Envariabelanalys Sammanfattning av definitioner och satser

Jacob Adlers

March 14, 2016

1 Funktioner

1.1 Definition

En funktion f är en regel som för varje element i en mängd, definitionsmängden av f, tilldelar ett unikt element i värdemängden av f.

1.2 Sats (Bevis sid 51)

$$cos(s-t) = cos(s)cos(t) + sin(s)sin(t)$$

1.3 Sats

Om f(x) är både jämn och udda då är $f(x) = 0 \quad \forall x$

1.4 Sats

Om p(x) är ett polynom och p(a) = 0 så finns det ett polynom q(x) sådant att p(x) = q(x)(x-a)

2 Gränsvärden

2.1 Definition

Vi säger att f(x) går mot $L \in \mathcal{R}$ när x går mot oändligheten $(f(x) \to L$ då $x \to \infty$ $\lim_{x \to \infty} f(x) = L$).

Det gäller om det $\forall \varepsilon > 0$ existerar ett R_{ε} sådant att om $x > R_{\varepsilon}$ så $|f(x) - L| < \varepsilon$

2.2 Definition

Vi säger att en funktion f(x) går mot L då x går mot a om det $\forall \varepsilon > 0$ existerar ett $\delta_{\varepsilon} > 0$ sådant att $0 < |x - a| < \delta_{\varepsilon}$. Det medför att $|f(x) - L| < \varepsilon$

2.3 Definition

$$\lim_{x\to a^+} f(x) = L$$

3 Kontinuitet

3.1 Definition

Vi säger att en funktion f(x) är kontinuerlig i en inre punkt c av sitt definitionsområde om $\lim_{x\to c}f(x)=f(c)$

3.2 Definition

Vi säger att f(x) är vänster/(höger)-kontinuerlig i en punkt c om: $\lim_{x\to c^-} f(x) = f(c)$ $(\lim_{x\to c^+} f(x) = f(c))$

3.3 Sats

Om f(x) och g(x) är kontinuerliga så kommer f(x)+g(x), f(x)-g(x), f(x)g(x) och f(g(x)) att vara kontinuerliga där de är definerade.

3.4 Sats

Om f(x) är kontinuerlig på ett slutet och begränsat intervall [a, b] då kommer det att finnas två punkter $p, q \in [a, b]$ sådant att $f(p) \le f(x) \le f(q) \quad \forall x \in [a, b]$

3.5 Sats om mellanliggande värden

Om f(x) är kontinuerlig på [a,b] och om s ligger mellan f(a) och f(b) då finns det ett $x \in [a,b]$ sådant att f(x) = s

4 Derivata

4.1 Definition

Vi säger att derivatan av en funktion f(x) ges av $\lim_{h\to 0} \frac{f(x+h)-f(x)}{h}$ om gränsvärdet existerar.

4.2 Definition

Om f(x) är deriverbar i punkten x_0 så är linjen $y = f'(x_0)(x - x_0) + f(x_0)$ tangenten till f(x) i x_0 .

4.3 Sats

Om f(x) och g(x) är deriverbara så gäller följande:

- 1. $D(f(x))_{(-)}^+ g(x)$ (Summaregeln)
- 2. D(f(x)g(x)) = f'(x)g(x) + f(x)g'(x) (Produktregeln)
- 3. $D(\frac{f(x)}{g(x)}) = \frac{f'(x)g(x) f(x)g'(x)}{(g(x))^2}$ (Kvotregeln) Om $g(x) \neq 0$

4.4 Sats

Om en funktion g(x) är deriverbar i x_0 så är g(x) kontinuerlig i x_0 . Alltså, g(x) deriverbar $\Rightarrow g(x)$ kontinuerlig.

4.5 Sats

- 1. Dx = 1
- $2. \ Dx^r = rx^{r-1} \quad r \in \mathcal{R}$
- 3. $D\sin(x) = \cos(x)$
- 4. $D\cos(x) = -\sin(x)$

4.6 Definition

Om f(x) är en funktion definerad på ett intervall I så säger vi att f(x) är:

- 1. Strängt växande på I om $\forall x_1, x_2 \in I$ $x_2 > x_1 \Rightarrow f(x_2) > f(x_1)$
- 2. Växande på I om $\forall x_1, x_2 \in I$ $x_2 > x_1 \Rightarrow f(x_2) \geq f(x_1)$
- 3. Strängt avtagande på I om $\forall x_1, x_2 \in I \quad x_2 > x_1 \Rightarrow f(x_2) < f(x_1)$
- 4. Avtagande på Iom $\forall x_1, x_2 \in I \quad x_2 > x_1 \Rightarrow f(x_2) \leq f(x_1)$

4.7 Medelvärdessatsen

Om f(x) är kontinuerlig på ett intervall [a,b] och f(x) är deriverbar på (a,b) då finns en punkt $c\in(a,b)$ så att: $\frac{f(b)-f(a)}{b-a}=f'(c)$

4.8 Följdsats till medelvärdessatsen

Antag att f'(x) > 0 på (a, b). Då är f(x) strängt växande på samma intervall.