Tensor Calculus J.L. Synge and A.Schild (Dover Publication) Solutions to exercises

Bernard Carrette

March 3, 2022

Remarks and warnings

You're welcome to use these notes, but they may contain errors, so proceed with caution. If you do find an error, however, I'd be happy to receive bug reports, suggestions, and the like through Github.

Some notation conventions

$$\partial_r \equiv \frac{\partial}{\partial x^r}$$

$$\Gamma_{mn}^r \equiv \begin{Bmatrix} r \\ mn \end{Bmatrix}$$
 Christoffel symbol of the second kind

Contents

1	urvature of space	4
	1 p109 - Exercise 6	5

List of Figures

Curvature of space

1.1 p109 - Exercise 6

For an orthogonal coordinates system in a V_2 we have

$$ds^{2} = a_{11} (dx^{1})^{2} + a_{22} (dx^{2})^{2}$$

Show that

$$\frac{1}{a}R_{1212} = -\frac{1}{2}\frac{1}{\sqrt{a}}\left[\partial_1\left(\frac{1}{\sqrt{a}}\partial_1 a_{22}\right) + \partial_2\left(\frac{1}{\sqrt{a}}\partial_2 a_{11}\right)\right]$$

We have

$$(a_{mn}) = \begin{pmatrix} a_{11} & 0 \\ 0 & a_{22} \end{pmatrix} \quad (a_{mn}) = \frac{1}{a} \begin{pmatrix} a_{22} & 0 \\ 0 & a_{11} \end{pmatrix} \quad a = a_{11}a_{22} \tag{1}$$

We have also

$$R = -\frac{2}{a}R_{1212} \tag{2}$$

$$R = a^{mn}R_{mn} \Rightarrow R = a^{11}R_{11} + a^{22}R_{22}$$
 (3)

Looking at the pattern generated by equations (2) and (3) suggests that using these equations could lead to the proposed equation. Let's have a try ...

$$\begin{cases}
\Gamma_{11}^{1} = \frac{1}{2} \frac{a_{22}}{a} \partial_{1} a_{11} & \Gamma_{22}^{1} = -\frac{1}{2} \frac{a_{22}}{a} \partial_{1} a_{22} \\
\Gamma_{11}^{2} = -\frac{1}{2} \frac{a_{11}}{a} \partial_{2} a_{11} & \Gamma_{22}^{2} = \frac{1}{2} \frac{a_{11}}{a} \partial_{2} a_{22} \\
\Gamma_{12}^{1} = \frac{1}{2} \frac{a_{22}}{a} \partial_{2} a_{11} & \Gamma_{12}^{2} = \frac{1}{2} \frac{a_{11}}{a} \partial_{1} a_{22}
\end{cases}$$

$$3.205. \Rightarrow R_{rm} = \frac{1}{2} \partial_{rm} \log a - \frac{1}{2} \Gamma_{rm}^{p} \partial_{p} \log a - \partial_{n} \Gamma_{rm}^{n} + \Gamma_{rn}^{p} \Gamma_{pm}^{n}$$

$$\begin{cases}
R_{11} = \frac{1}{2} \partial_{11} \log a - \frac{1}{2} \Gamma_{11}^{1} \partial_{1} \log a - \frac{1}{2} \Gamma_{11}^{2} \partial_{2} \log a \\
-\partial_{1} \Gamma_{11}^{1} - \partial_{2} \Gamma_{11}^{2} + \Gamma_{11}^{2} \Gamma_{11}^{2} + \Gamma_{12}^{2} \Gamma_{21}^{2}
\end{cases}$$

$$\Rightarrow \begin{cases}
R_{22} = \frac{1}{2} \partial_{22} \log a - \frac{1}{2} \Gamma_{12}^{1} \partial_{1} \log a - \frac{1}{2} \Gamma_{22}^{2} \partial_{2} \log a \\
-\partial_{1} \Gamma_{12}^{1} - \partial_{2} \Gamma_{22}^{2} + \Gamma_{21}^{2} \Gamma_{12}^{1} + \Gamma_{22}^{2} \Gamma_{22}^{2}
\end{cases}$$

$$\Rightarrow \begin{cases}
(6) \\
-\partial_{1} \Gamma_{12}^{1} - \Gamma_{12}^{1} + \Gamma_{12}^{1} \Gamma_{12}^{2} + \Gamma_{21}^{2} \Gamma_{12}^{1} + \Gamma_{22}^{2} \Gamma_{22}^{2}
\end{cases}$$

$$\begin{cases}
R_{11} = \frac{1}{2}\partial_{11}\log a - \frac{1}{2}\frac{1}{2}\frac{a_{22}}{a}\partial_{1}a_{11}\partial_{1}\log a - \frac{1}{2}(-\frac{1}{2}\frac{a_{11}}{a}\partial_{2}a_{11})\partial_{2}\log a \\
-\partial_{1}(\frac{1}{2}\frac{a_{22}}{a}\partial_{1}a_{11}) - \partial_{2}(-\frac{1}{2}\frac{a_{11}}{a}\partial_{2}a_{11}) + \\
\frac{1}{2}\frac{a_{22}}{a}\partial_{1}a_{11}\frac{1}{2}\frac{a_{22}}{a}\partial_{1}a_{11} + \frac{1}{2}\frac{a_{22}}{a}\partial_{2}a_{11}(-\frac{1}{2}\frac{a_{11}}{a}\partial_{2}a_{11}) + \\
(-\frac{1}{2}\frac{a_{11}}{a}\partial_{2}a_{11})\frac{1}{2}\frac{a_{22}}{a}\partial_{2}a_{11} + \frac{1}{2}\frac{a_{11}}{a}\partial_{1}a_{22}\frac{1}{2}\frac{a_{11}}{a}\partial_{1}a_{22}
\end{cases}$$

$$\Rightarrow \begin{cases}
R_{11} = \frac{1}{2}\partial_{11}\log a - \frac{1}{2}\frac{a_{12}}{a}\partial_{1}a_{11} + \frac{1}{2}\frac{a_{11}}{a}\partial_{2}a_{11} + \frac{1}{2}\frac{a_{11}}{a}\partial_{1}a_{22}a_{11} + \\
(-\frac{1}{2}\frac{a_{11}}{a}\partial_{1}a_{22}\frac{1}{2}\frac{a_{11}}{a}\partial_{2}a_{22}\partial_{2}\log a - \frac{1}{2}(-\frac{1}{2}\frac{a_{22}}{a}\partial_{1}a_{22})\partial_{1}\log a - \frac{1}{2}\frac{1}{2}\frac{a_{11}}{a}\partial_{2}a_{22}\partial_{2}\log a \\
-\partial_{1}(-\frac{1}{2}\frac{a_{22}}{a}\partial_{1}a_{22}) - \partial_{2}(\frac{1}{2}\frac{a_{11}}{a}\partial_{2}a_{22}) + \\
\frac{1}{2}\frac{a_{22}}{a}\partial_{2}a_{11}\frac{1}{2}\frac{a_{22}}{a}\partial_{2}a_{11} + (-\frac{1}{2}\frac{a_{22}}{a}\partial_{1}a_{22})\frac{1}{2}\frac{a_{11}}{a}\partial_{1}a_{22} + \\
\frac{1}{2}\frac{a_{11}}{a}\partial_{1}a_{22}(-\frac{1}{2}\frac{a_{22}}{a}\partial_{1}a_{22}) + \frac{1}{2}\frac{a_{11}}{a}\partial_{2}a_{22}\frac{1}{2}\frac{a_{11}}{a}\partial_{2}a_{22}
\end{cases}$$

$$(7)$$

Simplifying the notational burden by replacing a_{11} by γ and a_{22} by η :

Simplifying the notational burden by replacing
$$a_{11}$$
 by γ and a_{22} by η .

$$\begin{cases}
R_{11} = \frac{1}{2}\partial_{11}\log a - \frac{1}{2}\frac{1}{2}\frac{1}{\gamma}\partial_{1}\gamma\partial_{1}\log a + \frac{1}{2}\frac{1}{2}\frac{1}{\eta}\partial_{2}\gamma\partial_{2}\log a \\
-\frac{1}{2}\partial_{1}(\frac{1}{\gamma}\partial_{1}\gamma) + \frac{1}{2}\partial_{2}(\frac{1}{\eta}\partial_{2}\gamma) \\
+\frac{1}{2}\frac{1}{2}\frac{1}{\gamma}\frac{1}{\gamma}\partial_{1}\gamma\partial_{1}\gamma - \frac{1}{2}\frac{1}{2}\frac{1}{\gamma}\frac{1}{\eta}\partial_{2}\gamma\partial_{2}\gamma \\
-\frac{1}{2}\frac{1}{2}\frac{1}{\gamma}\frac{1}{\eta}\partial_{2}\gamma\partial_{2}\gamma + \frac{1}{2}\frac{1}{2}\frac{1}{\eta}\frac{1}{\eta}\partial_{1}\eta\partial_{1}\eta
\end{cases}$$

$$\Rightarrow \begin{cases}
R_{22} = \frac{1}{2}\partial_{22}\log a + \frac{1}{2}\frac{1}{2}\frac{1}{\gamma}\partial_{1}\eta\partial_{1}\log a - \frac{1}{2}\frac{1}{2}\frac{1}{\eta}\partial_{2}\eta\partial_{2}\log a \\
+\frac{1}{2}\partial_{1}(\frac{1}{\gamma}\partial_{1}\eta) - \frac{1}{2}\partial_{2}(\frac{1}{\eta}\partial_{2}\eta) \\
+\frac{1}{2}\frac{1}{2}\frac{1}{\gamma}\frac{1}{\gamma}\partial_{2}\gamma\partial_{2}\gamma - \frac{1}{2}\frac{1}{2}\frac{1}{\gamma}\frac{1}{\eta}\partial_{1}\eta\partial_{1}\eta \\
-\frac{1}{2}\frac{1}{2}\frac{1}{\gamma}\frac{1}{\eta}\partial_{1}\eta\partial_{1}\eta + \frac{1}{2}\frac{1}{2}\frac{1}{\eta}\frac{1}{\eta}\partial_{2}\eta\partial_{2}\eta
\end{cases}$$
Noting that $\partial_{ii}\log a = \partial_{i}\left(\frac{1}{a_{11}}\partial_{i}a_{11}\right) + \partial_{i}\left(\frac{1}{a_{22}}\partial_{i}a_{22}\right)$ and $\partial_{i}\log a = \frac{1}{a_{11}}\partial_{i}a_{11} + \frac{1}{a_{22}}\partial_{i}a_{22} \quad (i = 1, 2),$ we get:

we get:

$$2R_{11} = 2R_{22} = \frac{\partial_{1}\left(\frac{1}{\gamma}\partial_{1}\gamma\right) + \partial_{1}\left(\frac{1}{\eta}\partial_{1}\eta\right)}{2} \qquad \frac{\partial_{2}\left(\frac{1}{\gamma}\partial_{2}\gamma\right) + \underbrace{\partial_{2}\left(\frac{1}{\eta}\partial_{2}\eta\right)}_{*}}{2} \\
-\frac{1}{2}\frac{1}{\gamma}\frac{1}{\gamma}(\partial_{1}\gamma)^{2} - \frac{1}{2}\frac{1}{\gamma}\frac{1}{\eta}\partial_{1}\gamma\partial_{1}\eta \qquad + \frac{1}{2}\frac{1}{\gamma}\frac{1}{\eta}(\partial_{1}\eta)^{2} \\
+\frac{1}{2}\frac{1}{\gamma}\frac{1}{\eta}(\partial_{2}\gamma)^{2} + \frac{1}{2}\frac{1}{\eta}\frac{1}{\eta}\partial_{2}\gamma\partial_{2}\eta \qquad -\frac{1}{2}\frac{1}{\eta}\frac{1}{\eta}(\partial_{2}\gamma) \qquad + \frac{1}{2}\frac{1}{\gamma}\frac{1}{\eta}(\partial_{2}\gamma)^{2} \qquad + \frac{1}{2}\frac{1}{\gamma}\frac{1}{\eta}(\partial_{1}\gamma)^{2} - \underbrace{\frac{1}{2}\frac{1}{\eta}(\partial_{2}\gamma)^{2}}_{*} \qquad + \frac{1}{2}\frac{1}{\gamma}\frac{1}{\eta}(\partial_{1}\gamma)^{2} - \underbrace{\frac{1}{2}\frac{1}{\gamma}\frac{1}{\eta}(\partial_{2}\gamma)^{2}}_{+} \qquad + \frac{1}{2}\frac{1}{\gamma}\frac{1}{\eta}(\partial_{2}\gamma)^{2} - \underbrace{\frac{1}{2}\frac{1}{\eta}\frac{1}{\eta}(\partial_{1}\eta)^{2}}_{+} \qquad - \underbrace{\frac{1}{2}\frac{1}{\gamma}\frac{1}{\eta}(\partial_{2}\gamma)^{2} + \underbrace{\frac{1}{2}\frac{1}{\eta}\frac{1}{\eta}(\partial_{1}\eta)^{2}}_{+} \qquad - \underbrace{\frac{1}{2}\frac{1}{\gamma}\frac{1}{\eta}(\partial_{1}\eta)^{2} + \underbrace{\frac{1}{2}\frac{1}{\eta}\frac{1}{\eta}(\partial_{2}\eta)^{2}}_{-} \qquad - \underbrace{\frac{1}{2}\frac{1}{\gamma}\frac{1}{\eta}(\partial_{1}\eta)^{2} + \underbrace{\frac{1}{2}\frac{1}{\eta}\frac{1}{\eta}(\partial_{2}\eta)^{2}}_{-} \qquad - \underbrace{\frac{1}{2}\frac{1}{\eta}\frac{1}{\eta}(\partial_{1}\eta)^{2} + \underbrace{\frac{1}{2}\frac{1}{\eta}\frac{1}{\eta}(\partial_{2}\eta)^{2}}_{-} \qquad - \underbrace{\frac{1}{2}\frac{1}{\gamma}\frac{1}{\eta}(\partial_{1}\eta)^{2} + \underbrace{\frac{1}{2}\frac{1}{\eta}\frac{1}{\eta}(\partial_{2}\eta)^{2}}_{-} \qquad - \underbrace{\frac{1}{2}\frac{1}{\gamma}\frac{1}{\eta}(\partial_{1}\eta)^{2}}_{-} \qquad - \underbrace{\frac{1}{2}\frac{1}{\eta}\frac{1}{\eta}(\partial_{1}\eta)^{2}}_{-} \qquad - \underbrace{\frac{1}{2}\frac{1}{\eta}\frac{1}{\eta}(\partial_{1}\eta)^{2$$

$$\Rightarrow \begin{vmatrix} 2R_{11} = & 2R_{22} = \\ \partial_1 \left(\frac{1}{\eta}\partial_1\eta\right) + \partial_2 \left(\frac{1}{\eta}\partial_2\gamma\right) & \partial_1 \left(\frac{1}{\gamma}\partial_1\eta\right) + \partial_2 \left(\frac{1}{\gamma}\partial_2\gamma\right) \\ + \frac{1}{2}\frac{1}{\eta}\frac{1}{\eta}(\partial_1\eta)^2 - \frac{1}{2}\frac{1}{\gamma}\frac{1}{\eta}(\partial_2\gamma)^2 & -\frac{1}{2}\frac{1}{\gamma}\frac{1}{\eta}(\partial_1\eta)^2 + \frac{1}{2}\frac{1}{\gamma}\frac{1}{\gamma}(\partial_2\gamma)^2 \\ - \frac{1}{2}\frac{1}{\gamma}\frac{1}{\eta}\partial_1\gamma\partial_1\eta + \frac{1}{2}\frac{1}{\eta}\frac{1}{\eta}\partial_2\gamma\partial_2\eta & +\frac{1}{2}\frac{1}{\gamma}\frac{1}{\gamma}\partial_1\gamma\partial_1\eta - \frac{1}{2}\frac{1}{\gamma}\frac{1}{\eta}\partial_2\gamma\partial_2\eta \end{vmatrix}$$

$$(10)$$

Be $R = \frac{1}{\gamma}R_{11} + \frac{1}{\eta}R_{22}$, all first order derivatives vanish and we get,

$$\frac{1}{\gamma}R_{11} + \frac{1}{\eta}R_{22} = \frac{1}{2} \left[\frac{1}{\eta} \partial_1(\frac{1}{\gamma}\partial_1\eta) + \frac{1}{\gamma} \partial_1(\frac{1}{\eta}\partial_1\eta) \right] + \frac{1}{2} \left[\frac{1}{\gamma} \partial_2(\frac{1}{\gamma}\partial_2\gamma) + \frac{1}{\eta} \partial_2(\frac{1}{\eta}\partial_2\gamma) \right]$$
(11)

We further simplify this expression. Looking at the symmetry we only explicit the calculations for

the first terms in ∂_1 .

$$\frac{1}{\eta}\partial_1(\frac{1}{\gamma}\partial_1\eta) + \frac{1}{\gamma}\partial_1(\frac{1}{\eta}\partial_1\eta) = \frac{1}{\eta}\partial_1(\frac{1}{\sqrt{\gamma}}\frac{1}{\sqrt{\gamma}}\frac{\sqrt{\eta}}{\sqrt{\eta}}\partial_1\eta) + \frac{1}{\gamma}\partial_1(\frac{1}{\sqrt{\eta}}\frac{1}{\sqrt{\eta}}\frac{\sqrt{\gamma}}{\sqrt{\gamma}}\partial_1\eta)$$
(12)

$$= \frac{1}{\eta} \partial_1 \left[\left(\frac{\eta}{\gamma} \right)^{\frac{1}{2}} \frac{1}{\sqrt{a}} \partial_1 \eta \right] + \frac{1}{\gamma} \partial_1 \left[\left(\frac{\eta}{\gamma} \right)^{-\frac{1}{2}} \frac{1}{\sqrt{a}} \partial_1 \eta \right]$$
(13)

$$= \begin{cases} \frac{1}{\eta} \left(\frac{\eta}{\gamma}\right)^{\frac{1}{2}} \partial_{1} \left[\frac{1}{\sqrt{a}} \partial_{1} \eta\right] + \underbrace{\frac{1}{\gamma} \left(\frac{\eta}{\gamma}\right)^{-\frac{1}{2}}}_{=\frac{1}{\sqrt{a}}} \partial_{1} \left[\frac{1}{\sqrt{a}} \partial_{1} \eta\right] \\ + \underbrace{\frac{1}{\sqrt{a}} \partial_{1} \eta}_{=0} \left[\frac{1}{\eta} \partial_{1} \left(\frac{\eta}{\gamma}\right)^{\frac{1}{2}} + \frac{1}{\gamma} \partial_{1} \left(\frac{\eta}{\gamma}\right)^{-\frac{1}{2}}\right] \\ = 0 \end{cases}$$

$$(14)$$

$$=2\frac{1}{\sqrt{a}}\partial_1\left[\frac{1}{\sqrt{a}}\partial_1 a_{22}\right] \tag{15}$$

$$\Rightarrow \frac{1}{2} \left[\frac{1}{\eta} \partial_1 (\frac{1}{\gamma} \partial_1 \eta) + \frac{1}{\gamma} \partial_1 (\frac{1}{\eta} \partial_1 \eta) \right] = \frac{1}{\sqrt{a}} \partial_1 \left[\frac{1}{\sqrt{a}} \partial_1 a_{22} \right]$$
 (16)

Using (16) and the same calculations for the terms in ∂_2 and using (2) and (3) we get

$$\frac{1}{a}R_{1212} = -\frac{1}{2}\frac{1}{\sqrt{a}}\left[\partial_1\left(\frac{1}{\sqrt{a}}\partial_1 a_{22}\right) + \partial_2\left(\frac{1}{\sqrt{a}}\partial_2 a_{11}\right)\right]$$

♦