

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in \*

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

| Ν        | = 137000 N    | M <sub>x</sub> | = 3920000 Nmm  | $\sigma_{a}$           | = 260 N/mm <sup>2</sup>   | G                     | $= 76000 \text{ N/mm}^2$ |
|----------|---------------|----------------|----------------|------------------------|---------------------------|-----------------------|--------------------------|
| $M_t$    | = 6920000 Nmm | $M_{v}$        | = -7330000 Nmm | E                      | $= 200000 \text{ N/mm}^2$ |                       |                          |
| $x_{G}$  | =             | $J_{xy}$       | =              | σ(M                    |                           | $\sigma_{mis}$        | ses=                     |
| $y_G$    | =             | $J_{u}$        | =              | $\tau(M_t$             | ,) =                      | $\sigma_{\text{st.}}$ | <sub>ven</sub> =         |
| $u_{o}$  | =             | $J_v$          | =              | σ                      | =                         | $\theta_{t}$          | =                        |
| $V_{o}$  | =             | α              | =              | τ                      | =                         | $r_u$                 | =                        |
| Α        | =             | $J_t$          | =              | $\sigma_{l}$           | =                         | $r_{v}$               | =                        |
| $J_xx$   | =             | σ(N            |                | $\sigma_{II}$          | =                         | $r_{o}$               | =                        |
| $J_{yy}$ | =             | σ(M            | x)=            | $\sigma_{\text{tres}}$ | ca=                       |                       |                          |
| _        |               |                |                |                        |                           |                       |                          |



Calcolo degli sforzi in \* con forze baricentriche essendo \* il punto C di BC

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in \*

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

```
Facoltativo: rappresentare l'andamento delle tens. tangenziali. 00 N M_x = 2850000 \text{ Nmm} \sigma_a = 260 \text{ N/mm}^2
                                                                                                                                                            = 76000 \text{ N/mm}^2
Ν
         = 148000 N
                                                                                                                                                   G
                                                                                                 \sigma_{a}
                                                                                                           = 200000 \text{ N/mm}^2
         = 7370000 Nmm
                                                          = -7810000 Nmm
M₊
                                                                                                 Ε
                                                                                                 \sigma(M_v)=
X_{\mathsf{G}}
                                                                                                                                                   \sigma_{\text{mises}} =
                                                                                                 \tau(M_t) =
y_G
                                                                                                 σ
                                                α
                                                                                                 \sigma_{\text{I}}
                                                \sigma(N) =
                                                                                                 \sigma_{\text{II}}
                                                \sigma(M_x)=
```



Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in \*

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

| Ν        | = 158000 N    | M <sub>x</sub> | = 3140000 Nmm  | $\sigma_{a}$    | $= 260 \text{ N/mm}^2$     | G                     | $= 76000 \text{ N/mm}^2$ |
|----------|---------------|----------------|----------------|-----------------|----------------------------|-----------------------|--------------------------|
| $M_t$    | = 5290000 Nmm | $M_{v}$        | = -8220000 Nmm | E               | = 200000 N/mm <sup>2</sup> |                       |                          |
| $x_{G}$  | =             | $J_{xy}$       | =              | σ(M             | y.                         | $\sigma_{mis}$        | ses=                     |
| $y_G$    | =             | $J_{u}$        | =              | $\tau(M_1$      | <u>,</u> ) =               | $\sigma_{\text{st.}}$ | <sub>ven</sub> =         |
| $u_{o}$  | =             | $J_v$          | =              | σ               | =                          | $\theta_{t}$          | =                        |
| $V_{o}$  | =             | α              | =              | τ               | =                          | $r_u$                 | =                        |
| Α        | =             | $J_t$          | =              | $\sigma_{l}$    | =                          | $r_{v}$               | =                        |
| $J_xx$   | =             | σ(N            |                | $\sigma_{II}$   | =                          | $r_{o}$               | =                        |
| $J_{yy}$ | =             | σ(M            | _x)=           | $\sigma_{tres}$ | ca=                        |                       |                          |
| _        |               |                |                |                 |                            |                       |                          |



Operare le conclusioni sulla verifica di resistenza in \*

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

```
Facoltativo: rappresentare l'andamento delle tens. tangenziali. 00 N M_x = 3410000 \text{ Nmm} \sigma_a = 260 \text{ N/mm}^2
                                                                                                                                                            = 76000 \text{ N/mm}^2
Ν
         = 114000 N
                                                                                                                                                   G
                                                                                                  \sigma_{a}
                                                                                                           = 200000 \text{ N/mm}^2
         = 5750000 Nmm
                                                          = -8580000 Nmm
M₊
                                                                                                  Ε
                                                                                                  \sigma(M_v)=
X_{\mathsf{G}}
                                                                                                                                                   \sigma_{\text{mises}} =
                                                                                                  \tau(M_t) =
y_G
                                                                                                  σ
                                                 α
                                                                                                  \sigma_{\text{I}}
                                                 \sigma(N) =
                                                                                                  \sigma_{\text{II}}
                                                 \sigma(M_x)=
```



Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in \*

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

| Ν        | = 136000 N    | M <sub>x</sub> | = 3850000 Nmm  | $\sigma_{a}$    | $= 260 \text{ N/mm}^2$     | G                     | $= 76000 \text{ N/mm}^2$ |
|----------|---------------|----------------|----------------|-----------------|----------------------------|-----------------------|--------------------------|
| $M_t$    | = 6820000 Nmm | $M_{v}$        | = -7160000 Nmm | E               | = 200000 N/mm <sup>2</sup> |                       |                          |
| $x_{G}$  | =             | $J_{xy}$       | =              | σ(M             |                            | $\sigma_{mis}$        | ses=                     |
| $y_G$    | =             | $J_{u}$        | =              | $\tau(M_1$      | <u>,</u> ) =               | $\sigma_{\text{st.}}$ | <sub>ven</sub> =         |
| $u_{o}$  | =             | $J_v$          | =              | σ               | =                          | $\theta_{t}$          | =                        |
| $V_{o}$  | =             | α              | =              | τ               | =                          | $r_u$                 | =                        |
| Α        | =             | $J_t$          | =              | $\sigma_{l}$    | =                          | $r_{v}$               | =                        |
| $J_xx$   | =             | σ(N            |                | $\sigma_{II}$   | =                          | $r_{o}$               | =                        |
| $J_{yy}$ | =             | σ(M            | _x)=           | $\sigma_{tres}$ | ca=                        |                       |                          |
| _        |               |                |                |                 |                            |                       |                          |



Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in \*

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

| Ν        | = 147000 N    | M <sub>×</sub> | = 2790000 Nmm   | $\sigma_{\rm a}$     | $= 260 \text{ N/mm}^2$    | G               | $= 76000 \text{ N/mm}^2$ |
|----------|---------------|----------------|-----------------|----------------------|---------------------------|-----------------|--------------------------|
| $M_t$    | = 7260000 Nmm | $M_{v}$        | = -7610000 Nmm  |                      | $= 200000 \text{ N/mm}^2$ |                 |                          |
| $x_{G}$  | =             | $J_{xy}$       | =               | σ(M                  | <i>y</i> ·                | $\sigma_{mis}$  | ses=                     |
| $y_{G}$  | =             | $J_u$          | =               | τ(M                  | <sub>t</sub> ) =          | $\sigma_{st.v}$ | <sub>/en</sub> =         |
| $u_o$    | =             | $J_v$          | =               | σ                    | =                         | $\Theta_{t}$    | =                        |
| $V_{o}$  | =             | α              | =               | τ                    | =                         | $r_u$           | =                        |
| Α        | =             | $J_t$          | =               | $\sigma_{\text{I}}$  | =                         | $r_{v}$         | =                        |
| $J_xx$   | =             | σ(N            |                 | $\sigma_{\text{II}}$ | =                         | $r_{o}$         | =                        |
| $J_{yy}$ | =             | σ(M            | <sub>×</sub> )= | $\sigma_{tres}$      | ca=                       |                 |                          |



Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in \*

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

| Ν        | = 157000 N    | M <sub>×</sub> | = 3070000 Nmm  | $\sigma_{a}$           | $= 260 \text{ N/mm}^2$    | G                     | $= 76000 \text{ N/mm}^2$ |
|----------|---------------|----------------|----------------|------------------------|---------------------------|-----------------------|--------------------------|
| $M_t$    | = 5210000 Nmm | $M_{v}$        | = -8000000 Nmm | E                      | $= 200000 \text{ N/mm}^2$ |                       |                          |
| $x_{G}$  | =             | $J_{xy}$       | =              | σ(M                    | y.                        | $\sigma_{mis}$        | ses=                     |
| $y_G$    | =             | $J_{u}$        | =              | $\tau(M_t$             | <u>,</u> ) =              | $\sigma_{\text{st.}}$ | <sub>ven</sub> =         |
| $u_o$    | =             | $J_v$          | =              | σ                      | =                         | $\theta_{t}$          | =                        |
| $V_{o}$  | =             | α              | =              | τ                      | =                         | $r_u$                 | =                        |
| Α        | =             | $J_t$          | =              | $\sigma_{l}$           | =                         | $r_{v}$               | =                        |
| $J_xx$   | =             | σ(N            |                | $\sigma_{II}$          | =                         | $r_{o}$               | =                        |
| $J_{yy}$ | =             | σ(M            | _x)=           | $\sigma_{\text{tres}}$ | ca=                       |                       |                          |
| _        |               |                |                |                        |                           |                       |                          |



Operare le conclusioni sulla verifica di resistenza in \*

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

| Ν        | = 113000 N    | M <sub>x</sub> | = 3340000 Nmm  | $\sigma_{a}$         | = 260 N/mm <sup>2</sup>   | G                     | $= 76000 \text{ N/mm}^2$ |
|----------|---------------|----------------|----------------|----------------------|---------------------------|-----------------------|--------------------------|
| $M_t$    | = 5650000 Nmm | $M_{v}$        | = -8330000 Nmm |                      | $= 200000 \text{ N/mm}^2$ |                       |                          |
| $x_{G}$  | =             | $J_{xy}$       | =              | σ(M                  | y.                        | $\sigma_{mis}$        | es=                      |
| $y_{G}$  | =             | $J_u$          | =              | $\tau(M_t$           | <sub>t</sub> ) =          | $\sigma_{\text{st.}}$ | <sub>ren</sub> =         |
| $u_o$    | =             | $J_v$          | =              | σ                    | =                         | $\theta_{t}$          | =                        |
| $V_{o}$  | =             | α              | =              | τ                    | =                         | $\mathbf{r}_{u}$      | =                        |
| Α        | =             | $J_t$          | =              | $\sigma_{l}$         | =                         | $r_{v}$               | =                        |
| $J_xx$   | =             | σ(N            |                | $\sigma_{\text{II}}$ | =                         | $r_{o}$               | =                        |
| $J_{yy}$ | =             | σ(M            | x)=            | $\sigma_{tres}$      | ca=                       |                       |                          |
|          |               |                |                |                      |                           |                       |                          |



Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in \*

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

| Ν        | = 136000 N    | M <sub>x</sub> | = 3780000 Nmm  | $\sigma_{a}$    | = 260 N/mm <sup>2</sup>   | G                      | $= 76000 \text{ N/mm}^2$ |
|----------|---------------|----------------|----------------|-----------------|---------------------------|------------------------|--------------------------|
| $M_t$    | = 6720000 Nmm | $M_{v}$        | = -7010000 Nmm |                 | $= 200000 \text{ N/mm}^2$ |                        |                          |
| $x_{G}$  | =             | $J_{xy}$       | =              | σ(M             | <sub>y</sub> )=           | $\sigma_{mis}$         | es=                      |
| $y_G$    | =             | $J_{u}$        | =              | $\tau(M_t$      | <u>,</u> ) =              | $\sigma_{\text{st.v}}$ | <sub>ren</sub> =         |
| $u_o$    | =             | $J_v$          | =              | σ               | =                         | $\theta_{t}$           | =                        |
| $V_{o}$  | =             | α              | =              | τ               | =                         | $\mathbf{r}_{u}$       | =                        |
| Α        | =             | $J_t$          | =              | $\sigma_{l}$    | =                         | $r_{v}$                | =                        |
| $J_xx$   | =             | $\sigma(N)$    |                | $\sigma_{II}$   | =                         | $r_{o}$                | =                        |
| $J_{yy}$ | =             | σ(M            | x)=            | $\sigma_{tres}$ | ca=                       |                        |                          |
|          |               |                |                |                 |                           |                        |                          |



Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in \*

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

| Ν        | = 146000 N    | M <sub>x</sub> | = 2740000 Nmm   | $\sigma_{a}$           | = 260 N/mm <sup>2</sup>   | G                     | $= 76000 \text{ N/mm}^2$ |
|----------|---------------|----------------|-----------------|------------------------|---------------------------|-----------------------|--------------------------|
| $M_t$    | = 7150000 Nmm | $M_{v}$        | = -7440000 Nmm  | E                      | $= 200000 \text{ N/mm}^2$ |                       |                          |
| $x_{G}$  | =             | $J_{xy}$       | =               | σ(M                    | <sub>y</sub> )=           | $\sigma_{mis}$        | ses=                     |
| $y_{G}$  | =             | $J_{u}$        | =               | $\tau(M_1$             | ,) =                      | $\sigma_{\text{st.}}$ | <sub>ven</sub> =         |
| $u_{o}$  | =             | $J_v$          | =               | σ                      | =                         | $\theta_{t}$          | =                        |
| $V_{o}$  | =             | α              | =               | τ                      | =                         | $r_u$                 | =                        |
| Α        | =             | $J_t$          | =               | $\sigma_{l}$           | =                         | $r_{v}$               | =                        |
| $J_{xx}$ | =             | σ(N            | ) =             | $\sigma_{\text{II}}$   | =                         | $r_{o}$               | =                        |
| $J_{yy}$ | =             | σ(M            | =( <sub>x</sub> | $\sigma_{\text{tres}}$ | ca=                       |                       |                          |



Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in \*

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

| Ν        | = 156000 N    | M <sub>x</sub> | = 3010000 Nmm  | $\sigma_{a}$           | = 260 N/mm <sup>2</sup>   | G                      | $= 76000 \text{ N/mm}^2$ |
|----------|---------------|----------------|----------------|------------------------|---------------------------|------------------------|--------------------------|
| $M_t$    | = 5120000 Nmm | $M_{v}$        | = -7800000 Nmm |                        | $= 200000 \text{ N/mm}^2$ |                        |                          |
| $x_{G}$  | =             | $J_{xy}$       | =              | σ(M                    | <sub>y</sub> )=           | $\sigma_{mis}$         | es=                      |
| $y_{G}$  | =             | $J_u$          | =              | $\tau(M_t$             | <sub>t</sub> ) =          | $\sigma_{\text{st.v}}$ | <sub>ren</sub> =         |
| $u_o$    | =             | $J_v$          | =              | σ                      | =                         | $\theta_{t}$           | =                        |
| $V_{o}$  | =             | α              | =              | τ                      | =                         | $\mathbf{r}_{u}$       | =                        |
| Α        | =             | $J_t$          | =              | $\sigma_{l}$           | =                         | $r_{v}$                | =                        |
| $J_xx$   | =             | $\sigma(N)$    |                | $\sigma_{II}$          | =                         | $r_{o}$                | =                        |
| $J_{yy}$ | =             | σ(M            | x)=            | $\sigma_{\text{tres}}$ | ca=                       |                        |                          |
|          |               |                |                |                        |                           |                        |                          |



Operare le conclusioni sulla verifica di resistenza in \*

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

| Ν        | = 112000 N    | M <sub>×</sub> | = 3270000 Nmm   | $\sigma_{a}$           | $= 260 \text{ N/mm}^2$    | G               | $= 76000 \text{ N/mm}^2$ |
|----------|---------------|----------------|-----------------|------------------------|---------------------------|-----------------|--------------------------|
| $M_t$    | = 5550000 Nmm | $M_{v}$        | = -8100000 Nmm  |                        | $= 200000 \text{ N/mm}^2$ |                 |                          |
| $x_{G}$  | =             | $J_{xy}$       | =               | σ(M                    | y ·                       | $\sigma_{mis}$  | ses=                     |
| $y_{G}$  | =             | $J_u$          | =               | $\tau(M_1$             | .) =                      | $\sigma_{st.v}$ | <sub>/en</sub> =         |
| $u_o$    | =             | $J_v$          | =               | σ                      | =                         | $\theta_{t}$    | =                        |
| $V_{o}$  | =             | α              | =               | τ                      | =                         | $r_u$           | =                        |
| Α        | =             | $J_t$          | =               | $\sigma_{l}$           | =                         | $r_{v}$         | =                        |
| $J_xx$   | =             | $\sigma(N)$    |                 | $\sigma_{II}$          | =                         | $r_{o}$         | =                        |
| $J_{yy}$ | =             | σ(M            | <sub>×</sub> )= | $\sigma_{\text{tres}}$ | ca=                       |                 |                          |



Operare le conclusioni sulla verifica di resistenza in \*

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

| Ν        | = 135000 N    | M <sub>×</sub> | = 3710000 Nmm  | $\sigma_{\rm a}$     | = 260 N/mm <sup>2</sup>   | G               | $= 76000 \text{ N/mm}^2$ |
|----------|---------------|----------------|----------------|----------------------|---------------------------|-----------------|--------------------------|
| $M_t$    | = 6620000 Nmm | $M_{v}$        | = -6860000 Nmm |                      | $= 200000 \text{ N/mm}^2$ |                 |                          |
| $x_{G}$  | =             | $J_{xy}$       | =              | σ(M                  | J ·                       | $\sigma_{mis}$  | ses=                     |
| $y_{G}$  | =             | $J_u$          | =              | τ(M                  | <sub>t</sub> ) =          | $\sigma_{st.v}$ | <sub>/en</sub> =         |
| $u_o$    | =             | $J_v$          | =              | σ                    | =                         | $\Theta_{t}$    | =                        |
| $V_{o}$  | =             | α              | =              | τ                    | =                         | $r_u$           | =                        |
| Α        | =             | $J_t$          | =              | $\sigma_{\text{I}}$  | =                         | $r_{v}$         | =                        |
| $J_{xx}$ | =             | σ(N            | ) =            | $\sigma_{\text{II}}$ | =                         | $r_{o}$         | =                        |
| $J_{yy}$ | =             | σ(M            | x)=            | $\sigma_{tres}$      | <sub>sca</sub> =          |                 |                          |



Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in \*

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

| Ν        | = 145000 N    | M <sub>×</sub> | = 2690000 Nmm   | $\sigma_{a}$           | $= 260 \text{ N/mm}^2$    | G               | $= 76000 \text{ N/mm}^2$ |
|----------|---------------|----------------|-----------------|------------------------|---------------------------|-----------------|--------------------------|
| $M_t$    | = 7040000 Nmm | $M_{v}$        | = -7270000 Nmm  |                        | $= 200000 \text{ N/mm}^2$ |                 |                          |
| $x_{G}$  | =             | $J_{xy}$       | =               | σ(M                    | y ·                       | $\sigma_{mis}$  | ses=                     |
| $y_{G}$  | =             | $J_u$          | =               | $\tau(M_1$             | .) =                      | $\sigma_{st.v}$ | <sub>/en</sub> =         |
| $u_o$    | =             | $J_v$          | =               | σ                      | =                         | $\Theta_{t}$    | =                        |
| $V_{o}$  | =             | α              | =               | τ                      | =                         | $r_u$           | =                        |
| Α        | =             | $J_t$          | =               | $\sigma_{l}$           | =                         | $r_{v}$         | =                        |
| $J_{xx}$ | =             | $\sigma(N)$    |                 | $\sigma_{II}$          | =                         | $r_{o}$         | =                        |
| $J_{yy}$ | =             | σ(M            | <sub>x</sub> )= | $\sigma_{\text{tres}}$ | ca=                       |                 |                          |



Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in \*

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

```
Facoltativo: rappresentare l'andamento delle tens. tangenziali. 00 N M_x = 2950000 \text{ Nmm} \sigma_a = 260 \text{ N/mm}^2
                                                                                                                                                               = 76000 \text{ N/mm}^2
Ν
         = 155000 N
                                                                                                                                                      G
                                                                                                   \sigma_{a}
                                                                                                             = 200000 \text{ N/mm}^2
         = 5050000 Nmm
                                                           = -7620000 Nmm
M₊
                                                                                                   Ε
                                                                                                   \sigma(M_v)=
X_{\mathsf{G}}
                                                                                                                                                      \sigma_{\text{mises}} =
                                                                                                   \tau(M_{\star}) =
y_G
                                                                                                   σ
                                                 α
                                                                                                   \sigma_{\text{I}}
                                                 \sigma(N) =
J_{xx}
                                                                                                   \sigma_{\text{II}}
                                                 \sigma(M_x)=
```



Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in \*

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

| Ν        | = 111000 N    | M <sub>x</sub> | = 3200000 Nmm  | $\sigma_{a}$    | = 260 N/mm <sup>2</sup>   | G                      | $= 76000 \text{ N/mm}^2$ |
|----------|---------------|----------------|----------------|-----------------|---------------------------|------------------------|--------------------------|
| $M_t$    | = 5460000 Nmm | $M_{v}$        | = -7900000 Nmm |                 | $= 200000 \text{ N/mm}^2$ |                        |                          |
| $x_{G}$  | =             | $J_{xy}$       | =              | σ(M             | y.                        | $\sigma_{mis}$         | es=                      |
| $y_{G}$  | =             | $J_u$          | =              | $\tau(M_t$      | <sub>t</sub> ) =          | $\sigma_{\text{st.v}}$ | <sub>ren</sub> =         |
| $u_o$    | =             | $J_v$          | =              | σ               | =                         | $\theta_{t}$           | =                        |
| $V_{o}$  | =             | α              | =              | τ               | =                         | $\mathbf{r}_{u}$       | =                        |
| Α        | =             | $J_t$          | =              | $\sigma_{l}$    | =                         | $r_{v}$                | =                        |
| $J_xx$   | =             | $\sigma(N)$    |                | $\sigma_{II}$   | =                         | $r_{o}$                | =                        |
| $J_{yy}$ | =             | σ(M            | x)=            | $\sigma_{tres}$ | ca=                       |                        |                          |
|          |               |                |                |                 |                           |                        |                          |



Operare le conclusioni sulla verifica di resistenza in \*

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

| Ν        | = 144000 N    | M <sub>×</sub> | = 5890000 Nmm   | $\sigma_{\rm a}$     | = 260 N/mm <sup>2</sup>   | G                     | $= 76000 \text{ N/mm}^2$ |
|----------|---------------|----------------|-----------------|----------------------|---------------------------|-----------------------|--------------------------|
| $M_t$    | = 8920000 Nmm | $M_{v}$        | = -7950000 Nmm  | E                    | $= 200000 \text{ N/mm}^2$ |                       |                          |
| $x_{G}$  | =             | $J_{xy}$       | =               | σ(M                  | <sub>y</sub> )=           | $\sigma_{mis}$        | ses=                     |
| $y_{G}$  | =             | $J_{u}$        | =               | τ(M                  | <u>,</u> ) =              | $\sigma_{\text{st.}}$ | <sub>ven</sub> =         |
| $u_{o}$  | =             | $J_v$          | =               | σ                    | =                         | $\theta_{t}$          | =                        |
| $V_{o}$  | =             | α              | =               | τ                    | =                         | $r_u$                 | =                        |
| Α        | =             | $J_t$          | =               | $\sigma_{\text{I}}$  | =                         | $r_{v}$               | =                        |
| $J_{xx}$ | =             | σ(N            | ) =             | $\sigma_{\text{II}}$ | =                         | $r_{o}$               | =                        |
| $J_{yy}$ | =             | σ(M            | =( <sub>x</sub> | $\sigma_{tres}$      | ca=                       |                       |                          |



Operare le conclusioni sulla verifica di resistenza in \*

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

| N        | = 158000 N    | M <sub>x</sub> | = 4310000 Nmm  | $\sigma_{a}$           | = 260 N/mm <sup>2</sup>   | G                      | $= 76000 \text{ N/mm}^2$ |
|----------|---------------|----------------|----------------|------------------------|---------------------------|------------------------|--------------------------|
| $M_t$    | = 9640000 Nmm | $M_{v}$        | = -8790000 Nmm | E                      | $= 200000 \text{ N/mm}^2$ |                        |                          |
| $x_{G}$  | =             | $J_{xy}$       | =              | σ(M                    | <sub>y</sub> )=           | $\sigma_{mis}$         | es=                      |
| $y_{G}$  | =             | $J_{u}$        | =              | $\tau(M_t$             | <u>)</u> =                | $\sigma_{\text{st.v}}$ |                          |
| $u_o$    | =             | $J_v$          | =              | σ                      | =                         | $\theta_{t}$           | =                        |
| $V_{o}$  | =             | α              | =              | τ                      | =                         | $\mathbf{r}_{u}$       | =                        |
| Α        | =             | $J_t$          | =              | $\sigma_{I}$           | =                         | $r_{v}$                | =                        |
| $J_{xx}$ | =             | σ(N            | ) =            | $\sigma_{\text{II}}$   | =                         | $r_{o}$                | =                        |
| $J_{yy}$ | =             | σ(M            | x)=            | $\sigma_{\text{tres}}$ | ca=                       |                        |                          |



Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in \*

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

| Ν        | = 171000 N    | M <sub>×</sub> | = 4780000 Nmm  | $\sigma_{\rm a}$     | = 260 N/mm <sup>2</sup>   | G                      | $= 76000 \text{ N/mm}^2$ |
|----------|---------------|----------------|----------------|----------------------|---------------------------|------------------------|--------------------------|
| $M_t$    | = 7040000 Nmm | $M_{v}$        | = -9600000 Nmm | E                    | $= 200000 \text{ N/mm}^2$ |                        |                          |
| $x_{G}$  | =             | $J_{xy}$       | =              | σ(M                  | l <sub>y</sub> )=         | $\sigma_{mis}$         | ses=                     |
| $y_{G}$  | =             | $J_{u}$        | =              | τ(M                  | , ( ) =                   | $\sigma_{\text{st.v}}$ | <sub>/en</sub> =         |
| $u_{o}$  | =             | $J_v$          | =              | σ                    | =                         | $\theta_{t}$           | =                        |
| $V_{o}$  | =             | α              | =              | τ                    | =                         | $r_u$                  | =                        |
| Α        | =             | $J_t$          | =              | $\sigma_{\text{I}}$  | =                         | $r_{v}$                | =                        |
| $J_{xx}$ | =             | σ(N            | ) =            | $\sigma_{\text{II}}$ | =                         | $r_{o}$                | =                        |
| $J_{yy}$ | =             | σ(M            | (x)=           | $\sigma_{tres}$      | sca=                      |                        |                          |



Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in \*

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

| Ν        | = 126000 N    | M <sub>x</sub> | = 5260000 Nmm   | $\sigma_{a}$           | = 260 N/mm <sup>2</sup>   | G                      | $= 76000 \text{ N/mm}^2$ |
|----------|---------------|----------------|-----------------|------------------------|---------------------------|------------------------|--------------------------|
| $M_t$    | = 7800000 Nmm | $M_{v}$        | = -10300000 Nmm | E                      | $= 200000 \text{ N/mm}^2$ |                        |                          |
| $x_{G}$  | =             | $J_{xy}$       | =               | σ(M                    | <sub>y</sub> )=           | $\sigma_{mis}$         | es=                      |
| $y_G$    | =             | $J_{u}$        | =               | $\tau(M_t)$            | <u>)</u> =                | $\sigma_{\text{st.v}}$ | ren=                     |
| $u_{o}$  | =             | $J_v$          | =               | σ                      | =                         | $\theta_{t}$           | =                        |
| $V_{o}$  | =             | α              | =               | τ                      | =                         | $\mathbf{r}_{u}$       | =                        |
| Α        | =             | $J_t$          | =               | $\sigma_{I}$           | =                         | $r_{v}$                | =                        |
| $J_xx$   | =             | σ(N)           |                 | $\sigma_{\text{II}}$   | =                         | $r_{o}$                | =                        |
| $J_{yy}$ | =             | σ(M            | <sub>×</sub> )= | $\sigma_{\text{tres}}$ |                           |                        |                          |



Operare le conclusioni sulla verifica di resistenza in \*

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

| Ν        | = 145000 N    | M <sub>×</sub> | = 5920000 Nmm  | $\sigma_{\rm a}$     | = 260 N/mm <sup>2</sup>   | G                     | $= 76000 \text{ N/mm}^2$ |
|----------|---------------|----------------|----------------|----------------------|---------------------------|-----------------------|--------------------------|
| $M_t$    | = 8960000 Nmm | $M_{v}$        | = -7940000 Nmm | E                    | $= 200000 \text{ N/mm}^2$ |                       |                          |
| $x_{G}$  | =             | $J_{xy}$       | =              | σ(M                  | <sub>y</sub> )=           | $\sigma_{mis}$        | ses=                     |
| $y_G$    | =             | $J_{u}$        | =              | τ(M                  | ,) =                      | $\sigma_{\text{st.}}$ | <sub>ven</sub> =         |
| $u_o$    | =             | $J_v$          | =              | σ                    | =                         | $\theta_{t}$          | =                        |
| $V_{o}$  | =             | α              | =              | τ                    | =                         | $r_{u}$               | =                        |
| Α        | =             | $J_t$          | =              | $\sigma_{\text{I}}$  | =                         | $r_{v}$               | =                        |
| $J_{xx}$ | =             | σ(N            | ) =            | $\sigma_{\text{II}}$ | =                         | $r_{o}$               | =                        |
| $J_{yy}$ | =             | σ(M            | (x)=           | $\sigma_{tres}$      | ca=                       |                       |                          |



Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in \*

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

| Ν        | = 158000 N    | M <sub>×</sub>    | = 4330000 Nmm   | $\sigma_{a}$         | = 260 N/mm <sup>2</sup>   | G               | $= 76000 \text{ N/mm}^2$ |
|----------|---------------|-------------------|-----------------|----------------------|---------------------------|-----------------|--------------------------|
| $M_t$    | = 9690000 Nmm | $M_{v}^{\lambda}$ | = -8770000 Nmm  | E                    | $= 200000 \text{ N/mm}^2$ |                 |                          |
| $x_{G}$  | =             | $J_{xy}$          | =               | σ(M                  |                           | $\sigma_{mis}$  | ses=                     |
| $y_G$    | =             | $J_{u}$           | =               | $\tau(M_1$           | t) =                      | $\sigma_{st.v}$ | <sub>ven</sub> =         |
| $u_{o}$  | =             | $J_v$             | =               | σ                    | =                         | $\Theta_{t}$    | =                        |
| $V_{o}$  | =             | α                 | =               | τ                    | =                         | $r_u$           | =                        |
| Α        | =             | $J_t$             | =               | $\sigma_{l}$         | =                         | $r_{v}$         | =                        |
| $J_xx$   | =             | σ(N               | •               | $\sigma_{\text{II}}$ | =                         | $r_{o}$         | =                        |
| $J_{yy}$ | =             | σ(M               | <sub>x</sub> )= | $\sigma_{tres}$      | <sub>sca</sub> =          |                 |                          |
| _        |               |                   |                 |                      |                           |                 |                          |



Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in \*

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

| Ν        | = 172000 N    | M <sub>×</sub> | = 4800000 Nmm   | $\sigma_{a}$           | $= 260 \text{ N/mm}^2$    | G               | $= 76000 \text{ N/mm}^2$ |
|----------|---------------|----------------|-----------------|------------------------|---------------------------|-----------------|--------------------------|
| $M_t$    | = 7060000 Nmm | $M_{v}$        | = -9590000 Nmm  |                        | $= 200000 \text{ N/mm}^2$ |                 |                          |
| $x_{G}$  | =             | $J_{xy}$       | =               | σ(M                    |                           | $\sigma_{mis}$  | ses=                     |
| $y_{G}$  | =             | $J_u$          | =               | $\tau(M_1$             | <sub>t</sub> ) =          | $\sigma_{st.v}$ | <sub>/en</sub> =         |
| $u_o$    | =             | $J_v$          | =               | σ                      | =                         | $\Theta_{t}$    | =                        |
| $V_{o}$  | =             | α              | =               | τ                      | =                         | $r_u$           | =                        |
| Α        | =             | $J_t$          | =               | $\sigma_{l}$           | =                         | $r_{v}$         | =                        |
| $J_{xx}$ | =             | σ(N            |                 | $\sigma_{II}$          | =                         | $r_{o}$         | =                        |
| $J_{yy}$ | =             | σ(M            | =( <sub>x</sub> | $\sigma_{\text{tres}}$ | ca=                       |                 |                          |
| _        |               |                |                 |                        |                           |                 |                          |



Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in \*

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

| Ν        | = 126000 N    | M <sub>x</sub> | = 5250000 Nmm   | $\sigma_{a}$           | = 260 N/mm <sup>2</sup>   | G                      | $= 76000 \text{ N/mm}^2$ |
|----------|---------------|----------------|-----------------|------------------------|---------------------------|------------------------|--------------------------|
| $M_t$    | = 7790000 Nmm | $M_{v}$        | = -10300000 Nmm | E                      | $= 200000 \text{ N/mm}^2$ |                        |                          |
| $x_G$    | =             | $J_{xy}$       | =               | σ(M                    | <sub>v</sub> )=           | $\sigma_{mis}$         | es=                      |
| $y_{G}$  | =             | $J_{u}$        | =               | $\tau(M_t)$            | ) =                       | $\sigma_{\text{st.v}}$ | ren=                     |
| $u_o$    | =             | $J_v$          | =               | σ                      | =                         | $\theta_{t}$           | =                        |
| $V_{o}$  | =             | α              | =               | τ                      | =                         | $r_u$                  | =                        |
| Α        | =             | $J_t$          | =               | $\sigma_{I}$           | =                         | $r_{v}$                | =                        |
| $J_{xx}$ | =             | $\sigma(N)$    |                 | $\sigma_{\text{II}}$   | =                         | $r_{o}$                | =                        |
| $J_{yy}$ | =             | σ(M            | <sub>×</sub> )= | $\sigma_{\text{tres}}$ | ca=                       |                        |                          |



Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in \*

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

| Ν        | = 146000 N    | M <sub>×</sub> | = 5950000 Nmm   | $\sigma_{a}$           | $= 260 \text{ N/mm}^2$    | G                     | $= 76000 \text{ N/mm}^2$ |
|----------|---------------|----------------|-----------------|------------------------|---------------------------|-----------------------|--------------------------|
| $M_t$    | = 9010000 Nmm | $M_{v}$        | = -7930000 Nmm  |                        | $= 200000 \text{ N/mm}^2$ |                       |                          |
| $x_{G}$  | =             | $J_{xy}$       | =               | σ(M                    | y.                        | $\sigma_{mis}$        | ses=                     |
| $y_{G}$  | =             | $J_{u}$        | =               | $\tau(M_1$             | ,) =                      | $\sigma_{\text{st.}}$ | <sub>/en</sub> =         |
| $u_{o}$  | =             | $J_v$          | =               | σ                      | =                         | $\theta_{t}$          | =                        |
| $V_{o}$  | =             | α              | =               | τ                      | =                         | $r_u$                 | =                        |
| Α        | =             | $J_t$          | =               | $\sigma_{l}$           | =                         | $r_{v}$               | =                        |
| $J_xx$   | =             | σ(N            |                 | $\sigma_{II}$          | =                         | $r_{o}$               | =                        |
| $J_{yy}$ | =             | σ(M            | <sub>×</sub> )= | $\sigma_{\text{tres}}$ | ca=                       |                       |                          |



Operare le conclusioni sulla verifica di resistenza in \*

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

| Ν        | = 159000 N    | M <sub>×</sub>    | = 4350000 Nmm   | $\sigma_{a}$    | = 260 N/mm <sup>2</sup>   | G                      | $= 76000 \text{ N/mm}^2$ |
|----------|---------------|-------------------|-----------------|-----------------|---------------------------|------------------------|--------------------------|
| $M_t$    | = 9740000 Nmm | $M_{v}^{\lambda}$ | = -8760000 Nmm  | E               | $= 200000 \text{ N/mm}^2$ |                        |                          |
| $x_{G}$  | =             | $J_{xy}$          | =               | σ(M             | <sub>y</sub> )=           | $\sigma_{mis}$         | ses=                     |
| $y_{G}$  | =             | $J_{u}$           | =               | $\tau(M_1$      | <u>,</u> ) =              | $\sigma_{\text{st.v}}$ | <sub>ven</sub> =         |
| $u_{o}$  | =             | $J_v$             | =               | σ               | =                         | $\theta_{t}$           | =                        |
| $V_{o}$  | =             | α                 | =               | τ               | =                         | $r_u$                  | =                        |
| Α        | =             | $J_t$             | =               | $\sigma_{l}$    | =                         | $r_{v}$                | =                        |
| $J_{xx}$ | =             | σ(N               | ) =             | $\sigma_{II}$   | =                         | $r_{o}$                | =                        |
| $J_{yy}$ | =             | σ(M               | =( <sub>x</sub> | $\sigma_{tres}$ | <sub>ca</sub> =           |                        |                          |



Operare le conclusioni sulla verifica di resistenza in \*

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

| Ν        | = 173000 N    | M <sub>x</sub> | = 4820000 Nmm  | $\sigma_{a}$    | = 260 N/mm <sup>2</sup>   | G                     | $= 76000 \text{ N/mm}^2$ |
|----------|---------------|----------------|----------------|-----------------|---------------------------|-----------------------|--------------------------|
| $M_t$    | = 7100000 Nmm | $M_{v}$        | = -9560000 Nmm | E               | $= 200000 \text{ N/mm}^2$ |                       |                          |
| $x_{G}$  | =             | $J_{xy}$       | =              | σ(M             |                           | $\sigma_{mis}$        | ses=                     |
| $y_G$    | =             | $J_{u}$        | =              | $\tau(M_1$      | ,) =                      | $\sigma_{\text{st.}}$ | <sub>ven</sub> =         |
| $u_{o}$  | =             | $J_v$          | =              | σ               | =                         | $\theta_{t}$          | =                        |
| $V_{o}$  | =             | α              | =              | τ               | =                         | $r_u$                 | =                        |
| Α        | =             | $J_t$          | =              | $\sigma_{l}$    | =                         | $r_{v}$               | =                        |
| $J_xx$   | =             | σ(N            |                | $\sigma_{II}$   | =                         | $r_{o}$               | =                        |
| $J_{yy}$ | =             | σ(M            | _x)=           | $\sigma_{tres}$ | ca=                       |                       |                          |
| _        |               |                |                |                 |                           |                       |                          |



Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in \*

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

| Ν        | = 126000 N    | M <sub>x</sub> | = 5270000 Nmm   | $\sigma_{a}$           | = 260 N/mm <sup>2</sup>   | G                      | $= 76000 \text{ N/mm}^2$ |
|----------|---------------|----------------|-----------------|------------------------|---------------------------|------------------------|--------------------------|
| $M_t$    | = 7830000 Nmm | $M_{v}$        | = -10300000 Nmm | E                      | $= 200000 \text{ N/mm}^2$ |                        |                          |
| $x_{G}$  | =             | $J_{xy}$       | =               | σ(M                    | <sub>y</sub> )=           | $\sigma_{mis}$         | ses=                     |
| $y_{G}$  | =             | $J_{u}$        | =               | $\tau(M_1$             | ,) =                      | $\sigma_{\text{st.v}}$ |                          |
| $u_{o}$  | =             | $J_v$          | =               | σ                      | =                         | $\theta_{t}$           | =                        |
| $V_{o}$  | =             | α              | =               | τ                      | =                         | $r_u$                  | =                        |
| Α        | =             | $J_t$          | =               | $\sigma_{I}$           | =                         | $r_{v}$                | =                        |
| $J_{xx}$ | =             | σ(N            | ) =             | $\sigma_{II}$          | =                         | $r_{o}$                | =                        |
| $J_{yy}$ | =             | σ(M            | =( <sub>x</sub> | $\sigma_{\text{tres}}$ | ca=                       |                        |                          |



Operare le conclusioni sulla verifica di resistenza in \*

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

| Ν        | = 146000 N    | M <sub>×</sub> | = 5970000 Nmm  | $\sigma_{a}$    | $= 260 \text{ N/mm}^2$    | G                     | $= 76000 \text{ N/mm}^2$ |
|----------|---------------|----------------|----------------|-----------------|---------------------------|-----------------------|--------------------------|
| $M_t$    | = 9060000 Nmm | $M_{v}$        | = -7930000 Nmm | E               | $= 200000 \text{ N/mm}^2$ |                       |                          |
| $x_{G}$  | =             | $J_{xy}$       | =              | σ(M             |                           | $\sigma_{mis}$        | ses=                     |
| $y_G$    | =             | $J_{u}$        | =              | $\tau(M_1$      | ,) =                      | $\sigma_{\text{st.}}$ | <sub>ven</sub> =         |
| $u_{o}$  | =             | $J_v$          | =              | σ               | =                         | $\theta_{t}$          | =                        |
| $V_{o}$  | =             | α              | =              | τ               | =                         | $r_u$                 | =                        |
| Α        | =             | $J_t$          | =              | $\sigma_{l}$    | =                         | $r_{v}$               | =                        |
| $J_xx$   | =             | σ(N            |                | $\sigma_{II}$   | =                         | $r_{o}$               | =                        |
| $J_{yy}$ | =             | σ(M            | _x)=           | $\sigma_{tres}$ | ca=                       |                       |                          |
| _        |               |                |                |                 |                           |                       |                          |



Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in \*

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

| Ν        | = 160000 N    | $M_x = 4370000 \text{ Nmm}$  | $\sigma_a = 260 \text{ N/mm}^2$ | $G = 76000 \text{ N/mm}^2$ |
|----------|---------------|------------------------------|---------------------------------|----------------------------|
| $M_t$    | = 9790000 Nmm | $M_v = -8750000 \text{ Nmm}$ | $E = 200000 \text{ N/mm}^2$     |                            |
| $x_{G}$  | =             | $J_{xy}$ =                   | $\sigma(M_y)=$                  | $\sigma_{mises}$ =         |
| $y_{G}$  | =             | $J_u$ =                      | $\tau(M_t) =$                   | $\sigma_{\text{st.ven}}$ = |
| $u_o$    | =             | $J_v =$                      | σ =                             | $\theta_t =$               |
| $V_{o}$  | =             | α =                          | τ =                             | $r_u =$                    |
| Α        | =             | $J_t =$                      | $\sigma_{l} =$                  | $r_v =$                    |
| $J_{xx}$ | =             | $\sigma(N) =$                | σ <sub>II</sub> =               | $r_o =$                    |
| $J_{yy}$ | =             | $\sigma(M_x)=$               | $\sigma_{tresca}$ =             |                            |



Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in \*

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

| Ν        | = 173000 N    | M <sub>×</sub> | = 4840000 Nmm   | $\sigma_{a}$           | = 260 N/mm <sup>2</sup>   | G                     | $= 76000 \text{ N/mm}^2$ |
|----------|---------------|----------------|-----------------|------------------------|---------------------------|-----------------------|--------------------------|
| $M_t$    | = 7140000 Nmm | $M_{v}$        | = -9550000 Nmm  | E                      | $= 200000 \text{ N/mm}^2$ |                       |                          |
| $x_{G}$  | =             | $J_{xy}$       | =               | σ(M                    | <sub>y</sub> )=           | $\sigma_{mis}$        | ses=                     |
| $y_{G}$  | =             | $J_{u}$        | =               | $\tau(M_1$             | <u>,</u> ) =              | $\sigma_{\text{st.}}$ | <sub>ven</sub> =         |
| $u_{o}$  | =             | $J_v$          | =               | σ                      | =                         | $\theta_{t}$          | =                        |
| $V_{o}$  | =             | α              | =               | τ                      | =                         | $r_{u}$               | =                        |
| Α        | =             | $J_t$          | =               | $\sigma_{l}$           | =                         | $r_{v}$               | =                        |
| $J_{xx}$ | =             | σ(N            | ) =             | $\sigma_{\text{II}}$   | =                         | $r_{o}$               | =                        |
| $J_{yy}$ | =             | σ(M            | =( <sub>x</sub> | $\sigma_{\text{tres}}$ | ca=                       |                       |                          |



Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in \*

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

| Ν        | = 127000 N    | M <sub>x</sub> | = 5300000 Nmm   | $\sigma_{a}$           | = 260 N/mm <sup>2</sup>   | G                      | $= 76000 \text{ N/mm}^2$ |
|----------|---------------|----------------|-----------------|------------------------|---------------------------|------------------------|--------------------------|
| $M_t$    | = 7870000 Nmm | $M_{v}$        | = -10300000 Nmm | E                      | $= 200000 \text{ N/mm}^2$ |                        |                          |
| $x_{G}$  | =             | $J_{xy}$       | =               | σ(M                    | y ·                       | $\sigma_{mis}$         | ses=                     |
| $y_{G}$  | =             | $J_{u}$        | =               | $\tau(M_t$             | ·) =                      | $\sigma_{\text{st.v}}$ | <sub>/en</sub> =         |
| $u_{o}$  | =             | $J_v$          | =               | σ                      | =                         | $\Theta_{t}$           | =                        |
| $V_{o}$  | =             | α              | =               | τ                      | =                         | $r_u$                  | =                        |
| Α        | =             | $J_t$          | =               | $\sigma_{\text{I}}$    | =                         | $r_{v}$                | =                        |
| $J_xx$   | =             | σ(N            |                 | $\sigma_{\text{II}}$   | =                         | $r_{o}$                | =                        |
| $J_{yy}$ | =             | σ(M            | _x)=            | $\sigma_{\text{tres}}$ | ca=                       |                        |                          |



Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in \*

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

| Ν        | = 118000 N    | M <sub>x</sub> | = 8170000 Nmm  | $\sigma_{a}$           | $= 260 \text{ N/mm}^2$    | G                       | $= 76000 \text{ N/mm}^2$ |
|----------|---------------|----------------|----------------|------------------------|---------------------------|-------------------------|--------------------------|
| $M_t$    | = 6130000 Nmm | $M_{v}$        | = -2760000 Nmm | E                      | $= 200000 \text{ N/mm}^2$ |                         |                          |
| $x_{G}$  | =             | $J_{xy}$       | =              | σ(M                    | <sub>y</sub> )=           | $\sigma_{mis}$          | es=                      |
| $y_{G}$  | =             | $J_{u}$        | =              | $\tau(M_t)$            | ) =                       | $\sigma_{\text{st.ve}}$ | <sub>en</sub> =          |
| $u_o$    | =             | $J_v$          | =              | σ                      | =                         | $\theta_{t}$            | =                        |
| $V_{o}$  | =             | α              | =              | τ                      | =                         | $r_u$                   | =                        |
| Α        | =             | $J_t$          | =              | $\sigma_{l}$           | =                         | $r_{v}$                 | =                        |
| $J_{xx}$ | =             | σ(N)           | ) =            | $\sigma_{\text{II}}$   | =                         | $r_{o}$                 | =                        |
| $J_{yy}$ | =             | σ(M            | _x)=           | $\sigma_{\text{tres}}$ | ca=                       |                         |                          |



Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in \*

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

| Ν        | = 130000 N    | M <sub>x</sub> | = 6090000 Nmm   | $\sigma_{a}$           | = 260 N/mm <sup>2</sup>   | G                      | $= 76000 \text{ N/mm}^2$ |
|----------|---------------|----------------|-----------------|------------------------|---------------------------|------------------------|--------------------------|
| $M_t$    | = 6440000 Nmm | $M_{v}$        | = -2960000 Nmm  | E                      | $= 200000 \text{ N/mm}^2$ |                        |                          |
| $x_{G}$  | =             | $J_{xy}$       | =               | σ(M                    | <sub>y</sub> )=           | $\sigma_{mis}$         | ses=                     |
| $y_{G}$  | =             | $J_{u}$        | =               | $\tau(M_1$             | ,) =                      | $\sigma_{\text{st.v}}$ |                          |
| $u_o$    | =             | $J_v$          | =               | σ                      | =                         | $\theta_{t}$           | =                        |
| $V_{o}$  | =             | α              | =               | τ                      | =                         | $r_{u}$                | =                        |
| Α        | =             | $J_t$          | =               | $\sigma_{I}$           | =                         | $r_{v}$                | =                        |
| $J_{xx}$ | =             | σ(N            | ) =             | $\sigma_{II}$          | =                         | $r_{o}$                | =                        |
| $J_{yy}$ | =             | σ(M            | =( <sub>x</sub> | $\sigma_{\text{tres}}$ | ca=                       |                        |                          |



Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in \*

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

| Ν        | = 142000 N    | M <sub>×</sub> | = 6880000 Nmm  | $\sigma_{\rm a}$     | = 260 N/mm <sup>2</sup>   | G                     | $= 76000 \text{ N/mm}^2$ |
|----------|---------------|----------------|----------------|----------------------|---------------------------|-----------------------|--------------------------|
| $M_t$    | = 4560000 Nmm | $M_{v}$        | = -3160000 Nmm | E                    | $= 200000 \text{ N/mm}^2$ |                       |                          |
| $x_{G}$  | =             | $J_{xy}$       | =              | σ(M                  | y.                        | $\sigma_{mis}$        | ses=                     |
| $y_{G}$  | =             | $J_u$          | =              | τ(M                  | <sub>t</sub> ) =          | $\sigma_{\text{st.}}$ | <sub>ren</sub> =         |
| $u_{o}$  | =             | $J_v$          | =              | σ                    | =                         | $\theta_{t}$          | =                        |
| $V_{o}$  | =             | α              | =              | τ                    | =                         | $r_u$                 | =                        |
| Α        | =             | $J_t$          | =              | $\sigma_{l}$         | =                         | $r_{v}$               | =                        |
| $J_{xx}$ | =             | σ(N            | ) =            | $\sigma_{\text{II}}$ | =                         | $r_{o}$               | =                        |
| $J_{yy}$ | =             | σ(M            | x)=            | $\sigma_{tres}$      | <sub>ca</sub> =           | _                     |                          |



Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in \*

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

| Ν                 | = 105000 N    | M <sub>×</sub> | = 7710000 Nmm   | $\sigma_{a}$         | = 260 N/mm <sup>2</sup>   | G                     | $= 76000 \text{ N/mm}^2$ |
|-------------------|---------------|----------------|-----------------|----------------------|---------------------------|-----------------------|--------------------------|
| $M_t$             | = 4870000 Nmm | $M_{v}$        | = -3350000 Nmm  | E                    | $= 200000 \text{ N/mm}^2$ |                       |                          |
| $x_{G}$           | =             | $J_{xy}$       | =               | σ(M                  | y.                        | $\sigma_{mis}$        | ses=                     |
| $y_{G}$           | =             | $J_u$          | =               | $\tau(M_1$           | <sub>t</sub> ) =          | $\sigma_{\text{st.}}$ | <sub>ren</sub> =         |
| $u_{o}$           | =             | $J_v$          | =               | σ                    | =                         | $\theta_{t}$          | =                        |
| $V_{o}$           | =             | α              | =               | τ                    | =                         | $r_u$                 | =                        |
| Α                 | =             | $J_t$          | =               | $\sigma_{l}$         | =                         | $r_{v}$               | =                        |
| $J_{xx}$          | =             | σ(N            | ) =             | $\sigma_{\text{II}}$ | =                         | ro                    | =                        |
| $J_{yy}^{\infty}$ | =             | σ(M            | =( <sub>x</sub> | $\sigma_{tres}$      | <sub>sca</sub> =          | ŭ                     |                          |



Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in \*

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

| Ν        | = 117000 N    | M <sub>x</sub> |                |                      | = 260 N/mm <sup>2</sup>   | G                | $= 76000 \text{ N/mm}^2$ |
|----------|---------------|----------------|----------------|----------------------|---------------------------|------------------|--------------------------|
| $M_t$    | = 5970000 Nmm | $M_{y}$        | = -2620000 Nmm | Ε                    | $= 200000 \text{ N/mm}^2$ |                  |                          |
| $x_{G}$  | =             | $J_{xy}$       | =              | σ(M                  | y.                        | $\sigma_{mise}$  | es=                      |
| $y_G$    | =             | $J_u$          | =              | $\tau(M_t$           | ) =                       | $\sigma_{st.ve}$ | <sub>en</sub> =          |
| $u_o$    | =             | $J_v$          | =              | σ                    | =                         | $\theta_{t}$     | =                        |
| $V_{o}$  | =             | α              | =              | τ                    | =                         | $r_u$            | =                        |
| Α        | =             | $J_t$          | =              | $\sigma_{l}$         | =                         | $r_{v}$          | =                        |
| $J_{xx}$ | =             | σ(N            | ) =            | $\sigma_{\text{II}}$ | =                         | $r_{o}$          | =                        |
| $J_{yy}$ | =             | σ(M            | x)=            | $\sigma_{tres}$      | <sub>ca</sub> =           |                  |                          |



Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in \*

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

| Ν        | = 128000 N    | M <sub>x</sub> | = 5770000 Nmm   | $\sigma_{a}$           | = 260 N/mm <sup>2</sup>   | G                | $= 76000 \text{ N/mm}^2$ |
|----------|---------------|----------------|-----------------|------------------------|---------------------------|------------------|--------------------------|
| $M_t$    | = 6240000 Nmm | $M_{v}$        | = -2780000 Nmm  | E                      | $= 200000 \text{ N/mm}^2$ |                  |                          |
| $x_{G}$  | =             | $J_{xy}$       | =               | σ(M                    | <sub>y</sub> )=           | $\sigma_{mise}$  | es <b>=</b>              |
| $y_{G}$  | =             | $J_{u}$        | =               | $\tau(M_t)$            | ) =                       | $\sigma_{st.ve}$ | en=                      |
| $u_{o}$  | =             | $J_v$          | =               | σ                      | =                         | $\theta_{t}$     | =                        |
| $V_{o}$  | =             | α              | =               | τ                      | =                         | $r_u$            | =                        |
| Α        | =             | $J_t$          | =               | $\sigma_{l}$           | =                         | $r_{v}$          | =                        |
| $J_{xx}$ | =             | $\sigma(N)$    | ) =             | $\sigma_{\text{II}}$   | =                         | $r_{o}$          | =                        |
| $J_{yy}$ | =             | σ(M            | <sub>x</sub> )= | $\sigma_{\text{tres}}$ | <sub>ca</sub> =           |                  |                          |



Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in \*

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

| Ν        | = 139000 N    | M <sub>x</sub> | = 6540000 Nmm   | $\sigma_{a}$           | = 260 N/mm <sup>2</sup>   | G                    | $= 76000 \text{ N/mm}^2$ |
|----------|---------------|----------------|-----------------|------------------------|---------------------------|----------------------|--------------------------|
| $M_t$    | = 4390000 Nmm | $M_{v}$        | = -2930000 Nmm  | E                      | $= 200000 \text{ N/mm}^2$ |                      |                          |
| $x_{G}$  | =             | $J_{xy}$       | =               | σ(M                    | y ·                       | $\sigma_{mise}$      | es=                      |
| $y_G$    | =             | $J_u$          | =               | $\tau(M_t)$            | ) =                       | $\sigma_{\rm st.ve}$ | en=                      |
| $u_{o}$  | =             | $J_v$          | =               | σ                      | =                         | $\theta_{t}$         | =                        |
| $V_{o}$  | =             | α              | =               | τ                      | =                         | $r_u$                | =                        |
| Α        | =             | $J_t$          | =               | $\sigma_{l}$           | =                         | $r_{v}$              | =                        |
| $J_{xx}$ | =             | σ(N)           | ) =             | $\sigma_{\text{II}}$   | =                         | $r_{o}$              | =                        |
| $J_{yy}$ | =             | σ(M            | <sub>x</sub> )= | $\sigma_{\text{tres}}$ | <sub>ca</sub> =           |                      |                          |



Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in \*

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

| Ν        | = 102000 N    | M <sub>x</sub> | = 7310000 Nmm  | $\sigma_{a}$           | = 260 N/mm <sup>2</sup>   | G                | $= 76000 \text{ N/mm}^2$ |
|----------|---------------|----------------|----------------|------------------------|---------------------------|------------------|--------------------------|
| $M_t$    | = 4680000 Nmm | $M_y$          | = -3080000 Nmm | Ε                      | $= 200000 \text{ N/mm}^2$ |                  |                          |
| $x_{G}$  | =             | $J_{xy}$       | =              | σ(M                    | y ·                       | $\sigma_{mise}$  | es=                      |
| $y_G$    | =             | $J_u$          | =              | $\tau(M_t$             | ) =                       | $\sigma_{st.ve}$ | <sub>en</sub> =          |
| $u_o$    | =             | $J_v$          | =              | σ                      | =                         | $\theta_{t}$     | =                        |
| $V_{o}$  | =             | α              | =              | τ                      | =                         | $r_u$            | =                        |
| Α        | =             | $J_t$          | =              | $\sigma_{l}$           | =                         | $r_v$            | =                        |
| $J_{xx}$ | =             | σ(N)           | ) =            | $\sigma_{\text{II}}$   | =                         | $r_{o}$          | =                        |
| $J_{yy}$ | =             | σ(M            | x)=            | $\sigma_{\text{tres}}$ | ca=                       |                  |                          |



Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in \*

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

| Ν        | = 117000 N    | M <sub>x</sub> | = 7240000 Nmm   | $\sigma_{a}$            | = 260 N/mm <sup>2</sup>   | G                | $= 76000 \text{ N/mm}^2$ |
|----------|---------------|----------------|-----------------|-------------------------|---------------------------|------------------|--------------------------|
| $M_t$    | = 5840000 Nmm | $M_{v}$        | = -2510000 Nmm  | E                       | $= 200000 \text{ N/mm}^2$ |                  |                          |
| $x_{G}$  | =             | $J_{xy}$       | =               | σ(M                     | <sub>y</sub> )=           | $\sigma_{mise}$  | es <b>=</b>              |
| $y_{G}$  | =             | $J_{u}$        | =               | $\tau(M_t)$             | ) =                       | $\sigma_{st.ve}$ | en=                      |
| $u_{o}$  | =             | $J_v$          | =               | σ                       | =                         | $\theta_{t}$     | =                        |
| $V_{o}$  | =             | α              | =               | τ                       | =                         | $r_u$            | =                        |
| Α        | =             | $J_t$          | =               | $\sigma_{\text{I}}$     | =                         | $r_{v}$          | =                        |
| $J_{xx}$ | =             | σ(N)           | ) =             | $\sigma_{\text{II}}$    | =                         | $r_{o}$          | =                        |
| $J_{yy}$ | =             | σ(M            | <sub>x</sub> )= | $\sigma_{\text{treso}}$ | <sub>ca</sub> =           |                  |                          |



Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in \*

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

| Ν        | = 127000 N    | M <sub>×</sub> | = 5380000 Nmm   | $\sigma_{a}$           | = 260 N/mm <sup>2</sup>   | G                      | $= 76000 \text{ N/mm}^2$ |
|----------|---------------|----------------|-----------------|------------------------|---------------------------|------------------------|--------------------------|
| $M_t$    | = 6090000 Nmm | $M_{v}$        | = -2650000 Nmm  | E                      | $= 200000 \text{ N/mm}^2$ |                        |                          |
| $x_{G}$  | =             | $J_{xy}$       | =               | σ(M                    | y.                        | $\sigma_{mis}$         | ses=                     |
| $y_{G}$  | =             | $J_{u}$        | =               | $\tau(M_1$             | <u>,</u> ) =              | $\sigma_{\text{st.v}}$ | <sub>ven</sub> =         |
| $u_{o}$  | =             | $J_v$          | =               | σ                      | =                         | $\theta_{t}$           | =                        |
| $V_{o}$  | =             | α              | =               | τ                      | =                         | $r_u$                  | =                        |
| Α        | =             | $J_t$          | =               | $\sigma_{l}$           | =                         | $r_{v}$                | =                        |
| $J_{xx}$ | =             | σ(N            | ) =             | $\sigma_{II}$          | =                         | $r_{o}$                | =                        |
| $J_{yy}$ | =             | σ(M            | =( <sub>x</sub> | $\sigma_{\text{tres}}$ | ca=                       |                        |                          |



Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in \*

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

| Ν        | = 138000 N    | M <sub>x</sub> | = 6070000 Nmm   | $\sigma_{a}$           | = 260 N/mm <sup>2</sup>   | G                | $= 76000 \text{ N/mm}^2$ |
|----------|---------------|----------------|-----------------|------------------------|---------------------------|------------------|--------------------------|
| $M_t$    | = 4280000 Nmm | $M_{v}$        | = -2780000 Nmm  | E                      | $= 200000 \text{ N/mm}^2$ |                  |                          |
| $x_{G}$  | =             | $J_{xy}$       | =               | σ(M                    | <sub>y</sub> )=           | $\sigma_{mise}$  | es <b>=</b>              |
| $y_{G}$  | =             | $J_{u}$        | =               | $\tau(M_t)$            | ) =                       | $\sigma_{st.ve}$ | en=                      |
| $u_{o}$  | =             | $J_v$          | =               | σ                      | =                         | $\theta_{t}$     | =                        |
| $V_{o}$  | =             | α              | =               | τ                      | =                         | $r_u$            | =                        |
| Α        | =             | $J_t$          | =               | $\sigma_{l}$           | =                         | $r_{v}$          | =                        |
| $J_{xx}$ | =             | σ(N)           | ) =             | $\sigma_{\text{II}}$   | =                         | $r_{o}$          | =                        |
| $J_{yy}$ | =             | σ(M            | <sub>x</sub> )= | $\sigma_{\text{tres}}$ | <sub>ca</sub> =           |                  |                          |



Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in \*

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

| Ν        | = 101000 N    | M <sub>x</sub> | = 6800000 Nmm  | $\sigma_{a}$           | = 260 N/mm <sup>2</sup>   | G                | $= 76000 \text{ N/mm}^2$ |
|----------|---------------|----------------|----------------|------------------------|---------------------------|------------------|--------------------------|
| $M_t$    | = 4530000 Nmm | $M_{y}$        | = -2880000 Nmm | Е                      | $= 200000 \text{ N/mm}^2$ |                  |                          |
| $x_{G}$  | =             | $J_{xy}$       | =              | σ(M                    | y ·                       | $\sigma_{mise}$  | es=                      |
| $y_G$    | =             | $J_u$          | =              | $\tau(M_t)$            | ) =                       | $\sigma_{st.ve}$ | en=                      |
| $u_{o}$  | =             | $J_v$          | =              | σ                      | =                         | $\theta_{t}$     | =                        |
| $V_{o}$  | =             | α              | =              | τ                      | =                         | $r_u$            | =                        |
| Α        | =             | $J_t$          | =              | $\sigma_{l}$           | =                         | $r_v$            | =                        |
| $J_{xx}$ | =             | σ(N)           | ) =            | $\sigma_{\text{II}}$   | =                         | $r_{o}$          | =                        |
| $J_{yy}$ | =             | σ(M            | x)=            | $\sigma_{\text{tres}}$ | <sub>ca</sub> =           |                  |                          |



Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in \*

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

| Ν        | = 116000 N    | M <sub>×</sub>    | = 6840000 Nmm     | $\sigma_{a}$         | = 260 N/mm <sup>2</sup>   | G                      | $= 76000 \text{ N/mm}^2$ |
|----------|---------------|-------------------|-------------------|----------------------|---------------------------|------------------------|--------------------------|
| $M_t$    | = 5710000 Nmm | $M_{v}^{\lambda}$ | = -2420000 Nmm    | E                    | $= 200000 \text{ N/mm}^2$ |                        |                          |
| $x_{G}$  | =             | $J_{xy}$          | =                 | σ(M                  | <sub>y</sub> )=           | $\sigma_{mis}$         | ses=                     |
| $y_{G}$  | =             | $J_{u}$           | =                 | τ(M                  | <u>,</u> ) =              | $\sigma_{\text{st.v}}$ | <sub>/en</sub> =         |
| $u_{o}$  | =             | $J_v$             | =                 | σ                    | =                         | $\theta_{t}$           | =                        |
| $V_{o}$  | =             | α                 | =                 | τ                    | =                         | $r_u$                  | =                        |
| Α        | =             | $J_t$             | =                 | $\sigma_{I}$         | =                         | $r_{v}$                | =                        |
| $J_{xx}$ | =             | σ(N               | ) =               | $\sigma_{\text{II}}$ | =                         | $r_{o}$                | =                        |
| $J_{yy}$ | =             | σ(M               | ( <sub>x</sub> )= | $\sigma_{tres}$      | <sub>ca</sub> =           |                        |                          |



Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in \*

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

| Ν        | = 127000 N    | M <sub>×</sub> | = 5050000 Nmm  | $\sigma_{\rm a}$     | = 260 N/mm <sup>2</sup>   | G                     | $= 76000 \text{ N/mm}^2$ |
|----------|---------------|----------------|----------------|----------------------|---------------------------|-----------------------|--------------------------|
| $M_t$    | = 5950000 Nmm | $M_{v}$        | = -2550000 Nmm | E                    | $= 200000 \text{ N/mm}^2$ |                       |                          |
| $x_{G}$  | =             | $J_{xy}$       | =              | σ(M                  | y.                        | $\sigma_{mis}$        | ses=                     |
| $y_{G}$  | =             | $J_{u}$        | =              | τ(M                  | t) =                      | $\sigma_{\text{st.}}$ | <sub>/en</sub> =         |
| $u_{o}$  | =             | $J_v$          | =              | σ                    | =                         | $\theta_{t}$          | =                        |
| $V_{o}$  | =             | α              | =              | τ                    | =                         | $r_u$                 | =                        |
| Α        | =             | $J_t$          | =              | $\sigma_{l}$         | =                         | $r_{v}$               | =                        |
| $J_{xx}$ | =             | σ(N            | ) =            | $\sigma_{\text{II}}$ | =                         | $r_{o}$               | =                        |
| $J_{yy}$ | =             | σ(M            | x)=            | $\sigma_{tres}$      | <sub>sca</sub> =          |                       |                          |



Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in \*

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

| Ν        | = 137000 N    | M <sub>×</sub> | = 5660000 Nmm  | $\sigma_{a}$           | = 260 N/mm <sup>2</sup>   | G                | $= 76000 \text{ N/mm}^2$ |
|----------|---------------|----------------|----------------|------------------------|---------------------------|------------------|--------------------------|
| $M_t$    | = 4170000 Nmm | $M_{v}$        | = -2650000 Nmm | E                      | $= 200000 \text{ N/mm}^2$ |                  |                          |
| $x_{G}$  | =             | $J_{xy}$       | =              | σ(M                    | <sub>y</sub> )=           | $\sigma_{mise}$  | es=                      |
| $y_{G}$  | =             | $J_{u}$        | =              | $\tau(M_t)$            | ) =                       | $\sigma_{st.ve}$ | <sub>en</sub> =          |
| $u_{o}$  | =             | $J_v$          | =              | σ                      | =                         | $\theta_{t}$     | =                        |
| $V_{o}$  | =             | α              | =              | τ                      | =                         | $r_u$            | =                        |
| Α        | =             | $J_t$          | =              | $\sigma_{I}$           | =                         | $r_v$            | =                        |
| $J_{xx}$ | =             | σ(N            | ) =            | $\sigma_{\text{II}}$   | =                         | $r_{o}$          | =                        |
| $J_{yy}$ | =             | σ(M            | x)=            | $\sigma_{\text{tres}}$ | <sub>ca</sub> =           |                  |                          |



Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in \*

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

| Ν        | = 100000 N    | M <sub>×</sub> | = 6300000 Nmm  |                      | $= 260 \text{ N/mm}^2$    | G                       | $= 76000 \text{ N/mm}^2$ |
|----------|---------------|----------------|----------------|----------------------|---------------------------|-------------------------|--------------------------|
| $M_t$    | = 4410000 Nmm | $M_{y}$        | = -2730000 Nmm | Е                    | $= 200000 \text{ N/mm}^2$ |                         |                          |
| $x_{G}$  | =             | $J_{xy}$       | =              | σ(M                  | <sub>y</sub> )=           | $\sigma_{mis}$          | es=                      |
| $y_G$    | =             | $J_{u}$        | =              | $\tau(M_t)$          | ) =                       | $\sigma_{\text{st.ve}}$ | <sub>en</sub> =          |
| $u_o$    | =             | $J_v$          | =              | σ                    | =                         | $\theta_{t}$            | =                        |
| $V_{o}$  | =             | α              | =              | τ                    | =                         | $r_u$                   | =                        |
| Α        | =             | $J_t$          | =              | $\sigma_{\text{I}}$  | =                         | $r_{v}$                 | =                        |
| $J_{xx}$ | =             | σ(N            | ) =            | $\sigma_{\text{II}}$ | =                         | $r_{o}$                 | =                        |
| $J_{yy}$ | =             | σ(M            | _x)=           | $\sigma_{tres}$      | <sub>ca</sub> =           |                         |                          |



Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in \*

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

| Ν        | = 137000 N    | M <sub>x</sub> | = 9840000 Nmm   | $\sigma_{a}$           | = 260 N/mm <sup>2</sup>   | G                | $= 76000 \text{ N/mm}^2$ |
|----------|---------------|----------------|-----------------|------------------------|---------------------------|------------------|--------------------------|
| $M_t$    | = 8040000 Nmm | $M_{v}$        | = -3780000 Nmm  | E                      | $= 200000 \text{ N/mm}^2$ |                  |                          |
| $x_{G}$  | =             | $J_{xy}$       | =               | σ(M                    | <sub>y</sub> )=           | $\sigma_{mise}$  | es <b>=</b>              |
| $y_{G}$  | =             | $J_{u}$        | =               | $\tau(M_t)$            | ) =                       | $\sigma_{st.ve}$ | en=                      |
| $u_o$    | =             | $J_v$          | =               | σ                      | =                         | $\theta_{t}$     | =                        |
| $V_{o}$  | =             | α              | =               | τ                      | =                         | $r_u$            | =                        |
| Α        | =             | $J_t$          | =               | $\sigma_{l}$           | =                         | $r_{v}$          | =                        |
| $J_{xx}$ | =             | σ(N)           | ) =             | $\sigma_{\text{II}}$   | =                         | $r_{o}$          | =                        |
| $J_{yy}$ | =             | σ(M            | <sub>x</sub> )= | $\sigma_{\text{tres}}$ | <sub>ca</sub> =           |                  |                          |



Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in \*

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

| Ν        | = 150000 N    | M <sub>×</sub>    | = 7260000 Nmm   | $\sigma_{\rm a}$       | = 260 N/mm <sup>2</sup>   | G                     | $= 76000 \text{ N/mm}^2$ |
|----------|---------------|-------------------|-----------------|------------------------|---------------------------|-----------------------|--------------------------|
| $M_t$    | = 8480000 Nmm | $M_{v}^{\lambda}$ | = -4070000 Nmm  | E                      | $= 200000 \text{ N/mm}^2$ |                       |                          |
| $x_{G}$  | =             | $J_{xy}$          | =               | σ(M                    | l <sub>y</sub> )=         | $\sigma_{mis}$        | ses=                     |
| $y_{G}$  | =             | $J_{u}$           | =               | τ(M                    | t) =                      | $\sigma_{\text{st.}}$ | <sub>/en</sub> =         |
| $u_{o}$  | =             | $J_v$             | =               | σ                      | =                         | $\theta_{t}$          | =                        |
| $V_{o}$  | =             | α                 | =               | τ                      | =                         | $r_u$                 | =                        |
| Α        | =             | $J_t$             | =               | $\sigma_{\text{I}}$    | =                         | $r_{v}$               | =                        |
| $J_{xx}$ | =             | σ(N               | ) =             | $\sigma_{\text{II}}$   | =                         | $r_{o}$               | =                        |
| $J_{yy}$ | =             | σ(M               | =( <sub>x</sub> | $\sigma_{\text{tres}}$ | <sub>sca</sub> =          |                       |                          |



Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in \*

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

| Ν        | = 163000 N    | M <sub>x</sub> | = 8130000 Nmm   | $\sigma_{a}$           | = 260 N/mm <sup>2</sup>   | G                | $= 76000 \text{ N/mm}^2$ |
|----------|---------------|----------------|-----------------|------------------------|---------------------------|------------------|--------------------------|
| $M_t$    | = 6020000 Nmm | $M_{v}$        | = -4340000 Nmm  | E                      | $= 200000 \text{ N/mm}^2$ |                  |                          |
| $x_{G}$  | =             | $J_{xy}$       | =               | σ(M                    | <sub>y</sub> )=           | $\sigma_{mise}$  | es <b>=</b>              |
| $y_{G}$  | =             | $J_{u}$        | =               | $\tau(M_t)$            | ) =                       | $\sigma_{st.ve}$ | en=                      |
| $u_o$    | =             | $J_v$          | =               | σ                      | =                         | $\theta_{t}$     | =                        |
| $V_{o}$  | =             | α              | =               | τ                      | =                         | $r_u$            | =                        |
| Α        | =             | $J_t$          | =               | $\sigma_{l}$           | =                         | $r_{v}$          | =                        |
| $J_{xx}$ | =             | σ(N)           | ) =             | $\sigma_{\text{II}}$   | =                         | $r_{o}$          | =                        |
| $J_{yy}$ | =             | σ(M            | <sub>x</sub> )= | $\sigma_{\text{tres}}$ | <sub>ca</sub> =           |                  |                          |



Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in \*

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

| Ν        | = 120000 N              | M <sub>x</sub> | = 9040000 Nmm            | $\sigma_{\rm a}$     | = 260 N/mm <sup>2</sup>   | G                      | = 76000 1 | N/mm <sup>2</sup> |
|----------|-------------------------|----------------|--------------------------|----------------------|---------------------------|------------------------|-----------|-------------------|
| $M_t$    | = 6460000 Nmm           | $M_{v}$        | = -4580000 Nmm           | E                    | $= 200000 \text{ N/mm}^2$ |                        |           |                   |
| $x_{G}$  | =                       | $J_{xy}$       | =                        | σ(M                  | ,)=                       | $\sigma_{mis}$         | es=       |                   |
| $y_{G}$  | =                       | $J_{u}$        | =                        | $\tau(M_t)$          | =                         | $\sigma_{\text{st.v}}$ | en=       |                   |
| $u_{o}$  | =                       | $J_v$          | =                        | σ                    | =                         | $\theta_{t}$           | =         |                   |
| $V_{o}$  | =                       | α              | =                        | τ                    | =                         | $r_u$                  | =         |                   |
| Α        | =                       | $J_t$          | =                        | $\sigma_{l}$         | =                         | $r_{v}$                | =         |                   |
| $J_xx$   | =                       | σ(N)           |                          | $\sigma_{\text{II}}$ | =                         | $r_{o}$                | =         |                   |
| $J_{yy}$ | =                       | σ(M            | <sub>x</sub> )=          | $\sigma_{treso}$     | ea=                       |                        |           |                   |
| @ A      | dolfo Zavelani Rossi, F | olitec         | nico di Milano, vers.27. | 03.13                |                           |                        |           | 28.04.14          |



Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in \*

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

| Ν        | = 137000 N    | M <sub>×</sub>    | = 9660000 Nmm   | $\sigma_{a}$           | = 260 N/mm <sup>2</sup>   | G                      | $= 76000 \text{ N/mm}^2$ |
|----------|---------------|-------------------|-----------------|------------------------|---------------------------|------------------------|--------------------------|
| $M_t$    | = 8000000 Nmm | $M_{v}^{\lambda}$ | = -3730000 Nmm  | E                      | $= 200000 \text{ N/mm}^2$ |                        |                          |
| $x_{G}$  | =             | $J_{xy}$          | =               | σ(M                    | l <sub>y</sub> )=         | $\sigma_{mis}$         | ses=                     |
| $y_{G}$  | =             | $J_{u}$           | =               | $\tau(M_1$             | t) =                      | $\sigma_{\text{st.v}}$ | <sub>ven</sub> =         |
| $u_{o}$  | =             | $J_v$             | =               | σ                      | =                         | $\theta_{t}$           | =                        |
| $V_{o}$  | =             | α                 | =               | τ                      | =                         | $r_u$                  | =                        |
| Α        | =             | $J_t$             | =               | $\sigma_{l}$           | =                         | $r_{v}$                | =                        |
| $J_{xx}$ | =             | σ(N               | ) =             | $\sigma_{II}$          | =                         | $r_{o}$                | =                        |
| $J_{yy}$ | =             | σ(M               | =( <sub>x</sub> | $\sigma_{\text{tres}}$ | <sub>sca</sub> =          |                        |                          |



Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in \*

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

| Ν        | = 150000 N    | M <sub>x</sub> | = 7120000 Nmm  | $\sigma_{a}$            | = 260 N/mm <sup>2</sup>   | G                | $= 76000 \text{ N/mm}^2$ |
|----------|---------------|----------------|----------------|-------------------------|---------------------------|------------------|--------------------------|
| $M_t$    | = 8440000 Nmm | $M_{y}$        | = -4010000 Nmm | Ε                       | $= 200000 \text{ N/mm}^2$ |                  |                          |
| $x_G$    | =             | $J_{xy}$       | =              | σ(M,                    | <sub>v</sub> )=           | $\sigma_{mise}$  | es <b>=</b>              |
| $y_{G}$  | =             | $J_{u}$        | =              | $\tau(M_t)$             | ) =                       | $\sigma_{st.ve}$ | en=                      |
| $u_{o}$  | =             | $J_v$          | =              | σ                       | =                         | $\theta_{t}$     | =                        |
| $V_{o}$  | =             | α              | =              | τ                       | =                         | $r_u$            | =                        |
| Α        | =             | $J_t$          | =              | $\sigma_{l}$            | =                         | $r_{v}$          | =                        |
| $J_{xx}$ | =             | σ(N)           | ) =            | $\sigma_{\text{II}}$    | =                         | $r_{o}$          | =                        |
| $J_{yy}$ | =             | σ(M            | x)=            | $\sigma_{\text{treso}}$ | ca=                       |                  |                          |



Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in \*

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

| Ν        | = 163000 N    | M <sub>x</sub> | = 7940000 Nmm   | $\sigma_{a}$           | = 260 N/mm <sup>2</sup>   | G                | $= 76000 \text{ N/mm}^2$ |
|----------|---------------|----------------|-----------------|------------------------|---------------------------|------------------|--------------------------|
| $M_t$    | = 5990000 Nmm | $M_{v}$        | = -4250000 Nmm  | E                      | $= 200000 \text{ N/mm}^2$ |                  |                          |
| $x_{G}$  | =             | $J_{xy}$       | =               | σ(M                    | y ·                       | $\sigma_{mise}$  | es=                      |
| $y_G$    | =             | $J_u$          | =               | $\tau(M_t)$            | ) =                       | $\sigma_{st.ve}$ | en=                      |
| $u_o$    | =             | $J_v$          | =               | σ                      | =                         | $\theta_{t}$     | =                        |
| $V_{o}$  | =             | α              | =               | τ                      | =                         | $r_u$            | =                        |
| Α        | =             | $J_t$          | =               | $\sigma_{l}$           | =                         | $r_{v}$          | =                        |
| $J_{xx}$ | =             | σ(N)           | =               | $\sigma_{II}$          | =                         | $r_{o}$          | =                        |
| $J_{yy}$ | =             | σ(M            | <sub>x</sub> )= | $\sigma_{\text{tres}}$ | ca=                       |                  |                          |



Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in \*

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

| Ν        | = 119000 N    | M <sub>x</sub> | = 8790000 Nmm  | $\sigma_{a}$         | = 260 N/mm <sup>2</sup>   | G                      | $= 76000 \text{ N/mm}^2$ |
|----------|---------------|----------------|----------------|----------------------|---------------------------|------------------------|--------------------------|
| $M_t$    | = 6430000 Nmm | $M_{v}$        | = -4480000 Nmm | E                    | $= 200000 \text{ N/mm}^2$ |                        |                          |
| $x_{G}$  | =             | $J_{xy}$       | =              | σ(M                  | <sub>y</sub> )=           | $\sigma_{mis}$         | ses=                     |
| $y_{G}$  | =             | $J_{u}$        | =              | τ(M                  | ,) =                      | $\sigma_{\text{st.v}}$ |                          |
| $u_{o}$  | =             | $J_v$          | =              | σ                    | =                         | $\theta_{t}$           | =                        |
| $V_{o}$  | =             | α              | =              | τ                    | =                         | $r_u$                  | =                        |
| Α        | =             | $J_t$          | =              | $\sigma_{I}$         | =                         | $r_{v}$                | =                        |
| $J_{xx}$ | =             | σ(N            | •              | $\sigma_{\text{II}}$ | =                         | $r_{o}$                | =                        |
| $J_{yy}$ | =             | σ(M            | (x)=           | $\sigma_{tres}$      | ca=                       |                        |                          |



Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in \*

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

| Ν        | = 137000 N    | M <sub>×</sub>    | = 9510000 Nmm   | $\sigma_{a}$         | = 260 N/mm <sup>2</sup>   | G                     | $= 76000 \text{ N/mm}^2$ |
|----------|---------------|-------------------|-----------------|----------------------|---------------------------|-----------------------|--------------------------|
| $M_t$    | = 7970000 Nmm | $M_{v}^{\lambda}$ | = -3690000 Nmm  | E                    | $= 200000 \text{ N/mm}^2$ |                       |                          |
| $x_{G}$  | =             | $J_{xy}$          | =               | σ(M                  | y.                        | $\sigma_{mis}$        | ses=                     |
| $y_{G}$  | =             | $J_u$             | =               | $\tau(M_1$           | <sub>t</sub> ) =          | $\sigma_{\text{st.}}$ | <sub>ren</sub> =         |
| $u_{o}$  | =             | $J_v$             | =               | σ                    | =                         | $\theta_{t}$          | =                        |
| $V_{o}$  | =             | α                 | =               | τ                    | =                         | $r_u$                 | =                        |
| Α        | =             | $J_t$             | =               | $\sigma_{l}$         | =                         | $r_{v}$               | =                        |
| $J_{xx}$ | =             | σ(N               | ) =             | $\sigma_{\text{II}}$ | =                         | $r_{o}$               | =                        |
| $J_{yy}$ | =             | σ(M               | =( <sub>x</sub> | $\sigma_{tres}$      | <sub>ca</sub> =           | -                     |                          |



Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in \*

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

| Ν        | = 150000 N    | M <sub>x</sub> | = 6990000 Nmm  | $\sigma_{a}$           | = 260 N/mm <sup>2</sup>   | G                | $= 76000 \text{ N/mm}^2$ |
|----------|---------------|----------------|----------------|------------------------|---------------------------|------------------|--------------------------|
| $M_t$    | = 8400000 Nmm | $M_{y}$        | = -3950000 Nmm | Е                      | $= 200000 \text{ N/mm}^2$ |                  |                          |
| $x_{G}$  | =             | $J_{xy}$       | =              | σ(M                    | y                         | $\sigma_{mise}$  | es=                      |
| $y_G$    | =             | $J_u$          | =              | $\tau(M_t)$            | ) =                       | $\sigma_{st.ve}$ | en=                      |
| $u_o$    | =             | $J_v$          | =              | σ                      | =                         | $\theta_{t}$     | =                        |
| $V_{o}$  | =             | α              | =              | τ                      | =                         | $r_u$            | =                        |
| Α        | =             | $J_t$          | =              | $\sigma_{l}$           | =                         | $r_{v}$          | =                        |
| $J_{xx}$ | =             | σ(N)           | ) =            | $\sigma_{\text{II}}$   | =                         | $r_{o}$          | =                        |
| $J_{yy}$ | =             | σ(M            | x)=            | $\sigma_{\text{tres}}$ | ca=                       |                  |                          |



Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in \*

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

| Ν        | = 162000 N    | M <sub>x</sub> | = 7780000 Nmm   | $\sigma_{a}$            | = 260 N/mm <sup>2</sup>   | G                | $= 76000 \text{ N/mm}^2$ |
|----------|---------------|----------------|-----------------|-------------------------|---------------------------|------------------|--------------------------|
| $M_t$    | = 5970000 Nmm | $M_{v}$        | = -4180000 Nmm  | E                       | $= 200000 \text{ N/mm}^2$ |                  |                          |
| $x_{G}$  | =             | $J_{xy}$       | =               | σ(M                     | <sub>y</sub> )=           | $\sigma_{mise}$  | es <b>=</b>              |
| $y_{G}$  | =             | $J_{u}$        | =               | $\tau(M_t)$             | ) =                       | $\sigma_{st.ve}$ | en=                      |
| $u_o$    | =             | $J_v$          | =               | σ                       | =                         | $\theta_{t}$     | =                        |
| $V_{o}$  | =             | α              | =               | τ                       | =                         | $r_u$            | =                        |
| Α        | =             | $J_t$          | =               | $\sigma_{I}$            | =                         | $r_{v}$          | =                        |
| $J_{xx}$ | =             | σ(N)           | ) =             | $\sigma_{\text{II}}$    | =                         | $r_{o}$          | =                        |
| $J_{yy}$ | =             | σ(M            | <sub>x</sub> )= | $\sigma_{\text{treso}}$ | ca=                       |                  |                          |



Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in \*

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

| Ν        | = 119000 N    | M <sub>×</sub>    | = 8590000 Nmm   | $\sigma_{a}$           | = 260 N/mm <sup>2</sup>   | G                      | $= 76000 \text{ N/mm}^2$ |
|----------|---------------|-------------------|-----------------|------------------------|---------------------------|------------------------|--------------------------|
| $M_t$    | = 6400000 Nmm | $M_{v}^{\lambda}$ | = -4390000 Nmm  | E                      | $= 200000 \text{ N/mm}^2$ |                        |                          |
| $x_{G}$  | =             | $J_{xy}$          | =               | σ(M                    | <sub>y</sub> )=           | $\sigma_{mis}$         | ses=                     |
| $y_{G}$  | =             | $J_{u}$           | =               | $\tau(M_1$             | ,) =                      | $\sigma_{\text{st.v}}$ | <sub>ven</sub> =         |
| $u_{o}$  | =             | $J_v$             | =               | σ                      | =                         | $\theta_{t}$           | =                        |
| $V_{o}$  | =             | α                 | =               | τ                      | =                         | $r_u$                  | =                        |
| Α        | =             | $J_t$             | =               | $\sigma_{l}$           | =                         | $r_{v}$                | =                        |
| $J_{xx}$ | =             | σ(N               | ) =             | $\sigma_{II}$          | =                         | $r_{o}$                | =                        |
| $J_{yy}$ | =             | σ(M               | =( <sub>x</sub> | $\sigma_{\text{tres}}$ | ca=                       |                        |                          |



Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in \*

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

```
Facoltativo: rappresentare l'andamento delle tens. tangenziali. 00 N M_{\star} = 9370000 \text{ Nmm} \sigma_{a} = 260 \text{ N/mm}^{2}
                                                                                                                                                              = 76000 \text{ N/mm}^2
Ν
         = 136000 N
                                                                                                                                                    G
                                                                                                            = 200000 \text{ N/mm}^2
         = 7930000 Nmm
                                                           = -3650000 Nmm
M₊
                                                                                                  Ε
                                                                                                  \sigma(M_v)=
X_{\mathsf{G}}
                                                                                                                                                    \sigma_{\text{mises}} =
                                                                                                   \tau(M_t) =
y_{G}
                                                                                                   σ
                                                                                                   \sigma_{l}
                                                 \sigma(N) =
                                                                                                  \sigma_{\text{II}}
                                                 \sigma(M_x)=
```



Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in \*

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

| Ν        | = 149000 N    | M <sub>×</sub> | = 6880000 Nmm   | $\sigma_{a}$         | = 260 N/mm <sup>2</sup>   | G                     | $= 76000 \text{ N/mm}^2$ |
|----------|---------------|----------------|-----------------|----------------------|---------------------------|-----------------------|--------------------------|
| $M_t$    | = 8360000 Nmm | $M_{v}$        | = -3900000 Nmm  | E                    | $= 200000 \text{ N/mm}^2$ |                       |                          |
| $x_{G}$  | =             | $J_{xy}$       | =               | σ(M                  | y.                        | $\sigma_{mis}$        | ses=                     |
| $y_{G}$  | =             | $J_u$          | =               | $\tau(M_1$           | <sub>t</sub> ) =          | $\sigma_{\text{st.}}$ | <sub>ren</sub> =         |
| $u_{o}$  | =             | $J_v$          | =               | σ                    | =                         | $\theta_{t}$          | =                        |
| $V_{o}$  | =             | α              | =               | τ                    | =                         | $r_u$                 | =                        |
| Α        | =             | $J_t$          | =               | $\sigma_{l}$         | =                         | $r_{v}$               | =                        |
| $J_{xx}$ | =             | σ(N            | ) =             | $\sigma_{\text{II}}$ | =                         | $r_{o}$               | =                        |
| $J_{yy}$ | =             | σ(M            | =( <sub>x</sub> | $\sigma_{tres}$      | <sub>ca</sub> =           | -                     |                          |



Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in \*

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

| Ν        | = 162000 N    | M <sub>x</sub> | = 7640000 Nmm   | $\sigma_{a}$           | = 260 N/mm <sup>2</sup>   | G                | $= 76000 \text{ N/mm}^2$ |
|----------|---------------|----------------|-----------------|------------------------|---------------------------|------------------|--------------------------|
| $M_t$    | = 5940000 Nmm | $M_{v}$        | = -4130000 Nmm  | E                      | $= 200000 \text{ N/mm}^2$ |                  |                          |
| $x_{G}$  | =             | $J_{xy}$       | =               | σ(M                    | y ·                       | $\sigma_{mise}$  | es=                      |
| $y_G$    | =             | $J_u$          | =               | $\tau(M_t)$            | ) =                       | $\sigma_{st.ve}$ | <sub>en</sub> =          |
| $u_o$    | =             | $J_v$          | =               | σ                      | =                         | $\theta_{t}$     | =                        |
| $V_{o}$  | =             | α              | =               | τ                      | =                         | $r_u$            | =                        |
| Α        | =             | $J_t$          | =               | $\sigma_{l}$           | =                         | $r_{v}$          | =                        |
| $J_{xx}$ | =             | σ(N)           | =               | $\sigma_{II}$          | =                         | $r_{o}$          | =                        |
| $J_{yy}$ | =             | σ(M            | <sub>x</sub> )= | $\sigma_{\text{tres}}$ | ca=                       |                  |                          |



Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in \*

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

| Ν                 | = 118000 N    | M <sub>×</sub> | = 8410000 Nmm   | $\sigma_{a}$         | = 260 N/mm <sup>2</sup>   | G                     | $= 76000 \text{ N/mm}^2$ |
|-------------------|---------------|----------------|-----------------|----------------------|---------------------------|-----------------------|--------------------------|
| $M_t$             | = 6370000 Nmm | $M_{v}$        | = -4320000 Nmm  | E                    | $= 200000 \text{ N/mm}^2$ |                       |                          |
| $x_{G}$           | =             | $J_{xy}$       | =               | σ(M                  | y.                        | $\sigma_{mis}$        | ses=                     |
| $y_{G}$           | =             | $J_u$          | =               | $\tau(M_1$           | <sub>t</sub> ) =          | $\sigma_{\text{st.}}$ | <sub>ren</sub> =         |
| $u_{o}$           | =             | $J_v$          | =               | σ                    | =                         | $\theta_{t}$          | =                        |
| $V_{o}$           | =             | α              | =               | τ                    | =                         | $r_u$                 | =                        |
| Α                 | =             | $J_t$          | =               | $\sigma_{l}$         | =                         | $r_{v}$               | =                        |
| $J_{xx}$          | =             | σ(N            | ) =             | $\sigma_{\text{II}}$ | =                         | ro                    | =                        |
| $J_{yy}^{\infty}$ | =             | σ(M            | =( <sub>x</sub> | $\sigma_{tres}$      | <sub>sca</sub> =          | ŭ                     |                          |



Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in \*

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

| Ν        | = 132000 N    | M <sub>x</sub>   | = 7910000 Nmm     | $\sigma_{\rm a}$     | = 260 N/mm <sup>2</sup>   | G                     | $= 76000 \text{ N/mm}^2$ |
|----------|---------------|------------------|-------------------|----------------------|---------------------------|-----------------------|--------------------------|
| $M_t$    | = 7610000 Nmm | $M_{v}^{\gamma}$ | = -3870000 Nmm    | E                    | $= 200000 \text{ N/mm}^2$ |                       |                          |
| $x_{G}$  | =             | $J_{xy}$         | =                 | σ(M                  | l <sub>y</sub> )=         | $\sigma_{mis}$        | ses=                     |
| $y_{G}$  | =             | $J_{u}$          | =                 | τ(M                  | t) =                      | $\sigma_{\text{st.}}$ | <sub>/en</sub> =         |
| $u_{o}$  | =             | $J_v$            | =                 | σ                    | =                         | $\theta_{t}$          | =                        |
| $V_{o}$  | =             | α                | =                 | τ                    | =                         | $r_u$                 | =                        |
| Α        | =             | $J_{t}$          | =                 | $\sigma_{l}$         | =                         | $r_{v}$               | =                        |
| $J_{xx}$ | =             | σ(N              | ) =               | $\sigma_{\text{II}}$ | =                         | $r_{o}$               | =                        |
| $J_{yy}$ | =             | σ(M              | ( <sub>x</sub> )= | $\sigma_{tres}$      | <sub>sca</sub> =          |                       |                          |



Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in \*

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

| Ν        | = 144000 N    | M <sub>x</sub> | = 5850000 Nmm   | $\sigma_{a}$         | = 260 N/mm <sup>2</sup>   | G                | $= 76000 \text{ N/mm}^2$ |
|----------|---------------|----------------|-----------------|----------------------|---------------------------|------------------|--------------------------|
| $M_t$    | = 8050000 Nmm | $M_{y}$        | = -4180000 Nmm  | Ε                    | $= 200000 \text{ N/mm}^2$ |                  |                          |
| $x_{G}$  | =             | $J_{xy}$       | =               | σ(M                  | y                         | $\sigma_{mise}$  | es=                      |
| $y_{G}$  | =             | $J_{u}$        | =               | $\tau(M_t)$          | ) =                       | $\sigma_{st.ve}$ | en=                      |
| $u_o$    | =             | $J_v$          | =               | σ                    | =                         | $\theta_{t}$     | =                        |
| $V_{o}$  | =             | α              | =               | τ                    | =                         | $r_u$            | =                        |
| Α        | =             | $J_t$          | =               | $\sigma_{l}$         | =                         | $r_{v}$          | =                        |
| $J_{xx}$ | =             | σ(N)           | ) =             | $\sigma_{\text{II}}$ | =                         | $r_{o}$          | =                        |
| $J_{yy}$ | =             | σ(M            | <sub>x</sub> )= | $\sigma_{tres}$      | <sub>ca</sub> =           |                  |                          |



Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in \*

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

| Ν        | = 156000 N    | M <sub>x</sub> | = 6550000 Nmm   | $\sigma_{a}$           | = 260 N/mm <sup>2</sup>   | G                | $= 76000 \text{ N/mm}^2$ |
|----------|---------------|----------------|-----------------|------------------------|---------------------------|------------------|--------------------------|
| $M_t$    | = 5750000 Nmm | $M_{v}$        | = -4470000 Nmm  | E                      | $= 200000 \text{ N/mm}^2$ |                  |                          |
| $x_{G}$  | =             | $J_{xy}$       | =               | σ(M                    | <sub>y</sub> )=           | $\sigma_{mise}$  | es <b>=</b>              |
| $y_{G}$  | =             | $J_{u}$        | =               | $\tau(M_t)$            | ) =                       | $\sigma_{st.ve}$ | en=                      |
| $u_o$    | =             | $J_v$          | =               | σ                      | =                         | $\theta_{t}$     | =                        |
| $V_{o}$  | =             | α              | =               | τ                      | =                         | $r_u$            | =                        |
| Α        | =             | $J_t$          | =               | $\sigma_{l}$           | =                         | $r_{v}$          | =                        |
| $J_{xx}$ | =             | σ(N)           | ) =             | $\sigma_{\text{II}}$   | =                         | $r_{o}$          | =                        |
| $J_{yy}$ | =             | σ(M            | <sub>x</sub> )= | $\sigma_{\text{tres}}$ | <sub>ca</sub> =           |                  |                          |



Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in \*

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

| Ν        | = 116000 N    | M <sub>x</sub> | = 7080000 Nmm   | $\sigma_{a}$           | = 260 N/mm <sup>2</sup>   | G                      | $= 76000 \text{ N/mm}^2$ |
|----------|---------------|----------------|-----------------|------------------------|---------------------------|------------------------|--------------------------|
| $M_t$    | = 6270000 Nmm | $M_{v}$        | = -4810000 Nmm  | E                      | $= 200000 \text{ N/mm}^2$ |                        |                          |
| $x_{G}$  | =             | $J_{xy}$       | =               | σ(M                    | <sub>y</sub> )=           | $\sigma_{mis}$         | ses=                     |
| $y_{G}$  | =             | $J_{u}$        | =               | $\tau(M_1$             | ,) =                      | $\sigma_{\text{st.v}}$ |                          |
| $u_{o}$  | =             | $J_v$          | =               | σ                      | =                         | $\theta_{t}$           | =                        |
| $V_{o}$  | =             | α              | =               | τ                      | =                         | $r_{u}$                | =                        |
| Α        | =             | $J_t$          | =               | $\sigma_{I}$           | =                         | $r_{v}$                | =                        |
| $J_{xx}$ | =             | σ(N            | ) =             | $\sigma_{\text{II}}$   | =                         | $r_{o}$                | =                        |
| $J_{yy}$ | =             | σ(M            | =( <sub>x</sub> | $\sigma_{\text{tres}}$ | ca=                       |                        |                          |



Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in \*

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

| N        | = 131000 N    | M <sub>x</sub> | = 7730000 Nmm  | $\sigma_a$              | = 260 N/mm <sup>2</sup>   | G                | $= 76000 \text{ N/mm}^2$ |
|----------|---------------|----------------|----------------|-------------------------|---------------------------|------------------|--------------------------|
| $M_t$    | = 7570000 Nmm | $M_{y}$        | = -3800000 Nmm | E                       | $= 200000 \text{ N/mm}^2$ |                  |                          |
| $x_G$    | =             | $J_{xy}$       | =              | σ(M                     | y                         | $\sigma_{mise}$  | es=                      |
| $y_G$    | =             | $J_u$          | =              | $\tau(M_t)$             | ) =                       | $\sigma_{st.ve}$ | en=                      |
| $u_o$    | =             | $J_v$          | =              | σ                       | =                         | $\theta_{t}$     | =                        |
| $V_{o}$  | =             | α              | =              | τ                       | =                         | $r_u$            | =                        |
| Α        | =             | $J_t$          | =              | $\sigma_{I}$            | =                         | $r_{v}$          | =                        |
| $J_{xx}$ | =             | σ(N)           | ) =            | $\sigma_{\text{II}}$    | =                         | $r_{o}$          | =                        |
| $J_{yy}$ | =             | σ(M            | x)=            | $\sigma_{\text{treso}}$ | ca=                       |                  |                          |



Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in \*

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

| Ν        | = 144000 N    | M <sub>×</sub> | = 5700000 Nmm   | $\sigma_{a}$           | = 260 N/mm <sup>2</sup>   | G                     | $= 76000 \text{ N/mm}^2$ |
|----------|---------------|----------------|-----------------|------------------------|---------------------------|-----------------------|--------------------------|
| $M_t$    | = 8010000 Nmm | $M_{v}$        | = -4090000 Nmm  | E                      | $= 200000 \text{ N/mm}^2$ |                       |                          |
| $x_{G}$  | =             | $J_{xy}$       | =               | σ(M                    | <sub>y</sub> )=           | $\sigma_{mis}$        | ses=                     |
| $y_G$    | =             | $J_{u}$        | =               | $\tau(M_1$             | ,) =                      | $\sigma_{\text{st.}}$ | <sub>ven</sub> =         |
| $u_o$    | =             | $J_v$          | =               | σ                      | =                         | $\theta_{t}$          | =                        |
| $V_{o}$  | =             | α              | =               | τ                      | =                         | $r_{u}$               | =                        |
| Α        | =             | $J_t$          | =               | $\sigma_{l}$           | =                         | $r_{v}$               | =                        |
| $J_{xx}$ | =             | σ(N            | ) =             | $\sigma_{\text{II}}$   | =                         | $r_{o}$               | =                        |
| $J_{yy}$ | =             | σ(M            | =( <sub>x</sub> | $\sigma_{\text{tres}}$ | ca=                       |                       |                          |



Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in \*

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

| Ν        | = 156000 N    | M <sub>×</sub> | = 6380000 Nmm  | $\sigma_{a}$           | = 260 N/mm <sup>2</sup>   | G                     | $= 76000 \text{ N/mm}^2$ |
|----------|---------------|----------------|----------------|------------------------|---------------------------|-----------------------|--------------------------|
| $M_t$    | = 5710000 Nmm | $M_{v}$        | = -4360000 Nmm | E                      | $= 200000 \text{ N/mm}^2$ |                       |                          |
| $x_{G}$  | =             | $J_{xy}$       | =              | σ(M                    | y.                        | $\sigma_{mis}$        | ses=                     |
| $y_{G}$  | =             | $J_{u}$        | =              | $\tau(M_1$             | t) =                      | $\sigma_{\text{st.}}$ | <sub>ven</sub> =         |
| $u_{o}$  | =             | $J_v$          | =              | σ                      | =                         | $\theta_{t}$          | =                        |
| $V_{o}$  | =             | α              | =              | τ                      | =                         | $r_u$                 | =                        |
| Α        | =             | $J_t$          | =              | $\sigma_{l}$           | =                         | $r_{v}$               | =                        |
| $J_{xx}$ | =             | σ(N            | ) =            | $\sigma_{\text{II}}$   | =                         | $r_{o}$               | =                        |
| $J_{yy}$ | =             | σ(M            | x)=            | $\sigma_{\text{tres}}$ | <sub>sca</sub> =          |                       |                          |



Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in \*

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

| Ν        | = 114000 N    | M <sub>x</sub> | = 7080000 Nmm   | $\sigma_{a}$           | = 260 N/mm <sup>2</sup>   | G                      | $= 76000 \text{ N/mm}^2$ |
|----------|---------------|----------------|-----------------|------------------------|---------------------------|------------------------|--------------------------|
| $M_t$    | = 6160000 Nmm | $M_{v}$        | = -4620000 Nmm  | E                      | $= 200000 \text{ N/mm}^2$ |                        |                          |
| $x_{G}$  | =             | $J_{xy}$       | =               | σ(M                    | l <sub>y</sub> )=         | $\sigma_{mis}$         | ses=                     |
| $y_{G}$  | =             | $J_{u}$        | =               | $\tau(M_1$             | , ( ) =                   | $\sigma_{\text{st.v}}$ |                          |
| $u_{o}$  | =             | $J_v$          | =               | σ                      | =                         | $\theta_{t}$           | =                        |
| $V_{o}$  | =             | α              | =               | τ                      | =                         | $r_{u}$                | =                        |
| Α        | =             | $J_t$          | =               | $\sigma_{l}$           | =                         | $r_{v}$                | =                        |
| $J_{xx}$ | =             | σ(N            | ) =             | $\sigma_{\text{II}}$   | =                         | $r_{o}$                | =                        |
| $J_{yy}$ | =             | σ(M            | =( <sub>x</sub> | $\sigma_{\text{tres}}$ | sca=                      |                        |                          |



Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in \*

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

| N              | = 131000 N    | M <sub>x</sub> | = 7570000 Nmm   |                        | $= 260 \text{ N/mm}^2$    | G                    | $= 76000 \text{ N/mm}^2$ |
|----------------|---------------|----------------|-----------------|------------------------|---------------------------|----------------------|--------------------------|
| $M_t$          | = 7530000 Nmm | $M_y$          | = -3750000 Nmm  |                        | $= 200000 \text{ N/mm}^2$ |                      |                          |
| $x_{G}$        | =             | $J_{xy}$       | =               | σ(M                    | y.                        | $\sigma_{mise}$      | es=                      |
| $y_{G}$        | =             | $J_{u}$        | =               | $\tau(M_t$             | ) =                       | $\sigma_{\rm st.ve}$ | <sub>en</sub> =          |
| $u_{o}$        | =             | $J_v$          | =               | σ                      | =                         | $\theta_{t}$         | =                        |
| v <sub>o</sub> | =             | α              | =               | τ                      | =                         | $r_u$                | =                        |
| Α              | =             | $J_t$          | =               | $\sigma_{l}$           | =                         | $r_{v}$              | =                        |
| $J_xx$         | =             | σ(N            |                 | $\sigma_{\text{II}}$   | =                         | $r_{o}$              | =                        |
| $J_{yy}$       | =             | σ(M            | <sub>×</sub> )= | $\sigma_{\text{tres}}$ | ca=                       |                      |                          |



Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in \*

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

| Ν        | = 143000 N    | M <sub>×</sub> | = 5570000 Nmm  | $\sigma_{a}$           | $= 260 \text{ N/mm}^2$    | G                       | $= 76000 \text{ N/mm}^2$ |
|----------|---------------|----------------|----------------|------------------------|---------------------------|-------------------------|--------------------------|
| $M_t$    | = 7970000 Nmm | $M_{v}$        | = -4020000 Nmm | E                      | $= 200000 \text{ N/mm}^2$ |                         |                          |
| $x_{G}$  | =             | $J_{xy}$       | =              | σ(M                    | y.                        | $\sigma_{mis}$          | es=                      |
| $y_G$    | =             | $J_u$          | =              | $\tau(M_t$             | ) =                       | $\sigma_{\text{st.ve}}$ | <sub>en</sub> =          |
| $u_o$    | =             | $J_v$          | =              | σ                      | =                         | $\theta_{t}$            | =                        |
| $V_{o}$  | =             | α              | =              | τ                      | =                         | $r_u$                   | =                        |
| Α        | =             | $J_t$          | =              | $\sigma_{I}$           | =                         | $r_{v}$                 | =                        |
| $J_{xx}$ | =             | σ(N            | ) =            | $\sigma_{\text{II}}$   | =                         | $r_{o}$                 | =                        |
| $J_{yy}$ | =             | σ(M            | x)=            | $\sigma_{\text{tres}}$ | ca=                       |                         |                          |



Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in \*

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

| Ν        | = 155000 N    | M <sub>x</sub> | = 6210000 Nmm   | $\sigma_{a}$           | = 260 N/mm <sup>2</sup>   | G                     | $= 76000 \text{ N/mm}^2$ |
|----------|---------------|----------------|-----------------|------------------------|---------------------------|-----------------------|--------------------------|
| $M_t$    | = 5680000 Nmm | $M_{v}$        | = -4280000 Nmm  | E                      | $= 200000 \text{ N/mm}^2$ |                       |                          |
| $x_{G}$  | =             | $J_{xy}$       | =               | σ(M                    | <sub>y</sub> )=           | $\sigma_{mis}$        | ses=                     |
| $y_G$    | =             | $J_{u}$        | =               | $\tau(M_1$             | ,) =                      | $\sigma_{\text{st.}}$ | <sub>ven</sub> =         |
| $u_o$    | =             | $J_v$          | =               | σ                      | =                         | $\theta_{t}$          | =                        |
| $V_{o}$  | =             | α              | =               | τ                      | =                         | $r_u$                 | =                        |
| Α        | =             | $J_t$          | =               | $\sigma_{l}$           | =                         | $r_{v}$               | =                        |
| $J_{xx}$ | =             | σ(N            | ) =             | $\sigma_{\text{II}}$   | =                         | $r_{o}$               | =                        |
| $J_{yy}$ | =             | σ(M            | =( <sub>x</sub> | $\sigma_{\text{tres}}$ | ca=                       |                       |                          |



Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in \*

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

| Ν        | = 113000 N    | M <sub>x</sub> | = 6870000 Nmm  | $\sigma_{\text{a}}$ | = 260 N/mm <sup>2</sup>   | G                | $= 76000 \text{ N/mm}^2$ |
|----------|---------------|----------------|----------------|---------------------|---------------------------|------------------|--------------------------|
| $M_t$    | = 6120000 Nmm | $M_{y}$        | = -4510000 Nmm | Е                   | $= 200000 \text{ N/mm}^2$ |                  |                          |
| $x_{G}$  | =             | $J_{xy}$       | =              | σ(M                 | y                         | $\sigma_{mise}$  | es=                      |
| $y_G$    | =             | $J_u$          | =              | $\tau(M_t)$         | ) =                       | $\sigma_{st.ve}$ | en=                      |
| $u_o$    | =             | $J_v$          | =              | σ                   | =                         | $\theta_{t}$     | =                        |
| $V_{o}$  | =             | α              | =              | τ                   | =                         | $r_u$            | =                        |
| Α        | =             | $J_t$          | =              | $\sigma_{l}$        | =                         | $r_{v}$          | =                        |
| $J_{xx}$ | =             | $\sigma(N)$    | ) =            | $\sigma_{II}$       | =                         | $r_{o}$          | =                        |
| $J_{yy}$ | =             | σ(M            | x)=            | $\sigma_{tres}$     | <sub>ca</sub> =           |                  |                          |



Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in \*

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

| Ν        | = 131000 N    | M <sub>x</sub> | = 7430000 Nmm  | $\sigma_{a}$           | = 260 N/mm <sup>2</sup>   | G                | $= 76000 \text{ N/mm}^2$ |
|----------|---------------|----------------|----------------|------------------------|---------------------------|------------------|--------------------------|
| $M_t$    | = 7490000 Nmm | $M_{y}$        | = -3700000 Nmm | Е                      | $= 200000 \text{ N/mm}^2$ |                  |                          |
| $x_{G}$  | =             | $J_{xy}$       | =              | σ(M                    | <sub>y</sub> )=           | $\sigma_{mise}$  | es=                      |
| $y_{G}$  | =             | $J_{u}$        | =              | $\tau(M_t)$            | ) =                       | $\sigma_{st.ve}$ | <sub>en</sub> =          |
| $u_o$    | =             | $J_v$          | =              | σ                      | =                         | $\theta_{t}$     | =                        |
| $V_{o}$  | =             | α              | =              | τ                      | =                         | $r_u$            | =                        |
| Α        | =             | $J_t$          | =              | $\sigma_{l}$           | =                         | $r_{v}$          | =                        |
| $J_{xx}$ | =             | σ(N)           | ) =            | $\sigma_{\text{II}}$   | =                         | $r_{o}$          | =                        |
| $J_{yy}$ | =             | σ(M            | x)=            | $\sigma_{\text{tres}}$ | ca=                       |                  |                          |



Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in \*

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

| Ν        | = 143000 N    | M <sub>×</sub> | = 5460000 Nmm  | $\sigma_{a}$           | $= 260 \text{ N/mm}^2$    | G                | $= 76000 \text{ N/mm}^2$ |
|----------|---------------|----------------|----------------|------------------------|---------------------------|------------------|--------------------------|
| $M_t$    | = 7920000 Nmm | $M_{v}$        | = -3960000 Nmm | E                      | $= 200000 \text{ N/mm}^2$ |                  |                          |
| $x_{G}$  | =             | $J_{xy}$       | =              | σ(M                    | y.                        | $\sigma_{mise}$  | es=                      |
| $y_G$    | =             | $J_u$          | =              | $\tau(M_t$             | ) =                       | $\sigma_{st.ve}$ | <sub>en</sub> =          |
| $u_o$    | =             | $J_v$          | =              | σ                      | =                         | $\theta_{t}$     | =                        |
| $V_{o}$  | =             | α              | =              | τ                      | =                         | $r_u$            | =                        |
| Α        | =             | $J_t$          | =              | $\sigma_{I}$           | =                         | $r_{v}$          | =                        |
| $J_{xx}$ | =             | σ(N)           | ) =            | $\sigma_{\text{II}}$   | =                         | $r_{o}$          | =                        |
| $J_{yy}$ | =             | σ(M            | x)=            | $\sigma_{\text{tres}}$ | ca=                       |                  |                          |



Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in \*

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

| Ν        | = 155000 N    | M <sub>x</sub> | = 6070000 Nmm   | $\sigma_{a}$           | = 260 N/mm <sup>2</sup>   | G                      | $= 76000 \text{ N/mm}^2$ |
|----------|---------------|----------------|-----------------|------------------------|---------------------------|------------------------|--------------------------|
| $M_t$    | = 5650000 Nmm | $M_{v}$        | = -4200000 Nmm  | E                      | $= 200000 \text{ N/mm}^2$ |                        |                          |
| $x_{G}$  | =             | $J_{xy}$       | =               | σ(M                    | <sub>y</sub> )=           | $\sigma_{mis}$         | es=                      |
| $y_{G}$  | =             | $J_{u}$        | =               | $\tau(M_t)$            | ) =                       | $\sigma_{\text{st.v}}$ | en=                      |
| $u_o$    | =             | $J_{v}$        | =               | σ                      | =                         | $\theta_{t}$           | =                        |
| $V_{o}$  | =             | α              | =               | τ                      | =                         | $\mathbf{r}_{u}$       | =                        |
| Α        | =             | $J_t$          | =               | $\sigma_{l}$           | =                         | $r_v$                  | =                        |
| $J_xx$   | =             | σ(N)           |                 | $\sigma_{\text{II}}$   | =                         | $r_{o}$                | =                        |
| $J_{yy}$ | =             | σ(M            | <sub>x</sub> )= | $\sigma_{\text{tres}}$ | ca=                       |                        |                          |



Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in \*

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

| Ν        | = 113000 N    | M <sub>x</sub> | = 6690000 Nmm   | $\sigma_{a}$           | = 260 N/mm <sup>2</sup>   | G                      | $= 76000 \text{ N/mm}^2$ |
|----------|---------------|----------------|-----------------|------------------------|---------------------------|------------------------|--------------------------|
| $M_t$    | = 6080000 Nmm | $M_{v}$        | = -4420000 Nmm  | E                      | $= 200000 \text{ N/mm}^2$ |                        |                          |
| $x_{G}$  | =             | $J_{xy}$       | =               | σ(M                    | <sub>y</sub> )=           | $\sigma_{mis}$         | ses=                     |
| $y_{G}$  | =             | $J_{u}$        | =               | $\tau(M_1$             | ,) =                      | $\sigma_{\text{st.v}}$ |                          |
| $u_o$    | =             | $J_v$          | =               | σ                      | =                         | $\theta_{t}$           | =                        |
| $V_{o}$  | =             | α              | =               | τ                      | =                         | $r_{u}$                | =                        |
| Α        | =             | $J_t$          | =               | $\sigma_{I}$           | =                         | $r_{v}$                | =                        |
| $J_{xx}$ | =             | σ(N            | ) =             | $\sigma_{\text{II}}$   | =                         | $r_{o}$                | =                        |
| $J_{yy}$ | =             | σ(M            | =( <sub>x</sub> | $\sigma_{\text{tres}}$ | ca=                       |                        |                          |