Data Structures SLL Homework 4

Mostafa S. Ibrahim *Teaching, Training and Coaching for more than a decade!*

Artificial Intelligence & Computer Vision Researcher PhD from Simon Fraser University - Canada Bachelor / Msc from Cairo University - Egypt Ex-(Software Engineer / ICPC World Finalist)

Problem #1: Arrange odd & even nodes

- def odd_pos_even_pos(self)
- This problem is not about node values, but their positions (odd & even)
 - Rearrange the nodes so that all odd nodes are arranged in order, and they precede all of the even nodes.
 - All odd nodes must remain in the same order
 - All even nodes need to remain in the same order too
- E.g. if the list is 10, 20, 3, 7, 15: Nodes (10, 3, 15) are in the odd positions
- 1, 2, 3, 4 \Rightarrow 1, 3, 2, 4
- 1, 2, 3 ⇒ 1, 3, 2
- 1, 2, 3, 4, 5, 6, $7 \Rightarrow 1357246$
- 11, 33, 55, 4, 50, 17, $8 \Rightarrow 11, 55, 50, 8, 33, 4, 17$

Problem #2: Insert alternating

- def insert_alternate(self, another_lst)
 - The state of another_lst after the operation doesn't matter
- The function inserts the values from another linked list in an alternating way with the original list
 - You may think about it as being like a zig-zag pattern!
- E.g. if list1 = 1, 2, 3 and list2 = 4,5,6
 - \circ \Rightarrow 1, 4, 2, 5, 3, 6 [1st from L1, 1st from L2, 2nd from L1, 2nd from L2, 3rd from L1,]
- $\{1, 2, 3\}, \{4\} \Rightarrow \{1, 4, 2, 3\}$
- $\{1, 2, 3\} \{4, 5, 6, 7, 8\} \Rightarrow 1, 4, 2, 5, 3, 6, 7, 8$
- $\{\}, \{1, 2, 3\} \Rightarrow \{1, 2, 3\}$

Problem #3: Adding 2 HUGE integers

- Assume we want to represent number 157 using a linked list
 - It is helpful to have the list as 7 -> 5 -> 1
 - This makes it easy to build and use in mathematical operations
- Implement: def add_num(self, another_lst)
 - It adds another number to its current values
 - Let's say the current list is {1, 2, 3} representing 321
 - Another object is: {4, 5, 3} representing 354
 - After the addition, the list will become: 5 7 6 {representing 675}
 - After the result, another_lst must not be changed
- $\{9, 6, 5\} + \{8, 7, 6, 4, 5, 7, 8, 9\} \Rightarrow \{7, 4, 2, 5, 5, 7, 8, 9\}$
- Don't convert to integer data type. Use linked lists

Problem #4: Remove repeated values except one

- def delete_all_repeated_from_sorted_except_one(self)
- Given a linked list of sorted integers. Some of the elements are repeated.
 Remove all of them except one of them
- Input: 1, 1, 2, 2, 2, 3, $5 \Rightarrow \{1, 2, 3, 5\}$
- Input: 1, $1 \Rightarrow \{1\}$
- Input: 1, 1, 2, 2, $2 \Rightarrow \{1, 2\}$
- Input: 1, 1, 2, 2, 2, $5 \Rightarrow \{1, 2, 5\}$
- Input: 1, 2, 2, 2, $3 \Rightarrow \{1, 2, 3\}$

Problem #5: Remove all repeated

- def delete_all_repeated_from_sorted(self)
- Given a linked list of sorted integers, keep only nodes that never repeat and remove any nodes with values that appear in duplicate
- Input: 1, 1, 2, 2, 2, 3, 5 ⇒ {3, 5}
 both 1 and 2 are repeated
- Input: 1, 1 ⇒ {}
- Input: 1, 1, 2, 2, 2 ⇒ {}
- Input: 1, 1, 2, 2, 2, $5 \Rightarrow \{5\}$
- Input: 1, 2, 2, 2, $3 \Rightarrow \{1, 3\}$

Problem #6: Reverse Chains

- def reverse_chains(self, k)
- Instead of reversing the whole list, you only reverse sub-lists of K nodes
- $\{1,2,3,4,5,6\}$, $k = 6 \Rightarrow 654321$ [normal reverse]
- $\{1,2,3,4,5,6\}$, $k = 3 \Rightarrow 3 \ 2 \ 1 \ 6 \ 5 \ 4$
 - Reverse the first 3 numbers
 - Reverse the second 3 numbers
- $\{1,2,3,4,5,6,7\}$, $k = 2 \Rightarrow 21 43 657$

"Acquire knowledge and impart it to the people."

"Seek knowledge from the Cradle to the Grave."