# Loan Defaulter Prediction

Group 18 (Runtime Terror): Dishant Vakte, Jeffi Edelbert, Rakshit Sinha, Yatin Koul, Zhanyi Zhu, Zheng Cen



## Introduction

- → Defaulters could potentially cost banks a lot of revenue.
- → Banks need a concrete way to judge the credibility of its future customers before issuing a credit card or a loan.
- → Predicting if a customer will default or not, can be done based on various socio -economic factors.
- → Determining these factors will help the bank forecast and filter out defaulters.



#### **About The Dataset**

- → Direct marketing campaigns of a Portuguese banking institution; based on phone calls;
- → 45211 instances and 17 attributes, total of 768,587 data points;
- → Attributes like default, marital, job, education, housing loan, etc
- → Highly imbalanced and requires resampling

# **Data Processing**

Creating dummy
variables for multiple
categorical columns

Categorizing age column into bins



Changing default variable to numerical column with binary values

Detecting and removing outliers

# **Data Analysis**

01

Socio-economic factors

02

Correlation between variables

03

Machine Learning Models

#### Socio-economic factors causing default - Job Type



### Socio-economic factors causing default - Marital Status



#### Socio-economic factors causing default - Loan Type



# Socio-economic factors causing customers to default



**Marital Status** 

**54.97%** of defaulted customers are married.



Job Type

31.21% of defaulted customers work a blue -collar job



**Loan Type** 

**53.37**% of defaulters have a **housing loan** 

# Heatmap to analyze correlation between various parameters

-0.8

- 0.6

- 0.4

- 0.2

- 0.0



# Implementing Machine Learning Models

- → Machine Learning Algorithm: Random Forest
- → Re-sampling methods:
  - Undersampling
  - Oversampling
  - SMOTE

# **SMOTE**

#### (Synthetic Minority Oversampling Technique)

- → A hybrid model of undersampling as well as oversampling.
- Using data augmentation techniques, randomly generate new minority class data points.
- → By this, we achieve high number of "unique" minority class samples.
- → ML model will have a high number of samples to be trained on.

# **Random Forest**

- → An ensemble learning algorithm using a number of "Decision Trees", which works on creating a split based on various parametric values.
- → Random Forest is a good choice for highly imbalanced dataset
- → Ensemble learning allocates "weights" or "importance" to the target class - high weight for minority class and less weight for majority class.
- → Helps to build an efficient classification model.

# Results

#### → Undersampling

F-1 Score of **17%** on the original test dataset (scaled). Underfitting

#### → Oversampling

F-1 Score of **0%** on the original test data (scaled). Severely overfitting

#### → SMOTE

F-1 Score of **70%** on the original test dataset (scaled). Good performance.

## Conclusion

- → Customers falling under categories with high likelihood of defaulting such as married, working blue-collar jobs or having a housing loan could be offered higher interest rates.
- → This would ensure reduced risks for the firm and greater caution towards these customers.

#### → Recommendation:

This model can be built into an interface which allows executives to input information about a new customer and predict whether the customer is likely to default.

# **Thank You!**