import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns

df = pd.read csv('heart.csv')

df

	age	sex	ср	trestbps	chol	fbs	restecg	thalach	exang	oldpeak	slope
0	63	1	3	145	233	1	0	150	0	2.3	0
1	37	1	2	130	250	0	1	187	0	3.5	0
2	41	0	1	130	204	0	0	172	0	1.4	2
3	56	1	1	120	236	0	1	178	0	0.8	2
4	57	0	0	120	354	0	1	163	1	0.6	2
298	57	0	0	140	241	0	1	123	1	0.2	1
299	45	1	3	110	264	0	1	132	0	1.2	1
300	68	1	0	144	193	1	1	141	0	3.4	1
301	57	1	0	130	131	0	1	115	1	1.2	1
302	57	0	1	130	236	0	0	174	0	0.0	1

303 rows × 14 columns

df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 303 entries, 0 to 302
Data columns (total 14 columns):

#	Column	Non-Null Count	Dtype
0	age	303 non-null	int64
1	sex	303 non-null	int64
2	ср	303 non-null	int64
3	trestbps	303 non-null	int64
4	chol	303 non-null	int64
5	fbs	303 non-null	int64
6	restecg	303 non-null	int64
7	thalach	303 non-null	int64
8	exang	303 non-null	int64
9	oldpeak	303 non-null	float64
10	slope	303 non-null	int64
11	ca	303 non-null	int64
12	thal	303 non-null	int64
13	target	303 non-null	int64

```
dtypes: float64(1), int64(13)
```

df.isnull().sum()

age sex 0 0 Ср trestbps chol 0 fbs 0 restecq thalach 0 exang oldpeak 0 slope 0 ca 0 thal target dtype: int64

df['target'].value_counts()

1 165 0 138

Name: target, dtype: int64

df.describe()

	age	sex	ср	trestbps	chol	fbs	res
count	303.000000	303.000000	303.000000	303.000000	303.000000	303.000000	303.00
mean	54.366337	0.683168	0.966997	131.623762	246.264026	0.148515	0.52
std	9.082101	0.466011	1.032052	17.538143	51.830751	0.356198	0.52
min	29.000000	0.000000	0.000000	94.000000	126.000000	0.000000	0.00
25%	47.500000	0.000000	0.000000	120.000000	211.000000	0.000000	0.00
50%	55.000000	1.000000	1.000000	130.000000	240.000000	0.000000	1.00
75%	61.000000	1.000000	2.000000	140.000000	274.500000	0.000000	1.00
max	77.000000	1.000000	3.000000	200.000000	564.000000	1.000000	2.00

```
corr_matrix = df.corr()
corr_matrix['target'].sort_values(ascending=False)
```

```
target 1.000000
          0.433798
ср
thalach 0.421741 slope 0.345877
          0.345877
slope
restecg
          0.137230
fbs
          -0.028046
chol
          -0.085239
trestbps
          -0.144931
          -0.225439
age
```

```
sex -0.280937
thal -0.344029
ca -0.391724
oldpeak -0.430696
exang -0.436757
```

Name: target, dtype: float64

```
import seaborn as sns
corrdf = df.corr('pearson')

fig, ax = plt.subplots(figsize=(20,10))
sns.heatmap(corrdf, annot=True, linewidths=.5, ax=ax)
```

<matplotlib.axes._subplots.AxesSubplot at 0x7f77a8e8a090>

	_			_	_			_							
age -	1	-0.098	-0.069	0.28	0.21	0.12	-0.12	-0.4	0.097	0.21	-0.17	0.28	0.068	-0.23	-1
ĕ -	-0.098	1	-0.049	-0.057	-0.2	0.045	-0.058	-0.044	0.14	0.096	-0.031	0.12	0.21	-0.28	- 0
8 -	-0.069	-0.049	1	0.048	-0.077	0.094	0.044	0.3	-0.39	-0.15	0.12	-0.18	-0.16	0.43	
trestbps	0.28	-0.057	0.048	1	0.12	0.18	-0.11	-0.047	0.068	0.19	-0.12	0.1	0.062	-0.14	- 0
do -	0.21	-0.2	-0.077	0.12	1	0.013	-0.15	-0.0099	0.067	0.054	-0.004	0.071	0.099	-0.085	
sg.	0.12	0.045	0.094	0.18	0.013	1	-0.084	-0.0086	0.026	0.0057	-0.06	0.14	-0.032	-0.028	- 0
restecg	-0.12	-0.058	0.044	-0.11	-0.15	-0.084	1	0.044	-0.071	-0.059	0.093	-0.072	-0.012	0.14	
thalach restecg	-0.4	-0.044	0.3	-0.047	-0.0099	-0.0086	0.044	1	-0.38	-0.34	0.39	-0.21	-0.096	0.42	- 0
exang	0.097	0.14	-0.39	0.068	0.067	0.026	-0.071	-0.38	1	0.29	-0.26	0.12	0.21	-0.44	- 0
oldpeak	0.21	0.096	-0.15	0.19	0.054	0.0057	-0.059	-0.34	0.29	1	-0.58	0.22	0.21	-0.43	
slope	-0.17	-0.031	0.12	-0.12	-0.004	-0.06	0.093	0.39	-0.26	-0.58	1	-0.08	-0.1	0.35	
g -	0.28	0.12	-0.18	0.1	0.071	0.14	-0.072	-0.21	0.12	0.22	-0.08	1	0.15	-0.39	
thal	0.068	0.21	-0.16	0.062	0.099	-0.032	-0.012	-0.096	0.21	0.21	-0.1	0.15	1	-0.34	
target	-0.23	-0.28	0.43	-0.14	-0.085	-0.028	0.14	0.42	-0.44	-0.43	0.35	-0.39	-0.34	1	
-	age	sex	ф	trestbps	chol	fbs	restecg	thalach	exang	oldpeak	slope	ca	thal	target	

```
disease_count = df['target'].value_counts()
disease_count.plot(kind='bar', color=['red','steelblue'],figsize=(5,5))
index = [0,1]
plt.xlabel('Presence of Heart disease(target)')
plt.ylabel('Disease count')
plt.xticks(index, ['With Heart Disease', 'Without Heart Disease'],rotation=0)
plt.title('Overall Count of people who have or do not have heart disease')
plt.show()
```

Overall Count of people who have or do not have heart disease


```
sex_disease = df.groupby(['sex'])['target'].value_counts()
plot = sex_disease.loc(axis=0)[:,:]
index = [0,1]
p = plot.groupby(['sex','target']).sum().unstack()
p.plot(kind='bar',figsize=(10,5))
plt.xlabel('Sex')
plt.xticks(index, ['Female', 'Male'],rotation=0)
plt.ylabel('Frequency')
plt.show()
```



```
cp = df.groupby(['cp'])['target'].value_counts()
plot = cp.loc(axis=0)[:,:]
index = [0,1,2,3]
p = plot.groupby(['cp','target']).sum().unstack()
p.plot(kind='bar',figsize=(10,5))
```

```
plt.xlabel('Types of Chest Pain')
plt.xticks(index,['typical angina','atypical angina','non - anginal pain', 'asympto
plt.ylabel('Count')
plt.show()
```


sns.catplot(data=df,x='sex',y='age',hue='target',palette='husl')


```
#plot 1:
x = df['cp']
y = df['target']

plt.subplot(1, 2, 1)
plt.plot(x,y)
plt.title("SALES")
```

```
#plot 2:
# x = np.array([0, 1, 2, 3])
# y = np.array([10, 20, 30, 40])

# plt.subplot(1, 2, 2)
# plt.plot(x,y)
# plt.title("INCOME")

# plt.show()
```

Text(0.5, 1.0, 'SALES')

from sklearn.linear_model import LogisticRegression
from sklearn.preprocessing import MinMaxScaler
from sklearn.model selection import train test split

```
from sklearn.preprocessing import StandardScaler
StandardScaler = StandardScaler()
columns_to_scale = ['age','trestbps','chol','thalach','oldpeak']
df[columns_to_scale] = StandardScaler.fit_transform(df[columns_to_scale])

X = df.drop("target", 1)
y = df["target"]
X_train, X_test, y_train, y_test = train_test_split( X, y, test_size=0.25, random_s

lr = LogisticRegression()
model = lr.fit(X_train,y_train)
prediction1=model.predict(X_test)

from sklearn.metrics import accuracy_score
accuracy_score(y_test,prediction1)
```

0.7631578947368421

×