Calculus II

Integrals involving radicals of quadratics, table of substitutions

Todor Miley

2019

- Let *R* be a rational function in two variables.
- So far, with linear transformations we converted all integrals of the form $\int R(x, \sqrt{ax^2 + bx + c}) dx$ to one of the three forms: $\int R(x, \sqrt{x^2 + 1}) dx$, $\int R(x, \sqrt{-x^2 + 1}) dx$, $\int R(x, \sqrt{x^2 1}) dx$.
- Each of the above integrals can be transformed to a rational trigonometric integral using 3 pairs of substitutions: $x = \tan \theta$, $x = \cot \theta$; $x = \sin \theta$, $x = \cos \theta$; $x = \csc \theta$, $x = \sec \theta$.
- We studied that trigonometric integrals are converted to rational function integrals via $\theta = 2 \arctan t$.
- The resulting 3 pairs of substitutions are called Euler substitutions: $x = \tan(2 \arctan t)$, $x = \cot(2 \arctan t)$; $x = \sin(2 \arctan t)$, $x = \cos(2 \arctan t)$; $x = \sec(2 \arctan t)$.
- The Euler substitutions directly transform the integral to a rational function integral.
- We will demonstrate that the Euler substitutions are rational.

Trigonometric substitution and Euler substitution

Expression	Substitution	Variable range	Relevant identity
$\sqrt{x^2+1}$	$x = \tan \theta$	$ heta\in\left(-rac{\pi}{2},rac{\pi}{2} ight)$	$1 + \tan^2 \theta = \sec^2 \theta$
	$x = \cot \theta$	$\theta \in (0,\pi)$	$1 + \cot^2 \theta = \csc^2 \theta$
$\sqrt{-x^2+1}$	$x = \sin \theta$	$\theta \in \left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$	$1 - \sin^2 \theta = \cos^2 \theta$
	$x = \cos \theta$	$\theta \in (0,\pi)^{-1}$	$1 - \cos^2 \theta = \cos^2 \theta$
$\sqrt{x^2-1}$	$X = \csc \theta$	$ heta \in \left[0, \frac{\pi}{2}\right) \cup \left[\pi, \frac{3\pi}{2}\right)$	$\csc^2\theta - 1 = \cot^2\theta$
	$x = \sec \theta$	$\theta \in \left[0, \frac{\pi}{2}\right) \cup \left[\pi, \frac{3\pi}{2}\right)$	$ \sec^2 \theta - 1 = \tan^2 \theta$

Euler substitution by applying in addition $\theta = 2 \arctan t$

$$\sqrt{x^{2}+1} \qquad x = \frac{2t}{1-t^{2}} \qquad -1 < t < 1 \qquad (?)$$

$$x = \frac{1}{2} \left(\frac{1}{t} - t\right) \qquad 0 < t \qquad (?)$$

$$\sqrt{-x^{2}+1} \qquad x = \frac{2t}{1+t^{2}} \qquad -1 \le t \le 1 \qquad (?)$$

$$x = \frac{1-t^{2}}{1+t^{2}} \qquad 0 < t \qquad (?)$$

$$\sqrt{x^{2}-1} \qquad x = \frac{1}{2} \left(\frac{1}{t} + t\right) \qquad t \in (-\infty, -1) \cup [0, 1)$$

$$x = \frac{1+t^{2}}{1-t^{2}} \qquad t \in (-\infty, -1) \cup [0, 1)$$

$$x = \frac{1+t^{2}}{1-t^{2}} \qquad t \in (-\infty, -1) \cup [0, 1)$$

$$x = \frac{1+t^{2}}{1-t^{2}} \qquad t \in (-\infty, -1) \cup [0, 1)$$

$$x = \frac{1+t^{2}}{1-t^{2}} \qquad t \in (-\infty, -1) \cup [0, 1)$$

$$x = \frac{1+t^{2}}{1-t^{2}} \qquad t \in (-\infty, -1) \cup [0, 1)$$