13:日本国特許守证/P

特開平11-80902

3437公開日 平成11年 (1999) 3月26日

x8:"Itt.Cr."	激引起号	市内整理番号	F I						技術表示簡明
0220 38/80	3 0 2		C22C	38/00		302		Z	
19/60				19/07				I	
27/06				27/06					
38/35				38/38					
38/58		38/58							
		審査請求	未請求	請求	項の数 8	ΟL	(全	8頁)	最終頁に続く
21)出願番号	特願平9-238	4 2 0	(71)出	顧人	0000	0 1 1	9 9		
					株式会社	神戸製	鋼所		
22)出願日	平成9年(199	7) 9月3日	i		兵庫県神	戸市中	央区服	3浜町)	丁目3番18
			1		号				
			(72)発	明者	村上 昌	吾			
					神戸市西	区高泉	台1丁	1∃5#	5号 株式会
					社神戸製	鋼所神	戸総合	技術品	究所内
			(72)発	明者	奥田 隆	贬			
			1		神戸市西	区高粱	台1丁	1目 5 種	5号 株式会
					社神戸製	鋼所神	戸総合	技術研	究所内
			(72)発	明者	白石 幸	34			
					神戸市中	央区脇	浜町 1	丁目 3	备18号 株
			1		式会社神	戸製鋼	所神戸	本社内	
			(74)代3	重人	弁理士	明田	莞		

(54)【発明の名称】耐高温エロージョン・コロージョン性に優れた高Cr合金および高Cr合金部材

【課題】 使用温度が500 で以上の耐高温エコージョン ・コロージョン性に優れた、特にごみ嫌却护ポイラ用の 高Cr合金および高Cr合金部材を提供する。

【解決手段】 高[[合金および高[]台金部材の合金の組 成を、C:0.5 ~1:5%、S::1.0~4.0%、Mn:0.5~2.0%、C r:35 ~60% 、必要によりVIII3~15% を含有し、機能Co および/またはfeおよび不可避的不純物からなり、かつ 35≦(r|C≦90とすることである。

【特許請求の範囲】

【請求項:】 - 台至成分として、(0.3.~1.5%、8.7%) (~4.3%、Mo10.5~2.3%、Cr.85 ~83% を含有し、腹部Co および、またはFeと不可避的不能物からなり、かつCr量 と0 量との比が08≦0 000 00 00 あることを特徴とする財 高温エロージョン・コロージョン性に優れた高い合金。 【請求項2】 合金成分として、更にN:3~15% を含有 する請求項1に記載の耐高温エコージョン、コロージョ ン性に優れた高い合金。

【請求項3】 前記高Cr合金がごみ焼却炉ポイラ用であ 10 (以下、耐高温エロージョン・コロージョン性と言う) る請求項1または2に記載の耐高温エロージョン・コロ ージョン性に優れた高()合金。

【請求項4】 前記ごみ焼却炉ポイラが流動床式ごみ焼 却炉ポイラである請求項1乃至3のいずれか1項に記載 の耐高温エロージョン・コロージョン性に優れた高い合 ŵ.

【請求項5】 請求項1または2の高((合金を、鋼材の 表面に被覆した耐高温エロージョン・コロージョン性に 優れた高に合金部材。

耐高温エロージョン・コロージョン性に優れた高Cr合金

【請求項7】 前記部材がごみ焼却炉ポイラ用である請 求項5または6に記載の耐高温エロージョン・コロージ ョン性に優れた高Cr合金部材。

【請求項8】 前記ごみ焼却炉ポイラが流動床式ごみ焼 却炉ポイラである請求項7に記載の耐高温エロージョン ・コロージョン性に優れた高(1合金部材。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は、耐高温エロージョン・ コロージョン性に優れた高(:台金乃至高(:台金郎材に関 し、特にごみ焼却炉ポイラ用に好適な耐高温エロージョ ン・コロージョン性に優れた高Cr台金乃至高Cr台金部材 に関するものである。

【従来の技術】都市ごみ焼却炉では、燃焼によって生じ る魔熱をエネルギー源として有効利用するために、魔熱 を熱源としたポイラを設置して、発電を行う例が多い。 このごみ焼却炉ポイラのうちでも、特に流動宋式ごみ焼 40 る。 却使のボイラは、焼却使内の流動層内に鋼管製の伝熱管 を直接提入して熱団収を行うこで、使期がから比る様式 スから鮮回収を行うよりも、エネリギー効率を格段は高。 1くできる点で優れている。しかし、この境動伝式ごみ俺 |単原は、アルシなどの遺伝に子を自動化させて形成した 活動大力更活動層の内部で、これの復訂を行う形式の使 「毎年である」しただって、特邦のこの動量内に直接換入。 された伝教音などのボイラ節様は、ごみの何耳に伸い発 生する所、ガスや容融塩化物塩および または30 ガス

(高温コロージョン) 環境下にある。また、流動層内 は、この高温コロージョンだけではなく、高温の流動砂 が常に循環しており、特に流動砂の流速の大きい場合に は、その流速の2~3乗に比例して、流動砂により伝熱 管が激しい磨耗、即ち高温エロージョンを受ける。 【0003】したがって、このような用途に用いられ る、ごみ焼却炉ポイラ用合金乃至伝熱管を含めたごみ焼 却炉ポイラ用部材には、前記高温エコージョンおよび高 進コロージョンの両方に対する耐磨耗性および耐食性

を有することが必要である。 【0004】この耐高温エロージョン性や、耐高温コロ ージョン性を高めた合金は、従来から種々提案されてい る。例えば、特公昭58-6779 号公報では、耐磨耗性およ び溶接性鉄-ニッケル-コバルトペース合金として、10 をまでのMo、 ¥ 、20~33%Cr、0.6 ~1.7%Si、0.9 ~1.5 \$C 、 1.0%以下B を含む合金が提案されている。特公昭6 4-7145 号公報では、耐磨耗性および耐食性ニッケルベ ース合金として、20~35%Cr、1~8%Si、1.7~3.5%C 【請求項6】 前記鋼材が鋼管である請求項5に記載の 20 を含みW-C。型の炭化物を形成させたNi合金が提案されて いる。特開昭55-154542 号公報では、ニッケルーコバル トークロム合金として、基本的に20~47%Ni 、6 ~35%C o、18~36%Cr、0.6~2.5%C、0.5~2.5%S1を含むFe 合金が提案されている。また、特公平2-36359 号公報で id. 6.0~14.0%Cr , 0.8 ~2.4%B , 0.5 ~5.0%Si, 0.5 ~15% 10~40% 00 を含むFe-Co合金が提案されてい る。更に、特開昭81-169174 号公報では、20% 以上のCr を含有する(o基台金の肉盛り層を備えたポイラ用部材が 提案されている。また、特開昭63-10097号公報では、0. 80 7 ~3.0%C 、2%以下Si、2%以下Vn、23~32%Cr 、1~7%W o、3 ~6.5% * 、3%以下Yi、5%以下Feを含有する肉盛り 用耐熱Co基合金が提案されている。また、特願平1-2736 93号公報では、0.01~0.5C*C、0.1 ~2.0*5!、35~60*C r、0.5~4.0%Ai+Ti、0.01~0.2% に加えて、更にM n、N、Nb、No、W、Feを含有するNi乃至Co基合金肉盛

り密接材料が提案されている。更に、特許第2561567号 公報では、0,02~0 1%(、1 ~5%S)、5%以下Vn、10~20 %Cr . 30~50%\i . 0.5 ~3%No. 10~40%Co . G.5 ~5% ▼ を含有するごみ焼却炉ポイラ用Fe台金が提案されてい。

(発明が解決しようとする課題) しかし、近年、何知二 み境却に伴う発熱を利用した発電の高効率化のために、 ボイラ部材の使用温度は500 で以近の高温になり、使用 環境が、より迅酸になっている。このため、これような 環境下では、前部従来台至では後に詳述する通じ 使用 寿命が追いことが問題となっている。例えば、前記特許 第1381381 号公報のごお傳知声がくを用記含金は、蒸気 温度で800 でまで使用可能 8100以上は使用不可能して や容融砲化物塩の存在によって、非常に透動な高温凝度、17、あることが開起されている。これがって、使用温度が5.7

1 で以上のより高温下での、耐高温エロージョン・コロ ージョン性に優れるごみ焼却御ポイラ甲合金乃至ポイラ 用部材が求められていたが、この特性を有する合金が、 今まで実用化されておらず、ごみ焼却却ポイラの効率を 高めることには限界があったというのが実情である。 【0006】本発明はこの様な事情に着目してなされた ものであって、その目的は、使用温度が800 で以上の耐 高温エロージョン・ココージョン性に優れた、特にごみ 焼却炉ポイラ用の高(:合金および高C;合金部材を提供し ようとするものである。 [0007]

【課題を解決するための手段】この目的を達成するため に、本発明の要旨は、高Cr合金の組成を、Ci0.5~1.5 2、Sigl.0~4.0%、Mm:0.5~2.0%、Cr:35 ~60% 、必要 によりNi:3~15% を含有し、残部Coおよび/ またはFeお よび不可避的不範物からなり、かつ(:量と(量との比を 35≤Cr/C≤90とすることである。

【0008】また、この高(;合金を、鋼材、特に熱伝達 用鋼管などの表面に披覆した高[[合金部材とすれば、耐 高温エロージョン・コロージョン性に優れる、特にごみ 20 温コロージョン性の両方とも劣っている。 焼却炉ポイラなどの用途の高Cr合金部材とすることがで きる.

【0009】本発明者らは、高(r合金において、流動床 式ごみ焼却炉ボイラにおける耐高温エロージョン・コロ ージョン性と、(および(rとの関係について鋭意検討し た結果、耐高温エロージョン性および耐高温コロージョ ン性の両特性を満足するためには、0.7/0の規定が重要で あることを知見した。前記従来技術においても、CがCr などとともにM.C.、M.:C. 炭化物を形成して耐高温工口 ージョン性に効果があるとともに、Crが耐高温コロージ 30 て、本発明ではWo、IIを含まず、不純物レベル以下に規 ョン性に効果があることは公知である。にも拘らず、こ のC とCrとを共に含有させた前記従来技術において、耐 高温エコージョン・コロージョン性を満足することがで きなかったのは、以下の理由による。即ち、従来の高(: 台金のように耐高温エロージョン性を向上させるため に、C 含有量を0.3%以上と高くした場合、C とCrがM ·C.、V·:C. 炭化物を形成してC:が消費される。この 際、元々の(で含有量が低いと、合金マトリックス中の、 特に粒界に析出した前記炭化物に治った部分に前記炭化 物にCtが消費された部分)のCt量が他の部分よりも減少(1)溶融塩化物塩と溶融硫化物塩の混在した非常に過酷な適 して、この炭化物に合った部分の耐高温コロージョン性 を確保するための行の絶対量が不足することになる。こ これが、特に結果に折出した前起状化物に治った前分が - 紅馬霧食が出てることになる。そして、この紅泉霧食が 生じた場合には、上記田でを受け持つこに有的なポイテ 部材の物質が減りすることになり、実際にサイモ部材の を集を検索したのとすしことはなってしまい。近 かみ部 材の寿命を苦しく締めることとなる。

【60010】この現象を防止するためには、合金マンク

分 前記炭化物に()が消費された部分!の()量を確保す る必要があり、(含有量乃至(とにが炭化物を形成して (こが消費される量に見合ったけ含布量が必要となる。) たがって、本発明では、Cr含有量135~60割とともに、 (:量と(量との比(:(を規定した(3)≦(:(≦30)。 【0011】例えば、前記特公昭64-7145 号公報の合金 では、(含有量が1.7 % 以上であるにも拘らず、Cr含有 量が35%以下と低いために、Cr/Cは最高でも21程度しか なく、(と[rが形成する前記炭化物によって耐高温エロ iC ージョン性は優れるものの、特に粒界に折出した前記炭 化物に沿った部分のCr量が不足して、この炭化物に沿っ た部分の耐高温コロージョン性が劣ることとなる。ま た、特開平1-273693号公報の合金では、逆に、Cr含有量 は35%以上あるにも拘らず、[含有量が0.50%以下と低 いためにCr/Cは最低でも70程度となり、Crによる耐高温 コロージョン性は優れるものの、CとCrが形成する前記 埃化物量が不足して、耐高温エロージョン性が劣ること となる。また、特公平2-36359 号公報では、[7含有量自 体が5.0~14.0%と低く、耐高温エロージョン性と耐高

【0012】更に、前記(とCrとの関係に加えて、本発 明者らは、N1、N0、1 のごみ焼却炉ポイラ用部材の使用 環境における挙動について検討した。そして、この結 果、ごみ焼却炉ポイラ用部材のb00 ℃を越える高温坡の 溶融塩化物塩と溶融硫化物塩の混在した非常に過酷な腐 食環境下では、これらの成分は、合金中に存在すると、 却って合金の耐高温コロージョン性を阻害することを知 見した。特にYiは、前記腐食環境下におけるSの濃度が 高い場合には、著しく耐食性を劣化させる。したがっ

制するとともに、合金中のいの量を適切に制御する。 【0013】この点、前記特公昭64-7146 号公報の合金 は\|基合金であり、特開昭35-154542 号公報の合金で は、ニッケルーコバルトークロム合金としてハ1を20~47 ¥ と多量に含み、また、特関昭63-10097号公報の合金で は、Moをi~78、1 を3~6.3%と多量に含んでいる。更 に、特許第2561561 号公報の合金でも、Niを30~50%、 Voを0.5 ~3%、* を0.5 ~5%含んでいる。したがって、 前記ごみ焼却炉ポイラ用部材の500 ℃を越える高温域の 食環境下では、これら従来技術の台並は、必然的に耐高 進コロージョン性がおることとなる。

【「「「11】更に、本発明高い合金乃至高い合金部材の 三元 てを超える各温使用環境では、第17-50-1 第台会で 問題となると簡化相の生成を防止する言葉がある。この ダー 本発明では、10 EC Eのしきシスの適正化 かて W 17 ユニッ語で相に三式を促進する約。 A の規制によっ て、また見に、ご要により最低表に1、含有(~。イドノによ って、こので誰と相の世或を防止する。この点、外、) 为文中区,转了数据证明出,包有超微化特征出分色的。(1) 在含む特益超83-8773号函数,特益中2-6883/号函数。

特開昭58-10097号公報、特許第8381387 号公報、ある1 は51含有量も少ない乃至含有しない特開昭61-169174 号 」報の台金では、前記環境において♂鏡化相が必然的に 性成し、使用中の熱応力または高温エロージョンによっ て、合金材の割れの原因となるとともに、晩化によって いが前記炎化物と同様に消費されるため、耐食性も劣化 する.

[0015]

【発明の実施の形態】以下に、本発明高(r含金におけ て説明する。まず、C はCoおよび/ またはFe合金マトリ ックス中で、CrとW.Ci、W.,C. 炭化物を形成して合金の 耐高温エロージョン・コロージョン性を向上させる。こ の効果を発揮させるためには、(の含有量が0.5%以上必 要であるが、一方で(の含有量が1.5%を越えると、前記 炭化物量が過剰となって、却って合金の脆化を招く。し たがって、(の含有量は0.5~1.5%の範囲とする。

【0 0 1 6】Crは、Coおよび/ またはFe合金マトリック ス中で、CrとV.C,、Vi.C, 炭化物を形成して含金の耐高 盥エロージョン性を向上させる。Crが35%未満では、C 20 ロージョン性は向上する。しかし、本発明高Cr合金で の含有量が低い場合でも、生成炭化物の絶対量が不足し て、耐高温エロージョン性が不足する。また[rの含有量 が60%を越えると、耐高温エロージョン性は却ってやや 低下するとともに、前記炭化物量が過剰となって合金の 脆化を招く。したがって、(の含有量は35~60% の範囲 とする。更に、前記した通り、耐高温エロージョン性を 向上させるために、[含有量を高くした場合、[と[rが V.C.、W.;C. 炭化物を形成してCrが消費されるが、この 時Cr含有量が低いと、合金マトリックス中の、特に粒界 に析出した前記美化物に沿った部分のCr屋が他の部分よ 30 【0021】更に、前記以外の成分については、本発明 りも減少して、この炭化物に沿った部分の耐高温コロー ジョン性を確保するための(;の絶対量が不足することに なる。これを防止し、合金マトリックス中の、特に粒界 に析出した前記炭化物に沿った部分のCr量を確保するた めに、(含有量乃至(とCrが炭化物を形成してCrが消費 される量に見合った(r含有量として、(r量と(量との比 〔↑/[を35以上とする必要がある。また、一方[の含有量 が低く、Cr含有量が高い場合には、前記σ脆化相が生成 しやすくなり、合金の機化が顕著になるので、この σ 晩 定する。したがって、(* (はの~のの範囲とする。 【0017】計は、使用中に命金表面に微細なサラスト

一門を形成することにより、台会の前裏週コロージョン 性を向くさせる。また。1. 行至科基合金容製時の開酸剤 こしてもご要である。 ここた男を発揮させるためには、 人も 以上の含有が言葉であるが. - ヤコニュを超える金 京城、町記は韓化相が生成したすべなり、 多色の理论が 類者になる。これがって、5 の合有量は、1 ~4 3の範 至とする。

硬さを向上させ、耐高温エロージョン性を向上させるた めに有効である。この効果を発揮させるためには、0.5% 以上の含有が必要であるが、一方はを越える含有は合金 の我化を招く。したがって、Mnの含有量は6.3~2%の範 囲とする。

【01319】また、本発明高(r合金の組成範囲にお)。 て、(含有量を低くして、耐高温コロージョン性向とを 重視した合金組成にした場合には、σ酸化相が生成し合 金が脆化しやすくなる可能性がある。したがって、この る、C.S.、Ma、Cr、およびViの量的範囲の意義につい、10 σ脆化相の生成を防止する必要がある場合には、NaをS ~15% 選択的に含有させることが好ましい。この51の効 果を発揮させるためには、3%以上の5;の含有が必要であ るが、一方15%を越える含有は、前記した通り、Sによ る腐食が激しい環境下では、合金の耐高温コロージョン 性を劣化させる。したがって、竹を含有させる場合の含 有量は3~15%の範囲とする。

> 【0020】本発明高Cr合金マトリックスを構成するCo 乃至Feについて、Co基合金を選択した場合、Coの効果に より、Fe基合金の場合よりも、耐高温エロージョン・コ は、前記C、Si、Vn、Cr、およびNiなどの成分調整によ り、Fe基合金としても、従来合金より耐高温エロージョ ン・コロージョン性は優れている。したがって、Coは高 価であるので、コストと耐高温エロージョン・コロージ ョン性との兼ね合いで、即ち、例えばごみ焼却炉ポイラ の耐高温エロージョン・コロージョン性の要求性能に応 じて、Co基合金かFe基合金かを選択するとともに、Coと Feとを混合した合金とする場合には、CoとFeとの量的な 割合を調整する。

では基本的に不純物であり、できるだけ少ない方が好ま しい。このうち、特にNo、Wは、前記した通り、本発明 高(r合金乃至高(r合金部材の500 ℃を越える高温腐食環 境下では、合金の耐食性を著しく劣化させるとともに、 σ脆化相の生成を促進する作用があるので、可能な限り 低く抑えるべきである。

【0022】 本発明高(r合金の製造方法としては、公知 の溶解、鋳造方法が使用可能であるが、その中でも合金 の酸化を抑制しつつ、使用部材形状に近い形式にニアネ 化相の主成を防止するために、Cr (の上限は90以下と規 40 ットシェイプ) に鋳造可能な方法が好ましい。具体的に は、公知の真空溶解与至不活性ガス雰囲気下などの非酸 化性雰囲気下で、本発明成分範囲内に合金を溶製し、鋳 情のままり至必要に応じて加工を行い、直接ごみ焼却御 でくうなどの部門に選用することが可能である。

[3] 23] なだ、前記伝教書など、四二名が代きし成 刑の囚が必要な形状で至複雑な形状が必要な説材には、 三の下の部材への成形性などを考慮して、本種経済行台 免を顕著や調板などの調材の表面に按覆う面内響を形式 して、グラッド 複合 鋼管やグラッド顕板などの高い 【 (158] 対は、自治を製時可視難および合色の楽温 (1) 合金部材とするのが好更しい。耐寒温エロージョン・コ

ロージョン性は、基本的にごみ焼却炉ポイラの部材の表 面部分の特性の問題であるので、前距高に合金部材とし ても、耐高温エロージョン・コロージョン件の効果は十 分発揮できる。この本発明高い合金を鋼管や鋼板の表面 に被覆乃至外署を形成し、高Cr合金部材を製造する方法 は、溶射、肉盛り溶接、粉末押出、遺心鋳造・拡管など の公知の手法が適宜選択できる。なお、粉末押出法によ る場合は、鋼管や鋼板の周囲に本発明合金の粉束層を形 或した複合ビレットを形成して押し出す。また、清心鋳 造土拡管法による場合は、本発明高Cr合金を適心鋳造し 10 に、このNo.13 はN.を含有しているため、シャルビー吸 て外層を形成しておき、その中に鋼管 (伝熱管用) を挿 入して、マンドレルあるいは神圧などで拡管する。

[0024] 【実施例】表1 に示す組成の本発明例高(「合金および比 較例合金を、真空溶解にて10kgのインゴットに溶製し た。この鋳造したままのインゴットから、外径20 o×厚

さ10㎜の試験片を切り出し、この試験片を用いて、ごみ 焼却炉ポイラの模擬環境下で耐高温エロージョン・コロ ージョン性の試験を実施した。図1 に試験装置の概略を イズ500 με のけい砂6 を底部に堆積するとともに、模 擬ガス5の吹き込み口4を上部に有する炉1と、この炉 1 を囲んで配置されて炉内を加熱するヒータ3a、3b、3 c. および炉 (の側面に設けられたモーター?と、モー ター7 から炉1内に挿入された回転軸8と、この回転軸 8 の先端に設けられた試験片2 の固定治具9 とからな る。図!の試験装置を用いた試験方法乃至条件は、炉! 内の温度を600 ℃に加熱し (試験温度)、試験片2 を5m /secの回転速度で回転させ、底部に堆積したけい砂6 層 と炉内とを順次連続的に、繰り返し通過暴露させなが 5. 16%0--5%CO--2%H: 0-2000ppmCO-1000ppmSO--1000ppm HC!-残部V.の模擬ガス5を提内に吹き込んで、流動床式 ごみ焼却炉の疑似炉内乃至流動層 (床) を形成した。こ の条件での試験を連続して120hr 行い、試験後の試験片 の、横肉速度から耐高温エロージョン性を、粒界腐食状 祝から耐高温コロージョン性を、またシャルピー試験か ら合金の朝性 (強化の程度) を評価した。この結果を表

【0025】なお、疾内速度 (#3/br) は、試験片の表 面スケールを除去した後、マイクロメーターで試験中の 外径を測定し、試験前の試験片の外径との比較で減肉量 を求めた上、この城内量を試験時間で終して城内速度を 求めた。また、症性療食 ニュ は、前記表面スキーしを 第五して試験中の新園を七学顕素鏡で観察し、 紅果腐食 の併言を順定した。更に、シャ、ビー試験は、こみ俺却 がボイラワー的記試験装置の拠地にの単進に合わせ、約 このにおけるシャ、ビー吸収エネ、ギー こ を求めた。 【3 0 1 2 6 1 表1 から明らかな通う。発明例V. 13 ~ (3) は、境を速度が1...3...3 に以下であり、新真温エロージ

2 に示す。

ヨン性に優れていることが分かる。また、幼界な今はは 0 ± 8 以下であり、耐高温コロージョン性に優れている ことが分かる。更に、シャルピー吸収エネルギーはは 以上であり、合金の硫化が少なく靱性に優れていること が分かる。この発明例の中でも、Vo.18 などのように、 他の発明例よりも〔含有量が高い例ほど減肉速度が小さ く耐高温エロージョン性に優れている。また、Vo.13 な どのように、他の発明例よりも0:/0が高いほど粒界腐食 の深さが小さく耐高温コロージョン性に優れている。更 収エネルギーが高く、合金の脆化が少なく靱性に優れて S.A.

【0027】これに対し、表1 から明らかな通り、比較 例No.1~12は、本発明高Cr合金組成範囲をはずれている ため、耐高温エロージョン性、耐高温コロージョン性、 合金の靱性のいずれか乃至いずれにおいても、発明例よ りも劣っている。より具体的には、比較例 No. 1、11、12 は(含有量が本発明範囲の上限乃至下限よりはずれてい る。比較例10.5は5:含有量が本発明範囲の上限をはずれ 模式的に示す。図1 において、試験装置は、平均粒子サ 20 ている。比較例No.1、2 、5 、8 、11、12はC;含有量が 本発明範囲の上限乃至下限よりはずれている。また、比 較例 70.4、1、10 は本発明で規制すべき No. 1 を実質量 含んでいる。更に、比較例No.1、3、5、8~10、12は Cr/Cが本発明範囲の上限乃至下限よりはずれている。こ れら比較例の中でも、特にCr/(が高いNo.1、3 はσ酸化 相が生成し、特に(含有量が高いNo.12 は炭化物量が多 くなりすぎ、各々特に靱性が著しく低くなっている。ま た、特にCr/Cが低いNo.5、8、10は、約界のCr量が不足 し、粒界腐食の深さが大きく、特に耐高温コロージョン 38 性に劣っている。更に、特にC 含有量が低いVe.1は炭化 物量が少なすぎて、特に耐高温エロージョン性に劣って いる。したがって、以上の結果から、本発明高()合金組 成の、C、Si、Vn、Cr、Cr/CおよびNiの量的額用規定の 意義が明らかである。

【0028】本発明高口合命乃至高口合命部材は、この ように耐高温エロージョン・コロージョン性に優れてい るので、特にごみ嫌却炉ポイラ用、更には流動床式ごみ 焼却炉ポイラ用の伝熱管等に好適に用いられる。 実施例 の結果からすると、例えば、流動床式ごみ焼却炉ポイラ 用の伝熱管「鋼製伝熱管の外側に被覆」とした場合、比 較例に比して、伝熱管の寿命を約1.5~3倍延ばすこと が可能となる。したがって、この用途以外にも、類のの 使用環境で、前記链球節ボイチと同様の耐高温エロージ ョン・ロロージョン性が成められる、鋳造金型。鋳造や 生活エール ガロマンスか コーロシアコンドレデーを ターやくとその円、毎の各種用途に、好透に用いるこ こだは もるこ

(表:)

	9				0						特開平 门		
略号	区分	合金の化学成分 (mass®)											
Ľ		С	Si	Min	Cr	Ni	y o	¥	Fe	Co	Or 10		
1	比較例	0.34	1. 52	1.10	33. 2	-	-	-	残部	20	98		
2	比較例	0.55	1. 48	0.97	30. 5	-	-	-	-	残部	56		
3	比較例	0.50	1. 05	0.99	49. 8	-	-	-	-	残部	100		
4	比较例	0. 54	1.12	1.04	35 . 5	-	2. 49	4. 87	-	残部	66		
5	比較例	1. 05	5. 01	1. 01	29.8	-	-	-	-	残部	28		
6	比較例	1. 01	2. 98	1.02	40. 2	残部	-	-	-	-	40		
7	比較例	0.99	1.51	1.10	39. 5	-	1. 48	2.89	-	残部	40		
В	比較例	1, 01	1.48	1.06	30. 8	-	-	-	-	残部	30		
9	比較例	1.50	1.50	0.98	51. 3	24. 8	-	-	-	残部	34		
10	比較例	1, 49	1.50	1. 01	49. 8	-	0.97	1, 90	ı	残部	33		
11	比較例	1. 52	1. 48	1.04	69. 5	-	-	-	-	残部	46		
12	比較例	2.05	1.52	1. 01	60, 2	-	-	-	-	残部	29		
13	発明例	0.52	1.12	1.02	35. 1	10. 5	-	-	-	残部	68		
14	発明例	1. 01	1.02	0.98	40. 2		-	-	残部	10	40		
15	発明例	0. 98	1. 03	1. 03	39. 8	-	-	-	-	残部	41		
18	発明例	1,00	3, 98	0.99	40, 1	_	-	-	-	残部	40		
17	発明例	1. 01	1.46	1.04	55. 2	5. 2	0. 05	0. 05	-	残部	55		
18	発明例	1. 50	1. 44	1.01	55. 0	-	0.3	-	1	残部	37		
19	発明例	0.99	1.01	0.98	40.0	1	-	0, 3	残部	-	40		

[0030] [表2]

略号	区分	統地速度 :µm/h:	粒界腐食 (μm)	7:40 吸电 1444- · J		
1	比較例	0, 35	50	5		
2	比较例	0. 33	120	15		
3	比較例	0, 24	30	3		
4	比較例	0, 30	80	9		
5	比較例	0. 33	220	15		
5	比較例	0. 32	200	17		
7	比較例	0. 29	160	14		
8	比較例	0, 28	240	15		
9	比較例	0. 21	190	14		
10	比較例	0. 25	230	13		
11	比較例	0, 27	70	10		
12	出晚例	0. 19	180	8		
13	発明例	0.19	80	20		
14	発明例	0.18	150	17		
15	発明例	0. 16	140	17		
16	発明例	0. 15	100	17		
17	発明例	0. 12	70	16		
18	発明例	0. 10	120	14		
19	発明例	0, 20	170	15		

(303) (発明の効果) 以上述べた通り、本発明に供る者に含金 (発明の効果) 以上述べた通り、本発明に供る者に含金 定業所で全差的材によれば、使用進度が500 で以上の、 より敷しい高値エロージョンが至ココン・フロージョン環境下に あめても、便れたあ、したがつ、機動に成りました機可 切がイラ伝統管などの部材を、著しく成実を化すること が可能で、ごみ機即却ポイラを従来よりも一層効率化す ることができる等の優れた政策を奏する。

:0 【図面の簡単な説明】

【図1】ごみ焼却炉ポイラの模擬環境下での、耐高温エロージョン・コロージョン性試験装置の機略を示す模式図である。

【符号の説明】

1: 炉 2: 試験片 3a、3b、3cc ヒータ

4:吹き込みロ 5:模擬ガス 6: けい砂

7:モーター 8:回転輪 9

20 固定治具

プロントページの続き

. .

| \$1 | 1210 | 12.0 | 12.0 | 2