

CHAPTER 2 COMPLEX NUMBERS AND **QUADRATIC EQUATIONS**

- The amplitude of $\frac{1+i\sqrt{3}}{\sqrt{3}+i}$ is

- (2005)
- If α , β , γ are the roots of the equation $2x^3 - 3x^2 + 6x + 1 = 0$, then $\alpha^2 + \beta^2 + \gamma^2$ is equal to
 - (a) $-\frac{15}{4}$ (b) $\frac{15}{4}$
- (d) 4
- (2005)
- The modulus and amplitude of $\frac{1+2i}{1-(1-i)^2}$ 3.
 - (a) $\sqrt{2}$ and $\frac{\pi}{6}$
 - (b) 1 and 0
 - (c) 1 and $\frac{\pi}{3}$ (d) 1 and $\frac{\pi}{4}$
 - (2005, 2013)
- The real part of $\frac{1}{1+\cos\theta+i\sin\theta}$ is
 - (a) $-\frac{1}{2}$
- (b) $\frac{1}{2}$
- (c) $\sqrt{2}$
- (d) $\frac{1}{\sqrt{2}}$
- (2005)
- If α , β and γ are the roots of the equation 5. $x^3 - 8x + 8 = 0$, then $\sum \alpha^2$ and $\sum \frac{1}{\alpha \beta}$ are respectively
 - (a) 0 and -16
- (b) 16 and 8
- (c) -16 and 0
- (2006)(d) 16 and 0
- The complex number $\frac{(-\sqrt{3}+3i)(1-i)}{(3+\sqrt{3}i)(i)(\sqrt{3}+\sqrt{3}i)}$ 6.

when represented in the Argand diagram is

- (a) in the second quadrant
- (b) in the first quadrant
- (c) on the Y-axis (imaginary axis)
- (d) on the X-axis (real axis)

(2006)

- If $2x = -1 + \sqrt{3}i$, then the value of $(1-x^2+x)^6-(1-x+x^2)^6=$
 - (a) 32
- (b) -64
- (c) 64
- (d) 0(2006, 2013)
- The modulus of amplitude of $(1+i\sqrt{3})^8$ are respectively
 - (a) 256 and $\pi/3$
- (b) 256 and $2\pi/3$
- (c) 2 and $2\pi/3$
- (d) 256 and $8\pi/3$

(2006)

- The conjugate of the complex number $\frac{(1+i)^2}{1-i}$ is
 - (a) 1 i
- (b) 1 + i
- (c) -1+i
- (d) -1 i
- 10. The imaginary part of i^i is
 - (a) 0
- (b) 1
- (c) 2
- (d) -1
- (2007)

(2007)

- 11. The amplitude of $(1 + i)^5$ is
- (b) $\frac{-3\pi}{4}$
- (c) $\frac{-5\pi}{4}$ (d) $\frac{5\pi}{4}$
- 12. If 1, ω , ω^2 are the cube roots of unity then $(1 + \omega) (1 + \omega^2) (1 + \omega^4) (1 + \omega^8)$ is equal to
 - (a) 1 (c) ω^2
- (b) 0 (d) ω
- (2007)

(2007)

- 13. If α is a complex number satisfying the equation $\alpha^2 + \alpha + 1 = 0$ then α^{31} is equal to
 - (a) 1
- (b) i
- (c) a
- (d) α^2

(2008)

- 14. If Z is a complex number such that $Z = -\overline{Z}$, then
 - (a) Z is any complex number
 - (b) Real part of Z is the same as its imaginary
 - (c) Z is purely real
 - (d) Z is purely imaginary

(2008)

- 15. The value of $\sum_{K=1}^{6} \left[\sin \frac{2K\pi}{7} i \cos \frac{2K\pi}{7} \right]$ is (b) - 1(c) i (2008)
- 16. The real root of the equation $x^3 6x + 9 = 0$ is (c) - 6(d) - 9 (a) 6 (b) -3(2008)
- 17. If α and β are the roots of $x^2 + x + 1 = 0$, then $\alpha^{16} + \beta^{16} =$
 - (a) 2
- (b) 0
- (c) 1
- (2009)(d) -1
- 18. The complex number $\frac{1+2i}{1-i}$ lies in
 - (a) fourth quadrant (b) first quadrant
 - (c) second quadrant (d) third quadrant
- 19. If P is the point in the Argand diagram corresponding to the complex number $\sqrt{3} + i$ and if OPQ is an isosceles right angled triangle, right angled at 'O', then Q represents the complex number
 - (a) $\sqrt{3} i \text{ or } 1 i\sqrt{3}$ (b) $-1 \pm i\sqrt{3}$
 - (c) $-1 + i\sqrt{3}$ or $1 i\sqrt{3}$
 - (d) $1 \pm i \sqrt{3}$

(2009)

20. The smallest positive integral value of 'n' such

that
$$\left[\frac{1+\sin\frac{\pi}{8}+i\cos\frac{\pi}{8}}{1+\sin\frac{\pi}{8}-i\cos\frac{\pi}{8}}\right]^n$$
 is purely imaginary

is,

- (a) 2
- (b) 8
- (c) 4
- (d) 3 (2009)
- 21. If a, -a, b are the roots of $x^3 5x^2 x + 5 = 0$, then b is a root of
 - (a) $x^2 5x + 10 = 0$ (b) $x^2 + 3x 20 = 0$
 - (c) $x^2 + 5x 30 = 0$ (d) $x^2 3x 10 = 0$ (2010)

- 22. The least positive integer n, for which $\frac{(1+i)^n}{(1-i)^{n-2}}$ is positive is
- (b) 3
- (d) 1 (2010)
- 23. If $x + iy = (-1 + i\sqrt{3})^{2010}$, then x =
 - (a) 2^{2010} (b) -2^{2010} (c) -1
- (d) 1 (2010)
- 24. If α , β and γ are roots of $x^3 2x + 1 = 0$, then the value of $\sum \left(\frac{1}{\alpha + \beta - \gamma} \right)$ is
 - (a) $\frac{-1}{2}$ (b) -1 (c) 0 (d) $\frac{1}{2}$
- (2011)
- 25. The value of $\left| \frac{1+i\sqrt{3}}{\left(1+\frac{1}{i+1}\right)^2} \right|$ is
 - (a) 20 (b) 9 (c) $\frac{5}{4}$ (d) $\frac{4}{5}$
- **26.** If ω is an imaginary cube root of unity, then the value of $(1 - \omega + \omega^2) \cdot (1 - \omega^2 + \omega^4)$. $(1 - \omega^4 + \omega^8) \cdot (2n factors)$ is
 - (a) 2^{2n} (b) 2^n
- (c) 1
- (d) 0 (2011)
- 27. If P(x, y) denotes z = x + iy in argand's plane and $\left| \frac{z-1}{z+2i} \right| = 1$, then the locus of P is a/an
 - (a) hyperbola
- (b) ellipse
- (c) circle
- (d) straight line

(2011)

- 28. In Argand's plane, the point corresponding to $\frac{(1-i\sqrt{3})(1+i)}{(\sqrt{3}+i)}$ lies in
 - (a) quadrant I
- (b) quadrant II
- (c) quadrant III
- (d) quadrant IV

(2011)

- **29.** If $\log_2 (9^{x-1} + 7) \log_2 (3^{x-1} + 1) = 2$, then values of x are
 - (a) 1, 2 (b) 0, 2
- (c) 0, 1
- (d) 1, 4 (2012)
- 30. The number of solutions of equation $z^2 + \overline{z} = 0$, where $z \in C$ are
 - (a) 6
- (b) 1
- (c) 4
- (d) 5
 - (2012)

- 31. If α is a complex number such that $\alpha^2 \alpha + 1$ = 0, then $\alpha^{2011} =$
 - (a) 1
- (b) $-\alpha$
- (c) α^2
- (d) α

(2012)

- 32. If the conjugate of (x + iy)(1 2i) is 1 + i, then

 - (a) $x = -\frac{1}{5}$ (b) $x iy = \frac{1+i}{1-2i}$
 - (c) $x + iy = \frac{1-i}{1-2i}$ (d) $x = \frac{1}{5}$

- 33. If α , β , γ are the roots of the equation $x^3 + 4x + 2 = 0$, then $\alpha^3 + \beta^3 + \gamma^3 =$
 - (a) -6 (b) 2
- (c) 6
- (d) 2(2012)
- 34. If α and β are different complex numbers with $|\beta| = 1$, then $\left| \frac{\beta - \alpha}{1 - \overline{\alpha} \beta} \right|$ is equal to

- (a) 2 (b) $\frac{1}{2}$ (c) 1 (d) $\frac{1}{3}$

(2012, 2014)

- **35.** If the roots of the equation $x^3 + ax^2 + bx + c =$ 0 are in A.P., then $2a^{3} - 9ab =$
 - (a) 9c
- (b) · 18c
- (c) 27c
- (d) -27c

(2013)

- **36.** If 1, ω , ω^2 are three cube roots of unity, then $(1 - \omega + \omega^2) (1 + \omega - \omega^2)$ is _
 - (a) 2
- (b) 4
- (c) 1
- (d) 3 (2015)
- 37. If $z = \frac{(\sqrt{3} + i)^3 (3i + 4)^2}{(8 + 6i)^2}$, then |z| is equal to
 - (a) 1
- (b) 3
- (c) 0
- (d) 2 (2015)

- 38. If α and β are the roots of $x^2 ax + b^2 = 0$, then $\alpha^2 + \beta^2$ is equal to ____
 - (a) $2a^2 b^2$
- (b) $a^2 + b^2$
- (c) $a^2 2b^2$
- (d) $a^2 b^2$

(2015)

- **39.** The real part of $(1 \cos \theta + i \sin \theta)^{-1}$ is

 - (a) $\frac{1}{2}$ (b) $\frac{1}{1+\cos\theta}$
 - (c) $\tan \frac{\theta}{2}$ (d) $\cot \frac{\theta}{2}$

(2016)

- **40.** The simplified form of $i^n + i^{n+1} + i^{n+2} + i^{n+3}$
 - (a) 0
- (b) 1 (c) -1
- (d) i (2016)
- **41.** If $\left(\frac{1+i}{1-i}\right)^m = 1$, then the least positive integral value of m is
 - (a) 4
- (b) 1
- (c) 2
- (d) 3
- (2017)
- **42.** If $\left(\frac{1-i}{1+i}\right)^{96} = a + ib$, then (a, b) is
 - (a) (1, 1)
- (b) (1, 0)
- (c) (0, 1)
- (d) (0, -1)
- (2018)
- 43. If α and β are roots of the equation $x^2 + x + 1$ = 0, then $\alpha^2 + \beta^2$ is
 - (a) 1
- (b) $\frac{-1-i\sqrt{3}}{2}$
- (c) $\frac{-1+i\sqrt{3}}{2}$
- (d) -1

(2019)

ANSWER KEY

1.	(d)	2.	(a)	3.	(b)	4.	(b)	5.	(d)	6.	(c)	7.	(d)	8.	(b)
9.	(d)	10.	(a)	11.	(d)	12.	(a)	13.	(c)	14.	(b)	15.	(c)	16.	(b)
17.	(d)	18.	(c)	19.	(c)	20.	(c)	21.	(d)	22.	(b)	23.	(a)	24.	(b)

1. **(d)**: Let
$$z = \frac{1+i\sqrt{3}}{\sqrt{3}+i} \times \frac{\sqrt{3}-i}{\sqrt{3}-i} = \frac{(1+i\sqrt{3})(\sqrt{3}-i)}{3+1}$$

$$=\frac{(\sqrt{3}+3i-i+\sqrt{3})}{4}=\frac{(2\sqrt{3}+2i)}{4}$$

i.e.,
$$z = \frac{(\sqrt{3} + i)}{2} = \frac{\sqrt{3}}{2} + i\left(\frac{1}{2}\right)$$

amplitude =
$$\tan^{-1} \frac{y}{x} = \tan^{-1} \left(\frac{1}{2} \cdot \frac{2}{\sqrt{3}} \right)$$

= $\tan^{-1} \left(\frac{1}{\sqrt{3}} \right) = \frac{\pi}{6}$.

2. (a): Given equation
$$2x^3 - 3x^2 + 6x + 1 = 0$$

 $\alpha + \beta + \gamma = -3/2$, $\alpha\beta\gamma = 1/2$, $\Sigma\alpha\beta = 3$
 $\alpha^2 + \beta^2 + \gamma^2 = (\alpha + \beta + \gamma)^2 - 2(\Sigma\alpha\beta)$
 $= (-3/2)^2 - 2 \times 3 = \frac{9}{4} - 6 = \frac{9 - 24}{4} = -\frac{15}{4}$

3. **(b)**:
$$z = \frac{1+2i}{1-(1-i)^2} = \frac{1+2i}{1-(1-1-2i)} = \frac{1+2i}{1+2i} = 1$$

4. **(b)**:
$$\frac{1}{1 + \cos \theta + i \sin \theta} \times \frac{(1 + \cos \theta) - i \sin \theta}{(1 + \cos \theta) - i \sin \theta}$$
$$= \frac{1 + \cos \theta - i \sin \theta}{(1 + \cos \theta)^2 + \sin^2 \theta}$$

$$= \frac{1 + \cos \theta - i \sin \theta}{1 + \cos^2 \theta + 2 \cos \theta + \sin^2 \theta} = \frac{1 + \cos \theta - i \sin \theta}{1 + 1 + 2 \cos \theta}$$

$$= \frac{1}{2} \left[\frac{1 + \cos \theta - i \sin \theta}{1 + \cos \theta} \right] \therefore \text{ real part is } \frac{1}{2}$$

5. **(d)**: Given equation
$$x^3 - 8x + 8 = 0$$

$$\Sigma \alpha = 0, \Sigma \alpha \beta = -8, \alpha \beta \gamma = -8$$

$$\Rightarrow (\alpha + \beta + \gamma)^2 = \alpha^2 + \beta^2 + \gamma^2 + 2(\alpha\beta + \beta\gamma + \gamma\alpha)$$

$$\Rightarrow \quad 0 = \alpha^2 + \beta^2 + \gamma^2 + 2(-8) \Rightarrow \Sigma \alpha^2 = 16.$$

Now

$$\frac{1}{\alpha\beta} + \frac{1}{\beta\gamma} + \frac{1}{\alpha\gamma} = \frac{\alpha\beta\gamma(\alpha+\beta+\gamma)}{\alpha^2\beta^2\gamma^2} = \frac{\alpha+\beta+\gamma}{\alpha\beta\gamma} = 0$$

$$\therefore \qquad \sum \alpha^2 = 16, \, \sum \frac{1}{\alpha \beta} = 0.$$

6. (c) :
$$\frac{(-\sqrt{3}+3i)(1-i)}{(3+\sqrt{3}i)(i)(\sqrt{3}+\sqrt{3}i)}$$

$$= \frac{(-\sqrt{3}+3i)(1-i)}{(3i-\sqrt{3})(\sqrt{3})(1+i)}$$

$$= \frac{1}{\sqrt{3}} \left[\frac{1-i}{1+i} \times \frac{1-i}{1-i} \right] = \frac{1}{\sqrt{3}} \left[\frac{1+(i)^2-2i}{2} \right] = \frac{-i}{\sqrt{3}}.$$

:. Given complex number in Argand plane lies on *y*-axis (imaginary axis).

7. **(d)**: Given
$$2x = -1 + \sqrt{3}i$$

$$\Rightarrow x = \frac{-1 + \sqrt{3}i}{2} = \omega$$
Now, $(1 - \omega^2 + \omega)^6 - (1 - \omega + \omega^2)^6$

$$= (-\omega^2 - \omega^2)^6 - (-\omega - \omega)^6 \qquad (\because 1 + \omega + \omega^2 = 0)$$

$$= (-2\omega^2)^6 - (-2\omega)^6 = (-2)^6 (\omega^3)^4 - (-2)^6 (\omega^3)^2$$

$$= (-2)^6 - (-2)^6 = 0 \qquad (\because \omega^3 = 1).$$

8. **(b)**:
$$(1+i\sqrt{3})^8 = (2)^8 \left[\frac{-1-i\sqrt{3}}{2} \right]^8 = (2)^8 (\omega^2)^8$$

$$= 2^8 (\omega^3)^5 \omega = 2^8 \omega = 2^8 \left(-\frac{1}{2} + i\frac{\sqrt{3}}{2} \right)$$

$$= 2^8 \left(\cos\frac{2\pi}{3} + i\sin\frac{2\pi}{3} \right)$$

 \therefore Modulus = $2^8 = 256$ and argument = $2\pi/3$.

9. (d):
$$\frac{(1+i)^2}{1-i} = \frac{1+i^2+2i}{1-i} = \frac{1-1+2i}{1-i}$$
$$= \frac{2i}{1-i} \times \frac{1+i}{1+i} = \frac{2i(1+i)}{1-(i)^2} = \frac{2i(1+i)}{1-(-1)}$$
$$= \frac{2i(1+i)}{2} = i+i^2 = i-1.$$

∴ Required conjugate is -i - 1.

10. (a):
$$A = i^{i}$$

 $\log A = \log i^{i} \Rightarrow \log A = i \log i$
 $\Rightarrow \log A = i \log(0 + i)$
 $\Rightarrow \log A = i[0 + i\pi/2]$
 $\Rightarrow \log A = -\pi/2$
 $\Rightarrow A = e^{-\pi/2}$

Therefore imaginary part is 0.

11. **(d)**:
$$(1+i)^5 = \left(\sqrt{2}\right)^5 \left(\frac{1}{\sqrt{2}} + i\frac{1}{\sqrt{2}}\right)^5$$

= $\left(\sqrt{2}\right)^5 \left(\cos\frac{\pi}{4} + i\sin\frac{\pi}{4}\right)^5$

$$= \left(\sqrt{2}\right)^5 \left(\cos\frac{5\pi}{4} + i\sin\frac{5\pi}{4}\right)$$

$$\therefore \quad \text{Amplitude} = \frac{5\pi}{4}$$

12. (a) : If 1, ω , ω^2 are the cube root of unity. Then, $1 + \omega + \omega^2 = 0$ and $\omega^3 = 1$.

$$\therefore (1 + \omega)(1 + \omega^2)(1 + \omega^4)(1 + \omega^8)$$
= $(1 + \omega)(-\omega)(1 + \omega)(-\omega) - \omega^2(-\omega)(-\omega^2)(-\omega)$
= $\omega^3 \times \omega^3 = 1 \times 1 = 1$.

13. (c) : α is a complex number satisfying the equation $\alpha^2 + \alpha + 1 = 0$

$$\therefore \quad \alpha^3 = 1 \qquad [\because \omega^3 = 1]$$

Now, $\alpha^{31} = (\alpha^3)^{10} \cdot \alpha = 1 \cdot \alpha = \alpha$.

14. (b): Let z = x + iy be any complex number. $z = -\overline{z}$ (given)

$$\Rightarrow x + iy = -(x - iy) \Rightarrow 2x = 0 \Rightarrow x = 0$$

z = 0 + iy = iy is purely imaginary.

15. (c) : Let
$$z = \cos \frac{2\pi}{7} + i \sin \frac{2\pi}{7}$$

$$\therefore z^k = \cos\frac{2k\pi}{7} + i\sin\frac{2k\pi}{7}$$

(Using De Moivre's theorem)

Taking
$$\sum_{k=1}^{6} \left[\sin \frac{2k\pi}{7} - i \cos \frac{2k\pi}{7} \right]$$

$$=(-i)\sum_{k=1}^{6} \left(\cos\frac{2k\pi}{7} + i\sin\frac{2k\pi}{7}\right) = (-i)\sum_{k=1}^{6} z^k$$

(using (i))

$$= (-i)[z + z^2 + ... + z^6]$$
 is a G.P. series

$$= (-i)\frac{z(1-z^6)}{1-z} = (-i)\left(\frac{z-z^7}{1-z}\right)$$

$$= (-i) \left(\frac{z - \left(\cos\frac{2\pi}{7} + i\sin\frac{2\pi}{7}\right)^7}{1 - z} \right)$$

$$= (-i) \left[\frac{z - \left(\cos 7 \cdot \frac{2\pi}{7} + i \sin 7 \cdot \frac{2\pi}{7}\right)}{1 - z} \right]$$

$$= (-i)\left(\frac{z-1}{1-z}\right) = i.$$

16. (b): Given equation is $x^3 - 6x + 9 = 0$ Since x = -3 satisfy above equation

$$\therefore$$
 real root is $x = -3$.

17. **(d)**:
$$x^2 + x + 1 = 0$$

$$\Rightarrow x = \frac{-1 \pm \sqrt{1^2 - 4 \cdot 1 \cdot 1}}{2} = \frac{-1 \pm \sqrt{3}i}{2}$$
or $\alpha = -\frac{1}{2} + \frac{\sqrt{3}i}{2}$, $\beta = -\frac{1}{2} - \frac{\sqrt{3}i}{2}$

$$\beta^2 = \left(-\frac{1}{2} - \frac{\sqrt{3}i}{2}\right)^2 = -\frac{1}{2} + \frac{\sqrt{3}}{2}i = \alpha$$

Also
$$1 + \beta + \beta^2 = 0$$
, $\beta^3 = 1$
 $\therefore \alpha^{16} + \beta^{16} = (\beta^2)^{16} + \beta^{16} = \beta^{16} (1 + \beta^{16})$
 $= (\beta^3)^5 \cdot \beta (1 + (\beta^3)^5 \beta) = \beta (1 + \beta)$
 $= \beta (-\beta^2) = -\beta^3 = -1$

18. (c) :
$$\frac{1+2i}{1-i} = \frac{1+2i}{1-i} \cdot \frac{1+i}{1+i} = \frac{1+2i+i+2i^2}{1-i^2}$$

= $\frac{-1+3i}{2} = -\frac{1}{2} + \frac{3}{2}i = \left(-\frac{1}{2}, \frac{3}{2}\right)$

.. Complex number lies in 2nd quadrant.

19. (c): In the Argand diagram point Q may be either in 2nd or 4th quadrant which is given by

$$\frac{z-0}{(\sqrt{3}+i)-0} = \frac{OQ}{OP} e^{i\left(\pm\frac{\pi}{2}\right)}$$

$$\Rightarrow z = (\sqrt{3} + i) \left(\cos \left(\pm \frac{\pi}{2} \right) + i \sin \left(\pm \frac{\pi}{2} \right) \right)$$

$$= (\sqrt{3} + i) (\pm i) \qquad (\because OP = OQ)$$

$$= -1 + \sqrt{3}i \text{ or } 1 - i\sqrt{3}$$

20. (c) :
$$\left[\frac{1 + \sin{\frac{\pi}{8}} + i\cos{\frac{\pi}{8}}}{1 + \sin{\frac{\pi}{8}} - i\cos{\frac{\pi}{8}}} \right]^{n}$$

$$= \left[\frac{1 + \cos\left(\frac{\pi}{2} - \frac{\pi}{8}\right) + i\sin\left(\frac{\pi}{2} - \frac{\pi}{8}\right)}{1 + \cos\left(\frac{\pi}{2} - \frac{\pi}{8}\right) - i\sin\left(\frac{\pi}{2} - \frac{\pi}{8}\right)} \right]^n$$

$$= \left[\frac{1 + \cos \frac{3\pi}{8} + i \sin \frac{3\pi}{8}}{1 + \cos \frac{3\pi}{8} - i \sin \frac{3\pi}{8}} \right]^n$$

$$= \left[\frac{1 + 2\cos^2\left(\frac{3\pi}{16}\right) - 1 + 2i\sin\frac{3\pi}{16}\cos\frac{3\pi}{16}}{1 + 2\cos^2\left(\frac{3\pi}{16}\right) - 1 - 2i\sin\frac{3\pi}{16}\cos\frac{3\pi}{16}} \right]^n$$

$$= \left[\frac{\cos\frac{3\pi}{16} + i\sin\frac{3\pi}{16}}{\cos\frac{3\pi}{16} - i\sin\frac{3\pi}{16}} \right]^n$$

$$= \left(\cos^2\frac{3\pi}{16} - \sin^2\frac{3\pi}{16} + 2i\sin\frac{3\pi}{16}\cos\frac{3\pi}{16} \right)^n$$

$$= \left(\cos\frac{3\pi}{8} + i\sin^2\frac{3\pi}{16} \right)^n = \cos\frac{3\pi n}{8} + i\sin\frac{3\pi n}{8}$$

which is purely imaginary then

$$\cos \frac{3\pi n}{8} = 0 = \cos \frac{\pi}{2}$$

$$\Rightarrow \frac{3\pi n}{8} = (2k+1)\frac{\pi}{2} \Rightarrow n = \frac{4}{3}(2k+1), k \in I$$

keep $k = 1, 4, 7, 10 \dots$

we get $n = 4, 12, 20, 28, \dots$

 \therefore Smallest positive integral value of n is 4

21. (**d**): Sum of the roots a, -a, b is $a + (-a) + b = 5 \implies b = 5$

Roots of eq"
$$x^2 - 5x + 10 = 0$$
 are $\frac{5 \pm \sqrt{25 - 40}}{2} \neq 5$

Roots of eq''
$$x^2 + 3x - 20 = 0$$
 are $\frac{-3 \pm \sqrt{9 - 80}}{2} \neq 5$

Roots of eq''
$$x^2 + 5x - 30 = 0$$
 are $\frac{-5 \pm \sqrt{25 + 120}}{2} \neq 5$

Roots of eqⁿ
$$x^2 - 3x - 10 = 0$$
 are $\frac{3 \pm \sqrt{9 + 40}}{2}$

$$=\frac{3\pm7}{2}=\frac{3+7}{2},\frac{3-7}{2}=5,-2$$

22. (b):
$$\frac{(1+i)^n}{(1-i)^{n-2}} = \frac{(1+i)^2 (1+i)^{n-2}}{(1-i)^{n-2}}$$

$$= (1+i)^2 \left(\frac{1+i}{1-i}\right)^{n-2} = (1+i)^2 \left(\frac{(1+i)(1+i)}{1^2+1^2}\right)^{n-2}$$

$$= (1+i)^2 \left(\frac{1-1+2i}{2}\right)^{n-2} = (2i)(i)^{n-2}$$

$$= 2(i)^{n-1} = 2(-1)^{n-1}$$

 $[2(-1)^{n-1} > 0 \text{ if } n \text{ is positive odd number greater than } 1]$

23. (a):
$$x + iy = (-1 + i\sqrt{3})^{2010}$$
 ...(1)
Let ω be the cube root of unity

$$\omega = \frac{-1 + i\sqrt{3}}{2} \implies 2\omega = -1 + i\sqrt{3} \text{ (put in (1))}$$

$$x + iy = (2\omega)^{2010} = 2^{2010} \times (\omega^3)^{670} = 2^{2010} [::\omega^3 = 1]$$

24. **(b)**:
$$\sum \left(\frac{1}{\alpha+\beta-\gamma}\right)$$

$$= \frac{1}{\alpha + \beta - \gamma} + \frac{1}{\alpha - \beta + \gamma} + \frac{1}{-\alpha + \beta + \gamma}$$

$$(\alpha-\beta+\gamma)(-\alpha+\beta+\gamma)+(\alpha+\beta-\gamma)(-\alpha+\beta+\gamma)$$

$$= \frac{+(\alpha+\beta-\gamma)(\alpha-\beta+\gamma)}{(\alpha+\beta-\gamma)(\alpha-\beta+\gamma)(-\alpha+\beta+\gamma)}$$

$$=\frac{(-2\beta)(-2\alpha)+(-2\gamma)(-2\alpha)+(-2\gamma)(-2\beta)}{(-2\gamma)(-2\beta)(-2\alpha)}$$

(It is given that $\alpha + \beta + \gamma = 0$, $\alpha\beta + \beta\gamma + \alpha\gamma = -2$, $\alpha\beta\gamma = 1$)

$$=\frac{4(-2)}{8(1)}=-1$$

25. (d): Now,
$$|1+i\sqrt{3}| = \sqrt{1+3} = 2$$
 ...(i)

Also,
$$1 + \frac{1}{i+1} = 1 + \frac{i-1}{i^2+1} = 1 + \frac{(i-1)}{-2} = \frac{3}{2} - \frac{i}{2}$$

So,
$$\left|1 + \frac{1}{i+1}\right| = \sqrt{\left(\frac{3}{2}\right)^2 + \left(-\frac{1}{2}\right)^2} = \sqrt{\frac{9}{4} + \frac{1}{4}} = \frac{\sqrt{10}}{2}$$
...(ii)

Thus,
$$\left| \frac{1+i\sqrt{3}}{\left(1+\frac{1}{i+1}\right)^2} \right| = \frac{2}{10/4} = \frac{4}{5}$$
 (from (i) &(ii))

26. (a) : First factor =
$$-\omega - \omega = -2\omega$$

Second factor = $1 - \omega^2 + \omega = -\omega^2 - \omega^2 = -2\omega^2$

 3^{rd} factor, 5^{th} factor, .. are equal to first factor which is – 2ω

 4^{th} factor, 6^{th} factor, are equal to the second factor which is $-2\omega^2$

Required product = $(-2\omega)(-2\omega^2)(-2\omega)(-2\omega^2)$ 2n factors = $(4\omega^3)(4\omega^3)$ n factors = $4\cdot 4$ n factors = $4^n = 2^{2n}$.

27. **(d)**: Given,
$$\left| \frac{z-1}{z+2i} \right| = 1$$

$$\Rightarrow |z-1| = |z+2i| \Rightarrow |z-1| = |z-(-2i)|$$

So, z forms that set of points is equidistant from 1 and (-2i) in the Argand plane.

So, z lies on the perpendicular bisector of 1 and (-2i) in the Argand plane. Option (d) is correct.

28. (d): Now,
$$\frac{(1-i\sqrt{3})(1+i)}{(\sqrt{3}+i)}$$
$$=\frac{-i(i+\sqrt{3})(1+i)}{(\sqrt{3}+i)} = -i(1+i) = 1-i$$

Clearly, above point lies in quadrant IV.

29. (a) : By verification
$$x = 1, 2$$

30. (c) : Let
$$z = x + iy$$
,

$$z^2 = -\overline{z} \Longrightarrow (x+iy)^2 = -(x-iy).$$

By simplifying we will get

$$z_1 = 0 + i0, z_2 = -1 + i0, z_3 = \frac{1}{2} + i\frac{\sqrt{3}}{2}, z_4 = \frac{1}{2} - i\frac{\sqrt{3}}{2}$$

:. Number of solutions are 4

31. (d):
$$\alpha^2 - \alpha + 1 = 0 \Rightarrow \alpha = \frac{1 \pm \sqrt{1 - 4}}{2} = \frac{1 \pm \sqrt{3}i}{2}$$

$$\Rightarrow$$
 $\alpha = -\omega$ \therefore $\alpha^{2011} = (-\omega)^{2011} = -\omega = \alpha$

32. (c):
$$(x+iy)(1-2i)=1+i$$

$$\Rightarrow$$
 $(x-iy)(1+2i)=1+i$

$$\Rightarrow x - iy = \frac{1+i}{1+2i} \Rightarrow x + iy = \frac{1-i}{1-2i}$$

33. (a):
$$x^3 + 0x^2 + 4x + 2 = 0$$
, $\alpha + \beta + \gamma = 0$

$$\therefore \qquad \alpha^3 + \beta^3 + \gamma^3 = 3\alpha\beta\gamma = 3(-2) = -6$$

34. (c) :
$$\left| \frac{\beta - \alpha}{1 - \overline{\alpha} \beta} \right| = \frac{\sqrt{(\beta - \alpha)(\overline{\beta} - \alpha)}}{\sqrt{(1 - \overline{\alpha} \beta)(\overline{1} - \overline{\alpha} \overline{\beta})}}$$

$$=\frac{\sqrt{(\beta-\alpha)(\overline{\beta}-\overline{\alpha})}}{\sqrt{(1-\overline{\alpha}\beta)(1-\alpha\overline{\beta})}}=\sqrt{\frac{\beta\overline{\beta}-\beta\overline{\alpha}-\alpha\overline{\beta}+\alpha\overline{\alpha}}{1-\alpha\overline{\beta}-\overline{\alpha}\beta+\alpha\overline{\alpha}\beta\overline{\beta}}}$$

$$=\sqrt{\frac{\left|\beta\right|^{2}-\beta\overline{\alpha}-\alpha\overline{\beta}+\left|\alpha\right|^{2}}{1-\alpha\overline{\beta}-\overline{\alpha}\beta+\left|\alpha\right|^{2}\left|\beta\right|^{2}}}$$

$$= \sqrt{\frac{1 - \beta \overline{\alpha} - \alpha \overline{\beta} + |\alpha|^2}{1 - \beta \overline{\alpha} - \alpha \overline{\beta} + |\alpha|^2}} = \sqrt{1} = 1 \qquad (\because |\beta| = 1)$$

35. (d): We know that the roots of the equation $x^3 + ax^2 + bx + c = 0$ are in A.P.

Let
$$\alpha = -1$$
, $\beta = 1$, $\gamma = 3$

So,
$$(x+1)(x-1)(x-3)=0$$

$$\Rightarrow x^3 - 3x^2 - x + 3 = 0$$

$$\Rightarrow$$
 $a=-3, b=-1$ and $c=3$

Now,
$$2a^3 - 9ab = 2(-3)^3 - 9(-3)(-1)$$

$$= -54 - 27 = -81 = -27c$$

36. (b) : Since 1, ω , ω^2 are cube roots of unity

$$1 + \omega + \omega^2 = 0$$

Now,
$$(1 - \omega + \omega^2)(1 + \omega - \omega^2)$$

$$=(-\omega-\omega)(-\omega^2-\omega^2)=(-2\omega)(-2\omega^2)=4\omega^3=4$$

37. **(d)**:
$$z = \frac{(\sqrt{3}+i)^3(3i+4)^2}{(8+6i)^2}$$

Taking Modulus on both sides, we get

$$|z| = \frac{|\sqrt{3} + i|^3 |3i + 4|^2}{|8 + 6i|^2}$$
$$= \frac{(\sqrt{3} + 1)^3 (\sqrt{9} + 16)^2}{(\sqrt{64} + 36)^2} = \frac{8 \times 25}{100} = 2$$

38. (c): Given equation is

$$x^2 - ax + b^2 = 0$$

Since α and β are its roots

$$\therefore \quad \alpha + \beta = a, \ \alpha\beta = b^2$$

Now,
$$\alpha^2 + \beta^2 = (\alpha + \beta)^2 - 2\alpha\beta = a^2 - 2b^2$$

39. (a):
$$(1 - \cos \theta + i \sin \theta)^{-1} = \frac{1}{1 - \cos \theta + i \sin \theta}$$

$$= \frac{1}{1 - \cos\theta + i\sin\theta} \times \frac{1 - \cos\theta - i\sin\theta}{1 - \cos\theta - i\sin\theta}$$

$$= \frac{1 - \cos\theta - i\sin\theta}{1 + \cos^2\theta - 2\cos\theta + \sin^2\theta} = \frac{(1 - \cos\theta) - i\sin\theta}{2(1 - \cos\theta)}$$

 \therefore Real part of given expression is $\frac{1}{2}$

40. (a):
$$i^{n} + i^{n+1} + i^{n+2} + i^{n+3}$$

 $= i^{n} + i^{n+1} + i^{n} \cdot i^{2} + i^{n+1} \cdot i^{2}$
 $= i^{n} + i^{n+1} - i^{n} - i^{n+1}$ [: $i^{2} = -1$]
 $= 0$

41. (a): Given,
$$\left(\frac{1+i}{1-i}\right)^m = 1 \implies i^m = i^4 \implies m = 4$$

42. (b): Given,
$$\frac{1-i}{1+i} = \frac{1-i}{1+i} \times \frac{1-i}{1-i} = \frac{(1-i)^2}{1-i^2} = -i$$

$$\therefore \left(\frac{1-i}{1+i}\right)^{96} = (-i)^{96} = 1 = 1 + 0i \qquad \dots (i)$$

Comparing (i) with a + ib, we get a = 1, b = 0So, the value of (a, b) = (1, 0)

43. (d): We have,
$$x^2 + x + 1 = 0$$
 ... (i)

Since α , β are roots of equation (i).

$$\therefore \quad \alpha + \beta = -1, \, \alpha\beta = 1$$

Now,
$$\alpha^2 + \beta^2 = (\alpha + \beta)^2 - 2\alpha\beta = 1 - 2 = -1$$