日本国特許庁 JAPAN PATENT OFFICE

24.12.03

別紙添付の書類に記載されている事項は下記の出願書類に記載されている事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office.

出 願 年 月 日
Date of Application:

2002年12月25日

出 願 番 号 Application Number:

特願2002-374397

[ST. 10/C]:

[JP2002-374397]

REC'D 19 FEB 2004

WIPO PCT

出 願 人 Applicant(s):

松下電器產業株式会社

PRIORITY DOCUMENT

SUBMITTED OR TRANSMITTED IN COMPLIANCE WITH RULE 17.1(a) OR (b)

特許庁長官 Commissioner, Japan Patent Office 2004年 2月 5日

今井康

BEST AVAILABLE COPY

【書類名】

特許願

【整理番号】

2161740021

【提出日】

平成14年12月25日

【あて先】

特許庁長官殿

【国際特許分類】

H03H 9/25

【発明者】

【住所又は居所】

大阪府門真市大字門真1006番地 松下電器産業株式

会社内

【氏名】

高山 了一

【発明者】

【住所又は居所】

大阪府門真市大字門真1006番地 松下電器産業株式

会社内

【氏名】

中西 秀和

【発明者】

【住所又は居所】

大阪府門真市大字門真1006番地 松下電器産業株式

会社内

【氏名】

井上 孝

【発明者】

【住所又は居所】 大阪府門真市大字門真1006番地 松下電器産業株式

会社内

【氏名】

川崎 哲生

【発明者】

【住所又は居所】

北海道室蘭市水元町27-1 室蘭工業大学 電子電気

工学科内

【氏名】

長谷川 弘治

【特許出願人】

【識別番号】

000005821

【氏名又は名称】

松下電器産業株式会社

【代理人】

【識別番号】

100097445

【弁理士】

【氏名又は名称】

岩橋 文雄

【選任した代理人】

【識別番号】 100103355

【弁理士】

【氏名又は名称】 坂口 智康

【選任した代理人】

【識別番号】 100109667

【弁理士】

【氏名又は名称】 内藤 浩樹

【手数料の表示】

【予納台帳番号】 011305

【納付金額】

21,000円

【提出物件の目録】

【物件名】

明細書 1

【物件名】

図面 1

【物件名】

要約書 1

【包括委任状番号】 9809938

【発明の名称】 電子部品およびこの電子部品を用いた電子機器

【特許請求の範囲】

【請求項1】 基板と、この基板の上面に設けた櫛型電極と、この櫛型電極を覆うとともに天面に凹凸形状を有する保護膜とを備え、この保護膜の凹凸形状の1ピッチあたりのピッチ幅をL、前記保護膜の凹凸形状の1ピッチあたりの凹凸の凸部の幅をL1、凹部の幅をL2、前記櫛型電極の1ピッチあたりのピッチ幅をp、前記櫛型電極を構成する電極指1本あたりの幅をp1、前記電極指間の幅をp2としたとき、

$$\lceil L 1 \leq p 1$$
、かつ $L 2 \geq p 2$

(ただし、 $L \Rightarrow p$ 、p1+p2=p、L1+pL2=Lの関係を満たす)」である電子部品。

【請求項2】 1ピッチあたりの保護膜のピッチ幅Lと前記保護膜の凹凸形状の1ピッチあたりの凹凸の凸部の幅L1との比L1/Lを η , とし、1ピッチあたりの櫛型電極のピッチ幅pと前記櫛型電極を構成する電極指1本あたりの幅p1との比p1/pを η としたとき、 η と η , との関係が

$$\lceil \eta - 0 \rceil \quad 3 \leq \eta \quad \leq \eta$$

(ただし、 $L \stackrel{.}{=} p$ 、p1+p2=p、L1+pL2=Lの関係を満たす)」である請求項1に記載の電子部品。

【請求項3】 1ピッチあたりの保護膜の凹凸の凸部の幅L1の中心をLcとし、前記1ピッチあたりの保護膜の凸部の下方に位置する櫛型電極の電極指の幅p1の中心をpcとしたとき、Lcとpcがほぼ同一直線状に存在している請求項1に記載の電子部品。

【請求項4】 基板は、タンタル酸リチウム基板であって、かつこのタンタル酸リチウム基板の切出し角度が、X軸周りにZ軸方向への回転角度をD°とした場合、

のY板から切出されたものである請求項1に記載の電子部品。

【請求項5】 保護膜は、基板表面から前記保護膜の凹部までの高さで定義さ

 $\lceil 18\% \le t 1/(2 \times p) \le 35\% \rceil$

である請求項1に記載の電子部品。

【請求項6】 保護膜は、二酸化シリコンである請求項1に記載の電子部品。

【請求項7】 少なくとも1つのアンテナと、このアンテナに電気的に接続する電気回路を有する電子機器であって、前記電気回路は複数の電子部品を備え、この複数の電子部品の少なくとも一つは、基板と、この基板の上面に設けた櫛型電極と、この櫛型電極を覆うとともに天面に凹凸形状を有する保護膜とを備え、この保護膜の凹凸形状の1ピッチあたりのピッチ幅をL、前記保護膜の凹凸形状の1ピッチあたりのピッチ幅をL2、前記櫛型電極の1ピッチあたりの凹凸の凸部の幅をL1、凹部の幅をL2、前記櫛型電極の1ピッチあたりのピッチ幅をp、前記櫛型電極を構成する電極指1本あたりの幅をp1、前記電極指間の幅をp2としたとき、

「 $L1 \le P1$ 、かつ $L2 \ge p2$

(ただし、 $L \rightleftharpoons p$ 、p1+p2=p、L1+pL2=Lの関係を満たす)」である電子部品で構成している電子機器。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】

本発明は、電子部品およびこの電子部品を用いた電子機器に関するものである

[0002]

【従来の技術】

以下、従来の電子部品について説明する。

[0003]

本従来の技術では、電子部品の一例として弾性表面波デバイス(以下、「SAWデバイス」と記す。)を例にとり説明する。

[0004]

近年、小型軽量なSAWデバイスは、各種移動体通信端末機器等の電子機器に 多く使用されている。特に、800MHz~2GHz帯における携帯電話システ

ムの無線回路部には、タンタル酸リチウム(以下、「LT」と記す。)基板の切出角度が、X軸周りの Z軸方向への回転角度が36°である Y板から切出された、いわゆる36°Yカット X伝播のLT(以下、「36°YLT」と記す。)を用いて作成した SAWフィルタが広く用いられてきた。しかし、携帯電話のシステムやその無線回路部におけるフィルタの使用箇所によっては、さらなる通過帯域の低挿入損失化およびフィルタのスカート特性が急峻で、かつ阻止域における抑圧度の高いフィルタ特性が要求されている。この様な要求を満たすため、LT基板の切出角度が、X軸周りの Z軸方向への回転角度が42°である Y板から切出された、いわゆる42°Yカット X伝播のLT(以下、「42°YLT」と記す。)基板を用いることで、従来の36°YLT基板を用いるよりも、より低損失かつフィルタのスカート特性が急峻な SAWフィルタを実現する方法が、特許文献1に示されている。

[0005]

【特許文献1】

特開平9-167936号公報

[0006]

【発明が解決しようとする課題】

しかしながら、42°YLT基板は、従来の36°YLT基板同様、弾性表面波の伝播方向の基板の熱膨張係数が大きく、また弾性定数そのものも温度により変化するため、フィルタの周波数特性も温度の変化に対して約-35ppm/°Kと、大きくシフトしてしまうという、温度特性に課題を有していた。例えばアメリカのPCS用の送信フィルタを例にとって考えた場合、常温で中心周波数1.88GHzのフィルタが、常温±50℃で、約±3.3MHzつまり約6.6MHzも変動する。PCSの場合、送信帯域と受信帯域の間隔は20MHzしかなく、製造上の周波数ばらつきも考慮すると、フィルタにとっての送受信間隔は実質10MHz程度しかない。このため、例えば送信帯域を全温度(常温±50℃)で確保しようとすると受信側の減衰量が十分に取れなくなるという問題を有していた。

[0007]

[0008]

【課題を解決するための手段】

上記目的を達成するために、本発明の第1の発明は、電子部品に設けた天面に凹凸形状を有する保護膜は、保護膜の凹凸形状の1ピッチあたりのピッチ幅をL、前記保護膜の凹凸形状の1ピッチあたりの凹凸の凸部の幅をL1、凹部の幅をL2、前記櫛型電極の1ピッチあたりのピッチ幅をp、前記櫛型電極を構成する電極指1本あたりの幅をp1、前記電極指間の幅をp2としたとき、

$\lceil L \mid 1 \leq p \mid 1$, $h \supset L \mid 2 \geq p \mid 2$

(ただし、L≒p、p1+p2=p、L1+pL2=Lの関係を満たす)」であるもので、保護膜を電極を覆うように形成したことで、電極指間に物理的なSAWの反射面が形成されることを防ぎ、その結果、保護膜が電極を覆うように形成されかつその表面に凸凹状態が存在する場合においても、特性の良い電子部品を得ることができるという作用を有する。

[0009]

【発明の実施の形態】

以下、本発明の実施の形態における電子部品について、図面を参照しながら説明する。本実施の形態では電子部品の一例としてSAWデバイスを例にして説明する。

[0010]

(実施の形態 1)

図1 (a) は本発明の実施の形態1 における電子部品としてのSAWデバイスの上面図、図1 (b) は同断面図である。

[0011]

同図に示すように本実施の形態1のSAWデバイスは、基板1の上面に櫛型電極2を、この櫛型電極2の両側に反射器3とを備え、少なくともこれら櫛型電極2および反射器3を覆う保護膜4を備えるものである。さらに櫛型電極2には、

[0012]

基板1は、X軸周りに Z軸方向へ数度回転させた Y板から切出したタンタル酸リチウムからなるもので、その回転の角度が36°である36°YLT基板である。

[0013]

櫛型電極2はアルミニウム(以下、「Al」と記する。)またはAl合金からなるものである。

[0014]

保護膜4は、好ましくは二酸化シリコン(以下、「SiO2」と記述する。)からなるもので、図1(b)に示すように、その上面は凹凸形状を備えている。保護膜4の凸部分4aは、基板1の上面の櫛型電極2を有する部分の上方に備えている。また、保護膜4の凹部分4bは、凸部分4a間の櫛型電極2が基板1の上面に存在しない部分およびその近傍に備えている。

[0015]

ここで、保護膜4の凸部分4 a、凹部分4 b 6 b 6 b 6 b 6 c 6

[0016]

また、保護膜4と接している基板1の表面から保護膜4の凹部分4bでの高さを t とする。

[0017]

本発明の実施の形態1においては、

(ただし、 $L \doteq p$ 、p 1+p 2=p、L 1+p L 2=L の関係を満たす)」の関係を満たすものである。

[0018]

なお、上述した基板 1 には 3 6 ° Y L T 基板を用いたが、この基板 1 を、 X 軸 周 0 に Z 軸方向へ D ° 回転させた Y 板から切出した L T として、その回転の角度 D ° が

であるD°YLT基板を用いても同様の効果を奏する。

[0019]

また、保護膜4の凸部分4 aの幅L1の中心をLc、この保護膜4の凸部分4 aの下方およびその近辺に存在する電極指2の1本あたりの幅p1の中心をpcとした場合、Lcとpcとがほぼ同一直線状に存在していることが好ましい。

[0020]

以上のように構成されるSAWデバイスについて、以下にその製造方法を図面を参照しながら説明する。

[0021]

図 2 は本発明の実施の形態 1 における S A Wデバイスの製造方法を説明する図である。

[0022]

まず、図2(a)に示すように、LT基板21の上面にAlまたはAl合金を蒸着またはスパッタ等の方法により櫛型電極または/および反射器となる電極膜22を成膜する。

[0023]

次に、図2(b)に示すように、電極膜22の上面にレジスト膜23を形成する。

[0024]

次に、図2(c)に示すように、所望の形状となるように露光・現像技術等を 用いてレジスト膜23を加工する。

[0025]

[0026]

次に、図2(e)に示すように、電極膜22を覆うように SiO_2 を蒸着またはスパッタ等の方法により、保護膜24を形成する。

[0027]

次に、さらに図 2 (f) に示すように、保護膜 2 4 の表面にレジスト膜 2 5 を形成する。

[0028]

次に、図2(g)に示すように、露光・現像技術等を用いてレジスト膜25を 所望の形状に加工する。

[0029]

次に、図2(h)に示すように、ドライエッチング技術等を用いて、電気信号取出しのためのパッド26等、保護膜24が不要な部分の保護膜を取り除き、その後、レジスト膜25を除去する。

[0030]

最後にダイシングにより個々に分割した後、セラミックパッケージにダイボンド等によりマウントし、ワイヤーボンディング後、蓋を溶接し気密封止を行った

[0031]

以上のようにして作成されたSAWデバイスについて、電気的特性(共振器特性)を調べた。その結果、発明者らは良い特性が得られることを確認した。

[0032]

また、発明者らは温度特性に関しても調べた結果、保護膜として SiO_2 を用い、基板表面から前記保護膜の凹部までの高さで定義される保護膜の厚さ t が

$$\lceil 18\% \le t / (2 \times p) \le 35\% \rfloor$$

の条件を満たしている場合に良好な温度特性が得られることも合わせて確認した

[0033]

以下本発明の実施の形態 2 における S A Wデバイスについて図面を参照しなが ら説明する。

[0034]

本実施の形態2においてSAWデバイスは、実施の形態1と同様のSAWデバイスを用いた。図3は本発明の実施の形態2におけるSAWデバイスの断面図である。本図において、実施の形態1で用いた図1(b)と同様の構成は同一符号を付し、その説明は省略する。

[0035]

図3において保護膜34は好ましくはSiO2からなるもので、図3に示すように、その上面は凹凸形状を備えている。保護膜34の凸部分34aは、基板1の上面の櫛型電極2を有する部分の上方に備えている。また、保護膜34の凹部分34bは、凸部分34a間の櫛型電極2が基板1の上面に存在しない部分およびその近傍に備えている。ここで、保護膜34の凸部分34a、凹部分34b各々1つを1ピッチとし、この1ピッチあたりのピッチ幅をLとし、保護膜34の凸部分34aの幅をL2(L=L1+L2が成り立つこと)とする。

[0036]

[0037]

本実施の形態2と実施の形態1の図1(b)とが相違する点は、実施の形態1の図1(b)の保護膜4の凸部分4aの幅L1が、電極指2aの幅p1よりも単に小さければよいのに対して、本実施の形態2の図3では、保護膜34の凸部分34aの幅L1と電極の幅p1がある一定の範囲に制限されている点が相違する

[0038]

本発明の実施の形態 2 においては、

(ただし、 $L \doteq p$ 、p 1+p 2=p、L 1+p L 2=L の関係を満たす)」の関係を満たすと同時に、

$$\lceil \eta - 0 . \quad 3 \leq \eta' \leq \eta$$

(ただし、 $L \doteq p$ 、p 1+p 2=p、L 1+p L 2=L の関係を満たす)」の関係を満たすものである。

[0039]

なお、本実施の形態 2 における、SAWデバイスの作成方法は、実施の形態 1 で説明した方法と同様であるので、説明は省略する。

[0040]

以上のように構成したSAWデバイスについて、発明者らが電気的特性(共振器特性)について調べた結果、良い特性が得られることを確認した。また、温度特性についても調べた結果、保護膜としてSiO2を用い、基板表面から保護膜の凹部までの高さをtとすると、

$$\lceil 18\% \le t / (2 \times p) \le 35\% \rfloor$$

の条件を満たしている場合に良好な温度特性が得られることも合わせて確認した 。

[0041]

(実施の形態3)

以下に本発明の実施の形態3における電子機器について図面を参照しながら説明する。

[0042]

本実施の形態では、電子機器の一例として携帯電話を例にとり説明する。

[0043]

図4 (a) は本発明の実施の形態3における、携帯電話の概観図、図4 (b) は同内部の要部電気回路図である。

[0044]

同図に示すように本実施の形態3の携帯電話は、アンテナ41およびこのアンテナ41に接続されたアンテナ共用器42を有している。このアンテナ共用器4

[0045]

本実施の形態における送信用SAWフィルタ42aおよび受信用SAWフィルタ42bは、実施の形態1、2で説明した何れかのSAWデバイスを用いるものである。

[0046]

以上のように構成した携帯電話に対して、発明者らは、その感度を-25℃から85℃の環境下で測定したところ、温度変化に対して、感度の変化が少ないことを確認した。

[0047]

【発明の効果】

以上のように本発明によれば、基板上に形成された電極を覆うように保護膜を 形成し、かつその保護膜の形状や厚さを特定の範囲に設定することによって温度 特性および電気的特性が優れるという効果を奏する。

【図面の簡単な説明】

【図1】

- (a) 本発明の実施の形態1における電子部品の構成を示す上面図
- (b) 同断面図

[図2]

本発明の実施の形態1における電子部品の製造方法を説明する図

【図3】

本発明の実施の形態2における電子部品の断面図

【図4】

- (a) 本発明の実施の形態3における電子機器の概観図
- (b) 同内部の要部電気回路図

【符号の説明】

- 1 基板
- 2 櫛型電極

- 2 a 電極指
- 3 反射器
- 4 保護膜
- 4 a 保護膜の凸部分
- 4 b 保護膜の凹部分
- 5 パッド
- 2 1 基板
- 22 電極膜
- 23 レジスト膜
- 2 4 保護膜
- 25 レジスト膜
- 26 パッド
- 3 4 保護膜
- 34a 保護膜の凸部分
- 34b 保護膜の凹部分
- 41 アンテナ
- 42 アンテナ共用器
- 42a 送信用SAWフィルタ
- 42b 受信用SAWフィルタ

図面

【図1】

【図2】

【図3】

【要約】

【課題】 電極上に保護膜を形成することによって温度特性および電気的特性が優れた電子部品を得ることを目的とするものである。

【解決手段】 保護膜 4 の凹凸形状の 1 ピッチあたりのピッチ幅を L 、保護膜 4 の凹凸形状の 1 ピッチあたりの凹凸の凸部の幅を L 1 、凹部の幅を L 2 、櫛型電極 2 の 1 ピッチあたりのピッチ幅を p 、櫛形電極 2 を構成する電極指 1 本あたりの幅を p 1 、電極指 2 a間の幅を p 2 としたとき、「L $1 \le p$ 1 、かつ L $2 \ge p$ 2 (ただし、L = p 、p 1 + p 2 = p 、L 1 + p L 2 = L の関係を満たす)」である。

【選択図】 図1

出願人履歴情報

識別番号

[000005821]

 変更年月日 [変更理由]

住所氏名

1990年 8月28日

新規登録

大阪府門真市大字門真1006番地

松下電器産業株式会社

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:
☐ BLACK BORDERS
☐ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
☐ FADED TEXT OR DRAWING
☐ BLURRED OR ILLEGIBLE TEXT OR DRAWING
☐ SKEWED/SLANTED IMAGES
☐ COLOR OR BLACK AND WHITE PHOTOGRAPHS
☐ GRAY SCALE DOCUMENTS
☐ LINES OR MARKS ON ORIGINAL DOCUMENT
REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY
OTHER:

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.