

Deep Reinforcement Learning

Prof. Joongheon Kim
Korea University, Seoul, Korea
https://joongheon.github.io
joongheon@korea.ac.kr

Lecture Roadmap

Introduction and Preliminaries

Deep Reinforcement Learning Theory

Deep Reinforcement Learning Implementation

Imitation Learning and Autonomous Driving

Introduction to RL

- Brief History and Successes
 - Minsky's PhD thesis (1954): Stochastic Neural-Analog Reinforcement Computer
 - Analogies with animal learning and psychology
 - Job-shop scheduling for NASA space missions (Zhang and Dietterich, 1997)
 - Robotic soccer (Stone and Veloso, 1998) part of the world-champion approach
- When RL can be used?
 - Find the (approximated) optimal action sequence for expected reward maximization (not for single optimal solution)
 - Define <u>actions</u> and <u>rewards</u>. These are all we need to do.

Introduction to RL

• Action Sequence (also called **Policy**, later in this presentation)!

Interpolation vs. Linear Regression

Interpolation vs. Linear Regression

Interpolation with Polynomials

$$y = a_2 x^2 + a_1 x^1 + a_0$$

where three points are given.

 \rightarrow Unique coefficients (a_0, a_1, a_2) can be calculated.

Is this related to **Neural Network Training?**

Interpolation and Neural Network Training

$$Y = a(a(a(X \cdot W_1 + b_1) \cdot W_2 + b_2) \cdot W_0 + b_0)$$

where training data/labels (X: data, Y: labels) are given.

- \rightarrow Find $W_1, b_1, W_2, b_2, W_o, b_o$
- → This is the mathematical meaning of neural network training.
- **→ Function Approximation**
- → The most well-known function approximation with neural network:
 Deep Reinforcement Learning

Example (Deep Reinforcement Learning)

- It is inefficient to make the Q-table for each state-action pair.
 - → ANN is used to approximate the Q-function.

Proactive Automotive/Vehicular Caching in I2V Infra

DDPG Modeling (Rewards and Actions)

Reward

• [2] Multi-UAV Coordination for 5G Network Coverage Extension

- Motivation
 - NLOS and blockage effects are major components which can make impacts on the performance of 5G millimeter-wave wireless technologies.
 - **Deploying UAV-assisted wireless networks** can be an effective solution to mitigate this issue as it enables **more LOS communications.**
- Proposed Solution
 - Reinforcement learning based multi-agent navigation algorithm.

• [2] Multi-UAV Coordination for 5G Network Coverage Extension

System Model

Obstacle Avoidance (in Complex Environment)

LiDAR

→ A remote sensing technology that uses rapid laser pulses to locate nearby obstacles.

planning

Drone sets a new path to avoid

Location of drone.

Location of shaded area.

LiDAR (360 degree & forward) (o

• [2] Multi-UAV Coordination for 5G Network Coverage Extension

System Model

Reward

- 1. Collision with obstacles (negative)
- 2. Collision with drones (negative)
- 3. Arrive at destination (positive)
- 4. LOS communication (positive)

Action

- . Rotation (Left, Right)
- . Move forward

• [2] Multi-UAV Coordination for 5G Network Coverage Extension

• Simple Demo (Bird View)

Introduction

- ICML 2018 Tutorial
 - https://sites.google.com/view/icml2018-imitation-learning/

Imitation Learning Tutorial ICML 2018

Introduction

- ICML 2019 Tutorial
 - https://slideslive.com/38917941/imitation-prediction-and-modelbasedreinforcement-learning-for-autonomous-driving

Introduction to Imitation Learning

Gameplay

Pro-Gamer

Trained Agent

The goal of Imitation Learning is to train a policy to mimic the expert's demonstrations

Introduction to Imitation Learning

Problems of RL

1. Reward Shaping

2. Safe Learning

3. Exploration process

Imitation Learning handles with these problems through the demonstration of the experts.

Inverse Reinforcement Learning (IRL) Environment Model(MDP) Reinforcement Reward Optimal Learning Function R Policy π $\arg\max_{\pi} \mathrm{E}[\sum_{t} \gamma^{t} R(s_{t}) | \pi]$ Environment Model(MDP) **Expert Policy** Optimal Reward Inverse Reinforcement **IRL** Function R Learning Policy π

R that explains

Expert Trajectories

Expert Trajectories

 $s_0, a_0, s_1, a_1, s_2, a_2, \cdots$

Imitation Learning

Behavior Cloning

- Define $P^* = P(s|\pi^*)$ (distribution of states visited by expert)
- Learning objective

$$argmin_{\theta} E_{(s,a_E) \sim P^*} L(a_E, \pi_{\theta}(s))$$
$$L(a_E, \pi_{\theta}(s)) = (a_E - \pi_{\theta}(s))^2$$

Discussion

- Works well when P^* close to the distribution of states visited by π_{θ}
- Minimize 1-step deviation error along the expert trajectories

Imitation Learning

Generative Adversarial Imitation Learning (GAIL), NIPS 2016

- Generative adversarial imitation learning (GAIL) learns a policy that can imitate expert demonstration using the adversarial network from generative adversarial network (GAN).
- Learning Objective

$$argmin_{\theta} \ argmax_{\emptyset} \ E[\log(D_{\emptyset}(s,a)] + E[\log(1-D_{\emptyset}(s,a))]$$

Imitation Learning Applications: Starcraft2

Starcraft2

States: s = minimap, screen

Action: a = **select**, **drag**

Training set: $D = \{\tau := (s, a)\}$ from expert

Goal: learn $\pi_{\theta}(s) \rightarrow a$

States: S Action: a Policy: π_{θ}

• Policy maps states to actions : $\pi_{\theta}(s) \rightarrow a$

Distributions over actions : $\pi_{\theta}(s) \rightarrow P(a)$

State Dynamics: P(s'|s,a)

Typically not known to policy

• Essentially the simulator/environment

Rollout: sequentially execute $\pi_{\theta}(s_0)$ on initial state

• Produce trajectories au

 $P(\tau|\pi)$: distribution of trajectories induced by a policy

 $P(s|\pi)$: distribution of states induced by a policy

Imitation Learning Applications: Autonomous Driving

Autonomous Driving Control

States: s = **sensors**

Action: a = steering wheel, brake, ...

Training set: $D = \{\tau := (s, a)\}$ from expert

Goal: learn $\pi_{\theta}(s) \rightarrow a$

Imitation Learning Applications: Smartphone Security

Smartphone Security

States: s = **apps**, ...

Action: a = use patterns, ...

Training set: $D = \{\tau := (s, a)\}$ from expert

Goal: learn $\pi_{\theta}(s) \rightarrow a$

Imitation Learning Applications: PPF/RFTN Injection Control in Medicine

PPF/RFTN Injection Control in Medicine

States: s = **BIS**, **BP**, ...

Action: a = PPF, RFTN, ...

Training set: $D = \{\tau := (s, a)\}$ from expert

Goal: learn $\pi_{\theta}(s) \rightarrow a$

Autonomous Driving with Imitation Learning

M. Shin and J. Kim, "Adversarial Imitation Learning via Random Search in Lane Change Decision-Making," *ICML* 2019 Workshop on AI for Autonomous Driving, 2019.

M. Shin and J. Kim, "Randomized Adversarial Imitation Learning for Autonomous Driving," *IJCAI*, 2019., (Acceptance Rate: 850/4752=17.89%)

Generative Adversarial Network (GAN) + Random Search for Autonomous Driving

Autonomous Driving with Imitation Learning

Outline

- GAN Introduction
- Reinforcement Learning and Imitation Learning
- Federated Learning

Privacy-Preserving Deep Learning for Geo-Distributed Medical Clouds

Motivation

 It's not possible to gather all data in a single hospital/medical-cloud for deep learning computation (due to patients' privacy).
 Then, following problems can occur:

- Overfitting in each hospital
- Training Performance Degradation
- More serious problems can happen...

Goals

- Maintaining Deep Learning Computation Performance
- Prohibiting Duplicated Patients' Data

Privacy-Preserving Deep Learning for Geo-Distributed Medical Clouds

Collaborative Deep Learning

- How it works?
 - All clouds share the model at first.
 - Each cloud trains its own model (Data is not shared among clouds for privacy-preserving).
 - Each cloud shares weight values (not the data itself).
 - **→ Selective Parameter Sharing**
- Disadvantages
 - Performance degradation
 - Synchronization (No network delays are assumed.)

R. Shokri and V. Shmatikov, "Privacy-Preserving Deep Learning," ACM CCS 2015. (Citation: 500+)

Privacy-Preserving Deep Learning for Geo-Distributed Medical Clouds

Cyclic Parameter Delivery for Distributed Privacy-Preserving Deep Learning

Additional Benefits

- Can Combat the Network Delay/Latency
- Can Combat the Network Data Imbalance

Distributed Federated Learning

Privacy-Preserving Distributed Deep Learning Computation

- Each platform has the first hidden layer of deep learning model (L_1)
- Server has the other hidden layers and the output layer $(L_2, ..., L_{k-1}, L_k)$
- During training process the data is shared in the form of the results of L_1

Privacy-Preserving Medical Deep Learning

System Model

FL Applications to Networks (Paper #2)

- Edge AI approach brings AI processing closer to where data is produced.
- FL allows training on devices where the data is produced.

W. Yang, et. al., "Federated Learning in Mobile Edge Networks: A Comprehensive Survey," arXiv:1909.11875v1, Sept. 2019.

FL Applications to Networks (Paper #3)

System Model

Z. Yu, J. Hu, G. Min, H. Lu, Z. Zhao, H. Wang, and N. Georgalas, "Federated Learning Based Proactive Content Caching in Edge Computing," in *Proc. of IEEE GLOBECOM*, Abu Dhabi, UAE, Dec. 2018.

FL Applications to Networks (Paper #4)

Energy-Efficient FL System

Q. Zeng, Y. Du, K. K. Leung, and K. Huang, "Energy-Efficient Radio Resource Allocation for Federated Edge Learning," *arXiv:1907.06040*, Jul. 2019.

FL Applications to Networks (Paper #6)

Concept

B. Liu, L. Wang, M. Liu, and C.-Z. Xu, "Federated Imitation Learning: A Privacy Considered Imitation Learning Framework for Cloud Robotic Systems with Heterogeneous Sensor Data," *arXiv:1909.00895*, Sept. 2019.

Concluding Remarks and Q&A

- More questions?
 - joongheon@gmail.com
 - joongheon@cau.ac.kr
- More details?
 - https://sites.google.com/site/joongheonkim/
 - http://prof.cau.ac.kr/~joongheon

