Лабораторная работа N1

Разработать имитационную модель функционирования СМО.

СМО представляет собой одноканальную разомкнутую систему (один генератор заявок и один обслуживающий аппарат). Буфер имеет бесконечную емкость.

Закон поступления (генерации заявок) и закон распределения времени обслуживания заявок задается в таблице и выбирается в соответствии с номером в списке группы.

В качестве исходных данных пользователь задает интенсивность поступления заявок и интенсивность обслуживания заявок. Программа должна выводить расчетную загрузку системы и фактическую, полученную по результатам моделирования. Пользователь должен иметь возможность задавать количество обрабатываемых заявок) время моделирования.

Если параметры законов распределения отличны от интенсивности, то предусмотреть ввод интенсивностей с дальнейшим пересчетом в программе этих величин в параметры закона. В случае двухпараметрических законов пользователь задает интенсивность и ее разброс (среднеквадратическое отклонение).

Построить график зависимости выходного параметра (ср. время ожидания (пребывания) в зависимости от загрузки системы).

Предусмотреть наращивание системы путем добавления новых генераторов и обслуживающих аппаратов.

Подготовить отчет по лабораторной работе.

Первый закон – закон распределения интервалов времени между приходом сообщений (заявок)

Второй закон – закон распределения времени обслуживания заявок		
N вар	ианта Первый закон	Второй закон
1	Экспоненциальный	Экспоненциальный
2	Экспоненциальный	Вейбулла с параметром 2
3	Равномерный	Равномерный
4	Равномерный	Вейбулла с параметром 2
5	Нормальный	Нормальный
6	Нормальный	Вейбулла с параметром 2
7	Экспоненциальный	Равномерный
8	Экспоненциальный	Нормальный
9	Равномерный	Нормальный
10	Равномерный	Экспоненциальный
11	Нормальный	Экспоненциальный
12	Нормальный	Равномерный
13	Рэлея	Равномерный
14	Рэлея	Экспоненциальный
15	Рэлея	Нормальный
16	Рэлея	Рэлея
17	Рэлея	Вейбулла с параметром 2
18	Экспоненциальный	Рэлея
19	Равномерный	Рэлея
20	Нормальный	Рэлея
21	Вейбулла с параметром 2	Экспоненциальный
22	Вейбулла с параметром 2	Равномерный
23	Вейбулла с параметром 2	Рэлея
24	Вейбулла с параметром 2	Вейбулла с параметром 2
25	Вейбулла с параметром 2	Нормальный

Учесть, что рассматриваемые случайные величины принимают положительные значения (интервалы между приходом требований и времена обслуживания).