1/11

FIG. 1

FIG. 2

FIG. 3

DIRECT LIGATION REACTON

→ MYBLeu

→ Y
→ M+30mer

FIG. 4

pTXB1
...Met Ala Met Gly Gly Gly Arg Leu Glu Gly Ser Ser Cysl. Intein
CAI ATG GCC ATG GGT GGC GGC CGC
NdeI Ncol NotT XhoI SapI

5/11

FTG. 5A

DNA Sequence of pTXBl plasmid

140- 997 beta-lactamase (Ap)

1042-1555M13 origin

ColEl origin 2254

2626-2814 rop

3376-4455 lacIq

5440-5456T7 promoter

5440-5459T7 universal primer (forward)

first nucleotide of the T7 transcript 5457

5459-5483 lac operator

5513-5519 Shine-Dalgarno sequence (T7 gene 10)

5525-5572 Multiple cloning site

5573-6166 Mxe GyrA intein (N198A)

6197-6352 Chitin-binding domain

6375-6497 T7 transcription terminator

TXBl.seq.old Length: 6503 March 17, 1998 11:14 Type: N Check: 1445

1 AACTACGTCA GGTGGCACTT TTCGGGGAAA TGTGCGCGGA ACCCCTATTT

51 GTTTATTTTT CTAAATACAT TCAAATATGT ATCCGCTCAT GAGACAATAA

101 CCCTGATAAA TGCTTCAATA ATATTGAAAA AGGAAGAGTA TGAGTATTCA

151 ACATTTCCGT GTCGCCCTTA TTCCCTTTTT TGCGGCATTT TGCCTTCCTG

201 TTTTTGCTCA CCCAGAAACG CTGGTGAAAG TAAAAGATGC TGAAGATCAG

251 TTGGGTGCAC GAGTGGGTTA CATCGAACTG GATCTCAACA GCGGTAAGAT

301 CCTTGAGAGT TTTCGCCCCG AAGAACGTTC TCCAATGATG AGCACTTTTA

351 AAGTTCTGCT ATGTGGCGCG GTATTATCCC GTGTTGACGC CGGGCAAGAG

401 CAACTCGGTC GCCGCATACA CTATTCTCAG AATGACTTGG TTGAGTACTC

451 ACCAGTCACA GAAAAGCATC TTACGGATGG CATGACAGTA AGAGAATTAT

501 GCAGTGCTGC CATAACCATG AGTGATAACA CTGCGGCCAA CTTACTTCTG

551 ACAACGATCG GAGGACCGAA GGAGCTAACC GCTTTTTTGC ACAACATGGG

601 GGATCATGTA ACTCGCCTTG ATCGTTGGGA ACCGGAGCTG AATGAAGCCA

651 TACCAAACGA CGAGCGTGAC ACCACGATGC CTGTAGCAAT GGCAACAACG

701 TTGCGCAAAC TATTAACTGG CGAACTACTT ACTCTAGCTT CCCGGCAACA

751 ATTAATAGAC TGGATGGAGG CGGATAAAGT TGCAGGACCA CTTCTGCGCT

801 CGGCCCTTCC GGCTGGCTGG TTTATTGCTG ATAAATCTGG AGCCGGTGAG

851 CGTGGGTCTC GCGGTATCAT TGCAGCACTG GGGCCAGATG GTAAGCCCTC

FIG. 5B

901 0	COGTATOGTA GTTATOTACA OGACGGGGAG TOAGGCAACT ATGGATGAAC
951 (GAAATAGACA GATCGCTGAG ATAGGTGCCT CACTGATTAA GCATTGGTAA
1001 (CTGTCAGACC AAGTTTACTC ATATATACTT TAGATTGATT TACCCCGGTT
1051	GATAATCAGA AAAGCCCCAA AAACAGGAAG ATTGTATAAG CAAATATTTA
	AATTGTAAAC GTTAATATTT TGTTAAAATT CGCGTTAAAT TTTTGTTAAA
	TCAGCTCATT TTTTAACCAA TAGGCCGAAA TCGGCAAAAT CCCTTATAAA
	TCAAAAGAAT AGCCCGAGAT AGGGTTGAGT GTTGTTCCAG TTTGGAACAA
	GAGTCCACTA TTAAAGAACG TGGACTCCAA CGTCAAAGGG CGAAAAACCG
	TCTATCAGGG CGATGGCCCA CTACGTGAAC CATCACCCAA ATCAAGTTTT
1351	TTGGGGTCGA GGTGCCGTAA AGCACTAAAT CGGAACCCTA AAGGGAGCCC
1401	CCGATTTAGA GCTTGACGGG GAAAGCCGGC GAACGTGGCG AGAAAGGAAG
1451	GGAAGAAAGC GAAAGGAGCG GGCGCTAGGG CGCTGGCAAG TGTAGCGGTC
1501	ACGCTGCGCG TAACCACCAC ACCCGCCGCG CTTAATGCGC CGCTACAGGG
1551	CGCGTAAAAG GATCTAGGTG AAGATCCTTT TTGATAATCT CATGACCAAA
1601	ATCCCTTAAC GTGAGTTTTC GTTCCACTGA GCGTCAGACC CCGTAGAAAA
1651	GATCAAAGGA TCTTCTTGAG ATCCTTTTTT TCTGCGCGTA ATCTGCTGCT
1701	TGCAAACAAA AAAACCACCG CTACCAGCGG TGGTTTGTTT GCCGGATCAA
1751	GAGCTACCAA CTCTTTTCC GAAGGTAACT GGCTTCAGCA GAGCGCAGAT
1801	ACCAAATACT GTCCTTCTAG TGTAGCCGTA GTTAGGCCAC CACTTCAAGA
1851	ACTCTGTAGC ACCGCCTACA TACCTCGCTC TGCTAATCCT GTTACCAGTG
1901	GCTGCTGCCA GTGGCGATAA GTCGTGTCTT ACCGGGTTGG ACTCAAGACG
1951	ATAGTTACCG GATAAGGCGC AGCGGTCGGG CTGAACGGGG GGTTCGTGCA
2001	CACAGCCCAG CTTGGAGCGA ACGACCTACA CCGAACTGAG ATACCTACAG
2051	CGTGAGCTAT GAGAAAGCGC CACGCTTCCC GAAGGGAGAA AGGCGGACAC
2101	GTATCCGGTA AGCGGCAGGG TCGGAACAGG AGAGCGCATG AGGGAGCTTT
2151	CAGGGGGAAA CGCCTGGTAT CTTTATAGTC CTGTCGGGTT TCGCCACCT
2201	TGACTIGAGO GICGATITI GIGAIGCICO ICAGGGGGGC GGAGCCIAI
2251	GAAAAACGCC AGCAACGCGG CCTTTTTACG GTTCCTGGCC TTTTGCTGG
2301	CTTTTGCTCA CATGTTCTTT CCTGCGTTAT CCCCTGATTC TGTGGATAA

7/11

FIG. 5C

2351 CGTATTACCG CCTTTGAGTG AGCTGATACC GCTCGCCGCA GCCGAACGAC
2401 CGAGCGCAGC GAGTCAGTGA GCGAGGAAGC TATGGTGCAC TCTCAGTACA
2451 ATCTGCTCTG ATGCCGCATA GTTAAGCCAG TATACACTCC GCTATCGCTA
2501 CGTGACTGGG TCATGGCTGC GCCCCGACAC CCGCCAACAC CCGCTGACGC
2551 GCCCTGACGG GCTTGTCTGC TCCCGGCATC CGCTTACAGA CAAGCTGTGA
2601 CCGTCTCCGG GAGCTGCATG TGTCAGAGGT TTTCACCGTC ATCACCGAAA
2651 CGCGCGAGGC AGCTGCGGTA AAGCTCATCA GCGTGGTCGT GCAGCGATTC
2701 ACAGATGTCT GCCTGTTCAT CCGCGTCCAG CTCGTTGAGT TTCTCCAGAA
2751 GCGTTAATGT CTGGCTTCTG ATAAAGCGGG CCATGTTAAG GGCGGTTTTT
2801 TCCTGTTTGG TCACTTGATG CCTCCGTGTA AGGGGGAATT TCTGTTCATG
2851 GGGGTAATGA TACCGATGAA ACGAGAGAGG ATGCTCACGA TACGGGTTAC
2901 TGATGATGAA CATGCCCGGT TACTGGAACG TTGTGAGGGT AAACAACTGG
2951 CGGTATGGAT GCGGCGGGAC CAGAGAAAAA TCACTCAGGG TCAATGCCAG
3001 CCGAACGCCA GCAAGACGTA GCCCAGCGCG TCGGCCGCCA TGCCGGCGAT
3051 AATGGCCTGC TTCTCGCCGA AACGTTTGGT GGCGGGACCA GTGACGAAGG
3101 CTTGAGCGAG GGCGTGCAAG ATTCCGAATA CCGCAAGCGA CAGGCCGATC
3151 ATCGTCGCGC TCCAGCGAAA GCGGTCCTCG CCGAAAATGA CCCAGAGCGC
3201 TGCCGGCACC TGTCCTACGA GTTGCATGAT AAAGAAGACA GTCATÁAGTG
3251 CGGCGACGAT AGTCATGCCC CGCGCCCACC GGAAGGAGCT GACTGGGTTG
3301 AAGGCTCTCA AGGGCATCGG TCGAGATCCC GGTGCCTAAT GAGTGAGCTA
3351 ACTTACATTA ATTGCGTTGC GCTCACTGCC CGCTTTCCAG TCGGGAAACC
3401 TGTCGTGCCA GCTGCATTAA TGAATCGGCC AACGCGCGGG GAGAGGCGGT
3451 TTGCGTATTG GGCGCCAGGG TGGTTTTTCT TTTCACCAGT GAGACGGGCA
3501 ACAGCTGATT GCCCTTCACC GCCTGGCCCT GAGAGAGTTG CAGCAAGCGG
3551 TCCACGCTGG TTTGCCCCAG CAGGCGAAAA TCCTGTTIGA TGGTGGTTAA
3601 CGGCGGGATA TAACATGAGC TGTCTTCGGT ATCGTCGTAT CCCACTACCG
3651 AGATATCCGC ACCAACGCGC AGCCCGGACT CGGTAATGGC GCGCATTGCG
3701 CCCAGCGCCA TCTGATCGTT GGCAACCAGC ATCGCAGTGG GAACGATGCC
3751 CTCATTCAGC ATTTGCATGG TTTGTTGAAA ACCGGACATG GCACTCCAGT

8/11

FIG. 5D

3801	CGCCTTCCCG TTCCGCTATC GGCTGAATTT GATTGCGAGT GAGATATTTA
3851	TGCCAGCCAG CCAGACGCAG ACGCGCCGAG ACAGAACTTA ATGGGCCCGC
3901	TAACAGCGCG ATTTGCTGGT GACCCAATGC GACCAGATGC TCCACGCCCA
3951	GTCGCGTACC GTCTTCATGG GAGAAAATAA TACTGTTGAT GGGTGTCTGG
4001	TCAGAGACAT CAAGAAATAA CGCCGGAACA TTAGTGCAGG CAGCTTCCAC
4051	AGCAATGGCA TCCTGGTCAT CCAGCGGATA GTTAATGATC AGCCCACTGA
4101	CGCGTTGCGC GAGAAGATTG TGCACCGCCG CTTTACAGGC TTCGACGCCG
4151	CTTCGTTCTA CCATCGACAC CACCACGCTG GCACCCAGTT GATCGGCGCG
4201	AGATTTAATC GCCGCGACAA TTTGCGACGG CGCGTGCAGG GCCAGACTGG
4251	AGGTGGCAAC GCCAATCAGC AACGACTGTT TGCCCGCCAG TTGTTGTGCC
4301	ACGCGGTTGG GAATGTAATT CAGCTCCGCC ATCGCCGCTT CCACTTTTTC
4351	CCGCGTTTTC GCAGAAACGT GGCTGGCCTG GTTCACCACG CGGGAAACGG
4401	TCTGATAAGA GACACCGGCA TACTCTGCGA CATCGTATAA CGTTACTGGT
4451	TTCACATTCA CCACCCTGAA TTGACTCTCT TCCGGGCGCT ATCATGCCAT
4501	ACCGCGAAAG GTTTTGCGCC ATTCGATGGT GTCCCGGATC TCGACGCTCT
4551	
4601	
4651	
4701	
4751	
4801	
485	
490	1 TATCTGTTGT TTGTCGGTGA ACGCTCTCCT GAGTAGGACA AATCCGCCGG
495	1 GAGCGGATTT GAACGTTGCG AAGCAACGGC CCGGAGGGTG GCGGGCAGGA
500	. UGCCCGCCAT AAACTGCCAG GAATTAATTC CAGGCATCAA ATAAAACGAA
505	1 AGGCTCAGTC GAAAGACTGG GCCTTTCGTT TTATCTGTTG TTTGTCGGTG
510	AACGCTCTCC TGAGTAGGAC AAATCCGCCG GGAGCGGATT TGAACGTTGC
515	GAAGCAACGG CCCGGAGGGT GGCGGGCAGG ACGCCCGCCA TAAACTGCCA
520	I GGAATTAATT CCAGGCATCA AATAAAACGA AAGGCTCAGT CGAAAGACTG

9/11

FIG. 5E

5251	GGCCTTTCGT TTTATCTGTT GTTTGTCGGT GAACGCTCTC CTGAGIAGGA
5301	CAAATCCGCC GGGAGCGGAT TTGAACGTTG CGAAGCAACG GCCCGGAGGG
5351	TGGCGGGCAG GACGCCCGCC ATAAACTGCC AGGAATTGGG GATCGGAATT
5401	AATTCCCGGT TTAAACCGGG GATCTCGATC CCGCGAAATT AATACGACTC
5451	ACTATAGGGG AATTGTGAGC GGATAACAAT TCCCCTCTAG AAATAATTTT
5501	GTTTAACTTT AAGAAGGAGA TATACAtatg gctagctcgc gagtcgacgg
5551	eggecgeete gagggetett cetgCATCAC GGGAGATGCA CTAGTTGCCC
5601	TACCCGAGGG CGAGTCGGTA CGCATCGCCG ACATCGTGCC GGGTGCGCGG
5651	CCCAACAGTG ACAACGCCAT CGACCTGAAA GTCCTTGACC GGCATGGCAA
5701	TCCCGTGCTC GCCGACCGGC TGTTCCACTC CGGCGAGCAT CCGGTGTACA
5751	CGGTGCGTAC GGTCGAAGGT CTGCGTGTGA CGGGCACCGC GAACCACCCG
5801	TTGTTGTGTT TGGTCGACGT CGCCGGGGTG CCGACCCTGC TGTGGAAGCT
5851	GATCGACGAA ATCAAGCCGG GCGATTACGC GGTGATTCAA CGCAGCGCAT
5901	TCAGCGTCGA CTGTGCAGGT TTTGCCCGCG GAAAACCCGA ATTTGCGCCC
5951	ACAACCTACA CAGTCGGCGT CCCTGGACTG GTGCGTTTCT TGGAAGCACA
6001	ACCGACGGGC CGACGAGCTG ACCGACGGGC
6051	COCCADAGTO GOCAGTGTOA COGACGCOGG CGTGCAGCCG
6101	THE THE THEOTETICAL CACGGCAGAC CACGCGTTTA TCACGAACGG
6151	TOTAL CACCOTACTE GCCTCACCGG TCTGAACTCA GGCCTCACGA
6201	TEMPOCECT TEGCAGGTCA ACACAGCTTA TACTGCGGGA
6253	CAMPATANCES CAAGACGTAT AAATGTTTGC AGCCCCACAC
630	THE TOTAL SCATEGOARC CATCCARCGT TECTGOCTTG TEGCAGETTC
635	THEOGRAPH OUGGETGETA ACAAAGCEEG AAAGGAAGET
640	TAGOATAAC COOTTGGGGC TGAGCAATAA CTAGCATAAC COOTTGGGGC
645	ALEGO CHETTELEGG STITTITGET GAAAGGAGGA ACTATATCCG
•	
650	T QU'

FIG. 6

Hpa I LIGATION

11/11

FIG.~7 WESTERN BLOTS OF PROTEINS LIGATED TO A BIOTINYLATED PEPTIDE

18P+Peptide	MBP Control	8st Pol I+Peptide	Bst Pol I Control	Paramyosin∗Peptide	Paramyosin Control	Thioredoxin+Peptid6	Thioredoxin Contro
<u>~</u>	#	38	$\widetilde{\omega}$	à	مَـ	-	-