

2.4 $f(n) = 3n^2 - n + 4$ $g(n) = n \log(n) + 5$ $f(n) + g(n) = 3n^2 + n \log(n) - n + 9 \stackrel{?}{=} O(n^2)$ In mandeness commung 9 $3n^2 + n \log(n) - n$ In normalisation of question f(n) = 4

I) poznamene poznenje $j(n) = 4n^2$ $3n^2 + n\log(n) - n = 4n^2$ $-n^2 + n\log(n) - n = 0$ n = 0 + 0 n = 0 + 0 $makin unan <math>x_0 = 0 + 0$

Ommer $f(n)+g(n) \leq O(4n^2) \sim O(n^2)$,

you rang $x_0=0$

P. S. Mu momu bignungmu gogenen $n \log(n)$ ma -n, agrice boun zpoumonomb nobinemine, wine $3x^2$, a oreluguo ujo $4x^2 \ge 3x^2$

def g(n):
 sum = 0 | O(1)
 for i in range(1, n + 1): O(n)
 sum = sum + i + f(i) O(n²) = 22

Pezzystmam O(n2)

Ha 2 ocmouni nimaine Ompunatino
Brignoligi poznicabini

Magno $\sum_{i=1}^{n} i + \sum_{j=1}^{l} i = \sum_{i=1}^{n} c + i \frac{(i+1)}{2} =$ $= \frac{c(i+1)}{2} + 2 \sum_{i=1}^{n} (i^{2} + i) = A \frac{(A+1)}{2} + A \frac{(A+1)}{4} + A \frac{(A+1)(2n+1)}{4} =$

 $= n^{3} + 6n^{2} + 5n$

def g(n): sum = $(n^{**}3 + 6^{*}n^{**}2 + 5^{*}n) // 6$ return sum $(\mathcal{O}(1))$

N2.10

2.10. Визначте асимптотичну оцінку виконання функції у найгіршому випадку в термінах *О*—«великого» для функції:

def f(n):
 sum = 0
 for i in range(1, n + 1):
 sum = sum + i
 return sum

Що є результатом виконання наведеної функції для заданого натурального числа n? Чи можна оптимізувати цю функцію, покращивши її асимптотичну оцінку?

 $2O(n) + 2O(n) = O(n) \leftarrow uaŭđinbare$

Pezyronnom - Z aproproemornai mogrecii big 1 go n

Torpenjeun:

def bobs(n): $sum = (1+n)*n // 2 \quad 0 \quad (1)$ $return sum \quad 0 \quad (2)$ $resymbos \quad 0 \quad (2)$ N 2.12

Orebugno, uno $O(n) + O(n^2) = O(n^2)$ Orebugno aosnua responsamo go O(1)

def h(n):

sum = (n + 1)*n // 2 + (n**3 + 6*n**2 + 5*n) // 6return sum (1)

2.13

2.13. Знайдіть асимптотичний час виконання програми у явному вигляді, якщо для нього відоме рекурентне співвідношення

(a) $T(n) = \begin{cases} O(1), & n = 0; \\ T(n-1) + O(1), & n \geq 1. \end{cases}$ b) $T(n) = \begin{cases} O(1), & n \leq a, \ a > 1; \\ T(n-a) + O(1), & n > a. \end{cases}$ c) $T(n) = \begin{cases} O(1), & n = 0; \\ aT(n-1) + O(1), & n \geq 1, a > 1. \end{cases}$ (d) $T(n) = \begin{cases} O(1), & n \leq a, \ a > 1; \\ aT(n-a) + O(1), & n > a. \end{cases}$ e) $T(n) = \begin{cases} O(1), & n = 0; \\ T(n-1) + O(n), & n \geq 1. \end{cases}$ f) $T(n) = \begin{cases} O(1), & n \leq a, \ a > 1; \\ T(n-a) + O(n), & n \geq a. \end{cases}$ (g) $T(n) = \begin{cases} O(1), & n = 1; \\ aT([n/a]) + O(1), & n \geq 2, a \geq 2. \end{cases}$

 $\begin{array}{ll}
\text{(b)} T(n) = \begin{cases} 0(1), & n = 1; \\ aT([n/a]) + O(n), & n \geq 2, a \geq 2. \end{cases}$ $\begin{array}{ll}
\text{(c)} & \alpha T([n/a]) + O(n), & n \geq 2, a \geq 2. \end{cases}$ $\begin{array}{ll}
\text{(c)} & \alpha T([n/a]) + O(n), & \alpha \leq 2, a \geq 2. \end{cases}$ $\begin{array}{ll}
\text{(c)} & \alpha T([n/a]) + C = \\
\text{(c)} & \alpha T([n/a]) + C =$

a) $T(n-1) + C \in (T(n-2) + C) + C =$ = $T(n-2) + C(1+1) = T(n-2) + C(2) \in$ $\in T(n-n) + C(n) \sim O(n)$

d) $aT(n-a) + C \le a(aT(n-2a) + C) + C =$ $= a^{2}T(n-2a) + aC + C = a^{2}T(n-2a) + C(a^{2}-1) \le C(a+1) = a^{2}T(n-2a) + C(a^{2}-1) \le C(a^{2}-1) = C$