November 9, 2023 7:42 PM

Basic Circuit Laws

$$+i_A+i_B+\left(-i_C\right)+\left(-i_D\right)=0$$
 in the iction [2 of convents entering the model is a fixed that the model is a fixed to the model in the model in the model is a fixed to the model in the

KCL: Alternative Forms

Current IN is zero:

$$i_{\scriptscriptstyle A} + i_{\scriptscriptstyle B} + \left(-i_{\scriptscriptstyle C}\right) + \left(-i_{\scriptscriptstyle D}\right) = 0$$

Current OUT is zero:

$$\left(-i_{_{A}}\right)+\left(-i_{_{B}}\right)+i_{_{C}}+i_{_{D}}=0$$

Current IN = OUT:

Example: KCL Application

Find the current through resistor R_3 if it is known that the voltage source supplies a current of 3 A.

Kirchhoff's Voltage Law (KVL)

KVL: Algebraic sum of voltages around any closed path is zero. Voltage rise -> + voltage drop -> -

KVL: Alternative Forms

Sum of RISES is zero (clockwise from B):

$$v_1 + (-v_2) + v_3 = 0$$

Sum of DROPS is zero (clockwise from B):

$$(-v_1) + v_2 + (-v_3) = 0$$

Two paths, same voltage (A to B):

$$v_1 = \left(-v_3\right) + v_2$$

Example: Applying KVL

Find v_{R2} and the voltage v_x .

of elements: B # of closed paths: 3

Applying KCL, KVL, Ohm's Law₁

Find the current i_x and the voltage v_x

$$5 \text{ V} \stackrel{+}{=} i_{x} 100 \Omega$$

$$= v_{x} | v_{$$

Applying KCL, KVL, Ohm's Law₂

Solve for the voltage v_x and the current i_x \uparrow elements: 6

KCL@ node $a = 7 + 5^{A} - 2^{A} = ? = 0 = 7? = 3^{A}$ KVL@ loop $L_{\lambda} = 7 + 20^{A} - 12^{A} - ? = 0 = 7? = 8^{V}$ KCC@ node $a = 7 + 5^{A} - 2^{A} = ? = 0 = 7? = 8^{V}$

Circuit Topologies - Series Connections

All the elements in a circuit that carry the same current are said to be connected in **series**.

Example - Series Connections

Circuit Topologies - Parallel Connections

Elements in a circuit having a common voltage across them are said to be connected in parallel.

Series and Parallel Sources

Voltage sources connected in series can be combined into an equivalent voltage source:

Series and Parallel Sources

Current sources connected in parallel can be combined into an equivalent current source:

Resistors in Series

$$R_{\rm eq} = R_1 + R_2 + \dots + R_N$$

15

Example: Circuit Simplifying

Find *i* and the power supplied by the 80 V source.

Resistors in Parallel

Special case - Two Resistors in Parallel

Voltage Division

Resistors in series "share" the applied voltage.

Example: Voltage Division and Circuit Simplification

Find Vx

Current Division

Resistors in parallel "share" current through them.

$$R_{T} = \frac{R_{1}R_{2}}{R_{1}+R_{2}}$$

$$\dot{i}_1 = \frac{v}{R_1} = \frac{i R_T}{R_1}$$

$$i_1 = \frac{RT}{R_1} (i)$$

$$i_{1} = i \frac{R_{2}}{R_{1} + R_{2}}$$

$$special case of a resistors only$$

$$i_{2} = i \frac{R_{1}}{R_{1} + R_{2}}$$

$$i_{3} = \frac{R_{1}}{R_{1} + R_{2}}$$

$$i_{4} = \frac{R_{1}}{R_{1} + R_{2}}$$

$$i_{5} = \frac{R_{1}}{R_{1} + R_{2}}$$

$$i_{6} = \frac{R_{1}}{R_{1} + R_{2}}$$

$$i_{6} = \frac{R_{1}}{R_{1} + R_{2}}$$

$$i_{7} = \frac{R_{1}}{R_{1} + R_{2}}$$

$$i_{8} = \frac{R_{1}}{R_{1} + R_{2}}$$

$$i_{1} = \frac{R_{2}}{R_{1} + R_{2}}$$

$$i_{2} = \frac{R_{1}}{R_{1} + R_{2}}$$

$$i_{3} = \frac{R_{1}}{R_{1} + R_{2}}$$

$$i_{4} = \frac{R_{1}}{R_{1} + R_{2}}$$

Example: Circuit Simplification and Current Division

Example: Circuit Simplification and Current Division

