

Universidade do Estado do Rio de Janeiro

Instituto Politécnico Engenharia de Computação

Trabalho

Processos Estocásticos

Professor Angelo

Ana Carolina Castro anacarolinacastro@aol.com

Ciro Chang cirochang@live.com

Nova Friburgo 31 de Outubro de 2015

Sumário

1	Introdução	3
2	O Passeio Aleatório	4
	2.1 Desvio padrão	4
	2.2 O Caminhante em uma direção	4
	2.3 O Caminhante em duas direções	
3	Gota	5
	3.1 Simulação	5
	3.2 Experimento	5

1 Introdução

Esse trabalho tem como objetivo

2 O Passeio Aleatório

O Passeio Aleatório, ou Caminhante Bêbado, é um modelo aonde um caminhante dá um passo em uma direção aleatória. Podemos tomar como exemplo o caminho percorrido por uma molécula ou por um fluido. O algoritmo do Passeio Aleatório é dado pelas seguintes regras"o caminhante tem um ponto de partida inicial, ele anda um passo constante em uma direção, a direção é escolhida aleatoriamente e todas as direções tem a mesma probabilidade de escolha.

2.1 Desvio padrão

Na área da Probabilidade e Estatística, o desvio padrão é a medida mais comum da dispersão estatística. Sua principal característica é mostrar o quanto de variação existe em relação a média esperada. A fórmula utilizada para calcular o desvio padrão das simulações realizadas foi a equação 1.

$$s = \sqrt{\frac{\sum x_i^2 - \frac{1}{n} (\sum x_i)^2}{n}} \tag{1}$$

2.2 O Caminhante em uma direção

Quando admitimos que o caminhante passeia em apenas uma direção, consideramos que ele anda em y, podendo ir para cima ou para baixo.

2.3 O Caminhante em duas direções

Quando admitimos que o caminhante passeia em duas direções, consideramos que ele anda em x ou y, podendo andar em x e y ao mesmo tempo ou só em x ou y (cima, baixo, esquerda, direita e diagonais).

- 3 Gota
- 3.1 Simulação
- 3.2 Experimento