What is claimed is:

A molten-salt type catalyst for purifying particulate materials, which are contained in an exhaust gas emitted from an internal combustion engine and contain carbon, and said catalyst comprising:

a solid support; and

a catalytic ingredient loaded on the solid support including at least one member selected from the group consisting of silver nitrate, alkali metal nitrate, alkaline-earth metal nitrate and rare-earth nitrate.

- 2. The molten-salt type catalyst according to claim 1, wherein said solid support is a basic support.
- 3. The molten-salt type catalyst according to claim 1, wherein said catalytic ingredient includes alkali metal nitrate.
- 4. The molten-salt type catalyst according to claim 1, wherein said catalytic ingredient further includes an oxidation facilitating ingredient.
- 5. The molten-salt type catalyst according to claim 1, wherein said solid support includes at least one member selected from the group consisting of alumina, zirconia, titania, silica and zeolite.
- 6. The molten-salt type catalyst according to claim 2, wherein said basic support includes at least one member selected from the

group consisting of magnesia spinel zirconia, alkali metal oxide, alkaline-earth metal oxide and rare-earth oxide.

- 7. The molten-salt type catalyst according to claim 6, wherein said alkaline-earth metal oxide is magnesia.
- 8. The molten-salt type catalyst according to claim 6, wherein said rare-earth metal oxide is at least one member selected from the group consisting of lanthanum oxide and neodymium oxide.
- 9. The molten-salt type catalyst according to claim 1, wherein said alkali metal nitrate is at least one member selected from the group consisting of KNO₃, CsNO₃, NaNO₃ and LiNO₃.
- 10. The molten-salt type catalyst according to claim 1, wherein said alkaline-earth metal nitrate is at least one member selected from the group consisting of $Ba(NO_3)_2$, $Sr(NO_3)_2$, $Ca(NO_3)_2$ and $Mg(NO_3)_2$.
- 11. The molten-salt type catalyst according to claim 1, wherein said rare-earth nitrate is at least one member selected from the group consisting $\phi f Y_2(NO_3)_3$, $La_2(NO_3)_3$, $Nd_2(NO_3)_3$ and $Pr_2(NO_3)_3$.
- 12. The molten-salt type catalyst according to claim 1, wherein said catalytic ingredient is composite nitrate.
- 13. The molten-salt type catalyst according to claim 12, wherein said composite nitrate is at least one member selected from the group consisting of AgNO₃-CsNO₃, CsNO₃-KNO₃, CsNO₃-NaNO₃, CsNO₃-LiNO₃,

- 14. The molten-salt type catalyst according to claim 1, wherein said catalytic ingredient includes alkali metal nitrate.
- 15. The molten-salt type catalyst according to claim 14, wherein said alkali metal includes LiNO, at least.
- 16. The molten-salt type catalyst according to claim 1, wherein a loading amount of said catalytic ingredient falls in a range of from 1 to less than 120 parts by weight with respect to 100 parts by weight of said solid support.
- 17. The molten-salt type/catalyst according to claim 4, wherein said oxidation facilitating ingredient is at least one member selected from the group consisting of noble metal and oxide!
- 18. The molten-metal type catalyst according to claim 17, wherein said noble metal is at least one member selected from the group consisting of Pt, Pd and Rh.
- 19. The molten-metal type catalyst according to claim 17, wherein said oxide is at least one member selected from the group consisting of CeO_2 , ZrO_2 , CeO_2 – ZrO_2 solid solutions, BaO, CaO, V_2O_5 , ZnO, WO_3 ,

 MOO_3 , NiO, FeO, Fe_3O_4 , Fe_2O_3 , $Mn\phi_2$, Cr_2O_3 , CuO, CoO and Co_3O_4 .

- 20. The molten-salt type catalyst according to claim 17, wherein a loading amount of said noble metal falls in a range of from 0.1 to 10 parts by weight with respect to 100 parts by weight of said solid support.
- 21. The molten-salt type catalyst according to claim 17, wherein a loading amount of said metal oxide falls in a range of from 1 to 50 parts by weight with respect to 100 parts by weight of said solid support.