Week 1

Assignment Project Exam Help

Introduction to Numbers
Udaya Parampalli

https://powcoder.com

University of Melbourne

Week 1

Overview Lecture
Subject Overview

Assignment Project Exam Help

Introduction to cryptography.

https://powcoder.com

Lecture 2

Introduction to Numbers

Add WeChat powcoder

Quizz 1

Workshops start from Week 2

- 2.1 Fundamentals
- 2.2 Division and Remainders 2.3 Philips Powcoder.com
- 2.4 GCD computation

A set is a collection of objects. The objects are referred to as

A selements of the set. Project Exam Help $X = \{a, b, c\}$ is a set with three elements a, b and c.

https:/	/powcoder.co	Symbol Used
Natural Numbers	$\{0, 1, 2, 3, \cdots\}$	N
Integers	$\{\cdots, -2, -1, 0, +1, +2, \cdots\}$	Z
Posi t ive Integers Negative integers	VeChat, powc	oder

Table: Examples of Sets

Assignment Project Exam Help The set of integers is a major source of finite sets.

For example, for a positive integer n, the set of numbers from 0 to

n - 1 form a finite set of
$$n$$
 entities denoted by Z_n . Powcoder. Com
$$Z_n := \{0, 1, 2, \dots, n-1\}$$

The properties of such finite sets play a vital role in coding theory.

Add WeCnat powcoder

Assignment Priplet X, Y, f Ewhere Help

- Y: a set called range or codomain and
- f: a rule which assigns to each element in X precisely one enterpsy./// iperwood for the first com

Example: Encoding: E.

Add WeChat powcoder

Where the message domain is all binary vectors of length K and the codomain is a space of N bit numbers.

Example from Cryptographic Functions

- Assignment Project Exam Help Message Space, \mathcal{M} : Consists of strings of symbols from an
 - Message Space, \mathcal{M} : Consists of strings of symbols from an alphabet.
 - Tipher Text Space Consists of strings of symbols from an alphabet which may differ form the alphabet of M.
 - ullet Key space \mathcal{K} : A set of key space and an element of \mathcal{K} is key.
 - · Add We Chat powcoder
 - Decryption function, D_d :

$$M = D_d(C)$$

- 2.2 Division and Remainders
 - Divisibility.

 Liping with Pow Coder.com

 Finding Remander and Modulo Operation

 - Division Theorem

Divisibility

A shi integer "a" is said to Pdivisible by a positive integer "Handle Policy of Philadelp

(The above statement is also same as "b" divides "a".) In the following statements, a, b, c are integers.

- https://powcoder.com
- 2 a|b and b|c implies a|c,
- 3 a|b and b|a implies $a = \pm b$,
- · Add WeChat poweoder
- \bullet a b implies ca | cb, for any c.

```
Proof of (4).
```

```
Since a|b, we have b = ma for some integer m. Similarly since a|c, we can write a|c, a|c
```

Division with Remainder

Assignment Project Exam Help

Then let c be the largest integer smaller than a and is multiple of b; a https://powcoder.com

where c = q b < a; then Add WeChat powcoder

q is the quotient and r is called as **remainder modulo** b.

Finding Remainder and Modulo Operation

Let a be any integer b a positive integer which is not zero, then are A suggicted properties of the properties a = ab + r, 0 < r < b.

The deptiment can be obtained by a b b, where a represents the floor function which returns the largest integer less than or equal to x. The remainder r is written as

Add WeChat powcoder

Example: $12 \mod 5 = 2$.

 $-12 \mod 5 = 3$.

Division Theorem

$\mathsf{Theorem}$

A Sest grand be are integers and assume that be positive. Then there there is positive. Then there is positive.

$$a = qb + r, 0 \le r < b.$$

Proof https://powcoder.com

For fixed a and b, let \overline{X} be the collection of integers of the form a-xb. Let r be the least non-negative integer in X, and let q be the concessor on \overline{X} in \overline{X} be the concessor of \overline{X} be the collection of integers of the \overline{X} be the form a-xb. Let r be the least non-negative integer in X, and let q be the collection of integers of the form a-xb. Let a-xb be the collection of integers of the form a-xb.

Note that this follows from the well-ordering principle.

Now we need to examine the uniqueness of q and r:

Proof Cont.

Suppose they are not unique, then we have q b + r = q' b + r'.

WLG (Without loss of generality): $r \le r'$.

Then, (q - q') b = (r' - r) and $r' - r \ge 0$.

Assignment Project Exam Help

https://powcoder.com

But $r' - r \le r' < b$

So we have

Add WeChat powcoder

This is a contradiction to $r \neq r'$.

Therefore r = r' and

subsequently, q = q'.

2.3 Prime Numbers

http://www.composite.Numbers.der.com

A useful theorem

Prime Numbers

Definition

Saluth in a pine pure of Exampas File p

Definition

The united Sich and Who Who be tre composite numbers.

There are infinitely many prime numbers.

Can you prove this? There is a simple proof originally attributed to Euclid.

Prime Numbers

A State Infinitely many prime numbers. Exam Help

Greatest Common Divisor (GCD)

and des two integers in and nathen d is called a con divisor. The greatest of common divisors of the integers is the GCD of m and n. https://powcoder.com

Definition

Numbers m and n are said to be relatively prime if the GCD of m And National And We Chat powcoder

Example: gcd(3,5) = 1

gcd(2,14) = 2;

A useful theorem

Theorem

Assignment Project Exam Help

Proof.

If a and bale identically explicitly early the least the early trivially true. Otherwise let d = gcd(a, b). Since d|a and d|b, we have d|a - qb (the divisibility property (4)). So, d|r and d is a common divisor of both b and r. Now let c be a divisor of b and a. i.e c|b and a. This means that c is a common divisor of a and b. So, $c \le d$. This implies that d = gcd(b, r).

Thus, we have proved gcd(a, b) = gcd(b, r).

• Key Fact for GCD computation

http Bustration was contention

- Modular Arithmetic
- Modular Multiplicative Inverse

Key Fact for GCD computation

There is an algorithm to compute gcd which is considered as one ASSI GARAGE TO THE PROPERTY OF THE PROPERTY OF

Let a Attp Sile / powcoder.com

gcd(a, b) = gcd(b, (a mod b)).

From the block factoring the hard which we have $r = a \mod b$ is the remainder. It is clear that a common divisor of a and b is divisor of r too and the result is obvious.

```
x:=a; y:=b;
while y:>0 do: {//powcoder.com
x:=y;
y:=r; }
return(x)dd WeChat powcoder
```

GCD Illustration through Manual Computations

Consider gcd(33, 21):

https://powcoder.com
$$3 = 12 - 1 \times 9 \qquad From(C)$$

$$3 = 12 - 1 \times (21 - 1 \times 12) \qquad From(B)$$

$$Add^{3} \times (21 - 1 \times 12) \qquad From(A)$$

$$3 = 2 \times 33 + (-3) \times 21 \qquad Simplification$$

Note that the gcd (in this case 3) can be written as a function of its inputs (33 and 21). This is an extended Euclidean algorithm helps in computing inverses! We will

Modular Arithmetic

Let a and b be integers and let n be a positive integer. We say "a" is congruent to "b", modulo n and write

Assignment Project Exam Help if a and b differ by a multiple of n; i.e.; if n is a factor of |b-a|.

Every integer is congruent mod n to exactly one of the integers in the same three same in the same

We can define the following operations:

Add WeChat, powcoder

$$x \otimes_n y = (xy) \mod n$$

When the context is clear we use the above special addition and multiplication symbols interchangeably with their counterpart regular symbols.

Modular Multiplicative Inverse

Assignment Project Exam Help

Let $x \in Z_n$, if there is an integer y such that

https://powcoder.com
then we say y is the multiplicative inverse of x. It is denoted by

then we say y is the multiplicative inverse of x. It is denoted by $y = x^{-1}$ usually.

Example GG = Wickerself in POWGO GG 2 is inverse of 3 modulo 5.

Determining multiplicative inverse

Assignment Project Exam Help

For any integers a and b, there exist integers x and y such that

https://powcoder.com

You can determine x and y by modifying Euclid's algorithm for gcd(a,b). Thus we can say that we can find inverse of a modulo n provided gcd(a,n) and gcd(a,n) are determined from the result. Can you think how?

Fundamental Theorem of Arithmetic

SSelvannont Phospower factorization.

 $\underset{\textit{where } \tau \textit{ is a positive number.}}{\text{https://powcoder.com}}^{n = \prod_{i=1}^{\tau} p_i^{a_i}} der.com$

```
Example: 15 = Add WeChat powcoder 32 =? 2<sup>607</sup> - 1 =? 3937 =?
```

Fundamental Theorem of Arithmetic

 $\underset{\textit{where } \tau \textit{ is a positive number.}}{\text{https://powcoder.com}}^{n = \prod_{i=1}^{\tau} p_i^{a_i}} der.com$

Example:
$$_{15}$$
 = Add WeChat powcoder $_{32}$ = $_{2}^{5}$ $_{2}^{607}$ - $_{1}$ = $_{1}$ ($_{2}^{607}$ - $_{1}$) $_{3937}$ = $_{127}$ * $_{31}$

Overview Lecture

ssignment Project Exam Help Introduction to cryptography.

Lecture 2

Introlluction to Numbers Wcoder.com
2.1 Fundamentals

- 2.2 Division and Remainders
- 2.3 And We Chat powcoder
- 2.4 GCD computation

Quizz 1

Workshops start from Week 2

