

Introduction

- The Fourier series $s_N(x)$ represents a synthesis of a periodic function s(x) by summing harmonically related sinusoids, whose coefficients are determined by harmonic analysis
- In simpler terms, almost any *periodic* function can be represented by summing harmonically related sinusoids with correctly chosen magnitude and phase components
- This section of the course explores how to use Fourier Series for signal/system analysis and definition

Visual examples

(https://en.wikipedia.org/wiki/Fourier_series)

Example 1: Fourier Series with 4 terms to approximate a square wave

Example 2: Fourier Series with 4 terms to approximate a sawtooth wave

Example 3: Example of convergence of to a somewhat arbitrary function

Fourier Analysis of Periodic Signals LTI Systems

Properties of LTI systems

- Superposition
 - If $x_1(t) \rightarrow y_1(t)$ $x_2(t) \rightarrow y_2(t)$

If a system is linear, then

$$Ax_1(t) + Bx_2(t) \rightarrow Ay_1(t) + By_2(t)$$

Time-Invariance

$$\chi(t-T) \to y(t-T) \forall T$$

LTI system response

 We can analyse the response of an LTI system to any arbitrary waveform by examining the response to a particular set of "basis" functions, and then expressing our arbitrary waveform in terms of this set

i.e. if
$$x(t) = \sum_{n=-\infty}^{\infty} c_n \emptyset_n(t)$$

 \emptyset = basis functions

and if
$$\emptyset_n(t) \to \psi_n(t)$$

$$\psi$$
 = system response

Characteristics of basis functions

Vectors

Note:
$$c_{12} = \frac{|\overrightarrow{v_1}|}{|\overrightarrow{v_2}|} \cos \theta$$

$$\overrightarrow{v_1} = c_{12} \overrightarrow{v_2} + \overrightarrow{v_e}$$

$$|C_{12} \overrightarrow{v_2}| = |\overrightarrow{v_1}| \cos \theta$$

• The component of $\overrightarrow{v_1}$ along $\overrightarrow{v_2}$ is given by $c_{12}\overrightarrow{v_2}$. c_{12} is a measure of the similarity between $\overrightarrow{v_1}$ and $\overrightarrow{v_2}$ and is calculated as follows in order to minimize $\overrightarrow{v_e}$

$$c_{12} = \frac{\overrightarrow{v_1} \cdot \overrightarrow{v_2}}{\overrightarrow{v_2} \cdot \overrightarrow{v_2}} = \frac{\overrightarrow{v_1} \cdot \overrightarrow{v_2}}{|\overrightarrow{v_2}|^2} \quad \text{(1)} \quad \text{Where "." denotes scalar (or dot) product}$$

Characteristics of basis functions

- If C_{12} is zero, either $\overrightarrow{v_1}$ or $\overrightarrow{v_2}$ has zero length, or the vectors are orthogonal
- Two vectors are orthogonal if

$$\vec{\emptyset}_n \cdot \vec{\emptyset}_m = \begin{cases} L_n^2, & n = m \\ 0, & n \neq m \end{cases}$$

Where L_n is the length of either vector

Characteristics of basis functions

• In 3D, it is common to represent an arbitrary vector \vec{v} in terms of a set of mutually orthogonal unit vectors \vec{i} , \vec{j} , and \vec{k}

• i.e.
$$\vec{v} = v_1 \vec{i} + v_2 \vec{j} + v_3 \vec{k}$$

Where
$$v_1 = \frac{\vec{v} \cdot \vec{l}}{\vec{l} \cdot \vec{l}} = \vec{v} \cdot \vec{l}$$
 ...etc

 $m{v}$ Because the basis set is orthogonal, the calculation of any component $m{v}$ is independent of all of the other components

Back to Signals (1)

• Suppose we want to approximate $x_1(t)$ by $x_2(t)$ over an interval $[t_1,t_2]$. We can write

$$x_1(t) = c_{12}x_2(t) + x_e(t)$$

• We want to chose c_{12} in order to minimize the *mean squared value* of $x_e(t)$, which is given by

$$\overline{x_e^2(t)} = \frac{1}{t_2 - t_1} \int_{t_1}^{t_2} x_e^2(t) dt$$

$$= \frac{1}{t_2 - t_1} \int_{t_1}^{t_2} [x_1(t) - c_{12}x_2(t)]^2 dt$$

Back to Signals (2)

• To minimize $x_e(t)$ w.r.t. c_{12} ,

$$\frac{d}{dc_{12}}[x_e^2(t)] = 0$$

This will yield

$$c_{12} = \frac{\int_{t_1}^{t_2} x_1(t) x_2(t) dt}{\int_{t_1}^{t_2} x_2^2(t) dt}$$
 (2)

If $c_{12}=0$, then $x_1(t)$ and $x_2(t)$ are orthogonal over $[t_1,t_2]$, i.e. $\int\limits_t^t x_1(t)x_2(t)dt=0$

$$\int_{t_1}^{t_2} x_1(t) x_2(t) dt = 0$$

Back to Signals (3)

- In the most general case of complex-valued functions, two functions $\emptyset_1(t)$ and $\emptyset_2(t)$ are orthogonal if $\int_{t_1}^{t_2} \emptyset_1(t) \emptyset_2^*(t) \, dt = \int_{t_1}^{t_2} \emptyset_1^*(t) \emptyset^2(t) dt = 0$ over the interval $[t_1, t_2]$
- The members of a set of complex-valued functions are mutually orthogonal if $\int_{t_1}^{t_2} \emptyset_n(t) \emptyset_m^* \left(t \right) dt = \begin{cases} k_n & n = m \\ 0 & n \neq m \end{cases}$

Where $\int_{t_1}^{t_2} \emptyset_n(t) \emptyset_m^*(t) dt$ is called the inner product of $\emptyset_n(t)$ and $\emptyset_m^*(t)$, and $k_n = \int_{t_1}^{t_2} |\emptyset_n(t)|^2 dt$

Back to Signals (4)

- The square root of k_n is called the <u>norm</u> of $\emptyset_n(t)$.
- Note the similarity between the inner product and the dot product, and the norm and vector length
 - Review Equations (1) and (2)

Choice of basis functions

- Recall that LTI systems are described by linear, constant coefficient differential equations.
- If we apply an input $\emptyset(t)$ to such a system such that the output is given by $y(t) = 6 \cdot \emptyset(t)$, i.e. the output is a scaled version of the inputs, then $\emptyset(t)$ is called an **eigenfunction** of the system

Choice of basis functions

• It so happens that the set of complex exponentials

$$\emptyset(t) = e^{st}$$
 $s = \sigma + j\omega$

are eigenfunctions of LTI systems, thus such functions would seem to be a natural choice for a set of basis functions with which to represent an arbitrary input to an LTI system

• For convergence reasons, $\sigma=0$, thus the basis functions are of the form $e^{Ij\omega t}$

Fourier Series

- Suppose we are dealing with periodic signals i.e. x(t) = x(t+T), where T is the period
- Suppose also that we are dealing with a set of complex exponentials, which are harmonically related i.e $\emptyset_n(t)=e^{jn\omega_0t}$

where ω_0 is the fundamental frequency, equal to $\frac{2\pi}{T}$

• It can be shown (Stremer, section 2.7) that $\emptyset_n(t)$ are orthogonal over a single period of x(t)

Fourier Series

IT can also be shown that

$$x(t) = \sum_{n-\infty}^{\infty} c_n e^{jn\omega_0 t}$$
 where $\omega_0 = \frac{2\pi}{T}$

- ullet i.e. an arbitrary periodic signal x(t) can be represented by an infinite series of complex exponentials which are harmonically related
- This is known as the Fourier Series representation of x(t)

Fourier Series

Also note that if

$$e(t) = x(t) - \sum_{n=-N}^{N} c_n e^{jn\omega_0 t}$$

Then
$$\lim_{N\to\infty} e(t) = 0$$

• i.e. the error can be made as small as desired by using a large enough number of terms in the Fourier Series. The advantage of using orthogonal basis functions lies in the fact that the calculation of any c_n is independent of the calculation of any other, so the coefficient of a given harmonic function is unaffected by adding other harmonics

Calculation of c_n

$$x(t) = \sum_{n=-\infty}^{\infty} C_n e^{jm\omega_0 t}$$

• Multiply both sides by $e^{-jm\omega_0t}$, and integrate over one period

$$\int_{0}^{T} x(t)e^{-j^{m}\omega_{0}t} dt = \int_{0}^{T} \sum_{n=-\infty}^{\infty} C_{n}e^{j^{n}\omega_{0}t}e^{-jm\omega_{0}t} dt$$

• Interchange the integral and the summation of the RHS to obtain

$$\int_{0}^{-T} x(t)e^{-jm\omega_{0}t} dt = \sum_{n=-\infty}^{\infty} C_{n} \int_{0}^{T} e^{jn} e^{-jm\omega_{0}t} dt$$

Calculation of c_n

• Since the complex exponentials are orthogonal over [0,T], the integral will be zero, except where m=n, where it equals T. Hence

$$\int_{0}^{\infty} x(t)e^{-jn\omega_{0}t} dt = c_{n}T$$

Therefore

$$c_n = \frac{1}{T} \int_0^T x(t)e^{-jn\omega_0 t} dt$$

• This is the Fourier Series **Analysis** equation

Note that for n = 0, $C_n = \frac{1}{T} \int_{-T}^{T} x(t) dt$

i.e. the DC level

Spectrum – discrete or line spectrum...

• E.g. $\sin \omega_0 t$

When does the Fourier Series exist?

- It can be shown that, if a function f(t) satisfies a number of conditions, then its F(s) can be found
- These conditions are as follows
- i) $\int_{t_0}^{t_0+T} |f(t)|^2 dt < \infty$ (i.e. finite energy in a single period)
- ii) f(t) has a finite number of maxima and minima over $[t_0, t_0 + T]$
- iii) f(t) has a finite number of discontinuities over $[t_0, t_0 + T]$
- These conditions are called the **Dirichlet** conditions, and are sufficient, but not necessary, for the existence of the Fourier Series of f(t)

Fourier Spectrum

- The Fourier Series can be represented graphically by means of the spectrum which shows the variation of c_n vs n or ω
- Since the Fourier Series is non-zero only for discrete frequencies, the spectrum is a discrete spectrum
- ullet Generally, c_n is complex, so two diagrams are used
 - ullet One for the magnitude of c_n
 - ullet One for the angle of c_n
- ullet In some cases, there is a simple expression for c_n , and a single diagram will suffice

$$f(t) = \sin \omega_0 t$$

• By Euler's identities:

$$cos\omega_0 t = \left[e^{j\omega_0 t} + e^{-j\omega_0 t}\right]$$

$$sin\omega_0 t = \left[e^{j\omega_0 t} - \frac{1}{2j}e^{-j\omega_0 t}\right]$$

$$f(t) = \frac{1}{2j}e^{j\omega_0 t} - \frac{1}{2j}e^{-j\omega_0 t}$$

$$n=1 \qquad n=-1$$

- Note that to represent a real function requires that its Fourier Series consists of pairs of complex conjugate components
- ullet Each c_n represents the magnitude and starting angle of the corresponding complex exponential
- To represent a real valued function, the magnitudes of the two conjugate phases must be equal and their instantaneous phase angles must be equal by opposite

• If

$$c_n = a_n + jb_n$$

$$c_n = e^{j\theta n}$$

$$|c_n| = \sqrt{a_n^2 + b_n^2}$$

$$\theta_n = tan^{-1} \frac{b_n}{a_n}$$

ullet Spectrum of $sin\omega_0 t$

• Note that for real f(t), $|c_n|$ is an even function of ω or n, and the angle of c_n is an odd function of ω or n

When does the Fourier Series exist?

- It can be shown that, if a function f(t) satisfies a number of conditions, then its FS can be found. These conditions are as follows:
 - $\int_{t_0}^{t_0+T} |f(t)|^2 dt < 0$ (i.e. finite energy in a single period)
 - f(t) has a finite number of maxima and minimal over $[t_0, t_0 + T]$
 - f(t) has a finite number of discontinuities over $[t_0, t_0 + T]$
- These conditions are called the Duvichet conditions, and are sufficient but not necessary for the existence of the FS of f(t)

The Fourier Spectrum

- The FS can be represented graphically by means of the spectrum which show the variation of c_n vs n or ω
- Since the FS is non-zero only for discrete frequencies, the spectrum is a discrete spectrum
- Generally, c_n is complex, so two diagrams are used, one for the magnitude of c_n , and one for the phase angle
- In some cases, there is a simple expression for c_n , and a single diagram may suffice. This is unusual, however

- $f(t) = \sin \omega_0 t$
- By Euler's identities:

$$\cos \omega_0 t = \frac{1}{2} \left[e^{j\omega_0 t} + e^{-j\omega_0 t} \right]$$

$$\sin \omega_0 t = \frac{1}{2j} \left[e^{j\omega_0 t} - e^{-j\omega_0 t} \right]$$

Substituting...

$$f(t) = \frac{1}{2j} e^{j\omega_0 t} - \frac{1}{2j} e^{-j\omega_0 t}$$

Representing real functions

lf

$$c_n = a_n + b_n$$

$$c_n = |c_n|e^{j\theta_n}$$

$$|c_n| = \sqrt{a_n^2 + b_n^2}$$

$$\theta_n = \tan^{-1} \frac{b_n}{a_n}$$

• Spectrum of $sin \omega_0 t$

• Note that for real (f(t), $|c_n|$ is an even function of ω (or n), and the phase angle of c_n is an odd function of ω (or n)

Representing a real function

- To represent a real function requires that its FS consists of pairs of complex conjugate components
- ullet Each c_n represents the magnitude and starting angle of the corresponding complex exponential
- To represent a real valued function, the magnitudes of two conjugate phases must be equal and their instantaneous phase angles must be equal but opposite

Examples...

• Example – square wave

Square wave

Synthesis equation: $x(t) = \sum_{n=-\infty}^{\infty} c_n e^{jn\pi t}$ (note: set $\omega_0 = \frac{2\pi}{T} = \pi$)

Analysis equation: $c_n = \frac{1}{T} \int_{t_0}^{t_0+T} x(t) e^{-jn\pi} \ dt$

Integrate over one period...

$$c_n = \frac{1}{2} \int_0^1 1 \cdot e^{-jn\pi} dt - \frac{1}{2} \int_1^2 1 \cdot e^{-jn\pi} dt$$
$$= \frac{1}{2jn\pi} \left[\left| -e^{-jn\pi t} \right|_0^1 + \left| e^{-jn\pi t} \right|_0^1 \right]$$
$$= \frac{1}{j2n\pi} \left[-e^{-jn\pi} + e^0 + e^{-j2n\pi} - e^{-jn\pi} \right]$$

$$n \ odd, e^{-jn\pi} = -1 \Rightarrow c_n = \frac{2}{jn\pi}$$
 $n \ even, e^{-jn\pi} = 1 \Rightarrow c_n = 0$

$$\Rightarrow x(t) = \sum_{\substack{n = -\infty \\ n \ odd}}^{\infty} \frac{2}{jn\pi} e^{jn\omega_0 t}$$

Square wave - spectrum

$$|c_n| = \frac{2}{n\pi}$$

$$\phi = \frac{1}{jn} = -jn$$

$$\phi = \frac{1}{$$

Time domain

Fourier Series Spectrum

Examples...

• Example – rectangular pulse train

Example – rectangular pulse train

$$c_{n} = \frac{1}{T} \int_{-\frac{T}{2}}^{\frac{T}{2}} A e^{-jn\omega_{0}t} dt$$

$$= \frac{1}{T} \int_{-\frac{T}{2}}^{\frac{\tau}{2}} A e^{-jn\omega_{0}t} dt$$

$$= \frac{-A}{jn\omega_{0}T} \cdot e^{-j\omega_{0}t} \Big|_{-\frac{\tau}{2}}^{\frac{\tau}{2}}$$

$$= -\frac{A}{jn2\pi} \left[e^{-jn\omega_{0}\left(\frac{\tau}{2}\right)} - e^{jn\omega_{0}\left(\frac{\tau}{2}\right)} \right]$$

$$= -\frac{A}{jn2\pi} \left[e^{jn\omega_{0}\left(\frac{\tau}{2}\right)} - e^{-jn\omega_{0}\left(\frac{\tau}{2}\right)} \right]$$

$$= \frac{A}{n\pi} \sin(n\pi \left(\frac{\tau}{T}\right)) \qquad \text{Mult by } \frac{\frac{n\pi\tau}{T}}{n\pi\tau}..$$

$$= \frac{A\tau}{T} \frac{\sin\left(n\pi \left(\frac{\tau}{T}\right)\right)}{n\pi \left(\frac{\tau}{T}\right)}$$

$$= \frac{A\tau}{T} sinc(\frac{n\tau}{T})$$

Where
$$sinc(x) = \frac{\sin(\pi x)}{\pi x}$$

Note: $\omega_0 = 2\pi/T$

The sinc function

• Sinc(x) and Sa(x) appear frequently in signals and systems theory:

$$sinc(x) = \frac{\sin(\pi x)}{\pi x}$$

$$Sa(x) = \frac{\sin(x)}{x}$$

Note:
$$\lim_{x \to 0} \frac{\sin(x)}{x} = 1$$

Rectangular pulse train

Returning to the rectangular pulse train,

$$c_n = \frac{A\tau}{T} Sa(\frac{n\pi\tau}{T})$$

$$\therefore s(t) = \frac{A\tau}{T} \sum_{n=-\infty}^{\infty} Sa(\frac{n\pi\tau}{T}) e^{jn} e^{jn}$$

ullet Because c_n are all real, we only need one diagram to display the spectrum

Rectangular pulse train

- Suppose we keep au fixed, and increase T
- Then, the amplitude of each component decreases $\propto \frac{1}{T}$, and the spectral lines move closer together (since $\omega_0 = \frac{2\pi}{T}$ decreases)
- However, the overall shape of the spectrum remains constant

Rectangular pulse train

- If we keep T contrast and increase τ (i.e. make the pulse width wider), we find
 - 1) the amplitude increase $(A \propto \tau)$
 - 2) the frequency content of the signal is compressed within a narrow range of frequencies
- This illustrates the inverse relationship between duration in time and duration in frequency
 - The narrower the pulse in the time domain, the wider the spectrum in the frequency domain, and vice versa

Note that ω_0 remains the same in both cases, since T is constant

Example – limiting cases of pulse train

• i) square pulse train, $\frac{\tau}{T} = 0.5$

$$x(t) = \frac{A}{2} \sum_{n=-\infty}^{\infty} Sa(\frac{n\pi}{2}) e^{jn\omega_0 t}$$

- ii) impulse train
- As $\tau \to 0$, let $A \to \infty$, so that $A\tau \to 1$ (recall $\int_{-\infty}^{\infty} \delta(t) dt = 1$)

$$c_n = \lim_{\tau \to 0} \frac{A\tau}{T} Sa\left(\frac{n\pi\tau}{T}\right) = \frac{1}{T}$$

• i.e. each component in the Fourier Series has amplitude $\frac{1}{T}$

Examples

periodic decaying exponential

Example - periodic decaying exponential

$$T = 0.5 \Rightarrow \omega_0 = 4\pi \ (i.e. \ \omega_0 = \frac{2\pi}{T})$$

$$c_n = 2 \int_0^{0.5} e^{-t} e^{-j4n\pi} \ dt$$

$$= 2 \int_0^{0.5} e^{-(1+j4n)} \ dt$$

$$= \frac{2}{1+j4n\pi} e^{-(1+j4n)} \Big|_{0.5}^0$$

$$= \frac{2}{1+j4n\pi} e^{-t} \Big|_{0.5}^0$$
(since $e^{-t}e^{-(1+j4n)} = 1$)

$$\Rightarrow c_n = \frac{2}{1 + j4n\pi} [e^0 - e^{-\frac{1}{2}}]$$

$$= \frac{0.79}{1 + j4n\pi}$$

$$|c_n| = \frac{0.79}{1 + 16n^2\pi^2}$$

$$\theta_n = -\tan^{-1} 4n\pi$$

Example - periodic decaying exponential

Note that, since x(t) is a real function, $|c_n|$ is an even function, and θ_n is an odd function of ω , as expected

Example - periodic decaying exponential

• In general, for real-valued x(t), $c_{-n}=c_n^*$

Where * is the complex conjugate

• To show that this is true for real x(t), recall

$$x(t) = \sum_{n = -\infty} c_n e^{jn\omega_0 t}$$

• Take the complex conjugate to obtain

$$x^*(t) = \sum_{n = -\infty} c_n e^{-jn\omega_0 t}$$

• Replacing –n by n, and noting that $x^*(t) = x(t)$ for real-valued x(t), we have

$$x(t) = \sum_{n=-\infty}^{\infty} c_{-n}^* e^{jn\omega_0 t}$$

$$\Rightarrow c_n = c_{-n}^*$$

$$\Rightarrow c_n^* = c_{-n}$$

• For the general case of a complex-valued function $f(t) = f_r + f_i$, we have:

$$f^* = f_r - jf_i$$

$$f_r = \frac{1}{2}(f + f^*)$$

$$f_i = \frac{1}{2j}(f - f^*)$$

$$ff^* = |f^2| = |f^r|^2 + |f^i|^2$$

• The average power in such a signal is

$$P = \int_{-\frac{T}{2}}^{\frac{T}{2}} f(t)f^*(t)dt = \frac{1}{T} \int_{-\frac{T}{2}}^{\frac{T}{2}} |f(t)|^2 dt$$

• Substituting for f(t) and f*(t), we have

$$P = \frac{1}{T} \int_{-\frac{T}{2}}^{\frac{T}{2}} \sum_{m=-\infty}^{\infty} c_m e^{jm\omega_0 t} \sum_{n=-\infty}^{\infty} c_n^* e^{jn\omega_0 t}$$
$$= \sum_{m=-\infty}^{\infty} c_m \sum_{n=-\infty}^{\infty} c_n^* \frac{1}{T} \int_{-\frac{T}{2}}^{\frac{T}{2}} e^{j(m-n)\omega_0 t} dt$$

But, the complex exponentials are orthogonal over one period, hence the integral
on the RHS is zero except for m=n. Hence, the double summation reduces to a
single summation, and

$$P = \sum_{n=-\infty}^{\infty} c_n c_n^* = \sum_{n=-\infty}^{\infty} |c_n|^2$$

• Comparing this with the expression for P in the time domain, we get

$$P = \frac{1}{T} \int_{-\frac{T}{2}}^{\frac{T}{2}} |f(t)|^2 dt = \sum_{n = -\infty}^{\infty} |c_n|^2$$

- This is called Parseval's Theorem for periodic signals. It means that the average power in a signal can be calculated in either the time domain or from the Fourier Spectrum coefficients
- E.g. $f(t)=A\sin\omega_0 t$

$$P = \frac{A^{2}}{2} \qquad (i.e. \ \frac{1}{T} \int_{-\frac{T}{2}}^{\frac{T}{2}} |Asin\omega_{0}t|^{2} dt)$$

The FS is given by

$$f(t) = \frac{A}{2j} e^{j\omega_0 t} - \frac{A}{2j} e^{-j\omega_0 t}$$

$$c_1 = \frac{A}{2j}; c_{-1} = -\frac{A}{2j}$$

$$\sum_{n=-\infty}^{\infty} |c_n|^2 = |c_1|^2 + |C_{-1}|^2 = \frac{A^2}{4} + \frac{A^2}{4} = \frac{A^2}{2}$$

Summary

- Almost any periodic function can be represented by summing harmonically related sinusoids with correctly chosen magnitude and phase components (i.e. Fourier Series)
- Complex exponentials are a common choice for Fourier Series basis functions
- Given enough terms, the error in a Fourier Series representation converges to zero

Summary

- A Fourier Series can be represented graphically by means of a Fourier spectrum plot, which typically is composed of a magnitude plot and a phase plot
- There is an inverse relationship between the extent of a signal in the time domain and the extent of the signal in the frequency domain
 - i.e. a narrow extent in time gives a wider spectral response, and vice versa
- From Parseval's theorem, the average power in a signal can be calculated either from the time domain or from the Fourier Spectrum coefficients

