Intro Physics

The Physics Playground

Overview

Kinematics - Motion

Dynamics - Forces

Energy - Conserved Quantity

Kinematics

Displacement - how far

Speed - how fast

Velocity - how fast and in what direction

 $v = \Delta d/\Delta t$

Acceleration - change in velocity

 $a = \Delta v/\Delta t$

Dynamics

Newton's Laws of Motion

1st: Objects in motion stay in motion at a constant velocity, objects at rest stay at rest, unless acted on by a net force

2nd: $\Sigma F = m * a$ or $a = \Sigma F / m$

Gravity Force: $F_a = m * g$

Spring Force: $F_s = k * x$

Normal Force: $F_N = reactive$ force

Friction Force: $F_f \le \mu * F_N$

Energy

Conservation Laws - define the boundaries of the system

Kinetic Energy - energy of motion

$$KE = \frac{1}{2} * m * v^2$$

Gravitational Potential Energy - energy from position in gravitational field

$$PE_a = m * g * h$$

Spring Potential Energy - energy in spring from being stretched or compressed

$$PE_{s} = \frac{1}{2} * k * x^{2}$$

Internal Energy - energy inside of a system (includes Thermal energy)