Solving LP using MWU

Input: AERMX, bER, cER.

Vors: $\times \in \mathbb{R}^n$

max $\langle c, x \rangle$ $S_{ay} A = \begin{bmatrix} -a_1 \\ -a_2 \end{bmatrix}$ s.t. $A_x \leq b$

x ≥o-

Assume we know the optimal value OPT (by Ginary search)

Let K= {x: <c,x>=0PT, x Zo}.

Then, the problem is equivalent to find $\times \in K$ s.t. $<\alpha_1, \times > \leq b_1$ $\forall_i \in ImJ$.

Our goal: Find x EK s.t.

<a>,x>≤b;+€ V; €[m]

Satisfying constraints approximately

(if 6=[i] and czo, y= /te sotisfies all constraints

exactly and <c,y> = OPT/HE)

approximating obj. function.

Need one "Oro	rele".
	ER", BER, find x EK se <d,x> <b, th="" ~<=""></b,></d,x>
report th	hee is no such x.
Lenna, The Oracle	can be implemented in G(n) time.
Pf (When d.Pzo, c	iso). Let iEIn] be the coordinate
minimizing di/ci.	Eso). Let $i \in InJ$ be the coordinate consider $X = e_i \cdot Opt/c_i$ so that $x \in K$.
If <d,x>≤ P. done.</d,x>	Otherwise, no y satisfies yEK and (0, y) EB
since yek, <d.x>/c,x></d.x>	= <a,y>/(c,y), <c,x>=(c,y), 50 (d,y)2(d,x>> fb</c,x></a,y>
by	def of i and x.
Def width p= n	nax EK, i EInJ { <a:,x>-6:1}</a:,x>
	Tindred, K can be even smaller set as lungar
	OK contains on optimal solution of the LP
	2 The Oracle can be efficiently implementable.

-LP-Solvar(E). ω < (1, 1) ∈ R , T < ρ · ln m/ε² For £=1,...,T. $p^{(4)} \leftarrow \omega^{(4)} \left(\sum_{i \in I_{k}} \omega^{(4)}_{i} \right)$ $\beta^{(4)} := \sum_{i \in D_i} \beta_i^{(4)} \alpha_i \in \mathbb{R}^n$ $\beta^{(4)} := \sum_{i \in D_i} \beta_i^{(4)} \beta_i$ $\beta^{(4)} := \sum_{i \in D_i} \beta_i^{(4)} \beta_i$ $\beta^{(4)} := \sum_{i \in D_i} \beta_i^{(4)} \beta_i$ $X \leftarrow Oracle(X, B)$ if Drade says infeasible. Output infeasible Se $\in [-1,+]$. $\int_{-1}^{(+)} \langle b_i - \langle a_i, \chi^{(+)} \rangle \rangle \qquad \forall i \in [n].$ else $W_{i}^{(4)} \leftarrow W_{i}^{(4)} \exp \left(\mathcal{C}_{i} \right) \mathcal{L}_{i}^{(4)}$ Output x=(x2+...+x6)/T

Intuition: "expert" i = ith constraint for LP.

loss li = "slack" of ith constraint by x⁽²⁾

(LP solver wants \(\geq \lambda_i \geq 0 \rightarrow \) every expert loss a loc!)

So, LP solver (as "adversary" in MWU) creates \(\times \) s.t.

"MWU player's loss" = <p⁽⁴⁾, b-Ax"> \(\geq 0 \)

-- MWU Thin guarantees "train player's loss \(\sigma \) experts loss,

which implies \(\geq \lambda_i \); \(\geq 0 \)!

LP Solver=MWU adversary 1 (-e) MWU Player
Loss of it expert it; = (bi-(losses)) Update weights w(4) and p(4)
Choose x EK to ensure for experts (constraints)
MWU player's loss = Zpibi - (Zpiai, xe)>>0
p (e)
2 pi bi - (2 pi ai, x) 20
Of course, $\langle c, x \rangle = \frac{1}{T} \sum_{c \in \mathcal{C}} \langle c, x^{(c)} \rangle = OPT$. And $x \geq 0$ since $x^{(i)} = x^{(c)} \geq 0$.
Lema, $v_i \in [n]$, $(\alpha_1, x) \leq b_i + 2\varepsilon$.
Pf. MWU Guarantee (with parameter (8/p)) shows that
VIEIN, T(Z) < p(4), l(4)) < TETT L(4) + ln m/(E/P)T + E/p
≥ 0 since $\forall t \in [T]$, $= \frac{1}{\rho}(b_i - \langle \alpha_i, x_i \rangle) = \leq (\epsilon/\rho)$
$\langle p^{(e)}, l^{(e)} \rangle = \frac{1}{\ell} \sum_{i \in G_{3}} p_{i}^{(e)} (b_{i} \langle l_{i} x^{(e)} \rangle) = \frac{1}{\ell} (\beta^{(e)} - \langle l^{(e)}, x^{(e)} \rangle) \geq_{O}$
Dividing by p. $0 \le b_{\bar{i}} - \langle \alpha_{i}, \times \rangle + 2\varepsilon$.