Binomial Probability Distribution (discrete)

$$X \sim B(n, p)$$

$$f(x) = P(X = x) = \binom{n}{x} p^x (1 - p)^{n - x}$$
$$\binom{a}{b} = \frac{a!}{b!(a - b)!}$$
$$E[X] = \mu = np$$
$$Var(X) = \sigma^2 = np(1 - p)$$

Notation in book and Python

Book	Python	
n	n	(total number of "draws")
p	p	(probability of success in each event)
X	k	(observed number of success'es, out of n possible)

Python Functions in scipy.stats.binom

- rvs(n, p, size=...): Random variates
- pmf(k, n, p): Probability mass function (book: f(x))
- cdf(k, n, p): Cumulative distribution function (book: F(x))
- ppf(q, n, p): Percent-point function (quantile)
- mean(n, p): Mean
- var(n, p): Variance
- std(n, p): Standard deviation

Hypergeometric Distribution (discrete)

$$X \sim H(n, a, N)$$

$$f(x) = P(X = x) = \frac{\binom{a}{x} \binom{N-a}{n-x}}{\binom{N}{n}}$$
$$E[X] = \mu = n \cdot \frac{a}{N}$$

$\operatorname{Var}(X) = \sigma^2 = n \cdot \frac{a}{N} \cdot \frac{N-a}{N} \cdot \frac{N-n}{N-1}$

Notation in Book and Python

Book	Python	
N	M	(total number of objects)
a	n	(total number of success objects)
n	N	(total number of "draws")
x	k	(observed number of success'es)

Python Functions in scipy.stats.hypergeom

- rvs(M, n, N, size=...): Random variates
- pmf(k, M, n, N): Probability mass function (book: f(x))
- cdf(k, M, n, N): Cumulative distribution function (book: F(x))
- ppf(q, M, n, N): Percent-point function (quantile)
- mean(M, n, N): Mean
- var(M, n, N): Variance
- std(M, n, N): Standard deviation

Poisson Distribution (discrete)

$$X \sim \text{Po}(\lambda)$$

$$f(x) = P(X = x) = \frac{\lambda^x}{x!}e^{-\lambda}$$

$$E[X] = \mu = \lambda$$

$$Var(X) = \sigma^2 = \lambda$$

Notation in Book and Python

	Book	Python	
	λ	mu	(average rate)
Ì	x	k	(observed number of events)

Python Functions in scipy.stats.poisson

- rvs(mu, size=...): Random variates
- pmf(k, mu): Probability mass function (book: f(x))
- cdf(k, mu): Cumulative distribution function (book: F(x))
- ppf(q, mu): Percent-point function (quantile)
- mean(mu): Mean
- var(mu): Variance
- std(mu): Standard deviation

Normal Distribution (continuous)

$$X \sim \mathcal{N}(\mu, \sigma^2)$$

$$f(x) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right)$$

$$E[X] = \mu$$

$$Var(X) = \sigma^2$$

Notation in Book and Python

Book	Python	
μ	loc	(mean)
σ^2	scale	(std deviation)
x	x	(observed value)

Python Functions in scipy.stats.norm

- rvs(loc, scale, size=...): Random variates
- pdf(x, loc, scale): Probability density function (book: f(x))
- cdf(x, loc, scale): Cumulative distribution function (book: F(x))
- ppf(q, loc, scale): Percent-point function (quantile)
- mean(loc, scale): Mean
- var(loc, scale): Variance
- std(loc, scale): Standard deviation

Uniform Distribution (continuous)

$$X \sim U(\alpha, \beta)$$

$$f(x) = \begin{cases} \frac{1}{\beta - \alpha} & \alpha \le x \le \beta \\ 0 & \text{otherwise} \end{cases}$$

$$E[X] = \mu = \frac{\alpha + \beta}{2}$$

$$Var(X) = \sigma^2 = \frac{(\beta - \alpha)^2}{12}$$

Notation in Book and Python

Book	Python	
α	loc	(lower bound)
β	loc + scale	(upper bound)
x	x	(oberserved value)

Python Functions in scipy.stats.uniform

- rvs(loc, scale, size=...): Random variates
- pdf(x, loc, scale): Probability density function (book: f(x))
- cdf(x, loc, scale): Cumulative distribution function (book: F(x))
- ppf(q, loc, scale): Percent-point function (quantile)
- mean(loc, scale): Mean
- var(loc, scale): Variance
- std(loc, scale): Standard deviation

Exponential Distribution (continuous)

$$X \sim \text{Exp}(\lambda)$$

$$f(x) = \begin{cases} \lambda e^{-\lambda x} & x \ge 0\\ 0 & x < 0 \end{cases}$$

$$E[X] = \mu = \frac{1}{\lambda}$$

$$\operatorname{Var}(X) = \sigma^2 = \frac{1}{\lambda^2}$$

Notation in Book and Python

Book	Python		
λ	1/scale	(rate)	
	loc	(only use to shift x-axis)	
$\mu = 1/\lambda$	scale	(average waiting time)	
x	x	(observed value/waiting time between events)	

Use: loc = 0 and $scale = 1/\lambda$ or $scale = \mu$

Python Functions in scipy.stats.expon

- rvs(scale, size=...): Random variates
- pdf(x, scale): Probability density function (book: f(x))
- cdf(x, scale): Cumulative distribution function (book: F(x))
- ppf(q, scale): Percent-point function (quantile)
- mean(scale): Mean
- var(scale): Variance
- std(scale): Standard deviation

Lognormal Distribution (continuous)

$$X \sim LN(\alpha, \beta)$$

$$f(x) = \begin{cases} \frac{1}{x\sqrt{2\pi\beta^2}} \exp\left(-\frac{(\ln(x) - \alpha)^2}{2\beta^2}\right) & x > 0\\ 0 & x \le 0 \end{cases}$$
$$E[X] = e^{\alpha + \frac{\beta^2}{2}}$$

$$E[X] = e^{\alpha + \frac{\beta^2}{2}}$$

$$Var(X) = \left(e^{\beta^2} - 1\right)e^{2\alpha + \beta^2}$$

Notation in Book and Python

Book	Python	
α		$(\text{mean of } \ln(X))$
β	s	(std of ln(X))
	loc	(only use to shift x-axis)
$\exp(\alpha)$	scale	
x	x	(observed value)

Use: loc = 0, $scale = exp(\alpha)$ and $s = \beta$

Python Functions in scipy.stats.lognorm

- rvs(s, loc, scale, size=...): Random variates (s corresponds to β)
- pdf(x, s, loc, scale): Probability density function (book: f(x))
- cdf(x, s, loc, scale): Cumulative distribution function (book: F(x))
- ppf(q, s, loc, scale): Percent-point function (quantile)
- mean(s, loc, scale): Mean
- var(s, loc, scale): Variance
- std(s, loc, scale): Standard deviation

t-Distribution (continuous)

$$X \sim t(\nu)$$

$$f(x) = \frac{\Gamma\left(\frac{\nu+1}{2}\right)}{\sqrt{\nu\pi}\Gamma\left(\frac{\nu}{2}\right)} \left(1 + \frac{x^2}{\nu}\right)^{-\frac{\nu+1}{2}}$$

Notation in Book and Python

Book	Python	
ν	df	(degrees of freedom)
x	x	(observed value)

Python Functions in scipy.stats.t

• rvs(df, size=...): Random variates

• pdf(x, df): Probability density function (book: f(x))

• cdf(x, df): Cumulative distribution function (book: F(x))

• ppf(q, df): Percent-point function (quantile)

• mean(df): Mean

• var(df): Variance

• std(df): Standard deviation

F-Distribution (continuous)

$$X \sim F(\nu_1, \nu_2)$$

(see book def 2.95)

Notation in Book and Python

Book	Python	
ν_1	dfn	(numerator df)
ν_2	dfd	(denominator df)
x	x	(observed value)

Python Functions in scipy.stats.f

- rvs(dfn, dfd, size=...): Random variates
- pdf(x, dfn, dfd): Probability density function (book: f(x))
- cdf(x, dfn, dfd): Cumulative distribution function (book: F(x))
- ppf(q, dfn, dfd): Percent-point function (quantile)
- mean(dfn, dfd): Mean
- var(dfn, dfd): Variance
- std(dfn, dfd): Standard deviation

Chi-Square Distribution (continuous)

$$X \sim \chi^2(\nu)$$

$$f(x) = \frac{1}{2^{\nu/2}\Gamma(\nu/2)} x^{\frac{\nu}{2} - 1} e^{-x/2}, \quad x \ge 0$$

Notation in Book and Python

Book	Python	
ν	df	(degrees of freedom)
x	x	(observed value)

Python Functions in scipy.stats.chi2

• rvs(df, size=...): Random variates

• pdf(x, df): Probability density function (book: f(x))

• cdf(x, df): Cumulative distribution function (book: F(x))

• ppf(q, df): Percent-point function (quantile)

• mean(df): Mean

• var(df): Variance

• std(df): Standard deviation