Applied Signal Processing & Computer Science

Chapter 4: Time Domain Analysis

Xiaoxiang Zhu

xiao.zhu@dlr.de

Remote Sensing Technology TU München

&

Remote Sensing Technology Institute German Aerospace Center (DLR) Oberpfaffenhofen

Chapter 4: Time Domain Analysis

- 4.1 Discrete-time System Examples
- 4.2 Impulse Responses
- 4.3 Linear Time-Invariant (LTI) System
- 4.4 Tabular Method of Convolution Sum Computation
- 4.5 Correlation of Signals

Discrete-Time Systems: Accumulator

The output is the **sum** of all previous input samples from $-\infty$ to the instant *n*

Discrete-Time Systems: Moving Average Filter

The output is M-point mean of the input samples from the instant n-M+1 to n

Zhu: Applied Signal Processing and Computer Science

Time Domain Analysis

Discrete-Time Systems: Bilinear Interpolator

The output is the mean of a pair of upsampled adjacent values

Discrete-Time Systems: Bilinear Interpolator

The output is the mean of a pair of upsampled adjacent values

Impulse Response

Impulse Response

Accumulator:

$$h[n] = [\cdots \quad 0 \quad 0 \quad 1 \quad 1 \quad 1 \quad \cdots]$$

Moving Average Filter:
$$h[n] = [\cdots \ 0 \ 0 \ \frac{1}{3} \ \frac{1}{3} \ \frac{1}{3} \ 0 \ 0 \ \cdots]$$

Linear Interpolator:

$$h[n] = [\cdots \ 0 \ 0 \ \frac{1}{2} \ 1 \ \frac{1}{2} \ 0 \ 0 \ \cdots]$$

Linear Time-Invariant (LTI) System

- Linearity
 - Superposition of each impulse

- Time-Invariant
 - Output is independent of the time when input is applied

•
$$u_1[n] = u_1'[n-n_0] \Rightarrow u_2[n] = u_2'[n-n_0]$$

Input-Output Relationship

- Input: Superposition of many shifted Impulses
- Output: Superposition of many shifted Impulse Responses

$$u_{1}[n] = 0.5\delta[n+2] + 1.5\delta[n] - \delta[n-1] + \delta[n-4] + 0.7\delta[n-5]$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$u_{2}[n] = 0.5h[n+2] + 1.5h[n] - h[n-1] + h[n-4] + 0.7h[n-5]$$

$$u_{2}[n] = \sum_{k=0}^{\infty} u_{1}[k]h[n-k], \text{ or } u_{2}[n] = u_{1}[n] * h[n]$$

Convolution

= linear time-invariant operation

Definition:

$$u(t)*h(t) = \int_{-\infty}^{+\infty} u(t') h(t-t') dt'$$
$$= \int_{-\infty}^{+\infty} u(t-t') h(t') dt' = h(t)*u(t)$$

Interpretation 1: h(t) as Integration Kernel

$$(1) \qquad u(t) \to u(t')$$

(2)
$$h(t) \rightarrow h(-t')$$
 Reflection at ordinate

$$\int_{-\infty}^{+\infty} u(t')h(t-t')dt'$$
 Multiplication and integration of the product

Graphic Convolution Sum Computation (cont.)

Graphic Convolution Sum Computation

Tabular Method of Convolution Sum Computation

Tabular Method of Convolution Sum Computation

n:	0	1	2	3	4	5	6	7
$u_1[n]$:	-2	0	1	-1	3			
h[n]:	1	2	0	-1	-			
	-2	0	1	-1	3			
	-	-4	0	2	-2	6		
	-	-	0	0	0	0	0	-
	-	-	-	2	0	-1	1	-3
$u_2[n]$:	-2	-4	1	3	1	5	1	-3

Exercise Graphic Convolution

Exercise Graphic Convolution

Exercise Convolution Tabular Method

<i>n</i> :	0	1	2	3	4	5	6	7
$u_1[n]$:	1	0	-2	5	-			
h[n]:	2	-2	0	3	-			
	_	_	_	_	_	_	_	_
	_	_	_	_	_	_	_	_
	_	_	_	_	_	_	_	_
	_	_	_	_	_	_	_	_
$u_2[n]$:	_	_	_	_	_	_	_	_

Exercise Convolution Tabular Method

<i>n</i> :	0	1	2	3	4	5	6	7
$u_1[n]$:	1	0	-2	5	-			
h[n]:	2	-2	0	3	-			
	2	0	-4	10	_	_	_	_
	_	-2	0	4	-10	_	_	_
	_	_	0	0	0	0	_	_
	-	_	_	3	0	-6	15	_
$u_2[n]$:	2	-2	-4	17	-10	-6	15	-

Correlation of Signals

"The Twin Brother of Convolution"

Definition:

$$u(t) \otimes h(t) = \int_{-\infty}^{+\infty} u(t) h(t-t') dt$$

To compare the **similarity** of two signals.

