

Data Science

Workbook v0.9b

Brought to you by the Bootstrap team:

- Emmanuel Schanzer
- Kathi Fisler
- Shriram Krishnamurthi
- Sam Dooman
- Ed Campos

Bootstrap is licensed under a Creative Commons 3.0 Unported License. Based on a work from www.BootstrapWorld.org. Permissions beyond the scope of this license may be available at schanzer@BootstrapWorld.org.

Unit 1

- Many important questions ("what's the best restaurant in town?", "is this law good for citizens?", etc.) are answered with data. Data Scientists try and answer these questions, by writing programs that ask questions of data.
- Data of all types can be organized into **Tables**
- Every Table has a **header row**, and some number of **data rows**
- **Quantitative data** is data usually numeric that measures *quantity*, such as a person's height, a score on test, a measure of distance, etc. A list of quantitative data can be ordered from smallest to largest.
- Categorical data is data that specifies categories, such as eye color, country of origin, etc. A list of categorical data has no notion of "smallest" or "largest", and cannot be ordered.
- **Programming languages** involves different *datatypes*, such as Numbers, Strings, Booleans and Images.
- Operators (like +, -, *, <, etc.) are written between values. For example: 4 + 2
- **Functions** (like triangle, star, string-repeat, etc.) are written first, followed by a list of **arguments** in parentheses. For example: star(50, "solid", "red")

Numbers and Strings

Make sure you've loaded the Unit 1 Starter File, and clicked "Run".

- 1. Try typing 42 into the Interactions Area and hitting "Enter". What happens?
- 2. Try typing in other Numbers. What happens if you try a decimal like 0.5? A fraction like 1/3? Try really big Numbers, and really small ones.
- 3. String values are always in quotes. Try typing your name in quotes, and see what happens when you hit "Enter".
- 4. Try typing your name without the closing quote. What happens? Now try typing it without any quotes.
- 5. Is 42 the same as "42"? Why or why not? Write your answer below:
- 6. Just like in math, Pyret has operators like + and -. Try typing in 4 + 2, and then 4+2 (without the spaces). What can you conclude from this? Write your answer below:
- 7. Try typing in 4+2+6, 4+2*6, and 4+(2*6). What can you conclude from this? Write your answer below:
- 8. Try typing in 4 + "cat", and then "dog" + "cat". What can you conclude from this? Write your answer below:

Booleans

Boolean expressions are yes-or-no questions, and you probably already know some Boolean operators from math class, which compare Numbers. What do you think each of the following expressions will evaluate to? Try typing some into Pyret to experiment.

3 <= 4	 "a" > "b"	
3 == 2	 "a" <> "b"	
2 <> 4	 "a" == "b"	
3 <> 3	 "a" <> "a"	

- 1. How many Number values are there?
- 2. How many String values are there?
- 3. How many Boolean values are there?

Boolean Operators

Pyret also has operators that work on *Booleans*. For each expression below, write down your guess about what it will evaluate to. Then type them in and see if you were right!

$$(3 \le 4)$$
 and $(3 == 2)$
 $("a" == "b")$ and $(3 <> 4)$
 $(3 <= 4)$ or $(3 == 2)$
 $("a" == "b")$ or $(3 <> 4)$

Unit 2

- Programming languages let us **define our own function**.
- We use the **Design Recipe** to help us define functions without making mistakes.
- The first step is to write a **Contract** and **Purpose Statement** for the function, which specify the Name, Domain and Range of the function and give a summary of what it does.
- The second step is to **write at least two examples**, which show how the function should work for specific inputs. These examples help us see patterns, and we express those patterns by **circling and labeling** what changes.
- The final step is to **define the function**, which generalizes our examples.

The Animals Dataset

1.	My dataset is	Animals from a p	oet store
	•		

2.	Some of	the co	olumns ir	n my	dataset	are:
				,		

Name (capitalization matters!)	Datatype	Quantitative/Categorical

	animals d	uiusei.	

The Design Recipe

Delille	a function called 1	oirtn-year	., which calculates the year	ar an animai was	bom.
	birth-year	:	(animal :: Row)		Number
	name		domain		range
# <u>C</u> c	onsumes an anima	al, subtrac	ts age from the curre	it year to produ	ice the birth-year
exa	mples:				
	birth-year	(<i>p</i>	<i>pet1</i>) is	2018 - pet	1["age"]
		() is		
end					
fun		() :		
end					
Dofin	o a function call	lodia 1-i	tten which consume	os a Pow of the	animals table and
			tten, which consume than 2 years old.	es a Row of the	animals table and
					animals table and
produ				es a Row of the	animals table and
#	uces true if it's o		than 2 years old.		
#	name	a cat less	than 2 years old.	>	range
#	name	a cat less	domain) is	>	range
#	name mples:	a cat less	domain	>	range
# _ exa	name mples:	= cat less	domain) is	>	range

		•		\rightarrow	
	name	•	domain	′ -	range
#					
examp	ples:				
		,	\		
-		() is		
_		() is		
end					
fun		() :		
-					
end					
			ked, which consumes o	a Row of the	animals table and
			xed, which consumes o	a Row of the	animals table and
					animals table and
				Row of the	animals table and
	es true if it's		that's been fixed.		
#	es true if it's		that's been fixed.		
#	name	s an animal	domain	- -	range
#	name	s an animal	that's been fixed.	- -	range
#	name	s an animal	domain) is	> _	range
#	name	s an animal	domain	> _	range
#examp	name	s an animal ::	domain) is	> _	range
#examp	name	s an animal ::	domain) is	> _	range
#examp	name	s an animal ::	domain) is	> _	range

Define a function called nametag, prints out each animal's name in big red letters.

produc	es a String c	ontaining th	nce, which consumes a R ne animal's name, the strin Tori the dog").		
	•	•	J ,	\rightarrow	
#	name	·	domain	,	range
exampl	les:				
-		() is		
-		() is		
end					
fun _		() :		
end					
			adopt? Write a function of produces true if it's an o		
		:	1	>	
#	name		domain		range
exampl	Les:				
-		() is		
-		() is		
end					
fun _		() :		

end

My Dataset

lame (capitalization matters !)	Datatype	Quantitative/Categorical
ane (capitalization matters.)	Balalype	Quantificative/ caregoriean
Three questions I have about m	y dataset:	
Three questions I have about m	y dataset:	
Three questions I have about m 1. 2.	y dataset:	
1.	y dataset:	

Unit 3

- Methods are special functions that are attached to pieces of data. We use them to manipulate Tables.
- They are different from functions in several ways:
 - 1. Their names can't be used alone: they can only be used as part of data, separated by a dot. (For example, animals.order-by)
 - 2. Their contracts are different: they include the type of the data as part of their names. (eg, .order-by :: (column :: String) > Table)
 - 3. They have a "secret" argument, which is the data they are attached to
- We will use three Table Methods to manipulate our datasets:
 - 1. <Table>.order-by order the rows of a table based on a column
 - 2. <Table>.filter create a subset of the data, with only certain rows
 - 3. <Table>.build-column use the columns of a table to compute a new one
- We use Table Plans to help us use these methods correctly, without making mistakes

Reviewing Functions

1.	How many functions are defined in this file?	
2.	What is the name of the last function?	
3.	What is the Domain of the last function?	
4.	What is the Range of the last function?	
5.	What is the Range of the last function?	
6.	What is the variable name that the last function uses?	
7.	Which function will tell us if an animal is a kitten?	
8.	Which function will print out " <name> the <species>"?</species></name>	
9.	Which function will tell us if an animal is a dog older than 10?	
10	.Which function will tell us if an animal has been fixed?	
11	.Which function will draw a nametag for an animal?	

12. One of the examples for the last function is broken. Fix this example in the Definitions Area.

Plans for the Animals Dataset

What are two ways you might want to order the animals dataset?
1)
2)
What are two subsets into which you might filter the animals dataset?
1)
2)
What are two new columns you might want to build from the animals dataset?
1)
2)

Methods

Methods are a lot like functions, but they differ in three important ways:

- They can only be called as part of a value, using the dot-accessor. For example: animals.row-n(2)
- Their Contracts are different, because they contain a **Type** as part of their name. For example: <**Table>.**row-n :: (index :: Number) -> Row
- They have a "secret argument", which is the value they are attached to. In the examples above, the row-n method consumes only a Number as part of its Domain, but it also consumes a Table.

Here is the Contract for a method, which consumes the name of a food and produces True if the person likes that food:

Person>.likes :: (food :: String) -> Boolean
1. What is the name of this method?
2. How many things are in its Domain?
3. What is the name of the argument in its Domain?
4. What is the Type of the argument in its Domain?
5. What Type of data will this method will produce?
6. What Type of data is the method attached to?
7. Below are 3 expressions. Based on the contract above, circle the correct one. emma.likes("pizza")
likes("pizza")
likes(emma, pizza)

8. On the line below, write your own expression that uses this method, replacing emma and "pizza" with your own name and a food you like.

On Kitten Day, the shelter prints up a list of all the cats in their database that are less than 2 years old, and makes nametags for them. They need a function that will help them out! Define a function called get-kittens-tags, which takes in the dataset and produces the correct table.

	t-kitte	ns-t	ags	:		(ar
t Consun	ne a tabi	le of	anima	ls, an	d prod	uce a t
	e Table:					
lake a S	Start Tab	ole ar	nd a r	esult	based	on the
<u>nimal</u>	s-tab	<u>le</u>				
name	species	age	fixed	legs	weight	adopt
Sasha	cat	1	FALSE	4	6.5	4
Toggle	dog	3	TRUE	4	48	3
Buddy	lizard	2	FALSE	4	0.3	12
Wade	cat	1	FALSE	4	3.2	4
Mittens	cat	2	TRUE	4	7.4	5
		<u>I</u>		I		
se the r	he func elevant	meth	nods (ŕ	helper
se the re	elevant <i>g</i>	meth			ŕ	helper _ (_
se the re un <u>† = p</u>	elevant <i>9</i> ets	meth	nods (ŕ	helper _ (_
un	elevant g ets uild-col	meth	nods (ŕ	helper _ (_
un	elevant <i>9</i> ets	meth	nods (ŕ	helper _ (_
tun	elevant g ets uild-col	metl	nods (ŕ	helper _ (_

The first weekend of every month, the shelter holds a "meet the dogs" picnic, to encourage families to adopt their dogs. Write a function called get-dogs-by-age, that takes their database and produces a table of all the dogs in the shelter, sorted from youngest to oldest.

	-dogs-b	y-ag	је	:		(anima	ıls :: Tabi	le)	>	· _		Та	ble	
7 Consume	e a table	of ar	nimals, a	nd pr	roduce	a table	containing	only the	dogs, so	rted	by ag	е		
								·						
xample:	:													
Nake a St		e anc	d a resul	t bas	ed on	that ta	ble.							
nimals	-tabl	e					\rightarrow	get-d	og-by	-ag	e(an	ima	ls-ta	able
name	species	age	fixed	legs	weight	adopt								
Snowcone	cat	2	TRUE	4	6.1	5	ĺ	name	species	aae	fixed	leas	weight	adop
Wade	cat	1	FALSE	4	3.2	4		Toggle	dog	3	TRUE	4	48	3
Hercules	cat	3	FALSE	4	13.4	7		Fritz	dog	4	TRUE	4	92	6
Toggle	dog	3	TRUE	4	48	3	l		<u> </u>					
Fritz	dog	4	TRUE	4	92	6								
	aog		11102	1	72	ŭ								
			vala laira	میر ما	ماه ما س	o	ational) the			I	ملخ ملخن	0.10.0	المامة	
			ods (circ	le yc	our help	er fund	ctions!), the	en produ	ce a re:	sult v	vith th	e ne	w table	∋.
			ods (circ	ele yo	our help	per fund		en produ	ce a re:	sult v	vith th	e ne	w table	Э.
			ods (circ	ele yo	our help	er fund	ctions!), the	en produ	ce a re:	sult v			w table	
se the re Fun	levant m	netho		ele yo	our help (per fund		en produ	ce a re:	sult w	<u>D</u>	efir	ne the	<u>tabl</u>
se the re Fun		netho		ele yo	our help (er fund		en produ	ce a re	sult w	<u>D</u> Are:)efir there	ne the	tabl
se the re Fun	levant m	netho		ele yo	our help	er fund		en produ	ce a re:	sult w	<u>D</u> Are:)efir there	ne the	tabl
se the re :un	levant m	mns(ele yo	our help (per fund		en produ	ce a re	sult v	<u>D</u> Are:)efir there e the	ne the	tabl

It's important for animals to stay healthy, especially when they get older. The veterinarians at the shelter want to put some of the dogs on a diet! They need a regular report of all the older dogs, sorted from heaviest-to-lightest. Define a function old-dogs-diet, which does just that!

Contract	and Purpo	ose													
			:							_	>				
											_				
Example	c														
	art Table a	nd a	result b	asec	on the	at tab	le.								
animals	r +ablo						→	~	et-fixe	nd by	100	ıc (an	imal	c +al	2101
animais							,	<u>9</u>	er-iixe	eu-by-	тес	is (aii	шат	.5-Lai	<u>Jie)</u>
name Snowcone	species	age 2	fixed TRUE	legs 4	weight 6.1	adopt 5			name	species	age	fixed	legs	weight	adopt
Lucky	dog	3	TRUE	3	45.4	9	_		Lucky	dog	3	TRUE	3	45.4	9
Hercules		3	FALSE	4	13.4	7	_		Snowcone	cat	2	TRUE	4	6.1	5
Toggle	dog	3	TRUE	4	48	3	_	•	Toggle	dog	3	TRUE	4	48	3
Snuggles	,	2	FALSE	8	0.1	1	_			•					
							_								
	e function levant met		(circle	VOLIT	helner	funct	tions	1) +	hen produ	ice a re	cult v	with the	a new	/ table	<u>;</u>
030 1110 10		11003	(Circic	your	ПСІРСІ	101101	110113	.,, 1	non prode		3011	V	5 11C VV	rabic.	
fun					(١.							
												D	efine	the t	able
	., ,											Are t	here n	nore col	umnea
	<u>ild-column</u>	<u>s(</u>)			e fewer	
fil:	ter()				
ord	der-by()	Are	e the r	ows ora	ered?
												Pro	duce	the re	esult
end															

The shelter is tracking birth-years for all the animals who've been fixed. They need a function that takes in their database and returns a table that contains the birth-year for each one. Define get-fixed-birth that will do this for them.

Contract	and Purpo	se												
			:)	>				
									_					
Example	3													
	art Table a	nd a	result b	asec	on the	at tabl	e.							
animals	s-table						→ get-f	ixed-	-by-	legs	(ani	mals	-tab	ole)
name	species	age	fixed	legs	weight	adopt								
Snowcone	cat	2	TRUE	4	6.1	5	name	species		fixed	legs	weight		
Lucky	dog	3	TRUE	3	45.4	9	Snowcone	cat	2	TRUE	4	6.1	5	2015
Hercules	cat	3	FALSE	4	13.4	7	Lucky	dog	3	TRUE	3	45.4	9	2014
Toggle	dog	3	TRUE	4	48	3	Toggle	dog	3	TRUE	4	48	3	2014
Snuggles	tarantula	2	FALSE	8	0.1	1								
		L	I											
Dafina Ha	a francisco													
	e function		(circle	vour	helper	functi	ions!), then p	roduce	a re	sult wit	h the	new to	able	
			(00.0	,					00				0.10.00	
fun					(١.							
											De	efine t	the to	<u>able</u>
											Ana +1	here moi	na coli	ımnez
		<u>s(</u>)				
_ <i>.fil</i> :	ter()		there f		
ord	der-by()	Are	the row	vs orde	ered?
											Proc	duce ti	he re	sult:
end														

My Dataset

What are two ways you might want to order this dataset?
1)
2)
What are two subsets into which you might filter this dataset?
1)
2)
What are two new columns you might want to build from this dataset?
1)
2)

Unit 4

- There are three ways to measure the "center" of a dataset, to talk about a whole column of data using just one number:
 - 1. The **mean** of a dataset is the average of all the numbers
 - 2. The **median** of a dataset is a value that is smaller than half the dataset, and larger than the other half
 - 3. The **modes** of a dataset are the numbers that appear the most often.
- We will use three **Table Methods** to manipulate our datasets:
 - 1. <Table>.order-by order the rows of a table based on a column
 - 2. <Table>.filter create a subset of the data, with only certain rows
 - 3. <Table>.build-column use the columns of a table to compute a new one

Measuring Center in Animals

1.	The column I choose to measure is <u>weeks</u>
2.	The mean of that column is
3.	The median of that column is
4.	The mode(s) of that column is/are
5.	Based on the differences between mean and median, I conclude :
1.	The column I choose to measure is
2.	The mean of that column is
3.	The median of that column is
4.	The mode(s) of that column is/are
5.	Based on the differences between mean and median, I conclude:

The shelter wants a function that will calculate the median age of all the dogs in the shelter. Write a function called median-dog-age that will take in a table of animals and do just that.

Contract	and Purpo	se														
			:							\rightarrow						
										•						
Examples																
Make a St	s art Table ar	nd a	result b	ased	on the	at tab	le.									
					-											
animals	-table						\rightarrow	m∈	edian-	dog-	-age	e (a	anir	nals-	-tabl	e)
name	species	age	fixed	legs	weight	adopt				_		_		_	_	_
Snowcone	cat	2	TRUE	4	6.1	5										
Lucky	dog	3	TRUE	3	45.4	9										
Hercules	cat	3	FALSE	4	13.4	7										
Toggle	dog	3	TRUE	4	48	3										
Snuggles	tarantula	2	FALSE	8	0.1	1										
					1		1									
Define th	e function															
	e function levant meth	hods	(circle	vour	helper	funct	ions!), th	nen p	roduce	a resi	ult w	rith	the r	new to	able.	
				,	1		,									
fun					():									
													Dei	^c ine t	he tab)le
											_,	Ar	e the	ere mor	re columi	ns?
	<u>Id-column</u>										/				ewer rou	
)					
orc	der-by(Are T	he row	s ordere	:d,
												P	rodu	ice th	he resu	<u> </u>
end																

The shelter wants to know how long a kitten stays at the shelter before finding a "forever home". Define a function called mean-kitten-adoption, that will calculate the mean of the length of time it takes for kittens to be adopted when given the dataset.

Contract	and Purpo	se						
			:					\rightarrow
							-	
Examples								
	art Table ar	nd a	result b	ased	on the	at tab		
animals	-table						→ median-d	og-age(animals-table)
name	species	age	fixed	legs	weight	adopt		
Snowcone	cat	2	TRUE	4	6.1	5		
Lucky	dog	3	TRUE	3	45.4	9		
Hercules	cat	3	FALSE	4	13.4	7		
Toggle	dog	3	TRUE	4	48	3		
Snuggles	tarantula	2	FALSE	8	0.1	1		
	e function							
Use the re	evant meth	hods	(circle	your	helper	funct	ons!), then produce a	result with the new table.
fun					_ ():	Define the table
<u>† = </u>								Define the tubic
bui	ld- <u>column</u>	<u> S(</u>						
								Are there fewer rows?
	der-by(Are the rows ordered?
								Produce the result
end								

My Dataset

Measures of Center

1.	The column I choose to measure is	
2.	The mean of that column is	
3.	The median of that column is	
4.	The mode(s) of that column is/are	
5.	Based on the differences between mear	n and median, I conclude :
1.	The column I choose to measure is	
2.	The mean of that column is	
3.	The median of that column is	
4.	The mode(s) of that column is/are	
5.	Based on the differences between mear	n and median, I conclude :

Unit 5

- Bar charts show the absolute quantity of each row in a dataset. The larger the
 quantity, the longer the bar. Bar charts provide a visual representation of values
 in a dataset.
- **Pie charts** show the *relative* quantity of each row in a dataset. The greater the percentage, the larger the pie slice. Pie charts provide a visual representation of proportions in a dataset.
- Choosing a Sample Table is important when coming up with small examples for Table Plans. A good sample table has:
 - 1. At least all the relevant columns
 - 2. Enough rows to accurately represent the dataset
 - 3. Rows that are randomly-ordered

Statements about Columns

Use the Table below to help you answer the questions.

name	species	age	pounds
Sasha	cat	1	6.5
Felix	cat	16	9.2
Wade	cat	1	3.2
Boo-boo	dog	11	123
Maple	dog	3	51.6
Nori	dog	6	35.3
Nibblet	rabbit	6	4.3

Which animal(s) is/are the heaviest?
 Which animal(s) is/are the youngest?
 How much of the total weight comes from Maple?
 How much of the combined age comes from Nori?
 Would these questions be harder to answer if the table had 100 rows? If so, why?

Visualizing Quantity

In the table below, there are two observations drawn from the following charts. Add two more.

Based on a chart of	I notice that
Based on a bar chart of 7 animals' ages	Felix is by far the oldest
Based on a pie chart of 7 animals' weights	Boo-boo weighs more than the other six animals combined!
Based on a bar chart of 7 animals' ages	
Based on a pie chart of 7 animals' weights	

Dogs are generally a lot bigger heavier than cats, so the shelter wants to look at a chart of *only* the dogs to determine who needs more exercise time. Define a function pie-dog-weight, which will make a pie chart showing the relative weights of all the dogs in the shelter.

	nd Purp	DOSE				
		•				\rightarrow
		·				
Examples						
	t Table	and a result	based on th	nat table.		
animals-	table	<u>:</u>		\rightarrow	pie-dog	-weight(animals-ta
name	•••	weight				·
Snowcone		6.1				
Lucky		45.4				
Hercules		13.4				
Toggle		48				
Snuggles		0.1				
ofine the	iumolio	-				
			e vour helpe	r function	s!), then produce	a result with the new table
			e your helpe	r function	s!), then produce	a result with the new table
Use the rele	vant me	ethods (circle				
Use the relev	vant me					a result with the new table <u>Define the</u>
Use the rele	vant me	ethods (circle				
Use the relev	vant me	ethods (circle				<u>Define the</u>
Use the relev	vant me	ethods (circle				<u>Define the</u> Are there more co
fun	vant me	ethods (circle				<u>Define the</u> Are there more co

Bad Sample Tables!

For each word problem, a Sample Table must have (1) all the columns that matter, (2) a representative sample of the rows, and be in (3) random order. For each problem below, check the boxes to determine if the Sample Table meets those criteria.

1.	The shelter wan	ts to know	the median age	of all the cats

name	species	age	fixed	legs	pounds	weeks	Relevant columns
Sasha	cat	1	FALSE	4	6.5	3	Representative sample of rows
Mittens	cat	2	TRUE	4	7.4	5	Random order
Sunfower	cat	5	TRUE	4	8.1	10	

2. The shelter wants a pie chart showing all the dogs' weight

name	species	age
Fritz	dog	4
Wade	cat	2
Nibblet	rabbit	6
Daisy	dog	5

3. Sort all the animals alphabetically by name

name	species	age	fixed	legs	pounds	weeks	Delevered a alcusare
Ada	dog	2	TRUE	4	32	3	☐ Relevant columns
Во	dog	4	TRUE	4	76.1	10	Representative sample of rowsRandom order
Boo-boo	dog	11	TRUE	4	123	10	Random order

4. Make a bar chart for all the fixed animals

name	species	age	fixed	legs	pounds	weeks	П	Relevant columns
Sasha	cat							Representative sample of rows
								Random order

Define a function bar-kitten-adoption, which takes in a Table of animals and creates a bar chart showing how many weeks it took for each kitten to be adopted

Contract and Purpose			,
	:		→
Examples			
Make a Start Table and a I	result based on that	table.	
		\rightarrow	
Define the function Use the relevant methods	(circle your helper fu	unctions!), then pro	duce a result with the new table.
fun	():	Define the table
<u>† =</u>			Are there more columns?
			Are there more columns? Are there fewer rows?
			Are the rows ordered?
			 Produce the result
			rr'oauce the result

Contract and Purpose		
	:	\rightarrow
Examples		
Make a Start Table and a	result based on that table.	
	<i>→</i>	
Define the function		
	(circle your helper functions!), then pro	oduce a result with the new table.
fun	():	5 6 11 11
		<u>Define the table</u>
		Are there more columns?
		Are there fewer rows?
		Are the rows ordered?
		Produce the result
end		

Contract and Pu	rpose				
	<u>:</u> :				
Examples					
Make a Start Table	e and a result bas	ed on that tab	le.		
			\rightarrow		
Define the functi	ion				
Use the relevant n	nethods (circle yo	ur helper funct	ions!), then pr	oduce a result	with the new table.
fun		():		Define the table
<u>† = </u>					Define the tuble
					Are there more columns?
					Are there fewer rows?
			 		Are the rows ordered?
					Produce the result
end					

Visualizing My Dataset

What quantity charts did you make, and what do you notice? Fill in the table below.

Based on a chart of	I notice that

Unit 6

- Frequency Bar charts show the number of rows belonging to a given category. The more rows in each category, the longer the bar. Frequency bar charts provide a visual representation of the frequency of values in a categorical column. Since categorical data cannot be ordered, there is no strict ordering of bars in a frequency bar chart.
- Histograms show the number of rows that fall within certain ranges, or "bins" of a
 dataset. The more rows that that fall within a particular "bin", the longer the bar.
 Histograms provide a visual representation of the frequency of values in a
 quantitative column. Quantitative data can be ordered, so the bars of a
 histogram are always sorted.
- When dealing with histograms, it's important to select a good **bin size**. If the bins are too small or too large, it is difficult to see the distribution in the dataset.

Visualizing Quantity (Review)

Use the charts below to help you answer the questions.

1. Which animal(s) is the heaviest?

2. Which animal(s) is the youngest?

- _____
- 3. How much of the total weight comes from Maple?
- ____
- 4. How much of the combined age comes from Nori?
- ____
- 5. Which chart did you use for questions 1 and 2?
- _____
- 6. Which chart did you use for questions 3 and 4?
- ____
- 7. Why are some questions easier to answer with one kind of chart or another?

Visualizing Frequency

name	species	age	pounds
"Sasha"	"cat"	1	6.5
"Boo-boo"	"dog"	11	123
"Felix"	"cat"	16	9.2
"Buddy"	"lizard"	2	0.3
"Nori"	"dog"	6	35.3
"Wade"	"cat"	1	3.2
"Nibblet"	"rabbit"	6	4.3
"Maple"	"dog"	3	51.6

- 1. How many cats are there?
- 2. How many dogs are there?
- 3. How many animals are between 3-6 years old?
- 4. How many weigh between 0-5 pounds?
- 5. Are there more animals weighing 0-5 than 6-10 pounds?
- 6. The charts below are based on the Sample Table above. What is each one measuring? Write down your guess underneath each one.

Define a function freq-bar-gender, which takes in a Table of animals and creates a frequency bar chart showing how many animals are male v. female.

Contract and Purpose				
	:		<i>></i> _	
				<u> </u>
Examples				
Make a Start Table and a	a resuit basea on tr	nat table.		
		\rightarrow		
Define the function Use the relevant method	s /sirolo vour bolos	or functional) than	produce a result	with the new table
ose me relevam memoa	s (Circle your neipe	ar iorichoris:), irien	produce a resum	wiiii iiie iiew iabie.
fun	(_):		
<i>t =</i>				Define the table
				Are there more columns?
				Are there fewer rows?
				Are the rows ordered?
				Produce the result
end				

Define a function histogram-adoption, which takes in a Table of animals and creates a histogram showing how long it took for animals to get adopted

Contract and Purpose				
	:		\rightarrow	
Examples				
Make a Start Table and a re	sult based on that to	able.		
		→		
5				
Define the function				***
Use the relevant methods (c	arcie your helper fun	ctions!), then pr	roduce a result	with the new table.
•	/	,		
	(Define the table
<u>† =</u>				Are there more columns?
				Are there fewer rows?
		 		Are the rows ordered?
				Produce the result
end				

Visualizing My Dataset

What frequency charts did you make, and what do you notice? Fill in the table below.

Based on a chart of	I notice that

Matching Charts to Questions

For each of the questions below, draw a line to the chart that will best answer it.

	Are there more of the animals at the shelter fixed or unfixed?	1.
Pie Chart	How many weeks did each cat wait to be adopted?	2.
	How many male v. female dogs are there?	3.
Bar Chart	How many animals have 4 legs? 8? 3?	4.
Frequency Bar Chart	What percent of the total weight at the shelter is made up by Boo-boo?	5.
	What is the distribution of weights across all the animals older than 3?	6.
Histogram	How many animals are there of each species?	7.
	Who waited the longest to be adopted?	8.

Unit 7

- **Scatter Plots** show the relationship between two quantitative columns. Each row in the dataset is represented by a point, with one column providing the x-value and the other providing the y-value. The resulting "point cloud" makes it possible to look for a relationship between those two columns.
- If the points in a scatter plot appear to follow a pattern, it is possible that a relationship or **correlation** exists between those two columns.
- If there is a pattern to the points in a scatter plot, points that are far away from the pattern are called **outliers**.
- We can express this correlation by drawing line through the data cloud, so that
 the distance between the line and each of the points is as small as possible. This
 line is called the line of best fit or predictor function and allows us to make
 predictions based on the dataset.

(Dis)Proving a Claim

"Younger animals are cuter, so they get adopted faster."

Do you agree? If so, why?
I hypothesize
What would you look for in the dataset to see if you are right?

Creating a Scatter Plot

name	species	age	weeks
"Sasha"	"cat"	1	3
"Boo-boo"	"dog"	11	5
"Felix"	"cat"	16	4
"Buddy"	"lizard"	2	24
"Nori"	"dog"	6	9
"Wade"	"cat"	1	2
"Nibblet"	"rabbit"	6	12
"Maple"	"dog"	3	2

- 1. For each row in the Sample Table on the left, add a point to the scatter plot on the right. The first 3 rows have been completed for you. Use the values from the age column for the x-axis, and values from the weeks column for the y-axis.
- 2. Do you see a pattern? Do the points seem to shift up or down as age increases? **Draw a line on the scatter plot to show this pattern**.
- 3. Does the line slope upwards or downwards?
- 4. Are the points mostly close to the line?

Define a function <code>dogs-age-weeks</code>, which takes in a Table of animals and creates a scatter plot of all the dogs, tracking their <code>age</code> on the x-axis and the number of <code>weeks</code> it took for them to be adopted on the y-axis.

Contract and Purpose		
Examples Make a Start Table and a result based on th	nat table.	
	_ -	
	_	
	_	
	_	
	_	
Define the function		
Use the relevant methods (circle your helpe	r functions!), then pro	oduce a result with the new table.
fun (Define the table
<u>† =</u>		 Are there more columns?
		Are there fewer rows?
		Are the rows ordered?
		Produce the result
end		

Drawing Predictors

For each of the scatter plots below, draw a predictor line that fits best.

Correlations in My Dataset

1) There may be a correlation between		and
	column	
I think it is a		
COLUMN	strong / weak	positive / negative
correlation, because		
correlation, because		
	It would	d be stronger if I looked
		-
a subset	or extension of my da	<u> </u>
	or excension or my da	
1) There may be a correlation between		and
•	column	
I think it is a		
Column	strong / weak	positive / negative
correlation, because		
	It would	d be stronger if I looked
at		
ata subset	or extension of my da	• ta
	1	
1) There may be a correlation between		and
	column	
Library it is a		
I think it is a	strong / woak	
0014	Sciong / weak	posicive / negacive
correlation, because		
	It would	d be stronger if I looked
at		
ata subset	or extension of mv da	•

Unit 8

- Given a **predictor function** and a scatter plot, we can compute the error by adding the squares of all the distances between the function and each point in the plot. The error is called the **r**² **statistic**, which tells us how much of the variation in the y-axis can be explained by the x-axis.
- A strong correlation will have a large r². A weak correlation will have a small r².
- A **positive correlation** means the slope of the line of best fit is positive. A **negative correlation** means the slope is negative.
- **Linear Regression** is a way of computing the **line of best fit**, by taking a scatter plot and deriving the slope and y-intercept for a line that has the smallest possible r².
- <u>Correlation is not causation!</u> Correlation only suggests that two measures are related, but does not tell us if one causes the other. For example, hot days are correlated with people running their air conditioners, air conditioners do not cause hot days!

Grading Predictors

Below are the scatter plots for data sets A-D, with two different lines predictor lines drawn on top. For plots A-D:

- 1. Circle the plot with the line that fits better
- 2. Give the plot you circled a grade between 0 (no correlation) and 1 (perfect correlation)

Findings in the animals Dataset

Performing line	ear regression on	dogs at the s	Sneiter r subset
found	weak $(r^2=0.$		
	a strong/weak (r= age of the dogs (in weeks) [x-axis]		
	[x-axis]	[Y-	·axis]
That means th	adt $\frac{25\% \text{ of the variation}}{r^2 \% \text{ of the variation}}$	ability in adoption tir	ne is explained
by the age of t	he doa		rained by [x-axis]
Performing line	ear regression on	dataset o	r subset
	a strong/weak (r^2 =		
between	[x-axis]	and	·axis]
That means th	r^2 % of the variation	on in [y-axis] is exp	lained by [x-axis]
Performing line	ear regression on	dataset o	r subset
found	a strong/weak (r²=	.), positive/negative	correlation
between	[x-axis]	and	-axis]
That means th	r^2 % of the variation	on in [y-axis] is exp	lained by [x-axis]

Correlations in My Dataset

Performing linear re	gression on			
		C	lataset or subset	
found				correlation
	a strong/weak (r^2 =), positive/	negative	
between		and		
between	[x-axis]	gg	[y-axis]	·
That means that				
That means that	r² % of the varia	ation in [y-axis	s] is explained by	[x-axis]
				·
Performing linear re	gression on		lataset or subset	
found		2	· · · · · · · · · · · · · · · · · · ·	correlation
	a strong/weak (1	r =), positive/	negative	
between		and		
	[x-axis]		[y-axis]	
That means that				
	r ² % of the varia	ation in [y-axis	s] is explained by	[x-axis]
				·
Performing linear re	gression on		Natacot or subsot	
			dataset of subset	
found		2		correlation
	a strong/weak (1	r'=), positive/	negative	
between		and		
	[x-axis]		[y-axis]	
That means that				
That means that	r² % of the varia	ation in [y-axis	s] is explained by	[x-axis]
				·

Unit 9

Fake News

Every claim below is wrong! Your job is to figure out why, by looking at the data.

	Data	Claim	Why it's wrong
1	The average player on a basketball team is 6'1".	"Most of the players on the team are taller than 6'."	,
2	After performing linear regression on census data, a positive correlation (r ² =0.18) was found between people's height and salary.	"Taller people get paid more."	
3	y=12.234x + -17.089; r-sq: 0.636	"According to the predictor function indicated here, the value on the x-axis is will predict the value on the y-axis 63.6% of the time."	
4	15 Sasha Felix Wade Boo-boo Maple Nori Bar Chart of Pet Ages	"According to this bar chart, Felix makes up a little more than 15% of the total ages of all the animals in the dataset."	
5	20 40 60 80 100 120 140 160 180 Weight (pounds)	"According to this histogram, most animals weigh between 40 and 60 pounds."	
6	After performing linear regression, a negative correlation (r ² =0.91) was found between the number of hairs on a person's head and their likelihood of owning a wig.	"Owning wigs causes people to go bald."	

Blank Recipes, Table Plans, and References

Design Recipes

	:		\rightarrow	
nam	ne	domain		range
xamples:	<u> </u>			
_	() is		
 nd	() is		
un	() :		
nd				
	:			
nam	ne	domain		range
xamples:				
	() is		
	(
nd				
un	() :		
nd				

Design Recipes

	•		\rightarrow	
name		domain		range
ples:				
	() is		
	(, is		
	() :		
			\rightarrow	
	:		⁷ _	
name	•	domain	~ _	range
name	•	domain	7	range
	•	domain	7	range
	•	domain	7 <u>_</u>	range
	•		7	range
	(domain) is	7	range
	() is		
	(
	() is		
ples:	(() is		
name ples:	(() is		

Design Recipes

	•		\rightarrow	
name		domain		range
ples:				
	() is		
	(, is		
	() :		
			\rightarrow	
	:		⁷ _	
name	•	domain	~ _	range
name	•	domain	7	range
	•	domain	7	range
	•	domain	7 <u>_</u>	range
	•		7	range
	(domain) is	7	range
	() is		
	(
	() is		
ples:	(() is		
name ples:	(() is		

Contract and Purpose			
	:		\rightarrow
			
Examples Make a Start Table and a re	esult based on that to	ble	
THANG G GIAIT TABLE AND ATTA AT			
		\rightarrow	
Define the function			
	circle your helper fund	ctions!), then proc	duce a result with the new table.
•	, .	,,	
fun	():	
			Define the table
<u>† =</u>			 Are there more columns?
			 Are there fewer rows?
			·
			Are the rows ordered?
			Produce the result
end			

Contract and Purpose					
	<u> </u>			_ →	
Examples					
Make a Start Table and	a result based on that	table.			
		\rightarrow			
		- ′			
		4			
		_			
		_			
		_			
		-			
		_			
Define the function					
	ds (circle your helper f	unctions!),	then produce	a result with the new tabl	e.
	,	\			
	(Define the	table
<i>1-</i>				 Are there more c	:olumns?
				 Are there fewe	er rows?
				Are the rows o	rdered?
				Produce the	result
end					

Contract and Purpo	se			
	<u> </u>			→
Evamples				
Examples Make a Start Table an	d a result based or	n that table.		
		_		
		<i>></i>		
Define the function				
Use the relevant metr	ods (circle your hel	per functions!),	then produce	a result with the new table.
fun		()	:	
				Define the table
				Are there more columns?
				Are there fewer rows?
		·		Are the rows ordered?
		·		Produce the result
end				

Contracts

Name	Domain		Range
triangle	:: (side :: Number, style :: String, color :: String)	\rightarrow	Image
circle	:: (radius :: Number, style :: String, color :: String)	\rightarrow	Image
star	:: (radius :: Number, style :: String, color :: String)	\rightarrow	Image
rectangle	:: (width :: Num, height :: Num, style :: Str, color :: Str)		Image
ellipse	:: (width :: Num, height :: Num, style :: Str, color :: Str)		Image
square	:: (size :: Number, style :: String, color :: String)	\rightarrow	Image
text	:: (str :: String, size :: Number, color :: String)	\rightarrow	Image
overlay	:: (img1 :: <i>Image</i> , img2 :: <i>Image</i>)	\rightarrow	Image
rotate	:: (degree :: Number, img :: Image)	\rightarrow	Image
scale	:: (factor :: Number, img :: Image)		Image
string-repeat	:: (text :: String, repeat :: Number)		String
string-contains	:: (text :: String, search-for :: String)		Boolean
num-sqr	:: (n :: Number)	\rightarrow	Number
num-sqrt	:: (n :: Number)		Number
num-min	:: (a :: Number, b:: Number)		Number
num-max	:: (a :: Number, b:: Number)	\rightarrow	Number
get-row	:: (t :: Table, index :: Number)	\rightarrow	Row

Contracts

Name	Domain		Range
<table>.row-n</table>	:: (n :: Number)	\rightarrow	Row
<table>.filter</table>	:: (test :: (Row → Boolean))	\rightarrow	Table
<table>.build-column</table>	:: (col :: String, builder :: (Row → Value))	\rightarrow	Table
mean	:: (<u>t</u> :: Table, col :: String)	\rightarrow	Number
median	:: (t :: Table, col :: String)	\rightarrow	Number
modes	:: (t :: Table, col :: String)	\rightarrow	List <number></number>
bar-chart	:: (t :: Table, labels :: String, values :: String)	\rightarrow	Image
pie-chart	:: (t :: Table, labels :: String, values :: String)	\rightarrow	Image
freq-bar-chart	:: (t :: Table, values :: String)	\rightarrow	Image
histogram	:: (t :: Table, values :: String, bin-width :: Number)	\rightarrow	Image
scatter-plot	:: (t :: Table, xs :: String, ys :: String)	\rightarrow	Image
labeled-scatter-plot	:: (t :: Table, labels :: String, xs :: String, ys :: String)	\rightarrow	Image
lr-plot	:: (t :: Table, xs :: String, ys :: String)	\rightarrow	Image
labeled-lr-plot	:: (t :: Table, labels :: String, xs :: String, ys :: String)	\rightarrow	Image