Identifying Malignant Mammograms

Using Transfer Learning and CNNs

Impact

- Second most common cancer for U.S. women
- Second most cancer related mortalities
- Fifth leading cause of death worldwide
- 1 in 8 women will develop it during their lifetime

Early detection

- Major reason deaths are down 43% since 2020
- Five year survival rates:
 - o 99% Localized SEER Stage
 - o 86% Regional SEER Stage
 - o 31% Distant SEER Stage
- Early detection = Less radical treatments
- Regular mammograms are key
 - Can detect abnormalities well before they can be felt
 - Skillful interpretation is critical

Problem Statement

- Mammograms aren't perfect
- Require skilled mammographers
- 1 in 8 cancers go undetected
- High false positive rates
 - o Costly (Time and Money)
 - Leads to unnecessary anxiety

Project Goal

- Use transfer learning and a CNNs to identify malignant abnormalities in mammogram images
- Use updated and standardized Digital Database for Screening Mammography dataset (CBIS-DDSM)
- Predict malignant abnormalities with > 87.5% sensitivity while having a reasonable specificity

Dataset

- Digital Database for Screening Mammography (DDSM)
 - o 2,857 full mammogram images
 - 3,566 cropped mammogram images
 - o 3,463 region of interest (ROI) mask files
- Normal, benign, and malignant cases for masses and calcifications with verified pathology information from four hospitals
 - Massachusetts General Hospital
 - Wake Forest University School of Medicine
 - Sacred Heart Hospital
 - Washington University of St. Louis School of Medicine
- Associated metadata files matched between training and testing sets

CBIS- DDSM Metadata

- · Abnormality Type: Mass or Calcification
- · Laterality: Side mammogram was performed on
- · Patient Orientation: MLO or CC
- Breast density: Category of breast density
- · Abnormality Type: Category of abnormality
- Calcification Type (calcifications): Type of calcification
- Calcification Distribution (calcifications): Distribution of the calcifications
- Mass shape (masses): Shape of the mass
- Mass margins (masses): Feature that separates the mass from the adjacent breast
- Assessment: Assessment category
- Pathology: Malignant, benign, or benign without callback
- Subtlety: Subtlety category

Exploratory Data Analysis

- Project focused on classifying images as (1) "Malignant" and (0) "Not Malignant"
- Differences in distributions between classes:
 - Calcification Distribution
 - Mass Margins
 - Assessment
- Correlations with Malignant:
 - Calcification Distribution
 - Calcification Type
 - Mass Margins
 - Mass Shape
 - Assessment

Model Training - Image Preprocessing

- Cropped images and ROI Masks
- Image Resizing
 - Height: 224 pixels
 - Width: 224 pixels
 - o Color Channels: 3
- Histogram equalization

Model Training - Training, Validation, and Testing

- CBIS-DDSM
 - Pre-split into training and testing sets (80%, 20%)
 - o Matched on metadata
- Validation Set
 - Created from random sample of testing set
 - o 80 / 10 / 10 split

Model Training - Models

- Three different pretrained
 CNNs were evaluated during
 training on two sets of labels:
 - 1. DenseNet169 Malignant
 - 2. DenseNet169 Pathology
 - 3. Xception Malignant
 - 4. Xception Pathology
 - 5. EfficientNetV2S Malignant
 - 6. EfficientNetV2S Pathology
- Imagenet weights were used
- Relatively small size models with high accuracy on image classification tasks

Model Training - Model Specifications

- Optimizer: Adam
- Loss Function: Categorical Crossentropy
- Learning Rate: .001
- Batch Size: 32
- Epochs: 30 (with early stopping)

Layer (type)	Output	Shape	Param #	Trainable
sequential_6 (Sequential)	(None,	224, 224, 3)	0	Υ
xception (Functional)	(None,	2048)	2086148 0	Υ
dropout_3 (Dropout)	(None,	2048)	0	Υ
dense_3 (Dense)	(None,	3)	6147	Υ
: Total params: 20867627 (79.0 Trainable params: 4754947 (Won-trainable params: 161120	18.14 MB	10 march 2000 (2000)		

Model Selection

- Xception
 - 1. Malignant labels
 - Sensitivity = 0.85
 - \blacksquare Specificity = 0.29
 - 2. Pathology Labels
 - Sensitivity = 0.70
 - Specificity = 0.52
- Highest sensitivity on the testing set with specificity higher than Dummy Classifier

ightharpoons		precision	recall	f1-score	support	
	Benign	0.72	0.52	0.60	330	
	Malignant	0.49	0.70	0.58	222	
	accuracy			0.59	552	
	macro avg	0.61	0.61	0.59	552	
	weighted avg	0.63	0.59	0.59	552	
	F1 Score: 0.59					
	Sensitivity: 0 Specificity: 0					

Testing Set - Further Analysis

- Most errors confused malignant with benign images (and vice versa)
- Very few predictions for No Callback (Normal)
- Model seemed to naturally group images into two categories

Testing Set - Further Analysis (continued)

- Model tended to perform better when it was more confident in a prediction
- Effect was noticeable for both malignant and benign predictions
- Implications for practical applications

Final Thoughts and Future Research

- Model was not able to meet the initial goal of classifying malignant mammograms with > 87.5% specificity
- Importance of false positives in final model selection
- Ideas for future research / practical applications:
 - 1. Train model on more images
 - 2. Use multiple images from same patient to diagnose cases
 - 3. Use predicted probabilities to reduce number of reviewed mammograms

Thank you.