Results

April 6, 2021

Tables of Friedman, Bonferroni-Dunn, Holm, Hochberg and Hommel Tests

Table 1: Average Rankings of the algorithms

Ranking	2.954545454545453	1.90909090909085	1.136363636363636
Algorithm	ppas	sop phys	svdd desthr

Friedman statistic considering reduction performance (distributed according to chi-square with 2 degrees of freedom: 36.6363636363333. P-value computed by Friedman Test: 1.1112804454427305E-8. Iman and Davenport statistic considering reduction performance (distributed according to F-distribution with 2 and 42 degrees of freedom: 104.48148147622.

P-value computed by Iman and Daveport Test: 4.9708745378137235E-17.

Bonferroni-Dunn's procedure rejects those hypotheses that have a p-value ≤ 0.025 .

Table 2: Holm / Hochberg Table for $\alpha = 0.05$

Holm/Hochberg/Hommel	0.025	0.05
 d	1.6372964512248537E-9	0.010381795789701753
 $z = (R_0 - R_i)/SE$	6.030226891555268	2.56284642891099
algorithm	ppas	sydd des
.2	2	-

Hochberg's procedure rejects those hypotheses that have a p-value ≤ 0.05 . Hommel's procedure rejects all hypotheses.

Table 3: Holm / Hochberg Table for $\alpha = 0.10$

Holm/Hochberg/Hommel	0.05	0.1	
d	1.6372964512248537E-9	0.010381795789701753	
$z = (R_0 - R_i)/SE$	6.030226891555268	2.56284642891099	
algorithm	ppvs	sydd des	
٠.	01	_	

Bonferroni-Dunn's procedure rejects those hypotheses that have a p-value ≤ 0.05 . Hochberg's procedure rejects those hypotheses that have a p-value ≤ 0.1 . Hommel's procedure rejects all hypotheses.

Table 4: Adjusted p-values

			TODIC T. II	$range a P_{-} var a res$		
	algorithm	unadjusted p	p_{Bonf}	p_{Holm}	p_{Hoch}	p_{Homm}
1	ppvs	1.6372964512248537E-9	3.2745929024497074E-9	3.2745929024497074E-9	3.2745929024497074E-9	3.2745929024497074E-9
7	sydd des	0.010381795789701753	0.020763591579403506	0.010381795789701753	0.010381795789701753	0.010381795789701753

Table 5: Holm / Shaffer Table for $\alpha = 0.05$

	99			
Shaffer	0.01666666666666666	0.05	0.05	
Holm	0.01666666666666666	0.025	0.05	
a	1.6372964512248537E-9	5.25557438272822E-4	0.010381795789701753	
$z = (R_0 - R_i)/SE$	6.030226891555268	3.467380462644278	2.56284642891099	
algorithms	sydd vs. sydd desthr	sydd vs. sydd des	svdd des vs. svdd desthr	
.2	8	7	1	

Bergmann's procedure rejects these hypotheses:

• svdd vs. svdd des

• svdd vs. svdd desthr

• svdd des vs. svdd desthr

Table 6: Holm / Shaffer Table for $\alpha=0.10$

Shaffer	0.033333333333333	0.1	0.1
Holm	0.0333333333333333333	0.05	0.1
d	1.6372964512248537E-9	5.25557438272822E-4	0.010381795789701753
$z = (R_0 - R_i)/SE$	6.030226891555268	3.467380462644278	2.56284642891099
algorithms	svdd vs. svdd desthr	svdd vs. svdd des	svdd des vs. svdd desthr
. 2	8	2	1

• svdd vs. svdd des

• svdd vs. svdd desthr

• svdd des vs. svdd desthr

Table 7: Adjusted p -values	thesis unadjusted p p. Neme Pholm PShaf PBerg	$\text{sydd desthr} \qquad 1.6372964512248537E-9 \qquad 4.911889353674561E-9 \qquad 4.9118893674561E-9 \qquad 4.9118893674561E-9 \qquad 4.9118893674561E-9 \qquad 4.9118893674561E-9 \qquad 4.9118893674561E-9 \qquad 4.9118893674561E-9 \qquad 4.911889767661E-9 \qquad 4.9118897676$.svdd des 5.25574382728222E-4 0.0015766723148184665 0.0010511148765456444 5.255574382728222E-4 5.255574382728222E-4	0.010381795789701753 0.031145387369105257 0.010381795789701753 0.0
	hypothesis	sydd vs .sydd desthr	sydd vs. sydd des	svdd des vs .svdd desthr
		-	61	ი