4.1信号分解为正交函数

知识点Z4.2

信号的正交分解

主要内容:

- 1.信号正交的定义
- 2.正交函数集、完备正交函数集的定义
- 3.信号的正交分解

基本要求:

- 1.掌握信号正交、正交函数集和完备正交函数集的基本概念
- 2.掌握信号正交分解的方法

Z4.2 信号的正交分解

1.信号正交

【定义】在 (t_1, t_2) 区间的两个函数 $\varphi_1(t)$ 和 $\varphi_2(t)$,若满足 $\int_{t_1}^{t_2} \varphi_1(t)\varphi_2^*(t) dt = 0 \text{ (两函数的<u>内积</u>为$ **0** $)}$

则称 $\varphi_1(t)$ 和 $\varphi_2(t)$ 在区间 (t_1, t_2) 内正交。

说明:实函数正交 $\int_{t_1}^{t_2} \varphi_1(t) \varphi_2(t) dt = 0$ (内积为0)

2.正交函数集:

$$\int_{t_1}^{t_2} \varphi_i(t) \varphi_j^*(t) dt = \begin{cases} 0, & i \neq j \\ K_i \neq 0, & i = j \end{cases}$$

则称此函数集为在区间(t1, t2)上的正交函数集。

说明:如果 $K_i=1$,称为标准正交函数集。

3.完备正交函数集:

如果在正交函数集 $\{\varphi_1(t), \varphi_2(t), ..., \varphi_n(t)\}$ 之外,不存 在任何函数 $\varphi(t)$ ($\neq 0$) 满足

$$\int_{t_1}^{t_2} \varphi(t) \varphi_i^*(t) dt = 0 \qquad (i = 1, 2, \dots, n)$$

则称此函数集为完备正交函数集。

例:两组典型的在区间 $(t_0, t_0+T)(T=2\pi/\Omega)$ 上的完备正交函数集。

- (1) 三角函数集 $\{1, \cos(n\Omega t), \sin(n\Omega t), n=1,2,...\}$
- (2) 虚指数函数集{ $e^{jn\Omega t}$, n=0, ± 1 , ± 2 , ...}

证明过程见扩展资源Y4001。

4. 信号的正交分解

设有n个函数 $\varphi_1(t)$, $\varphi_2(t)$, ..., $\varphi_n(t)$ 在区间 (t_1, t_2) 构成一个正交函数空间。将任一函数f(t)用这n个正交函数的线性组合来近似,可表示为

$$f(t) \approx C_1 \varphi_1(t) + C_2 \varphi_2(t) + \dots + C_i \varphi_i(t) + \dots + C_n \varphi_n(t) = \sum_{j=1}^n C_j \varphi_j(t)$$

思考问题:如何选择各系数 C_j ,使f(t)与近似函数之间误差在区间 (t_1, t_2) 内为最小?

通常使误差的方均值(称为均方误差)最小。

$$\overline{\varepsilon^{2}} = \frac{1}{t_{2} - t_{1}} \int_{t_{1}}^{t_{2}} [f(t) - \sum_{j=1}^{n} C_{j} \varphi_{j}(t)]^{2} dt$$

为使上式最小(系数 C_i 变化时),有

$$\frac{\partial \overline{\varepsilon^2}}{\partial C_i} = \frac{\partial}{\partial C_i} \left\{ \frac{1}{t_2 - t_1} \int_{t_1}^{t_2} [f(t) - \sum_{j=1}^n C_j \varphi_j(t)]^2 dt \right\} = 0$$

展开被积函数,并求导,只有两项不为0,写为:

$$\frac{\partial}{\partial C_i} \left\{ \frac{1}{t_2 - t_1} \int_{t_1}^{t_2} \left[-2C_i \varphi_i(t) f(t) + C_i^2 \varphi_i^2(t) \right] dt \right\} = 0$$

$$\mathbb{P}: \qquad -2\int_{t_1}^{t_2} f(t)\varphi_i(t)dt + 2C_i \int_{t_1}^{t_2} \varphi_i^2(t)dt = 0$$

$$C_{i} = \frac{\int_{t_{1}}^{t_{2}} f(t)\varphi_{i}(t)dt}{\int_{t_{1}}^{t_{2}} \varphi_{i}^{2}(t)dt} = \frac{1}{K_{i}} \int_{t_{1}}^{t_{2}} f(t)\varphi_{i}(t)dt$$

4.1信号分解为正交函数

代入,得最小均方误差

$$\overline{\varepsilon^{2}} = \frac{1}{t_{2} - t_{1}} \int_{t_{1}}^{t_{2}} [f(t) - \sum_{j=1}^{n} C_{j} \varphi_{j}(t)]^{2} dt$$

$$= \frac{1}{t_{2} - t_{1}} \left[\int_{t_{1}}^{t_{2}} f^{2}(t) dt + \sum_{j=1}^{n} \int_{t_{1}}^{t_{2}} [C_{j} \varphi_{j}(t)]^{2} dt - 2 \sum_{j=1}^{n} C_{j} \int_{t_{1}}^{t_{2}} f(t) \varphi_{j}(t) dt \right]$$

$$= \frac{1}{t_{2} - t_{1}} \left[\int_{t_{1}}^{t_{2}} f^{2}(t) dt - \sum_{j=1}^{n} \int_{t_{1}}^{t_{2}} [C_{j} \varphi_{j}(t)]^{2} dt \right] \ge 0$$

在用正交函数去近似f(t)时,所取的项数越多,即n越大,则均方误差越小。当 $n\to\infty$ 时(完备正交函数集),均方误差为零。

任意信号f(t)可以表示为无穷多个正交函数之和:

$$f(t) = C_1 \varphi_1(t) + C_2 \varphi_2(t) + \dots + C_i \varphi_i(t) + \dots = \sum_{i=1}^{\infty} C_i \varphi_i(t)$$

上式称为信号的正交展开式,也称为广义傅里叶级数。

突逐函数下

$$C_{i} = \frac{\int_{t_{1}}^{t_{2}} f(t)\varphi_{i}(t)dt}{\int_{t_{1}}^{t_{2}} \varphi_{i}^{2}(t)dt} = \frac{1}{K_{i}} \int_{t_{1}}^{t_{2}} f(t)\varphi_{i}(t)dt$$
复变函数下

$$C_{i} = \frac{\int_{t_{1}}^{t_{2}} \varphi_{i}^{2}(t)dt}{\int_{t_{1}}^{t_{2}} \varphi_{i}(t)\varphi_{i}^{*}(t)dt} = \frac{1}{K_{i}} \int_{t_{1}}^{t_{2}} f(t)\varphi_{i}^{*}(t)dt$$
其 以