1 Binary operations

Addition

$$0 + 0 = 0$$

 $0 + 1 = 1$
 $1 + 0 = 1$
 $1 + 1 = 10$

1+1=2 but since we are working with binary here, we write $(2)_{10}$ as $(10)_2$.

Signed binary numbers

To represent a negative number in binary, we apply 2's complement.

Consider the decimal number 2.

The 32-bit representation of $(2)_{10}$ is:

 $(00000000\ 00000000\ 00000000\ 00000010)_2$

To find the 2's complement, we first invert all the bits of the binary representation of 2. And this what we get:

This is 1's complement of 2.

Now, for 2's complement, we add a 1 to this 1's complement.

111111111111111111111111111111111111111
+1
111111111111111111111111111111111111111

Now, if we add -2 and 2, we end up with 0.

This condition is satisfied by their binary representations as well.

Now, notice there that we still have a 1 as a carry. In assembly languages, this 1 goes into a special register known as **carry register**.