Part 1 : Selection of Threshold concept Transformer fundamentals

What students know: Step up and step down transformer

What they do not know: Exact working principle, three phase transformers, losses and open circuit test and short circuit tests.

Principles:

Principles of Transformer:

- 1. Electromagnetic Induction (Faraday's Law)
- 2. **Mutual Induction** between primary and secondary windings
- 3. Conservation of Energy (neglecting losses)
- 4. **Voltage Transformation Ratio** proportional to turns ratio
- 5. **Current Transformation Ratio** inversely proportional to turns ratio
- 6. Magnetic Flux Linkage through a common core
- 7. **Operation at Constant Frequency** (for designed performance)
- 8. **Minimization of Core Losses** (hysteresis and eddy currents)
- 9. **Minimization of Copper Losses** (I²R losses in windings)
- 10. **Operation Based on AC Supply** (not DC, except for special cases)
- 11. Magnetic Core Saturation Avoidance for efficiency
- 12. **Polarity Considerations** for correct phase relationship
- 13. Leakage Flux Minimization through core design
- 14. **Impedance Matching** for maximum power transfer

Part 2 : Case Study

Case Study: "The Music Festival Power Puzzle"

Imagine your college is hosting a **huge open-air music festival** with multiple stages, food courts, and giant LED screens.

Electricity is coming from a **distant power plant**. To get the power to the festival site:

- 1. The power is sent from far away in a special way so that less is wasted on the journey.
- 2. When it reaches the festival, the electricity needs to be **changed again** so the big speakers and stage lights can run safely.
- 3. There are **three main performance stages** running at the same time, each with different power needs, but all connected in a way that keeps everything balanced.
- 4. The event managers also want to **check the system before the show** they do one test when the equipment is connected but **no sound or lights are on**, and another when everything is running at full blast.
- 5. After the event, they check how much power was **lost as heat or other inefficiencies**, because they want to make it better next time.

Your job is to advise the festival organizers on:

- How to set up the system to get electricity from far away efficiently and safely
- How to handle the three big stages running together without issues
- How and why to do the two types of pre-event tests
- How to figure out where and why energy was lost during the festival

Case Study Design in Three Frameworks

1. Bloom's Taxonomy Approach

Level

Bloom Learning Activity in the Case Study

Remember Recall what a "changing" device (transformer) does in sending electricity

over distance

Understand Explain why electricity needs to be changed before and after the long

journey

Apply Suggest how the festival can connect three stages so power is balanced

Analyze Compare the two pre-event tests (no equipment running vs everything

running)

Evaluate Judge which setup would waste less power

Create Design a safe and efficient power plan for the festival

2. Fink's Significant Learning Approach

Fink's Dimension Learning Activity in the Case Study

Foundational

Learn the basic role of changing electricity levels

Knowledge

Application Use the festival scenario to plan safe and efficient connections

Integration Link knowledge of electricity transfer with event planning

Human Dimension Understand the role of the event team and engineers

Caring Appreciate the importance of avoiding power waste for cost and

environment

Learning How to

Learn

Explore how to read festival power plans and testing results for

future projects

3. SOLO Taxonomy Approach

SOLO Level Learning Activity in the Case Study

Prestructural Recognize that electricity is needed for the festival

Unistructural Identify that electricity must be changed before use

Multistructural List different stages and testing situations

Relational Connect the concepts of electricity transfer, balancing stages, and

testing

Comparison Table: Bloom vs Fink vs SOLO

Feature	Bloom's Taxonomy	Fink's Significant Learning	SOLO Taxonomy
Main Focus	Cognitive skill progression from remembering to creating	Broader dimensions including emotions, human impact, and lifelong learning	Depth of understanding from simple facts to abstract generalization
Structure	Six hierarchical levels	Six interrelated dimensions	Five levels of increasing complexity
Strength	Clear steps for assessing mental skill growth	Connects learning to real-world relevance and values	Shows growth in conceptual depth and integration
Limitation	Focuses mostly on cognitive domain	Less direct about order of learning progression	Not as explicit about emotional or value-based learning
Best Use in This Case	Sequencing the festival problem-solving tasks	Making students see the human and environmental importance of power systems	Helping students build from knowing "we need power" to applying the idea in other big setups

Part 3: Generate the reflection questions for evaluation and write/ map to suitable learning outcomes.

Reflection Questions and Learning Outcome Mapping

Reflection Question	Mapped Learning Outcome	

1. During the long journey from the power plant to the festival, why do you think the electricity is "changed" before traveling?

LO1: Explain why changing voltage levels helps in efficient power transfer over long distances.

- 2. What problems might occur if all three stages at the festival took power from the same point without balancing the load?
- 3. The team does a test when nothing is running and another when everything is running. What differences would you expect in the results?
- 4. If some energy is lost during the event, where do you think it might have gone, and why?
- 5. How could the festival team improve their setup next time to reduce waste and improve safety?
- 6. Imagine a similar large event in another country how might the solutions you suggested here apply there?

- **LO2:** Describe the importance of distributing electrical loads evenly across multiple systems.
- **LO3:** Differentiate between a no-load test and a full-load test and what each reveals.
- **LO4:** Identify possible causes of energy losses in a power delivery system.
- **LO5:** Propose improvements to an electrical distribution plan based on efficiency and safety considerations.
- **LO6:** Transfer knowledge of safe and efficient power delivery to different real-world scenarios.