# Vektorji in matrike

1.1 Vektor je urejena n-terica stevil, ki jo obicajno zapisemo kot stolpec

$$\vec{x} = \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix}$$

**1.2** Produkt *vektorja*  $\vec{x}$  s skalarjem  $\alpha$  je vektor

$$\alpha \vec{x} = \alpha \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix} = \begin{bmatrix} \alpha x_1 \\ \vdots \\ \alpha x_n \end{bmatrix}$$

**1.3** Vsota *vektorjev*  $\vec{x}$  in  $\vec{y}$  je vektor

$$\vec{x} + \vec{y} = \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix} + \begin{bmatrix} y_1 \\ \vdots \\ y_n \end{bmatrix} = \begin{bmatrix} x_1 + y_1 \\ \vdots \\ x_n + y_n \end{bmatrix}$$

**1.4** Nicelni vektor  $\vec{0}$  je tisti vektor, za katerega je  $\vec{a} + \vec{0} = \vec{0} + \vec{a} = \vec{a}$  za vsak vektor  $\vec{a}$ . Vse komponente nicelnega vektorja so enake 0. Vsakemu vektorju  $\vec{a}$  priprada nasprotni vektor  $-\vec{a}$ , tako da je  $\vec{a} + (-\vec{a}) = \vec{0}$  Razlika vektorjev  $\vec{a}$  in  $\vec{b}$  je vsota  $\vec{a}+(-\vec{b})$  in jo navadno zapisemo kot  $\vec{a} - \vec{b}$ .

#### Lastnosti vektorske vsote

- $\vec{a} + \vec{b} = \vec{b} + \vec{a}$  (komutativnost)
- $\vec{a} + (\vec{b} + \vec{c}) = (\vec{a} + \vec{b}) + \vec{c}$  (asociativnost)
- $a(\vec{a} + \vec{b}) = a\vec{a} + a\vec{b}$  (distributivnost)
- **1.5** Linearna kombinacija vektorjev  $\vec{x}$  in  $\vec{y}$  je vsota

$$a\vec{x} + b\vec{u}$$

1.6 Skalarni produkt vektorjev

$$\begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix} \text{ in } \begin{bmatrix} y_1 \\ \vdots \\ y_n \end{bmatrix} \text{ je stevilo}$$

$$\vec{x} \cdot \vec{y} = x_1 y_1 + x_2 y_2 + \dots + x_n y_n$$

#### Lastnosti skalarnega produkta

- $\vec{x} \cdot \vec{y} = \vec{y} \cdot \vec{x}$  (komutativnost)
- $\vec{x} \cdot (\vec{y} + \vec{z}) = \vec{x} \cdot \vec{y} + \vec{x} \cdot \vec{z}$  (aditivnost)
- $\vec{x} \cdot (a\vec{y}) = a(\vec{x} \cdot \vec{y}) = (a\vec{x}) \cdot \vec{y}$  (homogenost)
- $\forall \vec{x} \ velja \ \vec{x} \cdot \vec{x} > 0$
- 1.7 Dolzina vektorja  $\vec{x}$  je

$$||\vec{x}|| = \sqrt{\vec{x} \cdot \vec{x}}$$

- 1.8 Enotski vektor je vektor z dolzino 1.
- **1.9** Za poljubna vektorja  $\vec{u}, \vec{v} \in \mathbb{R}^n$  velja:

$$|\vec{u} \cdot \vec{v}| \le ||\vec{u}||||\vec{v}||.$$

**1.10** Za poljubna vektorja  $\vec{u}, \vec{v} \in \mathbb{R}^n$ 

$$||\vec{u} + \vec{v}|| \le ||\vec{u}|| + ||\vec{v}||.$$

**1.11** Vektorja  $\vec{x}$  in  $\vec{y}$  sta ortogonalna (ali pravokotna) natakno takrat, kadar je

$$\vec{x} \cdot \vec{y} = 0$$

**1.12** Ce je  $\phi$  kot med vektorjema  $\vec{x}$  in  $\vec{y}$ , potem je

$$\frac{\vec{x} \cdot \vec{y}}{||\vec{x}||||\vec{y}||} = \cos \phi$$

1.13 Vektorski produkt:

$$\vec{a} \times \vec{b} = (a_2b_3 - a_3b_2)\mathbf{i} + (a_3b_1 - a_1b_3)\mathbf{j} + (a_1b_2 - a_2b_1)\mathbf{k}$$

## Lastnosti vektorskega produkta

- $\vec{a} \times (\vec{b} + \vec{c}) = \vec{a} \times \vec{b} + \vec{a} \times \vec{c}$  (aditivnost)
- $\vec{b} \times \vec{a} = -\vec{a} \times \vec{b}$  (!komutativnost)
- $(a\vec{a}) \times \vec{b} = a(\vec{a} \times \vec{b}) = \vec{a} \times (a\vec{b})$  (ho-
- $\vec{a} \times \vec{a} = 0$
- $\vec{a} \times \vec{b}$  je  $\perp$  na vektorja  $\vec{a}$  in  $\vec{b}$
- $||\vec{a} \times \vec{b}|| = ||\vec{a}|| ||\vec{b}|| \sin \phi$
- Dolzina vektorskega produkta ploscina paralelograma, katerega vektorja oklepata

**1.14** Mesani produkt $(\vec{a}, \vec{b}, \vec{c})$  vektorjev  $\vec{a}, \vec{b}$  in  $\vec{c}$  v  $R^3$  je skalarni produkt vektorjev  $\vec{a} \times \vec{b}$  in  $\vec{c}$ :

$$(\vec{a}, \vec{b}, \vec{c}) = (\vec{a} \times \vec{b}) \cdot \vec{c}$$

### Lastnosti mesanega produkta

- $(\vec{a}, \vec{b}, \vec{c}) = (\vec{b}, \vec{c}, \vec{a}) = (\vec{c}, \vec{a}, \vec{b})$
- $(x\vec{a}, \vec{b}, \vec{c}) = x(\vec{a}, \vec{b}, \vec{c})$  (homogenost)
- $(\vec{a}, \vec{u} + \vec{v}, \vec{c}) = (\vec{a}, \vec{u}, \vec{c}) + (\vec{a}, \vec{v}, \vec{c})$
- Absolutna vrednost mesanega produkta  $(\vec{a}, \vec{b}, \vec{c})$  je enaka prostornini paralepipeda

#### Razdalje

Razdalja od tocke P do ravnine, v kateri lezi tocka A:

$$\cos \phi = \frac{\vec{n} \cdot (\vec{r_P} - \vec{r_A})}{||\vec{n}||||\vec{r_P} - \vec{r_A}||} \text{ oz.}$$
$$d = |\frac{\vec{n}}{||\vec{n}||} (\vec{r_P} - \vec{r_A})|$$

Razdalja od tocke P do premice, katera gre skozi tocko A:

$$d = \frac{||\vec{e} \times (\vec{r_P} - \vec{r_A})||}{||\vec{e}||}$$

**1.15** Matrika dimenzije  $m \times n$  je tabela  $m \times n$  stevil, urejenih v m vrstic in n stolpcev: | reda  $m \times n$  je matrika reda  $n \times m$ 

$$A^{m \times n} = \begin{bmatrix} x_{11} & x_{12} & x_{13} & \dots & x_{1n} \\ x_{21} & x_{22} & x_{23} & \dots & x_{2n} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ x_{m1} & x_{m2} & x_{m3} & \dots & x_{mn} \end{bmatrix}$$

1.16 Matrika, katere elementi so enaki nic povsod zunaj glavne diagonale, se imenuje diagonalna matrika. Za diagonalno matriko je  $a_{ij} = 0$ , kadarkoli velja  $i \neq j$ 

**1.17** Matrika  $A^{n \times n}$  je spodnjetrikotna, kadar so vsi elementi nad glavno diagonalo enaki 0:

$$a_{ij} = 0 \ kadar \ je \ i < j$$

 $\mathbf{1.18}$  Matrika $A^{n\times n}$ je zgornjetrikotna, kadar so vsi elementi pod glavno diagonalo enaki 0:

$$a_{ij} = 0 \ kadar \ je \ i > j$$

1.19 Matrika je trikotna, ce je zgornjetrikotna ali spodnjetrikotna.

**1.20** Dve matriki A in B sta enaki natanko takrat, kadar imata enaki dimenziji in kadar so na istih mestih v obeh matrikah enaki elementi:

$$\begin{array}{l} A^{m\times n}=B^{p\times q} \implies m=p \text{ in } n=q,\\ a_{ij}=b_{ij} \ za \ vsak \ i=1,...,m \ \text{in } j=1,...,n \end{array}$$

1.21 Produkt matrike s skalarjem dobimo tako, da vsak element matrike pomnozimo s skalarjem

$$aA^{m \times n} = \begin{bmatrix} ax_{11} & ax_{12} & ax_{13} & \dots & ax_{1n} \\ ax_{21} & ax_{22} & ax_{23} & \dots & ax_{2n} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ ax_{m1} & ax_{m2} & ax_{m3} & \dots & ax_{mn} \end{bmatrix}$$

1.22 Vsoto dveh matrik enake dimenzije dobimo tako, da sestejemo istolezne elemente obeh matrik:

$$A + B = \begin{bmatrix} a_{11} + b_{11} & ax_{12} + b_{12} & \dots & ax_{1n} + b_{1n} \\ a_{21} + b_{21} & ax_{22} + b_{22} & \dots & ax_{2n} + b_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} + b_{m1} & ax_{m2} + b_{m3} & \dots & ax_{mn} + b_{mn} \end{bmatrix}$$

### Osnovne matricne operacije

- A + B = B + A (komutativnost)
- (A + B) + C = A + (B + C) (asocia-
- a(A+B) = aA + aB (mnozenje s skalar-
- A + (-A) = 0
- x(yA) = (xy)A in  $1 \cdot A = A$

1.23 Transponirana matrika k matriki A

$$A = \begin{bmatrix} x_{11} & x_{12} & \dots & x_{1n} \\ x_{21} & x_{22} & \dots & x_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ x_{m1} & x_{m2} & \dots & x_{mn} \end{bmatrix}$$

$$A^{T} = \begin{bmatrix} x_{11} & x_{21} & \dots & x_{m1} \\ x_{12} & x_{22} & \dots & x_{m2} \\ \vdots & \vdots & \ddots & \vdots \\ x_{1n} & x_{2n} & \dots & x_{mn} \end{bmatrix}$$

### Lastnosti transponiranja matrik

- $\bullet \ (A+B)^T = A^T + B^T$
- $\bullet \ (xA)^T = xA^T$
- $\bullet \ (A^T)^T = A$
- 1.24 Produkt matrike A in vektorja  $\vec{x}$  je linearna kombinacija stolpcev matrike A, utezi linearne kombinacije so komponente vektorja  $\vec{x}$ :

$$A\vec{x} = \begin{bmatrix} \vec{u} & \vec{v} & \vec{w} \end{bmatrix} \cdot \begin{bmatrix} a \\ b \\ c \end{bmatrix} = a\vec{u} + b\vec{v} + c\vec{w}$$

1.25 Produkt vrstice  $\vec{x}$  z matriko A je linearna kombinacija vrstic matrike A, koeficienti linearne kombinacije so komponente vrstice  $\vec{y}$ :

$$\vec{y} \cdot A = \begin{bmatrix} y_1, y_2, y_3 \end{bmatrix} \cdot \begin{bmatrix} \vec{u} \\ \vec{v} \\ \vec{w} \end{bmatrix} = \begin{bmatrix} y_1 \vec{u} \\ y_2 \vec{v} \\ y_3 \vec{w} \end{bmatrix}$$

1.26 Produkt matrik A in B je matrika, katere stolpci so zaporedoma produkti matrike A s stolpci matrike B:

$$AB = A [b_1, b_2, \dots, b_n] = [Ab_1, Ab_2, \dots, Ab_n]$$

1.27 Element  $c_{ij}$  v i-ti vrstici in j-tem stolpcu produkta C = AB je skalarni produkt i-te vrstice A in j-tega stolpca matrike B

$$c_{ij} = \sum_{k=1}^{n} a_{ik} b_{kj}$$

1.28 Produkt matrik A in B je matrika, katere vrstice so zaporedoma produkti vrstic matrike A z matriko B:

$$\begin{bmatrix} i - ta \ vrstica \ A \end{bmatrix} B = \begin{bmatrix} i - ta \ vrstica \ AB \end{bmatrix}$$

## Lastnosti matricnega produkta

- $AB \neq BA$  (!komutativnost)
- (xA)B = x(AB) = A(xB) (homogenost)
- C(A+B) = CA + CB (distributivnost)
- A(BC) = (AB)C (asociativnost)
- $(AB)^T = B^T A^T$

**1.29** Vrstice matrike A z n stolpci naj bodo  $a^1, \ldots, a^n$ , stolpci matrike B z n vrsticami pa  $a_1, \ldots, b_n$ . Potem je

$$AB = a^1b_1 + \dots + a^nb_n$$

**1.30** Ce delitev na bloke v matriki A ustreza delitvi v matirki B, potem lahko matriki pomnozimo blocno:

$$\begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix} \begin{bmatrix} B_{11} & B_{12} \\ B_{21} & B_{22} \end{bmatrix} = \begin{bmatrix} A_{11}B_{11} + A_{12}B_{21} & A_{11}B_{12} + A_{12}B_{22} \\ A_{21}B_{11} + A_{22}B_{21} & A_{21}B_{12} + A_{22}B_{22} \end{bmatrix}$$

**1.31** Kvadratna matrika  $I_k$  reda  $k \times k$ , ki ima vse diagonalne elemente enake 1, vse ostale elemente pa 0 ima lastnost, da za vsako matriko A reda  $m \times n$  velja  $AI_n = A$  in  $I_m A = A$ . Matrika  $I_k$  se imenuje enotska ali identicna matirka.

$$I_k = \begin{bmatrix} 1 & 0 & \dots & 0 \\ 0 & 1 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & 1 \end{bmatrix}$$

# 2 Sistemi linearnih enacb

**2.1** Kvadratna matrika A je obrnljiva, ce obstaja taka matrika  $A^{-1}$ , da je

$$AA^{-1} = I \text{ in } A^{-1}A = I$$

Matrika  $A^{-1}$  (ce obstaja) se imenuje matriki A inverzna matrika. Matrika, ki ni obrnljiva, je singularna.

- 2.2 Kvadratna matirka reda n je obrnljiva natanko tedaj, ko pri gaussovi eliminaciji dobimo n pivotov.
- 2.3 Vsaka obrnljiva matrika ima eno samo inverzno matriko.
- ${\bf 2.4}$ Inverzna matrika inverzne matrike  $A^{-1}$ je matrika A

$$(A^{-1})^{-1} = A$$

- ${\bf 2.5}$ Ce je matrika A obrnljiva, potem ima sistem enac<br/>b $A\vec{x}=\vec{b}$ edino resitev $\vec{x}=A^{-1}\vec{b}$
- **2.6** Ce obstaja nenicelna resitev  $\vec{x}$  enache  $A\vec{x} = \vec{0}$ , matrika A ni obrnljiva(je singularna).
- **2.7** Ce sta matirki A in B istega reda obrnljivi, je obrnljiv tudi produkt  $A \cdot B$  in

$$(A \cdot B)^{-1} = B^{-1} \cdot A^{-1}$$

Pozor! Pravilo

$$(AB)^p = A^p B^p$$

velja le v primeru, ko matriki A in B komutirata, torej AB = BA.

**2.8** Inverz transponirane matrike je transponirana matrika inverza

$$(A^T)^{-1} = (A^{-1})^T$$

**2.9** Inverz diagonalne matrike z diagonalnimi elementi  $a_{ii}$  je diagonalna matrika, ki ima na diagonali elemente  $a_{ii}^{-1}$ 

$$\begin{bmatrix} a_{11} & 0 \\ & \ddots & \\ 0 & a_{nn} \end{bmatrix} = \begin{bmatrix} a_{11}^{-1} & 0 \\ & \ddots & \\ 0 & a_{nn}^{-1} \end{bmatrix}$$

**2.10** Za izracun inverza matrike A, uporabimo gausovo eliminacijo nad matriko  $\lceil A | I \rceil$ 

$$\left[A|I\right] = \left[I|A^{-1}\right]$$

- **2.11** Matrika A je simetricna  $\Leftrightarrow A^T = A$ . Za elemente  $a_{ij}$  simetricne matirke velja  $a_{ij} = a_{ji}$ .
- **2.12** Ce je matrika A simetricna in obrnljiva, je tudi  $A^{-1}$  simetricna.
- ${\bf 2.13}$ Ce je R poljubna (lahko tudi pravokotna) matrika, sta  $R^TR$  in  $RR^T$  simetricni matriki.

# 3 Vektorski prostori

- **3.1** Realni vektorski prostor V je mnozica "vektorjev" skupaj z pravili za
  - sestevanje vektorjev,
  - mnozenje vektorja z realnim stevilom (skalarjem)

Ce sta  $\vec{x}$  in  $\vec{y}$  poljubna vektorja v V, morajo biti v V tudi

- vsota  $\vec{x} + \vec{y}$  in
- produkti  $\alpha \vec{x}$  za vse  $\alpha \in R$

V vektorskem prostoru V morajo biti tudi VSE linearne kombinacije  $\alpha \vec{x} + \beta \vec{y}$ 

Pravila za operacije v vektorskih prostorih

Operaciji sestevanja vektorjev in mnozenja vektorja s skalarjem v vektorskem prostoru morajo zadoscati naslednjim pravilom:

- $\vec{x} + \vec{y} = \vec{y} + \vec{x}$  (komutativnost)
- $\vec{x} + (\vec{y} + \vec{z}) = (\vec{x} + \vec{y}) + \vec{z}$  (asociativnost)
- obstaja en sam nenicelni vektor  $\vec{0}$ , da velja  $\vec{x} + \vec{0} = \vec{x}$
- za vsak  $\vec{x}$  obstaja natanko en  $-\vec{x}$ , da je  $\vec{x} + (-\vec{x}) = \vec{0}$
- $1 \cdot \vec{x} = \vec{x}$
- $(\alpha\beta)\vec{x} = \alpha(\beta\vec{x})$
- $\alpha(\vec{x} + \vec{y}) = \alpha \vec{x} + \alpha \vec{y}$  (distributivnost)
- $(\alpha + \beta)\vec{x} = \alpha\vec{x} + \beta\vec{x}$
- **3.2** Podmnozica U vektorskega prostora V je *vektorski podprostor*, ce je za vsak par vektorjev  $\vec{x}$  in  $\vec{y}$  iz U in vsako realno stevilo  $\alpha$  tudi
  - $\vec{x} + \vec{y} \in U$  in
  - $\alpha \vec{x} \in U$ .
- **3.3** Mnozica vektorjev U je vektorski podprostor natanko tedaj, ko je vsaka linearna kombinacija vektorjev iz U tudi v U.