Complexity Project: Summary

Function 1:

C = 2.29066e^-9 Asymptotic Standard Error: 0.09755%

The low Error supports the hypothesis that this algorithm is $O(n^3)$.

Function 2:

C = 3.22365e^-9 Asymptotic Standard Error: 0.067%

The low Error supports the hypothesis that this algorithm is O(2^n).

Function 3:

Ascending:

C = 5.83911e^-8 Asymptotic Standard Error: 0.09775%

The low Error supports the hypothesis that this algorithm is O(n).

Descending:

C = 5.85704e^-8 Asymptotic Standard Error: 0.3295%

The low Error supports the hypothesis that this algorithm is O(n).

Random:

C = 1.93034e^-7 Asymptotic Standard Error: 0.3844%

The low Error supports the hypothesis that this algorithm is O(n).

Function 4:

C = 3.12733e^-9 Asymptotic Standard Error: 0.4168%

The low Error supports the hypothesis that this algorithm is O(nlog(n)).

Function 5:

C = 0.00291504 Asymptotic Standard Error: 0.6926%

The low Error supports the hypothesis that this algorithm is O(log(n)).

Function 6:

Ascending:

C = 2.24313e^-9 Asymptotic Standard Error: 0.2589%

The low Error supports the hypothesis that this algorithm is $O(n^2)$.

Descending:

C = 2.12197e^-24 Asymptotic Standard Error: N/A

According to gnuplot, the square of the deviations was zero and thus it didn't calculate a %. The runtime however is likely actually O(n) due to the function processing a list, and it ran through the list so quickly the timer could not obtain a time.

Random:

C = 3.35697e^-9 Asymptotic Standard Error: 0.2753%

The low Error supports the hypothesis that this algorithm is $O(n^2)$.

Function 7:

C = 8.50142e^-9 Asymptotic Standard Error: 0.1163%

The low Error supports the hypothesis that this algorithm is O(n!).