UNIVERZA V LJUBLJANI FAKULTETA ZA MATEMATIKO IN FIZIKO

Matematika – 2. stopnja

${\bf Tom~Gornik}$ ${\bf Izrek~\check{S}arkovskega}$

Magistrsko delo

Mentor: izr. prof. dr. Aleš Vavpetič

Kazalo

1.	Uvod	4
2.	Definicije in formulacija izreka	4
2.1.	. Izrek Šarkovskega	5
3.	Intervali, relacija pokritja in cikli	8
4.	Primeri	11
5.	Štefanovo zaporedje	15
6.	Konstrukcija Štefanovega zaporedja	18
7.	Dokaz izreka Šarkovskega	21
8.	Dokaz realizacijskega izrek Šarkovskega	22
9.	Posplošitve izreka	26
10.	Prostor Šarkovskega	30
11.	Linearni kontinuum je prostor Šarkovskega	35

Izrek Šarkovskega

Povzetek

 ${\bf Sharkovsky\ theorem}$

Abstract

Math. Subj. Class. (2010): Ključne besede: Keywords:

1. Uvod

Napišite kratek zgodovinski in matematični uvod. Pojasnite motivacijo za problem, kje nastopa, kje vse je bil obravnavan. Na koncu opišite tudi organizacijo dela – kaj je v katerem razdelku.

2. Definicije in formulacija izreka

Naj bo $I\subseteq\mathbb{R}$ povezana podmnožica realnih števil. Takim množicam bomo rekli intervali. Interval ne rabi biti zaprt ali omejen in lahko v nekaterih primerih predstavlja kar celotno množico realnih števil. Naj bo $f:I\to I$ zvezna funkcija, ki slika interval I nazaj vase. Za naravno število n bomo s f^n označevali kompozitum:

$$f^n = \underbrace{f \circ f \circ \cdots \circ f}_{n \text{ ponovitev } f},$$

kjer f^0 predstavlja identično funkcijo. Lahko si izberemo neko točko x_0 iz intervala I in s pomočjo iteracij funkcije f definiramo zaporedje s splošnim členom $x_n = f^n(x_0)$. Točke v tem zaporedju lahko ponazorimo v koordinatnem sistemu tako, da začnemo na abscisni osi pri točki x_0 . Potujemo navpično do grafa funkcije f in se premaknemo v vodoravni smeri do simetrale lihih kvadrantov. Ta točka ima obe koordinati enaki x_1 . Sedaj se zopet premaknemo navpično do grafa funkcije f in nato vodoravno do simetrale lihih kvadrantov. Pridemo do točke, ki ima obe koordinati enaki x_2 . Postopek (skiciran je na sliki 1) lahko nadaljujemo v neskončnost. V primeru na sliki 1 vidimo, da se točka x_3 slika v točko x_0 . To pomeni, da ima zaporedje samo 4 različne člene, ki se ponavljajo.

SLIKA 1. Slika prikazuje, iteracije funkcije f na točki x_0 .

V takem dinamičnem sistemu ena iteracija funkcije predstavlja en diskreten korak v času, točka $x_0 \in I$ pa začetni položaj točke v sistemu. Množici, ki vsebuje vse člene zaporedja $(x_n)_{n=0}^{\infty}$ bomo rekli f-orbita točke x_0 ali samo orbita točke x_0 . Z matematičnimi simboli jo lahko zapišemo tako:

$$\{\mathcal{O} := f^m(x_0); m \in \mathbb{N}\}.$$

Preučevali bomo take točke $x_0 \in I$, ki se po nekaj iteracijah s funkcijo f slikajo nazaj vase. Takim točkam rečemo periodične točke. Perioda točke x_0 je najmanjše tako naravno število m, za katero je $f^m(x_0) = x_0$. Ekvivalentno lahko sklepamo, da je orbita periodične točke x_0 končna množica, število različnih elementov v orbiti pa

je enako periodi točke x_0 . Predvsem, ko želimo povdariti, da govorimo o periodični točki x_0 , bomo f-orbito točke x_0 imenovali tudi cikel točke x_0 . Cikel dolžine m bomo krajše zapisali m-cikel. Negibna točka (včasih ji rečemo tudi fiksna točka) je periodična točka s periodo 1, torej taka točka x_0 , za katero je $f(x_0) = x_0$. Če obstaja periodična točka s periodo n, rečemo tudi, da ima funkcija f periodo n.

Pri danem dinamičnem sistemu se lahko vprašamo, katere periode lahko ima funkcija. Šarkovski si je postavil prav to vprašanje in prišel do ureditve množice naravnih števil, ki pove, katere periode lahko ima funkcija.

2.1. **Izrek Šarkovskega.** Izrek šarkovskega opiše periode poljubne zvezne funkcije tako, da uredi naravna števila z relacijo delne urejenosti, ki jo moramo še spoznati.

Definicija 2.1. Naj bo M množica. Relacija (M, \leq) definirana na množici M je relacija delne urejenosti, če veljajo naslednje lastnosti:

- refleksivnost: $\forall a \in M : a \leq a$,
- antisimetričnost: $\forall a, b \in : a \leq b \text{ in } b \leq a \Rightarrow a = b,$
- tranzitivnost: $\forall a, b, c \in M : a \leq b \text{ in } b \leq c \Rightarrow a \leq c$.

Relacija (M, \leq) je linearna urejenost, če je relacija delne urejenosti, ki je sovisna. To pomeni, da sta vsaka dva elementa v relaciji \leq . Natančneje: za vsaka elementa $a, b \in M$ velja $a \leq b$ ali $b \leq a$. Stroga linearna urejenost je relacija (M, <), ki je tranzitivna, sovisna in irefleksivna. Irefleksivnot pomeni, da ne obstaja element $a \in M$, za katerega je a < a.

Definicija 2.2. Množico naravnih števil lahko uredimo na naslednji način:

$$3 \triangleright 5 \triangleright 7 \triangleright \cdots \triangleright 2 \cdot 3 \triangleright 2 \cdot 5 \triangleright 2 \cdot 7 \triangleright \cdots \triangleright 2^2 \cdot 3 \triangleright 2^2 \cdot 5 \triangleright 2^2 \cdot 7 \triangleright \cdots \triangleright 2^3 \triangleright 2^2 \triangleright 2 \triangleright 1$$
.

Ureditev, imenujemo jo ureditev Šarkovskega, določa relacijo $(\mathbb{N}, \triangleright)$, ki ji pravimo relacija Šarkovskega. Naravni števili m in n sta v relaciji $m \triangleright n$ (ali $n \triangleleft m$) natanko tedaj, ko m leži levo od n ali je m=n. Opazimo, da je ureditev sestavljena tako, da najprej po vrsti naštejemo liha števila večja od 1, nato dodamo ta števila po vrsti pomnožena z 2. Sledijo liha števila večja od 1 pomnožena z 2^2 itn. Na koncu so zapisane potence števila 2 v padajočem vrstnem redu. Zaradi vrstnega reda števil pomislimo, da lahko vsako naravno število zapišemo kot produkt potence števila 2 in nekega lihega števila. To pomeni, da lahko poljubni naravni števili m in n zapišemo na naslednji način:

(1)
$$m = 2^k (2m_1 + 1)$$
 in $n = 2^l (2n_1 + 1)$,

kjer so števila $m_1, n_1, k, l \in \mathbb{N}_0$. Števili sta v relaciji $m \triangleright n$, če je:

- (R1) k < l in $m_1 \neq 0$ in $n_1 \neq 0$ ali
- (R2) $k = l \text{ in } 0 < m_1 \le n_1 \text{ ali}$
- (R3) $k \ge l \text{ in } m_1 = n_1 = 0 \text{ ali }$
- (R4) $m_1 > 0$ in $n_1 = 0$.

Trditev 2.3. Relacija $(\mathbb{N}, \triangleright)$, ki smo jo definirali, je relacija linearne urejenosti.

Dokaz. Za dokaz potrebujemo tri poljubna naravna števila, ki jih zapišemo na zgoraj opisan način:

- $m=2^k(2m_1+1)$,
- $n = 2^{l}(2n_1 + 1)$ in
- $s = 2^h(2s_1 + 1)$.

Dokazati moramo refleksivnost, antisimetričnost, tranzitivnost in sovisnost relacije. Refleksivnost: če je število m potenca števila 2, točka (R3) zagotavlja, da je $m \triangleright m$. Če število m ni potenca števila 2, pa relacija $m \triangleright m$ sledi iz točke (R2).

Antisimetričnost: denimo, da za števili m in n veljata relaciji $m \triangleright n$ in $n \triangleright m$. Pogoja (R1) in (R4) za relacijo $m \triangleright n$ sta v protislovju z vsemi pogoji relacije $n \triangleright m$. Edina možnost, ki zadosti vsem potrebnim pogojem relacij je k = l in $m_1 = n_1$. Torej je m = n.

Tranzitivnost: obravnavamo števila m, n in s, ki zadoščajo relacijam $m \triangleright n$ in $n \triangleright s$. Radi bi videli, ali sta števili m in s v relaciji $m \triangleright s$. Ker imamo 4 pogoje za relacijo $m \triangleright n$ in 4 pogoje za relacijo $n \triangleright s$, moramo obravnavati 16 možnih kombinacij. Vse kombinacije pogojev za relacije so zapisane v tabeli 1. V drugem stolpcu so zapisani pogoji, ki jih dobimo iz relacije $m \triangleright n$, v tretjem stoplcu so pogoji, ki jih preberemo iz relacije $n \triangleright s$. V četrtem stolpcu je zapisan pogoj, ki sledi iz pogojev v drugem in tretjem stolpcu. Opazimo, da v devetih primerih pogoja ne moreta biti izpolnjena istočasno, zato pridemo do protislovja. V ostalih primerih, pa dobimo enega od pogojev za relacijo $m \triangleright s$, zato sta števili m in s v relaciji $m \triangleright s$.

	$m \triangleright n$	$n \triangleright s$	\Rightarrow
1	$k < l \text{ in } m_1, n_1 \neq 0$	$l < h \text{ in } n_1, s_1 \neq 0$	$k < h \text{ in } m_1, s_1 \neq 0$
2	$k < l \text{ in } m_1, n_1 \neq 0$	$l = h \text{ in } 0 < n_1 \le s_1$	$k < h \text{ in } m_1, s_1 \neq 0$
3	$k < l \text{ in } m_1, n_1 \neq 0$	$b \ge h \text{ in } n_1 = s_1 = 0$	protislovje
4	$k < l \text{ in } m_1, n_1 \neq 0$	$n_1 = 0, s_1 > 0$	$m_1 = 0, s_1 > 0$
5	$k = l \text{ in } 0 < m_1 \le n_1$	$l < h \text{ in } n_1, s_1 \neq 0$	protislovje
6	$k = l \text{ in } 0 < m_1 \le n_1$	$l = h \text{ in } 0 < n_1, s_1$	$k = h \text{ in } 0 < m_1 \le s_1$
7	$k = l \text{ in } 0 < m_1 \le n_1$	$l \ge h \text{ in } n_1 = s_1 = 0$	protislovje
8	$k = l \text{ in } 0 < m_1 \le n_1$	$k < l \text{ in } n_1 = 0, s_1 > 0$	$m_1 = 0, s_1 > 0$
9	$k \ge l \text{ in } m_1 = n_1 = 0$	$l < h \text{ in } n_1, s_1 \neq 0$	protislovje
10	$k \ge l \text{ in } m_1 = n_1 = 0$	$l = h \text{ in } 0 < n_1, s_1$	protislovje
11	$k \ge l \text{ in } m_1 = n_1 = 0$	$b \ge h \text{ in } n_1 = s_1 = 0$	$k \ge h \text{ in } m_1 = s_1 = 0$
12	$k \ge l \text{ in } m_1 = n_1 = 0$	$k < l \text{ in } n_1 = 0, s_1 > 0$	protislovje
12	$m_1 = 0, n_1 > 0$	$l < h \text{ in } n_1, s_1 \neq 0$	protislovje
14	$m_1 = 0, n_1 > 0$	$l = h \text{ in } 0 < n_1, s_1$	protislovje
15	$m_1 = 0, n_1 > 0$	$l \ge h \text{ in } n_1 = s_1 = 0$	$m_1 = 0, s_1 > 0$
16	$m_1 = 0, n_1 > 0$	$k < l \text{ in } n_1 = 0, s_1 > 0$	protislovje

Tabela 1. Vseh 16 možnosti.

Sovisnost: prepričati se moramo, da za vsaki dve naravni števili m, n velja $m \triangleright n$ ali $n \triangleright m$. Torej velja en od pogojev:

- (i) k < l in $m_1 \neq 0$ in $n_1 \neq 0$ ali
- (ii) k = l in $0 < m_1 \le n_1$ ali
- (iii) $k \ge l \text{ in } m_1 = n_1 = 0 \text{ ali }$
- (iv) $m_1 > 0$ in $n_1 = 0$

ali

(v) l < k in $m_1 \neq 0$ in $n_1 \neq 0$ ali

- (vi) l = k in $0 < n_1 \le m_1$ ali
- (vii) $l \geq k$ in $m_1 = n_1 = 0$ ali
- (viii) $n_1 > 0$ in $m_1 = 0$.

Denimo, da števili m in n nista v relaciji. Iz (iv) in (viii) ugotovimo, da mora biti $m_1 = n_1 = 0$ ali $m_1, n_1 \neq 0$. Ker števili ne ustrezata pogoju (iii) niti pogoju (vii) ugotovimo, da morata biti števili m_1 in n_1 različni od 0. Iz pogojev (i) in (v) sklepamo, da mora biti k = l. Sedaj pa števili zagotovo zadoščata enemu od pogojev (ii) ali (vi). To je preotislovje s predpostavko, da števili m in n nista v relaciji. Torej res za vsaki dve naravni števili m, n velja relacija $m \triangleright n$ ali relacija $n \triangleright m$.

Relacija \rhd ima še eno zanimivo in za dokaz izreka Šarkovskega zelo pomembno lastnost.

Trditev 2.4. Števili m in n sta v relaciji $m \triangleright n$ natanko tedaj, ko velja relacija $2m \triangleright 2n$. Zapisano z matematičnimi simboli:

$$za \ \forall m, n \in \mathbb{N} : m \triangleright n \Leftrightarrow 2m \triangleright 2n.$$

Dokaz. Zapišimo števili m in n kot produkt potence števila 2 in nekega lihega števila:

$$m = 2^k (2m_1 + 1)$$
 in $n = 2^l (2n_1 + 1)$.

Če števili pomnožimo z 2, dobimo:

$$2m = 2^{k+1}(2m_1 + 1)$$
 in $2n = 2^{l+1}(2n_1 + 1)$.

Sedaj lahko preverimo, da so pogoji za relacijo $m \triangleright n$ in relacijo $2m \triangleright 2n$ ekvivalentni. To je očitno takoj, ko opazimo, da se števili m_1 in n_1 nista spremenili. Neenačbi k < l in k+1 < l+1 pa sta ekvivalentni. Podobno ugotovimo za neenačbi $k \ge l$ in $k+1 \ge l+1$ ter enačbi k=l in k+1=l+1.

Sedaj smo definirali vse potrebne pojme in spoznali tudi ureditev Šarkovskega. Čas je, da si poglejdamo, na kakšen način ureditev Šarkovskega določa periode funkcije.

Izrek 2.5 (The Sharkovsky forcing theorem). Če ima zvezna funkcija $f: I \to I$ točko periode m in velja $m \triangleright l$, potem obstaja tudi točka periode l.

Izrek pove, da je množica period zvezne funkcije na intervalu I rep ureditve Sarkovskega. Rep ureditve Šarkovskega je taka množica $\mathcal{T} \subseteq \mathbb{N}$, za katero je $m \triangleright n$ za vsaki naravni števili $m \notin \mathcal{T}$ in $n \in \mathcal{T}$. Obstajajo trije različni tipi repov: Za neko naravno število m je rep množica $\{n \in \mathbb{N}; m \triangleright n\}$, množica $\{\ldots, 16, 8, 4, 2, 1\}$ vseh potenc števila 2 in \emptyset .

Naslednji izrek je neke vrste obrat zgornjega izreka.

Izrek 2.6 (The Sharkovsky realization theorem). Za vsak rep \mathcal{T} v zaporedju Šarkovskega obstaja taka zvezna funkcija f, katere množica period je enaka \mathcal{T} .

Izrek Sarkovskega je unija izreka 2.5 in izreka 2.6. Podmnožica naravnih števil je množica period zvezne funkcije $f:I\to I$, če in samo če je množica rep ureditve Šarkovskega. Nasledja poglavja so namenjena pripravi in dokazu izreka 2.5, v poglavju 8 pa je predstavljen dokaz izreka 2.6.

3. Intervali, relacija pokritja in cikli

Vsi dokazi izreka Šarkovskega so si podobni po tem, da so elementarni. Ne glede na to, kako zvito se lotimo dokaza, je ključnega pomena lastnost zveznih funkcij, ki ob določenih predpostavkah zagotavlja obstoj ničle funkcije. To je izrek o vmesni vrednosti.

Izrek 3.1 (izrek o vmesni vrednosti). Funkcija f, ki je zvezna na intervalu [a,b] in je na krajiščih intervala različno predznačena, torej velja neenačba $f(a) \cdot f(b) < 0$, ima vsaj v eni točki tega intervala vrednost 0.

SLIKA 2. Zvezna funkcija, ki je definirana na intervalu in je na krajiščih intervala različno predznačena ima vsaj eno ničlo.

Dokaz. Naj bo funkcija $f:[a,b] \to [a,b]$ zvezna in naj bo $f(a) \cdot f(b) < 0$. Brez izgube splošnosti lahko predpostavimo, da je f(a) < 0 < f(b). Ničlo funkcije f bomo iskali s pomočjo deljenja intervalov oziroma z bisekcijo. Izračunamo razpolovišče $p_0 = \frac{a+b}{2}$ intervala [a,b]. Če je $f(p_0) = 0$, smo ničlo že našli, sicer razmišljamo tako: če je $f(p_0) > 0$, označimo $[a_1,b_1] = [a,p_0]$, sicer označimo $[a_1,b_1] = [p_0,b]$. Nato izračunamo razpolovišče p_1 intervala $[a_1,b_1]$. Če je $f(p_1) = 0$ postopek ustavimo, saj smo ničlo našlio, v nasprotnem primeru pogledamo predznak $f(p_1)$. Če je $f(p_1) > 0$, označimo $[a_2,b_2] = [a_1,p_1]$, drugače označimo $[a_2,b_2] = [p_1,b_1]$. Postopek nadaljujemo dokler ne najdemo ničle p_i funkcije f. Če ničle ne najdemo, dobimo neskončno zaporedje vloženih intervalov

$$[a,b]\supset [a_1,b_1]\supset [a_2,b_2]\supset \cdots$$

Lahko se prepričamo, da je $b_n - a_n = \frac{b-a}{2^n}$ in $f(a_n) < 0 < f(b_n)$ za vsak $n \in \mathbb{N}$. Števila a_n tvorijo naraščajoče zaporedje, števila b_n pa padajoče zaporedje. Limiti $\lim_{n \to \infty} a_n$ in $\lim_{n \to \infty} b_n$ sta enaki, saj je $\lim_{n \to \infty} b_n - \lim_{n \to \infty} a_n = \lim_{n \to \infty} (b_n - a_n) = \lim_{n \to \infty} \frac{b-a}{2^n} = 0$. Označimo $c = \lim_{n \to \infty} a_n = \lim_{n \to \infty} b_n$. Točka c je večja od vseh členov zaporedja $(a_n)_{n=1}^{\infty}$ in manjša od vseh členov zaporedja $(b_n)_{n=1}^{\infty}$, zato je za vsak $n \in \mathbb{N}$ vsebovana v intervalu $[a_n, b_n]$. Torej velja: $\bigcap_{n=1}^{\infty} [a_n, b_n] = \{c\}$. Ker je funkcija zvezna, je $\lim_{n \to \infty} f(a_n) = f\left(\lim_{n \to \infty} a_n\right) = f(c)$ in $\lim_{n \to \infty} f(b_n) = f\left(\lim_{n \to \infty} b_n\right) = f(c)$. Za vsako naravno število n

velja $f(a_n) < 0$, zato je $f(c) \le 0$. Podobn je $f(b_n) > 0$ za vsako naravno število n, iz česar sklepamo, da je $f(c) \ge 0$. Torej je f(c) = 0, kar zaključi dokaz.

Posledica 3.2. Naj bo $f:[a,b] \to [a,b]$ zvezna funkcija. Za vsako točko y, ki leži med točkama f(a) in f(b), obstaja točka $c \in (a,b)$, za katero je vrednost funkcije f(c) enaka y.

Dokaz. Definiramo zvezno funkcijo g(x) = f(x) - y. Ker točka y leži med točkama f(a) in f(b), je funkcija g na krajiščih intervala [a,b] različno predznačena. Po izreku 3.1 obstaja točka c, za katero je g(c) = 0. To pomeni, da je f(c) = y.

Posledica pove, da zvezna funkcija na intervalu [a,b] zavzame vse vrednosti med f(a) in f(b). V resnici pove še več. Naj bosta [a,b] in [c,d] intervala v realnih številih in $f:[a,b]\to\mathbb{R}$ zvezna funkcija. Če obstajata taki točki $a_1,b_1\in[a,b]$, za kateri velja $f(a_1)\leq c$ in $f(b_1)\geq d$, potem interval [c,d] leži v sliki f([a,b]). To je res, saj funkcija f na intervalu $[a_1,b_1]$ zavzame vse vrednosti med $f(a_1)$ in $f(b_1)$. Torej, $[c,d]\subseteq f([a_1,b_1])\subseteq f([a,b])$.

Definicija 3.3. Naj bosta $I, J \subseteq \mathbb{R}$ in naj bo $f: I \to J$ zvezna funkcija. Pravimo, da interval I f-pokrije interval J, če je $J \subseteq f(I)$. Relacijo zapišemo kot $I \xrightarrow{f} J$. Kadar je jasno, katero funkcijo imamo v mislih, lahko rečemo samo, da interval I pokrije interval J.V tem primeru, lahko nadpis, ki označi katero funkcijo imamo v mislih izpustimo in pišemo samo $I \to J$. Če velja f(I) = J, zapišemo $I \to J$.

S pomočjo izreka o vmesni vrednosti in poznavanja, kako se intervali slikajo s funkcijo f, lahko izvemo, ali obstajajo periodične točke. Kako potrdimo obstoj periodičnih točk, nam povejo naslednje leme.

Lema 3.4. Če velja $[a,b] \xrightarrow{f} [a,b]$, potem ima funkcija f negibno točko na intervalu [a,b].

Dokaz. Interval [a, b] je podmnožica slike f([a, b]), zato obstajata taki točki $a_1, b_1 \in [a, b]$, da je $f(a_1) = a$ in $f(b_1) = b$. Če je $a_1 = a$ ali $b_1 = b$, smo negibno točko že našli. Če je $a_1 \neq a$ in $b_1 \neq b$, definiramo funkcijo g(x) = f(x) - x. Prepričajmo se, da je vrednost funkcije g v točki a_1 negativna, v točki b_1 pa pozitivna. Računamo: $g(a_1) = f(a_1) - a_1 = a - a_1 < 0$. Podobno je $g(b_1) = f(b_1) - b_1 = b - b_1 > 0$. Zvezna funkcija g je na krajiščih intervala [a, b] različno predznačena. Po izreku 3.1 obstaja točka $c \in [a, b]$, pri kateri je g(c) = 0, torej je f(c) = c.

Pri iteracijah funkcije lahko opazujemo, kako se premika točka. To smo počeli na sliki 1. Poglejmo, kako se s f slikajo celi intervali. Lahko se zgodi, da nek interval I_0 pokrije interval I_1 , interval I_1 pa pokrije interval I_2 itn. Na ta način dobimo zaporedje relacij pokritja npr. $I_0 \to I_1 \to I_2 \to \cdots$ Enako kot pri periodičnih točkah lahko pri zaporedju relacij pokritja po nekaj korakih zopet pridemo do prvotnega intervala. Dobimo naslednje zaporedje relacij pokritja: $I_0 \to I_1 \to \cdots \to I_n \to I_0$. Če je začetni interval enak končnemu intervalu, zaporedju intervalov in pripadajočim relacijam pokritja pravimo zanka intervalov ali samo zanka. Od tu naprej bo, razen če ne povemo drugače, interval predstavljal zaprto, omejeno in povezano podmnožico realnih števil.

Lema 3.5. Če za intervale $I_0, I_1, \ldots, I_{n-1}$ veljajo naslednje relacije pokritosti: $I_0 \to I_1 \to \cdots \to I_{n-1} \to I_0$, potem obstaja taka točka $c \in I_0$, za katero je $f^i(x) \in I_i$ za $0 \le i < n$ in $f^n(c) = c$. Pravimo, da točka c sledi zanki $I_0 \to I_1 \to \cdots \to I_{n-1} \to I_0$.

Dokaz. Če velja relacija pokritosti $I \to J$, obstaja tak interval $K \subseteq I$, da je $K \rightarrowtail J$. Interval K poiščemo tako, da iz preseka funkcije f s pravokotnikom $I \times J$ izberemo

SLIKA 3. Slika prikazuje, kako poiščemo interval K.

povezan del grafa, ki povezuje spodni in zgornji del pravokotnika. Tak del zagotovo obstaja, saj je $J\subseteq f(I)$. Projekcijo tega dela na interval I označimo sK. To znanje uporabimo na zanki intervalov $I_0\to\cdots\to I_{n-1}\to I_0$. Ker velja relacija pokritja $I_{n-1}\to I_0$, vemo, da obstaja tak interval $K_{n-1}\subseteq I_{n-1}$, da je $K_{n-1}\to I_0$. Velja relacija pokritosti $I_{n-2}\to K_{n-1}$, zato obstaja tak interval $K_{n-2}\subseteq I_{n-2}$, da je $K_{n-2}\rightarrowtail K_{n-1}$. S postopkom nadaljujemo in dobimo naslednje relacije:

$$K_0 \rightarrowtail K_1 \rightarrowtail \cdots \rightarrowtail K_{n-1} \rightarrowtail I_0.$$

Za vsako točko $x \in K_0$ in za vsak $i \in [0, n)$ velja $f^i(x) \in K_i \subseteq I_i$ in $f^n(x) \in I_0$. Ker je $K_0 \subseteq I_0 = f^n(K_0)$, lahko s pomočjo leme 3.4 sklepamo, da ima f^n negibno točko c na intervalu K_0 . Točka c sledi zanki $I_0 \to I_1 \to \cdots \to I_{n-1} \to I_0$.

Pri dokazovanju izreka bomo dokazali obstoj zank različnih dolžin. Želeli bi si, da je perioda točke, ki sledi zanki, enaka dolžini zanke.

Definicija 3.6. Zanka intervalov $I_0 \to I_1 \to \cdots \to I_{n-1} \to I_0$ je elementarna, če ima vsaka točka, ki sledi zanki, periodo n.

Posledica 3.7. Vsaka elementarna zanka intervalov $I_0 \to I_1 \to \cdots \to I_{n-1} \to I_0$ vsebuje točko x_0 , ki sledi zanki in ima periodo n.

Zaradi zgornje posledice bi bilo dobro, če bi poznali kakšen kriterij za prepoznavanje elementarnih zank. Najlažji kriterij je število intervalov v zanki. Če nastopa samo en interval, dobimo zanko $I_0 \to I_0$. Z uporabo leme 3.4 ugotovimo, da je zanka elementarna. Naslednja lema poda še en kriterij za prepoznavanje elementarnih zank:

Lema 3.8. Zanka intervalov $I_0 \to I_1 \to \cdots \to I_{n-1} \to I_0$ je elementarna, če ji ne sledi nobena robna točka intervala I_0 in je notranjost intervala int (I_0) disjunktna z intervali $I_1, I_2, \ldots, I_{n-1}$. Torej, int $(I_0) \cap \bigcup_{i=1}^{n-1} I_i = \emptyset$.

Dokaz. Točka x_0 , ki sledi zanki, ne more biti robna točka intervala I_0 . Torej je $x_0 \in \text{int}(I_0)$. Za vsak $i = 1, \ldots, n-1$ je $x_0 \neq f^i(x_0)$, saj je $f^i(x_0) \in I_i$, notranjost intervala I_0 pa je disjunktna z intervalom I_i . Ker točka x_0 sledi zanki, je $f^n(x_0) = x_0$. Točka x_0 ima periodo n.

Poglejmo si dva primera, ki pokažeta, da nobene predpostavke v lemi 3.8 ne moremo izpustiti.

Primer 3.9. Obravnavajmo zvezno funkcijo $f(x) = -\sqrt[3]{x}$ in 2-zanko intervalov $\left[0,\frac{1}{2}\right] \leftrightarrows \left[-\frac{1}{2},0\right]$. Samo ena točka sledi tej zanki, to je točka 0. Perioda točke 0 ni enaka enaka dolžini zanke, saj je točka 0 negibna točka in je njena perioda enaka 1.

Primer 3.10. Funkcija $f(x) = -x^2$ tvori 2-zanko $\left[\frac{1}{4}, \frac{9}{4}\right] \leftrightarrows \left[\frac{1}{2}, 4\right]$. Tej zanki sledi zgolj točka 1, ki je negibna točka, torej je njena perioda različna od dolžine zanke. \diamondsuit

Zanka v primeru 3.9 ni elementarna, saj ji sledi robna točka začetnega intervala. V primeru 3.10 pa zanka ni elementarna, saj točka 1 leži v preseku notranjosti prvega intervala in drugega intervala.

Definicija 3.11. Zaprt in omejen interval, katerega krajišči pripadata ciklu \mathcal{O} imenujemo \mathcal{O} -interval.

V nadaljevanju bomo zgornje leme uporabili na \mathcal{O} -intervalih. Tako bomo poenostavili obravnavo periodičnih točk funkcije f, saj bomo uporabili samo informacije, ki jih lahko pridobimo iz delovanja funkcije f na ciklu \mathcal{O} . Zato bodo naši sklepi veljali za vse zvezne funkcije s ciklom \mathcal{O} . Relaciji pokritja $I \to J$ rečemo \mathcal{O} -vsiljena, če interval J leži v \mathcal{O} -intervalu M, katerega krajišči sta skrajno leva in skrajno desna točka množice $f(I \cap \mathcal{O})$. Ker je funkcija f zvezna, lahko s pomočjo izreka 3.1 ugotovimo, da je množica f(I) interval. Velja $J \subseteq M \subseteq f(I)$. V nadaljevanju dela bodo vse relacije pokritja \mathcal{O} -vsiljene. Zanka intervalov $I_0 \to I_1 \to \cdots \to I_{n-1} \to I_0$, v kateri vsaka puščica predstavlja \mathcal{O} -vsiljeno relacijo pokritja, se imenuje \mathcal{O} -vsiljena zanka \mathcal{O} -intervalov.

Vse relacije pokritja, o katerih bomo govorili od sedaj naprej in jih bomo označevali s simbolom ' \rightarrow ' bodo \mathcal{O} -vsiljene.

4. Primeri

V tem poglavju si bomo zaradi lažjega razumevanja pogledali nekaj posebnih primerov. Najprej si bomo pogledali najbolj znan poseben primer izreka Šarkovskega. V naslednjih dveh primerih bomo postopek iz prvega primera razširili na daljše cikle. V zadnjem primeru bomo nakazali, kako lahko iz periodičnih točk funkcije f^2 ugotovimo, katere periode ima funkcija f, kar igra pomembno vlogo pri dokazu izreka 2.5.

Primer 4.1 (3-cikel). Prepričajmo se, da perioda 3 implicira obstoj vseh ostalih period. Točka lahko tvori 3-cikel na dva različna načina, ki sta v resnici zrcalna podoba drug drugega. Slika 4 prikazuje oba primera. Črtkane puščice nakazujejo,

SLIKA 4. Zrcalna podoba ciklov.

kam se s funkcijo f slikajo točke. Velja:

$$x_1 = f(x_0), x_2 = f(x_1)$$
 in $x_0 = f(x_2)$.

V obeh primerih smo z I_1 označili \mathcal{O} -interval s krajišči x_0 in x_1 , z I_0 pa \mathcal{O} -interval s krajišči x_0 in x_2 . Krajišči intervala I_1 se slikata v skrajno levo in skrajno desno točko cikla, zato imamo \mathcal{O} -vsiljeni pokritji $I_1 \to I_1$ in $I_1 \to I_0$. Krajišči intervala I_0 se slikata v krajišči intervala I_1 , zato je tudi pokritje $I_0 \to I_1$ \mathcal{O} -vsiljeno. Ugotovljena pokritja lahko strnemo v diagram $\circlearrowleft I_1 \leftrightarrows I_0$. Iz relacije pokritosti $I_1 \to I_1$ in leme 3.4 sklepamo, da interval ${\it I}_1$ vsebuje negibno točko. Krajišči intervala ${\it I}_0$ ne morejo slediti zanki $I_0 \to I_1 \to I_0$, saj sta periodični točki s periodo 3. Točke, ki sledijo zanki, pa imajo periodo 1 ali 2. Ker je notranjost intervala I_0 disjunktna z intervalom I_1 , lahko s pomočjo leme 3.8 sklepamo, da je zanka elementarna. Torej lahko v intervalu I_0 poiščemo točko s periodo 2. Za dokaz obstoja točke s periodo l > 4 si poglejmo zanko

(2)
$$I_0 \to \overbrace{I_1 \to I_1 \to \cdots \to I_1}^{l-1 \text{ ponovitev intervala } I_0} \to I_0.$$

V tej zanki nastopajo vsaj 3 kopije intervala I_1 , v katerem ležita samo dve točki \mathcal{O} intervala. Ker imajo točke iz cikla \mathcal{O} periodo 3, v intervalu I_1 ne morejo ležati trije zaporedni členi iz cikla \mathcal{O} , torej tudi tri zaporedne iteracije funkcije f na krajiščih intervala I_0 ne morejo ležati v intervalu I_1 . To pomeni, da krajišči intervala I_0 ne moreta slediti zanki. Že prej smo ugotovili, da je notranjost intervala I_0 disjunktna z intervalom I_1 , zato je zanka (2) elementarna zanka dolžine l. Elementarna l-zanka vsebuje točko periode l, torej ima funkcija f periodo l za vsak $l \geq 4$. Pokazali smo, da je vsako naravno število perioda funkcije f.

Primer 4.2 (7-cikel). Sedaj bomo obravnavali 7-cikel \mathcal{O} in \mathcal{O} -intervale prikazane na sliki 5. Podobno kot pri prejšnjem primeru označimo točke $x_i = f^i(x_0)$ ter intervale

SLIKA 5. Primer 7-cikla.

 $I_1 = [x_0, x_1], I_2 = [x_1, x_2]$ in tako naprej kot prikazuje slika 5. Za to izbiro intervalov dobimo naslednje \mathcal{O} -vsiljene relacije pokritosti:

- (2) $I_1 \to I_2 \to I_3 \to I_4 \to I_5 \to I_0$ (3) $I_0 \to I_1, I_0 \to I_3 \text{ in } I_0 \to I_5$

Zgornje relacije pokritosti lahko prikažemo z grafom, ki ga prikazuje slika 6. Iz grafa preberemo naslednje zanke.

- (1) $I_1 \rightarrow I_1$
- (2) $I_0 \rightarrow I_5 \rightarrow I_1$
- $(3) \stackrel{7}{I_0} \rightarrow \stackrel{7}{I_3} \rightarrow \stackrel{7}{I_4} \rightarrow I_5 \rightarrow I_0$

Slika 6. diagram

(4)
$$I_0 \to I_1 \to I_2 \to I_3 \to I_4 \to I_5 \to I_0$$

(5) $I_0 \to \underbrace{I_1 \to I_1 \to \cdots \to I_1}_{r \text{ ponovitev intervala } I_1} \to I_2 \to I_3 \to I_4 \to I_5 \to I_0$, kjer je $r \ge 3$.

Zanka $I_1 \to I_1$ je elementarna, saj je elementarna vsaka zanka dolžine 1. Pri ostalih zankah lahko najprej ugotovimo, da za vsak $j \in \{1, 2, ..., 5\}$ velja int $(I_0) \cap I_j = \emptyset$. Pri zankah (2), (3) in (4) nobena robna točka intervala I_0 ne more slediti zanki, saj je perioda robnih točk 7, perioda točk, ki sledijo zankam (2), (3) in (4) pa je manjša ali enaka 6. S tem so izpolnjeni pogoji leme 3.8 in so zanke elementarne. V teh zankah lahko poiščemo točke s periodami 2, 4, ali 6. Podobno kot v primeru 4.1 ugotovimo, da nobene tri zaporedne iteracije funkcije f na točkah cikla \mathcal{O} ne ležijo v intervalu I_1 , zato v tem intervalu tudi ne morejo ležati tri zaporedne iteracije funkcije f na robnih točkah intervala I_0 . To pomeni, da krajišči intervala I_0 ne sledita zanki (5). S tem razmislekom so izpolnjeni pogoji leme 3.8, zato je zanka (5) elementarna. Za dolžino zanke (5) lahko izberemo katerokoli naravno število večje od 7. Torej lahko na podlagi prisotnosti 7-cikla na sliki 5 sklepamo, da so prisotne vse periode l, za katere je $l \triangleleft 7$

Primer 4.3 (9-cikel). Predpostavimo, da ima funkcija f 9-cikel \mathcal{O} , ki je prikazan na sliki 7. Določili smo šest \mathcal{O} -intervalov I_0, I_1, \ldots, I_5 , za katere velja, da je notranjost

SLIKA 7. Primer 9-cikla.

intervala I_0 disjunktna z ostalimi intervali. Torej za $j=1,2,\ldots,5$ velja enakost: int $(I_0)\cap I_j=\emptyset$. Za tako izbrane intervale dobimo enake relacije pokritja kot v primeru 4.1 in lahko s pomočjo enakih sklepov ugotovimo prisotnost enakih elementarnih zank in posledično periodičnih točk s periodami 1, 2, 4, 6 in vse periode večje od 7.

Zaporedje števil x_0, x_1, \ldots, x_6 smo določili tako, da se spiralno oddaljujejo od centra $c := \frac{x_0 + x_1}{2}$, kar je prikazano na sliki 8. S tako izbiro točk pa v zaporedju ne nastopajo vse točke cikla \mathcal{O} in tudi ne velja enakost $f(x_i) = x_{i+1}$ za vsak $i = 1, 2, \ldots, 5$ kot je to veljalo v primeru 4.2.

SLIKA 8. Primer 9-cikla.

V poglavju 6 je predstavljen algoritem za izbiro zaporedja točk x_0, x_1, \ldots, x_6 . Glavna ideja algoritma je, da za naslednji člen zaporedja ne izberemo vedno sliko prejšnjega člena na način: $x_{i+1} = f(x_i)$, vendar včasih izberemo točko, ki je bližje centru c. Točko x_{i+1} , ki je bližje centra c kot točka $f(x_i)$ izberemo, če je slika $f(x_{i+1})$ bolj oddaljena od centra kot točka $f(f(x_i))$. Postopka izbire naslednje točke na sliki 1 in na sliki 8 sta podobna. V obeh primerih se pomikamo navpično do grafa funkcije in nato vodoravno do simetrale lihih kvadrantov. Sprememba se zgodi na sliki 8, ko lahko izberemo še neizbrano točko tako, da se v vodoravni smeri pomaknemo proti centru c, v navpični smeri pa stran od centra c. To se na sliki 8 zgodi dvakrat in je prikazano s krivimi puščicami. Postopek se ustavi, ko pridemo do točke x_j , katere slika $f(x_j)$ je na isti strani centra c kot točka sama. V primeru na sliki 8 je to točka x_6 .

V poglavju 5 si bomo natančno pogledali kakšne lastnosti mora imeti zaporedje točk $x_0, x_1, \ldots, x_{n-1}$, ki predstavlja krajišča intervalov $I_0, I_1, \ldots, I_{n-1}$. Izvedeli bomo tudi, kako taka izbira točk in intervalov zagotavlja obstoj elementarnih zank. V poglavju 6 se bomo naučili, kako iz točk cikla izberemo zaporedje, ki ima željene lastnosti.

 \Diamond

SLIKA 9. Primer 6-cikla.

je vsako naravno število $l \in \mathbb{N}$ perioda funkcije f^2 . Za funkcijo f določimo še dva intervala. Interval I_0' naj bo najkrajši \mathcal{O} -interval, ki vsebuje točke iz množice $f(I_0 \cup \mathcal{O})$, interval I'_1 pa naj bo najkrajši \mathcal{O} -interval, ki vsebuje točke iz množice $f(I_1 \cup \mathcal{O})$. Sedaj bomo prikazali rekurzivno metodo, ki jo bomo uporabili kasneje v dokazu izreka Šarkovskega. Pokazali bomo, kako lahko s pomočjo elementarne kzanke za funkcijo f^2 poiščemo elementarno 2k-zanko za funkcijo f. V primeru, ki ga obravnavamo, bo to pomenilo, da je vsako sodo naravno število perioda funkcije f. Poglejmo si elementarno k-zanko za funkcijo f^2 , v kateri nastopajo relacije pokritja $I_1 \xrightarrow{f^2} I_1$, $I_1 \xrightarrow{f^2} I_0$ in $I_0 \xrightarrow{f^2} I_1$. Vsak zapis $I_1 \xrightarrow{f^2}$ v zanki lahko zamenjamo z $I_1 \xrightarrow{f} I_1' \xrightarrow{f}$, vsak zapis $I_0 \xrightarrow{f^2}$ pa z $I_0 \xrightarrow{f} I_0' \xrightarrow{f}$. S to spremembo dobimo 2k-zanko za funkcijo f, ki ni samo dvakrat ponovljena k-zanka. Prepričajmo se, da je 2k-zanka elementarna. Denimo, da točka p sledi 2k-zanki za funkcijo f. Pokazati moramo, da ima periodo 2k za funkcijo f. Opazimo, da točka p sledi prvotni k-zanki za funkcijo f^2 in ima zato periodo k za funkcijo f^2 . Po drugi strani pa iteracije točke p s funkcijo f ležijo alternirajoče enkrat na levi in enkrat na desni strani srednjega intervala, saj 2k-zanka za f alternira med intervali s črtico in intervali brez črtice. Zato je orbita točke p sestavljena iz 2k različnih točk. Na desni strani srednjega intervala leži ksodih iteracij, na levi strani pa leži k lihih iteracij. To pomeni, da je perioda točke pza f enaka 2k. Ker smo dolžino začetne elementarne k-zanke izbrali poljubno, smo pokazali, da je vsako sodo število perioda za f. Ker interval $[x_0, x_1]$ s funkcijo fpokrije samega sebe, pa obstaja negibna točka. Torej ima f tudi periodo 1.

5. ŠTEFANOVO ZAPOREDJE

V tem poglavju bomo podali definicijo Štefanovega zaporedja točk. Pokazali bomo, da te točke določajo intervale, s pomočjo katerih lahko zapišemo relacije pokritja in ustrezne zanke, ki zagotavljajo obstoj periodičnih točk. Če f-orbita vsebuje samo eno točko, je ta točka fiksna točka funkcije f. Perioda te točke je 1, kar je zadnji člen ureditve Šarkovskega in pri tej orbiti nimamo kaj dokazovati. Zato bomo obravnavali samo orbite oziroma cikle, ki vsebujejo vsaj dve točki. Naj bo $m \geq 2$ in \mathcal{O} m-cikel zvezne funkcije f. Preden definiramo Štefanovo zaporedje, moramo spoznati nekaj pojmov.

Definicija 5.1. Naj bo p najbolj desna točka m-cikla \mathcal{O} , za katero je f(p) > p in $q \in \mathcal{O}$ prva točka desno od p. Center c cikla \mathcal{O} definiramo kot $c = \frac{p+q}{2}$. Za vsako točko $x \in \mathcal{O}$ označimo množico točk iz cikla \mathcal{O} , ki ležijo v zaprtem intervalu omejenem z x in c, z \mathcal{O}_x . Natančneje, $\mathcal{O}_x = \mathcal{O} \cap [x, p]$, če je $x \leq p$ in $\mathcal{O}_x = \mathcal{O} \cap [q, x]$, če je $x \geq q$. Pravimo, da točka $x \in \mathcal{O}$ menja strani, če točka c leži med točkama x in f(x).

Poglejmo si definicijo Štefanovega zaporedja.

Definicija 5.2. Iz m-cikla \mathcal{O} izbrane točke x_0, x_1, \ldots, x_n tvorijo Stefanovo zaporedje, če je:

- (S1) $\{x_0, x_1\} = \{p, q\},\$
- (Š2) točke x_0, x_1, \ldots, x_n ležijo alternirajoče na levi oziroma desni strani točke c,
- (Š3) zaporedji $\{x_{2j}\}_{j=0}^{\left\lfloor \frac{n}{2} \right\rfloor}$ in $\{x_{2j+1}\}_{j=0}^{\left\lfloor \frac{n}{2} \right\rfloor}$ sta strogo monotoni in se oddaljujeta od
- (Š4) če je $0 \le j \le n-1$, potem x_j menja strani in $x_{j+1} \in \mathcal{O}_{f(x_j)}$,
- $(\dot{S}5)$ točka x_n ne menja strani.

Opomba 5.3. Štefanovo zaporedje dobimo tako, da iz množice m točk, ki tvorijo \mathcal{O} -cikel izberemo n+1 točk, ki zadoščajo zgornjim pogojem. Pogoj $x_{j+1} \in \mathcal{O}_{f(x_i)}$ v (Š4) pomeni, da je točka x_{j+1} bližje centru kot slika $f(x_j)$ točke x_j . Velja ena od neenakosti: $c < x_{j+1} \le f(x_j)$ ali $f(x_j) \le x_{j+1} < c$. Pogoja (Š2) in (Š3) zagotavljata, da so točke x_0, x_1, \ldots, x_n paroma različne. Ce sledimo točkam na način, ki je opisan v primeru 4.3, dobimo spiralo, zato za točke, ki ustrezajo pogojema (S2) in (S3) rečemo, da se spiralno oddaljujejo od centra c. Ker lahko pri izbiri točk iz cikla \mathcal{O} kakšno točko izpustimo, je število n+1 izbranih točk manjše ali enako številu vseh točk v \mathcal{O} -ciklu. Velja torej neenakost $n+1 \leq m$. Če se vrnemo na primere iz prejšnjega poglavja, lahko vidimo, da v primerih 4.1, 4.2 in 4.4 Štefanovo zaporedje sestavljajo vse točke O-cikla. V primeru 4.3 pa dve točki O-cikla ne nastopata v Stefanovem zaporedju.

Trditev 5.4. Predpostavimo, da m-cikel \mathcal{O} vsebuje Štefanovo zaporedje. Če je $l \triangleleft m$, potem funkcija f vsebuje O-vsiljeno elementarno l-zanko O-intervalov in posledično tudi periodično točko s periodo l.

Pri danem Stefanovem zaporedju x_0, x_1, \ldots, x_n definiramo intervale $I_0, I_1, \ldots, I_{n-1}$ na nasledni način: Za $1 \leq j < n$, najkrajši \mathcal{O} -interval, ki vsebuje točke x_0, x_1 in x_j , označimo z I_j , medtem ko z I_0 označimo \mathcal{O} -interval s krajišči x_{n-2} in x_n . Iz lastnosti (Š2) lahko sklepamo, da je int $(I_0) \cap I_j = \emptyset$ za vsak $j \in \{1, 2, \dots, n-1\}$.

Trditev 5.5. Za intervale izbrane na zgoraj opisan način veljajo naslednje relacije pokritja:

- (1) $I_1 \to I_1 \text{ in } I_0 \to I_1,$ (2) $I_1 \to I_2 \to \cdots \to I_{n-1} \to I_0,$
- (3) $I_0 \to I_{n-1}, I_{n-3}, I_{n-5} \dots$

Zaradi boljše predstave ponazorimo relacije pokritja na sliki 10.

Dokaz trditve 5.5. Dokazovali bomo vsako točko posebej.

Pri dokazu točke (1) bomo dokazali še močnejšo trditev, ki nam bo v pomoč tudi pri dokazu druge točke. Pokazali bomo, da za vsak $j = 0, 1, \dots, n-1$ velja relacija pokritja $I_i \to I_1$. Za dokaz je dovolj, če se prepričamo, da za vsak $j = 0, 1, \dots, n-1$ množica $f(I_j)$ vsebuje točki x_0 in x_1 . To je res, saj posledica 3.2 zagotavlja, da so v množici $f(I_i)$ vsebovane tudi vse točke iz intervala (x_0, x_1) . V primeru intervala $I_0 = [x_n, x_{n-2}]$ ugotovimo, da obe krajišči I_0 ležita na isti strani točke c. Lastnost (S4) pove, da krajišče x_{n-2} menja strani, medtem ko lastnost (S5) pravi, da točka x_n ne menja strani, zato točki $f(x_n)$ in $f(x_{n-2})$ ležita na nasprotnih straneh točke c. V primeru intervala I_j za $j=1,2,\ldots,n-1$ iz lastnosti (Š2) izvemo, da krajišči intervala I_j ležita na nasprotnih straneh točke c. Lastnost (S4) pove, da obe krajišči

SLIKA 10. Relacije pokritja v trditvi 5.5 lahko prikažemo z grafom.

menjata strani. Torej za vsak $j=0,1,\ldots,n-1$ interval $f(I_i)$ vsebuje točke cikla \mathcal{O} , ki ležijo na obeh straneh centra c. Zagotovo vsebuje točki x_0 in x_1 in zato tudi interval I_1 .

Naj bo j tako naravno število, za katerega velja $1 \le j \le n-1$. Zelimo pokazati, da množica $f(I_j)$ vsebuje interval I_{j+1} . Vemo že, da interval $f(I_j)$ vsebuje točki x_0 in x_1 . Za dokaz točke (2) moramo pokazati samo še vsebovanost točke x_{j+1} v množici $f(I_j)$. Podobno kot prej posledica 3.2 zagotavlja, da je v množici $f(I_j)$ vsebovan celoten interval I_{j+1} . V množici $f(I_j)$ so vsebovane točke x_0, x_1 in $f(x_j)$, zato je v tej množici vsebovana tudi množica točk $\mathcal{O}_{f(x_j)}.$ Iz lastnosti (Š3) ugotovimo točka x_{j+1} leži v množici $\mathcal{O}_{f(x_j)}$, zato velja $x_{j+1} \in \mathcal{O}_{f(x_j)} \subseteq f(I_j)$. Torej je interval I_{j+1} res vsebovan v množici $f(I_i)$.

Za dokaz točke (3) moramo pokazati, da je za vsako liho število $1 \leq l \leq n$ interval I_{n-l} vsebovan v množici $f(I_0)$. Ker že vemo, da $f(I_0)$ vsebuje točki x_0 in x_1 , preostane za dokazati še, da vsebuje točko x_{n-l} Zaradi lastnosti (S2) leži točka na drugi strani točke c kot točki x_{n-2} in x_n . Iz lastnoti (S3) sklepamo, da je točka x_{n-1} bolj oddaljena od točke c, kot točka x_{n-l} za liho število $3 \le l \le n$ interval I_{n-l} , zato vsak interval, ki vsebuje točke x_0, x_1 in x_{n-1} , vsebuje tudi vse točko x_{n-l} Pokazati moramo samo še, da množica $f(I_0)$ vsebuje točko x_{n-1} . Pri lastnosti (Š4) namesto j pišemo n-2 in dobimo vsebovanost $x_{n-1} \in \mathcal{O}_{f(x_{n-2})}$. Interval $f(I_n)$ vsebuje točke x_0, x_1 in $f(x_i)$,

Dokaz trditve 5.4. Naj veljajo predpostavke v trditvi 5.4. Radi bi pokazali, da ima funkcija f za vsako naravno število $l \triangleleft m$ točko periode l. Dokaz bomo razdelili na tri dele. Najprej bomo dokazali izrek za liha števila manjša od m, potem za soda števila manjša od m in na koncu še za vsa števila večja od m. Pri dokazu si bomo pomagali z naslednjimi zankami, ki jih preberamo s slike 10:

$$(Z1)$$
 $I_1 \rightarrow I_1$

(Z2)
$$I_0 \to I_{n-(l-1)} \to I_{n-(l-2)} \to \cdots \to I_{n-2} \to I_{n-1} \to I_0$$
 za sodo število $l \le n$, (Z3) $I_0 \to \underbrace{I_1 \to I_1 \to \cdots \to I_1}_{l-n+1 \text{ ponovitev intervala } I_1} \to I_2 \to \cdots \to I_{n-1} \to I_0$ za $l \ge n$.

Edino liho število l manjše od m, za katerega lahko velja $l \triangleleft m$ je število 1. Za l = 1 uporabimo zanko (Z1), ki je zanka dolžine 1 in zato elementarna. Torej obstaja točka periode 1 v intervalu I_1 .

Naravno število $1 < l \le m$ je lahko v relaciji $l \triangleleft m$ samo, če je sodo. Za vsako sodo število $l \le n$ uporabimo zanko (Z2). Iz konstrukcije intervalov I_0, I_1, \ldots, I_n vemo, da je notranjost intervala I_0 disjunktna z intervali $I_{n-(l-1)}, I_{n-(l-2)}, \ldots, I_{n-2}, I_{n-1}$. Krajišči intervala I_0 imata periodo m in zato ne moreta sledit zanki (Z2), katere dolžina je manjša od m. Z uporabo leme 3.8 ugotovimo, da je zanka (Z2) elementarna, zato obstaja točka iz I_0 , ki ima periodo l.

V primeru, ko je l > n, si pomagamo z l-zanko (Z3). Če je l = m, potem lahko izberemo poljubno točko iz cikla \mathcal{O} , saj imajo vse točke iz cikla \mathcal{O} periodo m. Predpostavimo, da je $l \neq m$. Podobno kot v prejšnjem primeru je notranjost intervala I_0 disjunktna z intervali $I_1, I_2, \ldots, I_{n-1}$. Pri dokazu, da kraišči intervala I_0 ne sledita zanki (Z3), bomo obravnavali dva primera. Če velja n < l < m, potem krajišči intervala ne moreta slediti zanki (Z3), saj je njena dolžina manjša od m, perioda krajišč intervala I_0 pa je m. Če je l > m si pogledamo, koliko ponovitev intervala I_1 nastopa v zanki (Z3). Število l je večje od števila m. Iz opombe 5.3 lahko preberemo, da je število m večje od števila n+1 in naredimo naslednje ocene:

$$l-n+1 > m-n+1 > n+1-n+1=2.$$

Število ponovitev intervala I_1 je večje od 2, kar pomeni, da se v zanki (Z3) interval I_1 pojavi vsaj trikrat. Ker za nobeno točko iz cikla \mathcal{O} v intervalu I_1 ne ležijo tri zaporedne iteracije, tudi krajišča intervala I_0 ne morejo slediti zanki (Z3). S pomočjo leme 3.8 sklepamo, da je zanka (Z3) elementarna, kar zagotavlja obstoj točke iz intervala I_0 , ki ima periodo l.

Pri pozornem spremljanju dokaza opazimo, da smo dokazali močnejšo trditev.

Trditev 5.6. Če m-cikel \mathcal{O} vsebuje Štefanovo zaporedje dolžine n < m-1, potem ima obstaja periodična točka s periodo 1 (sledi iz zanke (Z1)), točka s sodo periodo $l \le n$ (sledi iz zanke (Z2)) in točka s periodo $l \ge n$ (sledi iz zanke (Z3)).

6. Konstrukcija Štefanovega zaporedja

V tem poglavju bomo pokazali, da lahko v vsakem ciklu, ki vsebuje vsaj dve točki poiščemo Štefanovo zaporedje, razen če vsaka točka v ciklu menja stran. Dokaz bomo izvedli tako, da bomo konstruirali zaporedje in na koncu preverili, da gre za Štefanovo zaporedje.

Trditev 6.1. Cikel, ki vsebuje vsaj dve točki, vsebuje Štefanovo zaporedje, če vsaj ena točka ne menja strani.

Dokaz. Naj bo m naravno število večje ali enako 2 in naj bo \mathcal{O} cikel sestavljen iz m različnih točk. Naj bo množica \mathcal{M} največji tak \mathcal{O} -interval, ki vsebuje točke p,q in take točke iz cikla \mathcal{O} , ki menjajo strani. To pomeni, da za poljubno točko $x \in \mathcal{M} \cap \mathcal{O}$ vse točke iz množice \mathcal{O}_x menjajo strani. Pri konstrukciji Štefanovega zaporedja, si

bomo pomagali z množico $\mathcal{S} \subseteq \mathcal{O}$, ki vsebuje vse točke, ki so kandidati za nekončne člene Štefanovega zaporedja. V množici \mathcal{S} ležijo take točke $x \in \mathcal{O} \cap \mathcal{M}$, ki jih funkcija f slika dlje od točke c kot katerokoli drugo točko iz množice \mathcal{O}_x (slika 11). Za vsak $x \in \mathcal{O} \cap \mathcal{M}$ velja, da je x iz množice \mathcal{S} , če je $\mathcal{O}_{f(w)} \subseteq \mathcal{O}_{f(x)}$ za vsako

SLIKA 11. Točka x pripada množici \mathcal{S} , medtem ko točka y pripada množici \mathcal{M} ne pa tudi množici \mathcal{S} , saj se točka z slika bolj stran od točke c kot točka y.

točko $w \in \mathcal{O}_x$. Množica \mathcal{S} zagotovo ni prazna množica, saj vsebuje točki p in q. Sedaj lahko definiramo preslikavo $\sigma: \mathcal{S} \to \mathcal{O}$, ki slika element Štefanovega zaporedja v naslednji člen tega zaporedja. Za $\sigma(x)$ vedno izberemo točko iz množice $\mathcal{O}_{f(x)}$. Točka x je vsebovana v množici \mathcal{S} , torej menja strani. To zagotavlja, da točki x in $\sigma(x)$ ležita na nasprotnih straneh točke c. Točko $\sigma(x)$ določimo na naslednji način:

(1) Ce $f(x) \in \mathcal{M}$, potem je $\sigma(x)$ tista točke iz množice $\mathcal{O}_{f(x)}$, ki se s funkcijo f slika najdlje od centra c. Velja vsebovanost:

$$f(\mathcal{O}_{f(x)}) \subseteq \mathcal{O}_{f(\sigma(x))}$$
.

(2) Če $f(x) \notin \mathcal{M}$, potem za $\sigma(x)$ izberemo katero koli točko iz $\mathcal{O}_{f(x)}$, ki ne menja strani.

Iz definicije preslikave σ vidimo, da v primeru (1) točka $\sigma(x)$ leži v množici \mathcal{S} , saj menja strani in se slika bolj stran od točke c kot katero koli drugo število iz množice $\mathcal{O}_{\sigma(x)}$. Primer si lahko pogledamo na sliki 12.

SLIKA 12. Ker f(x) menja strani, smo točko $\sigma(x)$ določili po primeru (1).

V primeru (2) $\sigma(x)$ ne leži v množici \mathcal{S} , saj ne menja strani. Glede na to, da so v množici \mathcal{S} kandidati za nekončne člene zaporedja, je $\sigma(x)$, ki ga dobimo v primeru (2), dober kandidat za končen člen zaporedja.

Števili x in $\sigma(x)$ ležita na nasprotnih straneh točke c. Če je število $\sigma^2(x)$ dobro definirano, tudi števili $\sigma(x)$ in $\sigma^2(x)$ ležita na nasprotnih straneh točke c, kar pomeni, da točki x in $\sigma^2(x)$ ležita na isti strani točke c. Kot smo utemeljili v poglavju 5, je za dokaz zelo pomembno, da se točke spiralno oddaljujejo od točke c, kot kaže slika 8 in je podrobneje opisano v definiciji Štefanovega zaporedja v točkah (Š2) in (Š3). Za vsako točko x iz štefanovega zaporedja bi radi videli, da je $\sigma^2(x)$, če ta obstaja, bolj stran od točke c kot točka x. Torej, $\sigma^2(x) \notin \mathcal{O}_x$.

Lema 6.2. Če obstaja taka točka $x \in \mathcal{S}$, za katero je $\sigma^2(x) \in \mathcal{O}_x$, potem vse točke cikla \mathcal{O} menjajo stran.

Dokaz. Denimo, da je za neko točko $x \in \mathcal{O}$ točka $\sigma^2(x)$ dobro definirana in da je vsebovana v množici \mathcal{O}_x . Potem so dobro definirane vse točke $x, y := \sigma(x)$ in $z := \sigma(y) = \sigma^2(x)$. Da lahko izračunamo $\sigma(x)$ ali $\sigma(y)$, morata točki x in y ležati v množici \mathcal{S} . Točka $y = \sigma(x)$ je izračunana po pravilu (1) v definiciji preslikave σ , iz česar lahko sklepamo, da velja vsebovanost:

$$f(\mathcal{O}_{f(x)}) \subseteq \mathcal{O}_{f(\sigma(x))} = \mathcal{O}_{f(y)}.$$

Točka x je vsebovana v množici \mathcal{M} , zato vse točke iz množice \mathcal{O}_x menjajo strani. To pomeni, da točka $z = \sigma(y) \in \mathcal{O}$ menja strani in je izračunana po pravilu (1) v definiciji preslikave σ . Torej tudi točka z leži v množici \mathcal{S} in velja vsebovanost:

$$f(\mathcal{O}_{f(y)}) \subseteq \mathcal{O}_{f(\sigma(y))} = \mathcal{O}_{f(z)}$$
.

Iz dejstva, da točka x pripada množici \mathcal{S} , sklepamo, da se x s funkcijo f slika dlje od centra c kot katera koli druga točka iz množice \mathcal{O}_x . Točka $z = \sigma^2(x)$ pripada množici \mathcal{O}_x , zato točka f(z) leži bližje centru kot točka f(x), kar lahko zapišemo tudi tako:

$$\mathcal{O}_{f(z)} \subseteq \mathcal{O}_{f(x)}$$
.

Ugotovili smo, da je slika množice $\mathcal{O}_{f(x)}$ vsebovana v množici $\mathcal{O}_{f(y)}$ in da je slika množice $\mathcal{O}_{f(y)}$ vsebovana v množici $\mathcal{O}_{f(x)}$. Ker točki x in y ležita na nasprotnih straneh točke c in ker obe točki menjata strani, tudi točki f(x) in f(y) ležita na nasprotnih straneh točke c. Sklepamo lahko, da sta množici $\mathcal{O}_{f(x)}$ in $\mathcal{O}_{f(y)}$ disjunktni in ležita na nasprotnih straneh točke c. To pomeni, da vse točke iz množice $\mathcal{O}_{f(x)} \cup \mathcal{O}_{f(y)}$ menjajo strani. Množica $\mathcal{O}_{f(x)} \cup \mathcal{O}_{f(y)}$ je podmnožica cikla \mathcal{O} , ki se s funkcijo f slika nazaj vase. Edina podmnožica cikla \mathcal{O} , ki se s f slika nazaj vase, je množica \mathcal{O} , zato je cikel \mathcal{O} enak uniji $\mathcal{O}_{f(x)} \cup \mathcal{O}_{f(y)}$. To pomeni, da vsaka točka iz cikla \mathcal{O} menja strani.

Za dokončanje dokaza predpostavimo, da obstaja točka iz cikla \mathcal{O} , ki ne menja strani. Pokažimo, da potem obstaja Štefanovo zaporedje. Če za implikacjo v lemi 6.2 uporabimo pravilo kontrapozicije, dobimo naslednjo izjavo: Če obstaja točka iz cikla \mathcal{O} , ki ne menja strani, potem ne obstaja točka x, za katero velja $\sigma^2(x) \in \mathcal{O}_x$. To pomeni, da ne moreta biti hkrati izpoljneni enakosti $\sigma(p) = q$ in $\sigma(q) = p$. Lahko izberemo taki točki x_0 in x_1 , da je $\{x_0, x_1\} = \{p, q\}$ in $x_2 := \sigma(x_1) \neq x_0$. Dokler je x_i vsebovan v množici \mathcal{S} , dobimo naslednji člen s predpisom $x_{i+1} = \sigma(x_i)$.

Za dokončanje dokaza se moramo prepričati, da tako definirano zaporedje ustreza vsem petim pogojem iz definicije 5.2. Zaradi izbire točk $\{x_0, x_1\} = \{p, q\}$ zaporedje ustreza pogoju (Š1). Točki x_0 in x_1 ležita na nasprotnih straneh točke c, ostale točke pa ležijo alternirajoče na levi oziroma desni strani točke c, saj zaporedni točki x_i in $x_{i+1} = \sigma(x_i)$ ležita na nasprotnih straneh. S tem je izpolnjen pogoj (Š2). Za dokaz pogoja (Š3) se moramo prepričati, da se točke v zaporedju spiralno oddaljujejo od centra c. Začetne točke so bile izbrane tako, da točka x_2 ne leži v množici \mathcal{O}_{x_0} . Lema 6.2 pokaže, da lahko podoben sklep naredimo tudi za ostale člene zaporedja, velja namreč $x_{i+2} = \sigma^2(x_i) \notin \mathcal{O}_{x_i}$. To pa pomeni, da število x_{i+2} leži bolj stran od točke c kot število x_i . Iz tega med drugim sledi, da so členi zaporedja paroma različni. Ker pa ležijo členi zaporedja v končni množici \mathcal{O} , obstaja končni člen tega zaporedja. Označimo ga z x_n . Glede na definicijo zaporedja za vsako naravno število j < n točka x_j menja stran in velja $x_{j+1} = \sigma(x_j) \in \mathcal{O}_{f(x)}$. S tem je izpolnjen tudi pogoj (Š4). Za izpolnitev pogoja (Š5) se moramo prepričati, da zadnji člen x_n ne menja strani. Število $x_n = \sigma(x_{n-1})$ smo dobili s predpisom (2) v definiciji funkcije

 σ . Če točko x_n določimo s pomočjo predpisa (1), potem x_n leži v množici \mathcal{S} . Točka x_n menja strani in se slika dlje od točke c kot katera koli druga točka iz množice \mathcal{O}_x . Lahko izberemo točko $x_{n+1} = \sigma(x_n)$ in točka x_n ni zadnja točka zaporedja, kar je protislovje s predpostavko, da je x_n zadnja točka zaporedja. Točko x_n smo zato dobili iz predpisa (2), kar pomeni, da x_n ne menja strani. S tem je izpolnjena tudi zadnja zahteva (Š5) in je zaporedje x_i res Štefanovo zaporedje.

V lemi 6.2 smo ugotovili, da za naravno število $m \geq 2$ vsak m-cikel \mathcal{O} , ki vsebuje vsaj eno točko, ki ne menja strani, vsebuje Štefanovo zaporedje. V trditvi 5.4 pa smo se prepričali da cikli, ki vsebujejo Štefanovo zaporedje implicirajo obstoj elementarnih \mathcal{O} -vsiljenih l-zank za vsak $l \triangleleft m$. Dobimo naslednjo trditev:

Trditev 6.3. Naj bo m naravno število večje od 2. Če m-cikel vsebuje točko, ki ne menja strani, potem za vsako naravno število l, za katero velja $l \triangleleft m$ obstaja elementarna \mathcal{O} -vsiljena l-zanka \mathcal{O} -intervalov in zato tudi točka s periodo l.

7. Dokaz izreka Šarkovskega

V tem poglavju bomo dokazali glavni del izreka Šarkovskega. Vemo že, da izrek velja, če obstaja točka cikla, ki ne menja strani. V primeru, da vse točke menjajo strani, bomo podobno kot v primeru 4.4 cikel razdelili na levo in desno polovico. Vsaka polovica tvori cikel za funkcijo f^2 . Informacijo o ciklih funkcije f^2 bomo nato prenesli na cikle funkcije f.

Trditev 7.1. Naj bosta m in l naravni števili v relaciji m > l in naj bo \mathcal{O} m-cikel. Potem obstaja \mathcal{O} -vsiljena elementarna l-zanka \mathcal{O} -intervalov in posledično točka s periodo l.

Dokaz. Izrek bomo dokazali s pomočjo indukcije na število m.

Ce je m=1, je trditev avtomatično izpolnjena, saj je 1 zadnji člen zaporedja Šarkovskega in edino število l, za katerega velja $l \triangleleft 1$ je 1.

Predpostavimo, da izrek velja za vse cikle, katerih dolžina je krajša od m. Radi bi dokazali, da velja tudi za poljuben m-cikel \mathcal{O} . Ce obstaja točka iz cikla \mathcal{O} , ki ne menja strani, potem je po trditvi 6.3 resična tudi trditev 7.1. V nasprotnem primeru vse točke cikla \mathcal{O} menjajo strani. Označimo najmanjšo točko cikla \mathcal{O} z Lin največjo točko cikla \mathcal{O} z R. Množica \mathcal{O}_L vsebuje vse točke iz cikla \mathcal{O} , ki ležijo levo od centra c, množica \mathcal{O}_R pa vsebuje vse točke, ki ležijo desno od centra c. Ker vse točke iz cikla $\mathcal O$ menjajo strani, funkcija f slika množico $\mathcal O_L$ v množico \mathcal{O}_R in obratno. Funkcija $f|_{\mathcal{O}_L}$ je bijekcija iz množice \mathcal{O}_L v množico \mathcal{O}_R in funkcija $f|_{\mathcal{O}_R}$ je bijekcija iz množice \mathcal{O}_R v množico \mathcal{O}_L . Ugotovimo, da množici \mathcal{O}_L in \mathcal{O}_R vsebujeta enako število točk, zato je število m sodo in obstaja naravno število n, za katerega je m=2n. Ker je m sodo število, je lahko neko naravno število l v relaciji $l \triangleleft m$ samo, če je l = 1 ali pa je l sodo število. V drugem primeru obstaja tako naravno število k, za katerega je l=2k. Iz zgornjega razmisleka in iz trditve 2.4 sledi, da je neko naravno število l v relaciji $l \triangleleft m$ natanko tedaj, ko je l=1 ali pa je l=2k in je število k v relaciji $k \triangleleft n$. To pomeni, da moramo pokazati, da ima f elementarno 1-zanko in elementarno \mathcal{O} -vsiljeno 2k-zanko \mathcal{O} -intervalov za vsako naravno število k za katerega velja relacija $k \triangleleft n$. Elementarno 1-zanko dobimo s pomočjo intervala [p,q]. Točka p je največja točka množice \mathcal{O}_L in točka q je najmanjša točka množice \mathcal{O}_R . Ker točka f(p) leži v množici \mathcal{O}_R in točka f(q) leži v množici \mathcal{O}_L dobimo elementarno 1-zanko $[p,q] \to [p,q]$. Pri dokazovanju obstoja 2k-zanke za vsako naravno število k, ki ustreza relaciji $k \triangleleft n$, si bomo pomagali z indukcijsko predpostavko. Opazimo, da sta množici \mathcal{O}_L in \mathcal{O}_R cikla dolžine n za funkcijo f^2 . Ker je dolžina obeh ciklov manjša od m, lahko uporabimo indukcijsko predpostavko. Če indukcijsko predpostavko uporabimo na ciklu \mathcal{O}_R , ugotovimo, da za vsako naravno število k, za katerega je $k \triangleleft n$, obstaja elementarna \mathcal{O}_R -vsiljena k-zanka \mathcal{O}_R intervalov za funkcijo f^2 . Pokazati moramo, da te zanke zagotavljajo obstoj elementarnih l-zank za funkcijo f. Poglejmo si poljubno elementarno k-zanko \mathcal{O}_R intervalov za funkcijo f^2 :

(3)
$$I_0 \xrightarrow{f^2} I_1 \xrightarrow{f^2} I_2 \xrightarrow{f^2} \cdots \xrightarrow{f^2} I_{k-1} \xrightarrow{f^2} I_0.$$

Za vsako naravno število $0 \le i < k$ označimo najkrajši zaprti interval, ki vsebuje množico $f(I_i \cap \mathcal{O}) \subseteq \mathcal{O}_L$, z I_i' . Intervali I_i' so \mathcal{O} -intervali za katere veljajo relacije pokritja $I_i \xrightarrow{f} I_i'$. Če interval I_0 označimo z I_k lahko naradimo naslednji razmislek. Za vsako naravno število $0 \le i < k$ lahko zapišemo \mathcal{O}_R -vsiljene relacije pokritja $I_i \xrightarrow{f^2} I_{i+1}$, zato obstajata taki točki $a_i, b_i \in I_i \cap \mathcal{O}_R$, da interval I_{i+1} leži v intervalu omejenim s točkama $f^2(a_i)$ in $f^2(b_i)$. Točki $a_i' := f(a_i)$ in $b_i' := f(b_i)$ ležita v množici $I_i' \cap \mathcal{O}$ in zaprt interval omejen s točkama $f(a_i') = f^2(a_i)$ in $f(b_i') = f^2(b_i)$ vsebuje interval I_{i+1} . Dobili smo \mathcal{O} vsiljeno relacijo pokritja $I_i' \xrightarrow{f} I_{i+1}$. S pomočjo zgornjih relacij pokritja lahko zapišemo naslednjo \mathcal{O} -vsiljeno l-zanko:

$$(4) I_0 \xrightarrow{f} I'_0 \xrightarrow{f} I_1 \xrightarrow{f} I'_1 \xrightarrow{f} \cdots \xrightarrow{f} I_{k-1} \xrightarrow{f} I'_{k-1} \xrightarrow{f} I_0$$

Prepričajmo se, da je zanka (4) elementarna. Naj bo točka x periodična točka za funkcijo f, ki sledi zanki (4). Točka x je periodična točka za funkcijo f^2 , ki sledi zanki (3). Torej, točka x ima periodo k za funkcijo f^2 , kar pomeni, da k točk f-orbite leži v množici \mathcal{O}_R . Ker intervali v zanki (4) ležijo izmenično na levi oziroma desni strani točke c, tudi iteracije točke x ležijo izmenično na levi oziroma desni strani točke c. To pomeni, da k točk, ki predstavljajo lihe iteracije točke x ležijo v množici \mathcal{O}_L . Zato orbita točke x vsebuje 2k = l različnih točk in je tudi perioda točke x za funkcijo f enaka l. Sklepamo, da je zanka (4) elementarna, kar zakluči dokaz.

8. Dokaz realizacijskega izrek Šarkovskega

Daljši in bolj zapleten del dokaza izreka Šarkovskega je za nami. Sedaj moramo dokazati še drugi del, ki pravi:

Izrek 8.1. Vsak rep \mathcal{T} ureditve Šarkovskega je množica period za neko zvezno funkcijo f, ki slika interval nazaj vase.

Dokaz. Izrek bomo dokazali tako, da bomo za vsak rep \mathcal{T} poiskali funkcijo, katere množica period je enaka repu \mathcal{T} . Pri iskanju primerne funkcije si bomo pomagali z družino odrezanih šotorskih funkcij:

$$T_h: [0,1] \to [0,1]$$

 $T_h: x \mapsto \min\left(h, 1-2\left|x-\frac{1}{2}\right|\right)$

Ekvivalentno in mogoče lažje predstavljivo lahko predpis funkcije T_h zapišemo na naslednji način:

$$T_h(x) = \min(2x, 2 - 2x, h).$$

Točke, ki imajo za funkcijo T_h periodo n, so negibne točke za funkcijo T_h^n , zato si lahko zaradi lažje predstave na sliki 13 ogledamo funkcije $T_{0,85}, T_{0,85}^2, T_{0,85}^3$ in $T_{0,85}^4$.

SLIKA 13. Funkcije $T_{0,85}, T_{0,85}^2, T_{0,85}^3$ in $T_{0,85}^4$ in njihova presečišča s simetralo lihih kvadrantov.

Pri dokazu bo zelo pomembna funkcija T_1 . Na sliki 14 so prikazane prve štiri iteracije funkcije T_1 . Iz slike preberemo, da ima funkcija T_1 dve presečišči s simetralo lihih kvadrantov in zato tudi dve negibni točki. Funkcija T_1^2 ima 4 negibne točke, funkcija T_1^3 jih ima 8, funkcija T_1^4 pa 16. Opazimo, da funkcija T_1^n seka simetralo lihih kvadrantov natanko 2^n -krat in ima prav toliko negibnih točk. Funkcija T_1 pa ima po tem razmisleku največ 2^n točk s periodo n.

Za dokaz izreka bomo najprej pokazali, da obstaja funkcija, ki ima samo periodo 1. To je funkcija T_0 . Za vsak $x \in [0,1]$ je vrednost funkcije T_0 enaka 0, zato je 0 tudi edina periodična točka za to funkcijo. Točka 0 je negibna točka, zato je njena perioda enaka 1.

Obravnavajmo funkcijo T_1 . Dokazali bomo, da je vsako naravno število n perioda funkcije T_1 . To najlažje dokažemo tako, da poiščemo cikel dolžine 3 in s pomočjo izreka 2.5 sklepamo, da ima funkcija T_1 vse periode. Vsaka točka ki ima za funkcijo T_1 periodo 3 je negibna točka funkcije T_1^3 , zato si poglejmo negibne točke funkcije T_1^3 . Iz grafa razberemo, da ima funkcija T_1^3 osem negibnih točk. Izračunamo lahko, da sta točki 0 in $\frac{2}{3}$ sta negibni točki funkcije T_1 , točke $\frac{2}{7}$, $\frac{4}{7}$ in $\frac{6}{7}$ tvorijo 3-cikel. Prav tako tvorijo 3-cikel točke $\frac{2}{9}$, $\frac{4}{9}$ in $\frac{8}{9}$. S pomočjo izreka 2.5 ugotovimo, da funkcija T_1 vsebuje točke vseh period, saj vsebuje točko periode 3.

Funkciji T_1 in T_h sta vsaj na nekem delu intervala [0,1] enaki, zato pričakujemo, da obstajajo cikli, ki so skupni obema funkcijama. O tem govori naslednja lema:

Lema 8.2. Za funkciji T_1 , T_h in njune cikle veljata naslednji dve trditvi:

- (1) Če je $\mathcal{O} \subseteq [0,h]$ cikel za funkcijo T_1 , je tudi cikel za funkcijo T_h .
- (2) Če je $\mathcal{O} \subseteq [0,h)$ cikel za funkcijo T_h , je cikel tudi za funkcijo T_1 .

Dokaz. Funkciji T_1 in T_h se razlikujeta samo v tistih točkah x, za katere je $T_1(x) > h$. V vseh ostalih točkah, sta funkciji enaki. Privzemimo, da je $\mathcal{O} \subseteq [0, h]$ cikel za

SLIKA 14. Funkcije T_1, T_1^2, T_1^3, T_1^4 in njihova presečišča s simetralo lihih kvadrantov.

funkcijo T_1 . Ker je cikel \mathcal{O} vsebovan v intervalu [0, h], za vsako točko $x \in \mathcal{O}$ velja $T_1(x) \leq h$. Torej velja $T_1(x) = T_h(x)$, kar pomeni, da je \mathcal{O} tudi cikel za funkcijo T_h . Dokazali smo trditev (1)

Za dokaz trditve (2) prespostavimo, da je $\mathcal{O} \subseteq [0, h)$ cikel za funkcijo T_h . Torej je za vsako točko x iz cikla \mathcal{O} slika $T_h(x)$ manjša od h. Velja, da je tudi vrednost $T_1(x)$ manjša od h. To pomeni, da sta vrednosti funkcij T_1 in T_h v x enaki. Ker to velja za vsako točko cikla \mathcal{O} , je \mathcal{O} tudi cikel za funkcijo T_1 .

V trditvi (2) polodprtega intervala [0, h) ne moremo zamenjati z zaprtim intervalom [0, h], saj ne moremo narediti sklepa, da iz neenakosti $T_h(x) \leq h$ sledi neenakost $T_1(x) \leq h$. Za primer si lahko pogledamo funkcijo $T_{\frac{1}{2}}$, ki ima negibno točko $\frac{1}{2}$ na intervalu $[0, \frac{1}{2}]$, vendar to ni negibna točka funkcije T_1 . Ključna ideja tega dokaza je, da definiramo funkcijo $h(\cdot)$:

$$h: \mathbb{N} \to [0,1], h(m) := \min\{\max \mathcal{O} : \mathcal{O} \text{ je } m\text{-cikel funkcije } T_1\}$$

Prepričati se moramo, da je definicija dobra. Očitno je, da maksimum m-cikla obstaja. Pokazati moramo še, da obstaja tudi minimum. Funkcija T_1^n seka simatralo lihih kvadratov 2^n -krat, kar pomeni, da ima funkcija T_1^n natanko 2^n negibnih točk, funkcija T_1 pa ima 2^n periodičnih točk. Ker je nabor točk končen, minimum obstaja.

Zvitost dokaza se skriva v tem, da pri funkciji $T_{h(m)}$ število h(m) igra tri vloge. Pojavi se kot parameter, ki določi funkcijo iz družine funkcij. Predstavlja maksimum funkcije $T_{h(m)}$ in največjo točko neke orbite za funkcijo $T_{h(m)}$. Pokazali bomo, da funkcija h(m) razvrsti naravna števila na interval [0,1] natančno v obratnem vrstnem redu, kot ureditev Šarkovskega. Funkcija $h(\cdot)$ ima naslednje lastnosti:

- (a) funkcija T_h vsebuje l-cikel $\mathcal{O} \subseteq [0, h)$, če in samo če je h(l) < h,
- (b) orbita točke h(m) je m-cikel za funkcijo $T_{h(m)}$,
- (c) vsi ostali cikli za funkcijo $T_{h(m)}$ ležijo v intervalu [0, h(m)).

Lastnost (a) je očitna iz definicije funkcije $h(\cdot)$.

Za dokaz lastnosti (b) opazimo, da je točka h(m) največja točka m-cilka \mathcal{O} za funkcijo T_1 , zato cikel \mathcal{O} leži v intervalu [0, h(m)]. Po trditvi (1) iz leme 8.2 je \mathcal{O} cikel za funkcijo $T_{h(m)}$.

Ker je h(m) maksimum funkcije $T_{h(m)}$ m vsi ostali cikli funkcije $T_{h(m)}$ ležijo v intervalu [0, h). Pokazali smo lastnost (c)

S pomočjo lastnosti (a), (b), (c) in izreka 2.5 lahko dokažemo naslednjo lemo, s pomočjo katere zaključimo dokaz realizacijskega izreka Šarkovskega.

Lema 8.3. Za poljubni naravni števili m in n velja ekvivalenca:

$$n \triangleleft m \iff h(n) < h(m).$$

Dokaz. Najprej pokažimo implikacijo v desno. Denimo, da sta števili m in l v relaciji $l \triangleleft m$. Zaradi lastnosti (b) ima funkcija $T_h(m)$ m-cikel. Izrek 2.5 zagotavlja, da ima funkcija $T_{h(m)}$ tudi cikel dolžine l. Iz lastnosti (c) ugotovimo, da ta cikel leži v intervalu [0, h(m)). Na koncu upoštevamo še lastnost (a) in se prepričamo, da je h(l) < h(m)

Pri dokazu implikacije v levo stran uporabimo pravilo kontrapozicije in dokazujemo izjavo: $m \triangleleft l \iff h(m) < h(l)$. Zaradi simetričnosti števil l in m je ta izjava ekvivalentna prejšnji.

Poglejmo, katere periode ima funkcija $T_{h(m)}$. Iz definicije funkcije h(m) sledi, da je m perioda za funkcijo $T_{h(m)}$. Radi bi videli, da ima funkcija $T_{h(m)}$ periodo l natanko tedaj, ko velja $l \triangleleft m$. Naj bo l naravno število, za katerega velja relacija $l \triangleleft m$. Lema 8.3 pravi, da velja neenakost h(l) < h(m). Iz lastnosti (a) sklepamo, da funkcija $T_{h(m)}$ vsebuje l-cikel. Sedaj predpostavimo, da funkcija $T_{h(m)}$ vsebuje l cikel. Iz lastnosti (a) sklepamo, da je h(l) < h(m). Lema zagotavlja, da v tem primeru število l zadošča relaciji $l \triangleleft m$. Torej je množica period za funkcijo $T_{h(m)}$ res množica $\{n \in \mathbb{N}; n \triangleleft m\}$.

Poiskati moramo še zvezno funkcijo ki ima za množico period množico vseh potenc števila 2. Definiramo $h(2^{\infty}) := \sup_k h(2^k)$. Za vsako naravno število k velja $h(2^k) < h(2^{\infty})$. Zaradi lastnosti (a) funkcija $T_{h(2^{\infty})}$ vsebuje 2^k -cikel, za vsak $k \in \mathbb{N}$. Denimo, da funkcija $T_{h(2^{\infty})}$ vsebuje nek m cikel, kjer število m ni potenca števila 2. Zaradi izreka 2.5 funkcija $T_{h(2^{\infty})}$ vsebuje tudi 2m-cikel. Ker sta m-cikel in 2m-cikil disjunktca, lastnost (c) zagotavlja, da vsaj en od teh dveh ciklov leži v intervalu $[0, h(2^{\infty}))$. Recimo, da je to m-cikel. Potem obstaja tako naravno število l, da velja $h(m) < h(2^l)$. S pomočjo leme 8.3 ugotovimo, da velja $m \triangleleft 2^l$, torej je število m potenca števila 2. To je protislovje. Če bi predpostavili, da 2m-cikel leži v intervalu $[0, h(2^{\infty}))$, bi prišli do sklepa, da je število 2m potenca števila 2, kar pa tudi vodi v protislovje. Funkcija $T_{h(2^{\infty})}$ res vsebuje samo cikle, katerih dolžina je potenca števila 2.

Za konec pokažimo, da obstaja funkcija, ki nima periodičnih točk. Za primer lahko vzamemo translacijo $f: \mathbb{R} \to \mathbb{R}$ s predpisom f(x) = x + a, kjer je a katerokoli neničelno realno število.

9. Posplošitve izreka

Po zaklučenem dokazu si lahko postavimo vprašanje, kako se spremenijo posledice izreka, če spremenimo njegove predpostavke. Glede na to, kako spremenimo predpostavke, lahko pridemo do različnih posplošitev izreka. V primeru izreka Šarkovskega že obstaja več posplošitev. Nekatere obravnavajo izrek za nezvezne funkcije, ki ustrezajo določenim pogojem, druge pa preučujejo zvezne funkcije, ki so namesto na intervalu definirane na drugih prostorih. V tem primeru se lahko vprašamo, kakšna ureditev naravnih števil, če ta obstaja, opiše prisotnost periodičnih točk zvezne funkcije $f: X \to X$, ki slika nek topološki prostor X nazaj vase. Natančneje, iščemo relacijo \triangleleft_X z lastnostjo: če je m perioda za zvezno funkcijo $f: X \to X$, potem je vsako naravno število l, za katero je $l \triangleleft_X m$, tudi perioda za funkcijo f. V tem poglavju si bomo najprej pogledali, kakšne periodične točke lahko ima zvezna funkcija definirana na dveh disjunktnih intervalih, nato pa bomo pogledali prisotnost periodičnih točk za zvezvne funkcije na krožnici.

Na začetku si poglejmo, kaj lahko povemo o periodah funkcije, ki je definirana na dveh disjunktnih intervalih.

Primer 9.1. Naj bo prostor X unija dveh disjunktnih intervalov $X = I_1 \cup I_2$, kjer sta I_1 in I_2 disjunktna intervala v množici \mathbb{R} . Funkcija $g:X\to X$ podana s predpisom g(x) = -x je zvezna funkcja. Vsaka točka iz prostora X ima periodo 2, funkcija pa nima fiksne točke. Vse
eno lahko poiščemo relacijo \triangleleft_X , ki opiše katere periode ima lahko funkcija. Pri poljubni funkciji $f:X\to X$ imamo štiri možnosti. Ce je $f(I_1) \subseteq I_1$ in $f(I_2) \subseteq I_2$ lahko za funkciji $f|_{I_1}$ in $f|_{I_2}$ uporabimo izrek Šarkovskega in ugotovimo, de je relacija \triangleleft_X enaka relaciji Sarkovskega. V primeru, ko je $f(I_1) \subseteq$ I_1 in $f(I_2) \subseteq I_1$ lahko periodične točke ležijo samo v intervalu I_1 . Za funkcijo $f|_{I_1}$ uporabimo izrek Šarkovskega in ugotovimo, da je relacija \triangleleft_X enaka relaciji Sarkovskega. Podoben sklep lahko naredimo tudi v primeru, ko je $f(I_1) \subseteq I_2$ in $f(I_2) \subseteq I_2$. Drugače je v primeru $f(I_1) \subseteq I_2$ in $f(I_2) \subseteq I_1$. V tem primeru se točke iz intervala I_1 s funkcijo f slikajo v interval I_2 in obratno. Zato ima vsaka periodična točka sodo periodo. Naj bo $x \in X$ točka periode 2m za funkcijo f. Brez izgube splošnosti lahko sklepamo, da točka x pripada intervalu I_1 . Potem ima točka xperiodo m za funkcijo $f^2|_{I_1}:I_1\to I_1$. Ker je I_1 prostor Šarkovskega in je f^2 zvezna funkcija, lahko uporabimo izrek Šarkovskega in ugotovimo, da za vsako naravno število l, za katerega velja $l \triangleleft m$, obstaja točka $y \in I_1$ s periodo l za funkcijo f^2 . Točka y ima periodo 2l za funkcijo f, saj je orbita točke y sestavljena iz l različnih točk v intervalu I_1 (sode iteracije) in l različnih točk iz intervala I_2 (lihe iteracije). Ugotovili smo naslednje: Če ima zvezna funkcija $f: X \to X$ liho periodo m, potem ima zagotovo tudi vse periode l, kjer je $l \triangleleft m$. Če pa je perioda m soda, potem ima funkcija vse periode $l \neq 1$, za katere je $l \triangleleft m$. Dobimo relacijo \triangleright_X :

$$3\triangleright_X 5\triangleright_X 7\triangleright_X \cdots \triangleright_X 2\cdot 3\triangleright_X 2\cdot 5\triangleright_X 2\cdot 7\triangleright_X \cdots \triangleright_X 2^2\cdot 3\triangleright_X 2^2\cdot 5\triangleright_X 2^2\cdot 7\triangleright_X \cdots \triangleright_X 2^3\triangleright_X 2^2\triangleright_X 2,$$

$$3 \triangleright_X 5 \triangleright_X 7 \triangleright_X \cdots \triangleright_X 1.$$

 \Diamond

Primer 9.2. Krožnica $S^1 = \{(\cos(\varphi), \sin(\varphi)), \varphi \in [0, 1)\}$. Hitro se lahko prepričamo, da obstajajo funkcije, ki imajo samo eno periodo. To so rotacije okoli

koordinatnega izhodišča. Definiramo družino funkciji:

$$R_n: S^1 \to S^1$$

 $R_n: (cos(\varphi), sin(\varphi)) \mapsto (cos(\varphi + \frac{2\pi}{n}), sin(\varphi + \frac{2\pi}{n})).$

Vse točke krožnice S^1 so periodične točke za funkcijo R_n in vse imajo periodo n. Zato iz obstoja periodične točke za zvezno funkcijo $f: S^1 \to S^1$ ne moremo sklepati na obstoj drugih period za to funkcijo. \diamondsuit

Primer 9.2 pokaže, da s predpostavko splošne zvezne funkcije ne dobimo željenega rezultata. Če želimo podobne posledice izreka kot v primeru izreka Šarkovskega, moramo dodati še kakšen pogoj. V nadaljevanju bomo formulirali in dokazali izrek podoben izreku Šarkovskega, ki obravnava periode zveznih funkcij na krožnici S^1 , ki imajo vsaj eno negibno točko.

Izrek 9.3. Naj bo $f: S^1 \to S^1$ zvezna funkcija. Predpostavimo, da ima funkcija f negibno točko in da je neko liho naravno število n tudi perioda funkcije f. Potem je vsako naravno število m > n tudi perioda za funkcijo f.

Zaradi lažjega dokazovanja, si poglejmo naslednjo definicijo:

Definicija 9.4. Naj bosta $a \in S^1$ in $b \in S^1$ različni točki na krožnici. Z zapisi $[a,b],\ (a,b),\ (a,b],\ [a,b)$ označimo zaprt, odprt, pol odprt in pol zaprt interval, ki predstavljajo množice točk na krožnici od točke a do točke b v nasprotni smeri urinega kazalca.

Relacijo pokritja intervalov bomo definirali malo drugače, kot v poglavju

Definicija 9.5. Naj bosta $I, J \subset S^1$ prava zaprta podintervala krožnice S^1 in naj bo $f: I \to J$ zvezna preslikava. Pravimo, da interval I f-pokrije interval J, če obstaja tak interval $K \subseteq I$, za katerega velja f(K) = J. Relacijo zapišemo kot $I \xrightarrow{f} J$. Kadar je jasno, katero funkcijo imamo v mislih, lahko rečemo samo, da interval I pokrije interval J.V tem primeru, lahko nadpis, ki označi katero funkcijo imamo v mislih izpustimo in pišemo samo $I \to J$.

Preden se lotimo dokazovanja izreka bomo dokazali leme, ki so pomembne pri dokazu izreka in spoznali kakšno definicijo, ki nam olajša zapis pri dokazovanju.

Lema 9.6. Naj bo I = [a, b] zaprt interval na krožnici S^1 in naj bo $f : S^1 \to S^1$ zvezna preslikava. Predpostavimo, da je f(a) = c in f(b) = d. Potem velja $I \to [c, d]$ ali $I \to [d, c]$.

Dokaz. Naj bo $A = \{x \in I; f(x) = c\}$. Ker je funkcija f zvezna, je praslika $f^{-1}(c) = A$ zaprta podmnožica kompaktne množice I, zato je tudi množica A kompaktna. Obstaja točka $v \in A$, za katero je $(v, b] \cap A = \emptyset$. Naj bo $B = \{x \in I; f(x) = d\}$. Zaradi podobnega razmisleka, kot pri množici A obstaja točka $w \in B$, za katero je $[v, w) \cap B = \emptyset$. Velja f(v) = c, f(w) = d in $f(x) \notin \{c, d\}$ za vsak $x \in (c, d)$. Zaradi zveznosti funkcije f velja ena od enakosti f([u, v]) = [c, d] ali f([u, v]) = [d, c], zato velja ena od relacij $I \to [c, d]$ ali $I \to [d, c]$.

Lema 9.7. Naj bo $f: S^1 \to S^1$ zvezna preslikava in naj bosta I in J zaprta intervala na S^1 , za katera velja $I \to J$. Če je $L \subseteq J$ zaprt interval, potem velja $I \to L$.

Dokaz. Za intervala I in J velja relacija $I \to J$, zato obstaja interval $K \subset I$, za katerega je f(K) = J. Naj bo L = [c, d]. Obstajata točki $a, b \in K$ za kateri veljata enakosti f(a) = c in f(b) = d. Označimo s K_1 tisti interval s K_1 krajiščima K_2 in tervalu K_2 . Zaradi leme 9.6 velja $K_1 \to [c, d]$ ali $K_1 \to [d, c]$. Zaradi enakosti f(K) = J in ker je K_1 podinterval intervala K, ne more veljati $K \to [d, c]$, zato velja $K \to [c, d]$. Ker je $K_1 \subseteq K \subseteq I$, velja $I \to [c, d]$.

Lema 9.8. Naj bo $f: S^1 \to S^1$ zvezna preslikava in I zaprt interval na krožnici S^1 . Če velja relacija $I \to I$, potem ima funkcija f negibno točko na intervalu I.

Dokaz. Zaradi relacije $I \to I$ obstaja zaprt interval $K \subseteq I$, za katerega velja f(K) = I. Obstajata taki točki $v, w \in K$, da sta f(v) in f(w) krajišči intervala I.

Lema 9.9. Naj bo $f: S^1 \to S^1$ zvezna preslikava in naj bojo M_1, M_2, \ldots, M_n zaprti intervali na krožnici S^1 , za katere veljajo relacije pokritja

$$M_1 \to M_2 \to \cdots \to M_n \to M_1$$
.

Potem obstaja točka $z \in M_1$, za katero je $f^i(z) \in M_{i+1}$ za i = 1, ..., n-1 in $f^n(z) = z$. S pomočjo leme 9.8 sklepamo, da obstaja negibna točka $z \in M_1$ za funkcijo f^n . Veljajo tudi vsebovanosti $z \in M_1$, $f(z) \in M_2, ..., f^{n-1} \in M_n$, kar zaključi dokaz.

Dokaz. Velja relacija $M_n \to M_1$, zato obstaja interval $J_n \subseteq M_n$, za katerega je $f(J_n) = M_1$. Podobno obstajajo tudi taki intervali J_1, \ldots, J_{n-1} , da za vsak $k = 1, \ldots, n-1$ velja $f_k \subseteq M_k$ in $f(J_k) = J_{k+1}$. Sledi, da je $f^n(J_1) = M_1$.

Definicija 9.10. Naj bo $f: S^1 \to S^1$ zvezna dunkcija in $P = \{p_1, p_1, \dots, p_n\}$ orbita funkcije f s periodo n. Pravimo, da je orbita P urejena, če za vsak $k = 1, \dots, n-1$ velja enakost $P \cap (p_k, p_k + 1) = \emptyset$ in $P \cap (p_n, p_q) = \emptyset$. V tem primeru definiramo n intervalov določenih s P:

$$I_1 = [p_1, p_2], I_2 = [p_2, p_3], \dots, I_{n-1} = [p_{n-1}, p_n], I_n = [p_n, p_1].$$

Lema 9.11. Naj bo $f: S^1 \to S^1$ zvezna preslikava. $SP = \{p_1, \ldots, p_n\}$ označimo forbito z liho periodo $n \geq 3$. Predpostavimo, da je P urejena in z I_1, \ldots, I_n označimo
intervale določene s P. Denimo, da obstajata taki števili $i, j \in \{1, \ldots, n\}$, za kateri
ne obstaja naravno število $k \in \{1, \ldots, n\}$, kjer je $k \neq i$, za katerega velja $I_k \to I_i$ in ne obstaja tako naravno število $l \in \{1, \ldots, n\}$, kjer je $l \neq j$, za katerega velja $I_l \to I_j$. Potem je i = j.

$$Dokaz$$
. Naj bo

Lema 9.12. Predpostavimo, da ima zvezna funkcija $f: S^1 \to S^1$ periodično orbito $P = \{p1, dots, p_n\}$ z liho periodo $n \geq 3$. Denimo, da je P urejena in da so I_1, \ldots, I_n intervali določeni s P. Naj ima funkcija f negibno točko e. Potem ima f negibno točko f0, za katero obstaja interval f1 določen f2,

Dokaz. Po predpostavkah leme ima funkcija f negibno točko e. Brez izgube splošnosti lahko sklepamo, da je $e \in I_n$. Prav tako lahko predpostavimo, da relacija pokritja $I_j \to I_n$ ne velja za nobeno število $j=1,\ldots,n-1$. V nasprotnem primeru izberemo z=e, kar zaključi dokaz. Naj bo m najmanjše naravno število, za katerega iz enakosti $f(p_m)=p_r$ sledi neenakost r< m. Za število m velja sistem neenakosti $2 \le m \le n$, ki ga lahko preoblikujemo tako, da vsem členom odštejemo 1 in dobimo sistem neenakosti $1 \le m-1 \le n-1$, iz česar sklepamo, da $m-1 \ne n$. Denimo, da

je $f(p_m) = p_r$ in $f(p_{m-1}) = p_q$. Potem je $I_{m-1} \subseteq (p_r, p_q)$ in $I_n \subseteq (p_q, p_r)$. S pomočjo leme ?? in leme 9.7 sklepamo, da velja relacija $I_{m-1} \to I_n$ ali I_{m-1} to I_{m-1} . Toda, na začetku dokaza smo predpostavili, da relacija $I_j \to I_n$ ne velja za vsa naravna števila j < n, zato velja relacija $I_{m-1} \to I_{m-1}$. S pomočjo leme 9.8 sklepamo, da ima funkcija f negibno točko z na intervalu I_{m-1} . Ker za nobeno naravno število $j=1,\ldots,n$ ne velja relacija $I_j \to I_n$ iz leme 9.11 sledi, da obstaja $j \in \{1,\ldots,n\}$, $j \neq m-1$, za katerega velja relacija $I_j \to I_{m-1}$.

Lema 9.13. Naj bo $f: S^1 \to S^1$ zvezna preslikava in naj bo P periodična orbita funkcije f s periodo $m \geq 3$. Denimo, da za nek $k \in \{2, \ldots, n\}$ množica zaprtih intervalov $\{M_1, \ldots, M_k\}$ izpolnjuje naslednje pogoje:

(1) za vsak $j \in \{1, ..., k\}$ notranjost intervala M_i ne vsebuje nobene točke iz P,

- (2) če je $i \neq j$, potem imata intervala M_i in M_j disjunktni notranjosti,
- (3) za $j \in \{2, ..., k\}$ so krajišča intervala M_j vsebovana v P,
- (4) Če je b krajišče intervala M_1 , potem je $b \in P$, ali b je negibna točka funkcije f.
- (5) za vsak $j \in \{1, ..., k-1\}$ velja relacija $M_j \to M_{j+1}$,
- (6) veljata relaciji $M_1 \to M_1$ in $M_k \to M_1$.

Potem je vsako naravno število m > k perioda funkcije f.

Dokaz. Recimo, da je n > k. Predpostavimo lahko, da je $n \neq m$, saj ima po predpostavkah leme funkcija f točko periode m. Označimo intervale $L_1 = M_1, L_2 = M_1, \ldots, L_{n-k} = M_1, L_{n-k+1} = M_1, L_{n-k+2} = M_2, L_{n-k+3} = M_3, \ldots, L_{n-k+k} = L_n = M_k$. Če uporabimo lemo ?? na intervalih L_1, \ldots, L_n ugotovimo, da obstaja negibna točka z za funkcijo f^n , za katero velja $z \in L_1, f(z) \in L_2, \ldots, f^{n-1}(z) \in L_{n-1}$. Točka z leži v intervalu M_1 , točka $F^{n-k+1}(z)$ pa v intervalu M_2 iz česar lahko s pomočjo pogoja 2 in pogoja3 iz predpostavk leme sklepamo, da z ni negibna točka funkcije f.

Trdimo tudi, da točka z ne pripada ciklu P. Predpostavimo najprej, da je $n \ge k+2$. Potem je $L_1 = L_2 = L_3 = M_1$. Torej, točke z, f(z) in $f^2(z)$ ležijo v intervalu M_1 . Ker je P cikel dolžine $m \ge 3$, lahko s pomočjo pogoja 1 sklepamo, da točka z ne pripada orbiti P. Sedaj predpostavimo, da je n < k+2. Potem je n < m+2. Ker je $n \ne m$ in $m \ge 3$, število n ni večkratnik števila m. Iz enakosti $f^n(z) = z$ sledi, da točka z ne pripada ciklu P.

Ugotovili smo, da točka z ni negibna točka funkcije f in tudi ne pripada ciklu P, zato lahko s pomočjo pogoja 4 iz predpostavk leme sklepamo, da z leži v notranjosti intervala M_1 . Ker točka $f^n(z) = z$ ne pripada cuklu P, za vsako naravno število r < n tudi točka $f^r(z)$ ne pripada ciklu P. Trdimo lahko tudi, da $f^r(z)$ ni negibna točka funkcije f. Zaradi pogojev 3 in 4 za vsako naravno število r < n velja, da $f^r(z)$ ni krajišče nobenega intervala M_1, \ldots, M_k . S pomočjo te ugotovitve, pogoja ?? in dejstva, da je $z \in M_1, f(z) \in M_1, f^2(z) \in M_1, \ldots, f^{n-k}(z) \in M_1, f^{n-k+1} \in M_2, \ldots, f^{n-1} \in M_k$, lahko sklepamo, da je točka z periodična točka funkcije f s periodo n.

Dokažimo izrek:

Dokaz. Po predpostavki izreka obstaja f-orbita $P = \{p_1, \ldots, p_n\}$ s periodo n. Brez izgube splošnosti lahko predpostavimo, da je orbita P urejena in so I_1, \ldots, I_n intervali določeni s P. Po predpostavkah izreka ima funkcija negibno točko e. Predpostavimo lahko, da točka e leži v intervalu I_n . Po lemi 9.12 lahko predpostavimo, da

obstaja tako naravno število $j \in \{1, \dots, n-1\}$, za katerega velja $I_j \to I_n$. Označimo $f(p_1) = p_s$ in $f(p_n) = p_t$. Imamo dve možnosti.

Prva možnost: Velja $[e,p_1] \rightarrow [e,p_s]$ ali velja $[p_n,e] \rightarrow [p_t,e]$. Ker lahko v obeh primerih dokaz izpeljemo na enak način, predpostavimo, da velja $[e,p_1] \rightarrow [e,p_s]$. S pomočjo leme 9.7 sklepamo,
da velja $[e,p_1] \rightarrow [e,p_1]$ in za vsak $j \in \{1,\ldots,s-1\}$ velja $[e,p_1] \rightarrow I_j$. Recimo, da za neko število $j \in \{q,\ldots,s-1\}$ velja $I_j \rightarrow I_n$. Potem so izpolnjene predpostavke leme 9.13 za $k=2,\ M_1=[e,p_1]$ in $M_2=I_j$. Lema 9.13 zagotavlja obstoj vseh period m>2.

Torej, lahko predpostavimo, da za vsako število $j \in \{1, \ldots, s-1\}$ ne velja $I_j \to I_n$. Ker za neko število $j \in \{1, \ldots, n-1\}$ velja $I_j \to I_n$, je s-1 < n-1. Torej, velja s < n.

Obstaja naravno število $r \in \{2, ..., s\}$, za katerega vrednost funkcije $f(p_r)$ ne leži v množici $\{p_1, ..., p_s\}$. Brez izgube splošnosti lahko predpostavimo, da je r najmanjše število s to lastnostjo. Velja $f(p_{r-1}) \in \{p_1, ..., p_s\}$. Označimo $f(p_r) = p_q$. Ker ne velja $I_{r-1} \to I_n$, lahko s pomočjo leme 9.6 in leme 9.7 sklepamo, da velja $I_{r-1} \to [f(p_{r-1}), p_q]$. Torej, za vsako naravno število $j \in \{s, ..., q-1\}$ velja $I_{r-1} \to I_j$.

Glede na definicijo točke p_q opazimo, da je $s \leq q-1$. Denimo, da obstaja pozitivno naravno število $j \in \{s, \ldots, q-1\}$, za katero velja $I_j \to I_n$. Potem so izpolnjene predpostavke leme 9.13 za $k=3, M_1=[e,p_1], M_2=I_{r-1}$ in $M_3=I_j$, kar zagotavlja obstoj vseh period m>3.

Postopek opisan v zadnjih treh odstavkih ponavljamo in po največ n korakih, z upoštevanjem dejstva, da za neko naravno število $j=1,\ldots,n-1$ velja $I_j\to I_n$, sčasoma konstruiramo množico intervalov $\{M_1,M_2,\ldots,M_k\}$, kjer je $k\leq n$, za katero so izpolnjene predpostavke leme 9.13. To pa zagotavlja obstoj vseh period m>k za funkcijo f.

Druga možnost: Ne velja $[e, p_1] \to [e, p_s]$ in ne velja $[p_n, e] \to [p_t, e]$. S pomočjo leme 9.6 se prepričamo, da velja $[e, p_1] \to [p_s, e]$ in velja $[p_n, e] \to [e, p_t]$. Trdimo, da velja $I_n = [p_n, p_1] \to I_n$. Ker velja $[e, p_1] \to [p_s, e]$ in je $p_n \in [p_s, e]$, obstaja taka točka $a \in (e, p_1]$, za katero je $f(a) = p_n$, vendar za vsak $x \in (e, a)$ velja $f(x) \neq p_n$. Opazimo, da je f(e) = e in $f(a) = p_n$, zato velja $[e, a] \to [e, p_n]$ ali $[e, a] \to [p_n, e]$. Vemo že, da ne velja $[e, p_1] \to [e, p_s]$, zato tudi ne velja $[e, a] \to [e, p_s]$. S pomočjo leme 9.7 sklepamo, da ne velja $[e, a] \to [e, p_n]$, torej velja $[e, a] \to [p_n, e]$

10. Prostor Šarkovskega

Po zaklučenem dokazu si lahko postavimo vprašanje, kako se spremenijo posledice izreka, če spremenimo njegove predpostavke. Glede na to, kako spremenimo predpostavke, lahko pridemo do različnih posplošitev izreka. V primeru izreka Šarkovskega že obstaja več posplošitev. Nekatere obravnavajo izrek za nezvezne funkcije, ki ustrezajo določenim pogojem, druge pa preučujejo zvezne funkcije, ki so definirane na različnih topoloških prostorih. V tem primeru se lahko vprašamo, kakšna ureditev naravnih števil, če ta obstaja, opiše prisotnost periodičnih točk zvezne funkcije $f: X \to X$, ki slika nek topološki prostor X nazaj vase. Natančneje, iščemo relacijo \triangleleft_X z lastnostjo: če je m perioda za zvezno funkcijo $f: X \to X$, potem je vsako naravno število l, za katero je $l \triangleleft_X m$, tudi perioda za funkcijo f. Če je relacija \triangleleft_X enaka relaciji Šarkovskega, ki smo jo spoznali v definiciji 2.2, pravimo, da je prostor X prostor Šarkovskega. To poglavje bomo namenili temu, da bomo spoznali nekaj prostorov Šarkovskega in tudi nekaj prostorov, ki to niso. S primeri in protiprimeri

bomo poskušali ugotoviti katere topološke lastnosti imajo prostori Šarkovskega. Preden začnemo s preučevanjem različnih prostorov Šarkovskega se prepričajmo, da je lastnost biti prostor Šarkovskega tudi topološka lastnost.

Trditev 10.1. Lastnost biti prostor Šarkovskega je topološka lastnost. To pomeni, če je X prostor Šarkovskega in je prostor Y homeomorfen prostoru X, potem je tudi Y prostor Šarkovskega.

Dokaz. Naj bo prostor X prostor Šarkovskega in naj bo prostor Y homeomorfen prostoru X. Naj bo $h: X \to Y$ homeomorfizem med prostoroma X in Y. Funkciji $f: Y \to Y$ in $g = h^{-1} \circ f \circ h: X \to X$ imata enake periode, zato je Y tudi prostor Šarkovskega.

Iz prejšnjih poglavji je razvidno, da so tipični predstavniki prostorov Šarkovskega množica realnih števil in intervali v realnih številih. Poglejmo si primer prostora, ki ni prostor Šarkovskega.

S podobnim sklepanjem kot zgoraj lahko za nekatere prostore hitro preverimo, da niso prostori Šarkovskega. To naredimo tako, da poiščemo kakšno os n-kratne rotacijske simetrije, kjer je n naravno število večje od 2. Pri takih primerih lahko hitro ugotovimo, da ima rotacija za kot $\varphi = \frac{360^{\circ}}{n}$, za n > 2, točke periode n in morda tudi točke periode 1, nima pa točk periode 2. Zaradi tega taki prostori ne morejo biti prostori Šarkovskega. Primeri takih prostorov so npr. sfera, krogla, torus . . .

Na začetku primera smo enostavno pokazali, da disjunktna unija dveh intervalov ni prostor Šarkovskega. Z zelo podobno idejo lahko pokažemo, da je vsak prostor Šarkovskega povezan.

Trditev 10.2. Prostor Šarkovskega je povezan.

Dokaz. Naj bo prostor X disjunktna unija nepraznih prostorov A in B in naj bosta $a \in A$ in $b \in B$ poljubni točki tega prostora. Definiramo funkcijo $f: X \to X$ s predpisom:

$$f(x) = \begin{cases} a, & \text{ \'e } x \in B \\ b, & \text{ \'e } x \in A. \end{cases}$$

Funkcija f ima samo dve periodični točki. To sta točki a in b. Obe pa imata periodo 2. Ker nobena točka prostora X ni fiksna točka za funkcijo f, prostor X ni prostor Šarkovskega.

Pokazali smo, da je vsak prostor Šarkovskega povezan prostor. V nadaljevanju bomo ponovili kakšni prostori so s potmi povezani, lokalno povezani in lokalno s potmi povezani. S primeri se bomo prepričali, da obstajajo prostori Šarkovskega, ki imajo te lastnosti, in tudi prostori Šarkovskega, ki teh lastnosti nimajo.

Definicija 10.3. Topološki prostor X je s potmi povezan, če za poljubni točki $a, b \in X$ obstaja zvezna preslikava $\gamma : [0,1] \to X$, za katero je $\gamma(0) = a$ in $\gamma(1) = b$. Preslikavi γ rečemo tudi pot med točkama a in b.

Primeri s potmi povezanih prostorov so intervali v realnih številih, krožnica, disk v \mathbb{R}^2 ...

Trditev 10.4. Lastnost biti s potmi povezan je strožji pogoj, kot biti povezan. To pomeni, da je vsak s potmi povezan prostor tudi povezan.

Dokaz. Naj bo X s potmi povezan prostor. Dokazovali bomo s protislovjem. Denimo, da prostor X ni povezan. Potem obstajata neprazni odprti množici $U, V \subseteq X$, za kateri veljata naslednji lastnosti:

- (1) $U \cup V = X$ in
- (2) $U \cap V \neq \emptyset$.

Množici U in V sta neprazni, zato si lahko izberemo točki $a \in U$ in $b \in V$. Prostor X je s potmi povezan, kar pomeni, da obstaja pot $\gamma:[0,1] \to X$, za katero je $\gamma(0)=a$ in $\gamma(1)=b$. Sedaj bomo obravnavali množici $\gamma^{-1}(U)$ in $\gamma^{-1}(V)$. Množici sta disjunktni podmnožici intervala [0,1], njuna unija pa je enaka interevalu [0,1]. Obe množici sta odprti v [0,1], saj je pot γ zvezna funkcija. Ker je 0 element množice $\gamma^{-1}(U)$ in 1 element množice $\gamma^{-1}(V)$, tvorita ti dve množici separacijo povezane množice [0,1], kar je protislovje. Torej je prostor X povezan.

Implikacija v drugo smer ne drži. Torej, če je nek topološki prostor X povezan, ne moremo sklepati, da je tudi s potmi povezan. Poglejmo si primer povezanega prostora, ki pa ni s potmi povezan.

Definicija 10.5. Naj bo C grapf funkcije $\sin\left(\frac{\pi}{x}\right)$ na intervalu $x \in (0,1]$ in naj bo A daljica $\{0\} \times [-1,1]$. $Varšavski\ lok$ je prostor $X = C \cup A$.

Prepričajmo se, da je Varšavski lok povezan prostor. Množica C je homeomorfna intervalu, zato je povezana množica in cela leži v neki komponenti za povezanost. Enako velja za množico A. Ker vsaka okolica točke $(0,0) \in A$ vsebuje tudi točke iz množice C, ležita obe množici v isti komponenti za povezanost, zato ima prostor X samo eno komponento za povezanost, kar pomeni, da je povezan. Pokažimo, da prostor ni s potmi povezan. Poskusimo poiskati pot med točkama $(0,0) \in A$ in $(1,0) \in C$.

SLIKA 15. Relacije pokritja v trditvi 5.5 lahko prikažemo z grafom.

Definicija 10.6. Prostor X je lokalno povezan prostor, če za vsako točko $x \in X$ in vsako odptro množico $U \subseteq X$, ki vsebuje točko x, obstaja taka odprta povezana množica $V \subseteq X$, da je $x \in V \subseteq U$. Prostoru, ki ni lokalno povezan pravimo lokalno nepovezan prostor.

poglejmo si nekaj primerov:

Primer 10.7. Odprti disk v \mathbb{R}^2 je povezan in lokalno povezan prostor.

Primer 10.8. Poglejmo si nepovezan prostor, sestavljen iz treh komponent za povezanost kot prikazuje slika. Prostor je lokalno povezan, saj za vsako točko $x \in X$ in vsako njeno odprto okolico $U \subseteq X$ obstaja taka povezana okolica V, da je $x \in V \subseteq U$.

 \Diamond

SLIKA 16. Relacije pokritja v trditvi 5.5 lahko prikažemo z grafom.

Morda bi na hitro pomislili, da je lokalna povezanost strožji pogoj kot povezanost. To bi pomenilo, da so vsi lokalno povezani prostori tudi povezani. Prepričajmo se, da to ni res. Poglejmo si primer povezanega prostora, ki ni lokalno povezan.

SLIKA 17. Relacije pokritja v trditvi 5.5 lahko prikažemo z grafom.

Definicija 10.9. Prostor X je lokalno s potmi povezan prostor, če za vsako točko $x \in X$ in vsako odprto množico V, ki vsebuje x, obstaja odprta in s potmi povezana okolica, ki vsebuje x in je vsebovana v množici V.

Primer 10.10. Naj bo C grapf funkcije $\sin\left(\frac{\pi}{x}\right)$ na intervalu $x \in (0,1]$ in naj bo A daljica $\{0\} \times [-1,1]$. Varšavski~lok je prostor $X = C \cup A$. Prostor X je povezan, kompakten in ima dve komponenti za povezavost s potmi. Komponenta A je homeomorfna zaprtemu intervalu, komponenta C pa je homeomorfna polodprtemu intervalu. Prostor je prikazan na sliki 21. Prepričajmo se, da je prostor X povezan. Ker je množica C povezana, celotna leži v neki komponenti za povezanost V prostora X. Poglejmo točko iz $x = (0,0) \in A$. Naj bo δ poljubno majhno pozitivno število in množica U delta okolica točke x v prostoru X. Za naravno število $k > \frac{1}{\pi\delta}$ točka $\left(\frac{1}{k\pi},0\right)$ leži v množici C in v množici U, kar pomeni, da točka (0,0) leži v komponenti za povezanost V. Ker je množica A povezana množica, cela leži v množici V, zato ima prostor X eno samo komponento za povezanost in je povezan prostor. \diamondsuit

Trditev 10.11. Varšavski lok je prostor Šarkovskega.

Dokaz. Varšavski lok zapišimo kot $X = C \cup A$, kjer je C krivulja $\{(x, \sin(\frac{\pi}{x})), x \in [0, 1]\}$ in $A = \{0\} \times [-1, 1]$. Naj bo $x \in X$ točka s periodo n in naj bo m tako

naravno število, da velja relacija $m \triangleleft n$. Pokazali bomo, da obstaja točka y s periodo m. Ker je funkcija f zvezna, se ne more zgoditi, da ja $f(A) \subseteq C$ in $f(C) \subseteq A$. V tem primeru bi bila množica f(C) kompaktna množica, ki nima skupne točke z množico C. Ker ima prostor \mathbb{R} lastnost T_4 , obstajata disjunktni odprti množici, U in V, za kateri velja $f(C) \subseteq U$, $f(A) \subseteq C \subseteq V$, kar predstavlja separacijo prostora f(X), kar pa ni mogoče, saj je prostor X povezan. Množica f(X) je slika povezanega prostora z zvezno funkcijo in je tudi povezana. Ce je $f(A) \subseteq C$, potem je zaradi zveznosti funkcije f tudi $f(C) \subseteq C$. Ker je X kompaktna množica in je slika kompaktne množice z zvezno preslikavo kompaktna, je množica f(X) kompaktna povezana podmnožica množice C. Množica C je homeomorfna intervalu, zato je tudi f(X) homeromorfna intervalu, kar pomeni, da je tudi f(X) prostor Sarkovskega. Zato obstaja točka y s periodo m. Če je $f(C) \subseteq A$, potem je tudi $f(A) \subseteq A$ in vsaka periodična točka funkcije f leži v A. Zopet je množica f(X) povezana kompaktna podmnožica homeomorfna intervalu. Torej obstaja točka y s periodo m. Dokazati moramo še primer, ko je $f(A) \subseteq A$ in $f(C) \subseteq C$. Ker sta prostora A in C homeomorfna intervalu, sta prostora Šarkovskega, kar pomeni, da zagotovo obstaja točka $y \in X$, ki leži v isti komponenti za povezanost s potmi kot točka x, s periodo m.

SLIKA 18. Relacije pokritja v trditvi 5.5 lahko prikažemo z grafom.

SLIKA 19. Slika prikazuje primer varšavske krožnice določene s predpisom p iz definicije.

Definicija 10.12. varšavska krožnica je topološki prostor, ki ga lahko definiramo na naslednji način:

$$S_W = \left\{ \left(x, \sin\left(\frac{\pi}{x}\right) \right); 0 < x \le 1 \right\} \cup \left\{ (0, y); -1 \le x \le 1 \right\} \cup C,$$

kjer je C zvezna krivulja, ki povezuje točki (0,1) in (0,0) in ne seka preostalega dela Waršavske krožnice. Množici, ki jo lahko parametriziramo na naslednji način:

$$p(t) = \begin{cases} (t, \sin(\frac{\pi}{t}), & \text{\'e } t \in (0, 1) \\ (\cos(\frac{3\pi x}{2} - \frac{\pi}{2}) + 1, \sin(\frac{3\pi x}{2} - \frac{\pi}{2}) - 1). & \text{\'e } t \in [1, 2] \\ (0, 2t - 5), & \text{\'e } t \in (2, 3]. \end{cases}$$

Trditev 10.13. Varšavska krožnica je prostor Šarkovskega.

$$\begin{array}{ccc}
A & \xrightarrow{\phi} & \psi \\
\downarrow & & \downarrow \xi \\
C & \xrightarrow{\eta} & D
\end{array}$$

Dokaz. Varšavsko krožnico X lahko parametriziramo z zvezno bijektivno preslikavo $p:I\to X$. Naj bo $f:X\to X$ zvezna funkcija. Ker je funkcija p bijektivna, je funkcija $\hat{f}=p^{-1}\circ f\circ p:I\to I$ dobro definirana. Trdimo, da je funkcija \hat{f} zvezna. Ker je funkcija p bijekcija, imata funkciji f in \hat{f} enake periode. Ker je interval I prostor Šarkovskega, je tudi X prostor Šarkovskega.

Prepričati se moramo samo še, da je funkcija \widehat{f} res zvezna. Naj bo $t \in I$ poljubna točka intervala I in naj bo $U \in I$ odprta krogla okoli točke $\widehat{f}(t) = (p^{-1} \circ f \circ p)(t)$. Množoco robnih točk krogle U označimo z A. Velja $|A| \leq 2$. Ker ima X lastnost T_2 , so točke zaprte množice in zato je množica X - p(A) odprta podmnožica prostora X, ki vsebuje točko $(f \circ p)(t)$. Povezano komponento množice $(f \circ p)^{-1}$, ki vsebuje točko t označimo z W. Množica W je odprta podmnožica intervala I, saj je funkcija $(f \circ p)$ zvezna. Sedaj obravnavamo množico $(p \circ \widehat{f})(W) = (f \circ p)(W) \subseteq X - p(A)$. Ker je množica W povezava s potmi, je vsebovana v tisti komponenti za povezanost s potmi množice X - p(A), ki vsebuje $(f \circ p)(t)$. Prepričali se bomo, da je ta komponenta kar enaka p(U). To je res, saj komponenta vsebuje p(U) in ne more vsebovati nobene druge točke. Denimo, da vsebuje še kakšno drugo točko x. Potem vsebuje pot od x do p(t). Ta pot pa

11. Linearni kontinuum je prostor Šarkovskega

V tem poglavju bomo spoznali topologijo urejenih prostorov in posebne urejene prostore s topologijo urejenih prostorov, ki jih imenujemo linearni kontinuum. Gre za neke vrste posplošitev premice realnih števil. Pokazali bomo, da je linearni kontinuum prostor Šarkovskega.

Naj bo množica X urejena s strogo linearno relacijo <. Za dana elementa $a,b \in X$, za katera velja neenakost a < b, lahko definiramo štiri podmnožice prostora X, ki jih imenujemo intervali s krajišči a in b. To so:

$$(a,b) = \{x \in X : a < x < b\}$$

$$(a,b] = \{x \in X : a < x \le b\}$$

$$[a,b) = \{x \in X : a \le x < b\}$$

$$[a,b] = \{x \in X : a < x < b\}$$

SLIKA 20. Slika prikazuje primer varšavske krožnice določene s predpisom p iz definicije.

Opomba 11.1. Interval (a, b) imenujemo odprti interval, intervalu (a, b] rečemo pol odprti interval, interval [a, b) je pol zaprti interval, interval [a, b] pa je zaprti interval.

Definicija 11.2. Naj bo X množica z vsaj dvema elementoma urejena z relacijo < in naj bo B družina množic, ki vsebuje intervale naslednjih tipov:

- (1) Vsi odprti intervali $(a, b) \in X$.
- (2) Vsi intervali $[a_0, b) \in X$, kjer je a_0 najmanjši element (če obstaja) množice X.
- (3) Vsi intervali $(a, b_0] \in X$, kjer je b_0 največji element (če obstaja) množice X. Družina množic B je baza za topologijo na množici X, ki jo imenujemo topologija urejenih množic.

Opomba 11.3. Če množica X nima najmanjšega elementa, potem baza B ne vsebuje intervalov tipa 2 in če množica X nima največjega elementa, potem baza B ne vsebuje intervalov tipa 3.

Prepričati se moramo, da zgoraj opisana družina množic B res predstavlja bazo topologije na množici X urejeni z linearno relacijo <. Družina podmnožic prostora X je baza topologije na prostoru X, če sta izpolnjeni naslednji lastnosti:

- (b1) Množice iz družine B pokrijejo celoten prostor X. Torej, vsaka točka $x \in X$ je vsebovana v neki množici $B_1 \in B$.
- (b2) Za vsaki množici $B_1, B_2 \in B$ in vsako točko $x \in B_1 \cap B_2$ obstaja množica $B_3 \in B$, za katero velja $x \in B_3 \subseteq B_1 \cap B_2$.

Preverimo najprej pogoj (b1). Najprej moramo preveriti, da je vsaka točka množice X vsebovana v nekem intervalu iz družine B. Če je točka x enaka a_0 , potem velja

 $x \in [a_0, a)$ za neko točko $a \in X$. Podobno lahko sklepamo v primeru, ko je $x = b_0$. Če je $x \neq a_0$ in $x \neq b_0$, potem zagotovo obstaja

Definicija 11.4. Linearni kontinuum je linearno urejena množica S, ki ima naslednji lastnosti:

- (1) Vsaka navzgor omejena podmnožica $A \subseteq S$ ima najmanjšo zgornjo mejo v S,
- (2) za vsaki dve števili $x, y \in S$ obstaja število $z \in S$, za katerega je x < z < y.

Primer 11.5. Enotski kvadrat $[0,1] \times [0,1]$

SLIKA 21. Relacije pokritja v trditvi 5.5 lahko prikažemo z grafom.

Trditev 11.6. Strogo linearno urejena množica X s topologijo urejenih množic je linearni kontinuum natanko tedaj, ko je povezana.

Dokaz. Predpostavimo, da je prostor X s topologijo urejenih množic linearni kontinuum. Dokazali bomo, da je prostor X povezan.

Izrek 11.7. Naj bo $f: X \to Y$ zvezna funkcija, kjer je X povezan prostor in Y urejen prostor s topologijo urejenih množic. Če sta a in b dve točki v prostoru X in je r točka v prostoru Y, ki leži med točkama f(a) in f(b), potem obstaja točka $c \in X$, da velja f(c) = r.

Dokaz. Privzemimo predpostavke izreka. Množici $= f(X) \cap (-\infty, r)$ in $B = f(X) \cap (r, \infty)$ sta disjunktni in neprazni, saj ena množica vsebuje točko f(a), druga pa točko f(b). Obe sta odprti v f(X) saj smo ju dobili kot presek odprtega intervala z množico f(X). Če ne obstaja taka točke $c \in X$, da je f(c) = r, potem je f(X) unija množic A in B. Na ta način smo dobili separacijo množice f(X), kar pa je protislovje, saj je slika povezane množice z zvezno preslikavo povezana.

Lema 11.8. Naj bo L linearni kontinuum s topologijo urejenih množic. Naj bosta I in J zaprta intervala v L in $f: L \to L$ zvezna funkcija. Če je $J \subseteq f(I)$, obstaja zaprt interval $K \subseteq I$, za katerega je f(K) = J.

Dokaz. Izberemo taki točki $p, q \in I$, da velja p < q in J = [f(p), f(q)] ali J = [f(q), f(p)]. Definiramo točko $p \le r < q$:

$$r = \sup\{x \in [p, q] : f(x) = f(p)\}.$$

Trdimo, da je f(r) = f(p). V nasprotnem primeru obstaja odprta množica V, ki vsebuje točko f(r) in ne vsebuje točke f(p). To je res, ker je prostor L Hausdorffov. Zaradi zveznosti funkcije f obstaja taka odprta okolica U točke r, da je $f(U) \subseteq V$. Ker je L linearni kontinuum obstaja taka točka $p \leq r' < r$, za katero je interval [r', r] vsebovan v množici U. Torej je $f([r', r]) \subseteq V$, kar pomeni, da $f(p) \notin f([r', r])$. To pa je protislovje z definicijo točke r kot supremum množice. Sedaj definiramo r < s < q:

$$r = \inf\{x \in [r, q] : f(x) = f(q)\}.$$

Enako kot prej se prepričamo, da je f(s) = f(q). Zapišimo Q = [r, s] in pokažimo, da je f(Q) = J. Izrek o vmesni vrednosti zagotavlja, da je interval J vsebovan v množici f([r, s]). Velja tudi $f([r, s]) \subseteq J$, saj v nasprotnem primeru obstaja r < x < s, za katerega velja $f(x) \notin J$. Če je f(x) < f(p) < f(q) ali f(q) < f(p) < f(x), potem po izreku o vmesni vrednosti obstaja tak x', da velja r < x < x' < s in f(p) = f(x'). to pa je protislovje z definicijo točke r kot supremum. Če je f(x) < f(q) < f(p) ali f(p) < f(q) < f(x), to privede do protislovja z definicijo točke s kot infimum. To pomeni, da res velja J = f(Q).

Lema 11.9. Naj bo L linearni kontinuum v topologiji urejenih množic. Naj bosta I zaprt interval v L in $f: L \to L$ zvezna funkcija. Če je $I \subseteq f(I)$, potem ima f negibno točko $x \in I$.

Dokaz. S pomočjo leme 11.8 ugotovimo, da obstaja zaprt interval $Q \subseteq I$, za katerega je f(Q) = I. Pokazali bomo, da ima funkcija f negibno točko v intervalu Q. Predpostavimo, da funkcija f na intervalu Q nima negibne točke. Potem lahko zapišemo $Q = A \cup B$, kjer je:

$$A = \{x \in L : x < f(x)\},\$$

$$B = \{x \in L : x > f(x)\}.$$

Trdimo, da je množica A odprta. Za vsako točko $x \in A$ lahko izberemo točko $z \in (x, f(x))$ in odprto okolico $U \subseteq (-\infty, z)$ točke x, za katero velja $f(U) \subseteq (z, \infty)$. Ker je množica U podmnožica množoce A, je točka x notranja točka množice A. Množica A je odprta. Podobno lahko dokažemo, da je množica B odprta. Množici $Q \cap A$ in $Q \cap B$ sta odprti podmnožici množice Q za kateri velja $Q = (Q \cap A) \cup (Q \cap B)$. Radi bi videli, da sta množici $Q \cap A$ in $Q \cap B$ neprazni. Zapišimo I = [c, d]. Ker je f(Q) = I, obstaja $x' \in Q$, za katerega je f(x') = d. Ker f nima fiksne točke na Q, je $x' \neq d$. Interval Q je pomnožica intervala I, zato velja x' < f(x') = d, kar pomeni, da je $x' \in Q \cap A$. Analogno poiščemo točko $x'' \in Q - \{c\}$ z lastnostjo: f(x'') = c in $x'' \in Q \cap B$. Torej, množici $Q \cap A$ in $Q \cap B$ tvorita separacijo povezanega prostora Q, kar je protislovje. Funkcija f ima negibno točko v intervalu Q.