows FCC KDB 789033 D02 General UNII Test Procedures New Rules v02r01. Section F) Maximum power spectral density.

Method SA-3

(power averaging (rms) detection with max hold):

- Set span to encompass the entire emission bandwidth (EBW) of the signal.
- Set RBW = 1 MHz.
- Set VBW ≥ 3 MHz
- Number of points in sweep ≥ 2 Span / RBW.
- Sweep time ≤ (number of points in sweep) × T, when duty cycle is less than 98 percent
 where T is the minimum transmission duration over which the transmitter is on and is
 transmitting at its maximum power control level for the tested mode of operation.
- Detector = power averaging (rms).
- Trace mode = max hold.

Allow max hold to run for at least 60 seconds, or longer as needed to allow the trace to stabilize.

- 1. The RF output of EUT was connected to the spectrum analyzer by a low loss cable.
- 2. Each plot has already offset with cable loss, and attenuator loss. Measure the PPSD and record it.

Report Version

: 01

TEL: 886-3-327-3456 Page Number : 14 of 27
FAX: 886-3-328-4978 Report Issued Date : Aug. 08, 2019

Report Template No.: BU5-FR15EWL AC MA Version 2.4

3.3.4 Test Setup

Report No.: FR8D1931B

: 01

Report Version

3.3.5 Test Result of Power Spectral Density

Please refer to Appendix A.

Note: Average Power Density (dB) = Measured value+ Duty Factor

TEL: 886-3-327-3456 Page Number : 15 of 27
FAX: 886-3-328-4978 Report Issued Date : Aug. 08, 2019

Report Template No.: BU5-FR15EWL AC MA Version 2.4

3.4 Unwanted Emissions Measurement

This section is to measure unwanted emissions through radiated measurement for band edge spurious emissions and out of band emissions measurement.

Report No.: FR8D1931B

3.4.1 Limit of Unwanted Emissions

(1) For transmitters operating in the 5150-5250 MHz band: all emissions outside of the 5150-5350 MHz band shall not exceed an EIRP of –27dBm/MHz.

For transmitters operating in the 5250-5350 MHz band: all emissions outside of the 5150-5350 MHz band shall not exceed an EIRP of -27 dBm/MHz. Devices operating in the 5250-5350 MHz band that generate emissions in the 5150-5250 MHz band must meet all applicable technical requirements for operation in the 5150-5250 MHz band (including indoor use) or alternatively meet an out-of-band emission EIRP limit of -27 dBm/MHz in the 5150-5250 MHz band.

For transmitters operating in the 5470-5600 MHz and 5650-5725MHz band: all emissions outside of the 5470-5600 MHz and 5650-5725MHz band shall not exceed an EIRP of -27 dBm/MHz.

(2) Unwanted spurious emissions fallen in restricted bands shall comply with the general field strength limits as below table:

Frequency	Field Strength	Measurement Distance		
(MHz)	(microvolts/meter)	(meters)		
0.009 - 0.490	2400/F(kHz)	300		
0.490 – 1.705	24000/F(kHz)	30		
1.705 – 30.0	30	30		
30 – 88	100	3		
88 – 216	150	3		
216 - 960	200	3		
Above 960	500	3		

Note: The following formula is used to convert the EIRP to field strength.

$$E = \frac{1000000\sqrt{30P}}{3}$$
 µV/m, where P is the eirp (Watts)

EIRP (dBm)	Field Strength at 3m (dBµV/m)
- 27	68.3

TEL: 886-3-327-3456 Page Number : 16 of 27
FAX: 886-3-328-4978 Report Issued Date : Aug. 08, 2019

- (3) KDB789033 D02 v02r01 G)2)c)
 - (i) Section 15.407(b)(1) to (b)(3) specify the unwanted emission limits for the U-NII-1 and U-NII-2 bands. As specified, emissions above 1000 MHz that are outside of the restricted bands are subject to a peak emission limit of -27 dBm/MHz.3

Report No.: FR8D1931B

- (ii) Section 15.407(b)(4) specifies the unwanted emission limit for the U-NII-3 band. A band emissions mask is specified in Section 15.407(b)(4)(i). The emission limits are in terms of a Peak detector. An alternative to the band emissions mask is specified in Section 15.407(b)(4)(ii). The alternative limits are based on the highest antenna gain specified in the filing. There are also marketing and importation restrictions for the devices using the alternative limit.⁴
- **Note 3:** An out-of-band emission that complies with both the average and peak limits of Section 15.209 is not required to satisfy the -27 dBm/MHz peak emission limit.
- Note 4: Only devices with antenna gains of 10 dBi or less may be approved using the emission limits specified in Section 15.247(d) till March 2, 2018; all other devices operating in this band must use the mask specified in Section 15.407(b)(4)(i).

3.4.2 Measuring Instruments

See list of measuring equipment of this test report.

3.4.3 Test Procedures

- The testing follows FCC KDB 789033 D02 General UNII Test Procedures New Rules v02r01.
 Section G) Unwanted emissions measurement.
 - (1) Procedure for Unwanted Emissions Measurements Below 1000MHz
 - RBW = 120 kHz
 - VBW = 300 kHz
 - Detector = Peak
 - Trace mode = max hold
 - (2) Procedure for Peak Unwanted Emissions Measurements Above 1000 MHz
 - RBW = 1 MHz
 - VBW ≥ 3 MHz
 - Detector = Peak
 - Sweep time = auto
 - Trace mode = max hold
 - (3) Procedures for Average Unwanted Emissions Measurements Above 1000MHz
 - RBW = 1 MHz
 - VBW = 10 Hz, when duty cycle is no less than 98 percent.
 - VBW ≥ 1/T, when duty cycle is less than 98 percent where T is the minimum transmission duration over which the transmitter is on and is transmitting at its maximum power control level for the tested mode of operation.

TEL: 886-3-327-3456 Page Number : 17 of 27
FAX: 886-3-328-4978 Report Issued Date : Aug. 08, 2019

2. The EUT was placed on a turntable with 0.8 meter for frequency below 1GHz and 1.5 meter for frequency above 1GHz respectively above ground.

Report No.: FR8D1931B

- 3. The EUT was set 3 meters from the interference receiving antenna which was mounted on the top of a variable height antenna tower.
- 4. The antenna is a broadband antenna and its height is adjusted between one meter and four meters above ground to find the maximum value of the field strength for both horizontal polarization and vertical polarization of the antenna.
- 5. For each suspected emission, the EUT was arranged to its worst case and then adjust the antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading.
- 6. For testing below 1GHz, if the emission level of the EUT in peak mode was 3 dB lower than the limit specified, then peak values of EUT will be reported, otherwise, the emissions will be repeated one by one using the CISPR quasi-peak method and reported.
- 7. For testing above 1GHz, the emission level of the EUT in peak mode was 20dB lower than average limit (that means the emission level in average mode also complies with the limit in average mode), then peak values of EUT will be reported, otherwise, the emissions will be measured in average mode again and reported.

3.4.4 Test Setup

For Conducted Measurement Setup:

TEL: 886-3-327-3456 Page Number: 18 of 27
FAX: 886-3-328-4978 Report Issued Date: Aug. 08, 2019

Report Version

: 01

Report Template No.: BU5-FR15EWL AC MA Version 2.4

Report No.: FR8D1931B

For radiated emissions below 30MHz

For radiated emissions from 30MHz to 1GHz

For radiated emissions above 1GHz

TEL: 886-3-327-3456 Page Number : 19 of 27 FAX: 886-3-328-4978 Report Issued Date: Aug. 08, 2019

Report Template No.: BU5-FR15EWLAC MA Version 2.4

: 01 Report Version

3.4.5 Test Results of Radiated Spurious Emissions (9 kHz ~ 30 MHz)

The low frequency, which started from 9 kHz to 30MHz, was pre-scanned and the result which was 20dB lower than the limit line was not reported.

Report No.: FR8D1931B

: 01

There is a comparison data of both open-field test site and alternative test site - semi-Anechoic chamber according to 414788 D01 Radiated Test Site v01r01, and the result came out very similar.

3.4.6 Test Result of Conduced Spurious at Band Edges in the Restricted Band

Please refer to Appendix C and D.

3.4.7 Test Result of Conduced Spurious Emission in the Restricted Band

Please refer to Appendix C and D.

3.4.8 Test Result of Cabinet Radiated Spurious at Band Edges

Please refer to Appendix E and F.

3.4.9 Test Result of Cabinet Radiated Spurious Emissions (30MHz ~ 10th Harmonic)

Please refer to Appendix E and F.

3.4.10 Duty Cycle

Please refer to Appendix G.

TEL: 886-3-327-3456 Page Number : 20 of 27
FAX: 886-3-328-4978 Report Issued Date : Aug. 08, 2019

3.5 AC Conducted Emission Measurement

3.5.1 Limit of AC Conducted Emission

For equipment that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed the limits in the following table.

Report No.: FR8D1931B

: 01

Eroquency of emission (MUz)	Conducted limit (dBµV)							
Frequency of emission (MHz)	Quasi-peak	Average						
0.15-0.5	66 to 56*	56 to 46*						
0.5-5	56	46						
5-30	60	50						

^{*}Decreases with the logarithm of the frequency.

3.5.2 Measuring Instruments

See list of measuring equipment of this test report.

3.5.3 Test Procedures

- 1. The EUT was placed 0.4 meter from the conducting wall of the shielding room was kept at least 80 centimeters from any other grounded conducting surface.
- 2. Connect EUT to the power mains through a line impedance stabilization network (LISN).
- 3. All the support units are connecting to the other LISN.
- 4. The LISN provides 50 ohm coupling impedance for the measuring instrument.
- 5. The FCC states that a 50 ohm, 50 microhenry LISN should be used.
- 6. Both sides of AC line were checked for maximum conducted interference.
- 7. The frequency range from 150 kHz to 30 MHz was searched.
- 8. Set the test-receiver system to Peak Detect Function and specified bandwidth with Maximum Hold Mode.

TEL: 886-3-327-3456 Page Number : 21 of 27
FAX: 886-3-328-4978 Report Issued Date : Aug. 08, 2019

3.5.4 Test Setup

AMN = Artificial mains network (LISN)

AE = Associated equipment

EUT = Equipment under test

ISN = Impedance stabilization network

3.5.5 Test Result of AC Conducted Emission

Please refer to Appendix B.

TEL: 886-3-327-3456 Page Number : 22 of 27
FAX: 886-3-328-4978 Report Issued Date : Aug. 08, 2019

Report Template No.: BU5-FR15EWL AC MA Version 2.4

Report Version : 01

Report No.: FR8D1931B

3.6 Automatically Discontinue Transmission

3.6.1 Limit of Automatically Discontinue Transmission

The device shall automatically discontinue transmission in case of either absence of information to transmit or operational failure. These provisions are not intended to preclude the transmission of control or signaling information or the use of repetitive codes used by certain digital technologies to complete frame or burst intervals. Applicants shall include in their application for equipment authorization to describe how this requirement is met.

3.6.2 Measuring Instruments

See list of measuring equipment of this test report.

3.6.3 Test Result of Automatically Discontinue Transmission

While the EUT is not transmitting any information, the EUT can automatically discontinue transmission and become standby mode for power saving. The EUT can detect the controlling signal of ACK message transmitting from remote device and verify whether it shall resend or discontinue transmission.

TEL: 886-3-327-3456 Page Number : 23 of 27
FAX: 886-3-328-4978 Report Issued Date : Aug. 08, 2019

Report Template No.: BU5-FR15EWL AC MA Version 2.4

Report Version : 01

Report No.: FR8D1931B

3.7 Antenna Requirements

3.7.1 Standard Applicable

If transmitting antenna directional gain is greater than 6 dBi, both the peak transmit power and the peak power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

Report No.: FR8D1931B

3.7.2 Antenna Anti-Replacement Construction

An embedded-in antenna design is used.

3.7.3 Antenna Gain

The antenna peak gain of EUT is less than 6 dBi. Therefore, it is not necessary to reduce maximum peak output power limit.

TEL: 886-3-327-3456 Page Number : 24 of 27
FAX: 886-3-328-4978 Report Issued Date : Aug. 08, 2019

Report Template No.: BU5-FR15EWL AC MA Version 2.4

Report Version : 01

4 List of Measuring Equipment

Instrument	Manufacturer	Model No.	Serial No.	Characteristics	Calibration Date	Test Date	Due Date	Remark
Loop Antenna	Rohde & Schwarz	HFH2-Z2	100488	9 kHz~30 MHz	Jan. 07, 2019	Jul. 29, 2019~ Aug. 01, 2019	Jan. 06, 2020	Radiation (03CH15-HY)
Bilog Antenna	TESEQ)		Jul. 29, 2019~ Aug. 01, 2019	Feb. 11, 2020	Radiation (03CH15-HY)		
Horn Antenna	SCHWARZBE CK	BBHA 9120D	9120D-162 0	1G~18GHz	Oct. 17, 2018	Jul. 29, 2019~ Aug. 01, 2019	Oct. 16, 2019	Radiation (03CH15-HY)
SHF-EHF Horn Antenna	SCHWARZBE CK	BBHA 9170	BBHA9170 584	18GHz- 40GHz	Dec. 05, 2018	Jul. 29, 2019~ Aug. 01, 2019	Dec. 04, 2019	Radiation (03CH15-HY)
Amplifier	SONOMA	310N	363440	9kHz~1GHz	Dec. 28, 2018	Jul. 29, 2019~ Aug. 01, 2019	Dec. 27, 2019	Radiation (03CH15-HY)
Preamplifier	Jet-Power	JPA0118-55-3 03	171000180 0055007	1GHz~18GHz	Apr. 01, 2018	Jul. 29, 2019~ Aug. 01, 2019	Apr. 31, 2020	Radiation (03CH15-HY)
Preamplifier	Keysight	83017A	MY532701 95	1GHz~26.5GHz	Aug. 23, 2018	Jul. 29, 2019~ Aug. 01, 2019	Aug. 22, 2019	Radiation (03CH15-HY)
Preamplifier	implifier EMEC		060715	18GHz ~ 40GHz	Dec. 06, 2018	Jul. 29, 2019~ Aug. 01, 2019	Dec. 05, 2019	Radiation (03CH15-HY)
EMI Test Receiver	Keysight	N9038A (MXE)	MY541300 85	20Hz ~ 8.4GHz	Nov. 01, 2018	Jul. 29, 2019~ Aug. 01, 2019	Oct. 31, 2019	Radiation (03CH15-HY)
Spectrum Analyzer	Agilent	E4446A	MY501801 36	3Hz~44GHz	Apr. 29, 2019	Jul. 29, 2019~ Aug. 01, 2019	Apr. 28, 2020	Radiation (03CH15-HY)
Antenna Mast	ChainTek	MBS-520-1	N/A	1m~4m	N/A	Jul. 29, 2019~ Aug. 01, 2019	N/A	Radiation (03CH15-HY)
Turn Table	ChainTek	T-200-S-1	N/A	0~360 Degree	N/A	Jul. 29, 2019~ Aug. 01, 2019	N/A	Radiation (03CH15-HY)
Software	Audix	E3 6.2009-8-24(k 5)	RK-00045 1	N/A	N/A	Jul. 29, 2019~ Aug. 01, 2019	N/A	Radiation (03CH15-HY)
RF Cable	HUBER + SUHNER	SUCOFLEX 104	MY36980/ 4	30M-18G	Apr. 15, 2019	Jul. 29, 2019~ Aug. 01, 2019	Apr. 14, 2020	Radiation (03CH15-HY)
RF Cable	HUBER + SUHNER	SUCOFLEX 104	MY9838/4	30M-18G	Apr. 15, 2019	Jul. 29, 2019~ Aug. 01, 2019	Apr. 14, 2020	Radiation (03CH15-HY)
RF Cable	HUBER + SUHNER	SUCOFLEX 104	MY802430 /4	30M~18GHz	May 13, 2019	Jul. 29, 2019~ Aug. 01, 2019	May 12, 2020	Radiation (03CH15-HY)
RF Cable	HUBER + SUHNER	SUCOFLEX 102	MY2859/2	30MHz-40GHz	Mar. 13, 2019	Jul. 29, 2019~ Aug. 01, 2019	Mar. 12, 2020	Radiation (03CH15-HY)
RF Cable	HUBER + SUHNER	SUCOFLEX 102	MY4274/2	30MHz-40GHz	Mar. 13, 2019	Jul. 29, 2019~ Aug. 01, 2019	Mar. 12, 2020	Radiation (03CH15-HY)
Filter	Wainwright	WLK4-1000-1 530-8000-40S S	SN11	1G Low Pass	Sep. 16, 2018	Jul. 29, 2019~ Aug. 01, 2019	Sep. 15, 2019	Radiation (03CH15-HY)
Filter	Wainwright	WHKX8-5872. 5-6750-18000 -40ST	SN3	6.75 GHz Highpass	Sep. 16, 2018	Jul. 29, 2019~ Aug. 01, 2019	Sep. 15, 2019	Radiation (03CH15-HY)

TEL: 886-3-327-3456 Page Number : 25 of 27
FAX: 886-3-328-4978 Report Issued Date : Aug. 08, 2019

Report Template No.: BU5-FR15EWL AC MA Version 2.4

Report Version : 01

Report No.: FR8D1931B

Instrument	trument Manufacturer		r Model No. Serial No. Characteristics		Calibration Date	Test Date		Remark
Power Sensor	DARE	RPR3006W	13I00030S NO32	9kHz~6GHz	Dec. 03, 2018	Jul. 29, 2019~ Aug. 03, 2019	Dec. 02, 2019	Conducted (TH05-HY)
Spectrum Analyzer	Rohde & Schwarz	FSP40	100057	9kHz-40GHz	Nov. 21, 2018	Jul. 29, 2019~ Aug. 03, 2019	Nov. 20, 2019	Conducted (TH05-HY)
Switch Box & RF Cable	Burgeon	ETF-058	EC120838 2	N/A	Mar. 27, 2019 Jul. 29, 2019~ Aug. 03, 2019		Mar. 26, 2020	Conducted (TH05-HY)
AC Power Source	ChainTek	APC-1000W	N/A	N/A	N/A	May 20, 2019	N/A	Conduction (CO05-HY)
EMI Test Receiver	Rohde & Schwarz	ESR3	102388	9KHz~3.6GHz	Nov. 12, 2018	May 20, 2019	Nov. 11, 2019	Conduction (CO05-HY)
LISN	Rohde & Schwarz	ENV216	100080	9kHz~30MHz	Nov. 14, 2018	May 20, 2019	Nov. 13, 2019	Conduction (CO05-HY)
LISN	Rohde & Schwarz	ENV216	100081	9kHz~30MHz	Nov. 09, 2018	May 20, 2019	Nov. 08, 2019	Conduction (CO05-HY)
Software	Rohde & Schwarz	EMC32 V10.30	N/A	N/A	N/A	May 20, 2019	N/A	Conduction (CO05-HY)
LF Cable	LF Cable HUBER + SUHNER		LF01	N/A	Dec. 31, 2018	May 20, 2019	Dec. 30, 2019	Conduction (CO05-HY)
Pulse Limiter	Rohde & Schwarz	ESH3-Z2	100851	N/A	Dec. 31, 2018	May 20, 2019	Dec. 30, 2019	Conduction (CO05-HY)

Report No. : FR8D1931B

TEL: 886-3-327-3456 Page Number : 26 of 27
FAX: 886-3-328-4978 Report Issued Date : Aug. 08, 2019

5 Uncertainty of Evaluation

<u>Uncertainty of Conducted Emission Measurement (150kHz ~ 30MHz)</u>

Measuring Uncertainty for a Level of Confidence	2.70dB
of 95% (U = 2Uc(y))	2.7008

Report No.: FR8D1931B

: 01

Uncertainty of Radiated Emission Measurement (30 MHz ~ 1000 MHz)

Measuring Uncertainty for a Level of Confidence	5.2dB
of 95% (U = 2Uc(y))	5.2 0 B

Uncertainty of Radiated Emission Measurement (1000 MHz ~ 18000 MHz)

Measuring Uncertainty for a Level of Confidence	5.5dB
of 95% (U = 2Uc(y))	3.3ub

<u>Uncertainty of Radiated Emission Measurement (18000 MHz ~ 40000 MHz)</u>

Measuring Uncertainty for a Level of Confidence	5.2B
of 95% (U = 2Uc(y))	3.2Б

TEL: 886-3-327-3456 Page Number : 27 of 27
FAX: 886-3-328-4978 Report Issued Date : Aug. 08, 2019

Appendix A. Test Result of Conducted Test Items

Test Engineer:	Leo Li/ Shiming Liu	Temperature:	21~25	°C
Test Date:	2019/7/29~2019/8/3	Relative Humidity:	51~54	%

TEST RESULTS DATA 26dB and 99% OBW

Band I													
Mod.	Data Rate	N⊤x	CH.	Freq. (MHz)	99 Band (MI	width	Band	26 dB Bandwidth (MHz) IC 99% Bandwidth Power Limi (dBm)		width r Limit	IC 99% Bandwidth EIRP Limit (dBm)		Note
					Ant 1	Ant 2	Ant 1	Ant 2	Ant 1	Ant 2	Ant 1	Ant 2	
11a	6Mbps	1	36	5180	16.60		33.85	-	-		22.20	-	
11a	6Mbps	1	44	5220	17.05	-	36.00	-	-		22.32	-	
11a	6Mbps	1	48	5240	17.00	-	36.60	-		-	22.30	-	

TEST RESULTS DATA Average Power Table

	FCC Band I												
Mod.	Data Rate	N TX	CH.	Freq. (MHz)	Average Conducted Power (dBm)		FCC Conducted Power Limit (dBm)		DG (dBi)			Pass/Fail	
					Ant 1	Ant 2	SUM	Ant 1	Ant 2	Ant 1	Ant 2		
11a	6Mbps	1	36	5180	11.80	-		24.00	-	4.50	-		Pass
11a	6Mbps	1	44	5220	13.50	-		24.00	-	4.50	-		Pass
11a	6Mbps	1	48	5240	13.10	-		24.00	-	4.50	-		Pass

TEST RESULTS DATA Power Spectral Density

							FCC Ba	and I				
Mod.	Data Rate	INTXI CH		Freq. (MHz)	Average Power Density (dBm/MHz)			Average PSD Limit (dBm/MHz)		DG (dBi)		Pass /Fail
					Ant 1	Ant 2	SUM	Ant 1	Ant 2	Ant 1	Ant 2	
11a	6Mbps	1	36	5180	2.85	-		11.00	-	4.50	-	Pass
11a	6Mbps	1	44	5220	4.55	-		11.00	-	4.50	-	Pass
11a	6Mbps	1	48	5240	4.76	-		11.00	-	4.50	-	Pass

TEST RESULTS DATA 26dB and 99% OBW

	Band II														
Mod.	Data Rate	N⊤x	CH.	Freq. (MHz)	Band	99% Bandwidth (MHz)		26 dB Bandwidth (MHz)		IC 99% Bandwidth Power Limit (dBm)		IC 99% Bandwidth EIRP Limit (dBm)		26dB Iwidth r Limit Bm)	Note
					Ant 1	Ant 2	Ant 1	Ant 2	Ant 1	Ant 2	Ant 1	Ant 2	Ant 1	Ant 2	
11a	6Mbps	1	52	5260	17.05	-	36.95	-	23.32	-	29.32	-	23.98	-	
11a	6Mbps	1	60	5300	16.55	-	29.85	-	23.19	-	29.19	-	23.98	-	
11a	6Mbps	1	64	5320	16.40	-	25.55	-	23.15	-	29.15	-	23.98	-	

TEST RESULTS DATA Average Power Table

	FCC Band II													
Mod.	od. Data		CH.	Freq. (MHz)	Average Conducted Power (dBm)			FCC Conducted Power Limit (dBm)		DG (dBi)		EIRP Power Limit (dBm)	Pass/Fail	
					Ant 1	Ant 2	SUM	Ant 1	Ant 2	Ant 1	Ant 2	()		
11a	6Mbps	1	52	5260	13.10	-		23.98	-	4.50	-	26.99	Pass	
11a	6Mbps	1	60	5300	11.40	-		23.98	-	4.50	-	26.99	Pass	
11a	6Mbps	1	64	5320	11.30	-	Ï	23.98	-	4.50	-	26.99	Pass	

TEST RESULTS DATA Power Spectral Density

	Band II													
Mod.	Data Rate	N⊤x	CH.	Freq. (MHz)	Average Power Density (dBm/MHz)		Average PSD Limit (dBm/MHz)		DG (dBi)			Pass /Fail		
					Ant 1	Ant 2	SUM	Ant 1	Ant 2	Ant 1	Ant 2			
11a	6Mbps	1	52	5260	4.27	-		11.00	-	4.50	-		Pass	
11a	6Mbps	1	60	5300	2.06	-		11.00	-	4.50	-		Pass	
11a	6Mbps	1	64	5320	2.18	-		11.00	-	4.50	-		Pass	

TEST RESULTS DATA 26dB and 99% OBW

	Band III																
Mod.	Data Rate	N⊤x	CH.	Freq. (MHz)	Band In U-N	99% Bandwidth In U-NII 2C (MHz)		26 dB Bandwidth In U-NII 2C (MHz)		IC 99% Bandwidth Power Limit (dBm)		IC 99% Bandwidth EIRP Limit (dBm)		FCC 26dB Bandwidth Power Limit (dBm)		6 dB Bandwidth for Straddle Channel (MHz)	
					Ant 1	Ant 2	Ant 1	Ant 2	Ant 1	Ant 2	Ant 1	Ant 2	Ant 1	Ant 2	Ant 1	Ant 2	
11a	6Mbps	1	100	5500	16.50	-	30.45	-	23.17	-	29.17	-	23.98	-			
11a	6Mbps	1	116	5580	16.55	-	28.25	-	23.19	-	29.19	-	23.98	-			
11a	6Mbps	1	140	5700	16.45	-	25.15	-	23.16	-	29.16	-	23.98	-			

TEST RESULTS DATA Average Power Table

	FCC Band III													
Mod.	od. Data Rate NT		CH.	Freq. (MHz)	Average Conducted Power (dBm)			FCC Conducted Power Limit (dBm)		DG (dBi)		EIRP Power Limit (dBm)	Pass/Fail	
					Ant 1	Ant 2	SUM	Ant 1	Ant 2	Ant 1	Ant 2	,		
11a	6Mbps	1	100	5500	12.70	-		23.98	-	4.50	-	26.99	Pass	
11a	6Mbps	1	116	5580	13.40	-		23.98	-	4.50	-	26.99	Pass	
11a	6Mbps	1	140	5700	10.70	-	Ï	23.98	-	4.50	-	26.99	Pass	

Report Number : FR8D1931B

TEST RESULTS DATA Power Spectral Density

							Band	III				
Mod.	Data Rate	N⊤x	CH.	Freq. (MHz)		Average Power Density IBm/MH		PS Lir	rage SD mit /MHz)		G Bi)	Pass /Fail
					Ant 1	Ant 2	SUM	Ant 1	Ant 2	Ant 1	Ant 2	
11a	6Mbps	1	100	5500	3.26	-		11.00	-	4.50	-	Pass
11a	6Mbps	1	116	5580	3.92	-		11.00	-	4.50	-	Pass
11a	6Mbps	1	140	5700	0.77	-		11.00	-	4.50	-	Pass

Appendix B. AC Conducted Emission Test Results

Report No.: FR8D1931B

Final Result

Frequency	QuasiPeak	CAverage	Limit	Margin	Line	Filter	Corr.
(MHz)	(dBuV)	(dBuV)	(dBuV)	(dB)			(dB)
0.152250		39.83	55.88	16.05	L1	OFF	19.5
0.152250	53.09		65.88	12.79	L1	OFF	19.5
0.163500		27.04	55.28	28.24	L1	OFF	19.5
0.163500	44.10		65.28	21.18	L1	OFF	19.5
0.501000		26.41	46.00	19.59	L1	OFF	19.5
0.501000	35.23		56.00	20.77	L1	OFF	19.5
2.476500		33.46	46.00	12.54	L1	OFF	19.5
2.476500	34.45		56.00	21.55	L1	OFF	19.5
3.783750		26.08	46.00	19.92	L1	OFF	19.6
3.783750	34.91		56.00	21.09	L1	OFF	19.6
9.465000		30.77	50.00	19.23	L1	OFF	19.7
9.465000	35.93	1	60.00	24.07	L1	OFF	19.7
22.832250		16.00	50.00	34.00	L1	OFF	19.8
22.832250	18.74		60.00	41.26	L1	OFF	19.8

TEL: 886-3-327-3456 Page Number : B1 of B2

Test Engineer : Jimmy Chang

Temperature : 24~26°C

Relative Humidity : 51~53%

Test Voltage : 120Vac / 60Hz

Phase : Neutral

Report No.: FR8D1931B

Final Result

Frequency	QuasiPeak	CAverage	Limit	Margin	Line	Filter	Corr.
(MHz)	(dBuV)	(dBuV)	(dBuV)	(dB)			(dB)
0.156750		33.05	55.63	22.58	N	OFF	19.5
0.156750	50.35	1	65.63	15.28	N	OFF	19.5
0.186000		27.15	54.21	27.06	N	OFF	19.5
0.186000	43.10		64.21	21.11	N	OFF	19.5
0.505500		24.97	46.00	21.03	N	OFF	19.5
0.505500	31.82		56.00	24.18	N	OFF	19.5
2.478750		34.54	46.00	11.46	N	OFF	19.5
2.478750	35.14	-	56.00	20.86	N	OFF	19.5
3.844500		25.97	46.00	20.03	N	OFF	19.6
3.844500	34.31		56.00	21.69	N	OFF	19.6
9.516750		24.54	50.00	25.46	N	OFF	19.7
9.516750	29.76		60.00	30.24	N	OFF	19.7
21.576750		16.82	50.00	33.18	N	OFF	19.9
21.576750	19.25		60.00	40.75	N	OFF	19.9

TEL: 886-3-327-3456 Page Number: B2 of B2

Appendix C. Conducted Spurious Emission

Toot Engineer	Rebecca Li	Temperature :	23~25°C
Test Engineer :		Relative Humidity :	52~58%

Report No.: FR8D1931B

Band 1 - 5150~5250MHz

WIFI 802.11a (Band Edge)

	Will 1 002. Tra (Ballu Euge)										
WIFI	Note	Frequency	Level	Over	Limit	Read	Antenna	Path	MIMO	Groun ding	Peak
Ant. 1		(MHz)	(dBm)	Limit (dB)	Line (dBm)	Level (dBm)	Gain (dBi)	Loss (dB)	Factor (dB)	Factor	Avg. (P/A)
		5132.86	-31.4	-10.2	-21.2	-39.15	4.5	3.25	0	0	Р
802.11a		5149.76	-46.2	-5	-41.2	-53.95	4.5	3.25	0	0	Α
CH 36	*	5180	11.96	-	-	4.2	4.5	3.26	0	0	Р
5180MHz	*	5180	4.51	-	-	-3.25	4.5	3.26	0	0	Α
		6214	-29.79	-2.79	-27	-38.06	4.5	3.77			Р
		5134.42	-33.28	-12.08	-21.2	-41.03	4.5	3.25	0	0	Р
		5138.58	-48.57	-7.37	-41.2	-56.32	4.5	3.25	0	0	Α
802.11a	*	5220	12.74	-	-	4.95	4.5	3.29	0	0	Р
CH 44	*	5220	5.61	-	-	-2.18	4.5	3.29	0	0	Α
5220MHz		5357.8	-38.13	-16.93	-21.2	-46.01	4.5	3.38	0	0	Р
		5350.52	-48.51	-7.31	-41.2	-56.39	4.5	3.38	0	0	Α
		6262	-32.51	-5.51	-27	-40.79	4.5	3.78	0	0	Р
		5143.52	-35.6	-14.4	-21.2	-43.35	4.5	3.25	0	0	Р
		5142.74	-49.34	-8.14	-41.2	-57.09	4.5	3.25	0	0	Α
802.11a	*	5240	14.03	-	-	6.24	4.5	3.29	0	0	Р
CH 48	*	5240	6.28	-	-	-1.51	4.5	3.29	0	0	Α
5240MHz		5354.72	-35.08	-13.88	-21.2	-42.96	4.5	3.38	0	0	Р
		5350.52	-46.37	-5.17	-41.2	-54.25	4.5	3.38	0	0	Α
		6292	-34.13	-7.13	-27	-42.43	4.5	3.8	0	0	Р
Remark		o other spurio I results are P		st Peak	and Averag	e limit lin	e.				

TEL: 886-3-327-3456 Page Number : C1 of C9

Band 1 5150~5250MHz

Report No. : FR8D1931B

WIFI 802.11a (Harmonic)

WIFI	Note	Frequency	Level	Over	Limit	Read	Antenna	Path	МІМО	Groun ding	Peak
Ant.				Limit	Line	Level	Gain	Loss	Factor	Factor	Avg.
1		(MHz)	(dBm)	(dB)	(dBm)	(dBm)	(dBi)	(dB)	(dB)	(dB)	(P/A)
000.44		8285.2	-59.78	-38.58	-21.2	-69.68	4.5	5.4	0	0	Р
802.11a		10360	-52.65	-25.65	-27	-63.3	4.5	6.15	0	0	Р
CH 36 5180MHz		11401.3	-60.34	-39.14	-21.2	-71.24	4.5	6.4	0	0	Р
3 100WITIZ		15540	-60.19	-38.99	-21.2	-72.03	4.5	7.34	0	0	Р
000.11		8351.5	-56.17	-34.97	-21.2	-66.07	4.5	5.4	0	0	Р
802.11a		10440	-47.12	-20.12	-27	-57.8	4.5	6.18	0	0	Р
CH 44 5220MHz		11477.8	-58.77	-37.57	-21.2	-69.67	4.5	6.4	0	0	Р
JZZUWINZ		15660	-60.94	-39.74	-21.2	-72.84	4.5	7.4	0	0	Р
000 44 -		8382.1	-56.13	-34.93	-21.2	-66.04	4.5	5.41	0	0	Р
802.11a CH 48		10480	-51.99	-24.99	-27	-62.68	4.5	6.19	0	0	Р
5240MHz		11528.8	-58.86	-37.66	-21.2	-69.77	4.5	6.41	0	0	Р
3240WII 12		15720	-60.83	-39.63	-21.2	-72.77	4.5	7.44	0	0	Р
Remark		o other spurio I results are P		st Peak	and Averag	je limit lin	e.				

TEL: 886-3-327-3456 Page Number : C2 of C9

Band 2 - 5250~5350MHz

WIFI 802.11a (Band Edge)

WIFI	Note	Frequency	Level	Over	Limit	Read	Antenna	Path	МІМО	Groun ding	Peak
Ant.				Limit	Line	Level	Gain	Loss	Factor		Avg.
1		(MHz)	(dBm)	(dB)	(dBm)	(dBm)	(dBi)	(dB)	(dB)	(dB)	(P/A)
		5149.6	-38.62	-17.42	-21.2	-46.37	4.5	3.25	0	0	Р
		5148.24	-50.3	-9.1	-41.2	-58.05	4.5	3.25	0	0	Α
802.11a	*	5260	13.88	-	-	6.06	4.5	3.32	0	0	Р
CH 52	*	5260	5.97	-	-	-1.85	4.5	3.32	0	0	Α
5260MHz		5355.6	-33.57	-12.37	-21.2	-41.45	4.5	3.38	0	0	Р
		5355.6	-45.8	-4.6	-41.2	-53.68	4.5	3.38	0	0	Α
		6310	-34.29	-7.29	-27	-42.59	4.5	3.8	0	0	Р
		5128.52	-44.95	-23.75	-21.2	-52.7	4.5	3.25	0	0	Р
		5147.56	-55.51	-14.31	-41.2	-63.26	4.5	3.25	0	0	Α
802.11a	*	5300	12.08		-	4.23	4.5	3.35	0	0	Р
CH 60	*	5300	4.03	-	-	-3.82	4.5	3.35	0	0	Α
5300MHz		5374.32	-35.05	-13.85	-21.2	-42.95	4.5	3.4	0	0	Р
		5396.88	-47.35	-6.15	-41.2	-55.25	4.5	3.4	0	0	Α
		6358	-38.86	-11.86	-27	-47.17	4.5	3.81	0	0	Р
		4258	-41.91	-20.71	-21.2	-49.38	4.5	2.88	0	0	Р
		4258	-42.95	-1.75	-41.2	-50.42	4.5	2.88	0	0	Α
802.11a	*	5320	11.35		-	3.5	4.5	3.35	0	0	Р
CH 64	*	5320	3.2		-	-4.65	4.5	3.35	0	0	Α
5320MHz		5396.32	-45.28	-24.08	-21.2	-53.18	4.5	3.40	0	0	Р
		5398.88	-50.3	-9.1	-41.2	-58.2	4.5	3.40	0	0	Α
		6382	-37.69	-10.69	-27	-46.01	4.5	3.82	0	0	Р
Remark		o other spurio I results are P		st Peak	and Averag	e limit lin	e.				

TEL: 886-3-327-3456 Page Number : C3 of C9

Band 2 5250~5350MHz

Report No. : FR8D1931B

WIFI 802.11a (Harmonic)

WIFI	Note	Frequency	Level	Over	Limit	Read	Antenna	Path	МІМО	Groun ding	Peak
Ant.				Limit	Line	Level	Gain	Loss		Factor	
1		(MHz)	(dBm)	(dB)	(dBm)	(dBm)	(dBi)	(dB)	(dB)	(dB)	(P/A)
		8417.8	-54.99	-33.79	-21.2	-64.9	4.5	5.41	0	0	Р
802.11a		10520	-43.27	-16.27	-27	-53.98	4.5	6.21	0	0	Р
CH 52		11574.7	-59.61	-38.41	-21.2	-70.52	4.5	6.41	0	0	Р
5260MHz		15780	-60.66	-39.46	-21.2	-72.62	4.5	7.46	0	0	Р
802.11a		8479	-54.54	-33.34	-21.2	-64.41	4.5	5.37	0	0	Р
CH 60		10600	-50.85	-23.85	-27	-61.59	4.5	6.24	0	0	Р
5300MHz		15900	-59.03	-37.83	-21.2	-71.04	4.5	7.51	0	0	Р
802.11a		8509.6	-50.85	-23.85	-27	-60.71	4.5	5.36	0	0	Р
CH 64		10640	-46.91	-25.71	-21.2	-57.67	4.5	6.26	0	0	Р
5320MHz		15960	-61.86	-40.66	-21.2	-73.91	4.5	7.55	0	0	Р
Remark		o other spurio		st Peak	and Averag	e limit lin	e.				

TEL: 886-3-327-3456 Page Number : C4 of C9

Band 3 - 5470~5725MHz

WIFI 802.11a (Band Edge)

WIFI	Note	Frequency	Level	Over	Limit	Read	Antenna	Path	МІМО	Groun ding	Peak
Ant.				Limit	Line	Level	Gain	Loss	Factor	Factor	Avg.
1		(MHz)	(dBm)	(dB)	(dBm)	(dBm)	(dBi)	(dB)	(dB)	(dB)	(P/A)
		4402	-37.57	-10.57	-27	-45.17	4.5	3.1	0	0	Р
000 44 -		5452.56	-30.56	-9.36	-21.2	-38.47	4.5	3.41	0	0	Р
802.11a		5468.08	-31.55	-4.55	-27	-39.46	4.5	3.41	0	0	Р
CH 100 5500MHz		5456.88	-45.14	-3.94	-41.2	-53.05	4.5	3.41	0	0	Α
5500WITI2	*	5500	12.64	-	-	4.73	4.5	3.41	0	0	Р
	*	5500	5.13	-	-	-2.78	4.5	3.41	0	0	Α
		4462	-36.92	-9.92	-27	-44.38	4.5	2.96	0	0	Р
		5458.72	-37.04	-15.84	-21.2	-44.95	4.5	3.41	0	0	Р
802.11a		5468.8	-37.2	-10.2	-27	-45.11	4.5	3.41	0	0	Р
CH 116		5456.56	-49.95	-8.75	-41.2	-57.86	4.5	3.41	0	0	Α
5580MHz	*	5580	12.06	-	-	4.15	4.5	3.41	0	0	Р
	*	5580	5.64	-	-	-2.27	4.5	3.41	0	0	Α
		5728.145	-40.06	-13.06	-27	-48.1	4.5	3.54	0	0	Р
		2284	-48.86	-27.66	-21.2	-55.46	4.5	2.1	0	0	Р
802.11a	*	5700	11.31	-	-	3.31	4.5	3.5	0	0	Р
CH 140	*	5700	3.19	-	-	-4.81	4.5	3.5	0	0	Α
5700MHz		5729.48	-31.96	-4.96	-27	-40	4.5	3.54	0	0	Р
Remark		o other spurio I results are P		st Peak	and Averag	e limit lin	e.		1		,

TEL: 886-3-327-3456 Page Number : C5 of C9

Band 3 - 5470~5725MHz

Report No. : FR8D1931B

WIFI 802.11a (Harmonic)

WIFI	Note	Frequency	Level	Over	Limit	Read	Antenna	Path	МІМО	Groun ding	Peak
Ant.				Limit	Line	Level	Gain	Loss	Factor	Factor	Avg.
1		(MHz)	(dBm)	(dB)	(dBm)	(dBm)	(dBi)	(dB)	(dB)	(dB)	(P/A)
802.11a		7703.8	-54.95	-33.75	-21.2	-64.75	4.5	5.3	0	0	Р
CH 100		11000	-58.6	-37.4	-21.2	-69.52	4.5	6.42	0	0	Р
5500MHz		16500	-60.63	-33.63	-27	-72.91	4.5	7.78	0	0	Р
802.11a		7810.9	-55.63	-28.63	-27	-65.42	4.5	5.29	0	0	Р
CH 116		11160	-55.55	-34.35	-21.2	-66.46	4.5	6.41	0	0	Р
5580MHz		16740	-60.96	-33.96	-27	-73.33	4.5	7.87	0	0	Р
802.11a		7974.1	-60.27	-33.27	-27	-70.18	4.5	5.41	0	0	Р
CH 140		11400	-54.69	-33.49	-21.2	-65.59	4.5	6.4	0	0	Р
5700MHz		17100	-60.75	-33.75	-27	-73.26	4.5	8.01	0	0	Р
Remark		o other spurio		st Peak	and Averaç	je limit lin	e.				

TEL: 886-3-327-3456 Page Number : C6 of C9

Emission below 1GHz

Report No. : FR8D1931B

5GHz WIFI 802.11a (LF)

WIFI	Note	Frequency	Level	Over	Limit	Read	Antenna	Path	МІМО	Grounding	Peak
Ant.				Limit	Line	Level	Gain	Loss	Factor	Factor	Avg.
1		(MHz)	(dBm)	(dB)	(dBm)	(dBm)	(dBi)	(dB)	(dB)	(dB)	(P/A)
		67.8	-80.26	-25.06	-55.2	-89.88	4.5	0.42	0	4.7	Р
		188.22	-79.75	-28.05	-51.7	-89.64	4.5	0.69	0	4.7	Р
5GHz		246.27	-79	-29.8	-49.2	-88.9	4.5	0.7	0	4.7	Р
802.11a LF		414.1	-79.77	-30.57	-49.2	-89.84	4.5	0.87	0	4.7	Р
-		662.6	-78.42	-29.22	-49.2	-88.73	4.5	1.11	0	4.7	Р
		944	-76.02	-26.82	-49.2	-86.68	4.5	1.46	0	4.7	Р
Remark		o other spuric		st Peak	and Avera	age limit I	line.				

TEL: 886-3-327-3456 Page Number : C7 of C9

Note symbol

Report No.: FR8D1931B

*	Fundamental Frequency which can be ignored. However, the level of any unwanted emissions
	shall not exceed the level of the fundamental frequency.
!	Test result is over limit line.
P/A	Peak or Average
H/V	Horizontal or Vertical

TEL: 886-3-327-3456 Page Number : C8 of C9

A calculation example for radiated spurious emission is shown as below:

Report No.: FR8D1931B

WIFI	Note	Frequency	Level	Over	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
Ant.				Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
1		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dB _µ V)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
802.11b		2390	55.45	-18.55	74	54.51	32.22	4.58	35.86	103	308	Р	Н
CH 01													
2412MHz		2390	43.54	-10.46	54	42.6	32.22	4.58	35.86	103	308	Α	Н

- 1. Path Loss(dB) = Cable loss(dB) + Filter loss(dB) + Attenuator loss(dB)
- 2. Level(dBµV/m) = Antenna Factor(dB/m) + Path Loss(dB) + Read Level(dBµV) Preamp Factor(dB)
- 3. Over Limit(dB) = Level(dB μ V/m) Limit Line(dB μ V/m)

For Peak Limit @ 2390MHz:

- 1. Level(dBµV/m)
- = Antenna Factor(dB/m) + Path Loss(dB) + Read Level(dBµV) Preamp Factor(dB)
- $= 32.22(dB/m) + 4.58(dB) + 54.51(dB\mu V) 35.86 (dB)$
- $= 55.45 (dB\mu V/m)$
- 2. Over Limit(dB)
- = Level(dBµV/m) Limit Line(dBµV/m)
- $= 55.45(dB\mu V/m) 74(dB\mu V/m)$
- = -18.55(dB)

For Average Limit @ 2390MHz:

- 1. Level(dBµV/m)
- = Antenna Factor(dB/m) + Path Loss(dB) + Read Level(dBµV) Preamp Factor(dB)
- $= 32.22(dB/m) + 4.58(dB) + 42.6(dB\mu V) 35.86 (dB)$
- $= 43.54 (dB\mu V/m)$
- 2. Over Limit(dB) = Level(dB μ V/m) Limit Line(dB μ V/m)
- $= 43.54(dB\mu V/m) 54(dB\mu V/m)$
- = -10.46(dB)

Both peak and average measured complies with the limit line, so test result is "PASS".

TEL: 886-3-327-3456 Page Number : C9 of C9

Appendix D. Conducted Spurious Emission

Test	Rebecca Li	Temperature :	23~25°C
Engineer :		Relative Humidity :	52~58%

Report No.: FR8D1931B

Note symbol

-L	Low channel location
-R	High channel location

TEL: 886-3-327-3456 Page Number: D1 of D22

CC RADIO TEST REPORT Report No. : FR8D1931B

Band 1 - 5150~5250MHz

WIFI 802.11a (Band Edge)

WIFI	Band 1 5150~525	0MHz Band Edge
ANT	802.11a CH	36 5180MHz
1	CSE	Fundamental
Peak	Centrol (Silling) Color (S	12.6
Avg.	Test Select Sel	Left blank

TEL: 886-3-327-3456 Page Number : D2 of D22

WIFI Band 1 5150~5250MHz Band Edge **ANT** 802.11a CH44 5220MHz - L 1 **CSE Fundamental** : TH05-HY
- FCC CLASS-B_CON ANT_GAIN+4.5 HORIZONTAL
- RRW-1000.000KHz VBW-3000.000KHz SWT-Auto
- Peak
- 801931
- 2
- 0 : TH05-HY
: FCC CLASS-B_CON ANT_GAIN+4.5 HORIZONTAL
: RBW: 1000.00KHz VBW:3000.000KHz SWT-Auto
- Peak
: 801931
: 2
0 Peak Avg. Left blank

Report No.: FR8D1931B

TEL: 886-3-327-3456 Page Number: D3 of D22

TEL: 886-3-327-3456 Page Number: D4 of D22

WIFI Band 1 5150~5250MHz Band Edge **ANT** 802.11a CH48 5220MHz - L 1 **CSE Fundamental** :TH05-HY
FCC CLASS-B_CON ANT_GAIN+4.5 HORIZONTAL
RBW-1000.000KHz VBW-3000.000KHz SWT-Auto
-Peak
801931
3
0 : THOS-HY
FCC CLASS-B_CON ANT_GAIN+4.5 HORIZONTAL
RBIV-1000.000RHz VBW:3000.000RHz SWT/Auto
- Peak
801931
3
0 Peak Avg. Left blank

Report No.: FR8D1931B

TEL: 886-3-327-3456 Page Number: D5 of D22

WIFI Band 1 5150~5250MHz Band Edge **ANT** 802.11a CH48 5240MHz - R 1 **CSE Fundamental** : TH05-HY
: FCC CLASS-B_CON ANT_GAIN+4.5 HORIZONTAL
: RBW: 1000.00KHz VBW:3000.000KHz SWT-Auto
- Peak
: 801931
: 3
0 Peak Left blank Avg. Left blank

Report No.: FR8D1931B

TEL: 886-3-327-3456 Page Number: D6 of D22

Band 1 - 5150~5250MHz

WIFI 802.11a (Harmonic)

TEL: 886-3-327-3456 Page Number: D7 of D22

TEL: 886-3-327-3456 Page Number : D8 of D22

CC RADIO TEST REPORT Report No. : FR8D1931B

Band 2 - 5250~5350MHz

WIFI 802.11a (Band Edge)

TEL: 886-3-327-3456 Page Number: D9 of D22

TEL: 886-3-327-3456 Page Number : D10 of D22

FAX: 886-3-328-4978

WIFI Band 2 5250~5350MHz Band Edge **ANT** 802.11a CH60 5300MHz - L 1 **CSE Fundamental** : TH05-HY
FCC CLASS-B_CON ANT_GAIN+4.5 HORIZONTAL
RBW-1000 000KHz VBW-3000 000KHz SWT-Auto
Peak
BD1931
5
0 : TH05-HY
: FCC CLASS-B_CON ANT_GAIN+4.5 HORIZONTAL
: RBW: 1000.00KHz VBW:3000.000KHz SWT-Auto
- Peak
: 801931
: 5
0 Peak Avg. Left blank

Report No.: FR8D1931B

TEL: 886-3-327-3456 Page Number : D11 of D22

TEL: 886-3-327-3456 Page Number : D12 of D22

WIFI Band 2 5250~5350MHz Band Edge **ANT** 802.11a CH64 5320MHz 1 **CSE Fundamental** : TH05-HY : 15.407_CON_ANT_GAIN+4.5 HORIZONTAL : RBW:1000.000KHz VBW:3000.000KHz SW/T.Auto :Peak : 801931 : 6 : TH05-HY
: FCC CLASS-B_CON ANT_GAIN+4.5 HORIZONTAL
: RBW: 1000.00KHz VBW:3000.000KHz SWT-Auto
- Peak
: 801931
: 6
0 Peak Avg. Left blank

Report No.: FR8D1931B

TEL: 886-3-327-3456 Page Number: D13 of D22

Band 2 - 5250~5350MHz

WIFI 802.11a (Harmonic)

TEL: 886-3-327-3456 Page Number : D14 of D22

TEL: 886-3-327-3456 Page Number : D15 of D22

Band 3 - 5470~5725MHz

WIFI 802.11a (Band Edge)

TEL: 886-3-327-3456 Page Number : D16 of D22

WIFI Band 3 5470~5725MHz Band Edge **ANT** 802.11a CH116 5580MHz - L 1 **CSE Fundamental** : TH05-HY : 15.407_CON_ANT_GAIN+4.5 HORIZONTAL : RBW: 1000.000KHz VBW:3000.000KHz SWT.Auto : Peak : BD1931 : 8 : TH05-HY : 15.407_CON_ANT_GAIN+4.5 HORIZONTAL : RBW:1000.000KHz VBW:3000.000KHz SWT:Auto :Peak : 801931 Peak Avg. Left blank

Report No.: FR8D1931B

TEL: 886-3-327-3456 Page Number : D17 of D22

TEL: 886-3-327-3456 Page Number : D18 of D22

TEL: 886-3-327-3456 Page Number : D19 of D22

Band 3 - 5470~5725MHz

WIFI 802.11a (Harmonic)

TEL: 886-3-327-3456 Page Number : D20 of D22

TEL: 886-3-327-3456 Page Number : D21 of D22

Emission below 1GHz

Report No.: FR8D1931B

5GHz WIFI 802.11a LF

TEL: 886-3-327-3456 Page Number : D22 of D22

Appendix E. Cabinet Radiated Spurious Emission

Test Engineer :	Karl Hou, Big Show Wang	Temperature :	23~26°C
rest Engineer .		Relative Humidity :	50~65%

Report No.: FR8D1931B

Band 1 - 5150~5250MHz

WIFI 802.11a (Band Edge @ 3m)

WIFI	Note	Frequency	Level	Over	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
Ant.				Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
1		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
		5033.8	50.26	-23.74	74	39.61	31.8	9.13	30.28	286	153	Р	Н
		5080.86	43.03	-10.97	54	32.23	31.9	9.18	30.28	286	153	Α	Н
000 44 -	*	5180	83.23	-	-	72.54	31.67	9.29	30.27	286	153	Р	Н
802.11a CH 36	*	5180	76.48	-	-	65.79	31.67	9.29	30.27	286	153	Α	Н
5180MHz		5038.22	50.69	-23.31	74	39.94	31.9	9.13	30.28	264	180	Р	V
3100W1112		5111.54	43.11	-10.89	54	32.31	31.87	9.21	30.28	264	180	Α	V
	*	5180	82.62	-	-	71.93	31.67	9.29	30.27	264	180	Р	V
	*	5180	75.87	-	-	65.18	31.67	9.29	30.27	264	180	Α	V
		5093.6	50.59	-23.41	74	39.78	31.9	9.19	30.28	267	153	Р	Н
		5026.52	43.17	-10.83	54	32.53	31.8	9.12	30.28	267	153	Α	Н
	*	5220	85.69	-	-	75.1	31.53	9.33	30.27	267	153	Р	Н
	*	5220	79.02	-	-	68.43	31.53	9.33	30.27	400	130	Α	Н
000 44 -		5444.32	50.32	-23.68	74	39.36	31.67	9.55	30.26	267	153	Р	Н
802.11a CH 44		5460	42.94	-11.06	54	31.92	31.7	9.58	30.26	267	153	Α	Н
5220MHz		5065	51.01	-22.99	74	40.23	31.9	9.16	30.28	262	177	Р	V
3220WII 12		5041.34	43.36	-10.64	54	32.6	31.9	9.14	30.28	262	177	Α	V
	*	5220	85.59	-	-	75	31.53	9.33	30.27	262	177	Р	V
	*	5220	78.56	-	-	67.97	31.53	9.33	30.27	262	177	Α	V
		5440.12	49.77	-24.23	74	38.82	31.67	9.54	30.26	262	177	Р	V
		5414.64	42.86	-11.14	54	32	31.63	9.49	30.26	262	177	Α	V

TEL: 886-3-327-3456 Page Number: E1 of E12

		5029.38	50.26	-23.74	74	39.62	31.8	9.12	30.28	278	155	Р	Н
		5102.44	43.4	-10.6	54	32.58	31.9	9.2	30.28	278	155	Α	Н
	*	5240	86.12	-	-	75.58	31.47	9.34	30.27	278	155	Р	Н
	*	5240	79.59	-	-	69.05	31.47	9.34	30.27	278	155	Α	Н
		5451.6	49.3	-24.7	74	38.3	31.7	9.56	30.26	278	155	Р	Н
802.11a		5424.72	42.72	-11.28	54	31.84	31.63	9.51	30.26	278	155	Α	Н
CH 48		5130.78	50.56	-23.44	74	39.77	31.83	9.23	30.27	253	176	Р	V
5240MHz		5134.68	43.31	-10.69	54	32.51	31.83	9.24	30.27	253	176	Α	V
	*	5240	86.38	-	-	75.84	31.47	9.34	30.27	253	176	Р	V
	*	5240	79.69	-	-	69.15	31.47	9.34	30.27	253	176	Α	V
		5361.72	51.2	-22.8	74	40.57	31.47	9.43	30.27	253	176	Р	V
		5454.4	43.16	-10.84	54	32.15	31.7	9.57	30.26	253	176	Α	V
Remark	No other spurious found. Remark 2. All results are PASS against Peak and Average limit line.										,		

TEL: 886-3-327-3456 FAX: 886-3-328-4978 Report No. : FR8D1931B

Band 1 5150~5250MHz

Report No. : FR8D1931B

WIFI 802.11a (Harmonic @ 3m)

WIFI	Note	Frequency	Level	Over	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
Ant. 1		(MHz)	(dBµV/m)	Limit (dB)	Line (dBµV/m)	Level (dBµV)	Factor (dB/m)	Loss (dB)	Factor (dB)	Pos (cm)	Pos (deg)		
000 44 -		10360	50.27	-17.93	68.2	58.09	39.37	13.57	60.76	100	0	Р	Н
802.11a		15540	41.98	-32.02	74	48.59	37.93	17.01	61.55	100	0	Р	Н
CH 36 5180MHz		10360	47.21	-20.99	68.2	55.03	39.37	13.57	60.76	100	0	Р	V
3100W1112		15540	40.57	-33.43	74	47.18	37.93	17.01	61.55	100	0	Р	V
		7308	54.53	-19.47	74	65.51	36.2	12	59.18	307	228	Р	Н
		7308	46.85	-7.15	54	57.83	36.2	12	59.18	307	228	Α	Н
802.11a		10440	49.86	-18.34	68.2	57.64	39.53	13.65	60.96	100	0	Р	Н
CH 44		15660	40.13	-33.87	74	46.93	37.45	17.16	61.41	100	0	Р	Н
5220MHz		7308	47.32	-26.68	74	58.3	36.2	12	59.18	100	0	Р	V
		10440	52.21	-15.99	68.2	59.99	39.53	13.65	60.96	100	0	Р	V
		15660	40.06	-33.94	74	46.86	37.45	17.16	61.41	100	0	Р	V
		10480	52.07	-16.13	68.2	59.86	39.58	13.68	61.05	100	0	Р	Н
802.11a		15720	41.42	-32.58	74	48.25	37.3	17.21	61.34	100	0	Р	Н
CH 48		10480	50.1	-18.1	68.2	57.89	39.58	13.68	61.05	100	0	Р	V
5240MHz		15720	41.67	-32.33	74	48.5	37.3	17.21	61.34	100	0	Р	V
Remark		o other spurio		st Peak	and Average	e limit line).						

Page Number TEL: 886-3-327-3456 : E3 of E12

Band 2 - 5250~5350MHz

WIFI 802.11a (Band Edge @ 3m)

WIFI	Note	Frequency	Level	Over	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
Ant.				Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
1		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
		5089.42	50.6	-23.4	74	39.79	31.9	9.19	30.28	278	154	Р	Н
		5105.06	43.16	-10.84	54	32.33	31.9	9.21	30.28	278	154	Α	Н
	*	5260	86.36	-	-	75.87	31.4	9.36	30.27	278	154	Р	Н
	*	5260	79.74	-	-	69.25	31.4	9.36	30.27	278	154	Α	Н
000 44 5		5432.88	49.91	-24.09	74	38.98	31.67	9.52	30.26	278	154	Р	Н
802.11a CH 52		5424	43.15	-10.85	54	32.27	31.63	9.51	30.26	278	154	Α	Н
5260MHz		5110.84	49.66	-24.34	74	38.86	31.87	9.21	30.28	248	178	Р	V
3200W1112		5140.76	43.52	-10.48	54	32.75	31.8	9.24	30.27	248	178	Α	V
	*	5260	86.69	-	-	76.2	31.4	9.36	30.27	248	178	Р	V
	*	5260	80.06	-	-	69.57	31.4	9.36	30.27	248	178	Α	V
		5426.64	49.29	-24.71	74	38.41	31.63	9.51	30.26	248	178	Р	V
		5442.72	42.93	-11.07	54	31.98	31.67	9.54	30.26	248	178	Α	٧
		5070.04	49.89	-24.11	74	39.1	31.9	9.17	30.28	317	127	Р	Н
		5084.32	43.42	-10.58	54	32.62	31.9	9.18	30.28	317	127	Α	Н
	*	5300	84.69	-	-	74.17	31.4	9.39	30.27	317	127	Р	Н
	*	5300	77.84	-	-	67.32	31.4	9.39	30.27	317	127	Α	Н
000 44 -		5390.64	50.41	-23.59	74	39.69	31.53	9.45	30.26	317	127	Р	Н
802.11a CH 60		5406.24	43.24	-10.76	54	32.43	31.6	9.47	30.26	317	127	Α	Н
5300MHz		5114.58	50.02	-23.98	74	39.21	31.87	9.22	30.28	223	182	Р	V
3300W112		5082.62	43.15	-10.85	54	32.35	31.9	9.18	30.28	223	182	Α	V
	*	5300	85.72	-	-	75.2	31.4	9.39	30.27	223	182	Р	٧
	*	5300	78.94	-	-	68.42	31.4	9.39	30.27	223	182	Α	٧
		5446.8	50.22	-23.78	74	39.23	31.7	9.55	30.26	223	182	Р	V
		5447.28	43.28	-10.72	54	32.29	31.7	9.55	30.26	223	182	Α	V

TEL: 886-3-327-3456 Page Number : E4 of E12

	*	5320	84	-	-	73.47	31.4	9.4	30.27	181	285	Р	Н
	*	5320	77.48	-	-	66.95	31.4	9.4	30.27	181	285	Α	Н
000 44 -		5447.84	51.65	-22.35	74	40.66	31.7	9.55	30.26	181	285	Р	Н
802.11a		5452.16	42.76	-11.24	54	31.76	31.7	9.56	30.26	181	285	Α	Н
CH 64 5320MHz	*	5320	85.41	-	-	74.88	31.4	9.4	30.27	197	153	Р	V
JJZUWITIZ	*	5320	79.07	-	-	68.54	31.4	9.4	30.27	197	153	Α	V
		5448.32	50.46	-23.54	74	39.47	31.7	9.55	30.26	197	153	Р	٧
		5437.44	43.07	-10.93	54	32.13	31.67	9.53	30.26	197	153	Α	٧

Remark

1. No other spurious found.

2. All results are PASS against Peak and Average limit line.

TEL: 886-3-327-3456 Page Number : E5 of E12

Band 2 5250~5350MHz

Report No. : FR8D1931B

WIFI 802.11a (Harmonic @ 3m)

(8411 -)							Preamp				Pol.
(MHz)	(dBµV/m)	Limit (dB)	Line (dBµV/m)	Level (dBµV)	Factor (dB/m)	Loss (dB)	Factor (dB)	Pos (cm)	Pos (deg)		
10520	50.45	-17.75	68.2	58.25	39.63	13.69	61.12	100	0	Р	Н
15780	40.7	-33.3	74	47.39	37.3	17.27	61.26	100	0	Р	Н
10520	50.99	-17.21	68.2	58.79	39.63	13.69	61.12	100	0	Р	V
15780	41.01	-32.99	74	47.7	37.3	17.27	61.26	100	0	Р	V
10600	48.16	-25.84	74	55.87	39.8	13.71	61.22	100	0	Р	Н
15900	41.1	-32.9	74	47.84	37	17.38	61.12	100	0	Р	Н
10600	48.21	-25.79	74	55.92	39.8	13.71	61.22	100	0	Р	V
15900	40.59	-33.41	74	47.33	37	17.38	61.12	100	0	Р	V
10640	51.09	-22.91	74	58.84	39.8	13.72	61.27	286	212	Р	Н
10640	44.17	-9.83	54	51.92	39.8	13.72	61.27	286	212	Α	Н
15960	39.79	-34.21	74	46.58	36.93	17.33	61.05	100	0	Р	Н
10640	49.99	-24.01	74	57.74	39.8	13.72	61.27	100	0	Р	V
15960	40.95	-33.05	74	47.74	36.93	17.33	61.05	100	0	Р	V
	15780 10520 15780 10600 15900 10600 15900 10640 15960 10640 15960	15780 40.7 10520 50.99 15780 41.01 10600 48.16 15900 41.1 10600 48.21 15900 40.59 10640 51.09 10640 44.17 15960 39.79 10640 49.99 15960 40.95	15780 40.7 -33.3 10520 50.99 -17.21 15780 41.01 -32.99 10600 48.16 -25.84 15900 41.1 -32.9 10600 48.21 -25.79 15900 40.59 -33.41 10640 51.09 -22.91 10640 44.17 -9.83 15960 39.79 -34.21 10640 49.99 -24.01	15780 40.7 -33.3 74 10520 50.99 -17.21 68.2 15780 41.01 -32.99 74 10600 48.16 -25.84 74 15900 41.1 -32.9 74 10600 48.21 -25.79 74 15900 40.59 -33.41 74 10640 51.09 -22.91 74 10640 44.17 -9.83 54 15960 39.79 -34.21 74 10640 49.99 -24.01 74 15960 40.95 -33.05 74	15780 40.7 -33.3 74 47.39 10520 50.99 -17.21 68.2 58.79 15780 41.01 -32.99 74 47.7 10600 48.16 -25.84 74 55.87 15900 41.1 -32.9 74 47.84 10600 48.21 -25.79 74 55.92 15900 40.59 -33.41 74 47.33 10640 51.09 -22.91 74 58.84 10640 44.17 -9.83 54 51.92 15960 39.79 -34.21 74 46.58 10640 49.99 -24.01 74 57.74 15960 40.95 -33.05 74 47.74	15780 40.7 -33.3 74 47.39 37.3 10520 50.99 -17.21 68.2 58.79 39.63 15780 41.01 -32.99 74 47.7 37.3 10600 48.16 -25.84 74 55.87 39.8 15900 41.1 -32.9 74 47.84 37 10600 48.21 -25.79 74 55.92 39.8 15900 40.59 -33.41 74 47.33 37 10640 51.09 -22.91 74 58.84 39.8 10640 44.17 -9.83 54 51.92 39.8 15960 39.79 -34.21 74 46.58 36.93 10640 49.99 -24.01 74 57.74 39.8 15960 40.95 -33.05 74 47.74 36.93	15780 40.7 -33.3 74 47.39 37.3 17.27 10520 50.99 -17.21 68.2 58.79 39.63 13.69 15780 41.01 -32.99 74 47.7 37.3 17.27 10600 48.16 -25.84 74 55.87 39.8 13.71 15900 41.1 -32.9 74 47.84 37 17.38 10600 48.21 -25.79 74 55.92 39.8 13.71 15900 40.59 -33.41 74 47.33 37 17.38 10640 51.09 -22.91 74 58.84 39.8 13.72 15960 39.79 -34.21 74 46.58 36.93 17.33 10640 49.99 -24.01 74 57.74 39.8 13.72 15960 40.95 -33.05 74 47.74 36.93 17.33	15780 40.7 -33.3 74 47.39 37.3 17.27 61.26 10520 50.99 -17.21 68.2 58.79 39.63 13.69 61.12 15780 41.01 -32.99 74 47.7 37.3 17.27 61.26 10600 48.16 -25.84 74 55.87 39.8 13.71 61.22 15900 41.1 -32.9 74 47.84 37 17.38 61.12 10600 48.21 -25.79 74 55.92 39.8 13.71 61.22 15900 40.59 -33.41 74 47.33 37 17.38 61.12 10640 51.09 -22.91 74 58.84 39.8 13.72 61.27 15960 39.79 -34.21 74 46.58 36.93 17.33 61.05 10640 49.99 -24.01 74 57.74 39.8 13.72 61.27 15960 40.95 -33.05 74 47.74 36.93 17.33 61.05 <td>15780 40.7 -33.3 74 47.39 37.3 17.27 61.26 100 10520 50.99 -17.21 68.2 58.79 39.63 13.69 61.12 100 15780 41.01 -32.99 74 47.7 37.3 17.27 61.26 100 10600 48.16 -25.84 74 55.87 39.8 13.71 61.22 100 15900 41.1 -32.9 74 47.84 37 17.38 61.12 100 10600 48.21 -25.79 74 55.92 39.8 13.71 61.22 100 15900 40.59 -33.41 74 47.33 37 17.38 61.12 100 10640 51.09 -22.91 74 58.84 39.8 13.72 61.27 286 15960 39.79 -34.21 74 46.58 36.93 17.33 61.05 100 15960 40.95 -33.05 74 47.74 36.93 17.33 61.05 100 <td>15780 40.7 -33.3 74 47.39 37.3 17.27 61.26 100 0 10520 50.99 -17.21 68.2 58.79 39.63 13.69 61.12 100 0 15780 41.01 -32.99 74 47.7 37.3 17.27 61.26 100 0 10600 48.16 -25.84 74 55.87 39.8 13.71 61.22 100 0 15900 41.1 -32.9 74 47.84 37 17.38 61.12 100 0 10600 48.21 -25.79 74 55.92 39.8 13.71 61.22 100 0 15900 40.59 -33.41 74 47.33 37 17.38 61.12 100 0 10640 51.09 -22.91 74 58.84 39.8 13.72 61.27 286 212 15960 39.79 -34.21 74 46.58 36.93 17.33 61.05 100 0 15960 40.95</td><td>15780 40.7 -33.3 74 47.39 37.3 17.27 61.26 100 0 P 10520 50.99 -17.21 68.2 58.79 39.63 13.69 61.12 100 0 P 15780 41.01 -32.99 74 47.7 37.3 17.27 61.26 100 0 P 10600 48.16 -25.84 74 55.87 39.8 13.71 61.22 100 0 P 15900 41.1 -32.9 74 47.84 37 17.38 61.12 100 0 P 10600 48.21 -25.79 74 55.92 39.8 13.71 61.22 100 0 P 15900 40.59 -33.41 74 47.33 37 17.38 61.12 100 0 P 10640 51.09 -22.91 74 58.84 39.8 13.72 61.27 286 212 P 10640 44.17 -9.83 54 51.92 39.8 1</td></td>	15780 40.7 -33.3 74 47.39 37.3 17.27 61.26 100 10520 50.99 -17.21 68.2 58.79 39.63 13.69 61.12 100 15780 41.01 -32.99 74 47.7 37.3 17.27 61.26 100 10600 48.16 -25.84 74 55.87 39.8 13.71 61.22 100 15900 41.1 -32.9 74 47.84 37 17.38 61.12 100 10600 48.21 -25.79 74 55.92 39.8 13.71 61.22 100 15900 40.59 -33.41 74 47.33 37 17.38 61.12 100 10640 51.09 -22.91 74 58.84 39.8 13.72 61.27 286 15960 39.79 -34.21 74 46.58 36.93 17.33 61.05 100 15960 40.95 -33.05 74 47.74 36.93 17.33 61.05 100 <td>15780 40.7 -33.3 74 47.39 37.3 17.27 61.26 100 0 10520 50.99 -17.21 68.2 58.79 39.63 13.69 61.12 100 0 15780 41.01 -32.99 74 47.7 37.3 17.27 61.26 100 0 10600 48.16 -25.84 74 55.87 39.8 13.71 61.22 100 0 15900 41.1 -32.9 74 47.84 37 17.38 61.12 100 0 10600 48.21 -25.79 74 55.92 39.8 13.71 61.22 100 0 15900 40.59 -33.41 74 47.33 37 17.38 61.12 100 0 10640 51.09 -22.91 74 58.84 39.8 13.72 61.27 286 212 15960 39.79 -34.21 74 46.58 36.93 17.33 61.05 100 0 15960 40.95</td> <td>15780 40.7 -33.3 74 47.39 37.3 17.27 61.26 100 0 P 10520 50.99 -17.21 68.2 58.79 39.63 13.69 61.12 100 0 P 15780 41.01 -32.99 74 47.7 37.3 17.27 61.26 100 0 P 10600 48.16 -25.84 74 55.87 39.8 13.71 61.22 100 0 P 15900 41.1 -32.9 74 47.84 37 17.38 61.12 100 0 P 10600 48.21 -25.79 74 55.92 39.8 13.71 61.22 100 0 P 15900 40.59 -33.41 74 47.33 37 17.38 61.12 100 0 P 10640 51.09 -22.91 74 58.84 39.8 13.72 61.27 286 212 P 10640 44.17 -9.83 54 51.92 39.8 1</td>	15780 40.7 -33.3 74 47.39 37.3 17.27 61.26 100 0 10520 50.99 -17.21 68.2 58.79 39.63 13.69 61.12 100 0 15780 41.01 -32.99 74 47.7 37.3 17.27 61.26 100 0 10600 48.16 -25.84 74 55.87 39.8 13.71 61.22 100 0 15900 41.1 -32.9 74 47.84 37 17.38 61.12 100 0 10600 48.21 -25.79 74 55.92 39.8 13.71 61.22 100 0 15900 40.59 -33.41 74 47.33 37 17.38 61.12 100 0 10640 51.09 -22.91 74 58.84 39.8 13.72 61.27 286 212 15960 39.79 -34.21 74 46.58 36.93 17.33 61.05 100 0 15960 40.95	15780 40.7 -33.3 74 47.39 37.3 17.27 61.26 100 0 P 10520 50.99 -17.21 68.2 58.79 39.63 13.69 61.12 100 0 P 15780 41.01 -32.99 74 47.7 37.3 17.27 61.26 100 0 P 10600 48.16 -25.84 74 55.87 39.8 13.71 61.22 100 0 P 15900 41.1 -32.9 74 47.84 37 17.38 61.12 100 0 P 10600 48.21 -25.79 74 55.92 39.8 13.71 61.22 100 0 P 15900 40.59 -33.41 74 47.33 37 17.38 61.12 100 0 P 10640 51.09 -22.91 74 58.84 39.8 13.72 61.27 286 212 P 10640 44.17 -9.83 54 51.92 39.8 1

^{2.} All results are PASS against Peak and Average limit line.

TEL: 886-3-327-3456 Page Number : E6 of E12

Band 3 - 5470~5725MHz

WIFI 802.11a (Band Edge @ 3m)

WIFI	Note	Frequency	Level	Over	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
Ant.				Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
1		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
		5400.72	50.25	-23.75	74	39.45	31.6	9.46	30.26	178	242	Р	Н
		5467.76	48.29	-19.91	68.2	37.26	31.7	9.59	30.26	178	242	Р	Н
		5449.04	42.9	-11.1	54	31.9	31.7	9.56	30.26	178	242	Α	Н
902 44 6	*	5500	82.21	-	-	71.11	31.7	9.66	30.26	178	242	Р	Н
802.11a CH 100	*	5500	75.36	-	-	64.26	31.7	9.66	30.26	178	242	Α	Н
5500MHz		5390.96	49.82	-24.18	74	39.1	31.53	9.45	30.26	196	140	Р	V
330011112		5465.04	49.23	-18.97	68.2	38.2	31.7	9.59	30.26	196	140	Р	V
		5450	42.63	-11.37	54	31.63	31.7	9.56	30.26	196	140	Α	V
	*	5500	80.16	-	•	69.06	31.7	9.66	30.26	196	140	Р	٧
	*	5500	74.46	-	•	63.36	31.7	9.66	30.26	196	140	Α	٧
		5405.44	50.02	-23.98	74	39.21	31.6	9.47	30.26	201	237	Р	I
		5468.08	50.1	-18.1	68.2	39.07	31.7	9.59	30.26	201	237	Р	I
		5405.2	42.89	-11.11	54	32.08	31.6	9.47	30.26	201	237	Α	I
	*	5580	84.25	-	-	72.94	31.8	9.81	30.3	201	237	Р	I
200.44	*	5580	77.72	-	-	66.41	31.8	9.81	30.3	201	237	Α	Н
802.11a		5726.255	49.22	-18.98	68.2	37.81	31.93	9.86	30.38	201	237	Р	Н
CH 116 5580MHz		5350.96	50.47	-23.53	74	39.92	31.4	9.42	30.27	202	196	Р	7
3300WI112		5469.52	49.14	-19.06	68.2	38.1	31.7	9.6	30.26	202	196	Р	7
		5418.88	43.22	-10.78	54	32.35	31.63	9.5	30.26	202	196	Α	٧
	*	5580	84.19	-	•	72.88	31.8	9.81	30.3	202	196	Р	V
	*	5580	77.53	-	-	66.22	31.8	9.81	30.3	202	196	Α	V
		5738.855	49.35	-18.85	68.2	37.87	32	9.86	30.38	202	196	Р	V

TEL: 886-3-327-3456 Page Number : E7 of E12

	*	5700	81.32	-	-	70.02	31.8	9.86	30.36	189	120	Р	Н
000 44	*	5700	74.72	-	-	63.42	31.8	9.86	30.36	189	120	Α	Н
802.11a		5743.88	50.54	-17.66	68.2	39.07	32	9.86	30.39	189	120	Р	Н
CH 140 5700MHz	*	5700	82.31	-	-	71.01	31.8	9.86	30.36	191	192	Р	V
37 00 WIT 12	*	5700	75.61	-	-	64.31	31.8	9.86	30.36	191	192	Α	V
		5736.28	50.17	-18.03	68.2	38.69	32	9.86	30.38	191	192	Р	V
Remark		o other spurio		st Peak	and Averag	ge limit lin	Э.						

TEL: 886-3-327-3456 Page Number : E8 of E12

Band 3 - 5470~5725MHz

Report No.: FR8D1931B

WIFI 802.11a (Harmonic @ 3m)

Ant.	Frequency	Level	Over	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
1	(MHz)	(dBµV/m)	Limit (dB)	Line (dBµV/m)	Level (dBµV)	Factor (dB/m)	Loss (dB)	Factor (dB)	Pos (cm)	Pos (deg)		
	11000	49.16	-24.84	74	56.6	40.4	13.86	61.7	100	0	Р	Н
802.11a	16500	43.06	-25.14	68.2	46.61	38.6	17.55	59.7	100	0	Р	Н
CH 100	11000	44.85	-29.15	74	52.29	40.4	13.86	61.7	100	0	Р	٧
5500MHz -	16500	42.82	-25.38	68.2	46.37	38.6	17.55	59.7	100	0	Р	V
	11160	48.45	-25.55	74	56.24	39.93	14.14	61.86	100	0	Р	Н
802.11a	16740	42.71	-25.49	68.2	44.66	39.78	17.92	59.65	100	0	Р	Н
CH 116	11160	49.42	-24.58	74	57.21	39.93	14.14	61.86	100	0	Р	V
5580MHz -	16740	42.89	-25.31	68.2	44.84	39.78	17.92	59.65	100	0	Р	V
	11400	43.62	-30.38	74	51.19	40	14.53	62.1	100	0	Р	Н
802.11a	17100	44.98	-23.22	68.2	45.62	40.5	18.24	59.38	100	0	Р	Н
CH 140	11400	44.22	-29.78	74	51.79	40	14.53	62.1	100	0	Р	٧
5700MHz -	17100	44.42	-23.78	68.2	45.06	40.5	18.24	59.38	100	0	Р	٧

Remark

TEL: 886-3-327-3456 Page Number: E9 of E12

^{1.} No other spurious found.

^{2.} All results are PASS against Peak and Average limit line.

Emission below 1GHz

WIFI 802.11a (LF @ 3m)

WIFI	Note	Frequency	Level	Over	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
Ant.				Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
1		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
		81.41	28.41	-11.59	40	46.15	13.58	1.22	32.54	-	-	Р	Н
		167.74	30.14	-13.36	43.5	44.99	15.83	1.82	32.5	ı	-	Р	Н
		239.52	32.27	-13.73	46	45.48	17.24	2.06	32.51	1	-	Р	Н
		480.08	33.66	-12.34	46	39.84	23.6	2.79	32.57	1	-	Р	Н
		719.67	33.98	-12.02	46	35.7	27.18	3.46	32.36	1	-	Р	Н
802.11a		914.64	34.73	-11.27	46	32.88	29.39	3.98	31.52	100	0	Р	Н
LF		80.44	24.58	-15.42	40	42.41	13.5	1.21	32.54	1	-	Р	V
		167.74	24.76	-18.74	43.5	39.61	15.83	1.82	32.5	1	-	Р	V
		239.52	25.58	-20.42	46	38.79	17.24	2.06	32.51	-	-	Р	V
		438.37	28.92	-17.08	46	35.94	22.87	2.67	32.56	1	-	Р	٧
		480.08	33.72	-12.28	46	39.9	23.6	2.79	32.57	1	-	Р	V
		720.64	36.4	-9.6	46	38.07	27.23	3.46	32.36	100	0	Р	٧
Remark		o other spurio											
	2. Al	l results are F	PASS agains	st limit li	ne.								

TEL: 886-3-327-3456 FAX: 886-3-328-4978

Page Number

: E10 of E12

Report No. : FR8D1931B

Note symbol

Report No. : FR8D1931B

*	Fundamental Frequency which can be ignored. However, the level of any unwanted emissions
	shall not exceed the level of the fundamental frequency.
!	Test result is over limit line.
P/A	Peak or Average
H/V	Horizontal or Vertical

TEL: 886-3-327-3456 Page Number : E11 of E12

A calculation example for radiated spurious emission is shown as below:

Report No.: FR8D1931B

WIFI	Note	Frequency	Level	Over	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
Ant.				Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
1		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dB _µ V)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
802.11b		2390	55.45	-18.55	74	54.51	32.22	4.58	35.86	103	308	Р	Н
CH 01													
2412MHz		2390	43.54	-10.46	54	42.6	32.22	4.58	35.86	103	308	Α	Н

- 1. Path Loss(dB) = Cable loss(dB) + Filter loss(dB) + Attenuator loss(dB)
- 2. Level(dBµV/m) = Antenna Factor(dB/m) + Path Loss(dB) + Read Level(dBµV) Preamp Factor(dB)
- 3. Over Limit(dB) = Level(dB μ V/m) Limit Line(dB μ V/m)

For Peak Limit @ 2390MHz:

- 1. Level(dBµV/m)
- = Antenna Factor(dB/m) + Path Loss(dB) + Read Level(dBµV) Preamp Factor(dB)
- $= 32.22(dB/m) + 4.58(dB) + 54.51(dB\mu V) 35.86 (dB)$
- $= 55.45 (dB\mu V/m)$
- 2. Over Limit(dB)
- = Level(dBµV/m) Limit Line(dBµV/m)
- $= 55.45(dB\mu V/m) 74(dB\mu V/m)$
- = -18.55(dB)

For Average Limit @ 2390MHz:

- 1. Level(dBµV/m)
- = Antenna Factor(dB/m) + Path Loss(dB) + Read Level(dBµV) Preamp Factor(dB)
- $= 32.22(dB/m) + 4.58(dB) + 42.6(dB\mu V) 35.86 (dB)$
- $= 43.54 (dB\mu V/m)$
- 2. Over Limit(dB) = Level(dB μ V/m) Limit Line(dB μ V/m)
- $= 43.54(dB\mu V/m) 54(dB\mu V/m)$
- = -10.46(dB)

Both peak and average measured complies with the limit line, so test result is "PASS".

TEL: 886-3-327-3456 Page Number : E12 of E12

Appendix F. Cabinet Radiated Spurious Emission

Toot Engineer		Temperature :	23~26°C
Test Engineer :	Karl Hou, Big Show Wang	Relative Humidity :	50~65%

Report No.: FR8D1931B

Note symbol

-L	Low channel location
-R	High channel location

TEL: 886-3-327-3456 Page Number : F1 of F4

Band 1 - 5150~5250MHz

Report No.: FR8D1931B

WIFI 802.11a (Band Edge @ 3m)

TEL: 886-3-327-3456 Page Number : F2 of F41

TEL: 886-3-327-3456 Page Number : F3 of F41

TEL: 886-3-327-3456 Page Number : F4 of F41

TEL: 886-3-327-3456 Page Number : F5 of F41

TEL: 886-3-327-3456 Page Number : F6 of F41

WIFI Band 1 5150~5250MHz Band Edge @ 3m ANT 802.11a CH44 5220MHz - R 1 Vertical **Fundamental** : 03CH15-HY :PEAK_BE_74 3m 9120D_15_1620 VERTICAL :R8W:1000.000KHz V8W:3000.000KHz SWT:Auto :Peak :8D1931 :2 Left blank Peak Left blank Avg.

Report No.: FR8D1931B

TEL: 886-3-327-3456 Page Number : F7 of F41

TEL: 886-3-327-3456 Page Number : F8 of F41

TEL: 886-3-327-3456 Page Number : F9 of F41

TEL: 886-3-327-3456 Page Number: F10 of F41

WIFI Band 1 5150~5250MHz Band Edge @ 3m ANT 802.11a CH48 5240MHz - R 1 Vertical **Fundamental** : 03CH15-HY :PEAK_BE_74 3m 9120D_15_1620 VERTICAL :R8W:1000.000KHz V8W:3000.000KHz SWT:Auto :Peak :8D1931 :3 Left blank Peak Left blank Avg.

Report No.: FR8D1931B

TEL: 886-3-327-3456 Page Number: F11 of F41

Band 1 - 5150~5250MHz

Report No.: FR8D1931B

WIFI 802.11a (Harmonic @ 3m)

TEL: 886-3-327-3456 Page Number: F12 of F41

TEL: 886-3-327-3456 Page Number: F13 of F41

TEL: 886-3-327-3456 Page Number: F14 of F41

Band 2 - 5250~5350MHz

Report No.: FR8D1931B

WIFI 802.11a (Band Edge @ 3m)

TEL: 886-3-327-3456 Page Number: F15 of F41

TEL: 886-3-327-3456 Page Number : F16 of F41

TEL: 886-3-327-3456 Page Number: F17 of F41

TEL: 886-3-327-3456 Page Number : F18 of F41

WIFI Band 2 5250~5350MHz Band Edge @ 3m ANT 802.11a CH52 5260MHz - R 1 Vertical **Fundamental** : 03CH15-HY :PEAK_BE_74 3m 9120D_15_1620 VERTICAL :R8W:1000.000KHz V8W:3000.000KHz SWT:Auto :Peak :8D1931 :4 Left blank Peak Left blank Avg.

Report No.: FR8D1931B

TEL: 886-3-327-3456 Page Number: F19 of F41

TEL: 886-3-327-3456 Page Number: F20 of F41

WIFI Band 2 5250~5350MHz Band Edge @ 3m ANT 802.11a CH60 5300MHz - R 1 Horizontal **Fundamental** Left blank Peak Left blank Avg.

Report No.: FR8D1931B

TEL: 886-3-327-3456 Page Number: F21 of F41

TEL: 886-3-327-3456 Page Number : F22 of F41

TEL: 886-3-327-3456 Page Number : F23 of F41

TEL: 886-3-327-3456 Page Number : F24 of F41

TEL: 886-3-327-3456 Page Number : F25 of F41

Band 2 - 5250~5350MHz

Report No.: FR8D1931B

WIFI 802.11a (Harmonic @ 3m)

TEL: 886-3-327-3456 Page Number : F26 of F41

TEL: 886-3-327-3456 Page Number: F27 of F41

TEL: 886-3-327-3456 Page Number: F28 of F41

Band 3 - 5470~5725MHz

Report No.: FR8D1931B

TEL: 886-3-327-3456 Page Number: F29 of F41

TEL: 886-3-327-3456 Page Number : F30 of F41

TEL: 886-3-327-3456 Page Number : F31 of F41

TEL: 886-3-327-3456 Page Number : F32 of F41

TEL: 886-3-327-3456 Page Number: F33 of F41

TEL: 886-3-327-3456 Page Number : F34 of F41

TEL: 886-3-327-3456 Page Number: F35 of F41

TEL: 886-3-327-3456 Page Number: F36 of F41

TEL: 886-3-327-3456 Page Number: F37 of F41

Band 3 - 5470~5725MHz

Report No.: FR8D1931B

WIFI 802.11a (Harmonic @ 3m)

TEL: 886-3-327-3456 Page Number: F38 of F41

TEL: 886-3-327-3456 Page Number: F39 of F41

TEL: 886-3-327-3456 Page Number: F40 of F41

Emission below 1GHz 5GHz WIFI 802.11a (LF)

Report No.: FR8D1931B

TEL: 886-3-327-3456 Page Number : F41 of F41

Appendix G. Duty Cycle Plots

Band	Duty Cycle(%)	T(us)	1/T(kHz)	VBW Setting
802.11a	30.20	156	6.41	10kHz

802.11a

Date: 29.JUL.2019 17:00:46

TEL: 886-3-327-3456 Page Number : G1 of G1