IE241 Engineering Statistics 1 Homework 8

Due date: June 14

1. Let $Y_1, Y_2, ..., Y_n$ denote a random sample of size n from an exponential distribution with density function given by

$$f(y) = (1/\theta)e^{-y/\theta}1_{\{y>0\}}$$

- A. Show that $\hat{\theta}_1 = \overline{Y}$ is an unbiased estimator of θ .
- B. Let $\hat{\theta}_2 = nY_{(1)}$. Find $eff(\hat{\theta}_1, \hat{\theta}_2)$.
- 2. Let $Y_1, Y_2, ..., Y_n$ denote a random sample of size n from a uniform distribution with support $(0, \theta)$. Show that $Y_{(n)}$ is consistent estimator of θ .
- 3. Let $Y_1, Y_2, ..., Y_n$ denote a random sample of size n from normal distribution with mean μ and variance σ^2 . Find the sufficient statistics for (μ, σ^2)
- 4. Let $Y_1, Y_2, ..., Y_n$ denote a random sample of size n from normal distribution with mean μ and variance 1.
 - A. Find the $\widehat{\mu^2}$ = MVUE of μ^2
 - B. Find $Var(\widehat{\mu^2})$
- 5. Let $Y_1, Y_2, ..., Y_n$ denote a random sample of size n from Poisson distribution with mean λ .
 - A. Show that $T = \begin{cases} 1, & if \ Y_1 = 0 \\ 0, & otherwise \end{cases}$ is an unbiased estimator of $e^{-\lambda}$.
 - B. Find the MVUE of $e^{-\lambda}$.
- 6. Let $Y_1, Y_2, ..., Y_n$ denote a random sample of size n from Poisson distribution with mean λ . Find the method-of-moment estimator of λ .
- 7. Let $Y_1, Y_2, ..., Y_n$ denote a random sample of size n from a uniform distribution with support $(\theta, 0)$. Find the MLE of θ .