

Group A

PoAn Chen, Zhongwei Wang, Yibing Chen

> Predictive Modeling Professor: Lina Xu

> > 04/26/2022

Distribution of Labor

Data Overview: Zhongwei Wang

Data Visualization: Yibing Chen

Best Select: Yibing Chen

Ridge & Lasso: Zhongwei Wang

Decision Tree: Po An Chen

Random Forest & Boosting: Po An Chen

Conclusion: Po An Chen&Zhongwei Wang

Target

Predictors

Age Age of primary beneficiary Sex Insurance contractor gender, female, male BMI Body mass index Smoker Smoking Children Number of children covered by health insurance Region The beneficiary's residential area in the U.S, northeast, southwest, northwest

Age&Sex

Medicare cost increases with age with some exceptions

Relatively high and gradually decrease from 2 to 5

Male: Declines between 15 to 25 years old

Female: Stable between 30- to 40 years

old

https://www.soa.org/globalassets/assets/files/research/projec

ts/research-health-care-birth-death-report.pdf

Commercial Aging Curve (Chart 1)

Medicare Aging Curve (Chart 10)

BMI(Body mass index)

Weight divided by height squared (kg/m^2)

Normal range: 18.5 - 24.9

Too high or too low will lead to an increase in medicare expense

BMI, basic categories

Category	BMI (kg/m ²) ^[c]	BMI Prime ^[c]
Underweight (Severe thinness)	< 16.0	< 0.64
Underweight (Moderate thinness)	16.0 – 16.9	0.64 - 0.67
Underweight (Mild thinness)	17.0 – 18.4	0.68 – 0.73
Normal range	18.5 – 24.9	0.74 – 0.99
Overweight (Pre-obese)	25.0 – 29.9	1.00 – 1.19
Obese (Class I)	30.0 – 34.9	1.20 – 1.39
Obese (Class II)	35.0 – 39.9	1.40 – 1.59
Obese (Class III)	≥ 40.0	≥ 1.60

https://en.wikipedia.org/wiki/Body_mass_index

Best Select

Ridge & Lasso

Decision Tree

Random Forest & Boosting

Conclusion

6

Data Overview

Medicare expense

Smoker:

Smoker > Non-Smoker

Number of children:

More children usually result in more Medicare cost

Region:

Regional differences may lead to differences in medical spending

Summary of Data

```
summary(med)
```

```
children
                                      bmi
                                                                 smoker
##
         age
                        sex
                    female:662
##
   Min.
           :18.00
                                 Min.
                                        :15.96
                                                 Min.
                                                        :0.000
                                                                 No :1064
    1st Qu.:27.00
                  male :676
                                 1st Qu.:26.30
                                                 1st Qu.:0.000
                                                                 Yes: 274
##
                                 Median :30.40
##
   Median :39.00
                                                 Median :1.000
##
   Mean
         :39.21
                                 Mean
                                        :30.66
                                                 Mean :1.095
    3rd Qu.:51.00
                                 3rd Qu.:34.69
                                                 3rd Ou.:2.000
##
##
   Max.
           :64.00
                                 Max. :53.13
                                                 Max.
                                                        :5.000
                       charges
##
          region
##
    northeast:324
                    Min.
                           : 1122
   northwest:325
##
                    1st Ou.: 4740
##
    southwest:364
                    Median: 9382
##
    southeast:325
                           :13270
                    Mean
##
                    3rd Qu.:16640
##
                    Max.
                           :63770
```

Data Visualization

Data Visualization

Best Select

Ridge & Lasso

Decision Tree

Random Forest & Boosting

Conclusion

10

Data Visualization

Data Visualization

Normal Q-Q Plot

-3 -1 1 2 3

Theoretical Quantiles

Fitting Model

```
## (Intercept)
                   7.0305581
                             0.0723960
                                        97.112 < 2e-16 ***
                                        39.655 < 2e-16 ***
                   0.0345816 0.0008721
## age
## sexmale
                  -0.0754164 0.0244012
                                        -3.091 0.002038 **
## bmi
                   0.0133748
                              0.0020960 6.381 2.42e-10 ***
## children
                   0.1018568
                              0.0100995
                                        10.085 < 2e-16 ***
                   1.5543228
                             0.0302795
                                        51.333 < 2e-16
## smokerYes
## regionnorthwest -0.0637876 0.0349057
                                         -1.827 0.067860 .
                                         -4.481 8.08e-06 ***
## regionsouthwest -0.1571967 0.0350828
## regionsoutheast -0.1289522 0.0350271
                                         -3.681 0.000241
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.4443 on 1329 degrees of freedom
## Multiple R-squared: 0.7679, Adjusted R-squared: 0.7666
## F-statistic: 549.8 on 8 and 1329 DF, p-value: < 2.2e-16
```

Best Select

Ridge & Lasso

Decision Tree

Random Forest & Boosting

Conclusion

13

Model Selection

Full dataset

##		model	r2	adjr2	ср	bic
##	1	1	0.4428978	0.4424809	1856.61244	-768.341
##	2	2	0.7395465	0.7391564	159.65828	-1778.456
##	3	3	0.7572654	0.7567195	60.17950	-1865.527
##	4	4	0.7621566	0.7614429	34.16713	-1885.564
##	5	5	0.7639274	0.7630413	26.02496	-1888.365
##	6	6	0.7657049	0.7646487	17.84507	-1891.278
##	7	7	0.7673647	0.7661403	10.33949	-1893.591
##	8	8	0.7679478	0.7665509	9.00000	-1889.750

Model Selection

Train-test splitting methods

```
model val.errors
##
## 1
            0.4586110
##
            0.2126700
##
            0.1962058
##
            0.1916911
## 5
            0.1911752
##
            0.1905866
##
            0.1886521
##
   8
         8
            0.1881355
```


Project Data Best Introduction Overview Select Ridge & Lasso Decision Tree & Random Forest & Conclusion 15

Model Selection

- Cross validation method
- 10-fold

```
model mean.cv.errors
##
## 1
                 0.4711180
## 2
                 0.2209773
         3
## 3
                 0.2061846
## 4
         4
                 0.2021111
## 5
                 0.2033770
         6
                 0.2013673
## 6
                 0.1986568
## 7
## 8
         8
                 0.1982912
```


Model Selection

```
## Coefficients:
               Estimate Std. Error t value Pr(>|t|)
##
## (Intercept) 7.2877234 0.0387040 188.294
                                           <2e-16 ***
## age
       0.0352849 0.0008839 39.919 <2e-16 ***
## children 0.1016311 0.0102990 9.868 <2e-16 ***
## smokerYes 1.5442724 0.0307364 50.242 <2e-16 ***
## ---
                0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Signif. codes:
##
## Residual standard error: 0.4535 on 1334 degrees of freedom
## Multiple R-squared: 0.7573, Adjusted R-squared: 0.7567
## F-statistic: 1387 on 3 and 1334 DF, p-value: < 2.2e-16
```

Ridge & Lasso

SSE +
$$\lambda \sum_{j=1}^{p} b_j^2$$

 $SSE + \lambda \sum_{j=1}^{p} |b_j|$

Best Select

Ridge & Lasso

Decision Tree

Random Forest & Boosting

Conclusion

18

Ridge & Lasso

Decision Tree

- Recursive binary splitting process that splits data into a finite set of non-overlapping regions.
- Pro: easy to interpret and display; no probability distribution assumption
- Con: vulnerable to overfitting.
- test MSE: 0.2464

& Boosting

Pruned Decision Tree

- Pruning is necessary to reduce the size of a tree and remove less valuable splits.
- Pro: reduces overfitting and can lead to a simpler, more interpretable tree; automatically performs variable selection.
- Using Cross Validation to find the best pruned tree, n=11

Best Select

Ridge & Lasso

Decision Tree

Random Forest & Boosting

Conclusion

21

Pruned Decision Tree

 Using Cross Validation to find the best pruned tree, n=11

• test MSE: 0.1890

Random Forest

- Combines the results of a set of decision trees fitted to a different bootstrapped sample of the training data, then using the average to make a final prediction.
- Pro: reduces overfitting and variance of the base tree, leading to higher prediction accuracy.
- Con: loses the interpretability of decision trees and is computationally intensive.
- Randomly select 3 parameter and build 4500 trees ->
 minimum MSE

Random Forest

- Variable importance
- smoker, age
- The result is same as the best selection in the linear regression model with p=2.

Gradient Boost Trees

- ullet The boosting approach learns slowly controlled by shrinkage parameter λ .
- Given the current model, boosting fit a decision tree to the residuals from the model.
- Lamda=0.01 has the smallest test MSE in each Depth.

Best Select

Ridge & Lasso

Decision Tree

Random Forest & Boosting

Conclusion

25

Gradient Boost Trees

• Lambda: Around 0.0012, the test MSE has the minimum.

Best Select

Ridge & Lasso

Decision Tree

Random Forest & Boosting

Conclusion

Model Comparison & Observations

Accuracy

Interpret ability

model <int></int>	MSE.Im <dbl></dbl>	branchs <int></int>	MSE.tr <dbl></dbl>	treeN <dbl></dbl>	MSE.rf_p3 <dbl></dbl>	Depth <chr></chr>	MSE.bo_I0.0012 <dbl></dbl>
1	0.4586110	5	0.2207118	1500	0.1743677	Depth3	0.1673605
2	0.2126700	6	0.2029762	2000	0.1746719	Depth4	0.1652118
3	0.1962058	7	0.2043064	2500	0.1745387	Depth5	0.1656875
4	0.1916911	8	0.1908290	3000	0.1743732	Depth6	0.1667413
5	0.1911752	9	0.1904854	3500	0.1742815	Depth7	0.1675478
6	0.1905866	10	0.1907478	4000	0.1743549	Depth8	0.1684804
7	0.1886521	11	0.1890266	4500	0.1741359	Depth9	0.1692687
8	0.1881355	12	0.1915374	5000	0.1741971	Depth10	0.1702054

Final Model

- Interpret ability
- Pruned tree with 6 branches
- Test MSE=0.2030
- Question:

Man, smoker, age 37, children 0, BMI 32,

Northeast

Best Select

Ridge & Lasso

Decision Tree

Random Forest & Boosting

Conclusion

Smoker: no

28

Final Model

Age & Sex: Significantly affects premiums

Long term: Different rates for each age and gender

Short term: In same level of age, premium are the same regardless of sex

BMI: May affect the underwriting results of long-term insurance, and may result

in more premium or decline

Smoker: Usually affects premiums, but does not result in a decline

Children: Not that significant as other factors

Region: The partition is too broad, the difference is decreased

Thank you!

