School of Nuclear Engineering Purdue University West Lafayette, IN 47907

NUCL 40200-2 Engineering of Nuclear Power Systems

Fall 2011

Lecture:

Monday, Wednesday, and Friday, 12:30pm. - 1:20pm in HAAS G066.

Instructor:

S.T. Revankar, Office: NUCL 132E, Email: shripad@purdue.edu, Phone: 496-1782 Office Hours: Monday, Friday, 3:30pm - 4:30pm

Texts:

Because the material is very broad, in addition to the main reference (T&K) additional references are used. Class notes will be provided time to time on various topics.

References:

- 1. N. E. Todreas and M. S. Kazimi, "Nuclear Systems I Thermal Hydraulics Fundamentals," Hemisphere, 1990.
- 2. J. R. Lamarsh, "Introduction to Nuclear Engineering," Addison-Wesley, 1983.
- 3. S. Glasstone and A. Sesonske, "Nuclear Reactor Engineering," Chapman and Hall, 1994.
- 4. A. Sesonske, "Nuclear Power Plant Design Analysis," Technical Information Center, Office of Information Services, U.S. Atomic Energy Commission, 1973.

Course Objectives:

- 1. Develop basic concept of nuclear reactor as a power system
- 2. Understand commercial light water reactor system and components
- 3. Develop understanding of the engineering and physical principles of a reactor including neutron transport, kinetics, thermodynamics, thermalhydraulics, materials, fuels, radiation, shielding and safety.
- 4. Lear and perform qualitative analysis and quantitative calculations based on engineering and physical principles
- 5. Understand reactor safety system and design limits
- 6. Enhance systematic problem solving skills and sharpen written communication skills through short technical project report.

Computer Usage:

Knowledge of word processing and spreadsheet software will be necessary for laboratory report preparation and some homework assignments. Knowledge of a computer programming language may also be helpful for some assignments.

Attendance and Honesty Policy:

Since many of the topics to be covered can only be adequately treated by class discussion, regular attendance is mandatory to meet the objectives of the course. Excessive unexcused absences will be reflected in the grade. Students are responsible for all material covered during class, including assignments and quizzes. If the instructor is late, students are required to wait 15 minutes before leaving.

The Engineering Honor Code is in effect for all students. Cheating, plagiarism, and other forms of academic dishonesty will be prosecuted according to Purdue University policy.

Campus Emergency: In the event of a major campus emergency, course requirements, deadlines and grading percentages are subject to changes that may be necessitated by a revised semester calendar or other circumstances.

Here are ways to get information about changes in this course: (i) Check on messages in for this course in Blackboard (ii) My email (shripad@purdue.edu)

Course Grading	Weighting:
----------------	------------

Α	85% - 100%	Homework	20%
В	75% - 84%	Tests (3)	65%
С	65% - 74%	Project	15%
D	50% - 64%		
F	< 49%		

Homework:

Homework problems should be turned in at the beginning of the hour on the date due. They will be graded and returned as soon as possible. Problems turned in one day late will be graded on a one-half credit basis. Since these problems are intended to show the application of lecture material and provide preparation for tests, individual work is essential. Solutions should make the approach followed clear to the grader. Collaboration on homework is limited to general discussion of the problems and approaches. Each student must independently complete their own written solution to each homework problem. Copying another person's homework or using old or other existing solutions is considered plagiarism. Each homework problem must contain the following header printed in the upper right corner of each page:

Last name, First name NUCL 402 Hwk Assignment #

Examinations:

All exams will be closed notes and closed book. Depending on exam formula sheets/figures will be provided with the exams. No material other than the formula sheets are to be used during exams. A score of zero will be recorded for a missed exam. Make-up exams will be given only by prior (at least 24 hours before the exam start time) arrangement, or for an illness or serious emergency that can be documented.

Term Project

Team of 3-4 students will each complete a project on the topic chosen related reactor systems or component and submits a report.

NUCL 40200 — Nuclear Reactor Systems — Fall 2011

Period		Date		Topic	Assignment
01	Мо	Aug	22	Introduction, Power reactors	Read TK 1-16, L 119-149
02	We	J	24	LWR : PWR, BWR	Hwk 1. Due Aug 31
03	Fr		26	HTGR, LMFBR	Project discussion
04	Мо		29	CANDU,	Hwk 2, Due Sep 7
05	We	C = =	31	Advanced reactors	1 275 222
06 X	Fr Mo	Sep	2 5	Reactor control-Kinetics review NO CLASS	L 275-328
07	We		7	Power Excursion	Hwk 3, Due Sep 14
08	Fr		9	Temperature, void coefficients	Tiwk o, bue cop 14
09	Мо		12	Fission product poisoning	Project topic due
10	We		14	Radiation protection,	L 397-426, Hwk 4, Due Sep 21
11	Fr		16	Radiation dose rate	
12	Мо		19	Radiation dose calculations	1, 400, 500
13	We Fr		21	Reactor shielding	L 498-526
14 15	Mo		23 26	Shielding design Review	
16	We		28	Test 1	
17	Fr		30	Fuels and properties	Hwk 5, Due Oct 7
18	Мо	Oct	3	Fuel Cycle	L 149-153
19	We		5	Spent fuel processing	L 177-178
20	Fr		7	Radioactive waste management	L 178-182, Hwk 6, Due Oct 14
X	Mo		10	NO CLASS	TV 10 20 20 70
21 22	We Fr		12 14	Thermal design and limits Reactor heat generation	TK 19-36, 39-70 TK 43-64, Hwk 7, Due Oct 21
23	Мо		17	Shutdown power	TK 64-70
24	We		19	Fuel thermal analysis	TK 295-338,
25	Fr		21	Temperature distribution	
26	Мо		24	Thermal resistance	
27	We		26	Review	
28 29	Fr Mo		28 31	Test 2 Thermodynamics review	
30	We	Nov	2	Thermodynamics of nuclear plant	TK 186-208,
31	Fr	1101	4	Simplified PWR system	Hwk 8, Due Nov 11
32	Мо		7	Power plant PWR system	TK 208-218,
33	We		9	Brayton cycle	TK 218-233
34	Fr		11	Brayton cycle-	Hwk 9, Due Nov 18
35	Mo		14	Reactor thermal analysis	TK 575-614
36 37	We Fr		16 18	Single & Two phase heat transfer Two phase pressure drop	Notes Hwk 10, Due Nov 28
38	Мо		21	Reactor safety Systems	Notes
X	We		23	NO CLASS	
X	Fr		25	NO CLASS	
39	Мо		28	Reactor Accidents TMI	Notes, Project Report Due
40	We	D	30	Reactor Accidents Chernobyl	Hwk 11, Due Dec 9
41 42	Fr Mo	Dec	2 5	Test 3 PRA	Notes
42 43	We	Dec	5 7	Licensing	Notes
44	Fr		9	Decommissioning	Notes
	- •			· · · · · · · · · · · · · · · ·	

TK: N. E. Todreas and M. S. Kazimi, "Nuclear Systems I - Thermal Hydraulics Fundamentals," L: J. R. Lamarsh, "Introduction to Nuclear Engineering," Addison-Wesley, 1983.