Sublinear Algorithms for Estimating Single-Linkage Clustering Costs

Pan Peng University of Science & Technology of China Christian Sohler University of Cologne Cologne, Germany Yi Xu University of Science & Technology of China

Outline

- Background
- 2 Results
- Proof Sketch
- Extension to Similarity Case
- 5 Experiments
- 6 Conclusion

Outline

- Background
- 2 Results
- Proof Sketch
- Extension to Similarity Case
- 5 Experiments
- 6 Conclusion

Hierarchical Clustering

Data mining, statistics: build a hierarchy of clusters greedily

Agglomerative: bottom-up

Divisive: top-down

(a) Agglomerative

(b) Divisive

Hierarchical Clustering

Application - Community Detection

(a) Community

(b) Hierarchical tree

[For10]: Community detection in graphs

Citations: 13112

Application - Biology

[HTFF09]: Elements of statistical learning

Application - Others

(b) Software suite

- Input: connected, weighted graph G = (V, E), distance
- SLC: bottom-up hierarchical clustering combine two closest clusters

- Input: connected, weighted graph G = (V, E), distance
- SLC: bottom-up hierarchical clustering combine two closest clusters
- Example: $V = \{a, b, c, d, e\}$

w_j: j-th smallest weight on MST

$$w_1 = 1$$
, $w_2 = 1$, $w_3 = 2$, $w_4 = 3$
 $cost(MST) = w_1 + w_2 + w_3 + w_4$
 $= 7$

- Input: connected, weighted graph G = (V, E), distance
- SLC: bottom-up hierarchical clustering combine two closest clusters
- Example: $V = \{a, b, c, d, e\}$

w_j: j-th smallest weight on MST

$$w_1 = 1$$
, $w_2 = 1$, $w_3 = 2$, $w_4 = 3$
of clusters = 5
 $\cos t_5 = 0$

- Input: connected, weighted graph G = (V, E), distance
- SLC: bottom-up hierarchical clustering combine two closest clusters
- Example: $V = \{a, b, c, d, e\}$

w_i: j-th smallest weight on MST

$$w_1 = 1$$
, $w_2 = 1$, $w_3 = 2$, $w_4 = 3$
of clusters = 4
 $cost_4 = w_1$
= 1

- Input: connected, weighted graph G = (V, E), distance
- SLC: bottom-up hierarchical clustering combine two closest clusters
- Example: $V = \{a, b, c, d, e\}$

w_j: j-th smallest weight on MST

$$w_1 = 1$$
, $w_2 = 1$, $w_3 = 2$, $w_4 = 3$
of clusters = 3
 $\cos t_3 = w_1 + w_2$
= 2

- Input: connected, weighted graph G = (V, E), distance
- SLC: bottom-up hierarchical clustering combine two closest clusters
- Example: $V = \{a, b, c, d, e\}$

w_j: j-th smallest weight on MST

$$w_1 = 1$$
, $w_2 = 1$, $w_3 = 2$, $w_4 = 3$
of clusters = 2
 $\cos t_2 = w_1 + w_2 + w_3$
= 4

- Input: connected, weighted graph G = (V, E), distance
- SLC: bottom-up hierarchical clustering combine two closest clusters
- Example: $V = \{a, b, c, d, e\}$

w_j: j-th smallest weight on MST

$$w_1 = 1$$
, $w_2 = 1$, $w_3 = 2$, $w_4 = 3$
of clusters = 1
 $cost_1 = w_1 + w_2 + w_3 + w_4$
= 7

- Input: connected, weighted graph G = (V, E), distance
- SLC: bottom-up hierarchical clustering combine two closest clusters

w_j: j-th **smallest** weight on MST

- Input: connected, weighted graph G = (V, E), distance
- SLC: bottom-up hierarchical clustering combine two closest clusters

```
w_j: j-th smallest weight on MST \cos t_k = \sum_{j=1}^{n-k} w_j, sum of the costs of spanning trees within k clusters \cos t(G) := \sum_{k=1}^{n} \cos t_k = \sum_{j=1}^{n} (n-j)w_j, total clustering cost
```

Motivation:

- cost_k captures important **structure**
- SLC minimizes these costs

- Input: connected, weighted graph G = (V, E), distance
- SLC: bottom-up hierarchical clustering combine two closest clusters

```
w_j: j-th smallest weight on MST \cos t_k = \sum_{j=1}^{n-k} w_j, sum of the costs of spanning trees within k clusters \cos t(G) := \sum_{k=1}^{n} \cos t_k = \sum_{j=1}^{n} (n-j)w_j, total clustering cost
```

Motivation:

- cost_k captures important **structure**
- SLC minimizes these costs

Naive solution: compute an MST in $\tilde{O}(nd)$ time Question: estimate cost(G) and $cost_k$ in **sublinear** time?

Outline

- Background
- 2 Results
- Proof Sketch
- Extension to Similarity Case
- 5 Experiments
- 6 Conclusion

Main Results

W: max weight d: average degree query model: adj. list

$cost(G)^{\dagger}$	cost _k	Lower bound
$\tilde{O}(rac{\sqrt{W}}{arepsilon^3}d)^{\ddagger}$	$\tilde{O}(\frac{\sqrt{W}}{\varepsilon^3}d)$	$\Omega(rac{\sqrt{W}}{arepsilon^2}d)$

 $^{^{\}dagger}$ $(1+\varepsilon)$ -estimate of $\cos(G)$

 $^{^{\}ddagger}$ Applying [CRT05], one can get: (1+arepsilon)-estimate, $\tilde{O}(rac{W}{arepsilon^2}d)$ queries

Main Results

W: max weight d: average degree query model: adj. list

$cost(G)^{\dagger}$	cost _k	Lower bound
$\tilde{O}(rac{\sqrt{W}}{arepsilon^3}d)^{\frac{1}{2}}$	$\tilde{O}(\frac{\sqrt{W}}{\varepsilon^3}d)$	$\Omega(\frac{\sqrt{W}}{arepsilon^2}d)$

Succinct representation of the SLC estimates $(\widehat{\cos t_1}, ..., \widehat{\cos t_n})$ s.t. $\forall k$, recover $\widehat{\cos t_k}$ in a **short** time, and **on average** a $(1+\varepsilon)$ estimate

On average:
$$\sum_{k=1}^{n} |\widehat{\cos t_k} - \cos t_k| \le \varepsilon \cdot \cos(G) = \varepsilon \sum_{k=1}^{n} \cos t_k$$

Short time: in $O(\log \log W)$ time

- 4 ロ ト 4 個 ト 4 差 ト 4 差 ト - 差 - かくで

 $^{^{\}dagger}$ (1+ ε)-estimate of cost(G)

 $^{^{\}ddagger}$ Applying [CRT05], one can get: $(1+\varepsilon)\text{-estimate},~\tilde{O}(\frac{W}{\varepsilon^2}d)$ queries

Outline

- Background
- 2 Results
- 3 Proof Sketch
- 4 Extension to Similarity Case
- 5 Experiments
- 6 Conclusion

CC: Connected Component

Step 1

Reduction \Rightarrow estimating # of **CC**s

CC: Connected Component

Step 1

Reduction \Rightarrow estimating # of **CC**s

Step 2

Estimate # of CCs \Rightarrow sample & BFS

CC: Connected Component

Step 1

Reduction \Rightarrow estimating # of **CC**s

Step 2

Estimate # of CCs \Rightarrow sample & BFS

[CRT05]: $\tilde{O}(\frac{W}{\varepsilon^2}d)$ queries

CC: Connected Component

Step 1

Reduction \Rightarrow estimating # of **CC**s

Step 2

Estimate # of CCs \Rightarrow sample & BFS

Step 3

Apply binary search to accelerate

CC: Connected Component

Step 1

Reduction \Rightarrow estimating # of CCs

Step 2

Estimate # of CCs \Rightarrow sample & BFS

Step 3

Apply binary search to accelerate

$$\tilde{O}(\frac{\sqrt{W}}{\varepsilon^2}d)$$
 queries

Definition

- G_j : the subgraph containing edges with weight $\leq j$
- c_i : # of CCs within G_i
- n_i : # of edges in the MST with weight = j

Definition

- G_j : the subgraph containing edges with weight $\leq j$
- c_i : # of CCs within G_i
- n_i : # of edges in the MST with weight = j

$$cost(G) = \sum_{i=1}^{n-1} (n-i) \cdot w_i$$

Definition

- G_i : the subgraph containing edges with weight $\leq j$
- c_i : # of CCs within G_i
- n_i : # of edges in the MST with weight = j

$$cost(G) = \sum_{i=1}^{n-1} (n-i) \cdot w_i
= \sum_{i=1}^{n_1} (n-i) \cdot 1 + \sum_{i=n_1+1}^{n_1+n_2} (n-i) \cdot 2 + \dots$$

Definition

- G_i : the subgraph containing edges with weight $\leq j$
- c_i : # of CCs within G_i
- n_i : # of edges in the MST with weight = j

Observation

$$\sum_{j>\ell} n_j = c_\ell - 1$$

$$cost(G) = \sum_{i=1}^{n-1} (n-i) \cdot w_i$$
$$= \sum_{i=1}^{n_1} (n-i) \cdot 1 + \sum_{i=n_1+1}^{n_1+n_2} (n-i) \cdot 2 + \dots$$

Definition

- G_i : the subgraph containing edges with weight $\leq j$
- c_i : # of CCs within G_i
- n_i : # of edges in the MST with weight = j

Observation

$$\sum_{i>\ell} n_i = c_\ell - 1$$

$$cost(G) = \sum_{i=1}^{n-1} (n-i) \cdot w_i
= \sum_{i=1}^{n_1} (n-i) \cdot 1 + \sum_{i=n_1+1}^{n_1+n_2} (n-i) \cdot 2 + \dots
= \sum_{i=1}^{n-c_1} (n-i) \cdot 1 + \dots$$

Definition

- G_i : the subgraph containing edges with weight $\leq j$
- c_i : # of CCs within G_i
- n_i : # of edges in the MST with weight = j

Observation

$$\sum_{j>\ell} n_j = c_\ell - 1$$

$$cost(G) = \sum_{i=1}^{n-1} (n-i) \cdot w_i$$
$$= \frac{n(n-1)}{2} + \frac{1}{2} \cdot \sum_{j=1}^{W-1} (c_j^2 - c_j)$$

Step 2: Estimate # of CCs

Input: graph G and subgraph HOutput: \hat{c} , estimated # of CCs in H

Algorithm: [CRT05]

Step 2: Estimate # of CCs

Input: graph G and subgraph HOutput: \hat{c} , estimated # of CCs in H

Algorithm: [CRT05]

Sample

Step 2: Estimate # of CCs

Input: graph G and subgraph HOutput: \hat{c} , estimated # of CCs in H

Algorithm: [CRT05]

Sample

BFS

Input: graph G and subgraph HOutput: \hat{c} , estimated # of CCs in H

- Sample
- BFS
 - Recursively:
 - ► Flip a coin
 - Double # of visited edges

Input: graph G and subgraph HOutput: \hat{c} , estimated # of CCs in H

- Sample
- BFS
 - Recursively:
 - Flip a coin
 - Double # of visited edges

Input: graph G and subgraph HOutput: \hat{c} , estimated # of CCs in H

- Sample
- BFS
 - Recursively:
 - ► Flip a coin
 - Double # of visited edges

Input: graph G and subgraph HOutput: \hat{c} , estimated # of CCs in H

- Sample
- BFS
 - Recursively:
 - Flip a coin
 - Double # of visited edges

Input: graph G and subgraph H

Output: \hat{c} , estimated # of CCs in H

Algorithm: [CRT05]

- Sample
- BFS
 - Recursively:
 - Flip a coin
 - Double # of visited edges

Guarantee: [CRT05]

- $|\hat{c} c| \le \varepsilon n$
- $\tilde{O}(\frac{d}{\varepsilon^2})$

Input: graph G and subgraph HOutput: \hat{c} , estimated # of CCs in H

Algorithm: [CRT05]

- Sample
- BFS
 - Recursively:
 - Flip a coin
 - Double # of visited edges

Guarantee: ours

- $|\hat{c} c| \le \varepsilon \cdot \max\{\frac{n}{\sqrt{W}}, c\}$
- $\tilde{O}(\frac{\sqrt{W}}{\varepsilon^2}d)$ queries

$$cost(G) = \frac{n(n-1)}{2} + \sum_{j=1}^{W-1} \frac{c_j^2 - c_j}{2}$$

• Observation: $c_1, \ldots, c_W \in [1, n]$ is non-increasing

$$cost(G) = \frac{n(n-1)}{2} + \sum_{j=1}^{W-1} \frac{c_j^2 - c_j}{2}$$

• Observation: $c_1, \ldots, c_W \in [1, n]$ is **non-increasing**

$$cost(G) = \frac{n(n-1)}{2} + \sum_{j=1}^{W-1} \frac{c_j^2 - c_j}{2}$$

- Observation: $c_1, \ldots, c_W \in [1, n]$ is non-increasing
- Idea: Divide [1, n] into intervals $1 = B_t < \cdots < B_1 = n$

$$cost(G) = \frac{n(n-1)}{2} + \sum_{j=1}^{W-1} \frac{c_j^2 - c_j}{2}$$

- Observation: $c_1, \ldots, c_W \in [1, n]$ is **non-increasing**
- Idea: Divide [1,n] into intervals $1=B_t<\cdots< B_1=n$

$$\mathrm{cost}(\mathit{G}) pprox rac{\mathit{n}(\mathit{n}-1)}{2} + \sum_{i=1}^{t-1} \{\# \text{ of elements within } i\text{-th interval}\} \cdot rac{B_i^2 - B_i}{2}$$

$$cost(G) = \frac{n(n-1)}{2} + \sum_{j=1}^{W-1} \frac{c_j^2 - c_j}{2}$$

- Observation: $c_1, \ldots, c_W \in [1, n]$ is **non-increasing**
- Idea:
 Divide [1, n] into intervals 1 = B_t < ··· < B₁ = n
 Map each c_i to its nearest interval endpoint

$$B_1 = n$$
 B_2 B_3 B_4 ... $B_t = 1$ c_1 c_3 c_6 c_8 c_{W-1}

$$\mathrm{cost}(\mathit{G}) pprox rac{\mathit{n}(\mathit{n}-1)}{2} + \sum_{i=1}^{t-1} \{\# \text{ of elements within } i\text{-th interval}\} \cdot rac{B_i^2 - B_i}{2}$$

$$cost(G) = \frac{n(n-1)}{2} + \sum_{j=1}^{W-1} \frac{c_j^2 - c_j}{2}$$

- Observation: $c_1, \ldots, c_W \in [1, n]$ is **non-increasing**
- Idea:
 Divide [1, n] into intervals 1 = B_t < ··· < B₁ = n
 Map each c_i to its nearest interval endpoint

$$B_1 = n$$
 B_2 B_3 B_4 ... $B_t = 1$ c_1 c_3 c_6 c_8 c_{W-1}

$$\cot(G) pprox rac{n(n-1)}{2} + \sum_{i=1}^{t-1} \{\# ext{ of elements within } i ext{-th interval}\} \cdot rac{B_i^2 - B_i}{2}$$

Challenge: estimated $\hat{c}_1, \dots, \hat{c}_W$ may **not** be non-increasing

For
$$c_j \in (B_{i+1}, B_i]$$
, let $|\hat{c}_j - c_j| = \varepsilon \cdot \max\{\frac{n}{\sqrt{W}}, c_j\}$.
We further need: $\forall c_j \in (B_{i+1}, B_i], B_i - B_{i+1} = \Theta(|\hat{c}_j - c_j|)$

For
$$c_j \in (B_{i+1}, B_i]$$
, let $|\hat{c}_j - c_j| = \varepsilon \cdot \max\{\frac{n}{\sqrt{W}}, c_j\}$.
We further need: $\forall c_j \in (B_{i+1}, B_i], B_i - B_{i+1} = \Theta(|\hat{c}_j - c_j|)$

- Too large: can't estimate c_j well;
- Too **small**: \hat{c}_i will locate in an interval far away

For $c_j \in (B_{i+1}, B_i]$, let $|\hat{c}_j - c_j| = \varepsilon \cdot \max\{\frac{n}{\sqrt{W}}, c_j\}$. We further need: $\forall c_j \in (B_{i+1}, B_i], B_i - B_{i+1} = \Theta(|\hat{c}_j - c_j|)$

- Too large: can't estimate c_j well;
- Too **small**: \hat{c}_j will locate in an interval far away

For $c_j \in (B_{i+1}, B_i]$, let $|\hat{c}_j - c_j| = \varepsilon \cdot \max\{\frac{n}{\sqrt{W}}, c_j\}$. We further need: $\forall c_j \in (B_{i+1}, B_i], B_i - B_{i+1} = \Theta(|\hat{c}_j - c_j|)$

- Too **large**: can't estimate c_j well;
- Too **small**: \hat{c}_i will locate in an interval far away

Remark: $t = O(\log W/\varepsilon)$

$$\widehat{\mathrm{cost}}(G) = \frac{n(n-1)}{2} + \sum_{i=1}^{t-1} \{ \# \text{ of elements within } i\text{-th interval} \} \cdot \frac{B_i^2 - B_i}{2}$$

$$\widehat{\operatorname{cost}}(G) = \frac{n(n-1)}{2} + \sum_{i=1}^{t-1} \{ \# \text{ of elements within } i\text{-th interval} \} \cdot \frac{B_i^2 - B_i}{2}$$

$$B_1 = n$$
 B_2 B_3 B_4 ... $B_t = 1$ c_1 c_3 c_6 c_8 c_{W-1}

Complexity

$$t = O(\log W/\varepsilon)$$

$$\widehat{\mathrm{cost}}(G) = \frac{n(n-1)}{2} + \sum_{i=1}^{t-1} \{ \# \text{ of elements within } i\text{-th interval} \} \cdot \frac{B_i^2 - B_i}{2}$$

Complexity

$$t = O(\log W/arepsilon) \Rightarrow ilde{O}(t \cdot rac{\sqrt{W}}{arepsilon^2} d) = ilde{O}(rac{\sqrt{W}}{arepsilon^3} d)$$
 queries

$$\widehat{\mathrm{cost}}(G) = \frac{n(n-1)}{2} + \sum_{i=1}^{t-1} \{ \# \text{ of elements within } i\text{-th interval} \} \cdot \frac{B_i^2 - B_i}{2}$$

$$B_1 = n$$
 B_2 B_3 B_4 ... $B_t = 1$ c_1 c_3 c_6 c_8 c_{W-1}

Complexity

$$t = O(\log W/arepsilon) \Rightarrow ilde{O}(t \cdot rac{\sqrt{W}}{arepsilon^2} d) = ilde{O}(rac{\sqrt{W}}{arepsilon^3} d)$$
 queries

Correctness

$$\forall c_j \in (B_{i+1}, B_i], \ B_i - B_{i+1} = \Theta(|\hat{c}_j - c_j|)$$

$$\widehat{\mathrm{cost}}(G) = \frac{n(n-1)}{2} + \sum_{i=1}^{t-1} \{ \# \text{ of elements within } i\text{-th interval} \} \cdot \frac{B_i^2 - B_i}{2}$$

$$B_1 = n$$
 B_2 B_3 B_4 ... $B_t = 1$ c_1 c_3 c_6 c_8 c_{W-1}

Complexity

$$t = O(\log W/arepsilon) \Rightarrow ilde{O}(t \cdot rac{\sqrt{W}}{arepsilon^2} d) = ilde{O}(rac{\sqrt{W}}{arepsilon^3} d)$$
 queries

Correctness

$$\forall c_j \in (B_{i+1}, B_i], \ B_i - B_{i+1} = \Theta(|\hat{c}_j - c_j|)$$

 $\Rightarrow \widehat{\cos}(G)$ achieves $(1 + \varepsilon)$ approximation ratio

Estimating the Profile

Profile vector: $(\cos t_1, \cos t_2, \dots, \cos t_n)$

Estimating the Profile

Profile vector: $(\cos t_1, \cos t_2, \dots, \cos t_n)$

Main idea:

- **2** ProfileOracle(k): return $\widehat{\cos t_k}$ in $O(\log t) = O(\log \log W)$ time

Outline

- Background
- 2 Results
- Proof Sketch
- Extension to Similarity Case
- 5 Experiments
- 6 Conclusion

- Input: weight represents similarity between two nodes
- SLC: combine two most similar clusters

- Input: weight represents **similarity** between two nodes
- SLC: combine two most similar clusters

w_j: j-th **largest** weight on MaxST

$$w_1 = 5$$
, $w_2 = 4$, $w_3 = 3$, $w_4 = 2$
 $cost(MaxST) = w_1 + w_2 + w_3 + w_4$
 $= 14$

- Input: weight represents similarity between two nodes
- SLC: combine two most similar clusters

w_j: j-th **largest** weight on MaxST

$$w_1 = 5$$
, $w_2 = 4$, $w_3 = 3$, $w_4 = 2$
of clusters = 5
 $\cos t_5 = 0$

- Input: weight represents similarity between two nodes
- SLC: combine two most similar clusters

w_j: j-th **largest** weight on MaxST

$$w_1 = 5$$
, $w_2 = 4$, $w_3 = 3$, $w_4 = 2$
of clusters = 4
 $cost_4 = w_1$
= 5

- Input: weight represents similarity between two nodes
- SLC: combine two most similar clusters

w_j: j-th **largest** weight on MaxST

$$w_1 = 5$$
, $w_2 = 4$, $w_3 = 3$, $w_4 = 2$
of clusters = 3
 $\cos t_3 = w_1 + w_2$
= 9

cost(G)	cost _k	Lower bound	
$\tilde{O}(rac{W}{arepsilon^3}d)$	$ ilde{O}(rac{W}{arepsilon^3}d)$	$\Omega(rac{W}{arepsilon^2}d)$	

cost(G)	cost _k	Lower bound	
$\tilde{O}(\frac{W}{\varepsilon^3}d)$	$\tilde{O}(rac{W}{arepsilon^3}d)$	$\Omega(\frac{W}{\varepsilon^2}d)$	

Main idea:

• G_j : subgraph with weights $\geq j$ c_j : # of CCs in G_j

cost(G)	cost _k	Lower bound	
$\tilde{O}(rac{W}{arepsilon^3}d)$	$\tilde{O}(rac{W}{arepsilon^3}d)$	$\Omega(rac{W}{arepsilon^2}d)$	

Main idea:

- **1** G_j : subgraph with weights $\geq j$ c_j : # of CCs in G_j
- **2** Reduction: $cost(G) = \sum_{j=1}^{W} \frac{(c_j + n 1)(n c_j)}{2}$.

cost(G)	cost _k	Lower bound	
$\tilde{O}(rac{W}{arepsilon^3}d)$	$\tilde{O}(rac{W}{arepsilon^3}d)$	$\Omega(rac{W}{arepsilon^2}d)$	

Main idea:

- **1** G_j : subgraph with weights $\geq j$ c_j : # of CCs in G_j

Remark:

- W appears in every k-cluster
- need **new** algorithm on $n c_j$

Outline

- Background
- 2 Results
- Proof Sketch
- Extension to Similarity Case
- 5 Experiments
- 6 Conclusion

Experiments

r: sample size for each estimate of # CC; $\widehat{\cos}_k$: estimated value for \cos_k .

(e) On one dataset with various *r*

(b) Distance profiles

(f) Similarity with r = 100

CS (MAG) CHOLOGY

() = 200

(c) Similarity profiles

20

dn 15 paeds 10

(d) Distance with r = 100

CS (DBLP)

Outline

- Background
- 2 Results
- Proof Sketch
- Extension to Similarity Case
- Experiments
- 6 Conclusion

Recall: Our Results

Summary

W: max weight d: average degree query model: adj. list

Setting	$cost(G)^{\dagger}$	$\operatorname{cost}_k^{\ddagger}$	Lower bound
Distance Case	$\tilde{O}(\frac{\sqrt{W}}{\varepsilon^3}d)$	$\tilde{O}(\frac{\sqrt{W}}{\varepsilon^3}d)$	$\Omega(rac{\sqrt{W}}{arepsilon^2}d)$
Similarity Case	$\tilde{O}(rac{W}{arepsilon^3}d)$	$\tilde{O}(rac{W}{arepsilon^3}d)$	$\Omega(rac{W}{arepsilon^2}d)$

Open questions:

- ullet Dependency on arepsilon
- Extend to other hierarchical clustering
 - Average linkage, centroid linkage

 $^{^\}dagger$ Approximation ratio is (1+arepsilon)

 $^{^{\}ddagger}$ On average is a $(1+\varepsilon)$ -estimate