Homework 6

Lin Yang

February 27, 2023

1 Python

- 1. Since every vehicle equipped with the technology is significantly less fuel-efficient, I believe it is sharp RD.
- 2. There is obvious evidence of two bunching around the cutoff length = 225. So visual evidence of discontinuity may exist.

Figure 1: Scatter plot of impact of the policy on fuel efficiency

3. Fit a first-polynomial to both sides of the cut off in a regression discontinuity design.

Figure 2: Scatter plot of impact of the policy on fuel efficiency and fitted first polynommial

The first-stage treatment effect is 0.0111, which is obtained by differencing the estimate (-0.0278) using the points above the cutoff and the estimate (-0.0389) using the points below cutoff and means the mpg for the length above 225 cars is 0.0111 higher than the cars with length less than 225.

4. Fit a second-polynomial to both sides of the cut off in a regression discontinuity design.

Figure 3: Scatter plot of impact of the policy on fuel efficiency and fitted second polynomial

The treatment effect estimate is shown in the table below.

Dep. Variable:		mpg		R-squa	0	.322		
Model:			OLS		Adj. R	i: 0	.321	
Method:		Least Squares		F-statis	2	37.2		
Date:			Mon, 27 Feb 2023		Prob (ic): 5.6	62e-85	
Time:			23:07:15		Log-Lil	: -3	294.2	
No. Observations:			1000		AIC:	6	594.	
Df Residuals:			997		BIC:	6	609.	
Df N	Model:		2					
Covariance Type:		nonrobust						
		\mathbf{coef}	std err	t	$\mathbf{P}> \mathbf{t} $	[0.025]	0.975]	
	\mathbf{const}	35.5552	3.239	10.978	0.000	29.199	41.911	
	x1	0.0794	0.033	2.421	0.016	0.015	0.144	
	x2	-0.0005	8.14e-05	-5.610	0.000	-0.001	-0.000	
	Omnibus:		1.918	Durbin-Watson:			1.536	_
	Prob(Omnibus): 0.383	Jarque-Bera (JB): 1.7			1.776	
Skew:		0.008	$\mathbf{Prob}(\mathbf{JB})$: 0.4			0.411		
Kurtosis:			2.794	Cond.	No.	7	0.05e + 0.05	

Notes:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
 - [2] The condition number is large, 7.05e+05. This might indicate that there are strong multicollinearity or other numerical problems.
- 5. Fit a fifth-polynomial to both sides of the cut off in a regression discontinuity design.

Figure 4: Scatter plot of impact of the policy on fuel efficiency and fitted fifth polynomial

The treatment effect estimate is shown in the table below.

Dep. Variable:			mpg		R-squa	0.356			
Model:			OLS		Adj. R-squared:		0.352		
Method:			Least Squares		F-stat	109.7			
Date:			Mon, 27 Feb 2023		Prob (e): 2.63e-92			
\mathbf{T}^{i}	ime:		23:12:18		Log-Li	-3269.2			
\mathbf{N}	o. Obse	ervations:	1000		AIC:	6550.			
\mathbf{D}	f Residu	uals:	994		BIC:		6580.		
Df Model:			5						
Covariance Type:			nonrobust						
		coef	std err	t	\mathbf{P} > $ \mathbf{t} $	[0.025]	0.975]		
	const	59.8980	26.869	2.229	0.026	7.171	112.625		
	x1	-0.5413	0.897	-0.603	0.546	-2.302	1.219		
	x2	0.0033	0.011	0.294	0.769	-0.019	0.025		
	x3	5.578e-06	6.59 e-05	0.085	0.933	-0.000	0.000		
	x4	-9.699e-08	1.84e-07	-0.528	0.598	-4.58e-07	2.64e-07		
	x5	1.905e-10	1.96e-10	0.971	0.332	-1.94e-10	5.75e-10		
Omnibus:			4.956	Durbin-Watson: 1.501			1.501		
Prob(Omnibus)): 0.084	Jarqı	ıe-Bera	(JB):	4.140		
Skew:			-0.069	Prob	(JB):	(0.126		
Kurtosis:			2.717	Cond	. No.	8.9	8.97e + 13		

Notes:

^[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
[2] The condition number is large, 8.97e+13. This might indicate that there are strong multicollinearity or other numerical problems.

6. Using the discontinuity as an instrument for miles per gallon, estimate the impact of mpg on the vehicle's sale price using 2sls by hand. Results from the second stage is shown in table below.

Dep. Variable:		price	R-se	R-squared:		0.220	
Model:		OLS	\mathbf{Adj}	Adj. R-squared:		0.219	
Method: Le		ast Square	F-statistic:			140.9	
Date: Sun,		$26~{\rm Feb}~20$	23 Pro	b (F-sta	tistic):	1.32e-54	
Time:	:	23:13:02	Log-Likelihood:		od:	-9557.3	
No. Observations:		1000	AIC:		1	1.912e + 04	
Df Residuals:		997	BIC:		1	1.914e + 04	
Df Model:		2					
Covariance T	ype: n	onrobust					
	coef	std err	t	\mathbf{P} > $ \mathbf{t} $	[0.025]	0.975]	
Intercept	1.741e + 04	747.885	23.275	0.000	1.59e + 04	1.89e + 04	
${f predicted mpg}$	158.2799	26.029	6.081	0.000	107.201	209.359	
car	-4743.0637	310.432	-15.279	0.000	-5352.238	-4133.889	
Omnibus:		4.452	Durbin-Watson: 1.		1.986		
$\mathbf{Prob}(\mathbf{Omnibus})$:		0.108	Jarque-Bera (JB): 4.53				

Notes:

0.112

3.242

Prob(JB):

Cond. No.

0.103

235.

2 Stata

1. (a) The average treatment effect of mpg on price is 135.41.

Skew:

Kurtosis:

	(1)
VARIABLES	Impact of Mpg on Price by using predicted length from RDD
$rdplot_hat_y$	135.41**
	(22.98)
car	-3,693.27**
	(225.09)
Constant	17,622.91**
	(739.75)
Observations	1,000
R-squared	0.22
	D 1 4 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Robust standard errors in parentheses
** p<0.01, * p<0.05

(b)

^[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

Figure 5: Scatter plot of impact of the policy on fuel efficiency and fitted second polynomial

2. Yes. I think it is a valid instrument.