

Tensor-space Galerkin POD for (optimal control of) parametric flow equations

Peter Benner Jan Heiland

July 18

Valencia, ICIAM 2019
Profs. Quaini&Chen&Rozza's MS:
ROM for Parametric CFD Problems

- 1. Introduction
- 2. Optimal Space Time Product Bases
- 3. Relation to POD
- 4. Optimal Space-Time-Parameter Bases
- 5. Space-Time Galerkin-POD for Optimal Control

$$\dot{x} - \Delta x = f$$

Consider the solution of a PDE:

$$x \in L^2(I; L^2(\Omega))$$

with $I \subset \mathbb{R}$... the time-interval $\Omega \subset \mathbb{R}^n$... the spatial domain

and its numerical approximation:

$$\mathbf{x} \in \mathcal{S} \cdot \mathcal{Y}$$

with $\mathcal{S} \subset L^2(I)$... discretized time $\mathcal{Y} \subset L^2(\Omega)$... a FE space

Task: Find $\hat{S} \subset S$ and $\hat{Y} \subset Y$ of much smaller dimension to express **x**.

Space-Time Spaces

PDE solution $x \in L^2(I; L^2(\Omega))$ $S \subset L^2(I)$... discretized time $\mathcal{Y} \subset L^2(\Omega)$... a FE space

Consider finite dimensional subspaces

$$S = \text{span}\{\psi_1, \cdots, \psi_s\} \subset L^2(I)$$

$$\mathcal{Y} = \operatorname{span}\{v_1, \cdots, v_q\} \subset L^2(\Omega)$$

and the product space

$$S \cdot \mathcal{Y} \subset L^2(I; L^2(\Omega)).$$

Space-Time Spaces

We represent a function

$$\mathbf{x} = \sum_{j=1}^{s} \sum_{i=1}^{q} \mathbf{x}_{i \cdot j} \nu_{i} \psi_{j} \in \mathcal{S} \cdot \mathcal{Y}$$

via its matrix of coefficients

$$\mathbf{X} = \left[\mathbf{x}_{i\cdot j}\right]_{i=1,\dots,q}^{j=1,\dots,s} \in \mathbb{R}^{q,s}$$

and vice versa.

Section 2

Optimal Space Time Product Bases

Space-Time Spaces

Lemma

The space-time L^2 -orthogonal projection $x = \Pi_{S:\mathcal{Y}}\bar{x}$ of a function $\bar{x} \in L^2(I; L^2(\Omega))$ onto X is given as

$$\mathbf{X} = \mathbf{M}_{\mathcal{Y}}^{-1} \begin{bmatrix} ((x, v_1 \psi_1))_{\mathcal{S}.\mathcal{Y}} & \dots & ((x, v_1 \psi_s))_{\mathcal{S}.\mathcal{Y}} \\ \vdots & \ddots & \vdots \\ ((x, v_q \psi_1))_{\mathcal{S}.\mathcal{Y}} & \dots & ((x, v_q \psi_s))_{\mathcal{S}.\mathcal{Y}} \end{bmatrix} \mathbf{M}_{\mathcal{S}}^{-1},$$

where

$$((x,\nu_i\psi_j))_{\mathcal{S}\cdot\mathcal{Y}}:=((x,\nu_i)_{\mathcal{Y}},\psi_j)_{\mathcal{S}}:=\int_I (\int_{\Omega} x(\xi,\tau)\nu_i(\xi)\,\mathrm{d}\xi)\psi_j(\tau)\,\mathrm{d}\tau.$$

with the mass matrices

$$\mathbf{M}_{\mathcal{S}} = \left[(\psi_i, \psi_j)_{L^2} \right]_{i,j=1,\dots,g}$$
 and $\mathbf{M}_{\mathcal{Y}} = \left[(\nu_i, \nu_j)_{L^2} \right]_{i,j=1,\dots,q}$

Jan Heiland Tensor Galerkin POD 7/2

Space-Time Spaces

Lemma (Space-time discrete L^2 -product)

Let x^1 , $x^2 \in S \cdot \mathcal{Y}$. Then, with

$$\mathbf{x}^\ell = [\mathbf{x}^\ell_{1\cdot 1}, \dots, \mathbf{x}^\ell_{q\cdot 1}, \ \mathbf{x}^\ell_{1\cdot 2}, \dots, \mathbf{x}^\ell_{q\cdot 2}, \ \dots, \ \mathbf{x}^\ell_{1\cdot s}, \dots, \mathbf{x}^\ell_{q\cdot s}]^\mathsf{T} =: \mathsf{vec}(\mathbf{X}^\ell),$$

the inner product in $S \cdot \mathcal{Y}$ is given as

$$((x^1, x^2))_{\mathcal{S} \cdot \mathcal{Y}} = \int_I \int_{\Omega} x^1 x^2 \, \mathrm{d}\xi \, \mathrm{d}\tau = (\mathbf{x}^1)^\mathsf{T} \left(\mathbf{M}_{\mathcal{S}} \otimes \mathbf{M}_{\mathcal{Y}} \right) \mathbf{x}^2$$

and the induced norm as

$$\|\boldsymbol{x}^{\ell}\|_{\mathcal{S}.\mathcal{Y}}^2 = \|\boldsymbol{x}^{\ell}\|_{\boldsymbol{\mathsf{M}}_{\mathcal{S}}\otimes\boldsymbol{\mathsf{M}}_{\mathcal{Y}}}^2 = \|\boldsymbol{\mathsf{M}}_{\mathcal{Y}}^{1/2}\boldsymbol{\mathsf{X}}^{\ell}\boldsymbol{\mathsf{M}}_{\mathcal{S}}^{1/2}\|_F^2,$$

$$\ell = 1, 2.$$

Optimal Bases

Lemma (Optimal low-rank bases in space)

Given $x \in \mathcal{S} \cdot \mathcal{Y}$ and the associated matrix of coefficients \mathbf{X} . The best-approximating subspace $\hat{\mathcal{Y}}$ in the sense that $\|\Pi_{\mathcal{S}.\hat{\mathcal{Y}}}x - x\|_{\mathcal{S}.\mathcal{Y}}$ is minimal over all subspaces of \mathcal{Y} of dimension \hat{q} is given as $\operatorname{span}\{\hat{v}_i\}_{i=1,\dots,\hat{q}}$, where

$$\begin{bmatrix} \hat{v}_1 \\ \hat{v}_2 \\ \vdots \\ \hat{v}_{\hat{q}} \end{bmatrix} = V_{\hat{q}}^\mathsf{T} \mathbf{M}_{\mathcal{Y}}^{-1/2} \begin{bmatrix} v_1 \\ v_2 \\ \vdots \\ v_q \end{bmatrix},$$

where $V_{\hat{a}}$ is the matrix of the \hat{q} leading left singular vectors of

$$\mathbf{M}_{\mathcal{Y}}^{1/2}\mathbf{X}\mathbf{M}_{\mathcal{S}}^{1/2}$$

The same arguments apply to the transpose of X:

Lemma (Optimal low-rank bases in time¹)

Given $x \in \mathcal{S} \cdot \mathcal{Y}$ and the associated matrix of coefficients \mathbf{X} . The best-approximating subspace $\hat{\mathcal{S}}$ in the sense that $\|\Pi_{\hat{\mathcal{S}},\mathcal{Y}}x - x\|_{\mathcal{S},\mathcal{Y}}$ is minimal over all subspaces of \mathcal{S} of dimension $\hat{\mathbf{s}}$ is given as $\operatorname{span}\{\hat{\psi}_j\}_{j=1,\dots,\hat{\mathbf{s}}}$, where

$$\begin{bmatrix} \hat{\psi}_1 \\ \hat{\psi}_2 \\ \vdots \\ \hat{\psi}_{\hat{s}} \end{bmatrix} = U_{\hat{s}}^\mathsf{T} \mathbf{M}_{\mathcal{S}}^{-1/2} \begin{bmatrix} \psi_1 \\ \psi_2 \\ \vdots \\ \psi_s \end{bmatrix},$$

where Us is the matrix of the s leading right singular vectors of

$$\mathbf{M}_{\mathcal{Y}}^{1/2}\mathbf{X}\mathbf{M}_{\mathcal{S}}^{1/2}.$$

¹see Baumann&PB&JH '16: ArXiv:1611.04050

Section 2

Optimal Space Time Product Bases

Relation to POD

The solution of a spatially discretized PDE

$$x: \tau \mapsto \mathbb{R}^q$$

is projected to $S \cdot \mathbb{R}^q$ via

$$\Pi_{S:\mathcal{Y}} X = \begin{bmatrix} (x_1, \psi_1)_{L^2} & \dots & (x_1, \psi_s)_{L^2} \\ \vdots & \ddots & \vdots \\ (x_q, \psi_1)_{L^2} & \dots & (x_q, \psi_s)_{L^2} \end{bmatrix} \mathbf{M}_{S}^{-1}.$$

In the (degenerated) case that ψ_j is a delta distribution centered at $\tau_j \in I$, the coefficient matrix degenerates to

$$\begin{bmatrix} x_1(\tau_1) & \dots & x_1(\tau_s) \\ \vdots & \ddots & \vdots \\ x_q(\tau_1) & \dots & x_q(\tau_s) \end{bmatrix}$$

- the standard POD snapshot matrix.

Optimal Space-Time-Parameter Bases

Now consider, in addition, uncertainty, i.e. solutions

$$X(\tau,\xi,W(\omega))$$

with $\tau \in I \subset \mathbb{R}$... the time variable $\xi \in \Omega \subset \mathbb{R}^n$... the spatial variable w ... a random variable

and its numerical approximation:

$$\boldsymbol{x} \in \mathcal{S} \cdot \mathcal{Y} \cdot \mathcal{W}$$

with $\mathcal{S} \subset L^2(I)$... discretized time $\mathcal{Y} \subset L^2(\Omega)$... a FE space \mathcal{W} ... from Polynomial Chaos Expansion

Task: Also, find $\hat{S} \cdot \hat{\mathcal{Y}} \cdot \hat{\mathcal{W}}$ of much smaller dimension to express **x**.

Space-Time-Uncertainty Spaces

Again, we represent a function

$$\mathbf{x} = \sum_{i=1}^{s} \sum_{i=1}^{q} \sum_{\ell=1}^{w} \mathbf{x}_{i \cdot j \cdot \ell} \, \nu_{i} \psi_{j} \, \eta_{\ell} \in \mathcal{S} \cdot \mathcal{Y} \cdot \mathcal{W}$$

via its tensor of coefficients

$$\mathbf{X} = \begin{bmatrix} \mathbf{x}_{i \cdot j \cdot \ell} \end{bmatrix}_{i=1,\dots,s}^{i=1,\dots,q} \in \mathbb{R}^{q,s,w}$$

and vice versa.

Optimal Space-Time-Parameter Bases

What is the norm of this tensor product space?² – Here, one may base on the expected value

$$\mathbb{E}\|x\|_{\mathcal{S}.\mathcal{Y}}^2 = \int_{\Sigma} \int_{I} \int_{\Omega} x(\tau, \xi, \omega) \, d\xi \, d\tau \, d\mathbb{P}(\omega)$$

to get for

$$S \cdot \mathcal{Y} \cdot \mathcal{W} \ni \mathbf{x} = \sum_{j=1}^{s} \sum_{i=1}^{q} \sum_{\ell=1}^{w} \mathbf{x}_{i \cdot j \cdot \ell} \, v_i \psi_j \, \eta_\ell$$

that

$$\begin{aligned} \|\mathbf{x}\|_{\mathcal{S}.\mathcal{Y}\cdot\mathcal{W}}^2 &= \int_{\Sigma} \int_{I} \int_{\Omega} x(\tau,\xi,\omega) \, \mathrm{d}\xi \, \mathrm{d}\tau \, \mathrm{d}\mathbb{P}(\omega) \\ &= \mathrm{vec}(\mathbf{X})^{\mathsf{T}} \left(\mathbf{M}_{\mathcal{S}} \otimes \mathbf{M}_{\mathcal{Y}} \otimes \mathbf{M}_{\mathcal{W}}\right) \mathrm{vec}(\mathbf{X}). \end{aligned}$$

Jan Heiland Tensor Galerkin POD 15/2

²Here is the question how to extend this to, say, physical parameters...

Optimal Space-Time-Parameter Bases

As for space and time, that \hat{w} -dimensional subspace $\hat{W} \subset W$ so that $S \cdot \hat{\mathcal{Y}} \cdot \hat{W}$ optimally approximates a given $\mathbf{x} \in \mathbb{R}$ is defined via an SVD.

With

$$\|\mathbf{X}\|_{\mathcal{S}.\mathcal{Y}.\mathcal{W}}^2 = \|\operatorname{vec}(\mathbf{X})\|_{\mathbf{M}_{\mathcal{S}}\otimes\mathbf{M}_{\mathcal{Y}}\otimes\mathbf{M}_{\mathcal{W}}}^2 = \|\mathbf{M}_{\mathcal{W}}^{1/2}\mathbf{X}^{\mathcal{W}.\mathcal{S}\mathcal{Y}}(\mathbf{M}_{\mathcal{Y}}\otimes\mathbf{M}_{\mathcal{S}})^{1/2}\|_{F},$$

with the matrization $\mathbf{X}^{W \cdot \mathcal{S} \mathcal{Y}}$ of the tensor \mathbf{X} along the dimension of W,

• the optimally approximating subspace is defined by the \hat{w} leading left singular vectors of

$$\boldsymbol{M}_{\mathcal{W}}^{1/2}\boldsymbol{X}^{\mathcal{W}\cdot\mathcal{SY}}(\boldsymbol{M}_{\mathcal{Y}}\otimes\boldsymbol{M}_{\mathcal{S}})^{1/2}.$$

Jan Heiland Tensor Galerkin POD 16/2

²see De Lathauwer&De Moor&Vandewalle A multilinear singular value decomposition

Section 5

Space-Time Galerkin-POD for Optimal Control

Target: A Space-time Heart Shape

Figure: Illustration of the state, the adjoint, and the target and their approximation via POD-reduced space-time bases.

Finite Horizon Optimal Control of PDEs

For a target trajectory $x^* \in L^2(I; L^2(\Omega))$ and a penalization parameter $\alpha > 0$, consider

$$\mathcal{J}(x,u) := \frac{1}{2} \|x - x^*\|_{L^2}^2 + \frac{\alpha}{2} \|u\|_{L^2}^2 \to \min_{u \in L^2(I; L^2(\Omega))}$$

subject to the generic PDE

$$\dot{x} - \Delta x + N(x) = f + u, \quad x(0) = 0.$$
 (FWD)

If the nonlinearity is smooth, then necessary optimality conditions for (x, u) are given through $u = \frac{1}{\alpha}\lambda$, where λ solves the adjoint equation

$$-\dot{\lambda} - \Delta \lambda + D_x N(x)^{\mathsf{T}} \lambda + x = x^*, \quad \lambda(T) = 0.$$
 (BWD)

Space-time POD for Suboptimal Controls

Algorithm (space-time-pod):

Offline Phase

- 1. Do standard forward/backward solves to compute the matrix of measurements for x and λ .
- 2. Compute optimal low-dimensional spaces \hat{S} , \hat{R} , \hat{Y} , and $\hat{\Lambda}$ for the space and time discretization of the state x and the adjoint state λ .

Online Phase

3. Solve the space-time Galerkin projected necessary optimality conditions (FWD)-(BWD)³ for the reduced costate $\hat{\lambda}$.

Evaluation

 \rightarrow Inflate $\hat{\mathbf{u}} := \frac{1}{\alpha}\hat{\lambda}$ and apply it in the full order simulation.

Jan Heiland Tensor Galerkin POD 20/2

³(FWD)-(BWD) is a two-point boundary value problem with initial and terminal conditions for which time stepping schemes like RKM do not apply.

Numerical Setup

The PDE

- 1D Burger's equation
- $I = (0,1], \Omega = (0,1)$
- Viscosity: $v = 5 \cdot 10^{-3}$
- Stepfunction as initial value
- Zero Dirichlet conditions

The optimization

 $\alpha = 10^{-3}$ (space-time-pod)

The full model

- Equidistant space and time grids
- $\mathbb{S} = \mathcal{R}$... 120 linear hat functions
- $\mathcal{Y} = \Lambda$... 220 linear hat functions

The reduced model

- $\hat{\mathcal{Y}} = \hat{\Lambda} \dots$ of dimension $\hat{q} = \hat{p}$
- $\hat{S} \neq \hat{R}$... of dimensions $\hat{s} = \hat{r}$
- \hat{q} , \hat{p} , \hat{s} , \hat{r} ... varying

Performance of the Suboptimal Control

Caption:

The achieved tracking vs. the time needed to compute the suboptimal controls by means of

♡, ♡ ... sqp-pod

, ♥ ... space-time-pod.

Parameters:

$$\hat{K}:\leftrightarrow \hat{q},\hat{p},\hat{r},\hat{s}=rac{\hat{K}}{4}$$

$$(\hat{q},\hat{s})=(\hat{p},\hat{r})$$

- The space-time Galerkin POD approach allows for
 - construction of optimized Galerkin bases in space and time
 - in a functional analytical framework
- The resulting space-time Galerkin discretization
 - approximates PDEs by a small system of algebraic equations
 - and naturally extends to boundary value problems in time
 - can be used for efficient computations of (sub)optimal controls

Future work:

- Use the functional analytical framework for error estimates.
- lacksquare Exploit the freedom of the choice of the measurement functions in \mathcal{Y} ,
- to produce, e.g., optimal measurements or to compensate for stochastic perturbations.

Further Reading and Coding

M. Baumann, P. Benner, and J. Heiland.

Space-Time Galerkin POD with application in optimal control of semi-linear parabolic partial differential equations. SIAM J. Sci. Comput. (40). 2018.

M. Baumann, J. Heiland, and M. Schmidt.

Discrete input/output maps and their relation to POD.

In P. Benner et al., editors, *Numerical Algebra, Matrix Theory, Differential-Algebraic Equations and Control Theory.* Springer, 2015.

J. Heiland and M. Baumann.

spacetime-galerkin-pod-bfgs-tests – Python/Matlab implementation space-time POD and BFGS for optimal control of Burgers equation. 2016, doi:10.5281/zenodo.166339.

Thank you for your attention!

I am always open for discussion

heiland@mpi-magdeburg.mpg.de www.janheiland.de github.com/highlando