INF01 118

Técnicas Digitais para Computação

Alta Impedância Parasitas RC em Portas CMOS Célula RAM

Aula 6

Alta Impedância (Z)

Inversor Tri-State (INVTR)

E	C	C	S
0	0	1	Z
1	0	1	Z
0	1	0	1
1	1	0	0

Outra opção... (controle negado)

E	C	S
0	0	1
1	0	0
0	1	Z
1	1	Z

Buffer Tri-State (BUFTR)

E	C	S
0	0	0
1	0	1
0	1	Z
1	1	Z

 C
 S

 0
 Z

 1
 E

* PODE-SE PENSAR EM QUALQUER PORTA LÓGICA COM SAÍDA TRI-STATE OU ALTA-IMPEDÂNCIA (Z) !!!

OU

Uso de Porta Tri-State ...

* NÃO É PERMITIDO EM CMOS:

* CORRETO:

* BARRAMENTO DE SINAIS:

Consumo (Dissipação de Potência)

- Corrente de Carga: Iout
- Corrente de Curto-Circuito: Icc
- consumo estático ≈ 0
- consumo dinâmico (transição) = Iout + Icc
- consumo total = estático + dinâmico

* A variação de W e L afeta o tempo de transição dos sinais e o consumo da porta lógica.

Portas Lógicas (revisão ...)

E	INV
0	1
1	0

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	^		
0 0 0	0 1	0	1
0 1 0 1	1 0	1	0
1 0 0 1	1 0	1	0
1 1 1 0	1 0	0	1

Transistores PMOS e NMOS (revisão ...)

Porta Lógica CMOS (revisão)

Resistência (R)

$$\mathbf{R} = \rho \cdot \frac{L}{W \cdot T}$$

Lei de Ohm:

$$\mathbf{R} = \mathbf{V} / \mathbf{I}$$

Resistência de Canal do Transistor

canal do transistor

- Transistor não é 'chave ideal'.
- Canal do transistor ⇒ resistência
- Transistor conduzindo: $\text{resistência pequena } (R \Rightarrow 0 \)$
- Transistor 'cortado': $\text{resistência muito alta } (R \Rightarrow \infty)$

Dimensionamento do Transistor MOS

Análise de 'r' ('on') e C:

- W \uparrow : r \downarrow e C \uparrow
- •L \uparrow : r \uparrow e C \uparrow

Inversor CMOS: (resistência parasita)

Capacitância (C)

Inversor CMOS: (capacitância parasita)

Célula de Memória RAM Estática

Célula de Memória (1 bit)

Memória de Leitura e Escrita

Barramento de dados: Dado e Dado

Barramento de endereços: E_i (Seleção da Palavra)

Memória RAM

Célula de Memória RAM do Banco de Registradores do processador 8085 (NMOS)

Seleção de Palavra

Memória RAM

Layout de uma célula SRAM 6T CMOS

- 2- Aciona endereço da palavra a ser escrita.
- 3- Valores existentes no barramento de dados são gravados na célula independentemente do valor existente anteriormente, devido a grande capacitância do barramento de dados.

Memória RAM

Leitura:

- 1- Carrega-se os barramento com o valor "1" (PRÉ-CARGA).
- 2- Aciona endereço da palavra a ser lida.
- 3- Valores existentes na célula memória são transferidos para o barramento, que se descarrega pelo "lado" que está em "zero".