Machine Learning for EHR (1)

- Electronic Health Record (EHR)
 - Electronic version of a patient medical history
- EHR includes the information of an encounter
 - Basic information of patient
 - Medical history
 - Lab results
 - Medicine record
 - Insurance details
 - ...

Machine Learning for EHR (2)

- 1) Learning medical concept representations
 - There are over **3,100,000** concepts in the medical language system
 - Diagnosis code, medicine type, ...
 - It will be very helpful if we can embed the concept into a representation
 - We can easily measure the patient similarity
 - Accelerate the clinical information retrieval
 - ...
 - We can apply the word embedding/network embedding methods to learn the representation
 - AMIA2016-Learning low-dimensional representations of medical concepts
 - KDD2016-Multi-layer representation learning for medical concepts

Machine Learning for EHR (3)

- 2) Predictive healthcare
 - Predict the disease/medicine
 - Automatic diagnosis can assist the doctor to make decision
 - Online prescriptions
 - Representation learning + classification task
 - NeurIPS2016-Retain: An interpretable predictive model for healthcare using reverse time attention mechanism
 - NeurIPS2018-Mime: Multilevel medical embedding of electronic health records for predictive healthcare

Machine Learning for EHR (4)

- 3) Anomaly detection
 - Detect the error diagnosis/medication
 - Incorrect data results in harm through suboptimal care delivery
 - Existing data quality assessment frameworks describe a set of dimensions (e.g., completeness, plausibility) evaluated using basic rules
 - Limitation: fail to consider patient-specific information and the correlation between different medical concept
 - In this project, we are going to model EHR data with **graph** structure to conduct more accurate prediction
 - Graph modality can help us to reveal the underlying relationship between different instances

Overview of dataset

- 3,640,261 encounters and 1,323 features
- Feature can be divided into 6 groups
 - 9 Basic features
 - 6 Time features
 - 283 past medication features
 - 578 Lab features
 - 104 Medication features
 - 21 Code features
 - 284 diagnosis features

Basic features

- 9 basic features including the information of patients
 - Age, sex, patient_id, Smokestatus, ...
- Number of patient: 1,053,511
 - Number of patients with only one encc
 - Maximum number of encounters: 1,74
- Distribution of number of encounter

Basic features

• Distribution of age and esi (emergence level)

Diagnosis feature

- 284 diagnosis features are all binary
 - eddx_2ndarymalig, eddx_abdomhern
- 89.48% encounters have only one d
- 230,215/3,640,261 encounters don
- Top 30 diagnosis:

Past medication feature

- Binary features
 - Abdomhernia, abdomnlpain, ...
- 385,664 encounters don't have pas
- Past medication features are different
- Top 20 features

Lab features

- 578 lab features includes 6 kinds of features
 - Lab test, POC features, ED features, historical vital values, min and max of lab values, whether or not imaging was done
- Most of them are continuous features
- Average number of lab features: 110.057
- Some lab features are connected by most of the encounters

Lab features

Some lab features are connected by most of the encounters

Number of encounters total number of encounters

Lab features

- Visualization of missing values
 - White part is the missing data

Medication features

- 104 medication features
 - Medication prescribed outside of the ED
 - Medication prescribed in the ED
- Average number of medicine: 9.69
- 167,363/3,640,261 encounters don't have me
- Top 30 medicine

Time features

- Time span: 2014-01-01 2022-03-01
- Distribution of the year and hour

Problem definition

- Given an encounter record, predict the reliability of existing diagnosis and medication, as well as possible diagnosis and medication
- Graph can help us to reveal the underlying relationship between different instances
 - E.g., high correlation among some diagnoses
- Formulate the problem as a link prediction task
 - Encounter and diagnosis/medication are nodes in graph
 - Predict the probability that an edge between encounter and diagnosis/medication exists

Problem setting (1)

Link prediction

- Encounter, diagnosis, medication and lab test are nodes in graph
- Predict the probability that an edge between encounter and diagnosis/medication exists

Dataset split

- Due to the large scale of the whole dataset, we now only consider the encounter during 2021-2022
- Training set: 2021.01.01 2021.12.31
- Validation set: 2022.01.01 2022.01.31
- Test set: 2022.02.01 2022.03.31

Problem setting (2)

 Test set contains some edges which does not exist in training set to prevent data leakage

Ranking metric

- Given a query and some candidate keys, evaluate the quality of candidate list ranked by model
- Given an encounter, rank all the medication/diagnosis by model, and evaluate the quality of topK candidates by:
 - Recall: ratio of positive medication/diagnosis in the list to all positive ones
 - Ndcg: order of positive medication/diagnosis in the list
 - Precision: number of positive medication/diagnosis in the list
 - Hit: whether there is a positive medication/diagnosis in the list

Modeling (1)

- Disease prognosis is determined by the results of lab tests
 - $X \to D$, where D is diagnosis and X is lab tests
- The diagnosis and the lab test results dictate which medication should be taken
 - $X, D \rightarrow M$, where M is medication
- Objective
 - Maximize the following probability distribution

$$\max p(M|X,D)P(D|X)$$

Probability of using this medication according to the diagnosis and lab test

Probability of disease prognosis according to lab test

Modeling (2)

Modeling (3)

- Step1: aggregate the information from lab nodes
 - Lab test value is considered as the edge feature
- Apply the GNN framework
 - NeurIPS2020-Handling Missing Data with Graph Representation Learning
 - Update the edge and node representation at each message passing step

Modeling (4)

- Step2: predict the diagnosis
- Apply reconstruct loss
 - Optimize the model by reconstructing the graph structure among encounter and diagnosis nodes
 Adjacent matrix

$$\min ||A - A'||$$

Reconstruct the graph structure of sampled encounters

Modeling (4)

- Step3: predict the medication based on diagnosis and lab information
- Use both encounter and diagnosis embeddings to predict the medication
 - Apply a MLP to decode these two embeddings

$$e' = MLP(e_X||e_D)$$

Pretraining embedding

- Diagnosis has strong relationship with medication
- We can use co-occurrence information to learn the basic embeddings
- Organize the co-occurred diagnosis and medication as a 'sentence':

- Apply work embedding method to learn embeddings
 - GloVe: Global Vectors for Word Representation
 - The vectors of two "words" that occur together more frequently will be more similar in embedding space

Result

Why is performance on diagnosis so poor?

Result

Directly use encounter embeddings without GNN

Improvement

- How to use lab tests
 - Consider lab test as node is not good
 - Some lab nodes are almost fully connected by the encounters, resulting in an expensive aggregation process
 - Preliminary results show that performance on diagnosis is poor
 - Better way: Apply lab test results to connect the encounters by measuring the similarity
- Build a knowledge graph among all the medical concept in EHR
 - Identify different concept by node type and edge type
 - Connect the encounters with same patient id
 - Include the past medication entity
 - We can design auxiliary objective on the knowledge graph
 - Knowledge graph completion

Evaluation

- How to evaluate the performance on anomaly detection
 - We don't have such annotated labels
- Generate some anomalous edges
 - Aane: Anomaly aware network embedding for anomalous link detection. ICDM 2020.
- Example
 - Randomly choose some source nodes in the graph
 - Randomly select some target nodes according to the predefined anomaly ratio
 - For each source node
 - sort the candidate target nodes by the distance in descending order
 - add the anomalous edge between source node and candidate target node until the number of anomalous links reaches the predefined anomaly ratio