

Advertisement CTR Prediction

Fine-tune the System

DS5220 / Fall 2023 Semester

Team Members: Liyang Song, Qian Yin

Dec 10, 2023

Introduction

In this part, we tune hyperparameters and classification threshold to improve model performances.

- Goal:
 - Minimize Type I error (Increase precision score)
- Five models used:
 - SGD classifier
 - Random forest classifier
 - Decision tree classifier
 - Adaboost classifier
 - Gradient boosting classifier
- Steps for each model:
 - Tune hyperparameters of composite estimators
 - Evaluate tuned composite estimators on train set and validation set
 - Check for false discoveries
 - Calculate permutation feature importance
 - Tune classification threshold
 - Find the best model and evaluate model on the test set

Best Estimator Hyperparameters

SGD Classifier

```
Best estimator hyper parameters:
{'estimator_alpha': 0.1, 'estimator_l1_ratio': 0.15, 'estimator_loss': 'log_loss', 'estimator_n_jobs': -1, 'estimator_penalty': 'l2', 'preprocessor_categorical_target_encoder_smooth': 'auto', 'preprocessor_numerical_imputer_strategy': 'mean'}
```

Ada Boost Classifier

```
Best estimator hyper parameters:
{'estimator__estimator__max_depth': 10, 'estimator__estimator__max_features': 'sqrt', 'estimator__estimator__min_samples_le
af': 1, 'estimator__estimator__min_samples_split': 2, 'estimator__learning_rate': 5.0, 'estimator__n_estimators': 100, 'prep
rocessor__categorical__target_encoder__smooth': 'auto', 'preprocessor__numerical__imputer__strategy': 'mean'}
```

Decision Tree Classifier

```
Best estimator hyper parameters:
{'estimator__criterion': 'entropy', 'estimator__max_depth': 10, 'estimator__max_features': None, 'estimator__min_samples_le af': 5, 'estimator__min_samples_split': 2, 'estimator__splitter': 'random', 'preprocessor__categorical__target_encoder__smoo th': 'auto', 'preprocessor__numerical__imputer__strategy': 'mean'}
```

Gradient Boosting Classifier

```
Best estimator hyper parameters:
{'estimator_learning_rate': 0.1, 'estimator_max_depth': 3, 'estimator_max_features': 'sqrt', 'estimator_min_samples_leaf': 1, 'estimator_min_samples_split': 5, 'estimator_n_estimators': 100, 'preprocessor_categorical_target_encoder_smooth': 'auto', 'preprocessor_numerical_imputer_strategy': 'mean'}
```

Random forest classifier

```
Best estimator hyper parameters:
    {'estimator__max_depth': 10, 'estimator__max_features': None, 'estimator__min_samples_leaf': 1, 'estimator__min_samples_spl
it': 5, 'estimator__n_estimators': 100, 'preprocessor__categorical__target_encoder__smooth': 'auto', 'preprocessor__numerical__target_encoder__smooth': 'mean'}
```

SGD classifier – Performance on train

```
Check classification report
{'0': {'precision': 0.9846879729368824, 'recall': 0.6834316784577836, 'f1-score': 0.8068569344396825, 'support': 32369.0},
'1': {'precision': 0.07342436024957048, 'recall': 0.7024221453287197, 'f1-score': 0.1329512893982808, 'support': 1156.0}, 'a
ccuracy': 0.6840865026099926, 'macro avg': {'precision': 0.5290561665932264, 'recall': 0.6929269118932517, 'f1-score': 0.469
9041119189817, 'support': 33525.0}, 'weighted avg': {'precision': 0.953266027037806, 'recall': 0.6840865026099926, 'f1-score': 0.7836195019067113, 'support': 33525.0}}
```

Check confusion matrix
train set confusion matrix:
[[22122 10247]
 [344 812]]
True Positives = 22122
True Negatives = 812
False Positives(Type I error) = 10247
False Negatives(Type II error) = 344

Compared with the default model, precision and ave_precision_score increase. The number of false positives increases slight.

SGD classifier – Performance on validation

```
Check classification report {
'0': {'precision': 0.9792337987826709, 'recall': 0.6759762728620861, 'f1-score': 0.7998245357508407, 'support': 8092.0},
'1': {'precision': 0.06189624329159213, 'recall': 0.5986159169550173, 'f1-score': 0.11219195849546043, 'support': 289.0}, 'a
ccuracy': 0.673308674382532, 'macro avg': {'precision': 0.5205650210371315, 'recall': 0.6372960949085517, 'f1-score': 0.4560
082471231596, 'support': 8381.0}, 'weighted avg': {'precision': 0.9476014692829785, 'recall': 0.673308674382532, 'f1-score': 0.7761130675696206, 'support': 8381.0}}
```

Check confusion matrix
validation set confusion matrix:
[[5470 2622]
 [116 173]]
True Positives = 5470
True Negatives = 173
False Positives(Type I error) = 2622
False Negatives(Type II error) = 116

Compared to the performance on the train set, the performance on validation set doesn't change much.

SGD classifier – Permutation Feature Importance

■ This is a list of the most significant attributes.

	metric_name	feature_name	metric_mean	metric_std_dev
0	average_precision	adv_id	0.062325	0.001244
1	average_precision	slot_id	0.035482	0.004633
2	average_precision	age	0.011236	0.001908
3	average_precision	career	0.003342	0.000802
4	average_precision	gender	0.000989	0.000250
5	average_precision	city	0.000652	0.000053
6	average_precision	communication_avgonline_30d	0.000300	0.000106
7	average_precision	up_life_duration	0.000044	0.000016
8	roc_auc	adv_id	0.084100	0.003056
9	roc_auc	slot_id	0.047761	0.003463
10	roc_auc	age	0.005093	0.001390
11	roc_auc	adv_prim_id	0.003795	0.001245
12	roc_auc	net_type	0.001972	0.000728
13	roc_auc	list_time	0.001577	0.000258
14	roc_auc	city	0.000722	0.000052
15	roc_auc	device_price	0.000568	0.000087
16	roc_auc	inter_type_cd	0.000505	0.000133

SGD classifier – Assess classification thresholds

```
Check confusion matrix
best validation set confusion matrix:
[[7591 501]
[ 255 34]]
True Positives = 7591
True Negatives = 34
False Positives(Type I error) = 501
False Negatives(Type II error) = 255
```

Check classification report {'0': {'precision': 0.9674993627326026, 'recall': 0.9380869995056846, 'f1-score': 0.9525661940017568, 'support': 8092.0}, '1': {'precision': 0.06355140186915888, 'recall': 0.11764705882352941, 'f1-score': 0.08252427184466019, 'support': 289.0}, 'accuracy': 0.909795967068369, 'macro avg': {'precision': 0.5155253823008807, 'recall': 0.527867029164607, 'f1-score': 0.5175452329232085, 'support': 8381.0}, 'weighted avg': {'precision': 0.9363287433924838, 'recall': 0.909795967068369, 'f1-score': 0.9225647484101328, 'support': 8381.0}}

Best threshold is 0.53. After adjusting the classification threshold, the false positives is much lower.

Random forest classifier – Performance on train

```
Check classification report {
'0': {'precision': 0.9772636217948718, 'recall': 0.9042911427600482, 'f1-score': 0.9393623337237849, 'support': 32369.0},
'1': {'precision': 0.1329415057374755, 'recall': 0.4108996539792388, 'f1-score': 0.20088813702685557, 'support': 1156.0}, 'a ccuracy': 0.8872781506338553, 'macro avg': {'precision': 0.5551025637661736, 'recall': 0.6575953983696434, 'f1-score': 0.570 1252353753202, 'support': 33525.0}, 'weighted avg': {'precision': 0.9481499345118786, 'recall': 0.8872781506338553, 'f1-score': 0.9138984658227662, 'support': 33525.0}}
```

Check confusion matrix train set confusion matrix: [[29271 3098] [681 475]] True Positives = 29271 True Negatives = 475 False Positives(Type I error) = 3098

False Negatives(Type II error) = 681

Compared with the default model, false positives increase, and the precision score is much lower.

Random forest classifier – Performance on validation

```
Check classification report
{'0': {'precision': 0.9733475479744137, 'recall': 0.9026198714780029, 'f1-score': 0.9366504231854322, 'support': 8092.0},
'1': {'precision': 0.10148232611174458, 'recall': 0.3079584775086505, 'f1-score': 0.15265866209262435, 'support': 289.0}, 'a
ccuracy': 0.882114306168715, 'macro avg': {'precision': 0.5374149370430792, 'recall': 0.6052891744933268, 'f1-score': 0.5446
545426390283, 'support': 8381.0}, 'weighted avg': {'precision': 0.9432832299791492, 'recall': 0.882114306168715, 'f1-score':
0.9096162245270596, 'support': 8381.0}}
```

Check Precision-Recall Curve and Average Precision Score

■ The performance on the validation slightly decreases.

RF classifier – Permutation Feature Importance

15	average_precision	device_size	0.003072	0.000801
16	roc_auc	slot_id	0.117658	0.005697
17	roc_auc	adv_prim_id	0.068299	0.006561
18	roc_auc	adv_id	0.062751	0.003466
19	roc_auc	age	0.016176	0.002242
20	roc_auc	career	0.015718	0.001679
21	roc_auc	indu_name	0.015417	0.002907
22	roc_auc	list_time	0.007113	0.001465
23	roc_auc	pt_d	0.006717	0.001011
24	roc_auc	his_app_size	0.006687	0.001505
25	roc_auc	city_rank	0.006659	0.000929
26	roc_auc	emui_dev	0.006176	0.001127
27	roc_auc	communication_onlinerate	0.005898	0.001107
28	roc_auc	communication_avgonline_30d	0.005505	0.000891
29	roc_auc	device_price	0.004676	0.000531
30	roc_auc	residence	0.004582	0.000759
31	roc_auc	device_size	0.004254	0.000478
32	roc_auc	up_life_duration	0.004096	0.000890
33	roc_auc	device_name	0.003774	0.000697
34	roc_auc	app_second_class	0.002725	0.000900
35	roc_auc	city	0.002589	0.000714

This is a list of the most significant attributes.

	metric_name	leature_name	metric_mean	metric_sta_dev	
0	average_precision	slot_id	0.059215	0.002998	
1	average_precision	adv_id	0.055024	0.002016	
2	average_precision	age	0.024139	0.003247	
3	average_precision	career	0.018708	0.002472	
4	average_precision	adv_prim_id	0.017970	0.003674	
5	average_precision	indu_name	0.012169	0.003092	
6	average_precision	his_app_size	0.011202	0.003380	
7	average_precision	city_rank	0.008927	0.001054	
8	average_precision	communication_avgonline_30d	0.008233	0.001693	
9	average_precision	list_time	0.007178	0.001545	
10	average_precision	city	0.006162	0.001300	
11	average_precision	communication_onlinerate	0.005539	0.001526	
12	average_precision	device_price	0.004903	0.000981	
13	average_precision	pt_d	0.004432	0.000953	
14	average_precision	up_life_duration	0.004318	0.001887	
15	average_precision	device_size	0.003072	0.000801	

RF classifier – Assess classification thresholds

Check classification report
{'0': {'precision': 0.9656201504118419, 'recall': 0.999629263470094, 'f1-score': 0.9823304390066184, 'support': 8092.0},
'1': {'precision': 0.25, 'recall': 0.0034602076124567475, 'f1-score': 0.006825938566552901, 'support': 289.0}, 'accuracy':
0.9652786063715547, 'macro avg': {'precision': 0.607810075205921, 'recall': 0.5015447355412753, 'f1-score': 0.49457818878658
566, 'support': 8381.0}, 'weighted avg': {'precision': 0.9409435935010887, 'recall': 0.9652786063715547, 'f1-score': 0.94869
23527845471, 'support': 8381.0}}

best_threshold = 0.84. After using the best threshold, the **rate of Type I error** decreases.

Decision Tree Classifier – Performance on train

Check confusion matrix
train set confusion matrix:
[[22414 9955]
[393 763]]
True Positives = 22414
True Negatives = 763
False Positives(Type I error) = 9955
False Negatives(Type II error) = 393

Todo

Decision Tree Classifier – Performance on validation

```
Check classification report {'0': {'precision': 0.9771033013844516, 'recall': 0.6803015323776569, 'f1-score': 0.802127349555588, 'support': 8092.0}, '1': {'precision': 0.058245358572988716, 'recall': 0.5536332179930796, 'f1-score': 0.1054018445322793, 'support': 289.0}, 'a ccuracy': 0.6759336594678439, 'macro avg': {'precision': 0.5176743299787201, 'recall': 0.6169673751853683, 'f1-score': 0.4537645970439336, 'support': 8381.0}, 'weighted avg': {'precision': 0.9454185447357805, 'recall': 0.6759336594678439, 'f1-score': 0.7781023321409911, 'support': 8381.0}}
```

Check confusion matrix
validation set confusion matrix:
[[5505 2587]
 [129 160]]
True Positives = 5505
True Negatives = 160
False Positives(Type I error) = 2587
False Negatives(Type II error) = 129

■ The performances on the train set and validation set are similar.

DT Classifier – Permutation Feature Importance

■ This is a list of the most significant attributes.

	metric_name	feature_name	metric_mean	metric_std_dev
0	average_precision	slot_id	0.038716	0.001711
1	average_precision	adv_id	0.021132	0.002196
2	average_precision	indu_name	0.020949	0.002055
3	average_precision	career	0.015796	0.001037
4	average_precision	net_type	0.013700	0.001470
5	average_precision	adv_prim_id	0.009441	0.001012
6	average_precision	age	0.009347	0.000832
7	average_precision	creat_type_cd	0.007692	0.001285
8	average_precision	gender	0.006661	0.001199
9	average_precision	his_app_size	0.004820	0.000341
10	average_precision	device_price	0.004593	0.001131
11	average_precision	emui_dev	0.002737	0.000440
12	average_precision	app_second_class	0.002652	0.000583
13	average_precision	up_membership_grade	0.001929	0.000347
14	average_precision	device_name	0.001069	0.000365
15	average_precision	city	0.000889	0.000362

16	roc_auc	slot_id	0.119161	0.005611
17	roc_auc	adv_id	0.061447	0.005177
18	roc_auc	indu_name	0.061017	0.005342
19	roc_auc	device_price	0.030453	0.004177
20	roc_auc	net_type	0.028505	0.002999
21	roc_auc	career	0.028036	0.002910
22	roc_auc	adv_prim_id	0.023909	0.004032
23	roc_auc	age	0.021924	0.002628
24	roc_auc	creat_type_cd	0.012127	0.002822
25	roc_auc	his_app_size	0.012018	0.001540
26	roc_auc	list_time	0.011922	0.003188
27	roc_auc	app_second_class	0.011833	0.002779
28	roc_auc	emui_dev	0.010513	0.001236
29	roc_auc	up_membership_grade	0.008632	0.002159
30	roc_auc	device_name	0.003345	0.000666

DT Classifier – Assess classification thresholds

```
Check classification report {
'0': {'precision': 0.9665382763601348, 'recall': 0.9923381117152743, 'f1-score': 0.9792682926829268, 'support': 8092.0},
'1': {'precision': 0.1506849315068493, 'recall': 0.03806228373702422, 'f1-score': 0.06077348066298343, 'support': 289.0}, 'a ccuracy': 0.9594320486815415, 'macro avg': {'precision': 0.5586116039334921, 'recall': 0.5152001977261492, 'f1-score': 0.520 0208866729551, 'support': 8381.0}, 'weighted avg': {'precision': 0.9384054023996767, 'recall': 0.9594320486815415, 'f1-score': 0.9475960577856873, 'support': 8381.0}}
```

Check confusion matrix
best validation set confusion matrix:
[[8030 62]
[278 11]]
True Positives = 8030
True Negatives = 11
False Positives(Type I error) = 62
False Negatives(Type II error) = 278

best_threshold = 0.86. The adjustment of threshold is useful since the performance metrics are better.

Adaboost Classifier – Performance on train

```
Check classification report {
'0': {'precision': 0.9674401652290122, 'recall': 0.9840279279557601, 'f1-score': 0.9756635473940545, 'support': 32369.0},
'1': {'precision': 0.13976705490848584, 'recall': 0.0726643598615917, 'f1-score': 0.09561752988047809, 'support': 1156.0},
'accuracy': 0.9526025354213273, 'macro avg': {'precision': 0.553603610068749, 'recall': 0.5283461439086758, 'f1-score': 0.53
56405386372662, 'support': 33525.0}, 'weighted avg': {'precision': 0.9389005644674752, 'recall': 0.9526025354213273, 'f1-score': 0.9453180381846379, 'support': 33525.0}}
```

Check confusion matrix
train set confusion matrix:
[[31852 517]
[1072 84]]
True Positives = 31852
True Negatives = 84
False Positives(Type I error) = 517
False Negatives(Type II error) = 1072

Compared to the default model, the number of false positives greatly decreases although the number of false negative shows a subtle increase.

Adaboost Classifier – Performance on validation

```
Check classification report {'0': {'precision': 0.9679805942995755, 'recall': 0.9862827483934751, 'f1-score': 0.9770459692722043, 'support': 8092.0}, '1': {'precision': 0.18382352941176472, 'recall': 0.08650519031141868, 'f1-score': 0.11764705882352941, 'support': 289. 0}, 'accuracy': 0.9552559360458179, 'macro avg': {'precision': 0.57590206185567, 'recall': 0.5363939693524469, 'f1-score': 0.5473465140478668, 'support': 8381.0}, 'weighted avg': {'precision': 0.9409406955103407, 'recall': 0.9552559360458179, 'f1-score': 0.947411524084319, 'support': 8381.0}}
```

Check confusion matrix
validation set confusion matrix:
[[7981 111]
[264 25]]
True Positives = 7981
True Negatives = 25
False Positives(Type I error) = 111
False Negatives(Type II error) = 264

■ The performance on the validation set is similar to the performance on the train set.

Adaboost Classifier – Permutation Feature Importance

■ This is a list of the most significant attributes.

	metric_name	feature_name	metric_mean	metric_std_dev
0	average_precision	slot_id	0.023819	0.001483
1	average_precision	adv_id	0.019275	0.001704
2	average_precision	his_app_size	0.017180	0.002258
3	average_precision	indu_name	0.013481	0.001638
4	average_precision	adv_prim_id	0.013333	0.002314
5	average_precision	career	0.010477	0.001221
6	average_precision	age	0.006634	0.001197
7	average_precision	creat_type_cd	0.005669	0.001467
8	average_precision	app_first_class	0.005116	0.001379
9	average_precision	list_time	0.004948	0.000922
10	average_precision	device_name	0.003648	0.000870
11	average_precision	communication_onlinerate	0.003365	0.000650
12	average_precision	pt_d	0.002979	0.000662
13	average_precision	device_size	0.002476	0.001181
14	average_precision	device_price	0.002444	0.000885

15	roc_auc	slot_id	0.087107	0.005392
16	roc_auc	his_app_size	0.070240	0.005408
17	roc_auc	indu_name	0.063455	0.005483
18	roc_auc	adv_prim_id	0.057226	0.006145
19	roc_auc	adv_id	0.027939	0.003064
20	roc_auc	career	0.023116	0.001452
21	roc_auc	app_first_class	0.020569	0.003140
22	roc_auc	age	0.015928	0.001117
23	roc_auc	creat_type_cd	0.014066	0.001615
24	roc_auc	pt_d	0.013291	0.001849
25	roc_auc	list_time	0.010702	0.001285
26	roc_auc	device_name	0.010316	0.002294
27	roc_auc	communication_avgonline_30d	0.008747	0.001746
28	roc_auc	up_membership_grade	0.008403	0.001336
29	roc_auc	communication_onlinerate	0.008301	0.001372
30	roc_auc	device_size	0.007908	0.001832
31	roc_auc	up_life_duration	0.007610	0.002052
32	roc_auc	device_price	0.006653	0.001460
33	roc_auc	residence	0.004529	0.001410
34	roc_auc	net_type	0.003705	0.000939

Adaboost Classifier – Assess classification thresholds

```
Check confusion matrix
best validation set confusion matrix:
[[8086 6]
[ 284 5]]
True Positives = 8086
True Negatives = 5
False Positives(Type I error) = 6
False Negatives(Type II error) = 284
```


best_threshold = 0.78. Adjusting threshold improves the performance since many metrics perform better.

Gradient Boosting Classifier – Performance on train

```
Check classification report {'0': {'precision': 0.9655172413793104, 'recall': 0.9999691062436281, 'f1-score': 0.9824412304797171, 'support': 32369. 0}, '1': {'precision': 0.0, 'recall': 0.0, 'f1-score': 0.0, 'support': 1156.0}, 'accuracy': 0.9654884414615958, 'macro av g': {'precision': 0.4827586206896552, 'recall': 0.49998455312181406, 'f1-score': 0.49122061523985855, 'support': 33525. 0}, 'weighted avg': {'precision': 0.9322245365013243, 'recall': 0.9654884414615958, 'f1-score': 0.9485649571781645, 'support': 33525.0}}
```


The performances between the default model and the tuned model are similar.

GBoosting Classifier – Performance on validation

Check classification report {'0': {'precision': 0.9655172413793104, 'recall': 1.0, 'f1-score': 0.9824561403508771, 'support': 8092.0}, '1': {'precision': 0.0, 'recall': 0.0, 'f1-score': 0.0, 'support': 289.0}, 'accuracy': 0.9655172413793104, 'macro avg': {'precision': 0.4827586206896552, 'recall': 0.5, 'f1-score': 0.49122807017543857, 'support': 8381.0}, 'weighted avg': {'precision': 0.9322235434007135, 'recall': 0.9655172413793104, 'f1-score': 0.9485783424077434, 'support': 8381.0}}

Check confusion matrix
validation set confusion matrix:
[[8092 0]
 [289 0]]
True Positives = 8092
True Negatives = 0
False Positives(Type I error) = 0
False Negatives(Type II error) = 289

The validation set also shows a similar performance.

GBoosting Classifier – Permutation Feature Importance

■ This is a list of the most significant attributes.

Check out permutation importance:

	metric_name	feature_name	metric_mean	metric_std_dev
0	average_precision	adv_id	0.049233	0.001643
1	average_precision	slot_id	0.039591	0.003323
2	average_precision	his_app_size	0.021800	0.001682
3	average_precision	age	0.019206	0.001968
4	average_precision	app_first_class	0.008379	0.000722
5	average_precision	city	0.006172	0.000814
6	average_precision	net_type	0.000994	0.000402
7	roc_auc	adv_id	0.096068	0.003802
8	roc_auc	slot_id	0.060988	0.005100
9	roc_auc	age	0.014243	0.001602
10	roc_auc	his_app_size	0.004944	0.001436
11	roc_auc	city	0.003890	0.001374
12	roc_auc	net_type	0.002324	0.000345
13	roc_auc	residence	0.001848	0.000740
14	roc_auc	inter_type_cd	0.000759	0.000240

GBoosting Classifier – Assess classification thresholds

```
Check classification report
{'0': {'precision': 0.96845694799659, 'recall': 0.9826989619377162, 'f1-score': 0.9755259768140834, 'support': 8092.0},
'1': {'precision': 0.17647058823529413, 'recall': 0.10380622837370242, 'f1-score': 0.13071895424836602, 'support': 289.
0}, 'accuracy': 0.9523923159527503, 'macro avg': {'precision': 0.572463768115942, 'recall': 0.5432525951557093, 'f1-score
e': 0.5531224655312247, 'support': 8381.0}, 'weighted avg': {'precision': 0.9411470735220625, 'recall': 0.952392315952750
3, 'f1-score': 0.9463947001738862, 'support': 8381.0}}
```

Check confusion matrix
best validation set confusion matrix:
[[7952 140]
[259 30]]
True Positives = 7952
True Negatives = 30
False Positives(Type I error) = 140
False Negatives(Type II error) = 259

best_threshold = 0.13. Adjusting classification thresholds changes the matrix. The number of false positives increases. The **precision score** for class 1 is increased.

Classifiers – Comparison

■ SGD Classifier

	stage	accuracy	precision	recall	cv_mean_accuracy	cv_mean_precision	cv_mean_recall	cv_mean_f1	roc_auc_score
0	train	0.6841	0.073424	0.702422	0.6744	0.0625	0.6021	0.1132	0.6929
0	validation	0.6733	0.061896	0.598616	0.6651	0.0556	0.5473	0.1010	0.6373
0	best validation	0.9098	0.063551	0.117647	0.6651	0.0556	0.5473	0.1010	0.5279

Random Forest Classifier

	stage	accuracy	precision	recall	cv_mean_accuracy	cv_mean_precision	cv_mean_recall	cv_mean_f1	roc_auc_score
0	train	0.8873	0.132942	0.410900	0.8906	0.0990	0.2647	0.1436	0.6576
0	validation	0.8821	0.101482	0.307958	0.9486	0.1479	0.0934	0.1134	0.6053
0	best validation	0.9653	0.250000	0.003460	0.9486	0.1479	0.0934	0.1134	0.5015

Adaboost Classifier

	stage	accuracy	precision	recall	cv_mean_accuracy	cv_mean_precision	cv_mean_recall	cv_mean_f1	roc_auc_score
0	train	0.9526	0.139767	0.072664	0.9554	0.0753	0.0260	0.0331	0.5283
0	validation	0.9553	0.183824	0.086505	0.9655	0.2000	0.0034	0.0068	0.5364
0	best validation	0.9654	0.454545	0.017301	0.9655	0.2000	0.0034	0.0068	0.5083

Decision Tree Classifier

	stage	accuracy	precision	recall	cv_mean_accuracy	cv_mean_precision	cv_mean_recall	cv_mean_f1	roc_auc_score
(train	0.6913	0.071189	0.660035	0.6793	0.0575	0.5372	0.1038	0.6762
() validation	0.6759	0.058245	0.553633	0.6751	0.0400	0.3672	0.0718	0.6170
(best validation	0.9594	0.150685	0.038062	0.6751	0.0400	0.3672	0.0718	0.5152

Gradient Boosting Classifier

	stage	accuracy	precision	recall	cv_mean_accuracy	cv_mean_precision	cv_mean_recall	cv_mean_f1	roc_auc_score
0	train	0.9655	0.000000	0.000000	0.9654	0.0	0.0000	0.0000	0.5000
0	validation	0.9655	0.000000	0.000000	0.9653	0.2	0.0034	0.0068	0.5000
0	best validation	0.9524	0.176471	0.103806	0.9653	0.2	0.0034	0.0068	0.5433

Gradient Boosting Classifier has a relatively high precision and balanced with other metrics.