Construction et opérations sur les langages Expressions régulières Critères de régularité

Langages et Automates Langages

Engel Lefaucheux

Prépas des INP

Objectif de ce cours

- Apprendre à créer et manipuler un langage
 - Opérations sur les mots et les langages
- Langage régulier
 - Expression régulière
 - Critères de régularité

Comment construit-on un langage?

- Description extentionnelle : {mot₁, mot₂, mot₃}
- Description intentionnelle : "tous les mots qui..."
- Description définitoire : $\{xyz \mid z = yx\}$
- Par opération sur des langages déjà définis
- \longrightarrow une structure d'anneau pour les langages

Plan

- Construction et opérations sur les langages
- 2 Expressions régulières
- Critères de régularité

Outline

Construction et opérations sur les langages

- 2 Expressions régulières
- Critères de régularité

L'alphabet, une brique de base

Alphabet Σ : l'ensemble fini des élèments minimaux du langage

- Lettre : $\Sigma = \{a, b, \dots, z\}$
- Playstation : $\Sigma = \{haut, bas, gauche, droite, \square, \dots\}$
- $\Sigma = \{abc, a, tub\}$
- $\Sigma = \emptyset$

Pas de répétitions ni d'ordre : $\{a, b, c, b\} = \{a, b, c\}$

Mot = concaténation de symboles

On fixe un alphabet Σ ,

- Tout élément de Σ est un mot
- Concaténation : Si w et v sont des mots, alors $w \cdot v$ est un mot
 - Associativité : $w \cdot (v \cdot u) = (w \cdot v) \cdot u$
 - Non-commutativité : $0 \cdot 1 \neq 1 \cdot 0$
- \bullet ε représente le mot vide
 - $\mathbf{w} \cdot \mathbf{\varepsilon} = \mathbf{\varepsilon} \cdot \mathbf{w} = \mathbf{w}$
- w^n représente le mot $\underbrace{w \cdot w \dots w \cdot w}_{n \text{ times}}$

Pour $\Sigma = \{abc, a, tub\}, a \cdot abc \cdot a \cdot tub \text{ est un mot }$

On omettra souvent le · quand l'alphabet ne crée pas d'ambiguité:

Pour $\Sigma = \{a, b, c\}, a \cdot b \cdot c \cdot b = abcb$

Sous-mots et taille d'un mot

Si
$$z = uvw$$

- u est un préfixe de z
- w est un suffixe de z
- u, v et w sont des facteurs de z.

Taille du mot z

- Notée |z|
- Nombre d'éléments dans z
- $|a \cdot l \cdot e \cdot s \cdot t \cdot o \cdot r \cdot m| = 8$
- $|\varepsilon| = 0$
- |z| = |u| + |v| + |w|

Combien existe t-il de mots de taille 2 sur l'alphabet $\Sigma = \{a, b\}$?

Exercice

Lemma

Deux mots u et v commutent s'ils sont puissances d'un même troisième, i.e., s'il existe un mot w et des entiers i, j tels que $u = w^i$ et $v = w^j$.

Langages = Ensemble de mots

Tout ensemble de mots de Σ est un langage sur Σ .

Si L_1 et L_2 sont des langages, alors

- Union : $L_1 \cup L_2$ est un langage
 - $\{a, b, c, ab\} \cup \{a, b, cd\} = \{a, b, c, ab, cd\}$
 - associative et commutative
- Intersection : $L_1 \cap L_2$ est un langage
 - $\{a, b, c, ab\} \cap \{a, b, cd\} = \{a, b\}$
 - associative et commutative
- Différence : $L_1 \setminus L_2$ est un langage
 - $\{a, b, c, ab\} \setminus \{a, b, cd\} = \{c, ab\}$
 - non-associative et non-commutative

Autres opérations sur les langages

- concaténation : $L_1 \cdot L_2$ est un langage
 - Tout mot de L_1 concaténé à un mot de L_2
 - $\{a, b, c, ab\} \cdot \{a, b, cd\} = \{aa, ab, acd, ba, bb, bcd, ca, cb, ccd, aba, abb, abcd\}$
 - associative, non-commutative
- Puissance : L_1^n pour n entier est un langage
 - Correspond à $\underbrace{L_1 \cdot L_1 \dots L_1 \cdot L_1}_{n \text{ times}}$

Étoile de Kleene

 L^* est l'ensemble des mots obtenus par concaténation arbitraire

- $L^* = L^0 \cup L^1 \cup L^2 \cup L^3 \cup ...$
- Aussi appelé itéré ou fermeture de L
- $\{a,b\}^*$ est l'ensemble des mots écrits dans l'alphabet $\{a,b\}$
- idempotent : $(L^*)^* = L^*$
- $L^0 = \varepsilon \in L^*$
- $L^+ = L^* \setminus \{\varepsilon\}$

Etoile de Kleene

L* est l'ensemble des mots obtenus par concaténation arbitraire

- $L^* = L^0 \cup L^1 \cup L^2 \cup L^3 \cup ...$
- Aussi appelé itéré ou fermeture de L
- $\{a,b\}^*$ est l'ensemble des mots écrits dans l'alphabet $\{a,b\}$
- idempotent : $(L^*)^* = L^*$
- $L^0 = \varepsilon \in L^*$
- $L^+ = L^* \setminus \{\varepsilon\}$

Est-ce que les mots suivants appartiennent au langage $(\{a,b\}\cdot\{\varepsilon,r\})^*$

- ε
- a
- babar

Notion d'induction

Soit *L* un langage satisfaisant

- $\varepsilon \in L$
- pour tout $w \in L$ et $a \in \Sigma$, $wa \in L$.

Que pouvez-vous dire sur L?

Notion d'induction

Soit *L* un langage satisfaisant

- $\varepsilon \in L$
- pour tout $w \in L$ et $a \in \Sigma$, $wa \in L$.

Que pouvez-vous dire sur *L* ?

Lemma

Soit P une propriété définie sur les mots de Σ^* et telle que

- *P*(ε)
- pour $w \in \Sigma^*$ et $a \in \Sigma$, si P(w) alors P(wa).

Alors P(w) pour tout $w \in \Sigma^*$.

Outline

- Construction et opérations sur les langages
- 2 Expressions régulières
- 3 Critères de régularité

Un formalisme pour générer certains langages

Expressions régulières

- Parfois appellées expressions rationnelles
- Génère un langage "régulier"

Définition récursive sur un alphabet $\Sigma = \{a, b\}$:

- ε , a et b sont des expressions régulières pour $\{\varepsilon\}$, $\{a\}$ et $\{b\}$
- Si r_1 et r_2 sont des expressions régulières générant L_1 et L_2 , alors
 - $r_1 \cdot r_2$ génère $L_1 \cdot L_2$
 - $r_1 + r_2$ génère $L_1 \cup L_2$
 - r_1^* génère L_1^*
 - (r) est une expression régulière génèrant L_1
- → les parenthèses servent à ordonner l'application des opérations

Quelques exemples

Quelles langages pour les expressions régulières suivantes :

- $(a+b)^*$
- $a + b^*$
- a(a)*
- (a*b*)*
- $(a + ab^*a)^*$

Quelles expressions rationnelles pour les langages suivants :

- les mots n'ayant que des a ou que des b
- {am, bm, an, cn}
- les mots de $\{a, i, m, o, u\}^*$ ayant miaou en facteur
- $\{a^nb^n \mid n \in \mathbb{N}\}.$

Outline

Construction et opérations sur les langages

- 2 Expressions régulières
- Critères de régularité

Une règle d'or

Si des relations existent entre les exposants apparaissant dans la description du langage, alors celui-ci n'est pas régulier.

- $\{a^nb^n \mid n \in \mathbb{N}\}$
- $\{a^nb^mc^k \mid n, m, k \in \mathbb{N} \land k \geq n+m\}$

ne sont pas réguliers.

Plusieurs critères formels de non-régularité

- Théorème de Myhill-Nerode (complexe)
- Lemme de l'étoile (simple, mais ne marche pas tout le temps)

Lemme de l'étoile

Theorem

Soit L un langage régulier. Il existe un entier N tel que tout mot w de L de longueur $|w| \geq N$ possède une factorisation w=xyz avec 0 < |y| telle que

- **1** $0 < |xy| \le N$ et
- ② $xy^nz \in L$ pour tout entier $n \ge 0$.

Lemme de l'étoile

Theorem

Soit L un langage régulier. Il existe un entier N tel que tout mot w de L de longueur $|w| \geq N$ possède une factorisation w = xyz avec 0 < |y| telle que

- **1** $0 < |xy| \le N$ et
- 2 $xy^nz \in L$ pour tout entier $n \ge 0$.

Quid de $\{a^nb^n \mid n \in \mathbb{N}\}$?

Exercice

Les langages suivants sont-ils réguliers ?

- $\{a^n \mid n \text{ est un nombre premier}\}$
- $\{a^nb^m \mid n \neq m\}$
- Le langage des palindromes
- $(ab)^* \cap \{w \mid |w|_a = |w|_b\}$
- $ab(a+b)^* \cap \{w \mid |w|_a = |w|_b\}$