MATH 22A: Vector Calculus and Linear Algebra

Problem Set 3

Due: Wednesday, September 27, 2023 12pm

Denny Cao

Collaborators

- May Ng
- Nina Khera
- Vivian Hui

§1 Computational Problems

Question 1.1. Write the solution set of the homogeneous system below in parametric vector form.

$$x_1 + 3x_2 - 5x_3 = 0$$

$$x_1 + 4x_2 - 8x_3 = 0$$

$$-3x_1 - 7x_2 + 9x_3 = 0$$

Solution

We can represent the system as an augmented matrix:

$$\begin{bmatrix} 1 & 3 & -5 & 0 \\ 1 & 4 & -8 & 0 \\ -3 & -7 & 9 & 0 \end{bmatrix}$$

$$\sim R_2 - R_1 \to R_2, R_3 + 3R_1 \to R_3.$$

$$\begin{bmatrix} 1 & 3 & -5 & 0 \\ 0 & 1 & -3 & 0 \\ 0 & 2 & -6 & 0 \end{bmatrix}$$

$$\sim R_3 - 2R_2 \rightarrow R_3$$
.

$$\begin{bmatrix} 1 & 3 & -5 & 0 \\ 0 & 1 & -3 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

$$\sim R_1 - 3R_2 \rightarrow R_1$$
.

$$\begin{bmatrix}
1 & 0 & 4 & 0 \\
0 & 1 & -3 & 0 \\
0 & 0 & 0 & 0
\end{bmatrix}$$

Thus, the solution set of the homogeneous system in parametric form is:

$$x = x_3 \begin{pmatrix} -4 \\ 3 \\ 1 \end{pmatrix}.$$

Question 1.2. Describe all solutions in parametric form to the equation Ax = 0 with A given below.

$$\begin{bmatrix} 1 & 3 & 0 & -4 \\ 2 & 6 & 0 & -8 \end{bmatrix}$$

Solution

We can represent as an augmented matrix:

$$\begin{bmatrix} 1 & 3 & 0 & -4 & 0 \\ 2 & 6 & 0 & -8 & 0 \end{bmatrix}$$

$$\sim R_2 - 2R_1 \rightarrow R_2$$
.

$$\begin{bmatrix} 1 & 3 & 0 & -4 & 0 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

Thus, the solution set in parametric form is:

$$\begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix} = x_1 \begin{pmatrix} 0 \\ -3 \\ 0 \\ 4 \end{pmatrix} + x_2 \begin{pmatrix} 0 \\ 1 \\ 0 \\ 0 \end{pmatrix} + x_3 \begin{pmatrix} 0 \\ 0 \\ 1 \\ 0 \end{pmatrix} + x_4 \begin{pmatrix} 0 \\ 0 \\ 0 \\ 1 \end{pmatrix}$$

Question 1.3. Construct a 3×3 non-zero matrix A such that the vector below is a non-trivial solution to the equation Ax = 0.

$$\begin{bmatrix} 1 \\ -2 \\ 1 \end{bmatrix}$$

Solution
Let
$$A = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{32} \\ a_{31} & a_{32} & a_{33} \end{bmatrix}$$
. Then, $\begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{32} \\ a_{31} & a_{32} & a_{33} \end{bmatrix} \begin{bmatrix} 1 \\ -2 \\ 1 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$. Multiplying A and $\begin{bmatrix} 1 \\ -2 \\ 1 \end{bmatrix}$ gives the matrix $\begin{bmatrix} a_{11} - 2a_{12} + a_{13} \\ a_{21} - 2a_{22} + a_{23} \\ a_{31} - 2a_{32} + a_{33} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$.

With $A = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix}$, the equation is true.

With
$$A = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix}$$
, the equation is true.

Question 1.4. Suppose that A is a 3×3 matrix and y is a vector in \mathbb{R}^3 such that the equation Ax = y does not have a solution. Is there a vector $v \in \mathbb{R}^3$ such that the equation Ax = v has a unique solution? Make sure to explain your answer.

Solution

Claim — There does not exist a vector $v \in \mathbb{R}^3$ such that the equation Ax = v has a unique solution.

Proof by contradiction. As there exists a vector $y \in \mathbb{R}^3$ such that Ax = y does not have a solution, by Theorem 2 (Uniqueness and Existence Theorem) in Linear Algebra and Its Applications, the right most column of the augmented matrix is a pivot column, meaning

in A, there exists a zero row. Therefore, as A is a 3×3 matrix, there exists one column that is not a pivot column.

We will now show by contradiction that there does not exist a vector $\mathbf{v} \in \mathbb{R}^3$ such that the equation $A\mathbf{x} = \mathbf{v}$ has a unique solution. Assume for purposes of contradiction that the opposite is true—that there exists a vector $\mathbf{v} \in \mathbb{R}^3$ such that the equation $A\mathbf{x} = \mathbf{v}$ has a unique solution. If $A\mathbf{v}$ has a unique solution, then the reduced row echelon form of A has no free columns, as otherwise there would be free variables for the system which would make the system have infinitely many solutions. Thus, all columns of A must be pivot columns. X

We reach a contradiction, as there exists a column that is not a pivot column if Ax = y does not have a unique solution. Thus, the opposite is true; there does not exist a vector $v \in \mathbb{R}^3$ such that the equation Ax = v has a unique solution.

Question 1.5. Let A be an $m \times n$ matrix, and let \boldsymbol{u} and \boldsymbol{v} be vectors in \mathbb{R}^3 such that $A\boldsymbol{u} = 0$ and $A\boldsymbol{v} = 0$. Explain why $A(c\boldsymbol{u} + d\boldsymbol{v}) = 0$ for any pair of real numbers c and d.

Solution

Proof. $c(A\mathbf{u}) = c0 = 0$, as any scalar of the zero vector is the zero vector. The same is true for $d(A\mathbf{v}) = d0 = 0$. Thus, $c(A\mathbf{u}) + d(A\mathbf{v}) = 0 + 0 = 0$. By Theorem 5 b. in Linear Algebra and Its Applications, $c(A\mathbf{u}) = A(c\mathbf{u})$ and $d(A\mathbf{v}) = A(d\mathbf{v})$. Thus, $c(A\mathbf{u}) + d(A\mathbf{v}) = A(c\mathbf{u}) + A(d\mathbf{v}) = 0$. By Theorem 5 a. in Linear Algebra and Its Applications, $A(c\mathbf{u}) + A(d\mathbf{v}) = A(c\mathbf{u} + d\mathbf{v}) = 0$.

Question 1.6. Determine if the vectors below are linearly independent.

$$\begin{bmatrix} 0 \\ 0 \\ 2 \end{bmatrix}, \begin{bmatrix} 0 \\ 5 \\ -8 \end{bmatrix}, \begin{bmatrix} -3 \\ 4 \\ 1 \end{bmatrix}$$

Solution

Claim — The vectors are linearly independent.

Proof. To determine if the vectors are linearly independent, we can see if Ax = 0 has only the trivial solution, where the columns of A are the vectors.

$$\begin{bmatrix} 0 & 0 & -3 & 0 \\ 0 & 5 & 4 & 0 \\ 2 & -8 & 1 & 0 \end{bmatrix}$$

 $\sim R_3 \leftrightarrow R_1$.

$$\begin{bmatrix} 2 & -8 & 1 & 0 \\ 0 & 5 & 4 & 0 \\ 0 & 0 & -3 & 0 \end{bmatrix}$$

 $\sim 1/2R_1 \to R_1, -1/3R_3 \to R_3, 1/5R_2 \to R_2.$

$$\begin{bmatrix} 1 & -4 & \frac{1}{2} & 0 \\ 0 & 1 & \frac{4}{5} & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}$$

$$\sim R_2 - 4/5R_3 \rightarrow R_2, R_1 - 1/2R_3 \rightarrow R_1.$$

$$\begin{bmatrix} 1 & -4 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}$$

$$\sim 4R_2 + R_1 \to R_1.$$

$$\begin{bmatrix}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0
\end{bmatrix}$$

Thus, the solution is $\boldsymbol{x} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$ —the trivial solution. Therefore, the vectors are linearly independent.

Question 1.7. Determine if the columns of the matrix depicted below form a linearly independent set.

$$\begin{bmatrix} -4 & -3 & 0 \\ 0 & -1 & 4 \\ 1 & 0 & 3 \\ 5 & 4 & 6 \end{bmatrix}$$

Solution

Claim — The columns form a linearly independent set.

Proof. To determine if the columns of the matrix are linearly independent, we can see if Ax = 0 has only the trivial solution, where A is the matrix depicted.

$$\begin{bmatrix}
-4 & -3 & 0 & 0 \\
0 & -1 & 4 & 0 \\
1 & 0 & 3 & 0 \\
5 & 4 & 6 & 0
\end{bmatrix}$$

 $\sim R_3 \leftrightarrow R_1$.

$$\begin{bmatrix} 1 & 0 & 3 & 0 \\ 0 & -1 & 4 & 0 \\ -4 & -3 & 0 & 0 \\ 5 & 4 & 6 & 0 \end{bmatrix}$$

 $\sim 4R_1 + R_3 \to R_3, R_4 - 5R_1 \to R_4.$

$$\begin{bmatrix}
1 & 0 & 3 & 0 \\
0 & -1 & 4 & 0 \\
0 & -3 & 12 & 0 \\
0 & 4 & -9 & 0
\end{bmatrix}$$

$$-R_2 \to R_2, -1/4R_3 \to R_3.$$

$$\begin{bmatrix} 1 & 0 & 3 & 0 \\ 0 & 1 & -4 & 0 \\ 0 & 1 & -4 & 0 \\ 0 & 4 & -9 & 0 \end{bmatrix}$$

$$\sim R_2 - R_3 \to R_3.$$

$$\begin{bmatrix} 1 & 0 & 3 & 0 \\ 0 & 1 & -4 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 4 & -9 & 0 \end{bmatrix}$$

$$\sim R_3 \leftrightarrow R_4$$
.

$$\begin{bmatrix} 1 & 0 & 3 & 0 \\ 0 & 1 & -4 & 0 \\ 0 & 4 & -9 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

$$\sim 4R_2 - R_3 \to R_3.$$

$$\begin{bmatrix} 1 & 0 & 3 & 0 \\ 0 & 1 & -4 & 0 \\ 0 & 0 & 7 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

$$\sim 1/7R_3 \rightarrow R_3$$
.

$$\begin{bmatrix} 1 & 0 & 3 & 0 \\ 0 & 1 & -4 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

$$\sim R_1 - 3R_3 \to R_1, R_2 + 4R_3 \to R_2.$$

$$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

Thus, the solution is $\boldsymbol{x} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$ —the trivial solution. Therefore, the columns are linearly independent.

Question 1.8. For what values of \vec{h} is \vec{v}_3 depicted below in Span $\{\vec{v}_1, \vec{v}_2\}$, and for what values of h are the three vectors depicted below linearly independent?

$$\begin{bmatrix} 2 \\ -4 \\ 1 \end{bmatrix}, \begin{bmatrix} -6 \\ 7 \\ -3 \end{bmatrix}, \begin{bmatrix} 8 \\ h \\ 4 \end{bmatrix}$$

Solution

Claim — For all real numbers h, $\vec{v_3}$ is in Span $\{\vec{v_1}, \vec{v_2}\}$.

Proof. A vector is in the span of two other vectors if it is a linear combination of the two. If there is a solution to the system $A\mathbf{x} = \vec{v_3}$, where the columns of A are $\vec{v_1}$ and $\vec{v_2}$, then $\vec{v_3}$ is in Span $\{\vec{v_1}, \vec{v_2}\}$.

$$\begin{bmatrix} 2 & -6 & 8 \\ -4 & 7 & h \\ 1 & -3 & 4 \end{bmatrix}$$

$$\sim 1/2R_1 \rightarrow R_1$$
.

$$\begin{bmatrix} 1 & -3 & | & 4 \\ -4 & 7 & | & h \\ 1 & -3 & | & 4 \end{bmatrix}$$

$$\sim R_3 - R_1 \rightarrow R_1$$
.

$$\begin{bmatrix} 1 & -3 & | & 4 \\ -4 & 7 & | & h \\ 0 & 0 & | & 0 \end{bmatrix}$$

$$\sim R_2 + 4R_1 \rightarrow R_2$$
.

$$\begin{bmatrix} 1 & -3 & 4 \\ 0 & -5 & h+16 \\ 0 & 0 & 0 \end{bmatrix}$$

$$\sim -1/5R_2 \rightarrow R_2$$
.

$$\begin{bmatrix} 1 & -3 & 4 \\ 0 & 1 & \frac{-16-h}{5} \\ 0 & 0 & 0 \end{bmatrix}$$

$$\sim R_1 + 3R_2 \rightarrow R_1$$
.

$$\begin{bmatrix} 1 & 0 & \frac{-28-3h}{5} \\ 0 & 1 & \frac{-16-h}{5} \\ 0 & 0 & 0 \end{bmatrix}$$

There is a non-trivial solution when $h \neq -16$ and when $h \neq -\frac{28}{3}$. As it is impossible for h to take on two different values, there is always a non-trivial solution for all real numbers h. Thus, for all real numbers h, $\vec{v_3}$ is in Span $\{\vec{v_1}, \vec{v_2}\}$.

Claim — There are no values of h that will make the three vectors linearly independent.

Proof. Vectors are linearly independent if $Ax = \mathbf{0}$ has only the trivial solution, where the columns of A are the vectors $\vec{v_1}, \vec{v_2}, \vec{v_3}$.

$$\begin{bmatrix} 2 & -6 & 8 & 0 \\ -4 & 7 & h & 0 \\ 1 & -3 & 4 & 0 \end{bmatrix}$$

$$\sim 1/2R_1 \rightarrow R_1$$
.

$$\begin{bmatrix} 1 & -3 & 4 & 0 \\ -4 & 7 & h & 0 \\ 1 & -3 & 4 & 0 \end{bmatrix}$$

$$\sim R_3 - R_1 \rightarrow R_3$$
.

$$\begin{bmatrix} 1 & -3 & 4 & 0 \\ -4 & 7 & h & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

$$\sim 4R_1 + R_2 \rightarrow R_2$$
.

$$\begin{bmatrix} 1 & -3 & 4 & 0 \\ 0 & -5 & h+16 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

$$\sim -1/5R_2 \rightarrow R_2$$
.

$$\begin{bmatrix} 1 & -3 & 4 & 0 \\ 0 & 1 & -\frac{h+16}{5} & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

$$\sim 3R_2 + R_1 \rightarrow R_1$$
.

$$\begin{bmatrix} 1 & 0 & \frac{-28-3h}{5} & 0 \\ 0 & 1 & -\frac{h+16}{6} & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

As x_1 and x_2 are basic variables and x_3 is free, each non-zero value of x_3 determines a non-trivial solution of $A\mathbf{x} = \mathbf{0}$. Thus, for no values of h are $\vec{v_1}, \vec{v_2}$, and $\vec{v_3}$ linearly independent; they are linearly dependent for all h.

Question 1.9. How many pivot columns must a 5×7 matrix have if its columns span \mathbb{R}^5 ?

Solution

Claim — A 5×7 matrix must have 5 pivot columns if its columns span \mathbb{R}^5 .

Proof. By Theorem 4 in Linear Algebra and Its Applications, if the columns of a matrix A of size $m \times n$ spans \mathbb{R}^m , then it must also be the case that A has a pivot position in every row. With a 5×7 matrix, to span \mathbb{R}^5 , it must be the case that A has a pivot position in all 5 rows (5 pivot columns).

Question 1.10. For the matrix A below: Without doing any computation, first explain why the columns of A have to be linearly dependent, and then why the equation $A\vec{x} = \vec{0}$ has infinitely many solutions. Having done that, delete as few columns as possible from A to depict a matrix B for which the equation $B\vec{x} = \vec{0}$ has only the trivial solution.

$$A = \begin{bmatrix} 12 & 10 & -6 & -3 & 7 & 10 \\ -7 & -6 & 4 & 7 & -9 & 5 \\ 9 & 9 & -9 & -5 & 5 & -1 \\ -4 & -3 & 1 & 6 & -8 & 9 \\ 8 & 7 & -5 & -9 & 11 & -8 \end{bmatrix}$$

Solution

The columns of A have to be linearly dependent, as by Theorem 8 in Linear Algebra and Its Applications; as there are more columns (more vectors) than there are rows (entries in each vector), the columns are linearly dependent.

The equation $A\vec{x} = \vec{0}$ has infinitely many solutions because there will be at least 1 free variable, as there is one more column than rows. This means that each non-zero value of the free variable will determine the solution to $A\vec{x} = \vec{0}$, and thus there are infinitely

many solutions.

Using a reduced row echelon form calculator with the augmented matrix for $A\vec{x} = \vec{0}$, we obtain:

$$\begin{bmatrix} 1 & 0 & 2 & 0 & 2 & 0 & 0 \\ 0 & 1 & -3 & 0 & -2 & 0 & 0 \\ 0 & 0 & 0 & 1 & -1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

To form a matrix B such that the only solution for $B\vec{x} = \vec{0}$ is the trivial solution, we must remove the columns that are not pivot columns in A, columns 3 and 5. Thus:

$$B = \begin{bmatrix} 12 & -6 & -3 & 10 \\ -7 & 4 & 7 & 5 \\ 9 & -9 & -5 & 1 \\ -4 & 1 & 6 & 9 \\ 8 & -5 & -9 & -8 \end{bmatrix}$$

as the augmented matrix for $B\vec{x} = \vec{0}$ can be reduced to

$$\begin{bmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

which means the only solution of the system is the trivial solution.

§2 Proof Problems

Question 2.1. Prove that given any five vectors $\vec{v_1}, \vec{v_2}, \vec{v_3}, \vec{v_4}, \vec{v_5} \in \mathbb{R}^3$ there exist real numbers c_1, c_2, c_3, c_4, c_5 not all zero such that both

$$c_1 \vec{v_1} + c_2 \vec{v_2} + c_3 \vec{v_3} + c_4 \vec{v_4} + c_5 \vec{v_5} = \vec{0}$$
$$c_1 + c_2 + c_3 + c_4 + c_5 = 0$$

are true.

Solution

Proof. By Theorem 8 in Linear Algebra and Its Applications, as there are more vectors than there are entries in each vector (5 > 3), the vectors are linearly dependent. We can express the equation $c_1\vec{v_1} + c_2\vec{v_2} + c_3\vec{v_3} + c_4\vec{v_4} + c_5\vec{v_5} = \vec{0}$ in the form $A\mathbf{c} = \mathbf{0}$, where

the columns of A are the vectors v_1, v_2, v_3, v_4 , and v_5 , and c is the vector $\begin{pmatrix} c_1 \\ c_2 \\ c_3 \\ c_4 \\ c_5 \end{pmatrix}$. Let v_{ij}

denote the *i*th entry of the *j*th vector. Then, we can represent Ac = 0 can be expressed as an augmented matrix:

$$\begin{bmatrix} v_{11} & v_{12} & v_{13} & v_{14} & v_{15} & 0 \\ v_{21} & v_{22} & v_{23} & v_{24} & v_{25} & 0 \\ v_{31} & v_{32} & v_{33} & v_{34} & v_{35} & 0 \end{bmatrix}$$

The equation $c_1 + c_2 + c_3 + c_4 + c_5 = 0$ can be added as a row to the augmented matrix,

where
$$\vec{v} = \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \\ 1 \end{pmatrix}$$
.

$$\begin{bmatrix} v_{11} & v_{12} & v_{13} & v_{14} & v_{15} & 0 \\ v_{21} & v_{22} & v_{23} & v_{24} & v_{25} & 0 \\ v_{31} & v_{32} & v_{33} & v_{34} & v_{35} & 0 \\ 1 & 1 & 1 & 1 & 1 & 0 \end{bmatrix}$$

As there are only rows for five columns, by Theorem 8 of Linear Algebra and Its Applications, the set of vectors are linearly dependent, and thus there exists a non-trivial solution for \mathbf{c} for the system. Thus, for any five vectors $\vec{v_1}, \vec{v_2}, \vec{v_3}, \vec{v_4}, \vec{v_5} \in \mathbb{R}^3$ there exist real numbers c_1, c_2, c_3, c_4, c_5 not all zero such that both equations are true.

Question 2.2. Let A be a 3×4 matrix and $\vec{b_1}, \vec{b_2}$ be two vectors in \mathbb{R}^3 such that both matrix equations $A\vec{x} = \vec{b_1}$ and $A\vec{y} = \vec{b_2}$ are consistent. Prove that there exists a vector $\vec{p} \in \mathbb{R}^4$ such that the set of solutions \vec{y} to the second equation is the set of all vectors of the form $\vec{x} + \vec{p}$ where \vec{x} is any solution of the first equation.

Solution

Proof. Let $\vec{x'}$ be an element in the set of solutions \vec{x} and $\vec{y'}$ be an element in the set of solutions \vec{y} . Let $\vec{p} = \vec{y'} - \vec{x'}$. Then, $A\vec{p} = A(\vec{y'} - \vec{x'}) = A\vec{y'} - A\vec{x'}$. As $A\vec{y} = \vec{b_2}$ and $A\vec{x} = \vec{b_1}$, A multiplied by all elements in the set of solutions \vec{y} will be $\vec{b_2}$ and \vec{A} multiplied by all elements in the set of solutions \vec{x} will be $\vec{b_1}$. Thus, $\vec{y'} = \vec{b_2}$ and $\vec{x'} = \vec{b_1}$.

It follows that $A\vec{p}=A\vec{y'}-A\vec{x'}=\vec{b_2}-\vec{b_1}$. Thus, $A\vec{p}+A\vec{x}=\vec{b_2}-\vec{b_1}+\vec{b_1}=\vec{b_2}=A\vec{y}$. We can rewrite as: $A(\vec{p}+\vec{x})=A\vec{y}$. We can multiply both sides by the inverse of A: $A^{-1}A(\vec{p}+\vec{x})=A^{-1}A\vec{y}$. By definition of inverse, $A^{-1}A=I$. By definition of identity matrix, $I(\vec{p}+\vec{x})=\vec{p}+\vec{x}$ and $I\vec{y}=\vec{y}$. Thus, $\vec{p}+\vec{x}=\vec{y}$.

We reach the conclusion that, for all elements \vec{a} in the set of solutions \vec{y} , there exists, for all elements \vec{b} in the set of solutions \vec{x} , a vector p that is the difference between a solution of \vec{y} and a solution of \vec{x} such that $\vec{b} + \vec{p} = \vec{a}$.

Question 2.3 (Injections, Surjections, Bijections). For each of the following functions, determine (with proof) whether it is injective and/or surjective. If it is bijective, write down its inverse function.

- (a) Let $f: \mathbb{Z} \to \mathbb{Z}$ be given by f(n) = 2n + 1
- (b) Let $f: \mathbb{R}\setminus\{1\} \to \mathbb{R}\setminus\{1\}$ be given by $f(x) = \left(\frac{x+1}{x-1}\right)^3$
- (c) Let $f: \mathbb{Z} \to \mathbb{Z}^2$ be given by f(k) = (2k, k+3)

Solution

(a)

Claim — f is injective.

Proof by contrapositive. Suppose $x_1, x_2 \in \mathbb{Z}$ and $f(x_1) = f(x_2)$. Thus:

$$2x_1 + 1 = 2x_2 + 1$$
$$2x_1 = 2x_2$$
$$x_1 = x_2$$

As we have shown that $f(x_1) = f(x_2)$ if and only if $x_1 = x_2$, we have shown that f is injective.

Claim — f is not surjective.

Proof. Suppose y is an element in the codomain of f. Thus, y = 2n + 1. The value in the domain that maps to y is the value $\frac{y-1}{2}$. Let y = 2. Thus, the value in the domain must be $\frac{1}{2}$.

However, $\frac{1}{2} \notin \mathbb{Z}$. As we have shown that there exists a value in the codomain y such that there does not exist a value in the domain x such that f(x) = y, we have shown that f is not surjective.

Claim — f is injective.

(b) Proof by contrapositive. Suppose $x_1, x_2 \in \mathbb{R} \setminus \{1\}$ and $f(x_1) = f(x_2)$. Thus:

$$\left(\frac{x_1+1}{x_1-1}\right)^3 = \left(\frac{x_2+1}{x_2-1}\right)^3$$

$$\frac{x_1+1}{x_1-1} = \frac{x_2+1}{x_2-1}$$

$$(x_1-1)(x_2+1) = (x_1+1)(x_2-1), x_1 \neq 1, x_2 \neq 1$$

$$x_1x_2+x_1-x_2-1 = x_1x_2-x_1+x_2-1, x_1 \neq 1, x_2 \neq 1$$

$$2x_1 = 2x_2, x_1 \neq 1, x_2 \neq 1$$

$$x_1 = x_2, x_1 \neq 1, x_2 \neq 1$$

As x = 1 is not in the domain of f, we reach the conclusion that $x_1 = x_2$ on the domain of f. As we have shown that $f(x_1) = f(x_2)$ if and only if $x_1 = x_2$, we have shown that f is injective.

Claim — f is surjective.

Proof. Suppose y is an element in the codomain of f. We will show that there exists an x in the domain of f such that f(x) = y.

$$y = \left(\frac{x+1}{x-1}\right)^3$$

$$\sqrt[3]{y} = \frac{x+1}{x-1}$$

$$(x-1)\sqrt[3]{y} = x+1, x \neq 1$$

$$\begin{split} x\sqrt[3]{y} - \sqrt[3]{y} &= x + 1, x \neq 1 \\ x\sqrt[3]{y} - x &= 1 + \sqrt[3]{y}, x \neq 1 \\ x(\sqrt[3]{y} - 1) &= 1 + \sqrt[3]{y}, x \neq 1 \\ x &= \frac{\sqrt[3]{y} + 1}{\sqrt[3]{y} - 1}, x \neq 1, y \neq 1 \end{split}$$

As y=1 is not in the codomain, the case when $y \neq 1$ is not considered. When $x=1, \sqrt[3]{y}-1=\sqrt[3]{y}+1 \to -1=1$ which is false, and thus it is never the case that, for any y, x=1. Thus, the case when x=1 is not considered. Thus, for every y in the codomain of f, there exists a x in the domain, $x=\frac{\sqrt[3]{y}+1}{\sqrt[3]{y}-1}$, such that f(x)=y. Thus, f is surjective.

As f is injective and surjective, f is bijective. We can find the inverse of f:

$$y = \left(\frac{x+1}{x-1}\right)^3$$

Swap x and y to switch domain and range.

$$x = \left(\frac{y+1}{y-1}\right)^3$$

$$\sqrt[3]{x} = \left(\frac{y+1}{y-1}\right)$$

$$(y-1)\sqrt[3]{x} = y+1$$

$$y\sqrt[3]{x} - \sqrt[3]{x} = y+1$$

$$y\sqrt[3]{x} - y = 1 + \sqrt[3]{x}$$

$$y(\sqrt[3]{x} - 1) = 1 + \sqrt[3]{x}$$

$$y = \frac{\sqrt[3]{x} + 1}{\sqrt[3]{x} - 1}$$

Thus, the inverse function is $f^{-1}(x) = \frac{\sqrt[3]{x} + 1}{\sqrt[3]{x} - 1}$.

(c)

Claim — f is injective.

Proof by contrapositive. Suppose $x_1, x_2 \in \mathbb{Z}$ and $f(x_1) = f(x_2)$. Thus:

$$(2x_1, x_1 + 3) = (2x_2, x_2 + 3)$$

It follows that:

$$2x_1 = 2x_2$$
 $x_1 + 3 = x_2 + 3$
 $x_1 = x_2$ $x_1 = x_2$

As we have shown that $f(x_1) = f(x_2)$ if and only if $x_1 = x_2$, we have shown that f is injective.

Claim — f is not surjective.

Proof. Let y be an element in the codomain of f. We will show that there exists a y such that there does not exist a x in the domain such that f(x) = y.

As $y \in \mathbb{Z}^2$, y can be (1,2). However, f is defined as f(x) = (2x, x+3), meaning 1 = 2x and 2 = x+3. For the first element in the ordered pair, $x = \frac{1}{2}$. However, this will give $\frac{7}{2}$ as the second element in the ordered pair instead of 2. $x = \frac{1}{2}$ is also not in \mathbb{Z} , and thus the first element being 1 is not possible as well.

We have shown that there exists a y in the codomain of f such that there does not exist a x in the domain such that f(x) = y. Thus, f is not surjective.

Question 2.4 (Function Warm-Up). Let $f: S \to T$ and $g: T \to U$. For each of the following statements, either prove the statement or provide a very concrete and simple counterexample to show that it's false.

- (a) If f and g are surjections, then $g \circ f$ is a surjection.
- (b) If $g \circ f$ is injective, then f must be injective.
- (c) If $g \circ f$ is injective, then g must be injective.

Solution

(a)

Claim — The statement that, if f and g are surjections, then $g \circ f$ is a surjection is **true**.

Proof. As g is surjective, for all $u \in U$ there exists a corresponding $t \in T$ such that g(t) = u. As f is surjective, for all $t \in T$ there exists a corresponding $s \in S$ such that f(s) = t. Therefore, g(f(s)) = g(t) = u, meaning $g \circ f(s) = u$. We have shown that $g \circ f$ is a surjection, as we have shown that, for all values u in the range of $g \circ f$, U, there exists a corresponding value t in the domain, T, such that g(f(t)) = u.

(b)

Claim — The statement that, if $g \circ f$ is injective, then f must be injective is **true**.

Proof by contrapositive. The contrapositive of the statement is, if f is not injective, then $g \circ f$ is not injective. If f is not injective, then there exists $x_1, x_2 \in S$ such that $x_1 \neq x_2$ and $f(x_1) = f(x_2)$. Thus, $g(f(x_1)) = g(f(x_2))$, as the same value is being inputted into g.

 $g \circ f$ is not injective, as we have shown that there exists $x_1, x_2 \in S$ such that $x_1 \neq x_2$ and $g(f(x_1)) = g(f(x_2))$. As this statement is equivalent to the original, it is true that, if $g \circ f$ is injective, then f must be injective. \Box

(c)

Claim — The statement that, if $g \circ f$ is injective, then g must be injective is **false**.

Proof by counterexample. Let $S = \{0\}, T = \{1, 2\}, U = \{3\}$. Let $f : S \to T$ such that f(0) = 1, and $g : T \to U$ such that g(1) = 3 and g(2) = 3.

Then, $g \circ f$ is injective, as 0 is the only input and it maps to 3, and thus for all x_1, x_2 in the domain of $g \circ f - S - x_1 \neq x_2 \to f(x_1) \neq f(x_2)$. However, g is not injective, as there exists x_1, x_2 in the domain of g - T—such that $x_1 \neq x_2$ and $g(x_1) = g(x_2)$, as g(1) = g(2) = 3.

Question 2.5 (Equivalence Relations). For each of the following relations on the real numbers \mathbb{R} : If the relation is an equivalence relation, prove that it is by verifying the three axioms. Also give a complete (non-repetitive) list of the equivalence classes. If the relation is not an equivalence relation, identify by giving a counterexample which of the three axioms are not satisfied.

- (a) \sim_e is the relation on \mathbb{R} such that $\forall x, y \in \mathbb{R}, x \sim_e y \iff x y$ is even.
- (b) \sim_d is the relation on \mathbb{R} such that $\forall x, y \in \mathbb{R}, x \sim_d y \iff (x-y)^2 < 9$.
- (c) \sim_l is the relation on \mathbb{R}^2 such that $\forall (x_1, y_1), (x_2, y_2) \in \mathbb{R}^2, (x_1, y_1) \sim_l (x_2, y_2) \iff x_2 x_1 = 3(y_2 y_1).$

Solution

(a)

Claim — The relation \sim_e on \mathbb{R} is an equivalence relation.

Proof. To show that \sim_e is an equivalence relation, we must show that \sim_e is reflexive, symmetric, and transitive.

Claim — The relation \sim_e on \mathbb{R} is reflexive.

Subproof. We must show that, for all x, $x \sim_e x$, or x - x is even.

As x-x=0 and 2(0)=0, there exists a $c\in\mathbb{Z}$ such that 2c=0. Thus, by definition of even number, x-x=0 is even. Therefore, $x\sim_e x$ which means the relation \sim_e is reflexive.

Claim — The relation \sim_e on \mathbb{R} is symmetric.

Subproof. We must show that, for all $x, y \in \mathbb{R}$, $x \sim_e y \leftrightarrow y \sim_e x$, or x - y is even $\leftrightarrow y - x$ is even.

We will first show that $x \sim_e y \to y \sim_e x$. If x-y is even, then the difference of x and y can be represented by $2c, c \in \mathbb{Z}$. Thus, x-y=2c. We can multiply both sides by -1 to get the equation y-x=-2c. Let k=-c. Thus, as there exists a $k \in \mathbb{Z}$ such that y-x=2k, by definition of even number, y-x is even and thus $y \sim_e x$.

The same proof can be used to show $y \sim_e x \to x \sim_e y$. If y-x is even, then the difference of y and x can be represented by $2c, c \in \mathbb{Z}$. Thus, y-x=2c. We can multiply both sides by -1 to get the equation x-y=-2c. Let k=-c. Thus, as there exists a $k \in \mathbb{Z}$ such that x-y=2k, by definition of even number, x-y=2k is even and thus $x \sim_e y$. Thus, the relation $\sim_e x=2k$ is symmetric.

Claim — The relation \sim_e on \mathbb{R} is transitive.

Subproof. We must show that, $\forall a, b, c \in \mathbb{R} (a \sim_e b \land b \sim_e c \rightarrow a \sim_e c)$, or if a - b is even and b - c is even, then a - c is even.

If a-b is even, then the difference of a and b can be represented by $2k, k \in \mathbb{Z}$. If b-c is even, then the difference of b and c can be represented by $2d, d \in \mathbb{Z}$. Thus, a-b=2k and b-c=2d. It follows that b=a-2k. We substitute this value for b to get the equation a-2k-c=2d. Thus, a-c=2d+2k=2(d+k). Let d+k=t. Then, a-c=2t. As the difference of a and c can be represented as $2t, t \in \mathbb{Z}$, by definition of even number, a-c is even, and thus $a \sim_e c$. Thus, the relation \sim_e on \mathbb{R} is transitive.

As the relation \sim_e is reflexive, symmetric, and transitive, it is an equivalence relation.

The equivalence classes are:

- $\{2k \mid k \in \mathbb{Z}\}$
- $\{2k+1 \mid k \in \mathbb{Z}\}$

(b)

Claim — The relation \sim_d on \mathbb{R} is not an equivalence relation.

Proof by counterexample. To prove that a relation is not an equivalence relation, we show that it is not reflexive, symmetric, and transitive; it is sufficient to show that one property does not hold. We will show that \sim_d is not transitive, or that there exists $a,b,c \in \mathbb{R}$ such that $a \sim_d b \wedge b \sim_d c \wedge a \not\sim_d c$.

Let a=1, b=2, c=4. Then, $a \sim_d b$, as $(1-2)^2=1$, which is less than 9. $b \sim_d c$, as $(2-4)^2=4$, which is less than 9. However, $a \not\sim_d c$, as $(1-4)^2=9$, which is not less than 9. Thus, \sim_d is not transitive. As \sim_d is not transitive, it is not an equivalence relation.

Claim — The relation \sim_l on \mathbb{R}^2 is an equivalence relation.

(c) *Proof.* To show that \sim_e is an equivalence relation, we must show that \sim_e is reflexive, symmetric, and transitive.

Claim — The relation \sim_l on \mathbb{R}^2 is reflexive.

Subproof. We must show that, for all $(x_1, y_1) \in \mathbb{R}^2$, $(x_1, y_1) \sim_l (x_1 y_1)$, or that $x_1 - x_1 = 3(y_1 - y_1)$. We can simplify to 0 = 0, which is true. Therefore, $x \sim_l x$ which means that the relation \sim_l is reflexive.

Claim — The relation \sim_l on \mathbb{R}^2 is symmetric.

Subproof. We must show that, for all $(x_1, y_1), (x_2, y_2) \in \mathbb{R}^2, (x_1, y_1) \sim_l (x_2, y_2) \leftrightarrow (x_2, y_2) \sim_l (x_1, y_1)$, or that $x_2 - x_1 = 3(y_2 - y_1) \to x_1 - x_2 = 3(y_1 - y_2)$.

We will first show that $(x_1, y_1) \sim_l (x_2, y_2) \rightarrow (x_2, y_2) \sim_l (x_1, y_1)$. If $x_2 - x_1 = 3(y_2 - y_1)$, then we can multiply both sides by -1, obtaining the equation $x_1 - x_2 = 3(y_1 - y_2)$. Thus, $(x_2, y_2) \sim_l (x_1, y_1)$.

The same proof can be used to show $(x_2, y_2) \sim_l (x_1, y_1) \to (x_1, y_1) \sim_l (x_2, y_2)$. If $x_1 - x_2 = 3(y_1 - y_2)$, then we can multiply both sides of the equation by -1 to obtain $x_2 - x_1 = 3(y_2 - y_1)$. Thus, $(x_1, y_1) \sim_l (x_2, y_2)$. Thus, the relation \sim_l on \mathbb{R}^2 is symmetric.

Claim — The relation \sim_l on \mathbb{R}^2 is transitive.

Subproof. We must show that, $\forall x_1, x_2, x_3, y_1, y_2, y_3 \in \mathbb{R}^2$, $(x_1, y_1) \sim_l (x_2, y_2) \wedge (x_2, y_2) \sim_l (x_3, y_3) \rightarrow (x_1, y_1) \sim_l (x_3, y_3)$, or if $x_2 - x_1 = 3(y_2 - y_1)$ and $x_3 - x_2 = 3(y_3 - y_2)$, then $x_3 - x_1 = 3(y_3 - x_1)$.

$$x_3 - x_2 = 3(y_3 - y_2)$$
$$x_2 = x_3 - 3(y_3 - y_2)$$

We substitute this in for x_2 in $x_2 - x_1 = 3(y_2 - y_1)$:

$$x_3 - 3(y_3 - y_2) - x_1 = 3(y_2 - y_1)$$
$$x_3 - 3y_3 + 3y_2 - x_1 = 3y_2 - 3y_1$$
$$x_3 - x_1 = 3y_3 - 3y_1$$
$$x_3 - x_1 = 3(y_3 - y_1)$$

Thus, $(x_1, y_1) \sim_l (x_3, y_3)$. Thus, the relation \sim_l on \mathbb{R}^2 is transitive.

As the relation \sim_l is reflexive, symmetric, and transitive, it is an equivalence relation.

The equivalence class is:

• $\{(x,3x) \mid x \in \mathbb{R}\}$