2021 矩阵理论

一、选择题(每小题 4 分,共 20 分,根据正确答案的选项涂黑答题卡对应的位置)
1. 下列选项中 错误 的是 (C)
$(A) \ \ W_1 = \{A \mid A^{\mathrm{H}} = A, \forall A \in C^{n \times n}\}, W_2 = \{A \mid A^{\mathrm{H}} = -A, \forall A \in C^{n \times n}\}, \ \ \text{$ \ \ $\bigcup \ } W_1 \oplus W_2 = C^{n \times n};$
(B) $H(u) = E - 2uu^{H}$ (其中 $u \in C^{n}$, $u^{H}u = 1$),则 $\lambda = -1$ 为 $H(u)$ 的单特征值;
(C) $A \in C_r^{m \times n}$ 为非零矩阵,则 $\ A^+\ _2 = \frac{1}{\ A\ _2}$; (D) $A \in C_n^{m \times n}$ 的充分必要条件是 $A^-A = E_n$.
2. 下列选项中 正确 的是 (A)
(A) 设 $A^{H} = A \in \mathbb{C}^{n \times n}$ 有一个主对角元素为负,则 A 至少有一个负特征值;
(B)若 $A^2 = A$,则 $\ A\ _F \ge 1$; (C) $A \in C^{n \times n}$,则 $R(A) = R(A^H)$;
(D) $A \in C^{n \times n}$, $\lambda_i = \sigma_i$ $(i = 1, 2, \dots, n)$ 分别为其特征值和奇异值,则 $\sum_{i=1}^n \lambda_i ^2 = \sum_{i=1}^n \sigma_i^2$.
3. 下列选项中 正确 的是 (B)
(A) $A^{H} = -A \in C^{n \times n}$,则 A 的特征值为纯虚数; (B) $A \in C_r^{m \times n}$,则 $\dim N(A^+) = m - r$;
(C) 设 U,V 为酉矩阵且 $A=UBV$,若 B 为正规矩阵,则 A 为正规矩阵;
(D) $x = (x_1, x_2)^T \in \mathbb{R}^2$, $f(x) = x_1^2 + 2x_1x_2 + x_2^2$, $y \in \mathbb{R}^2$ 的向量范数.
4. 下列说法 错误 的是 (A)
(A) 设 $B = \alpha^{\mathrm{T}} \beta$, 其中 α 和 β 皆为 n 阶单位行向量,则 $B^{+} = B$;
(B) A 为实对称正定矩阵,则存在唯一的正线上三角实矩阵 R ,使得 $A = R^T R$;
(C) 若 $A \in C_r^{m \times n}$,则 $A^H A$ 有 r 个正特征值; (D) 任何非零矩阵都存在奇异值分解和满秩分解 5. 下列选项正确的是(C)
(A) $A, B \in C^{m \times n}$, $\emptyset e^A \cdot e^B = e^{A+B}$; (B) $\emptyset A \in C^{n \times n}$, $\emptyset (A^5)^+ = (A^+)^5$;
(C) 设 $A \in C^{n \times n}$, λ 为其特征值,则满足 $Ax = \lambda x$ 的全体向量 x 构成一个线性子空间;

- (D) $A \in C^{n \times n}$,则 A 的秩等于其非零特征值的个数.
- 二. 判断题(每小题 4 分, 共 20 分. 正确的在答题卷涂黑【T】, 错误的涂黑【F】)

$$6. A \in C_r^{m \times n}$$
 且 $A = BC$ 为其最大秩分解,则 $N(A) = N(C)$.

7.
$$A \in C_r^{n \times n}, x \in C^n$$
 且 $\sigma_i(i = 1, \dots, r)$ 为 A 的正奇异值,则 $\|Ax\|_2^2 \le \left(\sum_{i=1}^r \sigma_i^2\right) \|x\|_2^2$. (\vee)

9.
$$A \in C_m^{m \times n}(m < n)$$
,则 $R(A) = C^n$. (\times)

10.设
$$A \in C^{m \times n}$$
则 $rank(A^+) = rank(AA^H)$.

三(9 分). 设
$$A = (a_{ij}) \in C^{n \times n}$$
, 且 $\sum_{i=1}^{n} |a_{ij}| < 1(\forall i)$, 证明:

(1) A 的每一个特征值 λ 的模 $|\lambda|$ < 1;

(2)
$$E - A$$
 可逆且 $\|(E - A)^{-1}\|_{\infty} \le \frac{1}{1 - \|A\|_{\infty}}$ (其中: E 为单位矩阵).

证明: (1)由
$$\sum_{i=1}^{n} |a_{ij}| < 1 (\forall i)$$
 得且 $||A||_{\infty} < 1$.所以 $|\lambda| \le ||A||_{\infty} < 1$.(

(2) 由 $r(A) \le ||A||_{\infty} = \max_{i} \sum_{j=1}^{n} |a_{ij}| < 1$ 可知1不是矩阵 A 的特征值,所以 E - A 没有零特

征值,E-A故可逆.

$$(E-A)(E-A)^{-1} = E \Rightarrow (E-A)^{-1} - A(E-A)^{-1} = E \Rightarrow (E-A)^{-1} = E + A(E-A)^{-1}$$

$$\Rightarrow \|(E-A)^{-1}\|_{\infty} = \|E+A(E-A)^{-1}\|_{\infty} \le \|E\|_{\infty} + \|A(E-A)^{-1}\|_{\infty} \le 1 + \|A\|_{\infty} \cdot \|(E-A)^{-1}\|_{\infty}$$

$$\Rightarrow (1-\|A\|_{\infty}) \|(E-A)^{-1}\|_{\infty} \le 1 \Rightarrow \|(E-A)^{-1}\|_{\infty} \le \frac{1}{1-\|A\|_{\infty}} \cdot (2 \Rightarrow 1)$$

四(7分). 设 $A \in C^{n \times n}$ 为 Hermite 矩阵, $\lambda_1 \geq \cdots \geq \lambda_n$,酉矩阵 $U = (u_1, \cdots, u_n)$ 使得 $A = U \Lambda U^H$ 。

若 $W=L(u_r,\cdots,u_s)$ 为 u_r,\cdots,u_s 的生成子空间,其中 $r\leq s$,证明:对 $\forall x\in W, \|x\|_2=1$, $\lambda_s\leq x^HAx\leq \lambda_r$ 成立。

证: 由 $A = U \Lambda U^H$ 得 $U^H A U = \Lambda$. (2分)

当
$$x \in W$$
, $\|x\|_2 = 1$ 时,有 $x = a_r u_r + \dots + a_s u_s = (u_r, \dots, u_s) \begin{pmatrix} a_r \\ \vdots \\ a_s \end{pmatrix} = Ua$,其 中 ,

$$a = (0, \dots, a_r, \dots, a_s, \dots, 0)^T \perp |a_r|^2 + \dots + |u_s|^2 = 1.$$
 (2分) 则

$$x^{H}Ax = a^{H}U^{H}AUa = a^{H}\Lambda a = \lambda_{e} |a_{e}|^{2} + \cdots + \lambda_{e} |a_{e}|^{2}$$
 (2 $\boldsymbol{\beta}$)

所以
$$\lambda_s \leq x^H A x \leq \lambda_r (1 \, \mathcal{A})$$

五(9 分). 设 $A \in C^{n \times n}$, $\|A\| = n \cdot \max_{i,j} \|a_{ij}\|$, 证明:(1) $\|A\|$ 为矩阵范数; (2) $\|A\|$ 为与向量 2-范数相容.

证: (1) 正定性: $A \neq O$ 时,A 至少有一个元素不等于零,所以 $||A|| = n \cdot \max_{i,j} |a_{ij}| > 0$; (2 分)

(2) 齐次性:
$$||kA|| = n \cdot \max_{i,j} |ka_{ij}| = |k| n \cdot \max_{i,j} |a_{ij}| = |k| ||A||$$
; (2 分)

(3)三角不等式:
$$||A+B|| = n \cdot \max_{i,j} |a_{ij} + b_{ij}| \le n \cdot \max_{i,j} (|a_{ij}| + |b_{ij}|)$$

$$\leq n \cdot \max_{i,j} |a_{ij}| + n \cdot \max_{i,j} |b_{ij}| = ||A|| + ||B|| (2)$$

$$(4) ||Ax||_{2}^{2} = \sum_{i=1}^{n} |\sum_{j=1}^{n} a_{ij} x_{j}|^{2} \leq \sum_{i=1}^{n} \left(\sum_{j=1}^{n} |a_{ij}| |x_{j}| \right)^{2} \leq \sum_{i=1}^{n} \left(\sum_{j=1}^{n} |a_{ij}|^{2} \right) \left(\sum_{j=1}^{n} |x_{j}|^{2} \right)$$

$$= \left(\sum_{j=1}^{n} |x_{j}|^{2}\right) \bullet \sum_{i=1}^{n} \sum_{j=1}^{n} |a_{ij}|^{2} \leq n^{2} \max_{i,j} |a_{ij}|^{2} \bullet \left(\sum_{j=1}^{n} |x_{j}|^{2}\right) = ||A||^{2} ||x||_{2}^{2}$$

六. **(8 分)**设矩阵
$$A = \begin{pmatrix} \pi & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}$$
, 计算 $\sin A$.

解:该矩阵已为 Jordan 标准型, $J_1=\pi,J_2=egin{pmatrix} 0 & 1 \ 0 & 0 \end{pmatrix}$

$$\sin J_1 = 0, \sin J_2 = \begin{pmatrix} \sin 0 & \cos 0 \\ 0 & \sin 0 \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$$

所以
$$\sin A = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}$$
 (2 分)

七(7 分).矩阵 $A = \begin{pmatrix} 4 & 2 \\ -1 & 1 \end{pmatrix}$ 求其谱分解.

解:

- (1) 求特征值 $|\lambda E A| = (\lambda_1 2)(\lambda_2 3) = 0$, 所以特征值为 $\lambda_1 = 2, \lambda_2 = 3$, 故可相似对角化.
- (2) 求特征向量: $\lambda_1 = 2$ 对应的特征向量为 $p_1 = (-1,1)^T$;

 $\lambda_2 = 3$ 对应的特征向量为 $p_2 = (2,-1)^T$.

(3) 谱分解: 令
$$P = (p_1, p_2) = \begin{pmatrix} -1 & 2 \\ 1 & -1 \end{pmatrix}$$
,则 $P^{-1} = \begin{pmatrix} 1 & 2 \\ 1 & 1 \end{pmatrix} = \begin{pmatrix} \omega_1^T \\ \omega_2^T \end{pmatrix}$.

故谱分解式为 $A = 2A_1 + 3A_2$.

八(15 分).设
$$A = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 2 & 1 \end{pmatrix}, b = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}.$$
 (1) 求 A 的最大秩分解; (2) 求 A^+ ; (3) 用广义

逆矩阵方法判断线性方程组 Ax = b 是否有解; (4) 线性方程组 Ax = b 如有解,求通解和最小范数解;如无解,求最小二乘解和最佳逼近解.

解:

$$(1) A = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 2 & 1 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & -1 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \end{pmatrix}$$

矩阵 A 的最大秩分解为
$$A=BD = \begin{pmatrix} 1 & 1 \\ 0 & 1 \\ 1 & 2 \end{pmatrix} \begin{pmatrix} 1 & 0 & -1 \\ 0 & 1 & 1 \end{pmatrix}$$
,

(2)
$$B^+ = (B^H B)^{-1} B^H = \frac{1}{3} \begin{pmatrix} 3 & -3 & 0 \\ -1 & 2 & 1 \end{pmatrix}$$

$$D^{+} = D^{H} (DD^{H})^{-1} = \frac{1}{3} \begin{pmatrix} 2 & 1 \\ 1 & 2 \\ -1 & 1 \end{pmatrix}$$

$$A^{+} = D^{+}B^{+} = \frac{1}{9} \begin{pmatrix} 5 & -4 & 1 \\ 1 & 1 & 2 \\ -4 & 5 & 1 \end{pmatrix}$$

- (3) $AA^+b = \frac{1}{9} \begin{pmatrix} 6 \\ -3 \\ 3 \end{pmatrix} \neq b$,所以无解.
- (4) 最佳逼近解为 $A^+b = \frac{1}{9} \begin{pmatrix} 5\\1\\-4 \end{pmatrix}$

最小二乘解为 $A^+b+(E-A^-A)u, \forall u \in C^4$

九.(5 分) 设 $A \in C_3^{3\times 3}$,则存在分解 A = UR ,其中 U 是酉矩阵,R 是正线上三角复矩阵. 证明该分解的唯一性.

证: 设 $A = U_1 R_1 = U_2 R_2$,则 $R_1 = U_1^{-1} U_2 R_2 = V R_2$,其中 $V = U_1^{-1} U_2$ 为酉矩阵。

令
$$R_1 = \begin{pmatrix} k_{11} & k_{12} & k_{13} \\ 0 & k_{22} & k_{23} \\ 0 & 0 & k_{33} \end{pmatrix}$$
 , $R_2 = \begin{pmatrix} l_{11} & l_{12} & l_{13} \\ 0 & l_{22} & l_{23} \\ 0 & 0 & l_{33} \end{pmatrix}$, $V = \begin{pmatrix} v_{11} & v_{12} & v_{13} \\ v_{21} & v_{22} & v_{23} \\ v_{31} & v_{32} & v_{33} \end{pmatrix}$, 比较(*)式两端矩阵第一列

得 $k_{11}=v_{11}l_{11}$, $v_{21}l_{11}=v_{31}l_{11}=0$,故 $l_{11}=k_{11}/v_{11}>0$ $v_{21}=v_{31}=0$,因为 $V=U_1^{-1}U_2$ 为酉矩阵,所以 $l_{11}=1$ 以及 $v_{12}=v_{13}=0$ 。

故
$$V = \begin{pmatrix} 1 & 0 & 0 \\ 0 & v_{22} & v_{23} \\ 0 & v_{32} & v_{33} \end{pmatrix}$$
,类推可得 $V = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$.