

A BRIEF REPORT ON PERMANENT MAGNET ASSISTED SYNCHRONOUS RELUCTANCE MOTORS

Petr Zakopal

XP14DES

Structure of the report:

- Introduction,
- Design,
- Control,
- Comparison to other machines,
- Recent research interest.

actively used in automotive and traction aplications

control strategies based on known principles

actively used in automotive and traction aplications

control strategies based on known principles

actively used in automotive and traction aplications

control strategies based on known principles

actively used in automotive and traction aplications

control strategies based on known principles

Stator

- Delta winding
- Star winding
- Star-Delta hybrid winding

"elevates the torque performance without altering the stator current"

Rotor

- internal/external
- power factor/wide power range => saliency ratio (L_d/L_q)
- shape/placement/number of flux bariers
- magnets rare earth (with neodymium/dysprosium), non-rare earth (ferrites)

BONTHU, Sai Sudheer Reddy; CHOI, Seungdeog; GORGANI, Aida; JANG, Kibong. Design of permanent magnet assisted synchronous reluctance motor with external rotor architecture. In: 2015 IEEE In- ternational Electric Machines & Drives Conference (IEMDC). Coeur d'Alene, ID: IEEE, 05/2015, pp. 220–226. ISBN 978-1-4799-7941-7. Available from DOI: 10.1109/IEMDC.2015.7409063.

- embedded along the flux barriers, facing the *q*-axis (a) (improvement of torque)
- crossing the flux barriers, facing the *d*-axis (b)

NGO; HSIEH. Performance Analysis of Synchronous Reluctance Motor with Limited Amount of Permanent Magnet. Energies. 09/2019, roč. 12, č. 18, p. 3504. ISSN 1996-1073. Available from DOI: 10.3390/en12183504.

Control

$$T = \frac{3}{2} p_{p} |\psi_{dq} \times \underline{i_{dq}}| = \frac{3}{2} p_{p} (\psi_{d} i_{q} - \psi_{q} i_{d}). \tag{1}$$

$$T = \frac{3}{2} \mathbf{p_p} (\mathbf{L}_d i_d i_q - (\mathbf{L}_q i_q - \psi_{\mathrm{PM}}) i_d) = \frac{3}{2} \mathbf{p_p} (\mathbf{L}_d i_d i_q - \mathbf{L}_q i_q i_d + \psi_{\mathrm{PM}} i_d).$$

2)

Recent improvement was achieved:

- by using non-rare earth materials such as ferrites,
- by using novel hybrid stator winding structures,
- by analyzing rotor structure types and motor parameters based on the permanent magnet position and perfecting the design for the specific application,
- improving control strategies,
- variable flux motor (strategy).

Thank you for your attention.