VICTORIA UNIVERSITY OF WELLINGTON Te Whare Wānanga o te Ūpoko o te Ika a Māui

School of Mathematics and Statistics Te Kura Mātai Tatauranga

PO Box 600 Wellington New Zealand

Tel: +64 4 463 5341 Fax: +64 4 463 5045 Internet: sms-office@vuw.ac.nz

Graph Algorithms with Hostile Partners

Matthew Askes

Supervisor: Rod Downey

Submitted in partial fulfilment of the requirements for Bachelor of Science with Honours in Mathematics.

Abstract

A short description of the project goes here.

Contents

1	Introduction			
2	Dominating sets	3		
	2.1 min size dominating set	3		

Figures

Chapter 1

Introduction

Chapter 2

Dominating sets

We begin by listing some definitions.

Definition. The Dominating set, D, of a graph G = (E, V) is any subset of V such that every vertex in V is adjacent to at least one vertex in D.

Definition. The Dominating number, $\gamma(G)$, of a graph G = (E, V) is the size of the smallest dominating set of G.

Definition. Independent set, maximum independent set, independence number $\alpha(G)$

2.1 min size dominating set

Lemma 2.1. *Let G be a graph.*

$$\gamma(G) \ge \alpha(G)$$

Proof. Let X be a minimum dominating set in some graph G = (V, E). By definition of dominating set vertex in V is adjacent to at least one vertex in

Recall that $\chi(G)$ is the chromatic number of the graph G.

Theorem 2.2 (Willis 2011 3.1). *For any graph G* = (V, E) [4]

$$\alpha(G) \le \frac{|V|}{\chi(G)}$$

Recall that $\Delta(G)$ is the maximum degree of any vertex in G.

Theorem 2.3 (Balakrishnan 2012 10.3.2). [2] For any graph G with n vertices,

$$\left\lceil \frac{n}{1 + \Delta(G)} \right\rceil \le \gamma(G) \le n - \Delta(G)$$

It is obvious that in the case when $\gamma(G)$ is known that $\gamma(G) > \gamma_g(G)$.

Theorem 2.4. (Ore 1962) [3] For any graph G with n vertices,

$$\gamma(G) \leq \frac{n}{2}$$

Theorem 2.5. Let G be a graph. If x is a tight upper bound for the domination number, $\gamma(G)$, then

$$\gamma_{g}(G) \geq x$$

Proof. Let *G* be a graph where $\gamma(G) = x$. Thus for *G* we are unable to find a dominating set with < x vertices. Therefore there cannot be a winning strategy for Alice with < x vertices. Therefore $\gamma_g(G) \ge x$

Theorem 2.6. Let G be a graph with n vertices, such that $n \geq 4$. Then,

$$\gamma_g(G) \ge \left\lfloor \frac{n}{2} \right\rfloor$$

Proof. By combination of theorems 2.4 and 2.5 we get $\gamma_g(G) \geq \left\lfloor \frac{n}{2} \right\rfloor$

Thereom 2.6 is also proved in Alona, Baloghc, Bollobas, and Szabo 2002 [1]. The trivial upper bound is n.

Theorem 2.7. *Let G be a graph with n vertices. Then,*

$$\gamma_g(G) \le \left\lceil \frac{2n}{3} \right\rceil$$

Proof. For any graph, G, it suffices to show we have a winning strategy for a spanning tree of G. This is because a dominating set on a spanning tree in a dominating set in the graph. Thus, let T be a spanning tree of G. The winning strategy for Alice is the greedy strategy as follows. D is the current dominating set in T i.e. neighbours of all selected vertices.

- 1. Pick any vertex, v, not in D with a maximal number of neighbours not in D. That is maximise the set $\{x: x \in N(v) \land v \notin D\}$.
- 2. repeat until you have a dominating set.

worst case path graph requires twice the minimum of the path graph??? with no opponent this will give n/3 thus at worst with the opponent it will take 2n/3 At worst Alice will add two vertices to

Theorem 2.8. Given p players then,

$$\gamma_g(G) \leq p\gamma(G)$$

Bibliography

- [1] ALON, N., BALOGH, J., BOLLOBÁS, B., AND SZABÓ, T. Game domination number. *Discrete Mathematics* 256, 1 (2002), 23 33.
- [2] BALAKRISHNAN, R. A Textbook of Graph Theory (Universitext). Springer, sep 2012.
- [3] ORE, O. *Theory of Graphs (COLLOQUIUM PUBLICATIONS (AMER MATHEMATICAL SOC))*. American Mathematical Society, dec 1962.
- [4] WILLIS, W. Bounds for the independence number of a graph.