Midterm 2 Prep - Code Along

Wendy Moore

2024-11-05

Code	Airline
9E	Endeavor Air Inc.
AA	American Airlines Inc.
AS	Alaska Airlines Inc.
B6	JetBlue Airways
DL	Delta Air Lines Inc.
EV	ExpressJet Airlines Inc.
F9	Frontier Airlines Inc.
FL	AirTran Airways Corporation
HA	Hawaiian Airlines Inc.
MQ	Envoy Air
OO	SkyWest Airlines Inc.
UA	United Air Lines Inc.
US	US Airways Inc.
VX	Virgin America
WN	Southwest Airlines Co.
YV	Mesa Airlines Inc.

Missing values

knitr::kable(apply(nycflights, 2, function(x) sum(is.na(x))))

	Х
year	(
month	(
day	(
dep_time	(
dep_delay	0
arr_time	0
arr_delay	0
carrier	(
tailnum	0
flight	(
origin	(
dest	(
air_time	(
distance	(
hour	(
minute	

```
table(nycflights$carrier)
##
##
    9E AA
              AS
                   B6
                        DL
                           EV
                                 F9
                                     FL
                                           HA
                                                MQ
                                                     00 UA
                                                               US
                                                                   VX
                                                                        WN
                                                                             YV
             66 5376 4751 5142
## 1696 3188
                                  69 307
                                           34 2507
                                                      3 5770 2015 497 1261
                                                                             53
nycflights <- nycflights %>%
 filter(carrier != "00")
nycflights <- nycflights %>%
 mutate_if(is.character, as.factor)
```

EDA - Descriptive Statistics

EDA - Data Visualization

Characteristic	$Newark^1$	JFK^{1}	Laguardia ¹
Arrival Delay (in min)	9.33 (46.09)	5.98 (44.52)	5.70 (43.09)
Carrier			
$9\mathrm{E}$	121 (1.0%)	1,314 (12%)	261 (2.6%)
AA	350(3.0%)	1,388 (13%)	1,450 (14%)
AS	66 (0.6%)	0 (0%)	0 (0%)
B6	625~(5.3%)	4,166 (38%)	585 (5.8%)
DL	445 (3.8%)	2,070 (19%)	2,236~(22%)
EV	4,170(35%)	118 (1.1%)	854 (8.5%)
F9	0 (0%)	0 (0%)	69(0.7%)
FL	0 (0%)	0 (0%)	307(3.1%)
$_{ m HA}$	0 (0%)	34~(0.3%)	0 (0%)
MQ	210 (1.8%)	717(6.6%)	1,580 (16%)
UA	4,559(39%)	440 (4.0%)	771 (7.7%)
US	444 (3.8%)	302(2.8%)	1,269(13%)
VX	149 (1.3%)	348(3.2%)	0 (0%)
WN	$631\ (5.4\%)$	0 (0%)	630 (6.3%)
YV	0 (0%)	0 (0%)	53~(0.5%)
Distance	1,058.45 (726.52)	1,273.92 (895.70)	785.60 (375.05)
Air Time (min)	152.44 (92.58)	178.27 (113.90)	117.99 (49.83)

 $^{^{1}}$ Mean (SD); n (%)

Arrival Delay vs. Airline Carrier


```
ggplot(nycflights, aes(x = arr_delay, fill = factor(month))) +
geom_histogram(binwidth = 50, col = "white") +
facet_wrap(~ month, scales = "free_x")
```



```
ggplot(aes(x = factor(month), y = arr_delay)) +
geom_boxplot()
```


One Proportion

Is the proportion of Southwest Airlines (WN) flights that depart late (>15 min) less than 50%?

```
nycflights %>%
  mutate(late_dep = ifelse(dep_delay > 15, 1, 0)) %>%
  filter(carrier == "WN") %>%
  group_by(late_dep) %>%
  summarise(n = n())
## # A tibble: 2 x 2
##
     late_dep
##
        <dbl> <int>
## 1
            0
                925
            1
                336
one_prop_test <- prop.test(336, (925 + 336), p = 0.5, alternative = "less",
          correct = FALSE)
# Z-statistic
-sqrt(one_prop_test$statistic)
## X-squared
## -16.58661
# P-value
one_prop_test$p.value
```

```
### OR by hand
n <- 1261
phat <- 336 / n
p0 < -0.5
# Check conditions (both counts >= 10)
n*p0
## [1] 630.5
n*(1-p0)
## [1] 630.5
se_null <- sqrt( (p0 * (1 - p0) ) / n)
z_stat <- (phat - p0) / se_null</pre>
z_stat
## [1] -16.58661
p_value <- pnorm(z_stat)</pre>
p_value
## [1] 4.354668e-62
```

One Mean

Across all airlines, is the average arrival minutes late different from 0 (i.e., on time)?

```
# Yikes... super skewed!
hist(nycflights$arr_delay)
```



```
t.test(nycflights$arr_delay)
##
##
   One Sample t-test
##
## data: nycflights$arr_delay
## t = 28.744, df = 32731, p-value < 2.2e-16
## alternative hypothesis: true mean is not equal to 0
## 95 percent confidence interval:
## 6.615797 7.584069
## sample estimates:
## mean of x
## 7.099933
Difference in Proportions
Are the differences in proportions of late (> 15 min) flight departures difference for Southwest compared to
Delta Airlines?
nycflights %>%
  filter(carrier == "WN" | carrier == "DL") %>%
  mutate(late_dep = ifelse(dep_delay > 15, 1, 0)) %>%
  group_by(carrier, late_dep) %>%
  summarise(n())
## # A tibble: 4 x 3
## # Groups: carrier [2]
    carrier late_dep `n()`
##
##
     <fct>
              <dbl> <int>
## 1 DL
                    0 4044
## 2 DL
                     1
                         707
## 3 WN
                     0
                         925
## 4 WN
                     1
                         336
# Uses pooled proportion
diff_prop \leftarrow prop.test(x = c(336, 707), n = c(1261, 4751),
                        correct = FALSE)
sqrt(diff_prop$statistic)
## X-squared
## 9.807407
n1 <- 1261
phat1 <- 336/n1
n2 <- 4751
phat2 <- 707/n2
n1*phat1; n1*(1-phat1)
## [1] 336
## [1] 925
n2*phat2; n2*(1-phat2)
```

[1] 707

```
## [1] 4044
# Pooled
phat_pooled <- (phat1*n1 + phat2*n2)/ (n1 + n2)
n1*phat_pooled; n1*(1-phat_pooled)
## [1] 218.7663
## [1] 1042.234
n2*phat_pooled; n2*(1-phat_pooled)
## [1] 824.2337
## [1] 3926.766
est <- phat1 - phat2
# Not pooled
se_phats \leftarrow sqrt((phat1*(1-phat1))/n1 + (phat2*(1-phat2))/n2)
se_phats
## [1] 0.01347822
# Pooled
se_pooled <- sqrt( (phat_pooled * (1 - phat_pooled)) * (1/n1 + 1/n2) )</pre>
se_pooled
## [1] 0.01199547
# Test statistic not pooled
z_stat <- (est - 0) / se_phats</pre>
z_stat
## [1] 8.728484
# Test statistic pooled
z_pooled <- (est - 0) / se_pooled</pre>
z_pooled
## [1] 9.807407
pval <- pnorm(z_stat)</pre>
pval
## [1] 1
pval_pooled <- pnorm(z_pooled)</pre>
pval_pooled
## [1] 1
Difference in Means (independent)
Is there a difference in the average minutes arriving late for Southwest compared to Delta Airlines?
SW <- nycflights %>%
  filter(carrier == "WN")
DL <- nycflights %>%
filter(carrier == "DL")
```

Skewed but very large sample size
hist(SW\$arr_delay)

Histogram of SW\$arr_delay

Very skewed.... results might not be valid
hist(DL\$arr_delay)

Histogram of DL\$arr_delay


```
# Do the test anyway
t.test(SW$arr_delay, DL$arr_delay)
```

```
##
## Welch Two Sample t-test
##
## data: SW$arr_delay and DL$arr_delay
## t = 5.3448, df = 1838.5, p-value = 1.018e-07
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## 5.049645 10.903694
## sample estimates:
## mean of x mean of y
## 8.8834259 0.9067565
```

Difference in Means (paired)

```
H_0: \mu_d = 0<br/>H_A: \mu_d \neq 0
```

Check conditions: 1. Independence: NOT satisfied

2. Normality:

```
nycflights$arr_dep <- nycflights$arr_delay - nycflights$dep_delay
ggplot(nycflights, aes(x = arr_dep)) +
  geom_histogram()</pre>
```



```
##
##
    Paired t-test
##
## data: nycflights$arr_delay and nycflights$dep_delay
## t = -56.551, df = 32731, p-value < 2.2e-16
\#\# alternative hypothesis: true mean difference is not equal to 0
## 95 percent confidence interval:
## -5.798608 -5.410117
## sample estimates:
## mean difference
         -5.604363
##
t.test(nycflights$arr_dep)
##
   One Sample t-test
##
## data: nycflights$arr_dep
## t = -56.551, df = 32731, p-value < 2.2e-16
\mbox{\tt \#\#} alternative hypothesis: true mean is not equal to 0
## 95 percent confidence interval:
## -5.798608 -5.410117
## sample estimates:
## mean of x
```

```
## -5.604363
```

Chi-squared Test for GoF

```
Are the proportions of flights leaving each of the 3 NYC airports the same?
```

```
gof_test <- chisq.test(table(nycflights$origin))</pre>
gof_test$expected
##
        EWR
                  JFK
                           LGA
## 10910.67 10910.67 10910.67
gof_test
##
##
  Chi-squared test for given probabilities
## data: table(nycflights$origin)
## X-squared = 133.25, df = 2, p-value < 2.2e-16
Chi-squared Test for Independence
H_0: dep delay (categorized) is independent from origin airport
H_A: dep delay (categorized) is NOT independent from origin airport
nycflights <- nycflights %>%
 mutate(dep_delay_cat = factor(case_when(dep_delay < 0 ~ "Early",</pre>
                                     dep_delay < 15 ~ "On Time",</pre>
                                     TRUE ~ "Late"))) %>%
  mutate(dep_delay_cat = forcats::fct_relevel(dep_delay_cat,
                                                c("Early", "On Time", "Late")))
tab <- table(nycflights$origin, nycflights$dep_delay_cat)</pre>
tab
##
##
         Early On Time Late
##
     EWR 5892
                  2858 3020
     JFK 6122
                   2458 2317
##
     LGA 6293
                   1805 1967
##
chisq.test(tab)$expected
##
##
            Early On Time
     EWR 6582.958 2560.619 2626.423
##
##
     JFK 6094.690 2370.693 2431.617
     LGA 5629.352 2189.688 2245.960
##
chisq.test(tab)
##
   Pearson's Chi-squared test
##
##
## X-squared = 355.25, df = 4, p-value < 2.2e-16
```