Machine Learning

Università Roma Tre Dipartimento di Ingegneria Anno Accademico 2021 - 2022

Classificazione: **Overfitting e Regularization**

Sommario

- Introduzione
- Overfitting nella Classificazione
- Regolarizzazione
- L2 Penalty
- L1 Penalty (sparse solutions)

Metriche di Qualità

[quality metric]

• Una metrica che si usa misura la frazione delle previsioni errate fornite:

$$Errore = \frac{\#previsioni_errate}{\#esempi}$$

miglior valore possibile: 0.0

Un'altra metrica possibile misura la frazione delle previsioni corrette:

$$\label{eq:accuracy} \begin{aligned} \text{Accuracy} &= \frac{\# previsioni_corrette}{\# esempi} \end{aligned}$$

miglior valore possibile: 1.0

Apprendimento della Decision Boundary

j	Ф ј	w j		
0	1	0.23		
1	x{1}	1.12		
2	x{2}	-1.07		

Decision Boundary: $0.23 + 1.12 \times [1] - 1.07 \times [2] = 0$

Apprendimento della Decision Boundary

j	Ф ј	w j	
0	1	1.68	
1	x{1}	1.39	
2	x{2}	-0.59	
3	x{1}^2	-0.17	
4	x{2}^2	-0.96	

Data Points dell'esempio

Decision Boundary:

 $1.68 + 1.39 \times [1] - 0.59 \times [2] - 0.17 \times [1]^2 - 0.96 \times [2]^2 = 0$

Apprendimento della Decision Boundary

j	Ф j	w j		
0	1	21.6		
1	x{1}	5.3		
2	x{2}	-42.7		
3	x{1}^2	-15.9		
4	x{2}^2	-48.6		
5	x{1}^3	-11.0		
6	x{2}^3	67.0		
11	x[1]^6	0.8		
12	x[2]^6	-8.6		

·

I valori assoluti di vari coefficienti wj sono aumentati

Apprendimento della Decision Boundary

j	Ф ј	w j		
0	1	8.7		
1	x{1}	5.1		
2	x{2}	78.7		
11	x{1}^6	-7.5		
12	x{2}^6	3803		
13	x{1}^7	21.1		
14	x{2}^7	-2406		
39	x[1]^20	-2*10^-8		
40	x[2]^20	0.03		

Data Points dell'esempio

Decision Boundary (overfitting ancora più evidente)

I valori assoluti di vari coefficienti wj sono aumentati ancora di più

Andamento Errori e Bias-Variance Trade-off

L'andamento del training error e del true error per la classification è in genere il seguente:

Dobbiamo come al solito considerare il trade-off tra bias e varianza.

Regularization nella Classificazione

L'idea è quella di limitare il valore assoluto dei coefficienti wi definendo come segue la funzione di qualità totale (da massimizzare nella fase di training):

Qualità_totale = misura del "fit" - misura grandezza coefficienti

- Per misura del "fit" intendiamo una funzione come la MLE.
- La misura dei coefficienti possiamo definirla in vari modi.

Misura dei Coefficienti

Somma dei valori:

$$w_0 + w_1 + w_2 + \cdots + w_D$$

Somma dei valori assoluti (L1 norm):

$$|w_0| + |w_1| + |w_2| + \dots + |w_D| = \sum_{j=0}^{D} |w_j| \triangleq ||\mathbf{w}||_1$$

Somma dei quadrati (quadrato della L2 norm):

$$w_0^2 + w_1^2 + w_2^2 + \dots + w_D^2 = \sum_{j=0}^D w_j^2 \triangleq \|\mathbf{w}\|_2^2$$

Funzione di Qualità nel caso L2 Penalty

- Questo è il caso in cui usiamo la somma dei quadrati (L2 Regularization).
- La funzione che rappresenta la qualità totale nel caso della logistic regression (L2 regularized logistic regression) è la seguente:

Qualità_totale_{L2} =
$$\ln \mathcal{L}(\mathbf{w}) - \lambda \cdot ||\mathbf{w}||_2^2$$

dove il parametro λ (tuning parameter) serve per bilanciare i due termini.

Funzione di Qualità nel caso L2 Penalty

Vediamo cosa accade a fronte di diversi valori del parametro λ :

• Se $\lambda = 0$:

ci riconduciamo alla vecchia soluzione, ossia massimizzazione del likelihood(\mathbf{w}) $\rightarrow \hat{\mathbf{w}}_{\text{MLE}}$

 \bigcirc Se $\lambda \to \infty$:

per soluzioni dove $\hat{\mathbf{w}} \neq \mathbf{0}$, il costo totale $\rightarrow -\infty$

l'unica soluzione per massimizzare la qualità è: $\hat{\mathbf{w}} = \mathbf{0}$

 \bigcirc Se $0 < \lambda < \infty$:

$$0 < \|\hat{\mathbf{w}}\|_{2}^{2} < \|\hat{\mathbf{w}}_{\text{MLE}}\|_{2}^{2}$$

Scelta del Parametro di Tuning λ

Come già visto nel caso della Regressione, per la determinazione del parametro λ non usiamo mai il Test Set. Ci avvaliamo invece:

- del Validation Set, se abbiamo a disposizione un numero sufficientemente elevato di osservazioni;
- della Cross-Validation, se abbiamo a disposizione un numero limitato di osservazioni.

Bias-Variance Tradeoff

Il parametro λ controlla la complessità del modello:

 \bigcirc Parametro λ elevato:

high bias, low variance (e.g., $\hat{\mathbf{w}} = 0$ per $\lambda = \infty$)

 \bigcirc Parametro λ piccolo:

low bias, high variance (e.g., maximum likelihood (MLE) fit per polinomi di grado elevato per $\lambda = 0$)

L2 Regularization Esempio

Vediamo l'effetto della L2 regularization nel caso visto in precedenza (caso con 20 features):

Regularization:	λ = 0	λ = 0.00001	λ = 0.001	λ = 1	λ = 10
Range coefficienti:	-3170 to 3803	-8.04 to 12.14	-0.70 to 1.25	-0.13 to 0.57	-0.05 to 0.22
Decision boundary:	7 1 1 2 3 2 1 1 2 3 2 1 1 2 3 2 1 1 2 3 2 1 1 2 3 2 1 1 2 3 2 1 1 2 3 2 1 1 2 3 2 1 1 2 3 2 1 1 2 3 2 1 1 2 3 2 1 1 1 2 3 2 1 1 1 1	7 1 2 2 2 2 2 3 2 3 2 3 3 3 3 3 3 3 3 3 3	2 2 2 2 3 1 1 -1 -2 -3 -5 -4 -3 -2 -1 0 1 2 3	1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

Come è noto, nell'algoritmo Gradient Ascent dobbiamo aggiornare il vettore dei pesi w come segue:

$$\mathbf{w}^{(t+1)} \leftarrow \mathbf{w}^{(t)} + \alpha \cdot \nabla \text{Qualità_totale}_{L_2}(\mathbf{w}^{(t)})$$

Dobbiamo dunque calcolare il gradiente della funzione di qualità totale (L2 regularized log-likelihood):

Qualità_totale_{L2} =
$$\ln \mathcal{L}(\mathbf{w}) - \lambda \cdot ||\mathbf{w}||_2^2$$

Nell'algoritmo l'aggiornamento dei pesi possiamo farlo per ogni componente w_j:

La derivata parziale della funzione di qualità totale rispetto al termine generico w_i è la seguente:

$$\frac{\partial \mathrm{Qualit\grave{a}_totale}_{L_2}(\mathbf{w}^{(t)})}{\partial w_j} = \mathrm{derivata_parziale}[j] - 2\lambda w_j^{(t)}$$

$$/$$
Componente MLE Componente L2 Penalty

Questa è la versione dell'algoritmo:

```
\mathbf{w}^{(1)} = 0 \text{ (oppure lo inizializziamo in modo casuale)}
t = 1
\mathbf{while} \ \|\nabla \mathbf{Qualità\_totale}_{L_2}(\mathbf{w}^{(t)})\|_2 > \epsilon
\mathbf{for} \ \ j = 0, 1, ..., D
\mathbf{derivata\_parziale}[j] = \sum_{i=1}^{N} \phi_j(\mathbf{x}_i) \{I[y_i = +1] - P(y = +1 | \mathbf{x}_i, \mathbf{w}^{(t)})\}
w_j^{(t+1)} \leftarrow w_j^{(t)} + \alpha * (\mathbf{derivata\_parziale}[j] - 2\lambda w_j^{(t)})
t \leftarrow t + 1
```

Funzione di Qualità nel caso L1 Penalty

- Questo è il caso in cui usiamo la somma dei valori assoluti per la penalty (L1 Regularization). E' in genere chiamata "sparse logistic regression".
- La funzione che rappresenta la qualità totale nel caso della logistic regression (L1 regularized logistic regression) è la seguente:

Qualità_totale_{L₁} = ln
$$\mathcal{L}(\mathbf{w}) - \lambda \cdot ||\mathbf{w}||_1$$

dove il parametro λ (tuning parameter) serve per bilanciare i due termini.

Funzione di Qualità nel caso L1 Penalty

Anche in questo caso vediamo cosa accade a fronte di diversi valori del parametro λ :

• Se $\lambda = 0$:

ci riconduciamo alla soluzione standard, ossia massimizzazione del likelihood(\mathbf{w}) \rightarrow $\hat{\mathbf{w}}_{\text{MLE}}$

 \bigcirc Se $\lambda \to \infty$:

per soluzioni dove $\hat{\mathbf{w}} \neq \mathbf{0}$, il costo totale $\rightarrow -\infty$

l'unica soluzione per massimizzare la qualità è: $\hat{\mathbf{w}} = \mathbf{0}$

• Se $0 < \lambda < \infty$:

si va verso soluzioni "sparse", in cui vari wj sono uguali a zero.

Pesi nella regolarizzazione

Nelle figure seguenti riportiamo un esempio di andamento dei pesi w_i al variare di λ per i due tipi di penalty:

Riferimenti

- Watt, J., Borhani, R., Katsaggelos, A.K. Machine Learning Refined, 2nd edition, Cambridge University Press, 2020.
- James, G., Witten, D., Hastie, T., Tibishirani, R. An Introduction to Statistical Learning, Springer, 2013.
- Ross, S.M. Probabilità e Statistica per l'Ingegneria e le Scienze, 3a edizione, Apogeo, 2015.
- Machine Learning: Classification, University of Washington Coursera, 2017.
- Flach, P. Machine Learning The Art and Science of Algorithms that Make Sense of Data, Cambridge University Press, 2012.