Signals & Systems HW#6

1.

a)

Multiple them. Will be two cos signals. Thus

y (+)

七

b)

y(t) is just amplitude shift thus.

2.

a) find the FT of
$$\cos(\pi t)$$

$$FT\{\cos(\pi t)\} = \pi[\delta(\omega - \pi) + \delta(\omega_{\pi})]$$
 if $y(t) = x(t)(\cos(\pi t))$ then
$$FT\{y(t)\} = Y(\omega) = \frac{\pi}{2\pi} [x(\omega) * (\delta(\omega - \pi) + \delta(\omega + \pi))]$$

$$= \frac{1}{2} [x(\omega) * \delta(\omega - \pi) + x(\omega) * \delta(\omega + \pi)]$$

$$= \frac{1}{2} [x(\omega - \pi) + x(\omega + \pi)]$$

Thus it's 1/2 the amplitude shifted to the left and right by π

b) p(t) is periodic need to find Fourier series coefficients $\frac{1}{T}\int_{T}x(t)e^{-j\omega_{0}t}dt$ $= \frac{1}{2} \left(\int_{-\frac{1}{2}}^{\frac{1}{2}} 1 * e^{-jk\pi t} + \int_{\frac{1}{2}}^{\frac{3}{2}} (-1) e^{-jk\pi t} \right)$ $= \frac{1}{2} \left(-\frac{1}{jk\pi} \left(e^{-\frac{jk\pi}{2}} - e^{\frac{jk\pi}{2}} \right) + \frac{1}{ik\pi} \left(e^{-\frac{jk3\pi}{2}} - e^{\frac{jk\pi}{2}} \right) \right)$ $= \frac{1}{2ik\pi} \left(2j \sin\left(\frac{k\pi}{2}\right) + e^{\frac{-jk\pi}{2}} \left(e^{-jk\pi} - 1\right) \right)$ $= \frac{1}{2jk\pi} \left(2j \sin\left(\frac{k\pi}{2}\right) + e^{\frac{-jk\pi}{2}} \left((-1)^k - 1 \right) \right)$ $FT{p(t)} = 2\pi \sum_{k=-\infty} a_k \delta(\omega - k\pi)$ $Y(\omega) = \frac{1}{2\pi} [X(\omega) * p(\omega)]$ $=\sum_{k=-\infty}^{\infty}a_k X(\omega)*\delta(\omega-k\pi)=\sum_{k=-\infty}^{\infty}a_k X(\omega-k\pi)$ thus $Y(\omega)$ repeats for every odd π

3.

it goes through Low Pass Filter

b) we know $\frac{1}{2\pi}X(\omega)*S(\omega)=x_{temp}(\omega)$ from above. We multiply (convolute) that with $FT(\cos(\omega_c t))$ $=\frac{1}{2}(x_{temp}(\omega-\omega_c)+x_{temp}(\omega+\omega_c))$

convoluting again with $\cos^3(\omega_c t)$ will phase shift it. Then you put it through LPF

c) only difference from $\cos(\omega_c t)$ is coefficient is $\frac{\pi}{j}$. Thus bringing it to complex plane for the LPF period. Meaning not physically drawn.

3 (continued):

d)

$$\begin{split} x_{temp}(\omega) &= \frac{1}{2\pi} \Big(\pi \big(\delta(\omega - 2\omega) + \delta(\omega - 2\omega) \big) * \big(X(\omega) * S(\omega) \big) \Big) \\ &= \frac{1}{2} \big(x(\omega - 2\omega) + x(\omega + 2\omega) \big) \end{split}$$

The next $\cos(2\omega_c t) \to x_{\text{temp2}}(\omega) = \frac{\pi}{2\pi} (x_{\text{temp}}(\omega) * \cos(2\omega_c t))$ $= \frac{1}{2} \left(x_{temp}(\omega - 2\omega) + x_{temp}(\omega + 2\omega) \right)$ Expansion and through LPF

4.

a)

First do FT of system $X_p(\omega) = \frac{1}{2\pi} (x(\omega) * p(\omega))$

$$=\frac{2\pi}{2\pi(10^{-3})}\sum_{n=-\infty}^{\infty}\delta(\omega-n\omega)$$

$$x_r(\omega) = x_p(\omega) * H(\omega)$$

 $x_p(\omega)$ is delta functions centered at 0 with period of 1000π

 $H(\omega)$ is a LPF so we analyze just between $\pm 1000\pi$

$$\theta = \frac{\pi}{4}$$
 so coefficient is $\frac{\sqrt{2}}{2}$
 $x_r(t) = \cos\left(500\pi t + \frac{\pi}{4}\right)$

4 (continued)

b)

Same as before. Centered at 0 but period of $x_p(\omega)$ is 3000π and starting at -500 π and 500 π

 $H(\omega)$ is a LPF so we analyze only for $\pm 1000 \,\pi$ $\theta = \frac{1}{2}$ so scale is 1

 $x_r(t) = \sin(500\pi t)$

5.

a)
$$\frac{1}{T} \int_{T} x(t)e^{-j\omega_{0}t}dt$$

$$= \frac{1}{2\Delta} \int_{0}^{2\pi} \delta(t)e^{-\frac{jn2\pi}{\Delta}t} - \delta(t-\Delta)e^{-\frac{jn2\pi}{\Delta}t}dt$$

$$= \frac{1}{2\Delta} (1 - e^{-jn\pi})$$
odd ys even

odd vs even

only non zero when odd. thus

$$p(t) = \sum_{n=-\infty}^{\infty} \frac{1}{\Delta} e^{\frac{j(2n+1)2\pi}{2\Delta}t}$$

 $x_p(\omega) = \sum_{n=-\infty}^{\infty} \frac{x(t)}{\Delta} e^{\frac{j(2n+1)2\pi}{2\Delta}t}$. This means $x_p(\omega)$ is $x(\omega)$ repeating at every odd multiple of π/Δ

b)
$$x_p(t)d(t) = x_p(t)\cos\left(\frac{\pi}{\Delta}t\right)$$

$$x_p(\omega)*d(\omega) = \frac{1}{2\pi}X_p(\omega)*\pi\left[\delta\left(\omega - \frac{\pi}{\Delta}\right) + \delta\left(\omega + \frac{\pi}{\Delta}\right)\right]$$

$$= \frac{1}{2}X_p\left(\omega - \frac{\pi}{\Delta}\right) + \frac{1}{2}X_p\left(\omega + \frac{\pi}{\Delta}\right)$$
 Pass this through H(\omega) filter.

