$12n_{0666} (K12n_{0666})$

Ideals for irreducible components² of X_{par}

$$\begin{split} I_1^u &= \langle -u^{15} + 6u^{13} + \dots + b - 4, \ -5u^{15} - 4u^{14} + \dots + 3a - 13, \ u^{16} + 2u^{15} + \dots - 13u + 3 \rangle \\ I_2^u &= \langle -u^{13}a + u^{13} + \dots - a + 1, \ -u^{13}a - 2u^{13} + \dots + a + 7, \\ u^{14} - u^{13} - 7u^{12} + 5u^{11} + 19u^{10} - 4u^9 - 26u^8 - 13u^7 + 17u^6 + 21u^5 + u^4 - 4u^3 - 6u^2 - 3u - 1 \rangle \\ I_3^u &= \langle u^6 - 4u^4 + 2u^3 + 4u^2 + b - 3u + 1, \ -u^5 - u^4 + 4u^3 + 2u^2 + a - 5u - 1, \\ u^7 + 2u^6 - 3u^5 - 6u^4 + 3u^3 + 5u^2 + 1 \rangle \\ I_4^u &= \langle b - 1, \ a^2 + a + u - 2, \ u^2 - u - 1 \rangle \\ I_5^u &= \langle b - 1, \ a, \ u + 1 \rangle \\ I_6^u &= \langle -u^2 + b + 2, \ -u^2 + 3a - 2u + 1, \ u^3 + 2u^2 - u - 3 \rangle \\ I_7^u &= \langle b, \ a - 1, \ u - 1 \rangle \\ I_8^u &= \langle b + 1, \ a - 1, \ u - 1 \rangle \\ I_1^v &= \langle a, \ b - 1, \ v + 1 \rangle \end{split}$$

* 9 irreducible components of $\dim_{\mathbb{C}} = 0$, with total 62 representations.

¹The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

² All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated in decimal forms when there is not enough margin.

I.
$$I_1^u = \langle -u^{15} + 6u^{13} + \dots + b - 4, -5u^{15} - 4u^{14} + \dots + 3a - 13, u^{16} + 2u^{15} + \dots - 13u + 3 \rangle$$

$$a_{8} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} \frac{5}{3}u^{15} + \frac{4}{3}u^{14} + \dots - 18u + \frac{13}{3} \\ u^{15} - 6u^{13} + \dots - 18u + 4 \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} \frac{5}{3}u^{15} + \frac{4}{3}u^{14} + \dots - 18u + \frac{13}{3} \\ 5u^{15} + 3u^{14} + \dots - 49u + 10 \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} \frac{2}{3}u^{15} - \frac{2}{3}u^{14} + \dots - 13u + \frac{10}{3} \\ 3u^{15} + u^{14} + \dots - 35u + 7 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} \frac{1}{3}u^{15} - \frac{4}{3}u^{14} + \dots - 20u + \frac{11}{3} \\ u^{15} - u^{14} + \dots - 24u + 5 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} u \\ u \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} -u^{2} + 1 \\ -u^{2} \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} -u^{3} + 2u \\ -u^{3} + u \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} \frac{2}{3}u^{15} - \frac{2}{3}u^{14} + \dots + 6u - \frac{5}{3} \\ 2u^{15} + u^{14} + \dots - 8u + 1 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} -u^{4} + 3u^{2} - 1 \\ -u^{4} + 2u^{2} \end{pmatrix}$$

(ii) Obstruction class = -1

(iii) Cusp Shapes =
$$5u^{15} + 4u^{14} - 36u^{13} - 14u^{12} + 103u^{11} - 32u^{10} - 158u^9 + 170u^8 + 88u^7 - 217u^6 + 91u^5 + 87u^4 - 95u^3 + 35u^2 + 10u - 18$$

Crossings	u-Polynomials at each crossing
c_{1}, c_{3}	$u^{16} + u^{15} + \dots + 13u + 1$
c_2	$u^{16} + 10u^{15} + \dots - 5u - 3$
c_4, c_9	$u^{16} - 5u^{15} + \dots - 17u + 5$
c_5, c_8	$u^{16} + 2u^{15} + \dots - 2u - 1$
c_6, c_7, c_{10} c_{11}, c_{12}	$u^{16} - 2u^{15} + \dots + 13u + 3$

Crossings	Riley Polynomials at each crossing
c_1, c_3	$y^{16} + 13y^{15} + \dots - 49y + 1$
c_2	$y^{16} - 4y^{14} + \dots + 113y + 9$
c_4, c_9	$y^{16} - 11y^{15} + \dots - 199y + 25$
c_5, c_8	$y^{16} - 10y^{15} + \dots - 18y + 1$
c_6, c_7, c_{10} c_{11}, c_{12}	$y^{16} - 16y^{15} + \dots - 43y + 9$

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.548500 + 0.853725I		
a = 0.30836 - 1.43712I	5.38391 - 10.31740I	-5.41022 + 7.34778I
b = -0.66590 - 1.54507I		
u = 0.548500 - 0.853725I		
a = 0.30836 + 1.43712I	5.38391 + 10.31740I	-5.41022 - 7.34778I
b = -0.66590 + 1.54507I		
u = 0.578322 + 0.876148I		
a = -0.869193 + 0.857447I	5.31272 + 4.64447I	-4.44340 - 2.64217I
b = -0.18633 + 1.46072I		
u = 0.578322 - 0.876148I		
a = -0.869193 - 0.857447I	5.31272 - 4.64447I	-4.44340 + 2.64217I
b = -0.18633 - 1.46072I		
u = 0.217481 + 0.592732I		
a = 0.47227 + 1.50811I	0.50766 - 2.36838I	-7.45824 + 4.04010I
b = 0.203575 + 0.996171I		
u = 0.217481 - 0.592732I		
a = 0.47227 - 1.50811I	0.50766 + 2.36838I	-7.45824 - 4.04010I
b = 0.203575 - 0.996171I		
u = 1.39667		
a = -1.16562	-6.42671	-13.8540
b = 1.59448		
u = -1.384810 + 0.218261I		
a = -0.413538 - 0.720270I	-4.59888 + 5.31561I	-16.0697 - 5.0195I
b = 0.78536 - 1.50062I		
u = -1.384810 - 0.218261I		
a = -0.413538 + 0.720270I	-4.59888 - 5.31561I	-16.0697 + 5.0195I
b = 0.78536 + 1.50062I		
u = -1.48477 + 0.03326I		
a = 0.374186 + 0.661888I	-7.28530 - 0.33372I	-13.77762 + 1.31768I
b = 0.159333 + 0.652088I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -1.48477 - 0.03326I		
a = 0.374186 - 0.661888I	-7.28530 + 0.33372I	-13.77762 - 1.31768I
b = 0.159333 - 0.652088I		
u = 0.471433 + 0.149281I		
a = 1.189440 + 0.539880I	-0.951255 - 0.232345I	-11.11372 + 2.61454I
b = 0.190619 - 0.017488I		
u = 0.471433 - 0.149281I		
a = 1.189440 - 0.539880I	-0.951255 + 0.232345I	-11.11372 - 2.61454I
b = 0.190619 + 0.017488I		
u = -1.54560 + 0.31071I		
a = 0.806991 + 0.667934I	-1.4014 + 14.5984I	-9.03391 - 7.72929I
b = -1.09400 + 1.47232I		
u = -1.54560 - 0.31071I		
a = 0.806991 - 0.667934I	-1.4014 - 14.5984I	-9.03391 + 7.72929I
b = -1.09400 - 1.47232I		
u = 1.80224		
a = -0.238089	-15.4721	-27.5320
b = 0.620201		

$$II. \\ I_2^u = \langle -u^{13}a + u^{13} + \dots - a + 1, \ -u^{13}a - 2u^{13} + \dots + a + 7, \ u^{14} - u^{13} + \dots - 3u - 1 \rangle$$

$$a_{8} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} u^{13}a - u^{13} + \dots + a - 1 \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} u^{13}a - u^{13} + \dots + a - 1 \\ 2u^{13}a - u^{12}a + \dots + a - 2 \\ 2u^{13} - 14u^{11} + \dots - u - 1 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} -u^{13}a + u^{13} + \dots + u + 2 \\ -u^{13}a + u^{13} + \dots + 8u + 3 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} u \\ u \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} -u^{2} + 1 \\ -u^{2} \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} -u^{3} + 2u \\ -u^{3} + u \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} u^{13}a - u^{12} + \dots + 2a - 2 \\ u^{13}a - u^{12} + \dots + a - 1 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} -u^{4} + 3u^{2} - 1 \\ -u^{4} + 2u^{2} \end{pmatrix}$$

(ii) Obstruction class = -1

(iii) Cusp Shapes =
$$11u^{13} - 10u^{12} - 72u^{11} + 49u^{10} + 176u^9 - 43u^8 - 211u^7 - 87u^6 + 135u^5 + 125u^4 - 27u^3 - 12u^2 - 25u - 14$$

Crossings	u-Polynomials at each crossing
c_1, c_3	$u^{28} - 4u^{27} + \dots + 82u - 11$
c_2	$(u^{14} - 6u^{13} + \dots - 10u + 4)^2$
c_4, c_9	$u^{28} - 2u^{27} + \dots - 264u + 24$
c_5, c_8	$u^{28} - u^{27} + \dots - 11u - 1$
$c_6, c_7, c_{10} \\ c_{11}, c_{12}$	$(u^{14} + u^{13} + \dots + 3u - 1)^2$

Crossings	Riley Polynomials at each crossing
c_1, c_3	$y^{28} + 24y^{27} + \dots + 3132y + 121$
c_2	$(y^{14} - 4y^{13} + \dots - 188y + 16)^2$
c_4, c_9	$y^{28} - 18y^{27} + \dots - 12000y + 576$
c_5, c_8	$y^{28} + y^{27} + \dots - 47y + 1$
$c_6, c_7, c_{10} \\ c_{11}, c_{12}$	$(y^{14} - 15y^{13} + \dots + 3y + 1)^2$

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.543841 + 0.788845I		
a = -0.786499 - 1.127240I	6.74935 + 2.61367I	-3.08817 - 3.10085I
b = -0.15757 - 1.50904I		
u = -0.543841 + 0.788845I		
a = 0.59080 + 1.44573I	6.74935 + 2.61367I	-3.08817 - 3.10085I
b = -0.57036 + 1.40275I		
u = -0.543841 - 0.788845I		
a = -0.786499 + 1.127240I	6.74935 - 2.61367I	-3.08817 + 3.10085I
b = -0.15757 + 1.50904I		
u = -0.543841 - 0.788845I		
a = 0.59080 - 1.44573I	6.74935 - 2.61367I	-3.08817 + 3.10085I
b = -0.57036 - 1.40275I		
u = 1.10803		
a = 0.948288	-1.64992	-5.91590
b = -0.313019		
u = 1.10803		
a = 0.875781	-1.64992	-5.91590
b = -0.967676		
u = -1.315420 + 0.077239I		
a = -1.053540 - 0.890197I	-2.09644 + 4.46056I	-6.21772 - 5.02110I
b = 0.734783 - 1.046780I		
u = -1.315420 + 0.077239I		
a = 0.461982 - 0.077443I	-2.09644 + 4.46056I	-6.21772 - 5.02110I
b = -1.17028 - 1.69999I		
u = -1.315420 - 0.077239I		
a = -1.053540 + 0.890197I	-2.09644 - 4.46056I	-6.21772 + 5.02110I
b = 0.734783 + 1.046780I		
u = -1.315420 - 0.077239I		
a = 0.461982 + 0.077443I	-2.09644 - 4.46056I	-6.21772 + 5.02110I
b = -1.17028 + 1.69999I		

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 1.45797 + 0.12777I		
a = -0.697357 + 0.508441I	-5.60858 - 6.11443I	-13.6408 + 6.9717I
b = 1.08158 + 1.81362I		
u = 1.45797 + 0.12777I		
a = -0.139548 - 1.280800I	-5.60858 - 6.11443I	-13.6408 + 6.9717I
b = -0.085041 - 0.349273I		
u = 1.45797 - 0.12777I		
a = -0.697357 - 0.508441I	-5.60858 + 6.11443I	-13.6408 - 6.9717I
b = 1.08158 - 1.81362I		
u = 1.45797 - 0.12777I		
a = -0.139548 + 1.280800I	-5.60858 + 6.11443I	-13.6408 - 6.9717I
b = -0.085041 + 0.349273I		
u = -0.019410 + 0.530789I		
a = -0.270655 + 0.346124I	1.71604 - 2.54798I	-1.07278 + 1.43352I
b = -1.106740 + 0.564246I		
u = -0.019410 + 0.530789I		
a = 1.01173 + 2.29513I	1.71604 - 2.54798I	-1.07278 + 1.43352I
b = 0.289802 + 1.068640I		
u = -0.019410 - 0.530789I		
a = -0.270655 - 0.346124I	1.71604 + 2.54798I	-1.07278 - 1.43352I
b = -1.106740 - 0.564246I		
u = -0.019410 - 0.530789I		
a = 1.01173 - 2.29513I	1.71604 + 2.54798I	-1.07278 - 1.43352I
b = 0.289802 - 1.068640I		
u = -0.357381 + 0.324231I		
a = -0.75149 - 2.13461I	0.35035 + 4.37070I	-10.2424 - 10.7977I
b = 0.39490 - 1.51758I		
u = -0.357381 + 0.324231I		
a = -1.29088 + 2.35828I	0.35035 + 4.37070I	-10.2424 - 10.7977I
b = -0.049630 - 0.292724I		

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.357381 - 0.324231I		
a = -0.75149 + 2.13461I	0.35035 - 4.37070I	-10.2424 + 10.7977I
b = 0.39490 + 1.51758I		
u = -0.357381 - 0.324231I		
a = -1.29088 - 2.35828I	0.35035 - 4.37070I	-10.2424 + 10.7977I
b = -0.049630 + 0.292724I		
u = 1.54231 + 0.28303I		
a = 0.901435 - 0.599841I	-0.04950 - 6.56214I	-6.38364 + 4.80522I
b = -0.93554 - 1.19334I		
u = 1.54231 + 0.28303I		
a = -0.669860 + 0.302514I	-0.04950 - 6.56214I	-6.38364 + 4.80522I
b = 0.29812 + 1.50281I		
u = 1.54231 - 0.28303I		
a = 0.901435 + 0.599841I	-0.04950 + 6.56214I	-6.38364 - 4.80522I
b = -0.93554 + 1.19334I		
u = 1.54231 - 0.28303I		
a = -0.669860 - 0.302514I	-0.04950 + 6.56214I	-6.38364 - 4.80522I
b = 0.29812 - 1.50281I		
u = -1.63650		
a = 1.21145	-10.3421	10.2070
b = -0.967540		
u = -1.63650		
a = 0.352250	-10.3421	10.2070
b = 0.800198		

III.
$$I_3^u = \langle u^6 - 4u^4 + 2u^3 + 4u^2 + b - 3u + 1, \ -u^5 - u^4 + 4u^3 + 2u^2 + a - 5u - 1, \ u^7 + 2u^6 - 3u^5 - 6u^4 + 3u^3 + 5u^2 + 1 \rangle$$

$$a_{8} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} u^{5} + u^{4} - 4u^{3} - 2u^{2} + 5u + 1 \\ -u^{6} + 4u^{4} - 2u^{3} - 4u^{2} + 3u - 1 \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} u^{5} + u^{4} - 4u^{3} - 2u^{2} + 5u + 1 \\ -2u^{6} - u^{5} + 8u^{4} - 8u^{2} + 3u - 2 \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} u^{6} + u^{5} - 4u^{4} - 3u^{3} + 5u^{2} + 3u - 1 \\ -u^{5} + 3u^{3} - u - 1 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} u^{6} - u^{5} + 4u^{4} + 2u^{3} - 4u^{2} - u - 1 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} u \\ u \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} -u^{2} + 1 \\ -u^{2} \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} -u^{3} + 2u \\ -u^{3} + u \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} u^{5} + u^{4} - 4u^{3} - 2u^{2} + 5u + 2 \\ -u^{3} + 2u \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} u^{4} - 3u^{2} + 1 \\ u^{4} - 2u^{2} \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = $-3u^6 + u^5 + 15u^4 12u^3 20u^2 + 17u 7$

Crossings	u-Polynomials at each crossing
c_1, c_3	$u^7 + u^6 + 4u^5 + 5u^4 + 7u^3 + 6u^2 + 4u + 1$
c_2	$u^7 + 8u^6 + 31u^5 + 75u^4 + 122u^3 + 133u^2 + 90u + 29$
c_4, c_9	$u^7 - u^6 + u^4 + u^3 - 2u^2 + 1$
c_5, c_8	$u^7 - 2u^5 - u^4 + u^3 - u - 1$
c_6, c_7	$u^7 - 2u^6 - 3u^5 + 6u^4 + 3u^3 - 5u^2 - 1$
c_{10}, c_{11}, c_{12}	$u^7 + 2u^6 - 3u^5 - 6u^4 + 3u^3 + 5u^2 + 1$

Crossings	Riley Polynomials at each crossing		
c_1, c_3	$y^7 + 7y^6 + 20y^5 + 27y^4 + 19y^3 + 10y^2 + 4y - 1$		
c_2	$y^7 - 2y^6 + 5y^5 - 9y^4 + 50y^3 - 79y^2 + 386y - 841$		
c_4, c_9	$y^7 - y^6 + 4y^5 - 5y^4 + 7y^3 - 6y^2 + 4y - 1$		
c_5, c_8	$y^7 - 4y^6 + 6y^5 - 7y^4 + 5y^3 - 4y^2 + y - 1$		
c_6, c_7, c_{10} c_{11}, c_{12}	$y^7 - 10y^6 + 39y^5 - 74y^4 + 65y^3 - 13y^2 - 10y - 1$		

Solutions to I_3^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 1.278170 + 0.302690I		
a = 0.690513 + 0.118128I	-3.01119 + 1.09708I	-11.40523 - 3.58425I
b = -0.587538 - 0.609722I		
u = 1.278170 - 0.302690I		
a = 0.690513 - 0.118128I	-3.01119 - 1.09708I	-11.40523 + 3.58425I
b = -0.587538 + 0.609722I		
u = -1.399450 + 0.156175I		
a = -0.465734 - 0.770245I	-3.71133 + 5.67264I	-7.64975 - 7.54460I
b = 0.41431 - 1.55213I		
u = -1.399450 - 0.156175I		
a = -0.465734 + 0.770245I	-3.71133 - 5.67264I	-7.64975 + 7.54460I
b = 0.41431 + 1.55213I		
u = 0.037900 + 0.397504I		
a = 1.60254 + 2.17123I	1.16830 - 3.69824I	-2.64032 + 6.74904I
b = -0.126346 + 1.154250I		
u = 0.037900 - 0.397504I		
a = 1.60254 - 2.17123I	1.16830 + 3.69824I	-2.64032 - 6.74904I
b = -0.126346 - 1.154250I		
u = -1.83325		
a = 0.345358	-15.2105	3.39060
b = -0.400851		

IV.
$$I_4^u = \langle b-1, \ a^2+a+u-2, \ u^2-u-1 \rangle$$

$$a_{8} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} 1 \\ u+1 \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} a \\ 1 \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} a \\ au+a+1 \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} a+1 \\ au+a+u+2 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} -au-2u+1 \\ -3au-a-3u-1 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} u \\ u \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} -u \\ -u-1 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} -1 \\ -u-1 \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} a+1 \\ au+a+u+2 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = -7u 22

Crossings	u-Polynomials at each crossing
c_1, c_3	$(u-1)^4$
c_2	u^4
$c_4, c_5, c_8 \ c_9$	$u^4 + u^3 - 3u^2 - u + 1$
c_{6}, c_{7}	$(u^2+u-1)^2$
c_{10}, c_{11}, c_{12}	$(u^2 - u - 1)^2$

Crossings	Riley Polynomials at each crossing
c_1, c_3	$(y-1)^4$
c_2	y^4
$c_4, c_5, c_8 \\ c_9$	$y^4 - 7y^3 + 13y^2 - 7y + 1$
c_6, c_7, c_{10} c_{11}, c_{12}	$(y^2 - 3y + 1)^2$

Solutions to I_4^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.618034		
a = 1.19353	-2.63189	-17.6740
b = 1.00000		
u = -0.618034		
a = -2.19353	-2.63189	-17.6740
b = 1.00000		
u = 1.61803		
a = -1.29496	-10.5276	-33.3260
b = 1.00000		
u = 1.61803		
a = 0.294963	-10.5276	-33.3260
b = 1.00000		

V.
$$I_5^u = \langle b-1, a, u+1 \rangle$$

$$a_8 = \begin{pmatrix} 0 \\ -1 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_1 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

$$a_5 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

$$a_4 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

$$a_2 = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$$

$$a_9 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

$$a_7 = \begin{pmatrix} -1 \\ -1 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 0 \\ -1 \end{pmatrix}$$

$$a_6 = \begin{pmatrix} -1\\0 \end{pmatrix}$$

$$a_3 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

- (ii) Obstruction class = -1
- (iii) Cusp Shapes = -18

Crossings	u-Polynomials at each crossing		
c_1, c_2, c_3	u+1		
c_4, c_9	u		
c_5, c_6, c_7 c_8, c_{10}, c_{11} c_{12}	u-1		

Crossings	Riley Polynomials at each crossing		
c_1, c_2, c_3 c_5, c_6, c_7 c_8, c_{10}, c_{11} c_{12}	y-1		
c_4, c_9	y		

Solutions to I_5^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -1.00000		
a = 0	-4.93480	-18.0000
b = 1.00000		

VI.
$$I_6^u = \langle -u^2 + b + 2, -u^2 + 3a - 2u + 1, u^3 + 2u^2 - u - 3 \rangle$$

$$a_{8} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} \frac{1}{3}u^{2} + \frac{2}{3}u - \frac{1}{3} \\ u^{2} - 2 \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} \frac{1}{3}u^{2} + \frac{2}{3}u - \frac{1}{3} \\ u^{2} + u - 2 \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} -\frac{2}{3}u^{2} - \frac{1}{3}u + \frac{5}{3} \\ 1 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} -\frac{4}{3}u^{2} - \frac{2}{3}u + \frac{7}{3} \\ -u^{2} + 2 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} u \\ u \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} -u^{2} + 1 \\ -u^{2} \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} 2u^{2} + u - 3 \\ 2u^{2} - 3 \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} -\frac{2}{3}u^{2} - \frac{1}{3}u + \frac{8}{3} \\ -2u^{2} - u + 4 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} -2u^{2} - u + 5 \\ -3u^{2} - u + 6 \end{pmatrix}$$

- (ii) Obstruction class = -1
- (iii) Cusp Shapes = -6

Crossings	u-Polynomials at each crossing
c_1, c_3	$u^3 + u - 1$
c_2	$u^3 + 2u^2 - u - 3$
c_4, c_9	$(u+1)^3$
c_5, c_8	$u^3 - 2u^2 + u + 1$
$c_6, c_7, c_{10} \\ c_{11}, c_{12}$	$u^3 - 2u^2 - u + 3$

Crossings	Riley Polynomials at each crossing
c_1, c_3	$y^3 + 2y^2 + y - 1$
c_2, c_6, c_7 c_{10}, c_{11}, c_{12}	$y^3 - 6y^2 + 13y - 9$
c_4, c_9	$(y-1)^3$
c_5,c_8	$y^3 - 2y^2 + 5y - 1$

Solutions to I_6^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 1.14790		
a = 0.871157	-1.64493	-6.00000
b = -0.682328		
u = -1.57395 + 0.36899I		
a = -0.602245 - 0.141188I	-1.64493	-6.00000
b = 0.341164 - 1.161540I		
u = -1.57395 - 0.36899I		
a = -0.602245 + 0.141188I	-1.64493	-6.00000
b = 0.341164 + 1.161540I		

VII.
$$I_7^u = \langle b, \ a-1, \ u-1 \rangle$$

$$a_8 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_1 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

$$a_5 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_4 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

$$a_2 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

$$a_9 = \begin{pmatrix} -1 \\ 0 \end{pmatrix}$$

$$a_7 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 0 \\ -1 \end{pmatrix}$$

$$a_6 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_3 = \begin{pmatrix} 2 \\ 1 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

- (ii) Obstruction class = -1
- (iii) Cusp Shapes = -6

Crossings	u-Polynomials at each crossing		
c_1,c_5	u		
c_2, c_3	u-1		
c_4, c_6, c_7 c_8, c_9, c_{10} c_{11}, c_{12}	u+1		

Crossings	Riley Polynomials at each crossing		
c_1, c_5	y		
c_2, c_3, c_4 c_6, c_7, c_8 c_9, c_{10}, c_{11} c_{12}	y-1		

Solutions to I_7^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 1.00000		
a = 1.00000	-1.64493	-6.00000
b = 0		

VIII.
$$I_8^u = \langle b+1, \ a-1, \ u-1 \rangle$$

$$a_8 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_1 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

$$a_5 = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$$

$$a_4 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_2 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

$$a_9 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

$$a_7 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 0 \\ -1 \end{pmatrix}$$

$$a_6 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_3 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

- (ii) Obstruction class = -1
- (iii) Cusp Shapes = -6

Crossings	u-Polynomials at each crossing
c_{1}, c_{2}	u-1
c_3, c_8	u
c_4, c_5, c_6 c_7, c_9, c_{10} c_{11}, c_{12}	u+1

Crossings	Riley Polynomials at each crossing
c_1, c_2, c_4 c_5, c_6, c_7 c_9, c_{10}, c_{11} c_{12}	y-1
c_3, c_8	y

Solutions to I_8^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 1.00000		
a = 1.00000	-1.64493	-6.00000
b = -1.00000		

IX.
$$I_1^v = \langle a, b-1, v+1 \rangle$$

$$a_8 = \begin{pmatrix} -1 \\ 0 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_1 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_5 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

$$a_4 = \begin{pmatrix} -1 \\ 1 \end{pmatrix}$$

$$a_2 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

$$a_9 = \begin{pmatrix} -1 \\ -1 \end{pmatrix}$$

$$a_7 = \begin{pmatrix} -1\\0 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_6 = \begin{pmatrix} -1 \\ 0 \end{pmatrix}$$

$$a_3 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} -1\\0 \end{pmatrix}$$

- (ii) Obstruction class = -1
- (iii) Cusp Shapes = -6

Crossings	u-Polynomials at each crossing
c_1, c_3, c_4 c_5, c_8, c_9	u+1
c_2, c_6, c_7 c_{10}, c_{11}, c_{12}	u

Crossings	Riley Polynomials at each crossing
c_1, c_3, c_4 c_5, c_8, c_9	y-1
c_2, c_6, c_7 c_{10}, c_{11}, c_{12}	y

Solutions to I_1^v	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
v = -1.00000		
a = 0	-1.64493	-6.00000
b = 1.00000		

X. u-Polynomials

Crossings	u-Polynomials at each crossing
c_1, c_3	$u(u-1)^{5}(u+1)^{2}(u^{3}+u-1)(u^{7}+u^{6}+\cdots+4u+1)$ $\cdot (u^{16}+u^{15}+\cdots+13u+1)(u^{28}-4u^{27}+\cdots+82u-11)$
c_2	$u^{5}(u-1)^{2}(u+1)(u^{3}+2u^{2}-u-3)$ $\cdot (u^{7}+8u^{6}+31u^{5}+75u^{4}+122u^{3}+133u^{2}+90u+29)$ $\cdot ((u^{14}-6u^{13}+\cdots-10u+4)^{2})(u^{16}+10u^{15}+\cdots-5u-3)$
c_4,c_9	$u(u+1)^{6}(u^{4}+u^{3}-3u^{2}-u+1)(u^{7}-u^{6}+u^{4}+u^{3}-2u^{2}+1)$ $\cdot (u^{16}-5u^{15}+\cdots-17u+5)(u^{28}-2u^{27}+\cdots-264u+24)$
c_5, c_8	$u(u-1)(u+1)^{2}(u^{3}-2u^{2}+u+1)(u^{4}+u^{3}-3u^{2}-u+1)$ $\cdot (u^{7}-2u^{5}-u^{4}+u^{3}-u-1)(u^{16}+2u^{15}+\cdots-2u-1)$ $\cdot (u^{28}-u^{27}+\cdots-11u-1)$
c_6, c_7	$u(u-1)(u+1)^{2}(u^{2}+u-1)^{2}(u^{3}-2u^{2}-u+3)$ $\cdot (u^{7}-2u^{6}+\cdots-5u^{2}-1)(u^{14}+u^{13}+\cdots+3u-1)^{2}$ $\cdot (u^{16}-2u^{15}+\cdots+13u+3)$
c_{10}, c_{11}, c_{12}	$ u(u-1)(u+1)^{2}(u^{2}-u-1)^{2}(u^{3}-2u^{2}-u+3) $ $ \cdot (u^{7}+2u^{6}+\cdots+5u^{2}+1)(u^{14}+u^{13}+\cdots+3u-1)^{2} $ $ \cdot (u^{16}-2u^{15}+\cdots+13u+3) $

XI. Riley Polynomials

Crossings	Riley Polynomials at each crossing
c_1, c_3	$y(y-1)^{7}(y^{3} + 2y^{2} + y - 1)$ $\cdot (y^{7} + 7y^{6} + 20y^{5} + 27y^{4} + 19y^{3} + 10y^{2} + 4y - 1)$ $\cdot (y^{16} + 13y^{15} + \dots - 49y + 1)(y^{28} + 24y^{27} + \dots + 3132y + 121)$
c_2	$y^{5}(y-1)^{3}(y^{3}-6y^{2}+13y-9)$ $\cdot (y^{7}-2y^{6}+5y^{5}-9y^{4}+50y^{3}-79y^{2}+386y-841)$ $\cdot ((y^{14}-4y^{13}+\cdots-188y+16)^{2})(y^{16}-4y^{14}+\cdots+113y+9)$
c_4,c_9	$y(y-1)^{6}(y^{4}-7y^{3}+13y^{2}-7y+1)$ $\cdot (y^{7}-y^{6}+4y^{5}-5y^{4}+7y^{3}-6y^{2}+4y-1)$ $\cdot (y^{16}-11y^{15}+\cdots-199y+25)(y^{28}-18y^{27}+\cdots-12000y+576)$
c_5, c_8	$y(y-1)^{3}(y^{3}-2y^{2}+5y-1)(y^{4}-7y^{3}+13y^{2}-7y+1)$ $\cdot (y^{7}-4y^{6}+\cdots+y-1)(y^{16}-10y^{15}+\cdots-18y+1)$ $\cdot (y^{28}+y^{27}+\cdots-47y+1)$
c_6, c_7, c_{10} c_{11}, c_{12}	$y(y-1)^{3}(y^{2}-3y+1)^{2}(y^{3}-6y^{2}+13y-9)$ $\cdot (y^{7}-10y^{6}+39y^{5}-74y^{4}+65y^{3}-13y^{2}-10y-1)$ $\cdot ((y^{14}-15y^{13}+\cdots+3y+1)^{2})(y^{16}-16y^{15}+\cdots-43y+9)$