Persistent Betti Numbers over time

Theory, computation, and applications

"Murmurations"

Persistent Homology is an intrinsic invariant

Persistent Homology (PH) is a well-established tool in the sciences [1,2]

PH has many attractive properties beyond homology:

- 1. General: Persistence can be generalized via rank functions [5,6]
- 2. Descriptive : $d_B(\mathrm{dgm}_p(X),\mathrm{dgm}_p(Y))$ lower-bounds $d_{GH}(X,Y)^{[7]}$
- 3. Geometric: distributed $ext{dgm}$'s interpolate local geometry \leftrightarrow global topology [4]
- 4. Stable : $d_B(\operatorname{dgm}(f),\operatorname{dgm}(g)) \leq \|f-g\|_{\infty}$ between function $f,g^{[3]}$

Collections of dgm 's $\mathrm{uniquely}$ characterize simplicial complexes in \mathbb{R}^{d} [7]

PH is more then just a homology inference tool!

^{1.} Wigner, Eugene P. "The unreasonable effectiveness of mathematics in the natural sciences." Mathematics and Science. 1990. 291-306.
2. Turkeš, Renata, Guido Montúfar, and Nina Otter. "On the effectiveness of persistent homology." arXiv preprint arXiv:2206.10551 (2022).

^{3.} Cohen-Steiner, David, Herbert Edelsbrunner, and John Harer. "Stability of persistence diagrams." Discrete & computational geometry 37.1 (2007): 103-120.

^{4.} Solomon, Elchanan, Alexander Wagner, and Paul Bendich. "From geometry to topology: Inverse theorems for distributed persistence." arXiv preprint arXiv:2101.12288 (2021).

^{5.} Zomorodian, Afra, and Gunnar Carlsson. "Computing persistent homology." Discrete & Computational Geometry 33.2 (2005): 249-274

^{6.} Bergomi, Mattia G., and Pietro Vertechi. "Rank-based persistence." arXiv preprint arXiv:1905.09151 (2019).
7. Turner, Katharine, Sayan Mukherjee, and Doug M. Boyer. "Persistent homology transform for modeling shapes and surfaces." Information and Inference: A Journal of the IMA 3.4 (2014): 310-344.

Persistent Homology is a intrinsic difficult invariant

The persistence computation scales $\sim O(m^3)$ over K with m=|K| simplices

Morozov gave an counter-example showing this bound to be tight (i.e. $\Omega(m^3)$)

$$\implies \operatorname{computing} \operatorname{dgm}_p(K) \sim \Theta(m^3) = \Theta(n^{3(p+2)}) \text{ over an } n\text{-point set, for } p \geq 1$$

Simple algorithm \neq simple implementation

- 1. Computing $R=\partial V$ is memory intensive: $|V|\sim O(m^2)$
- 2. K's structure affects complexity (e.g. 2-manifolds $\sim O(n\alpha(n))^{\lfloor 2 \rfloor}$)
- 3. Theory is extensive: clearing^[3], apparent pairs^[4], cohomology^[5], ...
- 4. \mathbb{F} matters: \mathbb{Z}_2 columns \leftrightarrow 64-arity bit-trees + DeBruijin "magic" tables [6]

^{1.} Morozov, Dmitriy. "Persistence algorithm takes cubic time in worst case." BioGeometry News, Dept. Comput. Sci., Duke Univ 2 (2005).

^{2.} Dey, Tamal Krishna, and Yusu Wang. Computational topology for data analysis. Cambridge University Press, 2022.

^{3.} Chen. Chao, and Michael Kerber, "Persistent homology computation with a twist," Proceedings 27th European workshop on computational geometry, Vol. 11, 2011,

^{4.} Bauer, Ulrich. "Ripser: efficient computation of Vietoris-Rips persistence barcodes." Journal of Applied and Computational Topology 5.3 (2021): 391-423.

^{5.} De Silva, Vin, Dmitriv Morozov, and Mikael Veidemo-Johansson, "Dualities in persistent (co) homology," Inverse Problems 27.12 (2011): 124003.

^{6.} See PHAT's source: https://github.com/blazs/phat/blob/master/include/phat/representations/bit_tree_pivot_column.h

This Talk: Persistent Betti numbers over time

The persistence dgm of function f is defined by persistent Betti numbers (PBNs)

$$\mathrm{dgm}_p(f) \subset \overline{\mathbb{R}}^2 \Leftrightarrow (i,j) ext{ such that } \mu_p^{i,j}
eq 0$$

where $\mu_p^{i,j}$ is called the *multiplicity function*, defined as:

$$\mu_p^{i,j} = (eta_p^{i,j ext{-}1} - eta_p^{i,j}) - (eta_p^{i ext{-}1,j ext{-}1} - eta_p^{i ext{-}1,j})$$

$$eta_p: \mathcal{P}(X) imes \mathbb{R} imes \mathbb{R} o \mathbb{Z}_+ \implies extit{Betti curves}$$
 over 1-parameter family

$$eta_p^{i,j}: \mathcal{P}(X) imes \mathbb{R} o \mathbb{Z}_+ \implies ext{ Persistent Betti curves for fixed } i,j \in I$$

This talk will focus on relaxing $\beta_p^{i,j}$ for time-varying settings

dgm

$$eta_p^{i,j} = \dim(H_p(K_i) o H_p(K_j))$$

Outline

```
\rightarrow Background \leftarrow
   Simplicial Complexes
   Cyle, Boundary, and Chain Groups
   Filtrations and Persistent Homology
The Main Result
   \beta_n^{i,j}'s definition + computation
   A clever observation + trick
   Re-thinking chains and ranks w/ coefficients in \mathbb R
   Relaxation: definition and properties
Applications
  A (1-\epsilon)-approximation of \beta_p^{i,j}
   Signatures of time-varying systems
   Leveraging PHT theory
```

Background: Simplicial Complexes

A simplicial complex $K=\{\sigma:\sigma\in\mathcal{P}(V)\}$ over set $V=\{v_1,\ldots,v_n\}$ satisfies: $(\text{vertex})\quad v\in V\Longrightarrow\{v\}\in K$ $(\text{face})\quad \tau\subseteq\sigma\in K\Longrightarrow\tau\in K$

All computations here will be with finite simplicial complexes

Background: Boundaries

Given an oriented p-simplex $\sigma \in K$, define its p-boundary as the alternating sum:

$$\partial_p(\sigma) = \partial_p([v_0,v_1,\ldots,v_p]) = \sum_{i=0}^p (-1)^i [v_0,\ldots,\hat{v}_i,\ldots v_p]$$

We will make heavy use of oriented boundary matrices

By default, we will work generically with the simplex-wise lexicographical order

Background: The Groups

Given a pair (K, \mathbb{F}) , a p-chain is a formal \mathbb{F} -linear combination of p-simplices of K

The operator ∂_p extends linearly to p-chains via their constitutive simplices

$$c = \sum_{i=1}^{m_p} lpha_i \sigma_i, \qquad c + c' = \sum_{i=1}^{m_p} (lpha_i + lpha_i') \sigma_i$$

Given $\mathbb F$ a field and K a simplicial complex, the following groups are defined $\mathbb F$

$$C_p(K) = (\,K\,, +\,, imes\,, \,\mathbb{F}\,) \iff ext{vector space of p-chains}$$

$$B_p(K) = (\operatorname{Im} \circ \partial_{p+1})(K) \iff \mathsf{boundary} \ \mathsf{group}$$

$$Z_p(K) = (\operatorname{Ker} \circ \partial_p)(K) \iff \mathsf{cycle} \; \mathsf{group}$$

$$H_p(K) = Z_p(K)/B_p(K) \iff \text{homology group}$$

Background: Filtrations

A filtration K_{\bullet} is a family $\{K_i\}_{i\in I}$ indexed over a totally ordered index set I:

Filtered
$$\iff$$
 $K_0 \subsetneq K_1 \subsetneq \cdots \subsetneq K_m = K_{ullet}$

Essential
$$\iff$$
 $i \neq j$ implies $K_i \neq K_j$

Simplexwise
$$\iff$$
 $K_j \setminus K_i = \{\sigma_j\}$ when $j = \mathrm{succ}(i)$

Any K_ullet essential & simplexwise via condensing + refining + reindexing maps $^{[1]}$

Note here that I may be \mathbb{R}_+ or $[m]=\set{1,2,\ldots,m}$, depending on the context!

Background: Persistent Homology

Inclusions $K_i \hookrightarrow K_j$ induce linear transformations $h_p^{i,j}$ between homology groups

$$H_p(K_0) o \cdots o H_p(K_i) \underbrace{ o \cdots o}_{h_v^{i,j}} H_p(K_j) o \cdots o H_p(K_m) = H_p(K_ullet)$$

Properties of persistent homology groups:

- 1. $H_p(K_ullet)$ admits a pair decomposition $\mathrm{dgm}(K)\subseteq ar{\mathbb{R}}^2$
- 2. $\operatorname{dgm}(K)$ is unique iff $\mathbb F$ is a field
- 3. $eta_p^{i,j}$ can be read-off directly for any i,j from $\mathrm{dgm}_p(K)$
- 4. Computed via matrix decomposition $R=\partial V$

For simplicity, we will use $\partial_p^i=\partial_p(K_i)$, $Z_p^i=Z_p(K^i)$, $B_p^i=B_p(K^i)$, etc.

Outline

```
Background
   Simplicial Complexes
   Cyle, Boundary, and Chain Groups
   Filtrations and Persistent Homology

ightarrow The Main Result \leftarrow
   \beta_n^{i,j}'s definition + computation
   A clever observation + trick
   Re-thinking chains and ranks w/ coefficients in \mathbb R
   Relaxation: definition and properties
Applications
  A (1-\epsilon)-approximation of \beta_p^{i,j}
   Signatures of time-varying systems
   Leveraging PHT theory
```

$\beta_p^{i,j}$: starting with the definition

Before extending $\beta_p^{i,j}$ to the time-varying setting, first consider its definition:

$$egin{aligned} eta_p^{i,j} &= \dim(H_p(K_i) o H_p(K_j)) \ &= \dim\left(Z_p(K_i) \, / \, B_p(K_j)
ight) \ &= \dim\left(Z_p(K_i) \, / \, (Z_p(K_i) \cap B_p(K_j))
ight) \ &= \dim\left(Z_p(K_i) \, - \dim\left(Z_p(K_i) \cap B_p(K_j)
ight) \ &= \dim\left(C_p(K_i) \, - \dim\left(B_{p-1}(K_i) \, - \dim\left(Z_p(K_i) \cap B_p(K_j) \,
ight) \end{aligned}$$

Replacing the groups above with appropriate matrices / constants, we have:

$$eta_p^{i,j} = |K_i^{(p)}| - ext{rank}(\partial_p^i) - ext{rank}(\partial_p^{i,j})$$

where $\partial_p^{i,j}$ is some matrix whose columns span $Z_p(K_i)\cap B_p(K_j)...$

Computing the *persistent* Betti number $\beta_p^{i,j}$

$$\beta_p^{i,j} = \underbrace{\dim(C_p(K_i))}_{(1)} - \underbrace{\dim(B_{p-1}(K_i))}_{(2)} - \underbrace{\dim(Z_p(K_i) \cap B_p(K_j))}_{(3)}$$

Both (1) are (2) easy to obtain. Computing (3) is more subtle:

PH / reduction algorithm
$$\implies \sum_{k=1}^{j} \mathbf{1}(\mathrm{low}_{R_{p+1}}[k] \leq i)$$

Gaussian elimination
$$\Longrightarrow$$
 (see Zomorodian & Carlsson [1])

Anderson-Duffin formula
$$^{[2]} \implies P_{\mathbf{Z} \cap \mathbf{B}} = 2P_{\mathbf{Z}}(P_{\mathbf{Z}} + P_{\mathbf{B}})^{\dagger}P_{\mathbf{B}}$$

Alternative: $eta_p^{i,j}= ext{null}(\Delta_p^{i,j})$ where $\Delta_p^{i,j}$ is the persistent Laplacian $^{[4]}$

All of these rely on explicit reductions or expensive projectors. Not great!

^{1.} Zomorodian, Afra, and Gunnar Carlsson. "Computing persistent homology." Discrete & Computational Geometry 33.2 (2005): 249-274.

^{2.} Ben-Israel, A., and A. Charnes. "On the intersections of cones and subspaces." Bulletin of the American Mathematical Society 74.3 (1968): 541-544.

3. Neumann, J. Von. "Functional Operators, Vol. II. The Geometry of Orthogonal Spaces, Annals of Math." Studies Nr. 22 Princeton Univ. Press (1950).

^{4.} Mémoli, Facundo, Zhengchao Wan, and Yusu Wang. "Persistent Laplacians: Properties, algorithms and implications." SIAM Journal on Mathematics of Data Science 4.2 (2022): 858-884.

A clever observation

Let $R=\partial V$. Define the submatrices $R^{i,j}$, $R^{\bar{i},j}$, $\partial^{i,j}$, $\partial^{\bar{i},j}$ as follows:

The Pairing Uniqueness Lemma^[2] can be used to show:

$$\mathrm{low}_R[j] = i \iff r_R(i,j)
eq 0 \iff r_\partial(i,j)
eq 0 \iff \mathrm{rank}(R^{ar{i},j}) = \mathrm{rank}(\partial^{ar{i},j})$$
 where $r_A(i,j) := \mathrm{rank}(A^{ar{i}-1,j}) - \mathrm{rank}(A^{ar{i},j}) + \mathrm{rank}(A^{ar{i},j-1}) - \mathrm{rank}(A^{ar{i}-1,j-1})$

Take-a-way: $\operatorname{rank}(R^{\bar{i},j})$ can be deduced from $\operatorname{rank}(\partial^{\bar{i},j}),$ for any $1 \leq i < j < m$

This was the motivating exploit in first output-sensitive persistence algorithm [1,2]

A clever trick

Pairing uniqueness $^{[1]} \implies {
m rank}(R^{ar{i},j}) = {
m rank}(\partial^{ar{i},j})$, for any $1 \leq i < j < m$

Dey & Wang show^[2] have shown the following:

$$egin{aligned} \dim(Z_p^i \cap B_p^j) &= \dim(B_p^j) - \#(\operatorname{col}_{R_{p+1}}[k]
eq 0 \mid k \in [j], \ \operatorname{low}_{R_{p+1}}[k] > i) \ &= \operatorname{rank}(R_{p+1}^{j,j}) - \operatorname{rank}(R_{p+1}^{ar{i},j}) \ &= \operatorname{rank}(\partial_{p+1}^{j,j}) - \operatorname{rank}(\partial_{p+1}^{ar{i},j}) \end{aligned}$$

Let I_p^i be the diagonal matrix with whose first i entries are 1. We can now write:

$$eta_p^{i,j} = ext{rank}(ext{I}_p^i) - ext{rank}(\partial_p^{i,i}) - ext{rank}(\partial_{p+1}^{j,j}) + ext{rank}(\partial_{p+1}^{i,j})$$

Thus, we may write $\beta_p^{i,j}$ completely in terms of unfactored matrices

Parameterizing elementary p-chains

Suppose we fix $\mathbb{F}=\mathbb{R}$ and replace chain values with smoothstep functions $S_{\epsilon}(x)$

Advantage: If f varies continuous one-parameter family, $\hat{\partial}_p$ also varies continuously

A generic approximation of rank

Moreover, replace $\operatorname{rank}(A)$ with $\Phi_{\epsilon}(A)$, defined for some fixed $\epsilon>0$ as:

$$\Phi_\epsilon(A) = \mathrm{tr}\left[A^T(AA^T + \epsilon I)^{-1}A
ight] = \sum_i^n rac{\sigma_i^2}{\sigma_i^2 + \epsilon}, \quad ext{where } \sigma_i^2 := \lambda_i(AA^T)$$

Observe $\Phi_{\epsilon}(A) \leq \operatorname{rank}(A)$, with equality when $\epsilon = 0$, yielding the final relaxation:

$$\hat{eta}_p^{i,j} = \Phi_{\epsilon}(extbf{I}_p^i) - \Phi_{\epsilon}(\hat{\partial}_p^{i,i}) - \Phi_{\epsilon}(\hat{\partial}_{p+1}^{j,j}) + \Phi_{\epsilon}(\hat{\partial}_{p+1}^{ar{i},j})$$

We use the spectrum of $\hat{\partial}_p^*$ is used to encode geometric information from f

Ex: Let $\delta_X = (X, d_X(\cdot))$, $d_X : X imes X imes \mathbb{R}$ be a *dynamic metric space*, and let:

$$\hat{eta}_{p}^{i,j}(t) = \left(\dim \circ \mathrm{H}_{p}^{i,j} \circ \mathrm{Rips} \circ \delta_{\mathcal{X}}
ight)(t)$$

Observe that $\hat{eta}^{i,j}_p(t) \in \mathbb{R}$ varies continuously with t—a time-varying relaxation!

Basic properties of $\hat{eta}_p^{i,j}$

Observe $\Phi_\epsilon(A) = \sum_{i=1}^n \sigma_i^2/(\sigma_i^2 + \epsilon) \leq \mathrm{rank}(A)$, with equality obtained when $\epsilon = 0$

1.
$$\hat{eta}_p^{i,j} o eta_p^{i,j}$$
 as $\epsilon o 0,\, \omega o 0$

2. There \exists an $\epsilon^*>0$ such that $\lceil\hat{eta}_p^{i,j}\rceil=eta_p^{i,j}$ for all $\epsilon\in(0,\epsilon^*]$

 $\hat{eta}_p^{i,j}$ respects several of $eta_p^{i,j}$ monotonicity properties approximately

$$orall \ i < k, \ eta_p^{i,j} \le eta_p^{k,j} \implies \hat{eta}_p^{i,j} + \delta_\epsilon(k-i) \le \hat{eta}_p^{k,j}$$

$$orall \ j < l, \, eta_p^{i,j} \geq eta_p^{i,l} \implies \hat{eta}_p^{i,j} + \delta_\epsilon(l-j) \leq \hat{eta}_p^{i,l}$$

 $\hat{eta}_p^{i,j}$ also satisfies and ϵ -approximate version of jump monotonicity [1]

Persistence measures

Pairs (i,j) in dgm's can also be defined as limiting points w/ non-zero multiplicity

$$\mu_p^{i,j} = \min_{\epsilon>0} \left\{ eta_p^{i+\epsilon,j-\epsilon} - eta_p^{i-\epsilon,j-\epsilon} - eta_p^{i+\epsilon,j+\epsilon} + eta_p^{i-\epsilon,j+\epsilon}
ight\}$$

PBN's also yield "counting measures" in $\overline{\mathbb{R}}^2$, due to their additivity under splitting:

 $\hat{\mu}_{\epsilon}$ also obeys inclusion/exclusion—can be interpreted as a <u>persistence measure</u>

Outline

```
Background
   Simplicial Complexes
   Cyle, Boundary, and Chain Groups
   Filtrations and Persistent Homology
The Main Result
  \beta_p^{i,j}'s definition + computation
  A clever observation + trick
   Re-thinking chains and ranks w/ coefficients in \mathbb R
   Relaxation: definition and properties
\rightarrow <u>Applications</u> \leftarrow
  A (1-\epsilon)-approximation of eta_p^{i,j}
   Signatures of time-varying systems
```

Leveraging PHT theory

$(1-\delta)$ -approximation scheme for $\hat{eta}_p^{i,j}$

The fixed parameters (ω,ϵ) completely determine the closeness of $|\hat{eta}_p^{i,j}-eta_p^{i,j}|$

The Lanczos method [1,2] computes q-largest $\sigma^2(A)$ of a sparse m imes m matrix A in:

$$O(m \cdot T_m(A) + q^2 \cdot m)$$

where $T_m(A)$ is complexity of $v\mapsto Av$. Note ∂_* is highly structured, namely:

$$egin{aligned} & \operatorname{nnz}(\partial_p) \leq (p+1) m_p \sim O(m_p \log(m_p)) \ & v \mapsto \langle \partial_p, v
angle ext{ takes } \sim O(\kappa_p) ext{ time where } \kappa_p = \sum \deg_p(\sigma_p) \ & \Delta_p = \operatorname{tr}(\partial_p \partial_p^T) = \sum \sigma_i^2(\partial_p) ext{ can be determined in } O(m_p) ext{ time} \end{aligned}$$

We deduce a $(1-\delta)$ -approximation by computing the q-largest σ_i^2 's such that:

$$\left\lceil \Delta_p^q/\Delta_p^{m_p}
ight
ceil \geq (1-\delta)$$

The Persistent Homology Transform

The *PHT* characterizes the set of embeddeable s.c.'s in \mathbb{R}^d via a collection of dgm 's

$$ext{PHT}(M): S^{d-1} o \mathcal{D}^d \ v \mapsto (X_0(M,v), X_1(M,v), \dots, X_{d-1}(M,v))$$

where \mathcal{D}^d is the space of dgm_p 's up to dimension p=d-1

The PHT is *injective* \Longrightarrow dgm-distances (e.g. integrated d_B) are metrics

The injectivity PHT theory allows for comparison of non-diffeomorphic shapes

Applications: Leveraging PHT

Pro: PHT + it's associated distance metrics tend to do well at shape discrimination [1]

Con: Many dgm's + $\int d_B(\dots)$ are highly non-trivial to compute

- (1) Choose a set rectangles $\mathcal{R} = \{r_1, r_2, \dots, r_k\}$ in \mathbb{R}^2 representing "features"
- (2) Compute multiplicities $\mathbf{u}_p(X)=\{\hat{\mu}_p^\epsilon(r_1),\hat{\mu}_p^\epsilon(r_2),\dots,\hat{\mu}_p^\epsilon(r_k)\}$ for shapes X, Y
- (3) Define $\hat{d}_{\mathcal{R}}(X,Y) = \|\mathbf{u}_p(X) \mathbf{u}_p(Y)\|$, up to an optimal rotation $^{[1]}$

We hope to do have more comparisons in the future

Thank you

Properties of the rank function

The rank of a linear map Φ is given as the dimension of its image:

$$\operatorname{r}(\Phi) = \operatorname{rank}(\Phi) = \dim(\operatorname{Im}(\Phi))$$

When $A, B \in \mathcal{M}_{(n \times n)}(\mathbb{R})$, the rank function has many convenient properties:

Let's see if we can apply some of these.