Homework 4

Name: Ruchitha Midigarahalli Shanmugha Sundar, UID: 001838207

1 Problem 1

1.1

If A and B are n*n square matrices then

$$Tr(AB) = \sum_{i=1}^{N} (AB)_{ii}$$
$$= \sum_{i=1}^{N} \sum_{j=1}^{N} A_{ij} B_{ji}$$
$$= \sum_{j=1}^{N} \sum_{i=1}^{N} B_{ji} A_{ij}$$
$$= \sum_{j=1}^{N} (BA)_{ij}$$
$$= Tr(BA)$$

We can extend this for A, B and C

$$Tr(ABC) = \sum_{i} (ABC)_{ii}$$

Using ABC = A(BC) we have:

$$= \sum_{i} \sum_{j} A_{ij} (BC)_{ji} = \sum_{i} \sum_{j} \sum_{k} A_{ij} B_{jk} C_{ki}$$

Now we can move the matrices in cyclic order

$$= \sum_{k} \sum_{i} \sum_{j} C_{ki} A_{ij} B_{jk} = Tr(CAB)$$
$$= \sum_{j} \sum_{k} \sum_{i} B_{jk} C_{ki} A_{ij} = Tr(BCA)$$

Therefore, Tr(ABC) = Tr(BCA) = Tr(CAB).

This can be extended to any number of square matrices. Hence Trace is invariant under cyclic permutation.

1.2

Solution-1.2.1:

The first component vector(v):

Select a vector whose values sum to 1 when squared

$$V = [1/\sqrt{2}, 1/\sqrt{2}]^T$$

Solution-1.2.2: The co-ordinates in 1-D space obtained after projecting points into 1-D space using the first component vector is as follows:

Let z be the point in 1-D space, x be the point in 2-D space. we have :

$$z = x^T * v$$

First Point
$$x_1^T = [-1, -1], z_1 = [-1, -1][1/\sqrt{2}, 1/\sqrt{2}]^T = -\sqrt{2}$$

Second Point
$$x_2^T = [0, 0], z_2 = [0, 0][1/\sqrt{2}, 1/\sqrt{2}]^T = 0$$

Third Point
$$x_3^T = [1, 1], z_3 = [1, 1][1/\sqrt{2}, 1/\sqrt{2}]^T = \sqrt{2}$$

Solution-1.2.3:

Mean of the projected data, $\mu = (-\sqrt{2} + 0 + \sqrt{2})/3 = 0$

Variance of the Projected data

$$\sigma^2 = \frac{\sum (z_i - \mu)^2}{N} = \frac{1}{3}((-\sqrt{2} - 0)^2 + (0 - 0)^2 + (\sqrt{2} - 0)^2) = \frac{4}{3}$$

Solution-1.2.4:

Equation to reconstruct original points: x = z * v

First point,
$$x_1 = z_1 * v = -\sqrt{2} * [1/\sqrt{2}, 1/\sqrt{2}] = [-1, -1]$$

Second point,
$$x_2 = z_1 * v = 0 * [1/\sqrt{2}, 1/\sqrt{2}] = [0, 0]$$

Third point,
$$x_3 = z_1 * v = -\sqrt{2} * [1/\sqrt{2}, 1/\sqrt{2}] = [1, 1]$$

we can see from the above values, Reconstruction Error = 0

2 Problem 2

MATRIX FACTORIZATION:

Solution-2.1: Regularized Squared Error is as given below:

$$argmin_{u,v} \frac{\lambda}{2} (||U||_F^2 + ||V||_F^2) + \frac{1}{2} \sum_{i,j} (y_{ij} - u_i^T v_j)^2$$

Gradient of the above regularized squared error w.r.t u_i is as follows: Taking derivative w.r.t u_i we have:

$$\delta_{u_i} = \lambda U + \sum_{i,j} (y_{ij} - u_i^T v_j) * (-v_j)$$

$$\delta_{v_j} = \lambda V + \sum_{i,j} (y_{ij} - u_i^T v_j) * (-u_i)$$

Solution-2.2:

In Alternate least square, we first fix V and solve for optimal value of U by setting δ_{v_i} to zero:

$$\delta_{u_i} = \lambda U + \sum_{i,j} (y_{ij} - u_i^T v_j) * (-v_j) = 0$$

Solving the above equation for u_i

$$u_i = \left(\lambda I_k + \sum_j v_j v_j^T\right)^{-1} \sum_j y_{ij} v_j$$

Now, we fix U and solve for V

$$\delta_{v_j} = \lambda V + \sum_{i,j} (y_{ij} - u_i^T v_j) * (-u_i) = 0$$

Solving the above equation for v_i

$$v_j = \left(\lambda I_k + \sum_i u_i u_i^T\right)^{-1} \sum_i y_{ij} u_i$$

Solution-2.3: python code and Jupyter notebook both submitted Solution-2.4:

python code submitted

From the graph above we can notice that with the increase in K, the testing error increases due to over-fitting whereas with increase in K, training error decreases because of reconstruction.

Solution-2.5: python code submitted

We can see that the both training error and testing error is decreasing for most of the regularization term value(λ) but when the regularization is high(example when $\lambda=1$) the error has increased as it reduces learning rate resulting in under-fitting model.

3 Problem 3

Expectation Maximization:

Solution-3.1:

Given K Bernoulli distributions with parameter vector $p^{(k)} \in (0,1)^D$

Distribution, $\pi = [\pi_0, \pi_1, \pi_2, ..., \pi_k]$

Let $p = [p^{(1)}, p^{(2)}, \dots, p^{(k)}]$

Let A_k be the event that occurs when $x = x^{(i)}$ is taken from $p^{(k)}$

Probability of the data point, $P(x|p,\pi) = \sum_{k} P(x|A_k, p, \pi) P(A_k|p, \pi)$

$$= \sum_{k} \pi_k P(x|p^{(k)})$$

Solution-3.2:

$$\begin{split} P(X,Z|\pi,p) &= \Pi_{i=1}^N P(x^{(i)},z^{(i)}|\pi,p) \\ &= \Pi_{i=1}^N P(x^{(i)}|z^{(i)},\pi,p) P(z^{(i)}|\pi) \\ &= \Pi_{i=1}^N \left[\Pi_{k=1}^K \Big[P(x^{(i)}|p^{(k)}) \Big]^{z_{k(i)}} \right] \left[\Pi_{k=1}^K \pi_k^{z_k^{(i)}} \right] \end{split}$$

Now taking log on both sides we have:

$$\begin{split} log P(X, Z | p, \pi) &= \sum_{i=1}^{N} \left[\sum_{k=1}^{K} z_{k^{(i)}} \log \left[P(x^{(i)} | p^{(k)}) \right] \right] + \left[\sum_{k=1}^{K} z_{k}^{(i)} \log \pi_{k} \right] \\ &= \sum_{i=1}^{N} \sum_{k=1}^{k} z_{k}^{(i)} \log \left[\log P(x^{(i)} | p^{(k)}) + \log \pi_{k} \right] \end{split}$$

Let $p \in (0,1)^D$ be the Bernoulli parameter resulting vector Now using $P(x|p) = \prod_{d=1}^D p_d^{x_d} (1-p_d)^{(1-x_d)}$ where $P(x_d=1) = p_d$

$$= \sum_{i=1}^{N} \sum_{k=1}^{K} Z_k^{(i)} \left[\log \pi_k + \log \Pi_{d=1}^D (p_d^{(k)})^{x_d^{(i)}} (1 - p_d^{(k)})^{1 - x_d^{(i)}} \right]$$

$$\sum_{i=1}^{N} \sum_{k=1}^{K} Z_k^{(i)} \left[\log \pi_k + \sum_{d=1}^{D} \left[(x_d^{(i)} log(p_d^{(k)}) + (1 - x_d^{(i)}) \log(1 - p_d^{(k)}) \right] \right]$$

For $E[log P(X, Z|p, \pi)]$ substituting $E[z_k^{(i)}] = \eta(z_k^{(i)})$ we have

$$E[logP(X,Z|p,\pi)] = \sum_{i=1}^{N} \sum_{k=1}^{K} \eta(z_k^{(i)}) \left[\log \pi_k + \sum_{d=1}^{D} \left[(x_d^{(i)}log(p_d^{(k)}) + (1-x_d^{(i)}) \log(1-p_d^{(k)}) \right] \right] - > \text{Equation 1}$$

Solution-3.3:

In order to get p_d take derivative $E[logP(X,Z|p,\pi)]$ w.r.t p_d and set it to zero:

$$\begin{split} \frac{\delta}{\delta p_d^{(k)}} E[log P(X, Z | p, \pi)] &= \sum_{i=1}^N \eta(z_k^{(i)}) \left[\frac{x_d^{(i)}}{p_d^{(k)}} + \frac{1 - x_d^{(i)}}{1 - p_d^{(k)}} \right] = 0 \\ \sum_{i=1}^N \eta(z_k^{(i)}) \left[x_d^{(i)} (1 - p_d^{(k)}) + (1 - x_d^{(i)}) p_d^{(k)} \right] = 0 \\ \sum_{i=1}^N \eta(z_k^{(i)}) \left[x_d^{(i)} - p_d^{(k)} \right] = 0 \end{split}$$

Now solving for $p_d^{(k)}$ we have:

$$p_d^{(k)} = \frac{\sum_{i=1}^{N} \eta(z_k^{(i)}) x_d^{(i)}}{\sum_{i=1}^{N} \eta(z_k^{(i)})}$$
$$= \frac{\sum_{i=1}^{N} \eta(z_k^{(i)}) x_d^{(i)}}{N_h}$$

In order to solve for π_k we need to minimize just the first term of Equation 1 which is a function of π

$$L(\pi, \lambda) = -\sum_{i=1}^{N} \sum_{k=1}^{K} \eta(z_k^{(i)}) log \pi_k + \lambda \left(\sum_{k=1}^{K} \pi_k - 1\right)$$

By taking derivative of $L(\pi, \lambda)$ w.r.t π_k

$$\begin{split} \frac{\delta}{\delta \pi_k} L(\pi, \lambda) &= -\sum_{i=1}^N \frac{\eta(z_k^{(i)})}{\pi_k} + \lambda = 0 \\ \pi_k &= \frac{\sum_{i=1}^N \eta(z_k^{(i)})}{N} + \lambda = 0 \\ \pi_k &= \frac{\sum_{i=1}^N \eta(z_k^{(i)})}{\lambda} = \frac{N_k}{\lambda} - > \text{equation 2} \end{split}$$

Solving for λ :

$$L(\lambda) = -\sum_{i=1}^{N} \sum_{k=1}^{K} \eta(z_k^{(i)}) (\log N_k - \log \lambda) + \left(\sum_{k=1}^{K} N_k - \lambda\right)$$

on taking derivative w.r.t λ we have:

$$\frac{1}{\lambda} \sum_{i=1}^{N} \sum_{k=1}^{K} \eta(z_k^{(i)}) - 1 = 0$$

$$\lambda = \sum_{i=1}^{N} \sum_{k=1}^{K} \eta(z_k^{(i)})$$

$$=> \lambda = \sum_{k=1}^{K} N_k - - > \text{equation } 3$$

substituting 3 in 2 we have:

$$\pi_k = \frac{\sum_{i=1} N \eta(z_k^{(i)})}{\lambda} = \frac{N_k}{\sum_{k=1}^K N_k}$$

Hence Proved!