Steven Berry (1994), RAND Journal of Economics

Chenhui Lu

University of Florida

Sep. 24 2025

- 1 Introduction
- 2 Methodology
- 3 Results
- 4 Contributions
- **6** Discussion

- 1 Introduction
- 2 Methodology
- 3 Results
- 4 Contributions
- 5 Discussion

Background: General Problem

- In differentiated product markets, reliable estimation of demand and costs is challenging.
- Prices are typically correlated with unobserved product characteristics (quality, brand perception, style) ⇒ endogeneity.
- Ignoring endogeneity yields biased estimates (e.g., spurious findings that higher prices increase demand).
- Societal relevance: accurate demand is essential for antitrust, merger policy, and welfare analysis.

Specific Research Problem

- How to model consumer choice with **product differentiation** in a discrete-choice framework.
- How to address price endogeneity in demand estimation.

Why Is It Important?

- In IO, Public, **demand elasticities** are central for policy and welfare analysis.
- Traditional methods for homogeneous goods fail in differentiated settings.
- This paper introduces a method that became the foundation for the BLP framework (Berry, Levinsohn, Pakes 1995).

2 Methodology

Consumer Demand and Endogeneity Inversion and IV Estimation Special Cases of Inversion Supply and Joint Estimation

- 3 Results
- 4 Contributions
- 6 Discussion

- 1 Introduction
- 2 Methodology

Consumer Demand and Endogeneity

Inversion and IV Estimation Special Cases of Inversion Supply and Joint Estimation

- 3 Results
- 4 Contributions
- Discussion

- Consumers choose among N products and an outside good.
- Indirect utility:

$$u_{ij} = x_j \beta - \alpha p_j + \xi_j + \epsilon_{ij}$$

- Components: x_j observed characteristics; p_j price $(\alpha > 0)$; ξ_j unobserved quality; ϵ_{ij} error term.
- Each consumer chooses the product with the highest utility.

- Unobserved quality ξ_i affects both **demand** and **price**.
- Better products tend to be priced higher $\Rightarrow p_j$ and ξ_j are correlated.
- Direct regressions of market share on price are biased (sometimes suggesting consumers prefer higher prices).
- Key challenge: separate the true effect of price from unobserved quality.

2 Methodology

Consumer Demand and Endogeneity

Inversion and IV Estimation

Special Cases of Inversion Supply and Joint Estimation

- 3 Results
- 4 Contributions
- 6 Discussion

- Market shares s_j map **one-to-one** to mean utilities δ_j .
- Define mean utility:

$$\delta_j = x_j \beta - \alpha p_j + \xi_j$$

- **Inversion** recovers δ_j from observed shares.
- Special cases:
 - Logit: $\delta_j = \ln(s_j) \ln(s_0)$
 - Nested logit: includes a within-group term
- Interpretation: shares contain information on product attractiveness; inversion recovers latent utility.

Innovation 2: IV Estimation

• With δ_i in hand, estimate

$$\delta_j = x_j \beta - \alpha p_j + \xi_j$$

- Endogeneity remains: p_j correlated with ξ_j .
- Instrumental variables (IV):
 - Cost shifters (input prices, wages, transportation costs)
 - Rival product characteristics (affect equilibrium pricing but not utility directly)

- 1 Introduction
- 2 Methodology

Special Cases of Inversion

Logit model

$$\ln(s_j) - \ln(s_0) = x_j \beta - \alpha p_j + \xi_j$$

Simplest closed-form inversion.

Vertical differentiation

 Products are ordered by quality; market shares defined by cutoff rules.

Nested logit

• Allows correlation within groups; adds $\sigma \ln(s_{j|g})$.

Random coefficients logit

- Most general: consumer heterogeneity interacts with characteristics.
- Market shares approximated via simulation.

Chenhui Lu

- 1 Introduction
- 2 Methodology

Supply and Joint Estimation

Supply Side (Firm Pricing)

- Assume **Bertrand Nash** competition.
- First-order condition (FOC):

$$p_j = c_j + \text{markup}_j$$

- Markups depend on demand elasticities:
 - Few substitutes ⇒ higher markups
 - Intense competition ⇒ lower markups

Steps

- **1** Invert observed shares to recover δ_i .
- **2** Estimate demand parameters (β, α) via IV.
- **3** Use supply-side pricing FOC to identify cost parameters.
- 4 Joint GMM: combine demand and supply moments to estimate the full parameter vector.
- Outcome: preference and cost estimates that enable counterfactual policy analysis.

Advantages of the Approach

Flow

```
(Observed shares s_j) \to [Inversion: \delta_j(s)] \to [IV Regression \Rightarrow \beta, \alpha]

Demand moments: \delta_j = x_j \beta - \alpha p_j + \xi_j Supply moments: p_j = c_j(\gamma) + \text{markup}

\downarrow \text{ Joint GMM Estimation } \Rightarrow \text{ Demand & Cost Parameters} \Rightarrow \text{ Counterfactuals}
```


- 2 Methodology
- 3 Results
- 4 Contributions
- 5 Discussion

Introduction

• Simulation of 500 duopoly markets.

TABLE 1 Monte Carlo Parameter Estimates 100 Random Samples of 500 Duopoly Markets Logit Utility

Parameter	True Value	$(\sigma_{\xi d} = 1)$		$(\sigma_{\xi d} = 3)$	
		(1) OLS	(2) IV	(3) OLS	(4) IV
β_o	5	3.46	4.98	0.378	4.89
		(.158)	(.226)	(.415)	(.738)
β_{χ}	2	1.41	1.99	.325	1.95
		(.058)	(.091)	(.127)	(.272)
α	1	.726	.995	.181	.979
		(.029)	(.039)	(.076)	(.128)

Notes: The values given in the table are empirical means and (standard errors).

The utility function is $u_{ij} = \beta_o + \beta_X x_j + \sigma_{\xi a} \xi_j - \alpha p_j + \epsilon_{ij}$. Marginal cost is $c_i = e^{\gamma_o + \gamma_a x_j + \sigma_{\xi c} \xi_j + \gamma_\omega w_j + \sigma_\omega \omega_j}$.

- **OLS**: severely underestimates the price coefficient; may imply consumers prefer higher prices.
 - IV: recovers true parameters consistently.
- Demonstrates that ignoring unobserved characteristics yields systematic bias.

21 / 27

- Automobile industry (Berry, Levinsohn, Pakes 1993, 1995): plausible demand elasticities and substitution patterns.
- Computer industry (Greenstein 1992): vertical differentiation with sensible estimates.
- The framework has become a standard tool in empirical IO.

- Introduction

- 4 Contributions

Contributions

- 1 Introduces mean-utility inversion with IV estimation.
- Provides a solution to price endogeneity in differentiated demand.
- 3 Integrates demand with supply-side FOC.

- Introduction

- **6** Discussion

Discussion Questions

- Why can market shares be inverted to recover mean utilities?
- Why are rival product characteristics valid instruments?
- Why does the random coefficients logit require simulation?

Thank You