Uracil transformation in the thermal neutron field

a special case of nucleoside research

Currently on the market by Alfa Aesar 86 nucleoside compounds are presented. Uracil is part of RNA - therefore it is interesting for biologists

Bond type	D_0		
	kkal	eV	
C ₂ +	126±15		5,5
C_2	144±3		6,3
C ₂ -	187±10		8,1
CH+	93,8±0,5		4,1
CH-	110±7		4,8
CO+	192,9±0,1		8,4
CN-	239±1,5		10,4
N ₂ -	201,4±0,2		8,8
NH-	85±5		3,7

Boundary energy of neutrons - no more than 3.7 eV in order not to break bonds by neutrons

On thermal neutrons, various nuclear reactions of nucleoside elements are possible - C, N, O

$$\begin{array}{c|c}
O \\
C \\
H - C \\
N - H \\
C = O
\end{array}$$

$$\begin{array}{c|c} & & & \\ & & & \\$$

. . .

. . .

$$\begin{array}{c|c}
O \\
H \\
C \\
N \\
H
\end{array}$$

$$\begin{array}{c|c}
H \\
C \\
O \\
N \\
H
\end{array}$$

...

Practical use

Possible explanation for the origin of life

If we reverse the decay process of uracil at N-> O, then we get its synthesis at O-> N

Possible nucleic acid editing tool

We are embedded in a chain, with an unstable isotope, the isotope decays, the chemical properties change - the chain breaks

Another option is to change the energy of neutrons, transform, and at the right time, "cut off" with oxygen (N-> O)

Research volume

Stage I - for pure uracil and uracil

- Measure the cross sections of the uracils
- Select high-quality chemical reactions for each transformation
- Investigate the probabilities of reactions and their kinetics

Stage II - for uracil as an element of RNA

- Determine promising structures for RNA editing by method:
 - isotope decay
 - resonance irradiation

Test the hypothesis of uracil synthesis in the thermal neutron flux

- if successful, test a similar process on other nucleosides
- if unsuccessful, experimentally find the conditions for the successful course of the reaction

Materials

Uracil

A15570 Uracil

Affordable uracils for quality reactions

H50287 1,3-Dimethyluracil-5-

carboxaldehyde

L19664 1,3-Dimethyluracil

H61919 4-Thiouracil

L01996 5,6-Dihydro-5-methyluracil

L02292 5,6-Dihydro-6-methyluracil

L01918 5,6-Dihydrouracil

44378 5-Acetyluracil

L04452 5-Aminouracil

A14799 5-Bromouracil

44639 5-(Chloromethyl)uracil

L08490 5-Cyanouracil

L10861 5-Ethyluracil

L01682 5-(Hydroxymethyl)uracil

B25173 5-lodo-1,3-dimethyluracil

A18994 5-Iodouracil

H55913 5-Nitro-6-methyluracil

A12448 5-Nitrouracil

L16196 5-(Trifluoromethyl)uracil

44379 5-Vinyluracil

B25448 6-Amino-1-methyluracil

L03332 6-Aminouracil

B21985 6-(Chloromethyl)uracil

L01875 6-Chlorouracil

H51694 6-(Diethoxymethyl)uracil

B24191 6-Methyluracil

44467 6-(Trifluoromethyl)uracil

H26507 Ethyl uracil-5-carboxylate

L16407 O,O'-Bis(trimethylsilyl)-5-fluorouracil

H27219 Uracil-5-boronic acid

H51098 Uracil-5-carboxaldehyde

H50469 Uracil-6-carboxaldehyde

monohydrate

Laboratory unit model

https://sites.google.com/view/bio-isotope-cloud/main-page

The essence of the idea

Mark nucleoside atoms "in place" with slow neutrons

