Specification

20-HETE Synthase Inhibitor

Technical Field

The present invention relates to hydroxyformamidinobenzene derivatives inhibiting a synthase of 20-hydroxyeicosatetraenoic acid (20-HETE) biosynthesized from arachidonic acid.

Background Art

Prostaglandins produced by cyclooxygenase and lypoxygenases produced by lipoxygenase have been well known as physiologically active substances synthesized from arachidonic acid. Recently, it has been elucidated that 20-HETE, which is produced from arachidonic acid by the cytochrome P450 family enzymes, functions in various manner in vivo (J. Vascular Research, vol. 32, p.79 (1995)). It has been reported that 20-HETE induces constriction or dilation of important organs such as the kidneys and the cerebral blood vessels, and causes cell proliferation, and it is suggested that 20-HETE plays important physiological roles in vivo, and participates in various kidney diseases, cerebrovascular diseases, or circulatory diseases (J. Vascular Research, vol. 32, p. 79 (1995); Am. J. Physiol., vol. 277, p. R607 (1999); and the like).

Disclosure of the Invention

An object of the present invention is to provide an inhibitor for production of 20-HETE, which participates in constriction or dilation of microvessels in the important organs such as the kidneys and the cerebral blood vessels, or in causing cell proliferation.

As a result of various studies in order to solve the above problem, the present inventors have found that aromatic compounds having a specific substructure unexpectedly possess the inhibitory activity for 20-HETE synthase, to accomplish the present invention.

SUB A LINE TO THE REPORT OF THE PARTY OF THE

That is, one mode of the present invention corresponds to an inhibitor of 20-hydroxyeicosatetraenoic acid synthase, comprising, as an effective ingredient, a hydroxyformamidine derivative represented by the general formula (1) as follows:

[wherein R1 to R5 are identical or different and represent a hydrogen atom; a hydroxyl group; a carboxyl group; a halogen atom; a C_{1-14} alkyl group; a C_{1-14} alkyl group substituted with 1 to 6 halogen atoms; a C₂₋₅ alkenyl group; a C₁₋₆ alkoxy C₁₋₆ alkyl group; aC_{3-8} cycloalkyl C_{1-6} alkyl group; aC_{2-6} alkynyl group; aC_{3-8} cycloalkyl group; a C_{3-8} cycloalkoxy group; a C_{2-10} alkanoyl group; a C_{1-6} hydroxyalkyl group; a C₁₋₆ hydroxyalkyl group substituted with 1 to 6 halogen atoms; a C₂₋₆ alkoxycarbonyl group; a 3-phenyl-2-propenyloxycarbonyl group; a C_{2-6} alkoxycarbonyl C_{1-6} alkyl group; a di $(C_{1-6}$ alkyl) amino C_{2-6} alkoxycarbonyl group; a monoor di $(C_{1-6}$ alkyl) amino group; a C_{2-10} alkanoylamino group; a C_{2-6} alkanoylamino group substituted with a C1-6 alkyl group; a benzoylamino group; a carbamoyl group; a carbamoyl group mono-substituted or di-substituted with C_{1-6} alkyl or phenyl groups; an N- $(N', N'-di(C_{1-6} alkyl))$ amino $C_{1-6} alkyl)$ carbamoyl group; a cyano group; a cyano C₁₋₆ alkyl group; a nitro group; a thiol group; a phenoxy group; a phenoxy group substituted with 1 to 3 substituents from the group consisting of C_{1-6} alkyl groups, C_{1-6} alkoxy groups, and halogen atoms; a phenylthio group; a nitrophenylthio group; a C₁₋₆ alkylsulfonyl group; a phenylsulfonyl group; a C₁₋₆ alkylthio C_{1-6} alkyl group; a phenylsulfonyl C_{1-6} alkylthio group wherein the benzene ring is substituted with 1 to 5 halogen atoms; a phenyl group; a benzyl group; a phenyl group substituted with 1 to 3 substituents selected from the group consisting of cyano groups,

halogen atoms, C_{1-6} alkyl groups, and C_{1-6} alkoxy groups; a biphenyl group; an α -cyanobenzyl group; an α -cyanobenzyl group substituted with 1 to 5 halogen atoms; a benzyl group substituted with a bicyclo[2.2.1]-hept-5-en-2,3-dicarboxyimidyl group; a benzoyl group; a styryl group; a styryl group substituted with 1 to 5 substituents selected from the group consisting of C_{1-6} alkoxy groups and di $(C_{1-6}$ alkyl) amino alkyl groups; a pyrrolidino group; a piperidino group; a morpholino group; a pyridyl group; a pyrimidinyl group; a pyrimidinyl group substituted with 1 to 3 substituents selected from the group consisting of C_{1-6} alkyl groups and C_{1-6} alkoxy groups; a phthalimidoyl group; a phthalimidoyl group substituted with 1 to 3 halogen atoms; an N-carbazolyl group; a dioxopiperidinyl group substituted with 1 to 3 C₁₋₆ alkyl groups; a phenyl sulfonylamino group; a phenylsulfonylamino group substituted with 1 to 3 C_{1-6} alkyl groups; a C₁₋₆ alkylaminosulfonyl C₁₋₆ alkyl group; a thiadiazolyl group; an oxadiazolyl group; an oxadiazolyl group substituted with a substituted phenyl group wherein the substituents in the substituted phenyl group are 1 to 3 substituents selected from the group consisting of halogen atoms, C_{1-6} alkyl groups, and C_{1-6} alkoxy groups; a pyrrolidinyl group; a pyrazolyl group; a pyrazolyl group substituted with 1 to 3 substituents selected from the group consisting of halogen atoms, C₁₋₆ alkyl groups, and trifluoromethyl groups; a furyl group; a furyl group substituted with 1 to 3 substituents selected from the group consisting of halogen atoms, C_{1-6} alkyl groups, and C_{2-6} alkoxycarbonyl groups; a thienopyrimidinylthio group; a thienopyrimidinylthio group substituted with 1 to $3C_{1-6}$ alkyl groups; a thienopyridylthio group; a thienopyridylthio group substituted with 1 to 3 C₁₋₆ alkyl groups; a benzothiazolylthio group; a benzothiazolylthio group substituted with 1 to 3 halogen atoms; a group represented by the formula: $-Y = (CR^{61}R^{62})_m - (CR^{63}R^{64})_n - R^7$ [wherein Y represents an oxygen or sulfur atom; R⁶¹, R⁶², R⁶³, and R⁶⁴ are identical or different and represent a hydrogen atom, a halogen atom, a C₁₋₄ alkyl group, or a trifluoromethyl group; R⁷ represents a hydrogen atom; a halogen

atom; a C₁₋₁₄ alkyl group; a C₃₋₈ cycloalkyl group; a C₃₋₈ cycloalkoxy group; a C_{2-10} alkenyl group; a C_{2-6} alkynyl group; a phenyl group; a phenyl group substituted with 1 to 3 substituents selected from the group consisting of nitro groups, cyano groups, C_{1-6} alkyl groups, C_{1-6} alkoxy groups, C_{1-6} alkylthio groups, phenyl groups, phenoxy groups, phenethyl groups, C_{2-6} alkoxycarbonyl groups, and halogen atoms; a cyano group; a carboxyl group; a C₁₋₆ alkoxy group; a C₁₋₆ hydroxyalkyl group; a C_{1-6} alkoxy C_{1-6} alkoxy group; a C_{1-6} alkoxy C_{1-6} alkoxy C_{1-6} alkoxy group; a C_{1-6} alkylthio group; a C_{2-6} alkanoyloxy group; a C2-6 alkanoyloxy C1-6 alkyl group; a phenoxy group; a phenylthio group; an N- $(C_{1-6}$ alkyl) toluidino group; a pyrrolidino group; a piperidino group; a morpholino group; a pyridyl group; a pyridyl group substituted with a C_{1-6} alkyl group; a piperidino group substituted with a C_{1-6} alkyl group; a pyridyl group substituted with a C_{1-6} alkoxy group; a pyrrolidino group substituted with a C_{1-6} alkyl group; a morpholino group substituted with a C_{1-6} alkyl group; a morpholinyl group; a morpholinyl group substituted with a C₁₋₆ alkyl group; a homomorpholinyl group; a thiomorpholino group; a thiomorpholino group substituted with a C₁₋₆ alkyl group; a thiomorpholinyl group; a thiomorpholinyl group substituted with a C₁₋₆ alkyl group; a piperadinyl group; a piperadin-1-yl group substituted with a C_{1-6} alkyl group at the 4-position; a homopiperidinyl group; a homopiperidinyl group substituted with a C₁₋₆ alkyl group; a pyridylthio group; a quinolyl group; a furyl group; an oxetanyl group; an oxolanyl group; a dioxolanyl group; a dioxolanyl group substituted with a C_{1-6} alkyl group; an oxanyl group; a dioxanyl group; a dioxanyl group substituted with a C₁₋₆ alkyl group; a benzodioxanyl group; a pyrrolidon-1-yl group; a pyrrolidinyl group; an N-(C_{1-6} alkyl)pyrrolidinyl group; a piperidinyl group; an N- $(C_{1-6}$ alkyl)piperidinyl group; a pyrrolyl group; a thienyl group; a thiazolyl group; a thiazolyl group substituted with 1 to $3C_{1-6}$ alkyl groups; a 2,6-purindion-7-yl group substituted with C_{1-6} alkyl group(s); a furfuryl group; a di(C_{1-6} alkyl) amino group; a C_{2-6} alkoxycarbonyl group; or a di $(C_{1-6}$

alkyl) amino C_{1-6} alkoxy group; m is an integer of 1 to 6; and n is an integer of 0 to 6]; or a group represented by the formula: -SO₂NR⁸R⁹ [wherein R⁸ and R⁹ are identical or different and represent a hydrogen atom, a C_{1-10} alkyl group, a C_{2-6} alkanoyl group, an isoxazolyl group, an isoxazolyl group substituted with 1 to 3 C_{1-6} alkyl groups, a thiadiazolyl group, a thiadiazolyl group substituted with 1 to $3C_{1-6}$ alkyl groups, a thiazolyl group, a thiazolyl group substituted with 1 to 3 C_{1-6} alkyl groups, a pyridyl group, a pyridyl group substituted with 1 to 3 C_{1-6} alkyl groups, a pyrimidinyl group, a pyrimidinyl group substituted with 1 to 3 C_{1-6} alkyl groups, a pyrimidinyl group substituted with 1 to 3 C_{1-6} alkoxy groups, a pyridazinyl group, a pyridazinyl group substituted with 1 to 3 C_{1-6} alkoxy groups, an indazolyl group, or a carbamoyl group monoor di-substituted with C_{1-6} alkyl groups, or alternatively, taken together with the nitrogen atom to which they are bonded, form a 3,5-dioxopiperadino group, a pyrrolidinyl group, a piperidino group, or a morpholino group], or alternatively,

the two groups adjacent to each other of R^1 to R^5 , taken together with the benzene ring to which they are bonded, form a phthalimide ring; a phthalimide ring substituted with a C_{1-6} alkyl group; an indole ring; an indane ring; an indazole ring; a benzotriazole ring; an S,S-dioxobenzothiophene ring; a 2,3-dihydroimidazo[2,1-b]benzothiazole ring; a dibenzofuran ring; a dibenzofuran ring substituted with a C_{1-6} alkoxy group; a fluorene ring; a fluorene ring substituted with a halogen atom; a pyrene ring; a carbostyryl ring; a carbostyryl ring substituted with a C_{1-6} alkyl group; a naphthalene ring; a naphthalene ring substituted with 1 to 3 substituents selected from the group consisting of cyano groups, halogen atoms, nitro groups, and C_{1-6} alkyl groups; a 1,2,3,4-tetrahydronaphthalene ring; a quinoline ring; a quinoline ring substituted with a C1-6 alkyl group; an isoquinoline ring; a 2-oxo- α -chromene ring; a 2-oxo- α -chromene ring substituted with 1 to 3 substituents selected from the group consisting of C_{1-6} alkyl groups, C_{1-6} alkoxy groups, and C_{1-6} alkoxy C_{1-6} alkyl groups; a cinnolin ring; a cinnolin ring substituted with a C_{1-6} alkyl group; a phthalazindione ring; a benzothiazol ring; a benzothiazol ring substituted with a C_{1-6} alkyl group; a benzodioxorane ring; or a benzobutyrolactone ring] or a pharmaceutically-acceptable salt thereof.

In the general formula (1) described above, it is preferable that R¹ to R⁵ be identical or different and represent a hydrogen atom; a hydroxyl group; a carboxyl group; a halogen atom; a C₁₋₁₄ alkyl group; a C_{1-14} alkyl group substituted with 1 to 6 halogen atoms; a C₂₋₆ alkynyl group; a C₃₋₈ cycloalkyl group; a C₃₋₈ cycloalkoxy group; a C_{2-10} alkanoyl group; a C_{1-6} hydroxyalkyl group; a C_{1-6} hydroxyalkyl group substituted with 1 to 6 halogen atoms; a C_{2-6} alkoxycarbonyl group; a 3-phenyl-2-propenyloxycarbonyl group; a C_{2-6} alkoxycarbonyl C_{1-6} alkyl group; a di(C_{1-6} alkyl)amino C_{2-6} alkoxycarbonyl group; a mono- or di $(C_{1-6}$ alkyl) amino group; a C_{2-10} alkanoylamino group; a C_{2-6} alkanoylamino group substituted with a C_{1-6} alkyl group; a benzoylamino group; a carbamoyl group; a carbamoyl group mono- or di-substituted with C_{1-6} alkyl or phenyl groups; an N-(N',N'-di(C_{1-6} alkyl) amino C_{1-6} alkyl) carbamoyl group; a cyano group; a cyano C₁₋₆ alkyl group; a nitro group; a thiol group; a phenoxy group; a phenoxy group substituted with 1 to 3 substituents selected from the group consisting of C_{1-6} alkyl groups, C_{1-6} alkoxy groups, and halogen atoms; a phenylthio group; a nitrophenylthio group; a C₁₋₆ alkylsulfonyl group; a phenylsulfonyl group; a C₁₋₆ alkylthio C_{1-6} alkyl group; a phenylsulfonyl C_{1-6} alkylthio group wherein the benzene ring is substituted with 1 to 5 halogen atoms; a phenyl group; a benzyl group; a phenyl group substituted with 1 to 3 substituents selected from the group consisting of cyano groups, halogen atoms, C_{1-6} alkyl groups, and C_{1-6} alkoxy groups; a biphenyl group; an α -cyanobenzyl group; an α -cyanobenzyl group substituted with 1 to 5 halogen atoms; a benzyl group substituted with a bicyclo[2.2.1]-hept-5-en-2,3-dicarboxyimidyl group; a benzoyl group; a styryl group; a styryl group substituted with 1 to 5 substituents selected from the group consisting of C_{1-6} alkoxy

groups and di (C₁₋₆ alkyl) amino alkyl groups; a pyrrolidino group; a piperidino group; a morpholino group; a pyridyl group; a pyrimidinyl group; a pyrimidinyl group substituted with 1 to 3 substituents selected from the group consisting of C1-6 alkyl groups and C₁₋₆ alkoxy groups; a phthalimidoyl group; a phthalimidoyl group substituted with 1 to 3 halogen atoms; an N-carbazolyl group; a dioxopiperidinyl group substituted with 1 to 3 C_{1-6} alkyl groups; a phenylsulfonylamino group; a phenylsulfonylamino group substituted with 1 to 3 C_{1-6} alkyl groups; a C_{1-6} alkylaminosulfonyl C_{1-6} alkyl group; a thiadiazolyl group; an oxadiazolyl group; an oxadiazolyl group substituted with a substituted phenyl group wherein the substituents in the substituted phenyl group are 1 to 3 substituents selected from the group consisting of halogen atoms, C_{1-6} alkyl groups, and C_{1-6} alkoxy groups; a pyrrolidinyl group; a pyrazolyl group; a pyrazolyl group substituted with 1 to 3 substituents selected from the group consisting of halogen atoms, C₁₋₆ alkyl groups, and trifluoromethyl groups; a furyl group; a furyl group substituted with 1 to 3 substituents selected from the group consisting of halogen atoms, C_{1-6} alkyl groups, and C_{2-6} alkoxycarbonyl groups; a thienopyrimidinylthio group; a thienopyrimidinylthio group substituted with 1 to 3 C_{1-6} alkyl groups; a thienopyridylthio group; a thienopyridylthio group substituted with 1 to 3 C₁₋₆ alkyl groups; a benzothiazolylthio group; a benzothiazolylthio group substituted with 1 to 3 halogen atoms; a group represented by the formula: $-Y-(CR^{61}R^{62})_m-(CR^{63}R^{64})_n-R^7$ [wherein Y represents an oxygen or sulfur atom; R⁶¹, R⁶², R⁶³, and R^{64} are identical or different and represent a hydrogen atom, a halogen atom, a C_{1-4} alkyl group, or a trifluoromethyl group; R^7 represents a hydrogen atom; a halogen atom; a C1-14 alkyl group; a C_{3-8} cycloalkyl group; a C_{2-10} alkenyl group; a C_{2-6} alkynyl group; a phenyl group; a phenyl group substituted with 1 to 3 substituents selected from the group consisting of nitro groups, cyano groups, C_{1-6} alkyl groups, C_{1-6} alkoxy groups, C_{1-6} alkylthio groups, phenyl groups, phenoxygroups, phenethyl groups, C2-6alkoxycarbonyl groups,

and halogen atoms; a cyano group; a carboxyl group; a C₁₋₆ alkoxy group; a C_{1-6} hydroxyalkyl group; a C_{3-8} cycloalkoxy group; a C_{1-6} alkoxy C_{1-6} alkoxy group; a C_{1-6} alkoxy C_{1-6} alkoxy C_{1-6} alkoxy group; a C₁₋₆ alkylthio group; a C₂₋₆ alkanoyloxy group; a C₂₋₆ alkanoyloxy C_{1-6} alkyl group; a phenoxy group; a phenylthio group; an N-(C_{1-6} alkyl) toluidino group; a pyrrolidino group; a piperidino group; a morpholino group; a pyridyl group; a pyridyl group substituted with a C_{1-6} alkyl group; a piperidino group substituted with a C_{1-6} alkyl group; a pyridyl group substituted with a C1-6 alkoxy group; a pyrrolidino group substituted with a C_{1-6} alkyl group; a morpholino group substituted with a C_{1-6} alkyl group; a morpholinyl group; a morpholinyl group substituted with a C1-6 alkyl group; a homomorpholinyl group; a thiomorpholino group; a thiomorpholino group substituted with a C_{1-6} alkyl group; a thiomorpholinyl group; a thiomorpholinyl group substituted with a C_{1-6} alkyl group; a piperadinyl group; a piperadin-1-yl group substituted with a C₁₋₆ alkyl group at the 4-position; a homopiperidinyl group; a homopiperidinyl group substituted with a C₁₋₆ alkyl group; a pyridylthio group; a quinolyl group; a furyl group; an oxetanyl group; an oxolanyl group; a dioxolanyl group; a dioxolanyl group substituted with a C₁₋₆ alkyl group; an oxanyl group; a dioxanyl group; a dioxanyl group substituted with a C₁₋₆ alkyl group; a benzodioxanyl group; apyrrolidon-1-yl group; apyrrolidinyl group; an N- $(C_{1-6}$ alkyl) pyrrolidinyl group; a piperidinyl group; an N- $(C_{1-6}$ alkyl)piperidinyl group; a pyrrolyl group; a thienyl group; a thiazolyl group; a thiazolyl group substituted with 1 to 3 C_{1-6} alkyl groups; a 2, 6-purindion-7-yl group substituted with C_{1-6} alkyl group(s); a furfuryl group; a $di(C_{1-6} \text{ alkyl})$ amino group; a C_{2-6} alkoxycarbonyl group; or a di(C_{1-6} alkyl) amino C_{1-6} alkoxy group; m is an integer of 1 to 6; and n is an integer of 0 to 6].

In addition, in the inhibitors of 20-hydroxyeicosatetraenoic acid synthase according to the present invention, it is preferable that in the compounds of the general formula (1), the compounds wherein R^1 , R^2 , R^4 , and R^5 represent hydrogen atoms, or the

pharmaceutically-acceptable salts thereof, be employed as effective ingredients.

In addition, the other mode of the present invention corresponds to hydroxyformamidine derivatives having a novel chemical structure in the compounds of the general formula (1) described above or a pharmaceutically-acceptable salt thereof.

That is, the other mode of the present invention corresponds to a hydroxyformamidine derivative represented by the general formula (2) as follows:

[wherein at least one of R^{11} to R^{55} represents a C_{5-14} alkyl group; a C_{2-6} alkenyl group; a C_{3-8} cycloalkyl C_{1-6} alkyl group; a C_{2-6} alkynyl group; a C_{3-8} cycloalkyl group; a C_{3-8} cycloalkoxy group; a C₂₋₁₀ alkanoyl group; a C₁₋₆ hydroxyalkyl group; a C₁₋₆ hydroxyalkyl group substituted with 1 to 6 halogen atoms; a C₂₋₆ alkoxycarbonyl group; a 3-phenyl-2-propenyloxycarbonyl group; a C2-6 alkoxycarbonyl C_{1-6} alkyl group; a di(C_{1-6} alkyl) amino C_{2-6} alkoxycarbonyl group; a mono- or di $(C_{1-6}$ alkyl) amino group; a C_{2-10} alkanoylamino group; a C2-6 alkanoylamino group substituted with a C₁₋₆ alkyl group; a benzoylamino group; a carbamoyl group; a carbamoyl group mono- or di-substituted with C₁₋₆ alkyl or phenyl groups; an N-(N', N'-di(C_{1-6} alkyl) amino C_{1-6} alkyl) carbamoyl group; a cyano group; a cyano C_{1-6} alkyl group; a C_{1-6} alkylsulfonyl group; a phenylsulfonyl group; a C_{1-6} alkylthio C_{1-6} alkyl group; a phenylsulfonyl C_{1-6} alkylthio group wherein the benzene ring is substituted with 1 to 5 halogen atoms; a phenyl group; a benzyl group; a phenyl group substituted with 1 to 3 substituents selected from the group consisting of cyano groups, halogen atoms, C_{1-6} alkyl groups, and C_{1-6} alkoxy groups; a biphenyl group; an α -cyanobenzyl group; an α -cyanobenzyl group substituted with 1 to 5 halogen atoms;

a benzyl group substituted with a bicyclo[2.2.1]-hept-5-en-2,3-dicarboxyimidyl group; a benzoyl group; a styryl group; a styryl group substituted with 1 to 5 substituents selected from the group consisting of C_{1-6} alkoxy groups and $di(C_{1-6} \text{ alkyl})$ aminoalkyl groups; a pyrrolidino group; a piperidino group; a morpholino group; a pyridyl group; a pyrimidinyl group; a pyrimidinyl group substituted with 1 to 3 substituents selected from the group consisting of C₁₋₆ alkyl groups and C₁₋₆ alkoxy groups; a phthalimidoyl group; a phthalimidoyl group substituted with 1 to 3 halogen atoms; an N-carbazolyl group; a dioxopiperidinyl group substituted with 1 to $3C_{1-6}$ alkyl groups; aphenyl sulfonylamino group; a phenylsulfonylamino group substituted with 1 to 3 C_{1-6} alkyl groups; a C₁₋₆ alkylaminosulfonyl C₁₋₆ alkyl group; a thiadiazolyl group; an oxadiazolyl group; an oxadiazolyl group substituted with a substituted phenyl group wherein the substituents in the substituted phenyl group are 1 to 3 substituents selected from the group consisting of halogen atoms, C_{1-6} alkyl groups, and C_{1-6} alkoxy groups; a pyrrolidinyl group; a pyrazolyl group; a pyrazolyl group substituted with 1 to 3 substituents selected from the group consisting of halogen atoms, C_{1-6} alkyl groups, and trifluoromethyl groups; a furyl group; a furyl group substituted with 1 to 3 substituents selected from the group consisting of halogen atoms, C_{1-6} alkyl groups, and C_{2-6} alkoxycarbonyl groups; a thienopyrimidinylthio group; a thienopyrimidinylthio group substituted with 1 to $3C_{1-6}$ alkyl groups; a thienopyridylthio group; a thienopyridylthio group substituted with 1 to 3 C₁₋₆ alkyl groups; a benzothiazolylthio group; a benzothiazolylthio group substituted with 1 to 3 halogen atoms; a group represented by the formula: $-Y-(CR^{61}R^{62})_m-(CR^{63}R^{64})_n-R^{77}$ [wherein Y represents an oxygen or sulfur atom; R⁶¹, R⁶², R⁶³, and R⁶⁴ are identical or different and represent a hydrogen atom, a halogen atom, a C₁₋₄ alkyl group, or a trifluoromethyl group; R^{77} represents a halogen atom; a C_{4-14} alkyl group; a C_{3-8} cycloalkyl group; a C_{2-10} alkenyl group; a C_{2-6} alkynyl

group; a phenyl group; a phenyl group substituted with 1 to 3

substituents selected from the group consisting of nitro groups, cyano groups, C_{1-6} alkyl groups, C_{1-6} alkoxy groups, C_{1-6} alkylthio groups, phenyl groups, phenoxy groups, phenethyl groups, C2-6 alkoxycarbonyl groups, and halogen atoms; a cyano group; a carboxyl group; a C_{1-6} alkoxy group; a C_{1-6} alkoxy C_{1-6} alkoxy group; a C_{1-6} alkoxy C_{1-6} alkoxy C_{1-6} alkoxy group; a C_{1-6} hydroxyalkyl group; a C₃₋₈ cycloalkoxy group; a C₁₋₆ alkylthio group; a C₂₋₆ alkanoyloxy group; a C_{2-6} alkanoyloxy C_{1-6} alkyl group; a phenoxy group; a phenylthio group; an N- $(C_{1-6}$ alkyl) toluidino group; a pyrrolidino group; a piperidino group; a morpholino group; a pyridyl group; a pyridyl group substituted with a C_{1-6} alkyl group; a piperidino group substituted with a C_{1-6} alkyl group; a pyridyl group substituted with a C_{1-6} alkoxy group; a pyrrolidino group substituted with a C_{1-6} alkyl group; a morpholino group substituted with a C_{1-6} alkyl group; a morpholinyl group; a morpholinyl group substituted with a C₁₋₆ alkyl group; a homomorpholinyl group; a thiomorpholino group; a thiomorpholino group substituted with a C₁₋₆ alkyl group; a thiomorpholinyl group; a thiomorpholinyl group substituted with a C_{1-6} alkyl group; a piperadinyl group; a piperadin-1-yl group substituted with a C_{1-6} alkyl group at the 4-position; a homopiperidinyl group; a homopiperidinyl group substituted with a C₁₋₆ alkyl group; a pyridylthio group; a quinolyl group; a furyl group; an oxetanyl group; an oxolanyl group; a dioxolanyl group; a dioxolanyl group substituted with a C_{1-6} alkyl group; an oxanyl group; a dioxanyl group; a dioxanyl group substituted with a C_{1-6} alkyl group; a benzodioxanyl group; a pyrrolidon-1-yl group; a pyrrolidinyl group; an $N-(C_{1-6} \text{ alkyl})$ pyrrolidinyl group; a piperidinyl group; an $N-(C_{1-6} \text{ alkyl})$ piperidinyl group; a pyrrolyl group; a thienyl group; a thiazolyl group; a thiazolyl group substituted with 1 to 3 C_{1-6} alkyl groups; a 2, 6-purindion-7-yl group substituted with C_{1-6} alkyl group(s); a furfuryl group; a di(C_{1-6} alkyl) amino group; a C_{2-6} alkoxycarbonyl group; or a di (C_{1-6}) alkyl) amino C_{1-6} alkoxy group; m is an integer of 1 to 6; and n is an integer of 0 to 6]; or a group represented by the formula: -SO₂NR⁸R⁹

[wherein R^8 and R^9 are identical or different and represent a hydrogen atom, a C_{1-10} alkyl group, a C_{2-6} alkanoyl group, an isoxazolyl group, an isoxazolyl group substituted with 1 to 3 C_{1-6} alkyl groups, a thiadiazolyl group substituted with 1 to 3 C_{1-6} alkyl groups, a thiazolyl group, a thiazolyl group substituted with 1 to 3 C_{1-6} alkyl groups, a pyridyl group, a pyridyl group substituted with 1 to 3 C_{1-6} alkyl groups, a pyrimidinyl group substituted with 1 to 3 C_{1-6} alkyl groups, a pyrimidinyl group substituted with 1 to 3 C_{1-6} alkyl groups, a pyrimidinyl group substituted with 1 to 3 C_{1-6} alkoxy groups, a pyridazinyl group, a pyridazinyl group substituted with 1 to 3 C_{1-6} alkoxy groups, an indazolyl group, or a carbamoyl group monoor di-substituted with C_{1-6} alkyl groups, or alternatively, taken together with the nitrogen atom to which they are bonded, form a 3,5-dioxopiperadino group, a pyrrolidinyl group, a piperidino group, or a morpholino group], or alternatively,

the two groups adjacent to each other of R¹¹ to R⁵⁵, taken together with the benzene ring to which they are bonded, form a phthalimide ring; a phthalimide ring substituted with a C_{1-6} alkyl group; an indole ring; an indane ring; an indazole ring; a benzotriazole ring; an S,S-dioxobenzothiophene ring; a 2,3-dihydroimidazo[2,1-b]benzothiazole ring; a dibenzofuran ring; a dibenzofuran ring substituted with a C_{1-6} alkoxy group; a fluorene ring; a fluorene ring substituted with a halogen atom; a pyrene ring; a carbostyryl ring; a carbostyryl ring substituted with a C_{1-6} alkyl group; a naphthalene ring; a naphthalene ring substituted with 1 to 3 substituents selected from the group consisting of cyano groups, halogen atoms, nitro groups, and C_{1-6} alkyl groups; a 1,2,3,4-tetrahydronaphthalene ring; a quinoline ring; a quinoline ring substituted with a C_{1-6} alkyl group; an isoquinoline ring; a 2-oxo- α -chromene ring; a 2-oxo- α -chromene ring substituted with 1 to 3 substituents selected from the group consisting of C_{1-6} alkyl groups, C_{1-6} alkoxy groups, and C_{1-6} alkoxy C_{1-6} alkyl groups; a cinnolin ring; a cinnolin ring substituted with a C₁₋₆ alkyl group; a phthalazindione ring; a benzothiazol ring;

a benzothiazol ring substituted with a C_{1-6} alkyl group; a benzodioxorane ring; or a benzobutyrolactone ring, and the remaining groups of R^{11} to R^{55} are identical or different and represent a hydrogen atom, a C_{1-4} alkyl group, a C_{1-4} alkoxy group, a trifluoromethyl group, a nitro group, or a halogen atom) or a pharmaceutically-acceptable salt thereof.

In the compounds of the general formula (2), at least one of R^{11} to R^{55} may represent a C_{5-14} alkyl group; a C_{2-6} alkynyl group; a C_{3-8} cycloalkyl group; a C_{3-8} cycloalkoxy group; a C_{2-10} alkanoyl group; a C_{1-6} hydroxyalkyl group; a C_{1-6} hydroxyalkyl group substituted with 1 to 6 halogen atoms; a C2-6 alkoxycarbonyl group; a 3-phenyl-2-propenyloxycarbonyl group; a C₂₋₆ alkoxycarbonyl C₁₋₆ alkyl group; adi $(C_{1-6}$ alkyl) amino C_{2-6} alkoxycarbonyl group; a monoor di(C_{1-6} alkyl)amino group; a C_{2-10} alkanoylamino group; a C_{2-6} alkanoylamino group substituted with a C₁₋₆ alkyl group; a benzoylamino group; a carbamoyl group; a carbamoyl group monoor di-substituted with C_{1-6} alkyl or phenyl groups; an $N-(N',N'-di(C_{1-6} \text{ alkyl}) \text{ amino } C_{1-6} \text{ alkyl}) \text{ carbamoyl group; a cyano}$ group; a cyano C_{1-6} alkyl group; a C_{1-6} alkylsulfonyl group; a phenylsulfonyl group; a C_{1-6} alkylthio C_{1-6} alkyl group; a phenylsulfonyl C_{1-6} alkylthio group wherein the benzene ring in the phenylsulfonyl is substituted with 1 to 5 halogen atoms; a phenyl. group; a benzyl group; a phenyl group substituted with 1 to 3 substituents selected from the group consisting of cyano groups, halogen atoms, C_{1-6} alkyl groups, and C_{1-6} alkoxy groups; a biphenyl group; an α -cyanobenzyl group; an α -cyanobenzyl group substituted with 1 to 5 halogen atoms; a benzyl group substituted with a bicyclo[2.2.1]-hept-5-en-2,3-dicarboxyimidyl group; a benzoyl group; a styryl group; a styryl group substituted with 1 to 5 substituents selected from the group consisting of C_{1-6} alkoxy groups and di $(C_{1-6}$ alkyl) amino alkyl groups; a pyrrolidino group; a piperidino group; a morpholino group; a pyridyl group; a pyrimidinyl group; a pyrimidinyl group substituted with 1 to 3 substituents selected from the group consisting of C₁₋₆ alkyl groups and C₁₋₆ alkoxy

rucall curpin

groups; a phthalimidoyl group; a phthalimidoyl group substituted with 1 to 3 halogen atoms; an N-carbazolyl group; a dioxopiperidinyl group substituted with 1 to 3 C₁₋₆ alkyl groups; a phenyl sulfonylamino group; a phenylaulfonylamino group substituted with 1 to 3 C_{1-6} alkyl groups; a $C_{1 \leftarrow 6}$ alkylaminosulfonyl C_{1-6} alkyl group; a thiadiazolyl group; an oxadiazolyl group; an oxadiazolyl group substituted with a substituted phenyl group wherein the substituents in the substituted phenyl group are 1 to 3 substituents selected from the group consisting of halogen atoms, C₁₋₆ alkyl groups, and C_{1-6} alkoxy groups; a pyrolidinyl group; a pyrazolyl group; a pyrazolyl group substituted with 1 to 3 substituents selected from the group consisting of halogen atoms, C_{1-6} alkyl groups, and trifluoromethyl groups; a furyl group; a furyl group substituted with 1 to 3 substituents selected from the group consisting of halogen atoms, C_{1-6} alkyl groups, and C_{2-6} alkoxycarbonyl groups; or a group represented by the formula:\-SO2NR8R9 [wherein R8 and R^9 are identical or different and represent a hydrogen atom, a C_{1-10} alkyl group, a C₂₋₆ alkanoyl group, an isoxazolyl group, an isoxazolyl group substituted with 1 to $3C_{1-6}$ alkyl groups, a thiadiazolyl group, a thiadiazolyl group substituted with 1 to 3 $C_{1\times 6}$ alkyl groups, a thiazolyl group, a thiazolyl group substituted with 1 to 3 C_{1-6} alkyl groups, a pyridyl group, a pyridyl group substituted with 1 to 3 C_{1-6} alkyl groups, a pyrimidinyl group, a pyrimidinyl group substituted with 1 to 3 C₁₋₆ alkyl groups, a pyrimid nyl group substituted with 1 to 3 C_{1-6} alkoxy groups, a pyridazin'x group, a pyridazinyl group substituted with 1 to 3 C₁₋₆ alkoxy groups, an indazolyl group, or a carbamoyl group mono- or di-substituted with C_{1-6} alkyl groups, or alternatively R^8 and R^9 , taken together with the nitrogen atom to which they are bonded, form a 3,5-dioxopiperadino group, apyrrolidinyl group, apiperidino group or a morpholino group], or alternatively,

the two groups adjacent to each other of R^{11} to R^{55} , taken together with the benzene ring to which they are bonded, may form a phthalimide ring; a phthalimide ring substituted with a C_{1-6} alkyl

group; an indole ring; an indane ring; an indazole ring; a benzotriazole ring; an S,S-dioxobenzothiophene ring; a 2,3-dihydroimidazo[2,1-b]benzothiazole ring; a dibenzofuran ring; a dibenzofuran ring substituted with a C1-6 alkoxy group; a fluorene ring; a fluorene ring substituted with a halogen atom; a pyrene ring; a carbostyryl ring; a carbostyryl ring substituted with a C_{1-6} alkyl group; a naphthalene ring; a naphthalene ring substituted with 1 to 3 substituents selected from the group consisting of cyano groups, halogen atoms, nitro groups, and C_{1-6} alkyl groups; a 1,2,3,4-tetrahydronaphthalene ring; a quinoline ring; a quinoline ring substituted with a C₁₋₆ alkyl group; an isoquinoline ring; a 2-oxo- α -chromene ring; a 2-oxo- α -chromene ring substituted with 1 to 3 substituents selected from the group consisting of C_{1-6} alkyl groups, C_{1-6} alkoxy groups, and C_{1-6} alkoxy C_{1-6} alkyl groups; a cinnolin ring; a cinnolin ring substituted with a C_{1-6} alkyl group; a phthalazindione ring; a benzothiazol ring; a benzothiazol ring substituted with a C_{1-6} alkyl group; a benzodioxorane ring; or a benzobutyrolactone ring, and the remaining groups of R¹¹ to R⁵⁵ may be identical or different and represent a hydrogen atom, a C_{1-4} alkyl group, a C_{1-4} alkoxy group, a trifluoromethyl group, a nitro group, or a halogen atom.

In this case, it is preferable that at least one of R¹¹ to R⁵⁵ represent a C₅₋₁₄ alkyl group; a C₂₋₆ alkynyl group; a C₃₋₈ cycloalkyl group; a C₃₋₈ cycloalkoxy group; a C₂₋₁₀ alkanoyl group; a C₁₋₆ hydroxyalkyl group substituted with 1 to 6 halogen atoms; a C₂₋₆ alkoxycarbonyl group; a 3-phenyl-2-propenyloxycarbonyl group; a C₂₋₆ alkoxycarbonyl group; a monoor di (C₁₋₆ alkyl) amino C₂₋₆ alkoxycarbonyl group; a monoor di (C₁₋₆ alkyl) amino group; a C₂₋₁₀ alkanoylamino group; a C₂₋₆ alkanoylamino group substituted with a C₁₋₆ alkyl group; a carbamoyl group; a carbamoyl monoor di-substituted with C₁₋₆ alkyl or phenyl group; an N-(N',N'-di (C₁₋₆ alkyl) amino C₁₋₆ alkyl) carbamoyl group; a cyano group; a cyano C₁₋₆ alkyl group; a C₁₋₆ alkyl group; a phenylsulfonyl group; a C₁₋₆ alkylthio C₁₋₆ alkyl group; a phenyl

group; a benzyl group; a phenyl group substituted with 1 to 3 substituents selected from the group consisting of cyano groups, halogen atoms, C_{1-6} alkyl groups, and C_{1-6} alkoxy groups; a biphenyl group; an α -cyanobenzyl group; an α -cyanobenzyl group substituted with 1 to 5 halogen atoms; a benzoyl group; a pyrrolidino group; a piperidino group; a morpholino group; a pyridyl group; a pyrimidinyl group; a pyrimidinyl group substituted with 1 to 3 substituents selected from the group consisting of C₁₋₆ alkyl groups and C_{1-6} alkoxy groups; a pyrrolidinyl group; a pyrazolyl group; a pyrazolyl group substituted with 1 to 3 substituents selected from the group consisting of halogen atoms, C_{1-6} alkyl groups, and trifluoromethyl groups; a furyl group; a furyl group substituted with 1 to 3 substituents selected from the group consisting of halogen atoms, C_{1-6} alkyl groups, and C_{2-6} alkoxycarbonyl groups; or a group represented by the formula: -SO₂NR⁸R⁹ [wherein R⁸ and R^9 are identical or different and represent a hydrogen atom, a C_{1-10} alkyl group, a C₂₋₆ alkanoyl group, an isoxazolyl group, an isoxazolyl group substituted with 1 to $3C_{1-6}$ alkyl groups, a thiadiazolyl group, a thiadiazolyl group substituted with 1 to 3 C₁₋₆ alkyl groups, a thiazolyl group, a thiazolyl group substituted with 1 to 3 C_{1-6} alkyl groups, a pyridyl group, a pyridyl group substituted with 1 to 3 C_{1-6} alkyl groups, a pyrimidinyl group, a pyrimidinyl group substituted with 1 to 3 C_{1-6} alkyl groups, a pyrimidinyl group substituted with 1 to 3 C_{1-6} alkoxy groups, a pyridazinyl group, a pyridazinyl group substituted with 1 to 3 C_{1-6} alkoxy groups, an indazolyl group, or a carbamoyl group mono- or di-substituted with C₁₋₆ alkyl groups, or alternatively R⁸ and R⁹, taken together with the nitrogen atom to which they are bonded, form a 3,5-dioxopiperadino group, apyrrolidinyl group, apiperidino group, or a morpholino group]

and the remaining groups of R^{11} to R^{55} be identical or different and represent a hydrogen atom, a C_{1-4} alkyl group, a C_{1-4} alkoxy group, a trifluoromethyl group, a nitro group, or a halogen atom.

On the other hand, in the compounds of the general formula

(2), at least one of R^{11} to R^{55} may represent a group represented by the formula: $-Y-(CR^{61}R^{62})_m-(CR^{63}R^{64})_n-R^{77}$ [wherein Y represents an oxygen or sulfur atom; R^{61} , R^{62} , R^{63} , and R^{64} are identical or different and represent a hydrogen atom, a halogen atom, a C1-4 alkyl group, or a trifluoromethyl group; R⁷⁷ represents a halogen atom; a C_{4-14} alkyl group; a C_{3-8} cycloalkyl group; a C_{2-10} alkenyl group; a C₂₋₆ alkynyl group; a phenyl group; a phenyl group substituted with 1 to 3 substituents selected from the group consisting of nitro groups, cyano groups, C_{1-6} alkyl groups, C_{1-6} alkoxy groups, C_{1-6} alkylthio groups, phenyl groups, phenoxy groups, phenethyl groups, C2-6 alkoxycarbonyl groups, and halogen atoms; a cyano group; a carboxyl group; a C_{1-6} alkoxy group; a C_{1-6} hydroxyalkyl group; a C_{3-8} cycloalkoxy group; a C_{1-6} alkoxy C_{1-6} alkoxy group; a C_{1-6} alkoxy C_{1-6} alkoxy C_{1-6} alkoxy group; a C_{1-6} alkylthio group; a C_{2-6} alkanoyloxy group; a C_{2-6} alkanoyloxy C_{1-6} alkyl group; a phenoxy group; a phenylthio group; an N- $(C_{1-6}$ alkyl) toluidino group; a pyrrolidino group; a piperidino group; a morpholino group; a pyridyl group; a pyridyl group substituted with a C_{1-6} alkyl group; a piperidino group substituted with a C_{1-6} alkyl group; a pyridyl group substituted with a C_{1-6} alkoxy group; a pyrrolidino group substituted with a C_{1-6} alkyl group; a morpholino group substituted with a C_{1-6} alkyl group; a morpholinyl group; a morpholinyl group substituted with a C₁₋₆ alkyl group; a homomorpholinyl group; a thiomorpholino group; a thiomorpholino group substituted with a C₁₋₆ alkyl group; a thiomorpholinyl group; a thiomorpholinyl group substituted with a C₁₋₆ alkyl group; a piperadinyl group; a piperadin-1-yl group substituted with a C_{1-6} alkyl group at the 4-position; a homopiperidinyl group; a homopiperidinyl group substituted with a C_{1-6} alkyl group; a pyridylthio group; a quinolyl group; a furyl group; an oxetanyl group; an oxolanyl group; a dioxolanyl group; a dioxolanyl group substituted with a C_{1-6} alkyl group; an oxanyl group; a dioxanyl group; a dioxanyl group substituted with a C_{1-6} alkyl group; a benzodioxanyl group; a pyrrolidon-1-yl group; a pyrrolidinyl group; an N- $(C_{1-6}$ alkyl)pyrrolidinyl group; a

piperidinyl group; an N-(C_{1-6} alkyl)piperidinyl group; a pyrrolyl group; a thienyl group; a thiazolyl group; a thiazolyl group substituted with 1 to 3 C_{1-6} alkyl groups; a 2,6-purindion-7-yl group substituted with C_{1-6} alkyl group(s); a furfuryl group; a di(C_{1-6} alkyl)amino group; a C_{2-6} alkoxycarbonyl group; or a di(C_{1-6} alkyl)amino C_{1-6} alkoxy group; m is an integer of 1 to 6; and n is an integer of 0 to 6], and the remaining groups of R^{11} to R^{55} may be identical or different and represent a hydrogen atom, a C_{1-4} alkyl group, a C_{1-4} alkoxy group, a trifluoromethyl group, a nitro group, or a halogen atom.

In this case, it is preferable that at least one of R¹¹ to R⁵⁵ represent a group represented by the formula: $-O-(CR^{61}R^{62})_{m}-(CR^{63}R^{64})_{n}-R^{77}$ [wherein R^{61} , R^{62} , R^{63} , and R^{64} are identical or different and represent a hydrogen atom, a halogen atom, a C_{1-4} alkyl group, or a trifluoromethyl group; R^{77} represents a di $(C_{1-6}$ alkyl) amino group; a di $(C_{1-6}$ alkyl) amino C_{1-6} alkoxy group; a piperidyl group; a piperidinyl group substituted with a C₁₋₆ alkyl group; a piperidino group; a piperidino group substituted with a C₁₋₆ alkyl group; a pyridyl group; a pyridinyl group substituted with a C_{1-6} alkyl group; a pyridinyl group substituted with a C_{1-6} alkoxy group; a pyridylthio group; a pyrrolidino group; a pyrrolidino group substituted with a C1-6 alkyl group; a pyrrolidon-1-yl group; a pyrrolidinyl group; a pyrrolidinyl group substituted with a C_{1-6} alkyl group; a pyrrolyl group; a thienyl group; a thiazolyl group; a morpholino group; a morpholino group substituted with a C_{1-6} alkyl group; a morpholinyl group; a morpholinyl group substituted with a C₁₋₆ alkyl group; a homomorpholinyl group; a thiomorpholino group; a thiomorpholino group substituted with a C_{1-6} alkyl group; a thiomorpholinyl group; a thiomorpholinyl group substituted with a C₁₋₆ alkyl group; a piperadinyl group; a piperadin-1-yl group substituted with a C1-6 alkyl group at the 4-position; a homopiperidinyl group; or a homopiperidinyl group substituted with a C_{1-6} alkyl group; m is an integer of 1 to 6; and n is an integer of 0 to 6], and the remaining

groups of R^{11} to R^{55} are identical or different and represent a hydrogen atom, a C_{1-4} alkyl group, a C_{1-4} alkoxy group, a trifluoromethyl group, a nitro group, or a halogen atom.

Sub A3

In addition, in the compounds of the general formula (2), the compounds wherein R^{11} , R^{22} , R^{44} , and R^{55} represent a hydrogen atom, that is, only R^3 at the paraposition of the hydroxyformamidino group on the benzene ring is a non-hydrogen atom substituent, are preferred.

It was discovered by the present inventors that the compounds of the general formulae (1) and (2) described above exhibit an inhibiting activity of 20-HETE synthase. Therefore, these compounds are useful as therapeutic agents for kidney diseases, cerebrovascular diseases, or circulatory diseases.

The terms used in the present invention are defined in the following. In the present invention, " C_{x-y} " means that the group following the " C_{x-y} " has the number of x - y of carbon atoms.

The term "halogen atom" refers to a fluorine, chlorine, bromine, or iodine atom.

The term " C_{1-4} , C_{1-6} , C_{1-8} , and C_{1-14} alkyl group" means straight-chain or branched alkyl groups having 1 to 4, 1 to 6, 1 to 8, and 1 to 14 carbon atoms, respectively. For example, as a C_{1-14} alkyl group, mention may be made of a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, an isobutyl group, a tert-butyl group, a pentyl group, an isopentyl group, a hexyl group, an isohexyl group, a heptyl group, an octyl group, a nonyl group, or a decyl group, or the like.

The term " C_{1-14} alkyl group substituted with 1 to 6 halogen atoms" means a straight-chain or branched alkyl group having 1 to 14 carbon atoms, substituted with 1 to 6 halogen atoms. A methyl or ethyl group substituted with 1 to 4 halogen atoms is preferred. As an example thereof, mention may be made of a difluoromethyl group, a dibromomethyl group, a trifluoromethyl group, or a trifluoroethyl group, or the like. Among these groups, a

50V

trifluoromethyl group is preferable.

The term " C_{2-6} alkenyl" means a straight-chain or branched alkynyl group having a double bond, and 2 to 6 carbon atoms. As an example thereof, mention may be made of an ethenyl group, a propenyl group, or a butenyl group, or the like.

The term " C_{2-6} alkynyl group" means a straight-chain or branched alkynyl group having a triple bond, and 2 to 6 carbon atoms. As an example thereof, mention may be made of an ethynyl group, a propynyl group, or a butynyl group, or the like.

The term C_{3-8} cycloalkyl group" means a cyclic alkyl group having 3 to 8 carbon atoms, including, for example, a cyclopropyl group, a cyclopentyl group, or a cyclohexyl group, or the like.

The term " C_{3-8} cycloalkyl C_{1-6} alkyl group" means a group having a combined structure of a C_{3-8} cycloalkyl group and a C_{1-6} alkyl group, including, for example, a cyclopropylmethyl group, a cyclobutylmethyl group, a cyclopentylmethyl group, or a cyclohexylmethyl group, or the like.

The term C_{1-6} alkoxy group "means a straight-chain or branched alkoxy group having 1 to 6 carbon atoms. As an example thereof, mention may be made of a methoxy group, an ethoxy group, a propoxy group, an isopropoxy group, a 2,2-dimethylpropoxy group, a butoxy group, a tert-butoxy group, a 3-methylbutoxy group, a 3,3-dimethylbutoxy group, a 3-methylpentoxy group, or a 4-methylpentoxy group, or the like.

The term " C_{1-6} alkoxy C_{1-6} alkyl group" means a group having a combined structure of a C_{1-6} alkoxy group and a C_{1-6} alkyl group. As an example thereof, mention may be made of a methoxymethyl group, an ethoxymethyl group, a methoxyethyl group, an ethoxyethyl group, a propoxyethyl group, an isopropoxyethyl group, a butoxyethyl group, or a tert-butoxyethyl group, or the like.

The term C_{3-8} cycloalkoxy group" means a cyclic alkoxy group having 3 to 8 carbon atoms, including, for example, a cyclopropyloxy group, a cyclopentyloxy group, or a cyclohexyloxy group, or the like.

The term " C_{2-10} alkanoyl group" means a straight-chain or branched alkanoyl group having 2 to 10 carbon atoms. As an example thereof, mention may be made of an acetyl group, a propionyl group, a butyryl group, an isobutylyl group, or a valeryl group, or the like. Among these groups, an acetyl group is preferable.

The term " C_{1-6} hydroxyalkyl" means a C_{1-6} alkyl group substituted with hydroxyl group (s). As an example thereof, mention may be made of a hydroxymethyl group, a 1-hydroxyethyl group, a 2-hydroxyethyl group, a 3-hydroxypropyl group, a 2,3-dihydroxyethyl group, or the like. Among these groups, a hydroxymethyl group, a1-hydroxyethyl group, a2-hydroxyethyl group, or a 3-hydroxypropyl group is in particular, preferable.

The term C_{2-6} alkanoyloxy C_{1-6} alkyl group" means a group wherein the hydroxyl group (s) of above C_{1-6} hydroxyalkyl group is/are substituted with C_{2-6} alkanoyloxy group (s), including, for example, a 2,3-diacetoxyethyl group. The term C_{1-6} hydroxyalkyl group substituted with 1 to 6 halogen atoms" means a C_{1-6} hydroxyalkyl group substituted with 1 to 6 halogen atoms. As an example thereof, mention may be made of a hydroxyfluoromethyl group, a 1-hydroxy-2-fluoroethyl group, a 2-hydroxy-2-fluoroethyl group, a 3-hydroxy-2-chloropropyl group, a 2,3-dihydroxy-3-bromopropyl group, a 1,1,1,3,3,3-hexafluoro-2-hydroxypropyl group, or the like. Among these groups, a 1,1,1,3,3,3-hexafluoro-2-hydroxypropyl group is preferable.

The term " C_{2-6} alkoxycarbonyl group" means a group having a combined structure of a straight-chain or branched C_{1-5} alkoxy group and a carbonyl group. As an example thereof, mention may be made of a methoxycarbonyl group, an ethoxycarbonyl group, a propoxycarbonyl group, an isopropoxycarbonyl group, or a butoxycarbonyl group, or the like, and among these groups, a methoxycarbonyl group or a propoxycarbonyl group is preferable.

The term " C_{2-6} alkoxycarbonyl C_{1-6} alkyl group" means a group having a combined structure of a C_{2-6} alkoxycarbonyl group and a C_{1-6} alkoxy group. Therefore, a C_{1-6} alkoxycarbonyl C_{1-6} alkyl group

SJB

may be represented by the general formula: $-(CH_2)_k-COOR^{14}$ (wherein k is an integer of 1 to 6; R^{14} is a C_{1-6} alkyl group), including, for example, $-CH_2COOCH_3$ (a methoxycarbonylmethyl group), $-CH_2COOCH_2CH_3$ (an ethoxycarbonylmethyl group), $-CH_2CH_2COOCH_3$ (a methoxycarbonylethyl group), $-CH_2CH_2COOCH_2CH_3$ (an ethoxycarbonylethyl group), or the like. Among these groups, an ethoxycarbonylmethyl group is particularly preferable.

The term "di(C_{1-6} alkyl)amino C_{2-6} alkoxycarbonyl" means a group having a combined structure of an amino group substituted with two C_{1-6} alkyl groups and a C_{2-6} alkoxycarbonyl group. As an example thereof, mention may be made of an N,N-diethylaminoethoxycarbonyl group, or an N,N-dibutylaminopropoxycarbonyl group, or the like. In particular, an N,N-diethylaminoethoxycarbonyl group is preferable.

The term "mono- or di $(C_{1-6} \text{ alkyl})$ amino group" means an amino group substituted with one or two C_{1-6} alkyl groups. As an example thereof, mention may be made of a methylamino group, an ethylamino group, a dimethylamino group, or a diethylamino group, or the like. Among these groups, a dimethylamino group is preferable.

The term " C_{2-10} alkanoylamino group" means an amino group substituted with a C_{2-10} alkanoyl group, and as an example thereof, an acetylamino group may be given. In addition, as an example of " C_{2-10} alkanoylamino group substituted with C_{1-6} alkyl", mention may be made of an N-acetyl-N-methylamino group.

As an example of "carbamoyl group mono- or di-substituted with C_{1-6} alkyl or phenyl groups", mention may be made of an N-methylcarbamoyl group, a N-butylcarbamoyl group, or an N-phenylcarbamoyl group. As an example of "N-(N',N'-di(C_{1-6} alkyl)amino C_{1-6} alkyl)carbamoyl group", mention may be made of an-N-(N',N'-diethylaminoethyl)carbamoyl group.

The term "cyano C_{1-6} alkyl group" means a group having a combined structure of a cyano group and a C_{1-6} alkyl group. As an example thereof, mention may be made of a cyanomethyl group, a cyanoethyl

group, or a cyanopropyl group. Among these groups, a cyanomethyl group is particularly preferable.

As an example of "phenoxy group substituted with 1 to 3 substituents selected from the group consisting of nitro groups, thiol groups, phenoxy groups, C_{1-6} alkyl groups, C_{1-6} alkoxy groups, and halogen atoms", mention may be made of a 2-methylphenoxy group, a 3-methylphenoxy group, a 4-methylphenoxy group, a 2-methoxyphenoxy group, a 3-methoxyphenoxy group, a 4-methoxyphenoxy group, a 3-chlorophenoxy group, or a 4-chlorophenoxy group, or the like. Among these groups, a 2-methylphenoxy group, a 4-methylphenoxy group, a 2-methoxyphenoxy group, a 4-methoxyphenoxy group, or a 4-chlorophenoxy group, or a 4-chlorophenoxy group, or a 4-chlorophenoxy group is preferable.

The term C_{1-6} alkylsulfonyl group" means a group having a combined structure of a C_{1-6} alkyl group and a sulfonyl group $(-SO_2-)$. As an example thereof, mention may be made of a methylsulfonyl group, an ethylsulfonyl group, a propylsulfonyl group, an isopropylsulfonyl group, a butylsulfonyl group, an isobutylsulfonyl group, a tert-butylsulfonyl group, a pentylsulfonyl group, or an isopentylsulfonyl group, or the like. A methylsulfonyl group is preferable.

The term " C_{1-6} alkylthio C_{1-6} alkyl group" means a group having a combined structure of a C_{1-6} alkylthio group and a C_{1-6} alkyl group. As an example thereof, a methylthiomethyl group, or a 2-methylthioethyl group, or the like may be given, and a methylthiomethy group is preferable.

The term "phenylsulfonyl C_{1-6} alkylthio wherein the benzene ring is substituted with 1 to 5 halogen atoms" means a group having a combined structure of a substituted phenylsulfonyl group and a C_{1-6} alkylthio group. As an example thereof, a 4-chlorophenylsulfonylmethylthio group or the like may be given.

As an example of the "phenyl group substituted with 1 to 3 substituents selected from the group consisting of cyano groups, halogen atoms, C_{1-6} alkyl groups, and C_{1-6} alkoxy groups", mention

5-(m-methoxyphenyl)oxadiazolin-2-yl group, or a 5-(5-bromo-3-methoxyphenyl)oxadiazolin-2-yl group, or the like may be given.

As an example of "pyrazolyl group substituted with 1 to 3 substituents selected from the group consisting of halogen atoms, C_{1-6} alkyl groups, and trifluoromethyl groups", a 3-trifluoromethylpyrazolyl group or the like may be given.

As an example of "furyl group substituted with 1 to 3 substituents selected from the group consisting of halogen atoms, C_{1-6} alkyl groups, and C_{2-6} alkoxycarbonyl groups", mention may be made of a furyl group substituted with a methyl group, or an ethoxycarbonyl group, or the like, and more particularly, a 5-methyl-4-ethoxycarbonyl-2-furyl group or the like.

As the "thienopyrimidinylthio group substituted with 1 to $3\ C_{1-6}$ alkyl groups", a substituted thienopyrimidinylthio group wherein the fused ring is substituted with one methyl or ethyl group is preferable, and more particularly, a group wherein a thiophenering is substituted with a methyl group is more preferable.

As the "thienopyridylthio group substituted with 1 to 3 C_{1-6} alkyl groups", a substituted thienopyridylthio group wherein the fusedring is substituted with one methyl or ethyl group is preferable, and more particularly, a group wherein a thiophene ring is substituted with a methyl group is more preferable.

As the "benzothiazolylthio group substituted with 1 to 3 halogen atoms", a benzothiazolylthio group wherein the fused ring is substituted with one halogen atom is preferable, and more particularly, a group wherein the benzene ring is substituted with a chlorine atom is more preferable.

As the "isoxazolyl group substituted with 1 to 3 C_{1-6} alkyl groups", an isoxazolyl group substituted with one or two methyl or ethyl groups is preferable, and more particularly, a 5-methylisoxazolyl-3-yl group is more preferable.

As the "thiazolyl group substituted with 1 to 3 C_{1-6} alkyl groups", a thiazolyl group substituted with one or two methyl or

may be made of a 4-cyanophenyl group, a 4-chlorophenyl group, a 4-methylphenyl group, or a 4-methoxyphenyl group, or the like. Among these groups, a 4-cyanophenyl group is preferable. As the " α -cyanobenzyl group substituted with 1 to 5 halogen atoms", for example, an α -cyano-4-chlorobenzyl group or the like may be given.

As an example of the "styryl group substituted with 1 to 5 substituents selected from the group consisting of C_{1-6} alkoxy groups and di(C_{1-6} alkyl)amino alkyl groups", mention may be made of a 4-methoxystyryl group, or an 4-N,N-dimethylaminostyryl group, or the like.

As an example of the "pyrimidinyl group substituted with 1 to 3 substituents selected from the group consisting of C_{1-6} alkyl groups and C_{1-6} alkoxy groups", mention may be made of a 6-methoxypyrimidin-4-yl group, or a 2-methylpyrimidin-4-yl group, or the like.

As an example of the "phthalimidoyl group substituted with 1 to 3 halogen atoms", a 5-chloro-N-phthalimidoyl group or the like may be given.

As an example of the "dioxopiperidinyl group substituted with 1 to 3 C_{1-6} alkyl groups", a 2,6-dioxo-3-ethylpiperidin-3-yl group or the like may be given.

As an example of the "phenylsulfonylamino group substituted with 1 to 3 C_{1-6} alkyl groups", a 4-methylphenylsulfonylamino group or the like may be given. As an example of the " C_{1-6} alkylaminosulfonyl C_{1-6} alkyl group", a methylaminosulfonylmethyl group or the like may be given.

As an example of the "oxadiazolyl group substituted with substituted phenyl group wherein the substituents in the substituted phenyl group are 1 to 3 substituents selected from the group consisting of halogen atoms, C_{1-6} alkyl groups, and C_{1-6} alkoxy groups", mention may be made of a group wherein an oxadiazole ring is substituted with a phenyl group substituted with a tert-butyl group, or a methoxy group, or a bromine atom. More particularly, a 5-(p-tert-butylphenyl) oxadiazolin-2-yl group, a

ethyl groups is preferable.

As the "pyridyl group substituted with 1 to $3C_{1-6}$ alkyl groups", a pyridyl group substituted with one or two methyl or ethyl groups, and in particular, a 2-methylpyridin-6-yl group is preferable.

As the "pyrimidinyl group substituted with 1 to 3 C₁₋₆ alkyl groups", a pyrimidinyl group substituted with one or two methyl or ethyl groups is preferable, and more particularly, a 2,4-dimethylpyrimidin-6-yl group is more preferable.

As the "pyrimidinyl group substituted with 1 to 3 C₁₋₆ alkoxy groups", a pyrimidinyl group substituted with one or two methoxy or ethoxy groups is preferable, and more particularly, a 4-methoxypyrimidin-6-yl group, or a 2,4-dimethylpyrimidin-6-yl group is more preferable.

As the "pyridazinyl group substituted with 1 to 3 C_{1-6} alkoxy groups", a pyridazinyl group substituted with one or two methoxy or ethoxy groups is preferable.

The term "C2-10 alkenyl group" means a straight-chain or branched alkenyl group having a double bond, and 2 to 10 carbon atoms. As an example thereof, mention may be made of an ethenyl group, a propenyl group, or a butynxl group, or the like, and more particularly, a 1,5-dimethyl-4-hexenyl group, or the like.

The term "C1-6 alkylthio group" means a straight-chain or branched alkylthio group having 1 to 6 carbon atoms. As an example thereof, mention may be made of a methylthio group, an ethylthio group, a propylthio group, an isopropylthio group, a butylthio group, an isobutylthio group, a tert-butylthio group, a pentylthio group, or an isopentylthio group, or the like, and a methylthio group is particularly preferable.

The term ${}^{\mathsf{w}}C_{2-6}$ alkanoyloxy group" means a group having a combined structure of a C_{2-6} alkanoyl group and an oxy group (-0-). As an example thereof, mention may be made of an acetyloxy group, a propionyloxy group, a butyryloxy group, an isobutyryloxy group, or a valeryloxy group, or the like.

As an example of "phenyl group substituted with 1 to 3

٠Ū :== ૣૣ૿ઽુઌ૪

substituents selected from the group consisting of nitro groups, cyano groups, C_{1-6} alkyl groups, C_{1-6} alkoxy groups, C_{1-6} alkylthio groups, phenyl groups, phenoxy groups, phenethyl groups, C_{2-6} alkoxycarbonyl groups, and halogen atoms", mention may be made of a 4-chlorophenyl group, a 4-fluorophenyl group, a 2,5-difluorophenyl group, a 2,5-dichlorophenyl group, an o-phenethylphenyl group, a 4-methylthiophenyl group, a m-phenoxyphenyl group, a 4-methylphenyl group, a 3-methylphenyl group, a 3-methoxyphenyl group, a 3-methoxyphenyl group, a 2,3-dimethoxyphenyl group, a 2,4-dimethoxyphenyl group, a 4-methoxycarbonylphenyl group, a p-phenylphenyl group, or a m-cyanophenyl group, or the like.

The term " C_{1-6} alkoxy C_{1-6} alkoxy group" means a group having a combined structure of a C_{1-6} alkoxy group and a C_{1-6} alkoxy group. As an example thereof, mention may be made of a methoxymethoxy group, a methoxyethoxy group, an ethoxyethoxy group, or a methoxypropoxy group, or the like.

Examples of the " C_{1-6} alkoxy C_{1-6} alkoxy C_{1-6} alkoxy group" include $CH_3OCH_2CH_2OCH_2CH_2O-$ and the like.

Examples of the "di (C_{1-6} alkyl) amino group" include -N(CH₃)₂, -N(CH₂CH₃)₂, -N(CH₂CH₃)₂, and the like.

Examples of the "di $(C_{1-6}$ alkyl) amino C_{1-6} alkoxy group" include $-OCH_2N(CH_3)_2$, $-OCH_2CH_2N(CH_3)_2$, $-OCH_2CH_2N(CH_3)_2$, and the like.

The term "N-(C_{1-6} alkyl) toluidino group" means a group having a structure wherein a toluidino group ($CH_3-C_6H_4-NH-$) is substituted with a C_{1-6} alkyl group and preferably is substituted with a methyl or ethyl group. In particular, an N-ethyl-m-toluidino group is preferable.

The "furyl group" includes a 2-furyl or 3-furyl group.

The "oxetanyl group" has a structure of a saturated 4-membered ring having one oxygen atom as a hetero atom, and includes a 2-oxetanyl group, or a 3-oxetanyl group.

The "oxolanyl group" has a structure of a saturated 5-membered

ring having one oxygen atom as a hetero atom, and includes a 2-oxolanyl group, or a 3-oxolanyl group.

The "dioxolanyl group" refers to a mono-valent group derived by eliminating hydrogen atom from a saturated 5-membered ring having two oxygen atoms as hetero atoms (dioxolane), preferably from a 1,3-dioxolane ring. In the dioxolanyl group, the ring thereof may be substituted with C_{1-6} alkyl group(s). As an example thereof, a 2,2-dimethyl-1,3-dioxolan-4-yl group or the like may be given.

The "oxanyl group" has a structure of a saturated 6-membered ringhaving one oxygen atom as a hetero atom, and includes a 2-oxanyl, a 3-oxanyl group, or a 4-oxanyl group.

The "dioxanyl group" refers to a mono-valent group derived by eliminating hydrogen atom from a saturated 6-membered ring having two oxygen atoms as hetero atoms (dioxane), preferably from a 1,3-dioxane ring. In the dioxanyl group, the ring thereof may be substituted with C_{1-6} alkyl group(s). As an example thereof, a 5,5-dimethyl-1,3-dioxan-2-yl group or the like may be given.

The "benzodioxanyl group" refers to a mono-valent group derived by eliminating hydrogen atom from a benzodioxane ring, preferably a 1,4-benzodioxane ring. As an example thereof, a 1,4-benzodioxan-2-yl group or the like may be given.

The "piperidinyl group" includes a 2-piperidinyl, a 3-piperidinyl group, or a 4-piperidinyl group. In addition, in the piperidinyl group, the nitrogen atom present therein may be substituted with a C_{1-6} alkyl group, and an N-methyl-piperidinyl group is preferred.

The "piperidino group" refers to a mono-valent group derived by eliminating a hydrogen atom present on the nitrogen atom of piperidine.

The "pyridyl group" includes a 2-pyridyl group, a 3-pyridyl group, or a 4-pyridyl group. In the pyridyl group, the ring thereof may be substituted with a C_{1-6} alkyl group, preferably a methyl group. As an example thereof, a 6-methyl-2-pyridyl group may be given.

The "pyridylthio group" has a combined structure of a pyridyl

group and one thio group, and includes a pyridin-2-ylthio group, a pyridin-3-ylthio group, or a pyridin-4-ylthio group, and a pyridin-2-yl group is preferable.

The "pyrrolidino group" refers to a mono-valent group derived by eliminating a hydrogen atom present on the nitrogen atom of pyrrolidine.

The "pyrrolidon-1-yl group" includes a 2-pyrrolidon-1-yl or 3-pyrrolidon-1-yl group.

The "pyrrolidinyl group" includes a 2-pyrrolidinyl group or 3-pyrrolidinyl group. In the pyrrolidinyl group, the nitrogen atom present thereon may be substituted with a C_{1-6} alkyl group. As an example thereof, an N-methyl-2-pyrrolidinyl group or the like may be given.

The "quinolyl" includes a 2-quinolyl group, a 3-quinolyl group, a 4-quinolyl group, a 5-quinolyl group, a 6-quinolyl group, a 7-quinolyl group, or a 8-quinolyl group, and a 2-quinolyl group is preferable.

The "pyrrolyl group" includes a 1-pyrrolyl group, a 2-pyrrolyl group, or a 3-pyrrolyl group, and a 1-pyrrolyl group (N-pyrrolyl group) is preferable.

The "thienyl group" includes a 2-thienyl group, or a 3-thienyl group.

The "thiazolyl group" includes a 2-thiazolyl group, a 4-thiazolyl group, or a 5-thiazolyl group. In addition, in the thiazolyl group, the ring thereof may be substituted with a C_{1-6} alkyl group. As an example thereof, a 4-methyl-5-thiazolyl group or the like may be given.

The "morpholino group" refers to a mono-valent group derived by eliminating a hydrogen atom present on the nitrogen atom of morpholine.

The "furfuryl group" means a 2-furfuryl group.

The "2,6-purindion-7-yl group" refers to a mono-valent group derived from 2,6-purindione wherein oxo groups (=0) are bonded to the carbon atoms at the 2-position and the 6-position of the

purine ring and a group derived by eliminating the hydrogen atom present on the nitrogen atom at the 7-position. For the $^{\circ}$ 2,6-purindion-7-yl substituted with C_{1-6} alkyl group(s)", it is preferable that one or two nitrogen atoms on the group be substituted with a C_{1-6} alkyl group, and in particular, a methyl group. As an example thereof, a 1,3-dimethyl-2,6-purindion-7-yl group or the like may be given.

Any two groups of R¹ to R⁵ adjacent to each other in the general formula (1), taken together with the benzene ring to which they are bonded, may form the ring structures described above. In these rings, the following rings may be specially mentioned.

As the "phthalimide ring substituted with a C_{1-6} alkyl group", a ring substituted with a methyl or ethyl group is preferable, and more particularly, for example, a ring substituted with a methyl group such as an N-methyl-phthalimide ring is more preferable.

As the "dibenzofuran ring substituted with a C_{1-6} alkoxy group", a ring substituted with a methoxy or ethoxy group is preferable, and particularly, a ring substituted with a methoxy group is more preferable.

As the "fluorene ring substituted with a halogen atom", a ring substituted with a chlorine or bromine atom is preferred, and furthermore, a ring substituted with a bromine atom is more preferable.

As the "carbostyryl ring substituted with a C_{1-6} alkyl group", a ring substituted with a methyl or ethyl group is preferable and furthermore, a ring substituted with a methyl group is more preferable.

As the "naphthalene ring substituted with 1 to 3 substituents selected from the group consisting of cyano groups, halogen atoms, nitro groups, and C_{1-6} alkyl groups", a ring substituted with 1 to 3 cyano groups, halogen atoms, nitro groups, methyl groups or ethyl groups is preferable, and particularly, a ring substituted with a cyano group, a bromine or chlorine atom, a nitro group or a methyl group is more preferable.

As the "quinoline ring substituted with a C_{1-6} alkyl group", a ring substituted with a methyl or ethyl group is preferred, and in particular, a quinoline ring substituted with a methyl group is more preferable.

As the "2-oxo- α -chromene ring substituted with 1 to 3 substituents selected from the group consisting of C_{1-6} alkyl groups, C_{1-6} alkoxy groups, and C_{1-6} alkoxy C_{1-6} alkyl groups", a ring substituted with a methyl group, an ethyl group, a methoxy group, an ethoxy group, an ethoxy group, an ethoxymethyl group, an ethoxymethyl group is preferred, and in particular, a ring substituted with a methyl or methoxymethyl group is more preferable.

As the "cinnolin ring substituted with a C_{1-6} alkyl group", a ring substituted with a methyl or ethyl group is preferred, and in particular, a ring substituted with a methyl group is more preferable.

As the "benzothiazol ring substituted with a C_{1-6} alkyl group", the ring substituted with a methyl or ethyl group is preferred and furthermore, a ring substituted with a methyl group is more preferable.

In addition, in the present invention, the term "pharmaceutically-acceptable salt" refers to a salt with an alkali metal, an alkali earth metal, ammonium, an alkylammonium, or the like, as well as, a salt with a mineral acid or an organic acid. As an example thereof, mention may be made of sodium salts, potassium salts, calcium salts, ammonium salts, aluminum salts, triethylammonium salts, acetates, propionates, butyrates, formates, trifluoroacetates, maleates, tartarates, citrates, stearates, succinates, ethylsuccinates, lactobionates, gluconates, glucoheptonates, benzoates, methanesulfonates, ethanesulfonates, 2=hydroxyethanesulfonates, benzenesulfonates, para-toluenesulfonates, laurylsulfates, malates, aspartates, glutamates, adipates, salts with cysteine, salts with N-acetylcysteines, hydrochlorides, hydrobromides, phosphates,

sulfates, hydroiodides, nicotinates, oxalates, picrates, thiocyanates, undecanates, salts with polymeric acrylic acid, salts with carboxyvinyl polymers, or the like.

The compounds represented by the general formula (1) of the present invention may be prepared by or according to the methods described in Japanese Patent Application, Toku-Kai-Sho 61-165360 (which is incorporated herein by reference.)

For example, the compounds of the present invention may be synthesized by reacting aniline derivatives substituted with ${\bf R}^1$ to ${\bf R}^5$ described below

with orthoformates such as trimethyl orthoformate, triethyl orthoformate, or the like in the presence or absence of a catalytic amount of an organic acid such as acetic acid, a mineral acid such as hydrochloric acid, or a salt of a mineral acid and an amine such as pyridine hydrochloride, for 2 to 72 hours at a temperature preferably in the range of room temperature to 150°C, and more preferably in the range of 70 to 100°C to obtain an intermediate, and subsequently treating the intermediate, after isolation or in the state as produced, with hydroxylamine in a solvent such as ethanol.

The aniline derivatives described above may be prepared, for example, by the following method. Herein, in order to simplify the explanation, the aniline derivatives wherein R^1 , R^2 , R^4 , and R^5 are hydrogen atoms and R^3 is a group represented by the formula: $-Y-(CR^{61}R^{62})_m-(CR^{63}R^{64})_n-R^7$, are employed.

At first, a compound represented by the formula (a):

NO₂ (a)

(wherein X represents a halogen atom) and a compound, for example, represented by the following formula (b):

$$R^{7} (CR^{63}R^{64})_{m} - (CR^{61}R^{62})_{m} YH$$
 (b)

(wherein R^7 , Y, R^{61} , R^{62} , m, R^{63} , R^{64} , and n have the same meanings as described above) are reacted in the presence of a base to obtain a compound represented by the following formula (c).

$$R^7 - (CR^{63}R^{64})_n - (CR^{61}R^{62})_m - Y$$
 NO_2

Subsequently, the compound represented by the formula (c) described above is derived to an aniline derivative represented by the following formula (d) by means of a general method for reducing an aromatic nitro group to an aromatic amino group.

$$R^{7}-(CR^{63}R^{64})_{n}-(CR^{61}R^{62})_{m}-Y$$
 NH_{2}
(d)

The inhibitors for production of 20-HETE according to the present invention comprise compounds represented by the general formula (1) or the pharmaceutically-acceptable salts thereof as active ingredients, and effectively inhibit the production of 20-HETE.

In addition, the inhibitors for production of 20-HETE of the present invention are useful as medicines, and in particular, therapeutic agents for kidney diseases, cerebrovascular diseases, or circulatory diseases.

The dose of the medicines (including therapeutic agents for kidney diseases, cerebrovascular diseases, or circulatory diseases), as well as the inhibitors for production of 20-HETE according to the present invention, is preferably in a range of

ingenta nepro

1 to 2000 mg per day as the compounds represented by the general formula (1) or the pharmaceutically-acceptable salts thereof, in the case of an adult human subject to be treated. They may be administered in a single dose or divided into several doses per day. The doses may vary depending on the usage, as well as, the age, weight, and conditions of each individual patient, and the like.

The medicines (therapeutic agents for kidney diseases, cerebrovascular diseases, or circulatory diseases) as well as, the inhibitors for production of 20-HETE according to the present invention may be administered orally or parenterally, in the form of tablets, capsules, granules, powders, troches, ointments, creams, emulsions, suspensions, suppositories, injectable solutions, or the like, each of which may be produced according to the conventional formulation methods (for example, methods defined in the 12th revision of Japanese Pharmacopeia). These preparation forms may be selected depending on the conditions and ages of the patients, as well as the purpose of the treatment. Upon manufacturing preparations in various formulations, conventional fillers (for example, crystalline cellulose, starch, lactose, mannitol, or the like), binders (for example, hydroxypropylcellulose, polyvinylpyrrolidone, or the like), lubricants (for example, magnesium stearate, talc, or the like), disintegrants (for example, carboxymethylcellulose calcium, or the like), and the like, may be employed.

Best Modes for Carrying out the Invention

In the following, the present invention is illustrated in detail by the following examples. However, it should be understood that the present invention is not limited to the examples described below.

Example 1

Synthesis of

N-(4-butyl-2-methylphenyl)-N'-hydroxy-formamidine

4-Butyl-2-methylaniline (129.18 g) and ethyl orthoformate (234.66 g) were stirred for 11 hours at 100°C. Subsequently, the excess of the ethyl orthoformate was removed. The obtained crude product was dissolved in methanol (200 ml). To a methanol solution (500 ml) of hydroxylamine hydrochloride (65.59 g), a methanol solution (350 ml) of sodium methoxide (51.02 g) was added dropwise at 0°C to neutralize. The precipitated sodium chloride was filtered The filtrate was added dropwise to the methanol solution of the crude product, and subsequently, the mixture was stirred for 15 hours at room temperature. The methanol was removed. The obtained residue was dissolved in 800 ml of chloroform, and subsequently, washed with water and saturated brine. The organic layer was dried over anhydrous magnesium sulfate and then the solvent was removed. The obtained residue was washed with hexane to yield 63.66 g of crude crystals of the target compound. One portion of the crude crystals (35.47 g) was recrystallized from hexane: ethyl acetate (1:4) to yield 29.85 g of the target compound as a colorless powder (Compound 1 in Table 1 described below).

Melting point: 131.5 - 134.0°C

Example 2

Synthesis of

N-(4-tert-butylphenyl)-N'-hydroxy-formamidine

4-tert-Butylaniline (3.9 g) and ethyl orthoformate (7.9 g) were stirred for 6.5 hours at 100°C. Subsequently, the excess of the ethyl orthoformate was removed. The obtained crude product was dissolved in methanol (10 ml). To a methanol solution (20 ml) of hydroxylamine hydrochloride (2.1 g), a methanol solution (15 ml) of sodium methoxide (1.6 g) was added dropwise at 0°C to neutralize. The precipitated sodium chloride was filtered off. The filtrate was added dropwise to the methanol solution of the crude product, and subsequently, the mixture was stirred for 1.5

hours at room temperature. The methanol was removed. The obtained residue was dissolved in 50 ml of chloroform, and subsequently, washed with water and saturated brine. The organic layer was dried over anhydrous magnesium sulfate and then concentrated. The obtained residue was purified by silica gel column chromatography (hexane: ethyl acetate = 4:1) to yield 1.65 g of the target compound (Compound 2 in Table 1 described below).

Melting point: 113.5 - 114.5°C

Example 3

Synthesis of

N-(4-methoxycarbonylphenyl)-N'-hydroxyformamidine

A mixture of 4-aminobenzoic acid methyl ester (1.98 g) and ethyl orthoformate (4.07 g) was stirred for 16 hours at 100°C. Subsequently, the excess of the ethyl orthoformate was removed. To the obtained residue, a methanol solution (16ml) of hydroxylamine prepared from hydroxylamine hydrochloride (1.50 g) and sodium methoxide (1.10 g) was added, and the mixture was stirred for 6 hours at room temperature. The solvent was removed and subsequently, to the residue, chloroform was added. Subsequently, it was washed successively with water and saturated brine. The organic layer was dried over anhydrous magnesium sulfate and the solvent was removed. The residue was purified by silica gel column chromatography (eluent; n-hexane: ethylacetate), and subsequently, by recrystallized from chloroform - methanol to yield the target compound (Compound 123 in Table 1 described below) (0.32 g) as a colorless powder.

Melting point: 167.0 - 167.5°C

Example 4

Synthesis of

N-(2-aminosulfonylphenyl)-N'-hydroxyformamidine

A mixture of 2-aminobenzsulfonamide (3.0 g), ethyl orthoformate (5.15 g), and ethyl acetate (20 ml) was stirred for

5 hours at 100°C. Subsequently, the excess of the ethyl orthoformate was removed. To a methanol solution (30 ml) of the residue, a methanol solution (40 ml) of hydroxylamine prepared from hydroxylamine hydrochloride (1.50 g) and sodium methoxide (1.10 g) was added, and the mixture was stirred for 2 days at room temperature. The solvent was removed and subsequently, to the residue, chloroform was added, and washed successively with water and saturated brine. The organic layer was dried over anhydrous magnesium sulfate and the solvent was removed. The residue was purified by silica gel column chromatography (eluent: ethyl acetate) to yield the target compound (Compound 236 in Table 1 described below) (0.73 g) as a colorless powder.

Melting point: 130.5 - 131.5°C

Example 5

Synthesis of N-[4-(pyridin-2-ylmethoxy) phenyl]-N'-hydroxyformamidine

A mixture of 4-(pyridin-2-ylmethoxy) aniline (1.715 g) and ethyl orthoformate (2.613 g) was stirred for 14 hours at 100°C. Subsequently, the excess of the ethyl orthoformate was removed. To a methanol solution (20 ml) of the residue, a 1M methanol solution (10 ml) of hydroxylamine was added, and the mixture was stirred for 2.5 days at room temperature. The solvent was removed and subsequently, to the residue, chloroform was added. Subsequently, it was washed with water and saturated brine. The organic layer was dried over anhydrous magnesium sulfate and the solvent was removed. The obtained residue was purified by recrystallization from ethyl acetate to yield the target compound (Compound 345 in Table 1 described below) (0.524 g) as a colorless powder.

Melting point: 159.5 - 161.0°C

Example 6

Synthesis of

N-[4-(benzylthio)phenyl]-N'-hydroxyformamidine

A mixture of 4-(benzylthio) aniline (1.18 g) and ethyl orthoformate (1.78 g) was stirred for 12 hours at 100°C. Subsequently, the excess of the ethyl orthoformate was removed. To a methanol solution (20 ml) of the residue, a 1M methanol solution (10 ml) of hydroxylamine was added, and the mixture was stirred for 2.5 days at room temperature. The solvent was removed and subsequently, to the residue, chloroform was added. Subsequently, it was washed with water and saturated brine. The organic layer was dried over anhydrous magnesium sulfate and the solvent was removed. The obtained residue was recrystallized from ethyl acetate to yield the target compound (Compound 441 in Table 1 described below) (0.43 g) as a colorless powder.

Melting point: 166°C

Example 7

The compounds shown in Table 1 described below were obtained by carrying out the similar procedures as those of Production Example 1. The compounds obtained in Production Examples 1 to 6, together with the other compounds are also shown in Table 1.

The Rf values in Table 1 corresponds to the Rf values in the case of development with a mixture of ethyl acetate: hexane (1:2) (no mark) or in the case of development with a mixture of chloroform: methanol (9:1) (marked as *), employing thin layer chromatography Silica gel 60 F_{254} , produced by Merck, or NH-TLC plates, produced by Fuji Silysia Chemical Ltd. In addition, the term "posi" or "nega" denotes data of the cation peak (M+H) or the anion peak (M-H), observed in a positive mode or a negative mode upon measurement of mass spectrum by means of the ESI method.

Table 1

100 m

rafi.

		,				Γ		·			
			м+н	М+Н	м-н	м-н	Rf	TLC		Inhibiti on rate	IC50
Comp.	Chemical Structure	mp.	(ESI)	(APCI)	(ESI)	(APCI)		*	solvent		(nM)
	OH OH	104.5							C+OA		
Comp.	H_N-OH	131.5						Si02	EtOAc: MeOH		
1		134.0	207	207		205	0.56	(NH)		100.5	3.5
ı											
	1										
	N~N-OH	113.5							Hexane	•	
Comp.	· · · H N	-							:AcOEt		
2	QН	114.5	193		191		0.13	Si02	=2:1	97.0	7.8
	N.										
	HN										
*									Hexane		
Comp.		84.5-	193		191	,	0.22	Si02	:AcOEt =2:1	98.9	
3	'	85.5	193		191		0.22	3102	<u>-2.1</u>	30.3	
	Г № он	101.0							Hexane		
Comp.		102.5			191		0.15	Si02	:AcOEt =2:1	107.6	3
	ОН									· · · ·	_
	OH N										
	HN										
C		153.0							Hexane :AcOEt		
Comp. 5		154.0	219		217		0.13	Si02	=2:1	99.9	3.8
	OH										
	γi' _≽ N										
	HN	1106							Haves-		
Comp.		119.5							Hexane :AcOEt		
6		120.5	223		221		0.20	Si02	=2:1	99.9	
	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~										
	H OH	122.5							Hexane		
Comp.		-	00-		005			0:00	:AcOEt	110.5	10.1
7	QH	124.0	207		205		0.14	Si02	=2:1	110.5	12.1
	^N HCI										
	HN				,						
		141.0							Hexane		
Comp. 8		142.0	193		191	: <del></del>	0.21	Si02	:AcOEt =2:1	99.9	
3		1 72.0	133		.51		J.Z. 1	5102	- <u>e</u> . i	00.0	
	ОН	,									
	N										
0	HN	108.0					,		Hexane		
Comp.		110.0	221		219		0.15	Si02	:AcOEt =2:1	99.9	4.9



	Comp. 10	HN	143.5 - 144.5			151	0.12	Si02	Hexane :AcOEt =2:1	89.5	669.0
	Comp.	OH N CI	151.0  152.5	185		183	0.18	Si02	Hexane :AcOEt =2:1	92.7	297.1
ii	Comp.	OH N HN	139.5 - 140.5	155			0.08	Si02	Hexane :AcOEt =2:1	77.1	1415.5
	Comp.	OH N	116.0 - 118.0	165		163	0.12	Si02	Hexane :AcOEt =2:1	95.9	117.9
	Comp. 14	OH N CI	151.0 - 153.0	,		183	0.19	Si02	Hexane :AcOEt =2:1	91.7	162.8
	Comp.	OH N HN CI	155.5 - 156.0	171	·	169	0.10	Si02	Hexane :AcOEt =2:1	92.9	287.7
	Comp. 16	HON-OH	141.0 - 142.0	165		163	0.12	Si02	Hexane :AcOEt =2:1	97.6	6.6
	Comp.	OH N N	136.5 - 139.0			179	0.15	Si02	Hexane :AcOEt =2:1		
	Comp.	O N OH	139.0 - 140.0			165	0.06	Si02	Hexane :AcOEt =2:1	94.6	45.2

12
ı, 🗋
Ü
1,5
ı,Ô
:±
L.
l.u
15
15
The first that the same
The first that the same
E.B Com Com Top B.J.
E.B Com Com Top B.J.

				Γ			I		· · · · · · · · · · · · · · · · · · ·		
	, О ТО В В В В В В В В В В В В В В В В В	144.0							Hexane		
Comp. 19	N OH	- 145.0	181		179	,	0.08	Si02	:AcOEt =2:1	88.0	337.6
	OH N	149.0					-	9.02	Hexane		307.0
Comp. 20		- 150.0	181		179		0.07	Si02	:AcOEt =2:1	97.5	227.6
Comp. 21	OH N	115.5 - 116.5			163		0.14	Si02	Hexane :AcOEt =2:1	81.1	
Gomp. 22	OH N	139.0 - 141.0					0.16	Si02	Hexane :AcOEt =2:1	95.7	
Comp. 23	OH N HN	110.0 - 111.5	171		169		0.12	Si02	Hexane :AcOEt =2:1	82.8	475.8
Gomp. 24	OH N HN CI	119.0 - 120.5	205				0.10	Si02	Hexane :AcOEt =2:1	89.2	519.7
Comp. 25	OH N HN CI	142.5 - 144.5	189		187		0.15	Si02	Hexane :AcOEt =2:1	87.0	
Comp. 26	OH CI	155.0 - 156.5	201		<u> 199</u>		∝0.18 <i>∞</i>		Hexane :AcOEt = =2:1=	-86:0 -	203-7
Comp.	F F N OH	140.5 - 142.0	205		203		0.10		Hexane :AcOEt =2:1	103.3	1.7
اد سند.											

Comp.	OH N	119.0 - 120.5	235		233		0.15	Si02	Hexane :AcOEt =2:1	92.5	4.7
Comp.	OH N	93.0- 94.5	179		177		0.13	Si02	Hexane :AcOEt =2:1	93.6	
Comp.	TO NOH	143.0 - 143.5	179		177	,	0.12	Si02	Hexane :AcOEt =2:1	103.0	2.4
Comp. 31	, OH	131.0 - 132.0	179				0.12	Si02	Hexane :AcOEt =2:1	97.8	6.6
Comp. 32	OH N	114.0 - 115.0	179				0.16	Si02	Hexane :AcOEt =2:1	87.2	
Gomp. 33	OH N HN Br	171.0			291		0.23	Si02	Hexane :AcOEt =2:1	91.9	
Comp.	OH N HN Br	163.0 - 163.5	293		291		0.17	Si02	Hexane :AcOEt =2:1	90.6	79.7
Comp.	OH N HN CI Br	161.0					0.17	Si02	Hexane :AcOEt =2:1	95.4	_ 86.5
Comp.	OH N HN Br	163.0 - 164.0	215	V-1	213		0.10	Si02	Hexane :AcOEt	98.3	136.5

	ÓH ≅N											
	HN	167.0							Hexane			
Comp. 37		- 167.5	195		193		0.06	Si02	:AcOEt =2:1	92.7		
	OU.					:						
	<b>ОН</b>	1510							Hexane			
Comp.	HN	151.0 - 152.5	185		183		0.13	Si02	:AcOEt =2:1	89.8	79.8	
38		132.3	100		100			0.02				
-	F 0											
Comp.	F F N-OH	110.0		 		:		0:00	Hexane :AcOEt	·000		
39		113.0	221		219		0.10	Si02	=2:1	99.0	22	1
	ОН N									:		
Comp.	HN	160.0							Hexane :AcOEt			
40	cl Cl	161.0	205		203		0.16	Si02	=2:1	98.2		1
	ÓН											
	HN	161.0							Hexane			
Comp.	Br	161. <u>5</u>	229		227		0.13_	Si02	:AcOEt =2:1	96.6	49.0	-
	ОН N											
	HN	144.0							CHCI3:			
Comp. 42		- 145.0					0.44	Si02	MeOH= 9:1	99.9		
							į					
	F	1020							CHCI3:			ļ
Comp.	N OH	123.0 - 124.0	169		167		0.30	Si02	MeOH=		168.1	
70_		121.0										1
	N-OH											
Comp.		145.0						0:00	CHCI3: MeOH=			
44	0	146.0	223		221		0.32	Si02	9:1	·_ =- == v=	-8-1	K
Comp.	Br H N OH	163.5							CHCI3: MeOH=	·		
45		164.5	243	1			0.45	Si02	9:1	53.5	<u> </u>	

:	=	×
•	=	=
	Ė	Ē
:	:	Ĭ,
;	:	2
ł		1 11 W. A 7 and Com. U. H
:	E	ď
:	:	H 19
		Ļ
:	=======================================	2
:	=	a a stant
	=	į
	=	1
	=	m.i.1 ≈ a
		٤

								<del></del>		
Comp. 46	F NOH	100.5 - 102.0	205		203	0.24	Si02	CHCl3: MeOH= 9:1	48.5	355.3
Comp. 47	N OH	166.0 - 166.5	277		275	0.37	Si02	CHCl3: MeOH= 9:1	94.8	6.5
Comp. 48	Br N OH	155.0 - 156.0	335			0.52	Si02	CHCl3: MeOH= 9:1		
Comp. 49	F F F	122.5 - 124.0			271	0.44	Si02	CHCl3: MeOH= 9:1	46.7	
Comp. 50	F F OH	155.5 - 156.5	173		171	0.34	Si02	CHCl3: MeOH= 9:1		25.5
Comp.	Br N-OH	157.0 - 158.0	229		227	0.42	Si02	GHCl3: MeOH= 9:1	50.2	21.8
Comp. 52	O NOH	145.0 - 146.0	181			0.43	Si02	CHCl3: MeOH= 9:1		
Comp. 53	Br N.OH	159.0 - 160.0	271			0.66	Si02	CHCl3: MeOH= 9:1		
Comp. 54	E N. OH	162.5 - 163.5		·		0.43	Si02	CHCl3: MeOH= 9:1		

				 					1	
Comp.	OH N N N N N N N N N N N N N N N N N N N	130.5 - 132.0	277	275		0.5	Si02	CHCl3: MeOH= 9:1	31.3	
Comp. 56	N.OH	144.0 - 145.5	190	188		0.42	Si02	CHCl3: MeOH= 9:1	50.6	
Comp. 57	OH N		193	191		0.22	Si02	Hexane :AcOEt =2:1	59.1	
Comp. 58	OH N HN Br	146.5 - 148.0	257	255		0.21	Si02	Hexane :AcOEt =2:1	99.9	7.1
Comp. 59	OH N		167	165		0.13	Si02	Hexane :AcOEt =2:1	49.0	
Comp.	OH HN O		181	179	,	0.15	Si02	Hexane :AcOEt =2:1		·
Comp.	OH N			163		0.17	Si02	Hexane :AcOEt =2:1		
Comp. 62	OH N		_1.51			0.12	Si02	Hexane :AcOEt	69.5	
Comp. 63	· OH		165	163		0.15	Si02	Hexane :AcOEt =2:1	49.3	

,: =
! r ==
1, [
i,i
I H Hall that Han, that
;==
1:=
į,Ę
įŝ
, 212
1==
ij
ľ.
u.

		,	,			 	Γ			
Comp. 64	OH N N				163	0.13	Si02	Hexane :AcOEt =2:1		
	OH HN						-	Hexane		
Comp. 65			167	:	165	0.08	Si02	:AcOEt =2:1	59.3	
Comp. 66	OH N O		181	·	179	0.10	Si02	Hexane :AcOEt =2:1	41.2	
Comp. 67	OH N HN CI		185		183	0.15	Si02	Hexane :AcOEt =2:1	48.4	
Comp. 68	OH F F F		205		203	0.15	Si02	Hexane :AcOEt =2:1	·	
Comp.	OH CI HZ		189		187	0.15	Si02	Hexane :AcOEt =2:1	58.7	
Comp. 70	OH N N N N N N N N N N N N N N N N N N N		249		247	0.15	Si02	Hexane :AcOEt =2:1	32.9	
Comp.	OH Z Z		179		177	0.18	Si02	Hexane :AcOEt _=2:1	_42.5—	
Comp. 72	OH N N N N N N N N N N N N N N N N N N N	168.0 - 169.0	179			0.12	Si02	Hexane :AcOEt =2:1	99.2	

ł	٠.	
:		
	•	_
į	L	Ξ
	•	٠,
i	•	î.
1	=	~
į	•	٢
•	2	-
:		7
	=	
ŀ	E	_
;		
;	2	-
Ì	z	===
ŧ		į
ţ	;	÷
ŧ	2	
	:	=
į	=	=
1	:	= 0,
*****	=======================================	# II (hun.
	: : :	2 = 0.u.,
į	•	È.
į	•	Ĺ
	=	
	=	È.

			· · · · · · · · · · · · · · · · · · ·						······	· · · · · · · · · · · · · · · · · · ·	
Gomp. 73	OH HN CI		297		295		0.18	Si02	Hexane :AcOEt =2:1	99.9	
				-							
Comp. 74	OH N HN Br		243		241		0.11	Si02	Hexane :AcOEt =2:1	43.7	
Comp. 75	OH HN B	•	215		213		0.16	Si02	Hexane :AcOEt =2:1	46.9	
Comp. 76	OH Z O				195		0.06	Si02	Hexane :AcOEt =2:1	35.1	
Comp. 77	OH N HN F F F				281		0.17	Si02	Hexane :AcOEt	49.0	
Comp.	A Z O O		197		195		0.03	Si02	Hexane :AcOEt =2:1	36.3	
Comp.	Z-Q								Hexane :AcOEt		
79	F ~		155		153	_	0.15	Si02	=2:1	35.3	
Comp. 80	OH N F F CI	·	<u>239</u>		-237-		∗0:32 <b>-</b> -	Si02	Hexane :AcOEt ==2:1=	<del>-37:2</del> -	g Journal committee)
Comp. 81	OH N HN CI		205		203	·	0.14	Si02	Hexane :AcOEt =2:1	51.3	

Comp.	OH N HN Br	133.5 - 134.5	215	213		0.12	SiO2	Hexane :AcOEt =2:1	70.9	
82	ОН	134.5	215	 213		0.12	3102	-2.1	70.9	
Comp. 83	HN		249			0.46	Si02	CHCl3: MeOH= 9:1		
	/Z HO									
Comp.	HN FOFF	٠	221	219	·	0.27	Si02	CHCl3: MeOH= 9:1		
Comp. 85	OH N HZ		229	227		0.37	Si02	CHCl3: MeOH= 9:1		
Comp.	OH N HN CI		185	183	·	0.29	Si02	CHCl3: MeOH= 9:1	58.7	
Comp.	OH N N		187			0.22	Si02	GHCl3: MeOH= 9:1		
Comp. 88	OH N HN OCI		231	229		0.31	Si02	CHCl3: MeOH= 9:1		
Comp. 89	OH CI HN		210	 208		0.32	Si02	GHCl3: MeOH=		C Administration of the Control of t
Comp.	OH N HN F F		235	,		0.33	Si02	CHCl3: MeOH= 9:1	36.5	

1	
1,	
I I I I I I I I I I I I I I I I I I I	
12	
1,[	
1.2	
1.2	
įξ	
THE PART AND R. S. W.	
ı;F	
14	
1	
100	
, , ,	

Comp. 91	OH N		263		0.27	Si02	CHCl3: MeOH= 9:1	36.6	
Comp. 92	QH N HN F F		230	228	0.51	SiO2	CHCl3: MeOH= 9:1		
Comp. 93	OH N				0.21	SiO2	CHCl3: MeOH= 9:1		
Comp. 94	OH O P O		226	224	0.29	Si02	CHCl3: MeOH= 9:1	41.2	
Comp. 95	OH O NO HN		210	208	0.32	Si02	CHCl3: MeOH= 9:1	44.5	
Comp. 96	OH N HN Br		335		0.40	Si02	CHCl3: MeOH= 9:1		
Comp. 97	OH CO CO		239	237	0.32	Si02	CHCl3: MeOH= 9:1		
Comp. 98	OH Z HZ	·	185		0.21	SiO2	CHCl3: MeOH= 9:1_	43.9-	
Comp. 99	OH NOO		197	195		SiO2	CHCl3: MeOH= 9:1	40.8	

ľ	
	-
ì	L
Į,	State of the Street,
i,	Ì
i.	H
ŀ	d
	=
,	į
iź	
	= =
ļ.	F
i	£
1	Ĺ
į	= =
ŀ	-5

Comp. 100	OH N Br HN Br Br		370		368	0.38	Si02	CHCl3: MeOH= 9:1	44.3	
Comp. 101	OH CI		201		199	0.24	Si02	GHCl3: MeOH= 9:1	52.4	
Comp. 102	OH N Br HN Br		375	·	373	0.41	Si02	CHCl3: MeOH= 9:1	44.4	
Gomp. 103	O O O OH	143.0 - 146.0	227		225	0.21	Si02	CHCl3: MeOH= 9:1		
Comp. 104	H Z HO		181			0.39	Si02	CHCl3: MeOH= 9:1	31.9	
Comp. 105	E Z E		303		301	0.12	Si02	CHCl3: MeOH= 9:1	46.7	
Gomp. 106	OH HCI		165		163	0.25	Si02	CHCl3: MeOH= 9:1	, .	
Comp.	OH ON O		196		194	0.37	SiO2	CHCl3: MeOH= _9:1		
Comp. 108	OH N HN CI		231			0.39	Si02	CHCl3: MeOH= 9:1	36.4	

	Ì,		=
	١,		=
	ļ,	į	
	Ì,	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	-
	į	ļ	
		=	ŝ
1		=	
		ě,	
ŧ	į		
;	;	11 (fast.	1
į	:	î	,
i	τ	į	Ì
ļ	*	. n H draw L	j
į	:	2	
-	:	=	

		r	· · · · · · ·					i i	· · · · · · · · · · · · · · · · · · ·	
Comp. 109	QH N HN CI HN		196	194		0.13	Si02	CHCl3: MeOH= 9:1		
Comp. 110	OH N HN Et					0.13	Si02	CHCl3: MeOH= 9:1		
Comp. 111	OH N HN F		191			0.37	Si02	CHCl3: MeOH= 9:1		
Comp. 112	OH N HN	-		160		0.24	Si02	GHCl3: MeOH= 9:1	37.4	
Comp. 113	E Z E C		196	194		0.08	Si02	CHCl3: MeOH= 9:1		
Comp. 114	OH HCI			223	·	0.21	Si02	CHCl3: MeOH= 9:1		
Comp. 115	OH N HN CI CI		239	237		0.4	Si02	CHCl3: MeOH= 9:1		
Comp. 116	OH P P P P P P P P P P P P P P P P P P P		197	195		0.37		CHCl3: MeOH=		
Comp.	OH N HN B		249	247		0.39		CHCl3: MeOH= 9:1	71.6	

i.	
	_
i.	7
1	=
ř	F
1:	•
i,	THE PLANT NAME.
1	-
ŀ	z
ď	2
ŧ,	52
	į
įŝ	
Ę	=
	Ī
ļ	
ľ	L
	-
:	ä

								· · · · · · · · · · · · · · · · · · ·		
Comp. 118	H Z Z D		225		223	0.41	Si02	CHCl3: MeOH= 9:1		
Comp. 119	OH N		249			0.27	Si02	CHCI3: MeOH= 9:1		
Gomp. 120	OH N F HN F		173		171	0.37	Si02	CHCl3: MeOH= 9:1		
Comp. 121	OH N CI CI CI	166.5 - 167.0			237	0.29	Si02	EtOAc: hexane =1:2	72.0	
Comp. 122	OH Z HN	106.0 - 107.5	223		221	0.05	Si02	EtOAc: hexane =1:2	94.7	28.9
Comp. 123	OH N HN	167.0 - 167.5		195	193	0.47	Si02 (NH)	EtOAc: MeOH =95:5	92.7	
Comp. 124	OH NA	100.0 - 102.0			227	0.12		EtOAc: hexane =1:2	92.2	354.5
Gomp. 125	F F H N OH	138.0 - 139.5 (dec.)			<u> </u>	0.12		-1-2	- 67.6	004.0
Gomp. 126	F NOH	172.5 - 173.0 (dec.)							34.9	

i	2 2	÷
•	: [	=
i		=
1	į	=
1		=
1		
1	: =	ŝ
ľ		=
	ä	=
12		
į	=	
ľ	Mar.	1
=	inni	
1	ilmit.	
-	=	
ŀ	=	

							<del>,</del>				
Comp. 127	O HON OH	137.5 - 138.5		209		207	0.53	Si02 (NH)	EtOAc: MeOH =95:5		
Comp. 128	CI O O O O O O O O O O O O O O O O O O O	143.0 - 145.0	263				0.26	Si02	CHCl3: MeOH =9:1	102.0	7.0
Comp. 129	o h o h	183.0 - 183.5		253	251		0.50	Si02 (NH)	EtOAc: MeOH =95:5		
Comp. 130	H OH	155.0 - 156.0	243		241		0.10	Si02	EtOAc: hexane =1:2	116.5	6.9
Comp. 131	O O OH	144.0 - 145.5	229		227		0.09	Si02	EtOAc: hexane =1:2	89.2	26
Comp. 132	J. OH	122.0 - 123.5				-				117.6	3.9
Comp. 133	N. OH	116.5 - 117.5								48.6	720
Comp. 134	U, N, OH	154.0 - 154.5								- 57.4-	3625-
Comp. 135	OH N N		137		135	·	0.10	Si02	EtOAc: hexane =1:2	49.3	

1	
. =	
'ala	
i,	
1	
2 22	
l,ä	
12	
1	
Hann.	
1	
::25	

Comp. 136	OH N		243		241	0.17	Si02	EtOAc: hexane =1:2		:
Comp. 137	OH OH		229		227	 0.15	Si02	EtOAc: hexane =1:2		
Comp. 138	OH NO O		297		295	0.11	Si02	EtOAc: hexane =1:2	44.0	
Comp. 139	OH Z N		179		177	0.13	Si02	EtOAc: hexane =1:2	69.7	
Comp. 140	H ₂ N HN OH			194	192	0.23	Si02 (NH)	AcOEt: EtOH =90:10		
Gomp. 141	HO Z ZH			194	192	0.06	Si02	CHCI3: MeOH =95:5	-	·
Comp. 142	D T T T T T T T T T T T T T T T T T T T				219	0.22	Si02	AcOEt: EtOH =90:10		
Gomp.	PO P	·		1.96	<b>-194</b>	<u> </u>	Si02	CHCl3: MeOH	-37.3-	
Gomp. 144	O NH HO NH			215_	213	0.13		CHCI3: MeOH =95:5		

		1:22	
		] ۽ ا	
		ŗŢ,	
		ı.C	
		10 =5	
		i, =	
		ŧ.	
		1 = 3	
		ı,n	
[]  -4			
	-4		

	·	 		ı	<del></del>	I	[		,	
Comp.								CHCl3: MeOH		
145	N, OH			213		0.11	Si02	=95:5		
Comp. 146	P HO		235	233		0.25	Si02 (NH)	AcOEt		
Comp. 147	CI HN CI HO		273	271		0.26	Si02 (NH)	AcOEt		
Gomp. 148	HO.N. F.F.F	٠	327	325		0.32	Si02	AcOEt		
Comp.	HO. N. P.						Si02			
149	7		265	263		0.34	(NH)	AcOEt	36.5	
Comp.	HN F F F HO		oca	060		0.15	Si02	A - OF4	24.1	
150	пО		262	260		0.15	(NH)	AcOEt	34.1	
Comp. 151	HO.N. N. N. O.		203	201		0.20	Si02 (NH)	AcOEt	108.2	
Comp. 152	F F CI HN HO	,	<b>_255</b> ~	-253-	, <u></u>	=0:28:	Si02	-AcΘEt		
Gomp. 153	HO. N		203	201		0.29		AcOEt	39.4	

(""
*:=
i, [
Ų.
· L
1.5
"L
T.
ļ.

Gomp. 154	F F F S			237	235		0.24	Si02 (NH)	AcOEt		
Comp.	HO N N N N N N N N N N N N N N N N N N N							Si02			
155	F F F F F F F F F F F F F F F F F F F	,	-	246_	244		0.23	(NH)	AcOEt		
Comp. 156	P			327	325		0.32	Si02 (NH)	AcOEt	39.4	
					:			Si02			
Comp. 157	HON			277	275		0.28	(NH)	AcOEt	121.4	
Comp. 158	HONNIN			195	193		0.24	Si02 (NH)	AcOEt		
Comp. 159	HO N N N O O			209	207		0.26	Si02 (NH)	AcOEt		-
Comp. 160	OH OH			181	179		0.21	Si02 (NH)	EtOAc: MeOH =95:5		
Comp. 161	F N OH	156.0 - _157.0	2 Production	_169-		<b></b> 167 ≺	*	SiO2	EtOAc:	- 88:6 <del>-</del>	13.4
Comp. 162	S OH			183	181		0.49	Si02 (NH)	EtOAc: MeOH =95:5	62.6	

155
ı,Ē
La Call hop King
i,
ı.E
=
12
ĻĘ
1.5
100
12
1 3

		 ,								,
Comp. 163	OH OH		207		205	0.61	Si02 (NH)	EtOAc: MeOH =95:5	40.0	
Comp. 164	CI N, OH		186		184	0.55	Si02 (NH)	EtOAc: MeOH =95:5	86.7	
Comp. 165	NH N-OH		169			0.54	Si02 (NH)		105.7	
Gomp. 166	N OH		200			0.56	Si02 (NH)	EtOAc: MeOH =95:5		
Comp. 167	OH OH		221		219	0.58	Si02 (NH)	EtOAc: MeOH =95:5	•	
Comp. 168	ZH N-OH		228	226		0.57	SiO2 (NH)	EtOAc: MeOH =95:5	61.9	
Comp.	NH Br N			270		0.57	SiO2 (NH)	EtOAc: MeOH =95:5	104.1	
169 Comp.	CI N OH		272	210	16.1		Si02	EtOAc:		-
-1-70-	OH OH		186≃		<u> </u>	0.50	Si02	=95:5= EtOAc: MeOH	<u>-99:8</u>	
171	ОН		181			0.23	(NH)	=95:5	54.1	<u> </u>

Comp. 172	OH OH		_	181			0.21	Si02 (NH)	EtOAc: MeOH =95:5		
Comp. 173	но но			181		179	0.30	Si02 (NH)			
Comp. 174	CI NH NH OH			202			0.22	Si02 (NH)	EtOAc: MeOH =95:5	62.4	
Comp. 175	N-OH			193		191	0.56	Si02 (NH)	EtOAc: MeOH =95:5	69.9	
Comp. 176	Br N.∙OH	-		230		228	0.51	Si02	EtOAc: MeOH =95:5	67.0	
Comp. 177	Br NH N-OH			244	242		0.53	SiO2 (NH)	EtOAc: MeOH =95:5	85.4	
Gomp.	NH N-OH	121.0 - 122.5		193		191	0.52	Si02	EtOAc: MeOH =95:5	91.4	9.0
Comp.	у № ОН	122.3						Si02	EtOAc: MeOH		<b>3.U</b>
Comp. 180	CI N OH			206	204	<u>-177</u>	0.54	(NH) Si02 (NH)	=95:5 ⁻ EtOAc: MeOH =95:5	63.5	

ĺ,
1,1
; . [
[]
ļ, i
÷
the country of the co
H
1.5
1

				,				· · · · · · · · · · · · · · · · · · ·	
Comp. 181	CI NH NOH			227	0.54	Si02 (NH)	EtOAc: MeOH =95:5		
Comp. 182	CI		216	214	0.56	Si02 (NH)	EtOAc: MeOH =95:5	90.2	
Comp. 183	P-Z-H		209	207	0.50	Si02 (NH)	EtOAc: MeOH =95:5	92.0	
Comp. 184	0 0 0-7 4 19-2 4		255	253	0.48	Si02 (NH)	EtOAc: MeOH =95:5		
Comp.	L Z					Si02	EtOAc: MeOH		
185 Comp.	Z H Z Z L Z	-	180	178	0.36	(NH) Si02	=95:5 EtOAc: MeOH		
186 Comp.	O O O OH		197	195	0.29	(NH) Si02	=95:5 EtOAc:		
187	, H		195	193	0.50	(NH)	MeOH =95:5 EtOAc: MeOH		
188	THE PERSON OF TH		223	-221 ⁻	0.50	(NH)	=95:5 EtOAc: MeOH	· · ·59:11 · · ·	
189	УN		237	235	 0.50	(NH)	=95:5	116.8	<u> </u>

		=
1		F
	i.	
-		Ę
	-	H H. H. Tanf Hans.
:	÷	-
	:	2
		_
	:	-
1		Ļ
:	7	
	s	=
•		=
		_
į	ľ	
į	;	I. If It speed them
1		
	3	ř.
:	Ξ	*
:	:	=
		٠.
ŧ	=	ئے

	 						, , , , , ,		·
A NOH		225	223		0.51	Si02 (NH)	EtOAc: MeOH =95:5	44.9	
O NH OH		269	267		0.50	Si02 (NH)	EtOAc: MeOH =95:5		
CI NH NO OH		230	228		0.56	Si02 (NH)	EtOAc: MeOH =95:5		
O O O		209		207	0.52	Si02 (NH)	EtOAc: MeOH =95:5		
Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z					0.44	Si02	EtOAc: MeOH =95.5	67.5	
DE Z			,			Si02	EtOAc: MeOH	07.0	
		197				Si02	EtOAc: MeOH		-
CI				220		Si02	EtOAc: MeOH	46.9	
O NH	y - , <u> </u>		· 188			Si02	EtOAc:	0.1.0	
			CI NH 269  CI NH 209  CI NH 209  NH NOH 197  OH 197  OH 197	225 223  O O O O O O O O O O O O O O O O O O		0 H	225 223 0.51 (NH)  269 267 0.50 (NH)  27 0.50 (NH)  289 267 0.50 (NH)  299 207 0.52 (NH)  209 207 0.52 (NH)  200 0.51 (NH)  200 0.51 (NH)  200 0.51 (NH)  200 0.51 (NH)  200 0.52 (NH)	225 223 0.51 (NH) =95:5  EtOAc: MeOH 269 267 0.50 (NH) =95:5  CI NH OH 230 228 0.56 (NH) =95:5  EtOAc: MeOH 995:5  EtOAc: MeOH 995:5  EtOAc: MeOH 197 195 0.44 (NH) =95:5  EtOAc: MeOH 197 0.51 (NH) =95:5  EtOAc: MeOH NH NOH 197 0.51 (NH) =95:5  EtOAc: SiO2 MeOH NH NOH 197 0.51 (NH) =95:5	225 223

		1			т .			r .			, ,
Comp. 199	OH OH			209	207		0.50	Si02 (NH)	EtOAc: MeOH =95:5	85.6	
Comp.	Br NH N							Si02	EtOAc:		
200	OH OH			274	272		0.50	(NH)	=95:5	53.3	
Comp.	NH N	, ·						SiO2	EtOAc: MeOH		
201	OH N			321	319		0.50	(NH)	=95:5	70.1	
Comp. 202	O THE POPE			244	242		0.53	SiO2 (NH)	EtOAc: MeOH =95:5	31.6	
Comp.	O'N' Z-OH				272			SiO2	EtOAc: MeOH		
203	OH		<u></u>	217		215	0.45	(NH)	=95:5	51.1	
Comp. 204	HO NOH			181		179	0.30	SiO2 (NH)	EtOAc: MeOH =95:5		
	HO NOH							Si02	EtOAc: MeOH		
Comp. 205	п			167		165	0.25	(NH)	=95:5		
Comp. 206	CI NH NH OH		Manua - All	<b>217</b>			× 0:49=	Si02 (NH)	EtOAc: MeOH =95:5=	in and the second	
Comp. 207	HO NH	138.0 - 140.0		181		179	0.29	Si02 (NH)	EtOAc: MeOH =95:5	90.7	11.6

:	z	=;
i	=	=
ł	÷	Ĺ
;	2	Ę
į	:	F
;		STATE AND STATE OF THE REAL PROPERTY.
		2 2 2
1	:	=
:		Į,
!	=	*
į	2	the little state out of the first of the
	r	i i
!	=	and i
į	=	<b>=</b>
1	:	ž

						 	r			r · · · · · ·
Comp. 208	O NH P-OH			253	251	0.53	Si02 (NH)	EtOAc: MeOH =95:5		
Gomp. 209	HO NH	169.5 - 170.0		167	165	0.27	Si02 (NH)	EtOAc: MeOH =95:5	102.2	151.6
Comp. 210	Br F N OH			313	311	0.58	Si02 (NH)	EtOAc: MeOH =95:5	78	
Comp. 211	OH N N N N N N N N N N N N N N N N N N N		183		181	0.35	Si02	CHCl3: MeOH =9:1		
Comp. 212	OH N F F F F F F F F F F F F F F F F F F		251		249	0.35	Si02	GHCl3: MeOH =9:1		
Gomp. 213	OH HCI HX		279		,	0.15	Si02	CHCl3: MeOH =9:1		
Comp. 214	OH NOH		181		179	0.12	Si02	CHCl3: MeOH =9:1	31.9	
Comp. 215	OH PF F			= .	<b>-225</b>	- 0₌25∗		CHCl3: MeOH =9:1	-36.1	pages and the second
Comp. 216	OH N HN				167	0.31	Si02	CHCl3: MeOH =9:1		

1	l,	=
		=
:	į	Ļ
	. =	
i	Ļ	Ĺ
	=	=
-		H H. M. T. Con.
		F
;	į	
!		=
:		
ŧ	=	=
;	=	#
i		
į	=	Ę
;	Ħ	
	=	=
!		
	•	_
i	:	F
	2	2
i		Ę
	=	2
		H. H. Hann street and H. H.
:	=	=
1	ı	=
:		

			 	ı			r <del>- · · ·</del>	<del>,</del>	<del>, -</del>
Comp. 217	OH 2HCI	253			0.4	Si02	CHCl3: MeOH =9:1		
Comp. 218	H Z I I O	194	 ·		0.08	Si02	CHCl3: MeOH =9:1		
Comp. 219	OH HN F	221	219		0.38	Si02	CHCl3: MeOH =9:1		
Comp. 220	OH N	176	174		0.28	Si02	CHCl3: MeOH =9:1		
Comp. 221	E Z H	193	191		0.35	Si02	CHCl3: MeOH =9:1		
Comp. 222	HA Z HO		225		0.29	Si02	CHCl3: MeOH =9:1		:
Comp. 223	OH N N N N N N N N N N N N N N N N N N N	290	288		0.34	Si02	CHCl3: MeOH =9:1	52.2	
Comp. 224	OH N HN FF	237	_235		0.31	-Si02	CHCl3: MeOH	<b>-47-1</b> =	
Gomp. 225	OH DE CI	343	341		0.05	Si <b>0</b> 2	CHCl3: MeOH		

		-
•	١,	
		1 1 C 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1		Ī
į		-
į		=
	2	0
:		Ē,
:	Ē	
	:	-
i	=	II W IL.
į	=	,
	=	H
•	±	H. B B (Pers)
	E	=

								· · · · · · · · · · · · · · · · · · ·		
ОН У										
HN										
Q								011010		
								CHCI3: MeOH		
Comp. 226		277		275		0.37	Si02	=9:1		•
ŲΗ ĮN					i					
	139.0									
Comp. 227	141.0	191		189		0.31	Si02	AcOEt	117.8	39.7
OH OH										
HN										
								EtOAc:		
Comp. 228				267		0.15	Si02		72.0	
			,							
N _N		·								
OH OH	194.0		-				ļ	CHCI3:		
Gomp. 229	- 195.0	238		236		0.34	Si02	MeOH =9:1	99.3	16.0
ОН										
, N										
	165.0							EtOAc:		
Comp. 230	- 165.5	181		179		0.07	Si02	hexane =1:2		
. OH	7 0 0 1 0									
N I										
HN										
	168.5							EtOAc:		
Comp. 231	- 169.0	191		189		0.16	Si02	hexane =1:2	92.9	196.5
231	100.0					0110	0.02	1.55		
l a										
H ₂ C			,							
N N OH	154.0									
Gomp. H	- 155.0			,					86.0	_6.6
OH OH										
N N										
HN										
	118.0							EtOAc:		
Comp. 233	- 119.5	227		225		0.10	Sina	hexane ==1:2-	- 87.5	51=Q:
		'					-0.02		57.0	·
	1									
OH OH										
1 1 1	111.0							EtOAc:		
Comp.	- 113.0	213		211		0.15	Sina	hexane =1:2	74.1	

			,	1	<del></del>					· · · · · ·
Comp. 235	OH N HN Br	167.5 - 168.0			263	0.13	Si02	EtOAc: hexane =1:2	77.8	5915.9
Comp. 236	S NH ₂	130.5 - 131.5								
Comp. 237	Н	197.5 - 198.0			237	0.17	Si02	EtOAc: hexane = 1:2	96.6	26.2
Comp. 238	Д м.он	142.5 - 144.0	177		175	0.12	Si02	EtOAc: hexane =1:2	101.6	30.0
Gomp. 239	D NOH	182.5 - 183.0			i					4078
Comp. 240	OH Z OH		227		225	0.15	Si02	EtOAc: hexane =1:2		
Comp. 241	OH N N N N N N N N N N N N N N N N N N N		243			0.15		EtOAc: hexane =1:2	•	
Comp. 242	NOH HN		_1.87_		<b>–185</b> ∞	-0.13		EtOAc:	- 50.6	<u>.</u>
Comp. 243	OH N		213		211	0.11	Si02	EtOAc:		

٠,٠	•
í,	=
i,	Ī
ij	Ĭ
	ļ
i,	f
	=
	=
1,	.=
į,	2
i,	=
	Fat.
12	Sint.
	ĥ
	_
-1,	_
	•
i.	_

Comp. 244	CI NO H		330	328	328	0.49	Si02	CHCl3: MeOH =95:5	32.7	
Comp. 245	O HN O N-OH	·	276	274	274	0.38	Si02 (NH)		55.4	
Comp. 246	OH OH	·	220	218	218_	0.22	Si02	CHCl3: MeOH =95:5		
Comp. 247	HN NOH		193	191	191	0.15	Si02	CHCl3: MeOH =95:5		
Comp. 248	HZ O HZ O		206	204		0.64	Si02	AcOEt: EtOH =90:10		
Comp. 249	O HN NOH		206	204		0.6	Si02	AcOEt: EtOH		
Comp.	HO.N. H. O.		306	304	304	0.3	SiO2 (NH)	AcOEt: EtOH		
Comp.	HE TO THE TOTAL PROPERTY OF THE TOTAL PROPER	•						CHCl3: MeOH		
Comp. 252	N-OH-	2300066	-302	-300 295	300=	0.24	*Si02 Si02	=95:5 CHCl3: MeOH =95:5		

1532	
To the find that	
2 2	
("#	
:	
;*2	=
1,7	
. =	
ı,Ĉ	5
: .	
1 1 1 1	
.==	
1.5	
1 3	
12.00	
15	
. : :	
;==	
, r g=	
129	
1	
: 100	•
175	
1 12	
,===	

		 			<del> ,</del>				r	<del></del>
Comp. 253	O S HN N-OH		216	214	214	0.27	Si02 (NH)	AcOEt: EtOH =90:10		
Comp. 254	S N HN N OH			233	·	0.56	Si02 (NH)	AcOEt: EtOH =90:10		
Comp. 255	HO SO		354	352	352	0.57	Si02	AcOEt: EtOH =90:10		
Comp. 256	HO'N O=\$-IX			321		0.28	Si02	CHCl3: MeOH =95:5		
Comp. 257	HN NOH		388	386	386	0.15	Si02	CHCl3: MeOH =95:5		
Comp. 258	N _{OH}		225	223	223	0.08	Si02	CHCl3: MeOH =95:5		
Comp.	HO NH					· <u>.</u>	Si02	AcOEt:	50.0	
259 Comp.	NH		244	242		0.33		=90:10 CHCl3: MeOH	52.8	
Comp. 261	NN NH NH		177			0.21		CHCI3:		
261	OH		178	176	176	U.U4	Si02	=95:5		

·	c	5	÷
i	z	¢	=
•	è	-	=
į	=	ī	=
i	2	N. " " " " " " " " " " " " " " " " " " "	•
:	:	H.	=
	=	=	ž
	=	= = E	=
	2	Ī,	
!	Ē		
•	:	2	
i	3	thus.	
•	2	1	
;	=	Prese.	
į	z	If it there must need to it.	
į	\$	=	1

								ſ		· · · · · · · · · · · · · · · · · · ·	
Comp. 262	DH OH		-	176		174	0.03	Si02	CHCl3: MeOH =95:5		
Comp. 263	B ON OH			389	387	387	0.26	Si02	CHCl3: MeOH =95:5		
Comp. 264	O N OH			311	309	309	0.25	Si02	CHCl3: MeOH =95:5		
Comp. 265	Br N-OH			295		293	0.19	Si02	CHCl3: MeOH =95:5		<del></del>
Comp. 266	M OH			317	315		0.24	Si02	CHCl3: MeOH =95:5		
Comp. 267	CI N S HN	•			334		0.31	Si02	CHCl3: MeOH =95:5		
Gomp. 268	S NH NH NH OH		·	299	297	297	0.05		CHCl3: MeOH =95:5		
Comp. 269	но. _М .он	·		<b>219</b>	<i>-</i> 21-7		-0.17		CHCI3: MeOH =95:5	Name and the second	Succession of
Comp. 270	NH O, NH NH NH NH OH			322	320	320	0.05		CHCl3: MeOH		

Comp. 271	HO.N.			288	286	286	0.37	Si02	AcOEt		
Comp. 272	HO.N.N.N.N.N.N.N.N.N.N.N.N.N.N.N.N.N.N.N			274	272	272	0.33	SiO2	AcOEt		
	HO. F	165.0		217		212	0.33		ACOLL		
Comp. 273	HO N N F F	165.0 - 167.0		271	269	269	0.20	Si02 (NH)	AcOEt	89.2	96.8
Gomp. 274	HO N Br			303	301	301	0.16	Si02 (NH)	AcOEt	94.5	
Comp. 275	но. _N			261	259	259	0.16	Si02 (NH)	AcOEt		
Comp. 276	HO. N NH CI	207.0 _ 207.5		304	302	302	0.16	SiO2	AcOEt	71.8	55.9
Comp. 277	HO N N N N N N N N N N N N N N N N N N N	207.0		257	255	255	0.22	Si02	AcOEt	76.4	
Comp.	HON				·	230		Si02			
278 Comp.	HO.N.N.N.N.N.N.N.N.N.N.N.N.N.N.N.N.N.N.N		3 74 17	····256 =	<u>-254</u> -		<u>=0.15</u>	(NH) SiO2	AcOEt	<b>65:3</b>	
279	CI N			334	332	332	0.21	(NH)	AcOEt	42.8	

Comp. 280	HO.N		337	335	335_	0.21	Si02 (NH)	AcOEt		
	HO.N. M.									
Comp. 281	\		350	348	348	0.21	Si02 (NH)	AcOEt	50.9	
Comp. 282	HO N		282		280	0.17	Si02	AcOEt	122.9	
Comp. 283	HONNIN		252	250	250	0.16	Si02		62.6	
Comp. 284	HO.N N CI		286	284	284	0.16	Si02 (NH)	AcOEt		
Comp. 285	HO Z HO		302	300	300	0.16	Si02	AcOEt		
	HN N HO		289	287	287	0.16	Si02	AcOEt		
Comp. _287_	HO.N. N. O		-289				Si02	AcOEt		<b>_</b>
Comp. 288	HO. N		208	206	206	0.14	Si02	AcOEt		

							T				
Gomp. 289	но. _N			221	219	219	0.13	Si02 (NH)	AcOEt		
Comp. 290	N N-OH			212	210	210	0.42	Si02 (NH)	EtOAc: MeOH =95:5		
Comp. 291	CI NH N OH			222	220	220	0.48	Si02 (NH)			
Comp. 292	N.OH			188	186	186	0.36	Si02 (NH)	EtOAc: MeOH =95:5		
Gomp. 293	N H OH			220	218	218	0.59	Si02 (NH)	EtOAc: MeOH =95:5	·	
Gomp. 294	NH N-OH	162.0 - 162.5		220		218	0.47	Si02	EtOAc:	103.2	4.9
Comp.	N OH	102.3						Si02	EtOAc: MeOH		
295 Comp.	H NOH			202		200	0.37	(NH) Si02	EtOAc: MeOH	73.8	
296 _ Comp. 297	N N OH	90.7 <u>———</u> — €	gas e - emiliado	-229 188	. — 1	<u>- 227</u>	0.41	Si02	==95:5 EtOAc: MeOH =95:5	71.1	

										<del> </del>	
					·						
Comp. 298	NH N			203		201	0.33	Si02 (NH)	EtOAc: MeOH =95:5	·	
Comp. 299	ON DH			232	230	230_	0.40	Si02 (NH)			
Comp. 300	ON NH NH NH	182.0 - 182.5		222		220	0.44	Si02 (NH)	EtOAc: MeOH =95:5	96.3	5.7
Comp. 301	O NH NH NH NH			208		206	0.36	Si02 (NH)	EtOAc: MeOH =95:5	62.1	
Gomp. 302	CI NOH	177.5 - 178.0		257		255	0.47	Si02 (NH)	EtOAc: MeOH =95:5	96.5	1.9
Gomp. 303	NH NH		, -	249	247	247	0.35	Si02 (NH)	EtOAc: MeOH		
Gomp. 304	O COLL NOH			205	203	247	0.33		EtOAc:	68.5	
Gomp. 305	HO SO NOH			245_	200	. <b>243</b> =	٠.	SiO2	EtOAc: MeOH	VV.V	
Comp. 306	OH HN HN O				216		0.10	Si02	CHCl3: MeOH		

i		
	•	=
	ŧ	ř
:	1	ř
ì	=	Ļ
į	:	Ĺ
,	=	ř
į	ż	1
•	=	=======================================
į	_	_
1	2	=
•	7,	72
-	*	Ĺ,
	_	
٠	4	
:	=	=:
•	Ξ.	=
;	=	5 B 25
		ď,
ì		5
*****	=	E
	;	=
1	=	::::
	_	

Comp. 307	HCI HN N-OH	001			0.40	S:09	CHCl3: MeOH =9:1		
307		201	 	·	0.40	Si02			-
Comp. 308	HO-N 1	332	330		0.08	Si02	CHCl3: MeOH =9:1		
Comp. 309	OH N N N N N N N N N N N N N N N N N N N	194			0.17	Si02	CHCl3: MeOH =9:1		
Comp. 310	HZ P H	316	314		0.25	Si02	CHCI3: MeOH =9:1		
Comp. 311	HA HO	344	342		0.25	Si02	CHCl3: MeOH =9:1		
Comp. 312	OH NO O O O O O O O O O O O O O O O O O	315			0.15		CHCl3: MeOH =9:1		
Comp.	OH OH			,		,	CHCl3: MeOH		
313	OH N N N N N N N N N N N N N N N N N N N	286	284		0.25	Si02	=9:1 CHCl3: MeOH		
Comp. 314	F	 290	 	-88-52	<b>≖0.38</b> =	.Si02	меон ∍ -=9;1∘ -		=
Comp. 315	OH O HN	371	369		0.48	Si02	CHCl3: MeOH =9:1	50.7	

	,
1""	•
.52	
. 7	:
1.1	
1"#	
157	4
,29	
1.3	
. '##	
: 1	
'aa	
:	
:=	٤
•	
22;	:
THE STATE OF THE S	:
1 2	
15.0	
in a start	
1 2	١
ic s	
	2
1.3	
.51	
1=6	
1	
1 - 1	
1" [	į
1 =	
, a ==	
l	
2 44	١

									·		
Comp. 316	N OH	144.0 - 146.0	195		193		0.09	Si02	Hexane : AcOEt =2:1	97.9	24.0
Comp. 317	O NH OH	132.0  133.0		195			0.51	SiO 2 (NH)	EtOAc: MeOH =95:5	93.8	3.5
Comp. 318	— Н. М. ОН	136.5 - 137.5	209		207		0.09	Si02	Hexane :AcOEt =2:1		9.9
Gomp. 319	OH N	126.0 - 127.0	223		221	-	0.13	Si02	Hexane :AcOEt =2:1	99.9	3.8
Comp. 320	OH N HN	125.0 - 126.0	237		235		0.11	Si02	Hexane :AcOEt =2:1	92.5	1.3
Comp. 321	OH N HN	121- 122.5	251		249		0.36	SiO 2 (NH)	AcOEt	99.9	3.7
Comp.	QH NH		265	ŕ	263		0.36	SiO 2	AcOEt	117.5	
322 Gomp. 323	~~~~о	128.0 - 130.0	_279		<u>203</u>		0.12		Hexane :AcOEt	117.3	25.9
Gomp. 324	OH NH	148.5 - 149.5		-	221		0.22	SiO 2	AcOEt	99	3.7

-
1.
a Published Name
i.E
200
1
15
Ţ
12
-4

Comp. 325	OH NH	123.0 - 125.0	237		235	0.23	SiO 2	AcOEt	106	2.6
Comp. 326	OH NH		237		235	0.35	SiO 2 (NH)	AcOEt	110.8	
Comp. 327	OH NH			237	235	0.35	SiO 2 (NH)	AcOEt	110.1	
Comp. 328	OH NH		233		221	0.33	SiO 2 (NH)	AcOEt	121.4	
Comp. 329	OH NH	127.0 - 128.0		221	219	0.33	SiO 2 (NH)	AcOEt	121.1	0.7
Comp. 330	OH NO H	122.0 - 124.0	207		205	0.33	SiO 2 (NH)	AcOEt	118.8	2.4
Comp. 331	HAZ Z-O	139.0 - 139.5		219	217	0.31	SiO 2	AcOEt	118.8	3.2
Comp.	OH NH	169.5 –		210		 ſ	SiO 2			2.1
Gomp. 333	OH NH	170.0 171.5 - 172.0			203	0.31	SiO 2	AcOEt  AcOEt	110.6	2.2

							l .				
	ОН										
	OH NH										
Comp.	NH NH	125.0						SiO			
334	<u></u>	126.0	221				0.23	2	AcOEt	105	3.2
	04										
	OH NH										
0	NH	139.0				·		SiO	ŀ		
Comp. 335	~o~	141.0	205				0.23	2	AcOEt	110	1.4
	OH N N										
	NH	142.5						SiO	!		
Comp. 336	~~o	146.0	207		205		0.31	2 (NH)	AcOEt	117.6	3.2
	ОН .N										
	NH OH	135.0						SiO			
Comp. 337		- 136.5	219		217		0.31	2 (NH)	AcOEt	119.4	2.1
337		100.0	2.0	_			0.01		7.0020		
	ОН N										
	NH NH	100.0						SiO			
Comp.		-	201			219	0.22	2	AcOEt	119.8	0.9
338	0	102.0	221			219	0.33	(IALI)	ACOEL	113.0	0.9
	~N~O~	1125	]						!		
Comp.	H N OH	113.5					<b>.</b>	SiO			
339	H	114.5	250		248		0.11	2	AcOEt	88	124.2
	OH N						:				
	NH					·					
Comp.		157.5			į				!		
340	0,0	-15 <u>8</u>	<u> </u>					ļ		97.4	3.0
Comm	N_N_OH	129.5				}		SiO			
Comp. 341	W W W	-133	263		_261_		0.23	- 2	AcOEt	-104-	-1.2-
							-				
		174.5									
Gomp. 342	N OH	- 1 <u>75.5</u>								98.5	5.3

HUCCULU TOTOTE

			· · ·			,					
Comp. 343	О О О О О О О О О О О О О О О О О О О	166.5 - 167.0								84.5	3.3
Comp. 344	H_NOH	180- 180.5	244				0.12	SiO 2	AcOEt	107	37.5
Comp. 345	H, OH	159.5 -161	244				0.14	SiO 2	AcOEt	101	23.1
Comp. 346	~0~0 H~N-0H	104.0 - 107.0								106.2	8.9
Comp. 347	OH NH	80.5- 81.5	255		253		0.18	SiO 2	AcOEt	105	3.7
Comp. 348	OH NH	128.5 - 129.5	267		265		0.21	SiO 2	AcOEt	103	3.4
Comp. 349	OH NH	152.5 - 153.0	271		269		0.21	SiO 2	AcOEt	100	1.6
Comp. _350_	OH NH	168.0 - -168:5		, so <del>rten</del> zare 1			0.19	SiO 2	-AcOEt	- 91-	1-4
Comp. 351	N NH NH		252		250		0.18	SiO 2	AcOEt	89	

							Γ	r			
	OH OH										
	, NII										
		158.5									
Comp. 352		- 159.5	233				0.2	SiO 2	AcOEt	97	4.6
302		100.0	200				<u> </u>		7.0020	0,	
	<b>О</b> Н		ļ		-						
	NH NH										
Comp	N N N N N N N N N N N N N N N N N N N	158.0						SiO			
Comp. 353	's 0	160.0	278		276		0.14	2	AcOEt	105	3.7
	ÓН										
	OH NH										
·	ŇH	113.0									
Comp. 354	_0_0_	114.0	239		237		0.23	SiO 2	AcOEt	106	3.0
334		114.0	200		20,		0.20		7.0020	100	0.0
	OH NH										
	N N	1410									
Comp.	NH NH	141.0						SiO			
355	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	142.0	266		264		0.14	2	AcOEt	107	5.9
	OH N										
	Ň	:									
	NH	141.0									
Comp. 356		142.5	207				0.23	SiO 2	AcOEt	102	2.6
									-		
	OH NH										
	N NII										
Comp.			-				٠	SiO 2			
357	<u> </u>	-	264	<u> </u>	262	· · · · · · · · · · · · · · · · · · ·	0.16	2	AcOEt	98	
	QH N										
	NH										
		138.0						6:0			
Comp. 358	) ====================================	139.5	272		270		0.14	SiO 2	AcOEt	103	3.1
	OH ►N										
	Ň										
	NH	132.5									
Comp. 359		-						SiO		الشميدا	
359	<u> </u>	134.5	<u>~290</u> ∗	:	288		0.2	2	AcOEt	102	1.4
	ÓН В V	·									
	NH										
								SiO			,
Comp. 360			279		277		0.22	2	AcOEt		

			<del></del>	 r 1						
Comp. 361	OH N NH	104.0 - 106.0	241	239		0.22	SiO 2	AcOEt	106	2.1
001	OH	100.0		 200		0.22		7,000		
Comp. 362	OH NH	156.0 - 157.0	244			0.11	SiO 2	AcOEt	106	2.1
Comp. 363	OH NH	154.0 - 155.0	272	270		0.11	SiO 2	AcOEt	105	0.78
Comp. 364	OH NH	136.5 - 137.5	295	293		0.21	SiO 2	AcOEt	104	2.0
99.										
Comp. 365	OH NH	143.5 - 145.0	287	285		0.19	SiO 2	AcOEt	105	1.4
Comp. 366	OH NH	188.0 - 189.0	272			0.09	SiO 2	AcOEt	105	1.2
	OH NH	165.0 –			·		SiO 2			
Comp. 367	5_0	166.0	249			0.18	2	AcOEt	103	2.1
Comp. - 368	OH NH OH	165.5 - 166.0	<b>∸233</b> ⁼	 proc.		0.19	SiO 2	AcOEt	96-	2.5
Comp. 369	OH NH	146.5 - 149.0	258			0.16	SiO 2	AcOEt	105	3.1

	<del> </del>										
Gomp.	OH NH							SiO 2			-
370			263	263	261	261	0.33	(NH)	AcOEt	113.7	
Comp. 371	OH NH	93.0- 94.0	239	239	237	237_	0.31	SiO 2 (NH)	AcOEt	110.4	0.9
Comp. 372	OH NH			271	269	269	0.31	SiO 2 (NH)	AcOEt	100.5	
Comp. 373	OH NH	97.0- 99.0		253	251	251	0.31	SiO 2 (NH)	AcOEt	115.3	0.8
Comp. 374	OH NH		331	331	329	329	0.3	SiO 2 (NH)	AcOEt	119.1	
Comp. 375	OH NH			301	299	299	0.3	SiO 2 (NH)	AcOEt	117.7	
Comp. 376	OH NH			336	333	334	0.3	SiO 2 (NH)	AcOEt	114.9	
Comp.	Pr NH			336	-334	334	0.3	SiO 2 (NH)	AcOEt	107.4	
Comp. 378	OH NH			295	293	293	0.3	SiO 2 (NH)	AcOEt	102.4	

		•	<u>.</u>
		_	_
			L
		:	7
	-		# G# 1.7 Den.
٠	-		F
			=
		į	F.
	1		
		•	=
		=	=
	į	ε	æ
	ş		_ `
			Ļ
	ŧ	ĕ	
		z	=
	i	=	=
			=
	1	:	į
	;	5	=
	:		Ļ
	:	:	Ξ
			27. 11 H Prim (fam. 144) 11 11
	:	¢	=
	į	:	=
	ŧ		
	i	ç	rí

							<u></u>	<del> </del>			
Comp.	OH NH							SiO 2		105.4	
379	↑ ↑ 0, ↑			287	285	285	0.27	(NH)	AcOEt	105.4	
Comp. 380	OH NH			291	289	289	0.26	SiO 2 (NH)	AcOEt	118.9	
Comp. 381	OH NH			285	283	283	0.27	SiO 2 (NH)	AcOEt	116.0	
Comp. 382	OH NH	153.0 - 153.5		273			0.26	SiO 2 (NH)	AcOEt	122.5	3.1
Comp. 383	OH NH	·		257	255	255	0.26	SiO 2 (NH)	AcOEt	116.2	
Comp. 384	O-Z NH	167.0 - 167.5		279	277		0.27	SiO 2 (NH)	AcOEt	117.3	2.8
Gomp. 385	OH NH			312	310	310	0.27	SiO	AcOEt	109.0	
Comp. 386	OH NO OH		Mana A -	-347	÷345			SiO 2	-AcOEt		
Comp. 387	OH NH	163.0 - 164.0	289	289			0.27	SiO 2 (NH)		97.8	0.9

					· · · · ·		1	· · · · -	r		l
	OH OH		-!								
Comp. 388				335	333	333	0.27	SiO 2 (NH)	AcOEt	96.2	
	OH OH							:			
Comp.		167.0 -						SiO 2			
389	OH N	167.5		273		271	0.31	(NH)	AcOEt	105.5	1.6
	NH NH	152.5						SiO			
Gomp. 390	9	- 153.5		273		271	0.31	2 (NH)	AcOEt	112.8	2.7
	OH NH										
Comp. 391		161.5 - 162.0		257	255	255	0.31	SiO 2 (NH)	AcOEt	113.4	2.4
	OH NH			_							
Comp.		165.5						SiO 2		100.0	
392	F OH	166.0	261	261	259		0.31	(NH)	AcOEt	109.6	2.4
	COC.	143.0		·				SiO			
Comp. 393	N O	146.0		268	266	266	0.26	2 (NH)	AcOEt	124.3	1.1
	NH OH OH								,		
Comp. 394		144.0 - 145.0	325	303		301	0.27	SiO 2 (NH)	AcOEt	119.9	3.9
	ОН О О		·					,			
Comp	NH	178.0 –						SiO 2	:		
Comp. 395	OH N	178.5	<u>-303</u> ×	<del>-303</del> -	>	<u> 301 - </u>	0.29	(NH)	AcOEt	111.6	- <u>2:1</u> ~
	NH			·				0:0			
Comp. 396			323	301	321	299	0.29	SiO 2 (NH)	AcOEt	102.7	

										<del></del>	
	NH OH										3
Comp. 397				319			0.29	SiO 2 (NH)	AcOEt	99.3	
;	NH N OH										
Comp. 398			296	296	294	294	0.29	SiO 2 (NH)	AcOEt	95.2	2.4
350			200					, ,			
Comp. 399	OH NH	118- 120	224	224	222	222	0.31	SiO 2 (NH)	AcOEt	102.3	98
399	~	120	227				0.01			. 02.0	
	OH OH	115.0						SiO			48.7
Comp. 400	M~~0~~	- 117.0	238	238		236_	0.29	2 (NH)	AcOEt	116.9	
Comp. 401	N NH NH	100.0 - 102.0	252	252	250	250	0.29	SiO 2 (NH)	AcOEt	117.4	37.6
Comp. 402	OH NH	95.0- 96.0	280	280	278	278	0.29	SiO 2 (NH)	AcOEt	118.8	18.7
Comp. 403	N-NH NH	101.5						SiO 2			
403		102.0	266	266	264	264	0.32	(NH)	AcOEt	118.3	28.5
Comp. 404	N O O O NH	57.5- _59.0	<b>-268</b> -	268-	266	-266	-0.29-	SiO 2 (NH)	-Ac⊙Et	-114:9	- 1 1 5.6
	OH NH							SiO 2			
Comp. 405			314	314	312	312	0.33		AcOEt	116.0	

									· · · · · · · · · · · · · · · · · · ·		<del></del>
Comp.	N O NOH	•						SiO 2		,	
406_	<u> </u>			359	357	357	0.29	(NH)	AcOEt	73.7	
Comp. 407	OH NH	127.5 - 129.5	264	264	262	262	0.29	SiO 2 (NH)	AcOEt	94.3	4.9
Comp. 408	OH NH	177.0 - 177.5	278	278	276	276	0.29	SiO 2 (NH)	AcOEt	103.0	4.2
Comp. 409	OH NH	145.0 - 146.0		223	221	221_	0.31	SiO 2 (NH)	AcOEt	113.2	6.7
Comp. 410	OH NH	153.0 - 155.0		301	299	299	0.31	SiO 2 (NH)	AcOEt	117.3	1.0
Comp. 411	OH NH	150.5 - 151.5	246	246	244	244	0.31	SiO 2 (NH)	AcOEt	122.4	3.1
Comp. 412	OH NH	130.0 - 130.5	260	260	258	258	0.32	SiO 2 (NH)	AcOEt	119.4	1.5
Gomp. 413	OH N NH	112.0 - 113.0	. *************************************		225	<b>- 225</b> -	-0.32-	SiO 2	-Ac⊙Et		- 2.3
Comp. 414	OH NH	132.0  133.5	241	241	239	239	0.32	SiO 2 (NH)	AcOEt		1.0

		·								
NH OH							6:0			
(A) 0 0	114- 117	264	264	262	262	0.31	2	AcOEt	103.7	17.6
ÓH ÓH										
N O N NH	99.5~ 102.5	264	264		262_	0.31	SiO 2 (NH)	AcOEt	85.8	16.3
OH N										
N, O	146.5 -148	264	264		262	0.33	SiO 2 (NH)	AcOEt	102.8	90.0
OH OH										
			273	271	271	0.33	SiO 2 (NH)	AcOEt	120.4	
OH N								-		
S~o		289	289	287	287	0.33	SiO 2 (NH)	AcOEt	116.1	
ОН N										
O NH	147- 148.5	237	237	235	235	0.31	SiO 2 (NH)	AcOEt	118.6	8.0
OH										
	153- 154.5	251	251	249	249	0.33	SiO 2 (NH)	AcOEt	113.3	3.9
ÓH ≅N										
S O NH	132.0 - 134.0	.263 _*	-263-	261	- <b>261</b> -	<u>=0:3</u> 3=	SiO 2 (NH)	<u>ĀćO</u> Et	* 121 <u>-</u> 6 *	1.5
, OH										
S	132.0	263	262		261	0.35	SiO 2 (NH)	AcOFt	1184	2.2
		114- 117  OH N N 146.5 -148  OH N N N N N N N N N N N N N N N N N N	114- 117 264  OH N N N 146.5 -148 264  OH N N N N N N N N N N N N N N N N N N	OH NH 146.5 264 264  OH NH 148.5 264 264  OH NH NH 147- 289 289  OH NH	114- 117 264 264 262 OH NH  99.5- 102.5 264 264  OH NH  146.5 -148 264 264  OH NH  OH  NH  N	114- 117 264 264 262 262  OH NH 146.5 102.5 264 264 262  OH NH NH 146.5 289 289 287 287  OH NH NH 147- 148.5 237 237 235 235  OH NH NH 153- 154.5 251 251 249 249  OH NH 132.0 OH NH	114- 117 264 264 262 262 0.31  OH NH NH 99.5- 102.5 264 264 262 0.31  OH NH	OH NH NH NH OH NH NH NH OH NH	114- 117- 117- 264 264 262 262 0.31 (NH) AcOEt  OH  N  NH  146.5 -148 264 264 262 0.31 (NH) AcOEt  OH  NH  OH  NH  OH  NH  NH  NH  147- 148.5 237 237 237 237 235 235 0.31 (NH) AcOEt  OH  NH  NH  132.0 OH  NH  NH  NH  NH  NH  132.0 OH  NH  NH  NH  NH  NH  NH  NH  NH  NH	114- 117- 117- 118- 118- 119- 119- 119- 119- 119- 119- 119- 119- 119- 119- 119- 119- 119- 119- 119- 119- 119- 119- 119- 119- 119- 119- 119- 119- 119- 119- 119- 119- 119- 119- 119- 119- 119- 119- 119- 119- 119- 119- 119- 119- 119- 119- 119- 119- 119- 119- 119- 119- 119- 119- 119- 119- 119- 119- 119- 119- 119- 119- 119- 119- 119- 119- 119- 119- 119- 119- 119- 119- 119- 119- 119- 119- 119- 119- 119- 119- 119- 119- 119- 119- 119- 119- 119- 119- 119- 119- 119- 119- 119- 119- 119- 119- 119- 119- 119- 119- 119- 119- 119- 119- 119- 119- 119- 119- 119- 119- 119- 119- 119- 119- 119- 119- 119- 119- 119- 119- 119- 119- 119- 119- 119- 119- 119- 119- 119- 119- 119- 119- 119- 119- 119- 119- 119- 119- 119- 119- 119- 119- 119- 119- 119- 119- 119- 119- 119- 119- 119- 119- 119- 119- 119- 119- 119- 119- 119- 119- 119- 119- 119- 119- 119- 119- 119- 119- 119- 119- 119- 119- 119- 119- 119- 119- 119- 119- 119- 119- 119- 119- 119- 119- 119- 119- 119- 119- 119- 119- 119- 119- 119- 119- 119- 119- 119- 119- 119- 119- 119- 119- 119- 119- 119- 119- 119- 119- 119- 119- 119- 119- 119- 119- 119- 119- 119- 119- 119- 119- 119- 119- 119- 119- 119- 119- 119- 119- 119- 119- 119- 119- 119- 119- 119- 119- 119- 119- 119- 119- 119- 119- 119- 119- 119- 119- 119- 119- 119- 119- 119- 119- 119- 119- 119- 119- 119- 119- 119- 119- 119- 119- 119- 119- 119- 119- 119- 119- 119- 119- 119- 119- 119- 119- 119- 119- 119- 119- 119- 119- 119- 119- 119- 119- 119- 119- 119- 119- 119- 119- 119- 119- 119- 119- 119- 119- 119- 119- 119- 119- 119- 119- 119- 119- 119- 119- 119- 119- 119- 119- 119- 119- 119- 119- 119- 119- 119- 119- 119- 119- 119- 119- 119- 119- 119- 119- 119- 119- 119- 119- 119- 119- 119- 119- 119- 119- 119- 119- 119- 119-

i, =	
ı, E	
l.E	
I L. H. You!	
ı, E	
1=	
i s	
F 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
i	
1==	
"L	
ľ.	
ı.	

			 ,	 					
					!	   			
	A Renau	1000							
Comp. 424	~ O NOH	102.0							1.5
424		100.5							1.0
	н						,		
Comp.	Na-O								
425	Na.O	>300							3.0
	8 NOH	101.5				:			
Comp. 426	Powor Non	101.5 - 104.0							5.1
	. Н.,	108.0							
Comp. 427	HO NOH	108.0 - 109.5							2.6
	·						. "		
	H N.OH								
Comp. 428									
428		144.5	-						51.5
	н						•		
Comp	N OH	159.0 - 160.5							
Comp. 429		160.5	 						79.1
	N OH N OH	139.5							
Comp. 430	N O	- 141.0		 					7.4
			:						
	N.OH	1120							
Comp. 431		113.0 - _1.15.0		 	_ = -		·	= 4	47.7
701		<u></u>	 						.,.,
	н		:		,				
Comp.	N OH	- 1							
Comp. 432		117.5	 	 					19.5

	No.H	125.0									
Comp. 433	~ol~o	127.0									1.5
									-		
Comp	No P										
434	0 0	>300				,					3.2
	P No.H										
Comp.		133.0									
435	0	134.5									2.2
	N.O.H										
Comp. 436	но	140.5 - 141.0							-		79.2
	OH _ OH										
	NH							SiO			
Comp. 437	CI		= 112 - 1	293	291	291	0.33	2	AcOEt	96.1	
	ОН										
0	NH NH			•				SiO	AcOEt		
Comp. 438	s			251	249	249	0.36	(NH)	AcOEt	87.9	
	OH ∞N										
Comp.	NH	144.1						SiO 2	AcOEt		
Comp. 439	S OH	144.2		211	209	209	0.36	(NH)	AcOEt	92.3	2.9
	OH N										
Comp. 440	o s			_255_		_253_	-0-33-	SiO 2 (NH)	-Ac0Et∗	~102 B	= .=·=:
770	OH N						3.30				
	NH							SiO			
Comp. 441	S	166		259	257	257	0.33	2 (NH)	AcOEt	94.2	

The state of the s			ľ	_
The state of the s			•	-
S 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		1		F
The state of the s			:	=
S 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		1	=	Ė
The state of the s			=	=
The state of the s		i	•	î
THE REPORT OF THE PARTY OF THE	•	١	2	:
THE REPORT OF THE PARTY OF THE		****	Ŀ	Ĺ
the contract of the contract o			=	
THE REPORT OF THE PARTY OF THE		ĺ	•	_
the contract of the contract o		į	Ī	_
and the state of t			÷	=
an a to the and the and the and			1	į
and a se				
and a se			=	=
and a se		į		_
and a se			٠	-
and a se		i	2	2
and a se		•	n	÷
and a se			=	Š
n n n		í	_	ŗ
12		-	£	į
-		1	_	_
100		3	2	-
la el		:	F	=
		;		_

											<del></del>
Comp. 442	OH N NH			225	223	223	0.36	SiO 2 (NH)	AcOEt	95.7	
Comp. 443	OH N NH			239	237	237	0.38	SiO 2 (NH)	AcOEt	103.0	
Comp. 444	HO S NH	121.0		213	211	211	0.10	SiO 2 (NH)	AcOEt	100.7	12.1
Comp. 445	OH NH	112.0		240	238	238	0.18	SiO 2 (NH)	AcOEt	95.1	
Comp. 446	OH NH			241		239	0.31	SiO 2 (NH)	AcOEt	95.9	
Comp. 447	OH N NH			237	235	235	0.36	SiO 2 (NH)	AcOEt	95.9	·
Comp. 448	OH NH	125.0 - 126.5		249	247	247	0.36	SiO 2 (NH)	AcOEt	109.8	1.9
Comp. 449	OH N NH	119.0 - _120.5	<b>=</b> = ≪	· -225	-223	<u>- 223</u>	- 0:38	SiO 2 (NH)	AcOEt	~105.1°	-1.8
Comp. 450	OH NH			239	237	237	0.41	SiO 2 (NH)	AcOEt	105.9	

										-	
Comp. 451	OH NNH		-	253	251	251	0.41	SiO 2 (NH)	AcOEt	97.6	
	011										
Comp. 452	OH N NH			267	265	265	0.41	SiO 2 (NH)	AcOEt	112.3	
	OH										
Comp. 453	OH N NH			295	293	293	0.44	SiO 2 (NH)	AcOEt	95.3	
	ÓН			:							
Comp. 454	OH N N N N N N N			268	266	266	0.26	SiO 2 (NH)	AcOEt	105.8	
	ÓН										
Comp. 455	OH NH			255		253	0.28	SiO 2 (NH)	AcOEt	105.6	
Comp.	OH NH	143.0		-				SiO			
456	× _s ×	145.0		225	223	223	0.33	(NH)	AcOEt	94.4	6.3
	. ОН N										
Comp. 457	o s			269	267	267	0.33	SiO 2 (NH)	AcOEt	112.6	
	ОН							,,			
	NH NH							SiO			
Comp. 458	S. S.			273	271	271	0.36	2 (NH)	AcOEt	116.0	P==
	N N	/	± <del>-</del> - 4:	y = = == (	. = = :						
Comp.	HO	108-						SiO 2		:	
459	SiO2(NH): Merck pre~coated plate	108.5	gg! 60	227	225	225		(NH)	AcOEt	119.0	2.4
*	SIUZ(INIT): INIERCK pre-coated plate	s oilica	KEI OU	1 234, 3	OZ(IAL	iXiauñ. T	Lopiate	21 VI	uji oliysia	Onemice	<u> L.D.</u>

Experimental Example [Inhibitory effect of 20-HETE synthase originated from rat kidney microsome]

Regarding the compounds listed in Table 1, their inhibitory activity to production of 20-HETE was examined. This examination was carried out based on the method described in J. Pharmacol. Exp. Ther., Vol. 268, pp. 474 (1994).

The subject compound for this examination was added to a buffer comprising 50mM of 3-morpholinopropanesulfonic acid (pH7.4), 5mM of magnesium chloride and 1mM of ethylenediaminetetraacetic acid (EDTA) disodium salt.

After that, the rat kidney microsome (microsome fraction prepared from the kidney of a spontaneous hypertension rat (male, 6 weeks of age)) as an enzyme, [5,6,8,9,11,12,14,15] tritium-arachidonic acid (supplied by Amasham) as a substrate, and NADPH (supplied by Sigma) as a coenzyme were added and reacted for 1.5 hours at 37  $^{\circ}$ C.

After the reaction, formic acid was added to stop the reaction, and then acetonitrile (final concentration of 50%) was added and left for 1.5 hours at room temperature.

The activity of 20-HETE synthase was measured by using a high performance liquid chromatograph having a detector for radioactive substances (supplied by Gilson), and equipped with a C18 reversed phase column (Biocyl C18, supplied by Bio-rad).

Setting an amount of 20-HETE production to 100% when no subject compound for examination was added, the concentration of the subject compound at which the production of the 20-HETE was inhibited to 50% and the inhibition rate at which  $1\,\mu\,\mathrm{M}$  of the subject compound was added are presented together in Table 1.

Referring to Table 1, it was confirmed that the compounds of the present invention have inhibitory activity for production of 20-HETE.

## Industrial applicability

The compounds represented by the general formula (1) or the

pharmaceutically-acceptable salts thereof according to the present invention are useful as inhibitors for production of 20-HETE. Therefore, they are useful as medicines, and in particular, therapeutic agents for various diseases in human subjects and animals, which 20-HETE is implicated in, such as kidney diseases, cerebrovascular diseases, or circulatory diseases.

In addition, in the compounds represented by the general formula (1) or the pharmaceutically-acceptable salts thereof, the compounds wherein a non-hydrogen substituent is present at the para position of the hydroxyformamidino moiety on the benzene ring are, in particular, preferable.

In addition, the compounds represented by the general formula (1) or the pharmaceutically-acceptable salts thereof as recited in Claims 5 or more are novel compounds and useful in themselves, and also, exhibit the excellent effects described above.