FIRST MIDTERM PRACTICE PROBLEMS MATH 104, SECTION 2

- (1) Let $a_n = \sqrt{n^2 + 1} n$. Prove that (a_n) is convergent <u>based on the definition</u>. (You're not allowed to use any theorem for this problem.)
- (2) Let (a_n) be a sequence of real numbers where $a_1 = 1$ and

$$a_{n+1} = \frac{n}{n+3}a_n^2 \text{ for } n \ge 1.$$

Prove that (a_n) is convergent and find the limit.

- (3) Let $a_n = (n!)^{1/n}$. Is (a_n) convergent or divergent? (Recall that $n! = 1 \cdot 2 \cdot \cdots \cdot n$.)
- (4) Let (a_n) be a sequence of real numbers. Suppose that (a_n^3) is convergent. Prove that (a_n) is convergent.
- (5) Let (a_n) be a sequence of real numbers satisfying

$$0 \le a_{n+m} \le a_n + a_m$$
 for any $n, m \in \mathbb{N}$.

Define $b_n \coloneqq \frac{a_n}{n}$ for each n. Prove that the sequence (b_n) is convergent. (Hint: First prove that (b_n) is bounded. Let $z \coloneqq \limsup b_n$. There exists a subsequence (b_{k_n}) such that $\lim b_{k_n} = z$. For any $m \in \mathbb{N}$, you can write $k_n = \ell_n m + r_n$ where $0 \le r_n < m$. Then try to show that $z \le b_m$ by taking $n \to \infty$ for certain inequality obtained from the assumption.)

- (6) Consider the metric space \mathbb{R} with the usual distance function d(x,y) = |x-y|. Prove or disprove the following statements.
 - (a) $\mathbb{Q} \subseteq \mathbb{R}$ is an open subset.
 - (b) $\mathbb{Q} \subseteq \mathbb{R}$ is a closed subset.