# Architecture Synthesis I

Scheduling, Design Space Exploration, Marked Graphs, List Scheduling

Exercise class 9

Presenter:
Jürgen Mattheis

In cooperation with:
Pascal Walter

Based on the lecture of: Marco Zimmerling

January 24, 2023

University of Freiburg, Chair for Embedded Systems

# Gliederung

Organisation

Task 1

Task 2

Task 3

Task 4

# Organisation



# Organisation I

- ► feedback for lecture until February 29
- ► feedback for me: https://forms.gle/f3YN8EFrZ1vsfPoC6



4 / 45





# Task 1 I

## Scheduling



Jürgen Mattheis Architecture Synthesis I University of Freiburg

6 / 45

## Task 1 II

#### Scheduling

#### Task 1.1:



- ▶ all operations are handled by the same resource type with a yet unspecified number of instances
- ▶ all operations have same execution time

## Task 1 III

#### Scheduling

#### Requirements 1.1:

Z

A schedule is a function  $\tau:V_S\to {\bf Z}^{>0}$  that determines the starting times of operations. A schedule is feasible if the conditions

$$\tau(v_i) - \tau(v_i) \ge w(v_i) \quad \forall (v_i, v_j) \in E_S$$

are satisfied.  $w(v_i) = w(v_i, \beta(v_i))$  denotes the execution time of operation  $v_i$ .

## Task 1 IV

## Scheduling

#### Solution 1.1:

Z

► System of inequations:

$$egin{aligned} au\left(v_3
ight) &\geq au\left(v_1
ight) + 1 \ au\left(v_3
ight) &\geq au\left(v_2
ight) + 1 \ au\left(v_4
ight) &\geq au\left(v_3
ight) + 1 \ au\left(v_5
ight) &\geq au\left(v_4
ight) + 1 \ au\left(v_5
ight) &\geq au\left(v_6
ight) + 1 \ au\left(v_9
ight) &\geq au\left(v_8
ight) + 1 \ au\left(v_9
ight) &\geq au\left(v_{10}
ight) + 1 \end{aligned}$$

## Task 1 V

#### Scheduling

#### Solution 1.1:



$$egin{aligned} & au\left(v_{1}
ight) \geq au\left(v_{0}
ight) \ & au\left(v_{2}
ight) \geq au\left(v_{0}
ight) \ & au\left(v_{6}
ight) \geq au\left(v_{0}
ight) \ & au\left(v_{10}
ight) \geq au\left(v_{0}
ight) \ & au\left(v_{n}
ight) \geq au\left(v_{0}
ight) \ & au\left(v_{n}
ight) \geq au\left(v_{9}
ight) + 1 \ & au\left(v_{n}
ight) \geq au\left(v_{9}
ight) + 1 \ & au\left(v_{n}
ight) \geq au\left(v_{11}
ight) + 1 \end{aligned}$$

## Task 1 VI

#### Scheduling

## Requirements 1.2:

Z

The latency L of a schedule is the time difference between start node  $v_0$  and end node  $v_n$ :  $L = \tau(v_n) - \tau(v_0)$ .

#### Solution 1.2:

1

► Initial condition:

$$\tau\left(v_{0}\right)=0$$

Objective function:

$$\min \tau \left( v_n \right) - \tau \left( v_0 \right)$$

## Task 1 VII

## Scheduling

#### Solution 1.3:



- ► Minimum latency and valid starting times:
  - ightharpoonup One resource:  $L_{\min} = 11$
  - ▶ Unlimited resources:  $L_{min} = 4$

#### Solution 1.3:



▶ 1 resource: e.g.:

$$\tau(v_1) = 0; \tau(v_2) = 1; \tau(v_3) = 2; \tau(v_4) = 3; \tau(v_6) = 4$$
  
 $\tau(v_7) = 5; \tau(v_5) = 6; \tau(v_8) = 7; \tau(v_9) = 8; \tau(v_{10}) = 9$   
 $\tau(v_{11}) = 10; \tau(v_p) = L = 11$ 

## Task 1 VIII

## Scheduling

## Solution 1.3:

7

13 / 45

► Umlimited resources: e.g.



Jürgen Mattheis Architecture Synthesis I University of Freiburg



#### Design space exploration

#### Task 2.1:

Consider again the sequence graph and the specification of task 1. Assume that there is only one resource type which can compute all operations (+,-,<,\*) and has an area of 1. The cost of an implementation is given by the total required area. The goal is to find the Pareto-points of the design space which is given by the parameters cost and latency. The number of allocated resources is not yet fixed.

Compute a lower and an upper bound for the latency in order to limit the possible Pareto-points.

#### Design Space Exploration

#### Solution 2.1:



- ► The latency bounds are easily determined by considering the sequence graph of exercise 1.
- We have seen, that we can achieve a Latency of L=11 with just one resource. Hence  $L \leq 11$ .
- We have also seen that with an unlimited amount of resources, the best we can achieve is L=4 since the dependencies won't allow us to go any faster, no matter how many ressources we can use to distribute operations on. Hence  $L \ge 4$
- ▶ Thus, the bounds for L are:  $4 \le L \le 11$

#### Design space exploration

#### Task 2.2:



17 / 45

Compute a lower and an upper bound for the cost in order to limit the possible Pareto-points.

#### Design Space Exploration

#### Solution 2.2:



- ► The costs are determined by the area, that is, in this case, the amount of resources we use. Our lower and upper bound for L helps us to find the bounds for c more quickly.
- ▶ In the slowest case, we had L = 11 with just one resource, hence  $c \ge 1$
- ▶ In the fastest case, we had L = 4 with unlimited resources. What finite number of resources are necessary, to achieve the same latency?
- $\Rightarrow$  An easy to see upper bound to reach the lowest latency is c=5. However, it's possible to reduce the resources even further to obtain  $c\leq 3$ .

#### Design space exploration

#### Task 2.3:



Find all Pareto-points and represent them in a diagram.

## Task 2 I

#### Design space exploration



Jürgen Mattheis Architecture Synthesis I University of Freiburg

20 / 45

## Task 2 II

#### Design space exploration

## Solution 2.3:

► 3 resources:

| t | $U_t$           | $T_t$ | $S_t$     |
|---|-----------------|-------|-----------|
| 0 | v1 v2 v6 v8 v10 |       | v1 v2 v6  |
| 1 | v8 v10 v3 v7    |       | v8 v10 v3 |
| 2 | v7 v4 v9 v11    |       | v7 v4 v9  |
| 3 | v5 v11          |       | v5 v11    |
| 4 |                 |       |           |

#### Design space exploration

## Solution 2.3:

▶ 2 resources:

| t | $U_{t,k}$       | $T_{t,k}$ | $S_{t,k}$ |
|---|-----------------|-----------|-----------|
| 0 | v1 v2 v6 v8 v10 |           | v1 v2     |
| 1 | v6 v8 v10 v3    |           | v3 v6     |
| 2 | v8 v10 v4 v7    |           | v4 v8     |
| 3 | v7 v10 v9 v5    |           | v5 v10    |
| 4 | v7 v9 v11       |           | v7 v9     |
| 5 | v11             |           | v11       |
| 6 |                 |           |           |

Z

#### Design space exploration

#### Solution 2.3:



- First we have to consider the set of all possible solutions (L, c). Our lower and upper bounds help us to vastly reduce the amount of solutions that we have to consider.
- ▶ For each  $c \in \{1, 2, 3\}$  we determine the fitting latency L and obtain:
  - Solution 1: (11, 1)
  - Solution 2: (6, 2)
  - Solution 3: (4,3)
- ▶ Out of these solutions, we now determine the Pareto-optimal front.

#### Design space exploration

#### Requirements 2.3:

1

A solution  $a \in X$  weakly Pareto-dominates a solution  $b \in X$  denoted as  $a \leq b$ , if it is as least as good in all objectives, i.e.  $f_i(a) \leq f_i(b)$  for all  $1 \leq i \leq n$ . Solution a is better than b, denoted as  $a \prec b$ , iff  $(a \leq b) \land (b \nleq a)$ .

#### Solution 2.3:

1

Looking at out three solutions (11,1), (6,2), (4,3) it is clear that according to the above definition, no solution is better than the other. Meaning, we already have found the Pareto-optimal front!

#### Design space exploration



#### Design space exploration

#### Sidenote 9

If we had chosen  $1 \le c \le 5$ , the solutions would have been (11,1),(6,2),(4,3),(4,4),(4,5). It is obvious, that  $(4,3) \le (4,4)$  and  $(4,3) \le (4,5)$  but not the other way around. Hence the last two solutions are inferior compared to (4,3) and can be removed from the set of solutions. As conclusion, finding a tighter bound helps us to immediately reduce the solution space we have to explore. Though, it might not always be so easy to find these bounds in the general case.

26 / 45



#### Marked Graphs

**Input** a

# Task 3.1: Consider the following marked graph:

Figure 4: Marked Graph 1

At the input a a sequence of numbers is read in, with a(k) representing the k-th number. Determine the outgoing sequence b(k) as function of the input values.

Output b

28 / 45

#### Marked Graphs

#### Requirements 3.1:



#### Marked graphs:

- ▶ The token on the edges correspond to data that are stored in FIFO queues.
- ▶ A node is called actor, it is activated if on every input edge there is at least one token.
- An actor can fire if it is activated.
- ► The firing of a node removes or consumes from each input edge a token and adds a token to each output edge. The output token corresponds to the processed data.

#### Marked Graphs

#### Solution 3.1:



Figure 4: Marked Graph 1

- For b(1) it is clear that b(1) = a(1) + s
- When the + actor fires, it puts b(1) on both its outgoing edges, meaning b(1) is propagated back onto the looping edge as well!
- ► Hence, for b(2) we obtain b(2) = a(2) + b(1).
- In general: b(k) = a(k) + b(k-1)

Jürgen Mattheis

#### Marked Graphs

#### Task 3.2:



The initial mark with the value s is replaced by n marks  $s_1, ..., s_n$ . Determine a recursive formula for the output sequence b(k).

#### Marked Graphs

#### Solution 3.2:



- Note that only three of the n tokens are shown in the image above.
- Case 1: If n = 0 the output sequence is empty.
- Case 2: If  $k \le n$  we can describe the output as b(k) = a(k) + s(k). Since the initial tokens on the looping edge will not run out.
- ► Case 3: If k > n we can describe the output as b(k) = a(k) + b(k n). Since the initial tokens on the looping edge will run out. With each computation, we enqueue b(0), b(1)... to the looping edge, supplying the computation after all  $s_i$ , 1 < i < n were consumed.



## Task 4 I

Task 4.1:

## List Scheduling



Jürgen Mattheis Architecture Synthesis I University of Freiburg

34 / 45

## Task 4 II

#### List Scheduling



## Task 4 III

#### List Scheduling



## Task 4 IV

## List Scheduling

## Solution 4.2:



► *L* = 8

## Task 4 V

#### List Scheduling

#### Solution 4.3:



Multiplier because the critical path (1  $\rightarrow$  6  $\rightarrow$  8  $\rightarrow$  10  $\rightarrow$  11) is not delayed by adder but multiplier.

## Task 4 VI

## List Scheduling



## List Scheduling

# Solution 4.3:



| t | k                     | $U_{t,k}$   | $T_{t,k}$ | $S_{t,k}$ |
|---|-----------------------|-------------|-----------|-----------|
| 0 | $r_1$                 | v1 v2 v3 v4 | -         | v1 v2     |
|   | r <sub>2</sub>        | v5          | -         | v5        |
| 1 | $r_1$                 | v3 v4       | -         | v3 v4     |
|   | r <sub>2</sub>        | v6          | v5        | v6        |
| 2 | $r_1$                 | v7          | -         | v7        |
|   | r <sub>2</sub>        | v9          | v6        | v9        |
| 3 | $r_1$                 | v8          | -         | v8        |
|   | r <sub>2</sub>        | -           | v9        | -         |
| 4 | $r_1$                 | v10         | -         | v10       |
|   | r <sub>2</sub>        | -           | -         | -         |
| 5 | $r_1$                 | -           | -         | -         |
|   | r <sub>2</sub>        | v11         | -         | v11       |
| 6 | $r_1$                 | -           | -         | -         |
|   | r <sub>2</sub>        | -           | v11       | -         |
| 7 | $r_1$                 |             |           |           |
|   | <i>r</i> <sub>2</sub> |             |           |           |
|   |                       |             |           |           |

## List Scheduling

## Solution 4.3:





Jürgen Mattheis

#### List Scheduling





## List Scheduling

# Solution 4.4:



| t | k                     | $U_{t,k}$   | $T_{t,k}$ | $S_{t,k}$   |
|---|-----------------------|-------------|-----------|-------------|
| 0 | $r_1$                 | v1 v2 v3 v4 | -         | v1 v2 v3 v4 |
|   | r <sub>2</sub>        | v5          | -         | v5          |
| 1 | $r_1$                 | v7          | -         | v7          |
|   | r <sub>2</sub>        | v6          | v5        | v6          |
| 2 | $r_1$                 | -           | -         | -           |
|   | r <sub>2</sub>        | v9          | v6        | v9          |
| 3 | $r_1$                 | v8          | -         | v8          |
|   | r <sub>2</sub>        | -           | v9        | -           |
| 4 | <i>r</i> <sub>1</sub> | v10         | -         | v10         |
|   | r <sub>2</sub>        | -           | -         | -           |
| 5 | $r_1$                 | -           | -         | -           |
|   | r <sub>2</sub>        | v11         | -         | v11         |
| 6 | $r_1$                 | -           | -         | -           |
|   | r <sub>2</sub>        | -           | v11       | -           |
| 7 | <i>r</i> <sub>1</sub> |             |           |             |
|   | r <sub>2</sub>        |             |           |             |
|   |                       |             |           |             |

## Task 4 I

## List Scheduling



Jürgen Mattheis Architecture Synthesis I University of Freiburg

44 / 45

## Task 4 II

## List Scheduling

## Solution 4.4:

