1. RAM 의 뜻

랜덤 액세스 메모리(Random Access Memory, 임의 접근 기억 장치 램(RAM)은 임의의 영역에 접근하여 읽고 쓰기가 가능한 주기억 장치이다. 반도체 회로로 구성되어 있다. 흔히 RAM을 '읽고 쓸 수 있는 메모리'라는 뜻으로 알고 있는데, 이것은 오해다. RAM은 어느 위치에 저장된 데이터든지 접근(읽기 및 쓰기)하는 데 동일한 시간이 걸리는 메모리이기에 '랜덤(Random, 무작위)'이라는 명칭이 주어진다. 반면 하드 디스크, 플로피 디스크 등의 자기 디스크나 자기 테이프는 저장된 위치에 따라 접근하는 데 걸리는 시간이 다르다.

2. RAM의 종류

위에서부터 DIP, SIPP, SIMM 30핀, SIMM 72핀, DIMM (SDRAM), DIMM(DDR-SDRAM)

3. 한글의 인코딩 방식

EUC-KR은 KS X 1001과 KS X 1003 표준안의 인코딩 방식이며, CP949(MS949,

x-windows-949)는 확장 완성형의 인코딩 방식이다. 그러므로 EUC-KR은 2,350자의 한글, CP949는 11,172자의 한글을 표현할 수 있다. 그러나 Java에서는 CP949와 MS949를 다르게 취급한다. CP949는 IBM에서 처음 지정한 코드 페이지(sun.nio.cs.ext.IBM949)가 기준이고 Microsoft가 제정한 확장 완성형은 MS949(sun.nio.cs.ext.MS949)를 기준이다. 그러므로 Java에서는 CP949와 EUC-KR이 사실상 같으며, 확장 완성형을 사용하기 위해서는 MS949로 지정해야 한다.

4. 한글 인코딩 방식은 크게 두가지로 나뉩니다.

UTF-8 과 EUC-KR 방식입니다. 원래 윈도우는 CP949방식을 사용했는데, 윈도우를 개발한 마이크로 소프트에서 EUC-KR 방식에서 확장하였기 때문에 MS949라고도 부릅니다. 참고로 현재는 윈도우가 유니코드도 지원하며, 요즘 개발되는 윈도우는 유니코드를 베이스로 베이스로 하고 있다고 한다.

한글 표현에 따라 조합형와 완성형으로 불린다.

5. 조합형 방식

한글의 편리함을 그대로 가지고 있는 방식입니다. 자음과 모음을 초성, 중성, 종성으로 구분하여 문자를 작성하는 방식을 이야기 합니다. 초성, 중성, 종성을 각기 따로 인식하고 그 것들을 하나의 바이트로 인식하고 조합되어. 총 3바이트의 문자로 인식.

6. 완성형 방식

문자를 하나의 완성되어져 있는 글자로 인식하는 방식입니다. 한글이 "가"부터 만들어 질 수 있는 문자표를 토대로 문자를 인식합니다. 유니코드보다는 확장성이 떨어지는데 그 이유는 만약 "꽰" 이라는 글자가 완성형 문자표가 있지않다면 "□" 식으로 표기가 된다.

누가봐도 조합형인 조합형 방식이 한글을 표현하는데에 가장 좋은 방법입니다. 왜냐하면 확장성이 좋으니깐요.

하지만, 일반적으로 대한민국의 컴퓨터 사용환경에서 조합형방식을 사용하기에는 아주 치명적인 결함이 있습니다. 그 이유는 바로..

윈도우의 운영체제 점유율 때문입니다.

윈도우의 인코딩 방식은 기본적으로 완성형입니다. 엄밀하게 이야기 하자면, CP949 (코드페이지 949) 방식을 사용하여 완성형으로 사용하지요. 완성형이지만 EUC-KR에서 진화한 CP949 방식은 더 많은 한글 테이블을 제공합니다. 거의 조합형로 쓸 수 있는 모든 한글을 포함하고 있다고 보시면 됩니다.

즉, 한글 작성에 있어서는 조합형와 별반 다르지 않았습니다. 그런데, 왜 이게 웹 서버스를 시작하면서 문제가 되느냐, 웹서버나 데이터베이스 또는 php의 경우에 UTF-8과 EUC-KR

중에서 인코딩을 서로 똑같이 맞춰줘야 정상적으로 문자표현이 가능하기 때문입니다.