US Demographics and Public Resources

Sashimi

Chosen Datasets - Primary

- American Housing Survey
 - Basic demographic, household income
 - Housing status and information
 - o Predominant industry, employment rate, average working hour/week
 - Overall education level, school enrollment rate
 - Location in ZCTA5

Chosen Datasets - Secondary

- Institute of Library and Museums
 - o Discipline, income, revenue
 - Location in ZIPCODE, longitude, latitude
- Education Demographic and Geographic Estimates
 - Public, private school and postsecondary school
 - Location in ZIPCODE, longitude, latitude
- UDS Mapper
 - Location in ZIPCODE
 - Location in ZCTA5

Area of Interest

- Average housing value vs average household income
- Nearby neighborhoods with distinct income, house value, education level
- Which area has better public resources vs which area is lacking
- Investment of area on education resources and its demand
- Where public resources located vs living condition of the neighborhood area

Problems and Solutions

- Massive Table
- Column names
- Different location keys (Zip Code vs. ZCTA5)

- Omit unnecessary columns and split up table for normalization
- Beam transform
- UDS Mapper to connect

Pipelines

- SQL
 - Cast special null markers as 'Null'
 - Update schema type
- Beam
 - Update column names from code to human readable name
 - o Generate columns through computation
- DAG

Live Demo

- Income: generating average and assigning socioeconomic classes
- Cross joins
- Visualization

Future Improvements

- Combine Schools with Libraries and Museums
- Collect more data on government funding on each zip code
- Zip Code might be too granular
 - Example: I live in Riverside but go to UT
- Better estimate on the needed data to avoid unnecessary work

Thanks & Questions