WOODS HOLE OCEANOGRAPHIC INSTITUTION MASS

A COMPILATION OF MOORED CURRENT DATA AND ASSOCIATED OCEANOGRAPH--ETC(U)

JUN 77 S A TARBELL, A W WHITLATCH

WHOI-77-18

NL AD-A044 223 UNCLASSIFIED 1 OF 2 ADA044223

AD A O 44223

Woods Hole Oceano

COPY AVAILABLE TO DDG DOES NOT PERMIT FULLY LEGISLE PRODUCTION

PROBUTED SE 10 MI

WHOT-77-18

A COMPILATION OF MOORED CURRENT DATA AND ASSOCIATED OCEANOGRAPHIC OBSERVATIONS, VOLUME XIII (1970 MEASUREMENTS)

by

S. A. Tarbell A. W. Whitlatch

June 1977

TECHNICAL REPORT

Prepared for the Office of Naval Research under Contracts NO0014-86-C-0241; NR 083-004 and N00014-76-C-0197; NR 083-400.

Approved for public release; distribution unlimited.

NO NO.

SECURITY CLASSIFICATION OF THIS PAGE (When Date Filtered)

T REPORT NUMBER	REPORT DOCUMENTATION PAGE		
	2 GOVT ACCESSION NO.	3 RECIPIENT'S CATALOG NUMBER	
WHOI-77-18			
TITLE (and Subtilite)	Manager Library Co.	5 TYPE OF REPORT & PERIOD COVE	
A COMPILATION OF MOORED CUR		(9) marine rock	
ASSOCIATED OCEANOGRAPHIC OBS		Technical reft.	
XIII, (1970 MEASUREMENTS)		6. PERFORMING ORG. REPORT NUMBE	
7 AUTHOR(e)		CONTRACT OR GRANT NUMBER(+)	
S. A. Tarbell and A. W. Whi	tlatch	NØ0014-66-C-0241	
S. A., laibell and A. W., Will	Claten /	N00014-76-C-0197	
A Part of the Control	9		
9 PERFORMING ORGANIZATION NAME AND AL	DDRESS	10. PROGRAM ELEMENT, PROJECT, TA	
Woods Hole Oceanographic In	stitution	AREA & WORK ON!! NUMBERS	
Woods Hole, MA 02543		NR 083-004	
		NR 083-400	
11 CONTROLLING OFFICE NAME AND ADDRES	SS	REPORT DATE	
NORDA	(// June 1977	
National Space Technology L	aboratory	TS. NUMBER OF PAGES	
Bay St. Louis, MS 39529		189 (1 - 1 /	
TA MONITORING AGENCY NAME & ADDRESS(II	different from Controlling Office)	15. SECURITY CLASS. (of this seport)	
		Um -1 i fi - d	
		Unclassified 15a. DECLASSIFICATION/DOWNGRADIN	
		SCHEDULE	
16 DISTRIBUTION STATEMENT (of this Report)			
Approved for public release	; distribution unlimi	ted.	
1000		- nC	
n R434 691			
17. DISTRIBUTION STATEMENT (of the abstract	entered in Block 20. If different from	Pener I I	
	ditioned in block as,	III	
		16 1977	
		SEP 16 1977	
		SEP 16 1977	
		SEP 16 1977	
18 SUPPLEMENTARY NOTES		SEP 16 1977	
		SEP 16 1977	
18 SUPPLEMENTARY NOTES		SEP 16 1977	
18 SUPPLEMENTARY NOTES		SEP 16 1977	
18 SUPPLEMENTARY NOTES 19 KEY WORDS (Continue on reverse side if nece 1. Moorings		SEP 16 1977	
18 SUPPLEMENTARY NOTES 19 KEY WORDS (Continue on reverse elde II nece 1. Moorings 2. Current Meter Data		SEP 16 1977	
18 SUPPLEMENTARY NOTES 19 KEY WORDS (Continue on reverse elde II nece 1. Moorings 2. Current Meter Data 3. Gulf Stream	eeary and identify by block number)	SEP 16 1977	
19 KEY WORDS (Continue on reverse elde if nece 1. Moorings 2. Current Meter Data 3. Gulf Stream	eeary and identify by block number)	SEP 16 1977	
19 KEY WORDS (Continue on reverse elde if nece 1. Moorings 2. Current Meter Data 3. Gulf Stream 20 ABSTRACT (Continue on reverse elde if neces Summaries of moored curre	eeary and identify by block number) leary and identify by block number) ent meter and associat	sed hydrostation data	
19 KEY WORDS (Continue on reverse elde if nece 1. Moorings 2. Current Meter Data 3. Gulf Stream 20 ABSTRACT (Continue on reverse elde if neces Summaries of moored curre collected in 1970 by the Woods	eeary and identify by block number) the area of the state of the stat	ed hydrostation data institution are presented.	
19 KEY WORDS (Continue on reverse elde II nece 1. Moorings 2. Current Meter Data 3. Gulf Stream 20 A@STRACT (Continue on reverse elde II neces Summaries of moored curre collected in 1970 by the Woods The averaged current data are	eeary and identify by block number) ont meter and associate Hole Oceanographic I presented as Statisti	ed hydrostation data institution are presented.	
19 KEY WORDS (Continue on reverse elde il nece 1. Moorings 2. Current Meter Data 3. Gulf Stream 20 ASTRACT (Continue on reverse elde il nece Summaries of moored curre collected in 1970 by the Woods The averaged current data are Vector and Scalar Plots versus	eeary and identify by block number) ont meter and associate Hole Oceanographic I presented as Statisti Time. The associate	ed hydrostation data institution are presented. cs, Spectral Diagrams, ed hydrostation data are	
19 KEY WORDS (Continue on reverse elde II nece 1. Moorings 2. Current Meter Data 3. Gulf Stream 20 ABSTRACT (Continue on reverse elde II necessaries of moored curre collected in 1970 by the Woods The averaged current data are	eeary and identify by block number) ont meter and associate Hole Oceanographic I presented as Statisti Time. The associate	ed hydrostation data institution are presented. cs, Spectral Diagrams, ed hydrostation data are	
19 KEY WORDS (Continue on reverse elde il nece 1. Moorings 2. Current Meter Data 3. Gulf Stream 20 ASTRACT (Continue on reverse elde il nece Summaries of moored curre collected in 1970 by the Woods The averaged current data are Vector and Scalar Plots versus	eeary and identify by block number) ont meter and associate Hole Oceanographic I presented as Statisti Time. The associate	ed hydrostation data institution are presented. cs, Spectral Diagrams, ed hydrostation data are	

6/77

UNCLASSIFIED

EDITION OF 1 NOV 65 IS OBSOLETE

DD FORM 1473

WHOI-77-18

A COMPILATION OF MOORED CURRENT DATA AND ASSOCIATED OCEANOGRAPHIC OBSERVATIONS, VOLUME XIII (1970 MEASUREMENTS)

by

S. A. Tarbell A. W. Whitlatch

WOODS HOLE OCEANOGRAPHIC INSTITUTION Woods Hole, Massachusetts 02543

June 1977

TECHNICAL REPORT

Prepared for the Office of Naval Research under Contracts N00014-66-C-0241; NR 083-004 and N00014-76-C-0197; NR 083-400.

Reproduction in whole or in part is permitted for any purpose of the United States Government. In citing this manuscript in a bibliography, the reference should be followed by the phrase: UNPUBLISHED MANUSCRIPT.

Approved for public release; distribution unlimited.

Approved for Distribution

Valentine Worthington, Chairman Department of Physical Oceanography

ABSTRACT

Summaries of moored current meter and associated hydrostation data collected in 1970 by the Woods Hole Oceanographic Institution are presented. The averaged current data are presented as Statistics, Spectral Diagrams, Vector and Scalar Plots versus Time. The associated hydrostation data are presented as temperature and salinity plotted versus depth.

INDEX

	Page
Abstract	i
Index	iii
Preface	iv
Recognition	v
Introduction	vi
Moorings	vii
Arrays	vii
Time Base Information	x
Direction Corrections	xi
Nomenclature	xi
Hydrostation Data Selection	xii
Current Meter Data Selection	xii
Current Meter Processing	xii
Data Presentation	xiii
STATS	xiii
Spectra	xiv
Stick Plot	xv
Variable vs. Time Plot	xvi
References	xvi
Mooring 323	3
326	21
327 329	27
331	33
332	39
334	49 59
335	77
343	83
345	93
347	99
348 349	105
350	115
351	125
352	135 141
353	147
357	153
358	163
360	169
364	179
368	185

PREFACE

This volume is the thirteenth of a series of Data Reports presenting moored current meter and associated oceanographic data collected by the W.H.O.I. Buoy Group. Volumes I through XII present data from the years 1963-1969, and three array experiments: the 1970 Pollard array, the 1973 IWEX array and the 1973 MODE array. Volume XIII completes the presentation of 1970 current data.

RECOGNITION

In working toward our common cause, we faithful labor without pause To fix the meters, splice the line, to reduce data in record time.

Our instrument section stands alone; we have the best right here at home. Our skilled technicians twist and probe to maintain accurate time and strobe. They modify where they think best, then send to sea for a working test. The releases too receive much care for we depend on them down there. Each instrument has a job to do towards the goal we all pursue, And if each works well to the end the data is our dividend.

Our mooring guys pass every test; for they are always at their best, With mooring wuzzles that come in, or shackles and a cotter pin. The recovery and deployment too of moorings gives all much to do. From Loran fixes which say "We're near" and releases beeping "I'm still here", To a rotor spin at a certain time and hooking on the mooring line, To hydrostations and all the rest of oceanography at its best.

Our data section is hard to beat; the scientists keep us on our feet, As they dwell on every type of plot and argue this, or that, or not. They give us plenty of work to do, computing and drafting and typing too, To record our data for all to see and to indicate its integrity. We've tried to present in our displays data in several different ways, For those whose interest it is to see data from the changing sea.

In working toward our common cause we faithful labor without pause To fix the meters, splice the line, to reduce data in record time. And all these things we do with glee, courtesy O.N.R., so that we Can process and plot, produce and plan to benefit our fellow man.

Introduction

The long term objectives of the Moored Array Project (Buoy Group) at W.H.O.I. are to measure and describe the distribution of energy in the ocean. In 1970 the effort was to determine the spatial structure of the velocity field at Site D (39° 10.0'N, 70° 00.0'W) and to examine the structure of currents under the Gulf Stream. The current data gathered throughout 1970 to measure these parameters are presented in two data reports. An earlier report, Volume VIII (Pollard and Tarbell, 1975) presents eighteen data series from a three mooring array set near Site D in 1970 to investigate the horizontal and vertical structure of the top 100 meters of the ocean. Volume XIII presents an additional thirty-six records set in six locations in the western North Atlantic and completes the presentation of good 1970 current meter data.

Moorings

A mooring report (Volkmann, 1973) contains diagrams of moorings set by the Buoy Group in 1970. Diagrams of twenty-two moorings associated with the presented data are included in this report. Four of these moorings are the new 'Intermediate' moorings which were designed to permit current measurements below the lower edge of the fish bite zone without contamination from surface motion (Heinmiller, 1976). Twelve are 'Bottom' moorings designed to collect data within a few hundred meters of the bottom. Three of the moorings are 'Subsurface' moorings and two are 'Surface' moorings. Both types have their principal flotation at the top of the mooring and are capable of measuring throughout the water column.

Arrays

Improvements in both mooring design and current meter reliability made feasible several array experiments in 1970. There was an array at Site D (39° 10'N, 70° 00'W) in July 1970 which is presented in a separate report (Pollard and Tarbell, 1975). The array areas for this report are shown in Figure 1 and the data duration with respect to depth and time is shown in Figure 2. Data from a two mooring array set as part of the Caribbean Inflow Study are discussed in Stalcup and Metcalf (1972). The Slope and Gulf Stream arrays collected near-bottom data which was used in Schmitz (1974) and Schmitz (1976). The latter paper is a general discussion of data from the western North Atlantic and includes data from Site L (30°N, 70°W) and the North/South array along 70°W.

FIG. I AREAS OF THE EXPERIMENTS INCLUDED IN THIS REPORT

Fig 2. Presenting data duration by area, depth and time

Time Base Information

During 1970 the last current meters that used mechanical clocks were modified to use the more accurate crystal clock. Instead of two asynchronous cams and one R-C oscillator, a single quartz oscillator was used. The crystal, oscillating at a frequency of 74.5654 Khz, provides clocking pulses to the instrument and indicates time by placing a 14 bit time word at the beginning of each recording interval. The accuracy of the crystal clock is ±1 second per day while the accuracy of the mechanical clock is ±10 seconds per day.

To provide secondary time information, artificial events are placed in the rotor field both before and after the sea data. The procedure to do this is as follows:

For First Events,

- Step 1. Turn the record circuit on (not to be turned off until recovery)
- Step 2. a) Block the rotor to prevent it from turning
 - b) Allow instrument to record several data cycles with the rotor immobilized
- . Step 3. (t) Ten seconds after a recording interval starts, spin the rotor as fast as possible
 - Step 4. (t) In a successive record spin the rotor again
 - Step 5. Stop rotor again until just before launch
 - Step 6. (t) Free the rotor

For Last Events,

- Step 1. (t) After recovery block rotor for several recording intervals
- Step 2. (t) Ten seconds after a recording interval starts, spin the rotor
- Step 3. (t) Spin the rotor again in a following record
- Step 4. Stop rotor for several records before shutting off the record circuit.

The previous steps that are marked with a (t) are the most easily seen in the data and times should be noted using radio time signal.

The strobe rate reveals which clock was used in an instrument. The mechanical clock samples at 5 seconds, the crystal clock samples at 5.27 seconds.

Direction Corrections

Two causes of inaccuracy in direction were discovered in the Model 850 current meter in 1971. The data in this report have been corrected for both problems.

One problem was caused by a constant offset between the external vane and the internal vane follower. To correct this a constant value was added to each vane reading.

The second problem was caused by the horizontal component of the earth's magnetic field which deflected the vane follower slightly north of the proper direction. This northerly bias is greatest for magnetic East and West and decreases as the vane follower approaches North or South. A sine wave correction whose magnitude was determined by the local strength of the horizontal component of the magnetic field and the strength of the vane magnets was applied to the data. For Site D the general correction was $\pm 7^{\circ}$, for Site L, $\pm 9^{\circ}$.

Nomenclature

An * following the data name on a mooring page means that the data series is presented. Comments are included on the mooring page for current meter data not presented.

The magnetic tape recording current meters built by Geodyne Corporation, now part of EG&G are referred to as the Model 850 current meter.

R.V. AII is an abbreviation for Research Vessel ATLANTIS II.

A dummy current meter is really a test of the pressure case for the new vector averaging current meter.

Tens. Tensiometer

Tel. Telemetering device

Incl. Inclinometer

Depth Rec. Depth recorder

To insure that each data series has a unique and meaningful name the following is practiced:

The first three digits are the mooring number

The next digit is the instrument position on the mooring

Consecutive letters of the alphabet indicate successive modification of the data (editing stages, truncation, etc.)

Dector averaging interval: 900 (seconds), lH (Hour), etc.

Total data name 3233p1800

Hydrostation Data Selection

Temperature and salinity data from Nansen bottle casts are presented if the station was taken near one of the moorings. The plot, where shown, is presented opposite the mooring description page. The first line of the legend at the bottom of the temperature – salinity plot describes the ship (e.g., AN = R. V. Atlantis II, CI = R. V. Chain, KN = R. V. Knorr), the cruise number, and the hydrostation number of the data shown. The position and date of the hydrocast are also included.

Current Meter Data Selection

Only good current meter data from 1970 are presented in this report. Good is defined to mean data time series which have no known errors or whose errors have been corrected.

Current Meter Processing

All of the current meter data presented in this report came from Geodyne (now part of EG&G) Model 850 current meters. These instruments burst-sample compass, vane and rotor values and store them plus time information on 1/4" two track magnetic tape cartirdges. The data were transcribed onto a nine track magnetic tape at W.H.O.I. using a specially designed reader. The data were then converted to the Maltais Format (Maltais, 1969) and stored as compass, vane, bearing, scalar speed and time.

Random erroneous values and systematic errors were edited from the burst sampled data, then a vector average was formed for each data burst. Next, an evenly spaced time series was created by interpolating through gaps in the data. The resulting basic vector series was used for input to other programs such as those producing statistics and a one-hour vector averaged series.

A low passed 1 hour vector series was used to create the stick plots.

Data Presentation

The current meter data are shown in numerical order. Associated hydrostation and mooring information precede the data from each mooring. Where hydrostation data are not available other data or plots may be substituted. The displays used to present each current meter series are described in succeeding paragraphs.

Statistics (STATS)

Standard statistical parameters are calculated for data in the time range given at the bottom of the table. Given n speed and direction or temperature values in a sample, we define $E_i = S_i \sin\theta_i$, $N_i = S_i \cos\theta_i$, then for A = E, N, and S.

mean,
$$\overline{A} = \frac{1}{n} \sum_{i=1}^{n} A_i$$

variance,
$$\sigma_A^2 = \frac{1}{n} \sum_{i=1}^n A_i^2 - \overline{A}^2$$

standard error of the mean =
$$\frac{\sigma_A}{\sqrt{n}}$$

standard deviation =
$$\sigma_A$$

$$\begin{aligned} \text{skewness} &= \frac{1}{\sigma_A^3} \left[\begin{array}{c} \frac{1}{n} \sum_{i=1}^n A_i^3 - \frac{3\overline{A}}{n} \sum_{i=1}^n A_i^2 + 2\overline{A}^3 \\ \\ \text{kurtosis} &= \frac{1}{\sigma_A^4} \left[\begin{array}{c} \frac{1}{n} \sum_{i=1}^n A_i^4 - \frac{4\overline{A}}{n} \sum_{i=1}^n A_i^3 + \frac{\overline{6A}^2}{n} \sum_{i=1}^n A_i^2 - 3\overline{A}^4 \end{array} \right] \end{aligned}$$

The program also calculates "East and North" statistics,

covariance,
$$M = \frac{1}{n} \sum_{i=1}^{n} E_i N_i - \overline{E} \overline{N}$$

standard deviation of covariance,
$$\sigma_{m} = \frac{1}{n} \sum_{i=1}^{n} (E_{i}N_{i})^{2} - \overline{E_{i}N_{i}^{2}}$$

standard error of covariance = $\frac{\sigma_{m}}{\sqrt{n}}$

correlation coefficient,
$$M^{'} = \frac{M}{\sigma_{\rm E} \sigma_{\rm N}}$$
 .

The program also calculates parameters related to vector quantities: the scalar amplitude of the vector mean, $v_m = \sqrt{E^2 + N^2}$; vector variance, $v_v^2 = \frac{1}{2} \ (\sigma_E^2 + \sigma_N^2)$; standard deviation = v_v .

Spectra

The program TIMSAN (TIMe Series ANalysis) uses the Fast Fourier Transform algorithm of Singleton (1969) and is restricted to data segments of length N points, where N must be an even number which has no prime factor larger than 5, and must be less than 8000 points; data series longer than this must be broken into two or more pieces.

The number of degrees of freedom for the first 40 plotted points is given by ν = a m s where m is the number of adjacent frequency bands being averaged (8), s is the number of independent data pieces being averaged (1), and a should be two for Horizontal Kinetic Energy [HKE] spectra for which the EAST and NORTH components seem statistically independent. In the absence of information regarding NORTH-EAST correlation, one should use a=2 to be safe.

On log-log plots the number of points averaged together increases with frequency. This eliminates the bunching together of points at high frequencies, increases the degrees of freedom of the high frequency estimates, and still permits low-frequency resolution. The averaging

practice is as follows: counting from the left of the plot, the first 40 plotted points represent data that have been averaged over 8 adjacent frequency bands; the data for the next 15 plotted points have been averaged over twice as many frequency bands; the next 6 over five times as many, the next 40 over ten times as many, the next 15 over twenty times as many, the next 6 over fifty times as many, the next 40 over 100 times as many and so on. In this way, for example, 7900 data points with no averaging would be plotted as only 176 points, and the last 14 estimates would be averaged over 200 basic frequency bands. The m in the formula $\nu = a$ m s for degrees of freedom is, in this example, 200 times larger at the highest frequencies than at the lowest frequencies.

For $v \ge 30$, the confidence limits for the spectral estimates are given approximately by $(1-2/9v \pm z\sqrt{2/9v})^{1/3}$ where z = 1.28375 for 80% confidence limits, z = 1.645 for 90%, z = 1.96 for 97% and z = 2.5757 for 99%. In the example above, if the HKE spectral plot had 2 pieces and was averaged over 8 adjacent frequency bands then $v = 2 \times 2 \times 8 = 32$ for the lowest frequencies (assuming NORTH and EAST components are highly correlated) and z = 2.5750 for the highest frequencies. The 95% confidence intervals (i.e., 95% of the time one would expect the spectral estimates to vary no more than this much) would be z = 2.575 at low frequencies, and z = 2.575 at high frequencies.

For $\nu \leq 30$, one must obtain confidence intervals from Chi-Squared distribution tables in standard statistical references.

Stick Plot

The hourly U and V time series are filtered using a symmetrical running Gaussian filter with a half-width of 24 hours. The resultant series is 48 hours shorter than the input time series (the first and last 24 hours are lost). Three scales for the time axis were used. The short data were subsampled so that there were six points plotted per day, medium length data were plotted four points per day, and long data series were plotted two points per day. Vector direction usually follows normal direction conventions, i.e., north is up. Occasionally the plot will be rotated to show East up when the current flow is markedly easterly or westerly.

A second type of stick presentation displays consecutive boxes for the array period in which daily averages of the filtered vectors are plotted according to mooring position.

Variable vs. Time Plot

This is a plot of any variable as a function of TIME. The plot is generated from the 1 hour vector averaged series. In some plots of speed it is possible to see the rotor threshold of 1.8 cm/sec.

REFERENCES

- Chausse, D., and S. Tarbell, 1974

 A compilation of moored current meter and wind observations, Volume VII (1968 measurements). W.H.O.I. Ref. 74-52 (unpublished manuscript).
- Chausse, D., and S. Tarbell, 1976

 A compilation of moored current data and associated oceanographic observations, Volume XII (1973 Mid-Ocean Dynamics Experiment (MODE)).

 W.H.O.I. Ref. 76-101 (unpublished manuscript).
- Heinmiller, R. H., 1976

 The Woods Hole Buoy Project moorings 1960 through 1974. W.H.O.I.

 Ref. 76-53 (unpublished manuscript).
- Luyten, J. R., 1977

 Scales of motion in the deep Gulf Stream and across the Continental Rise. J. Mar. Res. (To appear in the Richardson Memorial Volume).
- Maltais, J. A., 1969

 A nine channel digital magnetic tape format for storing oceanographic data. W.H.O.I. Ref. 69-55 (unpublished manuscript).
- Pollard, R. T., 1970
 A compilation of moored wind and current meter observations. W.H.O.I.
 Ref. 70-40 (unpublished manuscript).
- Pollard, R. T., and S. Tarbell, 1975

 A compilation of moored current meter and wind observations, Volume VIII
 (1970 Array experiment). W.H.O.I. Ref. 75-7 (unpublished manuscript).
- Schmitz, W. J., Jr., 1974

 Observations of low-frequency current fluctuations on the Continental Slope and Rise near Site D. J. Mar. Res., 32 (2), 233-251.
- Schmitz, W. J., Jr., 1976

 Eddy kinetic energy in the deep western North Atlantic. J. Geophys.

 Res., 81 (27), 4981-4982.
- Singleton, R. C., 1969

 An algorithm for computing the mixed radix Fast Fourier Transform.

 I.E.E.E. Trans. on Audio and Electroacoustics, AU-17 (2), 93-103.

REFERENCES (cont.)

- Stalcup, M. C., and W. G. Metcalf, 1972

 Current measurements in the passages of the Lesser Antilles.

 J. Geophys. Res., 77 (6), 1032-1049.
- Tarbell, S., 1974

 A compilation of moored wind and current observations taken in 1967. W.H.O.I. Ref. 74-7 (unpublished manuscript).
- Tarbell, S., 1976

 A compilation of moored current data and associated oceanographic observations, Volume X (Early 1969 measurements). W.H.O.I. Ref. 76-40 (unpublished manuscript).
- Tarbell, S., 1976

 A compilation of moored current data and associated oceanographic observations, Volume XI (Late 1969 measurements). W.H.O.I. Ref. 76-41 (unpublished manuscript).
- Tarbell, S., M. G. Briscoe, and D. Chausse, 1976
 A compilation of moored current data and associated oceanographic observations, Volume IX (1973 Internal Wave Experiment (IWEX)).
 W.H.O.I. Ref. 75-68 (unpublished manuscript).
- Tarbell, S., and F. Webster, 1971

 A compilation of moored current meter and wind observations, Volume V (1966 measurements). W.H.O.I. Ref. 71-50 (unpublished manuscript).
- Volkmann, G. H., 1973
 Mooring summary '70. W.H.O.I. Ref. 73-18 (unpublished manuscript).
- Webster, F., and N. P. Fofonoff, 1965
 A compilation of moored current meter observations, Volume I.
 W.H.O.I. Ref. 65-44 (unpublished manuscript).
- Webster, F., and N. P. Fofonoff, 1966
 A compilation of moored current meter observations, Volume II.
 W.H.O.I. Ref. 66-60 (unpublished manuscript).
- Webster, F., and N. P. Fofonoff, 1967
 A compilation of moored current meter observations, Volume III.
 W.H.O.I. Ref. 67-66 (unpublished manuscript).

data presentation

MOORING NO. 323

Set January 8, 1970

Lat. 33° 58.5'N Long. 69° 58.5'W

		odinary of 1210		
		Set by R. Heinmiller		
	LIGHT	Ship R. V. Chain Cre		
A	RADIO	Recovered May 13, 197	0	
	<u> </u>	Recovered by J. Giffo	rd	
	TELEMETERING TENSIOMETER - 3231 10m CHAIN TENSIOMETER - 3232		uise 57	
	PINE PANEL # L-1 SWIVEL 500 m	Mooring type - Surface		
	300 m	Purpose of mooring		
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	CURRENT METER - 3233	A) Current measur	ement at S	
) E	500 m	B) Engineering wi	re test	
ā) [CURRENT METER - 3234			
	500 m	Data Instr. No. Type	Depth (m)	
	500 m	3231 Tel. Tens.	2	
1	TENSIOMETER - 3235	3232 Tens.	13	
T.	PINE PANEL # L-2	3233* Model 850	515	
	CURRENT METER - 3236	3234* Model 850	1017	
Î		3235 Tens.	2018	
	490 m	3236* Model 850	2020	
1		3237* Model 850	4205	
	496 m	3238 Tens.	5236	
	43011	3239 Bio pack	5333	
z l	554m	Water depth	5365	
5/8" NYLON	405 m			
ω) h	CURRENT METER - 3237	Comments		
6	PINE PANEL # L-3	Also included on		
1 1	126 m	were a biological foul		
	555m	Paul Stimson and a microbiology package for Drs. Eimhjellen and Jannasch.		
	236 m TENSIOMETER - 3238 PINE PANEL # L-4 ACOUSTIC BEACON 85 m 3/4" NYLON WITH 35 GLASS SPHI Im CHAIN MICROBIOLOGY BOX - 3239 Im 3/4" NYLON ACOUSTIC RELEASE PINE PANEL # L-5 Im 3/4" CHAIN 15 m 3/4" NYLON 7 m CHAIN			

Instrument No.: M-232 Type: Model 850

Depth: 515 m Water depth: 5365 m

Start time: 70-I-08 19.52.05

Stop time: 70-III-09 19.22.05

Duration: 59d 23h 30m

Sampling scheme: Interval

time between strobes = 5 seconds

no. of strobes per interval = 15

interval time =1800 seconds

COMMENTS:

DATA/ 323371400

********			***********	***********
VARIABLE		EAST	NARTH	SPEED
UNITS	*	MM/SEC	MM/SFC	MM/SFC
*******		**********	***********	***********
MEAN		-120.768	•134 • 137	306.166
STD. ERR.	3	3.329	3.525	1.507
VARIANCE	=	31911.915	35785 • 448	6537 • 344
STD. DEV.	=	178.639	189 • 170	80.854
KURTASIS		1.714	1 • 991	3.471
SKEWNESS		• 245	• 252	423
MINIMUM		-452.702	-507.388	7.000
MAXIMUM		375 • 144	299.596	516.000

EAST & NURTH

-26490 . 888 CAVARIANCE * SAMPLE SIZE . 2880 PBINTS STD. ERR. OF CHVARIANCE . 622.082 33784.410 * SPANNING RANGE * FRAM 70- I -08 19.52.05 * TA 70- III-09 19.52.05 CARRELATION CHEFFICIENT . - . 784 VECTOR MEAN 180.493 VECTOR VARIANCE 33848.682 . DURATION 59.98 DAYS VECTAR STD. DEV. 183.980

Instrument No.: M-226 Type: Model 850

Depth: 1017 m Water depth: 5365 m

Start time: 70-I-08 20.15.05

Stop time: 70-III-09 19.45.05

Duration: 59d 23h 30m

Sampling scheme: Interval

time between strobes = 5 seconds

no. of strobes per interval = 15

interval time =1800 seconds

COMMENTS:

DATA/ 3234F1800

VARIABLE	*	FAST	NORTH	SPEFD
UNITS	*	MM/SEC	MM/SFC	MM/SEC
*******			************	********
MEAN	=	-35.077	-37·49x	108.024
STO. ERR.	=	1 • 4 7 8	1.226	.742
VARIANCE	=	hang • 375	4727 • 281	1586 - 961
STD. DEV.	=	73.318	65.782	39,825
KURTASIS	3	5.508	2.594	2.488
SKEWNESS	*	• 321	• 264	174
MINIMUM	=	-221.000	-203.000	1.000
MAXIMUM	2	170 • 138	162.215	221.000

FAST & NARTH

. SAMPLE SIZE . 2880 PAINTS -667.094 STD. ERR. OF CHVARIANCE = 101.417 5442.608 . SPANNING RANGE . FRAM 70- 1 -08 Pr.15.05 CARRELATION COEFFICIENT . - . 128 * TA 70- 111-03 19.45.55 VECTOR MEAN 51 . 347 5709.328 VECTOR VARIANCE VECTOR STD. DEV. . DURATION 59.99 DAYS 72.865

Instrument No.: M-206 Type: Model 850

Depth: 2020 m Water depth: 5365 m

Start time: 70-I-08 20.01.55

Stop time: 70-III-09 20.01.55

Duration: 60d

Sampling scheme: Interval

time between strobes = 5 seconds

no. of strobes per interval = 16

interval time = 1800 seconds

COMMENTS:

DATA/ 3236E1800

	* * * *			********
VARIABLE		EAST	NARTH	SPEED
UNITS	*	MM/SEC	MM/SFC	MM/SFC
MEAN	* * * *	-20.264	15.425	76.492
STD. ERR.		1.240	•808	153.
VARIANCE		4430.129	1882.533	1110 • 169
STD. DEV.	•	66.559	43.388	33.319
KURTASIS	*	2.016	2.637	2.614
SKEWNESS		•305F •1	.958E-2	.242
MINIMUM		-174.000	-106.676	5.000
MAXIMUM		143.821	162.887	175.000

EAST & NARTH

Instrument No.: M-227 Type: Model 850

Depth: 4205 m Water depth: 5365 m

Start time: 70-I-08 20.52.42

Stop time: 70-III-09 19.52.42

Duration: 59d 23m

Sampling scheme: Interval

time between strobes = 5 seconds

no. of strobes per interval = 16

interval time = 1800 seconds

COMMENTS:

DATA/ 3237H1800

*******	****	***********	************	********
VARIABLE	•	EAST	NORTH	SPEED
UNITS	•	MM/SEC	MM/SEC	MM/SEC
MEAN	••••	2.587	8.541	105.263
STD. ERR.		1.701	1 • 107	.546
VARIANCE		8334 • 995	3525 • 179	859.540
STD. DEV.		91 • 296	59.373	29.318
KURTASIS		1.514	1 • 954	3.005
SKEWNESS		•284	- · 122E - 1	468
MINIMUM		-143.826	-119-327	7.000
MAXIMUM	•	166.000	181 • 019	183.000

EAST & NORTH

COVARIANCE * SAMPLE SIZE . 2879 PSINTS 2989 • 138 STD. ERR. OF COVARIANCE STD. DEV. OF COVARIANCE CORRELATION COEFFICIENT 66 • 629 . SPANNING RANGE 3575.068 •551 * FROM 70- 1 -08 20-52-42 * TA 70- III-09 19.52.42 VECTOR MEAN 8 . 925 VECTOR VARIANCE 5930.087 . DURATION 59.96 DAYS VECTOR STD. DEV. 77.007

Lat. 37° 37.3'N Long. 70° 00.5'W

Set February 28, 1970

Set by A. Davidson

Ship R. V. Chain Cruise 98

Recovered July 8, 1970

Recovered by R. Heinmiller

Ship R. V. Knorr Cruise 5

Mooring type - Bottom

Purpose of mooring N/S Array with moorings 327 and 329.

Data No.	Inst Type		Depth (m)
3261*	Model	850	3999
3262	Model	850	4101
Water d	lepth		4128

Comments

3262 - vane stuck entire record.

Instrument No.: M-142 Type: Model 850

Depth: 3999 m Water depth: 4128 m

Start time: 70-II-28 17.30.34

Stop time: 70-VII-08 13.30.34

Duration: 129d 20h

Sampling scheme: Interval

time between strobes =5.27 seconds

no. of strobes per interval = 16

interval time = 1800 seconds

COMMENTS:

DATA/ 3261F1800

*******	***	***********	**********	*********
VARIABLE		EAST	NORTH	SPEED
UNITS	*	MM/SEC	MM/SEC	MM/SEC
MEAN	•	-22.307	23.281	134.187
STD. ERR.		1.663	•877	•901
VARIANCE	*	17231 • 935	4790 • 808	5056 • 151
STD. DEV.		131.270	69.216	71.107
KURTESIS		2 • 433	2.710	2.303
SKEWNESS	•	•224E=3	• 480	•507
MINIMUM		-351 - 157	-130 - 444	18.000
MAXIMUM	•	295 • 764	228 • 198	355.000

EAST & NORTH

* SAMPLE SIZE * 6233 POINTS COVARIANCE -1490-521 STD. ERR. OF COVARIANCE 110.431 STO. DEV. OF COVARIANCE 8718 . 444 * SPANNING RANGE CORRELATION COEFFICIENT * FROM 70- II -23 17.30.3 -- 164 VECTOR MEAN 32.243 70- VII-08 13-30-34 VECTOR VARIANCE VECTOR STD. DEV. 11011.371 + DURATION 129.83 DAYS 104 • 935

Lat. 36° 46.2'N Long. 69° 59.0'W

Set February 28, 1970

Set by A. Davidson

Ship R. V. Chain Cruise 98

Recovered July 8, 1970

Recovered by R. Heinmiller

Ship R. V. Knorr Cruise 5

Mooring type - Bottom

Purpose of mooring

 $\ensuremath{\text{N/S}}$ Array with moorings 326 and 329.

Data No.	Instr. Type	Depth (m)
3271	Biopack	4204
3272*	Model 850	4215
Water	depth	4417

Comments

A microbiology package was included on this mooring for Drs. Eimhjallen and Jannasch.

Instrument No.: M-129 Type: Model 850

Depth: 4215 m Water depth: 4417 m

Start time: 70-III-01 00.00.34

Stop time: 70-III-23 08.00.34

Duration: 22d 08h

Sampling scheme: Interval

time between strobes = 5.27 seconds

no. of strobes per interval = 16

interval time = 1800 seconds

COMMENTS:

DATA/ 3272D1800

VARIABLE	****	EAST	***	NORTH	************* SPEED	
UNITS	*	MM/SEC		MM/SEC	MM/SEC	
******	****	********	***	*********	******	
MEAN	•	31 • 977		-49.139	101.212	
STD. ERR.		2.136		1 • 896	1 • 347	
VARIANCE	•	4896 • 891		3856 • 324	1946 • 609	
STD. DEV.		69.978		62.099	44.120	
KURTASIS		2.948		2.719	2.266	
SKEWNESS		* • 265		•192	• 384	
MINIMUM		-161.723		-188-311	18.000	
MAXIMUM	•	206 • 617		114.464	229.000	
******	***					
EAST & NO	RTH					
*******	***				******************	***
COVARIANO	E			650 • 757	* SAMPLE SIZE . 1073 PAIN	NTS
STD. FRR.	BF	CHVARIANCE		169.309		
		COVARIANCE		5545 • 995	* SPANNING RANGE	
		BEFFICIENT		•150	+ FRAM 70- III-01 00-00	. 3
VECTOR ME				58 • 627	* T8 70- III-23 08-00	
VECTOR VA		CE		4376.608	•	
VECTOR ST				66 • 156	. DURATION 22.33 DAYS	

Lat. 31° 00.0'N Long. 70° 29.3'W

Set March 3, 1970

Set by A. Davidson

Ship R. V. Chain Cruise 98

Recovered July 5, 1970

Recovered by R. Heinmiller

Ship R. V. Knorr Cruise 5

Mooring type - Bottom

Purpose of mooring

 $\ensuremath{\text{N/S}}$ Array with moorings 326 and 327.

Data	Instr.	Depth
No.	Туре	(m)
3291*	Model 850	4247
Water d	lepth	5424

GLASS FLOAT BUOY WITH LIGHT & RADIO I'm CHAIN IO m 9/16" NYLON

CURRENT METER 3291

10 m 9/16" NYLON

ACOUSTIC RELEASE, AMF TRANSPONDING

10 m 9/16" NYLON

50 m " "

100 m "

500 m "

500 m " "

3 m CHAIN 800 LB ANCHOR Comments

PRECEDING PAGE BLANK-NOT FILMED

Instrument No.: M-223 Type: Model 850

Depth: 4247 m Water depth: 5424 m

Start time: 70-III-04 00.30.17

Stop time: 70-VII-05 09.00.17

Duration: 123d 08h 30m

Sampling scheme: Interval

time between strobes = 5 seconds

no. of strobes per interval = 15

interval time =1800 seconds

COMMENTS:

DATA/ 3291E1800

*******	***	***********	*************	********
VARIABLE		EAST	NORTH	SPEED
UNITS		MM/SEC	MM/SEC	MM/SEC
*******	***	***********		********
MEAN		-14-776	••338	49.689
STD. ERR.		• 306	•649	• 367
VARIANCE		556.082	2492 • 551	798 • 048
STD. DEV.	•	23.581	49 • 925	28 • 250
KURTOSIS		3.560	2.676	5.656
SKEWNESS	•	• * 359	•573E=1	•733
MINIMUM		•93.956	•130·571	12.000
MAXIMUM	•	62 • 455	131 • 561	136.000

EAST & NORTH

NORTH IS UP

Lat. 11° 32.2'N Long. 61° 54.2'W

Set March 12, 1970

Set by J. Gifford

Ship R. V. AII Cruise 56

Recovered April 18, 1970

Recovered by C. Simmons

Ship R. V. AII Cruise 56

Mooring type - Subsurface

Purpose of mooring

Caribbean In Flow studies with mooring 332

Data No.	Instr. Type	Depth (m)
3311*	Model 850	224
3312*	Model 850	426
Water d	lepth	477

1 m 1/2" CHAIN

800 LB CYLINDRICAL ANCHOR

Comments

See Stalcup and Metcalf (1972)

for additional data information.

Instrument No.: M-204 Type: Model 850

Depth: 224 m Water depth: 477 m

Start time: 70-III-12 18.45.40

Stop time: 70-IV-18 17.00.40

Duration: 36d 22h 15m

Sampling scheme: Interval

time between strobes = 5 seconds

no. of strobes per interval = 16

interval time = 900 seconds

COMMENTS:

DATA/ 33116900

VARIABLE . EAST	NORTH	SPEED
UNITS . MM/SEC		MM/SEC
	************	******
MEAN = 31.412	1 • 668	156.882
STD. ERR 2.878		1.605
VARIANCE - 29377-246		9132.645
STD. DEV. = 171.398		95.565
KURTHSIS . 2.594		2.501
SKEWNESS 271		•552
MINIMUM442.466		9.000
MAXIMUM = 404.512		443.000

EAST & NORTH		
********		********************
COVARIANCE	= 2104.420	* SAMPLE SIZE . 3546 PRINTS
STD. ERR. OF CHVARIANCE	158 • 111	•
STD. DEV. OF COVARIANCE	9415.222	* SPANNING RANGE
CARRELATION CHEFFICIENT	• • 211	* FRAM 70- III-12 18.45.4
VECTOR MEAN	31.457	* T8 70- IV -18 17-00-40
VECTOR VARIANCE	• 16377.603	•
VECTOR STD. DEV.	127.975	* DURATION 36.93 DAYS

Instrument No.: M-209 Type: Model 850

Depth: 426 m Water depth: 477 m

Start time: 70-III-12 18.25.42

Stop time: 70-IV-18 17.25.42

Duration: 36d 23h

Sampling scheme: Interval

time between strobes = 5.27 seconds

no. of strobes per interval = 16

interval time = 900 seconds

COMMENTS:

DATA/ 3312F900

VARIABLE . EAST	NORTH	SPEED	
UNITS . MM/SEC		MM/SEC	
01113	******	******	
MEAN 97.859	40.795	216.482	
STD. ERR 2.970		1.849	
VARIANCE - 31313-316		12138.722	
STD DEV - 176.956		110.176	
KURTOSIS . 2.666		2 • 151	
SKEWNESS 560		• 528	
MINIMUM426.000		17.000	
MAXIMUM = 482.265	387 • 163	527.000	
########## EAST & NORTH			
*********		**********	***********
COVARIANCE	 2831 • 522 	* SAMPLE SIZE	3549 P91NTS
STD. ERR. OF COVARIANCE	+24.221		
STD. DEV. OF COVARIANCE	25272.295	* SPANNING RANG	3=
CORRELATION COEFFICIENT	• •125	* FROM 70- 11:	-
VECTOR MEAN	106.055	* T8 70- IV	
VECTOR VARIANCE	23881.293		-19 1/122145
		- CUBATION	. 04 DAYS
VECTOR STD. DEV.	• 154 • 536	* DURATION 3	6.96 DAYS

MOORING NO. 332 Lat. 11° 39.0'N Long. 61° 54.2W

Set March 12, 1970

Set by J. Gifford

Ship R. V. AII Cruise 56

Recovered April 18, 1970

Recovered by C. Simmons

Ship R. V. AII Cruise 56

Mooring type - Subsurface

Purpose of mooring

Caribbean Inflow studies with mooring 331.

Data	Instr.	Depth
No.	Type	(m)
3321*	Model 850	422
3322*	Model 850	624
Water d	enth	675

Comments

See Stalcup and Metcalf (1972)

for additional data information.

Mooring 332 The oscillations of a non symmetrical subsurface syntatic foam float caused enough mooring motion to affect the data. Analysis of the current data from the meter directly under the float indicates that when the current speed exceeded 10 cm/sec the CM revolved 34 to 36 times before reversing direction of rotation. The rate of rotation was ∿ 6 rpm (Stalcup, Metcalf, 1972). The rotation of the current meter caused small errors in direction and speed which have not been edited out of this data. See Spectra.

Instrument No.: M-122 Type: Model 850

Depth: 422 m Water depth: 675 m

Start time: 70-III-12 20.40.42

Stop time: 70-IV-18 14.40.42

Duration: 36d 18h

Sampling scheme: Interval

time between strobes = 5.27 seconds

no. of strobes per interval = 16

interval time = 900 seconds

COMMENTS:

DATA/ 33216900

	***		**********	*********
VARIABLE	*	EAST	NORTH	SPEED
UNITS	•	MM/SEC	MM/SEC	MM/SEC
MEAN	***	-187•961	-48.031	228.519
STO. ERR.		2.536	1.530	2.154
VARIANCE		22488.421	8265 • 522	16369.504
STD. DEV.		150.627	90.915	127.943
KURTASIS		2.443	4.083	2.324
SKEWNESS		•691E-2	476	. 471
MINIMUM	*	-563.324	-449-171	17.000
MAXIMUM		180.030	294 • 155	563.000

EAST & NERTH

CAVARIANCE 246.399 SAMPLE SIZE 3529 PBINTS
STD. ERR. BF CAVARIANCE 453.890
STD. DEV. BF CAVARIANCE 26963.525 SPANNING RANGE
CARRELATION CAFFFICIENT 180E-1 FROM 70- III-12 20.40.42
VECTAR MEAN 194.001 TB 70- IV 18 14.40.42
VECTAR VARIANCE 15476.972
VECTAR STD. DEV. 124.406 DURATION 36.75 DAYS

Instrument No.: M-215 Type: Model 850

Depth: 624 m Water depth: 675 m

Start time: 70-III-12 21.13.40

Stop time: 70-IV-18 13.58.40

Duration: 36d 16h 45m

Sampling scheme: Interval

time between strobes = 5 seconds

no. of strobes per interval = 16

interval time = 900 seconds

COMMENTS:

ODEISSEE VATAD

	* * *	************	***********	**********
VARIABLE		EAST	NORTH	SPEED
UNITS		MM/SEC	MM/SEC	MM/SEC
*******	* * *	***********	***********	*********
MEAN		-115.588	109.280	199.404
STD. ERR.		1.907	2 • 177	2.066
VARIANCE		12810.348	16696 • 712	15047 - 886
STD. DEV.		113.183	129.216	122.670
KURTASIS		2.159	2 • 151	1.718
SKEWNESS		- · 966E - 1	•573	•182
MINIMUM		-409.353	-127-215	14.000
MAXIMUM		156.290	431 • 202	477.000

EAST & NORTH

9° 56.0'W

LIGHT RADIO	Å.	Lat. 33° 58.0'N Long. 69
		TENSIOMETER, TELEMETERING - 334/ IO m CHAIN CURRENT METER - 3342
3 x 19 ACCO WIRE ROPE	Ì	TENSIOMETER - 3343 SWIVEL
		500 m
		500 m
		CURRENT METER - 3344
		500 m
		500 m
		CURRENT METER - 3345
5/8" NYLON		500 m
		517 m
	•	531 m
		CURRENT METER - 3346
		518 m
		283 m
		TENSIOMETER - 3347
	90	85 m 3/4" NYLON WITH 39 GLASS SPHERES EQUALLY SPACED BIOLOGY PACKAGE - 3348
		ACOUSTIC RELEASE, TRANSPONDING

Set	May 14,	1970	
Set by	J. Giff	ord	
Ship R	. V. AII	Cruise	57
Recover	ed July 6	, 1970	
Recover	ed by R.	Heinmiller	
Ship R	. V. Knorr	Cruise	5
Mooring	type - Su	rface	

Purpose of mooring

- A) Current measurements at Site L
- B) Engineering evaluation of mooring components

Data	Instr.	Depth
No.	Туре	(m)_
3341	Tel. Tens.	2
3342*	Model 850	14
3343	Tens.	15
3344*	Model 850	1017
3345*	Model 850	2019
3346*	Model 850	4326
3347	Tens.	5233
3348	Biopack	5328
Water d	lepth	5370

Comments

The biology package for Drs. Eimhjellen and Jannasch contained radioactive material. At recovery the package was removed from the mooring line and taken to the R. V. Gosnold by ship's Zodiak so that the R. V. Knorr could keep her 'clean' ship status.

5 FT CHAIN WITH

15 m 3/4" NYLON

15 m CHAIN

2 STIMSON ANCHORS TOTALLING 5,700 LBS

Instrument No.: M-238 Type: Model 850

Depth: 14 m Water depth: 5370 m

Start time: 70-V-14 21.15.55

Stop time: 70-VII-06 06.30.55

Duration: 52d 11h 15m

Sampling scheme: Interval

time between strobes = 5.27 seconds

no. of strobes per interval = 23

interval time = 900 seconds

COMMENTS:

DATA/ 33420900

*****		********	**********	*********
VARIABLE	4	EAST	NORTH	SPEED
UNITS	*	MM/SEC	MM/SEC	MM/SEC
*******	***	************	**********	*********
MEAN		258 • 231	-88-193	409.646
STD. ERR.		3 • 114	3.901	2.521
VARIANCE		48762.117	76553.200	31966.637
STD. DEV.		220.821	276.682	178 . 792
KURTASIS		3 • 1 4 8	2 • 485	3.781
SKEWNESS	10	314E-1	**192	.633
MINIMUM		-527-171	-970-273	4.000
MAXIMUM	*	953.387	530.607	1208.000

EAST & NORTH

Instrument No.: M-122 Type: Model 850

Depth: 1017 m Water depth: 5370 m

Start time: 70-V-14 21.00.55

Stop time: 70-VI-26 09.00.55

Duration: 42d 12h

Sampling scheme: Interval

time between strobes = 5.27 seconds

no. of strobes per interval = 24

interval time = 900 seconds

COMMENTS:

DATA/ 3344F900

VARIABLE	*	EAST	NORTH	SPEED
UNITS		MM/SEC	MM/SEC	MM/SEC
******	***	********	******	*******
MEAN		51 • 184	-12-424	124.543
STD. ERR.		1.264	1 • 358	• 567
VARIANCE		6517.544	7529 • 324	1310 • 159
STD. DEV.	*	80.731	86.772	36.196
KURTOSIS		2.428	2.086	2.819
SKEWNESS		••566	- · 102E - 1	864E-1
MINIMUM		.173.244	-217-111	9.000
MAXIMUM		215.640	209.984	235.000

EAST & NORTH

* SAMPLE SIZE . 4081 POINTS COVARIANCE 1497.300 STD. ERR. OF COVARIANCE . 103.121 STD. DEV. OF COVARIANCE - CORRELATION COEFFICIENT -* SPANNING RANGE 6587 • 664 * FROM 70- V •14 21.00.55 * TO 70- VI •26 09.00.55 .214 VECTOR MEAN 52 . 671 VECTOR VARIANCE 7023 • 434 . DURATION 42.50 DAYS VECTOR STD. DEV. 83.806

Instrument No.: M-191 Type: Model 850

Water depth: 5370 m Depth: 2019 m

Start time: 70-V-14 21.00.55

Stop time: 70-VI-08 07.45.55

Duration: 52d 10h 45m

Sampling scheme: Interval

> time between strobes = 5.27seconds

no. of strobes per interval = 24

interval time = 900 seconds

COMMENTS:

DATA/ 3345F900

ARIABLE	*	EAST	NORTH	SPEED
NITS	•	MM/SEC	MM/SEC	MM/SEC
******* Fan		18.633	-27-865	107.431
TD. ERR		1.007	1.143	•502
ARIANCE		5105.368	6583 • 692	1271 • 412
TO. DEV.		71.452	81.140	35,657
URTASIS		2.401	1.708	2.786
KEWNESS		- • 376	535E-2	283
INIMUM		-193-215	-195.764	3.000
AXIMUM		164.772	156.811	505.000

EAST & NERTH

COVARIANCE
STD. ERR. OF COVARIANCE
STD. DEV. OF COVARIANCE 1473.713 * SAMPLE SIZE . 5036 PAINTS 70.237 . SPANNING RANGE 4984.378 .254 * FR8M 70. V -14 21.00.5 CARRELATION COEFFICIENT . 70- VII-06 07.45.55 33.521 VECTAR MEAN VECTOR VARIANCE 5844.530 * DURATION 52.45 DAYS 76.450 VECTOR STD. DEV.

Instrument No.: M-240 Type: Model 850

Depth: 4326 m Water depth: 5370 m

Start time: 70-V-14 21.00.55

Stop time: 70-VI-08 04.45.55

Duration: 24d 7h 45m

Sampling scheme: Interval

time between strobes =5.27 seconds

no. of strobes per interval = 23

interval time = 900 seconds

COMMENTS:

DATA/ 3346E900

VARIABLE +	EAST	NBRTH	SPEED	
UNITS *	MM/SEC	MM/SEC	MM/SEC	
MEAN =	38 • 192	•11•326	74.625	
STD. FRR	.721	1.164	.413	
VARIANCE .	1214.504	3166 • 699	399.258	
STD. DEV	34.850	56.273	19.981	
KURTOSIS .	1.907	1.617	2.740	
SKEWNESS .	- • 211	117	426	
MINIMUM =	-65.812	-123-647	6.000	
MAXIMUM =	121.617	101.204	139.000	
EAST & NART	+			
********	•		***********	**********
CHVARIANCE		1502.687	* SAMPLE SIZE .	2336 PAINTS
STD. ERR. 9	F CHVARIANCE	+0.516	•	
STD. DEV. 9	F CAVARIANCE	1958 • 248	* SPANNING RANG	SE .
CARRELATION	CHEFFICIENT	• 766	* FRAM 70* V	-14 21.00.55
VECTOR MEAN		39.836	* TO 70- VI	-08 04.45.55
VECTOR VART		2190 • 601	•	
VECTAR STD.		* 46.804	* DURATION 24	.32 DAYS

Lat. 32° 08.0'N Long. 64° 07.5'W

FOAM FLOAT WITH RADIO

30 m WIRE ROPE

IO 16" GLASS SPHERES IN PROTECTIVE "HARD HATS" ON 10 m CHAIN

CURRENT METER - 335/

DEPTH RECORDER - 3352

1,000 m 3/16" WIRE ROPE

INCLINOMETER - 3353

14 16" GLASS SPHERES in nets
ON 30 m OF 5/8" NYLON

CURRENT METER - 3354

TENSIOMETER - 3355

Set May 17, 1970

Set by J. Gifford

Ship R. V. AII Cruise 57

Recovered July 2, 1970

Recovered by R. Heinmiller

Ship R. V. Knorr Cruise 5

Mooring type - Intermediate

Purpose of mooring

- A) Acoustic propagation test
- B) Engineering test of intermediate type mooring

Data No.	Instr. Type	Depth (m)
3351*	Model 850	1312
3352	Depth Rec.	1313
3353	Incl.	2314
3354	Model 850	2346
3355	Tens.	2347
3356	Model 850	4298
Water d	lepth	4400

1,000 m 7/16" NYLON

Comments

3356 - instrument flooded.

792 m 7/16" NYLON

CURRENT METER - 3356

ACOUSTIC RELEASE, TRANSPONDING

STIMSON ANCHOR, 1,500 LBS. 30 FT CHAIN WITH 65 LB DANFORTH PRECEDING PAGE BLANK-NOT FILMED

Instrument No.: M-175 Type: Model 850

Depth: 1312 m Water depth: 4400 m

Start time: 70-V-17 07.45.58

Stop time: 70-VII-02 08.45.58

Duration: 46d lh

Sampling scheme: Interval

time between strobes = 5.27 seconds

no. of strobes per interval = 24

interval time = 900 seconds

COMMENTS:

DATA/ 33516900

VARIABLE	***	EAST	NORTH	SPEED
UNITS		MM/SEC	MM/SEC	MM/SEC
MEAN		•31.077	2.118	64.409
STD. ERR.		•621	.785	•533
VARIANCE		1707.046	2727.542	1256.289
STD. DEV		41.316	52.226	35.444
KURTUSIS		3.196	2.981	4.103
SKEWNESS		•317	.293	1.026
MINIMUM		-189.838	.132.288	6.000
MAXIMUM		89.803	186.623	210.000

EAST & NORTH

********** * SAMPLE SIZE . 4421 PRINTS CHVARIANCE ·764·732 STO. ERR. OF COVARIANCE . STO. DEV. OF COVARIANCE . CARRELATION COEFFICIENT . 47.345 3147 • 978 * SPANNING RANGE * FR8M 70- V -17 07-45-52 * T8 70- VII-02 08.45.58 **354 31 . 149 VECTOR MEAN DECTOR VARIANCE 2217.294 * DURATION 46.04 DAYS VECTAR STD. DEV. 47.088

Lat. 35° 58.0'N Long. 70° 33.0'W

\Rightarrow	RADIO FLOAT
6	6 m 1/4" CHAIN WITH 8 16" SPHERES EVENLY SPACED
Ì	DEPTH RECORDER - 343/
Ĭ	CURRENT METER - 3432
	440 m 3/8" DACRON
	482 m 3/8" DACRON
Ì	INCLINOMETER - 3433
Ю	6 m 1/4" CHAIN WITH 8 16" SPHERES EVENLY SPACED
	CURRENT METER, DUMMY
7	18 m 3/8" DACRON
	413 m 3/8" DACRON
	483 m 3/8" DACRON
6	6 m 1/4" CHAIN WITH 7 16" SPHERES EVENLY SPACED
	CURRENT METER - 3434
	290 m 9/16" NYLON
6	6 m 3/8" CHAIN WITH 7 16" SPHERES EVENLY SPACED
Ì	TENSIOMETER - 3435
	ACOUSTIC RELEASE, TRANSPONDING
	20 m 3/4" NYLON
1	10 m 1/2" CHAIN STIMSON ANCHOR, 3,100 LBS
al .	J. MOOR MITCHOR, 3,100 LBS.

Set	August 13,	1970	
Set by	J. Gifford		
Ship R	. V. Knorr	Cruise	8
Recovere	ed October	8, 1970	
Recovere	ed by D. Mo	oller	
Ship R	. V. Knorr	_Cruise	13
Mooring	type - Inte	ermediate	

Purpose of mooring

- A) Low frequency wave correlation across the Gulf Stream
- B) Further test of intermediate type mooring

Data No.	Instr. Type	Depth (m)
3431	Depth Rec.	2261
3432*	Model 850	2263
3433	Incl.	3185
3434*	Model 850	4115
3435	Tens.	4412
Water d	lepth	4444

Comments

The dummy current meter in the mooring line was a test of the redesigned pressure case for the new Vector Averaging Current Meters.

Instrument No.: M-151 Type: Model 850

Depth: 2263 m Water depth: 4444 m

Start time: 70-VIII-13 15.30.37

Stop time: 70-IX-30 11.00.37

Duration: 47d 20h 30m

Sampling scheme: Interval

time between strobes = 5.27seconds

no. of strobes per interval = 16

interval time = 900 seconds

COMMENTS:

DATA/ 3432J990

*******	* * *	***********		********
VARIAHLE	*	- AST	NARTH	SPEED
UNITS	*	MMISEC	MM/SEC	MM/SEC
*******	***	* * * * * * * * * * * * * * * * * * * *	************	*********
MEAN		1 • 5 4 5	473	98.522
STI) . EPR .	3	•663	1 • 4 0 4	.546
VARIANCE	=	3014.789	9055 • 880	1370 • 764
STD . DEV .		44.931	95 • 162	37.024
KURTHSIS	2	2.840	1.674	2.714
SKEWNESS	=	- • 4 1 4	• 424	• 154
MIMIMIM	2	-151 - 197	-169-000	17.000
MAXIMUM	=	117.532	226 • 947	234.000

EAST & NERTH

Instrument No.: M-240 Type: Model 850

Depth: 4115 m Water depth: 4444 m

Start time: 70-VIII-13 15.30.37

Stop time: 70-x-08 13.45.37

Duration: 55d 22h 15m

Sampling scheme: Interval

time between strobes = 5.27 seconds

no. of strobes per interval = 15

interval time = 900 seconds

COMMENTS:

DATA/ 34345900

********	***	***********	**************************************	CDecb
VARIABLE UNITS		EAST MM/SEC	MM/SEC	SPEED MM/SEC
***********************	****	18.226	•50 •933	94.037
STD. ERR.		•819	•879	•584
VARIANCE STD. DEV.	:	3600.020	4148•025 64•405	1831 • 364 42 • 794
KURTASIS		3.066	2.278	2.274
SKEWNESS	:	•190 •109•614	•363 •186•100	16.000
MAXIMUM		164.631	137 • 179	203.000

EAST & NORTH

PRECEDING PAGE BLANK-NOT FILMED

Lat. 39° 23.5'N Long. 70° 58.6'W

Set	August 18, 19	970	
Set h	y J. Gifford		
Ship	R. V. Knorr	_Cruise	8
Reco	vered October	6, 1970	
Recov	vered by D. Mc	oller	
Ship	R. V. Knorr	Cruise	13
Moori	ng type - Inte	ermediate	

Purpose of mooring

- A) Low frequency wave correlation across the Gulf Stream
- B) Further test of intermediate mooring

I m 3/4" NYLON IO m 9/16" NYLON WITH 5 GLASS SPHERES	Data No.	Instr. Type	Depth (m)
	3451*	Model 850	1504
CURRENT METER - 345/	3452	Depth Rec.	1505
	3453	Incl.	1960
DEPTH RECORDER - 3452	3454	Model 850	2434
	3455	Tens.	2495
454 m 3/8" DACRON	Water d	lepth	2527

INCLINOMETER - 3453

RADIO FLOAT

10 m 9/16" NYLON WITH 6 GLASS SPHERES

CURRENT METER (DUMMY)

Comments

3454 - no recoverable data

450 m 3/8" DACRON

10 m 9/16" NYLON WITH 5 GLASS SPHERES

CURRENT METER - 3454

50 m 9/16" NYLON WITH 1 GLASS SPHERE

10 m 9/16" NYLON WITH 5 GLASS SPHERES

TENSIOMETER - 3455

ACOUSTIC RELEASE, TRANSPONDING

20 m 3/4" NYLON 5m 1/2" CHAIN STIMSON ANCHOR, 3,200 LBS.

15 FT. CHAIN WITH 65 LB. DANFORTH

PRECEDING PAGE BLANK-NOT FILMED

Instrument No.: M-122

Type: Model 850

Depth: 1504 m

Water depth: 2527 m

Start time: 70-VIII-19 00.00.37

Stop time: 70-X-06 17.15.37

Duration:

Sampling scheme: Interval

time between strobes = 5.27 seconds

no. of strobes per interval = 16

interval time

= 900 seconds

COMMENTS:

DATA/ 34516900

*******	* * * *	***********	************	********
VARIABLE	*	EAST	NORTH	SPFFD
UNITS	*	MM/SEC	MM/SEC	MM/SEC
*******	***	************	************	*******
MEAN		-27.831	-4.702	41.839
STD. ERR.		• 495	• 312	• 372
VARIANCE	*	1144.305	456.010	646 • 468
STD. DEV.		33.828	21.354	25.426
KURTUSIS	*	2.526	3 • 439	3.049
SKEWNESS		••458	.695E-1	•940
MINIMUM		-129.793	*85.768	14.585
MAXIMUM		47.498	80.085	132 . 675

********** EAST & NORTH

CHVARIANCE 52.821 STD. ERR. OF COVARIANCE STD. DEV. OF COVARIANCE CORRELATION COEFFICIENT SECTOR MEAN 13 • 417 VECTOR VARIANCE g00.158 VECTOR STD. DEV. 28 . 287

* SAMPLE SIZE . 4678 POINTS 917.686 * SPANNING MANGE *731E=1 * FR8m 70=VIII=19 00:00:37 28:225 * T8 70= X =06 17:15:37 * DURATION 48.72 DAYS

3451G

PRECEDING PAGE BLANK-NOT FILMED

Lat. 39° 50.2'N Long. 70° 40.5'W

Set August 19, 1970

Set by J. Gifford

Ship R. V. Knorr Cruise 8

Recovered December 4, 1970

Recovered by R. Heinmiller

Ship R. V. Knorr Cruise 17

Mooring type - Bottom

Purpose of mooring

To study the topographical wave motion across the Continental Slope

Data No.	Instr. Type	Depth (m)
3471*	Model 850	776
Water d	lenth	876

Comments

Instrument No.: M-238

Type: Model 850

Depth: 776 m

Water depth: 876 m

Start time: 70-VIII-19 14.00.37

Stop time: 70-XII-04 16.00.37

Duration: 107d 2h

Sampling scheme: Interval

time between strobes = 5.27 seconds

no. of strobes per interval = 15

interval time = 1800 seconds

COMMENTS:

DATA/ 3471E1800

********			***********	*********
VARIABLE	*	EAST	NARTH	SPEED
UNITS	*	MM/SEC	MM/SEC	MM/SEC
*******		***********	**********	*********
MEAN	*	-65-643	-1-439	88.207
STD. ERR.		•961	•481	.693
VARIANCE		4748.762	1191 • 605	2470 - 898
STD. DEV.		68 • 911	34.520	49.708
KURTOSIS		2.450	3.777	2.198
		•254	•159	•312
MINIMUM		-234.260	•131•331	6.056
MAXIMUM	•	135.403	177.876	234.283

EAST & NORTH

COVARIANCE
STD. ERR. OF COVARIANCE
STD. DEV. OF COVARIANCE
CORRELATION COEFFICIENT
VECTOR MEAN
VECTOR VARIANCE
VECTOR STD. DEV.

-163.986 46.944 3365.928 -.689E-1 65.658 2970.183

54 • 499

* SAMPLE SIZE = 5141 PaintS

* SPANNING RANGE

--689E-1 * FR8M 70-VIII-19 14-00-37

* DURATION 107.08 DAYS

Lat. 39° 50.2'N Long. 70° 57.0'W

Set August 19, 1970

Set by J. Gifford

Ship R. V. Knorr Cruise 8

Recovered October 6, 1970

Recovered by D. Moller

Ship R. V. Knorr Cruise 13

Mooring type - Bottom

Purpose of mooring

Internal wave measurements across the continental slope with moorings 349 and 350

Data No.	Instr. Type	Depth (m)
3481*	Model 850	975
3482*	Model 850	982
Water d	lepth	985

Comments

LIGHT RADIO GLASS BALL FLOAT I m CHAIN

CURRENT METER - 3481

5 m 9/16 NYLON

CURRENT METER - 3482

ACOUSTIC RELEASE, TRANSPONDING

1m 1/2" CHAIN 800 LB. CYLINDRICAL ANCHOR

Instrument No.: M-142 Type: Model 850

Depth: 975 m Water depth: 985 m

Start time: 70-VIII-19 18.15.37

Stop time: 70-x-06 12.15.37

Duration: 47d 18h

Sampling scheme: Interval

time between strobes = 5.27 seconds

no. of strobes per interval = 16

interval time = 900 seconds

COMMENTS:

DATA/ 3481E900

VARIABLE	*	EAST	NORTH	SPFED
UNITS	*	MM/SEC	MM/SEC	MM/SEC
*******	***		************	********
MEAN		-29.908	-11-829	75.068
STD. ERR.		• 904	•680	•526
VARIANCE		3749.055	2120.250	1268 . 449
STD. DEV.		61.230	46.046	35.615
KURTASIS		2.793	3.288	2.714
SKEWNESS		• 466	141	. 420
MINIMUM		-184.777	-176.461	15.000
MAXIMUM		163.791	155.218	201.000
STD. DEV. KURTASIS SKEWNESS MINIMUM	:	61.230 2.793 .466 -184.777	46.046 3.288 141 -176.461	35.615 2.714 .420 15.000

EAST & NORTH

Instrument No.: M-191 Type: Model 850

Depth: 982 m Water depth: 985 m

Start time: 70-VIII-19 18.15.37

Stop time: 70-X-06 12.15.37

Duration: 47d 18h

Sampling scheme: Interval

time between strobes = 5.27seconds

no. of strobes per interval = 16

interval time = 900 seconds

COMMENTS:

DATA/ 3482G900

VARIABLE	*	EAST	NORTH	SPFFD
JNITS	*	MM/SEC	MM/SEC	MM/SFC
******	****	*******	************	*******
MEAN		-27.118	-15.823	67 - 634
STO. ERR.		•808	•613	. 496
VARIANCE	3	2992.932	1722.329	1126 + 654
STD. DEV.		54.708	41.501	33.566
CURTOSIS		2.724	3.386	2.646
SKEWNESS		•331	•515E-1	• 397
MINIMUM		-174-143	-166 - 657	13.576
MAXIMUM	=	147.737	145.921	199.031

EAST & NORTH

Lat. 39° 50.6'N Long. 70° 56.2'W

Set August 19, 1970
Set by J. Gifford

Ship R. V. Knorr Cruise 8

Recovered October 6, 1970

Recovered by D. Moller

Ship R. V. Knorr Cruise 13

Mooring type - Bottom

Purpose of mooring

Internal wave measurements across the continental slope with moorings 348 and 350

Data No.	Inst Type		Depth (m)
3491*	Model	850	846
3492*	Model	850	933
3493	Model	850	941
Water d	epth		943

LIGHT RADIO GLASS BALL FLOAT I m CHAIN

CURRENT METER - 349/

85 m 9/16" NYLON

CURRENT METER - 3492

5 m 9/16" NYLON

ACOUSTIC RELEASE, TRANSPONDING (ELECTRONICS ONLY)

CURRENT METER - 3493

ACOUSTIC RELEASE, TRANSPONDING (RELEASE MECHANISM ONLY) 800 LB. CYLINDRICAL ANCHOR

Comments

3493 had a sticking vane.

Instrument No.: M-175 Type: Model 850

Depth: 846 m Water depth: 943 m

Start time: 70-VIII-19 20.30.37

Stop time: 70-x-06 13.15.37

Duration: 47d 16h 45m

Sampling scheme: Interval

time between strobes =5.27 seconds

no. of strobes per interval = 16

interval time = 900 seconds

COMMENTS:

The speed value is at rotor threshold (1.8 mm/sec) part of the time.

DATA/ 3491F900

VECTAR STD. DEV.

*******		*********		**********		*****		
VARIABLE	•	EAST		NORTH		SPEED		
UNITS		MM/SEC		MM/SEC		MISEC		
******	****	*********		**********	******	****		
MEAN	•	-21 - 609		1 • 851	4	3.249		
STO. ERR		•670		• 341		•509		
VARIANCE		2055.036		533 • 379	118	8.299		
STD. DEV		45 • 333		23.095		4.472		
KURTHSIS		3.981		6.420		4 . 652		
SKEWNESS		••326		• 378		1 . 4 77		
MINIMUM		-195.056		-129.984	1	6.000		
MAXIMUM	•	123-194		130 • 119	50	0.000		
*******	• • • •							
EAST & NE	44 TH							
*******					*****	******	*****	
COVARIANO	CE		•	·266 · 767	* SAMP	LE SIZE	. 458	BO POINTS
STD. ERR.	. AF	CHVARIANCE		25 • 841	•			
STO. DEV.	. AF	CAVARIANCE		1748.819	. SPAN	LING RAN	GE	
		HEFFICIENT		- • 255	. FRAN	77-VII	1-13	20.30.37
FETAD ME			_	24.400	. TA			

. DURATION

Instrument No.: M-145 Type: Model 850

Depth: 933 m Water depth: 943 m

Start time: 70-VIII-19 19.30.55

Stop time: 70-x-06 13.00.55

Duration: 47d 17h 30m

Sampling scheme: Interval

time between strobes = 5.27 seconds

no. of strobes per interval = 15

interval time = 900 seconds

COMMENTS:

DATA/ 3492K900

******	****	***********		********
VARIABLE	•	EAST	NORTH	SPFED
UNITS	*	MM/S	MM/S	MM/S
*******	* * * *	**********	***********	*********
ME AN	=	-18-655	-1.700	54.237
STO. ERR.	3	•866	•603	•538
VARIANCE		3434.955	1665 • 466	1324 - 891
STO. DEV.	=	58.608	40.810	36.399
KURTASIS		2.826	4 • 4 6 4	2.758
SKEWNESS		•323	178	•578
MINIMUM	=	-173.763	-221 -620	5.426
MAXIMUM	=	150.613	179 • 608	535.933

EAST & NORTH

CAVARIANCE -258-512 * SAMPLE SIZE . 4583 PBINTS STD. ERR. OF COVARIANCE = STD. DEV. OF COVARIANCE = CORRELATION COEFFICIENT = 38 . 308 2543.351 * SPANNING RANGE * FRAM 70-VIII-19 19-30-55 - - 108 • TB 70- X -05 13-10-55 VECTAR MEAN 18.733 2550.210 VECTOR VARIANCE VECTAR STD. DEV. 50.500 * DURATION 47.77 DAYS

82-1114	1	1	, , , , , , , , , , , , , , , , , , ,	,	,	F- E	1	1	/ B0- X1	1	7	¥- ¥-	1	١	1-11	\	1	K- 11	\	\	R- 11	\	١	3492 •	• 3482	3502 •
N2-1114	\	١	R2-111A	-	-	EG- XI	١	1	1x - 08	1	/	-	·	١		١	1	2- xi	١	١	R2- XI	\	\	1 E	\	1
8-1114		•		`	•	7 - WZ	`	`	/ A- XI	,	1	71 - XI	`	,	71- XI	١	1	72- XI	`	•	n- x1	`	١	, -02 x	`	/
22-1114	,	/		1	1	1x -01	,	,	1X -06		•	/	/	/	71 - 18 	\	١	- 12- XI	`	`	14 -28	`	`	10- x	\	1
12-1111	,	1	111-58	1	1	111-31	1	′	14 - 05	ı	1	N - 10	1	/	71 - 12 - 12	1	١	14 -20	\	\	17 - 23 - 1	\	\	7 - 30	\	١

00,

-23		. 06-1114	,		10- XI	1	1	1 B- XI	1	1	¥1- ¥1	1	1	11 - XI	1	1	K- KI	1	1	B2- XI	1	1	3491 •	• 3481	3501•
P2-1114	1	82-111A	-	١	1X -03	1	1	10- XI	1	1	1 - 13	1	1	81- ¥1	١	1	1 - XI	1	1	82- XI	1		۱ 6- ×	\	1
. 82-1114		82-1114		1	1X -02	`	ı	14 - 10	,	`	21- XI	,	1	11- XI	١	1	- 22- XI	1	1	12- XI	\	1	, 20- X	1	١
22-1111	,	mr-2n	١	1	10- XI	,	•	1X -06		1	11-11	/	1	11 - 11 -	1	1	12- 11	\	1	92- XI	`	1	1 - x	١	1
, u-1111	,	1	1	1		,	•	26- XI	1	1	1 - 11	1	1	SI- 11	1	1	D2- XI	١	I	R-11	\	1	1X - 30	\	\

Lat. 39° 49.6'N Long. 70° 56.0'W

Set _August 19, 1970

Set by _J. Gifford

Ship _R. V. Knorr Cruise _8

Recovered __December 4, 1970

Recovered by _R. Heinmiller

Ship _R. V. Knorr Cruise _17

Mooring type - Bottom

Purpose of mooring

Internal wave measurements across the continental slope with moorings 348 and 349

Data No.	Instr. Type	Depth (m)
3501*	Model 850	888
3502*	Model 850	990
Water d	lepth	993

LIGHT
RADIC
GLASS BALL FLOAT
I'M CHAIN
CURRENT METER - 3501

100 m 9/16" NYLON

CURRENT METER - 3502

ACQUISTIC RELEASE,
TRANSPONDING

1m 1/2" CHAIN
BOO LB CYLINDRICAL ANCHOR

Instrument No.: M-223 Type: Model 850

Depth: 888 m Water depth: 993 m

Start time: 70-VIII-19 20.45.37

Stop time: 70-x-12 13.15.37

Duration: 53d 16h 30m

Sampling scheme: Interval

time between strobes = 5.27 seconds

no. of strobes per interval = 15

interval time = 900 seconds

COMMENTS:

DATA/ 35014900

VARIABLE *	*******				**********	*********
MM/SEC MM/SEC MM/SEC MM/SEC MM/SEC MM/SEC MM/SEC MM/SEC MM/SEC MM/SEC MM/SEC MA141 144	VARIANLE	*	E 451		NERTH	SPEFD
#FAN = -46.779 3.505 77.698 \$TO. FPR. = .91% .441 .532 VARIANCE = 426.9891 1004.784 1459.266 \$TO. DEV. = .5.497 31.698 38.200 RIRTHSIS = 2.893 3.343 2.746 SKEARRS = .512 .381E-2 .429 MINITUM = -218.941 -110.465 3.000 MAXIMUM = 146.823 114.744 270.000 ********************************		•			MM/SEC	""/SFC
STD. EVH. = .91%	*******	* * * * •	********		**********	*******
VARIANCE = 4263.891 1004.784 1459.266 STD. DEV. = 65.497 31.698 28.200 KURTASIS = 2.893 3.343 2.746 SKEWIRS = -512 381E-2 429 MINIMUM = -218.941 -110.465 3.000 MAXIMUM = 146.823 114.744 270.000 ********************************	MEAN	=	-46 - 779		3.505	77.692
######################################	STO. ERH.	=	• 916		• 441	•532
STO DEV OFF COVARIANCE STO OFF COVARIANCE OFF COVARIANCE OFF COVARIANCE STO OFF COVARIANCE OFF COVA	VARIANCE	=	42.3.891		1004 • 784	1459.266
STO DEV OFF COVARIANCE STO OFF COVARIANCE OFF COVARI	STO. DEV.	=	+5.497		31 • 65 ×	34.200
######################################			5.893		3 • 34 3	2.746
MAXIMUM = 146.824 114.744 270.000 FAST & NORTH CRVARIANCE = -147.861 * SAMPLE SIZE = 5155 PRINTS STD. ERR. RF CRVARIANCE = 33.328 * STD. DEV. RF CRVARIANCE = 2392.667 * SPANNING RANGE CARRELATION COMPETICIENT = -709E-1 * FRM 70-VIII-19 20.45.37 VECTOR VARIANCE = 2647.338 *	SKEWNESS	=	•517		. 3×1 E = 2	. 429
MAXIMUM = 146.824 114.744 270.000 FAST & NORTH CRVARIANCE = -147.861 * SAMPLE SIZE = 5156 PRINTS STD. ERR. RF CRVARIANCE = 33.328 * STD. DEV. RF CRVARIANCE = 2392.667 * SPANNING RANGE CARRELATION COMPETICIENT = -709E-1 * FRM 70-VIII-19 20.45.37 VECTOR VARIANCE = 2647.338 *	MINIME M	=			-110.465	3.000
FAST & NORTH CRVARIANCE	MAXIMINI		144. *24			270.000
FAST & NORTH COVARIANCE = -147.261 * SAMPLE SIZE = 5156 POINTS STO. DEV. OF COVARIANCE = 2392.667 * SPANNING RANGE COMPRELATION COMPETICIENT = -709E-1 * FROM 70-VIII-19 20.45.37 VECTOR VARIANCE = 2647.338 *						
CAVARIANCE = -147.261 * SAMPLE SIZE = 5186 PAINTS STO. DEV. OF COVARIANCE = 33.328 * STO. DEV. OF COVARIANCE = 2392.667 * SPANNING RANGE CARRELATION COMPETICIENT =709E-1 * FRAM 70-VIII-19 20.45.37 VECTOR VARIANCE = 2647.338 *						
# -147.261 * SAMPLE SIZE = 5186 P9INTS STO. DEV. OF COVARIANCE = 33.328 * STO. DEV. OF COVARIANCE = 2392.667 * SPANNING RANGE CHRRELATION COMPRESSION =709E-1 * FROM 70-VIII-19 20.45.37 VECTOR VARIANCE = 2647.338 *	FAST & NO	H T H				
STD. ERR. HF COVARIANCE = 33.328 * STD. DEV. BF COVARIANCE = 2392.667 * SPANNING RANGE CARRELATION COMMERCIANCE =709E-1 * FROM 70-VIII-19 20.45.37 VECTOR MEAN = 46.911 * 18 70- X -12 13.15.37 VECTOR VARIANCE = 2647.338 *	*******	* * *				******************
STD. DEV. OF COVARIANCE = 2992.667 * SPANNING RANGE CARRELATION CHEFFICIENT =709E-1 * FROM 70-VIII-19 20.45.37 VECTOR MEAN = 46.911 * TO 70- X -12 13.15.37 VECTOR VARIANCE = 2647.338 *	CHVARIANC	Ł		m	-147.261	* SAMPLE SIZE = 5155 PAINTS
CARRELATING CHEFFICIENT =709E=1 * FRAM 70=VIII=19 20:45:37 VECTOR MEAN = 46:911 * T8 70= X =12 13:15:37 VECTOR VARIANCE = 2647:338 *	STO. EHH.	HF C	PVARIANCE	=	33·32×	
VECTOR MEAN # 46.911 * TH 70+ X -12 13.15.37 VECTOR VARIANCE # 2647.338 *	STO. DEV.	HF C	TVARTANCE	=	2392.067	* SPAINING RANGE
VECTUR VARIANCE = 2647.338 *	CHHHELATI	11. Cit	FFFICIENT	=	- • 709E - 1	* FRAM 70-VIII-19 20.45.37
	VECTHR ME	A*:		2	46.911	* TH 70- X -12 13-15-37
VECTOR STO. DEV. # 51.452 * PURATION 53.63 DAYS	VECTUR VA	HIANC		z	2647.338	
				=	51.452	* PURATION 53.63 DAYS

Instrument No.: M-234 Type: Model 850

Depth: 990 m Water depth: 993 m

Start time: 70-VIII-19 20.45.37

Stop time: 70-XI-16 23.30.37

Duration: 89d 2h 45m

Sampling scheme: Interval

time between strobes =5.27 seconds

no. of strobes per interval = 15

interval time = 900 seconds

COMMENTS:

DATA/ 3502L900

*******	* * * *	**********	************	*********
VARIABLE		EAST	NORTH	SPEED
UNITS	•	MM/SEC	MM/SEC	MMISEC
*******	***	**********	************	*********
MEAN		-33.640	-11 -135	66.381
STD. ERR.		•556	• 449	• 378
VARIANCE	•	2649.375	1721 • 135	1219.759
STD. DEV.	=	51.472	41.487	34.925
KURTASIS		3 • 1 4 7	3 • 117	2.913
SKEWNESS		• 273	• 433E-2	• 558
MINIMUM		-207.000	-152.000	15.000
MAXIMUM		166.000	144.956	215.000

EAST & NORTH

* SAMPLE SIZE . R556 PAINTS CAVARIANCE -133.841 STD. ERR. OF COVARIANCE . 29.935 2768 . 948 . SPANNING RANGE -.627E-1 * FR8M 70-VIII-19 20-45-37 CARRELATION CHEFFICIENT 35.435 70. X1 -16 23.30.37 VECTOR MEAN VECTOR VARIANCE 2185 • 255 VECTOR STD. DEV. 46.747 * DURATION 89.11 DAYS

A111-50	A111-51	A111-55	A111-53	N111-54	VIII-25	A111-52	VIII-27	VIII-28
	١.	1.	1-	-		-	-	
	-	- ,	- \	- ,	٠,	-	- \	- \
V111-29	M111-30	A111-31	IX -01	IX -05	IX -03	1X -04	IX -05	1X - 06
				-				
1	-		- , -	— , .	-,	- ,	- ,	
	ì							
IX -07	1X -00	IX -08	IX -10	1X -11	IX -15	IX -13	1X -14	TX -15
1,	-					_	_	_
/-	-	-			-	-	,	
IX -16	IX -17	IX -18	IX -19	IX -50			IX -53	1X -54
-	-		-			-		-
	1, -	///	/-/	/ _	/ \ .	-,	',	',
10 50					7V 38	V 81		
IX -25	1X - 26	1X -27	IX -28	IX -29	IX -30	X -01	X -02	X -03
	,	/						
/	/		1		-/	- /		_
X -04	X -05	X -05	X -07	X -08	X -09	X -10	X -11	X -12
		-			~	~	•	
1_	1 -		_		1 -	~	\times	1
V	V V	v 15	V 15	1			V 48	V -
X -13	X -14	X -15	X -16	X -17	X -18	X -19	X -50	X -21
1						,	,	1
	1	,		`	\		1,	-
X -22	X -23	X -24	X -25	X -26	X -27	X -28	X -29	X -30
		-		•	•	-	-	
	-	1	-	'	-	/ /	/	
					/			
X -31	XI -01	XI -05	XI -03	XI -04	XI -05	XI -06	XI -07	x1 -de
							/.	/.
111	1	/	/	/	1	- /	1 .	1
XI - 09	XI /10	XI -11	XI -12	XI -13	XI -14	XI -15	XI -16	XI -17
	, ,	\	~	-		•		•
1.		-	-	1	~	-		1
	WY			V. 44	w	W1 WI	V1 40	VI -31
XI -18	XI -18	XI -50	XI -21	XI -55	XI -53	XI -24	XI -52	X1 -56
		-			-,			-
1	١	-	/	/	1	\	1	
XI -27	XI -58	XI -58	XI -30	XII-01	X11-05	X11-03	X11-04	X11-05
				-		,	_	
		,	1	,				
X11-05	X11-07	X11-08	X11-09	X11-10				
7.7.30						35034	7	[0 KW
	-		/			351 .345		[100
						.325		0

Consecutive daily vectors plotted by position from moorings 345, 347, 350, 351 and 352 for the top instrument level only

Lat. 39° 36.6'N Long. 71° 15.0'W

Set August 19, 1970

Set by J. Gifford

Ship R. V. Knorr Cruise 8

Recovered December 11, 1970

Recovered by R. Heinmiller

Ship R. V. Knorr Cruise 17

Mooring type - Bottom

Purpose of mooring

To study the topographical wave motion across the Slope

Data No.	Instr. Type	Depth (m)
3511*	Model 850	2052
Water d	lepth	2150

Instrument No.: M-215 Type: Model 850

Depth: 2052 m Water depth: 2150 m

Start time: 70-VIII-20 07.00.37

Stop time: 70-XII-11 13.30.37

Duration: 113d 6h 30m

Sampling scheme: Interval

time between strobes =5.27 seconds

no. of strobes per interval = 16

interval time = 1800 seconds

COMMENTS:

DATA/ 3511G1800

*******	****	**********	**********	*********
VARIABLE	*	EAST	NORTH	SPEED
UNITS	*	MM/SEC	MM/SEC	MM/SEC
*******	****	***********	***********	*********
MEAN	=	-46.794	-21.038	83.677
STD. ERR.		1 • 131	•511	•859
VARIANCE	•	6955 • 685	1422.509	4008 • 632
STD. DEV.	•	83.401	37.716	63.314
KURTOSIS		3.998	3.581	3.200
SKEWNESS	•	•113	••190	.949
MINIMUM	=	-303-136	-172-613	7.763
MAXIMUM	•	237.964	120.510	327.576

EAST & NORTH

* SAMPLE SIZE . 5438 PRINTS COVARIANCE 1730 • 548 STD. ERR. OF COVARIANCE = STD. DEV. OF COVARIANCE = CORRELATION COEFFICIENT = 64.587 4762.800 . SPANNING RANGE •550 . FROM 70-VIII-20 07-00-3 • TO 70 XII-11 13.30.37 51 • 306 VECTOR MEAN VECTOR VARIANCE 4189.097 . DURATION 113.27 DAYS 64.723

Lat. 39° 23.3'N Long. 71° 01.4'W

Set __October 6, 1970

Set by D. Moller

Ship R. V. Knorr Cruise 13

Recovered __December 11, 1970

Recovered by R. Heinmiller

Ship R. V. Knorr Cruise 17

Mooring type - Bottom

Purpose of mooring

Low frequency wave correlation across the Gulf Stream with mooring 353

Data	Instr.	Depth
No.	Туре	(m)
3521*	Model 850	2394
Water d	lepth	2509

LIGHT
RADIO
GLASS BALL FLOAT
1m 1/2" CHAIN

CURRENT METER
(DUMMY)

IO m 9/16" NYLON

CURRENT METER - 352/

IOO m 9/16" NYLON

ACOUSTIC RELEASE,
TRANSPONDING

IO m 9/16" NYLON

3m 1/2" CHAIN

BOO LB CYLINDRICAL ANCHOR

Instrument No.: M-213 Type: Model 850

Depth: 2394 m Water depth: 2509 m

Start time: 70-x-06 22.45.57

Stop time: 70-XII-04 22.45.57

Duration: 59d

Sampling scheme: Interval

time between strobes = 5.27 seconds

no. of strobes per interval = 24

interval time = 900 seconds

COMMENTS:

DATA/ 35210900

			*********	*********
VARIABLE	*	EAST	NBRTH	SPEED
	*	MM/SEC	MM/SEC	MM/SEC
MEAN	****	-23.122	-5.339	67.647
STD. ERH.		•646	•763	•539
VARIANCE		2362.005	3295 • 639	1644.624
STO. DEV.		48.600	57.408	40.554
KURTASIS	3	3.561	3 • 496	3.056
SKEWNESS		- · 683F - 1	•154	.816
HINIMUM	=	-190.770	-179.041	16.000
MAXIMUM	*	150.355	228.724	550.000

FAST & NORTH

CAVARIANCE * SAMPLE SIZE . 5665 PHINTS -348 - 033 STO. ERH. HE CHVARIANCE . 44.702 * SPANNING RANGE * FRAM 70- X -06 22.45.57 * TA 70- XII-04 22.45.57 CHRRELATION COFFFICIENT . 3364.562 - 125 23.730 VECTOR MEAN 28888822 VECTAR VARIANCE + DURATIAN 59.00 DAYS VECTAR SID. DEV. 53 • 187

Lat. 35° 58.0'N Long. 70° 35.0'W

Set October 8, 1970

Set by D. Moller

Ship R. V. Knorr Cruise 13

Recovered December 9, 1970

Recovered by R. Heinmiller

Ship R. V. Knorr Cruise 17

Mooring type - Subsurface

Purpose of mooring

Low frequency wave correlation across the Gulf Stream with mooring 352

Data No.	Instr. Type	Depth (m)
3531*	Model 850	4121
Water d	lepth	4436

LIGHT
RADIO
SYNTACTIC FOAM FLOAT
I m CHAIN
IO m 9/16" NYLON

CURRENT METER - 353/

300 m 9/16" NYLON

ACOUSTIC RELEASE,
TRANSPONDING

10 m 9/16" NYLON
3 m 1/2" CHAIN
BOO LB CYLINDRICAL ANCHOP

Instrument No.: M-206 Type: Model 850

Depth: 4121 m Water depth: 4436 m

Start time: 70-x-08 13.30.58

Stop time: 70-XI-27 02.30.58

Duration: 49d 13h

Sampling scheme: Interval

time between strobes = 5.27 seconds

no. of strobes per interval = 24

interval time = 900 seconds

COMMENTS:

DATA/ 3531F900

			**********	***********
VARIABLE	*	EAST	NORTH	SPEED
UNITS		MM/SEC	MM/SEC	MM/SEC
*******	* *	**********	***********	**********
MEAN	=	16.936	15.828	69.847
STD. ERR.		•710	•839	•543
VARIANCE		2395 • 356	3350 • 257	1404 • 438
STD. DEV.		43.942	57 • 881	37.476
KURTASIS		2.593	2.754	2.808
SKEWNESS		• 497	• 789	• 762
MINIMUM		-93.000	-84 - 975	17.000
MUMIXA	•	152 • 159	198 • 000	198.000

EAST & NARTH

Lat. 35° 58.9'N Long. 70° 36.8'W

\rightarrow	RADIO FLOAT
-0	8 m 1/4" CHAIN WITH 8 GLASS BALLS CURRENT METER - 357/
Ž	DEPTH RECORDER - 3572
	922 m 3/8" DACRON
Ì	INCLINOMETER - 3573
10	6 m 1/4" CHAIN WITH 8 GLASS BALLS CURRENT METER - 3574
Ħ	
	914 m 3/8" DACRON
10	6 m 3/8" CHAIN WITH 7 GLASS BALLS
Ę.	CURRENT METER - 3575
	290 m 9/16" NYLON
10	6 m 3/8" CHAIN WITH 7 GLASS BALLS
Ų	TENSIOMETER - 3576
Û	ACOUSTIC RELEASE, TRANSPONDING
	20 m 3/4" NYLON
1	10 m 1/2" CHAIN
1	STIMSON ANCHOR, 3.500 LBS

Set _ December 9,	1970	
Set by R. Heinmi	ller	
Ship R. V. Knorr	Cruise _	17
Recovered May	6, 1971	
Recovered by J. G		
Ship R. V. Knorr	Cruise _	20
Mooring type - In	termediate	

Purpose of mooring

- A) Measurements at Site J
- B) Low frequency wave correlation across the Gulf Stream with mooring 358

Data No.	Instr. Type	Depth (m)
3571	Model 850	2056
3572	Depth Rec.	2057
3573	Incl.	3058
3574*	Model 850	3066
3575*	Model 850	4074
3576	Tens.	4391
Water	depth	4425

Comments

3571 - stuck compass.

Instrument No.: M-212 Type: Model 850

Depth: 3066 m Water depth: 4425 m

Start time: 70-XII-09 23.30.37

Stop time: 71-V- 06 05.30.37

Duration: 147d 6h

Sampling scheme: Interval

time between strobes = 5.27 seconds

no. of strobes per interval = 16

interval time = 1800 seconds

COMMENTS:

DATA/ 3574F1800

*******	***	**********	************	*********
VARIABLE		EAST	NORTH	SPEED
UNITS	•	MM/SEC	MM/SEC	MM/SEC
MEAN	•	21.842	3.278	61.745
STD. ERR.		•651	•614	•575
VARIANCE		2999 • 845	2661 • 451	2336.720
STD. DEV.		54.771	51 • 58 9	48.340
KURTESIS		3.329	5.315	5.262
SKEWNESS		•693	1 • 1 4 2	1 • 449
MINIMUM		-101-885	-146.137	5.000
MAXIMUM		230.046	232.536	283.000

EAST & NORTH

* SAMPLE SIZE . 7069 POINTS 1484 . 777 COVARIANCE STD. ERR. OF COVARIANCE 55 • 592 STD. DEV. OF CAVARIANCE . CORRELATION COEFFICIENT . 4674.014 * SPANNING RANGE * FR8M 70* XII*09 23.30.37 * T8 71* V *06 05.30.37 .525 22.086 VECTOR MEAN 2830·648 53.204 VECTOR VARIANCE * DURATION 147.25 DAYS VECTOR STD. DEV.

Instrument No.: M-227

Type: Model 850

Depth: 4074 m

Water depth: 4425 m

Start time: 70-XII-10 08.30.37

Stop time: 71-V-06 06.30.37

Duration: 146d 22h

Sampling scheme: Interval

time between strobes = 5.27 seconds

no. of strobes per interval = 16

interval time = 1800 seconds

COMMENTS:

DATA/ 3575F1800

*******	****	***********		*********
VARIABLE	*	EAST	NORTH	SPEED
UNITS	*	MM/SEC	MM/SEC	MM/SEC
******	***	************	***********	********
MEAN		36.286	11.106	91.354
STD. ERR.		•812	•926	•734
VARIANCE		4648 • 009	6052 • 928	3795 • 297
STD. DEV.	*	68 • 176	77 • 801	61.606
KURTESIS		2.883	4 • 176	5.548
SKEWNESS		• 459	1 • 185	1.707
MINIMUM		-107-216	-148.283	11.000
MAXIMUM		260.239	291.022	324.000

EAST & NORTH

* SAMPLE SIZE . 7053 PAINTS COVARIANCE 3434.686 STD. ERR. OF COVARIANCE = STD. DEV. OF COVARIANCE = CORRELATION COEFFICIENT = 103.746 8712 - 817 * SPANNING RANGE FROM 70- XII-10 08-30-37 .648 71- V -06 06.30.37 VECTAR MEAN 37.947 * 19 VECTOR VARIANCE 5350 • 468 * DURATION 146.92 DAYS VECTOR STD. DEV. 73 . 147

Lat. 39° 07.4'N Long. 70° 03.0'W

(A)	RADIO FLOAT
Y	
-0	10 m 9/16" NYLON WITH 5 GLASS BALLS
4	
Ц	CURRENT METER - 3581
X	
	DEPTH RECORDER - 3582
Y	
	454 m 3/8" DACRON
	20 m 9/16" NYLON
1	
	INCLINOMETER - 3583
10	10 m 9/16" NYLON WITH 6 GLASS BALLS
À	CURRENT METER - 3584
₽	
	450 m 3/8" DACRON
	430 M 578 BACKON
	25 m 9/16" NYLON
0	10 m 9/16" NYLON WITH 5 GLASS BALLS
The state of	CURRENT METER - 3585
Ħ	
	50 m 9/16" NYLON
4	
Ц	CURRENT METER (DUMMY)
P	
	70 m 9/16" NYLON
HO	10 m 9/16" NYLON WITH 7 GLASS BALLS
	TENSIOMETER - 3586
Y	
	ACOUSTIC RELEASE,
U	TRANSPONDING
1	20 m 3/4" NYLON
1	10 m 1/2" CHAIN
	STIMSON ANCHOR, 3000 LBS
<u></u>	

Set _	December 11, 1970				
Set by R. Heinmiller					
Ship	R. V. Knorr Cruise 1	7			
Recov	ered April 27, 1971				
Recov	ered byJ. Gifford				
Ship	R. V. Knorr Cruise 20)			
Mooring type - Intermediate					

Purpose of mooring

- A) Measurements at Site D
- B) Low frequency wave correlation across the Gulf Stream with mooring 357

Data No.	Instr. Type	Depth (m)
3581	Model 850	1466
3582	Depth Rec.	1467
3583	Incl.	1964
3584	Model 850	1976
3585*	Model 850	2495
3586	Tens.	2647
Water d	lepth	2680

Comments

3581 - bit problems. 3584 - timing problems.

Instrument No.: M-205 Type: Model 850

Depth: 2495 m Water depth: 2680 m

Start time: 70-XII-12 03.30.37

Stop time: 71-IV-27 21.30.37

Duration: 136d 18h

Sampling scheme: Interval

time between strobes =5.27 seconds

no. of strobes per interval = 16

interval time =1800 seconds

COMMENTS:

Note: The rotor threshold speed for Model 850 instruments is 1.8 mm/sec.

DATA/ 358501800

VARIABLE * EAST NORTH SPE UNITS * MM/SEC MM/SEC MM/S	
320	+ * *
2 22	
MEAN • -20.990 -2.230 49.0	105
STD. ERR. = •490 •481 •4	+17
VARIANCE = 1578 • 132 1518 • 780 1141 • 0	150
STD. DEV. = 39.726 38.972 33.	179
KURTASIS . 3.154 5.544 3.8	183
SKEWNESS 166 546 1.	114
MINIMUM = -163.826 -195.056 11.0	200
MAXIMUM = 108.895 131.078 197.0	000

EAST & NORTH

CAVARIANCE	•	-490.462	* SAMPLE SIZE * 6565 PBINTS
STD. ERR. OF COVARIANCE		26 • 288	
STD. DEV. OF COVARIANCE		2129.978	* SPANNING RANGE
CARRELATION COEFFICIENT		-•317	* FR8M 70- XII-12 03-30-37
VECTOR MEAN		21 • 108	* TB 71- IV -27 21-30-37
VECTOR VARIANCE		1548 . 456	
VECTOR STD. DEV.		39.350	. DURATION 136.75 DAYS

Lat. 36° 23.0'N Long. 71° 15.0'W

Set __December 13, 1970

Set by _R. Heinmiller

Ship _R. V. Knorr Cruise __17

Recovered ___May 3, 1971

Recovered by __J. Gifford

Ship _R. V. Knorr Cruise __20

Mooring type - Bottom

Purpose of mooring

Measurements under the Gulf Stream with moorings 364 and 368

Data No.	Instr. Type	Depth (m)
3601*	Model 850	3697
3602*	Model 850	4019
3603	Incl.	4020
Water d	lepth	4230

RADIO FLOAT

15 m CHAIN WITH 12 GLASS BALLS

10 m 9/16" PLAITED NYLON

CURRENT METER - 3601

300 m 3/8" BRAIDED DACRON

CURRENT METER - 3602

INCLINOMETER - 3603

185 m 3/8" BRAIDED DACRON

ACOUSTIC RELEASE, TRANSPONDING

IO m PLAITED NYLON 9/16"

3m 1/2" CHAIN

1000 LB CYLINDRICAL ANCHOR WITH 15 LB DANFORTH

Comments

Data from this area were used in Luyten, 1977.

Instrument No.: M-191 Type: Model 850

Depth: 3697 m Water depth: 4230 m

Start time: 70-XII-13 11.30.37

Stop time: 71-II-19 19.00.37

Duration: 68d 7h 30m

Sampling scheme: Interval

time between strobes =5.27 seconds

no. of strobes per interval = 16

interval time =1800 seconds

COMMENTS:

The STATS and spectral displays use a start time of January 1, 1971 instead of December 13, 1970 (See Speed vs Time plot).

DATA/ 360131000

*******		***********	**********	*********
VARTABLE		EAST	NOKIH	SPEFD
UNITS		MM/5EC	MM/SEC	MM/SEC
*******	* * * * *	***********		*********
MEAN	=	9.418	-41.255	81.582
STO. FRR.		.865	1.368	•716
VARIANCE		1515.054	4471.204	122/ • 316
STO. DEV.	*	47.188	66.912	35.033
KURTHSTS		2.534	2.708	2.168
SKENNESS		.843E-1	• 752	143
MINIMUM		-42.406	-171 - 070	17.957
MAXIMUM	1	121.848	128.723	173.994

EAST & ATHIN

26 • 744 * SAMPLE SIZE . 2391 PAINTS STO. ERR. OF CHVARIANCE . 66 142 * SPANNING RANGE STO. LEV. OF CHVARIANCE . 3234 • 1 46 .995E-2 * FRBM 71- I -01 00.00.37 2-317 * IB 71- II -19 19-00-37 CHREELATING CHEFFICIENT . 42.317 VECTOR MEAN 3046 • 144 VECTOR VARIANCE . DURATION 49.79 DAYS VECTHE SID. DEV. 55 • 192

Instrument No.: M-203 Type: Model 850

Depth: 4019 m Water depth: 4230 m

Start time: 70-XII-13 10.30.37

Stop time: 71-V-03 10.30.37

Duration: 141d

Sampling scheme: Interval

time between strobes =5.27 seconds

no. of strobes per interval = 16

interval time =1800 seconds

COMMENTS:

DATA/ 360201800

*******		************	***********	*********
VARIABLE	*	EAST	NORTH	SPEED
UNITS		MM/SEC	MM/SEC	MM/SEC
*******	***	***********	***********	********
MEAN		17.315	-31 - 163	80.992
STD. ERR.		•618	•821	•524
VARIANCE		2583 • 211	4560 • 395	1859 - 864
STD. DEV.		50.874	67.531	43.126
KURTASIS		2.367	3.842	2.417
SKEWNESS		•217	•886	•314
MINIMUM	=	-121-254	•169 • 149	18.000
MAXIMUM		151.818	222.565	556.000

EAST & NHRTH

* SAMPLE SIZE * 6769 PAINTS CHVARIANCE -240.964 STD. ERR. OF CHVARIANCE 51.261 * SPANNING RANGE STD. DEV. OF COVARIANCE . 4217.426 CARRELATION COEFFICIENT -.701E-1 + FR8M 70- XII-13 10.30.37 * T8 71- V -03 10-30-37 VECTOR MEAN 35.650 3574 • 303 VECTOR VARIANCE * DURATION 141.00 DAYS VECTAR STD. DEV. 59.785

Lat. 36° 57.5'N Long. 67° 53.2'W

Set December 14, 1970

Set by R. Heinmiller

Ship R. V. Knorr Cruise 17

Recovered May 7, 1971

Recovered by J. Gifford

Ship R. V. Knorr Cruise 20

Mooring type - Bottom

Purpose of mooring

Measurements under the Gulf Stream with moorings 360 and 368

Data No.	Instr. Type	Depth (m)
3641*	Model 850	4712
Water d	lepth	4915

LIGHT
RADIO
GLASS BALL FLOAT
I'M CHAIN
IO M 9/16" NYLON
CURRENT METER - 364/

185 M 9/16" NYLON
WITH 3 GLASS BALLS AT
BOTTOM OF SHOT

ACOUSTIC RELEASE.
TRANSPONDING
IO M 9/16" NYLON
3m 1/2" CHAIN
BOO LB CYLINDRICAL ANCHOR

Comments

PRECEDING PAGE BLANK-NOT FILMED

Instrument No.: M-249 Type: Model 850

Depth: 4712 m Water depth: 4915 m

Start time: 70-XII-15 06.00.36

Stop time: 71-V-07 20.00.36

Duration: 143 d 14h

Sampling scheme: Interval

time between strobes =5.27 seconds

no. of strobes per interval = 15

interval time = 1800 seconds

COMMENTS:

DATA/ 3641C1800

CARRELATION COEFFICIENT

VECTOR MEAN

VECTOR VARIANCE

VECTAR STD. DEV.

VARIABLE		EAST	NORTH	SPEED	
UNITS	•	MM/SEC	MM/SEC	MM/SEC	
******************	***	-21-804	31.093	######################################	
STD. ERR.		•690	•805	•570	
		3278 • 817	4470.019	2239.098	
STD. DEV.		57.261	66,858	47.319	
KURTASIS		3.864	3.017	3.048	
SKEWNESS		• 398	•181	• 744	
MINIMUM		-212.830	-218.716	17.000	
MAXIMUM	•	209.705	249 • 298	257.000	
EAST & NO					

			1013-395	- CAMPIE CITE	LOGO DOINTS
CHVARIANC		CAMADIANCE	• •1013•395	* SAMPLE SIZE	6893 PBINTS
		CHVARIANCE	53.259		
STO . DEV .	4E	CAVARIANCE	• 4421.774	* SPANNING RANG	E

- . 265

62.245

37·977 3874·418 . FR8M 70- XII-15 06-00-36

* TO 71- V -07 20-00-36

. DURATION 143.58 DAYS

11 16 21 26 31 04 10 15 20 25 30 05"

Lat. 37° 57.6'N Long. 69° 27.5'W

Set December 16, 1970

Set by R. Heinmiller

Ship R. V. Knorr Cruise 17

Recovered May 8, 1971

Recovered by J. Gifford

Ship R. V. Knorr Cruise 20

Purpose of mooring

Mooring type - Bottom

Measurements under the Gulf Stream with moorings 360 and 364

No.	Instr. Type	Depth (m)
3681*	Model 850	3750
Water d	epth	3955

LIGHT
RADIO
GLASS BALL FLOAT
I'M CHAIN
IO M 9/16" NYLON

CURRENT METER - 3681

185 M 9/16" NYLON

ACOUSTIC RELEASE,
TRANSPONDING

10 M 9/16" NYLON

3m 1/2" CHAIN
BOO LB CYLINDRICAL ANCHOR

Comments

Instrument No.: M-127 Type: Model 850

Depth: 3750 m Water depth: 3955 m

Start time: 70-XII-16 20.30.37

Stop time: 71-V-08 12.30.37

Duration: 142d 16h

Sampling scheme: Interval

time between strobes =5.27 seconds

no. of strobes per interval = 16

interval time = 1800 seconds

COMMENTS:

DATA/ 3681F1800

VARIABLE	*	EAST	NORTH	SPEED
UNITS	*	MM/SEC	MM/SEC	MM/SEC
*******	***	**********	************	********
MEAN		-6-872	8 • 880	86.029
STD. ERR.		•965	• 766	•675
VARIANCE		6383 • 652	4014 • 965	3123.719
STD. DEV.		79.898	63.364	55.890
KURTOSIS		3.793	3.561	3.383
SKEWNESS		•351	•718	•963
MINIMUM		-259.866	-150 -060	16.000
MAXIMUM		297.560	240 • 835	299.000

EAST & NORTH

* SAMPLE SIZE . 6849 PAINTS -1906-723 COVARIANCE STD. ERR. OF COVARIANCE STD. DEV. OF COVARIANCE CORRELATION COEFFICIENT 65.807 . SPANNING RANGE 5446.118 • FROM 70- XII-16 20-30-37 • TO 71- V -08 12-30-37 -.377 VECTOR MEAN 11.558 5199.308 VECTOR VARIANCE . DURATION 142.67 DAYS VECTOR STD. DEV. 72 • 106

MANDATORY DISTRIBUTION LIST

FOR UNCLASSIFIED TECHNICAL REPORTS, REPRINTS, & FINAL REPORTS
PUBLISHED BY OCEANOGRAPHIC CONTRACTORS
OF THE OCEAN SCIENCE AND TECHNOLOGY DIVISION
OF THE OFFICE OF NAVAL RESEARCH
(REVISED APRIL 1977)

Director of Defense Research
and Engineering
Office of the Secretary of Defense
Washington, D.C. 20301
ATTN: Office Assistant Director
(Research)

Office of Naval Research Arlington, VA 22217

- 1 ATTN: (Code 460) 1 ATTN: (Code 102-OS) 6 ATTN: (Code 102IP)
- 1 ATTN: (Code 200)
- 1 CDR J. C. Harlett, (USN)
 ONR Representative
 Woods Hole Oceanographic Inst.
 Woods Hole, MA 02543
- Office of Naval Research Branch Office 495 Summer Street Boston, MA 02210

Director
Naval Research Laboratory
Washington, D.C. 20375
6 ATTN: Library, Code 2620

- 1 National Oceanographic Data Center National Oceanic & Atmospheric Administration 3300 Whitehaven St., N.W. Washington, D.C. 20235
- 12 Defense Documentation Center Cameron Station Alexandria, VA 22314

Commander
Naval Oceanographic
Office
Washington, D.C. 20373

- 1 ATTN: Code 1640 1 ATTN: Code 70
- 3 NORDA National Space Technology Laboratory Bay St. Louis, MS 39529

1. Mocings 2. Current Meter Date 3. Gulf Stream 1. Tarbell, S. M. 111. N00014-66-C-0241, 111. N00014-76-C-0197; 112. NR 089-004 113. NR 089-004 114. NR 089-400 115. NR 089-400	1. Moorings 2. Current Mater Data 3. Oulf Streas 1. Tarbell, S. A. 11. Millatch, A. M. 111. NODOL4-6-C-0141, NR 083-400 TV. ND0014-76-C-0197, NR 083-400 This card is INCLASSIFIED
Modds Hole Oceanographic Institution MHOL-77-18 A COMPLATION OF MODED CURRENT DATA AND ASSOCIATED OCEANO- GRAPHIC OSSERVATIONS, VOLUME XIII (1970 MEASUREDONYS) By S. A. Tabrell and A. W. Whitlach. 189 pages. June 1977. Prepared for the Office of Naval Research under Contract NOSOI-6-6-C-0241, NR 081-004 and NOSOI4-76-C-0197, NR 083-400. SUBMERTERS of MODERED CONTRACT NOSOI-6-6-C-0241, NR 081-004 and NOSOI4-76-C-0197, NR 083-400. ARE PRESENTED IN 1970 WHO WOODS HAVE OCCUPATED INSTITUTION ARE PRESENTED. The AVERGAR CURTENT data are presented as Statistical Special Disgrams, Vector and Scalar Flots versus Time. The associated depth.	Woods Hole Oceanographic Institution MOODS A COMPILATION OF HOORD CURRENT DATA AND ASSOCIATED OCEANO- GRAPH COSSENATIONS, VOLDER III (1970 PASSOCIATED OCEANO- GRAPH COSSENATIONS, VOLDER III (1970 PASSOCIATED OCEANO- TARTELL AND A W. MALLASCH. 189 PAGES. June 1977. Prepared for the Office of Naval Research under Contracts NORO14-66-C-0241; NR 081-004 and NORO14-56-C-0197. NN 083-400. Summaries of Mooract Office of Naval Research of Norostation are presented. The aversage Control data are presented as featuration are presented. The associated hydrotation data are presented as featured, bydrotation data are presented as featured, bydrotation data are presented as featured depth.
1. Mootings 2. Current Meter Data 3. Guif Stream 1. Tartell, S. A. 111. Whitlatch, A. W. 111. N70014-66-C-0241; NR C89-064 1V. N00014-76-C-0197; NR C89-400 This card is UNCLASSIFIED	1. Moorings 2. Current Metar Data 3. Golf Stream 1. Tarbell, S. A. 111. WOOLG-66-C-0241; NR 083-064 1V. WOOLG-76-C-0197; NR 083-400 This card is UNCLASSIFIED
A CONTACTOR OF MODED CURENT DATA AND ASSOCIATED OCCANO- SAME CHEROACIOS, VOLDE XIII (1970 PEAUGEONYS) by S. A. THE CITIES OF MODIA—78—C-0197; NR 081—400. THE CITIES OF MODIA—78—C-0197; NR 081—400. THE CITIES OF MODIA—78—C-0197; NR 081—400. THE PRESENTE OF MODIA—78—C-0197; NR 081—400. THE PRESENTE OF MODIA—78—C-0197; NR 081—400. THE PRESENTE OF MODIA—78—THE MODIA—78—THE ASSOCIATED MINISTERS OF MODIA—78—THE ASSOCIATED MINISTERS OF MODIA—78—THE MODIA—78—THE ASSOCIATED MINISTERS OF MODIA—78—THE MODIA—78—THE ASSOCIATED MINISTERS OF MODIA—78—THE ASSOCIATED MODIA—78—THE MODIA—78—THE ASSOCIATED MODIA—78—THE MODIA—78—THE ASSOCIATED MODIA—78—THE MODIA—78—T	A compliants or woods customs bara and associated as section of association of association of woods customs bara and associated of section of s