Feature-Less End-to-End Nested Term Extraction

Yuze Gao and Yu Yuan

Oct. 12, 2019, Dunhuang

Outline

- Background and Methods
- Our Model
- Experiments and Results
- Conclusion

Outline

- Background and Methods
- Our Model
- Experiments and Results
- Conclusion

- Automatic Term Extraction (ATE)
 - Give a sequence S_n , find and extract domain specified phrases

- Automatic Term Extraction (ATE)
 - Give a sequence S_n , find and extract domain specified phrases

- Automatic Term Extraction (ATE)
 - Give a sequence S_n , find and extract domain specified phrases

- Automatic Term Extraction (ATE)
 - Give a sequence s_n , find and extract domain specified phrases

- Automatic Term Extraction (ATE)
 - Give a sequence s_n , find and extract domain specified phrases

- Automatic Term Extraction (ATE)
- Methods:
 - Feature-based: Yu et al. 2017

Yu Yuan, Jie Gao and Yue Zhang: "Supervised learning for robust term extraction." 2017 International Conference on Islanda Language Processing (IALP). IEEE, 2017.

- Automatic Term Extraction (ATE)
- Methods:
 - Feature-based: Yu et al. 2017:
 - Using ten different extracted features (such as IDF, consine distance and etc.)

Yu Yuan, Jie Gao and Yue Zhang: "Supervised learning for robust term extraction." 2017 International Conference on Language Processing (IALP). IEEE, 2017.

- Automatic Term Extraction (ATE)
- Methods:
 - Feature-based: Yu et al. 2017:
 - Using ten different extracted features (such as IDF, consine distance and etc.)
 - Drawback: Time Consuming and complicate in feature preparation

Yu Yuan, Jie Gao and Yue Zhang: "Supervised learning for robust term extraction." 2017 International Conference on Language Processing (IALP). IEEE, 2017.

- Automatic Term Extraction (ATE)
- Methods:
 - Feature-based: Yu et al. 2017

Yu Yuan, Jie Gao and Yue Zhang: "Supervised learning for robust term extraction." 2017 International Conference on Islanda Language Processing (IALP). IEEE, 2017.

- Automatic Term Extraction (ATE)
- Methods:
 - Feature-based: Yu et al. 2017
 - DNN Sequence Labelling-based: Basaldella et al. 2018:

Basaldella M, Antolli E, Serra G: "Bidirectional Istm recurrent neural network for key phrase extraction", Italian Research Conference on Digital Libraries. Springer, Cham, 2018: 180-187.

- Automatic Term Extraction (ATE)
- Methods:
 - Feature-based: Yu et al. 2017
 - DNN Sequence Labelling-based: Basaldella et al. 2018:
 - Using Sequence Labelling method on LSTM NN module

Basaldella M, Antolli E, Serra G: "Bidirectional Istm recurrent neural network for key phrase extraction", Italian Research Conference on Digital Libraries. Springer, Cham, 2018: 180-187.

- Automatic Term Extraction (ATE)
- Methods:
 - Feature-based: Yu et al. 2017
 - DNN Sequence Labelling-based: Basaldella et al. 2018:
 - Using Sequence Labelling method on LSTM NN module
 - Drawback: does not support nested term

Basaldella M, Antolli E, Serra G: "Bidirectional Istm recurrent neural network for key phrase extraction", Italian Research Conference on Digital Libraries. Springer, Cham, 2018: 180-187.

• Problems:

- Nested Term is very common in terminology extraction.
- Feature-based methods call for prepared features and the preparation is time-consuming and complex.
- Sequence Labelling Methods do not support nested term extraction.
- Most existing systems do not take advantage of information from sentence level

Outline

- Background and Methods
- Our Model
- Experiments and Results
- Conclusion

- Span-based Term Extraction
 - Treat every span within a fixed length as a potential term

Sentence $(n=6)$	"Mouse interleukin-2 receptor alpha gene expression"
True Term Spans	[0, 4], [0, 5], [1, 1]
Model Processed Spans $(k=5)$	[0, 0], [0, 1], [0, 2], [0, 3], [0, 4], [1, 1], [1, 2], [1, 3], [1, 4], [1, 5], [2, 2], [2, 3], [2, 4], [2, 5], [3, 3], [3, 4], [3, 5], [4, 4], [4, 5], [5, 5]

- Span-based Term Extraction
 - Treat every span within fixed length as a potential term.
 - The span is used as processed unit, represent every span with a vector.
 - External feature is not a must, we build feature patterns internally from hidden output.

Architecture

Architecture

• Span (Mention) Representation S_M

- Span (Mention) Representation S_M
 - S_M is formed from several Designed Feature Patterns

- Designed Feature Patterns Span Vector Span Head Span Node Begin & End Target Node Additional Features
 - Span Head: is designed to contain the head word information if any and whether all the words in span can form a complete Noun Phrase

- Designed Feature Patterns Span Vector Span Head Span Head Span Node Begin & End **Target Node Additional Features**
 - Span Head: is designed to contain the head word information if any and whether all the words in span can form a complete Noun Phrase

Term attention score in span:

$$P_h^{[x]} = \frac{h_x * \mathbf{v_t^T}}{\sum_{x=i}^{j} h_k * \mathbf{v_t^T}}$$

$$P_h^{[x]} = \frac{h_x * (\mathbf{v_t^T})}{\sum_{x=i}^j h_k * \mathbf{v_t^T}}$$
 $(h_x, h_k \in H_m)$ Vectors of Span tokens h_i

- Designed Feature Patterns Span Vector Span Head Span Node Begin & End Target Node Additional Features
 - Span Head: is designed to contain the head word information if any and whether all the words in span can form a complete Noun Phrase

- Designed Feature Patterns
 - Span Vector Span Head Span Node Begin & End Target Node Additional Features

- Span Head
- Span Node: is designed to concentrate and contain the continuous information of the token span sequence.

- Designed Feature Patterns
- Span Head Span Node Begin & End Target Node Additional Features

- Span Head
- Span Node: is designed to concentrate and contain the continuous information of the span token sequence.

Reduce the concatenation of token vectors via a Multi-Layer Perceptron:

$$V_n = MLP([h_i : h_{i+1} : \dots : h_j])$$

 h_i

 h_{j}

Designed Feature Patterns

- Span Head | Span Node
- Begin&End: is designed to contain the feature information of begin and end word of the token span. For example, the term cannot start and end with a PREP word.

Designed Feature Patterns

- Span Head | Span Node
- Begin&End: is designed to contain the feature information of begin and end word of the token span. For example, the term cannot start and end with a PREP word.

$$V_{be} = [h_i : h_j]$$

- Designed Feature Patterns Span Vector Span Head Span Node Begin & End Target Node Additional Features
 - Span Head | Span Node | Begin&End
 - Sentence Targeted Attention Node: is designed to embed some feature information like whether the candidate span can express a concept to the complete sentence and leverage the information from the sentence level into term spans.

- Designed Feature Patterns Span Vector Span Head Span Node Begin & End Target Node Additional Features
 - Span Head | Span Node | Begin&End
 - Sentence Targeted Attention Node: is designed to embed some feature information like whether the candidate span can express a concept to the complete sentence and leverage the information from the sentence level into term spans.

Mean the span token vectors: $\hat{h_m} = \sum_{x=i}^{j} h_x \quad (h_x \in H_m)$

- Designed Feature Patterns Span Vector Span Head

Span Node

Begin & End

Target Node

Additional Features

- Span Head | Span Node | Begin&End
- Sentence Targeted Attention Node: is designed to embed some feature information like whether the candidate span can express a concept to the complete sentence and leverage the information from the sentence level into term spans.

Mean the span token vectors:

 $\hat{h_m} = \sum_{i=1}^{j} h_x \quad (h_x \in H_m)$ h_i h_j

Use the mean vector as target, apply attention mechanism over sentence

$$\begin{cases} P_s^{[x]} = \frac{h_s[x] * \hat{h_m}^T}{\sum_{k=1}^n h_s[k] * \hat{h_m}^T} & (h_s[x], h_s[k] \in H_s) \\ V_s = \sum_{i=1}^n h_s[x] * P_s^{[x]} & h_I \end{cases}$$

- Designed Feature Patterns Span Vector Span Head Span Node Begin & End Target Node Additional Features
 - Span Head | Span Node | Begin&End | Sentence Targeted Attention Node
 - Length Embedding: is to convey the span length information

- Designed Feature Patterns
 - Span Head | Span Node | Begin&End | Sentence Targeted Attention Node | Length Embedding

- Designed Feature Patterns
 - Span Head | Span Node | Begin&End | Sentence Targeted Attention Node | Length Embedding

Concatenation of Feature Patterns

$$S_M = [V_n, V_h, V_{be}, V_s, V_l]$$

Our Model::Span Representation

- Designed Feature Patterns
 - Span Head | Span Node | Begin&End | Sentence Targeted Attention Node | Length Embedding

Concatenation of Feature Patterns

Our Model::Classifier

• Span Classifier:

Get Candidates:

$$TF_G = CLF_{FC}(S_M)$$

Our Model::Classifier

• Span Classifier:

Get Candidates:

Get the spans classified as True Term

$$\overline{TF_G} = CLF_{FC}(S_M)$$
 Span Representation

Span Classifier:

Get the spans classified as True Term

Get Candidates:

$$TF_G = CLF_{FC}(S_M)$$

Span Representation

• Span Ranker:

$$R_{scores} = \{REG(S_M^{T_i}), S_M^{T_i} \in S_M^{T_G}\}$$

Span Classifier:

Get Candidates:

Get the spans classified as True Term

$$\overline{TF_G} = CLF_{FC}(S_M)$$

Span Representation

• Span Ranker:

Get Candidate Scores:

$$R_{scores} = \{REG(S_M^{T_i}),$$

True Terms' Span Representation

$$S_M^{T_i} \in S_M^{T_G}$$

The spans classified as True Term

Span Classifier:

Get Candidates:

Get the spans classified as True Term

$$TF_G = CLF_{FC}(S_M)$$

Span Representation

• Span Ranker:

Get Candidate Scores:

$$R_{scores} = \{REG(S_M^{T_i}),$$

True Terms' Span Representation

$$S_M^{T_i} \in S_M^{T_G}$$

The spans classified as True Term

Ranking the Scores:

$$TM_S = RANKER|_{n=1}^K(R_{scores})$$

Span Classifier:

Get Candidates:

Get the spans classified as True Term

$$TF_G = CLF_{FC}(S_M)$$

Span Representation

True Terms' Span Representation

• Span Ranker:

Get Candidate Scores:

$$R_{scores} = \{REG(S_M^{T_i}),$$

 $S_M^{T_i} \in S_M^{T_G}$

The spans classified as True Term

Ranking the Scores:

$$TM_S = RANKER|_{n=1}^K (R_{scores})$$

$$K = \alpha \cdot |TotalWords|$$

Our Model::Training Loss

• $Loss_{(classifier)} = -(y * log(p) + (1 - y) * log(1 - p))$

Our Model:: Training Loss

•
$$Loss_{(classifier)} = -(y * log(p) + (1 - y) * log(1 - p))$$

•
$$Loss_{(ranker)} = \sum_{y \in Y_{\{gold\}}} (1 - Sigmoid(y)) + \sum_{y' \in Y_{\{K-gold\}}} Sigmoid(y')$$

Outline

- Background and Methods
- Our Model
- Experiments and Results
- Conclusion

- Data:
 - GENIA 3.02¹ Corpus

• Results:

		Precision	Recall	F1
Wang et al. [10]		0.647	0.780	0.707
Yuan et al. [5]		0.7466	0.6847	0.7143
	Random	0.5044	0.9639	0.6622
	Embedding	0.0044	0.9009	0.0022
Our Model	GloVe	0.5093	0.9557	0.6575
(Classifier)	+ POS-tag	0.5198	0.9632	0.6753
	+ ELMo	0.5220	0.9541	0.6748
	+ ALL	0.5163	0.9698	0.6738
	Random	0.7237	0.8343	0.7751
	Embedding	0.1201	0.0040	0.1101
Our Model	GloVe	0.7244	0.8356	0.7760
(Ranker)	+ POS-tag	0.7265	0.8375	0.7780
	+ ELMo	0.7252	0.8386	0.7778
	+ ALL	0.7316	0.8327	0.7789

• Results on different feature patterns:

	Classifier (F1)	Ranker (F1)
Begin&End	0.6171	0.7423
+SpanLen	0.6244	0.7489
+SpanNode	0.6343	0.7535
+SpanHead	0.6488	0.7648
+TargetNode	0.6622	0.7751

Local Level VS. Sentence level

Results on span length:

Low Precision high recall due to $K = \alpha \cdot |TotalWords|$

Example

Sentence	Analysis of the biochemical ₃ and cell ₅ biological ₆ properties ₇ of these HSFs ₁₀ reveals that HSF3 has properties in common with both HSF1 and HSF2 and yet has features which are distinct from both .	Using a_1 polyclonal ₂ antibody ₃ to murine ₅ NFATp ₆ , Western blot analysis of various ₁₂ mouse ₁₃ tissues ₁₄ demonstrated that the 110-130-kDa ₁₈ NFATp ₁₉ protein ₂₀ was highly expressed in thymus and spleen .
Gold	[3, 3], [3, 7], [5, 6], [7, 7], [10, 10], [13, 13], [15, 15], [20, 20], [22, 22]	[5, 6], [6, 6], [8, 10], [13, 13], [13, 14], [19, 19], [19, 20], [25, 25], [27, 27]
Classifier	[3, 3], [3, 7], [3, 5], [5, 5], [5, 6], [5, 7], [6, 7], [10, 10], [13, 13], [13, 15], [20, 20], [22, 22]	[2,3], [5,5], [5,6], [6,6], [8,10], [12,14], [13,13], [13,14], [18,18], [18,20], [18,19], [19,19], [19,20], [25,25], [27,27]
Ranker	[20, 20], [13, 13], [22, 22], [10, 10], [3, 7], [6, 7]	[19, 20], [12, 14], [18, 20], [19, 19], [13, 14], [6, 6], [2, 3], [25, 25], [27, 27], [5, 6], [18, 19]

Outline

- Background and Methods
- Our Model
- Experiments and Results
- Conclusion

Conclusion

- This method can achieve the state-of-art results without any external features. (Refer slides 48)
- In contrast with local features, sentence level features can contribute more in term extraction task. (Refer slides 49)
- Designing reasonable feature pattern to reform hidden features is more efficient.

Thank you

Code is available at: https://github.com/CooDL/Nested-Term-Extraction

