

Deep Learning

X-ray Image Binary Classification

U Kang Seoul National University

In This Lecture

- Chest X-ray Image
- Binary classification from x-ray image
- Implement a deep learning model using tensorflow

U Kang

2

Outline

- **→** □ Introduction
 - □ Data
 - □ Preprocessing Codes

Motivation

- Detecting chest disease could have a significant impact on world health
 - In this practice, we detect a chest disease from a chest x-ray image

Goals

- Classify the chest x-ray image data into one of two categories
 - One category is normal (= No Finding), and the other is abnormal (=Effusion)

U Kang

5

Problem Definition

■ **Given:** chest x-ray image data

- Classify: the data into the correct categories
 - No Finding
 - Effusion

Category description (1)

No Finding

□ Do not find any disease in a x-ray image

Category description (2)

(Pleural) effusion

- Excess fluid that accumulates in the pleural cavity, the fluid-filled space that surrounds the lungs
- A pleural effusion appears as an area of whiteness on a standard posteroanterior chest X-ray
- Reference (wiki) -<u>https://en.wikipedia.org/wiki/Pleural_effusion</u>

U Kang

8

Outline

- **■** Introduction
- **→** □ Data
 - □ Preprocessing Codes

Training Dataset

- 4,000 chest x-ray images
- Image size is (256, 256) or (64, 64)
- There are two categories
 - Normal (class 0)
 - Effusion (class 1)
- NOTE: the dataset is imbalanced
 - 800 effusion out of 4,000 images (20%)

Providing training data

- CSV file (training_labels.csv)
 - There is label information for each x-ray image data
 - The first column is the id of each x-ray image data
 - The second column is the label of each x-ray image data

Image Index	Finding Labels
00001650_011.png	Effusion
00010007_064.png	No Finding

- PNG file in training directory
 - X-ray image data

Outline

- ☑ Introduction
- Data
- **→** □ Preprocessing Codes

Import libraries

- Import the libraries such as tensorflow, numpy, and so on
- For using cv2 package, you should install opency package in your environment
 - pip install opency-python

```
import numpy as np # linear algebra
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
import os
from glob import glob
%matplotlib inline
import matplotlib.pyplot as plt
from itertools import chain
import tensorflow as tf
import cv2
```


Loading the Dataset (1)

- Using the pandas library, we prepare the input data
- The variable all_xray_df is a DataFrame instance
- It is a 2D table of instances and features

Loading the Dataset (2)

- You can check the contents:
 - all_xray_df
 - all_xray_df.sample(3)

	Image Index	Finding Labels	path
4463	00011367_000.png	No Finding	./training/00011367_000.png
1794	00010352_001.png	No Finding	./training/00010352_001.png
666	00009659_007.png	Effusion	./training/00009659_007.png

Loading the Dataset (3)

- Labeling the dataset by the class:
- No Finding (=Normal) is 0 otherwise 1

```
all_xray_df['Label'] = all_xray_df['Finding Labels'].map(lambda x: 0 if x=='No Finding' else 1.0)
all_xray_df.sample(10)
```

	Image Index	Finding Labels	path	Label
1194	00010071_001.png	No Finding	./training/00010071_001.png	0.0
958	00010007_001.png	No Finding	./training/00010007_001.png	0.0
1501	00010227_000.png	No Finding	./training/00010227_000.png	0.0
267	00003974_002.png	Effusion	./training/00003974_002.png	1.0
4345	00011311_001.png	No Finding	./training/00011311_001.png	0.0
728	00009925_002.png	No Finding	./training/00009925_002.png	0.0

•

Loading the Dataset (4)

We define the function to load the image data

```
def load_data(data_df):
    train_filesname = data_df['path'].values
    train_labels = np.stack(data_df['Label'].map(lambda x: [0] if x==0 else [1]))
    x_train = []
    for filename in train_filesname:
        img = cv2.imread(filename)|
            x_train.append(img)
    return np.asarray(x_train,dtype=np.float16), np.asarray(train_labels,dtype=np.float32)
```


Test measure (1)

F₁ score

- The F₁ score (also F-score or F-measure) is a measure of a test's accuracy in analysis of binary classification
- It considers both the precision p and the recall r of the test to compute the score

$$F_{1} = \frac{2}{\frac{1}{p} + \frac{1}{r}} = 2 \times \frac{p \times r}{(p + r)}$$

$$p = \frac{true \ positive}{true \ positive}$$

$$r = \frac{true \ positive}{true \ positive}$$

$$true \ positive + false \ negative$$

Test measure (2)

F₁ score

- Consider Effusion as positive
- True-positive
 - # of predicted Effusion over # of actual Effusion
- False-negative
 - # of predicted Normal over # of actual Effusion
- False-positive
 - # of predicted Effusion over # of actual Normal
- True-negative
 - # of predicted Normal over # of actual Normal

Reference for measure

- **F**₁ score
 - Wikipedia https://en.wikipedia.org/wiki/F1 score
 - □ Library scikit-learn in python

Questions?