Introduction

In this project we are given three planning schemes with different initial states and goals as given below, and expected to generate plans to achieve given goals using uninformed and heuristic search strategies.

Table 1. Problem descriptions

Problem	Initial State and Goal
AC1	<pre>Init(At(C1, SF0)</pre>
AC2	<pre>Init(At(C1, SF0) \(\text{ At(C2, JFK) \(\text{ At(C3, ATL)} \) \(\text{ At(P1, SF0) \(\text{ At(P2, JFK) \(\text{ At(P3, ATL)} \) \(\text{ Cargo(C1) \(\text{ Cargo(C2) \(\text{ Cargo(C3)} \) \(\text{ Plane(P1) \(\text{ Plane(P2) \(\text{ Plane(P3)} \) \(\text{ Airport(JFK) \(\text{ Airport(SF0) \(\text{ Airport(ATL))} \) } \] \(\text{Goal(At(C1, JFK) \(\text{ At(C2, SF0) \(\text{ At(C3, SF0))} \) } \)</pre>
АСЗ	<pre>Init(At(C1, SF0) \(\text{ At(C2, JFK) \(\text{ At(C3, ATL) \(\text{ At(C4, ORD)} \) \(\text{ At(P1, SF0) \(\text{ At(P2, JFK)} \) \(\text{ \(\text{ Cargo(C1) \(\text{ Cargo(C2) \(\text{ Cargo(C3) \(\text{ Cargo(C4)} \) \(\text{ \(\text{ Plane(P1) \(\text{ \(\text{ Plane(P2)} \) \(\text{ \(\text{ Airport(ATL) \(\text{ Airport(ORD)} \) \) \(\text{ Goal(At(C1, JFK) \(\text{ At(C3, JFK) \(\text{ At(C2, SF0) \(\text{ At(C4, SF0)} \) \) \(\text{ \(\text{ \(\text{ At(C4, SF0)} \) \) \) \(\(\text{ \(</pre>

Results

Using the provided "run_search.py" script, we evaluated the performance of different uninformed and heuristic search strategies to achieve the given goal for each problem. Following parameters are investigated to performance evaluation

Table 2. Parameters for performance evaluation

Abbr.	Parameter	Performance criteria for
Exp.	Node Expansions	Memory
GT.	Goal Tests	Memory
NN.	New Nodes	Memory
PL.	Plan length	Optimality
Time	Execution time (s)	Speed

We run the search strategies for

Three uninformed search strategies:

- 1. Breath first search
- 2. Depth first graph search
- 3. Uniform cost search

Two heuristic search strategies:

- 1. A* search Ignore preconditions
- 2. A* search Level sum

Table 3 displays the performance of all runs and Table 4 lists the plans generated by corresponding search strategies. Note that for Air Cargo 2 and 3 depth first graph search algorithm finds very large plans, hard to list in the table. Hence, they are omitted.

Table 3. Performance results of search strategies

		Uninf	forme	d Strat	egies	6	Heu	ristic	Strat	tegies
Problem	Bread searc	th first h		first search	Unifo searc	rm cost h	Ignor preco	e nditions	Level	sum
AC1	Exp. GT. NN. PL. Time	43 56 180 6 0.05	Exp. GT. NN. PL. Time	12 13 48 12 0.01	Exp. GT. NN. PL. Time	55 57 224 6 0.05	Exp. GT. NN. PL. Time	41 43 170 6 0.05	Exp. GT. NN. PL. Time	11 13 50 6 1.05
AC2	Exp. GT. NN. PL. Time	3343 4609 30509 9 10.6	Exp. GT. NN. PL. Time	582 583 5211 575 4.3	Exp. GT. NN. PL. Time	4852 4854 44030 9 15.4	Exp. GT. NN. PL. Time	1450 1452 13303 9 5.6	Exp. GT. NN. PL. Time	86 88 841 9 89.2
AC3	Exp. GT. NN. PL. Time	14663 18098 129631 12 52.8	Exp. GT. NN. PL. Time	627 628 5176 596 4.6	Exp. GT. NN. PL. Time	18234 18236 159707 12 63.8	Exp. GT. NN. PL. Time	5040 5042 44944 12 21.4	PL.	318 320 2934 12 448.2

Table 4. Plans

	Unin1	formed Strat	Heuristic	Strategies	
Problem	Breadth first search	Depth first graph search	Uniform cost search	Ignore preconditions	Level sum
AC1	Load(C2, P2, JFK) Load(C1, P1, SFO) Fly(P2, JFK, SFO) Unload(C2, P2, SFO) Fly(P1, SFO, JFK) Unload(C1, P1, JFK)	Fly(P1, SFO, JFK) Fly(P2, JFK, SFO) Load(C1, P2, SFO) Fly(P2, SFO, JFK) Fly(P1, JFK, SFO) Unload(C1, P2, JFK) Fly(P2, JFK, SFO) Fly(P1, SFO, JFK) Load(C2, P1, JFK) Fly(P2, SFO, JFK) Fly(P1, JFK, SFO) Unload(C2, P1, JFK) Fly(P1, JFK, SFO) Unload(C2, P1, SFO)	Load(C1, P1, SFO) Load(C2, P2, JFK) Fly(P1, SFO, JFK) Fly(P2, JFK, SFO) Unload(C1, P1, JFK) Unload(C2, P2, SFO)	Load(C1, P1, SFO) Fly(P1, SFO, JFK) Unload(C1, P1, JFK) Load(C2, P2, JFK) Fly(P2, JFK, SFO) Unload(C2, P2, SFO)	Load(C1, P1, SFO) Fly(P1, SFO, JFK) Load(C2, P2, JFK) Fly(P2, JFK, SFO) Unload(C1, P1, JFK) Unload(C2, P2, SFO)
AC2	Load(C2, P2, JFK)	Too long to display	Load(C1, P1, SFO)	Load(C3, P3, ATL) Fly(P3, ATL, SFO)	

	Load(C1, P1, SFO) Load(C3, P3, ATL) Fly(P2, JFK, SFO) Unload(C2, P2, SFO) Fly(P1, SFO, JFK) Unload(C1, P1, JFK) Fly(P3, ATL, SFO) Unload(C3, P3, SFO)		Load(C2, P2, JFK) Load(C3, P3, ATL) Fly(P1, SFO, JFK) Fly(P2, JFK, SFO) Fly(P3, ATL, SFO) Unload(C3, P3, SFO) Unload(C1, P1, JFK) Unload(C2, P2, SFO)	Unload(C3, P3, SFO) Load(C1, P1, SFO) Fly(P1, SFO, JFK) Unload(C1, P1, JFK) Load(C2, P2, JFK) Fly(P2, JFK, SFO) Unload(C2, P2, SFO)	Fly(P1, SFO, JFK) Load(C2, P2, JFK) Fly(P2, JFK, SFO) Load(C3, P3, ATL) Fly(P3, ATL, SFO) Unload(C3, P3, SFO) Unload(C1, P1, JFK) Unload(C2, P2, SFO)
AC3	Load(C2, P2, JFK) Load(C1, P1, SFO) Fly(P2, JFK, ORD) Load(C4, P2, ORD) Fly(P1, SFO, ATL) Load(C3, P1, ATL) Fly(P1, ATL, JFK) Unload(C1, P1, JFK) Unload(C3, P1, JFK) Fly(P2, ORD, SFO) Unload(C2, P2, SFO) Unload(C4, P2, SFO)	Too long to display	Fly(P1, SFO, ATL)	Load(C1, P1, SFO) Load(C2, P2, JFK) Fly(P1, SFO, ATL) Load(C3, P1, ATL) Fly(P2, JFK, ORD) Load(C4, P2, ORD) Fly(P2, ORD, SFO) Fly(P1, ATL, JFK) Unload(C4, P2, SFO) Unload(C3, P1, JFK) Unload(C1, P1, JFK) Unload(C2, P2, SFO)	Load(C2, P2, JFK) Fly(P2, JFK, ORD) Load(C4, P2, ORD) Fly(P2, ORD, SFO) Load(C1, P1, SFO) Fly(P1, SFO, ATL) Load(C3, P1, ATL) Fly(P1, ATL, JFK) Unload(C4, P2, SFO) Unload(C3, P1, JFK) Unload(C1, P1, JFK) Unload(C2, P2, SFO)

Analysis of Uninformed Search Strategies

Following three uninformed search strategies are selected

- 1. Breath first search
- 2. Depth first graph search
- 3. Uniform cost search

Optimality	Both breath first search and uniform cost search algorithms produce optimal plans for the three given problems. Depth first graph search, on the other hand, generates non-optimal plans, especially for AC2 & AC3 larger than 550
Memory	Node expansions and new nodes indicate the memory usage of the strategies. As for memory efficiency, depth first graph search algorithm outperforms the other two by using around 20-25% of the memory used by those two algorithms. However this algorithm does not achieve an optimal plan. Breath first search uses less memory than uniform cost search, on the other hand.

Execution	In terms of execution time depth first graph search finishes within 20% of the
time	time of the other two strategies. Breath first graph search executes faster than
	uniform cost search on the average.

Even though depth first graph search executes very fast and uses very little memory, it suffers greatly in terms of plan length. Therefore breath first search will be the preferred strategy as it provides optimal solution, executes faster, and uses less memory when compared to uniform cost search.

Table 5 shows optimal plans achieved by applying the breath first search strategy. Other optimal plans for alternative strategies can be seen on Table 4.

Table 5. Optimal plans for uninformed search strategies

AC1	AC2	AC3
Load(C2, P2, JFK)	Load(C2, P2, JFK)	Load(C2, P2, JFK)
Load(C1, P1, SFO)	Load(C1, P1, SFO)	Load(C1, P1, SFO)
Fly(P2, JFK, SFO)	Load(C3, P3, ATL)	Fly(P2, JFK, ORD)
Unload(C2, P2, SFO)	Fly(P2, JFK, SFO)	Load(C4, P2, ORD)
Fly(P1, SFO, JFK)	Unload(C2, P2, SFO)	Fly(P1, SFO, ATL)
Unload(C1, P1, JFK)	Fly(P1, SFO, JFK)	Load(C3, P1, ATL)
	Unload(C1, P1, JFK)	Fly(P1, ATL, JFK)
	Fly(P3, ATL, SFO)	Unload(C1, P1, JFK)
	Unload(C3, P3, SFO)	Unload(C3, P1, JFK)
		Fly(P2, ORD, SFO)
		Unload(C2, P2, SFO)
		Unload(C4, P2, SFO)

Analysis of Heuristic Search Strategies

Following two heuristic search strategies are investigated

- 1. A* search with Ignore preconditions
- 2. A* search with level sum

Optimality	Both heuristic search strategies achieve the optimal plan.
Memory	Level sum algorithm uses significantly less memory than ignore preconditions heuristic (4-15 times).
Execution time	Level sum algorithm executes significantly longer than ignore preconditions heuristics (15-20 times).

Since both algorithms achieve optimal plans, ignore preconditions heuristic will be chosen if the speed is important, and level sum heuristic will be preferred if the memory consumption is important in making a decision.

Optimal plans from ignore preconditions is given in Table 6. Please check Table 4 for the full list of optimal plans belonging to alternative strategies.

AC1	AC2	AC3
Load(C1, P1, SFO)	Load(C3, P3, ATL)	Load(C1, P1, SFO)
Fly(P1, SFO, JFK)	Fly(P3, ATL, SFO)	Load(C2, P2, JFK)
Unload(C1, P1, JFK)	Unload(C3, P3, SFO)	Fly(P1, SFO, ATL)
Load(C2, P2, JFK)	Load(C1, P1, SFO)	Load(C3, P1, ATL)
Fly(P2, JFK, SFO)	Fly(P1, SFO, JFK)	Fly(P2, JFK, ORD)
Unload(C2, P2, SFO)	Unload(C1, P1, JFK)	Load(C4, P2, ORD)
	Load(C2, P2, JFK)	Fly(P2, ORD, SFO)
	Fly(P2, JFK, SFO)	Fly(P1, ATL, JFK)
	Unload(C2, P2, SFO)	Unload(C4, P2, SFO)
		Unload(C3, P1, JFK)
		Unload(C1, P1, JFK)
		Unload(C2, P2, SFO)

Conclusion

When the performance values listed in Table 3 are compared, we can see that both heuristic and uninformed search strategies achieve the optimal plans. However both heuristic strategies uses significantly less memory to execute (with level sum offering the most reduction) and ignore preconditions heuristic runs the fastest.

Heuristic search algorithms perform significantly better than their uninformed search counterparts. Moreover they offer flexibility of memory vs speed with the selection of different heuristics such as ignore preconditions, level sum, etc. Therefore they have a clear win against uninformed search algorithms.