SE 311- Software Requirements Engineering

Lecture # 1: Overview

Ayesha Kanwal partment of Computing (

Department of Computing (DoC), SEECS, NUST

Agenda

- Course Outline / Contents
- Course Grading Criteria
- Books, material
- Class rules
- Introduction to Software Requirements Engineering
 - Importance / Challenges of Software
 - Importance of requirements
 - Need for requirements engineering
 - What are requirements?

Why it is important for you?

Goals of this course:

- To enable you to develop your skills in understanding why user needs are so hard to express, capture and specify.
- To learn about the shortcomings of best practices and to be able to choose among the candidate approach
- To learn about data-driven methods for requirements engineering
- To Identify stakeholders and work with them effectively by applying a range of
 - elicitation techniques,
 - specify requirements using requirements templates
 - modeling techniques,
 - validate and prototype requirements,
 - negotiate and prioritize requirements,
 - and manage changing requirements.

SE-311 Course Topics (18 Weeks / 45 Lectures)

- Introduction to Requirements Engineering
- Software Requirements
- Requirements Engineering Processes
- Requirements Elicitation and Analysis
- Requirements Validation
- Requirements Management
- Methods for Requirements Engineering
 - Visual Modeling of Requirements
 - Overview of Tools for Requirements Modeling / Management
- Non-functional Requirements
- Goal-Oriented Requirements Engineering (GORE)
- Requirements Evolution
- Viewpoint techniques for requirement engineering
- Advanced Topics (either of them, if time permits):
 - Requirements for Self-adaptive Systems
 - Social / Mobile / Pervasive Requirements Engineering
 - Contextual Requirements Engineering

Books we follow (also research papers)...

Text Books:

Software Engineering 9/Ed

By Ian Sommerville, University of St. Andrews, United Kingdom ISBN-10: 0321313798 ISBN-13: 9780321313799

Requirements Engineering: Processes and Techniques

By Gerald Kotonya and Ian Sommerville ISBN: 978-0-471-97208-2, Published: Sep 1998

Reference Books:

Requirements Engineering: Fundamentals, Principles, and Techniques

By Klaus Pohl, 1st Edition, ISBN-10: 3642125778, ISBN-13: 978-3642125775, Publication Date: July 23, 2010

Requirements Engineering Handbook,

By Young, Ralph, Artech House, Publication Date: Nov. 2003

Grading Policy

- ❖ 15% OHT-1 Exam.
- ❖ 15% OHT-2 Exam.
- ♦ 10% Assignments.
- ❖ 10% Quizzes.
- ❖ 10% Term Project.
- ❖ 40% Final Exam.

* Minor Changes may be made in the criteria later (if required)

Class Policy

- Assignments:
 - Each assignment will count towards the total.
 - Late assignments will not be accepted / graded.
- Quiz policy:
 - Quizzes may be announced or unannounced.
 - Missed quizzes will not be retaken.
 - ❖ No best of quizzes policy.

Lets be a good Requirements Engineer...

Software is everywhere!

Images source: Google Images

Background for Requirement Engineering

- Computer systems are designed, and anything that is designed has an intended purpose.
- If a computer system is unsatisfactory, it is because the system was designed without an adequate understanding of its purpose, or because we are using it for a purpose different from the intended one.
- Requirements Engineering provides a framework for understanding the purpose of a system and the contexts in which it will be used.

Software-intensive Systems

- Systems that are mainly driven by software
 - ❖ Information systems: software for general use *usually
 - Embedded systems: integrates hardware and software
- Fitness for Purpose
- Complexity of Purpose
- ❖ Because of this complexity of purpose, the design of software-intensive systems belong to a class of problems known as wicked problems.

Software-intensive Systems

- Dealing with Complexity: Requirements Engineering offers a number of techniques for dealing with complexity of purpose, which are built into the various techniques:
 - Abstraction
 - Decomposition
 - Projection

Software-intensive Systems

- Challenges of software-intensive systems
 - Software-based innovations
 - Increasing complexity
 - Pressure to reduce costs
 - Shorter development times
 - Higher quality demands

Challenges of Software

- Problems:
 - Increased reliance on software
 - e.g. cars, cell phones, web services, etc.
 - Software is the biggest cost element for mission critical systems
 - ❖e.g. Boeing 777, A380 etc...
 - High consequences of failure
 - ❖e.g. Intel Pentium bug: \$475 million
 - Because of the bug, the processor can return incorrect decimal results (Floating Point Error)

Challenges of Software

- Key Factors:
 - Certification costs
 - ❖e.g. Boeing 777: >40% of software budget spent on testing
 - Re-work from defect removal
 - e.g. Motorola: 60-80% of software budget (was) spent on re-work
 - Changing Requirements
 - e.g. California Department of Motor Vehicle system
 - ... & many more!

Importance of Software

Market volume of software in the automotive sector for the year 2002 and forecast for the year 2015 (according to [Honsig 2005])

Image source: http://knovelblogs.com/2012/08/30/the-importance-of-requirements-engineering/

- High impact on project success
 - Many projects failed or finished with overspending and/or restricted implemented functionality
- Requirements defects are reason for approximately 50% of the failed projects
 - Example: London Ambulance Service
 - Poor requirements process that did not involve ambulance crews
 - Result: system was not able to operate under realistic conditions (i.e. sending too many ambulances to an incident) which endangered patients lives.
- Defects in Requirements Engineering cause high costs
 - Defect found during programming increases costs by factor 20
 - ❖ Defect found during acceptance test increases by factor 100!

Project success rates from 1994 to 2009 taken from the Standish Group (CHAOS) studies [The Standish Group 2009]

Reasons for resource overspend and/or functional restrictions (based on data from [The Standish Group

Requirements Engineering & Organization

Interrelations between requirements engineering and other processes in the organization

Requirements Engineering & Organization

Requirements Engineering Conference!

http://requirements-engineering.org/

References:

- Lecture Slides from:
- Text Book:
 - Requirements Engineering: Processes and Techniques by Gerald Kotonya and Ian Sommerville
- Reference Book:
 - Requirements Engineering: Fundamentals, Principles, and Techniques by Klaus Pohl

Thank you!

Questions, Comments, Suggestions!