

Department: Computers and Control Engineering

Total Marks: 20 Marks

Course Title: **Compilers and Languages**Date: 28.11.2015 (First term)

Course Code: CCE3113 3rd year
Allowed time: 1 hrs and 30 minutes

Answer the following questions:

Question No. 1 (8 marks)

1. True or false? Are the following regular expressions exactly equivalent? (5 marks-1 mark for each one)

- a) x?x* x* b) y*|z* (y|z)* c) a*b* (ab)*
- d) $(P|Q| \in)^*$ $(P|Q)^*$ e) (0|1)? 0? |1?

Answers: True, False, False, True, True.

2. Explain why the grammar below is ambiguous.

(3 marks)

 $S \rightarrow 0A \mid 1B$ $A \rightarrow 0AA \mid 1S \mid 1$ $B \rightarrow 1BB \mid 0S \mid 0$

The grammar is ambiguous because we can find strings which have multiple derivations:

$$S \Rightarrow 0A \Rightarrow 00AA \Rightarrow 001S1 \Rightarrow 0011B1 \Rightarrow 001101$$

 $S \Rightarrow 0A \Rightarrow 00AA \Rightarrow 0011S \Rightarrow 00110A \Rightarrow 001101$

Question No. 2 (6 marks)

1. Considering the alphabet $\Sigma = \{0,1\}$

- a) Construct a Non-Deterministic-Finite Automaton (NFA) that is able to recognize the sentences generated by the regular expression (1*01*0)*1*.
- b) Convert the NFA to a DFA.
- c) Does the string w = "1010" belong to the language generated by this regular expression? Justify.

Answer

(a) The NFA is as shown below


```
(b)
```

 $S0 = \varepsilon$ -closure (0) = {0, 1, 2, 4, 10, 11, 13} – this is a final state because of 13

 $S2 = \varepsilon$ -closure $(S0, 0) = \{5, 6, 8\}$

 $S1 = \varepsilon$ -closure $(S0, 1) = \{2, 3, 4, 11, 12, 13\}$ – final state

 ϵ -closure (S1, 0) = {5, 6, 8} = S2

 ε -closure (S1, 0) = {2, 3, 4, 11, 12, 13} = S1

 ε -closure (S2, 0) = {1, 2, 4, 9, 10, 11, 13} – final state

 ϵ -closure (S2, 1) = {6, 7, 8}

 ε -closure (S4, 0) = {1, 2, 4, 9, 10, 11, 13} = S3

 ϵ -closure (S4, 1) = {6, 7, 8} = S4

 ϵ -closure (S3, 0) = {5, 6, 8} = S2

 ε -closure (S3, 1) = {2, 3, 4, 11, 12, 13} = S1

This results in the DFA shown below with starting state S0.

(c) Yes, the string w = "1010" belongs to the language generated by this regular expression

 $S0 \xrightarrow{1} S1 \xrightarrow{0} S2 \xrightarrow{1} S4 \xrightarrow{0} 3$which is an accepting state

Question No. 3 (6 marks)

Given the following grammar G:

 $S \longrightarrow E$

 $E \longrightarrow T E'$

 $E' \longrightarrow + T E' \mid \epsilon$

 $T \longrightarrow FT'$

 $T' \longrightarrow *FT' \mid \varepsilon$

 $F \longrightarrow (E) \mid d$

a) Find FIRST and FOLLOW of each non-terminal of the grammar.

N	FIRST(N)	FOLLOW(N)	
S	(,d	{}	
E	(,d),\$	
E'	+),\$	
T	(,d	+,),\$	
T'	*	+,),\$	
F	(, d	*,+,),\$	

b) Construct the LL(1) parsing table for the grammar.

$\mathbf{N} \setminus \Sigma$	d	+	*	()	\$
S	E\$	err	err	E\$	err	err
Е	TE'	err	err	TE'	err	err
E'	етт	+TE'	err	err	8	3
Т	FT'	err	err	FT'	err	err
T'	err	ε	*FT'	err	8	8
F	F→ d	error	error	F → (E)	error	error

c) Is this grammar LL(1)? why?
Yes, since there is at most one rule in every cell of the LL(1) table.

Best wishes

Dr. Sherin El Gokhy