A Comparative Study of Histogram Equalization Based Image Enhancement Techniques

Md. Shahbaz Alam

Roll: AE-029, Session: 2016-17

27th August, 2017

Institute of Statistical Research and Training University of Dhaka

Outline

Introduction

Basic definitions and notations

Methodology

Results and discussion

Conclusion

Introduction

Introducton

Digital image processing is the technology of applying a number of algorithms to process digital image. Basically it includes the following three steps:

- Importing the image via image acquisition tools.
- Analyzing and manipulating the image.
- Output (an altered image or image analysis report).

Introduction

Image enhancement: A collection of techniques that seek to improve the visual appearance of an image or convert images to a form better suited for analysis by human or machine. In general two major approaches, one is **gray level statistics based** and the other is **spatial frequency content** based.

The principle objective of image enhancement is to modify attributes of an image to make it more suitable for a given task and a specific observer.

Introduction

The existing image enhancement techniques can be classified into two catagories:

- Spatial domain enhancement.
- Frequency domain enhancement.

Spatial domain techniques are performed to the image plane itself and are based on direct manipulation of pixels in an image. **Histogram equalization** is a well known spatial domain enhancement technique due to its strong performance and easy algorithm in almost all types of images.

Aims and objectives

- To describe and implement four popular methods of histogram equalization on images with different levels of contrast.
- To compare among these five methods using traditional as well as sophisticated metric.
- To illustrate the application of histogram in the field of image processing.

Basic definitions and notations

Digital image

A digital image is a matrix representation of a two-dimensional image. It can be represented by the following matrix:

$$f(x,y) = \begin{pmatrix} f(0,0) & f(0,1) & \dots & f(0,N-1) \\ f(1,0) & f(1,1) & \dots & f(1,N-1) \\ \vdots & \vdots & \ddots & \vdots \\ \vdots & \vdots & \ddots & \vdots \\ f(M-1,0) & f(M-1,1) & \dots & f(M-1,N-1) \end{pmatrix}$$

$$(1)$$

It is advantageous to use a more traditional matrix notation to denote a digital image and its elements:

$$\mathbf{A} = \begin{pmatrix} a_{0,0} & a_{0,0} & \dots & a_{0,N-1} \\ a_{1,0} & a_{1,0} & \dots & a_{1,N-1} \\ \vdots & \vdots & \dots & \vdots \\ \vdots & \vdots & \dots & \vdots \\ a_{M-1,0} & a_{M-1,0} & \dots & a_{M-1,N-1} \end{pmatrix}$$
 (2)

where, $a_{i,j} = f(x = i, y = j) = f(i,j)$ and thus equations (1) and (2) are identical.

Pixel

Each element in the matrix is called an image element, picture element, pixel or pel. Thus a digital image f(x,y) with M rows and N columns contains $M \times N$ number of pixels or image elements. In spatial domain technique for image processing, operation is done on this pixel.

Neighbors of a pixel

The 4-neighbors of pixel p, $N_4(p)$ are the four pixels located at(shaded square) (x+1,y), (x-1,y), (x,y+1), (x,y-1)

(x-1,y-1)	(x-1,y)	(x-1,y+1)
(x, y-1)	(x, y)	(x, y+1)
(x+1,y-1)	(x+1,y)	(x+1,y+1)

Table 1: 8-neighborhood.

The four diagonal neighbors of pixel p, $N_D(p)$ are the four pixels located at

$$(x+1,y+1)$$
, $(x+1,y-1)$, $(x-1,y+1)$, $(x-1,y-1)$ and are denoted by $N_D(p)$. These points, together with the 4-neighbors, are called the 8-neighbors of p , denoted by $N_8(p)$.

Bit-depth

It explains the number of possible colors from which a particular value can be selected by a pixel. For example: a binary image is an one bit image which can take any of thee two values: 0 or 1 (black or white). An 8-bit gray-scale image can assign one of 256(2^8) colors to a pixel. The number of b bits required to store a digital image of size $M \times N$ with 2^k gray level is,

$$b = M \times N \times k \tag{3}$$

Figure 1: A bi-tonal image, where pixels can take any of the two values namely 0 and 1.

Image histogram

Image histogram provides information about brightness and contrast of an image. Discrete function $h(r_k)$ showing the number of occurrences n_k for the kth gray level r_k

$$h(r_k) = n_k \tag{4}$$

A common practice is to normalize a histogram by dividing each of its values by the total number of pixels, denoted by n. So,

$$p(r_k) = \frac{n_k}{n}$$
, for $k = 0, 1, ..., L - 1$; and $\sum_{k=0}^{L-1} p(r_k) = 1$ (5)

Image histogram

Figure 2: An 8-bit image of Albert Einstein and its histogram

Methodology

Methodology

Four different histogram equalization techniques has been used:

- 1. Global Histogram Equalization(GHE).
- 2. Brightness Preserving Bi-Histogram Equalization(BBHE).
- Equal Area Dualistic Sub Image Histogram Equalization (DSIHE).
- 4. Recursive Mean Separate Histogram Equalization (RMSHE).

Mathematical formulation of GHE

Let, $\mathbf{X} = \{X(i,j)\}$ is a given image composed in L(for 8-bi image L = 256) discrete gray levels denoted as $X_0, X_1, ..., X_{L-1}$

• Calculate the probability density function.

$$p(X_k) = \frac{n_k}{n}$$
, for $k = 0, 1, ..., L - 1$ (6)

Calculate cumulative distribution function by

$$c(x_k) = \sum_{j=0}^{k} p(X_j), \text{ for } k = 0, 1, ..., L-1$$
 (7)

• On the basis of CDF, Define transformation function f(x) as

$$f(X_k) = X_0 + (X_{L-1} - X_0)c(x_k)$$
 (8)

Using the transformation function, calculate new intensity values

Global Histogram Equalization(GHE)

Figure 3: Histogram before and after HE or equivalently, RMSHE, r=0.

An example of GHE

Figure 4: Contrast enhancement based on global histogram equalization.

Brightness Preserving Bi-Histogram Equalization(BBHE)

- Partitions Histogram in two sub-histograms and equalize them independently.
- Proposed to minimize mean intensity change.
- Ultimate goal is to preserve brightness and enhance contrast.
- Image parameters such as mean gray-scale level used for partitioning.

Equal Area Dualistic Sub Image Histogram Equalization (DSIHE).

This method is also known as Dualistic Sub Image Histogram Equalization(DSIHE).

- Image parameters such as median grayscale level used for partitioning.
- The input image is decomposed into two sub-images, being one dark and one bright.
- Then applies Histogram Equalization on two sub-images.

- Input image X(i,j) with gray levels 0 to 255.
- Image X(i,j) is segmented by a section with gray level of X_m
- X_m (mean in case of BBHE and median in case of DSIHE)
- The image is decomposed into two sub images X_L and X_U .

•

$$\mathbf{X} = \mathbf{X}_L \cup \mathbf{X}_U$$

where

$$\mathbf{X}_{L} = \{X(i,j)|X(i,j) \leq X_{m}, \forall X(i,j) \in \mathbf{X}\}\$$

and

$$\mathbf{X}_{U} = \{X(i,j)|X(i,j) > X_{m}, \forall X(i,j) \in \mathbf{X}\}\$$

- X_L is composed by gray level of $\{l_0, l_1, ..., l_m\}$, X_U is composed by gray level of $\{l_{m+1}, l_{m+2}, ..., l_{L-1}\}$
- Respective probability density functions of the sub-images are:

$$p_L(X_k) = \frac{n_L^k}{n_L}$$
, for $k = 0, 1, ..., m$

and

$$p_U(X_k) = \frac{n_U^k}{n_U}$$
, for $k = m+1, m+2,..., L-1$

- n_L^k and n_U^k are the numbers of X_k
- $n_L = \sum_{k=0}^{m} n_L^k$, $n_U = \sum_{k=m+1}^{L-1} n_U^k$
- The respective cumulative density function for \mathbf{X}_L and \mathbf{X}_U are : $c_L(x) = \sum_{j=0}^k p_L(X_j)$ and $c_U(x) = \sum_{j=m+1}^{L-1} p_U(X_j)$
- Transformation function defined for exploiting the cumulative density functions: $f_L(x) = X_0 + (X_m X_0)c_L(x)$ and $f_U(x) = X_{m+1} + (X_{L-1} X_{m+1})c_U(x)$

- Based on these transform functions, the decomposed sub-image are equalized independently.
- The composition of resulting equalized sub-images constitutes the output of BBHE or DSIHE as $\mathbf{Y} = \{Y(i,j)\}$ $= f_L(\mathbf{X}_L) \cup f_U(\mathbf{X}_U) \text{ where}$ $f_L(\mathbf{X}_L) = \{f_L(X(i,j)|\forall X(i,j) \in \mathbf{X}_L)\} \text{ and}$ $f_U(\mathbf{X}_U) = \{f_U(X(i,j)|\forall X(i,j) \in \mathbf{X}_U)\}$

Algorithm for BBHE

- Obtain the original image.
- Get histogram of the original image.
- Calculate mean of the histogram.
- Divide the histogram on the basis of the mean in two parts.
- Equalize each part independently using PDF and CDF.
- Combine both sub-images for the processed image

Algorithm for BBHE

Figure 5: Histogram before and after BBHE or equivalently, RMSHE, r = 1.

An example of BBHE

Figure 6: Contrast enhancement based on brightness preserving bi-histogram equalization.

Algorithm for DSIHE

- Obtain the original image.
- Get histogram of the original image.
- Calculate median of the histogram.
- Divide the histogram on the basis of the median in two parts.
- Equalize each part independently using PDF and CDF.
- Combine both sub-images for the processed image

An example of DSIHE

Figure 7: Contrast enhancement based on dualistic sub-image histogram equalization.

Recursive Mean Separate Histogram Equalization (RMSHE)

- Generalization of HE and BBHE in term of brightness preservation
- Recursively separating the input histogram based on the mean

Recursive Mean Separate Histogram Equalization (RMSHE)

Figure 8: Recursive mean separated histogram equalization with recursion level r=2

An example of RMSHE

Figure 9: Contrast enhancement based on recursive mean separate histogram equalization.

Results and discussion

Results and discussion

Quality assessment

The following measurement are used to make comparison among the histogram equalization techniques

- Mean squared error (MSE) is the average of squared intensity differences distorted and reference image pixels.
 Lower value of MSE means that the image is of good quality.
- Peak signal to noise ratio(PSNR) is the ratio between the maximum possible power of a signal and the power of corrupting noise that affects the fidelity of its representation.
 It varies between 25 to 40 dB. Higher value of PSNR is good
- Structural similarity index(SSIM) varies between 0 to 1. The value 1 means, the image is of best quality.

Global histogram equalization

Figure 10: Contrast enhancement based on histogram equalization.

Brightness preserving bi-histogram equalization

Figure 11: Contrast enhancement based on brightness preserving bi-histogram equalization.

Dualistic sub-image histogram equalization

Figure 12: Contrast enhancement based on dualistic sub-image histogram equalization.

Recursive mean separate histogram equalization

Figure 13: Contrast enhancement based on recursive mean separate histogram equalization.

Experimental results

Simulation results for 'Tungsten-filament' and 'Barbara' are presented in table 2 and 3. and

Methods	Mean	SD	SSIM	MSE	PSNR
Tungsten filament	128.11	75.31	_	_	_
GHE	127.71	73.5	0.79991	478.83	21.32
BBHE	150.5	69.05	0.80593	843.65	18.86
DSHE	140.43	72.94	0.79856	533.68	20.85
RMSHE	133.99	79.97	0.90909	139.46	26.68

Table 2: Comparison of various histogram equalization methods using objective image quality measures

Methods	Mean	SD	SSIM	MSE	PSNR
Barbara	111.5	48.15	_	_	_
GHE	127.48	73.88	0.875	969.18	18.26
BBHE	118.44	73.77	0.868	782.22	19.19
DSIHE	117.94	73.77	0.867	777.89	19.22
RMSHE	115.93	61.01	0.937	243.36	24.26

Table 3: Comparison of various histogram equalization methods using objective image quality measures

Conclusion

Conclusion

- The experimental results shows that RMSHE processed 'Tungsten-filament' image has lowest MSE, highest PSNR and highest SSIM among these four techniques.
- Similar result shows for 'Barbara' image.

So, recursive mean separate histogram equalization(RMSHE) performs well according to this performance measure as well as visual assessment.

Appendix

Reference i

- Rafael C Gonzalez and Richard E Woods. Digital image processing prentice hall. Upper Saddle River, NJ, 2002a.
- Gregory A Baxes. Digital image processing: principles and applications.
- Yeong-Taeg Kim. Contrast enhancement using brightness preserving bi-histogram equalization. IEEE transactions on Consumer Electronics , 43(1):18, 1997.
- Yu Wang, Qian Chen, and Baeomin Zhang. Image enhancement based on equal area dualistic sub-image histogram equalization method. IEEE Transactions on Consumer Electronics, 45(1):6875, 1999.

Reference ii

Zhou Wang, Alan C Bovik, Hamid R Sheikh, and Eero P Simoncelli. Image quality assessment: from error visibility to structural similarity. IEEE transactions on image processing, 13(4):600612, 2004.