Introduzione alla teoria dei campi

§1.1 La caratteristica di un campo

Si consideri il seguente omomorfismo:

$$\psi: \mathbb{Z} \to \mathbb{K}$$
,

completamente determinato dalla condizione $\psi(1)=1$, dacché \mathbb{Z} è generato da 1. Si studia innanzitutto il caso in cui Ker $\psi=(0)$. In questo caso, ψ è un monomorfismo, e dunque $\mathbb{Z}\cong \operatorname{Im}\psi$.

Pertanto, \mathbb{K} ammetterebbe come sottoanello una copia isomorfa di \mathbb{Z} . Inoltre, poiché \mathbb{K} è un campo, deve anche ammetterne gli inversi, e quindi ammetterebbe come sottocampo una copia isomorfa di \mathbb{Q} . La seguente definizione classificherà questi tipi di campo.

Definizione 1.1.1. Si dice che un campo \mathbb{K} è di caratteristica zero (char $\mathbb{K} = 0$), quando $\operatorname{Ker} \psi = (0)$.

Altrimenti, se Ker $\psi \neq (0)$, dacché \mathbb{Z} è un anello euclideo, Ker ψ deve essere monogenerato da un intero n, ossia Ker $\psi = (n)$.

Tuttavia non tutti gli interi sono ammissibili. Sia infatti n non primo, allora n=ab con $a, b \neq \pm 1$. Si nota innanzitutto che $\psi(a) \neq 0$, se infatti fosse nullo, n dovrebbe dividere a, impossibile dal momento che |a| < |n|, ℓ . Analogamente anche $\psi(b) \neq 0$.

Se n fosse generatore di Ker ψ si ricaverebbe allora che:

$$\underbrace{\psi(a)}_{\neq 0}\underbrace{\psi(b)}_{\neq 0} = \psi(n) = 0,$$

che è assurdo, dal momento che \mathbb{K} , in quanto campo, è anche un dominio. Quindi n deve essere un numero primo. In particolare, allora $\mathbb{Z}_p = \mathbb{Z}/(p) \cong \operatorname{Im} \psi$, ossia \mathbb{K} contiene una copia isomorfa di \mathbb{Z}_p , a cui ci riferiremo semplicemente con \mathbb{F}_p .

Allora, poiché sia \mathbb{K} che \mathbb{F}_p sono campi, \mathbb{K} è uno spazio vettoriale su \mathbb{F}_p . Si può dunque classificare quest'ultimo tipo di campi con la seguente definizione:

Definizione 1.1.2. Si dice che un campo \mathbb{K} è di caratteristica p (char $\mathbb{K}=p$) quando $\operatorname{Ker} \psi = (p)$, con p primo.

Osservazione. La caratteristica di un campo non distingue i campi finiti dai campi infiniti. Esistono infatti campi infiniti di caratteristica p, come il campo delle funzioni razionali su \mathbb{Z}_p :

$$\mathbb{Z}_p(x) = \left\{ \frac{f(x)}{g(x)} \mid f(x), g(x) \in \mathbb{Z}_p[x], g(x) \neq 0 \right\}.$$

Infatti $\psi(p) = p \psi(1) = 0$.

§1.2 Prime proprietà dei campi di caratteristica p

Come si è appena visto, un campo \mathbb{K} di caratteristica p contiene al suo interno un sottocampo \mathbb{F}_p isomorfo a \mathbb{Z}_p , ed è per questo uno spazio vettoriale su di esso. A partire da questa informazione si può dimostrare la seguente proposizione.

Proposizione 1.2.1

Sia \mathbb{K} un campo di caratteristica p. Allora, per ogni elemento v di \mathbb{K} , pv = 0.

Dimostrazione. Considerando ogni elemento di $\mathbb K$ come vettore e p come scalare, si ricava che:

$$pv = (\underbrace{1 + \ldots + 1}_{p \text{ volte}})v = (\underbrace{\psi(1) + \ldots + \psi(1)}_{p \text{ volte}})v = \psi(p)v = 0v = 0.$$

Mentre, partendo da questa proposizione, si può dimostrare il seguente teorema.

Teorema 1.2.2 (*Teorema del binomio ingenuo*)

Siano $a \in b$ elementi di un campo di caratteristica p. Allora $(a + b)^p = a^p + b^p$.

Dimostrazione. Per dimostrare la tesi si applica la formula del binomio di Newton nel seguente modo:

$$(a+b)^p = \sum_{i=0}^p \binom{p}{i} a^{p-i} b^p.$$

Tuttavia, dal momento che p è un fattore di tutti i binomiali per $1 \le i \le p-1$, tutti i termini computati con queste i sono nulli per la *Proposizione 1.2.1*. Si desume così l'identità della tesi.

§1.3 L'omomorfismo di Frobenius

Definizione 1.3.1. Dato un campo \mathbb{K} di caratteristica p, si definisce **omomorfismo di Frobenius** per il campo \mathbb{K} la funzione:

$$\mathcal{F}: \mathbb{K} \to \mathbb{K}, a \mapsto a^p$$
.

Osservazione. In effetti, l'omomorfismo di Frobenius è un omomorfismo.

Infatti, $\mathcal{F}(1) = 1^p = 1$. Inoltre tale funzione rispetta la linearità per il *Teorema del binomio ingenuo*:

$$\mathcal{F}(a+b) = (a+b)^p = a^p + b^p = \mathcal{F}(a) + \mathcal{F}(b),$$

e chiaramente anche la moltiplicatività:

$$\mathcal{F}(ab) = (ab)^p = a^p b^p = \mathcal{F}(a)\mathcal{F}(b).$$

Proposizione 1.3.2

L'omomorfismo di Frobenius di un campo \mathbb{K} di caratteristica p è un monomorfismo.

Dimostrazione. Si prenda in considerazione Ker \mathcal{F} . Esso è sicuramente un ideale diverso da \mathbb{K} , dacché $1 \notin \text{Ker } \mathcal{F}$. Tuttavia, se Ker $\mathcal{F} \neq (0)$, Ker \mathcal{F} , dal momento che \mathbb{K} , in quanto campo, è un anello euclideo, e quindi un PID, è monogenerato da un invertibile.

Se però così fosse, Ker \mathcal{F} coinciderebbe con il campo \mathbb{K} stesso, \mathcal{I} . Quindi Ker $\mathcal{F} = (0)$, da cui la tesi.

Proposizione 1.3.3

Sia \mathbb{K} un campo finito di caratteristica p. Allora l'omomorfismo di Frobenius è un automorfismo.

Dimostrazione. Dalla Proposizione 1.3.2 è noto che \mathcal{F} sia già un monomorfismo. Dal momento che il dominio e il codominio sono lo stesso e constano entrambi dunque di un numero finito di elementi, se \mathcal{F} non fosse surgettivo, vi sarebbe un elemento di \mathbb{K} a cui non è associato nessun elemento di \mathbb{K} mediante \mathcal{F} .

Per il principio dei cassetti, allora, spartendo $|\mathbb{K}|$ elementi in $|\mathbb{K}|-1$ elementi, vi sarebbe almeno un elemento dell'immagine a cui sarebbero associati due elementi del dominio. Tuttavia questo è assurdo dal momento che \mathcal{F} è un monomorfismo. Quindi \mathcal{F} è un epimorfismo.

Dacché \mathcal{F} è contemporaneamente un endomorfismo, un monomorfismo e un epimorfismo, è allora anche un automorfismo.

Proposizione 1.3.4

Sia $\mathbb K$ un campo di caratteristica p e si definisca l'insieme dei punti fissi del suo omomorfismo di Frobenius:

$$Fix(\mathcal{F}^n) = \{ a \in \mathbb{K} \mid \mathcal{F}^n(a) = a \}.$$

Allora $Fix(\mathcal{F}^n)$ è un sottocampo di \mathbb{K} .

Dimostrazione. Affinché $Fix(\mathcal{F}^n)$ sia un sottocampo di \mathbb{K} , la sua somma e la sua moltiplicazione devono essere ben definite, e ogni suo elemento deve ammettere un inverso sia additivo che moltiplicativo.

Siano allora $a, b \in \text{Fix}(\mathcal{F}^n)$. \mathcal{F}^n è un omomorfismo, in quanto è composizione di omomorfismi (in particolare, dello stesso omomorfismo \mathcal{F}). Sfruttando le proprietà degli omomorfismi si dimostra dunque che $a + b \in \text{Fix}(\mathcal{F}^n)$:

$$\mathcal{F}^n(a+b) = \mathcal{F}^n(a) + \mathcal{F}^n(b) = a+b,$$

e che $ab \in Fix(\mathcal{F}^n)$:

$$\mathcal{F}^n(ab) = \mathcal{F}^n(a)\mathcal{F}^n(b) = ab.$$

Analogamente si dimostra che $-a \in Fix(\mathcal{F}^n)$:

$$\mathcal{F}^n(-a) = -\mathcal{F}^n(a) = -a,$$

e che $a^{-1} \in \text{Fix}(\mathcal{F}^n)$:

$$\mathcal{F}^n(a^{-1}) = \mathcal{F}^n(a)^{-1} = a^{-1}.$$

§1.4 Classificazione dei campi finiti

Teorema 1.4.1

Ogni campo finito \mathbb{K} di caratteristica p consta di p^n elementi, con $n \in \mathbb{N}^+$.

Dimostrazione. Come già detto precedentemente, \mathbb{K} è uno spazio vettoriale su una copia isomorfa di \mathbb{Z}_p , \mathbb{F}_p .

Si consideri allora il grado $[\mathbb{K} : \mathbb{F}_p]$. Sicuramente questo grado non è infinito, dal momento che \mathbb{K} non ha infiniti elementi. Quindi $[\mathbb{K} : \mathbb{F}_p] = n \in \mathbb{N}$.

Sia dunque $(k_1, k_2, ..., k_n)$ una base di \mathbb{K} su \mathbb{F}_p . Ogni elemento a di \mathbb{K} si potrà dunque scrivere come:

$$a = \alpha_1 k_1 + \ldots + \alpha_n k_n, \quad \alpha_1, \ldots, \alpha_n \in \mathbb{F}_p,$$

e dunque vi saranno in totale p^n elementi, dove ogni p è contato dal numero di elementi che è possibile associare ad ogni coefficiente, ossia $|\mathbb{F}_p| = p$, per il numero di elementi appartenenti alla base, ossia $[\mathbb{K} : \mathbb{F}_p] = n$, da cui la tesi.

Teorema 1.4.2

Per ogni $n \in \mathbb{N}^+$ e per ogni numero primo p esiste un campo finito con p^n elementi.

Dimostrazione. Si consideri il polinomio $x^{p^n} - x$ su \mathbb{Z}_p e un suo campo di spezzamento A. Fix (\mathcal{F}^n) , per la *Proposizione 1.3.4*, è un sottocampo, e contiene esattamente le radici di $x^{p^n} - x$, che in A si spezza in fattori lineari, per definizione.

La derivata di $x^{p^n} - x$ è $p^n x^{p^n-1} - 1 \equiv -1$, dacché A è uno spazio vettoriale su \mathbb{Z}_p , e pertanto vale ancora la *Proposizione 1.2.1*. Dal momento che -1 e $x^{p^n} - x$ non hanno fattori lineari in comune, per il *Criterio della derivata*, $x^{p^n} - x$ non ammette radici multiple.

Allora $Fix(\mathcal{F}^n)$ è un campo con p^n elementi, ossia tutte le radici di $x^{p^n} - x$ (e coincide quindi con il campo di spezzamento A), da cui la tesi.