Sunday, November 1, 2020 4:34 PM

Passed Salution review

6. Consider a variant of the game described in Exercise 4. Suppose that the firms move sequentially rather than simultaneously. First, firm 1 selects its quantity q_1 , and this is observed by firm 2. Then, firm 2 selects its quantity q_2 , and the payoffs are determined as in Exercise 4, so that firm i's payoff is $(12 - q_i - q_j)q_i$. As noted in Exercise 6 of Chapter 3, this type of game is called the *Stackelberg duopoly model*. This exercise asks you to find some of the Nash equilibria of the game. Further analysis appears in Chapter 15.

Note that firm 1's strategy in this game is a single number q_1 . Also note that firm 2's strategy can be expressed as a function that maps firm 1's quantity q_1 into firm 2's quantity q_2 . That is, considering $q_1, q_2 \in [0, 12]$, we can write firm 2's strategy as a function $s_2: [0, 12] \rightarrow [0, 12]$. After firm 1 selects a specific quantity q_1 , firm 2 would select $q_2 = s_2(q_1)$.

(a) Draw the extensive form of this game.

(b) Consider the strategy profile (q_1, s_2) , where $q_1 = 2$ and s_2 is defined as follows:

$$s_2(q_1) = \begin{cases} 5 & \text{if } q_1 = 2\\ 12 - q_1 & \text{if } q_1 \neq 2 \end{cases}.$$

That is, firm 2 selects $q_2 = 5$ in the event that firm 1 chooses $q_1 = 2$; otherwise, firm 2 picks the quantity that drives the price to zero. Verify that these strategies form a Nash equilibrium of the game. Do this by describing the payoffs players would get from deviating.

No govins from deviating sa that is NE

(c) Show that for any $x \in [0, 12]$, there is a Nash equilibrium of the game in which $q_1 = x$ and $s_2(x) = (12 - x)/2$. Describe the equilibrium strategy profile (fully describe s_2) and explain why it is an equilibrium.

$$5-5(12-x)/2$$
 $9_1=x$
 $5-2(12-x)$ $9_1=x$

No gains from deviouting so it's NE

(d) Are there any Nash equilibria (q_1, s_2) for which $s_2(q_1) \neq (12 - q_1)/2$? Explain why or why not.

No. (12-9.1/2 always maximites P2's Adjoff