

Theory of Computer Science

Automata, Languages and Computation

Third Edition

K.L.P. Mishra
N. Chandrasekaran

THEORY OF COMPUTER SCIENCE

Automata, Languages and Computation THIRD EDITION

K.L.P. MISHRA

Formerly Professor

Department of Electrical and Electronics Engineering and Principal, Regional Engineering College

Tiruchirapalli

N. CHANDRASEKARAN

Professor Department of Mathematics St. Joseph's College Tiruchirapalli

Delhi-110092 2016

₹ 275.00
× 273.00
THEORY OF COMPUTER SCIENCE (Automata, Languages and Computation), 3rd ed. K.L.P. Mishra and N. Chandrasekaran
© 2007 by PHI Learning Private Limited, Delhi. All rights reserved. No part of this book may be reproduced in any form, by mimeograph or any other means, without permission in writing from the publisher.
ISBN-978-81-203-2968-3
The export rights of this book are vested solely with the publisher.
Thirty-fourth Printing (Third Edition) April, 2016
Published by Asoke K. Ghosh, PHI Learning Private Limited, Rimjhim House, 111, Patparganj Industrial Estate, Delhi-110092 and Printed by Rajkamal Electric Press, Plot No. 2, Phase IV, HSIDC, Kundli-131028, Sonepat, Haryana.

Contents

Pre	eface		ix
No	tation.	s	xi
1.	PRO	POPOSITIONS AND PREDICATES	1–35
	1.1	Propositions (or Statements) 1	
		1.1.1 Connectives (Propositional Connectives	
		or Logical Connectives) 2	
		1.1.2 Well-formed Formulas 6	
		1.1.3 Truth Table for a Well-formed Formula 7	
		1.1.4 Equivalence of Well-formed Formulas 9	
		1.1.5 Logical Identities 9	
1.2 Normal Forms of Well-formed Formulas 11			
		1.2.1 Construction to Obtain a Disjunctive Normal	
		Form of a Given Formula 11	
		1.2.2 Construction to Obtain the Principal	
_		12	
		1.4.2 Well-formed Formulas of Predicate Calculus	21
	1.5	Rules of Inference for Predicate Calculus 23	
1.6 Supplementary Examples 26			
Self-Test 31 Exercises 32			

2.	MA	THEMATICAL PRELIMINARIES	36-70
	2.1	Sets, Relations and Functions 36	
		2.1.1 Sets and Subsets 36	
		2.1.2 Sets with One Binary Operation 37	
		2.1.3 Sets with Two Binary Operations 39	
		2.1.4 Relations <i>40</i>	
		2.1.5 Closure of Relations 43	
		2.1.6 Functions <i>45</i>	
	2.2	*	
		2.2.1 Graphs 47	
		2.2.2 Trees 49	
	2.3		
		2.3.1 Operations on Strings 54	
		2.3.2 Terminal and Nonterminal Symbols 56	
	2.4	Principle of Induction 57	
		2.4.1 Method of Proof by Induction 57	
		2.4.2 Modified Method of Induction 58	
		2.4.3 Simultaneous Induction 60	
	2.5	•	
	2.6	Tr Tr	
		Test 66	
	Exer	rcises 67	
3.	тні	E THEORY OF AUTOMATA	71–106
J.	3.1		71-100
	3.1		
	3.3		
	3.4	3	
	3.5	Acceptability of a String by a Finite Automaton 77	
	3.6		
	3.7		
	3.8	Mealy and Moore Models 84	
	5.0	3.8.1 Finite Automata with Outputs 84	
		3.8.2 Procedure for Transforming a Mealy Machine	
		into a Moore Machine 85	
		3.8.3 Procedure for Transforming a Moore Machine	
		into a Mealy Machine 87	
	3.9	Minimization of Finite Automata 91	
	٥.,	3.9.1 Construction of Minimum Automaton 92	
	3.10	Supplementary Examples 97	
		Test 103	
		reises 104	

4.	FOI	RMAL LANGUAGES	107–135
	4.1	Basic Definitions and Examples 107	
		4.1.1 Definition of a Grammar 109	
		4.1.2 Derivations and the Language Generated by a	
		Grammar 110	
	4.2	\mathcal{E}	
	4.3	Languages and Their Relation 123	
	4.4	Recursive and Recursively Enumerable Sets 124	
	4.5	Operations on Languages 126	
	4.6	Languages and Automata 128	
	4.7		
		Test 132	
	Exer	rcises 134	
5.	REC	GULAR SETS AND REGULAR GRAMMARS	136-179
	5.1	Regular Expressions 136	
		5.1.1 Identities for Regular Expressions 138	
	5.2		
		5.2.1 Transition System Containing Λ -moves 140	
		5.2.2 NDFAs with Λ -moves and Regular Expressions	142
		5.2.3 Conversion of Nondeterministic Systems to	
		Deterministic Systems 146	
		8 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	48
		5.2.5 Construction of Finite Automata Equivalent	
		to a Regular Expression 153	
		5.2.6 Equivalence of Two Finite Automata 157	
		5.2.7 Equivalence of Two Regular Expressions 160	
	5.3	Pumping Lemma for Regular Sets 162	
	5.4	Application of Pumping Lemma 163	
	5.5		
	5.6	Regular Sets and Regular Grammars 167	
		5.6.1 Construction of a Regular Grammar Generating	
		T(M) for a Given DFA M 168	
		5.6.2 Construction of a Transition System M Accepting	
	<i>5</i> 7	L(G) for a Given Regular Grammar G 169	
	5.7	11 1	
		Test 175 rcises 176	
,			100 227
6.		NTEXT-FREE LANGUAGES	180-226
	6.1	Context-free Languages and Derivation Trees 180	
	()	6.1.1 Derivation Trees 181	
	6.2	Ambiguity in Context-free Grammars 188	

	6.3 Simplification of Context-free Grammars 6.3.1 Construction of Reduced Grammars 6.3.2 Elimination of Null Productions 6.3.3 Elimination of Unit Productions 199
	6.4 Normal Forms for Context-free Grammars 6.4.1 Chomsky Normal Form 6.4.2 Greibach Normal Form 206
	6.5 Pumping Lemma for Context-free Languages 213
	6.6 Decision Algorithms for Context-free Languages 2176.7 Supplementary Examples 218
	Self-Test 223
	Exercises 224
	227
7.	PUSHDOWN AUTOMATA 227–266
	7.1 Basic Definitions 227
	7.2 Acceptance by pda 233
	7.3 Pushdown Automata and Context-free Languages 240
	7.4 Parsing and Pushdown Automata 251
	7.4.1 Top-down Parsing 252
	7.4.2 Top-down Parsing Using Deterministic pda's 256
	7.4.3 Bottom-up Parsing 258
	7.5 Supplementary Examples 260 Self-Test 264
	Exercises 265
	Littleses 200
8.	LR(k) GRAMMARS 267–276
	8.1 LR(<i>k</i>) Grammars 267
	8.2 Properties of $LR(k)$ Grammars 270
	8.3 Closure Properties of Languages 272
	8.4 Supplementary Examples 272
	Self-Test 273
	Exercises 274
9.	TURING MACHINES AND LINEAR BOUNDED
•	AUTOMATA 277–308
	9.1 Turing Machine Model 278
	9.2 Representation of Turing Machines 279
	9.2.1 Representation by Instantaneous Descriptions 279
	9.2.2 Representation by Transition Table 280
	9.2.3 Representation by Transition Diagram 281
	9.3 Language Acceptability by Turing Machines 283
	9.4 Design of Turing Machines 284
	9.5 Description of Turing Machines 289

	9.6	Techniques for TM Construction 289
		9.6.1 Turing Machine with Stationary Head 289
		9.6.2 Storage in the State 290
		9.6.3 Multiple Track Turing Machine 290
		9.6.4 Subroutines 290
	9.7	Variants of Turing Machines 292
		9.7.1 Multitape Turing Machines 292
		9.7.2 Nondeterministic Turing Machines 295
	9.8	The Model of Linear Bounded Automaton 297
		9.8.1 Relation Between LBA and Context-sensitive
		Languages 299
	9.9	Turing Machines and Type 0 Grammars 299
		9.9.1 Construction of a Grammar Corresponding to <i>TM</i> 299
	9.10	Linear Bounded Automata and Languages 301
		Supplementary Examples 303
	Self-7	
	-	cises 308
10.		IDABILITY AND RECURSIVELY ENUMERABLE
		GUAGES 309–321
		The Definition of an Algorithm 309
		Decidability 310
		Decidable Languages 311
		Undecidable Languages 313
	10.5	Halting Problem of Turing Machine 314
	10.6	1
	10.7	Supplementary Examples 317
	Self-7	
	Exerc	cises 319
11	CON	IPUTABILITY 322–345
11.		
		Introduction and Basic Concepts 322 Primitive Recursive Functions 323
	11.2	11.2.1 Initial Functions 323
		11.2.2 Primitive Recursive Functions Over <i>N</i> 325
	11.3	11.2.3 Primitive Recursive Functions Over $\{a, b\}$ 327 Recursive Functions 329
	11.3	
	11.4	11.4.1 Computability 332
		11.4.1 Computation 333
		11.4.2 A Turing Model for Computation 333
		11.4.4 Construction of the Turing Machine That
		Can Compute the Zero Function Z 334
		11.4.5 Construction of the Turing Machine for Computing—
		The Successor Function 335
		THE BUCCESSUL FUNCTION JJJ

11.4.6 Construction of the Turing Mach the Projection U_i^m 336	ine for Computing
11.4.7 Construction of the Turing Mach	ine That Can
Perform Composition 338	me mat can
11.4.8 Construction of the Turing Mach Perform Recursion 339	ine That Can
11.4.9 Construction of the Turing Mach	ine That Can Perform
Minimization 340	
11.5 Supplementary Examples 340	
Self-Test 342	
Exercises 343	
12. COMPLEXITY	346-371
12.1 Growth Rate of Functions 346	
12.2 The Classes P and NP 349	
12.3 Polynomial Time Reduction and NP-com	_
12.4 Importance of <i>NP</i> -complete Problems	352
12.5 SAT is <i>NP</i> -complete 353	
12.5.1 Boolean Expressions 353	
12.5.2 Coding a Boolean Expression	353
12.5.3 Cook's Theorem <i>354</i>	
12.6 Other <i>NP</i> -complete Problems 359	
12.7 Use of <i>NP</i> -completeness 360	
12.8 Quantum Computation 360	
12.8.1 Quantum Computers 361	
12.8.2 Church–Turing Thesis 362	2.52
12.8.3 Power of Quantum Computation	363
12.8.4 Conclusion 364	
12.9 Supplementary Examples 365	
Self-Test 369	
Exercises 370	
Answers to Self-Tests	373-374
Solutions (or Hints) to Chapter-end Exercises	375 – 415
Further Reading	417-418
Index	419-422

Preface

The enlarged third edition of *Theory of Computer Science* is the result of the enthusiastic reception given to earlier editions of this book and the feedback received from the students and teachers who used the second edition for several years.

The new edition deals with all aspects of theoretical computer science, namely **automata**, **formal languages**, **computability** and **complexity**. Very few books combine all these theories and give adequate examples. This book provides numerous examples that illustrate the basic concepts. It is profusely illustrated with diagrams. While dealing with theorems and algorithms, the emphasis is on constructions. Each construction is immediately followed by an example and only then the formal proof is given so that the student can master the technique involved in the construction before taking up the formal proof.

The key feature of the book that sets it apart from other books is the provision of detailed solutions (at the end of the book) to chapter-end exercises.

The chapter on Propositions and Predicates (Chapter 10 of the second edition) is now the first chapter in the new edition. The changes in other chapters have been made without affecting the structure of the second edition. The chapter on Turing machines (Chapter 7 of the second edition) has undergone major changes.

A novel feature of the third edition is the addition of objective type questions in each chapter under the heading Self-Test. This provides an opportunity to the student to test whether he has fully grasped the fundamental concepts. Besides, a total number of 83 additional solved examples have been added as Supplementary Examples which enhance the variety of problems dealt with in the book.

Theory Of Computer Science: Automata, Languages And Computation

Publisher: PHI Learning ISBN: 9788120329683

Author: MISHRA, K.L.P., CHANDRASEKARAN, N.

Type the URL: http://www.kopykitab.com/product/7411

Get this eBook