CS 271 - Introduction to Artificial Intelligence

Fall 2016

HomeWork 6

Name: Liangjian Chen

ID: #52006933 November 18, 2016

Problem 1 Solution:

PutHat PRECOND: $\neg Wear(hat)$

EFFECT: Wear(hat)

PutShoes PRECOND: $\neg Wear(shoes)$

EFFECT: Wear(shoes)

PutShirt PRECOND: $\neg Wear(shirt)$

EFFECT: Wear(shirt)

PutSocks PRECOND: $\neg Wear(socks)$

EFFECT: Wear(socks)

Problem 2 Solution:

Goal state: $On(C, Table) \wedge On(B, C) \wedge On(A, B) \wedge clear(A) \wedge clear(Table)$.

First Step valid action Move(A, Table, B)

State is $On(C, Table) \wedge On(B, C) \wedge On(A, Table) \wedge clear(A) \wedge clear(B) \wedge clear(Table)$.

Second Step valid action Move(B, Table, C)

State is $On(C, Table) \wedge On(B, Table) \wedge On(A, Table) \wedge clear(A) \wedge clear(B) \wedge clear(C) \wedge clear(Table)$.

Third Step valid action Move(C, A, Table)

State is $On(C, A) \wedge On(B, Table) \wedge On(A, Table) \wedge clear(C) \wedge clear(B)$. which is the start state. Thus the problem solved.

Problem 3 Solution:

Initial state: $At(Monkey, A) \land At(Bananas) \land At(Box, C) \land Height(Monkey, Low) \land Height(Bananas, High)$

Action Schema:

Go(x,y) PRECOND: At(Monkey, x)

EFFECT: $At(Monkey, y) \land \neg At(Monkey, x)$

Push(x,y) PRECOND: $At(Monkey, x) \wedge At(Box, x) \wedge Height(Monkey, Low)$

EFFECT: $\neg At(Monkey, x) \land \neg At(Box, x) \land At(Monkey, y) \land At(Box, y)$

ClimbUp PRECOND: $At(Monkey, x) \land At(Box, x) \land Height(Monkey, Low)$

EFFECT: $\neg Height(Monkey, Low) \land Height(Monkey, High)$

ClimbDown PRECOND: $At(Monkey, x) \land At(Box, x) \land Height(Monkey, High)$ EFFECT: $\neg Height(Monkey, High) \land Height(Monkey, Low)$

Grasp PRECOND: $At(Monkey, x) \land At(Bananas, x) \land Height(Monkey, y) \land Height(Bananas, y)$ EFFECT: With(Monkey, Bananas)

UnGrasp PRECOND: With(Monkey, Bananas) EFFECT: $\neg With(Monkey, Bananas)$

- c $With(Monkey, Box, s) \wedge (\exists x)[At(Box, x, s_0) \wedge At(Box, x, s)]$ There is no way to represent the relationship between two state within the plan in STRIP. So no way to represent this goal.
- d In function push, add Pushable(Box) in PRECOND.

Problem 4 Solution:

Problem 5 Solution: