Printing Page(s): 1	Printin	g Page	(\mathbf{s})	:	1
----------------------------	----------------	--------	----------------	---	---

Roll No.					

Paper Code :DSC-302

B.Sc. (PCM)-18, B.A. (Math)-6 3rd Year Examination, Calendar Batch 2015 Mathematics-VI

Time: 3 Hours] [Max. Marks: 100

Note. Attempt any *five* questions. Each questions carry equal marks.

- Q.1. If the matrix of a linear transformation T on a vector space $V_2(C)$ with respect to the ordered basis $\boldsymbol{B} = \{(1,0), (0,-1)\}$ is $\begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$. What is the matrix of T with respect to the ordered basis $\boldsymbol{B}' = \{(1,1), (1,-1)\}$?
- Q.2. If a finite-dimensional vector space V(F) be the direct sum of its two subspaces W_1 and W_2 , then show that

dim.
$$V = \dim_1 W_1 + \dim_2 W_2$$

- Q.3. Find the dual basis of the basis set $B = \{(-1,1,1), (1,-1,1), (1,1,-1)\}$ for $V_3(R)$.
- Q.4. Show that the mapping $d: \mathbb{R}^2 \times \mathbb{R}^2 \to \mathbb{R}^2$ defined by d(x,y) = max. $(|x_1 y_1|, |x_2 y_2|)$, where $x = \leq_i y = (y_1, y_2) \in \mathbb{R}$ is metric on \mathbb{R}^2 .
- Q.5. Let (X, d) be a metric space and let $d_1(x, y) = \min \{1, d(x, y)\}$, then show that d_1 is a metric on X.
- Q.6. Prove that the vectors $\{(2, 1, 4), (1, -1, 2), (3, 1, -2)\}$ form a basis for \mathbb{R}^3 .
- Q.7. If S be an ideal of a ring and T be an ideal of R, containing S, then $T \cong \frac{R/S}{T/S}$.
- Q.8. (A) The intersection of any two subspaces of a vector space is a subspace.

 (B) Is the vector (2, -5, 3) in the subspace of R³ spanned by the vectors (1, -3, 2), (2, -4, -1), (1, -5, 7)?