Basics of Electrical and Electronic Circuits

Experiment 04 Spring 2025

Thevenin's and Maximum Power Transfer Theorems

Thevenin's and Norton's theorems enable us to construct very simple models to represent a linear time-invariant circuit including independent voltage/current sources, as "seen" by a load connected between any pair of terminals of the circuit. The general structures of Thevenin and Norton equivalents are shown in **Fig.1**. $\mathbf{v}_{oc}(\mathbf{Open-Circuit}\ \mathbf{Voltage})$ denotes the voltage \mathbf{v}_{o} measured between the terminals when the load is an open-circuit ($\mathbf{i}_{O}=0$), and \mathbf{i}_{SC} (**Short-Circuit Current**) denotes the current \mathbf{i}_{O} flowing into the load when the load is a short-circuit ($\mathbf{v}_{O}=0$). \mathbf{R}_{o} denotes the **Output Resistance** of the circuit, defined to be the resistance measured between the two terminals of the circuit with the load disconnected and all **independent** sources "removed" (replaced with internal resistance) from /within the circuit. It can be proved that \mathbf{R}_{O} is given by the ratio of the open-circuit voltage \mathbf{v}_{OC} and the \mathbf{i}_{SC} : $\mathbf{R}_{O}=\mathbf{v}_{OC}$ / $\mathbf{i}_{SC}=\mathbf{R}_{th}$ Thus the Thevenin and Norton equivalents for any given circuit can be obtained if the values of \mathbf{v}_{OC} and \mathbf{i}_{SC} are measured. But exact open-circuit ($\mathbf{i}_{O}=0$) and short-circuit ($\mathbf{v}_{O}=0$) conditions are difficult to achieve in practice, and hence one measures \mathbf{v}_{O} and \mathbf{i}_{SC} for several values of \mathbf{R}_{L} and determines \mathbf{v}_{OC} and \mathbf{i}_{SC} by extrapolation.

Fig. 1 Equivalent circuits based on Thevenin's and Norton's theorems

The Thevenin resistance, Thevenin voltage and Norton current are related by $R_{th} = V_{th} / I_{N}$

A. Thevenin and Norton equivalents for resistive load

1. Assemble the resistive circuit shown in **Fig. 2(a)**, where R_L denotes the load resistance and v_S is the WAVEGEN output. Set the WAVEGEN for a **1kHz** sinusoidal output having V_{pp} = 4V and offset = 2V, so that we can expect the voltage v_S to have a minimum level = **0V** and a maximum level = **4V**. However, as WAVEGEN output levels are not very precise, set the Y1 and Y2 cursors precisely at the levels 0V and 4V, and adjust the settings of V_{pp} and offset of the WAVEGEN repetitively to obtain the **minimum** and **maximum** levels of v_S at 0V and 4V **exactly**, as desired.

Basics of Electrical and Electronic Circuits

- 2. Verify that the circuit of **Fig. 2(a)** gets reduced by repeated source transformations to the two equivalents given in **Fig. 2(b)** and **Fig. 2(c)**, where Thevenin's voltage $\mathbf{V}_{th} = \mathbf{v}_{OC} = \mathbf{v}_{S}$ /4 and Norton's current $\mathbf{I}_{N} = \mathbf{i}_{SC} = \mathbf{v}_{S}$ /(40k Ω).
- 3. Measure the **minimum** and **maximum** levels of the output voltage v_0 in the circuit of **Fig.2(a)** with the DSO for the following 7 values of the load resistance R_L : 1.00, 2.20, 4.70,10.0, 22.0, 47.0 and 100 (all in $k\Omega$). Verify that the minimum level is close to zero in all cases and plot the **peak-to-peak/rms** value of v_0 against the **peak-to-peak/rms** value of v_0 on a linear graph paper and draw the best approximation of a straight line passing through the points corresponding to different values of R_L .

Table-1: Measurement Table for given circuit (Fig. 2a)

Load Resistance (R _L)	v₀ (min)	v₀ (max)	Vo(rms)	io(rms)= Vo(rms)/RL	Power (V _{rms} *i _{rms})

Also save /draw input and output waveforms.

4. Determine the **peak-to-peak** values of the **Open-Circuit Voltage** v_{OC} and the **Short-Circuit Current** i_{SC} from the intercepts of the straight line on the two axes and hence calculate the value of the **Output Resistance** $R_O = R_{th} \ v_{OC}/i_{SC}$. Verify/compare that, this value is the same as the value R_{th} and R_N indicated in the equivalent circuits of **Fig. 2(b)** and **Fig. 2(c)** respectively.

Fig.3. v_0 and i_0 plot to extract V_{th} and I_N

- 5. Connect a $0.01\mu\text{F}$ capacitor as the Load instead of the resistance R_L in the circuit of Fig.2(a). Sketch the input and output waveforms and measure the minimum and maximum levels of the output voltage v_O .
- **6.** Connect the given **diode** as the **Load** instead of the resistance R_L in the circuit of **Fig.2(a)**. Choose the polarity of the diode so as to ensure the flow of current through the diode. Sketch the input and output waveforms and measure the **minimum** and **maximum** levels of the output voltage v_o .

Table-2: Measurement Table for given circuit (Fig. 2a)

Load	v₀ (min)	v₀ (max)	Vo(rms)	io(rms)= Vo(rms)/RL	Power (Vrms*irms)
Capacitor(0.01 μF)					
Diode					

B. Thevenin equivalent with Resistive. Capacitive and Nonlinear Loads

1. Now set up the Thevenin equivalent circuit given in **Fig. 2(b)**, with a Load Resistance R_L =10k Ω , and adjust the **maximum** level of the WAVEGEN output to **1V**, keeping the **minimum** level at **0V**, so that the input voltage is the same as expected value of \mathbf{v}_{oc} (= \mathbf{v}_{s} /4). Measure the **minimum** and **maximum** levels of the output voltage \mathbf{v}_{o} and

Basics of Electrical and Electronic Circuits

compare these values with the values measured in step **A.3** for the same Load Resistance ($R_L = 10 \text{k}\Omega$).

- 2. Now connect the same $0.01\mu\text{F}$ capacitor as used in step A.5 as the Load instead of the $10\text{k}\Omega$ resistor in the circuit of Fig. 2(b). Sketch the input and output waveforms and measure the **minimum** and **maximum** levels of the output voltage v_0 . Compare these measured values with those obtained in step A.5.
- **4.** Now connect the same **diode** as used in step **A.6** as the Load instead of the $10k\Omega$ resistor in the circuit of **Fig. 2(b)**. Sketch the input and output waveforms and measure the **minimum** and **maximum** levels of the output voltage v_0 . Compare these measured values with those obtained in step **A.6**.

Table-3: Measurement Table for given circuit (Fig. 2b)

Load	<i>v</i> ₀ (min)	v₀ (max)	Vo(rms)	i _{o(rms)} = V _{o(rms)} /R _L	Power (Vrms*irms)
$R_L = 10k\Omega$					
Capacitor(0.01 µF)					
Diode					

C. <u>Verification of Maximum Power Transfer Theorem</u>: Plot Power (P) with respect to R_L values obtained in Table-1. Identify the maximum power transfer condition (i.e. the value of load resistor R_L and its relationship with R_{th} at which P_{max} occurs) and find the P_{max} value.

Results:

Conclusion: It must be in your words and be based on your understanding/learning in the experiment.