Ford-Fulkerson

Preflow-Push

Lower Bounds

Minimum Cost Flow

VU Algorithmics

Part IV: Network Flows

Bin Hu, Günther Raidl, Mario Ruthmair

Algorithms and Data Structures Group Institute of Computer Graphics and Algorithms Vienna University of Technology

WS 2013/14

VU Algorithmics M. Ruthmair

Maximum Flow Basics

Ford-Fulkerson

Preflow-Push

Lower Bounds

Minimum Cost Flow

1

3

MAXIMUM FLOWS IN NETWORKS

Maximum Flow Basics

Ford-Fulkerson

Preflow-Push

Lower Bounds

Minimum Cost Flow

Topics of this part

- Maximum Flow Basics
- Ford-Fulkerson Maximum Flow Algorithm
- Preflow-Push Maximum Flow Algorithm
- Networks with Lower Capacity Bounds

Ford-Fulkerson

Minimum Cost Flow Problem

VU Algorithmics

Maximum Flow Basics

M. Ruthmair

Preflow-Push

Minimum Cost Flow

2

4

Maximum Flows: Introduction

Maximum flow problem arises in a wide variety of situations:

- Transport of petroleum products in a pipeline network.
- Transmission of data between two stations in a telecommunication network.
- Subproblem in the solution of other, more difficult network problems, e.g. minimum cost flow.

Literature:

R.K. Ahuja, T.L. Magnanti, J.B. Orlin: Network Flows, Prentice Hall, 1993

VU Algorithmics M. Ruthmair

Ford-Fulkerson

Preflow-Push

Lower Bounds

Minimum Cost Flow

Maximum Flows: Introduction

Definition 1 (Flow Network)

A flow network is a 5-tuple $\mathcal{N}=(V,A,\varsigma,s,t)$, with (V,A) being a directed graph with node set V and arc set A, a function $\varsigma:A\to\mathbb{R}_0^+$, and two nodes $s,t\in V,s\neq t$. Function ς associates nonnegative capacities to each arc (u,v), node s is called the source, node t the target or sink.

Extension: $\varsigma(a) = 0$ $\forall \text{ arcs } a \in (V \times V) \setminus A$.

Ford-Fulkerson

VU Algorithmics

M. Ruthmair

Lower Bounds

Minimum Cost Flow

5

Maximum Flows: Introduction

Definition 2 (Flow)

Maximum Flow Basics

A flow is a real function $f: V \times V \to \mathbb{R}$ with the following three properties:

- Skew symmetry (asymmetry): f(u, v) = -f(v, u) $\forall u, v \in V$
- **2** Capacity constraints: $f(u, v) \le \varsigma(u, v)$ $\forall u, v \in V$
- **§** Flow conservation: $\sum_{v \in V} f(u, v) = f(u, V) = 0$ $\forall u \in V \setminus \{s, t\}$

Note: $f(A, B) = \sum_{u \in A} \sum_{v \in B} f(u, v); \ f(\{u\}, V) = f(u, V)$

f(u, v) is the *net flow* from node u to node v: real flow of 4 units from u to v and of 3 units from v to u then the net flow f(u, v) = 1 and f(v, u) = -1.

VU Algorithmics M. Ruthmair 7

Maximum Flow Basics

Ford-Fulkerson

Preflow-Push Lower Bounds

Minimum Cost Flow

Maximum Flows: Introduction

Assumption

The network \mathcal{N} is connected (guaranteed by the extension $\varsigma(a)=0 \quad \forall a \in (V \times V) \setminus A$).

Assumption

The network \mathcal{N} does not contain a directed path from s to t composed only of infinite capacity arcs.

Assumption

The network \mathcal{N} does not contain parallel arcs (i.e., two or more arcs with the same tail and head nodes).

VU Algorithmics M. Ruthmair 6

Maximum Flow Basics

Ford-Fulkerson

Preflow-Pus

Lower Bounds

Minimum Cost Flow

Maximum Flows: Introduction

Figure: A flow network \mathcal{N} with associated arc capacities $\varsigma(u, v)$.

Maximum Flow Basics Ford-Fulkerson Preflow-Push Lower Bounds

Minimum Cost Flow

9

Minimum Cost Flow

Lower Bounds

Maximum Flows: Introduction

Figure: A flow f (red) in the network \mathcal{N} .

M. Ruthmair VU Algorithmics

Maximum Flows: Introduction

Ford-Fulkerson

Definition 5 (Residual Network)

Maximum Flow Basics

The graph $G_f = (V, A_f)$ with A_f being the set of all residual arcs (i.e., all arcs a with $r_f(a) > 0$ is called the residual network in respect to a given flow f.

Definition 6 (Augmenting Path)

A path P in the residual network G_f from source s to sink t is called an augmenting path in respect to a given flow f.

Notice: An augmenting path in G_f can be used to increase the flow from s to t leading to a new flow f' and residual network $G_{f'}$.

Maximum Flow Basics Ford-Fulkerson Preflow-Push Lower Bounds Minimum Cost Flow

Maximum Flows: Introduction

Definition 3 (Value of a Flow, Maximum Flow)

The value of a flow f is the total amount of flow reaching the sink t: $|f| = \sum f(v,t) = f(V,t).$

 f^* is a maximum flow when there is no flow g with $|g| > |f^*|$.

Definition 4 (Residual Capacity)

Given a flow f in the network \mathcal{N} . The residual capacity of an arc $a \in V \times V$ in respect to f is defined as $r_f(a) = \varsigma(a) - f(a)$.

Notice: An arc a with $r_f(a) > 0$ is called a *residual arc* where additional flow can be supplemented; otherwise $(r_f(a) = 0)$ the arc is called saturated.

VU Algorithmics M. Ruthmair 10

Lower Bounds

Minimum Cost Flow

Maximum Flow Basics Ford-Fulkerson Preflow-Push

Maximum Flows: Introduction

Definition 7 (Push)

The basic operation of augmenting a flow f along an arc $(u, v) \in A$ by some value x is referred to as a push.

Notice: $f'(u, v) = f(u, v) + x \rightarrow f'(v, u) = f(v, u) - x$.

Increasing flow f in a network \mathcal{N} :

- 1. Find augmenting path P from s to t in G_f ; $x \rightarrow \text{minimum residual capacity along } P$.
- 2. Push x along P (this saturates at least one arc) $\rightarrow f'$.
- 3. |f'| = |f| + x

M. Ruthmair VU Algorithmics M Ruthmair 11 VU Algorithmics 12

Maximum Flows: Introduction

Figure: Flow *f* before push operation.

VU Algorithmics M. Ruthmair 17

Maximum Flow Basics Ford-Fulkerson

Lower Bounds Minimum Cost Flow

Maximum Flows: Introduction

Question: Flow $f \to \text{augmenting path } P \text{ in } G_f \to \text{pushes along } P \to \text{new flow } f', \text{ but is } f' \text{ really a flow (as defined before)?}$

Answer: Yes.

Proof:

Skew symmetry:

See push operation: $f(u, v) + x \rightarrow f(v, u) - x$. \checkmark

Capacity constraints:

Construction of G_f : Residual capacity $r_f(a)$ gives the max. amount of additional flow the arc a can carry. \checkmark

Flow conservation:

 $\forall u \in V \setminus \{s, t\}$ along P the net flow remains 0: x is added to the incoming as well as outgoing flow of u. \checkmark

VU Algorithmics M. Ruthmair 19

Maximum Flow Basics Ford-Fulkerson Preflow-Push Lower Bounds Minimum Cost Flow

Maximum Flows: Introduction

Figure: Flow f' after push operation (4 units along P).

VU Algorithmics M. Ruthmair 18

Maximum Flow Basics

Ford-Fulkerson

Preflow-Push

Lower Bound

Minimum Cost Flow

Maximum Flow / Minimum Cut

Definition 8 (Cut, Capacity of a Cut)

A cut is a set of nodes $S \subset V$ with $s \in S$ and $t \in \overline{S}$, where $\overline{S} := V \setminus S$; i.e., a cut is a partition of V into two non-empty sets S and \overline{S} .

The capacity of a cut is defined as the capacity of all arcs crossing the cut from S to \overline{S} :

$$\varsigma(S,\overline{S}) = \sum_{u \in S} \sum_{v \in \overline{S}} \varsigma(u,v).$$

The number of possible cuts is $2^{|V|-2}$.

Ford-Fulkerson

Preflow-Push

Lower Bounds

Minimum Cost Flow

Maximum Flow / Minimum Cut

Lemma 9 (Flow / Cut Capacity)

No flow f in a network N can have a value greater than the capacity of any cut S.

Proof (using the definition of a flow 1-3):

$$|f| = f(V, t) \stackrel{(3)}{=} f(V, t) + f(V, \overline{S} \setminus \{t\}) = f(V, \overline{S}) = f(S, \overline{S}) + f(\overline{S}, \overline{S}) = f(S, \overline{S}) \stackrel{(2)}{\leq} \varsigma(S, \overline{S})$$

Implication: $|f| = f(S, \overline{S})$ for any flow f and any cut S in \mathcal{N} .

Definition 10 (Saturated Cut)

A flow f saturates a cut S iff $f(S, \overline{S}) = \varsigma(S, \overline{S})$.

Ford-Fulkerson

VU Algorithmics

Maximum Flow Basics

M. Ruthmair

Lower Bounds

Minimum Cost Flow

21

Maximum Flow / Minimum Cut

Figure: Flow f' (after a push operation)

Maximum Flow Basics

Ford-Fulkerson

Preflow-Push

Lower Bounds

Minimum Cost Flow

Maximum Flow / Minimum Cut

Theorem 11 (Max-Flow / Min-Cut)

Let f be a flow in a network N, then the following three conditions are equivalent:

- 1. There is a cut S in \mathcal{N} saturated by f.
- 2. f is a maximum flow in \mathcal{N} .
- 3. There is no augmenting path P in the residual network G_f .

Ford/Fulkerson and Elias/Feinstein/Shannon, 1956

The max-flow min-cut theorem is one of the central statements in optimization theory!

VU Algorithmics M. Ruthmair 22

Maximum Flow Basics

Ford-Fulkerson

Preflow-Push

Minimum Cost Flow

Maximum Flow / Minimum Cut

Figure: Residual network $G_{f'}$ in respect to flow f'.

VU Algorithmics M. Ruthmair

VU Algorithmics

M. Ruthmair

23

Maximum Flow / Minimum Cut

Figure: No augmenting path from s to t in $G_{f'}$.

VU Algorithmics M. Ruthmair 25

Maximum Flow / Minimum Cut

Maximum Flow Basics

Proof (max-flow min-cut theorem, circular reasoning):

Ford-Fulkerson

- 1 \rightarrow 2: saturated cut \rightarrow maximum flow [based on Lemma 9] For any flow g and any cut $S \rightarrow |g| \le \varsigma(S, \overline{S}) \Rightarrow f$ max. flow, because $f(S, \overline{S}) = \varsigma(S, \overline{S})$ due to condition 1.
- 2 \rightarrow 3: maximum flow \rightarrow no augmenting path If there would be an augmenting path, f could be increased by some positive value $x \Rightarrow f$ would not be a max. flow.
- 3o1: no augmenting path o saturated cut Let S be the set of nodes in G_f reachable from $s o s \in S$, and $t \notin S$ due to condition 3 o S is a cut o $\forall (u,v) \in A, u \in S, v \in \overline{S} : f(u,v) = \varsigma(u,v)$, otherwise $r_f(u,v) > 0 o (u,v) \in G_f o v$ could be reached from s o contradiction to definition of S.

Maximum Flow Basics Ford-Fulkerson Preflow-Push Lower Bounds Minimum Cost Flow

Maximum Flow / Minimum Cut

Figure: Maximum flow f^* in network \mathcal{N} .

VU Algorithmics M. Ruthmair 26

Maximum Flow Basics

Ford-Fulkerso

Preflow-Pus

Lower Bounds

Minimum Cost Ele

Maximum Flow / Minimum Cut

Background: Why is it called the Max-Flow Min-Cut theorem?

Let f be a maximum flow in \mathcal{N} . Lemma 9 states that |f| is bounded above by the capacity of any cut. Therefore a cut S with $\varsigma(S,\overline{S})=|f|$ has to be a cut of minimum capacity; such a saturated cut exists due to the theorem $(2\rightarrow 1)$.

Suppose there is a cut S' with $\varsigma(S', \overline{S'}) < \varsigma(S, \overline{S})$, then there must hold: $|f| \le \varsigma(S', \overline{S'}) < \varsigma(S, \overline{S}) = |f| \to \text{contradiction}.$

Problem became of major interest during cold war between the United States and the Soviet Union from the mid-1940s until the early 1990s: Where to hit the Soviet rail system to prevent transport of troops and supplies to Eastern Europe?

VU Algorithmics M. Ruthmair 28

VU Algorithmics

M. Ruthmair

Maximum Flow / Minimum Cut

Harris, Ross: Fundamentals of a Method for Evaluating Rail Net Capacities

Research Memorandum RM-1537, 1955

VU Algorithmics M. Ruthmair 29

Maximum Flow Basics Ford-Fulkerson Preflow-Push Lower Bounds Minimum Cost Flow

Ford-Fulkerson Algorithm

- Proposed by Ford and Fulkerson 1962.
- Directly motivated by the proof for the max-flow min-cut theorem: 3 (no augmenting path) \rightarrow 2 (maximum flow).
- Basic idea:
 - Start with a null flow.
 - As long as there can be found an augmenting path: Increase flow along this path.
- Ford-Fulkerson algorithm is restricted to integer capacities!

Maximum Flow Basics Ford-Fulkerson Preflow-Push Lower Bounds Minimum Cost Flow

FORD-FULKERSON ALGORITHM

VU Algorithmics M. Ruthmair 30

Preflow-Push

Ford-Fulkerson Algorithm

```
Procedure FordFulkerson()
```

```
Procedure FordFulkerson()
```

 $i \leftarrow 0;$

Maximum Flow Basics

2 $f_i \leftarrow \text{null flow}$;

3 while \exists augmenting path P from s to t in G_{f_i} do 4 $\mid x \leftarrow$ minimum residual capacity along P;

Ford-Fulkerson

augment flow of value x along P;

augment flow of value x alo

 $f_{i+1} \leftarrow f_i + x;$

 $i \leftarrow i + 1;$

8 return f_i ;

VU Algorithmics

VU Algorithmics M. Ruthmair 31

M. Ruthmair

/* initialization */

/* algorithm */

Ford-Fulkerson Algorithm: Example

Figure: A flow network \mathcal{N} with associated arc capacities $\varsigma(u,v)$. $\mathcal{N}=G_{f_0}$ since $f(u,v)=0, \ \forall (u,v)\in A$.

VU Algorithmics M. Ruthmair 33

Lower Bounds

Minimum Cost Flow

Ford-Fulkerson Algorithm: Example

Ford-Fulkerson

Maximum Flow Basics

Figure: Minimum capacity along the path: 4 \rightarrow flow f_1 .

VU Algorithmics M. Ruthmair 35

M. Ruthmair

34

VU Algorithmics

Ford-Fulkerson Algorithm: Example

Figure: The maximum flow f_4 in the network \mathcal{N} .

VU Algorithmics M. Ruthmair 49

Lower Bounds

Minimum Cost Flow

51

Ford-Fulkerson Algorithm: Problems

Ford-Fulkerson

Maximum Flow Basics

Problem: Pseudopolynomial running time:

Figure: Flow network \mathcal{N} with $|f^*| = 2 \cdot 10^6$, where the Ford-Fulkerson algorithm requires time $\Theta(|A| \cdot |f^*|)$.

VU Algorithmics M. Ruthmair

Maximum Flow Basics Ford-Fulkerson Preflow-Push Lower Bounds Minimum Cost Flow

Ford-Fulkerson Algorithm

Correctness (without proof): Ford-Fulkerson algorithm terminates computing the maximum flow in case the capacities in the flow network $\mathcal N$ are integral.

The maximum flow f^* is integral.

Runtime:

• Null flow: $\Theta(|A|)$.

Maximum Flow Basics

- Find augmenting path, DFS / BFS: $\Theta(|A|)$.
- Number of augmenting paths: $O(|f^*|)$. Integrality condition $\to f$ is increased at least by 1 in each iteration.
- \Rightarrow Ford-Fulkerson algorithm runs in time $O(|A| \cdot |f^*|)$ (worst case).

VU Algorithmics M. Ruthmair 50

Minimum Cost Flow

Ford-Fulkerson Algorithm: Problems

Ford-Fulkerson

Improvement: Edmonds-Karp Algorithm (1972)

Two heuristics for choosing augmenting paths:

- Fat Pipes: Augmenting path with largest bottleneck value; running time $O(|A|^2 \cdot \log |A| \cdot \log |f^*|)$. (modified Prim's MST)
- Short Pipes: Shortest (in respect to number of arcs) augmenting path; running time $O(|V| \cdot |A|^2)$. (BFS)

Ford-Fulkerson

Preflow-Push

Lower Bounds

Minimum Cost Flow

Ford-Fulkerson Algorithm: Problems

Problem: Capacities $\in \mathbb{R}$, irrational capacities:

- ullet Rational capacities: Scale to integer o running time can explode (pseudopolynomial).
- Irrational capacities: Algorithm can loop forever and may converge to a wrong maximum flow value.

Sketch of Proof

Details: Uri Zwick:

Maximum Flow Basics

The smallest networks on which the Ford-Fulkerson maximum flow procedure may fail to terminate. (1993)

VU Algorithmics

M. Ruthmair

Minimum Cost Flow

53

55

Ford-Fulkerson Algorithm: Problems

Ford-Fulkerson

Figure: Flow network \mathcal{N} with irrational capacity $\phi = \frac{\sqrt{5}-1}{2} \approx 0.62$, M = somelarge integer.

Maximum flow $|f^*| = 2 \cdot M + 1$.

Maximum Flow Basics

Ford-Fulkerson

Preflow-Push

Lower Bounds

Minimum Cost Flow

Ford-Fulkerson Algorithm: Problems

Basic idea:

Use a network \mathcal{N} to simulate the computation of a sequence $\langle a_i \rangle$.

$$\langle a_i \rangle$$
: $a_0 = 1$
 $a_1 = \phi = \frac{\sqrt{5}-1}{2} \approx 0.62$ $(\frac{\sqrt{5}+1}{2} \dots \text{golden ratio})$
 $a_i = a_{i-2} - a_{i-1} \quad \forall i \geq 2$
:

$$a_2 = a_0 - a_1 = 1 - \phi = \phi^2$$

 $a_3 = \phi - \phi^2 = \phi \cdot (1 - \phi) = \phi \cdot \phi^2 = \phi^3$
 $a_i = \phi^i$

VU Algorithmics M. Ruthmair 54

Maximum Flow Basics

Ford-Fulkerson

Minimum Cost Flow

Ford-Fulkerson Algorithm: Problems

First flow to "initialize" the network \mathcal{N} .

VU Algorithmics M. Ruthmair 56

VU Algorithmics

M. Ruthmair

Ford-Fulkerson Algorithm: Problems

The first residual network: $\varsigma(v_3, v_4) = 1 = a_0, \ \varsigma(v_1, v_2) = \phi = a_1.$ (only the residual arcs and capacities of the critical edges between the nodes v_i , $i = 1 \dots 4$, are illustrated).

VU Algorithmics M. Ruthmair 57

Maximum Flow Basics Ford-Fulkerson Lower Bounds Minimum Cost Flow Preflow-Push

Ford-Fulkerson Algorithm: Problems

VU Algorithmics

Flow along augmenting path p_1 ; bottleneck arc: $v_1 \rightarrow v_2$.

M. Ruthmair

Maximum Flow Basics Ford-Fulkerson Preflow-Push Lower Bounds Minimum Cost Flow

Ford-Fulkerson Algorithm: Problems

Sequence of augmenting paths p_i , i = 1...3, to simulate the computation of $\langle a_i \rangle$ (infinite loop):

$$p_1 \rightarrow p_2 \rightarrow p_1 \rightarrow p_3 \rightarrow \dots$$

VU Algorithmics M. Ruthmair

Preflow-Push

Lower Bounds

58

Minimum Cost Flow

Ford-Fulkerson

Ford-Fulkerson Algorithm: Problems

Maximum Flow Basics

59

$$f^{2} = 1 + \phi$$

Residual network (capacity of residual arc $v_3 \rightarrow v_4 = a_2$).

Ford-Fulkerson Algorithm: Problems

Flow along augmenting path p_2 ; bottleneck arc: $v_2 \rightarrow v_1$.

VU Algorithmics M. Ruthmair 61

Ford-Fulkerson Algorithm: Problems

Ford-Fulkerson

Maximum Flow Basics

Lower Bounds

Minimum Cost Flow

Flow along augmenting path p_1 ; bottleneck arc: $v_3 \rightarrow v_4$.

VU Algorithmics M. Ruthmair 63

Maximum Flow Basics Ford-Fulkerson Preflow-Push Lower Bounds Minimum Cost Flow

Ford-Fulkerson Algorithm: Problems

$$f^{4} = 1 + \phi + \phi$$

Residual network (capacities of residual arcs $v_1 o v_2$ and $v_2 o v_3$ "resetted").

VU Algorithmics M. Ruthmair 62

Minimum Cost Flow

64

Lower Bounds

Ford-Fulkerson Algorithm: Problems

Ford-Fulkerson

Maximum Flow Basics

$$f^{=} = 1 + \phi + \phi + (1 - \phi)$$

Residual network (capacity of residual arc $v_1
ightarrow v_2 = a_3$).

Maximum Flow Basics Ford-Fulkerson Pre

Preflow-Push

Lower Bounds

Lower Bounds

Minimum Cost Flow

Minimum Cost Flow

Ford-Fulkerson Algorithm: Problems

Flow along augmenting path p_3 ; bottleneck arc: $v_3 \rightarrow v_2$.

VU Algorithmics M. Ruthmair 65

Preflow-Push

Ford-Fulkerson

Ford-Fulkerson Algorithm: Problems

Maximum Flow Basics

$$f^{\del \gamma} = 1 + \phi + \phi + (1 - \phi) + (1 - \phi)$$

Residual network $(p_1 o p_2 o p_1 o p_3 \colon a_1 o a_3 \text{ and } a_0 o a_2).$

VU Algorithmics M. Ruthmair 67

Maximum Flow Basics

Ford-Fulkerson

Preflow-Push

Lower Bound

Minimum Cost Flow

Ford-Fulkerson Algorithm: Problems

$$f^{2} = 1 + \phi + \phi + (1 - \phi) + (1 - \phi)$$

Residual network (capacity of residual arc $v_3
ightarrow v_4$ "resetted").

VU Algorithmics M. Ruthmair 66

Maximum Flow Basics

Ford-Fulkerson

Preflow-Push

Lower Bour

Minimum Cost Flow

Ford-Fulkerson Algorithm: Problems

$$f^{4} = 1 + \phi + \phi + (1 - \phi) + (1 - \phi) + \dots =$$

$$= 1 + 2 \cdot \phi + 2 \cdot \phi^{2} + 2 \cdot \phi^{3} + \dots =$$

$$= 1 + 2 \cdot \sum_{i=1}^{\infty} \phi^{i} = \text{(geometric series)}$$

$$=1+2\cdot\binom{1}{1-\phi}-2=$$

$$=2+\sqrt{5} < 5.$$

68

Remember:

Maximum flow $|f^*|$ in network \mathcal{N} : $2 \cdot M + 1$.

Ford-Fulkerson

Preflow-Push

Lower Bounds

Minimum Cost Flow

Ford-Fulkerson Algorithm: Problems

Drawback of all augmenting path algorithms:

Figure: Sending flow along a s-t path is a computationally expensive operation, it requires O(n) time in worst case.

Improvement: Preflow-Push algorithms.

VU Algorithmics

M. Ruthmair

Lower Bounds Minimum Cost Flow

Generic Preflow-Push Algorithm

• Proposed by Goldberg and Tarjan 1988.

Ford-Fulkerson

- Running time: $O(|V|^2 \cdot |A|)$. For comparison, the Edmonds-Karp algorithms: $O(|A|^2 \cdot \log |A| \cdot \log |f^*|)$ resp. $O(|V| \cdot |A|^2)$.
- Basic idea:

Maximum Flow Basics

- Relax flow conservation rule.
- Push flow along individual arcs, not along complete s-t paths.
- Every node has an "overfall basin" of unlimited size to buffer flow.
- ullet Direct flow from basins with excess to the target t.
- Preflow-Push algorithm is **not** restricted to integer capacities!

Maximum Flow Basics

Ford-Fulkerson

Preflow-Push

Lower Bounds

Minimum Cost Flow

Preflow-Push Algorithm

VU Algorithmics

69

M. Ruthmair

Preflow-Push

IXutilliali

Lower Bounds

Minimum Cost Flow

70

72

Generic Preflow-Push Algorithm

Ford-Fulkerson

Definition 12 (Preflow)

Maximum Flow Basics

A preflow is a real function $f: V \times V \to \mathbb{R}$ with the following three properties:

- **1** Skew symmetry: f(u, v) = -f(v, u) $\forall u, v \in V$
- **2** Capacity constraints: $f(u, v) \le \varsigma(u, v)$ $\forall u, v \in V$
- **3** Excess condition: $f(V, u) = e_f(u) \ge 0$ $\forall u \in V \setminus \{s\}$

Intermediate stages:

- ullet Augmenting path algorithms o feasible flows.
- Preflow-push algorithms \rightarrow infeasible flows (preflows).

VU Algorithmics M. Ruthmair 71

Generic Preflow-Push Algorithm

Figure: Illustration of the preflow-push algorithm (basic idea, no labels).

VU Algorithmics M. Ruthmair 73

Preflow-Push

Lower Bounds

Minimum Cost Flow

75

Generic Preflow-Push Algorithm

Ford-Fulkerson

Maximum Flow Basics

Figure: Residual network G_t ; two nodes $\neq t$ with excess \rightarrow continue.

VU Algorithmics M. Ruthmair Maximum Flow Basics Ford-Fulkerson Preflow-Push Minimum Cost Flow

Generic Preflow-Push Algorithm

Figure: Initialization: Saturate all arcs having s as their source node; $e_f(v_1) = 16$, $e_f(v_2) = 13$.

VU Algorithmics M. Ruthmair 74

Preflow-Push

Lower Bounds

Minimum Cost Flow

Generic Preflow-Push Algorithm

Ford-Fulkerson

Maximum Flow Basics

Figure: Push excess of v_1 ($e_f(v_1) = 16$) to nodes v_2 and v_3 ; $e_f(v_2) = 13 + 4$, $e_f(v_3) = 12$.

Ford-Fulkerson

Maximum Flow Basics

Preflow-Push

Lower Bounds

Minimum Cost Flow

Figure: Push as much as possible excess of v_2 ($e_f(v_2) = 17$) to node v_4 ; $e_f(v_2) = 17 - 14$, $e_f(v_4) = 14$, $e_f(t) = 12$.

Generic Preflow-Push Algorithm

Ford-Fulkerson

Maximum Flow Basics

Preflow-Push

Lower Bounds

Lower Bounds

Minimum Cost Flow

Minimum Cost Flow

Figure: Residual network G_f ; two nodes $\neq t$ with excess \rightarrow continue.

VU Algorithmics M. Ruthmair 81

Preflow-Push

Generic Preflow-Push Algorithm

Ford-Fulkerson

Maximum Flow Basics

Figure: Residual network G_f ; three nodes $\neq t$ with excess \rightarrow continue.

VU Algorithmics M. Ruthmair 83 Maximum Flow Basics Ford-Fulkerson Preflow-Push Minimum Cost Flow

Generic Preflow-Push Algorithm

Figure: Push as much as possible excess of v_4 ($e_f(v_4) = 14$) to v_3 and t; $e_f(v_2) = 3$, $e_f(v_3) = 7$, $e_f(v_4) = 14 - 11$, $e_f(t) = 12 + 4$.

VU Algorithmics M. Ruthmair 82

Preflow-Push

Lower Bounds

Minimum Cost Flow

Generic Preflow-Push Algorithm

Ford-Fulkerson

Maximum Flow Basics

Figure: Push excess of v_3 ($e_f(v_3) = 7$) to the target node t; $e_f(v_2) = 3$, $e_f(v_4) = 3$, $e_f(t) = 16 + 7$.

Generic Preflow-Push Algorithm

Figure: Valid maximum flow within network \mathcal{N} : $|f^*| = e_f(t) = 23$.

M. Ruthmair 93 VU Algorithmics

Maximum Flow Basics Ford-Fulkerson Lower Bounds Minimum Cost Flow

Generic Preflow-Push Algorithm

Definition 14 (Admissible Arc)

An arc (u, v) in G_f (i.e., $f(u, v) < \varsigma(u, v)$) is called admissible iff d(u) = d(v) + 1 (declining arc).

Definition 15 (Active Node)

A node $v \in V \setminus \{s, t\}$ is called active iff the excess $e_f(v) > 0$.

Definition 16 (Saturating / Nonsaturating Push)

Let u be an active node.

A saturating push of value x along a residual arc (u, v) in G_f removes this arc from the residual network $(x = r_f(u, v))$.

A nonsaturating push along (u, v) reduces excess at u to zero $(e_f(u) = x < r_f(u, v)).$

VU Algorithmics M. Ruthmair 95 Maximum Flow Basics Ford-Fulkerson Preflow-Push Lower Bounds Minimum Cost Flow

Generic Preflow-Push Algorithm

Definition 13 (Label / Height of a Node; Valid Labeling)

Label / Height: Function $d: V \to \mathbb{N}_0$.

A labeling is called valid:

- d(s) = |V| = n and d(t) = 0
- $d(u) \le d(v) + 1$ \forall residual arcs (u, v) in G_f

Figure: Valid and invalid labeling of nodes u and v in a residual network G_f ; declining arcs are only allowed if the difference in height is not more than 1.

M. Ruthmair 94 VU Algorithmics

Preflow-Push

Minimum Cost Flow

Generic Preflow-Push Algorithm

Procedure push(u,v)

Maximum Flow Basics

/* precondition: u active, (u, v) admissible

Ford-Fulkerson

1 $x \leftarrow \min\{r_f(u, v), e_f(u)\};$

- 2 $f(u, v) \leftarrow f(u, v) + x$;
- 3 $f(v, u) \leftarrow -f(u, v)$;

Procedure lift(*u*)

/* precondition: u active, no admissible arc (u, v)*/ 1 $d(u) \leftarrow d(u) + 1$;

```
Maximum Flow Basics
                           Ford-Fulkerson
                                          Preflow-Push
                                                         Lower Bounds
                                                                        Minimum Cost Flow
 Generic Preflow-Push Algorithm
   Procedure GenericPreflowPush(u,v)
1 d(s) \leftarrow n;
                                                            /* initialization */
2 forall v \in V \setminus \{s\} do d(v) \leftarrow 0:
3 forall (u, v) \in A do f(u, v) = f(v, u) \leftarrow 0;
4 forall (s, v) \in A do
      f(s,v) \leftarrow \varsigma(s,v);
      f(v,s) \leftarrow -f(s,v);
7 while ∃ active node u ∈ G_f do
                                                                   /* algorithm */
       if \exists admissible arc (u, v) \in G_f then
           push(u, v):
       else
10
11
            lift(u);
                                              M. Ruthmair
                                                                                         97
 VU Algorithmics
```

Generic Preflow-Push Algorithm

Lemma 17 (Labeling / Preflow)

The labeling d is always valid and f is always a preflow.

Proof:

VU Algorithmics

```
push(u,v):
```

Preflow: Skew symmetry, capacity constraints, excess condition. ✓

Labeling: Perhaps arc $(v, u) \in G_f$ after push() operation;

precondition: $d(u) = d(v) + 1 \Rightarrow d(v) \le d(u) + 1 \Rightarrow \text{valid}$ labeling. \checkmark

M. Ruthmair 99

Maximum Flow Basics Ford-Fulkerson Preflow-Push Lower Bounds Minimum Cost Flow

Generic Preflow-Push Algorithm

Lemma 17 (Labeling / Preflow)

The labeling d is always valid and f is always a preflow.

Proof:

Initialization:

Preflow: Flow f is a preflow. \checkmark

Labeling: Labeling d is valid because of saturation of arcs (s, v). \checkmark

lift(u):

Preflow: f is not modified by a lift() operation. \checkmark

Labeling: preconditions of lift() operation: $\forall (u, v) \in G_f$:

 $d(u) \le d(v)$, otherwise push() would have been called

 $\Rightarrow d(u)+1$ cannot lead to an invalid labeling. \checkmark

VU Algorithmics M. Ruthmair 98

Maximum Flow Basics

Ford-Fulkerson

Preflow-Push

Lower B

Minimum Cost Flow

Generic Preflow-Push Algorithm

Lemma 18 (No Augmenting Path)

Let d be a valid labeling, and f a preflow: There exists no augmenting path from s to t in G_f .

Proof:

An augmenting path from s to t cannot consist of more than n-1 (|V|=n) arcs. Due to the definition of a valid labeling d(s)=n, d(t)=0, and there exists no arc $(u,v)\in G_f$ with d(u)>d(v)+1.

With a valid labeling it is not possible to connect a node at height n with a node at height 0 without "skipping" at least one level if the path consists of only n-1 arcs.

Ford-Fulkerson

Preflow-Push

Lower Bounds

Minimum Cost Flow

Generic Preflow-Push Algorithm

Lemma 19 (Partial Correctness of Preflow Push Algorithm)

In case the generic preflow-push algorithm terminates f is a maximum flow in the network \mathcal{N} .

Proof:

Algorithm terminates \rightarrow

- no active nodes, i.e., $e_f(v) = 0 \quad \forall v \in V \setminus \{s, t\} \rightarrow$
- f is not only a preflow but a flow;
- according to Lemma 18 there exists no augmenting s-t path in G_f , f is a valid flow \Rightarrow
- f is a maximum flow.

Still to prove: Algorithm terminates. \Rightarrow Worst-case runtime?

VU Algorithmics M. Ruthmair 101

Maximum Flow Basics

Ford-Fulkerson

Proflow Puch

Lower Bounds

Minimum Cost Flow

103

Generic Preflow-Push Algorithm

Lemma 20 (Excess Nodes Connected To Source)

Let f be a preflow and u an active node, i.e., $e_f(u) > 0$: There exists a path from u to source s in the residual graph G_f .

Proof:

VU Algorithmics

Let $T \subseteq V$ be the set of nodes reachable from u in G_f , and $\overline{T} = V \setminus T$, then the following holds:

$$\sum_{v\in T}e_f(v)=f(V,T)=f(T,T)+f(\overline{T},T)\stackrel{(1)}{=}f(\overline{T},T)\leq 0.$$

Excess condition (preflow definition): $e_f(v) \ge 0 \quad \forall v \in V \setminus \{s\}$, and u is an active node $(e_f(u) > 0) \Rightarrow$ there has to be a negative term in the sum above \Rightarrow the source node s has to be element of set T and is therefore reachable from u.

M Ruthmair

Maximum Flow Basics

Ford-Fulkerson

Lower Bounds

Minimum Cost Flow

Generic Preflow-Push Algorithm

Lemma 20 (Excess Nodes Connected To Source)

Let f be a preflow and u an active node, i.e., $e_f(u) > 0$: There exists a path from u to source s in the residual graph G_f .

Proof:

Let $T \subseteq V$ be the set of nodes reachable from u in G_f , and $\overline{T} = V \setminus T$, then the following holds:

Preflow-Push

$$\sum_{v\in T}e_f(v)=f(V,T)=f(T,T)+f(\overline{T},T)\stackrel{(1)}{=}f(\overline{T},T)\leq 0.$$

 $f(\overline{T}, T)$ cannot be positive: A flow f(w, v) > 0 from a node $w \in \overline{T}$ to a node $v \in T$ would lead to a residual arc (v, w) in $G_f \to \text{contradiction}$ to the definition of T (v is reachable from u, but an arc (v, w) would make node w also reachable from $u \Rightarrow w \in T$ and $w \in \overline{T} \to \frac{1}{2}$).

VU Algorithmics M. Ruthmair 102

Maximum Flow Basics

Ford-Fulkerson

Preflow-Push

ower Bounds

Minimum Cost Flor

Generic Preflow-Push Algorithm

Lemma 21 (Height Restriction)

For every node $u \in V$: $d(u) \le 2 \cdot n - 1$.

Proof:

It is sufficient to prove this for active nodes, because inactive nodes are not "lifted":

- Lemma 20: There is a path P from u to s in the residual graph G_f ,
- which cannot consist of more than n-1 arcs;
- d(s) = n and a valid labeling \Rightarrow
- d(s) + n 1 is an upper bound for the height of u, i.e., $d(u) \le 2 \cdot n 1$.

Ford-Fulkerson

Preflow-Push

Lower Bounds

Minimum Cost Flow

Generic Preflow-Push Algorithm

Lemma 22 (Number of Relabel Operations)

The number of relabel resp. lift() operations is bounded above by $2 \cdot n^2$.

Proof:

Direct consequence of Lemma 21:

- lift() increases the height of a node by 1,
- no operation decreases the height of a node,
- n-2 nodes (without s, t),
- 2n-1 is an upper bound for the height of each node

 \Rightarrow a maximum of $2n^2-5n+2\leq 2n^2$ lift() operations can be performed.

VU Algorithmics

Maximum Flow Basics

M. Ruthmair

air

Lower Bounds

Minimum Cost Flow

105

107

Generic Preflow-Push Algorithm

Lemma 23 (Number of Saturating Pushes)

Ford-Fulkerson

The number of saturating push() operations is bounded above by $2 \cdot n \cdot m$ (m = |A|).

Proof:

VU Algorithmics

For two consecutive saturating pushes along an arc $(u, v) \in A$ the heights of the nodes u and v have to increase at least by 2.

- $2 \cdot n 1$ is an upper bound for the height of the nodes u and $v \Rightarrow$ arc (u, v) can be saturated maximum n times,
- the number of arcs in G_f can be up to $2 \cdot m$ (for every arc $(u, v) \in A$ there can also be an arc $(v, u) \in G_f$)

M Ruthmair

 \Rightarrow number of saturating pushes is bounded above by $n \cdot 2 \cdot m$.

Maximum Flow Basics Ford-Fulkerson

Preflow-Push

Lower Bounds

Minimum Cost Flow

Generic Preflow-Push Algorithm

Lemma 23 (Number of Saturating Pushes)

The number of saturating push() operations is bounded above by $2 \cdot n \cdot m$ (m = |A|).

Proof:

For two consecutive saturating pushes along an arc $(u, v) \in A$ the heights of the nodes u and v have to increase at least by 2.

Figure: Saturating push along (u, v) removes this arc from G_f ; to perform another saturating push along it there has to be a push along (v, u) to bring back (u, v) into G_f .

VU Algorithmics M. Ruthmair 106

Maximum Flow Basics

Ford-Fulkerson

Preflow-Push

Lower Bounds

Minimum Cost Flow

Generic Preflow-Push Algorithm

Lemma 24 (Number of Nonsaturating Pushes)

The number of nonsaturating push() operations is $\leq 6 \cdot n^2 \cdot m$.

Proof:

Let X be the – changing over time – set of active nodes. We define the following potential function:

$$\Phi = \sum_{u \in X} d(u)$$

At the beginning $\Phi = 0$, and during execution of the algorithm $\Phi \geq 0$.

Ford-Fulkerson

Preflow-Push

Lower Bounds

Minimum Cost Flow

Generic Preflow-Push Algorithm

Lemma 24 (Number of Nonsaturating Pushes)

The number of nonsaturating push() operations is $\leq 6 \cdot n^2 \cdot m$.

Proof:

A nonsaturating push along arc (u, v) reduces the excess at u to $0 \to X = X \setminus \{u\}$. Let Φ' be the resulting potential.

$$\Phi' = \left\{ egin{array}{ll} \Phi - d(u) & ext{if } v ext{ was already } \in X, ext{or } v = t, \\ \Phi - d(u) + d(v) & ext{if } v ext{ was }
otin X, \end{array}
ight.$$

$$\Rightarrow \Phi' \leq \Phi - d(u) + d(v) = \Phi - 1,$$

because (u, v) has to be an admissible arc $\rightarrow d(v) = d(u) - 1$.

VU Algorithmics

M. Ruthmair

Lower Bounds

Minimum Cost E

109

Generic Preflow-Push Algorithm

Lemma 24 (Number of Nonsaturating Pushes)

Ford-Fulkerson

The number of nonsaturating push() operations is $\leq 6 \cdot n^2 \cdot m$.

Proof:

VU Algorithmics

lift() operations:

Maximum Flow Basics

- lift(u) increases d(u) by 1,
- number of lift() operations is bounded by $2 \cdot n^2$ (Lemma 22) \Rightarrow
- lift() operations can increase Φ at most by $2 \cdot n^2$.
- ⇒ The number of nonsaturating pushes is bounded above by

$$4 \cdot n^2 \cdot m + 2 \cdot n^2 < 6 \cdot n^2 \cdot m$$

M. Ruthmair

111

Maximum Flow Basics

Preflow-Push

Lower Bounds

Minimum Cost Flow

Generic Preflow-Push Algorithm

Lemma 24 (Number of Nonsaturating Pushes)

Ford-Fulkerson

The number of nonsaturating push() operations is $\leq 6 \cdot n^2 \cdot m$.

Proof:

Saturating pushes:

- Push along (u, v) can insert v into set X,
- $d(v) \le 2 \cdot n 1$ (Lemma 21),
- number of saturating pushes = $2 \cdot n \cdot m$ (Lemma 23)
- \Rightarrow saturating pushes can increase Φ at most by $4 \cdot n^2 \cdot m$.

VU Algorithmics M. Ruthmair 110

Maximum Flow Basics

Ford-Fulkerson

Preflow-Push

Lower Bounds

Minimum Cost Flow

Generic Preflow-Push Algorithm

Theorem 25 (Correctness of Preflow Push Algorithm)

The generic preflow-push algorithm terminates after $O(n^2 \cdot m)$ push() and lift() operations, and calculates the maximum flow f in the network N.

Proof:

Direct consequence of the Lemmas 17 to 24.

Note: This theorem also proves that every network $\mathcal{N} = (V, A, \varsigma, s, t)$ has a maximum flow.

Ford-Fulkerson

Preflow-Push

Lower Bounds

Minimum Cost Flow

Preflow-Push Algorithm: Improvements

Improvements without changing the worst case runtime complexity:

Definition 26 (Maximum Preflow)

A preflow with the maximum possible flow into target node t is called a maximum preflow.

Definition 27 (V^{\sim})

 $V^{\sim} \subset V$ is the set of nodes with no directed path to t in the residual network G_f (nodes disconnected from sink).

After initialization $V^{\sim} = \{s\}.$

VU Algorithmics

M. Ruthmair

Lower Bounds

Minimum Cost F

113

Preflow-Push Algorithm: Improvements

Ford-Fulkerson

Improvements without changing the worst case runtime complexity:

Improvement 1:

VU Algorithmics

Maximum Flow Basics

- Start with set $V^{\sim} = \{s\}$.
- $V^{\sim} \cup u$, if $d(u) \geq n$.
- ullet Perform no push()/lift() on nodes $\in V^{\not\sim}$.
- Stop algorithm when there are no active nodes in $V \setminus V^{\sim}$.

At termination, the current preflow is also an optimal preflow \rightarrow convert maximum preflow into maximum flow [exercise] \rightarrow substantial reduce in running time due to empirical tests.

M Ruthmair

Maximum Flow Basics Ford-Fulkerson Preflow-Push Lower Bounds

Preflow-Push Algorithm: Improvements

Improvements without changing the worst case runtime complexity:

Generic preflow-push algorithm performs push() and lift() operations at active nodes until

- 1. all excess reaches target node t, or
- 2. excess returns to the source node s.
- ullet Maximum preflow established o
- ullet push excess of active nodes back to s (to transform preflow into a flow) ullet
- a substantially large number of subsequent push()/lift() operations is required to raise these nodes until they are sufficiently higher than n.

VU Algorithmics M. Ruthmair 114

Maximum Flow Basics

Ford-Fulkerson

Preflow-Push

Lower Bou

Minimum Cost Flow

Minimum Cost Flow

Preflow-Push Algorithm: Improvements

Improvements without changing the worst case runtime complexity:

Improvement 2:

- Start with set $V^{\nsim} = \{s\}$.
- \bullet Occasionally perform reverse BFS from t in G_f to
 - obtain exact labels / heights, and to
 - add all nodes not reachable from t to V^{\checkmark} .
- Perform no push()/lift() on nodes $\in V^{\sim}$.
- ullet Stop algorithm when there are no active nodes in $V\setminus V^{\sim}$.

"Occasionally": After $\alpha \cdot n$ lift() operations (α constant) \rightarrow does not change the worst case complexity [exercise].

Ford-Fulkerson

Preflow-Push

Lower Bounds

Minimum Cost Flow

Preflow-Push Algorithm: Improvements

Improvements changing the worst case runtime complexity:

Bottleneck: Number of nonsaturating pushes.

Different rules to select active nodes \rightarrow various algorithms that can substantially reduce these bottleneck operations.

Definition 28 (Node Examination)

Whenever an active node u is selected by the algorithm, it keeps pushing flow from that node until

- the excess of u becomes 0 (saturating pushes except the last one which could be a nonsaturating push), or
- u is lifted.

This sequence of operations is referred to as node examination.

VU Algorithmics M. Ruthmair 117

Maximum Flow Basics

Ford-Fulkerson

Preflow-Push

Lower Bounds

Minimum Cost Flo

Preflow-Push Algorithm: Improvements

Improvements changing the worst case runtime complexity:

Highest-Label Preflow-Push Algorithm:

• Push flow from an active node u with highest distance label d(u).

How to select a node with highest $d(\cdot)$ without too much effort?

- active [k], $k = 0, \dots, 2 \cdot n 1$: list of active nodes with $d(\cdot) = k$.
- level: highest value of k where active[k] is nonempty:
 - ullet lift(u) of an examined node $u
 ightarrow \mathtt{level} = \mathtt{level} + 1$
 - active[k] gets empty without lift() operation \rightarrow check active[k-1], active[k-2], ..., until nonempty list found; total increase in level bounded by $2 \cdot n^2$ (max. number of lift() operations) \rightarrow decrease $= O(2 \cdot n^2)$.

Worst case: $O(n^2 \cdot \sqrt{m})$, currently most efficient method in practice.

VU Algorithmics M. Ruthmair 119

Maximum Flow Basics

Ford-Fulkerson

Preflow-Push

Lower Bounds

Lower Bounds

Minimum Cost Flow

118

Minimum Cost Flow

Preflow-Push Algorithm: Improvements

Improvements changing the worst case runtime complexity:

FIFO Preflow-Push Algorithm:

- All active nodes are stored in a queue Q.
- Get node u from Q, examine u:
 - Add new active nodes to rear of Q;
 - if u is lifted (still excess available) \rightarrow add u to rear of Q and continue with next node in Q;
 - if u becomes inactive \rightarrow continue with next node in Q.
- Stop algorithm when queue of active nodes is empty.

Worst case running time: $O(n^3)$.

VU Algorithmics M. Ruthmair

Maximum Flow Basics Ford-Fulkerson Preflow-Push

MAXIMUM FLOW: NETWORKS
WITH LOWER CAPACITY BOUNDS

Ford-Fulkerson

Preflow-Push

Lower Bounds

Minimum Cost Flow

Networks with Lower Capacity Bounds

Definition 29 (Flow Network with Lower and Upper Bounds)

A flow network with lower and upper capacity bounds is a 6-tuple $\mathcal{N} = (V, A, \varsigma^L, \varsigma^U, s, t)$, with (V, A) being a directed graph with node set V and arc set A, two nodes $s, t \in V, s \neq t$, and two functions $\varsigma^L, \varsigma^U: A \to \mathbb{R}_{\geq 0}$, the lower (ς^L) and upper (ς^U) capacity bounds, respectively.

It must hold: $\varsigma^L(a) \leq \varsigma^U(a) \quad \forall \text{ arcs } a \in A$.

Extension: $\varsigma^L(a) = \varsigma^U(a) = 0$ $\forall \text{ arcs } a \in (V \times V) \setminus A$.

VU Algorithmics

Maximum Flow Basics

M. Ruthmair

Preflow-Push

Lower Bounds

Minimum Cost Flow

121

Networks with Lower Capacity Bounds

Ford-Fulkerson

Problem: No guarantee that there is a feasible solution to the maximum flow problem in an arbitrary network ${\cal N}$ with nonnegative lower and upper bounds:

Figure: A flow network \mathcal{N} with no feasible solution.

Two-phase approach to solve the maximum flow problem:

- 1. Determine whether the problem is feasible, and if so
- 2. compute a maximum flow in a transformed network \mathcal{N}' without lower bounds.

Maximum Flow Basics

Ford-Fulkerson

Lower Bounds

Minimum Cost Flow

Networks with Lower Capacity Bounds

Definition 30 (Flow with Nonnegative Lower Bounds)

A flow is a real function $f: V \times V \to \mathbb{R}$ with the following two properties:

• Capacity constraints: $\varsigma^L(u, v) < f(u, v) < \varsigma^U(u, v)$ $\forall u, v \in V$

Preflow-Push

2 Flow conservation: f(V, u) - f(u, V) = 0 $\forall u \in V \setminus \{s, t\}$

Note: Skew symmetry has to be discarded.

VU Algorithmics

M. Ruthmair

Preflow-Push

Lower Bounds

Minimum Cost Flow

122

Networks with Lower Capacity Bounds

Ford-Fulkerson

Phase 2 (Maximum Flow):

Precondition:

Maximum Flow Basics

f is a feasible flow, in particular: $\varsigma^L(a) < f(a) < \varsigma^U(a) \quad \forall a \in (V \times V)$.

Build residual graph G_f using the following residual capacities:

$$r_f(u,v) = \left(\varsigma^U(u,v) - f(u,v)\right) + \left(f(v,u) - \varsigma^L(v,u)\right)$$

Note: $r_f(u, v)$ is always nonnegative.

- Compute maximum flow f^+ in G_f , and
- combine initial feasible flow f and f^+ to get the maximum flow f^* of original network \mathcal{N} with lower and upper capacity bounds [exercise].

M Ruthmair 124 VU Algorithmics

VU Algorithmics

M Ruthmair

Ford-Fulkerson

Preflow-Push

Lower Bounds

Minimum Cost Flow

Networks with Lower Capacity Bounds

Generalized Maximum Flow / Minimum Cut Theorem:

Definition 31 (Capacity of a Cut [Extension])

The capacity of a s-t cut (S, \overline{S}) , $s \in S$, $t \in \overline{S}$, in a flow network \mathcal{N} with nonnegative lower bounds is defined as follows:

$$\varsigma(S,\overline{S}) = \varsigma^U(S,\overline{S}) - \varsigma^L(\overline{S},S)$$

VU Algorithmics

M. Ruthmair

Preflow-Push

Maximum Flow Basics

Ford-Fulkerson

Lower Bounds

Minimum Cost Flow

125

Networks with Lower Capacity Bounds

Generalized Maximum Flow / Minimum Cut Theorem:

Optimality criterion for maximum flow: No augmenting s-t path in G_f \Rightarrow there exists a s-t cut (S,\overline{S}) with all $r_f(u,v)=0$, $u\in S$, $v\in \overline{S}$:

$$r_f(u,v) = \left(\varsigma^U(u,v) - f(u,v)\right) + \left(f(v,u) - \varsigma^L(v,u)\right)$$

$$r_f(u,v) = 0 \implies f(u,v) = \varsigma^U(u,v) \land f(v,u) = \varsigma^L(v,u) \implies$$

Theorem 32 (Generalized Max-Flow / Min-Cut)

Let f be a flow in \mathcal{N} , $\varsigma(S,\overline{S})$ defined as above: The maximum value of flow from s to t equals the minimum capacity among all s - t cuts:

$$|f^*| = \min_{S} \varsigma(S, \overline{S}) = \min_{S} (\varsigma^U(S, \overline{S}) - \varsigma^L(\overline{S}, S)).$$

Note: This implies that $\varsigma(S, \overline{S}) \ge 0$ for all cuts S.

VU Algorithmics M. Ruthmair 127 Maximum Flow Basics

Ford-Fulkerson

Preflow-Push

Lower Bounds

Minimum Cost Flow

Networks with Lower Capacity Bounds

Generalized Maximum Flow / Minimum Cut Theorem:

Remember:

$$|f| = f(S, \overline{S}) - f(\overline{S}, S)$$

Substitute flow by the corresponding capacity bounds:

$$f(u,v) \le \varsigma^U(u,v)$$
 $\varsigma^L(v,u) \le f(v,u)$

$$|f| \le \varsigma^U(S, \overline{S}) - \varsigma^L(\overline{S}, S) = \varsigma(S, \overline{S})$$

M. Ruthmair VU Algorithmics

Maximum Flow Basics

Ford-Fulkerson

Preflow-Push

Lower Bounds

Minimum Cost Flow

126

Networks with Lower Capacity Bounds

Phase 1 (Feasible Flow):

Transformation of the maximum flow problem into a circulation problem: New arc (t, s) with capacities $[0, +\infty]$.

Figure: Circulation problem.

Note:

- \bullet Feasible flow \rightarrow feasible circulation, but
- feasible circulation $\stackrel{?}{\rightarrow}$ feasible flow?

Ford-Fulkerson

Preflow-Push

Lower Bounds

Minimum Cost Flow

Networks with Lower Capacity Bounds

Phase 1 (Feasible Flow):

Circulation Problem

In a feasible circulation a flow f satisfies the following constraints:

$$f(u, V) - f(V, u) = 0 \quad \forall u \in V$$

$$\varsigma^{L}(u,v) \leq f(u,v) \leq \varsigma^{U}(u,v) \qquad \forall (u,v) \in A$$

Note: The flow conservation contraints now hold for every node $v \in V$, including s and t.

VU Algorithmics

VU Algorithmics

Maximum Flow Basics

M. Ruthmair

Preflow-Push

Lower Bounds Minimum Cost Flow

129

131

Networks with Lower Capacity Bounds

Ford-Fulkerson

Phase 1 (Feasible Flow): Alternative 1

This way the lower capacity bounds are removed,

$$0 \le f'(u, v) \le \varsigma^U(u, v) - \varsigma^L(u, v) \quad \forall (u, v) \in A$$

and supplies / demands $b(\cdot)$ are introduced.

Note: $\sum_{u \in V} b(u) = 0$, since each $\varsigma^L(u, v)$ appears twice – once positive and once negative – in this expression.

M. Ruthmair

 \rightarrow There are algorithms to handle multiple sources / sinks.

Maximum Flow Basics

Ford-Fulkerson

Preflow-Push

Lower Bounds

Minimum Cost Flow

Networks with Lower Capacity Bounds

Phase 1 (Feasible Flow): Alternative 1

Replace f(u, v) by $f'(u, v) + \varsigma^{L}(u, v)$ in the flow conservation constraints:

$$\left(f'(u,V) + \varsigma^L(u,V)\right) - \left(f'(V,u) + \varsigma^L(V,u)\right) = 0$$

$$f'(u, V) - f'(V, u) = b(u)$$

with

$$b(u) = \varsigma^{L}(V, u) - \varsigma^{L}(u, V) \quad \forall u \in V$$

VU Algorithmics

M. Ruthmair

130

Maximum Flow Basics

Ford-Fulkerson

Preflow-Push

Lower Bounds

Minimum Cost Flow

Networks with Lower Capacity Bounds

Phase 1 (Feasible Flow): Alternative 2

Theorem 33 (Circulation Feasibility Conditions)

A circulation problem with nonnegative lower bounds on arc flows is feasible iff for every arbitrary set $S \subset V$, $S \neq \emptyset$, $\overline{S} = V \setminus S$, the following condition holds:

$$\varsigma^L(\overline{S}, S) \leq \varsigma^U(S, \overline{S})$$

Note: Relation to generalized max-flow / min-cut theorem! $(0 \le \varsigma^U(S, \overline{S}) - \varsigma^L(\overline{S}, S) = \varsigma(S, \overline{S}))$

Ford-Fulkerson

Preflow-Push

Lower Bounds

Minimum Cost Flow

Networks with Lower Capacity Bounds

Phase 1 (Feasible Flow): Alternative 2

Theorem 33 is a necessary condition:

$$f(S,\overline{S}) - f(\overline{S},S) = 0$$

(generalization of the flow conservation conditions).

Using
$$f(u, v) \le \varsigma^U(u, v)$$
 and $f(v, u) \ge \varsigma^L(v, u)$:

$$\varsigma^L(\overline{S},S) \le \varsigma^U(S,\overline{S}).$$

VU Algorithmics

VU Algorithmics

Maximum Flow Basics

M. Ruthmair

Preflow-Push

Lower Bounds

Minimum Cost Flow

133

Networks with Lower Capacity Bounds

Ford-Fulkerson

Phase 1 (Feasible Flow): Alternative 2

Algorithmic proof: Theorem 33 is a sufficient condition:

Definition 34 (Feasible / Infeasible Arc)

In respect to a flow f an arc (u, v) is called infeasible if $f(u,v) < \varsigma^L(u,v)$, otherwise it is a feasible arc, i.e., $\varsigma^L(u,v) \le f(u,v)$.

Computation of residual capacities:

- If arc (v, u) is feasible:
 - $r_f(u,v) = (\varsigma^U(u,v) f(u,v)) + (f(v,u) \varsigma^L(v,u)).$
- If arc (v, u) is infeasible:

$$r_f(u,v) = \varsigma^U(u,v) - f(u,v).$$

M. Ruthmair 135 Maximum Flow Basics

Ford-Fulkerson

Preflow-Push Lower Bounds

Minimum Cost Flow

Networks with Lower Capacity Bounds

Phase 1 (Feasible Flow): Alternative 2

Algorithmic proof: Theorem 33 is a sufficient condition:

Definition 34 (Feasible / Infeasible Arc)

In respect to a flow f an arc (u, v) is called infeasible if $f(u,v) < \varsigma^L(u,v)$, otherwise it is a feasible arc, i.e., $\varsigma^L(u,v) < f(u,v)$.

Basic idea:

Start with a flow fulfilling flow conservation conditions, but violating lower capacity bounds \rightarrow transform flow (while still ensuring flow conservation and upper capacity bounds) – if possible – into circulation satisfying also the lower capacity bounds.

M. Ruthmair 134 VU Algorithmics

Maximum Flow Basics

Ford-Fulkerson

Preflow-Push

Lower Bounds

Minimum Cost Flow

Networks with Lower Capacity Bounds

Phase 1 (Feasible Flow): Alternative 2

Algorithmic proof: Theorem 33 is a sufficient condition:

Function feasible_circulation

1 $f(u, v) \leftarrow 0 \quad \forall (u, v) \in A$;

/* initialization */

2 while \exists an infeasible arc (u, v) ∈ G_f do

/* algorithm */

find directed path P(v, u) in G_f ;

if $\nexists P(v, u)$ then return $S = \{v \cup \text{nodes reachable from } v \text{ in } G_f\}$;

 $P(v, u) \cup (u, v) \rightarrow \text{augmenting cycle in } G_f$;

augment flow along $P(v, u) \cup (u, v) \rightarrow$

(u, v) becomes feasible, or cycle cannot carry more flow;

7 return f;

VU Algorithmics M. Ruthmair

Ford-Fulkerson

Preflow-Push

Lower Bounds

Minimum Cost Flow

Networks with Lower Capacity Bounds

Phase 1 (Feasible Flow): Alternative 2

Algorithmic proof: Theorem 33 is a sufficient condition:

- Algorithm terminates returning feasible circulation. √
- Algorithm returns set S, infeasible arc (u, v):
 - Let $\overline{S} = V \setminus S$, $x \in S$, $y \in \overline{S}$. $r_f(x, y) = 0$ in G_f , otherwise y could be reached from $v \Rightarrow f(x, y) = \varsigma^U(x, y)$ and $f(y, x) \leq \varsigma^L(y, x) \Rightarrow$ it is not possible to send more flow out of S.
 - $u \in \overline{S}$ (no path from v to u), $v \in S$, (u, v) infeasible \Rightarrow $f(u, v) < \varsigma^L(u, v)$, i.e., at least one arc (\overline{S}, S) requires to send more flow into $S \Rightarrow$

$$f(\overline{S}, S) = f(S, \overline{S})$$
 (flow conservation)
 $\Rightarrow \varsigma^{L}(\overline{S}, S) > \varsigma^{U}(S, \overline{S})$

 \Rightarrow 4 contradiction to conditions of Theorem 33.

VU Algorithmics M. Ruthmair 137

Maximum Flow Basics

VU Algorithmics

Ford-Fulkerson

Preflow-Push

Lower Bounds

Minimum Cost Flow

139

MINIMUM COST FLOW IN NETWORKS

M. Ruthmair

Maximum Flow Basics Ford-Fulkerson

rson Preflow-Push

Lower Bounds

Minimum Cost Flow

Networks with Lower Capacity Bounds

Problem: Feasible circulation $\stackrel{?}{\rightarrow}$ feasible s-t flow?

Figure: Network $\mathcal N$ with a feasible circulation, but no feasible s-t flow: It is not possible to bring the required flow from s to the circle $v_1 \to v_2 \to v_3 \to v_1$.

• feasible_circulation(): It has to be ensured that arc (t,s) is part of the directed path from v to u, i.e., $P(v,u)=v \leadsto t \to s \leadsto u$.

VU Algorithmics M. Ruthmair 138

Maximum Flow Basics

Ford-Fulkerson

Preflow-Push

ower Bounds

Minimum Cost Flow

Minimum Cost Flow: Introduction

Definition 35 (Minimum Cost Flow)

Given a directed graph G(V, A) with costs c(u, v) and a capacity $\varsigma(u, v)$ associated with each arc $(u, v) \in A$, the minimum cost flow problem can be stated as follows:

Minimize
$$z(f) = \sum_{(u,v) \in A} c(u,v) \cdot f(u,v)$$

subject to:

$$f(u, V) - f(V, u) = b(u) \quad \forall u \in V$$

$$0 \le f(u, v) \le \varsigma(u, v) \quad \forall (u, v) \in A.$$

Ford-Fulkerson

Preflow-Push

Lower Bounds

Minimum Cost Flow

Minimum Cost Flow: Introduction

Definition 36 (Supply / Demand)

A value b(v) > 0 denotes a supply of b(v) units of flow at node v, whereas a value b(v) < 0 denotes a demand at this node.

Assumption

All data, i.e., costs, capacity, supply, and demand, are integral.

Assumption

All arc costs are nonnegative, or at least there is no directed negative cost cycle of infinite capacity.

VU Algorithmics

M. Ruthmair

Preflow-Push

Lower Bounds

Minimum Cost Flow

141

Minimum Cost Flow: Introduction

Ford-Fulkerson

Necessary Condition for Feasibility

The supplies and demands have to satisfy $\sum b(v) = 0$.

(Is it also sufficient? No!)

Test for feasibility:

VU Algorithmics

Maximum Flow Basics

- Introduce two new, additional nodes s and t.
- Introduce new arcs:
 - For every node v with b(v) > 0: $A = A \cup (s, v)$, $\varsigma(s, v) = b(v)$.
 - For every node v with b(v) < 0: $A = A \cup (v, t)$, $\varsigma(v, t) = -b(v)$.
- Solve a maximum flow problem on the modified graph. If all the arcs (s,\cdot) and (\cdot,t) are saturated, there exists a feasible solution to the original minimum cost flow problem.

Maximum Flow Basics

Ford-Fulkerson

Preflow-Push

Lower Bounds

Minimum Cost Flow

Minimum Cost Flow: Introduction

Minimum cost flows arise in a lot of different applications, respectively various (sub-)problems can be reformulated as a minimum cost flow problem:

- Shipping and distribution: the transportation problem (e.g. plants with supplies \rightarrow warehouses with demands, minimizing the shipping costs).
- Optimal loading of a hopping airplane.
- Reconstruction of organs (e.g. ventricle) based on x-ray projections.
- Scheduling with deferral costs (uniform processing times of jobs).
- ullet Efficient solving of linear programs with special structure (0 1 matrix, consecutive 1's in columns).

VU Algorithmics

M. Ruthmair

142

144

Maximum Flow Basics

Ford-Fulkerson

Preflow-Push

Lower Bounds Minimum Cost Flow

Minimum Cost Flow: Introduction

Definition 37 (Residual Network)

Given a flow f, each arc $(u, v) \in A$ is replaced in the residual network G_f by two arcs:

- An arc (u, v) with costs c(u, v) and a residual capacity $r_f(u, v) = \varsigma(u, v) - f(u, v)$, and
- an arc (v, u) with costs c(v, u) = -c(u, v) and $r_f(v, u) = f(u, v)$.

Note: r_f is always > 0.

M Ruthmair 143 VU Algorithmics M Ruthmair

Ford-Fulkerson

Preflow-Push

Lower Bounds

Minimum Cost Flow

Minimum Cost Flow: Optimality Conditions

Negative Cycle Optimality Condition:

A feasible solution f^* is an optimal solution of the minimum cost flow problem iff the residual network G_{f^*} contains no directed negative cost cycle.

Sketch of Proof:

- Sending flow along a cycle does not change the flow conservation conditions at any node of the network.
- The residual network G_f only contains arcs that can carry additional flow, i.e., it is possible to send flow along such arcs without violating the capacity bounds.
- Consequence: When sending flow along a negative cost cycle in G_f the flow f remains feasible but the costs can be reduced.

VU Algorithmics M. Ruthmair 145

Maximum Flow Basics

VU Algorithmics

Ford-Fulkerson

Preflow-Push

Lower Bounds

Minimum Cost Flow

147

Minimum Cost Flow: Optimality Conditions

Reduced Costs Optimality Condition:

Definition 38 (Node Potential)

We associate a potential $\pi(v) \in \mathbb{R}$ to each node $v \in V$.

Interpretation: $\pi(v)$ is the linear programming dual variable corresponding to the flow conservation condition at node v.

Definition 39 (Reduced Costs (Minimum Cost Flow))

Based on node potentials $\pi(\cdot)$, the reduced cost of an arc (u, v) in G or G_f is defined as follows:

$$c^{\pi}(u,v)=c(u,v)-\pi(u)+\pi(v).$$

M. Ruthmair

Maximum Flow Basics

Ford-Fulkerson

Preflow-Push Lower Bounds

Minimum Cost Flow

Minimum Cost Flow: Optimality Conditions

Reduced Costs Optimality Condition:

Observation

Optimality condition for shortest path regarding costs:

$$c^d(u,v) = d(u) + c(u,v) - d(v) \ge 0 \qquad \forall (u,v) \in A$$

 $c^d(u, v)$ is referred to as the reduced costs for arc (u, v).

Interpretation:

 $c^d(u, v)$ measures the costs of the arc (u, v) relative to the shortest path distances d(u) and d(v).

Note: If (u, v) is part of a shortest path from a node s to v, then $c^d(u, v) = 0$, otherwise $c^d(u, v) > 0$.

VU Algorithmics

M. Ruthmair

146

Maximum Flow Basics

Ford-Fulkerson

Preflow-Push

Lower Bounds

Minimum Cost Flow

Minimum Cost Flow: Optimality Conditions

Reduced Costs Optimality Condition:

Lemma 40 (Path and Node Potentials)

For any directed path P from u to v the following equation holds:

$$\sum_{(i,j)\in P} c^{\pi}(i,j) = \sum_{(i,j)\in P} c(i,j) - \pi(u) + \pi(v).$$

Lemma 41 (Cycle and Node Potentials)

For any directed cycle W the following equation holds:

$$\sum_{(i,j)\in W} c^{\pi}(i,j) = \sum_{(i,j)\in W} c(i,j).$$

Consequence: \exists negative cost cycle with respect to $c(\cdot) \Leftrightarrow \exists$ negative cost cycle with respect to $c^{\pi}(\cdot)$.

Ford-Fulkerson

Preflow-Push

Lower Bounds

Minimum Cost Flow

Minimum Cost Flow: Optimality Conditions

Reduced Costs Optimality Condition:

A feasible solution f^* is an optimal solution of the minimum cost flow problem iff some set of node potentials $\pi(\cdot)$ satisfy the reduced cost optimality conditions:

$$c^{\pi}(u,v) \geq 0 \quad \forall (u,v) \in G_{f^*}$$

Proof:

- ←: Direct consequence of the negative cycle optimality condition and the preceding lemma.
- \Rightarrow : Now assume a solution f^* contains no negative cycle in $G_{f^*} \Rightarrow$ let $d(\cdot)$ be the shortest path distance from a fixed node to all other nodes in $G_{f^*} \Rightarrow d(v) \leq d(u) + c(u,v) \Rightarrow c(u,v) (-d(u)) + (-d(v)) \geq 0 \Rightarrow$ with $\pi(\cdot) = -d(\cdot)$: $c(u,v) \pi(u) + \pi(v) = c^{\pi}(u,v) \geq 0$.

VU Algorithmics

Maximum Flow Basics

M. Ruthmai

Preflow-Push

Lower Bounds

Minimum Cost Flow

149

Minimum Cost Flow: Optimality Conditions

Ford-Fulkerson

Complementary Slackness Optimality Condition:

A feasible solution f^* is an optimal solution of the minimum cost flow problem iff for some set of node potentials $\pi(\cdot)$ the reduced costs and flow values satisfy the following complementary slackness optimality conditions for every $(u,v)\in A$ (original network):

- If $c^{\pi}(u, v) > 0$, then $f^{*}(u, v) = 0$.
- If $0 < f^*(u, v) < \varsigma(u, v)$, then $c^{\pi}(u, v) = 0$.
- If $c^{\pi}(u, v) < 0$, then $f^{*}(u, v) = \varsigma(u, v)$.

Maximum Flow Basics

Preflow-Push

Lower Bounds

Minimum Cost Flow

Minimum Cost Flow: Optimality Conditions

Ford-Fulkerson

Reduced Costs Optimality Condition:

Economic interpretation:

- c(u, v): cost to send one unit of flow from u to v,
- $\mu(u)$: cost to obtain one unit of flow at $u \Rightarrow$
- $\mu(u) + c(u, v)$: cost of one unit of flow at v in case arc (u, v) is used to transport it.
- $\mu(v) \le \mu(u) + c(u, v)$, $\mu(u) = -\pi(u) \Leftrightarrow c(u, v) \pi(u) + \pi(v) \ge 0$: $\mu(v) = \mu(u) + c(u, v)$: flow to v uses arc (u, v). $\mu(v) < \mu(u) + c(u, v)$: there is a cheaper way to get the flow to v.

VU Algorithmics M. Ruthmair 150

Maximum Flow Basics

Ford-Fulkerson

Preflow-Push

Lower Bounds

Minimum Cost Flow

Minimum Cost Flow: Optimality Conditions

Complementary Slackness Optimality Condition:

Sketch of Proof:

- \Rightarrow : Node potentials $\pi(\cdot)$ and the flow f^* satisfy the reduced cost optimality conditions $(c^{\pi}(u,v) \geq 0 \ \forall (u,v) \in G_{f^*}) \Rightarrow$ they have to satisfy complementary slackness optimality condition:
 - If $c^{\pi}(u,v) > 0 \Rightarrow \text{arc } (v,u) \notin G_{f^*}$, because $c^{\pi}(u,v) = c(u,v) \pi(u) + \pi(v) = -c^{\pi}(v,u) \Rightarrow c^{\pi}(v,u) < 0 \Rightarrow 4$ to optimality condition $\Rightarrow f^*(u,v) = 0$.
 - If $0 < f^*(u, v) < \varsigma(u, v)$, then G_{f^*} contains both arcs (u, v) and $(v, u) \Rightarrow c^{\pi}(u, v) \geq 0$, $c^{\pi}(v, u) \geq 0$, $c^{\pi}(u, v) = -c^{\pi}(v, u) \Rightarrow c^{\pi}(u, v) = c^{\pi}(v, u) = 0$.
 - If $c^{\pi}(u,v) < 0$, arc $(u,v) \notin G_{f^*}$ (otherwise 7 to assumption) $\Rightarrow f^*(u,v) = \varsigma(u,v)$

VU Algorithmics M. Ruthmair 152

VU Algorithmics

M Ruthmair

Minimum Cost Flow: Algorithms

Cycle-Canceling Algorithm:

Basic Idea: Establish feasible flow; keep flow feasible but improve costs until optimum reached.

Procedure Cycle-Canceling()

1 establish feasible flow *f* in network;

/* initialization */

2 while \exists negative cost cycle W in G_f do

/* algorithm */

Minimum Cost Flow

- $x \leftarrow \text{minimum residual capacity along } W;$
- augment flow by value x along W;
- 5 update G_f ;

Maximum Flow Basics

VU Algorithmics M. Ruthmair 153

Algorithmics W. Nathman 13

Lower Bounds

Minimum Cost Flow: Algorithms

Ford-Fulkerson

Cycle-Canceling Algorithm:

Figure: Residual network G_f .

VU Algorithmics M. Ruthmair 155

Figure: Initialization: A feasible flow from s to t in network \mathcal{N} .

Preflow-Push

Minimum Cost Flow

VU Algorithmics M. Ruthmair 154

Minimum Cost Flow: Algorithms

Ford-Fulkerson

Cycle-Canceling Algorithm:

Maximum Flow Basics

Figure: Negative cost cycle: $t \rightarrow v_2 \rightarrow v_1 \rightarrow s \rightarrow v_3 \rightarrow t$, costs: -1.

M. Ruthmair

160

VU Algorithmics

Minimum Cost Flow: Algorithms

Cycle-Canceling Algorithm:

Figure: Resulting residual network G_f ; no negative cost cycle.

VU Algorithmics M. Ruthmair 161

Lower Bounds

Minimum Cost Flow

Minimum Cost Flow: Algorithms

Ford-Fulkerson

Cycle-Canceling Algorithm:

Maximum Flow Basics

Figure: Minimum cost flow in network \mathcal{N} .

VU Algorithmics M. Ruthmair 163 Maximum Flow Basics Ford-Fulkerson Preflow-Push Lower Bounds Minimum Cost Flow

Minimum Cost Flow: Algorithms

Cycle-Canceling Algorithm:

Figure: Original flow and flows augmented along negative cost cycles.

M. Ruthmair 162 VU Algorithmics

Preflow-Push

Lower Bounds

Minimum Cost Flow

Ford-Fulkerson

Minimum Cost Flow: Algorithms

Cycle-Canceling Algorithm:

Definition 42 (C, U)

 $C = \max\{c(u,v): (u,v) \in A\}.$ $U = \max\{\varsigma(u,v) : (u,v) \in A \land \varsigma(u,v) < \infty\}.$

Running time:

- Establishing a feasible flow: $O(n^2 \cdot m)$ (preflow-push algorithm).
- Number of iterations: $O(m \cdot C \cdot U)$ (integrality condition).
- Identifying a negative cost cycle: $O(n \cdot m)$ (shortest path algorithm, e.g. Bellman-Ford).

$$\Rightarrow O(n \cdot m^2 \cdot C \cdot U)$$

Variation: Network simplex algorithm: Widely considered one of the fastest algorithms in practice; identifies a negative cost cycle in O(m)(but objective function cannot be reduced in every iteration).

Ford-Fulkerson

Preflow-Push

Lower Bounds

Minimum Cost Flow

Minimum Cost Flow: Algorithms

Successive Shortest Path Algorithm:

Basic Idea: Start with "solution" satisfying reduced costs optimality condition, but not flow conservation (excess / deficit \rightarrow "pseudoflow"); keep optimality condition and transform pseudoflow into feasible flow.

Definition 43 (E, D)

$$e_f(u) = b(u) - f(u, V) + f(V, u) \quad \forall u \in V$$

 $E = \text{Set of nodes with excess } (e_f(\cdot) > 0).$

 $D = \text{Set of nodes with deficit } (e_f(\cdot) < 0).$

VU Algorithmics M. Ruthmair 165

Maximum Flow Basics

Ford-Fulkerson

Preflow-Push

Lower Bounds

Minimum Cost Flow

Minimum Cost Flow: Algorithms

Successive Shortest Path Algorithm:

Running time:

- Number of iterations: $O(n \cdot U)$ (U: upper bound on largest supply).
- Shortest path algorithm: S(n, m) (nonnegative arc costs).

$$\Rightarrow O(n \cdot U \cdot S(n, m))$$

VU Algorithmics M. Ruthmair 167

Maximum Flow Basics Ford-Fulkerson Preflow-Push Lower Bounds Minimum Cost Flow

Minimum Cost Flow: Algorithms

Successive Shortest Path Algorithm:

```
Procedure Successive Shortest Path()
```

```
1 f(\cdot) = 0, \pi(\cdot) = 0; /* initialization */;
```

2
$$e(v) = b(v)$$
, $\forall v \in V$; initialize sets E and D ;

3 while
$$E \neq \emptyset$$
 do /* algorithm */

```
select a node u \in E and a node v \in D;
```

compute shortest path distances $d(\cdot)$ from u to all other nodes in G_f with respect to reduced costs $c^{\pi}(\cdot)$;

6 $P \leftarrow \text{shortest path from } u \text{ to } v$;

7
$$\pi(\cdot) = \pi(\cdot) - d(\cdot);$$

8
$$x = \min\{e(u), -e(v), \min\{r_f(i,j) : (i,j) \in P\}\};$$

9 augment flow of value x along P;

10 update $f(\cdot)$, G_f , E, D, $c^{\pi}(\cdot)$;