5. Polynomials

Polynomials

Irreducibility

 $f(x) \in F[x]$ is **reducible** over $F \iff f(x) = g(x)h(x)$ for some $g(x), h(x) \in F[x]$ of lower degree.

Otherwise f is irreducible over F

Irreducibility over $\mathbb Q$ and $\mathbb Z$

1.

- ullet Let $f\in\mathbb{Z}[x]$ be irreducible $\Rightarrow f$ is irreducible over \mathbb{Q}
- ullet Contrapositive: if $f\in \mathbb{Z}[x]$ factors over \mathbb{Q} then it factors over \mathbb{Z}

2.

- ullet Let p be a prime and suppose that f(x)[Z[x] with degf(x)>1
- Let $\bar{f}(x)$ be the polynomial in $\mathbb{Z}_p[x]$ obtained from f(x) by reducing all the coefficients of $f(x) \bmod p$.
- ullet If f(x) is irreducible over \mathbb{Z}_p and $degar{f}(x)=degf(x)\Rightarrow f(x)$ is irreducible over \mathbb{Q}

Kronecker's Theorem

- Let F be a field
- Let f(x) be a nonconstant polynomial in F[x].
- ullet Then there is an extension field E of F in which f(x)

Proof

f(x) has an irreducible factor p(x). It's enough to construct a field E where p(x) has a 0

Let's try $F[x]/\langle p(x)
angle$ with the one-to-one mapping $\phi:F o E;\phi(a)=a+\langle p(x)
angle$

Let
$$p(x) = a_n x^n + \ldots + a_0$$

Then

$$egin{aligned} p(x+\langle p(x)
angle) &= \ a_n((x+\langle p(x)
angle))^n + ... + a_0 = \ &= a_n(x^n+\langle p(x)
angle + ... + a_0 = \ &= a_nx^n + a_{n-1}x^{n-1} + ... + a_0 + \langle p(x)
angle = \ &= p(x) + \langle p(x)
angle = \ &= 0 + \langle p(x)
angle \end{aligned}$$