JENNIFER THOMPSON, MPH @jent103 • jennifer.l.thompson@vanderbilt.edu RAMEELA CHANDRASEKHAR, PHD MAYUR PATEL, MD, MPH

HANDLING BIAS CAUSED BY MISSING DELIRIUM ASSESSMENTS

EXAMPLE: TRAUMATIC BRAIN INJURY COHORT

2,664

1,282 (48%)

complete mental status data

1,383 (52%)

at least one day with no mental status assessment

1198 (45%)

have **some** assessments

185 (7%)

have **no** assessments

Compared to patients with complete data, patients with no assessments are:

- older
- less "injured"
- less time on MV
- more likely to be discharged home; less likely to go to rehab

EXAMPLE: TRAUMATIC BRAIN INJURY COHORT

- Assume main exposure is duration of delirium during index hospitalization
- Value of exposure differs greatly according to how we treat hospital days with missing assessments
- Truth is probably between these extremes
- How we handle this matters: We're afraid of getting biased results

MISSING COMPLETELY AT RANDOM (MCAR)

MISSING AT RANDOM (MAR)

MISSING NOT AT RANDOM (MNAR)

MISSING NOT AT RANDOM (MNAR)

EXAMPLE OF BIAS: MODIFYING BRAIN-ICU

Link: Full BRAIN-ICU manuscript, NEJM

- Study goal:
 association of
 delirium duration
 in hospital & long term cognition
- Original data had very little missingness; we assume study results are Truth
- What might have been, if we had had more missing assessments:

RESULTS USING DATA WITH FORCED MISSINGNESS

THAT'S NOT GREAT... SO WHAT ARE MY OPTIONS?

image source: Benjamin Reay via Flickr

1. IGNORE IT

i.e., complete case analysis

- PROS
 - Easy
 - Probably OK if you have very little missing data (<3-5%)</p>
- CONS
 - Can lead to biased, misleading results
 - Reduces sample size and therefore power (see <u>TBI</u> example)

2. SINGLE IMPUTATION: MAKE AN ASSUMPTION

Make assumption(s) about values for missing assessments, then proceed with analysis. Classic examples: imputing the mean; last observation carried forward (LOCF)

PROS

 Still pretty easy; probably OK with very little missing data (<3-5%)

CONS

- If we don't have very strong rationale, and/or have lots of missingness, can still lead to bias this is especially problematic with quickly-changing mental status
- Doesn't account for uncertainty surrounding our assumptions

Possible (But Not Necessarily Advised) Techniques:

- Assume all missing assessments are normal/delirious/coma
- Use a little clinical info:
 - **LOCF**
 - Missing among survivors = normal;missing among deceased = coma
 - BRAIN-ICU approach: impute status based on the days before & after missing assessment

3. MULTIPLE IMPUTATION: USE WHAT WE'VE GOT

Use data on all covariates to make **multiple** predictions for missing assessments. Account for uncertainty during analysis.

PROS

- Uses all available information
- Does the most to reduce bias
- Accounts for uncertainty in predictions

CONS

- More complicated
- Depends on predictors being as/more reliable than delirium assessments
- > Assumes assessments are missing at random

3. MULTIPLE IMPUTATION: USE WHAT WE'VE GOT

Use data on all covariates to make **multiple** predictions for missing assessments. Account for uncertainty during analysis.

BUT WAIT... ISN'T IMPUTATION MAKING UP DATA?

In a word: no.

"The goal of imputation is to preserve the information and meaning of the non-missing data." - Frank Harrell

Ignoring missing data is more of a disservice to patients and to science than addressing the resulting bias head-on.

IF YOU HAVE <u>STRONG</u> RATIONALE, DO THE BEST SINGLE IMPUTATION AVAILABLE IN YOUR CONTEXT TO AVOID LOSING N. MAKE SURE TO CONSIDER POTENTIAL FOR BIAS DURING INTERPRETATION.

RESOURCES

- ▶ Janssen et al. "Missing covariate data in medical research: To impute is better than to ignore." Journal of Clinical Epidemiology, 2010 Jul;63(7):721-7. DOI: 10.1016/j.jclinepi.2009.12.008
- Donders et al. "Review: A gentle introduction to the imputation of missing values." Journal of Clinical Epidemiology, 2006 Oct;59(10):1087-91. DOI: 10.1016/j.jclinepi.2006.01.014
- Sterne et al. "Multiple imputation for missing data in epidemiological and clinical research: potential and pitfalls." The BMJ, 2009;338:b2393. DOI: 10.1136/bmj.b2393
- Multiple imputation software options:
 - R: mice package by Stef van Buuren (<u>package manual</u>)
 - ▶ R: Hmisc::aregImpute() by Frank Harrell (<u>documentation</u>), usually used in conjunction with rms::fit.mult.impute()
 - Stata: mi (<u>feature page</u>)
 - SAS: PROC MI (<u>user guide</u>)
- Slides (and R code for visuals, if you're really into it): github.com/jenniferthompson/ADS2017

