Exercice 1:

Si a, b, c, d sont des réels, on note $f_{a,b,c,d}$ la fonction définie par :

$$\forall x \in \mathbb{R}, \ f_{a,b,c,d}(x) = (a+bx)\cos(x) + (c+dx)\sin(x)$$

On note E l'ensemble des fonctions $f_{a,b,c,d}$ où $(a,b,c,d) \in \mathbb{R}^4$.

- 1. Soit $(a, b, c, d) \in \mathbb{R}^4$. Calculer la dérivée de $f_{a,b,c,d}$ et déterminer $(\alpha, \beta, \gamma, \delta) \in \mathbb{R}^4$ tel que $(f_{a,b,c,d})' = f_{\alpha,\beta,\gamma,\delta}$. On exprimera $\alpha, \beta, \gamma, \delta$ en fonction de a, b, c, d.
- 2. On note $\varphi: \mathbb{R}^4 \longrightarrow \mathbb{R}^4$ l'application qui associe à (a,b,c,d) le quadruplet $(\alpha,\beta,\gamma,\delta)$ défini à la question précédente.
 - (a) Montrer que φ est un endomorphisme du \mathbb{R} -espace vectoriel \mathbb{R}^4 .
 - (b) Déterminer $\operatorname{Ker}\varphi$ et $\operatorname{Im}\varphi$. Qu'en déduire sur φ ?
- 3. (a) Déterminer φ^{-1} .
 - (b) En déduire une primitive de la fonction $g: x \mapsto (2+3x)\cos(x) + (1-4x)\sin(x)$.

Exercice 2:

On considère le sous-espace vectoriel de \mathbb{R}^4 défini par : V = Vect((1, -2, 5, -3), (2, 3, 1, -4), (3, 8, -3, -5)). Soit $f : \mathbb{R}^4 \to \mathbb{R}^2$ l'application linéaire définie par : $\forall (x, y, z, t) \in \mathbb{R}^4$, f(x, y, z, t) = (x - y + z + t, x + 2z - t).

- 1. Calculer dim V et trouver une base \mathcal{B}_1 de V.
- 2. Déterminer une base \mathcal{B}_2 de Kerf.
- 3. Notons \overrightarrow{u} , \overrightarrow{v} , \overrightarrow{w} , \overrightarrow{x} les vecteurs de \mathbb{R}^4 tels que $\mathcal{B}_1 = (\overrightarrow{u}, \overrightarrow{v})$ et $\mathcal{B}_2 = (\overrightarrow{w}, \overrightarrow{x})$ où \mathcal{B}_1 et \mathcal{B}_2 sont les bases trouvées précédemment.
 - (a) Soit $\mathcal{B} = (\overrightarrow{u}, \overrightarrow{v}, \overrightarrow{w}, \overrightarrow{x})$. Montrer que \mathcal{B} est une base de \mathbb{R}^4 .
 - (b) En déduire que tout vecteur \overrightarrow{z} de \mathbb{R}^4 s'écrit **de manière unique** sous la forme $\overrightarrow{a} + \overrightarrow{b}$ où $\overrightarrow{a} \in V$ et $\overrightarrow{b} \in \operatorname{Ker} f$.
 - (c) Déterminer \overrightarrow{a} et \overrightarrow{b} dans le cas où $\overrightarrow{z} = (1, 2, 3, 1)$.
 - (d) Déterminer la matrice de f dans la base \mathcal{B} de \mathbb{R}^4 et la base canonique de \mathbb{R}^2 .

Exercice 3:

Soit f l'endomorphisme de \mathbb{R}^3 défini par :

$$\forall (x, y, z) \in \mathbb{R}^3, \ f(x, y, z) = (2x + y + z, \ x + 2y + z, \ 3z)$$

- 1. Déterminer Ker(f 3Id), $Ker((f 3Id)^2)$ et Ker(f Id) (on déterminera une base et la dimension de chacun de ces sous-espaces vectoriels).
- 2. Soit g un endomorphisme de \mathbb{R}^n tel que $\operatorname{Ker}(g) \neq \operatorname{Ker}(g^2)$.
 - (a) Montrer que $\operatorname{Ker}(g) \subset \operatorname{Ker}(g^2)$ et justifier l'existence d'un vecteur $\overrightarrow{u} \in \operatorname{Ker}(g^2) \setminus \operatorname{Ker}(g)$.
 - (b) Montrer que, pour un tel vecteur \overrightarrow{u} , la famille $(g(\overrightarrow{u}), \overrightarrow{u})$ est une famille libre de $Ker(g^2)$.
- 3. En déduire qu'il existe une base de \mathbb{R}^3 dans laquelle la matrice de f est $\begin{pmatrix} 3 & 1 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 1 \end{pmatrix}$.