Section 3.5 Graphing Techniques; Transformations

Vertical Shift Up

Use the graph of $f(x) = x^2$ to obtain the graph of $g(x) = x^2 + 3$.

x	$y = f(x) \\ = x^2$	$y = g(x)$ $= x^2 + 3$
-2	4	7
-1	1	4
0	0	3
1	1	4
2	4	7

Vertical Shift Down

Use the graph of $f(x) = x^2$ to obtain the graph of $h(x) = x^2 - 4$.

х	$y = f(x)$ $= x^2$	$y = g(x)$ $= x^2 - 4$
-2	4	0
-1	1	-3
0	0	-4
1	1	-3
2	4	0

Exploration

On the same screen, graph each of the following functions:

$$Y_1 = x^2$$

 $Y_2 = x^2 + 2$
 $Y_3 = x^2 - 2$

If a positive real number k is added to the output of a function y = f(x), the graph of the new function y = f(x) + k is the graph of f shifted vertically up k units.

If a positive real number k is subtracted from the output of a function y = f(x), the graph of the new function y = f(x) - k is the graph of f shifted vertically down k units.

Horizontal Shift to the Right

Use the graph of $f(x) = x^2$ to obtain the graph of $g(x) = (x - 2)^2$.

х	$y = f(x)$ $= x^2$	y = g(x) $= (x)$	() - 2) ²	
-2	4	16		<i>y</i> 🛦
0	0	4		$y = x^2 \qquad y = (x-2)^2$
2	4	0	(-2,	4) $(0, 4)$ $(2, 4)$ $(4, 4)$
4	16	4		\ \ \ / /
			Right 2 units	(0,0) $(2,0)$ 4 X

Copyright © 2012 Pearson Education, Inc. Publishing as Prentice Hall.

Exploration

On the same screen, graph each of the following functions:

$$Y_1 = x^2$$

 $Y_2 = (x - 3)^2$
 $Y_3 = (x + 2)^2$

If the argument x of a function f is replaced by x - h, h > 0, the graph of the new function y = f(x - h) is the graph of f shifted horizontally right h units. If the argument x of a function f is repaced by x + h, h > 0, the graph of the new function y = f(x + h) is the graph of f shifted horizontally left h units.

Horizontal Shift to the Left

Use the graph of $f(x) = x^2$ to obtain the graph of $g(x) = (x + 4)^2$.

Combining Vertical and Horizontal Shifts

Graph the function $f(x) = (x + 3)^2 - 5$.

Vertical Stretch

Use the graph of f(x) = |x| to obtain the graph of g(x) = 2|x|.

x	$y = f(x) \\ = x $	$y = g(x) \\ = 2 x $
-2	2	4
-1	1	2
0	0	0
1	1	2
2	2	4

Х

Vertical Compression

Use the graph of f(x) = |x| to obtain the graph of $g(x) = \frac{1}{2}|x|$.

$$y = f(x)$$
 $y = g(x)$
 $= |x|$ $= \frac{1}{2}|x|$

$$-2$$
 2 1

$$-1$$
 1 $\frac{1}{2}$

When the right side of a function y = f(x) is multiplied by a positive number a, the graph of the new function y = af(x) is obtained by multiplying each y-coordinate on the graph of y = f(x) by a. The new graph is a **vertically compressed** (if 0 < a < 1) or a **vertically stretched** (if a > 1) version of the graph of y = f(x).

Exploration

On the same screen, graph each of the following functions:

$$Y_1 = f(x) = \sqrt{x}$$
 $Y_2 = f(2x) = \sqrt{2x}$ $Y_3 = f(\frac{1}{2}x) = \sqrt{\frac{1}{2}x} = \sqrt{\frac{x}{2}}$

Create a table of values to explore the relation between the x- and y-coordinates of each function.

X	Υ ₁	Yz
0512445	0 .70711 1 1.4142 2 2.1213 3	0 1 1.4142 2.8284 3 4.2426
Y2 B √(2X)		

X	Y1	Y3
0124891	0 1,4142 2,8284 3,2426	0 .70711 1 1.4142 2 2.1213 3
Y3 B √(X/2)		

If the argument x of a function y = f(x) is multiplied by a positive number a, the graph of the new function y = f(ax) is obtained by multiplying each x-coordinate of y = f(x) by $\frac{1}{a}$. A **horizontal compression** results if a > 1, and a **horizontal stretch** occurs if 0 < a < 1.

Graphing Using Stretches and Compressions

The graph of y = f(x) is given.

Use this graph to find the graphs of

(a)
$$y = 2f(x)$$
 (b) $y = f(3x)$

ing as Prentice Hall.

3 Graph Functions Using Reflections about the x-Axis and the y-Axis

Reflection about the x-Axis

$$f(x) = -x^2$$

x	$y = x^2$	$y = -x^2$
-2	4	-4
-1	1	-1
0	0	0
1	1	-1
2	4	-4

When the right side of the function y = f(x) is multiplied by -1, the graph of the new function y = -f(x) is the **reflection about the x-axis** of the graph of the function y = f(x).

Reflection about the x-Axis

Graph the function: $f(x) = \sqrt{-x}$

When the graph of the function y = f(x) is known, the graph of the new function y = f(-x) is the **reflection about the y-axis** of the graph of the function y = f(x).

SUMMARY OF GRAPHING TECHNIQUES

To Graph:	Draw the Graph of f and:	Functional Change to $f(x)$
Vertical shifts		
y=f(x)+k, k>0	Raise the graph of f by k units.	Add k to $f(x)$.
y=f(x)-k, k>0	Lower the graph of f by k units	Subtract k from $f(x)$.

Horizontal shifts

$$y = f(x + h), \quad h > 0$$

$$y=f(x-h), \quad h>0$$

Shift the graph of f to the left h units.

Shift the graph of f to the right h units. Replace x by x - h.

Replace x by x + h. Replace x by x - h.

Summary of Graphing Techniques

To Graph:

Draw the Graph of f and:

Functional Change to f(x)

Compressing or stretching

$$y = af(x), \quad a > 0$$

$$y = f(ax), \quad a > 0$$

Multiply each y-coordinate of y = f(x) by a. Stretch the graph of f vertically if a > 1.

Compress the graph of f vertically if 0 < a < 1.

Multiply each x-coordinate of y = f(x) by $\frac{1}{a}$.

Stretch the graph of f horizontally if 0 < a < 1.

Compress the graph of f horizontally if a > 1.

Multiply f(x) by a.

Replace x by ax.

Summary of Graphing Techniques

To Graph:

Draw the Graph of f and:

Functional Change to f(x)

Reflection about the x-axis

$$y = -f(x)$$

Reflection about the y-axis

$$y = f(-x)$$

Reflect the graph of f about the x-axis.

Reflect the graph of f about the y-axis.

Multiply f(x) by -1.

Replace x by -x.

Determining the Function Obtained from a Series of Transformations

Find the function that is finally graphed after the following three transformations

are applied to the graph of y = |x|.

- **2.** Shift up 3 units.
- **3.** Reflect about the y-axis.

- **1.** Shift left 2 units: Replace x by x + 2.
- **2.** Shift up 3 units: Add 3.
- **3.** Reflect about the *y*-axis: Replace x by -x.

$$y = |x + 2| + 3$$

|x + 2|

$$y = |-x + 2| + 3$$

Combining Graphing Procedures

Graph the function:
$$f(x) = \frac{3}{x-2} + 1$$

STEP 1:
$$y = \frac{1}{x}$$
 (1, 1) (2, $\frac{1}{2}$) (-1, -1)

STEP 2:
$$y = \frac{3}{x}$$

Multiply by 3; Vertical stretch $(-1, -3)$

Combining Graphing Procedures

Graph the function: $f(x) = \sqrt{1-x} + 2$

STEP 2:
$$y = \sqrt{x + 1}$$

Replace x by $x + 1$;
Horizontal shift left 1 unit -5 $(-1, 0)$ $(3, 2)$

Copyright © 2012 Pearson Education, inc. 1 aprilling as Prentice Hall.