5. Evaluate the following integral.

$$\int \frac{x-9}{x^2+3x-10} dx$$

(a)
$$\ln|x+5| - 2\ln|x-2|$$

(a)
$$\ln|x+5| - 2\ln|x-2|$$
 (b) $2\ln|x+5| - \ln|x-2|$

(c)
$$\ln|x+5| + 2\ln|x-2|$$
 (d) $-\ln|x+5| - 2\ln|x-2|$

(d)
$$-\ln|x+5| - 2\ln|x-2|$$

(e)
$$2\ln|x+5| + \ln|x-2|$$

6. Which of the below integrals is equal to

$$\int \frac{\sqrt{x^2 - 4}}{x^6} dx$$

(with an appropriately defined θ)?

(a)
$$\int \frac{1}{16} \cos^3 \theta \sin^2 \theta \, d\theta$$

(b)
$$\int \frac{1}{32} \cos^5 \theta \sin \theta \, d\theta$$

(a)
$$\int \frac{1}{16} \cos^3 \theta \sin^2 \theta \, d\theta$$
 (b) $\int \frac{1}{32} \cos^5 \theta \sin \theta \, d\theta$ (c) $\int \frac{1}{16} \cos^3 \theta \sin^3 \theta \, d\theta$

(d)
$$\int \frac{1}{16} \frac{\cos^2 \theta}{\sin^6 \theta} d\theta$$
 (e) $\int \frac{1}{32} \frac{\cos \theta}{\sin^6 \theta} d\theta$

(e)
$$\int \frac{1}{32} \frac{\cos \theta}{\sin^6 \theta} d\theta$$

7. Using the comparison theorem, which of the following integrals is convergent?

(i)
$$\int_{1}^{\infty} \frac{x \sin^{2} x}{\sqrt[3]{1 + x^{7}}} dx$$
 (ii) $\int_{1}^{\infty} \frac{dx}{x + e^{2x}}$ (iii) $\int_{2}^{\infty} \frac{x^{2}}{\sqrt{x^{6} - 1}} dx$

$$(ii) \int_{1}^{\infty} \frac{dx}{x + e^{2x}} \quad ($$

(iii)
$$\int_{2}^{\infty} \frac{x^2}{\sqrt{x^6 - 1}} dx$$

- **8.** Consider the sequence defined by $a_1 = 2$, $a_{n+1} = \frac{1}{2}(a_n + 6)$. Which of the following statements is correct?
 - (a) $\{a_n\}$ is increasing and bounded above by 3
 - **(b)** $\{a_n\}$ converges to 5
 - (c) $\{a_n\}$ is increasing and bounded above by 5
 - (d) $\{a_n\}$ is increasing and bounded above by 6
 - (e) $\{a_n\}$ diverges
- 9. Determine whether the following sequences are convergent or divergent. When convergent, find the limit.

(i)
$$a_n = \frac{(-1)^n n^3}{n^3 + 2n^2 + 1}$$

(ii)
$$a_n = n\sin(n\pi)$$