Homework 11: Due at class on May 30

1 Electromagnetic duality

1.1 Differential form

An *n*-form field is defined by

$$A_n = \frac{1}{n!} A_{\mu_1, \mu_2, \cdots, \mu_n} dx^{\mu_1} \wedge dx^{\mu_2} \wedge \cdots \wedge dx^{\mu_n} . \tag{1.1}$$

Hodge dual in a *D*-dimensional curved space is defined by

$$*A_n = \frac{\sqrt{|G|}}{n!(D-n)!} \epsilon_{\mu_1, \dots, \mu_{D-n}}{}^{\mu_{D-n+1}, \dots, \mu_D} A_{\mu_{D-n+1}, \dots, \mu_D} dx^{\mu_1} \wedge \dots \wedge dx^{\mu_{D-n}} , \qquad (1.2)$$

where *G* is the determinant of a metric G_{MN} , and $\epsilon_{\mu_1, \dots, \mu_D}$ is the totally anti-symmetric tensor and normalized as $\epsilon_{0,1,\dots,D-1} = 1$.

Confirm that

$$\frac{1}{2g^2} \int F_2^2 \equiv \frac{1}{2g^2} \int F_2 \wedge *F_2 = \frac{1}{4g^2} \int \sqrt{|G|} d^D x \, F_{\mu\nu} F^{\mu\nu} \,. \tag{1.3}$$

(For example, compare the coefficients of $F_{01}F^{01}$ term in both side. If it is still difficult consider D=4.)

Comment: this is the convention used in the lecture for kinetic terms of anti-symmetric tensors in SUGRA.

1.2 Electromagnetic duality

Let us consider a following action

$$S = -\frac{1}{2g^2} \int F_{n+1} \wedge *F_{n+1} - \int f_{D-n-1} \wedge (F_{n+1} - dA_n) , \qquad (1.4)$$

where F_{n+1} and A_n are independent each other.

- Consider an equation of motion for f_{D-n-1} and derive the solution for the E.O.M. Then, what is the physical meaning of F_{n+1} and S with the solution ?
- Consider an E.O.M. for F_{n+1} and derive the solution. Rewrite the action S in terms of f_{D-n-1} using the solution.
- Consider an equation of motion for A_n with the action $S(f_{D-n-1})$ and derive the solution for the E.O.M. Then, what is the physical meaning of f_{D-n-1} and $S(f_{D-n-1})$ with the solution ?
- Define $\widetilde{S}=(\text{sign})S$, where you should properly choose the (sign) so that the kinetic term has the usual sign. If we write $\widetilde{S}\equiv -\frac{1}{2\widetilde{g}^2}\int \widetilde{F}_{D-n-1}\wedge *\widetilde{F}_{D-n-1}$, what is the value of \widetilde{g} in terms of g?

(Again, if you are confused with the differential form convention get back to normal convention and consider D=4.)

2 Dirac monopole

2.1 Wu-Yang monopole

Let us consider so called Dirac monopole, which is a field configuration of **B** that satisfies

$$\nabla \cdot \mathbf{B} = q_m \delta^3(\mathbf{r}) \,, \tag{2.1}$$

where $\delta^3(\mathbf{r})$ is a three-dimensional delta function and \mathbf{r} is a three-dimensional space point vector.

- Derive a solution of **B**.
- Explain that **B** cannot be expressed by space components of a gauge field **A** globally.

Consider the polar coordinate (r, θ, ϕ) and a following gauge field

$$\mathbf{A}^{N} = \frac{q_{m}(1 - \cos \theta)}{4\pi r \sin \theta} \mathbf{e}_{\phi},\tag{2.2}$$

$$\mathbf{A}^{S} = -\frac{q_{m}(1 + \cos \theta)}{4\pi r \sin \theta} \mathbf{e}_{\phi}, \tag{2.3}$$

where \mathbf{A}^N is defined in a region $r \neq 0$ and $\theta \neq \pi$, and \mathbf{A}^S is defined in a region $r \neq 0$ and $\theta \neq 0$. (Comments: The singular lines are called Dirac string. Those solutions are called Wu-Yang monopole. The point is that a gauge field A_μ is a section of fiber bundle and is not necessarily defined globally.)

- Show that $\mathbf{A}^N \mathbf{A}^S$ is a gauge transformation in the region $r \neq 0$ and $\theta \neq 0$, π .
- Show that both \mathbf{A}^N and \mathbf{A}^S lead the \mathbf{B} derived above in the region where they are defined.
- Show that magnetic flux Φ from the monopole is q_m , using \mathbf{A}^N and \mathbf{A}^S .

The statements so far are based on vector analysis. More properly, a gauge field is a 1-form A_1 and magnetic flux density is a 2-form B_2 . Let us rewrite the statements in terms of differential forms.

- Explain that Eq. (2.1) can be expressed as $dF_2 = q_m \delta_3(\mathbf{r})$, where $\delta_3(\mathbf{r})$ is a 3-form delta function: $\delta_3(\mathbf{r}) = \delta^3(\mathbf{r}) d^3\mathbf{r} = \delta(x) \delta(y) \delta(z) dx \wedge dy \wedge dz$.
- Explain the Wu-Yang monopole can be written by

$$A_N = \frac{q_m}{4\pi} (1 - \cos \theta) d\phi , \qquad A_S = -\frac{q_m}{4\pi} (1 + \cos \theta) d\phi . \qquad (2.4)$$

- Show that $A_N A_S$ is a gauge transformation.
- Show that magnetic flux Φ from the monopole is q_m , using A_N and A_S in terms of differential forms.

2.2 Dirac quantization condition

The previous argument in differential forms can be easily generalized to higher dimension. Let us consider a (p + 1)-form gauge field C_{p+1} , which satisfies following equation of motion.

$$\frac{1}{2\kappa^2}dG_{p+2} = q_m \delta_{p+3}(M_{D-p-3}), \qquad (2.5)$$

where G_{p+2} is a field strength of C_{p+1} , $\delta_{p+3}(M_{D-p-3})$ is a (p+3)-form delta function, and M_{D-p-3} is a world-sheet of an object that is magnetically coupled to C_{p+1} (Consider D=4 and p=0, which is the monopole case).

- (Optional) Explain the origin of $2\kappa^2$.
- Show that G_{p+2} integrated over a sphere enclosing the magnetic object is $2\kappa^2 q_m$.

Let us consider an object that is electrically coupled to C_{p+1} , whose coupling is

$$S_E = q_e \int_{E_{p+1}} C_{p+1} = q_e \int_{\widehat{E}_{p+2}} G_{p+2} \equiv S_E(\widehat{E}_{p+2}),$$
 (2.6)

where E_{p+1} is a world-sheet that starts from $t = -\infty$ and ends at $t = \infty$ or starts at \mathbf{x}_0 and ends at \mathbf{x}_0 (closed path), and \widehat{E}_{p+2} is a manifold whose boundary is E_{p+1} .

• Since a choice of \widehat{E}_{p+2} is arbitrary one can consider a deformation of $\delta \widehat{E}_{p+2} = \widehat{E}_{p+2}^N - \widehat{E}_{p+2}^S$, and then, $e^{iS_E(\delta \widehat{E}_{p+2})} = 1$. Show that this leads Dirac quantization condition.

3 $SL(2,\mathbb{R})$ invariance of type IIB SUGRA

• Show that the $SL(2, \mathbb{R})$ invariance of the type IIB SUGRA.

4 Kaluza-Klein theory

Let us consider a D + 1-dimensional real scalar Kaluza-Klein theory:

$$\mathcal{L}^{(D+1)} = -\frac{1}{2} G^{MN} \partial_M \phi \partial_N \phi . \tag{4.1}$$

The metric is given by

$$ds^{2} = G_{MN}dx^{M}dx^{N} = g_{\mu\nu}dx^{\mu}dx^{\nu} + e^{2\sigma} (dy + A_{\mu}dx^{\mu})^{2}, \qquad (4.2)$$

where M, N run from 0 to D, μ , ν run from 0 to D-1, and $y \equiv x^D$, which is compactified to S^1 with radius r.

• Rewrite the Lagrangian in terms of μ , ν , and y, rather than M, N.

- Calculate the determinant of G_{MN} (i.e. $G \equiv \det G_{MN}$) and express it in terms of $g \equiv \det g_{\mu\nu}$.
- Assume that the fields $(g_{\mu\nu}, A_{\mu}, \sigma)$ are independent of y, except ϕ , which can be expanded as $\phi(\mathbf{x}, y) = \sum_{n \in \mathbb{Z}} \phi_n(\mathbf{x}) e^{iny/r}$, $(\phi_n^*(\mathbf{x}) = \phi_{-n}(\mathbf{x}))$. Write down the effective Lagrangian of D-dimensional theory:

$$\sqrt{-g}\mathcal{L}^{(D)} = \int dy \sqrt{-G}\mathcal{L}^{(D+1)}. \tag{4.3}$$

• Derive the masses of the fields ϕ_n , and their coupling constants to the KK-gauge field A_{μ} .

Let us consider a gravi-dilaton KK-theory:

$$S_{EH}^{(D+1)} \simeq \frac{1}{2\kappa^2} \int d^{D+1}x \sqrt{-G} e^{-2\Phi} \Big(R + \cdots \Big) ,$$
 (4.4)

which, with the same metric Eq. (4.2), reduces to

$$S_{EH}^{(D)} \simeq \frac{2\pi L}{2\kappa^2} \int d^D x \sqrt{-g} e^{-2\Phi} \left(R + \cdots \right) , \qquad (4.5)$$

where we defined $L = re^{-\sigma}$, and \cdots includes the dilaton kinetic term and other terms that are not important here.

• Define an effective coupling $\frac{1}{2\kappa_{\rm eff}^2} = \frac{2\pi L}{2\kappa^2}e^{-2\langle\Phi\rangle}$, and compare it with that of T-dual theory. $\frac{1}{2\kappa_{\rm eff}^2}$ should be the same after the T-dual. Derive the value of $\langle\widetilde{\Phi}\rangle$ in terms of $\langle\Phi\rangle$, where $\langle\widetilde{\Phi}\rangle$ is a dilaton vev of the T-dual theory.