1 Sottospazio prodotto

Lezione del 11 ottobre del prof. Frigerio

Proposizione 1.1. Sia(X, d) metrico.

Allora $\overline{d}: X \times X \to \mathbb{R}$ definita come $\overline{d}(x,y) = \min\{d(x,y),1\}$ è una distanza topologicamente equivalente a d dunque la topologia di uno spazio metrizzabile è indotta da una distanza ≤ 1

Dimostrazione.

• Mostriamo che \overline{d} è una distanza.

La non negatività e la simmetria seguono in maniera diretta dalle analoghe propietà su d.

Siano x,y,z e proviamo che $\overline{d}(x,z) \leq \overline{d}(x,y) + \overline{d}(y,z)$

Se almeno uno tra $\overline{d}(x,y)$ e $\overline{d}(xyz)$ è uguale a 1 ho concluso infatti $\overline{d}(x,z) \leq 1$.

Altrimenti

$$\overline{d}(x,z) \le d(x,z) \le d(x,y) + d(y,z)$$

ma $\overline{d}(x,z) \neq 1$ dunque $\overline{d}(x,y) = d(x,y)$ in modo analogo $\overline{d}(y,z) = d(y,z)$.

• Mostriamo che le 2 topologie indotte sono topologicamente equivalenti Come base della topologia associata ad una distanza si prendono le palle di raggio R al variare di R < 1.

Ora $\forall x \in X$ e $\forall R < 1$ $B_d(x,R) = B_{\overline{d}}(x,R)$ dunque le 2 topologie coincidono

Definizione 1.1 (Funzione lipschitziana).

Sia $f:(X,d)\to (Y,d')$ diciamo che f è k-lipschitz se k>0 e

$$\forall x_1, x_2 \in X \quad d'(f(x_1), f(x_2)) \le k \cdot d(x_1, x_2)$$

Osservazione 1. Sia $f: X \to Y$ una funzione k-lipschitz.

Poichè $f\left(B\left(x,\frac{\varepsilon}{k}\right)\right) \subseteq B(f(x),\varepsilon)$ una funzione lipschitziana è continua

Teorema 1.2. Siano (X_i, d_i) spazi metrici con $i \in \mathbb{N}$, allora

$$X = \prod_{i \in \mathbb{N}} X_i$$
 è metrizzabile

Dimostrazione. Devo costruire $d: X \times X \to \mathbb{R}$ che induce la topologia prodotto.

 $\forall i \in \mathbb{N}$ posso supporre che $d_i \leq 1$.

Denotiamo con $(x_i)_{i\in\mathbb{N}}$ gli elementi di X, dove $x_i\in X_i$.

Pongo

$$d(x,y) = \sum_{i=0}^{\infty} 2^{-i} d_i(x_i, y_i)$$

tale serie converge poichè $d_i < 1$ e la serie $\sum 2^{-i}$ converge.

È di facile verifica che d così definita è una distanza, sia τ_d la topologia che induce.

Sia $P_i: X \to X_i$ la proiezione su X_i

$$d_i(\pi_i(x), \pi_i(y)) = d_i(x_i, y_i) = 2^i (2^{-i} d_i(x_i, y_i)) \le 2^i d(x, y)$$

dunque la funzione P_i è 2^i -lipschitz dunque continua quindi $\tau_d > \tau_{prod}$ infatti τ_{prod} è la meno fine proiezione che rende continue le proiezioni.

Resta da vedere che $\tau_d > \tau_{prod}$.

Sia $B = B_d(x, \varepsilon) \subseteq X$ un aperto, dunque per $y \in B \ \exists \delta > 0$ tale che $B_d(x, \delta) \subseteq B$.

Resta da dimostrare che $\exists U$ aperto di τ_{prod} con $y \in U \subseteq B_d(x, \delta)$.

Sia $n_0 \in \mathbb{N}$ tale che $\sum_{i=n_0+1}^{\infty} 2^{-i} < \frac{\delta}{2}$ che esiste essendo la serie convergente. Pongo

$$U = B_{d_0}\left(y_0, \frac{\delta}{4}\right) \times \cdots \times B_{d_{n_0}}\left(y_{n_0}, \frac{\delta}{4}\right) \times X_{n_0+1} \times \cdots \times X_n \times \ldots$$

Se $z \in U$ allora $d_i(y_i, z_i) < \frac{\delta}{4} \quad \forall i \leq n_0$ Allora

$$d(y,z) = \sum_{i=0}^{\infty} 2^{-1} d_i(y_i, z_i) = \sum_{i=0}^{n_0} 2^{-1} d(y_i, z_i) + \sum_{i=n_0+1}^{\infty} 2^{-1} d_i(y_i, z_i) < \frac{\delta}{4} \sum_{i=0}^{n_0} 2^{-i} + \sum_{i=n_0+1}^{\infty} 2^{-i} \frac{\delta}{4} + \frac{\delta}{2} = \delta$$

Dunque $U \subseteq B_d(y, \delta) \subseteq B$

Osservazione 2. Genericamente, il prodotto più che numerabile di spazi metrici non è primonumerabile dunque non è metrizzabile

Fatto 1.3. Se (X, d) e (Y, d') sono metrici, $X \times Y$ è metrizzabile ed ha topologia indotta da una delle seguenti metriche

1.
$$d_{\infty}(x_1, y_1), (x_2, y_2) = \max\{d(x_1, x_2), d'(y_1, y_2)\}$$

2.
$$d_2(x_1, y_1), (x_2, y_2) = \sqrt{d(x_1, x_2)^2 + d'(y_1, y_2)^2}$$

3.
$$d_1(x_1, y_1), (x_2, y_2) = d(x_1, x_2) + d'(y_1, y_2)$$

L'equivalenza si dimostra come abbiamo provato l'equivalenza su \mathbb{R}^n .

Per vedere che inducono la topologia prodotto usiamo il teorema precedente utilizzando $\frac{1}{2}d_1$ che è topologicamente equivalente a d_1 e ponendo $x=(x_1,x_2,0,\ldots)$ e $y=(y_1,y_2,0,\ldots)$

Esercizio 1.4. $Sia~X~topologico,~A,B\subseteq X$

$$1. \ \overline{A \cup B} = \overline{A} \cup \overline{B}$$

- 2. L'uguaglianza è falsa per unioni infinite
- 3. Enunciati "duali" per la parte interna
- 4. In generale $\overline{A \cap B} \neq \overline{A} \cap \overline{B}$
- $5. \ \overline{\overline{A}^{\circ}}^{\circ} = \overline{A}^{\circ}$
- 6. Trovare $A\subseteq X$ per cui A, \overline{A} , \overline{A}° , $\overline{\overline{A}^{\circ}}$ sia tutte diverse
- 7. Sia $A\subseteq Y\subseteq X$ allora la chiusura di A in Y (con topologia di sottospazio) è $\overline{A}\cap Y$