Relatório: Análise de Características Temporais em Sinais de Áudio - ATD

Notas a ter em conta

Devido ao facto de o MATLAB não se encontrar a funcionar no meu computador, tentei fazer a primeira meta em Python.

Sem conhecer a razão, o meu Python não assume os ficheiros a partir do número 29, tentei com outras pastas e nada. Ou seja, mostro o plot de os 29 ficheiros e os boxplots destes 29.

Introdução

Neste projeto, realizei uma análise das características temporais em sinais de áudio. O objetivo é identificar características que possam ser úteis para diferenciar esses áudios. Para isso, importei os sinais de áudio, realizei um pré-processamento para garantir consistência na duração e amplitude dos sinais, e em seguida, calculei e visualizei diferentes características temporais.

Importação dos Sinais de Áudio

Inicialmente, realizei a importação dos sinais de áudio utilizando a biblioteca `librosa`. Utilizei a função `librosa.load()` para carregar os arquivos de áudio, passando o caminho do diretório onde os arquivos estão localizados. Um exemplo de sinal de áudio foi submetido a plot para verificar se a importação estava a funcionar corretamente.

```
import os
import librosa
import matplotlib.pyplot as plt
import numpy as np

path = r'C:\Users\carli\OneDrive\ATD_23-24\01'

# 1) Show one example to see if it's working
audioExample, samplingRate = librosa.load(os.path.join(path, "0_01_0.wav"), sr=None)
plt.figure(figsize=(10, 4))
plt.plot(np.linspace(0, len(audioExample) / samplingRate, len(audioExample)), audioExample)
plt.xlabel('Tempo (s)')
plt.ylabel('Amplitude')
plt.title('Exemplo de Sinal de Áudio')
plt.grid(True)
plt.show()
```

Fig. 1 -> Exemplo de áudio, para ver se tudo decorria da forma correta.

```
for x in range(10):
    for y in range(50):
        fileName = os.path.join(path, f"{x}_01_{y}.wav")
```

Fig. 2 -> Loops para aceder a todos os ficheiros áudio.

Pré-Processamento dos Sinais de Áudio

Após a importação, realizei um pré-processamento dos sinais de áudio para garantir que todos tinham a mesma duração e amplitude. Isso envolve a remoção do silêncio inicial, a normalização da amplitude e a adição ou remoção de silêncio para ajustar a duração dos sinais.

```
# Pre-processing: removal of initial silence, normalization of amplitude and addition of silence at the end
audio = librosa.effects.trim(audio)[0] # Removal of initial silence
audio = audio / np.max(np.abs(audio)) # Normalization of amplitude
```

Fig. 3 -> Pré-Processamento dos áudios.

Cálculo das Características Temporais

Em seguida, calculei diferentes características temporais nos sinais de áudio. Algumas das características consideradas incluem energia total, amplitude máxima, amplitude mínima, razão de amplitudes e desvio padrão da amplitude. Essas características são calculadas para cada sinal de áudio e são usadas para identificar padrões que possam distinguir os diferentes dígitos.

```
# Add or remove silence to make them all the same time
duration = 3  # Seconds
if len(audio) < samplingRate * duration:
    audio = np.pad(audio, (0, samplingRate * duration - len(audio)), mode='constant')
elif len(audio) > samplingRate * duration:
    audio = audio[:samplingRate * duration]

#
totalEnergy.append(np.sum(audio ** 2))
maxAmplitude.append(np.max(audio))
minAmplitude.append(np.min(audio))
rAmplitudes.append(np.max(audio) / np.abs(np.min(audio)))
standartDeviation.append(np.std(audio))
```

Fig. 4 -> Adição ou remoção de silêncio e calculo das características temporais.

Análise das Características Temporais

Para analisar as características temporais, utilizamos representações gráficas como boxplots. Esses gráficos permitem visualizar a distribuição das características para cada áudio e identificar quais características proporcionam uma melhor discriminação entre os mesmos.

Conclusão

Devido aos erros que passei durante o processo de realização, sei que a entrega está aquém do esperado. Resta melhorar e entregar algo decente na meta 2.

Carlos Soares.

Nº 2020230124

ATD - 2023/2024 - PL4