Cayley's Theorem

Definition

Let G be a group and $g \in G$. Define $L_g : G \to G$ by:

$$L_g(x) = gx$$

Lemma

Let G be a group and $g \in G$:

 L_g is a permutation of G

Proof

Assume $L_g(x) = L_g(y)$

gx = gy

x = y

 $\therefore L_g$ is one-to-one.

Assume $y \in G$

 $g^{-1} \in G$

Let $x \in G, g^{-1}x = y$

$$L_g(x) = g(g^{-1}y) = (gg^{-1})y = ey = y$$

 $\therefore L_q$ is onto.

 $\therefore L_g$ is a bijection, and thus a permutation of G.

Lemma

Let G be a group and $G' = \{L_g \mid g \in G\}$:

$$\forall L_{g_1}, L_{g_2} \in G', L_{g_1}L_{g_2} = L_{g_1g_2}$$

Proof

Assume $L_{g_1}, L_{g_2} \in G'$

Assume $x \in G$

$$(L_{g_1}L_{g_2})(x) = L_{g_1}(L_{g_2}(x)) = L_{g_1}(g_2x) = g_1(g_2x) = (g_1g_2)x = L_{g_1g_2}(x)$$

Lemma

Let G be a group and $G' = \{L_g \mid g \in G\}$:

$$G'$$
 is a group

<u>Proof</u>

Assume
$$L_{g_1}, L_{g_2} \in G'$$
 $g_1, g_2 \in G$

$$L_{g_1}L_{g_2} = L_{g_1g_2}$$

But by closure, $g_1g_2 \in G$

$$L_{g_1g_2} \in G'$$

 $\therefore \tilde{G}'$ is closed under the operation.

Composition is associative

 \therefore G' is associative under the operation.

Let e be the identity element for G

Assume
$$g \in G$$

$$L_e L_g = L_{eg} = L_g$$

$$L_q L_e = L_{qe} = L_q$$

 $\therefore L_e$ is an identity for G'.

Assume $g \in G$

$$q^{-1} \in G$$

$$L_{g^{-1}}L_g = L_{g^{-1}g} = L_e$$

$$L_g L_{g^{-1}} = L_{gg^{-1}} = L_e$$

 \therefore G' is closed under inverses.

 $\therefore G'$ is a group.

Theorem: Cayley

Every group is isomorphic to a group of permutations.

Proof

Let G a group and $G' = \{L_g \mid g \in G\} \ G'$ is a group (lemma)

Let $\phi:G\to G$ be defined by $\phi(g)=L_g$

Assume
$$\phi(g_1) = \phi(g_2)$$

$$L_{g_1} = L_{g_2}$$

Assume
$$x \in G$$

$$L_{g_1}(x) = L_{g_2}(x)$$

$$g_1 x = g_2 x$$

$$g_1 = g_2$$

 $\therefore \phi$ is one-to-one.

Assume $L_q \in G'$

$$g \in G$$

$$\phi(g) = L_g$$

 $\therefore \phi$ is onto and thus a bijection.

Assume $g_1, g_2 \in G$

 $\phi(g_1g_2)=L_{g_1g_2}=L_{g_1}L_{g_2}=\phi(g_1)\phi(g_2) \ \therefore \ \phi \ \text{is a homomorphism and thus an isomorphism.}$

$$\therefore G \simeq G'$$