Say we have an undirected weighted graph

A **spanning tree** is a **tree** that connects all of the vertices.

Say we have an undirected weighted graph

A **spanning tree** is a **tree** that connects all of the vertices.

Say we have an undirected weighted graph

A **spanning tree** is a **tree** that connects all of the vertices.

Say we have an undirected weighted graph

Say we have an undirected weighted graph

Why MSTs?

- Network design
 - Connecting cities with roads/electricity/telephone/...
- cluster analysis
 - eg, genetic distance
- image processing
 - eg, image segmentation
- Useful primitive
 - for other graph algs

Figure 2: Fully parsimonious minimal spanning tree of 933 SNPs for 282 isolates of *Y. pestis* colored by location.

Morelli et al. Nature genetics 2010

Brief aside

for a discussion of cuts in graphs!

Cuts in graphs

A cut is a partition of the vertices into two parts:

This is the cut "{A,B,D,E} and {C,I,H,G,F}"

Cuts in graphs

One or both of the two parts might be disconnected.

This is the cut "{B,C,E,G,H} and {A,D,I,F}"

Let S be a set of edges in G

- We say a cut **respects** S if no edges in S cross the cut.
- An edge crossing a cut is called **light** if it has the smallest weight of any edge crossing the cut.

Let S be a set of edges in G

- We say a cut **respects** S if no edges in S cross the cut.
- An edge crossing a cut is called **light** if it has the smallest weight of any edge crossing the cut.

Lemma

- Let S be a set of edges, and consider a cut that respects S.
- Suppose there is an MST containing S.
- Let (u,v) be a light edge.
- Then there is an MST containing S ∪ {(u,v)}

Lemma

- Let S be a set of edges, and consider a cut that respects S.
- Suppose there is an MST containing S.
- Let (u,v) be a light edge.
- Then there is an MST containing S ∪ {(u,v)}

- Assume that we have:
 - a cut that respects S

Assume that we have:

- Assume that we have:
 - a cut that respects S
 - **S** is part of some **MST T**.
- Say that (u,v) is light.
 - lowest cost crossing the cut
- But say (u,v) is not in T.
 - So adding (u,v) to T
 will make a cycle.

Claim: Adding any additional edge to a spanning tree will create a cycle.

Proof: Both endpoints are already in the tree and connected to each other.

- Assume that we have:
 - a cut that respects S
 - **S** is part of some **MST T**.
- Say that (u,v) is light.
 - lowest cost crossing the cut
- But say (u,v) is not in T.
 - So adding (u,v) to T
 will make a cycle.
- So there is at least one other edge in this cycle crossing the cut.
 - call it (x,y)

Claim: Adding any additional edge to a spanning tree will create a cycle.

Proof: Both endpoints are already in the tree and connected to each other.

Proof of Lemma ctd.

Consider swapping (u,v) for (x,y) in T.

Proof of Lemma ctd.

Consider swapping (u,v) for (x,y) in T.

Call the resulting tree T.

• Claim: T is still an MST.

- It is still a tree:
 - we deleted (x,y)
- It has cost at most that of T
 - because (u,v) was light.
- T had minimal cost.
- So T does too.
- So T is an MST containing (u,v).
 - This is what we wanted.

Lemma

- Let S be a set of edges, and consider a cut that respects S.
- Suppose there is an MST containing S.
- Let (u,v) be a light edge.
- Then there is an MST containing S ∪ {(u,v)}

End aside

Back to MSTs!

Back to MSTs

- How do we find one?
- Today we'll see two greedy algorithms.

- The strategy:
 - Make a series of choices, adding edges to the tree.
 - Show that each edge we add is **safe to add**:
 - we do not rule out the possibility of success
 - we will choose light edges crossing cuts and use the Lemma.
 - **Keep going** until we have an MST.

Prim's Algorithm

Minimum Spanning Tree

We've discovered

Prim's algorithm!

- slowPrim(G = (V,E), starting vertex s):
 - Let (s,u) be the lightest edge coming out of s.
 - MST = { (s,u) }
 - verticesVisited = { s, u }
 - while |verticesVisited| < |V|:
 - find the lightest edge (x,v) in E so that:
 - x is in verticesVisited
 - v is not in verticesVisited
 - add (x,v) to MST
 - add v to verticesVisited
 - return MST

n iterations of this while loop.

Maybe take time m to go through all the edges and find the lightest.

Naively, the running time is O(nm):

- For each of n-1 iterations of the while loop:
 - Maybe go through all the edges.

Two questions

- 1. Does it work?
 - That is, does it actually return a MST?

- 2. How do we actually implement this?
 - the pseudocode above says "slowPrim"...

Does it work?

- We need to show that our greedy choices don't rule out success.
- That is, at every step:
 - There exists an MST that contains all of the edges we have added so far.
- Now it is time to use our lemma!

Lemma

- Let S be a set of edges, and consider a cut that respects S.
- Suppose there is an MST containing S.
- Let (u,v) be a light edge.
- Then there is an MST containing S ∪ {(u,v)}

S is the set of **thick orange** edges

Partway through Prim

- Assume that our choices **S** so far are **safe**.
 - they don't rule out success
- Consider the cut {visited, unvisited}
 - This cut respects S.

Partway through Prim

- Assume that our choices S so far are safe.
 - they don't rule out success
- Consider the cut {visited, unvisited}
 - S respects this cut.
- The edge we add next is a light edge.
- Least weight of any edge crossing the cut.
 By the Lemma,
 that edge is safe.
 it also doesn't rule out success.

 A graph of the cut.
 S is the set of edges selected so far.
 The cut of edges selected so far.<

Hooray!

• Our greedy choices don't rule out success.

• This is enough (along with an argument by induction) to guarantee correctness of Prim's algorithm.

Formally(ish)

- Inductive hypothesis:
 - After adding the t'th edge, there exists an MST with the edges added so far.

Base case:

• After adding the 0'th edge, there exists an MST with the edges added so far. **YEP.**

• Inductive step:

- If the inductive hypothesis holds for t (aka, the choices so far are safe), then it holds for t+1 (aka, the next edge we add is safe).
- That's what we just showed.

• Conclusion:

- After adding the n-1'st edge, there exists an MST with the edges added so far.
- At this point we have a spanning tree, so it better be minimal.

Two questions

- 1. Does it work?
 - That is, does it actually return a MST?
 - Yes!
- 2. How do we actually implement this?
 - the pseudocode above says "slowPrim"...

- Each vertex keeps:
 - the distance from itself to the growing spanning tree
 - how to get there.

if you can get there in one edge.

- Each vertex keeps:
 - the distance from itself to the growing spanning tree
 - how to get there.

if you can get there in one edge.

 Choose the closest vertex, add it. I'm 7 away. C is the closest. 8 11 14 Ε 8 10 I can't get to the tree in one edge

- Each vertex keeps:
 - the distance from itself to the growing spanning tree
 - how to get there.

if you can get there in one edge.

- Each vertex keeps:
 - the distance from itself to the growing spanning tree

if you can get there in one edge.

how to get there.

• Choose the closest vertex, add it.


```
MST-PRIM(G, w, r)
     for each u \in G.V
         u.key = \infty
         u.\pi = NIL
    r.key = 0
 5 \quad Q = G.V
     while Q \neq \emptyset
         u = \text{EXTRACT-MIN}(Q)
 8
         for each v \in G.Adj[u]
              if v \in Q and w(u, v) < v.key
10
                   \nu.\pi = u
11
                   v.key = w(u, v)
```

Pseudocode

Every vertex has a key and a parent

Until all the vertices are **reached**:

k[x] is the distance of x from the growing tree

Every vertex has a key and a parent

Until all the vertices are **reached**:

Activate the unreached vertex u with the smallest key.

k[x] is the distance of x from the growing tree

Every vertex has a key and a parent

Until all the vertices are **reached**:

- Activate the unreached vertex u with the smallest key.
- **for each** of u's neighbors v:
 - k[v] = min(k[v], weight(u,v))
 - if k[v] updated, p[v] = u

k[x] is the distance of x from the growing tree

Every vertex has a key and a parent

Until all the vertices are **reached**:

- Activate the unreached vertex u with the smallest key.
- **for each** of u's neighbors v:
 - k[v] = min(k[v], weight(u,v))
 - if k[v] updated, p[v] = u
- Mark u as reached, and add (p[u],u) to MST.

k[x] is the distance of x from the growing tree

Every vertex has a key and a parent

Until all the vertices are **reached**:

- Activate the unreached vertex u with the smallest key.
- **for each** of u's neighbors v:
 - k[v] = min(k[v], weight(u,v))
 - if k[v] updated, p[v] = u
- Mark u as reached, and add (p[u],u) to MST.

k[x] is the distance of x from the growing tree

Every vertex has a key and a parent

Until all the vertices are **reached**:

- Activate the unreached vertex u with the smallest key.
- **for each** of u's neighbors v:
 - k[v] = min(k[v], weight(u,v))
 - if k[v] updated, p[v] = u
- Mark u as reached, and add (p[u],u) to MST.

k[x] is the distance of x from the growing tree

Every vertex has a key and a parent

Until all the vertices are **reached**:

- Activate the unreached vertex u with the smallest key.
- **for each** of u's neighbors v:
 - k[v] = min(k[v], weight(u,v))
 - if k[v] updated, p[v] = u
- Mark u as reached, and add (p[u],u) to MST.

k[x] is the distance of x from the growing tree

Every vertex has a key and a parent

Until all the vertices are **reached**:

- Activate the unreached vertex u with the smallest key.
- **for each** of u's neighbors v:
 - k[v] = min(k[v], weight(u,v))
 - if k[v] updated, p[v] = u
- Mark u as reached, and add (p[u],u) to MST.

k[x] is the distance of x from the growing tree

Every vertex has a key and a parent

Until all the vertices are **reached**:

- Activate the unreached vertex u with the smallest key.
- **for each** of u's neighbors v:
 - k[v] = min(k[v], weight(u,v))
 - if k[v] updated, p[v] = u
- Mark u as reached, and add (p[u],u) to MST.

Every vertex has a key and a parent

Until all the vertices are **reached**:

- Activate the unreached vertex u with the smallest key.
- **for each** of u's neighbors v:
 - k[v] = min(k[v], weight(u,v))
 - if k[v] updated, p[v] = u
- Mark u as reached, and add (p[u],u) to MST.

Every vertex has a key and a parent

Until all the vertices are **reached**:

- Activate the unreached vertex u with the smallest key.
- **for each** of u's neighbors v:
 - k[v] = min(k[v], weight(u,v))
 - if k[v] updated, p[v] = u
- Mark u as reached, and add (p[u],u) to MST.

k[x] is the distance of x from the growing tree

Every vertex has a key and a parent

Until all the vertices are **reached**:

- Activate the unreached vertex u with the smallest key.
- **for each** of u's neighbors v:
 - k[v] = min(k[v], weight(u,v))
 - if k[v] updated, p[v] = u
- Mark u as reached, and add (p[u],u) to MST.

k[x] is the distance of x from the growing tree

Every vertex has a key and a parent

Until all the vertices are **reached**:

- Activate the unreached vertex u with the smallest key.
- **for each** of u's neighbors v:
 - k[v] = min(k[v], weight(u,v))
 - if k[v] updated, p[v] = u
- Mark u as reached, and add (p[u],u) to MST.

k[x] is the distance of x from the growing tree

Every vertex has a key and a parent

Until all the vertices are **reached**:

- Activate the unreached vertex u with the smallest key.
- **for each** of u's neighbors v:
 - k[v] = min(k[v], weight(u,v))
 - if k[v] updated, p[v] = u
- Mark u as reached, and add (p[u],u) to MST.

Every vertex has a key and a parent

Until all the vertices are **reached**:

- Activate the unreached vertex u with the smallest key.
- **for each** of u's neighbors v:
 - k[v] = min(k[v], weight(u,v))
 - if k[v] updated, p[v] = u
- Mark u as reached, and add (p[u],u) to MST.

k[x] is the distance of x from the growing tree

Every vertex has a key and a parent

Until all the vertices are **reached**:

- Activate the unreached vertex u with the smallest key.
- **for each** of u's neighbors v:
 - k[v] = min(k[v], weight(u,v))
 - if k[v] updated, p[v] = u
- Mark u as reached, and add (p[u],u) to MST.

k[x] is the distance of x from the growing tree

Every vertex has a key and a parent

Until all the vertices are **reached**:

- Activate the unreached vertex u with the smallest key.
- **for each** of u's neighbors v:
 - k[v] = min(k[v], weight(u,v))
 - if k[v] updated, p[v] = u
- Mark u as reached, and add (p[u],u) to MST.

One thing that is similar:

Running time

• O(mlog(n)) using a Red-Black tree as a priority queue.

Two questions

- 1. Does it work?
 - That is, does it actually return a MST?
 - Yes!
- 2. How do we actually implement this?
 - the pseudocode above says "slowPrim"...

Kruskal Algorithm

Minimum Spanning Tree

We've discovered

Kruskal's algorithm!

- slowKruskal(G = (V,E)):
 - Sort the edges in E by non-decreasing weight.
 - MST = {}
 - **for** e in E (in sorted order):
 - **if** adding e to MST won't cause a cycle:
 - add e to MST.
 - return MST

m iterations through this loop

How do we check this?

Naively, the running time is ???:

- For each of m iterations of the for loop:
 - Check if adding e would cause a cycle...

Two questions

- Does it work?
 - That is, does it actually return a MST?

- 2. How do we actually implement this?
 - the pseudocode above says "slowKruskal"...

A **forest** is a collection of disjoint trees

A **forest** is a collection of disjoint trees

A **forest** is a collection of disjoint trees

When we add an edge, we merge two trees:

A **forest** is a collection of disjoint trees

When we add an edge, we merge two trees:

A **forest** is a collection of disjoint trees

When we add an edge, we merge two trees:

We never add an edge within a tree since that would create a cycle.

Keep the trees in a special data structure

Union-find data structure also called disjoint-set data structure

- Used for storing collections of sets
- Supports:
 - makeSet(u): create a set {u}
 - find(u): return the set that u is in
 - union(u,v): merge the set that u is in with the set that v is in.

```
makeSet(x)
makeSet(y)
makeSet(z)
union(x,y)
```


Union-find data structure also called disjoint-set data structure

- Used for storing collections of sets
- Supports:
 - makeSet(u): create a set {u}
 - find(u): return the set that u is in
 - union(u,v): merge the set that u is in with the set that v is in.

```
makeSet(x)
makeSet(y)
makeSet(z)
union(x,y)
```


Union-find data structure also called disjoint-set data structure

- Used for storing collections of sets
- Supports:
 - makeSet(u): create a set {u}
 - find(u): return the set that u is in
 - union(u,v): merge the set that u is in with the set that v is in.

```
makeSet(x)
makeSet(y)
makeSet(z)

union(x,y)

find(x)

X

Y

Z
```

Kruskal pseudo-code

return MST

```
kruskal(G = (V,E)):
Sort E by weight in non-decreasing order
MST = {} // initialize an empty tree
for v in V:

makeSet(v) // put each vertex in its own tree in the forest

for (u,v) in E: // go through the edges in sorted order
if find(u)!= find(v): // if u and v are not in the same tree
add (u,v) to MST
union(u,v) // merge u's tree with v's tree
```

To start, every vertex is in its own tree.

Running time

- Sorting the edges takes O(m log(n))
 - In practice, if the weights are small integers we can use radixSort and take time O(m)
- For the rest:
 - n calls to makeSet
 - put each vertex in its own set
 - 2m calls to find
 - for each edge, **find** its endpoints
 - n calls to union
 - we will never add more than n-1 edges to the tree,
 - so we will never call **union** more than n-1 times.
- Total running time:
 - Worst-case O(mlog(n)), just like Prim.
 - Closer to O(m) if you can do radixSort

In practice, each of makeSet, find, and union run in constant time*

Two questions

- 1. Does it work?
 - That is, does it actually return a MST?

- 2. How do we actually implement this?
 - the pseudocode above says "slowKruskal"...
 - Worst-case running time O(mlog(n)) using a union-find data structure.

Does it work?

- We need to show that our greedy choices don't rule out success.
- That is, at every step:
 - There exists an MST that contains all of the edges we have added so far.
- Now it is time to use our lemma!

again!

Lemma

- Let S be a set of edges, and consider a cut that respects S.
- Suppose there is an MST containing S.
- Let (u,v) be a light edge.
- Then there is an MST containing S ∪ {(u,v)}

S is the set of **thick orange** edges

Partway through Kruskal

- Assume that our choices **S** so far are **safe**.
 - they don't rule out success
- The next edge we add will merge two trees, T1, T2

Partway through Kruskal

- Assume that our choices S so far are safe.
 - they don't rule out success

edges selected so far.

- The next edge we add will merge two trees, T1, T2
- Consider the cut {T1, V T1}. • A respects this cut. This is the Our new edge is light for the cut next edge 14 S is the set of

Partway through Kruskal

- Assume that our choices S so far are safe.
 - they don't rule out success
- The next edge we add will merge two trees, T1, T2

Hooray!

• Our greedy choices don't rule out success.

• This is enough (along with an argument by induction) to guarantee correctness of Kruskal's algorithm.

Formally(ish)

This is exactly the same slide that we had for Prim's algorithm.

Inductive hypothesis:

• After adding the t'th edge, there exists an MST with the edges added so far.

Base case:

• After adding the 0'th edge, there exists an MST with the edges added so far. **YEP.**

• Inductive step:

- If the inductive hypothesis holds for t (aka, the choices so far are safe), then it holds for t+1 (aka, the next edge we add is safe).
- That's what we just showed.

• Conclusion:

- After adding the n-1'st edge, there exists an MST with the edges added so far.
- At this point we have a spanning tree, so it better be minimal.

Two questions

- 1. Does it work?
 - That is, does it actually return a MST?
 - Yes
- 2. How do we actually implement this?
 - the pseudocode above says "slowKruskal"...
 - Using a union-find data structure!

What have we learned?

- Kruskal's algorithm greedily grows a forest
- It finds a Minimum Spanning Tree in time O(mlog(n))
 - if we implement it with a Union-Find data structure

- To prove it worked, we followed the same recipe for greedy algorithms we saw last time.
 - Show that, at every step, we don't rule out success.

Comparison of Kruskal and Prims

Compare and contrast

- Prim:
 - Grows a tree.
 - Time O(mlog(n)) with a red-black tree
- Kruskal:
 - Grows a forest.
 - Time O(mlog(n)) with a union-find data structure
 - If you can do radixSort on the edge weights, morally O(m)

Prim might be a better idea on dense graphs

Kruskal might be a better idea on sparse graphs if you can radixSort edge weights

Both Prim and Kruskal

- Greedy algorithms for MST.
- Similar reasoning:
 - Optimal substructure: subgraphs generated by cuts.
 - The way to make safe choices is to choose light edges crossing the cut.

S is the set of **thick orange** edges

Can we do better?

State-of-the-art MST on connected undirected graphs

- Karger-Klein-Tarjan 1995:
 - O(m) time randomized algorithm
- Chazelle 2000:
 - O(m· $\alpha(n)$) time deterministic algorithm
- Pettie-Ramachandran 2002:

• O The optimal number of comparisons $N^*(n,m)$ you need to solve the problem, whatever that is...

What is this number? Do we need that silly $\alpha(n)$? Open questions!

Recap

- Two algorithms for Minimum Spanning Tree
 - Prim's algorithm
 - Kruskal's algorithm
- Both are (more) examples of greedy algorithms!
 - Make a series of choices.
 - Show that at each step, your choice does not rule out success.
 - At the end of the day, you haven't ruled out success, so you must be successful.