Calc: Papers

Sven Köppel

koeppel@fias.uni-frankfurt.de

Generation date: Monday 17th February, 2014, 14:05

This writeup follows Calc2 and lists papers **Contents** I read, sorted by their ideas.

	1	1.1 NSS 2006	
Definition of frequently used formulas: $\mathrm{d}s^2 = -f(r)\mathrm{d}t^2 + f^{-1}(r)\mathrm{d}r^2 + r^2\mathrm{d}\Omega^2$	2	Other papers 2.1 N Aug 2010	1 2 3
$T_H = \left(\frac{1}{4\pi} \frac{\mathrm{d}g_{00}}{\mathrm{d}r}\right)_{r=r_H}$ $\gamma(s; x) = \int_0^x t^{s-1} e^{-t} \mathrm{d}t$	3	Papers using Holographic approaches 3.1 NS Okt 2012	
	4	Papers using Self-Completeness and Self-Regular approaches 4.1 NIM 07.11.2013	4

Papers using NC approaches

NSS 2006

Title Noncommutative geometry inspired Schwarzschild black hole

Keywords NC

Genutzt von Rizzo 2006

Auch eines der wichtigsten, die ich gelesen habe.

$$\rho_{\theta}(r) = \frac{M}{(4\pi\theta)^{3/2}} e^{-r^2/4\theta}$$
 (1)

$$f(r) = 1 - \frac{4M}{r\sqrt{\pi}}\gamma(3/2, r^2/4\theta)$$
 (2)

$$r_H = \frac{4M}{\sqrt{\pi}} \gamma(3/2; r_H^2/4\theta) \tag{3}$$

$$T_{H} = \frac{1}{4\pi r_{H}} \left(1 - \frac{r_{H}^{3}}{4\theta^{3/2}} \frac{e^{-r_{H}^{2}/4\theta}}{\gamma(3/2, r_{H}^{2}/4\theta)} \right)$$
(4)

Rizzo 2006 1.2

Title Noncommutative inspired black holes in extra dimensions

Basiert auf NSS 2006 NC Ansatz (Section 1.1)

$$\rho_{\theta}(r) = \frac{M}{(4\pi\theta)^{3/2}} e^{-r^2/4\theta}$$

$$\to \frac{M}{(4\pi\theta)^{(n+3)/2}} e^{-r^2/4\theta}$$
(6)

$$ightarrow \frac{M}{(4\pi\theta)^{(n+3)/2}} e^{-r^2/4\theta}$$
 (6)

Other papers

2.1 N Aug 2010

Title Entropic force, noncommutative gravity and ungravity

Keywords Emergent gravity, Verlinde

Basic Ideas Newton F(r) herleiten aus S = $k_B \ln N$. Später mit n Raumdimensionen und in ${\mathcal G}$ einige Effekte.

$$f(r) = 1 - \frac{2M}{r^{n-2}c^2}\mathcal{G}(r)$$

$$F = \frac{GMm}{r^2} \left(1 + 4L^2 \frac{\partial S}{\partial A}\right)$$
(8)

$$F = \frac{GMm}{r^2} \left(1 + 4L^2 \frac{\partial S}{\partial A} \right) \tag{8}$$

Nicht so passend zum Thema f(r).

2.2 N Feb 2012

Title Nonlocal and generalized uncertainity principle black holes

Keywords EH-Action

Basic Ideas Operator A(x - y), running G(r), Length scale l of theory

Nicht passend zum Thema.

$$S = \frac{1}{16\pi G} \int d^4x \sqrt{-g} \mathcal{R}(x)$$

$$\mathcal{R}(x) = \int d^4y \sqrt{-g} \mathcal{A}^2(x - y) R(y)$$

$$\mathcal{A}^2(x - y) = \mathcal{A}^2(\Box_x) \delta^4(x - y)$$

$$\Box_x = l^2 g_{\mu\nu} \nabla^{\mu} \nabla^{\nu}$$

$$\mathcal{A}(p^2) = \exp(l^2 p^2 / 2) \dots$$

$$\mathcal{T}_{\mu\nu} = \mathcal{A}^{-2}(\Box) T_{\mu\nu}$$

$$f(r) = 1 - \frac{GM\gamma(2; r/\sqrt{\beta})}{r}$$

3 Papers using Holographic approaches

3.1 NS Okt 2012

Title Holographic screens in ultraviolet selfcomplete quantum gravity

Keywords Holography

Das Hauptpaper, was ich als erstes las, darüber geht auch Calc1.

Das Paper umfasst zwei Ansätze, $h_{\alpha}(r)$ und h(r).

Im ersten Ansatz setzt Bedingung $M_P = M_0$, $M_0 = M(r_0)$ das $\alpha = \alpha_0$, $r_0 = L_P$. Im zweiten Ansatz wird eine der drei Bedigungen an eine Metrik verworfen.

$$f(r) = 1 - \frac{2MG}{r} h_{\alpha,\dots}(r) \tag{9}$$

$$h_{\alpha}(r) = \frac{r^3}{(r^{\alpha} + (\tilde{r}_0)^{\alpha}/2)^{3/\alpha}}$$
 (10)

$$h(r) = \frac{r^2}{r^2 + L^2} = 1 - \frac{L^2}{r^2 + L^2}$$
 (11)

$$\rho(r) = \frac{M}{2\pi r} \frac{L^2}{(r^2 + L^2)^2}$$
 (12)

$$m(r) = \frac{Mr^2}{L^2 + r^2} = M - \frac{LM}{L^2 + r^2}$$
 (13)

3.2 NS 06.11.2013

Title Holographic screens in ultraviolet selfcomplete quantum gravity

Keywords Holography

Source Elsevier Preprint by Mail am 12.11.13

$$\rho(r) = \frac{M}{4\pi r^2} \delta(r) \tag{14}$$

$$\delta(r) = \frac{\mathrm{d}}{\mathrm{d}r}\Theta(r) \tag{15}$$

$$\Theta(r) \to h(r) \tag{16}$$

$$\rho(r) = \frac{M}{4\pi r^2} \frac{d}{dr} h(r) = T_0^0$$
 (17)

$$h(r) = 1 - L^2/(r^2 + L^2)$$
 (18)

$$\sigma_h = M/(4\pi r_h^2) \tag{19}$$

4 Papers using Self-Completeness and Self-Regular approaches

4.1 NIM 07.11.2013

Title Self-Completeness and the Generalized Uncertainity Principle

$$f(r) = 1 - 2\frac{GM}{c^2r}\gamma(2; \frac{r}{\sqrt{\beta}})$$
 (20)

Keywords -

Ein neues veröffentlichtes Paper auf ArXiv, parallel zum Preprint. Erstmals hübsche Bilder. Herleitung von f(r) aus Operator \mathcal{A} :