Evaluating Large Language Models Trained on Code

Presented by:

Arush S. Sharma

Course Name:

ECE 696B: Trustworthy Machine Learning

Instructor:

Dr. Ravi Tandon

Affiliation: University of Arizona

Outline

Introduction

Key Findings

Methodology and Evaluation Metrics

Comparative Analysis

Supervised Finetuning

Conclusion

Evaluating Large Language Models Trained on Code

Mark Chen*1 Jerry Tworek*1 Heewoo Jun*1 Qiming Yuan*1 Henrique Ponde de Oliveira Pinto*1

Jared Kaplan*2 Harri Edwards¹ Yuri Burda¹ Nicholas Joseph² Greg Brockman¹ Alex Ray¹ Raul Puri¹

Gretchen Krueger¹ Michael Petrov¹ Heidy Khlaaf³ Girish Sastry¹ Pamela Mishkin¹ Brooke Chan¹

Scott Gray¹ Nick Ryder¹ Mikhail Pavlov¹ Alethea Power¹ Lukasz Kaiser¹ Mohammad Bavarian¹

Clemens Winter¹ Philippe Tillet¹ Felipe Petroski Such¹ Dave Cummings¹ Matthias Plappert¹

Fotios Chantzis¹ Elizabeth Barnes¹ Ariel Herbert-Voss¹ William Hebgen Guss¹ Alex Nichol¹ Alex Paino¹

Nikolas Tezak¹ Jie Tang¹ Igor Babuschkin¹ Suchir Balaji¹ Shantanu Jain¹ William Saunders¹

Christopher Hesse¹ Andrew N. Carr¹ Jan Leike¹ Josh Achiam¹ Vedant Misra¹ Evan Morikawa¹

Alec Radford¹ Matthew Knight¹ Miles Brundage¹ Mira Murati¹ Katie Mayer¹ Peter Welinder¹

Bob McGrew¹ Dario Amodei² Sam McCandlish² Ilya Sutskever¹ Wojciech Zaremba¹

Correspondence to: Mark Chen <mark@openai.com>, Jerry Tworek <jt@openai.com>, Heewoo Jun <hee-woo@openai.com>, Qiming Yuan <qiming@openai.com>.

Year: 2021

^{*}Equal contribution

OpenAI, San Francisco, California, USA.

²Anthropic AI, San Francisco, California, USA. Work performed while at OpenAI.

³Zipline, South San Francisco, California, USA. Work performed while at OpenAI.

Introduction

- Sequence prediction models have been used for text generation and representation learning in various domains: NLP, computer vision, etc.
- GPT-3 (not initially trained for code generation) could generate simple programs from Python docstrings
- Codex, a finetuned GPT-3 model on publicly available dataset from GitHub is given the task to generate standalone python functions from the docstring

Contribution

 From the docstrings, generate the python function and evaluate the correctness of the code through unit tests

• To benchmark the model, 164 coding problems along with unit tests are created (HumanEval dataset)

 Coding problems cover language comprehension, algorithms, mathematics similar to interview question (coding round)

Examples

```
def solution(lst):
    """Given a non-empty list of integers, return the sum of all of the odd elements
    that are in even positions.
    Examples
    solution([5, 8, 7, 1]) \Longrightarrow 12
    solution([3, 3, 3, 3, 3]) = > 9
    solution([30, 13, 24, 321]) = > 0
   return sum(lst[i] for i in range(0,len(lst)) if i % 2 == 0 and lst[i] % 2 == 1)
def incr_list(l: list):
     """Return list with elements incremented by 1.
    >>> incr_list([1, 2, 3])
    [2, 3, 4]
    >>> incr_list([5, 3, 5, 2, 3, 3, 9, 0, 123])
     [6, 4, 6, 3, 4, 4, 10, 1, 124]
     11 11 11
    return [i + 1 for i in 1]
```

Key Findings

During Evaluation:

- Generate multiple samples of the code and check if any of them passes the unit tests
- A single code sample from Codex (12B parameters) solved 28.8% problems
- Codex (300M parameters) solved 13.2% problems
- ➤ GPT-J (6B parameters) solved 11.4% problems and all other GPT models achieved 0%

Evaluation Framework

- BLEU score metric is useful to compare the similarity between machine translated text and a reference text
- However, BLEU score metric is not feasible metric to test the code correctness

Evaluation Framework

- Functional correctness (a sample which passes all the unit tests) is a useful metric to judge the correctness of code based on docstring based generation
 - pass@k: k code samples are generated and if any sample passes the unit tests, the problem is considered solved
- Computing pass@k score: generate $n \ge k$ samples ($n = 200, k \le 100$ and c is # of correct samples that passes the unit tests)

$$\operatorname{pass}@k := \mathbb{E}_{\operatorname{Problems}} \left[1 - \frac{\binom{n-c}{k}}{\binom{n}{k}} \right]$$

8 random samples per problem from Codex-12B

```
def words string(s):
      DE DE DE
 You will be given a string of words separated by
      commas or spaces. Your task is
 to split the string into words and return an array
      of the words.
 For example:
 words_string("Hi, my name is John") == ["Hi", "my"
       "name", "is", "John"]
 words_string("One, two, three, four, five, six") =
       ["One", "two", "three", "four", "five", "six
 ### COMPLETION 1 (CORRECT): ###
 words = []
 splitted word = ""
 for char in s:
     if char == ".":
         if splitted word != "":
             words.append(splitted_word)
             splitted word = ""
     elif char != ",":
         splitted_word += char
 if splitted word != "":
     words.append(splitted_word)
 return words
 ### COMPLETION 2 (WRONG): ###
 return s.split()
 ### COMPLETION 3 (WRONG): ###
 words = s.split("_")
 words = [w.strip(",") for w in words]
 words = [w.strip() for w in words]
```

```
### COMPLETION 4 (WRONG): ###
# Split the string into words
words = s.split(',')
# Remove any whitespace around each element
words = [w.strip() for w in words]
# Return an array of the words in the string
return words
### COMPLETION 5 (WRONG): ###
return s.split()
### COMPLETION 6 (WRONG): ###
return s.split()
### COMPLETION 7 (WRONG): ###
return s.split(',')
### COMPLETION 8 (WRONG): ###
return s.split(sep=None)
```

```
def is_prime(n):
    """Return true if a given number is prime, and
         false otherwise.
    >>> is_prime(6)
   False
    >>> is_prime(101)
    True
    >>> is prime(11)
    True
    >>> is_prime(13441)
    True
    >>> is_prime(61)
    True
    >>> is_prime(4)
   False
    >>> is_prime(1)
    False
    m m m
```

```
### COMPLETION 1 (WRONG): ###
for i in range(2, n):
    if n % i == 0:
        return False
return True
### COMPLETION 2 (WRONG): ###
for i in range(2, n):
    if n % i == 0:
        return False
return True
### COMPLETION 3 (WRONG): ###
# TODO: implement this function
pass
### COMPLETION 4 (CORRECT): ###
if n < 2: return False</pre>
if n == 2: return True
if n%2 == 0: return False
return not any (n%k == 0 for k in range (3, int (n
     **0.5)+1,2))
```

```
### COMPLETION 5 (WRONG): ###
def helper(n):
    # check if an odd number is multiple of any
        integer up to the square root of the number
    # if this is true, n is not prime
   for i in range(2, int(n**0.5 + 1)):
       if n % i == 0:
            return False
   return True
# if helper returns true, then n is prime, else n
    is not prime
if helper(n):
    return True
else:
   return False
### COMPLETION 6 (CORRECT): ###
prime = True
if n == 1:
   return False
for i in range(2, n):
   if n \% i == 0:
       prime = False
return prime
```

```
### COMPLETION 7 (WRONG): ###
for i in range(2, n):
    if n \% i == 0:
        return False
return True
### COMPLETION 8 (CORRECT): ###
if n == 2 or n == 3:
    return True
if n < 2 or n % 2 == 0:
    return False
if n < 9:
    return True
if n % 3 == 0:
    return False
r = int(n**0.5)
f = 5
while f <= r:</pre>
    if n \% f == 0:
        return False
    if n % (f+2) == 0:
        return False
    f += 6
return True
```

```
def x_or_y(n, x, y):
    """A simple program which should return the value
        of x if n is
    a prime number and should return the value of y
         otherwise.
    Examples:
    for x_{or}y(7, 34, 12) == 34
    for x_{or}y(15, 8, 5) == 5
    m m m
    ### COMPLETION 1 (WRONG): ###
    return x if n % x == 0 else y
    ### COMPLETION 2 (WRONG): ###
    if n > 1:
        return x if n%2 != 0 else y
    else:
        return "Error"
    ### COMPLETION 3 (WRONG): ###
    if n%x == 0:
        return x
    else:
        return y
```

```
### COMPLETION 4 (WRONG): ###
return x if n % x == 0 else y
### COMPLETION 5 (WRONG): ###
if n < x:
    return n
else:
    return y
### COMPLETION 6 (WRONG): ###
for i in range (2, n-1):
    if (n % i == 0):
        return y
return x
### COMPLETION 7 (WRONG): ###
if n == 2:
    return x
elif n == 3:
    return y
else:
    return x_or_v(n-1, x, y)
### COMPLETION 8 (WRONG): ###
if n == x:
    return x
elif n == y:
    return y
else:
    return n
```

Dataset Information

HumanEval Dataset

- Each problem has a function template, docstring, function body, and several unit tests
- The dataset contains coding tasks pertaining to simple mathematics, language comprehension, algorithm, and reasoning

Training Dataset

- 54 million public repository on GitHub
- Each file was less than 1 MB (a total of 179 GB)
- After the preprocessing, the dataset totaled around 160 GB

Training Parameters

- Codex is built on GPT-3 and is finetuned for the code generation
- During the training: 175 steps are used with cosine learning rate decay
- 100 billion tokens are used Adam optimizer ($\beta_1 = 0.9, \beta_2 = 0.95$)

Results

Results

Comparative Analysis

Table 1. Codex, GPT-Neo, & TabNine evaluations for HumanEval. We find that GPT-J pass@1 is between Codex-85M and Codex-300M performance.

	k = 1	$\begin{array}{c} {\rm PASS} @ k \\ k = 10 \end{array}$	k = 100
GPT-NEO 125M	0.75%	1.88%	2.97%
GPT-NEO 1.3B	4.79%	7.47%	16.30%
GPT-NEO 2.7B	6.41%	11.27%	21.37%
GPT-J 6B	11.62%	15.74%	27.74%
TABNINE	2.58%	4.35%	7.59%
CODEX-12M	2.00%	3.62%	8.58%
CODEX-25M	3.21%	7.1%	12.89%
CODEX-42M	5.06%	8.8%	15.55%
CODEX-85M	8.22%	12.81%	22.4%
CODEX-300M	13.17%	20.37%	36.27%
CODEX-679M	16.22%	25.7%	40.95%
CODEX-2.5B	21.36%	35.42%	59.5%
CODEX-12B	28.81%	46.81%	72.31%

Supervised Fine Tuning

• The training dataset is constructed using the problems from competitive websites and from repositories with continuous integration (CLI)

- The authors collected 10,000 problems with problem statement, function signatures, and solutions from popular programming contest
- From CLI, 40,000 problems were collected. Overall, the authors made sure that these projects don't contain untrusted code
- Finally, those problem samples were not included when pass@100 model fails in passing the unit tests

Supervised Fine Tuning

• The model was finetuned on the modified training dataset and named as Codex-S

Docstring Generation

- Reverse engineering: Convert the programming code to docstring to know the intent of the program (for safety reason)
- For evaluation purposes, 10 docstring samples per code were graded by humans

Model	PASS@1	PASS@10
CODEX-S-12B	32.2%	59.5%
CODEX-D-12B	20.3%	46.5%

 Codex-D performs comparatively lower than Codex-S possibly due to coders devoting less time in writing good quality docstrings

Limitations

- Codex is not efficient to train since the dataset contains hundreds of millions of lines of code making it energy inefficient
- Model performance degrades as the length of docstring increases

def do_work(x, y, z, w):
 """ Add 3 to y, then subtract 4
 from both x and w. Return the
 product of the four numbers. """
 t = y + 3
 u = x - 4
 v = z * w
 return v

Limitations

 Codex can be prompted in ways that generate racist, denigratory, and otherwise harmful outputs as code comments

Conclusion

- The authors investigated whether it was possible to train large language models to produce functionally correct code bodies from docstrings
- By finetuning GPT-3 model (Codex) the model could solve the problems from docstring

- The performance is enhanced by producing multiple samples (k) from the model
- Finally, the authors trained a model to output the docstrings from code and found that the performance profiles of these models were similar