• Probability measure assigns probability $p(o_i)$ to each outcome o_i , such that $\forall o_i \in S$; $0 \le p(o_i) \le 1$ and $\sum p(o_i) = 1$

• If all outcomes are mutually exclusive and equally likely then $\forall i,j \ p(o_i) = \left(p_j\right) = \frac{1}{n}$, where n is the size of S

Sample space for 2-dice rolling experiment, |S| = 36

- Multiple events can be mapped to S
 - Event E_1 : Sum of two numbers greater than 8
 - E_1 : {(4, 5); (5, 4); (3, 6); ...; (6, 6)}
 - Event E_2 : First number bigger than second
 - E_2 : {(2, 1); (3, 1); ...; (6, 5)}
 - Event E_3 : Max of the two number
 - E_3 : {2; 3; ...; 6}
- Suppose we are interested in more general questions about the outcomes of the experiment.
 - What is the sum of the two numbers? {2,12}

Sample space for 2-dice rolling experiment, |S| = 36

- Suppose we are interested in more general questions about the outcomes of the experiment.
 - What is the sum of the two numbers? $\{2, \dots, 12\}$
 - Which is the bigger number? {2, 3, ... 6}
 - Sum of the numbers, when first number is divisible by second (not = 1). {???}

Sample space for 2-dice rolling experiment, |S| = 36

Define a function that maps all outcomes in S to a set of values

$$f: S \to R$$

- **Definition 1:** A random variable is a function from a sample space S(or, Ω) to the real numbers. Conventionally, random variables are denoted with capital letters, e.g., X: S → R := (-∞, +∞)
- If the outcome of the random experiment is ω , then the value of the random variable is $X(\omega) \in \mathbb{R}$
- Examples
 - Toss a coin 10 times and let X be the number of Heads
 - Choose a random person in a class and let X be the height of the person, in inches.

- Several random variables can be defined for a set of outcomes.
 - Experiment of tossing four coins
 - X_1 counts # of Heads,
 - Example: $X({H, H, T, H}) \rightarrow 3$
 - X₂ count# of Tails
 - Example: $X(\{H, H, T, H\}) \rightarrow 1$
 - X_3 denotes the case when all faces are same
 - Example: $X({H, H, T, H}) \rightarrow 0$
- Can be discrete (i.e., finite many possible outcomes) or continuous

Discrete Random Variable

- Random variables that can assume a countable number (finite or infinite) of values are called discrete.
- Examples

Experiment	Random Variable	Possible Values
Make 100 Sales Ca	ls # Sales	0, 1, 2,, 100
Inspect 70 Radios	# Defective	0, 1, 2,, 70
Answer 33 Questio	ns # Correct	0, 1, 2,, 33

Continuous Random Variable

• A continuous random variable is a random variable with infinitely many possible values (in an interval of real numbers).

Experiment	Random Variable	Possible Values	
Weigh 100 People	Weight	45.1, 78,	
Measure time taken	Ü	, ,	
	Hours	900, 875.9,	
Amount spent on food	\$ amount	54.12, 42,	
Measure Time Between Arrivals	Inter-Arrival Time	0, 1.3, 2.78,	

Types of Probability

- Can either be marginal, joint or conditional.
- Marginal Probability: If A is an event, then the marginal probability is the probability of that event occurring, P(A).
 - Example: Let we toss a coin (first event) and throw a dice (second event).

 Throwing a Die

Types of Probability

- Can either be marginal, joint or conditional.
- Joint Probability: The probability of the intersection of two or more events.
- If A and B are two events then the joint probability of the two events is written as $P(A \cap B)$ or, P(X = x, Y = y), X and Y are random variables.

Types of Probability

- Can either be marginal, joint or conditional.
- Conditional Probability: The conditional probability is the probability that some event(s) occur given that we know other events have already occurred. If A and B are two events, then the conditional probability of A occurring given that B has occurred is written as P(A|B) or P(X=x|Y=y).
 - Example: the probability that a card is a four given that we have drawn a red card is P(4|red) = 2/26 = 1/13.

Probability Functions

- ◆ We are often interested in knowing the probability of a random variable taking on a certain value.
- We may assign probabilities to the different values of the random variable:
 - Counts # of Heads, when tossing three coins

```
• P(X = 0) = P((T,T,T)) = 1/2^3 = 1/8

• P(X = 1) = P((T,T,H); (T,H,T); (H,T,T)) = 3/8

• P(X = 2) = P((T,H,H); (H,H,T); (H,T,H)) = 3/8

• P(X = 3) = P((H,H,H)) = 1/8
```

Note that since X must take the values of 0 through 3 then

•
$$1 = P(\bigcup_{i=0}^{3} \{X = i\}) = \sum_{i=0}^{3} P(X = i)$$

Probability Functions

- A probability function maps the possible values of x against their respective probabilities of occurrence, p(x)
 - p(x) is a number from 0 to 1.0.
 - The area under a probability function is a. f(x)=.25 for x=9,10,11,12 always 1.
- Discrete example: roll of a die

Which of the following are probability functions?

a.
$$f(x)=.25$$
 for $x=9,10,11,12$

b.
$$f(x)=(3-x)/2$$
 for $x=1,2,3,4$

c.
$$f(x)=(x^2+x+1)/25$$
 for x=0,1,2,3

Probability Distributions and Probability Mass Functions

- Definition: Probability Distribution
 - A probability distribution of a random variable X is a description of the probabilities associated with the possible values of X

Example

 Let X = # of heads observed when a coin is flipped twice

Number of Heads 0 1 2
Probability 1/4 2/4 1/4

Probability Distributions and Probability Mass

Functions

- The probability distribution of a discrete random variable is a graph, table, or formula that specifies the probability associated with each possible value the random variable can assume.
- Requirements for the Probability Distribution of a Discrete Random Variable X
 - 1. $p(x) \ge 0$ for all values of x
 - 2. $\Sigma p(x) = 1$

Example: (Probability defined by function p(x))

$$P(X = x) = 0.1 \quad 0.2 \quad 0.3 \quad 0.4$$
 f(x)

Function of X:
$$p(x) = \frac{1}{10}x$$
 for $x \in \{1, 2, 3, 4\}$

Probability Distributions and Probability Mass

Functions

- Example (Bits Transmission)
 - There is a chance that a bit transmitted through a digital transmission channel is received in error.
 - Let X equal the number of bits in error in the next four bits transmitted. The possible values for X are $\{0, 1, 2, 3, 4\}$.
 - Suppose that the probabilities are...

0.0001

0 0.6561
1 0.2916
2 0.0486
3 0.0036

The probability distribution shown graphically

Probability Mass Function (PMF)

• For a discrete random variable X with possible values $x_1, x_2, x_3, \ldots, x_n$, a probability mass function $p(x_i)$ is a function such

1.
$$p(x_i) \ge 0$$
 for all values of x_i

2.
$$\sum p(x_i) = 1$$

3.
$$p(x_i) = P(X = x_i)$$

The probability distribution for a discrete random variable is described with a probability mass function (probability distributions for continuous random variables will use different terminology).

Example (Probability Mass Function (PMF)): Tossing a die

X	p(x)
1	<i>p(x=1)</i> =1/6
2	<i>p(x=2)</i> =1/6
3	<i>p(x=3)</i> =1/6
4	<i>p(x=4)</i> =1/6
5	<i>p(x=5)</i> =1/6
6	<i>p(x=6)</i> =1/6

1.0

Discrete Probability Distribution Example

• Experiment: Toss 2 coins. Count number of tails.

Visualizing Discrete Probability Distributions

Listing

{ (0, .25), (1, .50), (2, .25) }

Graph

Table

#	f(x) Count	p(<i>x</i>)
Tails 0	1	.25
1	2	.50
2	1	.25

Formula

$$p(x) = \frac{n!}{x!(n-x)!}p^{x}(1-p)^{n-x}$$

Cumulative Distribution Function (CDF)

• Sometimes it's useful to quickly calculate a cumulative probability, or $P(X \le x)$, denoted as F(x), which is the probability that X is less than or equal to some specific x.

Example: Toss a die, then the probability mass

function for X

X	p(x)
1	<i>p(x=1)</i> =1/6
2	<i>p(x=2)</i> =1/6
3	<i>p(x=3)</i> =1/6
4	<i>p(x=4)</i> =1/6
5	<i>p(x=5)</i> =1/6
6	<i>p(x=6)</i> =1/6

Cumulative Distribution Function (CDF)

Х	p(x)
1	<i>p(x=1)</i> =1/6
2	<i>p(x=2)</i> =1/6
3	<i>p(x=3)</i> =1/6
4	<i>p(x=4)</i> =1/6
5	<i>p(x=5)</i> =1/6
6	<i>p(x=6)</i> =1/6

5

6

Cumulative Probabilities

 Suppose we're interested in the probability of getting 3 or less

•
$$P(X \le 3) = P(X = 1) + P(X = 2) + P(X = 3)=3/6=1/2$$

As x increases across the possible values for x, the cumulative probability increases, eventually getting 1, as you accumulate all the probability.

Cumulative Distribution Function (CDF)

 The cumulative distribution function of a discrete random variable X, denoted as F(x), is

$$F(x) = P(X \le x) = \sum_{x_i \le x} p(x_i)$$

Properties

- 1. $F(x) = P(X \le x) = \sum_{x_i \le x} p(x_i)$
- 2. $0 \le F(x) \le 1$
- 3. If $x \leq y$, then $F(x) \leq F(y)$
- The CDF is defined on the real number line.
- The CDF is a non-decreasing function of X (i.e., increases or stays constant as $x \rightarrow \infty$).

Summary Measures

- Expected Value (Mean of probability distribution)
 - Weighted average of all possible values
 - $\mu = E(x) = \sum x p(x)$
- Variance
 - Weighted average of squared deviation about mean

•
$$\sigma^2 = E[(x - \mu)^2] = \sum (x - \mu)^2 p(x)$$

Standard Deviation

•
$$\sigma = \sqrt{\sigma^2}$$

Summary Measures Calculation Table

• Experiment: Toss 2 coins. Count number of tails.

X	p(x)	x p(x)	$\mathbf{X} - \mu$	$(x - \mu)^2$	$(x-\mu)^2p(x)$
T	ota	$\sum x p(x)$			$\sum (x - \mu)^2 p(x)$

Summary Measures Calculation Table

• Experiment: Toss 2 coins. Count number of tails.

X	p(x)	x p(x)	$X - \mu$	$(x - \mu)^2$	$(x-\mu)^2p(x)$
0	.25	0	-1.00	1.00	.25
1	.50	.50	0	0	0
2	.25	.50	1.00	1.00	.25
		μ = 1.0			$\sigma^2 = .50$

$$\sigma = .71$$

Practice Problem

• The number of ships to arrive at a harbor on any given day is a random variable represented by x. The probability distribution for x is:

X	10	11	12	13	14
P(x)	.4	.2	.2	.1	.1

Question: Find the probability that on a given day:

exactly 14 ships arrive
$$p(x=14)=.1$$

b. At least 12 ships arrive
$$p(x \ge 12) = (.2 + .1 + .1) = .4$$

c. At most 11 ships arrive
$$p(x \le 11) = (.4 + .2) = .6$$

Practice Problem

- You are lecturing to a group of 1000 students. You ask them to each randomly pick an integer between 1 and 10. Assuming, their picks are truly random:
 - What percentage of the students would you expect picked a number less than or equal to 6?

```
Since p(x \le 6) = 1/10 + 1/10 + 1/10 + 1/10 + 1/10 + 1/10 = .6
= 60%
```

Reference

 Lecture notes on Probability Theory by Phanuel Mariano