Homework for Linear Algebra October 10, 2024

Yijia Chen

Exercise 1. Let A be an $n \times n$ matrix. Prove the equivalence between:

- (i) There is a B with AB = I.
- (ii) There is a C with CA = I.

Hints: We suggest two approaches. The second is by Jiabao Lin.

- 1. It was shown in the class that the following are all equivalent.
 - A is invertible.
 - A has n pivots.
 - There is a B with AB = I.

Now consider A^{T} .

- 2. Using transpose, it suffices (why?) to show that (i) implies (ii). So assume that there is a B with AB = I. Prove:
 - For any $oldsymbol{b} \in \mathbb{R}^{ ext{n}}$

$$Ax = b$$

has a unique solution.

- For any $n \times n$ matrix M

$$AC = M$$

has a unique solution C.

- ABA = A = AI.

Exercise 2. Give an $m \times n$ matrix A such that:

- There is a B with AB = I.
- There is no C with CA = I.

Exercise 3. Find all solutions of the following systems of linear equations, where x_1, x_2, x_3, x_4 are variables and λ is a parameter.

(1)
$$\begin{cases} 2x_1 - x_2 + x_3 + x_4 &= 1, \\ x_1 + 2x_2 - x_3 + 4x_4 &= 2, \\ x_1 + 7x_2 - 4x_3 + 11x_4 &= \lambda. \end{cases}$$

(2)
$$\begin{cases} \lambda x_1 + x_2 + x_3 + x_4 &= 1\\ x_1 + \lambda x_2 + x_3 + x_4 &= \lambda\\ x_1 + x_2 + \lambda x_3 + x_4 &= \lambda^2\\ x_1 + x_2 + x_3 + \lambda x_4 &= \lambda^3 \end{cases}$$

Hint 1: The number of solutions of the system of linear equations may be different when λ varies. You need to figure out when there is a unique solution, when there are no solutions and when there are infinitely many solutions. If there are some solutions, write down them.

Hint 2: To find all solutions when the coefficient matrix A has less than n pivots, keep free variables "free" as variables and express pivots by numbers and these free variables. Finally, let the tuple of free variables $(x_{i_1}, x_{i_2}, ..., x_{i_k})$ range over \mathbb{R}^k and you get all solutions.

Hint 3: For (2), the solutions may be in a complex form. You may find it useful to let $b = 1 + \lambda + \lambda^2 + \lambda^3$ and let $c = b/(\lambda + 3)$. You can express your solution using numbers, λ , b and c.

Exercise 4. Use Gaussian elimination to calculate an upper triangular system Ux = c for the linear system Ax = b. Write down the elementary matrix in each step and point out the failures you meet.

(i)
$$A = \begin{bmatrix} 0 & 1 & 2 \\ 3 & 4 & 5 \\ 6 & 7 & 8 \end{bmatrix}$$
 and $b = \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix}$.

(ii)
$$A = \begin{bmatrix} 1 & 4 & 7 \\ 2 & 5 & 8 \\ 3 & 6 & 9 \end{bmatrix}$$
 and $b = 0$.

(iii)
$$A = \begin{bmatrix} 0 & 1 & 2 \\ 7 & 8 & 3 \\ 6 & 5 & 4 \end{bmatrix}$$
 and $b = 0$.

Exercise 5. Use Gauss-Jordan to calculate the inverse of the following matrices.

(i)
$$\begin{bmatrix} 16 & 15 & 14 & 13 \\ 5 & 4 & 3 & 12 \\ 6 & 1 & 2 & 11 \\ 7 & 8 & 9 & 10 \end{bmatrix}$$
. (ii)
$$\begin{bmatrix} 1 & 1 & 10 & 1 \\ 1 & 10 & 1 & 1 \\ 1 & 1 & 1 & 10 \\ 10 & 1 & 1 & 1 \end{bmatrix}$$
. (iii) $aa^T - I_n$ with $a = \begin{bmatrix} 1 \\ \vdots \\ 1 \end{bmatrix} \in \mathbb{R}^n$.