8) Sharp Regression Discontinuity Design

Vitor Kamada

June 2017

1/19

Vitor Kamada ECO 6100 Econometrics June 2017

Tables, Graphics, and Figures from

Mastering 'Metrics: The Path from Cause to Effect

Angrist & Pischke (2014): Chapter 4

Birthdays and Funerals from 1997 to 2003

A Sharp RD Estimate of MLDA Mortality Effects

Sharp RD

$$D_a = \begin{cases} 1 & \text{if} \quad a \ge 21 \\ 0 & \text{if} \quad a < 21 \end{cases}$$

$$\bar{M}_a = \alpha + \rho D_a + \gamma a + e_a$$

 \bar{M}_a : death rate in month a

$$\hat{\rho} = 7.7$$

June 2017

Carpenter and Dobkin (2011)

```
import os
os.chdir('C:\\Users\\Vitor\\Desktop\\|
import pandas as pd
df = pd.read_stata('AEJfigs.dta')
df.head()
```

```
agecell
                   all
                         allfitted
                                    internal internalfitted
                                                                external
  19.068493 92.825401
                        91.706146
                                   16.617590
                                                    16.738131
                                                               76.207817
  19.150684
             95.100739
                       91.883720
                                   18.327684
                                                    16.920654
                                                              76.773056
2
  19.232876
             92.144295
                       92.049065
                                   18.911053
                                                    17.098843
                                                               73.233238
                        92.202141
  19.315069
             88.427757
                                   16.101770
                                                    17.272680
                                                               72.325981
  19.397261
                        92.342918
                                   17.363520
                                                               71.341415
             88.704941
                                                    17.442156
                                                      homicidefitted
  externalfitted
                   alcohol
                            alcoholfitted
                                            homicide
0
       74.968010
                  0.639138
                                 0.794344
                                           16.316818
                                                            16.284573
1
       74.963066
                  0.677409
                                 0.837575
                                          16.859964
                                                            16.270697
       74.950226
                  0.866443
                                 0.877835
                                           15.219254
                                                            16.262882
                                           16.742825
       74.929466
                  0.867308
                                 0.915115
                                                            16.261148
4
                                 0.949407
                                           14.947726
                                                            16.265511
       74.900757
                  1.019163
```

df.describe()

	agecell	all a	llfitted	internal	intern	alfitted	\
count	50.000000	48.000000 5	0.000000	48.000000	5	0.000000	
mean	21.000000	95.672722	5.802841	20.285294	2	0.281301	
std	1.126957	3.831062	3.286415	2.253907		1.994682	
min	19.068493	88.427757	1.706146	15.977087	1	6.738131	
25%	20.075342	92.785929	3.040606	18.597654	1	8.674128	
50%	20.999995	95.686272	5.178303	20.288866	2	0.537065	
75%	21.924658	98.025751 9	7.786827	21.976349	2	1.658084	
max	22.931507	105.268349 10	2.891762	24.372910	2	4.043783	
	external	externalfitted	l alcoh	ol alcohol	fitted	homicid	e
count	48.000000	50.000000	48.0000	00 50.	000000	48.00000	0
mean	75.387436	75.521538	1.2573	37 1.	267447	16.91206	6
std	2.986008	2.269975	0.3503	12 0.	259862	0.72998	2
min	71.341415	73.157860	0.6391	38 0.	794344	14.94772	6
25%	73.042023	74.061251	0.9961	52 1.	072381	16.61199	6
50%	74.813251	74.736385	1.2119	41 1.	247127	16.98535	3
75%	77.242350	76.063623	1.4701	19 1.	445450	17.28806	7
max	83.330986	81.783722	2.5193	09 1.	817361	18.41097	3

Data Manipulation

```
import numpy as np
df['const'] = 1
df['age'] = df['agecell'] - 21
df['over21'] = np.where(df['agecell'] >=21, 1, 0)
df['over21_age'] = df['age']*df['over21']
df['age2'] = df['age']*df['age']
df['over21_age2'] = df['age2']*df['over21']
```

Index	const	age	over21	over21_age	age2	over21_age2
0	1	-1.9315071	0	-0	3.7307198	0
1	1	-1.8493156	0	-0	3.4199684	0
2	1	-1.7671242	0	-0	3.1227279	0
3	1	-1.6849308	0	-0	2.8389919	0

$ar{M}_{a}=lpha+ ho D_{a}+\gamma a+e_{a}$

```
Dep. Variable:
                           all
                               R-sauared:
                                                          0.595
Model:
                           OLS
                                Adi. R-squared:
                                                          0.577
Method:
                   Least Squares F-statistic:
                                                          32.99
Date:
                Sat, 21 Jul 2018 Prob (F-statistic):
                                                     1.51e-09
Time:
                       19:27:22
                                Log-Likelihood:
                                                         -110.41
No. Observations:
                            48
                                ATC:
                                                          226.8
Df Residuals:
                            45
                                BTC:
                                                          232.4
Df Model:
Covariance Type:
                      nonrobust
             coef std err t P>|t| [0.025 0.975]
const 91.8414 0.805 114.083 0.000 90.220 93.463
         -0.9747 0.632 -1.541
                                      0.130 -2.249 0.299
age
over21
         7.6627 1.440 5.320
                                       0.000
                                             4.762 10.564
```

Valid RD

Nonlinear Trend with no Discontinuity

Nonlinearities in an RD

$$ar{M}_{a} = lpha +
ho D_{a} + \gamma_{1} a + \gamma_{2} a^{2} + e_{a}$$

$$egin{align} M_a &= lpha +
ho D_a + \gamma (a-a_0) + \delta [(a-a_0)D_a] + e_a \ &[lpha +
ho + (\gamma + \delta)(a-a_0)] - [lpha + \gamma (a-a_0)] \ &\mathsf{TE} =
ho + \delta [(a-a_0)] \end{aligned}$$

4□ > 4□ > 4□ > 4□ > 4□ > 4□ > 9

12 / 19

Vitor Kamada ECO 6100 Econometrics June 2017

$ar{M}_{a}=lpha+ ho D_{a}+\gamma_{1}a+\gamma_{2}a^{2}+e_{a}$

```
Dep. Variable:
                                all
                                      R-squared:
                                                                      0.657
Model:
                                01.5
                                      Adi. R-squared:
                                                                      0.634
Method:
                       Least Squares
                                      F-statistic:
                                                                      28.12
Date:
                    Sat, 21 Jul 2018
                                      Prob (F-statistic):
                                                                   2.61e-10
Time:
                            19:52:01
                                      Log-Likelihood:
                                                                     -106.38
No. Observations:
                                                                      220.8
                                 48
                                      AIC:
Df Residuals:
                                 44
                                      BIC:
                                                                       228.2
Df Model:
Covariance Type:
                          nonrobust
                coef
                      std err
                                        t
                                               P>|t|
                                                          [0.025
                                                                     0.9751
                         0.837
                                  110.994
                                               0.000
                                                          91.216
                                                                     94.590
const
            92.9027
age
            -0.9747
                         0.588
                                   -1.657
                                               0.105
                                                          -2.160
                                                                      0.211
age2
             -0.8187
                         0.289 -2.835
                                               0.007
                                                          -1.401
                                                                     -0.237
over21
              7.6627
                         1.339
                                    5.721
                                               0.000
                                                         4.963
                                                                     10.362
```

Vitor Kamada ECO 6100 Econometrics June 2017 13 / 19

4□ > 4□ > 4 = > 4 = > = 900

```
ar{M}_a = lpha + 
ho D_a + \gamma (a - a_0) + \delta [(a - a_0)D_a] + e_a result2 = sm.OLS(df['all'],
```

```
Dep. Variable:
                               all
                                    R-squared:
                                                                  0.668
Model:
                               01.5
                                    Adi. R-squared:
                                                                  0.645
Method:
                                    F-statistic:
                     Least Squares
                                                                  29.47
Date:
                   Sat, 21 Jul 2018
                                    Prob (F-statistic):
                                                               1.33e-10
Time:
                          19:54:34
                                    Log-Likelihood:
                                                                 -105.64
No. Observations:
                                48
                                    AIC:
                                                                  219.3
Df Residuals:
                                44
                                    BIC:
                                                                  226.8
Df Model:
Covariance Type:
                         nonrobust
               coef
                      std err
                                      t
                                            P>|t|
                                                      [0.025
                                                                 0.9751
const
            93.6184
                        0.932 100.399
                                            0.000
                                                      91.739
                                                                 95.498
            0.8270
                       0.819
                                  1.010
                                            0.318
                                                      -0.823
                                                                  2.477
age
                        1.319 5.811
over21
            7.6627
                                            0.000
                                                      5.005
                                                                 10.320
                        1.158
                                            0.003 -5.937
over21 age -3.6034
                                 -3.111
                                                                -1.269
```

Vitor Kamada ECO 6100 Econometrics June 2017

4□ > 4□ > 4 = > 4 = > = 900

Concave to the Left and Convex Thereafter

$$ar{M}_a = lpha +
ho D_a + \gamma_1 (a - a_0) + \gamma_2 (a - a_0)^2 + (\delta_1 [(a - a_0)D_a] + \delta_2 [(a - a_0)^2 D_a] + e_a$$

TE:
$$\rho + \delta_1(a - a_0) + \delta_2(a - a_0)^2 = 9.5$$

←□▶←□▶←≣▶←≣▶ ○■ ○○○○

$$ar{M}_a = lpha +
ho D_a + \gamma_1 (a - a_0) + \gamma_2 (a - a_0)^2 + \delta_2 [(a - a_0)^2 D_a] + \delta_2 [(a - a_0)^2 D_a] + e_a$$

coef	std err	t	P> t	[0.025	0.975]
93.0729	1.404	66.301	0.000	90.240	95.906
-0.8306	3.290	-0.252	0.802	-7.470	5.809
-0.8403	1.615	-0.520	0.606	-4.100	2.419
9.5478	1.985	4.809	0.000	5.541	13.554
-6.0170	4.653	-1.293	0.203	-15.407	3.373
2.9042	2.284	1.271	0.211	-1.706	7.514
	93.0729 -0.8306 -0.8403 9.5478 -6.0170	93.0729 1.404 -0.8306 3.290 -0.8403 1.615 9.5478 1.985 -6.0170 4.653	93.0729 1.404 66.301 -0.8306 3.290 -0.252 -0.8403 1.615 -0.520 9.5478 1.985 4.809 -6.0170 4.653 -1.293	93.0729 1.404 66.301 0.000 -0.8306 3.290 -0.252 0.802 -0.8403 1.615 -0.520 0.606 9.5478 1.985 4.809 0.000 -6.0170 4.653 -1.293 0.203	93.0729 1.404 66.301 0.000 90.240 -0.8306 3.290 -0.252 0.802 -7.470 -0.8403 1.615 -0.520 0.606 -4.100 9.5478 1.985 4.809 0.000 5.541 -6.0170 4.653 -1.293 0.203 -15.407

Vitor Kamada ECO 6100 Econometrics June 2017 16 / 19

Y = Mortality of Motor Vehicle Accidents

	coef	std err	z	P> z	[0.025	0.975]
const	30.1883	0.562	53.716	0.000	29.087	31.290
	0.6801	3.816	0.178	0.859	-6.800	8.160
age2	4.4599	4.716	0.946	0.344	-4.783	13.702
over21	5.8925	1.329	4.433	0.000	3.287	8.498
over21_age	-15.1667	6.351	-2.388	0.017	-27.614	-2.720
over21 age2	6.9652	7.053	0.988	0.323	-6.858	20.789

Sharp RD Estimates of MLDA Effects on Mortality

Dependent	Ag	ges 19–22	Ages 20-21		
variable	(1)	(2)	(3)	(4)	
All deaths	7.66	9.55	9.75	9.61	
	(1.51)	(1.83)	(2.06)	(2.29)	
Motor vehicle	4.53	4.66	4.76	5.89	
accidents	(.72)	(1.09)	(1.08)	(1.33)	
Suicide	1.79	1.81	1.72	1.30	
	(.50)	(.78)	(.73)	(1.14)	
Homicide	.10	.20	.16	45	
	(.45)	(.50)	(.59)	(.93)	
Other external causes	.84	1.80	1.41	1.63	
	(.42)	(.56)	(.59)	(.75)	
All internal causes	.39	1.07	1.69	1.25	
	(.54)	(.80)	(.74)	(1.01)	
Alcohol-related causes	.44	.80	.74	1.03	
	(.21)	(.32)	(.33)	(.41)	
Controls	age	age, age ² , interacted with over-21	age	age, age ² , interacted with over-21	
Sample size	48	48	24	24	

Vitor Kamada ECO 6100 Econometrics June 2017 18 / 19

RD Estimates of MLDA Effects on Mortality by Cause of Death

