CLAIMS

1. A compound of formula Ia or Ib

$$Ar \longrightarrow X^{1} \longrightarrow N \longrightarrow \begin{pmatrix} H & H & Y \\ C & \longrightarrow_{m} & C & N \longrightarrow R^{3} \\ H & R^{1} & H & R^{2} \end{pmatrix}$$

$$Ar \longrightarrow X^{2} \longrightarrow N \longrightarrow \begin{pmatrix} H & \longrightarrow_{m} & Q \longrightarrow_{m}$$

in free or salt form, where

Ar is phenyl optionally substituted by one or more substituents selected from halogen, C₁-C₈-alkyl, cyano or nitro;

$$X^1$$
 is -S-, -S(=O)- or -S(=O)₂-;

$$X^2$$
 is $-C(=O)$ -, $-O$ -, $-CH_2$ -, $-S$ -, $-S(=O)$ - or $-S(=O)_2$ -;

 R^1 is hydrogen or C_1 - C_8 -alkyl optionally substituted by hydroxy, C_1 - C_8 -alkoxy, acyloxy, halogen, carboxy, C_1 - C_8 -alkoxycarbonyl, -N(R^4) R^5 , -CON(R^6) R^7 or by a monovalent cyclic organic group having 3 to 15 atoms in the ring system;

Q has the formula

where Ra is C1-C8-alkylene,

or Q is $-C(R^b)(R^c)$ - where R^b and R^c are independently C_1 - C_8 -alkyl

or Rb and Rc together form a C3-C10-cycloalkyl;

Y is oxygen or sulfur;

R² is hydrogen, C₁-C₈-alkyl or C₃-C₁₀-cycloalkyl and R³ is C₁-C₈-alkyl substituted by phenyl, phenoxy, acyloxy or naphthyl, or R³ is C₃-C₁₀-cycloalkyl optionally having a benzo group fused thereto, a heterocyclic group having 5 to 11 ring atoms of which 1 to 4 are hetero atoms, phenyl or naphthyl, said phenyl, phenoxy or naphthyl groups being optionally substituted by one or more substituents selected from halogen, cyano, hydroxy, acyl, nitro, -SO₂NH₂, C₁-C₈-alkyl optionally substituted by C₁-C₈-alkoxy, C₁-C₈-haloalkyl, C₁-C₈-alkoxy, C₁-C₈-alkylthio, -SO₂-C₁-C₈-alkyl, C₁-C₈-alkoxycarbonyl, C₁-C₈-acylamino optionally substituted on the nitrogen atom by C₁-C₈-alkyl, C₁-C₈-alkylamino, aminocarbonyl,

 C_1 - C_8 -alkyl)amino-carbonyl, di(C_1 - C_8 -alkyl)aminocarbonyl, di(C_1 - C_8 -alkyl)aminocarbonyl-methoxy,

or R² and R³ together with the nitrogen atom to which they are attached denote a heterocyclic group having 5 to 10 ring atoms of which 1, 2 or 3 are hetero atoms;

 R^4 and R^5 are each independently hydrogen or C_1 - C_8 -alkyl, or R^4 is hydrogen and R^5 is hydroxy- C_1 - C_8 -alkyl, acyl, $-SO_2R^8$ or $-CON(R^6)R^7$, or R^4 and R^5 together with the nitrogen atom to which they are attached denote a 5-or 6-membered heterocyclic group;

 R^6 and R^7 are each independently hydrogen or C_1 - C_8 -alkyl, or R^6 and R^7 together with the nitrogen atom to which they are attached denote a 5- or 6-membered heterocyclic group; and R^8 is C_1 - C_8 -alkyl, C_1 - C_8 -haloalkyl, or phenyl optionally substituted by C_1 - C_8 -alkyl.

- 2. A compound according to claim 1, which is
- (i) a compound of formula Ia in free or salt form, wherein

Ar is phenyl substituted by halo;

$$X^1$$
 is -S-, -S(=O)- or -S(=O)₂-;

m is 2;

R¹ is C₁-C₈-alkyl optionally substituted by hydroxy or C₁-C₈-alkoxy;

Y is oxygen;

R² is hydrogen; and

R³ is a heterocyclic group having 5 to 11 ring atoms of which 1 to 4 are hetero atoms; or

(ii) a compound of formula Ib in free or salt form, wherein

Ar is phenyl substituted by halo;

$$X^2$$
 is -O-, -C(=O)- or -CH₂-;

m is 1 or 2;

Q has the formula

where Ra is C1-C8-alkylene,

or Q is –C(Rb)(Rc)- where Rb and Rc are independently C1-C8-alkyl

or Rb and Rc together form a C3-C10-cycloalkyl;

R² is hydrogen; and

R³ is a heterocyclic group having 5 to 11 ring atoms of which 1 to 4 are hetero atoms.

3. A compound according to claim 1, which is

(i) a compound of formula Ia in free or salt form, wherein

Ar is phenyl substituted by halo, preferably chloro;

$$X^1$$
 is -S-, -S(=O)- or -S(=O)₂-;

m is 2;

R¹ is C₁-C₄-alkyl optionally substituted by hydroxy or C₁-C₄-alkoxy;

Y is oxygen;

R2 is hydrogen; and

R³ is a heterocyclic group having 5, 6 or 7 ring atoms of which one, two, three or four, are hetero atoms selected from nitrogen, oxygen and sulphur, said heterocyclic group being optionally substituted by C₁-C₄-alky, C₁-C₄-alkoxy or C₃-C₆-cycloalkyl; or

(ii) a compound of formula Ib in free or salt form, wherein

Ar is phenyl substituted by halo, preferably chloro;

$$X^2$$
 is -O-, -C(=O)- or -CH₂-;

m is 1 or 2;

Q has the formula

where Ra is C1-C8-alkylene,

or Q is -C(Rb)(Rc)- where Rb and Rc are independently C1-C4-alkyl

or Rb and Rc together form a C3-C6-cycloalkyl;

R² is hydrogen; and

R³ is a heterocyclic group having 5, 6 or 7 ring atoms of which one, two, three or four, are hetero atoms selected from nitrogen, oxygen and sulphur, said heterocyclic group being optionally substituted by C₁-C₄-alkyl or C₃-C₆-cycloalkyl.

4. A compound according to claim 1 that is also either a compound of formula XX

where Ar, X1 and R3 are as shown in the following table:

Ar	X	R¹	R ³
CI	O==	но	CH ₃
CI	0 <u></u> 0	НО	S CH ₃
CI		HO	CH ₃
CI	O=-/ν	НО	ÇH₃ N N
CI	0==\omega=	но	N-O CH ₃
CI	0==0	но	O-N CH ₃
CI	0 <u></u> -	O CH ₃	O_CH ₃
CI	ρ <u></u>	OH ₃	S CH ₃
CI	0 <u></u>	O CH ₃	CH ₃
CI	0==0 	OH ₃	CH₃ N N

CI	O s	CH ₃	N-O CH ₃
CI	O==\nu_	OH3	O-N CH ₃
CI	O≕ <i>ω</i>	· CH ₃	CH ₃
CI	O==#	Ė CH ₃	S CH ₃
CI	η==0 	± CH₃	CH ₃
CI	O==-%	≟ CH₃	CH ₃
cı	O==	Ë CH ₃	CH ₃
CI	0 — » — —	Ē CH ₃	O-N CH ₃
CI	—s—	но	S CH ₃
CI	—s—	но	CH ₃

CI	—s—	HO	CH ₃
CI	—s—	НО	CH ₃
CI	—s—	HO	CH ₃
CI	—s—	но	CH ₃
CI	0= <u>0</u> =0	HO	S CH ₃
CI	O=:φ=:O	НО	CH ₃
CI	0=:\sqrt{\pi}=0	HO	CH ₃
CI	0==0=0	HO	CH ₃
CI	0=- 	НО	N-O CH ₃
CI	0	но	O-N CH ₃

or a compound of formula XXI

$$Ar \xrightarrow{X^2} N \xrightarrow{H} Q \xrightarrow{N} C \xrightarrow{N} R^3$$

$$XXI$$

where Ar, X2, m, Q and R3 are as shown in the following table:

Ar	X	m	-Q-	R ³
CI	-O-	1		S CH ₃
CI	-0-	1	\supset	CH ₃
CI	- O-	1	\Rightarrow	CH ₃
CI	-0-	1	\Rightarrow	CH₃ N N
cı	-0-	1	\bigcirc	N=N CH ₃
CI	-0-	1	\bigcirc	CH ₃
CI	-0-	1	\bigcirc	O-N CH ₃
CI	0=0	1	\bigcirc	S CH ₃

CI	<u>ο</u> =α	1	\bigcirc	CH ₃
CI	o=v	1		CH ₃
CI	о <u>—</u> ¢	1	\bigcirc	CH₃ N N
CI	0=0	1	\bigcirc	N=N CH ₃
CI) C	1		CH ₃
CI	0==(1		O-N CH ₃
CI	H 	1		S CH ₃
CI	T-C	1		CH ₃ N CH ₃
CI	H 	1		CH ₃

CI	H C	1		CH ₃
CI	т-с-т	1	\bigcirc	N=N CH ₃
CI	T-Q-T	1	\bigcirc	N-O CH ₃
CI	I-0-I	1	\bigcirc	CH ₃
CI	-0-	1		S CH ₃
CI	-0-	1		CH ₃
CI	-0-	1		CH ₃
CI	-0-	1		CH ₃
CI	-0-	1		N=N CH ₃
CI	-0-	1		N-O CH ₃

CI	-0-	1		O-N CH ₃
CI	0==0	1		S CH ₃
CI	0=0	1		CH ₃
CI	0=0	1		CH ₃
CI	<u>о</u>	1		CH₃ N N
CI	о <u>—</u> с	1		N=N CH ₃
CI	o=c(1	√	CH ₃
CI	0=0	1		O-N CH3
CI	H	1		S CH ₃
CI	T	1		CH ₃ N N CH ₃

		,		
CI	т- -т	1		CH ₃
CI	н—— —С——	1		CH ₃
CI	н —С— н	1		N=N CH ₃
CI	н ¢ н	1	·	N-O CH ₃
CI	H 	1		O-N CH ₃
CI	-0-	2	\Diamond	S CH ₃
CI	-0-	2	\Diamond	CH ₃ N N CH ₃
CI	-0-	2	\Diamond	CH ₃
CI	-0-	2	<u></u>	CH ₃

	-0-	2	\Diamond	N CH ₃
CI				N=N
CI	-0-	2	\bigcirc	N-O CH ₃
CI	-0-	2	\Diamond	O-N CH ₃
CI	o=o(2	\Diamond	S CH ₃
CI	o=v(2		CH ₃
CI) o=o	_ 2	\Diamond	CH ₃
CI	o=-v(2	\Diamond	CH ₃
CI) 0=0	2	文	N=N CH ₃
CI	<u></u>	2	\Diamond	CH ₃
CI	0==0	2	文	O-N CH ₃
cı	H 	2		S CH ₃

		·······	r	
CI	I	2	\Diamond	CH ₃
CI	I—0—I	2.	\Diamond	CH ₃
CI	н — С— Н	2		CH ₃
cı	тС	2	\Diamond	N=N CH ₃
CI	I-O-I	2	\Diamond	N-O CH ₃
CI	т-0-т	2	\Diamond	O-N CH ₃
CI	-0-	2	CH ₃ —C—CH ₃	S CH ₃
CI	-0-	2	CH ₃ —CH ₃	CH ₃
CI	-0-	2	CH ₃ —CH ₃	CH ₃
CI	-0-	2	CH ₃	CH ₃

r				
CI	-0-	2	CH ₃ —C— CH ₃	N=N CH ₃
CI	-0-	2.	CH₃ —C— CH₃	N-O CH ₃
CI	-0-	2	CH ₃ —C—	O-N CH ₃
CI	0=0	2	CH ₃ 	S CH ₃
CI	0=0	2	CH ₃ —C— CH ₃	CH ₃ N CH ₃
CI	0=0	2	CH₃ CH₃	CH ₃
CI	<u>о</u> =(2	CH ₃ C CH ₃	CH₃ N N
CI	OH C	2	CH ₃	N=N CH ₃
CI	0==0	2	CH₃ —C— CH₃	N-O CH ₃
CI	0=0	2	CH ₃ —C— CH ₃	O-N CH ₃
CI	H 	2	CH ₃ —C— CH ₃	S CH ₃

<u> </u>				
CI	H 	2	CH₃ —C— CH₃	CH ₃
CI	H 	2	СН ₃ —-С— СН ₃	CH ₃
CI	H 	2	CH₃ —C— CH₃	CH ₃
CI	H 	2	CH₃ —C— CH₃	N=N CH ₃
CI	I-0-I	2	CH ₃ C CH ₃	N-O CH ₃
CI	I-0-I		CH ₃ —C— CH ₃	O-N CH ₃
CI	-0-	1	\bigcirc	S CH ₃
CI	-0-	1	\supset	CH ₃
CI	-0-	1		CH₃ N N

CI	-O-	1	\Box	CH ₃
CI	-0-	1	\bigcirc	N=N CH ₃
CI CI	-0-	1	\bigcirc	CH ₃
CI	-O-	1	\bigcirc	O-N CH ₃
CI	-0-	1		S CH ₃
CI	-O-	1		CH ₃
CI	-O-	1		CH ₃
CI	-0-	1		CH₃ N N
CI	- O-	1		N=N CH ₃

	T			1
CI	-O-	1		N-O CH ₃
CI	-0-	1		O-N CH ₃
CI	-0-	1		S CH ₃
CI	-0-	1	\widehat{A}	CH ₃
CI	-0-	1	\widehat{A}	CH ₃
CI	-0-	1		CH3 N
CI	-0-	1	\widehat{A}	N=N CH ₃
cı	-O-	1	\widehat{R}	N-O CH ₃
cı	- O-	1	$\widehat{\mathbf{x}}$	O-N CH ₃
CI	-0-	1		S CH ₃

CI	-0-	• 1	CH ₃
CI	-0-	1	CH ₃
CI	-0-	1	CH ₃
CI	-0-	1	N=N CH ₃
CI	-0-	1	CH ₃
CI	-0-	1	O-N CH ₃

- 5. A compound according to any one of the preceding claims in combination with another drug substance which is an anti-inflammatory, a bronchodilator, an antihistamine or an antitussive substance.
- 6. A compound according to any one of the preceding claims for use as a pharmaceutical.
- 7. A pharmaceutical composition comprising as active ingredient a compound according to any one of claims 1 to 4.
- 8. The use of a compound according to any one of claims 1 to 4 for the manufacture of a medicament for the treatment of a condition mediated by CCR-3.

- 9. The use of a compound according to any one of claims 1 to 4 for the manufacture of a medicament for the treatment of an inflammatory or allergic condition, particularly an inflammatory or obstructive airways disease.
- 10. A process for the preparation of a compound of formula Ia or Ib as claimed in claim 1 which comprises
- (i) (A) for the preparation of compounds of formula Ia where R² is hydrogen, reacting a compound of formula IIa

$$Ar - X^{1} - N - \begin{pmatrix} H & H \\ C & -M \\ H & R^{1} \end{pmatrix}$$
 IIa

or a protected form thereof, where Ar, X¹, m and R¹ are as defined in claim 1, with a compound of formula III

where Y and R3 are as defined in claim 1; or

(B) for the preparation of compounds of formula Ia where Y is oxygen, reacting a compound of formula IIa where Ar, X^1 , m and R^1 are as defined in claim 1, with a compound of formula IV

where R² and R³ are as defined in claim 1; or

- (C) for the preparation of compounds of formula Ia where X^1 is $-S(=O)_{2^-}$, oxidising a compound of formula Ia in protected form where X^1 is -S- and Ar, m, R^1 , Y, R^2 and R^3 are as defined in claim 1;
- (D) for the preparation of compounds of formula Ib, reacting a compound of formula IIb

$$Ar - X^{2} \longrightarrow N - \left(-\frac{H}{C} \right)_{m} Q - NH_{2} \qquad IIb$$

where Ar, X², m and Q are as defined in claim 1, with a compound of formula IV where R² and R³ are as defined in claim 1;

(E) for the preparation of compounds of formula Ib where R^2 is hydrogen, reacting a compound of formula IIb where Ar, X^2 , m and Q are as defined in claim 1, with a compound of formula V

$$0=C=N-R^3$$
 v

where R3 is as defined in claim 1; or

- (F) for the preparation of compounds of formula Ib where X is $-S(=O)_2$ -, oxidising a compound of formula Ib in protected form where X^2 is -S- and Ar, m, Q, R^2 and R^3 are as defined in claim 1; and
- (ii) recovering the product in free or salt form.