MA1014 8/11/21

Application to inverse function

$$f(\infty) = \infty^2$$

$$R \to [0, \infty)$$

$$x=g(y)=\sqrt{y}$$

$$(0,\infty)\to(0,\infty)$$

Theorem If f is differentiable and 1-1 on some interval then so is the inverse

Theorem of f, f' ore both differentiable then (f') (y) = 1/(x)

$$f^{-1}(f(x)) = x$$

chain

$$f'(x) = f'(x)$$

rule

 $f'(x) = f'(x)$

$$(f'')'(y) = \frac{1}{f'(x)}$$

List of Escamples

, –	fire)	f'an	f'(y)	(f-1)*(y)
(ACX)	sin(aı)	CO3 (0C)	sin-1(y)	1/1- y2
FinuxXI	(x)	-gin(x)	cos ⁻ '(y)	- 1 1-42
	ton(2)	(G) (x)	tan'(y)	1+42
\rightarrow	e*	c*	ln(g)	ż
ex -ex	einh (20)	cosh(x)	sinh-1y)	V1+42
ex 16.x	cosh (x)	sinh a)	cosh-1 (y)	Vity
external ext	louh (x)			

$$\frac{\sin \left(-\frac{\pi}{2}, \frac{\pi}{2}\right) \rightarrow \left[-1, 1\right]}{y = \sin \left(x\right)} \quad \text{one-lo-one & south}$$

$$\frac{y}{y} = \frac{1}{\cos \left(x\right)} = \frac{1}{\sqrt{1-y^2}}$$

$$\frac{dy}{dx} = \frac{dx}{dy} = \frac{1}{\left(\frac{dx}{dy}\right)} = \frac{1}{\sqrt{1-y^2}}$$

$$(0,\pi) \rightarrow [-1,1] \quad \cos^{-1}: (-1,1) \rightarrow [0,\pi)$$

$$\cos^{-1}: \left(-1,1\right) \rightarrow \left(0,\pi\right)$$

$$y = t_{\text{cun}}(x) = \frac{\sin(x)}{\cos(x)} \quad \frac{d}{dx} \quad t_{\text{cun}}'(y) = \frac{1}{1+y^2}$$

$$\frac{dy}{dx} = \frac{1}{(x)^2} = \sec^2 x$$

$$\frac{dy}{dx} = \frac{1}{\cos^2 x} = \sec^2 x$$

$$= 14 \cdot \tan^2 (3c) = \frac{\cos^2 (x) + \sin^2 (3c)}{\cos^2 (3c)}$$

$$\cos^2 + \sin^2 = 1$$

 $\cosh^2 - \sinh^2 = 1$

When theory <u>lexact</u> answers fail = find good numerical approximations. Bolzonós theorn Problem: Solve $x^6 - x - 2 = 0$ numerically (xx) do

 $(0,2) \frac{f(2) = 60}{\text{different signs}}$

problem has a solution between 0 a 2

[0,1] () f(1) - +ve => betneen 0 x 1

[1,2] f(1) -- ve => between 1 a 2

Repeat: find 3 a solution between

[Cu, dn] f(cn), f(dn)
different signs

=> f (cu +du) lells us id solution

is en [a, and] on [and]

~> converge on a solution