K-THÉORIE ALGÉBRIQUE

PIERRE GODFARD

Introduction. [TBD]

Table des matières

1. Les groupes K_0 , K_1 et K_2	1
1.1. Les groupes K_0 et K'_0 d'un anneau	1
1.2. Les groupes K_0 et K'_0 d'un schéma	6
1.3. Categories exactes et leurs K_0	9
1.4. Les groupes K_1 et K_2 d'un anneau	13
2. Définition de la K -théorie supérieure	14
2.1. La construction Q de Quillen	14
2.2. Les théorèmes A et B de Quillen	18
2.3. Premières propriétés	29
3. Construction + et théorème " $+ = Q$ "	29
3.1. La construction + en topologie	29
3.2. La construction $+$ de la K -théorie	33
3.3. La K -théorie des corps finis	33
3.4. Le théorème " $+=Q$ "	34
4. Propriétés de la K-théorie supérieure	34
5. La K -théorie des schémas	34
Annexe A. Catégories modèles	34
A.1. Argument du petit objet, notations	34
A.2. Carrés homotopiquement cartésiens d'ensembles simpliciaux	34
A.3. Le lemme de collage	38
Annexe B. Catégories exactes	39
Annexe C. Topologie algébrique	39
Remerciements	39
Références	39

1. Les groupes K_0 , K_1 et K_2

Dans cette section, nous allons définir et étudier les groupes K_0 , K_1 et K_2 associés à un anneau. Nous définirons également le K_0 d'une catégorie exacte.

1.1. Les groupes K_0 et K_0' d'un anneau. Pour A un anneau, nous noterons P(A) la catégorie des modules projectifs de type fini sur A et Modf(A) la catégorie des modules de type fini sur A. Si A n'est pas commutatif, les modules sur A seront toujours par défaut des A-modules à gauche.

Définition 1.1 $(K_0 \text{ et } K'_0)$. Le groupe abélien $K_0(A)$ est le groupe de Grothendieck de P(A): le quotient du groupe abélien libre $\bigoplus_P \mathbb{Z} \cdot [P]$ engendré par les objets de P(A), par les relations [R] = [P] + [Q] pour chaque suite exacte $0 \to P \to R \to Q \to 0$.

On définit de même le groupe $K'_0(A)$ comme le groupe de Grothendieck de Modf(A).

On appelle $K_0(A)$ le groupe de K-théorie de A et $K'_0(A)$ le groupe de K'-théorie de A. En général, pour utiliser $K'_0(A)$, on préfère se restreindre au cas où A est noethérien, de telle sorte que Modf(A) soit une catégorie abélienne.

Le foncteur $P(A) \times P(A) \longrightarrow P(A)$, $(P,Q) \mapsto P \oplus Q$ induit un morphisme $\oplus : K_0(A) \times K_0(A) \longrightarrow K_0(A)$. Or pour tout M et N A-modules, on a une suite exacte $0 \to M \to M \oplus N \to N \to 0$. Donc \oplus est l'addition. De même avec Modf(A) et K_0' .

Si A est commutatif, le foncteur $P(A) \times P(A) \longrightarrow P(A)$, $(P,Q) \mapsto P \otimes Q$ passe également aux quotients en un morphisme $\otimes : K_0(A) \times K_0(A) \longrightarrow K_0(A)$ (les modules projectifs sont plats).

De même, $P(A) \times Modf(A) \longrightarrow Modf(A)$, $(P, M) \mapsto P \otimes M$ induit $\otimes : K_0(A) \times K_0'(A) \longrightarrow K_0'(A)$. On vérifie aisément que :

Proposition 1.3. Si A est commutatif, l'application $\otimes : K_0(A) \times K_0(A) \longrightarrow K_0(A)$ est bilinéaire et induit sur $K_0(A)$ une structure d'anneau de neutre [0] et d'unité [A].

Dans ce cas, $\otimes : K_0(A) \times K_0'(A) \longrightarrow K_0'(A)$ fait de $K_0'(A)$ un $K_0(A)$ -module.

Ces definitions sont fonctorielles en A. En effet, si $f:A\to B$ est un morphisme d'anneaux, le foncteur $-\otimes_A B: \mathrm{P}(A)\to \mathrm{P}(B)$ induit un morphisme $f^*:K_0(A)\to K_0(B)$, et on a, si $g:B\to C$, $(gf)^*=g^*f^*$. Le morphisme f^* est un morphisme d'anneau si A et B sont commutatifs. De même, si $f:A\to B$ est un morphisme plat, $-\otimes_A B:\mathrm{Modf}(A)\to\mathrm{Modf}(B)$ induit un morphisme $f^*:K_0'(A)\to K_0'(B)$ (de $K_0(A)$ -modules si A et B sont commutatifs). La notation "contravariante" f^* s'explique par la definition de la K-théorie d'un schema.

Si $f: A \to B$ est un morphisme projectif et fini (c'est-à-dire que B est un A module projectif de type fini), alors le foncteur d'oubli $(-)_A: P(B) \to P(A), M \mapsto M$ induit un morphisme **de groupe** $f_*: K_0(B) \to K_0(A)$. De même, si $f: A \longrightarrow B$ est un morphisme fini, le foncteur d'oubli $(-)_A: Modf(B) \to Modf(A)$ induit un morphisme **de groupe** $f_*: K'_0(B) \to K'_0(A)$.

Si f_* et f^* sont définis pour K_0 , et si A et B sont commutatifs, l'isomorphisme entre les foncteurs $(P,N) \mapsto (P \otimes_A N) \otimes B$ et $(P,N) \mapsto P \otimes_B (N \otimes B)$ induit la formule de projection suivante. Pour tout a dans $K_0(A)$ et b dans $K_0(B)$:

$$f_*(b \cdot f^*(a)) = f_*(b) \cdot a \text{ dans } K_0(A)$$

De même, si f_* est défini pour K_0 et K_0' , et f^* est défini pour K_0' , alors pour tout a dans $K_0'(A)$ et b dans $K_0(B)$:

$$f_*(b \cdot f^*(a)) = f_*(b) \cdot a \text{ dans } K'_0(A)$$

On peut étendre le cadre où f_* en K-théorie et f^* en K'-théorie sont définis. Pour les definitions de la dimension projective et de la dimension Tor, voir le [Wei94, Chp.4].

Définition 1.4. Un morphisme d'anneau $f:A\to B$ est dit de dimension Tor finie si B est un A-module de dimension Tor finie.

Pour étendre f^* , nous utilisons le résultat suivant.

Proposition 1.5. Soit $f: A \to B$ de dimension Tor finie avec A noethérien. Soit \mathcal{M} la sous-catégorie pleine de $\operatorname{Modf}(A)$ des modules M tels que $\operatorname{Tor}_i^A(B,M) = 0$ pour tout $i \geq 1$. On note $K'_0(\mathcal{M})$ son groupe de Grothendieck. Alors l'inclusion $\mathcal{M} \to \operatorname{Modf}(A)$ induit un isomorphisme $K'_0(\mathcal{M}) \to K'_0(A)$.

Démonstration. Nous allons décrire un morphisme inverse $K_0'(A) \to K_0'(\mathcal{M})$. On note $n < \infty$ la dimension Tor de B sur A. Soit M un A-module de type fini. On se donne $P_* \to M$ une résolution projective de M par des A-modules de type fini (possible car A est noethérien). On pose $\tilde{M} := \operatorname{coker}(d: P_{n+1} \to P_n)$. Par décalage, \tilde{M} est un objet de \mathcal{M} . On obtient donc une résolution finie $0 \to \tilde{M} \to P_{n-1} \to \cdots \to P_0 \to M \to 0$ de M par des objets de \mathcal{M} , que l'on note $Q_* \to M$. On pose alors :

$$u(M) := \sum_{i=0}^{n} (-1)^{i} [Q_{i}] \in K'_{0}(\mathcal{M})$$

Montrons que u(M) est indépendant de la résolution $P_* \to M$. Soit $P'_* \to M$ une autre résolution. On montre facilement qu'il existe une troisième résolution $P''_* \to M$ et deux morphismes $a:P''_* \to P_*$ et $a':P''_* \to P_*$ surjectifs en chaque degrés, par exemple en prenant une résolution projective du complexe $P \times_{M[0]} P'$ par des modules de type fini. Alors $\ker(a)_* \to 0$ est une résolution de 0 par des objets de \mathcal{M} . On note $\tilde{M}:=\operatorname{coker}(d:P_{n+1} \to P_n), \ \tilde{M}'':=\operatorname{coker}(d:P''_{n+1} \to P''_n)$ et $\tilde{K}:=\operatorname{coker}(d:\ker(a)_{n+1} \to \ker(a)_n)$. Alors $0 \to \tilde{K} \to \tilde{M}'' \to \tilde{M} \to 0$ est exacte. En effet la suite est exacte à droite par le lemme du serpent et exacte à gauche car \tilde{K} et \tilde{M}'' s'injectent dans P''_{n-1} . Si on note $Q''_* \to M$ la résolution finie associée à P''_* et $K_* \to 0$ celle associée à $\ker(a)_* \to 0$, on a :

$$\sum_{i=0}^{n} (-1)^{i} [Q_{i}] = \sum_{i=0}^{n} (-1)^{i} [Q_{i}''] - \sum_{i=0}^{n} (-1)^{i} [K_{i}] = \sum_{i=0}^{n} (-1)^{i} [Q_{i}''] \text{ dans } K'_{0}(\mathcal{M})$$

Montrons maintenant que si $0 \to M' \to M \to M'' \to 0$ est une suite exacte dans $\operatorname{Modf}(M)$, alors u(M) = u(M'') + u(M'). Par le lemme du fer à cheval, on dispose de résolutions respectant la suite exacte :

$$0 \longrightarrow P'_* \longrightarrow P_* \longrightarrow P''_* \longrightarrow 0$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$0 \longrightarrow M' \longrightarrow M \longrightarrow M'' \longrightarrow 0$$

Par le même argument que ci-dessus $0 \to \tilde{M}' \to \tilde{M} \to \tilde{M}'' \to 0$ est exacte, et donc $0 \to Q'_* \to Q_* \to Q''_* \to 0$ est exacte. Il est alors clair que u(M) = u(M'') + u(M'). On vérifie immédiatement que u est inverse à droite et à gauche de $K'_0(\mathcal{M}) \to K'_0(A)$.

Ainsi, avec les hypothèses et notations de la proposition, le foncteur $-\otimes_A B$: $\mathcal{M} \to \operatorname{Modf}(B)$ induit un morphisme $K_0'(\mathcal{M}) \to K_0'(B)$ et donc un morphisme $f^*: K_0'(A) \to K_0'(B)$. Si B est plat sur A, on retrouve la définition plus haut. Pour étendre f_* , on donne une formule explicite.

Proposition - définition 1.6. Soit $f: A \to B$ fini et de dimension Tor finie avec A noethérien. Alors tout B module projectif P admet une A-résolution projective finie par des modules de type fini $Q_* \to P$. On pose :

$$f_*([P]) := \sum_i (-1)^i [Q_i] \in K_0(A)$$

Alors $f_*: K_0(B) \to K_0(A)$ est un morphisme de groupe.

On remarque que la définition ci-dessus étend la définition plus haut dans le cas où f est projectif de type fini.

Démonstration. Soit n la dimension Tor de B sur A. Comme A est noethérien, pour tout module de type fini M sur A, sa dimension projective est égale à sa dimension Tor. De plus, pour tout B-module projectif de type fini P, Tor dim(P) = n. Donc tout tel module P admet une A-résolution projective finie par des modules de type fini $Q_* \to P$.

Montrons que $\sum_i (-1)^i [Q_i]$ est indépendant de la résolution $Q_* \to P$. Comme dans la proposition 1.5, on peut supposer qu'il existe $u: Q'_* \to Q_*$ surjection entre les deux résolutions considérées. Alors, $K := \ker(u)_*$ est un complexe fini acyclique de modules projectifs de type fini. Donc :

$$\sum_{i} (-1)^{i} [Q'_{i}] = \sum_{i} (-1)^{i} [Q_{i}] + \sum_{i} (-1)^{i} [K_{i}] = \sum_{i} (-1)^{i} [Q_{i}]$$

Montrons maintenant que si $0 \to P' \to P \to P'' \to 0$ est une suite exacte dans P(B), alors $f_*[P] = f_*[P''] + f_*[P']$. Par le lemme du fer à cheval, on dispose de résolutions finies respectant la suite exacte :

$$0 \longrightarrow Q'_* \longrightarrow Q_* \longrightarrow Q''_* \longrightarrow 0$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$0 \longrightarrow P' \longrightarrow P \longrightarrow P'' \longrightarrow 0$$

On a alors clairement $f_*[P] = f_*[P''] + f_*[P']$.

On peut maintenant étendre la formule de projection.

Proposition 1.7 (formule de projection). Soit $f: A \to B$ fini et de dimension Tor finie, avec A et B commutatifs et A noethérien. Alors pour tout a dans $K'_0(A)$ et b dans $K_0(B)$:

$$f_*(b \cdot f^*(a)) = f_*(b) \cdot a \ dans \ K'_0(A)$$

De même, pour tout a dans $K_0(A)$ et b dans $K_0(B)$:

$$f_*(b \cdot f^*(a)) = f_*(b) \cdot a \ dans \ K_0(A)$$

Démonstration. On reprend les notations de la proposition 1.5. On démontre la première formule, la seconde se démontre de façon similaire. On se ramène au cas où a = [M] avec M dans M et b = [P] avec P dans P(B). On se donne

 $Q_* \to P$ une résolution finie de P par des A-modules projectifs de type fini. Or $M \otimes_A Q_* \to M \otimes_A P$ est exacte car pour tout i > 0, $\operatorname{Tor}_i^A(M, P) = 0$. Donc :

$$f_*(b \cdot f^*(a)) = [P \otimes_B (B \otimes_A M)]$$

$$= [P \otimes_A M]$$

$$= \sum_i (-1)^i [Q_i \otimes_A M]$$

$$= (\sum_i (-1)^i [Q_i]) \cdot [M]$$

$$= f_*(b) \cdot a$$

Nous allons maintenant nous intéresser au cas particulier des anneaux réguliers. Nous verrons que si A est régulier, alors $K_0(A)$ et $K'_0(A)$ coïncident.

Définition 1.8. Un anneau noethérien (à gauche) A est dit proj-régulier si tout A-module de type fini est de dimension projective finie.

Dans le cas commutatif, cette definition coïncide avec la definition usuelle d'anneau régulier (cf. le corollaire 1.10 ci-dessous).

Théorème 1.9. Soit (A, \mathfrak{m}) un anneau local commutatif noethérien. S'équivalent :

- (i) A est de dimension projective finie;
- (ii) A est local régulier (Krull dim $A = \dim_{A/\mathfrak{m}} \mathfrak{m}/\mathfrak{m}^2$);
- (iii) $k := A/\mathfrak{m}$ est de dimension projective finie sur A.

Et dans ce cas, la dimension projective de A est la dimension projective de $k := A/\mathfrak{m}$ comme A-module.

Nous renvoyons au [Wei94, Chp.4] pour la démonstration et les différentes propriétés élémentaires de la dimension projective qui seront utilisées par la suite.

Corollaire 1.10. Un anneau commutatif noethérien A est proj-régulier si et seulement si il est régulier (ie. pour tout \mathfrak{m} idéal maximal, ht $\mathfrak{m} = \dim_{A/\mathfrak{m}} \mathfrak{m}/\mathfrak{m}^2$).

 $D\acute{e}monstration.$ (\Leftarrow) Soit $P_* \to M$ une résolution projective par des modules de type fini d'un A-module de type fini M. On note $Z_n := \operatorname{coker}(d:P_n \to P_{n-1})$. Comme pour tout \mathfrak{m} idéal maximal, $M_{\mathfrak{m}}$ est de dimension projective finie, il existe $n \geq 0$ tel que $(Z_n)_{\mathfrak{m}}$ soit projectif. Mais, comme A est noethérien, Z_n est de présentation finie. Donc $(Z_n)_{\mathfrak{m}}$ est un $A_{\mathfrak{m}}$ -module libre de type fini. Donc, il existe $f_{\mathfrak{m}} \in A \setminus \mathfrak{m}$ tel que $(Z_n)_{f_{\mathfrak{m}}}$ soit libre, et donc projectif. Or si $(Z_n)_{f_{\mathfrak{m}}}$ est projectif, $(Z_m)_{f_{\mathfrak{m}}}$ est aussi projectif pour tout $m \geq n$. Donc, comme Spec(A) est quasicompact, il existe $n \geq 0$ et f_1, \ldots, f_l tels que Spec $(A) = \bigcup_i D(f_i)$ et $(Z_n)_{f_i}$ soit projectif de type fini pour tout i. Alors Z_n est projectif, et M est de dimension projective finie sur A.

(⇒) Soit \mathfrak{m} un idéal maximal. Alors A/\mathfrak{m} est de dimension projective finie sur A et donc aussi sur $A_{\mathfrak{m}}$. Donc, d'après le théorème 1.9, $A_{\mathfrak{m}}$ vérifie Krull dim $A_{\mathfrak{m}} = \dim_{A/\mathfrak{m}} \mathfrak{m}/\mathfrak{m}^2$. On a donc bien ht $\mathfrak{m} = \dim_{A/\mathfrak{m}} \mathfrak{m}/\mathfrak{m}^2$.

Théorème 1.11. Soit A un anneau commutatif noethérien régulier. Alors le foncteur naturel $P(A) \to Modf(A)$ induit un isomorphisme $K_0(A) \to K'_0(A)$.

Démonstration. Nous allons décrire un inverse $u: K_0'(A) \to K_0(A)$. Soit M un A-module de type fini, et soit $P_* \to M$ une résolution finie par des A-modules projectifs. On pose $u(M) := \sum_i (-1)^i [P_i]$.

Montrons que u(M) ne dépend pas de la résolution. Comme dans la preuve de la proposition 1.5, il suffit de se restreindre au cas où il existe $a:P'_*\to P_*$ surjection entre deux résolutions de M. Alors $\ker(a)_*\to 0$ est une résolution projective. On a alors $\sum_i (-1)^i [P_i] = \sum_i (-1)^i [P_i'] - \sum_i (-1)^i [\ker(a)_i] = \sum_i (-1)^i [P_i']$. Montrons maintenant que si $0\to M'\to M\to M''\to 0$ est une suite exacte dans

Montrons maintenant que si $0 \to M' \to M \to M'' \to 0$ est une suite exacte dans Modf(M), alors u(M) = u(M'') + u(M'). Par le lemme du fer à cheval, on dispose de résolutions finies respectant la suite exacte :

$$0 \longrightarrow P'_* \longrightarrow P_* \longrightarrow P''_* \longrightarrow 0$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$0 \longrightarrow M' \longrightarrow M \longrightarrow M'' \longrightarrow 0$$

On a alors clairement u(M) = u(M'') + u(M').

On remarque que ce théorème ressemble beaucoup à la proposition 1.5. Ces deux résultats sont encore vraie en K-théorie supérieure, et sont des applications d'un même résultat (voir [lien vers plus loin]).

1.2. Les groupes K_0 et K'_0 d'un schéma. On peut étendre la definition des groupes de K et K'-théorie des anneaux commutatifs aux schémas. Pour X un schéma, nous noterons P(X) la catégorie des modules projectifs localement de type fini sur X et Modf(X) la catégorie des modules quasi-cohérents localement de type fini sur X.

Définition 1.12 $(K_0 \text{ et } K'_0)$. Soit X un schéma. Le groupe abélien $K_0(X)$ est le groupe de Grothendieck de P(X): le quotient du groupe abélien libre $\bigoplus_{\mathcal{P}} \mathbb{Z} \cdot [\mathcal{P}]$ engendré par les objets de P(X), par les relation $[\mathcal{R}] = [\mathcal{P}] + [\mathcal{Q}]$ pour chaque suite exacte $0 \to \mathcal{P} \to \mathcal{R} \to \mathcal{Q} \to 0$.

On définit de même le groupe $K_0'(X)$ comme le groupe de Grothendieck de $\mathrm{Modf}(X).$

De même que pour les anneaux, nous avons les propriétés suivantes :

- (i) $(K_0(X), \oplus, \otimes)$ est un anneau et le produit tensoriel fait de $K'_0(X)$ un $K_0(X)$ module;
- (ii) Si $f:X\to Y$ est un morphisme de schéma, le foncteur $f^*:{\rm P}(Y)\to{\rm P}(X)$ induit un morphisme d'anneau :

$$f^*: K_0(Y) \longrightarrow K_0(X)$$

(ii') Si $f: X \to Y$ est un morphisme plat, le foncteur $f^*: \operatorname{Modf}(Y) \to \operatorname{Modf}(X)$ induit un morphisme d'anneau :

$$f^*: K'_0(Y) \longrightarrow K'_0(X)$$

(iii) Si $f: X \to Y$ est un morphisme fini localement libre, le foncteur $f_*: P(X) \to P(Y)$ induit un morphisme **de groupe**:

$$f_*: K_0(X) \longrightarrow K_0(Y)$$

Et on a la formule de projection, pour tout x dans $K_0(X)$ et y dans $K_0(Y)$:

$$f_*(x \cdot f^*(y)) = f_*(x) \cdot y \text{ dans } K_0(Y)$$

(iii') Si $f: X \to Y$ est un morphisme fini, le foncteur $f_*: \operatorname{Modf}(X) \to \operatorname{Modf}(Y)$ induit un morphisme :

$$f_*: K_0'(X) \longrightarrow K_0'(Y)$$

Et si f est localement libre, on a la formule de projection, pour tout x dans $K_0(Y)$ et y dans $K_0'(Y)$:

$$f_*(x \cdot f^*(y)) = f_*(x) \cdot y \text{ dans } K'_0(Y)$$

[à terminer, ajouter les morphismes propres et les morphismes de Tor dimension finie]

Nous allons maintenant aborder le cas des schémas réguliers. Si les résultats sont assez similaires au cas des anneaux, les schémas posent le problème de l'existence de résolutions par des fibrés vectoriels.

Définition 1.13. Un schéma X est dit régulier si l'anneau local $\mathcal{O}_{X,x}$ est régulier pour tout point x dans X.

Remarque 1.14. Un schéma, et même un anneau, dont les anneaux locaux sont réguliers n'est pas nécessairement noethérien. Par exemple, c'est le cas du localisé de $k[X_1, X_2, X_3, \dots]$ par le complémentaire de l'union $\bigcup_n (X_{n^2}, \dots, X_{(n+1)^2-1})$ (contre-exemple dû à Nagata).

Lemme 1.15. Soit X un schéma noethérien, régulier et séparé. Alors tout faisceau cohérent sur X est quotient d'un fibré vectoriel.

La démonstration ci-dessous utilise des propriétés des diviseurs de Cartier et de Weil. Pour plus d'information, voir [GW10, chp. 11].

Démonstration. (a) Si (A, \mathfrak{m}) est local noethérien et normal, alors :

$$\dim(A) \leq 1 \Leftrightarrow \operatorname{Spec}(A) \setminus \{\mathfrak{m}\}\$$
est affine

En effet, si $\dim(A) = 0$, c'est clair. Si $\dim(A) = 1$, il existe $f \in \mathfrak{m}$ qui évite les idéaux premiers minimaux de A. On a alors $\operatorname{Spec}(A) \setminus \{\mathfrak{m}\} = \operatorname{Spec}(A_f)$. Si $\dim(A) \geq 2$, par le lemme de Hartogs ([GW10, 6.45]),

$$\mathcal{O}_{\operatorname{Spec}(A)}(\operatorname{Spec}(A)) \to \mathcal{O}_{\operatorname{Spec}(A)}(\operatorname{Spec}(A) \setminus \{\mathfrak{m}\})$$

est un isomorphisme, donc $\operatorname{Spec}(A) \setminus \{\mathfrak{m}\}\$ ne peut être affine.

(b) Si X est localement noethérien et normal, et si $U \hookrightarrow X$ est une immersion ouverte affine, alors toutes les composantes irréductibles de $X \setminus U$ sont de codimension ≤ 1 dans X.

En effet, si $\xi \in X \setminus U$ est le point générique d'une composante irréductible, on pose $V = \operatorname{Spec}(\mathcal{O}_{X,\xi}) \setminus \{\mathfrak{m}_{X,\xi}\}$. Par l'hypothèse, c'est un ouvert affine et $\mathcal{O}_{X,\xi}$ est noethérien normal. Donc par (a), $\dim(\mathcal{O}_{X,\xi}) \leq 1$.

(c) Soit $U \subseteq X$ affine avec X noethérien, régulier et séparé. Alors il existe un fibré en droite \mathcal{L} et $f \in \mathcal{L}(X)$ tels que U = D(f).

Pour démontrer ce point nous pouvons supposer X intègre et U non vide. Comme X est séparé, $U \hookrightarrow X$ est affine. Ainsi, $X \backslash U$ est de codimension pure 1. Donc, par définition, il existe un diviseur de Weil effectif D tel que $X \backslash U = \operatorname{Supp}(D)$. Comme X est régulier, il existe un diviseur de Cartier effectif \tilde{D} dont le diviseur de Weil associé est D. Alors avec $f := 1_{\tilde{D}} \in \mathcal{O}_{\tilde{D}}(X)$ la section associée à $1 \in K(X)$ et $\mathcal{L} := \mathcal{O}_{\tilde{D}}(X)$, on a U = D(f).

(d) Conclusion:

On pose $X = \bigcup_{i \in I} U_i$ avec I fini et chaque U_i affine. Pour chaque i, à l'aide de (c), on se donne \mathcal{L}_i et $f_i \in \mathcal{L}_i(X)$ tels que $U_i = D(f_i)$.

Soit \mathcal{F} un faisceau cohérent sur X. Pour chaque $i \in I$, on note a_{i1}, \ldots, a_{in_i} une famille de générateurs de $\mathcal{F}(U_i)$. Il existe alors, pour chaque $i, m_i \geq 0$ tel que pour tout $j, a_{ij} \otimes f_i^{m_i} = b_{ij|D(f_i)}$ avec $b_{ij} \in \mathcal{F} \otimes \mathcal{L}^{\otimes m_i}(X)$.

Les b_{ij} induisent des surjections $\mathcal{O}_X^{n_i} \longrightarrow \mathcal{F} \otimes \mathcal{L}^{\otimes m_i}$ sur U_i et donc une surjection :

$$\phi: \bigoplus_{i\in I} \mathcal{O}_X^{n_i} \otimes \mathcal{L}^{\otimes -m_i} \longrightarrow \mathcal{F}$$

Lemme 1.16. Soit X un schéma noethérien, régulier et séparé. Alors tout complexe fini de modules cohérents sur X admet une résolution finie par des fibrés vectoriels.

Démonstration. Soit \mathcal{F}_* un complexe de modules cohérents sur X, concentré en degrés $\{k,\ldots,l-1\}$. Alors, d'après le lemme 1.15, ce complexe admet une résolution $\mathcal{E}_* \to \mathcal{F}_*$ par des fibrés vectoriels. Soit $X = \bigcup_{i \in I} U_i$ un recouvrement fini par des ouverts affines. Alors, sur chaque ouvert U_i , on a une résolution $\mathcal{E}(U_i)_* \to \mathcal{F}(U_i)_*$ du complexe de $\mathcal{O}_X(U_i)$ -modules de type fini $\mathcal{F}(U_i)_*$. Or comme $\mathcal{O}_X(U_i)$ est régulier, $(\mathcal{E}(U_i)_{l+1} \to \mathcal{E}_l(U_i))$ est de dimension projective finie. Donc, il existe $n_i \geq 0$ tel que pour tout $m \geq n_i$, coker $(\mathcal{E}_{m+1}(U_i) \to \mathcal{E}_m(U_i))$ soit projectif. Si on choisi $n \geq n_i$ pour tout i, alors coker $(\mathcal{E}_{n+1}(U_i) \to \mathcal{E}_n(U_i)) \to \mathcal{E}_{n-1}(U_i) \to \cdots \to \mathcal{E}_0(U_i) \to \mathcal{F}_*$ est une résolution finie de \mathcal{F} par des fibrés vectoriels.

Lemme 1.17. Soit $0 \to \mathcal{F}' \to \mathcal{F} \to \mathcal{F}'' \to 0$ une suite exacte de modules cohérents sur un schéma X noethérien régulier séparé. Alors il existe des résolutions finies par des fibrés vectoriels respectant la suite exacte :

$$0 \longrightarrow \mathcal{P}'_* \longrightarrow \mathcal{P}_* \longrightarrow \mathcal{P}''_* \longrightarrow 0$$

$$\downarrow^{u'} \qquad \downarrow^{u} \qquad \downarrow^{u''}$$

$$0 \longrightarrow \mathcal{F}' \longrightarrow \mathcal{F} \longrightarrow \mathcal{F}'' \longrightarrow 0$$

 $D\'{e}monstration$. Montrons d'abord le résultat suivante :

(*) : Soit $0 \to \mathcal{F}' \to \mathcal{F} \to \mathcal{F}'' \to 0$ une suite exacte de modules cohérents. Alors, on peut la compléter en un diagramme :

$$0 \longrightarrow \mathcal{P}' \longrightarrow \mathcal{P} \longrightarrow \mathcal{P}'' \longrightarrow 0$$

$$\downarrow^{u'} \qquad \downarrow^{u} \qquad \downarrow^{u''}$$

$$0 \longrightarrow \mathcal{F}' \longrightarrow \mathcal{F} \longrightarrow \mathcal{F}'' \longrightarrow 0$$

où les flèches verticales sont surjectives et les modules $\mathcal{P}', \mathcal{P}$ et \mathcal{P}'' sont des fibrés vectoriels.

Montrons l'existence d'un tel diagramme. D'après le lemme 1.15, il existe des surjections $v: \mathcal{P}'' \to \mathcal{F}$ et $u': \mathcal{P}' \to \mathcal{F}'$ avec \mathcal{P}'' et \mathcal{P}' fibré vectoriels. On pose alors $\mathcal{P} := \mathcal{P}' \oplus \mathcal{P}''$ et on complète le diagramme de manière évidente avec $0 \to \mathcal{P}' \to \mathcal{P}' \to \mathcal{P}'' \to \mathcal{P}'' \to 0$ induit par le scindage, $u := u' \oplus v$ et $u'' := (\mathcal{F} \to \mathcal{F}'') \circ v$.

Maintenant, en appliquant (*) successivement aux la suite exacte $0 \to \ker(u') \to \ker(u') \to \ker(u'') \to 0$, on obtient des résolutions respectant la suite exacte $0 \to \ker(u'') \to 0$, on obtient des résolutions respectant la suite exacte $0 \to \ker(u'') \to 0$, on obtient des résolutions respectant la suite exacte $0 \to \ker(u'') \to 0$.

 $\mathcal{F}' \to \mathcal{F} \to \mathcal{F}'' \to 0$. D'après la preuve du lemme 1.16, nous pouvons tronquer ces résolutions à un range $n \geq 0$. Il reste à montrer que la suite :

$$0 \to \operatorname{coker}(\mathcal{P}'_{n+1} \to \mathcal{P}'_n) \to \operatorname{coker}(\mathcal{P}_{n+1} \to \mathcal{P}_n) \to \operatorname{coker}(\mathcal{P}''_{n+1} \to \mathcal{P}''_n) \to 0$$

est exacte. Elle est exacte à droite par le lemme du serpent, et à gauche car les deux premiers termes s'injectent dans \mathcal{P}_{n-1} .

Théorème 1.18. Soit X un schéma noethérien, régulier et séparé. Alors le foncteur $P(X) \to \operatorname{Modf}(X)$ induit un isomorphisme de groupes $K_0(X) \simeq K_0'(X)$.

Démonstration. la preuve est essentiellement la même que pour le théorème 1.11. Il faut pour appliquer la preuve montrer deux lemmes dans le cadre des modules sur le schéma X: l'existence de résolutions finies pour les complexes finis de modules cohérents, c'est le lemme 1.16 ci-dessus; l'existence de résolutions finies respectant les suites exactes, c'est le lemme 1.17 ci-dessus.

1.3. Categories exactes et leurs K_0 . Dans les deux sous-sections précédentes, nous avons défini les groupes de Grothendieck de différentes catégories : P(A), Modf(A), P(X), Modf(X), ou encore \mathcal{M} de la proposition 1.5. Ces catégories ont en commun d'être des sous-catégories d'une catégorie abélienne admettant des extension.

Définition 1.19. Une catégorie exacte plongée est une sous-catégorie pleine \mathcal{M} d'une catégorie abélienne \mathcal{A} admettant des extensions. C'est-à-dire, pour toute suite exacte $0 \to M' \to M \to M'' \to 0$ dans \mathcal{A} telle que M' et M'' soient dans \mathcal{M} , il existe un objet \tilde{M} de \mathcal{M} isomorphe à M.

Soit $\mathcal{M} \hookrightarrow \mathcal{A}$ une catégorie exacte plongée. On note \mathcal{E} la classe des suites $0 \to M' \to M \to M'' \to 0$ d'objets de \mathcal{M} exactes dans \mathcal{A} . On appelle monomorphisme admissible un morphisme $M' \to M$ dans \mathcal{M} qui apparaît comme le premier morphisme d'un élément $0 \to M' \to M \to M'' \to 0$ de \mathcal{E} . On le notera alors $M' \to M$. On appelle épimorphisme admissible un morphisme $M \to M''$ dans \mathcal{M} qui apparaît comme le second morphisme d'un élément $0 \to M' \to M \to M'' \to 0$ de \mathcal{E} . On le notera alors $M \to M''$. Alors \mathcal{M} est additive et \mathcal{M} et \mathcal{E} vérifient les propriétés suivantes.

- (a1) Si $0 \to M' \to M \to M'' \to 0$ est une suite dans \mathcal{M} isomorphe à une suite exacte de \mathcal{E} , alors $0 \to M' \to M \to M'' \to 0$ est dans \mathcal{E} .
- (a2) Pour tous M' et M'' dans \mathcal{M} , la suite naturelle $0 \to M' \to M' \oplus M'' \to M''$
- (a3) Pour tout $0 \to M' \xrightarrow{i} M \xrightarrow{j} M'' \to 0$ dans \mathcal{E} , i est le noyau de j dans \mathcal{M} et j est le conoyau de i dans \mathcal{M} .
- (b1) Les monomorphismes admissibles sont stables par poussé en avant par un morphisme quelconque de \mathcal{M} . Les épimorphismes admissibles sont stables par tiré en arrière par un morphisme quelconque de \mathcal{M} .
- (b2) Les monomorphismes admissibles sont stables par composition. Les épimorphismes admissibles sont stables par composition.

Démonstration. Les points (a1)-(a3) sont immédiats. Soit $j: M \to M''$ un épimorphisme admissible et $i: M' \to M$ son noyau. Soit $f: N \to M''$ un morphisme. Alors on a le diagramme suivant avec des lignes exactes dans $\mathcal A$ et le carré de droite est cartésien.

Or, N et M' sont des objets de \mathcal{M} . Donc il existe P dans \mathcal{M} isomorphe à $M \times_{M''} N$. Ceci démontre (b1).

Soit $j: M \to M''$ et $p: M'' \to M'''$ deux épimorphismes admissibles. On note $i: N \to M''$ le noyau de p. On a alors à nouveau le diagramme ci-dessus. On vérifie immédiatement que $M \times_{M''} N \to M$ est le noyau de $p \circ j$.

Définition 1.20 (catégorie exacte). Une catégorie exacte est une catégorie additive \mathcal{M} muni d'une classe \mathcal{E} de suites $0 \to M' \to M \to M'' \to 0$ dans \mathcal{M} vérifiant les axiomes (a1),(a2),(a3),(b1) et (b2). Un foncteur $F: \mathcal{M} \to \mathcal{M}'$ entre catégories exactes est un foncteur additif préservant les suites exactes (ie. F envoie \mathcal{E} dans \mathcal{E}').

Exemple 1.21. Les catégories suivantes sont exactes :

- une catégorie abélienne A munie de ses suites exactes;
- une catégorie additive \mathcal{N} munie des suites exactes scindés;
- si \mathcal{M} est une catégorie exacte, la catégorie \mathcal{M}^{op} est exacte;
- P(A) ou Modf(A) pour A un anneau;
- P(X) ou Modf(X) pour X un schéma.

Proposition 1.22. Soit \mathcal{M} une catégorie exacte et \mathcal{E} son ensemble de suites exactes. Alors :

- (c1) Si $f: M \to M''$ a un noyau dans \mathcal{M} et si $N \xrightarrow{u} M \xrightarrow{f} M''$ est un épimorphisme admissible, alors f est un épimorphisme admissible.
- (c2) Si $f: M' \to M$ a un conoyau dans \mathcal{M} et si $M' \xrightarrow{f} M \xrightarrow{u} N$ est un monomorphisme admissible, alors f est un monomorphisme admissible.

Nous ne démontrons pas ici cette proposition. La démonstration est élémentaire et relativement courte. Elle est rédigée dans [Kel90, A.1]. [Frédéric : mettre la preuve en annexe?]

Théorème 1.23 (plongement). Pour toute catégorie exacte \mathcal{M} , il existe une catégorie abélienne \mathcal{A} et un foncteur $i : \mathcal{M} \to \mathcal{A}$ additif, exact et pleinement fidèle.

Ce théorème sera admis ici, car sa démonstration a peu de rapport avec le reste du mémoire. Il permet d'utiliser les propriétés des catégories abéliennes quand on travaille avec des catégories exactes (lemme du serpent par exemple). [Frédéric : voir un moyen de se débarrasser du thm ou de le démontrer facilement?]

Un autre exemple important de catégories exactes est le suivant.

Proposition - définition 1.24. Soit \mathcal{M} une catégorie exacte et \mathcal{E} la classe de ses suites exactes. Alors \mathcal{E} a une structure naturelle de catégorie additive où les morphismes de $M' \rightarrowtail M \twoheadrightarrow M''$ vers $N' \rightarrowtail N \twoheadrightarrow N''$ sont les diagrammes commutatifs :

$$M' \longmapsto M \longrightarrow M''$$

$$\downarrow \qquad \qquad \downarrow$$

$$N' \longmapsto N \longrightarrow N''$$

On a alors 3 foncteur $s, t, q : \mathcal{E} \to \mathcal{M}$ donnés par :

On note \mathcal{F} l'ensemble des suites $S = 0 \to E' \to E \to E'' \to 0$ dans \mathcal{E} tels que s(S), t(S) et q(S) soient exactes.

Alors \mathcal{F} fait de \mathcal{E} une catégorie exacte et les foncteurs $s,t,q:\mathcal{E}\to\mathcal{M}$ sont exactes.

Démonstration. Les propriétés (a1), (a2) et (a3) sont faciles à vérifier. Par le lemme "3x3" des catégories abéliennes et le théorème de plongement 1.23, $i: E' \to E$ est un épimorphisme admissible dans \mathcal{E} si et seulement si s(i), t(i) et q(i) sont des épimorphismes admissibles dans \mathcal{M} . De même pour les monomorphismes admissibles. Or la composition, le tiré en arrière et le poussé en avant se calculent termes à termes. Ceci montre (b1) et (b2).

Nous pouvons maintenant définir le K_0 d'une catégorie exacte.

Définition 1.25 (K_0 d'une catégorie exacte). Soit \mathcal{M} une catégorie exacte de suites exactes \mathcal{E} telle que les classes d'isomorphisme de \mathcal{M} forment un ensemble. On définit le groupe de K-théorie de \mathcal{M} , $K_0(\mathcal{M})$, comme le quotient du groupe libre $\bigoplus_M \mathbb{Z} \cdot [M]$ sur les objets de \mathcal{M} , par les relations [M] = [M'] + [M''] pour chaque suite $M' \rightarrowtail M \twoheadrightarrow M''$ dans \mathcal{E} .

Remarque 1.26. La exacte $0 \rightarrow 0 \twoheadrightarrow 0$ implique 0 = [0] dans $K_0(\mathcal{M})$. Pour chaque isomorphisme $\eta: M \rightarrow \tilde{M}$, la suite $0 \rightarrow M \stackrel{\eta}{\twoheadrightarrow} \tilde{M}$ est isomorphe à $0 \rightarrow 0 \oplus M \stackrel{0 \oplus \mathrm{id}}{\twoheadrightarrow} M$ qui est dans \mathcal{E} . Ceci montre que $[M] = [\tilde{M}]$ dans $K_0(\mathcal{M})$. Ainsi, si les classes d'isomorphisme de \mathcal{M} forment un ensemble, $K_0(\mathcal{M})$ est un ensemble.

Proposition 1.27. Soit $\mathcal{M}_{(-)}: I \to \operatorname{CatEx}, i \mapsto \mathcal{M}_i$ un foncteur d'une catégorie filtrante I dans la catégorie des petites catégories exactes et des foncteurs exactes. Alors la colimite $\mathcal{M} := \operatorname{colim}_i \mathcal{M}_i$ existe. La catégorie sous-jacente est la colimite dans la catégorie des catégories et l'ensemble \mathcal{E} des suites exactes est donnée par la colimite $\operatorname{colimite}_i \mathcal{E}_i$, où \mathcal{E}_i est l'ensembles des suites exactes dans \mathcal{M}_i . En d'autres termes $M' \stackrel{k}{\rightarrowtail} M \stackrel{p}{\twoheadrightarrow} M''$ est dans \mathcal{E} si et seulement si seulement si pour un certain rang i dans $\operatorname{Ob} I$, il existe M'_i, M_i, M''_i, k_i et p induisant respectivement M', M, M'', k et p dans \mathcal{M}_i , tels que $M'_i \stackrel{k_i}{\rightarrowtail} M_i \stackrel{p_i}{\leadsto} M''_i$ soit exacte dans \mathcal{M}_i .

Démonstration. On pose \mathcal{M} la colimite de $\mathcal{M}_{(-)}$ dans la catégorie des petites catégories. On pose \mathcal{E} la colimite $\mathrm{colim}_i \mathcal{E}_i$. Montrons que \mathcal{M} est exacte. Il sera alors immédiat que \mathcal{M} est la colimite dans CatEx . Comme tout diagramme fini est réalisé à un rang i dans $\mathrm{Ob}\,i$, les axiomes (a1),(a2) et (a3) passent à la colimite. L'axiome (b2) passe de même clairement à la colimite. L'axiome (b1) est vérifié par le lemme 1.28 suivant.

Lemme 1.28. Soit $F: \mathcal{M} \to \mathcal{M}'$ un foncteur exact entre catégories exactes. Soit $j: M \twoheadrightarrow M''$ un épimorphisme admissible dans \mathcal{M} et $f: N \to M''$ un morphisme. Alors le carré :

$$F(M \times_{M''} N) \longrightarrow F(N)$$

$$\downarrow \qquad \qquad \downarrow^{F(f)}$$

$$F(M) \xrightarrow{F(j)} F(M'')$$

est cartésien. En d'autres termes, les foncteurs exactes préservent les tirés en arrière des épimorphismes admissibles.

Démonstration. On note $i: M' \to M$ le noyau de j. On note $\alpha: F(M \times_{M''} N) \to F(M) \times_{F(M'')} F(N)$ le morphisme canonique. Montrons que α a noyau nul. Soit $u: P \to F(M \times_{M''} N)$ tel que $\alpha \circ u = 0$. Alors comme $F(M') \to F(M \times_{M''} N) \twoheadrightarrow F(N)$ est exacte, u se factorise en $v: P \to F(M')$ par $F(M') \to F(M \times_{M''} N)$. Or, $F(i) \circ v = 0$, donc v = 0 car F(i) est un noyau. Or la composition de α avec $F(M) \times_{F(M'')} F(N) \to F(N)$ est un épimorphisme admissible. Donc par (c1), α est un épimorphisme admissible de noyau nul. Par (a3) c'est donc un isomorphisme. \square

Proposition 1.29. Soit $\mathcal{M}_{(-)}: I \to \operatorname{CatEx}, i \mapsto \mathcal{M}_i$ un foncteur d'une catégorie filtrante I dans la catégorie des petites catégories exactes. On note \mathcal{M} sa colimite. Alors l'application induite $\operatorname{colim}_i K_0(\mathcal{M}_i) \to K_0(\mathcal{M})$ est un isomorphisme.

 $D\acute{e}monstration$. On a $\bigoplus_{M\in \mathrm{Ob}\,\mathcal{M}}\mathbb{Z}=\mathrm{colim}_i\bigoplus_{M\in \mathrm{Ob}\,\mathcal{M}_i}\mathbb{Z}$ et le sous-groupe $<[M']+[M'']-[M]>_{M'\mapsto M\twoheadrightarrow M''}$ de $\bigoplus_{M\in \mathrm{Ob}\,\mathcal{M}}\mathbb{Z}$ est colimite des sous-groupes corresponds des $\bigoplus_{M\in \mathrm{Ob}\,\mathcal{M}_i}\mathbb{Z}$.

Nous allons maintenant appliquer ce résultat de colimite pour effectuer un calcul.

Définition 1.30. Soit $A = A_0 \oplus A_1 \oplus \cdots$ un anneau gradué en degrés positifs. On note $\operatorname{Pgr}(A)$ la catégorie des A-modules \mathbb{Z} -gradués de type fini et projectifs (en tant que modules gradués 1). C'est une catégorie exacte. On notera $t : \operatorname{Pgr}(A) \to \operatorname{Pgr}(A), (P_n)_n \mapsto (P_{n-1})_n$ le foncteur exact de décalage. On notera également par t l'automorphisme induit sur $K_0(\operatorname{Pgr}(A))$.

Proposition 1.31. Soit $A = A_0 \oplus A_1 \oplus \cdots$ un anneau gradué en degrés positifs. L'automorphisme t fait de $K_0(\operatorname{Pgr}(A))$ un $\mathbb{Z}[t, t^{-1}]$ -module. On a un isomorphisme de $\mathbb{Z}[t, t^{-1}]$ -modules :

$$\phi: \quad \mathbb{Z}[t, t^{-1}] \otimes_{\mathbb{Z}} K_0(A_0) \quad \to \quad K_0(\operatorname{Pgr}(A)) \\ 1 \otimes x \qquad \qquad \mapsto \quad (A \otimes_{A_0} -)_* x$$

Démonstration. Pour k dans \mathbb{Z} , on note F_k le foncteur $\operatorname{Pgr}(A) \to \operatorname{Pgr}(A)$, $P \mapsto < P_n >_{n \leq q}$, où $< P_n >_{n \leq q}$ est le sous-module de P engendré par les éléments homogènes de degrés $n \leq q$. Pour $q \geq 0$, on note $\operatorname{Pgr}(A)_q$ la sous-catégorie pleine de $\operatorname{Pgr}(A)$ des P tels que $F_{-q-1}P = 0$ et $F_qP = P$. On définit le foncteur exact $T: \operatorname{Pgr}(A) \to \operatorname{Pgr}(A_0)$, $P \mapsto A_0 \otimes_A P$. Pour tout P et tout n, nous allons vérifier que le morphisme canonique suivant est un isomorphisme :

$$\begin{array}{cccc} A[-n] \underset{}{\otimes}_{A_0} T(P)_n & \to & \underline{F_n P/F_{n-1} P} \\ a_m \underset{}{\otimes} \overline{b_n} & \mapsto & \overline{a_m \cdot b_n} \end{array}$$

pour a_m et b_n homogènes de degrés m et n. On dispose d'un épimorphisme naturel de A_0 -modules gradués $f: P \to T(P)$. Or T(P) est un A_0 -module gradué projectif. Soit $g: T(P) \to P$ une section. On note $h: T(P) \otimes_{A_0} A \to P$ le morphisme de A-modules gradués de type fini induit. Le morphisme T(h) s'identifie à $\mathrm{id}_{T(P)}$. Donc

 $^{1.\,}$ ce qui est équivalent à projectif en tant que $A{\text{-}}$ module, voir [Bas68, pp.636-637]. Ce ne sera pas utile ici

 $T(\operatorname{coker}(h))$ est nul. Or $\operatorname{coker}(h)$ est de type fini et donc inférieurement borné. Donc $\operatorname{coker}(h)=0$. Donc h est surjectif. Comme P est projectif, on a $T(P)\otimes_{A_0}A\simeq \ker(h)\oplus P$. Mais par cet isomorphisme, $T(T(P)\otimes_{A_0}A)$ est isomorphe à T(P). Donc $T(\ker(h))=0$. Or, comme quotient de P, $\ker(h)$ est de type fini et donc borné inférieurement. Donc $\ker(h)=0$. Ainsi on a un isomorphisme non-canonique $T(P)\otimes_{A_0}A\simeq P$. Via cet isomorphisme, $F_nP\simeq \oplus_{q\leq n}A[-q]\otimes_{A_0}T(P)_q$. On a donc bien $A[-n]\otimes_{A_0}T(P)_n\simeq F_nP/F_{n-1}P$, et ce morphisme correspond à celui défini plus haut car h est induit par une section de $P\to T(P)$.

Nous pouvons maintenant calculer $K_0(\operatorname{Pgr}(A)_q)$. Soit P un objet de $\operatorname{Pgr}(A)_q$. On a une filtration de P:

$$0 = F_{-q-1}P \subseteq F_{-q} \subseteq \cdots \subseteq F_qP = P$$

Et donc, au vu de l'isomorphisme ci-dessus :

$$[P] = \sum_{n=-q}^{q} [F_n P / F_{n-1} P] = \sum_{n=-q}^{q} [A[-n] \otimes_{A_0} T(P)_n] = \sum_{n=-q}^{q} [\phi(t^n \otimes T(P)_n)]$$

Ainsi, si on pose $\chi_q: K_0(\operatorname{Pgr}(A)_q) \to \bigoplus_{n=-q}^q K_0(A_0), P \mapsto \bigoplus_n T(P)_n$, on a que ϕ_q et χ_q sont réciproques, où ϕ_q est la restriction de ϕ à $\bigoplus_{n=-q}^q \mathbb{Z} \cdot t^n \otimes K_0(A_0)$. Donc ϕ_q est un isomorphisme. Par la proposition 1.29, ϕ est un isomorphisme. \square

1.4. Les groupes K_1 et K_2 d'un anneau. Dans cette section, nous fixons un anneau A.

On note $\mathrm{GL}_n(A)$ le groupe des matrices $n \times n$ inversibles à coéfficients dans A. On fait de $n \mapsto \mathrm{GL}_n(A)$ un foncteur $(\mathbb{N}, \leq) \to \mathrm{Grp}$ via les inclusions :

$$\operatorname{GL}_n(A) \to \operatorname{GL}_{n+1}(A)$$
 $M \mapsto \begin{pmatrix} M & 0 \\ 0 & 1 \end{pmatrix}$

et on note $GL(A) := \operatorname{colim}_{n \in \mathbb{N}} GL_n(A)$.

Définition 1.32 (K_1 d'un anneau). Pour A un anneau, on défini le 1^{er} groupe de K-théorie de A, $K_1(A)$, par :

$$K_1(A) := \operatorname{GL}(A)^{\operatorname{ab}}$$

Nous allons maintenant donner une description du groupe des commutateurs [GL(A), GL(A)].

Définition 1.33. Pour $1 \le i, j \le n, i \ne j$ et $a \in A$, on pose :

$$e_{ij}(a) := id + aE_{ij} \in GL_n(A)$$

On note $E_n(A)$ le sous-groupe de $GL_n(A)$ engendré par les $e_{ij}(a)$ pour i, j > 0, $i \neq j$ et $a \in A$. On note $E(A) := \bigcup_n E_n(A) \subset GL(A)$.

Exemple 1.34. (1) Toutes les matrices de permutation paires sont dans E(A);

(2) Si $M \in GL_n(A)$, alors:

$$\begin{pmatrix} M & 0 \\ 0 & M^{-1} \end{pmatrix} \in \mathcal{E}_{2n}(A)$$

En effet, on a la formule :

$$\begin{pmatrix} M & 0 \\ 0 & M^{-1} \end{pmatrix} = \begin{pmatrix} 1 & M \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ -M^{-1} & 0 \end{pmatrix} \begin{pmatrix} 1 & M \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$$

Proposition 1.35 (lemme de Whitehead). Pour A un anneau, E(A) et parfait, et on a l'égalité :

$$E(A) = [GL(A), GL(A)]$$

 $Et\ donc:$

$$K_1(A) = GL(A)/E(A)$$

Démonstration. \subseteq : on a $e_{ij}(a) = [e_{ik}(a), e_{kj}(a)]$ pour i,j et k distincts. Ceci montre également que E(A) et parfait.

 \supseteq : Pour $M, N \in GL_n(A)$, on a, dans $GL_{2n}(A)$:

$$[M,N] = \begin{pmatrix} M & 0 \\ 0 & M^{-1} \end{pmatrix} \begin{pmatrix} N & 0 \\ 0 & N^{-1} \end{pmatrix} \begin{pmatrix} (NM)^{-1} & 0 \\ 0 & NM \end{pmatrix} \in \mathcal{E}_{2n}(A)$$

[Frédéric : ajouter f^* et f_* ? (nécessite une interprétation cohomologique)] [ajouter K_2 d'un anneau]

2. Définition de la K-théorie supérieure

Cette section est dédiée à la construction Q de la K-théorie supérieure, dûe à Daniel Quillen. La référence principale est l'article original de Quillen [Qui73].

2.1. La construction Q de Quillen. Dans cette sous-section, \mathcal{M} désigne une petite catégorie exacte.

Proposition - définition 2.1. Un diagramme dans \mathcal{M} de la forme :

$$\begin{array}{ccc}
A & \xrightarrow{i} & B \\
\downarrow^{p'} & & \downarrow^{p} \\
& & & \downarrow^{p} \\
B & \xrightarrow{i'} & C
\end{array}$$

est cartésien si et seulement si il est cocartésien. Si c'est le cas, p et p' ont même noyau, et i et i' ont même conoyau.

On appellera un tel diagramme bicartésien.

De plus, tout diagramme cartésien de la forme (1) ci-dessous ou cocartésien de la forme (2) ci-dessous est bicartésien.

Démonstration. Supposons seulement que le diagramme soit cartésien, que i' soit un monomorphisme admissible et p un épimorphisme admissible (cas (1)). On note $k:N\mapsto B$ le noyau de p. Un morphisme $u:P\to A$ qui vérifie $(P\xrightarrow{u}A\to C)=0$ s'identifie à un morphisme $P\to B$ qui vérifie $(P\to B\to D)=0$, c'est à dire un morphisme $P\to N$. Donc p et p' ont même noyau. De plus, par l'axiome (b1), p' est un épimorphisme admissible.

Maintenant, un couple de morphismes $u:C\to P,\ v:B\to P$ s'identifie à un morphisme $v:B\to P$ tel que $A\to B\to P$ se factorise par C. C'est-à-dire, comme p et p' ont même noyau, un morphisme de $w:D\to P$. Ainsi, le diagramme est cocartésien.

Montrons que i est un monomorphisme admissible. Soit j': D woheadrightarrow Q le conoyau de i'. Un morphisme $u: P \to B$ vérifie $j' \circ p \circ u = 0$ si et seulement si $p \circ u$ se factorise par $i': C \to D$ si et seulement si u se factorise par i. Donc i est le noyau de $j' \circ p$, qui est un épimorphisme admissible. Donc i est un monomorphisme admissible.

Les autres énoncés sont duaux de ceux démontrés.

Définition 2.2 (catégorie QM). On définit la catégorie QM comme la catégorie dont :

- (1) les objets sont les objets de \mathcal{M} ;
- (2) l'ensemble $\operatorname{Hom}_{Q\mathcal{M}}(M,M')$ est l'ensemble des diagrammes :

$$M \leftarrow N \rightarrowtail M'$$

à isomorphisme près, où un isomorphisme entre $M \twoheadleftarrow N \rightarrowtail M'$ et $M \twoheadleftarrow N' \rightarrowtail M'$ est la donnée d'un isomorphisme $\eta: N \to N'$ dans $\mathcal M$ faisant commuter le diagramme :

(3) la composition de $M \twoheadleftarrow N \rightarrowtail M'$ et $M' \twoheadleftarrow N' \rightarrowtail M''$ est donnée par le diagramme :

Remarque 2.3. La composition dans $Q\mathcal{M}$ est bien définie par fonctorialité des limites. L'associativité est facile à vérifier.

Définition 2.4. Pour $i: M \rightarrow M'$, on note $i_!: M \rightarrow M'$ le morphisme associé dans QM. Un tel morphisme sera appelé une injection.

Pour $j:M \twoheadrightarrow M''$, on note $j^!:M'' \to M$ le morphisme associé dans $Q\mathcal{M}$. Un tel morphisme sera appelé une surjection.

Proposition 2.5. Tout morphisme u de QM se factorise en $u = i_!j^!$ uniquement à unique isomorphisme près. De même, u se factorise uniquement sous la forme $u = j^!i_!$ à unique isomorphisme près.

Un morphisme u est un isomorphe si et seulement si c'est une injection et une surjection.

De plus, on a $\operatorname{Iso}_{QM}(M, M') \simeq \operatorname{Iso}_{M}(M, M')$.

Démonstration. Le premier point est la définition. Le second point découle de la bijection entre factorisations u = j!i! et u = i!j! induite par les propriétés des carrés bicartésiens (proposition 2.1).

La caractérisation des isomorphismes est immédiate dès que l'on remarque : si $u' = \tilde{i}_! \tilde{j}^!$ est inverse de $u = i_! j^!$, on pose $a_! b^! = \tilde{j}^! i_!$. Alors id $= u'u = (\tilde{i}a)_! (bj)^!$; donc $\tilde{i}a$ et bj sont des isomorphismes dans \mathcal{M} , donc \tilde{i} et j également.

Une conséquence immédiate de la proposition ci-dessus et de la proposition 2.1 est la propriété universelle vérifiée par QM dans Cat.

Proposition 2.6 (Propriété universelle de QM). La donnée d'un foncteur $F: QM \to D$ avec D une petite catégorie est équivalente à la donnée :

- (1) d'une application $F : Ob \mathcal{M} \to Ob D$;
- (2) de morphismes $Fi_!: FM' \to FM$ pour chaque $i: M \rightarrowtail M'$;
- (3) de morphismes $Fj!: FM'' \to FM$ pour chaque $j: M \twoheadrightarrow M''$;
- (4) tels que $F(ii')_! = Fi_! \circ Fi_!'$ et $F(jj')^! = Fj'^! \circ Fj^!$;
- (5) et tels que pour chaque diagramme bicartésien :

$$\begin{array}{ccc}
& & & & i' \\
\downarrow j' & & & \downarrow j \\
\downarrow & & & \downarrow i \\
& & & & \vdots
\end{array}$$

On ai
$$Fj! \circ Fi! = Fi'! \circ Fj'!$$
.

Nous allons maintenant donner une autre interprétation des morphismes.

Proposition - définition 2.7. On appelle sous-objet de $M \in \text{Ob } \mathcal{M}$ une classe d'isomorphisme de monomorphismes admissibles $M' \rightarrowtail M$, et quotient de M une classe d'isomorphisme d'épimorphismes admissibles $M \twoheadrightarrow M''$. Les sous-objets sont en bijection avec les quotients via les suites exactes.

On définit une relation d'ordre sur les sous-objets de M par $M_0 \leq M_1$ si et seulement si il existe $M_0 \rightarrow M_1$ monomorphisme admissible au-dessus de M.

L'ensemble partiellement ordonné des niveaux de M est définie par :

- Objets: couples (M_0, M_1) de sous objets avec $M_0 \leq M_1$;
- Morphismes: $(M_0, M_1) \leq (M'_0, M'_1)$ si et seulement si $M'_0 \leq M_0 \leq M_1 \leq M'_1$. On a une équivalence entre $QM \downarrow M$ et la catégorie des niveaux donnée par :

$$(M_0, M_1) \mapsto (M_1/M_0 \leftarrow M_1 \rightarrowtail M)$$

La démonstration est immédiate.

Proposition 2.8. On a un isomorphisme naturel de catégories :

$$\begin{array}{cccc} Q\mathcal{M}^{\mathrm{op}} & \simeq & Q\mathcal{M} \\ M & \mapsto & M \\ M \overset{p}{\twoheadleftarrow} N \overset{i}{\rightarrowtail} M' & \mapsto & M \overset{p^{\mathrm{op}}}{\rightarrowtail} N \overset{i^{\mathrm{op}}}{\twoheadleftarrow} M' \end{array}$$

Nous pouvons maintenant donner une définition de la K-théorie supérieure. Pour cela, nous allons considérer la catégorie $Q\mathcal{M}$ comme un ensemble simplicial. Pour des rappels sur ce point et sur les groupes d'homotopie des ensembles simpliciaux, voir le début de la sous-section suivante 2.2.

Définition 2.9 (K-théorie supérieure). Soit \mathcal{M} une catégorie exacte et O un objet nul de \mathcal{M} . On définit, pour $n \geq 0$, le n-ème groupe de K-théorie de \mathcal{M} comme :

$$K_n(\mathcal{M}) := \pi_n(Q\mathcal{M}, O)$$

Remarque 2.10. Comme QM est connexe, la classe d'isomorphisme de $K_n(M)$ est indépendante de O. Il faut cependant en dire un tout petit peu plus pour faire de

 K_n un foncteur de CatEx dans Ab, ce sera fait dans la sous-section 2.3. Il reste également à vérifier que la nouvelle définition de K_0 coïncide avec celle donnée dans la section 1. C'est l'objet du théorème ci-dessous.

Nous allons maintenant étudier le groupoïde associé à QM. Soit $O \in Ob \mathcal{M}$ un objet nul.

Nous notons, pour M objet de $Q\mathcal{M}$, $i_M:O\rightarrowtail M$ et $j_M:M\twoheadrightarrow O$ les uniques morphismes. La démonstration du théorème utilise la proposition 2.15.

Théorème 2.11. L'application :

$$K_0(\mathcal{M}) \rightarrow \pi_1(Q\mathcal{M}, O)$$

 $[M] \mapsto [i_{M!}]^{-1}[j_M^!]$

induit un isomorphisme de groupes.

 $D\acute{e}monstration.$ L'idée de la preuve est de montrer qu'on dispose d'une équivalence de catégorie :

$$[K_0(\mathcal{M}), \operatorname{Isos}(\operatorname{Ens})] \simeq [Q\mathcal{M}, \operatorname{Isos}(\operatorname{Ens})]$$

Où Isos(Ens) est la catégorie des bijections entre ensembles. Pour cela, on remarque dans un premier temps que $[Q\mathcal{M}, Isos(Ens)]$ est équivalente à sa sous-catégorie pleine \mathcal{F} , formée des foncteurs F tels que :

$$\forall M, F(M) = F(O) \text{ et } F(i_{M!}) = \mathrm{id}_{F(O)}$$

En effet, un foncteur réciproque à l'inclusion est donné par

$$\gamma: F \mapsto (u: M \to M' \mapsto F(i_{M'!})^{-1} \circ F(u) \circ F(i_{M!}))$$

Étudions les éléments de \mathcal{F} . Si $i: M \rightarrow M'$, $ii_{M'} = i_M$, et donc $F(i_!) = id_{F(O)}$.

Soit $M' \stackrel{i}{\rightarrowtail} M \stackrel{j}{\twoheadrightarrow} M''$ une suite exacte. On a un carré bicartésien :

$$M' \xrightarrow{i} M$$

$$\downarrow^{j_M} \qquad \downarrow^{j}$$

$$0 \xrightarrow{i_{M''}} M''$$

On a donc $j^!i_{M''!}=i_!j_{M'}^!$, puis $F(j^!)=F(j_{M'}^!)$. De plus $j_M^!=j^!j_{M''}^!$. Donc $F(j_M^!)=F(j_{M'}^!)F(j_{M''}^!)$. Nous disposons donc d'un morphisme naturel en F:

$$K_0(\mathcal{M}) \to \operatorname{Aut}(F(O))$$

 $[M] \mapsto F(j_M^i)$

Ainsi, nous avons un foncteur:

$$\alpha: \mathcal{F} \to [K_0(\mathcal{M}), \mathrm{Ens}]$$

On remarque également que les éléments F de \mathcal{F} sont entièrement déterminés par F(O) et leurs valeurs sur les $j_M^!$. Nous allons maintenant décrire un morphisme réciproque.

Soit S un $K_0(\mathcal{M})$ -ensemble. On pose :

$$F_S: \begin{array}{ccc} Q\mathcal{M} & \to & \mathrm{Isos}(\mathrm{Ens}) \\ M & \mapsto & S \\ i_! & \mapsto & id_S \\ j^! & \mapsto & [\ker(j)] \cdot (-) \end{array}$$

Vérifions que F_S est un foncteur. Si $\cdot \xrightarrow{j} \cdot \xrightarrow{j'} \cdot$, la suite $\ker(j) \rightarrowtail \ker(j'j) \xrightarrow{j} \ker(j')$ est exacte, donc $F((jj')^!) = F(j^!)F(j'^!)$. Si on a un carré bicartésien :

$$\begin{array}{c} \cdot \rangle & i' \\ \downarrow j' \\ \downarrow \downarrow \\ \cdot \rangle & i \end{array} \qquad \begin{array}{c} \cdot \\ \downarrow j \\ \vdots \\ \cdot \rangle \end{array}$$

On a $\ker(j) \simeq \ker(j')$ et donc $F(i'_1j'') = F(j!_{i!})$. Ainsi, par la propriété universelle de $Q\mathcal{M}$ énoncée dans la proposition 2.6, F_S est un foncteur. On dispose donc d'un foncteur :

$$\beta: [K_0(\mathcal{M}), \mathrm{Ens}] \to \mathcal{F}$$

Or on voit que α et β sont réciproques. En effet, on a un isomorphisme naturel $\alpha(\beta(S)) \simeq S$ induit par $\ker(j_M) \simeq M$. De même, on a un isomorphisme naturel $\beta(\alpha(F)) \simeq F$ induit par les $F(j^!) = F(j^!_{M'})$ et $\ker(j) \simeq M'$ pour $M' \xrightarrow{i} M \xrightarrow{j} M''$ exacte.

On note $\delta:[Q\mathcal{M},\mathrm{Isos}(\mathrm{Ens})]\to[\pi_1(Q\mathcal{M},O),\mathrm{Ens}]$ l'équivalence naturelle. L'équivalence :

$$\delta \circ (\mathcal{F} \to [Q\mathcal{M}, \mathrm{Isos}(\mathrm{Ens})]) \circ \beta : [K_0(\mathcal{M}), \mathrm{Ens}] \to [\pi_1(Q\mathcal{M}, O), \mathrm{Ens}]$$

Est induite par un isomorphe de groupe $\phi: \pi_1(Q\mathcal{M}, O) \to K_0(\mathcal{M})$ (résultat classique sur les actions de groupe). On vérifie, en appliquant l'équivalence au $K_0(\mathcal{M})$ -ensemble $K_0(\mathcal{M})$, que ϕ envoie $[i_{M!}]^{-1}[j_M^!]$ sur [M]. Ce qui conclut.

2.2. Les théorèmes A et B de Quillen. Comme la définition de la K-théorie supérieure repose sur de la topologie, cette section donne quelques rappels sans démonstrations et prouve 2 théorèmes (dits A et B) sur lesquels reposeront la majorité des résultats sur la construction Q.

On note, pour C une catégorie et x un objet de C, $C \downarrow x$ la catégorie au-dessus de x des couples $(y, u : y \to x)$. De même, on note $C \uparrow x$ la catégorie au-dessous de x des couples $(y, u : x \to y)$.

Pour $f:C\to D$ un foncteur et d un objet de D, on note $f\downarrow d$ la catégorie des couples $(c,u:fc\to d)$. La catégorie $f\downarrow d$ est le tiré en arrière de $D\downarrow d$ par f. De même pour $f\uparrow d$. On note parfois $C\downarrow d$ pour $f\downarrow d$, quand le foncteur f est évident, par exemple quand C est une sous-catégorie pleine de D.

Pour $f: C \to D$ un foncteur et d un objet de D, on note $f^{-1}d$ la sous-catégorie de C formée des objets c tels que fc = d et des morphismes $u: c \to c'$ tels que $fu = \mathrm{id}_d$.

Proposition - définition 2.12. Le foncteur nerf $N: \operatorname{Cat} \to \widehat{\Delta}$ est défini par

$$NC_{\bullet} := \operatorname{Hom}_{\operatorname{Cat}}([\bullet], C)$$

où $[\bullet]$ désigne la catégorie cosimpliciale $\Delta \to \operatorname{Cat}, [n] \mapsto (0 \to 1 \to \cdots \to n)$. Ce foncteur est pleinement fidèle et admet un adjoint à gauche $\tau_{\leq 1} : \widehat{\Delta} \to \operatorname{Cat}$.

Pour la démonstration, voir le [GJ09, chp. 1].

Dans la suite, comme N est pleinement fidèle, nous l'omettrons et notérons C pour l'ensemble simplicial associé à une catégorie C.

Nous admettrons les structures de modèles de Kan-Quillen sur $\widehat{\Delta}$ et Top.

Nous noterons $|\bullet|:\widehat{\Delta}\to \text{Top}$ le foncteur réalisation et Sing : Top $\to\widehat{\Delta}$ le foncteur complexe singulier. Pour simplifier des démonstrations, nous utiliserons l'équivalence de Quillen :

$$|\bullet|: \operatorname{Ho}(\widehat{\Delta}) \perp \operatorname{Ho}(\operatorname{Top}): \operatorname{Sing}$$

Pour X ensemble simplicial et $x \in X_0$, nous noterons $\pi_n(X, x)$ pour $\pi_n(|X|, x)$. Nous utiliserons également les groupes d'homotopie simpliciaux sur les complexes de Kan.

Voir [GJ09, chp. 1] pour plus d'informations sur ces sujets.

Nous allons maintenant nous intéresser aux propriétés homotopiques des catégories.

Proposition 2.13. (1) Une transformation naturelle $\theta: f \Rightarrow g$ entre f et $g: C \rightarrow D$ induit une homotopie:

$$C \times \Delta^1 \to D$$

- (2) Si $f: C \to D$ a un adjoint à droite ou à gauche, alors f est une équivalence d'homotopie;
- (3) Une catégorie C avec un objet initial ou final est contractile.

Démonstration. (1) $N: \operatorname{Cat} \to \widehat{\Delta}$ préserve les produits et la donnée de θ est équivalente à celle d'un foncteur $C \times (0 \to 1) \to D$;

- (2) On note $f': D \to C$ l'adjoint. On a alors par (1) des homotopies $ff' \simeq \mathrm{id}_D$ et $f'f \simeq \mathrm{id}_C$;
- (3) Le foncteur $C \to (*)$ a alors un adjoint à droite ou à gauche.

Proposition 2.14. (1) Si $C_{(-)}: I \to \text{Cat } est \ un \ foncteur \ avec \ I \ petite \ catégorie filtrante et C sa colimite, l'application naturelle <math>\cdot$

$$\operatorname{colim}_I NC_{(-)} \longrightarrow NC$$
 est un isomorphisme.

(2) Dans ce même contexte, si on se donne des objets compatibles $(x_i \in C_i)_{i \in I}$ et $x \in C$ associé, les applications naturelles :

$$\operatorname{colim}_{i \in I} \pi_n(C_i, x_i) \longrightarrow \pi_n(C, x)$$
 sont des isomorphismes.

- (3) Une catégorie I filtrante est contractile.
- Démonstration. (1) Il suffit de montrer que $\operatorname{colim}_I NC_{(-)}$ est une catégorie, c'est à dire qu'il a la propriété d'unique extension le long des $\Lambda^n_k \to \Delta^n$. Or, si $f: \Lambda^n_k \to \operatorname{colim}_I NC_{(-)}$ est une application, comme Λ^n_k est un objet compacte de $\widehat{\Delta}$, f proviens de $f_i: \Lambda^n_k \to C_i$ pour un certain $i \in \operatorname{Ob} I$. On peut alors l'étendre en $g_i: \Delta^n \to C_i$, lequel induit $g: \Delta^n \to \operatorname{colim}_I NC_{(-)}$. Si g et g' conviennent, alors ils proviennent respectivement de $g_j: \Delta^n \to C_j$ et $g'_j: \Delta^n \to C_j$, pour un même j car I est filtrante. Quitte à changer j, on peut supposer que $g_{j|\Lambda^n_k} = g'_{j'|\Lambda^n_k}$. Or C_j est une catégorie, donc $g_j = g'_j$ et g = g'.

(2) Le foncteur remplacement fibrant $R: \widehat{\Delta} \to \widehat{\Delta}$ induit par l'application de l'argument du petit objet aux inclusions $\Lambda_k^n \to \Delta^n$ commute aux colimites filtrantes. En effet, comme on l'a vu ci-dessus :

$$\operatorname{Hom}_{\widehat{\Delta}}(\Lambda_k^n, C) \simeq \operatorname{colim}_i \operatorname{Hom}_{\widehat{\Delta}}(\Lambda_k^n, C_i)$$

Donc, avec $\mathcal{J} = \{\Lambda_k^n \to \Delta^n\}$, et G^* la construction du petit objet, on a $G^1(\mathcal{J}, C \to *) = \operatorname{colim}_i G^1(\mathcal{J}, C_i \to *)$, et donc par induction et passage à la colimite : $RC = \operatorname{colim}_i RC_i$.

Nous nous sommes donc ramené à montrer que les groupes d'homotopie simpliciaux commutent aux colimites filtrantes de complexes de Kan. Ce qui se montre de manière équivalente au (1).

(3) On pose F le foncteur $I \to \operatorname{Cat}$, $i \mapsto I \downarrow i$. On a $I = \operatorname{colim}_I F$. Or chaque $I \downarrow i$ a un objet final et est donc contractile. Donc par (2), I est contractile.

Il existe une autre manière de décrire le π_1 d'une catégorie. On note $\pi: \operatorname{Cat} \to \operatorname{Groupoides}$ l'adjoint à gauche de l'oubli.

Proposition 2.15. Soit C une catégorie et πC le groupoïde engendré, pour x un objet de C, on a un isomorphisme :

$$\operatorname{Aut}_{\pi C}(x) \simeq \pi_1(C,x)$$

Démonstration. On note X l'ensemble simplicial obtenu en ajoutant un 2-simplexe σ_a à C le long de chaque application $(a, \mathrm{id}, -): \Lambda_2^2 \to C$, pour a morphisme de C. On a alors $\tau_{<1}X = \pi C$. On utilise alors le résultat suivant :

(*) Si X est un ensemble simplicial tel que $\tau_{\leq 1}X$ est un groupoïde, si et $f: \Lambda_k^2 \to X$ une application, on note $g: X \to Y$ le poussé en avant de $\Lambda_k^2 \to \Delta^2$ le long de f. Alors $\tau_{\leq 1}g$ est un isomorphisme.

Par (*), on dispose d'un remplacement fibrant K de X, et donc de C, tel que $\tau_{\leq 1}K = \pi C$. Or c'est un résultat classique sur les complexes de Kan que $\tau_{\leq 1}K = \pi_{< 1}K$. Donc, on a :

$$\pi_1(C, x) = \pi_1(K, x) = \operatorname{Aut}_{\pi_{<1}K}(x) = \operatorname{Aut}_{\pi C}(x)$$

Il reste à montrer (*). Pour cela, par exemple si k=2, on note f=(a,b,-) et $(a,b,c):\Delta^2\to Y$ l'extension. On a $\tau_{\leq 1}Y=(\tau_{\leq 1}X)[c]/(ac=b)$. Or, dans $\tau_{\leq 1}Y,[c]=[a]^{-1}[b]\in\tau_{\leq 1}X.$ Donc $\tau_{\leq 1}Y=\tau_{\leq 1}X.$

Pour la suites, nous aurons besoins de deux résultats sur les ensembles bisimpliciaux.

Définition 2.16. Un ensemble bisimplicial est un foncteur :

$$\Delta^{\mathrm{op}} \times \Delta^{\mathrm{op}} \longrightarrow \mathrm{Ens}$$

Pour $X_{\bullet\bullet}$ un ensemble bisimplicial, on appelle sa réalisation |X| le coégalisateur suivant dans $\widehat{\Delta}$:

$$\bigsqcup_{\phi:[n]\to[m]} X_m \times \Delta^n \underset{\sqcup \phi^* \times \mathrm{id}}{\overset{\sqcup \mathrm{id} \times \phi_*}{\Rightarrow}} \bigsqcup_{[n]} X_n \times \Delta^n$$

Où X_n désigne l'ensemble simplicial $X_{n,\bullet}$.

Sa diagonale est l'ensemble simplicial $d(X):[n]\mapsto X_{n,n}$

Proposition 2.17. Soit X un ensemble bisimplicial. Alors les applications :

$$\alpha_n: X_n \times \Delta^n \to d(X), \ (x_m, \phi: [m] \to [n]) \mapsto (\phi \times \mathrm{id}_{[m]})^*(x_m)$$

induisent un isomorphisme $|X| \to d(X)$.

Démonstration. Soit $\phi:[n]\to[m]$ et $(x,\chi:[r]\to[n])\in X_{m,r}\times\Delta^n_r$. Alors :

$$\alpha_n(\phi^*x, \chi) = ((\phi\chi) \times id)^*x = \alpha_m(x, \phi\chi)$$

Donc les α_n induisent bien une application $|X| \to d(X)$. Cette dernière est clairement fonctorielle en X. Or $X \mapsto |X|$ et $X \mapsto d(X)$ commutent aux colimites, et dans la catégorie $[\mathbf{\Delta}^{\mathrm{op}} \times \mathbf{\Delta}^{\mathrm{op}}, \mathrm{Ens}]$ des ensembles bisimpliciaux, tout ensemble X est colimite de $\mathbf{\Delta} \times \mathbf{\Delta} \downarrow X$, où l'inclusion $\mathbf{\Delta} \times \mathbf{\Delta} \to [\mathbf{\Delta}^{\mathrm{op}} \times \mathbf{\Delta}^{\mathrm{op}}, \mathrm{Ens}]$ est donnée par Yoneda. Donc, nous sommes ramenées à $X_{\bullet_1 \bullet_2} = \Delta^r_{\bullet_1} \times \Delta^s_{\bullet_2}$. Or :

$$d(\Delta_{\bullet_1}^r \times \Delta_{\bullet_2}^s) = \Delta^r \times \Delta^s$$

Et:

$$\begin{split} |\Delta_{\bullet_{1}}^{r} \times \Delta_{\bullet_{2}}^{s}|_{l} &= \operatorname{coeq}\Big(\bigsqcup_{\phi:[n] \to [m]} \Delta_{m}^{r} \times \Delta_{l}^{s} \times \Delta_{l}^{n} \mathop{\Longrightarrow}_{\sqcup \phi^{*} \times \operatorname{id}}^{\sqcup \operatorname{id} \times \phi_{*}} \bigsqcup_{[n]} \Delta_{n}^{r} \times \Delta_{l}^{s} \times \Delta_{l}^{n}\Big) \\ &= \operatorname{coeq}\Big(\bigsqcup_{\phi:[n] \to [m]} \Delta_{m}^{r} \times \Delta_{l}^{n} \mathop{\Longrightarrow}_{\sqcup \phi^{*} \times \operatorname{id}}^{\sqcup \operatorname{id} \times \phi_{*}} \bigsqcup_{[n]} \Delta_{n}^{r} \times \Delta_{l}^{n}\Big) \times \Delta_{l}^{s} \\ &= \operatorname{coeq}\Big(\bigsqcup_{\phi:[n] \to [m]} \Delta_{m}^{r} \times \Delta_{l}^{n} \mathop{\Longrightarrow}_{\sqcup \phi^{*} \times \operatorname{id}}^{\sqcup \operatorname{id} \times \phi_{*}} \bigsqcup_{[n]} \Delta_{n}^{r} \times \Delta_{l}^{n}\Big)_{l} \times \Delta_{l}^{s} \\ &= \Delta_{l}^{r} \times \Delta_{l}^{s} \end{split}$$

Où la dernière égalité est une égalité classique sur les extensions de Yoneda. Plus précisément, on utilise que si C est une petite catégorie et X un objet de $[C^{op}, Ens]$, $Y: C \to [C^{op}, Ens]$ le plongement de Yoneda, et $\Pi: C \downarrow X \to C$ l'oubli, alors :

$$X = \operatorname{colim}_{C} Y \circ \Pi = \operatorname{coeq} \left(\bigsqcup_{\phi: c \to d} X(d) \times Y(c) \overset{\sqcup \operatorname{id} \times Y(\phi)}{\rightrightarrows} \bigsqcup_{c} X(c) \times Y(c) \right)$$

On vérifie facilement que $|\Delta^r_{\bullet_1} \times \Delta^s_{\bullet_2}| \to d(\Delta^r_{\bullet_1} \times \Delta^s_{\bullet_2})$ est l'identité via ces deux identifications.

Lemme 2.18. Soit $\phi: X_{\bullet \bullet} \to Y_{\bullet \bullet}$ un morphisme entre ensembles bisimpliciaux. Si pour tout $n \geq 0$, $\phi_n: X_{n \bullet} \to Y_{n \bullet}$ est une équivalence d'homotopie faible, alors $d(\phi): d(X) \to d(Y)$ est une équivalence d'homotopie faible.

Démonstration. [GJ09, IV.1.7] Introduisons d'abord quelques notations. Soit Z un ensemble bisimplicial. Pour $p \geq 0$ on note $d(Z)^{(p)}$ l'image de $\bigsqcup_{n \leq p} Z_n \times \Delta^n$ dans d(Z). Pour $r \geq 0$ et $p \geq 0$, on note $s_{[r]}Z_p = \bigcup_{i \leq r} s_i(Z_p) \subset Z_{p+1}$. On a alors les 3 diagrammes cocartésiens suivants :

Montrons par récurrence sur p que $d(X)^{(p)} \to d(Y)^{(p)}$ est une équivalence d'homotopie faible. Cela conclura, car les $d(X)^{(p)}$ filtrent d(X).

Pour initialiser, on remarque que $d(X)^{(p)} = d(\operatorname{sk}_p X)$, et en particulier, $d(X)^{(0)} = X_0$.

Soit $p \ge 0$, et supposons que $d(X^{(i)}) \to d(Y^{(i)})$ soit une équivalence d'homotopie faible pour tout $i \le p$.

- (1) En appliquant successivement (*) et le lemme de collage A.11, on a que $s_{[r]}X_p \to s_{[r]}Y_p$ est une équivalence d'homotopie faible pour tout $r \leq p$;
- (2) En utilisant (***) et le lemme de collage A.11, on a que : $(s_{[p]}X_p \times \Delta^{p+1}) \cup (X_{p+1} \times \partial \Delta^{p+1}) \rightarrow (s_{[p]}Y_p \times \Delta^{p+1}) \cup (Y_{p+1} \times \partial \Delta^{p+1})$ est une équivalence faible;
- (3) Par (**) et le lemme de collage A.11,

$$d(X^{(p+1)}) \to d(Y^{(p+1)})$$

est une équivalence faible.

Ceci conclut la récurrence.

Nous faisons ici quelques rappels sur les foncteurs (pré)(co)fibrés.

Définition 2.19 (foncteur (pré)fibré). Un foncteur $f: C \to D$ est préfibré si pour tout g objet de D, le foncteur pleinement fidèle :

$$f^{-1}(y) \to f \uparrow y, \ x \mapsto (x, \mathrm{id}_y)$$

admet un adjoint à droite, alors noté $(x, v : y \to fx) \mapsto v^*x$.

Alors, si $v: y \to y'$, on peut restreindre cet adjoint à $f^{-1}(y')$, et on obtient un foncteur :

$$v^*: f^{-1}(y') \longrightarrow f^{-1}(y)$$

que l'on appelle changement de base de y' à y.

Un foncteur $f: C \to D$ est fibré s'il est préfibré, et si pour tout u et v composables dans D, l'application naturelle $u^*v^* \to (vu)^*$ est un isomorphisme.

On ajoute ci-dessous la définition complètement duale de foncteur (pré)cofibré.

Définition 2.20 (foncteur (pré)cofibré). Un foncteur $f: C \to D$ est précofibré si pour tout y objet de D, le foncteur pleinement fidèle :

$$f^{-1}(y) \to f \downarrow y, \ x \mapsto (x, \mathrm{id}_y)$$

admet un adjoint à gauche, alors noté $(x, v: fx \to y) \mapsto v_*x$.

Alors, si $v: y' \to y$, on peut restreindre cet adjoint à $f^{-1}(y')$, et on obtient un foncteur :

$$v_*: f^{-1}(y') \longrightarrow f^{-1}(y)$$

que l'on appelle changement de cobase de y' à y.

Un foncteur $f: C \to D$ est cofibré s'il est précofibré, et si pour tout u et v composables dans D, l'application naturelle $(vu)_* \to v_*u_*$ est un isomorphisme.

Remarque 2.21. Pour $f:C\to D$ (pré)(co)cofibré, on dit souvent que C est une catégorie (pré)(co)cofibrée au-dessus de D.

Remarque 2.22. Les définitions ci-dessus sont celles de [Qui73, §1]. Ces définitions ont l'avantage de faire directement apparaître le résultat suivant (et son dual évident) :

(*) Si $f:C\to D$ est préfibré, alors pour tout y objet de $D,\,f^{-1}y\to f\uparrow y$ est une équivalence d'homotopie.

Pour comprendre l'existence des applications naturelles $u^*v^* \to (vu)^*$, il peut être commode de voir l'adjonction à l'aide des morphismes (pré)cartésiens. Soit $f: C \to D$.

Un morphisme $\xi: \tilde{z} \to z$ dans C est f-précartésien si pour tout $w: x \to z$ avec $f(w) = f(\xi)$, il existe un unique $u: x \to \tilde{z}$ tel que $w = \xi u$ et $f(u) = \mathrm{id}_{f\tilde{z}}$.

Un morphisme $\xi: \tilde{z} \to z$ dans C est f-cartésien si pour tout $w: x \to z$ et $a: fx \to f\tilde{z}$ avec $f(w) = f(\xi)a$, il existe un unique $u: x \to \tilde{z}$ tel que $w = \xi u$ et f(u) = a.

Soit maintenant y un objet de D. Alors $f^{-1}(y) \to f \uparrow y$ admet un adjoint à droite si et seulement si pour tout z objet de C et $v: y \to fz$, il existe $\xi: v^*z \to z$ f-précartésien avec $f(\xi) = v$.

$$\exists v^*z \xrightarrow{\xi} z$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$y \xrightarrow{v} fz$$

Il est maintenant aisé de vérifier que f est fibré si et seulement si pour tout y objet de D, z objet de C et $v:y\to fz$, il existe $\xi:v^*z\to z$ f-cartésien avec $f(\xi)=v$.

Proposition - définition 2.23 (catégorie (co)fibrée associée à un préfaisceau). Soit $p: C^{op} \to \text{Ens}$ un foncteur avec C une petite catégorie (souvent appelé préfaisceau sur C). On définit la catégorie fibrée

$$f: F(p) \to C$$

dont les objets sont les couples (c,x) avec $x \in p(C)$, et les morphismes de (c,x) dans (d,y) sont les morphismes $u:c\to d$ dans C tels que p(u)(y)=x.

On appelle $f: F(p) \to C$ la catégorie fibrée associée à p.

De même, à partir d'un foncteur $q:C\to \mathrm{Ens},$ on construit la catégorie cofibrée

$$g:G(q)\to C$$

dont les objets sont les couples (c,x) avec $x \in q(C)$, et les morphismes de (c,x) dans (d,y) sont les morphismes $u:c\to d$ dans C tels que p(u)(x)=y.

On appelle $g: G(q) \to C$ la catégorie cofibrée associée à q.

Nous pouvons maintenant énoncé un premier résultat sur le type d'homotopie de catégories.

Théorème 2.24 (Théorème A de Quillen). Soit $f: C \to D$ un foncteur entre petites catégories. Si pour tout objet y de D, $f \uparrow y$ est une catégorie contractile, alors f est une équivalence d'homotopie.

 $D\acute{e}monstration.$ On note S(f) la catégorie cofibrée au dessus de $D^{\mathrm{op}}\times C$ définie par le foncteur :

$$D^{\mathrm{op}} \times C \to \mathrm{Ens}$$

 $(y, x) \mapsto \mathrm{Hom}_D(y, fx)$

On dispose de foncteurs :

$$D^{\mathrm{op}} \stackrel{p_2}{\longleftarrow} S(f) \stackrel{p_1}{\longrightarrow} C$$

L'ensemble simplicial S(f) est la diagonale de l'ensemble bisimplicial T(f) défini par :

$$T(f)_{pq} := \{ (y_p \to \cdots \to y_0 \to fx_0, \ x_0 \to \cdots \to x_q) \}$$

On dispose d'un morphisme d'ensembles bisimpliciaux $m:T(f)_{\bullet_1\bullet_2}\to C_{\bullet_2}$, où $(C_{\bullet_2})_{pq}=NC_q$. Alors, d(m) s'identifie à $p_1:S(f)\to C$. Or, on a, pour $q\geq 0$:

$$m_{\bullet q}: \bigsqcup_{x_0 \to \cdots \to x_q} (D \downarrow f(x_0))^{\operatorname{op}} \to \bigsqcup_{x_0 \to \cdots \to x_q} *$$

C'est une équivalence d'homotopie, car chaque $(D \downarrow f(x_0))^{\text{op}}$ a un objet initial et est donc contractile. Ainsi, par le lemme 2.18, $d(m) = p_1 : S(f) \to C$ est une équivalence d'homotopie.

De même, on dispose d'un morphisme d'ensembles bisimpliciaux $n: T(f)_{\bullet_1 \bullet_2} \to D^{\mathrm{op}}_{\bullet_1}$. Et pour tout $p \geq 0$:

$$n_{p \bullet}: \bigsqcup_{y_p \to \cdots \to y_0} f \uparrow y_0 \to \bigsqcup_{y_p \to \cdots \to y_0} *$$

Or, par hypothèse, chaque $f \uparrow y_0$ est contractile. Donc $n_{p\bullet}$ est une équivalence faible. Donc, par le lemme 2.18, $d(n) = p_2 : S(f) \to D^{\mathrm{op}}$ est une équivalence d'homotopie.

Or, la factorisation:

$$D^{\mathrm{op}} \times C \xrightarrow{\mathrm{id} \times f} D^{\mathrm{op}} \times D \xrightarrow{\mathrm{Hom}_D(-,-)} \mathrm{Ens}$$

induit le diagramme commutatif suivant dans Cat:

$$D^{\text{op}} \xleftarrow{p_2} S(f) \xrightarrow{p_1} C$$

$$\downarrow f_* \qquad \downarrow f$$

$$D^{\text{op}} \xleftarrow{\sim} S(\text{id}_D) \xrightarrow{\sim} D$$

Par les résultats ci-dessus, les flèches avec des \sim sont des équivalences d'homotopie faibles. Donc f également. \Box

Remarque 2.25. Le théorème A admet la forme duale suivante :

Si $f:C\to D$ un foncteur entre petites catégories et si pour tout objet y de D, $f\downarrow y$ est une catégorie contractile, alors f est une équivalence d'homotopie.

Corollaire 2.26. Si $f: C \to D$ un foncteur $pr\acute{e}(co)$ fibr\acute{e} entre petites catégories et si pour tout objet y de D, $f^{-1}(y)$ est une catégorie contractile, alors f est une équivalence d'homotopie.

Démonstration. Dans ce cas $f^{-1}(y) \to f \uparrow y$ ou $f^{-1}(y) \to f \downarrow y$ est une équivalence faible d'homotopie. On peut donc utiliser le théorème 2.24.

Pour énoncé le théorème B de Quillen, nous aurons besoin du formalisme des carrés homotopiquement cartésiens dans $\widehat{\Delta}$. Nous avons fait le choix de le mettre dans l'annexe A.2.

Définition 2.27. Soit $Z:I\to \widehat{\Delta}$ un foncteur avec I petite catégorie. On définit l'ensemble bisimplicial :

$$\mathrm{BE}_I Z_{m,n} := \bigsqcup_{i_0 \to \cdots \to i_m} Z(i_0)_n$$

Et on note sa diagonale:

$$hocolim_I Z := d(BE_I Z)$$

Lemme 2.28. Soit $X: I \to \widehat{\Delta}$ un foncteur, avec I une petite catégorie, tel que pour tout $\alpha: i \to j$ dans $I, X(\alpha): X(i) \to X(j)$ soit une équivalence d'homotopie faible. Alors pour tout j objet de I, le diagramme cartésien :

$$X(j) \longrightarrow \operatorname{hocolim}_{I} X$$

$$\downarrow \qquad \qquad \downarrow^{\pi}$$

$$* \xrightarrow{j} \qquad I$$

est homotopiquement cartésien.

Remarque 2.29. Le diagramme (D) est la diagonale du diagramme cartésien suivant d'ensembles bisimpliciaux :

$$X(j)_{n} \xrightarrow{j \to \cdots \to j} \left(\bigsqcup_{i_{0} \to \cdots \to i_{n}} X(i_{0}) \right)_{n}$$

$$\downarrow^{\pi}$$

$$* \xrightarrow{j \to \cdots \to j} \left(\bigsqcup_{i_{0} \to \cdots \to i_{n}} * \right)_{n}$$

Démonstration. [GJ09, IV.5.7]. On remarque d'abord le fait suivant :

(*) le tiré en arrière par π commute aux colimites dans $\widehat{\Delta} \downarrow I$.

En effet, il suffit, pour montrer (*), de vérifier que $-\times_x y$ commute aux sommes disjointes et coégalisateurs dans Ens $\downarrow x$, ce qui est facile.

On factorise j à l'aide de l'argument du petit objet appliqué à $\mathcal{J}=\{\Lambda_k^n\to\Delta^n\}$ en $*\stackrel{i}{\sim} U\stackrel{p}{\longrightarrow} I$. Notre objectif est de montrer que l'application induite $X(j)\to U\times_I$ hocolim $_IX$ est acyclique. Par la proposition A.6, ceci conclura.

Or i est construit comme un élément de \mathcal{J} – Cell colimite de poussés en avant de la forme :

Et donc, par (*), en tirant en arrière par π :

Or, le produit fibré dans Ens, et donc également dans $\widehat{\Delta}$, préserve les injections. Donc u est une cofibration. Il nous reste à montrer que u est acyclique. Car alors v sera également une cofibration acyclique, et par passage à la colimite, $i_*: X(j) \to U \times_I \text{hocolim}_I X$ également.

Nous sommes donc ramené au problème suivant :

(**) si $\Lambda_n^k \stackrel{w}{\hookrightarrow} \Delta^n \stackrel{\sigma}{\longrightarrow} I$ alors $w_* : \Lambda_n^k \times_I \operatorname{hocolim}_I X \to \Delta^n \times_I \operatorname{hocolim}_I X$ est une cofibration acyclique.

Or $\sigma:\Delta^n\to I$ correspond à un foncteur $\sigma:[n]\to I.$ De plus, le carré cartésien suivant d'ensembles bisimpliciaux

induit un isomorphisme $\Delta^n \times_I \operatorname{hocolim}_I X \simeq \operatorname{hocolim}_{[n]} X \circ \sigma$. On a alors le diagramme suivant d'ensembles bisimpliciaux

Où $\theta: X(\sigma(0)) \to X \circ \sigma$ est transformation naturelle évidente. Alors θ_* est une équivalence faible terme à terme par hypothèse. D'après le lemme 2.18, $d(\theta_*)$ est une équivalence faible. Or d(j) s'identifie à $\Lambda^n_k \times X(\sigma(0)) \to \Delta^n \times X(\sigma(0))$, qui est une équivalence faible. Donc $d(w_*)$ est une équivalence faible, ce qui conclut. \square

Théorème 2.30 (Théorème B de Quillen). Soit $f: C \to D$ un foncteur entre petites catégories. Si pour tout $u: y \to y'$ dans $D, u^*: f \uparrow y' \to f \uparrow y$ est une équivalence faible d'homotopie, alors pour tout objet y de D, le diagramme cartésien :

$$\begin{array}{ccc}
f \uparrow y & \xrightarrow{j} & C \\
\downarrow^{f_*} & & \downarrow^f \\
D \uparrow y & \xrightarrow{j'} & D
\end{array}$$

est homotopiquement cartésien.

En particulier, on dispose, pour tout x objet de $f^{-1}(y)$, d'une suite exacte :

$$\cdots \to \pi_{i+1}(D,y) \to \pi_i(f \uparrow y, \bar{x}) \xrightarrow{j_*} \pi_i(C,x) \xrightarrow{f_*} \pi_i(D,y) \to \cdots$$

$$où \ \bar{x} = (x, \mathrm{id}_y).$$

Remarque 2.31. Le théorème A découle du théorème B via la suite exacte. La suite exacte est une conséquence directe du diagramme homotopiquement cartésien car $D \uparrow y$ est contractile.

Démonstration. On reprend le cadre de la démonstration du théorème 2.24:S(f), T(f) et le diagramme suivant.

$$D^{\text{op}} \longleftarrow P^{2} \qquad S(f) \stackrel{p_{1}}{\sim} C$$

$$\downarrow f_{*} \qquad \qquad \downarrow f$$

$$D^{\text{op}} \longleftarrow S(\text{id}_{D}) \stackrel{\sim}{\sim} D$$

On rappel que $p_2 = d(n:T(f) \to D^{\mathrm{op}})$ où n est donné par :

$$n_{p \bullet} : \bigsqcup_{y_p \to \cdots \to y_0} f \uparrow y_0 \to \bigsqcup_{y_p \to \cdots \to y_0} *$$

Donc $p_2 = \text{hocolim}_{D^{\text{op}}} N(f \uparrow -) \to D^{\text{op}}$. Donc, par le lemme 2.28, le carré

$$\begin{array}{ccc}
f \uparrow y & \longrightarrow & S(f) \\
\downarrow & & \downarrow \\
\downarrow & \downarrow \\
\downarrow & & \downarrow \\
\downarrow &$$

est homotopiquement cartésien. Or, on a le diagramme commutatif suivant :

où les flèches notées \sim sont des équivalences faibles. Le carré formé par (1) et (3) est homotopiquement cartésien, donc celui formé par (1) également, et donc celui formé par (1) et (2) aussi. C'est le résultat recherché.

Remarque 2.32. Le théorème B admet la forme duale suivante :

Soit $f: C \to D$ un foncteur entre petites catégories. Si pour tout $u: y \to y'$ dans $D, u_*: f \downarrow y \to f \downarrow y'$ est une équivalence faible d'homotopie, alors pour tout objet y de D, le diagramme cartésien :

$$\begin{array}{ccc}
f \downarrow y & \xrightarrow{j} & C \\
\downarrow^{f_*} & & \downarrow^f \\
D \downarrow y & \xrightarrow{j'} & D
\end{array}$$

est homotopiquement cartésien.

Corollaire 2.33. Si $f: C \to D$ un foncteur préfibré (respectivement précofibré) entre petites catégories et si pour tout $u: y \to y'$ dans $D, u^*: f^{-1}y' \to f^{-1}y$ (respectivement $u_*: f^{-1}y \to f^{-1}y'$) est une équivalence faible d'homotopie, alors

pour tout objet y de D, $f^{-1}(y)$ est la fibre homotopique de f au dessus de y. On a alors, pour tout x objet de $f^{-1}(y)$, une suite exacte :

$$\cdots \to \pi_{i+1}(D,y) \to \pi_i(f^{-1}y,x) \xrightarrow{j_*} \pi_i(C,x) \xrightarrow{f_*} \pi_i(D,y) \to \cdots$$

 $D\acute{e}monstration$. Dans ce cas $f^{-1}(y) \to f \uparrow y$ ou $f^{-1}(y) \to f \downarrow y$ est une équivalence faible d'homotopie. Plaçons nous dans le premier cas, le second est similaire. On a un carré :

$$f^{-1}y' \xrightarrow{\sim} f \uparrow y'$$

$$\downarrow^{u^*} \qquad \qquad \downarrow^{u^*}$$

$$f^{-1}y \xrightarrow{\sim} f \uparrow y$$

Les deux foncteurs induits de $f^{-1}y'$ dans $f \uparrow y$ sont :

$$\begin{array}{ccc} F: x' & \mapsto & (x', u: y \to y' = fx) \\ G: x' & \mapsto & (u^*x', \mathrm{id}_y) \end{array}$$

Or on dispose d'une transformation naturelle $G \Rightarrow F$, $u^*x' \to x'$ induite par l'adjonction. Donc le carré commute à homotopie près. Donc $u^*: f \uparrow y' \to f \uparrow y$ est une équivalence d'homotopie. On peut maintenant appliquer le théorème B.

2.3. Premières propriétés.

3. Construction + et théorème "+=Q"

3.1. La construction + en topologie. Dans cette section, nous définissons une construction + en topologie. Nous utilisons un certain nombre de résultats de topologie, notamment l'homologie à coefficients et les tours de Postnikov. Voir l'annexe C pour plus d'information.

Définition 3.1. Soit X connexe dans $\widehat{\Delta}$, $x \in X_0$, et $P \triangleleft \pi_1(X, x)$ un sous-groupe normal parfait. Un morphisme $f: X \to X^+$ est une construction + pour P si:

- (1) $0 \to P \to \pi_1(X, x) \to \pi_1(X^+, fx) \to 0$ est exacte;
- (2) Pour tout L système de coefficients sur X^+ , l'application $H_*(X, f^*L) \to H_*(X^+, L)$ est un isomorphisme.

Remarque 3.2. Comme X est supposé connexe, le point (1) ne dépend pas de $x \in X_0$.

Proposition 3.3. Soit X connexe dans $\widehat{\Delta}$, $x \in X_0$, tel que $\pi_1(X, x)$ soit un groupe parfait. Alors une construction + existe pour $\pi_1(X, x)$.

Démonstration. Quitte à changer X, on peut supposer que X est un complexe de Kan. On se donne I un ensemble de générateurs de $\pi_1(X,x)$. On défini Y comme la somme amalgamée :

$$\bigvee_{\gamma \in I} \partial \Delta^2 \xrightarrow{\vee (\gamma, *, *)} X$$

$$\downarrow \qquad \qquad \downarrow$$

$$\bigvee_{\gamma \in I} \Delta^2 \xrightarrow{\qquad \qquad } Y$$

Alors, par le [lemme d'extension] $\pi_1(Y) = 0$. Maintenant, comme $\bigvee_{\gamma \in I} \Delta^2$ est contractile, $\bigvee_{\gamma \in I} \partial \Delta^2 \to X \to Y$ est une suite cofibre. On a donc les suites exactes suivantes en homologie sur \mathbb{Z} :

$$0 \to H_i(X) \to H_i(Y) \to 0 \text{ pour } i \geq 3$$

$$H_2(\bigvee_{\gamma \in I} \partial \Delta^2) \to H_2(X) \to H_2(Y) \to H_1(\bigvee_{\gamma \in I} \partial \Delta^2) \to H_1(X)$$
 Or, par [Hurewitz pi1], $H_1(X) = 0$. De plus $H_2(\bigvee_{\gamma \in I} \partial \Delta^2) = 0$ et $H_1(\bigvee_{\gamma \in I} \partial \Delta^2)$

est \mathbb{Z} -libre. Donc, la suite se scinde et on peut choisir un isomorphisme :

$$H_2(Y) \simeq H_2(X) \oplus \bigoplus_{\gamma \in I} \mathbb{Z} \cdot [\gamma]$$

Or, $\pi_0(Y) = *$ et $\pi_1(Y) = 0$, donc par [Hurewitz pi2], on a l'isomorphisme de Hurewitz $\mathcal{H}_2: \pi_2(Y, fx) \simeq H_2(Y)$. On se donne \tilde{Y} complexe de Kan équivalent à Y et, pour chaque $\gamma \in I$, $s_{\gamma} \in \pi_2(Y, fx)$ tel que $\mathcal{H}_2(s_{\gamma}) = [\gamma]$. On définit alors X^+ comme la somme amalgamée :

$$\bigvee_{\gamma \in I} \partial \Delta^3 \xrightarrow{\vee (s_{\gamma}, *, *, *)} \tilde{Y}$$

$$\downarrow \qquad \qquad \downarrow$$

$$\bigvee_{\gamma \in I} \Delta^3 \xrightarrow{\qquad \qquad } X^+$$

Par le [lemme d'extension], $\pi_1(X^+) = 0$. Or la suite $\bigvee_{\gamma \in I} \partial \Delta^3 \to \tilde{Y} \to X^+$ est une suite cofibre. Comme $H_i(\bigvee_{\gamma \in I} \partial \Delta^3) = 0$ pour $i \geq 3$, et $H_2(\bigvee_{\gamma \in I} \partial \Delta^3) \hookrightarrow H_2(\tilde{Y})$ est une injection, on a $H_i(\tilde{Y}) \simeq H_i(X^+)$ et donc $H_i(X) \simeq H_i(X^+)$ pour $i \geq 3$. C'est également clair pour H_1 et H_0 . Pour H_2 , on a le diagramme suivant :

La flèche $H_2(\bigvee_I \partial \Delta^3) \to H_1(\bigvee_I \partial \Delta^2)$ est un isomorphisme par construction de $\bigvee_I \partial \Delta^3 \to \tilde{Y}$. Comme la ligne et la colonne sont exactes, ceci implique que la flèche $H_2(X) \to H_2(X^+)$ est aussi un isomorphisme.

On a donc que $H_*(-;\mathbb{Z})$ envoie $X \to X^+$ sur un isomorphisme. Ainsi, par le [théorème des coefficients universelles], $H_*(-;M)$ envoie $X\to X^+$ sur un isomorphisme pour tout M Z-module. Or, comme $\pi_1(X^+) = 0$, un système de coéfficients sur X^+ n'est autre qu'un \mathbb{Z} -module. Donc $X \to X^+$ est une construction + pour

Proposition 3.4. Soit X connexe dans $\widehat{\Delta}$, $x \in X_0$ et $P \triangleleft \pi_1(X,x)$ sous-groupe $normal\ parfait.\ Alors\ une\ construction\ +\ pour\ P\ existe.$

Démonstration. On note $p: \tilde{X} \to X$ le revêtement connexe correspondant à $\pi_1(X,x)/P$. On se donne $\tilde{x} \in \tilde{X}$ au-dessus de x. On a alors $\pi_1(\tilde{X},\tilde{x}) = P$.

On pose $\tilde{f}: \tilde{X} \hookrightarrow \tilde{X}^+$ une construction + pour $\pi_1(\tilde{X}, \tilde{x})$ qui soit une cofibration. On définit X^+ comme la somme amalgamée suivante :

$$\tilde{X} \stackrel{\tilde{f}}{\longleftarrow} \tilde{X}^{+}$$

$$\downarrow^{p} \qquad \qquad \downarrow^{p'}$$

$$X \stackrel{f}{\longleftarrow} X^{+}$$

Comme tous les objets de $\widehat{\Delta}$ sont cofibrants, par le dual de la proposition A.7, $\widehat{\Delta}$ est propre à gauche. Ainsi, par le dual de la proposition A.6, le carré ci-dessus est homotopiquement cocartésien. Par le [théorème de Van-Kampen dans $\widehat{\Delta}$], la suite :

$$0 \to P \to \pi_1(X, x) \to \pi_1(X^+, fx) \to 0$$
 est exacte

Comme le carré est homotopiquement cocartésien, et comme $\tilde{X} \hookrightarrow \tilde{X} \times \Delta^1 \sqcup_X X \xrightarrow{\sim} X$, on a le diagramme commutatif suivant a carré cocartésiens :

$$\tilde{X} \stackrel{\frown}{\longleftarrow} \tilde{X}^{+}$$

$$\downarrow \qquad \qquad \downarrow p''$$

$$\tilde{X} \times \Delta^{1} \sqcup_{X} X \stackrel{\frown}{\longleftarrow} X'^{+}$$

$$\downarrow \downarrow \qquad \qquad \downarrow \downarrow \downarrow$$

$$X \stackrel{\frown}{\longleftarrow} X^{+}$$

Où les applications marqué de \sim sont des équivalences. Maintenant, soit L un système de coefficients locaux sur X^+ . Comme on peut identifier $\tilde{X}^+ \setminus \tilde{X}$ et $X'^+ \setminus \tilde{X} \times \Delta^1 \sqcup_X X$, on a :

$$C_*(\tilde{X}^+, \tilde{X}; p^{\prime\prime *}L) \simeq C_*(X^{\prime +}, \tilde{X} \times \Delta^1 \sqcup_X X; L)$$

Et donc:

$$H_*(\tilde{X}^+, \tilde{X}; p'^*L) \longrightarrow H_*(X^+, X; L)$$

est un isomorphisme. Or, comme $H_*(\tilde{X};p'^*L) \to H_*(\tilde{X}^+;\tilde{f}^*p'^*L)$ est un isomorphisme, $H_*(\tilde{X}^+,\tilde{X};p'^*L)=0$. Donc $H_*(X;f^*L) \to H_*(X^+;L)$ est un isomorphisme.

Nous allons maintenant énoncer un résultat d'unicité.

Proposition 3.5. Soit X connexe dans $\widehat{\Delta}$, $x \in X_0$ et $P \triangleleft \pi_1(X, x)$ un sous-groupe normal parfait. Soit $f: X \hookrightarrow X^+$ une construction + pour P. Alors pour tout $g: X \to Y$ avec $P \subseteq \ker(\pi_1(g, x))$ et Y complexe de Kan, il existe $h: X^+ \to Y$ tel que $h \circ f = g$.

De plus, tout autre h' a le même type d'homotopie que h dans $\operatorname{Ho}(\widehat{\Delta} \uparrow X)$.

Remarque 3.6. La dernière affirmation est équivalente à : h' est homotope à h relativement à X.

Démonstration. Sans perte de généralité, on peut supposer que Y est connexe. On se donne $\tilde{X} \to X$ revêtement associé à $\pi_1(X,x)/P$ et $\tilde{Y} \to Y$ revêtement universels. Alors :

$$\begin{array}{ccc} \tilde{X} & \xrightarrow{\exists \tilde{g}} & \tilde{Y} \\ \downarrow & & \downarrow \\ X & \xrightarrow{g} & Y \end{array}$$

Maintenant, \tilde{Y} est simplement connexe et par [mettre ref], il dispose donc d'une tour de Postnikov de fibrations principales.

On choisit des espaces d'Eilenberg-MacLane qui soient fibrants. Supposons que l'on ai défini des applications compatibles $\tilde{h}(i): \tilde{X}^+ \to \tilde{Y}(i)$, pour $1 \le i \le n-1$, tels que pour chaque i:

$$\tilde{X} \xrightarrow{\tilde{g}} \tilde{Y} \xrightarrow{\tilde{h}(i)} \tilde{Y}(i)$$

$$\tilde{X}^{+}$$

On a alors le diagramme commutatif suivant :

$$\tilde{X} \longrightarrow \tilde{Y}(n) \xrightarrow{\sim} F(u_{n-1})$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$\tilde{X}^{+} \xrightarrow{\tilde{h}(n-1)} \tilde{Y}(n-1) \xrightarrow{\sim} Path(u_{n-1}) \xrightarrow{p} K(n+1, \pi_{n}(\tilde{Y}))$$

Où Path $(u_{n-1}) = \tilde{Y}(n-1) \times_{K(n+1,\pi_n(\tilde{Y}))} K(n+1,\pi_n(\tilde{Y}))^{\Delta^1}$ et $F(u_{n-1})$ est la fibre de p. Comme le L à droite est une suite fibre, ce diagramme nous donne un morphisme $\tilde{X}^+ \cup C\tilde{X} \to K(n+1,\pi_n(\tilde{Y}))$ où $C\tilde{X} := \tilde{X} \times \Delta^1/\tilde{X} \times \{1\}$ est le cône de \tilde{X} . La classe d'homotopie de ce morphisme correspond à un élément de $H^{n+1}(\tilde{X}^+ \cup C\tilde{X}; \pi_2(\tilde{Y})) = H^{n+1}(\tilde{X}^+, \tilde{X}; \pi_2(\tilde{Y})) = 0$ (par le [corollaire au théorème des coefficients universels]). Donc $\tilde{X}^+ \cup C\tilde{X} \to K(n+1,\pi_n(\tilde{Y}))$ est homotope

à une application constante et on peut l'étendre en $C\tilde{X}^+ \to K(n+1, \pi_n(\tilde{Y}))$, c'està-dire prolonger $\tilde{X} \to F(u_{n-1})$ à \tilde{X}^+ . On peut donc trouver $\tilde{h}(n): \tilde{X}^+ \to \tilde{Y}(n)$ qui complète le diagramme :

$$\tilde{X} \xrightarrow{\tilde{h}(n)} \tilde{Y}(n)$$

$$\downarrow \qquad \qquad \downarrow$$

$$\tilde{X}^{+} \xrightarrow{\tilde{h}(n-1)} \tilde{Y}(n-1)$$

Ainsi, nous avons construit des des applications compatibles $\tilde{h}(i): \tilde{X}^+ \to \tilde{Y}(i)$, pour $i \geq 1$. Or par la [référence à mettre] $\lim_{i \in \mathbb{N}} \tilde{Y}(i) = \tilde{Y}$. Donc on a construit $\tilde{h}: \tilde{X}^+ \to \tilde{Y}$. Donc :

$$\tilde{X} \longleftrightarrow \tilde{X}^{+} \xrightarrow{\tilde{h}} \tilde{Y} \\
\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \\
X \longleftrightarrow X^{+} \xrightarrow{g} Y$$

Montrons maintenant l'unicité à homotopie près. Soit h' une autre telle application. Par propriété de relèvement le long des revêtement, on peut trouver \tilde{h} et $\tilde{h'}$ qui complètent le digramme :

Il suffit donc de montrer que \tilde{h} et $\tilde{h'}$ sont homotopes relativement à \tilde{X} . Pour cela, on se donne une homotopie :

$$H(1): \tilde{h}(1) \Rightarrow \tilde{h'}(1): \tilde{X}^+ \times \Delta^1 \to \tilde{Y}(0)$$

C'est toujours possible car $\tilde{Y}(0)$ est contractile. Or, on remarque que

$$\tilde{X} \times \Delta^1 \cup \tilde{X}^+ \times \partial \Delta^1 \hookrightarrow \tilde{X}^+ \times \Delta^1$$

est une équivalence en homologie, et donc aussi en cohomologie. En effet, la suite exacte de complexes :

$$0 \to C_*(\tilde{X} \times \Delta^1) \to C_*(\tilde{X} \times \Delta^1 \cup \tilde{X}^+ \times \{0\}) \oplus C_*(\tilde{X} \times \Delta^1 \cup \tilde{X}^+ \times \{1\}) \to C_*(\tilde{X} \times \Delta^1 \cup \tilde{X}^+ \times \partial \Delta^1) \to 0$$
induit, car $\tilde{X} \times \Delta^1 \cup \tilde{X}^+ \times \{-\} \simeq \tilde{X}^+$, une suite exacte longue :

$$H_n(\tilde{X}^+) \stackrel{(1,-1)}{\hookrightarrow} H_n(\tilde{X}^+) \oplus H_n(\tilde{X}^+) \twoheadrightarrow H_n(\tilde{X} \times \Delta^1 \cup \tilde{X}^+ \times \partial \Delta^1)$$

On a donc bien que $\tilde{X}^+ \to \tilde{X} \times \Delta^1 \cup \tilde{X}^+ \times \partial \Delta^1$ est un isomorphisme en homologie. Or $\tilde{X}^+ \simeq \tilde{X}^+ \times \Delta^1$ / Ainsi, on peut, comme ci-dessus, relever successivement l'homotopie à chaque $\tilde{Y}(n)$, et en passant à la limite, à \tilde{Y} .

3.2. La construction + de la K-théorie.

3.3. La K-théorie des corps finis.

3.4. Le théorème "+=Q".

4. Propriétés de la K-théorie supérieure

5. La K-Théorie des schémas

Annexe A. Catégories modèles

A.1. Argument du petit objet, notations. Nous ne démontrons pas ici en détail l'argument du petit objet, voir [GJ09, Chp.1] pour cela. La raison d'être de cette sous-section est de fixer des notations.

Soit C une catégorie cocomplète et $\mathcal{J} = \{u_i : A_i \to B_i \mid i \in I\}$ un ensemble de morphismes dans C tels que chaque A_i soit \mathbb{N} -petit.

Soit $h: X \to Y$ un morphisme dans C. Nous noterons $G^1(\mathcal{J}, h)$ la colimite :

$$\bigsqcup_{D} A_{i_{D}} \xrightarrow{f_{D}} X$$

$$\downarrow^{u_{i_{D}}} \qquad \downarrow^{h_{1}}$$

$$\bigsqcup_{D} B_{i_{D}} \xrightarrow{G^{1}(\mathcal{J}, h)}$$

où l'union porte sur l'ensemble des diagrammes commutatifs D de la forme :

$$A_{i_D} \xrightarrow{f_D} X$$

$$\downarrow^{u_{i_D}} \qquad \downarrow^{h}$$

$$B_{i_D} \xrightarrow{g_D} Y$$

Les g_D induisent un morphisme $p_1: G^1(\mathcal{J}, h) \to Y$.

On pose alors successivement:

$$\begin{split} G^{n+1}(\mathcal{J},h) &= G^1(\mathcal{J},h^n)\,;\\ h_{n+1}: X &\to G^{n+1}(\mathcal{J},h)\,;\\ p_{n+1}: G^{n+1}(\mathcal{J},h) &\to Y. \end{split}$$

On note:

$$G^{\infty}(\mathcal{J}, h) := \operatorname{colim}_n G^n(\mathcal{J}, h);$$

 $h_{\infty} : X \to G^{\infty}(\mathcal{J}, h);$
 $p_{\infty} : G^{\infty}(\mathcal{J}, h) \to Y.$

On a alors $h = p_{\infty} \circ h_{\infty}$ avec h_{∞} dans \mathcal{J} – Cell et p_{∞} dans \mathcal{J}^{\square} . Chaque $G^{n}(\mathcal{J}, -)$ et $G^{\infty}(\mathcal{J}, -)$ sont des foncteurs $C^{0 \to 1} \to C$ et les h_{∞} et p_{∞} s'assemblent en des transformation naturelles $(p_0: C^{0\to 1} \to C) \Rightarrow G^{\infty}(\mathcal{J}, -)$ et $G^{\infty}(\mathcal{J}, -) \Rightarrow (p_1 : C^{0 \to 1} \to C).$

A.2. Carrés homotopiquement cartésiens d'ensembles simpliciaux. Le but de cette sous-section est d'introduire la notion de carré homotopiquement cartésien. Seront admis les notions d'adjonction de Quillen, voir [Idr21, 1.6].

Nous commençons cependant par des remarques valables dans des catégories modèles générales. Puis nous traiterons le cas particulier de la catégorie des ensembles simpliciaux.

Proposition A.1 (structure de Reedy). Soit C une catégorie modèle. On note I la catégorie à 3 objets et 2 morphismes :

$$2 \longrightarrow 0$$

Alors il existe une structure de modèle sur C^I telle que :

- (W) les équivalences faibles se vérifient objet par objet;
- (C) les équivalences faibles se vérifient objet par objet;
- **(F)** un morphisme $X \to Y$ est une fibration si et seulement si $X(0) \to Y(0)$, $X(1) \to X(0) \times_{Y(0)} Y(1)$ et $X(2) \to X(0) \times_{Y(0)} Y(2)$ sont des fibrations dans C.

On appelle cette structure la structure de modèle de Reedy.

La démonstration est omise, car assez facile. La définition est faite pour que ça marche. On a immédiatement le corollaire suivant.

Corollaire A.2. Soit C une catégorie modèle et I la catégorie définie comme cidessus. Alors la structure de modèle de Reedy sur C^I induit une adjonction de Quillen:

$$\operatorname{cst}_I : C \perp C^I : \lim_I$$

 $Et\ donc\ une\ adjonction\ entre\ les\ cat\'egories\ homotopiques:$

$$\mathbb{L}\operatorname{cst}_I: \overbrace{C} \quad \perp \ \operatorname{Ho}(C^I): \mathbb{R} \operatorname{lim}_I$$

On remarque que si A est un objet de C, et $QA \to A$ un remplacement cofibrant, alors $\operatorname{cst}_I QA \to \operatorname{cst}_I A$ est une équivalence. Or $\mathbb{L}\operatorname{cst}_I A \simeq \operatorname{cst}_I QA$. Donc $\mathbb{L}\operatorname{cst}_I(A) \simeq \operatorname{cst}_I A$. Ceci justifie la définition suivante.

Définition A.3. Soit C une catégorie modèle et soit :

$$\begin{array}{c} X & \longrightarrow & Y_1 \\ \downarrow & & \downarrow \\ Y_2 & \longrightarrow & Y_0 \end{array}$$

un carré commutatif dans C. On dit que ce carré est homotopiquement cartésien si le morphisme dans $\mathrm{Ho}(C)$:

$$X \to \mathbb{R} \lim_I Y$$

adjoint à $\mathbb{L}\operatorname{cst}_I(X) = \operatorname{cst}_I(X) \to Y$, est un isomorphisme (dans $\operatorname{Ho}(C)$).

Proposition A.4. Soit C une catégorie modèle et soit :

$$\begin{array}{ccc} X & \longrightarrow & Y_1 \\ \downarrow & & \downarrow \\ Y_2 & \longrightarrow & Y_0 \end{array}$$

un carré commutatif cartésien dans C avec Y_0 fibrant, et $Y_1 woheadrightarrow Y_0$, $Y_1 woheadrightarrow Y_0$ des cofibrations. Alors ce carré est homotopiquement cartésien.

Démonstration. Dans ce cas, le diagramme Y est fibrant dans C^I , et donc $\lim_I Y \simeq \mathbb{R} \lim_I Y$.

Nous allons maintenant nous intéresser à des catégories modèles particulières, dites propres à droite.

Définition A.5. Soit C une catégorie de modèles. On dit que C est propre à droite si le tiré en arrière d'une équivalence le long d'une fibration est une équivalence.

Proposition A.6. Soit C une catégorie modèle propre à droite. Alors tout carré commutatifs cartésien :

$$\begin{array}{ccc} X & \longrightarrow & Y_1 \\ \downarrow & & \downarrow \\ Y_2 & \longrightarrow & Y_0 \end{array}$$

avec $Y_1 \rightarrow Y_0$ fibrant, est homotopiquement cartésien.

Démonstration. On peut choisir un remplacement fibrant RY_0 de Y_0 puis factoriser $Y_1 \twoheadrightarrow Y_0 \stackrel{\sim}{\to} RY_0$ en $Y_1 \stackrel{\sim}{\to} RY_1 \twoheadrightarrow RY_0$. On a alors le diagramme suivant :

où \tilde{Y} et \tilde{X} complètent les carrés carrésiens notés par \lrcorner . Le morphisme $\tilde{Y} \to RY_1$ est acyclique car C est propre à droite. Or, dans la catégorie modèle restreinte $C \downarrow Y_0$, par le lemme de Brown ([Idr21, 1.6.6]), $Y_2 \times_{Y_0}$ — préserve les équivalences faibles entre objets fibrants. Donc, comme $Y_1 \to \tilde{Y}$ est une telle équivalence, $X \to \tilde{X}$ aussi.

Nous nous sommes donc ramené au cas où $X=\tilde{X},$ c'est à dire au cas où le carré :

$$\begin{array}{ccc} Y_1 & \longrightarrow & RY_1 \\ \downarrow & & \downarrow \\ Y_0 & \longrightarrow & RY_0 \end{array}$$

est cartésien.

Mais dans ce cas, on a le diagramme commutatif à carrés cartésiens suivant :

$$\begin{array}{cccc} X & \longrightarrow & Y_2 \\ \downarrow & & & \downarrow \wr \\ X' & \longrightarrow & RY_2 \\ \downarrow & & & \downarrow \\ RY_1 & \longrightarrow & RY_0 \end{array}$$

où $Y_2 \stackrel{\sim}{\to} RY_2 \twoheadrightarrow RY_0$ est une factorisation de $Y_2 \to Y_0 \stackrel{\sim}{\to} RY_0$. Comme les flèches horizontales sont des fibrations et $Y_2 \to RY_2$ est acyclique, $X \to X'$ l'est aussi. Or, par la proposition A.4, le carré du bas est cartésien, et comme les diagrammes Y et RY sont équivalents dans C^I , X est la limite homotopique de Y.

Proposition A.7. Soit C une catégorie modèles et soit :

$$\begin{array}{c} X \longrightarrow Y_1 \\ \downarrow & \downarrow \\ Y_2 \stackrel{\sim}{\longrightarrow} Y_0 \end{array}$$

un carré cartésien dans C avec $Y_1 \to Y_0$ une fibration, $Y_2 \to Y_0$ acyclique, et Y_0 , Y_2 fibrants.

Alors $X \to Y_1$ est aussi acyclique.

En d'autres termes, le tiré en arrière d'une équivalence entre objets fibrants le long d'une fibration est une équivalence.

Remarque A.8. Il existe évidemment une version duale (prendre C^{op}) : le poussé en avant d'une équivalence entre objets cofibrants le long d'une cofibration est une équivalence.

La preuve de cette proposition est omise, voir [Hir09, 13.1.2].

Proposition A.9. La catégorie des ensembles simpliciaux $\widehat{\Delta}$ est propre à droite.

Démonstration. La catégorie Top des espaces topologiques avec la structure de Quillen est propre à droite. En effet, comme tous les objets de Top sont fibrants, c'est une conséquence de la porposition A.7.

Or le foncteur réalisation $|\bullet|:\widehat{\Delta}\to \text{Top}$ préserve les limites finies et les fibrations, et reflète les équivalences (voir [GJ09, Chp.1]). Donc on en déduit que $\widehat{\Delta}$ est également propre à droite.

Voici une caractérisation plus concrète des diagrammes homotopiquement cartésiens dans $\widehat{\Delta}$.

Proposition A.10. On se donne un carré commutatif :

$$\begin{array}{ccc} X & \longrightarrow & Y_1 \\ \downarrow & & \downarrow \\ Y_2 & \longrightarrow & Y_0 \end{array}$$

Alors ce carré est homotopiquement cartésien si et seulement si le morphisme induit :

$$X \to Y_1 \times_{Y_0} Y_0^{\Delta^1} \times_{Y_0} Y_2$$

est une équivalence faible.

Démonstration. On dispose d'une factorisation :

$$Y_1 \stackrel{\sim}{\hookrightarrow} Y_1 \times_{Y_0} Y_0^{\Delta^1} \stackrel{\text{ev}_1}{\twoheadrightarrow} Y_0$$

On a donc le diagramme suivant :

Le carré du bas est cartésien et homotopiquement cartésien par la proposition A.6. On note Y' l'élément de C^I associé au carré du bas. Le morphisme $X \to Y_1 \times_{Y_0} Y_0^{\Delta^1} \times_{Y_0} Y_2$ dans C induit dans $\operatorname{Ho}(C^I)$ le diagramme commutatif :

et, en passant à l'adjoint $\mathbb{R} \lim_{I}$, le diagramme commutatif dans $\operatorname{Ho}(C)$:

On a donc bien $X \simeq \mathbb{R} \lim_I Y$ si et seulement si $X \simeq Y_1 \times_{Y_0} Y_0^{\Delta^1} \times_{Y_0} Y_2$.

A.3. Le lemme de collage. On se place ici dans une catégorie de modèle C.

Lemme A.11 (lemme de collage). On se donne le diagramme suivant dans C:

où tous les objets sont cofibrants, i_1 et i_2 sont des cofibrations, les faces supérieure et inférieure sont cocartésiennes et f_A , f_B et f_C sont acycliques.

Alors f_D est acyclique.

Démonstration. On factorise de façon fonctorielle $j_1 = q_1 \circ j_1'$ et $j_2 = q_2 \circ j_2'$ où j_1' et j_2' sont des cofibrations et q_1 et q_2 sont des fibrations acycliques. En coupant le cube en deux, On est alors ramené aux deux cas particuliers suivants : j_1 et j_2 sont acycliques; j_1 et j_2 sont des cofibrations.

Le premier cas est une conséquence de la proposition A.7. Nous allons maintenant traiter le second cas. On note B' (respectivement D') le poussé en avant de j_1 et f_A (respectivement $C_1 \to C_2$ et $C_1 \to D_1$). On a alors le diagramme suivant :

Par la proposition A.7, $B_1 \to B'$ et $D_1 \to D'$ sont des équivalences faibles, donc n_B est acyclique. Il reste à montrer que n_D est aussi acyclique. Or θ est le poussé en avant de i_2 le long de $A_2 \to B'$, c'est donc une cofibration. Comme n_D est le poussé en avant de n_B le long de θ , par la proposition A.7, n_D est acyclique. \square

Annexe B. Catégories exactes

Annexe C. Topologie algébrique

REMERCIEMENTS

Je tiens à remercier mon directeur de stage Frédéric Déglise pour ses explications et le temps qu'il m'a accordé.

Références

- [Bas68] Hyman Bass. Algebraic K-theory. W.A. Benjamin, inc., 1968.
- [DG67] Jean Dieudonné and Alexander Grothendieck. Éléments de géométrie algébrique. *Inst. Hautes Études Sci. Publ. Math.*, 4, 8, 11, 17, 20, 24, 28, 32, 1961–1967.
- [GJ09] P.G. Goerss and J. Jardine. Simplicial Homotopy Theory. Modern Birkhäuser Classics. Birkhäuser Basel, 2009.
- [Gra76] Daniel Grayson. Higher algebraic k-theory: Ii. In Michael R. Stein, editor, Algebraic K-Theory, pages 217–240, Berlin, Heidelberg, 1976. Springer Berlin Heidelberg.
- [GW10] U. Görtz and T. Wedhorn. Algebraic Geometry: Part I: Schemes. With Examples and Exercises. Advanced Lectures in Mathematics. Vieweg+Teubner Verlag, 2010.
- [Har13] R. Hartshorne. Algebraic Geometry. Graduate Texts in Mathematics. Springer New York, 2013.
- [Hir09] P.S. Hirschhorn. Model Categories and Their Localizations. Mathematical surveys and monographs. American Mathematical Society, 2009.
- [HPoM02] A. Hatcher, Cambridge University Press, and Cornell University. Department of Mathematics. Algebraic Topology. Algebraic Topology. Cambridge University Press, 2002.

- [Idr21] Najib Idrissi. Introduction à la théorie de l'homotopie. accessible sur https://idrissi. eu/class, 2021.
- [Kel90] Bernhard Keller. Chain complexes and stable categories. manuscripta mathematica, 67(1):379–417, Dec 1990.
- [May99] J.P. May. A Concise Course in Algebraic Topology. Chicago Lectures in Mathematics. University of Chicago Press, 1999.
- [MP12] J.P. May and K. Ponto. More Concise Algebraic Topology: Localization, Completion, and Model Categories. Chicago Lectures in Mathematics. University of Chicago Press, 2012.
- [Qui73] Daniel Quillen. Higher algebraic k-theory: I. In H. Bass, editor, Higher K-Theories, pages 85–147, Berlin, Heidelberg, 1973. Springer Berlin Heidelberg.
- [Wei94] Charles A. Weibel. An Introduction to Homological Algebra. Cambridge Studies in Advanced Mathematics. Cambridge University Press, 1994.
- [Wei13] C.A. Weibel. The K-book: An Introduction to Algebraic K-theory. Graduate Studies in Mathematics. American Mathematical Society, 2013.