Бережной М.А ИВТ 1-1 ЛР5

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ
ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ
УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ
«РОССИЙСКИЙ ГОСУДАРСТВЕННЫЙ ПЕДАГОГИЧЕСКИЙ УНИВЕРСИТЕТ им. А. И.
ГЕРЦЕНА»

Отчет по лабораторной работе №5
По теме «Исследование колебаний механической системы» по дисциплине «Информационные технологии в физике»

Выполнил: студент ИВТ 1-1

Бережной Михаил Александрович

Проверил: доктор педагогических наук

Е.З. Власова

Постановка задачи:

Организовать и провести вычислительный эксперимент для исследования колебаний механической системы

Цель лабораторной работы:

Организовать и провести вычислительный эксперимент для исследования видимых траекторий движения планет Солнечной системы средствами электронных таблиц

Используемое оборудование:

Компьютер, Microsoft Excel

часть 1.

План проведения вычислительного эксперимента

- 1. Составить математическую модель задачи
- 2. Создать таблицу с нужными формулами
- 3. Построить график зависимости x(t)
- 4. Зафиксировать результаты в отчете
- 5. Проанализировать полученные результаты и ответить на вопросы:
 - 1. Около какого значения х происходят колебания груза?
 - 2. Опишите энергетические превращения, которые происходят в электрической и механической системах при колебаниях.
- 6. Сформулировать вывод

Математическая модель:

$$\underline{\mathbf{x}}(t) = \frac{\mathbf{mg}}{\mathbf{k}} (1 - \cos(\omega_0 t)) \quad \omega_0^2 = \frac{\mathbf{mg}}{\mathbf{k}}.$$

Описание переменных и постоянных:

Переменная	Суть	Значение
Х	Длина отклонения	вычисляется
m	масса	2
g	Ускорение	9,8
	свободного падения	
k	Жёсткость пружины 65	
ω_0	Частота колебания	5,70088

t	время	Вводится
	2 P C / / / /	, 250 4 /116/1

Ход эксперимента:

График:

Анализ результатов:

Результаты вычисления:

	min	max	avg	Δ
x(t)	0	0,62	0,31	0,62

Колебания груза происходят около значения x(t)_{avg}≈0,31

Электрическая система		Механическая система	
В электрической колебательной системе		В механической колебательной системе	
энергия	циклически переходит и	энергия циклически переходит из	
магнитной	в электрическую и обратно	потенциальной в кинетическую и обратно	

Вывод:

В ходе эксперимента были исследованы колебания в механической колебательной системе на примере математического маятника. На графике и математической модели, становится понятно, что, с математической точки зрения, электрическая и механическая колебательные системы имеют много общего. Однако, энергетические превращения в них отличаются

Часть 2:

Задание 1

Разработать математическую модель для описания движения данной колебательной системы (пружинного маятника), используя закон сохранения энергии

Закон сохранения энергии: $E_{k1} + E_{p1} = E_{k2} + E_{p2}$

Математическая модель: $E=\frac{mv^2}{2}+\frac{kx^2}{2}$

Задание 2

Разработайте математическую модель для описания движения колебательной системы (математического маятника), используя закон сохранения энергии

Закон сохранения энергии: $E_{k1} + E_{p1} = E_{k2} + E_{p2}$

Математическая модель: $E = \frac{mv^2}{2} + \frac{mgxa}{2}$