Real Analysis, 2nd Edition, G.B.Folland

Chapter 3 Signed Measures and Differentiation*

Yung-Hsiang Huang[†]

3.1 Signed Measures

- 1. Proof. The first part is proved by using addivitiy and consider $F_j = E_j E_{j-1}, E_0 = \emptyset$. For the second part, say $E_j \searrow E$, note $\mu(E_1) = \mu(E) + \mu(E_1 E_2) + \mu(E_2 E_3) + \cdots = \mu(E) + \mu(E_1) \mu(E_2) + \mu(E_2) \mu(E_3) + \cdots = \mu(E) + \mu(E_1) \lim_{k \to \infty} \mu(E_k)$. The second equality is by finiteness.
- 2. Proof. Let $E \in \mathcal{M}$ with $|\nu|(E) = 0 = \nu^{+}(E) + \nu^{-}(E)$. Since $\nu^{+}(E)$ and $\nu^{-}(E)$ are nonnegative, $\nu^{+}(E) = \nu^{-}(E) = 0$. So $\nu(E) = \nu^{+}(E) \nu^{-}(E) = 0$. Conversely, if E is ν -null, then $\nu^{+}(E) = \nu(E \cap P) = 0 = \nu(E \cap N) = \nu^{-}(E)$ since $E \cap P$ and $E \cap N$ are contained in E. So $|\nu|(E) = \nu^{+}(E) + \nu^{-}(E) = 0$.

The second assertion is to proved the followings are equivalent,

- $(1)\nu\perp\mu, (2)\nu^{+}\perp\mu \text{ and } \nu^{-}\perp\mu, (3) |\nu|\perp\mu:$
- (3) \Rightarrow (1) and (1) \Rightarrow (2) are by the definition and the first part of this exercise. To prove (2) \Rightarrow (3), we note that there are measurable sets A_1, B_1, A_2, B_2 such that $A_1 \cup B_1 = X = A_2 \cup B_2$, $A_1 \cap B_1 = \emptyset = A_2 \cap B_2$, and $\mu(A_1) = 0 = \nu^+(B_1) = \mu(A_2) = \nu^-(B_2)$. Let $E = (A_1 \cap A_2) \cup (A_1 \cap B_2) \cup (B_1 \cap A_2)$ and $F = B_1 \cap B_2$, then $E \cup F = X, E \cap F = \emptyset$, and by definition, $\mu(E) = 0 = \nu^+(F) = \nu^-(F)$. Hence $|\nu|(F) = 0$, and therefore $|\nu| \perp \mu$.
- 3. Proof. (a)(b) and (c) $|\nu|(E) \ge \sup\{|\int_E f d\nu| : |f| \le 1\}$ are trivial. To prove that they are equal, let $X = P \cup N$ be the Hahn decomposition for ν . We note that $|\nu|(E) = \nu^+(E) + \nu^-(E) = \nu(E \cap P) \nu(E \cap N) = \int_E \chi_P \chi_N d\nu$. Since P and N are disjoint, $|\chi_P \chi_N| \le 1$. Hence the proof is completed.

^{*}Last Modified: 2016/08/15.

[†]Department of Math., National Taiwan University. Email: d04221001@ntu.edu.tw

4. (The	minimality	of	Jordan	decomposition	of ν .)

Proof. Let $X = P \cup N$ be the Hahn decomposition for ν . For any measurable set E, we have $\nu^+(E) = \nu(E \cap P) = \lambda(E \cap P) - \mu(E \cap P)$. If $\nu^+(E) = \infty$, then $\lambda(E \cap P) = \infty$ and hence $\lambda(E) = \infty$. So $\nu^+(E) \leq \lambda(E)$. If $\nu^+(E) < \infty$, then $\lambda(E \cap P)$, $\mu(E \cap P) < \infty$. This implies $\nu^+(E) \leq \nu^+(E) + \mu(E \cap P) = \lambda(E \cap P) \leq \lambda(E)$. The second assertion $\nu^- \leq \mu$ is proved in a similar way.

- 5. Proof. Since $\nu_1 = \nu_1^+ \nu_1^-$ and $\nu_2 = \nu_2^+ \nu_2^-(E), \nu_1 + \nu_2 = (\nu_1^+ + \nu_2^+) (\nu_1^- + \nu_2^-)$. By ex 4, $(\nu_1^+ + \nu_2^+) \ge (\nu_1 + \nu_2)^+$ and $(\nu_1^- + \nu_2^-) \ge (\nu_1 + \nu_2)^-$. The proof is completed by adding these two inequalities.
- 6. Proof. The Hahn decomposition is $P \cup N := \{f \ge 0\} \cup \{f < 0\}$. $\nu^{\pm}(E) = \int_E f^{\pm} d\mu$.
- 7. Proof. Let $X = P \cup N$ be the Hahn decomposition.
 - (a) Given $F \subset E$, $\nu(F) = \nu(F \cap P) + \nu(F \cap N) \leq \nu(F \cap P) \leq \nu(E \cap P)$ which yields the inequality. The equality is true by taking $F = E \cap P$ directly. The second case is similar.
 - (b)Given $E_1, \dots E_n$ partition E, note that $|\nu(E_1)| + \dots + |\nu(E_n)| \leq |\nu|(E_1) + \dots + |\nu|(E_n) = |\nu|(E) = |\nu(F \cap P)| + |\nu(F \cap N)|$ (the proof of this inequality is similar to exercise 3).

3.2 The Lebesgue-Radon-Nikodym Theorem

- 8. Proof. $|\nu| \ll \mu \Leftrightarrow \nu \ll \mu$ is proved by exercise 2. Using this equivalence, we know $\nu \ll \mu \Rightarrow \nu^+ \ll \mu$ and $\nu^- \ll \mu$. The converse is by definition.
- 9. Proof. For first assertion, we know from the assumption there is a sequence of $\{(E_j, F_j)\}$ such that for each $j, X = E_j \cup F_j, \nu_j(F_j) = 0$ and $\mu(E_j) = 0$. Take $E = \bigcup_j E_j$ and $F = \bigcap_j F_j$, then $\mu(E) = 0$ and $\sum_j \nu_j(F) = 0$. The second assertion is much easier.
- 10. Nothing to comment.
- 11. This problem is easy, we omit the proof here and remark that the converse of (b) is also true (try to apply Egoroff's Theorem). This is known as **Vitali Convergence Theorem** stated in Exercise 6.15, page 187. Necessity of the hypothesis and further discussions are given in Rudin [3, Exercise 6.10-11]. Also see the additional exercises to Chapter 6.

12.
$$Proof.$$

- 13. Proof. (σ -finiteness condition can NOT be omitted in Radon-Nikodym Theorem.)
 - (a) Suppose there is an extended μ -integrable function f such that $dm = f d\mu$. Since for each $x \in [0,1], 0 = m(\{x\}) = \int_{\{x\}} f d\mu = f(x)$. This leads to a contradiction since

$$1 = m([0,1]) = \int_{[0,1]} f \, d\mu = 0.$$

(b) Suppose that μ has a Lebesgue decomposition $\lambda + \rho$ with respect to m, with $\lambda \perp m$ and $\rho \ll m$. Then for all $x \in [0,1], \rho(\{x\}) = 0$ and hence $\lambda(\{x\}) = 1$. Since there exists disjoint measurable sets A, B partition [0,1] with A is λ -null, and m(B) = 0, we see for any $x \in A, 0 = \lambda(\{x\}) = 1$, so $A = \emptyset$. But then 0 = m(B) = m([0,1]) = 1, a contradiction!

14. Proof.

15. Note that some textbooks referred to call this measure **almost decomposable** since (iii) is required to be true for $\mu(E) < \infty$ only, and they call a measure decomposable if (iii) is true for any measurable set E. A subtle difference is marked in the remark after Exercise 6.25.

Proof. (a) Since $X = \bigcup_{n=1} X_n$ for some $X_n \in \mathcal{M}$ and $\mu(X_n) < \infty$. Take \mathscr{F} be the collection of $F_k = X_k \setminus \bigcup_{j=1}^{k-1} X_j$ which possess the desired property (i)-(iv).

$$\Box$$

16. According to Prof. Folland's errata sheet, we assume μ, ν are σ -finite.

17. (Existence of conditional expectation of f on \mathcal{N} .)

Remark 1. I think we need to assume $\nu = \mu \mid_{\mathcal{N}}$ is σ -finite on (X, \mathcal{N}) to make every hypothesis in Radon-Nikodym Theorem satisfied. A counterexample is $\mu =$ Lebesgue measure on real line and $\mathcal{N} =$ the σ -algebra of countable or co-countable sets.

Proof. Let (X, \mathcal{M}, μ) be a σ - finite measure space, \mathcal{N} be a sub-algebra of \mathcal{M} , $\nu = \mu \mid_{\mathcal{N}}$ and $f \in L^1(\mu)$. We define $\lambda(E) := \int_E f \, d\mu$ to be a signed measure on (X, \mathcal{N}) (by considering $\int_E f^+ \, d\mu$, $\int_E f^- \, d\mu$) Note that given $A \in \mathcal{N}$ with $\nu(A) = 0$, then $\mu(A) = 0$, and hence $\lambda \ll \nu$.

By Radon-Nikodym Theorem, there exists extended ν -integrable g such that $d\lambda = g d\nu$ and any two such functions are equal ν - a.e.. Since one of $\int g^+ d\nu$, $\int g^- d\nu$ is finite and

$$|\int g\,d\nu| = |\int f\,d\mu| < \infty,$$

we know $\int |g| d\nu$ is finite. Hence $g \in L^1(\nu)$.

The uniqueness assertion is easy to proved (cf. Proposition 2.16.)

Remark 2. The following alternative approach to this problem is taken from Williams [5, chapter 9]. A little difference here is that we work on the σ -finite measure space (X, \mathcal{M}, μ) instead of finite (probability) measure space.

Remark 3. Williams [5, p.85] mentions the following theorem to explain that conditional expectation (and the martingale theory) is crucial in filtering and control- of space-ships, of industrial process, or whatever.

Theorem 4. (Conditional expectation as least-squares-best predictor)

Let $f \in L^1(\mu) \cap L^2(\mu)$, \mathscr{N} is a sub σ -algebra of \mathscr{M} and $\nu = \mu \mid_{\mathscr{N}}$. Then the conditional expectation $E(f|\mathscr{N})$ is the minimizer of mean square error to f, $E(f-g)^2 := \int_X (f-g)^2 d\mu$ in the space of $L^1(\nu) \cap L^2(\nu)$.

We need the following lemma:

Lemma 5. If f, g is \mathcal{N} -measurable and $\int |g|, \int |fg| < \infty$, then

$$E(fg|\mathcal{N}) = fE(g|\mathcal{N}).$$

Proof. It's easy to see the right-hand side is \mathcal{N} - measurable. Given $E \in \mathcal{N}$, if $f = \chi_B$ with $B \in \mathcal{N}$, then

$$\int_E \chi_B E(g|\mathcal{N}) \, d\nu = \int_{E \cap B} E(g|\mathcal{N}) \, d\nu = \int_{E \cap B} g \, d\nu = \int_E \chi_B g \, d\nu = \int_E \chi_B g \, d\mu.$$

By linearity and monotone convergence theorem, this can be extended to any $f, g \ge 0$, and then the desired result is true by splitting them into the positive and negative parts.

Proof of Theorem 4. (Taken from Durrett [2, p.229])

For any $h \in L^1(\nu) \cap L^2(\nu)$, $E(hf|\mathcal{N}) = hE(f|\mathcal{N})$, (by Cauchy-Schwarz, $\int fh < \infty$.) Integrate both sides with respect to μ , we see

$$\int_X hE(f|\mathcal{N}) d\mu = \int_X E(hf|\mathcal{N}) d\mu = \int_X hf d\mu$$

And hence we see

$$\int_X h\Big(E(f|\mathcal{N}) - f\Big) \, d\mu = 0$$

Then given $g \in L^1(\nu) \cap L^2(\nu)$, take $h = E(f|\mathcal{N}) - g \in L^1(\nu)$. Note $h \in L^2(\nu)$ is equivalent to $E(f|\mathcal{N}) \in L^2(\nu)$, and the latter is proved by the Jensen's inequality.

Therefore,

$$\int_X (f-g)^2 d\mu = \int_X \left(f - E(f|\mathcal{N}) + E(f|\mathcal{N}) - g \right)^2 d\mu = \int_X \left(f - E(f|\mathcal{N}) + h \right)^2 d\mu$$
$$= \int_X \left(f - E(f|\mathcal{N}) \right)^2 d\mu + 0 + \int_X h^2 d\mu$$

which shows the desired result.

Proof of Jensen's inequality. The proof is taken from Chung, [1, p318-319]. For any x and y:

$$\varphi(x) - \varphi(y) \ge \varphi'(y)(x - y)$$

where φ' is the right-hand derivative of φ . Hence

$$\varphi(f) - \varphi(E(f|\mathcal{N})) \ge \varphi'(E(f|\mathcal{N}))(f - E(f|\mathcal{N}))$$

3.3 Complex Measures

18. Proof. From Exercise 3, we know that $L^1(\nu) = L^1(\nu_r) \cap L^1(\nu_i) = L^1(|\nu_r|) \cap L^1(|\nu_i|)$. By Radon-Nikodym Theorem, for $\mu := |\nu_r| + |\nu_i|$, there are real-valued μ -integrable functions f, g such that $d\nu_r = fd\mu$ and $d\nu_i = gd\mu$. Then we have

$$\nu(E) = \int_E f + ig \, d\mu =: \int_E h \, d\mu.$$

From this equation, we have $d|\nu| = |h|d\mu$. Since $|f|, |g| \le |h|$, we have

$$|\nu_r|(E) \le |\nu|(E), \ |\nu_i|(E) \le |\nu|(E)$$

By Radon-Nikodym Theorem again, there exist real-valued μ -integrable functions ϕ, φ such that $d\nu_r = \phi d|\nu|$ and $d\nu_i = \varphi d|\nu|$. Therefore

$$\int_E h \, d\mu = \nu(E) = \int_E \phi + i\varphi \, d|\nu| = \int_E [\phi + i\varphi] |h| \, d\mu.$$

By the uniqueness part of Radon-Nikodym Theorem, $[\phi + i\varphi]|h| = h, \mu$ -a.e., and hence $|\nu|$ -a.e. Let Z be the set where h = 0, then it has $|\nu|$ measure zero since

$$|\nu|(Z) = \int_Z |h| \, d\mu = 0$$

This shows that $|\phi + i\varphi| = 1$, $|\nu|$ -a.e.

Now suppose that $f \in L^1(|\nu|)$. Since $d|\nu_r| = |\phi|d|\nu|$ and $d|\nu_i| = |\varphi|d|\nu|$, we have

$$\int |f| \, d|\nu_r| = \int |f| |\phi| \, d|\nu| \le \int |f| \, d|\nu| < \infty$$

and

$$\int |f| \, d|\nu_i| = \int |f| |\varphi| \, d|\nu| \le \int |f| \, d|\nu| < \infty.$$

So $f \in L^1(|\nu_r|) \cap L^1(|\nu_i|)$.

Conversely, suppose $f \in L^1(|\nu_r|) \cap L^1(|\nu_i|)$, then we have

$$\int |f|d|\nu| = \int |f||\phi + i\varphi|d|\nu| \le \int |f|[|\phi| + |\varphi|] d|\nu| = \int |f| d|\nu_r| + \int |f| d|\nu_i| < \infty.$$
 So $f \in L^1(|\nu|)$.

Finally, suppose that $f \in L^1(\nu) = L^1(|\nu|)$, we then have

$$|\int f \, d\nu| = |\int f \, d\nu_r + i \int f \, d\nu_i| = |\int f[\phi + i\varphi] \, d|\nu||$$

$$\leq \int |f||\phi + i\varphi| \, d|\nu| = \int |f| \, d|\nu|.$$

19. If ν, μ are complex measures and λ is a positive measure, then $\nu \ll \lambda \Leftrightarrow |\nu| \ll \lambda$ and $\nu \perp \mu \Leftrightarrow |\nu| \perp |\mu|$.

Proof. The first (\Rightarrow) is proved by Radon-Nikodym Theorem. Both (\Leftarrow) are proved by definition and the fact $|\nu|(E) \geq |\nu(E)|$. To prove the second (\Rightarrow) , we note there exist positive measure $\rho = |\mu_r| + |\mu_i|$ and $\sigma = |\nu_r| + |\nu_i|$, and some functions $f \in L^1(\rho)$ and $g \in L^1(\sigma)$ such that $d\mu = f d\rho, d|\mu| = |f| d\rho, d\nu = g d\sigma$, and $d|\nu| = |g| d\sigma$. Since $\nu \perp \mu$, for each pair $a, b \in \{r, i\}$ there exists disjoint measurable sets A_{ab} , B_{ab} such that $X = A_{ab} \cup B_{ab}$, A_{ab} is ν_a -null and B_{ab} is μ_a -null. It follows that $A := (A_{rr} \cup A_{ri}) \cap (A_{ir} \cup A_{ii})$ is both ν_r -null and ν_i -null. In particular, for each $n \in \mathbb{N}$ the subsets $\{x \in A : \operatorname{Re}(f(x)) > n^{-1}\}$ and $\{x \in A : \operatorname{Re}(f(x)) < n^{-1}\}$ of A has ν_r and ν_i - measure zero, which implies |f| = 0 on A and hence A is $|\nu|$ -null. Moreover

$$B := A^c = (B_{rr} \cap B_{ri}) \cup (B_{ir} \cap B_{ii})$$

is both μ_r -null and μ_i -null, and a similar argument implies B is $|\mu|$ -null.

20. Proof. Given $E \in \mathcal{M}$, since $|\nu|(E) + |\nu|(X - E) = |\nu|(X) = \nu(X) = \nu(X - E) + \nu(E)$, we have

$$|\nu|(E) - \nu(E) = \nu(X - E) - |\nu|(X - E).$$

Since the left-hand side have nonnegative real part and the right-hand have nonpositive one, $\operatorname{Re}(\nu(E)) = |\nu|(E) \ge |\nu(E)| = \sqrt{\operatorname{Re}(\nu(E))^2 + \operatorname{Im}(\nu(E))^2}$. So $\operatorname{Im}(\nu(E)) = 0$ and therefore $\nu(E) = \operatorname{Re}(\nu(E)) = |\nu|(E)$. Since E is arbitrary, $\nu = |\nu|$.

21. Proof. We are going to show $\mu_1 \leq \mu_2 \leq \mu_3 \leq \mu_1$ and then $\mu_3 = |\nu|$. The first inequality is trivial. For the second one, since there exists $w_j \in \mathbb{C}$, $|w_j| = 1$ such that $|\nu(E_j)| = w_j \nu(E_j)$. Consider the function $f = \sum_j w_j \chi_{E_j}$. Since $\{E_j\}$ is mutually disjoint, $|f| \leq 1$. Take $f_n = \sum_1^n w_j \chi_{E_j}$. We then have, by dominate convergence theorem,

$$\left| \int f_n - \int f \, d\nu \right| \le \int \left| f_n - f \right| \, d|\nu| \to 0,$$

We then have

$$\int_{E} f \, d\nu = \lim_{n \to \infty} \int_{E} f_n \, d\nu = \lim_{n \to \infty} \sum_{j=1}^{n} w_j \nu(E_j) = \sum_{j=1}^{\infty} |\nu(E_j)|.$$

Then $\sum_{1}^{\infty} |\nu(E_j)| = |\int_E f \, d\nu| \le \mu_3(E)$. Since $\{E_j\}$ is arbitrary, $\mu_2 \le \mu_3$. For the third inequality, given $\epsilon > 0$, then we can find some f with $|f| \le 1$ such that

$$\mu_3(E) < |\int_E f \, d\nu| + \epsilon$$

We approximate f by a simple function as follows. Let $D \subset \mathbb{C}$ be the closed unit disc. The compactness of D implies that there are finite many $z_j \in D$ such that $B_{\epsilon}(z_j)$ covers D. Define $B_j = f^{-1}(B_{\epsilon}(z_j)) \subset X$, which is measurable since f is. The union of B_j is X. Let

$$A_1 = B_1, \ A_j = B_j \setminus \bigcup_{i=1}^{j-1} B_i$$

be the disjoint sets with $A_j \subset B_j$ and $\bigcup A_j = X$. Define the simple function $\phi = \sum_1^m z_j \chi_{A_j}$, then $|\phi| \leq 1$ and $|f(x) - \phi(x)| < \epsilon$ for all x by the construction. Then

$$\left| \int_{E} f \, d\nu \right| - \left| \int_{E} \phi \, d\nu \right| \le \left| \int_{E} f - \phi \, d\nu \right| < |\nu|(E).$$

$$\mu_3(E) < |\int_E f \, d\nu| + \epsilon < |\int_E \phi \, d\nu| + \epsilon + \epsilon |\nu|(E)$$

Now we define $F_j = A_j \cap E$, then F_j is a finite partition of E and

$$|\int_{E} \phi \, d\nu| = |\int \sum_{j} z_{j} \chi_{A_{j} \cap E} \, d\nu| = |\sum_{j} z_{j} \nu(F_{j})| \le \sum_{j} |\nu(F_{j})| \le \mu_{1}(E).$$

Since ϵ is arbitrary, we have $\mu_3(E) \leq \mu_1(E)$.

We have already show $\mu_3 \leq |\nu|$ in the above argument. To get the reverse inequality, let $g = d\nu/d|\nu|$. We know $|g| = 1 |\nu|$ -a.e., and hence

$$\mu_3(E) \ge |\int_E \bar{g} \, d\nu| = |\int_E \bar{g} g \, d|\nu|| = |\nu(E)|.$$

3.4 Differentiation on Euclidean Space

22. Proof. Since $M := \int |f| > 0$, there exists R > 0 such that $\int_{B_R(0)} |f| > M/2$. For |x| > R, the ball $B_{2|x|}(x) \supset B_R(0)$ and hence

$$Hf(x) \ge \frac{1}{2^n |x|^n} \int_{B_{2|x|}(x)} |f| \ge \frac{1}{2^n |x|^n} \int_{B_R(0)} |f| > \frac{M}{2^{n+1} |x|^n}.$$

For every small $\alpha > 0$, there is an inclusion

$$\emptyset \neq \{x : R \leq |x| < (c/\alpha)^{1/n}\} = \{x : |x| \geq R, \text{ and } \frac{C}{|x|^n} > \alpha\} \subset \{x : Hf(x) > \alpha\}$$

Thus,
$$m(\lbrace x: Hf(x) > \alpha \rbrace) \geq m(\lbrace x: R \leq |x| < (C/\alpha)^{1/n} \rbrace) = w_n(C - R^n\alpha)/\alpha > w_nC/2\alpha$$
, provided $C - R^n\alpha > C/2$, that is, $\alpha < C/2R^n$.

Remark 6. maximal inequality

- 23. Proof. $Hf \leq H^*f$ is trivial. $H^*f \leq 2^n Hf$ is proved by the fact $x \in B_r(y) \subset B_{2r}(x)$.
- 24. Obvious.
- 25. Proof. (a) Apply Lebesgue Differentiation Theorem to χ_E and $\chi_{E^{\circ}}$
 - (b) The first example can be found by considering E as sector of angle $2\pi\alpha$ and x is the origin, the second example is $E = \bigcup_{1}^{\infty} [2^{-n}, 2^{-n} + 2^{-n-1}], x = 0.$

Fixed
$$N \in \mathbb{N}$$
, we compute $\frac{m(B_{2^{-N}}(0)) \cap E)}{m(B_{2^{-N}}(0))} = 1/4$ and $\frac{m(B_{2^{-N}+2^{-N-1}}(0) \cap E)}{m(B_{2^{-N}+2^{-N-1}}(0))} = 1/3$. So the limit does NOT exist.

26. Proof. Given compact set $K, \nu(K), \lambda(K) < (\nu + \lambda)(K) < \infty$. Let $X = A \coprod B$ be the singular decomposition of λ and ν . Given Borel set $E \subset \mathbb{R}^n$, there exists open sets $U_n \supset E$ such that $(\lambda + \nu)(U_n) - (\lambda + \nu)(E) \to 0$. Note that $(\lambda + \nu)(U_n) = \lambda(U_n \cap A) + \nu(U_n \cap B)$ and $(\lambda + \nu)(E) = \lambda(E \cap A) + \nu(E \cap B)$. Since $\nu(U_n \cap B) - \nu(E \cap B) \ge 0$ and $\lambda(U_n \cap A) - \lambda(E \cap A) \ge 0$, $\lambda(U_n \cap A) + \nu(U_n \cap B) - \lambda(E \cap A) - \nu(E \cap B) \ge \lambda(U_n \cap A) - \lambda(E \cap A) = \lambda(U_n) - \lambda(E) \ge 0$. Since the left-hand side tends to 0 as $n \to \infty$, so does $\lambda(U_n) - \lambda(E)$. Similarly, $\nu(U_n) \to \nu(E)$.

3.5 Functions of Bounded Variation

$$28. \ Proof.$$

29.	Proof.					
	Proof. Let $\{r_n\}$ be the set of all rational numbers. Define $f: \mathbb{R} \to \mathbb{R}$ by $x \mapsto \sum_{\{j: r_j < x\}} \frac{1}{2^j}$. It easy to see it's increasing and discontinuous at any r_n since $f(z) - f(r_n) \ge \frac{1}{2^n}$ for all $z > r_n$. Given $x \in \mathbb{Q}^c$ and $\epsilon > 0$, there is $N \in \mathbb{N}$ such that $\sum_{N=1}^{\infty} \frac{1}{2^j} < \epsilon$.					
	Since x is irrational, let $\delta = \frac{1}{2}\min\{ x - r_j : j = 1, \dots, N - 1\} > 0$. Then for any $y \in B_{\delta}(x)$,					
	$ f(x) - f(y) \le \sum_{N=1}^{\infty} \frac{1}{2^j} < \epsilon.$					
	Therefore, f is continuous at any irrational number.					
31.	We omit (a) since it is standard. (b) is included in the following problem taken from Stein Shakarchi [4, Exercise 2.11]. If $a,b>0$, let $Proof.$					
32.	Proof.					
33.	<i>Proof.</i> By Theorem 3.23, we know $0 \le F'$ exists a.e. We may instead F by the function, still call it F , which equal to $F(x)$ if $x < b$ and equal to $F(b)$ if $x \ge b$. Consider $f_k(x) = \{F(x+h) - F(x)\}/h$ where $h = 1/k$, then $f_k \to f$ a.e. and Fatou's lemma					
	implies $ \int_a^b F'(x) dx \leq \liminf_{k \to \infty} \int_a^b f_k(x) dx = \liminf_{h \to 0^+} \int_a^b \frac{F(x+h) - F(x)}{h} dx $ $= \liminf_{h \to 0^+} \left(\frac{1}{h} \int_b^{b+h} F(x) dx - \frac{1}{h} \int_a^{a+h} F(x) dx\right) \leq F(b) - F(a). $					
	In fact, we have proved that $\int_a^b F'(x) dx \le F(b-) - F(a+)$.					
34.	Proof.					
35.	Proof.					
36.	Proof.					
37.	Proof.					
38.	Proof.					
39.	Proof.					

40. Proof.	
41. Proof.	
42. Proof.	

References

- [1] Kai Lai Chung. A course in probability theory. Academic press, 3 edition, 2001.
- [2] Rick Durrett. Probability: theory and examples. Cambridge university press, 4 edition, 2010.
- [3] Walter Rudin. Real and complex analysis. Tata McGraw-Hill Education, 3 edition, 1987.
- [4] Elias M Stein and Rami Shakarchi. Real analysis: measure theory, integration, and Hilbert spaces. Princeton University Press, 2005.
- [5] David Williams. Probability with martingales. Cambridge university press, 1991.