Discrete Computational Structures Take Home Exam 1

Name SURNAME 1234567

Question 1 (7 pts)

a) Construct a truth table for the following compound proposition.

$$(q \to \neg p) \leftrightarrow (p \leftrightarrow \neg q)$$

(3.5/7 pts)

p	q	¬р	¬ q	$q \to \neg p$	$p \leftrightarrow \neg \ q$	$(q \to \neg p) \leftrightarrow (p \leftrightarrow \neg q)$
Τ	Τ	F	F	F	F	T
Τ	F	F	Τ	T	T	${f T}$
F	Τ	\mathbf{T}	F	T	T	${f T}$
F	F	${ m T}$	T	T	F	F

b) Show that whether the following conditional statement is a tautology by using a truth table.

$$[(p \lor q) \land (r \to p) \land (r \to q)] \to r$$

(3.5/7 pts)

p	q	r	$p \lor q$	$r \rightarrow p$	$r \rightarrow q$	$[(p \lor q) \land (r \to p) \land (r \to q)] \to r$
Т	Т	Т	Т	Т	Т	T
Γ	\mathbf{T}	\mathbf{F}	${ m T}$	Т	Т	F
Т	F	Τ	${ m T}$	T	F	T
Т	F	\mathbf{F}	${ m T}$	Т	Т	F
F	${ m T}$	${ m T}$	${ m T}$	F	Т	T
F	${ m T}$	\mathbf{F}	${ m T}$	Т	T	F
F	\mathbf{F}	${ m T}$	\mathbf{F}	F	F	T
F	F	F	F	Т	Т	Т

Question 2 (8 pts)

Show that $(p \to q) \land (p \to r)$ and $(\neg q \lor \neg r) \to \neg p$ are logically equivalent. Use tables 6,7 and 8 given under the section "Propositional Equivalences" in the course textbook and give the reference to the table and the law in each step.

$$\begin{array}{ll} (p \to q) \wedge (p \to r) \equiv p \to (q \wedge r) & \text{(table 7 , and rule } (p \to q) \wedge (p \to r) \equiv p \to (q \wedge r) \text{)} \\ \equiv \neg (q \wedge r) \to \neg p & \text{(table 7 , and rule } p \to q \equiv \neg q \to \neg q) \\ \equiv (\neg q \vee \neg r) \to \neg p & \text{(table 6 , and De Morgan's laws)} \end{array}$$

Question 3

(30 pts, 2.5 pts each)

Let F(x, y) mean that x is the father of y; M(x, y) denotes x is the mother of y. Similarly, H(x, y), S(x, y), and B(x, y) say that x is the husband/sister/brother of y, respectively. You may also use constants to denote individuals, like Sam and Alex. You can use $\vee, \wedge, \rightarrow, \neg, \forall, \exists$ rules and quantifiers. However, you are not allowed to use any predicate symbols other than the above to translate the following sentences into predicate logic. \exists ! and exclusive-or (XOR) quantifiers are forbidden:

- 1) Everybody has a mother.
- 2) Everybody has a father and a mother.
- **3**) Whoever has a mother has a father.
- 4) Sam is a grandfather.
- **5**) All fathers are parents.
- 6) All husbands are spouses.

- 7) No uncle is an aunt.
- 8) All brothers are siblings.
- 9) Nobody's grandmother is anybody's father.
- **10**) Alex is Ali's brother-in-law.
- 11) Alex has at least two children.
- 12) Everybody has at most one mother.

- 1. $\forall y \exists x \ M(x,y)$
- 2. $\forall y \exists x \ (F(x,y) \land M(x,y))$
- 3. $\forall y [[\exists x M(x,y)] \rightarrow [\exists x F(x,y)]]$
- 4. $\exists x \exists y (F(Sam,x) \land F(x,y))$
- 5. $\forall x \exists y \ F(x,y) \rightarrow [F(x,y) \lor M(x,y)]$
- 6. $\forall x \exists y \exists z \ H(x,y) \rightarrow [H(x,y) \lor H(z,x)]$
- 7. $\forall x \forall y \exists k \ [B(x,y) \land (F(y,k) \lor M(y,k))] \rightarrow \neg [S(x,y) \land (F(y,k) \lor M(y,k))]$
- 8. $\forall x \forall y \exists z \exists k \ B(x,y) \rightarrow [(M(z,x) \land M(z,y)) \lor (F(k,x) \land F(k,y))]$
- 9. $\forall x \forall y \forall z \forall k \ (M(x,y) \land F(y,z)) \rightarrow \neg F(x,k)$
- 10. $\forall x \forall y [H(Alex,x) \land B(Ali,x)]$
- 11. $\exists x \exists y \ F(Alex,x) \land F(Alex,y)$
- 12. $\forall x \forall y \forall z \ [M(y,x) \land M(z,x)] \rightarrow y = z$

Question 4 (25 pts)

Prove the following claim by natural deduction. Use only the natural deduction rules \vee , \wedge , \rightarrow , \neg introduction and elimination. If you attempt to make use of a lemma or equivalence, you need to prove it by natural deduction too.

a)
$$p \to q, r \to s \vdash (p \lor r) \to (q \lor s)$$

(12.5/25 pts)

- 1. $p \rightarrow q$ (premise)
- 2. $r \rightarrow s$ (premise)
 - 3. $p \vee r$ (assumption)
 - 4. p (assumption)
 - 5. q $(1,4 \text{ and } \rightarrow \text{elimination})$
 - 6. $q \vee s$ (5 and \vee introduction)
 - 7. r (assumption)
 - 8. s $(2.7 \text{ and } \rightarrow \text{elimination})$
 - 9. $q \vee s$ (8 and \vee introduction)
 - 0. $q \vee s$ (3,4-6, 7-9 and \vee elimination)
- 11. $(p \lor r) \to (q \lor s)$ (3-10, \to introduction)

b)
$$(p \to (r \to \neg q)) \to ((p \land q) \to \neg r)$$
 (12.5/25 pts)

1.
$$(p \to (r \to \neg q)) \to ((p \land q) \to \neg r)$$

2.
$$(\neg(r \to \neg q) \to \neg p) \to ((p \land q) \to \neg r)$$
 (contrapositive)

3.
$$(\neg(\neg r \lor \neg q) \to \neg p) \to ((p \land q) \to \neg r)$$
 (equivalence(*) $p \to q \equiv \neg p \lor q$)

4.
$$((r \land q) \to \neg p) \to ((p \land q) \to \neg r)$$
 (De Morgan's Law)

- 5. $(r \land q) \rightarrow \neg p)$ (assumption)
 - 6. $(p \wedge q)$ (assumption)

8. q
$$(6 \text{ and } \land \text{ elimination})$$

9.
$$r \wedge q$$
 (7,8 and \wedge introduction)

10.
$$\neg p$$
 (5,9 and \rightarrow elimination)

1. p (6 and
$$\wedge$$
 elimination)

12.
$$\neg$$
 r (7-11 and falsity elimination (PbC))

13.
$$(p \land q) \rightarrow \neg r$$
 (6-12 and \rightarrow introduction)

14.
$$((r \land q) \to \neg p) \to ((p \land q) \to \neg r)$$
 (5-13 and \to introduction)

15.
$$(p \to (r \to \neg q)) \to ((p \land q) \to \neg r)$$
 (1,2,3,4,14)

1. $p \to q$ (premise)

3. q
$$(1,2 \text{ and } \rightarrow \text{elimination})$$

4.
$$\neg p \lor q$$
 (3 and \lor introduction)

5.
$$\neg p$$
 (assumption)

6.
$$\neg p \lor q$$
 (5 and \lor introduction)

```
7. q (assumption)
8. \neg p \lor q (7 and \lor introduction)
```

9.
$$\neg p \lor q$$
 (1,2-4,5-6,7-8, \rightarrow elimination)

Question 5 (30 pts)

Prove the following claim by natural deduction. Use only the natural deduction rules \vee , \wedge , \rightarrow , \neg introduction and elimination. If you attempt to make use of a lemma or equivalence, you need to prove it by natural deduction too.

a)
$$\forall x P(x) \lor \forall x Q(x) \vdash \forall x (P(x) \lor Q(x))$$
 (12.5/25 pts)

- 1. $\forall x \ P(x) \lor \forall x \ Q(x)$ (premise)
 - 2. $\forall x \ P(x)$ (assumption)

a is fresh name

- 3. P(a) (2 and \forall elimination)
- 4. $P(a) \vee Q(a)$ (3 and \vee introduction)
- 5. $\forall x \ (P(x) \lor Q(x))$ (3-4 and \forall introduction)
- 6. $\forall x \ Q(x)$ (assumption)

b is fresh name

- 7. Q(b) (6 and \forall elimination)
- 8. $P(b) \vee Q(b)$ (7 and \vee introduction)
- 9. $\forall x \ (P(x) \lor Q(x))$ (7-8 and \forall introduction)
- 10. $\forall x \ (P(x) \lor Q(x))$ (2-5,6-9 and \lor elimination)

b)
$$\forall x P(x) \to S \vdash \exists x (P(x) \to S)$$

(17.5/25 pts)

1. $\forall x \ P(x) \to S$ (premise)

2. $\neg(\forall x \ P(x)) \lor S$ (1 and equivalence(*) $A \to B \equiv \neg A \lor B$)

3. $(\exists x \neg P(x)) \lor S$ (2 and equivalance(**) $\neg \forall x A(x) \equiv \exists x \neg A(x)$)

4. $\exists x \neg P(x)$ (assumption)

a is fresh name

5. $\neg P(a)$ (4 and \exists elimination)

6. $\neg P(a) \lor S$ (5 and \lor introduction)

7. $P(a) \to S$ (6 and equivalence(*) $A \to B \equiv \neg A \lor B$)

8. $\exists x (P(x) \to S)$ (5-7 and \exists introduction)

9. S (assumption)

b is fresh name

0. $\neg P(b) \lor S$ (9 and \lor introduction)

1. $P(b) \to S$ (10 and equivalence(*) $A \to B \equiv \neg A \lor B$)

12. $\exists x (P(x) \to S)$ (10-11 and \exists introduction)

13. $\exists x (P(x) \to S)$ (3,4-8,9-12 and \lor elimination)

——- equivalence(*) ——-

1. $p \to q$ (premise)

2. p (assumption)

3. q $(1,2 \text{ and } \rightarrow \text{ elimination})$

4. $\neg p \lor q$ (3 and \lor introduction)

```
5. \neg p (assumption)
   6. \neg p \lor q (5 and \lor introduction)
   7. q (assumption)
   8. \neg p \lor q (7 and \lor introduction)
9. \neg p \lor q (1,2-4,5-6,7-8,\rightarrow elimination)
                      ——- equivalence
(**)—-[left to right] ——-
1. \neg \forall x P(x)
                 (premise)
      a fresh name
   2. P(a) (assumption)
   3. \forall x P(x) (2 and \forall introduction)
   4. F
              (1,3)
      b fresh name
   5. \neg P(b)
                (2-4 \text{ and } \neg \text{ introduction})
6. \exists x \neg P(x)
                 (5 and \exists introduction)
                     1. \exists x \neg P(x)
                  (premise)
   2. \forall x P(x)
                   (assumption)
         a fresh name
       3. \neg P(a) (1 and \exists elimination)
       4. P(a) (2 and \forall elimination)
       5. F
                 (3,4)
   6. F
             (2, 3-5)
```

7. $\neg \forall x P(x)$ (1,2-6, \neg introduction)