Machine Learning CSE2510 – Lecture 1.1

Gosia Migut
Odette Scharenborg
David Tax
Amira Elnouty

Welcome to week 1 - lecture 1

- Course overview / Administrative info
 - (see also Brightspace for all information, slides, assignments, reading material, etc)
- Machine Learning (ML): introduction
- The ML pipeline
- Measurements, features, objects, datasets

This course (5 ects)

- Goal: acquaint students with the basic Machine Learning concepts and algorithms
- Specifically:
 - parametric and non-parametric density estimation
 - linear and non-linear classification
 - unsupervised learning
 - performance evaluation of predictive algorithms
 - ethical issues in machine learning

The learning objectives

After this course, you are able to:

- Explain the basic concepts and algorithms of machine learning and underlying statistical concepts
- Implement and apply ML algorithms in Python
- Explain the concept of and identify (implicit) bias in data and ML algorithms

Teaching staff

	Role
Gosia Migut	Course coordinator + responsible lecturer
Odette Scharenborg	Responsible lecturer
David Tax	Co-lecturer
Amira Elnouty	Lab coordinator
Jordi Smit	Head TA

Time distribution of the 5 ECTS

Week	1	2	3	4	5	6	7	8	9	10	Total
Attend lectures	4	4	4	4	4	4	4	4			32
Reading	4	4	4	4	4	4	4	4			32
Lab sessions	4	4	4	4	4	4	4	4			32
Assignments	3	3	3	3	3	3	3	3			24
Prepare exam									15		15
Do exam										3	3
Total	15	15	15	15	15	15	15	15	15	3	138

5 ECTS = 140 h

Course structure

- 2 lectures each week (Tue & Fri (Thu!))
- 2 shared labs (Tue & Thu)
 - 4 hours expected
 - Voluntary
 - With TA support (not today)
 - Topics are directly related to the lecture material

Final grade

- Digital exam only:
 - Open questions
 - Programming questions
 - Multiple choice questions
- Resit in Q2
- To prepare for the digital exam:
 - Do lab assignments
 - Read material
 - Attend lectures
 - Participate in the exercises during lectures
 - Do the practice mid-term/final exams

Communication

- Content-based questions:
 - Talk to us during lecture breaks or after the lecture
 - Ask your fellow student (in person, Mattermost:

https://mattermost.ewi.tudelft.nl/signup_user_complete/?id=esjkmbhpcbyn9qmy954z1wkgkw)

Note: The teaching staff will not answer any questions on Mattermost

Ask the TAs during labs

Note: Content-based questions via e-mail will not be answered

Communication (2)

- Admin questions:
 - During the first 5 minutes of the lecture
 - E-mail ml-cs-ewi@tudelft.nl
 - Note: Email to our personal mailboxes will not be answered
 - Please use a friendly header to start your e-mail (Dear Gosia/Odette/David/Amira)

Course layout

Week	Topic	Lecturer
1	Course overview & introduction to ML	Odette Scharenborg
2	Parametric density estimation	David Tax
3	Non-parametric density estimation	Gosia Migut
4	Linear classification	Gosia Migut
5	Responsible machine learning	Odette Scharenborg
6	Non-linear classification	Odette Scharenborg
7	Unsupervised learning	Gosia Migut
8	Evaluation & Q&A	David Tax

This week's lab

- Installing python
- If needed, do the python and numpy tutorials
- Includes many exercises
- Questions → ask the TAs on Thursday

Reading material + notations

- Reading material will come from different books (indicated on Brightspace)
- Different mathematical notations used
- A good practice for 'real life'
- Notations in slides are to be used in this course

Questions?

Introduction to Machine Learning

Today's learning objectives

After practicing with the concepts of this week you are able to:

- Explain the basic ideas of machine learning and why and when it can be used
- Explain the machine learning pipeline from data to training to testing to evaluation

Q: What is machine learning?

- ML aims to identify regularities in the world (or data)
- → Learning and generalisation
- So, we want to learn (from the world or data) and say something about a new situation
 - == generalisation
- Learning == training on data

Why do we want to automate learning?

20 signals: from 2 different types / classes

Q: What is generalisation?

 Coming to general conclusions from (a limited number of) specific observations

(Something your parents probably told you **not** to do)

The Linda Problem

Linda is 31 years old, single, outspoken, very bright. She majored in philosophy. As a student, she was deeply concerned with issues of discrimination and social justice, and also participated in anti-nuclear demonstrations.

- Q: which of following alternatives is more probable?
 - 1. Linda is a bank teller
 - 2. Linda is a bank teller and active in the feminist movement

Q: A random person in the street

- What would you think?
 - Will the person be a professor?
 - Will the person be male?
- Possibility to make decisions using prior knowledge
- → How do you obtain this prior knowledge?

Prior knowledge comes from measurements

Example Q: Can we predict gender from age?

Measured data

	age > 85	age < 85
male	36	4965
female	106	4893

Learning through counting

Predicting through counting

- Learn and predict based on a priori outcomes
 - Check (historical) data for expected outcomes
 - Assign to most likely, i.e., most occurring, outcome
- → So, machine learning is about *probabilities*

Continuous measurements?

Rather artificial example:

- Observed:
 - 3 Dutch guys all being 19 decimeters
 - 3 German guys of 18, 19, and 20 dm
- New guy of 19 dm arrives
- Q: What nationality is he?

Continuous measurements?

- Say our measurement apparatus has improved
- So we get more accurate measurements...:
 - 3 Dutch guys: 19.267, 19.157, 18.812 decimeters
 - 3 German guys: 18.394, 18.771, 20.260 decimeters
 - New guy of 18.675 dm arrives.
 - Q: What nationality is he?

How do we go from observations to predictions?

Supervised Learning

= Learning by example

- Given input-output examples, determine input-output function
- Function should be able to generalise to new and previously unseen examples

How does this work?

Find a function that is able to split the apples and oranges into separate groups

Take measurements

Plot each object

Label each object

Two main types of machine learning

Supervised learning

Unsupervised learning (week 7)

Supervised learning

The most 'popular' type of learning

Requirement:

Dataset with label for each training example

→ Learns the association between example and label

Unsupervised learning

Requirement:

Unlabeled data

→ The system learns features (= information) about the data by itself

Example of unsupervised learning tasks

 Clustering: Divides the data in clusters such that data points within a cluster are similar and those in different clusters are dissimilar

Example of unsupervised ML technique

K-means clustering (week 7)

The ML pipeline

"A computer program is said to **learn** from **experience** *E* with respect to some class of **tasks** *T* and **performance measure** *P*, if its performance at tasks in *T*, as measured by *P*, **improves** with experience *E*."

[Tom M. Mitchell, 1997]

ML pipeline

The Task, T

 ML enables us to tackle tasks that are too difficult to solve with fixed programs

 Important: learning is the means through which we attain the ability to perform the task

→ Learning is **not** the task

- Task: emotion classification
- Through *learning* how to classify emotions

Examples of supervised learning tasks

- Classification
- Regression (prediction)
- Anomaly detection
- Machine translation
- Transcription
- . . .

Classification: Predict a label

handwritten digits

age & gender

Specify which of k categories some input belongs to

emotions

music genres

Regression: Predict a numerical value

house prices

weather

Anomaly detection

- Find unusual/atypical events or objects
- Learn and compare probability distributions

Machine translation: convert symbols in one language to symbols in another language

Transcription: Transcribe a relatively unstructured representation of some kind of data into discrete textual form

automatic speech recognition

The learning

The learning to obtain the ability to carry out the task is done using one or multiple ML techniques, e.g.:

- Support vector machines (SVMs; week 4)
- Linear regression (week 4)
- Neural networks (NNs; week 6)
- Deep neural networks (DNNs; MSc course)

The performance measure, P

- Evaluates the abilities of the ML algorithm quantatively
- P is specific to T
 - Classification & transcription: accuracy/error rate = proportion of correct/incorrect outputs by the model
- P measured on unseen test data
 - Data that is similar to the training data
 - But not used during training the learning algorithm
 - → testing the generalisation

What performance measure to choose?

Robot, lift your arms

- All words correct?
- Some words correct?
- Correct action?

What performance measure to choose? Which is the better system?

The Experience, E

== The dataset to train the ML algorithm

 Dataset: Collection of many examples or data points

 Determines whether an ML algorithm is supervised (with labels) or unsupervised (without labels)

Iris dataset – Fisher (1936)

IRIS dataset

Iris Versicolor

Iris Virginica

Iris Setosa

- 150 iris plants = 150 examples
- 4 features per examples
 - → Measurements:
- 3 species; 1 label per example

Design matrix

- One example per row
- Iris dataset: 150 examples with 4 features each
- Design matrix: $X \in \mathbb{R}^{150 \times 4}$

where, $X_{i,1}$ is the sepal length of plant i

and $X_{i,2}$ is the sepal width of plant i, etc.

	Sepal.Length [‡]	Sepal.Width [‡]	Petal.Length [‡]	Petal.Width [‡]	Species [‡]
1	5.1	3.5	1.4	0.2	setosa
2	4.9	3.0	1.4	0.2	setosa
3	4.7	3.2	1.3	0.2	setosa
4	4.6	3.1	1.5	0.2	setosa
5	5.0	3.6	1.4	0.2	setosa
6	5.4	3.9	1.7	0.4	setosa
7	4.6	3.4	1.4	0.3	setosa
8	5.0	3.4	1.5	0.2	setosa
9	4.4	2.9	1.4	0.2	setosa
10	4.9	3.1	1.5	0.1	setosa
11	5.4	3.7	1.5	0.2	setosa
12	4.8	3.4	1.6	0.2	setosa
13	4.8	3.0	1.4	0.1	setosa

Experience, E in supervised learning

During training:

 Each example is described using features and labels (or targets)

Task: classify
 Iris plants into 3
 species based on
 the measurements

	Sepal.Length [‡]	Sepal.Width [‡]	Petal.Length [‡]	Petal.Width	Species
					-
	5.1	3.5	1.4	0.2	setosa
2	4.9	3.0	1.4	0.2	setosa
3	4.7	3.2	1.3	0.2	setosa
4	4.6	3.1	1.5	0.2	setosa
5	5.0	3.6	1.4	0.2	setosa
6	5.4	3.9	1.7	0.4	setosa
7	4.6	3.4	1.4	0.3	setosa
8	5.0	3.4	1.5	0.2	setosa
9	4.4	2.9	1.4	0.2	setosa
10	4.9	3.1	1.5	0.1	setosa
11	5.4	3.7	1.5	0.2	setosa
12	4.8	3.4	1.6	0.2	setosa
13	4.8	3.0	1.4	0.1	setosa

Experience, E in unsupervised learning

During training:

Each example is described using features

Task: e.g., clustering_

divide the dataset into clusters of similar examples

	Sepal.Length [‡]	Sepal.Width [‡]	Petal.Length [‡]	Petal.Width
	Sepai.Length			
1	5.1	3.5	1.4	0.2
2	4.9	3.0	1.4	0.2
3	4.7	3.2	1.3	0.2
4	4.6	3.1	1.5	0.2
5	5.0	3.6	1.4	0.2
6	5.4	3.9	1.7	0.4
7	4.6	3.4	1.4	0.3
8	5.0	3.4	1.5	0.2
9	4.4	2.9	1.4	0.2
10	4.9	3.1	1.5	0.1
11	5.4	3.7	1.5	0.2
12	4.8	3.4	1.6	0.2
13	4.8	3.0	1.4	0.1

General ML pipeline

- 1. Train the ML algorithm using a *dataset* of *examples* with *features* for a specific *task*
- Test the generalisability of the ML algorithm on an unseen testset
- Quantify performance using an accurate and suitable measurement

Supervised learning

- Learns the association between example (= input) and label (= output)
- → By identifying patterns in the data
- \rightarrow General input-output function: y = ax + b

Learning = training

- General idea:
 - Collect example input-output objects (x, y objects)
 - Measure d features of choice and represent in vector space
 - Divide up feature space and assign output (or class) label)

Goal of training: Learn a function that can predict a label y for a new x with as little error as possible = an input-output function that can generalise to new, unseen examples (without labels)

Learning the optimal model parameters

 Learn model parameters a and b so that the error of the function's predictions is minimised

$$y = ax + b$$

An example: linear regression

Find a regression line
 y = ax + b
 that minimises the
 error (green lines)

Output y is a linear function of the input x

Linear regression: multiple features

 Let ŷ be the value that the model predicts y should take:

$$\hat{y} = w^T x + b$$

- $w = set \ of \ weights \ that \ determines \ how \ each \ feature$ influences the prediction \hat{y}
- b = intercept or bias
- Task, T: predict y from x by outputting $\hat{y} = w^T x + b$

Performance, P

 Mean squared error (= Euclidean distance) of the model on the test set:

$$MSE = \frac{1}{m} \sum_{i} (\hat{y}^{(test)} - y^{(test)})_{i}^{2}$$

where $\hat{y}^{(test)}$ = the predictions on the test set m = number of training examples

• MSE decreases to 0 when $\hat{y}^{(test)} = y^{(test)}$

Machine learning

- Set the weights w
- Minimise the error = cost = loss

Performance, P = cost/loss function

 During training: Find the minimum of the model's loss function by iteratively getting a better and better approximation of it

Gradient descent

After training

- Values for w and b that minimise the error on the training data
- = optimisation error

 We want the generalisation or test error, i.e., performance on unseen data

An example: linear regression

Find a regression line
 y = ax + b
 that minimises the
 error (green lines)

Output *y* is a linear function of the input *x*

• Test: x = 3.7, y = ?

i.i.d. assumptions

- The examples in the test and training data are independent from each other
- The test and training set are identically distributed
- \rightarrow Shared underlying distribution is the datagenerating distribution, p_{data}

Factors that determine P

The ML algorithm's ability to

- 1. Make the training error small
- Make the gap between training and test error small

Correspond to two central challenges in ML:

- Underfitting: training error is not small enough
- Overfitting: gap between training and test error is too big

Solution

Change the model's capacity:

 Choose a different function type: the simplest model that has the lowest training error

Relation between error and capacity

Picking the right model

- Complexity control is very important (and difficult) task
 - Choose model that is not too complex but also not too simple...
- More generally: model selection is key

No free lunch theorem

- Averaged over all possible data-generating distributions, every classification algorithm has the same error rate when classifying previously unobserved points
- → In some sense, no machine learning algorithm is universally any better than any other

No free lunch theorem

- Averaged over all possible data-generating distributions, every classification algorithm has the same error rate when classifying previously unobserved points
- → In some sense, no machine learning algorithm is universally any better than any other

Goal of ML

 NOT to seek a universal learning algorithm or the absolute best learning algorithm

- BUT what kinds of machine learning algorithms perform well on the data drawn from the kinds of data-generating distributions we care about
- → Design ML algorithm for a specific task

Features

Earlier we said:

- Learning and predicting is based on counting the frequency of occurrence of objects
- Measure d features of choice for each object and represent in vector space

Q: What features can we choose to predict gender?

→ With more features per example, we can better tell apart the training examples

Q: What happens to the model's generalisation ability?

→ Will be discussed in more detail in the next lectures

Important notes regarding features

- Note that features give a specific view of the objects: YOU (the user) are responsible for it
- Good features allow for pattern recognition, bad features allow for nothing
- → It is important to choose your features well!

Conclusions

- Data / Experience, E:
 - Features
 - Labels?
- Determine the Task, T
- Training = learning:
 - Choose a class of functions
 - Choose a performance measure, P
 - Optimise the function's parameters
- Test the model's generalisability

