Optical Refraction

• Laws of Refraction

- ➤ Incident ray, Refracted ray and Normal will be in the same planar.
- > Ratio of the Sin values of Incident angle and Refracted angle is a constant.

$$\frac{\sin i}{\sin r} = k$$

• Absolute refractive index (n)

n = <u>Speed of light in vacuum</u> Speed of light in medium

 Relative refractive index (*n_y - refractive index of medium x relative to the refractive index of medium y.)

> $x_{n_y} = Speed of light in medium x$ Speed of light in medium y

From that formula, we get the below formula too. See how it came yourself.

xn_y = <u>Absolute refractive index of medium x</u>
Absolute refractive index of medium y

• Snell's law

$n_i \sin i = n_r \sin r$

• Critical Angle

 Critical angle is the incidence angle when refraction angle is 90°. In order to happen this the ray must travel from dense medium to rarer medium.

From Snell's law,

$$n_1 \sin c = n_2 \sin r$$
 $n_1 \sin c = n_2 \sin 90^\circ$
 $n_1 \sin c = n_2$

• Total internal reflection

This happens when incidence angle is larger than critical angle.

• Real depth and apparent depth

$$\frac{n_2}{n_1} = \frac{Apparent depth}{Real depth}$$

Note: Normally $n_1 = 1$ as it's air. Absolute refractive index of air ≈ 1 If it wasn't air, you have to add the right

refractive index.

• Apparent Displacement (d)

$$d = t \left(1 - \frac{n_1}{n_2} \right)$$

 \triangleright Most of the times... $n_1 = 1$.