1 Grundlagen

S 1.1 Es gibt keine Gleichung der Form

$$x^n + a_{n-1}x^{n-1} + \dots + a_0 = 0$$

mit $a_i \in \mathbb{Q}$, so dass $x = \pi$ eine Lösung ist

 ${f S}$ 1.2 R ist ein kommutativer, angeordneter Körper, der ordnungsvollständig ist

D Axiome der Addition

- A1 Assoziativität x + (y + z) = (x + y) + z
- A2 Neutrales Element $x + 0 = x \quad \forall x \in \mathbb{R}$
- A3 Inverses Element $\forall x \in \mathbb{R} \ \exists y \in \mathbb{R} : x + y = 0$
- A4 Kommutativität $x + z = z + x \quad \forall x, z \in \mathbb{R}$

D Axiome der Multiplikation

- M1 Assoziativität $x \cdot (y \cdot z) = (x \cdot y) \cdot z \quad \forall x, y, z \in R$
- M2 Neutrales Element $x \cdot 1 = x \quad \forall x \in \mathbb{R}$
- M3 Inverses Element $\forall x \in \mathbb{R}, x \neq 0 \ \exists y \in \mathbb{R}: x \cdot y = 1$
- M4 Kommutativität $x \cdot z = z \cdot x \quad \forall x, z \in \mathbb{R}$

D Distributivität

D1 Distributivität $x \cdot (y+z) = x \cdot y + x \cdot z$

D Ordnungsaxiome

- O1 Reflexivität $x \leq x \quad \forall x \in \mathbb{R}$
- O2 Transitivität $x \leq y$ and $y \leq z \implies x \leq z$
- O3 Antisymmetrie $x \le y$ and $y \le x \implies x = y$
- O4 Total $\forall x, y \in \mathbb{R}$ gilt entweder $x \leq y$ oder $y \leq x$

D Kompatibilität

- K1 $\forall x, y, z \in \mathbb{R} : x \leq y \implies x + z \leq y + z$
- $K2 \forall x > 0, \forall y > 0 : x \cdot y > 0$

D Ordnungsvollständigkeit Seien A,B \subseteq von \mathbb{R}

- i $A \neq \emptyset, B \neq \emptyset$
- ii $\forall a \in A \text{ and } \forall b \in B : a < b$

Dann gibt es $c \in \mathbb{R}$, dass $\forall \in A : a \leq c$ und $\forall b \in B : c \leq b$

K 1.6

- 1 Additive und multiplikate Inverse eindeutig
- $2 \ 0 \cdot x = 0 \quad \forall x \in \mathbb{R}$
- $3 (-1) \cdot x = -x \quad \forall x \in \mathbb{R}$
- $4 y > 0 \Leftrightarrow (-y) < 0$
- $5 y^2 > 0 \quad \forall x \in \mathbb{R}$
- $6 \ x \le y \text{ and } u \le v \implies x + u \le y + v$
- $7 \ 0 \le x \le y \text{ und } 0 \le u \le v \implies x \cdot u \le y \cdot v$

K 1.7(Archimedisches Prinzip)

Sei $x \in \mathbb{R}$ mit x > 0 und $y \in \mathbb{R}$.Dann gibt es $n \in \mathbb{N}$ mit $y \le n \cdot x$

S 1.8

Für jedes $t \geq 0, t \in \mathbb{R}$ hat $x^2 = t$ eine Lösung in \mathbb{R} D 1.9 Seien $x, y \in \mathbb{R}$

- (i) $\max\{x,y\} = \begin{cases} x & \text{falls} \quad y \le x \\ y & \text{falls} \quad x \le y \end{cases}$
- (ii) $\min\{x,y\} = \begin{cases} y & \text{falls} & y \le x \\ x & \text{falls} & x \le y \end{cases}$
- (iii) Der Absolutbetrag einer Zahl $x \in \mathbb{R}$: $|x| = \max\{x, -x\}$

S 1.10

- (i) $|x| \ge 0 \quad \forall x \in \mathbb{R}$
- (ii) $|xy| = |x| |y| \quad \forall x, y \in \mathbb{R}$
- (iii) $|x+y| \le |x| + |y| \quad \forall x, y \in \mathbb{R}$
- (iv) $|x+y| \ge |x| |y| \quad \forall x, y \in \mathbb{R}$

S 1.11(Young'sche Ungleichung)

 $\forall \epsilon > 0, \forall x, y \in \mathbb{R}$:

$$2|xy| \le \epsilon x^2 + \frac{1}{\epsilon}y^2$$

1.1 Infimum und Supremum

D 1.12 Sei $A \subseteq \mathbb{R}$ eine Teilmenge.

- 1) $c \in \mathbb{R}$ ist **obere Schranke** if $\forall a \in A : a < c$
- 2) $c \in \mathbb{R}$ ist untere Schranke if $\forall a \in A : c \leq a$
- 3) $m \in \mathbb{R}$ heisst ein **Maximum** von A if $m \in A$ und m eine obere Schranke von A ist.
- 4) $m \in \mathbb{R}$ heisst ein **Minimum** von A if $m \in A$ und m eine untere Schranke von A ist.

S 1.15 . Sei $A \subseteq \mathbb{R}$, $A \neq \emptyset$

1) Sei A nach oben beschränkt. Dann gibt es eine kleinste obere Schranke:

$$c := \sup A$$
 (Supremum von A)

2) Sei A nach unten beschränkt. Dann gibt es eine grösste untere Schranke:

$$d := \inf A$$
 (Infimum von A)

Eigenschaften von Supremum und Infimum

- $\sup(A \cup B) = \max(\sup A, \sup B)$
- $\sup(A+B) = \sup A + \sup B$
- $\inf(A \cup B) = \min(\inf A, \inf B)$
- $\inf(A+B) = \inf A + \inf B$

K 1.16 Seien $A \subseteq B \subseteq \mathbb{R}$ Teilmengen von \mathbb{R}

- 1 Falls B nach oben beschränkt ist, $\sup A \leq \sup B$
- 2 Falls B nach unten beschränkt ist, inf $B \le \inf A$

D 1.18 Kardinalität

- (i) Zwei Mengen X,Y heissen gleichmächtig if eine Bijection $f:X\to Y$ existiert
- (ii) Eine Menge ist endlich, wenn $X = \emptyset$ or $\exists n \in \mathbb{N}$ so dass $\{1, 2, \dots, n\}$ gleichmächtig wie X
- (iii) Eine Menge X ist abzähbar if endlich oder gleichmächtig wie $\mathbb N$
- S 1.20 (Cantor) \mathbb{R} ist nicht abzählbar

2 Folgen und Reihen

- D 2.1 Eine Folge ist eine Abbildung
 - $a: \mathbb{N}^* \to \mathbb{R}(\mathbb{N}^* = \mathbb{N}/\{0\})$

2.1 Grenzwert einer Folge

L 2.3 $(a_n)_{n\geq 1}$ eine Folge, es gibt höchstens eine Zahl $l\in\mathbb{R}$ mit der Eigenschaft:

 $\forall \epsilon > 0$ ist Menge $\{n \in \mathbb{N} : a_n \notin]l - \epsilon, l + \epsilon[\}$ endlich

D 2.4 $(a_n)_{n\geq 1}$ ist **konvergent**, falls $l\in\mathbb{R}$ so dass $\forall \epsilon > 0$ die Menge $\{n\in\mathbb{N}^*: a_n\notin]l-\epsilon, l+\epsilon[\}$ endlich ist. Dieses l ist der **Limes** der Folge.

Bem: [2.5] Jede Konvergente Folge ist beschränkt

- L 2.6 Folgende Aussagen sind äquivalent
- 1 $(a_n)_{n\geq 1}$ konvergiert gegen $l=\lim_{n\to\infty}a_n$
- $2 \ \forall \epsilon > 0 \ \exists N > 1 \ \text{that}$

$$|a_n - l| < \epsilon \quad \forall n \ge N$$

- **S 2.8** Seien $(a_n)_{n\geq 1}$ und $(b_n)_{n\geq 1}$ konvergent Folgen mit $a=\lim_{n\to\infty}a_n$, $b=\lim_{n\to\infty}b_n$
 - 1 $(a_n + b_n)_{n \ge 1}$ ist konvergent und $\lim_{n \to \infty} (a_n + b_n) = a + b$
 - 2 $(a_n \cdot b_n)_{n \ge 1}$ ist konvergent und $\lim_{n \to \infty} (a_n \cdot b_n) = a \cdot b$
 - 3 if $b_n \neq 0 \ \forall n \geq 1, b \neq 0 \ (\frac{a_n}{b_n})_{n \geq 1}$ konvergent, $\lim_{n \to \infty} (\frac{a_n}{b_n}) = \frac{a}{b}$
 - 4 Falls existiert $K \ge 1$ mit $a_n \le b_n \ \forall n \ge K \implies a < b$

2.2 Satz von Weierstrass

D 2.10

1 $(a_n)_{n\geq 1}$ ist monoton wachsend if

$$a_n \leq a_{n+1} \ \forall n \geq 1$$

2 $(a_n)_{n\geq 1}$ ist monoton fallend if

$$a_{n+1} < a_n \ \forall n > 1$$

S 2.11 (Weierstrass)

• Sei $(a_n)_{n\geq 1}$ monoton wachsend und nach oben beschränkt. Dann konvergiert $(a_n)_{n\geq 1}$ nach

$$\lim_{n \to \infty} a_n = \sup\{a_n : n \ge 1\}$$

 Sei (a_n)_{n≥1} monoton fallend und nach unten beschränkt. Dann konvergiert (a_n)_{n≥1} nach

$$\lim_{n \to \infty} a_n = \inf\{a_n : n \ge 1\}$$

Bem: [2.13] Sei $(a_n)_{n\geq 1}$ eine konvergent Folge mit lim $a_n=a$ und $k\in \mathbb{N}$. Dann ist

 $b_n := a_{n+k}$ $n \ge 1$ konvergent und $\lim_{n \to \infty} b_n = a$

$$(1+x)^n \ge 1 + n \cdot x \quad \forall n \in \mathbb{N}, x > -1$$

2.3 Limes inferior, Limes superior

$$\lim_{n \to \infty} \inf a_n = \lim_{n \to \infty} b_n, (b_n = \inf\{a_k : k \ge n\})$$

$$\lim_{n \to \infty} \sup a_n = \lim_{n \to \infty} c_n, \ (c_n = \sup\{a_k : k \ge n\})$$

$$\lim_{n \to \infty} \inf a_n \le \lim_{n \to \infty} \sup a_n$$

2.4 Cauchy Kriterium

L 2.19 $(a_n)_{n\geq 1}$ konvergiert if only if $(a_n)_{n\geq 1}$ beschränkt und

$$\lim_{n \to \infty} \inf a_n = \lim_{n \to \infty} \sup a_n$$

S 2.20 (Cauchy Kriterium).

Die Folge $(a_n)_{n\geq 1}$ ist genau dann konvergent if $\forall \epsilon > 0 \ \exists N > 1 \ \text{so dass} \ |a_n - a_m| < \epsilon \ \forall n, m > N$

2.5 Satz von Bolzano-Weierstrass

D 2.21 Ein abgeschlossenes Intervall ist $I \subseteq \mathbb{R}$

- $1 \quad [a,b] \quad a \le b, \ a,b \in \mathbb{R}$
- $2 [a, +\infty] a \in \mathbb{R}$
- $3 \mid -\infty, a \mid a \in \mathbb{R}$
- $4 \mid -\infty, +\infty \mid = \mathbb{R}$

Länge $\mathcal{L}(I)$ ist in 1) b-a, ansonsten $+\infty$

Bem: [2.22] $I \subseteq \mathbb{R}$ ist abgeschlossen if only if für jede konvergente Folge $(a_n)_{n\geq 1}$ aus Elementen in I. der Grenzwert auch in I ist.

Bem: [2.23] Seien I=[a,b], J=[c,d] mit $a\leq b$ und $c\leq d$ $a,b,c,d\in\mathbb{R}$. Dann gilt $I\subseteq J$ genau dann, wenn $c\leq a$ und $b\leq d$

S 2.25 (Cauchy-Cantor) Sei $I_1\supseteq I_2\supseteq \ldots$ eine Folge abgeschlossener Intervale mit $\mathcal{L}(I_1)<+\infty$ Dann gilt

$$\bigcap_{n\geq 1} I_n \neq \emptyset$$

Falls zudem $\lim_{n\to\infty} \mathcal{L}(I_n)=0$ enthält $\bigcap_{n\geq 1} I_n$ genau einen Punkt

D 2.27 Eine Teilfolge einer Folge $(a_n)_{n\geq 1}$ ist eine Folge $(b_n)_{n>1}$ wobei

$$b_n = a_l(n)$$

und $l: \mathbb{N}^* \to \mathbb{N}^*$ eine Abbildung ist mit

$$l(n) < l(n+1) \quad \forall n \ge 1s$$

S 2.29 (Bolzano.Weierstrass) Jede beschränkte Folge besitzt eine Konvergente Teilfolge **Bem:** [2.30] Sei $(a_n)_{n\geq 1}$ eine beschränkte Folge. Dann gilt für jede konvergente Teilfolge $(b_n)_{n>1}$:

$$\lim_{n \to \infty} \inf a_n \le \lim_{n \to \infty} b_n \le \lim_{n \to \infty} \sup a_n$$

2.6 Folgen in \mathbb{R}^d und \mathbb{C}

D 2.31 Eine Folge in \mathbb{R}^d ist eine Abbildung

$$a:\mathbb{N}^*\to\mathbb{R}^d$$

D 2.32 Eine Folge $(a_n)_{n\geq 1}$ in \mathbb{R}^d heisst konvergent, falls es $a\in \mathbb{R}^d$ gibt so dass:

$$\forall \epsilon > 0 \ \exists N \ge 1 \ \text{mit} \ ||a_n - a|| < \epsilon \ \forall n \ge N$$

S 2.33 Sei $b = b_1, \ldots, b_d$. 1) und 2) sind äquivalent:

- $\lim_{n \to \infty} a_n = b$
- $2 \lim_{n \to \infty} a_{n,j} = b_j \quad \forall 1 \le j \le d$

S 2.36

1 Eine Folge $(a_n)_{n\geq 1}$ konvergiert genau, wenn sie eine Cauchy Folge ist :

$$\forall \epsilon > 0 \ \exists N \geq 1 \ \text{mit} \ ||a_n - a_m|| < \epsilon \ \forall n, m \geq N$$

2 Jede beschränkte Folge hat eine konvergente Teilfolge

2.7 Reihen

D 2.7.0 Eine Reihe ist eine unendliche Summe

$$S_n := a_1 + \dots + a_n = \sum_{k=1}^n a_k$$

D 2.37 Die Reihe

$$\sum_{k=1}^{\infty} a_k$$

ist konvergent, falls die Folge $(S_n)_{n\geq 1}$ der Partialsummen konvergiert. In diesem Fall :

$$\sum_{k=1}^{\infty} a_k := \lim_{n \to \infty} S_n$$

S 2.40 Seien $\sum_{k=1}^{\infty} a_k$ und $\sum_{j=1}^{\infty} b_j$ konvergent, sowie $\alpha \in \mathbb{C}$

- $1 \sum_{k=1}^{\infty} (a_k + b_k) \text{ konvergent und}$ $\sum_{k=1}^{\infty} (a_k + b_k) = (\sum_{k=1}^{\infty} a_k) + (\sum_{j=1}^{\infty} b_j)$
- $2 \sum_{k=1}^{\infty} \alpha \cdot a_k \text{ konvergent und}$ $\sum_{k=1}^{\infty} \alpha \cdot a_k = \alpha \cdot \sum_{k=1}^{\infty} a_k$

S 2.41 (Cauchy Kriterium)

Die Reihe $\sum_{k=1}^{\infty} a_k$ ist konvergent if onyl if :

$$\forall \epsilon > 0 \ \exists N \ge 1 \ \text{mit} \left| \sum_{k=n}^{\infty} a_k \right| < \epsilon \quad \forall m \ge n \ge N$$

S 2.42 Sei $\sum_{k=1}^{\infty} a_k$ eine Reihe mit $a_k \geq 0 \quad \forall k \in \mathbb{N}^*$. Die Reihe $\sum_{k=1}^{\infty} a_k$ konvergiert if only if $(S_n)_{n\geq 1}, S_n = \sum_{k=1}^{n} a_k$ der Partialsummen nach oben beschränkt ist.

K 2.43 (Vergleichssatz)

Seien $\sum_{k=1}^{\infty} a_k$ und $\sum_{k=1}^{\infty} b_k$ Reihen mit:

$$0 \le a_k \le b_k \quad \forall k \ge 1$$

$$\sum_{k=1}^{\infty} b_k \text{ konvergent } \Longrightarrow \sum_{k=1}^{\infty} a_k \text{ konvergent}$$

$$\sum_{k=1}^{\infty} a_k \text{ divergent } \Longrightarrow \sum_{k=1}^{\infty} b_k \text{ divergent}$$

Diese Implikation gilt auch, wenn

$$K \geq 1 \text{ mit } 0 \leq a_k \leq b_k \quad \forall k \geq K$$

D 2.45 Die Reihe $\sum_{k=1}^{\infty} a_k$ heisst absolut konvergent

falls
$$\sum_{k=1}^{\infty} |a_k|$$
 konvergiert

S 2.46 Eine absolut konvergente Reihe $\sum_{k=1}^{\infty} a_k$ ist auch konvergent und:

$$\left| \sum_{k=1}^{\infty} a_k \right| \le \sum_{k=1}^{\infty} |a_k|$$

S 4.8 (Leibniz 1682) Sei $(a_n)_{n\geq 1}$ monoton fallend mit $a_n\geq 0$ $\forall n\geq 1$ und $\lim_{n\to\infty}a_n=0$. Dann konvergiert

$$S := \sum_{k=1}^{\infty} (-1)^{k+1} a_k$$
 und es gilt $a_1 - a_2 \le S \le a_1$

D 2.50 Eine Reihe $\sum_{n=1}^{\infty} a'_n$ ist eine **Umordnung** der Reihe $\sum_{n=1}^{\infty} a_n$, falls eine bijektive Abbildung

$$\phi: \mathbb{N}^* \to \mathbb{N}^* \text{mit } a'_n = a_{\phi(n)}$$

S 2.52 (Dirichlet 1837) Falls $\sum_{n=1}^{\infty} a_n$ absolut konvergiert, dann konvergiert jede Umordnung der Reihe und hat den selben Grenzwert.

S 2.53(Quotientenkriterium

Sei $(a_n)_{n\geq 1}$ mit $a_n\neq 0 \quad \forall n\geq 1$. Falls

$$\limsup_{n\to\infty}\frac{|a_{n+1}|}{|a_n|}<1\implies \sum_{n=1}^\infty a_n \text{ konvergiert absolut}$$

Falls

$$\liminf_{n \to \infty} \frac{|a_{n+1}|}{|a_n|} > 1 \implies \sum_{n=1}^{\infty} a_n \text{ divergiert}$$

Bem: 2.55 Das Quotientenkriterium versagt, z.B wenn unendliche viele Glieder der Reihe verschwinden

S 2.56 Wurzelkriterium

1 Falls

$$\limsup_{n \to \infty} \sqrt[n]{|a_n|} < 1$$

dann konvergiert $\sum_{n=1}^{\infty} a_n$ absolut

2 Falls

$$\limsup_{n\to\infty} \sqrt[n]{|a_n|} > 1$$

dann diviergiert $\sum_{n=1}^{\infty} a_n$ und $\sum_{n=1}^{\infty} |a_n|$

K 2.57 Die Potenzreihe

$$\sum_{k=0}^{\infty} c_k z^k$$

- · konvergiert absolut für alle $|z| < \rho$
- · divergiert für alle $|z| > \rho$

$$\rho = \begin{cases} +\infty & \text{falls } \limsup_{k \to \infty} \sqrt[k]{|c_k|} = 0\\ \frac{1}{\limsup_{k \to \infty} \sqrt[k]{|c_k|}} & \text{falls } \limsup_{k \to \infty} \sqrt[k]{|c_k|} > 0 \end{cases}$$

D 2.58 $\sum_{k=0}^{\infty} b_k$ ist eine **lineare Anordnung** der Doppelreihe $\sum_{i,j\geq 0} a_{i,j}$, falls es eine Bijektion

$$\sigma: \mathbb{N} \to \mathbb{N} \times \mathbb{N}$$

gibt mit $b_k = a_{\sigma(k)}$

S 2.59 (Cauchy 1821). Wir nehmen an, dass es B > 0 gibt, so dass

$$\sum_{i=0}^{m} \sum_{j=0}^{m} |a_{ij}| \le B \quad \forall m \ge 0$$

Dann konvergieren die folgenden Reihen absolut:

$$S_i := \sum_{j=0}^{\infty} a_{ij} \quad \forall i \geq 0 \text{ und } U_j := \sum_{i=0}^{\infty} a_{ij} \quad \forall j \geq 0$$

sowie

$$\sum_{i=0}^{\infty} S_i \text{ und } \sum_{j=0}^{\infty} U_j$$

und es gilt:

$$\sum_{i=0}^{\infty} S_i = \sum_{j=0}^{\infty} U_j$$

Zudem konvergiert jede lineare Anordnung der Doppelreihe absolut, mit selbem Grenzwert

D 2.60 Das Cauchy Produkt der Reihe

$$\sum_{i=0}^{\infty} a_i, \sum_{j=0}^{\infty} b_j$$

ist die Reihe

$$\sum_{n=0}^{\infty} \left(\sum_{j=0}^{n} a_{n-j} b_j \right) = a_0 b_0 + \left(a_0 b_1 + a_1 b_0 \right) + \dots$$

S 2.62 Falls die Reihen

$$\sum_{i=0}^{\infty} a_i, \sum_{j=0}^{\infty} b_j$$

absolut konvergieren, so konvergiert ihr Cauchy Produkt und es gilt:

$$\sum_{n=0}^{\infty} (\sum_{j=0}^{n} a_{n-j} b_j) = (\sum_{i=0}^{\infty} a_i) (\sum_{j=0}^{\infty} b_j)$$

S 2.64 Sei $f_n: \mathbb{N} \to \mathbb{R}$ eine Folge. Wir nehmen an:

- 1 $f(j) := \lim_{n \to \infty} f_n(j)$ existiert $\forall j \in \mathbb{N}$
- 2 Es gibt eine Funktion $g: \mathbb{N} \to [0, \infty[$, so dass
 - $2.1 |f_n(j)| \le g(j) \quad \forall j \ge 0, \forall n \ge 0$
 - $2.2 \sum_{i=0}^{\infty} g(j)$ konvergiert

Dann folgt

$$\sum_{j=0}^{\infty} f(j) = \lim_{n \to \infty} \sum_{j=0}^{\infty} f_n(j)$$

K 2.65 Für jedes $z \in \mathbb{C}$ konvergiert die Folge $((1+\frac{z}{z})^n)_{n>1}$ und

$$\lim_{n \to \infty} (1 + \frac{z}{n})^n = \exp(z)$$

3 Stetige Funktionen

3.1 Reellwertige Funktionen

D 3.1 Sei $f \in \mathbb{R}^d$

- 1 f ist nach **oben beschränkt**, if $f(D) \subseteq \mathbb{R}$ nach oben beschränkt ist
- 2 f ist nach **unten beschränkt**, if $f(D) \subseteq \mathbb{R}$ nach unten beschränkt ist
- 3 f ist beschränkt, if $f(D) \subseteq \mathbb{R}$ b ist
- **D 3.2** Eine funktion $f: D \to \mathbb{R}$, wobei $D \subseteq \mathbb{R}$ ist
- 1 monoton wachsend, if $\forall x, y \in D$

$$x \le y \implies f(x) \le f(y)$$

2 streng monoton wachsend, if $\forall x, y \in D$

$$x < y \implies f(x) < f(y)$$

3 monoton fallend, if $\forall x, y \in D$

$$x \le y \implies f(x) \ge f(y)$$

4 streng monoton fallend, if $\forall x, y \in D$

$$x < y \implies f(x) > f(y)$$

- 5 **monoton**, falls f monoton wachsend oder monoton fallend
- 6 **streng monoton**, falls f streng monoton wachsend/fallend

3.2 Stetigkeit

D 3.4 Sei $D \subseteq \mathbb{R}, x_0 \in D$. Die Funktion $f: D \to \mathbb{R}$ ist in x_0 stetig, falls es für jedes $\epsilon > 0$ ein $\delta > 0$ gibt, so dass für alle $x \in D$ die Implikation

$$|x - x_0| < \delta \implies |f(x) - f(x_0)| < \epsilon$$

- **D** 3.5 Die Funktion $f: D \to \mathbb{R}$ ist **stetig**, falls sie in jedem Punkt von D stetig ist.
- **S 3.7** Sei $x_0 \in D \subseteq \mathbb{R}$ und $f: D \to \mathbb{R}$. Die Funktion f ist genau dann in x_0 stetig falls für jede Folge $(a_n)_{n \ge 1}$ in D folgende implikation gilt:

$$\lim_{n \to \infty} a_n = x_0 \implies \lim_{n \to \infty} f(a_n) = f(x_0)$$

K 3.8 Sei $x_0 \in D \subseteq \mathbb{R}, \lambda \in \mathbb{R}$ und $f: D \to \mathbb{R}$, $q: D \to \mathbb{R}$ beide stetig in x_0

- 1 Dann sind $f + g, \lambda \cdot f, f \cdot g$ stetig in x_0
- 2 Falls $q(x_0) \neq 0$ dann ist

$$\frac{f}{g}: D \cap \{x \in D: g(x) \neq 0\} \to \mathbb{R}$$

$$x o \frac{f(x)}{g(x)}$$

stetig in x_0

D 3.9 Eine polynomiale Funktion $P : \mathbb{R} \to \mathbb{R}$ ist eine Funktion der Form

$$P(x) = a_n x^n + \dots + a_0$$

wobei : $a_n \dots a_0 \in \mathbb{R}$. Falls $a_n \neq 0$ ist n der **Grad** von P

K 3.10 Polynomiale Funktionen sind auf ganz \mathbb{R} stetig

K 3.11 Seien P,Q, polynomiale Funktionen auf \mathbb{R} mit $Q \neq 0$. Seien $x_1 \dots x_m$ die Nullstellen von Q. Dann ist

$$\frac{P}{Q}: \mathbb{R} \setminus \{x_1, \dots x_m\} \to \mathbb{R}$$

$$x o rac{P(x)}{Q(x)}$$

stetig

3.3 Der Zwischenwertsatz

S 3.12 (Bolzano 1817). Sei $I \subseteq \mathbb{R}$ ein Intervall, $f: I \to \mathbb{R}$ eine stetige Funktion und $a, b \in I$. Für jedes c zwischen f(a) und f(b) gibt es ein z zwischen a und b mit f(z) = c

K 3.13 Sei $P(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_0$ ein Polynom mit $a_n \neq 0$ und n ungerade. Dann besitzt P mindestens eine Nullstelle in \mathbb{R}

Bem: [3.14] für c > 0 besitzt $Q(x) = x^2 + c$ keine Nullstelle in R

3.4 Der Min-Max Satz

D 3.16 Ein Intervall $\subseteq \mathbb{R}$ ist **kompakt**, falls es von Form

$$I = [a.b], \quad a \leq b$$

ist

L 3.17 Sei $D \subseteq \mathbb{R}, x_0 \in D$ und $f, g: D \to \mathbb{R}$ stetig in x_0 . Dann sind

$$|f|, \max(f, g), \min(f, g)$$

stetig in x_0

L 3.18 Sei $(x_n)_{n\geq 1}$ eine konvergente Folge in \mathbb{R} mit Grenzwert

$$\lim_{n \to \infty} x_n \in \mathbb{R}$$

sei $a \leq b$. Falls $\{x_n : n \geq 1\} \subseteq [a,b]$ folgt

$$\lim_{n \to \infty} x_n \in [a, b]$$

S 3.19 Sei $f: I = [a, b] \to \mathbb{R}$ stetig auf dem kompakten Intervall I. Dann gibt es $u \in I$ und $v \in I$ mit

$$f(u) \le f(x) \le f(v) \quad \forall x \in I$$

Insbesondere ist f beschränkt

3.5 Der Satz über Umkehrabbildung

S 3.20 Seien $D_1, D_2 \subseteq \mathbb{R}$ zwei Teilmengen, $f: D_1 \to D_2, g: D_2 \to \mathbb{R}$ Funktionen, sowie $x_0 \in D_1$. Falls f in x_0 und g in $f(x_0)$ stetig sind

$$g \circ f : D_1 \to \mathbb{R}$$

in x_0 stetig

K 3.21 Falls in Satz 3.20 f auf D_1 und g auf D_2 stetig sind, so ist $g \circ f$ auf D_1 stetig

S 3.22 Sei $I \subseteq \mathbb{R}$ ein Intervall und $f: I \to \mathbb{R}$ stetig, streng monoton. Dann ist $J := f(I) \subseteq \mathbb{R}$ ein Intervall und $f^{-1}: J \to I$ ist stetig. streng monoton.

3.6 Die reelle Exponentialfunktion

D Exponentialfunktion

$$\exp(z) := \sum_{n=0}^{\infty} \frac{z^n}{n!}$$

S 3.24 exp : $\mathbb{R} \rightarrow]0, +\infty[$ ist streng monoton wachsend, stetig und surjektiv

K 3.25

$$\exp(x) > 0 \quad \forall x \in \mathbb{R}$$

$$\exp(x) > 1 \quad \forall x > 0$$

K 3.26

$$\exp(z) > \exp(y) \quad \forall z > y$$

K 3.27

$$\exp(x) \ge 1 + x \quad \forall x \in \mathbb{R}$$

K 3.28 Der natürliche Logarithmus

$$\ln :]0, +\infty[\longrightarrow \mathbb{R}$$

ist eine streng monoton wachsende, stetige, bijektive Funktion. Des Weiteren gilt:

$$\ln(a \cdot b) = \ln a + \ln b \quad \forall a, b \in]0, +\infty[$$

Wir können den Logarithmus und die Exponentialfunktion benutzen, um allgemeine Potenzen zu definieren. Für x>0 und $a\in\mathbb{R}$ beliebig definieren wir:

$$x^a := \exp(a \ln x)$$

Insbesondere $x^0 = 1 \quad \forall x > 0$

K 3.29

1 Für a > 0 ist

$$]0, +\infty[\longrightarrow]0, +\infty[$$

$$x \longrightarrow x^{\epsilon}$$

eine stetige, streng monoton wachsende Bijek-

2 Für a < 0 ist

$$]0, +\infty[\longrightarrow]0, +\infty[$$
 $x \longrightarrow x^a$

eine stetige, streng monoton fallende Bijektion

$$3 \ln(x^a) = a \ln(x) \quad \forall a \in \mathbb{R}, \forall x > 0$$

$$4 x^a \cdot x^b = x^{a+b} \quad \forall a, b \in \mathbb{R}, \forall x > 0$$

$$5 (x^a)^b = x^{a \cdot b} \quad \forall a, b \in \mathbb{R}, \forall x > 0$$

3.7 Konvergenz v. Funktionenfolgen Eine Funktionenfolge ist eine Abbildung

$$\mathbb{N} \longrightarrow \mathbb{R}^D$$

$$n \longrightarrow f(n)$$

D 3.30 Die Funktionenfolge $(f_n)_{n\geq 0}$ konvergiert punktweise gegen eine Funktion $f:D\to\mathbb{R}$, falls für alle $x\in D$:

$$f(x) = \lim_{n \to \infty} f_n(x)$$

D 3.32 (Weierstrass 1841) Die Folge

$$f_n:D\longrightarrow\mathbb{R}$$

konvergiert gleichmässig in D gegen

$$f:D\to\mathbb{R}$$

falls gilt $\forall \epsilon > 0 \quad \exists N > 1$, so dass

$$\forall n \geq N, \ \forall x \in D: \ |f_n(x) - f(x)| < \epsilon$$

In dieser Definition ist es wichtig, dass N nur von ϵ abhängig ist und nicht von $x \in D$.Deswegen kommt die Bedingung $\forall x \in D$ nach der Bedingung $\exists N \geq 1$ **S 3.33** Sei $D \subseteq \mathbb{R}$ und $f_n : D \to \mathbb{R}$ eine Funktionenfolge bestehend aus(in D) stetigen Funktionen die (in D) gleichmässig gegen eine Funktion $f : D \to \mathbb{R}$ konvergiert. Dann ist f (in D) stetig

D 3.34 Eine Funktionenfolge

$$f_n:D\longrightarrow\mathbb{R}$$

ist **gleichmässig konvergent**, falls für alle $x \in D$ der Grenzwert

$$f(x) := \lim_{n \to \infty} f_n(x)$$

existiert und die Folge $(f_n)_{n\geq 0}$ gleichmässig gegen f konvergiert

K 3.35 Die Funktionenfolge

$$f_n:D\longrightarrow\mathbb{R}$$

konvergiert genau dann gleichmässig in D, falls

 $\forall \epsilon > 0 \quad \exists N > 1$, so dass $\forall n, m > N$ und $\forall x \in D$:

$$|f_n(x) - f_m(x)| < \epsilon$$

K 3.36 Sei $D \subseteq \mathbb{R}$. Falls $f_n : D \longrightarrow \mathbb{R}$ eine gleichmässig konvergente Folge stetiger Funktionen ist, dann ist die Funktion

$$f(x) := \lim_{n \to \infty} f_n(x)$$

stetig

D 3.37 $f_n: D \longrightarrow \mathbb{R}$ eine Folge von Funktionen. Die Reihe $\sum_{k=0}^{\infty} f_k(x)$ konvergiert gleichmässig (in D), falls die durch

$$S_n(x) := \sum_{k=0}^n f_k(x)$$

definierte Funktionenfolge gleichmässig konvergiert **S** 3.38 Sei $D \subseteq \mathbb{R}$ und

$$f_n:D\to\mathbb{R}$$

eine Folge stetiger Funktionen. Wir nehmen an

$$|f_n(x)| < c_n \quad \forall x \in D$$

und, dass $\sum_{n=0}^{\infty} c_n$ konvergiert. Dann konvergiert

$$\sum_{n=0}^{\infty} f_n(x)$$

gleichmässin in D und deren Grenzwert

$$f(x) := \sum_{n=0}^{\infty} f_n(x)$$

ist eine in D stetige Funktion

D 3.39 Die Potenzreihe

$$\sum_{k=0}^{\infty} c_k x^k$$

hat positiven Konvergenzradius. $\limsup \sqrt[k]{|c_k|}$ existiert Der Konvergenzradius ist dann definiert als:

$$\rho = \begin{cases} +\infty & \text{falls } \limsup_{k \to \infty} \sqrt[k]{|c_k|} = 0 \\ \frac{1}{\limsup_{k \to \infty} \sqrt[k]{|c_k|}} & \text{falls } \limsup_{k \to \infty} \sqrt[k]{|c_k|} > 0 \end{cases}$$

S 3.40 Sei $\sum_{k=0}^{\infty} c_k x^k$ eine Potenzreihe mit positivem Konvergenzradius $\rho > 0$ und sei

$$f(x) := \sum_{k=0}^{\infty} c_k x^k, |x| < \rho$$

Dann gilt: $\forall 0 \leq r < \rho$ konvergiert

$$\sum_{k=0}^{\infty} c_k x^k$$

gleichmässig auf [-r, r], insbesondere ist $f:]-\rho, \rho[\longrightarrow \mathbb{R} \text{ stetig}]$

3.8 Trigonometrische Funktionen

D Sinus&Cosinus

$$\sin(z) = z - \frac{z^3}{2!} + \frac{z^5}{5!} - \frac{z^7}{7!} + \dots = \sum_{n=0}^{\infty} \frac{(-1)^n z^{2n+1}}{(2n)!}$$

$$\cos(z) = 1 - \frac{z^2}{2!} + \frac{z^4}{4!} - \frac{z^6}{6!} + \dots = \sum_{n=0}^{\infty} \frac{(-1)^n z^{2n}}{(2n)!}$$

S 3.41 $\sin : \mathbb{R} \to \mathbb{R}$ und $\cos : \mathbb{R} \to \mathbb{R}$ sind stetige Funktionen

S 3.42

- $1 \exp iz = \cos(z) + i \sin(z) \quad \forall z \in \mathbb{C}$
- $2\cos(z) = \cos(-z)$ und $\sin(-z) = -\sin z \quad \forall z \in \mathbb{C}$
- $3 \sin z = \frac{e^{iz} e^{-iz}}{2i}, \cos z = \frac{e^{iz} e^{-iz}}{2}$
- $4 \sin(z+w) = \sin(z)\cos(w) + \cos(z)\sin(w)$ $\cos(z+w) = \cos(z)\cos(w) - \sin(z)\sin(w)$
- $5\cos(z)^2 + \sin(z)^2 = 1 \quad \forall z \in \mathbb{C}$

K 3.34

$$\sin(2z) = 2\sin(z)\cos(z)$$
$$\cos(2z) = \cos(z)^2 - \sin(z)^2$$

3.9 Die Kreiszahl π

S 3.44 Die Sinusfuktion hat auf $]0, +\infty[$ mindestens eine Nullstelle

$$\pi := \inf\{t > 0 : \sin t = 0\}$$

Dann gilt:

- $1 \sin \pi = 0, \quad \pi \in]2, 4[$
- $2 \ \forall x \in]0, \pi[: \sin x > 0]$
- $3 e^{\frac{i\pi}{2}} = i$

K 3.45

$$x \ge \sin x \ge x - \frac{x^3}{3!} \quad \forall 0 \le x \le \sqrt{6}$$

K 3.46

- $1 e^{i\pi} = -1$, $e^{2i\pi} = 1$
- $2 \sin(x + \frac{\pi}{2}) = \cos(x),$ $\cos(x + \frac{2\pi}{3}) = -\sin(x) \quad \forall x \in \mathbb{R}$
- $3 \sin(x+\pi) = -\sin(x),$ $\sin(x+2\pi) = \sin(x) \quad \forall x \in \mathbb{R}$
- $4\cos(x+\pi) = -\cos(x),$ $\cos(x+2\pi) = \cos(x) \quad \forall x \in \mathbb{R}$
- 5 Nullstellen von Sinus = $\{k \cdot \pi : k \in \mathbb{Z}\}$ $\sin(x) > 0 \quad \forall x \in]2k\pi, (2k+1)\pi[, \quad k \in \mathbb{Z}$

$$\sin(x) < 0 \quad \forall x \in](2k+1)\pi, (2k+2)\pi[, \quad k \in \mathbb{Z}$$

6 Nullstellen von Cosinus =
$$\{\frac{\pi}{2} + k \cdot \pi : k \in \mathbb{Z}\}\$$
 $cos(x) > 0$
 $\forall x \in] -\frac{\pi}{2} + 2k\pi, -\frac{\pi}{2} + (2k+1)\pi[, k \in \mathbb{Z}]$
 $cos(x) < 0$
 $\forall x \in] -\frac{\pi}{2} + (2k+1)\pi, -\frac{\pi}{2} + (2k+2)\pi[, k \in \mathbb{Z}]$

Für $z \notin \frac{\pi}{2} + \pi \cdot \mathbb{Z}$ definieren wir:

$$\tan(z) = \frac{\sin(z)}{\tan(z)}$$

und für $z \notin \pi \cdot \mathbb{Z}$:

$$\cot(z) = \frac{\cos(z)}{\sin(z)}$$

3.10 Grenzwerte von Funktionen

D 3.47 $x_0 \in \mathbb{R}$ ist ein Häufungspunkt der Menge D falls $\forall \delta > 0$:

$$(|x_0 - \delta, x_0 + \delta| \{x_0\}) \cap D \neq \emptyset$$

D 3.49 Sei $f: D \longrightarrow \mathbb{R}, x_0 \in \mathbb{R}$ ein Häufungspunkt von D. Dann ist $A \in \mathbb{R}$ der Grenzwert von f(x) für $x \to x_0$ bezeichnet mit

$$\lim_{x \to x_0} f(x) = A$$

falls $\forall \epsilon > 0 \quad \exists \delta > 0 \text{ so dass}$

$$\forall x \in D \cap (]x_0 - \delta, x_0 + \delta[\setminus \{x_0\}) : |f(x) - A| < \epsilon$$

Bem: 3.50

1 Sei $f: D \to \mathbb{R}$ und x_0 ein Häufungspunkt von D. Dann gilt $\lim_{x \to x_0} f(x) = A$ genau dann wenn für alle Folgen $(a_n)_{n>1}$ in $D\setminus\{x_0\}$ mit

$$\lim_{n \to \infty} a_n = x_0$$

folgt

$$\lim_{n \to \infty} f(a_n) = A$$

2 Sei $x_0 \in D$. Dann ist f stetig in x_0 genau dann, falls

$$\lim_{x \to x_0} f(x) = f(x_0)$$

3 Falls $f, g: D \to \mathbb{R}$ und $\lim_{x \to x_0} f(x)$, $\lim_{x \to x_0} g(x)$ existieren, so folgt

$$\lim_{x \to x_0} (f+g)(x) = \lim_{x \to x_0} f(x) + \lim_{x \to x_0} g(x)$$

$$\lim_{x \to x_0} (f \cdot g)(x) = \lim_{x \to x_0} f(x) \cdot \lim_{x \to x_0} g(x)$$

4 Sei $f, g: D \to \mathbb{R}$ mit $f \leq g$. Dann folgt

$$\lim_{x \to x_0} f(x) \le \lim_{x \to x_0} g(x)$$

falls beide Grenzwerte existieren

5 Falls $q_1 < f < q_2$ und

$$\lim_{x \to x_0} g_1(x) = \lim_{x \to x_0} g_2(x)$$

dann existiert $\lim_{x \to x_0} f(x)$ und

$$\lim_{x \to x_0} f(x) = \lim_{x \to x_0} g_1(x)$$

S 3.52 Seien $D, E \subseteq \mathbb{R}, x_0$ Häufungspunkt von $D, f: D \longrightarrow E$ eine Funktion. Wir nehmen an, dass

$$y_0 := \lim_{x \to x_0} f(x)$$

existiert und $y_0 \in E$. Falls $g: E \longrightarrow \mathbb{R}$ stetig in y_0

$$\lim_{x \to x_0} g(f(x)) = g(y_0)$$

3.11 Linksseitige und rechsseitige Grenzwerte

Betrachten wir zum Beispiel

$$f: \mathbb{R} \setminus \{0\} \longrightarrow \mathbb{R}$$

$$x \longrightarrow \frac{1}{x}$$

Dann wird für x > 0, x beliebig nahe an $0, \frac{1}{x}$ beliebig positiv gross und für x < 0, x beliebig nahe an $0, \frac{1}{\pi}$ beliebig negativ "gross". In beiden Fällen hat $\frac{1}{x}$ ein einfaches Verhalten.

Im Fall $a \in \mathbb{R}$,

$$f:]0, \infty[\to \mathbb{R}$$

$$x \to x^a$$

ist f auf $]0,\infty[$ definiert. Falls a>0 werden wir sehen, dass

$$\lim_{x \in]0, \infty[\to 0} f(x) = 0$$

Sei $f: D \longrightarrow \mathbb{R}$ und $x_0 \in \mathbb{R}$. Wir nehemn an, x_0 ist Häufungspunkt von $D \cap]x_0, +\infty[$; das heisst ein rechtsseitiger Häufungspunkt. Falls der Grenzwert der eingeschränkten Funktion

$$f|_{D\cap[x_0,+\infty[}$$

für $x \longrightarrow x_0$ existiert, wird er mit

$$\lim_{x \to x_0^+} f(x)$$

bezeichnet und nennt sicht rechtsseitiger Grenzwert von f bei x_0 .

Wir erweitern diese Definition auf:

$$\lim_{x \to x_0^+} f(x) = +\infty$$

falls gilt:

$$\forall \epsilon > 0 \exists \delta > 0, \ \forall x \in D \cap]x_0, x_0 + \delta[: \ f(x) > \frac{1}{\epsilon}$$

und analog:

$$\lim_{x \to x_0^+} f(x) = -\infty$$

falls

$$\forall \epsilon > 0 \ \exists \delta > 0, \ \forall x \in D \cap]x_0, x_0 + \delta[:f(x) < -\frac{1}{\epsilon}]$$

Linksseitige Häufungspunkt und Grenzwerte werden analog definiert. Mit diesen Definitionen gilt:

$$\lim_{x \to 0^+} \frac{1}{x} = +\infty, \quad \lim_{x \to 0^-} \frac{1}{x} = -\infty$$

4 Differenzierbare Funktionen

D 4.1 Sei $D \subseteq \mathbb{R}, f: D \to \mathbb{R}$ und $x_0 \in D$ ein Häufungspunkt von D

f ist ist in x_0 Differenzierbar, falls der Grenzwert

$$\lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0}$$

existiert. Ist dies der Fall, wird der Grenzwert mit $f'(x_0)$ bezeichnet

Bem: 4.2: Es ist oft von Vorteil in der Definiton von $f'(x_0)$, $x = x_0 + h$ zu setzen

$$f'(x_0) = \lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h}$$

 $\frac{f(x)-f(x_0)}{x-x_0}$ ist die Steigung der Gerade durch $(x_0,f(x_0)),(x,f(x))$. Falls $f'(x_0)$ existiert ist die Intuition, dass die Familien der Geraden durch $(x_0,f(x_0)),(x,f(x))$ für $x\neq x_0,x\to x_0$ als "Grenzwert" die Tangente zum Graphen von f in $(x_0,f(x_0))$ annimmt.

4.1 Die Ableitung

S 4.3 (Weierstrass 1861). Sei $f: D \to \mathbb{R}, x_0 \in D$ Häufungspunkt von D. Folgende Aussagen sind äquivalent:

- 1 f ist in x_0 differenzierbar.
- 2 Es gibt $c \in \mathbb{R}$ und $r: D \to D$ mit:

2.1
$$f(x) = f(x_0) + c(x - x_0) + r(x)(x - x_0)$$

 $2.2 \ r(x_0) = 0 \ \text{und r ist stetig in } x_0$

Falls dies zutrifft ist $c=f'(x_0)$ eindeutig bestimmt Die Formulierung der Differenzierbarkeit von f mittels

$$f(x) = f(x_0) + f'(x_0)(x - x_0) + r(x)(x - x_0)$$

und der Stetigkeit von r
 in x_0 hat den Vorteil, dass sie keinen Limes enthält. Ausserdem ist dann

$$y = f(x_0) + f'(x_0)(x - x_0)$$

die Gleichung der Tangente zum Graphen von f im Punkt $(x_0, f(x_0))$. WIr können die Charakterisierung der Differenzierbarkeit noch vereinfachen in dem wir in Satz 4.3(2.1)

$$\phi(x) = f'(x_0) + r(x)$$

setzen. Wir erhalten:

S 4.4 Eine Funktion $f: D \to \mathbb{R}$ ist genau dann in x_0 differenzierbar, falls es eine Funktion $\phi: D \to \mathbb{R}$ gibt die stetig in x_0 ist und so, dass

$$f(x) = f(x_0) + \phi(x)(x - x_0) \quad \forall x \in D$$

In diesem Fall gilt $\phi(x_0) = f'(x_0)$

K 4.5 Sei $f:D\to\mathbb{R}$ und $x_0\in D$ ein Häufungspunkt von D. Falls f in x_0 differenzierbar ist, so ist f stetig in x_0

B 4.6

- 1. $f = 1 : \mathbb{R} \to \mathbb{R}$, dann ist $f'(x) = 0 \quad \forall x_0 \in \mathbb{R}$ Folgt aus $f(x) - f(x_0) = 1 - 1 = 0$
- 2. $f: \mathbb{R} \to \mathbb{R}$, f(x) = x. Dann ist $f'(x_0) = 1$ Folgt aus $f(x) - f(x_0) = 1 \cdot (x - x_0)$
- 3. $f: \mathbb{R} \to \mathbb{R}, f(x) = x^2$. Dann ist $f'(x_0) = 2x_0 \quad \forall x_0 \in \mathbb{R}$ Folgt aus:

$$f(x) - f(x_0) = x^2 - x_0^2 = (x - x_0)(x + x_0)$$

Also für $x \neq x_0$

$$\frac{f(x) - f(x_0)}{x - x_0} = x + x_0$$

woraus

$$\lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} = \lim_{x \to x_0} (x + x_0) = 2x_0$$

folgt.

4. $f: \mathbb{R} \to \mathbb{R}, f(x) = |x|$

Ist in $x_0 = 0$ nicht differenzierbar:

Für x < 0:

$$\frac{f(x) - f(0)}{x - 0} = \frac{|x|}{x} = -1$$

Für x > 0:

$$\frac{f(x) - f(0)}{x - 0} = \frac{|x|}{x} = 1$$

Also hat für $x \to 0$, $\frac{f(x)-f(0)}{x-0}$ keinen Grenzwert. Für alle $x_0 \neq 0$ ist f in x_0 differenzierbar.

5. (Van der Waerden) Sei für $x \in \mathbb{R}$,

$$g(x) = \min\{|x - m| : m \in \mathbb{Z}\}\$$

Sei

$$f(x) = \sum_{n=0}^{\infty} \frac{g(10^n x)}{10^n}$$

Dann ist nach Satz 3.38 diese Reihe auf ganz $\mathbb R$ gleichmässig konvergent und f ist deswegen stetig. Mittels Dezimalentwicklung kann man zeigen, dass f in keinem Punkt von $\mathbb R$ differenzierbar ist.

D 4.7 $f: D \to \mathbb{R}$ ist in **D differenzierbar**, falls für jeden Häufungspunkt $x_0 \in D$, f in x_0 differenzierbar ist.

S 4.9 Sei $D \subseteq \mathbb{R}, x_0 \in D$ ein Häufungspunkt von D und $f, g: D \to \mathbb{R}$ in x_0 differenzierbar. Dann gelten

1 f + q ist in x_0 differencies ar und

$$(f+g)'(x_0) = f'(x_0) + g'(x_0)$$

- 2 $f \cdot g$ ist in x_0 differenzierbar und $(f \cdot g)'(x_0) = f'(x_0)g(x_0) + f(x_0)g'(x_0)$
- 3 Falls $g(x_0) \neq 0$ ist $\frac{f}{g}$ in x_0 differenzierbar und

$$\left(\frac{f}{g}\right)'(x_0) = \frac{f'(x_0)g(x_0) - f(x_0)g'(x_0)}{g(x_0)^2}$$

S 4.11 Seien $D, E \subseteq \mathbb{R}$ und sei $x_0 \in D$ ein Häufungspunkt. Sei $f.D \to E$ eine in x_0 differenzierbare Funktion so dass $y_0 := f(x_0)$ ein Häufungspunkt von E ist, und sei $g: E \to \mathbb{R}$ eine in

 y_0 differenzier
bare Funktion. Dann ist $g \circ f: D \to \mathbb{R}$ in x_0 differenzier
bar und

$$(g \circ f)'(x_0) = g'(f(x_0))f'(x_0)$$

K 4.12 Sei $f: D \to E$ eine bijektive Funktion, $x_0 \in D$ ein Häufungspunkt; wir nehem an f ist in x_0 differenzierbar und $f'(x) \neq 0$; zudem nehemn wir an f^{-1} ist in $y_0 = f(x_0)$ stetig. Dann ist y_0 Häufungspunkt von E, f^{-1} ist in y_0 differenzierbar und

$$f^{-1}(y_0) = \frac{1}{f'(x_0)}$$

4.2 Zentrale Sätze über die Ableitung

D 4.14 Sei $f: D \to \mathbb{R}, D \subseteq \mathbb{R}$ und $x_0 \in D$

1 f besitzt ein lokales Maximum in x_0 falls es $\delta > 0$ gibt mit:

$$f(x) \le f(x_0) \quad \forall x \in]x_0 - \delta, x_0 + \delta[\cap D]$$

2 f besitzt ein lokales Minimum in x_0 falls es $\delta > 0$ gibt mit:

$$f(x) \ge f(x_0) \quad \forall x \in]x_0 - \delta, x_0 + \delta[\cap D]$$

- 3 f besitzt ein lokales Extremum in x_0 falls es entweder ein lokales Minimum oder Maximum von f ist.
- **S** 4.15 Sei $f:]a, b[\to \mathbb{R}, x_0 \in]a, b[$. Wir nehmen an, f ist in x_0 differenzierbar
- 1 Falls f'(x) > 0 gibt es $\delta > 0$ mit

$$f(x) > f(x_0) \quad \forall x \in]x_0, x_0 + \delta[$$

$$f(x) < f(x_0) \quad \forall x \in]x_0 - \delta, x_0[$$

2 Falls $f'(x_0) < 0$ gibt es $\delta > 0$ mit

$$f(x) < f(x_0) \quad \forall x \in]x_0, x_0 + \delta[$$

$$f(x) > f(x_0) \quad \forall x \in]x_0 - \delta, x_0[$$

- 3 Falls f in x_0 ein lokales Extremum besitzt, folgt $f'(x_0) = 0$
- **S** 4.16 (Rolle 1690). Sei $f:[a,b] \to \mathbb{R}$ stetig und in]a,b[differenzierbar. Erfüllt sie f(a)=f(b) so gibt es $\mathcal{E} \in]a,b[]$ mit

$$f'(\mathcal{E}=0)$$

S 4.17 (Lagrange 1797) Sei $f:[a.b] \to \mathbb{R}$ stetig mit f in]a,b[differenzierbar. Dann gibt es $\mathcal{E} \in]a,b[$ mit

$$f(b) - f(a) = f'(\mathcal{E}(b-a))$$

K 4.18 Seien $f, g: [a, b] \to \mathbb{R}$ stetig und in]a, b[differenzierbar

1 Falls

$$f'(\mathcal{E}=0) \quad \forall \mathcal{E} \in]a, b[\text{ist f konstant}]$$

- $\begin{array}{ll} 2 \ \ \mathrm{Falls} \ f'(\mathcal{E}) = g'(\mathcal{E}) & \forall \mathcal{E} \in]a,b[\\ \mathrm{gibt} \ \mathrm{es} c \in \mathbb{R} \mathrm{mit} f(x) = g(x) + c & \forall x \in [a,b]. \end{array}$
- 3 Falls $f'(\mathcal{E}) \ge 0 \quad \forall \mathcal{E} \in]a,b[$ ist f auf [a,b]monoton wachsend
- 5 Falls $f'(\mathcal{E}) \leq 0 \quad \forall \mathcal{E} \in]a,b[$ ist f auf [a,b]monoton fallend
- 6 Falls $f'(\mathcal{E}) < 0 \quad \forall \mathcal{E} \in]a, b[$ ist f auf [a, b]strikt monoton fallend
- 7 Falls es M>0 gibt mit

$$|f'(\mathcal{E})| \le M \quad \forall \mathcal{E} \in]a, b[$$

dann folgt $\forall x_1, x_2 \in [a, b]$:

$$|f(x_1) - f(x_2)| \le M |x_1 - x_2|$$

S 4.22 (Cauchy). Seien $f, g : [a, b] \to \mathbb{R}$ stetig und in [a, b] differenzierbar. Dann gibt es $\mathcal{E} \in]a.b[$ mit

$$g'(\mathcal{E})(f(b) - f(a)) = f'(\mathcal{E})(g(b) - g(a))$$

Falls $g'(x) \neq 0 \quad \forall x \in]a, b[$ folgt

$$g(a) \neq g(b)$$

und

$$\frac{f(b) - f(a)}{g(b) - g(a)} = \frac{f'(\mathcal{E})}{g'(\mathcal{E})}$$

Randnotiz: Man erhält den Satz von Lagrange mit g(x) = x S 4.23 (l'Hospital 1696) Seien f, g: $]a, b[\rightarrow \mathbb{R}$ differenzierbar mit $g'(x) \neq 0 \quad \forall x \in]a, b[$

$$\lim_{x\to b-}f(x)=0, \lim_{x\to b-}g(x)=0$$

und

$$\lim_{x \to b-} \frac{f'(x)}{g'(x)} =: \lambda$$

existiert, folgt

$$\lim_{x \to b-} \frac{f(x)}{g(x)} = \lim_{x \to b-} \frac{f'(x)}{g'(x)}$$

Bem: 4.24 Der Satz gilt auch

- falls $b = +\infty$
- falls $\lambda = +\infty$
- falls $x \to a^+$
- **D** 4.26 Sei $I \subseteq \mathbb{R}$ ein Intervall und $f: I \to \mathbb{R}$ eine Funktion.
- 1 f ist **konvex** (auf I) falls es für alle $x \le y$, $x, y \in I$ und $\lambda \in [0, 1]$ $f(\lambda x + (1 \lambda)y) \le \lambda f(x) + (1 \lambda)f(y)$ gilt
- 2 f ist **streng konvex** falls für alle x < y, $x, y \in I$ und $\lambda \in]0, 1[f(\lambda x + (1 \lambda)y) < \lambda f(x) + (1 \lambda)f(y)$

Bem: 4.27 Sei $f: I \to \mathbb{R}$ konvex. Ein einfacher Induktionsbeweis zeigt, dass für alle $n \geq 1, \{x_1, \dots x_n\} \subseteq I$ und $\lambda_1, \dots, \lambda_n$ in [0, 1] mit $\sum_{i=1}^n \lambda_i f(x_i) = 1$

$$f(\sum_{i=1}^{n} \lambda_i x_i) \le \sum_{i=1}^{n} \lambda_i f(x_i)$$

L 4.28 Sei $f: I \to \mathbb{R}$ eine beliebige Funktion. Die Funktion f ist genau dann konvex, falls für alle $x_0 < x < x_1$ in I

$$\frac{f(x) - f(x_0)}{x - x_0} \le \frac{f(x_1) - f(x)}{x_1 - x}$$

gilt. f ist streng konvex wenn < gilt in obiger Ungleichung \mathbf{S} 4.29 Sei $f:]a,b[\to\mathbb{R}$ in]a,b[differenzierbar. Die Funktion f ist genau dann (streng) konvex, falls f' (streng) monoton wachsend ist. \mathbf{K} 4.30 Sei $f:]a,b[\to\mathbb{R}$ zweimal differenzierbar in]a.b[. Die Funktion f ist (streng) konvex, falls $f'' \leq 0$ (bzw f'' > 0) auf [a,b[

4.3 Höhere Ableitungen

- **D** 4.32 Sei $D \subseteq \mathbb{R}$, so dass jedes $x_0 \in D$ Häufungspunkt der Menge D ist. Sei $f: D \to \mathbb{R}$ differenzierbar in D und f' ihre Ableitung; wir setzen $f^{(1)} = f'$
 - 1 Für $n \geq 2$ ist f **n-mal differenzierbar in D** falls $f^{(n-1)}$ in D differenzierbar ist. Dann ist $f^{(n)} := (f^{(n-1)})'$ und nennt sich die n-te Ableitung von f
 - 2 Die Funktion f ist **n-mal stetig differenzierbar in D**, falls sie n-mal differenzierbar ist und falls $f^{(n)}$ in D stetig ist
 - 3 Die Funktion f ist in D **glatt**, falls sie $\forall n \geq 1$, n-mal differenzierbar ist.

Bem: 4.33 Es folgt aus Korollar 4.5, dass für $n \geq 1$, eine n-mal differenzierbare Funktion (n-1)-mal differenzierbar ist. $\begin{cases} {\bf S} \\ 4.34 \end{cases} 4.34 Sei $D \subseteq \mathbb{R}$ wie in Def. 4.32, $n \geq 1$ und $f,g:D \rightarrow \mathbb{R}$ n-mal differenzierbar in D$

1 f + g ist n-mal differenzierbar und

$$(f+g)^{(n)} = f^{(n)} + g^{(n)}$$

 $2 f \cdot q$ ist n-mal differenzierbar und

$$(f \cdot g)^{(n)} = \sum_{k=0}^{n} \binom{n}{k} f^{(k)} g^{(n-k)}$$

- **S** 4.36 Sei $D\subseteq\mathbb{R}$ wie in Def. 4.32, $n\geq 1$ und $f,g:D\to\mathbb{R}$ n-mal differenzierbar in D Falls $g(x)\neq 0 \quad \forall x\in D,$ ist $\frac{f}{g}$ in D n-mal differenzierbar
- **S** 4.37 Seien $E,D\subseteq\mathbb{R}$ Teilmengen für die jeder Punkt Häufungspunkt ist. Seien $f:D\to E$ und $g:E\to\mathbb{R}$ n-mal differenzierbar. Dann ist $g\circ f$

n-mal differenzierbar und

$$(g \circ f)^{(n)}(x) = \sum_{k=1}^{n} A_{n,k}(x)(g^{(k)} \circ f)(x)$$

wobei $A_{n,k}$ ein Polynom in den Funktionen $f', f^{(2)}, \dots, f^{(n+1-k)}$ ist

4.4 Potenzreihen & Taylor Approx.

S 4.39 Seien $f_n:]a,b[\to \mathbb{R}$ eine Funktionsfolge wobei f_n einmal in]a,b[stetig differenzierbar ist $\forall n \geq 1$. Wir nehemen an, dass sowohl die Folge $(f_n)_{n\geq 1}$ wie $(f'_n)_{n\geq 1}$ gleichmässig in]a,b[konvergieren mit $\lim_{n\to\infty} f_n=:f$ und $(\lim_{n\to\infty} f'_n=:p$. Dann

ist f stetig differenzierbar und f' = p **S** 4.40 Sei $\sum_{k=0}^{\infty} c_k x^k$ eine Potenzreihen mit positivem Konvergenzradius $\rho > 0$. Dann ist

$$f(x) = \sum_{k=0}^{\infty} c_k (x - x_0)^k$$

auf $|x_0 - \rho, x_0 + \rho|$ differenzierbar und

$$f'(x) = \sum_{k=1}^{\infty} kc_k (x - x_0)^{k-1}$$

für alle $x \in]x_0 - \rho, x_0 + \rho[$ **K** 4.41 Unter der Voraussetzung von Satz 4.39 ist f auf $]x_0 - \rho, x_0 + \rho$ glatt und

$$f^{(j)}(x) = \sum_{k=0}^{\infty} c_k \frac{k!}{(k-j)!} (x-x_0)^{k-j}$$

Insbesondere ist

$$c_j = \frac{f^{(j)}(x_0)}{i!}$$

. **S** 4.43 Sei $f:[a,b] \to \mathbb{R}$ stetig und in]a,b[(n+1)-mal differenzierbar. Für jedes $a < x \le b$ gibt es $\mathcal{E} \in]a,x[$ mit:

$$f(x) = \sum_{k=0}^{n} \frac{f^{(k)}(a)}{k!} (x-a)^k + \frac{f^{(n+1)}\mathcal{E}}{(n+1)!} (x-a)^{n+1}$$

K 4.44 (Taylor Approximatio) Sei $f:[c,d] \to \mathbb{R}$ stetig und in]c,d[(n+1)-mal differenzierbar. Sei c < a < d. Für alle $x \in [c,d]$ gibt es \mathcal{E} zwischen x und so dass

$$f(x) = \sum_{k=0}^{n} \frac{f^{(k)}(a)}{k!} (x-a)^k + \frac{f^{(n+1)}\mathcal{E}}{(n+1)} (x-a)^{(n+1)}$$

- **K** 4.45 Sei $n \geq 0, a < x_0 < b$ und $f: [a, b] \rightarrow \mathbb{R}$ in]a, b[(n+1)-mal stetig differenzierbar. Annahme: $f'(x_0) = f^{(2)}(x_0) = \cdots = f^{(n)}(x_0) = 0$
 - 1 Falls n gerade ist und x_0 lokale Extremstelle, folgt $f^{(n+1)}(x_0) = 0$
 - 2 Falls n ungerade ist und $f^{(n+1)}(x_0) > 0$ so ist x_0 eine strikt lokale Minimalstelle

- 3 Falls n ungerade ist und $f^{(n+1)}(x_0) < 0$ so ist x_0 eine strikt lokale Maximalstelle
- **K** 4.46 Sei $f : [a.b] \to \mathbb{R}$ stetig und in]a,b[zweimal stetig differenzierbar. Sei $x < x_0 < b$. Annahme: f'(x) = 0
 - 1 Falls $f^{(2)}(x_0) > 0$ ist x_0 strikt lokale Minimalstelle
- 2 Falls $f^{(2)}(x_0) < 0$ ist x_0 strikt lokale Maximalstelle

5 Das Riemann Integral

5.1 Integrabilitätskriterien

- **D** 5.1 Eine **Partition** von I ist eine endliche Teilmenge $P \subsetneq [a,b]$ wobei $\{a,b\} \subseteq P$ **L** 5.2
 - 1 Sei P' eine Verfeinerung von P, dann gilt:

$$s(f.P) \le s(f, P') \le S(f, P') \le S(f, P)$$

2 Für beliebige Partitionen P_1, P_2 gilt:

$$s(f, P_1) \le S(f, P_2)$$

D 5.3 Eine beschränkte Funktion $f:[a,b] \to \mathbb{R}$ ist Riemann integrierbar falls

$$s(f) = S(f)$$

In diesem Fall bezeichnen wir den gemeinsamen Wert von s(f) und S(f) mit

$$\int_{a}^{b} f(x) dx$$

S 5.4 Eine beschränkte Funtkion ist genau dann integrierbar, falls

$$\forall \epsilon > 0 \quad \exists P \in \mathcal{P}(I)$$

mit $S(f,P)-s(f,P)<\epsilon$ **S** 5.8(Du Bois-Reymond 1875) Eine beschränkte Funktion $f:[a,b]\to\mathbb{R}$ ist genau dann integrierbar, falls $\forall \epsilon>0$ $\exists \delta>0$ so dass

$$\forall P \in P_{\delta}(I), S(f, P) - s(f, P) < \epsilon$$

K 5.9 Die beschränkte Funktion $f:[a,b] \to \mathbb{R}$ ist genau dann integrierbar mit $A:=\int_a^b f(x) \, dx$ falls: $\forall \epsilon>0 \quad \exists \delta>0$ so dass $\forall P\in p(I)$ Partition mit $\delta(P)<\delta$ und $\epsilon_1,\ldots,\epsilon_n$ mit $\mathcal{E}_i\in[x_{i-1},x_i],P=\{x_0,\ldots,x_n\}$

$$\left| A - \sum_{i=1}^{n} f(\mathcal{E}_{i})(x_{i} - x_{i-1}) \right| << epsilon$$

5.2 Integrierbare Funktionen

S 5.10 Seien $f,g:[a,b]\to\mathbb{R}$ beschränkt, integrierbar und $\lambda\in\mathbb{R}$. Dann sind $f+g,\lambda\cdot f,f\cdot g,|f|,\max(f,g),\min(f,g)$ und $\frac{f}{g}$ (falls

 $|g(x)\geq\beta>0\quad\forall x\in[a,b]|)$ integrierbar $\bf Bem:$ 5.11 Sei $\phi:[c,d]\to\mathbb{R}$ eine beschränkte Funktion. Dann ist

$$\sup_{x,y\in[c,d]}|\phi(x)-\phi(y)|=\sup_{x\in[c,d]}\phi(x)-\inf_{x\in[c,d]}\phi(x)$$

K 5.12 Seien P,; Polynome und [a, b] ein Intervall in dem Q keine Nullstelle besitzt. Dann ist

$$[a,b] \to \mathbb{R}$$

$$x o \frac{P(x)}{Q(x)}$$

integrierbar D 5.13 Eine Funktion $f: D \to \mathbb{R}$, $D \subseteq \mathbb{R}$ ist in D gleichmässig stetig, falls $\forall \epsilon > 0 \quad \exists \delta > 0 \quad \forall x, y \in D$:

$$|x - y| < \delta \implies |f(x) - f(y)| < \epsilon$$

S 5.15 (Heine 1872). Sei $f:[a,b] \to \mathbb{R}$ stetig in dem kompakten Intervall [a,b]. Dann ist f in [a,b] gleichmässig stetig. **S** 5.16 Sei $f:[a,b] \to \mathbb{R}$ stetig. Dann ist f integrierbar **S** 5.17 Sei $f:[a,b] \to \mathbb{R}$ monoton. Dann ist f integrierbar **Bem:** 5.18 Seien a < b < c und $f:[a.c] \to \mathbb{R}$ beschränkt mit $f|_{[a,b]}$ und $f|_{[b,c]}$ integrierbar. Dann ist f integrierbar und

$$\int_a^c f(x) dx = \int_a^c f(x) dx + \int_b^c f(x) dx$$

S 5.19 Sei $I \subseteq \mathbb{R}$ ein kompaktes Intervall mit Endpunkten a,b sowie $f_1, f_2: I \to \mathbb{R}$ beschränkt integrierbar und $\lambda_1, \lambda_2 \in \mathbb{R}$. Dann gilt:

$$\int_{a}^{b} (\lambda_{1} f_{1}(x) + \lambda_{2} f_{2}(x)) dx = \lambda_{1} \int_{a}^{b} f_{1}(x) dx + \lambda_{2} \int_{a}^{b} f_{2}(x) dx + \lambda_{2} \int_{a}^{b} f_{2}(x) dx = \lambda_{1} \int_{a}^{b} f_{1}(x) dx + \lambda_{2} \int_{a}^{b} f_{2}(x) dx = \lambda_{1} \int_{a}^{b} f_{2}(x) dx + \lambda_{2} \int_{a}^{b} f_{2}(x) dx + \lambda_{2} \int_{a}^{b} f_{2}(x) dx + \lambda_{2} \int_{a}^{b} f_{2}(x) dx = \lambda_{1} \int_{a}^{b} f_{2}(x) dx + \lambda_{2} \int_{a}^{b}$$

5.3 Ungleichungen und Mittelwertsatz

S 5.20 Seien $f, g: [a, b] \to \mathbb{R}$ beschränkt integrierbar, und

$$f(x) \le g(x) \quad \forall x \in [a, b]$$

Dann folgt:

$$\int_{a}^{b} f(x) \, dx \le \int_{a}^{b} g(x) \, dx$$

K 5.21 Falls $f:[a,b] \to \mathbb{R}$ beschränkt integrierbar, folgt

$$\left| \int_{a}^{b} f(x) \, dx \right| \le \int_{a}^{b} |f(x)| \, dx$$

S 5.22(Cauchy-Schwarz Ungleichung 1821) Seien $f,g:[a,b]\to\mathbb{R}$ beschränkt integrierbar. Dann gilt:

$$\left| \int_a^b f(x)g(x) \, dx \right| \le \sqrt{\int_a^b f^2(x) \, dx} \sqrt{\int_a^b g^2(x) \, dx}$$

S 5.23(Mittelwertsatz, Cauchy 1821) Sei $f:[a,b] \to \mathbb{R}$ stetig. Dann gibt es $\mathcal{E} \in [a,b]$ mit:

$$\int_{a}^{b} f(x) dx = f(\mathcal{E})(b - a)$$

S 5.25(Cauchy 1821) SEien $f, g : [a, b] \to \mathbb{R}$ wobei f stetig, g beschränkt integrierbar mit $g(x) \ge 0$ $\forall x \in [a, b]$. Dann gibt es $\mathcal{E} \in [a, b]$ mit

$$\int_{a}^{b} f(x)g(x) dx = f(\mathcal{E}) \int_{a}^{b} g(x) dx$$

5.4 Fundamentalsatz

S 5.26 Seien a < b und $f : [a, b] \to \mathbb{R}$ stetig. Die Funktion

$$F(x) = \int_{a}^{x} f(t) dt \quad a \le x \le b$$

ist in [a, b] stetig differenzierbar und

$$F'(x) = f(x) \quad \forall x \in [a, b]$$

D 5.27 Sei a < b und $f : [a,b] \to \mathbb{R}$ stetig. Eine Funktion $F : [a,b] \to \mathbb{R}$ heisst **Stammfunktion** von f, falls F (stetig) differenzierbar in [a,b] ist und F' = f in [a,b] gilt **S** 5.28 (Fundamentalsatz der Differentialrechnung) Sei $f : [a.b] \to \mathbb{R}$ stetig. Dann gibt es eine Stammfunktion F von f, die bis auf eine additive Konstante eindeutig bestimmt ist und es gilt:

$$\int_{a}^{b} f(x) dx = F(b) - F(a)$$

 x **S** ${}^{\overline{b}}$ 5.30(Partielle Integration) Seien a < b reele Zahlen und $f,g:[a,b] \to \mathbb{R}$ stetig differenzierbar. Dann gilt

$$\int_{a}^{b} f(x)g'(x) \, dx = f(b)g(b) - f(a)g(a) - \int_{a}^{b} f'(x)g(x) \, dx$$

S 5.31(Substitution) Sei $a < b, \phi : [a, b] \to \mathbb{R}$ stetig differenzierbar, $I \subseteq \mathbb{R}$ ein Intervall mit $\phi([a, b]) \subseteq I$ und $f : I \to \mathbb{R}$ eine stetige Funktion. Dann gilt:

$$\int_{\phi(a)}^{\phi(b)} f(x) dx = \int_a^b f(\phi(t))\phi'(t) dt$$

K 5.33 Sei $I \subseteq \mathbb{R}$ ein Intervall und $f: I \to \mathbb{R}$ stetig.

1 Seien $a,b,c\in\mathbb{R}$ so dass das abgeschlossene Intervall mit Endpunkten a+c, b+c in I enthalten ist. Dann gilt:

$$\int_{a+c}^{b+c} f(x) dx = \int_{a}^{b} f(t+c) dt$$

2 Seien $a, b, c \in \mathbb{R}$ mit $c \neq 0$ so dass das abgeschlossene Intervall mit Endpunkten ac, be in

I enthalten ist. Dann gilt:

$$\int_{a}^{b} f(ct) dt = \frac{1}{c} \int_{ac}^{bc} f(x) dx$$

5.5 Integration konvergenter Reihen

S 5.34 Sei f_n : $[a,b] \to \mathbb{R}$ eine Folge von beschränkten, integrierbaren Funktionen die gleichmässig gegen eine Funktion $f:[a,b] \to \mathbb{R}$ konvergiert. Dann ist f beschränkt integrierbar und

$$\lim_{n \to \infty} \int_a^b f_n(x) \, dx = \int_a^b f(x) \, dx$$

K 5.35 Sei $f_n:[a,b]\to\mathbb{R}$ eine Folge beschränkter integrierbarer Funktionen so dass

$$\sum_{n=0}^{\infty} f_n$$

auf [a.b] gleichmässig konvergiert. Dann gilt:

$$\sum_{n=0}^{\infty} \int_{a}^{b} f_n(x) \, dx = \int_{a}^{b} \left(\sum_{n=0}^{\infty} f_n(x) \right) dx$$

K 5.36 Sei

$$f(x) = \sum_{n=0}^{\infty} c_k x^k$$

eine Potenzreihe mit positivem Konvergenzradius $\rho > 0$. Dann ist für jedes $0 \le r < \rho$, f auf [-r, r] integrierbar und es gilt $\forall x \in]-\rho, \rho[$:

$$\int_{0}^{x} f(t)dt = \sum_{n=0}^{\infty} \frac{c_n}{n+1} x^{n+1}$$

5.6 Euler-McLaurin Summationsformel

D 5.40 $\forall k \geq 0$ ist das k'te Bernoulli Polynom $B_k(x) = k! P_k(x)$ **D** 5.41 Sei $B_0 = 1$ für alle $k \geq 2$ definieren wir B_{k-1} rekursiv:

$$\sum_{i=0}^{k-1} \binom{k}{i} B_i = 0$$

S 5.42

$$B_k(x) = \sum_{i=0}^k \binom{k}{i} B_i x^{k-i}$$

Bem: 5.43 Für k > 2:

$$B_k(1) = \sum_{i=0}^k \binom{k}{i}$$

$$= B_k \quad \text{(nach 5.41)}$$

$$= B_k(0) \quad \text{(nach Satz 5.42)}.$$

Zur Aussage der Summationsformel definieren wir für k > 1

$$\widetilde{B}_k:[0,\infty[\longrightarrow\mathbb{R}]$$

als

$$\widetilde{B}_k(x) = \left\{ \begin{array}{ll} B_k(x) & \text{für} \quad 0 \le x < 1 \\ B_k(x-n) & \text{für} \quad n \le x < n+1 \text{ wobei } n \ge x \end{array} \right.$$

S 5.44 Sei $f:[0,n]\to\mathbb{R}$ k-mal stetig differenzierbar, $k\geq 1$. Dann gilt :

1 Für k = 1:

$$\sum_{i=1}^{n} f(i) = \int_{0}^{n} f(x) dx + \frac{1}{2} (f(n) - f(0)) + \int_{0}^{n} \tilde{B}_{1}(x) f(x) dx$$

2 Für k > 2:

$$\sum_{i=1}^{n} f(i) = \int_{0}^{n} f(x) dx + \frac{1}{2} (f(n) - f(0)) + \sum_{j=2}^{k} \frac{(-1)^{j} f(j)}{j!}$$

wobe

$$\tilde{R}_k = \frac{(-1)^{k-1}}{k!} \int_0^n \tilde{B}_k(x) f^{(k)}(x) dx$$

5.7 Stirling'sche Formel

S 5.47

$$n! = \frac{\sqrt{2\pi n}n^n}{e^n} \cdot \exp(\frac{1}{12n} + R_3(n))$$

wobei

$$|R_3(n)| \le \frac{\sqrt{3}}{216 \cdot \frac{1}{-2}} \quad \forall n \ge 1$$

L 5.48 $\forall m > n+1 > 1$:

$$|R_3(m,n)| \le \frac{\sqrt{3}}{216} (\frac{1}{n^2} - \frac{1}{m^2})$$

5.8 Uneigentliche Integrale

D 5.49 Sei $f: [a, \infty[\to \mathbb{R} \text{ beschränkt und integrierbar auf } [a, b] für alle <math>b > a$. Falls

$$\lim_{b \to \infty} \int_{a}^{b} f(x) \, dx$$

existiert, bezeichnen wir den Grenzwert mit

$$\int_{a}^{\infty} f(x \, dx)$$

und sagen, dass f auf $[a,+\infty[$ integrierbar ist. **L** 5.51 Sei $f:[a,\infty[\to\mathbb{R}]$ beschränkt und integrierbar auf [a,b] $\forall b>a$

 $|B_i|$ +Falls $|f(x)| \leq g(x) \quad \forall x \geq a \text{ und } g(x) \text{ ist auf } [a, \infty[\text{ integrier-bar, so ist f auf } [a, \infty[\text{ integrier-bar}]$

2 Falls $0 \le g(x) \le f(x)$ und \int_a^{∞} divergiert, so divergiert auch $\int_a^{\infty} f(x) dx$

S 5.53 (McLaurin 1742) Sei $f:[1,\infty[\to [0,\infty[$ monoton fallend. Die Reihe

$$\sum_{n=1}^{\infty} f(n)$$

konvergiert genau dann, wenn

$$\int_{1}^{\infty} f(x) \, dx$$

konvergiert **D** 5.56 In dieser Siutation ist $f:]a, b[\to \mathbb{R}$ integrierbar falls

$$\lim_{\epsilon \to 0^+} \int_{a+\epsilon}^b f(x) \, dx$$

existiert; in diesem Fall wird der Grenzwert mit $\int_a^b f(x) \, dx$ bezeichnet

5.9 Die Gamma Funktion

D 5.59 Für s ¿ 0 definieren wir

$$\Gamma(s) := \int_0^\infty e^{-x} x^{s-1} dx$$

- S 5.60(Bohr-Mollerup)
- 1 Die Gamme Funktion erfüllt die Relationen
 - (a) $\Gamma(1) = 1$
 - (b) $\Gamma(s+1) = s\Gamma(s) \quad \forall s > 0$
 - (c) Γ ist logarithmisch, das heisst

$$\Gamma(\lambda x + (1 - \lambda)y) \le \Gamma(x)^{\lambda} \Gamma(y)^{1 - \lambda}$$

für alle
$$x, y > 0$$
 und $0 \le \lambda \le 1$

2 Die Gamme Funktion ist die einzige Funktion $0, \infty[\rightarrow]0, \infty[$ die (a), (b) und (c) erfüllt. Darüber hinaus gilt:

$$\Gamma(x) = \lim_{n \to +\infty} \frac{n! n^x}{x(x+1)\dots(x+n)} \quad \forall x > 0$$

L 5.61 Sei $\rho > 1$ und q > 1 mit

$$\frac{1}{p} + \frac{1}{q} = 1$$

Dann gilt $\forall a, b \geq 0$

$$a \cdot b \le \frac{a^p}{p} + \frac{b^q}{q}$$

S 5.62(Hölder Ungleichung). Seien $\rho > 1$ und q > 1 mit $\frac{1}{p} + \frac{1}{q} = 1$. Für alle $f, g : [a, b] \to \mathbb{R}$ stetig gilt:

$$\int_{a}^{b} |f(x)g(x)| \ dx \le ||f||_{p} ||g||_{q}$$

5.10 Das unbestimmte Integral