

Aufgabenblatt 2 Ausgabe: 26.10., Abgabe: 02.11. 24:00

Gruppe	
Name(n)	Matrikelnummer(n)

Aufgabe 2.1 (Punkte 10+10+10)

Leistungsverbrauch: Wir nehmen an, dass ein typischer Mikroprozessor für einen Desktop-PC mit 3,2 GHz Takt betrieben wird und bei voller Auslastung fünf Operationen parallel durchführen kann (64-bit Addition, Multiplikation, Sprungbefehle...). Der Leistungsverbrauch liegt dabei bei ca. 80 W.

- (a) Die Chipgröße eines solchen Prozessors (Core i5, Haswell) ist $177 \, mm^2$. Welche Leistungsdichte (W/cm^2) ergibt sich daraus? Vergleichen Sie den Wert mit dem entsprechenden Wert für eine elektrische Herdplatte mit $2 \, KW$ Leistung und $15 \, cm$ Durchmesser.
- (b) Ein Smartphone verfügt über einen Akku mit einer Spannung von 3,7 *V* und einer Kapazität von 3000 *mAh*. Bei der Wiedergabe von Videos läuft das Gerät 3 Stunden, dabei werden je die Hälfte der elektrischen Energie für das Display und den Prozessor verbraucht. Die CPU verarbeitet dabei ca. 1 G Operationen pro Sekunde. Welcher Leistungsverbrauch ergibt sich in diesem Fall für den Prozessor und wie sieht die Leistungsdichte (*W*/*cm*²) aus, wenn der Chip eine Fläche von 16 *mm*² hat?
- (c) Welcher Energieverbrauch ergibt sich pro Rechenoperation für die beiden Prozessoren? Wie erklären Sie die Differenz zu dem in der Vorlesung angegebenen Wert von 1 nJ/Operation (Smart-Dust/StrongArm)?

Aufgabe 2.2 (Punkte 10+10)

Zahlenbereich: Ende 2015 lag die Staatsverschuldung Deutschlands bei 2 022,562 Milliarden € (Quelle: Statistisches Bundesamt).

- (a) Wir wollen diesen Wert auf den Cent genau als Binärzahl darstellen. Wieviele Bits sind dafür erforderlich?
- (b) Dieser Wert soll in einem Zahlensystem zur Basis 5 dargestellt werden; auch hier wieder: auf den Cent genau. Wieviele Stellen braucht man dazu?

Aufgabe 2.3 (Punkte 5+5+5+5)

Umwandlung von Dezimalzahlen: Überführen Sie die folgenden Dezimalzahlen in ihre Dualdarstellung mit minimaler Stellenanzahl. Schreiben Sie den Rechenweg mit auf und geben Sie jeweils auch die Oktal- und Hexadezimaldarstellung mit an (also jeweils drei Werte).

- (a) 42
- (b) 1969
- (c) 5,5625
- (d) 375,375

Aufgabe 2.4 (Punkte 10+10)

Umwandlung von Dualzahlen: Bestimmen Sie den dezimalen Wert der folgenden gebrochenen Dualzahlen:

- (a) 1110,1001
- (b) 10101,11011

Aufgabe 2.5 (Punkte 10)

Umwandlung einer Hexadezimalzahl: Bestimmen Sie den dezimalen Wert der gebrochenen Hexadezimalzahl: (9A,C)₁₆.