Algebraic Topology - Dunkin's Torus 4 -

KYB

Thrn, it's a Fact
mathrnfact@gmail.com

September 14, 2021

Overview

The Fundamental Group The Fundamental Group of the Circle

Definition

Let $p: E \to B$ be a map. If f is a continuous mapping of some space X into B, a *lifting* of f is a map $\widetilde{f}: X \to E$ such that $p \circ \widetilde{f} = f$.

Example

Consider the covering $p: \mathbb{R} \to S^1$.

- $f:[0,1]\to S^1$ given by $f(s)=(\cos\pi s,\sin\pi s)$ lifts to the path $\widetilde{f}(s)=s/2$.
- $g:[0,1] \to S^1$ given by $f(s)=(\cos \pi s, -\sin \pi s)$ lifts to the path $\widetilde{g}(s)=-s/2$.
- $h:[0,1] \to S^1$ given by $f(s)=(\cos 4\pi s, \sin 4\pi s)$ lifts to the path $\widetilde{h}(s)=2s$.

Lemma (54.1)

Let $p: E \to B$ be a covering map, let $p(e_0) = b_0$. Any path $f: [0,1] \to B$ beginning at b_0 has a unique lifting to a path \widetilde{f} in E beginning at e_0 .

Lemma (The Lebesgue number lemma)

Let $\mathcal A$ be an open covering of the metric space (X,d). If X is compact, there is a $\delta>0$ such that for each subset of X having diameter less than δ , there exists an element of $\mathcal A$ containing it.

Lemma (54.2)

Let $p:E\to B$ be a covering map; let $p(e_0)=b_0$. Let the map $F:I\times I\to B$ be continuous, with $F(0,0)=b_0$. There is a unique lifting of F to a continuous map $F:I\times I\to E$ such that $\widetilde{F}(0,0)=e_0$. If F is a path homotopy, then \widetilde{F} is a path homotopy.

Lemma (54.3)

Let $p: E \to B$ be a covering map; let $p(e_0) = b_0$. Let f and g be two paths in B from b_0 to b_1 , let \widetilde{f} and \widetilde{g} be their respective liftings to paths in E beginning at e_0 . If f and g are path homotopic, then \widetilde{f} and \widetilde{g} end at the same point of E and are path homotopic.

Definition

Let $p: E \to B$ be a covering map; let $b_0 \in B$. Choose e_0 so that $p(e_0) = b_0$. Given an element [f] of $\pi_1(B, b_0)$, let \widetilde{f} be the lifting of f to a path in E that begins at e_0 . Let $\varphi([f])$ denote the end point $\widetilde{f}(1)$ of \widetilde{f} . Then φ is a well-defined set map

$$\phi: \pi_1(B, b_0) \to p^{-1}(b_0).$$

We call ϕ the *lifting correspondence* derived from the covering map p. It depends of course on the choice of the point e_0 .

Theorem (54.4)

Let $p: E \to B$ be a covering map; let $p(e_0) = b_0$. If E is path connected, then the lifting correspondence

$$\phi: \pi_1(B, b_0) \to p^{-1}(b_0).$$

is surjective. If E is simply connected, it is bijective.

Theorem (54.5)

The fundamental group of S^1 is isomorphic to the additive group of integers.

Definition

Let G be a group; let x be an element of G. We denote the inverse of x by x^{-1} .

- x^n denote the n-fold product of x with itself
- x^{-n} denotes the n-fold product of x^{-1} with itself
- x^0 denotes the identity element of G.

If the set of all elements of the form x^m for $m \in \mathbb{Z}$, equals G, then G is said to be a *cyclic* group, and x is said to be a *generator* of G.

- The cardinality of a group is called the *order* of the group.
- A group is cyclic of infinite order if and only if it is isomorphic to the additive group of integers
- A group is cyclic of order k if and only if it is isomorphic to the group \mathbb{Z}/k of integers modulo k.

Remark

Note that if x is a generator of the infinite cyclic group G, and y is an element of the arbitrary group H, then there is a unique homomorphism h of G into H such that h(x)=y; it is defined by setting $h(x^n)=y^n$ for all n.

Theorem (54.6)

Let $p: E \to B$ be a covering map; let $p(e_0) = b_0$.

- (a) The homomorphism $p_*:\pi_1(E,e_0)\to\pi_1(B,b_0)$ is a monomorphism.
- (b) Let $H = p_*(\pi_1(E, e_0))$. The lifting correspondence φ induces an injective map

$$\Phi:\pi_1(B,b_0)/H\to p^{-1}(b_0)$$

of the collection of right cosets of H into $p^{-1}(b_0)$, which is bijective if E is path connected.

(c) If f is a loop in B based at b_0 , then $[f] \in H$ if and only if f lifts to a loop in E based at e_0 .

Exercises

Ex 54.3

Let $p: E \to B$ be a covering map. Let α and β be paths in B with $\alpha(1) = \beta(0)$; let $\widetilde{\alpha}$ and $\widetilde{\beta}$ be liftings of them such that $\widetilde{\alpha}(1) = \widetilde{\beta}(0)$. Show that $\widetilde{\alpha}*\widetilde{\beta}$ is a lifting of $\alpha*\beta$.

Exercises

Ex 54.6

Consider the maps $g, h : S^1 \to S^1$ given by $g(z) = z^n$ and $h(z) = 1/z^n$. Compute the induced homomorphisms g_* , h_* of the infinite cyclic group $\pi_1(S^1, b_0)$ into itself

Exercises

Ex 54.8

Let $p:E \to B$ be a covering map, with E path connected. Show that if B is simply connected, them p is a homeomorphism.