GAURAV TADKAPALLY

San Francisco, CA | (213) 913-7899 | gaurav.tadkapally@usc.edu | linkedin.com/in/gauravreddy08 | gtadkapally.com

EDUCATION

University of Southern California

California, United States

Master of Science in Computer Science: 3.7/4.0

June 2023 - December 2024

- Served as a Teaching Assistant (TA) for the graduate course Applied Machine Learning for Natural Language Processing (ITP 459)

Vellore Institute of Technology

Andhra Pradesh, India

Bachelor of Technology in Computer Science and Engineering: 8.94/10

May 2019 - May 2023

EXPERIENCE

Pitney Bowes

Connecticut, United States

June 2024-August 2024

Machine Learning Engineer Intern

- Designed agentic coding assistant for software testing, leveraging speculative decoding for accelerated inference speed by 300% and Abstract Syntax Tree (AST) based retrieval for document indexing (Cursor Clone: Demo)
- Leveraged SFT and DPO with LoRA Adapters for post-training codellama (Llama2), improving model's generative accuracy by 15% (benchmarked via Mutational Testing)
- Implemented retrieval methodologies (SQLite-FTS BM25 & Contextual Embedding) to enhance efficiency and accuracy in retrieving relevant codebase context
- Integrated JaCoCo and Mutational Testing (PIT) to automatically evaluate code coverage & test effectiveness of generated unit tests

MUKHAM

Andhra Pradesh, India October 2022-May 2023

Machine Learning Engineer Intern

- Optimized facial recognition model for edge deployment (mobile application), leveraging knowledge distillation, Post-training Quantization (8-bit quantization), decreasing model size by 75%
- Designed a Presentation Attack Detection system (facial spoof detection) utilizing the Lucas Kanade algorithm for motion analysis, achieving a 80% success rate in identifying spoofed faces

MUKHAM Pvt Ltd Andhra Pradesh, India

Research Assistant

October 2022 - May 2023

- Developed a UAV-based wildfire detection algorithm utilizing the EfficientNetB0 architecture, incorporating Neural Architecture Search (NAS) for model optimization, resulting in a 98% precision rate
- Engineered smart glasses with an Object Detection model (Incremental Learning) for visually impaired, leading 78% accuracy

SKILLS AND CERTIFICATIONS

Languages: Python, TypeScript, JavaScript

ML Stack: PyTorch, Tensorflow, HuggingFace, LangChain, Agents SDK, TRL, PEFT, Scikit-learn, Pandas, NumPy Tools & Technologies: AWS (Cloud Practitioner), Azure (AI Fundamentals), SQL, NoSQL, Selenium, Redis

ACADEMIC PROJECTS

Poogle: Perplexity Clone (<u>Demo</u>)

- Engineered a multi-agent web search system with 3 specialized agents, coordinated via shared context memory to decompose tasks, parallelize search, and synthesize high-precision answers
- Improved token efficiency by 65% via ID-based memory referencing and vector-embedded semantic retrieval, enabling scalable, context-aware web search

Made AI play Mafia: A multi-agent asynchronous communication (Demo)

- Developed asynchronous multi-agent AI system, enabling structured communication among 6+ autonomous agents in social deduction gameplay scenarios
- Implemented modular two-part brain architecture (Scheduler & Generator), with a concurrency-safe shared context

AK15: Agentic Kubernetes Middleware (Demo)

- Devised an LLM-based middleware that automates Kubernetes cluster read queries, achieving a 93% reduction in contextual token usage through agentic function calling and context retrieval
- Implemented 15 specialized API functions enabling the LLM to perform human-like, context-aware interactions with Kubernetes, optimizing and reducing API costs by leveraging targeted data retrieval strategies

PUBLICATIONS

- Sethuraman, S. C., Reddy Tadkapally, G. et al. Simplymime: A dynamic gesture recognition and authentication system for smart remote control. IEEE Sensors Journal (2024). https://doi.org/10.1109/JSEN.2024.3487070
- Sethuraman, Sibi C., Gaurav Reddy Tadkapally, et al. iDrone: IoT-Enabled Unmanned Aerial Vehicles for Detecting Wildfires Using Convolutional Neural Networks. Springer Nature Computer Science (2022). https://doi.org/10.1007/s42979-022-01160-7