Birla Institute of Technology and Science, Pilani Work Integrated Learning Programmes Division

Important Definitions and Concepts in * ZC416

Mathematical Foundations for Data Science

&

Mathematical Foundations for Machine Learning

G. Venkiteswaran

Contents

1	Matrix Algebra	3
2	Solutions of Linear Systems	4
3	Vector Spaces and Linear Transformations	5
4	Inner Product and Orthogonality	7
5	Eigenvalues and Eigenvectors	10
6	Matrix Decompositions	11
7	Calculus and Vector Calculus	12
8	Gradient Descent Methods	15
9	Principal Component Analysis	16
10	KKT Conditions and Strong Duality	18
11	Support Vector Machine	19
12	Some Useful Octave Commands	21

Important Definitions and Properties

1 Matrix Algebra

- 1. A **matrix** is a rectangular array of numbers or functions.
- 2. The **size of a matrix** is definied as $m \times n$ where m is the number of rows and n is the number of columns. A matrix with m = n is called a square matrix. The element in the i^{th} row and j^{th} column is denoted by a_{ij} .
- 3. A **zero matrix** is a matrix in which all elements are zero and denoted by **0**.
- 4. **Equality of two matrices** is established if and only if the sizes are the same and the corresponding entries are equal.
- 5. Addition of two matrices $A(=a_{ij})$ and $B(=b_{ij})$ of the same size is the matrix with elements $a_{ij} + b_{ij}$.
- 6. Scalar multiplication of a matrix $A(=a_{ij})$ with a scalar c is a matrix whose elements are ca_{ij} .
- 7. Matrix multiplication of $A_{m\times n}(=a_{ij})$ and $B_{n\times p}(=b_{ij})$ yields a matrix $C_{m\times p}$ whose ij^{th} element is $\sum_{k=1}^{n}a_{ik}b_{kj}$. The equality of the number of columns of A and the number of rows of B should be noted. Also, in general $AB \neq BA$.
- 8. Properties of matrices assiming suitable sizes for matrices A, B and C and c, k being scalars.
 - i) Associativity under addition: (A + B) + C = A + (B + C)
 - ii) Commutativity under addition: A + B = B + A
 - iii) Distributivity: c(A + B) = cA + cB and c(kA) = ck(A)
 - iv) Additive identity: \exists a matrix $\mathbf{0}$ such that $\mathbf{A} + \mathbf{0} = \mathbf{A}$
 - v) Additive inverse: \exists a matrix -A such that A + (-A) = 0
- 9. **Transpose** of a matrix $\mathbf{A}(=a_{ij})$ is obtained by changing the rows to columns and columns to rows and denoted by $\mathbf{A}^T(=a_{ij}^T)$. By definition $a_{ij}^T = a_{ji}$. The important properties of transposes are summarized below.
 - i) $(\boldsymbol{A}^T)^T = \boldsymbol{A}$
 - ii) $(\boldsymbol{A} + \boldsymbol{B})^T = \boldsymbol{A}^T + \boldsymbol{B}^T$

- iii) $(c\mathbf{A})^T = c\mathbf{A}^T$, for any scalar c
- iv) $(\mathbf{A}\mathbf{B})^T = \mathbf{B}^T \mathbf{A}^T$
- 10. Types of matrices
 - i) Symmetric if $A^T = A$
 - ii) Skew-symmetric if $A^T = -A$
 - iii) Upper triangular if $a_{ij} = 0$ for i < j
 - iv) Lower triangular if $a_{ij} = 0$ for i > j
 - v) **Diagonal** if $a_{ij} = 0$ for $i \neq j$
 - vi) **Identity** if $a_{ij} = 1$ for i = j and 0 otherwise
 - vii) Positive definite if $\forall x \neq 0, x^T A x > 0$
 - viii) Positive semi-definite if $\forall x \neq 0, x^T A x \geq 0$

2 Solutions of Linear Systems

- 1. Elementary row operations consist of
 - i) Interchanging two rows
 - ii) Muliplying one row with a non-zero constant
 - iii) Adding a constant multiple of one row to another
- 2. A matrix is said to be in **Row Echelon Form (REF)** if the following conditions are satisfied after performing the necessary elementary row operations.
 - i) All elements below the leading non-zero entry in a row are zero
 - ii) The leading non-zero entry in a row occurs to the right of the leading non-zero entry in the row above it
 - iii) The zero rows occur below the non-zero rows.

It is said to be in **Reduced Row Echelon Form (RREF)** if apart from the above, the leading non-zero entries are scaled to 1 and all elements above the leading non-zero entries are zero. The leading non-zero entres are called the **pivots** and the columns containing them are called the **pivot columns**.

- 3. The number of non-zero rows in the REF / RREF is called the **rank** of the matrix.
- 4. A system of linear equations is written as Ax = b where A is a matrix of size $m \times n$. It is said to be non-homogeneous when $b \neq 0$ and homogeneous otherwise.

- 5. REF applied to the augmented matrix (A|b) associated with a system of linear equations Ax = b, where A is a square matrix is called the forward elimination process of Gaussian elimination. Solving the resulting system is called the backward substitution.
- 6. For the general case where \boldsymbol{A} is of size $m \times n$ having rank r, we have the following scenarios
 - i) if rank(A|b) = r, then the system has at least one solution. Else no solution.
 - ii) if n > r, then n r variables can be given arbitrary values and the values of r variables can be uniquely obtained.
- 7. The particular solution can be uniquely found using the pivot columns and the right hand side and the non-pivotal columns can be used to find the solution of Ax = 0. The general solution is then the combination of the particular solution and the general solution of Ax = 0.

3 Vector Spaces and Linear Transformations

- 1. A **binary operator** * on a non-empty set X gives us a rule to perform an operation on two given elements of the set. A binary operator is said to follow the closure property if $\forall a, b \in X, a * b \in X$.
- 2. Let G be a non-empty set with a binary operator *. < G, * > is said to be a **Group** if
 - G1. * is closed
 - G2. * is associative, that is, $a*(b*c) = (a*b)*c \forall a,b,c \in G$
 - G3. * has an identity, that is, $\forall a \in G, \exists e \in G \text{ such that } a * e = a$
 - G4. * has an inverse, that is, $\forall a \in G$, $\exists b \in G$ such that a*b = e
- 3. A group < G, * > is said to be **Abelian** if $a * b = b * a \forall a, b \in G$.
- 4. A **Field** is an Abelian group with respect to the usual addition and multiplication.
- 5. Let **V** be a non-empty set over a field **F**. **V** is called a vector space if the following conditions are satisfied.
 - A1. Associativity for addition: $\forall u, v, \omega \in V, u + (v + \omega) = (u + v) + \omega$
 - A2. Commutativity for addition: $\forall u, v \in V, u + v = v + u$
 - A3. Additive identity: $\exists \mathbf{0} \in V$ such that $\forall \mathbf{v} \in V, \mathbf{v} + \mathbf{0} = \mathbf{v}$
 - A4. Additive inverse: $\forall v \in V, \exists -v \in V \text{ such that } v + (-v) = 0$

- M1. Left distributivity: $\forall u, v, \in \mathbf{V}$ and $c \in \mathbf{F}$ c(u+v) = cu+cv
- M2. Right distributivity: $\forall v \in \mathbf{V}$ and $c, d \in \mathbf{F}$ (c+d)v = cv + du
- M3. Scalar multiplication: $\forall v \in \mathbf{V} \text{ and } c, d \in \mathbf{F} \ c(dv) = (cd)v$
- M4. Multiplicative identity: $\exists 1 \in \mathbf{F}$ such that $\forall v \in \mathbf{V}, 1.v = v$
- 6. The linear span of a set of vectors $S = \{v_1, v_2, \dots, v_n\}$ is the set

$$LS(S) = \left\{ \sum_{i=1}^{n} \alpha_i \mathbf{v}_i \text{ where } \alpha_i \in \mathbf{F} \ \forall \ i = 1, 2, \dots, n \right\}.$$

- 7. A set of vectors $\{v_1, v_2, \ldots, v_n\}$ is linearly independent if $\sum_{i=1}^n \alpha_i v_i = \mathbf{0}$ has $\alpha_i = 0$ as the only solution $\forall i = 1, 2, \ldots, n$. If at least one of the $\alpha_i \neq 0$, then it is said to be linearly dependent.
- 8. A set of vectors $S = \{v_1, v_2, \dots, v_n\}$ is called a **basis** of a vector space V over F if S is linearly independent and spans V. An equivalent definition is that S is the maximum number of linearly independent elements in V. A vector space can have multiple bases.
- 9. $\mathbf{v}_1, \mathbf{v}_2 \in \mathbb{R}^2$ are linearly dependent if there exists a $\lambda \in \mathbb{R}$ such that $\mathbf{v}_2 = \lambda \mathbf{v}_1$ or $\mathbf{v}_1 = \lambda \mathbf{v}_2$. In \mathbb{R}^2 , if we cannot express one of the two vectors as a linear multiple of the other then they are linearly independent.
- 10. The number of elements in a basis is called the **dimension** of V
- 11. Let **V** be a vector space over F and $\mathbf{W} \subset \mathbf{V}$. \mathbf{W} is a **subspace** over F if a) $\mathbf{0} \in \mathbf{W}$ and b) $\alpha \boldsymbol{\omega}_1 + \beta \boldsymbol{\omega}_2 \in \mathbf{W} \ \forall \ \boldsymbol{\omega}_1, \boldsymbol{\omega}_2 \in \mathbf{W} \ \text{and} \ \alpha, \beta \in F$.
- 12. **Row space** of a matrix $A \in \mathbb{R}^{m \times n}$ is the linear span of the row vectors of the matrix A, denoted by row(A) and is a subspace of \mathbb{R}^n .
- 13. Column space of $A \in \mathbb{R}^{m \times n}$ is the linear span of column vectors of the matrix A, denoted by col(A) and is a subspace of \mathbb{R}^m .
- 14. Equivalence of dimensions dim row(A) = dim col(A) = rank(A).
- 15. The **null space** of $A \in \mathbb{R}^{m \times n}$ is defined as $N(A) = \{x \in \mathbb{R}^n | Ax = 0\}$ and is a subspace of \mathbb{R}^n .
- 16. Rank Nullity Theorem: for $A \in \mathbb{R}^{m \times n}$, rank $(A) + \dim N(A) = n$.
- 17. A mapping $T: \mathbf{V} \to \mathbf{W}$, where \mathbf{V} and \mathbf{W} are vector spaces over the same field F is called a **linear transformation** if

i)
$$T(v_1 + v_2) = T(v_1) + T(v_2) \forall v_1, v_2 \in \mathbf{V}$$

- ii) $T(c\mathbf{v}) = cT(\mathbf{v}) \ \forall \ c \in F, \mathbf{v} \in \mathbf{V}$
- 18. The sets $R(T) = \{ u \in W \mid u = T(v) \text{ for some } v \in V \}$ and $N(T) = \{ v \in V \mid T(v) = 0 \}$ are subspaces of W and V and are called the and null space respectively.
- 19. The Rank-Nullity theorem for linear transformation states that

$$\dim(R(T)) + \dim(N(T)) = \dim(\mathbf{V}).$$

- 20. Associated with every linear transformation $T : \mathbb{R}^m \to \mathbb{R}^n$ is an $n \times m$ matrix which is the **matrix representation of the linear transformation**.
- 21. A linear transformation of a vector in \mathbb{R}^n is a combination of rotation and scaling.

4 Inner Product and Orthogonality

- 1. For a and b in \mathbb{R}^n , a^Tb is called the **dot product** of a and b and is denoted by $\langle a, b \rangle$ or $a \cdot b$.
- 2. Properties of dot product
 - i) $\langle ku + lv, w \rangle = k \langle u, w \rangle + l \langle v, w \rangle$, $\forall k, l \in \mathbb{R}$, $\forall u, v, w \in \mathbb{R}^n$ (linearity)
 - ii) $\langle \boldsymbol{u}, \boldsymbol{v} \rangle = \langle \boldsymbol{v}, \boldsymbol{u} \rangle \ \forall \boldsymbol{u}, \boldsymbol{v} \in \mathbb{R}^n \ (\text{symmetry})$
 - iii) $\langle \boldsymbol{u}, \boldsymbol{u} \rangle \geq 0$, $\forall \boldsymbol{u} \in \mathbb{R}^n \langle \boldsymbol{u}, \boldsymbol{u} \rangle = 0$ if and only if $\boldsymbol{u} = \boldsymbol{0}$ (positive definite)
- 3. The **norm** of a vector $\mathbf{a} \in \mathbb{R}^n$ is defined as $\|\mathbf{a}\| = \sqrt{\langle \mathbf{a}, \mathbf{a} \rangle} \geq 0$.
- 4. Properties of norm
 - i) $|\langle a,b\rangle| \leq ||a|| ||b||$ (Cauchy Schwarz inequality)
 - ii) $||a+b|| \le ||a|| + ||b||$ (Triangle inequality)
- 5. For any vectors $\boldsymbol{a}, \boldsymbol{b} \in \mathbb{R}^n$

$$-1 \le \frac{\langle \boldsymbol{a}, \boldsymbol{b} \rangle}{\|\boldsymbol{a}\| \|\boldsymbol{b}\|} \le 1$$

6. A bilinear mapping Ω is a mapping with two arguments and is linear in both arguments: Let \mathbf{V} be a vector space such that $\mathbf{x}, \mathbf{y}, \mathbf{z} \in V$, and let $\lambda, \psi \in \mathbb{R}$. Then we have $\Omega(\lambda \mathbf{x} + \psi \mathbf{y}, \mathbf{z}) = \lambda \Omega(\mathbf{x}, \mathbf{z}) + \psi \Omega(\mathbf{y}, \mathbf{z})$, and $\Omega(\mathbf{x}, \lambda \mathbf{y} + \psi \mathbf{z}) = \lambda \Omega(\mathbf{x}, \mathbf{y}) + \psi \Omega(\mathbf{x}, \mathbf{z})$.

- 7. Let **V** be a vector space and $\Omega : \mathbf{V} \times \mathbf{V} \to \mathbb{R}$ be a bilinear mapping that takes two vectors as arguments and returns a real number. Then Ω is called symmetric if $\Omega(\boldsymbol{x}, \boldsymbol{y}) = \Omega(\boldsymbol{y}, \boldsymbol{x})$. Also Ω is called positive-definite if $\forall x \in \mathbf{V} \setminus \{0\}, \ \Omega(\boldsymbol{x}, \boldsymbol{x}) > 0$ and $\Omega(0, 0) = 0$.
- 8. A bilinear mapping Ω is a mapping with two arguments and is linear in both arguments: Let \mathbf{V} be a vector space such that $\mathbf{x}, \mathbf{y}, \mathbf{z} \in V$, and let $\lambda, \psi \in \mathbb{R}$. Then we have $\Omega(\lambda \mathbf{x} + \psi \mathbf{y}, \mathbf{z}) = \lambda \Omega(\mathbf{x}, \mathbf{z}) + \psi \Omega(\mathbf{y}, \mathbf{z})$, and $\Omega(\mathbf{x}, \lambda \mathbf{y} + \psi \mathbf{z}) = \lambda \Omega(\mathbf{x}, \mathbf{y}) + \psi \Omega(\mathbf{x}, \mathbf{z})$.
- 9. Let **V** be a vector space and $\Omega : \mathbf{V} \times \mathbf{V} \to \mathbb{R}$ be a bilinear mapping that takes two vectors as arguments and returns a real number. Then Ω is called symmetric if $\Omega(\boldsymbol{x}, \boldsymbol{y}) = \Omega(\boldsymbol{y}, \boldsymbol{x})$. Also Ω is called positive-definite if $\forall x \in \mathbf{V} \setminus \{0\}, \ \Omega(\boldsymbol{x}, \boldsymbol{x}) > 0$ and $\Omega(0, 0) = 0$.
- 10. A positive-definite, symmetric bilinear mapping $\Omega: \mathbf{V} \times \mathbf{V} \to \mathbb{R}$ is called an inner product. To denote an inner product on \mathbf{V} we generally write $\langle \boldsymbol{x}, \boldsymbol{y} \rangle$. The pair $(\mathbf{V}, \langle ., . \rangle)$ is called an inner product space.
- 11. For a real-valued, finite-dimensional vector space \mathbf{V} and an ordered basis B of \mathbf{V} , it holds that $\langle .,. \rangle : \mathbf{V} \times \mathbf{V} \to \mathbb{R}$ is an inner product if and only if there exists a symmetric, positive definite matrix $\mathbf{A} \in \mathbb{R}^{n \times n}$ with $\langle \mathbf{x}, \mathbf{y} \rangle = \hat{\mathbf{x}}^T \mathbf{A} \hat{\mathbf{y}}$.
- 12. Inner products and norms are closely related in the sense that any inner product induces a norm: $||x|| = \sqrt{\langle x, x \rangle}$
- 13. Not every norm is induced by an inner product, for example the Manhattan norm.
- 14. For an inner product vector space $(V, \langle ., . \rangle)$, the induced norm $\|.\|$ satisfies the Cauchy-Schwarz inequality: $\langle \boldsymbol{x}, \boldsymbol{y} \rangle \leq \|\boldsymbol{x}\| \|\boldsymbol{y}\|$.
- 15. The **angle** between two vectors $a, b \in \mathbb{R}^n$ is

$$\alpha = \cos^{-1}\left(\frac{\langle \boldsymbol{a}, \boldsymbol{b} \rangle}{\|\boldsymbol{a}\| \|\boldsymbol{b}\|}\right).$$

- 16. Two vectors $\mathbf{a}, \mathbf{b} \in \mathbb{R}^n$ are said to be **orthogonal** if $\langle \mathbf{a}, \mathbf{b} \rangle = 0$.
- 17. A set of vectors $\{v_1, \dots, v_n\}$ is called as an **orthogonal set** if v_i is orthogonal to v_j , $\forall i \neq j$.
- 18. A set of vectors $\{v_1, \dots, v_n\}$ is called as an **orthonormal set** if v_i is orthogonal to v_j , $\forall i \neq j$ and each v_i is of unit norm.
- 19. The **projection** of v_2 onto the vector v_1 is $v = \lambda \frac{v_1}{\|v_1\|}$ where $\lambda = \frac{\langle v_2, v_1 \rangle}{\|v_1\|}$.

- 20. The canonical basis or the standard basis forms an orthonormal set.
- 21. A matrix A is said to be an orthonormal matrix if the column vectors of the matrix form a orthonormal set and $AA^T = I = A^TA$.
- 22. **Gram-Schmidt Process** If $\{u_1, \dots u_m\}$ be a basis of a subspace U of \mathbb{R}^n , and

$$egin{array}{lll} oldsymbol{v}_1 &=& oldsymbol{u}_1 \ oldsymbol{v}_2 &=& oldsymbol{u}_2 - rac{oldsymbol{u}_2 \cdot oldsymbol{v}_1}{oldsymbol{v}_1 \cdot oldsymbol{v}_1} oldsymbol{v}_1 \ oldsymbol{v}_3 &=& oldsymbol{u}_3 - rac{oldsymbol{u}_3 \cdot oldsymbol{v}_1}{oldsymbol{v}_1 \cdot oldsymbol{v}_1} oldsymbol{v}_1 - rac{oldsymbol{u}_3 \cdot oldsymbol{v}_2}{oldsymbol{v}_2 \cdot oldsymbol{v}_2} oldsymbol{v}_2 \ &\vdots \ oldsymbol{v}_m &=& oldsymbol{u}_m - rac{oldsymbol{u}_m \cdot oldsymbol{v}_1}{oldsymbol{v}_1 \cdot oldsymbol{v}_1} oldsymbol{v}_1 - rac{oldsymbol{u}_m \cdot oldsymbol{v}_2}{oldsymbol{v}_2 \cdot oldsymbol{v}_2} oldsymbol{v}_2 - \cdots - rac{oldsymbol{u}_m \cdot oldsymbol{v}_{m-1}}{oldsymbol{v}_{m-1} \cdot oldsymbol{v}_{m-1}} oldsymbol{v}_{m-1} \end{array}$$

Then,
$$\{v_1, \dots v_m\}$$
 is an orthogonal basis for U and $LS\{v_1, \dots v_k\} = LS\{u_1, \dots u_k\}$ for $1 \le k \le m$.

- 23. Consider an inner product space $(V, \langle .,. \rangle)$. Define $d(\boldsymbol{x}, \boldsymbol{y})$ the distance between two vectors \boldsymbol{x} and \boldsymbol{y} to be $d(\boldsymbol{x}, \boldsymbol{y}) = \|\boldsymbol{x} \boldsymbol{y}\| = \sqrt{\langle \boldsymbol{x} \boldsymbol{y}, \boldsymbol{x} \boldsymbol{y} \rangle}$.
- 24. If we use the dot product as the inner product, then the distance is called the Euclidean distance.
- 25. The mapping $d: V \times V \to \mathbb{R}$ is called a metric.
- 26. d is positive-definite which means $d(x, y) \ge 0 \ \forall x, y \in V$. $d(x, y) = 0 \implies x = y$.
- 27. d is symmetric which means $d(x, y) = d(y, x) \ \forall x, y \in V$.
- 28. d obeys the triangle inequality as follows: $d(x, z) \le d(x, y) + d(y, z) \ \forall x, y, z \in V$
- 29. Performing Gaussian elimination on the matrix $A^T A$ where A contains the basis vectors as its columns. Upon Gaussian elimination on the augmented matrix we reduce $[A^T A | A^T]$ to get $[U | L^{-1} A^T]$ where $A^T A = LU$. $Q^T = L^{-1} A^T$ is an orthogonal matrix whose rows are orthogonal. This is the alternatuive form of **Gram-Schmidt Orthogonalization**.

5 Eigenvalues and Eigenvectors

- 1. The **minor** of an element a_{ij} , denoted by m_{ij} , of a square matrix $\mathbf{A}(=a_{ij})$ of size $n \times n$ is the determinant of the submatrix of \mathbf{A} obtained by deleting the i^{th} row and the j^{th} column from \mathbf{A} .
- 2. The **cofactor** of the element a_{ij} is defined as $(-1)^{i+j}$.
- 3. The **determinant** of a matrix is then defined as $\operatorname{Det}(\mathbf{A}) = \sum_{k=1}^{n} a_{rk} c_{rk}$ where we have taken the product over the r^{th} row. The value is invariant for the product taken over columns. The following are some of the interesting properties.
 - i) $Det(\mathbf{A}) = 0$ whenever there is linear dependence in the rows / columns.
 - ii) Multiplying the r^{th} row by a scalar c is same as multiplying the determinant value with c.
 - iii) $\operatorname{Det}(c\mathbf{A}) = c^n \operatorname{Det}(\mathbf{A})$
 - iv) $Det(\mathbf{AB}) = Det(\mathbf{A})Det(\mathbf{B})$
- 4. The **adjoint** of a matrix A, denoted by adj(A) is defined as the transpose of the cofactor matrix.
- 5. The **inverse** of a matrix A is defined as $A^{-1} = \frac{\operatorname{adj}(A)}{\operatorname{Det}(A)}$.
- 6. An alternative way to calculate the inverse of \boldsymbol{A} is to start with the augmented matrix $[\boldsymbol{A} \mid \boldsymbol{I}]$ and use elementary row operations to convert this to $[\boldsymbol{I} \mid A^{-1}]$. This procededure is called the **Gauss Jordan** method.
- 7. The roots of the **characteristic equation** $\text{Det}(A \lambda I) = 0$ are called the **eigenvalues**. Any non-zero vector \boldsymbol{x} which satisfies the equation $\boldsymbol{A}\boldsymbol{x} = \lambda \boldsymbol{x}$ is called the **eigenvector** corresponding to the eigenvalue λ
- 8. There are n eigenvalues for a matrix \boldsymbol{A} of size $n \times n$ and they can be real or complex.
- 9. For a square matrix the **rank** is the number of non-zero eigenvalues.
- 10. A symmetric positive definite matrix has full rank.
- 11. The eigenvalues of a positive definite matrix are always positive.

- 12. The sum of diagonal elements of a matrix, called the **trace** is equal to the sum of the eigenvalues and the product of the eigenvalues is equal to the determinant.
- 13. The eigenvalues of a symmetric matrix are all real whereas that of a skew-symmetric matrix are either purely complex or zero.
- 14. The eigenvectors corresponding to distinct eigenvalues are linearly independent.
- 15. The **Spectral theorem** states that for a symmetric matrix A of size $n \times n$, the eigenvalues are real and that the eigenvectors for an orthogonal basis of \mathbb{R}^n .

6 Matrix Decompositions

1. If x_1, x_2, \ldots, x_n are the linearly independent eigenvectors of a matrix correspoding to eigenvalues $\lambda_1, \lambda_2, \ldots, \lambda_n$, then

$$\mathbf{P}^{-1}\mathbf{A}\mathbf{P} = \operatorname{diag}(\lambda_1, \lambda_2, \dots, \lambda_n),$$

where P is the matrix with eigenvectors as columns. This is called the eigenvalue decomposition.

- 2. Under certain conditions a matrix A can be decomposed into a product of a lower triangular matrix (L) and an upper triangular matrix (U), that is A = LU. This method is computationally effective in solving systems of equations with the same matrix A and different right hand sides. This procedure is called LU decomposition method.
- 3. The steps in LU decomposition include, solving for y in $Ly = \mathbf{b}$ and then Ux = y. The following methods are popular.
 - i) Doolittle's method if $L_{ii} = 1 \ \forall i$
 - ii) Crout's method if $U_{ii} = 1 \forall i$
 - iii) Cholesky's method if A is positive definite and $L = U^T$.
- 4. Any matrix $A_{m\times n}$ can be written as $A = U\Sigma V^T$ where $U_{m\times m}, V_{n\times n}$ are orthonormal matrices and $\Sigma_{m\times n}$ is the matrix of singular values. This is called the **Singular Value Decomposition** of A.
- 5. The matrix U consists of eigenvectors of AA^T written as columns and V has the eigenvectors of A^TA written as columns.
- 6. The elements of Σ are all non-negative and are arranged in decreasing order along the diagonal.

- 7. If u_1, v_2, \ldots, u_m and v_1, v_2, \ldots, v_n are the columns of U and V and σ_{ii} , $i = 1, 2, \ldots, r$ are the non-zero diagonal elements of Σ , of a matrix A of rank r, then a rank k approximation of A (where $k \leq r$) is given by $\sum_{i=1}^k u_k \sigma_{ii} v_k^T$.
- 8. The first diagonal element of Σ is called the 2 norm of A.
- 9. If A is an $m \times n$ matrix with $m \geq n$ and all the columns linearly independent, then A has a decomposition of the form QR where Q is a matrix whose columns are orthogonal and R is an upper triangular matrix. This is called the QR decomposition of A. The basic idea is to use Gram-Schmidt Orthogonolization process to get Q and get R via Q^TA .

7 Calculus and Vector Calculus

1. The **derivative** of f at x is defined as the limit

$$\frac{df}{dx} = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

2. The **Taylor polynomial** of degree n of $f: \mathbb{R} \to \mathbb{R}$ at x_0 is defined as

$$T_n(x) = \sum_{k=0}^{n} \frac{f^{(k)}(x_0)}{k!} (x - x_0)^k$$

3. The **Taylor series** of smooth (continuously differentiable infinite many times) function $f : \mathbb{R} \to \mathbb{R}$ at x_0 is defined as

$$T_{\infty}(x) = \sum_{k=0}^{\infty} \frac{f^{(k)}(x_0)}{k!} (x - x_0)^k$$

- 4. Rules for differentiation. We denote the derivative of f by f'
 - i) **Product Rule:** (f(x)g(x))' = f'(x)g(x) + f(x)g'(x)
 - ii) Sum Rule: $\left(f(X)+g(X)\right)'=f'(X)+g'(x)$
 - iii) Quotient Rule: $\left(\frac{f(x)}{g(x)}\right)' = \frac{f'(x)g(x) f(x)g'(x)}{(g(x))^2}$
 - iv) Chain Rule: $(g(f(x))' = (g \circ f)'(x) = g'(f(x))f'(x)$

5. For a function $f: \mathbb{R}^n \to \mathbb{R}$, $x \to f(x)$, $x \in \mathbb{R}^n$ of n variables x_1, \ldots, x_n we define the **partial derivatives** as

$$\frac{\partial f}{\partial x_1} = \lim_{h \to 0} \frac{f(x_1 + h, x_2, \dots, x_n) - f(x_1, x_2, \dots, x_n)}{h}$$

$$\frac{\partial f}{\partial x_2} = \lim_{h \to 0} \frac{f(x_1, x_2 + h, \dots, x_n) - f(x_1, x_2, \dots, x_n)}{h}$$

$$\vdots$$

$$\frac{\partial f}{\partial x_n} = \lim_{h \to 0} \frac{f(x_1, x_2, \dots, x_n + h) - f(x_1, x_2, \dots, x_n)}{h}$$

We collect them in the row vector called the gradient of f or **Jacobian**

$$\Delta_x f = \mathbf{grad} f = \frac{df}{dx} = \left[\frac{\partial f(x)}{\partial x_1}, \frac{\partial f(x)}{\partial x_2}, \dots, \frac{\partial f(x)}{\partial x_n}\right]$$

- 6. The rules for partial differentiation are
 - i) Product rule: $\frac{\partial}{\partial x}(f(x)g(x)) = \frac{\partial f}{\partial x}g(x) + f(x)\frac{\partial g}{\partial x}$
 - ii) Sum rule: $\frac{\partial}{\partial x}(f(x) + g(x)) = \frac{\partial f}{\partial x} + \frac{\partial g}{\partial x}$
 - iii) Chain rule: $\frac{\partial}{\partial x}(g \circ f)(x) = \frac{\partial}{\partial x}(g(f(x))) = \frac{\partial g}{\partial f}\frac{\partial f}{\partial x}$
- 7. To compute the gradient of f with respect to t, we need to apply the chain rule for multivariate functions as

$$\frac{df}{dt} = \begin{bmatrix} \frac{\partial f}{\partial x_1} & \frac{\partial f}{\partial x_2} \end{bmatrix} \begin{bmatrix} \frac{\partial x_1(t)}{\partial t} \\ \frac{\partial x_2(t)}{\partial t} \end{bmatrix} = \frac{\partial f}{\partial x_1} \frac{\partial x_1}{\partial t} + \frac{\partial f}{\partial x_2} \frac{\partial x_2}{\partial t}$$

where d denotes the gradient and ∂ partial derivatives.

8. For a function $f: \mathbb{R}^n \to \mathbb{R}^m$ and a vector $x = [x_1, \dots, x_n]^T$ corresponding vector of function values is given as

$$f(x) = \begin{bmatrix} f_1(x) \\ \vdots \\ f_m(x) \end{bmatrix} \in \mathbb{R}^m$$

where each $f_i: \mathbb{R}^n \to \mathbb{R}$

9. **Taylor's Theorem:** Suppose $f:(a,b) \to R$ is a function on (a,b), where a,b in R with a < b. Assume that f is n-times differentiable in the open interval (a,b) and $f,f',f'',\ldots f^{n-1}$ all extend continuously to the closed interval [a,b], such that the extended functions are still called $f,f''\ldots f^{n-1}$. Then there exists $c \in (a,b)$ such that

$$f(b) = \sum_{k=0}^{k=n-1} \frac{f^k(a)}{k!} (b-a)^k + \frac{f^n(c)}{n!} (b-a)^n$$

- 10. For n=1, the statement of Taylor's theorem boils down to the **Mean-Value Theorem** which is that if a function f is continuous on [a,b] and differentiable on the interval (a,b), then there exists a value $c \in (a,b)$ such that $f'(c) = \frac{f(b)-f(a)}{b-a}$
- 11. The **Hessian** is the collection of all second-order partial derivatives. If f(x,y) is a twice (continuously) differentiable function, then $\frac{\partial^2 f}{\partial x \partial y} = \frac{\partial^2 f}{\partial y \partial x}$ i.e., the order of differentiation does not matter, and the corresponding Hessian matrix is symmetric. The Hessian is denoted as

$$\nabla_{x,y}^2 f(x,y) = \begin{bmatrix} f_{xx} & f_{xy} \\ f_{xy} & f_{yy} \end{bmatrix}$$

- 12. For a function f(x,y) which is twice differentiable in a neighbourhood of the point (a,b) and $f_x(a,b) = f_y(a,b) = 0$, the expression for f(a+h,b+k) simplifies to $f(a+h,b+k) f(a,b) = \frac{1}{2}(h^2f_{xx} + 2hkf_{xy} + k^2f_{yy})|_{a+ch,b+ck} =: Q(c)$. If $Q(0) \neq 0$, the sign of Q(c) for small c will be the same as the sign of Q(0) for sufficiently small values of h and k.
- 13. Since $f_{xx}Q(0) = (hf_{xx} + kf_{xy})^2 + (f_{xx}f_{yy} f_{xy}^2)k^2$.
 - i) If $f_{xx} < 0$ and $f_{xx}f_{yy} f_{xy}^2 > 0$ at (a,b) then Q(0) < 0 for all sufficiently small non-zero values of h and k, then f has a local maximum value at (a,b).
 - ii) If $f_{xx} > 0$ and $f_{xx}f_{yy} f_{xy}^2 > 0$ at (a, b) then Q(0) > 0 for all sufficiently small non-zero values of h and k, then f has a local minimum value at (a, b).
 - iii) If $f_{xx}f_{yy} f_{xy}^2 < 0$ at (a, b) there are combinations of small values for h and k for which Q(0) > 0 and other combinations of h and k for which Q(0) < 0. This means that f has a saddle point at (a, b).
 - iv) If $f_{xx}f_{yy} f_{xy}^2 = 0$ at (a, b) another test is needed.
- 14. The gradient of an $m \times n$ matrix \boldsymbol{A} with respect to a $p \times q$ matrix \boldsymbol{B} , the resulting Jacobian would be an $(m \times n) \times (p \times q)$, i.e., a four-dimensional **tensor** J, whose entries are given as

$$J_{ijkl} = rac{\partial m{A}_{ij}}{\partial m{B}_{kl}}$$

15. Some useful gradient identities

i)
$$\frac{\partial}{\partial X} f(X)^T = \left(\frac{\partial f(X)}{\partial X}\right)^T$$

ii)
$$\frac{\partial}{\partial X} \operatorname{tr}(f(X)) = \operatorname{tr}\left(\frac{\partial f(X)}{\partial X}\right)$$

iii)
$$\frac{\partial}{\partial X} \det(f(X)) = \det(f(x)) \operatorname{tr} \left(f(X)^{-1} \frac{\partial f(X)}{\partial X} \right)$$

iv)
$$\frac{\partial}{\partial X} f(X)^{-1} = -f(X)^{-1} \frac{\partial f(X)}{\partial X} f(X)^{-1}$$

v)
$$\frac{\partial a^T X^{-1} b}{\partial X} = -(X^{-1})^T a b^T (X^{-1})^T$$

vi)
$$\frac{\partial x^T a}{\partial x} = a^T$$

vii)
$$\frac{\partial a^T x}{\partial x} = a^T$$

viii)
$$\frac{\partial a^T X b}{\partial X} = ab^T$$

ix)
$$\frac{\partial x^T B}{\partial x} = x^T (B + B^T)$$

x)
$$\frac{\partial}{\partial s}(x-As)^TW(x-As) = -2(x-As)^TWA$$
, for symmetric W.

8 Gradient Descent Methods

- 1. Gradient descent method: find the optimum of J, say at $J(\boldsymbol{x}_*)$, we can start at some initial point \boldsymbol{x}_0 and then iterate according to $\boldsymbol{x}_{i+1} = \boldsymbol{x}_i \alpha_i((\nabla J)(\boldsymbol{x}_i))^T$, where α is the **learning rate**.
- 2. The standard gradient descent procedure is a batch optimization method in that the update step considers the gradient of the entire loss function $L(\theta)$, i,e $\theta_{i+1} = \theta_i \alpha_i \nabla L(\theta_i)^T = \theta_i \alpha_i \sum_{n=1}^{n=N} \nabla L_n(\theta_i)^T$.
- 3. With a learning rate dependent on time, the update step becomes $\boldsymbol{w}_{n+1} = \boldsymbol{w}_n \alpha_t \nabla J$.
- 4. In line search, the step-size α_t is computed as $\alpha_t = \min_{\alpha} J(\boldsymbol{w}_t + \alpha \boldsymbol{g}_t)$.
- 5. The first step in optimization is to identify a range $[a, b] = [0, \alpha_{\text{max}}]$ in which to perform the search for the optimum α .
- 6. It is then possible to narrow the search interval by using **binaryn** search or golden section search methods.
 - i) In binary search, if the objective function is found to be increasing at $\frac{a+b}{2}$, we narrow the interval to $[a,\frac{a+b+\epsilon}{2}]$ and continue the search. Otherwise we narrow the interval to $[\frac{a+b}{2},b]$ and continue the search. ϵ is usually taken as 10^{-8} .

- ii) In golden section search, When $\alpha = a$ yields the minimum for the objective function, i.e $H(\alpha)$, we can drop the interval $(m_1, b]$. Similarly when $\alpha = b$ yields the minimum for $H(\alpha)$ we can drop the interval $[a, m_2)$. When $\alpha = m_1$ is the value at which the minimum is achieved we can drop $(m_2, b]$. When $\alpha = m_2$ is the value at which the minimum is achieved we can drop $[a, m_1)$.
- 7. In case of **mean centering** a vector of column-wise means is subtracted from each data point.
- 8. In case of **feature normalization**, each feature value is divided by its standard deviation.
- 9. In case of **min-max normalization** we scale the *j*th feature of the *i*th datapoint as follows: $x_{ij} = \frac{x_{ij} \min_j}{\max_j \min_j}$.
- 10. Modified Gradient Descent Methods
 - i) The set S of data points can be treated as a sample and a sample-centric objective function can be constructed as follows: $J(S) = \sum_{i \in S} (\boldsymbol{w}^T \boldsymbol{X}_i y_i)^2$. This is called as **mini batch gradient descent**.
 - ii) In the extreme case S can contain only one index chosen at random, the approach is called as **stochastic gradient descent**.
 - iii) The normal update procedure for gradient descent can be written as $\boldsymbol{w} \leftarrow \boldsymbol{w} + \boldsymbol{v}$ where $v \leftarrow -\alpha \frac{\partial J}{\partial \boldsymbol{w}}$.
 - iv) The gradient descent with **momentum based**, for $\beta \in (0,1)$, the update can be written as $\boldsymbol{w} \leftarrow \boldsymbol{w} + \boldsymbol{v}$ where $\boldsymbol{v} \leftarrow \beta \boldsymbol{v} \alpha \frac{\partial J}{\partial \boldsymbol{w}}$.
 - v) **AdaGrad Method:** The update step becomes $w_i \leftarrow w_i \frac{\alpha}{\sqrt{A_i}} \frac{\partial J}{\partial w_i}$, $\forall i$ where $A_i \leftarrow A_i + \left(\frac{\partial J}{\partial w_i}\right)^2$, $\forall i$.
 - vi) **RMS Prop Method:** The update step is $w_i \leftarrow w_i \frac{\alpha}{\sqrt{A_i}} \frac{\partial J}{\partial w_i}$, $\forall i$ where $A_i \leftarrow \rho A_i + (1 \rho) \left(\frac{\partial J}{\partial w_i}\right)^2$ with $\rho \in (0, 1)$.
 - vii) **Adams Method:** The following update is used at the tth iteration: $w_i \leftarrow w_i \frac{\alpha_t F_i}{\sqrt{A_i}}$ where $\alpha_t = \alpha \frac{\sqrt{1-\rho^t}}{1-\rho_f^t}$. And $A_i \leftarrow \rho A_i + (1-\rho)\left(\frac{\partial J}{\partial w_i}\right)^2$ with $\rho \in (0,1)$, $F_i \leftarrow \rho_f F_i + (1-\rho_f)\frac{\partial J}{\partial w_i}$ with $\rho_f \in (0,1)$.

9 Principal Component Analysis

1. Consider an iid dataset $\{x_1, x_2, ..., x_n\}, x_n \in \mathbb{R}^D$ with mean **0** which possesses the **data covariance matrix** $S = \frac{1}{N} \sum_{n=1}^{n=N} x_n x_n^T$.

- 2. We assume there exists a lower-dimensional compressed representation z_n of x_n such that $z_n = B^T x_n$ where the **projection matrix** $B = [b_1, \ldots, b_m] \in \mathbb{R}^{D \times M}$.
- 3. The columns of B are orthonormal which means $\boldsymbol{b}_i^T \boldsymbol{b}_j = 0$ when $i \neq j$ and $\boldsymbol{b}_i^T \boldsymbol{b}_i = 1$.
- 4. There exists a linear relationship between the original data x, its low-dimensional code z and the compressed data \tilde{x} : $z = B^T x$, and $\tilde{x} = Bz$ for a suitable matrix B.
- 5. PCA can then be viewed as a dimensionality reduction algorithm that maximizes the variance in the low-dimensional representation of the data to retain as much information as possible.
- 6. For the data covariance matrix $S = \frac{1}{N} \sum_{n=1}^{n=N} x_n x_n^T$ we assume centred data, and can make this assumption without loss of generality.
- 7. Finding the direction b_1 that maximizes variance can be set up as a constrained optimization problem

$$\max \, oldsymbol{b}_1^T oldsymbol{S} oldsymbol{b}_1 ext{ subject to} \ \|oldsymbol{b}_1\| = 1$$

- 8. Our objective function boils to maximizing λ which means we are looking for the eigenvector of S that corresponds to its largest eigenvalue.
- 9. The mth **principal component** can be found by subtracting from the data the contribution of the first m-1 components $b_1, b_2, \ldots b_{m-1}$. Essentially, we are trying to find principal components that compress the remainder of the information.
- 10. We then arrive at a new data matrix $\hat{\boldsymbol{X}} = \boldsymbol{X} \sum_{i=1}^{m-1} \boldsymbol{b}_i \boldsymbol{b}_i^T \boldsymbol{X}$ where $\boldsymbol{X} = [\boldsymbol{x}_1, \boldsymbol{x}_2, \dots, \boldsymbol{x}_N] \in \mathbb{R}^{D \times N}$ contains the data points as column vectors and $\boldsymbol{B}_{m-1} = \sum_{i=1}^{m-1} \boldsymbol{b}_i \boldsymbol{b}_i^T$ is a projection matrix that projects \boldsymbol{X} onto the subspace spanned by $\boldsymbol{b}_1, \boldsymbol{b}_2, \dots \boldsymbol{b}_{m-1}$. $\hat{\boldsymbol{S}}$ is the covariance matrix of the data matrix $\hat{\boldsymbol{X}}$.
- 11. The sets of eigenvectors for \hat{S} and S are the same.
- 12. Assume the SVD of X as $X = U\Sigma V^T$. Then

$$S = \frac{1}{N}XX^T = \frac{1}{N}U\Sigma\Sigma^TU^T$$

13. The eigenvalues λ_d of S are related to the singular values of X via

$$\lambda_d = \frac{\sigma_d^2}{N} \tag{1}$$

14. Consider the best rank-M approximation of X defined as \tilde{X}_M

$$\tilde{X}_M = \operatorname{argmin}_{rank(A) < =M} \|X - A\|_2 \tag{2}$$

15. The eigenvectors of XX^T can be computed from the eigenvectors of X^TX using the equation

$$\frac{1}{N}XX^TXc_m = \lambda_m Xc_m \tag{3}$$

- 16. Steps for the computation of the PCA:
 - i) We need to standardize x_* using the mean and standard deviation of the training data in the d th dimension

$$x_*^{(d)} = \frac{x_*^{(d)} - \mu_d}{\sigma_d}, \quad d = 1, ..., D$$
 (4)

where $x_*^{(d)}$ is the d th component of x_* .

ii) We obtain the projection as

$$\tilde{x} = BB^T x_* \tag{5}$$

iii) The coordinates are

$$z_* = B^T x_* \tag{6}$$

with respect to the basis of the principal subspace.

10 KKT Conditions and Strong Duality

- 1. The **primal problem** is min f(x) subject to $g_i(x) \leq 0, 1 \leq i \leq m$. Optimization is performed over the primal variables x.
- 2. We create the **Lagrangian** of the given constrained optimization problem as follows: $\mathfrak{L}(\boldsymbol{x}, \boldsymbol{\lambda}) = f(\boldsymbol{x}) + \sum_{i=1}^{i=m} \lambda_i g_i(\boldsymbol{x}) = f(\boldsymbol{x}) + \boldsymbol{\lambda}^T \boldsymbol{g}(\boldsymbol{x})$, where $\lambda_i \geq 0$ for all i.
- 3. The associated Lagrangian dual problem is $\max_{\boldsymbol{\lambda} \in \mathbb{R}^m \boldsymbol{x} \in \mathbb{R}^d} \mathfrak{L}(\boldsymbol{x}, \boldsymbol{\lambda})$ subject to $\boldsymbol{\lambda} \geq 0$ where $\boldsymbol{\lambda}$ are dual variables.
- 4. Minmax inequality: x, y: $\max_{y} \min_{x} \phi(x, y) \le \min_{x} \max_{y} \phi(x, y)$.
- 5. A set C is called a **convex set** C if for any $x, y \in C$, $\theta x + (1 \theta)y \in C$, for $0 \le \theta \le 1$.
- 6. The function is a **convex function** if for any $x, y \in C$, $f(\theta x + (1 \theta)y) \le \theta f(x) + (1 \theta)f(y)$

- 7. Another way of looking at a convex function is to use the gradient: for any two points \boldsymbol{x} and \boldsymbol{y} , we have $f(\boldsymbol{y}) \geq f(\boldsymbol{x}) + \nabla_{\boldsymbol{x}} f(\boldsymbol{x}) (\boldsymbol{y} \boldsymbol{x})$.
- 8. For a primal optimization problem min f(x) subject to $g_i(x) \leq 0$ for i = 1, 2, ..., m and $h_j(x) = 0$ for j = 1, 2, ..., p, we say that it obeys **Slater's condition** if the objective function f is convex, the constraints g_i are all convex and the contraint functions h_i are all linear and there exists a point \bar{x} in the interior of the region, i.e $g_i(\bar{x}) < 0$ for all $i \in [m]$ and $h_j(\bar{x}) = 0$ for all $j \in [p]$.
- 9. Suppose Slater's condition holds and the region has a non-empty interior. Then we have **strong duality**.
- 10. Given a primal optimization problem, we say that x^* and $(\lambda^*, \nu^*) \in \mathbb{R}^m \times \mathbb{R}^p$ respect the **Karash-Kuhn-Tucker conditions** if:
 - i) $g_i(\boldsymbol{x}^*) \leq 0 \ \forall i \in [m].$
 - ii) $h_i(x^*) = 0 \ \forall i \in [p].$
 - iii) $\lambda_i^* \geq 0 \ \forall i \in [m].$
 - iv) $\lambda_i^* g_i(\boldsymbol{x}^*) = 0 \ \forall i \in [m].$
 - v) $\nabla f(\mathbf{x}^*) + \sum_{i=1}^{i=m} \lambda_i^* \nabla g_i(\mathbf{x}^*) + \sum_{i=1}^{i=p} \nu_i^* \nabla h_i(\mathbf{x}^*) = 0.$
- 11. For any optimization problem, if strong duality holds then any primal optimal solution x^* and dual optimal solution $(\lambda^*, \nu^*) \in \mathbb{R}^m \times \mathbb{R}^p$ respect the KKT conditions. Conversely if f and g_i are convex for all $i \in [m]$ and h_i are affine for all $i \in [p]$ then the KKT conditions are sufficient for strong duality.

11 Support Vector Machine

- 1. ω is a normal vector to the hyperplane $\langle \omega, \boldsymbol{x} \rangle + b = 0$
- 2. Hard Margin SVM

$$\min_{\boldsymbol{\omega}, b} \frac{1}{2} \|w\|^2$$

subject to $y_i(\langle w, x_i \rangle + b) \ge 1, \ \forall i = 1, \dots, N$

- 3. Using the **Lagrangian** formulation and setting the partial derivatives to zero, $\boldsymbol{\omega} = \sum_{i=1}^{N} \alpha_i y_i \boldsymbol{x}_i$ and $\sum_{i=1}^{N} \alpha_i y_i = 0$.
- 4. Classification of x is based on sign $(\langle \boldsymbol{\omega}, \boldsymbol{x} \rangle + b)$
- 5. **Support vectors** are those which are on the left and right margins.

- 6. Using KKT conditions, $\alpha_i = 0$ for x_i that are not support vectors.
- 7. The dual of the Lagrangian is

$$D(\boldsymbol{\alpha}) = \max_{\boldsymbol{\alpha} \geq \mathbf{0}} \frac{1}{2} \sum_{i=1}^{N} \alpha_i - \sum_{i=1}^{N} \sum_{j=1}^{N} \alpha_i \alpha_j y_i y_j \langle \boldsymbol{x}_i, \boldsymbol{x}_j \rangle$$

8. Soft Margin SVM

$$\min_{\boldsymbol{\omega},b} \frac{1}{2} \|w\| + C \sum_{n=1}^{N} \xi_n$$

subject to $y_n(\langle w, x_n \rangle + b) \ge 1 - \xi_n$
 $\xi_n \ge 0, \ n = 1, \dots, N$

9. Hinge's Loss Function

$$\min_{\boldsymbol{\omega},b} \frac{1}{2} \|w\|^2 + C \sum_{n=1}^{N} \max\{0, 1 - y_n(\langle w, x_n \rangle + b)\}$$

where C is the parameter that controls the width of the margin. Larger C implies lesser width and smaller C signifies a larger width.

10. A **kernel function** is a function that corresponds to an **inner product** in some expanded feature space. For a function $\phi : \mathbf{x} \to \phi(\mathbf{x})$, the dot product can be replaced by $K(\mathbf{x}_i.\mathbf{x}_j) = \langle \phi(\mathbf{x}_i), \phi(\mathbf{x}_j) \rangle$. A widely used ϕ is $\phi(x_1, x_2) = (x_1^2, x_2^2, \sqrt{2}x_1, \sqrt{2}x_2, 1)$.

12 Some Useful Octave Commands

- 1. >> $A = [a_{11} \ a_{12} \ \dots \ a_{1n}; a_{21} \ a_{22} \ \dots \ a_{2n}; \dots; a_{m1} \ a_{m2} \ \dots \ a_{mn}]$ creates an $m \times n$ matrix A with elements a_{ij} .
- 2. $>> [r \ c] = \text{size}(A)$ stores the numbers of rows of A in r and the number of columns in c.
- 3. >> A = zeros(m, n) creates a zero matrix A of size $m \times n$.
- 4. >> A = eye(n) creates an identity matrix A of size n.
- 5. >> A(j,:) gives the j^{th} row of A.
- 6. >> A(:,i) gives the i^{th} column of A.
- 7. >> A(i:j,p:q) gives the submatrix of A with rows from i to j and columns from p to q.
- 8. $>> \operatorname{rref}(A)$ gives the reduced row echelon form of A.
- 9. $>> \operatorname{rank}(A)$ gives the rank of A.
- 10. $>> \det(A)$ gives the determinant of A.
- 11. >> inv(A) gives the inverse of A.
- 12. >> issymmetric(A) returns 1 if A is symmetric and 0 if not.
- 13. $>> [L \ p] = \operatorname{chol}(A)$ yields two parameters L and p. If p = 0, then A is positive definite.
- 14. >> C = A + B stores the sum of two matrices A and B of the same size in matrix C.
- 15. >> C = A * B stores the product of two matrices A and B of compatible sizes in matrix C.
- 16. $>> C = [A \ B]$ appends the columns of A with those of B provided they have the same number of rows and stores in matrix C.
- 17. >> x = a : h : b creates an array with starting pointa, increment h and end point b.
- 18. >> y = x. 2 creates the square of each element of the array x.
- 19. >> plot(x, y, r*') plots the x and y arrays with a red star.
- 20. >> eig(A) gives the eigenvalues of a square matrix A.

- 21. $>> [E\ V] = \operatorname{eigs}(A)$ stores the eigenvalues in V as diagonal entries and the eigenvectors in V as column vectors.
- 22. $>> [u\ s\ v] = \operatorname{svd}(A)$ stores the matrices U, Σ and V in the singular value decomposition of A in u, s and v respectively.
- 23. >> norm(A, 1) gives the 1-norm of A
- 24. >> norm(A, 2) gives the 2-norm of A
- 25. >> norm(A, 'fro') gives the Frobenius norm of A
- 26. >> norm(A, inf) gives the infinity norm of A

Index

Associativity under addition, 3 backward substitution, 5 eigenvector, 10 linearly dependent, 6 orthonormal set, 8 Abelian, 5 AdaGrad Method, 16 Adams Method, 16

Additive identity, 3 Additive inverse, 3 adjoint, 10

Addition of two matrices, 3

adjoint, 1 angle, 8

basis, 6 binary operator, 5 binary search, 15

Cauchy Schwarz inequality, 7
Chain rule, 12, 13
characteristic equation, 10
Cholesky's method, 11
Classification, 19
cofactor, 10
Column space, 6
Commutativity under addition, 3
convex function, 18
convex set, 18
Crout's method, 11

data covariance matrix, 16 derivative, 12 determinant, 10 Diagonal, 4 dimension, 6 Distributivity, 3 Doolittle's method, 11 dot product, 7 dual, 18, 20

eigenvalue decomposition, 11

eigenvalues, 10 Elementary row operations, 4 Equality of two matrices, 3 Equivalence of dimensions, 6

feature normalization, 16 Field, 5 forward elimination process, 5

Gauss Jordan, 10 Gaussian elimination, 5 golden section search, 15 grad, 13 gradient identities, 14 Gram-Schmidt Process, 9 Group, 5

Hard Margin SVM, 19 Hessian, 14 Hinge's Loss Function, 20 homogeneous, 4

Identity, 4 inner product, 20 inverse, 10

Jacobian, 13

Karash-Kuhn-Tucker conditions, 19 kernel function, 20

Lagrangian, 18, 19 learning rate, 15 linear span, 6 linear transformation, 6 linearity, 7

linearly independent, 6 Lower triangular, 4

LU decomposition method, 11

matrix, 3
Matrix multiplication, 3

matrix representation of the linear transformation, 7 mean centering, 16 Mean-Value Theorem, 14 min-max normalization, 16 mini batch gradient descent, 16 Minmax inequality, 18 minor, 10 momentum based learning, 16

non-homogeneous, 4 norm, 7 null space, 6

orthogonal, 8 orthogonal set, 8

partial derivatives, 13
pivot columns, 4
pivots, 4
Positive definite, 4
positive definite, 7
Positive semi-definite, 4
primal problem, 18
principal component, 17
Principal Component Analysis, 16
Product rule, 12, 13
projection, 8
projection matrix, 17
Properties of matrices, 3

QR decomposition, 12 Quotient rule, 12

range space, 7
rank, 4, 10
Rank Nullity Theorem, 6
Rank-Nullity theorem, 7
Reduced Row Echelon Form (RREF),
4
RMS Prop Method, 16
Row Echelon Form (REF), 4
Row space, 6

Scalar multiplication, 3

Singular Value Decomposition, 11 size of a matrix, 3 Skew-symmetric, 4 Slater's condition, 19 Soft Margin SVM, 20 Spectral theorem, 11 standard deviation, 18 standardize, 18 stochastic gradient descent, 16 strong duality, 19 subspace, 6 Sum rule, 12, 13 Support vectors, 19 Symmetric, 4 symmetry, 7 system of linear equations, 4

Taylor polynomial, 12 Taylor series, 12 Taylor's Theorem, 13 tensor, 14 trace, 11 Transpose, 3 Triangle inequality, 7

Upper triangular, 4

zero matrix, 3