Lab 8 - AVL Trees

April 2, 2018

Question

AVL Trees are balanced binary search trees, which satisfy the AVL invariant property that for every node in the tree, $|h_L - h_R| \le 1$ = balance factor, where h_L and h_R are the node's left and right children respectively. In this question, you have to write methods for an AVL_k tree, i.e., an AVL tree with balance factor k. For example, an AVL₂ tree ensures that the invariant $|\mathbf{h_L} - \mathbf{h_R}| \le 2$ is satisfied for every node of the tree.

Here is an example of an AVL₂ tree in which the numbers 10, 20, 30, 40, 50, 25, 60 are inserted:

Rotations

Constraints

- $1 \le k \le 5$
- $q \le 10^5$

Queries

- 1 x: Insert a node with key x into the tree.
- 2 : Print the number of left rotations and number of right rotations performed till now, in that order, as two space separated integers.
- 3 x: Search for the node with key x in the tree and print the number of times you choose to move along a left edge, and the number of times you move along a right edge, in that order, as two space separated integers (#left choices, #right choices). If x is not present in the tree, print '-1 1'.

Input Format

- The first line contains the balance factor, k.
- The second line contains an integer q, where q is the number of queries that will follow.
- \bullet Each of the next q lines contains a query.

Sample Test Case 1

Input: 1 12 1 10

12	
1 10	
1 20	Output:
2	0 0
1 30	1 0
2	3 1
1 40	2 0
1 50	0 2
1 25	1 1
2	
3 10	
3 50	
3 25	

Sample Test Case 2

Input:

3 25

input:
2
14
1 10
1 20
1 30
2
1 40
2
1 50
2
3 50
1 25
1 60
2
3 60

Output: 0 0