Synthetic Lie Theory

Matthew Burke, Macquarie University

CT 2014, University of Cambridge

Outline

1. The classical integrability problem for Lie Algebroids

- 2. The integrability problem in synthetic differential geometry
- 3. Lie's second theorem in synthetic differential geometry
- 4. The Weinstein groupoid and discussion of Lie III

Classical Lie Theory

Recall that there is a functor

$$LieGp_{sc} \xrightarrow{T_e} LieAlg$$

that takes a simply connected Lie group to its Lie algebra.

- Lie's second theorem says that T_e is full and faithful.
- ▶ Lie's third theorem says that T_e is essentially surjective.

Definition 1.

A *Lie groupoid* is a groupoid in *Man* such that the source and target maps are submersions.

Definition 2.

A *Lie algebroid* is a vector bundle $A \to M$ in *Man* together with a bundle homomorphism $\rho: A \to TM$ such that the space of sections $\Gamma(A)$ is a Lie algebra satisfying $(\forall X, Y \in \Gamma(A))(\forall f \in C^{\infty}(M))$:

$$[X, fY] = \rho(X)(f) \cdot Y + f[X, Y]$$

Classical Lie Theory

In the multiobject setting, we still have a full and faithful functor

$$LieGpd_{sc} \xrightarrow{T_e} LieAlgd$$

but it is not essentially surjective.

▶ For every Lie algebroid there is a topological groupoid that is the 'obvious' candidate for the integral of the algebroid (its Weinstein groupoid) but there can be obstructions to putting a smooth structure on it - see [Crainic and Fernandes 2003].

Idea: Enlarge the category of smooth spaces:-

- Differentiable Stacks [Tseng and Zhu 2006].
- Using Synthetic Differential Geometry.

Relevant Features of Synthetic Differential Geometry

We work in the Grothendieck topos $\mathcal C$ called the *Cahiers* topos that is a well-adapted model of synthetic differential geometry. This means that:-

- ▶ There is a full and faithful embedding $Man \stackrel{\iota}{\to} \mathcal{C}$.
- ▶ There is a ring $R = \iota(\mathbb{R}) \in \mathcal{C}$.
- ▶ The object $D_k = \{x \in R : x^{k+1} = 0\}$ is not terminal, in fact the Kock-Lawvere axiom holds:

$$R^{k+1} \rightarrow R^{D_k}$$

 $(a_0, a_1, ..., a_k) \mapsto (d \mapsto a_0 + a_1 d + ... + a_k d^k)$

is an isomorphism.

Let $\mathcal E$ be the full subcategory of *microlinear objects* of $\mathcal C$.

Big Picture

Now that we have infinitesimal objects we can use an intermediary category:

where the right hand adjunction is the composite of

where $Gpd_{\infty}(\mathcal{E})$ and $Gpd_{lift}(\mathcal{E})$ are categories of (co-)fibrant objects with respect to factorisation systems to be defined later.

The Jet Factorisation System

Definition 3.

A *jet-closed arrow in* \mathcal{E} is a monic arrow $m: A \rightarrow B$ such that the following square is a pullback:

$$A^{D} \xrightarrow{-\circ 0} A$$

$$\downarrow^{m\circ -} \qquad \downarrow^{m\circ -}$$

$$B^{D} \xrightarrow{-\circ 0} B$$

Definition 4.

A *jet-dense arrow in* \mathcal{E} is an arrow $f: X \to Y$ such that the following square is a pullback for every jet-closed m:

$$A^{Y} \xrightarrow{-\circ f} A^{X}$$

$$\downarrow^{m\circ -} \qquad \downarrow^{m\circ -}$$

$$B^{Y} \xrightarrow{-\circ f} B^{X}$$

The Jet Factorisation System

Definition/Proposition 5.

The jet factorisation system on $\mathcal E$ is given by

$$(L,R) = (jet\text{-}dense, jet\text{-}closed)$$

and it induces a factorisation system on $Gpd(\mathcal{E})$.

Now for any groupoid $\mathbb{G} = (G \rightrightarrows M) \in Gpd(\mathcal{E})$ we can factorise the identity arrow:

If $Gpd_{\infty}(\mathcal{E})$ is the subcategory of groupoids which have jet-dense identity map then the above factorisation induces a functor:

$$(-)_{\infty}: \mathit{Gpd}(\mathcal{E})
ightarrow \mathit{Gpd}_{\infty}(\mathcal{E})$$

Some Useful Groupoids

2 is the pair groupoid on the two element space.

 ${\mathbb I}$ is the pair groupoid on the unit interval.

 ℓ is the long arrow $0 \to 1$ in \mathbb{I} .

O is the pushout of ℓ along itself:

$$\begin{array}{ccc}
2 & \stackrel{\ell}{\longrightarrow} & \mathbb{I} \\
\downarrow_{\ell} & & \downarrow_{\iota_0} \\
\mathbb{I} & \stackrel{\iota_1}{\longrightarrow} & O
\end{array}$$

O is the colimit of the diagram:

$$1 \longleftarrow \mathbb{I} \xrightarrow{1 \times \{0\}} \mathbb{I} \times \mathbb{I} \xrightarrow{1 \times \{1\}} \mathbb{I} \longrightarrow 1$$

 $\iota:O\to\mathbb{O}$ is the boundary inclusion. Let \mathbb{I}_{∞} , O_{∞} and \mathbb{O}_{∞} be the images of \mathbb{I} , O and \mathbb{O} under $(-)_{\infty}$.

Connectedness of Groupoids

Definition 6.

A path-connected groupoid is a groupoid $\mathbb G$ for which the following arrow is an epimorhpism:

$$\mathbb{G}^{\mathbb{I}} \xrightarrow{-\circ \ell} \mathbb{G}^2$$

A simply-connected groupoid is a path-connected groupoid \mathbb{G} for which the following arrow is an epimorphism:

$$\mathbb{G}^{\mathbb{O}} \xrightarrow{-\circ \iota} \mathbb{G}^{O}$$

Proposition 7.

If \mathbb{G} is simply connected then the following diagram is a coequaliser in \mathcal{E} :

$$\mathbb{G}^{\mathbb{O}} \xrightarrow[-\circ(\iota\circ\iota_1)]{-\circ(\iota\circ\iota_1)} \mathbb{G}^{\mathbb{I}} \xrightarrow{-\circ\ell} \mathbb{G}^2$$

The Lifting Property for Integration

In the synthetic setting we cannot assume that we always have solutions to time-dependent invariant vector fields.

Definition 8.

A groupoid with the lifting property is a groupoid $\mathbb G$ for which the following arrow is an isomorphism

$$\mathbb{G}^{\mathbb{I}} \xrightarrow{-\circ \iota_{\infty}} \mathbb{G}^{\mathbb{I}_{\infty}}$$

Proposition 9.

If \mathbb{G} has the lifting property then $-\circ \iota_{\infty}$ is also an isomorphism of groupoids. Moreover, $\mathbb{G}^{\mathbb{O}} \cong \mathbb{G}^{\mathbb{O}_{\infty}}$.

Idea of Proof: Show that the commutativity of infinitesimal squares extends to the commutativity of macroscopic squares.

Synthetic Lie II

Theorem 10.

Let \mathbb{G} be a simply-connected groupoid and let \mathbb{H} be a groupoid with the lifting property. Then the following lifting property holds:

Proof: On the next slide.

Synthetic Lie II

- We take the object map $\psi_0 = \phi_0$.
- For the arrow map we consider the diagram opposite. The penultimate row is a coequaliser because \mathbb{G} is simply-connected. The maps $(-\circ \iota)^{-1}$ exist because \mathbb{H} has the lifting property.

The Weinstein Groupoid

Definition 11.

The Weinstein groupoid $\bar{\mathbb{G}}=(\bar{G}\rightrightarrows M)$ of the groupoid $\mathbb{G}=(G\rightrightarrows M)$ has:

- ▶ object space M.
- arrow space the coequaliser:

$$\mathbb{G}^{\mathbb{O}_{\infty}} \xrightarrow[-\circ(\iota\circ\iota_1)]{-\circ(\iota\circ\iota_1)} \mathbb{G}^{\mathbb{I}_{\infty}} \xrightarrow{q} \bar{\mathbb{G}}^2$$

reflexive graph structure and multiplication induced by the factorisations of ev_0 , ev_1 , const and μ . For example:

References

- Marius Crainic and Rui Loja Fernandes. Integrability of Lie brackets. Ann. of Math. (2), 157(2):575–620, 2003.
- Anders Kock.

 Synthetic differential geometry, volume 333 of London

 Mathematical Society Lecture Note Series.

 Cambridge University Press, Cambridge, second edition, 2006.
- leke Moerdijk and Gonzalo E. Reyes.

 Models for smooth infinitesimal analysis.

 Springer-Verlag, New York, 1991.
- Hsian-Hua Tseng and Chenchang Zhu. Integrating Lie algebroids via stacks. *Compos. Math.*, 142(1):251–270, 2006.