

Silicon Valley

L'IA au service des agents immobiliers

Contexte du projet

Vous êtes développeur AI dans une startup de la Silicon Valley qui fournit des services dans le domaine de l'investissement immobilier. Les chargés de relation client ont mentionné que la demande a augmenté récemment et qu'il devient difficile de faire des estimations personnalisées. De ce fait, l'entreprise vous a confier d'automatiser cette tâche avec un modèle prédictif.

Pour cela, vous avez récupéré une base de données qui contient les prix médians des logements pour les districts de Californie issus du recensement de 1990.

L'objectif est de créer un modèle avec vos données (train) pour prédire la valeur du prix médian des maisons par district / bloc (medianHouseValue). A la fin du projet, vous devez évaluer ce modèle avec les données (validation) que seul votre client dispose (le prof).

Notebooks

EDA

Exploration / Missing values / Encoding / Visualisation

INFERENCE

Analyse d'inférence statistique avec Statsmodels

MODEL

Présentation de toutes les itérations

PREDICT

Pre-cleaning et utilisation du modèle

Encoding

Encodage de ocean_proximity avec get_dummies (librairie Pandas)

clean_df = pd.get_dummies(df, columns=['ocean_proximity'], prefix=["place"])

Dropping

Suppression de la colonne Unnamed:0 qui n'a aucune utilité

df.drop(['Unnamed: 0'], axis=1, inplace=True)

Missing values

Traitement des 176 données manquantes sur total_bedrooms avec le KNN Imputer

knn_imputer = KNNImputer(n_neighbors=2, weights="uniform")
df['total_bedrooms'] = knn_imputer.fit_transform(df[['total_bedrooms']])

02 INFERENCE

Variable dépendante : median_house_value

Accuracy de l'OLS regression : 0.62

Coef

Les variables explicatives, housing_median_age, total_bedrooms et households ont la meilleure corrélation avec median_house_value

Standard error:

total_rooms, total_bedrooms et place_INLAND ont les erreurs standards les moins élevés et ont donc une meilleure estimation.

03

MODEL

Iteration 1 / R2 : 0.65

Régression linéaire (avec toutes les features)

Iteration 2 / R2: 0.54

Régression linéaire avec les 3 features les plus corrélées

Iteration 3 / R2:0.0

Dummy Regressor (avec toutes les features)

Iteration 4 / R2: 0.76

Random Forest (avec toutes les features)

Iteration 5 / R2 : 0.55

Standard Scaler / PCA / Régression linéaire

PREDICT

Voir EDA pour le pre_cleaning puis :

K-MEANS (3 clusters)

Insertion ensuite dans le dataframe afin de créer de nouvelles features

clusters_0	clusters_1	clusters_2
0	0	1
1	0	0

Robust Scaler

Traitement de la distribution des données avec outliers

KNN Regressor (5 neighbors)

Afin d'obtenir, selon moi, la meilleure prédiction, le KNN Regressor était l'algorithme le plus adéquat en utilisant les points voisins suggérant le meilleur prix de vente.

R2 = 0.90