- 1. Verify divergence theorem for the vector function $\vec{A} = \vec{r}$. The region is a spherical surface of radius a with the center at the origin.
- 2. Verify stokes' theorem for the vector field $\vec{A} = (y\hat{i} x\hat{j})/(x^2 + y^2)$ over the region shown in the figure. The loop consists of a quarter arc of two concentric circles of radii a and b and two straight paths along the y and the x axes.

- 3. Verify Stokes' Theorem for the vector field $\vec{A} = (y\hat{i} x\hat{j})$ over a region bounded by a circle of radius a on the xy plane in the following two cases as shown in the figure:
 - (a) The region is S_1 the flat circular disk of radius a on the xy plane.
 - (b) The region is S_2 the hemisphere over the xy plane with center at the origin
- 4. If $\vec{\nabla} \times \vec{A} = 0$ then show that there is a scalar function $F(\vec{r})$ such that $\vec{\nabla} F = \vec{A}$.
- 5. Use the divergence theorem and the stokes' theorem to show that $\vec{\nabla} \cdot (\vec{\nabla} \times \vec{A}) = 0$ for any vector field \vec{A} .

6. Show that

$$\int_{S} (\vec{\nabla} \times \vec{A}) f \cdot \hat{n} da = \int_{S} (\vec{A} \times \vec{\nabla} f) \cdot \hat{n} da + \oint_{C} f \vec{A} \cdot d\vec{l}$$

where C is a closed curve enclosing a surface S.