

CRIMES IN CHICAGO

Κακωνάς Νικόλαος - 8190050 Μανιουδάκη Γεωργία - 8190097

Contents of the Report

01

Describe Dataset 02

Data Cleaning & Processing

03

Data Warehouse SQL Server

04

Datacube
Creation Metrics

05

Visualisation

06

Data Mining

Describe Dataset

Context

This dataset reflects reported incidents of crime that occurred in the City of Chicago from 2001 to 2021

Contents

7.2M rows

ID

Case Number

Date

Block

IUCR

Primary Type

Description

Location Description

Arrest

Domestic

Beat

District

Ward

Community Area

FBI Code

X Coordinate

Y Coordinate

Year

Updated On

Latitude

Longitude

Location

Source

https://www.kag gle.com/dataset s/mingyuouyang /chicago-crime-2001-to-2022

Data Cleaning and Processing

Delete columns

Longitude - Latitude

Similar Values

Delete of NON-CRIMINAL cases

Date & Time

Remove commas (,)

Boolean to Bit

Data Warehouse SQL Server

Create Table

Column Name	Data Type	Allow Nulls
▶ ID	bigint	
[Case Number]	varchar(10)	
Date	date	$\overline{\smile}$
Time	time(7)	$\overline{\checkmark}$
Block	varchar(50)	$\overline{\mathbf{v}}$
IUCR	varchar(4)	$\overline{\mathbf{v}}$
[Primary Type]	varchar(50)	
Description	varchar(100)	$\overline{\mathbf{v}}$
[Location Description]	varchar(100)	$\overline{\checkmark}$
Arrest	bit	\checkmark
Domestic	bit	\checkmark
Beat	bigint	\checkmark
District	bigint	$\overline{\checkmark}$
Ward	bigint	$\overline{\checkmark}$
[Community Area]	bigint	$\overline{\checkmark}$
[FBI Code]	varchar(10)	$\overline{\mathbf{v}}$
[X Coordinate]	bigint	
[Y Coordinate]	bigint	
Latitude	float	$\overline{\mathbf{v}}$
Longitude	float	
Location	varchar(100)	

Data Warehouse SQL Server

Bulk Insert

Data Warehouse SQL Server

Dimensions

Case Dimension

Location Dimension

Location Details Dimension

Date Dimension

Time Dimension

Arrest Dimension

Domestic Dimension

Visual Studio Datacube

Cube Schema

Visual Studio Datacube

Metrics

27% of offenders have been arrested

13% of total crimes involve relatives

Most crimes happen in July (9.4%)
The peak crime time is at 12:00 (5.7%)

Less crimes happen in February (6.6%)
Time with the least crimes is at 05:00 (1.3%)

21% of crimes involve theft

the average crimes per year are 313,252

Visualisation

scenarios

Criminal Cases and Arrests per Month (2020) 15K 10K Count of ID Sum of Arrest 5K 0K March July September October November December January February April May June August Month

Number of Cases by Primary Type

Sexcrime Cases by Location Description

Location Description

- RESIDENCE
- APARTMENT
- STREET
- SIDEWALK
- ALLEY
- OTHER
- VEHICLE NON-COMMERCIAL
- PARK PROPERTY
- SCHOOL PUBLIC BUILDING
- RESIDENCE PORCH/HALLWAY
- HOTEL/MOTEL
- HOSPITAL BUILDING/GROUNDS
- CTA TRAIN
- PARKING LOT/GARAGE(NON.RESID.)
- NURSING HOME/RETIREMENT HOME
- ABANDONED BUILDING
- RESIDENTIAL YARD (FRONT/BACK)
- SCHOOL PUBLIC GROUNDS
- CHA APARTMENT
- RESTAURANT
- RESIDENCE-GARAGE
- BAR OR TAVERN
- CTA PLATFORM
- SMALL RETAIL STORE
- CTA BUS

Sex Offense Cases by Description

Public Peace Violation Cases by Description

Domestic related Cases by Primary Type

Data Mining

Clustering

For the clustering we used K-Means algorithm

Data Mining

Correlations Between Crimes

Apriori Algorithm

	antecedents	consequents	antecedent support	consequent support	support	confidence	lift	leverage	conviction
0	(ASSAULT)	(BATTERY)	0.192308	0.538462	0.192308	1.000000	1.857143	0.088757	inf
1	(ASSAULT)	(BURGLARY)	0.192308	0.141026	0.115385	0.600000	4.254545	0.088264	2.147436
2	(BURGLARY)	(ASSAULT)	0.141026	0.192308	0.115385	0.818182	4.254545	0.088264	4.442308
3	(ASSAULT)	(CRIMINAL DAMAGE)	0.192308	0.410256	0.192308	1.000000	2.437500	0.113412	inf
4	(CRIMINAL TRESPASS)	(ASSAULT)	0.025641	0.192308	0.012821	0.500000	2.600000	0.007890	1.615385
5	(MOTOR VEHICLE THEFT)	(ASSAULT)	0.051282	0.192308	0.051282	1.000000	5.200000	0.041420	inf
6	(ASSAULT)	(NARCOTICS)	0.192308	0.282051	0.179487	0.933333	3.309091	0.125247	10.769231
7	(NARCOTICS)	(ASSAULT)	0.282051	0.192308	0.179487	0.636364	3.309091	0.125247	2.221154
8	(ASSAULT)	(OTHER OFFENSE)	0.192308	0.141026	0.141026	0.733333	5.200000	0.113905	3.221154
9	(OTHER OFFENSE)	(ASSAULT)	0.141026	0.192308	0.141026	1.000000	5.200000	0.113905	inf
10	(ROBBERY)	(ASSAULT)	0.025641	0.192308	0.025641	1.000000	5.200000	0.020710	inf
11	(ASSAULT)	(THEFT)	0.192308	0.641026	0.192308	1.000000	1.560000	0.069034	inf
12	(BURGLARY)	(BATTERY)	0.141026	0.538462	0.141026	1.000000	1.857143	0.065089	inf
13	(CRIMINAL DAMAGE)	(BATTERY)	0.410256	0.538462	0.397436	0.968750	1.799107	0.176529	14.769231
14	(BATTERY)	(CRIMINAL DAMAGE)	0.538462	0.410256	0.397436	0.738095	1.799107	0.176529	2.251748
15	(CRIMINAL TRESPASS)	(BATTERY)	0.025641	0.538462	0.025641	1.000000	1.857143	0.011834	inf
16	(DECEPTIVE PRACTICE)	(BATTERY)	0.064103	0.538462	0.064103	1.000000	1.857143	0.029586	inf
17	(MOTOR VEHICLE THEFT)	(BATTERY)	0.051282	0.538462	0.051282	1.000000	1.857143	0.023669	inf
18	(NARCOTICS)	(BATTERY)	0.282051	0.538462	0.282051	1.000000	1.857143	0.130178	inf
19	(BATTERY)	(NARCOTICS)	0.538462	0.282051	0.282051	0.523810	1.857143	0.130178	1.507692
20	(OTHER OFFENSE)	(BATTERY)	0.141026	0.538462	0.141026	1.000000	1.857143	0.065089	inf
21	(ROBBERY)	(BATTERY)	0.025641	0.538462	0.025641	1.000000	1.857143	0.011834	inf
22	(THEFT)	(BATTERY)	0.641026	0.538462	0.538462	0.840000	1.560000	0.193294	2.884615
23	(BATTERY)	(THEFT)	0.538462	0.641026	0.538462	1.000000	1.560000	0.193294	inf
24	(BURGLARY)	(CRIMINAL DAMAGE)	0.141026	0.410256	0.141026	1.000000	2.437500	0.083169	inf
25	(MOTOR VEHICLE THEFT)	(BURGLARY)	0.051282	0.141026	0.025641	0.500000	3.545455	0.018409	1.717949

Decision

Tree

The purpose of this decision tree model is to predict whether an incident results in an arrest or not. It is using the features of the dataset 'Community Area' and 'Primary Type' to make predictions.

Accuracy= 86,47%

- The Gini impurity measures the probability that if we pick an item at random this will be classified wrongly.
- The Gini impurity can be computed by summing the probability fifi of an item being of class ii times the probability 1-fi1-fi of a mistake in categorizing that item.

THANK YOU!!!

Any questions?