Homework Assignment 3

Matthew Tiger

September 20, 2016

Problem 1.5.1. Find the fixed points of the following maps and use the appropriate theorems to determine whether they are asymptotically stable, semi-stable, or unstable:

i.
$$f(x) = \frac{x^3}{2} + \frac{x}{2}$$
,

ii.
$$f(x) = \arctan(x)$$
,

iii.
$$f(x) = x^3 + x^2 + x$$
,

iv.
$$f(x) = x^3 - x^2 + x$$
,

v.
$$f(x) = \begin{cases} 3x/4 & x \le 1/2 \\ 3(1-x)/4 & x > 1/2 \end{cases}$$
.

Solution.

Problem 1.5.2. Consider the family of quadratic maps $f_c(x) = x^2 + c$ where $x \in \mathbb{R}$.

- i. Use the theorems of section 1.5 to determine the stability of the hyperbolic fixed points of the the family of maps for all possible values of c.
- ii. Find any values of c such that f_c has a non-hyperbolic fixed point and determine the stability of these fixed points.

Solution. \Box

Problem 1.5.3. i. Show that $f(x) = -2x^3 + 2x^2 + x$ has two non-hyperbolic fixed points and determine their stability.

- ii. If x=0 and x=1 are non-hyperbolic fixed points for $f:\mathbb{R}\to\mathbb{R}$ for $f(x)=ax^3+bx^2+cx+d$, find all possible values of a,b,c, and d.
- iii. Write down the function f(x) in each case of (ii) above and determine the stability of the fixed points.

Solution. \Box

Problem 1.5.6. Find the Schwarzian derivative of both $f(x) = e^x$ and $g(x) = \sin(x)$ and show that they are always negative.

 \square

Problem 1.5.9. Let f(x) be a polynomial such that f(c) = c. (Recall that a polynomial p(x) has $(x-c)^2$ as a factor if and only if both p(c) = 0 and p'(c) = 0.)

- i. If f'(c) = 1, show that $(x c)^2$ is a factor of g(x) = f(x) x.
- ii. If |f'(c)| = 1, show that $(x c)^2$ is a factor of $h(x) = f^2(x) x$.
- iii. Show in the case that f'(c) = -1, we actually have that $(x c)^3$ is a factor of $h(x) = f^2(x) x$.
- iv. Check that (iii) holds for the non-hyperbolic fixed point x = 2/3 of the logistic map $L_3(x) = 3x(1-x)$.
- v. Check that (i), (ii), (iii) hold for the non-hyperbolic fixed points of the polynomial $f(x) = -2x^3 + 2x^2 + x$.

 \square