МИНОБРНАУКИ РОССИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования

«САРАТОВСКИЙ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИМЕНИ Н. Г. ЧЕРНЫШЕВСКОГО»

ПАРАЛЛЕЛЬНОЕ И РАСПРЕДЕЛЕННОЕ ПРОГРАММИРОВАНИЕ. WORK12

ОТЧЕТ О ПРАКТИКЕ

студента 3 курса 311 группы направления 02.03.02 — Фундаментальная информатика и информационные
гехнологии
ракультета КНиИТ
Вильцева Данила Денисовича
Ta on one way
Проверил
Старший преподаватель М. С. Портенко

СОДЕРЖАНИЕ

1	Work 12		
	1.1	Условие задачи	3
	1.2	Описание алгоритма	3
		Последовательная реализация	
	1.4	Параллельная реализация	4
2	Резу	льтат работы	7
3	Характеристики компьютера		

1 Work 12

1.1 Условие задачи

Аналогично работе с ОМР выполните следующее задание через МРІ.

В качестве методов приближенного вычисления двойных интегралов рассмотрим параллельные реализации:

3. метода статистических испытаний.

Номер задания для MPI = (номер задания для OMP+1) mod 3

1.2 Описание алгоритма

Предположим, требуется вычислить определённый интеграл: $\int_a^b f(x) dx$

Рассмотрим случайную величину u, равномерно распределённую на отрезке интегрирования [a,b]. Тогда f(u) также будет случайной величиной, причём её математическое ожидание выражается как

$$\mathbb{E} f(u) = \int\limits_a^b f(x) arphi(x) \, dx,$$

где arphi(x) — плотность распределения случайной величины u, равная $\dfrac{1}{b-a}$ на участке [a,b]. Таким образом, искомый интеграл выражается как

$$\int\limits_a^b f(x)\,dx=(b-a)\mathbb{E}f(u),$$

но математическое ожидание случайной величины f(u) можно легко оценить, смоделировав эту случайную величину и посчитав выборочное среднее.

Итак, бросаем N точек, равномерно распределённых на [a,b], для каждой точки u_i вычисляем $f(u_i)$. Затем вычисляем выборочное среднее: $\frac{1}{N}\sum_{i=1}^N f(u_i)$.

В итоге получаем оценку интеграла:

$$\int^b f(x)\,dx pprox rac{b-a}{N} \sum_{i=1}^N f(u_i).$$

Точность оценки зависит только от количества точек N_{\cdot}

Этот метод имеет и геометрическую интерпретацию. Он очень похож на описанный выше детерминистический метод, с той разницей, что вместо равномерного разделения области интегрирования на маленькие интервалы и суммирования площадей получившихся «столбиков» мы забрасываем область интегрирования случайными точками, на каждой из которых строим такой же «столбик», определяя его ширину как $\frac{b-a}{N}$, и суммируем их площади.

1.3 Последовательная реализация

```
#include <iostream>
#include <mpi.h>
#define _USE_MATH_DEFINES
#include <math.h>
#include <time.h>
#include <iomanip>
using namespace std;

const double fraction = 1.0 / (static_cast<double>(RAND_MAX) + 1.0);
```

```
double integral(const double a, const double b, const double h)
{
       int i, n;
       double sum;
                                                   // Локальная переменная для подсчета
  интеграла
        double x;
                                                         // Координата точки сетки
       n = (int)((b - a) / h); // Количество точек сетки интегрирования
        sum = 0.0;
        for (i = 0; i < n; i++)
               x = rand() * fraction * (b - a) + a;
                if (x != 0)
                       sum += exp(-5 * x);
       }
       return sum * (b - a) / n;
}
int main()
       double res;
        double stime, ftime;
                                           // Время начала и конца расчета
        double a = 0.0;
                                               // Левая граница интегрирования
        double b = 1000.0;
                                                  // Правая граница интегрирования
                                // Шаг интегрирования
        double h = 0.001;
        stime = clock();
       res = integral(a, b, h); // вызов функции интегрирования
        ftime = clock();
        cout << "Integral value: " << res << endl;</pre>
        cout << "Time: " << (ftime - stime) / CLOCKS_PER_SEC << endl;</pre>
        system("pause");
       return 0;
}
```

1.4 Параллельная реализация

Распараллелим программу так чтобы переменные х и у были локальными для каждого потока, и общий результат будем получать в sum аналогично задаче 2.

```
#include <iostream>
#include <mpi.h>
#define _USE_MATH_DEFINES
```

```
#include <math.h>
#include <time.h>
#include <vector>
#include <iomanip>
using namespace std;
const double fraction = 1.0 / (static_cast<double>(RAND_MAX) + 1.0);
double integral(const double a, const double b, const double h)
        int i, n;
        double sum;
                                                    // Локальная переменная для подсчета
⊶ интеграла
        double x;
                                                          // Координата точки сетки
        n = (int)((b - a) / h); // Количество точек сетки интегрирования
        sum = 0.0;
        // mpi part
        int commsize;
        int rank;
        double Result;
        MPI_Init(NULL, NULL);
        MPI_Comm_rank(MPI_COMM_WORLD, &rank);
        MPI_Comm_size(MPI_COMM_WORLD, &commsize);
        MPI_Bcast(&n, 1, MPI_INT, 0, MPI_COMM_WORLD);
        for (i = 0; i < n; i++)
                x = rand() * fraction * (b - a) + a;
                if (x != 0)
                        sum += exp(-5 * x);
        }
        // mpi part
        MPI_Reduce(&sum, &Result, 1, MPI_DOUBLE, MPI_SUM, 0, MPI_COMM_WORLD);
        MPI_Finalize();
        return Result * (b - a) / n;
}
int main()
{
        double res;
        double stime, ftime;
                                             // Время начала и конца расчета
        double a = 0.0;
                                                // Левая граница интегрирования
```

```
double b = 1000.0; // Πραθαπ ερακυμα υκπεερυροβακυπ
double h = 0.001; // Шаг интегрирования
stime = clock();
res = integral(a, b, h); // вызов функции интегрирования
ftime = clock();
cout << "Integral value: " << res << endl;
cout << "Time: " << (ftime - stime) / CLOCKS_PER_SEC << endl;
system("pause");
return 0;
}
```

2 Результат работы

Integral value: 0.189752 Time: 0.156

Рисунок 1 – Результат последовательной реализации

Integral value: 0.189752 Time: 0.124

Рисунок 2 – Результат параллельной реализации

Ускорение: Переход к многопоточной версии дает ускорение в 1.23 раза

3 Характеристики компьютера

Характеристики устройства			
Имя устройства	DESKTOP-MSS8D39		
Процессор	Intel(R) Core(TM) i5-6500 CPU @ 3.20GHz 3.20 GHz		
Оперативная память	8,00 ГБ		
Код устройства	E3BB953D-13B0-42A7-944B-1ED9FD0E C328		
Код продукта	00330-80000-00000-AA153		
Тип системы	64-разрядная операционная система, процессор x64		

