

Description

These N-Channel enhancement mode power field effect transistors are using trench DMOS technology. This advanced technology has been especially tailored to minimize on-state resistance, provide superior switching performance, and with stand high energy pulse in the avalanche and commutation mode. These devices are well suited for high efficiency fast switching applications.

Features

- $45V,70A,R_{DS(ON).max}=9m\Omega@V_{GS}=10V$
- Improved dv/dt capability
- Fast switching
- ♦ 100% EAS Guaranteed
- Green device available

Applications

- Motor Drives
- UPS
- DC-DC Converter

Product Summary

 $\begin{array}{ll} V_{DSS} & 45V \\ R_{DS(on).max} \textcircled{@} \ V_{GS} = 10V & 9m\Omega \\ I_D & 70A \end{array}$

Pin Configuration

Absolute Maximum Ratings Tc = 25°C unless otherwise noted

Parameter	Symbol	Value	Unit
Drain-Source Voltage	V _{DSS}	45	V
Continuous drain current (T _C = 25°C)		70	А
Continuous drain current (T _C = 100°C)	- I _D	42	A
Pulsed drain current ¹⁾	І _{рм}	280	А
Gate-Source voltage	V _{GSS}	±20	V
Avalanche energy ²⁾	Eas	110	mJ
Power Dissipation (T _C = 25°C)	P _D	83	W
Storage Temperature Range	Tstg	-55 to +150	°C
Operating Junction Temperature Range	TJ	-55 to +150	°C

Thermal Characteristics

Parameter	Symbol	Value	Unit
Thermal Resistance, Junction-to-Case	R ₀ JC	1.5	°C/W

Package Marking and Ordering Information

Device	Device Package	Marking
VSM70N04-TC	TO-220C	VSM70N04-TC
VSM70N04-T2	TO-252	VSM70N04-T2
VSM70N04-T1	TO-251	VSM70N04-T1

Electrical Characteristics T₁ = 25°C unless otherwise noted

Electrical Characteristics	T _J = 25°C unless otherwise noted					
Parameter	Symbol	Test Condition	Min.	Тур.	Max.	Unit
Static characteristics	1					
Drain-source breakdown voltage	BV _{DSS}	V _{GS} =0 V, I _D =250uA	45			V
Gate threshold voltage	V _{GS(th)}	V _{DS} =V _{GS} , I _D =250uA	0.9		1.8	V
Drain-source leakage current	Inss	V _{DS} =45 V, V _{GS} =0 V, T _J = 25°C			1	μA
		V _{DS} =36 V, V _{GS} =0 V, T _J = 125°C			10	μA
Gate leakage current, Forward	I _{GSSF}	V _{GS} =20 V, V _{DS} =0 V			100	nA
Gate leakage current, Reverse	I _{GSSR}	V _{GS} =-20 V, V _{DS} =0 V			-100	nA
Duning any state manietanes	Б	V _{GS} =10 V, I _D =20 A		6.2	9	mΩ
Drain-source on-state resistance	R _{DS(on)}	V _{GS} =4.5 V, I _D =10 A		8	11.5	mΩ
Forward transconductance	g _{fs}	V _{DS} =5 V , I _D =10A		36		S
Dynamic characteristics						
Input capacitance	C _{iss}			2440		pF
Output capacitance	Coss	$V_{DS} = 25 \text{ V}, V_{GS} = 0 \text{ V},$ F = 1 MHz		190		
Reverse transfer capacitance	C _{rss}	- F = IMMZ		126		
Turn-on delay time	t _{d(on)}			14		- ns
Rise time	t _r	$V_{DD} = 25V, V_{GS} = 10V, I_D = 10 A,$ $R_G = 27\Omega$		110		
Turn-off delay time	t _{d(off)}			322		
Fall time	t _f			91		
Gate resistance	R _g	V _{GS} =0V, V _{DS} =0V, F=1MHz		1.84		Ω
Gate charge characteristics						
Gate to source charge	Q _{gs}			8.6		
Gate to drain charge	Q _{gd}	V _{DS} =25 V, I _D =10A, V _{GS} = 10 V		8.2		nC
Gate charge total	Qg			49.3		
Drain-Source diode characteristic	s and Maxir	num Ratings		,	l	
Continuous Source Current	Is				70	А
Pulsed Source Current ³⁾	I _{SM}]			280	А
Diode Forward Voltage	V _{SD}	V _{GS} =0V, I _S =10A, T _J =25°C			1.2	V
Reverse Recovery Time	t _{rr}	I _S =10A,di/dt=100A/us, T _J =25℃		23.3		ns
Reverse Recovery Charge	Qrr			14.4		nC

Notes:

- 1: Repetitive Rating: Pulse width limited by maximum junction temperature.
- 2: V_{DD} =25V, V_{GS} =10V, L=0.5mH, I_{AS} =21A, R_G =25 Ω , Starting T_J =25 $^{\circ}$ C.
- 3: Pulse Test: Pulse Width \leq 300us, Duty Cycle \leq 2%.

Electrical Characteristics Diagrams

Figure 1. Typ. Output Characteristics

Figure 2. Transfer Characteristics 45 40 35 _{lo}-Drain Current(A) 30 25 25°C 20 15 10 5 0.5 0.0 2.0 2.5 3.0 4.0 5.0 V_{GS} Gate-Source Voltage(V)

Figure 3. Capacitan ce Characteristics

Figure 4. Gate Charge Waveform

Figure 5. Body-Diode Characteristics

12 _{es}=4.5

Figure 6. Rdson-Drain Current

Figure 6. Normalized Maximum Transient Thermal Impedance

Test Circuit & Waveform

Figure 8. Gate Charge Test Circuit & Waveform

Figure 9. Resistive Switching Test Circuit & Waveforms

Figure 10. Unclamped Inductive Switching (UIS) Test Circuit & Waveform

Figure 11. Diode Recovery Circuit & Waveform

