• ASSOCIATION RULE MINING

- Finding frequent patterns in a database allows to find useful information.
- But it has some limitations >

Introduction

A transactional database D

Transaction	Items in the transaction
TI	{pasta, lemon, bread, orange}
T2	{pasta, lemon}
Т3	{pasta, orange, cake}
T4	{pasta, lemon, orange, cake}

If minsup = 2, then {pasta, cake} is frequent.

Can we conclude that people who buy pasta will also buy cakes?

Association rule

An association rule is a rule of the form

 $X \rightarrow Y$ where

- X and Y are itemsets,
- \circ and $X \cap Y = \emptyset$

```
e.g. {orange, cake} → {pasta}
    {lemon, orange} → {pasta}
    {pasta} → {bread}
```

• •

Support

The support of a rule $X \to Y$ is calculated as

$$sup(X \to Y) = \frac{sup(XUY)}{|D|}$$

where |D| is the number of transactions.

Transaction	Items in the transaction
TI	{pasta, lemon, bread, orange}
T2	{pasta, lemon}
Т3	{pasta, orange, cake}
T4	{pasta, lemon, orange, cake}

Confidence

The confidence of a rule $X \to Y$ is calculated as

$$conf(X \to Y) = \frac{sup(XUY)}{sup(X)}$$

Transaction	Items in the transaction	
TI	{pasta, lemon, bread, orange}	
T2	{pasta, lemon}	
Т3	{pasta, orange, cake}	
T4	{pasta, lemon, orange, cake}	

Confidence

The confidence of a rule $X \to Y$ is calculated as

$$conf(X \to Y) = \frac{sup(XUY)}{sup(X)}$$

Transaction	Items in the transaction
TI	{pasta, lemon, bread, orange}
T2	{pasta, lemon}
Т3	{pasta, orange, cake}
T4	{pasta, lemon, orange, cake}

{pasta} -> {lemon} has a confidence of 0.75 {lemon} -> {pasta} has a confidence of 1.0

Association rule mining

Input:

- A transaction database (set of transactions)
- A parameter minsup $(0 \ge minsup \le 1)$
- A parameter minconf $(0 \ge minconf \le 1)$

Output: each association rule $X \rightarrow Y$ such that:

- $\sup(X \to Y) \ge minsup$ and
- $conf(X \to Y) \ge minconf$

minsup = 0.4 minconf = 0.75

Transaction	Items in the transaction	
TI	{pasta, lemon, bread, orange}	
T2	{pasta, lemon}	
Т3	{pasta, orange, cake}	
T4	{pasta, lemon, orange, cake}	

```
confidence: I
                              support: 3
lemon ==> pasta
                              support: 3
pasta ==> lemon
                                           confidence: 0,75
                                           confidence: I
                              support: 3
orange ==> pasta
                              support: 3
                                           confidence: 0,75
pasta ==> orange
                                           confidence: I
cake ==> pasta
                              support: 2
cake ==> orange
                                            confidence: I
                              support: 2
lemon orange ==> pasta
                              support: 2
                                            confidence: I
                                            confidence: I
orange cake ==> pasta
                              support: 2
pasta cake ==> orange
                              support: 2
                                            confidence: I
                              support: 2
cake ==> pasta orange
                                            confidence: I
```

Why use the support and confidence?

• With the support:

- find patterns that are less likely to be random.
- reduce the number of patterns,
- make the algorithms more efficient.

• The **confidence**:

- measures the strength of associations
- \circ obtain an estimation of the conditional probability P($Y \mid X$).
- Warning: a strong association does not mean that there is causality!

How to find the association rules? Naïve approach

- I. Create all association rules.
- 2. Calculate their confidence and support by scanning the database.
- 3. Keep only the valid rules.

This approach is inefficient. For d items, there are:

$$\sum_{k=1}^{d-1} \binom{d}{k} \times \sum_{j=1}^{d-k} \binom{d-k}{j} = 3^d - 2^d + 1$$

possible rules.

For d = 6, this means 602 rules! For d = 100, this means 10^{47} rules! vs itemsets

For d = 6, this means 63 itemsets

Observation I

Transaction	Items in the transaction
TI	{pasta, lemon, bread, orange}
T2	{pasta, lemon}
Т3	{pasta, orange, cake}
T4	{pasta, lemon, orange, cake}

```
    lemon ==> pasta support: 3 confidence: I
    pasta ==> lemon support: 3 confidence: 0,75
    orange ==> pasta support: 3 confidence: I
    pasta ==> orange support: 3 confidence: 0,75
```

Observation I. All the rules containing the same items can be viewed as having been derived from a same frequent itemset. **e.g.** {pasta, lemon}

Observation 2

Transaction	Items in the transaction
TI	{pasta, lemon, bread, orange}
T2	{pasta, lemon}
Т3	{pasta, orange, cake}
T4	{pasta, lemon, orange, cake}

```
    lemon ==> pasta support: 3 confidence: I
    pasta ==> lemon support: 3 confidence: 0,75
    orange ==> pasta support: 3 confidence: I
    pasta ==> orange support: 3 confidence: 0,75
```

Observation 2. All the rules containing the same items have the same support, but may not have the same confidence. **e.g.** {pasta, lemon}

Observation 3

Transaction	Items in the transaction
TI	{pasta, lemon, bread, orange}
T2	{pasta, lemon}
Т3	{pasta, orange, cake}
T4	{pasta, lemon, orange, cake}

• lemon ==> pasta	support: 3	confidence: I
pasta ==> lemon	support: 3	confidence: 0,75
orange ==> pasta	support: 3	confidence: I
pasta ==> orange	support: 3	confidence: 0,75

Observation 3. If an itemset is infrequent, all rules derived from that itemset can be ignored. **e.g.** If minsup = 4, rules derived from {pasta, lemon} can be ignored, since its support is 3.

How to find association rules efficiently?

Aggrawal & Srikant (1993).

Two steps:

- 1. Discover the **frequent itemsets.**
- 2. Use the frequent itemsets to generate **association rules** having a confidence greater or equal to *minconf*.

Step 1 is the most difficult.

Thus, most studies are on improving the efficiency of Step 1.

- Each frequent itemset X
 of size k can produce 2^k-2 rules.
- A rule can be created by dividing an itemset X in two non empty subsets to obtain a rule $X' \to Y X'$.
- Then, the confidence of the rule must be calculated.

Example: using the itemset $X=\{1, 2, 3\}$, we can generate:

- $\{1,2\} \to \{3\}$
- $\{1,3\} \to \{2\}$
- $\{2,3\} \to \{1\}$
- $\{1\} \to \{2,3\}$
- $\{2\} \to \{1,3\}$
- $\{3\} \to \{1,2\}$

 $X \rightarrow Y$ where X and Y are itemsets, and $X \cap Y = \emptyset$.

Example: using the itemset $\{a, b, c\}$, we can generate:

- Generate proper subsets of {a, b, c} :
 - {a}
 - {b}
 - {c}
 - {a, b}
 - {a, c}
 - {b, c}

Use the rule to $X \rightarrow Y$ where X and Y are itemsets,

and $X \cap Y = \emptyset$.

and $X \cup Y = \{a, b, c\}$.

to form associations from subsets

- We end up with:
- $\{a\} \rightarrow \{b,c\}$
- $\{b\} \rightarrow \{a,c\}$
- $\{c\} \rightarrow \{a,b\}$
- $\{a,b\} \rightarrow \{c\}$
- $\{a,c\} \rightarrow \{b\}$
- $\{b,c\} \rightarrow \{a\}$

Example: using the itemset {a, b, d, e}: Something like this will be in exams

Calculating the confidence

Example: using the itemset $X=\{1, 2, 3\}$, we can generate:

- $\{1,2\} \to \{3\}$
- $\{1,3\} \to \{2\}$
- $\{2,3\} \rightarrow \{1\}$
- $\{1\} \to \{2,3\}$
- $\{2\} \to \{1,3\}$
- $\{3\} \to \{1,2\}$

How can we calculate the confidence of rules derived from X?

- We must know the support of all subsets of X.
- We know it already, since if X is a frequent itemset, then all its subsets are frequent!

• EVALUATING ASSOCIATIONS

Evaluating associations

- A large amount of patterns can be discovered
- How to find the most interesting patterns?
- Interestingness measures:
 - objective measures: statistical reasons for selecting patterns
 - Subjective measures: discover surprising or interesting patterns (e.g. diaper → beer is more surprising than mouse → keyboard).
- It is more difficult to consider subjective measures in the search for patterns.

Limitations of the support and confidence

If we use a high minsup threshold,

- we will find less results,
- it will be faster,
- but we may eliminate some rare patterns that are interesting.

MINING PATTERNS IN SEQUENCES

Introduction

- Association rule mining and frequent itemset mining do not consider the time or sequential ordering between events.
- Several techniques to find patterns in one or multiple sequences.

Sequential pattern mining

Input:

- A sequence database (a set of sequences)
- A minsup threshold

Output:

 All sub-sequences having a support greater or equal to minsup.

Example: minsup = 50 %

ID	sequence
ı	<{a}, {a,b,c} {a, c} {d} {c, f}>
2	<{a, d}, {c} {b, c} {a, e}>
3	<{e, f}, {a, b} {d, f} {c}, {b}>
4	<{e}, {g}, {a, f} {c} {b}, {c}>

	Pattern	support
	{a}	100 %
>	<{a}, {b} >	100 %
	<{a, b} >	50 %
	•••	•••

Sequential pattern mining

Several algorithms:

- AprioriAll
- GSP (1996)
- PrefixSpan (2001)
- SPADE
- Fast (2011)
- CM-SPAM (2014)

Sequential rule mining

Input:

- A sequence database (a set of sequences)
- A minsup threshold, a minconf threshold

Output

• Rules of the form $X \rightarrow Y$: if the items X appears then items Y will appear after.

SID	Sequence
1	$\langle \{a,b\}, \{c\}, \{f,g\}, \{g\}, \{e\} \rangle$
2	$\langle \{a,d\},\{c\},\{b\},\{a,b,e,f\} \rangle$
3	$\{\{a\}, \{b\}, \{f, g\}, \{e\}\}$
4	$\langle \{b\}, \{f,g\} \rangle$

Pattern	Sup.
$\langle \{a\} \rangle$	3
$\langle \{a\}, \{g\} \rangle$	2
$\langle \{a\}, \{g\}, \{e\} \rangle$	2
$\langle \{a\}, \{f\} \rangle$	3
$\langle \{a\}, \{f\}, \{e\} \rangle$	2
$\langle \{a\}, \{c\} \rangle$	2
$\langle \{a\}, \{c\}, \{f\} \rangle$	2
$\langle \{a\}, \{c\}, \{e\} \rangle$	2
$\langle \{a\}, \{b\} \rangle$	2
$\langle \{a\}, \{b\}, \{f\} \rangle$	2
$\langle \{a\}, \{b\}, \{e\} \rangle$	2
$\langle \{a\}, \{e\} \rangle$	3
$\langle \{a,b\} \rangle$	2
$\langle \{b\} \rangle$	4

Pattern	Sup.
$\langle \{b\}, \{g\} \rangle$	3
$\langle \{b\}, \{g\}, \{e\} \rangle$	2
$\langle \{b\}, \{f\} \rangle$	4
$\langle \{b\}, \{f,g\} \rangle$	2
$\langle \{b\}, \{f\}, \{e\} \rangle$	$\begin{bmatrix} 2 \\ 3 \end{bmatrix}$
$ \langle \{b\}, \{e\} \rangle$	
$ \langle\{c\} angle$	2
$\langle \{c\}, \{f\} \rangle$	2
$\langle \{c\}, \{e\} \rangle$	2
$\langle \{e\} \rangle$	3
$\langle \{f\} \rangle$	4
$\langle \{f,g\} \rangle$	2
$\langle \{f\}, \{e\} \rangle$	2
$\langle \{g\} \rangle$	3
({a} {e})	2

Periodic pattern mining

- Periodic Frequent Pattern Mining: discovering groups of items that appear periodically in a sequence of transactions.
- Example:

{pasta, cookies, orange juice} may be a frequent periodic pattern for a particular customer, occurring every week.

Periodicity of an itemset

A transaction database

item 1	
{a, c} 📘	
{e}	2
{ a ,b, c ,d,e}	
{b,c,d,e}	2
{ a,c ,d}	
{ a,c, e}	1
{b,c,e}	1
	{a, c} {e} {a,b,c,d,e} {b,c,d,e} {a,c,d} {a,c,e}

Periods of an itemset:

the number of transactions between each occurrence of the itemset

Example:

The periods of the itemset

{a,c} are: 1,2,2,1,1

Periodicity of an itemset

A transaction database

Transaction	item	
T ₁	{a, c}	
T ₂	{e}	2
T ₃	{ a ,b, c ,d,e}	
T ₄	{b,c,d,e}	2
T ₅	{ a,c ,d}	
T ₆	{ a,c, e}	1
T ₇	{b,c,e}	1

Periods of an itemset:

the number of transactions between each occurrence of the itemset

Example:

The periods of the itemset {a,c} are: 1,2,2,1,1

The maximum periodicity of {a,c} is 2

Definitions of periodic pattern

Nofong (April 2016):

An itemset X is periodic if:

$$\circ (p-p_1) \leq Prd(P^X) - std(P^X)$$

 $\circ Prd(X) + std(X) \leq (p + p_1)$

where:

- p is user desired periodicity threshold
- \mathbf{p}_1 is user desired difference factor
- $Prd(P^X)$ is the mean of P^X
- $std(P^X)$ is the standard deviation in P^X

Proposed for mining periodic patterns

- That have similar periodicities
- That are positively correlated (not periodic by chance)

Fournier-Viger et al (November 2016):

An itemset X is periodic if:

- ∘ $minAvg \le avgper(X) \le maxAvg$
- ∘ $Minper(X) \ge minPer$
- ∘ $Maxper(X) \le maxper$

where minAvg, maxAvg, minPer, maxPer are parameters set by the user.

Proposed to give users more flexibility in mining periodic patterns.

HIGH-UTILITY ITEMSET MINING

Limitations of frequent itemsets

- Frequent itemset mining has many applications.
- However, it has important limitations
 - many frequent patterns are not interesting,
 - quantities of items in transactions must be 0 or 1
 - all items are considered as equally important (having the same weight)

High Utility Itemset Mining

- A generalization of frequent itemset mining:
 - items can appear more than once in a transaction (e.g. a customer may buy 3 bottles of milk)
 - items have a unit profit
 (e.g. a bottle of milk generates \$1 of profit)
 - the goal is to find patterns that generate a high profit
- Example:
 - {peanuts, wine} is a pattern that generates a high profit,
 although it is rare

High-utility itemset mining

Input

_	
TID	Transaction
T_1	(a,1), (b,5), (c,1), (d,3), (e,1), (f,5)
T_2	(b,4),(c,3),(d,3),(e,1)
T_3	(a,1),(c,1),(d,1)
T_4	(a,2),(c,6),(e,2),(g,5)
T_5	(b,2),(c,2),(e,1),(g,2)

Item	a	b	c	d	e	f	g
Profit	5	2	1	2	3	1	1

minutil: a minimum utility threshold set by the user (a positive integer)

High-utility itemset mining

Input

a transaction database

TID	Transaction
T_1	(a, 1), (b, 5), (c, 1), (d, 3), (e, 1), (f, 5)
T_2	(b,4),(c,3),(d,3),(e,1)
	(a,1),(c,1),(d,1)
T_4	(a, 2), (c, 6), (e, 2), (g, 5)
T_5	(b,2),(c,2),(e,1),(g,2)

a unit profit table

Item	a	b	c	d	e	f	g
Profit	5	2	1	2	3	1	1

minutil: a minimum utility threshold set by the user (a positive integer)

Output

All high-utility itemsets (itemsets having a utility \geq minutil) For example, if minutil = 33\$, the high-utility itemsets are:

{b,d,e} 36\$	{b,c,d} 34\$
2 transactions	2 transactions
{b,c,d,e} 40\$	{b,c,e} 37 \$
2 transactions	3 transactions

Utility calculation

a transaction database

TID	Transaction
T_1	$(a,1), (b,5), (c,1), (\underline{d},3), (e,1), (f,5)$
T_2	$(b,4), (\overline{c,3}), (d,3), (\overline{e,1})$
T_3	(a,1), (c,1), (d,1)
T_4	(a, 2), (c, 6), (e, 2), (g, 5)
	(b,2),(c,2),(e,1),(g,2)

a unit profit table

Item	a	b	c	d	e	f	g
Profit	5	2	1	2	3	1	1

The **utility** of the itemset {b,d,e} is calculated as follows:

$$u(\{\mathbf{b},\mathbf{d},\mathbf{e}\}) = (5\times2)+(3\times2)+(3\times1) + (4\times2)+(2\times3)+(1\times3) = \mathbf{36\$}$$

$$utility in \qquad utility in \qquad transaction T_1 \qquad transaction T_2$$

Challenge: utility is not anti-monotonic

How to solve this problem?

- Several algorithms:
 - ∘ Two-Phase (PAKDD 2005),
 - ∘ IHUP (TKDE, 2010),
 - UP-Growth (KDD 2011),
 - ∘ HUI-Miner (CIKM 2012),
 - FHM (ISMIS 2014)
 - EFIM (2015)
 - mHUIMiner (2017)
- Key idea: calculate an upper-bound on the utility of itemsets (e.g. the TWU) that respects the **Apriori property** to be able to prune the search space.

Conclusion

- We have looked at
 - Association rules
 - Periodic Frequent Patterns
 - Sequential Patterns
 - High Utility Patterns