

SÍLABO INGENIERÍA ANTISÍSMICA

ÁREA CURRICULAR: TECNOLOGÍA

CICLO: IX SEMESTRE ACADÉMICO: 2017-I

I. CÓDIGO DEL CURSO : 09129009040

II. CRÉDITOS : 04

III. REQUISITOS : 09029508040 Análisis Estructural II

IV.CONDICIÓN DEL CURSO : Obligatorio

V. SUMILLA

El curso de Ingeniería Antisísmica I está ubicado en el IX ciclo, es de naturaleza teórica y práctica. Su propósito es brindar al estudiante de ingeniería civil los conceptos y principios básicos para diseñar estructuras sometidas a la acción de sismos.

El curso se desarrolla mediante las siguientes unidades de aprendizaje: Unidad I: Sismos y movimientos del terreno. Unidad II: Diseño sismorresistente de edificaciones.

VI. FUENTES DE CONSULTA:

Bibliográficas

- · Villarreal, G. (2013). *Ingeniería Sismo-Resistente: Prácticas y Exámenes UPC.* Perú: Editorial Gráfica Norte.
- Villarreal, G. (2015). Diseño Sísmico de Edificaciones: Problemas Resueltos. Perú: Editorial Gráfica Norte.
- Electrónicas
- · Villarreal, G. (2013). Blog de Ingeniería Estructural www.gennervillarrealcastro.blogspot.com

VII. UNIDADES DE APRENDIZAJE

UNIDAD I: SISMOS Y MOVIMIENTOS DEL TERRENO

OBJETIVOS DE APRENDIZAJE:

- Aplicar los conceptos teóricos para resolver los problemas prácticos.
- Interpretar los movimientos sísmicos del terreno.
- Utilizar los equipos de medición de sismos e interpretar los resultados obtenidos.

PRIMERA SEMANA

Primera sesión:

Las estructuras y la Ingeniería antisísmica. Objetivo de la ingeniería antisísmica. Historia y evolución de la Ingeniería antisísmica en el Perú y el mundo.

Segunda sesión:

Criterios de diseño. Elementos estructurales y tipos de edificaciones. Presentación Trabajo 1.

SEGUNDA SEMANA

Primera sesión:

Origen de los sismos. Deriva continental. Tectónica de placas. Placas más importantes. Tipos de fallas. Mecanismo de origen.

Segunda sesión:

Hipocentro, epicentro, profundidad focal. Teoría del rebote elástico. Ondas sísmicas y velocidad de propagación.

TERCERA SEMANA

Primera sesión:

Práctica calificada Nº 1

Segunda sesión:

Resolución de práctica calificada Nº 1

CUARTA SEMANA

Primera sesión:

Registros y medidas de los sismos. Acelerógrafos. Registros. Magnitud. Escala: Richter ML, MS y Mb. Energía liberada por un sismo.

Segunda sesión:

Intensidad: Escalas Rossi-Forel, Mercalli Modificada, MSK.

QUINTA SEMANA

Primera sesión:

Riesgo, peligro sísmico y vulnerabilidad. Leyes de recurrencia y atenuación. Período de retorno. Vulnerabilidad.

Segunda sesión:

Influencia del suelo en la intensidad de las vibraciones y en la respuesta sísmica. Configuración arquitectónica. Configuración estructural.

SEXTA SEMANA

Primera sesión:

Práctica calificada Nº 2

Segunda sesión:

Resolución de práctica calificada Nº 2

UNIDAD II: DISEÑO SISMORRESISTENTE DE EDIFICACIONES OBJETIVOS DE APRENDIZAJE:

- Aplicar los conceptos teóricos para resolver los problemas prácticos.
- Interpretar las normas correspondientes al diseño sísmico.
- Utilizar computadoras para el análisis sísmico de edificaciones.

SÉPTIMA SEMANA

Primera sesión:

Norma E030 – Método Estático: Contenido de la Norma, alcance y limitaciones. Parámetros de determinación de la fuerza sísmica.

Segunda sesión:

Clasificación de las edificaciones. Determinación de irregularidades. Fuerzas y desplazamientos. Torsión.

OCTAVA SEMANA

Examen Parcial

NOVENA SEMANA

Primera sesión:

Análisis sísmico estático de edificio en 3D: Modelación estructural con el SAP2000 de un edificio en 3D de sistema estructural aporticado y con zapatas aisladas.

Segunda sesión:

Chequeo de desplazamientos laterales. Control del efecto torsional. Fuerzas internas de diseño. Efecto de la capacidad portante en el diseño estructural por gravedad y sismo.

DÉCIMA SEMANA

Primera sesión:

Práctica calificada Nº 3

Segunda sesión:

Resolución de práctica calificada Nº 3

UNDECIMA SEMANA

Primera sesión:

Norma E030 - método dinámico: Análisis dinámico.

Segunda sesión:

Elementos no estructurales. Especificaciones de diseño sísmico para elementos de concreto armado.

DUODÉCIMA SEMANA

Primera sesión:

Análisis sísmico dinámico de edificio aporticado en 3D: Modelación estructural con el SAP2000 de un edificio en 3D con sistema estructural aporticado.

Segunda sesión:

Períodos y frecuencias libres de vibración. Análisis de los modos de vibración: Determinación de fallas estructurales. Chequeo de desplazamientos laterales.

DECIMOTERCERA SEMANA

Primera sesión:

Centro de masa y centro de rigidez para edificaciones de albañilería confinada.

Segunda sesión:

Centro de masa y centro de rigidez para edificaciones de concreto armado.

DECIMOCUARTA SEMANA

Primera sesión:

Análisis sísmico dinámico de edificio con muros estructurales en 3D: Modelación estructural con el SAP2000 de un edificio en 3D con muros estructurales y platea de cimentación.

Segunda sesión:

Períodos y frecuencias libres de vibración. Análisis de los modos de vibración: Determinación de fallas estructurales. Chequeo de desplazamientos laterales.

DECIMOQUINTA SEMANA

Primera sesión:

Práctica calificada Nº 4

Segunda sesión:

Resolución de práctica calificada Nº 4

DECIMOSEXTA SEMANA

Examen Final

DECIMOSÉPTIMA SEMANA

Entrega de promedios finales y acta del curso

VIII. CONTRIBUCIÓN DEL CURSO AL COMPONENTE PROFESIONAL

a. Matemática y Ciencias Básicas
b. Tópicos de Ingeniería
c. Educación General
0

IX.PROCEDIMIENTOS DIDÁCTICOS

- . Método expositivo interactivo. Disertación docente, exposición del estudiante.
- . Método de discusión guiada. Conducción del grupo para abordar situaciones y llegar a conclusiones y recomendaciones.
- . Método de demostración ejecución. El docente ejecuta para demostrar como y con que se hace y el estudiante ejecuta, para demostrar que aprendió.

X. MEDIOS Y MATERIALES

Equipos: Una computadora personal para el profesor y para cada alumno, ecran y proyector de multimedia.

Materiales: Texto base, separata, aplicaciones multimedia y software SAP2000 v.14

XI. EVALUACIÓN

El promedio final se obtiene del modo siguiente:

PF = (2*PE+EP+EF)/4

PE = (P1+P2+P3+P4-MN))/3 + W1)/2

PF = Promedio Final

EP = Examen Parcial

EF = Examen Final

PE = Promedio de evaluaciones

P1 = Práctica Calificada Nº 1

P2 = Práctica Calificada Nº 2

P3 = Práctica Calificada Nº 3

P4 = Práctica Calificada Nº 4

MN = Menor Nota de Prácticas Calificadas

XII. APORTE DEL CURSO AL LOGRO DE RESULTADOS

El aporte del curso al logro de los resultados (Outcomes), para la Escuela Profesional de Ingeniería Civil, se establece en la tabla siguiente:

K = clave **R** = relacionado Recuadro vacío = no aplica Aplicar conocimientos de matemáticas, ciencia, tecnología e ingeniería civil. (a) Κ Diseñar y conducir experimentos, así como analizar e interpretar los datos Κ (b) Diseñar sistemas, componentes o procesos de acuerdo a las necesidades requeridas y restricciones económicas, ambientales, sociales, políticas, éticas, de R (c) salubridad y seguridad. Trabajar adecuadamente en un equipo multidisciplinario. (d) (e) Identificar, formular y resolver problemas de ingeniería civil. Κ (f) Comprensión de lo que es la responsabilidad ética y profesional. (g) Comunicarse, con su entorno, en forma efectiva. Entender el impacto que tienen las soluciones de la ingeniería civil, dentro de un R (h) contexto global, económico, ambiental y social. Aprender a aprender, actualizándose y capacitándose a lo largo de su vida. Κ (i) Tener conocimiento de los principales problemas contemporáneos de la carrera (j) de ingeniería civil Usar técnicas y herramientas modernas necesarias en la práctica de la ingeniería Κ (k) civil y ramas afines

XIII. HORAS, SESIONES, DURACIÓN

a)	Horas de clase:	Teoría	Práctica	Laboratorio
		3	2	0

b) Sesiones por semana: Dos sesiones.

c) Duración: 5 horas académicas de 45 minutos

XIV. JEFE DE CURSO:

Ing. Omar Tello Malpartida

XV. FECHA:

La Molina, marzo de 2017.