Master CSI 2 2019-2020

Cryptanalyse — 4TCY902U Responsable : G. Castagnos

TP 3 — Attaques par réduction de réseaux

Attaque sur RSA par la méthode de Coppersmith

Implanter l'algorithme de génération de clefs de RSA avec l'exposant public e=3: il prend un entier k en entrée et ressort la clef publique (N=pq, e=3) et la clef privée d telles que p,q sont deux premiers distincts aléatoires de k bits avec $\varphi(n)=(p-1)(q-1)$ premier avec 3 et d l'inverse de 3 modulo $\varphi(n)$.

L'objectif du TP est d'implanter l'attaque de Coppersmith sur les messages dont les bits de poids forts sont connus.

Soit N un module public RSA. On note M un message clair dont on cherche les t bits de poids faibles et C son chiffré par RSA avec la clef publique (N, e=3). On pose M = M' + M₀ avec M' connu et M₀ inconnu de t bits. On note f le polynôme de $\mathbf{Z}[x]$, $f(x)=(x+M')^3-C$.

Générer de tels éléments N, M = M' + M₀, C et f pour N de 1024 bits et t = 240 bits. Vérifier que M₀ est une (petite) racine de f modulo N.

Nous allons retrouver M_0 par réduction de réseau en suivant la démonstration du théorème de Coppersmith qui calcule une petite racine d'un polynôme f modulo un entier à la factorisation inconnue.

Soit m un paramètre. On note k = deg f (pour notre application, k = 3). On considère une famille de polynômes de la forme

$$g_{i,j}(x) = N^{m-i}x^{j}f(x)^{i}$$
 pour $0 \le i \le m-1$ et $0 \le j \le k-1$.

On rajoute à cette famille le polynôme f^m , on obtient ainsi d := mk + 1 polynômes.

Montrer que toute combinaison linéaire à coefficients entiers de cette famille admet la racine M_0 modulo N^m .

Soit X un entier positif avec $M_0 < X$. Si g est un polynôme $g(x) = \sum_{i=0}^k g_i x^i$, on note g(xX) le vecteur $(g_0, g_1X, g_2X^2, ..., g_kX^k)$.

On note L le réseau de dimension d engendré par la matrice carrée G dont les lignes sont formées par les vecteurs $g_{i,j}(xX)$ pour $0 \le i \le m-1$ et $0 \le j \le k-1$ et le vecteur $f^m(xX)$.

4 Montrer que

$$det L = N^{k \frac{m(m+1)}{2}} X^{\frac{km(km+1)}{2}}.$$

5 Écrire une fonction qui prend un entrée f, N, X et m et qui ressort la matrice G. Vérifier que l'on obtient bien le bon déterminant sur l'exemple construit en question 2 (on pourra prendre m = 2 et $X = 2^t$).

6 Montrer que si

$$2^{\frac{d-1}{4}} (\det L)^{\frac{1}{d}} \le \frac{N^m}{\sqrt{k+1}},\tag{I}$$

alors on peut retrouver M_0 en cherchant une racine dans \mathbf{Z} du polynôme construit à l'aide du premier vecteur d'une base LLL réduite de L.

7 On pose $X = N^{\alpha}$. On néglige les quantités ne dépendant pas de N. Montrer que l'inégalité (1) est alors vérifiée si

$$\alpha \leq \frac{m-1}{km+1}.$$

Cette fraction tendant vers 1/k quand m tend vers plus l'infini, on trouvera bien toute racine $|x_0| \le N^{1/k}$ de f modulo N pour m suffisament grand, comme l'annonce le théorème de Coppersmith. Dans notre cas d'application sur RSA, cela signifie que si on connaît au moins de l'ordre de 2/3 des bits de M alors on pourrait retrouver l'intégralité des bits de M à partir de son chiffré avec e = 3 en considérant un réseau suffisamment grand.

8 Retour à l'exemple construit en question 2. Trouver M_0 avec Sage en appliquant LLL sur la matrice G construite en question 5, toujours avec m = 2 et $X = 2^t$. Augmenter ensuite la valeur de $t < 1024/3 \approx 341$, c'est à dire le nombre de bits inconnus et recommencer l'attaque en faisant croître la valeur de m (et par conséquent la dimension du réseau considéré).