9. RF EXPOSURE TEST

9.1 APPLIED PROCEDURES / LIMIT

Systems operating under the provisions of this section shall be operated in a manner that ensures that the public is not exposed to radio frequency energy levels in excess limit for maximum permissible exposure. In accordance with 47 CFR FCC Part 2 Subpart J, section 2.1091 this device has been defined as a mobile device whereby a distance of 0.2 m normally can be maintained between the user and the device.

(A) Limits for Occupational / Controlled Exposure

Frequency Range (MHz)	Electric Field Strength (E) (V/m)	Magnetic Field Strength (H) (A/m)	Power Density (S) (mW/ cm²)	Averaging Time E ², H ²or S (minutes)
0.3-3.0	614	1.63	(100)*	6
3.0-30	1842 / f	4.89 / f	(900 / f)*	6
30-300	61.4	0.163	1.0	6
300-1500			F/300	6
1500-100,000			5	6

(B) Limits for General Population / Uncontrolled Exposure

Frequency Range (MHz)	Electric Field Strength (E) (V/m)	Magnetic Field Strength (H) (A/m)	Power Density (S) (mW/ cm²)	Averaging Time E ² , H ² or S (minutes)
0.3-1.34	614	1.63	(100)*	30
1.34-30	824/f	2.19/f	(180/f)*	30
30-300	27.5	0.073	0.2	30
300-1500			F/1500	30
1500-100,000			1.0	30

Note: f = frequency in MHz; *Plane-wave equivalent power density

9.1.1 MPE CALCULATION METHOD

MPE Limit Calculation: EUT's operating frequencies @_907-922MHz;

Highest conducted power = $\underline{29.70}$ dBm (peak) therefore,

Limit for Uncontrolled exposure: **0.6** mW/ cm² or **10** mW/ cm²

EUT maximum antenna gain = <u>5</u> dBi.

Equation from page 18 of OET 65, Edition 97-01

S = PG / 4π R² or R = \sqrt{PG} / 4π S where,

S = Power Density ($\underline{\mathbf{0.6}}$ mW/ cm²)

P = Power Input to antenna (<u>933.25</u>mW)

G = Antenna Gain (3.16 numeric)

 $\mathbf{R} = (933.25 \times 3.16/4 \times 3.14 \times 0.6)^{1/2} = (2949.07/7.536)^{1/2} = 19.78 \text{ cm}$

Report No.: NEI-FCCP-1-R1011009 Page 77 of 80