Zero-Jitter Task Chains via Algebraic Rings

Enrico Bini, Paolo Pazzaglia, Martina Maggio

University of Turin

USC, 03/03/2023

Outline

- Model of tasks
- Composing tasks into chains
- 3 Logic Execution Time (LET)
- 4 Analysis of chains of LET tasks

- Communication through shared memory is very popular in automotive applications
 - pros: very efficient (just a MOV/LOAD instruction)
 - Cons: very basic ⇒ risk of inconsistent data
- The story presented today

- Communication through shared memory is very popular in automotive applications
 - pros: very efficient (just a MOV/LOAD instruction)
 - Cons: very basic ⇒ risk of inconsistent data
- The story presented today
 - "Let the guys (tasks) go, write and read in freedom (no timestamping, no message queues, or other higher level fancy mechanisms)"...then

- Communication through shared memory is very popular in automotive applications
 - pros: very efficient (just a MOV/LOAD instruction)
 - ▶ cons: very basic ⇒ risk of inconsistent data
- The story presented today
 - "Let the guys (tasks) go, write and read in freedom (no timestamping, no message queues, or other higher level fancy mechanisms)"...then

- Communication through shared memory is very popular in automotive applications
 - pros: very efficient (just a MOV/LOAD instruction)
 - Cons: very basic ⇒ risk of inconsistent data
- The story presented today
 - "Let the guys (tasks) go, write and read in freedom (no timestamping, no message queues, or other higher level fancy mechanisms)"...then

- Communication through shared memory is very popular in automotive applications
 - pros: very efficient (just a MOV/LOAD instruction)
 - Cons: very basic ⇒ risk of inconsistent data
- The story presented today
 - "Let the guys (tasks) go, write and read in freedom (no timestamping, no message queues, or other higher level fancy mechanisms)"...then

- Communication through shared memory is very popular in automotive applications
 - pros: very efficient (just a MOV/LOAD instruction)
 - ▶ cons: very basic ⇒ risk of inconsistent data
- The story presented today
 - "Let the guys (tasks) go, write and read in freedom (no timestamping, no message queues, or other higher level fancy mechanisms)"...then

- Communication through shared memory is very popular in automotive applications
 - pros: very efficient (just a MOV/LOAD instruction)
 - Cons: very basic ⇒ risk of inconsistent data
- The story presented today
 - "Let the guys (tasks) go, write and read in freedom (no timestamping, no message queues, or other higher level fancy mechanisms)"...then

- Communication through shared memory is very popular in automotive applications
 - pros: very efficient (just a MOV/LOAD instruction)
 - Cons: very basic ⇒ risk of inconsistent data
- The story presented today
 - "Let the guys (tasks) go, write and read in freedom (no timestamping, no message queues, or other higher level fancy mechanisms)"...then

```
\begin{array}{|c|c|c|c|c|}\hline & Task & \tau_1 \\ \hline in = read(...); \\ out = process(in); \\ write(out,...); \\ \hline \end{array}
```

- Communication through shared memory is very popular in automotive applications
 - pros: very efficient (just a MOV/LOAD instruction)
 - Cons: very basic ⇒ risk of inconsistent data
- The story presented today
 - ① "Let the guys (tasks) go, write and read in freedom (no timestamping, no message queues, or other higher level fancy mechanisms)"...then
 - "Let us analyze how good/bad things can go" ... and

- Communication through shared memory is very popular in automotive applications
 - pros: very efficient (just a MOV/LOAD instruction)
 - Cons: very basic ⇒ risk of inconsistent data
- The story presented today
 - ① "Let the guys (tasks) go, write and read in freedom (no timestamping, no message queues, or other higher level fancy mechanisms)"...then
 - 2 "Let us analyze how good/bad things can go" ... and
 - "Let's mitigate (or prevent) issues, if any, if feasible"

Temporal model of a task τ_i

- ullet A task, denoted by au_i , is composed by recurrent jobs
 - \mathbb{J}_i denotes the set of jobs and is equal to \mathbb{Z}
- ullet Every job $j\in\mathbb{J}_i$ reads, processes, and then writes data (curvy arrow)
- For each job $j \in \mathbb{J}_i$, read/write instants are relative to the *period* T_i

$$\operatorname{rd}_i(j) = j \, T_i + \theta_i^{\mathsf{r}}(j)$$
 read instant of τ_i job j $\operatorname{wr}_i(j) = j \, T_i + \theta_i^{\mathsf{w}}(j)$ write instant of τ_i job j

• with bounded phasings (if constant with j, then zero jitter, nice) $\theta_i^{\rm r}(j)$, phasing of read instants $\theta_i^{\rm w}(j)$, phasing of write instants

Outline

- Model of tasks
- Composing tasks into chains
- 3 Logic Execution Time (LET)
- 4 Analysis of chains of LET tasks

Model of chains

- A chains is the concatenations of tasks (a stack of curvy arrows)
 - ▶ a task reads what the preceding task (if any) has written
- Chains perform the same operations of tasks, because
 - chains read (the first task does), process (through task processing and communication), and write (the last task does)
 - chains are recurrent

Model of chains

- A chains is the concatenations of tasks (a stack of curvy arrows)
 - ▶ a task reads what the preceding task (if any) has written
- Chains perform the same operations of tasks, because
 - chains read (the first task does), process (through task processing and communication), and write (the last task does)
 - chains are recurrent
- We extend the model, notations and terminology of tasks to chains
- (Recursive) definition of a chain
 - **1** A task τ_i is a chain (denoted by the same τ_i)
 - ② The concatenation of chains τ_i and τ_ℓ is a chain denoted by $\tau_{i * \ell}$ (reads "tau i to ℓ ")
- This research is about
 - determining the parameters of $\tau_{i \bullet \ell}$ from the composing chains τ_i and τ_{ℓ}

Jobs of the composition of chains: from \mathbb{J}_i and \mathbb{J}_ℓ to $\mathbb{J}_{i \bullet \ell}$

• The jobs of $\tau_{i \star \ell}$ are a subset $\mathbb{J}_{i \star \ell} \subseteq \mathbb{J}_i \times \mathbb{J}_\ell$. A job (j_i, j_ℓ) belongs to $\mathbb{J}_{i \star \ell}$ if and only if

Jobs of the composition of chains: from \mathbb{J}_i and \mathbb{J}_ℓ to $\mathbb{J}_{i \star \ell}$

- The jobs of $\tau_{i \neq \ell}$ are a subset $\mathbb{J}_{i \neq \ell} \subseteq \mathbb{J}_i \times \mathbb{J}_\ell$. A job (j_i, j_ℓ) belongs to $\mathbb{J}_{i \neq \ell}$ if and only if $j_i \in \mathbb{J}_i$ is the **last job to write** for $j_\ell \in \mathbb{J}_\ell$
 - $j_i = \max\{j \in \mathbb{J}_i : \mathsf{wr}_i(j) \leqslant \mathsf{rd}_\ell(j_\ell)\}$

Jobs of the composition of chains: from \mathbb{J}_i and \mathbb{J}_ℓ to $\mathbb{J}_{i \star \ell}$

• The jobs of $\tau_{i \neq \ell}$ are a subset $\mathbb{J}_{i \neq \ell} \subseteq \mathbb{J}_i \times \mathbb{J}_\ell$. A job (j_i, j_ℓ) belongs to $\mathbb{J}_{i \neq \ell}$ if and only if $j_i \in \mathbb{J}_i$ is the **last job to write** for $j_\ell \in \mathbb{J}_\ell$

$$j_i = \max\{j \in \mathbb{J}_i : \mathsf{wr}_i(j) \leqslant \mathsf{rd}_\ell(j_\ell)\}$$

0 $j_{\ell} \in \mathbb{J}_{\ell}$ is the **first job to read** from $j_i \in \mathbb{J}_i$

$$j_{\ell} = \min\{j \in \mathbb{J}_{\ell} : \operatorname{wr}_{i}(j_{i}) \leqslant \operatorname{rd}_{\ell}(j)\}.$$

Jobs of the composition of chains: from \mathbb{J}_i and \mathbb{J}_ℓ to $\mathbb{J}_{i \star \ell}$

• The jobs of $\tau_{i \neq \ell}$ are a subset $\mathbb{J}_{i \neq \ell} \subseteq \mathbb{J}_i \times \mathbb{J}_\ell$. A job (j_i, j_ℓ) belongs to $\mathbb{J}_{i \neq \ell}$ if and only if $j_i \in \mathbb{J}_i$ is the **last job to write** for $j_\ell \in \mathbb{J}_\ell$

$$j_i = \max\{j \in \mathbb{J}_i : \mathsf{wr}_i(j) \leqslant \mathsf{rd}_\ell(j_\ell)\}$$

0 $j_{\ell} \in \mathbb{J}_{\ell}$ is the **first job to read** from $j_i \in \mathbb{J}_i$

$$j_{\ell} = \min\{j \in \mathbb{J}_{\ell} : \operatorname{wr}_{i}(j_{i}) \leqslant \operatorname{rd}_{\ell}(j)\}.$$

• called "last-to-first" semantic: widely used, linked to Sample-and-Hold

Jobs $\mathbb{J}_{i \triangleright \ell}$ of a chain $\tau_{i \triangleright \ell}$ are isomorphic to \mathbb{Z}

- Theorem: $\mathbb{J}_{i \triangleright \ell}$ is isomorphic to \mathbb{Z} (by induction)
 - **①** (base case) if τ_i is a task, easy
 - (inductive step, sketch) ...
- We interchangeably use $(j_i, j_\ell) \in \mathbb{J}_{i \bullet \ell}$ or $j_{i \bullet \ell} \in \mathbb{Z}$
 - when using $(j_i, j_\ell) \in \mathbb{J}_{i > \ell}$, we mean to underline the writer/reader jobs $j_i \in \mathbb{J}_i$ and $j_\ell \in \mathbb{J}_\ell$
 - when using $j_{i \triangleright \ell} \in \mathbb{Z}$, we mean to highlight the position of the job $j_{i \triangleright \ell}$ w.r.t. other earlier/later jobs in $\mathbb{J}_{i \triangleright \ell}$
- The set $\mathbb{J}_{i \rightarrow \ell}$ is totally ordered

$(j_i, j_\ell) \in \mathbb{J}_{i \bullet \ell}$	$j_{i \bullet \ell} \in \mathbb{Z}$
(0, 1)	0
(1,3)	1
(3, 4)	2
(4, 5)	3

Read/write instants of $\tau_{i \triangleright \ell}$

- For any $(j_i, j_\ell) \in \mathbb{J}_{i \bullet \ell}$
 - the read instant is $\operatorname{rd}_{i \bullet \ell}(j_i, j_\ell) = \operatorname{rd}_i(j_i)$
 - the write instant is $\operatorname{wr}_{i \bullet \ell}(j_i, j_\ell) = \operatorname{wr}_{\ell}(j_\ell)$
- Period of $\tau_{i \triangleright \ell}$
 - (existence) Is there any period $T_{i \bullet \ell}$ that for any $j \in \mathbb{J}_{i \bullet \ell}$ allows us writing?

$$\operatorname{rd}_{i \bullet \ell}(j) = j \, T_{i \bullet \ell} + \theta_{i \bullet \ell}^{\mathsf{r}}(j)$$

$$\operatorname{wr}_{i \bullet \ell}(j) = j \, T_{i \bullet \ell} + \theta_{i \bullet \ell}^{\mathsf{w}}(j)$$

with bounded phasings $\theta_{i \triangleright \ell}^{\mathsf{r}}(j)$ and $\theta_{i \triangleright \ell}^{\mathsf{w}}(j)$

- If it exists, what is the relation of $T_{i \bullet \ell}$ with T_i and T_{ℓ} ? (question to the audience)
- In this research, we investigate these questions in the case of Logic Execution Time (LET)

Outline

- Model of tasks
- 2 Composing tasks into chains
- 3 Logic Execution Time (LET)
- 4 Analysis of chains of LET tasks

LFT tasks

• In LET, reads and writes happen at pre-determined instants, indep. of schedule

$$\forall j \in \mathbb{J}_i,$$

phasings are constant
$$\forall j \in \mathbb{J}_i, \qquad \theta_i^{\mathsf{r}}(j) = \theta_i^{\mathsf{r}}, \quad \theta_i^{\mathsf{w}}(j) = \theta_i^{\mathsf{w}}$$

- Logic Execution Time (LET): the execution time is logic (and constant)
 - it is independent of scheduling decisions
 - it becomes a constraint for the scheduler
- LET requires a (lightweight) copying mechanism
- LET eliminates the litter
- LET introduces some additional delay
- What happens to chains of LET tasks? Are they LET chains (with zero jitter)?

Chain of 2 LET tasks

	T_i $ au_1$ $ au_2$ $ au_3$	$ \begin{array}{c cc} \theta_i^{r} & \theta_i^{w} \\ 0 & 4 \\ 0 & 3 \end{array} $	
τ_1 τ_2 0 0 0 0 0 0 0 0 0 0	1 10	2 3	20 25 4 6 7 7
$(j_1, j_2) \in \mathbb{J}_{1 \triangleright 2}$	$j_{1 \blacktriangleright 2}$	$ heta_{1 \blacktriangleright 2}^{r}(j_{1 \blacktriangleright 2})$	$\theta^{w}_{1 \triangleright 2}(j_{1 \triangleright 2})$
(0, 2)	0	0	9
(1, 3)	1	0	7
(2, 5)	2	0	8
(3,7)	3	0	9

Chain of 2 LET tasks

		$T_i = \theta_i^{r}$	$\theta_i^{\sf w}$	
	$ au_1$	3 0	3	
	$ au_2$	5 0	4	
0 5	1	0	15	20 25
$ au_1$ 0	$\frac{2}{\sqrt{2}}$	3 🕻 4	¥ 57	7
τ_2 0	1 +	2	3	4 4
$(j_1,j_2)\in\mathbb{J}_{1\bullet}$	2 <i>j</i> 1▶2	$\theta_{1 \triangleright 2}^{r}$	$(j_{1 \triangleright 2})$	$\theta_{1 + 2}^{w}(j_{1 + 2})$
(-1,0)	0		-3	4
(0, 1)	1		-5	4
(2, 2)	2		-4	4
(4, 3)	3		-3	4

Chain of 2 LET tasks

- $T_{1•2} = \max\{T_1, T_2\}$, we cannot expect any lower value
- the phasings are not constant: a chain of 2 LET tasks is not a LET chain
 - however, we have a fix for this

Chain of 3 LET tasks

- Example with $T_1 = 5$, $T_2 = 3$, $T_3 = 4$ illustrated above
- The pattern repeats every $lcm(T_1, T_2, T_3) = 60$
- One job of the larger period task $(j_1 = 7 \text{ above})$ is canceled!!
- Only 11 jobs in $\mathbb{J}_{1 ilda{r}2 ilda{r}3}$ released every 60

$$T_{1 \triangleright 2 \triangleright 3} = \frac{60}{11} > 5 = \max\{T_1, T_2, T_3\}.$$

$(j_1, j_2, j_3) \in \mathbb{J}_{1 \triangleright 2 \triangleright 3}$
(0, 2, 3)
(1, 4, 4)
(2, 5, 5)
(3, 7, 6)
(4, 9, 8)
(5, 10, 9)
(6, 12, 10)
(8, 15, 12)
(9, 17, 14)
(10, 19, 15)
(11, 20, 16)
· · · · · · · · · · · · · · · · · · ·

Outline

- Model of tasks
- 2 Composing tasks into chains
- 3 Logic Execution Time (LET)
- Analysis of chains of LET tasks

Contribution

- Summary of discoveries, so far
 - Ommunication through shared memory is popular in embedded systems
 - 2 Timing of communication needs to be studies
 - Second Second
 - However, chains of LET tasks may be slower than the slowest task (bad)
- Our contribution
 - When composing two tasks, we add a third task that regularizes the pattern, making the chain phasings constant
 - * such a composition preserves the period of the largest task
 - Chains of LET tasks can then be composed arbitrarily, preserving the constant phasing (zero-jitter)

Making a zero jitter chain of 2 LET tasks: add a copier task

• if $T_1 \geqslant T_2$ then we add $\tau_{2'}$ after τ_2

$j_{1 \blacktriangleright 2}$	$ heta_{1leda2}^{r}(j_{1leda2})$	$\theta_{1 \triangleright 2}^{w}(j_{1 \triangleright 2})$	$ heta_{1leda 2leda 2'}^{\sf w}$
0	0	9	9
1	0	7	9
2	0	8	9
3	0	9	9

• if $T_1 \leqslant T_2$ then we add $\tau_{1'}$ before τ_1

	T_i	$ heta_i^{r}$	$\theta_i^{\sf w}$
$ au_{1'}$	5	-5	-5
$ au_1$	3	0	3
$ au_2$	5	0	$_4$

$j_{1 \triangleright 2}$	$\theta_{1 \triangleright 2}^{r}(j_{1 \triangleright 2})$	$\theta^{w}_{1 \triangleright 2}(j_{1 \triangleright 2})$	$\theta^{w}_{1' \triangleright 2 \triangleright 2}$
0	-3	4	-5
1	-5	4	-5
2	-4	4	-5
3	-3	4	-5

Chain of 3 LET tasks (revised)

- Now 12 jobs in $\mathbb{J}_{1 \triangleright 2 \triangleright 2' \triangleright 3 \triangleright 3'}$ exists in $lcm(T_1, T_2, T_3) = 60$
- The period then is: $T_{1 ilde{\bullet} 2 ilde{\bullet} 2' ilde{\bullet} 3 ilde{\bullet} 3'} = \max\{T_1, T_2, T_3\} = 5$
- Phasings are constant (zero jitter): $\theta^{\mathsf{r}}_{1 + 2 + 2' + 3 + 3'} = 0$, $\theta^{\mathsf{w}}_{1 + 2 + 2' + 3 + 3'} = 17$

- Need to find the right phasing of the copier task
- Through enumeration or (better) via modular arithmetic. Example: $T_1=16,\,T_2=10$

- Need to find the right phasing of the copier task
- Through enumeration or (better) via modular arithmetic. Example: $T_1=16,\,T_2=10$

- Need to find the right phasing of the copier task
- Through enumeration or (better) via modular arithmetic. Example: $T_1=16,\,T_2=10$

- Need to find the right phasing of the copier task
- Through enumeration or (better) via modular arithmetic. Example: $T_1 = 16$, $T_2 = 10$

- Need to find the right phasing of the copier task
- Through enumeration or (better) via modular arithmetic. Example: $T_1=16,\,T_2=10$

- Need to find the right phasing of the copier task
- Through enumeration or (better) via modular arithmetic. Example: $T_1=16,\,T_2=10$

- Need to find the right phasing of the copier task
- Through enumeration or (better) via modular arithmetic. Example: $T_1 = 16$, $T_2 = 10$

- Need to find the right phasing of the copier task
- Through enumeration or (better) via modular arithmetic. Example: $T_1 = 16$, $T_2 = 10$

$$\begin{split} \theta_2^{\rm r}(j_2) &- \theta_1^{\rm w}(j_1): 3,7,1,5,9,3,7,\dots \\ \theta_2^{\rm r}(j_2) &- \theta_1^{\rm w}(j_1) = 1 + G(1-j_1p_1 \mod p_2) \\ \text{with } G &= \mathrm{GCD}(T_1,T_2) \\ T_1 &= p_1G,\, T_2 = p_2G \\ \text{Example: } G &= 2,p_1 = 8,p_2 = 5 \end{split}$$

"Beautiful math... but just complicated: a short summary?"

- Easy case of two LET tasks with
 - no read offset: $\theta_1^r = \theta_2^r = 0$
 - deadline equal to period: $\theta_1^{\text{w}} = T_1$, $\theta_2^{\text{w}} = T_2$
- $G = \gcd(T_1, T_2)$ and p_1, p_2 such that $T_1 = p_1G$, $T_2 = p_2G$. Notice that $\gcd(p_1, p_2) = 1$
- $\bullet [x]_m = x \left\lfloor \frac{x}{m} \right\rfloor m$

case $T_1 \geqslant T_2$

•
$$\mathbb{J}_{1 \cdot 2} = \left\{ \left(j_1, \left\lceil \frac{(j_1+1)T_1}{T_2} \right\rceil \right) : j_1 \in \mathbb{J}_1 \right\} \equiv \mathbb{J}_1$$

- $\bullet \ \theta_2^{\mathrm{r}}\!\!\left(\left\lceil\!\frac{(j_1+1)T_1}{T_2}\right\rceil\right) \theta_1^{\mathrm{w}}(j_1) = \left\lfloor\!-(j_1+1)p_1\right\rfloor_{p_2}\!\!G$
- max $\tau_{1 \bullet 2}$ latency = $T_1 + 2T_2 G$
 - when $j_1 \equiv p_1^{-1} 1 \mod p_2$
- min $\tau_{1 \triangleright 2}$ latency = $T_1 + T_2$
 - when $j_1 \equiv -1 \mod p_2$

case $T_2\geqslant T_1$

•
$$\mathbb{J}_{1•2} = \left\{ \left(\left\lfloor \frac{j_2 T_2}{T_1} \right\rfloor - 1, j_2 \right) : j_2 \in \mathbb{J}_2 \right\} \equiv \mathbb{J}_2$$

[modulo operator, possibly over reals]

$$\bullet \ \theta_2^{\mathsf{r}}(j_2) - \theta_1^{\mathsf{w}} \left(\left\lfloor \frac{j_2 T_2}{T_1} \right\rfloor - 1 \right) = \left\lfloor j_2 p_2 \right\rfloor_{p_1} G$$

- max $\tau_{1 \bullet 2}$ latency = $2T_1 + T_2 G$
 - when $j_2 \equiv -p_2^{-1} \mod p_1$
- min τ_{1} latency = $T_1 + T_2$
 - when $j_2 \equiv 0 \mod p_1$

Conclusions

- Summary
 - proposed a common model for tasks and concatenation of tasks (chains)
 - recalled the LET task model
 - realized that chains of LET tasks
 - * may have jitter
 - ★ may have period larger than the largest among tasks
 - full characterization of a chain of two LET tasks via modular arithmetic
 - demonstrated that the introduction of a copier task makes a zero jitter chain
- The presented material is under submission to IEEE Transactions on Computers