Pesquisa com Dados de Satélite (Satellite)

```
> # Carregar os pacotes
> library(caret)
> library(mlbench)
> # Carregando os dados
> data("Satellite")
> # Criando as partições
> set.seed(7)
> indices <- createDataPartition(Satellite$classes, p = 0.8, list = FALSE)
> treino <- Satellite[indices, c(17, 18, 19, 20, 37)]
> teste <- Satellite[-indices, c(17, 18, 19, 20, 37)]
> # Treinar RF, SVM e RNA com a base de Treino
> print("Treinando modelos..")
[1] "Treinando modelos.."
> print("Treinando rf")
[1] "Treinando rf"
> rf <- train(classes ~ ., data = treino, method = "rf")
> print("Treinando svm")
[1] "Treinando svm"
> svm <- train(classes ~ ., data = treino, method = "svmRadial")
>
> print("Treinando rna")
[1] "Treinando rna"
> rna <- train(classes ~ ., data = treino, method = "nnet", trace = FALSE)
```

- > # Aplicar modelos treinados na base de Teste
- > predict.rf <- predict(rf, teste)
- > predict.svm <- predict(svm, teste)
- > predict.rna <- predict(rna, teste)

>

- > # Criar as matrizes de confusão e comparar os resultados
- > print("Matriz de confusão RF")
- [1] "Matriz de confusão RF"
- > print(confusionMatrix(predict.rf, teste\$classes))

Confusion Matrix and Statistics

Reference

Prediction red soil cotton crop grey soil damp grey soil vegetation stubble very damp grey soil

red soil	296	1	5		2	8		0
cotton crop	0	1	23	0	0	2	2	1
grey soil	3	0	238	3	29	1		10
damp grey soil		1	0	21	62		2	40
vegetation stu	bble	6	10) ()	0	120	8
very damp grey	y soil	0	6	7	3	2	8	242

Overall Statistics

Accuracy: 0.8419

95% CI: (0.8208, 0.8614)

No Information Rate: 0.2383

P-Value [Acc > NIR] : < 2.2e-16

Kappa: 0.8047

Mcnemar's Test P-Value: NA

Statistics by Class:

Class: red soil Class: cotton crop Class: grey soil Class: damp grey soil Class: vegetation stubble

Sensitivity	0.9673	0.87857	0.8782	0.49600	0.85106
Specificity	0.9836	0.99738	0.9576	0.94478	0.97900
Pos Pred Value 0.83333	0.9487	0.97619	0.8470	0.49206	
Neg Pred Value 0.98158	0.9897	0.98532	0.9671	0.94560	
Prevalence	0.2383	0.10903	0.2111	0.09735	0.10981
Detection Rate 0.09346	0.2305	0.09579	0.1854	0.04829	
Detection Prevale 0.11215	nce 0.24	30 0.098	313 0.218	0.09813	
Balanced Accurac 0.91503	cy 0.975	55 0.937	97 0.917	9 0.72039	

Class: very damp grey soil

Sensitivity 0.8040

Specificity 0.9461

Pos Pred Value 0.8203

Neg Pred Value 0.9403

Prevalence 0.2344

Detection Rate 0.1885

Detection Prevalence 0.2298

Balanced Accuracy

0.8750

>

- > print("Matriz de confusão SVM")
- [1] "Matriz de confusão SVM"
- > print(confusionMatrix(predict.svm, teste\$classes))

Confusion Matrix and Statistics

Reference

Prediction red soil cotton crop grey soil damp grey soil vegetation stubble very damp grey soil

red soil	298	1	4		2	7	0	
cotton crop	1	1	120	0	0	4	0	
grey soil	4	0	260		29	1	12	
damp grey soil		0	1	7	69	2	32	
vegetation stu	bble	3	14	0	2	117	7	3
very damp gre	y soil	0	4	0	23	10	25	54

Overall Statistics

Accuracy: 0.8707

95% CI: (0.8511, 0.8886)

No Information Rate: 0.2383

P-Value [Acc > NIR] : < 2.2e-16

Kappa: 0.8399

Mcnemar's Test P-Value: NA

Statistics by Class:

Class: red soil Class: cotton crop Class: grey soil Class: damp grey soil Class: vegetation stubble

Sensitivity	0.9739	0.85714	0.9594	0.55200	0.82979
Specificity	0.9857	0.99563	0.9546	0.96376	0.98075
Pos Pred Value 0.84173	0.9551	0.96000	0.8497	0.62162	
Neg Pred Value 0.97904	0.9918	0.98274	0.9888	0.95226	
Prevalence	0.2383	0.10903	0.2111	0.09735	0.10981
Detection Rate 0.09112	0.2321	0.09346	0.2025	0.05374	
Detection Prevaler 0.10826	nce 0.24	30 0.097	735 0.238	0.08645	
Balanced Accurac 0.90527	y 0.979	0.926	39 0.9570	0 0.75788	

Class: very damp grey soil

Sensitivity 0.8439

Specificity 0.9624

Pos Pred Value 0.8729

Neg Pred Value 0.9527

Prevalence 0.2344

Detection Rate 0.1978

Detection Prevalence 0.2266

Balanced Accuracy 0.9031

>

> print("Matriz de confusão RNA")

^{[1] &}quot;Matriz de confusão RNA"

> print(confusionMatrix(predict.rna, teste\$classes))

Confusion Matrix and Statistics

Reference

Prediction red soil cotton crop grey soil damp grey soil vegetation stubble very damp grey soil

red soil	292		2	11		2	1:	2	1	
cotton crop	-	7	12	4	0	0		13	0	
grey soil	3		0	259		67	1	I	25	
damp grey soil	L	0		0	0	0		0	0	
vegetation stu	bble	;	3	5	0		0	100		12
very damp gre	y soil	,	1	9	1		56	15		263

Overall Statistics

Accuracy: 0.8084

95% CI: (0.7858, 0.8296)

No Information Rate: 0.2383

P-Value [Acc > NIR] : < 2.2e-16

Kappa: 0.7595

Mcnemar's Test P-Value: NA

Statistics by Class:

Class: red soil Class: cotton crop Class: grey soil Class: damp grey soil Class: vegetation stubble

Sensitivity 0.9542 0.88571 0.9557 0.00000 0.70922

Specificity	0.9714	0.98252	0.9052	1.00000	0.98250
Pos Pred Value	0.9125	0.86111	0.7296	NaN	0.83333
Neg Pred Value 0.96478	0.9855	0.98596	0.9871	0.90265	
Prevalence	0.2383	0.10903	0.2111	0.09735	0.10981
Detection Rate 0.07788	0.2274	0.09657	0.2017	0.00000	
Detection Prevale 0.09346	nce 0.24	92 0.112	15 0.27	0.00000	
Balanced Accurac 0.84586	sy 0.962	0.934	12 0.930	5 0.50000	

Class: very damp grey soil

Sensitivity 0.8738

Specificity 0.9166

Pos Pred Value 0.7623

Neg Pred Value 0.9595

Prevalence 0.2344

Detection Rate 0.2048

Detection Prevalence 0.2687

Balanced Accuracy 0.8952

>

>

Estimativa de Volumes de Árvores

library("caret")

- > library(RSNNS)
- > #Carregabdo a base de Dados
- > df <- read.csv("http://www.razer.net.br/datasets/Volumes.csv",sep = ";", dec = ",")

```
>
> #Eliminando a coluna NR
> df$NR<- NULL
> #Criando as Partições 80/20
> set.seed(7)
> indices <- indices <- createDataPartition(df$VOL,p=0.80, list=FALSE)
> treino <- df[indices,]
> teste <- df[-indices,]
> print("Treinando os modelos...")
[1] "Treinando os modelos..."
> #Treinar um modelo Random Forest
> print("Random Forest")
[1] "Random Forest"
> rf <- caret::train(VOL~., data=treino,method="rf")
note: only 2 unique complexity parameters in default grid. Truncating the grid to 2.
print("SVM Radial")
[1] "SVM Radial"
svm <- caret::train(VOL~., data=treino,method="svmRadial")</pre>
#Treinar um modelo RNA (NNET)
>print("RNA")
[1] "RNA"
rna <- caret::train(VOL~., data=treino,method="nnet")</pre>
#Treinar mmodelo Alométrico alom <- nls(VOL ~ b0 + b1DAPDAP*HT, df,
start=list(b0=0.5, b1=0.5)
#predições predicoes.svm <- predict(svm, teste) predicoes.rf <- predict(rf, teste)</pre>
predicoes.rna <- predict(rna, teste) predicoes.alom <- predict(alom, teste)</pre>
```

```
    residual <- sum((y_real - y_pred)^2) # Soma dos quadrados dos resíduos</li>

   • total <- sum((y_real - mean(y_real))^2) # Soma dos quadrados totais
   • r2 <- 1 - (residual / total) # Fórmula do R<sup>2</sup>
   • return(r2)
   • }
> coefSYX <- function(y_real,y_pred,percent=F){</pre>
+ n <- length(y_real)
+ residual <- sum((y_real - y_pred)^2)
+ syx <- sqrt(residual / (n-2))
+ if(percent){
+ syx <- (syx / mean(y_real)) * 100 # Cálculo do Syx %
+ }
+ return(syx)
+ }
> #Validando resultados RF
> result.rf.r2 <- coefR2(teste$VOL,predicoes.rf)
> result.rf.syx <- coefSYX(teste$VOL,predicoes.rf)
> result.rf.syxPerc <- coefSYX(teste$VOL,predicoes.rf,percent = T)
> #validando resultados SVM
> result.svm.r2 <- coefR2(teste$VOL,predicoes.svm)
> result.svm.syx <- coefSYX(teste$VOL,predicoes.svm)
> result.svm.syxPerc <- coefSYX(teste$VOL,predicoes.svm,percent = T)
>
> #validando resultados RNA
> result.rna.r2 <- coefR2(teste$VOL,predicoes.rna)
> result.rna.syx <- coefSYX(teste$VOL,predicoes.rna)
> result.rna.syxPerc <- coefSYX(teste$VOL,predicoes.rna,percent = T)
> #validando resultados SVM
> result.alom.r2 <- coefR2(teste$VOL,predicoes.alom)
> result.alom.syx <- coefSYX(teste$VOL,predicoes.alom)
> result.alom.syxPerc <- coefSYX(teste$VOL,predicoes.alom,percent = T)
> {\rm cat}("RF->R^2:",result.rf.r2,"Syx:",result.rf.syx,"Syx\%",result.rf.syxPerc,"\n")
RF-> R<sup>2</sup>: 0.8535647 Syx: 0.1445527 Syx% 11.07658
```

```
> cat("SVM-> R^2: ", result.svm.r2,"Syx: ", result.svm.syx, "Syx%",result.svm.syxPerc,"\n" ) 
SVM-> R^2: 0.8324292 Syx: 0.1546331 Syx% 11.84901 
> cat("RNA-> R^2: ", result.rna.r2,"Syx: ", result.rna.syx, "Syx%",result.rna.syxPerc,"\n" ) 
RNA-> R^2: -0.7244946 Syx: 0.49606 Syx% 38.01139 
> cat("Alometrico-> R^2: ", result.alom.r2,"Syx: ", result.alom.syx, "Syx%",result.alom.syxPerc,"\n" ) 
Alometrico-> R^2: 0.8356895 Syx: 0.1531214 Syx% 11.73318
```