Egzamin pisemny z Analizy Matematycznej I dla Informatyków - termin II, 3 III 2010

Proszę o rozwiązania zadań na osobnych, czytelnie oznaczonych w lewym górnym rogu kartkach (własne imie, nazwisko, numer indeksu oraz poniżej — numer rozwiązywanego zadania).

Podczas egzaminu **nie wolno korzystać z** notatek, kalkulatorów, telefonów, pomocy sąsiadów, itp.

Rozwiązania, poza wszystkimi punktami (A), **powinny zawierać uzasadnienia** (tzn. dowody). **Należy** się w nich powoływać na twierdzenia z wykładu, ew. z ćwiczeń. Należy także pamiętać o sprawdzaniu założeń koniecznych do ich użycia!

Czas na rozwiązanie zadań: 2 godz. i 50 min.

Zadanie 1.

- (A) [4 pkt.] Sformuluj twierdzenie "o trzech ciagach".
- (B) [10 pkt.] Podaj dowód powyższego twierdzenia.
- (C) [10 pkt.] Oblicz, jeśli istnieje, granicę ciągu $\{a_n\}_{n\geqslant 8}$ danego wzorem $a_n = \frac{\left(\sqrt[n]{7^n + n} \frac{1}{7}\right)^n}{7^n n^7}$.

Zadanie 2.

- (A) [4 pkt.] Sformułuj kryterium asymptotyczne zbieżności szeregów liczbowych.
- (B) [6 pkt.] Czy to prawda, że dla dowolnego ciągu liczbowego $\{a_n\}_{n\geqslant 1}$ spełniającego $\frac{\frac{(-1)^n}{\sqrt{n}}}{a_m} \longrightarrow 1$
 - a) $\sum_{n=1}^{+\infty} \frac{a_n}{n}$ jest zbieżny? b) $\sum_{n=1}^{+\infty} \frac{a_n}{n}$ jest bezwzględnie zbieżny? c) $\sum_{n=1}^{+\infty} a_n$ jest zbieżny?
- (C) [10 pkt.] Zbadaj zbieżność szeregu $\sum_{n=1}^{+\infty} \frac{5^n n^{2010} 4^n}{3n5^n + (\ln n)^{100} \left(\frac{9}{2}\right)^n}.$

Zadanie 3.

- (A) [4 pkt.] Sformuluj twierdzenie Weierstrassa "o osiąganiu kresów".
- (B) [6 pkt.] O każdym z poniższych zbiorów rozstrzygnij, czy jest on obrazem pewnej funkcji ciągłej $f: [10; 11] \cup [12; 13] \longrightarrow \mathbb{R}$:

 - a) [-1;1], b) $[0;100) \cup (121;131]$, c) $[10;20) \cup (15;30]$.
- (C) [10 pkt.] Czy funkcja $f: \mathbb{R} \longrightarrow \mathbb{R}$ zadana dla $x \in \mathbb{R}$ wzorem $f(x) = \ln(e^x + e^9) e^x$ osiąga któryś ze swych kresów? Znajdź zbiór wartości tej funkcji.

Zadanie 4.

- (A) [4 pkt.] Sformuluj twierdzenie Lagrange'a o postaci reszty Taylora.
- (B) [6 pkt.] Niech T_3 oznacza 3-ci wielomian Taylora funkcji f w punkcie x_0 dla a) $f(x) = 2x^3 + x - 6$, $x_0 = 0$; b) $f(x) = x^2$, $x_0 = 2$. W obu przypadkach oblicz $T_3(1)$.
- (C) [10 pkt.] Znajdź pewne przybliżenie wymierne liczby $\sqrt[1000]{e}$ z dokładnością do 10^{-6} .