Modelo Deuda Pública

Marcelo Gallardo

Marzo 2023

Pontificia Universidad Católica del Perú

marcelo.gallardo@pucp.edu.pe

Síntesis del Modelo de Deuda Pública, Mendoza et. al. 2023.

Índice

1.	Introducción	1
2.	Modelo macro fiscal de una economía cerrada	2
	2.1. Dinámica de la deuda	2
	2.2. Dinámica y sostenibilidad de la deuda pública	3
	2.3. Superávit primario, dinámica y sostenibilidad	5
3.	El rol del FMI: prestamista de última	
	instancia	7

1. Introducción

El MEF opera sobre el gasto público, la tasa impositiva con el objetivo de controlar el endeudamiento. El objetivo, es mantener una deuda pública sostenible.

Definición 1. La deuda pública es sostenible si el gobierno puede cumplir con todas las obligaciones de pago actuales y futuras sin asistencia.

Observación. O sea, es sostenible cuando [...] el gobierno tiene una alta probabilidad de ser **solvente** (largo plazo); es decir, cuando tiene capacidad para hacer frente a sus obligaciones financieras actuales y futuras sin tener que recurrir a políticas inviables o no deseables. Y además de solvente, el gobierno debe disponer de **liquidez** (corto plazo).

Definición 2. La solvencia hace referencia a la capacidad de un agente para satisfacer sus deudas, tanto a largo como a corto plazo, la liquidez se refiere a sus activos y deudas a corto plazo.

2. Modelo macro fiscal de una economía cerrada

2.1. Dinámica de la deuda

Indicador importante (aunque imperfecto): el déficit fiscal DF_t . Existen dos posibles definiciones de éste

1. Diferencia entre el gasto y la recaudación

$$DF_t = G + \underbrace{rB_{t-1}^g}_{\text{=gasto financiero}} -\tau Y_t = rB_{t-1}^g - \underbrace{SP_t}_{\text{=superavit primario }\tau Y_t - G_t}. \tag{1}$$

2. Alternativamente, la deuda pública es el flujo neto de endeudamiento o cambio en el stock de deuda pública

$$DF_t = B_t^g - B_{t-1}^g = \Delta B^g. {2}$$

Observación. Los países se endeudan por ejemplo, emitiendo bonos.

Luego, combinando las ecuaciones (1), (2), y usando el hecho que $\frac{Y_t-Y_{t-1}}{Y_{t-1}}=g$ y $\frac{Y_t}{Y_{t-1}}=1+g$

$$\begin{split} B_t^g - B_{t-1}^g &= r B_{t-1}^g - S P_t \\ B_t^g &= (1+r) B_{t-1}^g - S P_t \\ \frac{B_t^g}{Y_t} &= (1+r) \frac{B_{t-1}^g}{Y_{t-1}} \frac{Y_{t-1}}{Y_t} - \frac{S P_t}{Y_t} \\ b_t^g &= \left(\frac{1+r}{1+g}\right) b_{t-1}^g - s p_t. \end{split}$$

Por otro lado,

$$\frac{DF_t}{Y_t} = \frac{rB_{t-1}^g}{Y_{t-1}} \frac{Y_{t-1}}{Y_t} - \frac{SP_t}{Y_t}$$
$$df_t = \frac{rb_{t-1}^g}{1+g} - sp_t.$$

El objetivo del gobierno es estabilizar la deuda pública, alcanzar un equilibrio. En dinámica discreta, esto es

$$b_t^g = b_{t-1}^g.$$

Así, resolvemos

$$sp_t = sp_{ee}$$

$$= \left(\frac{r-g}{1+g}\right)b_{t-1}^g.$$

Por otro lado,

$$df_{t} = \frac{rb_{t-1}^{g}}{1+g} - sp_{t}$$

$$= \frac{rb_{t-1}^{g}}{1+g} - \left(\frac{r-g}{1+g}\right)b_{t-1}^{g}$$

$$= \frac{gb_{t-1}^{g}}{1+g}.$$

Figura 1: Recta de 45 grados: $b_t^g = b_{t-1}^g$.

Observación. Reagrupando las ecuaciones tenemos las siguientes dinámicas

$$\begin{cases} df_t &= \frac{rb_{t-1}^g}{1+g} - sp_t \\ b_t^g &= \left(\frac{1+r}{1+g}\right) b_{t-1}^g - sp_t \\ b_t^g &= b_{t-1}^g \\ sp_{ee} &= \frac{r-g}{1+g} b_{t-1}^g \\ df_{ee} &= \frac{g}{1+g} b_{t-1}^g. \end{cases}$$

2.2. Dinámica y sostenibilidad de la deuda pública

- 1. Si r = g, $sp_{ee} = 0$.
- 2. Si r > g, $sp_{ee} = \frac{r-g}{1+g}b_{ee} > 0$.
- 3. Si r < g, $sp_{ee} = \frac{r-g}{1+g}b_{ee} < 0$.

Figura 2: r = g

Figura 3: r > g

Figura 4: r < g

2.3. Superávit primario, dinámica y sostenibilidad

La pregunta de interés es ¿qué pasa si $sp_1 < sp_0$? Depende. Se inicia en un equilibrio, $b_1^g = b_0^g$.

1. Caso 1 (r = g): en este caso $\frac{1+r}{1+g} = 1$, y así, como $sp_t \downarrow$, $b_t^g = b_{t-1}^g - sp_t$ aumenta. Consideremos el escenario $dsp_1 < 0$ y $dsp_n = 0 \ \forall \ n \ge 1$. Para t = 1

$$\begin{cases} ddf_1 &= -dsp_1 < 0 \\ db_1^g &= -dsp_1. \end{cases}$$

t = 2

$$\begin{cases} ddf_2 &= \frac{r}{1+g}db_1^g - dsp_2 = -\frac{r}{1+g}dsp_1 < 0\\ db_2^g &= db_1^g = -dsp_1. \end{cases}$$

Generalizando por inducción

$$\begin{cases} ddf_n &= -\frac{r}{1+g} ds p_1 > 0 \\ db_n^g &= -ds p_1. \end{cases}$$

Finalmente, expresamos b_n^g como la suma de variaciones

$$b_n^g = b_0^g + \sum_{t=1}^n db_t^g = b_0^g - \sum_{t=2}^n ds p_1 = b_0^g - n ds p_1 \to \infty.$$

Figura 5: r = g

2. Caso 2 (r > g): en este caso $\frac{1+r}{1+g} > 1$. Para t = 1

$$\begin{cases} ddf_1 &= -dsp_1 > 0 \\ db_1^g &= -dsp_1 > 0. \end{cases}$$

t = 2

$$\begin{cases} ddf_2 &= -\left(\frac{1+r}{1+g}\right)db_1^g - dsp_2 = -\left(\frac{1+r}{1+g}\right)dsp_1 > 0 \\ db_2^g &= \frac{r}{1+g}db_1^g = -\frac{r}{1+g}dsp_1. \end{cases}$$

Generalizando por inducción

$$\begin{cases} ddf_n &= -\frac{r(1+r)^{n-2}}{(1+n)^{n-1}} ds p_1 \\ db_n^g &= -\left(\frac{1+r}{1+g}\right)^{n-1} ds p_1 < 0. \end{cases}$$

Con lo cual,

$$b_n^g = b_0^g + \sum_{t=1}^n - \underbrace{\left(\frac{1+r}{1+g}\right)^{t-1}}_{>1} dsp_1 \to \infty.$$

Figura 6: r > g

3. Caso 3 (r < g): Se procede de manera análoga al caso anterior. Sin em-

bargo, en este caso

$$b_n^g = b_0^g + \sum_{t=1}^n db_t^g$$

$$= b_0^g + \sum_{t=1}^n -\left(\frac{1+r}{1+g}\right)^{t-1} dsp_1$$

$$= b_0^g - dsp_1 \sum_{t=0}^{n-1} \left(\frac{1+r}{1+g}\right)^t$$

$$\to b_0^g - dsp_1 \left(\frac{1+g}{g-r}\right).$$

Figura 7: r < g

En conclusión, si r=g o r>g, la dinámica de la deuda pública genera una trayectoria explosiva/divergente. Sin embargo, en caso la tasa e crecimiento del PBI g sea mayor a la tasa de interés r, hace que b_t^g converja a un valor numérico finito: un nuevo equilibrio con un nivel de deuda pública como porcentaje del PBI más elevado.

3. El rol del FMI: prestamista de última instancia

En caso la deuda pública como porcentaje del PBI tenga una trayectoria explosiva, es decir, $b_t^g \to \infty$, el gobierno requiere financiamiento para poder estabilizarse. Incluso en el caso r < g necesita un financiamiento (menor a los casos

1 y 2 ciertamente). En efecto, un gobierno no puede endeudarse indeterminadamente. Cada país tiene un límite como porcentaje de su PBI. Naturalmente, mientras más grande se el país, mayor será este porcentaje, debido a su reputación (USA etc.). Cuando el superávit primario no es suficiente para financier la deuda, y se le cierran las puertas al país en el Banco Mundial, BID, la última instancia a quién se recurre es el FMI. Al acceder al financiamiento del FMI, tanto el ministro de economía como el director del Banco Central del país en cuestión se comprometen a firmar un acuerdo que los obligue a elevar su superávit primario (hasta un nivel sostenible en un periodo razonable de tiempo). Sin el FMI, el ajuste podría ser bien complicado, implicando estabilizar de inmediato la deuda: $b_t^g - b_{t-1}^g = 0$. Esta medida ciertamente tendría repercusiones sociales, políticas, etc.

Observación. A mayor deuda acumulada, mayor será el superávit necesario para cerrar la brecha.

Supongamos lo siguiente:

- Partimos de un equilibrio estacionario donde el superávit es suficiente para estabilizar la deuda.
- 2. $\frac{1+r}{1+g}>1.$ En t=1 se genera una reducción del superávit que hace imposible mantener la deuda.
- 3. En el periodo 4, la deuda pública ha alcanzado el límite máximo impuesto por el mercado y por los organismos internacionales. La deuda no puede crecer más. Un objetivo de la política macroeconómica modesto, es estabilizar la deuda pública en el nivel alcanzado en el periodo 4.
- 4. En un escenario, sin apoyo del FMI, se debe estabilizar la deuda de golpe, en t=4.
- 5. En el otro escenario, el FMI patrocina la estabilización de la deuda.

Recordemos que

$$sp_{ed} = \frac{r - g}{1 + g}b_{ee}^g > 0.$$

Escenario 1:

Usamos la igualdad $b_n^g = b_0^g + \sum_{t=1}^n b_t^g$ (o sea la condición inicial más su variaciones).

1. En el periodo 1, luego del desequilibrio, $b_1^g = b_0^g + db_1^g = b_0^g - dsp_1$. Luego,

$$sp_{ed}^2 = \left\{\frac{r-g}{1+g}\right\}b_1^g = \left\{\frac{r-g}{1+g}\right\}(b_0^g - dsp_1).$$

2. En el periodo 2, $b_2^g = b_0^g + \sum_{t=1}^2 db_t^g$. Como $db_2^g = \left\{\frac{1+r}{1+g}\right\} db_1^g - dsp_2 = \left\{\frac{1+r}{1+g}\right\} db_1^g = -\left\{\frac{1+r}{1+g}\right\} dsp_1$:

$$b_2^g = b_0^g - dsp_1 - \left\{ \frac{1+r}{1+q} \right\} dsp_1.$$

Luego,

$$sp_{ed}^{3} = \left\{ \frac{r-g}{1+g} \right\} b_{2}^{g} = \left\{ \frac{r-g}{1+g} \right\} \cdot \left(b_{0}^{g} - dsp_{1} - \left\{ \frac{1+r}{1+g} \right\} dsp_{1} \right).$$

3. En general, veamos que

$$b_n^g = b_0^g + \sum_{t=1}^n db_t^g = b_0^g - \sum_{t=1}^n \left(\frac{1+r}{1+g}\right)^{t-1} ds p_1.$$

Demostración. Se cumple para n = 1. Luego,

$$b_{n+1}^g = b_n^g + db_{n+1}^g.$$

Como

$$b_{n+1}^g = \left(\frac{1+r}{1+g}\right)b_n^g - sp_{n+1} \implies db_{n+1}^g = \left(\frac{1+r}{1+g}\right)db_n^g$$
$$b_{n+1}^g = b_n^g + \left(\frac{1+r}{1+g}\right)[b_n^g - b_{n-1}^g].$$

Usando la hipótesis inductiva

$$\begin{split} b_{n+1}^g &= b_0^g - \sum_{t=1}^n \left(\frac{1+r}{1+g}\right)^{t-1} ds p_1 \\ &+ \left(\frac{1+r}{1+g}\right) \underbrace{\left[b_0^g - \sum_{t=1}^n \left(\frac{1+r}{1+g}\right)^{t-1} ds p_1 - b_0^g + \sum_{t=1}^{n-1} \left(\frac{1+r}{1+g}\right)^{t-1} ds p_1\right]}_{= -\left(\frac{1+r}{1+g}\right)^{n-1} ds p_1}. \end{split}$$

Finalmente, agrupando el último término

$$b_{n+1}^g = b_0^g - \sum_{t=1}^{n+1} \left(\frac{1+r}{1+g}\right)^{t-1} ds p_1,$$

tal y como se quería. Concluimos que el resultado es válido para todo $n \in \mathbb{N}.$

4. Usando la expresión para b_n^g :

$$sp_{ed}^{n+1} = \left\{\frac{r-g}{1+g}\right\}b_n^g = \left\{\frac{r-g}{1+g}\right\} \left[b_0^g - \sum_{t=1}^n \left(\frac{1+r}{1+g}\right)^{t-1} dsp_1\right].$$

Observación. En particular,

$$\begin{split} sp_{ed}^5 &= \left\{\frac{r-g}{1+g}\right\}b_4^g = \left\{\frac{r-g}{1+g}\right\}\left[b_0^g - \sum_{t=1}^4 \left(\frac{1+r}{1+g}\right)^{t-1}dsp_1\right] \\ &= \left(\frac{r-g}{1+g}\right)b_0^g - \left(\frac{r-g}{1+g}\right)dsp_1 - \left(\frac{(r-g)(1+r)}{(1+g)^2}\right)dsp_1 - \left(\frac{(r-g)(1+r)^2}{(1+g)^3}\right) \\ &- \left(\frac{(r-g)(1+r)^3}{(1+g)^4}\right). \end{split}$$

Usando el enfoque de la dinámica

$$b_t^g = \left(\frac{1+r}{1+g}\right)b_{t-1}^g - sp_t$$

dado que $sp_t = sp_0 + \sum_{s=1}^t dsp_s = sp_1$, usando la identidad

$$x(t+1) = ax(t) + b(t)$$
$$x(t) = a^{t}x_{0} + \sum_{k=1}^{t} a^{t-k}b(k-1)$$

llegamos a que

$$b_t^g = \left(\frac{1+r}{1+g}\right)^t b_0^g - sp_1 \cdot \sum_{k=1}^t \left(\frac{1+r}{1+g}\right)^{t-k}$$
$$= \left(\frac{1+r}{1+g}\right)^t b_0^g - sp_1 \left\{1 + \frac{1+r}{1+g} + \left(\frac{1+r}{1+g}\right)^2 + \dots + \left(\frac{1+r}{1+g}\right)^{t-1}\right\}$$

Notemos que se ha usado el hecho que $sp_0=0$ en una recta de equilibrio $b_t^g=b_{t-1}^g$. Finalmente,

$$sp_{t+1}^{ee} = \left\{ \frac{r-g}{1+g} \right\} \left\{ \left(\frac{1+r}{1+g} \right)^t b_0^g - sp_1 \left\{ 1 + \frac{1+r}{1+g} + \left(\frac{1+r}{1+g} \right)^2 + \dots + \left(\frac{1+r}{1+g} \right)^{t-1} \right\} \right\}$$