IIC-2133 — Estructuras de Datos y Algoritmos Grafos

Jorge A. Baier

Departamento de Ciencia de la Computación Pontificia Universidad Católica de Chile Santiago, Chile

Representando Grafos en Memoria

Dado un grafo G = (V, E) estas son posibles representaciones:

I Listas de adyacencia. Para cada $u \in V$, Adj[u] es una lista con todos los v tales que $(u,v) \in E$.

Representando Grafos en Memoria

Dado un grafo G = (V, E) estas son posibles representaciones:

- **I** Listas de adyacencia. Para cada $u \in V$, Adj[u] es una lista con todos los v tales que $(u,v) \in E$.
- 2 Matriz de adyacencia. Definimos una matriz A, tal que

$$a_{ij} = \begin{cases} 1 & \text{si } (i,j) \in E \\ 0 & \text{en caso contrario} \end{cases}$$

¿Cuánta memoria se require usando estas representaciones?

Recorriendo el Grafo

Definiremos un algoritmo (BFS) para recorrer un grafo a partir de un nodo s.

- color[u] puede ser alguno de estos:
 - \blacksquare blanco si no hemos visto nunca u.
 - lacktriangleq gris hemos encontrado un camino hasta u.
 - lacktriangledown negro hemos terminado de generar los nodos adyacentes a u.
- $\blacksquare \pi[u]$ el predecesor de u.
- lacksquare d[u] número de aristas en el camino descubierto hasta u
- Q estructura de datos que contiene a los nodos grises.

Búsqueda en Amplitud (Breadth-First Search)

```
1 function BFS(G,s)
           for each u \in V[G] do
 2
             | color[u] \leftarrow blanco; d[u] \leftarrow \infty; \pi[u] \leftarrow nil
 3
           Inserte s a Q
 4
           color[s] \leftarrow gris; d[s] \leftarrow 0
 5
           while Q no está vacía do
 6
                  Extraiga un elemento u desde Q
 7
                  for each v \in Adj[u] do
 8
                        if color[v] = blanco then
 9
                  \begin{bmatrix} \pi[v] \leftarrow u \\ d[v] \leftarrow d[u] + 1 \\ \text{Inserte } v \text{ a } Q \\ color[v] \leftarrow gris \\ \\ color[u] \leftarrow negro \\ \end{bmatrix}
10
11
12
13
14
```


Propiedades

Definicion: Decimos que v es alcanzable desde u, o, simplemente, $u \rightsquigarrow v$, si existe una camino que comienza en u y termina en v.

Teorema: $s \rightsquigarrow t$ ssi después de una llamada a BFS(G, s) se cumple que color[t] = negro.

Propiedades

Definicion: Decimos que v es alcanzable desde u, o, simplemente, $u \rightsquigarrow v$, si existe una camino que comienza en u y termina en v.

Teorema: $s \leadsto t$ ssi después de una llamada a BFS(G, s) se cumple que color[t] = negro.

Teorema: El tiempo de ejecución de BFS(G, s) es O(|E|).

Más Propiedades de BFS

Theorem

Dado un grafo G=(V,E) y una función de peso unitaria (w(e)=1, para todo $e\in E$), luego de una llamada a BFS(G,s), $d[t]=\delta(s,t)$ para todo $t\in V$.

Definimos V_k como el conjunto de vértices a distancia k desde u. Luego se procede por inducción en k.

Antes demostramos:

Lemma

Si durante una ejecución de BFS(G,s) la cola contiene los elementos $\langle v_1,v_2,\ldots,v_n\rangle$, entonces $d[v_n]\leq d[v_1]+1$ y $d[v_i]\leq d[v_{i+1}]$ para cualquier $i\in\{1,\ldots,n-1\}$.

Búsqueda en Profundidad (Depth-First Search)

DFS (parte 2)

```
1 procedure DFS-visit(G, s)
          color[s] \leftarrow qris
 2
       t \leftarrow t + 1
 3
        d[s] \leftarrow t
          for each t \in Adi[s] do
 5
                if color[t] = blanco then
 6
                 \begin{array}{c|c} \pi[t] \leftarrow s \\ \mathsf{DFS-visit}(G,t) \end{array} 
 7
 8
         color[s] \leftarrow negro
 9
       t \leftarrow t + 1
10
      f[s] \leftarrow t
11
```

Observación: podemos interpretar a d[s] y f[s] como los tiempos de "inicio" y "finalización" de s.

El Bosque DFS

Cuando ejecutarmos DFS completamente sobre un grafo, generamos lo que se conoce como un *bosque DFS*.

¿Qué sucede cuando?

Si u, v son dos vértices en G = (V, E), ¿es posible que:

- $\mathbf{1}$ [d[u], f[u]] y [d[v], f[v]] sean intervalos disjuntos?
- 2 [d[u], f[u]] esté contenido en [d[v], f[v]] o [d[v], f[v]] esté contenido en [d[u], f[u]] ?
- [d[u], f[u]] y [d[v], f[v]] tengan intersección no vacía y no están contenidos el uno en el otro?

¿Qué sucede cuando?

Si u, v son dos vértices en G = (V, E), ¿es posible que:

- $\mathbf{1}$ [d[u], f[u]] y [d[v], f[v]] sean intervalos disjuntos?
- 2 [d[u], f[u]] esté contenido en [d[v], f[v]] o [d[v], f[v]] esté contenido en [d[u], f[u]] ?
- [d[u], f[u]] y [d[v], f[v]] tengan intersección no vacía y no están contenidos el uno en el otro?

Teorema del paréntesis: Sólo 1) y 2) se pueden dar.

Tree/Back Edges

Después de ejecutar $\mathsf{DFS}(G)$

- \blacksquare Decimos que (u,v) es un *tree edge* si v fue descubierto por primera vez desde u.
- 2 Decimos que (u,v) es un $back\ edge$ si v es un ancestro de u en un árbol depth-first.

Propiedad: (u, v) es un *back edge* si v es gris cuando u es expandido. (Es decir, DFS se puede modificar para encontrar back-edges eficientemente)

Teorema: G tiene un ciclo ssi DFS(G) descubre un back edge

Ejercicios

Diga cómo usar o modificar DFS para:

- 1 Decidir si un grafo G tiene un ciclo.
- 2 Generar un orden topológico de G=(V,E). (Definición: $<\subseteq V\times V$ es un orden topológico ssi < es un orden total y para todo $(u,v)\in E$ se tiene u< v.)

Componentes Fuertemente Conexas

Definicion: Una componente fuertemente conexa (CFC) de un grafo G=(V,E) es un subconjunto C maximal de V tal que para todo $u,v\in C$ $u\leadsto v$ (y $v\leadsto u$).

Componentes Fuertemente Conexas

Definicion: Una componente fuertemente conexa (CFC) de un grafo G=(V,E) es un subconjunto C maximal de V tal que para todo $u,v\in C$ $u\leadsto v$ (y $v\leadsto u$).

Algoritmo de Kosarju (para calcular todas las CFC)

- **2** Compute G^T .
- 3 Llame a $\mathsf{DFS}(G^T)$, ordenando los nodos decrecientemente según f en el loop principal (línea 3, del pseudocódigo de $\mathsf{DFS}(G)$).
- 4 Imprimir cada árbol DFS encontrado como un CFC.

