《过程控制》作业

第一章 过程动态特性与建模

- 1)《过程控制系统》P136~139: 1.5, 1.7, 1.9, 1.10, 1.11, 1.12, 1.13
- 2) 阅读材料思考题。
- **1.5** 某水槽如题图 1.1 所示,其中 F 为水槽的截面积, R_1 、 R_2 和 R_3 均为线性水阻, Q_1 为流入量, Q_2 和 Q_3 为流出量。要求:
- (1) 写出以水位 H 为输出量, Q_1 为输入量的对象动态方程;
- (2) 写出对象的传递函数 G(s), 并指出其增益 K 和时间常数 T 的表达式。

- 1.7 A、B 两种物料在题图 1.3 所示的混合器中混合后,由进入夹套的蒸汽加热。已知:混合器容积 V=500 L,加热蒸汽的汽化热 $\lambda=2268$ kJ。A 物料流量 $Q_A=20$ kg/min,入口温度 $T_A=20$ °C (恒定);B 物料流量 $Q_B=80$ kg/min,入口温度 $T_B=20\pm10$ °C (是指温度 T_B 有 ±10 °C (是指温度 T_B 有 ±10 °C (是打造内,A,B 物料的比热容与其混合物的比热容相同,均为 (1 4.2 kJ/kg·K;
 - (2) 混合器壁薄,导热性能好,可忽略其蓄热能力和热传导阻力;
 - (3) 蒸汽夹套绝热良好,可忽略其向外的散热损失。

试写出以混合器出口温度 ΔT 为输出量y、蒸汽流量 ΔD 为输入量u 和温度 ΔT_B 为扰动量d 的动态方程,以及控制通道和扰动通道的传递函数。

题图 1.3

提示: 由热量衡算式 $[(\Sigma H_F - \Sigma H_P + Q)\Delta t = \Delta Q_A]$ 可得如下方程

$$Q_A C(\Delta T_A - \Delta T) \Delta t + Q_B C(\Delta T_B - \Delta T) \Delta t + \lambda \Delta D \Delta t = CV \rho \Delta T$$

其中 λ 为汽化热,T为出口温度,D为蒸汽流量, ρ 为密度,C为比热容(均相等)。

1.9 有一水槽,其截面积 F 为 5000 cm²。流出侧阀门阻力实验结果为:当水位 H 变化 20 cm 时,流出量变化为 1000 cm³/s。试求流出侧阀门阻力 R,并计算该水槽的时间常数 T。

题图 1.9 单容水槽示例

1.10 对于第 1.9 题中的水槽,其流入侧管路上调节阀特性的实验结果如下: 当阀门开度变化量 $\Delta\mu$ 为 20%时,流入量变化 Δq_i 为 1000 cm³/s,则 $K_{\mu} = \Delta q_i/\Delta \mu = 50$ cm³/s (%)。试求该对象中从流入侧阀门 μ 到水位 H 的增益 K。

1..11 有一复杂液位对象, 其液位阶跃响应实验结果为:

t/s	0	10	20	40	60	80	100	140	180	250	300	400	500	600
h/mm	0	0	0.2	0.8	2.0	3.6	5.4	8.8	11.8	14.4	16.6	18.4	19.2	19.6

- (1) 画出液位的阶跃响应曲线;
- (2) 若该对象用带纯迟延的一阶惯性环节近似,试用作图法确定纯迟延时间 τ 和时间常数 T;
- (3) 定出该对象增益 K 和响应速度 ε 。设阶跃扰动量 $\Delta \mu$ =20%。

要求:对建立的传递函数模型进行仿真验证,即判断由传递函数得到的阶跃响应曲线和给出的数据是否拟合较好。

1.12 已知温度对象阶跃响应实验结果如下表:

t/s	0	10	20	30	40	50	60	70	80	90	100	150
θ/℃	0	0.16	0.65	1.15	1.52	1.75	1.88	1.94	1.97	1.99	2.00	2.00

阶跃扰动量 $\Delta q = 1 t/h$ 。试用二阶或 n 阶惯性环节写出它的传递函数。

1.13 某温度对象矩形脉冲响应实验为:

t/min	1	3	4	5	8	10	15	16.5	20	25	30	40	50	60	70	80
θ/°C	0.46	1.7	3.7	9.0	19.0	26.4	36	37.5	33.5	27.2	21	10.4	5.1	2.8	1.1	0.5

矩形脉冲幅值为 2 t/h,脉冲宽度 Δt 为 10 min。

- (1) 试将该矩形脉冲响应曲线转换为阶跃响应曲线;
- (2) 用二阶惯性环节写出该温度对象的传递函数。

要求: 对建立的传递函数模型与实验数据进行仿真验证。

*阅读材料思考题:在网络学堂的课程文件中下载论文材料。

材料来自: Jonas Degrave, Federico Felici, Jonas Buchli, et al., Magnetic control of tokamak plasmas through deep reinforcement learning, *Nature*, 2022, Vol 602, pp 414-419. 该文将深度强化学习算法用于 Tokamak 等离子的磁场控制。同学们也可以查阅相关报道,帮助理解论文的工作。

- 1)请阅读该文第1页~第2页的摘要、论文工作说明。 针对课程第一章建模部分讲到的"模型实时性和准确性要综合考虑",请简单说明该文中"深度强化学习"生成的控制器,如何考虑实时性的? 提示:深度强化学习算法分离线训练和在线运行。
- 2) 请阅读材料第 7 页的 "Tokamak Configuration Variable"、"Tokmak simulator" 的内容。

针对课程第一章建模部分讲到的机理建模方法,请简单说明该文中是依据什么原理、如何建立和求解"Tokmak simulator"仿真模型的?该仿真模型在论文工作中起到了哪些作用?