Modelación Jerárquica

Dr. Ivan Sipiran

- Características
 - Objetos repetidos
 - Objetos contenidos en otros objetos

• Utilizando distintas transformaciones podemos dibujar el mismo objeto en distintos lugares de la escena

- El objeto básico es un pino compuesto de otras dos figuras básicas.
- Supongamos que tenemos una función que dibuja un cuadrado café y otra que dibuje un triángulo verde.
- Ambas figuras se dibujan centradas.
- Utilizando transformaciones podemos armar el pino.
- Se tiene una jerarquía de transformaciones.
- Esta jerarquía se puede representar como un grafo.

- Transformando el cuadrado y el triángulo podemos dibujar el pino
- Esta serie de operaciones es lo que se conoce como el grafo de escena.

- La misma idea se expande para generar la escena completa de muchos pinos.
- Cada flecha involucra una transformación.

- Cada hoja del árbol es un objeto básico.
- Cada nodo interno representa un grupo de objetos.
- Cada arco representa una transformación.
- La transformación final de un objeto es la composición de todas las transformaciones desde la raíz hasta la hoja.

• Objeto con piezas móviles en una escena

• Modelando un objeto con piezas móviles

• Modelando un objeto con piezas móviles

Ejemplo: figura humanoide

Ejemplo: Sistema planetario

Ejemplo: Sistema planetario

Grafo de escena – Árbol

- Estructura ampliamente usada
- Cada nodo posee uno o mas nodos hijos
- Cada nodo posee un único padre
- Transformaciones se acumulan desde el nodo raíz hasta las hojas
- Cada nodo hoja representa un objeto de la escena

Grafo de escena - DAG

- Cada objeto puede ser instanciado múltiples veces
- Es decir, cada nodo puede tener múltiples padres
- Esto se logra modelando la escena usando un DAG.
- DAG: Directed Acyclic Graph
 - Dirigido porque arcos van en una sola dirección
 - Acíclico significa que no hay loops al recorrer el grafo

Grafo de escena - DAG

- Las transformaciones aún se acumulan desde el nodo raíz hasta las hojas (igual que con el árbol)
- Como los objetos ya se encuentran en el GPU, se aprovecha para optimizar almacenamiento.

Ejemplo DAG

Analizamos 3D Cars

• Ejemplo en ex_scene_graph_3dcars.py en el repositorio

Analizamos Sistema Solar

- Ejemplo en ex_scene_graph_solar.py en el repositorio
- Construimos el DAG y revisamos el código.

Preguntas?