Calcul intégral

1. Intégrale d'une fonction continue et positive

Définition : Unité d'aire

L'unité d'aire dans un repère $(0, \vec{\iota}, \vec{\jmath})$ est l'aire du rectangle formé par les unités du repère :

Définition : Intégrale et aire

Soit f une fonction continue et positive sur un intervalle [a;b].

L'aire (exprimé en u.a) du domaine délimité par la courbe C_f , l'axe des abscisses, les droites d'équations x = a et x = b, est appelé intégrale de a à b de la fonction f.

On le note : $\int_a^b f(x)dx$

Remarques:

- Le nombre $\int_a^b f(x)dx$ ne dépend que de a,b et f. On dit que x est une variable muette.
- \int ressemble à S, et peut se lire somme. Ceci découle du fait que $\int_a^b f(x) dx$ peut-être approximée par $\sum_{i=1}^n f(x_i) \cdot \Delta x_i$, qui correspond à la somme des rectangles de largeur Δx_i et de hauteur (x_i) :

Théorème fondamental

Soit f une fonction continue et positive sur [a; b]. Soit F une primitive de f

On:
$$\int_a^b f(x)dx = F(b) - F(a)$$

Remarques:

• Le théorème permet de calculer l'aire sous la courbe d'une fonction continue et positive grâce à une primitive de f.

• Le réel F(b) - F(a) ne depend pas de la primitive choisie pour f.

2. Généralisation: Intégrale d'une fonction continue

Definition

Soit f une fonction <u>continue</u> sur un intervalle [a;b]. Soit F une primitive de f sur [a;b].

On définit l'intégrale de a à b de f par:

$$\int_{a}^{b} f(x)dx = F(b) - F(a)$$

Proprietes

$$\bullet \quad \int_a^a f(x) dx = 0$$

•
$$\int_{b}^{a} f(x)dx = -\int_{a}^{b} f(x)dx$$

• Relation de Chasles:

$$\int_{a}^{c} f(x)dx = \int_{a}^{b} f(x)dx + \int_{b}^{c} f(x)dx$$

• Linéarité :

$$\int_a^b (f(x) + g(x)) dx = \int_a^b f(x) dx + \int_a^b g(x) dx$$

$$\int_{a}^{b} \lambda f(x) dx = \lambda \int_{a}^{b} f(x) dx$$

Integrales et inegalites

• Signe :

$$f \ge 0 \text{ sur } [a;b] \Rightarrow \int_b^a f(x) dx \ge 0$$

 $f \le 0 \text{ sur } [a;b] \Rightarrow \int_b^a f(x) dx \le 0$

L'intégrale donne une aire algébrique

• Intégration d'une inégalité :

$$f \le g sur [a;b] \Rightarrow \int_{b}^{a} f(x) dx \le \int_{b}^{a} g(x) dx$$

Intégration par parties

$$\int_{a}^{b} u'(x) \cdot v(x) \, dx = [u(x) \cdot v(x)]_{a}^{b} - \int_{a}^{b} u(x) \cdot v'(x) \, dx$$

3. Applications du calcul intégral des aires

Calcul d'aire

Il faut connaître le signe de la fonction avant de pouvoir calculer des aires :

$$\mathcal{A}_{\text{totale coloriée}} = \mathcal{A}_1 + \mathcal{A}_2 + \mathcal{A}_3 = \int_a^{c_1} f(x) \, \mathrm{d}x - \int_{c_1}^{c_2} f(x) \, \mathrm{d}x + \int_{c_2}^b f(x) \, \mathrm{d}x$$

$$\operatorname{Mais} \int_a^b f(x) \, \mathrm{d}x = \mathcal{A}_1 - \mathcal{A}_2 + \mathcal{A}_3 \neq \mathcal{A}_{\text{coloriée}}$$

Théorème

Soient f et g deux fonctions continues sur [a;b]. L'aire délimité par les courbes C_f et C_g et les droites x=a et x=b est égale a $\int_a^b [g(x)-f(x)]dx$

Valeur moyenne

On appelle valeur moyenne de f sur [a;b] le nombre réel:

$$\mu = \frac{1}{b-a} \int_{a}^{b} f(x) dx$$

METHODES

Comment calculer une intégrale

Pour calculer $\int_a^b f(x)dx$:

- On détermine une primitive F de f
- On applique le théorème :

$$\int_{a}^{b} f(x)dx = [F(x)]_{a}^{b} = F(b) - F(a)$$

Attention : Écrire toujours le - avant de calculer la valeur de F(a)

Comment intégrer par parties

- On identifie u'(x) et v(x) et on détermine dans la foulée u(x) et $v'^{(x)}$

$$u'(x) = \cdots$$
; $u(x) = \cdots$
 $v(x) = \cdots$; $v'(x) = \cdots$

- On applique le théorème :

$$\int_{a}^{b} u'(x) \cdot v(x) \, dx = [u(x) \cdot v(x)]_{a}^{b} - \int_{a}^{b} u(x) \cdot v'(x) \, dx$$

Astuces sur l'intégration par parties

- En présence d'un terme x^n , on va souvent choisir de prendre $v(x) = x^n$ car le dérivation de v(x) nous donne un terme en x^{n-1} et donc un problème un degrés plus simple

Exemple:
$$\int_0^1 x^n e^x dx$$

$$u'(x) = e^x$$
; $u(x) = e^x$
 $v(x) = x^n$; $v'(x) = n x^{n-1}$

$$\int_0^1 x^n e^x dx = [x^n e^x]_0^1 - \int_0^1 nx^{n-1} e^x dx$$

- La seule exception est quand on $x^n \ln x$. Car ici c'est la dérivation de $\ln x$ qui va simplifier le problème.
- Exemple:

$$\int_{1}^{e} x^{2} \ln x \, dx$$

$$u'(x) = x^{2} ; u(x) = \frac{x^{3}}{3}$$

$$v(x) = \ln x ; v'(x) = \frac{1}{x}$$

$$\int_0^1 x^2 \ln x \, dx = \left[\frac{x^3}{3} \ln x \right]_1^e - \int_1^e \frac{x^3}{3} \cdot \frac{1}{x} dx$$
$$= \left[\frac{x^3}{3} \ln x \right]_1^e - \int_1^e \frac{x^2}{3} dx$$

Rappel: Primitives de fonctions usuelles

f est définie sur I par	Une primitive F est donnée par
$f(x) = a \ (a \text{ est un r\'eel})$	F(x) = ax
f(x) = x	$F(x) = \frac{1}{2}x^2$
$f(x) = x^n$ $n \text{ entier différent de } (-1) \text{ et } 0$	$F(x) = \frac{x^{n+1}}{n+1}$
$f(x) = \frac{1}{x}$	$F(x) = \ln(x)$
$f(x) = \frac{1}{x^2}$	$F(x) = -\frac{1}{x}$
$f(x) = \frac{1}{\sqrt{x}}$	$F(x) = 2\sqrt{x}$
$f(x) = e^x$	$F(x) = e^x$
$f(x) = \ln x$ (un classique à connaître)	$F(x) = x \ln x - x$
$f(x) = \sin x$	$F(x) = -\cos x$
$f(x) = \cos x$	$F(x) = \sin x$

Rappel : Linéarité des primitives

Si F et G sont des primitives respectives de f et g, et k un nombre réel, alors:

- F + G est une primitive de f + g
- kF est une primitive de kf

Rappel : Primitives de fonctions composées

Il faut penser à utiliser les formules de dérivation des fonctions composées :

f de la forme	Une primitive F est donnée par
$u' e^u$	e ^u
$u'u^n$	$\frac{u^{n+1}}{n+1}$
$\frac{u'}{u^2}$	$-\frac{1}{u}$
$\frac{u'}{2\sqrt{u}}$	\sqrt{u}
$\frac{u'}{u}$	$\ln u$

Penser aussi aux fonctions de type :

 $u'\cos(u)$ dont les primitives sont de la forme $\sin(u)$

 $u' \sin(u)$ dont les primitives sont de la forme $-\cos(u)$

Comment comparer deux intégrales

- Pour étudier le signe de $\int_a^b f(x)dx$, il **suffit** d'étudier le signe de f
- Plus généralement, pour comparer $\int_a^b f(x)dx$ et $\int_a^b g(x)dx$, il **suffit** de comparer f et g.
- On peut se servir de $\int_a^b f(x)dx \le \int_a^b g(x)dx$ pour majorer $\int_a^b f(x)dx$ si on sait intégrer g

Comment calculer une aire géométriques

Il faut connaître le signe de la fonction avant de pouvoir calculer des aires :

$$\begin{split} \mathcal{A}_{\text{totale coloriée}} &= \mathcal{A}_1 + \mathcal{A}_2 + \mathcal{A}_3 = \int_a^{c_1} f(x) \, \mathrm{d}x - \int_{c_1}^{c_2} f(x) \, \mathrm{d}x + \int_{c_2}^b f(x) \, \mathrm{d}x \\ \mathrm{Mais} \int_a^b f(x) \, \mathrm{d}x &= \mathcal{A}_1 - \mathcal{A}_2 + \mathcal{A}_3 \neq \mathcal{A}_{\text{coloriée}} \end{split}$$

L'aire délimité par les courbes C_f et C_g et les droites x = a et x = b est égale a $\int_a^b [g(x) - f(x)] dx$

Comment étudier une suite d'intégrales

Deux types de suites avec intégrales :

- $I_n = \int_a^b f_n(x) dx$: l'indice porte sur la fonction à intégrer
- $J_n = \int_a^n f(x) dx$: l'indice est sur l'intervalle d'intégration

Étude de $I_n = \int_a^b f_n(x) dx$

- Étudier la monotonie de $I_n \Leftrightarrow \text{comparer } I_n \text{ et } I_{n+1}$. Il suffit souvent pour cela de comparer f_n et f_{n+1}
- Pour étudier l'existence d'une limite $\lim_{n\to +\infty} I_n$, on utilise un théorème de convergence après avoir comparé ou encadré au préalable I_n

Étude de $J_n = \int_a^n f(x) dx$

- $J_{n+1} J_n = \int_n^{n+1} f(x) dx$. Une étude du signe de f suffit pour conclure sur la monotonie de J_n
- Pour étudier l'existence d'une limite $\lim_{n\to +\infty} J_n$, on utilise également un theoreme de convergence après avoir comparé ou encadré au préalable J_n