Technische Universität München

BGCE Project: CAD – Integrated Topology Optimization

BGCE First Milestone Meeting

S. Joshi, *J.C. Medina*, *F. Menhorn*, S. Reiz, B. Rüth, E. Wannerberg, *A. Yurova*

November 1, 2015

Contents

1. Introduction

- 1.1 Contents
- 1.2 Motivation
- 1.3 Workflow Overview
- 1.4 Schedule & Milestones
- 1.5 Organization
- 1.6 Organization

2. Topology optimization

- 2.1 Status
- 2.2 The user's view
- 2.3 The internal view
- 2.4 The next steps MOVE TO LATER
- 3. Surface Extraction
 - 3.1 Status
 - 3.2 Dual Contouring
 - 3.3 Projection and Parametrization
- 4. B-Spline Fitting
- 5. Summary
- 6. Outlook

Motivation

Current Design Process:

- Iterative and redundant
- Time consuming

Motivation

Current Design Process:

- · Iterative and redundant
- Time consuming

Topology optimization

 Promoted by additive manufacturing

Motivation

Current Design Process:

- · Iterative and redundant
- Time consuming

Topology optimization

 Promoted by additive manufacturing

Focus:

Convert optimized geometry to lightweight and scalable CAD formats

CAD design

STL interface

Voxelized topology

Specification of loads and fixtures

Optimized topology

Surface extraction

Parametrized CAD-geometries

Schedule & Milestones

Schedule:

Schedule & Milestones

Schedule: (current)

Divide and Conquer

Project Manager

Project Supervisor

Surface Fitting

Topology Optimization

Project management

Contents

1. Introduction

- 1.4 Schedule & Milestones

2. Topology optimization

- 2.1 Status
- 2.2 The user's view
- 2.3 The internal view
- 2.4 The next steps MOVE TO LATER
- 3. Surface Extraction
- 4. B-Spline Fitting
- 5. Summary
- 6. Outlook

Status DRAFT

Last milestone

- Manual voxelization using CVMLCPP
- √ "Hard coded" script for ToPy input
- Topology optimized geometry using ToPy
- Recognition of boundary conditions

Today

- √ Voxelization with OpenCascade
- Extraction of loads, fixtures and active elements through colouring
- ✓ Automatic "one click" pipeline to surface reconstruction

The user's view DRAFT

- Model geometry in favorite CAD tool (FreeCAD, OpenSCAD)
- Colour faces where boundary conditions are applied

Red Fixture

Green Active

RGB RGB value in $[0 \le R < 255, 0 \le G < 255, 0 \le B < 255]$ for load vector

- Save model as STEP with Colours and IGES with Colours
- Run NAME filename force_scaling

Figure: Color faces in FreeCAD

- The pipeline:
 - Read STEP and IGES file, extract colours and faces
 - 2. Voxelize faces using OpenCascade
 - 3. Calculate index for each voxel for ToPy
 - 4. Write ToPy input file
 - Execute ToPy on the input file
 - Execute Surface Reconstruction on ToPy vtk output

- The pipeline:
 - Read STEP and IGES file, extract colours and faces
 - STEP file holding the colours
 - IGES holding the structure

- The pipeline:
 - Read STEP and IGES file, extract colours and faces
 - 2. Voxelize faces using OpenCascade
 - Included open cascade voxelizer

Figure: Scaling of voxelizer

- The pipeline:
 - Read STEP and IGES file, extract colours and faces
 - Voxelize faces using OpenCascade
 - 3. Calculate index for each voxel for ToPy
 - Different indexing for elements and nodes in ToPy

Figure: Indexing in ToPy

- The pipeline:
 - Read STEP and IGES file, extract colours and faces
 - 2. Voxelize faces using OpenCascade
 - 3. Calculate index for each voxel for ToPy
 - 4. Write ToPy input file
 - Each voxelindex is specifically written

Figure: Script for ToPy

- The pipeline:
 - Read STEP and IGES file, extract colours and faces
 - 2. Voxelize faces using OpenCascade
 - 3. Calculate index for each voxel for ToPy
 - 4. Write ToPy input file
 - 5. Execute ToPy on the input file
 - Topy runs....

Figure: ToPy Output

- The pipeline:
 - Read STEP and IGES file, extract colours and faces
 - 2. Voxelize faces using OpenCascade
 - Calculate index for each voxel for ToPy
 - 4. Write ToPy input file
 - Execute ToPy on the input file
 - Execute Surface Reconstruction on ToPy vtk output
 - Running dual contouring algorithm

Figure: Surface extraction for

The next steps MOVE TO LATER

- GUI for input
- Speed up ToPY
- Usage of different optimizers

Contents

1. Introduction

- 1.4 Schedule & Milestones

2. Topology optimization

- 2.4 The next steps MOVE TO LATER

3. Surface Extraction

- 3.1 Status
- 3.2 Dual Contouring
- 3.3 Projection and Parametrization
- 4. B-Spline Fitting
- 5. Summary
- 6. Outlook

Status

Last milestone

① Surface reconstruction with the VTK Toolbox

Today

- Extraction of voxel data from Topy
- 3D Dual Contouring program
- Coarsening and non-manifold edge treatment
- ✓ Projection to quads and respective parametrization
- (b) Interface to NURBs

From Voxel to Mesh Geometry

- Extract isosurface from voxel information
- Algorithms: Marching Cubes, Dual Contouring, Extended Models
- Problems with VTK's Marching Cube implementation

Dual Contouring

- Python implementation- Use of powerful libraries, including VTK
- Output: Closed surface made out of quads
- Coarsening is needed for surface fitting's algorithms

Dual Contouring

- Python implementation- Use of powerful libraries, including VTK
- Output: Closed surface made out of quads
- Coarsening is needed for surface fitting's algorithms

Dual Contouring- Problems

- Non-manifold edges appear
- One edge can only belong to two quads for the surface to be closed
- Special treatments in the implementation to avoid them

Dual Contouring- Problems

- Non-manifold edges appear
- One edge can only belong to two quads for the surface to be closed
- Special treatments in the implementation to avoid them

Dual Contouring-Input

- Sixth step of the DRAFT pipeline- Interface between Topology Optimization and Surface Extraction
- Special implementation to use voxel data from Topy as input

Demo

Projection and Parametrization

- Points from finer grid are projected to quads of the coarser grid
- Parameters u and v are found for each quad
- This information is needed for the algorithms in the last part of the pipeline

Contents

1. Introduction

- 1.4 Schedule & Milestones

2. Topology optimization

- 2.4 The next steps MOVE TO LATER

3. Surface Extraction

4. B-Spline Fitting

- 5. Summary
- 6. Outlook

Status

Last milestone

- Automatic patch selection
- Parametrization of obtained patches
- √ B—spline fitting using least squares
- (b) Smooth connection of patches
- Conversion back to CAD

Today

- ✓ Automatic patch selection moved to the surface extraction part
- Parametrization of obtained patches moved to the surface extraction part
- √ B—spline fitting using least squares
- √ Smooth connection of patches
- Conversion back to CAD

Long way to smoothness

Peters' scheme:

Given the control mesh M_x

- 1. Refine the *control mesh* 2 times using Doo-Sabin refinement
- Construct a tensor product Bezier patches (biquadratic or bicubic) centred on the each vertex of the refined control mesh

According to Peters obtained surface is G^1 smooth Add pictures for Doo-Sabin and for fitting

Long way to smoothness

Main ideas

- Use the mesh obtained from Dual Contouring as a control mesh
- Modify the fitting step to take advantage of the Peters' scheme

$$\downarrow$$

$$E_{dist}(V_x) = \sum_{i=1}^{N} \| p_i - y_i V_x \|_2^2 \rightarrow min, \tag{1}$$

 y_i - coefficients obtained from the Peters' scheme theory.

What is achieved?

- Smoothness of the fitted surface is now guaranteed by construction
- Fitting is possible for more complex shapes achieved by using an information from the Dual Contouring algorithm

Improved pipeline

Insert a nice new pipeline in tikz: orig points -> dual contouring -> clouds -> Doo-Sabin -> fitted surface together with clouds

Before and after

May be some pictures with a really easy shape, which we were able to fit last time and it was not smooth and the ones with new fancy smooth shapes

What is next?

- Finishing of the implementation of the improved pipeline in Python
- Full integration with Surface Extraction part
- Introducing of the fairness functional in order to deal with more complex shapes
- Implementation of the adaptive refinement in order to control a maximum error tolerance
- Implementation of the parameter correction for the improved pipeline
- Exporting the results back to CAD

Contents

1. Introduction

- 1.4 Schedule & Milestones

2. Topology optimization

- 2.4 The next steps MOVE TO LATER

3. Surface Extraction

- 4. B-Spline Fitting
- 5. Summary
- 6. Outlook

What is done?

- First part of the pipeline from CAD model to optimized voxel model:
 - CAD to STL with e.g. FreeCAD
 - STI to Voxels with CVMI CPP
 - Voxels to ToPy input with custom script
 - Topology optimized geometry with ToPy
 - (F) Surface reconstruction with VTKToolbox
- B–spline fitting
 - Automatic patch selection
 - Parametrization of obtained patches
 - √ B–spline fitting using least squares
 - (b) Smooth connection of patches
 - Conversion back to CAD.

Contents

1. Introduction

- 1.1 Contents
- 1.2 Motivation
- 1.3 Workflow Overview
- 1.4 Schedule & Milestones
- 1.5 Organization
- 1.6 Organization

2. Topology optimization

- 2.1 Status
- 2.2 The user's view
- 2.3 The internal view
- 2.3 The internal view
- 2.4 The next steps MOVE TO LATER

3. Surface Extraction

- 3.1 Status
- 3.2 Dual Contouring
- 3.3 Projection and Parametrization
- 3.3 Projection and Parametrization
- 4. B-Spline Fitting
- 5. Summary
- 6. Outlook

What is next?

- Automation of the first part of the pipeline
- Integration of boundary conditions handling
- Implementation of remaining B-spline fitting steps (based on work of M.Eck & H.Hoppe)
- Further research on algorithms considering voxel geometry

Thank you for your attention!

Literature

- William Hunter. "Predominantly solid-void three-dimensional topology optimisation using open source software"
- Gerrit Becker, Michael Schäfer, Antony Jameson. "An advanced NURBS fitting procedure for post-processing of grid-based shape optimizations"
- Matthias Eck, Hugues Hoppe. "Automatic Reconstruction of B-Spline Surfaces of Arbitrary Topological Type"