Задача А. Сумма цифр в строке

Имя входного файла: digitsum.in Имя выходного файла: digitsum.out Ограничение по времени: 2 секунды Ограничение по памяти: 64 мегабайта

Построим бесконечную последовательность строк S_0, S_1, S_2, \dots из двух символов — цифр '1' и '2' — следующим образом:

- $S_0 = "1"$;
- \mathcal{S}_{i+1} получается из \mathcal{S}_i одновременной заменой всех цифр '1' на строки "11212", а всех цифр '2' на "1121212".

$$\mathrm{Tak}, \ \mathcal{S}_1 = \text{``11212''}, \ \mathcal{S}_2 = \text{``}\underbrace{11212}_1\underbrace{11212}_1\underbrace{112122}_2\underbrace{11212}_1\underbrace{11212}_1\underbrace{1121212}_1, \dots.$$

Заметим, что каждая строка содержит в качестве префиксов все предыдущие. Определим \mathcal{S}_{∞} как бесконечную последовательность цифр, содержащую в качестве префиксов все строки \mathcal{S}_i . Определим \mathcal{S}_l^r как подстроку \mathcal{S}_{∞} , состоящую из всех её элементов с номерами от l до r, включительно. Например, \mathcal{S}_1^6 = "112121", \mathcal{S}_{17}^{17} = "2".

По данным числам l и r найдите сумму цифр в строке \mathcal{S}_l^r .

Формат входного файла

Первая строка входного файла содержит целое число t ($1 \le t \le 50\,000$) — количество запросов. В следующих t строках записаны запросы; i-я из них содержит два целых числа l_i и r_i , разделённых одним пробелом ($1 \le l_i \le r_i \le 10^9$).

Формат выходного файла

Выведите в выходной файл t чисел, по одному числу на строке — ответы на запросы в том порядке, в котором они заданы во входном файле.

Пример

digitsum.in	digitsum.out
2	8
1 6	2
17 17	

Задача В. Разрез пополам

Имя входного файла: half.in
Имя выходного файла: half.out
Ограничение по времени: 6 секунд
Ограничение по памяти: 64 мегабайта

Дан неориентированный граф из n вершин, где n чётно. Необходимо разбить вершины графа на два равных по размеру множества так, чтобы количество рёбер с концами в разных множествах было минимально.

Формат входного файла

Первая строка содержит два целых числа n и m — количество вершин и рёбер графа ($2 \le n \le 30$, n чётно).

Следующие m строк содержат описания рёбер — каждое ребро задано номерами своих концов. Вершины нумеруются с единицы. Гарантируется, что в графе нет кратных рёбер и петель.

Формат выходного файла

Выведите в первую строку выходного файла через пробел номера $\frac{n}{2}$ вершин, которые входят в одно из множеств оптимального разбиения вместе с первой вершиной. Вершины должны быть перечислены в порядке возрастания номеров. Если оптимальных разбиений несколько, то разрешается вывести любое.

Пример

, p.,ep	
half.in	half.out
6 8	1 2 6
1 2	
6 1	
2 3	
5 2	
2 6	
4 3	
4 5	
6 5	

Сборы по информатике Сборной Казахстана Алматы, ФизМат, суббота, 26 марта 2011 года

Задача С. Следующая строка

Имя входного файла: next.in
Имя выходного файла: next.out
Ограничение по времени: 2 секунды
Ограничение по памяти: 64 мегабайта

Назовём строку из нулей и единиц npocmoй, если она лексикографически меньше любого своего собственного суффикса. Например, строка «00101» простая, а «00000» — нет (любой её собственный суффикс меньше всей строки).

Необходимо по простой строке найти следующую в лексикографическом порядке простую строку такой же длины.

Формат входного файла

Входной файл содержит простую строку длины $n \ (2 \le n \le 10\,000)$.

Формат выходного файла

В выходном файле должна находиться следующая в лексикографическом порядке простая строка длины n. Гарантируется, что она существует.

Пример

next.in	next.out
00111	01011