What is statistics?

Probability theory computes probabilities of complex events given the underlying base probabilities.

Statistics takes us in the opposite direction.

We are given data that was generated by a Stochastic process

We infer properties of the underlying base probabilities.

Example: deciding whether a coin is biased.

In a previous video we discussed the distribution of the number of heads when flipping a fair coin many times.

Let's turn the question around: we flip a coin 1000 times and get 570 heads.

Can we conclude that the coin is biased (not fair)?

What can we conclude if we got 507 heads?

The Logic of Statistical inference

The answer uses the following logic.

- Suppose that the coin is fair.
- Use **probability theory** to compute the probability of getting at least 570 (or 507) heads.
- If this probability is very small, then we can **reject** with confidence the hypothesis that the coin is fair.

Calculating the answer

Recall the simulations we did in the video "What is probability".

We used $x_i = -1$ for tails and $x_i = +1$ for heads.

We looked at the sum $S_k = \sum_{i=1}^k x_i$, here k=1000 .

If number of heads is 570 then $S_{
m 1000}=570-430=140$

It is very unlikely that $|S_{1000}| > 4\sqrt{k} \, pprox 126.5$

```
In [1]: from math import sqrt

4*sqrt(1000)
```

Out[1]: 126.49110640673517

It is very unlikely that the coin is unbiased.

What about 507 heads?

507 heads = 493 tails $\Rightarrow S_n = 14, \quad 14 \ll 126.5$

We cannot conclude that coin is biased.

Conclusion

The probability that an unbiased coin would generate a sequence with 570 or more heads is extremely small. From which we can conclude, with high confidence, that the coin is biased.

On the other hand, $|S_{1000}| \geq 507$ is quite likely. So getting 507 heads does not provide evidence that the coin is biased.

Real-World examples

You might ask "why should I care whether a coin is biased?"

- This is a valid critique.
- We will give a few real-world cases in which we want to know whether a "coin" is biased or not.

Case I: Polls

- Suppose elections will take place in a few days and we want to know how people plan to vote.
- Suppose there are just two parties: **D** and **R**.
- We could try and ask **all** potential voters.
- That would be very expensive.
- Instead, we can use a poll: call up a small randomly selected set of people.

•	Call n peop	le at random and	d count the number of D votes.
---	---------------	------------------	---------------------------------------

- Can you say with confidence that there are more **D** votes, or more **R** votes?
- Mathematically equivalent to flipping a biased coin and
- asking whether you can say with confidence that it is biased towards "Heads" or towards "Tails"

Case 2: A/B testing

A common practice when optimizing a web page is to perform A/B tests.

• A/B refer to two alternative designs for the page.

We want to decide, with confidence, which of the two designs is better. Again: similar to making a decision with confidence on whether "Heads" is more probably than "Tails" or vice versa.

Summary

Statistics is about analyzing real-world data and drawing conclusions.

Examples include:

- Using polls to estimate public opinion.
- performing A/B tests to design web pages
- Estimating the rate of global warming.
- Deciding whether a medical procedure is effective

The end!