Calculus I Homework Trig Derivatives Lecture 10

1. Compute the derivative.

(a)
$$f(x) = 2x^3 - 3\cos x$$
.

x uis g + _xg liansue

(b)
$$f(x) = \sqrt{x} \cos x$$
.

$$x \cos \overline{x} - x \frac{1}{2} + x \text{ nis } \overline{x} = x \cos x$$

(c)
$$f(x) = \sin x + \frac{1}{3} \cot x$$
.

$$x \cos x \sin x \sin x = \frac{1}{2} \cos x \sin x = \frac{1}{3} \csc x = \frac{1}{3} \csc x$$

(d)
$$y = 2 \sec x - \csc x$$
.

mswer:
$$\frac{\cos^3 x + 2\sin^3 x}{2(x \operatorname{mis} x \cos)}$$

(e)
$$y = \frac{1 + \sin^2 \theta}{\cos^3 \theta}$$
.

$$\frac{\theta \, \text{Prod}}{\theta \, \text{Sin} \, \theta \, \text{Cos}_{7} \, \theta + 3 \, \text{Sin}_{9} \, \theta + 3 \, \text{Sin}_{9}} = \sqrt{\theta \, \text{Prod}_{9}}$$

(f)
$$g(t) = 4 \sec t + \tan t - \csc t + 3 \cot t$$
.

nswer: 4 sec
$$t$$
 tan t + sec t tac t cot t - 3 csc t

(g)
$$y = c \cos t + t^2 \sin t$$
.

nswer:
$$-c\sin t + 2t\sin t + t^2\cos t$$

(h)
$$y = u(a\cos u + b\cot u)$$
.

$$\frac{n}{n \text{ uis } n \text{ sod } q + nq - n \text{ sins } n \text{ sod } p + n \text{ suis } np - n}$$

(i)
$$y = \frac{x}{2 - \tan x}.$$

answer:
$$\frac{x - \cos x \sin x + 2 \cos^2 x}{2 \cos x - \sin x)^2}$$

(j)
$$y = \sin \theta \cos \theta$$
.

answer:
$$cos(2\theta) = cos^2 \theta - sin^2 \theta$$

(k)
$$f(\theta) = \frac{\sec \theta}{1 + \sec \theta}$$
.

answer:
$$\frac{\sin \theta}{(1+\cos \theta)^2}$$

(l)
$$y = \frac{\cos x}{1 - \sin x}.$$

$$\text{(m) } y = \frac{t \sin t}{1+t}.$$

answer:
$$\frac{\sin t + t \cos t + t \sin t}{2(t+1)}$$

$$(n) \ y = \frac{1 - \sec x}{\tan x}.$$

(o)
$$h(\theta) = \theta \csc \theta - \cot \theta$$
.

answer: sing
$$\theta$$
 Solve θ Solve θ

(p)
$$y = x^2 \sin x \tan x$$
.

(i) $f(x) = (\sec x)e^x$.

(j) $f(x) = (\tan x)e^x$

$$\frac{2x\cos x\sin^2 x + 2x^2\sin x\cos^2 x + x^2\sin^3(x)}{\cos^2 x}$$

2. Differentiate.

(a) $\tan x$.

x zəəs :iəmsu

(b) $\cot x$.

(c) $\sec x$.

 $\frac{\cos x}{\cos x} = \frac{\cos x}{\cos x}$

(d) $\csc x$.

 x_{7} uis

(e) $\sec x \tan x$.

(f) $\sec x + \tan x$.

 $x \epsilon_{\text{Des}} + x \epsilon_{\text{nst}} x + \sec x$

(1) 500 20 | 0011 20

nswer sec $x(\tan x + \sec x)$

x _oes x ure1 z liemsu

(h) $\csc^2 x$.

(g) $\sec^2 x$.

 $a^{\text{trg} x \text{ des isometr}}$ (m) $x(\cos x)e^x$.

() !!(!!!!)!

 $\text{ SURMEL: } \quad e_x \left(x \cos x - x \sin x + \cos x \right)$

(n) $\frac{e^x}{\tan x}$.

(k) $\frac{\sin x}{x}$.

(1) $\frac{\sin x}{e^x}$.

 $(x^2 \cos^2 x + \cos^2 x)$

(o) $\frac{e^x}{\sec x} + \sec x$.

SHEAMEL $e_{x}(\cos x - \sin x) + \sec x \operatorname{fsh} x$

Solution. 2i

$$\frac{\mathrm{d}}{\mathrm{d}x}\left((\sec x)e^x\right) = \left(\frac{\mathrm{d}}{\mathrm{d}x}\left(\sec x\right)\right)e^x + (\sec x)\frac{\mathrm{d}}{\mathrm{d}x}\left(e^x\right) \quad \middle| \text{ product rule}$$

$$= \sec x \tan x e^x + \sec x e^x$$

$$= (\tan x + 1)\sec x e^x$$

Solution. 2j

$$\frac{\mathrm{d}}{\mathrm{d}x}\left((\tan x)e^x\right) = \left(\frac{\mathrm{d}}{\mathrm{d}x}\left(\tan x\right)\right)e^x + (\tan x)\frac{\mathrm{d}}{\mathrm{d}x}\left(e^x\right) \quad \middle| \text{ product rule}$$

$$= \left(\sec^2 x\right)e^x + (\tan x)e^x$$

$$= \left(\sec^2 x + \tan x\right)e^x.$$