

Algorithms and Data Structures (CSci 115)

California State University Fresno
College of Science and Mathematics
Department of Computer Science
H. Cecotti

Learning outcomes

Fibonacci heaps

- **→** Definitions
- **≻**Methods
 - Creation
 - ExtractMin
 - DecreaseKey

- Fibonacci heap (Fredman & Tarjan, 1987)
- Data structure
 - > For priority queue operations
 - ➤ With a dual purpose
 - Supports a set of operations that constitutes a "mergeable heap"
 - Several Fibonacci-heap operations run in constant amortized time
 - → It is well suited for applications that invoke these operations frequently.
 - ➤ Desirable when the number of Extract-min and Delete operations is **small** relative to the number of other operations performed.
- A collection of trees satisfying the minimum-heap property
 - The key of a node is greater than or equal to the key of its parent

Main functions

- Another efficient data structure
 - ➤ Not trivial to implement
 - Like B-Trees, Red Black Trees ...
- 2 key operations
 - **≻**ExtractMin
 - ➤ DecreaseKey

- Collection of rooted trees that are min-heap ordered
- Node
 - Pointer to parent (p)
 - > Pointer to any of the children (child)
 - o Children are linked together: circular **double-chained list**: child list
 - o Each child has 2 pointers: Left and Right
 - Special case: y is an only child → y.left == y.right == y
 - > Degree: Number of children in the child list
 - > Mark
 - o Tells if a node x lost a child since the last time x was made the child of another node
 - New created nodes: unmarked
 - Unmarked when it is made the child of another node
- Double chained list:
 - ➤ Insert in the list: O(1)
 - Concatenate 2 lists: O(1)
- Roots of all the trees in a Fibonacci heap = double chained list

Maximum degree

- ➤D(n) on the maximum degree of any node in an n-node Fibonacci heap
- t(H) = # trees in the root list of H.
- m(H) = # marked nodes in H.
- Potential function

$$\triangleright \Phi(H) = t(H) + 2m(H)$$

Binomial heap

- ➤ It is a binary heap with quick merging of 2 heaps
- ➤ With these properties
 - 1. Each node has a key
 - 2. Each binomial tree obeys the min-heap property
 - 3. For any non-negative int k, there is **at most** 1 binomial tree whose root is of degree k

Example

- 5 min-heap-ordered trees and 14 nodes
- dashed line = root list
- minimum node of the heap = node containing the key 3.
- Black nodes are marked.
- **Potential** (Φ) of this particular Fibonacci heap is 5+2*3=11.

Representation showing pointers:

- Parent (up arrows)
- Child (down arrows)
- Left and Right children (sideways arrows).

Rationale

- Insert a node
 - ➤ Adding it to the root list: O(1) ©
 - ➤ Start with an empty Fibonacci heap (H), insert k nodes → a root list of k nodes ⊙
- The trade-off:
 - EXTRACT-MIN operation on H after removing the node that H.min points to
 - > Look through each of the remaining k-1 nodes in the root list to find the new minimum node
- As long as we have to go through the **entire** root list during the Extract-Min operation
 - > -> consolidate nodes into min-heap-ordered trees
 - ➤ Why? to reduce the size of the root list.
- After Extract-Min operation
 - > each node in the root list has a degree that is unique within the root list
 - \circ \rightarrow a root list of size **at most** D(n)+ 1. (max degree + 1)

Methods

- Create a new heap
 - $\rightarrow \rightarrow O(1)$
 - > Returns the Fibonacci heap object H where
 - H.*n=*0
 - H.min=NIL
 - no trees in H
 - Φ(H)=0
 - Because t(H)=0 and m(H)=0

Methods

- Insert a node x in H (O(1))
 - ➤ Create a new singleton tree.
 - ➤ Add to left of min pointer.
 - ➤ Update min pointer.
- Pseudo-code:

```
FIB-HEAP-INSERT (H, x)

1  x.degree = 0

2  x.p = NIL

3  x.child = NIL

4  x.mark = FALSE

5  if H.min == NIL

6  create a root list for H containing just x

7  H.min = x

8  else insert x into H's root list

9  if x.key < H.min.key

10  H.min = x

11  H.n = H.n + 1
```

H.min

W 17 24

18 52 38 30 26 46

39 41 35

Insert 21

After

Find the minimum

- Find the minimum node
 - ➤ Given **directly** by H.min
 - Direct in O(1)
 - ➤ Potential of H does not change →
 - Amortized cost of find minimum node = O(1)

Union

Union

- ➤ Concatenate 2 Fibonacci heaps (O(1))
- ➤ Change in potential

```
○ Φ(H)=0
```

➤ Pseudo-code:

```
FIB-HEAP-UNION(H_1, H_2)

1 H = \text{Make-Fib-Heap}()

2 H.min = H_1.min

3 concatenate the root list of H_2 with the root list of H_3

4 if (H_1.min == \text{NIL}) or (H_2.min \neq \text{NIL} and H_2.min.key < H_1.min.key)

5 H.min = H_2.min

6 H.n = H_1.n + H_2.n

7 return H_3
```

Union - example

Extract the minimum node

Main idea

- ➤ Making a root out of each of the minimum node's children + removing the minimum node from the root list.
- Consolidate the root list by linking roots of equal degree
 - Until at most 1 root remains of each degree.

Pseudo-code:

```
FIB-HEAP-EXTRACT-MIN(H)

1 z = H.min

2 if z \neq NIL

3 for each child x of z

4 add x to the root list of H

5 x.p = NIL

6 remove z from the root list of H

7 if z == z.right

8 H.min = NIL

9 else H.min = z.right

10 CONSOLIDATE(H)

11 H.n = H.n - 1

12 return z
```

Consolidation

Consolidating the root list

```
    Repeat {

            Find 2 roots x and y in the root list with the same degree
            let x.key y.key

    Link y to x:

            Remove y from the root list
            Make y a child of x by calling the FIB-HEAP-LINK procedure.
            Increments the attribute x.degree
            Clears the mark on y
```

➤ Until (every root in the root list has a **distinct** degree value)

Consolidation

Pseudo-code

- ➤ Allocate and initialize the array A by making each entry NIL
- ➤ Main **for** loop
 - Processes each root w in the root list.
 - As we link roots together:
 - w may be linked to some other node and no longer be a root!
 - Yet, w is always in a tree rooted at some node x
 - that may or may not be w itself!
 - as we want at most 1 root with each degree
 - we look in A
 - If (it contains a root y with the same degree as x)
 - then we link the roots x and y but guaranteeing that x remains a root after linking.
 - → we link y to x after first exchanging the pointers to the 2 roots if y.key < x.key.
 - After we link y to x, x.degree+=1
 - o ... so we continue this process linking x and another root whose degree equals x's new degree
- > until no other root that was processed has the same degree as x

Consolidation

- Pseudo code
 - ➤ While loop invariant
 - o d=x.degree
 - → d=x.degree=y.degree
 - Link x and y
 - Increment x.degree
 - No increment for y.degree
 - **≻**While
 - There is a root with the same degree as x

```
Consolidate(H)
    let A[0...D(H.n)] be a new array
    for i = 0 to D(H.n)
         A[i] = NIL
    for each node w in the root list of H
         x = w
        d = x.degree
        while A[d] \neq NIL
                              // another node with the same degree as x
             v = A[d]
             if x.key > y.key
                 exchange x with y
10
             FIB-HEAP-LINK (H, y, x)
11
12
             A[d] = NIL
13
             d = d + 1
14
         A[d] = x
    H.min = NIL
    for i = 0 to D(H.n)
17
        if A[i] \neq NIL
18
             if H.min == NIL
19
                 create a root list for H containing just A[i]
20
                 H.min = A[i]
21
             else insert A[i] into H's root list
                 if A[i].key < H.min.key
23
                     H.min = A[i]
```

1

A Fibonacci heap H

After removing the minimum node z from the root list and adding its children to the root list

- The array A and the trees after each of the first 3 iterations of the main **for** loop of Consolidate.
 - ➤ The index of the Array == Degree of the node in the root list
 - ➤ Processes the root list by starting at the node pointed to by H.min and following right pointers.
 - ➤ Each part shows the values of w and x at the end of an iteration.

- FIB-HEAP-EXTRACT-MIN
 - ➤ Next iteration of the main **for** loop
 - Values of w and x shown at the end of each iteration of the while loop
 - 1. Situation after the first time through the while loop
 - Node with key 23 has been linked to the node with key 7

We keep the min heap →
7 on top of 23
Degree 1 for 7
There is already a degree 1 in A (17,30)
→ We don't replace, we attach 17, 30
as a child!

2. The node with key 17: linked to the node with key 7, which x still points to.

- 3. The node with key 24: linked to the node with key 7.
 - As no node was previously pointed to by A[3], at the end of the for loop iteration,
 - A[3] set to point to the **root** of the resulting tree.

>States after each of the next 4 iterations of the **for** loop

- >H after reconstructing the root list from the array A and determining the new
- ➤ H.min pointer.

Decrease a key and Delete a node

- Mark
 - ➤ Guarantees that:
 - o only delete 1 child for every node
 - "we do not diverse from the binomial tree structure too much"
 - ➤ Without deletion every tree in a Fibonacci heap == a binomial tree

Decrease a key and Delete a node

- Decreasing a key
 - ➤ Assumption: removing a node from a linked list does not change any of the attributes in the removed node

```
CUT(H, x, y)
FIB-HEAP-DECREASE-KEY(H, x, k)
                                                           remove x from the child list of y, decrementing y.degree
   if k > x.key
                                                           add x to the root list of H
       error "new key is greater than current key"
                                                          x.p = NIL
   x.key = k
                                                           x.mark = FALSE
   y = x.p
   if y \neq NIL and x.key < y.key
                                                        CASCADING-CUT(H, y)
       CUT(H, x, y)
                                                           z = y.p
       CASCADING-CUT(H, y)
                                                           if z \neq NIL
   if x.key < H.min.key
                                                              if y.mark == FALSE
       H.min = x
                                                                   v.mark = TRUE
                                                               else Cut(H, y, z)
                                                                   CASCADING-CUT(H, z)
```

Fibonacci heap

Delete a node

- Pseudo-code:
 - \triangleright O(D(n)): amortized time

```
FIB-HEAP-DELETE (H, x)
```

- 1 FIB-HEAP-DECREASE-KEY $(H, x, -\infty)$
- 2 FIB-HEAP-EXTRACT-MIN(H)

Why Fibonacci

- $\Phi = (1+\sqrt{5})/2 = 1.61803... = Golden ratio$
- FIB-HEAP-EXTRACT-MIN and FIB-HEAPDELETE: O(log n)
 - \rightarrow show that the upper bound D(n) on the degree of any node of an n-node Fibonacci heap is O(log n)
 - \rightarrow show that D(n)≤ log $_{\Phi}$ n
- Definitions
 - For each node x within a Fibonacci heap,
 - \circ size(x) = number of nodes (including x) in the subtree rooted at x.
 - ➤ Show that size(x) is **exponential** in x.degree.
 - o x.degree is always maintained as an accurate count of the degree of x.

Golden ratio

Example $\frac{a}{a+b} = \frac{a}{b}$

Lemma 1

- Let x be any node in a Fibonacci heap
 - Suppose that x.degree=k.
- \triangleright Let $y_1, y_2, ..., y_k$: the children of x in the order in which they were linked to x
 - o from the earliest to the latest **then** y_1 .degree ≥ 0 and y_i .degree $\ge i-2$ $\forall i \in \{2..k\}$

Proof

- > y1.degree \geq 0 (definition)
- For i ≥ 2
 - \circ Observe that when y_i was linked to x, all of y₁,y₂,...,y_{i-1} were children of x
 - \circ \rightarrow we must have had x.degree \geq i-1.
 - \circ Because node y_i is linked to x (through CONSOLIDATE) only if x.degree==y_i.degree
 - \circ \rightarrow must have had y_i.degree \geq i-1 at that time.
 - Since it happened, node y_i has lost at most 1 child
 - Because it would have been cut from x (through CASCADING-CUT) if it had lost 2 children
 - $\circ \rightarrow y_i$.degree $\geq i-2$

■ Why is it name Fibonacci?

- ➤ because ...
- $F_k=0$ if k=0, $F_k=1$ if k=1, $F_k=F_{k-1}+F_{k-2}$ if k≥2
- **Lemma 2**:

For all integers $k \ge 0$,

>:

$$F_{k+2} = 1 + \sum_{i=0}^{k} F_i .$$

- ➤ Proof:
 - By induction
- **■** Lemma 3:
 - $\triangleright \forall$ k≥0, the (k+2)nd Fibonacci number satisfies $F_{k+2} \ge \Phi^k$
 - **≻**Proof
 - By induction

Lemma 4

- Let x be any node in a Fibonacci heap, and let k=x.degree
 - Then size(x) $\geq F_{k+2} \geq \Phi^k$ where $\Phi = (1+\sqrt{5})/2$

Proof (part 1)

- Let s_kdenote the minimum possible size of any node of degree k in any Fibonacci heap
- \triangleright Trivially, $s_0=1$ and $s_1=2$.
 - \circ S_k is at most size(x)
 - because adding children to a node cannot decrease the node's size!
 - o the value of s_k increases monotonically with k
- Consider some node z, in any Fibonacci heap | z.degree=k && size(s)=sk
 - \circ Because s_k ≤size(x)
 - \circ Get lower bound on size(x) by computing a lower bound on s_k

Proof (part 2)

- \triangleright Let $y_1, y_2, ..., y_k$: the children of z in the order in which they were linked to z.
- To bound s_k , we count one for z itself and one for the first child y_1 \circ size(y1) ≥ 1
- >:

$$size(x) \geq s_k$$

$$\geq 2 + \sum_{i=2}^{k} s_{y_i.degree}$$

$$\geq 2 + \sum_{i=2}^{k} s_{i-2}, \text{ (from Lemma 2 + monotocity of } s_k)$$

Proof (part 3)

► By induction $s_k \ge F_{k+2}$ $\forall k \in \mathbb{N}$

$$s_k \ge 2 + \sum_{i=2}^k s_{i-2}$$

$$\ge 2 + \sum_{i=2}^k F_i$$

$$= 1 + \sum_{i=0}^k F_i$$

$$= F_{k+2} \qquad \text{Lemma 2}$$

$$\ge \phi^k \qquad \text{Lemma 3}$$

$$\rightarrow$$
 size(x) \geq F_{k+2}

Corollary

- The maximum degree D(n) of any node in an n-node Fibonacci heap
 >O(log n)
- Proof
 - Let x be any node in an n-node Fibonacci heap
 - ➤ Let k=x.degree
 - ➤ By Lemma 4: $n \ge size(x) \ge \Phi^k$
 - \circ using base- Φ logarithms, we get $k \leq \log_{\Phi} n$
 - > maximum degree D(n) of any node is O(log n)

Conclusion

- Binomial heap:
 - ➤ Direct consolidate trees after each insert
- Fibonacci heap:
 - Lazily defer consolidation until next delete-min
- Complexity

Procedure	Binary heap (worst-case)	Fibonacci heap (amortized)
MAKE-HEAP	$\Theta(1)$	$\Theta(1)$
Insert	$\Theta(\lg n)$	$\Theta(1)$
Minimum	$\Theta(1)$	$\Theta(1)$
Extract-Min	$\Theta(\lg n)$	$O(\lg n)$
Union	$\Theta(n)$	$\Theta(1)$
DECREASE-KEY	$\Theta(\lg n)$	$\Theta(1)$
DELETE	$\Theta(\lg n)$	$O(\lg n)$

Questions?

- Reading & Acknowledgement
 - Chapter 19, Fibonacci heaps, Introduction to Algorithms, 3rd Edition
 - Fredman and Tarjan, Fibonacci heaps and their uses in improved network optimization algorithms. *Journal of the ACM*, 34(3):596–615, 1987.

