

KONKURS CHEMICZNY

DLA UCZNIÓW GIMNAZJÓW

I ETAP SZKOLNY

09 października 2013

Ważne informacje:

- 1. Masz 60 minut na rozwiązanie wszystkich zadań.
- 2. Zapisuj szczegółowe obliczenia i komentarze do rozwiązań zadań prezentujące sposób twojego rozumowania. Możesz korzystać z kalkulatora.
- 3. Pisz długopisem lub piórem, nie używaj korektora. Jeżeli się pomylisz, przekreśl błąd i napisz ponownie. Wykonuj staranne rysunki, korzystając z przyborów geometrycznych.
- 4. Pisz czytelnie i zamieszczaj odpowiedzi w miejscu na to przeznaczonym. Pamiętaj, że zapisy w brudnopisie nie podlegają ocenie.

Życzymy powodzenia!

Maksymalna liczba punktów	100%
Uzyskana liczba punktów	%
Podpis osoby sprawdzającej	

⊃ Informacja do zadania 1.

W warunkach panujących w laboratorium, sód jest srebrzystobiałym metalem, na tyle miękkim, że można go łatwo krajać nożem. Wkrótce po przecięciu, powierzchnia sodu matowieje wskutek oddziaływania składników powietrza. Sód wykazuje właściwości redukujące, reaguje bezpośrednio z wodorem, fluorowcami i siarką. Ze względu na dużą aktywność chemiczną, przechowuje się go w nafcie albo w oleju parafinowym.

Zadanie 1. (1 pkt)

Zaznacz wiersz tabeli zawierający właściwą, możliwie pełną, charakterystykę sodu. Zwróć uwagę na prawidłowy podział właściwości pierwiastka na właściwości fizyczne i chemiczne.

	Właściwości fizyczne sodu.	Właściwości chemiczne sodu.
A.	Barwa srebrzystobiała, miękki,	Jest reduktorem, reaguje z wodorem,
	matowieje wskutek oddziaływania	fluorowcami i siarką. Przechowuje się
	składników powietrza	go w nafcie lub oleju parafinowym.
B.	Srebrzystobiały, miękki, odporny na	Wykazuje właściwości redukujące,
	działanie nafty i oleju parafinowego	reaguje z fluorowcami, wodorem
		i siarką.
C.	Miękki, barwa srebrzystobiała	Ulega korozji, wykazuje właściwości
		redukujące, reaguje z fluorowcami,
		wodorem i siarką.
D.	Barwa srebrzystobiała, miękki, bez	Jest utleniaczem, reaguje
	zapachu	z fluorowcami, wodorem i siarką.

Zadanie 2. (1 pkt)

Zaznacz wiersz tabeli zawierający prawidłowe nazwy przemian fizycznych wody, których przebieg przedstawiono na poniższym schemacie:

para wodna $\xrightarrow{1}$ woda ciekła $\xrightarrow{2}$ lód $\xrightarrow{3}$ woda ciekła $\xrightarrow{4}$ para wodna

	1	2	3	4
A.	parowanie	skraplanie	topnienie	sublimacja
B.	skraplanie	krzepnięcie	topnienie	parowanie
C.	skraplanie	zamarzanie	rozpuszczanie	wrzenie
D.	sublimacja	krzepnięcie	resublimacja	parowanie

Zadanie 3. (1 pkt)

W jakim stosunku masowym należy zmieszać roztwór soli o stężeniu 15% z wodą, aby otrzymać roztwór soli o stężeniu 5%? **Zaznacz poprawną odpowiedź.**

A. 1:3 B. 2:1 C. 1:2 D. 3:1

Nr zadania	1	2	3	razem
Maks. liczba punktów	1	1	1	3
Uzyskana przez ucznia liczba punktów				

⊃ Informacia do zadań 4. i 5.

Rozpuszczalność substancji w wodzie zależy od temperatury. Poniższa tabela zawiera dane na temat rozpuszczalności w wodzie wodorotlenków dwóch metali w różnych temperaturach.

Substancja rozpuszczalność [g] w100 g wody / T[K]	273	283	293	303	313
wodorotlenek wapnia	0,185	0,176	0,165	0,153	0,141
wodorotlenek baru	1,67	2,48	3,89	5,59	8,22

Zadanie 4. (1 pkt)

Korzystając z danych odczytanych z tabeli <u>rozpoznaj zdania prawdziwe</u>. **Zaznacz poprawną odpowiedź.**

1.	Do przygotowania nasyconego roztworu wody wapiennej w temperaturze
	293 K wystarczy wprowadzić 0,17 g wodorotlenku wapnia do 100 g wody.
2.	Wprowadzenie 2 g każdego z wodorotlenków do 100 g wody o temperaturze
	283 K pozwoli na przygotowanie nasyconego roztworu wody wapiennej
	i nienasyconego roztworu wodorotlenku baru.
3.	Analizując wartości rozpuszczalności wodorotlenków obu metali w zależności
	od temperatury, można stwierdzić, że w zakresie temperatur 273 – 313 K
	wodorotlenek baru lepiej rozpuszcza się w wodzie niż wodorotlenek wapnia.

A. wszystkie zdania C. zdanie 1 i 3 B. zdanie 1 i 2 D. tylko zdanie 3

Zadanie 5. (1 pkt)

Korzystając z danych odczytanych z tabeli, <u>porównaj stężenia procentowe</u> nasyconych roztworów wodorotlenków wapnia i wodorotlenku baru w temperaturze 303 K. **Zaznacz poprawną odpowiedź.**

- A. Nasycone roztwory wodorotlenków baru i wapnia mają identyczne stężenia procentowe.
- B. Stężenie procentowe nasyconego roztworu wodorotlenku wapnia jest większe od stężenia procentowego nasyconego roztworu wodorotlenku baru.
- C. Stężenie procentowe nasyconego roztworu wodorotlenku baru jest większe od stężenia procentowego nasyconego roztworu wodorotlenku wapnia.
- D. Nie można porównywać stężeń procentowych obu roztworów.

Nr zadania	4	5	razem
Maks. liczba punktów	1	1	2
Uzyskana przez ucznia liczba punktów			

Zadanie 6. (1 pkt)

Zaznacz poprawną odpowiedź na pytanie: *Dlaczego ryby żyjące w akwarium giną w ciepłej wodzie?*

- A. gęstość ciepłej wody jest mniejsza od gęstości zimnej wody i dlatego ryby nie mogąc utrzymać się na dnie akwarium wypływają na powierzchnię
- B. w ciepłej wodzie zachodzi desaturacja rozpuszczonego tlenu i jest go zbyt mało aby ryby miały czym oddychać
- C. pH wody w akwarium rośnie wraz z temperaturą środowisko staje się zbyt kwaśne, aby ryby mogły w nim żyć
- D. pH wody w akwarium maleje wraz z temperaturą środowisko staje się zbyt mocno zasadowe, aby ryby mogły w nim żyć

Zadanie 7. (1 pkt)

Wskaż symbol pierwiastka, dla którego prawdziwy jest podany niżej opis.

Łączna liczba protonów, neutronów i elektronów w atomie tego pierwiastka wynosi 42, a stosunek liczb różnych cząstek subatomowych tworzących jądro atomu tego pierwiastka jest równy 1:1.

A. Sc B. Si

C. Mo

D. Po

Zadanie 8. (1 pkt)

Wskaż skład jadra izotopu potasu- 42K

A. 19 protonów i 19 elektronów

C. 19 protonów i 23 nukleony

B. 19 protonów i 23 neutrony

D. 19 protonów i 20 neutrony

Zadanie 9. (1 pkt)

Oblicz zawartość izotopów azotu w ich naturalnej mieszaninie, wiedząc, że jeden izotop zawiera 7 neutronów w jądrze, a drugi 8. Masa atomowa azotu jest równa 14,01 u. **Zaznacz wiersz** tabeli z prawdziwą odpowiedzią.

	Izotop posiadający 7 neutronów	Izotop posiadający 8 neutronów
A.	99%	1%
B.	1%	99%
C.	90%	10%
D.	10%	90%

Nr zadania	6	7	8	9	razem
Maks. liczba punktów	1	1	1	1	4
Uzyskana przez ucznia liczba punktów					

⊃ Informacja do zadań 10. i 11.

Szeregiem promieniotwórczym nazywa się ciąg powiązanych "genealogicznie" radionuklidów, z których każdy następny izotop powstaje w wyniku rozpadu poprzedniego. Poniżej przedstawiono fragment naturalnego szeregu promieniotwórczego – tzw. szeregu uranowo-radowego:

$$^{222}Rn \rightarrow ^{218}Po \rightarrow ^{218}At \rightarrow ^{214}Bi \rightarrow ^{214}Po \rightarrow ^{210}Pb \rightarrow ...$$

Zadanie 10. (1 pkt)

Odszukaj prawidłowo sformułowaną zależność kolejno następujących przemian promieniotwórczych w podanym fragmencie szeregu uranowo-radowego. **Zaznacz odpowiedź poprawną.**

- A. Podane radionuklidy powstają w wyniku zachodzących kolejno przemian α
- B. Podane radionuklidy powstają w wyniku zachodzących kolejno przemian β⁻
- C. Podane radionuklidy powstają w wyniku kolejno zachodzących przemian α, α i β^{-}, β^{-}
- D. Podane radionuklidy powstają w wyniku naprzemiennie zachodzących przemian α i β⁻

Zadanie 11. (1 pkt)

Zakładając obowiązywanie odkrytej w poprzednim zadaniu prawidłowości, **wskaż** kolejny radionuklid szeregu uranowo-radowego

A.
$$^{210}At$$
 B. ^{210}Bi C. ^{206}Hg D. ^{206}Pb

Zadanie 12. (1 pkt)

Oblicz czas połowicznego zaniku pewnego izotopu promieniotwórczego wiedząc, że jego zawartość w próbce wynosiła początkowo 80 mg, a po upływie dwóch godzin zmniejszyła się o 75 mg. **Wskaż poprawną odpowiedź.**

A. 30 minut C. 15 minut

B. 45 minut D. zbyt mało danych dla ustalenia tego czasu

⊃ Informacja do zadań 13. i 14.

Przeprowadzono doświadczenie według poniższego opisu:. Do porcelanowej parownicy wsypano jedną część masową sproszkowanego cynku i dwie części masowe zmielonej siarki, po czym do sporządzonej mieszaniny przyłożono rozżarzony drut. Zaobserwowano gwałtowny przebieg reakcji. Po ochłodzeniu zawartości, część zawartości parownicy przeniesiono do probówki i dolano rozcieńczonego kwasu solnego.

Zadanie 13. (1 pkt)

Nazwij produkt reakcji zachodzącej w parownicy. Wskaż poprawną odpowiedź.

A. siarczek żelaza(III) B. tlenek cynku C. siarczek cynku D. siarkowodór

Nr zadania	10	11	12	13	razem
Maks. liczba punktów	1	1	1	1	4
Uzyskana przez ucznia liczba punktów					

Zadanie 14. (1 pkt)

Wybierz poprawnie sformułowane obserwacje dotyczące przemiany przeprowadzonej w probówce. **Wskaż dobrą odpowiedź.**

- A. Część mieszaniny uzyskanej w parownicy roztwarza się w kwasie solnym i wydziela się gaz o zapachu zgniłych jaj.
- B. Część mieszaniny uzyskanej w parownicy roztwarza się w kwasie solnym i wydziela się bezwonny gaz.
- C. Mieszanina uzyskana w parownicy rozpuszcza się w kwasie solnym bez wydzielania gazu.
- D. Mieszanina uzyskana w parownicy w ogóle nie rozpuszcza się w kwasie solnym.

Zadanie 15. (1 pkt)

Zaznacz zestaw w którym podano <u>wyłącznie</u> nazwy tlenków, które po wprowadzeniu <u>do</u> wody utworzą <u>mieszaninę niejednorodną:</u>

- A. tlenek krzemu(IV), tlenek glinu, tlenek żelaza(III)
- B. tlenek siarki(IV), tlenek azotu (IV), tlenek węgla(IV)
- C. tlenek baru, tlenek potasu, tlenek fosforu(V)
- D. tlenek azotu(V), tlenek azotu(III), tlenek azotu(IV)

Zadanie 16. (1 pkt)

Zaznacz wiersz tabeli, który zawiera <u>błędnie</u> uzupełnione dane dotyczące tlenków.

		Barwa roztworu po wprowadzeniu tlenku do wody z dodatkiem				
	Nazwa tlenku	u soku z czerwonej fenoloftaleiny		wskaźnika		
		kapusty		uniwersalnego		
A.	Tlenek baru	zielona	malinowa	zielony		
B.	Tlenek glinu	fioletowa	bezbarwna	żółtopomarańczowa		
C.	Tlenek węgla(II)	czerwona	bezbarwna	czerwona		
D.	Tlenek siarki(IV)	czerwona	bezbarwna	czerwona		

Nr zadania	14	15	16	razem
Maks. liczba punktów	1	1	1	3
Uzyskana przez ucznia liczba punktów				

Zadanie 17. (1 pkt)

Wskaż prawidłowy projekt doświadczenia, którego celem jest otrzymanie wodorotlenku miedzi(II).

- A. W pierwszej fazie eksperymentu należy w zlewce z wodą rozpuścić kryształy siarczanu(VI) miedzi(II) i w drugiej zlewce z wodą rozpuścić wodorotlenek sodu. W drugiej fazie doświadczenia należy do probówki przelać porcję roztworu siarczanu(VI) miedzi(II) i używając pipety dolać zasadę sodową.
- B. Do probówki z wodą należy dosypać tlenek miedzi(II), a następnie energicznie wstrząsnąć i ustawić probówkę z zawartością w statywie.
- C. W pierwszej fazie eksperymentu należy w zlewce z wodą rozpuścić chlorek miedzi(II). W drugiej fazie doświadczenia należy do probówki przelać porcję roztworu chlorku miedzi(II) i używając łyżeczki dodawać małymi porcjami wodorotlenek żelaza(II).
- D. Do probówki z wodą należy wsypać sproszkowaną miedź i, używając pipety, ostrożnie dolewać po ściankach probówki stężony kwas siarkowy(VI).

Zadanie 18. (1 pkt)

Wskaż poprawnie zapisane równanie w <u>formie jonowej skróconej</u> reakcji zachodzącej po zmieszaniu roztworów wodnych węglanu amonu kwasu siarkowego(VI).

A.
$$(NH_4)_2CO_3 + 2H^+ + SO_4^{2-} \rightarrow 2NH_4^+ + H_2CO_3 + SO_4^{2-}$$

B.
$$2NH_4^+ + SO_4^{2-} \rightarrow (NH_4)_2SO_4$$

C.
$$2NH_4^+ + CO_3^{2-} + 2H^+ + SO_4^{2-} \rightarrow 2NH_4^+ + SO_4^{2-} + 2H^+ + CO_3^{2-}$$

D.
$$2H^+ + CO_3^{2-} \rightarrow H_2O + CO_2$$

⊃ Informacja do zadania 19.

W celu porównania mocy amoniaku i wodorotlenku sodu przeprowadzono dwa doświadczenia (I i II), których przebieg ilustruje poniższy schemat.

Zadanie 19. (1 pkt)

Zaznacz poprawnie sformułowane spostrzeżenia i wynikający z nich wniosek.

- A. W doświadczeniu I nie zaobserwowano żadnych zmian. Wniosek amoniak jest mocniejszą zasadą niż wodorotlenek sodu.
- B. W doświadczeniu I stwierdzono wydzielanie gazu o charakterystycznym, ostrym zapachu. Wniosek amoniak jest słabszą zasadą niż wodorotlenek sodu.
- C. W doświadczeniu II nie zaobserwowano żadnych zmian. Wniosek amoniak jest zasadą mocniejszą niż wodorotlenek sodu.
- D. W doświadczeniu II stwierdzono wydzielanie gazu o charakterystycznym, ostrym zapachu. Wniosek amoniak jest zasadą słabszą niż wodorotlenek sodu.

Zadanie 20. (1 pkt)

Wskaż równanie reakcji, która <u>nie może</u> być wykorzystana do efektywnego otrzymania siarczanu(VI) sodu.

A.
$$2Na + H_2SO_4 \rightarrow Na_2SO_4 + H_2$$

B.
$$Na_2O + SO_3 \rightarrow Na_2SO_4$$

C.
$$2\text{NaOH} + \text{H}_2\text{SO}_4 \rightarrow \text{Na}_2\text{SO}_4 + 2\text{H}_2\text{O}$$

D.
$$2\text{NaNO}_3 + \text{K}_2\text{SO}_4 \rightarrow \text{Na}_2\text{SO}_4 + 2\text{KNO}_3$$

Nr zadania	17	18	19	20	razem	
Maks. liczba punktów	1	1	1	1	4	
Uzyskana przez ucznia liczba punktów						

Konkurs chemiczny. Etap szkolny

ROZPUSZCZALNOŚĆ SOLI I WODOROTLENKÓW W WODZIE (TEMP. 291-298K)

	Na ⁺	K ⁺	NH ₄ ⁺	Mg^{2+}	Ca ²⁺	Sr ²⁺	Ba ²⁺	\mathbf{Ag}^{+}	Cu ²⁺	Zn ²⁺	Al ³⁺	Mn ²⁺	Cr ³⁺	Fe ²⁺	Fe ³⁺	Pb ²⁺	Sn ²⁺	Sn ⁴⁺
OH.	r	r	r	S	S	S	r	n	n	n	n	n	n	n	n	S	n	n
F-	S	r	r	S	S	S	S	r	0	S	S	S	S	S	S	S	r	r
Cl.	r	r	r	r	r	r	r	n	r	r	r	r	S	r	r	S	r	r
Br [·]	r	r	r	r	r	r	r	n	r	r	r	r	S	r	r	S	r	r
I.	r	r	r	r	r	r	r	n	0	r	0	О	0	S	0	S	S	r
S^{2-}	r	r	r	0	0	0	0	n	n	n	0	n	0	n	n	n	n	n
SO_3^{2-}	r	r	r	S	S	S	S	S	S	S	0	s	0	S	0	S	0	О
SO_4^{2-}	r	r	r	r	S	S	n	S	r	r	r	r	r	r	0	n	r	r
NO ₃	r	r	r	r	r	r	r	r	r	r	r	r	r	r	r	r	0	r
ClO ₃	r	r	r	r	r	r	r	r	r	X	X	X	X	X	X	r	X	X
PO_4^{3-}	r	r	r	S	n	n	n	n	S	S	S	s	S	S	S	n	0	r
CO_3^{2-}	r	r	r	S	n	n	n	n	S	S	0	s	0	S	0	n	0	О
HCO ₃	S	r	r	S	S	S	0	0	0	0	0	S	0	S	0	0	X	X
SiO ₃ ² -	r	r	0	n	n	0	n	n	n	n	n	n	n	n	n	n	0	О
$\operatorname{CrO_4}^{2-}$	r	r	r	r	S	S	n	n	S	S	0	S	0	0	S	n	0	0

- r substancja dobrze rozpuszczalna
- s substancja słabo rozpuszczalna (osad wytrąca się ze stężonego roztworu)
- n substancja praktycznie nierozpuszczalna
- o substancja w roztworze wodnym nie istnieje
- x związek nie istnieje

Brudnopis