UNCLASSIFIED

AD NUMBER AD901652 **NEW LIMITATION CHANGE** TO Approved for public release, distribution unlimited **FROM** Distribution authorized to U.S. Gov't. agencies only; Test and Evaluation; Feb 1972. Other requests shall be referred to Air Systems Division, Attn: SDQH, Wright-Patterson AFB, OH 45433. **AUTHORITY** ASD ltr, per DTIC Form 55, 17 Apr 1974

VOLUME II OF II

CATEGORY II PERFORMANCE TEST OF THE **UH-1N HELICOPTER**

ROBERT H. SPRINGER Project Engineer

DONALD BERGER Lieutenant Colonel, USAF Project Pilot

TECHNICAL REPORT No. 72-17

MAY 1972

Distribution limited to U.S. Government agencies only (Test and Evaluation), February 1972. Other requests for this document must be referred to ASD (SDQH), Wright-Patterson AFB, Ohio 45433.

AIR FORCE FLIGHT TEST CENTER BASE. FORCE CALIFORNIA EDWARDS COMMAND

SYSTEMS

AIR FORCE UNITED STATES

FORCE

Best Available Copy

JUL 24 1972

Qualified requesters may obtain copies of this report from the Defense Decumentation Center, Cameron Station, Alexandria, Va. Department of Defense contractors must be established for DDC services, or have "need to know" certified by cognizant military agency of their project or contract.

DDC release to OTS is not authorized

When US Government drawings, specifications, or other data are used for any purpose other than a definitely related government procurement operation, the government thereby incurs no responsibility nor any obligation whatsoever; and the fact that the government may have formulated, furnished, or in anyway supplied the said drawings, specifications, or any other data is not to be regarded by implication or otherwise, as in any manner licensing the holder or any other person or corporation or conveying any rights or permission to manufacture, use or sell any patented invention that may in any way be related thereto.

Do not return this copy, Retain or destroy

Best Available Copy

table o	f contents	Page
LIST OF ILLUSTRA	ATIONS	ii
	ST TECHNIQUES, DATA ANALYSIS METHODS, AND TEST DATA	
	stem Calibration	
Hover		2
_		
	Dagoute	
	Desents	
	y	
	nation	
APPENDIX II - GI	ENERAL AIRCRAFT INFORMATION	182
Dimensions an	d Design Data	182
	lance	
•		
	ntationon List	*
list of	illustrations	
Figure No.	<u>Title</u>	Page No.
	Appendix (•
1	Airspeed Calibration - AVpc	14
2	Airspeed Calibration - Standard System	
3	Altimeter Static Source Calibration	16
4-6	Nondimensional Hovering Performance Summary	17-19
7-13	Nondimensional Hovering Performance	21-27
14-17	Flight Control Positions in Hovering Flight	.29-32
1.8	Nondimensional Takeoff Performance	33
19-21	Takeoff Distance Required to Clear a 50-ft Obstacle	
22	Nondimensional Takeoff Performance	
23-25	Takeoff Distance Required to Clear a 50-ft	
	Obstacle	38 - 40

Figure No.	<u>Title</u>	Page No.
26	Nondimensional Takeoff Performance	41
27-29	Takeoff Distance Required to Clear a 50-ft	
	Obstacle	
30	Nondimensional Takeoff Performance	45
31-33	Takeoff Distance Required to Clear a 50-ft Obstacle	46-48
34	Nondimensional Takeoff Performance	49
35-37	Takeoff Distance Required to Clear a 50-ft Obstacle	50-52
38-39	Sawtooth Climb Performance	53-54
40-41	Continuous Climb Performance	55-56
42-51	Nondimensional Level Flight Performance	57.66
F2 101	SummaryNondimensional Level Flight Performance	
52-101	Vibration Characteristics	
102-111 112-113		
112-113	Pitch Link Load Survey	
		129-132
118	Slope Landing Slope Angle Limits and Cyclic Control Positions	133
119-126	Height-Velocity Performance	134-141
127-138	Engine Characteristics	142-153
139-141	Engine Inlet Characteristics	154-156
142-153	Engine Characteristics	157-168
154-159	Engine Inlet Characteristics	169-174
160-161	Engine Topping Variance with Ta	175-176
162-163	Single Engine Shaft Horsepower Available	177-178
164-165	Time History of Engine Topping	
166	Comparison of Pilot Panel and Special Instrumentation Readings for ITT and N_g	181
	Appendix ()	
1	Principal UH-lN Dimensions	183
2	Torquemeter Operation	
3-8	Combining Gearbox Torquemeter Calibration	
9	Longitudinal Center of Gravity Limit Envelope	194
10	Airspeed Limit Envelope	

list of tables

Table No.	<u>Title</u>	Page No.
	Appendix (
I	Summary of Hover Test Conditions	
II	Summary of Level Flight Test Conditions	

APPENDIX I TEST TECHNIQUES, DATA ANLYSIS METHODS, AND TEST DATA

General

Dimensional analysis of the major items affecting helicopter performance yielded the variables used to present performance data. These dimensionless variables are defined as follows:

$$C_{p} = \frac{\sinh \times 550}{\rho A (\Omega R)^{3}} = K_{1} \left[\frac{\sinh}{\delta_{a} \sqrt{\theta_{a}}} \right] \left[\frac{1}{N_{R} / \sqrt{\theta_{a}}} \right]^{3}$$

$$C_{\text{T}} = \frac{W}{\rho A (\Omega R)^2} = K_2 \left[\frac{W}{\delta_a}\right] \left[\frac{1}{N_R / \sqrt{\delta_a}}\right]^2$$

$$M_{\text{TIP}} = \frac{V_{\text{t}} + 0.592 \, (\Omega R)}{38.967 \, \sqrt{T_{\text{a}}}} = K_3 \left[\frac{N_R}{\sqrt{\theta_{\text{a}}}} \right] (1 + \mu)$$

$$u = \frac{V_{t}}{\Omega R} = K_{4} \left[\frac{1}{N_{R} / \sqrt{\theta_{a}}} \right] \left[\frac{V_{c}}{\sqrt{\delta_{a}}} \right]$$

Notes:

- (1) Constants K_1 through K_4 pertain to specific rotor systems and are: $K_1 = 64138149/(R)^5$, $K_2 = 12211.87223/(R)^4$, $K_3 = 0.00009373/(R)$. For the UH-1N they are: $K_1 = 8.0549$, $K_2 = 0.0368$, $K_3 = 0.0022495$, $K_4 = 0.6719927$ (for V_c in knots).
- (2) For the test conditions encountered, it was assumed that V_t $\sqrt{\sigma} = V_c$, i.e., $\Delta V_c = 0$. $\Delta V_c = compressibility correction to calibrated airspeed.$

Pitot-Static System Calibration

Airspeed calibration tests were conducted to determine the position error of the standard and test (boom) airspeed systems. The tower fly-by and ground-speed course were the methods used. These techniques provided level flight airspeed calibrations, and also provided a static source calibration for the standard and test altimeter position errors for level flight.

The standard system was calibrated against the test boom system in climb and autorotation, the results of which are presented in figure 2, appendix 1.

The test boom system had a full-swiveling pitot-static source which remained aligned with the airstream within large angles of fusclage attitude relative to the airstream.

The standard pitot-static system was also calibrated in level flight for the two UH-IN helicopters used in Category II systems and all-weather tests. The ground-speed course technique was utilized on both aircraft. The results of these tests are incorporated in the airspeed and altimeter calibration plots presented in figures 1 and 3, appendix I.

Hover

In-ground effect and out-of-ground effect tethered hovering performance data were obtained at skid heights of 2, 4, 10, 15, 25, 35, and 60 feet. Constant referred rotor speeds $(N_R/\sqrt{v_a})$ were flown in order to determine compressibility effects on power required. Referred rotor speeds of 300, 310, 320, and 330 rpm were flown. With this technique, the rotor speed was varied with temperature to maintain a constant $N_R/\sqrt{v_a}$ which resulted in a constant Mach number at the rotor blade tip. Free hover data were obtained at 100 feet skid height to verify that the aircraft was actually out of ground effect at a skid height of 60 feet. All hover tests were conducted in less than 3 knots of wind.

Table I, appendix I, lists the conditions in which the hovering data were obtained.

During the tethered hovering tests the helicopter was tethered to the ground by a cable and load cell (which measured cable tension). Thrust produced was assumed equal to the gross weight of the helicopter, cable and load cell plus the cable tension.

Power coefficient (Cp) was plotted against thrust coefficient (CT) for each skid height; fairings defined by points of equal referred rotor speed (NR/ $\sqrt{n_a}$) were established. The hover data are presented in figures 4 through 13, appendix I.

Hover summaries were derived for specified altitude and temperature conditions at maximum power available utilizing the nondimensional hover plots and are presented in figures 5 and 6.

Table I
SUMMARY OF HOVER TEST CONDITIONS

	$N_R/\sqrt{0_a} =$	300 rpm	$N_{R}/\sqrt{\partial_{R}} =$	310 rpm	$N_R/\sqrt{a} =$	320 rpm	$N_R/\sqrt{e_a} = 330 \text{ rpm}$		
Skid Height (ft)	Pressure Altitude (ft)	FAT (deg C)	Pressure Altitude (ft)	FAT (deg C)	Pressure Altitude (ft)	FAT (deg C)	Pressure Altitude (ft)	FAT (deg C)	
2	9,560	Ģ	2,130 9,560	-7 8	1,990 9,560	-! B	1,970 2,110 10,170	-1 -4 -6	
4	9,570	9	2,720 9,590	-7 8	2,170 9,590	0 7	2,160 2,110 10,230	0 -4 -7	
10	9,640	10	1,990 9,640	-4 9	1,930 9,640	-5 9	1,930 2,080 10,270	+5 -6 -?	
15			2,060 9,850	0	2,030 9,850	-2 -1	2,030 2,110 9,670 9,840	-2 -4 3 -1	
25	9,640	7	2,170 9,600	1 f	2,170 9,620	1 0 5	2,170 2,080 9,850	1 5 -2	
35			2,190 9,860	2 1	2,190 9,820	-1	2,180 2,080 9,820	0 -5 -0	
60			2,050 9,640	-2 -0	2,060 9,650	-2. 0	2,060 2,100 9,650	-2 -5 0	
100	4,090 9,700	-2 -2	4,100 9,700	1 2	4,100 9,690	î 2	4,105 9,690	-2	

Note: All above conditions are average values.

Takeoff

General

Takeoff tests were conducted at an average pressure altitude of 9,700 feet. Gross weight was varied from approximately 9,000 to 10,500 pounds. Initial rotor speed was 324 rpm (100 pct), and all takeoffs were made with a mid (sta 137.0) cg loading. Maximum available power was used for all takeoffs. For airspeeds below 25 KIAS, a pace vehicle was used as a reference to obtain the desired airspeed.

Power, weight and atmospheric conditions were recorded for each takeoff. A Fairchild Flight Analyzer was used to record a time history of each takeoff. Ground speed and horizontal and vertical distances were derived from the time histories. The test results are presented in figures 18 through 37, appendix I.

The $\Lambda C_{\rm p}$ parameter was used to correlate the takeoffs. The excess power available ($\Lambda C_{\rm p})$ was defined as the difference between the maximum power available recorded at the 50 foot height and the power required to

hover at a referenced skid height (4 feet and 15 feet). This definition may be expressed in the nondimensional power coefficient term as $\Delta C_{\rm p} = C_{\rm$

The following takeoff techniques were investigated to determine the takeoff performance of the UH-lN:

- 1. Level acceleration from a 4-foot hover with and without rotor rpm bleed.
- 2. Level acceleration from a 15-foot hover.
- 3. Climb and acceleration from light-on-skids with and without rotor rpm bleed.

Takeoff Techniques

The level acceleration (no rotor rpm bleed) technique was performed as follows:

The helicopter was stabilized at the desired hover height with rotor rpm (NR) set at 100 percent (324 rpm). The helicopter was then transitioned into forward flight as smoothly and rapidly as possible with use of cyclic and collective pitch. Collective pitch was increased to the maximum possible without drooping the rotor below 100-percent rpm. The power turbine governor (beep) switch was increased to maximum during the transition, and NR was controlled with collective pitch. The helicopter was transitioned into forward flight at a constant skid height until the desired takeoff speed was reached. As the takeoff speed was reached, the pitch attitude of the helicopter was adjusted to maintain the desired airspeed until above the desired 50-foot altitude. This technique also applied to level acceleration takeoff from a 15-foot hover, simulating a sling load.

The level acceleration (with rotor bleed) technique was basically the same as the "no bleed" technique with the exception of the N_R control. In the "bleed" technique, the N_R was slowly bled off in the climb so as to droop from 130 percent in the level acceleration to 97 percent (314 rpm) upon reaching 50 feet of altitude.

The climb and acceleration technique was performed as follows:

Beginning from a light-on-the-skids condition, power was increased to maximum as the aircraft left the ground; desired airspeed was obtained by holding pitch attitude. For these tests the pitch attitude was set at 3 degrees noseup on the ground. The maximum pitch attitude used was 10 degrees nosedown at a climbout airspeed of 45 knots. At 2 degrees nosedown, a climbout airspeed of 25 knots was achieved. During the climb the rotor rpm was held constant at 100 percent. Upon reaching 50 feet, the airspeed was allowed to increase while maintaining altitude. The climb and accelerate technique was also repeated using the $\rm N_R$ "bleed" technique. In this technique the $\rm N_R$ was "bled" at approximately 2 rpm

per second from 100 percent at 15 feet to 97 percent at 50 feet. Upon reaching 50 feet, the collective pitch was reduced very slightly to allow NR to increase while maintaining altitude.

Climb

Sawtooth climbs were conducted at pressure altitudes of 5,000, 10,000, and 14,000 feet at gross weights of approximately 8,500 and 10,000 pounds and at maximum continuous power (88-percent torque).

The observed rates of climb were corrected to test day tapeline rate of climb using the following equation:

$$R/C_t = \frac{dh}{dt} \times \frac{T_{a_t}}{T_{a_s}}$$

where

 R/C_t = rate of climb (tapeline), feet per minute

 $\frac{dh}{dt}$ = slope of the pressure altitude versus time curve, feet per minute

 $T_{a_{+}}$ = test day ambient temperature, degrees K

 T_{a_S} = standard day temperature for the test attitude, degrees K

The test day values of the rates of climb for the altitudes and temperatures tested are presented in figures 38 and 39, appendix I. A summary of the climb performance is presented in table II.

Two continuous climbs were conducted from a 2,000-foot pressure altitude to the service ceiling or envelope limit using a mid cg location, maximum continuous power, 314-rpm rotor speed, and climb-start gross weights of 8,790 and 10,400 pounds. Only one climb was made at each gross weight. The climb tests were conducted at 53 KIAS on the noseboom airspeed system. This speed was determined from the minimum power required from the level flight speed-power tests.

The observed rates of climb were corrected to test day tapeline rates of climb as discussed for the sawtooth climbs.

The test day values for the rate of climb are presented along with shaft horsepower required, calibrated airspeed, true airspeed, gross weight, fuel used, time to climb, nautical air miles traveled, ambient air temperatures, and pressure altitude. Results of the continuous climb tests for test day conditions are presented in figures 40 and 41, appendix I.

Table II SUMMARY OF LEVEL FLIGHT TEST CONDITIONS

UH-1N USAF S/N 68-10776 T400-CP-400 Engine

Category II

Cond No.	C _T × 10 ⁴	Avg N _R //0 a (rpm)	Avg Gross Weight (1b)	Avg Pressure Altitude (ft)	Avg FAT (deg C)	Avg N _R (rpm)	Remarks
1	28	340	7,800	3,250	-25	315	
1	28	340	7,900	2,980	-12	323	Single engine
2	32	319	7,940	3,090	4	313	
2	32	319	7,960	3,270	4	313	
2A	32	300	7,580	940	21	303	
2B	32	310	7,970	1,370	20	313	
3	32	331	8,430	3,420	-7	319	
3	32	329	8,380	3,420	-15	312	Single engine
3	32	330	8,660	2,410	-9	316	Single engine
. 4	32	333	8,510	3,260	0	324	
. 5	32	338	8,430	4,470	-7	311	
6	32	339	8,150	5,760	-26	314	
7	32	341	8,560	4,500	-23	315	
8	36	300	8,600	710	24	305	
9	36	310	9,120	970	24	314	
10	36	321	8,180	5,510	0	312	
10A	36	319	8,520	4,420	16	320	
10	36	320	8,460	4,650	2	313	Heat on
10	36	320	8,580	4,350	9	316	Fwd cg
10	36	323	8,520	4,490	5	317	Aft cg
11	36	323	8,090	7,900	-3	321	
12	36	341	7,840	10,070	-20	319	
12	36	340	8,030	9,790	-18	320	Single engine
13	40	301	9,230	1,650	23	305	
14	40	310	8,750	4,860	15	310	
14	40	310	9,250	3,300	26	316	Full armament
15	40	320	8,510	7,260	0	312	
16	40	329	8,080	10,260	2	321	
16	40	330	8,430	9,150	-14	313	Single engine
17	40	339	9,870	6,620	-24	316	
19	43	301	9,900	1,760	24	305	
20	43	311	9,180	5,460	18	312	
20	43	310	8,700	6,950	17	310	Rockets only
20	4 3	310	9,480	4,130	25	316	Full armament
21	4 3	320	8,920	7,890	7	316	
22	43	331	8,610	10,860	3	321	
22	43	332	8,930	9,580	ن -	322	

Table II (Concluded)

Cond No.	C _T × 10 ⁴	Avg N _R ∕√θ (rpm)	Avg Gross Weight (1b)	Avg Pressure Altitude (ft)	Avg FAT (deg C)	Avg ^N R (rpm)	Remarks
23	43	340	9,590	9,320	-27	314	
25	43	301	9,820	3,780	16	302	
26	46	310	9,030	7,700	16	310	Rockets only
26	46	311	9,430	6,420	13	310	Full armament
27	46	320	8,880	9,790	-2	311	
29	46	339	8,390	14,340	-30	311	
31	50	300	9,870	5,850	18	302]
32	50	311	9,450	8,570	14	310]
32	50	311	9,480	8,600	13	310	Full armament
33	50	319	9,060	11,290	8	316	
34	50	330	8,870	13,390	-7	318	
35	50	340	8,440	16,330	-32	311	1
44	53	300	9,540	8,240	16	301	

Level Flight

Level flight performance tests were conducted to determine power required, range, fuel flow, compressibility effects, and engine characteristics. The tests were conducted at pressure altitudes from 710 to 16,330 feet, ambient air temperatures from +26 to -32 degrees C, and at average gross weights from 7,580 to 9,870 pounds. Each flight was conducted at a predetermined and constant thrust coefficient (CT) and referred rotor speed (NR/ $\sqrt{\theta_a}$) by maintaining a constant W/ δ_a relationship. This required increasing the pressure altitude as fuel was consumed and adjusting the rotor speed as the ambient air temperature varied so that W/ δ_a and NR/ $\sqrt{\theta_a}$ remained constant. The data were corrected for adiabatic temperature rise created by the aircraft's forward velocity.

Level flight performance was obtained in the clean loading (twinand single-engine), with full external armament (cargo doors open, two 7.62mm miniguns extended fixed to fire forward, and two LAU-59/A rocket launchers installed), with 2 LAU-59/A rocket launchers only, and with forward and aft cg locations. The test conditions flown are shown in table II, appendix I.

The level flight data were reduced to nondimensional form and plotted as C_p versus C_T for constant μ and for lines of constant $N_R/\sqrt{\delta_a}$. These are presented in figures 42 through 51, appendix I. The individual level flight plots are presented in figures 52 through 101, appendix I.

Level flight performance summary curves of loiter (minimum power required) fuel flow and V_C and long range cruise NAMPP and V_t were obtained by entering the nondimensional level flight plots (figures 52 through 101, appendix I, at a given set of flight conditions and obtaining the corresponding nondimensional power coefficient. Fuel flow was found by referring to sea level standard day conditions the shaft horsepower obtained from the nondimensional power coefficient and entering the engine characteristics plots. The referred fuel flow $(W_{\rm f}/\delta_{\rm t2}/\theta_{\rm t2})$ was then corrected to the desired atmospheric conditions.

Specific range was calculated using:

$$NAMPP = \frac{V_t}{W_f}$$

Vibration

Vibrations were recorded on an oscillograph, measuring both the lateral and vertical vibrations at the pilot's seat (sta 46.7) and the cargo area (sta 133). A calibration curve of single amplitude per g versus frequency was obtained. This curve was fitted by a fifth order polynomial equation. The vibration traces were divided into ten equal time segments per cycle and the amplitudes were measured. These points were fitted by a Fourier analysis. The frequency was calculated from the time of the cycle and the amplitude was calculated from the Fourier analysis. Knowing these two values and by going into the calibration curve, the g forces were obtained. These calculations were done on the IBM 1620 computer. The vibration data are presented in figures 102 through 111, appendix I.

Autorotational Descents

Autorotational descents were made to determine the airspeeds for minimum rate of descent and maximum glide range at various rotor speeds. Sawtooth descents were flown at 8,500 and 10,000 pound gross weights at 5,000 and 10,000 feet PA. Rotor speeds of 294 rpm (91 percent), 324 rpm (100 percent) and 339 rpm (104.5 percent) were investigated.

The observed rates of descent were corrected to test day tapeline rate of descent using the following equation:

$$R/D_t = \frac{dh}{dt} \times \frac{T_{a_t}}{T_{a_s}}$$

 R/D_{+} = rate of descent (tapeline), feet per minute

 $\frac{dh}{dt}$ = slope of the pressure altitude versus time curve, feet per minute

Tat = tost day ambient temperature, degrees K

 $T_{\rm ac}$ = standard day temperature for the test altitude, degrees K

The test day values of the rates of descent are presented in figures 114 through 117, appendix I.

The airspeed for the maximum glide range was found at the point of tangency of a line drawn from the zero R/D and $V_{\underline{t}}$ intersection to the R/D versus $V_{\underline{t}}$ fairing.

Slope Landing

Slope landing tests were made to determine the maximum slope angles on which the UH-IN could be landed, and to develop the pilot techniques involved. Aircraft gross weights and cg locations tested were:

Gross Weight (1b)	Longitudinal cg Location (sta)	Lateral cg Location (in.)
8,500	137 (mid)	0
10,000	137 (mid)	0
10,000	141 (aft)	0
10,000	133 (fwd)	0
10,000	134 (fwd)	5.2 right

Before starting the actual slope landings, the clearance between the main rotor blades and the fuselage (including the special instrumentation test boom) was investigated. Fore and aft cyclic control inputs were made from the neutral position to full travel in increasing increments of linch. Collective control inputs to full down were made from displacements up to 4.14 inches (equivalent to approximately 55-percent torque) from full down. Simultaneous fore and aft cyclic and collective inputs were made incrementally up to full cyclic travel (from neutral) and from 4.14 inches from full down collective. Main rotor blade clearance from the forward fuselage, special instrumentation noseboom, and the tailboom was observed visually. At no time did the rotor blades come closer than 10 to 12 inches from the tailboom or 15 to 20 inches from the noseboom. Blade overshoot with collective input appeared to be undetectable or negligible due to the relatively high rigidity of the rotor system.

The actual slope landing tests were performed on a hill with a large variety of slope angles up to approximately 17 degrees. The surface was typical of a type found in this desert region - decomposed granite and irregular quartz rock ranging in size from very fine gravel to rocks up to 3 inches in diameter. The helicopter landing skids made slight, if any, imprint on the surface. This surface was relatively slippery at the higher slope angles and required care when landing the aircraft.

The slope landings were made while oriented nose up-slope, nose down-slope, and cross-slope right and left. For the landing, the helicopter was first hovered just off the ground (1 to 2 feet) and allowed to stabilize. The collective was slowly lowered until the skid(s) contacted the ground. Cyclic control was applied in the up-slope direction to firmly plant the skid(s) on the slope. The collective was slowly lowered and, as the aircraft rotated, the cyclic control was applied in the up-slope direction to keep the skid in place. Once the helicopter had both skids on the slope, the collective was fully lowered and the cyclic stick was centered. The primary slope angle limiting factors were cyclic control stop limits, fuselage nose clearance and tail skid clearance. At each of the maximum slope angles tested, the cyclic control stops were reached.

Takeoff from the slope was accomplished by slowly increasing the collective until the helicopter was slightly light on the skids while holding the cyclic stick toward the up-slope. As the aircraft came off the slope the cyclic stick was centered to hold the helicopter level.

The results of the slope landing tests are shown in figure 118, appendix I.

Height-Velocity

Genera!

Height-velocity performance tests were conducted to define the single-engine go-around and landing envelopes following a simulated single-engine failure. Tests were conducted at gross weights from 7,700 to 10,500 pounds and pressure altitudes from 2,100 to 9,600 feet.

Surface winds were 3 knots or less during these tests. A constant aircraft gross weight was maintained by reballasting as fuel was consumed. Power, weight, and atmospheric conditions were recorded for each point. A Fairchild Flight Analyzer was used to record a time history of each approach. Ground speed and horizontal and vertical distances were derived from the time histories.

A power ratio was determined for each test condition. This power ratio was defined as:

Single-engine maximum power available

Power required to hover OGE

These powers were the test average single-engine maximum power available and the test power required to hover OGE.

The results of the height-velocity tests are presented in figures 119 through 126, appendix I.

Technique

All height-velocity points were entered from stable, unaccelerated flight conditions. Single-engine failure was simulated by rapidly retarding the No. 2 engine to flight idle. Collective pitch control movement was delayed for 2 seconds after the throttle cut to simulate pilot reaction time. Rotor rpm (NR) prior to cut was 100 percent. After the delay period, the collective pitch was lowered to restore the NR to 97 percent, and the power turbine governor (beep) trim switch was increased to maximum. The power on the operating engine was kept at maximum during the landing or go-around by maintaining 97-percent $N_{\rm R}$.

Prior to each test condition the minimum OGE single-engine level flight speed and the minimum climb speed were determined. These speeds were used as the target speeds for each data point. These speeds changed (lowered) as ground effect built up, but the out-of-ground-effect speeds were used to maintain consistency of data.

Tests were also conducted to determine the pitch attitude change required from the hover condition to achieve the target speeds. A pitch

change of approximately 20 degrees nosedown gave the best compromise between pilot task and aircraft response. This was used throughout the tests.

The tests were initiated at each test condition from the high hover condition (when OGE hover was possible). Each succeeding point was at a lower altitude until a landing was required. At that point the landing was repeated to obtain a lower touchdown speed. Each succeeding point on the curve was obtained by lowering the entry speed at each altitude until a landing was again required. The lower hover points were determined by increasing hover heights in small increments until the sink rate after engine cut indicated a harder than normal landing would occur.

From the hover conditions above 100 feet, the pitch attitude change decreased progressively as the height above the ground decreased. Below 20 feet at 5,000 feet $\rm H_{\rm p}$ the collective pitch was not lowered to regain lost rpm to minimize a buildup of the rate of descent. At the 9,600-foot $\rm H_{\rm p}$ point this lower altitude restriction was 30 feet.

Two landing techniques were used during these tests. The first was to minimize the flare. This was the direct result of attempting to make a go-around. When it was determined that a landing was necessary, the aircraft was flared to approximately 10 degrees noseup to reduce airspeed. Prior to touchdown the aircraft was leveled and at the same time the collective pitch control was raised to cushion the landing. This technique resulted in relatively fast but gentle touchdown speeds. The second technique was to flare the aircraft more steeply, 10 to 20 degrees noseup, to slow the touchdown speed. Collective pitch was used slightly in the flare to keep the rotor rpm from increasing excessively. An excessive NR increase at this point would have resulted in sensing of an overspeed in the operating engines, thus reducing power which would not have been regained before touchdown. The aircraft was leveled before touchdown and collective pitch was increased to cushion the landing. This technique resulted in significantly slower touchdown speeds.

Power Determination

The combining gearbox has a hydromechanical torquemeter for each engine installed as an integral part of the combining gearbox. The operation of the torquemeter is based on the principle that a torque applied to a helical gear produces an axial force normal to its plane of rotation. Torque is measured as the difference between oil pressures in the torquemeter and in the gearbox.

Shaft horsepower was determined from inflight torquemeter readings and rotor rpm using the following equation:

$$shp = \frac{2\pi}{33,000} \times N_E \times Q$$

where

shp = engine output shaft horsepower

N_E = gearbox output shaft rotational speed, rpm

Q = output shaft torque, ft-lb

Gearbox output shaft speed was determined from rotor speed as follows:

$$N_E = N_R \times 20.37$$

where 20.37:1 is the main transmission gear ratio.

Substituting the last two equations, an equation for calculating shaft horsepower was developed:

$$shp = \frac{2\pi \times N_R \times 20.37 \times Q}{33,000} = 0.0038784 \times N_R \times Q$$

The T400-CP-400 power package as installed in the UH-IN produced a slight complication in computing shaft horsepower. Separate torquemeters are provided for each engine, however, there is only one output shaft. Therefore, when the engine was calibrated the dynamometer attached to the single output shaft read total torque for the package. The torquemeter calibration presented the sum of the two torquemeter readings in psi versus total torque in ft-lb. Therefore, total package shaft horsepower had to be computed since there was no way to compute the shaft horsepower produced by an individual engine.

The combining gearbox torquemeter calibrations for gearbox S/N 4061 and 4064 are presented in figures 3 through 8, appendix II. The uninstalled test ce.1, United Aircraft of Canada, Limited, calibration fairings for the engine characteristics are shown on all engine characteristic plots except for engine S/N 66126. Engine S/N 66126 was not a calibrated engine.

Referred output shaft horsepower (shp/ $\delta_{t_2}/\theta_{t_2}$) was determined by assuming that each engine was producing one-half of the total output shaft horsepower. This shaft horsepower derived for each engine was then referred to the compressor inlet condition existing at each of the compressor inlets. The referred shaft horsepowers for the two engines were then added together to obtain the total referred shaft horsepower.

The state of the second second

Output shaft horsepower, fuel flow, gas producer turbine speed, and inter turbine temperature were generalized by the following relationships:

$$\frac{\text{shp}}{\delta_{\text{t}_2} \sqrt{\theta_{\text{t}_2}}} \text{ vs } \frac{N_g}{\sqrt{\theta_{\text{t}_2}}}$$

$$\frac{\mathbf{T}_{\mathsf{t}_{\mathsf{5}}}}{\mathbf{\theta}_{\mathsf{t}_{\mathsf{2}}}} \text{ vs } \frac{\mathbf{N}_{\mathsf{g}}}{\sqrt{\mathbf{\theta}_{\mathsf{t}_{\mathsf{2}}}}}$$

$$\frac{\mathbf{w_f}}{\delta_{\mathbf{t_2}} \sqrt{\theta_{\mathbf{t_2}}}} \text{ vs } \frac{\mathbf{w_g}}{\sqrt{\theta_{\mathbf{t_2}}}}$$

The engine characteristics data are presented in figures 127 through 138, and figures 142 through 153, appendix I.

FIGURES 1 THROUGH 166

	UK-IN USAF S/N 68-10 T400-CP-400 Engine	集えるともももももももまたが、これでははないにはなるとなったります。1000000000000000000000000000000000000
	Category II	
	Avg Gross Weight (Lb) Method	Remarks
Symbol O	Weight (Lb) Method 7.830 Ground Speed	
0	8AZO Tower Fly	By A/C \$/N 776
4	8450 Ground Speed 8200 Ground Speed	
	8200 Ground Speed	
Notes:		
1. T	ailed symbols denote reciprocal hea	dings.
2. D	ita obtained at mid cg. ose boom not installed on A/C S/N 7	74 or 610.
	ata obtained in level flight.	
		一种
STA	ANDARD AIRSPEED PITUT STATIC SYS	SIEM
15		
		TATION LIMITS
10		
K K	11111	111111111111
AVpc	THE SEARCH	
		D 00 00 0
Added	ベアノメスアノノアメンアス	- イスイズアアアアナス
Fill of the second		
3	SEROXM AIRSPEED PRIOT STATIC SYS	ITEM
0 15 K	SEBOOM AIMSPEED PRIOT STATIC SYS	STEM
iorrectio	SEBXXX AIRSPEED PRIOT STATIC SYS	
8 10	SEBOCHA AMPSPEED PRIOT STATIC SA	
· · · · · · · · · · · · · · · · · · ·		
	SERXM AIRSPEED PRIOT STATIC SAS	
9		
W _{pc} (Kt)		
(9) 34,		80 100 120
W _{pc} (Kt)		
W _{pc} (Kt)		80 100 120
W _{pc} (Kt)		80 100 120

. .

	TAOG-CP-ACC ENGINE CATEGORY T
9 €	PROBES PRESSURE FLIGHT DL WEIGHT (LE) ALTITLDE (FT) CONDITION 9970 BACCO CLIMB 10,000 SCCO CLIMB 10,140 10,000 CLIMB
> ≱x€()eva	BLESCO ICLOCO CLIMB BLESCO ICLOCO CLIMB COLOCIO CLIMB
PA DOOPA FOR	SACO SCCO PUTCACTATION BACCO SCCO PUTCACTATION BACCO SCCO PUTCACTATION P,970 IOCCO PUTCACTATION GA70 IACCO CLIMB
(F)	SPECIFICATION LIMITS— (ML-1-SOTZA # 4KT)
	PATOROTEMON NO PROPERTY OF THE
AV 667	SPECIFICATION LEATS— (MIL Settle ±4 kt) (MIL Settle ±4 kt)
o g .	MOICHTED HITSPEED (AT)

UH-IN USAF S/N 68-10776 T400-CP-400 Engine Category II Avg Gross Symbol Meight (Lb) Method O 7830 Ground Speed Course D 8420 Tower Fly By A/C S/N 776 A/C S/N 776 Tower Fly By 8,450 Ground Speed Course A/C S/N 774 Ground Speed Course A/C S,N 610 8,200 A/C S,N 610 1. Tailed symbols denote reciprocal headings. 2. Data obtained at mid cg. 3. Nose boom not installed on A/C 774 or 610. 4. Data obtained in level flight. STANDARD ALTIMETER STATIC SOURCE SYSTEM 100 50 100 Indicated Airspeed (Kt)

UN-1N USAP S/N 68-10776 T400-CP-460 Engine Categony II NR/VJg = 323.

Derived from figures 7 through 12

Figure S Nondimensional Hovering Performance Summary

UH-1N USAF S/N 68-10776

1400-CP-400 Engine Catogory II Ng//6g = 350

Derived from Elgures 7 through is

Thrush Coefficient - of x 16°

Figure 6 Nondimensional Hovering Performance Summary

UH-IN USAF S/NGB-I T400-CP-400 ENGIR CATEGORY II SKID HEIGHT= 2 FT

•						-31711	is the contract of the contrac
			, ,,,,,,,,,	AVC BOTO	3	PRESSURE	•
			NR VOL	SPEED		ALTITUDE	1
	50	SYM	(HPM)	(RPM)	Mylp	(FT)	(° c.)
		0	300	297	0 6749	3,560	9.C
		A	310	301	0.6973	,	-7.0
		Δ Q	310	304	0.6973	•	€ ં
		Ϋ́	32.O		0.7190	•	-1.Q
	45	Ó	320	316		9,1,4,0	B.O
	į	, Ju	330	321	0.7423	•	• 1.O .
	,	[]	. 330	319	0.7423	•	. ~ A,O
	-	ц	330	317	0 1423	10,110	- 6.0
	40	NOTE I W		ነ ድ ማብዘፒ ይ	(NOTS.	1	ଧ _ଳ / ଲ୍ଲୋଲ ଅଞ୍ଚମ ସହନ୍ତ
		2. 5	ould sym	BOLS DENG	TE FRE	k.	
\$01× d	35	3. VI O	LIGHT HON	VER. DISTRICE I DICENTER S	rrom Bo	Paprica	
COEFFICIENT - CP	QE						
POWER CO	25				Ord Miles		
	50			ATT E	A	% 6	
	15			E (3)			
	â		25	30	25	40	45

.. FIGURE 7 NONDIMENSIONAL HOVERIN

THRUST CORFFICIENT - C.

PPECALING PAGE BLANK-NOT FILMED

ļ	
, QÇ,	FREE AIR
DOE	TEMP
þ.	(° c.)
0	9.0
န်ဝ	0 7-
.	BO
0	-1.0
5.5	8.0
	-1.O
:	~ A.O
1	- (5

NH/M = BEO NW

MAPA CASE CHAN, OIE, COSE = SOV, AM

45 50 55 60 65

WHIRE PLRFORMANCE

21

											,			= -
	1 : 1		· · · . ;	• •			– į			1	- : :-		USAF 5/N	
:												14	00-CP-400	
: :				:	55	• • •							CATEGORY SKID HEIGHT	
· ·	** ** ***	• ••••		***************************************			 !	::					arid Heigh i	4
1 -	:			• • • • • •					ANG.	en m	· •	FRESEURE	FREE AIR	
		1				•• i	`` ,	VR/Æ			•	FLTITUDE.	TEMP	
		i	- !		50	5YM		(RPM)		FM)	MTIP	(FT)	(degC)	
					-	0		300C		96	06749	9,570	9.0	
<u>. </u>		i	1 :: 1					SID.			0.6973	2220	-7.O	
		•	:		<u> </u>	Δ	:	SIO		Oks	04973	9,590	6.0	
	:	<u>.</u>	·	,		Q		320	3		0.7198	2,170	<i>3.</i> 0	
					45	♦		3320	,	15	0.7198	9,590	7.0	
······································						Ţ		330		21	0.7473	2,160	0.0	
		•						330		18	0.742.5	2,110	-4.0	
	<u>. i</u>		<u> </u>	e		ĽД		330		17	0.7423	10230	-7.0	
	:.	:				1					٠.		NA/VE - BEX	⊃ FKF-N
· ·		:	· · · · · · ·		-40	· •		•					, i. a =====	
			;	N	~	NOT	res	;			•			
		,		×		<i>J</i> .	4W	105 LE	SS THAN	43K	JO15.			
				0	1				WÉOLS D					
		i		ų į					THIT HOV					
		}	•	<u>;</u>	æ s	3	VE	RTICAL	. DISTAN	Œ FF	OM.			
	'	_ .		<u>2</u>		, •	Bo	TTOM (OF BKID .	TO CE	TER			
		:		ũ			OF	POTO	RHUB =	IZFT				60
- <u>- </u>		· · · · · · · · · · · · · · · · · · ·		Ţ.	1								3	
•				ជ្ជ									· ma	X ₂
•		<u> </u>		Ç	a o			٠.					1	1
	;	٠.	•	Œ	:				-					\
-,		-	· · · · ·	Ä								e .	₩ Ã	
:		;	:	Ŏ		;		•						
' 1 1		:	·	#				••					XX.	
	•	: ::	;	:	25	; · ;						, A		
		• • • • • • • • • • • • • • • • • • • •	. <u>!</u>			. ;							41.	
		:		:	: 1	;					//			
- -	. 	<u> </u>			. <u>.</u>						رياد . الأنام *	S. A.		
	٠			<u>.</u>	.							M		
	: ·			! ! · · · • · · · · · · · · · · · · · · ·	တ									
- i -	. i	: ;					: .	1 : :			*			
			4	! !	ļ .		··· ·	1 :	. /	ภ				
:			1	į ·	-	-		: ::: ;		;	•			
		. 						ļ · ·	- ; - .					
		4 .	; ;	;	15		·	į						
		. 		. .			;	į			· ;- ·- ·			
	: .			!							:			
			:	• • • •		L		,			·			
		: :			2	D	•	25		Œ	. 3	·· -	10 . 44	
······································				<u>L</u> .		: *		. .				THRUST CO	EFFICIENT -	– C ₁)
				i		,							;	

n on 10776 Denine 1911 HT = 4FT

CO A CHA /IE = 300, 310, AND 320 FRPM

CO A CHAPM

CO

45 50 55 60 65 - CT XIQ4

FLESS UMMERICE

UH-IN USAF SIN 68-107 T400-CP-400 ENGINE CATEGORY II SHID HEIGHT FIOFT

		AKS RORA		itted he	FREE AM
	NANE	SPEED	4	ACTITUDE	TEME
SIM	(RPM)	(RFM)	SITM	<u> (F1)</u>	(deaC)
0	300	298	0.6749	9,640	10.0
Δ,	QIE	301	0.6973	1,990	-A.O
Δ	- 3 (0)	307	೧.ಆ-7.3	96AC)	9.0
Ò.	CSE	309	0.7198	1,930	- 5 .0
<u>α</u> .	330	317	0.7198	9,640	9,0
)ii	ಕ್ರ	317	0.7423	1,4362	45.0
41	ූ සිසි ප	319	0.7443	2,080	-د ت
n i	330	317	07423	10,670	-70

NOTES:

50

45

زيد

35

25

. 20

- A WINDS LESS THAN SHAKING.
- 2. SOLID SYMBOLS DENOTE FREE FLUSHI'L HOMEH.
- \$, VERTICAL DISTANCE FROM BOTTOM OF SKILL TO CENTER OF POTOR HUB # 12 FT.

35 40 45 THRUST COEFFICIENT - CTXIO4

FIGURE . 9 NONDIMENSIONEL HOVEHING!

ΞΌ

USON ISON 68 10776 WENT HOW CHAINE COMPANY II MA HEIGHT FIOTT TEMP (deac) (O.Oi -40 9.0 ۵.۵-9.0 40 ن ع .70 = 300, 310, AND 320 RPM

45 50 55 60 65 FRICIENT - CTXIO⁴

COLHING PERFORMANCE

23

UH-IN USRF S/N 68-10 T400-CP-400 ENGINE CATEGORY II SKID HEIGHT = 15 FT

SYM	. N _R //ē (RPM)	AVG ROTOR SPEED (RPM)	MTIP	PRESSURE ALTITUDE (FT)	FREE RIR TEMP (°C')
A	310	303	0.6973	ಬರಿಂ	0.0
.:. _	. ; 310	302	0.6973	3 850	0.0
Q	SC	31%	0.7198	2530	-3.0
Ω	320	116	0.7198	9,850	- 1.0
Ξ ΄	330	321	0 7473	2,030	. 20
О	OEE.	318	0.7463	2,110	- 4.65
.:: 1	- 33Q	322	0 7423	9760	3.3
Д	330	321	0. (423	9,840	-1.0

NR NO = 330 RPM

NOTES

- I WINDS LESS THAN 3 KNOTS.
- 2. SOLID SYMBOLS DENOTE FREE FLIGHT HOVER.
- A VERTICAL DISTANCE FROM BOTTOM OF SKID TO CENTER OF ROTOR HUB = 12 FT.

: ,. .

25 3

35

4 Q

45

THRUST COEFFICIENT - CT x IC

FIGURE TO NONDIMENSIONAL HOVERING PER

•

R N 68 10776 CO LNGINE CRY II GRT 215FT

RIR IF

HR / 80 = 300 AND 310 APM

No/100 - 220 RPM

45 50 55 60

in her constituted.

UH IN USAF S/N 6 1'400-CP-400 C CATESOR / I SKID HEIGHT - Z

SYM	NAMES	HAG PIOTON SPEED (RPM)	Мпе	PRESSITE PLIMIDE (FT)	FHEE AIR TEMP (degc.)
Ω	ದ೧೯	296	06749	9,640	7.0
` 4	310	303	0.6973	2,170	1.0
Ą	310	303	0.6973	4,600	€.0
Q,	320	313	0.7198	2,170	1.0
\Diamond	320	313	0.7198	9,6.30	5.0
73 -	ಚಿತ ಿ	320	0.7423	2110	۱۵
D	පියා	316	0.7443	· 4,080	- 5 0
Ц	33 0	320	0.7425	9,860	ں.ج۔~

NOIE :

55

A()

35

аo

6:1

I WINDS LESS THAT SHADIS.

2, SOLID SYMBOLS DENOTE FREE FLIGHT HOVER

BOTTOM OF SHID TO CENTER OF HOTOR HUB = 12 FT.

PHILE HAM

SHID TO CENTER

BE 12 FT.

AD 25 30 25 40 45
THRUST COEFFICIENT - CT

FIGURE II NONDIMENSIONAL HOVEHING HELY

(47) かららら10176 (27) (47) ののENGINE (37) (50円) 11 (37) (50円) - 25FT

10 0 A 10 5.0 10

NA /16 = 300 AND 310 RAM

• Na //€. = 320 RPN

., 45 50 55 60 65

JULIANO MURI CHMANCE

25

UH-IN USAF SIN 66-107 1400-CP-400 ENGINE. CATEGORY II. SKID HEIGHT = 35 FT

	•					
			EMG HOICH		HERSSIME.	FINEE 1914
-		NAMES	SPEED		FLITTUDE	TEMP
2	55 YAA	(RFM)	(MAM)	Mary	(FT')	(JeyC)
	Δ_{ζ}	OIE	ECCE	Q6773	2,190	2.0
	Δ	OIE	302.	06973	₹860	~1.Q
	Ó,	320	SIE	07:98	2,190	2.0
	\	OSE	310	07198	9,820	-1.0
5	נז'	33 0	321	0.7423	2,160	လတ်
	1.1	Storie	:કોલ	0.7425	2, 03 0	-5.O
	ıίζ	೨ ನ	34 ()	07-123	9,830	~Z.O

NDIES:

NUN CLAS

A WINE PER SCHOOL OF

2. SOUD SYMBOLS DENOTE FREE FLIGHT HOVER.

SOUTHWENT DISTRINGE CHANN BOTTON OF SIND TO GENTER

· O' HOTOM HUB = 12 FT.

دين

145

THEOST COEFFICIENT

FIGURE 12 NONDIMENSIONAL HOVERING

. 2£ in a Te Roxe Wali

FRACE CLIE OCE - JENAGE

NH NO " BEO HEY

ച. 55 ല **65**

ستاساله او يواسر : الاستراد

THOO CP 40

oobetrj Thoibh dia**a**

- 1						PLID HEI
- 1			AVG ROTOF	1	PRESSURE	FREE AIR
į		NR /Ver	SPEED		ALTITUDE	TEMP
-	SYM	(RPM)	(RPM)	MTIE	(4.4)	(°C)
50						
1		300	294	0.6749	4,090	1,5
į	7	300	293	0.6749	9,700	-1.6
	X	310	808	0.6973	2,050	~1.8
	Δ	310	308	0.6913	9,640	- Q.Q
45	· 🚣	DIE	302	0.6973	4,100	(.0
l	.	310	301	0.6973	9,700	-1.8
	À	350	312	U. 7156	2,000	- 1.6
	Ŷ	320	312	0.7193	8,650	- 0.1
	♦	320	312	0.7198	4,100	1.0

Mr. 1/64 - 330 RMM

NOTE:

POWER COEFFICIENT

30

20

15

- I WINDS LESS THAN & KNOTS.
- & SOLID SYMBOLS DENOTE FREE FLIGHT HOVER.
- S. VERTICAL DISTANCE FROM BOTTOM OF SKID TO CENTER OF ROTOR HUB = 12 FT.

CONCHUED

NE//6: SYM (RFM)

> **♦** 380 b 330 b 330

E 330 ■ 330

20 25 30 35 40 45 THRUST COEFFICIENT

. FIGURE 13 NONDIMENSIONAL HOVERING PERFO

N N USAF SN WB-10776
NGCO CH 400 ENGINE
CHTEODRY II
NY CHEIGHT = 60 FT
FREL AIR
TUMP

15 -16 -18 -0.0 1.0 -1.8 -1.6 -0.1

- NR // 6 = 300 AND 310 RPM

NR // 82 = 320 RPM

्टला	KINDED	a a			
5/[4	NA//6. (RPM)	RVG ROTOR SPEED (RPM)	MTIP	PRESSURE RUTITUDE (FT)	FREE AIR TEMP
	320	311	3.7198	9,690	-2.0
ü	330	કંદ્રા	0.7423	2,060	-2.0
Ľ	330	319	0.7423	2,100	-5.Q
II.	950	322	Q.7423	4,100	1.0
-	330	321	0.7423	9,650	۵.۵
	-330	321	0.7423	9,490	-2.Q

45 50 55 60 65

JOHN PERFORMANCE

UH-IN USAF 5/N 68-10776 ...T400-CP-40C ENGINE CATEGORY III SKID HEIGHT - 4 FT

FLIGHT CONTROL POSITIONS IN HOVERING FLIGHT

					UН	-IN 140	41-14		+++++		: 7	++++	114444	e						i		
							111111	1:11:	++:++	363 Y	* [* * * * * *	11:::									11 1	
41.1						Sk	ίÞ	1.15	ηG	нΤ	- 15	F					#### #################################			111		
												5Y)	À	Ne	AGE,		Nka		PI		He	1
T. F												Δ		3	10		XX		φ.c		98:	50
												↓ ♦	N-711	: :::	20	1	103 31	11.11	0.0		201 9,84	~ } · ·
7			1111									Q			20	t!!	112.	111111	20		2.0	
^ ~	Fu	LRI	GHT									Ω Ω		: :: :	30 30	11	121 122		1.0		9,8	11.
(Z 6												۵		1111 1	3O	1 3117	32.I		2.0		ZO	**
F 5																			1 -			
u.																						:
اً ا																						
10F 19	713						(j- ; i	†	i i		, i											
	哥		NA	0	(A)		23	4	A										1		i' -i 	
FROM /					TX.	V	1		and (4				11.		- ; ; .					1
	- H-	CTA		MINE) 					1)	2020			1	م	<u></u>	<u>_</u>			
· · · · · · · · · · · · ·	FUL	ر رو				112										1 11		41			· · · · · · · · · · · · · · · · · · ·	+
, 10	<u>, </u>	<u> </u>					-1															-
9	FUL	L UF	>												7.71						, , , , , ,	1
1	:																					
- β - Î.	1				ļ			-		- -				-								
2 7						A	A	0		4												-
7 3 6			- X				•	**]				4	مه	AV.	4			
8								S -		23. P.	, _I		10	**	4	100						
<u>ا ج</u>						-1	-	O	V	<i>,</i> ,											+	
ق اب 4		11.												1-4" 11 "								
F & O M								111														
r ⇒ L													1.									Hij Hiji
2			[1									į.:::						.: ::				
,										::::::::::::::::::::::::::::::::::::::		ļ::::										
	l Fu	-L D	NWC																			
ခ			35	11 11		40	1	1		45			;; .,	50				55			•	- 50
		<i>i</i> - : :	1 1		THI	AUE	ا جاء	-	FF	FIC	IF N	iT'	بنورز	1.1.1	104	1	111.		11	1111		

FLIGHT CONTROL POSITIONS IN HOVERING ELIGHT

					UH-1	H U:		13/ N	56 E 6	(077 WE						
					d	KID	HEIG			- 1						
						7				Υ <u>Μ</u> Δ	DIE OIE	3c	72. C 13i	20	He 9640 2050	
NO.	FU	LLRI	GHT							0	320 320 330	31 31	2 +i	.O. O.0	9,650 2060 9650	
L POSITION 17 - (IN)											330	32		2.0	2,040	
IAL PEDAL FULLILEF W				*												
AOM SOM	To be			äggidd),	*	& _c		-5 ₍₁	a A							
DIRE		PETF		NING	T T T T T T T T T T		Y									
10	FUI	L UF	5													
FULL DOWN - (IN)	\ZD		1		U W	Q	4		△	A CO	•					
						-8	er 4									
7.17.7 7.17.7 3.13.0																
0 . 2	,															
0	<u>FUL</u> 30	_L DC	OWN 35		CHELL		COU	45 FIC	ENT	,	50 XIO4		55		60)
ا 1 کیائے۔۔۔ 3	: IGUAE	17	_FL			ITRO					loves	RING	FL.IG	71		

TAOG GE 6/N GB G776

TECHNIQUE L ACCELEBATION FROM A 4-ET HOVER -

NOTE

- CURVES DERIVED FROM FIGURES 19 THROUGH 21
- 2 DO NOT EXTRAPOLATE DATA

WITHOUT ROTOR SPEED BLEED

UH-IN UBAE BIN 68-10776 TAOO-CE-AOO ENGINE CATEGORY II

TECHNIQUE

LEVEL ACCELERATION FROM A 4-FT HOVER-WITH ROTOR SPEED BLEED

NOTE :

- 1. CURVES DERIVED FROM FIGURES 23 THROUGH 25
- 2: DO NOT EXTRAPOLATE THESE DATA

FIGURE 24 TAKEOFF DISTANCE REQUIRED TO CLEAR A SOFT OBSTACLE .

UH-IN USAF BIN 68-10776 T400-CP-400 ENGINE CATEGORY II

TECHNIQUE: LEVEL ACCELERATION FROM A 4-FT HOVER -WITH ROTOR SPEED BLEED

ACP = 141.9 × 10-6

ROTOR SPEED (RPM) = 324-314

GROSS WEIGHT (LB) = 9,430

PRESSURE ALTITUDE (FT) = 9,520

FREE PIR TEMPERATURE (deg C) = 7.0

UH-IN USAF 5/N 68-10776 T400-CP-400 ENGINE CATEGORY II

TECHNIQUE CLIMB AND ACCELERATION FROM LIGHT ON SKIDS-WITHOUT ROTOR SPEED BLEED

NOTE :

- I. CURVES DERIVED FROM FIGURE 27 THROUGH 29
- 2. DO NOT EXTRAPOLATE THESE DATA
- 3. ACP BASED ON POWER AVAILABLE LESS FOWER REQUIRED TO HOVER AT 4 FT SKID HEIGHT

0

UH-IN USAF SIN 68-10776 TACO-CP-400 ENGINE CATEGORY II

TECHNIQUE: CLIMB AND ACCELERATION FROM LIGHT ON SKIDS -WITHOUT ROTOR SPEED BLEED

ACP = 148 XIO.6 ROTOR SPEED (RPM) = 224 GROSS WEIGHT (LB) = 10420 PRESSURE ALTITUDE (FT) = 9340 FREE AIR TEMPERATURE (degC) = 80

UH-IN USAF S/N 68-10776 TAOO-CPHADO ENGINE CATEGORY II TECHNIQUE: CLIMB AND ACCELERATION FROM DIGHT ON SKIDS: WITHOUT ROTOR SPEED BLEED ACP = 7 1.8XIO-6 ROTOR SPEED (RPM) = \$24 GROSS WEIGHT (LB) = 4960 PRESSURE ALTITUDE (FY) = 9,340 FREE AIR TEMPERATURE (degc) = 12.0 MIND .. LESS THAN SKNOTS HOTELS. ACP BASED ON POWER AVAILABLE LESS FOWER REQUIRED TO HOVER AT AFT SKIP HEIGHT 14:2. BROUND (FIT 17300 1000 1300 DISTRINGE BROCKED $\epsilon\omega\omega$ 4(X) 200 Ö 3D 40 TRUE HASPEER (KT)

FIGURE: 28

UH-IN USAF S. V 68-10775 T4XX-CP-400 ENGINE CATEGORY III

TECHNIQUE

WITH ROTOR SPEED BLEED

HOTE:

- I. CURVES DERIVED FROM FIGURES BUTHROUGH 33
- Z CO NOT EXTRAPOLATE THESE DATA
- B ACH BASED ON POWER AVAILABLE LESS FOWER REQUIRED TO HOVER AT 4FT SKID HEIGHT

							18-1	1	244				1	++++	4	++++		7 €											
		TEG	141	(Q)	Æ	.c		B				Щ			¥4 4.6		ž	#	- 0	*			•	747	Bir	(io	•		
					AC RO	e		* 1		KIC	٠.				11.	!:;! ::::::													
					GFI FFI	EG.	8. I	Æ.	PA.	H Ji	T (L€ ¥	H	= T)	O,#3 ≠ ¢	88 13	40												
	600				₩ø	1	11 1	- 1		111.1		11111	1111		1.11.1		٠							7,1					
	400		, N		P QL					, , ,			,						,					W	EF		1 1		
D (FT.)																						1							
GROUN	zos												:																
ABOVE GROUND	1000		1																										
Ŀ															. : . : . : . : . : . : . : . : . : . :														-
TO SO	800																				a			6					
XHRED	တေ												1			از! ا		© .	9										
E REQ	400													Ø															
DISTANCE												,	: .					i 11:											
ā	200																												
	Ġ																												
		Φ			ρ			2	. د ا	TF	i ()	B F	D Pili	16	PE	EC	ρ 3 (K	- y	5	ρ			6	C		.::	. 7	P
46 6 6 6 6	BE.	31	T	AKI	ימ	E E	ום	5.1	Ю	NC.	E	RE	CH	J .1₽		1 1	O	g L	Œ	.		BC	T E		₩.		(A)		E

THUM HOME BIN EBINTYS THOSE BIN EBINTYS CHIEGORY II

TECHNIQUE

WITHOUT HOTOR SPEED BLEED THOVER -

MUTEL FOR THE ENDING

- I CURVES DEALVED FROM FIGURES 35 THROUGH 37.
- EL DO NOT EXTRAPOLATE THESE DATA. CLICK COLOR

TECHNIQUE: LEVEL ACCELERATION FROM A 15-FT HOVER
WITHOUT ROTOR SPEED BLEED WITHOUT ROTOR SPEED BLEED ROTOR SPEED (RPM) = \$24 GROSS WEIGHT (LB) = 9,044 PRESSURE ALTITUDE (FT) = 9,480 GROSS WEIGHT (LB) = 9,840 FACE AIR TEMPERATURE (44 C) \$50 WIND - LESS THAN BIKNOTS 1600 1,400 GROUND (FT) 1200 ABOVE 1000 50 FT 800 9 REQUIRED 600 DISTANCE .400 200 Ø THUE AIRSPEED (KT) TAKEOFF DISTANCE REQUIRED TO CL

T400-CP-400 ENGINE CATEGORY II

TECHNIQUE: LEVEL ACCELERATION FROM A 15-FT HOVER -- WITHOUT ROTOR SPEED BLEED

ΔCp = 64.2XIO-6
ROTOR SPEED (RPM) = 324
GROSS WEIGHT (LB) = 9.370
PRESSURE ALTITUDE (FT) = 9.490
FREE HIR TEMPERATURE (deg C) = 3.0

PH-IN USAF SIN 68-IQTT6 T400-CP-400 ENGINE CRITEGORY II

				HOTOR		
	ಆಗ ಲಾಸಿ	PRESS	T P Ca	SPEED		TOFKLE
SYM	WT.(LB)	ALT.(FT)	(90)	(MFM)	5140	(PCY)
Q	8.610	5,000	· 8. Ø	314	861	١٢
Ú	8,610	5,000	4.0	314	lice.	පප
ا لا	8,650	10,000	-3. ⊘	314	NOO	අප
17,]	8,440	14,000	- 10. ©	314	1,104	86
EL .	8,550	14,000	· 7.0	314	KXB4	88

		5 Үм Q Q	1 :	O-¢F-46 CATEG	5. OAT =1) (°C) 2.0 3.0	1 114 1	994 1103 1,107	TORQUE (PCT) 71 88 88	
		•							
	:	•	. !						
	2,400								
	2,200	,	1						
	2,772	r		; ;	. !				
	ددها		; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;						
: 	1,600				-BEST	CLIMB S	PEGD		
2	1,400		· · · · · · · · · · · · · · · · · · ·	(2)	-010-0				1
i.	1,200	,		1	A	00	/5,000 :	•	
LINE	1,000	·					×,0,00	74 QC	
	8 00	! .		, and	-44		/ 5,C	oo FT	,
F 0	60X7		•		÷.	Sell Sell	/ Cit	PCT TORQ	∪ ⊕)
a Term	400	: :	1	!	. :		A		1
r	zco		;	. !					
)	· ·	;		!			
,	O L		20	40		80	100		
			4r⊣(I. <u></u> jrч	HIER H	RSPEED	(KI)	i		-
				-					:
	•	ï							
		<u>;</u> .							
F	GURE 3	9 564	нтоот н	CLIMB	PERFOR	MANCE	Laida b	1	<u> </u>

UH-IN USAF %/N68-10776
T400-CF-400 ENGINE
CRTEGORY II

TEST DAY CONDITIONS

FOTOR SPEED (FFM) = 34

MANIMUM CONTRUCES FOWER (88% TORQUE)

C.G. LOCATION (FAG) = (37 IN. (MID)

UH-IN USAF S/NGB-10776 7400-CP-400 ENGINE

T400-0P-400 EN
CRIEGORY II
TEST DAY CONDITIONS
ROTOR SPEED (APA) = 314
MAKINUM CONTINUUS PONER (28% T03QE)
GG. LOCATON (346) = 137 NJ. (MID)

UH-IN USAF S/N 68-10776 T400-CP-400 Engines Category i:

30°0 ≠ 5

Figure 42 Nondimensional Lavel Flight Performance Surmany

Figure 45 Nondimensional Level Flight Performance Summany

UH-IN USAF S/N 68-10776 Tabb-CP-400 Engines Catogory I:

Figure 44 Nondimensional Level Flight Performance Summary.

UP-IN USAF S/N 68-10776 T400-CP-400 Engines Category II

Pipure de Nondimensional Level Light Performante Summatry

Figure 46 Nondimensional Level Flight Performance Summary

UH-IN USAF S/N 68-10776 T400-CP-400 Erginer Category II

				7	9B 310									99	
					NR//6n	320	-340							56 58	aary
												P _a	· **	54	Summan Cumant
					\times								1	50 52	
0776. es														48	
S/N 68-10776 100 Engines 30rv II	1.22												 	ļ ' '	
UH-IN USAF S/N T400-CP-400 & Category	C													38 40 42 44	CONTRACT SOUTH
T4			- '											38 4	Temple :
												,		34 36	
														25 0	
			i											28 30	
	7.5	£	† C	3 8	3	8	\$ \$	1	8	<u> </u>	2	1	3	J _M	
		,		; ; ; ; ; ;	ای	n ×	~ C5	au g	•667	97 X	Pow				
;		į													

Figure 90 Nondimensional Level Flight Performance Summany

Figure 51 Nondimensional Level Flight Performance Summary 25 Thrust Coefficient - $C_{\rm T} \times 10^4$ UH-1N USAF S/N 68-10776 T400-CP-400 Engines Category in **38** 40 8 Į, 8 3 83

Figure 52. Nondimensional Level Flight Performance

Figure 34 Nondimensional Level Flight Performance

ligure 55. Nondimensional Level Flight Performance

Avg Pressure Altitude (Ft) = 3420 Avg Free Air Temp. (°C) = ~7.1 Avg Gross Weight (1b) = 8430 Avg cg Location (Sta) = 138.0

Figure 56. Nondimensional Level Flight Performance

Sevrelds Ne.

Retreating Blade

Tigure 59 Rondingsional Level Flight Performance

ligure 60. Nondimensional Level Flight Performance

T400-CP-400 Engine Category II

Condition No. »

Avg Pressure Altitude (Ft) = 3240

Figure 62. Nondimensional Level Flight Performance

Ligure 63 Nondimensional Level Flight Performance

Lagure C4. Nondimensional Level Flight Performance

Figure 65. Nondimensional Level Flight Performance

Figure 66 Rendimensional Level Flight Performance

ligure 68. Nondimensional Level Flight Performance

Figure 74. Nondimensional Level Flight Performance

Retreating Blade Reynolds Vo. - R_o x 10^{±6}

Condition No. *13 CT = .0039917 $W/\delta_a = 9.800$ $N_R/\sqrt{\theta_a} = 300.6$ Avg N_R (IPM) * 304.6 Loading * CLEAN Avg Pressure Altitude (Ft) = 1660 Avg Free Air Temp. (°C) = 22.8 Avg Gross Weight (Lb) = 9,230 Avg cg Location (Sta) = 136.2

Tigure 75. Nondimensional Level Flight Performance

Avg Pressure Altitude (Ft) = 4860 Avg Free Air Temp. (°C) = 15.0 Avg Gross Weight (Lb) = 8,750 Avg cg Location (Sta) = 1864

Figure 76 Nondimensional Level Flight Performance

Retreating Blade Reynolds No.

Avg Pressure Altitude (Ft) = 3,300 Avg Free Air Temp. (°C) = 25.8 Avg Gross Weight (Lb) = 9,250 Avg cg Location (Sta) = 136.7

Retreating Blade Reynolds No.

1.calling + CARGO DOORS OPEN, TWO XM-93 MINIGUNS EXTENDED FIXED TO FIRE FORWARD, AND TWO LAU-59/A ROCKET

lighte ??. Nondimensional Level Flight Performance

Avg Pressure Altitude (Ft) = 7,2200 Avg Free Air Temp. (*C) = -0.3 Avg Gross Weight (Lb) = 8500 Avg cg Location (Sta) = 1850

Figure 78 Nondimensional Level Flight Performance

Advance Ratio - u

Retreating Blade Reynolds Mo. - Horx 16

Avg Fressure Altitude (Ft) = 10,260

Avg Free Air Temp. (°C) = 1.9

Avg Gross Weight (Lb) = 8,080

Avg dg Location (Sta) = 139.9

NOTE THILED SYMBOLS INDICATE BLEED

THE ON FOR HEAT

Figure 79. Nondimensional Level Flight Performance

igure 61. Nondimensional Level Flight Performance

igure OI. Hondimensional Level Flight Performance

Uli-1N USAF S/N 68-10776 T400-CP-400 Ergine Category 11

Condition No. = 20 CT = 0.0042998 $W/\delta_8 = 11,248$ $N_R/\sqrt{\theta_8} = 310.3$ Avg N_R (rpm) = 215.3 Avg Pressure Altitude (Ft) = 4130
Avg Free Air Temp. (°C) = 24.8
Avg Gross Weight (Lb) = 9480
Avg cg location (Sta) = 137.2

Retreating blade Reynolds vo.

Loading * CARGO DOORS OPEN, TWO XM-93 MINIGUMS EXTENDED FIXED TO FIRE FORWARD, AND TWO LAU-59/A ROCKET

Figure 86 Nondimensional Lovel Flight Performance

Figure 87. Nondimensional Level Flight Performance

Figure 88. Nondimensional Level Flight Performance

Figure 89, Nondimensional Level Flight Performance

Figure 90.

UH-1N USAF S/N 68-10776 T400-CP-400 Engine Category II

106

l'igure 91.

Avg Pressure Altitude (Ft) = 7,700

Avg Uree Air Temp. (°C) = 16.1

Avg Gross Weight (Lb) = 2030

Avg cg Location (Sta) = 136.0

Nondimensional Level Flight Performance

UII-IN USAF S/N 68-10776 T400-CP-400 Engine Category II

Condition No. - 26 Cr # 0.004547 W/8a = 11,951 NR/103 = 310.9 Avg NR (rpa) = 309.7

Avg Pressure Altitude (Ft) = 6,20 Avg Free Air Temp. (°C) = 12.9 Avg Gross Weitht (Lb) = 9430 Avg cg Location (Sta) = 1378

107

T400-CP-400 Engine Category II

Condition No. = 31 $C_1 = .0049981$ $N/S_a = 12.249$ $N_K/\sqrt{S_a} = 300.3$ Avg N_R (rpm) = 301.7Loading = CLERIN Avg Pressure Altitude (Ft) = 5,850 Avg Free Air Temp. (°C) = 17.9 Avg Gross Weight (Lb) = 9,870 Avg cg Location (Sta) = 157.7

Ligure 95. Nondimensional Level Flight Performance

Figure 96. Nondimensional Level Flight Performance

Figur. 18 Nondimensional Level Flight Ferformance

Figure 10t.

NAMPP

116

Avg Pressure Altitude (Ft) = 8.240 Avg Free Air Temp. (°C) = 16.0 Avg Gross Weight (Lb) = 9.540 Avg cg Location (Sta) = 137.6

Retreating Blade Reynolds No.

Hondimensional Level Flight Performance

UH-IN USAF 5/N 68-10776 T400-CP-400 ENGINE

VIBRATION CHARACTERISTICS

門房JHE 104

VIBRIATION CHIRRIACTERISTICS

UH-IN USAF S/N 68-10776 T400-CP-400 ENGINE CATEGORY II

T400-CP-400 ENGINE

VIBRATION CHARRETE RISTICS

T400-CP-400 ENGINE

	. Nipa	MAN		Addition of the state
510.45CL	(HPIs)	(63.24)	Charle	CAR
ca i	SIED	370		丹与
:. O	ಚಿತ್ರದ	320	32.52	₹
<i>.</i>	おばの	340	36.24	10 500

PIGURE 112 . PITCH LINK LOAD SURVEY

	NR	NR/IE		LEVEL PLIGHT
CYMBOL	(HPM)		$C_T X.IC^A$	COMPLICATION NO.
Ö	305 0	cxxe	42.96	19
ū	CEIE	3:0	42.30	.50
\mathcal{L}_{λ}	3(40)	320	43.20	Z.1 5/E
Ģ	327.0	CEE	42.59	22
Ò	34.0	340	43.3%	23

UH-IN USAF S/N 68-10776 T400-CP-400 ENGINE CATEGORY II

FIGURE 114 SAWTOOTH AUTOROTATIONAL DESCENT PERFORMANCE 129

UH-IN USAF SIN 68-10776 T400-CP-400 ENGINE CATEGORY II

				HOTOR
	GAU 35	FRESS	FAT	SPEED
SYM	WT.(LB)	A.T.(FT)	(degC)	(RPM)
, C	8,640	10,000	-B.O	294 (91%)
12	8 610	(O)000C)	-30	324 (100%)
\Box	8,400	(0,000	こ.だー	335 (103.5%)

GF	iosa pa	ess Fen	SPEED
		(FT) (deg	
		∞o z.c	
Δ ΙΟ	040 5	сс	324 (100%)
D /O	COC 5,	COD 7.C	335 (103.5%)

FIGURE 116 SAWTOOTH AUTOROTATIONIAL DESCENT PERFORMANCE

131

UH-IN USAF S/N 68-10776 T400-CP-400 ENGINE CATEGORY II

				ROTOH	
	GROSS	PPES5	FAT	SPEED	
SYM	WT.(LB)	ALT (FT)	(des(C)	(RPM)	_
. O	10,210	10,000	-12.0	294	(91%)
Δ	9,840	10,000	-11.0	314	(97%)
	9,930	10,000	-10.0	324	(100%)

FIGURE HE SLOPE LANDING SLOPE ANGLE LIMITS AND CYCLIC CONTROL POSITIONS

UH-IN USRF S/N 68-10776 T400-CP-400 ENGINE :

CRTEGORY TL

	GROSS WIT	PRESS ALT	FAT	SHPA
MYC	(LB)	(FT)	(deg C)	SHPA
0	8520	3,870	150	0.7964
	8,5 20	4,2(0	13.0	0.7720

NOTES :

- I. WINDS LESS THAN 3 KNOTS.
- Z. SHIPA IS SHIP AVAILABLE TEST DAY
- 3. SHPR IS SHP REQUIRED TO HOVER OGE - TEST DAY
- 4. FOLLOWING OUT OF ONE ENGINE, THE COLLECTIVE HELD FIXED FOR 2 SECONDS -THEN COPPECTIVE ACTION TAKEN
- 5. ROTOR SPEED AT ENGINE OUT 324 RPM (100%)
- 6. C.G. LOCATION 157 IN (MID)
- 7. SYMBOL LEGEND:
 - LANDING MADE
 - GO-FROUND MADE: 0
 - LANDING MACKE BUT COULD POSSIBLY GO-PHOUND
 - GO-APOUND MADE BUT MATIGINAL

FIGURE 119 HEIGHT-VELOCITY PERFORMANCE

120

UH-IN USAF S/N 68-10776 TAGO-CP-AGO ENGINE CATEGORY II GRUBS WT. PRESS, ALT. FEST SHPR (deg C) 14.0 0.6400 NOTES: 1. WINDS LESS THAN 3 KNOTS 2. SHPA IS SHP AMPILIPBLE - TEST DAY 3. SHPA IS SHP REQUIRED TO HOVER -OGE -- TEST DAY 4. FOLLOWING CUT OF ONE ENGINE, THE COLLECTIVE HELD FIXED FIXE & SECONDS -THEN COPPRECTIVE ACTION TRIVEN 5. ROTOR SPEED AT ENGINE OFF- TOTAL ASSETABLE 1400 324 PPM (100%) 6. C.G. LOCATION - IBTIN (MID) 7. SYMEOL LEGEND: CHOP (FT EJOHN BIAKOVAL . 120 O GO-APIOUND MADE O LANDING MADE BUT COULD POSSIBLY GO-AFOUND THROTTLE O GO-AROUND MADE - BUT MARIGINAL 100 TOUCHDOWN SPEED NOTED FOR EACH LANDING POINT MINIMUM SINGLE ENGINE SPEEDS LEVEL FUGHT = 35 KCAS 80 CUMB = 41 KCAS HEIGHT 60 ŭ Z SINGLE ENGINE GO-AHOUND MALE OUTSIDE OF THIS PIPER CAUTION AREA Φ 20 Q 10 30 40 50 TRUE AIRSPEED (KT)

FIGURE 121 HEIGHT-VELOCITY PERFORMENCE

FERRISH 128 HEIGHT VELOCITY PERFORMANCE

		UH-IN USAF S/N 68-10776	
		T400-CR-AOD ENGINE CATEGORY II	
		GPOSS WIL PRESS FLT FRIT SHE	
; · · · · · · · · · · · · · · · · · · ·		SYM (US) (FT) (degC) SHF O 10,440 9,680 0.0 0.44	
	180	NOTES	STORN F MAH
			AVAILABLE TEST DAY.
			REQUIRED TO HOVER
	ieù	OSE-TEST DA	OUT OF ONE ENGINE
			ELD FIXED FOR Z-
		on the partition of the factor of the contract	EN CORRECTIVE
	140	ACTION TAKE	
£		5 ROTOR SPEE	ED AT EMBINE CUT . OO PCT).
			(aim) HI LEI - NO
ક	120		SPEED NOTED FOR
nie i I		EACH POINT	· YMBOLS INDICATE
Щ		A LANDING	
11	100	and the control of th	S CORDITION NOT .
ů.	j	CONFLETED COMBITIONS	DUE TO WEATHER
Ī			PRESENTED SINCE
) 1	80	THE TEST P.	JINTS WHRE FOR
H		PRELIMINARY ARE HOT N	y work up and
$\frac{\tilde{\Omega}}{2}$			is minimum foints.
Ÿ	60	Julia Line Land M. SINGE - ENSI	NE LEVEL PEIGHT
ႜႋႜႜၟႜ		•	e at the test
ν̈́π		COMDITIONS.	
	40		
;			
	20		
		建氯化 自身体 医抗医血栓病 医电流	
· · · · · · · · · · · · · · · · · · ·			
	0	10 20 30 40 50	
		TRUE AIRSPEED (KT)	
•	:		

144		3-13	C CSAF 5/2	1 1	9776			1" "
			CATEGORY	日とは、日本の				1 , 1,
	TELIN ENGINE	NE OPERATION		NOTES				1
				N	508	NDICATE		I. II.
Q				M .		ATE UPCL		
QB=	6	54245 PNE (6,400 NE)			64246 PN= (6400)			
6-C						× × × × × × × × × × × × × × × × × × ×	ž	
) Y			-66254 PNE (G((GGOO NE)	Q .	(34(0039)	Ŷ	
TAF (MG.								
3C)								
2 4 2 \e\								
0 0 0 ∄					NEXT THESE			ranar.
8 4		J.			3 N/S	62/93		
3								
ď								
	300 4/4M	- 400 500 F2/ Gtz (LB/HR)	600 29 Engine (200 C	0 300 400 W4/δε2/Φε2 (18/1+ ACTERISTICS	500 600		

UH-IN USAF 5/N 68-10776 T400-CP-400 ENGINE CATEGORY II

TWIN HNGINE OPERATION

TIGURE INC. ERGINE CHARACTERISTICS.

TAPO-CP-400 ENGINE CATEGORY II

SINGLE ENGINE OPERATION

MOTION :

- I GERMAN BIN 40LA
- a by in bymbab indicate single theine topping funcia
- 5. DERIMED LINE INDICATES UPCC.

REFERRED	Œ		GAS	ENER	RATOR	S. P.	EED	Ž	SPEED ~ Ng/VGc2	(RPM)	ο × (ω	a-0	:				
34			35	34	376	 . : , 	36		39	40	41		-				
			i.		: 1		:] 		4.	3.	١.	5 1NG		i ,
			:										E)	GE	ile Teb		
	/							· · · · · · · · · · · · · · · · · · ·					GINE	PRE		:	
5	5		/ 🔉	/ / / / /								FITICA FITICA	FYMEX TOF Ng 19	OX 5.	-INE		
LE 5/				8									FINE	,	Op	740	1-11
					6								PON		ERA	1 .	
E						•	4	19					WEIR		TIO	1	
17.										7		UPCL.			N	400 OR)	
IV)E) <u></u> (04		//		E				
		1 1 1 1				ļ		6,625						1 :		EINIE	רסו
								4 F									
			- 					1€ (¢									Halla
			:					မေသ							: 		
						ļ ļ		NE)									
								· :			·						
							-										. 7771

.

THOO-CP-HOO ENGINE

- 1. GERARON 5/N 4064
- 2. 50(10 9/M/LZ INDICATE SINGLE ENGINE: TOPPING POWER
- B 100% Na 15 BB, IBO FPM
- 4. DASHED THE INDICATES DACU.
 CAUSANTON 17 SEP 70

UH-10 USAF S/N 68-10776 THOO-CP-400 ENGINE

CHALLICHY IL

- I. GERREON SIN 4054
- 2. SOLID SAMEOUS INDICATE SINGLE ENGINE TOPHNIE POWER
- MAN OSIBE BIEN SPON .E
- 4. OHSHED LINE, INDICATES UPCL.
 CALIBRATION 17:55H-70

UH-IN USAF 3/N 68-10776 TAOO-CP-400 ENGINE CATEGORY II

SINGLE ENGINE OPERATION

- 1. GERRBOX SIN 4064
- 2. SOLID SYMBOLS INDICATE SINGLE ENGINE TOPPING POWER
- 3. 100% Ng IS 38,180 RPM
- 4. DASHED LINE INDICATES UACL...
 CALIBRATION IT SEP 70

7400-CF-400 ENGINE CRTEGORY TWIN ENGINE OPERATION NOTES: 1. GEFFILION SIN 4064 2. DATH OBTAINED IN LEVEL FLIGHT SOLID SYMBOLS DENOTE BLEED AIR FOR HERT ON .. LEFT ENGINE ТÔ DATA OBTAINED DURING RIGHT EHGINE S/H 66128 11) 32 GRS GENERATOR SPEED (N. XID-3)

UH-IN USAF 5/N 68-10776

CATEGORY II

TWIN ENGINE OPERATION

NOTES :

- 1. GEARBOX 5/N 406A
- 2. DATA OBTAINED IN LEVEL FLIGHT

RIGHT ENGINE

UH-IN USAF S/N.68-10776 T400-CP-400 ENGINE CATEGORY II

TWIN	ENGINE	OPERATION
NOTE		

- L DATA OBTAINED IN HOVER
- 2. GEARBOX S/N 4064

Sauce	SIGN PERMIT (FT)
O	2
D)	4
Δ	10
٠	15
Λ	25
Ó	3 5
(7)	EC
Ü	ιαο

LEFT ENGINE

RIGHT ENGINE S/N 66126

FIGURE 141 ENGINE THEFT CHARACTERISTICS

DH-1N USAF S/N68-10772 7400-CP-400 ENGINE CATEGORY I

TWIN ENGINE OPERATION

FIGURE 144

UH-IN USAF S/N F8-10776 7400-CP-400 ENGINE CATEGORY I

BIGHT ENGINE 27199 N/S 100 1,100 LEFT ENGINE S/N 66126 2001 100% Ng 15 38,180 RFM TWIN ENGINE OPERATION GERROX SIN 4061 (A.) 30) 000 STATES .. 04 30 96 3.B 32

0021

FIGURE 145 ENGINE CHARACTERISTICS

T400-CP-400 ENGINE CATEGORY II

- I. GEAMBOX SIN 4061
- 2. SOLID SYMBOLS INDICATE SINGLE ENGINE TOPPING POWER
- MAL CON BE SI BN 60001 E

UH-IN USAF 3/N 68-10776 T400-CP-400 ENGINE CATEGORY II

SINGLE ENGINE OPERATION NOTES:

- I. GERRBOX SIN 4061
- 2. SOLID SYMBOLS INDICATE SINGLE ENGINE TOPPING POWER

3.1

LEFT ENGINE

400 500 600 700 $(\Box_{\xi}/\delta_{T_{\underline{\lambda}}}/\overline{\Theta_{\zeta_{\underline{\lambda}}}})$

1 ORE MY ENGINE CHARACTERISTICS

Dest Available Copy

SINGLE ENGINE OPERATION NOTES :

- I. GEARBOX 5/N 4061
- 2. SOLID SYMBOLS INDICATE SINGLE ENGINE TOPPING POWER
- 3. 100% Ng 15 98,180 RPM

164

FIGURE 149 - ENGINE CHARACTERISTICS

T400-CP-400 ENGINE CATEGORY II

- I, GEARBOX SIN 4061
- 2. SOLID SYMBOLS INDICATE SINGLE ENGINE TOPPING POWER
- B. DASHED LINE INDICATES UACL CALIBRATION 26 DEC 70
- 4. 100 % No 15 58,180 FPM

UH-IN USAF 5/N 68-10776 TAOO-CP-400 ENGINE CATEGORY II

- I. GERRIEUX SIN 4061
- ENGINE TOPPING POWER
- 3. DASHED LINE INDICATES LACLICATION 26 DECITO

UH-IN USAF 5/N 68-10776 T400-CP-400 ENGINE CATEGORY II

- I. GEARBOX SIN 4061
- 2. SOULD SYMBOLS INDICATE SINGLE ENGINE TOPPING POWER
- 3. DASHED UNE INDICATES WACL CALIBRATION 26 DEC 70
- 4. 100% Ng 15 38,180 RPM

UH-IN USAF 3/N 68-10776 TADO-CP- 400 ENGINE CATEGORY II

SINGLE ENGINE OPERATION

NOTES:

168

- 1. GEAPBOX SIN 4061
- 2. SOLID SYMBOLS INDICATE SINGLE ENGINE TOPPING POWER
- 3. DASHED LINE INDICATES LINCL CALIBRATION 26 DEC 70
- 4. 100 % Ng 15 36160 HPM

FIGURE 153 ENGINE CHARACTERISTICS

UH-IN USAF S/N 68-10776 T400-CP-400 ENGINE CATEGORY II

TWIN ENGINE OPERATION NOTES:

- 1. GERABOX SIN 4061
- 2. DATA OBTAINED IN LEVEL FLIGHT AND CLIMB
- 3. SOLID SYMBOLS INDICATE DATA CETRINED IN A CLIMB
- 4. 100% Ng 15 38,180 RPM

RIGHT ENGINE

5/N 66122 APPROXIMATE No FOR BLEED VALVE OPENING CL 10 B6% 88% 90% 92% 94% 96% 98% 100% 102% 32 33 34 35 36 37 36 39

GAS GENERATOR SPEED (Ng x 10")

UH-IN USAF S/N 68-10776 T400-CP-400 ENGINE CATEGORY II

TWIN ENGINE OPERATION

NOTES

- I. GEIPFIBOX S/N 4061
- 2. DATA CIBTAINED IN LEVEL FLIGHT
- 3. SOLID SYMBOLS INDICATE DATA OBTAINED IN A CLIMB
- 4. 1000% Ng IS 38,180 FPM

RIGHT EHGINE

15 34 35 36 37 38 39
GENERATOR SPEED (Ng ×10⁻³)

TAOO-CP-400 ENGINE

TWIN ENGINE OPERATION

NOTE:

- I DATA OBTAINED IN HOVER
- Z. GEARBOX S/N 4(YEI

SYMBO.	SHID HEIGHT (FT)
O '	2.
: D	4
Δ	1C:
\$	155
: Δ	25
. 0	, 3 5
, 42	. 6 0 ,
O	(CO

LEF	7	EME	INE
• .			1
S/N	100	ا جا جاء	

FIGURE ISC ENGINE THEFT CHARACTERISTICS

UH-IN USAF S/N 68-10776 TAOO-CP-400 ENGINE CATEGORY II

TWIN ENGINE OPERATION

I. DATA OBTAINED IN HOVER.	SYMBOA.	SKID HEIGHT (FT)			
Z. GETARBOX 5/N. 4061	O	2			
LEFT ENGINE	O	4	:		
5/N 66126	Δ	10	:		
1.04	♦ .	15			
	Δ	25			
	0	35	•		
·	D	€ 0			
1.02	V	w	to e		

RIGHT ENGINE S/N 66122

T400-CP-400 ENGINE CATEGORY II

TWIN ENGINE OPERATION

NOTES:

- I. GEFFEIGH SIN NOW
- 2. DATA CEMARTED IN CEMARED FLIGHT

TAOO-CP-400 ENGINE CATEGORY II

TVAN ENGINE OPERATION

NOTES:

- I. GEHRBOX SIN 4061
- 2. DATA OBTAINED IN LEVEL FLIGHT

178 FIGURE ICH ENGINE TOPPING VARIANCE WITH TO.

FIGURE 162 SINGLE ENGINE SHAFT HORSEPOWER AVAILABLE

FIGURE 163 SINGLE ENGINE SHAFT HORSEPOWER AVAILABLE

UNION USAF SINGENOTIC TACO-CP-AQO ENGINE CATEGORY II

NOTE:

I DATE FOR FOR FETT ENGINE (NOT)

SHE CARE WITH FRAME ENGINE

HT FLACT IDLE:

T400-CP-400 ENGINE CATEGORY II

NOTES :

DATA ARE FOR RIGHT ENGINE (NO.2) SIN 66122 WITH THE LEFT ENGINE AT FUGIT CLL

TAOD - CP-400 ENGINE CATEGORY II

LEFT ENGNE (NO.1)

7 SIN EGIZT

5 SIN GUIZG

FIGURE 65 COMPRRISON OF PILOT PRINEL AND SPECIAL INSTRUMENTATION RENDINGS FOR LITT AND Mg

APPENDIX II GENERAL AIRCRAFT INFORMATION

Dimensions and Design Data

Overall Dimensions

Aircraft length (rotors turning)	57	ft	0.7	in.
Neight (to top of turning tail rotor)	14	ft	4.7	in.
Height (to top of rotor crown)	13	ft	1.0	in.
Aircraft width (rotors stopped)	9	ft	4.0	in.
Skid width	8	ft	8.4	in.

Main Rotor

•	
Number of blades	2
Rotor diameter	48 ft
Rotor disc area (A)	1809.0 sq ft
Blade chord	23.375 in.
Blade airfoil	
Blade root to 80-percent radius	NACA 0012 (modified)
Blade tip (linear taper from 80-percent radius)	NACA 0006 (modified)
Geometric solidity ratio	0.05167
Main rotor clearance, ground to top (rotor static against stops)	7 ft 2 in.
Forward tilt of rotor shaft	5 deg

Main Rotor Blades

Pitch, collective (measured at the 75-percent radius station)	0 to +15 dec
Pitch, cyclic (measured at hub yoke)	
Longitudinal	<u>+</u> 12 deg
Lateral	<u>+</u> 10 deg
Flapping	<u>+</u> 11 deg
Preconing angle	2.75 deg
Blade twist (total)	-10 deg

Tail Rotor

Number of blades Diameter Solidity ratio

Tail Rotor Blades

Blade chord (constant)
Blade twist
Hub precone angle
Airfoil section

Aspect ratio
Range of flapping

2 8 ft 6 in. 0.1436

11.5 in.
0 deg
1.5 deg
NACA 0018 at sta 12.75
tapering to MACA 0008.27
at sta 51.0
8.9
+8 deg

Figure 1 Principal UH-1N Dimensions

lain Rotor Speeds	
Power-on design maximum	324 rpm
Power-on design minimum	294 rpm
Power-off design maximum	339 rpm
Power-off design minimum	294 rpm
Power-on or-off limit	356 rpm
Gear Ratios	5:1
Engine power turbine speed to engine output shaft speed	
Main rotor transmission (engine output shaft speed) to main rotor speed	20.37:1
90-degree gearbox	2.59:1
Intermediate gearbox	1:1
Engine output shaft speed to tail rotor speed	3.98:1
Tail rotor speed to main rotor speed	5.122:1
Limit Flight Load Factors	
At 6,600 lb (basic design gross weight)	
Maneuver loads (g's)	
Positive	3.5
Negative	-0.5
At 10,000 lb (alternate mission gross weight)	
Maneuver loads (g's)	
Positive	2.3
Negative	0.33
	N
Design Maximum Speed	
Level flight	130 KIAS
Sideward flight	35 KIAS
Rearward flight	30 KIAS

Main Transmission Rating

At 6,400 rpm output shaft speed

Takeoff (5-minute)	1,250	shp
Normal (continuous)	1,100	shp

Weights

Design gross weight	6,600 lb
Maximum gross weight (internal)	10,000 lb
Fuel capacity (design)	212.5 gal (1,381 lb of JP-4 at 6.5 lb/gal)
Empty gross weight	6,000 lb

Control Riggings

Collective control full down - Main rotor blade pitch angle at blade root	7.0 deg
Collective control full up - Main rotor blade pitch angle at blade root	21.0 deg
Right pedal full forward - Tail rotor blade pitch angle at blade root	-10.4 deg
Left pedal full forward - Tail rotor blade pitch angle at blade root	21.9 deg

Rotor Systems

The main rotor is a two-bladed, semi-rigid, teetering type employing preconing and underslinging. Each blade is connected to a common yoke by a grip and pitch-change bearings with tension straps to carry centrifugal loads. Teetering motion of the rotortakes place about an axis perpendicular to the spanwise axis of the rotor. A stabilizer bar is provided to improve the inherent stability characteristics of the rotor.

Main rotor blades are "thin tip" blades; the basic NACA 0012 airfoil was modified by introducing a linear taper in thickness from a 12-percent airfoil section at the 80-percent blade radius station to an NACA 0006 airfoil section at the blade tip, and by then attaching a 2-3/8-inch chordwise extension to the blade trailing edge. The extension increases the blade chord length to a constant value along the span of 23-3/8 inches.

The two-bladed tractor tail rotor is a rigid, delta-hinged type employing preconing and underslinging. Each blade is connected to a common yoke by a grip and pitch-change bearing; the blade and yoke assembly is attached to the tail rotor shaft by a delta-hinge trunnion to minimize flapping. Tail rotor blades are also of the "thin tip" design, but without the chordwise trailing edge extension.

Rotor control systems are boosted by two irreversible and completely independent hydraulic boost systems. System 1 supplies boost pressure to the cyclic, directional, and collective controls; system 2 supplies boost pressure to the cyclic and collective controls only. Pressure, supplied by two transmission-driven pumps, is admitted to the appropriate boost cylinder through a power cylinder servo valve actuated by movement of the cockpit controls. A force trim system and an artificial force gradient or "feel" are provided for the cyclic and directional controls through a system of magnetic brakes and springs.

Power Plant

The aircraft is powered by a United Aircraft of Canada Limited T400-CP-400 power package consisting of two PT6T free-turbine turboshaft engines, each with an uninstalled rating of 900 shaft horsepower at sea level, standard day conditions. The power sections are coupled to a combining gearbox which has a single output shaft to drive the uprated (1,250 shaft horsepower) main transmission. Overrunning clutches in the drives of the two power sections permit torque to be transmitted in one direction only, providing for single-engine operation and two-engine-out autorotation. An automatic torque matching unit provides for balanced load sharing between the two power sections. The torque matching unit receives oil pressure signals from each power section proportional to the torque output of that engine. Equalization of engine output torques is achieved by comparing the two torque pressures and sending an "increase fuel flow" signal to the automatic fuel control unit of the relatively low-torque-output power section.

The engine combining gearbox has a hydromechanical torquemeter installed as an integral part of the reduction gearing. Figure 2, appendix II, presents the torquemeter operation. The operation of the torquemeter is based on the principle that a torque applied to a helical gear produces an axial force normal to the gear's plane of rotation. The output torque of each engine is transmitted through a helical gear to that engine's torquemeter. The torquemeter senses torque through a helical gear attached to a piston. Torque applied to the gear causes an axial displacement of the piston which, in turn, opens a port allowing oil under pressure to pass through the hollow shaft of the piston to a cavity adjacent to the piston face. Oil pressure against the piston face increases until the axial force caused by the engine torque is neutralized. The relationship between the oil pressure required to neutralize the axial force on the piston and the engine output torque passing through the combining gearbox was determined for the Category II test power sections and gearboxes via laboratory calibrations. The calibrations for power package combining gearbox S/N 4061 with power section S/N's 66121 and 66122 are presented for twin-engine operation in figure 3, appendix II, and for single-engine operation in figures 4 and 5, appendix II. The calibrations for power section S/N's 66127 and 66128 are presented in figures 6 through 8, appendix II.

For twin-engine operation, the relationship between output torque (ft-lb) and torquemeter oil pressure (psi) is independent of power turbine speed, engine oil temperature and bleed valve operation. For single-engine operation, the relationship between output torque and torquemeter oil pressure is independent of power turbine speed and the operating mode of the second power section (flight idle or shut down).

Weight and Balance

The basic weight of the test aircraft, measured with full oil, trapped fuel and test instrumentation installed was 6,733 pounds. The cg location for this configuration was at fuselage station 144.44.

Flight Limits

Center of gravity limits and airspeed limits were obtained from reference 2 and are presented in appendix II, figures 9 and 10, respectively.

Test Instrumentation

Test instrumentation supplied by AFFTC was installed by Bell Heli-copter Company (BHC) of Fort Worth, Texas, in accordance with AFFTC drawings. Initial calibrations were accomplished by BHC with subsequent calibrations, modifications, and maintenance being accomplished by AFFTC. The basic instrumentation package consisted of a CEC 5-119-P3-5 50-channel oscillograph, a photorecorder, a time correlation system, a "tail low" warning system, and associated sensors and wiring.

Instrumentation List

See appendix I1 of FTC-SD-71-50, UH-1N Category II Flying Qualities Evaluation, Air Force Flight Test Center, Edwards AFB, California, January 1972.

Figure 2 Torquemeter Operation

CH-IN USAF S/N 68-10776 7400-CP-400 ENGINE CATEGORY II COMBINING GEARBOX S/N 4061 LEFT ENGINE S/N 66/Z! SINGLE ENGINE OPERATION

FIGURE 4 COMBINING SEARBOX TORQUEMETER CRLIBRATION

COMBINING GERRBOX TORQUEMETER CRLIBRATION SINGLE ENGINE OPERATION DYNOMETER (ET-LB) 2. TAILED SYMBOLS INDICATE FROM UPCL CALIBRATION 300 DESCENDING DOWER. 6 JAN 1971 200

COMBINING GERRBOX 5/N 4061

CATEGORY II

RIGHT ENGINE SIN 66122

UH-1N USAF 5/N 68-10776

TAOO.CP-ADO ENGINE

HEAT REJECTION HEAT REJECTIO BLEED VALVE CUTBORPO DUCTING COMBITION NORMAL NORMAL REMOVED OPERATION TINO NIME NC RPM 33,000 33,000 FT-LB=(14.0126 x PSITA 1,400 004, COMBINING GENRBOX SIN 4064 0021 UH-IN USAF S/N 68-10776 TWIN ENGINE OPERATION T400-CP-400 ENGINE CATEGORY II 0000 DYNOMETER (FT-LB) I. FROM UACL CALIBRATION 600 18 SEP 1970. 200

FIGURE 6 COMBINING GEARBOX TORQUEMETER CALIBRATION

CH-IN USBF S/N 68-10776
1400-CP-400 ENSING
COMPINING GERANGOX S/N 4064
PIGHT ENGINE S/N 65128
SINGLE ENGINE OFERATION

COMBINING GERRBOX TORQUEMETER CALIBRATION FIGURE 8

	UNCLASSIFIED	
1	Security Classification	
	· · · · · · · · · · · · · · · · · · ·	TROL DATA - R & D a ennotation must be entered when the overall report is classified)
	Air Force Flight Test Center	22. REPORT SECURITY CLASSIFICATION Unclassified
	Edwards AFB, California	26. GROUP N/A
	Category TI Performance Test of t	he UH-IN Helicopter. Volume II.
9	Final Acit, 17 Nou 70-16	methodis
N.	Robert H. Springer Donald/Berger Lieutenant Colonel	, USAF (12) 210/s.
	May 72	78, TOTAL NO. TAGES (5. NO. OF REFS
٦	b. PROJECT NO. Directive 69-49B	PA. ORIGINATOR'S REPORT NUMBER(S) FTC-TR-72-17-Vol-2
	c. Program Structure 443N	9b. OTHER REPORT NO(3) (Any other numbers that may be essigned this report) N/A
	(Test and Evaluation), February 1	ted to U.S. Government agencies only 972. Other requests for this docu- H), Wright-Patterson AFB, Ohio 45433.
	This is Volume II of II.	6510th Test Wing Edwards AFB, California
ı	This volume presents the test	techniques data analysis methods

This volume presents the test techniques, data analysis methods test data, and general aircraft information for the Category II performance evaluation of the UH-1N helicopter

Best Available Copy

DD . 1074 .. 1473

UNCLASSIFIED
Security Classification

1) 12 1111

UNCLASSIFIED

UNCLASSIFIED Security Classification	LINK A		LINK A LINK B		LINK A LINK B		LINK C	
KEY WORDS	ROLE	wT	ROLE	WT	ROLE	WΤ		
					ÌÌ			
UH-1N helicopter								
UH-1N helicopter performance								
test techniques test data					ļ			
test data			i I		1			
data analysis aircraft description								
		ĺ		ļ				
		Ĭ		ţ	1	1		
	ļ				}			
					1			
			1.					
			-	-	1	1		
					1			
		1						
					}			
					1			
	Į					1		
						}		
						1		
				1	}			
		'			ļ			
				1	.			
			ļ					
	1			1				
Best Available Copy								
- Joe Hallable Copy								

UNCLASSIFIED
Security Classification