CONCRETE COMPREHENSIVE STRENGTH PREDICTOR(CCSP)

USING MACHINE LEARNING

1.Purpose to development of CCSP

- ➤ It is very difficult to Calculate the concrete comprehensive strength by Manually.
- ➤ So, our predictor system helps the civil engineers to easily predict their concrete strength using features like amount of materials added to it.

2.Product introduction

- ➤ Concrete is the most important material in civil engineering. The concrete compressive strength is a highly nonlinear function of age and ingredients.
- ➤ These ingredients include cement, blast furnace slag, fly ash, water, superplasticizer, coarse aggregate, and fine aggregate.
- ➤ It is very hard and almost impossible to Calculate the concrete comprehensive strength by Manually.
- ➤ With the help of machine learning and with proper preprocessing, we predict the comprehensive strength with the given features .

3. Product explanation

- The dataset is taken from the Kaggle platform.
- Convert the dataset into a dataframe using pandas. And Preprocess the dataset .Analyze the dataset using some data visualization libraries
- We use random forest regressor algorithm. And trained and tested the algorithm using our dataset. And optimize the model better accuracy.
- We created the framework using flask .To give the new input values to Machine learning model

4. Work Plan for development

5.Dataset

	cement	blast_furnace_slag	fly_ash	water	superplasticizer	coarse_aggregate	fine_aggregate	age	concrete_compressive_strength
0	540.0	0.0	0.0	162.0	2.5	1040.0	676.0	28	79.99
1	540.0	0.0	0.0	162.0	2.5	1055.0	676.0	28	61.89
2	332.5	142.5	0.0	228.0	0.0	932.0	594.0	270	40.27
3	332.5	142.5	0.0	228.0	0.0	932.0	594.0	365	41.05
4	198.6	132.4	0.0	192.0	0.0	978.4	825.5	360	44.30

6.Flask framework

7.Finished product

8.Cost of product

- ➤ This is entirely build on opensource libraries with free of cost. So, our cost of the product is 0
- ➤ But, when we want to deploy this product in cloud services like aws or azure. It costs around 35\$

9.Student involved

SANJEEV KUMAR M 201CS272

10.Outcome of product

✓ Product is presented in epoch'22 and won 3rd prize