

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ Федеральное государственное бюджетное образовательное учреждение высшего образования

«МИРЭА – Российский технологический университет»

ИНСТИТУТ ИСКУССТВЕННОГО ИНТЕЛЛЕКТА КАФЕДРА ВЫСШЕЙ МАТЕМАТИКИ

Лабораторная работа 1

по курсу «Случайные процессы»

ВАРИАНТ 6

Тема:	Цеп	іи Ма	аркова	

Выполнил: Студент 4-го курса Едренников Д.А.

Группа: КМБО-01-20

Задание

Каждому состоянию системы соответствует определенная последовательность из трёх нулей и двух единиц. Состояния системы нумеруются следующим образом:

№	состояние	No	состояние
1	00011	6	01100
2	00101	7	10001
3	00110	8	10010
4	01001	9	10100
5	01010	10	11000

На каждом шаге один из нулей превращается в единицу, и, одновременно, одна из единиц превращается в нуль. При этом, вероятность превращения в '1' для 1-го '0' (считая слева направо) равна p_1 , для 2-го '0' — p_2 , для 3-го '0' — p_3 , вероятность превращения в '0' для левой '1' равна q_1 , для правой '1' — q_2 .

При этом $p_1 + p_2 + p_3 = 1$ и $q_1 + q_2 + q_3 = 1$.

Следуя Указаниям, нужно:

- 1) Составить таблицу всех возможных переходов между состояниями.
- 2) Построить матрицу переходных вероятностей Р и граф состояний цепи Маркова.
- 3) Выявить существенные и несущественные состояния.
- 4) Проверить эргодичность цепи Маркова.
- 5) Найти стационарное распределение вероятностей состояний $\vec{r} = (r_1, r_2, ..., r_{10})$.
- 6) Найти $K = \min(k | \delta_k < 0.001), \delta_k = \max(|p_{ij}(k) r_j|; i, j = 1, ..., 10)$ и матрицу P(K) вероятностей перехода за K шагов, сравнить ее строки с вектором \vec{r} .
- 7) Для каждого состояния $1=i_{10}$, взятого в качестве начального, сгенерировать последовательность номеров состояний $i_{11},\ldots,i_{lk},\ldots,i_{l100}$ через k шагов ($k=1,\ldots,100$). Найти для каждого $l,\ l=1,\ldots,10$, относительные частоты пребывания системы в каждом состоянии $v_{li}=\frac{f\iota i}{100}$ ($i=1,\ldots,10$), где f_{li} равно числу таких k, что $i_{lk}=i,\ k=1,\ldots,100$). Сравнить v_{li} с r_i .

Вывод результатов проводить с округлением до 0,000001.

Краткие теоретические сведения

Цепь Маркова — последовательность случайных событий с конечным или счётным числом исходов, где вероятность наступления каждого события зависит только от состояния, достигнутого в предыдущем событии.

Однородной называют цепь Маркова, для которой условная вероятность $p_{ij}(s)$ перехода из состояния і в состояние ј не зависит от номера испытания. Для однородных цепей вместо $p_{ij}(s)$ используют обозначение p_{ij} .

 $\vec{p}(\infty) = \lim_{m \to \infty} \vec{p}(m) = \lim_{m \to \infty} \vec{p}(0) P^m$ — называется предельным распределением вероятностей с начальным распределением $\vec{p}(0)$.

 $\vec{r} = (r_1, r_2, ...) = \vec{r}(0)$ — стационарное распределение вероятностей, если для распределения вероятностей $\vec{r}(0) = (r_1(0), r_2(0), ...)$ выполняется условие $\vec{r}(m) = \vec{r}(0)$ для всех $m \ge 1$.

Существенное состояние — это такое состояние цепи Маркова, покинув которое, она всегда может в него вернуться.

Состояние і называется несущественным, если для него существует такое состояние і, что і достижимо из состояния і, но і не достижимо из і.

Период состояния і называется $k_i = HOД(k: p_{ii}(k)>0)$.

Цепь Маркова неприводима, если S = S(i) для всех $i \in S$. (S – множество всех состояний цепи Маркова).

Цепь Маркова называется апериодической, если все ее состояния апериодичны. Состояние называется апериодическим, если его период равен 1.

Эргодическая цепь Маркова - это такая цепь, для которой вероятность перехода из одного состояния в другое не зависит от того, когда происходит переход.

Формула нахождения стационарного распределения:

$$\begin{cases} r_1 = r_1 p_{11} + r_2 p_{21} + \dots + r_n p_{n1} \\ r_2 = r_1 p_{12} + r_2 p_{22} + \dots + r_n p_{n2} \\ \dots \\ r_n = r_1 p_{1n} + r_2 p_{2n} + \dots + r_n p_{nn} \\ 1 = r_1 + r_2 + \dots + r_n \end{cases}$$

 $\mathbf{r} = (r_1, r_2, \dots, r_n)$ — стационарное распределение.

Цепь Маркова эргодична, если она:

- А. Неприводима
- В. Апериодична

Используемые функции из языка python: numpy.linalg.solve(r, ro) – решение системы уравнений

Результаты расчетов

Для всех заданий вариант равен 6.

p_1	p_2	p_3	q_1	q_2
0,599	0,069	0,332	0	1

Задание 1:

№ состояний	Состояние	Список возможных состояний на следующем шаге
1	00011	10010(8), 01010(5), 00110(3)
2	00101	10100(9), 01100(6), 00110(3)
3	00110	10100(9), 01100(6), 00101(2)
4	01001	11000(10), 01100(6), 01010(5)
5	01010	11000(10), 01100(6), 01001(4)
6	01100	11000(10), 01010(5), 01001(4)
7	10001	11000(10), 10100(9), 10010(8)
8	10010	11000(10), 10100(9), 10001(7)
9	10100	11000(10), 10010(8), 10001(7)

10	11000	10100(9), 10010(8),
		10001(7)

Задание 2: Матрица переходных вероятностей Р:

	1	2	3	4	5	6	7	8	9	10
1	0	0	0.332	0	0.069	0	0	0.599	0	0
2	0	0	0.332	0	0	0.069	0	0	0.599	0
3	0	0.332	0	0	0	0.069	0	0	0.599	0
4	0	0	0	0	0.332	0.069	0	0	0	0.599
5	0	0	0	0.332	0	0.069	0	0	0	0.599
6	0	0	0	0.332	0.069	0	0	0	0	0.599
7	0	0	0	0	0	0	0	0.332	0.069	0.599
8	0	0	0	0	0	0	0.332	0	0.069	0.599
9	0	0	0	0	0	0	0.332	0.069	0	0.599
10	0	0	0	0	0	0	0.332	0.069	0.599	0

$$\sum_{j=1}^{10} p_{ij} = 1$$
, для i от 1 , до 10 .

Задание 3:

Существенные	7,8,9,10
Несущественные	1,2,3,4,5,6

Задание 4:

Данная цепь Маркова не является эргодической, так как существуют несущественные состояния (состояния 1, 2, 3 и т.д.), в которые нельзя вернутся.

Задание 5:

$$\begin{cases} r_1 = 0 \\ r_2 = 0.332r_3 \\ r_3 = 0.332r_1 + 0.332r_2 \\ r_4 = 0.332r_5 + 0.332r_6 \\ r_5 = 0.069r_1 + 0.332r_4 + 0.069r_6 \\ r_6 = 0.069r_2 + 0.069r_3 + 0.069r_4 + 0.069r_5 \\ r_7 = 0.332r_8 + 0.332r_9 + 0.332r_{10} \\ r_8 = 0.599r_1 + 0.069r_{10} + 0.332r_7 + 0.069r_9 \\ r_9 = 0.599r_2 + 0.599r_3 + 0.599r_{10} + 0.069r_7 + 0.069r_8 \\ r_{10} = 0.599r_4 + 0.599r_5 + 0.599r_6 + 0.599r_7 + 0.599r_8 + 0.599r_9 \\ 1 = r_1 + r_2 + \dots + r_{10} \end{cases}$$

Стационарное распределение вероятностей состояний цепи Маркова

1	2	3	4	5	6	7	8	9	10	
0	0	0	0	0	0	0.249249	0.125868	0.250274	0.374609	1

Задание 6:

K = 5

	1	2	3	4	5	6	7	8	9	10
1	0	0	0	0	0	0	0.249249	0.125867	0.2502	0.374683
2	0	0	0	0	0	0	0.249249	0.125867	0.2502	0.374683
3	0	0	0	0	0	0	0.249249	0.125867	0.2502	0.374683
4	0	0	0	0	0	0	0.249249	0.125867	0.250377	0.374506
5	0	0	0	0	0	0	0.249249	0.125867	0.250377	0.374506
6	0	0	0	0	0	0	0.249249	0.125867	0.250377	0.374506
7	0	0	0	0	0	0	0.249249	0.125868	0.250377	0.374506
8	0	0	0	0	0	0	0.249249	0.125868	0.250377	0.374506
9	0	0	0	0	0	0	0.249249	0.125868	0.250377	0.374506
10	0	0	0	0	0	0	0.249249	0.125868	0.250102	0.374781

Таблица сравнения строк P(K) с вектором \vec{r} .

i	$\max(p_{ij}(k) - r_j ; j=1,10)$
1	0.000074
2	0.000074
3	0.000074
4	0.000103
5	0.000103
6	0.000103
7	0.000103
8	0.000103
9	0.000103
10	0.000172
	Max = 0.000172

Задание 7: Таблицы сравнения $v_{li}\,c\,r_i$

i	\mathbf{r}_{i}	v _{1i}	$ \mathbf{v}_{1i} - \mathbf{r}_i $	V _{2i}	$ \mathbf{v}_{2i} - \mathbf{r}_i $
1	0	0	0	0	0
2	0	0	0	0	0

3	0	0	0	0	0
4	0	0	0	0	0
5	0	0	0	0	0
6	0	0	0	0.01	0.01
7	0.249249	0.26	0.010751	0.23	0.019249
8	0.125868	0.09	0.035868	0.16	0.034132
9	0.250274	0.25	0.000274	0.24	0.010274
10	0.374609	0.4	0.025391	0.36	0.014609
			0.035868		0.034132

i	r_i	V _{3i}	$ \mathbf{v}_{3i} - \mathbf{r}_i $	V _{4i}	$ \mathbf{v}_{4i} - \mathbf{r}_i $
1	0	0	0	0	0
2	0	0.01	0.01	0	0
3	0	0	0	0	0
4	0	0	0	0.01	0.01
5	0	0	0	0.01	0.01
6	0	0	0	0	0
7	0.249249	0.24	0.009249	0.29	0.040751
8	0.125868	0.14	0.014132	0.1	0.025868
9	0.250274	0.24	0.010274	0.2	0.050274
10	0.374609	0.37	0.004609	0.39	0.015391
			0.014132		0.050274

i	r_i	V _{5i}	$ \mathbf{v}_{5i} - \mathbf{r}_i $	V _{6i}	$ \mathbf{v}_{6i} - \mathbf{r}_i $
1	0	0	0	0	0
2	0	0	0	0	0
3	0	0	0	0	0
4	0	0	0	0	0
5	0	0	0	0	0
6	0	0	0	0	0
7	0.249249	0.25	0.000751	0.2	0.049249
8	0.125868	0.14	0.014132	0.07	0.055868

9	0.250274	0.23	0.020274	0.3	0.049726
10	0.374609	0.38	0.005391	0.43	0.055391
			0.020274		0.055391

i	r_i	V _{7i}	$ \mathbf{v}_{7i} - \mathbf{r}_i $	V _{8i}	$ \mathbf{v}_{8i} - \mathbf{r}_{i} $
1	0	0	0	0	0
2	0	0	0	0	0
3	0	0	0	0	0
4	0	0	0	0	0
5	0	0	0	0	0
6	0	0	0	0	0
7	0.249249	0.21	0.039249	0.28	0.030751
8	0.125868	0.13	0.004132	0.12	0.005868
9	0.250274	0.29	0.039726	0.25	0.000274
10	0.374609	0.37	0.004609	0.35	0.024609
			0.039726		0.030751

i	r_i	V9i	$ \mathbf{v}_{9i} - \mathbf{r}_i $	V _{10i}	$ \mathbf{v}_{10i} - \mathbf{r}_i $
1	0	0	0	0	0
2	0	0	0	0	0
3	0	0	0	0	0
4	0	0	0	0	0
5	0	0	0	0	0
6	0	0	0	0	0
7	0.249249	0.29	0.040751	0.29	0.040751
8	0.125868	0.08	0.045868	0.08	0.014132
9	0.250274	0.24	0.010274	0.24	0.030274
10	0.374609	0.39	0.015391	0.39	0.024609
			0.045868		0.040751

Список литературы

- 1. Случайные процессы [Электронный ресурс]: методические указания / А. А. Лобузов. М.: РТУ МИРЭА, 2021 36с.
- 2. Вентцель Е.С., Овчаров Л.А. Теория случайных процессов и её инженерные приложения. М.: Кнорус, 2018 488 с.
- 3. Бородин А.Н. Случайные процессы. СПб.: Лань, 2021 640с.

Приложение

```
import numpy
import random
from decimal import Decimal
f = open('answer.txt', 'r+')
r = [[-2, -1, -1, -1, -1, -1, -1, -1, -1, -1]]
   [0, -1, 0, 0.332, 0, 0, 0, 0, 0, 0]
   [0.332, 0.332, -1, 0, 0, 0, 0, 0, 0, 0]
   [0, 0, 0, -1, 0.332, 0.332, 0, 0, 0, 0],
   [0, 0, 0.332, 0, -1, 0.069, 0, 0, 0, 0],
   [0.069, 0.069, 0.069, 0.069, 0.069, -1, 0, 0, 0, 0],
   [0, 0, 0, 0, 0, 0, -1, 0.332, 0.332, 0.332],
   [0.599, 0, 0, 0, 0, 0, 0.332, -1, 0.069, 0.069],
   [0, 0.599, 0.599, 0, 0, 0, 0.069, 0.069, -1, 0.599],
   [0, 0, 0.599, 0.599, 0.599, 0.599, 0.599, 0.599, 0.599, -1],
   ]
ro = [-1, 0, 0, 0, 0, 0, 0, 0, 0, 0]
rA = numpy.linalg.solve(r, ro)
print(rA)
print(sum(rA))
P = [[0, 0, 0.332, 0, 0.069, 0, 0, 0.599, 0, 0],
   [0, 0, 0.332, 0, 0, 0.069, 0, 0, 0.599, 0],
   [0, 0.332, 0, 0, 0, 0.069, 0, 0, 0.599, 0],
   [0, 0, 0, 0, 0.332, 0.069, 0, 0, 0, 0.599],
   [0, 0, 0, 0.332, 0, 0.069, 0, 0, 0, 0.599],
   [0, 0, 0, 0.332, 0.069, 0, 0, 0, 0, 0.599],
   [0, 0, 0, 0, 0, 0, 0, 0.332, 0.069, 0.599],
   [0, 0, 0, 0, 0, 0, 0.332, 0, 0.069, 0.599],
   [0, 0, 0, 0, 0, 0, 0.332, 0.069, 0, 0.599],
   [0, 0, 0, 0, 0, 0, 0.332, 0.069, 0.599, 0]]
pk = P
delt = 1
K = 1
deltak = [0]*10
while delt > 0.001:
  delt = 0
  pk = numpy.dot(pk, pk)
```

```
for i in range(0, 10):
     for j in range(0, 10):
        delt = max((abs(pk[i][j] - rA[j])), delt)
  K += 1
for i in range(0, 10):
     for j in range(0, 10):
        deltak[i] = Decimal(max((abs(pk[i][j] - rA[j])), deltak[i]))
v = numpy.zeros((10, 10), dtype=float, order='C')
vn = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
for i in range(0, 10):
  t = i
  for j in range(0, 100):
     k = random.choices(vn, P[t])
     v[i][k[0] - 1] += 1
     t = k[0]-1
v = v / 100
vr = numpy.zeros((10, 10))
for i in range(0, 10):
  for j in range(0, 10):
     vr[i][j] = abs(v[i][j] - rA[j])
f.write(str(numpy.around(rA, 6)))
f.write('\n')
f.write('\n')
f.write('\n')
f.write(str(K))
f.write('\n')
f.write('\n')
f.write('\n')
f.write(str(numpy.around(pk, 6)))
f.write('\n')
f.write('\n')
f.write('\n')
f.write(str(deltak))
f.write('\n')
f.write('\n')
f.write('\n')
f.write(str(numpy.around(v, 6)))
f.write('\n')
f.write('\n')
```

```
f.write('\n')
f.write(str(numpy.around(vr, 6)))
f.write('\n')
```