CogSci I: Exercise NN

Barbara Plank, University of Copenhagen

September 1, 2014

Exercises

Today we have seen the nearest neighbor classifier. Here are a couple of exercises related to nearest neighbor (NN) and statistics. You can get the code and data from github: https://github.com/bplank/cog-sci-1-2014 see folder ex1-nn.

Algorithm 1 Nearest neighbor classification algorithm

Require: train data set \mathcal{D} of size $M \times N$,

data point \mathbf{x} to classify, distance function dist

1: find data point \mathbf{x}^c which is nearest (closest) to \mathbf{x} according to dist:

$$(\mathbf{x}^c, y^{min}) = \underset{(\mathbf{x_i}, y_i) \in \mathcal{D}}{\operatorname{arg\,min}} dist(\mathbf{x}, \mathbf{x^i})$$

2: **return** assign label of \mathbf{x}^c to \mathbf{x} : $\hat{y} = y_{min}$

label	f1	f2
0	5.1	3.5
0	4.9	3
0	4.7	3.2
0	4.6	3.1
0	5	3.4
1	6.7	3
1	6.3	2.5
1	6.5	3
1	6.2	3.4
1	5.9	3

Table 1: Data

- 1. For the data set shown in Table 1 (same as knntrain.dat in folder): What is the mean of the feature f_1 over the whole data set, what is the mean of f_2 ?
- 2. The following formula denotes the standard deviation for a vector \mathbf{v} with N elements (or dimensions), where μ is the mean of the vector: $\mathbf{v} = \langle v_1, v_2, ..., v_N \rangle$:

$$s = \sqrt{\frac{1}{N-1} \sum_{i=1}^{N} (\nu_i - \mu)^2}$$

What is the standard deviation of f_1 (over the whole data set)?

3. What is the Euclidean distance between the first data point in the data set $x_1 = \langle 5.1, 3.5 \rangle$ and a test data point $x_t = \langle 5.5, 3.2 \rangle$, i.e., $d_{Euc}(x_1, x_t)$? Reminder:

$$dist_{Euc}(p,q) = \sqrt{\sum_{i=1}^{m} (q_i - p_i)^2}$$

- 4. Implement the k-nearest neighbor algorithm and apply it using Euclidean distance to the new data point $x_t = \langle 5.5, 3.2 \rangle$ given the training data set in Table 1. To do so, extend the code knn.py by adding the following (cf., your code here):
 - read in the data set knntrain.dat
 - in the predict function add the code that examines *k* nearest neighbors (the majority vote function is already given, you need to supply it the list of labels for the *k* closest neighbors).

What is the predicted class for $x_t = \langle 5.5, 3.2 \rangle$ if you use one neighbor (k = 1) versus more neighbors (e.g., k = 3)?

- 5. What are strengths and weaknesses of the k-nearest neighbor algorithm?
- 6. (optional) Plot the data set shown in Table 1 (you can do so on paper, or if you prefer, use your preferred plotting environment, e.g., python or R). Where would the new data point x_t = $\langle 5.5,3.2 \rangle$ be in the plot? Use the plot to check what your implementation gave you for k = 1 and k = 3 neighbors.