Problem 1 (5.2.1). Find the isomorphism classes of Abelian groups of order 200. Proof. \Box
Problem 2 (5.2.2). Find the invariant factors and the elementary divisors of the Abelian group $G = \mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_9 \times \mathbb{Z}_5 \times \mathbb{Z}_5$
\square
Problem 3 (5.2.4).
<i>Proof.</i> Let G be a finite group and p a prime factor of $ G $. Prove that the number of order p elements in G is congruent to -1 modulo p .
Problem 4 (5.3.2). Let G be a finite group and N_1, \ldots, N_n normal subgroups of G such that $G = N_1 \cdots N_n$ and $ G = N_1 \cdots N_n $. Prove that G is the internal direct product of G . Proof.
Problem 5 (5.5.1). Let G be a group, H, K subgroups of G, and $H \subseteq G$. Let $\varphi : K \to Aut(H)$ be the homomorphism associated with the conjugate action of K on H. Then the following statements are equivalent:
1. $\phi: H \rtimes_{\varphi} K \to G$ defined by $\phi(h,k) = hk$ is an isomorphism.
2. Every element $g \in G$ can be written as $g = hk$ with $h \in H$ and $k \in K$ in a unique way.
3. $G = HK \text{ and } H \cap K = \{e\}.$
Proof.
Problem 6 (5.5.4). Proof. (a) For any positive integer n , prove that $\operatorname{Aut}(\mathbb{Z}_n) \cong \mathbb{Z}_n^*$.
(b) For any primes $p < q$, if $p q-1$, there exists a monomorphism $\varphi : \mathbb{Z}_p \to \operatorname{Aut}(\mathbb{Z}_q)$ and $\mathbb{Z}_q \rtimes_{\varphi} \mathbb{Z}_p$ is a non-abelain group of order pq .
Problem 7 (5.5.11(book)). Classify groups of order 28 (there are four isomorphism types). Proof. □