Pandas get_dummies() is used to convert categorical variables into dummy variables. Each category is transformed into a new column with binary value (1 or 0) indicating the presence of the category in the original data

```
import pandas as pd
# sample data
data = {'Color': ['Red', 'Green', 'Blue', 'Green', 'Red']}
# creating a DataFrame
df = pd.DataFrame(data)
print(df)
\rightarrow
        Color
     0
          Red
        Green
     2
         Blue
       Green
          Red
# using get_dummies to convert the categorical column
d1 = pd.get_dummies(df['Color'])
print(d1)
\overline{2}
         Blue Green
                         Red
       False
                False
                        True
     1
        False
                 True
                       False
     2
         True
                False
                       False
     3 False
                True
                       False
     4 False
                False
                        True
\ensuremath{\text{\#}}\xspace using get_dummies to convert the categorical column to float type
d2 = pd.get_dummies(df['Color'],dtype=float)
print(d2)
\overline{z}
        Blue Green
                      Red
     0
                 0.0 1.0
         0.0
                      0.0
                 1.0
         1.0
                 0.0 0.0
         0.0
                 1.0 0.0
     3
         0.0
                 0.0 1.0
# using get_dummies to convert the categorical column to 1/0
d3 = pd.get_dummies(df['Color'],dtype=int)
print(d3)
₹
        Blue
              Green
                      Red
     a
           a
                   0
                        1
     1
           0
                   1
                        0
                   0
                        0
     3
            0
                   1
                        0
# concatenating the dummies DataFrame with the original DataFrame
df = pd.concat([df, d3], axis=1)
print(df)
\overline{2}
                              Red
        Color
                Blue
                      Green
                   0
                           0
          Red
                                1
     1 Green
                   0
                                0
                          1
         Blue
                                0
     2
                   1
                           0
     3
        Green
                   0
                          1
                                0
     4
          Red
                                1
\# using get_dummies to convert the categorical column to 1/\theta
d3 = pd.get_dummies(df['Color'],dtype=int)
print(d3)
\overline{2}
        Blue
              Green
                      Red
     0
           0
                   0
                        1
                        0
     2
                   0
                        0
            1
     3
            0
                   1
                        0
           0
                   0
#drop first coumn using drop_first
\# using get_dummies to convert the categorical column to 1/\theta
d3 = pd.get_dummies(df['Color'],dtype=int,drop_first=1)
print(d3)
```

```
Green Red
0 0 1
1 1 0
2 0 0
3 1 0
4 0 1
```

a. Determine the categorical columns in Titanic Dataset. Convert Columns with string data type to numerical data using encoding techniques.

```
# importing all the necessary libraries
import pandas as pd
import numpy as np
#we need to read the data
\label{lem:dfpd.read_csv} $$ df=pd.read\_csv("$\underline{/content/drive/MyDrive/AI}$ Tools Lab/nonnull\_titanic.csv") $$
#print top 5 rows
df.isnull().mean()
→ PassengerId
     Survived
     Pclass
                    0.0
     Name
                    0.0
     Sex
                    0.0
                    0.0
     Age
     SihSn
                    0.0
                    0.0
     Parch
     Ticket
                    0.0
     Fare
                    0.0
     Embarked
                    0.0
     dtype: float64
df.info()
<</pre></
     RangeIndex: 880 entries, 0 to 879
     Data columns (total 11 columns):
      #
         Column
                       Non-Null Count Dtype
      0
          PassengerId 880 non-null
                                        int64
      1
          Survived
                       880 non-null
                                        int64
          Pclass
                       880 non-null
                                        int64
                       880 non-null
          Name
                                        object
      4
          Sex
                       880 non-null
                                        object
                       880 non-null
                                        float64
          Age
      6
          SibSp
                       880 non-null
                                        int64
                       880 non-null
                                        int64
          Parch
      8
          Ticket
                       880 non-null
                                        object
         Fare
                       880 non-null
                                        float64
      10 Embarked
                       880 non-null
                                        object
     dtypes: float64(2), int64(5), object(4)
     memory usage: 75.8+ KB
print("each unique value and respective counts in Sex column\n",df['Sex'].value_counts())
#creating another data frame using get_dummies
sex_df = pd.get_dummies(df['Sex'])
sex_df.head()
     each unique value and respective counts in Sex column
\overline{\Rightarrow}
      Sex
     male
               572
     female
               308
     Name: count, dtype: int64
         female male
          False
                 True
      1
          False
                True
          False
                 True
      3
          False
                 True
      4
          False
                 True
#creating another data frame for Sex column by droping first column in get dummies
sex_df = pd.get_dummies(df['Sex'],drop_first=True,dtype=int)
sex_df.head()
```

```
male
0 1
1 1
2 1
3 1
4 1
```

print("each unique value and respective counts in Sex column\n",df['Embarked'].value_counts())
creating dummies for Embarked
embark_df = pd.get_dummies(df['Embarked'],drop_first=True,dtype=int)
embark_df.head()

each unique value and respective counts in Sex column Embarked

S 642

C 161 O 77

Name: count, dtype: int64

3 0 0

4 1 0

old_data = df.copy()

we need to drop the sex and embarked columns and replace them with the newly created dummies data frames
as Name and Tickt is not making any impact on the output label, we can drop them also
df.drop(['Sex','PassengerId','Embarked','Name','Ticket'],axis=1,inplace=True)
df.head()

→▼		Survived	Pclass	Age	SibSp	Parch	Fare
	0	1	1	80.0	0	0	30.0000
	1	0	3	74.0	0	0	7.7750
	2	0	1	71.0	0	0	34.6542
	3	0	1	71.0	0	0	49.5042
	4	0	3	70.5	0	0	7.7500

After droping the Sex and Embarked columns, we are replacing them with out new data frames
data = pd.concat([df,sex_df,embark_df],axis=1)
data.head()

_										
→		Survived	Pclass	Age	SibSp	Parch	Fare	male	Q	S
	0	1	1	80.0	0	0	30.0000	1	0	1
	1	0	3	74.0	0	0	7.7750	1	0	1
	2	0	1	71.0	0	0	34.6542	1	0	0
	3	0	1	71.0	0	0	49.5042	1	0	0
	4	0	3	70.5	0	0	7.7500	1	1	0

b. Convert data in each numerical column so that it lies in the range [0,1]

Scaling the data using minmax scaler so that values should be lies btw [0,1]
from sklearn.preprocessing import MinMaxScaler
scaler = MinMaxScaler()
data[['Age','Pclass','Survived','SibSp','Parch','Fare','male','Q','S']] = scaler.fit_transform(data[['Age','Pclass','Survived','SibSp',
after scaling the data
data.head()

data.info()

<</pre>
<<class 'pandas.core.frame.DataFrame'>
RangeIndex: 880 entries, 0 to 879
Data columns (total 9 columns):

Data	COTUMINS (coca.	L 9 COLUMNIS)	•
#	Column	Non-	-Null Count	Dtype
0	Survived	880	non-null	float64
1	Pclass	880	non-null	float64
2	Age	880	non-null	float64
3	SibSp	880	non-null	float64
4	Parch	880	non-null	float64
5	Fare	880	non-null	float64
6	male	880	non-null	float64
7	Q	880	non-null	float64
8	S	880	non-null	float64

dtypes: float64(9)
memory usage: 62.0 KB

data.to_csv("/content/drive/MyDrive/AI Tools Lab/titanic6.csv")

Start coding or generate with AI.