Problem 3

Part 1

ML Estimate

PDF $(X_{1=X_{1},-},X_{n=X_{n}})$ = $\begin{bmatrix} \frac{1}{6}n & \text{iff } \forall i \in [n], x \in [0,0] \end{bmatrix}$

For the condition to be satisfied, $\Theta \ge \max(x_1, x_2, \dots, x_n)$ and $x_1^2 \ge 0 + i \in [n]$. Since, $\frac{1}{6}$ is a decreasing function on positive Θ ,

 $\hat{\Theta}_{ML} = \max(x_1, x_2, ---, x_n) \text{ if } x_i \ge 0 + i = 1, z_1, --, n$ = 0 otherwise

MAP Estimate

PDF (0=0 | X1=x1, ---, Xn=xn)

$$= \frac{(\alpha + n - 1) \beta^{4+n-1}}{\Theta^{\alpha+n}} \quad \text{if } \quad x_i \in [0, \infty] + i = 1, 2, -..., n$$

$$\text{and } \Theta \ge \Theta m$$

$$\text{and } \beta = \max(x_1, x_2, -..., x_n) \Theta m)$$

$$O \quad \text{otherwise}$$

Using similar reasoning as above, $\theta \ge \max(x_1, -, x_n, \theta_m)$.

and $x \ge 0 + (\le [n]$, Since $(x+n-1) \cdot B^{(x+n-1)}$ is

a decreasing function on positive θ ,

ONAP = max (X1, X2, ---, Xn, Om) of xi ≥0 + i=1, -- n

= 0 otherwise

We now compare ML and MAP estimates for 0 as n-000 Define 1 = max (x1, x2, ---, xn). Then OML = > if xi=0 + i=1,2,--,n = 0 otherwise and OMAP = max (1,0m) if xi ≥ 0 + i=1,2,-,n = 0 otherwise We see that OML = OMAP Iff 1 = Om. Let Otrue denote true value of O. Case 1 - Otrue < Om Then all of xie (0,0+rue) = [0,0m] Hence, BML & BMAP for any n. (ase 2 - Otrue 2 Om Since X is a uniform distribution on [0,0], $P(X \ge \Theta_m) = 1 - \frac{\Theta_m}{\Theta}$ and $P(X < \Theta_m) = \frac{\Theta_m}{\Theta}$ P(120m) = 1- P(1<0m) =1- P(X1<0m) --- P(K1<0m) $=1-\left(\frac{Om}{O}\right)^{N}$ But as 120m implies @MAP = OML, $P(\hat{\Theta}_{MAP} = \hat{\Theta}_{ML}) = 1 - (\frac{\hat{\Theta}_{N}}{\hat{\Theta}})^{N} \rightarrow 1$ as $n \rightarrow \infty$ Hence, if Other Om, they do not converge which isn't desirable as number of experiments == It Otrue 2 Om, then they do converge, which is desirable as the real experiments dominates the prior belief.

Part 3

Posterior Mean =
$$E_{P(\Theta|X_{1},--,X_{n})}[\Theta]$$

= $\int_{\Theta} \Theta \cdot P(\Theta|X_{1},--,X_{n}) d\Theta$
= $\int_{\Theta} \frac{(\alpha+n-1)}{\Theta} \frac{\beta^{\alpha+n-1}}{(\alpha+n-1)} d\Theta$ where $\beta = \max(X_{1},X_{2},--,X_{n},\Theta_{m})$
= $\frac{(\alpha+n-1)}{(\alpha+n-2)} \max(X_{1},X_{2},--,X_{n},\Theta_{m})$

Part 4

We now compare &ML and &Posterior Mean as n-x0.

It is easy to see that as n-x0, \(\alpha + n-1 \)

Hence as n-x0, & Posterior Mean = \(\alpha \times \) (\(\times \), \(\times \), \(\alpha \times \)

Defining \(\lambda = \text{max}(\times_1, -, \times_n) \)

as previously,

We get \(\times \text{ML} = \lambda \) and \(\times \text{Posterior Mean} = \text{max}(\text{L}, \text{Om}).

This is exactly like what we encountared before.

We use the same result. Hence,

if \(\text{Other} < \text{Om}, \text{they do not converge}, \text{ which is not desirable as } \(n - x0). \)

if \(\text{Other} < \text{Om}, \text{ then they do converge}, \text{ which is desirable as results of real experiments should dominate prior belief as n - x0.}