Grade 11 Chemistry

Matter, Trends, and Chemical Bonding
Class 2

Nuclear Reactions

- Nucleons general term for protons and neutrons
- Nuclide nucleus of an isotope
- Types of radioactive decay:
 - Alpha particle emission
 - Beta particle emission
 - Gamma radiation
 - Positron emission
 - Electron capture

NUCLIDE

• Three types of rays are produced by the decay of radioactive substances such as uranium:

- Alpha Rays consists of positively charged particles called alpha particles
- 2. Beta Rays electrons that are deflected by the negatively charged plate called beta particles
- 3. Gamma Rays high energy rays with no charge and are not affected by the external field

Balancing Nuclear Equations

- The sum of the mass numbers (written as superscripts) on each side of the equation must balance
- The sum of the atomic numbers (written as subscripts) on each side of the equation must balance)

$$^{222}_{88}$$
Ra $\longrightarrow ^{4}_{2}$ He + $^{218}_{86}$ Rn

Alpha Particle Emission

- Loss of an alpha (α) particle
- A α -particle is a helium nucleus (two protons, two neutrons and no electrons; 2+ charge)

$$^{226}_{88}$$
Ra $\rightarrow ^{222}_{86}$ Rn + $^{4}_{2}$ He

Checkpoint

Find X, a and b:

$$_{b}^{a}X \rightarrow _{97}^{248}Bk + _{2}^{4}He$$

Find X, a and b:

$${}^{212}_{84}\text{Po} \rightarrow {}^{a}_{b}X + {}^{4}_{2}\text{He}$$

Beta Decay Emission

- Occurs when a nucleus spontaneously decays into a proton and a beta (β) particle
- β -particle represented as $_{-1}^{0}\mathrm{e}$ or β^{-}

$${}_{1}^{3}H \rightarrow {}_{2}^{3}He + {}_{-1}^{0}e$$

Find X, a and b:

$${}_{38}^{90}$$
Sr $\rightarrow {}_{b}^{a}$ X + ${}_{-1}^{0}$ e

Checkpoint

Find X, a and b:

$$_{b}^{a}X \rightarrow _{56}^{137}Ba + _{-1}^{0}e$$

Gamma Radiation

- Gamma radiation is high energy radiation
- Often accompanies alpha or beta particle emission but is not always shown in the equation
- Represented by ${0 \over 0} \gamma$

$$^{137}_{55}$$
Cs $\rightarrow ^{137}_{56}$ Ba + $^{0}_{-1}$ e + $^{0}_{0}\gamma$

- When a radioactive nucleus emits an alpha or beta particle, the nucleus is often left in a unstable, high-energy state.
- The relaxation of the nucleus to a more stable state emits gamma radiation

Alpha (a): atom decays into a new atom & emits an alpha particle (2 protons and 2 neutrons: the nucleus of a helium atom)

Beta (β): atom decays into a new atom by changing a neutron into a proton & electron. The fast moving, high energy electron is called a beta particle

Gamma (γ): after α or β decay, surplus energy is sometimes emitted. This is called gamma radiation & has a very high frequency with short wavelength. The atom is not changed

Positron Emission

- Conversion of a proton in the nucleus into a neutron and an ejected positron
- Positron is a "positive electron" same mass as an electron but positive charge
- Positron represented as 0_1e or β^+

$$_{19}^{40}\text{K} \rightarrow _{18}^{40}\text{Ar} + _{1}^{0}\text{e}$$

Electron Capture

 Nucleus captures an inner-shell electron and converts a proton into a neutron

$$^{197}_{80}$$
Hg + $^{0}_{-1}$ e $\rightarrow ^{197}_{79}$ Au

Nuclear Fission and Fusion

- Nuclear Fission: Occurs when a highly unstable isotope splits into smaller particles
 - Requires a particle accelerator
 - Atom absorbs a stream of high-energy particles such as neutrons
- Nuclear Fusion: Occurs when a target nucleus absorbs an accelerated particle
 - Requires very high temperatures to proceed
 - Produces large amounts of energy

a) Find X, a and b:

$${}^{235}_{92}U + {}^{1}_{0}n \rightarrow {}^{87}_{35}Br + {}^{a}_{b}X + 3{}^{1}_{0}n$$

b) Al-27 when it collides with a certain nucleus, transforms into P-30 along with a neutron. Write a balanced nuclear equation for this reaction

Name	Symbol(s)	Representation	Description
Alpha particle	4_2 He or $^4_2\alpha$	8	(High-energy) helium nuclei consisting of two protons and two neutrons
Beta particle	$_{-1}^{0}$ e or $_{-1}^{0}\beta$	•	(High-energy) electrons
Positron	$_{+1}^{0}$ e or $_{+1}^{0}\beta$	•	Particles with the same mass as an electron but with 1 unit of positive charge
Proton	1H or 1p	•	Nuclei of hydrogen atoms
Neutron	¹ 0n		Particles with a mass approximately equal to that of a proton but with no charge
Gamma ray	γ	~~~~>γ	Very high-energy electromagnetic radiation

Chemical Bonding

- Chemical Bonds the interaction between the valence electrons of atoms
 - Formation of a bond creates a compound that is more stable than individual atoms on their own

- **Ionic Bond** interaction of electrostatic charges; exchange of electrons
 - Between cations and anions
- Covalent Bond when atoms share electrons

Property	lonic compound	Covalent compound
state at room temperature	crystalline solid	liquid, gas, solid
melting point	high	low
electrical conductivity as a liquid	yes	no
solubility in water	most have high solubility	most have low solubility
conducts electricity when dissolved in water	yes	not usually

 How do you figure out if a compound is ionic or covalent? – Look at electronegativity differences ΔΕΝ

Determine the Δ EN for each compound and indicate whether each bond is ionic, polar covalent or covalent; show partial charges

- a) O-H
- b) C-H
- c) Mg-Cl
- d) Na-F

Molecular Shape and Polarity

Polarity can be determined by looking at electronegativity

 Different molecular shapes can be non-polar or polar depending on the distribution of the atoms

Which of the following molecules are polar?

- a) CO₂
- b) CF₄
- c) H₂O
- d) NH₃

Polar Covalent Bonds

- When two bonding atoms have a ΔEN between 0.5 and 1.7
- Ex: Water is a polar covalent molecule

- ΔEN of the O-H is 1.24 so the O has a slightly negative charge and the H has a slightly positive charge
- Water is a polar molecule

- Why is water bent rather than linear?
 - The oxygen in water has two lone pairs which is not shown in the models
 - The lone pairs and the two hydrogens form a tetrahedral shape
 - Shape is determined by VSEPR theory (Grade 12 Chemistry)

 The oxygen with the negative charge would attract hydrogens with a positive charge and vice versa

 Water's polarity explains why water skaters can walk on water and why you can pour liquid above the rim of a cup

- What about Carbon Dioxide?
 - $-\Delta EN$ of C-O is 0.89 therefore it is supposedly polar covalent
 - But CO₂ is a linear molecule

- Oxygen atoms have a partial negative charge and the carbon atom has a partial positive charge
- Due to the linear shape, the effects of the polar bonds cancel out
- CO₂ is non-polar

Determine if each of the following molecules are polar or non-polar.

- a) HF
- b) CH₄
- c) CH₃OH
- d) Cl₂
- e) BF₃
- f) CH₃Br