

22-option

QTM 385 Quantitative Finance

Lecture 22: Options

Instructor: Ruoxuan Xiong Suggested reading: Investments Ch 20

Question from Google form

- Question: Could you explain more about why duration need not always increase with time to maturity?
- Answer: Duration need not always increase with time to maturity.
 Example, 3% coupon bond with YTM 15% (deep discount bond)

Question from Google form

 Question: Could you explain more about why duration need not always increase with time to maturity?

 Answer: This happens for deep discount bond (3% bond with YTM 15%)

		payment	1 SNC covenor	(Discount rate	-	times			payment	1.5% coupon	(Discount rate		times
	Period	(Years)		7.5% per per V		Column (F)		Period	(Years)		7.5% per per V		Column (F)
1% coupon b		0.5			0.1148		8% coupon b		0.5	15	13.0435	0.1106	
in coupon o	2	0.5	15		0.0998		en coupon o		1	15	11.3422	0.0961	
	- 4	1.5			0.0996			- 1	1.5		9.8627	0.0836	
		1.3	15		0.0755			- 1		15	8.5763	0.0727	
	5	2.5			0.0657		Sum				7.4577	0.0632	
um			15		0.0657		Jum			15	6.4849	0.0550	
	6 7				0.0371						5.6391	0.0478	
									-	15	4.9035	0.0416	
			-		0.0432					15	4.2639	0.0361	
	9				0.0375			10			3.7078	0.0314	
	10				0.0326					15			
	11				0.0284			11		15	3.2241 2.8036	0.0273	
	12		10.7		0.0247			17		15		0.0238	
	13				0.0215			13			2.4379	0.0207	
	14				0.0187			14		15	2.1199	0.0180	
	15	7.5			0.0162			15			1.8434	0.0156	
	16			1.6030	0.0141	0.1129		10		15	1.6030	0.0136	
	17	8.5	15	1.3939	0.0123	0.1043		17			1.3939	0.0118	
	18	9	15	1.2121	0.0107	0.0960		18		15	1.2121	0.0103	
	19	9.5	15	1.0540	0.0093	0.0881		15			1.0540	0.0089	
	20	10	15	0.9165	0.0081	0.0807		20		15	0.9165	0.0078	
	21	10.5	15	0.7970	0.0070	0.0737		21			0.7970	0.0068	
	22	11	15	0.6930	0.0061	0.0671		22		15	0.6930	0.0059	
	23	11.5	15	0.6026	0.0053	0.0610		23		15	0.6026	0.0051	
	24	12	15	0.5240	0.0046	0.0554		24	12	15	0.5240	0.0044	
	25				0.0040			25			0.4557	0.0039	
	26			0.3962	0.0035	0.0453		26			0.3962	0.0034	
	27				0.0030			27	13.5	15	0.3445	0.0029	0.03
	28				0.0026			28	14	1015	20.2734	0.1718	2.40
	29				0.0023			25		0	0.0000	0.0000	0.00
	30				0.1350			30	15	0	0.0000	0.0000	0.00
				113.5927	1.0000						117.9764	1.0000	5.31
							annual YTM	0.15					
nnual YTM	0.15		_				annual rese	0.13		1.4	1 1		
		1.	5 year	bond						14 yea	r bond		

American option vs European options

- American option: gives its holder the right to purchase/sell an asset for a specified price, called the exercise or strike price, on or before some specified expiration date
 - Most traded options in the United States
- European call: allows for exercise only on the expiration date
- American options are generally more valuable than European options
- Premium: Purchase price of the option
- Holders of call options: Pays premium to hold the option now
- Sellers/Writers of call options: Receives premium income now

Call option

- Call option: gives its holder the right to purchase an asset for a specified price, called the exercise or strike price, on or before (or only on) some specified expiration date
- Stock price at expiration time $T: S_T$
- Exercise price: *X*

Values of call option at expiration

• The value of the call at expiration to call holder equals

$$payoff \ to \ call \ holder = \begin{cases} S_T - X & if \ S_T > X \\ 0 & if \ S_T \le X \end{cases}$$

- Example: You hold a call option on FinCorp stock with an exercise price of X = \$100. At expiration is
 - $S_T = 90 : Option value = 0, profit = 0 14 = -14
 - $S_T = 100 : Option value = 0, profit = -14
 - $S_T = 110 : Option value = 10, profit = -4
 - $S_T = 120 : Option value = 20, profit = 6
- Purchasing the call is a bullish strategy (bet on stock price increase)

Values of call option at expiration

• Conversely, the value to the call writer is
$$payoff\ to\ call\ writer = \begin{cases} -(S_T - X) & if\ S_T > X \\ 0 & if\ S_T \leq X \end{cases}$$

- Example: You write a call on FinCorp stock with an exercise price of X = \$100. At expiration is
 - $S_T = 90 : Option value = 0, profit = 14
 - $S_T = 100 : Option value = 0, profit = 14
 - $S_T = 110 : Option value = 10, profit = 4
 - $S_T = 120 : Option value = 20, profit = -6
- Selling the call is a bearish strategy (bet on stock price decrease)

Terminology for option values

- In the money: The exercise of an option produces a positive cash flow
 - E.g., exercise price of a call (e.g., \$100) lower than the market price (e.g., \$120)
- Out of the money: The exercise of an option produces a negative cash flow
 - E.g., exercise price of a call (e.g., \$100) higher than the market price (e.g., \$90)
- At the money: The exercise price and asset price are equal

Put option

- Put option: gives its holder the right to sell an asset for a specified price, called the exercise or strike price, on or before (or only on) some specified expiration date
- The value of the put at expiration to put holder equals $payoff\ to\ put\ holder = \begin{cases} 0 & if\ S_T > X\\ X S_T & if\ S_T \leq X \end{cases}$
- Example: You hold a put option on FinCorp stock with an exercise price of X = \$100. At expiration is
 - $S_T = 80 : Option value = 20
 - $S_T = 90 : Option value = 10
 - $S_T = 100 : Option value = 0
 - $S_T = 110 : Option value = 0

Investments with options

- Consider three strategies with cost \$10,000
 - Strategy A: Invest entirely in stock. Buy 100 shares, each selling for \$100
 - Strategy B: Invest entirely in at-the-money call options. Buy 1,000 calls, each selling for \$10

• Strategy C: Purchase 100 call options for \$1,000. Invest your remaining \$9,000 in 1-year T-bills, to earn 3% interest

0.0%

-100.0

-7.3

5.0%

-50.0

-2.3

10.0%

0.0

2.7

15.0%

50.0

20.0%

100.0

12.7

-5.0%

-100.0

-7.3

80	
60	
40	/ /
€ 20 -	
etu o	
Rate of Return (%)	88 88 99 99 99 99 99 99 99 99 100 100 100 100
age –40 –	. / /
-60	/
-80	A: All Stocks
-100	C: Call Plus Bills
-120 [⊥]	

Portfolio A: All stock

Portfolio B: All options

Portfolio C: Call plus T-bills

Options for speculation and risk hedging

- Options can be used by speculators as effectively leveraged stock positions (like portfolio B, large negative or positive returns)
- Options can be used by investors who desire to tailor their risk exposures in creative ways, e.g., limitation on downside risk (like portfolio C)

Protective put

- An unlimited variety of payoff patterns can be achieved by combining puts and calls with various exercise prices
- Protective put: *Invest* in stock (stock price at time 0: S_0) and *purchase a put* option on the stock (cost P)
- Suppose the strike of the put is \$100
- At expiration, if $X = S_T = \$97$, then the put is worth $X S_T = \$3$ and portfolio value is $S_T + (X S_T) = \$97 + \$3 = \$100$
- If stock is worth $S_T = \$104$, the put is worth \$0. the portfolio value is $S_T + 0 = \$104$

	$S_T \leq X$	$S_T > X$
Stock	S_T	S_T
+ Put	$X - S_T$	_ O
Total	X	S_T

Protective put as portfolio insurance

- · Protective put provides a form of portfolio insurance
- The cost of the protection is that if the stock price increases, your profit
 is reduced by the amount you spent on the put, which turned out to be
 unneeded
- Derivative securities can be used effectively for risk management

The put-call parity relationship

- Protective put: *invest* in stock and *purchase a put* with exercise price X
- Call-plus-bills portfolio: purchase a risk-free zero-coupon bond with face value X and hold a call with exercise price X
- Two portfolios have the same payoff: provide a guaranteed minimum payoff and unlimited upside potential
- Their cost should be the same

	$S_T \leq X$	$S_T > X$
Value of call option	0	$S_T - X$
Value of zero-coupon bond	×	X
Total	X	Sr

The put-call parity relationship

- The cost of the protective put is $S_0 + P$
- The cost of the call-plus-bills is $C + X/(1 + r_f)^T$
- Their cost should be the same, so the put-call parity theorem states

$$C + \frac{X}{\left(1 + r_f\right)^T} = S_0 + P$$

	$S_T \leq X$	$S_T > X$
Value of call option	0	$S_T - X$
Value of zero-coupon bond	X	X
Total	X	Sr

Question

• Question: Suppose the current stock price is $S_0 = \$110$, 1-year expiration call with exercise price X = \$105 sells at C = \$17 and 1-year expiration put with exercise price X = \$105 sells at P = \$5. Suppose the risk-free interest rate is 5%. Is there an arbitrage opportunity?

