Regelungstechnik: FAST Reference sheet

Dino Colombo, Michael van Huffel

August 6, 2021

Testsignale 1. Ordnung

$$c(t) = h(t) \cdot \cos(\omega t)$$

 $y_{c,\infty} = m(\omega) \cdot \cos(\omega t + \varphi(\omega))$

Aussage über ein system

Lyapunov Stabilität

- 1. Asymptotisch stabil: $\lim_{t\to\infty} ||x(t)|| = 0$, falls alle EW $\text{Re}(\lambda_i) < 0$.
- 2. **Stabil:** $(\|x(t)\| < \infty \forall t \in [0,\infty])$, falls mehrere EW $\text{Re}(\lambda_k) = 0$ und kein EW $\text{Re}(\lambda_i) \neq 0$.
- 3. Instabil: $\lim_{t\to\infty}\|x(t)\|=\infty$ falls mindestens ein EW $\mathrm{Re}(\lambda_i)>0.$

BIBO Stabilität

Ein System ist BIBO Stabil, falls für die Impulsantwort $\delta(t)$ folgendes gilt: $\int_0^\infty |\delta(t)| dt < \infty$

- $Re(\pi_i) < 0, \forall i \in \mathcal{N}$
- Nicht BIBO stabil in allen anderen Fällen.

-barkeit

- Steuer-/Erreich-: $\mathcal{R} = \begin{bmatrix} b, & A \cdot b, & A^2 \cdot b, & \dots, & A^{n-1} \cdot b \end{bmatrix}$: vollen Rang (Det(\mathcal{R}) \neq 0).
- Stabilisier-: Ein (instabiles) System ist potentiell Stabilisierbar, falls alle Zustände, die nicht steuerbar sind asymptotisch stabil sind.
- Beobachtbar-: $\mathcal{O} = \begin{bmatrix} c \\ c \cdot A \\ c \cdot A^2 \\ \vdots \\ c \cdot A^{n-1} \end{bmatrix}$: vollen Rang $(\text{Det}(\mathcal{O}) \neq 0)$
- Detektier-: Ein System ist nur detektierbar, falls alle seine nicht-beobachtbaren Zustände asymptotisch stabil sind.

Übertragungsfunktion

Achtung: #Pole = Ordnung des Systems $\Sigma(s) = \frac{Y(s)}{U(s)} = \frac{c \cdot \mathrm{Adj}(s\mathbb{I} - A) \cdot b}{\det(s\mathbb{I} - A)} + d$

Most common adj()

Adjunkte für eine $n \times n$ Matrix:

$$adj(A) = C^T = ((-1)^{i+j} M_{ji})_{1 \le i, j \le n}$$

Adjunkte für eine 2×2 -Matrix:

$$A = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \xrightarrow{\underline{adjungieren}} \operatorname{Adj}(A) = \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$$

Adjunkte für eine 3×3 -Matrix:

$$adj \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix} = C^T = \begin{pmatrix} +\det\begin{pmatrix} a_{22} & a_{23} \\ a_{32} & a_{33} \end{pmatrix} & -\det\begin{pmatrix} a_{12} & a_{13} \\ a_{32} & a_{33} \end{pmatrix} & +\det\begin{pmatrix} a_{12} & a_{13} \\ a_{22} & a_{23} \end{pmatrix} \\ -\det\begin{pmatrix} a_{21} & a_{23} \\ a_{31} & a_{33} \end{pmatrix} & +\det\begin{pmatrix} a_{11} & a_{13} \\ a_{31} & a_{33} \end{pmatrix} & -\det\begin{pmatrix} a_{11} & a_{13} \\ a_{21} & a_{22} \\ a_{31} & a_{32} \end{pmatrix} \\ +\det\begin{pmatrix} a_{21} & a_{22} \\ a_{31} & a_{32} \end{pmatrix} & -\det\begin{pmatrix} a_{11} & a_{12} \\ a_{31} & a_{32} \end{pmatrix} & +\det\begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix}$$

Laplace-Transformation

Wichtige Singaltransformationen:

x(t)	X(S)
$\delta(t)$	1
h(t) (=1)	$\frac{1}{s}$
p(t) (=t)	$\frac{1}{s^2}$
$h(t)\cdot t^n\cdot e^{\alpha\cdot t}$	$\frac{n!}{(s-\alpha)^{n+1}}$
$h(t) \cdot sin(\omega \cdot t)$	$\frac{\omega}{s^2 + \omega^2}$
$h(t) \cdot cos(\omega \cdot t)$	$\frac{s}{s^2 + \omega^2}$
$h(t)\cdot sinh(\omega\cdot t)$	$rac{\omega}{s^2-\omega^2}$
$h(t) \cdot cosh(\omega \cdot t)$	$\frac{s}{s^2 - \omega^2}$
$h(t) \cdot (e^{at} - 1)$	$\frac{a}{s(s-a)}$
$h(t) \cdot \frac{e^{at} - e^{bt}}{a - b}$	$\frac{1}{(s-a)(s-b)}$
$h(t) \cdot \frac{ae^{at} - be^{bt}}{a - b}$	$\frac{s}{(s-a)(s-b)}$

Wichtige Eigenschaften:

Linearität	$\mathcal{L}\{ax_1(t) + bx_2(T)\} = aX_1(s) + bX_2(s)$
Ähnlichkeit	$\mathcal{L}\{\frac{1}{a} \cdot x(\frac{t}{a})\} = X(s \cdot a)$
Verschiebung	$\mathcal{L}\{x(t-T)\} = e^{-T \cdot s} \cdot X(S)$
Dämpfung	$\mathcal{L}\{(x(t) \cdot e^{a \cdot t}\} = X(s-a)$
Ableitung t	$\mathcal{L}\left\{\frac{d}{dt}x(t)\right\} = s \cdot X(s) - x(0)$
2. Ableitung t	$\mathcal{L}\left\{\frac{d^2}{dt^2}x(t)\right\} = s^2 \cdot X(s) - s \cdot x(0) - \frac{d}{dt}x(0)$
n—te Abl. t	$s^n \cdot X(s) - s^{n-1}x(0) - \dots - s^0 \frac{d^{n-1}}{dt^{n-1}}$
Ableitung s	$\mathcal{L}\{t \cdot x(t)\} = -\frac{d}{ds}X(s)$
Integration t	$\mathcal{L}\{\int_0^t x(\tau)d\tau\} = \frac{1}{s} \cdot X(s)$
Integration s	$\mathcal{L}\left\{\frac{1}{t} \cdot x(t)\right\} = \int_{s}^{\infty} X(\sigma) d\sigma$
Convolution t	$\mathcal{L}\{x_1(t) * x_2(t)\} = X_1(s) \cdot X_2(s)$
Convolution s	$\mathcal{L}\{x_1(t) \cdot x_2(t)\} = X_1(s) * X_2(s)$
Anfangswert	$\lim_{t \to 0^+} x(t) = \lim_{s \to \infty} s \cdot X(s)$
Endwert	$\lim_{t \to \infty} x(t) = \lim_{s \to 0} s \cdot X(s)$

dB Skala

Dec	dB	dB	Dec
∞	∞	∞	∞
1000	60	1000	$1 \cdot 10^{50}$
100	40	100	$100000 = 10^5$
50	33.98	80	$10000 = 10^4$
20	26.02	60	$1000 = 10^3$
10	20	40	100
9	19.08	30	31.62
8	18.06	20	10
7	16.90	15	5.62
6	15.56	10	$3.16 = \sqrt{10}$
5	13.98	9	2.82
4	12.04	8	2.51
3	9.54	7	2.24
2	6.02	6	≈ 2
1	0	5	$1.78 = \sqrt[4]{10}$
$\frac{1}{2} = 0.5$	-6.02	4	1.58
$\begin{array}{l} 1\\ \frac{1}{2} = 0.5\\ \frac{1}{3} \approx 0.33\\ \frac{1}{4} = 0.25\\ \frac{1}{5} = 0.2\\ \frac{1}{6} \approx 0.17\\ \frac{1}{7} \approx 0.14 \end{array}$	-9.54	3	$1.41 \approx \sqrt{2}$
$\frac{1}{4} = 0.25$	-12.04	2	$1.26 = \sqrt[10]{10}$
$\frac{1}{5} = 0.2$	-13.98	1	$1.12 = \sqrt[20]{10}$
$\frac{4}{6} \approx 0.17$	-15.56	0.1	≈ 1.01
$\frac{Y}{7} \approx 0.14$	-16.90	0.01	≈ 1.001
0.1	-20.00	0	1
0.01	-40.00	$x_{dB} < 0$	$-\frac{1}{x_{dec}}$
0	$-\infty$	$-\infty$	0

$$\frac{1}{x_{dB}} = -x_{dB} \leftrightarrow \frac{1}{5dB} = -5dB$$

Trigonometric function

$\alpha \deg$	α rad	$\cos(\alpha)$	$\sin(\alpha)$	$tan(\alpha)$	$\cot(\alpha)$
0°	0	1	0	0	_
30°	$\frac{\pi}{6}$	$\frac{\sqrt{3}}{2}$	$\frac{1}{2}$	$\frac{\sqrt{3}}{3}$	$\sqrt{3}$
45°	$\frac{\pi}{4}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{2}}{2}$	1	1
60°	$\frac{\pi}{3}$	$\frac{1}{2}$	$\frac{\sqrt{3}}{2}$	$\sqrt{3}$	$\frac{\sqrt{3}}{3}$
90°	$\frac{\pi}{2}$	0	1	_	0

Einfluss von Nullstellen

Standardelemente	Verstärkung $\left[\frac{dB}{dec}\right]$	Phase
Stabiler Pol	-20 bei ω_g	-90° bei ω_g
Instabiler Pol	-20 bei ω_g	$+90^{\circ}$ bei ω_g
Minimalphasige NullST	$+20 \text{ bei } \omega_g$	$+90^{\circ}$ bei ω_g
Nichtminimalphasige NullST	$+20$ bei ω_g	-90° bei ω_g
Delay um $\tau(\forall \omega)$	0	$-\frac{180}{\pi}\cdot\omega\cdot\tau^{\circ}$

 $\omega_g = \frac{1}{\tau} \colon$ Cutoff-frequency (Eckfrequenz) immer bei -3dB

Graph bei $\omega = 1$

Systemtyp k

 10^{-2}

Der **Systemtyp** $k = \text{Vielfachheit offener Integratoren } (\frac{1}{s^k})$

 10^{0}

 ω

 10^{1}

 10^{-1}

$$\angle \Sigma(0) = \begin{cases} -k \cdot \frac{\pi}{2}, & sgn(\frac{b_0}{a_0}) > 0\\ -\pi - k \cdot \frac{\pi}{2}, & sgn(\frac{b_0}{a_0}) < 0 \text{ (neg. stat. Gain)} \end{cases}$$

 10^2

 10^{-2}

 10^{-1}

 10^{0}

ω

 10^{1}

 10^{2}

Relativer Grad r = n - m

Die Steigung des Magnitudenverlauf im Bode-Diagramm konvergiert asymptotisch zu:

$$\frac{\partial |\Sigma(j\omega)|_{dB}}{\partial \log(\omega)} = -r \cdot 20 \frac{dB}{\text{decade}}$$

Nyquist

 $Asymptotisch - stabil \leftrightarrow n_c \stackrel{!}{=} \frac{n_0}{2} + n_+$

 n_c : Anzahl Umrundungen um den kritischen Punkt (-1,0)

Positiv falls Umrundung gegen Uhrzeigersinn.

 n_0 : Anzahl Pole von L(s) mit Realteil = 0

 n_+ : Anzahl Pole von L(s) mit Realteil > 0

Frequenzbedingung des geschlossenen Regelkreises

$$\omega_c = \text{Durchtrittsfrequen } \omega_c = \begin{cases} \omega_c > \max\{10 \cdot \omega_d, 2 \cdot \omega_{\pi^+}\} \\ \omega_c < \min\{\frac{1}{10} \cdot \omega_n, \frac{1}{10} \cdot \omega_2, \frac{1}{2} \cdot \omega_{\tau}, \frac{1}{2} \cdot \omega_{\zeta^+}\} \end{cases}$$

1.
$$\omega_2 \leftrightarrow |W_2(j\omega_2)| = 1$$

- 2. $\omega_{\tau} = \frac{1}{\tau}$, mit $L_{\tau}(s) = C(s) \cdot P(s) e^{-\tau \cdot s}$. Wenn konservativ Faktor $\frac{1}{5}$
- 3. ω_{ζ^+} kleinster positiver Nullstelle. Wenn konservativ Faktor $\frac{1}{5}$
- 4. $\omega_n \leftrightarrow |N(j\omega_n)| = 0$
- 5. ω_{π^+} grossten positiver Pol. Wenn konservativ Faktor 5
- 6. $\omega_d \leftrightarrow |D(j\omega_d)| = 0$

PID-Regler

$$C_{\text{PID}}(s) = k_p \cdot \left(\underbrace{\frac{T_d \cdot T_i \cdot s^2 + T_i \cdot s + 1}{T_i \cdot s}}_{\text{nicht kausal}} \right) \cdot \frac{1}{(\tau \cdot s + 1)^2}$$

Ziegler-Nicholas Parameter

$$|k_p^* \cdot P(j\omega^*)| \stackrel{!}{=} 1 \quad \angle k_p^* \cdot P(j\omega^*) \stackrel{!}{=} -\pi \quad T^* = \frac{2\pi}{\omega^*}$$

Regler	k_p	T_{i}	T_d
P	$0.5 \cdot k_p^*$	$\infty \cdot T^*$	$0 \cdot T^*$
PΙ	$0.45 \cdot k_p^*$	$0.85 \cdot T^*$	$0 \cdot T^*$
PD	$0.55 \cdot k_{p}^{*}$	$\infty \cdot T^*$	$0.15 \cdot T^*$
PID	$0.6 \cdot k_p^*$	$0.5 \cdot T^*$	$0.125 \cdot T^*$

Åström-Hägglund Verfahren

$$\{k_p^*, T^*, |P(0)|, \mu_{\min}\} \to \{k_p, T_i, T_d\}$$

PI		$\mu_{\min} = 0.7$			$\mu_{\min} = 0.5$	
X	$\alpha_{0,x}$	$\alpha_{1,x}$	$\alpha_{2,x}$	$\alpha_{0,x}$	$\alpha_{1,x}$	$\alpha_{2,x}$
k_p/k_p^*	0.053	2.90	-2.60	0.13	1.90	-1.30
$Ti/\hat{T^*}$	0.90	-4.40	2.70	0.90	-4.40	2.70
a	1.10	-0.0061	1.8	0.48	0.40	-0.17
PID		$\mu_{\min} = 0.7$			$\mu_{\rm min} = 0.5$	
X	$\alpha_{0,x}$	$\alpha_{1,x}$	$\alpha_{2,x}$	$\alpha_{0,x}$	$\alpha_{1,x}$	$\alpha_{2,x}$
k_p/k_p^*	0.33	-0.31	-1.00	0.72	-1.60	1.20
$Ti/\hat{T^*}$	0.76	-1.60	-0.36	0.59	-1.30	0.38
T_d/T^*	0.17	-0.46	-2.10	0.15	-1.40	0.56
a	0.58	-1.3000	3.5	0.25	0.56	-1.20

$$\Box = \Box^* \cdot \alpha_{0,x} \cdot e^{\alpha_{1,x} \cdot \kappa + \alpha_{2,x} \cdot \kappa^2} \text{ mit } \kappa = \frac{1}{|P(0)| \cdot k_p^*}$$

Phasenreserve

γ	Verstärkungsreserve	Verstärkungsreserve zu $ (-1+0j) \text{ bei } \angle L(j\omega) = -\pi $
φ	Phasenreserve	Phasenabstand zu $-\pi$ bei der Durchtrittsfrequenz ω_c
μ	kritische Abstand	Kleinste Distanz zwischen $(-1+0j)$ und $L(j\omega)$

Spezifikation der Sensitivität

Nominelle Regelgüte: $||S(s) \cdot W_1(s)||_{\infty} < 1 \Rightarrow |S(j\omega)| < |W_1^{-1}(j\omega)| \leftrightarrow |W_1(j\omega)| < |1 + L(j\omega)|$

Robuste Regelgüte: $|W_1(j\omega) \cdot S(j\omega)| + |W_2(j\omega) \cdot T(j\omega)| < 1 \leftrightarrow |W_1(j\omega)| + |W_2(j\omega) \cdot L(j\omega)| < |1 + L(j\omega)|$

Root Locus

Vorgehen

Ursprung der Asymptoten berechnen: $\sigma_a = \frac{1}{n-m} \left(\sum_{i=1}^n \operatorname{Re}(\pi_i) - \sum_{i=1}^m \operatorname{Re}(\zeta_i) \right)$, die Asymptoten verlassen den Punkt $(\sigma_a + j \cdot 0)$. Winkel der Asymptoten bestimmen $\delta_i = \frac{\pi}{n-m} \cdot (2 \cdot (i-1) + 1) [\operatorname{rad}], \quad i = 1, \dots, n-m$

Zugehörigkeitstest

Man kann testen ob ein Punkt $z \in \mathbb{C}$ auf der Wurzelortskurven liegt, indem man ihn in diese Gleichung einsetzt $(k_p > 0)$

$$\sum_{i=1}^{m} \angle (z - \zeta_i) - \sum_{i=1}^{n} \angle (z - \pi_i) \stackrel{!}{=} \begin{cases} -\pi \pm 2\pi \cdot k, k \in \mathbb{N} & k_p > 0 \\ 0 \mod 2\pi & k_p < 0 \end{cases}$$

Skizzierhilfen

- Root Locus ist Symmetrisch zur Re-Achse.
- Except the constant transfer function P(s) = 0 there is no other rational transfer function for which the positive and the negative root locus curve is identical.
- \bullet Treffen sich 2 Pole, dann drehen beide sich um 90° in der komplexen Ebene.
- A Pkt auf der Re-Achse kann sein Teil der RL nur wenn das # reelle Pole und Nullstelle auf sein rechts ist ungerade.
- r = n m Pole divergen entlang gerader Asymptoten $\to \infty$.
- Consider an open loop function $L(s) = k \cdot \frac{N(s)}{D(s)}$ with k > 0. If the degree of N(s) and D(S) are at most 1, then the root locus curve lies only on the real axis.

Z-Transform

$$X(z) = \mathbb{Z}\{x(k)\} = \sum_{k=0}^{\infty} z^{-k} \cdot x(k) \leftrightarrow z = e^{sT_s}$$

Emulation

$$\begin{split} z &= e^{sT_s} & \approx 1 + sT_s & \Rightarrow s \approx \frac{z-1}{T_s} & \text{Euler Forward} \\ z &= \frac{1}{e^{-sT_s}} & \approx \frac{1}{1-sT_s} & \Rightarrow s \approx \frac{z-1}{zT_s} & \text{Euler Backward} \\ z &= \frac{e^{sT_s/2}}{e^{-sT_s/2}} & \approx \frac{1+sT_s/2}{1-sT_s/2} & \Rightarrow s \approx \frac{2(z-1)}{T_s(z+1)} & \text{Tustin Emulation} \end{split}$$

Hurwitz Stabilitätskriterium

 $a_n \cdot s^n + a_{n-1} \cdot s^{n-1} + \dots + a_1 \cdot s + a_0$, $a_n > 0$ Stabil wenn Koeffizienten a_i bekannt. Falls alle führenden Hauptminoren der Hurwitzmatrix

$$H_1 = a_{n-1}, \ H_2 = \begin{vmatrix} a_{n-1} & a_n \\ a_{n-3} & a_{n-2} \end{vmatrix}, \ H_3 = \begin{vmatrix} a_{n-1} & a_n & 0 \\ a_{n-3} & a_{n-2} & a_{n-1} \\ a_{n-5} & a_{n-4} & a_{n-3} \end{vmatrix}$$

11537

positive sind, dann sind alle NST in der linken komplexen Halbebene.

MIMO/RGA

$$\mathbf{RGA} \begin{bmatrix} \frac{P_{11}P_{22}}{P_{11}P_{22}-P_{12}P_{21}} & \frac{-P_{12}P_{21}}{P_{22}P_{11}-P_{21}P_{12}} \\ \frac{-P_{12}P_{21}}{P_{22}P_{11}-P_{21}P_{12}} & \frac{P_{11}P_{22}}{P_{11}P_{22}-P_{12}P_{21}} \end{bmatrix}$$

Singulärwerte

Lineare Abbildung mit: $\sigma_{\min}(M) \leq \frac{||y||}{||u||} \leq \sigma_{\max}(M)$ wobei ||.|| die euklische Norm ist und

$$\sigma_i(M) = \sqrt{\lambda_i(\overline{M}^T \cdot M)} > 0,$$

Wichtig: die Eigenwert von $\overline{M}^T \cdot M$.

 \overline{M}^T bedeutet komplexe konj. des Elementes der Matrix.

LQR

Linear: da das System linear ist: $\frac{d}{dt}x(t) = A \cdot x(t) + B \cdot u(t), \ x(t) \in \mathbb{R}^n, \ u(t) \in \mathbb{R}^m$ Quadratic: Definition einer quadratischen Kostenfunktion J: $J(u(t)) = \int_0^\infty \Big(x(u(t))^T \cdot Q \cdot x(u(t)) + u(t)^T \cdot R \cdot u(t)\Big) dt$ Lsg: $u^*(t) = -K \cdot x(t)$, wobei $K = R^{-1} \cdot B^T \cdot \Phi$ Ricatti Gleichung: $\Phi \cdot B \cdot R^{-1} \cdot B^T \cdot \Phi - \Phi \cdot A - A^T \cdot \Phi - Q = 0$

LQG

$$u(t) = -K \cdot \widehat{x}(t)$$

More Laplace transform

$\{f(t)\}$	f(t) 1	$ \{f(t)\} $	f(t)
$\frac{\{f(t)\}}{1/s}$	1	e^{-as}/s	$\frac{f(t)}{u(t-a)}$
$1/s^2$	t	e^{-as}	$\delta(t-a)$
$1/s^n$	$t^{n-1}/(n-1)!$	$\begin{cases} \{f(t)\} \\ e^{-as}/s \\ e^{-as} \end{cases}$ $\frac{1}{\sqrt{s}}e^{-\omega/s}$	$\frac{1}{\sqrt{\pi t}}\cos 2\sqrt{\omega t}$
$1/\sqrt{s}$	$1/\sqrt{\pi t}$	$e^{-k\sqrt{s}}$	$\frac{k}{2\sqrt{\pi t^3}}e^{-k^2/4t}$
$1/s^{3/2}$	$2\sqrt{t/\pi}$	$\frac{1}{(s-a)(s-b)}$	$\frac{\delta(t-a)}{\delta(t-a)}$ $\frac{1}{\sqrt{\pi t}}\cos 2\sqrt{\omega t}$ $\frac{k}{2\sqrt{\pi t^3}}e^{-k^2/4t}$ $\frac{1}{a-b}(e^{at}-e^{bt})$
$1/s^k$	$t^{k-1}/\Gamma(k)$	$ \frac{(s-a)(s-b)}{(s-a)(s-b)} $ $ \frac{2\omega^3}{(s-a)(s-b)} $	$\frac{1}{a-b}(ae^{at} - be^{at})$
$\frac{1}{s-a}$	e^{at}	$\frac{2\omega^3}{(s^2 + \omega^2)^2}$ $\frac{2\omega^3}{(s^2 + \omega^2)^2}$	$\sin \omega t - \omega t \cos \omega t$
$\frac{1}{(s-a)^2}$	te^{at}	$\frac{2\omega s}{(s^2 + \omega^2)^2}$	$t\sin\omega t$
$ \frac{1}{(s-a)^2} $ $ \frac{1}{(s-a)^n} $ $ \frac{1}{(s-a)^k} $	$\frac{1}{(n-1)!}t^{n-1}e^{at}$	$\frac{\overline{(s^2 + \omega^2)^2}}{2\omega s^2}$ $\frac{2\omega s^2}{(s^2 + \omega^2)^2}$ $\frac{s^2}{s^2}$	$\sin \omega t + \omega t \cos \omega t$
$\frac{1}{(s-a)^k}$	$\frac{1}{\Gamma(k)}t^{k-1}e^{at}$	$\frac{s^2}{(s^2+a^2)(s^2+b^2)}$	$\frac{1}{b^2 - a^2} (\cos at - \cos bt)$
$\frac{\omega}{s^2 + \omega^2}$	$\sin \omega t$	$\frac{4\omega^3}{s^4 + 4\omega^4}$	$\frac{1}{b^2 - a^2} (\cos at - \cos bt)$ $\sin \omega t \cos \omega t - \cos \omega t \sinh \omega t$ $\sin \omega t \sinh \omega t$
$\frac{a}{s^2 - a^2}$	$\sinh at$	$\frac{2\omega^2 s}{s^4 + 4\omega^4}$	$\sin \omega t \sinh \omega t$
$\frac{\omega}{(s-a)^2 + \omega^2}$	$e^{at}\sin\omega t$	$\frac{\overline{s^4 + 4\omega^4}}{2\omega^3}$ $\frac{2\omega^3}{s^4 - \omega^4}$	$\sinh \omega t - \sin \omega t$
$\frac{\omega}{(s-a)^2 + \omega^2}$ $\frac{\omega}{(s-a)^2 - \omega^2}$	$e^{at}\sinh\omega t$	$\frac{s^4 - \omega^4}{2\omega^2 s}$ $\frac{2\omega^2 s}{s^4 - \omega^4}$ $\ln \frac{s - a}{s - b}$ $\ln \frac{s^2 + \omega^2}{s^2}$ $\ln \frac{s^2 - \omega^2}{s^2}$	$\cosh \omega t - \cos \omega t$
$\overline{s^2 + \omega^2}$	$\cos \omega t$	$ \frac{1}{s-a} \frac{s-a}{s-b} $	$\frac{1}{t}(e^{bt} - e^{at})$
$\frac{s}{s^2 - a^2}$	$\cosh at$	$\ln \frac{s^2 + \omega^2}{s^2}$	$\frac{v}{t}(1-\cos\omega t)$
$\frac{s-a}{(s-a)^2 + \omega^2}$	$e^{at}\cos\omega t$	$\ln \frac{s^2 - \omega^2}{s^2}$	$\frac{2}{r}(1-\cosh\omega t)$
$\frac{s-a}{(s-a)^2 + \omega^2}$ $\frac{s-a}{(s-a)^2 - \omega^2}$ $\frac{s-a}{\omega^2}$	$e^{at}\cosh\omega t$		
$\frac{\omega^2}{s(s^2 + \omega^2)}$	$1 - \cos \omega t$		
$\frac{\omega^3}{s^2(s^2+\omega^2)}$	$\omega t - \sin \omega t$	$k > 0, \ n \in \mathbb{N}, \ a \neq 0$	$b, \ \gamma \approx 0.5772$

Ki_lqri =

-K_tilde(:,n+1:end)

Extraction of K_I from \tilde{K}

1 MATLAB Commands

Command	Description
bode(SYS)	Draws the Bode plot of the dynamic system SYS.
[MAG,PHASE] = bode(SYS,W)	Return the response magnitudes and phases in degrees (along with the frequency vector W if unspecified
[MAG,PHASE,W] = bode(SYS)	No plot is drawn on the screen.
<pre>l = logspace(-2,3,1e3)</pre>	$10^{-2} < w < 10^3 \text{ mit } 1000 \text{ log-Werten}$
nyquist(SYS)	Draws the Nyquist plot of the dynamic system SYS.
[RE,IM] = nyquist(SYS,W)	Return the real parts RE and imaginary parts IM of the frequency response (along with the frequency
[RE,IM,W] = nyquist(SYS)	vector W if unspecified).
sys = ss(A,B,C,D)	Creates an object SYS representing the continuous-time state-space model
(E =) [V,D] = eig(A)	Produces a diag matrix D of eigenvalues and a matrix V whose columns are eigenvectors so that A*V
(2) [1,12] 028()	V*D. (Column vector E containing the Eigval of a matrix A.)
co = ctrb(A,B) (=	Returns the controllability matrix $[BABA^2B]$.
ctrb(SYS))	Testario die condonasinoj madrik [B1B11 B].
ob = obsv(A,C) (=	Returns the observability matrix $[C; CA; CA^2]$
obsv(SYS))	rectains the observatiney matrix [e, e11, e11]
s = tf('s')	Specifies the transfer function $H(s) = s$ (Laplace variable).
SYS = tf(NUM,DEN, Ts,	Creates a continuous-time transfer function SYS with numerator NUM and denominator DEN and opting
InputDelay', T)	time delay T . (For discrete-time models add a sample time T_s)
	Converts any dynamic system SYS to the transfer function representation.
P = tf(sys) MSYS = minreal(SYS)	Produces, for a given LTI model SYS, an equivalent model MSYS where all cancelling pole/zero pai
isis - minrear(sis)	
	or non minimal state dynamics are eliminated. For state-space models, minreal produces a minim realization MSYS of SYS where all uncontrollable or unobservable modes have been removed.
/ - fminanch (FIN VO)	
<pre>K = fminsearch(FUN,XO)</pre>	Starts at X0 and attempts to find a local minimizer X of the function FUN. FUN is a function handle
	FUN accepts input X and returns a scalar function value F evaluated at X. X0 can be a scalar, vector of
7 (9179))	matrix.
P = pole(SYS))	Returns poles P of the dynamic system SYS as a column vector. For state-space models, the poles are the
	eigenvalues of the A matrix. (Bei MIMO System die Pole der SISO-Elemente)
[Z,G] = zero(SYS)	Computes the zeros Z and gain G of the single-input, single-output dynamic system SYS.
Z = tzero(SYS,TOL)	Computes invariant zeros of the dynamic system SYS. For state-space models with matrices A,B,C,D,
	$(= I)$, the invariant zeros are the complex values s for which the rank of the matrix $\begin{pmatrix} A - sE & B \\ C & D \end{pmatrix}$ drop
	below its normal value. For minimal realizations, this coincides with the transmission zeros of SYS (value
	of s for which its transfer function drops rank).
<pre>/db = mag2db(Y)</pre>	Converts magnitude data Y into dB values. (db2mag analog)
[NUM,DEN] = tfdata(SYS)	Returns the num. and denom. of the transfer function SYS.
[Z,P,K] = tf2zp(NUM,DEN)	Finds the zeros, poles, and gains from a transfer function in the form of $H(s) = K$
	$(s-z1)(s-z2)\dots(s-zn)$
	$(s-p1)(s-p2)\dots(s-pn)$
[Z,P,K] = zpkdata(SYS)	Returns the zeros, poles, and gain for each I/O channel of the dynamic system SYS.
<pre>< = dcgain(SYS)</pre>	Computes the steady-state (D.C. or low frequency) gain of the dynamic system SYS $(P(j \cdot 0))$
eye(M)/ eye(M,N)/	M-by-M/M-by-N/siz(A) matrix with 1's on the diagonal and zeros elsewhere.
eye(size(A))	
zeros(M)/ zeros(M,N)/	M-by-M/M-by-N/size(A) matrix of zeros.
zeros(size(A))	
rga = P.*inv(P')	MATLAB code to compute the RGA matrix of P
oodemag(SYS)	Plots the magnitude of the frequency response of the linear system SYS (useful for RGA/Bode plots)
<u>C</u>	without the phase diagram).
sigma(SYS)	Produces a singular value (SV) plot of the frequency response of the dynamic system SYS.
[U,S,V] = svd(X)	Produces a diagonal matrix S, of the same dimension as X and with nonnegative diagonal elements
2.,2,.2	decreasing order, and unitary matrices U and V so that $X = U \cdot S \cdot V^{\top}$.
FRESP = evalfr(SYS,X)	Evaluates the transfer function of the continuous- or discrete-time linear model SYS at the complex number
0,411,612,11,	$S=X$ or $Z=X$. $X=\mathbf{j}$ -omega (Eval System, then plug it into svd)
SimOut = sim('MODEL',	Simulates your Simulink model, where 'PARAMETERS' represents a list of parameter name-value pair
PARAMETERS)	Simulation your simulation model, where Titterivini represents a list of parameter name value pair
= series(C,P)	Connects the input/ouput models C and P in series.
<pre>1 = Selles(0,F) 1 = feedback(M1,M2)</pre>	Connects the input/output models C and T in series. $(M1, M2) = (1, L) \Rightarrow S(s)$ and $(M1, M2) = (L, 1) \Rightarrow T(s)$. Computes a closed-loop model M (assum
I - Ieeuback(HI,HZ)	
mi=(-1-(1-1-(4 + 7)))	negative feedback: for positive add ",+1") Computes the minimum return difference of a given open loop gain I
$u_{\min} = \min(abs(bode(1+L)))$	Computes the minimum return difference of a given open loop gain L
[Gm,Pm,Wcg,Wcp] =	Computes the gain margin Gm, the phase margin Pm, and the associated frequencies Wcg and Wcp, for
margin(SYS)	the SISO open-loop model SYS. The gain margin Gm is defined as $1/G$ where G is the gain at the -18
	phase crossing. The phase margin Pm is in degrees. $\mathbf{k_p^*} = \mathbf{Gm}, \mathbf{T^*} = \frac{2\pi}{\mathbf{Wcg}}$
margin(SYS)	Creates a Bode plot of the open loop and marks the gain and phase margins in the plot.
B = squeeze(A)	Returns an array B with the same elements as A but with all the singleton dimensions removed.
SYSD = c2d(SYSC,TS,METHOD)	Computes a discrete-time model SYSD with sample time TS that approximates the continuous-time mod
•	SYSC (method = zoh, foh, impulse, tustin,)
SYSC = d2c(SYSD,METHOD)	Computes a continuous-time model SYSC that approximates the discrete-time model SYSD. (method
	as above)
[K,S,CLP] = lqr(SYS,Q,R) =	Calculates the optimal gain matrix K for the continuous or discrete state-space model SYS. lqr also return
Lqr(A,B,Q,R)	the solution S of the associated algebraic Riccati equation and the closed-loop poles CLP = eig(A-B*K)
	· · · · · · · · · · · · · · · · · · ·