Project 1

Anna Stray Rongve Amund Midtgard Raniseth Knut Magnus Aasrud

Mandag 9 September 2019

Abstract

Summary of project.

The abstract gives the reader a quick overview of what has been done and the most important results. Try to be to the point and state your main findings.

In project 1 a) we solved a one-dimensional Poisson equation with Dirichlet boundary condition by rewriting it as a set of linear equations, **Av=d**.

In Project 1 b) we solved the linear set of equations $\mathbf{Av} = \mathbf{d}$, where \mathbf{A} is a tridiagonal matrix, which we expressed as three vectors, a, bandc To solve our equations we used Gaussian elimination as well as forward and backward substitution.

In Project 1 c) we used our general algorithm to make a special, where the matrix elements along the diagonal where identical

Introduction

The purpose of this project is to implement a numerically effective solution of the one-dimensional Poisson equation

$$-u''(x) = f(x)$$

and to implement this in a programming language of choice (Python, in our case). This will be done using three different approaches - the general Thomas algorithm, a specialized Thomas algorithm and an LU-decomposition - the speed of which is compared.

Theory and technicalites

Conclusion and perspectives

Project 1 a)

We have the discretized version of u, v, with the boundary conditions $v_0 = v_n = 0$: For i = 1

$$-\frac{v_2 + v_0 - 2v_1}{h^2} = f_1$$

For i=2

$$-\frac{v_3 + v_1 - 2v_2}{h^2} = f_2$$

For i = n - 1

$$-\frac{v_n + v_{n-2} - 2v_{n-1}}{h^2} = f_{n-1}$$

Multiplying both sides by h^2 gives

$$-v_2 + 2v_1 - v_0 = h^2 \cdot f_1$$

$$-v_3 + 2v_2 - v_1 = h^2 \cdot f_2$$

$$-v_n + 2v_{n-1} - v_{n-2} = h^2 \cdot f_{n-1}$$

Which you can rewrite as a linear set of equations $\mathbf{A}\mathbf{v} = \mathbf{d}$ where

$$\mathbf{A} = \begin{bmatrix} 2 & -1 & 0 & \dots & \dots & 0 \\ -1 & 2 & -1 & 0 & \ddots & \vdots \\ 0 & -1 & 2 & -1 & 0 & \vdots \\ \vdots & \vdots & \ddots & \ddots & \ddots & \vdots \\ 0 & \dots & \dots & -1 & 2 & -1 \\ 0 & \dots & \dots & 0 & -1 & 2 \end{bmatrix}$$

$$\mathbf{v} = \begin{bmatrix} v_1 \\ v_2 \\ v_3 \\ \vdots \\ v_{n-1} \end{bmatrix}$$

and

$$\mathbf{d} = \begin{bmatrix} d_1 \\ d_2 \\ d_3 \\ \vdots \\ d_{n-1} \end{bmatrix}$$

with $d_i = h^2 \cdot f_i$

Project 1 b)

General algorithm

We have a linear set of equations $\mathbf{A}\mathbf{v} = \mathbf{d}$

In the general case, we can express any tridiagonal matrix

$$\mathbf{A} = \begin{bmatrix} b_1 & c_1 & 0 & \cdots & \cdots & 0 \\ a_1 & b_2 & c_2 & \ddots & \ddots & \vdots \\ 0 & a_2 & b_3 & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & c_{n-2} & 0 \\ 0 & \dots & 0 & a_{n-2} & b_{n-1} & c_{n-1} \\ 0 & \dots & \dots & 0 & a_{n-1} & b_n \end{bmatrix}$$

just by the three vectors a, b and c, where b has length n, and a and c have length n-1.

Forward substitution

Firstly, we want to eliminate the a_i 's.

 $\mathbf{A}\mathbf{v} = \mathbf{d}$ gives us these equations for the case of i=1 and i=n

$$b_1v_1 + c_1v_2 = d_1, \quad i = 1 \tag{1}$$

$$a_{n-1}v_{n-1} + b_n v_n = d_n, \quad i = n.$$
 (2)

For the rest, we get

$$a_1v_1 + b_2v_2 + c_2v_3 = d_2, \quad i = 2.$$
 (3)
 $a_{i-1}v_{i-1} + b_iv_i + c_iv_{i+1} = d_i, \quad i = 2, ..., n-1.$

We can then modify (3) by subtracting (1), like this

$$b_1 \cdot (3) - a_1 \cdot (1)$$

Which gives

$$(a_1v_1 + b_2v_2 + c_2v_3)b_1 - (b_1v_1 + c_1v_2)a_1 = d_2b_1 - d_1a_1$$
$$(b_2b_1 - c_1a_1)v_2 + c_2b_1v_3 = d_2b_1 - d_1a_1.$$

Notice that v_1 has been eliminated (the first lower diagonal element has been eliminated).

This can be continued further - to eliminate all the a_i 's - and is what we call forward substitution.

Its apparent that the vector elements get more and more complicated. To solve this, we make modified vectors and find their elements recursively. Furthermore, we ensure that the \tilde{b}_i 's are 1 by normalizing with the modified diagonal elements.

$$\tilde{b}_{i} = 1$$

$$\tilde{c}_{1} = \frac{c_{1}}{b_{1}}$$

$$\tilde{c}_{i} = \frac{c_{i}}{b_{i} - \tilde{c}_{i-1}a_{i-1}}$$

$$\tilde{d}_{1} = \frac{d_{1}}{b_{1}}$$

$$\tilde{d}_{i} = \frac{d_{i} - \tilde{d}_{i-1}a_{i-1}}{b_{i} - \tilde{c}_{i-1}a_{i-1}}$$

Backward substitution

If we look at the coefficients defined above, we see that they give these equations for every i:

$$v_n = \tilde{d}_n$$
$$v_i = \tilde{d}_i - \tilde{c}_i v_{i+1}$$

This is the backward substitution necessary to find the solution.

BIBLIOGRAPHY Project 1

Project 1 c)

Modified algorithm

In this case we use our general algorithm derived in Project 1 b) and simply replace our variables a_i , b_i and c_i with respectively -1, 2 and -1.

$$\mathbf{A} = \begin{bmatrix} 2 & -1 & 0 & \cdots & \cdots & \cdots \\ -1 & 2 & -1 & 0 & & & \\ 0 & -1 & 2 & -1 & 0 & & \\ \vdots & \vdots & \ddots & \ddots & \ddots & \vdots \\ 0 & & & -1 & 2 & -1 \\ 0 & & & & & -1 & 2 \end{bmatrix} \begin{bmatrix} v_1 \\ v_2 \\ \vdots \\ v_n \end{bmatrix} = \begin{bmatrix} d_1 \\ d_2 \\ \vdots \\ v_n \end{bmatrix}$$

Forward substitution special case

$$\tilde{b}_i = 1\tilde{c}_1 = -\frac{1}{2}\tilde{c}_i = -\frac{1}{2 - (-1)a_{i-1}} = -\frac{1}{2 + \tilde{c}_{i-1}}\tilde{d}_1 = \frac{d_1}{2}\tilde{d}_i = \frac{d_i + \tilde{d}_{i-1}}{2 + \tilde{c}_{i-1}}$$

Backward substitution special case

In the backward substitution there will not have any differences from the one in Project 1 b), so

$$v_n = \tilde{d}_i v_i = \tilde{d}_i - \tilde{c}_i v_{i+1}$$

For the general and special algorithm the flops will run as O(n). By simplifying our algorithm the number of floating points, FLOPS, decreases from $\bf 9n$ to $\bf 6n$.

The CPU time for the general algorithm:

The CPU time for special algorithm:

Appendix

Source Code

Bibliography