TRIGONOMETRY Chapter 2

Verano 2022

Razones trigonométricas de un ángulo agudo II

La figura muestra un terreno que tiene la forma de un triángulo rectángulo.

¿puedes calcular aproximadamente el perímetro de

dicho terreno?

Rpta: 47,3 m

RAZONES TRIGONOMÉTRICAS DE ÁNGULOS **NOTABLES**

RAZONES TRIGONOMÉTRICAS DE 37° y 53°

EJEMPLOS:

* sen37° =
$$\frac{3k}{5k} = \frac{3}{5}$$

* sen37° =
$$\frac{3k}{5k} = \frac{3}{5}$$
 * sec37° = $\frac{5k}{4k} = \frac{5}{4}$

* tan53° =
$$\frac{4k}{3k} = \frac{4}{3}$$
 * csc53° = $\frac{5k}{4k} = \frac{5}{4}$

Así tenemos:

53°
$$\left[\begin{array}{c|c} 4 \\ 5 \end{array}\right] \left[\begin{array}{c} 3 \\ 5 \end{array}\right] \left[\begin{array}{c} 4 \\ 3 \end{array}\right] \left[\begin{array}{c} 3 \\ 4 \end{array}\right] \left[\begin{array}{c} 5 \\ 3 \end{array}\right] \left[\begin{array}{c} 5 \\ 4 \end{array}\right]$$

RAZONES TRIGONOMÉTRICAS DE 30° y 60°

EJEMPLOS:

* sen30° =
$$\frac{k}{2k} = \frac{1}{2}$$

*
$$\cos 30^{\circ} = \frac{\sqrt{3}k}{2k} = \frac{\sqrt{3}}{2}$$

* tan60° =
$$\frac{\sqrt{3}k}{k} = \sqrt{3}$$

* csc60° =
$$\frac{2k}{\sqrt{3}k} = \frac{2}{\sqrt{3}} \times \frac{\sqrt{3}}{\sqrt{3}} = \frac{2\sqrt{3}}{3}$$

Así tenemos:

RAZONES TRIGONOMÉTRICAS DE 45°

EJEMPLOS:

*
$$\sec 45^\circ = \frac{\sqrt{2}k}{k} = \sqrt{2}$$

* tan45° =
$$\frac{k}{k}$$
 = 1

* sen45° =
$$\frac{k}{\sqrt{2}k} = \frac{1}{\sqrt{2}} \times \frac{\sqrt{2}}{\sqrt{2}} = \frac{\sqrt{2}}{2}$$

*
$$\cos 45^\circ = \frac{k}{\sqrt{2}k} = \frac{1}{\sqrt{2}} \times \frac{\sqrt{2}}{\sqrt{2}} = \frac{\sqrt{2}}{2}$$

Así tenemos:

PROPIEDADES DE LAS R.T. DE UN ÁNGULO AGUDO

1) RAZONES TRIGONOMÉTRICAS RECÍPROCAS

 $sen\alpha.csc\alpha = 1$

 $\cos\alpha.\sec\alpha=1$

tan α .cot $\alpha = 1$ lguales

EJEMPLOS:

- * sen53°..csc53° = 1
- * cos70°..sec70° = 1
- * tan3 θ . cot3 θ = 1
- * Hallar x, si se cumple:

$$sen2x..csc40^{\circ} = 1$$

Resolución:

$$2x = 40^{\circ}$$
 : $x = 20^{\circ}$

2) R.T. DE ÁNGULOS COMPLEMENTARIOS

$$sen \alpha = cos \beta$$

$$tan\alpha = cot\beta$$

$$\sec \alpha = \csc \beta$$

EJEMPLOS:

- * $sen60^\circ = cos30^\circ$
- * $tan40^\circ = cot50^\circ$
- * $sec(\theta) = csc(90^{\circ} \theta)$
- * Hallar x, si se cumple:

$$sen5x = cos10^{\circ}$$

Resolución:

$$5x + 10^{\circ} = 90^{\circ}$$

$$\rightarrow$$
 5x = 80° \therefore x = 16°

$$x = 16^{\circ}$$

• Calcule:

$$E = \frac{\sec 60^{\circ} + \tan 45^{\circ} + 2\cos 60^{\circ}}{\sec 37^{\circ} + \tan 37^{\circ}}$$

A) 0

B) 1

 \supset) $\frac{1}{2}$

RESOLUCIÓN

Usando las RT de los ángulos notables, tenemos:

2. Resuelva:

- B) 3
- D) 2

RESOLUCIÓN

Usando las RT de los ángulos notables, tenemos:

$$\frac{+}{\left(\sqrt{}\right)} = x - + -$$

$$\Rightarrow \frac{+}{-} = -+- \Rightarrow \frac{+}{-} =$$

$$\Rightarrow x + 4 = 4 - 2x \Rightarrow 3x = 0$$

 $\mathbf{3}$. Si ABCD es un cuadrado, halle $tan\theta$

4k

RESOLUCIÓN

*
$$\triangle$$
 CEF: $tan\theta = \frac{k}{2k}$

∴
$$tan\theta = \frac{1}{2}$$

HELICO | PRACTICE

4. Del gráfico mostrado, calcule senθ.cscα

Recordar:

A) 1

B) 2

D) 4

RESOLUCIÓN

*
$$\triangle$$
 AED: $sen\theta = \frac{6}{h}$

* AFD:
$$\csc\alpha = \frac{h}{2}$$

Piden:

$$sen\theta.csc\alpha = \frac{6}{11} \times \frac{11}{2}$$

∴ sen
$$\theta$$
.csc α = 3

5. Calcule $tan\theta$, en:

A)
$$\frac{1}{7}$$

C)
$$\frac{3}{7}$$

D)
$$\frac{4}{7}$$

RESOLUCIÓN

*
$$\triangle$$
 ADB: $tan\theta = \frac{BD}{AD} = \frac{2}{5+2}$

∴
$$tan\theta = \frac{2}{7}$$

6. Calcule:

 $E = sen25^{\circ}.sec65^{\circ} + 2tan40^{\circ}.tan50^{\circ}$

A) 1

B) 2

D) 4

1) R.T. RECÍPROCAS 2) R.T. DE ÁNGULOS

 $sen\alpha.csc\alpha = 1$

COMPLEMENTARIOS

 $\cos\alpha.\sec\alpha=1$

 $tan\alpha = cot\beta$

 $sen\alpha = cos\beta$

 $tan\alpha.cot\alpha = 1$ Iguales

RESOLUCIÓN

Piden:

 $E = sen25^{\circ}.sec65^{\circ} + 2tan40^{\circ}.tan50^{\circ}$

Usando propiedad 2):

 $E = sen25^{\circ}.csc25^{\circ} + 2tan40^{\circ}.cot40^{\circ}$

Usando propiedad 1):

$$\Rightarrow$$
 E = 1 + 2 x 1

∴ E = 3

7. Halle el valor de x, si se cumple la siguiente ecuación:

$$\sec(90^{\circ} - x) = \csc(3x - 18^{\circ})$$

- A) 4° B) 5° C) 7°

2) R.T. DE ÁNGULOS

COMPLEMENTARIOS

$$sen \alpha = cos \beta$$

$$tan\alpha = cot\beta$$

$$\sec \alpha = \csc \beta$$
 ... (*)

suman 90°

RESOLUCIÓN

Dato: $sec(90^{\circ} - x) = csc(3x - 18^{\circ})$

Usando (*):

$$(90^{\circ} - x) + (3x - 18^{\circ}) = 90^{\circ}$$

$$\Rightarrow$$
 2x - 18° = 0

$$\Rightarrow$$
 2x = 18°

8. Halle el valor de " m ", si:

$$\tan(\sqrt{m}-3)^{\circ}$$
. $\cot 13^{\circ}=1$

- A) 220
- C) 226

- B) 224
- **D**) 256

1) R.T. RECÍPROCAS

$$sen\alpha.csc\alpha = 1$$

$$\cos\alpha.\sec\alpha=1$$

tan
$$\alpha$$
.cot α = 1 ... (*)
Iguales

RESOLUCIÓN

Dato: $tan(\sqrt{m} - 3)^{\circ}$. $cot13^{\circ} = 1$

Usando (*):

$$(\sqrt{m}-3)^\circ=13^\circ$$

$$\Rightarrow \sqrt{m} - 3 = 13$$

$$\Rightarrow \sqrt{m} = 16$$

Elevando al cuadrado:

 \therefore m = 256

9. Si se verifica que:

$$sen3x - cosy = 0$$

$$tan2y.cot30^{\circ} - 1 = 0$$

Calcule:
$$H = \sqrt{3} \sec(x + 5^{\circ}) + \tan(x + y + 5^{\circ})$$

A) 1

- B) $\frac{3}{4}$
- C) $\frac{3}{2}$

1) R.T. RECÍPROCAS

$$sen\alpha.csc\alpha = 1$$

$$\cos\alpha.\sec\alpha=1$$

Iguales

$$tan\alpha.cot\alpha = 1$$
 ... (**)

2) R.T. DE ÁNGULOS

COMPLEMENTARIOS

$$sen\alpha = cos\beta$$
 ... (*

$$tan\alpha = cot\beta$$

RESOLUCIÓN

I Usando (*):
$$3x + y = 90^{\circ}$$
 ... (1)

Dato 2:tan2y.cot30° = 1

Usando (**):
$$2y = 30^{\circ} \Rightarrow y = 15^{\circ}$$
 ... (2)

(2) en (1):
$$3x + 15^{\circ} = 90^{\circ} \Rightarrow x = 25^{\circ}$$

I Reemplazando en H:

$$I \Rightarrow H = \sqrt{3} \sec(30^\circ) + \tan(45^\circ)$$

$$\Rightarrow H = \sqrt{3} \times \frac{2}{\sqrt{3}} + 1$$

HELICO | PRACTICE

Si cosA = $\frac{3x + 2}{3x + 1}$ y senB = $\frac{x + 1}{x + 2}$. Determine el valor de tanA $\Rightarrow (3x + 2)(x + 2) = (3x + 1)(x + 1)$ $\Rightarrow 3x^2 + 8x + 4 = 3x^2 + 4x + 1$ Determine el valor de tanA, sabiendo que A y B son ángulos agudos complementarios.

D)
$$\frac{\sqrt{6}}{8}$$

RESOLUCIÓN

Dato: $A + B = 90^{\circ}$

R.T de Ángulos complem cosA = senB

Así tenemos:
$$\frac{3x+2}{3x+1} = \frac{x+1}{x+2}$$

$$\Rightarrow (3x + 2)(x + 2) = (3x + 1)(x + 1)$$

$$\Rightarrow 7x^2 + 9x + 4 = 7x^2 + 4x + 1$$

$$\Rightarrow 4x = -3 \Rightarrow x = -\frac{3}{4}$$

Luego:

$$cosA = \frac{3x + 2}{3x + 1} \Rightarrow cosA = \frac{3(-\frac{3}{4}) + 2}{3(-\frac{3}{4}) + 1}$$

$$\Rightarrow \cos A = \frac{-\frac{1}{4}}{-\frac{5}{4}} = \frac{1}{5}$$

Piden: tanA =
$$\frac{2\sqrt{6}}{1}$$

∴ tanA =
$$2\sqrt{6}$$