Project Report: Fraud Detection Using Machine Learning

Objective:

To develop machine learning models that predict fraudulent transactions from a bank transaction dataset. The goal is to classify transactions into **fraudulent** or **non-fraudulent** categories.

Dataset Overview:

• Source: Kaggle

Features:

- **TransactionAmount**: The amount of the transaction.
- **AccountBalance**: Account balance during the transaction.
- **TransactionHour**: The time of day the transaction occurred.
- **DaysSinceLastTransaction**: Number of days since the last transaction.
- **DeviceID**: The device used for the transaction.
- **Location**: The location of the transaction.
- **TransactionCount**: Number of transactions by the account.
- Fraudulent Flag: Whether the transaction is fraudulent (1 = fraud, 0 = non-fraud).

Model Development:

1. Logistic Regression:

• **Accuracy**: 98.94%

• Precision (Fraud): 1.00

Recall (Fraud): 0.11

• Issues: High precision but low recall for fraud. The model misses most fraud cases.

2. Support Vector Classifier (SVC):

• **Accuracy**: 98.94%

• Precision (Fraud): 1.00

• **Recall** (Fraud): 0.11

• Issues: Similar performance to Logistic Regression. The model struggled with fraud detection.

3. Random Forest Classifier:

• Accuracy: 99.34%

• **Precision** (Fraud): 0.70

• Recall (Fraud): 0.78

• **F1-Score** (Fraud): 0.74

• Improvements: Better recall for fraud detection, but still some false positives.

4. XGBoost:

• Accuracy: 99.60%

• **Precision** (Fraud): 0.75

• **Recall** (Fraud): 1.00

• **F1-Score** (Fraud): 0.86

• **Key Insight**: Perfect recall (1.00) for fraud detection, minimal false positives (3).

Model Performance Comparison:

Model	Accuracy	Precision (Fraud)	Recall (Fraud)	F1-Score (Fraud)	Precision (Non- Fraud)	Recall (Non- Fraud)
Linear Regression	0.02	N/A	N/A	N/A	N/A	N/A
Logistic Regression	98.94%	1.00	0.11	0.20	0.99	1.00
Support Vector Classifier	98.94%	1.00	0.11	0.20	0.99	1.00
Random Forest	99.34%	0.70	0.78	0.74	1.00	1.00
XGBoost	99.60%	0.75	1.00	0.86	1.00	1.00

Key Insights:

- **XGBoost** is the best-performing model with **perfect recall for fraud detection (1.00)** and minimal false positives.
- Random Forest also showed strong performance, with **78% recall** for fraud detection, but more **false positives** compared to XGBoost.

- Logistic Regression and SVC performed well on non-fraud transactions but had low recall for fraud (only 11%).
- The dataset is **imbalanced**, with fraud transactions being rare, which challenges the model to detect fraud effectively.

Future Work:

- 1. **Hyperparameter Tuning**: Optimize the hyperparameters of **XGBoost** and **Random Forest** to improve performance.
- Resampling: Use techniques like SMOTE (Synthetic Minority Over-sampling
 Technique) or undersampling to balance the dataset and enhance fraud detection.
- 3. **Real-time Fraud Detection**: Implement the **XGBoost** model for real-time fraud detection in a live system.

Conclusion:

- The **XGBoost** model provided **outstanding performance**, achieving **perfect recall for fraud detection**, which is crucial for fraud detection tasks.
- The project demonstrates the importance of choosing the right model for imbalanced datasets, and **XGBoost** proved to be the most suitable for this task.