Since the left-hand side is independent of w, it is a lower bound for the right-hand side for all w, so we obtain $(*_1)$:

$$\sup_{\mu \in M} \inf_{v \in \Omega} L(v, \mu) \le \inf_{v \in \Omega} \sup_{\mu \in M} L(v, \mu).$$

To obtain the reverse inequality, we use the fact that (u, λ) is a saddle point, so

$$\inf_{v\in\Omega}\sup_{\mu\in M}L(v,\mu)\leq \sup_{\mu\in M}L(u,\mu)=L(u,\lambda)$$

and

$$L(u,\lambda) = \inf_{v \in \Omega} L(v,\lambda) \leq \sup_{\mu \in M} \inf_{v \in \Omega} L(v,\mu),$$

and these imply that

$$\inf_{v \in \Omega} \sup_{\mu \in M} L(v, \mu) \le \sup_{\mu \in M} \inf_{v \in \Omega} L(v, \mu), \tag{*_2}$$

as desired. \Box

We now return to our main Minimization Problem (P):

minimize
$$J(v)$$

subject to $\varphi_i(v) \leq 0$, $i = 1, ..., m$,

where $J: \Omega \to \mathbb{R}$ and the constraints $\varphi_i: \Omega \to \mathbb{R}$ are some functions defined on some open subset Ω of some finite-dimensional Euclidean vector space V (more generally, a real Hilbert space V).

Definition 50.8. The *Lagrangian* of the Minimization Problem (P) defined above is the function $L: \Omega \times \mathbb{R}^m_+ \to \mathbb{R}$ given by

$$L(v,\mu) = J(v) + \sum_{i=1}^{m} \mu_i \varphi_i(v),$$

with $\mu = (\mu_1, \dots, \mu_m)$. The numbers μ_i are called generalized Lagrange multipliers.

The following theorem shows that under some suitable conditions, every solution u of the Problem (P) is the first argument of a saddle point (u, λ) of the Lagrangian L, and conversely, if (u, λ) is a saddle point of the Lagrangian L, then u is a solution of the Problem (P).

Theorem 50.15. Consider Problem (P) defined above where $J: \Omega \to \mathbb{R}$ and the constraints $\varphi_i: \Omega \to \mathbb{R}$ are some functions defined on some open subset Ω of some finite-dimensional Euclidean vector space V (more generally, a real Hilbert space V). The following facts hold.

(1) If $(u, \lambda) \in \Omega \times \mathbb{R}^m_+$ is a saddle point of the Lagrangian L associated with Problem (P), then $u \in U$, u is a solution of Problem (P), and $J(u) = L(u, \lambda)$.