CIS 419/519: Applied Machine Learning

Fall 2024

Homework 0

Handed Out: August 28

Due: 7:59 pm September 4

Name: Richard Zhang

PennKey: zhank24

PennID: 19331985

1 Declaration

• Person(s) discussed with: N/A

• Affiliation to the course: student, TA, prof etc. student

• Which question(s) in coding / written HW did you discuss? N/A

 \bullet Briefly explain what was discussed. N/A

2 Multiple Choice & Written Questions

- 1. (a) C
 - (b) A
- 2. (a) D
 - (b) A
- 3. (a) A
 - (b) A
- 4. (a) B
 - (b) Let X be a variable. The variance of X is defined as $Var(X) = E[(X E[X])^2]$ We want to prove $Var(X) = E[X^2] - (E[X])^2$:

$$E[(X - E[X])^{2}] = E[X^{2} - 2X \cdot E[X] + (E[X])^{2}]$$

$$Var(X) = E[X^2 - 2X \cdot E[X] + (E[X])^2]$$

$$Var(X) = E[X^{2}] - 2 \cdot E[X \cdot E[X]] + E[(E[X])^{2}]$$

Because we notice that E[X] is a constant, $2 \cdot E[X \cdot E[X]] = 2 \cdot E[X] \cdot E[X]$

Similarly, because we notice that $(E[X])^2$ is a constant, $E[(E[X])^2 = (E[X])^2$. Thus, the equation now becomes:

$$Var(X) = E[X^{2}] - 2 \cdot E[X] \cdot E[X] + (E[X])^{2}$$

$$Var(X) = E[X^{2}] - 2 \cdot (E[X])^{2} + (E[X])^{2}$$

$$Var(X) = E[X^2] - (E[X])^2$$

The proof is completed.

- 5. (a) C
 - (b) *D*
 - (c) A
- 6. (a) Let I be a $2 \cdot 2$ identity matrix. Let λ be the eigenvalue. We first need to calculate the determinant of the equation $A - \lambda I = 0$

$$A = \begin{bmatrix} 4 & 2 \\ 1 & 5 \end{bmatrix}$$
$$\det(A - \lambda I) = 0$$
$$\det\left(\begin{bmatrix} 4 & 2 \\ 1 & 5 \end{bmatrix} - \lambda \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}\right) = 0$$
$$\det\left(\begin{bmatrix} 4 - \lambda & 2 \\ 1 & 5 - \lambda \end{bmatrix}\right) = 0$$
$$(4 - \lambda) \cdot (5 - \lambda) - (2) \cdot (1) = 0$$
$$\lambda^2 - 9\lambda + 18 = 0$$
$$(\lambda - 3) \cdot (\lambda - 6) = 0$$
$$\lambda 1 = 3$$
$$\lambda 2 = 6$$

The eigenvalues are 3 and 6, respectively.

(b) C

3 Python Programming Questions

Figure 1: result