COMP3010J Tutorial

Nearest Neighbour Classifiers

1. The table below shows three examples from a system for predicting whether a person is over or under the drink driving limit. The 5 input

Example x1	
Gender	female
Weight	60
Amount	4
Meal	full
Duration	90
Class	over

Example x2	
Gender	male
Weight	75
Amount	2
Meal	full
Duration	60
Class	under

Query Example	
Gender	male
Weight	70
Amount	1
Meal	snack
Duration	30
Class	???

features for this system are:

- Gender: categorical feature {male, female}
- Weight: numeric range [50,150]
- Amount of alcohol in units: numeric range [1,16]
- Meal type: ordinal feature {None, Snack, Lunch, Full}
- Duration of drinking session: numeric range [20,230]
- a) Normalise all numeric features to the range [0,1]
- b) Propose an appropriate distance function for comparing examples such as the above.
- c) Use your proposed distance function to calculate the distances between the query example and the two labelled examples. Which class label would a 1NN classifier assign to the query based on the distances?

2. The table below reports the pairwise distances between a set of 9 labelled training examples and a new query example **q**, for the system described in Question 2.

Example	Class	Distance to q
x1	over	1.5
x2	under	2.8
х3	over	1.8
<i>x4</i>	under	2.9
x5	under	2.2
х6	under	3.0
<i>x7</i>	under	2.4
x8	over	3.2
x9	over	3.6

- a) What class label would a 3-NN classifier assign to \mathbf{q} ?
- b) What class label would a 4-NN classifier assign to q?
- c) What class label would a <u>weighted</u> 4-NN classifier assign to q?

- 3. Two different examples for estimating the price of second-hand cars are shown in the tables below. Each example is described by 6 features.
 - a) Normalise all numeric features to the range [0,1].

Example 007	
Manufacturer	Ford
Model	Fiesta
Engine Size	1,100
Fuel	Petrol
Mileage	65,000
Bodywork	Excellent
Price	€3,100

Example 014	
Manufacturer	Citroen
Model	BX
Engine Size	1,800
Fuel	Diesel
Mileage	37,000
Bodywork	Fair
Price	€4,500

Assume that the feature ranges are: Engine Size 1,000 to 3,000; Mileage 1,000 to 100,000.

- b) Propose a suitable global distance function that might be used in a k-Nearest Neighbour case retrieval system for this data. Assume that Bodywork is an ordinal feature that has the possible values {Poor, Fair, Good, Excellent},
- c) Use the proposed distance function to calculate the distance between the two examples above.