

Budapesti Műszaki és Gazdaságtudományi Egyetem Elektronikus Eszközök Tanszéke

CMOS áramkörök

Statikus CMOS áramkörök jellemzői Dinamikus CMOS áramkörök Transzfer kapus logikák Vezetékhálózat kialakítása

Dr. Bognár György, Dr. Poppe András

A CMOS alapkapuk főbb jellemzői

... az inverterek példáján keresztül

- Transzfer karakterisztika:
 - kimeneti feszültség a bemeneti feszültség függvényében:

A kimeneti jel a bemeneti jel (logikai) invertáltja

transzfer karakterisztikája

A CMOS inverter karakterisztikája I.

KÉT alapeset (a tápfeszültségtől és a tranzisztorok küszöbfeszültségétől (V_{Tn}-től és V_{Tp}-től) függően)

1. kis tápfeszültség:

 $V_{DD} < V_{Tn} + |V_{Tp}|$ egyszerre csak az egyik tranzisztor vezet

2. nagyobb tápfeszültség:

 $V_{DD} > V_{Tn} + |V_{Tn}|$ átkapcsoláskor egyszerre vezet mindkét tranzisztor

A CMOS inverter karakterisztikája II.

 Kis tápfeszültség: V_{DD}< V_{Tn}+ /V_{Tp}/ (U_{RF}=U_{GS})

a karakterisztika:
$$U_{KI} = \begin{cases} 0 & ha......U_{BE} > V_{DD} - \left| V_{Tp} \right| \\ határozatlan & ha...V_{Tn} < U_{BE} < V_{DD} - \left| V_{Tp} \right| \\ V_{DD} & ha......U_{BE} < V_{Tn} \end{cases}$$

Zavarvédettség:

- Széles U_{in} tartományhoz azonos U_{out} érték tartozik
- A karakterisztika 3 szakaszból áll.
- A két szélső szakasz laposan fut, azaz a bemeneten lévő feszültségváltozások csak nagyon kis változást okoznak a kimeneten

L és H tartományok

ideális és valós inverter transzfer karakterisztikája

- Jel regeneráló képesség
 - a középső szakasz meredekségétől függ
 - 1. U_1 egy "rossz" logikai 0 jel.
 - Az első kapu kimenete U₂ már közelebb áll az elfogadható logikai 1 szinthez.
 - A második kapu kimenete, U₃ már "jó" logikai 0 szint

ideális és valós inverter transzfer karakterisztikája

- Jel regeneráló képesség
 - Alapjel + rálapolódott nagyfrekvenciás zavar

$$U_{I} = 0V, U_{H} = 5V$$

U₃-nak láthatóan a szintje is és a jelalakja is regenerálódott!

■ Jelterjedési idő (propagation delay) – kapukésleltetés (gate delay)

t_{pd} nehezen definiálható, ráadásul a fel és lefutáshoz tartozó késleltetés különböző lehet (pl. nMOS inverterek esetén)

Párkésleltetési idő

- Tegyük fel, hogy a jel egy hosszú, egyforma inverterekből álló láncon terjed. Elegendően sok inverter után a jelformát csak az inverterek belső tulajdonságai határozzák meg.
- A jel 2 inverter után megegyezik, a késleltetés pedig t_{pdp}

- Párkésleltetési idő mérése
- Ring oszcillátor (gyűrűs rezgőkör / rezgéskeltő)
 - Páratlan számú inverter láncba kapcsolva, nincs stabil állapota, oszcillál.
 - T=n·t_{pdp}

- Komparálási feszültség
 - Az a határ, ami alatt 0 szintté és ami felett logikai 1 szintté regenerálja az inverterlánc a jelet.
 - Az U_{in}=U_{out} egyenes és a karakterisztika metszéspontja

CMOS inverter

Méretezés szimmetrikus működésre

Ha $U_{BE}=U_K$ komparálási feszültség, a két tranzisztor árama megegyezik: $K_n(U_K-V_{Tn})^2=K_p(V_{DD}-U_K-\left|V_{Tp}\right|)^2$

$$K_{X} = \left(\frac{W}{L}\right)_{Y} \frac{\mu_{X}C_{ox}}{2} \qquad U_{GSp} = V_{DD} - U_{K}$$

 $U_{GSn} = U_{K}$

$$U_{K} = \frac{V_{DD} - \left| V_{Tp} \right| + V_{Tn} \sqrt{K_{n} / K_{p}}}{1 + \sqrt{K_{n} / K_{p}}}$$

A komparálási feszültség a két tranzisztor áramállandójának az arányától függ. Ha a komparálási feszültséget a tápfeszültség felére szeretnék beállítani, és $V_{Tn} = |V_{Tp}|$, akkor $K_n = K_p$ -t kell beállítani!

$$\left(\frac{W}{L}\right)_{P} = 2..2.5 \times \left(\frac{W}{L}\right)_{n}$$
 mivel a lyukak mozgékonysága kb. 2 ... 2.5x kisebb

A komparálási feszültség a W/L arányokkal változtatható

- Logikai szinttartományok
 - A logikai 0 és 1 szint azon feszültségtartománya, amin belül - adott zavarszintek mellett - az áramkör biztonságosan működik.

PÉLDA: 74HC00, $V_{dd}=3V$, $U_{LM}=0.9V$ $U_{Hm}=2.1V$

Kritikus feszültségek:

U_{LM}, a logikai 0 szint maximuma

U_{Hm}, a logikai 1 szint minimuma

A CMOS inverter – dinamikus viselkedése

- Kapcsolási idők számítása
 - Mitől függenek?
 - a kimenet árammeghajtó képességétől
 - a kimenetet terhelő kapacitástól

• Ha a két tranzisztor pontosan komplementer karakterisztikájú, a kapcsolási idők (fel- és lefutás) is egyformák lesznek ($K_n = K_p$ és $V_{Tn} = |V_{Tp}|$)

MOS tranzisztor kapacitásai

- A belső kapacitások
 - S-G G-D átlapolási kapacitások
 - a csatorna kapacitása
 - a pn átmenetek kapacitásai

CMOS áramkörök parazita és szórt kapacitásai

- Meghajtó fokozat tranzisztorainak belső kapacitásai
- Következő fokozat tranzisztorainak bemeneti kapacitásai
- Vezetékezés kapacitása

- intrinsic MOS transistor capacitances
- wiring (interconnect) capacitance
- extrinsic MOS transistor (fanout) capacitances

A CMOS inverter – dinamikus viselkedése

- Kapcsolási idők számítása
 - azonos kapcsolási idők, integrálás a kapacitás szélső feszültség értékeire:

$$t_{l} = \int_{V_{DD}}^{V_{LM}} \frac{C_{L}}{I_{D}} dU$$

Ha

$$I_D \approx K(V_{DD} - V_T)^2$$

akkor

$$t_{l} = \frac{C_{L}(V_{DD} - V_{LM})}{K(V_{DD} - V_{T})^{2}}$$

V_{LM} – a terhelő kapacitás minimális feszültsége

Csökkenthető a tápfeszültség vagy W/L növelésével!

- Statikus fogyasztás nincs, mert nincs statikus áram
- Átkapcsoláskor van dinamikus fogyasztás, amely 2 részből áll:
 - Egymásba vezetés:
 - A bemenő jel felfutásának egy szakaszában mindkét tranzisztor egyszerre vezet (főleg nagy $V_{\rm DD}$ estén), ha

$$V_{Tn} < U_{BE} < V_{DD} - |V_{Tp}|$$

- Töltés-pumpálás:
 - Jelváltásokkor a kimeneten lévő C_L terhelést 1-re váltáskor a p
 tranzisztoron keresztül tápfeszültségre töltjük, majd 0-ra váltáskor az n
 tranzisztoron keresztül kisütjük.

Töltést pumpálunk a tápból a föld felé.

Egymásba vezetés:

A bemenő jel felfutásának egy szakaszában mindkét tranzisztor egyszerre vezet, ha $V_{Tn} < U_{BF} < V_{DD} - V_{Tn}$

• az átfolyó töltés: $\Delta Q = bt_{UD}I_{MAX}$ ahol t_{UD} az idő, amíg áram folyik, b egy konstans, ami az átkapcsoló jel alakjától függ. b ≈ 0.1 -0.2

$$P = f \cdot \Delta Q \cdot V_{DD} = f \cdot V_{DD} \cdot b \cdot t_{UD} \cdot K \cdot (V_{DD} / 2 - V_T)^2 \qquad \mathbf{P} \sim \mathbf{f} V_{DD}$$

- Töltéspumpálás:
 - Jelváltásokkor a kimeneten lévő C, terhelést
 - logikai 1-re váltáskor a p tranzisztoron keresztül tápfeszültségre töltjük,
 - majd 0-ra váltáskor az n tranzisztoron keresztül kisütjük.

$$P = f \cdot \Delta Q \cdot V_{DD}$$

$$\Delta Q_L = C_L V_{DD}$$

$$P_{cp} = f C_L V_{DD}^2$$

A töltéspumpálás teljesítmény igénye arányos a frekvenciával és a tápfeszültség négyzetével.

A teljes fogyasztás a 2 összege (ha egymásba vezetés is van), arányos a frekvenciával és a tápfeszültség 2. ill. 3. hatványával.

- Fogyasztás csökkentés V_{DD} csökkentésével:
 - Négyzetesen csökken a fogyasztás

$$P_{cp} = f C_L V_{DD}^2$$

- Növeli a kapu késleltetést (gate delay).
- Egyre érzékenyebbé válik az eszköz DC karakterisztikája a technológiai szórásokra, a hőmérséklet változásra, stb.
- Csökken a logikai swing, így nő a zavarérzékenység.
 - SCL esetén differenciális jelterjedéssel védekeznek!
- $V_{DD MIN} > 2..4 \cdot (kT/q)$
 - termikus zaj összemérhető a valós jellel, így megbízhatatlan működést eredményezne!

CMOS áramkörök fogyasztásának összetevői

- Dinamikus összetevők minden kapcsolási eseménykor
 - egymásbavezetés, töltéspumpálás
 - eseménysűrűséggel arányos:
 - órajel frekvencia
 - az áramkör aktivitása

- Parazita jelenségek miatt további összetevők:
 - küszöb alatti áramok (Megoldás: Multi V_T technika, SOI)
 - pn-átmenetek szivárgási árama (leakage) jelentős (Megoldás: SOI)
 - szivárgás a gate dielektrikumon keresztül (Megoldás: HIGH-K)

Logikai áramköri családok jellemzése

- Teljesítmény-késleltetés szorzat (Pτ) Power Delay Product
 - mindkét érték jobb minőségre utal, így a szorzat egy áramkörtípus minőségi mérőszámának tekinthető.
 - Szemléletesen: az a minimális energia, ami 1 bit információ 1 feldolgozási lépéséhez szükséges.

CMOS alapkapuk

Dinamikus CMOS áramköri logikák

Dinamikus MOS logikák

- Elv: 2 fázisú működés
 - egy kapcsoló pMOS tranzisztorral egy kapacitást feltöltünk VDD feszültségre: előtöltés vagy pre-charge fázis
 - következő fázisban VDD-ről leválasztódik a kapacitás és egy nMOS logikai hálózaton keresztül a kapacitást (a bemenetek függvényében) kisütjük vagy töltve hagyjuk: ez a kiértékelés vagy evaluation fázis

Dinamikus MOS logikák

Két fázisú működés:

Precharge $(\Phi = 0)$ Evaluate $(\Phi = 1)$ Ha egy dinamikus kapu kimenetét kisütöttük, az nem süthető ki újból amíg egy *pre-charge* periódusban újra fel nem töltjük

Dinamikus kapuk főbb jellemzői

- A logikai funkciót a PDN valósítja meg
 - 2N tranzisztor helyett N+2 tranzisztor elégséges
 - kisebb helyfoglalás mint statikus CMOS-nál
- Geometriai arányok (p és n csatornás tr. között) nem izgalmasak a működés szempontjából
- Csak dinamikus teljesítményfelvétel (nincs egymásba vezetés, csak töltés-pumpálás)
- Előtöltő fázisjel kell
- Layout kialakítás egyszerűbb

Transzferkapuk alkalmazása logikai kapcsolásokban

Transzfer kapuk használata

- A hagyományos kivitelű statikus CMOS teljes összeadó nehezen áttekinthető, sok tranzisztort igényel.
- Egyszerűsítés: transzfer kapu (transmission gate) használata
 - ne csak a VDD-GND áramút kialakításával hozzunk létre logikai funkciót
 - jelútba is beiktathatunk kapcsolót

"Lényegében egy analóg kapcsoló digitális áramkörben..."

Transzfer kapus logikák jellemzői

CMOS-ban: ellenütemben vezérelt n és p csatornás tranzisztorok

- Transzfer kapus logikák előnyei a statikus CMOS megvalósításhoz képest:
 - kevesebb tranzisztor kell,
 - megfordítható a jelút,
 - nincs statikus fogyasztás DE
 - soros ellenállás számít: négynél több transzfer kaput nem köthetünk sorba

Transzfer kapus áramkörök

- Tipikus: XOR, mux/demux
 - XOR kapu:

4 bemenetű MUX:

Transzfer kapus áramkörök

Statikus CMOS teljes összeadó

Mikroelektronika BMEVIEEAB01

Transzfer kapus áramkörök

Teljes összeadó transzfer kapukkal

Integrált áramkörök tervezése

Vegyesjelű tervezési lépéssor

Mixed-Signal Design Flow

A design flow fogalma

- Adott tervezőrendszerben, adott stílusú tervezés (pl. analóg, digitális, standard cellás, vegyes-jelű stb.) esetén bejárandó tervezési útvonal.
- Ami meghatározza, hogy mely programok, pontosan milyen sorrendben használandók.
 - Előírt program-használati sorrend
 - Kötelezően előállítandó file-ok (reprezentációk vagy view-k)
 - Ezek egységes, következetes, konzisztens előállítása.

https://www.einfochips.com/blog/asic-design-flow-in-vlsi-engineering-services-a-quick-guide/

Analóg IC design flow

P. E. Allen et al.,
 CMOS Analog Circuit Design,
 Oxford Univ. Press, 2002

Teljes SoC design flow

