JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY Volume 21, Number 1, January 2008, Pages 283–304 S 0894-0347(07)00567-X Article electronically published on June 5, 2007

FORMAL DEGREES AND ADJOINT γ -FACTORS

KAORU HIRAGA, ATSUSHI ICHINO, AND TAMOTSU IKEDA

Dedicated to Professor Hiroshi Saito on the occasion of his sixtieth birthday

Introduction

Let **G** be a connected reductive algebraic group over a local field F and let **H** be a closed subgroup of **G** over F. Set $G = \mathbf{G}(F)$ and $H = \mathbf{H}(F)$. Let π be an irreducible unitary representation of G and let V_{π} be the space of π . For $v \in V_{\pi}$, we will consider the integral

(0.1)
$$\int_{H} (\pi(h)v, v) dh.$$

We can regard this integral as an analogue of (the square of the absolute value of) a period integral of an automorphic form and expect that it is related to L and ϵ -factors. For example, let $\mathbf{G} = \mathrm{SO}(n+1) \times \mathrm{SO}(n)$ and $\mathbf{H} = \mathrm{SO}(n)$. Let $\pi = \pi_1 \otimes \pi_0$, where π_1 (resp. π_0) is an irreducible unramified tempered representation of $\mathrm{SO}(n+1,F)$ (resp. $\mathrm{SO}(n,F)$). Then (0.1) can be expressed in terms of

$$\frac{L(\frac{1}{2}, \pi_1 \times \pi_0)}{L(1, \pi_1, \operatorname{Ad})L(1, \pi_0, \operatorname{Ad})}$$

if v is unramified (cf. [20]). Now let $\mathbf{G} = \mathbf{H} \times \mathbf{H}$, where \mathbf{H} is a connected reductive algebraic group over F. For simplicity, we assume that the connected center of \mathbf{H} is anisotropic. Let $\pi = \pi_H \otimes \check{\pi}_H$, where π_H is a discrete series representation of H and $\check{\pi}_H$ is the contragredient representation of π_H . Then (0.1) can be expressed in terms of the formal degree $d(\pi_H)$ of π_H . In this paper, we give a conjectural formula for $d(\pi_H)$ in terms of the adjoint γ -factor

$$\gamma(s, \pi_H, \mathrm{Ad}, \psi) = \epsilon(s, \pi_H, \mathrm{Ad}, \psi) \cdot \frac{L(1 - s, \check{\pi}_H, \mathrm{Ad})}{L(s, \pi_H, \mathrm{Ad})}$$

(cf. Conjecture 1.4). Here Ad is the adjoint representation of the L-group LH of \mathbf{H} on the Lie algebra $\mathrm{Lie}(\hat{H})$ of the dual group of \mathbf{H} and ψ is a non-trivial additive character of F.

Our conjecture is supported by various examples. For example, we assume that $F = \mathbb{R}$ and \mathbf{H} is anisotropic. We take the Haar measure dh on H determined by a Chevalley basis of $\text{Lie}(H) \otimes \mathbb{C}$. Let π_H be an irreducible finite dimensional representation of H. Then the conjecture for π_H asserts that

$$\frac{\dim \pi_H}{\operatorname{vol}(H)} = \frac{1}{2^l} \cdot |\gamma(0, \pi_H, \operatorname{Ad}, \psi)|$$

Received by the editors July 5, 2006.

2000 Mathematics Subject Classification. Primary 22E50.

 and it is compatible with the Weyl dimension formula. Here l is the rank of \mathbf{H} and $\psi(x) = \exp(2\pi\sqrt{-1}x)$ for $x \in \mathbb{R}$. Also, if F is non-archimedean, then the conjecture for $\mathrm{GL}(n)$ is compatible with the result of Silberger and Zink [35], [37].

Moreover, we provide some evidence in the case of the quasi-split unitary group in three variables. To be precise, let F be a non-archimedean local field of characteristic zero. Let E be a quadratic extension of F and let σ be the non-trivial automorphism of E over F. Put

$$J_3 = \begin{pmatrix} 0 & 0 & 1 \\ 0 & -1 & 0 \\ 1 & 0 & 0 \end{pmatrix}.$$

Let

$$\mathbf{H} = \mathrm{U}(3) = \{ h \in \mathrm{Res}_{E/F} \, \mathrm{GL}(3) \, | \, \theta(h) = h \},$$

where $\theta(h) = \operatorname{Ad}(J_3)(\sigma({}^th^{-1}))$. Following Gross [11], we choose a Haar measure dh on H. Let π_H be a stable discrete series representation of H. We will verify the conjecture for π_H , i.e.,

(0.2)
$$d(\pi_H) = \frac{1}{2} \cdot |\gamma(0, \pi_H, \operatorname{Ad}, \psi)|$$

(cf. Theorem 8.6).

To prove (0.2), we use twisted endoscopy. Let $J(\pi_H) = \operatorname{trace} \pi_H$ be the character of π_H and let $c_0(\pi_H)$ be the coefficient associated to the trivial orbit in the local character expansion of $J(\pi_H)$ (cf. [15]). Recall that

$$(0.3) c_0(\pi_H) \doteq d(\pi_H).$$

Here the notation $\stackrel{.}{=}$ indicates equality up to constants which do not depend on the representations. Let π be the base change of π_H to $\mathrm{GL}(3,E)$. Then π is square integrable since π_H is stable. Also, π is isomorphic to $\pi \circ \theta$. We fix an isomorphism $\pi(\theta) : \pi \to \pi \circ \theta$ such that $\pi(\theta)^2 = \mathrm{id}$. Let $J^{\theta}(\pi) = \mathrm{trace} \pi \circ \pi(\theta)$ be the twisted character of π and let $c_{0,\theta}(\pi)$ be the coefficient associated to the trivial orbit in the local character expansion of $J^{\theta}(\pi)$ (cf. [5]). The character identity between $J^{\theta}(\pi)$ and $J(\pi_H)$ was proved by Rogawski [31] and implies that

$$|c_{0,\theta}(\pi)| \doteq |c_0(\pi_H)|.$$

We also have an analogue

$$c_{0,\theta}(\pi) \cdot (v, \pi(\theta)v') \doteq d(\pi) \cdot J^{\theta}(1, f)$$

of (0.3). Here f is a matrix coefficient of π given by $f(g) = (\pi(g)v, v')$ and $J^{\theta}(1, f)$ is the twisted orbital integral of f at the identity element. By the result of Silberger and Zink [35], [37], we have

$$d(\pi) \doteq |\lim_{s \to 0} s^{-1} \gamma(s, \pi \times \check{\pi}, \psi)|.$$

By the results of Shahidi [32] and Goldberg [10], we have

$$|J^{\theta}(1,f)| \doteq |\lim_{s \to 0} s^{-1} \gamma(s,\pi,r,\psi)|^{-1} \cdot |(v,\pi(\theta)v')|,$$

where r is the Asai representation. Thus we obtain (0.2).

This paper is organized as follows. In $\S1$, we formulate a conjecture on formal degrees and relate it to the Plancherel formula. In $\S2$, we verify the conjecture in the archimedean case. In $\S3$, we present various examples in the non-archimedean case. For example, the conjecture for $\mathrm{GL}(n)$ is compatible with the result of Silberger

and Zink [35], [37]. Using the results of Shahidi [32], [33], [34], we give a new proof of their result in $\S4$. In $\S5$, we give a description of the coefficient associated to the trivial orbit in the local character expansion of a certain twisted character. After recalling some facts about twisted orbital integrals in $\S6$, we prove this description in $\S7$. In $\S8$, we verify the conjecture for a stable discrete series representation of U(3).

1. Conjectures

In this section, we formulate a conjecture on formal degrees (cf. Conjecture 1.4). Let F be a local field of characteristic zero and let ψ be a non-trivial additive character of F. Let $|\cdot|_F$ denote the absolute value on F. If F is non-archimedean, let \mathfrak{o}_F be the maximal compact subring of F, \mathfrak{p}_F the maximal ideal of \mathfrak{o}_F , and $q = q_F$ the cardinality of $\mathfrak{o}_F/\mathfrak{p}_F$. Let $\Gamma = \operatorname{Gal}(\bar{F}/F)$ denote the absolute Galois group of F, W_F the Weil group of F, W_F' the Weil-Deligne group of F, and L_F the Langlands group of F given by

$$L_F = \begin{cases} W_F & \text{if } F \text{ is archimedean,} \\ W_F \times \text{SL}(2, \mathbb{C}) & \text{if } F \text{ is non-archimedean.} \end{cases}$$

Let **G** be a connected reductive algebraic group over F. Set $G = \mathbf{G}(F)$. Let \mathbf{G}^* be the quasi-split inner form of **G** and choose an inner twist $\eta : \mathbf{G} \to \mathbf{G}^*$. Let \hat{G} denote the dual group of **G** and ${}^LG = \hat{G} \rtimes W_F$ the L-group of **G**. We fix an F-splitting $(\mathbf{B}^*, \mathbf{T}^*, \{X_{\alpha}\})$ of \mathbf{G}^* and a Γ -splitting $(\mathcal{B}, \mathcal{T}, \{\mathcal{X}_{\dot{\alpha}}\})$ of \hat{G} .

Let π be a discrete series representation of G and let V_{π} be the space of π . We fix an invariant hermitian inner product (\cdot, \cdot) on V_{π} . Let $d(\pi) \in \mathbb{R}_{>0}$ denote the formal degree of π . By definition, we have

$$\int_{G/A} (\pi(g)u, u') \overline{(\pi(g)v, v')} \, dg = d(\pi)^{-1} (u, v) \overline{(u', v')}$$

for $u, u', v, v' \in V_{\pi}$, where \mathbf{A} is the split component of the center of \mathbf{G} and $A = \mathbf{A}(F)$. We remark that $d(\pi) = d(\pi, dg)$ depends on the choice of dg. Following Gross [11], we take a Haar measure $\mu_{G/A,\psi}$ on G/A defined as follows. (This should not be confused with the Euler-Poincaré measure μ_G on G in the notation of [11].) We may assume that $\mathbf{A} = \{1\}$. Moreover, we may assume that \mathbf{G} has an anisotropic inner form if F is archimedean. Let $\omega_{\mathbf{G}}$ be a differential form of top degree on \mathbf{G} over F as in Sections 4 and 7 of [11]. Let $\mu_{G,\psi}$ denote the Haar measure on G determined by $\omega_{\mathbf{G}}$ and the self-dual measure on F with respect to ψ . Then

(1.1)
$$\mu_{G,\psi_a} = |a|_F^{\dim \mathbf{G}/2} \cdot \mu_{G,\psi},$$

where $a \in F^{\times}$ and $\psi_a(x) = \psi(ax)$ for $x \in F$. If F is non-archimedean, ψ is of order zero, and G is unramified, then

$$\mu_{G,\psi}(\mathbf{G}(\mathfrak{o}_F)) = q^{-\dim \mathbf{G}} |\mathbf{G}(\mathbb{F}_q)|.$$

Here we extend **G** to a smooth group scheme over \mathfrak{o}_F associated to a hyperspecial maximal compact subgroup of G.

Lemma 1.1. Let π be a discrete series representation of G. Let $a \in F^{\times}$. We define a non-trivial additive character ψ_a of F by $\psi_a(x) = \psi(ax)$ for $x \in F$. Then

$$d(\pi, \mu_{G/A, \psi_a}) = |a|_F^{-n/2} \cdot d(\pi, \mu_{G/A, \psi}),$$

where $n = \dim \mathbf{G}/\mathbf{A}$.

Proof. The lemma follows from (1.1).

Let $\phi: L_F \to {}^L G$ be a Langlands parameter. We say that ϕ is tempered if $\phi(W_F)$ is bounded and that ϕ is elliptic if $\phi(L_F)$ is not contained in any proper parabolic subgroup of ${}^L G$. For each finite dimensional representation r of ${}^L G$, put

$$\gamma(s,r\circ\phi,\psi)=\epsilon(s,r\circ\phi,\psi)\cdot\frac{L(1-s,\check{r}\circ\phi)}{L(s,r\circ\phi)},$$

where \check{r} is the contragredient representation of r. Let Ad denote the adjoint representation of LG on $\operatorname{Lie}(\hat{G})/\operatorname{Lie}(Z(\hat{G})^{\Gamma})$. Note that Ad is self-dual.

Lemma 1.2. Let $\phi: L_F \to {}^L G$ be an elliptic Langlands parameter. Then at s = 0, $\gamma(s, \operatorname{Ad} \circ \phi, \psi)$ is holomorphic and non-zero.

Proof. Since ϕ is elliptic, Ad $\circ \phi$ does not contain the trivial representation of L_F (cf. Lemma 10.3.1 of [22]). Hence the lemma follows from the multiplicativity of γ -factors.

Lemma 1.3. Let $\phi: L_F \to {}^L G$ be an elliptic Langlands parameter. Let $a \in F^{\times}$. We define a non-trivial additive character ψ_a of F by $\psi_a(x) = \psi(ax)$ for $x \in F$. Then

$$|\gamma(0,\operatorname{Ad}\circ\phi,\psi_a)|=|a|_F^{-n/2}\cdot|\gamma(0,\operatorname{Ad}\circ\phi,\psi)|,$$

where $n = \dim \mathbf{G}/\mathbf{A}$.

Proof. Note that $n = \dim \operatorname{Lie}(\hat{G}) / \operatorname{Lie}(Z(\hat{G})^{\Gamma})$. By definition, we have

$$|\epsilon(s, \mathrm{Ad} \circ \phi, \psi_a)| = |a|_F^{n(s-1/2)} \cdot |\epsilon(s, \mathrm{Ad} \circ \phi, \psi)|.$$

This yields the lemma.

Let $\Pi(G)$ denote the set of equivalence classes of irreducible admissible representations of G. The local Langlands conjecture asserts that there exists a partition

$$\coprod_{\phi} \Pi_{\phi}(G)$$

of $\Pi(G)$ into finite subsets, where ϕ runs over equivalence classes of Langlands parameters $\phi: L_F \to {}^L G$. Let $\pi \in \Pi_{\phi}(G)$. If ϕ is tempered (resp. elliptic), then π is expected to be tempered (resp. essentially square integrable). For each finite dimensional representation r of ${}^L G$, put

$$L(s, \pi, r) = L(s, r \circ \phi),$$

$$\epsilon(s, \pi, r, \psi) = \epsilon(s, r \circ \phi, \psi),$$

and

$$\gamma(s, \pi, r, \psi) = \epsilon(s, \pi, r, \psi) \cdot \frac{L(1 - s, \check{\pi}, r)}{L(s, \pi, r)},$$

where $\check{\pi}$ is the contragredient representation of π .

Let $\phi: L_F \to {}^L G$ be a tempered Langlands parameter. Following [19, §1], set

$$S_{\phi} = \{ s \in \hat{G}_{sc} \mid \operatorname{Int} s \circ \phi = \phi \bmod B^{1}(W_{F}, Z(\hat{G})) \}, \qquad S_{\phi} = \pi_{0}(S_{\phi}),$$

$$S_{\phi}^{\natural} = \{ s \in \hat{G}^{\natural} \mid \operatorname{Int} s \circ \phi = \phi \}, \qquad \qquad S_{\phi}^{\natural} = \pi_{0}(S_{\phi}^{\natural}),$$

where \hat{G}_{sc} is the simply connected cover of the derived group of \hat{G} and \hat{G}^{\natural} is the dual group of \mathbf{G}/\mathbf{A} . Let \mathcal{Z}_{ϕ} be the image of $Z(\hat{G}_{sc})$ in \mathcal{S}_{ϕ} . Let $\chi_{\mathbf{G}}$ be the character of $Z(\hat{G}_{sc})^{\Gamma}$ associated to \mathbf{G} by the map

$$\mathrm{H}^1(F,\mathbf{G}_{\mathrm{ad}}^*) \longrightarrow \pi_0(Z(\hat{G}_{\mathrm{sc}})^\Gamma)^D$$

defined by Kottwitz [22], [23]. Here $\mathbf{G}_{\mathrm{ad}}^*$ is the adjoint group of \mathbf{G}^* . By Lemma 9.1 of [19], we can regard $\chi_{\mathbf{G}}$ as a character of the image of $Z(\hat{G}_{\mathrm{sc}})^{\Gamma}$ in \mathcal{S}_{ϕ} . We extend $\chi_{\mathbf{G}}$ to a character of \mathcal{Z}_{ϕ} . Let $\Pi(\mathcal{S}_{\phi}, \chi_{\mathbf{G}})$ denote the set of equivalence classes of irreducible representations of \mathcal{S}_{ϕ} such that \mathcal{Z}_{ϕ} acts via $\chi_{\mathbf{G}}$. It is believed that there exists a map

$$\Pi_{\phi}(G) \longrightarrow \Pi(\mathcal{S}_{\phi}, \chi_{\mathbf{G}})$$

which satisfies certain conditions on characters (cf. [2]). For example,

$$\sum_{\pi \in \Pi_{\phi}(G)} \langle 1, \pi \rangle \operatorname{trace} \pi$$

is required to be the unique (up to a scalar) stable distribution in the space of virtual characters generated by $\Pi_{\phi}(G)$, where

$$\langle 1, \pi \rangle = \dim \rho_{\pi}$$

if $\rho_{\pi} \in \Pi(\mathcal{S}_{\phi}, \chi_{\mathbf{G}})$ is associated to $\pi \in \Pi_{\phi}(G)$. Moreover, the quantity $\langle 1, \pi \rangle$ is expected to be canonically determined by π .

Conjecture 1.4. Let $\phi: L_F \to {}^L G$ be an elliptic tempered Langlands parameter. Then

$$d(\pi) = \frac{\langle 1, \pi \rangle}{|\mathcal{S}_{\phi}^{\natural}|} \cdot |\gamma(0, \pi, \mathrm{Ad}, \psi)|$$

for $\pi \in \Pi_{\phi}(G)$.

We will relate Conjecture 1.4 to the Plancherel formula. We fix a non-trivial additive character ψ of F. Let Θ be the set of pairs $(\mathfrak{O}, \mathbf{P} = \mathbf{M}\mathbf{N})$, where \mathbf{P} is a semi-standard parabolic subgroup of \mathbf{G} , \mathbf{M} is the Levi subgroup of \mathbf{P} , \mathbf{N} is the unipotent radical of \mathbf{P} , and \mathfrak{O} is an orbit in the set of equivalence classes of discrete series representations of M under the action of the group of unramified unitary characters of M. For $(\mathfrak{O}, \mathbf{P} = \mathbf{M}\mathbf{N}) \in \Theta$ and $\pi \in \mathfrak{O}$, put

$$d\nu(\pi) = \frac{\langle 1, \pi \rangle}{|\mathcal{S}_{\phi_M}^{\natural}|} \cdot |\gamma(0, \pi, r_M, \psi)| \cdot d\pi.$$

Here $\phi_M: L_F \to {}^L M$ is the (conjectural) Langlands parameter associated to π , r_M is the adjoint representation of ${}^L M$ on $\operatorname{Lie}(\hat{G})/\operatorname{Lie}(Z(\hat{M})^\Gamma)$, and $d\pi$ is the Lebesgue measure on $\mathfrak D$ (cf. [36, pp. 239 and 302]). Then the Plancherel formula (cf. Theorem 27.3 of [14] and Théorème VIII.1.1 of [36]), Langlands' conjecture on Plancherel measures (cf. Appendix II of [26]), and Conjecture 1.4 suggest that the following conjecture holds.

Conjecture 1.5. There exist explicit constants $c_M \in \mathbb{R}_{>0}$ which do not depend on \mathfrak{O} such that

$$f(1) = \sum_{(\mathfrak{O}, \mathbf{P} = \mathbf{M}\mathbf{N}) \in \Theta} c_M \int_{\mathfrak{O}} \operatorname{trace} \operatorname{Ind}_P^G(\pi)(f) \, d\nu(\pi)$$

for $f \in C_c^{\infty}(G)$.

2. Examples: The archimedean case

In this section, we verify Conjecture 1.4 in the archimedean case.

Let $F = \mathbb{R}$. By Lemmas 1.1 and 1.3, we may assume that $\psi(x) = \exp(2\pi\sqrt{-1}x)$ for $x \in \mathbb{R}$. Let **G** be a connected reductive algebraic group of rank l over \mathbb{R} . For simplicity, we assume that the connected center of **G** is anisotropic. We may assume that **G** has an anisotropic inner form \mathbf{G}_{an} .

Proposition 2.1. Let π be a discrete series representation of G. Then

$$d(\pi) = \frac{1}{2^l} \cdot |\gamma(0, \pi, \mathrm{Ad}, \psi)|.$$

In particular, Conjecture 1.4 holds for π .

The rest of this section is devoted to the proof of Proposition 2.1. Let $\check{\Sigma}$ denote the set of roots of \mathcal{T} in \hat{G} and $\check{\Sigma}^+$ the subset of positive roots determined by \mathcal{B} . Let N be the number of positive roots. Let $\langle \cdot, \cdot \rangle$ denote the pairing between $X_*(\mathcal{T}) \otimes \mathbb{Q}$ and $X^*(\mathcal{T}) \otimes \mathbb{Q}$.

Lemma 2.2. Let π_{λ} be a discrete series representation of G with Harish-Chandra parameter λ . Then

$$|\gamma(0, \pi_{\lambda}, \mathrm{Ad}, \psi)| = \pi^{-l} \cdot (2\pi)^{-N} \prod_{\check{\alpha} \in \check{\Sigma}^{+}} |\langle \lambda, \check{\alpha} \rangle|.$$

Proof. Let $\phi: W_{\mathbb{R}} \to {}^L G$ be the Langlands parameter associated to π_{λ} . Then $\phi(z) = z^{\lambda} \bar{z}^{-\lambda}$ for $z \in W_{\mathbb{C}}$. The action $\mathrm{Ad} \circ \phi$ of $W_{\mathbb{R}}$ on $\mathrm{Lie}(\mathcal{T})$ (resp. $\mathbb{C}\mathcal{X}_{\check{\alpha}} \oplus \mathbb{C}\mathcal{X}_{-\check{\alpha}}$) is given by the sign character (resp. $\mathrm{Ind}_{W_{\mathbb{C}}}^{W_{\mathbb{R}}}(\phi_{\check{\alpha}})$). Here $\check{\alpha} \in \check{\Sigma}^+$ and $\phi_{\check{\alpha}}(z) = z^{\langle \lambda, \check{\alpha} \rangle} \bar{z}^{-\langle \lambda, \check{\alpha} \rangle}$ for $z \in W_{\mathbb{C}}$. Hence we have

$$L(s,\pi_{\lambda},\mathrm{Ad}) = \Gamma_{\mathbb{R}}(s+1)^l \prod_{\check{\alpha} \in \check{\Sigma}^+} \Gamma_{\mathbb{C}}(s+|\langle \lambda, \check{\alpha} \rangle|),$$

where $\Gamma_{\mathbb{R}}(s) = \pi^{-s/2}\Gamma(s/2)$ and $\Gamma_{\mathbb{C}}(s) = 2(2\pi)^{-s}\Gamma(s)$. By definition, $\epsilon(s, \pi_{\lambda}, \mathrm{Ad}, \psi)$ is a power of $\sqrt{-1}$. This yields the lemma.

Set $\mathfrak{g} = \operatorname{Lie}(G)$. Let θ be a Cartan involution of \mathfrak{g} and let B be a symmetric bilinear form on \mathfrak{g} over \mathbb{R} which satisfies the conditions of Lemma 3.2 of [13]. Then the quadratic form

$$||X||^2 = -B(X, \theta(X))$$

for $X \in \mathfrak{g}$ is positive definite. This norm $\|\cdot\|$ on \mathfrak{g} defines a Lebesgue measure on \mathfrak{g} and hence a Haar measure dG on G via the exponential map. Let \mathbf{T} be an anisotropic maximal torus of \mathbf{G} such that $\mathrm{Lie}(T)$ is θ -invariant. Similarly, we can define a Haar measure dT on T.

Set $\mathfrak{g}_{\mathbb{C}} = \operatorname{Lie}(G) \otimes \mathbb{C}$ and $\mathfrak{t}_{\mathbb{C}} = \operatorname{Lie}(T) \otimes \mathbb{C}$. Let Σ denote the set of roots of $\mathfrak{t}_{\mathbb{C}}$ in $\mathfrak{g}_{\mathbb{C}}$ and Σ^+ the subset of positive roots. We extend B to a symmetric bilinear form on $\mathfrak{g}_{\mathbb{C}}$ over \mathbb{C} . For $\alpha \in \Sigma$, we define $H_{\alpha} \in \mathfrak{t}_{\mathbb{C}}$ by

$$B(H, H_{\alpha}) = \alpha(H)$$

for $H \in \mathfrak{t}_{\mathbb{C}}$. Put

$$\varpi = \prod_{\alpha \in \Sigma^+} H_{\alpha}.$$

Lemma 2.3. Let π_{λ} be a discrete series representation of G with Harish-Chandra parameter λ . Then

$$d(\pi_{\lambda}, dG) = (2\pi)^{-N} \cdot |\varpi(\lambda)| \cdot \operatorname{vol}(T, dT)^{-1}.$$

Proof. Let K be a maximal compact subgroup of G such that Lie(K) is θ -invariant and let dK be the Haar measure on K determined by $\|\cdot\|$. Let dx be the standard measure on G as in [13, §7]. By Lemma 37.2 of [13], we have

$$dx = 2^{\nu/2} \cdot \text{vol}(K, dK)^{-1} \cdot dG,$$

where $\nu = \dim G/K - \operatorname{rank} G/K$. By Corollary of Lemma 23.1 of [14], we have

$$d(\pi_{\lambda}, dx) = c_G^{-1} \cdot |W| \cdot |\varpi(\lambda)|.$$

Here W is the Weyl group of T in G and

$$c_G = 2^{\nu/2} \cdot (2\pi)^N \cdot |W| \cdot \frac{\operatorname{vol}(T, dT)}{\operatorname{vol}(K, dK)}$$

(cf. Lemma 37.3 of [13]). This completes the proof.

Lemma 2.4. Let π be a discrete series representation of G and let $\phi: W_{\mathbb{R}} \to {}^L G$ be the Langlands parameter associated to π . Let π_{an} be the irreducible finite dimensional representation of G_{an} associated to ϕ by the local Langlands correspondence. Then

$$d(\pi) = d(\pi_{an}).$$

Proof. We extend θ to an anti-linear involution of $\mathfrak{g}_{\mathbb{C}}$ over \mathbb{C} . Set $\mathfrak{g}_{\mathrm{an}} = \mathrm{Lie}(G_{\mathrm{an}})$. We may identify $\mathfrak{g}_{\mathrm{an}}$ with $\mathfrak{g}_{\mathbb{C}}^{\theta}$. Then the restrictions of θ and B to $\mathfrak{g}_{\mathrm{an}}$ define a norm $\|\cdot\|_{\mathrm{an}}$ on $\mathfrak{g}_{\mathrm{an}}$. Let dG_{an} be the Haar measure on G_{an} determined by $\|\cdot\|_{\mathrm{an}}$. Then dG and dG_{an} are compatible. By Lemma 2.3, we have

$$d(\pi, dG) = d(\pi_{\rm an}, dG_{\rm an}).$$

By definition, $\mu_{G,\psi}$ and $\mu_{G_{an},\psi}$ are also compatible. This yields the lemma.

By Lemma 2.4, to prove Proposition 2.1, we may assume that **G** is anisotropic. Let π be an irreducible finite dimensional representation of G. By Lemmas 2.2 and 2.3, there exists a constant $c \in \mathbb{R}_{>0}$ which does not depend on π such that

$$d(\pi) = c|\gamma(0, \pi, \mathrm{Ad}, \psi)|.$$

By [27], $[11, \S 7]$, we have

$$\operatorname{vol}(G) = 2^{N} \prod_{i=1}^{l} \frac{2\pi^{m_{i}+1}}{m_{i}!} = (2\pi)^{l+N} \prod_{\check{\alpha} \in \check{\Sigma}^{+}} \langle \rho, \check{\alpha} \rangle^{-1}.$$

Here m_1, \ldots, m_l are the exponents of **G** and ρ is half the sum of positive roots. Note that

$$\begin{split} \sum_{i=1}^l m_i &= N, \\ \prod_{i=1}^l m_i! &= \prod_{\check{\alpha} \in \check{\Sigma}^+} \langle \rho, \check{\alpha} \rangle. \end{split}$$

By Lemma 2.2, we have $\operatorname{vol}(G) = 2^l |\gamma(0, \pi_\rho, \operatorname{Ad}, \psi)|^{-1}$, where π_ρ is the trivial representation of G. Hence we have $c = 2^{-l}$. This completes the proof of Proposition 2.1.

3. Examples: The non-archimedean case

Let F be a non-archimedean local field of characteristic zero. By Lemmas 1.1 and 1.3, we may assume that ψ is of order zero.

3.1. Inner forms of GL(n). We first recall the following result of Silberger and Zink [35], [37].

Theorem 3.1. Let π be a discrete series representation of GL(n, F). Then

$$d(\pi) = \frac{1}{n} \cdot |\gamma(0, \pi, \mathrm{Ad}, \psi)|.$$

In particular, Conjecture 1.4 holds for π .

To be precise, let π be the unique irreducible subrepresentation of an induced representation

$$\sigma |\det|_F^{(e-1)/2} \times \sigma |\det|_F^{(e-3)/2} \times \cdots \times \sigma |\det|_F^{-(e-1)/2}$$

where σ is an irreducible unitary supercuspidal representation of $\mathrm{GL}(m,F)$ with n=em. Using the theory of types, Silberger and Zink showed that $d(\pi)$ is equal to

$$r \cdot \frac{q^{em} - 1}{q^{er} - 1} \cdot q^{e(r-m)/2 + e^2(f + r - m^2)/2} \cdot \frac{1}{n} \prod_{i=1}^{n-1} (q^i - 1) \cdot \text{vol}(GL(n, \mathfrak{o}_F)/\mathfrak{o}_F^{\times})^{-1}$$

(cf. Theorems 6.5 and 6.9 of [3]). Here r is the torsion number of σ and f is the conductor of $\sigma \times \check{\sigma}$. It is easy to check that this quantity coincides with $n^{-1}|\gamma(0,\pi,\mathrm{Ad},\psi)|$. In §4, we will give a new proof of Theorem 3.1 which does not rely on the theory of types.

Let **G** be an inner form of GL(n) over F. Then G = GL(n', D) with n = dn', where D is a division algebra of dimension d^2 over F. Let π be a discrete series representation of G. By Theorem 7.2 of [3], we have

$$d(\pi) = \prod_{\substack{1 \le i \le n \\ i \not\equiv 0 \bmod d}} (q^i - 1)^{-1} \cdot d(\pi^*) \cdot \frac{\operatorname{vol}(\operatorname{GL}(n, \mathfrak{o}_F)/\mathfrak{o}_F^{\times})}{\operatorname{vol}(\operatorname{GL}(n', \mathfrak{o}_D)/\mathfrak{o}_F^{\times})},$$

where π^* is the discrete series representation of GL(n, F) associated to π by the Deligne-Kazhdan-Vignéras correspondence [9]. Since

$$vol(GL(n', \mathfrak{o}_D)) = q^{-(d-1)dn'^2/2} \prod_{i=1}^{n'} (1 - q^{-di}),$$

we obtain

$$d(\pi) = d(\pi^*).$$

3.2. Inner forms of SL(n). Let $\tilde{\mathbf{G}}$ be an inner form of GL(n) over F and let \mathbf{G} be the derived group of $\tilde{\mathbf{G}}$. Then \mathbf{G} is an inner form of SL(n) over F. Let \mathbf{G}_{ad} be the adjoint group of \mathbf{G} . Set $C = \operatorname{cok}(G \to G_{ad})$.

Let $\phi: L_F \to {}^L G$ be an elliptic Langlands parameter. Then there exists an elliptic tempered Langlands parameter $\tilde{\phi}: L_F \to {}^L \tilde{G}$ such that $\phi = \operatorname{pr} \circ \tilde{\phi}$, where $\operatorname{pr}: {}^L \tilde{G} \to {}^L G$ is the projection. Let $\tilde{\pi}$ be the discrete series representation of \tilde{G} associated to $\tilde{\phi}$ by the local Langlands correspondence [16], [17] and let $V_{\tilde{\pi}}$ be the space of $\tilde{\pi}$. Let $\Pi_{\phi}(G)$ denote the set of equivalence classes of irreducible constituents of the restriction of $\tilde{\pi}$ to G. Note that $\Pi_{\phi}(G)$ does not depend on the choice of $\tilde{\phi}$. Put

$$X(\tilde{\pi}) = \{ \omega \in C^D \, | \, \tilde{\pi} \otimes \omega \simeq \tilde{\pi} \},\,$$

where C^D is the Pontrjagin dual of C and ω is regarded as a character of G_{ad} . For $s \in S_{\phi}$, we have

Int
$$s \circ \tilde{\phi} = a_s \cdot \tilde{\phi}$$
,

where a_s is a 1-cocycle of W_F in $Z(\hat{G}_{sc})$. Let ω_s be the character of C determined by a_s . Then the map $s \mapsto \omega_s$ induces an exact sequence

$$1 \longrightarrow \mathcal{Z}_{\phi} \longrightarrow \mathcal{S}_{\phi} \longrightarrow X(\tilde{\pi}) \longrightarrow 1.$$

By Theorem 1.4 of [19], there exists an action of S_{ϕ} on $V_{\tilde{\pi}}$ such that \mathcal{Z}_{ϕ} acts via $\chi_{\mathbf{G}}$ and such that

$$\tilde{\pi} \circ s = s \circ (\tilde{\pi} \otimes \omega_s)$$

for $s \in \mathcal{S}_{\phi}$. Moreover, if we write a decomposition of $V_{\tilde{\pi}}$ as a representation of $\mathcal{S}_{\phi} \times G$ in the form

$$\bigoplus_{\rho\in\Pi(\mathcal{S}_{\phi},\chi_{\mathbf{G}})}\rho\otimes\pi_{\rho},$$

then the map $\rho \mapsto \pi_{\rho}$ defines a bijection between $\Pi(S_{\phi}, \chi_{\mathbf{G}})$ and $\Pi_{\phi}(G)$ (cf. Theorem 1.1 of [19]).

Lemma 3.2. For $\rho \in \Pi(S_{\phi}, \chi_{\mathbf{G}})$, we have

$$d(\pi_{\rho}) = n^2 \cdot \frac{\dim \rho}{|\mathcal{S}_{\phi}|} \cdot d(\tilde{\pi}).$$

Proof. We fix an invariant hermitian inner product (\cdot, \cdot) on $V_{\tilde{\pi}}$. Then (\cdot, \cdot) is \mathcal{S}_{ϕ} -invariant. Let v be an element in the π_{ρ} -isotypic subspace of $V_{\tilde{\pi}}$. Recall that the sequence

$$1 \longrightarrow G/\mu_n(F) \longrightarrow G_{\mathrm{ad}} \longrightarrow C \longrightarrow 1$$

is exact. Here μ_n is the group of n-th roots of unity. Since the pullback of $\omega_{\mathbf{G}_{\mathrm{ad}}}$ to \mathbf{G} is $n\omega_{\mathbf{G}}$ and $|C|^{-1}\sum_{\omega\in C^D}\omega$ is the characteristic function of $G/\mu_n(F)$, we have

$$d(\pi_{\rho})^{-1}(v,v)\overline{(v,v)} = \frac{|\mu_n(F)|}{|n|_F \cdot |C|} \sum_{v \in C^D} \int_{G_{\mathrm{ad}}} ((\tilde{\pi} \otimes \omega)(g)v,v) \overline{(\tilde{\pi}(g)v,v)} \, dg.$$

By the Schur orthogonality relations, we have

$$\int_{G_{\mathrm{ad}}} ((\tilde{\pi} \otimes \omega)(g)v, v) \overline{(\tilde{\pi}(g)v, v)} \, dg = 0$$

unless $\omega \in X(\tilde{\pi})$. Moreover, we have

$$\int_{G_{\mathrm{ad}}} ((\tilde{\pi} \otimes \omega_s)(g)v, v) \overline{(\tilde{\pi}(g)v, v)} \, dg = \int_{G_{\mathrm{ad}}} (\tilde{\pi}(g)sv, sv) \overline{(\tilde{\pi}(g)v, v)} \, dg$$
$$= d(\tilde{\pi})^{-1}(sv, v) \overline{(sv, v)}$$

for $s \in \mathcal{S}_{\phi}$. Thus we obtain

$$d(\pi_{\rho})^{-1}(v,v)\overline{(v,v)} = \frac{|\mu_{n}(F)|}{|n|_{F} \cdot |C| \cdot n} \sum_{s \in \mathcal{S}_{\phi}} d(\tilde{\pi})^{-1}(sv,v)\overline{(sv,v)}$$
$$= \frac{|\mu_{n}(F)|}{|n|_{F} \cdot |C| \cdot n} \cdot \frac{|\mathcal{S}_{\phi}|}{\dim \rho} \cdot d(\tilde{\pi})^{-1}(v,v)\overline{(v,v)}.$$

Note that

$$|n|_F = \frac{|\mathrm{H}^0(F, \mu_n)| \cdot |\mathrm{H}^2(F, \mu_n)|}{|\mathrm{H}^1(F, \mu_n)|} = \frac{|\mu_n(F)| \cdot n}{|C|}.$$

This yields the lemma.

By Theorem 3.1 and Lemma 3.2, we have

$$d(\pi_{\rho}) = n \cdot \frac{\dim \rho}{|\mathcal{S}_{\phi}|} \cdot |\gamma(0, \pi_{\rho}, \mathrm{Ad}, \psi)|$$

for $\rho \in \Pi(\mathcal{S}_{\phi}, \chi_{\mathbf{G}})$.

3.3. Steinberg representations. Let G be a connected reductive algebraic group over F. For simplicity, we assume that the connected center of G is anisotropic. Let π_0 be the Steinberg representation of G. Note that the formal degree of π_0 was computed by Borel [4]. Using the results of Kottwitz [24] and Gross [11], [12], we will verify Conjecture 1.4 for π_0 . In particular, if G is an anisotropic torus, then Conjecture 1.4 holds.

Let $\mu_{G,\text{EP}}$ denote the Euler-Poincaré measure on G and let $f_{\text{EP}} \in C_c^{\infty}(G)$ denote the Euler-Poincaré function with respect to $\mu_{G,\text{EP}}$. By Theorems 2 and 2' of [24] and the Plancherel formula (cf. Théorème VIII.1.1 of [36]), we have $f_{\text{EP}}(1) = 1$ and

$$|d(\pi_0, \mu_{G,EP})| = 1.$$

By Theorem 5.5 of [11], we have

$$e(\mathbf{G}) \cdot |\mathrm{H}^1(F, \mathbf{G})| \cdot L(M) \cdot \mu_{G,\mathrm{EP}} = L(M^{\vee}(1)) \cdot \mu_{G,\psi}.$$

Here $e(\mathbf{G}) = \pm 1$ is the Kottwitz sign, M is the motive of \mathbf{G} as in [11], and $M^{\vee}(1) = M^{\vee} \otimes \mathbb{Q}(1)$ is the Tate twist of the dual motive of M. Hence we have

$$d(\pi_0) = |\mathbf{H}^1(F, \mathbf{G})|^{-1} \cdot \frac{|L(M^{\vee}(1))|}{|L(M)|}.$$

Let $\phi_0: L_F \to {}^L G$ be the Langlands parameter associated to π_0 . Then ϕ_0 is trivial on W_F and the restriction of ϕ_0 to $\mathrm{SL}(2,\mathbb{C})$ corresponds to the regular unipotent orbit in \hat{G} . Hence the centralizer of $\phi_0(L_F)$ in \hat{G} is $Z(\hat{G})^\Gamma$ and $|\mathcal{S}_{\phi_0}^{\natural}| = |\mathrm{H}^1(F,\mathbf{G})|$.

Lemma 3.3.

$$|\gamma(0, \pi_0, \mathrm{Ad}, \psi)| = \frac{|L(M^{\vee}(1))|}{|L(M)|}.$$

Proof. By Corollary 6.5 of [12], we have $L(M^{\vee}(1)) = L(1, \pi_0, Ad)$. Thus it suffices to show that

$$|L(M)|^{-1} = |\epsilon(0, \pi_0, \mathrm{Ad}, \psi)| \cdot |L(0, \pi_0, \mathrm{Ad})|^{-1}.$$

Recall that $M = \bigoplus_{d \geq 1} V_d(1-d)$, where V_d is the Artin motive as in [11, §1]. By Proposition 6.4 of [12], we have

$$L(s, \pi_0, \mathrm{Ad})^{-1} = \prod_{d \ge 1} \det(1 - q^{-s - d + 1} \cdot \mathrm{Frob}; V_d^{I_F}),$$

where I_F is the inertia group of F. Since V_d is self-dual, we have

$$|L(M)|^{-1} = \prod_{d \ge 1} |\det(1 - q^{d-1} \cdot \operatorname{Frob}; V_d^{I_F})|$$

$$= \prod_{d > 1} q^{(d-1)\dim V_d^{I_F}} \cdot |L(0, \pi_0, \operatorname{Ad})|^{-1}.$$

Set $\hat{\mathfrak{g}}=\operatorname{Lie}(\hat{G})$. Let (ρ,N) be the representation of W_F' on $\hat{\mathfrak{g}}$ associated to $\operatorname{Ad}\circ\phi_0$. We can regard N as a regular nilpotent element in $\hat{\mathfrak{g}}$. By definition, we have

$$|\epsilon(s, \pi_0, \mathrm{Ad}, \psi)| = q^{-a(\hat{\mathfrak{g}})(s-1/2)}$$

where $a(\hat{\mathfrak{g}}) = \dim \hat{\mathfrak{g}}^{I_F} - \dim \hat{\mathfrak{g}}^{I_F}_N$. By Proposition 5.2 of [12], we have $\hat{\mathfrak{g}} = \bigoplus_{d \geq 1} V_d \otimes \rho_{2d-2}$ as a representation of $\Gamma \times \mathrm{SL}(2,\mathbb{C})$. Here ρ_k is the irreducible representation of $\mathrm{SL}(2,\mathbb{C})$ of dimension k+1. Hence we have

$$a(\hat{\mathfrak{g}}) = 2\sum_{d\geq 1} (d-1)\dim V_d^{I_F}.$$

This completes the proof.

Thus we obtain

$$d(\pi_0) = \frac{1}{|\mathcal{S}_{\phi_0}^{\natural}|} \cdot |\gamma(0, \pi_0, \mathrm{Ad}, \psi)|.$$

3.4. Unipotent discrete series representations. Let G be a connected adjoint split exceptional group of rank l over F. Let $\phi: L_F \to {}^L G$ be an elliptic Langlands parameter. We assume that ϕ is trivial on the inertia group I_F of F. Put

$$t = \phi \left(\operatorname{Frob} \times \begin{pmatrix} q^{-1/2} & 0 \\ 0 & q^{1/2} \end{pmatrix} \right).$$

We may assume that $t \in \mathcal{T}$. Let $\check{\Sigma}$ denote the set of roots of \mathcal{T} in \hat{G} . For $i \in \mathbb{Z}$, put

$$\check{\Sigma}(i) = \{\check{\alpha} \in \check{\Sigma} \,|\, \check{\alpha}(t) = q^{-i/2}\}.$$

For each $\rho \in \Pi(\mathcal{S}_{\phi}, \chi_{\mathbf{G}})$, Reeder defined a discrete series representation π_{ρ} of G and showed that

$$d(\pi_{\rho}) = \frac{q^{N} \dim \rho}{|\mathcal{S}_{\phi}^{\natural}|} \cdot \frac{\prod_{\check{\alpha} \in \check{\Sigma} - \check{\Sigma}(0)} (\check{\alpha}(t) - 1)}{\prod_{\check{\alpha} \in \check{\Sigma} - \check{\Sigma}(2)} (q\check{\alpha}(t) - 1)} \cdot \text{vol}(I)^{-1}$$

(cf. [29, (0.3)]). Here N is the number of positive roots and I is an Iwahori subgroup of G. Note that $vol(I) = q^{-N}(1 - q^{-1})^l$.

Lemma 3.4.

$$|\gamma(0, \pi_{\rho}, \operatorname{Ad}, \psi)| = q^{2N} (1 - q^{-1})^{-l} \cdot \frac{\prod_{\check{\alpha} \in \check{\Sigma} - \check{\Sigma}(0)} |\check{\alpha}(t) - 1|}{\prod_{\check{\alpha} \in \check{\Sigma} - \check{\Sigma}(2)} |q\check{\alpha}(t) - 1|}.$$

Proof. It is easy to check that

$$\gamma(s, \pi_{\rho}, \mathrm{Ad}, \psi) = \left(\frac{1 - q^{-s}}{1 - q^{-1+s}}\right)^{l} \prod_{\check{\alpha} \in \check{\Sigma}} \frac{1 - \check{\alpha}(t)^{-1} q^{-s}}{1 - \check{\alpha}(t)^{-1} q^{-1+s}}.$$

By [29, (7.2a)], we have $|\check{\Sigma}(2)| = |\check{\Sigma}(0)| + l$. This yields the lemma.

Thus we obtain

$$d(\pi_{\rho}) = \frac{\dim \rho}{|\mathcal{S}_{\phi}^{\natural}|} \cdot |\gamma(0, \pi_{\rho}, \mathrm{Ad}, \psi)|$$

for $\rho \in \Pi(\mathcal{S}_{\phi}, \chi_{\mathbf{G}})$.

3.5. Depth-zero supercuspidal representations. Let G be a connected reductive algebraic group of rank l over F. We assume that G^* is unramified and G is a pure inner form of G^* . For simplicity, we assume that the connected center of G is anisotropic. Let $\phi: L_F \to {}^L G$ be an elliptic Langlands parameter. We assume that ϕ is trivial on I_F^+ and that the centralizer of $\phi(I_F)$ in \hat{G} is \mathcal{T} . Here I_F is the inertia group of F and I_F^+ is the wild inertia subgroup of I_F . Note that ϕ is trivial on $\mathrm{SL}(2,\mathbb{C})$. Put $\sigma = \phi(\mathrm{Frob})$. Then σ normalizes \mathcal{T} and $\mathcal{S}_{\phi}^{\natural}$ is isomorphic to \mathcal{T}^{σ} , where \mathcal{T}^{σ} is the centralizer of σ in \mathcal{T} .

Let **T** be an unramified maximal torus of **G** determined by σ . Then **T** is anisotropic. Let \mathbf{T}_0 be an unramified maximal torus of **G** which is maximally split. We extend **T** and \mathbf{T}_0 to smooth group schemes over \mathfrak{o}_F . For each $\rho \in \Pi(\mathcal{S}_{\phi}, \chi_{\mathbf{G}})$, DeBacker and Reeder defined an irreducible supercuspidal representation π_{ρ} of G and showed that

$$d(\pi_{\rho}) = q^{l/2} |\mathbf{T}(\mathbb{F}_q)|^{-1} \cdot q^{-l/2} |\mathbf{T}_0(\mathbb{F}_q)| \cdot \operatorname{vol}(I)^{-1}$$

(cf. [8, §5.3]). Here I is an Iwahori subgroup of G. By [11, (4.11)], we have $\operatorname{vol}(I)=q^{-l-N}|\mathbf{T}_0(\mathbb{F}_q)|$, where $N=(\dim \mathbf{G}-l)/2$. Hence we have

$$d(\pi_{\rho}) = q^{l+N} |\mathbf{T}(\mathbb{F}_q)|^{-1}.$$

Lemma 3.5.

$$|\gamma(0, \pi_{\rho}, \mathrm{Ad}, \psi)| = q^{l+N} |\mathbf{T}(\mathbb{F}_q)|^{-1} \cdot |\mathcal{T}^{\sigma}|.$$

Proof. Set $\hat{\mathfrak{g}} = \operatorname{Lie}(\hat{G})$. Then $\hat{\mathfrak{g}}^{I_F} = \operatorname{Lie}(\mathcal{T})$. Here the action of W_F' on $\hat{\mathfrak{g}}$ is associated to $\operatorname{Ad} \circ \phi$. By definition, we have

$$L(s, \pi_{\rho}, \mathrm{Ad}) = \det(1 - q^{-s} \cdot \sigma; \mathrm{Lie}(\mathcal{T}))^{-1}.$$

Hence we have

$$L(1, \pi_{\rho}, \operatorname{Ad}) = q^{l} |\mathbf{T}(\mathbb{F}_{q})|^{-1}.$$

Since \mathcal{T}^{σ} is isomorphic to $\{x \in X_*(\mathcal{T}) \otimes \mathbb{C} \mid (1-\sigma)x \in X_*(\mathcal{T})\}/X_*(\mathcal{T})$, we have

$$|L(0, \pi_o, \operatorname{Ad})|^{-1} = |\det(1 - \sigma; \operatorname{Lie}(\mathcal{T}))| = |\mathcal{T}^{\sigma}|.$$

By definition, we have

$$|\epsilon(s, \pi_{\rho}, \operatorname{Ad}, \psi)| = q^{-a(\hat{\mathfrak{g}})(s-1/2)},$$

where $a(\hat{\mathfrak{g}}) = \dim \hat{\mathfrak{g}}/\hat{\mathfrak{g}}^{I_F} = 2N$. This completes the proof.

Thus we obtain

$$d(\pi_{\rho}) = \frac{1}{|\mathcal{S}_{\phi}^{\natural}|} \cdot |\gamma(0, \pi_{\rho}, \mathrm{Ad}, \psi)|$$

for $\rho \in \Pi(\mathcal{S}_{\phi}, \chi_{\mathbf{G}})$.

4. Proof of Theorem 3.1

In this section, we give a new proof of the result of Silberger and Zink [35], [37]. Let π be a discrete series representation of $\mathrm{GL}(n,F)$ and let V_{π} be the space of π . We fix an invariant hermitian inner product (\cdot,\cdot) on V_{π} and equip $V_{\pi}\otimes V_{\pi}$ with the invariant hermitian inner product such that $(u\otimes v,u'\otimes v')=(u,u')(v,v')$.

Let $G^{\sharp} = \operatorname{GL}(2n, F)$. Let $P^{\sharp} = M^{\sharp}N^{\sharp}$ be a parabolic subgroup of G^{\sharp} given by

$$\begin{split} M^{\sharp} &= \left\{ \left. \begin{pmatrix} a & 0 \\ 0 & a' \end{pmatrix} \, \middle| \, a, a' \in \mathrm{GL}(n, F) \right\}, \\ N^{\sharp} &= \left\{ \left. \begin{pmatrix} \mathbf{1}_n & x \\ 0 & \mathbf{1}_n \end{pmatrix} \, \middle| \, x \in \mathrm{Mat}_{n \times n}(F) \right\}. \end{split}$$

We consider an induced representation

$$I(s, \pi \otimes \pi) = \operatorname{Ind}_{P^{\sharp}}^{G^{\sharp}}(\pi | \det|_{F}^{s/2} \otimes \pi | \det|_{F}^{-s/2})$$

for $s \in \mathbb{C}$. Put

$$w = \begin{pmatrix} 0 & \mathbf{1}_n \\ -\mathbf{1}_n & 0 \end{pmatrix} \in G^{\sharp}.$$

For $\phi \in I(s, \pi \otimes \pi)$ and $g \in G^{\sharp}$, the integral

$$M(s, w, \pi \otimes \pi)\phi(g) = \int_{\operatorname{Mat}_{n \times n}(F)} \phi\left(w^{-1}\begin{pmatrix} \mathbf{1}_n & x \\ 0 & \mathbf{1}_n \end{pmatrix}g\right) dx$$

is absolutely convergent for Re(s) > 0, has a meromorphic continuation to the whole s-plane, and defines an intertwining operator

$$M(s, w, \pi \otimes \pi) : I(s, \pi \otimes \pi) \longrightarrow I(-s, w(\pi \otimes \pi)).$$

Here dx is the Haar measure on $\operatorname{Mat}_{n\times n}(F)$ with $\operatorname{vol}(\operatorname{Mat}_{n\times n}(\mathfrak{o}_F), dx) = 1$.

Lemma 4.1. There exists a constant $\alpha \in \mathbb{C}$ with $|\alpha| = 1$ such that

$$(\operatorname{Res}_{s=0} M(s, w, \pi \otimes \pi) \phi(1), u' \otimes v')$$

= $\alpha (\log q)^{-1} (1 - q^{-1}) \gamma(0, \pi, \operatorname{Ad}, \psi)^{-1} (\phi(1), v' \otimes u')$

for $\phi \in I(s, \pi \otimes \pi)$ and $u', v' \in V_{\pi}$. Here ψ is a non-trivial additive character of F of order zero.

Proof. Set $I(\pi \otimes \pi) = I(0, \pi \otimes \pi)$. Let sw : $V_{\pi} \otimes V_{\pi} \to V_{\pi} \otimes V_{\pi}$ be an isomorphism given by sw $(u \otimes v) = v \otimes u$. Then sw induces an isomorphism sw : $I(w(\pi \otimes \pi)) \to I(\pi \otimes \pi)$. We define a normalized intertwining operator

$$N(w, \pi \otimes \pi) : I(\pi \otimes \pi) \longrightarrow I(\pi \otimes \pi)$$

by

$$N(w, \pi \otimes \pi) = \operatorname{sw} \lim_{s \to 0} \gamma(s, \pi \times \check{\pi}, \psi) M(s, w, \pi \otimes \pi).$$

By Theorem 7.9 of [32], $N(w, \pi \otimes \pi)$ is unitary. Since $I(\pi \otimes \pi)$ is irreducible, there exists a constant $\alpha \in \mathbb{C}$ with $|\alpha| = 1$ such that

$$N(w, \pi \otimes \pi) = \alpha \operatorname{id},$$

296

i.e.,

sw Res_{s=0}
$$M(s, w, \pi \otimes \pi)\phi(g) = \alpha \operatorname{Res}_{s=0} \gamma(s, \pi \times \check{\pi}, \psi)^{-1}\phi(g)$$

for $\phi \in I(s, \pi \otimes \pi)$ and $g \in G^{\sharp}$.

Let

$$\bar{N}^{\sharp} = \left\{ \begin{pmatrix} \mathbf{1}_n & 0 \\ x & \mathbf{1}_n \end{pmatrix} \middle| x \in \mathrm{Mat}_{n \times n}(F) \right\}$$

and $L = \operatorname{Mat}_{n \times n}(\mathfrak{o}_F)$. Let $\mathbf{1}_L$ denote the characteristic function of L.

Lemma 4.2. Let $u, v \in V_{\pi}$. We define $\phi \in I(s, \pi \otimes \pi)$ which has compact support in $P^{\sharp} \bar{N}^{\sharp}$ modulo P^{\sharp} by

$$\phi\left(\begin{pmatrix} \mathbf{1}_n & 0 \\ x & \mathbf{1}_n \end{pmatrix}\right) = \begin{cases} u \otimes v & \text{if } x \in L, \\ 0 & \text{if } x \notin L. \end{cases}$$

Then

$$(\mathop{\rm Res}_{s=0} M(s, w, \pi \otimes \pi) \phi(1), u' \otimes v')$$

= $(n \log q)^{-1} (1 - q^{-1}) d(\pi)^{-1} (\phi(1), v' \otimes u')$

for $u', v' \in V_{\pi}$.

Proof. The lemma follows from Proposition 5.1 of [34]. We include the proof for the sake of completeness.

As in [33], [34], we have

$$(M(s, w, \pi \otimes \pi)\phi(1), u' \otimes v')$$

$$= \int_{GL(n,F)} \mathbf{1}_{L}(x^{-1}) |\det(x)|_{F}^{-s-n}(\pi(x^{-1})u \otimes \pi(x)v, u' \otimes v') dx$$

$$= \int_{GL(n,F)} \mathbf{1}_{L}(x) |\det(x)|_{F}^{s}(\pi(x)u, u') \overline{(\pi(x)v', v)} d^{\times}x$$

$$= \int_{GL(n,F)/F^{\times}} \varphi_{s}(x) (\pi(x)u, u') \overline{(\pi(x)v', v)} d^{\times}x,$$

where $d^{\times}x = |\det(x)|_F^{-n} dx$ and

$$\varphi_s(x) = |\det(x)|_F^s \int_{F^\times} \mathbf{1}_L(zx) |z|_F^{ns} d^\times z.$$

For $x = (x_{ij}) \in GL(n, F)$, we have

$$\int_{F^{\times}} \mathbf{1}_{L}(zx) |z|_{F}^{ns} d^{\times} z = \int_{\mathfrak{p}_{F}^{-m}} |z|_{F}^{ns} d^{\times} z = q^{mns} (1 - q^{-ns})^{-1} (1 - q^{-1}),$$

where $m = \min(\operatorname{ord}_F(x_{ij}))$. Note that this integral is absolutely convergent for $\operatorname{Re}(s) > 0$. Hence we have

$$(\operatorname{Res}_{s=0} M(s, w, \pi \otimes \pi) \phi(1), u' \otimes v')$$

$$= (n \log q)^{-1} (1 - q^{-1}) \int_{\operatorname{GL}(n, F)/F^{\times}} (\pi(x)u, u') \overline{(\pi(x)v', v)} d^{\times} x$$

$$= (n \log q)^{-1} (1 - q^{-1}) d(\pi)^{-1} (u, v') (v, u').$$

This calculation is justified since

$$\varphi_s(x) \le (1 - q^{-ns})^{-1}(1 - q^{-1})$$

for $s \in \mathbb{R}_{>0}$.

By Lemmas 4.1 and 4.2, we have $d(\pi) = \alpha^{-1} n^{-1} \gamma(0, \pi, \mathrm{Ad}, \psi)$. This completes the proof of Theorem 3.1.

5. Twisted characters

Let F be a non-archimedean local field of characteristic zero and let ψ be a non-trivial additive character of F of order zero. Let $\mathbf{G} = \operatorname{Res}_{E/F} \operatorname{GL}(n)$, where E is a quadratic extension of F and n is odd. Let σ be the non-trivial automorphism of E over F and let $\omega_{E/F}$ be the quadratic character of F^{\times} associated to E/F by class field theory. Put $\theta(g) = \operatorname{Ad}(J_n)(\sigma(^tg^{-1}))$ for $g \in \mathbf{G}$, where

$$J_n = \begin{pmatrix} 0 & \cdots & 0 & 1 \\ 0 & \cdots & -1 & 0 \\ \vdots & \ddots & \vdots & \vdots \\ (-1)^{n-1} & \cdots & 0 & 0 \end{pmatrix} \in GL(n)$$

and σ is regarded as an automorphism of **G** over F.

Let π be a discrete series representation of G such that $\pi \simeq \pi \circ \theta$. We fix an isomorphism $\pi(\theta) : \pi \to \pi \circ \theta$ such that $\pi(\theta)^2 = \text{id}$ and we define a distribution $J^{\theta}(\pi)$ by

$$J^{\theta}(\pi)(f) = J^{\theta}(\pi, f) = \operatorname{trace}(\pi(f)\pi(\theta))$$

for $f \in C_c^{\infty}(G)$. By Theorem 1 of [5], $J^{\theta}(\pi)$ is a locally integrable function on G which is locally constant on $G_{\theta\text{-reg}}$. Here $G_{\theta\text{-reg}}$ is the set of θ -regular and θ -semisimple elements in G. Let G_{θ} denote the identity component of $\{g \in G \mid \theta(g) = g\}$ and \mathfrak{g}_{θ} the Lie algebra of G_{θ} . By Theorem 3 of [5], we have the expansion

(5.1)
$$J^{\theta}(\pi, \exp(X)) = \sum_{\mathcal{O}} c_{\mathcal{O}, \theta}(\pi) \hat{\mu}_{\mathcal{O}}(X)$$

for $X \in \mathfrak{g}_{\theta}$ sufficiently near zero, where \mathcal{O} runs over nilpotent G_{θ} -orbits in \mathfrak{g}_{θ} and where $\hat{\mu}_{\mathcal{O}}$ is the Fourier transform of the invariant measure $\mu_{\mathcal{O}}$ on \mathcal{O} .

Theorem 5.1. Let π be a discrete series representation of G such that $\pi \simeq \pi \circ \theta$ and such that $L(s,\pi,r)$ has a pole at s=0, where r is the Asai representation of LG . Then there exists a constant $c \in \mathbb{R}_{>0}$ which does not depend on π such that

$$|c_{0,\theta}(\pi)| = c|\gamma(0,\pi,r',\psi)|,$$

where $r' = r \otimes \omega_{E/F}$.

Remark 5.2. By the result of Henniart [18], we have

$$L_{LS}(s, \pi, r) = L(s, \pi, r),$$

$$\gamma_{LS}(s, \pi, r', \psi) = \alpha \gamma(s, \pi, r', \psi),$$

where the subscript LS indicates local factors defined by the Langlands-Shahidi method and $\alpha \in \mathbb{C}$ is a root of unity.

6. Twisted orbital integrals

Let F be a non-archimedean local field of characteristic zero. Let \mathbf{G} be a connected reductive algebraic group over F and let θ be a quasi-semisimple automorphism of \mathbf{G} over F. Let \mathbf{Z} be the center of \mathbf{G} . For $\gamma \in G$ and $f \in C_c^{\infty}(G/(1-\theta)Z)$, put

$$J^{\theta}(\gamma, f) = \int_{ZG_{\gamma\theta} \backslash G} f(g^{-1}\gamma\theta(g)) \, dg.$$

Here $G_{\gamma\theta}$ is the identity component of $\{g \in G \mid g^{-1}\gamma\theta(g) = \gamma\}$. By [28] and Lemma 2.1 of [1], this integral is absolutely convergent. By Proposition 7.1 of [33], we have the expansion

(6.1)
$$J^{\theta}(\exp(X), f) = \sum_{u} \Gamma_{u,\theta}(X) J^{\theta}(u, f)$$

for θ -regular and θ -semisimple elements X in \mathfrak{g}_{θ} sufficiently near zero. Here u runs over representatives for unipotent orbits in G_{θ} .

Let **G** and θ be as in §5. By [6], $J^{\theta}(\gamma, f)$ is absolutely convergent and (6.1) holds even if f is a Schwartz function.

7. Proof of Theorem 5.1

Throughout this section, we ignore the normalization of measures since it does not affect the proof. Let \mathbf{G} and θ be as in §5. Let π be a discrete series representation of G such that $\pi \simeq \pi \circ \theta$ and such that $L(s,\pi,r)$ has a pole at s=0, where r is the Asai representation of LG . Let V_{π} be the space of π . We fix an invariant hermitian inner product (\cdot,\cdot) on V_{π} and an isomorphism $\pi(\theta):V_{\pi}\to V_{\pi}$ such that $\pi(\theta)\pi(g)=\pi(\theta(g))\pi(\theta)$ for $g\in G$ and such that $\pi(\theta)^2=\mathrm{id}$. Then (\cdot,\cdot) is $\pi(\theta)$ -invariant.

Ĺet

$$G^{\sharp} = \mathrm{U}(2n, F) = \{ g \in \mathrm{GL}(2n, E) \mid gQ_n\sigma({}^tg) = Q_n \},$$

where

$$Q_n = \begin{pmatrix} 0 & J_n \\ -J_n & 0 \end{pmatrix}.$$

Let $P^{\sharp} = M^{\sharp}N^{\sharp}$ be a parabolic subgroup of G^{\sharp} given by

$$M^{\sharp} = \left\{ \begin{pmatrix} a & 0 \\ 0 & \theta(a) \end{pmatrix} \middle| a \in GL(n, E) \right\},$$
$$N^{\sharp} = \left\{ \begin{pmatrix} \mathbf{1}_n & x \\ 0 & \mathbf{1}_n \end{pmatrix} \middle| x \in X \right\},$$

where $X = \{x \in \operatorname{Mat}_{n \times n}(E) \mid \operatorname{Ad}(J_n)(\sigma(^t x)) = x\}$. As in §4, we consider an induced representation

$$I(s,\pi) = \operatorname{Ind}_{P^{\sharp}}^{G^{\sharp}}(\pi|\det|_{E}^{s/2})$$

for $s \in \mathbb{C}$. Put

$$w = \begin{pmatrix} 0 & \mathbf{1}_n \\ -\mathbf{1}_n & 0 \end{pmatrix} \in G^{\sharp}.$$

For $\phi \in I(s,\pi)$ and $g \in G^{\sharp}$, the integral

$$M(s, w, \pi)\phi(g) = \int_X \phi\left(w^{-1}\begin{pmatrix} \mathbf{1}_n & x \\ 0 & \mathbf{1}_n \end{pmatrix}g\right) dx$$

is absolutely convergent for Re(s) > 0, has a meromorphic continuation to the whole s-plane, and defines an intertwining operator

$$M(s, w, \pi) : I(s, \pi) \longrightarrow I(-s, w(\pi)).$$

Lemma 7.1. There exists a constant $\alpha \in \mathbb{C}$ with $|\alpha| = 1$ such that

$$(\mathop{\rm Res}_{s=0} M(s,w,\pi)\phi(1),v') = \alpha \mathop{\rm Res}_{s=0} \gamma(s,\pi,r,\psi)^{-1}(\phi(1),\pi(\theta)v')$$

for $\phi \in I(s,\pi)$ and $v' \in V_{\pi}$.

Proof. We remark that $I(0,\pi)$ is irreducible since $L(s,\pi,r)$ has a pole at s=0. As in the proof of Lemma 4.1, the lemma follows from the result of Shahidi [32].

Let

$$\bar{N}^{\sharp} = \left\{ \begin{pmatrix} \mathbf{1}_n & 0 \\ x & \mathbf{1}_n \end{pmatrix} \middle| x \in X \right\}$$

and let $L = X \cap \operatorname{Mat}_{n \times n}(\mathfrak{o}_E)$. Let $\mathbf{1}_L$ denote the characteristic function of L.

Lemma 7.2. Let $v, v' \in V_{\pi}$. Let f be a matrix coefficient of π given by $f(g) = (\pi(g)v, v')$ for $g \in G$. We define $\phi \in I(s, \pi)$ which has compact support in $P^{\sharp}\bar{N}^{\sharp}$ modulo P^{\sharp} by

$$\phi\left(\begin{pmatrix} \mathbf{1}_n & 0\\ x & \mathbf{1}_n \end{pmatrix}\right) = \begin{cases} v & \text{if } x \in L,\\ 0 & \text{if } x \notin L. \end{cases}$$

Then there exists a constant $c \in \mathbb{R}_{>0}$ which does not depend on π such that

$$(\operatorname{Res}_{s=0}^{s=0} M(s, w, \pi)\phi(1), v') = cJ^{\theta}(1, f).$$

Proof. The lemma follows from the result of Goldberg [10]. We include the proof for the sake of completeness.

We fix $\delta \in F^{\times} - N_{E/F}(E^{\times})$. Set $X' = \{x \in X \mid \det(x) \neq 0\}$. Then G acts on X' by $x \mapsto g^{-1}x\theta(g)$. Let $G \setminus X'$ denote the set of G-orbits in X'. Note that $\{1, \delta\}$ is a set of representatives for $G \setminus X'$. We define a G-invariant measure $d^{\times}x$ on X' by $d^{\times}x = |\det(x)|_E^{-n/2}dx$.

As in $[10, \S 2]$, we have

$$\begin{split} &(M(s,w,\pi)\phi(1),v')\\ &= \int_{X'} \mathbf{1}_L(x^{-1})|\det(x)|_E^{-s/2-n/2}(\pi(x^{-1})v,v')\,dx\\ &= \int_{X'} \mathbf{1}_L(x)|\det(x)|_E^{s/2}f(x)\,d^{\times}x\\ &= \sum_{\gamma \in G\backslash X'} \int_{G_{\gamma\theta}\backslash G} \mathbf{1}_L(g^{-1}\gamma\theta(g))|\det(g^{-1}\gamma\theta(g))|_E^{s/2}f(g^{-1}\gamma\theta(g))\,dg\\ &= \sum_{\gamma \in G\backslash X'} \int_{ZG_{\gamma\theta}\backslash G} \varphi_s(g^{-1}\gamma\theta(g))f(g^{-1}\gamma\theta(g))\,dg, \end{split}$$

where

$$\varphi_s(x) = |\det(x)|_E^{s/2} \int_{E^{\times}} \mathbf{1}_L(z\sigma(z)x)|z|_E^{ns} d^{\times} z.$$

For $x = (x_{ij}) \in X'$, we have

$$\int_{E^{\times}} \mathbf{1}_L(z\sigma(z)x)|z|_E^{ns} d^{\times}z = q_E^{[m/2]ns} (1 - q_E^{-ns})^{-1} (1 - q_E^{-1}),$$

where $m = \min(\operatorname{ord}_E(x_{ij}))$. Note that this integral is absolutely convergent for $\operatorname{Re}(s) > 0$. Hence we have

$$(\operatorname{Res}_{s=0} M(s, w, \pi)\phi(1), v') = (n \log q_E)^{-1} (1 - q_E^{-1}) \sum_{\gamma \in G \setminus X'} J^{\theta}(\gamma, f).$$

This calculation is justified since

$$\varphi_s(x) \le (1 - q_E^{-ns})^{-1} (1 - q_E^{-1})$$

for $s \in \mathbb{R}_{>0}$. As in [10, §2], the central character of π is trivial on F^{\times} . Hence we have

$$J^{\theta}(\delta, f) = J^{\theta}(1, f).$$

This completes the proof.

Lemma 7.3. Let $v, v' \in V_{\pi}$. Let f be a matrix coefficient of π given by $f(g) = (\pi(g)v, v')$ for $g \in G$. Then

$$J^{\theta}(\gamma, f) = d(\pi)^{-1}(v, \pi(\theta)v')J^{\theta}(\pi, \gamma)$$

for θ -regular and θ -elliptic elements γ in G.

Proof. We proceed as in the proof of Proposition 5 of [7]. Let γ be a θ -regular and θ -elliptic element in G. Let $\varphi \in C_c^{\infty}(G)$. We assume that the support of φ is contained in the set of θ -regular and θ -elliptic elements in G. By the Schur orthogonality relations, we have

$$\int_{Z\backslash G} (\pi(g^{-1})\pi(\varphi)\pi(\theta(g))v,v')\,dg = d(\pi)^{-1}(v,\pi(\theta)v')J^{\theta}(\pi,\varphi).$$

The left-hand side is equal to

$$\int_{Z\backslash G} \int_G \varphi(h) f(g^{-1}h\theta(g)) \, dh \, dg = \int_G \varphi(h) \int_{Z\backslash G} f(g^{-1}h\theta(g)) \, dg \, dh.$$

Let φ tend to the Dirac measure at γ . This yields the lemma.

Let $v, v' \in V_{\pi}$. Let f be a matrix coefficient of π given by $f(g) = (\pi(g)v, v')$ for $g \in G$. By (5.1), (6.1), and Lemma 7.3, we have

$$(v, \pi(\theta)v') \sum_{\mathcal{O}} c_{\mathcal{O},\theta}(\pi)\hat{\mu}_{\mathcal{O}}(X) = d(\pi) \sum_{u} \Gamma_{u,\theta}(X)J^{\theta}(u,f)$$

for θ -regular and θ -elliptic elements X in \mathfrak{g}_{θ} sufficiently near zero. For $t \in F^{\times}$, we have

$$\hat{\mu}_{\mathcal{O}}(t^{2}X) = |t|_{F}^{-\dim \mathcal{O}} \hat{\mu}_{\mathcal{O}}(X),$$

$$\Gamma_{u,\theta}(t^{2}X) = |t|_{F}^{-\dim \operatorname{Ad}(G_{\theta})(u)} \Gamma_{u,\theta}(X).$$

Note that $\hat{\mu}_0 = \Gamma_{1,\theta} = 1$ if measures are suitably normalized. By homogeneity, we obtain

$$(v, \pi(\theta)v')c_{0,\theta}(\pi) = d(\pi)J^{\theta}(1, f).$$

By Theorem 3.1, $d(\pi)$ is equal to

$$|\lim_{s \to 0} s^{-1} \gamma(s, \pi \times \check{\pi}, \psi)| = |\lim_{s \to 0} s^{-1} \gamma(s, \pi, r, \psi)| \cdot |\gamma(0, \pi, r', \psi)|$$

up to a constant which does not depend on π . Thus Theorem 5.1 follows from Lemmas 7.1 and 7.2.

Remark 7.4. Let $\mathbf{G} = \mathrm{GL}(n)$, where n is even. Put $\theta(g) = \mathrm{Ad}(J_n)({}^tg^{-1})$ for $g \in \mathbf{G}$. Let r (resp. r') be the exterior (resp. symmetric) square representation of LG . Using the result of Shahidi [33], one can prove an analogue of Theorem 5.1 for an irreducible unitary supercuspidal representation π of G such that $\pi \simeq \pi \circ \theta$ and such that $\pi = \pi \circ \theta$ and such that $\pi = \pi \circ \theta$ are supercuspidal, one has to show that twisted orbital integrals of Schwartz functions are absolutely convergent.

8. Twisted endoscopy

Let F be a non-archimedean local field of characteristic zero. Let \mathbf{G} and θ be as in §5. We consider a set of endoscopic data $(\mathbf{H}, {}^LH, 1, \xi)$ for $(\mathbf{G}, \theta, 1)$ defined as follows. Recall that $\mathbf{G} = \operatorname{Res}_{E/F} \operatorname{GL}(n)$, where E is a quadratic extension of F and where n is odd. We have ${}^LG = \hat{G} \rtimes W_F$, where $\hat{G} = \operatorname{GL}(n, \mathbb{C}) \rtimes \operatorname{GL}(n, \mathbb{C})$ and the action of $w \in W_F$ is given by

$$(g_1, g_2) \longmapsto \begin{cases} (g_1, g_2) & \text{if } w \in W_E, \\ (g_2, g_1) & \text{if } w \notin W_E. \end{cases}$$

Let $\mathbf{H} = \mathrm{U}(n)$ be the quasi-split unitary group in n variables. Then $^L H = \hat{H} \rtimes W_F$, where $\hat{H} = \mathrm{GL}(n, \mathbb{C})$ and the action of $w \in W_F$ is given by

$$h \longmapsto \begin{cases} h & \text{if } w \in W_E, \\ \operatorname{Ad}(J_n)(^t h^{-1}) & \text{if } w \notin W_E. \end{cases}$$

We define $\xi: {}^L H \to {}^L G$ by $\xi(h \times w) = (h, \operatorname{Ad}(J_n)({}^t h^{-1})) \times w$.

Lemma 8.1. Let r be the Asai representation of LG on $\mathbb{C}^n \otimes \mathbb{C}^n$. Then the adjoint representation Ad of LH on $\text{Lie}(\hat{H})$ is isomorphic to $r' \circ \xi$, where $r' = r \otimes \omega_{E/F}$.

Proof. Recall that r is defined by

$$r((g_1, g_2) \times 1)(x \otimes y) = g_1 x \otimes g_2 y,$$

$$r((1, 1) \times w)(x \otimes y) = \begin{cases} x \otimes y & \text{if } w \in W_E, \\ y \otimes x & \text{if } w \notin W_E. \end{cases}$$

It is easy to check that

$$\operatorname{Ad}(h \times 1)(X) = \operatorname{Ad}(h)(X),$$

$$\operatorname{Ad}(1 \times w)(X) = \begin{cases} X & \text{if } w \in W_E, \\ -\operatorname{Ad}(J_n)({}^t X) & \text{if } w \notin W_E. \end{cases}$$

Hence the isomorphism $\mathbb{C}^n \otimes \mathbb{C}^n \to \text{Lie}(\hat{H})$ given by $x \otimes y \mapsto x^t y J_n$ is intertwining.

It is believed that the following conjectures hold (cf. [2]).

Conjecture 8.2. For $f \in C_c^{\infty}(G)$, there exists $f^H \in C_c^{\infty}(H)$ such that f and f^H have matching orbital integrals (cf. [25, §5.5]).

Conjecture 8.3. Let $\phi_H: L_F \to {}^L H$ be a tempered Langlands parameter. We define a tempered Langlands parameter $\phi: L_F \to {}^L G$ by $\phi = \xi \circ \phi_H$. Let π be the irreducible tempered representation of G associated to ϕ by the local Langlands

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

correspondence [16], [17]. Then there exists a constant $c \in \mathbb{C}^{\times}$ such that |c| does not depend on ϕ_H and such that

$$J^{\theta}(\pi, f) = c \sum_{\pi_H \in \Pi_{\phi_H}(H)} \langle 1, \pi_H \rangle J(\pi_H, f^H).$$

Here f and f^H have matching orbital integrals.

For $f \in C_c^{\infty}(G)$, let $f^{G_{\theta}} \in C_c^{\infty}(G_{\theta})$ be a decent of f, where G_{θ} is the identity component of $\{g \in G \mid \theta(g) = g\}$. Let $f^H \in C_c^{\infty}(H)$. Assume that the supports of f and f^H are sufficiently small. By [15], [5], we have

$$J^{\theta}(\pi, f) = \sum_{\mathcal{O}} c_{\mathcal{O}, \theta}(\pi) \hat{\mu}_{\mathcal{O}}(f^{G_{\theta}} \circ \exp),$$
$$J(\pi_H, f^H) = \sum_{\mathcal{O}_H} c_{\mathcal{O}_H}(\pi_H) \hat{\mu}_{\mathcal{O}_H}(f^H \circ \exp).$$

Here \mathcal{O} (resp. \mathcal{O}_H) runs over nilpotent G_{θ} -orbits (resp. H-orbits) in $\mathfrak{g}_{\theta} = \text{Lie}(G_{\theta})$ (resp. $\mathfrak{h} = \text{Lie}(H)$).

Lemma 8.4. Assume that Conjectures 8.2 and 8.3 hold. Let $\phi_H: L_F \to {}^L H$ be a tempered Langlands parameter and let π be the irreducible tempered representation of G as in Conjecture 8.3. Then there exists a constant $c \in \mathbb{C}$ such that |c| does not depend on ϕ_H and such that

$$c_{0,\theta}(\pi) = c \sum_{\pi_H \in \Pi_{\phi_H}(H)} \langle 1, \pi_H \rangle c_0(\pi_H).$$

Proof. We proceed as in [32, §9], [21, §8]. Assume that the supports of f and f^H are sufficiently small. If $t \in F^{\times}$ is sufficiently small, then we can define $f_t \in C_c^{\infty}(G)$ by $f_t(\exp(X)) = f(\exp(t^{-1}X))$. Similarly, we can define $f_t^H \in C_c^{\infty}(H)$. Then

$$\hat{\mu}_{\mathcal{O}}(f_{t^{2}}^{G_{\theta}} \circ \exp) = |t|_{F}^{2 \dim \mathfrak{g}_{\theta} - \dim \mathcal{O}} \hat{\mu}_{\mathcal{O}}(f^{G_{\theta}} \circ \exp),$$
$$\hat{\mu}_{\mathcal{O}_{H}}(f_{t^{2}}^{H} \circ \exp) = |t|_{F}^{2 \dim \mathfrak{h} - \dim \mathcal{O}_{H}} \hat{\mu}_{\mathcal{O}_{H}}(f^{H} \circ \exp).$$

Note that $\dim \mathfrak{g}_{\theta} = \dim \mathfrak{h}$.

Assume that f and f^H have matching orbital integrals. By Lemma 8.5 of [21], f_t and f_t^H have matching orbital integrals. Hence we have

$$\sum_{\mathcal{O}} c_{\mathcal{O},\theta}(\pi) \hat{\mu}_{\mathcal{O}}(f_{t^2}^{G_{\theta}} \circ \exp) = c \sum_{\mathcal{O}_H} \sum_{\pi_H \in \Pi_{\phi_H}(H)} \langle 1, \pi_H \rangle c_{\mathcal{O}_H}(\pi_H) \hat{\mu}_{\mathcal{O}_H}(f_{t^2}^H \circ \exp).$$

By homogeneity, we obtain

$$c_{0,\theta}(\pi)\hat{\mu}_0(f^{G_\theta}\circ\exp) = c\sum_{\pi_H\in\Pi_{\phi_H}(H)} \langle 1, \pi_H \rangle c_0(\pi_H)\hat{\mu}_0(f^H\circ\exp).$$

Let π_H be a discrete series representation of H and let $\phi_H: L_F \to {}^L H$ be the (conjectural) Langlands parameter associated to π_H . Let π be the irreducible tempered representation of G as in Conjecture 8.3. If π_H is stable, then π is expected to be square integrable.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

Proposition 8.5. Assume that Conjectures 8.2 and 8.3 hold. Let π_H be a stable discrete series representation of H. Then

$$d(\pi_H) = \frac{1}{2} \cdot |\gamma(0, \pi_H, \mathrm{Ad}, \psi)|.$$

Proof. By [15], [30], we have

$$c_0(\pi_H) = (-1)^{l_0} d(\pi_{H,0})^{-1} \cdot d(\pi_H),$$

where l_0 is the semisimple F-rank of \mathbf{H} and $\pi_{H,0}$ is the Steinberg representation of H. By Theorem 5.1 and Lemmas 8.1 and 8.4, there exists a constant $c \in \mathbb{R}_{>0}$ which does not depend on π_H such that

$$d(\pi_H) = c|\gamma(0, \pi_H, \mathrm{Ad}, \psi)|.$$

Since $\pi_{H,0}$ is stable and $d(\pi_{H,0}) = 2^{-1}|\gamma(0,\pi_{H,0},\mathrm{Ad},\psi)|$, we have $c = 2^{-1}$.

For n=3, Conjectures 8.2 and 8.3 were proved by Rogawski [31]. Thus we obtain the following theorem.

Theorem 8.6. Let $\mathbf{H} = \mathrm{U}(3)$ be the quasi-split unitary group in three variables. Let π_H be a stable discrete series representation of H. Then

$$d(\pi_H) = \frac{1}{2} \cdot |\gamma(0, \pi_H, \mathrm{Ad}, \psi)|.$$

In particular, Conjecture 1.4 holds for π_H .

References

- J. Arthur, The local behaviour of weighted orbital integrals, Duke Math. J. 56 (1988), 223–293. MR932848 (89h:22036)
- [2] _____, Unipotent automorphic representations: conjectures, Astérisque 171-172 (1989), 13-71. MR1021499 (91f:22030)
- [3] A.-M. Aubert and R. Plymen, Plancherel measure for GL(n, F) and GL(m, D): explicit formulas and Bernstein decomposition, J. Number Theory 112 (2005), 26–66. MR2131140 (2006d:22018)
- [4] A. Borel, Admissible representations of a semi-simple group over a local field with vectors fixed under an Iwahori subgroup, Invent. Math. 35 (1976), 233–259. MR0444849 (56:3196)
- [5] L. Clozel, Characters of nonconnected, reductive p-adic groups, Canad. J. Math. 39 (1987), 149–167. MR889110 (88i:22039)
- [6] _____, The fundamental lemma for stable base change, Duke Math. J. 61 (1990), 255–302.MR1068388 (91h:22036)
- [7] ______, Invariant harmonic analysis on the Schwartz space of a reductive p-adic group, Harmonic analysis on reductive groups, Progr. Math. 101, Birkhäuser Boston, 1991, pp. 101–121. MR1168480 (93h:22020)
- [8] S. DeBacker and M. Reeder, Depth-zero supercuspidal L-packets and their stability, preprint.
- [9] P. Deligne, D. Kazhdan, and M.-F. Vignéras, Représentations des algèbres centrales simples p-adiques, Representations of reductive groups over a local field, Travaux en Cours, Hermann, 1984, pp. 33–117. MR771672 (86h:11044)
- [10] D. Goldberg, Some results on reducibility for unitary groups and local Asai L-functions, J. Reine Angew. Math. 448 (1994), 65–95. MR1266747 (95g:22031)
- [11] B. H. Gross, On the motive of a reductive group, Invent. Math. 130 (1997), 287–313. MR1474159 (98m:20060)
- [12] _____, On the motive of G and the principal homomorphism $SL_2 \rightarrow \hat{G}$, Asian J. Math. 1 (1997), 208–213. MR1480995 (99d:20077)
- [13] Harish-Chandra, Harmonic analysis on real reductive groups. I. The theory of the constant term, J. Functional Analysis 19 (1975), 104–204. MR0399356 (53:3201)
- [14] _____, Harmonic analysis on real reductive groups. III. The Maass-Selberg relations and the Plancherel formula, Ann. of Math. 104 (1976), 117–201. MR0439994 (55:12875)

- [15] ______, Admissible invariant distributions on reductive p-adic groups, University Lecture Series 16, American Mathematical Society, 1999. MR1702257 (2001b:22015)
- [16] M. Harris and R. Taylor, The geometry and cohomology of some simple Shimura varieties, Annals of Mathematics Studies 151, Princeton University Press, 2001. MR1876802 (2002m:11050)
- [17] G. Henniart, Une preuve simple des conjectures de Langlands pour GL(n) sur un corps padique, Invent. Math. 139 (2000), 439–455. MR1738446 (2001e:11052)
- [18] ______, Correspondance de Langlands et fonctions L des carrés extérieur et symétrique, preprint.
- [19] K. Hiraga and H. Saito, On L-packets for inner forms of SL_n , preprint.
- [20] A. Ichino and T. Ikeda, On the periods of automorphic forms on special orthogonal groups and the Gross-Prasad conjecture, preprint.
- [21] T. Konno, Twisted endoscopy and the generic packet conjecture, Israel J. Math. 129 (2002), 253–289. MR1910946 (2004d:22008)
- [22] R. E. Kottwitz, Stable trace formula: cuspidal tempered terms, Duke Math. J. 51 (1984), 611–650. MR757954 (85m:11080)
- [23] ______, Stable trace formula: elliptic singular terms, Math. Ann. 275 (1986), 365–399. MR858284 (88d:22027)
- [24] _____, Tamagawa numbers, Ann. of Math. 127 (1988), 629–646. MR942522 (90e:11075)
- [25] R. E. Kottwitz and D. Shelstad, Foundations of twisted endoscopy, Astérisque 255 (1999). MR1687096 (2000k:22024)
- [26] R. P. Langlands, On the functional equations satisfied by Eisenstein series, Lecture Notes in Mathematics 544, Springer-Verlag, 1976. MR0579181 (58:28319)
- [27] I. G. Macdonald, The volume of a compact Lie group, Invent. Math. 56 (1980), 93–95. MR558859 (81h:22018)
- [28] R. Ranga Rao, Orbital integrals in reductive groups, Ann. of Math. 96 (1972), 505-510. MR0320232 (47:8771)
- [29] M. Reeder, Formal degrees and L-packets of unipotent discrete series representations of exceptional p-adic groups, J. Reine Angew. Math. 520 (2000), 37–93. MR1748271 (2001k:22039)
- [30] J. D. Rogawski, An application of the building to orbital integrals, Compositio Math. 42 (1980/81), 417–423. MR607380 (83g:22011)
- [31] ______, Automorphic representations of unitary groups in three variables, Annals of Mathematics Studies 123, Princeton University Press, 1990. MR1081540 (91k:22037)
- [32] F. Shahidi, A proof of Langlands' conjecture on Plancherel measures; complementary series for p-adic groups, Ann. of Math. 132 (1990), 273–330. MR1070599 (91m:11095)
- [33] _____, Twisted endoscopy and reducibility of induced representations for p-adic groups, Duke Math. J. 66 (1992), 1–41. MR1159430 (93b:22034)
- [34] _____, Poles of intertwining operators via endoscopy: the connection with prehomogeneous vector spaces, Compositio Math. 120 (2000), 291–325. MR1748913 (2001i:11060)
- [35] A. J. Silberger and E.-W. Zink, The formal degree of discrete series representations of central simple algebras over p-adic fields, Max-Planck-Institut für Mathematik, 1996.
- [36] J.-L. Waldspurger, La formule de Plancherel pour les groupes p-adiques (d'après Harish-Chandra), J. Inst. Math. Jussieu 2 (2003), 235–333. MR1989693 (2004d:22009)
- [37] E.-W. Zink, Comparison of GL_N and division algebra representations II, Max-Planck-Institut für Mathematik, 1993.

Department of Mathematics, Faculty of Science, Kyoto University, Kyoto 606-8502, Japan

E-mail address: hiraga@math.kyoto-u.ac.jp

Department of Mathematics, Graduate School of Science, Osaka City University, Osaka 558-8585, Japan

E-mail address: ichino@sci.osaka-cu.ac.jp

Department of Mathematics, Faculty of Science, Kyoto University, Kyoto 606-8502, Japan

E-mail address: ikeda@math.kyoto-u.ac.jp