Document made available under the Patent Cooperation Treaty (PCT)

International application number: PCT/EP05/003893

International filing date: 13 April 2005 (13.04.2005)

Document type: Certified copy of priority document

Document details: Country/Office: DE

Number: 10 2004 017 866.6

Filing date: 13 April 2004 (13.04.2004)

Date of receipt at the International Bureau: 23 June 2005 (23.06.2005)

Remark: Priority document submitted or transmitted to the International Bureau in

compliance with Rule 17.1(a) or (b)

BUNDESREPUBLIK DEUTSCHLAND

1 4 06. 2005

Prioritätsbescheinigung über die Einreichung einer Patentanmeldung

Aktenzeichen:

10 2004 017 866.6

Anmeldetag:

13. April 2004

Anmelder/Inhaber:

PROFIL-Verbindungstechnik GmbH & Co. KG,

61381 Friedrichsdorf/DE

Bezeichnung:

Verfahren zur Herstellung von Hohlkörperelementen, Hohlkörperelement, Zusammenbauteil sowie Folge-

verbundwerkzeug zur Durchführung des Verfahrens

IPC:

B 21 K 1/64

Die angehefteten Stücke sind eine richtige und genaue Wiedergabe der ursprünglichen Unterlagen dieser Patentanmeldung.

München, den 02. Juni 2005

Deutsches Patent- und Markenamt

Der Präsident

Im Auftrag

Stremme

Verfahren zur Herstellung von Hohlkörperelementen, Hohlkörperelement, Zusammenbauteil sowie Folgeverbundwerkzeug zur Durchführung des Verfahrens

Die vorliegende Erfindung betrifft ein Verfahren zur Herstellung von Hohlkörperelementen, wie Mutterelemente, zur Anbringung an üblicherweise
aus Blech bestehenden Bauteilen, insbesondere zur Herstellung von
Hohlkörperelementen mit einem zumindest im Wesentlichen quadratischen oder rechteckigen Außenumriss, durch Ablängung einzelner Elemente von einem in Form einer Profilstange oder eines Wickels vorliegenden Profil nach vorheriger Stanzung von Löchern in das Profil, gegebenenfalls mit anschließender Ausbildung eines Gewindezylinders unter Anwendung eines Folgeverbundwerkzeugs mit mehreren Arbeitsstationen, in
denen jeweilige Bearbeitungen durchgeführt werden. Weiterhin betrifft die
vorliegende Erfindung Hohlkörperelemente, die nach dem Verfahren hergestellt werden, Zusammenbauteile, die aus einem Hohlkörperelement
und einem Blechteil bestehen sowie ein Folgeverbundwerkzeug zum
Durchführen des Verfahrens.

Ein Verfahren der eingangs genannten Art sowie entsprechende Hohlkörperelemente und Zusammenbauteile sind beispielsweise aus der WO 01/72449 A2 bekannt. Ein ähnliches Verfahren ist auch aus der US-A-4,971,499 bekannt. Rechteckige Hohlkörperelemente werden auch von der Firma Profil Verbindungstechnik GmbH & Co. KG in Deutschland unter der Bezeichnung HI-Rechteckmutter verkauft.

Aufgabe der vorliegenden Erfindung ist es, das Verfahren der eingangs genannten Art so weiter zu entwickeln, dass Hohlkörperelemente, insbesondere rechteckige Mutterelemente, preisgünstig hergestellt werden können, ohne die verwendete Werkzeuge so zu belasten, dass sie frühzeitig versagen. Ferner sollten die Hohlkörperelemente mechanische Eigenschaften haben, die denen der Hohlkörperelemente, die nach der WO 01/72449 A2 oder nach dem deutschen Gebrauchsmuster 202 05 192.7 herstellt werden, mindestens ebenbürtig sind, beispielsweise eine hohe Ausziehkraft, eine ausgezeichnete Verdrehsicherheit und die darüber hinaus eine herabgesetzte Kerbwirkung zeigen, so dass die Ermüdungseigenschaften von Zusammenbauteilen, bestehend aus einem üblicherweise aus Blech bestehenden Bauteil und an diesem angebrachte Hohlkörperelemente, auch unter dynamischen Lasten verbessert werden.

Die erfindungsgemäße Aufgabe wird durch ein Verfahren der eingangs genannten Art gelöst, das durch die folgenden Schritte gekennzeichnet ist:

- a) dass in einem ersten Schritt ausgehend von einem im Querschnitt rechteckigen Profil ein Durchsetzvorgang durchgeführt
 wird, der zu einer zylindrischen Vertiefung an einer ersten
 Breitseite des Profils und einem hohlzylindrischen Vorsprung
 an einer zweiten der ersten Breiteseite gegenüber liegenden
 Breitseite des Profils führt, der von einer ringförmigen Vertiefung umgeben ist,
- b) dass in einem zweiten Schritt ein zwischen dem Boden der zylindrischen Vertiefung und dem Boden des hohlzylindrischen Vorsprungs verbleibender Steg zur Ausbildung eines durchgehenden Loches durchlocht bzw. herausgestanzt wird,

c)

dass in einem dritten Schritt, der gegebenenfalls mit dem Schritt b) kombiniert werden kann, der hohlzylindrische Vorsprung an seinem freien Stirnende zur Ausbildung eines auf der Außenseite hinterschnittenen Stanzabschnitts abgeflacht bzw. gequetscht wird, wonach die Hohlkörperelemente vom Profil abgetrennt und gegebenenfalls mit Gewinde versehen werden.

Ferner sieht die vorliegende Erfindung ein Hohlkörperelement zur Anbringung an einem üblicherweise aus Blech bestehenden Bauteil vor, insbesondere mit einem zumindest im Wesentlichen quadratischen oder rechteckigen Außenumriss, mit einer ersten Breitseite und einer zweiten Breitseite, mit einem eine Hinterschneidung aufweisenden Stanzabschnitt, der über die zweite Breitseite vorsteht und von einer Ringvertiefung in der zweiten Breitseite umgeben ist sowie mit einem Loch, das sich von der ersten Breitseite durch den Stanzabschnitt hindurch erstreckt, wobei das Loch gegebenenfalls einen Gewindezylinder aufweist, dadurch gekennzeichnet dass Verdrehsicherungsmerkmale außen am hohlzylindrischen Vorsprung und/oder innen im Bereich der Ringvertiefung um den hohlzylindrischen Vorsprung herum ausgebildet werden.

Bei dem erfindungsgemäßen Verfahren weist das verwendete Profil somit einen rechteckigen Querschnitt auf und ist daher preisgünstig herzustellen. Durch die Schritte a), b) und c) gelingt es, Hohlkörperelemente herzustellen, ohne dass die verwendeten Werkzeuge einem hohen Verschleiß unterliegen und ohne dass die verwendeten Stempel vorzeitig versagen. Das in der deutschen Patentanmeldung 10204589.5 beanspruchte Verfahren sowie die entsprechende dort beschriebenen Folgeverbundwerkzeuge eignen sich bei entsprechender Ausführung der für die Schritte a), b) und c) verwendeten Stempel und Matrizen ohne weiteres für die Durch-

führung des vorliegenden Verfahrens bzw. zur Herstellung der entsprechenden Hohlkörperelemente.

Die Herstellung in Arbeitsschritten, bei denen für ein Profil immer zwei Bearbeitungen in einer Station durchgeführt werden, führt dazu, dass die Produktivität der Herstellungsanlage verdoppelt wird, ohne dass der Aufwand für die Herstellung des Folgeverbundwerkzeugs in einem Ausmaß steigt, das nicht mehr vertretbar wäre. Zwar wird durch die Verdopplung von Arbeitselementen ein gewisser Mehraufwand erforderlich, dieser lässt sich aber über entsprechende Fertigungszahlen ohne weiteres relativ früh amortisieren.

Es ist zwar möglich, in einem Folgeverbundwerkzeug mehrere Profile parallel zu bearbeiten, dies ist allerdings nicht unbedingt vorzuziehen, da bei auftretenden Problemen mit einem Profil bzw. mit der Bearbeitung eines Profils, das gesamte Folgeverbundwerkzeug bis zur Behebung der Störung angehalten werden muss, wodurch erhebliche Produktionseinbußen entstehen könnten. Nichtsdestotrotz könnte die vorliegende Erfindung unter Anwendung eines Folgeverbundwerkzeugs realisiert werden, das mehrere Profile gleichzeitig bearbeitet.

Besonders bevorzugte Ausführungen des erfindungsgemäßen Verfahrens, der erfindungsgemäßen Hohlkörperelemente, der erfindungsgemäßen Zusammenbauteile sowie des erfindungsgemäßen Folgeverbundwerkzeugs lassen sich den weiteren Patentansprüchen entnehmen.

Weitere Vorteile des erfindungsgemäßen Verfahrens, der erfindungsgemäßen Hohlkörperelemente sowie des erfindungsgemäß verwendeten Folgeverbundwerkzeug lassen sich den Figuren und der anschließenden Figurenbeschreibung entnehmen.

Die Figuren zeigen:

- Fig. 1 eine Ausführung eines Profils, das zum Zwecke der vorliegenden Erfindung in einem Folgeverbundwerkzeug entsprechend
 der Figur 2 verarbeitet wird, wobei die
- Fig. 2 eine in Bewegungsrichtung des Profils geschnittene Darstellung eines Folgeverbundwerkzeugs wiedergibt,
- Fig. 3 eine vergrößerte Darstellung des Folgeverbundwerkzeugs der Fig. 2 im Bereich der Arbeitsstationen,
- Fig. 4A-4E eine Darstellung der einzelnen Schritte der Herstellung eines erfindungsgemäßen Hohlkörperelements unter Anwendung des erfindungsgemäßen Verfahrens und des Folgeverbundwerkzeugs der Fig. 2 und 3,
- Fig. 5A-5D verschiedene Darstellungen des fertig gestellten erfindungsgemäßen Hohlkörperelements der Fig. 4A-4E, wobei Fig. 5A eine perspektivische Darstellung des erfindungsgemäßen Hohlkörperelements von unten zeigt, Fig. 5B eine Draufsicht auf das erfindungsgemäße Hohlkörperelement von oben, Fig. 5C eine Schnittzeichnung entsprechend der Schnittebene C-C bzw. C'-C' der Fig. 5B und Fig. 5D eine vergrößerte Darstellung des Bereichs D der Fig. 5C,
- Fig. 6A-6E Darstellungen eines weiteren erfindungsgemäßen Hohlkörperelements, das eine leichte Abwandlung des Hohlkörperelements gemäß Fig. 5A-5D darstellt, wobei Fig. 6A eine Drauf-

sicht auf das Hohlkörperelement von oben zeigt, Fig. 6B eine Schnittzeichnung entlang der Schnittebene B-B der Fig. 6A, Fig. 6C eine Schnittzeichnung entsprechend der Schnittebene C-C der Fig. 6A wiedergibt und Fig. 6D und 6E perspektivische Darstellungen des Funktionselements von oben und unten sind und

Fig. 7A-7B die Anbringung des erfindungsgemäßen Hohlkörperelements an einem dünnen Blechteil bzw. einem dickeren Blechteil.

Fig. 1 zeigt einen Abschnitt eines länglichen Profils 1 mit einem rechteckigen Querschnitt, einer ersten Breitseite 2, einer zweiten Breitseite 3 und zwei Schmalseiten 7, 8. Die Längskanten 9 des Profils können wie gezeigt gerundet sind. Sie können aber auch eine andere Form haben, beispielsweise eine Fase oder eine rechtwinklige Form. Das Profil wird in einem Folgeverbundwerkzeug bearbeitet, um Hohlelemente, beispielsweise Mutterelemente mit im Wesentlichen rechteckiger oder quadratischer Form, herzustellen. Wenn die Hohlelemente als Mutterelemente realisiert werden sollen, muss ein Gewinde in das Loch des Hohlkörperelements eingeschnitten bzw. hergestellt werden. Dies erfolgt üblicherweise außerhalb des Folgeverbundwerkzeugs in einer gesonderten Maschine. Ferner besteht die Möglichkeit, das Gewinde erst nach Anbringung des Hohlkörperelements an ein Blechteil herzustellen, beispielsweise mittels einer Gewinde formenden oder Gewinde schneidenden Schraube. Ferner ist es nicht notwendig, ein Gewinde im Hohlkörperelement vorzusehen, sondern die Lochung des Hohlkörperelements könnte als glatte Bohrung zur drehbaren Lagerung einer Welle oder als Steckaufnahme zur Aufnahme eines Steckstifts dienen.

Ein erstes Folgeverbundwerkzeug 10, das zur Herstellung von Hohlkörperelementen aus dem Profil 21 der Fig. 1 oder einem ähnlichen Profil dient und für sich in der deutschen Patentanmeldung 102004004589.5 beansprucht ist, ist in Fig. 2 im Längsschnitt gezeigt, wobei der Längsschnitt durch die Mitte des Profils vorgenommen ist.

Man sieht aus Fig. 2 eine untere Platte 12, die üblicherweise an einem Pressentisch befestigt wird, entweder direkt oder indirekt über eine nicht gezeigte Zwischenplatte. Die untere Platte 12 trägt mehrere Säulen 14, vier in diesem Beispiel, von denen zwei ersichtlich sind, nämlich die zwei Säulen, die hinter der Schnittebene liegen. Oberhalb der Säulen befindet sich eine weitere Platte 16, die üblicherweise an der oberen Werkzeugplatte der Presse oder an einer Zwischenplatte der Presse befestigt ist. An der Platte 16 sind Führungen 18 angeschraubt (beispielsweise mittels Schrauben, die hier nicht dargestellt sind), wobei die Führungen 18 ausgelegt sind, um entsprechend der Hubbewegung der Presse auf und ab an den Säulen 14 zu gleiten. Das Profil 1 wird in Pfeilrichtung 20 bei jedem Hub der Presse vorgeschoben, und zwar um einen Betrag, der die doppelte Längsabmessung L der einzelnen aus dem Profil hergestellten Hohlkörperelemente beträgt. Man merkt, dass in der Darstellung gemäß Fig. 2 und 3 das Profil 1 mit der zweiten Breitseite 3 nach oben gerichtet durch das Folgeverbundwerkzeug geführt wird. Wie aus der vergrößerten Darstellung des mittleren Bereichs des Folgeverbundwerkzeugs aus der Fig. 3 ersichtlich ist, umfasst das Folgeverbundwerkzeug in diesem Beispiel vier Arbeitsstationen A, B, C, D, in denen jeweils zwei Bearbeitungen bei jedem Hub der Presse gleichzeitig vorgenommen werden.

In der ersten Station A wird als erster Schritt a) ein so genannter Durchsetzvorgang durchgeführt.

In der zweiten Arbeitsstation B wird in einem zweiten Schritt b) ein Lochvorgang und in der dritten Arbeitsstation C in einem dritten Schritt c) ein Quetsch- bzw. Abflachvorgang durchgeführt. Schließlich wird in der vierten Arbeitsstation D ein Abschlagstempel 22 verwendet, um zwei Hohlkörperelemente bei jedem Hub der Presse vom Profil 1 abzutrennen. Dabei schneidet die rechte Seite des Stempels das Profil an einer Trennstelle durch, die sich hinter dem ersten Hohlkörperelement, d.h. dem Hohlkörperelement 21 in Fig. 3 befindet sowie an einer Trennstelle hinter dem zweiten Hohlkörperelement 21'. Das Folgeverbundwerkzeug ist in den Fig. 2 und 3 in der geschlossenen Stellung gezeigt, in der die zwei Hohlkörperelemente 21 und 21' gerade vom Profil 1 abgetrennt wurden. Kurz vor dem Abschlagvorgang berührt die vordere Seite des Mutterelements 21 die Schrägfläche 24 der rechtwinkligen Nocke 27, die von einer Schraubendruckfeder 26 nach unten gedrückt wird. Der Vorschub des Profilstreifens drückt daher über die schräg gestellte Fläche der Nocke 24 diese nach oben, wodurch die Feder 26 komprimiert wird. Nach erfolgter Abtrennung des ersten Hohlkörperelements 21 drückt die Nocke 24 auf der rechten Seite des Mutterelements 21 und kippt dieses in die geneigte Stellung, die auf der rechten Seite der Fig. 3 ersichtlich ist. Das Mutterelement 21 fällt dann auf eine Rutsche aus dem Arbeitsbereich des Folgeverbundwerkzeugs und kann beispielsweise in der Position gemäß Fig. 2 dann seitlich aus dem Folgeverbundwerkzeug herausgeführt werden, beispielsweise über seine seitliche Rutsche unter der Einwirkung von Schwerkraft oder mit einem Druckluftstoß usw.

Das zweite Hohlkörperelement 21' fällt durch ein Loch 28 in der Abschlagmatrize 30 und anschließend durch entsprechende Bohrungen 32, 34, 36 und 38 hindurch, die in Platten 40, 42, 44 und 12 ausgebildet sind.

Die Bohrungen bzw. das Loch 38 in der Platte 12 können mit einer weiteren Bohrung (nicht gezeigt) im Pressentisch oder in einer etwaig vorgesehenen Zwischenplatte zwischen der Platte 12 und dem Pressentisch führen, die die Herausführung der Mutterelemente wie 21' ermöglicht, beispielsweise unter der Einwirkung der Schwerkraft oder über eine seitliche Rutsche oder unter Anwendung eines Druckluftstoßes.

Bei der konkreten, in Fig. 3 gezeigten Konstruktion, ist die Platte 44 über nicht dargestellte Schrauben mit der Platte 12 verschraubt. Die Platte 42 besteht aus mehreren Plattenabschnitten, die den jeweiligen Arbeitsstationen zugeordnet sind, die über weitere, nicht dargestellte Schrauben (da außerhalb der Ebene der Schnittdarstellung angeordnet) mit der durchgehenden Platte 44 verschraubt sind. Die durchgehende Platte 40 ist ebenfalls mit den Abschnitten der Platte 42 verschraubt, und zwar auch hier mittels nicht dargestellter Schrauben. Oberhalb der durchgehenden Platte 40 befinden sich wiederum Plattenabschnitte 50, 52, 54, 56, 58 und 60, die wiederum mit der Platte 40 verschraubt sind. Die Platte 50 ist eine Abstützplatte, die eine untere Führung für das Profil 1 bildet, genauer gesagt für die erste Breitseite 2 des Profils 1, die in dieser Darstellung die Unterseite bildet. Die Plattenabschnitte 52, 54 und 56 sind den Arbeitsstationen A, B und C zugeordnet, während die Plattenabschnitte 58 und 60, die eine Aufnahme für die Abschlagmatrize 30 bilden, der Arbeitsstation D zugeordnet sind.

An mehreren Stellen zwischen der durchgehenden Platte 44 und den Plattenabschnitten 50, 52, 54, 56, 58 und 60 befinden sich kräftige Schraubendruckfedern 62, von denen nur die eine Feder in den Fig. 2 und 3 zu sehen ist, da die anderen außerhalb der Schnittebene angeordnet sind. Diese Federn, wie 62, haben die Funktion, beim Öffnen der Presse die Plattenabschnitte 50 bis 60 anzuheben, wodurch auch der Profilstrei-

fen 1 angehoben wird und hierdurch aus dem Arbeitsbereich der Durchsetzstempel 64, 66 gelangt, wodurch das Profil um den doppelten Betrag der Länge L der Hohlkörperelemente 21 weiter vorgeschoben werden kann.

Die Trennebene des Folgeverbundwerkzeugs befindet sich oberhalb des Profils 1 und ist mit T in Fig. 3 bezeichnet.

Oberhalb des Profilstreifens befinden sich wiederum Plattenabschnitte 72, 74, 76, 78 und 80, die mit einer durchgehenden Platte 82 verschraubt sind – auch hier über nicht dargestellte Schrauben. Ferner ist die Platte 82 mit der oberen Platte 16 verschraubt.

Bei Öffnung der Presse werden somit die Platten 72, 74, 76, 78 und 80 mit der Platte 22 und der oberen Platte 16 angehoben, und zwar so weit, dass die zwei Lochstempel 84, 86 und die zwei oberen Abflachstempel 88 und 90, wie auch die Matrizen 92 und 94, die mit den Durchsetzstempel 64, 66 zusammenarbeiten und auch der Abschlagstempel 22 außer Eingriff mit dem Profilstreifen 1 gelangen. Durch diese Bewegung, gekoppelt mit der Anhebung des Profilstreifens durch die Feder 62, wird es ermöglicht, dass der Profilstreifen 1 um die doppelte Längenabmessung der Hohlkörperelemente 21 weiter geschoben werden kann in Vorbereitung für den nächsten Hub der Presse.

Man sieht, dass die Arbeitsstationen A und B eine Längenabmessung, d.h. in Bewegungsrichtung 20 des Profilstreifens 1, aufweisen, die der vierfachen Längenabmessung eines Hohlkörperelements 21 entspricht. Die Arbeitsstation C hat eine Längenabmessung, die der dreifachen Längenabmessung eines Hohlkörperelementes 21 entspricht, während die Arbeitsstation D eine Längenabmessung aufweist, die ein mehrfaches der

Längenabmessung des Hohlkörperelements 21, in diesem Beispiel das sechsfache, aufweist. Dies bedeutet, dass so genannte leere Stellen wie 98 vorhanden sind, an denen keine Bearbeitung des Profilstreifens 1 stattfindet. Diese leeren Stellen schaffen aber Platz, der notwendig ist, um die einzelnen Bestandteile der verwendeten Werkzeuge ausreichend stabil auszubilden und abzustützen.

Ferner sieht man aus Fig. 3, dass die Lochmatrizen 100, 102, die mit den Lochstempeln 84, 86 zusammen arbeiten, eine mittlere Bohrung 104 bzw. 106 aufweisen, die mit weiteren Bohrungen 108, 110 in Einsatzhülsen 112, 114 ausgerichtete sind, die es ermöglichen, die Stanzbutzen 116, 118 zu entsorgen. Diese fallen nämlich durch die Bohrung 108, 114, die im Durchmesser größer sind als die Bohrung 104, 106 und durch die weiteren Bohrungen 120, 122 in der Platte 12 nach unten und können über entsprechende Passagen im Pressentisch oder in einer etwaig vorgesehenen Zwischenplatte in der gleichen Art und Weise wie die Mutterelemente 21' entsorgt bzw. abgeführt werden.

Obwohl hier nicht gezeigt, befinden sich links und rechts des Profilstreifens 1, d.h. hinter der Ebene der Zeichnung vor der Ebene der Zeichnung der Fig. 3, Führungselemente, die beispielsweise durch Wangen der Platten 50, 52, 54, 56 und 58 gebildet sein können, die dafür sorgen, dass der Profilstreifen der gewünschten Bewegungsbahn durch das Folgeverbundwerkzeug folgt. Es kann ein geringfügiger seitlicher Freiraum vorgesehen werden, der eine etwaige Ausdehnung des Profilstreifens in Querrichtung zulässt.

Die konstruktiven Einzelheiten der Durchsetzstempel 64, 66, der damit zusammen arbeitenden Matrizen 92, 94, der Lochstempel 84, 86 der damit zusammen wirkenden Matrizen 100, 102 und der Abflachstempel 88, 90 gehen aus den Zeichnungen der Fig. 2 und 3 hervor und werden im Übrigen genauer in den nachfolgenden Zeichnungen näher erläutert.

Mittels der Folgeverbundwerkzeuge der Fig. 2, 3 wird ein Verfahren zum Herstellen von Hohlkörperelementen, wie Mutterelemente, zur Anbringung an üblicherweise aus Blech bestehenden Bauteilen realisiert. Das Verfahren dient der Herstellung von Hohlkörperelementen 21, 21', beispielsweise mit einem zumindest im Wesentlichen quadratischen oder rechteckigen Außenumriss, durch Ablängung einzelner Elemente von einem in Form einer Profilstange oder eines Wickels vorliegenden Profil 1 nach vorheriger Stanzung von Löchern 23 in das Profil 1, gegebenenfalls mit anschließender Ausbildung eines Gewindezylinders unter Anwendung eines Folgeverbundwerkzeugs mit mehreren Arbeitsstationen A, B, C, D, in denen jeweilige Bearbeitungen durchgeführt werden. Das Verfahren zeichnet sich dadurch aus, dass in jeder Arbeitsstation A, B, C, D für das Profil 1 bzw. für mehrere nebeneinander angeordnete Profile jeweils zwei Bearbeitungen für jeden Hub des Folgeverbundwerkzeugs gleichzeitig durchgeführt werden. D.h., es ist grundsätzlich möglich, mehrere Profile 1 nebeneinander und zeitgleich im gleichen Folgeverbundwerkzeug zu bearbeiten, vorausgesetzt, die entsprechende Anzahl von einzelnen Werkzeugen, wie Durchsetzstempel, Lochstempel und die zugeordneten Matrizen, ist vorhanden.

In der letzten Arbeitsstation werden mittels eines Abschlagstempels 22 von dem bzw. von jedem Profil 1 jeweils zwei Hohlkörperelemente 21, 21' abgetrennt.

Der Abschlagstempel 22 durchtrennt das Profil an einer ersten Stelle hinter einem ersten Hohlkörperelement 21 und an einer zweiten Stelle hinter einem zweiten Hohlkörperelement 21', wobei das zweite Hohlkörperelement 21' in Richtung der Bewegung des Abschlagstempels quer zur

Längsrichtung des Profils 1 aus der Bewegungsbahn des Profils herausgeführt wird. Das erste Hohlkörperelement 21 wird in der Abschlagstation des Folgeverbundwerkzeugs zumindest vorerst im Allgemeinen in Richtung der Bewegungsbahn des Profils herausgeführt.

Jede Arbeitsstation des Folgeverbundwerkzeugs weist eine Länge in Laufrichtung des Profils auf, die dem Dreifachen oder dem Vierfachen oder dem Mehrfachen der Längsabmessung eines fertigen Hohlkörperelements 21, 21' entspricht.

Bei der gezeigten Ausführung des Folgeverbundwerkzeugs wird eine gefederte Nocke 27 mit einer zur Bewegungsbahn des Profils schräggestellten Nockenfläche 24 von der vorderen Kante des vorderen Endes des Profils am Ausgangsende der letzten Arbeitsstation entgegen der Kraft einer Federeinrichtung 26 vorgespannt. Nach Abtrennung des am vorderen Ende des Profils ausgebildeten Hohlkörperelements 21 wird dieses von der gefederten Nocke nach unten gekippt, um die Entfernung aus dem Folgeverbundwerkzeug zu erleichtern.

Bei der Ausführung gemäß Fig. 2 und 3 arbeiten die unteren Stempel 64, 66 zur Durchführung des Durchsetzvorgangs und die Lochstempel 84, 86 zur Durchführung des Lochvorgangs von entgegengesetzten Seiten des Profils 1 auf diesem. Bei der Durchführung des Abflachvorgangs wird mit jeweiligen Abflachstempeln 88, 90 von oben auf den Profilstreifen 1 eingewirkt, während der Streifen im Bereich der Lochung von einem Plattenabschnitt 56 abgestützt wird. Stattdessen wäre es auch möglich, Abstützdorne am Plattenabschnitt 56 an den Stellen der Löcher im Profilstreifen anzuordnen, falls es notwendig erscheint, das Profilmaterial in diesem Bereich während des Abflachvorgangs abzustützen, beispielsweise um

eine scharfkantigere Ausbildung der Stirnseite des hohlen Stanzabschnitts zu erreichen.

Es werden nun einige Beispiele angegeben, die die Herstellung von bestimmten Hohlkörperelementen beschreiben.

Bezug nehmend auf die Fig. 4A – 4E und die Fig. 5A -5D wird nunmehr das erfindungsgemäße Verfahren zum Herstellen von Hohlkörperelementen, wie Mutterelemente, beschrieben, die zur Anbringung an üblicherweise aus Blech bestehenden Bauteilen ausgelegt sind. Insbesondere geht es hier um ein Verfahren zur Herstellung von Hohlkörperelementen 200 mit einem zumindest im Wesentlichen quadratischen oder rechteckigen Außenumriss 202 durch Ablängung einzelner Elemente von einem in Form einer Profilstange (1, Fig. 1) oder eines Wickels vorliegenden Profils nach vorheriger Stanzung von Löchern 204 in das Profil, gegebenenfalls mit anschließender Ausbildung eines Gewindezylinders 206 unter Anwendung eines Folgeverbundwerkzeugs (Fig. 2, Fig. 3) mit mehreren Arbeitsstationen A, B, C und D, in denen jeweilige Bearbeitungen durchgeführt werden. Das Verfahren wird durch die folgenden Schritte gekennzeichnet:

In einem ersten Schritt, ausgehend von einem im Querschnitt rechteckigem Profil 1, Fig. 4A), wird ein Durchsetzvorgang unter Anwendung der Durchsetzmatrizen 92, 94, die von oben kommen, und der Durchsetzstempel 64, 66 durchgeführt. Der Durchsetzvorgang führt zu einer zylindrischen Vertiefung 208 an einer ersten Breitseite 2 des Profils 1 und einem hohlzylindrischen Vorsprung 210 an einer zweiten, der ersten Breiteseite 2 gegenüber liegenden Breitseite 3 des Profils, der von einer ringförmigen Vertiefung 212 umgeben ist, die in Fig. 4B gezeigt ist. Der Profilstreifen 1 wird beim Schließen der Presse bzw. des Folgeverbundwerkzeugs auf die ober-

halb des Plattenabschnitts 52 hervorstehenden Enden der Durchsetzstempel 14 gedrückt. Die hervorstehenden Enden der Durchsetzstempel haben eine zu der Form der zylindrischen Vertiefung 208, die in Fig. 4B gezeigt ist komplementäre Form. In ähnlicher Weise haben die Stirnenden der mit dem Durchsetzstempel zusammen arbeitenden Matrizen 92, 94 eine zu der des hohlzylindrischen Vorsprungs 210 und der diese umgebenden Ringvertiefung 212 gemäß Fig. 4B komplementäre Form.

- b) In einem zweiten Schritt wird ein zwischen dem Boden 214 der zylindrischen Vertiefung 208 und dem Boden 216 des hohlzylindrischen Vorsprungs 210 verbleibender Steg 218 beim Schließen der Presse bzw. des Folgeverbundwerkzeugs 10 mittels der Lochstempel 88, 90 zur Ausbildung des durchgehenden Loches 204 (Fig. 4C) durchlocht. Die Stanzbutzen werden wie erwähnt über die Bohrungen 104, 106 bzw. 108, 110 entsorgt.
- c) In einem dritten Schritt wird der hohlzylindrische Vorsprung 210 an seinem freien Stirnende 220 zur Ausbildung eines auf der Außenseite hinterschnittenen Stanzabschnitts 222 abgeflacht, wodurch die Stirnfläche 224 in Fig. 4D ausgebildet wird, die in einer Ebene parallel zu den Breitseiten 2 und 3 und senkrecht zur mittleren Längsachse 226 des Lochs 204 steht. Danach können die Hohlkörperelemente in der Arbeitsstation D vom Profil abgetrennt und anschließend gegebenenfalls mit Gewinde 206 versehen werden, wie in Fig. 4E bzw. in der dazu identischen Fig. 5C gezeigt.

Der dritte Schritt könnte gegebenenfalls mit dem Schritt b) kombiniert werden.

Beim Durchsetzvorgang des Schrittes a) werden der Durchmesser der zylindrischen Vertiefung und der innere Durchmesser des hohlzylindrischen Vorsprungs zumindest im Wesentlichen gleich ausgeführt.

Ferner wird vorzugsweise beim Durchsetzvorgang des Schrittes a) oder beim Lochvorgang des Schritts b) oder beim Abflachvorgang des Schritts c) die Mündung 228 der zylindrischen Vertiefung 204 an der ersten Breitseite 3 des Profils mit einer gerundeten oder angefasten Einlaufkante 230 ausgeführt, die bei Verwendung des Elements den Gewindeauslauf bildet.

Beim Durchsetzvorgang des Schrittes a) oder beim Lochvorgang des Schrittes b) oder beim Abflachvorgang des Schrittes c) wird vorzugsweise auch die Mündung 232 des hohlzylindrischen Vorsprungs 204 an ihrem freien Ende mit einer gerundeten oder angefasten Auslaufkante 234 versehen, die beim fertig gestellten Element den Gewindeeinlauf bildet.

Bei der Durchlochung des Steges gemäß Schritt b) wird das Loch 204 mit einem Durchmesser erzeugt, der dem Durchmesser der zylindrischen Vertiefung 208 und dem inneren Durchmesser des hohlzylindrischen Vorsprungs 210 zumindest im Wesentlichen entspricht. Ferner wird beim Durchsetzvorgang des ersten Schrittes a) das freie Ende des hohlzylindrischen Vorsprungs 210 außen mit einer Fase 236 versehen. Außerdem wird bei diesem Durchsetzvorgang die Ringvertiefung 212 mit einem ringförmigen Bodenbereich 238 versehen, der zumindest in etwa in einer Ebene parallel zu der ersten und zweiten Breitseite 2, 3 des Profilstreifens steht, auf der radial inneren Seite mit einem zumindest im Wesentlichen gerundeten Übergang 240 in die Außenseite des hohlzylindrischen Vorsprungs 210 und auf der radial äußeren Seite in eine konusförmige Fläche 242 übergeht, die einen eingeschlossenen Konuswinkel im Bereich zwischen 60 bis 120°, vorzugsweise bei etwa 90° aufweist.

Der Übergang 243 vom ringförmigen Bereich 238 der Ringvertiefung 212 in die konusförmige Fläche 242 wird gerundet, wie auch der Auslauf 245 der Konusfläche der Ringvertiefung 212 in die zweite Breitseite 3 des Profils. Die Konusfläche 242 kann sich in der Praxis so darstellen, dass der gerundete Übergang 243 tangential in den gerundeten Auslauf 245 übergeht.

Bei Herstellung der Hinterschneidung 244 wird diese durch einen zylindrischen Teil des hohlzylindrischen Vorsprungs 210 gebildet, der in etwa in der Höhe der zweiten Breitseite 3 des Profils 1 in einen bei Durchführung des Schrittes c) verdickten Bereich 246 des hohlzylindrischen Vorsprungs 210 übergeht, der zumindest im Wesentlichen über die zweite Breitseite 3 des Profils vorsteht.

Der verdickte Bereich 246 des hohlzylindrischen Vorsprungs 210 wird zumindest im Wesentlichen konusförmig ausgeführt und divergiert von der ersten und zweiten Breitseite weg, wobei der Konuswinkel des verdickten Bereichs des hohlzylindrischen Vorsprungs benachbart zur Stirnseite 224 im Bereich zwischen 30° und 70°, vorzugsweise bei etwa 50° liegt.

Nach dem Abflachungsvorgang endet der hohlzylindrische Vorsprung 219 an seinem freien Ende außen in einer möglichst scharfkantigen Stanzkante 250.

Wie insbesondere aus den Fig. 5A und 5B ersichtlich, ist die Ringvertiefung mit einem Außendurchmesser ausgeführt, der nur etwas kleiner ist als die kleinste Querabmessung des in Draufsicht rechteckigen Hohlkörperelements, wodurch die Ringvertiefung 212 mit der zweiten Breitseite 3 des Profils 1 an den engsten Stellen in der Ebene der zweiten Breitseite 3

verbleibende Stege 284, 286 im Bereich von 0,25 bis 1 mm, vorzugsweise von etwa 0,5 mm bildet.

In einem alternativen Verfahren, das zu dem Hohlkörperelement nach den Fig. 6A bis 6E führt, wird beim Durchsetzvorgang gemäß Schritt a) durch die Anwendung entsprechend gestalteter Durchsetzstempel 64, 66 und Durchsetzmatrizen 92, 94 auf der ersten Breitseite 2 des Profils um die zylindrische Vertiefung 208 herum eine ringförmige Erhebung 260 ausgebildet, die beispielsweise zumindest im Wesentlichen ein Materialvolumen darstellt, das dem Volumen der Ringvertiefung 212 um den hohlzylindrischen Vorsprung herum entspricht. Bei diesem Ausführungsbeispiel ist der Durchmesser der zylindrischen Vertiefung 208 größer als der Innendurchmesser des hohlzylindrischen Vorsprungs 210. Ferner endet das Gewinde 206 in einem konischen Bereich 262 eines Stufenloches 264, das in diesem Beispiel gegebenenfalls anstelle eines gerundeten Gewindeauslaufs verwendet werden kann (was auch bei der Ausführung gemäß Fig. 4A bis 4C bzw. Fig. 5A bis 5D möglich wäre).

Der Boden der Ringvertiefung ist in dieser Ausführungsform allein durch einen gerundeten Übergang 243 vom hohlzylindrischen Vorsprung 210 in die Konusfläche 242 gebildet, was auch bei der Ausführung gemäß Fig. 4A bis 4E bzw. Fig. 5A bis 5D möglich wäre.

Beim Durchsetzvorgang gemäß Schritt a) werden, wie in Fig. 5A und Fig. 6E ersichtlich, durch entsprechende Profilierung der Durchsetzstempel 9, 94 Verdrehsicherungsmerkmale 272 außen am hohlzylindrischen Vorsprung 210 bzw. innen im Bereich der Ringvertiefung 212 um den hohlzylindrischen Vorsprung 210 herum ausgebildet.

Diese Verdrehsicherungsmerkmale können (wie gezeigt) durch Rippen 272 und/oder Nuten (nicht gezeigt) an der radial äußeren Seite des hohlzylindrischen Vorsprungs 210 gebildet werden. Diese Rippen 272 erstrecken sich in axialer Richtung 226 und überbrücken die Hinterschneidung 244 des hohlzylindrischen Vorsprungs 210. Sie haben eine radiale Breite, die zumindest im Wesentlichen im Bereich zwischen 40 % und 90 % der maximalen radialen Tiefe der Hinterschneidung entspricht.

Es entsteht somit ein Hohlkörperelement 200 zur Anbringung an einem üblicherweise aus Blech bestehenden Bauteil 280 (Fig. 7A bzw. Fig. 7B) mit einem zumindest im Wesentlichen quadratischen oder rechteckigen Außenumriss 202, mit einer ersten Breitseite 2 und einer zweiten Breitseite 3, mit einem eine Hinterschneidung 244 aufweisenden Stanzabschnitt 246, der über die zweite Breitseite vorsteht und von einer Ringvertiefung 212 in der zweiten Breitseite umgeben ist sowie mit einem Loch 204, das sich von der ersten Breitseite 2 durch den Stanzabschnitt 246 hindurch erstreckt, wobei das Loch gegebenenfalls einen Gewindezylinder 206 aufweist und das Hohlkörperelement sich dadurch auszeichnet, dass Verdrehsicherungsmerkmale 272 außen am hohlzylindrischen Vorsprung 210 und/oder innen im Bereich der Ringvertiefung 212 um den hohlzylindrischen Vorsprung 210 herum ausgebildet werden.

Das Hohlkörperelement zeichnet sich ferner dadurch aus, dass die zweite Breitseite 3 radial außerhalb der Ringvertiefung 212 in einer Ebene liegt, d.h. abgesehen von etwaigen Rundungen oder Fasen an den Übergängen in die Seitenflanken des Hohlkörperelements, und somit keine Balken, Nuten oder Hinterschneidungen im Bereich außerhalb der Ringvertiefung aufweist.

Die Ringvertiefung 212 ist mit einem Außendurchmesser ausgeführt, der nur etwas kleiner ist als die kleinste Querabmessung des in Draufsicht rechteckigen Hohlkörperelements, wodurch die Ringvertiefung mit der zweiten Breitseite 3 des Profils an den engsten Stellen 284, 286 in der Ebene der zweiten Breitseite verbleibende Stege im Bereich von 0,25 bis 1 mm, vorzugsweise von etwa 0,5 mm bildet.

Die Fig. 7A und 7B zeigen wie ein und dasselbe erfindungsgemäße Element 200 gemäß Fig. 5A bis 5D mit einem dünneren Blechteil (Fig. 7A) von beispielsweise 0,7 mm Dicke und mit einem dickeren Blechteil (Fig. 7B) von beispielsweise 1,85 mm Dicke verwendet werden kann. Das Blech-material füllt nach der Verpressung mittels einer Matrize die gesamte Ringvertiefung 212 aus und liegt an der vollen Fläche der Ringvertiefung und der Verdrehsicherungsmerkmale 272 im Bereich der Hinterschneidung an. In beiden Fällen erfolgt daher eine gute Abdeckung mit den Verdrehsicherungsrippen 272 und daher eine gute Verdrehsicherung zwischen dem Hohlkörperelement 200 und dem Blechteil 280. Der Stanzabschnitt 246, der in diesen Beispielen zumindest im Wesentlichen nicht verformt wird, wird selbststanzend in das Blechteil eingebracht. Die abgeflachte Stirnseite 224 des Stanzabschnitts 246 liegt bei dünnen Blechen (wie in Fig. 7A gezeigt) in der Höhe der Unterseite des Blechteils und bei dickeren Blechteilen (Fig. 7B) oberhalb der Unterseite des Blechteils (d.h. die dem Körperteil des Hohlkörperelements abgewandte Seite des Blechteils). In beiden Fällen liegt um den Stanzabschnitt herum eine Ringvertiefung 282 vor, die in ihrer Form durch die konkrete Form der komplementär gestalteten Matrize bei der selbststanzenden Anbringung des Hohlkörperelements in einer Presse oder durch einen Roboter oder in einem C-Gestell vorgegeben ist. Dabei weist die Matrize wie bei der selbststanzenden Anbringung von Befestigungselementen üblich eine mittlere Bohrung auf, durch die der entstehende Stanzbutzen entsorgt wird. Obwohl die

erfindungsgemäßen Hohlkörperelemente selbststanzend ausgeführt sind, können sie dennoch in vorgelochten Blechteilen verwendet werden. Mit einer zweiten Ausführung des erfindungsgemäßen Hohlkörperelements kann ein weiterer Dickebereich von Blechteilen, beispielsweise 1,85 bis 3 mm, abgedeckt werden. Es muss lediglich der Stanzabschnitt etwas länger ausgeführt werden.

Da die in Draufsicht quadratischen Hohlkörperelemente so angebracht werden, dass die zweite Breitseite 3 direkt an der Oberseite des Blechteils 280 anliegt, sich jedoch nicht oder im Wesentlichen nicht in das Blechteil eingräbt, ist eine Kerbwirkung nicht zu befürchten, so dass sich ein gutes Ermüdungsverhalten dank eines guten Ermüdungswiderstands auch bei dynamischen Lasten ergibt. Obwohl die Hohlkörperelemente in Draufsicht quadratisch sind, ist an sich keine besondere Orientierung der Matrize gegenüber dem jeweils verwendeten Setzkopf erforderlich da der Stanzabschnitt in Draufsicht kreisrund und daher orientierungsfrei ist. Es muss nur dafür gesorgt werden, dass der Setzkopf und die Matrize koaxial zueinander und zu der Längsachse 226 des Hohlkörperelements liegen. Bei Anbringung eines weiteres Bauteils an einem Zusammenbauteil gemäß Fig. 7A oder 7B wird das weitere Bauteil üblicherweise unten am Blechteil durch eine Schraube (nicht gezeigt) befestigt, die von unten kommend in das Gewinde eingeschraubt wird. Hierdurch wird durch Anziehen der Schraube die Verbindung zwischen dem Hohlkörperelement 200 und dem Blechteil verstärkt.

Ferner ist darauf hinzuweisen, dass Verdrehsicherungsrippen denkbar wären, die in radialer Richtung die Ringvertiefung 212 überqueren bzw. diese überbrücken. Solche Verdrehsicherungsrippen können bündig mit der Breitseite 3 liegen oder vertieft innerhalb der Ringvertiefung vorliegen

(solche Verdrehsicherungsmerkmale sind in den Zeichnungen nicht gezeigt).

Obwohl die vorliegende Erfindung für die Herstellung von im Außenumriss rechteckigen oder quadratischen Elementen gedacht ist, könnte sie auch zur Herstellung von im Außenumriss polygonalen, ovalen oder kreisrunden Elementen oder von solchen mit einer anderen Form verwendet werden, sofern die verwendeten Werkzeuge ausgelegt sind, um aus dem Profilstreifen die erwünschte Umrissform herzustellen, beispielsweise durch die Verwendung von entsprechend gestalteten Stanzwerkzeugen.

Die Ausbildung der Ringvertiefung 212 muss nicht unbedingt gleichzeitig mit dem Durchsetzvorgang erfolgen, sondern könnte mit dem Lochvorgang oder mit dem Abflachvorgang kombiniert werden, d.h. die Lochstempel 84, 86 bzw. die Abflachstempel 88, 90 müssten in diesem Fall eine entsprechende Formgebung aufweisen.

Es nicht notwendig, die Hohlkörperelemente im Folgeverbundwerkzeug voneinander zu trennen, sondern das Profil kann nach Herstellung der allgemeinen Form der Hohlkörperelemente in Abschnitten oder in wieder aufgewickelter Form beibehalten bzw. verwendet werden, wobei eine Vereinzelung in einzelne Hohlkörperelemente erst dann stattfindet, wenn das Profil in einem Setzkopf zur Anbringung der Hohlkörperelemente an einem Bauteil verwendet wird.

Bei allen Ausführungsformen können als Beispiel für den Werkstoff des Profils und der daraus hergestellten Funktionselemente alle Materialien genannt werden, die im Rahmen der Kaltverformung die Festigungswerte der Klasse 8 gemäß ISO-Standard oder höher erreichen, beispielsweise eine 35B2-Legierung gemäß DIN 1654. Die so gebildeten Befestigungsele-

mente eignen sich u.a. für alle handelsüblichen Stahlwerkstoffe für ziehfähige Blechteile wie auch für Aluminium oder dessen Legierungen. Auch können Aluminiumlegierungen, insbesondere solche mit hoher Festigkeit, für das Profil bzw. die Funktionselemente benutzt werden, z.B. AlMg5. Auch kommen Profile bzw. Funktionselemente aus höherfesten Magnesiumlegierungen wie bspw. AM50 in Frage.

Patentansprüche

- 1. Verfahren zum Herstellen von Hohlkörperelementen (200), wie Mutterelemente, zur Anbringung an üblicherweise aus Blech (280) bestehenden Bauteilen, insbesondere zur Herstellung von Hohlkörperelementen mit einem zumindest im Wesentlichen quadratischen oder rechteckigen Außenumriss (202), durch Ablängung einzelner Elemente von einem in Form einer Profilstange (1) oder eines Wickels vorliegenden Profils nach vorheriger Stanzung von Löchern (204) in das Profil, gegebenenfalls mit anschließender Ausbildung eines Gewindezylinders (206) unter Anwendung eines Folgeverbundwerkzeugs (10) mit mehreren Arbeitsstationen (A, B, C, D), in denen jeweilige Bearbeitungen durchgeführt werden, g e k e n n z e i c h n e t durch die folgenden Schritte:
 - a) dass in einem ersten Schritt ausgehend von einem im Querschnitt rechteckigen Profil (1) ein Durchsetzvorgang durchgeführt wird, der zu einer zylindrischen Vertiefung (208) an einer ersten Breitseite (2) des Profils und einem hohlzylindrischen Vorsprung (210) an einer zweiten der ersten Breiteseite (2) gegenüber liegenden Breitseite (3) des Profils führt, der von einer ringförmigen Vertiefung (212) umgeben ist,
 - b) dass in einem zweiten Schritt ein zwischen dem Boden (214) der zylindrischen Vertiefung und dem Boden (216) des hohlzylindrischen Vorsprungs (210) verbleibender Steg (218) zur Ausbildung eines durchgehenden Loches (204) durchlocht bzw. herausgestanzt wird,

- c) dass in einem dritten Schritt, der gegebenenfalls mit dem Schritt b) kombiniert werden kann, der hohlzylindrische Vorsprung (210) an seinem freien Stirnende zur Ausbildung eines auf der Außenseite hinterschnittenen Stanzabschnitts (222) abgeflacht bzw. gequetscht wird, wonach die Hohlkörperelemente (200) vom Profil abgetrennt und gegebenenfalls mit Gewinde (206) versehen werden.
- Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass beim Durchsetzvorgang des Schrittes a) der Durchmesser der zylindrischen Vertiefung (208) und der innere Durchmesser des hohlzylindrischen Vorsprungs (210) zumindest im Wesentlichen gleich ausgeführt werden.
- 3. Verfahren nach Anspruch 1 oder Anspruch 2,
 dadurch gekennzeichnet,
 dass beim Durchsetzvorgang des Schrittes a) oder beim Lochvorgang des Schritts b) oder beim Abflachvorgang des Schritts c) die
 Mündung der zylindrischen Vertiefung (208) an der ersten Breitseite
 des Profils mit einer gerundeten oder angefasten Einlaufkante (230)
 ausgeführt ist.
- 4. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass beim Durchsetzvorgang des Schrittes a) oder beim Lochvorgang des Schritts b) oder beim Abflachvorgang des Schritts c) die Mündung des hohlzylindrischen Vorsprungs (210) an ihrem freien Ende mit einer gerundeten oder angefasten Auslaufkante (234) versehen ist.

- 5. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass bei der Durchlochung des Steges gemäß Schritt b) ein Loch (204) mit einem Durchmesser erzeugt wird, der dem Durchmesser der zylindrischen Vertiefung (208) und dem inneren Durchmesser des hohlzylindrischen Vorsprungs (210) zumindest im Wesentlichen entspricht.
- 6. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass beim Durchsetzvorgang des ersten Schrittes a) das freie Ende des hohlzylindrischen Vorsprungs (210) außen mit einer Fase (236) versehen wird.
- 7. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass beim Durchsetzvorgang des ersten Schrittes a) die Ringvertiefung (212) mit einem ringförmigen Bodenbereich (238) versehen wird, der zumindest in etwa in einer Ebene parallel zu der ersten und zweiten Breitseite (2, 3) steht, auf der radial inneren Seite mit einem zumindest im Wesentlichen gerundeten Übergang (240) in die Außenseite des hohlzylindrischen Vorsprungs (210) und auf der radial äußeren Seite in eine konusförmige Fläche (242) übergeht.
- 8. Verfahren nach Anspruch 7,
 dadurch gekennzeichnet,
 dass die konusförmige Fläche (242) der Ringvertiefung (212) einen eingeschlossenen Konuswinkel im Bereich zwischen 60 und 120°,
 vorzugsweise bei etwa 90° aufweist.

- 9. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Übergang vom ringförmigen Bereich (240) der Ringvertiefung in die konusförmige Fläche (242) gerundet wird.
- 10. Verfahren nach einem der Ansprüche 7 bis 9, dadurch gekennzeichnet, dass der Auslauf der Konusfläche (242) der Ringvertiefung in die zweite Breitseite (3) des Profils gerundet wird.
- 11. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass bei Herstellung der Hinterschneidung (244) diese durch einen zylindrischen Teil des hohlzylindrischen Vorsprungs (210) gebildet ist, der in etwa in der Höhe der zweiten Breitseite (3) des Profils in einen bei Durchführung des Schrittes c) verdickten Bereich (222) des hohlzylindrischen Vorsprungs übergeht, der zumindest im Wesentlichen über die zweite Breitseite des Profils vorsteht.
- 12. Verfahren nach Anspruch 11,
 dadurch gekennzeich net,
 dass der verdickte Bereich (222) des hohlzylindrischen Vorsprungs
 zumindest im Wesentlichen konusförmig ausgeführt wird und von
 der ersten und zweiten Breitseite (2, 3) weg divergiert.
- 13. Verfahren nach Anspruch 12,
 dadurch gekennzeichnet,
 dass der Konuswinkel des verdickten Bereichs (222) des hohlzylindrischen Vorsprungs im Bereich zwischen 30° und 70°, vorzugsweise bei etwa 50° liegt.

- 14. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass nach dem Abflachungsvorgang der hohlzylindrische Vorsprung (210) an seinem freien Ende außen in einer möglichst scharfkantigen Stanzkante (250) endet.
- 15. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Ringvertiefung (212) mit einem Außendurchmesser ausgeführt ist, der nur etwas kleiner ausgeführt ist als die kleinste Querabmessung des in Draufsicht rechteckigen Hohlkörperelements (200), wodurch die Ringvertiefung mit der zweiten Breitseite des Profils an den engsten Stellen in der Ebene der zweiten Breitseite verbleibende Stege (284, 286) mit einer Breite im Bereich von 0,25 bis 1 mm, vorzugsweise von etwa 0,5 mm bildet.
- 16. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass beim Durchsetzvorgang gemäß Schritt a) auf der ersten Breitseite (2) des Profils um die zylindrische Vertiefung (208) herum eine ringförmige Erhebung (260) ausgebildet wird.
- 17. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass beim Durchsetzvorgang gemäß Schritt a) Verdrehsicherungsmerkmale (272) außen am hohlzylindrischen Vorsprung (210) und/oder innen im Bereich der Ringvertiefung (212) um den hohlzylindrischen Vorsprung (210) herum ausgebildet werden.

- 18. Verfahren nach Anspruch 17,
 dadurch gekennzeichnet,
 dass die Verdrehsicherungsmerkmale durch Rippen (272) und/oder
 Nuten an der radial äußeren Seite des hohlzylindrischen Vorsprungs (210) gebildet werden.
- 19. Verfahren nach Anspruch 17 oder 18, dadurch gekennzeich net, dass die Verdrehsicherungsmerkmale durch Rippen (272) gebildet werden, die sich in axialer Richtung erstrecken und die Hinterschneidung (244) des hohlzylindrischen Vorsprungs (210) überbrücken.
- 20. Verfahren nach Anspruch 19,
 dadurch gekennzeichnet,
 dass die Verdrehsicherungsrippen (272) eine radiale Breite haben,
 die zumindest im Wesentlichen im Bereich zwischen 40 % und 90%
 der maximalen radialen Tiefe der Hinterschneidung (244) entspricht.
- 21. Hohlkörperelement zur Anbringung an einem üblicherweise aus Blech bestehenden Bauteil (280) mit einem insbesondere zumindest im Wesentlichen quadratischen oder rechteckigen Außenumriss, mit einer ersten Breitseite (2) und einer zweiten Breitseite (3), mit einem eine Hinterschneidung (244) aufweisenden Stanzabschnitt (222), der über die zweite Breitseite (3) vorsteht und von einer Ringvertiefung (212) in der zweiten Breitseite umgeben ist sowie mit einem Loch (204), das sich von der ersten Breitseite (2) durch den Stanzabschnitt (222) hindurch erstreckt, wobei das Loch gegebenenfalls einen Gewindezylinder (206) aufweist,

dadurch gekennzeichnet, dass Verdrehsicherungsmerkmale (272) außen am hohlzylindrischen Vorsprung (210) und/oder innen im Bereich der Ringvertiefung (212) um den hohlzylindrischen Vorsprung (210) herum ausgebildet werden.

- 22. Hohlkörperelement nach Anspruch 21,
 dadurch gekennzeichnet,
 dass die Verdrehsicherungsmerkmale durch Rippen (272) und/oder
 Nuten an der radial äußeren Seite des hohlzylindrischen Vorsprungs (210) gebildet werden.
- 23. Hohlkörperelement nach Anspruch 21 oder 22, dadurch gekennzeich net, dass die Verdrehsicherungsmerkmale durch Rippen (272) gebildet werden, die sich in axialer Richtung erstrecken und die Hinterschneidung (244) des hohlzylindrischen Vorsprungs (210) überbrücken.
- 24. Hohlkörperelement nach Anspruch 23,
 dadurch gekennzeichnet,
 dass die Verdrehsicherungsrippen (272) eine radiale Breite haben,
 die zumindest im Wesentlichen im Bereich zwischen 40 % und 90%
 der maximalen radialen Tiefe der Hinterschneidung (244) liegt.
- 25. Hohlkörperelement nach einem der vorhergehenden Ansprüche, dadurch gekennzeich, te ichnet, dass die zweite Breitseite (3) radial außerhalb der Ringvertiefung (212) in einer Ebene liegt, d.h. abgesehen von etwaigen Rundungen oder Fasen an den Übergängen in die Seitenflanken des Hohlkör-

perelements, und somit keine Balken, Nuten oder Hinterschneidungen im Bereich außerhalb der Ringvertiefung (212) aufweist.

- 26. Hohlkörperelement nach einem der Ansprüche 21 bis 25, dadurch gekennzeichnet, dass die Mündung der zylindrischen Vertiefung (208) an der ersten Breitseite des Profils mit einer gerundeten oder angefasten Einlaufkante (230) ausgeführt ist.
- 27. Hohlkörperelement nach einem der Ansprüche 21 bis 26, dadurch gekennzeichnet, dass die Mündung des hohlzylindrischen Vorsprungs (210) an ihrem freien Ende mit einer gerundeten oder angefasten Auslaufkante (234) vorgesehen ist.
- 28. Hohlkörperelement nach einem der vorhergehenden Ansprüche 21 bis 27,
 dadurch gekennzeich einem ringförmigen Bodenbereich (238) versehen wird, der zumindest in etwa in einer Ebene parallel zu der ersten und zweiten Breitseite (2, 3) steht, auf der radial inneren Seite mit einem zumindest im Wesentlichen gerundeten Übergang (240) in die Außenseite des hohlzylindrischen Vorsprungs und auf der radial äußeren Seite in eine konusförmige Fläche (242) übergeht.
- 29. Hohlkörperelement nach einem der vorhergehenden Ansprüche 21 bis 28, dadurch gekennzeichnet,

dass die Ringvertiefung (212) mit einem Außendurchmesser ausgeführt ist, der nur etwas kleiner ist als die kleinste Querabmessung des in Draufsicht rechteckigen Hohlkörperelements (200), wodurch die Ringvertiefung mit der zweiten Breitseite des Profils an den engsten Stellen in der Ebene der zweiten Breitseite verbleibende Stege im Bereich von 0,25 und 1 mm, vorzugsweise von etwa 0,5 mm bildet.

- 30. Zusammenbauteil bestehend aus einem Hohlkörperelement (200) nach einem der vorhergehenden Ansprüche 20 bis 29, das an einem Bauteil, beispielsweise einem Blechteil (280) angebracht ist, wobei das Material des Bauteils bzw. des Blechteils (280) an der Oberfläche der Ringvertiefung (212) des Hohlkörperelements, an der Oberfläche der Verdrehsicherungsmerkmale (272) sowie an der Oberfläche der Hinterschneidung (244) des Stanzabschnitts (222) des Hohlkörperelements anliegt und eine Ringvertiefung (282) im Material des Bauteils bzw. des Blechteils (280) sich um den Stanzabschnitt herum befindet.
- 31. Zusammenbauteil nach Anspruch 30, dadurch gekennzeich net, dass die axiale Tiefe der Ringnut (282) im Blechteil in Abhängigkeit von der Länge des Stanzabschnitts und der Dicke des Blechteils (280) so gewählt ist, dass die Stirnseite (224) des Stanzabschnitts (222) nicht oder nur geringfügig über die Seite des Blechteils vorsteht, die dem Körper des Hohlkörperelements (200) abgewandt ist und im Bereich unterhalb der zweiten Breitseite (3) des Hohlkörperelements um die Ringvertiefung (212) des Hohlkörperelements herum vorliegt.

- 32. Zusammenbauteil nach Anspruch 30 oder 31, dadurch gekennzeich net, dass die zweite Breitseite (3) des Hohlkörperelements (200) im Bereich um die Ringvertiefung (212) des Hohlkörperelements (200) herum zumindest im Wesentlichen nicht oder höchstens geringfügig in das Blechmaterial eingedrückt ist.
- Folgeverbundwerkzeug zum Herstellen von Hohlkörperelementen 33. (200), wie Mutterelemente, zur Anbringung an üblicherweise aus Blech (280) bestehenden Bauteilen, insbesondere zur Herstellung von Hohlkörperelementen mit einem zumindest im Wesentlichen quadratischen oder rechteckigen Außenumriss (202), durch Ablängung einzelner Elemente von einem in Form einer Profilstange oder eines Wickels vorliegenden Profils (1) nach vorheriger Stanzung von Löchern (204) in das Profil, gegebenenfalls mit anschließender Ausbildung eines Gewindezylinders (206) unter Anwendung eines Folgeverbundwerkzeugs mit mehreren Arbeitsstationen (A, B, C, D), wobei in jeder Arbeitsstation für das Profil bzw. für mehrere nebeneinander angeordnete Profile jeweils zwei Bearbeitungen für jeden Hub des Folgeverbundwerkzeugs gleichzeitig durchgeführt werden, dadurch gekennzeichnet, dass in einer ersten Arbeitsstation (A) ein Durchsetzvorgang, in einer zweiten Arbeitsstation (B) ein Lochvorgang, in einer dritten Arbeitsstation (C) ein Abflachvorgang und in einer vierten Arbeitsstation (D) die Vereinzelung von jeweils zwei Hohlkörperelementen von dem bzw. von jedem Profil mittels des Abschlagstempels durchgeführt wird.

Zusammenfassung

Ein Verfahren zum Herstellen von Hohlkörperelementen, wie Mutterelemente, zur Anbringung an üblicherweise aus Blech bestehenden Bauteilen, insbesondere zur Herstellung von Hohlkörperelementen mit einem zumindest im Wesentlichen quadratischen oder rechteckigen Außenumriss, durch Ablängung einzelner Elemente von einem in Form einer Profilstange oder eines Wickels vorliegenden Profils nach vorheriger Stanzung von Löchern in das Profil, gegebenenfalls mit anschließender Ausbildung eines Gewindezylinders unter Anwendung eines Folgeverbundwerkzeugs mit mehreren Arbeitsstationen, zeichnet sich dadurch aus, dass in den Arbeitsstationen ein Durchsetzvorgang, ein Lochvorgang und ein Abflachvorgang durchgeführt werden. Es werden auch Hohlkörperelemente, Zusammenbauteile und ein Folgeverbundwerkzeug beschrieben und beansprucht.

FIGI

FIG 5D

FIG 7B