If $S = \{\alpha_1, \alpha_2, \dots, \alpha_n\}$ is the basis of a vector space V(F), then each element of V is uniquely expressible as a linear combination of elements of S.

Since S is the basis of a vector space V(F), then by the definition of basis, each element of V is a linear combination of elements of S. Thus, we only show the uniqueness. Let there be two different sets $\{a_1, a_2,...,a_n\}$ and $\{b_1, b_2,...,b_n\}$ of scalars corresponding to an element $\alpha \in V$ such that

$$\alpha = a_1\alpha_1 + a_2\alpha_2 + \dots + a_n\alpha_n$$
 and
$$\alpha = b_1\alpha_1 + b_2\alpha_2 + \dots + b_n\alpha_n$$
(1)

$$\Rightarrow a_1 \alpha_1 + a_2 \alpha_2 + \dots + a_n \alpha_n = b_1 \alpha_1 + b_2 \alpha_2 + \dots + b_n \alpha_n$$

$$\Rightarrow$$
 $a_1 \alpha_1 - b_1 \alpha_1 + a_2 \alpha_2 - b_2 \alpha_2 + \dots + a_n \alpha_n - b_n \alpha_n = 0$

$$\Rightarrow (a_1 - b_1) \alpha_1 + (a_2 - b_2)\alpha_2 + \dots + (a_n - b_n)\alpha_n = 0$$

Since the set $S = \{ \alpha_1, \alpha_2, ..., \alpha_n \}$ is linearly independent so that

$$a_1 - b_1 = 0$$
, $a_2 - b_2 = 0$,..., $a_n - b_n = 0$

$$\Rightarrow a_1 = b_1, \qquad a_2 = b_2, ..., \quad a_n = b_n.$$

Hence, the expression (1) is unique.

tar chace has a finite hasis.

which is a contradiction, because we have taken $x \neq 0$. Thus, the contradiction arises by assuming that $W_1 \cap W_2 \neq \{0\}$ Consequently

$$V = W_1 \oplus W_2$$

Here W_2 is the subspace complementary to the subspace W_2 of finite dimensional vector space V.

If W_1 and W_2 are two finite dimensional subspaces of a vector space V, W_1+W_2 is finite dimensional and $\dim W_1+\dim W_2=\dim (W_1+W_2)$, then If W_1 and W_2 is finite dimensional and dim. $W_1+\dim W_2=\dim (W_1\cap W_2)+\dim (W_1+W_2)$. Since W_1 and W_2 are subspaces of V so that $W_1 \cap W_2$ will be a subspace of V and its dimension is finite. Let dim. $W_1 = m$, dim. $W_2 = n$ and dim. $(W_1 \cap W_2) = r$. Let $\{\alpha_1, \alpha_2, ..., \alpha_r\}$ be a basis of $W_1 \cap W_2$. Therefore, we can extend this basis to a basis of W_1 and also to a basis of W_2 .

Let,
$$S_1 = \{\alpha_1, \alpha_2, \dots \alpha_r, \beta_1, \beta_2, \dots \beta_{m-r}\}$$
 and
$$S_2 = \{\alpha_1, \alpha_2, \dots \alpha_r, \gamma_1, \gamma_2, \dots \gamma_{n-r}\}$$

be the basis of W_1 and W_2 respectively. Consider the set

$$S = {\alpha_1, \alpha_2, \dots \alpha_r, \beta_1, \beta_2, \dots \beta_{m-r}, \gamma_1, \gamma_2, \dots \gamma_{n-r}}$$

Now we have to show that S will form a basis for W_1+W_2 . For this, we shall show that S is linearly independent and spans $W_1 + W_2$. For this, suppose

$$\sum a_i \alpha_i + \sum b_j \beta_j + \sum c_k \gamma_k = 0 \text{ for } a_i' s, b_j' s, c_k' s \in F.$$
Then
$$\sum c_k \gamma_k = \sum a_i \alpha_i + \sum b_j \beta_j \Rightarrow \sum c_k \gamma_k \in W_1$$

Also,
$$\sum c_k \gamma_k \in W_2$$
. It follows that $\sum c_k \gamma_k \in W_1 \cap W_2$ and we have $\sum c_k \gamma_k \in d_i \alpha_i$ for some scalars $d_1, d_2, ..., d_r$. Since the set $\{\alpha_1, \alpha_2, ..., \alpha_r, \gamma_1, \gamma_2, ..., \gamma_{n-r}\}$ is

linearly independent hence all the scalars $c_1 = 0 = c_2 = ... = c_{n-r}$.

Thus
$$\sum a_i \alpha_i + \sum b_j \beta_j = 0$$

and since the set $\{\alpha_1, \alpha_2, \dots \alpha_r, \beta_1, \beta_2, \dots \beta_{m-r}\}$ is also linearly independent,

then

96

1gt

De

ite

)ce

ve,

his

nd

Sts

re

an

ng

7001

$$a_1 = 0 = a_2 = \dots = a_r$$

 $b_1 = 0 = b_2 = \dots = b_{m-r}$

and
$$b_1 = 0 = b_2 = \dots = b_{m-r}$$

Thus the set $S = \{\alpha_1, \alpha_2, \dots \alpha_r, \beta_1, \beta_2, \dots \beta_{m-r}, \gamma_1, \gamma_2, \dots \gamma_{n-r}\}$ is linearly independent.

Let α be an arbitrary element of $W_1 + W_2$ then it can be written as $\alpha = \beta + \gamma$ with $\beta \in W_1$ and $\gamma \in W_2$. Now S_1 and S_2 being the basis of W_1 and W_2 respectively, β and γ can be expressed uniquely in the form

sed uniquely in the form
$$\beta = \sum_{i=1}^{r} a_i \alpha_i + \sum_{j=1}^{n-r} b_j \beta_j, \text{ for some } a_i's \text{ and } b_j's.$$

 $\gamma = \sum_{i=1}^{r} e_i \alpha_i + \sum_{i=1}^{r} e_i \gamma_i$, for some e(x) and e(x)and

$$\alpha = \beta + \gamma = \sum_{i=1}^{r} (a_i + e_i) a_i + \sum_{j=1}^{n-r} b_j \beta_j + \sum_{j=1}^{n-r} e_j t_j$$

$$\Rightarrow \qquad \alpha \text{ is a linear combination of elements of } S,$$

S spans $W_1 + W_2$

Hence, S is basis of W_1+W_2 so that W_1+W_2 is finite discussion. dimensional (m+n-r).

Finally,

$$\dim W_1 + \dim W_2 = m + n = r + (m + n - r)$$

$$= \dim .(W_1 \cap W_2) + \dim .(W_1 + W_2).$$

If a finite dimensional vector space V(F) be the direct sum of its two subspaces and W_2 , then $\dim V = \dim W_1 + \dim W_2$

Since V is finite dimensional, therefore W₁ and W₂ are also finite dimensional Proof.

 $\dim W_1 = m$, $\dim W_2 = n$ $V = W_1 \oplus W_2$, implying that Also

(i) $V = W_1 + W_2$

(ii) $W_1 \cap W_2 = \{0\}.$

Let $S_1 = {\alpha_1, \alpha_2, ..., \alpha_m}$ be a basis of W_1 and the set $S_2 = {\beta_1, \beta_2, ..., \beta_m}$ can of W2.

Now consider a set

$$S_3 = \{\alpha_1, \alpha_2, ..., \alpha_m, \beta_1, \beta_2, ..., \beta_n\}$$

We claim that S_3 forms a basis of V.

For some scalars $a_1, a_2, ..., a_m, b_1, b_2, ..., b_n \in F$, we have

$$a_1a_1 + a_2a_2 + \dots + a_ma_m + b_1\beta_1 + b_2\beta_2 + \dots + b_n\beta_n = 0$$

$$\Rightarrow a_1 \alpha_1 + a_2 \alpha_2 + \dots + a_m \alpha_m = -(b_1 \beta_1 + b_2 \beta_2 + \dots + b_n \beta_n)$$

$$\Rightarrow a_1 \alpha_1 + a_2 \alpha_2 + \dots + a_m \alpha_m \in W_1 \text{ as } b_1 \beta_1 + b_2 \beta_2 + \dots + b_n \beta_n \in \mathbb{N}_2$$

and
$$b_1\beta_1 + b_2\beta_2 + \dots + b_n\beta_n \in W_2$$
 as $a_1\alpha_1 + a_2\alpha_2 + \dots + a_n\beta_n \in W_1$

$$\Rightarrow a_1\alpha_1 + a_2\alpha_2 + \dots + a_m\alpha_m \in W_1 \cap W_2$$

$$\Rightarrow b_1\beta_1 + b_2\beta_2 + \dots + b_n\beta_n \in W_1 \cap W_2$$

But from(i) $W_1 \cap W_2 = \{0\}$.

$$\Rightarrow \qquad a_1\alpha_1 + a_2\alpha_2 + \dots + a_m\alpha_m = 0$$

and
$$b_1\beta_1 + b_2\beta_2 + \dots + b_n\beta_n = 0$$

Since S_1 and S_2 both are linearly independent, therefore

$$a_1=0=a_2=\dots=a_m$$
, $b_1=0=b_2=\dots=b_n$

 \Rightarrow S_1 is linearly independent.

Next, let γ be an arbitrary element of V, then

$$\gamma = \alpha + \beta$$
, $\alpha \in W_1$, $\beta \in W_2$

Since
$$\alpha \in W_1 \Rightarrow \alpha \in \alpha_1\alpha_1 + \alpha_2\alpha_2 + \dots + \alpha_m\alpha_m$$
 for some $\alpha_1 \in \mathbb{R}$ and $\beta \in W_2 \Rightarrow \beta \in b_1\beta_1 + b_2\beta_2 + \dots + b_m\beta_m$ for some $\beta_1 \in \mathbb{R}$

MIGH SE SELLY & BENSERES

Vector Spaces $\gamma = \alpha + \beta = a_1\alpha_1 + a_2\alpha_2 + \dots + a_m\alpha_m + b_1\beta_1 + b_2\beta_2 + \dots + b_n\beta_n$ S_3 generates V, thus S_3 forms a basis of V. Accordingly, dim. $V = m + n = \dim_{\cdot} W_1 + \dim_{\cdot} W_2$.

h

It should be noted that in case of finite dimensional spaces, since a basis is a maximal linearly independent subset of the vector space, so the dimension of a finite dimensional vector spaces may be regarded as the maximum of numbers of elements in all linearly independent subsets. If this is adopted as definition of the dimension of a vector space, is n iff it has a basis consisting of n elements.

v containing less than it vectors can span v.

5.14 DIMENSION OF SUBSPACE OF A VECTOR SPACE

THEOREM 1. Let S be a linearly independent subset of a vector space V. Suppose β is a vector in \mathbb{I} which is not in the subspace spanned by S. Then the set obtained by adjoining β \square S is linearly independent.

Proof.

Let $S = {\alpha_1, \alpha_2, ... \alpha_n}$ be a linearly independent subset of V. Then we shall show

...(1)

 $S_1 = \{\beta, \alpha_1, \alpha_2, ...\alpha_n\}$

obtained by adjoining β to S is also linearly independent where $\beta \in V$, but not in

 $\alpha_1, \alpha_2, \dots, \alpha_n$ are distinct vectors in S such that

$$a_1 \alpha_1 + a_2 \alpha_2 + \dots + a_n \alpha_n + b\beta = 0$$

where, all a's. are zero.

We actually show that b=0. Let, if possible, $b\neq 0$. Then from (1), we have

$$\beta = \left(-\frac{a_1}{b}\right)\alpha_1 + \left(-\frac{a_2}{b}\right)\alpha_2 + \dots + \left(-\frac{a_n}{b}\right)\alpha_n$$

β is a linear combination of $α_1, α_2, ..., α_n$.

β is in the subspace of V spanned by $α_1, α_2, ..., α_n$. But it is contradictory to the hypothesis that β is not in the subspace spanned by S. 59 Hence b = 0. Consequently, the set S_1 is linearly independent.