Leetcode Solutions

SVR

August 27, 2025

Contents		21. Merge Two Sorted Lists	45
1. Two Sum	12	25. Reverse Nodes in k-Group	49
2. Add Two Numbers	15	26. Remove Duplicates From Sorted Array	52
3. Longest Substring Without Repeating Characters	18	27. Remove Element	55
4. Median Of Two Sorted Array	21	28. Find the Index of the First Occurrence in a String	58
6. Zigzag Conversion	24	36. Valid Sudoku	61
11. Container with most water	27	42. Trapping Rain Water	65
12. Integer to Roman	29	45. Jump Game II	68
13. Roman To Integer	33	48. Rotate Image	71
14. Longest Common Prefix	36	49. Group Anagrams	74
19. Remove Nth Node From End of List	39	54. Spiral Matrix	78
20. Valid Parentheses	42	55. Jump Game	81

56. Merge Intervals	84	101. Symmetric Tree	124
57. Insert Interval	87	112. Path Sum	127
58. Length of Last Word	90	121. Best Time To Buy And Sell Stock	130
61. Rotate List	93	122. Best Time To Buy And Sell Stock II	132
68. Text Justification	96	125. Valid Palindrome	135
71. Simplify Path	103	128. Longest Consecutive Sequence	138
73. Set Matrix Zeroes	107	134. Gas Station	141
80. Remove Duplicates from Sorted Array II	110	135. Candy	144
86. Partition List	112	151. Reverse Words In A String	147
88. Merge Sorted Array	115	167. Two Sum II - Input Array Is Sorted	150
92. Reverse Linked List II	118	169 Majority Element	153
100. Same Tree	121	189 Rotate Array	155

202. Happy Number	158	394. Decode String	190
205. Isomorphic Strings	161	443. String Compression	194
209. Minimum Size Subarray Sum	165		
219. Contains Duplicate II	168		
226. Invert Binary Tree	171		
228. Summary Ranges	174		
238. Product of Array Except Self	177		
242. Valid Anagram	180		
274. H-Index	182		
283. Move Zeros	184		
345. Reverse Vowels Of A String	186		
392. Is Subsequence	188		

Introduction

Following are my solutions for some leetcode problems. The solutions and code are primarily in C++ owing to the fact that I'm already using Python in my research, and C++ for the engineering part. However, C++ is something I'm trying to go deeper owing to the fact that I'm improving my ability to build low latency systems, which primarily use C/C++.

Template Script

Description

The following script is forked each time I want to locally work on a leetcode problem. The subsequent solutions in the later sections also have the functions present in this particular script in their scope. So this script also serves to provide an idea as to the functions, and what not, that are available. Note that the standard practice is to have these functions written in another file and have it included in the main script. However, I often tinker with these functions based on the problem at hand. Thus, the not-so-standard approach.

Template.cpp

```
// including header-files
  #include <algorithm>
  #include <bitset>
   #include <climits>
   #include <cstddef>
   #include <iostream>
   #include <limits>
  #include <map>
  #include <new>
  #include <stdlib.h>
  #include <unordered_map>
  #include <vector>
  #include <set>
   #include <numeric>
  #include <functional>
16
   // hash-deinfes
  #define PRINTSPACE std::cout << "\n\n\n\n" << std::endl;</pre>
```

```
21
    // borrowing from namespace std
    using std::cout;
    using std::endl;
    using std::vector;
    using std::string;
    using std::unordered_map;
    using std::map;
    using std::format;
    using std::deque;
    using std::pair;
    using std::min;
    using std::max;
34
    // vector printing function
    template<typename T>
    void fPrintVector(vector<T> input){
       for(auto x: input) cout << x << ",";</pre>
        cout << endl;</pre>
39
40
41
    template<typename T>
    void fpv(vector<T> input){
       for(auto x: input) cout << x << ",";</pre>
44
        cout << endl;</pre>
46
47
    template<typename T>
    void fPrintMatrix(vector<T> input){
49
       for(auto x: input){
50
           for(auto y: x){
51
                cout << y << ",";
52
53
           cout << endl;</pre>
```

```
56
57
   template<typename T, typename T1>
58
   void fPrintHashmap(unordered_map<T, T1> input){
59
       for(auto x: input){
           cout << format("[{},{}] | ", x.first, x.second);</pre>
61
62
       cout <<endl;
64
65
   struct TreeNode {
       int val:
67
       TreeNode *left:
       TreeNode *right;
       TreeNode() : val(0), left(nullptr), right(nullptr) {}
70
       TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
71
       TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
72
   };
74
75
   struct ListNode {
       int val:
77
       ListNode *next:
78
       ListNode() : val(0), next(nullptr) {}
79
       ListNode(int x) : val(x), next(nullptr) {}
       ListNode(int x, ListNode *next) : val(x), next(next) {}
81
   };
82
83
   void fPrintBinaryTree(TreeNode* root){
84
       // sending it back
85
       if (root == nullptr) return;
87
       // printing
88
       PRINTLINE
       cout << "root->val = " << root->val << endl;</pre>
```

```
91
        // calling the children
92
        fPrintBinaryTree(root->left);
93
        fPrintBinaryTree(root->right);
94
95
        // returning
96
97
        return;
98
99
100
    void fPrintLinkedList(string prefix,
101
                         ListNode* root){
        if (root == nullptr) return:
        cout << prefix;</pre>
        std::function<void(ListNode*)> runlinkedlist = [&runlinkedlist](ListNode* root){
105
            if (root == nullptr) return;
106
            cout << root->val << " -> ":
107
            runlinkedlist(root->next);
108
109
        runlinkedlist(root):
110
        cout << "|" << endl;
        return;
    }
    template<typename T>
115
    void fPrintContainer(T input){
116
        for(auto x: input) cout << x << ", ";</pre>
        cout << endl;</pre>
118
        return;
119
120
    struct Timer
        std::chrono::time_point<std::chrono::high_resolution_clock> startpoint;
124
        std::chrono::time_point<std::chrono::high_resolution_clock> endpoint;
```

```
std::chrono::duration<long long, std::nano>
                                                       duration:
   // constructor
   Timer()
                 {startpoint = std::chrono::high_resolution_clock::now();}
   void start() {startpoint = std::chrono::high_resolution_clock::now();}
   void stop()
                 {endpoint = std::chrono::high_resolution_clock::now(); fetchtime();}
   void fetchtime(){
       duration = std::chrono::duration_cast<std::chrono::nanoseconds>(endpoint - startpoint);
       cout << format("{} nanoseconds \n", duration.count());</pre>
   void fetchtime(string stringarg){
       duration = std::chrono::duration cast<std::chrono::nanoseconds>(endpoint - startpoint):
       cout << format("{} took {} nanoseconds \n", stringarg, duration.count());</pre>
   void measure(){
       auto temp = std::chrono::high resolution clock::now():
      auto nsduration = std::chrono::duration_cast<std::chrono::nanoseconds>(temp - startpoint);
       auto msduration = std::chrono::duration_cast<std::chrono::microseconds>(temp - startpoint);
       auto sduration = std::chrono::duration cast<std::chrono::seconds>(temp - startpoint):
      cout << format("{} nanoseconds | {} microseconds | {} seconds \n",</pre>
          nsduration.count(), msduration.count(), sduration.count());
   ~Timer(){
      measure();
};
int main(){
   // starting timer
   Timer timer;
   // input- configuration
```

126

128

129

134

136

138

139

141

142

143

144

145

146

147 148

149

150

152

154

156

158

160

1. Two Sum

Given an array of integers nums and an integer target, return indices of the two numbers such that they add up to target. You may assume that each input would have exactly one solution, and you may not use the same element twice. You can return the answer in any order.

Examples

1. Example 1:

- Input: nums = [2,7,11,15], target = 9
- Output: [0,1]
- Explanation: Because nums[0] + nums[1] == 9, we return [0, 1].

2. Example 2:

- Input: nums = [3,2,4], target = 6
- Output: [1,2]

3. Example 3:

- Input: nums = [3,3], target = 6
- Output: [0,1]

Constraints:

• $2 \le nums.length \le 10^4$

- $-10^9 \le \text{nums[i]} \le 10^9$
- $-10^9 \le \text{target} \le 10^9$
- Only one valid answer exists.

```
int main(){
       // input- configuration
       vector<int> nums {2, 7, 11, 15};
                  target {9};
       int
       // setup
       int
                             complement
                                            {0};
       unordered_map<int, int> number_to_index;
       vector<int>
                             finaloutput;
       // filling the unordered_map
12
       for(int i = 0: i < nums.size(): ++i){</pre>
14
           // calculating complement
           complement = target - nums[i];
16
           // checking if complement is present in registry
18
           if(number_to_index.find(complement) != number_to_index.end()) [[unlikely]]
19
20
              finaloutput.push_back(number_to_index[complement]); // adding first index
21
              finaloutput.push_back(i);
                                                               // adding second index
              break;
                                                               // breaking out
2.4
           else [[likely]]
25
```

```
{
26
               // check if current element is present
               if (number_to_index.find(nums[i]) == number_to_index.end()) [[likely]]
2.8
2.9
                   // adding the [number, index] pair to the hashmap
                   number_to_index[nums[i]] = i;
31
32
               else [[unlikely]]
                   // we'll do nothing since the number and its index is already present
35
                   continue;
37
38
39
40
       // printing the final output
41
       for(const auto& x : finaloutput) {cout << x << ", ";} cout << endl;</pre>
42
43
       // return
       return(0);
45
```

47

2. Add Two Numbers

You are given two non-empty linked lists representing two non-negative integers. The digits are stored in reverse order, and each of their nodes contains a single digit. Add the two numbers and return the sum as a linked list. You may assume the two numbers do not contain any leading zero, except the number 0 itself.

Examples

1. Example 1:

- Input: 11 = [2,4,3], 12 = [5,6,4]
- Output: [7,0,8]
- Explanation: 342 + 465 = 807.

2. Example 2:

- Input: 11 = [0], 12 = [0]
- Output: [0]

3. **Example 3:**

- Input: 11 = [9,9,9,9,9,9], 12 = [9,9,9,9]
- Output: [8,9,9,9,0,0,0,1]

Constraints:

• The number of nodes in each linked list is in the range [1, 100].

- 0 < Node.val < 9
- It is guaranteed that the list represents a number that does not have leading zeros.

```
int main(){
       // input- configuration
       ListNode* 11 = new ListNode(2);
      11->next = new ListNode(4);
      11->next->next = new ListNode(3):
       ListNode* 12 = new ListNode(5):
      12->next = new ListNode(6):
      12->next->next = new ListNode(4):
10
       // setup
12
       ListNode* traveller 1 = 11:
13
       ListNode* traveller 2 = 12:
14
       ListNode* finalOutput = new ListNode(-1);
15
       ListNode* traveller_fo = finalOutput;
16
17
                             {0};
       int sum
18
                             {0};
       int carry
19
       int value_1
                             {0};
2.0
       int value_2
                             {0};
21
       // moving through the two nodes
       while(traveller_1 != nullptr || traveller_2 != nullptr){
24
25
          // adding the two numbers
2.6
          value_1 = traveller_1 == nullptr ? 0 : traveller_1->val;
27
```

```
value_2 = traveller_2 == nullptr ? 0 : traveller_2->val;
2.8
           // calculating sum
30
                  = value_1 + value_2 + carry;
           sum
31
           if (sum >= 10) [[unlikely]] {sum -= 10; carry = 1;}
                                        \{carrv = 0:\}
                         [[likelv]]
           else
33
34
           // creating node
           traveller_fo->next = new ListNode(sum);
36
           traveller fo
                              = traveller_fo->next;
37
           // updating the two pointers
           if(traveller_1 != nullptr) [[likely]] {traveller_1 = traveller_1->next;}
40
           if(traveller_2 != nullptr) [[likely]] {traveller_2 = traveller_2->next;}
41
42
43
       // creating a final node if carry is non-zero
44
       if (carry == 1) [[unlikely]] {
45
           traveller_fo->next = new ListNode(carry);
46
47
48
       // printing the final output
49
       traveller_fo = finalOutput->next;
50
       cout << format("final-output = ");</pre>
51
       while(traveller_fo != nullptr){
52
           cout << traveller_fo->val << ", ";</pre>
           traveller_fo = traveller_fo->next;
54
55
       cout << "\n";
56
57
       // return
58
       return(0);
59
60
61
```

3. Longest Substring Without Repeating Characters

Given a string s, find the length of the longest substring without duplicate characters.

1. Example 1:

- Input: s = "abcabcbb"
- Output: 3
- Explanation: The answer is "abc", with the length of 3.

2. Example 2:

- Input: s = "bbbbb"
- Output: 1
- Explanation: The answer is "b", with the length of 1.

3. Example 3:

- Input: s = "pwwkew"
- Output: 3
- Explanation: The answer is "wke", with the length of 3. Notice that the answer must be a substring, "pwke" is a subsequence and not a substring.

```
int main(){
   // input- configuration
   string s {"tmmzuxt"};
   // setup
   unordered_map<char, int> histogram;
   int p1 {0};
   char curr:
   int finaloutput {-1};
   int temp_length {-1};
   // going through the thing
   for(int p2 = 0; p2<s.size(); ++p2){</pre>
       // moving to another variable
       curr = s[p2];
       // checking if current character is in histogram
       if (histogram.find(curr) == histogram.end()) [[unlikely]]
          histogram[curr] = 1;
       else [[likely]]
           // checking if count is zero
           if (histogram[curr] == 0)
              histogram[curr] = 1;
           }
           else
              // moving p1 until it arrives at first instance of curr
              while(s[p1] != curr)
```

10

14

16

18

19

21

22 23

25

26

28

29

30

31 32

33

34

```
35
                       --histogram[s[p1]];
                       ++p1;
37
38
                   ++p1;
                   histogram[curr] = 1;
41
           }
43
           // calculating longest length
44
           finaloutput = finaloutput > (p2-p1+1) ? finaloutput : (p2-p1+1);
45
46
47
       // printing
48
       cout << format("longest length = {} \n", finaloutput);</pre>
49
50
       // return
51
       return(0);
52
53
```

4. Median Of Two Sorted Array

Given two sorted arrays nums1 and nums2 of size m and n respectively, return the median of the two sorted arrays. The overall run time complexity should be $O(\log (m+n))$.

Examples

1. Example 1:

- Input: nums1 = [1,3], nums2 = [2]
- Output: 2.00000
- Explanation: merged array = [1,2,3] and median is 2.

2. Example 2:

- Input: nums1 = [1,2], nums2 = [3,4]
- Output: 2.50000
- Explanation: merged array = [1,2,3,4] and median is (2 + 3) / 2 = 2.5.

Constraints:

- 1. nums1.length == m
- 2. nums2.length == n
- 3. $0 \le m \le 1000$

```
4. 0 \le n \le 1000
```

```
5. 1 \le m + n \le 2000
```

```
6. -10^6 \le \text{nums1[i]}, \text{nums2[i]} \le 10^6
```

```
int main(){
       // input- configuration
       vector<int> nums1 {1, 2};
       vector<int> nums2 {3, 4};
       // setup
       vector < int> & first = nums1[0] <= nums2[0] ? nums1 : nums2:
       vector<int>& second = nums1[0] > nums2[0] ? nums1 : nums2:
       int left first {0}:
       int right_first {static_cast<int>(first.size())-1};
       int left second {0}:
       int right second {static cast<int>(second.size())-1}:
14
       int left_value = first[left_first] < second[left_second] ? first[left_first] : second[left_second];</pre>
       int right_value = first[right_first] > second[right_second] ? first[right_first] : second[right_second];
       int numiterations {static cast<int>((nums1.size() + nums2.size())/2)};
18
19
       // running for a certain number of iterations
20
       for(int i = 0: i<numiterations+1: ++i){</pre>
21
           // updating left
           if (first[left_first] < second[left_second]) {left_value = first[left_first]; ++left_first;}</pre>
2.4
           else
                                                        {left_value = second[left_second]; ++left_second;}
2.5
```

```
if (first[right_first] > second[right_second]) {right_value = first[right_first]; --right_first;}
2.6
           else
                                                        {right_value = second[right_second]; --right_second;}
2.7
2.8
           // printing
2.9
           cout << format("left-value = {}, right-value = {}\n", left_value, right_value);</pre>
30
31
32
       cout << format("median = {}\n", static_cast<double>(left_value + right_value)/2.0);
33
34
35
       // return
37
       return(0);
38
39
40
```

6. Zigzag Conversion

The string "PAYPALISHIRING" is written in a zigzag pattern on a given number of rows like this: (you may want to display this pattern in a fixed font for better legibility)

	P	-	Α	-	Н	-	N
ſ	Α	P	L	S	I	I	G
	Y	-	I	-	R	-	-

And then read line by line: "PAHNAPLSIIGYIR"

Examples

1. Example 1:

• Input: s = "PAYPALISHIRING", numRows = 3

• Output: "PAHNAPLSIIGYIR"

2. Example 2:

• Input: s = "PAYPALISHIRING", numRows = 4

• Output: "PINALSIGYAHRPI"

3. Example 3:

• Input: s = ``A'', numRows = 1

• Output: "A"

Constraints:

- 1. $1 \le \text{s.length} \le 1000$
- 2. s consists of English letters (lower-case and upper-case), ',' and '.'.
- 3. $1 \le numRows \le 1000$

```
int main(){
       // input- configuration
       string s {"PAYPALISHIRING"};
       int numRows {4}:
       // trivial case
       if (numRows == 1) {cout << format("finaloutput = {}\n", s); return 0;}</pre>
       // setup
10
       int modlength {2*numRows-2};
       int numblocks {(static_cast<int>(s.size())+ modlength-1)/modlength};
       int sourceindex {-1};
       string finaloutput;
       // going through the thing
16
       for(int row = 0; row < numRows; ++row){</pre>
           for(int i = 0; i<numblocks; ++i){</pre>
18
19
               // first column of each block
               sourceindex = row + modlength * i;
2.1
               if (sourceindex<s.size())</pre>
                                                 {finaloutput += s[sourceindex];}
22
23
```

```
// continuing in case of boundary rows
2.4
               if (row == 0 || row == numRows-1) {continue;}
25
26
               // taking care of the case where non-boundary rows
2.7
               sourceindex = modlength - row + modlength*i;
               if (sourceindex < s.size()) {finaloutput += s[sourceindex];}</pre>
30
       }
31
32
       // printing the final output
33
       cout << format("final-output = {}\n", finaloutput);</pre>
34
35
36
       // return
37
       return(0);
38
39
40
```

11. Container with most water

You are given an integer array height of length n. There are n vertical lines drawn such that the two endpoints of the ith line are (i, 0) and (i, height[i]). Find two lines that together with the x-axis form a container, such that the container contains the most water. Return the maximum amount of water a container can store. Notice that you may not slant the container.

Examples

1. Example 1:

- Input: height = [1,8,6,2,5,4,8,3,7]
- Output: 49
- Explanation: The above vertical lines are represented by array [1,8,6,2,5,4,8,3,7]. In this case, the max area of water (blue section) the container can contain is 49.

2. **Example 2:**

- Input: height = [1,1]
- Output: 1

Constraints

- n == height.length
- $2 \le n \le 10^5$
- $0 \le height[i] \le 10^4$

```
int main(){
       // input- configuration
       vector<int> height {1,8,6,2,5,4,8,3,7};
       // setup
                     {0};
       int left
       int right
                    {static_cast<int>(height.size())-1};
       int maxvolume {-1};
       int currvolume {-1};
10
11
       // two-pointer approach
12
       while(left < right){</pre>
13
14
           // calculating volumes
           currvolume = (right - left) * std::min(height[left], height[right]);
16
           maxvolume = maxvolume > currvolume ? maxvolume : currvolume:
18
           // adjusting left and right based on volume
19
           if (height[left] < height[right]) {++left;}</pre>
20
                                             {--right;}
           else
21
2.2
       // printing
24
       cout << format("maxvolume = {}\n", maxvolume);</pre>
2.6
       // return
2.7
       return(0);
2.9
30
```

12. Integer to Roman

Roman numerals are formed by appending the conversions of decimal place values from highest to lowest. Converting a decimal place value into a Roman numeral has the following rules:

- If the value does not start with 4 or 9, select the symbol of the maximal value that can be subtracted from the input, append that symbol to the result, subtract its value, and convert the remainder to a Roman numeral.
- If the value starts with 4 or 9 use the subtractive form representing one symbol subtracted from the following symbol, for example, 4 is 1 (I) less than 5 (V): IV and 9 is 1 (I) less than 10 (X): IX. Only the following subtractive forms are used: 4 (IV), 9 (IX), 40 (XL), 90 (XC), 400 (CD) and 900 (CM).
- Only powers of 10 (I, X, C, M) can be appended consecutively at most 3 times to represent multiples of 10. You cannot append 5 (V), 50 (L), or 500 (D) multiple times. If you need to append a symbol 4 times use the subtractive form.

Given an integer, convert it to a Roman numeral.

Examples

1. Example 1

- Input: num = 3749
- Output: "MMMDCCXLIX"
- Explanation:
 - 3000 = MMM as 1000 (M) + 1000 (M) + 1000 (M)
 - 700 = DCC as 500 (D) + 100 (C) + 100 (C)
 - 40 = XL as 10 (X) less of 50 (L)
 - 9 = IX as 1 (I) less of 10 (X)

• Note: 49 is not 1 (I) less of 50 (L) because the conversion is based on decimal places

2. **Example 2:**

- Input: num = 58
- Output: "LVIII"
- Explanation:
 - 50 = L
 - 8 = VIII

3. Example 3:

- Input: num = 1994
- Output: "MCMXCIV"
- Explanation:
 - 1000 = M
 - 900 = CM
 - 90 = XC
 - 4 = IV

Constraints

• $1 \le \text{num} \le 3999$

```
int main(){
       // input- configuration
       int num
                  {1994}:
       // setup
       vector<pair<int, string>> numToString {
           {1, "I"},
           {4, "IV"},
           {5, "V"},
10
           {9, "IX"},
           \{10, "X"\},
           {40, "XL"},
           {50, "L"},
14
           {90, "XC"},
           {100, "C"},
16
           {400, "CD"},
           {500, "D"},
18
           {900, "CM"},
19
           {1000, "M"}
2.0
       };
                                                                               // number-string pairs
21
                                                                               // variable to hold the final output
       string finaloutput;
22
                                                                                // variable that will hold the counts
       int
               count:
23
       auto mulstring = [](const int& count,
24
                          const string& inputstring,
25
                          string& finaloutput){
26
           if (count == 0) {return;}
27
           for(int i = 0; i < count; ++i) {finaloutput += inputstring;}</pre>
28
       };
                                                                                // lambda-function for int * string
29
            multiplications (python style)
30
       // going through the hashmap from the end
31
       for(int i = numToString.size()-1; i>=0; --i){
32
```

33

```
// calculating count
34
           count = num / numToString[i].first;
35
                  = num - numToString[i].first*count;
           num
36
37
           // adding to final output
           mulstring(count, numToString[i].second, finaloutput);
39
40
41
       // printing the final-output
42
       cout << format("finaloutput = {}\n", finaloutput);</pre>
43
       // return
45
       return(0);
47
   }
48
```

13. Roman To Integer

Roman numerals are represented by seven different symbols: I(1), V(5), X(10), L(50), C(100), D(500) and M(1000). For example, 2 is written as II in Roman numeral, just two ones added together. 12 is written as XII, which is simply X + II. The number 27 is written as XXVII, which is XX + V + II. Roman numerals are usually written largest to smallest from left to right. However, the numeral for four is not IIII. Instead, the number four is written as IV. Because the one is before the five we subtract it making four. The same principle applies to the number nine, which is written as IX. There are six instances where subtraction is used:

- 1. I can be placed before V (5) and X (10) to make 4 and 9.
- 2. X can be placed before L (50) and C (100) to make 40 and 90.
- 3. C can be placed before D (500) and M (1000) to make 400 and 900.

Given a roman numeral, convert it to an integer.

Examples

1. Example 1

- Input: s = "III"
- Output: 3
- Explanation: III = 3.

2. Example 2

- Input: s = "LVIII"
- Output: 58

• Explanation: L = 50, V = 5, III = 3.

3. Example 3

• Input: s = "MCMXCIV"

• Output: 1994

• Explanation: M = 1000, CM = 900, XC = 90 and IV = 4.

Constraints

- 1. $1 \le s.length \le 15$
- 2. s contains only the characters ('I', 'V', 'X', 'L', 'C', 'D', 'M').
- 3. It is guaranteed that s is a valid roman numeral in the range [1, 3999].

```
int main(){

// input- configuration
string s {"MCMXCIV"};

// setup
int finaloutput {0};
unordered_map<char, int> charToInt {{'I', 1},
}

{'V', 5},

{'X', 10},

{'L', 50},

{'C', 100},
```

```
{'D', 500},
13
                                              {'M', 1000}};
14
15
       // going through the string
16
       for(int i = 0; i<s.size(); ++i){</pre>
17
           if ((i+1)<s.size() && charToInt[s[i]] < charToInt[s[i+1]]) {finaloutput -= charToInt[s[i]];}</pre>
18
                                                                      {finaloutput += charToInt[s[i]];}
           else
19
       }
2.0
2.1
       // printing the final output
2.2.
        cout << format("finaloutput = {}\n", finaloutput);</pre>
23
24
       // return
25
       return(0);
26
27
28
```

14. Longest Common Prefix

Write a function to find the longest common prefix string amongst an array of strings. If there is no common prefix, return an empty string "".

Examples

1. Example 1:

- Input: strs = ["flower","flow","flight"]
- Output: "fl"

2. **Example 2:**

- Input: strs = ["dog", "racecar", "car"]
- Output: ""
- Explanation: There is no common prefix among the input strings.

Constraints:

- $1 \le strs.length \le 200$
- $0 \le strs[i].length \le 200$
- strs[i] consists of only lowercase English letters if it is non-empty.

```
int main(){
       // input- configuration
       vector<string> strs {
           "flower",
           "flow",
           "flight"
       };
       // setup
10
       int p
                          {0}:
                                                                               // index-pointer for boundary
       int runcondition {true};
                                                                               // breaking condition
12
       string prefix;
14
       // going through the vector
       while(runcondition){
16
           // breaking if it doesn't meet first words length
18
           if (p >= strs[0].size())
                                             {++p; runcondition = false; break;}
19
20
           // checking if this candidate
21
           for(int i = 1; i < strs.size(); ++i){</pre>
23
              // checking if valid
24
              if (p >= strs[i].size())
                                           {runcondition = false; break;}
2.5
2.6
              // checking if same
27
               if (strs[i][p] != strs[0][p]) {runcondition = false; break;}
           }
2.9
30
           // updating p
31
           ++p;
32
33
```

19. Remove Nth Node From End of List

Given the head of a linked list, remove the nth node from the end of the list and return its head.

Examples

1. Example 1:

- Input: head = [1,2,3,4,5], n = 2
- Output: [1,2,3,5]

2. Example 2:

- Input: head = [1], n = 1
- Output: []

3. Example 3:

- Input: head = [1,2], n = 1
- Output: [1]

Constraints

- The number of nodes in the list is sz.
- $1 \le sz \le 30$
- $0 \le Node.val \le 100$
- $1 \le n \le sz$

33

```
int main(){
       // starting timer
       Timer timer;
       // input- configuration
       ListNode* head
                                    = new ListNode(1);
                                  = new ListNode(2);
       head->next
       head->next->next = new ListNode(3):
       head->next->next->next = new ListNode(4):
10
       head->next->next->next->next = new ListNode(5):
       auto n {2};
       // trivial case
14
       if (!head) {cout << format("final-output = "); fPrintLinkedList(head); cout << endl;}</pre>
16
       // setup
       auto nodecounter {0}:
18
       auto prehead
                       {new ListNode};
19
20
       prehead->next
                                = head:
21
       ListNode* traveller
                                = head:
2.2
       ListNode* delayedTraveller = prehead;
24
       // going through the list
2.5
       while(traveller){
2.6
          if (++nodecounter > n) {delayedTraveller = delayedTraveller->next;}
          traveller = traveller->next;
2.9
30
       // reconnecting
31
       delayedTraveller->next = delayedTraveller->next->next;
32
```

```
// sending back
34
          cout << format("final-output = ");
fPrintLinkedList(prehead->next); cout << endl;</pre>
35
36
37
38
39
40
41
          // return
42
          return(0);
43
    }
45
```

20. Valid Parentheses

Given a string s containing just the characters '(', ')', ", ", '[' and ']', determine if the input string is valid.

An input string is valid if:

- 1. Open brackets must be closed by the same type of brackets.
- 2. Open brackets must be closed in the correct order.
- 3. Every close bracket has a corresponding open bracket of the same type.

Examples

- 1. Example 1:
 - Input: s = "()"
 - Output: true
- 2. Example 2:
 - Input: s = "()[]"
 - Output: true
- 3. Example 3:
 - Input: s = "(]"
 - Output: false

Constraints

- $1 \le \text{s.length} \le 10^4$
- s consists of parentheses only '()[]'.

```
int main(){
       // starting timer
       Timer timer:
       // input- configuration
       string s {"()[]{}"};
       // seutp
       deque<char> var00;
10
11
       // going through the string
       for(auto x: s){
          // pushing or poppping
          if (x == '(' || x == '[' || x == '{'}) {var00.push_back(x);}
          else{
16
              if (var00.size()==0)
                                      {cout << format("final-output = false\n"); return 0;}</pre>
              if (x == ')' && var00.back() == '(') {var00.pop_back(); continue;}
              if (x == ']' && var00.back() == '[') {var00.pop_back(); continue;}
19
              if (x == '}' && var00.back() == '{') {var00.pop_back(); continue;}
              cout << format("final-output = false\n"); return 0;</pre>
21
          }
       }
24
       // checking if anything is left
25
```

21. Merge Two Sorted Lists

You are given the heads of two sorted linked lists list1 and list2.

Merge the two lists into one sorted list. The list should be made by splicing together the nodes of the first two lists.

Return the head of the merged linked list.

Examples

1. Example 1:

- Input: list1 = [1,2,4], list2 = [1,3,4]
- Output: [1,1,2,3,4,4]

2. **Example 2:**

- Input: list1 = [], list2 = []
- Output: []

3. Example 3:

- Input: list1 = [], list2 = [0]
- Output: [0]

Constraints

• The number of nodes in both lists is in the range [0, 50].

- $-100 \le Node.val \le 100$
- Both list1 and list2 are sorted in non-decreasing order.

```
int main(){
      // starting timer
      Timer timer;
      // input- configuration
      ListNode* list1 = new ListNode(1);
      list1->next = new ListNode(2):
      list1->next->next = new ListNode(4):
10
      ListNode* list2 = new ListNode(1):
      list2->next
                      = new ListNode(3):
12
      list2->next->next = new ListNode(4);
14
      // setup
15
      ListNode* finalOutput = new ListNode;
16
      ListNode* traveller final = finalOutput:
      ListNode* traveller_1 = list1;
18
      ListNode* traveller_2 = list2;
19
2.0
      // going through the two lists
21
      while (traveller_1 != nullptr && traveller_2 != nullptr) {
         // comparing values
24
         if (traveller_1->val < traveller_2->val) {
25
            2.6
            traveller_final = traveller_final->next; // moving node to new link
27
```

```
if (traveller_1->next != nullptr)
          traveller 1
                               = traveller 1->next:
                                                      // updating traveller 1
       else{
          traveller_1 = nullptr;
          break;
       }
   }
   else {
       traveller_final->next = traveller_2;
                                                  // linking node to final
      traveller_final
                           = traveller_final->next; // moving node to new link
      if (traveller 2->next != nullptr)
          traveller 2
                               = traveller 2->next:
                                                       // updating travel 2
      else{
          traveller_2 = nullptr;
          break:
// checking if anything is left
while (traveller_1 != nullptr){
   traveller final->next = traveller 1:
   traveller_final = traveller_final->next;
   traveller_1
                    = traveller_1->next;
}
while (traveller_2 != nullptr){
   traveller_final->next = traveller_2;
   traveller_final
                   = traveller_final->next;
                    = traveller_2->next;
   traveller_2
// printing the final-output
```

2.8

2.9

30

31

33

34 35

36

37

39

40

41

42

43

49

50

51

52

54 55

56

57

58

59 60 61

62

```
cout << format("finaloutput = ");
fPrintLinkedList(finalOutput); cout << endl;

// return
return(0);
</pre>
```

25. Reverse Nodes in k-Group

Given the head of a linked list, reverse the nodes of the list k at a time, and return the modified list.

k is a positive integer and is less than or equal to the length of the linked list. If the number of nodes is not a multiple of k then left-out nodes, in the end, should remain as it is.

You may not alter the values in the list's nodes, only nodes themselves may be changed.

Examples

1. Example 1:

• Input: head = [1,2,3,4,5], k = 2

• Output: [2,1,4,3,5]

2. **Example 2:**

• Input: head = [1,2,3,4,5], k = 3

• Output: [3,2,1,4,5]

Constraints

• The number of nodes in the list is n.

• $1 \le k \le n \le 5000$

• $0 \le Node.val \le 1000$

```
int main(){
       // starting timer
       Timer timer;
       // input- configuration
       ListNode* head
                                    = new ListNode(1);
       head->next
                                    = new ListNode(2);
       head->next->next
                                    = new ListNode(3):
                                    = new ListNode(4):
       head->next->next
10
       head->next->next->next->next = new ListNode(5):
                  {2}:
       auto k
       // setup
14
       ListNode* prehead = new ListNode(); prehead->next = head;
       ListNode* traveller = prehead:
16
       vector<ListNode*> memberList(k. nullptr): memberList.reserve(k):
18
       // runnings
19
       while(traveller){
20
           // filling up the memberList
21
          int counter {0}:
           ListNode* tempotraveller = traveller->next;
           while(counter < k && tempotraveller != nullptr){</pre>
24
              memberList[counter] = tempotraveller;
              tempotraveller
                                    = tempotraveller->next;
2.6
              ++counter;
           }
2.9
           // checking breaking condition
30
           if (counter!=k) break;
31
32
           // reconnecting
33
```

```
ListNode* beginningOfNextSegment = memberList[memberList.size()-1]->next;
34
35
           // reconnecting
36
           traveller->next = memberList[memberList.size()-1];
37
           for(int i = memberList.size()-1; i>=1; --i) {memberList[i]->next = memberList[i-1];}
           memberList[0]->next = beginningOfNextSegment;
40
           // updating traveller
           traveller = memberList[0];
42
43
       // returning
45
       cout << format("final-output = ");</pre>
46
       fPrintLinkedList(prehead->next); cout << endl;</pre>
47
48
       // return
49
       return(0);
50
51
52
```

26. Remove Duplicates From Sorted Array

Given an integer array nums sorted in non-decreasing order, remove the duplicates in-place such that each unique element appears only once. The relative order of the elements should be kept the same. Then return the number of unique elements in nums. Consider the number of unique elements of nums to be k, to get accepted, you need to do the following things:

- Change the array nums such that the first k elements of nums contain the unique elements in the order they were present in nums initially. The remaining elements of nums are not important as well as the size of nums.
- · Return k.

Examples

1. Example 1:

- Input: nums = [1,1,2]
- Output: 2, nums = [1,2,_]
- Explanation: Your function should return k = 2, with the first two elements of nums being 1 and 2 respectively. It does not matter what you leave beyond the returned k (hence they are underscores).

2. Example 2:

- Input: nums = [0,0,1,1,1,2,2,3,3,4]
- Output: 5, nums = $[0,1,2,3,4,_,_,_,_]$
- Explanation: Your function should return k = 5, with the first five elements of nums being 0, 1, 2, 3, and 4 respectively. It does not matter what you leave beyond the returned k (hence they are underscores).

Constraints:

- $1 \le \text{nums.length} \le 3 * 10^4$
- $-100 \le nums[i] \le 100$
- nums is sorted in non-decreasing order.

```
int main(){
       // input- configuration
       vector<int> nums
                              {1,1};
       // setup
       int p
                  {0}:
       int counter {0};
       // going through the values
10
       for(int i = 1; i < nums.size(); ++i){</pre>
           // check values
           if (nums[i] == nums[p]) {continue;}
           // writing values
16
           ++p;
           nums[p] = nums[i];
           ++counter;
19
2.0
21
       // printing the final output
22
       cout << format("final-output = {}\n", counter+1);</pre>
23
```

27. Remove Element

Given an integer array nums and an integer val, remove all occurrences of val in nums in-place. The order of the elements may be changed. Then return the number of elements in nums which are not equal to val.

Consider the number of elements in nums which are not equal to val be k, to get accepted, you need to do the following things:

Change the array nums such that the first k elements of nums contain the elements which are not equal to val. The remaining elements of nums are not important as well as the size of nums. Return k.

Examples

1. Example 1:

- Input: nums = [3,2,2,3], val = 3
- Output: 2, nums = $[2,2,_,]$
- Explanation: Your function should return k = 2, with the first two elements of nums being 2. It does not matter what you leave beyond the returned k (hence they are underscores).

2. Example 2:

- Input: nums = [0,1,2,2,3,0,4,2], val = 2
- Output: 5, nums = $[0,1,4,0,3,_-,_-]$
- Explanation: Your function should return k = 5, with the first five elements of nums containing 0, 0, 1, 3, and 4. Note that the five elements can be returned in any order. It does not matter what you leave beyond the returned k (hence they are underscores).

Constraints

- $0 \le nums.length \le 100$
- $0 \le nums[i] \le 50$
- $0 \le val \le 100$

```
int main(){
       // input- configuration
       vector<int> nums {0,1,2,2,3,0,4,2};
                         {2};
       int val
       // setup
       int src
                      {0}:
       int dest
                      {0}:
       int numwrites {0};
10
       // going through the indices
12
       while(src < nums.size()){</pre>
           // moving the dest until we find a val-position
15
           while(nums[dest] != val) {++dest;}
16
           // moving source until we find a non-val position after dest
           src = std::max(src, dest+1);
19
           while(nums[src] == val) {++src;};
21
           // writing
22
           if (dest < nums.size() && src < nums.size()){</pre>
23
```

```
nums[dest] = nums[src];
24
               ++dest;
25
               ++src;
26
               ++numwrites;
2.7
2.9
       }
30
31
       // printing the length
32
        cout << format("updated nums = "); fPrintVector(nums);</pre>
33
        cout << format("finaloutput = {} \n", nums.size()-numwrites-1);</pre>
35
       // return
36
       return(0);
37
38
39
```

28. Find the Index of the First Occurrence in a String

Given two strings needle and haystack, return the index of the first occurrence of needle in haystack, or -1 if needle is not part of haystack.

Examples

1. Example 1:

- Input: haystack = "sadbutsad", needle = "sad"
- Output: 0
- Explanation: "sad" occurs at index 0 and 6. The first occurrence is at index 0, so we return 0.

2. Example 2:

- Input: haystack = "leetcode", needle = "leeto"
- Output: -1
- Explanation: "leeto" did not occur in "leetcode", so we return -1.

Constraints

- $1 \le \text{haystack.length}$, needle.length $\le 10^4$
- haystack and needle consist of only lowercase English characters.

```
int main(){
       // input- configuration
       string haystack {"leetcode"};
       string needle {"leeto"};
       // setup
       int finaloutput {-1};
       auto beginsearch = [haystack, needle](int currindex){
10
           // starting search
           if(currindex + needle.size() > haystack.size()) {return false;}
12
           // checking if they're a subset
14
           for(int i = 0; i<needle.size(); ++i){</pre>
               if (havstack[currindex + i] != needle[i]) {return false:}
16
           }
18
           return true;
19
       }:
20
21
       // going through
2.2
       for(int i = 0; i < haystack.size(); ++i){</pre>
24
           // begin search at each index
2.5
           auto curroutput = beginsearch(i);
2.6
27
           // writing final output, if a mach
           if (curroutput) {finaloutput = i; break;}
2.9
30
       }
31
32
       // printing final output
33
```

36. Valid Sudoku

Determine if a 9 x 9 Sudoku board is valid. Only the filled cells need to be validated according to the following rules:

- 1. Each row must contain the digits 1-9 without repetition.
- 2. Each column must contain the digits 1-9 without repetition.
- 3. Each of the nine 3 x 3 sub-boxes of the grid must contain the digits 1-9 without repetition.

Examples

1. Example 1

· Output: true

2. Example 2:

• Input: board =

```
• [["8","3",".",".","7",".",".",".","."]
• ,["6",".",".","1","9","5",".",".",".","."]
• ,["8",".",".",".","6",".",".",".",".","3"]
• ,["4",".",".","8",".","3",".",".","","6"]
• ,["7",".",".",".","2",".","2","8","."]
• ,[".","6",".","4","1","9",".","5"]
• ,[".",".",".",".","8",".","","","9"]]]
```

- Output: false
- Explanation: Same as Example 1, except with the 5 in the top left corner being modified to 8. Since there are two 8's in the top left 3x3 sub-box, it is invalid.

Constraints

- board.length == 9
- board[i].length == 9
- board[i][j] is a digit 1-9 or '.'.

Note:

- A Sudoku board (partially filled) could be valid but is not necessarily solvable.
- Only the filled cells need to be validated according to the mentioned rules.

33

```
// main-file
   int main(){
       // input-configuration
       vector< vector<char> > board:
       board.push_back({'5', '3', '.', '.', '7', '.', '.', '.', '.'});
       board.push_back({'6','.','.','1','9','5','.','.','.'});
       board.push_back({'.','9','8','.','.','.','.','6','.'});
       board.push_back({'8','.','.','.','6','.','.','.','3'});
       board.push_back({'4','.','.','8','.','3','.','.','1'});
10
       board.push_back({'7','.','.','.','2','.','.','.','6'});
11
       board.push_back({'.','6','.','.','.','.','2','8','.'});
12
       board.push back({'.'.'.'.'.'4'.'1'.'9'.'.'.'5'}):
13
       board.push_back({'.',',',',',',','8','.',',','7','9'});
14
15
       // basic method
16
       int xoffset. voffset:
17
       int row local. col local:
18
19
       // lambda for converting char to inger
20
       auto fConvert = [](char x) -> int {
21
           if (x == '.') return -1;
2.2
           else { return static_cast<int>(x - '0');}
       };
24
2.5
       // checking row and column entries
26
       for(int i = 0; i < 9; ++i){</pre>
28
           // register for each jumn
2.9
           vector<int> rowRegister(9, 0);
30
           vector<int> colRegister(9, 0);
31
           vector<int> blockRegister(9,0);
32
```

```
// going through each jumn
34
           for(int j = 0; j < 9; ++j){
35
36
              // along the row
37
              int var00 = fConvert(board[i][j]);
              if (var00 != -1) {if (++rowRegister[var00-1] > 1) return false;}
39
40
              // down the column
                         = fConvert(board[j][i]);
              var00
42
              if (var00 !=-1) {if (++colRegister[var00-1] > 1) return false;}
43
              // checking block
45
              row local = i / 3:
              col_local = j % 3;
47
              xoffset = i / 3:
              yoffset = i % 3;
49
50
              // calculating registers
51
              var00 = fConvert(board[3*xoffset + row_local][col_local+3*yoffset]);
52
              if (var00!=-1)
                               {if (++blockRegister[var00-1]>1) return false;}
53
           }
54
       }
55
56
       // returning true
57
58
       return true;
59
```

42. Trapping Rain Water

Given n non-negative integers representing an elevation map where the width of each bar is 1, compute how much water it can trap after raining.

Examples

1. Example 1

- Input: height = [0,1,0,2,1,0,1,3,2,1,2,1]
- Output: 6
- Explanation: The above elevation map (black section) is represented by array [0,1,0,2,1,0,1,3,2,1,2,1]. In this case, 6 units of rain water (blue section) are being trapped.

2. Example 2

- Input: height = [4,2,0,3,2,5]
- Output: 9

Constraints

- 1. n == height.length
- 2. $1 \le n \le 2 * 10^4$
- 3. $0 \le \text{height[i]} \le 10^5$

```
int main(){
       // input- configuration
       vector<int> height {0,1,0,2,1,0,1,3,2,1,2,1};
       // setup
       vector<int> leftmaxes(height.size(), 0);
                                                                             // vector holding biggest-height to left
       vector<int> rightmaxes(height.size(), 0);
                                                                             // vector holding biggest-height to the right
       int forwardindex {0}:
                                                                             // for maintaining forward-index
                                                                             // for maintaining backward-index
       int backwardindex {0}:
       int maxleft
                         {-1}:
                                                                             // keeping record of biggest left
                         {-1}:
                                                                             // keeping record of biggest right
       int maxright
       int finaloutput {0}:
                                                                             // storing final output
14
       // building left-max
       for(int i = 1: i<height.size(): ++i){</pre>
16
          // calculating indices
18
           forwardindex = i:
                                                                             // forward-index
19
                                                                             // backward-index
           backwardindex = height.size()-1-i:
21
          // calculating maxleft
                      = height[forwardindex-1] > maxleft ?
           maxleft
                       height[forwardindex-1] : maxleft;
                                                                             // running max-left
2.4
          leftmaxes[forwardindex] = maxleft;
                                                                             // storing to vector
2.6
           // calculating max right
           maxright = height[backwardindex+1] > maxright ?
                        height[backwardindex+1] : maxright;
                                                                             // running max-right
2.9
           rightmaxes[backwardindex] = maxright;
                                                                             // storing to vector
30
31
32
       // going through the array to calculate maxvolume held by each column
33
```

```
for(int i = 0; i < height.size(); ++i){</pre>
34
35
           // finding max-height of the current column
36
           auto minheight
                            = std::min({leftmaxes[i], rightmaxes[i]});
                                                                            // finding max-height of borders
37
           auto columnheight = minheight - height[i];
                                                                             // subtracting to find space
           columnheight
                           = columnheight > 0 ? columnheight : 0;
                                                                             // in case curr-height > max-height
           finaloutput
                          += columnheight;
                                                                             // accumlating to water content
40
41
42
       // printing the final output
43
       cout << format("finaloutput = {}\n", finaloutput);</pre>
45
       // return
       return(0):
47
48
49
```

45 Jump Game II

You are given a 0-indexed array of integers nums of length n. You are initially positioned at index 0. Each element nums [i] represents the maximum length of a forward jump from index i. In other words, if you are at index i, you can jump to any index (i + j) where:

- $0 \le j \le nums[i]$
- $i+j \leq n$

Return the minimum number of jumps to reach index n - 1. The test cases are generated such that you can reach index n - 1.

Examples

1. Example 1

- Input: nums = [2,3,1,1,4]
- Output: 2
- Explanation: The minimum number of jumps to reach the last index is 2. Jump 1 step from index 0 to 1, then 3 steps to the last index.

2. Example 2

- Input: nums = [2,3,0,1,4]
- Output: 2

Constraints

- $1 \le \text{nums.length} \le 10^4$
- 0 < nums[i] < 1000
- It's guaranteed that you can reach nums[n 1].

```
int main(){
       // input- configuration
       vector<int> nums {2.3.0.1.4}:
       // setup
       Timer timer:
                                                                            // setting a timer
       vector<int> minjumps(nums.size(),0);
                                                                            // the dp table
       int leftboundary {-1};
                                                                            // variable to hold the left-boundary
       int rightboundary {-1};
                                                                            // variable to hold the right-boundary
10
       // moving from the back
       for(int i = nums.size()-2; i>=0; --i){
          // continuign if nums[i] = 0
          if (nums[i] == 0) {
16
              minjumps[i] = std::numeric_limits<int>::max();
                                                                            // to prevent this from being chosen
              continue;
                                                                            // moving to next index
19
          // range of values it can go from here
2.1
          leftboundary = i+1;
                                                                            // the starting point of range
22
          rightboundary = i+nums[i];
                                                                            // the end point of range
23
```

```
rightboundary = rightboundary < nums.size()-1 ?</pre>
2.4
                            rightboundary : nums.size()-1;
                                                                               // ensuring within vector range
2.5
26
           // calculating smallest element in range
2.7
           auto it = std::min_element(minjumps.begin()+leftboundary,
                                     minjumps.begin()+rightboundary+1);
                                                                                // finding the minimum value in the range
2.9
30
           // addding min-element to the array
31
           if (*it == std::numeric_limits<int>::max())
32
               minjumps[i] = std::numeric_limits<int>::max();
                                                                                // ensuring infty logic
33
           else
               minjumps[i] = (1 + *it);
                                                                                // for regular values
35
36
       }
37
38
       // printing
39
       cout << format("finaloutput = {}\n", minjumps[0]);</pre>
40
       timer.measure():
41
42
       // return
43
       return(0);
44
45
   }
46
```

48. Rotate Image

You are given an n x n 2D matrix representing an image, rotate the image by 90 degrees (clockwise).

You have to rotate the image in-place, which means you have to modify the input 2D matrix directly. DO NOT allocate another 2D matrix and do the rotation.

Examples

1. Example 1

- Input: matrix = [[1,2,3],[4,5,6],[7,8,9]]
- Output: [[7,4,1],[8,5,2],[9,6,3]]

2. Example 2

- Input: matrix = [[5,1,9,11],[2,4,8,10],[13,3,6,7],[15,14,12,16]]
- Output: [[15,13,2,5],[14,3,4,1],[12,6,8,9],[16,7,10,11]]

Constraints

- n == matrix.length == matrix[i].length
- $1 \le n \le 20$
- $-1000 \le matrix[i][j] \le 1000$

```
int main(){
       // starting timer
       Timer timer;
       // input- configuration
       vector<vector<int>> matrix {
           {5,1,9,11},
           {2,4,8,10},
           {13,3,6,7}.
10
           {15,14,12,16}
       };
13
14
       // setup
15
       int t edge = 0:
16
       int b_edge = matrix.size()-1;
17
       int 1_edge = 0;
18
       int r_edge = matrix[0].size() -1;
19
       int temp;
20
21
       // shifting layer by layer.
2.2
       int numlayers = (matrix.size())/2;
23
24
       // shifting layer by layer
2.5
       for(int i = 0; i<numlayers; ++i){</pre>
2.6
27
           // breaking if they're the same for some reason
28
           if(t_edge == b_edge || l_edge == r_edge) break;
2.9
30
           // calculatin width
           int currwidth = r_edge - l_edge + 1;
32
           for(int j = 0; j < currwidth - 1; ++ j) {</pre>
33
```

```
// shifting the four elements for each
                                 = matrix[t_edge][l_edge+j];
       temp
       matrix[t_edge][l_edge+j] = matrix[b_edge-j][l_edge];
       matrix[b_edge-j][l_edge] = matrix[b_edge][r_edge-j];
       matrix[b_edge][r_edge-j] = matrix[t_edge+j][r_edge];
       matrix[t_edge+j][r_edge]
                                   = temp;
   }
   // updating edge-parameters based on the layer we're working with
   t_edge += 1;
   b_edge -= 1;
   l edge += 1:
   r_edge -= 1;
// printing the matrix
cout << "final-matrix = \n":</pre>
for(const auto& x: matrix){
   for(const auto& y: x){
       cout << format("{}, ", y);</pre>
   }
   cout << format("\n"):</pre>
// return
return(0);
```

35

36

37

39

40

42

43

45

51

52

53

54

55

56

57 58 59

60

49. Group Anagrams

Given an array of strings strs, group the anagrams together. You can return the answer in any order.

Examples

1. Example 1:

- Input: strs = ["eat","tea","tan","ate","nat","bat"]
- Output: [["bat"],["nat","tan"],["ate","eat","tea"]]
- Explanation:
 - There is no string in strs that can be rearranged to form "bat".
 - The strings "nat" and "tan" are anagrams as they can be rearranged to form each other.
 - The strings "ate", "eat", and "tea" are anagrams as they can be rearranged to form each other.

2. Example 2:

- Input: strs = [""]
- Output: [[""]]

3. Example 3:

- Input: strs = ["a"]
- Output: [["a"]]

Constraints

- $1 \le \text{strs.length} \le 10^4$
- $0 \le strs[i].length \le 100$
- strs[i] consists of lowercase English letters.

```
// build histogram
   vector<int> fBuildHist(string input){
       vector<int> myhist(26, 0);
       for(auto x: input) {++myhist[static_cast<int>(x - 'a')];}
       return myhist;
   // Custom hash function for vector<int>
   struct VectorHash {
       std::size_t operator()(const std::vector<int>& v) const {
10
           std::size_t hashValue = 0;
          for (int num : v)
              hashValue ^= std::hash<int>{}(num) + 0x9e3779b9 + (hashValue << 6) + (hashValue >> 2);
          return hashValue;
       }
16
   };
   // int main
   int main(){
       // starting timer
21
       Timer timer;
22
23
```

```
// input- configuration
vector<string> strs{
   "eat",
   "tea",
   "tan",
   "ate",
   "nat".
   "bat"
};
// unordered map for hist to vector of vector of strings
unordered_map< vector<int>, vector<string>, VectorHash > histToGroup;
for(auto x: strs){
   // building hist of current word
   auto xhist = fBuildHist(x):
   // checking if it exists
   if (histToGroup.find(xhist) == histToGroup.end())
       histToGroup[xhist] = vector<string>({x});
   else
       histToGroup[xhist].push_back(x);
}
// building final output
vector<vector<string>> finalOutput;
for(auto x: histToGroup) {finalOutput.push_back(x.second);}
// printing
cout << format("final-output = {}\n", finalOutput);</pre>
// return
return(0);
```

2.4

2.5

26

2.7

2.9

30

31

32 33

34

35 36

37 38

39

40 41

42

43

45

46 47 48

49

50

51

52

54

55 56

59 }

54. Spiral Matrix

Given an m x n matrix, return all elements of the matrix in spiral order.

Examples

1. Example 1:

- Input: matrix = [[1,2,3],[4,5,6],[7,8,9]]
- Output: [1,2,3,6,9,8,7,4,5]

2. **Example 2:**

- Input: matrix = [[1,2,3,4],[5,6,7,8],[9,10,11,12]]
- Output: [1,2,3,4,8,12,11,10,9,5,6,7]

Constraints

- m == matrix.length
- n == matrix[i].length
- $1 \le m, n \le 10$
- $-100 \le matrix[i][j] \le 100$

```
int main(){
       // starting timer
       Timer timer;
       // input- configuration
       vector<vector<int>> matrix{
           \{1,2,3,4\},
           {5,6,7,8},
           {9,10,11,12}
10
       }:
12
       // setup
       int
                  left {0}:
14
                  right {static_cast<int>(matrix[0].size()-1)};
       int
       int.
                  top
                          {0}:
16
                  bottom {static_cast<int>(matrix.size()-1)};
       int
17
       vector<int> finalOutput;
18
19
       // moving through this
20
       while(left <= right && top <= bottom){</pre>
21
           // moving on upside
           for(int i = left; i <= right; ++i) {finalOutput.push_back(matrix[top][i]);}</pre>
24
           // moving through the right side
2.6
           for(int i = top+1; i<=bottom-1; ++i) {finalOutput.push_back(matrix[i][right]);}</pre>
           // moving through the bottom
2.9
           for(int i = right; top != bottom && i>= left; --i) {finalOutput.push_back(matrix[bottom][i]);}
30
31
           // moving through the left
32
           for(int i = bottom-1; left!=right && i>= top+1; --i) {finalOutput.push_back(matrix[i][left]);}
33
```

```
34
           // updating boundaries
35
           ++left; --right; ++top; --bottom;
36
37
       }
38
39
       // printing the finaloutput
40
       cout << format("final-output = {}\n", finalOutput);</pre>
41
42
       // return
43
       return(0);
```

55. Jump Game

You are given an integer array nums. You are initially positioned at the array's first index, and each element in the array represents your maximum jump length at that position. Return true if you can reach the last index, or false otherwise.

Examples

1. Example 1

• Input: nums = [2,3,1,1,4]

• Output: true

• Explanation: Jump 1 step from index 0 to 1, then 3 steps to the last index.

2. Example 2

• Input: nums = [3,2,1,0,4]

• Output: false

• Explanation: You will always arrive at index 3 no matter what. Its maximum jump length is 0, which makes it impossible to reach the last index.

Constraints

- $1 \le \text{nums.length} \le 10^4$
- $0 < nums[i] < 10^5$

```
int main(){
       // input- configuration
       vector<int> nums {3,2,1,0,4};
       // setup
       Timer timer;
                                                                               // starting a timer
                                                                               // variable holding max-jump-distance
       int maxjumpdistance {0};
                                                                               // variable holding max-jump-distance from here
       int currjumpdistance {0};
                                                                               // variable holding final verdict
       int finaloutput
                             {0}:
10
11
       // going through the nums
12
       for(int i = 0: i<=maxjumpdistance && i<nums.size(): ++i){</pre>
14
           // calculating max-distance we can go from here
           currjumpdistance = i + nums[i];
16
           // updating max-jumpdistance
18
           maxjumpdistance = currjumpdistance > maxjumpdistance ? \
19
                            currjumpdistance : maxjumpdistance;
20
21
       }
2.2
       // updating the final output
24
       finaloutput = maxjumpdistance >= nums.size()-1 ? true : false;
2.6
       // printing the thing
       cout << format("final-output = {}\n", finaloutput);</pre>
       timer.measure();
2.9
30
31
       // return
32
       return(0);
33
```

35 }

56. Merge Intervals

Given an array of intervals where intervals[i] = [starti, endi], merge all overlapping intervals, and return an array of the non-overlapping intervals that cover all the intervals in the input.

Examples

1. Example 1:

- Input: intervals = [[1,3],[2,6],[8,10],[15,18]]
- Output: [[1,6],[8,10],[15,18]]
- Explanation: Since intervals [1,3] and [2,6] overlap, merge them into [1,6].

2. Example 2:

- Input: intervals = [[1,4],[4,5]]
- Output: [[1,5]]
- Explanation: Intervals [1,4] and [4,5] are considered overlapping.

Constraints

- $1 \le intervals.length \le 104$
- intervals[i].length == 2
- 0 < starti < endi < 104

```
int main(){
       // starting timer
       Timer timer;
       // input- configuration
       vector<vector<int>> intervals{
           \{1,3\},
           {2,6},
           {8,10}.
           {15,18}
       };
       // setup
14
       vector<vector<int>> finalOutput;
16
       // sorting the input
       std::sort(intervals.begin(), intervals.end(),
18
           [](const vector<int>& a, const vector<int>& b){return a[0] < b[0];});
19
20
       // going through the intervals
21
       vector<int> runninginterval {intervals[0][0], intervals[0][1]};
       for(int i = 1; i<intervals.size(); ++i){</pre>
           if (runninginterval[1] < intervals[i][0]){</pre>
24
               finalOutput.push_back(runninginterval);
                                                                               // pushing the results
               runninginterval = intervals[i];
                                                                               // getting new running interfval
2.6
                  {runninginterval[1] = max(runninginterval[1], intervals[i][1]);}
           else
2.9
       finalOutput.push_back(runninginterval);
                                                                               // pushing the results
30
31
       // returning
32
       cout << format("final-output = {}\n", finalOutput);</pre>
33
```

```
34
35  // return
36  return(0);
37 }
```

57. Insert Interval

You are given an array of non-overlapping intervals intervals where intervals[i] = [starti, endi] represent the start and the end of the ith interval and intervals is sorted in ascending order by starti. You are also given an interval newInterval = [start, end] that represents the start and end of another interval.

Insert newInterval into intervals such that intervals is still sorted in ascending order by starti and intervals still does not have any overlapping intervals (merge overlapping intervals if necessary).

Return intervals after the insertion.

Note that you don't need to modify intervals in-place. You can make a new array and return it.

Examples

1. Example 1:

• Input: intervals = [[1,3],[6,9]], newInterval = [2,5]

• Output: [[1,5],[6,9]]

2. Example 2:

• Input: intervals = [[1,2],[3,5],[6,7],[8,10],[12,16]], newInterval = [4,8]

• Output: [[1,2],[3,10],[12,16]]

• Explanation: Because the new interval [4,8] overlaps with [3,5],[6,7],[8,10].

Constraints

• $0 \le \text{intervals.length} \le 10^4$

- intervals[i].length == 2
- $0 \le \text{starti} \le \text{endi} \le 10^5$
- intervals is sorted by starti in ascending order.
- newInterval.length == 2
- $0 \le \text{start} \le \text{end} \le 10^5$

```
int main(){
       // starting timer
       Timer timer;
       // input- configuration
       vector<vector<int>> intervals{
           \{1,2\},
           {3,5},
           {6,7},
           {8,10},
11
           {12,16}
12
       };
13
       vector<int> newInterval{4,8};
14
15
16
       // setup
17
       vector<vector<int>> finalOutput;
18
       intervals.push_back(newInterval);
19
20
       // sorting the interval
21
```

```
std::sort(intervals.begin(),
         intervals.end().
         [](const vector<int>& a,
            const vector<int>& b){return a[0] < b[0];});</pre>
                   runninginterval {intervals[0]};
vector<int>
// going through the inputs
for(int i = 1; i<intervals.size(); ++i){</pre>
   if (runninginterval[1] < intervals[i][0]){</pre>
       finalOutput.push_back(runninginterval);
       runninginterval = intervals[i];
   }
   else{
       runninginterval[1] = max(runninginterval[1], intervals[i][1]);
   }
}
// pushing it back
finalOutput.push_back(runninginterval);
cout << format("final-output = {}\n", finalOutput);</pre>
// return
return(0);
```

2.2

23

2.4

2.5

26 27

2.8

2.9

30

31

33

34

35

36

37 38

30

40

41 42

43

58. Length of Last Word

Given a string s consisting of words and spaces, return the length of the last word in the string. A word is a maximal substring consisting of non-space characters only.

Example

1. Example 1:

- Input: s = "Hello World"
- Output: 5
- Explanation: The last word is "World" with length 5.

2. Example 2:

- Input: s = "fly me to the moon"
- Output: 4
- Explanation: The last word is "moon" with length 4.

3. Example 3:

- Input: s = "luffy is still joyboy"
- Output: 6
- Explanation: The last word is "joyboy" with length 6.

Constraints

- $1 \le \text{s.length} \le 10^4$
- s consists of only English letters and spaces ''.
- There will be at least one word in s.

```
int main(){
       // input- configuration
       string s {" fly me to the moon "};
       // setup
       int p1
                     {-1}:
       int finaloutput {-1};
       string laststring;
10
       // moving from the end
11
       for(int i = s.size()-1; i>=0; --i){
          // continuing until you find a non-space character
14
          if (s[i] == ' ') {continue;}
15
16
          // launch the start of first word
          p1 = i;
18
19
          // moving p1 until we find the first space or nonword thing
2.0
          while(p1>=0 && s[p1]!=' ') {--p1;}
21
22
          // calculating the length
23
```

```
finaloutput = i - p1;
           laststring = string(s.begin() + p1, s.begin() + i+1);
          // breaking
           break;
       // printing
       cout << format("length = {}, last-word = {}\n", finaloutput, laststring);</pre>
       // return
       return(0);
37 }
```

25 26

2.7

2.9 30

31

32 33

34

61. Rotate List

Given the head of a linked list, rotate the list to the right by k places.

Examples

1. Example 1:

- Input: head = [1,2,3,4,5], k = 2
- Output: [4,5,1,2,3]

2. Example 2:

- Input: head = [0,1,2], k = 4
- Output: [2,0,1]

Constraints

- The number of nodes in the list is in the range [0, 500].
- $-100 \le Node.val \le 100$
- $0 \le k \le 2 * 10^9$

```
int main(){
       // starting timer
       Timer timer;
       // input- configuration
       auto head {new ListNode(1)};
       head->next = new ListNode(2);
       head->next->next = new ListNode(3):
       head->next->next->next = new ListNode(4):
10
       head->next->next->next->next = new ListNode(5):
       auto k {2};
       // trivial cases
14
       if (head == nullptr) {fPrintLinkedList("head = ", head); return 0;}
16
       // storing the starting point
17
       auto startingpoint {head};
18
       auto listsize {0}:
19
20
       // connecting the last-node with the first
21
       auto traveller {head};
2.2
       while(traveller->next) {traveller = traveller->next; ++listsize;}
       ++listsize;
24
       traveller->next = head;
2.6
       // to get rid of cycles
       k = k % listsize;
       auto cutoffpoint {listsize - k};
2.9
       auto count
                         {0};
30
       auto finalresult {static_cast<ListNode*>(nullptr)};
31
32
       // finding the cutting off point
33
```

```
traveller = head;
34
       while(traveller){
35
           ++count;
                                                                             // appending count
36
          if (count == cutoffpoint){
37
              finalresult = traveller->next;
                                                                             // setting up the new head
              traveller->next = nullptr;
                                                                             // setting up last pointer
                                                                             // breaking up
              break;
40
           traveller = traveller->next;
                                                                             // moving to the next point
42
43
       // printing the linked list
45
       fPrintLinkedList("final-result = ", finalresult);
46
47
       // return
48
       return(0);
49
50
51
```

68. Text Justification

Given an array of strings words and a width maxWidth, format the text such that each line has exactly maxWidth characters and is fully (left and right) justified.

You should pack your words in a greedy approach; that is, pack as many words as you can in each line. Pad extra spaces '' when necessary so that each line has exactly maxWidth characters.

Extra spaces between words should be distributed as evenly as possible. If the number of spaces on a line does not divide evenly between words, the empty slots on the left will be assigned more spaces than the slots on the right.

For the last line of text, it should be left-justified, and no extra space is inserted between words.

Note:

- 1. A word is defined as a character sequence consisting of non-space characters only.
- 2. Each word's length is guaranteed to be greater than 0 and not exceed maxWidth.
- 3. The input array words contains at least one word.

Examples

1. Example 1:

- Input: words = ["This", "is", "an", "example", "of", "text", "justification."], maxWidth = 16
- Output:
 - [
 - "This is an",
 - "example of text",

"justification. " 1

2. Example 2:

- Input: words = ["What", "must", "be", "acknowledgment", "shall", "be"], maxWidth = 16
- Output:
 - •
 - "What must be",
 - "acknowledgment",
 - "shall be"
 - •
- Explanation: Note that the last line is "shall be" instead of "shall be", because the last line must be left-justified instead of fully-justified. Note that the second line is also left-justified because it contains only one word.

3. Example 3:

- Input: words = ["Science", "is", "what", "we", "understand", "well", "enough", "to", "explain", "to", "a", "computer.", "Art", "is", "everythir maxWidth = 20
- Output:

 - "Science is what we",
 - "understand well",
 - "enough to explain to",
 - "a computer. Art is",
 - "everything else we",
 - "do "
 -]

Constraints

- $1 \le words.length \le 300$
- $1 \le words[i].length \le 20$
- words[i] consists of only English letters and symbols.
- 1 < maxWidth < 100
- words[i].length ≤ maxWidth

```
// function to calculate number of non-space characters
   int fCalcLengthOfTempWithoutSpaces(std::vector<std::string> temp){
       int num_nonspaces = 0;
       for(auto x: temp) num_nonspaces += x.size();
       return num_nonspaces;
   // function to calculate words formed with temp
   int fCalcLengthOfTempWithSpaces(std::vector<std::string> temp){
       int num_nonspaces = 0;
10
       for(auto x: temp) num_nonspaces += 1+ x.size();
       return num_nonspaces-1;
13
14
   // printing temp
   void fPrintTemp(std::vector<std::string> temp){
       // printing temp
17
       std::cout << "temp = ":
       for(auto x: temp) std::cout << x << ",";</pre>
```

```
std::cout << std::endl;
2.1
2.2.
   23
   int main(){
2.5
      // input- configuration
26
      auto words
                    = vector<string>({"This", "is", "an", "example", "of", "text", "justification."});
      auto maxWidth {16}:
2.8
2.9
          // setup
30
      std::vector<std::string> finalOutput;
31
32
      // going through strings
33
      int acc = 0:
34
      int numwords = 0:
35
      int currwidth = 0:
36
      std::vector<std::string> temp;
37
38
      for(int i = 0: i<words.size(): ++i){</pre>
39
40
          // updating temp
41
          temp.push_back(words[i]);  // updating words in temp
42
          // checking if width has been crossed
          if (fCalcLengthOfTempWithSpaces(temp) >= maxWidth || i == words.size()-1){
45
             // condition temp based on length
             if(fCalcLengthOfTempWithSpaces(temp)>maxWidth){
                 temp.pop_back(); // last words gotta go
                 --i:
                                     // making sure its taken care of in next iteration
51
52
             // finding length of characters in temp
             int num_nonspaces = fCalcLengthOfTempWithoutSpaces(temp);
54
```

```
// finding number of spaces to add
int numspacestofill = maxWidth - num_nonspaces;
// calculating numspots
int numspots = temp.size()-1;
// calculating ideal number of spaces
int idealnumspacesperspot;
int remainders;
if (numspots!=0){
    idealnumspacesperspot = numspacestofill/numspots;
   remainders
                         = numspacestofill%numspots;
}
else{
    idealnumspacesperspot = numspacestofill/1;
                         = numspacestofill%1;
   remainders
// constructing candidate string
std::string candidate;
// adding each word in temp to the candidate
for(int j = 0; j < temp.size(); ++j){</pre>
   // fetching word
    auto x = temp[j];
   // adding word to candidate
    candidate += x;
   // adding spaces
    if (j!=temp.size()-1)
       for(int var00 = 0; var00 < idealnumspacesperspot; ++var00)</pre>
           candidate += " ";
```

57 58

60 61

63

69

70

74

75 76

78

80

81 82

83

84

86

87

88

```
// checking if there is any remainder left
           if (remainders > 0){
              candidate += " ":
                                                                     // adding another space
              --remainders;
                                                                     // subtracting
          }
       }
       // checking if there are remaindeers
       while (remainders > 0){
           candidate += " ":
                                                                     // adding another space
          --remainders;
                                                                     // subtracting
       }
       while (candidate.size()!=maxWidth) {candidate += " ";}
                                                                     // adding another space
       // appending candidate to final output
       finalOutput.push_back(candidate);
       // getting rid of everything
       if (i != words.size()-1) {temp.clear();}
// making function left justified
std::string lastline;
for(int i = 0; i<temp.size(); ++i){</pre>
   lastline += temp[i];
   if (i!=temp.size()-1) {lastline += " ";}
// adding spaces until end
while(lastline.size()!=maxWidth) {lastline += " ";}
// replacing last line
```

93

99

100

101

104

106

108

109

116

118 119 120

```
finalOutput[finalOutput.size()-1] = lastline;

// return
  return(0);
}
```

71. Simplify Path

You are given an absolute path for a Unix-style file system, which always begins with a slash '/'. Your task is to transform this absolute path into its simplified canonical path.

The rules of a Unix-style file system are as follows:

- A single period '.' represents the current directory.
- A double period '..' represents the previous/parent directory.
- Multiple consecutive slashes such as '//' and '///' are treated as a single slash '/'.
- Any sequence of periods that does not match the rules above should be treated as a valid directory or file name. For example, '...' and '....' are valid directory or file names.

The simplified canonical path should follow these rules:

- The path must start with a single slash '/'.
- Directories within the path must be separated by exactly one slash '/'.
- The path must not end with a slash '/', unless it is the root directory.
- The path must not have any single or double periods ('.' and '..') used to denote current or parent directories.

Return the simplified canonical path.

Examples

1. Example 1:

- Input: path = "/home/"
- Output: "/home"
- Explanation: The trailing slash should be removed.

2. Example 2:

- Input: path = "/home//foo/"
- Output: "/home/foo"
- Explanation: Multiple consecutive slashes are replaced by a single one.

3. Example 3:

- Input: path = "/home/user/Documents/../Pictures"
- Output: "/home/user/Pictures"
- Explanation: A double period ".." refers to the directory up a level (the parent directory).

Constraints

- $1 \le path.length \le 3000$
- path consists of English letters, digits, period '.', slash '/' or '.'.
- path is a valid absolute Unix path.

```
int main(){
       // starting timer
       Timer timer;
       // input- configuration
       string path {"/home//foo/"};
       // setup
       vector<string> stack;
10
11
       // going through the array
12
       int i = 0 :
       while (i < path.size()){</pre>
14
           // moving until end of string or a /
16
           string temp;
           while(path[i]!='/' && i<path.size()){</pre>
18
              temp += std::string(1,path[i++]);
19
           }
20
21
           // continuing if temp size is zero
           if (temp.size()==0) {++i; continue;}
24
           // evaluating the current string
           if (temp == ".") {++i; continue;}
2.6
           else if (temp == "..") {
              if (stack.size()!=0) {stack.pop_back();}
              ++i:}
2.9
           else {stack.push_back(temp); ++i;}
30
```

```
// reconstructing final path
34
       string finalOutput;
35
36
       // reconstructing
37
       for(auto x: stack) {finalOutput += "/" + x;}
38
39
       // size thing
40
       if (finalOutput.size() == 0) {finalOutput += "/";}
41
42.
       // returning
43
       cout << format("finalOutput = {}\n", finalOutput);</pre>
45
       // return
       return(0);
47
48
49 }
```

73. Set Matrix Zeroes

Given an m x n integer matrix matrix, if an element is 0, set its entire row and column to 0's. You must do it in place.

Examples

1. Example 1

- Input: matrix = [[1,1,1],[1,0,1],[1,1,1]]
- Output: [[1,0,1],[0,0,0],[1,0,1]]

2. Example 2

- Input: matrix = [[0,1,2,0],[3,4,5,2],[1,3,1,5]]
- Output: [[0,0,0,0],[0,4,5,0],[0,3,1,0]]

Constraints

- m == matrix.length
- n == matrix[0].length
- $1 \le m, n \le 200$
- $-231 \le matrix[i][j] \le 231 1$

```
int main(){
       // starting timer
       Timer timer;
       // input- configuration
       vector<vector<int>> matrix{
           \{0,1,2,0\},\
           {3,4,5,2},
           {1,3,1,5}
10
       }:
       // setup
13
       vector<bool> colregister(matrix[0].size(), false); colregister.reserve(colregister.size());
14
       vector<bool> rowregister(matrix.size(), false); rowregister.reserve(rowregister.size());
16
       // registering
17
       #pragma omp parallel for
18
       for(int i = 0; i<matrix.size(); ++i)</pre>
19
           for(int i = 0: i<matrix[0].size(): ++i)</pre>
20
               if (matrix[i][i] == 0) {colregister[i] = true: rowregister[i] = true:}
21
       // rewriting
       #pragma omp parallel for
24
       for(int i = 0; i<matrix.size(); ++i)</pre>
           for(int j = 0; j<matrix[0].size(); ++j)</pre>
2.6
               if (colregister[i] == true || rowregister[i] == true) {matrix[i][j] = 0;}
28
       // printing the final output
2.9
       cout << format("final-output \n");</pre>
30
       for(const auto& x: matrix){
           for(const auto& y: x) {cout << format("{}, ", y);}</pre>
32
           cout << format("\n");</pre>
33
```

```
34     }
35
36     // return
37     return(0);
38
39  }
```

80. Remove Duplicates from Sorted Array II

Given an integer array nums sorted in non-decreasing order, remove some duplicates in-place such that each unique element appears at most twice. The relative order of the elements should be kept the same.

Since it is impossible to change the length of the array in some languages, you must instead have the result be placed in the first part of the array nums. More formally, if there are k elements after removing the duplicates, then the first k elements of nums should hold the final result. It does not matter what you leave beyond the first k elements.

Return k after placing the final result in the first k slots of nums.

Do not allocate extra space for another array. You must do this by modifying the input array in-place with O(1) extra memory.

1. Example 1

```
Input: nums = [1,1,1,2,2,3]
Output: 5, nums = [1.1,2,2,3, ]
```

2. Example 2

```
• Input: nums = [0,0,1,1,1,1,2,3,3]
• Output: 7, nums = [0,0,1,1,2,3,3,__,]
```

```
int main(){

// input- configuration
vector<int> nums {1,1,1,2,2,3};
```

```
// setup
        int destination {1}:
        int prev
                           {nums[0]};
       int element_counter {1};
       int numwrites
                          {1};
10
11
       // going through the values
12
       for(int i = 1; i < nums.size(); ++i){</pre>
13
14
           // updating counter
15
           if (nums[i-1] == nums[i]) {++element_counter;}
           else
                                      {element_counter = 1;}
17
18
           // checking the element counters
19
           if (element_counter <=2) {nums[destination++] = nums[i];}</pre>
20
21
       }
22
       // printing the final output
24
        cout << format("nums = "); fpv(nums);</pre>
25
        cout << format("return-value = {}\n", destination);</pre>
26
27
       // return
28
       return(0);
29
30
31
```

86. Partition List

Given the head of a linked list and a value x, partition it such that all nodes less than x come before nodes greater than or equal to x. You should preserve the original relative order of the nodes in each of the two partitions.

Examples

1. Example 1:

- Input: head = [1,4,3,2,5,2], x = 3
- Output: [1,2,2,4,3,5]

2. Example 2:

- Input: head = [2,1], x = 2
- Output: [1,2]

Constraints

- The number of nodes in the list is in the range [0, 200].
- $-100 \le Node.val \le 100$
- $-200 \le x \le 200$

```
int main(){
       // starting timer
       Timer timer;
       // input- configuration
       auto head {new ListNode(1)};
       head->next = new ListNode(4);
       head->next->next = new ListNode(3):
       head->next->next->next = new ListNode(2):
10
       head->next->next->next->next = new ListNode(5):
       head->next->next->next->next = new ListNode(2):
       auto x \{3\}:
14
       // setup
       ListNode* traveller
                                 = head:
16
                                 = new ListNode(-1);
       ListNode* lefthead
       ListNode* lefttraveller = lefthead:
18
       ListNode* righthead
                                = new ListNode(-1):
19
       ListNode* righttraveller = righthead;
20
21
       // going through the list
2.2
       while(traveller){
          // checking next-value
2.4
          if (traveller->val < x){</pre>
              lefttraveller->next = new ListNode(traveller->val);
2.6
                                    = lefttraveller->next;
              lefttraveller
          }
           else {
2.9
              righttraveller->next = new ListNode(traveller->val);
30
              righttraveller
                                    = righttraveller->next;
           }
32
```

```
// moving traveller
34
          traveller = traveller->next;
35
36
37
       // connecting
38
       lefttraveller->next = righthead->next;
39
40
       // returning
41
       fPrintLinkedList("Final-output = ", lefthead->next);
42
43
       // return
44
       return(0);
45
47 }
```

88. Merge Sorted Array

You are given two integer arrays nums1 and nums2, sorted in non-decreasing order, and two integers m and n, representing the number of elements in nums1 and nums2 respectively.

Merge nums1 and nums2 into a single array sorted in non-decreasing order.

The final sorted array should not be returned by the function, but instead be stored inside the array nums1. To accommodate this, nums1 has a length of m + n, where the first m elements denote the elements that should be merged, and the last n elements are set to 0 and should be ignored. nums2 has a length of n.

Examples

1. Example 1:

- Input: nums1 = [1,2,3,0,0,0], m = 3, nums2 = [2,5,6], n = 3
- Output: [1,2,2,3,5,6]
- Explanation: The arrays we are merging are [1,2,3] and [2,5,6]. The result of the merge is [1,2,2,3,5,6] with the underlined elements coming from nums1.

2. **Example 2:**

- Input: nums1 = [1], m = 1, nums2 = [], n = 0
- Output: [1]
- Explanation: The arrays we are merging are [1] and []. The result of the merge is [1].

3. Example 3:

• Input: nums1 = [0], m = 0, nums2 = [1], n = 1

- Output: [1]
- Explanation: The arrays we are merging are [] and [1]. The result of the merge is [1]. Note that because m = 0, there are no elements in nums1. The 0 is only there to ensure the merge result can fit in nums1.

Constraints:

```
1. nums1.length == m + n

2. nums2.length == n

3. 0 \le m, n \le 200

4. 1 \le m + n \le 200

5. -10^9 \le nums1[i], nums2[j] \le 10^9
```

```
int main(){

// input- configuration
vector<int> nums1 {1, 2, 3, 0, 0, 0};

vector<int> nums2 {2, 5, 6};

int m {3};

int n {3};

// setup
int p1 {m-1};
int p2 {n-1};
int p3 {m+n-1};
```

```
13
       int curr1 {-1};
14
       int curr2 {-1};
15
16
       // going the other way
17
       while(p1 >= 0 || p2 >= 0)
18
19
           // printing the values
           curr1 = p1 >= 0 ? nums1[p1] : std::numeric_limits<int>::min();
2.1
           curr2 = p2 >= 0 ? nums2[p2] : std::numeric_limits<int>::min();
2.2
           // assigning value
           if (curr1 > curr2) {nums1[p3] = curr1; --p3; --p1;}
25
                              \{nums1[p3] = curr2; --p3; --p2;\}
           else
26
27
       }
28
29
       // printing the final output
30
       cout << format("finaloutput = "); fPrintVector(nums1);</pre>
31
32
       // return
33
       return(0);
34
```

92. Reverse Linked List II

Given the head of a singly linked list and two integers left and right where left i= right, reverse the nodes of the list from position left to position right, and return the reversed list.

Examples

1. Example 1:

- Input: head = [1,2,3,4,5], left = 2, right = 4
- Output: [1,4,3,2,5]

2. **Example 2:**

- Input: head = [5], left = 1, right = 1
- Output: [5]

Constraints

- The number of nodes in the list is n.
- 1 < n < 500
- -500 < Node.val < 500
- $1 \le left \le right \le n$

```
int main(){
       // starting timer
       Timer timer;
       // input- configuration
       ListNode* head
                                    = new ListNode(1);
       head->next
                                    = new ListNode(2);
       head->next->next
                                    = new ListNode(3):
       head->next->next->next
                                    = new ListNode(4):
10
       head->next->next->next->next = new ListNode(5):
       auto left {2};
       auto right {4};
13
14
       // trivial case
       if (left == right) {fPrintLinkedList(head); cout << endl; return 0;}</pre>
16
17
       // setup
18
       ListNode* traveller = nullptr;
19
       ListNode* entrypoint = nullptr;
20
       ListNode* exitpoint = nullptr;
21
       ListNode* revhead
                             = nullptr;
2.2
       ListNode* dummy
                             = new ListNode(0);
       dummy->next
                             = head;
24
2.5
       // moving through list
2.6
       int nodeposition = -1;
       traveller = dummy;
2.8
       while(traveller){
2.9
30
                            // updating node position
           ++nodeposition;
31
32
           // finding important points
33
```

```
if(nodeposition == left-1)
                                  {entrypoint = traveller;}
   else if(nodeposition == left) {revhead = traveller:}
   else if(nodeposition == right+1) {exitpoint = traveller;}
   // moving traveller to next point
   traveller = traveller->next:
// reversing the head
ListNode* prev
                     = nullptr;
ListNode* actualright = nullptr;
traveller
                     = revhead;
nodeposition
                     = left:
while(traveller && nodeposition <= right){</pre>
   ++nodeposition;
   actualright
                 = traveller->next; // storing original right
   traveller->next = prev;
                                   // reconnection
   prev
                  = traveller:
                                 // storing prev for next iteration
                                   // moving to original right
   traveller
                 = actualright:
// tying things together
entrypoint->next = prev:
                  = exitpoint;
revhead->next
// returning dummy-es nstex
fPrintLinkedList(dummy->next); cout << endl;</pre>
// return
return(0);
```

34

35

36 37

39 40 41

42

43

45

46 47

48

49

50

51

52

53 54 55

56

57

58

59

60

61 62

63

100. Same Tree

Given the roots of two binary trees p and q, write a function to check if they are the same or not.

Two binary trees are considered the same if they are structurally identical, and the nodes have the same value.

Examples

1. Example 1:

- Input: p = [1,2,3], q = [1,2,3]
- Output: true

2. **Example 2:**

- Input: p = [1,2], q = [1,null,2]
- Output: false

3. **Example 3:**

- Input: p = [1,2,1], q = [1,1,2]
- Output: false

Constraints

- The number of nodes in both trees is in the range [0, 100].
- $-10^4 < \text{Node.val} < 10^4$

```
int main(){
       // starting timer
       Timer timer;
       // input- configuration
       auto p {new TreeNode(1)};
       p->left = new TreeNode(2);
       p->right = new TreeNode(3);
10
       auto q {new TreeNode(1)};
       q->left = new TreeNode(2);
12
       a->right = new TreeNode(3):
14
       // setup
       std::function<bool(TreeNode*, TreeNode*)> fCompareTrees = [&fCompareTrees](
16
           TreeNode* p, TreeNode* q){
18
          // basecase
19
          if (p == nullptr && q == nullptr)
                                              return true:
          if (p == nullptr && q != nullptr) return false:
21
          if (p != nullptr && q == nullptr) return false;
          if (p->val != q->val)
                                               return false;
24
          // going through the next set of branches
          return (fCompareTrees(p->left, q->left) && fCompareTrees(p->right, q->right));
2.6
       };
28
       // going through the two nodes
2.9
       bool finalOutput = fCompareTrees(p, q);
30
31
       // returning final output
32
       cout << format("final-output = {}\n", finalOutput);</pre>
33
```

34 35 // return 36 return(0); 37 38 }

101. Symmetric Tree

Given the root of a binary tree, check whether it is a mirror of itself (i.e., symmetric around its center).

Examples

1. Example 1:

• Input: root = [1,2,2,3,4,4,3]

• Output: true

2. **Example 2:**

• Input: root = [1,2,2,null,3,null,3]

• Output: false

Constraints

• The number of nodes in the tree is in the range [1, 1000].

• $-100 \le Node.val \le 100$

```
int main(){
   // starting timer
   Timer timer:
   // input- configuration
                     {new TreeNode(1)}:
   auto root
   root->left
                     = new TreeNode(2):
   root->right
                     = new TreeNode(2):
   root->left->left = new TreeNode(3);
   root->left->right = new TreeNode(4);
   root->right->left = new TreeNode(4);
   root->right->right = new TreeNode(3);
   // setup
   std::function<bool(TreeNode*, TreeNode*)> dfs = [&dfs](
       TreeNode* leftNode,
       TreeNode* rightNode){
       // printing the base-cases
       if (leftNode == nullptr && rightNode == nullptr) return true;
       if (leftNode == nullptr || rightNode == nullptr) return false;
       // calling the children
       bool finaloutput = (leftNode->val == rightNode->val)
                                                                 && \
                         dfs(leftNode->left, rightNode->right)
                                                                 && \
                         dfs(leftNode->right, rightNode->left);
       // returning the value
       return finaloutput;
   };
   // running
   cout << format("final-output = {}\n", dfs(root->left, root->right));
```

10

14

16

18 19

2.0

21

22 23

25

26

27 28

29

30

31 32

33

35 36 // return 37 return(0); 38 }

112. Path Sum

Given the root of a binary tree and an integer targetSum, return true if the tree has a root-to-leaf path such that adding up all the values along the path equals targetSum.

Constraints

- The number of nodes in the tree is in the range [0, 5000].
- -1000 < Node.val < 1000
- $-1000 \le targetSum \le 1000$

```
int main(){
       // starting timer
       Timer timer:
       // input- configuration
                                {new TreeNode(5)}:
       auto root
       root->left
                                 = new TreeNode(4):
                                = new TreeNode(8);
       root->right
10
       root->left->left
                                = new TreeNode(11);
       root->right->left
                                = new TreeNode(13);
13
       root->right->right
                                = new TreeNode(4);
14
```

```
root->left->left->left = new TreeNode(7);
root->left->left->right = new TreeNode(2):
root->right->right->right = new TreeNode(1);
auto targetSum
                  {22};
// setup
auto runningsum
                 {0};
auto binaryflag
                 {false};
std::function<void(const TreeNode*, int)> fRunSum = [&fRunSum,
              &targetSum,
              &binaryflag](
   const TreeNode* root.
   int
              runningsum
   ) {
   // sending it back
   if (root
                  == nullptr)
                                return:
   if (binaryflag == true)
                                return;
   // adding current val to running sum
   runningsum += root->val;
   // checking if there are children
   if (root->left || root->right){
       if (root->left) fRunSum(root->left, runningsum);
       if (root->right) fRunSum(root->right, runningsum);
   }
   else{
       // in this case, we check the running sum
       if (runningsum == targetSum){ binaryflag = true;}
   }
   // returning
   return;
```

16

17

18 19

20 21

2.2

2.4

2.5

2.6

2.7

28

29

30 31

32

33

34 35

36

37 38

39

41

42

43

44

45

47 48

```
};
51
52
       // running
53
       fRunSum(root, runningsum);
54
55
       // printing
56
       cout << format("final-output = {}\n", binaryflag);</pre>
57
58
       // return
59
       return(0);
60
   }
62
```

121. Best Time To Buy And Sell Stock

You are given an array prices where prices[i] is the price of a given stock on the ith day. You want to maximize your profit by choosing a single day to buy one stock and choosing a different day in the future to sell that stock. Return the maximum profit you can achieve from this transaction. If you cannot achieve any profit, return 0.

Examples

1. Example 1

• Input: prices = [7,1,5,3,6,4]

• Output: 5

2. Example 2

• Input: prices = [7,6,4,3,1]

• Output: 0

Constraints:

- $1 \le \text{prices.length} \le 10^5$
- $0 \le \text{prices}[i] \le 10^4$

```
int main(){
       // input- configuration
       vector<int> prices {7,6,4,3,1};
       // setup
       StopWatch timer;
                                                                // timer-object
                                                                // first index-pointer
       int p0
                      {0};
       int p1
                      {1};
                                                                // second index-pointer
                                                                // variable to hold max-profit
       int maxprofit {0};
10
                                                                // variable to hold current-profit
       int curr
                      {-1}:
12
       // going through array
13
       while(p1<prices.size()){</pre>
14
                      = prices[p1] - prices[p0];
           curr
                                                                // calculating current profit
           maxprofit = curr > maxprofit ? curr : maxprofit; // updating max-profit
16
           if (curr < 0) {p0 = p1;}</pre>
                                                                // updating p0 if we find lower point
           ++p1;
18
19
20
       // printing the final output
21
       cout << format("maxprofit = {}\n", maxprofit);</pre>
2.2
       timer.stop();
24
       // return
       return(0);
2.6
27
28
```

122. Best Time To Buy And Sell Stock II

You are given an integer array prices where prices[i] is the price of a given stock on the ith day. On each day, you may decide to buy and/or sell the stock. You can only hold at most one share of the stock at any time. However, you can buy it then immediately sell it on the same day. Find and return the maximum profit you can achieve.

Examples

1. Example 1

- Input: prices = [7,1,5,3,6,4]
- Output: 7
- Explanation: Buy on day 2 (price = 1) and sell on day 3 (price = 5), profit = 5-1 = 4. Then buy on day 4 (price = 3) and sell on day 5 (price = 6), profit = 6-3 = 3. Total profit is 4 + 3 = 7.

2. Example 2

- Input: prices = [1,2,3,4,5]
- Output: 4
- Explanation: Buy on day 1 (price = 1) and sell on day 5 (price = 5), profit = 5-1 = 4. Total profit is 4.

3. Example 3

- Input: prices = [7,6,4,3,1]
- Output: 0
- Explanation: There is no way to make a positive profit, so we never buy the stock to achieve the maximum profit of 0.

Constraints

- $1 \le \text{prices.length} \le 3 * 10^4$
- $0 \le \text{prices}[i] \le 10^4$

```
int main(){
       // input- configuration
       vector<int> prices {7,1,5,3,6,4};
       // setup
       int p1
               {0};
                                                         // index-pointer to buying
       int p2
               {0}:
                                                         // index-pointer to selling
       int accprofit {0};
                                                         // variable to accumulate profit
       int currprofit {std::numeric_limits<int>::min()}; // variable to hold curr-profit
10
11
      // going through this
12
       while(p2 < prices.size()){</pre>
13
14
          currprofit = prices[p2] - prices[p1];
                                                 // calculating current profit
15
16
          if (currprofit > 0){
              accprofit += currprofit;
                                                         // accumulating the profit
                                                         // moving the starting point
              р1
                         = p2++;
19
                                                         // moving into the next iteration
              continue:
21
          else if (currprofit < 0){</pre>
22
              р1
                         = p2++;
                                                         // moving the starting point
              continue;
          }
25
```

```
26
                                                                           // updating p2
              ++p2;
27
28
29
         // printing the max-value
cout << format("accprofit = {}\n", accprofit);</pre>
30
31
32
         // return
33
         return(0);
34
35
   }
36
```

125. Valid Palindrome

A phrase is a palindrome if, after converting all uppercase letters into lowercase letters and removing all non-alphanumeric characters, it reads the same forward and backward. Alphanumeric characters include letters and numbers. Given a string s, return true if it is a palindrome, or false otherwise.

Examples

1. Example 1:

- Input: s = "A man, a plan, a canal: Panama"
- Output: true
- Explanation: "amanaplanacanalpanama" is a palindrome.

2. Example 2:

- Input: s = "race a car"
- Output: false
- Explanation: "raceacar" is not a palindrome.

3. Example 3:

- Input: s = " "
- Output: true
- Explanation: s is an empty string "" after removing non-alphanumeric characters. Since an empty string reads the same forward and backward, it is a palindrome.

Constraints

- $1 < \text{s.length} < 2 * 10^5$
- s consists only of printable ASCII characters.

```
int main(){
       // input- configuration
       auto s = string("A man, a plan, a canal: Panama");
       // setup
       auto pleft
                         {0};
       auto pright
                      {static_cast<int>(s.size())-1};
       auto finaloutput {true};
10
       // lambda to check if alphanumeric
11
       auto isalphanumeric = [](const int& x){
          if (x-65 >= 0 \&\& 90-x >= 0) {return true;}
                                                           // upper-case check
          if (x-97 \ge 0 \&\& 122-x \ge 0) {return true;} // lower-case check
          if (x-48 >= 0 \&\& 57-x >= 0) {return true;}
                                                           // numeric check
          return false;
16
      };
18
       // running
19
       while(pleft < s.size() && pright >= 0){
21
          // moving pleft until we find the position
22
          while(pleft < s.size() && isalphanumeric(s[pleft]) == false) {++pleft;}</pre>
                               && isalphanumeric(s[pright]) == false) {--pright;}
          while(pright >= 0
24
25
```

```
// checking bounds
2.6
           if (pleft>=pright) {break;}
2.7
2.8
           // checking if they're the same
2.9
           if (std::tolower(s[pleft]) != std::tolower(s[pright])) {finaloutput = false; break;}
31
           // updating pointers
32
           ++pleft; --pright;
33
34
35
       // printing
36
       cout << format("final-output = {}\n", finaloutput);</pre>
37
38
       // return
39
       return(0);
40
41
42
```

128. Longest Consecutive Sequence

Given an unsorted array of integers nums, return the length of the longest consecutive elements sequence. You must write an algorithm that runs in O(n) time.

Examples

1. Example 1:

- Input: nums = [100,4,200,1,3,2]
- Output: 4
- Explanation: The longest consecutive elements sequence is [1, 2, 3, 4]. Therefore its length is 4.

2. Example 2:

- Input: nums = [0,3,7,2,5,8,4,6,0,1]
- Output: 9

3. **Example 3:**

- Input: nums = [1,0,1,2]
- Output: 3

Constraints

- $0 \le \text{nums.length} \le 10^5$
- $-10^9 \le nums[i] \le 10^9$

```
int main(){
       // starting timer
       Timer timer;
       // input- configuration
       auto nums = vector < int > ({0,3,7,2,5,8,4,6,0,1});
       // setup
       std::multiset<int> var00:
10
       // trivial-cases
       if (nums.size() <= 1) {cout << format("final-output = {}\n", nums.size()): return 0:}
14
       // going through elements
       for(auto x: nums) {var00.insert(x):}
16
17
       // going through elements
18
       int maxlength = std::numeric_limits<int>::min();
19
       int temp = 1:
20
       std::deque<int> var01;
21
       for(auto x: var00){
24
          if (var01.size()<1)</pre>
                                        {var01.push_back(x);}
          else{
2.6
              // comparing previous element and current
              if (x - var01[0] == 1) {++temp; var01[0] = x; maxlength = max(maxlength, temp);}
              else if(x - var01[0] == 0) {maxlength = max(maxlength, temp); continue;}
2.9
                                         {maxlength = max(maxlength, temp); temp = 1; var01[0] = x;}
              else
30
           }
```

```
// returning the max-length
cout << format("final-output = {}\n", maxlength);

// return
return(0);

// return
// return return(0);</pre>
```

134. Gas Station

There are n gas stations along a circular route, where the amount of gas at the ith station is gas[i]. You have a car with an unlimited gas tank and it costs cost[i] of gas to travel from the ith station to its next (i + 1)th station. You begin the journey with an empty tank at one of the gas stations. Given two integer arrays gas and cost, return the starting gas station's index if you can travel around the circuit once in the clockwise direction, otherwise return -1. If there exists a solution, it is guaranteed to be unique.

Examples

1. Example 1:

- Input: gas = [1,2,3,4,5], cost = [3,4,5,1,2]
- Output: 3

2. **Example 2:**

- Input: gas = [2,3,4], cost = [3,4,3]
- Output: -1

Constraints:

- n == gas.length == cost.length
- $1 \le n \le 10^5$
- $0 \le gas[i], cost[i] \le 10^4$
- The input is generated such that the answer is unique.

```
int main(){
       // input- configuration
       vector<int> gas {1,2,3,4,5};
       vector<int> cost {3,4,5,1,2};
       // setup
       auto acc {0};
                                                                    // variable to accumulate values
       vector<int> diffvec:
                                                                    // to store differences
                                                                    // to maintain values in cache
       auto temp {0};
10
       int finaloutput {-1};
                                                                    // the final output sotring var
       // running through it
       for(int i = 0: i < cost.size(): ++i){</pre>
                 = gas[i] - cost[i];
           temp
                                                                    // calculating flux
                  += temp:
                                                                    // appending to integral flux
16
                                                                    // storing instantial-flux to vector
           diffvec.push_back(temp);
18
       if (acc<0) {finaloutput = -1; return 0;}</pre>
                                                                    // if total flux is zero, the task cannot be completed
19
20
       // going through the diff-vec
21
       acc = 0;
       for(int i = 0; i<diffvec.size(); ++i){</pre>
           acc += diffvec[i];
                                                                    // accumulating flux
2.4
           if (acc<0) {acc = 0; finaloutput = i+1;}</pre>
                                                                    // updating start-point (since we cannot go below zero)
2.6
27
       // printing the acc
2.9
       cout << format("acc = {}\n", finaloutput);</pre>
30
31
       // return
32
       return(0);
33
```

35 }

135. Candy

There are n children standing in a line. Each child is assigned a rating value given in the integer array ratings. You are giving candies to these children subjected to the following requirements:

- 1. Each child must have at least one candy.
- 2. Children with a higher rating get more candies than their neighbors.
- 3. Return the minimum number of candies you need to have to distribute the candies to the children.

Examples

- Example 1
 - Input: ratings = [1,0,2]
 - Output: 5
 - Explanation: You can allocate to the first, second and third child with 2, 1, 2 candies respectively.
- Example 2
 - Input: ratings = [1,2,2]
 - Output: 4
 - Explanation: You can allocate to the first, second and third child with 1, 2, 1 candies respectively. The third child gets 1 candy because it satisfies the above two conditions.

Constraints

```
1. n == ratings.length
2. 1 \le n \le 2*10^4
3. 0 \le ratings[i] \le 2*10^4
```

```
int main(){
      // input- configuration
      vector<int> ratings {1,0,2};
      // setup
      auto candies
                      {std::vector<int>(ratings.size(),1)};
      auto finaloutput {static_cast<int>(candies.size())};
      int leftrating, currrating, rightrating;
10
      // left-pass
      for(int i = 1; i < candies.size(); ++i){</pre>
         // fetching the rating
         leftrating = ratings[i-1];
16
         currrating = ratings[i];
18
         // fetching references to candy counts
19
         int& leftcount = candies[i-1];
         int& currcount = candies[i];
2.1
22
         // updating based on left
23
```

```
if (currrating > leftrating){
2.4
               currcount = leftcount+1:
           }
26
       }
2.7
2.8
       // right pass
2.9
       for(int i = ratings.size()-2; i>=0; --i){
30
31
           // fetching ratings
32
           currrating = ratings[i];
33
           rightrating = ratings[i+1];
35
           // fetching references to candies
36
           int& currcandies = candies[i]:
37
           int& rightcandies = candies[i+1];
38
39
           // updating based on right
40
           if (currrating > rightrating){
               currcandies = std::max(currcandies,
42
                                     rightcandies + 1):
43
44
45
46
       // summing up candies
47
       finaloutput = std::accumulate(candies.begin(), candies.end(), 0);
48
       cout << format("finaloutput = {}\n", finaloutput);</pre>
49
50
       // return
51
       return(0);
52
54
```

151. Reverse Words In A String

Given an input string s, reverse the order of the words. A word is defined as a sequence of non-space characters. The words in s will be separated by at least one space. Return a string of the words in reverse order concatenated by a single space. Note that s may contain leading or trailing spaces or multiple spaces between two words. The returned string should only have a single space separating the words. Do not include any extra spaces.

Examples

1. Example 1

- Input: s = "the sky is blue"
- Output: "blue is sky the"

2. Example 2

- Input: s = "hello world"
- Output: "world hello"
- Explanation: Your reversed string should not contain leading or trailing spaces.

3. Example 3

- Input: s = "a good example"
- Output: "example good a"
- Explanation: You need to reduce multiple spaces between two words to a single space in the reversed string.

Constraints

- 1. $1 \le \text{s.length} \le 10^4$
- 2. s contains English letters (upper-case and lower-case), digits, and spaces ''.
- 3. There is at least one word in s.

```
int main(){
       // input- configuration
       string s {"a good example"};
       // setup
       vector<string> listofwords;
       // creating a list of words
       int p1 {0};
10
       string acc;
       while(p1 < s.size()){</pre>
          // checking if the current character is a non-space
          if (s[p1] != ' ') {acc += s[p1];}
           else{
16
              // if acc is non-empty, flush
              if (acc.size() != 0) {listofwords.push_back(acc); acc = "";}
18
                                     {;}
              else
19
          }
21
          // moving the index-pointer forward
22
          p1++;
23
```

```
}
2.4
25
       // check if acc is unflushed
26
       if (acc.size() != 0) {listofwords.push_back(acc); acc = "";}
2.7
       // building the finaloutput
2.9
       string finaloutput;
30
       for(int i = listofwords.size()-1; i>=0; --i){
31
           finaloutput += listofwords[i];
32
           if (i!=0) [[unlikely]] {finaloutput += " ";}
33
       }
35
       // printing the finaloutput
36
       cout << format("finaloutput = {}\n", finaloutput);</pre>
37
38
39
       // return
40
       return(0);
42
```

43

167. Two Sum II - Input Array Is Sorted

Given a 1-indexed array of integers numbers that is already sorted in non-decreasing order, find two numbers such that they add up to a specific target number. Let these two numbers be numbers[index1] and numbers[index2] where $1 \le \text{index} 1 < \text{index} 1 \le \text{numbers.length}$.

Return the indices of the two numbers, index1 and index2, added by one as an integer array [index1, index2] of length 2.

The tests are generated such that there is exactly one solution. You may not use the same element twice.

Your solution must use only constant extra space.

Examples

1. Example 1:

- Input: numbers = [2,7,11,15], target = 9
- Output: [1,2]
- Explanation: The sum of 2 and 7 is 9. Therefore, index 1 = 1, index 2 = 2. We return [1, 2].

2. Example 2:

- Input: numbers = [2,3,4], target = 6
- Output: [1,3]
- Explanation: The sum of 2 and 4 is 6. Therefore index 1 = 1, index 2 = 3. We return [1, 3].

3. **Example 3:**

• Input: numbers = [-1,0], target = -1

- Output: [1,2]
- Explanation: The sum of -1 and 0 is -1. Therefore index 1 = 1, index 2 = 2. We return [1, 2].

Constraints

- $2 \le \text{numbers.length} \le 3 * 10^4$
- $-1000 \le numbers[i] \le 1000$
- numbers is sorted in non-decreasing order.
- $-1000 \le target \le 1000$
- The tests are generated such that there is exactly one solution.

```
int main(){
       // input- configuration
       auto numbers = vector<int>{2,7,11,15};
       auto target
                     = 9;
       // setup
       std::vector<int> finalOutput;
       auto left
                      {0};
       auto right
                     {static_cast<int>(numbers.size()-1)};
10
       auto currsum {0};
12
       // usual left-right loop
       while (left < right){</pre>
14
```

```
15
           // checking sum of two values
16
           currsum = numbers[left] + numbers[right];
17
18
           // comparing against target
           if (currsum > target) {--right;}
2.0
           else if (currsum < target) {++left;}</pre>
21
           else {
               finalOutput.push_back( left+1);
23
               finalOutput.push_back( right+1);
2.4
               break;
26
27
28
       // printign the final output
29
       cout << format("finaloutput = {}\n", finalOutput);</pre>
30
31
       // return
32
       return(0);
33
34
```

35

169 Majority Element

Given an array nums of size n, return the majority element. The majority element is the element that appears more than $\lfloor n/2 \rfloor$ times. You may assume that the majority element always exists in the array.

Examples

• Example 1

```
- Input: nums = [3,2,3]
- Output: 3
```

• Example 2

```
- Input: nums = [2,2,1,1,1,2,2]
- Output: 2
```

Constraints:

- n == nums.length
- $1 \le n \le 5 * 10^4$
- $-10^9 \le \text{nums[i]} \le 10^9$

```
int main(){
       // input- configuration
       vector<int> nums {2,2,1,1,1,2,2};
       // setup
       unordered_map<int, int> histogram;
       int max_element {std::numeric_limits<int>::min()};
       int max count
                         {std::numeric_limits<int>::min()};
       int updated_count {0};
10
11
       // going through the elements
       for(int i = 0: i < nums.size(): ++i){</pre>
14
           // adding to histogram
           if (histogram.find(nums[i]) == histogram.end()) {histogram[nums[i]] = 1; updated_count = 0;}
                                                           {++histogram[nums[i]]: updated count = histogram[nums[i]]:}
           else
           // keeping track of max-element
19
           if (updated_count > max_count) {max_element = nums[i]; max_count = updated_count;}
20
21
       }
2.2
       // printing the final output
24
       cout << format("nums = "); fpv(nums);</pre>
       cout << format("max-count = {}\n", max_count);</pre>
2.6
       // return
2.8
       return(0);
2.9
30
31
```

189 Rotate Array

Given an integer array nums, rotate the array to the right by k steps, where k is non-negative.

Examples

- Example 1
 - Input: nums = [1,2,3,4,5,6,7], k = 3
 - Output: [5,6,7,1,2,3,4]
- Example 1
 - Input: nums = [-1,-100,3,99], k = 2
 - Output: [3,99,-1,-100]

Constraints

- $1 \le \text{nums.length} \le 10^5$
- $-2^31 < \text{nums[i]} < 2^31 1$
- $0 \le k \le 10^5$

```
int main(){
       // input- configuration
       vector<int> nums {-1,-100,3,99};
       int k {2};
       // setup
       StopWatch timer;
                                                        // setting up the timer
       k = k %static_cast<int>(nums.size());
                                                        // to ensure that the value is within range
10
       int source
                         {0}:
       int temp_source {nums[source]};
       int temp
                        {0}:
       int destination {0}:
14
       vector<bool> sourcelist(nums.size(), false);
16
       // going through nums
18
       for(int i = 0; i < nums.size(); ++i){</pre>
19
          // check if curent-source has been taken care of
21
          if (sourcelist[source] == true){
                        = (source+1) % nums.size();
              source
              temp_source = nums[source];
2.4
          }
2.6
                  = source % nums.size(); // code to ensure range
          source
                         = (source + k)%nums.size(); // calculating the index we'll be writing to
          destination
          sourcelist[source] = true;
                                                        // updating source-list
2.9
30
                          = nums[destination];
                                                        // safe-keeping the destination value
          temp
          nums[destination] = temp_source;
                                                        // storing new value at destination-index
32
33
```

```
= destination;
                                                          // updating source-index
           source
34
                                                          // updating source-value
           temp_source
                             = temp;
35
36
37
       // printing the output
38
       cout << format("nums = "); fpv(nums);</pre>
                                                          // printing the updated array, "nums"
39
       timer.stop();
                                                           // printing the time taken
40
41
       // return
42
       return(0);
43
44 }
```

202. Happy Number

Write an algorithm to determine if a number n is happy.

A happy number is a number defined by the following process:

- 1. Starting with any positive integer, replace the number by the sum of the squares of its digits.
- 2. Repeat the process until the number equals 1 (where it will stay), or it loops endlessly in a cycle which does not include 1.
- 3. Those numbers for which this process ends in 1 are happy.

Return true if n is a happy number, and false if not.

Examples

- 1. Example 1:
 - Input: n = 19
 - Output: true
 - Explanation:
 - 12 + 92 = 82
 - 82 + 22 = 68
 - 62 + 82 = 100
 - 12 + 02 + 02 = 1
- 2. Example 2:
 - Input: n = 2
 - Output: false

Constraints

• $1 < n < 2^31 - 1$

```
int main(){
       // starting timer
       Timer timer;
       // input- configuration
       auto n {19};
       // trivial case
       if (n == 4 | | n == 0) {cout << format("final-output = false\n"); return 0;}</pre>
11
       // setting up lambda
12
       auto fSumDigitSquares = [](int n) -> int
           auto sum {0};
15
           auto digit {-1};
16
           while(n!=0){
17
              digit = n\%10;
18
                    += digit*digit;
              sum
                      = n/10:
              n
21
           return sum;
22
       };
23
24
       // calling the function
25
       while (n != 1){
2.6
           // calculating digits sums
```

205. Isomorphic Strings

Given two strings s and t, determine if they are isomorphic.

Two strings s and t are isomorphic if the characters in s can be replaced to get t.

All occurrences of a character must be replaced with another character while preserving the order of characters. No two characters may map to the same character, but a character may map to itself.

Examples

1. Example 1:

- Input: s = "egg", t = "add"
- Output: true
- Explanation: The strings s and t can be made identical by:
 - Mapping 'e' to 'a'.
 - Mapping 'g' to 'd'.

2. Example 2:

- Input: s = "foo", t = "bar"
- Output: false
- Explanation: The strings s and t can not be made identical as 'o' needs to be mapped to both 'a' and 'r'.

3. Example 3:

- Input: s = "paper", t = "title"
- Output: true

Constraints:

- $1 \le \text{s.length} \le 5 * 10^4$
- t.length == s.length
- s and t consist of any valid ascii character.

```
int main(){
       // starting timer
       Timer timer:
       // input- configuration
       string s = {"egg"};
       string t = {"add"};
       // making mapping
10
       unordered_map<char, char> mapping;
11
       std::unordered_set<char> destinations;
       string
                                 r;
13
14
       // going through string
15
       for(int i = 0; i<s.size(); ++i){</pre>
16
           // checking if two strings are different
18
           if (s[i] != t[i]){
19
              // checking if we already have a mapping for this
              if (mapping.find(s[i]) == mapping.end()){
2.1
22
                  // before we addd, we need to check if t[i] is already used as a destination
23
```

```
if (destinations.find(t[i]) != destinations.end()) {
               cout << format("final-output = true \n");</pre>
              return 0;
          // adding new mapping
          mapping[s[i]] = t[i];
          destinations.insert(t[i]);
       }
       r.push_back(mapping[s[i]]);
   }
   else{
       // checking if we already have a mapping for this
       if (mapping.find(s[i]) == mapping.end()){
          // before we addd, we need to check if t[i] is already used as a destination
          if (destinations.find(t[i]) != destinations.end()) {
               cout << format("final-output = true \n");</pre>
              return 0:
          // adding new mapping
          mapping[s[i]] = s[i];
          destinations.insert(s[i]):
       r.push_back(mapping[s[i]]);
   }
   // if what we have so far is different, we're sending it back
   string s_subset(t.begin(), t.begin() + r.size());
   if(s_subset != r) {cout << format("final-output = false \n"); return 0;}</pre>
// return true in the end
```

2.4

26 27

2.9

30

35

36

37 38

39

40

41

42 43

45

50 51

52

55 56

58

209. Minimum Size Subarray Sum

Given an array of positive integers nums and a positive integer target, return the minimal length of a subarray whose sum is greater than or equal to target. If there is no such subarray, return 0 instead.

Examples

1. Example 1:

- Input: target = 7, nums = [2,3,1,2,4,3]
- Output: 2
- Explanation: The subarray [4,3] has the minimal length under the problem constraint.

2. Example 2:

- Input: target = 4, nums = [1,4,4]
- Output: 1

3. Example 3:

- Input: target = 11, nums = [1,1,1,1,1,1,1,1]
- Output: 0

Constraints

• $1 \le \text{target} \le 10^9$

- $1 \le \text{nums.length} \le 10^5$
- $1 < \text{nums}[i] < 10^4$

```
int main(){
       // input- configuration
       vector<int> nums {1,2,3,4,5};
       auto target {15};
       // setup
       auto finaloutput {std::numeric_limits<int>::max()};
       auto pleft
                          {0}:
       auto sum
                          {nums[pleft]};
10
       auto i
                          {1};
11
12
       // in case the first element itself is greater
13
       if (sum > target) {finaloutput = 1;}
14
       // lambda to update finaloutput
16
       auto updatefinaloutput = [&sum,
                                &target,
18
                                &finaloutput,
19
                                &i,
20
                                &pleft,
21
                                %nums]() -> void{
22
           auto numelements = i - pleft + 1;
24
           finaloutput = numelements < finaloutput ? numelements : finaloutput;</pre>
25
           sum -= nums[pleft++];
2.6
       };
27
```

```
28
       // going through the array
2.9
       for(; i<nums.size(); ++i){</pre>
30
31
           // adding to sum
32
           sum += nums[i];
33
34
           // updating
35
           while (sum>=target) {updatefinaloutput();}
36
       }
37
38
       // updating
39
        if(finaloutput == std::numeric_limits<int>::max()) {finaloutput = 0;}
40
41
       // printing the finaloutput
42
       cout << format("finaloutput = {}\n", finaloutput);</pre>
43
44
       // return
45
       return(0);
47
48
```

219. Contains Duplicate II

Given an integer array nums and an integer k, return true if there are two distinct indices i and j in the array such that nums[i] = nums[j] and $abs(i - j) \le k$.

Examples

1. Example 1:

- Input: nums = [1,2,3,1], k = 3
- Output: true

2. **Example 2:**

- Input: nums = [1,0,1,1], k = 1
- Output: true

3. **Example 3:**

- Input: nums = [1,2,3,1,2,3], k = 2
- Output: false

Constraints

- $1 \le \text{nums.length} \le 10^5$
- $-10^9 \le \text{nums}[i] \le 10^9$
- $0 \le k \le 10^5$

33

```
int main(){
       // starting timer
       Timer timer;
       // input- configuration
       auto nums = std::vector<int>({1,2,3,1,2,3});
       auto k
                  {2};
       // setup
10
       std::unordered_map<int, int> valueToIndex;
11
12
       // going through the array
       for(int i = 0: i < nums.size(): ++i){</pre>
14
           // adding current element to the hamp
16
           if (valueToIndex.find(nums[i]) == valueToIndex.end()){
               // if it doesn't exist, we add to it
18
               valueToIndex[nums[i]] = i;
19
           }
20
           else{
21
               // if it already exists, calculating distance from the first index
               if (i - valueToIndex[nums[i]] <= k) {cout << format("final-output = true\n");}</pre>
               else
                                                 {valueToIndex[nums[i]] = i;}
24
       }
2.6
27
       // returning false in the final case
28
       cout << format("final-output = false\n");</pre>
29
30
       // return
31
       return(0);
32
```

34 }

226. Invert Binary Tree

Given the root of a binary tree, invert the tree, and return its root.

Examples

1. Example 1:

- Input: root = [4,2,7,1,3,6,9]
- Output: [4,7,2,9,6,3,1]

2. **Example 2:**

- Input: root = [2,1,3]
- Output: [2,3,1]

3. Example 3:

- Input: root = []
- Output: []

Constraints

- The number of nodes in the tree is in the range [0, 100].
- $-100 \le Node.val \le 100$

```
int main(){
       // starting timer
       Timer timer;
       // input- configuration
       auto root
                             {new TreeNode(4)};
       root->left
                             = new TreeNode(2);
       root->right
                           = new TreeNode(7):
       root->left->left
                          = new TreeNode(1):
10
       root->left->right = new TreeNode(3);
       root->right->left = new TreeNode(6);
12
       root->right->right = new TreeNode(9);
14
       // setup
       std::function<void(TreeNode*)> fTwist = [&fTwist](TreeNode* root){
16
           // base-case
          if (root == nullptr) return;
18
19
          // switching left and right
20
          fTwist(root->left):
21
           fTwist(root->right);
          // twisting current branches
24
           auto temp = root->left;
          root->left = root->right;
2.6
          root->right = temp;
27
28
          // returning
2.9
          return;
30
       };
31
32
       // going flipping through eveyrthing
33
```

```
34 fTwist(root);
35
36 // return
37 return(0);
38
39 }
```

228. Summary Ranges

You are given a sorted unique integer array nums.

A range [a,b] is the set of all integers from a to b (inclusive).

Return the smallest sorted list of ranges that cover all the numbers in the array exactly. That is, each element of nums is covered by exactly one of the ranges, and there is no integer x such that x is in one of the ranges but not in nums.

Each range [a,b] in the list should be output as:

"a
$$\rightarrow$$
b" if a != b

"a" if
$$a = b$$

Examples

1. Example 1:

- Input: nums = [0,1,2,4,5,7]
- Output: ["0→2","4→5","7"]
- Explanation: The ranges are:
 - $[0,2] \implies "0 \rightarrow 2"$
 - $[4,5] \implies "4 \rightarrow 5"$
 - [7,7] ⇒ "7"

2. Example 2:

- Input: nums = [0,2,3,4,6,8,9]
- Output: ["0","2→4","6","8→9"]

- Explanation: The ranges are:
 - [0,0] ⇒ "0"
 - [2,4] ⇒ "2→4"
 - [6,6] \Longrightarrow "6"
 - [8,9] ⇒ "8→9"

Constraints

- $0 \le nums.length \le 20$
- $-2^31 < \text{nums[i]} < 2^31 1$
- All the values of nums are unique.
- nums is sorted in ascending order.

```
int main(){

// starting timer

imer timer;

// input- configuration

auto nums = vector<int>({0,1,2,4,5,7});

// trivial-case
if (nums.size() == 0) {cout << format("final-output = {}\n", vector<string>()); return 0;}

// stup
```

```
auto arrow {"->"};
13
       auto p1
                  {0};
14
       auto p2
                 {0}:
15
       vector<string> finalOutput;
16
17
       // while loop
18
       while (p2<nums.size()){</pre>
19
           // checking prev element
21
           if (nums[p2] <= 1 + nums[p2-1]) {++p2;}</pre>
2.2
           elsef
               if (p1!=p2-1) {finalOutput.push_back(std::to_string(nums[p1]) + arrow + std::to_string(nums[p2-1]));}
               else
                              {finalOutput.push_back(std::to_string(nums[p2-1]));}
25
               p1 = p2++;
26
       }
28
29
       // checking if p1 and p2 areright ne
30
       if (p1!=p2-1) {finalOutput.push_back(std::to_string(nums[p1]) + arrow + std::to_string(nums[p2-1]));}
31
                       {finalOutput.push_back(std::to_string(nums[p2-1]));}
       else
32
33
       // returning restul
34
       cout << format("final-output = {}\n", finalOutput);</pre>
35
36
       // return
37
       return(0);
38
39
40
```

238. Product of Array Except Self

Given an integer array nums, return an array answer such that answer[i] is equal to the product of all the elements of nums except nums[i]. The product of any prefix or suffix of nums is guaranteed to fit in a 32-bit integer. You must write an algorithm that runs in O(n) time and without using the division operation.

Examples

1. Example 1

• Input: nums = [1,2,3,4]

• Output: [24,12,8,6]

2. Example 2

• Input: nums = [-1,1,0,-3,3]

• Output: [0,0,9,0,0]

Constraints

- 1. $2 < \text{nums.length} < 10^5$
- 2. $-30 \le nums[i] \le 30$
- 3. The input is generated such that answer[i] is guaranteed to fit in a 32-bit integer

33

```
int main(){
       // input- configuration
       vector<int> nums {1,2,3,4};
      // setup
       vector<int> nums_left(nums.size(), 1);
       vector<int> nums_right(nums.size(), 1);
      int acc left
                           {1}:
      int acc_right
                           {1}:
10
11
      // runs
      for(int i = 0: i < nums.size(): ++i){</pre>
14
          // source-indees
          int source left {i-1}:
16
          int source_right {static_cast<int>(nums.size())-i};
18
          // printing values
19
          20
          acc_right *= source_right == nums.size() ? 1 : nums[source_right];
21
          // writing to the two values
          nums_left[i]
                                      = acc_left;
2.4
          nums_right[nums.size()-i-1] = acc_right;
2.6
27
      // building the accumlated value
28
       vector<int> finaloutput(nums.size(),1);
2.9
      for(int i = 0; i < finaloutput.size(); ++i){</pre>
30
          finaloutput[i] = nums_left[i] * nums_right[i];
31
32
```

```
// printing
cout << format("finaloutput = "); fPrintVector(finaloutput);

// return
return(0);

// return
// return return(0);</pre>
```

242. Valid Anagram

Given two strings s and t, return true if t is an anagram of s, and false otherwise.

Examples

1. Example 1:

- Input: s = "anagram", t = "nagaram"
- Output: true

2. **Example 2:**

- Input: s = "rat", t = "car"
- Output: false

Constraints

- $1 \le$ s.length, t.length $\le 5 * 10^4$
- s and t consist of lowercase English letters.

```
int main(){
       // starting timer
       Timer timer:
       // input- configuration
       string s {"anagram"};
       string t {"nagaram"};
       // setup
10
       std::vector<int> s_count(26,0);
11
       std::vector<int> t_count(26,0);
       // building count-vector for both
14
       for(auto x: s) ++s_count[static_cast<int>(x)-97];
       for(auto x: t) ++t_count[static_cast<int>(x)-97];
16
       // comparing the two
18
       for (int i = 0; i < s_count.size(); ++i) {</pre>
19
           // element-wise checking
21
           if (s_count[i] != t_count[i]) {cout << format("final-output = false \n");}</pre>
23
       }
24
25
       // returning
26
       cout << format("final-output = true \n");</pre>
27
28
       // return
29
       return(0);
30
31
32
```

274. H-Index

Given an array of integers citations where citations[i] is the number of citations a researcher received for their ith paper, return the researcher's h-index. According to the definition of h-index on Wikipedia: The h-index is defined as the maximum value of h such that the given researcher has published at least h papers that have each been cited at least h times.

Examples

1. Example 1

- Input: citations = [3,0,6,1,5]
- Output: 3
- Explanation: [3,0,6,1,5] means the researcher has 5 papers in total and each of them had received 3, 0, 6, 1, 5 citations respectively. Since the researcher has 3 papers with at least 3 citations each and the remaining two with no more than 3 citations each, their h-index is 3.

2. Example 2

- Input: citations = [1,3,1]
- Output: 1

Constraints

- 1. n = = citations.length
- 2. $1 \le n \le 5000$
- 3. $0 \le \text{citations}[i] \le 1000$

```
int main(){
       // input- configuration
       vector<int> citations {3,0,6,1,5};
       // sorting the citations first
       std::sort(citations.begin(), citations.end(),
           [](const int& a, const int& b) {return a>b;});
       // running accumulations
       auto hvalue {0}:
       for(int i = 0; i<citations.size(); ++i){</pre>
12
           if (citations[i] >= (i+1)) {hvalue = i+1;}
13
14
15
       // printing citations
16
       cout << format("hvalue = {}\n", hvalue);</pre>
17
18
       // return
19
       return(0);
21
22
```

283. Move Zeros

Given an integer array nums, move all 0's to the end of it while maintaining the relative order of the non-zero elements. Note that you must do this in-place without making a copy of the array.

Examples

1. Example 1:

• Input: nums = [0,1,0,3,12]

• Output: [1,3,12,0,0]

2. Example 2:

• Input: nums = [0]

• Output: [0]

Constraints:

- $1 \le \text{nums.length} \le 10^4$
- $-2^{31} \le nums[i] \le 2^{31} 1$

```
int main(){
       // input- configuration
       vector<int> nums {0,1,0,3,12};
       // setup
       int explorer {0};
                      {0}:
       int anchor
       // going through the nums
10
       while(explorer < nums.size()){</pre>
           // moving explorer until we arrive at a non-zero value
           while(explorer < nums.size() && nums[explorer] == 0) {explorer++;}</pre>
           // copying value
16
           if (explorer<nums.size() && anchor <nums.size())</pre>
               nums[anchor++] = nums[explorer++];
       }
19
2.0
       // zeroing out the rest
21
       while(anchor < nums.size()) {nums[anchor++] = 0;}</pre>
22
23
       // printing the finaloutput
24
       cout << format("finaloutput = "); fPrintVector(nums);</pre>
25
26
       // return
27
       return(0);
29
30
```

345. Reverse Vowels Of A String

Given a string s, reverse only all the vowels in the string and return it. The vowels are 'a', 'e', 'i', 'o', and 'u', and they can appear in both lower and upper cases, more than once.

Examples

1. Example 1:

- Input: s = "IceCreAm"
- Output: "AceCreIm"
- Explanation: The vowels in s are ['I', 'e', 'e', 'A']. On reversing the vowels, s becomes "AceCreIm".

2. Example 2:

- Input: s = "leetcode"
- Output: "leotcede"

Constraints

- $1 \le \text{s.length} \le 3 * 10^5$
- s consist of printable ASCII characters.

```
int main(){
       // input- configuration
       string s {"leetcode"};
       // going through the string
       string
                   vowels
                                  {"aeiouAEIOU"};
       vector<int> vowel_indices;
       string
                 reversed_vowels;
       string
                  finaloutput = s;
10
11
       // going through the string
12
       for(int i = 0; i < s.size(); ++i){</pre>
13
           if (vowels.find(s[i]) != string::npos){
14
               reversed_vowels+=s[i];
               vowel_indices.push_back(i);
16
       }
18
19
       // refilling the indices
20
       for(int i = 0: i<vowel indices.size(): ++i){</pre>
21
           finaloutput[vowel_indices[i]] = reversed_vowels[reversed_vowels.size()-1-i];
       }
24
       // printing the final output
2.5
       cout << format("finaloutput = {}\n", finaloutput);</pre>
2.6
27
       // return
2.8
       return(0);
2.9
30
31
```

392. Is Subsequence

Given two strings s and t, return true if s is a subsequence of t, or false otherwise.

A subsequence of a string is a new string that is formed from the original string by deleting some (can be none) of the characters without disturbing the relative positions of the remaining characters. (i.e., "ace" is a subsequence of "abcde" while "aec" is not).

Examples

1. Example 1:

- Input: s = "abc", t = "ahbgdc"
- Output: true

2. Example 2:

- Input: s = "axc", t = "ahbgdc"
- · Output: false

Constraints

- $0 \le s.length \le 100$
- $0 \le t.length \le 10^4$
- s and t consist only of lowercase English letters.

```
int main(){
       // input- configuration
       string s {"abc"};
       string t {"ahbgdc"};
       // setup
       int i = 0;
       // going through the elements
10
       for(auto x: t) if (x == s[i]) ++i;
11
12
       // returning
13
       cout << format("final-output = {}\n", static_cast<bool>(i == s.size()));
14
15
16
       // return
17
       return(0);
18
19
   }
20
```

394. Decode String

Given an encoded string, return its decoded string.

The encoding rule is: k[encoded_string], where the encoded_string inside the square brackets is being repeated exactly k times. Note that k is guaranteed to be a positive integer.

You may assume that the input string is always valid; there are no extra white spaces, square brackets are well-formed, etc. Furthermore, you may assume that the original data does not contain any digits and that digits are only for those repeat numbers, k. For example, there will not be input like 3a or 2[4].

The test cases are generated so that the length of the output will never exceed 10^5 .

Examples

1. Example 1:

- Input: s = "3[a]2[bc]"
- Output: "aaabcbc"

2. Example 2:

- Input: s = "3[a2[c]]"
- Output: "accaccacc"

3. Example 3:

- Input: s = 2[abc]3[cd]ef
- Output: "abcabccdcdcdef"

Constraints:

- $1 \le s.length \le 30$
- s consists of lowercase English letters, digits, and square brackets '[]'.
- s is guaranteed to be a valid input.
- All the integers in s are in the range [1, 300].

```
int main(){
       // input- configuration
       string s {"100[leetcode]"};
       // running
       std::stack<char> mystack;
                                                                                    // stack
                                                                                    // temporary string used for decoding
       string
                         temp:
                         repcount {1};
                                                                                    // used for decoding
       int
10
       // going through the inputs
11
       for(int i = 0; i<s.size(); ++i){</pre>
          if(s[i] != ']') {mystack.push(s[i]);}
                                                                                    // pushing characters to stack until we
14
               arrive at "]"
           else{
              temp = "";
                                                                                    // initializing temporary string
16
              while(mystack.top() != '[') {
                                                                                    // expanding mini-string until we arrive at
                  temp = mystack.top() + temp;
18
                  mystack.pop();
19
```

```
}
       mystack.pop();
                                                                             // removing "["
       // calculating the repcount
       string numberasstring = "";
       while(mystack.size() != 0 &&
            mystack.top() - '0' >= 0 && '9' - mystack.top() >= 0)
       Ł
           numberasstring = mystack.top() + numberasstring;
           mystack.pop();
       repcount = std::stoi(numberasstring);
       // mini-decoding
       int multitempsize = repcount * temp.size();
                                                                             // calculating size after multiplication
       for(int j = 0; j<multitempsize; ++j) {</pre>
                                                                             // filling up the stack with decoded content
           mystack.push(temp[j%temp.size()]);
// creating the final output
string finaloutput;
while(mystack.size()){
   finaloutput = mystack.top() + finaloutput;
   mystack.pop();
}
// printing the final output
cout << format("finaloutput = {}\n", finaloutput);</pre>
// return
return(0);
```

2.0

22 23

2.8

2.9

31

32 33

34

35

36

42

43

45

46

47 48

49

50 51

52

54

55 }

443. String Compression

Given an array of characters chars, compress it using the following algorithm:

Begin with an empty string s. For each group of consecutive repeating characters in chars:

- 1. If the group's length is 1, append the character to s.
- 2. Otherwise, append the character followed by the group's length.

The compressed string s should not be returned separately, but instead, be stored in the input character array chars. Note that group lengths that are 10 or longer will be split into multiple characters in chars. After you are done modifying the input array, return the new length of the array. You must write an algorithm that uses only constant extra space.

Examples

1. Example 1:

- Input: chars = ["a","a","b","b","c","c","c"]
- Output: Return 6, and the first 6 characters of the input array should be: ["a","2","b","2","c","3"]
- Explanation: The groups are "aa", "bb", and "ccc". This compresses to "a2b2c3".

2. **Example 2:**

- Input: chars = ["a"]
- Output: Return 1, and the first character of the input array should be: ["a"]
- · Explanation: The only group is "a", which remains uncompressed since it's a single character.

3. Example 3:

- Output: Return 4, and the first 4 characters of the input array should be: ["a","b","1","2"].
- Explanation: The groups are "a" and "bbbbbbbbbbbb". This compresses to "ab12".

Constraints

- $1 \le chars.length \le 2000$
- chars[i] is a lowercase English letter, uppercase English letter, digit, or symbol.

```
int main(){
     // input- configuration
     // going through the character
     int p1
                   {0}:
     char runningchar {};
     char curr
                    {};
                    {0}:
     int count
     string finaloutput;
12
     // going through the inputs
     while(p1<chars.size()){</pre>
14
        // getting curren tchar
16
```

```
curr = chars[p1];
   // increasing count
   if (count == 0)
                                 {runningchar = chars[p1]; ++count;}
   else if(curr == runningchar) {++count;}
   else if(curr != runningchar) {
       finaloutput += runningchar; // writing character to current pointer
       if (count != 1)
           finaloutput += std::to_string(count); // increasing write-pointer
       runningchar = curr;
       count = 1;
   }
   // increasing pointer
   ++p1;
// flushing out
if (count != 0){
   finaloutput += runningchar; // writing character to current pointer
   if (count != 1)
       finaloutput += std::to_string(count); // increasing write-pointer
}
// writing to input
for(int i = 0; i<finaloutput.size(); ++i){</pre>
    chars[i] = finaloutput[i];
}
// printing the final output
cout << format("finaloutput = {}\n", finaloutput);</pre>
cout << "chars = "; fPrintVector(chars);</pre>
cout << format("return-value = {}\n", finaloutput.size());</pre>
// return
```

17

19

2.0

2.5

2.6

28 29

30

31 32 33

34

35

36

37

38

39 40

41

42.

43

45

46

47

48

49

51

```
52 return(0);
53
54 }
```