2018 年全国统一高考数学试卷(文科)(全国新课标 I)

- 一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选 项中,只有一项是符合题目要求的。
- 1. (5分) 已知集合 A={0, 2}, B={-2, -1, 0, 1, 2}, 则 A∩B=()
 - A. $\{0, 2\}$ B. $\{1, 2\}$

 - C. $\{0\}$ D. $\{-2, -1, 0, 1, 2\}$
- 2. (5分) 设 $z=\frac{1-i}{1+i}+2i$, 则|z|=()
 - A. 0

- B. $\frac{1}{2}$ C. 1 D. $\sqrt{2}$
- 3. (5分)某地区经过一年的新农村建设,农村的经济收入增加了一倍,实现 翻番. 为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村 建设前后农村的经济收入构成比例,得到如下饼图:

建设前经济收入构成比例

建设后经济收入构成比例

则下面结论中不正确的是(

- A. 新农村建设后,种植收入减少
- B. 新农村建设后,其他收入增加了一倍以上
- C. 新农村建设后, 养殖收入增加了一倍
- D. 新农村建设后, 养殖收入与第三产业收入的总和超过了经济收入的一半
- 4. (5分)已知椭圆 C: $\frac{x^2}{a^2} + \frac{y^2}{4} = 1$ 的一个焦点为(2,0),则 C的离心率为()

- A. $\frac{1}{3}$ B. $\frac{1}{2}$ C. $\frac{\sqrt{2}}{2}$ D. $\frac{2\sqrt{2}}{2}$
- 5. (5 分) 已知圆柱的上、下底面的中心分别为 O_1 , O_2 , 过直线 O_1O_2 的平面截 该圆柱所得的截面是面积为8的正方形,则该圆柱的表面积为()

第1页(共28页)

	Α.	12 √2	- 2π	В.	12π		c.	8√2π		D.	10π
6.	(5分)	设函数	f (x)	$=x^3+$ (a- 1) x ^{2.}	+ax.	若 f(x)为奇	函数	,则曲线 y =f(
	x)	在点	(0, 0)	处的	切线方程	智为 ()				
	Α.	y=- 2	2x	В.	y=- x		c.	y=2x		D.	y=x
7.	(5分)	在△AB	C 中,	AD 为 E	BC 边上的	中约	栈,E 为	J AD 的中	点,	则 ĒB = ()
	Α.	$\frac{3}{4}\overrightarrow{AB}$	$-\frac{1}{4}\overrightarrow{AC}$	В.	$\frac{1}{4}\overrightarrow{AB}$	$\frac{3}{4}\overrightarrow{AC}$	C.	$\frac{3}{4}\overrightarrow{AB}$ +-	$\frac{1}{4}\overrightarrow{\text{AC}}$	D.	$\frac{1}{4}\overrightarrow{AB} + \frac{3}{4}\overrightarrow{AC}$
8.	(5分)	己知函	数 f(z	κ) =2cc	os²x– sin²	x+2,	则()		
	Α.	f (x)	的最小	、正周其	期为π,	最大値対	夕3				
	В.	f (x)	的最小	、正周其	期为π,	最大値対	与4				
	c.	f (x)	的最小	正周其	期为 2π	,最大值	为3				
	D.	f (x)	的最小	、正周其	期为 2π	,最大值	为4	ļ			
9.	(!	5 分)	某圆柱的	的高为	2,底面	[周长为:	16,	其三视	图如图.	圆柱	表面上的点 M
	在	正视图	上的对	应点为	JA,圆	柱表面上	的点	(N 在左	三视图上1	的对	应点为 B, 则在
	此	圆柱侧	间面上,	从 M ²	削N的	路径中,	最短	路径的	1长度为	()
A	,		, m,	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	-1 H4,		-1/-	- H 177 H	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	`	,
				\square_{B}							
Jy.											
	Α.	2 √17	,	В.	2 √5		c.	3		D.	2
10		(5分)	在长方	了体 AB	CD- A ₁	B ₁ C ₁ D ₁ 中	, A	B=BC=2	2,AC₁与	平面	Ī BB₁C₁C 所成的
	角	为 30°	,则该	长方体	的体积	为()				
	Α.	8		В.	$6\sqrt{2}$		c.	$8\sqrt{2}$		D.	8√3
11		(5分)	己知角	自α的	页点为约	坐标原点	,始	边与 x	轴的非负	半车	曲重合,终边上
	有	两点 A	(1, a) , в	(2, b)	,且co	s2α=	<u>-2</u> ,则	a- b =	()
	Α.				$\frac{\sqrt{5}}{5}$			<u>2√5</u> 5		D.	

第2页(共28页)

12. (5分)设函数 $f(x) = \begin{cases} 2^{-x}, & x \le 0 \\ 1, & x > 0 \end{cases}$,则满足 f(x+1) < f(2x) 的 x 的取值

范围是()

- A. $(-\infty, -1]$ B. $(0, +\infty)$ C. (-1, 0) D. $(-\infty, 0)$
- 二、填空题: 本题共 4 小题, 每小题 5 分, 共 20 分。
- 13. (5分) 已知函数 f (x) = log₂ (x²+a) ,若 f (3) = 1,则 a=_____.
- 15. (5 分)直线 y=x+1 与圆 x²+y²+2y- 3=0 交于 A,B 两点,则 AB = .
- 16. (5 分) △ ABC 的内角 A, B, C 的对边分别为 a, b, c. 已知 bsinC+csinB=4asinBsinC,b²+c²- a²=8,则△ABC 的面积为 .
- 三、解答题: 共 70 分。解答应写出文字说明、证明过程或演算步骤。第 17~21 题为必考题,每个试题考生都必须作答。第22、23题为选考题,考生根据要 求作答。(一)必考题: 共60分。
- 17. (12 分)已知数列 $\{a_n\}$ 满足 $a_1=1$, $na_{n+1}=2$ (n+1) a_n ,设 $b_n=\frac{a_n}{n}$.
 - (1) 求 b_1 , b_2 , b_3 ;
 - (2) 判断数列 {b_n} 是否为等比数列,并说明理由;
 - (3) 求 {a_n} 的通项公式.

- **18.** (**12** 分)如图,在平行四边形 ABCM 中,AB=AC=3,∠ACM=90°,以 AC 为 折痕将△ACM 折起,使点 M 到达点 D 的位置,且 AB⊥DA.
- (1) 证明: 平面 ACD 上平面 ABC;
- (2) Q 为线段 AD 上一点,P 为线段 BC 上一点,且 $BP=DQ=\frac{2}{3}DA$,求三棱锥 Q- ABP 的体积.

19. (12分)某家庭记录了未使用节水龙头 50天的日用水量数据(单位: m³)和使用了节水龙头 50天的日用水量数据,得到频数分布表如下:

未使用节水龙头 50 天的日用水量频数分布表

日用水量	[0, 0.1)	[0.1, 0.2)	[0.2, 0.3)	[0.3, 0.4)	[0.4, 0.5)	[0.5, 0.6)	[0.6, 0.7)
频数	1	3	2	4	9	26	5

使用了节水龙头50天的日用水量频数分布表

日用水量 [0, 0.1) [0.1, 0.2) [0.2, 0.3) [0.3, 0.4) [0.4, 0.5) [0.5, 0.6)
--

|--|

(1) 作出使用了节水龙头 50 天的日用水量数据的频率分布直方图;

- (2) 估计该家庭使用节水龙头后, 日用水量小于 0.35m³的概率;
- (3)估计该家庭使用节水龙头后,一年能节省多少水? (一年按 365 天计算,同一组中的数据以这组数据所在区间中点的值作代表)

- 20. (12 分) 设抛物线 C: y²=2x, 点 A (2, 0), B (-2, 0), 过点 A 的直线 I 与 C 交于 M, N 两点.
- (1) 当 I 与 x 轴垂直时,求直线 BM 的方程;
- (2) 证明: ∠ABM=∠ABN.

- 21. (12 分)已知函数 f(x)=ae^x- Inx- 1.
- (1) 设 x=2 是 f (x) 的极值点, 求 a, 并求 f (x) 的单调区间:
- (2) 证明: 当 $a \ge \frac{1}{e}$ 时, $f(x) \ge 0$.

- (二)选考题:共 10分。请考生在第 22、23 题中任选一题作答。如果多做,则按所做的第一题计分。[选修 4-4:坐标系与参数方程](10分)
- 22. (10 分)在直角坐标系 xOy 中,曲线 C_1 的方程为 y=k|x|+2. 以坐标原点为极点,x 轴 正 半 轴 为 极 轴 建 立 极 坐 标 系, 曲 线 C_2 的 极 坐 标 方 程 为 $\rho^2+2\rho\cos\theta-3=0$.
- (1) 求 C₂的直角坐标方程;
- (2) 若 C_1 与 C_2 有且仅有三个公共点,求 C_1 的方程.

[选修 4-5: 不等式选讲] (10 分)

- 23. 己知 f (x) = |x+1| |ax-1|.
- (1) 当 a=1 时, 求不等式 f(x) >1 的解集;
- (2) 若 x∈ (0, 1) 时不等式 f (x) >x 成立, 求 a 的取值范围.

第6页(共28页)

2018年全国统一高考数学试卷(文科)(全国新课标 I)

参考答案与试题解析

一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选 项中,只有一项是符合题目要求的。

- 1. (5 分) 已知集合 A={0, 2}, B={-2, -1, 0, 1, 2}, 则 A∩B=(
 - A. $\{0, 2\}$

B. {1, 2}

C. {**0**}

D. {- 2, - 1, 0, 1, 2}

【考点】1E: 交集及其运算.

【专题】11: 计算题: 49: 综合法: 5J: 集合.

【分析】直接利用集合的交集的运算法则求解即可.

【解答】解:集合 A={0,2}, B={-2,-1,0,1,2},

则 $A \cap B = \{0, 2\}$.

故选: A.

【点评】本题考查集合的基本运算,交集的求法,是基本知识的考查.

- 2. (5分) 设 $z=\frac{1-i}{1+i}+2i$, 则|z|=(
 - A. 0
- B. $\frac{1}{2}$ C. 1
- D. √2

【考点】A8: 复数的模.

【专题】11: 计算题: 35: 转化思想: 49: 综合法: 5N: 数系的扩充和复数.

【分析】利用复数的代数形式的混合运算化简后,然后求解复数的模.

【解答】解: $z=\frac{1-i}{1+i}+2i=\frac{(1-i)(1-i)}{(1-i)(1+i)}+2i=-i+2i=i$

则 | z | =1.

故选: C.

第7页(共28页)

【点评】本题考查复数的代数形式的混合运算,复数的模的求法,考查计算能力.

3. (5分)某地区经过一年的新农村建设,农村的经济收入增加了一倍,实现翻番.为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例,得到如下饼图:

建设前经济收入构成比例

建设后经济收入构成比例

则下面结论中不正确的是()

- A. 新农村建设后,种植收入减少
- B. 新农村建设后,其他收入增加了一倍以上
- C. 新农村建设后, 养殖收入增加了一倍
- D. 新农村建设后, 养殖收入与第三产业收入的总和超过了经济收入的一半

【考点】2K: 命题的真假判断与应用; CS: 概率的应用.

【专题】11: 计算题; 35: 转化思想; 49: 综合法; 5I: 概率与统计; 5L: 简易逻辑.

【分析】设建设前经济收入为 a,建设后经济收入为 2a.通过选项逐一分析新农村建设前后,经济收入情况,利用数据推出结果.

【解答】解:设建设前经济收入为 a,建设后经济收入为 2a.

A 项,种植收入 37%×2a-60%a=14%a>0,

故建设后,种植收入增加,故A项错误.

B 项, 建设后, 其他收入为 5%×2a=10%a,

建设前,其他收入为 4%a,

故 10%a÷4%a=2.5>2,

故 B 项正确.

第8页(共28页)

C 项,建设后,养殖收入为 30%×2a=60%a,

建设前, 养殖收入为 30%a,

故 60%a÷30%a=2,

故 C 项正确.

D 项,建设后,养殖收入与第三产业收入总和为 $(30\%+28\%) \times 2a=58\% \times 2a$

经济收入为 2a,

故(58%×2a)÷2a=58%>50%,

故 D 项正确.

因为是选择不正确的一项,

故选: A.

【点评】本题主要考查事件与概率,概率的应用,命题的真假的判断,考查发现 问题解决问题的能力.

4. (5分)已知椭圆 C: $\frac{x^2}{a^2} + \frac{y^2}{4} = 1$ 的一个焦点为(2,0),则 C 的离心率为(

A.
$$\frac{1}{3}$$

B.
$$\frac{1}{2}$$

c.
$$\frac{\sqrt{2}}{2}$$

A.
$$\frac{1}{3}$$
 B. $\frac{1}{2}$ C. $\frac{\sqrt{2}}{2}$ D. $\frac{2\sqrt{2}}{3}$

【考点】K4:椭圆的性质.

【专题】11: 计算题: 35: 转化思想: 49: 综合法: 5D: 圆锥曲线的定义、性 质与方程.

【分析】利用椭圆的焦点坐标,求出 a,然后求解椭圆的离心率即可.

【解答】解: 椭圆 C: $\frac{x^2}{a^2} + \frac{y^2}{4} = 1$ 的一个焦点为(2,0),

可得 a^2 - 4=4,解得 $a=2\sqrt{2}$,

$$\therefore e = \frac{c}{a} = \frac{2}{2\sqrt{2}} = \frac{\sqrt{2}}{2}.$$

故选: C.

【点评】本题考查椭圆的简单性质的应用,考查计算能力.

5. (5分)已知圆柱的上、下底面的中心分别为 O₁, O₂, 过直线 O₁O₂的平面截 该圆柱所得的截面是面积为8的正方形,则该圆柱的表面积为()

A. $12\sqrt{2}\pi$ B. 12π C. $8\sqrt{2}\pi$ D. 10π

【考点】LE: 棱柱、棱锥、棱台的侧面积和表面积.

【专题】11: 计算题: 35: 转化思想: 49: 综合法: 5F: 空间位置关系与距离.

【分析】利用圆柱的截面是面积为8的正方形,求出圆柱的底面直径与高,然后 求解圆柱的表面积.

【解答】解:设圆柱的底面直径为 2R,则高为 2R,

圆柱的上、下底面的中心分别为 O₁, O₂,

过直线 0,0,的平面截该圆柱所得的截面是面积为 8 的正方形,

可得: $4R^2=8$,解得 $R=\sqrt{2}$,

则该圆柱的表面积为: $\pi \cdot (\sqrt{2})^2 \times 2 + 2\sqrt{2} \pi \times 2\sqrt{2} = 12\pi$.

故选: B.

【点评】本题考查圆柱的表面积的求法,考查圆柱的结构特征,截面的性质,是 基本知识的考查.

6. (5 分)设函数 f(x) =x³+(a-1) x²+ax. 若 f(x) 为奇函数,则曲线 y=f(x) 在点(0,0) 处的切线方程为()

A. y=-2x B. y=-x C. y=2x D. y=x

【考点】6H: 利用导数研究曲线上某点切线方程.

【专题】11: 计算题; 35: 转化思想; 49: 综合法; 53: 导数的综合应用.

【分析】利用函数的奇偶性求出 a, 求出函数的导数, 求出切线的向量然后求解 切线方程.

【解答】解: 函数 $f(x) = x^3 + (a-1)x^2 + ax$,若 f(x) 为奇函数,

第10页(共28页)

可得 a=1,所以函数 $f(x)=x^3+x$,可得 $f'(x)=3x^2+1$,

曲线 v=f(x) 在点(0,0) 处的切线的斜率为: 1,

则曲线 y=f(x) 在点(0,0)处的切线方程为: y=x.

故选: D.

【点评】本题考查函数的奇偶性以及函数的切线方程的求法,考查计算能力.

- 7. (5分)在 \triangle ABC中,AD为BC边上的中线,E为AD的中点,则 \overline{EB} =()

 - A. $\frac{3}{4}\overrightarrow{AB} \frac{1}{4}\overrightarrow{AC}$ B. $\frac{1}{4}\overrightarrow{AB} \frac{3}{4}\overrightarrow{AC}$ C. $\frac{3}{4}\overrightarrow{AB} + \frac{1}{4}\overrightarrow{AC}$ D. $\frac{1}{4}\overrightarrow{AB} + \frac{3}{4}\overrightarrow{AC}$

【考点】9H: 平面向量的基本定理.

【专题】34: 方程思想; 41: 向量法; 5A: 平面向量及应用.

【分析】运用向量的加减运算和向量中点的表示, 计算可得所求向量.

【解答】解: 在 \triangle ABC 中, AD 为 BC 边上的中线, E 为 AD 的中点,

 $\overrightarrow{EB} = \overrightarrow{AB} - \overrightarrow{AE} = \overrightarrow{AB} - \frac{1}{2}\overrightarrow{AD}$

 $=\overrightarrow{AB}-\frac{1}{2}\times\frac{1}{2}(\overrightarrow{AB}+\overrightarrow{AC})$

 $=\frac{3}{4}\overrightarrow{AB}-\frac{1}{4}\overrightarrow{AC},$

故选: A.

【点评】本题考查向量的加减运算和向量中点表示,考查运算能力,属于基础题

- 8. (5分) 已知函数 f (x) =2cos²x- sin²x+2,则()
 - A. f(x) 的最小正周期为 π ,最大值为3
 - B. f (x) 的最小正周期为 π, 最大值为 4
 - C. f(x) 的最小正周期为 2π ,最大值为 3
 - D. f(x) 的最小正周期为 2π ,最大值为 4

【考点】H1: 三角函数的周期性.

第11页(共28页)

【专题】35:转化思想:56:三角函数的求值:57:三角函数的图像与性质.

【分析】首先通过三角函数关系式的恒等变换,把函数的关系式变形成余弦型函数,进一步利用余弦函数的性质求出结果.

【解答】解:函数 $f(x) = 2\cos^2 x - \sin^2 x + 2$,

 $=2\cos^2x - \sin^2x + 2\sin^2x + 2\cos^2x$

 $=4\cos^2x+\sin^2x$

 $=3\cos^2x+1$,

$$= 3 \cdot \frac{\cos 2x + 1}{2} + 1,$$

$$=\frac{3\cos 2x}{2}+\frac{5}{2}$$

故函数的最小正周期为π,

函数的最大值为 $\frac{3}{2}$ + $\frac{5}{2}$ =4,

故选: B.

【点评】本题考查的知识要点:三角函数关系式的恒等变换,余弦型函数的性质的应用.

9. (5分)某圆柱的高为 2,底面周长为 16,其三视图如图.圆柱表面上的点 M 在正视图上的对应点为 A,圆柱表面上的点 N 在左视图上的对应点为 B,则在此圆柱侧面上,从 M 到 N 的路径中,最短路径的长度为()

【考点】L!: 由三视图求面积、体积.

【专题】11: 计算题: 31: 数形结合: 49: 综合法: 5F: 空间位置关系与距离.

【分析】判断三视图对应的几何体的形状,利用侧面展开图,转化求解即可.

第12页(共28页)

【解答】解: 由题意可知几何体是圆柱,底面周长 16, 高为: 2,

直观图以及侧面展开图如图:

圆柱表面上的点 N 在左视图上的对应点为 B,则在此圆柱侧面上,从 M 到 N 的 路径中,最短路径的长度: $\sqrt{2^2+4^2}=2\sqrt{5}$.

故选: B.

【点评】本题考查三视图与几何体的直观图的关系,侧面展开图的应用,考查计 算能力.

10. (5 分) 在长方体 ABCD- A₁B₁C₁D₁中, AB=BC=2, AC₁与平面 BB₁C₁C 所成的 角为 30°,则该长方体的体积为()

A. 8

- B. $6\sqrt{2}$ C. $8\sqrt{2}$ D. $8\sqrt{3}$

【考点】MI: 直线与平面所成的角.

【专题】11: 计算题; 31: 数形结合; 35: 转化思想; 49: 综合法; 5F: 空间位 置关系与距离.

【分析】画出图形,利用已知条件求出长方体的高,然后求解长方体的体积即可

【解答】解:长方体 ABCD- A₁B₁C₁D₁中, AB=BC=2,

AC₁ 与平面 BB₁C₁C 所成的角为 30°,

即 $\angle AC_1B=30^\circ$,可得 BC₁= $\frac{AB}{\tan 30^\circ}=2\sqrt{3}$.

可得 BB₁= $\sqrt{(2\sqrt{3})^2-2^2}=2\sqrt{2}$.

所以该长方体的体积为: $2 \times 2 \times 2 \sqrt{2} = 8\sqrt{2}$.

故选: C.

第13页(共28页)

【点评】本题考查长方体的体积的求法,直线与平面所成角的求法,考查计算能 力.

- 11. (5 分) 已知角 α 的顶点为坐标原点,始边与 x 轴的非负半轴重合,终边上 有两点 A(1,a),B(2,b),且 $\cos 2\alpha = \frac{2}{3}$,则 |a-b| = ()
 - A. $\frac{1}{5}$
- B. $\frac{\sqrt{5}}{5}$ C. $\frac{2\sqrt{5}}{5}$ D. 1

【考点】G9:任意角的三角函数的定义;GS:二倍角的三角函数.

【专题】11: 计算题; 35: 转化思想; 4R: 转化法; 56: 三角函数的求值.

【 分 析 】 推 导 出 $\cos 2\alpha = 2\cos^2 \alpha - 1 = \frac{2}{3}$, 从 而 $|\cos \alpha| = \frac{\sqrt{30}}{\alpha}$, $|\tan \alpha| = |\frac{b-a}{2}| = |a-b| = \frac{\sqrt{5}}{5}$. 由此能求出结果.

【解答】解: :角 α 的顶点为坐标原点,始边与x轴的非负半轴重合,

终边上有两点 A(1, a), B(2, b), 且 $\cos 2\alpha = \frac{2}{3}$,

∴
$$\cos 2\alpha = 2\cos^2 \alpha - 1 = \frac{2}{3}$$
, 解得 $\cos^2 \alpha = \frac{5}{6}$,

$$\therefore |\cos\alpha| = \frac{\sqrt{30}}{6}, \quad \therefore |\sin\alpha| = \sqrt{1 - \frac{30}{36}} = \frac{\sqrt{6}}{6},$$

$$|\tan\alpha| = |\frac{b-a}{2-1}| = |a-b| = \frac{|\sin\alpha|}{|\cos\alpha|} = \frac{\frac{\sqrt{6}}{6}}{\frac{\sqrt{30}}{6}} = \frac{\sqrt{5}}{5}.$$

故选: B.

【点评】本题考查两数差的绝对值的求法,考查二倍角公式、直线的斜率等基础 知识,考查运算求解能力,考查函数与方程思想,是中档题.

12. (5分)设函数
$$f(x) = \begin{cases} 2^{-x}, & x \le 0 \\ 1, & x > 0 \end{cases}$$
,则满足 $f(x+1) < f(2x)$ 的 x 的取值

范围是()

A.
$$(-\infty, -1]$$
 B. $(0, +\infty)$ C. $(-1, 0)$ D. $(-\infty, 0)$

D.
$$(-\infty, 0)$$

【考点】5B: 分段函数的应用.

【专题】11: 计算题; 31: 数形结合; 49: 综合法; 51: 函数的性质及应用.

【分析】画出函数的图象,利用函数的单调性列出不等式转化求解即可.

【解答】解:函数
$$f(x) = \begin{cases} 2^{-x}, & x \leq 0 \\ 1, & x > 0 \end{cases}$$
,的图象如图:

满足 f (x+1) <f (2x),

可得: 2x<0<x+1或2x<x+1≤0,

解得 x∈ (- ∞, 0).

故选: D.

【点评】本题考查分段函数的应用,函数的单调性以及不等式的解法,考查计算 能力.

- 二、填空题: 本题共 4 小题,每小题 5 分,共 20 分。
- 13. (5分) 已知函数 f(x) = log₂(x²+a), 若 f(3) = 1,则 a= -7.

第15页(共28页)

【考点】3T:函数的值:53:函数的零点与方程根的关系.

【专题】11: 计算题; 33: 函数思想; 49: 综合法; 51: 函数的性质及应用.

【分析】直接利用函数的解析式,求解函数值即可.

【解答】解:函数 f (x) = log₂ (x²+a), 若 f (3) = 1,

可得: log₂ (9+a) =1, 可得 a=- 7.

故答案为: - 7.

【点评】本题考查函数的解析式的应用,函数的领导与方程根的关系,是基本知识的考查.

14. (5 分)若 x,y 满足约束条件
$$\begin{cases} x-2y-2 \le 0 \\ x-y+1 \ge 0 \end{cases}$$
,则 z=3x+2y 的最大值为6. $y \le 0$

【考点】7C: 简单线性规划.

【专题】31:数形结合;4R:转化法;59:不等式的解法及应用.

【分析】作出不等式组对应的平面区域,利用目标函数的几何意义进行求解即可

【解答】解:作出不等式组对应的平面区域如图:

由 z=3x+2y 得 y=
$$-\frac{3}{2}$$
x+ $\frac{1}{2}$ z,

平移直线 $y=-\frac{3}{2}x+\frac{1}{2}z$,

由图象知当直线 $y=-\frac{3}{2}x+\frac{1}{2}z$ 经过点 A(2,0)时,直线的截距最大,此时 z 最大,

最大值为 z=3×2=6,

故答案为: 6

【点评】本题主要考查线性规划的应用,利用目标函数的几何意义以及数形结合 是解决本题的关键.

15. (5 分)直线 y=x+1 与圆 $x^2+y^2+2y-3=0$ 交于 A,B 两点,则 $|AB|=2\sqrt{2}$ _.

【考点】J9: 直线与圆的位置关系.

【专题】11: 计算题; 34: 方程思想; 49: 综合法; 5B: 直线与圆.

【分析】求出圆的圆心与半径,通过点到直线的距离以及半径、半弦长的关系,求解即可.

【解答】解:圆 x²+y²+2y-3=0的圆心(0,-1),半径为:2,

圆心到直线的距离为: $\frac{|0+1+1|}{\sqrt{2}} = \sqrt{2}$,

所以 $|AB|=2\sqrt{2^2-(\sqrt{2})^2}=2\sqrt{2}$.

故答案为: 2√2.

【点评】本题考查直线与圆的位置关系的应用,弦长的求法,考查计算能力.

16. (5分) △ ABC 的内角 A, B, C 的对边分别为 a, b, c. 已知

bsinC+csinB=4asinBsinC,b²+c²- a²=8,则 \triangle ABC 的面积为 $\underline{-\frac{2\sqrt{3}}{3}}$ __.

【考点】HP: 正弦定理; HR: 余弦定理.

【专题】35:转化思想:56:三角函数的求值:58:解三角形.

【分析】直接利用正弦定理求出 A 的值,进一步利用余弦定理求出 bc 的值,最后求出三角形的面积.

【解答】解: △ABC的内角 A, B, C的对边分别为 a, b, c.

bsinC+csinB=4asinBsinC,

利用正弦定理可得 sinBsinC+sinCsinB=4sinAsinBsinC,

由于 0<B<π, 0<C<π,

所以 sinBsinC≠0,

所以
$$\sin A = \frac{1}{2}$$
,

则
$$A=\frac{\pi}{6}$$
 或 $\frac{5\pi}{6}$

则:
$$\cos A = \frac{b^2 + c^2 - a^2}{2bc}$$
,

①当
$$A = \frac{\pi}{6}$$
时, $\frac{\sqrt{3}}{2} = \frac{8}{2bc}$,

解得 bc=
$$\frac{8\sqrt{3}}{3}$$
,

所以
$$S_{\triangle ABC} = \frac{1}{2} bcsinA = \frac{2\sqrt{3}}{3}$$
.

②
$$\stackrel{4}{=}$$
 A= $\frac{5\pi}{6}$ 时, $\frac{\sqrt{3}}{2}$ = $\frac{8}{2bc}$,

解得 bc=-
$$\frac{8\sqrt{3}}{3}$$
 (不合题意),舍去.

故:
$$S_{\triangle ABC} = \frac{2\sqrt{3}}{3}$$
.

故答案为:
$$\frac{2\sqrt{3}}{3}$$
.

【点评】本体考察的知识要点:三角函数关系式的恒等变换,正弦定理和余弦定理的应用及三角形面积公式的应用.

第18页(共28页)

- 三、解答题: 共 70 分。解答应写出文字说明、证明过程或演算步骤。第 17~21 题为必考题,每个试题考生都必须作答。第 22、23 题为选考题,考生根据要求作答。(一)必考题: 共 60 分。
- 17. (12 分)已知数列 $\{a_n\}$ 满足 a_1 =1, na_{n+1} =2(n+1) a_n ,设 b_n = $\frac{a_n}{n}$.
 - (1) 求 b_1 , b_2 , b_3 ;
 - (2) 判断数列 {b_n} 是否为等比数列,并说明理由;
 - (3) 求 {a_n}的通项公式.
 - 【考点】87: 等比数列的性质; 8E: 数列的求和; 8H: 数列递推式.
- 【专题】35:转化思想:54:等差数列与等比数列.
- 【分析】(1)直接利用已知条件求出数列的各项.
- (2) 利用定义说明数列为等比数列.
- (3) 利用(1)(2)的结论,直接求出数列的通项公式.
- 【解答】解: (1) 数列 {a_n} 满足 a₁=1, na_{n+1}=2 (n+1) a_n,

则:
$$\frac{\frac{a_{n+1}}{n+1}}{\frac{a_n}{n}}$$
=2 (常数),

曲于
$$b_n = \frac{a_n}{n}$$
,

故:
$$\frac{b_{n+1}}{b_n} = 2$$
,

数列 $\{b_n\}$ 是以 b_1 为首项,2为公比的等比数列.

所以: b₁=1, b₂=2, b₃=4.

(2) 数列 {b_n} 是为等比数列,

由于
$$\frac{b_{n+1}}{b_n}$$
=2(常数);

(3) 由 (1) 得: b_n=2^{r-1},

根据 $b_n = \frac{a_n}{n}$,

所以: a_n=n•2^{r-1}.

【点评】本题考查的知识要点:数列的通项公式的求法及应用.

- (12 分)如图,在平行四边形 ABCM 中,AB=AC=3,∠ACM=90°,以 AC 为 折痕将△ACM 折起,使点 M 到达点 D 的位置,且 AB⊥DA.
- (1) 证明: 平面 ACD 上平面 ABC:
- (2) Q 为线段 AD 上一点,P 为线段 BC 上一点,且 $BP=DQ=\frac{2}{3}DA$,求三棱锥 Q- ABP 的体积.

【考点】LF: 棱柱、棱锥、棱台的体积; LY: 平面与平面垂直.

【专题】35:转化思想;49:综合法;5F:空间位置关系与距离.

【分析】(1)可得 AB⊥AC,AB⊥DA. 且 AD∩AC=A,即可得 AB⊥面 ADC,平面 ACD⊥平面 ABC:

【解答】解: (1)证明: ∵在平行四边形 ABCM 中,∠ACM=90°, ∴AB⊥AC, 又 AB⊥DA. 且 AD∩AC=A,

- ∴AB 上面 ADC, ∴AB ⊂面 ABC,
- ∴平面 ACD ⊥平面 ABC;
- (2) \therefore AB=AC=3, \angle ACM=90°, \therefore AD=AM=3 $\sqrt{2}$,

第20页(共28页)

$$\therefore BP = DQ = \frac{2}{3}DA = 2\sqrt{2},$$

由(1)得 DC⊥AB,又 DC⊥CA,∴DC⊥面 ABC,

∴三棱锥 Q- ABP 的体积
$$V=\frac{1}{3}S_{\triangle ABP} \times \frac{1}{3}DC$$

$$= \frac{1}{3} \times \frac{2}{3} \operatorname{S}_{\triangle ABC} \times \frac{1}{3} \operatorname{DC} = \frac{1}{3} \times \frac{2}{3} \times \frac{1}{2} \times 3 \times 3 \times \frac{1}{3} \times 3 = 1.$$

【点评】本题考查面面垂直,考查三棱锥体积的计算,考查学生分析解决问题的能力,属于中档题.

19. (12分)某家庭记录了未使用节水龙头 50天的日用水量数据(单位: m³)和使用了节水龙头 50天的日用水量数据,得到频数分布表如下:

未使用节水龙头 50 天的日用水量频数分布表

日用水量	量 [0, 0.1)	[0.1, 0.2)	[0.2, 0.3)	[0.3, 0.4)	[0.4, 0.5)	[0.5, 0.6)	[0.6, 0.7)
频数	1	3	2	4	9	26	5

使用了节水龙头 50 天的日用水量频数分布表

日用水量	[0, 0.1)	[0.1, 0.2)	[0.2, 0.3)	[0.3, 0.4)	[0.4, 0.5)	[0.5, 0.6)
频数	1	5	13	10	16	5

(1) 作出使用了节水龙头 50 天的日用水量数据的频率分布直方图;

- (2) 估计该家庭使用节水龙头后, 日用水量小于 0.35m³的概率;
- (3)估计该家庭使用节水龙头后,一年能节省多少水? (一年按 365 天计算,同一组中的数据以这组数据所在区间中点的值作代表)

【考点】B7:分布和频率分布表;B8:频率分布直方图.

【专题】11: 计算题; 35: 转化思想; 49: 综合法; 5I: 概率与统计.

【分析】(1)根据使用了节水龙头 50 天的日用水量频数分布表能作出使用了节水龙头 50 天的日用水量数据的频率分布直方图。

- (2)根据频率分布直方图能求出该家庭使用节水龙头后,日用水量小于 0.35m³的概率.
- (3) 由题意得未使用水龙头 50 天的日均水量为 0.48,使用节水龙头 50 天的日均用水量为 0.35,能此能估计该家庭使用节水龙头后,一年能节省多少水.

【解答】解: (1) 根据使用了节水龙头 50 天的日用水量频数分布表, 作出使用了节水龙头 50 天的日用水量数据的频率分布直方图,如下图:

(2) 根据频率分布直方图得:

该家庭使用节水龙头后, 日用水量小于 0.35m3 的概率为:

p= $(0.2+1.0+2.6+1) \times 0.1=0.48$.

(3) 由题意得未使用水龙头 50 天的日均水量为:

$$\frac{1}{50} \left(1 \times 0.05 + 3 \times 0.15 + 2 \times 0.25 + 4 \times 0.35 + 9 \times 0.45 + 26 \times 0.55 + 5 \times 0.65\right) = 0.48,$$

使用节水龙头 50 天的日均用水量为:

$$\frac{1}{50} \left(1 \times 0.05 + 5 \times 0.15 + 13 \times 0.25 + 10 \times 0.35 + 16 \times 0.45 + 5 \times 0.55\right) = 0.35,$$

∴估计该家庭使用节水龙头后,一年能节省: 365×(0.48-0.35)=47.45m³.

【点评】本题考查频率分由直方图的作法,考查概率的求法,考查平均数的求法 及应用等基础知识,考查运算求解能力,考查函数与方程思想,是中档题.

- 20. (12 分)设抛物线 C: y²=2x, 点 A(2, 0), B(- 2, 0), 过点 A 的直线 I 与 C 交于 M, N 两点.
 - (1) 当 I 与 x 轴垂直时, 求直线 BM 的方程;
 - (2) 证明: ∠ABM=∠ABN.

第23页(共28页)

【考点】KN: 直线与抛物线的综合.

【专题】35:转化思想;4R:转化法;5D:圆锥曲线的定义、性质与方程.

【分析】(1)当 x=2 时,代入求得 M 点坐标,即可求得直线 BM 的方程;

- (2)设直线 I 的方程,联立,利用韦达定理及直线的斜率公式即可求得 k_{BN}+k_{BM}=0,即可证明∠ABM=∠ABN.
- 【解答】解: (1) 当 I 与 x 轴垂直时,x=2,代入抛物线解得 $y=\pm 2$,

所以 M(2, 2) 或 M(2, -2),

直线 BM 的方程: $y=\frac{1}{2}x+1$, 或: $y=-\frac{1}{2}x-1$.

(2) 证明:设直线 I 的方程为 I: x=ty+2, M(x₁, y₁), N(x₂, y₂),

联立直线 I 与抛物线方程得 $\begin{cases} y^2 = 2x \\ x = ty + 2 \end{cases}$,消 x 得 $y^2 - 2ty - 4 = 0$,

即 $y_1+y_2=2t$, $y_1y_2=-4$,

则 有
$$k_{BN}+k_{BM}=\frac{y_1}{x_1+2}+\frac{y_2}{x_2+2}=\frac{(\frac{y_2^2}{2}\times y_1+\frac{y_1^2}{2}\times y_2)+2(y_1+y_2)}{(x_1+2)(x_2+2)}=$$

$$\frac{(y_1+y_2)(\frac{y_1y_2}{2}+2)}{(x_1+2)(x_2+2)}=0,$$

所以直线 BN 与 BM 的倾斜角互补,

- ∴∠ABM=∠ABN.
- 【点评】本题考查抛物线的性质,直线与抛物线的位置关系,考查韦达定理,直线的斜率公式,考查转化思想,属于中档题.
- 21. (12 分)已知函数 f(x)=ae^x- Inx- 1.
 - (1) 设 x=2 是 f(x) 的极值点,求 a,并求 f(x) 的单调区间;
- (2) 证明: 当 $a \ge \frac{1}{e}$ 时, $f(x) \ge 0$.

【考点】6B: 利用导数研究函数的单调性; 6D: 利用导数研究函数的极值; 6E:

第24页(共28页)

利用导数研究函数的最值.

【专题】14: 证明题; 35: 转化思想; 49: 综合法; 53: 导数的综合应用.

【分析】(1) 推导出 x > 0, $f'(x) = ae^{x} - \frac{1}{x}$,由 x = 2 是 f(x) 的极值点,解得 $a = \frac{1}{2e^2}$,从而 $f(x) = \frac{1}{2e^2}e^{x} - \ln x - 1$,进而 $f'(x) = \frac{1}{2e^2}e^{x} - \frac{1}{x}$,由此能求出 f(x) 的单调区间。

(2) 当
$$a \ge \frac{1}{e}$$
时, $f(x) \ge \frac{e^x}{e}$ - $\ln x$ - 1,设 $g(x) = \frac{e^x}{e}$ - $\ln x$ - 1,则 $g'(x) = \frac{e^x}{e}$ - $\frac{1}{x}$,由此利用导数性质能证明当 $a \ge \frac{1}{e}$ 时, $f(x) \ge 0$.

【解答】解: (1) ∵函数 f(x) =ae^x- lnx- 1.

:
$$x>0$$
, f'(x) =ae^x- $\frac{1}{x}$,

∵x=2 是 f (x) 的极值点,

∴f'(2) =ae²-
$$\frac{1}{2}$$
=0,解得 a= $\frac{1}{2e^2}$,

:
$$f(x) = \frac{1}{2e^2} e^{x} - \ln x - 1$$
, : $f'(x) = \frac{1}{2e^2} e^{x} - \frac{1}{x}$

当 0 < x < 2 时,f'(x) < 0,当 x > 2 时,f'(x) > 0,

∴f(x)在(0,2)单调递减,在(2,+∞)单调递增.

(2) 证明: 当
$$a \ge \frac{1}{e}$$
时, $f(x) \ge \frac{e^x}{e}$ Inx- 1,

设 g (x) =
$$\frac{e^x}{e}$$
 - $\ln x$ - 1, 则 g'(x) = $\frac{e^x}{e}$ - $\frac{1}{x}$,

当0<x<1时, g'(x)<0,

当 x>1 时, g'(x)>0,

∴x=1 是 g (x) 的最小值点,

故当 x>0 时, g(x)≥g(1)=0,

∴当 a
$$\geqslant \frac{1}{5}$$
时,f(x) $\geqslant 0$.

【点评】本题考查函数的单调性、导数的运算及其应用,同时考查逻辑思维能力和综合应用能力,是中档题.

(二)选考题:共 10 分。请考生在第 22、23 题中任选一题作答。如果多做,则按所做的第一题计分。[选修 4-4: 坐标系与参数方程](10 分)

第 25 页 (共 28 页)

- 22. (10 分)在直角坐标系 xOy 中,曲线 C_1 的方程为 y=k|x|+2. 以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,曲线 C_2 的极坐标方程为 $\rho^2+2\rho\cos\theta-3=0$.
 - (1) 求 C₂的直角坐标方程;
 - (2) 若 C_1 与 C_2 有且仅有三个公共点,求 C_1 的方程.

【考点】Q4: 简单曲线的极坐标方程.

【专题】35:转化思想:5S:坐标系和参数方程.

【分析】(1)直接利用转换关系,把参数方程和极坐标方程与直角坐标方程进行转化.

(2)利用直线在坐标系中的位置,再利用点到直线的距离公式的应用求出结果.

【解答】解: (1) 曲线 C_2 的极坐标方程为 $\rho^2+2\rho\cos\theta-3=0$.

转换为直角坐标方程为: x²+y²+2x-3=0,

转换为标准式为: (x+1) 2+y2=4.

(2) 由于曲线 C_1 的方程为 y=k|x|+2,则:该射线关于 y 轴对称,且恒过定点(0,2).

由于该射线与曲线 C, 的极坐标有且仅有三个公共点.

所以:必有一直线相切,一直线相交.

则:圆心到直线 y=kx+2 的距离等于半径 2.

故:
$$\frac{|2-k|}{\sqrt{1+k^2}} = 2$$
, 或 $\frac{|2+k|}{\sqrt{1+k^2}} = 2$

解得: $k = -\frac{4}{3}$ 或 0,(0 舍去)或 $k = \frac{4}{3}$ 或 0

经检验,直线 $y=\frac{4}{3}x+2$ 与曲线 C_2 没有公共点.

故 C_1 的方程为: $y = \frac{4}{3} |x| + 2$

【点评】本体考察知识要点:参数方程和极坐标方程与直角坐标方程的转化,直 线和曲线的位置关系的应用,点到直线的距离公式的应用.

[选修 4-5: 不等式选讲] (10 分)

23. 己知 f (x) = |x+1|- |ax-1|.

- (1) 当 a=1 时,求不等式 f(x) > 1 的解集;
- (2) 若 x∈ (0, 1) 时不等式 f (x) >x 成立, 求 a 的取值范围.

【考点】R5: 绝对值不等式的解法.

【专题】15:综合题;38:对应思想;4R:转化法;5T:不等式.

【分析】(1)去绝对值,化为分段函数,即可求出不等式的解集,

- (2) 当 x∈ (0, 1) 时不等式 f (x) >x 成立,转化为即 ax-1 <1,即 0<ax<
 - 2,转化为 $a < \frac{2}{x}$,且 a > 0,即可求出 a 的范围.

【解答】解: (1) 当 a=1 时,f (x) = |x+1|- |x-1|=
$$\begin{cases} 2, & x>1 \\ 2x, & -1 \le x \le 1, \\ -2, & x < -1 \end{cases}$$

由f(x) > 1,

解得 $x > \frac{1}{2}$,

故不等式 f(x) > 1 的解集为 $(\frac{1}{2}, +\infty)$,

(2) 当 x∈ (0, 1) 时不等式 f (x) >x 成立,

$$|x+1| - |ax-1| - x > 0$$

即 x+1- |ax-1|- x>0,

即|ax-1|<1,

- ∴- 1<ax- 1<1,
- ∴0<ax<2,
- $x \in (0, 1)$,
- ∴a>0,

$$\therefore a < \frac{2}{x}$$

$$\frac{2}{x} > 2$$

故 a 的取值范围为(0, 2].

【点评】 本题考查了绝对值不等式的解法和含参数的取值范围,考查了运算能力 和转化能力,属于中档题.