(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization

International Bureau

(43) International Publication Date 15 July 2004 (15.07.2004)

PCT

(10) International Publication Number WO 2004/059647 A1

(51) International Patent Classification⁷: 20/10, 20/14, H03M 13/05

G11B 20/18,

(21) International Application Number:

PCT/IB2003/005498

(22) International Filing Date:

26 November 2003 (26.11.2003)

(25) Filing Language:

English

(26) Publication Language:

English

(30) Priority Data: 02080583.4

30 December 2002 (30.12.2002) EF

- (71) Applicant (for all designated States except US): KONIN-KLIJKE PHILIPS ELECTRONICS N.V. [NL/NL]; Groenewoudseweg 1, NL-5621 BA Eindhoven (NL).
- (72) Inventors; and
- (75) Inventors/Applicants (for US only): COENE, Willem, M., J., M. [BE/NL]; c/o Prof. Holstlaan 6, NL-5656 AA Eindhoven (NL). IMMINK, Albert, H., J. [NL/NL]; c/o Prof. Holstlaan 6, NL-5656 AA Eindhoven (NL).
- (74) Agent: DEGUELLE, Wilhelmus, H., G.; Philips Intellectual Property & Standards, Prof. Holstlaan 6, NL-5656 AA Eindhoven (NL).

- (81) Designated States (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.
- (84) Designated States (regional): ARIPO patent (BW, GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PT, RO, SE, SI, SK, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Declaration under Rule 4.17:

as to applicant's entitlement to apply for and be granted a patent (Rule 4.17(ii)) for the following designations AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SY, TJ, TM, TN, TR, TT,

[Continued on next page]

(54) Title: CODING SYSTEM

(57) Abstract: The present invention relates to a coding strategy for joint modulation coding and ECC coding. It relates in particular to the situation where 2D coding is performed along one-dimensionally evolving strips containing a number of bit rows in the radial direction of the strip, which is orthogonal to the former direction. The idea further relates to high-rate modulation coding. According to the invention, a strip is built up by an alternation of two basic sub-units, each with their own modulation code. The first sub-unit comprises a larger number of bit rows, and its (high-rate) modulation code has a high coding efficiency realized through the use of large codewords. The second sub-unit comprises a single or only few bit rows, and its modulation code has a lower efficiency, which makes it much less sensitive to error-propagation: another function of the sub-unit of the second type is to glue sub-units of the first type together while maintaining the 2D constraint also at the boundaries of the subunits of the first type. The first sub-unit relates to most or all of the source data, and is encoded first, prior to ECC coding. The second sub-unit relates to the ECC parities, and possibly the remainder of the source data. Both at the encoder and the decoder, special measures are taken related to the precise order of both modulation code encoders (and decoders), and of the ECC encoder (and decoder).

O 2004/059647 A1

WO 2004/059647 A1

TZ, UA, UG, UZ, VC, VN, YU, ZA, ZM, ZW, ARIPO patent (BW, GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PT, RO, SE, SI, SK, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG)

Published:

with international search report

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.