

X

Narzędzie do porównywania tekstów

Lenart Piotr Mizera Damian

Cel Projektu 🍏

×

Stworzyć program do porównywania tekstów pod względem ich znaczenia

Baza danych wejściowych:

	id	qid1	qid2	question1	question2	is_duplicate
0	0	1	2	What is the step by step guide to invest in sh	What is the step by step guide to invest in sh	0
1	1	3	4	What is the story of Kohinoor (Koh-i-Noor) Dia	What would happen if the Indian government sto	0
2	2	5	6	How can I increase the speed of my internet co	How can Internet speed be increased by hacking	0
3	3	7	8	Why am I mentally very lonely? How can I solve	Find the remainder when [math]23^{24}[/math] i	0
4	4	9	10	Which one dissolve in water quikly sugar, salt	Which fish would survive in salt water?	0
404285	404285	433578	379845	How many keywords are there in the Racket prog	How many keywords are there in PERL Programmin	0
404286	404286	18840	155606	Do you believe there is life after death?	Is it true that there is life after death?	1
404287	404287	537928	537929	What is one coin?	What's this coin?	0
404288	404288	537930	537931	What is the approx annual cost of living while	l am having little hairfall problem but I want	0
404289	404289	537932	537933	What is like to have sex with cousin?	What is it like to have sex with your cousin?	0

Przygotowanie danych

×

×

"What is one coin?" vs "What's this coin?"

Podobieństwo cosinusowe

×

Testowanie modeli

MultinomialNB

Tabela dokładności

CCDCI	laccifiar
2000	lassifier

Model name	TfiDf - Lemmatization	TfiDf - Stemming	TfiDf - L + S
MultinomialNB	74,13%	73,76%	73,75%
SGDClassifier	74,32%	74,19%	74,26%
LinearSVC	75,54%	75,38%	75,43%
LGBMClassifier	75,31%	75,38%	75,44%

Własny model Al

Struktura modelu

```
model = Sequential()
model.add(Dense(units=1024, input_dim=10000, activation='relu'))
model.add(Dense(units=1024, activation='relu'))
model.add(Dense(units=1024, activation='relu'))
model.add(Dropout(0.5))
model.add(Dense(units=1024, activation='relu'))
model.add(Dense(units=1024, activation='relu'))
model.add(Dropout(0.5))
model.add(Dense(units=1024, activation='relu'))
model.add(Dense(units=1024, activation='relu'))
model.add(Dense(units=1, activation='sigmoid'))
```

Dokładność: 80%

Tabela prawdy i fałszu

X

Model wielokanałowy


```
input 1 = Input(shape=(5000,))
input 2 = Input(shape=(5000,))
branch 1 = Dense(512, activation='relu')(input 1)
branch 1 = Dense(256, activation='relu')(branch 1)
branch 1 = Dense(128, activation='relu')(branch 1)
branch 2 = Dense(512, activation='relu')(input 2)
branch 2 = Dense(256, activation='relu')(branch 2)
branch 2 = Dense(128, activation='relu')(branch 2)
merged = Concatenate()([branch 1, branch 2])
merged = Dense(256, activation='relu')(merged)
merged = BatchNormalization()(merged)
merged = Dropout(0.5)(merged)
merged = Dense(128, activation='relu')(merged)
merged = BatchNormalization()(merged)
merged = Dropout(0.5)(merged)
merged = Dense(128, activation='relu')(merged)
merged = BatchNormalization()(merged)
merged = Dropout(0.5)(merged)
merged = Dense(64, activation='relu')(merged)
output = Dense(1, activation='sigmoid')(merged)
model = Model(inputs=[input 1, input 2], outputs=output)
```


X

Pytanie 1	Pytanie 2	Czy podobne Yes	
how are you feel?	How are you?		
What's this coin?	What is color of this coin?	No	
Are you good with math?	Are you a mathematician?	No	
Are you a mathematician?	Are you a it programmer?	No	
Have you a computer mouse?	Have you a pet mouse at house?	No	
Have you computer mouse?	Do you have a mouse to your computer?	Yes	

×

CREDITS: This presentation template was created by **Slidesgo**, and includes icons by **Flaticon**, and infographics & images by **Freepik**