Array

by D4R6

Create

처리 과정

- 1.할당량을 입력 받는다.
- 2.할당량 만큼 메모리를 할당 한다.
- 3.끝낸다.

Create

start

array, capacity

read capacity

array.front(capacity)

array.capacity = capacity

array.length = 0

stop

Destory

처리 과정

- 1. array 를 할당 해제한다.
- 2.끝낸다.

Store

처리 과정

- 1.위치와 개체를 입력 받는다.
- 2.받은 개체를 위치에 적는다.
- 3.위치를 출력한다.
- 4.끝낸다.

Destory

array

array.front = null

stop

Store

start

array, index, object

read index, object

array.front(index) = object

array.length = array.length + 1

print index

stop

- 1. 위치를 입력 받는다.
- 2. 위치의 값을 출력한다.
- 3. 끝낸다.

GetAt
start
array
read index
print array.front[index]
stop

PrintAll

- 1. length 만큼 반복한다.
- 해당 index 값을 출력한다.
- 2. 끝낸다.

- 1. 위치와 개체를 입력 받는다.
- 2. 새로운 배열을 할당 한다.
- 3. 위치보다 작은 동안 반복한다.
- 기존 배열 요소를 옮겨 적는다.
- 4. 사용량 만큼 반복한다.
- 기존 배열 요소를 옮겨 적는다.
- 5. 기존 배열을 지운다.
- 6. 새로운 배열의 위치 개체를 적는다.
- 7. 위치를 출력한다.
- 8. 끝낸다.

Insert
start
array, index, object, temps(), i = 1, j = 1
read index, object
temps(array.capacity + 1)
while(i < index)
temps(i) = array.front(j)
j=j+1
i = i + 1
i = i + 1
while(j ≤ array.length)
temps(i) = array.front(j)
i = i + 1
j = j + 1
array.front = null
array.front = temps
array.capacity = array.capacity + 1
array.front(index) = object
array.length = array.length + 1
print index
stop

- 1. 개체를 입력 받는다.
- 2. 새로운 배열을 할당 한다.
- 3. length 만큼 반복한다.
- 새로운 배열 두 번째 칸부터 기존 배열 내용을 기록한다.
- 4. 기존 배열을 새로운 배열로 대체한다.
- 5. 새로운 배열 첫 칸에 개체를 기록한다.
- 6. 위치를 출력한다.
- 7. 끝낸다.

AppendFromFront
start
array, index = 1, object, temps(), i = 1
read object
temps(array.capacity + 1)
while(i ≤ array.length)
temp(i + 1) = array.front(i)
i = i + 1
array.front = null
array.front = temp
array.capacity = array.capacity + 1
array.front(index) = object
array.length = array.length + 1
print index
stop

- 1. 개체를 입력 받는다.
- 2. 새로운 배열을 할당 한다.
- 3. length 만큼 반복한다.
- 새로운 배열 첫 번째 칸부터 기존 배열 내용을 기록한다.
- 4. 기존 배열을 새로운 배열로 대체한다.
- 5. 새로운 배열 끝 칸에 개체를 기록한다.
- 6. 위치를 출력한다.
- 7. 끝낸다.

AppendFromRear
start
array, index = 1, object, temps()
read object
temps(array.capacity + 1)
while(index ≤ array.length)
temp(index) = array.front(index)
index = index + 1
array.front = null
array.front = temp
array.capacity = array.capacity + 1
array.front(index) = object
array.length = array.length + 1
print index
stop

- 1. 위치를 입력 받는다
- 2. 크기가 1 줄어든 배열을 만든다.
- 3. 사용량까지 반복한다.
- 입력 받은 위치가 아니면 복사 반복.
- 입력 받은 위치이면 skip
- 4. 기존 배열을 새로운 배열로 대체한다.
- 5. 위치 0을 적는다.
- 6. 위치를 출력한다.
- 7. 끝낸다.

- 1. 전체 용량보다 1 작은 배열을 생성한다.
- 2. 사용량까지 반복한다.
- front 를 제외하고 복사 반복.
- 3. 기존 배열을 새로운 배열로 대체한다.
- 4. 위치 0을 적는다.
- 5. 위치를 출력한다.
- 6. 끝낸다.

- 1. 전체 용량보다 1 작은 배열을 생성한다.
- 2. 사용량 -1 까지 반복한다.
- 복사 반복.
- 3. 기존 배열을 새로운 배열로 대체한다.
- 4. 위치 0을 적는다.
- 5. 위치를 출력한다.
- 6. 끝낸다.

- 1. 할당된 메모리를 해제한다.
- 2. 크기를 0으로 초기화 한다.
- 3. 끝낸다.

Clear
start
array
array.front = null
array.capacity = 0
array.length = 0
stop

Modify

- 1. 위치와 개체를 입력 받는다.
- 2. 해당 개체를 변경한다.
- 3. 위치를 출력한다.
- 4. 끝내다.

Modify
start
array, index, object
read index, object
array.front(index) = object
print index
stop

- 1. key 를 입력 받는다.
- 2. 사용량 보다 작거나 같은 동안 반복한다.
- key 와 비교한다.
- 3. index 를 출력한다.
- 4. 끝낸다.

