Devoir maison pour le 29 novembre 2018

Benjamin Loison (MPSI 1)

26 novembre 2018

1 **Exercices**

1. Soient E, F et G trois ensembles. On considère $f \in F^E, g \in G^F$ et $h \in E^G$ et on suppose que $g \circ f$ et $h \circ g$ sont bijectives. $g \circ f$ est bijective donc la fonction g est surjective.

 $h \circ q$ est bijective donc la fonction q est injective.

Donc la fonction g est bijective. Donc la fonction réciproque de g existe et g^{-1} est donc bijective.

On en déduit que $g^{-1} \circ g \circ f = f$, donc f est bijective.

De même, $h \circ g \circ g^{-1} = h$, donc h est bijective.

2. Soient E et F deux ensembles et $f \in F^E$.

On considère A une partie de E et B une partie de F.

On démontre l'égalité par double inclusion

- Soit $y \in f(A \cap f^{-1}(B))$, tel que il existe $x \in A \cap f^{-1}(B)$, tel que: y = f(x).

On a $x \in A$ donc $f(x) \in f(A)$.

On a $x \in f^{-1}(B)$ alors $f(x) \in B$.

Donc $f(x) \in f(A) \cap B$.

Donc $f(A \cap f^{-1}(B)) \subset f(A) \cap B$.

- Soit $y \in f(A) \cap B$

On a $y \in f(A)$ donc il existe $x \in A$, tel que: f(x) = y.

On a $y \in B$ donc il existe $x \in f^{-1}(B)$, tel que: f(y) = x.

Donc $x \in (A \cap f^{-1}(B))$.

Donc $y \in f(A \cap f^{-1}(B))$.

Donc $f(A) \cap B \subset f(A \cap f^{-1}(B))$.

- Donc $f(A \cap f^{-1}(B)) = f(A) \cap B$.

3. Soit $n \in \mathbb{N}$.

On démontre le prédicat suivant sur \mathbb{N} : $u_{n+3} = 3u_{n+2} - 3u_{n+1} + u_n$

L'initialisation est claire pour les rangs 0, 1 et 2.

On suppose le prédicat vrai aux rangs n, n+1 et n+2, on a alors:

$$\begin{cases} u_n &= n(n-1) \\ u_{n+1} &= (n+1)n \\ u_{n+2} &= (n+2)(n+1) \end{cases}$$

Le prédicat est vérifié au rang n+3 si et seulement si: $u_{n+3}=(n+3)(n+2)=n^2+5n+6$

On a:
$$u_{n+3} = 3u_{n+2} - 3u_{n+1} + u_n$$

D'où:
$$u_{n+3} = 3(n+2)(n+1) - 3(n+1)n + n(n-1)$$

Donc: $u_{n+3} = n^2 + 5n + 6$

Donc $\forall n \in \mathbb{N}$, on a: $u_n = n(n-1)$

- 4. On définit sur \mathbb{N} une relation binaire R par la relation: $\forall (x,y) \in \mathbb{N}^2, xRy \Leftrightarrow \exists n \in \mathbb{N}, y = x^n$.
- Soit $x \in \mathbb{N}$. On a $xRx \Leftrightarrow \exists n \in \mathbb{N}, x = x^n$, cette dernière proposition est claire pour n = 1, d'où xRx. Donc la relation R est réflexive.

Soient
$$(x, y, z) \in \mathbb{N}^3$$
. On a xRy et $yRz \Leftrightarrow \begin{cases} xRy = \exists n \in \mathbb{N}, y = x^n \\ yRz = \exists n \in \mathbb{N}, z = y^n \end{cases} \Rightarrow \exists (n, n') \in \mathbb{N}^2, z = (x^n)^{n'} = x^{n*n'}, \text{ or } n*n' \in \mathbb{N}.$
Donc xRy et yRz implique que: $\exists n \in \mathbb{N}, z = x^n$

Donc xRy et yRz implique que: $\exists n \in \mathbb{N}, z = x^n$.

Donc xRy et yRz implique que xRz. Donc la relation R est transitive.

Soient $(x,y) \in \mathbb{N}^2$. xRy et yRz si et seulement si: $\begin{cases} xRy &= \exists n \in \mathbb{N}, y = x^n \\ yRx &= \exists n \in \mathbb{N}, x = y^n \end{cases} \Rightarrow x = y$ Donc xRy et $yRz \Rightarrow x = y$. Donc la relation R est anti-symétrique.

Donc la relation R est une relation d'ordre.

- Soient $(x,y) \in \mathbb{N}^2$, xRy ou yRx ssi $(\exists n \in \mathbb{N}, y = x^n)$ ou $(\exists n \in \mathbb{N}, x = y^n)$. Cette dernière proposition est clairement fausse pour x = 5 et y = 3, aucune puissance entière de 5 est égale à 3. Donc la relation R n'est pas une relation totale.
- 5. On considère un ensemble E et A, B deux parties de E.

On définit: $f = \begin{pmatrix} P(E) \to P(A) \times P(B) \\ X \mapsto (A \cap X, B \cap X) \end{pmatrix}$

- a) $f(E) = (A \cap E, B \cap E) = (A, B)$
- b) $f(A \cup B) = (A \cap (A \cup B), B \cap (A \cup B))$

D'où: $f(A \cup B) = ((A \cap A) \cup (A \cap B), (B \cap A) \cup (B \cap B))$

D'où: $f(A \cup B) = (A \cup (A \cap B), (B \cap A) \cup B)$

Donc: $f(A \cup B) = (A, B)$

- On remarque que $f(A \cup B) = f(E)$ et par injectivité cela implique que $A \cup B = E$.
- c) \star Soient $(X, Y) \in P(E)^2$, tel que: f(X) = f(Y).
- Soit $x \in X$. Donc $x \in A$ ou $x \in B$.

Si $x \in A$, alors on a $x \in A \cap X = A \cap Y$, donc $x \in Y$.

Sinon, si $x \in B$, alors on a $x \in B \cap X = B \cap Y$, donc $x \in Y$.

Donc $X \subset Y$.

- De la même manière on démontre l'autre sens de l'égalité:

Soit $y \in Y$. Donc $y \in A$ ou $y \in B$.

Si $y \in A$, alors on a $y \in A \cap Y = A \cap X$, donc $y \in X$.

Sinon, si $y \in B$, alors on a $y \in B \cap Y = B \cap X$, donc $y \in X$.

Donc $Y \subset X$.

- Donc finalement X=Y. D'où l'injectivité.
- \star Si la fonction f est surjective, l'image (A, B) admet un antécédant noté X, tel que: $A \subset X$ et $X \cap B = \emptyset$. Ces propositions impliquent que $A \cap B = \emptyset$.
 - On vérifie cette condition:
 - Si $A \cap B = \emptyset$, alors $(X, Y) \in P(A)$ x P(B), tel que: $X \cup Y$ est un antécédant de (X, Y).
 - Donc la condition nécessaire et suffisante recherchée est bien $A \cap B = \emptyset$ pour que f soit surjective.
 - d) On a finalement: $f^{-1} = \begin{pmatrix} P(A) \times P(B) \to P(E) \\ (X,Y) \mapsto (X \cup Y) \end{pmatrix}$

2 Algèbre de Boole

2.1 Propriétés élémentaires

On considère E un ensemble et A une partie de E. On considère A une algèbre de Boole.

- 1. D'après la propriété d'appartenance de l'élement nul dans l'algèbre de Boole, on a: $\emptyset \in A$. D'après la propriété de complémentarité de l'algèbre de Boole, on a alors: $\emptyset_E^C \in A$ donc $E \in A$.
- 2. Soient $(X,Y) \in A^2$.
- $(X \cap Y)^C = X^C \cup Y^C$. Par la propriété de complémentarité de l'algèbre de Boole, on a alors $X^C \in A$ et $Y^C \in A$. Donc d'après la propriété de l'union de l'algèbre de Boole, on a $(X^C \cup Y^C) \in A$. Donc $(X \cap Y)^C \in A$ et par complémentarité de l'algèbre de Boole, on a finalement: $(X \cap Y) \in A$.
- Soit x un objet mathématique.

 $x \in (X \setminus Y)$ ssi $(x \in X)$ et $(x \in Y)$

D'où: $x \in (X \setminus Y)^C$ ssi $(x \notin X)$ ou $(x \notin Y)$ ssi $(x \in X^C)$ ou $(x \in Y^C)$, on conclue alors comme précédemment.

Endomorphisme d'algèbre de Boole

On considère A une algèbre de Boole sur E et f une application de A dans A. Soit f un endomorphisme de A

1. - Premièrement on a: $f(E) = f(E) \cup f(\emptyset) = f(E) \cup f(E^C) = f(E) \cup f(E)^C = E$

- Deuxièmement on a $f(E^C) = f(E)^C$ d'après la propriété de complémentarité d'un endormorphisme d'algèbre de Boole. Donc d'après ce qui précède: $f(E)^C = E^C = \emptyset$.

Donc $f(\emptyset) = \emptyset$

2. Soient $(X,Y) \in A^2$.

- On a: $f(X \cup Y) = f(X) \cup f(Y)$

D'où: $(f(X \cup Y))^C = (f(X) \cup f(Y))^C$ Donc: $f(X^C \cap Y^C) = f(X)^C \cap f(Y)^C$ Donc: $f(X^C \cap Y^C) = f(X^C) \cap f(Y^C)$

On pose alors $(X', Y') \in A^2$.

On remarque que l'on a alors: $f(X' \cap Y') = f(X') \cap f(Y')$. D'où l'égalité. - D'une part: $f(X \setminus Y) = f(X \cap Y^C)$

D'autre part: $f(X) \setminus f(Y) = f(X) \cap f(Y^C)$

L'égalité est alors claire d'après l'égalité précédemment démontrée.

3. Soient $(X,Y) \in A^2$.

On suppose $X \subset Y$. On a alors $X \cup Y = Y$, donc $f(X \cup Y) = f(Y) = f(X) \cup f(Y)$ et donc $f(X) \subset f(Y)$.

Donc f est croissante.

- 4. Si f est injective. D'après le 1., on a: $f(\emptyset) = \emptyset$. Donc $Ker(f) = \{X \in A | f(X) = \emptyset = f(\emptyset)\}$. Donc par injectivité de f, on a: On a $Ker(f) = \{X \in A | X = \emptyset\} = \emptyset$.
- Si $Ker(f) = \emptyset$, on considère $(X,Y) \in A^2$. On suppose que f(X) = f(Y). D'après le 2., on a alors: $f(X \setminus Y) = f(X) \setminus f(Y) = \emptyset$ donc d'après la relation $f(\emptyset) = \emptyset$, on en déduit que: $X \setminus Y = \emptyset$ et donc $X \subset Y$. De la même manière on prouve que $Y \subset X$. Donc X = Y. - On en conclut que f est injective ssi $Ker(f) = \emptyset$.