Simulación: Introducción a métodos de sampleo Clase 01

Investigación Operativa UTN FRBA 2020

Curso: I4051

Elaborado por: Rodrigo Maranzana

Docente: Martín Palazzo

Método de la transformada inversa: distribución uniforme como inicio

Función de masa de la uniforme discreta con tres eventos: a, b y c

- Obtener números aleatorios equiprobables

Función de masa de la uniforme discreta con 18 eventos uniformes:

Uniforme continua

Si hacemos tender los eventos a infinito, llegamos a la distribución continua uniforme.

Gráficamente, uniforme

Función de densidad:

Función acumulada/ Probabilidad:

$$f(x) = \frac{1}{b-a}$$

$$f(x) = \frac{x-a}{b-a}$$
 (proporción)

¿Cómo la usamos?

Acumulada de la uniforme:

$$F_U(X) = U(X)$$

Acumulada de la target/custom:

$$F_T(S) = T(S)$$

Buscamos recuperar el dominio de la target y suponemos que $\mathrm{U}(X)$ son valores de la imagen de $\mathrm{T}(X)$.

Entonces:

$$S = T^{-1}(U(X))$$

¿Qué quiere decir gráficamente?

$$S = T^{-1}(U(X))$$

Caso:

Cami, Rulo, Lara y Mati se reúnen a comer.

Al terminar, empieza la pelea por saber quién tiene que lavar los platos.

Propuestas:

- El dueño de la casa
- Al que le tocó la hoja de laurel
- El que puso menos plata
- Probabilidad proporcional a la cantidad de plata que puso cada uno.

¿Cuál es random y cuál determinista?

¿Cómo decidimos proporcionalmente a la cantidad de plata que puso cada uno?

		Pagó:	Monto:
	Cami	Cervezas	1500
	Rulo	Fósforos	75
	Lara	Carne	2230
	Mati	Ensalada/condimentos	620
·	TOTAL	4425	

$$k_i = \frac{1}{Monto_i}$$

Proporción justa:

$$p_i = \frac{k_i}{\sum k_i}$$

Función de masa:

	Monto:	Proporción
Cami	1500	0,04
Rulo	75	0,83
Lara	2230	0,03
Mati	620	0,10
TOTAL	4425	

$$k_i = rac{1}{Monto_i}$$
Proporción justa:
 $p_i = rac{k_i}{\sum k_i}$

Función acumulada:

	Probabilidad puntual	Acumulada	
Cami	0,04	0,04	
Rulo	0,83	0,87	
Lara	0,03	0,90	
Mati	0,10	1,00	

Sampleamos gráficamente

Interpretación: ruleta desbalanceada

¿Qué hacemos con distribuciones de inversa difícil de obtener?

Método de aceptación y rechazo

Fuente: https://www.researchgate.net/figure/Rejection-sampling_fig7_238680523

¿Cómo podemos calcular π ?

- Creamos una circunferencia de radio 1
- 2) Tomamos 1 solo cuadrante
- 3) Escribimos la ecuación de la circunferencia.
- 4) Convertimos la ecuación en una regla de rechazo: ¿qué está adentro y qué afuera de la circunferencia?

$$x^2 + y^2 = r^2$$

$$x^2 + y^2 \le r^2$$

$$x^2 + y^2 \le \mathbf{1}$$

¿Cómo podemos calcular π ?

- Sampleamos x e y (disparamos dardos aleatorios,
 2 por cada iteración)
- 6) Calculamos la proporción de dardos que cayeron dentro del cuadrante.

x	у	$x^2 + y^2$	Hit?
0.23005564	0.20744736	0.09596	Si
0.28616653	0.98967059	1.06133915	No
0.77814815	0.28266662	0.68541496	Si
0.08729958	0.62910723	0.40339712	Si
0.8660164	0.66705727	1.1949498	No
0.67099742	0.68919669	0.92522961	Si
0.96149655	0.21476816	0.97060097	Si

Proporción: 5/7 = 0.71428

¿Cómo podemos calcular π ?

7) Si el punto 6 es el área, despejamos π de la ecuación del área de la circunferencia.

$$A_{cuadrante} = \pi * r^2 * 1/4$$
$$A_{cuadrante} = \pi * 0.25$$

$$\pi = 4 * A_{cuadrante}$$

Área =
$$0.71428$$

 π con 7 iteraciones = 2.85714

¿Cómo mejoramos el resultado?

 π con 10k iteraciones = 3.13641