More Multiple Linear Regression - Inference in MLR Revisiting hypothesis testing in MLR, we discussed

- 1. Testing whether a single coefficient is 0 (or some other value of interest) - t-test with n-p-1 df, standard error is a function of MSE for model:

$$\operatorname{var}(\hat{\beta}_1) = \frac{\hat{\sigma}^2}{\sum (X_i - \bar{X})^2}$$

where

$$\hat{\sigma}^2 = MSE = \frac{\sum (Y_i - \hat{Y}_i)^2}{n - p - 1}.$$

We then compute the test as

$$t = \frac{\hat{\beta}_1 - value}{\sqrt{\operatorname{var}(\hat{\beta}_1)}}$$

and compare to a critical value from a t dist'n with $n-p-1 \atop \text{\#Pavameter}$ df

More Multiple Linear Regression - Inference in MLR

- 2. Testing whether all coefficients are simultaneously 0 (whole $\beta_s = 0$ model is 'null') - F-test

The Global F-test in Regression (conceptually):

- * SSR $(SS_{between}) = \sum (\hat{Y}_i \bar{Y})^2$ variation in a predicted 'group mean' \hat{Y} around the overall mean of Y. MSR = SSR/p
- * $SSE\ (SS_{within}) = \sum (Y_i \hat{Y}_i)^2$ variation between predicted and observed Y_i s. Quantifies how group-specific values vary around their group specific mean $(\hat{Y} \text{ is a group-specific mean, with the group being those with specific value of covariate } X)$. The MSE = SSE/(n-p-1)

If the ratio MSR/MSE (**F Statistic**) is **large** (far away from 1.0), then 'some X's identify group-specific means', or the population means likely differ across X (as a linear combination of X's weighted by β coefficients)

Testing in Multiple Regression -subsets of coefficients-

(SPRM Chapter 4)

H₀: Some β_s =0 - Testing whether several coefficients are simultaneously 0 (or some other value)

These tests are useful for refining a multivariable model down to those predictors that contributing meaningfully to explaining/predicting Y. (as defined by statistical significance criteria we have specified)

This approach basically compares two models – the model with all predictors in it, or "the full model(FM)" and a model with fewer predictors, "the restricted model (RM)". There are m parameters $1 \le m \le p$ that could be omitted. The text (SPRM) also calls the reduced model the 'incomplete' model.

Assess if including additional variables improves the model's fit.

Testing in Multiple Regression - subsets of coefficients **SPRM 4.3**

The hypothesis setup is:

 $H_0: \beta_j = \beta_k = \ldots = \beta_m = 0$

 H_1 : at least one of these $\beta \neq 0$

We use properties of the sum of squared errors

$$\sum (y_i - \hat{y}_i)^2$$

from the different models to formulate the test.

Models are said to be *nested* if one is a subset of another with respect to the predictors included. For now we consider these type of tests only

• Simple Model (Reduced):

Y= Bo+ Bixi+E

• Complex Model (Full Model):

Y= Bo+ Bixi+Bixi+E

Testing in Multiple Regression - subsets of coefficients Some facts:

- SST does not change from model to model (for the same fixed not cases included). Recall that SST is simply $\sum (y_i \bar{y})^2$, without regard to any X
- $\ \, \text{SSE} \ \, \sum (y_i \hat{y}_i)^2 \\ \, \text{will become smaller in models with a larger number of parameters} \\ \, \text{(i.e., predictors) included, although the gain may be trivial, if the added predictors do not contribute materially.} \\$
- Since $R^2=1-SSE/SST$, then R^2 always gets larger as we include more predictors relative to fewer (from a set of p predictors and fixed n), again possibly trivially so

Contrasting Models via F-tests

Tests contrasting nested models are referred to as partial

F-tests. The key idea is to contrast the SSEs from both models (Full Model and Reduced Model) with respect to the full model's SSE. In this sense we look at the <u>relative loss in information</u> for dropping some predictors. The partial *F*-test is:

$$\text{(Always positive value)} F = \frac{\frac{\text{Reduced}}{(SSE_{RM} - SSE_{FM})/(df_{RM} - df_{FM})}}{\frac{(SSE_{RM} - SSE_{FM})/(df_{RM} - df_{FM})}{\text{bigger errors,}}}$$
 Notes:

- This statistic takes on a valid F statistic value (> 0) because SSE_{RM} is always greater than SSE_{FM} . Keep in mind that fewer parameters means more variability in prediction, so SSE_{RM} is always larger than SSE_{FM}

Contrasting Models via F-tests

$$F = \frac{(SSE_{RM} - SSE_{FM})/(df_{RM} - df_{FM})}{SSE_{FM}/df_{FM}}$$

Notes (cont):

- This statistic comes from a distribution that has two defining parameters (called degrees of freedom), $df_{RM} df_{FM}$ and df_{FM} .
- Note that numerator degree of freedom is just the difference in the numbers of predictors between the two models that is, the number of β s being tested. (a) Page 62: then df pm df pm = 2.
- The FM degrees of freedom is always n-p-1 (full model minus intercept and all predictors).

Contrasting Models via F-tests

Partial -> "Partial of the Full Model": Nested.

- As an example, let's assume that we are testing two parameters (from an initial model with 4 predictors)

 $H_0:\beta_3=\beta_4=0 \text{ (in a model that with }\beta_1,\beta_2,\beta_3,\beta_4)$

 H_1 : at least one of β_3 or $\beta_4 \neq 0$

- A way to test this hypothesis is by contrasting models using the partial *F*-test. In Stata, we use the "test" command. After fitting the full model (all predictors), we test whether two predictors (inc and road) can be omitted:

If B3=B4=0, then that means not significant and can be omitted.

Contrasting Models via F-tests - Example

Full Model

. reg fuel tax dlic inc road

Source	SS	df	MS		Number of obs	= 48
					F(4, 43)	= 22.71
Model	399316.478	4 9	9829.1195		Prob > F	= 0.0000
Residual	189050.001	43 4	396.51165		R-squared	= 0.6787
+-					Adj R-squared	= 0.6488
Total	588366.479	47 1	2518.4357		Root MSE	= 66.306
fuel	Coef.	Std. Ei	r. t	P> t	[95% Conf.	<pre>Interval]</pre>
+-						
tax	-34.79016	12.970	2.68	0.010	-60.94706	-8.633249
dlic	13.36449	1.92298	6.95	0.000	9.486431	17.24255
inc	-66.58875	17.2217	75 - 3.87	7 0.000	-101.3197	-31.85778
road	-2.42589	3.38917	75 -0.72	0.478	-9.260812	4.409032
_cons	377.2913	185.541	2.03	0.048	3.111754	751.4708

```
Restricted Model

. test road inc Nested

(1) road = 0
(2) inc = 0

F(2, 43) = 8.16

Prob > F = 0.0010
```

You can also calculate all the above F statistics by hand as shown in SPRM 4.6: fit two regressions – one using all predictors (the full model) and the other excluding the predictors you wish to test (the restricted model). With the SSEs from the two 'nested' models, you can calculate the F-statistic. The two-variable reduced model:

. reg fuel tax	dlic Nested"			
Source	SS	df	MS	Number of obs = 48
+				F(2, 45) = 28.25
Model	327532.469	2	163766.234	Prob > F = 0.0000
Residual		45	5796.31134	R-squared = 0.5567
+-				Adj R-squared = 0.5370
Total	588366.479	47	12518.4357	Root MSE = 76.134

Contrasting Models via F-tests

- **Reduced model** has SSE = 260834.01; **Full model** has SSE = 189050.001; both models have same SST = 588366.479And the F-statistic is calculated as

$$F = \frac{(SSE_{RM} - SSE_{FM})/(df_{RM} - df_{FM})}{SSE_{FM}/df_{FM}}$$
$$= \frac{(260834.01 - 189050.001/2}{189050.001/43}$$
$$= 8.164$$

with dfs 2 and 43. The corresponding p-value is obtained by display Ftail (2,43,8.164)" is .00098739

same as given above by test command

✓ Conclusion: Of these two variables, at least one contributes significantly to the model., $Making H_A: \beta_3 \text{ or } \beta_4 \neq 0$ correct.

Reiterating other Uses of F-tests

• The partial *F*-test can also be used (and in fact, already has) to test the scenarios 1 and 2 discussed earlier. These are just special cases of the partial F-test approach:

1. Testing whether one single coefficient is 0. test 0.k.

This scenario is equivalent to the comparison of two models: one with all covariates (the full model), and the other without X_i (the restricted model). The test statistic has the form

$$F = \frac{(SSE_{RM} - SSE_{FM})/(1)}{SSE_{FM}/(n-p-1)}$$

It is equivalent to the t-test for that parameter and comes directly out of the analysis in the table of coefficients (so we don't usually need this test).

2. Testing whether all coefficients are simultaneously 0. F-test o.k.

This scenario is equivalent to the comparison of two models: the full model and the model with only the intercept. Note that for the latter, SSE is just the total sum of squared errors (SST), ignoring X.

This test is obtained by default as the global test provided in the ANOVA table and equals

$$F = \frac{(SST - SSE_{FM})/(p)}{SSE_{FM}/(n-p-1)}$$

which equals

$$F = \frac{(SSR)/(p)}{SSE/(n-p-1)}$$

Again, this is the typical F-test for the whole model and is always generated from the model run.

Contrasting Models via F-tests in R

```
> library(foreign)
> fuel = read.dta("fuel.dta")
> fuel
          pop tax nlic
                           inc road fuelc dlic fuel
  state
         1029 9.00 540 3.571 1.976 557 52.5 541
     ME
1
2
     NH
          771 9.00 441 4.092 1.250 404 57.2 524
>
> bigmodel = lm(fuel$fuel ~ fuel$tax +fuel$dlic +fuel$inc +fuel$road)
> summary(bigmodel)
Coefficients:
           Estimate Std. Error t value Pr(>|t|)
(Intercept)
           377.291
                      185.541 2.033 0.048207 *
fuel$tax
            -34.790 12.970 -2.682 0.010332 *
```

```
fuel$dlic
         13.364 1.923 6.950 1.52e-08 ***
fuel$inc -66.589 17.222 -3.867 0.000368 ***
fuel$road -2.426 3.389 -0.716 0.477999
Res std err: 66.31 on 43 df; R-squared: 0.6787, Adj R-squared: 0.6488
F-statistic: 22.71 on 4 and 43 DF, p-value: 3.907e-10
> smallmodel = lm(fuel$fuel ~ fuel$tax + fuel$dlic)
> anova(smallmodel, bigmodel)
Analysis of Variance Table
Model 1: fuel$fuel ~ fuel$tax + fuel$dlic
Model 2: fuel$fuel ~ fuel$tax + fuel$dlic + fuel$inc + fuel$road
  Res.Df
         RSS Df Sum of Sq F Pr(>F)
 1
      45 260834
```

71784 8.1637 0.0009876 ***

43 189050 2

The Multiple Correlation Coefficient and \mathbb{R}^2

- In SLR, recall that

$$R^2 = \frac{SSR}{SST}$$

equals the the correlation coefficient estimate r squared. Note that $\mathrm{corr}(y,x) = \mathrm{corr}(Y,\hat{Y})$

- In multiple linear regression, each X may be correlated with Y to a different degree. The set of fitted values \hat{Y} reflect the linear correlation of Y with all Xs via the linear model
- Thus, the quantity ${\rm corr}(Y,\hat{Y})$ or **multiple** correlation coefficient, equals $\sqrt(R^2)$ from the model
- As we've discussed, the ${\cal R}^2$ from the MLR model has the same interpretation with respect to proportion of variability in Y that is explained by the model

The Multiple Correlation Coefficient and \mathbb{R}^2

Illustrating the correlation between \hat{Y} and Y

.67864644

```
. reg fuel tax dlic inc road
     Source |
                                                Number of obs
                                df
                                         MS
                                                                        48
                                                F(4, 43)
                                                                     22.71
      Model | 399316.478
                          4 99829.1195
                                                Prob > F
                                                                    0.0000
   Residual | 189050.001
                                43 4396.51165
                                                R-squared
                                                                    0.6787
                                                Adj R-squared
                                                                    0.6488
                                                Root MSE
      Total | 588366.479 47 12518.4357
                                                                    66.306
. . . . .
. predict yhat
(option xb assumed; fitted values)
. corr fuel yhat
(obs=48)
                  fuel
                          yhat
                1.0000
       fuel |
       yhat |
               0.8238
                        1.0000
. display 0.8238^2
```

Limitations of R^2 dealing with multiple predictors Contrasting Models R^2 values

We sometimes may want to consider an alternative to the usual \mathbb{R}^2 . Two reasons:

- 1. In models with many parameters relative the sample size n, we may want to apply a 'penalty' for the model complexity, for including unecessary variables (Overfitting)
- 2. We may wish to contrast non-nested models with respect to fit (via \mathbb{R}^2). For example, we might have two models that have partially overlapping predictor sets. Both are subsets of the full model but not of each other. We may want evaluate the models in relation to the numbers of parameters, as models with more parameters may be better but less favorable for other reasons. Avoiding inflation with additional parameters.

The adjusted \mathbb{R}^2 (Discussed in SPRM Section 5.4.2)

Adjusted-
$$R^2 = 1 - \frac{SSE/(n-p-1)}{SST/(n-1)}$$

Contrasting Models \mathbb{R}^2 values

it can also be written as

Adjusted-
$$R^2 = 1 - \frac{n-1}{n-p-1}(1-R^2)$$

So, the adjusted \mathbb{R}^2 is always smaller than \mathbb{R}^2 , in effect 'handicapped' by the number of parameters relative to n.

Example: for n=100 and unadjusted $R^2=.90$ in a model with 20 predictors, the adjusted $R^2=0.87$. If one had a 10-parameter model with unadjusted $R^2=0.88$, it might be preferred (because in that case the adjusted R^2 is also about 0.87)

Adjusted and unadjusted preferred to be similar

We will discuss uses of quantities such as this when we review modeling strategy

Multiple Linear Regression - Trade-offs Between ${\cal R}^2$ and Precision

Some questions:

- What are the consequences of included non-significant variables on the model? If R^2 always improves, why would I omit variables (aside from penalty just described, which can be modest)?
- What are the consequences of omitted important variables? If fewer parameters is better for MSE estimate, what is the trade-off?

	BI BZ B3	B4				
. regress fuel		road				
Source	SS	df	MS		Number of obs	= 48
+					F(4, 43)	= 22.71
Model	399316.478	4 998	29.1195		Prob > F	= 0.0000
Residual	189050.001	43 439	6.51165		*R-squared	= 0.6787*
+					Adj R-squared	= 0.6488
Total	588366.479	47 125	18.4357	*	Root MSE	= 66.306*
fuel	Coef.	Std. Err.	t	P> t	[95% Conf.	<pre>Interval]</pre>
+						
tax	-34.79016	*12.9702	* -2.68	0.010	-60.94706	-8.633249
dlic	13.36449	1.922982	6.95	0.000	9.486431	17.24255
inc	-66.58875	17.22175	-3.87	0.000	-101.3197	-31.85778
road	-2.42589	3.389175	-0.72	0.478	-9.260812	4.409032
_cons	377.2913	185.5412	2.03	0.048	3.111754	751.4708
* marr dman a	na wamiahla 🐧	· • L L · · · · · · · · · · · · · · · ·	Ь			

- . * now drop one variable $Omitting road, \beta_4$
- . regress fuel tax dlic inc

48	obs =	er of	Number	MS	df	l SS	Source
30.44	44) =	3,	F(3			+	
0.0000	=	> F	Prob :	132354.663	9 3	397063.	Model

Residual Total	191302.489 588366.479	44 4347. 			*R-squared Adj R-squared *Root MSE	= 0.6749* = 0.6527 = 65.938*	Better
fuel	Coef.	Std. Err.V	t	P> t	[95% Conf.	Interval]	
tax dlic inc _cons	-29.48381 13.74768 -68.02286 307.328	*10.58358* 1.836696 17.00975 156.8307	-2.79 7.49 -4.00 1.96	0.008 0.000 0.000 0.056	-50.81361 10.04607 -102.3038 -8.743502	-8.154015 17.4493 -33.74196 623.3994	

Note: In smaller model:

- R^2 is only slightly reduced- 0.6749 (small model) vs. 0.6787 (full model) Ream to adjust p^2 .
- root MSE is a little bit smaller (this is good) 65.938 vs. 66.306 (SSE is larger as expected, but now we divide it by 44 instead of 43 to get MSE)
- standard error on $\hat{\beta}_1$ smaller 10.58358 vs. 12.9702 more precision
- Thus, there is 'cost' to including unnecessary variable

Go further, omit a potentially important variable:

. regress fuel tax dlic Omitting income, β_3

		•				
Source	SS	df	MS		Number of obs	= 48
+-					F(2, 45)	= 28.25
Model	327532.469	2 16376	66.234		Prob > F	= 0.0000
Residual	260834.01	45 5796.	31134		*R-squared	= 0.5567*
+-					Adj R-squared	= 0.5370 Wolle
Total	588366.479	47 12518	3.4357		*Root MSE	= 76.134*
fuel	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
tax	-32.07532	*12.19716*	-2.63	0.012	-56.64166	-7.508984
dlic	12.51486	2.090614	5.99	0.000	8.304147	16.72557
_cons	108.9709	171.7859	0.63	0.529	-237.0236	454.9655

Now:

- R^2 is substantially smaller in this model 0.5567 vs. 0.6749
- root MSE is a larger 76.134 vs. 65.938 (because we have given up an important predictor, model fit is worse) Not appropriate to remove income.

- s.e($\hat{\beta}_1$, tax) is larger - 12.19716 vs. 10.58358 - affects significance level a bit here

Some decisions in modeling will not be strictly based on statistical tests, but balancing different aspects of the model depending on context and goals. For example, explaining the relationship vs making best prediction

Misc Topics - Centering and Scaling of Variables

We discussed earlier that linear regression models relate predictors to outcomes in the units associated with the variables. We may want to make some transformations of the data for a number of reasons:

- To make β s unitless, put all predictors on same relative scale
- To render the intercept term (when X=0) meaningful in the model (when X=0) we alistic: Instead, center around mean.
- To deal with collinearity among Xs, we will discuss this later

Misc Topics - Centering and Scaling of Variables

SPRM Section 3.18

- **Centering** refers to subtracting the mean from each variable. For example, $y \bar{Y}$ or $X_j \bar{X}_j$. Note that these variables will have mean zero. Also, if one plugs in 1 for X in the model, the prediction is at one unit above the mean. (x) 80- χ : To feet when somewhere is 70, plug χ =10.
- Unit length scaling refers to dividing the centered value by the 'length' of the data, defined as the square root of the sum of squared deviations around the mean. After unit-length scaling, variables have mean 0 and length 1. For example

$$\tilde{Z}_i = \frac{(y_i - \bar{Y})}{\sqrt{\sum_i^n (y_i - \bar{Y})^2}}$$

Ex- Centering a covariate at the mean Fish Mercury Data

. reg mercury weight

Source	l ss	df	MS	Nun	mber of ob	s =	171
	-+			F(1	l, 169)	=	74.77
Model	30.251049	7 1	30.25104	.97 Pro	ob > F	=	0.0000
Residual	68.371225	9 169	.4045634	:67 R-s	squared	=	0.3067
	-+			Adj	j R-square	ed =	0.3026
Total	98.622275	6 170	.5801310	33 Roo	ot MSE	=	.63605
mercury	Coef.		. t	P> t		Conf.	Interval]
weight	.0004818			0.000	.0003	3718	.0005918
_cons	.6386813	.0803536	7.95	0.000	.4800	552	.7973073

Center weight

- . egen meanweight = mean(weight)
- . gen weight c = weight meanweight
- . reg mercury weight_c

Source	l SS	df	MS	Number of obs	; =	171
	+			F(1, 169)	=	74.77
Model	30.2510494	1	30.2510494	Prob > F	=	0.0000
Residual	68.3712262	169	.404563469	R-squared	=	0.3067
	+			Adj R-squared	l =	0.3026
Total	98.6222756	170	.580131033	Root MSE	=	. 63605
mercury		Std. Err.		P> t [95% (Conf.	Interval]
weight_c	'	.0000557		0.000 .00037	'18	.0005918
_cons	1.191754	.0486402	24.50	0.000 1.0957	'34 	1.287775

Note: Inference is identical to earlier. Slope is identical (y was transformed linearly), so R^2 , F, etc, same. The intercept now equals the mercury level at the mean fish weight of the sample closer to the meaning rather than only statisfical #.

Misc Topics - Centering and Scaling of Variables

 Standardizing refers to centering and dividing by the sample standard deviation. Can be applied to predictors or response

$$\tilde{Z}_j = \frac{(y_j - \bar{Y})}{\hat{\sigma}}$$

where $\hat{\sigma} = \sqrt{\sum_{i=1}^{n} (y_j - \bar{Y})^2/n - 1}$, the sample standard deviation

- This representation reflects how extreme a value is from the mean or center, taking into account variability
 - · Compare relative importance of predictors
 - · Transform variables to mean of & and Standard deviation for easier comparison.

Regression Analysis - with Centering and Scaling

Ex: Clinical features used to characterize prostate cancer include Gleason score - a quantitative measure that rates tumor aggressiveness, Prostate Specific Antigen (PSA), which may reflect extent of disease burden, including sub-clinical disseminated tumor cells. New tumor molecular markers are intended to better characterize and refine prospective risk at diagnosis, to make decisions about extent of treatment and subsequent surveillance

- The main purpose of our recent study was to determine what these biomarkers offer in terms of future recurrence risk*. Before that, there were some relevant questions that could be addressed with linear regression

^{*}Pollack, Dignam, Diaz DA, et al. A tissue biomarker based model that identifies patients at high risk of distant metastases. *Clin Canc Res* 2014 - online Oct 7

Regression Analysis of Prostate Cancer Biomarkers

In this analysis, Ki-67 emerged as an important molecular factor. We might ask:

- How is <u>Ki-67 related to standard prognostic variables</u>, in particular <u>Gleason and PSA</u>, since there are already measured as part of standard diagnostic work-up?
- How is Ki-67 related to other markers that were measured? Could we impute missing Ki-67 from other molecular measurements?

Regression Analysis of Prostate Cancer Biomarkers

We can use correlation and regression to address these questions. Because molecular markers are measured on different platforms, they may be determined as a binding capacity, percent staining positive, staining intensity, etc. We may wish to standardize marker data to assess relationships on the same unitless scale. This may also be useful for identifying extreme values that may be lab error

Scatterplot of Biomarkers M>400

Scatterplot of Response and Clinical Markers

The Model with Covariates as Measured

. regress ki67_a	acis1	O_index_pero	ent mdm2_int	ensity	p16_index_	percent	cox2_intensity	psa gleason
Source		SS df	MS				= 343 = 6.39	'
Model Residual			386.380709 60.5028027		Prob > R-squa	F ired	= 0.0000 = 0.0865	
+ Total	223	21.348 342	2 65.2670996		ū	squared ISE	= 0.0730 = 7.7784	
ki67_acis10_ind	 ~t +-	Coef.	Std. Err.	t	P> t	 [95% C	onf. Interval	
mdm2_intensit	ty	.0247216	.0085994	2.87	0.004	.00780	.0416369	
p16_index_percer	nt	0496094	.0184626	-2.69	0.008	08592	2590132929	
cox2_intensit	ty	.0328408	.0218002	1.51	0.133	01004	.0757224	:
ps	sa	0022764	.01326	-0.17	0.864	02835	.0238064	:
gleas	on	1.136884	.2929631	3.88	0.000	.56061	76 1.713151	
	ns 	-1.824927 	3.648162	-0.50	0.617	-9.0009	65 5.351111 	

Analysis of Prostate Cancer Biomarkers

Comments

- the global F-test indicates presence of statistically significant predictors of Ki-67. However, the \mathbb{R}^2 is only about 8%
- Other molecular features are associated with Ki-67.
- Gleason score is positively associated. This is biologically plausible. Given the very low \mathbb{R}^2 , we would not conclude that we can capture Ki-67 information with Gleason score.

Many variables are in disparate units. The effect of Gleason (a discrete ordinal variable) appears huge compared to the others. it might be helpful to put the response on a standardized scale, as well as the other molecular predictors. We will leave PSA as is, as the range and the meaning of values for this variable is well known.

The Model with Transformed Covariates

The same model with standardized molecular marker variables

. regress stan_	ki67 stan_md	m2 stan_p16	stan_cox2	psa	gleason	
Source	SS	df	MS		Number of obs	= 343
+-					F(5, 337)	= 6.39
Model	32.4817786	5 6.49	635572		Prob > F	= 0.0000
Residual	342.81495	337 1.01	725504		R-squared	= 0.0865
+-					Adj R-squared	= 0.0730
Total	375.296728	342 1.09	735886		Root MSE	= 1.0086
stan_ki67	Coef.		t	P> t	[95% Conf.	
stan_mdm2	. 1947285	.0677366	2.87	0.004	.0614886	.3279683
stan_p16	1638238	.0609686	-2.69	0.008	2837507	0438969
stan_cox2	.0921248	.0611538	1.51	0.133	0281665	.2124161
psa	0002952	.0017194	-0.17	0.864	0036772	.0030869
gleason	. 1474156	.0379875	3.88	0.000	.0726932	.222138
_cons	8964865 	.2660011	-3.37 	0.001	-1.419718	3732549

Analysis of Prostate Cancer Biomarkers

Comments

- Only the effect estimates (coefficient values and associated standard errors) change. Inference on these coefficients is identical
- In the ANOVA table, SSR, SSE, SST and associated mean quantities change, all other quantities do not change
- When using the model to, say, predict, we must remember to use transformed versions of predictors

Conclusion: Ki-67 associated with, but not redundant with known prognostic factors or other markers. It is useful to consider jointly with these other factors in survival modeling and risk quantification.

Multiple Linear Regression Summary so Far

- Multiple regression is a natural extension of simple linear regression, with the principles of SLR still applying. Some additional important aspects
 - Graphical exploration of relationship of X's to Y is more complex, but still important we need to rely on residual $(y_i \hat{y}_i)$ examination more to critique model we will discuss soon
 - Testing can involve multiple parameters, hypotheses. The ANOVA table and partial F-tests/nested models provide a means to conduct additional tests
 - Must balance model complexity and fit, predictive ability