				<u>2 k²)</u>	$\frac{k^2)^2}{k^2}$		$\frac{k^2)^2}{k^2}$
$ au_{1}^{\#2}$	0	0	0	$-\frac{4ik}{(\alpha_0-4\beta_1)(1+2k^2)}$	$-\frac{2 i \sqrt{2} k}{(\alpha_{0}-4 \beta_{1})(1+2 k^{2})^{2}}$	0	$-\frac{4k^2}{(\alpha_0-4\beta_1)(1+2k^2)^2}$
$\tau_{1}^{\#1}{}_{\alpha}$	0	0	0	0	0	0	0
$\sigma_{1}^{\#2}{}_{\alpha}$	0	0	0	$-\frac{2\sqrt{2}}{(\alpha_0-4\beta_1)(1+2\lambda^2)}$	$-\frac{2}{(\alpha_0-4\beta_1)(1+2k^2)^2}$	0	$\frac{2i\sqrt{2}k}{(\alpha_0 - 4\beta_1)(1 + 2k^2)^2}$
$\sigma_{1^{-}\alpha}^{\#1}$	0	0	0	0	$-\frac{2\sqrt{2}}{(\alpha_0-4\beta_1)(1+2k^2)}$	0	$\frac{4ik}{(\alpha_0-4\beta_1)(1+2k^2)}$
$\tau_{1}^{\#1}{}_{\alpha\beta}$	$\frac{2 i \sqrt{2} k}{(\alpha_0 - 4 \beta_1) (1 + k^2)}$	$-\frac{2ik}{(\alpha_0-4\beta_1)(1+k^2)^2}$	$-\frac{2k^2}{(\alpha_0-4\beta_1)(1+k^2)^2}$	0	0	0	0
$\sigma_{1}^{\#2}{}_{\alpha\beta}$	$\frac{2\sqrt{2}}{(\alpha_0-4\beta_1)(1+k^2)}$	ı	$\frac{2ik}{(\alpha_0-4\beta_1)(1+k^2)^2}$	0	0	0	0
$\sigma_{1}^{\#1}{}_{\!$	0	$\frac{2\sqrt{2}}{(\alpha_0-4\beta_1)(1+k^2)}$	$\frac{2 i \sqrt{2} k}{(\alpha_0 - 4 \beta_1) (1 + k^2)}$	0	0	0	0
	$\sigma_{1}^{\#1} + \alpha \beta$	$\int_{1}^{\#2} + \alpha \beta \frac{\alpha}{\alpha}$	$\tau_1^{#1} + \alpha \beta$	$\sigma_{1}^{\#1} +^{\alpha}$	$\sigma_1^{\#2} +^{\alpha}$	$t_{1}^{\#1} +^{lpha}$	$\tau_1^{\#2} + \alpha$

	$\omega_{2^{+}\alpha\beta}^{\#1}$	$f_{2^{+}\alpha\beta}^{\#1}$	$\omega_2^{\#1}{}_{lphaeta\chi}$
$\omega_{2}^{\#1}\dagger^{lphaeta}$	$-\frac{\alpha_0}{4}+\beta_1$	$\frac{i(\alpha_0-4\beta_1)k}{2\sqrt{2}}$	0
$f_{2^{+}}^{#1}\dagger^{\alpha\beta}$	$-\frac{i(\alpha_0-4\beta_1)k}{2\sqrt{2}}$	$2 \beta_1 k^2$	0
$\omega_2^{\#1}$ † $^{lphaeta\chi}$	0	0	$-\frac{\alpha_0}{4}+\beta_1$

_	$\sigma_{2^{+}lphaeta}^{\!\#1}$	$\tau_{2}^{\#1}{}_{\alpha\beta}$	$\sigma_{2-\alpha\beta\chi}^{\#1}$
$\sigma_{2}^{\#1} \dagger^{\alpha\beta}$	$-\frac{16\beta_1}{\alpha_0^2-4\alpha_0\beta_1}$	$\frac{2i\sqrt{2}}{\alpha_0 k}$	0
$ au_{2}^{\#1} \dagger^{lphaeta}$	$-\frac{2i\sqrt{2}}{\alpha_0 k}$	$\frac{2}{\alpha_0 k^2}$	0
$\sigma_{2}^{\sharp 1}$ † $^{lphaeta\chi}$	0	0	$\frac{1}{-\frac{\alpha_0}{4} + \beta_1}$

$f_{1^-}^{\#2}$	0	0	0	$-\frac{1}{2}\tilde{I}\left(\alpha_0-4\beta_1\right)k$	0	0	0
$f_{1^{-}\alpha}^{\#1}$	0	0	0	0	0	0	0
$\omega_{1}^{\#2}{}_{lpha}$ $f_{1}^{\#1}{}_{lpha}$	0	0	0	$-\frac{\alpha_0-4\beta_1}{2\sqrt{2}}$	0	0	0
$\omega_{1^{-}}^{\#1}{}_{\alpha}$	0	0	0	$\frac{1}{4} \left(\alpha_0 - 4 \beta_1 \right)$	$-\frac{\alpha_0-4\beta_1}{2\sqrt{2}}$	0	$\frac{1}{2}\bar{l}(\alpha_0-4\beta_1)k$
$\omega_{1}^{\#2}{}_{\alpha\beta}$ $f_{1}^{\#1}{}_{\alpha\beta}$	$\frac{i(\alpha_0-4\beta_1)k}{2\sqrt{2}}$	0	0	0	0	0	0
$\omega_1^{\#_+^2}\alpha\beta$	$\frac{\alpha_0-4\beta_1}{2\sqrt{2}}$	0	0	0	0	0	0
$\omega_1^{\#1}{}_+\alpha\beta$	$\omega_{1}^{\#1} + \alpha \beta \left[\frac{1}{4} \left(\alpha_0 - 4 \beta_1 \right) \right]$	$\frac{\alpha_0-4\beta_1}{2\sqrt{2}}$	$-\frac{i(\alpha_0-4\beta_1)k}{2\sqrt{2}}$	0	0	0	0
	$\omega_{1}^{\#1} + \alpha^{eta}$	$\omega_1^{\#2} + ^{lphaeta}$	$f_{1}^{\#1} + ^{\alpha eta}$	$\omega_{1}^{\#1} +^{\alpha}$	$\omega_1^{\#2} +^{lpha}$	$f_{1}^{\#1} +^{\alpha}$	$f_{1}^{#2} + \alpha$

Source constraints				
SO(3) irreps	#			
$\tau_{0^{+}}^{\#2} == 0$	1			
$\tau_{1}^{\#2\alpha} + 2 i k \sigma_{1}^{\#2\alpha} == 0$	3			
$\tau_{1}^{\#1\alpha} == 0$	3			
$\tau_{1+}^{\#1\alpha\beta} + i k \sigma_{1+}^{\#2\alpha\beta} == 0$	3			
Total #:	10			

$\omega_{0}^{\#1}$	0	0	0	$\frac{1}{2} \left(\alpha_0 - 4 \beta_1 \right)$
$f_{0}^{\#2}$	0	0	0	0
$f_0^{\#1}$	$-\frac{i(\alpha_0-4\beta_1)k}{\sqrt{2}}$	-4 β_1 k^2	0	0
$\omega_{0}^{\#1}$	$\frac{\alpha_0}{2} - 2\beta_1 + \alpha_6 k^2 \left -\frac{i(\alpha_0 - 4\beta_1)k}{\sqrt{2}} \right $	$\frac{i(\alpha_0-4\beta_1)k}{\sqrt{2}}$	0	0
	$\omega_{0}^{\#1}$ \dagger	$f_{0}^{\#1}$ †	$f_{0}^{\#2}$ †	$\omega_{0}^{\#1}$ \dagger

Unitarity conditions		
$\alpha_0 > 0 \&\& \alpha_6 > 0 \&\& \beta_1 < 0 \beta_1$	>	<u>α</u>

	$\sigma_{0}^{\sharp 1}$	$ au_{0}^{\#1}$	$ au_{0}^{\#2}$	$\sigma_0^{\sharp 1}$
$\sigma_{0}^{\#1}$ †	$\frac{8 \beta_1}{\alpha_0^2 - 4 \alpha_0 \beta_1 + 8 \alpha_6 \beta_1 k^2}$	$-\frac{i\sqrt{2} (\alpha_0-4\beta_1)}{\alpha_0 (\alpha_0-4\beta_1)k+8\alpha_6\beta_1 k^3}$	0	0
$\tau_{0}^{\#1}$ †	$\frac{i \sqrt{2} (\alpha_0 - 4 \beta_1)}{\alpha_0 (\alpha_0 - 4 \beta_1) k + 8 \alpha_6 \beta_1 k^3}$	$-\frac{\alpha_0 - 4 \beta_1 + 2 \alpha_6 k^2}{k^2 (\alpha_0^2 - 4 \alpha_0 \beta_1 + 8 \alpha_6 \beta_1 k^2)}$	0	0
$\tau_{0}^{\#2}$ †	0	0	0	0
$\sigma_0^{\sharp 1}$ †	0	0	0	$\frac{2}{\alpha_0 - 4 \beta_1}$

λ ddod colling torm: $\int \epsilon^{a\beta} + + \dots + \cdot \cdot \cdot^{a\beta} \chi$
$\beta_1 \partial^{\chi} f_{\zeta}^{\beta} \partial^{\zeta} f_{\beta\chi} - \beta_1 \partial^{\chi} f_{\zeta}^{\beta} \partial^{\zeta} f_{\chi\beta} + \beta_1 \partial^{\chi} f_{\delta\zeta} \partial^{\zeta} f^{\delta}_{\chi} - \beta_1 \partial^{\chi} f_{\zeta\delta} \partial^{\zeta} f^{\delta}_{\chi}$
$4 \beta_1 \partial^{\beta} f^{\alpha}_{\ \alpha} \partial_{\delta} f^{\delta}_{\ \beta} - 2 \beta_1 \partial_{\beta} f^{\ \beta}_{\ \chi} \partial_{\delta} f^{\chi \delta} + \frac{2}{3} \alpha_6 \partial_{\beta} \omega^{\alpha \beta}_{\ \alpha} \partial_{\delta} \omega^{\chi \delta}_{\ \chi} - \beta_1 \partial^{\chi} f^{\beta}_{\ \zeta} \partial^{\zeta} f^{\chi}_{\ \chi \beta} + \beta_1 \partial^{\chi} f_{\delta \zeta} \partial^{\zeta} f^{\delta}_{\ \chi} - \beta_1 \partial^{\chi} f_{\zeta \delta} \partial^{\zeta} f^{\delta}_{\ \chi}$
$4 \beta_{1} \omega_{\alpha\chi\beta} \partial^{\chi} f^{\alpha\beta} + \beta_{1} \partial_{\chi} f_{\beta}^{\ \delta} \partial^{\chi} f_{\delta}^{\ \beta} + \beta_{1} \partial_{\chi} f^{\delta}_{\ \beta} \partial^{\chi} f_{\delta}^{\ \beta} +$ $4 \beta_{1} \partial^{\beta} f^{\alpha}_{\ \alpha} \partial_{\delta} f^{\beta}_{\ \beta} - 2 \beta_{1} \partial_{\beta} f_{\chi}^{\ \beta} \partial_{\delta} f^{\chi\delta} + \frac{2}{3} \alpha_{6} \partial_{\beta} \omega^{\alpha\beta}_{\ \alpha} \partial_{\delta} \omega^{\chi\delta}_{\ \chi} -$ $\beta_{1} \partial^{\chi} f_{\zeta}^{\ \beta} \partial^{\zeta} f_{\beta\chi} - \beta_{1} \partial^{\chi} f_{\zeta}^{\ \beta} \partial^{\zeta} f_{\chi\beta} + \beta_{1} \partial^{\chi} f_{\delta\zeta} \partial^{\zeta} f^{\delta}_{\ \chi} - \beta_{1} \partial^{\chi} f_{\zeta\delta} \partial^{\zeta} f^{\delta}_{\ \chi}$
$2 \beta_{1} \partial_{\beta} f_{\chi}^{X} \partial^{\beta} f_{\alpha}^{\alpha} + \alpha_{0} f^{\alpha \beta} \partial_{\chi} \omega_{\alpha}^{X} \beta_{\beta} - \alpha_{0} f^{\alpha} \partial_{\chi} \omega^{\beta \chi}_{\beta} +$ $4 \beta_{1} \omega_{\alpha \chi \beta} \partial^{\chi} f^{\alpha \beta}_{\beta} + \beta_{1} \partial_{\chi} f_{\beta}^{\delta} \partial^{\chi} f_{\beta}^{\beta} + \beta_{1} \partial_{\chi} f^{\delta}_{\beta} \partial^{\chi} f_{\beta}^{\beta} +$ $4 \beta_{1} \partial^{\beta} f_{\alpha}^{\alpha} \partial_{\delta} f_{\beta}^{\delta} - 2 \beta_{1} \partial_{\beta} f_{\chi}^{\beta} \partial_{\delta} f^{\chi \delta} + \frac{2}{3} \alpha_{6} \partial_{\beta} \omega^{\alpha \beta}_{\alpha} \partial_{\delta} \omega^{\chi \delta}_{\chi} -$ $\beta_{1} \partial^{\chi} f_{\zeta}^{\beta} \partial^{\zeta} f_{\beta \chi} - \beta_{1} \partial^{\chi} f_{\zeta}^{\beta} \partial^{\zeta} f_{\chi \beta} + \beta_{1} \partial^{\chi} f_{\delta \zeta} \partial^{\zeta} f^{\delta}_{\chi} - \beta_{1} \partial^{\chi} f_{\zeta \delta} \partial^{\zeta} f^{\delta}_{\chi}$
$\alpha_{0} f^{\alpha\beta} \partial_{\beta} \omega_{\alpha}^{X} + \alpha_{0} \partial_{\beta} \omega^{\alpha\beta} + 2 \beta_{1} \omega_{\beta}^{X} \partial^{\beta} f^{\alpha}_{\alpha} + 2 \beta_{1} \omega_{\beta}^{X} \partial^{\beta} f^{\alpha}_{\alpha} -$ $2 \beta_{1} \partial_{\beta} f^{X}_{\chi} \partial^{\beta} f^{\alpha}_{\alpha} + \alpha_{0} f^{\alpha\beta} \partial_{\chi} \omega_{\alpha}^{X}_{\beta} - \alpha_{0} f^{\alpha}_{\alpha} \partial_{\chi} \omega^{\beta}_{\beta} +$ $4 \beta_{1} \omega_{\alpha\chi\beta} \partial^{\chi} f^{\alpha\beta} + \beta_{1} \partial_{\chi} f^{\beta}_{\beta} \partial^{\chi} f^{\beta}_{\beta} + \beta_{1} \partial_{\chi} f^{\beta}_{\beta} \partial^{\chi} f^{\beta}_{\beta} +$ $4 \beta_{1} \partial^{\beta} f^{\alpha}_{\alpha} \partial_{\delta} f^{\beta}_{\beta} - 2 \beta_{1} \partial_{\beta} f^{\beta}_{\chi} \partial_{\delta} f^{X^{\delta}} + \frac{2}{3} \alpha_{6} \partial_{\beta} \omega^{\alpha\beta}_{\alpha} \partial_{\delta} \omega^{X^{\delta}}_{\chi} -$ $\beta_{1} \partial^{\chi} f^{\beta}_{\zeta} \partial^{\zeta} f_{\beta\chi} - \beta_{1} \partial^{\chi} f^{\beta}_{\zeta} \partial^{\zeta} f^{\chi}_{\lambda\beta} + \beta_{1} \partial^{\chi} f_{\zeta\zeta} \partial^{\zeta} f^{\zeta}_{\chi} - \beta_{1} \partial^{\chi} f_{\zeta\zeta} \partial^{\zeta} f^{\zeta}_{\chi}$
$2\beta_{1} \omega_{\chi}^{X\delta} \omega_{\chi\delta}^{\alpha} - 2\beta_{1} \omega_{\chi}^{X} \partial_{\beta} f^{\alpha\beta} - 2\beta_{1} \omega_{\alpha}^{\delta} \partial_{\delta} g^{\alpha\beta} -$ $\alpha_{0} f^{\alpha\beta} \partial_{\beta} \omega_{\chi}^{X} + \alpha_{0} \partial_{\beta} \omega^{\alpha\beta} + 2\beta_{1} \omega_{\beta}^{X} \partial^{\beta} f^{\alpha} + 2\beta_{1} \omega_{\beta}^{\delta} \partial_{\delta} g^{\alpha\beta} +$ $2\beta_{1} \partial_{\beta} f^{X} \partial^{\beta} f^{\alpha} + \alpha_{0} f^{\alpha\beta} \partial_{\chi} \omega_{\chi}^{X} - \alpha_{0} f^{\alpha} \partial_{\chi} \omega^{\beta\chi} +$ $4\beta_{1} \omega_{\alpha\chi\beta} \partial^{\chi} f^{\alpha\beta} + \beta_{1} \partial_{\chi} f^{\beta} \partial_{\delta} f^{\chi} \partial_{\beta} + \beta_{1} \partial_{\chi} f^{\delta} \partial_{\delta} f^{\beta} +$ $4\beta_{1} \omega_{\alpha\chi\beta} \partial^{\delta} f^{\alpha} \partial_{\delta} f^{\beta} \partial_{\delta} f^{\lambda} \partial_{\delta} f^{\beta} \partial_{\delta} f^{\lambda} \partial_{\delta} f^{\beta} $
$-\frac{1}{2}\alpha_{0}\omega_{\alpha\chi\beta}\omega^{\alpha\beta\chi} - \frac{1}{2}\alpha_{0}\omega^{\alpha\beta}\omega^{\chi} + 2\beta_{1}\omega^{\alpha\beta}\omega^{\chi} - 2\beta_{1}\omega^{\chi}$ $2\beta_{1}\omega_{\chi}^{\chi\delta}\omega_{\chi\delta}^{\alpha} - 2\beta_{1}\omega_{\chi}^{\chi}\partial_{\beta}f^{\alpha\beta} - 2\beta_{1}\omega_{\alpha}^{\delta}\partial_{\delta}f^{\alpha\beta} - 2\beta_{1}\omega_{\alpha}^{\delta}\partial_{\delta}f^{\alpha\beta} - 2\beta_{1}\omega_{\alpha}^{\delta}\partial_{\delta}f^{\alpha\beta} - 2\beta_{1}\omega_{\alpha}^{\delta}\partial_{\delta}f^{\alpha\beta} - 2\beta_{1}\omega_{\alpha}^{\delta}\partial_{\delta}f^{\alpha\beta} - 2\beta_{1}\omega_{\alpha}^{\delta}\partial_{\delta}f^{\alpha\beta} + 2\beta_{1}\omega_{\alpha}^{\chi}\partial_{\delta}f^{\alpha} + 2\beta_{1}\omega_{\alpha}^{\chi}\partial_{\delta}f^{\alpha} + 2\beta_{1}\omega_{\alpha}^{\chi}\partial_{\delta}f^{\alpha} + 2\beta_{1}\omega_{\alpha}^{\chi}\partial_{\delta}f^{\alpha} + 2\beta_{1}\omega_{\alpha}^{\chi}\partial_{\delta}f^{\alpha} + \beta_{1}\partial_{\chi}f^{\delta}\partial_{\delta}f^{\alpha}\partial_{\delta}f^{\beta} + \beta_{1}\partial_{\chi}f^{\delta}\partial_{\delta}f^{\alpha}\partial_{\delta}f^{\beta} + \beta_{1}\partial_{\chi}f^{\delta}\partial_{\delta}f^{\alpha}\partial_{\delta}f^{\beta} + \beta_{1}\partial_{\chi}f^{\delta}\partial_{\delta}f^{\alpha}\partial_{\delta}f^{\beta} + \beta_{1}\partial_{\chi}f^{\delta}\partial_{\delta}f^{\alpha}\partial_{\delta}$