

Introduction to Digital Signal Processing Systems

Shao-Yi Chien

Outline

- Introduction
- Typical DSP algorithms
- Scaled CMOS technologies
- Representations of DSP algorithms

Analog Signal

- Real-word signal
- Infinite accuracy on time and magnitude

Digital Signal

- Get after sampling and quantization
- Finite accuracy on time and magnitude
- Easy to process with digital processing element

DSP in VLSI Design

Shao-Yi Chien

5

Typical DSP Systems

DSP in VLSI Design Shao-Yi Chien

- Can operate in very high frequency
- Sometimes low area e.g.) Amplification requires dedicated amplification circuit.
- Low power

Advantages of Digital Signal Processing (DSP)

- More robust
 - □ Insensitive to environment and component tolerance
- The accuracy can be controlled better
- Can cancel the noise and interference while amplifying the signal
- Predictable, repeatable behavior
 - □ Can be stored and recovered, transmitted and received, processed and manipulated without error

Features of DSP Systems

- Real-time throughput requirement
 - □ So-called hard real-time systems
- Data-driven property Fire the calculation when the data arrives.
- Non-terminating program analogous to a forever loop.

DSP in VLSI Design

Hard Real-Time Systems

- Hardware circuitry and resources (area)
- Speed of execution
- Power consumption
- Finite word length performance

```
eg. floating point word size, accuracy.
```


Characteristics of DSP Systems (1/4)

- Data format
 - □1D speech

□2D image

□3D video

12

Characteristics of DSP Systems (2/4)

Algorithms

DSP Algorithm	System Application
Speech coding and decoding	Digital cellular telephones, personal communications systems, digital cordless telephones, multimedia computers, secure communications
Speech encryption and decryption	Digital cellular telephones, personal communications systems, digital cordless telephones, secure communications
Speech recognition	Advanced user interfaces, multimedia workstations, robotics, automotive applications, digital cellular telephones, personal communications systems, digital cordless telephones
Speech synthesis	Multimedia PCs, advanced user interfaces, robotics
Speaker identification	Security, multimedia workstations, advanced user interfaces
Hi-fi audio encoding and decoding	Consumer audio, consumer video, digital audio broadcast, professional audio, multimedia computers
Modem algorithms	Digital cellular telephones, personal communications systems, digital cordless telephones, digital audio broadcast, digital signaling on cable TV, multimedia computers, wireless computing, navigation, data/facsimile modems, secure communications
Noise cancellation	Professional audio, advanced vehicular audio, industrial applications
Audio equalization	Consumer audio, professional audio, advanced vehicular audio, music
Ambient acoustics emulation	Consumer audio, professional audio, advanced vehicular audio, music
Audio mixing and editing	Professional audio, music, multimedia computers
Sound synthesis	Professional audio, music, multimedia computers, advanced user interfaces
Vision	Security, multimedia computers, advanced user interfaces, instrumentation, robotics, navigation
Image compression and decompression	Digital photography, digital video, multimedia computers, video-over-voice, consumer video
Image compositing	Multimedia computers, consumer video, advanced user interfaces, navigation
Beamforming	Navigation, mediał imaging, radar/sonar, signals intelligence
Echo cancellation	Speakerphones, modems, telephone switches
Spectral estimation	Signals intelligence, radar/sonar, professional audio, music

Characteristics of DSP Systems (3/4)

Sample rates

DSP in VLSI Design

Shao-Yi Chien

Characteristics of DSP Systems (4/4)

- Clock rates
- Numeric representations

```
> Turois complements
> One's complements
> Gray Code
```


Standard Digital Signal Processors (1/2)

- Allow rapid prototyping and time-to-market
- Sometimes, the execution speed and code size is reasonably good
- Not always cost effective
- Often cannot meet the requirements of throughput, power consumption, and size

Standard Digital Signal

Processors (2/2)

- DSP Architectures
 - ☐ Harvard architecture
 - MAC Multiply And Accumulate
- Fixed-point arithmetic
 more efficient than floating-point
 - - DSP-enhanced CPU
 - GPU opt. For Matrix calculation

Memory

- Better performances
 - Processing capacity
 - □ Power consumption
 - □ Pin-restriction problem
- Main problem: the system is very complex to design
 - □ Long time-to-market

Application-Specific ICs for DSP

(2/2)

- Large design space
- Hard to find optimal solution
- System→specification→ algorithm→hardware architecture→logic implementation→VLSI implementation
- ASIC → Accelerator design in an SoC

Typical DSP Algorithms

- Convolution
- Correlation
- Digital filters
- Adaptive filters
- Motion estimation
- Discrete cosine transform (DCT)
- Vector quantization (VQ)
- Viterbi algorithm and dynamic programming
- Decimator and expander
- Wavelets and filter banks

Convolution (1/2)

$$y(n) = x(n) * h(n) = \sum_{k=-\infty}^{\infty} x(k)h(n-k).$$

- Can be used to describe the behavior of a linear time-invariant systems
 - □x(n): input signal
 - □ y(n): output signal
 - □h(n): unit-sample response

Convolution (2/2)

Finite impulse response (FIR) system

$$h(n) = \frac{1}{M_1 + M_2 + 1} \sum_{-M_1}^{M_2} \delta(n - k)$$

Infinite impulse response (IIR) system

$$h(n) = \sum_{k=-\infty}^{n} \delta(k)$$

Digital Filters

LTI, causal filter

$$y(n) = -\sum_{k=1}^{N} a_k y(n-k) + \sum_{k=0}^{M-1} b_k x(n-k).$$

M-tap finite impulse response filter

$$y(n) = \sum_{k=0}^{M-1} b_k x(n-k)$$

Chip Development

Moore's law: The number of transistors per chip doubles every 18 months.

Gordon Moore
One of the founders of Intel

Technology roadmap:

http://notes.sematech.org/ntrs/PubINTRS.nsf

Moore's Law

Scaled CMOS technology (Moore's Law) (1/2)

Year of Production:	2001	2003	2005		2007	2010	2016
DRAM Half-Pitch [nm]:	130	100	80		65	45	22
Overlay Accuracy [nm]:	46	35	28		23	18	9
MPU Gate Length [nm]:	90	65	45		35	25	13
CD Control [nm]:	8	5.5	3.9		3.1	2.2	1.1
T _{ox} (equivalent) [nm]:	1.3-1.6	1.1-1.6	0.8-1.3	N_{l}	0.6-1.1	0.5-0.8	0.4-0.5
Junction Depth [nm]:	48-95	33-66	24-47	\mathbb{W}	18-37	13-26	7-13
Metal Cladding [nm]:	16	12	9	\mathbb{N}	7	5	2.5
Inter-Metal Dielectric K:	3.0-3.6	3.0-3.6	2.6-3.1		2.3-2.7	2.1	1.8

DSP in VLSI Design Shao-Yi Chien 25

Scaled CMOS technology (Moore's Law) (2/2)

2022 IRDS ORTC							
YEAR OF PRODUCTION		2022	2025	2028	2031	2034	2037
Logic device technology naming note definition [1a]		G48M24	G45M20	G42M16	G40M16T2	G38M16T4	G38M16T6
Logic industry "Node Range" Labeling (nm) [2]		"3"	"2"	"1.5"	"1.0-eq"	"0.7nm-eq"	"0.5nm-eq"
Fine-pitch 3D integration scheme		Stacking	Stacking	Stacking	3DVLSI	3DVLSI	3DVLSI
Platform device for logic [1b]		FinFET LGAA	LGAA	LGAA CFET	LGAA-3D CFET- SRAM	LGAA-3D CFET- SRAM	LGAA-3D CFET- SRAM
LOGIC CELL AND FUNCTIONAL FABRIC TARGETS							
Digital block area scaling		1.00	0.74	0.55	0.26	0.13	0.08
LOGIC DEVICE GROUND RULES							
MPU/SoC M0 1/2 Pitch (nm) [3]		12	10	8	8	8	8
Gate length (nm) [4]	17	16	14	12	12	12	12
Lateral GAA (nanosheet) Minimum Thickness (nm)		1	3	3	4	4	4
Number of stacked tiers [5]		1	1	1	2	4	6
Number of stacked nanosheets in one device [5]		1	3	3	4	4	4
LOGIC DEVICE Electrical							
Vdd (V) [6]	0.75	0.70	0.65	0.65	0.60	0.60	0.60
DRAM TECHNOLOGY							
DRAM Min half pitch (nm) [7]	17.5	15.5	13	14	11.5	10	10
DRAM cell size (µm²) [8]	0.00184	0.00165	0.00118	0.00085	0.00062	0.00044	0.00025
DRAM storage node cell capacitor voltage (V) [9]	0.50	0.45	0.45	0.43	0.4	0.4	0.4
NAND Flash							
Flash 2D NAND Flash uncontacted poly 1/2 pitch - F (nm) 2D [10a,b]		15	15	15	15	15	15
Product highest density (3D) (commercialized) [11]		1.3T	2.6T	4T	6T	8T	12T
Flash Product Maximum bits/cell (2D_3D) [12]		4	5	5	6	6	6
Flash 3D NAND Maximum Number of Memory Layers [13]		128-192	256-384	384-576	576-768	768-1024	1024-1536
Maximum chip size (mm²) [14]		140	140	140	140	140	140

[International Roadmap for Devices and Systems (IRDS) 2022]

DSP and VLSI

- Modern DSP
 - □ Well suite to VLSI implementation
 - Feasible or economically viable only if implemented using VLSI technologies
- VLSI
 - □ Large investment → need large volume of products
 - Communication
 - Consumer applications
 - Necessary performance requirement (especially realtime requirement)
 - DSP systems are hard real-time systems

Demands for Semiconductors

2019 DEMAND BY END-USE End-Use Category Communication Computer Consumer Automotive Industrial Government **Annual** -10.5-18.7 -5.2 -6.9-13.013.0 Growth Total 136.0 117.3 54.7 50.2 48.9 5.2 Value (\$B)

[STATE OF THE U.S. SEMICONDUCTOR INDUSTRY 2020]

DSP in VLSI Design Shao-Yi Chien 28

Demands for Semiconductors

The overall growth in the global semiconductor market is driven by the automotive, data storage, and wireless industries.

Global semiconductor market value by vertical, indicative, \$ billion

Note: Figures are approximate.

[Mckinsey 2022]

Problems: Increasing Static Power

- V_{DD} decreases
 - □ Save dynamic power
 - □ Protect thin gate oxides and short channels
 - □ No point in high value because of velocity sat.
- V_t must decrease to maintain device performance
- But this causes exponential increase in OFF leakage
- Major future challenge

Problems: Power Density

- Intel VP Patrick Gelsinger (ISSCC 2001)
 - □ If scaling continues at present pace, by 2005, high speed processors would have power density of nuclear reactor, by 2010, a rocket nozzle, and by 2015, surface of sun.
 - "Business as usual will not work in the future."
- Intel stock dropped 8% on the next day
- But attention to power is increasing

Problems: Scaling and the Power

After: R. Schmidt et al., IBM J. R&D, (2002).

FinFET

FinFET

Intel Transistor Leadership

2003 90 nm 2005 65 nm 2007 45 nm 2009 32 nm 2011

22 nm

Invented SiGe Strained Silicon

2nd Gen. SiGe Strained Silicon Invented Gate-Last High-k Metal Gate 2nd Gen. Gate-Last High-k Metal Gate First to Implement Tri-Gate

Strained Silicon

High-k Metal Gate

Tri-Gate

FinFET

Transistor Gate Delay

22 nm Tri-Gate transistors provide improved performance at high voltage and an unprecedented performance gain at low voltage

Science and Technology Strategy / Roadmap

2000 2005 2010 2015 2020 2025 2030 Plan A: Extending Si CMOS (110)R Surface <110> Plan B: Subsytem Integration R Plan C: Post Si CMOS Options R R&D **Plan Q: Quantum Computing** R

38

More Moore & More than Moore !!!

DSP in VLSI Design Shao-Yi Chien

2.5D Interposer

DSP in VLSI Design

40

3D-IC Technology

Heterogeneous System Integration

[TSMC 2015]

DSP in VLSI Design Shao-Yi Chien 41

InFO (Integrated Fan Out)

 Single-Die InFO: An extension of "Fan-in" WLCSP to enable more IOs

Multi-Die InFO: A solution for homogenous/ heterogeneous integration in a single package

[TSMC 2015]

DSP in VLSI Design

Shao-Yi Chien

CoWoS (Chip-On-Wafer-On-Substrate)

 Integrate multiple chips into one single package using a submicron scale silicon interface (interposer)

- Enable higher performance, lower power consumption, and smaller form factor
- Best integrated flow for high yield and reliability

Heterogeneous Integration

[TSMC 2015]

Example of CoWoS

The Future is **SYSTEM INTEGRATION**

© 2021 IEEE International Solid-State Circuits Conference

1.1 Unleashing the Future of Innovation 20

DSP Architecture Design?

usually means a good PPA tradeoff.

- Given DSP algorithms, find the "best" solution in the design space under certain constraints
- Or, modified or develop the algorithm to be "hardware oriented" or "hardware friendly," and then develop the hardware architecture
- Domain specific architecture

Abstraction Layers

- System (ex: MP3 player)
- Algorithm (ex: FIR filter)
- Hardware architecture (ex: array architecture,...)
- Arithmetic units (ex: multiplier, adder, ...)
- Logic gates (ex: AND, OR, ...)
- Transistors (ex: NMOS, PMOS)
- Layout

The Higher the Abstraction, The Larger Design Space

DSP in VLSI Design Shao-Yi Chien 48

The Higher the Abstraction, The More Important

DSP in VLSI Design Shao-Yi Chien 49

Representations of DSP Algorithms

DSP algorithms: nonterminating program

$$y(n) = ax(n) + bx(n-1) + cx(n-2)$$
 for $n = 1$ to $n = \infty$.

- Iteration period
- Sampling rate
- Latency
- Throughput
- Clock frequency
- Critical path

Graphical Representations of DSP Algorithms

 Can bridge the gap between algorithmic descriptions and structural implementations

- Block diagram
- Signal-flow graph (SFG)
- Data-flow graph (DFG)
- Dependence graph (DG)

Block Diagram (1/5)

- The most frequently used representation
- Can be constructed with different levels of abstraction
- Can be directly mapped to circuits implementation

Block Diagram (2/5)

$$y(n) = b_0 x(n) + b_1 x(n-1) + b_2 x(n-2)$$

Block Diagram (3/5)

Data broadcast FIR filter

DSP in VLSI Design

Shao-Yi Chien

Block Diagram (4/5)

Critical path: 4+1+1=6ns

Max clock frequency = 1s/6ns=167MHz

Block Diagram (5/5)

Critical path: 4+1=5ns

Max clock frequency = 1s/5ns=200MHz

Signal Flow Graph (SFG) (1/4)

- Nodes k
 - □ Computation or task
- Directed edges (j, k)
 - □ Linear transformation
- Source node
- Sink node

Signal Flow Graph (SFG) (2/4)

Signal Flow Graph (SFG) (3/4)

Transpose property

Transposition of an SFG is carried out by reserving the directions of all the edges, exchanging input and output nodes while (ceeping x(n)) the edge gain or edge delay unchanged. On the resulting SFG mantains the same to functional property.

Signal Flow Graph (SFG) (4/4)

- Used in digital filter structure and analysis of finite word-length effects
- Only applicable to linear networks
- Cannot be used to describe multi-rate
 DSP systems

DSP in VLSI Design

Data-Flow Graph (DFG) (1/4)

- Nodes
 - □ Computations
- Directed edges
 - □ Data paths (communication)
 - ☐ Has a nonnegative number of delays

Data-Flow Graph (DFG) (2/4)

y(n)=x(n)+ay(n-1)

A: + B: X

Synchronous DFG

Data-Flow Graph (DFG) (3/4)

- Data-driven property of DSP
 - Any node can fire whenever all the input data are available
 - □ Intra-iteration precedence constraint
 - □ Inter-iteration precedence constraint
- Can be used to describe both linear single-rate and nonlinear multi-rate DSP systems

Data-Flow Graph (DFG) (4/4)

 Use single rate DFG (SRDFG) to represent multi-rate DFG (MRDFG)

Dependence Graph (1/2)

- A directed graph that shows the dependence of the computation
- Node: computation
- No node in a DG is ever reused on a single computation basis
 - □ Single-assignment representation () sed one)
- Used for systolic-array design

Dependence Graph (2/2)

$$b' = b$$

$$x' = x$$

$$y' = y + b x$$

yl3) = bo x(3) +b1 x(2) +b2x(1).

$$y(n) = b_0 x(n) + b_1 x(n-1) + b_2 x(n-2)$$

DFG v.s. DG

DFG

- □ Nodes only cover computation in one iteration, and will be reused iteratively
- Contain delay elements

DG

- Contains computation for all iterations, and is used only once
- No delay elements contained