

CS 10 Computer Architecture and Organization Number Systems and Data Formats

Foothill College Computer Science Department

Number Systems

Module Objectives

- Determine the weighting factor of each digit position in the decimal, binary, octal, and hexadecimal numbering systems
- Convert any number among the four number systems, and its equivalent value in any of the remaining three numbering systems
- Describe binary coded decimal (BCD) numbers
- Translate alphanumeric data to and from ASCII using the ASCII code translation table

Common Number Systems

System	Base	Symbols	Used by humans?	Used in computers?
Decimal	10	0, 1, 9	Yes	No
Binary	2	0, 1	No	Yes
Octal	8	0, 1, 7	No	No
Hexa- decimal	16	0, 1, 9, A, B, F	No	No

Counting 1/3

Decimal	Binary	Octal	Hexa- decimal
0	0	0	0
1	1	1	1
2	10	2	2
3	11	3	3
4	100	4	4
5	101	5	5
6	110	6	6
7	111	7	7

Counting 2/3

Decimal	Binary	Octal	Hexa- decimal
8	1000	10	8
9	1001	11	9
10	1010	12	A
11	1011	13	В
12	1100	14	С
13	1101	15	D
14	1110	16	Е
15	1111	17	F

Counting 3/3

Decimal	Binary	Octal	Hexa- decimal
16	10000	20	10
17	10001	21	11
18	10010	22	12
19	10011	23	13
20	10100	24	14
21	10101	25	15
22	10110	26	16
23	10111	27	17

Conversion Among Bases

The possibilities

Base Conversion: Example

Decimal

Binary to Decimal Conversion

Technique:

Multiply each bit by 2^n , where n is the "weight" of the bit

The weight is the position of the bit, starting from 0 on the right

Add the results

Binary to Decimal Conversion: Example

Octal to Decimal Conversion

Technique:

Multiply each bit by 8^n , where n is the "weight" of the bit

The weight is the position of the bit, starting from 0 on the right

Add the results

Octal to Decimal Conversion: Example

$$724_8 = > 4 \times 8^0 = 4$$
 $2 \times 8^1 = 16$
 $7 \times 8^2 = 448$
 468_{10}

Hex to Decimal Conversion

Technique:

Multiply each bit by 16ⁿ, where *n* is the "weight" of the bit

The weight is the position of the bit, starting from 0 on the right

Add the results

Hex to Decimal Conversion: Example

$$ABC_{16} => C \times 16^{0} = 12 \times 1 = 12$$
 $B \times 16^{1} = 11 \times 16 = 176$
 $A \times 16^{2} = 10 \times 256 = 2560$
 2748_{10}

Decimal to Binary Conversion

Technique:

Divide by two, keep track of the remainder

First remainder is bit 0 (LSB, least-significant bit)

Second remainder is bit 1

Decimal to Binary Conversion: Example

$$125_{10} = ?_2$$

$$125_{10} = 1111101_{2}$$

Octal to Binary Conversion

Technique:

Convert each octal digit to a 3-bit equivalent binary representation

Octal to Binary Conversion: Example

$$705_8 = ?_2$$

$$705_8 = 111000101_2$$

Hex to Binary Conversion

Technique:

Convert each hexadecimal digit to a 4-bit equivalent binary representation

Hex to Binary Conversion: Example

$$10AF_{16} = ?_2$$

$$10AF_{16} = 00010000101111_2$$

Decimal to Octal Conversion

Technique:

Divide by 8

Keep track of the remainder

Decimal to Octal Conversion: Example

$$1234_{10} = ?_8$$

Decimal to Hex Conversion

Technique:

Divide by 16

Keep track of the remainder

Decimal to Hex Conversion: Example

Binary to Octal Conversion

Technique:

Group bits in threes, starting on right Convert to octal digits

Binary to Octal Conversion: Example

$$1011010111_{2} = ?_{8} \qquad \begin{array}{c} 1 & 011 & 010 & 111 \\ \downarrow & \downarrow & \downarrow & \downarrow \\ 1 & 3 & 2 & 7 \end{array}$$

$$1011010111_2 = 1327_8$$

Binary to Hex Conversion

Technique:

Group bits in fours, starting on right Convert to hexadecimal digits

Binary to Hex Conversion: Example

$$1010111011_2 = ?_{16}$$

10 1011 1011

2 B B

 $1010111011_2 = 2BB_{16}$

Octal to Hex Conversion

Technique:

Use binary as an intermediary

Octal to Hex Conversion: Example

$$1076_8 = ?_{16}$$

$$1076_8 = 23E_{16}$$

Hex to Octal Conversion

Technique:

Use binary as an intermediary

Hex to Octal Conversion: Example

$$1F0C_{16} = ?_{8}$$

$$1F0C_{16} = 17414_{8}$$

Data Formats

Alpha Numeric Data

- Four standards for representing letters (alpha) and numbers
 - BCD Binary-coded decimal
 - ASCII American standard code for information interchange
 - EBCDIC Extended binary-coded decimal interchange code
 - Unicode

Binary-Coded-Decimal System (BCD)

•	The BCD is simply
	the 4 bit
	representation of
	the decimal digit

 For multiple digit base 10 numbers, each symbol is represented by its BCD digit

Decimal	BCD
Symbol	Digit
0	0000
1	0001
2	0010
3	0011
4	0100
5	0101
6	0110
7	0111
8	1000
9	1001

Binary-Coded-Decimal System (BCD)

- Technique:
 - Decimal-to-BCD conversion
 - Convert each decimal digit to its 4-bit binary code
 - BCD-to-Decimal conversion
 - Reverse the process

Decimal to BCD Conversion

Decimal	BCD
0	0000
1	0001
••	•••
10	0001 0000
11	0001 0001
12	0001 0010
13	0001 0011
14	0001 0100
15	0001 0101
•••	•••
20	0010 0000

Binary-Coded Decimal (BCD)

Four bits per digit

Digit	Bit pattern
0	0000
1	0001
2	0010
3	0011
4	0100
5	0101
6	0110
7	0111
8	1000
9	1001

Note: the following				
bit patterns are not				
used:				
1010				
1010				
1011				
1100				
1101				
1110				
1111				

Decimal to BCD Conversion: Example

$$7093_{10} = ? (in BCD)$$

The ASCII Code

- <u>A</u>merican National <u>S</u>tandard <u>C</u>ode for <u>I</u>nformation <u>I</u>nterchange (ASCII)
 - (Pronounced ass-key)
 - Each character is coded as a byte

ASCII Features

- 7-bit code
- 8th bit is unused (or used for a parity bit)
- $2^7 = 128$ codes
- Two general types of codes:
 - 95 are "Graphic" codes (displayable on a console)
 - 33 are "Control" codes (control features of the console or communications channel)

ASCII Chart

	000	001	010	011	100	101	110	111
0000	NULL	DLE		0	<u>@</u>	P	`	p
0001	SOH	DC1	!	1	Ā	Q	a	q
0010	STX	DC2	"	2	В	R	b	r
0011	ETX	DC3	#	3	C	S	c	S
0100	EDT	DC4	\$	4	D	T	d	t
0101	ENQ	NAK	%	5	E	U	e	u
0110	ACK	SYN	&	6	F	V	f	V
0111	BEL	ETB	•	7	G	W	g	W
1000	BS	CAN	(8	Н	X	h	X
1001	HT	EM)	9	I	Y	i	У
1010	LF	SUB	*	:	J	Z	j	Z
1011	VT	ESC	+	•	K	[k	{
1100	FF	FS	,	<	L	\	1	
1101	CR	GS	-	=	M]	m	}
1110	SO	RS		>	N	\wedge	n	~
1111	SI	US	/	?	O	_	0	DEL

Working with ASCII Chart

0000	000	001	010	011	100	101	110	111
0000	NULL	DLE		0	@	P	•	p
0001	SOH	DC1		1	A	Q	a	q
0010	STX	DC2		2	В	R	b	r
0011	ETX	DC		-		S	c	S
0100	EDT	DC	Most sig	gnificant b	it	T	d	t
0101	ENQ	NAK	%0	5	Е	U	e	u
0110	ACK	SYN	&	6	F	V	f	V
0111	BEL	ETB	'	7	G	W	g	W
1000	BS	CAN	(8	Н	X	h	X
1001	HT	EM)	9	I	Y	i	У
1010	L F	SUB	*	:	J	Z	j	Z
		1. 1. 11	+	;	K	[k	{
L	east signific	cant bit	,	<	L	\	1	
1101	CR	GS	-	=	M]	m	}
1110	SO	RS		>	N	^	n	~
1111	SI	US	/	?	O	_	O	DEL

Working with ASCII Chart: Example

e.g., 'a' = 1100001

	000	001	010	011	100	101	110	111
0000	NULL	DLE		0	<u>@</u>	P	`	p
0001	SOH	DC1	!	1	Ä	Q	a	q
0010	STX	DC2	"	2	В	R	b	r
0011	ETX	DC3	#	3	C	S	c	S
0100	EDT	DC4	\$	4	D	T	d	t
0101	ENQ	NAK	%	5	E	U	e	u
0110	ACK	SYN	&	6	F	V	f	\mathbf{V}
0111	BEL	ETB	1	7	G	W	g	\mathbf{W}
1000	BS	CAN	(8	Н	X	h	X
1001	HT	EM)	9	I	Y	i	У
1010	LF	SUB	*	:	J	Z	j	Z
1011	VT	ESC	+	;	K	[k	{
1100	FF	FS	,	<	L	\	1	
1101	CR	GS	-	=	M]	m	}
1110	SO	RS		>	N	\wedge	n	~
1111	SI	US	/	?	O	_	O	DEL

ASCII Code: Example

```
Dec Hx Oct Char
                                     Dec Hx Oct Html Chr
                                                           Dec Hx Oct Html Chr Dec Hx Oct Html Chr
    0 000 NUL (null)
                                      32 20 040 @#32; Space
                                                           64 40 100 @ 0
                                                                               96 60 140 @#96;
   1 001 SOH (start of heading)
                                      33 21 041 6#33; !
                                                            65 41 101 A A
                                                                               97 61 141 @#97; @
   2 002 STX (start of text)
                                      34 22 042 6#34; "
                                                            66 42 102 B B
                                                                               98 62 142 @#98; b
                                                                              99 63 143 @#99; 0
 3 3 003 ETX (end of text)
                                      35 23 043 4#35; #
                                                            67 43 103 C C
                                                                             |100 64 144 @#100; d
 4 4 004 EOT (end of transmission)
                                      36 24 044 $ $
                                                            68 44 104 @#68; D
                                                                              101 65 145 @#101; e
    5 005 ENQ (enquiry)
                                      37 25 045 4#37; %
                                                            69 45 105 E E
                                                                             102 66 146 @#102; f
    6 006 ACK (acknowledge)
                                      38 26 046 & &
                                                            70 46 106 F F
                                                                             103 67 147 @#103; g
 7 7 007 BEL (bell)
                                      39 27 047 4#39; '
                                                            71 47 107 @#71; 🚱
   8 010 BS
                                      40 28 050 6#40; (
                                                           72 48 110 @#72; H
                                                                             104 68 150 @#104; h
              (backspace)
    9 011 TAB (horizontal tab)
                                      41 29 051 ) )
                                                            73 49 111 @#73; I
                                                                             105 69 151 @#105; i
                                                                             106 6A 152 @#106; j
   A 012 LF (NL line feed, new line)
                                      42 2A 052 * *
                                                            74 4A 112 @#74; J
                                      43 2B 053 + +
                                                           75 4B 113 6#75; K
                                                                             107 6B 153 @#107; k
11 B 013 VT (vertical tab)
                                                                             108 6C 154 @#108; 1
   C 014 FF (NP form feed, new page) 44 2C 054 , ,
                                                            76 4C 114 L L
                                                                             109 6D 155 @#109; m
                                      45 2D 055 6#45; -
                                                            77 4D 115 @#77; M
   D 015 CR (carriage return)
                                      46 2E 056 . .
                                                                             110 6E 156 n n
14 E 016 SO (shift out)
                                                            78 4E 116 N N
                                                                             111 6F 157 @#111; º
                                                            79 4F 117 @#79; 0
15 F 017 SI (shift in)
                                      47 2F 057 / /
16 10 020 DLE (data link escape)
                                                           80 50 120 6#80; P
                                                                             112 70 160 @#112; p
                                      48 30 060 4#48; 0
17 11 021 DC1 (device control 1)
                                      49 31 061 4#49; 1
                                                            81 51 121 6#81; 0
                                                                             | 113 71 161 q q
                                                                             114 72 162 @#114; r
18 12 022 DC2 (device control 2)
                                      50 32 062 4#50; 2
                                                            82 52 122 @#82; R
                                                                             115 73 163 @#115; 5
19 13 023 DC3 (device control 3)
                                      51 33 063 3 3
                                                            83 53 123 4#83; 5
                                                                             |116 74 164 @#116; t
20 14 024 DC4 (device control 4)
                                      52 34 064 4#52; 4
                                                            84 54 124 @#84; T
21 15 025 NAK (negative acknowledge)
                                      53 35 065 4#53; 5
                                                            85 55 125 @#85; U
                                                                             |117 75 165 u u
22 16 026 SYN (synchronous idle)
                                                            86 56 126 V V
                                                                             |118 76 166 v V
                                      54 36 066 6 6
23 17 027 ETB (end of trans. block)
                                      55 37 067 4#55; 7
                                                            87 57 127 W W
                                                                             |119 77 167 w ₩
                                                                             120 78 170 @#120; X
                                      56 38 070 4#56; 8
                                                            88 58 130 X X
24 18 030 CAN (cancel)
                                                                             121 79 171 y Y
25 19 031 EM (end of medium)
                                      57 39 071 4#57; 9
                                                            89 59 131 4#89; Y
                                                                             122 7A 172 @#122; Z
26 1A 032 SUB (substitute)
                                      58 3A 072 6#58; :
                                                            90 5A 132 Z Z
                                                                             123 7B 173 @#123; {
                                      59 3B 073 &#59; ;
                                                            91 5B 133 [ [
27 1B 033 ESC (escape)
                                                            92 5C 134 @#92; \
                                                                             124 7C 174 @#124; |
                                      60 3C 074 < <
28 1C 034 FS
              (file separator)
                                      61 3D 075 = =
                                                            93 5D 135 @#93; ]
                                                                             |125 7D 175 } }
29 1D 035 GS
             (group separator)
                                                                             126 7E 176 @#126; ~
            (record separator)
                                      62 3E 076 > >
                                                            94 5E 136 @#94; ^
30 1E 036 RS
                                      63 3F 077 ? ?
                                                           95 5F 137 @#95;
                                                                             127 7F 177 @#127; DEL
31 1F 037 US
             (unit separator)
```

Source: www.LookupTables.com

EBCDIC

- <u>Extended BCD Interchange Code</u>
 - another code for characters called EBCDIC
 - (pronounced ebb'-se-dick)
 - 8-bit code
 - Developed by IBM

Unicode

- 16-bit standard
- Developed by a consortia
 - http://www.unicode.org/
- Intended to supercede older 7- and 8-bit codes

Summary 1/2

- Any number system can be converted to decimal by multiplying each digit by its weighting factor
- The weighting factor for the least significant digit in any number system is always 1
- Binary numbers can be converted to octal by forming groups of 3 bits and to hexadecimal by forming groups of 4 bits

Summary 2/2

- The successive division procedure can be used to convert from decimal to binary, octal, or hexadecimal
- The binary-coded-decimal system assigns a four-bit binary code groups of 4 bits to each digit 0 through 9 in a decimal (base-10) number system
- ASCII is used by computers to represent all letters, numbers and symbols in digital form