IESTI01 - TinyML

Embedded Machine Learning

5. The Machine Learning Paradigm

Prof. Marcelo Rovai
UNIFEI

From coding to learning...

Explicit Coding

Defining rules that determine behavior of a program

Everything is pre-calculated and pre-determined by the programmer

Scenarios are limited by program complexity

Explicit Coding

Defining rules that determine behavior of a program

Everything is pre-calculated and pre-determined by the programmer

Scenarios are limited by program complexity

Rules

- If ball collides:
 - Remove brick
 - Change dy direction
 - Speed dx

• ...

The Traditional Programming Paradigm

Consider Activity Detection


```
if(speed<4){
    status=WALKING;
}</pre>
```



```
if(speed<4){
    status=WALKING;
} else {
    status=RUNNING;
}</pre>
```



```
if(speed<4){
    status=WALKING;
} else if(speed<12){
    status=RUNNING;
} else {
    status=BIKING;
}</pre>
```



```
// ???
```

The Traditional Programming Paradigm

The Traditional Programming Paradigm

Activity Detection with Machine Learning

Label = WALKING

Label = RUNNING

Label = BIKING

1111111111010011101 00111110101111110101 010111010101010101110 1010101010100111110

Label = GOLFING

Label = WALKING

Label = RUNNING

Label = BIKING

1111111111010011101 00111110101111110101 0101110101010101011110 1010101010100111110

Label = GOLFING

Thinking about loss...

A way to measure your accuracy

$$X = \{ -1, 0, 1, 2, 3, 4 \}$$

$$Y = \{?, ?, ?, ?, ?, ?\}$$

$$X = \{ -1, 0, 1, 2, 3, 4 \}$$

$$Y = \{ -3, -1, 1, 3, 5, 7 \}$$

$$X = \{ -1, 0, 1, 2, 3, 4 \}$$

 $Y = \{ -3, -1, 1, 3, 5, 7 \}$

$$Y = p*X + b$$

$$X = \{ -1, 0, 1, 2, 3, 4 \}$$

 $Y = \{ -3, -1, 1, 3, 5, 7 \}$

$$Y = p*X + b$$

Make a guess! ("parameters' initialization")

$$Y = 3X - 1$$

$$X = \{ -1, 0, 1, 2, 3, 4 \}$$

 $Y = \{ -4, -1, 2, 5, 8, 11 \}$

How good is the guess?

$$Y = 3X - 1$$

$$X = \{ -1, 0, 1, 2, 3, 4 \}$$
 $My Y = \{ -4, -1, 2, 5, 8, 11 \}$
 $Real Y = \{ -3, -1, 1, 3, 5, 7 \}$

Let's measure it!

Let's measure it!

Let's measure it!

Houston, we have a problem!

Houston, we have a problem!

What if we **square**² them?

Calculate de mean error:

$$= (1 + 1 + 4 + 9 + 16) / 6$$

= 5.17

$$Y = 2X - 2$$

$$X = \{ -1, 0, 1, 2, 3, 4 \}$$
 $My Y = \{ -4, -2, 0, 2, 4, 6 \}$
 $Real Y = \{ -3, -1, 1, 3, 5, 7 \}$
 $Diff^2 = \{ 1, 1, 1, 1, 1, 1 \}$

Get the same difference, repeat the same process.

$$= (1 + 1 + 1 + 1 + 1 + 1) / 6$$

= 1.00

$$Y = 2X - 1$$

$$X = \{-1, 0, 1, 2, 3, 4\}$$
 $My Y = \{-3, -1, 1, 3, 5, 7\}$
 $Real Y = \{-3, -1, 1, 3, 5, 7\}$
 $Diff^2 = \{0, 0, 0, 0, 0, 0, 0\}$

$$Y = 2X - 1$$

$$X = \{-1, 0, 1, 2, 3, 4\}$$
 $My Y = \{-3, -1, 1, 3, 5, 7\}$
 $Real Y = \{-3, -1, 1, 3, 5, 7\}$
 $Diff^2 = \{0, 0, 0, 0, 0, 0, 0\}$

$$Y = 2X - 1$$

$$X = \{-1, 0, 1, 2, 3, 4\}$$

My Y =
$$\{-3, -1, 1, 3, 5, 7\}$$

Real
$$Y = \{-3, -1, 1, 3, 5, 7\}$$

$$MSE = \{0, 0, 0, 0, 0, 0\} / 6$$

$$egin{equation} ext{MSE} & rac{1}{n} \sum_{i=1}^n (Y_i - \hat{Y_i})^2 \end{aligned}$$

$$X = \{-1, 0, 1, 2, 3, 4\}$$

My Y =
$$\{-3, -1, 1, 3, 5, 7\}$$

Real
$$Y = \{-3, -1, 1, 3, 5, 7\}$$

$$MSE = \{0, 0, 0, 0, 0, 0, 0\} / 6$$

$$egin{equation} ext{MSE} & ext{ } rac{1}{n} \sum_{i=1}^n (Y_i - \hat{Y_i})^2 \end{aligned}$$

Exploring Loss and Cost Function

Code Time!

Minimizing loss...

Moving down the curve...

It is important to choose the correct Learning Rate (size of the step)

value of

weight

Gradient Descent algorithm

Gradient Descent algorithm

The Machine Learning Paradigm

The Machine Learning Paradigm

Epochs

(Back-Propagation)

Reading Material

Main references

- Harvard School of Engineering and Applied Sciences CS249r: Tiny Machine Learning
- <u>Professional Certificate in Tiny Machine Learning (TinyML) edX/Harvard</u>
- Introduction to Embedded Machine Learning (Coursera)
- <u>Text Book: "TinyML" by Pete Warden, Daniel Situnayake</u>

I want to thank <u>Shawn Hymel</u> and Edge Impulse, <u>Pete Warden</u> and <u>Laurence Moroney</u> from Google, and especially Harvard professor <u>Vijay Janapa Reddi</u>, Ph.D. student <u>Brian Plancher</u> and their staff for preparing the excellent material on TinyML that is the basis of this course at UNIFEI.

The IESTI01 course is part of the <u>TinyML4D</u>, an initiative to make TinyML education available to everyone globally.

Thanks And stay safe!

