

FCC Test Report

Report No.: RF180919C04-6

FCC ID: 2AJOTTA1124

Test Model: TA1124

Received Date: Sep. 19, 2018

Test Date: Oct. 09, 2018 ~ Oct. 26, 2018

Issued Date: Nov. 09, 2018

Applicant: HMD Global Oy

Address: Bertel Jungin aukio 9, 02600 Espoo, Finland

Issued By: Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch

Lab Address: No. 47-2, 14th Ling, Chia Pau Vil., Lin Kou Dist., New Taipei City, Taiwan

(R.O.C)

Test Location: No.19, Hwa Ya 2nd Rd., Wen Hwa Vil., Kwei Shan Dist., Taoyuan City

33383, Taiwan, R.O.C.

FCC Registration /

788550 / TW0003

Designation Number:

This report is for your exclusive use. Any copying or replication of this report to or for any other person or entity, or use of our name or trademark, is permitted only with our prior written permission. This report sets forth our findings solely with respect to the test samples identified herein. The results set forth in this report are not indicative or representative of the quality or characteristics of the lot from which a test sample was taken or any similar or identical product unless specifically and expressly noted. Our report includes all of the tests requested by you and the results thereof based upon the information that you provided to us. You have 60 days from date of issuance of this report to notify us of any material error or omission caused by our negligence, provided, however, that such notice shall be in writing and shall specifically address the issue you wish to raise. A failure to raise such issue within the prescribed time shall constitute your unqualified acceptance of the completeness of this report, the tests conducted and the correctness of the report contents. Unless specific mention, the uncertainty of measurement has been explicitly taken into account to declare the compliance or non-compliance to the specification. The report must not be used by the client to claim product certification, approval, or endorsement by TAF or any government agencies.

Table of Contents

Re	leas	e Control Record	. 3			
1	Cert	tificate of Conformity	. 4			
2	Sun	nmary of Test Results	. 5			
	2.1	Measurement Uncertainty	. 5			
3	Gen	eral Information				
	2 1	General Description of ELIT	6			
	0.2					
	3.3					
	0.0					
	3.4					
		·				
4						
	4.1					
		,				
	4.0					
	4.2					
	4.3					
		4.3.1 Limits of Frequency Stability Measurement	29			
		4.3.2 Test Setup	29			
		4.3.3 Test Instruments	29			
		1 0				
	4.4					
	4.4					
		·				
5	Dict	2.1 Measurement Uncertainty. 5 2.2 Modification Record 5 Seneral Information 6 3.1 General Description of EUT 6 3.2 Description of Test Modes 7 3.2.1 Test Mode Applicability and Tested Channel Detail 7 3.2.2 Test Mode Applicability and Tested Channel Detail 7 3.3.1 Configuration of System under Test 9 3.3.1 Configuration of System under Test 9 1.4 General Description of Applied Standards 9 feest Types and Results 10 1.1 Radiated Emission Measurement 10 4.1.1 Limits of Radiated Emission Measurement 10 4.1.2 Test Instruments 11 4.1.3 Test Procedures 11 4.1.4 Deviation from Test Standard 12 4.1.5 Test Set Up 13 4.1.6 EUT Operating Conditions 13 4.1.7 Test Results 14 4.2 Conducted Emission Measurement 25 4.2.1 Limits of Conducted Emission Measurement 25 4.2.2 Test Instruments 26 4.2.5 Test Setup 26 4.2.6 EUT Operating Conditions 26 <td< th=""></td<>				
Αþ	pen	aix – information on the Testing Laboratories	34			

Release Control Record

Issue No.	Description	Date Issued
RF180919C04-6	Original Release	Nov. 09, 2018

1 Certificate of Conformity

Product: Smart Phone

Brand: NOKIA

Test Model: TA1124

Sample Status: Engineering Sample

Applicant: HMD Global Oy

Test Date: Oct. 09, 2018 ~ Oct. 26, 2018

Standards: 47 CFR FCC Part 15, Subpart C (Section 15.225)

47 CFR FCC Part 15, Subpart C (Section 15.215)

ANSI C63.10:2013

The above equipment has been tested by **Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch**, and found compliance with the requirement of the above standards. The test record, data evaluation & Equipment Under Test (EUT) configurations represented herein are true and accurate accounts of the measurements of the sample's RF characteristics under the conditions specified in this report.

Prepared by : , Date: Nov. 09, 2018

Rona Chen / Specialist

Approved by : , Date: Nov. 09. 2018

Dylan Chiou / Project Engineer

2 Summary of Test Results

	47 CFR FCC Part 15, Subpart C (Section 15.225, 15.215)						
FCC Clause	Test Item	Result	Remarks				
15.207	Conducted emission test	Pass	Meet the requirement of limit. Minimum passing margin is -7.45 dB at 13.56130 MHz.				
15.225 (a)	The field strength of any emissions within the band 13.553-13.567 MHz	Pass	Meet the requirement of limit. Minimum passing margin is -67.9 dB at 13.56 MHz.				
15.225 (b)	The field strength of any emissions within the bands 13.410-13.553 MHz and 13.567-13.710 MHz	Pass	Meet the requirement of limit.				
15.225 (c)	The field strength of any emissions within the bands 13.110-13.410 MHz and 13.710-14.010 MHz	Pass	Meet the requirement of limit.				
15.225 (d)	The field strength of any emissions appearing outside of the 13.110-14.010 MHz band	Pass	Meet the requirement of limit. Minimum passing margin is -10.10 dB at 175.72 MHz.				
15.225 (e)	The frequency tolerance	Pass	Meet the requirement of limit.				
15.215 (c)	20 dB Bandwidth	Pass	Meet the requirement of limit.				
15.203	Antenna Requirement	Pass	No antenna connector is used.				

2.1 Measurement Uncertainty

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the EUT as specified in CISPR 16-4-2:

Measurement	Frequency	Expended Uncertainty (k=2) (±)
Conducted Emissions at mains ports	150 kHz ~ 30 MHz	2.44 dB
Dedicted Emissions up to 4 CHz	30 MHz ~ 200 MHz	3.59 dB
Radiated Emissions up to 1 GHz	200 MHz ~ 1000 MHz	3.60 dB

2.2 Modification Record

There were no modifications required for compliance.

3 General Information

3.1 General Description of EUT

Product	Smart Phone
Brand	NOKIA
Test Model	TA1124
Status of EUT	Engineering Sample
Dawar Cumulu Datina	5 Vdc / 9 Vdc (Adapter)
Power Supply Rating	3.85 Vdc (Battery)
Modulation Type	ASK
Operating Frequency	13.56 MHz
Antenna Type	Loop Antenna
Accessory Device	Refer to Note
Data Cable Supplied	Refer to Note

Note:

- 1. The EUT's accessories list refers to EUT Photo.pdf.
- 2. The EUT contains two samples listed as below.

Main Sample: EUT + Photo Camera 1 + Video Camera 1 + eMMC 2 (=ROM 2) + RAM 2 + Battery 1 2nd Sample: EUT + Photo Camera 2 + Video Camera 2 + eMMC 1 (=ROM 1) + RAM 1 + Battery 2

3. The above EUT information is declared by manufacturer and for more detailed features description, please refers to the manufacturer's specifications or user's manual.

3.2 Description of Test Modes

One channel was provided to this EUT:

Channel	Frequency (MHz)	
1	13.56	

3.2.1 Test Mode Applicability and Tested Channel Detail

EUT Configure		Applica	Description		
Mode	RE	PLC	FS	EB	Description
А	V	V	V	V	Main Sample
В	\checkmark	-	-	-	2 nd Sample

Where

RE: Radiated Emission

FS: Frequency Stability

PLC: Power Line Conducted Emission

EB: 20 dB Bandwidth measurement

Note:

- 1. The EUT had been pre-tested on the positioned of each 3 axis. The worst case was found when positioned on Z-plane.
- 2. The EUT had been pre-tested on low, middle, and high transfer rate. The worst case was found on low transfer rate.
- 3. "-" means no effect.

Radiated Emission Test:

Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture).

Following channel(s) was (were) selected for the final test as listed below.

EUT Configure Mode	Available Channel	Tested Channel	Modulation Type	Axis
A, B	1	1	ASK	Z

Power Line Conducted Emission Test:

Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture).

Following channel(s) was (were) selected for the final test as listed below.

EUT Configure Mode	Available Channel	Tested Channel	Modulation Type	Axis
A	1	1	ASK	Z

Frequency Stability:

- This item includes all test value of each mode, but only includes spectrum plot of worst value of each mode.
- Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture).

Following channel(s) was (were) selected for the final test as listed below.

EUT Configure Mode	Available Channel	Tested Channel	Modulation Type	Axis
A	1	1	ASK	Z

20 dB Bandwidth:

- This item includes all test value of each mode, but only includes spectrum plot of worst value of each mode.
- Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture).
- Following channel(s) was (were) selected for the final test as listed below.

EUT Configure Mode	Available Channel	Tested Channel	Modulation Type	Axis
А	1	1	ASK	Z

Test Condition:

Applicable To	Environmental Conditions	Input Power	Tested By
RE	25 deg. C, 65 % RH	120 Vac, 60 Hz	Adair Peng
FS	25 deg. C, 65 % RH	3.85 Vdc	Gavin Wu
PLC	25 deg. C, 65 % RH	120 Vac, 60 Hz	Greg Lin
EB	25 deg. C, 68 % RH	3.85 Vdc	Gavin Wu

3.3 Description of Support Units

The EUT has been tested as an independent unit together with other necessary accessories or support units.

3.3.1 Configuration of System under Test

3.4 General Description of Applied Standards

The EUT is a RF Product. According to the specifications of the manufacturer, it must comply with the requirements of the following standards:

FCC Part 15, Subpart C (15.225) FCC Part 15, Subpart C (15.215)

ANSI C63.10-2013

All test items have been performed and recorded as per the above standards.

4 Test Types and Results

4.1 Radiated Emission Measurement

4.1.1 Limits of Radiated Emission Measurement

- a. The field strength of any emissions within the band 13.553-13.567 MHz shall not exceed 15,848 microvolts/meter at 30 meters.
- b. Within the bands 13.410-13.553 MHz and 13.567-13.710 MHz, the field strength of any emissions shall not exceed 334 microvolts/meter at 30 meters.
- c. Within the bands 13.110-13.410 MHz and 13.710-14.010 MHz the field strength of any emissions shall not exceed 106 microvolts/meter at 30 meters.
- d. The field strength of any emissions appearing outside of the 13.110-14.010 MHz band shall not exceed the general radiated emission limits in §15.209 as below table:

Frequencies (MHz)	Field Strength (microvolts/meter)	Measurement Distance (meters)
0.009 ~ 0.490	2400/F (kHz)	300
0.490 ~ 1.705	24000/F (kHz)	30
1.705 ~ 30.0	30	30
30 ~ 88	100	3
88 ~ 216	150	3
216 ~ 960	200	3
Above 960	500	3

NOTE:

- 1. The lower limit shall apply at the transition frequencies.
- 2. Emission level $(dBuV/m) = 20 \log Emission level (uV/m)$.
- 3. For frequencies above 1000 MHz, the field strength limits are based on average detector, however, the peak field strength of any emission shall not exceed the maximum permitted average limits, specified above by more than 20 dB under any condition of modulation.

4.1.2 Test Instruments

Description & Manufacturer	Model No.	Serial No.	Date of Calibration	Due Date of Calibration
Test Receiver KEYSIGHT	N9038A	MY55420137	Apr. 11, 2018	Apr. 10, 2019
Spectrum Analyzer ROHDE & SCHWARZ	FSP40	100269	May 29, 2018	May 28, 2019
BILOG Antenna SCHWARZBECK	VULB9168	9168-148	Dec. 11, 2017	Dec. 10, 2018
Loop Antenna TESEQ	HLA 6121	45745	Jun. 14, 2018	Jun. 13, 2019
Preamplifier Agilent (Below 1GHz)	8447D	2944A10638	Aug. 08, 2018	Aug. 07, 2019
RF signal cable HUBER+SUHNER&EMCI	SUCOFLEX 104 & EMC104-SM-SM80 00	CABLE-CH9-02 (248780+171006)	Jan. 15, 2018	Jan. 14, 2019
RF signal cable HUBER+SUHNER	SUCOFLEX 104	CABLE-CH9-(2507 95/4)	Aug. 08, 2018	Aug. 07, 2019
RF signal cable Woken	8D-FB	Cable-CH9-01	Jul. 31, 2018	Jul. 30, 2019
Software BV ADT	ADT_Radiated_ V7.6.15.9.5	NA	NA	NA
Antenna Tower EMCO	2070/2080	512.835.4684	NA	NA
Turn Table EMCO	2087-2.03	NA	NA	NA
Antenna Tower &Turn BV ADT	AT100	AT93021705	NA	NA
Turn Table BV ADT	TT100	TT93021705	NA	NA
Turn Table Controller BV ADT	SC100	SC93021705	NA	NA
Temperature & Humidity Chamber	GTH-120-40-CP-A R	MAA1306-019	Sep. 05, 2018	Sep. 04, 2019
DC Power Supply Topward	33010D	807748	Oct. 25, 2016 Oct. 24, 2018	Oct. 24, 2018 Oct. 23, 2020
Digital Multimeter Fluke	87-III	70360742	Jun. 29, 2018	Jun. 28, 2019

Note: 1. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.

- 2. The test was performed in HwaYa Chamber 9.
- 3. The horn antenna and preamplifier (model: 8449B) are used only for the measurement of emission frequency above 1 GHz if tested.
- 4. The IC Site Registration No. is 7450F-9.

4.1.3 Test Procedures

For Radiated Emission below 30 MHz

- a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter chamber room. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. Both Parallel, perpendicular, and ground-parallel orientations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Quasi-Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.

Note:

1. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 9 kHz at frequency below 30 MHz.

For Radiated Emission above 30 MHz

- a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at 3 meter chamber room for test. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The height of antenna is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to quasi-peak detect function and specified bandwidth with maximum hold mode when the test frequency is below 1 GHz.
- f. The test-receiver system was set to peak and average detected function and specified bandwidth with maximum hold mode when the test frequency is above 1 GHz. If the peak reading value also meets average limit, measurement with the average detector is unnecessary.

Note:

- 1. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 120 kHz for Quasi-peak detection (QP) at frequency below 1 GHz.
- 2. The resolution bandwidth of test receiver/spectrum analyzer is 1 MHz and the video bandwidth is 3 MHz for Peak detection (PK) at frequency above 1 GHz.
- 3. The resolution bandwidth of test receiver/spectrum analyzer is 1 MHz and the video bandwidth is ≥ 1/T (Duty cycle < 98 %) or 10 Hz (Duty cycle ≥ 98 %) for Average detection (AV) at frequency above 1 GHz.
- 4. All modes of operation were investigated and the worst-case emissions are reported.

4.1.4 Deviation from Test Standard

No deviation.

4.1.5 Test Set Up

<Radiated Emission below 30 MHz>

<Radiated Emission 30 MHz to 1 GHz>

For the actual test configuration, please refer to the attached file (Test Setup Photo).

4.1.6 EUT Operating Conditions

- a. Placed the EUT on the testing table.
- b. Set the EUT under transmission condition continuously at specific channel frequency.

4.1.7 Test Results No non-compliance noted: KDB 937606 OATS and Chamber Correlation Justification - Base on FCC 15.31 (f) (2): measurements may be performed at a distance closer than that specified in the regulations; however, an attempt should be made to avoid making measurements in the near field. - OATs and chamber correlation testing had been performed and chamber measured test result is the worst case test result.

Mode A

EUT Test Condition		Measurement Detail		
Channel 1		Frequency Range 13.553 ~ 13.567MHz		
Input Power	Input Power 120Vac, 60Hz		Quasi-Peak	
Environmental Conditions	22 deg. C, 66% RH	Tested By	Adair Peng	

	Antenna Polarity & Test Distance: Loop Antenna Open At 3m										
	Frog	Emission	Limit	Morgin	Antenna	Table	Raw	Correction			
No.	Freq.	Level	-				Margin	Height	Angle	Value	Factor
	(MHz)	(dBuV/m)	(ubuv/III)	(dB)	(m)	(Degree)	(dBuV)	(dB/m)			
1	*13.56	56.09 QP	124.00 QP	-67.9	1.00	57	34.3	21.80			

Remarks:

- 1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)
- 2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) Pre-Amplifier Factor(dB)
- 3. The other emission levels were very low against the limit.
- 4. Margin value = Emission Level Limit value
- 5. Above limits have been translated by the formula

The measured field strength was extrapolated to distance 30 meters, using the formula that the limit of field strength varies as the inverse distance square (40dB per decade of distance) Example:

13.56MHz =

= 15848uV/m 30m = 84dBuV/m 30m = $84+20log(30/3)^2$ 3m

= 124dBuV/m

EUT Test Condition		Measurement Detail		
Channel 1		Frequency Range 13.553 ~ 13.567MHz		
Input Power	nput Power 120Vac, 60Hz		Quasi-Peak	
Environmental Conditions	22 deg. C, 66% RH	Tested By	Adair Peng	

	Antenna Polarity & Test Distance: Loop Antenna Close At 3m													
	Freq.	Emission	Limit	Morgin	Antenna	Table	Raw	Correction						
No.	•	Level	Limit	-						Margin	Height	Angle	Value	Factor
	(MHz) (dB	(dBuV/m)	(ubuv/III)	(ub)	(m)	(Degree)	(dBuV)	(dB/m)						
1	*13.56	54.17 QP	124.00 QP	-69.8	1.00	324	32.4	21.8						

- 1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)
- 2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) Pre-Amplifier Factor(dB)
- 3. The other emission levels were very low against the limit.
- 4. Margin value = Emission Level Limit value
- 5. Above limits have been translated by the formula

The measured field strength was extrapolated to distance 30 meters, using the formula that the limit of field strength varies as the inverse distance square (40dB per decade of distance) Example:

13.56MHz = 15848uV/m 30m

= 84dBuV/m 30m = $84+20log(30/3)^2$ 3m

= 124dBuV/m

EUT Test Condition		Measurement Detail		
Channel 1		Frequency Range 13.553 ~ 13.567MHz		
Input Power	Input Power 120Vac, 60Hz		Quasi-Peak	
Environmental Conditions	22 deg. C, 66% RH	Tested By	Adair Peng	

	Antenna Polarity & Test Distance: Loop Antenna Ground-Parallel At 3m										
	Freg.	Emission	Limit	Margin	Antenna	Table	Raw	Correction			
No.	(MHz)	Level		(dB)	Height	Angle	Value	Factor			
	(IVITZ)	(dBuV/m)	(dBuV/m)	(aBuv/m)	(dBuV/III)	(ubuV/III)	(ub)	(m)	(Degree)	(dBuV)	(dB/m)
1	*13.56	48.11 QP	124.00 QP	-75.9	1.00	50	26.3	21.8			

- 1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)
- 2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) Pre-Amplifier Factor(dB)
- 3. The other emission levels were very low against the limit.
- 4. Margin value = Emission Level Limit value
- 5. Above limits have been translated by the formula

The measured field strength was extrapolated to distance 30 meters, using the formula that the limit of field strength varies as the inverse distance square (40dB per decade of distance) Example:

13.56MHz = 15848uV/m 30m

= 84dBuV/m 30m = $84+20log(30/3)^2$ 3m

= 124dBuV/m

EUT Test Condition		Measurement Detail		
Channel 1		Frequency Range Below 30MHz		
Input Power	120Vac, 60Hz	Detector Function	Quasi-Peak	
Environmental Conditions	22 deg. C, 66% RH	Tested By	Adair Peng	

	Antenna Polarity & Test Distance: Loop Antenna Open At 3m										
No.	Freq. (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)			
1	3.57	44.40	69.50	-25.10	1.00	143	24.60	19.80			
2	8.85	34.40	69.50	-35.10	1.00	13	12.90	21.50			
3	11.88	36.40	69.50	-33.10	1.00	177	14.60	21.80			
4	16.16	34.80	69.50	-34.70	1.00	172	13.00	21.80			
5	19.47	36.30	69.50	-33.20	1.00	223	14.50	21.80			
6	25.10	43.50	69.50	-26.00	1.00	314	21.50	22.00			

- 1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)
- 2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB)
- 3. The other emission levels were very low against the limit.
- 4. Margin value = Emission Level Limit value

EUT Test Condition		Measurement Detail		
Channel 1		Frequency Range Below 30MHz		
Input Power	120Vac, 60Hz	Detector Function	Quasi-Peak	
Environmental Conditions	22 deg. C, 66% RH	Tested By	Adair Peng	

	Antenna Polarity & Test Distance: Loop Antenna Close At 3m										
No.	Freq. (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)			
1	3.57	38.80	69.50	-30.70	1.00	51	19.00	19.80			
2	8.08	35.60	69.50	-33.90	1.00	124	14.30	21.30			
3	11.50	34.90	69.50	-34.60	1.00	189	13.10	21.80			
4	17.31	34.50	69.50	-35.00	1.00	321	12.70	21.80			
5	20.77	35.00	69.50	-34.50	1.00	195	13.10	21.90			
6	25.10	36.50	69.50	-33.00	1.00	36	14.50	22.00			

- 1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)
- 2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) Pre-Amplifier Factor(dB)
- 3. The other emission levels were very low against the limit.
- 4. Margin value = Emission Level Limit value

EUT Test Condition		Measurement Detail		
Channel 1		Frequency Range Below 30MHz		
Input Power	Input Power 120Vac, 60Hz		Quasi-Peak	
Environmental Conditions	22 deg. C, 66% RH	Tested By	Adair Peng	

	Antenna Polarity & Test Distance: Loop Antenna Ground-Parallel At 3m											
No.	Freq. (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)				
1	2.46	33.40	69.50	-36.10	1.00	160	13.70	19.70				
2	6.50	35.30	69.50	-34.20	1.00	354	14.40	20.90				
3	11.11	35.00	69.50	-34.50	1.00	59	13.20	21.80				
4	16.06	34.30	69.50	-35.20	1.00	210	12.50	21.80				
5	20.72	34.50	69.50	-35.00	1.00	141	12.60	21.90				
6	26.49	34.00	69.50	-35.50	1.00	48	11.90	22.10				

- 1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)
- 2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) Pre-Amplifier Factor(dB)
- 3. The other emission levels were very low against the limit.
- 4. Margin value = Emission Level Limit value

Mode A

EUT Test Condition		Measurement Detail		
Channel 1		Frequency Range Below 1000MHz		
Input Power 120Vac, 60Hz		Detector Function	Quasi-Peak	
Environmental Conditions 22 deg. C, 66% RH		Tested By	Adair Peng	

	Antenna Polarity & Test Distance: Horizontal At 3m											
No.	Freq. (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)				
1	57.12	27.90 QP	40.00	-12.10	2.00 H	223	37.50	-9.60				
2	175.72	33.40 QP	43.50	-10.10	1.49 H	110	43.10	-9.70				
3	267.10	24.90 QP	46.00	-21.10	1.00 H	148	33.50	-8.60				
4	350.71	26.30 QP	46.00	-19.70	1.00 H	45	32.80	-6.50				
5	463.48	26.50 QP	46.00	-19.50	2.00 H	12	30.70	-4.20				
6	671.52	30.70 QP	46.00	-15.30	2.00 H	100	30.90	-0.20				

- 1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)
- 2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) Pre-Amplifier Factor(dB)
- 3. The other emission levels were very low against the limit.
- 4. Margin value = Emission Level Limit value

EUT Test Condition		Measurement Detail		
Channel 1		Frequency Range Below 1000MHz		
Input Power	Input Power 120Vac, 60Hz		Quasi-Peak	
Environmental Conditions	Environmental Conditions 22 deg. C, 66% RH		Adair Peng	

	Antenna Polarity & Test Distance: Vertical At 3m										
No.	Freq. (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)			
1	82.40	27.50 QP	40.00	-12.50	2.00 V	235	41.40	-13.90			
2	175.72	26.50 QP	43.50	-17.00	2.00 V	5	36.20	-9.70			
3	333.21	24.00 QP	46.00	-22.00	1.51 V	285	30.70	-6.70			
4	445.98	28.00 QP	46.00	-18.00	1.51 V	75	32.30	-4.30			
5	613.19	29.00 QP	46.00	-17.00	1.01 V	37	29.90	-0.90			
6	817.34	32.60 QP	46.00	-13.40	1.51 V	6	29.80	2.80			

- 1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)
- 2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) Pre-Amplifier Factor(dB)
- 3. The other emission levels were very low against the limit.
- 4. Margin value = Emission Level Limit value

Mode B

EUT Test Condition		Measurement Detail		
Channel 1		Frequency Range Below 1000MHz		
Input Power 120Vac, 60Hz		Detector Function	Quasi-Peak	
Environmental Conditions 22 deg. C, 66% RH		Tested By	Adair Peng	

	Antenna Polarity & Test Distance: Horizontal At 3m											
No.	Freq. (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)				
1	29.90	20.90 QP	40.00	-19.10	2.00 H	222	32.00	-11.10				
2	41.57	20.50 QP	40.00	-19.50	2.00 H	109	30.20	-9.70				
3	171.83	18.70 QP	43.50	-24.80	2.00 H	66	28.10	-9.40				
4	389.59	23.30 QP	46.00	-22.70	2.00 H	201	29.00	-5.70				
5	729.84	33.80 QP	46.00	-12.20	2.00 H	14	32.50	1.30				
6	959.27	36.70 QP	46.00	-9.30	2.00 H	274	31.60	5.10				

- 1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)
- 2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) Pre-Amplifier Factor(dB)
- 3. The other emission levels were very low against the limit.
- 4. Margin value = Emission Level Limit value

EUT Test Condition		Measurement Detail		
Channel 1		Frequency Range Below 1000MHz		
Input Power	Input Power 120Vac, 60Hz		Quasi-Peak	
Environmental Conditions	Environmental Conditions 22 deg. C, 66% RH		Adair Peng	

	Antenna Polarity & Test Distance: Vertical At 3m										
No.	Freq. (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)			
1	70.73	20.20 QP	40.00	-19.80	1.50 V	31	31.70	-11.50			
2	169.89	19.50 QP	43.50	-24.00	1.50 V	6	28.70	-9.20			
3	410.98	24.40 QP	46.00	-21.60	1.50 V	327	29.70	-5.30			
4	566.52	27.60 QP	46.00	-18.40	1.50 V	171	29.80	-2.20			
5	735.68	30.70 QP	46.00	-15.30	1.50 V	326	29.10	1.60			
6	916.50	35.50 QP	46.00	-10.50	1.50 V	72	30.70	4.80			

- 1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)
- 2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) Pre-Amplifier Factor(dB)
- 3. The other emission levels were very low against the limit.
- 4. Margin value = Emission Level Limit value

4.2 Conducted Emission Measurement

4.2.1 Limits of Conducted Emission Measurement

Frequency (MHz)	Conducted Limit (dBuV)				
	Quasi-Peak	Average			
0.15 - 0.5	66 - 56	56 - 46			
0.50 - 5.0	56	46			
5.0 - 30.0	60	50			

Note:

- 1. The lower limit shall apply at the transition frequencies.
- 2. The limit decreases in line with the logarithm of the frequency in the range of 0.15 to 0.50 MHz.
- 3. All emanations from a class A/B digital device or system, including any network of conductors and apparatus connected thereto, shall not exceed the level of field strengths specified above.

4.2.2 Test Instruments

Description & Manufacturer	Model No.	Serial No.	Date of Calibration	Due Date of Calibration
Test Receiver ROHDE & SCHWARZ	ESCI	100613	Nov. 23, 2017	Nov. 22, 2018
RF signal cable Woken	5D-FB	Cable-cond1-01	Sep. 05, 2018	Sep. 04, 2019
LISN ROHDE & SCHWARZ (EUT)	ENV216	101826	Feb. 26, 2018	Feb. 25, 2019
LISN ROHDE & SCHWARZ (Peripheral)	ESH3-Z5	100311	Aug. 19, 2018	Aug. 18, 2019
Software ADT	BV ADT_Cond_ V7.3.7.4	NA	NA	NA

- Note: 1. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.
 - 2. The test was performed in HwaYa Shielded Room 1.
 - 3. The VCCI Site Registration No. is C-2040.

4.2.3 Test Procedures

- a. The EUT was placed 0.4 meters from the conducting wall of the shielded room with EUT being connected to the power mains through a line impedance stabilization network (LISN). Other support units were connected to the power mains through another LISN. The two LISNs provide 50 ohm/50 uH of coupling impedance for the measuring instrument.
- b. Both lines of the power mains connected to the EUT were checked for maximum conducted interference.
- c. The frequency range from 150 kHz to 30 MHz was searched. Emission levels under (Limit 20 dB) was not recorded.

Note: The resolution bandwidth and video bandwidth of test receiver is 9 kHz for quasi-peak detection (QP) and average detection (AV) at frequency 0.15 MHz - 30 MHz.

4.2.4 Deviation from Test Standard

No deviation.

4.2.5 Test Setup

Note: 1.Support units were connected to second LISN.

2.Both of LISNs (AMN) are 80 cm from EUT and at least 80 from other units and other metal planes

For the actual test configuration, please refer to the attached file (Test Setup Photo).

4.2.6 EUT Operating Conditions

- a. Placed the EUT on the testing table.
- b. Set the EUT under transmission condition continuously at specific channel frequency.

4.2.7 Test Results

Frequency Range	150kHz ~ 30MHz	Detector Function & Resolution Bandwidth	Quasi-Peak (QP) / Average (AV), 9kHz
Input Power	120Vac, 60Hz	Environmental Conditions	25℃, 75%RH
Tested by	Greg Lin	Test Date	2018/10/10

	Phase Of Power : Line (L)									
	Frequency Correction		Reading Value		Emission Level		Limit		Margin	
No		Factor	(dB	(dBuV)		(dBuV)		(dBuV)		B)
	(MHz)	(dB)	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.
1	0.58010	9.73	13.79	7.12	23.52	16.85	56.00	46.00	-32.48	-29.15
2	0.94373	9.69	11.37	2.69	21.06	12.38	56.00	46.00	-34.94	-33.62
3	1.12750	9.69	7.85	2.56	17.54	12.25	56.00	46.00	-38.46	-33.75
4	7.20755	9.84	6.86	1.40	16.70	11.24	60.00	50.00	-43.30	-38.76
5	13.55348	9.91	26.80	4.06	36.71	13.97	60.00	50.00	-23.29	-36.03
6	18.08908	9.94	11.47	2.60	21.41	12.54	60.00	50.00	-38.59	-37.46

- 1. Q.P. and AV. are abbreviations of quasi-peak and average individually.
- 2. The emission levels of other frequencies were very low against the limit.
- 3. Margin value = Emission level Limit value
- 4. Correction factor = Insertion loss + Cable loss
- 5. Emission Level = Correction Factor + Reading Value

Frequency Range	150kHz ~ 30MHz	Detector Function & Resolution Bandwidth	Quasi-Peak (QP) / Average (AV), 9kHz
Input Power	120Vac, 60Hz	Environmental Conditions	25℃, 75%RH
Tested by	Greg Lin	Test Date	2018/10/10

Phase Of Power : Neutral (N)										
	Frequency	Correction Reading Value		g Value	lue Emission Level (dBuV)		Limit (dBuV)		Margin (dB)	
No		Factor	(dBuV)							
	(MHz)	(dB)	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.
1	0.19692	9.73	5.39	1.66	15.12	11.39	63.74	53.74	-48.62	-42.35
2	0.57228	9.74	18.92	10.43	28.66	20.17	56.00	46.00	-27.34	-25.83
3	1.20570	9.72	4.08	1.69	13.80	11.41	56.00	46.00	-42.20	-34.59
4	4.50183	9.82	6.15	2.27	15.97	12.09	56.00	46.00	-40.03	-33.91
5	13.56130	9.98	42.57	19.53	52.55	29.51	60.00	50.00	-7.45	-20.49
6	15.39900	10.01	13.98	3.21	23.99	13.22	60.00	50.00	-36.01	-36.78

- 1. Q.P. and AV. are abbreviations of quasi-peak and average individually.
- 2. The emission levels of other frequencies were very low against the limit.
- 3. Margin value = Emission level Limit value
- 4. Correction factor = Insertion loss + Cable loss
- 5. Emission Level = Correction Factor + Reading Value

4.3 Frequency Stability

4.3.1 Limits of Frequency Stability Measurement

The frequency tolerance of the carrier signal shall be maintained within +/- 0.01 % of the operating frequency over a temperature variation of –20 degrees to 50 degrees C at normal supply voltage, and for a variation in the primary supply voltage from 85 % to 115 % of the rated supply voltage at a temperature of 20 degrees C.

4.3.2 Test Setup

4.3.3 Test Instruments

Refer to section 4.1.2 to get information of above instrument.

4.3.4 Test Procedure

- a. The EUT was placed inside the environmental test chamber and powered by nominal DC voltage.
- b. Turned the EUT on and coupled its output to a spectrum analyzer.
- c. Turned the EUT off and set the chamber to the highest temperature specified.
- d. Allowed sufficient time (approximately 30 min) for the temperature of the chamber to stabilize then turned the EUT on and measured the operating frequency after 2, 5, and 10 minutes.
- e. Repeated step 2 and 3 with the temperature chamber set to the lowest temperature.
- f. The test chamber was allowed to stabilize at +20 degree C for a minimum of 30 minutes. The supply voltage was then adjusted on the EUT from 85 % to 115 % and the frequency record.

4.3.5 Deviation from Test Standard

No deviation.

4.3.6 EUT Operating Conditions

- a. Placed the EUT on the testing table.
- b. Set the EUT under transmission condition continuously at specific channel frequency.

4.3.7 Test Results

	Frequency Stability Versus Temperature								
		0 Minute		2 Minute		5 Minute		10 Minute	
Temp. (°C)	Power Supply (Vdc)	Measured Frequency	Frequency Drift	Measured Frequency	Frequency Drift	Measured Frequency	Frequency Drift	Measured Frequency	Frequency Drift
	(111)	(MHz)	%	(MHz)	%	(MHz)	%	(MHz)	%
50	5	13.55997	-0.00022	13.55997	-0.00022	13.55997	-0.00022	13.55997	-0.00022
40	5	13.55996	-0.00029	13.55996	-0.00029	13.55997	-0.00022	13.55996	-0.00029
30	5	13.55997	-0.00022	13.55997	-0.00022	13.55997	-0.00022	13.55996	-0.00029
20	5	13.55997	-0.00022	13.55997	-0.00022	13.55998	-0.00015	13.55998	-0.00015
10	5	13.56004	0.00029	13.56003	0.00022	13.56005	0.00037	13.56005	0.00037
0	5	13.56001	0.00007	13.56002	0.00015	13.56002	0.00015	13.56001	0.00007
-10	5	13.55995	-0.00037	13.55995	-0.00037	13.55994	-0.00044	13.55995	-0.00037
-20	5	13.56002	0.00015	13.56002	0.00015	13.56002	0.00015	13.56002	0.00015

	Frequency Stability Versus Voltage									
		0 Minute		2 Minute		5 Minute		10 Minute		
Temp. (°C)	Power Supply (Vdc)	Measured Frequency	Frequency Drift	Measured Frequency	Frequency Drift	Measured Frequency	Frequency Drift	Measured Frequency	Frequency Drift	
	(100)	(MHz)	%	(MHz)	%	(MHz)	%	(MHz)	%	
	5.75	13.55997	-0.00022	13.55997	-0.00022	13.55998	-0.00015	13.55998	-0.00015	
20	5	13.55997	-0.00022	13.55997	-0.00022	13.55998	-0.00015	13.55998	-0.00015	
	4.25	13.55997	-0.00022	13.55997	-0.00022	13.55998	-0.00015	13.55998	-0.00015	

4.4 20 dB Bandwidth

4.4.1 Limits of 20 dB Bandwidth Measurement

The 20 dB bandwidth shall be specified in operating frequency band.

4.4.2 Test Setup

Refer to section 4.1.5.

4.4.3 Test Instruments

Refer to section 4.1.2 to get information of above instrument.

4.4.4 Test Procedures

The bandwidth of the fundamental frequency was measured by spectrum analyzer with 1 kHz RBW and 3 kHz VBW. The 20 dB bandwidth is defined as the total spectrum the power of which is higher than peak power minus 20 dB.

4.4.5 Deviation from Test Standard

No deviation.

4.4.6 EUT Operating Conditions

- a. Placed the EUT on the testing table.
- b. Set the EUT under transmission condition continuously at specific channel frequency.

4.4.7 Test Results

20 dBc Point (Low)	20 dBc Point (High)	Operating Frequency Band (MHz)	Pass / Fail	
13.558621795 MHz	13.56128205141 MHz	13.553~13.567	Pass	

5 Pictures of Test Arrangements	
Please refer to the attached file (Test Setup Photo).	

Appendix - Information on the Testing Laboratories

We, Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch, were founded in 1988 to provide our best service in EMC, Radio, Telecom and Safety consultation. Our laboratories are FCC recognized accredited test firms and accredited according to ISO/IEC 17025.

Hsin Chu EMC/RF/Telecom Lab

If you have any comments, please feel free to contact us at the following:

Linko EMC/RF Lab

Tel: 886-2-26052180 Tel: 886-3-6668565 Fax: 886-2-26051924 Fax: 886-3-6668323

Hwa Ya EMC/RF/Safety

Tel: 886-3-3183232 Fax: 886-3-3270892

Email: service.adt@tw.bureauveritas.com
Web Site: www.bureauveritas-adt.com

The address and road map of all our labs can be found in our web site also.

--- END ---