Subarray

Ly continous part of an array

$$A = \begin{bmatrix} 2 & 3 & 9 & 9 & -5 & 6 & 7 \end{bmatrix}$$

$$\begin{bmatrix} 9 & 4 & -5 & 6 \end{pmatrix} \rightarrow \checkmark$$

$$\begin{bmatrix} 9 & 4 & 6 & 7 \end{bmatrix} \rightarrow X$$

- i) A single ele is also a subarray
- ii) A complete array is also a subarray
- iii) order of elements matters.

$$A = \begin{bmatrix} 2 & 3 & 9 & 9 & -5 & 6 & 7 \end{bmatrix}$$

$$A = [3 9 4 10 -5 12 7]$$

$$A = [3 9 4 10 -5 12 7]$$

$$A = \begin{bmatrix} 3 & 9 & 4 & 10 & -5 & 12 & 7 \\ 0 & 1 & 2 & 3 & 4 & 5 & 6 \end{bmatrix}$$

A particular subarray can be defined using stand I end

$$S=2$$
 [u 10 -5 12]
 $e=5$
 $den=e-s+1$

$$A = \begin{bmatrix} 3 & 1 & 4 & 5 \\ 0 & 1 & 2 & 3 \end{bmatrix}$$

S	e	54	5
0	0	3	1
0	1	3 1	1
O	2	3 1 4	1
٥	3	3 1 4 5	

5	e	5a
1	1	1
1	2	1 4
1	3	1 4 5
		1

5	e	Sa
2	2	4
2	3	4 5

S	e	Sa
3	3	5

$A = [a_0 \ a_1 \ a_2 \ \dots \ a_{n-1}]$ dength = n

no. of subarrays starting from oth index = 1

no. of subarrays starting from 1st index = n=1

· ·

no. of subarrays starting from (n-1)th index = 1

 $n + (n-1) + (n-2) + \cdots + 2 + 2$

total subarray: n[n+1)

Q1 hiven an All and S & e. Print the subarray from s to e. 5=1

> e = 3 $A = [3 \ 4 \ 5 \ q \ 7 \ 8]$ 0 1 2 3 4 5

void print (introA, ints, inte) ?

Jos (int k= 5) K <= e) K++) } 50P (A[K]);

5

5

Q.2 biven an array, point all subarrays.

 $A = \begin{bmatrix} 3 & -1 & 2 \\ 0 & 1 & 2 \end{bmatrix}$

 $(0,0) \rightarrow 3$

 $(1,1) \rightarrow -1 \qquad (2,2) \rightarrow 2$

 $(0,1) \rightarrow 3 - 1$

 $(1,2) \rightarrow -1 2$

 $(0,2) \longrightarrow 3 -1 2$

void print AW (int [] A) ?

int n= A-length;

dor(int s=0; s<n; s++)

dor(int e=s; e<n; e=

11 to print subarray

dor(int k=s; k<=

3

A = 3 1 5

for(jut 2=0; 2 <v; 2++);<="" th=""><th>s</th><th>و</th><th>١ς</th></v;>	s	و	١ς
dor (int e=s; e <n; e++)="" td="" }<=""><td>0</td><td>0</td><td>0,0 -> 3</td></n;>	0	0	0,0 -> 3
11 to print subarray from 5 to e		1	$0, 0 \rightarrow 3$ $0, 1 \rightarrow 3 1$ $0, 2 \rightarrow 3 1 5$
		2	0,2 -> 3 1 5
108 (int K=8; K<= e; K++) }	1	1	1,1 -> 1
SOD (D[K] + "");		2	$\begin{array}{c} 1,1 \rightarrow 1 \\ 1,2 \rightarrow 1 \end{array}$
5	9	2	2,2 7 5
5 Soldn();	_	-	2,2 7 3
3			

 $\tau c : o(n^3)$

sc: 0(1)

0.3 hiven an AII, point sum of every subarray.

$$A = \begin{bmatrix} 3 & -1 & 4 \end{bmatrix}$$

S	e	Sa	sum
0	0	[3]	3
0	1	[3 -1]	2
0	2	[3 -1 4]	6
١	٧	[-17	- 1
١	2	[-1 47	3
2	2	[4]	4

```
void solve (int [] A) ?

int n = A - length;

dor(int s = 0; s < n; s + t) ?

dor(int e = s; e < n; e + t) ?

int sum = 0;

for(int k = s; k < = e; k + t) ?

sum + = A[k];

solve (int [] A) ?

To: O(N³)

Soc: O(1)</pre>
```

Improvise - Profix sum

void solve (int [] A) }

3

int
$$n = A \cdot length$$
;

int [] $ps = p \cdot redi \times sum(A)$;

 $ps = 3 \quad 5 \quad 1 \quad 7$
 $ps = 3 \quad 5 \quad 1 \quad 7$
 $ps = 3 \quad 5 \quad 1 \quad 7$
 $ps = 3 \quad 5 \quad 1 \quad 7$
 $ps = 3 \quad 5 \quad 1 \quad 7$
 $ps = 3 \quad 5 \quad 1 \quad 7$
 $ps = 3 \quad 5 \quad 1 \quad 7$
 $ps = 3 \quad 5 \quad 1 \quad 7$
 $ps = 3 \quad 5 \quad 1 \quad 7$
 $ps = 3 \quad 5 \quad 1 \quad 7$
 $ps = 3 \quad 5 \quad 1 \quad 7$
 $ps = 3 \quad 5 \quad 1 \quad 7$
 $ps = 3 \quad 5 \quad 1 \quad 7$
 $ps = 3 \quad 5 \quad 1 \quad 7$
 $ps = 3 \quad 5 \quad 1 \quad 7$
 $ps = 3 \quad 5 \quad 1 \quad 7$
 $ps = 3 \quad 5 \quad 1 \quad 7$
 $ps = 3 \quad 5 \quad 1 \quad 7$
 $ps = 3 \quad 5 \quad 1 \quad 7$
 $ps = 3 \quad 5 \quad 1 \quad 7$
 $ps = 3 \quad 5 \quad 1 \quad 7$
 $ps = 3 \quad 5 \quad 1 \quad 7$
 $ps = 3 \quad 5 \quad 1 \quad 7$
 $ps = 3 \quad 5 \quad 1 \quad 7$
 $ps = 3 \quad 5 \quad 1 \quad 7$
 $ps = 3 \quad 5 \quad 1 \quad 7$
 $ps = 3 \quad 5 \quad 1 \quad 7$
 $ps = 3 \quad 5 \quad 1 \quad 7$
 $ps = 3 \quad 5 \quad 1 \quad 7$
 $ps = 3 \quad 5 \quad 1 \quad 7$
 $ps = 3 \quad 5 \quad 1 \quad 7$
 $ps = 3 \quad 5 \quad 1 \quad 7$
 $ps = 3 \quad 5 \quad 1 \quad 7$
 $ps = 3 \quad 5 \quad 1 \quad 7$
 $ps = 3 \quad 5 \quad 1 \quad 7$
 $ps = 3 \quad 5 \quad 1 \quad 7$
 $ps = 3 \quad 5 \quad 1 \quad 7$
 $ps = 3 \quad 5 \quad 1 \quad 7$
 $ps = 3 \quad 5 \quad 1 \quad 7$
 $ps = 3 \quad 5 \quad 1 \quad 7$
 $ps = 3 \quad 5 \quad 1 \quad 7$
 $ps = 3 \quad 5 \quad 1 \quad 7$
 $ps = 3 \quad 5 \quad 1 \quad 7$
 $ps = 3 \quad 5 \quad 1 \quad 7$
 $ps = 3 \quad 5 \quad 1 \quad 7$
 $ps = 3 \quad 5 \quad 1 \quad 7$
 $ps = 3 \quad 5 \quad 1 \quad 7$
 $ps = 3 \quad 5 \quad 1 \quad 7$
 $ps = 3 \quad 5 \quad 1 \quad 7$
 $ps = 3 \quad 5 \quad 1 \quad 7$
 $ps = 3 \quad 5 \quad 1 \quad 7$
 $ps = 3 \quad 5 \quad 1 \quad 7$
 $ps = 3 \quad 5 \quad 1 \quad 7$
 $ps = 3 \quad 5 \quad 1 \quad 7$
 $ps = 3 \quad 5 \quad 1 \quad 7$
 $ps = 3 \quad 5 \quad 1 \quad 7$
 $ps = 3 \quad 5 \quad 1 \quad 7$
 $ps = 3 \quad 5 \quad 1 \quad 7$
 $ps = 3 \quad 5 \quad 1 \quad 7$
 $ps = 3 \quad 5 \quad 1 \quad 7$
 $ps = 3 \quad 5 \quad 1 \quad 7$
 $ps = 3 \quad 5 \quad 1 \quad 7$
 $ps = 3 \quad 5 \quad 1 \quad 7$
 $ps = 3 \quad 5 \quad 1 \quad 7$
 $ps = 3 \quad 5 \quad 1 \quad 7$
 $ps = 3 \quad 5 \quad 1 \quad 7$
 $ps = 3 \quad 5 \quad 1 \quad 7$
 $ps = 3 \quad 5 \quad 1 \quad 7$
 $ps = 3 \quad 5 \quad 1 \quad 7$
 $ps = 3 \quad 5 \quad 1 \quad 7$
 $ps = 3 \quad 5 \quad 1 \quad 7$
 $ps = 3 \quad 5 \quad 1 \quad 7$
 $ps = 3 \quad 5 \quad 1 \quad 7$
 $ps = 3 \quad 5 \quad 1 \quad 7$
 $ps = 3 \quad 5 \quad 1 \quad 7$
 $ps = 3 \quad 5 \quad 1 \quad 7$
 $ps = 3 \quad 5 \quad 1 \quad 7$
 $ps = 3 \quad 5 \quad 1 \quad 7$
 $ps = 3 \quad 5 \quad 1 \quad 7$
 $ps = 3 \quad 5 \quad 1 \quad 7$
 $ps = 3 \quad 5 \quad 1 \quad 7$
 $ps = 3 \quad 5 \quad 1 \quad 7$
 $ps = 3 \quad 5 \quad 1 \quad 7$
 $ps = 3 \quad 5 \quad 1 \quad 7$
 $ps = 3 \quad 5 \quad 1 \quad 7$
 $ps = 3 \quad 5 \quad 1 \quad 7$
 $ps = 3 \quad 5 \quad 1 \quad 7$
 $ps = 3 \quad 5 \quad 1 \quad 7$
 $ps = 3 \quad 5 \quad 1 \quad 7$
 $ps = 3 \quad 5 \quad 1 \quad 7$
 $ps = 3$

TC: O(N2)

SC: D(N)

further Improvisation (rarry forward)

$$A = \begin{bmatrix} 3 & 4 & -2 & 5 & 1 \end{bmatrix}$$

void solve (int () A) }

int n= A-length;

for (jut 2=0? 2 < u.) 2++) }

		_	
5	೬	sam	019
0	0	3	3
	1.	3+2	5
	2	3+2+4	9
1	1	2	2
	2	274	6
2	2	4	4

SC: 0(1)

3

S	e	Sa	sum
0	0	[3]	3
0	١	[3 -1]	2
0	2	[3 -1 4]	6
١	١	[-17	- 1
1	2	[-1 47	3
2	2	[4]	4
			17

int solve (int () A) } int n= A-length; int ts = 0; (int s=0)

int sum=0;

dox (int e=s; e<n; e+t) {

 sum+= Alej;

 ts+=sum; for (int s=0: s<n; s++) }

TC: 0(n2) Sc: 0(1)

return ts;

Expected TC: O(n)

s e	Sa	sum			
0 0	[3]	3	A Co J		
0 1	[3 -1]	2	C1) A + C0) A		
0 2	[3 -1 4]	6	A100 + C17 A + C01A		
1 1	[-17	- 1	A[I]		
1 2	[-1 47 [4]	3	A[1] + A[2]		
2 2	[4]	4			
		17	3+A10)+ 4+A(1)+3+A[2]		
ith ele is 3"3 + 4"(-1)+3"4= 17					
	coming				
	me	ny subar	rays.		

=) ith element is coming in how many subarrays.

Count = 10

count = 12

a,b =) b-a+1

valid start points: 0 to 1 => i+1 sp valid end points: i to 1-1 => n-i ep count of valid subarray = (i+1)*(n-i)

int solve (int[]A)
3

A = [3 -1 4]

int ans = 0;

int n = A · length;

for (int i = 0; i < n; i++) 3

ans + = A[i]* ((i+1)*(n-i));

7 ans + 2 -1*(2*2) = -4

4 return ans;

7 -1*(2*2) = -4

1 -1*(3*1) = 12

Contribution technique

contist:

Doubts Product Array

$$A = \begin{bmatrix} 2 & 4 & 1 & 3 & 5 \end{bmatrix}$$

an:
$$\begin{bmatrix} 60 & 30 & 120 & 40 & 24 \end{bmatrix}$$

$$A = \begin{bmatrix} 2 & 4 & 1 & 3 & 5 \end{bmatrix}$$

Note: don't use division.

$$A = \begin{bmatrix} 2 & 4 & 1 & 3 & 5 \\ 0 & 1 & 2 & 3 & 4 \end{bmatrix}$$

$$pm = \begin{bmatrix} 2 & 8 & 8 & 24 & 120 \end{bmatrix}$$

$$Sm = \begin{bmatrix} 120 & 60 & 15 & 15 & 5 \end{bmatrix}$$

ans(i) =
$$p_{80d}(0, i-1) \times p_{80d}(i+1, n-1)$$

 $p_{m}[i-1] \times p_{80d}(i+1, n-1)$

deader if it is > all elements on right side.

$$A = \begin{cases} 2 & 9 & 4 & 5 & 1 & 3 & 3 \\ 0 & 1 & 2 & 3 & 4 & 5 \end{cases}$$

omax = \$ \$ 9 (ount = 1/2)

```
int rmax = A [n-1];
int count = 1',
 dox (int i= n-2; is=0; i--) }
          } (xpmx < ci1A) }i
              count ++;
               rmax = Alinj
            3
  3
```

roun count;

Bulb Problem

int solve (int [] A) $\frac{1}{2}$ int c=0;

for (int i=0; i<0; i+1) $\frac{1}{2}$ a[i] = 1-a[i]; a[i] = 0 a[i] = 1 a[i] = 0 a[i]

7 5 9 16 2

maintain dest min and toy to calculate best peoplit.