内蒙古农业大学

《概率论与数理统计 A》模拟试卷(一)

一、选择题(每小题 3 分,共 24 分) 1. 设 A,B 是两个随机事件,则 A,B 都不发生可以表示为().
A. $\overline{A}B \cup A\overline{B}$; B. $\overline{A}\overline{B}$; C. \overline{AB} ; D. AB .
2. 设 X_1, X_2, X_3 是来自总体 $X \sim \mathbf{B}(1,p)$ 的一个简单随机样本(其中 p 未知),则下述哪个
不是统计量().
A. $X_1 + X_2$; B. $X_1 + 2p$; C. $(X_1 - X_2)^2$; D. X_2 .
3. 设 X 服从参数为 λ 的泊松分布,则 $E(X^2)=$ ().
A. $\lambda + \lambda^2$; B. λ^2 ; C. λ ; D. $\frac{1}{\lambda} + \frac{1}{\lambda^2}$.
4. 设某零件长度服从正态分布 $N(\mu,0.1^2)$,随机地从中抽取 16 个,测得 $\overline{x}=2.23$ 厘米,则
总体均值 μ 的置信度为 0.9 的置信区间为 (). (已知 $u_{0.05}=1.645, t_{0.05}(15)=1.7531.)$
A. [1.9849, 4.0151]; B. [2.1862, 2.2738]; C. [2.02, 3.98]; D. [2.1889, 2.2711]
5. 设随机变量 $X \sim N(1,4^2)$,则 $P\{X \le 1\} = ($).
A. 0 ; B. 0.4 ; C. 0.5 ; D. 1 . 6. 设随机变量 X 的分布函数为 $F(x)$,则 $P\{1 < X \le 4\} = ($).
A. $F(4) - F(1) + P\{X = 4\}$; B. $F(4) - F(1) - P\{X = 1\}$;
C. $F(4) - F(1)$; D. $1 - F(4) - F(1)$.
7. 设二维随机变量 (X,Y) 的联合概率密度函数为 $f(x,y) = \begin{cases} 6, & (x,y) \in D, \\ 0, & \text{其他,} \end{cases}$ 则区域 D 的
积为().
A. 6; B. $\frac{1}{6}$; C. 36; D. $\frac{1}{36}$.
8. 在假设检验中, H_0 表示原假设, H_1 表示备择假设,则称为犯第一类错误的是()

《概率论与数理统计 A》模拟试卷(一) 第 1 页 (共 4 页)

- A. H_0 不真,拒绝 H_0 ; B. H_0 不真,接受 H_0 ;
- C. H_0 为真,接受 H_0 ; D. H_0 为真,拒绝 H_0 .

二、填空题(每小题3分,共18分)

- 1. 若随机事件 A = B 相互独立,且 $P(A) = \frac{1}{2}$, $P(B) = \frac{1}{2}$,则 $P(A \cup B) = \underline{\hspace{1cm}}$
- 2. 若 K 在 [0,3] 上服从均匀分布,则方程 $x^2 + Kx + 1 = 0$ 有实根的概率为_____.
- 3. 设连续型随机变量 X 的分布函数为 $F(x) = \begin{cases} 1 e^{-2x} & x > 0 \\ 0 & x \le 0 \end{cases}$, 则 X 的概率密度函数
- 4. 若 $X \sim N(3,2^2)$,则 Y = 2X + 1的方差 D(Y) = 3
- 5. 设随机变量 X 和 Y 相互独立且同分布, $P(X=-1)=P(Y=-1)=\frac{1}{2}$, $P(X=1) = P(Y=1) = \frac{1}{2}$, $\mathbb{M} P(X=Y) = \underline{\hspace{1cm}}$.
- 6. 设总体 X 的均值为 μ 、方差为 σ^2 , X_1, X_2, X_3 为来自 X 的样本,取 μ 的无偏估计量 $\hat{\mu}_1 = \frac{2}{5}X_1 + \frac{3}{5}X_3$, $\hat{\mu}_2 = \frac{2}{3}X_2 + \frac{1}{3}X_3$, $\hat{\mu}_3 = \frac{1}{2}X_2 + \frac{1}{2}X_3$, $\hat{\mu}_1$, $\hat{\mu}_2$, $\hat{\mu}_3$ 中最有效的

三、计算题(每小题10分,共50分)

1. 设二维随机变量 (X,Y) 的联合概率密度 $f(x,y) = \begin{cases} x^2 + \frac{1}{3}xy, & 0 \le x \le 1, 0 \le y \le 2, \\ 0, &$ 其他.

求(X,Y)的边缘概率密度 $f_X(x)$ 与 $f_Y(y)$.

- 2. 设随机变量 X 的概率密度函数为 $f(x) = \begin{cases} Ax, & 0 < x < 1, \\ 0, & \text{其他}. \end{cases}$
- (1) 求常数 A;

《概率论与数理统计 A》模拟试卷(一) 第 2 页 (共 4 页)

- (2) 对 X 进行 3 次独立观测,求至少有一次观测值小于 $\frac{1}{2}$ 的概率.
- 3. 设某年级学生的数学成绩服从正态分布,从中随机抽取 36 位考生的成绩,算得样本均值 x=66.5 (分),样本标准差 s=15 (分),是否可以认为该年级学生的数学平均成绩为 70 分? (已知显著性水平 $\alpha=0.05$, $u_{0.025}=1.96$, $t_{0.025}(35)=2.0301$).

4. 设总体
$$X$$
 的概率密度函数为 $f(x;\theta) = \begin{cases} (\theta+1)x^{\theta}, & 0 < x < 1, \\ 0, & 其他 \end{cases}$, 如果取得一组样本

 $X_1, X_2, \cdots X_n$, 试求未知参数 θ 的最大似然估计.

5. 设离散型随机变量 X 的概率分布律为:

X	-2	-1	0	1	2	3
n	1	1	1	1	1	1
P	6	- 6	- 6	6	6	6

求: (1) E(X); (2) D(X).

四、证明题(8分)

设 X_1, X_2, \cdots, X_9 是来自正态总体 $N(0, \sigma^2)$ 的简单随机样本,证明统计量

$$Y = \frac{2(X_1^2 + X_2^2 + X_3^2)}{X_4^2 + X_5^2 + \dots + X_9^2}$$
 服从 $F(3,6)$ 分布.