Lecture #6 Discrete Random Variable (3)

Why do we need a Derived Random Variable?

- From sample values of the random variable, use these values to compute other quantities.
- Example:
 - Find a decibel value from signal-to-noise ratio
- Y = g(X)

3

Example-1

- Random Variable X = # pages in one fax
- $P_X(x)$ = number of pages in each fax
- Charging plan
 - 1^{st} page = 10 Baht
 - 2^{nd} page = 9 Baht
 - 3^{rd} page = 8 Baht
 - 4^{th} page = 7 Baht
 - 5^{th} page = 6 Baht
 - 6 10 pages = 50 Baht
- Find the charge in Baht for sending one fax

Example-1

• Random Variable Y = the charge in Baht for sending one fax

$$Y = g(X) = \begin{cases} 10.5X - 0.5X^2 & 1 \le X \le 5 \\ 50 & 6 \le X \le 10 \end{cases}$$

5

PMF of Y

Theorem:

$$P_{Y}(y) = \sum_{x:g(x)=y} P_{X}(x)$$

 $P[Y=y] = \Sigma$ of all outcomes X = x for which Y = y

- Suppose all faxes contain 1,2,3, or 4 pages with equal probability
- Find PMF and E[Y]

$$P_{X}(x) = \begin{cases} \frac{1}{4} & x = 1,2,3,4 \\ 0 & \text{Otherwise} \end{cases}$$

- $S_X = \{1,2,3,4\}$ $S_Y = \{10,19,27,34\}$

Expected Value of a Derived Random Variable

- To Find E[Y]
 - \rightarrow Find $P_Y(y)$
 - \rightarrow Find E[Y]
- In case of interesting only E[Y]

Theorem:

$$E[Y] = E[g[X]] = \sum_{x \in S_X} g[x] P_X(x)$$

13

Important Property of E[Y]

$$\begin{aligned} \text{Let} \qquad Y &= g(X) \ = \ X - E[X] = X - \mu_X \\ E[Y] &= E[g(X)] \\ &= \sum_{x \in S_x} (x - \mu_X) \ P_X(x) \\ &= \sum_{x \in S_x} P_X(x) \ - \ \sum_{x \in S_x} \mu_X \ P_X(x) \\ &= \mu_X \qquad - \ \mu_X \ \sum_{x \in S_x} P_X(x) \\ &= 0 \end{aligned}$$

Important Property of E[Y]

Theorem: Form any random variable X

$$E[X - \mu_x] = 0$$

Important Property of E[Y]

Theorem: For $P_X(x)$,

$$E[aX + b] = aE[X] + b$$

Note:

- Linear Transformation
- scale change of quantity (change the unit)

Ex. Celsius → Fahrenheit

• Adding score to every one

$$\rightarrow$$
 new E[X] = old E[X] + adding value

→ new E[X] = old E[X] + adding value • Y = X² → E[Y] ≠ (E[X])² → E[g(X)] ≠ g(E[X])

Example

$$P_R(r) = \begin{cases} 1/4 & r = 0 \\ 3/4 & r = 2 \\ 0 & \text{otherwise} \end{cases}$$

Find E[Y] for
$$Y = g(R) = 2R + 4$$

$$E[R] = (0) P_R(0) + 2P_R(2) = (1/4)(0) + (3/4)(2)$$
$$= 3/2$$

$$\begin{split} E[Y] &= E[g(R)] & E[Y] = E[g(R)] = \Sigma \ g(r) P_R(r) \\ &= E[2R+4] & = g(0)(1/4) + g(2)(3/4) \\ &= 2E[R] + 4 & = (2*0+4)(1/4) + (2*2+4)(3/4) \\ &= 2(3/2) + 4 = 7 & = 1+6 = 7 \end{split}$$

17

Quiz 2.7

- Number of memory chip M depends on number of application programs, A
- M = 4 chips for 1 program
 - 4 chips for 2 programs
 - 6 chips for 3 programs
 - 8 chips for 4 programs

$$P_A(a) = 0.1(5-a) \ a=1,2,3,4$$

0 otherwise

- 1) E[A]
- $2) \qquad M = g(A)$
- 3) Show E[M]=E[g(A)]
- 4) Show E[M] is not equal g(E[A])

Variance & Standard Deviation

- We knew average, E[X],
 Why do we need these Variance & Standard Variation?
- How far from the average?
 - $T = X \mu_x$ $E[T] = E[X \mu_x]$ = 0

19

Variance & Standard Variation

- The useful measurement is $\mathbf{E}[|\mathbf{T}|]$
- $E[T^2] = E[(X \mu_x)^2]$ \rightarrow Variance

Definition:

$$Var[X] = E[(X - \mu_x)^2]$$

Variance & Standard Variation

Definition:

Sigma X

$$\sigma_{X} = \sqrt{Var[X]}$$

- \bullet σ_X tells how much RV deviates from mean.
- Ex: $\sigma_X = 15$, Score + 6 from mean
 - → OK. Middle of class
- Ex: $\sigma_{\rm X} = 3$, Score + 6 from mean
 - → V.Good In Top class group

21

Variance of X

$$\begin{aligned} Var[X] &= \sigma_{x}^{2} \\ &= E\left[(X - \mu_{x})^{2} \right] \\ &= \sum_{x \in S_{x}} (x - \mu_{X})^{2} P_{X}(x) \\ &= \sum_{x \in S_{x}} 2 P_{X}(x) - \sum_{x \in S_{x}} 2 \mu_{x} x P_{X}(x) + \sum_{x \in S_{x}} \mu_{x}^{2} P_{X}(x) \\ &= E[X^{2}] - 2 \mu_{x} \sum_{x \in S_{x}} x P_{X}(x) + \mu_{x}^{2} \sum_{x \in S_{x}} P_{X}(x) \\ &= E[X^{2}] - 2 \mu_{x}^{2} + \mu_{x}^{2} \end{aligned}$$

$$Var[X] = E[X^2] - \mu_X^2 = E[X^2] - (E[X])^2$$

Variance of X

Theorem:

• If X is a constant,

$$Var[X] = 0$$

• If Y = X + b,

$$Var[Y] = Var[X]$$

• If Y = aX,

$$Var[Y] = a^2 Var[X]$$

23

Variance

- (a) Bernoulli p \rightarrow Var[X] = p(1 p)
- (b) Geometric $-p \rightarrow Var[X] = (1-p)/p^2$
- (c) Binomial $-n,p \rightarrow Var[X] = np(1-p)$
- (d) Pascal k,p \rightarrow Var[X] = k(1 p)/p²
- (e) Poisson $-\alpha \rightarrow Var[X] = \alpha$
- (f) Discrete uniform k,l

→
$$Var[X] = (1 - k) (1 - k + 2)/12$$

Quiz 2.8 Example 2.36 Quiz 2.8 25

Conditional Probability Mass Function

$$P[A|B] = P[X = x|B]$$

Definition: Given event B, P[B] > 0

$$P_{X|B}(x) = P[X=x|B]$$

Theorem:

Theorem:
$$P[A] = \sum_{i=1}^{n} P[A|B_i]P[B_i]$$

Theorem: $P_X(x) = \sum_{i=1}^{n} P_{X|Bi}(x)P[B_i]$

Quiz 2.9 Example 2.38 Example 2.39 Example 2.41 Quiz 2.9

27

• On the Internet, data is transmitted in packets. N is the number of packets needed to transmit a web page depends on whether the page has a graphic images. • If the page has image (event I), then N is uniform distribution between 1-50 • If the page has only text (event T), then N is uniform distribution between 1-5 • Assume a page has images with prob $\frac{1}{4}$, find 1) $P_{NN}(n)$ 2) $P_{NT}(n)$ 3) $P_{N}(n)$ 4) $P_{NNC=10}(n)$ 5) E[N|N < 10]6) Var[N|N < 10]

