COMP 312 Assignment 3

Daniel Braithwaite March 21, 2016

1 Python

1.1 Ellipse Problem

```
import math
class Ellipse(object):
        """The_Ellipse_class"""
        def __init__(self, a, b):
                 self.a = a;
                 self.b = b;
        def area (self):
                return math.pi * self.a * self.b
        def eccentricity (self):
                return math.sqrt(1 - math.pow(self.b/self.a, 2))
if _-name_- = "_-main_-":
        ellipse = Ellipse (10, 5)
        print "Area: " + str(ellipse.area())
        print "Eccentricity: " + str(ellipse.eccentricity())
This program outputs
                      Area: 157.079632679
                                                           (1)
                        Eccentricity: 1.0
                                                          (2)
     Chi Square Problem
```

1.2.1 Part B Solution

```
import random
import math
import numpy

def chisquarevariate(k):
    """Generates_a_variate_from_chi_square_distrubuton_with_paramater_k"""

s = 0
    for i in range(k):
        s += math.pow(random.normalvariate(0, 1), 2)
```

return s

The output for this section is the following table

k	E(X)	var(X)
1	1.0310970666411978	2.1809895852678212
2	2.0196390351470401	4.0906849280367874
3	3.0104658433374825	6.0929914117158352
4	3.9938676109902742	8.0085366007510803
5	4.9926872174841925	10.172262735835909
6	5.9559869106853442	11.465470122520625
7	6.9672714050261986	13.834253416945165
8	8.0347194125058135	16.044484561872114

1.2.2 Part C Solution

```
import random
import math
import numpy

def chisquarevariate(k):
    """Generates_a_variate_from_chi_square_distrubuton_with_paramater_k"""

s = 0
    for i in range(k):
        s += math.pow(random.normalvariate(0, 1), 2)
```

return s

```
def estimate(k, n):
        """ Estimate_expected_value_and_variance_over_n_runs"""
        variates = []
        for i in range(n):
                variates.append(chisquarevariate(k))
        return (numpy.mean(variates), numpy.var(variates))
def conf(L):
        """ Compute_a_95_percent_confidence_interval"""
        lower = numpy.mean(L) - 1.96 * numpy.std(L)/math.sqrt(len(L))
        upper = numpy.mean(L) + 1.96 * numpy.std(L)/math.sqrt(len(L))
        return (lower, upper)
if __name__ == "__main__":
        k = 9
        n = 10000
        m = 50
        random. seed (123)
        for i in range (1, k):
                Lvar = []
                Lmean = []
                for j in range(m):
                        res = estimate(i, n)
                        Lmean.append(res[0])
                        Lvar.append(res[1])
                confMean = conf(Lmean)
                confVar = conf(Lvar)
                print "K_=_", i
                print "__>_Conf_Mean:_", confMean
                print "__>_Conf_Var:_", confVar
                print "\n"
```

The output from this section for $\mathbf{k}=8$ is

K = 8

 $\begin{array}{lll} \text{Conf Mean: } (7.998448633149601, \, 8.0155757558836989) \\ \text{Conf Var: } (15.966449581811148, \, 16.135066786590585) \end{array}$

1.2.3 Part D Solution

The outputs that are given from the program make sense as we know for the chi square distribution

$$E(X) \leftarrow k$$
 (3)

$$var(X) \leftarrow 2k$$
 (4)

And we can see that the output is approximately equal to this.