Assignment Project Exam Help Panel data I

ranei dala

https://tutorcs.com

WeChat: Cstutorcs
Lecture 5

What are panel data models?

 Models of Panel Data (or longitudinal data) are models for analyzing repeated observations.

ASSI Minimum tseture proof: data value. Help i=1,...T; i=1,...N, observed at regular time intervals, $T \ge 2$

- rost section/of time(sexies (hence the xt prefix in Stata's paner data commands).
- An additional dimension may be present, e.g. location subscript for spatial dimension.
- Data may come from longitudinal Surveys, administrative records of firms/individuals.
- ► Key feature: repeated observation makes it possible to control for time-invariant unobserved sources of variation.

Uses of panel data models

Linear panel data models

Assignment Project Exam Help measured on a continuous scale

- ► Like other econometric models, panel data may be used thittps://tutorcs.com
 - descriptive data modeling
 - causal or structural modeling with endogenous regressors
- Nonlinear paner date models are applied to discrete ordered or unordered outcomes
- Level of observation is an individual or firm (microeconometrics) or country or industry (macroeconometrics)

Special features of panel data models

Assignative and on parameter variation Assignative and on parameter variation Assignative and on parameter variation

- Panels are a special case of repeated samples
- Initional complete proper and completions of asymptotics
 - large-N-large-T vs large-N-small-T asymptotics
- Range LV estimation has complicating features
- Nonlinear panel models with correlated effects pose conceptual and computational problems

Panel data set-up

 During observation period each observation unit is uniquely identified

Assignment panels policy during the observation period all period the last the last

- In microeconometrics the typical set-up involves large N and small (often variable) T ("short panels")
- Initially in Scaraford ($N \times N(K+1)$) matrix or wide form $(T \times N(K+1))$ matrix
- Observed variation may be due to variation across individuals (dender, ethnicity) er over time (household income), or both
- Panel data analysis simultaneously exploits variation in both dimensions
- Unlike cross section data, out-of-equilibrium behavior can be modelled

Consider data in long form for a two variable regression model

Assignment Project Exam Help

```
y<sub>1</sub>https<sub>12</sub>//tutorcs.com
...
y<sub>1</sub>τ 1 x<sub>1</sub>τ
y<sub>2</sub>Wechat: cstutorcs
y<sub>N,T-1</sub> 1 x<sub>N,T-1</sub>
y<sub>NT</sub> 1 x<sub>NT</sub>
```

Sources of variation in panels

- ► Two sources of variation across individuals or across time.
- ▶ Total variation of a series x_{it} around its grand mean \bar{x} is

as the cross-product term sums to zero.

Total sum of squares equals the within sum of squares put the between sum of squares ICS

$$s_{W}^{2} = \frac{1}{NT - N} \sum_{i=1}^{N} \sum_{t=1}^{T} (x_{it} - \bar{x}_{i})^{2}$$

$$s_{B}^{2} = \frac{1}{N - 1} \sum_{i=1}^{N} (\bar{x}_{i} - \bar{x})^{2}.$$

Identification consideration

Assignment Project Exam Help differences (variation) in the variable of interest.

- Example: How does household spending behavior change tast up transtiple for vore to cetiental?

 Cross-section analysis answers this question by looking at
 - a sample of retirees and non-retirees
- Panel analysis answers the question by **also** looking at the behavior of households before and aftergetirement

Identification consideration (2)

Assignment en iron pect Exam Help
Adjustment taking place over time cannot be identified from cross-section data

- Behavior of interest may also change over time as individuals adjust studyed thanges in their environment or because they adapt tochanges
- Individuals may be at different stages of adjustment distributed organie. CStutorcs
- ► It is possible that individual variation over time contributes substantially to the identification of parameters of interest.

Data example: German Socio-economic Panel (GSOEP)

- A S S 1 gs a 10 seh bdbased study which sarted a 1004 and C p which reinterviews adult household members annually.
 - Application to health care: Winkelmann (JHE, 2006); (JAE, 4004tps://tutorcs.com
 - ► In 1996 the cost of healthcare for insured individuals rose as coinsurance rates rose sharply
 - ► No the number of doctor visits contract significantly (a) immediately, (b) over time?
 - Requires data before and after the change from individuals who vary by both observed and unobserved characteristics.

Questions example: Winkelmann (2004)

reimbursements of physicians.

▶ Winkelmann (JAE 2004) examines the effect of the

Assignathrance for the Partico in Certan Enx 987m Help buring 1997, co-payments for prescription drugs increased by 200%, and upper limits were imposed on the

What was the effect of the reform on the number of doctor visits? Who was affected and how much?

 A full panel data analysis would confirm whether the reform was effective. CSTUTOTCS

➤ This data setup is analogous to a *natural experiment*, but issues raised require data from multiple years.

Winkelmann (2004)

Table I. Sample means of doctor visits and selected socio-demographic characteristics, 1995–1999

Assignment Project Exam, Help

No. doctor visits	2.687	2.657	2.553	2.353	2.391
(relative change in %) No. doesor visits (0/1)	/tuto	rold) c	(3.9)	(-7.8)	(+1.6)
No. dector v sits (0/1)	/ LU34871	0.328	U 1352	0.372	0.346
Age	38.08	38.20	38.47	38.73	38.92
Unemployed (0/1)	0.085	0.084	0.092	0.085	0.075
Active port (0/1)	at 0.29 cs	4-0-247	0.262	0.307	0.266
Good health (0/1)	al 0.56	l lose	0.501	0.595	0.580
Bad health (0/1)	0.145	0.138	0.134	0.127	0.129
Observations	6790	6555	6480	6781	6231

Source: German Socio-Economic Panel (GSOEP, N = 32, 837).

Advantages of Panel Data (1)

- Assimplest advantage of panel data increased precision in the stimulation of the partial observations due to combining or pooling several time periods of data for each individual.
 - ► tates://tutorcs.com

 Hewever, individual data may display significant
 - Hewever, individual data may display significant dependence (serial correlation) over time
 - Individuals may not stay within the panel over time which least to intra incerpanding 110105
 - "Sample attrition" which may lead to selection bias if attrition is not completely random

Advantages of Panel Data (2)

- Panel models allow a better control of unobserved time-invariant heterogeneity than cross section data
- - Panel data support learning more about the dynamics of initial Sepavibutores. Com
 - Can study how individuals react to discrete or continuous shocks
 - Some empirical puzzles require knowledge of parameters that approve dentifies from cross section data
 - Caveats:
 - Cross-section, within-cluster, and time series dependence reduces information content
 - For robust inference variance calculations must allow for dependence

Dependence concepts

Temporal dependence for a given i Assignment Project Exam Help Cross section (spatial) dependence

- \triangleright cov[$y_{it}y_{it}$] \neq 0 for $i \neq j$
- Clustering/ y^c_s , y^c_s cluster c, c = 1, ..., CLither been belongs to just one fluster and there is intra-cluster correlation
 - Cluster can be a household, a district, a class, a school, a
- yillage, etc \mathbf{p} es equally to coss settle (d) (a (i.e. when T=1)
- Important to account for this dependence when estimating the VCE

Limitations of Panel Data

Getting a population representative continuous panel is not

Ssigniffrent Project Exam Hel reduced if the participants do not respond to the questions

- Nonresponse may be total or selective, often involving Lisensitive issues and privacy concellos ("hanresponse")
 - Panel fatique after several waves may lead to **nonresponse** ("attrition")
- Response behavior may be censored by death, relocation, lack of a coest, letc.. (Constitution) 1°CS
 - Loss through administrative frictions ("frictions")
- Missing observations create gaps and loss of balance

Recurring challenges

Assignment Project Exam Help

- 2. Parameter identification can depend upon regressor type (exogeneity)
- 3. Etintinating unobserved beterogeneity man make prediction impossible
- 4. Some coefficients may vary over time and subpopulations
- 5. Non-random attrition bias may cause loss of identification of key parameters.

Coverage (1)

Assignment Project Exam Help

- Part 1: Basic Linear Panel regression for fixed and random Pooled, RE-GLS, between and within estimators

WeChat: cstutorcs

Coverage (2)

Assignment Project Exam Help

- Part 2: Extensions of the basic model to handle
 - Robust variance estimation
 - Findogene ty and rebust IV estimation of FE/RE models by hamic models; lagged endogenous variables, Arellano-Bond estimator
 - Clustered data and robust variance

WeChat: cstutorcs

Individual effects model (1)

Assignment $\Pr_{\alpha_i}^{y_i} = \Pr_{\alpha_i}^{\alpha_i} + r_{\alpha_i}^{\varepsilon_i} = r_{\alpha_i}^{\varepsilon_i} + r_{\alpha_i}^{\varepsilon_i} = r$

 α_i are random individual-specific effects, and ε_{it} is an idiosyncratic error.//tutorcs.com

Two quite different models for the α_i are fixed-effects (FE)

- wo quite different models for the α_i are fixed-effects (FE) and random-effects (RE) models.
- Fevs. Re-potentially misleading terminology because but assume a are randomly distributed across i.
- ▶ FE : α_i are random across i, but fixed over t for a given i
- ▶ RE: α_i are random (exchangeable) across i and t.
- Both assume additively separable α_i;

Individual effects model (2)

In the FE model α_i in (1) are permitted to be correlated with regressors x_{it}.

Assign | Time my a fant emitted variables <math>Exam Help Allows a limited form of endogeneity as $E[(\varepsilon_{it}+\alpha_i)|\mathbf{x}_{it}] \neq 0$

View the error as $u_{it} = \alpha_i + \varepsilon_{it}$, and permit \mathbf{x}_{it} to be correlated with the time-invariant component of the error

https://tutorcs.com error component ε_{it} .

- In the RE model the α_i are assumed to be uncorrelated
 - Two error components α_i , ε_{it} are uncorrelated with each other
 - α_i induces time-dependence between errors because it is common to T observations $\mathsf{E}[(u_{it}u_{is})|\mathbf{x}_{it}] \neq 0$

Incidental parameter problem

Can fixed effects be estimated consistently?

Assign possible estimpormethod is to Ently estimate Help

- ► FE model can be written as a model with N − 1 individual-specific dummy variables
- ▶ Integration panel asymptotic theory letters on $N \to \infty$, and here as $N \to \infty$ so too does the number of fixed effects to estimate.
 - This problem is called the **incidental parameters problem**. In the parameter problem is called the **incidental parameters** α_i .
- Solution? We can consistently estimate β , for time-varying regressors by transforming (1) to eliminate α_i .

Two-way effects model

Assignmental and standard extension of the individual effects is a two-way individuals and over time:

https://tutorcs.com

For short panels it is common to let the time effects γ_t be fixed effects, in which case they are incorporated into x_{it} by including 7 + 1 indicator variables.
 This model has N + (7 - 1) + dm[x] parameters that can

▶ This model has $N+(T-1)+\dim[x]$ parameters that can be consistently estimated if both $N\to\infty$ and $T\to\infty$.

(3)

Asymptotics and short panels

Assignment Project Exam Help Short panels ($N \to \infty$, T does not).

- The γ_s can be consistently estimated, so the (T-1) time dummies are simply incorporated into the regressors \mathbf{x}_{it} .

 The valience that estimated into the regressors \mathbf{x}_{it} .

 Controlling for the N individual intercepts α_i .
- Nickell (1981): bias in short panels from lagged dependent variables (i.e. x_{it} includes y_{it-1})

◆□ ▶ ◆□ ▶ ◆ ■ ▶ ◆ ■ り へ ○

Pooled Model or Population-Averaged Model

Pooled models assume that regressors are exogenous and

Assignment + Paroject Exam Help

$$\mathbf{y}_{it} = \alpha + \mathbf{x}'_{it}\beta + \mathbf{u}_{it}. \tag{4}$$

- ► Interthat ar here does not include a constant, whereas in cross-section x; additionally included a constant term.
- ightharpoonup $E[u_{it} \ u_{is}] \neq 0$, for efficient estimation GLS rather than OLS
- should be used. Even if the ϵ_{it} are tried. and uncorrelated with α_i , we have $E[u_{it} \ u_{is}] = E[\alpha_i^2] \quad \forall t \neq s$
- OLS standard errors for PA model are potentially misleading.

Fixed Effects and Random Effects Models

Individual-specific effects model allows each cross-sectional unit to have a different intercept term

Assignment Project Exam Help

where ε_{it} is iid over i and t. This is a more parsimonious way to express model with any time dummies included in the sort of th

Throughout make the assumption of strict exogeneity

We Chat: C Stutores so that the error term is assumed to have mean zero conditional on past, current and future values of the regressors. (6)

Strict exogeneity <u>rules out</u> models with lagged dependent or endogenous regressors.

Random Effects (RE) model

Assumes α_i are random variables that are distributed Assigned property of the percentage of the property o

https://tutorcs/.com (7)

- More precise terminology: one-way individual-specific random effect model, or more simply the random intercept recent cstutores
- ▶ A natural extension is to consider also consider random slopes (i.e. $\beta_i \sim i.i.d[\beta, \sigma_\beta^2]$)

RE Equicorrelated Model

 \triangleright RE model is a specialization of the pooled model, as the α_i can be absorbed into the error term. Then (5) can be Assignment (Project Exam Help

$\begin{array}{c} \text{Cov}[(\alpha_i + \varepsilon_{it}), (\alpha_i + \varepsilon_{is})] = \left\{ \begin{array}{l} \sigma_{\alpha}^2, & t \neq s. \\ \sigma_{\alpha}^2 + \sigma_{\varepsilon}^2, & t = s. \end{array} \right. \\ \textbf{https://tutorcs.com} \\ \blacktriangleright \text{ RE model imposes the constraint that the composite error} \end{array}$ (8)

 u_{it} in (5) is **equicorrelated**, since

$$\rho \bigvee c_{n} \underbrace{c_{n} \underbrace{c_{n} \underbrace{c_{n} \underbrace{var[u_{is}]}}}_{\sqrt{var[u_{it}]} var[u_{is}]} c_{n}^{2} \underbrace{c_{n} \underbrace{c_{n} \underbrace{var[u_{it}]}}_{\sqrt{var[u_{it}]}} c_{n}^{2} \underbrace{c_{n} \underbrace{c_{n} \underbrace{c_{n} \underbrace{var[u_{it}]}}_{\sqrt{var[u_{it}]}} c_{n}^{2} \underbrace{c_{n} \underbrace{c_{n}$$

does not vary with the time difference t-s.

Pooled OLS will be consistent but inefficient under the RE model.

GLS estimator of the RE model

By GMT, the OLS estimator is BLUE if the regression errors are iid and homoskedastic.

ASSIGNMATER THE TRUE TO FROM \mathbb{R}^2 YARIMS known pand nonsingular, premultiply the linear regression model by $\Omega^{-1/2}$:

$$\underset{\text{where } \Omega}{\text{https:}} / \underset{\Omega}{\text{n-1/2}} \underbrace{tutor^{-1/2} x_{\beta} + \Omega^{-1/2} u}_{\text{linen}}.$$

 $V[\Omega^{-1/2}\mathbf{u}|\mathbf{X}] = E[(\Omega^{-1/2}\mathbf{u})(\Omega^{-1/2}\mathbf{u})'|\mathbf{X}] = \mathbf{I}_{NT}$ i.e. errors in this transformed model are zero mean, uncorrelated and homoskedastic.

So β can be efficiently estimated by OLS regression of $\Omega^{-1/2}\mathbf{y}$ on $\Omega^{-1/2}\mathbf{X}$.

Assignment Project Exam Help

$$\begin{array}{l} https://tuto [rcs_{A_{7}}^{\bullet}con_{0}^{\bullet}] \\ = \begin{bmatrix} \ddots & \ddots & \ddots & \ddots \\ \ddots & \ddots & \ddots & \ddots \\ 0 & 0 & \dots & A_{7} \end{bmatrix} \\ WeChat: \underset{\sigma_{e}}{cstutorcs} \end{array}$$

and $\mathbf{1}_T$ is a T dimensional vector of ones. So Ω is $NT \times NT$.

Between Estimator of the RE model (1)

Assinging with the right of the control of the cont

$$\mathbf{v}_{\text{where}} \mathbf{y}_{i} = \mathbf{x} + \bar{\mathbf{x}}_{i}' \boldsymbol{\beta} + (\alpha_{i} - \alpha + \bar{\varepsilon}_{i}), \quad i = 1, ..., N, \quad (9)$$

$$\mathbf{v}_{\text{where}} \mathbf{y}_{i} = \mathbf{h}_{1} \mathbf{x}_{i}, \quad \mathbf{c}_{1} \mathbf{s}_{1} \mathbf{t}_{1} \mathbf{t}_{1} \mathbf{c}_{1} \mathbf{c}_{1}$$

Between Estimator of the RE model (2)

Assignment estimator is the OLS estimator from regression Help

It uses variation between different individuals and is the analogue of cross-section regression, which is the special determinant of the special determinant.
 Between estimator consistent if the regressors x̄_i are

Between estimator consistent if the regressors \bar{x}_i are uncorrelated with the composite error $(\alpha_i - \alpha + \bar{\epsilon}_i)$.

For consistency we need strict exogeneity, i.e. CSTUTOTCS

▶ Rules out FE model since correlation of \overline{x}_i with α_i would lead to an inconsistent estimator

Within Estimator of the RE/FE model

Assignithmentato Probject ansormation Help $v_{it} - \overline{v}_i = (\mathbf{x}_{it} - \overline{\mathbf{x}}_i)'\beta + (\epsilon_{it} - \overline{\epsilon}_i)$

- Fetimation of 1st by PLS, which is consistent under the
 - Consistency requires that $(\mathbf{x}_{it} \overline{\mathbf{x}}_i)$ be uncorrelated with $(\epsilon_{it} \overline{\epsilon}_i)$, which is true under strict exogeneity (i.e.
 - Weentat. cstutores
- Time-invariant regressors not permitted

First Differences Estimator of the RE/FE model

▶ The first differences estimator applies the transformation:

Assignment $P_{i,j-1}^{(x_{it}-y_{it-1})'\beta} \stackrel{\text{(c}_{it}-\epsilon_{it-1})}{Extimation of } \text{Help}$

FE and RE models.

Consistency requires that $(\mathbf{x}_{it} - \mathbf{x}_{it-1})'$ be uncorrelated with $(\mathbf{x}_{it} - \mathbf{x}_{it-1})'$ be uncorrelated with the wever, it is also a weaker requirement than strict

 Hewever, it is also a weaker requirement than strict exogeneity, which is particularly useful for dynamic panel data models (next week)

► TMe-maria harectess CrsStuder nate CS

▶ The variance of the first differences error (for i.i.d. ϵ_{it} it is $2\sigma_{\epsilon}^2$) is typically larger than that of the within error (for i.i.d. ϵ_{it} it is $\frac{T-1}{T}\sigma_{\epsilon}^2$), and so we should use within-estimator if we have strict exogeneity.

GLS, Within and Between Estimators

It can be shown (Maddala, Econometrica 1971) that

Assignment Project Exam Help $= [\mathbf{W}_{xx} + \theta \mathbf{B}_{xx}]^{\mathsf{I}} [\mathbf{W}_{xy} + \theta \mathbf{B}_{xy}]$

where
$$\theta = (1 - \rho)/(1 - \rho - \rho T) = (\sigma_{\varepsilon}^2)/(T\sigma_{\alpha}^2 + \sigma_{\varepsilon}^2)$$

The stimator of the RE model is a weighted sum of

- between and within estimator
- measures the weight given to the between variation. Weight CStutores

$$\begin{array}{ccc} \theta & \to & 0 \Longrightarrow \widehat{\beta} \to \text{Within;} \\ \rho & \to & 0 \Longrightarrow \theta \to 1 \Longrightarrow \widehat{\beta} \to \text{Pooled OLS} \end{array}$$

 \triangleright ρ is large only when between variation is large

Limitations

- FE model
- Assign $[x_{it}] = \alpha_i + \mathbf{x}'_{it}\beta$, assuming $[x_{it}] = 0$, so the first $[x_{it}] = 0$ and $[x_{it}] = 0$. The FE model obtains a consistent estimate of the marginal effect of the j^{th} regressor on $[x_{it}] = 0$. (provided $[x_{it}] = 0$) where $[x_{it}] = 0$ are the marginal effect of the $[x_{it}] = 0$ and $[x_{it}] = 0$. The FE model obtains a consistent estimate of the marginal effect of the $[x_{it}] = 0$ and $[x_{it}] = 0$.
 - Knowledge of β does not give complete information on the process generating y_{it} . In particular for prediction we need an estimate of $E[y_{it}|\mathbf{x}_{it}] = E[\alpha_i|\mathbf{x}_{it}] + \mathbf{x}'_{it}\beta$, and $E[\alpha_i|\mathbf{x}_{it}]$
 - cannot be consistently estimated in short panels.
 - Assumed that α_i is purely random, a stronger assumption that implies that α_i is uncorrelated with the regressors (i.e. $cov(\mathbf{x}_{it}, \alpha_i) = 0$).