```
TY Result [Utility-model] TY Format F801 25.Jan.2001
Application no/date: 1991-4096
Date of request for examination:
                                                     1991- 40968(1991)
  Public disclosure no/date:
                                                     1992-132300[1992/12/
  Examined publication no/date [old law]:
  Registration no/date:
  Examined publication date (present law,:
  PCT application nu:
  PCT publication hu/date:
  Applicant: KYCCEPA CORP
  Inventor: HAYASHI HIROSHI
IPC: F170 7/04
                                   0230 16/44
                                                           G03G 5/082
 Expanded classicipation: 241,116,294 Fixed Reyword: E117
 Title of invention: Liquefied gas evaporation equipment
 Abstract:
```

SUMMARY:Another heater is set at every position for a bomb about the liquefied gas evaporation equipment that is used for semiconductor industry, evaporation, etc. of raw material gas by manufacturing a photosensitive drum. Because a means to control it *(heating) was provided in every heater//A fluctuation of the evaporation speed of liquefied gas by a cotula in the bomb is repressed. A temperature irregularity in the bomb is repressed. An overheat and reduction of thermal efficiency can be prevented of the gas that evaporated.

(Automatic Translation)

(19)日本国特許庁 (JP)

(12) 公開実用新案公報 (U)

(11)実用新雲山原公開番号

実開平4-132300

(43)公開日 平成4年(1992)12月7日

		 	_	
(51) Int.CL ⁴ F 1 7 C C 2 3 C G 0 3 G	7/04 16/44	庁内被理番号 6916-3E 7325-4K 7144-2H	FI	技術表示简所

(21)出顧番号	実 顧平3-47965		客査請求 未請求 請求項の數2(全 3 頁)
	×467∓3=47903	(71)出順人	000006833
(22)出版日	平成3年(1991)5月27日		京セラ株式会社
	十成3年(1531)5月27日		京都府京都市山科区東野北井ノ上町5番地
			<i>02</i> 2
		(72)考案者	林 弘志
			滋賀県八日市市蛇縛町長谷野1168の6番地
			京セラ株式会社八日市工場内
		(74)代理人	介理! 堪入 明 (外1名)

(54) 【考案の名称】 被化ガス気化装置

(57)【要約】

【目的】 該化ガス気化装置のポンペ内の該体を、残核量によらず同じ温度で気化させ、ポンペの温度ムラを防止するとともに、気化したガスの追熱を防止し、かつ気化装置の熱効率を向上させる。

【構成】 ヒータによりボンベ内の被体を気化させると 共に、ヒータを複数個に分割して設け、各ヒータを別個 独立に制御する。

【実用新案等最請求の範囲】

【耐求項1】 ボンベ内の核化ガスを被ボンベの外部に配設したヒータで加熱し気化させるようにした、後化ガス気化装置において、ボンベに対する位置毎に別倒のヒータを設けて、各ヒータ毎に加熱剥削手段を設けたことを特徴とする、核化ガス気化装置。

【競求項2】 ボンベ内の核化ガスを被ボンベの外部に 配設したヒータで加熱し気化させるようにした、核化ガス気化装置において、上記ヒータの発熱密度をボンベの 上部では低く、ボンベの下部では高くしたことを特徴と 10 する、核化ガス気化装置。

【図面の簡単な説明】

【図1】 最初の実施例の断面図

【図2】 第2の実施例の新面図

【図3】 従来何の新面図

【図4】 最初の実施例の特性図

【図 5】 第2の実施側の特性図

【図6】 従来例の特性図

【図7】 従来例の特性図

【符号の説明】

2 ボンベ

3 製剤モニター

4 温度計

6 ヒータコントローラー

8 上部上一夕

10 中部ヒータ

12 下部ヒータ

14 底部ヒータ

20 上一夕

2: *>~<

6:モータコントローラ

8: 上郷ヒータ

10: 中部に一夕

16: 下部に一フ

[图4]

(図6)

[22]7]

[寿案の詳細な説明]

[0001]

【考案の利用分野】

この考案は、被化ガス気化装置に関し、特にそのヒータに関する。この考案の 被化ガス気化装置は、例えば半導体工業や感光ドラムの製造での原料ガスの気化 等に用いる。

[0002]

【従来技術】

図3に、従来例での液化ガス気化装置を示す。図において、2はボンベ、02はヒータで、ボンベ2の全面に均一に巻き付けてある。3は温調モニターで例えばボンベ2の中央部の温度を測定し、温度計4を介してヒータコントローラ6により、ヒータ02への電力を制御する。この従来例では、ヒータ02によりボンベ2を加熱し、気化熱によりボンベ2内の被温が低下するのを防止する。

[0003]

しかしながらこの従来例では、ボンベ2内の残液量による、温度ムラが著しいとの問題がある。例えばボンベ2に均一にヒータ02を巻き付けると、ボンベ2の上部が過熱されると、気化したガスも過熱されて配管に送られ、配管内で冷却されて再凝縮する恐れが有る。ガスの再凝縮は配管の日詰まり等の原因となり危険であり、またガスが腐食性の場合、配管のシール部等を侵す恐れが有る。過熱したガスが配管内で再凝縮することを防止するには、配管の保温設計が複雑となり、反応装置等の構造を複雑にする。更にボンベ2の上部を過熱するのはそれ自体として無駄であり、ヒータの熱効率を低下させる。ボンベ2内の液温が残液量により異なることは、残液量により気化速度が異なることを意味し、安定して一定量ずつ液化ガスを気化できないことを意味する

[0004]

【考案の課題】

この考案の課題は、ポンペ内の液量による液化ガスの気化速度の変動を抑える とともに、ポンペ内の温度ムラを抑え、気化したガスの過熱や熱効率の低下を防 止することにある。

[0005]

【考案の構成】

この考案は、ボンベ内の被化ガスを該ボンベの外部に配設したヒータで加熱し 気化させるようにした被化ガス気化装置において、ボンベに対する位置毎に別個 のヒータを散けて、各ヒータ毎に加熱制御手段を散けたことを特徴とする、被化 ガス気化装置に有る。

[0006]

この考案はまた、ボンベ内の液化ガスを該ボンベの外部に配設したヒータで加 熱し気化させるようにした液化ガス気化装置において、上配ヒータの発熱密度を ボンベの上部では低く、ボンベの下部では高くしたことを特徴とする、液化ガス 気化装置に有る。

[0007]

ここにヒータとしては、例えばパンドヒータやシリコンラパーヒータ等の電気 ヒータを用い、ポンペに巻き付け、あるいはポンペを収容するジャケット内に配 置して設ける。ヒータは例えばポンペの上部、中部、下部、庭部等の4種、ある いは上部、中部と、下部と底部との3種等に分割し、別個独立に制御する。ある いはヒータは、ポンペの上部と下部とでピッチ等を変えて発熱密度を変え、上部 では発熱密度が低く、下部では発熱密度を高くする。

[0008]

【考案の作用】

ボンベに複数個のヒータを設け、各ヒータを別個・独立に制御すると、ボンベ 内の被量に応じたきめの細かい制御ができ、ボンベ内の温度ムラを小さくできる 。例えば被量が多いときには、上部のヒータに高いエネルギーを加え、被量が減 少すると上部のヒータへの電力を減少させ、下部のヒータを中心に加熱する。こ のようにするとボンベ内の温度変動を抑え、気化速度の変動を小さくできる。ま たボンベの上部への無駄な過熱や、気化したガスの過熱による再凝縮の恐れが減 少する。

[00009]

ポンペへのヒータの発熱密度を場所により変え、上部では低く下部では高くすると、ポンペ内の温度ムラを小さくできる。ポンペの下部には常に液体が有り、 熱伝導率はポンペの上部よりも高い。そこで下部を中心に加熱する。

[0010]

この考案の被化ガス気化装置は、半導体工業や感光ドラムの製造に特に適している。これらの工業では、C1F3等の混合ハロゲンガスで装置内に残ったボリシリコン等のシリコン化合物を除去し、装置を清掃する。これらの混合ハロゲンガスは高沸点で気化熱が大きく、ボンベ内での温度ムラの発生が特に著しい。またこれらのガスは、腐食性が有りかつ有毒で、配管や装置内での再凝縮は危険である。このため、ボンベ上部でのガスの過熱を特に避けねばならない。またボンベを均一に加温するには、温水にボンベを浸すことが考えられる。しかしC1F3等のガスが漏れると、水と反応し塩化水素やフッ化水素を発生するので、温水によるボンベの加温は危険である。気化熱が大きく再凝縮が危険で、温水加温を用いられないため、この考案は半導体工業や感光ドラムの製造での液化混合ハロゲンガスの気化に特に適している。

[0011]

【実施例】

実施例1

図1に最初の実施例を示す。図において、2は液体ボンベ、3は温調モニターで熱電対やサーミスタ等を用いる。4は温度計で、温調モニター3の位置での、ボンベ2の表面温度を測定し、6はヒータコントローラーで、温度計4の信号で、各位置でのポンペ2の表面温度が一定となるようにするためのものである。8,10,12,14は電気ヒータで、8は上部ヒータ、10は中部ヒータ、12は下部ヒータ、14は底部ヒータである。ここではヒータ8,10,12,14の4種を設けたが、例えば下部ヒータ12と底部ヒータ14とを一体にして3種のヒータとしても良く、あるいはヒータを更に分割して5種以上としても良い。各ヒータ8,10,12,14には、それぞれ温調モニター3と温度計4,ヒータコントローラー6を設け、別個・独立に制御する。ヒータ8,10,12,14には、例えばパンドヒータやシリコンラバーヒータ等を用い、ボンベ2に巻き

付けて用いる。

[0012]

ボンベ2からガスを気化させると、気化熱によりボンベ2内の被温は低下する。この結果、被の有る部分の温度が低下するので、これをその付近の温調モニター3で検出し、対応するヒータを加熱して被温を一定に保つ。被量が減少すると、液体の蒸発が生じる位置が変化し、温度低下の着しい位置が変化するが、温朝モニターを複数設けたので、それに応じて対応するヒータへの電力を増し、他のヒータへの電力を減らして、ボンベ2内の温度ムラを防止する。また液量の減少に伴いボンベ2の上部の液のない部分では、外部への熱放出等に伴う温度低下が生じるに過ぎなくなる。この部分を過熱すると、熱の無駄が生じ、またガスの過熱による配管での再凝縮の恐れが生じる。そこで上部の温調モニター3からこのことを検出して、上部ヒータ8への電力を減少させる。

実施例2

図2に第2の実施例を示す。図1と同じ符号は同じものを表し、20はボンベ2の表面に巻き付けたヒータで、ボンベ2の上部と下部とで巻き付けるピッチを変え、上部では発熱密度が低く、下部では発熱密度が高くなるようにする。ヒータ20を巻き付けるピッチは、例えば下部と底部とで、上部の約1/4、中部の約1/2とし、発熱密度を下部や底部で上部の約4倍、中部の約2倍とした。温調モニター3は、液化ガスが常時残存している下部に配置したが、底部に配置しても良い。上部や中部に温調モニター3を配置すると、液面がそれ以下に低下した際に液温の検出ができなくなり、好ましくない。

[0013]

ボンベ2の上部には液化ガスの無いことが多く、加熱も僅かでよい。一方下部や底部では気化熱の補充を常に行い、熱量を多く与える必要がある。そこでヒータ20のピッチを上部と下部とで変え、下部の温度をモニターしてヒータ20を制御する。また仮に上部まで液化ガスが有る場合でも、液の有る部分での熱伝導率は高いので、下部や底部を中心に加熱しても、加えた熱は液化ガスの対流で均一に加えられて温度ムラは大きくならない。

[0014]

図4に図1の実施例での試験結果を、図5に図2の実施例での試験結果を、図6、図7に図3の従来例での試験結果を示す。用いたヒータはいずれもパンドヒータでポンペ2に巻き付け、ポンペ2はステンレス製で、被量は最初が約10版で、被面はポンペ2の底から1/3程度の位置にあり、70分経過後に被面がポンペ2の底から約1/4となるようにした。流量は毎分標準状態換算で3.3Litter(3.3SLM)、被化ガスの種類は、感光ドラムの製造後にグロー故電成膜装置内に残ったポリシリコン粉体の除去用のC1F3である。主な結果を表1に示す。

[0015]

図4ではポンペ2の上、中、下、底の4箇所に温調モニター3を設け、各温酮モニター3でのポンペ2の表面温度が25℃となるように、ヒータ8、10、12、14を制御した。なおこの時外気温度は28℃であった。

[0016]

図 5 では、ポンペ 2 の下部の表面温度が 2 5 ℃となるように、ヒータ 2 0 を制御した。外気温度は 2 8 ℃であった。

[0017]

図 6 の従来例では、ポンベ中央部の表面温度が 2.5 ℃となるように、温度制御を行った。外気温度は 2.6 ℃であった。また図 7 の従来例では、ポンペ 2 の下部に温調モニター 3 を配置し、外気温度 2.8 ℃でポンペ 2 の下部表面温度が 2.5 ℃となるように温度制御した。

[0018]

図4. 図5の実施例では、気化の開始から40分経過後は、ボンベ2の下部温度はかなり安定となり、約60分で安定状態に移行した。安定状態とは、気化熱とヒータからの熱が釣り合い、蒸気圧が一定でガス流量も一定となるとともに、ボンベ2内の液化ガスの有る部分の温度が一定となる状態である。ボンベ2の表面温度の温度ムラは、図4の実施例で最大13.5℃と小さく、60分以上経過すると温度ムラは逆に減少した。図5の実施例では、温度ムラは最大18.5℃で、60分経過後と70分経過後との温度ムラは変わらず、温度ムラには一定の上限値があった。

[0019]

これに対して、ボンペ2の中部に温調モニター3を配置した図6の従来例では、70分経過しても安定状態とはならず、流量は不安定なままであった。またボンベ2の下部温度は一貫して低下し続け、流量は一貫して低下した。ボンベ2の表面温度のムラは最大24℃で、60分以上経過しても飽和せずに増加し続けた。更にボンベ2の下部に温調モニター3を配置した図7の従来例では、約60分で安定状態に移行したが、40分以上経過後の下部温度の安定性は図4、図5の実施例よりも低かった。ボンベ2の表面温度のムラは最大27℃で、安定状態への以降後も増加し続け、ボンベ2の上部の過熱が著しかった。

[0020]

【表1】

	試験 結果	
結果	安定状態への移行	温度ムラ
网4	60分で安定状態に移行	最大13.5℃
図1の実施例	40分経過後は下部温度は	60分以上経過すると
	かなり安定で流量はほぼ安定	温度ムラは逆に減少
2 5	60分で安定状態に移行	最大18、5℃
図2の実施例	40分経過後は下部温度は	60分以上経過すると
	かなり安定で流量はほぼ安定	温度ムラは飽和
⊠ 6	安定状態に移行せず、	最大24℃
図3の従来例	下部温度は一貫して低下し	温度ムラは一貫して増加
中部を温調	流量は不安定なまま	
图 7	60分で安定状態に移行	最大27℃
図3の従来例	40分経過後の下部温度の	6 0分以上経過しても
下部を温調	安定性は低い	温度ムラは飽和せず上部の
		過熱が著しい
_		

[0021]

【考案の効果】

この考案では、ポンペ内温度のムラを抑制し、気化速度を一定に保ち易くする

とともに、ポンベ上部の過熱を防止する。ポンベ上部の過熱を防止すると、配管 内での気化したガスの再凝縮の恐れを小さくし、配管の保温設計が容易となる。 またポンベ上部の過熱を避けることにより、無駄なエネルギーを減少させ、熱効 率を向上させる。