See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/221701936

Disk-Aromaticity of the Planar and Fluxional Anionic Boron Clusters B202-/-

ARTICLE · MARCH 2012

READS

18

3 AUTHORS:

Truong Tai

University of Leuven

65 PUBLICATIONS **506** CITATIONS

SEE PROFILE

Minh Tho Nguyen

University of Leuven

748 PUBLICATIONS 10,363 CITATIONS

SEE PROFILE

Arnout Ceulemans

University of Leuven

252 PUBLICATIONS 4,089 CITATIONS

SEE PROFILE

DOI: 10.1002/chem.201104064

Disk Aromaticity of the Planar and Fluxional Anionic Boron Clusters $B_{20}^{-/2-}$

Truong Ba Tai, Arnout Ceulemans, and Minh Tho Nguyen*[a]

The remarkable features of small boron clusters (B_n) have attracted much interest during the past several decades. Their molecular structures were the subject of a large number of experimental and theoretical studies.^[1-7] The neutral B_n clusters containing up to n=19 atoms were found to have planar geometry, [2,8] whereas B_{20} exhibits a tubular (double ring) form. For the B_n^+ ions, a transition from twodimensional (2D) to three-dimensional (3D) structure was demonstrated to occur at n=17. [9] Studies on a series of anionic B_n^- clusters with $n \le 20$, using photoelectron spectroscopy (PES) in combination with quantum chemical calculations^[2,10,11] indicated that while the B_n^- ions with n=2-19 exhibit, similar to the analogous hydrocarbons, either planar or quasi-planar shapes with certain aromatic features, a change in the structural landscape occurs for the B₂₀ ion, for which a 3D-tubular structure was calculated to be energetically more favored than the planar counterpart (B3LYP/ 6-311+G(d) results).[11] Nevertheless, the reported experimental PES results did not emphasize any relevant connection to a tubular structure for B_{20}^{-} . Thus a legitimate question arises as to whether other lower-lying isomers could exist on the potential energy surface of the B₂₀⁻ system.

The fluxional features of boron-based clusters have also long been an intriguing issue. The existence of aromatic boron–carbon wheels, [12] such as C_2B , $C_3B_9^{\,3+}$, and $C_5B_{11}^{\,+}$, was proposed with interesting fluxional features. However, these structures were subsequently found to be unstable with respect to those with outer rings of carbon atoms. It was recently shown^[6] that the B₁₉ ion, in which a central hexagonal B₆ ring is located inside an outer B₁₃ ring, exhibits similar fluxionality. Such a feature was also more recently confirmed for the smaller B₁₃+ ion.^[13] In this context, another question of interest is as to whether planar fluxional structures exist for larger boron clusters B_n with n > 19. This question faces a real challenge, because, as stated above, the neutral B₂₀ cluster was reported to have a 3D-tubular structure.[11]

In attempts to obtain some elements of answer to the above questions, we have performed quantum chemical calculations on the negatively charged clusters B_{20}^{-} and B_{20}^{2-} . In contrast to previous reports, our calculated results show that both anionic B_{20}^{-} and dianionic B_{20}^{2-} clusters possess planar and fluxional structures. While the planar structure **IA** $(C_{2\nu}$; Figure 1) in which a central B₇ hexagonal ring is lo-

Figure 1. Shapes of the lower-lying isomers of B_{20}^- and B_{20}^{2-} .

cated inside an outer B₁₃ ring, is now found to be the global minimum of the dianion B_{20}^{2-} , both structures I and II (Figure 1) of the monoanion B_{20}^- are almost degenerate in energy. More importantly, we find that the global minima \mathbf{IA}^{2-} of \mathbf{B}_{20}^{2-} and \mathbf{I}^{-} of \mathbf{B}_{20}^{-} are both fluxional species with very small energy barriers for distortion. Our results not only confirm the planarity trend of the anionic boron clusters that is induced by the excess electron, but also point to a new type of compound, that is, planar fluxional polycyclic boron clusters with one B atom located at the centre of the rings. Interestingly, the B_{20}^{2-} dianion turns out to be a π -aromatic system that can consistently be rationalized by using the model of the particle in a circular box.

In the anionic state, our calculations at the CCSD(T)/6-311G(d)/B3LYP/6-311+G(2df) level (Table 1) indicate that the planar structure I^- ($C_{2\nu}$, 2B_2), which was missed in all earlier reports, turns out the most stable isomer of this system. Another low-spin lower-lying isomer is the elongated form \mathbf{H}^{-} (C_{s} , ${}^{2}\mathbf{A}''$), which is almost energetically degenerate with I⁻ (CCSD(T)/6-311G(d)). Although the form III⁻ $(C_{2\nu}, {}^{2}B_{2})$ is the lowest-lying isomer at the B3LYP/6-311+G-(2df) level, it becomes less stable at the CCSD(T) level. Our

E-mail: minh.nguyen@chem.kuleuven.be

[[]a] T. B. Tai, Prof. Dr. A. Ceulemans, Prof. Dr. M. T. Nguyen Department of Chemistry, University of Leuven Celestijnenlaan, 200 F, 3001 Leuven (Belgium) Fax: (+32)16-327992

Supporting information for this article is available on the WWW under http://dx.doi.org/10.1002/chem.201104064.

A EUROPEAN JOURNAL

Table 1. The electronic state (ES), point group, number of imaginary frequencies (NImag), and relative energies [kcal $\,$ mol $^{-1}$] of lower-lying isomers of B_{20} , B_{20} , and B_{20} .

Isomer	ES	NImag	B3LYP ^[a]	CCSDT ^[b]
neutral B ₂₀				
I	$C_{\rm s}$ ($^{\rm l}$ A')	0	33.7	19.1
IA	$C_{\rm s}$ ($^{\rm l}$ A')	0	37.2	21.9
II	$C_{\rm s}$ (1 A')	0	21.1	13.1
III	$D_{10{ m d}} (^1{ m A}_1)$	0	0.0	0.0
IV	$C_{\rm s}$ (1 A')	0	21.3	7.3
IV	C_1 (1 A)	0	18.3	6.3
anion B ₂₀				
I	$C_{2\nu}$ (${}^{2}\mathrm{B}_{2}$)	0	0.0	0.0
IA	$C_{2\nu}$ (2 A ₁)	1	-0.1	0.2
II	$C_{\rm s}$ (2 A")	0	-4.9	0.6
III	$C_{2\nu}$ (2 B ₂)	0	-7.3	5.9
IV	$C_{\rm s}$ (2 A')	0	-1.4	13.4
dianion B ₂₀ ²⁻	-			
I	$C_{2\nu}$ (${}^{1}A_{1}$)	1	0.0	0.1
IA	$C_{2\nu}$ (1 A ₁)	0	0.0	0.0
II	C_1 (1 A')	0	4.0	9.6
III	C_2 (1 A)	0	21.7	31.7
IV	C_1 (1 A $'$)	0	9.2	2.6
V	C_1 (1 A')	0	11.9	10.0

[a] Relative energies include the corrections for zero-point energies (ZPEs) obtained at B3LYP/6-311+G(d) for the neutral B_{20} and anion B_{20}^- and B3LYP/6-311+G(2df) for the dianion B_{20}^{-2} . [b] CCSD(T) values are based on B3LYP geometries.

theoretical predictions also show that the planar structure $\mathbf{IA^{2-}}$ (C_2 , $^1\mathbf{A}_1$) is the global minimum of the \mathbf{B}_{20}^{-2-} ion at both levels of theory, $\mathbf{B3LYP/6-311+G(2df)}$ and $\mathbf{CCSD(T)/6-311G(d)//B3LYP/6-311+G(2df)}$. Details of the computational methods and discussion about structures are given in the Supporting Information.

To confirm the global minima located, the vertical detachment energies (VDEs) of the two anionic global minima I^-

and II⁻ were computed by using the time-dependent TD-B3LYP method and compared to the available experimental PES results of B₂₀⁻.^[11] Our predictions show an excellent agreement between the theoretical and experimental results. While isomer II⁻ contributes to the band X of the PES spectra, the bands A and B are mainly observed upon detachment channels of I⁻ (please see the Supporting Information) The remaining VDEs of the II⁻ ion are found to be almost overlapped with those of I⁻. This can explain why the intensities of the experimental bands B, C, and D are high, while that of the band A is relatively weaker. The strong signal of the band X can be understood due to the high stability of II at the neutral state as compared to the corresponding neutral I (detailed discussion is given in the Supporting Information)

The global minima I^- and IA^{2-} also possess the fluxional behaviors similar to those of the B₁₉⁻ ion, and the aromatic boron $B_n C_m^{q+}$ wheels.^[12] The present calculations also point out that the planar isomer IA²⁻ is a true global minimum for B_{20}^{2-} , while the isomer I^{2-} is rather a transition structure with one imaginary frequency. The smallest vibrational frequency of IA²⁻, which is found to be 58 cm⁻ (B3LYP/6-311 + G(2df), corresponds to that of a rotation of the inner B₇ ring. Following this normal mode, the transition structure I^{2-} is obtained. The energy barrier for the counter rotation of the inner B₇ ring and the outer B₁₃ ring amounts to only $0.1 \text{ kcal mol}^{-1}$ at the CCSD(T)/6-311G(d)//B3LYP/6-311+G-(2df) level. Surprisingly, in the anionic state, the isomer I^- is characterized to be a minimum, while the isomer IA- is a transition structure with an energy barrier of 0.2 kcal mol⁻¹ (CCSD(T)/6-311G(d)) level. The smallest vibrational frequency of the anion I⁻ is about 10 cm⁻¹ and corresponds to a rotation of the inner B₇ ring. Following this vibrational mode, rotation of I effectively occurs through the transition structure IA⁻.

Figure 2. Shapes of the valence π -orbitals of the B_{20}^{2-} ($C_{2\nu}$), B_{19}^{-} ($C_{2\nu}$) and the lowest wavefunctions for particle in circular box.

To gain additional insights into the fluxional feature of the anions B₂₀⁻ and B₂₀²⁻, the Born-Oppenheimer (BOMD) and Car-Parrinello (CPMD) molecular dynamics simulations were performed by using the pure gradient-corrected exchange-correlation energy functional BLYP. The ion-electron interaction was treated by using the Troullier-Martins pseudopotentials. Both CPMD and BOMD simulations show that the inner and outer rings of either I^- or IA^{2-} nearly freely rotate with respect to each other in maintaining their planar geometries during the simulating time of 10 ps. The snapshots from a trajectory at 300 K (given in Supplementary Information file) reveal that following a rotation of the rings, the isomers move up to the transition points, and then are converged back to the original groundstate geometries. Both the B_{20}^{2-} and B_{20}^{-} ions can be considered as larger "Wankel engines" similar to the B₁₉⁻ and B₁₃⁺

One of the most intriguing features of small boron clusters is their aromaticity. This aspect was extensively reported in recent literature using various evaluation criteria such as the NICS, resonance energy, electron localization function (ELF), and the Hückel (4N+2) rule. More recently, the fluxional B_{19}^{-} ion was predicted to be doubly π -aromatic system with two concentric π -electron systems that satisfy the Hückel rule. Although this could explain the aromatic features of B₁₉, the picture is not really clear. For example, while the HOMO of the B₁₉⁻ (cf. Figure 2) represents one nodal plane, its HOMO-15 does not. Thus a combination of these two orbitals is not consistent. In this context, we would propose a new type of aromaticity, that is, disk aromaticity, which can be consistently rationalized by using the model of particle in circular box. The simple model of a particle in a circular box^[14,15] offers an amazingly accurate description of the π states in this triangular boron structure. The eigenstates in the box model are characterized by a radial (n=1, 2, ...) and a rotational $(l=\sigma, \pi, \delta, ...)$ quantum number, and the energies are determined by the zeros of cylindrical Bessel functions. The lowest eigenstates in ascending order are 1σ , 1π , 1δ , and 2σ . The nodal characteristics of these cylindrical waves exactly match the sequence of the six occupied delocalized π orbitals of the B_{20}^{2-} ion (cf. Figure 2). Since this sequence closes a circular shell, the dianion reaches an aromatic electron count of 12 electrons, which is valid for a disk, as opposed to the Hückel count of 10 electrons for an aromatic ring. A similar observation can also be found for the B_{19}^- ion as shown in Figure 2.

The nucleus-independent chemical shifts (NICS) index^[16] was also considered. Due to the presence of a centered B-atom, we evaluated the NICS values at 1.0 and 1.5 Å on the C_2 axis from the center. The NICS values were also performed at 1 Å on the out-plane z axis. The present NICS calculations for both isomers I^{2-} and IA^{2-} (listed in Table S1 of the Supporting Information) show highly negative values (from -17 to -43 ppm) that confirm well the aromatic feature of both structures.

In conclusion, while a transition from 2D to 3D structure was found at n=17 for the cationic boron B_n^+ clusters, the

neutral boron B_n counterparts with n up to 19 are planar. In this work, we demonstrate that the presence of excess electrons modifies the structural landscape and tends to extend the planarity of boron clusters. While the anions B_{20}^{-} and B_{20}^{2-} are planar, the neutral B_{20} prefers a 3D tubular structure with a 2D to 3D transition energy of 6.3 kcalmol⁻¹. More importantly, the geometrical features of the isomers I and IA suggest the existence of a new type of cluster, which is planar and doubly cyclic with one atom located at the centre, and fluxional. The fluxional double-ring structures with inner rings containing a larger number of B atoms are expected to be stable in larger boron clusters and needs to be further explored in future studies. Additionally, a new concept of aromaticity, that is, disk aromaticity, is proposed and consistently rationalized according to a model of particle in circular box.

Acknowledgements

The authors are indebted to the K.U. Leuven Research Council for continuing support (GOA, IDO and IUAP programs). T.B.T. thanks the Arenberg Doctoral School for a doctoral scholarship.

Keywords: aromaticity • BOMD simulation • boron • cluster compounds • density functional calculations

- [1] I. Boustani, Int. J. Quantum Chem. 1994, 52, 1081.
- [2] A. P. Sergeeva, B. B. Averkiev, H. J. Zhai, A. I. Boldyrev, L. S. Wang, J. Chem. Phys. 2011, 134, 224304, and references therein.
- [3] a) M. T. Nguyen, M. H. Matus, V. T. Ngan, D. J. Grant, D. A. Dixon, J. Phys. Chem. A 2009, 113, 4895; b) T. B. Tai, D. J. Grant, M. T. Nguyen, D. A. Dixon, J. Phys. Chem. A 2010, 114, 994; c) B. Kiran, G. G. Kumar, M. T. Nguyen, A. K. Kandalam, P. Jena, Inorg. Chem. 2009, 48, 9965, and references therein.
- [4] L. Hanley, S. L. Anderson, J. Phys. Chem. 1987, 91, 5161.
- [5] I. Boustani, Z. Zhu, D. Tomanek, Phys. Rev. B 2011, 83, 193405.
- [6] J. Oscar, C. Jimenez-Halla, R. Islas, T. Heine, G. Merino, Angew. Chem. 2010, 122, 5803; Angew. Chem. Int. Ed. 2010, 49, 5668.
- [7] W. An, S. Bulusu, Y. Gao, X. C. Zeng, J. Chem. Phys. 2006, 124, 154310.
- [8] T. B. Tai, N. M. Tam, M. T. Nguyen. Chem. Phys. Lett., DOI: 10.1016/j.cplett.2012.01.039.
- [9] E. Oger, N. R. M. Crawford, R. Kelting, P. Weis, M. M. Kappes, R. Ahlrichs, Angew. Chem. 2007, 119, 8656; Angew. Chem. Int. Ed. 2007, 46, 8503.
- [10] W. Huang, A. P. Sergeeva, H. J. Zhai, B. B. Averkiev, L. S. Wang, A. I. Boldyrev, *Nat. Chem.* **2010**, *2*, 202.
- [11] B. Kiran, S. Bulusu, H. J. Zhai, S. Yoo, X. C. Zeng, L. S. Wang, *Proc. Natl. Acad. Sci. USA* 2005, 102, 961.
- [12] S. Erhardt, G. Frenking, Z. Chen, P. von R. Schleyer, Angew. Chem. 2005, 117, 1102; Angew. Chem. Int. Ed. 2005, 44, 1078.
- [13] G. Martínez-Guajardo, A. P. Sergeeva, A. I. Boldyrev, T. Heine, J. M. Ugalde, G. Merino, Chem. Commun. 2011, 47, 6242.
- [14] R. W. Robinett, Am. J. Phys. 1996, 64, 440.
- [15] G. B. Shaw, J. Phys. A 1974, 7, 1537.
- [16] P. von R. Schleyer, C. Maerker, A. Dransfeld, H. Jiao, N. J. R. v. E. Hommes, J. Am. Chem. Soc. 1996, 118, 6317.

Received: December 28, 2011 Published online: **TIME** 11, 0000

A EUROPEAN JOURNAL

Boron Clusters -

*T. B. Tai, A. Ceulemans, M. T. Nguyen**...... ■■■■■■■

The presence of excess electrons modifies the structural landscape and tends to extend the planarity of boron clusters. While the neutral B_{20} is tubular, both the anion and dianion $B_{20}^{-/2-}$ become planar. Geometrical features of the stable anions suggest the existence of a new type of cluster that is planar and doubly cyclic with one atom located at the center (see figure), as well as being fluxional.