Fundamental algorithms

(Due date: Sunday March 5th)

- 1. For a positive integer r, we consider the variable-length radix r representation (a_0, \ldots, a_{l-1}) of a positive integer a, with $a = \sum_{i=0}^{l-1} a_i r^i$, $a_i \in \{0, \ldots, r-1\}$, and $a_{l-1} \neq 0$. Prove that its length l is $\lfloor \log_r a \rfloor + 1$.
- 2. Give an algorithm for multiplying a multiprecision integer b by a single precision integer a, making use of the single precision multiply instruction. Show that your algorithm uses $\lambda(b)$ single precision multiplications, and the same number of single precision additions.
- 3. Prove that $\max\{\lambda(a), \lambda(b)\} \leq \lambda(a+b) \leq \max\{\lambda(a), \lambda(b)\} + 1$, and $\lambda(a) + \lambda(b) 1 \leq \lambda(ab) \leq \lambda(a) + \lambda(b)$ for all $a, b \in \mathbb{Z}_{>0}$.
- 4. Show that one can perform the classical Euclidean algorithm to compute the gcd of two integers a and b such that $\lambda(a)$, $\lambda(b) \leq \lambda$ with complexity $\mathcal{O}(\lambda^3)$.
- 5. Let $n \in \mathbb{N}$ and consider $\mathbb{Z}/n\mathbb{Z}$, the ring of congruences modulo n. Show that the versions "modulo n" of the classic algorithms for addition and multiplication have complexity $\mathcal{O}(\log_2 n)$ and $\mathcal{O}(\log_2^2 n)$ respectively.
- 6. Consider the following algorithm given in pseudocode notation:

Input: The coefficients of $a = \sum_{i=0}^{n} a_i x^i$ and $b = \sum_{i=0}^{m} b_i x^i$ in R[x], where R is a commutative ring.

Output: The coefficients of $c = a \cdot b \in R[x]$.

- 1. for $i = 0, \ldots, n$ do $d_i \leftarrow a_i x^i \cdot b$
- 2. return $c = \sum_{i=0}^{n} d_i$
- (a) Show that this algorithm computes correctly the product $c=a\cdot b$.
- (b) Show that the number of multiplications and additions of elements of R performed by this algorithm is (n+1)(m+1) and nm, respectively. Conclude that the total number of arithmetic operations of this algorithm is bounded by 2(n+1)(m+1).
- 7. Consider the following algorithm given in pseudocode notation:

Input: $a = \sum_{i=0}^{n} a_i x^i$, $b = \sum_{i=0}^{m} b_i x^i$, with all $a_i, b_i \in R$, where R is a commutative ring, b_m is a unit of R, and $n \ge m \ge 0$.

Output: $q, r \in R[x]$ with a = qb + r and $\deg r < m$.

- 1. $r \leftarrow a, u \leftarrow b_m^{-1}$
- **2.** for $i = n m, n m 1, \dots, 0$ do

- 3. if $\deg r = m + i$ then $q_i \leftarrow lc(r)u$, $r \leftarrow r q_i x^i b$ else $q_i \leftarrow 0$
- **4. return** $q = \sum_{i=0}^{n-m} q_i x^i$
 - (a) Show that this algorithm computes correctly the division with remainder a = qb + r and $\deg r < m$.
- (b) Show that the total number of arithmetic operations of this algorithm is bounded by $(2m+1)(n-m+1) = (2 \deg b + 1)(\deg q + 1)$.
- 8. Let R be a ring (commutative, with 1) and $a = \sum_{0 \le i \le n} a_i x^i \in R[x]$ of degree n, with all $a_i \in R$. The weight w(a) of a is the number of nonzero coefficients of a besides its leading coefficient:

$$w(a) = \#\{0 \le i < n : a_i \ne 0\}.$$

Thus, $w(a) \leq \deg a$, with equality if and only if all coefficients of a are nonzero. The *sparse* representation of a, which is particularly useful if a has small weight, is a list of pairs $(i, a_i)_{i \in I}$, with each $a_i \in R$ and $f = \sum_{i \in I} a_i x^i$. Then, we can choose #I = w(a) + 1.

- (a) Show that two polynomials $a, b \in R[x]$ of weight n = w(a) and m = w(b) can be multiplied in the sparse representation using at most 2nm + n + m + 1 arithmetic operations in R.
- (b) Draw an arithmetic circuit for division of a polynomial $a \in R[x]$ of degree less than 9 by $b = x^6 3x^4 + 2$ with remainder. Try to get its size as small as possible.
- (c) Let $n \ge m$. Show that quotient and remainder on division of a polynomial $a \in R[x]$ of degree less than n by $b \in R[x]$ of degree m, with lc(b) being a unit, can be computed using n-m divisions in R, and w(b)(n-m) multiplications and subtractions in R each.
- 9. Let R be a ring and k, m, $n \in \mathbb{N}$. Show that the "classical" multiplication of two matrices $A \in R^{k \times m}$ and $B \in R^{m \times n}$ takes (2m-1)kn arithmetic operations in R.
- 10. Given the real and imaginary parts a_0 , a_1 , b_0 , $b_1 \in \mathbb{R}$ of two nonzero complex numbers $z_1 = a_0 + a_1 i$ and $z_2 = b_0 + b_1 i$, with $i^2 = -1$, show how to compute the real and imaginary parts of the quotient $\frac{z_1}{z_2}$ using at most 7 multiplications and divisions in \mathbb{R} . Draw an arithmetic circuit illustrating your algorithm. Can you achieve at most 6 real multiplications and divisions?
- 11. For $n \in \mathbb{N}$, let $\ell(n)$ denote the minimum number of multiplications sufficient to compute X^n starting from X.
 - (a) Design an algorithm that computes $\ell(n)$, for all $n \in \mathbb{N}$.

- (b) Show that $\ell(mn) \leq \ell(m) + \ell(n)$ for all $m, n \in \mathbb{N}$.
- (c) Show that $\ell(2n) \leq \ell(n) + 1$, and $\ell(2n+1) \leq \ell(2n) + 1$ for all $n \in \mathbb{N}$.
- 12. Let $\ell(n)$ as before, and denote with $w_2(n)$ the "Hamming weight" (i.e., the number of nonzero coefficients) of the binary expansion of n.
 - (a) Show that

$$\ell(n) \le \lfloor \log_2 n \rfloor + w_2(n) - 1 \le 2 \log_2 n.$$

- (b) Show that $\ell(n) \geq \lceil \log_2 n \rceil$.
- 13. The algorithm to compute X^n by using nested squaring according to the Hamming weight of n is called "the binary method". Show that the binary method is actually an application of Horner's rule.
- 14. Use the binary method to design an algorithm for multiplication of integers involving only the simple operations of doubling, halving, and adding.
- 15. Let d(n) be the minimal number of operations necessary to compute X^n starting from X allowing multiplications AND divisions. Clearly we have $d(n) \leq \ell(n)$.
 - (a) Show that $d(31) = 6 < 7 = \ell(31)$.
 - (b) Show that 31 is the smallest n such that $d(n) < \ell(n)$.