Introduction to Computer Vision

Kaveh Fathian

Assistant Professor
Computer Science Department
Colorado School of Mines

Lecture 7

Learning Outcomes

- Hough Transform
- Line Detection

Hough transform

Hough transform is a **generic framework** for detecting a parametric model

Example: Hough transform can detect lines

Why Hough transform? E.g., vs. Canny edge detection?

- Edges don't have to be connected
- · Lines can be occluded
- Key idea: edges vote for the possible models

Circles

Example: Hough transform for circle detection What is its application?

Parameter space

- Create a grid of candidate m,b parameter values: accumulator
 - Why a grid?
 - m,b are continuous; grid discretizes into hypotheses.
- Each edge pixel votes for a set of parameters, which increments those values in grid

- Create a grid of candidate m,b parameter values: accumulator
 - Why a grid?
 - m,b are continuous; grid discretizes into hypotheses.
- Each edge pixel votes for a set of parameters, which increments those values in grid

- Create a grid of candidate m,b parameter values: accumulator
 - Why a grid?
 - m,b are continuous; grid discretizes into hypotheses.
- Each edge pixel votes for a set of parameters, which increments those values in grid

- Create a grid of candidate m,b parameter values: accumulator
 - Why a grid?
 - m,b are continuous; grid discretizes into hypotheses.
- Each edge pixel votes for a set of parameters, which increments those values in grid

- Create a grid of candidate m,b parameter values: accumulator
 - Why a grid?
 - m,b are continuous; grid discretizes into hypotheses.
- Each edge pixel votes for a set of parameters, which increments those values in grid

- Create a grid of candidate m,b parameter values: accumulator
 - Why a grid?
 - m,b are continuous; grid discretizes into hypotheses.
- Each edge pixel votes for a set of parameters, which increments those values in grid
- Find maxima our line candidates.

- Hough space represents all possible lines.
- With gradient information constraint:
 - Edge is single point in Hough space.
- Without gradient orientation information?

- Hough space represents all possible lines.
- With gradient information constraint:
 - Edge is single point in Hough space.
- Without gradient orientation information?

- Hough space represents all possible lines.
- With gradient information constraint:
 - Edge is single point in Hough space.
- Without gradient orientation information?

- Hough space represents all possible lines.
- With gradient information constraint:
 - Edge is single point in Hough space.
- Without gradient orientation information?

- Hough space represents all possible lines.
- With gradient information constraint:
 - Edge is single point in Hough space.
- Without gradient orientation information?
 - Point is line in Hough space

a point becomes a line

Image space

Parameter space

variables

Computer Vision; Colorado School of Mines Kaveh Fathian

Image space

Parameter space

become

three points become ?

Image space

Parameter space

variables

variables

Image space

Parameter space

four points become

variables

Computer Vision; Colorado School of Mines Kaveh Fathian

- Hough space represents all possible lines
- With gradient information constraint:
 - Edge is single point in Hough space
- Without gradient orientation information?
 - How big is Hough space?

Hough Transform: Line Normal Form

- Use $\theta = \tan^{-1}\left(\frac{\partial f}{\partial y}/\frac{\partial f}{\partial x}\right)$ Space is 0 to 360
- Use r = distance to line from some origin
 - $r_i = x_i \cos \theta_i + y_i \sin \theta_i$
 - Space is $\pm \sqrt{\max_{x} x^2 + \max_{y} y^2}$

Hough Transform: Line Normal Form

• In this line form, unoriented edge draws a sinusoid in Hough space:

Hough transform - experiment

Next few images *ignore* edge orientation. Each point is one sinusoid. r,θ model parameter histogram Image

Hough transform - experiment

Need to adjust grid size or smooth

- Practical considerations
 - Bin size
 - Smoothing
 - Finding multiple lines
 - Finding line segments

Hough transform example

Image → Canny

Canny → **Hough votes**

Hough votes → **Edges**

Find peaks and post-process.

