NATURAL LANGUAGE PROCESSING

Assignment - 03

On the Role of Text Preprocessing In Neural Network Architectures: An Evaluation Study on Text Categorization and Sentiment Analysis

NAME-MAKSUD ALAM

ID-16201033

COURSE-CSE431(SEC 01)

ABOUT

- In this paper, they emphasizes on the txt preprocessing methods for text categorization and sentiment analysis
- Here, they investigate the impact of simple text preprocessing decisions
- Provides insights into the best preprocessing practices for training word embeddings
- Focuses on the role of preprocessing of the input text and it's affects on the standard neural text classification models (like CNN)

METHODS USED FOR TEXT PREPROCESSING

- Tokenizing—given the input text, the tokenization method breaks the input text into a chunk of words.
- Lowercasing it is the simplest preprocessing technique that convert the whole input text into lower case letter. it may negatively impact system's performance by increasing ambiguity.
- Lemmatizing process of replacing a given token into it's corresponding lemma.
- Multiword grouping technique that grouped consecutive tokens together into a single token.

EVALUATION

Here they used two task for the experiments:

	Dataset	Type	Labels	# of docs	Eval.	
TOPIC	BBC	News	5	2,225	10-cross	
	20News	News	6	18,846	Train-test	
2	Reuters	News	8	9,178	10-cross	
	Ohsumed	Medical	23	23,166	Train-test	
Y	RTC	Snippets	2	438,000	Train-test	
=	IMDB	Reviews	2	50,000	Train-test	
AR	PL05	Snippets	2	10,662	10-cross	
POLARITY	PL04	Reviews	2	2,000	10-cross	
P	Stanford	Phrases	2	119,783	10-cross	

MODELS USED

- ◆ Here they used two classification models, one is CNN model using ReLUactivation function and the second one is LSTM using softmax function.
- ◆ these models are used for both topic categorization and polarity detection

DATASETS

Topic categorization

• For the topic categorization task we used the BBCnews dataset5 (Greene and Cunningham, 2006), 20News (Lang, 1995), Reuters6 (Lewis et al., 2004) and Ohsumed7. PL04 (Pang and Lee, 2004), PL058 (Pang and Lee, 2005),RTC9,IMDB(Maas et al., 2011)

Polarity Detection

• the Stanford sentiment dataset 10 (Socher et al., 2013, SF) were considered for polarity detection.

COMPARISON BETWEENTHETWO EXPERIMENTS

PREPROCESSING EFFECT

Polarity detection Topic categorization BBC Ohsumed IMDB PL05 PL04 SF 20News Reuters 94.6 76.3 58.7[†] 91.2 Vanilla 89.2 93.7 35.3 83.2 83.0 84.2[†] 59.6[†] 91.1 89.8 94.2 36.0 76.1 Lowercased 95.4 89.4 35.9 83.1 86.8 75.8[†] 64.2 91.2 Lemmatized 95.5 89.6 93.4 34.3 83.2 87.9 77.0 59.1[†] 91.2 Multiword 97.0 90.7 30.8^{\dagger} 84.8 88.9 79.1 71.4 87.1 Vanilla 88.3 37.5 79.5 87.1 Lowercased 90.5 37.1 84.4 78.7 72.6 86.8[†] Lemmatized 89.8 92.7 29.0[†] 79.2 67.0[†] 87.3 Multiword

CROSS-PREPROCESSING

20	Embedding	Topic categorization			Polarity detection					
	Preprocessing	BBC	20News	Reuters	Ohsumed	RTC	IMDB	PL05	PL04	SF
CNN	Vanilla	94.6	89.2	93.7	35.3	83.2	87.5 [†]	76.3	58.7 [†]	91.2
	Lowercased	93.9†	84.6 [†]	93.9	36.2	83.2	85.4 [†]	76.3	60.0^{\dagger}	91.1
	Lemmatized	94.5	88.7 [†]	93.8	35.4	83.0	86.8†	75.6	62.5	91.2
	Multiword	95.6	89.7	93.9	35.2	83.3	88.1	75.9	63.1	91.2
CNN+LSTM	Vanilla	97.0	90.7 [†]	93.1	30.8 [†]	84.8	88.9	79.1	71.4	87.1 [†]
	Lowercased	96.4	91.8	92.5 [†]	30.2	84.5	88.0†	79.0	74.2	87.4
	Lemmatized	96.6	91.5	92.5 [†]	31.7†	83.9	86.6 [†]	78.4^{\dagger}	67.7 [†]	87.3
	Multiword	97.3	91.3	92.8	33.6	84.3	87.3 [†]	79.5	71.8	87.5

CONCLUSION

- Their evaluations highlighted the importance of being careful in the choice of how to preprocess data and to be consistent when comparing different systems.
- Their analysis showed that there is a high variance in the results depending on the preprocessing choice.