The Role of Alloy in Developing Scientific Software

John Baugh and Tristan Dyer

Civil Engineering and Operations Research North Carolina State University, Raleigh, NC {jwb,atdyer}@ncsu.edu

Workshop on the Future of Alloy

Formative Experiences

Formal methods

- Larch Shared Language and Prover
- CCS/Concurrency Workbench, FSP/LTSA, SPIN, Alloy

Scientific software

- ADCIRC: large-scale ocean circulation, USACE, NOAA
- DM2: discrete meso-dynamic, multiphysics, LANL, NCSU
- POLO/FINITE: structural analysis, NASA, NIST
- SYSTRID: CAD/CAM, Airbus, PNNL, Dassault Systèmes

Instruction

- Computing in civil engineering and operations research
- Mathematical programming, e.g., linear and integer programming, building declarative models

What is Scientific Software?

Tools of the trade:

- Fortran
- Numerical analysis
- Matrix computations
- Parallel programming libraries

Tools convey expectations:

they're what scientific software is about.

Why do we see a role for Alloy?

The essence of scientific software:

- Structure
 - Rich state in the form of spatial, geometric, material, topological, and other attributes
- Behavior
 - Explicit parallelism in a variety of forms
 - Continuous processes encoded as finite systems

In principle, such characteristics are a match for state-based formalisms like Alloy.

But what about the reals?

Scientific Software

We naturally think of continous processes:

e.g., circulation of ocean currents

But what does the computational apparatus underlying ocean circulation models really look like?

- purely analytic functions X
- ▶ an amalgam of discrete data structures, algorithms, and ... numerical expressions

Separating concerns:

Tools Revisited

Fortran

Instructive to look at the evolution of the language:
I don't know what the language of the year 2000 will look like, but I know it will be called Fortran. – Tony Hoare

Numerical analysis

 Once performed it often applies, unchanged, throughout a broad range of implementation choices and modifications over the life of the program.

Matrix computations

Often left unassembled or sparse, rarely dense

Parallel programming libraries

Language constructs and paradigms still being explored

Storm Surge Simulation

ADCIRC: a large scale ocean model used in production

Explore implementation choices and ensure soundness of an extension that improves performance

Formal methods and finite element analysis of hurricane storm surge: A case study in software verification. Baugh and Altuntas. *Science of Computer Programming*, 158:100–121, 2018.

Storm Surge Simulation

ADCIRC: a large scale ocean model used in production

Explore implementation choices and ensure soundness of an extension that improves performance

- partitioning a finite element mesh: planar triangulations with variable topology and physical attributes
 - rich state and implicit definition of mesh structure
- interaction with a discrete wetting and drying algorithm encoded as empirical rules
 - represent as a series of transition relations
- safety, equivalence checking, predicate abstraction

Formal methods and finite element analysis of hurricane storm surge: A case study in software verification. Baugh and Altuntas. *Science of Computer Programming*, 158:100–121. 2018.

Modeling Approach

Structural Analysis

Moment distribution: an iterative technique for finding internal member forces in building structures

Check soundness of an abstract implementation

A general characterization of the Hardy Cross method as sequential and multiprocess algorithms. Baugh and Liu. *Structures*, 6:170–181, 2016.

Structural Analysis

Moment distribution: an iterative technique for finding internal member forces in building structures

Check soundness of an abstract implementation

- method is similar to asynchronous, chaotic relaxation algorithms, where portions of a building structure converge numerically at differing rates
- as with elliptic PDEs, the nondeterminism available here can be exploited in different ways depending on problem characteristics and hardware features
- refinement checking, predicate abstraction

A general characterization of the Hardy Cross method as sequential and multiprocess algorithms. Baugh and Liu. *Structures*, 6:170–181, 2016.

Current Work

A design-centered approach to differential and integral equations found in practice, for which there are no closed form solutions

PDEs

discretization ↓ FEM, FD, FV

Finite System of Equations

invariants ↓ structural properties

Abstract Implementation

Lightweight in another sense: can draw useful conclusions about scientific software without simultaneously reproducing the sometimes deep, semantic proofs of numerical analysis.

Visualization

Backend visualization by reading XML instances from Alloy

- Atom editor, HTML, Javascript, CSS, D3
- consistent layout when stepping through states

Domain-specific viewers (in progress)

triangulations: planar embedding, annotations

```
sig Mesh {
    triangles: some Triangle,
    adj: Triangle → Triangle
}
sig Vertex {}
sig Triangle {
    edges: Vertex → Vertex
}
```


Atom + D3

Instruction

Declarative languages are expressive, but it is not always clear how they can be used

- no special constructs for parallelism, message-passing, synchronization or other mechanisms that give some insight into what one is "supposed" to do with it
- there are few affordances (contrast with FSP/LTSA)

Template approach [Schrage]

- used in an undergraduate systems engineering course
- linear, integer, and nonlinear programming models from the field of systems science and operations research

Reimagining freshman programming for engineers

just a skills course?

Final Thoughts

Working in a domain where quality, reproducibility, and productivity are growing concerns

- retractions of papers in scientific journals
- not an obvious target for formal methods, but scientists and engineers know about and value modeling

Promoting adoption

- documentation: object models and state machines
- user interface: environment and visualization

State-based formal methods in scientific computation. Baugh and Dyer. To appear in Abstract State Machines, Alloy, B, TLA, VDM, and Z: 6th International Conference, ABZ 2018.

thank you