Levo-stability_

Definition; Let { yo, y, y, y, ..., y, and { yo, y, y, ..., y, ..., y be any different sets of starting values for the general linear K-step method;

(1)
$$\sum_{j=0}^{k} \mathcal{L}_{j} \times_{n+j} = h \sum_{j=0}^{k} \beta_{j} f(t_{n+j}, x_{n+j})$$

and yn, yn be computed from (1) using the following two formulas:

$$\sum_{j=0}^{K} dj \, y_{n+j} = h \sum_{j=0}^{K} \beta_j f(t_{n+j}, y_{n+j}) \leftarrow y_m$$

$$\sum_{j=0}^{K} dj \, y_{n+j} = h \sum_{j=0}^{K} \beta_j f(t_{n+j}, y_{n+j}) \leftarrow y_n$$

$$\sum_{j=0}^{K} dj \, y_{n+j} = h \sum_{j=0}^{K} \beta_j f(t_{n+j}, y_{n+j}) \leftarrow y_n$$

for m=01112131 ---

Then, method (1) is zero-stable $= 7 \text{ JK} > 0 \text{ } \forall \text{tn} \in [a_1b] \forall \text{n} > 0$ $|y_m - \hat{y}_m| \leq K \cdot \max_{0 \leq i \leq K-1} |y_i - \hat{y}_i'|$

(that is, small perturbations at Enitial values stay small during the process of computations).

Notation

$$g(x) = \sum_{j=0}^{k} a_j x^j$$
 first characteristic phynomial $g(x) = \sum_{j=0}^{k} a_j x^j$ second characteristic phynomial

Theorem on successive approximations

Suppose 1°
$$K \in \mathbb{N}$$
, $k \ge 1$, $k \in \mathbb{N}$, $k \ge 1$, $k \in \mathbb{N}$, $k \ge 1$ $k \in \mathbb{N}$, $k \ge 1$, are distinct roots of the first characteristic polynomial (that is, $g(2x) = 0$), where $g(x) = d_k x^k + d_{k-1} x^{k-1} + \dots + d_1 x + d_0$, $d_k \ne 0$, $d_0 \ne 0$

3° m_{π} > 1 is the multiplicity of the 1-th not 2π and $m_1 + m_2 + ... + m_d = k$

4° $\{y_m\}_{m=0}^{\infty} \subseteq \mathbb{C}$ is such that, for all $n=0,1,2,\dots$

(2) $d_{k}y_{n+k} + d_{k-1}y_{n+k-1} + ... + d_{i}y_{m+i} + d_{0}y_{m} = 0$.

Then, $y_m = \sum_{n=1}^{l} P_1(n) \chi_n^m$, for n = 0, 1, 2, ...

where $p_{rr}(n)$ are polynomials of degree $m_{r}-1$, respectively, for all $1 \le r \le L$ (if χ_{rr} is a struple noot with multiplicity 1, then $p_{rr}(n) = p_{rr}$ is a constant).