PhD Qualifying Exam: Algebra

September 20, 2008

Answer any **five** of the following eight questions. You should state clearly any general results you use.

- 1. (a) Find the number of elements of order five in $D_4 \oplus D_{10} \oplus D_6$, where D_{2n} represents the dihedral group of order 2n.
 - (b) If a is an element of order n of D_{2n} , show that $\langle a \rangle \subseteq D_{2n}$ and $D_{2n}/\langle a \rangle \cong \mathbb{Z}_2$.
- 2. Determine all non-isomorphic subgroups of order 15. State all the theorems you have used.
- 3. (a) Determine the center Z of the ring of all 2×2 matrices \mathcal{M}_2 over a field F.
 - (b) Show that Z is not an ideal in \mathcal{M}_2 .
 - (c) What is the center of the ring of all $n \times n$ matrices over a division ring?
- 4. Let G be a group, the subgroup of G generated by the set $\{aba^{-1}b^{-1}: a, b \in G\}$ is called the commutator subgroup of G, denoted by G'. Show that:
 - (a) $G' \triangleleft G$.
 - (b) G/G' is abelian.
 - (c) If $N \subseteq G$, then G/N is abelian if and only if $N \ge G'$.
- 5. (a) Let G be a finite group such that $|G| = p^n$ with p prime. Show that for $k \le n$, a nonnegative integer, G has a normal subgroup of order p^k .
 - (b) If P is a normal Sylow p-subgroup of a finite group G and $f: G \to G$ is an endomorphism, prove that f(P) is a subgroup of P.

Please Turn Over.

- 6. (a) Let R be a commutative ring with 1 and let M be an R-module. What does it mean for M to be a free R-module?
 - (b) Let $\mathbb{Z}[\frac{1}{2}]$ denote the subring of \mathbb{Q} generated by \mathbb{Z} and $\frac{1}{2}$. Prove or disprove: $\mathbb{Z}[\frac{1}{2}]$ is a free \mathbb{Z} -module.
- 7. Let $f(x) = x^5 9x + 3$. Determine the Galois group of the splitting field of f over (a) \mathbb{Q} , and (b) \mathbb{F}_2 .
- 8. Let K be a Galois extension of \mathbb{Q} such that $Gal(K/\mathbb{Q})$ is a cyclic group of order 12.
 - (a) How many intermediate fields are there, and what are their degrees over \mathbb{Q} ?
 - (b) Give an example of such an extension K. (Hint: 13 is a prime.)