Mining Subgroups with Exceptional Transition Behavior

KDD'16

slides by Pedro O.S. Vaz de Melo

Introduction

- Exceptional Model Mining
 - a generalization of the classic subgroup discovery task
 - framework that identifies patterns which contain unusual interactions between multiple target attributes
 - it emphasizes the detection of easy-to-understand subgroups

Objective

- Apply exceptional model mining to discover interpretable subgroups with exceptional transition behavior
- Applications
 - a transition model could show that people either move within their direct neighborhood or along main roads
 - identify subgroups of people (such as "male tourists from France")
 or subsegments of time (such as "10 to 11 p.m.") that exhibit
 unusual movement characteristics, e.g., tourists moving between
 points-of-interest or people walking along well-lit streets at night
 - identify subgroups of webusers with unusual navigation behavior or subgroups of companies with unusual development over time

Contributions

- a new method that enables mining subgroups with exceptional transition behavior by introducing first-order Markov chains as a novel model class for exceptional model mining
- an interestingness measure that quantifies the exceptionality of a subgroup's transition model
- a method to find subgroups specifically matching (or contradicting) given hypotheses about transition behavior
- validation of the method using synthetic as well as realworld data

Exceptional Model Mining

- Identifies the ones that are unusual ("interesting") with respect to a target model class and the model attributes
 - e.g.: "While overall there is a positive correlation between the exam preparation time and the score (ρ = 0.3), the subgroup of males that are younger than 18 years shows a negative correlation (ρ = -0.1)"

Exceptional Model Mining

 The goal is accomplished by using a quality measure q that maps a subgroup to a real number based on the supposed interestingness of its model parameters and performing a search for the subgroups with the highest scores

Data representation

(a) Sequence data with background knowledge

A_M			A_D			_
Source State	Target State	Gender	Age	Hour	Weekday	# Visits of user
A B	В	f	34	14 20 23	Tue	2
В	A C	m	17	20	Sat	4
A	C	m	17	23	Sat	4
C	В	m		1	Sun	4
C	A	f f	25	11	Wed	3
A C C A C	A B	f	25	12	Wed	3
C	A	m	17 25 25 32	12 13	Sat	4
A C	A C	m	32	15	Sat	2 4 4 4 3 3 4 4
C	В	m	32	17	Sat	4

(b) Transition dataset

$$\begin{pmatrix} 0 & 2 & 2 \\ 1 & 0 & 0 \\ 2 & 2 & 0 \end{pmatrix}$$

(c) Transition matrix T_D (entire dataset)

$$\begin{pmatrix} 0 & 2 & 0 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \end{pmatrix}$$

(d) Transition matrix $T_{Gender=f}$

$$\begin{pmatrix} 0 & 0 & 2 \\ 1 & 0 & 0 \\ 1 & 1 & 0 \end{pmatrix}$$

(e) Transition matrix $T_{Weekday=Sat}$

Interestingness Measure

 Based on a comparison between the transition matrix of the subgroup and a reference transition matrix that is derived from the overall dataset

Interestingness Measure

First, Manhattan distance between two rows:

$$\delta_{tv}(g,D,i) = \frac{1}{2} \sum_{i} \left| \frac{g_{ij}}{\sum_{j} g_{ij}} - \frac{d_{ij}}{\sum_{j} d_{ij}} \right|$$

Then, distance between two matrices:

$$\omega_{tv}(g,D) = \sum_{i} \left(w_i \cdot \sum_{j} \left| \frac{g_{ij}}{\sum_{j} g_{ij}} - \frac{d_{ij}}{\sum_{j} d_{ij}} \right| \right)$$

$$w_i = \sum_j g_{ij}$$

Comparison with random samples

- Get r random samples
- Each sample has the same number of transitions from each state
- Compare the original distance with the distances generated from the random samples
- Interestingness measure:

$$q_{tv}(g,D) = \frac{\omega_{tv}(g,D) - \mu(\omega_{tv}(R_1,D),\ldots,\omega_{tv}(R_r,D))}{\sigma(\omega_{tv}(R_1,D),\ldots,\omega_{tv}(R_r,D)) + \varepsilon}$$

Subgroup search

 enumerate all candidate subgroups in the search space in order to find the ones with the highest scores

Subgroup search

- A typical problem in pattern mining is redundancy
 - eg: the subgroup male induces an exceptional transition model and thus achieves a high score, then also the subgroup males older than 18 can be expected to feature a similarly unusual model and receive a high score
- Solution: to adapt a minimum improvement constraint
 - remove a more specific subgroup with a similar (e.g., less than 10% difference) or a higher (???) score

Subgroup assessment

- Key statistics
- Exemplification
- Visualization

User-defined hypothesis

Hypothesis for toy example (Figure 1):

$$\begin{pmatrix} 0 & 1 & 0 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}$$

Experiments

- Synthetic data
- Real data

Synthetic #1: Random transition matrices

- two random 5x5 transition matrices: M1, M2
- 2 attributes
 - A: ternary, B: binary
- 20 random binary attributes
- generation of transitions:
 - if A = A1 and B = B1, generate transition from M1
 - else, generate from M2
- goal: identify M2 in the whole data

Synthetic #1: Random transition matrices

Description	# Inst.	q_{tv} (score)	ω_{tv}	Δ_{tv}
$A = A1 \wedge B = B1$	10,000	113.01 ± 2.74	5,783	1.54
A = A1	20,000	67.23 ± 1.60	4,634	0.60
B = B1	30,000	45.52 ± 0.94	3,480	0.33
B = B2	30,000	44.69 ± 1.08	3,480	0.51
A = A3	20,000	32.05 ± 0.77	2,378	0.53

Synthetic #2: random walker

- a scale free BA network
- each node has a color
- generate some random walks
 - M1: completely random walk
 - M2: higher probability to walk to nodes of the same color

Synthetic #2: random walker

(a) Comparison to the overall dataset

Description	# Inst.	q_{tv} (score)	ω_{tv}	Δ_{tv}
Type = Homophile	200,915	35.67 ± 0.78	51,929	125.96
Type = Random	799,085	34.34 ± 0.80	51,929	31.73
Noise9 = False	681,835	2.25 ± 0.06	51,358	36.27
Noise9 = True	318,165	2.23 ± 0.06	51,358	77.94
Noise2 = False	18,875	1.80 ± 0.05	14,844	394.51

(b) Comparison to the *homophile* hypothesis, contradicting

Description	# Inst.	q_{tv} (score)	ω_{tv}	Δ_{tv}
Type = Random	799,085	26.88 ± 0.57	1,554,130	981.38
Noise4 = True	519,130	2.28 ± 0.06	1,008,912	981.25
Noise2 = False	18,875	2.25 ± 0.06	37,057	987.49
Noise1 = True	469,290	2.00 ± 0.05	912,032	981.26
Noise19 = True	342,765	1.93 ± 0.05	666,229	981.28

(c) Comparison to the homophile hypothesis, matching

Description	# Inst.	q_{tv} (score)	ω_{tv}	Δ_{tv}
Type = Homophile	200,915	12.10 ± 0.27	389,841	981.04
Noise4 = False	480,870	2.69 ± 0.07	934,190	981.20
Noise19 = False	657,235	2.27 ± 0.06	1,276,868	981.20
Noise1 = False	530,710	1.99 ± 0.05	1,031,101	981.20
Noise0 = True	523,410	1.74 ± 0.05	1,016,899	981.21

Real #1: Flickr

0.2

0.1

0.02

0.01

0.005

0.001

0.0005

0.0001

(c) Night transitions (22–23 h)

Real #2: LastFM

Conclusions