Arsitektur Neural Network

As students cross the threshold from outside to insider, they also cross the threshold from superficial learning motivated by grades to deep learning motivated by engagement with questions. Their transformation entails an awakening—even, perhaps, a falling in love.

John C. Bean

Seperti yang sudah dijelaskan pada bab 10, data memiliki karakteristik (dari segi behaviour) misal sequential data, compositional data, dsb. Terdapat arsitektur khusus artificial neural network (ANN) untuk menyelesaikan persoalan pada tipe data tertentu. Pada bab ini, kami akan memberikan beberapa contoh variasi arsitektur ANN yang cocok untuk tipe data tertentu. Penulis akan berusaha menjelaskan semaksimal mungkin ide-ide penting pada masing-masing arsitektur. Tujuan bab ini adalah memberikan pengetahuan konseptual (intuisi). Pembaca harus mengeksplorasi tutorial pemrograman untuk mampu mengimplementasikan arsitektur-arsitektur ini.

11.1 Convolutional Neural Network

Subbab ini akan memaparkan **ide utama** dari convolutional neural network (CNN) berdasarkan paper asli dari LeCun dan Bengio [68] (sekarang (2018) sudah ada banyak variasi). CNN memiliki banyak istilah dari bidang pemrosesan gambar (karena dicetuskan dari bidang tersebut), tetapi demi mempermudah pemahaman intuisi CNN, diktat ini akan menggunakan istilah yang lebih umum juga.

Sekarang, mari kita memasuki cerita CNN dari segi pemrosesan gambar. Objek bisa saja dterlatak pada berbagai macam posisi seperti diilustrasikan oleh Gambar. 11.1. Selain tantangan variasi posisi objek, masih ada juga tantangan lain seperti rotasi objek dan perbedaan ukuran objek (scaling). Kita ingin mengenali (memproses) objek pada gambar pada berbagai macam posisi yang mungkin (translation invariance). Salah satu cara yang mungkin adalah dengan membuat suatu mesin pembelajaran (ANN) untuk regional tertentu seperti pada Gambar. 11.2 (warna biru) kemudian meng-copy mesin pembelajaran untuk mampu mengenali objek pada regional-regional lainnya. Akan tetapi, kemungkinan besar ANN copy memiliki konfigurasi parameter yang sama dengan ANN awal. Hal tersebut disebabkan objek yang memiliki informasi prediktif (predictive information) yang berguna untuk menganalisisnya. Dengan kata lain, objek yang sama (smile) memiliki bentuk yang sama. ANN (MLP) bisa juga mempelajari prinsip translation invariance, tetapi memerlukan jauh lebih banyak parameter dibanding CNN (subbab berikutnya secara lebih matematis) yang memang dibuat dengan prinsip translation invariance (built-in).

Gambar 11.1. Motivasi convolutional neural network.

Gambar 11.2. Motivasi convolutional neural network, solusi regional.

11.1.1 Convolution

Seperti yang sudah dijelaskan, motivasi CNN adalah untuk mampu mengenali aspek yang informatif pada regional tertentu (lokal). Dibanding mengcopy mesin pembelajaran beberapa kali untuk mengenali objek pada banyak regional, ide lebih baik adalah untuk menggunakan sliding window. Setiap operasi pada window¹ bertujuan untuk mencari aspek lokal yang paling informatif. Ilustrasi diberikan oleh Gambar. 11.3. Warna biru merepresentasikan satu window, kemudian kotak ungu merepresentasikan aspek lokal paling informatif (disebut filter) yang dikenali oleh window. Dengan kata lain, kita mentransformasi suatu window menjadi suatu nilai numerik (filter). Kita juga dapat mentransformasi suatu window (regional) menjadi d nilai numerik (d-channels, setiap elemen berkorespondensi pada suatu filter). Window ini kemudian digeser-geser sebanyak N kali, sehingga akhirnya kita mendapatkan vektor dengan panjang $d \times N$. Keseluruhan operasi ini disebut sebagai convolution².

Gambar 11.3. Sliding window.

Agar kamu lebih mudah memahami prinsip ini, kami berikan contoh dalam bentuk 1-D pada Gambar. 11.4. Warna biru merepresentasikan feature vector (regional) untuk suatu input (e.g., regional pada suatu gambar, kata pada kalimat, dsb). Pada contoh ini, setiap 2 input ditransformasi menjadi vektor berdimensi 2 (2-channels); menghasilkan vektor berdimensi 4 (2 $window \times 2$).

Gambar 11.4. 1D Convolution.

¹ Dikenal juga sebagai receptive field.

² Istilah convolution yang diterangkan pada konteks machine learning memiliki arti yang berbeda pada bidang signal processing.

Pada contoh sebelumnya, kita menggunakan window selebar 2, satu window mencakup 2 data; i.e., $window_1 = (x_1, x_2)$, $window_2 = (x_2, x_3)$, \cdots . Untuk suatu input \mathbf{x} . Kita juga dapat mempergunakan stride sebesar s, yaitu seberapa banyak data yang digeser untuk window baru. Contoh yang diberikan memiliki stride sebesar satu. Apabila kita memiliki stride = 2, maka kita menggeser sebanyak 2 data setiap langkah; i.e., $window_1 = (x_1, x_2)$, $window_2 = (x_3, x_4)$, \cdots .

Selain sliding window dan filter, convolutional layer juga mengadopsi prinsip weight sharing. Artinya, synapse weights untuk suatu filter adalah sama walau filter tersebut dipergunakan untuk berbagai window. Sebagai ilustrasi, perhatikan Gambar. 11.5, warna yang sama pada synapse weights menunjukan synapse weights bersangkutan memiliki nilai (weight) yang sama. Tidak hanya pada filter hitam, hal serupa juga terjadi pada filter berwarna oranye (i.e., filter berwarnya oranye juga memenuhi prinsip weight sharing). Walaupun memiliki konfigurasi bobot synapse weights yang sama, unit dapat menghasilkan output yang berbeda untuk input yang berbeda. Konsep weight sharing ini sesuai dengan cerita sebelumnya bahwa konfigurasi parameter untuk mengenali karakteristik informatif untuk satu objek bernilai sama walau pada lokasi yang berbeda. Dengan weight sharing, parameter neural network juga menjadi lebih sedikit dibanding menggunakan multilayer perceptron (feed-forward neural network).

Gambar 11.5. Konsep weight sharing.

11.1.2 Pooling

Pada tahap convolution, kita merubah setiap k-sized window menjadi satu vektor berdimensi d (yang dapat disusun menjadi matriks \mathbf{D}). Semua vektor yang dihasilkan pada tahap sebelumnya dikombinasikan (pooled) menjadi satu vektor \mathbf{c} . Ide utamanya adalah mengekstrak informasi paling informatif (semacam meringkas). Ada beberapa teknik pooling, diantaranya: max pooling, average pooling, dan K-max pooling³; diilustrasikan pada Gambar. 11.6. Max pooling mencari nilai maksimum untuk setiap dimensi vektor. Average pooling

³ Kami ingin pembaca mengeksplorasi sendiri dynamic pooling.

mencari nilai rata-rata tiap dimensi. *K-max pooling* mencari *K* nilai terbesar untuk setiap dimensinya (kemudian hasilnya digabungkan). Gabungan operasi convolution dan pooling secara konseptual diilustrasikan pada Gambar. 11.7.

Gambar 11.6. Contoh pooling.

Gambar 11.7. Convolution dan pooling.

Setelah melewati berbagai operasi convolution dan pooling, kita akan memiliki satu vektor yang kemudian dilewatkan pada multilayer perceptron untuk melakukan sesuatu (tergantung permasalahan), misal klasifikasi gambar, klasifikasi sentimen, dsb (Ilustrasi pada Gambar. 11.8).

Gambar 11.8. Convolutional Neural Network⁴.

11.1.3 Rangkuman

Kemampuan utama convolutional neural network (CNN) adalah arsitektur yang mampu mengenali informasi prediktif suatu objek (gambar, teks, potongan suara, dsb) walaupun objek tersebut dapat diposisikan dimana saja pada input. Kontribusi CNN adalah pada convolution dan pooling layer. Convolution bekerja dengan prinsip sliding window dan weight sharing (mengurangi kompleksitas perhitungan). Pooling layer berguna untuk merangkum informasi informatif yang dihasilkan oleh suatu convolution (mengurangi dimensi). Pada ujung akhir CNN, kita lewatkan satu vektor hasil beberapa operasi convolution dan pooling pada multilayer perceptron (feed-forward neural network), dikenal juga sebagai fully connected layer, untuk melakukan suatu pekerjaan (e.g., klasifikasi). Perhatikan, pada umumnya CNN tidak berdiri sendiri, dalam artian CNN biasanya digunakan (dikombinasikan) untuk arsitektur yang lebih besar.

11.2 Recurrent Neural Network

Ide dasar recurrent neural network (RNN) adalah membuat topologi jaringan yang mampu merepresentasikan data sequential (sekuensial) atau time series [69], misalkan data ramalan cuaca. Cuaca hari ini bergantung kurang lebih pada cuaca hari sebelumnya. Sebagai contoh apabila hari sebelumnya mendung, ada kemungkinan hari ini hujan⁵. Walau ada yang menganggap sifat data sekuensial dan time series berbeda, RNN berfokus sifat data dimana instans waktu sebelumnya (t-1) mempengaruhi instans pada waktu berikutnya (t). Intinya, mampu mengingat history.

Secara lebih umum, diberikan sebuah sekuens data $\mathbf{x} = (x_1, \dots, x_N)$. Data x_t (i.e., vektor, gambar, teks, suara) dipengaruhi oleh data sebelum-sebelumnya (history), ditulis sebagai $P(x_t \mid \{x_1, \dots, x_{t-1}\})$. Kami harap

 $^{^4}$ mathworks.com

⁵ Mohon bertanya pada ahli meteorologi untuk kebenaran contoh ini. Contoh ini semata-mata pengalaman pribadi penulis.

kamu ingat kembali materi markov assumption yang diberikan pada bab 7. Pada markov assumption, diasumsikan bahwa data x_t (data point) hanya dipengaruhi oleh **beberapa data sebelumnya saja** (analogi: windowing). Setidaknya, asumsi ini memiliki dua masalah:

- 1. Menentukan window terbaik. Bagaimana cara menentukan banyaknya data sebelumnya (secara optimal) yang mempengaruhi data sekarang.
- 2. Apabila kita menggunakan markov assumption, artinya kita mengganggap informasi yang dimuat oleh data lama dapat direpresentasikan oleh data lebih baru (x_t memuat informasi dari x_{t-J} ; J adalah ukuran window). Penyederhanaan ini tidak jarang mengakibatkan informasi yang hilang.

RNN adalah salah satu bentuk arsitektur ANN untuk mengatasi masalah yang ada pada markov assumption. Ide utamanya adalah memorisasi⁶, kita ingin mengingat **keseluruhan** sekuens (dibanding markov assumption yang mengingat sekuens secara terbatas), implikasinya adalah RNN mampu mengenali dependensi yang panjang (misal x_t ternyata dependen terhadap x_1). RNN paling sederhana diilustrasikan pada Gambar. 11.9. Ide utamanya adalah terdapat pointer ke dirinya sendiri.

Gambar 11.9. Bentuk konseptual paling sederhana recurrent NN.

Ilustrasi Gambar. 11.9 mungkin sedikit susah dipahami karena berbentuk sangat konseptual. Bentuk lebih matematis diilustrasikan pada Gambar. 11.10 [69]. Perhitungan hidden state pada waktu ke-t bergantung pada input pada waktu ke-t (x_t) dan hidden state pada waktu sebelumnya (h_{t-1}) .

Konsep ini sesuai dengan prinsip recurrent yaitu **mengingat** (memorisasi) kejadian sebelumnya. Kita dapat tulis kembali RNN sebagai persamaan 11.1.

$$\mathbf{h}_t = f(x_t, \mathbf{h}_{t-1}, b) \tag{11.1}$$

dimana f adalah fungsi aktivasi (non-linear, dapat diturunkan). Demi menyederhanakan penjelasan, penulis tidak mengikutsertakan bias (b) pada fungsifungsi berikutnya. Kami berharap pembaca selalu mengingat bahwa bias adalah parameter yang diikutsertakan pada fungsi $artificial\ neural\ network$.

⁶ Tidak merujuk hal yang sama dengan dynamic programming.

Gambar 11.10. Konsep Recurrent Neural Network.

Gambar 11.11. Konsep feed forward pada RNN.

Fungsi f dapat diganti dengan variasi $neural\ network^7$, misal menggunakan $long\ short-term\ memory\ network\ (LSTM)\ [70]$. Buku ini hanya akan menjelaskan konsep paling penting, silahkan eksplorasi sendiri variasi RNN.

Secara konseptual, persamaan 11.1 memiliki analogi dengan full markov chain. Artinya, hidden state pada saat ke-t bergantung pada semua hidden state dan input sebelumnya.

$$\mathbf{h}_{t} = f(x_{t}, \mathbf{h}_{t-1})$$

$$= f(x_{t}, f(x_{t-1}, \mathbf{h}_{t-2}))$$

$$= f(x_{t}, f(x_{t-1}, f(\{x_{1}, \dots, x_{t-2}\}, \{\mathbf{h}_{1}, \dots, \mathbf{h}_{t-3}\})))$$
(11.2)

Training pada recurrent neural network dapat menggunakan metode back-propagation. Akan tetapi, metode tersebut kurang intuitif karena tidak mampu mengakomodasi training yang bersifat sekuensial time series. Untuk itu, terdapat metode lain bernama backpropagation through time [71].

Sebagai contoh kita diberikan sebuah sekuens \mathbf{x} dengan panjang N sebagai input, dimana x_t melambangkan input ke-i (data point dapat berupa e.g., vektor, gambar, teks, atau apapun). Kita melakukan feed forward data tersebut ke RNN, diilustrasikan pada Gambar. 11.11. Perlu diingat, RNN

⁷ https://en.wikipedia.org/wiki/Recurrent_neural_network

mengadopsi prinsip parameter sharing (serupa dengan weight sharing pada CNN) dimana neuron yang sama diulang-ulang saat process feed forward.

Kemudian kita memperbaharui parameter (synapse weights) berdasarkan propagasi error (backpropagation). Pada backpropagation biasa, kita perbaharui parameter sambil mempropagasi error dari hidden state ke hidden state sebelumnya. Tetapi, pada backpropagation through time, dilakukan unfolding pada neural network. Kita mengupdate parameter, saat kita sudah mencapai hidden state paling awal. Hal ini diilustrasikan pada Gambar. 11.12⁸. Gambar. 11.12 dapat disederhanakan menjadi bentuk lebih abstrak (konseptual) pada Gambar. 11.13.

Gambar 11.12. Konsep Backpropagation Through Time [39].

Kita mempropagasi error dengan adanya efek dari next states of hidden layer. Synapse weights diperbaharui secara large update. Synapse weight tidak diperbaharui per layer. Hal ini untuk merepresentasikan neural network yang mampu mengingat beberapa kejadian masa lampau dan keputusan saat ini dipengaruhi oleh keputusan pada masa lampau juga (ingatan). Untuk mengerti proses ini secara praktikal (dapat menuliskannya sebagai pro-

⁸ Prinsip ini mirip dengan weight sharing.

Gambar 11.13. Konsep Backpropagation Through Time [1]. Persegi berwarna merah umumnya melambangkan multi-layer perceptron.

gram), penulis sarankan pembaca untuk melihat materi tentang $computation\ graph^9$ dan disertasi PhD oleh Mikolov [39].

Walaupun secara konseptual RNN dapat mengingat seluruh kejadian sebelumnya, hal tersebut sulit untuk dilakukan secara praktikal untuk sekuens yang panjang. Hal ini lebih dikenal dengan vanishing atau exploding gradient problem [55, 72, 73]. Seperti yang sudah dijelaskan, ANN dan variasi arsitekturnya dilatih menggunakan teknik stochastic gradient descent (gradient-based optimization). Artinya, kita mengandalkan propagasi error berdasarkan turunan. Untuk sekuens input yang panjang, tidak jarang nilai gradient menjadi sangat kecil dekat dengan 0 (vanishing) atau sangat besar (exploding). Ketika pada satu hidden state tertentu, gradient pada saat itu mendekati 0, maka nilai yang sama akan dipropagasikan pada langkah berikutnya (menjadi lebih kecil lagi). Hal serupa terjadi untuk nilai gradient yang besar.

Berdasarkan pemaparan ini, RNN adalah teknik untuk merubah suatu sekuens input, dimana x_t merepresentasikan data ke-t (e.g., vektor, gambar, teks) menjadi sebuah output vektor \mathbf{y} . Vektor \mathbf{y} dapat digunakan untuk permasalahan lebih lanjut (buku ini memberikan contoh sequence to sequence pada subbab 11.4). Bentuk konseptual ini dapat dituangkan pada persamaan 11.3. Biasanya, nilai y dilewatkan kembali ke sebuah multi-layer perceptron (MLP) dan fungsi softmax untuk melakukan klasifikasi akhir (final output) dalam bentuk probabilitas, seperti pada persamaan 11.4.

$$\mathbf{y} = \text{RNN}(x_1, \cdots, x_N) \tag{11.3}$$

final output =
$$softmax(MLP(y))$$
 (11.4)

Perhatikan, arsitektur yang penulis deskripsikan pada subbab ini adalah arsitektur paling dasar. Untuk arsitektur state-of-the-art, kamu dapat membaca paper yang berkaitan.

⁹ https://www.coursera.org/learn/neural-networks-deep-learning/ lecture/4WdOY/computation-graph

11.3 Part-of-speech Tagging Revisited

Pada bab sebelumnya, kamu telah mempelajari konsep dasar recurrent neural network. Selain digunakan untuk klasifikasi (i.e., hidden state terakhir digunakan sebagai input klasifikasi), RNN juga dapat digunakan untuk memprediksi sekuens seperti persoalan part-of-speech tagging (POS tagging) [74, 75, 76]. Kami harap kamu masih ingat materi bab 7 yang membahas apa itu persoalan POS tagging.

Diberikan sebuah sekuens kata $\mathbf{x} = \{x_1, \dots, x_N\}$, kita ingin mencari sekuens output $\mathbf{y} = \{y_1, \dots, y_N\}$ (sequence prediction); dimana y_i adalah kelas kata untuk x_i . Perhatikan, panjang input dan output adalah sama. Ingat kembali bahwa pada persoalan POS tagging, kita ingin memprediksi suatu kelas kata yang cocok y_i dari kumpulan kemungkinan kelas kata C ketika diberikan sebuah history seperti diilustrasikan oleh persamaan 11.5, dimana t_i melambangkan kandidat POS tag ke-i. Pada kasus ini, biasanya yang dicari tahu setiap langkah (unfolding) adalah probabilitas untuk memilih suatu kelas kata $t \in C$ sebagai kelas kata yang cocok untuk di-assign sebagai y_i .

Ilustrasi diberikan oleh Gambar. 11.14.

$$y_1, \dots, y_N = \underset{t_1, \dots, t_N; t_i \in C}{\arg \max} p(t_1, \dots, t_N \mid x_1, \dots, x_N)$$
 (11.5)

Gambar 11.14. POS tagging menggunakan RNN.

Apabila kita melihat secara sederhana (markov assumption), hal ini tidak lain dan tidak bukan adalah melakukan klasifikasi untuk setiap instance pada sekuens input (persamaan 11.6). Pada setiap time step, kita ingin menghasilkan output yang bersesuaian.

$$y_i = \operatorname*{arg\,max}_{t_i \in C} p(t_i|x_i) \tag{11.6}$$

Akan tetapi, seperti yang sudah dibahas sebelum sebelumnya, markov assumption memiliki kelemahan. Kelemahan utama adalah tidak menggunakan keseluruhan history. Persoalan ini cocok untuk diselesaikan oleh RNN karena kemampuannya untuk mengingat seluruh sekuens (berbeda dengan hidden

markov model (HMM) yang menggunakan markov assumption). Secara teoritis (dan juga praktis¹⁰), RNN lebih hebat dibanding HMM. Dengan ini, persoalan POS tagging (full history) diilustrasikan oleh persamaan 11.7.

$$y_i = \operatorname*{arg\,max}_{t_i \in C} p(t_i | x_1, \cdots, x_N)$$

$$\tag{11.7}$$

Pada bab sebelumnya, kamu diberikan contoh persoalan RNN untuk satu output; i.e., diberikan sekuens input, output-nya hanyalah satu kelas yang mengkategorikan seluruh sekuens input. Untuk persoalan POS tagging, kita harus sedikit memodifikasi RNN untuk menghasilkan output bagi setiap elemen sekuens input. Hal ini dilakukan dengan cara melewatkan setiap hidden layer pada RNN pada suatu jaringan (anggap sebuah MLP + softmax). Kita lakukan prediksi kelas kata untuk setiap elemen sekuens input, kemudian menghitung loss untuk masing-masing elemen. Seluruh loss dijumlahkan untuk menghitung backpropagation pada RNN. Ilustrasi dapat dilihat pada Gambar. 11.15. Tidak hanya untuk persoalan POS tagging, arsitektur ini dapat juga digunakan pada persoalan sequence prediction lainnya seperti named entity recognition¹¹. Gambar. 11.15 mungkin agak sulit untuk dilihat, kami beri bentuk lebih sederhananya (konseptual) pada Gambar. 11.16. Pada setiap langkah, kita menentukan POS tag yang sesuai dan menghitung loss yang kemudian digabungkan. Backpropagation dilakukan dengan mempertimbangkan keseluruhan (jumlah) loss masing-masing prediksi.

Gambar 11.15. Sequence prediction menggunakan RNN.

Berdasarkan arsitektur yang sudah dijelaskan sebelumnya, prediksi POS tag ke-i bersifat independen dari POS tag lainnya. Padahal, POS tag lain-

 $^{^{10}}$ Sejauh yang penulis ketahui. Tetapi hal ini bergantung juga pada variasi arsitektur.

¹¹ https://en.wikipedia.org/wiki/Named-entity_recognition

Gambar 11.16. Sequence prediction menggunakan RNN (disederhakan) [1]. Persegi berwarna merah umumnya melambangkan multi-layer perceptron.

nya memiliki pengaruh saat memutuskan POS tag ke-i (ingat kembali materi bab 7); sebagai persamaan 11.8.

$$y_i = \underset{t_i \in C}{\arg \max} p(t_i \mid y_1, \dots, y_{i-1}, x_1, \dots, x_i)$$
 (11.8)

Salah satu strategi untuk menangani hal tersebut adalah dengan melewatkan POS tag pada sebuah RNN juga, seperti para persamaan 11.9 [1] (ilustrasi pada Gambar. 11.17). Untuk mencari keseluruhan sekuens terbaik, kita dapat menggunakan teknik $beam\ search$ (detil penggunaan dijelaskan pada subbab berikutnya). RNN $^{\rm x}$ pada persamaan 11.9 juga lebih intuitif apabila diganti menggunakan $bidirectional\ RNN$ (dijelaskan pada subbab berikutnya).

$$p(t_i \mid y_1, \dots, y_{i-1}, x_1, \dots, x_i) =$$
softmax(MLP([RNN^x(x_1, \dots, x_i); RNN^t(t_1, \dots, t_{i-1})])) (11.9)

 ${\bf Gambar~11.17.}$ Sequence prediction menggunakan RNN (disederhakan). Persegi melambangkan RNN.

11.4 Sequence to Sequence

Pertama-tama, kami ingin mendeskripsikan kerangka conditioned generation. Pada kerangka ini, kita ingin memprediksi sebuah kelas y_i berdasarkan kelas yang sudah di-hasilkan sebelumnya (history yaitu y_1, \dots, y_{i-1}) dan sebuah conditioning context \mathbf{c} (berupa vektor).

Arsitektur yang dibahas pada subbab ini adalah variasi RNN untuk permasalahan sequence generation¹². Diberikan sekuens input $\mathbf{x} = (x_1, \dots, x_N)$. Kita ingin mencari sekuens output $\mathbf{y} = (y_1, \dots, y_M)$. Pada subbab sebelumnya, x_i berkorespondensi langsung dengan y_i ; i.e., y_i adalah kelas kata (kategori) untuk x_i . Tetapi, pada permasalahan saat ini, x_i tidak langsung berkorespondensi dengan y_i . Setiap y_i dikondisikan oleh **seluruh** sekuens input \mathbf{x} (conditioning context dan history $\{y_1, \dots, y_{i-1}\}$. Dengan itu, M (panjang sekuens output) tidak mesti sama dengan N (panjang sekuens input). Permasalahan ini masuk ke dalam kerangka conditioned generation dimana keseluruhan input \mathbf{x} dapat direpresentasikan menjadi sebuah vektor \mathbf{c} (coding). Vektor \mathbf{c} ini menjadi variabel pengkondisi untuk menghasilkan output \mathbf{y} .

Pasangan input-output dapat melambangkan teks bahasa X-teks bahasa Y (translasi), teks-ringkasan, kalimat-POS tags, dsb. Artinya ada sebuah input dan kita ingin menghasilkan (generate/produce) sebuah output yang cocok untuk input tersebut. Hal ini dapat dicapai dengan momodelkan pasangan input-output $P(\mathbf{y} \mid \mathbf{x})$. Umumnya, kita mengasumsikan ada kumpulan parameter θ yang mengontrol conditional probability, sehingga kita transformasi conditional probability menjadi $P(\mathbf{y} \mid \mathbf{x}, \theta)$. Conditional probability $P(\mathbf{y} \mid \mathbf{x}, \theta)$ dapat difaktorkan sebagai persamaan 11.10. Kami harap kamu mampu membedakan persamaan 11.10 dan persamaan 11.5 (dan 11.8) dengan jeli. Sedikit perbedaan pada formula menyebabkan makna yang berbeda.

$$P(\mathbf{y} \mid \mathbf{x}, \theta) = \prod_{t=1}^{M} P(y_t \mid \{y_1, \dots, y_{t-1}\}, \mathbf{x}, \theta),$$
 (11.10)

Persamaan 11.10 dapat dimodelkan dengan encoder-decoder model yang terdiri dari dua buah RNN dimana satu RNN sebagai encoder, satu lagi sebagai decoder. Ilustrasi encoder-decoder dapat dilihat pada Gambar. 11.18. Gabungan RNN encoder dan RNN decoder ini disebut sebagai bentuk sequence to sequence. Warna biru merepresentasikan encoder dan warna merah merepresentasikan decoder. "<EOS>" adalah suatu simbol spesial (untuk praktikalitas) yang menandakan bahwa sekuens input telah selesai dan saatnya berpindah ke decoder.

Sebuah encoder merepresentasikan sekuens input \mathbf{x} menjadi satu vektor \mathbf{c}^{13} . Kemudian, decoder men-decode representasi \mathbf{c} untuk menghasilkan (generate) sebuah sekuens output \mathbf{y} . Perhatikan, arsitektur kali ini berbeda dengan arsitektur pada subbab 11.3. Encoder-decoder (neural network) bertin-

¹² Umumnya untuk bidang pemrosesan bahasa alami.

 $^{^{\}rm 13}$ Ingat kembali bab10untuk mengerti kenapa hal ini sangat diperlukan.

Gambar 11.18. Konsep encoder-decoder [73].

dak sebagai kumpulan parameter θ yang mengatur conditional probability. Encoder-decoder juga dilatih menggunakan prinsip gradient-based optimization untuk tuning parameter yang mengkondisikan conditional probability [73]. Dengan ini, persamaan 11.10 sudah didefinisikan sebagai neural network sebagai persamaan 11.11. "enc" dan "dec" adalah fungsi encoder dan decoder, yaitu sekumpulan transformasi non-linear.

$$y_t = \text{dec}(\{y_1, \dots, y_{t-1}\}, \text{enc}(\mathbf{x}), \theta)$$
 (11.11)

Begitu model dilatih, encoder-decoder akan mencari output \mathbf{y}^* terbaik untuk suatu input \mathbf{x} , dillustrasikan pada persamaan 11.12. Masing-masing komponen encoder-decoder dibahas pada subbab-subbab berikutnya. Untuk abstraksi yang baik, penulis akan menggunakan notasi aljabar linear. Kami harap pembaca sudah familiar dengan representasi neural network menggunakan notasi aljabar linear seperti yang dibahas pada bab 9.

$$\mathbf{y}^* = \arg\max_{\mathbf{y}} p(\mathbf{y} \mid \mathbf{x}, \theta)$$
 (11.12)

11.4.1 Encoder

Seperti yang sudah dijelaskan, encoder mengubah sekuens input \mathbf{x} menjadi satu vektor \mathbf{c} . Tiap data point pada sekuens input x_t umumnya direpresentasikan sebagai feature vector \mathbf{e}_t . Dengan demikian, encoder dapat direpresentasikan dengan persamaan 11.13

$$\mathbf{h}_{t} = f(\mathbf{h}_{t-1}, \mathbf{e}_{t})$$

$$= f(\mathbf{h}_{t-1}\mathbf{U} + \mathbf{e}_{t}\mathbf{W})$$
(11.13)

dimana f adalah fungsi aktivasi non-linear; \mathbf{U} dan \mathbf{W} adalah matriks bobot (weight matrices-merepresentasikan synapse weights).

Representasi input \mathbf{c} dihitung dengan persamaan 11.14, yaitu sebagai weighted sum dari hidden states [49], dimana q adalah fungsi aktivasi nonlinear. Secara lebih sederhana, kita boleh langsung menggunakan \mathbf{h}_N sebagai \mathbf{c} [73].

$$\mathbf{c} = q(\{\mathbf{h}_1, \cdots, \mathbf{h}_N\}) \tag{11.14}$$

Walaupun disebut sebagai representasi keseluruhan sekuens input, informasi-informasi awal pada input yang panjang dapat hilang. Artinya \mathbf{c} lebih banyak memuat informasi input ujung-ujung akhir. Salah satu strategi yang dapat digunakan adalah dengan membalik (reversing) sekuens input. Sebagai contoh, input $\mathbf{x} = (x_1, \cdots, x_N)$ dibalik menjadi (x_N, \cdots, x_1) agar bagian awal (\cdots, x_2, x_1) lebih dekat dengan decoder [73]. Informasi yang berada dekat dengan decoder cenderung lebih diingat. Kami ingin pembaca mengingat bahwa teknik ini pun tidaklah sempurna.

11.4.2 Decoder

Seperti yang sudah dijelaskan sebelumnya, encoder memproduksi sebuah vektor \mathbf{c} yang merepresentasikan sekuens input. Decoder menggunakan representasi ini untuk memproduksi (generate) sebuah sekuens output $\mathbf{y} = (y_1, \cdots, y_M)$, disebut sebagai proses **decoding**. Mirip dengan encoder, kita menggunakan RNN untuk menghasilkan output seperti diilustrasikan pada persamaan 11.15.

$$\mathbf{h}'_{t} = f(\mathbf{h}'_{t-1}, \mathbf{e}'_{t-1}, \mathbf{c})$$

$$= f(\mathbf{h}'_{t-1}\mathbf{H} + \mathbf{e}'_{t-1}\mathbf{E} + \mathbf{c}\mathbf{C})$$
(11.15)

dimana f merepresentasikan fungsi aktivasi non-linear; \mathbf{H} , \mathbf{E} , dan \mathbf{C} merepresentasikan weight matrices. Hidden state \mathbf{h}'_t melambangkan distribusi probabilitas suatu objek (e.g., POS tag, kata yang berasal dari suatu himpunan) untuk menjadi output y_t . Umumnya, y_t adalah dalam bentuk feature-vector \mathbf{e}'_t .

Dengan penjelasan ini, mungkin pembaca berpikir Gambar. 11.18 tidak lengkap. Kamu benar! Penulis sengaja memberikan gambar simplifikasi. Gambar lebih lengkap (dan lebih nyata) diilustrasikan pada Gambar. 11.19.

Kotak berwarna ungu dan hijau dapat disebut sebagai lookup matrix atau lookup table. Tugas mereka adalah mengubah input x_t menjadi bentuk feature vector-nya (e.g., word embedding) dan mengubah \mathbf{e}_t' menjadi y_t . Komponen "Beam Search" dijelaskan pada subbab berikutnya.

11.4.3 Beam Search

Kita ingin mencari sekuens output yang memaksimalkan nilai probabilitas pada persamaan 11.12. Artinya, kita ingin mencari output terbaik. Pada suatu tahapan decoding, kita memiliki beberapa macam kandidat objek untuk dijadikan output. Kita ingin mencari sekuens objek sedemikian sehingga probabilitas akhir sekuens objek tersebut bernilai terbesar sebagai output. Hal ini dapat dilakukan dengan algoritma Beam Search¹⁴.

¹⁴ https://en.wikipedia.org/wiki/Beam_search

Gambar 11.19. Konsep encoder-decoder (full).

```
beamSearch(problemSet, ruleSet, memorySize)

openMemory = new memory of size memorySize

nodeList = problemSet.listOfNodes

node = root or initial search node

add node to OpenMemory;

while(node is not a goal node)

delete node from openMemory;

expand node and obtain its children, evaluate those children;

if a child node is pruned according to a rule in ruleSet, delete it;

place remaining, non-pruned children into openMemory;

if memory is full and has no room for new nodes, remove the worst

node, determined by ruleSet, in openMemory;

node = the least costly node in openMemory;
```

Gambar 11.20. Beam Search¹⁵.

Secara sederhana, algoritma Beam Search mirip dengan algoritma Viterbi yang sudah dijelaskan pada bab 7, yaitu algoritma untuk mencari sekuens dengan probabilitas tertinggi. Perbedaannya terletak pada heuristic. Untuk menghemat memori komputer, algoritma Beam Search melakukan ekspansi terbatas. Artinya mencari hanya beberapa (B) kandidat objek sebagai sekuens berikutnya, dimana beberapa kandidat objek tersebut memiliki probabilitas $P(y_t \mid y_{t-1})$ terbesar. B disebut sebagai beam-width. Algoritma Beam Search bekerja dengan prinsip yang mirip dengan best-first search (best-B search) yang sudah kamu pelajari di kuliah algoritma atau pengenalan kecerdasan

 $^{^{15}\ \}rm https://en.wikibooks.org/wiki/Artificial_Intelligence/Search/Heuristic_search/Beam_search$

buatan 16 . Pseudo-code *Beam Search* diberikan pada Gambar. 11.20 (*direct quotation*).

11.4.4 Attention-based Mechanism

Seperti yang sudah dijelaskan sebelumnya, model encoder-decoder memiliki masalah saat diberikan sekuens yang panjang (vanishing atau exploding gradient problem). Kinerja model dibandingkan dengan panjang input kurang lebih dapat diilustrasikan pada Gambar. 11.21. Secara sederhana, kinerja model menurun seiring sekuens input bertambah panjang. Selain itu, representasi **c** yang dihasilkan encoder harus memuat informasi keseluruhan input walaupun sulit dilakukan. Ditambah lagi, decoder menggunakan representasinya **c** saja tanpa boleh melihat bagian-bagian khusus input saat decoding. Hal ini tidak sesuai dengan cara kerja manusia, misalnya pada kasus translasi bahasa. Ketika mentranslasi bahasa, manusia melihat bolak-balik bagian mana yang sudah ditranslasi dan bagian mana yang sekarang (difokuskan) untuk ditranslasi. Artinya, manusia berfokus pada suatu bagian input untuk menghasilkan suatu translasi.

Gambar 11.21. Permasalahan input yang panjang.

Sudah dijelaskan sebelumnya bahwa representasi sekuens input **c** adalah sebuah weighted sum. **c** yang sama digunakan sebagai input bagi decoder untuk menentukan semua output. Akan tetapi, untuk suatu tahapan decoding (untuk hidden state \mathbf{h}'_t tertentu), kita mungkin ingin model lebih berfokus pada bagian input tertentu daripada weighted sum yang sifatnya generik. Ide ini adalah hal yang mendasari attention mechanism [49, 50]. Ide ini sangat

¹⁶ https://www.youtube.com/watch?v=j1H3jAAGlEA&t=2131s

berguna pada banyak aplikasi pemrosesan bahasa alami. Attention mechanism dapat dikatakan sebagai suatu soft alignment antara input dan output. Mekanisme ini dapat membantu mengatasi permasalahan input yang panjang, seperti diilustrasikan pada Gambar. 11.22.

Gambar 11.22. Menggunakan vs. tidak menggunakan attention.

Dengan menggunakan attention mechanism, kita dapat mentransformasi persamaan 11.15 pada decoder menjadi persamaan 11.16

$$\mathbf{h}_t' = f'(\mathbf{h}_{t-1}', \mathbf{e}_{t-1}', \mathbf{c}, \mathbf{k}_t) \tag{11.16}$$

dimana \mathbf{k}_t merepresentasikan seberapa (how much) decoder harus memfokuskan diri ke hidden state tertentu pada encoder untuk menghasilkan output saat ke-t. \mathbf{k}_t dapat dihitung pada persamaan 11.17

$$\mathbf{k}_{t} = \sum_{i=1}^{N} \alpha_{t,i} \mathbf{h}_{i}$$

$$\alpha_{t,i} = \frac{\exp(\mathbf{h}_{i} \cdot \mathbf{h}'_{t-1})}{\sum_{z=1}^{N} \exp(\mathbf{h}_{z} \cdot \mathbf{h}'_{t-1})}$$
(11.17)

dimana N merepresentasikan panjang input, \mathbf{h}_i adalah $hidden\ state$ pada encoder pada saat ke-i, \mathbf{h}'_{t-1} adalah $hidden\ state$ pada $decoder\ saat\ ke\ t-1$.

Sejatinya \mathbf{k}_t adalah sebuah weighted sum. Berbeda dengan \mathbf{c} yang bernilai sama untuk setiap tahapan decoding, weight atau bobot $(\alpha_{t,i})$ masing-masing hidden state pada encoder berbeda-beda untuk tahapan decoding yang berbeda. Perhatikan Gambar. 11.23 sebagai ilustrasi (lagi-lagi, bentuk encoder-decoder yang disederhanakan). Terdapat suatu bagian grafik yang

menunjukkan distribusi bobot pada bagian input representation dan attention. Distribusi bobot pada weighted sum **c** adalah pembobotan yang bersifat generik, yaitu berguna untuk keseluruhan (rata-rata) kasus. Masing-masing attention (semacam layer semu) memiliki distribusi bobot yang berbeda pada tiap tahapan decoding. Walaupun attention mechanism sekalipun tidak sempurna, ide ini adalah salah satu penemuan yang sangat penting.

Gambar 11.23. Encoder-decoder with attention.

Seperti yang dijelaskan pada bab 9 bahwa neural network susah untuk dimengerti. Attention mechanism adalah salah satu cara untuk mengerti neural network. Contoh yang mungkin lebih mudah dipahami diberikan pada Gambar. 11.24 yang merupakan contoh kasus mesin translasi [49]. Attention mechanism mampu mengetahui soft alignment, yaitu kata mana yang harus difokuskan saat melakukan translasi bahasa (bagian input mana berbobot lebih tinggi). Dengan kata lain, attention mechanism memberi interpretasi kata pada output berkorespondensi dengan kata pada input yang mana. Sebagai informasi, menemukan cara untuk memahami (interpretasi) ANN adalah salah satu tren riset masa kini [48].

11.4.5 Variasi Arsitektur Sequence to Sequence

Selain RNN, kita juga dapat menggunakan bidirectional RNN (BiRNN) untuk mengikutsertakan pengaruh baik hidden state sebelum $(\mathbf{h}_1, \dots, \mathbf{h}_{t-1})$ dan setelah $(\mathbf{h}_{t+1}, \dots, \mathbf{h}_N)$ untuk menghitung hidden state sekarang (\mathbf{h}_t) [77, 78, 79]. BiRNN menganggap \mathbf{h}_t sebagai gabungan (concatenation) forward hidden state $\mathbf{h}_t^{\rightarrow}$ dan backward hidden state $\mathbf{h}_t^{\leftarrow}$, ditulis sebagai $\mathbf{h}_t = \mathbf{h}_t^{\rightarrow} + \mathbf{h}_t^{\leftarrow 17}$.

 $^{^{\}rm 17}$ Perhatikan! +disini dapat diartikan sebagai penjumlahan atau konkatenasi

Gambar 11.24. Attention mechanism pada translasi bahasa [49]. Warna lebih terang merepresentasikan bobot (fokus/attention) lebih tinggi.

Forward hidden state dihitung seperti RNN biasa yang sudah dijelaskan pada subbab encoder, yaitu $\mathbf{h}_t^{\rightarrow} = f(\mathbf{h}_{t-1}^{\rightarrow}, \mathbf{e}_t)$. Backward hidden state dihitung dengan arah terbalik $\mathbf{h}_t^{\leftarrow} = f(\mathbf{h}_{t+1}^{\leftarrow}, \mathbf{e}_t)$. Ilustrasi encoder-decoder yang menggunakan BiRNN dapat dilihat pada Gambar. 11.25.

Selain variasi RNN menjadi BiRNN kita dapat menggunakan stacked RNN seperti pada Gambar. 11.26 dimana output pada RNN pertama bertindak sebagai input pada RNN kedua. Hidden states yang digunakan untuk menghasilkan representasi encoding adalah RNN pada tumpukan paling atas. Kita juga dapat menggunakan variasi attention mechanism seperti neural checklist model [80] atau graph-based attention [81]. Selain yang disebutkan, masih banyak variasi lain yang ada, silahkan eksplorasi lebih lanjut sendiri.

11.4.6 Rangkuman

Sequence to sequence adalah salah satu bentuk conditioned generation. Artinya, menggunakan RNN untuk menghasilkan (generate) suatu sekuens output yang dikondisikan oleh variabel tertentu. Diktat ini memberikan contoh bagaimana menghasilkan suatu sekuens output berdasarkan sekuens input (conditioned on a sequence of input). Selain input berupa sekuens, konsep ini juga dapat diaplikasikan pada bentuk lainnya. Misalnya, menghasilkan caption saat input yang diberikan adalah sebuah gambar [82]. Kita ubah encoder menjadi sebuah

 ${\bf Gambar\ 11.25.}\ Encoder\text{-}decoder\ {\bf dengan\ BiRNN}.$

 ${\bf Gambar~11.26.~} Encoder-decoder~{\bf dengan~} stacked~{\bf RNN}.$

CNN (ingat kembali sub bab 11.1) dan decoder berupa RNN [82]. Gabungan CNN-RNN tersebut dilatih bersama menggunakan metode backpropagation.

Perhatikan, walaupun memiliki kemiripan dengan hidden markov model, sequence to sequence bukanlah generative model. Pada generative model, kita ingin memodelkan joint probability $p(x,y) = p(y \mid x)p(x)$ (walaupun secara tidak langsung, misal menggunakan teori Bayes). Sequence to sequence adalah discriminative model walaupun output-nya berupa sekuens, ia tidak memodelkan p(x) (berbeda dengan (hidden markov model). Kita ingin memodelkan conditional probability $p(y \mid x)$ secara langsung, seperti classifier lainnya (e.g., logistic regression). Jadi yang dimodelkan antara generative dan discriminative model adalah dua hal yang berbeda.

11.5 Arsitektur Lainnya

Selain arsitektur yang sudah dipaparkan, masih banyak arsitektur lain baik bersifat generik (dapat digunakan untuk berbagai karakteristik data) maupun spesifik (cocok untuk data dengan karakteristik tertentu atau permasalahan tertentu) sebagai contoh, Restricted Boltzman Machine¹⁸ dan General Adversarial Network (GaN)¹⁹. Saat buku ini ditulis, GaN dan adversarial training sedang populer.

Soal Latihan

- **11.1. POS** *tagging* Pada subbab 11.3, disebutkan bahwa *bidirectional recurrent neural network* lebih cocok untuk persoalan POS *tagging*. Jelaskan mengapa! (hint: bab 7)
- 11.2. Eksplorasi Jelaskanlah pada teman-temanmu apa dan bagaimana prinsip kerja:
- (a) Restricted Boltzman Machine
- (b) General Adversarial Network

 $^{^{18}\ \}mathtt{https://deeplearning4j.org/restrictedboltzmannmachine}$

 $^{^{19}\ \}mathtt{https://deeplearning4j.org/generative-adversarial-network}$