Documentation - ARCode/

Aakash Gupta

1. AG Scripts

- Contains several scripts I wrote as side projects
- Nothing in here should be of use

2. clips healthy

- Contains the generated clips files for the healthy control
- One file for each healthy control

3. clips patients

- Contains the generated clips files for the C-Brace patients
- One file for each C-Brace patient for each brace

4. code

- Contains all the code and subfolders
- More detailed explanation on page 2

5. features healthy

- Contains the features files for the C-Brace patients
- One file for each C-Brace patient

6. features patient

- Contains the features files for the C-Brace patients
- One file for each C-Brace patient for each brace

7. home data

- Create one folder for each patient and follow the naming format
- Each patient folder contains both CBR and SCO braces
- Each patient folder should have the home data file and wearing data file generated from ActiLife
- README.txt contains the information for how to format the filenames and wearing data file

8. home labeled

- Create one folder for each patient and brace and follow the naming format
- The folder contains all the home labeled clips
- The features .mat file and classifiers .mat file is generated and outputted to the home labeled folder

9. raw

- One folder for each patient and brace
- One folder for each healthy control
- Each folder contains the labeled lab sessions

Documentation - ARCode/code/

- 1. Generate clips and features from the lab session .csv files
 - Use *generateClips.m*
 - o Lab session files should be present in the raw folder under the patient folder
 - o Add "_p" to the end of the folder names in **raw** that you want to generate clips for
 - o Will output the clips .mat file for each patient in the clips healthy or clips patient folder
 - Use dataPreprocessingPAR.m
 - o Add "p" to the end of the folder names in raw that you want to generate features for
 - The code will access the files in the clips folder and generate features in the correct patient or healthy folder
 - o The code will also ask whether this is "healthy" or "patients" being analyzed
 - Use *classifierDataCreate.m*
 - o Asks whether this is "healthy" or "patients" being analyzed
 - o Will consolidate ALL the features files in either features healthy or features patient folders
 - Outputs a .mat file in the **code** folder
 - o Filenames generated are "trainData_healthy.mat" and "trainData_patient.mat" in code folder
- 2. Use classifier for cross-validation (CV) on lab data
 - Subject-wise, session-wise, and artificial models (3 CV models)
 - o Support Vector Machine kSubject SVM.m, kFold SVM Session.m, kFold SVM Artificial.m
 - o Random Forest kSubject RF.m, kFold RF Session.m, kFold RF Artificial.m
 - o Naïve Bayesian kSubject NB.m, kFold NB Session.m, kFold NB Artificial.m
 - o HMM kSubject RF HMM.m, kFold RF HMM Session.m, kFold RF HMM Artificial.m
 - Using the SVM files
 - o SVM requires an optimized sigma value when using the Gaussian (RBF) kernel
 - o An Excel spreadsheet of optimized sigma values is ARCode/SVM RBF Sigma Results.xlsx
 - Calculate optimized sigma values
 - o kSubject SVM SIGMA.m, kFold SVM Session SIGMA.m, kFold SVM Artificial SIGMA.m
 - o Enter desired sigma values in the code in the sigma variable
 - o Codes will plot the accuracy against sigma value on a semilog scale
 - Write down the optimized sigma value corresponding to the highest accuracy

3. Plotting

- plot acc.m
 - o Plot representative accelerations graph for poster
 - o Import lab csv file and label first four columns as t, x, y, and z variables
- plot scatter3D.m
 - Open a features file from either of the features folder
 - o Script will plot the 5 activities in 3D feature space
- 4. Home Data (*HomeData.m*)
 - Uses **home data** folder and opens the one month of home accelerations
 - Gives user the option to remove non-wearing data
 - Generates clips, calculates features, and uses lab sessions to predict labels on home data
 - Creates figures for activities profiles and confidence levels
- 5. Plot True-Positives and False-Positives (*TFPositives.m*)
 - Trains a model on lab data and tests on home labeled data in home labeled folder
 - Plots histograms for true-positives and false-positives for each class