TD4 STRUCTURES ALGÉBRIQUES POUR L'INFORMATIQUE

Exercice 1

Soit (G, .) un groupe. Prouver que l'intersection de deux sous-groupes de G est un sous-groupe de G. Qu'en est-il de la réunion de deux sous-groupes?

Exercice 2

Soit G un groupe noté multiplicativement. On rappelle qu'un sous-ensemble non vide $H \subset G$ est un sous groupe de G si muni de l'opération induite, H reste un groupe, i.e. H doit être non vide, stable (sinon l'opération de G ne définit pas une opération interne sur H), et les éléments symétriques des éléments de H doivent être dans H. Montrer que H est un sous-groupe de G si et seulement si il est non vide et que,

$$\forall (x,y) \in H^2, \qquad xy^{-1} \in H.$$

Exercice 3

Soit $a \in \mathbb{N}$. On note $a\mathbb{Z}$ l'ensemble des multiples de a.

- 1. Montrer que $a\mathbb{Z}$ est un sous-groupe de \mathbb{Z} . Montrer que c'est le sous-groupe de \mathbb{Z} engendré par a: $a\mathbb{Z} = \langle a \rangle$.
- 2. Montrer que l'intersection de deux sous-groupes de \mathbb{Z} est un sous-groupe de \mathbb{Z} . Caractériser le sous-groupe $a\mathbb{Z} \cap b\mathbb{Z}$. Caractériser les sous-groupes suivants :

$$2\mathbb{Z} \cap 3\mathbb{Z}$$
; $5\mathbb{Z} \cap 13\mathbb{Z}$; $5\mathbb{Z} \cap 25\mathbb{Z}$.

- 3. Déterminer $2\mathbb{Z} \cup 3\mathbb{Z}$. Est-ce un sous-groupe de \mathbb{Z} ?
- 4. Déterminer : $7\mathbb{Z} \cup 49\mathbb{Z}$; $5\mathbb{Z} \cup 45\mathbb{Z}$; $\bigcup_{n=1}^{28} 2^n\mathbb{Z}$. Ces ensembles sont-ils des sous-groupes de \mathbb{Z} ?
- 5. Montrer que les seuls sous-groupes de \mathbb{Z} sont les $a\mathbb{Z}$, pour $a \in \mathbb{N}$.
- 6. Trouver une condition nécessaire et suffisante pour qu'une réunion de deux sous-groupes de \mathbb{Z} soit un sous-groupe de \mathbb{Z} .

Exercice 4

Soit (G,.) un groupe et H un sous-groupe de G $(H \le G)$ et $g \in G$. Montrer que $gHg^{-1} = \{ghg^{-1} : h \in H\}$ est aussi un sous-groupe de G. On dit que H et gHg^{-1} sont des sous-groupes conjugués.

Exercice 5

Soit (G, .) un groupe. On définit Z(G), le centre de G par

$$Z(G) = \{x \in G : gx = xg, \text{ pour tout } g \in G\}.$$

Montrer que le centre de G est un sous-groupe de G.

Exercice 6

On considère les matrices carrées 2×2 suivantes, à coefficients dans \mathbb{C} :

$$1 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \qquad I = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}, \qquad J = \begin{pmatrix} 0 & i \\ i & 0 \end{pmatrix}, \qquad K = \begin{pmatrix} 0 & i \\ -i & 0 \end{pmatrix}.$$

- 1. Montrer que l'ensemble des matrices carrées 2×2 , à coefficients dans \mathbb{C} , inversibles, muni de la multiplication des matrices est un groupe.
- 2. Montrer que $\{\pm 1, \pm I, \pm J, \pm K\}$, muni de la multiplication des matrices est un groupe. Est-il abélien?

Indication: on pourra montrer que c'est un sous-groupe du groupe précédent.

Exercice 7

Soit H et K deux sous-groupes d'un groupe (G, .). On définit HK, le sous-ensemble de G par:

$$HK = \{hk : h \in H \text{ et } k \in K\}.$$

- 1. HK est-il toujours un sous-groupe de G? (justifier)
- 2. On suppose que (G, .) est un groupe abélien. Montrer que HK est un sous-groupe de G.

Exercice 8

Soit (G,.) un groupe. On suppose que pour tout $x,y\in G,$ $(xy)^{-1}=x^{-1}y^{-1}.$ Montrer que G est abélien.