OPIS I DOKUMENTACJA PROJEKTU BST VISUALIZER

Autor: Agata Marczyk, ISI sem.2.

Github: https://github.com/soberyoda

Pliki z kodem źródłowym zostały umieszczone w folderze BST

Użyte języki programowania, technologie, biblioteki:

- Python 3.11.3:
 - Tkinter biblioteka języka Python umożliwiająca tworzenie interfejsu graficznego, w projekcie użyta do stworzenia mini aplikacji okienkowej. Dołączona do standardowych instalacji Pythona w systemach Linux, Microsoft Windows i MacOS X. Strona z dokumentacją: https://docs.python.org/3/library/tkinter.html
 - -webbrowser moduł przeglądarki internetowej w projekcie użyty do dodania linku przekierowującego użytkownika do profilu github autora projektu. Strona z dokumentacją: https://docs.python.org/3/library/webbrowser.html
 - Graphviz pakiet ułatwiający tworzenie i renderowanie opisów wykresów w języku DOT, w projekcie użyty do utworzenia pliku zawierającego wykres zdefiniowanego przez użytkownika grafu drzewa BST.

Strona pakietu: https://pypi.org/project/graphviz/ Instalacja: https://graphviz.org/download/

Przed rozpoczęciem korzystania należy dodać ścieżkę dostępu do katalogu Graphviz/bin do zmiennej Path, lub umieścić w programie:

```
import os
os.environ["PATH"] += os.pathsep + 'ścieżka do katalogu Graphviz/bin'
```

• IDE: https://www.jetbrains.com/pycharm/

Opis i prezentacja działania funkcji aplikacji:

Po uruchomieniu programu przez użytkownika na ekranie pojawia się interaktywny interfejs graficzny umożliwiający wykonanie podstawowych operacji na drzewie BST – dodania, usunięcia oraz wyszukania elementu w drzewie(zwraca True jeśli element znajduje się w drzewie lub None w przeciwnym wypadku. W programie dodałam możliwość wyświetlenia lokalizacji w pamięci danego elementu – należy w tym celu obłożyć komentarzem lub usunąć odpowiednio zaznaczony w programie fragment kodu) a także przejścia drzewa metodami "w głąb" (inorder, preorder, postorder)-zwracają one ciąg liczb uporządkowany według założeń każdego przypadku.

Dodatkowo zdefiniowane zostały trzy operacje – Clear tree, która to usuwa całe wprowadzone przez użytkownika drzewo, Draw tree która generuje graf i zapisuje go w pliku pdf w katalogu źródłowym oraz Github – przekierowująca użytkownika do profilu Github autora projektu.

Poniżej umieszone są zdjęcia obrazujące działanie pojedynczych operacji (wstawiania do drzewa, usunięcia elementu, przejścia drzewa metodą inorder oraz procedury Draw tree)

DODANIE ELEMENTÓW DO DRZEWA BST

USUNIĘCIE ELEMENTU 13 Z DRZEWA

WYSZUKANIE ELEMENTU 4 W DRZEWIE

PRZEJŚCIE PRZEZ DRZEWO METODĄ INORDER

PREZENTACJA DZIAŁANIA PROCEDURY DRAW TREE


```
1 digraph {
    10
    3     10 -> 8
    8
    8     -> 4
    6
    4     7
    8     -> 9
    9
    10 -> 12
    10
    12     -> 11
    11     11
    12 -> 14
    14     14
    14     14
    15     16 -> 15
    18     16 -> 21
    20
    21
    }
    22
```

