CMPUT 367

Roderick Lan

Contents

1	Lecture 1 - Jan 9		
	1.1	What is ML	2
	1.2	Supervised Learning	2
2	Lec	ture 2 - Jan 11	2
	2.1	Supervised Learning	2
	2.2		2
	2.3	-	3
	_	9	3
	2.4		3
		9	3
3	Lec	ture 3 - Jan 16	4
	3.1	Gradient Based Methods	4
		3.1.1 Batch Gradient	
	3.2		5
	3.3	Probabilistic Interpretation:	5

1 Lecture 1 - Jan 9

1.1 What is ML

Machine = automation.

 $ML = Learning^1$ from experience spacing

Training/Learning experience: $\xrightarrow{\text{ML Algo}} \text{ML model}$

Inference/Prediction²: $x_* \xrightarrow{\text{ML Model}} \hat{y}^*$

Input features d-dimensional real vectors $(\vec{x}^{(m)} \in \mathbb{R}^d)$

 $y^{(m)} \in \mathbb{R}$ regression problem

 $y^{(m)} \in \{\}$ classification problem spacing

 $k=2 \to \text{binary}; k \geq 2 \to \text{multi class}$

categories mutually exclusive

Explain 1.1.1: Multilabel Classification

Naive: Solve as separate task (structured prediction)

If $y^{(m)}$ has internal structure: Treat as separate tasks; Structured prediction (PGM)

1.2 Supervised Learning

Labeled datasets used (ie. given labeled training data) Experience is a tuple $\{(x^{(m)}, y^{(m)})\}_{m=1}^{M}$

2 Lecture 2 - Jan 11

2.1 Supervised Learning

1. Training/Learning:

Experience $\xrightarrow{\text{ML Training}}$ ML Model

2. Inference/Prediction:

2.2 Unsupervised Learning

 $t^{(m)}$ is not given in training

Labels are not given; samples are unlabeled. Patterns in data are present (ie. from clustering). Task is ambiguous; less well defined.

[&]quot;Learning" from instructions = programming; from experience = from dataset

 $^{^2}x_* = \text{new data}$

Example 2.2.1: Types of Unsupervised Learning

Clustering - similar things close together

Outlier Detection - datapoints outside of trend

Representation Learning - extract meaningful patterns to create representations that are easier to understand/process

2.3 Reinforcement Learning

Well defined. Gives feedback on actions through rewards, doesn't give 'answer' like supervised learning.

2.3.1 SL vs RL

Supervised Learning - taught on exact steps

Reinforcement Learning - taught on feedback from actions (no reference solution)

2.4 Regression

2.4.1 Linear Regression

$$\begin{aligned} & \text{Input} = x^{(m)} \in \mathbb{R}^d \\ & \text{Output} = y^{(m)} \in \mathbb{R} \\ & \text{Data} = \{(x^{(m)}, t^{(m)})\}_{m=1}^M \end{aligned}$$

Explain 2.4.1

"Can I learn a function from $\{h : \mathbb{R}^d \to \mathbb{R}\}$ " No, set too powerful.

To make set meaningful, we need to restrict set of functions (**Hypothesis** set). Only consider functions in hypothesis set.

$$\mathcal{H}_{\mathsf{linear}} = \left\{ h: \mathbb{R}^d o \mathbb{R} | h(x) = \sum_{i=1}^d w_i x_i + b, w_i, b \in \mathbb{R}
ight\}$$

Explain 2.4.2: Visualizing Higher Dim Space

Hypotheis set is a hyperplane. Vertical hyperplane invalid (same as low dim)

Training loss function/objective = $J(h, \mathcal{D}_{\text{train}})$ $h^* = \min_{h \in \mathcal{H}} J(h, \mathcal{D}_{\text{train}})$ Linear Regression Objective¹: $(|h(x^{(m)}; w, b) - t^{(m)}|)^2$

 $^{^1\}mathrm{Squared}$ to give more weight to larger errors; Probabilistic interpretation

3 Lecture 3 - Jan 16

$$\begin{split} J(w) &= \frac{1}{2M} \left\| Xw - t \right\|^2 \\ \frac{\partial J}{\partial W} &= \frac{1}{M} [X^\top Xw - X^\top t] = 0 \\ w &= (X^\top X)^{-1} X^\top t \text{ when } X^\top X \text{ is invertible} \end{split}$$
 When is $X^\top X$ non-invertible (not full rank) $X \in \mathbb{R}^{M \times (d+1)}$

If rank is not d+1, then

- M < d+1; more features than samples (underdetermined)
 - pseudoinverse works mathematically but may not give a meaningful ML $\operatorname{\mathbf{model}}$
 - fix by simplifying model, refine feature selection
 - "sparse" models automatically select relevant features
- Duplicate features (linearly dependent); rank of X^{\top} less than d+1
 - can use pseudoinverse

Problem of closed-form sol. for MSE:

calculating inverse not fun

slow $O(d^3)$

can be numerically unstable

3.1 Gradient Based Methods

Algorithm 1: Gradient Descent

Randomly initialize
$$w^{(0)}$$
; for $e=1,2,\cdots$ until satisfied do
$$\left| \begin{array}{c} w^{(e)}=w^{(e-1)}-\alpha\nabla_w J(w) \\ \end{array} \right|_{w=w^{(e-1)}}$$
 end for

Big problem of gradient: might not point to desired direction gradient always in direction orthogonal to contour

3.1.1 Batch Gradient

Use a couple samples to approx gradient (very cheap), reach optimimum faster than full batch.

3.2 Closed Form Sol. vs Iterative Methods

Use closed form solution when it **exists**, is **cheap** and is **numerically stable** Use iterative method otherwise.

3.3 Probabilistic Interpretation:

For linear regression:

```
Assume \epsilon \sim \mathcal{N}(0, \sigma^2)
Assume target t^{(m)} = w^\top X^{(m)} + \epsilon^{(m)} where w is unknown constant Target t^{(m)} \sim \mathcal{N}(w^\top x^{(m)}, \sigma^2) (target is gaussian since error/noise gaussian) (gaussian chosen because it occurs naturally + CLT) (gaussian tail decreases exponentially/quadratically)

Non-Gaussian:

Uniform

Laplace (similar to gaussian)

Power law distr / zipf distr. (similar to gaussian, but very long tail)

Poisson (converges to gaussian x \to \infty)

\mathcal{D}_{\text{train}} = \{(x^{(m)}, t^{(m)})_{m=1}^{M}\}

Discrete and Generative Product
```