GATE Syllabus for CS and DA

	GATE Syllabas for C5 and DA
(erating System System calls, processes, threads Inter-process communication Concurrency, and synchronization Deadlock handling CPU and I/O scheduling Memory management, paging, segmentation, virtual memory File systems
(pital Logic Display Boolean algebra Combinational and sequential circuits Display Minimization techniques (K-map, Quine–McCluskey) Display Number system and representations Display Computer arithmetic (fixed and floating point)
(eory of Computation Regular expressions and finite automata Context-free grammars and push-down automata Regular and context-free languages Pumping lemma Turing machines and undecidability
(gramming and Data Structures O Programming in C and Python O Recursion, search algorithms (linear, binary) O Arrays, stacks, queues, linked lists, trees, hash tables O Binary search trees, binary heaps, graphs
(porithms Searching, sorting, hashing Sorting algorithms: selection, bubble, insertion, merge, quicksort Asymptotic time and space complexity Algorithm design techniques: greedy, dynamic programming, divide-and-conquer Graph theory: basic concepts, traversals, shortest path, minimum spanning trees Hashing techniques
(mputer Organization and Architecture O Machine instructions and addressing modes O ALU, data path, and control unit

 $\ensuremath{\bigcirc}$ Instruction pipelining and pipeline hazards

O I/O interface (interrupt and DMA mode)

O Memory hierarchy: cache, main memory, secondary storage

7. Compiler Design O Lexical analysis, parsing ○ Syntax-directed translation O Runtime environments O Intermediate code generation O Local optimization O Data flow analyses (constant propagation, liveness analysis, common subexpression elimination) 8. Databases & Data Warehousing O ER-model O Relational model: relational algebra, tuple calculus, SQL O Integrity constraints, normalization (normal forms) O File organization, indexing (e.g., B and B+ trees) O Transactions and concurrency control O Data types and transformations: normalization, discretization, sampling O Data warehouse modeling: schemas, hierarchies, and measures 9. Computer Networks O Network models: OSI and TCP/IP Protocol Stacks O Switching techniques: packet, circuit, and virtual circuit switching O Data link layer: framing, error detection, MAC, Ethernet O Network layer: IP addressing (IPv4, CIDR), fragmentation, ARP, DHCP, ICMP, NAT O Routing algorithms: shortest path, flooding, distance vector, link state O Transport layer: TCP, UDP, sockets, flow & congestion control O Application protocols: DNS, SMTP, HTTP, FTP, Email 10. Artificial Intelligence O Search algorithms: uninformed, informed (A*, greedy), adversarial (minimax, alpha-beta

- pruning)
- O Logic: propositional and predicate
- O Reasoning under uncertainty: conditional independence, exact inference (variable elimination), approximate inference (sampling)

11. Machine Learning

- O Supervised Learning
 - Regression: linear, multiple, logistic, ridge
 - Classification: k-NN, Naive Bayes, LDA, SVM, decision trees
 - Neural networks: MLP, feed-forward
 - Evaluation: bias-variance trade-off, cross-validation (k-fold, leave-one-out)
- O Unsupervised Learning
 - Clustering: k-means, k-medoids, hierarchical (top-down, bottom-up)
 - Dimensionality reduction: PCA

12. Engineering Mathematics:

- O Discrete Mathematics:
 - Propositional and first-order logic
 - Sets, relations, functions
 - Partial orders and lattices
 - Monoids and groups
 - Graphs: connectivity, matching, coloring, traversals, shortest path
 - Combinatorics: permutations, combinations, counting, recurrence relations, generating functions
- O Linear Algebra:
 - Vector spaces, subspaces
 - Linear dependence and independence
 - Matrices: projection, orthogonal, idempotent, partition
 - Determinant, rank, nullity
 - System of linear equations, Gaussian elimination
 - LU decomposition, SVD (Singular Value Decomposition)
 - Eigenvalues and eigenvectors
 - Projections, quadratic forms
- O Calculus and Optimization:
 - Functions of a single variable
 - Limits, continuity, and differentiability
 - Taylor series
 - Maxima and minima
 - Mean value theorem
 - Optimization with single variable
 - Integration
- O Probability and Statistics:
 - Sample space, events, axioms
 - Independent and mutually exclusive events
 - Random variables (discrete & continuous)
 - PMF, PDF, CDF
 - Conditional, marginal, and joint probabilities
 - Bayes' theorem, conditional expectation and variance
 - Mean, median, mode, standard deviation
 - Correlation, covariance
 - Distributions: uniform, normal, standard normal, exponential, Poisson, binomial, t-distribution, chi-squared
 - Central Limit Theorem
 - Confidence intervals
 - Hypothesis testing: z-test, t-test, chi-squared test

13. General Aptitude: Verbal Aptitude, Quantitative Aptitude, Analytical Aptitude, Spatial Aptitude