Etude et conception d'un filtre numérique RIF à réponse impulsionnelle programmable

Synthèse logique avec insertion de scan et validation

Insertion de scan avec Design Vision

1. Chargement du design

Recharger, ou éventuellement, refaire la synthèse du filtre seul (version « pipelinée » ou version initiale). La contrainte d'horloge sera choisie de manière à n'avoir que du « slack » positif.

2. Insertion / synthèse d'une chaine de scan

L'insertion du scan se fera par l'intermédiaire de plusieurs commandes dans le terminal de «design_vision» :

1. configuration du type de scan :

```
set test default scan style multiplexed flip flop
```

2. création du protocole de test :

```
create test protocol -infer clock -infer async
```

3. choix du nom des ports scan_in, scan_out et scan_enable :

```
set test_scan_in_port_naming_style scan_in%s%s
set test_scan_out_port_naming_style scan_out%s%s
set test scan enable port naming style scan enable%s
```

4. Configuration et insertion de la chaine de scan :

```
set_scan_configuration -chain_count 1
set_scan_configuration -create_dedicated_scan_out_ports true
insert_dft
```

5. Configuration du signal « Scan Enable » :

```
set_dft_signal -view spec -port scan_enable -type ScanEnable /
-active_state 1
set drive 2 scan enable
```

6. Vérification de la testabilité :

```
dft_drc
```

7. Synthèse de la chaine de scan :

```
compile -exact map -scan
```

8. Rapport:

```
report_scan_path
```

9. Sauvegarde en vhdl et sdf:

```
write -hierarchy -format vhdl -output ../netlist with scan.vhdl
```

Validation avec modelsim

Utiliser la netlist générée pour mettre en œuvre la chaine de scan dans modelsim. La netlist sera compilée dans la bibliothèque « lib_scan » que vous aurez préalablement créée (avec vlib, et dans le fichier modelsim.ini)

Ce qu'il faut faire à cette étape

- 1. Faites une première synthèse (hiérarchique) du filtre. Notez-bien les résultats de vitesse/consommation/surface pour cette première synthèse sans «scan».
- 2. Faites ensuite une synthèse du filtre avec scan. Quelles remarques pouvez-vous faire sur le cout du scan.
- 3. Observez la chaine de scan. Comment sont reliées les bascules? Quelle est sa longueur ?...
- 4. Créez et simulez un bench adapté au nouveau circuit avec scan. On validera le principe du scan par le chargement et la lecture d'un état dans la machine à états.