Devoir à la maison n° 12

À rendre le 07 février

Pour tout $n \in \mathbb{N}$, on définit le polynôme

$$S_n(X) = 1 + \frac{X}{1!} + \dots + \frac{X^n}{n!} = \sum_{i=0}^n \frac{X^i}{i!}.$$

L'objectif de ce problème est de montrer que, si n est un entier naturel supérieur ou égal à 2, alors les racines complexes du polynôme S_n ont un module strictement inférieur à n.

1) Soit p un entier naturel non nul. Soient $\alpha_1, \ldots, \alpha_p$ des nombres complexes de module inférieur ou égal à 1. Soit $\theta_1, \ldots, \theta_p \in \mathbb{R}_+^*$. On suppose que

$$\left| \sum_{i=1}^{p} \theta_{i} \alpha_{i} \right| = \sum_{i=1}^{p} \theta_{i}.$$

- a) Démontrer que $\alpha_1, \ldots, \alpha_p$ sont des nombres complexes de module exactement 1.
- b) On suppose dans cette question seulement p=2 et $\alpha_1=1$. Soit t un nombre réel tel que $\alpha_2=\mathrm{e}^{it}$. En développant $|\theta_1+\theta_2\mathrm{e}^{it}|^2$, justifier que $\alpha_2=1$.
- c) Dans le cas général, démontrer que $\alpha_1 = \alpha_2 = \cdots = \alpha_p$.
- 2) Soit P dans $\mathbb{R}[X]$ de degré $n \ge 2$. On note a_0, \ldots, a_n ses coefficients :

$$P(X) = a_n X^n + a_{n-1} X^{n-1} + \dots + a_1 X + a_0.$$

On suppose que $a_0 = a_1 > a_2 > \dots > a_{n-1} > a_n > 0$.

- a) Justifier que ni 0, ni 1, ne sont des racines de P.
- b) Déterminer les coefficients du polynôme (X-1)P(X).
- c) Démontrer que les racines complexes de P ont un module strictement supérieur à 1.

Indication: on pourra raisonner par l'absurde et utiliser la question 1)c)

3) Soit Q dans $\mathbb{R}[X]$ de degré $n \geq 2$. Soient a_0, \ldots, a_n ses coefficients :

$$Q(X) = a_n X^n + a_{n-1} X^{n-1} + \dots + a_1 X + a_0.$$

On suppose que $0 < a_0 < a_1 < \cdots a_{n-2} < a_{n-1} = a_n$. Justifier que les racines complexes de Q ont un module strictement inférieur à 1.

4) Conclure.

Indication : on pourra considérer le polynôme $T_n = S_n(nX)$.

— FIN —