Laplace Transform

Tristan Slater

September 26, 2022

Contents

\sim				
l	Definition 1.1 Inverse	1 1		
2	properties	1		
3	Solving Laplace Equations	1		
1	Solving Inverse Laplace Equations	1		
1 Definition				
	$F(s) = \mathcal{L}\{f(t)\} = \int_0^\infty e^{-st} f(t)dt$	(1)		
L.	1 Inverse			
	$f(t) = \mathcal{L}^{-1}{F(s)} = \frac{1}{2\pi j} \int_{c-j\infty}^{c+j\infty} e^{st} F(s) ds$	(2)		

t > 0

2 properties

- \bullet Linear
- •
- 3 Solving Laplace Equations
- 4 Solving Inverse Laplace Equations

Table 1: Laplace Transform Operations

	$f(t) = \mathscr{L}^{-1}\{F(s)\}$	$F(s) = \mathcal{L}\{f(t)\}\$
Multiplying by a Constant	af(at)	aF(s)
Time Scaling	f(at)	$\frac{1}{a}F\left(\frac{s}{a}\right)$
Frequency Scaling	$\frac{1}{a}f\left(\frac{t}{a}\right)$	F(as)
Time Shifting	f(t-a)u(t-a)	$e^{-at}F(s)$
Frequency Shifting	$e^{at}f(t)$	F(s-a)
Convolution	(f*g)(t)	F(s)G(s)

Table 2: Laplace Transform Base Functions

$f(t) = \mathcal{L}^{-1}\{F(s)\}$	$F(s) = \mathcal{L}\{f(t)\}$
$\delta(t)$	1
u(t)	$\frac{1}{s}$
t	$\frac{1}{s^2}$
t^n	$\frac{n!}{s^{n+1}}$
$\sin at$	$\frac{a}{s^2 + a^2}$
$\cos at$	$\frac{s}{s^2 + a^2}$
$\sinh at$	$\frac{a}{s^2 - a^2}$
$\cosh at$	$\frac{s}{s^2 - a^2}$

Table 3: Laplace Transform Calculus

$$f(t) = \mathcal{L}^{-1}{F(s)}$$

$$F(s) = \mathcal{L}{f(t)}$$

$$f^{(n)}(t)$$

$$s^{n}F(s) - \sum_{k=0}^{n-1} s^{n-k} f^{(k)}(0)$$

$$\int_{0}^{t} f(\tau) d\tau$$

$$\frac{1}{s}F(s)$$