Auxiliar 8

Profesor: Pablo Guerrero. Auxiliar: Pablo Polanco. Viernes 27 de Mayo de 2016

Problema 1

Se dispone de chips de memoria de 128k×8b. Diseñe una interfaz de memoria que provea 512KB a un procesador con un bus de datos de 8b y un bus de direcciones de 19b.

Problema 2: Entrada - Salida

Ud. dispone del teclado de la Figura 1, que está organizado como una matriz de 16 columnas de 6 teclas cada una. Para leer el estado de una columna completa (6 teclas), se suministra como entrada en C_3 – C_0 el número de la columna. El teclado entrega en K_5 – K_0 el estado de las 6 teclas pertenecientes a la columna. No es posible leer dos columnas al mismo tiempo.

Ilustración 1: Circuito KBD

- Construya una interfaz para este teclado considerando un computador con un bus de direcciones de 16 bits y un bus de datos de 8 bits. Su interfaz debe poseer 16 puertos de entrada en las direcciones 0xFF00 a 0xFF0F (en hexadecimal). Cada uno de estos puertos sirve para leer una columna del teclado. No implemente KBD.
- 2. Programe la rutina *consultar tecla*(*fila*, *columna*), que entrega *verdadero* si la tecla de coordenadas (fila, col) está presionada.

Problema 3: entrada y salida con interrupciones

En la figura se muestra el dispositivo TIMER, que se programa para que produzca una interrupción al cabo de ${\bf t}$ ciclos del reloj. Para programarlo se enciende simultáneamente la entrada CS, WR y se especifica la cantidad de ciclos ${\bf t}$ en D_{31} – D_0 .

Como se muestra en el diagrama de tiempo, el timer activará la línea INT después de \mathbf{t} ciclos del reloj, la que permanecerá en 1 hasta que se desactive el timer. El timer se desactiva encendiendo CS, WR y poniendo ceros en D_{31} – D_0 .

También se puede recuperar la cantidad de ciclos que restan para que se active la interrupción, lo que se logra encendiendo CS y RD. La cantidad de ciclos restantes t_0 aparece por D_{31} - D_0 (0 si el timer está desactivado).

- 1. Implemente una interfaz que conecte el timer de la Figura con un procesador M32. Haga que cada vez que se escribe un dato t en la dirección 0 x ffff 0000 se programa el timer para que interrumpa en t ciclos del reloj si t>0, o se desactiva el timer, si t=0. Además haga que cada vez que se lea esa misma dirección se obtiene la cantidad de ciclos que restan para la interrupción.
- 2. Programe en C los siguientes procedimientos:
 - a. progTimer(t,void(&f)()): programa el timer para que produzca una interrupción en t ciclos del reloj. Además registra el procedimiento f para que se invoque cuando ocurra la interrupción. Si t es 0, se desactiva el timer.
 - b. handleTimer(): rutina de atención de la interrupción que desactiva el timer e invoca el procedimiento f.