Spiking Forward-Forward

Independent Research Project

Boxuan Zhu

Email: bz422@imperial.ac.uk

GitHub username: acse-bz422

Repository: https://github.com/ese-msc-2022/irp-acse-bz422

Spiking Forward-Forward

- Definition
 - Purpose
 - Composition

- Implementation
 - Design
 - Optimization

- Experiment
 - Poisson datasets
 - Non-Poisson datasets

Definition: Purpose

- What is Spiking Forward-Forward?
 - A machine learning algorithm based on spiking neural networks that does not require backpropagation.
- Two key features:
 - The low power consumption advantage from SNN
 - The flexibility from backpropagation-free
- Purposes and potential:
 - Deployed on neuromorphic edge hardware for training and inference
 - Further alleviating the difficulty of training spiking neural networks

Definition: Composition

As a combination, Spiking Forward-Forward consists of two key parts:

Spiking neural network

Definition: Composition

As a combination, Spiking Forward-Forward consists of two key parts:

Forward-Forward algorithm

Main technical problems

- How to redesign the FF algorithm
 - To adapt to binary data
 - To gain the ability to process spike trains

- How to reconstruct the SNN
 - To allow the FF algorithm to be trained locally on the level of layer.

Implementation: Design

- Output vector normalization
 - To force the hidden layers of the neural network to learn high-level features

Binary spike signals break
the integrity of vector length information

Positive Goodness: 10.75^2 + 0^2

$$\gamma_i = \left(\max\left(0, (\mathbf{W}\frac{\mathbf{x}}{||\mathbf{x}||_2} + \mathbf{b})_i\right)\right)^2 \quad \gamma_i = \left(H\left((\mathbf{W}\mathbf{x} + \mathbf{b})_i\right)\right)^2$$

Implementation: Design

Signal processing

- Integrate the spike signal in the form of frames.
- Use the average of the goodness of all frames of a sample to update the weight
- Weight update
 - Spiking timing-dependent plasticity
 - Surrogate gradient

Implementation: Optimization

Combine two weight updates into one.

Layer collaboration in training

Experiment

MNIST and FashionMNIST data sets processed by Poisson encoder,

N-MNIST dataset processed by neuromorphic cameras,

Auditory dataset - Spiking Heidelberg Digits.

N-MNIST-R-STDP Experiment

- Result:
 - Error rate of 87%

- Conclusions:
 - 1. SFF algorithm is sensitive to threshold(Order of magnitude).
 - 2. Although STDP has limited capabilities, it is possible to combine it with gradient calculation schemes.

Poisson-Spike-MNIST experiment

• Result:

Dataset	Spiking Forward-Forward in SNN	Forward-Forward in ANN	BP in SNN
MNIST	11.03% (± 2% in 5 runs)	8.67% (± 2%)	7.45% (± 1%)

- Conclusions:
 - 1. Spiking Forward-Forward does have learning and generalization capabilities when using surrogate gradient calculations.
 - 2. Update the weight of STDP before gradient calculation, which will bring small but positive changes to the final result.

Poisson-Spike-FashionMNIST experiment

• Result:

Dataset	Collaborative SFF error rate	SFF error rate
MNIST	11.03% (± 2% in 5 runs)	17.22% (± 2%)
FashionMNIST	24.15% (± 2%)	39.89% (± 2%)

Conclusions:

- 1. Learning and generalization capabilities in multiple Poisson datasets.
- 2. Layer collaboration improved Spiking Forward-Forward

N-MNIST & SHD Surrogate Gradient Experiment

Result in N-MNIST:

• Error rate of 41.5%

Phenomenon:

 The spiking neurons of the hidden layer are barely activated on non-Poisson dataset. It greatly affects the learning capability of hidden layers.

Result in SHD:

• Error rate of 57.1% (hidden layer: from 90% to 70%)(traditional SNN: 51.9%)

Conclusions:

- Although the generalization ability has been demonstrated on a series of data sets,
- There is a gap between it and the standard algorithm,
- Room for further exploration and improvement.

Decentralized Training Experiment

Conclusion

 Despite the gap between the back-propagation-based algorithms and Spiking Forward-Forward,

• The Spiking Forward-Forward algorithm is able to train and generalize spiking neural networks on multiple spike morphology datasets.

Reference

Deng, L., Wu, Y., Hu, X., Liang, L., Ding, Y., Li, G., . . . Xie, Y. (2020).
Rethinking the performance comparison between SNNS and ANNS.
Neural networks, 121, 294–307.