Introduction to Probability (Spring 2019)

Exam 2

Name:

ATTENTION!!

- Show clearly how you derive the result. Only having the right answer without support reasoning
 ⇒ 1 pt only.
- 1. If a discrete random variable X has the moment generating function

$$\mathbb{E}e^{tX} = \cosh(t) = \frac{e^{2t} + 1}{2e^t}.$$

Find

- (a) $\mathbb{E}X$. (5 pt)
- (b) Var X. (5 pt)
- (c) The probability mass function p(x). (10 pt)

coshlt) =
$$\frac{1}{2} e^{t} + \frac{1}{2} e^{-t}$$
.

(a) $\frac{d \cosh(t)}{dt} = \frac{1}{2} e^{t} - \frac{1}{2} e^{-t} |_{t=0} = 0$

(th)
$$\frac{d^2 \cosh(t)}{dt^2} = \frac{1}{2} e^+ + \frac{1}{2} e^{-t} |_{t=0} = |$$

 $\Rightarrow |_{t=0}^{t=0} |_{t=0}^{t=0}$

$$(c)$$

2. $X \sim \text{Poisson}(\lambda)$ with probability mass function

$$p(x) = \frac{e^{-\lambda} \lambda^x}{x!}, \quad x = 0, 1, 2, \dots$$

consider a random variable $Y = \frac{X - \lambda}{\lambda}$.

- (a) Find $\mathbb{E}Y$. (5 pt)
- (a) Find Var(Y). (5 pt)
- (a) Use Chebyshev's inequality to find an upper bound for $P(|Y| \ge \lambda)$. (10 pt)

ca) Since
$$X \sim Polsson(x)$$
,

 $EX = \lambda$ $2pt$

here Invert property of expectation

 $EY = EX - \lambda = 0$ $3pt$

Cb) $Var X = T \times 2pt$
 $Var Y = Var X = T \times 3pt$

cc) $P(|Y| > 1)$
 $= P(|Y| > 1)$
 $\leq Var Y = T \times 2pt$
 $\leq Var$

3. If $Y \sim \text{Binomial}(n, p)$, with probability mass function:

$$p(y) = \binom{n}{y} p^y (1-p)^{n-y}, \quad y = 0, \dots, n$$

find

(a)
$$\mathbb{E}Y(Y-1)(Y-2)$$
. (10 pt)

(b)
$$\mathbb{E}(Y+1)^{-1}$$
. (10 pt)

$$= \frac{n+1}{\sum_{x=0}^{n+1} \frac{(n+0!)}{p(n+1)} \left[\frac{(n+0!)}{x! (n+1-x)!} \right]^{x} (1-1)^{n+1-x} J}{\frac{(n+0)!}{p(n+1)} \frac{(n+1)!}{o! (n+1-\delta)!} p^{o} (1-1)^{n+1-x} J}$$

$$= \frac{1}{p(n+1)} - \frac{(n+0)!}{p(n+1)} p^{o} (1-1)^{n+1-x} J$$

$$= \frac{1}{p(n+1)} - \frac{(n+0)!}{p(n+1)} p^{o} (1-1)^{n+1-x} J$$