Pricing Rainfall Derivatives at the CME

Matthias Ritter Martin Odening Brenda López Cabrera

Humboldt-Universität zu Berlin SFB 649: Ökonomisches Risiko

Energy Finance Workshop, 17 April 2013

Situation

- Rainfall risk affects many economic sectors.
- Rainfall risk can be insured with rainfall derivatives.
- The CME started trading rainfall derivatives in 2011.
 - → Prices of exchange-traded rainfall derivatives are available for the first time.

CME monthly rainfall futures

Index Monthly sum of rainfall (inches)

Tick size \$500 per index point

Contract months Mar, Apr, May, Jun, Jul, Aug, Sep, Oct

Reference stations Chicago, Dallas, Des Moines, Detroit, Jacksonville,

Los Angeles, New York City, Portland, Raleigh

Pricing rainfall derivatives

- Benth et al. (2007), Härdle/López Cabrera (2011):
 Pricing models for temperature
 futures including the Market Price
 of Risk (MPR)
 - ightarrow But: Rainfall different from temperature

- Cao et al. (2004): Fair premium for rainfall futures, no MPR
- Leobacher/Ngare (2011): Indifference prices
- Lee/Oren (2010), Härdle/Osipenko (2011): Equilibrium prices

Pricing rainfall derivatives

- Benth et al. (2007), Härdle/López Cabrera (2011):
 Pricing models for temperature futures including the Market Price of Risk (MPR)
 - ightarrow But: Rainfall different from temperature

- Cao et al. (2004): Fair premium for rainfall futures, no MPR
- Leobacher/Ngare (2011): Indifference prices
- Lee/Oren (2010), Härdle/Osipenko (2011): Equilibrium prices

Goal

• Pricing model for CME rainfall futures including the MPR

Methods

Figure: Model for pricing rainfall derivatives

Daily Rainfall Model

Daily rainfall model (Wilks 1998, Cao et al. 2004, Odening et al. 2007, Ritter et al., 2012)

The daily rainfall amount R_t at time t is described as the product of a rainfall amount process r_t and a rainfall occurrence process X_t .

$$R_t = r_t \cdot X_t, \qquad X_t = \begin{cases} 0 \text{ if day } t \text{ is dry} \\ 1 \text{ if day } t \text{ is wet} \end{cases}$$

Daily Rainfall Model

X_t is modelled as a first-order, two-state Markov process. (Todorovic/Woolhiser 1975, Katz 1977, Wilks 1998/1999, Odening et al. 2007)

Transition probabilities:
$$p_t^{01} = \Pr\{X_t = 1 | X_{t-1} = 0\}$$

 $p_t^{11} = \Pr\{X_t = 1 | X_{t-1} = 1\}$

Figure: Empirical and estimated transition probabilities for New York City

Figure: Empirical and estimated transition probabilities for Detroit

Daily Rainfall Model

The process r_t follows a mixed exponential distribution.

(Woolhiser/Roldán 1982, Foufoula-Georgiou/Lettenmaier 1987, Wilks 1998/1999, Odening et al. 2007)

$$f[r_t] = \frac{\alpha_t}{\beta_t} \exp\left[\frac{-r_t}{\beta_t}\right] + \frac{1-\alpha_t}{\gamma_t} \exp\left[\frac{-r_t}{\gamma_t}\right]$$
with $\beta_t > \gamma_t > 0$ and $0 < \alpha_t < 1$.

Figure: Parameters of the mixed exponential distribution for New York City

Figure: Parameters of the mixed exponential distribution for Detroit

Rainfall simulation

Occurrence process

Recursive simulation with starting value X_0 via uniform random variable $u_{1,t} \sim \mathcal{U}(0,1)$:

$$X_t^{\text{sim}} = \begin{cases} 1 \text{ if } u_{1,t} \leq p_t^{X1}, \\ 0 \text{ otherwise.} \end{cases}$$

Amount process

Simulation via uniform random variables $u_{2,t}$ and $u_{3,t} \sim \mathcal{U}(0,1)$, independent from $u_{1,t}$:

$$r_t^{\text{sim}} = r_{\text{min}} - \delta_t \ln \left[u_{2,t} \right],$$

$$\delta_t = \begin{cases} \beta_t & \text{if } u_{3,t} \le \alpha_t, \\ \gamma_t & \text{if } u_{3,t} > \alpha_t. \end{cases}$$

Methods

Esscher transform

- The Esscher transform allows to get an equivalent martingale measure for Lévy processes.
- It corresponds to a Girsanov transform for the Brownian motion.
- The density under the equivalent martingale measure is defined by

$$f_t(x; \theta) = \frac{e^{\theta x} f_t(x)}{\int_{-\infty}^{\infty} e^{\theta y} f_t(y) dy}$$

• Certain distributions retain their original form under the Esscher transform, e.g., the normal-inverse Gaussian distribution.

Methods

Normal-inverse Gaussian distribution NIG($\alpha, \beta, \mu, \delta$)

- Flexible distribution with 4 parameters
- Density

Density
$$f_X(x) = \frac{\alpha \delta \exp(\delta \sqrt{\alpha^2 - \beta^2} + \beta(x - \mu))}{\pi \sqrt{\delta^2 + (x - \mu)^2}} \cdot K_1 \left(\alpha \sqrt{\delta^2 + (x - \mu)^2}\right)$$
• μ location

- α tail heaviness
- β asymmetry parameter
- \bullet δ scaling parameter
- K₁ modified Bessel function of second kind
- After an Esscher transform with parameter θ , an NIG($\alpha, \beta, \mu, \delta$) distributed random number is NIG($\alpha, \beta + \theta, \mu, \delta$) distributed.

Data

Rainfall data

- Daily rainfall amount 1980-2011
- Detroit, Jacksonville, New York City
- National Climatic Data Center (NCDC)

Market data

- Daily CME prices of futures on the monthly sum of rainfall (in inches)
- All contracts 2011 (March-October)
- Detroit, Jacksonville, New York City
- From Bloomberg via the RDC of SFB649

Fig.: Histogram of the simulated rainfall index, 03.01.2011

Fig.: Histogram of the simulated rainfall index, as well as the fitted NIG distribution, 03.01.2011

Fig.: Histogram of the simulated rainfall index, as well as the fitted and the transformed NIG distributions, 03.01.2011

Fig.: Histogram of the simulated rainfall index, as well as the fitted and the transformed NIG distributions, 03.01.2011

Prices

New York City (03.01.2011)

1011 1011 (00.01.2011)									
Methode	MPR θ	Mar11	Apr11	May11	Jun11	Jul11	Aug11	Sep11	Oct11
CME	_	4.20	4.40	3.20	5.00	4.50	4.30	4.20	4.60
DRM	-2.00	0.92	0.76	0.83	0.69	0.42	0.34	0.42	0.64
	-1.00	1.82	1.80	1.97	1.87	1.74	1.55	1.40	1.58
	-0.50	2.54	2.62	2.90	2.87	2.86	2.64	2.30	2.43
	-0.30	2.97	3.07	3.46	3.50	3.50	3.21	2.84	2.92
	-0.15	3.34	3.47	3.94	3.98	4.10	3.85	3.35	3.40
	0.00	3.75	3.96	4.54	4.69	4.85	4.53	3.99	3.98
	0.15	4.28	4.50	5.31	5.55	5.81	5.43	4.78	4.83
	0.30	4.87	5.23	6.31	6.78	7.13	6.77	6.11	5.89
	0.50	6.09	6.64	8.30	9.55	10.21	9.77	9.24	8.66
	0.75	8.71	9.77	14.55	21.64	23.20	24.29	70.04	35.24

Fig.: Theoretical Prices for New York City, calculated on 03.01.2011, as well as the CME market prices the same day

Prices

Fig.: Histogram of the simulated rainfall index, as well as the fitted and the transformed NIG distributions, 03.01.2011

Prices

Tab.: Estimated MPR for different cities and contracts, 03.01.2011

Problem

Fig.: CME prices 2011 for rainfall futures, New York City

Conclusion

Summary

- Flexible and practicable model for pricing rainfall futures
- Approach not limited to NIG distribution
- Fitting to actual market prices via the market price of risk

Discussion

- CME prices not (yet) real market prices
- Weather forecasts

References

Cao, M., Li, A., and Wei, J. (2004).

Precipitation modeling and contract valuation: a frontier in weather derivatives. The Journal of Alternative Investments. 7:93–99.

Härdle, W. K. and Osipenko, M. (2011).

Pricing Chinese rain: A multisite multi-period equilibrium pricing model for rainfall derivatives.

SFB 649 Discussion Paper 2011-055.

Lee, Y. and Oren, S. (2010).

A multi-period equilibrium pricing model of weather derivatives. *Energy Systems*, 1:3–30.

Leobacher, G. and Ngare, P. (2011).

On modelling and pricing rainfall derivatives with seasonality. *Applied Mathematical Finance*, 18(1):71–91.

López Cabrera, B., Odening, M., and Ritter, M. (2013).

Pricing rainfall derivatives at the CME. SFB 649 Discussion Paper 2013-005.

Odening, M., Musshoff, O., and Xu, W. (2007).

Analysis of rainfall derivatives using daily precipitation models: Opportunities and pitfalls. *Agricultural Finance Review*, 67(1):135–156.