

<u>Title</u>

scest — Estimation for Synthetic Control Methods.

Syntax

scest , dfname(string) [p(#) direc(string) Q(#) lb(#) name(string) opt(string)
pypinocheck]

{p_end}

Description

Companion R and Python packages are described in Cattaneo, Feng, Palomba and Titiunik (2022).

Companion commands are: \underline{scdata} for data preparation, \underline{scpi} for inference procedures, and \underline{scplot} for SC plots.

Related Stata, R, and Python packages useful for inference in SC designs are described in the following website:

https://nppackages.github.io/scpi/

For an introduction to synthetic control methods, see Abadie (2021) and references therein.

Options

dfname(string) specifies the name of the Python object containing the processed
 data created with scdata.

____ Constraint L

These options let the user specify the type of constraint to be imposed to estimate the SC weights. The user controls the lower bound on the weights (option \mathbf{lb}), the norm of the weights to be constrained (option \mathbf{p}), the direction of the constraint on the norm (option \mathbf{dir}), and the size of the constraint on the norm (option \mathbf{q}). Alternatively, some popular constraints can be selected through the option \mathbf{name} . A detailed description of the popular constraints implemented can be found in Cattaneo, Feng, Palomba and Titiunik (2022).

- 1b(#) specifies the lower bound on the weights. The default is 1b(0).
- p(#) sets the type of norm to be constrained. Options are:
 - O no constraint on the norm of the weights is imposed.
 - 1 a constraint is imposed on the L1 norm of the weights (the default).
 - 2 a constraint is imposed on the L2 norm of the weights.

direc(string) specifies the direction of the constraint on the norm of the
 weights. Options are:

- <= the constraint on the norm of the weights is an inequality constraint.
- == the constraint on the norm of the weights is an equality constraint (the default).
- Q(#) specifies the size of the constraint on the norm of the weights.

```
name (string) specifies the name of the constraint to be used. Options are:
    simplex classic synthetic control estimator where the weights are constrained
        to be non-negative and their L1 norm must be equal to 1.
    lasso weights are estimated using a Lasso-type penalization
    ridge weights are estimated using a Ridge-type penalization.
ols weights are estimated without constraints using least squares
```

Others

opt(string) a string specifying the stopping criteria used by the underling
 optimizer (nlopt) for point estimation. The default is a sequential quadratic programming (SQP) algorithm for nonlinearly constrained gradient-based optimization ('SLSQP'). The default value is opt("'maxeval' = 5000, 'xtol_rel' = 1e-8, 'xtol_abs' = 1e-8, 'ftol_rel' = 1e-12, 'ftol_abs' = 1e-12, 'tol_eq' = 1e-8, 'tol_ineq' = 1e-8"). In case a lasso-type constraint is implemented, a different optimizer (cvxpy) is used and stopping criteria cannot be changed.

pypinocheck) if specified avoids to check that the version of scpi_pkg in Python is the one required by **scest** in Stata. When not specified performs the check and stores a macro called to avoid checking it multiple times.

Example: Germany Data

Setup

. use scpi_germany.dta

Prepare data

scdata gdp, dfname("python_scdata") id(country) outcome(gdp) time(year) treatment(status) cointegrated

Estimate Synthetic Control with a simplex constraint . scest, dfname("python_scdata") name(simplex)

Stored results

scest stores the following in e():

Scalars

e (M) number of features e (KM) number of covariates used for adjustment number of donors e (J) e (T1) number of post-treatment periods e (q) size of the constraint on the norm

Macros

name of features e(features)

e(outcomevar) name of outcome variable

e(constant) logical indicating the presence of a common constant

across features

e(cointegrated_data)

logical indicating cointegration type of norm of the weights used in constrained e (p)

estimation

e(dir) direction of the constraint on the norm of the

weights

e (name) name of constraint used in estimation

Matrices e(T0)	number of pre-treatment periods per feature
e (A)	pre-treatment features of the treated unit
e (B)	pre-treatment features of the control units
e (C)	covariates used for adjustment
e (pred)	predicted values of the features of the treated unit
e(res)	residuals e(A) - e(pred)
e (w)	weights of the controls
e(r)	coefficients of the covariates used for adjustment
e (beta)	stacked version of e(w) and e(r)
e(Y_post)	post-treatment outcome of the treated unit
e(Y_post_fit)	estimated post-treatment outcome of the treated unit
e(Y_pre)	pre-treatment outcome of the treated unit
e(Y_pre_fit)	estimate pre-treatment outcome of the treated unit

References

- Abadie, A. 2021. <u>Using synthetic controls: Feasibility, data requirements, and methodological aspects.</u> Journal of Economic Literature, 59(2), 391-425.
- Cattaneo, M. D., Feng, Y., and Titiunik, R. 2021. <u>Prediction Intervals for Synthetic Sontrol Methods</u>. *Journal of the American Statistical Association*, 116(536), 1865-1880.
- Cattaneo, M. D., Feng, Y., Palomba F., and Titiunik, R. 2022. script: Uncertainty Quantification for Synthetic Control Estimators, arXiv:2202.05984.

Authors

Matias D. Cattaneo, Princeton University, Princeton, NJ. cattaneo@princeton.edu. Yingjie Feng, Tsinghua University, Beijing, China. fengyj@sem.tsinghua.edu.cn. Filippo Palomba, Princeton University, Princeton, NJ. fpalomba@princeton.edu. Rocio Titiunik, Princeton University, Princeton, NJ. titiunik@princeton.edu.