V-5 ratices for Known. Which EC) Known determine a vertex or in V-S 2i (v) 3 € · moun Move U 65.

Shortest Special palis.

v is a vertex in V-S d [u] + u e V-S.

" v is a vertex with minimum d [] value.

Then d [v] = 8(v).

- => 1(v) is known for v
- > We move or to S.

Since S -> SU {v}
we need to capitate d [u] values
for u ∈ V-S.
V-S



d[v]+w(v,u) weight of new spead path to u. if d(u) > d(u) + w(u,u)Thus d(u) = d(u) + w(u,u)  $\varphi(u) = u.$ 

d [u'] where u' € Adj (v)
does not change.

For all  $u \in Adj(v)$ if  $(u \in V-S \text{ and } dv] > dvJ+w(v,u)$ when d(u) = d(vJ+w(v,u)) p(u) = v.



(s,v) is special path to v

d (v) = w(s,v).

if u & Adj (s),

then No special path exist

at this point from s.

d [u] = 00.

$$d [v] = \omega(\Lambda, v) \tilde{u}_{j}$$

$$v \in Adj(\Lambda)$$

$$= \infty \tilde{u}_{j} v \notin Adj(\Lambda).$$

$$d(\Lambda) = 0$$

$$p(\Lambda) = \Delta \quad (undefined).$$

$$p(v) = \Delta \quad \tilde{u}_{j} v \notin Adj(\Lambda).$$

$$= \Delta \quad \tilde{u}_{j} v \notin Adj(\Lambda).$$

Initialise d []

We represent S, V-S by a Bookan Array.

In-s [v] = 1 w  $v \in S$ =  $v \notin S$ .

=> =n-s[v] =0 for v & V-S

"Move a vertex from V-S to S"?
Set  $\exists n-S [v]=1$ .

Initialize  $(S, V-S) \rightarrow \{A\}, \{V-\{A\}\}$ In-s[A] = 0  $\forall U \neq A$ .

- Dijkstra ( $G = (V, E, \omega, \Lambda)$ )

  (1)  $d C U J = \delta U$ ) as output.

  (1) p E U J is the previous value to U in the shortest path.

  (p E U J, U) is a Bellman edge.
- ① Initialise (5,V-5), d(7, þ[]. ② while (5 丰 V)
  - 2a) Find a value v in V-S

    such that

    d [v] < d [u] + u e V-S.
  - 21) Move U to 5.

- (2c) update d [u], p [u]

  for every  $u \in V-S$ .

  We expand (2c) as follows.

   if  $(u \in Adj(v))$  and d [u] > d (v) + w (v, u)Then d [u] = d [v] + w (v, u) p [u] = v.
- Bellman Edge.

The while loop of step 2 will be executed (n-1) time. |V| = nInitially  $S = \{A\}$ . Total sum of cost of 2a across all iterations is  $(N-1) + (N-2) + \cdots + 1 = O(n^2)$ Jotel cost of 26 across all iterations in (n-1). Ford cost of 2c across all iterations

= \( \text{Out deque (0)}\)

\( \text{Of V-\xappa A}\).

\( \text{Defol cost B (2c) across all iterations is O(m).}

\( \text{The confliction is O(m)}.

\( \text{The confliction is Dijksha's Algorithm is O(n^2+m).}
\)