LÓGICA Y MÉTODOS DISCRETOS

7 de Septiembre de 2016

Alumno:	D.N.I.:	Grupo:
THAIMIO		GI GP 01

Ejercicio 1. Dadas las funciones booleanas $f, g : \mathbb{B}^3 \to \mathbb{B}$ dadas por:

$$f(x, y, z) = (x \uparrow y) \uparrow z;$$
 $g(x, y, z) = (x \downarrow y) \downarrow z$

- 1. Calcula las respectivas formas canónicas en mintérminos y expresiones minimales como suma de productos.
- 2. Prueba que $g \leq f$.
- 3. Calcula una expresión minimal como producto de sumas de

$$h(x,y,z,t) = \left\{ \begin{array}{ll} f(x,y,z) & si \ t=0 \\ g(x,y,z) & si \ t=1 \end{array} \right.$$

Ejercicio 2. Determina si la siguiente implicación semántica es cierta o no; si no lo es encuentra una interpretación que lo demuestre.

$$\{a \land b \rightarrow c \lor d; \neg((a \lor c \lor d) \land e)\} \vDash (a \rightarrow b) \rightarrow (e \rightarrow \neg a)$$

Ejercicio 3.

- 1. Interpreta cada una de las siguientes fórmulas en cada una de las estructuras que se describen:
 - a) $\exists x \forall y P(f(y), x)$
 - b) $\forall x \exists y P(f(y), x)$
 - c) $\forall y \exists x P(f(y), x)$

Estructura 1	$Estructura \ 2$	$Estructura \ 3$
$D_1 = \mathbb{R}$	$D_2 = \mathbb{Z}_5$	$D_3 = \mathbb{Z}_2$
$f(z) = z^2$	$f(z) = z^2$	$f(z) = z^2$
$P(x,y) \equiv x + y = 0$	$P(x,y) \equiv x + y = 0$	$P(x,y) \equiv x + y = 0$

¿Es alguna de ellas universalmente válida? Razona la respuesta.

2. Calcula una forma prenexa con el menor número posible de cuantificadores y una forma de Skolem para la fórmula

$$\forall x \left[\forall y \exists z \left(P(y, z) \to Q(x) \right) \to \exists z \left(\neg P(x, f(x)) \lor Q(z) \right) \right]$$

Ejercicio 4. Determina si el siguiente conjunto de cláusulas es satisfacible o insatisfacible:

$$\{C(x) \lor D(f(x), x); C(y) \lor \neg D(x, y) \lor B(x); \neg A(x) \lor B(x); \neg C(a); \\ \neg B(x) \lor \neg A(x) \lor C(y) \lor \neg D(x, y); A(x) \lor \neg B(x)\}$$

Ejercicio 5.

- 1. Demuestra que para cualquier número natural n el número n^2-n es par. Utiliza esto para demostrar que n^3-3n^2-4n es múltiplo de 6 para todo $n \in \mathbb{N}$.
- 2. Obtén dos soluciones distintas del problema de recurrencia lineal no homogénea siguiente:

$$x_n = 2x_{n-1} - x_{n-2} + (-2)^n$$

Comprueba que si z_n es una solución de dicha recurrencia, entonces también lo es $w_n = z_n + n$.

7 de Septiembre de 2016 (1)

Ejercicio 6. La siguiente matriz debe ser la matriz de adyacencia de un grafo simple, sin lazos y no dirigido con 6 vértices. Complétala como sea conveniente en cada caso para que el grafo resultante sea como se pide en cada apartado:

- 1. un árbol con 3 hojas (vértices de grado 1).
- 2. regular de grado 2.
- 3. conexo, no sea un árbol y no sea de Euler.
- 4. tenga el mayor número posible de lados.
- 5. tenga número cromático 3.

$$\begin{pmatrix}
0 & 1 & 0 & 0 & 0 & - \\
1 & 0 & 1 & 0 & 0 & - \\
0 & 1 & 0 & 1 & 0 & - \\
0 & 0 & 1 & 0 & 1 & - \\
0 & 0 & 0 & 1 & 0 & - \\
- & - & - & - & - & -
\end{pmatrix}$$

7 de Septiembre de 2016