《机器学习》课程小作业(一)

报告

学院 深圳国际研究生院

班级 深数据硕 212 班

姓名 陈 文 硕

学号 2021214480

日期 2021年10月5日

预处理

标准化

将训练集与测试集分别存放至 project/train 与 project/test 文件夹下将数据进行标准化至[0,1]区间

$$x^{j} = \frac{x^{j} - \min(x^{j})}{std(v^{j})}$$

主成分分析

在最初的实验中发现,原训练集的样本矩阵X不可逆,说明部分数据线性相关。为了让X为非奇异矩阵,可以使用 PCA 的方法进行降维。

我们选取 scikit-learn 中的 PCA 工具包(由于作业中并没有考察相关知识,故直接调包),设置主成分个数为 'mle',即程序会自动根据主成分的方差选取主成分的个数。最终发现,降至 96 维是合理的。将 PCA 的降维与之前手动选取特征(选取前 37 维特征)对比,发现前者在实验中约有 2%的准确率提升。由于 scikit-learn 的 PCA 库中会自动对数据集进行标准化,故对于标准化,无需再单独编写函数。

实验一: FLD

用 TrainingSet-1 计算 FLD 的判别函数,并利用 TestSet-1 计算错误率

Fisher 线性判别法

其核心思想是通过 $y_i = \mathbf{w}^T \mathbf{x}_i$ 将样本投影到空间中的某个平面,使类内距离尽可能小,类间距离尽可能大。经过推导,优化问题转为

$$\max \mathbf{w}^T \mathbf{S}_b \mathbf{w}$$

s.t. $\mathbf{w}^T \mathbf{S}_w \mathbf{w} = c \neq 0$

再利用拉格朗日乘数法

$$w^* = S_w^{-1}(m_1 - m_2)$$

其中 m_1, m_2 为两类样本的均值向量。

但通过上述仿射变换只能确定将样本投影至哪一个平面。还需要确定平移的阈值m。

常用的确定方法有三种, 经实验, 我们采取以下方法效果最优: $w_0 = -\frac{1}{2}(\widetilde{m_1} + \widetilde{m_2})$ (用 TrainingSet-1 和 TrainingSet-2 作为训练集)将训练集通过归一化以及将数据降至96维后,通过FLD方法, 使用 TrainingSet-1 训练模型, 在 TestingSet-1 测试正确率为77.58%, Error rate 为 22.42%。

$w_0 = -\frac{1}{2}(\widetilde{m_1} + \widetilde{m_2})$	$w_0 = -\widetilde{m}$
79.90%	79.63%

表格 1 不同阈值的正确率

总结与思考

在确定阈值的时候,最开始想了好久并不理解为什么 w_0 和m的关系是"负"号,原因是超平面的平移方向与样本点仿射变换的方向相反。

实验二:感知机

2.1 分别用"Fixed increment rule"和"Variable increment rule"训练模型

经查阅文献[2], Fixed increment rule 和 Variable increment rule 定义如下: 对于

$$w^k = w^{k-1} + lr^{k-1} \sum y_i x_i$$

当lr为恒定值时, 称为 fixed increment rule, 当lr为变量时, 称为 variable increment rule。

于是我们用 BGD (它遵循 fixed increment rule)以及 Adam (它遵循 variable increment rule)分别训练模型

图 2 不同优化器训练的损失函数变化过程 |r=1e-2, n_split=5, n_iter=1000

可以看到,使用 BGD 训练时,震荡剧烈, loss 在 1000 附近依然会震荡,然而采用 Adam 优化器训练时,迭 代次数在 500 左右就接近收敛。

2.2 对比两种优化算法, 画出学习曲线 (learning curve)

画出学习曲线 1 如图所示。

图 3 不同优化器的学习曲线 |r=1e-2, n_iter=1000, n_splits=5

可以看到,Adam 优化器的速度远远快于BGD 的速度。对于BGD (Fixed increment rule),我们设定迭代10万次以后,能在测试集上达到78%的正确率(Adam 收敛时约79%)。(这一实验在Apple M1 芯片上跑了6小时,可惜没有记录下其对应的 learning curve)

1. 我并没有找到学习曲线(learning curve)的官方定义,wikipedia 的 learning curve (machine learning)的词条中记录为"In machine learning, a learning curve (or training curve) plots the optimal value of a model's loss function for a training set against this loss function evaluated on a validation data set with same parameters as produced the optimal function.",而在 scikit-learn 的官方文档[3]中,learning curve 绘制的是不同 cross-validation 在同一迭代次数下的 training score 的平均以及 validation score 的平均。

2.3 用 Training-Set2 分别测试 TestSet-1 和 TestSet-2, 对比测试结果

	TestSet-1	TestSet-2
Error Rate	22.15%	20.00%

图 4 测试结果。n split=5, n iter=3000, r=5e-3, 在 2879 次迭代时收敛 (loss=0)。

2.4 用 Training-Set-1 训练, 并用 TestSet-1 测试

实验发现 Error Rate 为 24.43%。

2.5 总结与思考

对于 2.1~2.2:

相比 Fixed increment rule, Variable increment rule 的训练方式可以更为高效。在某一梯度方向的时候可以连续地迅速下降。

对于 2.2:

- (1) 强制收敛的方法有多种,可以固定一定迭代次数后终止循环,也可以设置一个更大的阈值。
- (2) Learning Curve 的定义并不唯一。本报告参考 scikit-learn 中的 plotting_learning_curves 的 demo[3]。每 50 epoch 绘制一次 training score 与 validation score。
- (3) 参考上述文档, 当利用 cross-validation 时, 每一轮的 score 等于 cross-validation 的平均。

对于 2.3-2.4:

Training-Set-1 有 5000 个样本, Traing-Set-2 有 1475 个样本, 自然用 Training-Set-1 训练的时候效果会更好。但这一现象并不能表明训练集越大越好。如果是 50000 个与 14750 个之间对比, 14750 数量的样本或许会更好, 因为它的泛化能力更强。

实验三:罗杰斯特回归

3.1~3.2 用 TrainingSet-1 计算 training error 和 cross validation, 以及 test error

我们设置参数 n_iter=1000, 1e-2, n_splits=5, optimizer="Adam", 得到 training eror: 0.1984 validation error (use 20% training set as test set cross-validation): 0.2194 test error: 0.2133

3.3 根据测试集绘制 ROC curve 如图

图 5 ROC 曲线。Logistic Regression

3.4 分析判别死亡的主要成分

参考[4],主成分分析后确定特征权重的公式为对components·explained_variance_ratio_的加权。输出前 10 项 因素如图所示。可以发现,apache_3 是判断人生死最相关的因素。(由于 scikit-learn 有 PCA 工具包,故没有用推 荐的 statsmodel,此结果写入至表格 *feature weigh.csv*,见附件)

1	0.773379	8 apache_3j_None numeric	The APACHE III-) sub-diagnosis code which best describes the reason for the ICU admission
2	0.090228	7 apache_2_None numeric	The APACHE II diagnosis for the ICU ad mission
3	0.044561	59 d1_platele 10 ^9/L numeric	The highest platelet count for the patient during the first 24 hours of their unit stay
4	0.022396	19 map_apac Millimetres numeric	The mean arterial pressure measured during the first 24 hours which results in the highest APACHE III score
5	0.01376	15 glucose_ar mmol/L numeric	The glucose concentration measured during the first 24 hours which results in the highest APACHE III score
6	0.007389	49 h1_sysbp_ Millimetres numeric	The patient's highest systolic blood pressure during the first hour of their unit stay, either non-invasively or invasively measured
7	0.006994	35 d1_sysbp_ Millimetres numeric	The patient's highest systolic blood pressure during the first 24 hours of their unit stay, either non-invasively or invasively measured.
8	0.005455	50 h1_sysbp_ Millimetres numeric	The patient's lowest systolic blood pressure during the first hour of their unit stay, either non-invasively or invasively measured
9	0.005034	55 d1_glucos(mmol/L numeric	The lowest glucose concentration of the patient in their serum or plasma during the first 24 hours of their unit stay
10	0.004841	36 d1 sysbp Millimetresnumeric	The patient's lowest systolic blood pressure during the first 24 hours of their unit stay, either non-invasively or invasively measu

实验四: K 近邻算法

4.1 描述 KNN 库的基本参数和寻找最近邻的算法。

寻求最近邻的算法有 KD-Tree。

构建: k维空间数据集 $T=\{x_1,x_2,...x_N\}$,其中 $x_i=\{x_i^1,x_i^2,...,x_i^k\}^T$,i=1,2,...N

- (1) 开始构造根节点,由根节点生成深度为 1 的左右子结点,左边对应 x^1 小于切分点的子区域,右子结点对英语 坐标 x^1 大于切分点的子区域。
- (2) 重复选择 x^l 为切分的坐标, l = j(modk) + 1
- (3) 直到两个子区域构建完成。

查找:

- (1) 从根结点开始递归访问直到叶子结点
- (2) 递归向上回退,维护最近结点,在区域中寻求最近结点
- (3) 回退到根结点输出维护的最近结点,此结点即位 1-Nearest-Neighbor

在 scikit-learn 中, KNN 的常见参数有

表格 2 sk-learn 中 KNN 分类器常见参数

参数名	参数可选值	作用
n_neighborsint	int, default=5	k 的值
weights	'uniform':每个点权重相等 'distance':越近权重越大	指定权重函数
algorithm	'auto':自动选择 'ball_tree' 'kd_tree'	选择搜索方法

4.2 选择参数训练 KNN

分别对 weights 的不同方案进行实验,

在 weights='uniform'时:

对 k 取 1~79 分别进行交叉检验,发现 k=27 时效果最好,正确率为 68.20%;

在 weight='distance'时:

发现 k=23 时效果最好,正确率为 68.28%。

图 6 K 取不同的值对正确率的影响

但是事实上,如果我们设置 weight='distance',将在 k=62 时在验证集上达到最高的正确率。validation score 为 79.90%(上述实验采用 TrainingSet-1 与 TrainingSet-2)

我们仅采用 TrainingSet-1 作为训练集,TestingSet-1 作为测试集正确率为 68.92%。

4.3 观察与讨论

- (1) 在训练 KNN 模型时,需要提前观测数据集,如果数据过大,务必要进行归一化或者标准化,保证在进行距 离运算时不会越界。
- (2) KNN 的训练集发生变化时, K 也有必要重新设定。

图7 当训练集发生改变时的对照

在之前的实验中, weight 选择不同形式时对 k 的取值看似并没有很大的影响,但当我们改变训练集时,如将 TrainingSet-1 与 TrainingSet-2 均作为训练集,发现 uniform 下的 k 取 1 最优, distance 下取 62 最优,且其正确率 竟与前面的其他线性分类模型相持平。当训练集最大时,依照距离加权比等权求距离更优。

参考文献

- [1] https://blog.csdn.net/u014568921/article/details/45846531
- [2] Anestis Gkanogiannis and Theodore Kalamboukis, A modified and fast Perceptron learning rule and its use for Tag Recommendations in Social Bookmarking Systems, Department of Informatics Athens University of Economics and Business, Athens, Greece
- [3] https://scikit-learn.org/stable/auto_examples/model_selection/plot_learning_curve.html#sphx-glr-auto-examples-model-selection-plot-learning-curve-py
- [4] https://blog.csdn.net/lzw790222124/article/details/120262798