

What is Classification?

• Supervised Learning is divided into regression and classification where regression is used when the target variable is continuous and classification is used when the target variable is discrete.

Classification Techniques

- Logistic Regression
- Support Vector Machines
- Principal Component Analysis
- Decision Tree
- Ensemble Techniques
- K Nearest Neighbors
- Naive Bayes

1. Logistic Regression

- · Classification Algorithm that classifies based on probability.
- Uses Sigmoid curve as a cost function.
- We use sigmoid function to map predicted values to probabilities between 1 and 0.
- A sigmoid function is represented as below

$$f(x) = \frac{1}{1 + e^{-x}}$$

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
import math
import os

from sklearn.preprocessing import LabelEncoder
from sklearn.model_selection import train_test_split

from sklearn.linear_model import LogisticRegression
from sklearn.metrics import accuracy_score, auc, confusion_matrix, roc_auc_score, roc_curve, recall_score
```

```
In [2]: array = np.arange(-6,6,0.1)
    sigmoid = []
    for i in array:
        sig = 1/(1+math.exp(-i))
        sigmoid.append(sig)
```

```
In [3]: plt.plot(array,sigmoid)
   plt.show()
```



```
In [4]: | df = pd.read_csv('./bank.csv', sep = ';')
          df.head()
Out[4]:
                           job marital education default balance housing loan
                                                                                  contact day month duration campaign pdays previous poutcome
             age
              30
                   unemployed married
                                                             1787
                                                                                   cellular
                                                                                            19
                                                                                                             79
                                                                                                                                              unknown n
                                          primary
                                                      no
                                                                        no
                                                                              no
                                                                                                   oct
              33
                                                                                                                              339
                                                             4789
                                                                                                            220
                                                                                                                         1
                       services married
                                        secondary
                                                                                   cellular
                                                                                            11
                                                                                                                                                failure n
                                                      no
                                                                       yes
                                                                             yes
                                                                                                  may
              35 management
                                                             1350
                                                                                   cellular
                                                                                            16
                                                                                                            185
                                                                                                                              330
                                                                                                                                                failure n
                                 single
                                          tertiary
                                                      no
                                                                       yes
                                                                                                   apr
                                                                              no
              30
                                                             1476
                                                                                                            199
                                                                                                                               -1
                  management married
                                          tertiary
                                                      no
                                                                       yes
                                                                                  unknown
                                                                                                   jun
                                                                                                                                              unknown n
                     blue-collar married secondary
                                                      no
                                                                       yes
                                                                              no unknown
                                                                                                  may
                                                                                                            226
                                                                                                                                              unknown n
         The classification goal is to predict if the client will subscribe (Yes/No) a term deposit (variable y).
         Data
         df.shape
```

4. Checking Multi-Collineartity

```
In [7]: corr = df.corr()
corr
```

Out[7]:

	age	balance	day	duration	campaign	pdays	previous
age	1.000000	0.083820	-0.017853	-0.002367	-0.005148	-0.008894	-0.003511
balance	0.083820	1.000000	-0.008677	-0.015950	-0.009976	0.009437	0.026196
day	-0.017853	-0.008677	1.000000	-0.024629	0.160706	-0.094352	-0.059114
duration	-0.002367	-0.015950	-0.024629	1.000000	-0.068382	0.010380	0.018080
campaign	-0.005148	-0.009976	0.160706	-0.068382	1.000000	-0.093137	-0.067833
pdays	-0.008894	0.009437	-0.094352	0.010380	-0.093137	1.000000	0.577562
previous	-0.003511	0.026196	-0.059114	0.018080	-0.067833	0.577562	1.000000

```
In [8]: plt.figure(figsize=(8,6))
    sns.heatmap(corr,annot=True)
    plt.show()
```



```
In [9]: | df.info()
         <class 'pandas.core.frame.DataFrame'>
         RangeIndex: 4521 entries, 0 to 4520
         Data columns (total 17 columns):
                       4521 non-null int64
         age
                       4521 non-null object
         job
         marital
                       4521 non-null object
                       4521 non-null object
         education
         default
                       4521 non-null object
                       4521 non-null int64
         balance
         housing
                       4521 non-null object
         loan
                       4521 non-null object
                       4521 non-null object
         contact
         day
                       4521 non-null int64
         month
                       4521 non-null object
         duration
                       4521 non-null int64
         campaign
                       4521 non-null int64
                       4521 non-null int64
         pdays
                       4521 non-null int64
         previous
                       4521 non-null object
         poutcome
                       4521 non-null object
         dtypes: int64(7), object(10)
         memory usage: 600.6+ KB
In [10]: | df.dtypes[df.dtypes == 'int64'].index
Out[10]: Index(['age', 'balance', 'day', 'duration', 'campaign', 'pdays', 'previous'], dtype='object')
In [11]: | # consider numerical data for calculating Variance Inflation Factor
          num_col = df.dtypes[df.dtypes == 'int64'].index
In [12]: | X_num = df[num_col]
         X_num.shape
Out[12]: (4521, 7)
In [13]: from statsmodels.stats.outliers_influence import variance_inflation_factor
In [14]: | vif = pd.DataFrame()
          vif['Features'] = X_num.keys()
          vif['Values'] = [variance_inflation_factor(X_num.values,i) for i in range(7)]
         vif
Out[14]:
             Features
                       Values
          0
                 age
                     5.092604
              balance 1.231819
                     4.057535
          2
              duration 1.928720
             campaign 1.830360
                pdays 1.733904
              previous 1.655651
```

There is no multi-collinearity effect in the dataset since all VIF values are less than ~5

Create Dummy Features

```
In [15]: df_dum = pd.get_dummies(df,drop_first = True)
```

```
In [16]: df_dum.head()
Out[16]:
```

	age	balance	day	duration	campaign	pdays	previous	job_blue- collar	job_entrepreneur	job_housemaid	 month_jun	month_mar	month_may n	1
0	30	1787	19	79	1	-1	0	0	0	0	 0	0	0	
1	33	4789	11	220	1	339	4	0	0	0	 0	0	1	
2	35	1350	16	185	1	330	1	0	0	0	 0	0	0	
3	30	1476	3	199	4	-1	0	0	0	0	 1	0	0	
4	59	0	5	226	1	-1	0	1	0	0	 0	0	1	

5 rows × 43 columns

Feature Engineering

```
In [17]: # Splitting data into independent and dependent
X = df_dum.iloc[:,:-1] # independent variables
y = df_dum.iloc[:,-1] # dependent variables

In [18]: y.value_counts()/len(y)

Out[18]: 0     0.88476
     1     0.11524
     Name: y_yes, dtype: float64
```

There is clearly unbalance in the dataset

In [19]: import statsmodels.api as sm

Generalized Linear Model Regression Results

______ y_yes No. Observations: Dep. Variable: 4521 Model: GLM Df Residuals: 4479 Model Family: Gaussian Df Model: 41 identity Scale: Link Function: 0.073097 Method: IRLS Log-Likelihood: -480.52 Date: Sat, 22 Feb 2020 Deviance: 327.40 Pearson chi2: Time: 12:52:00 327. No. Iterations: 3

Covariance Type: nonrobust

	coef	std err	z	P> z	[0.025	0.975]
age	0.0005	0.000	1.267	0.205	-0.000	0.001
balance	-7.02e-07	1.38e-06	-0.510	0.610	-3.4e-06	2e-06
day	0.0017	0.001	3.156	0.002	0.001	0.003
duration	0.0005	1.56e-05	31.097	0.000	0.000	0.001
campaign	-0.0015	0.001	-1.069	0.285	-0.004	0.001
pdays	7.641e-06	7.52e-05	0.102	0.919	-0.000	0.000
previous	0.0005	0.003	0.152	0.879	-0.006	0.007
job_blue-collar	-0.0224	0.015	-1.453	0.146	-0.053	0.008
job_entrepreneur	-0.0151	0.025	-0.608	0.543	-0.064	0.034
job_housemaid	-0.0249	0.029	-0.854	0.393	-0.082	0.032
job_management	-0.0042	0.017	-0.241	0.809	-0.038	0.030
job_retired	0.0554	0.024	2.290	0.022	0.008	0.103
job_self-employed	-0.0065	0.024	-0.271	0.786	-0.054	0.041
job_services	-0.0075	0.018	-0.418	0.676	-0.043	0.028
job_student	0.0578	0.033	1.761	0.078	-0.007	0.122
job_technician	-0.0146	0.016	-0.925	0.355	-0.046	0.016
job_unemployed	-0.0430	0.027	-1.583	0.113	-0.096	0.010
job_unknown	0.0454	0.047	0.971	0.332	-0.046	0.137
marital_married	-0.0342	0.012	-2.738	0.006	-0.059	-0.010
marital_single	-0.0140	0.014	-0.993	0.321	-0.042	0.014
education_secondary	0.0074	0.012	0.598	0.550	-0.017	0.032
education_tertiary	0.0270	0.015	1.756	0.079	-0.003	0.057
education_unknown	-0.0253	0.023	-1.102	0.271	-0.070	0.020
default_yes	0.0495	0.032	1.568	0.117	-0.012	0.111
housing_yes	-0.0153	0.010	-1.613	0.107	-0.034	0.003
loan_yes	-0.0330	0.012	-2.867	0.004	-0.056	-0.010
contact_telephone	0.0039	0.017	0.231	0.817	-0.029	0.037
contact_unknown	-0.0776	0.014	-5.613	0.000	-0.105	-0.051
month_aug	-0.0256	0.020	-1.285	0.199	-0.065	0.013
month_dec	0.0578	0.063	0.917	0.359	-0.066	0.181
month_feb	0.0275	0.024	1.141	0.254	-0.020	0.075
month_jan	-0.0959	0.028	-3.459	0.001	-0.150	-0.042
month_jul	-0.0571	0.019	-3.000	0.003	-0.094	-0.020
month_jun	0.0404	0.023	1.792	0.073	-0.004	0.084
month_mar	0.2289	0.042	5.456	0.000	0.147	0.311
month_may	-0.0267	0.018	-1.447	0.148	-0.063	0.009
month_nov	-0.0620		-3.036	0.002	-0.102	-0.022
month_oct	0.2339	0.034	6.804	0.000	0.166	0.301
month_sep	0.1071	0.041	2.613	0.009	0.027	0.187
poutcome_other	0.0598	0.023	2.633	0.008	0.015	0.104
poutcome_success	0.4290	0.027	15.640	0.000	0.375	0.483
poutcome_unknown	-0.0 <mark>0</mark> 20	0.022	-0.091	0.928	-0.046	0.042
_						

In [21]: plt.plot(X.index,model.predict(X),'*')

Out[21]: [<matplotlib.lines.Line2D at 0x296069142c8>]


```
In [22]: | features = model.pvalues.sort_values(ascending = True)
          features[features < 0.025]</pre>
Out[22]: duration
                              2.669761e-212
          poutcome_success
                               3.859958e-55
         month_oct
                               1.015051e-11
         contact_unknown
                               1.990262e-08
                               4.873139e-08
         month_mar
         month_jan
                               5.431500e-04
         day
                               1.601168e-03
                               2.399081e-03
         month_nov
                               2.700422e-03
         month_jul
         loan_yes
                               4.142675e-03
         marital_married
                               6.180763e-03
         poutcome_other
                               8.452288e-03
                               8.965575e-03
         month_sep
         job_retired
                               2.201513e-02
          dtype: float64
In [23]: | selected_features = list(features[features<0.025].index) + ['y_yes']</pre>
          print(selected_features)
          ['duration', 'poutcome_success', 'month_oct', 'contact_unknown', 'month_mar', 'month_jan', 'day', 'month_nov', 'month_j
         ul', 'loan_yes', 'marital_married', 'poutcome_other', 'month_sep', 'job_retired', 'y_yes']
In [24]: features_data = df_dum[selected_features]
          features_data.head()
Out[24]:
             duration poutcome_success month_oct contact_unknown
                                                               month_mar month_jan day month_nov month_jul loan_yes marital_married
          0
                 79
                                   0
                                                             0
                                                                        0
                                                                                     19
                                                                                                                   0
                                                                                                                                 1
          1
                 220
                                   0
                                             0
                                                             0
                                                                        0
                                                                                  0
                                                                                                0
                                                                                                                   1
                                                                                                                                 1
          2
                                   0
                                                             0
                                             0
                                                                                                0
                                                                                                          0
                                                                                                                   0
                                                                                                                                 0
                 185
                                                                                     16
          3
                                   0
                                             0
                                                                                                0
                 199
                                                             1
                                                                                                                   1
                                                                                                                                 1
                                                                                                                   0
                 226
In [25]: #save to csv
          features_data.to_csv('bank_features.csv',index=False)
 In [ ]:
```