(Draft Version)

Quang-Vinh Dinh Ph.D. in Computer Science

Outline

- > Multi-layer Perceptron
- > To-do List for Training
- > Forward Computation Example
- > Image Classification: Fashion-MNIST
- > Image Classification: Cifar-10
- > Underfitting and Overfitting

Softmax regression

Sepal_Length	Sepal_Width	Petal_Length	Petal_Width	Label
5.2	3.5	1.5	0.2	1
5.2	3.4	1.4	0.2	1
4.7	3.2	1.6	0.2	1
6.3	3.3	4.7	1.6	2
4.9	2.4	3.3	1.1	2
6.6	2.9	4.6	1.3	2
6.4	2.8	5.6	2.2	3
6.3	2.8	5.1	1.5	3
6.1	2.6	5.6	1.4	3

Softmax regression

- **❖** An idea: More parameters → better capacity (~stronger model)
 - **Adding more layers**

called Hidden Layers

#hidden layers are arbitrary
#nodes in a hidden layer are arbitrary

Trainable params: 27

Non-trainable params: 0

```
import tensorflow as tf
import tensorflow.keras as keras

# create model
model = keras.Sequential()
model.add(keras.Input(shape=(4,)))
model.add(keras.layers.Dense(3, activation='relu'))
model.add(keras.layers.Dense(3, activation='softmax'))
model.summary()
```

Model: "sequential"		
Layer (type)	Output Shape	Param #
dense (Dense)	(None, 3)	15
dense_1 (Dense)	(None, 3)	12
Total params: 27		

Trainable params: 32

Non-trainable params: 0

```
import tensorflow as tf
import tensorflow.keras as keras

# create model
model = keras.Sequential()
model.add(keras.Input(shape=(4,)))
model.add(keras.layers.Dense(3, activation='relu'))
model.add(keras.layers.Dense(2, activation='relu'))
model.add(keras.layers.Dense(3, activation='relu'))
model.add(keras.layers.Dense(3, activation='softmax'))

model.summary()
```

Model: "sequential"		
Layer (type)	Output Shape	Param #
dense (Dense)	(None, 3)	15
dense_1 (Dense)	(None, 2)	8
dense_2 (Dense)	(None, 3)	9
Total params: 32		

Outline

- > Multi-layer Perceptron
- > To-do List for Training
- > Forward Computation Example
- > Image Classification: Fashion-MNIST
- > Image Classification: Cifar-10
- > Underfitting and Overfitting

Data Preparation

Year 2020

Data Normalization

Convert to the range [0,1]

$$Image = \frac{Image}{255}$$

Convert to the range [-1,1]

$$Image = \frac{Image}{127.5} - 1$$

Z-score normalization

$$Image = \frac{Image - \mu}{\sigma}$$

μ is the mean of the image (or training data)

 σ is the standard deviation of the image (or training data)

Model (Network) Construction

Hidden Layers

How many hidden layers? How many nodes in a hidden layer? Which activation function? Which network components?

Model (Network) Construction

Which activation function?

$$\tanh(x) = \frac{2}{1 + e^{-2x}} - 1$$

$$PReLU(x) = \begin{cases} \alpha x & \text{if } x < 0 \\ x & \text{if } x \ge 0 \end{cases}$$

$$sigmoid(x) = \frac{1}{1 + e^{-x}}$$

$$ELU(x) = \begin{cases} \alpha(e^x - 1) & \text{if } x < 0\\ x & \text{if } x \ge 0 \end{cases}$$

$$softplus(x) = log(1 + e^x)$$

***** Tanh function

$$\tanh(x) = \frac{2}{1 + e^{-2x}} - 1$$

 $\underline{data}\underline{a} = \underline{tanh}(\underline{data})$

Sigmoid function

PReLU function

$$PReLU(x) = \begin{cases} \alpha x & \text{if } x < 0 \\ x & \text{if } x \ge 0 \end{cases}$$

 $\underline{data}\underline{a} = \underline{PRELU}(\underline{data})$

ELU function

$$ELU(x) = \begin{cases} \alpha(e^x - 1) & \text{if } x < 0 \\ x & \text{if } x \ge 0 \end{cases}$$

 $data_a = ELU(data)$

Softplus function

$$softplus(x) = \log(1 + e^x)$$

 $\underline{data}\underline{a} = \underline{softplus}(\underline{data})$

ReLU function

$$ReLU(x) = \begin{cases} 0 & \text{if } x < 0 \\ x & \text{if } x \ge 0 \end{cases}$$

data a = ReLU(data)

Model (Network) Construction

Which network components?

Batch Normalization

Input: Values of x over a mini-batch: $\mathcal{B} = \{x_{1...m}\}$; Parameters to be learned: γ , β **Output:** $\{y_i = BN_{\gamma,\beta}(x_i)\}$ $\mu_{\mathcal{B}} \leftarrow \frac{1}{m} \sum_{i=1}^{m} x_i$ // mini-batch mean $\sigma_{\mathcal{B}}^2 \leftarrow \frac{1}{m} \sum_{i=1}^m (x_i - \mu_{\mathcal{B}})^2$ // mini-batch variance $\widehat{x}_i \leftarrow \frac{x_i - \mu_{\mathcal{B}}}{\sqrt{\sigma_{\mathcal{B}}^2 + \epsilon}}$ // normalize $y_i \leftarrow \gamma \widehat{x}_i + \beta \equiv BN_{\gamma,\beta}(x_i)$ // scale and shift

(1) https://medium.com/@amarbudhiraja/https-medium-com-amarbudhiraja-learning-less-to-learn-better-dropout-in-deep-machine-learning-74334da4bfc5

Parameter Initialization

Random Initialization

https://en.wikipedia.org/wiki/Randomness

initializers

Overview

deserialize

get

GlorotNormal

GlorotUniform

he_normal

he_uniform

Identity

Initializer

lecun_normal

lecun_uniform

Orthogonal

serialize

TruncatedNormal

VarianceScaling

Initialization method supported in Tensorflow

Optimizer Selection

Define a way to update parameters

Loss function Selection

Compute the goodness of the current model

Useful for training

```
class BinaryCrossentropy: Computes the cross-entropy loss between true labels and predicted labels.
```

class CategoricalCrossentropy: Computes the crossentropy loss between the labels and predictions.

class CategoricalHinge: Computes the categorical hinge loss between y_{true} and y_{pred} .

class CosineSimilarity: Computes the cosine similarity between y_true and y_pred.

class Hinge: Computes the hinge loss between y_true and y_pred.

class Huber: Computes the Huber loss between y_true and y_pred.

class KLDivergence: Computes Kullback-Leibler divergence loss between y_true and y_pred.

class LogCosh: Computes the logarithm of the hyperbolic cosine of the prediction error.

class Loss: Loss base class.

class MeanAbsoluteError: Computes the mean of absolute difference between labels and predictions.

class MeanAbsolutePercentageError: Computes the mean absolute percentage error between y_true and y_pred .

class MeanSquaredError: Computes the mean of squares of errors between labels and predictions.

class MeanSquaredLogarithmicError: Computes the mean squared logarithmic error between y_true and y_pred .

class Poisson: Computes the Poisson loss between y_true and y_pred.

class Reduction : Types of loss reduction.

class SparseCategoricalCrossentropy: Computes the crossentropy loss between the labels and predictions.

class SquaredHinge: Computes the squared hinge loss between y_true and y_pred.

https://www.tensorflow.org/api_d ocs/python/tf/keras/losses

AI VIETNAM Free AI Course

To-do List for Training

Metric Selection

Compute the goodness of the current model

Useful for developers

Precision

True Positives

False Positives

True Negatives

Recall

False Negatives Accuracy

Root Mean Squared Error

Precision At Recall

Mean Absolute Error

Year 2020

Outline

- > Multi-layer Perceptron
- > To-do List for Training
- > Forward Computation Example
- > Image Classification: Fashion-MNIST
- > Image Classification: Cifar-10
- > Underfitting and Overfitting

Example

Feat	Label	
Petal Length	Petal Width	Label
1.5	0.2	0
1.4	0.2	0
1.6	0.2	0
4.7	1.6	1
3.3	1.1	1
4.6	1.3	1
5.6	2.2	2
5.1	1.5	2
5.6	1.4	2

$$x = \begin{bmatrix} x^{(1)} & x^{(2)} & x^{(3)} \end{bmatrix}$$

$$x = \begin{bmatrix} 1.5 & 4.7 & 5.6 \\ 0.2 & 1.6 & 2.2 \end{bmatrix} \qquad y = \begin{bmatrix} 0 \\ 1 \\ 2 \end{bmatrix}$$

$$\boldsymbol{W}_{h} = [\boldsymbol{W}_{h1} \quad \boldsymbol{W}_{h2}] \qquad \boldsymbol{W}_{z} = [\boldsymbol{W}_{z1} \quad \boldsymbol{W}_{z2} \quad \boldsymbol{W}_{z3}]$$

$$= \begin{bmatrix} 0.0 & 0.0 \\ 0.86 & -1.04 \\ 0.41 & -0.65 \end{bmatrix} \qquad = \begin{bmatrix} 0.0 & 0.0 & 0.0 \\ 0.32 & 0.25 & 0.14 \\ -0.47 & -1.06 & 0.063 \end{bmatrix}$$

$$\boldsymbol{h} = \boldsymbol{W}_{\boldsymbol{h}}^{T} \boldsymbol{x} = \begin{bmatrix} 0.0 & 0.86 & 0.41 \\ 0.0 & -1.04 & -0.65 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 \\ 1.5 & 4.7 & 5.6 \\ 0.2 & 1.6 & 2.2 \end{bmatrix} = \begin{bmatrix} 1.373 & 4.708 & 5.731 \\ -1.696 & -5.951 & -7.281 \end{bmatrix}$$

$$ReLU(\boldsymbol{h}) = \begin{bmatrix} 1.373 & 4.708 & 5.731 \\ 0.0 & 0.0 & 0.0 \end{bmatrix}$$

Feat	Label	
Petal Length	Label	
1.5	0.2	0
1.4	0.2	0
1.6	0.2	0
4.7	1.6	1
3.3	1.1	1
4.6	1.3	1
5.6	2.2	2
5.1	1.5	2
5.6	1.4	2

$$ReLU(\mathbf{h}) = \begin{bmatrix} 1.373 & 4.708 & 5.731 \\ 0.0 & 0.0 & 0.0 \end{bmatrix}$$

$$\begin{bmatrix} \mathbf{1} \\ \text{ReLU}(\mathbf{h}) \end{bmatrix} = \begin{bmatrix} 1 & 1 & 1 \\ 1.373 & 4.708 & 5.731 \\ 0.0 & 0.0 & 0.0 \end{bmatrix}$$

$$\mathbf{z} = \mathbf{W}_{\mathbf{z}}^{T} \begin{bmatrix} \mathbf{1} \\ \text{ReLU}(\mathbf{h}) \end{bmatrix} = \begin{bmatrix} 0.0 & 0.32 & -0.47 \\ 0.0 & 0.25 & -1.06 \\ 0.0 & 0.14 & 0.063 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 \\ 1.373 & 4.708 & 5.731 \\ 0.0 & 0.0 & 0.0 \end{bmatrix}$$
$$= \begin{bmatrix} 0.439 & 1.507 & 1.835 \\ 0.356 & 1.220 & 1.485 \\ 0.195 & 0.670 & 0.816 \end{bmatrix}$$

Feature Label Petal Length Petal Width Label 1.5 0.2 0 1.4 0.2 0 1.6 0.2 0 4.7 1.6 3.3 1.1 1.3 4.6 5.6 2.2 5.1 1.5 1.4 5.6

$$\begin{aligned} \boldsymbol{W}_h &= [\boldsymbol{W}_{h1} \quad \boldsymbol{W}_{h2}] & \boldsymbol{W}_z &= [\boldsymbol{W}_{z1} \quad \boldsymbol{W}_{z2} \quad \boldsymbol{W}_{z3}] \\ &= \begin{bmatrix} 0.0 & 0.0 \\ 0.86 & -1.04 \\ 0.41 & -0.65 \end{bmatrix} & = \begin{bmatrix} 0.0 & 0.0 & 0.0 \\ 0.32 & 0.25 & 0.14 \\ -0.47 & -1.06 & 0.063 \end{bmatrix} \end{aligned}$$

$$\mathbf{z} = \begin{bmatrix} 0.439 & 1.507 & 1.835 \\ 0.356 & 1.220 & 1.485 \\ 0.195 & 0.670 & 0.816 \end{bmatrix}$$

$$\hat{\mathbf{y}} = \text{softmax}(\mathbf{z}) = \begin{bmatrix} \hat{\mathbf{y}}^{(1)} & \hat{\mathbf{y}}^{(2)} & \hat{\mathbf{y}}^{(3)} \end{bmatrix}$$

$$= \begin{bmatrix} 0.369 & 0.458 & 0.484 \\ 0.340 & 0.343 & 0.341 \\ 0.289 & 0.198 & 0.174 \end{bmatrix}$$

loss = 1.269

Feat	Label	
Petal Length	Label	
1.5	0.2	0
1.4	0.2	0
1.6	0.2	0
4.7	1.6	1
3.3	1.1	1
4.6	1.3	1
5.6	2.2	2
5.1	1.5	2
5.6	1.4	2

$$\mathbf{x} = \begin{bmatrix} \mathbf{x}^{(1)} & \mathbf{x}^{(2)} & \mathbf{x}^{(3)} \end{bmatrix} \\
= \begin{bmatrix} 1 & 1 & 1 \\ 1.5 & 4.7 & 5.6 \\ 0.2 & 1.6 & 2.2 \end{bmatrix} \qquad \mathbf{y} = \begin{bmatrix} 0 \\ 1 \\ 2 \end{bmatrix}$$

$$\begin{aligned} \boldsymbol{W}_h &= \begin{bmatrix} \boldsymbol{W}_{h1} & \boldsymbol{W}_{h2} \end{bmatrix} & \boldsymbol{W}_z &= \begin{bmatrix} \boldsymbol{W}_{z1} & \boldsymbol{W}_{z2} & \boldsymbol{W}_{z3} \end{bmatrix} \\ &= \begin{bmatrix} 0.0 & 0.0 \\ 0.86 & -1.04 \\ 0.41 & -0.65 \end{bmatrix} & = \begin{bmatrix} 0.0 & 0.0 & 0.0 \\ 0.32 & 0.25 & 0.14 \\ -0.47 & -1.06 & 0.063 \end{bmatrix} \end{aligned}$$

Outline

- > Multi-layer Perceptron
- > To-do List for Training
- > Forward Computation Example
- > Image Classification: Fashion-MNIST
- > Image Classification: Cifar-10
- > Underfitting and Overfitting

Image Classification: Image Data

Grayscale images

230	194	147	108	90	98	84	90	91	101
237	206	188	195	207	213	163	123	116	128
210	183	180	205	224	234	188	122	134	147
198	189	201	227	229	232	200	125	127	135
249	241	237	244	232	226	202	116	125	126
251	254	241	239	230	217	196	102	103	99
243	255	240	231	227	214	203	116	95	91
204	231	208	200	207	201	200	121	95	95
144	140	120	115	125	127	143	118	92	91
121	121	108	109	122	121	134	106	86	97

(Height, Width)

Pixel p = scalar

 $0 \le p \le 255$

Resolution: #pixels

Resolution = HeightxWidth

Image Classification: Image Data

Color images

(Height, Width, channel)

Pixel p=
$$\begin{bmatrix} r \\ g \\ b \end{bmatrix}$$

 $0 \le r$,g,b ≤ 255

			233	188	137	96	90	95	63	73	73	82
		237	202	159	120	105	110	88	107	112	121	109
•	226	191	147	110	101	112	98	123	110	119	142	131
Ì	221	191	176	182	203	214	169	144	133	145	155	122
İ	185	160	161	184	205	223	186	137	147	161	140	115
Ì	181	174	189	207	206	215	194	136	142	151	133	87
	246	237	237	231	208	206	192	122	143	144	111	74
Ì	254	254	241	224	199	192	181	99	122	117	107	74
Ì	239	248	232	207	187	182	184	110	114	110	113	74
İ	193	215	193	167	158	164	181	114	112	111	105	82
	113	119	110	111	113	123	135	120	108	106	113	
	93	97	91	103	107	111	122	112	104	114		

Resolution: #pixels

Resolution = HeightxWidth

Image Data

T-shirt

Trouser

Pullover

Fashion-MNIST dataset

Dress

Grayscale images

Resolution=28x28

Training set: 60000 samples

Testing set: 10000 samples

Coat

Ankle **Boot**

Image Classification

***** Fashion-MNIST data

Download data

Name	▲ Size
t10k-images-idx3-ubyte.gz	4.4 MB
t10k-labels-idx1-ubyte.gz	5.1 kB
train-images-idx3-ubyte.gz	26.4 MB
train-labels-idx1-ubyte.gz	29.5 kB

```
import numpy as np
   from urllib import request
   import gzip
   import pickle
    filename = [["training images", "train-images-idx3-ubyte.gz"],
                ["test images", "train-labels-idx1-ubyte.gz"],
                ["training labels", "t10k-images-idx3-ubyte.gz"],
                ["test labels", "t10k-labels-idx1-ubyte.gz"]]
10
    # function to download data
    def download fashion mnist (folder):
        base url = "http://fashion-mnist.s3-website.eu-central-1.amazonaws.com/"
13
14
       for name in filename:
15
            print("Downloading " + name[1] + "...")
16
17
            # luu vào folder data fashion mnist
18
            request.urlretrieve(base url + name[1], folder + name[1])
19
       print("Download complete.")
20
    # download dataset và save to folder 'data fashion mnist/'
   folder = 'data fashion mnist/'
   download fashion mnist(folder)
```

Image Classification

Fashion-MNIST data

```
X_train: (60000, 784)
y_train: (60000,)
X_test: (10000, 784)
y_test: (10000,)
```



```
import os
                                       Read data
   import gzip
   import numpy as np
   def load fashion mnist(path, kind='train'):
        """Load fashion MNIST data from `path`"""
 6
        labels path = os.path.join(path, '%s-labels-idx1-ubyte.gz' % kind)
        images path = os.path.join(path, '%s-images-idx3-ubyte.gz' % kind)
        with gzip.open(labels path, 'rb') as lbpath:
10
            labels = np.frombuffer(lbpath.read(), dtype=np.uint8, offset=8)
11
12
        with gzip.open(images path, 'rb') as images images images.
            images = np.frombuffer(imgpath.read(),
13
                                   dtype=np.uint8, offset=16).reshape(len(labels), 784)
14
15
16
       return images, labels
17
18
   X train, y train = load fashion mnist('C:/Data/data fashion mnist/')
20 print('X train:', X train.shape)
   print('y train:', y train.shape)
22
   X test, y test = load fashion mnist('C:/Data/data fashion mnist/', kind='t10k')
24 print('X test:', X test.shape)
25 print('y test:', y test.shape)
```

Image Classification

Fashion-MNIST data

```
X_train: (60000, 784)
y_train: (60000,)
X_test: (10000, 784)
y_test: (10000,)
```

```
import tensorflow as tf
   import tensorflow.keras as keras
   # create model
   model = keras.Sequential()
   model.add(keras.Input(shape=(784,)))
   model.add(keras.layers.Dense(128, activation='sigmoid'))
   model.add(keras.layers.Dense(10, activation='softmax'))
    # optimizer and loss
   model.compile(optimizer='sqd',
12
                  loss='sparse categorical crossentropy',
13
                  metrics=['accuracy'])
14
    # training
15
   model.fit(X train, y train, epochs=10)
17
18
   # testing
   test loss, test acc = model.evaluate(X test, y test, verbose=2)
   print('Test accuracy:', test acc)
```

Fashion-MNIST data

```
import tensorflow as tf
   from tensorflow import keras
   # Data Preparation - Use built-in function for Fashion MNIST in Tensorflow
   fashion mnist = keras.datasets.fashion mnist
    (train images, train labels), (test images, test labels) = fashion mnist.load data()
   # Data Normalization [0,1]
   train images = train images / 255.0
   test images = test images / 255.0
11
   # model: Use relu activation
   # Glorot uniform is used by default in Tensorflow
   model = keras.Sequential([
       keras.layers.Flatten(input shape=(28, 28)),
       keras.layers.Dense(128, activation='relu'),
       keras.layers.Dense(10, activation='softmax')
18 ])
19
   # Use Adam optimizer, cross-entropy loss and accuracy metric
   model.compile(optimizer='adam',
22
                 loss=tf.keras.losses.SparseCategoricalCrossentropy(),
23
                 metrics=['accuracy'])
24
   # training
   model.fit(train images, train labels, epochs=20)
27
   # testing
   test loss, test acc = model.evaluate(test images, test labels, verbose=2)
30 print('Test accuracy:', test acc)
```

Outline

- > Multi-layer Perceptron
- > To-do List for Training
- > Forward Computation Example
- > Image Classification: Fashion-MNIST
- > Image Classification: Cifar-10
- > Underfitting and Overfitting

airplane

Image Classification

automobile

Cifar-10 dataset

Resolution=32x32

Training set: 50000 samples

Testing set: 10000 samples

ship

Image Classification

Cifar-10 dataset

Color images

Resolution=32x32

Training set: 50000 samples

Testing set: 10000 samples

```
import tensorflow as tf
   from tensorflow import keras
   # Data Preparation - Use built-in function for Fashion MNIST in Tensorflow
   cifar10 = keras.datasets.cifar10
    (train images, train labels), (test images, test labels) = cifar10.load data()
   # Data Normalization [0,1]
   train images = train images / 255.0
   test images = test images / 255.0
   # model: Use relu activation
   # Glorot uniform is used by default in Tensorflow
   model = keras.Sequential([
15
       keras.layers.Flatten(input shape=(32, 32, 3)),
       keras.layers.Dense(512, activation='relu'),
16
17
       keras.layers.Dense(10, activation='softmax')
18
   ])
19
   # Use Adam optimizer, cross-entropy loss and accuracy metric
   model.compile(optimizer='adam',
22
                  loss=tf.keras.losses.SparseCategoricalCrossentropy(),
23
                 metrics=['accuracy'])
24
   # training
   model.fit(train images, train labels, epochs=20)
27
   # testing
   test loss, test acc = model.evaluate(test images, test labels, verbose=2)
   print('Test accuracy:', test acc)
```

Outline

- > Multi-layer Perceptron
- > To-do List for Training
- > Forward Computation Example
- > Image Classification: Fashion-MNIST
- > Image Classification: Cifar-10
- > Underfitting and Overfitting

Underfitting

Happen when model is not strong enough


```
import tensorflow as tf
   from tensorflow import keras
   # load data
   mnist = keras.datasets.fashion mnist
    (x train, y train), (x test, y test) = mnist.load data()
   # normalize
   x train, x test = x train / 255.0, x test / 255.0
   m train = x train.shape[0]
11
   # model construction
   model = tf.keras.Sequential([
14
       tf.keras.layers.Flatten(input shape=(28, 28)),
        tf.keras.layers.Dense(10, activation='softmax')
15
16
   1)
17
    # compile and train
18
   model.compile(optimizer='adam',
                  loss='sparse categorical crossentropy',
20
                  metrics=['accuracy'])
21
   history = model.fit(x train, y train,
23
                        validation split=0.2, epochs=20, verbose=0)
```

Overfitting

Model performance is 'quite' different between training and test sets


```
import tensorflow as tf
   from tensorflow import keras
   # load data
   mnist = keras.datasets.fashion mnist
   (x train, y train), (x test, y test) = mnist.load data()
   # normalize
   x train, x test = x train / 255.0, x test / 255.0
   m train = x train.shape[0]
11
   # model construction
   model = tf.keras.Sequential([
14
       tf.keras.layers.Flatten(input shape=(28, 28)),
       tf.keras.layers.Dense(64, activation='relu'),
15
       tf.keras.layers.Dense(64, activation='relu'),
16
17
       tf.keras.layers.Dense(10, activation='softmax')
18
   ])
19
   # model compile and train
   model.compile(optimizer='adam',
22
                  loss='sparse categorical crossentropy',
23
                  metrics=['accuracy'])
   history = model.fit(x train, y train,
25
                        validation split=0.9, epochs=20, verbose=0)
```

Demo

Year 2020

