all	problems	are	in	order	but	а	lot	of	stuff	is	missing	so	it	

MA214 Tut-5

might be a little hard to follow. use this only as a last resort.

If P(x) is the interpolating polynomial of the function f(x), we have:

$$P(x) = \sum_{i=0}^{n} f(x_i) L_i(x)$$

For the given equation,

$$L.H.S = \sum_{i=0}^3 x_i^j L_i(x)$$
 By comparing the above two equations, we can see that the $L.H.S$ of the given equation is the

By comparing the above two equations, we can see that the L.H.S of the given equation is the interpolating polynomial of $f(x) = x^{j}$.

We can also note that,

$$R.H.S = x^j = f(x)$$

So we need all the values of $j \ge 0$ such that P(x) = f(x).

It is obvious that we can have such a result only when we have $j \leq 3$ because we are interpolating a polynomial function, $f(x) = x^j$, using only 4 distinct interpolation points.

Let us prove the result using the error formula

For $j \leq 3$, Error term $= 0 \implies P(x) = f(x)$

Hence the required values of j are 0, 1, 2 and 3.

Here we have $f(x) = x^j$ and n = 3

For j > 3, there exists some value of x such that Error term $\neq 0$.

 $f^{(n+1)}(x) = f^{(4)}(x) = \begin{cases} 0 & j \le 3\\ j(j-1)(j-2)(j-3)x^{j-4} & \text{otherwise} \end{cases}$

Error term = $\frac{f^{(n+1)}(x)}{(n+1)!}(x-x_0)(x-x_1)\cdots(x-x_n)$

Error term =
$$\frac{f^{(n+1)}(x)}{(n+1)!}(x-x_0)(x-x_1)\cdots(x-x_n)$$

Here we have $f(x) = x^j$ and n = 3

$$f^{(n+1)}(x) = f^{(4)}(x) = \begin{cases} 0 & j \le 3\\ j(j-1)(j-2)(j-3)x^{j-4} & \text{otherwise} \end{cases}$$

For
$$j \leq 3$$
, Error term $= 0 \implies P(x) = f(x)$

For j > 3, there exists some value of x such that Error term $\neq 0$.

Hence the required values of j are 0, 1, 2 and 3.

Problem 2

Let x_0, x_1, \dots, x_k be distinct nodes and define $g(x) := [x_0, x_1, \dots, x_k, x]$. Prove that $g[y_0, y_1, \dots, y_n] = f[x_0, x_1, \dots, x_k, y_0, y_1, \dots, y_n]$.

Solution

First, we note that the divided difference is symmetric in the nodes.

Lemma 1. The divided difference is a symmetric function of its arguments, that is, if z_0, z_1, \dots, z_k is a permutation of x_0, x_1, \dots, x_k , then

$$f[x_0, x_1, \cdots, x_k] = f[z_0, z_1, \cdots, z_k]$$
 (1)

Proof. z_0, z_1, \dots, z_k is a permutation of x_0, x_1, \dots, x_k , which means that the nodes x_0, x_1, \dots, x_k have only been re-labelled as z_0, z_1, \dots, z_k , and hence the polynomial interpolating the function f at both these sets of nodes is the same. By definition, $f[x_0, x_1, \dots, x_k]$ is the coefficient of x^n in the polynomial interpolating the function f at the nodes x_0, x_1, \dots, x_k , and $f[z_0, z_1, \dots, z_k]$ is the coefficient of x^n in the polynomial interpolating the function f at the nodes z_0, z_1, \dots, z_k . Since both the interpolating polynomials are equal, so are the coefficients of x^n in them. This completes the proof.

We also note that the formula for divided difference.

Lemma 2. The divided difference satisfies the recurrence relation

J [20] 21, , 2k] J [20, 21, , 2k]

Proof. z_0, z_1, \dots, z_k is a permutation of x_0, x_1, \dots, x_k , which means that the nodes x_0, x_1, \dots, x_k have only been re-labelled as z_0, z_1, \dots, z_k , and hence the polynomial interpolating the function f at both these sets of nodes is the same. By definition, $f[x_0, x_1, \dots, x_k]$ is the coefficient of x^n in the polynomial interpolating the function f at the nodes x_0, x_1, \dots, x_k , and $f[z_0, z_1, \dots, z_k]$ is the coefficient of x^n in the polynomial interpolating the function f at the nodes z_0, z_1, \dots, z_k . Since both the interpolating polynomials are equal, so are the coefficients of x^n in them. This completes the proof.

We also note that the formula for divided difference.

Lemma 2. The divided difference satisfies the recurrence relation

$$f[x_0, x_1, \cdots, x_k] = \frac{f[x_1, x_2, \cdots, x_k] - f[x_0, x_1, \cdots, x_{k-1}]}{x_k - x_0}$$
(2)

Proof. Refer to the lectures.

Using lemmas 1 and 2, we show that

$$g[y_{i}, y_{i+1}] = \frac{g[y_{i+1}] - g[y_{i}]}{y_{i+1} - y_{i}}$$

$$= \frac{g(y_{i+1}) - g(y_{i})}{y_{i+1} - y_{i}}$$

$$= \frac{f[x_{0}, x_{1}, \dots, x_{k}, y_{i+1}] - f[x_{0}, x_{1}, \dots, x_{k}, y_{i}]}{y_{i+1} - y_{i}}$$

$$= \frac{f[x_{0}, x_{1}, \dots, x_{k}, y_{i+1}] - f[y_{i}, x_{0}, x_{1}, \dots, x_{k}]}{y_{i+1} - y_{i}}$$

$$= f[x_{0}, x_{1}, \dots, x_{k}, y_{i+1}]$$

$$= f[x_{0}, x_{1}, \dots, x_{k}]$$

$$= f[x_{0}, x_{1}, \dots, x_{k}]$$

$$= f[x_{0}, x_{1}, \dots, x_{k}]$$

$$= f[x_{0}$$

Likewise, we can show that

$$g[y_i, y_{i+1}, y_{i+2}] = f[x_0, x_1, \cdots, x_k, y_i, y_{i+1}, y_{i+2}]$$

$$(9)$$

We use induction to prove that

$$g[y_0, y_1, \cdots, y_n] = f[x_0, x_1, \cdots, x_k, y_0, y_1, \cdots, y_n]$$
(10)

Proof. Let us assume that $g[y_0, y_1, \dots, y_n] = f[x_0, x_1, \dots, x_k, y_0, y_1, \dots, y_n]$. Then, using lemmas

$$y_{i+1} - yi = \frac{g(y_{i+1}) - g(y_i)}{y_{i+1} - yi}$$
(4)
$$= \frac{f[x_0, x_1, \dots, x_k, y_{i+1}] - f[x_0, x_1, \dots, x_k, y_i]}{y_{i+1} - yi}$$
(5)
$$= \frac{f[x_0, x_1, \dots, x_k, y_{i+1}] - f[y_i, x_0, x_1, \dots, x_k]}{y_{i+1} - yi}$$
(Using lemma 1) (6)
$$= f[x_0, x_1, \dots, x_k, y_i, y_{i+1}]$$
(Using lemma 2) (7)
$$= f[x_0, x_1, \dots, x_k, y_i, y_{i+1}]$$
(Using lemma 2) (9)
We use induction to prove that
$$g[y_i, y_{i+1}, y_{i+2}] = f[x_0, x_1, \dots, x_k, y_i, y_{i+1}, y_{i+2}]$$
(9)
We use induction to prove that
$$g[y_0, y_1, \dots, y_n] = f[x_0, x_1, \dots, x_k, y_0, y_1, \dots, y_n]$$
(10)
$$Proof. \text{ Let us assume that } g[y_0, y_1, \dots, y_n] = f[x_0, x_1, \dots, x_k, y_0, y_1, \dots, y_n]. \text{ Then, using lemmas 1 and 2,}$$

$$g[y_0, y_1, \dots, y_n, y_{n+1}] = \frac{g[y_0, y_1, \dots, y_{n-1}, y_{n+1}] - g[y_0, y_1, \dots, y_{n-1}, y_n]}{y_{n+1} - y_n}$$
(11)
$$f[x_0, x_1, \dots, x_k, y_0, y_1, \dots, y_{n-1}, y_{n+1}] - f[x_0, x_1, \dots, x_k, y_0, y_1, \dots, y_{n-1}, y_n]}{y_{n+1} - y_n}$$
(11)

Likewise, we can show that

$$g[y_i, y_{i+1}, y_{i+2}] = f[x_0, x_1, \cdots, x_k, y_i, y_{i+1}, y_{i+2}]$$
(9)

We use induction to prove that

$$g[y_0, y_1, \cdots, y_n] = f[x_0, x_1, \cdots, x_k, y_0, y_1, \cdots, y_n]$$
(10)

Proof. Let us assume that $g[y_0, y_1, \dots, y_n] = f[x_0, x_1, \dots, x_k, y_0, y_1, \dots, y_n]$. Then, using lemmas 1 and 2,

$$g[y_{0}, y_{1}, \dots, y_{n}, y_{n+1}] = \frac{g[y_{0}, y_{1}, \dots, y_{n-1}, y_{n+1}] - g[y_{0}, y_{1}, \dots, y_{n-1}, y_{n},]}{y_{n+1} - y_{n}}$$

$$= \frac{f[x_{0}, x_{1}, \dots, x_{k}, y_{0}, y_{1}, \dots, y_{n-1}, y_{n+1}] - f[x_{0}, x_{1}, \dots, x_{k}, y_{0}, y_{1}, \dots, y_{n-1}, y_{n}]}{y_{n+1} - y_{n}}$$

$$= f[x_{0}, x_{1}, \dots, x_{k}, y_{0}, y_{1}, \dots, y_{n}, y_{n+1}]$$

$$= f[x_{0}, x_{1}, \dots, x_{k}, y_{0}, y_{1}, \dots, y_{n}, y_{n+1}]$$

$$(11)$$

This completes the proof.

If for some $i, j, y_i = y_j$, we take y_j as a distinct node and perform $\lim y_i - y_j \to 0$ in the last step.

Problem 3

Problem 3

If f(x) = g(x)h(x) then find a formula for the divided difference for f in terms of those of g and h.

Solution

$$f(x) = g(x)h(x)$$

Aim: To get the divided difference for f in terms of those of g and h

Let us consider the nodes x_0, x_1, \ldots, x_n between [a, b] $f[x_0, x_1, \ldots, x_n]$ is the coefficient of x^n in polynomial which interpolates f(x) using the nodes.

Let us consider the interpolating polynomial for g(x) using nodes x_0, x_1, \ldots, x_n be $P_q(x)$ and h(x)using nodes x_0, x_1, \ldots, x_n be $P_h(x)$ Using forward divided difference method for g(x)

$$P_q(x) = g[x_0] + g[x_0, x_1](x - x_0) + \dots + g[x_0, x_1, \dots, x_n](x - x_0)(x - x_1) \dots (x - x_{n-1})$$

Using backward divided difference method for h(x)

$$P_h(x) = h[x_n] + h[x_{n-1}, x_n](x - x_n) + \dots + h[x_0, x_1, \dots, x_n](x - x_n) \dots (x - x_1)$$

$$P(x) = P_g(x)P_h(x)$$

$$= (g[x_0] + g[x_0, x_1](x - x_0) + \dots + g[x_0, x_1, \dots, x_n](x - x_0)(x - x_1) \dots (x - x_{n-1}))$$

$$(h[x_n] + h[x_{n-1}, x_n](x - x_n) + \dots + h[x_0, x_1, \dots, x_n](x - x_n) \dots (x - x_1))$$

$$= g[x_0]h[x_0, x_1 \dots, x_n](x - x_n) \dots (x - x_1) + \dots + g[x_0, x_1]h[x_0, x_1 \dots, x_n](x - x_n) \dots (x - x_0) + \dots + g[x_0, x_1 \dots, x_n]h[x_0, x_1 \dots, x_n](x - x_n)^2 \dots (x - x_0)^2$$

$$P_h(x) = h[x_n] + h[x_{n-1}, x_n](x - x_n) + \dots + h[x_0, x_1, \dots, x_n](x - x_n) \dots (x - x_1)$$

$$P(x) = P_g(x)P_h(x)$$

$$= (g[x_0] + g[x_0, x_1](x - x_0) + \dots + g[x_0, x_1, \dots, x_n](x - x_0)(x - x_1) \dots (x - x_{n-1}))$$

$$(h[x_n] + h[x_{n-1}, x_n](x - x_n) + \dots + h[x_0, x_1, \dots, x_n](x - x_n) \dots (x - x_1))$$

$$= g[x_0]h[x_0, x_1 \dots, x_n](x - x_n) \dots (x - x_1) + \dots + g[x_0, x_1]h[x_0, x_1 \dots, x_n](x - x_n) \dots (x - x_0) + \dots + g[x_0, x_1 \dots, x_n]h[x_0, x_1 \dots, x_n](x - x_n)^2 \dots (x - x_0)^2$$

$$P(x) = P_n(x) + (g[x_0, x_1]h[x_0, x_1 \dots, x_n] + \dots + g[x_0, x_1 \dots, x_n]h[x_{n-1}, x_n])$$

$$(x - x_0)(x - x_1) \dots (x - x_n) + \dots + g[x_0, x_1 \dots, x_n]h[x_0, x_1 \dots, x_n](x - x_n)^2 \dots (x - x_0)^2$$

Since the higher order terms have a factor of $(x - x_0)(x - x_1) \dots (x - x_n)$ consider $P(x) = p_n(x) + q(x)(x - x_0)(x - x_1) \dots (x - x_{n-1})$ we observe that $p_n(x)$ would also interpolate f(x) and now has degree $\leq n$. the coefficients of x^n is $g[x_0, x_1]h[x_0, x_1 \dots, x_n] + \dots + g[x_0, x_1 \dots, x_n]h[x_{n-1}, x_n]$

Hence $f[x_0, x_1, \dots, x_n] = \sum_{r=0}^n g[x_0, x_1, \dots, x_r] \ h[x_r, x_{r+1}, \dots, x_n]$

$$P(x) = P_n(x) + (g[x_0, x_1]h[x_0, x_1 \dots, x_n] + \dots + g[x_0, x_1 \dots, x_n]h[x_{n-1}, x_n])$$

$$(x - x_0)(x - x_1) \dots (x - x_n) + \dots + g[x_0, x_1 \dots, x_n]h[x_0, x_1 \dots, x_n](x - x_n)^2 \dots (x - x_0)^2$$

Since the higher order terms have a factor of $(x - x_0)(x - x_1) \dots (x - x_n)$ consider $P(x) = p_n(x) + q(x)(x - x_0)(x - x_1) \dots (x - x_{n-1})$

we observe that $p_n(x)$ would also interpolate f(x) and now has degree $\leq n$. the coefficients of x^n is $g[x_0, x_1]h[x_0, x_1 \dots, x_n] + \dots + g[x_0, x_1 \dots, x_n]h[x_{n-1}, x_n]$

Hence $f[x_0, x_1, \dots, x_n] = \sum_{r=0}^n g[x_0, x_1, \dots, x_r] \ h[x_r, x_{r+1}, \dots, x_n]$

Problem 4

Construct a Hermite polynomial $H_3(x)$ for the following data for (x, f(x), f'(x)): (8.3,17.56492,3.116256) and (8.6,18.50515,3.151762)

If the function here is $f(x) = x \ln x$ then compute f(8.4) and the errors

Solution

\boldsymbol{x}	f(x)	f'(x)
8.3	17.56492	3.116256
8.6	18.50515	3.151762

Given x_0, x_1, \ldots, x_n points we construct a hermite polynomial H(x) of degree at most 2n+1 where

 $\hat{H}_i(x) = (x - x_i)(L_i(x))^2$

$$H(x) = \sum_{i=0}^{1} f(x_i)H_i(x) + \sum_{i=0}^{1} f'(x_i)\hat{H}_i(x)$$

$$H_i(x) = [1 - 2(x - x_i)L'_i(x_i)](L_i(x))^2$$

let us calculate Lagrange polynomial

$$L_0(x) = rac{x - x_1}{x_0 - x_1}$$
 $L_1(x) = rac{x - x_0}{x_1 - x_0}$ $L'_0(x) = rac{1}{x_0 - x_1}$ $L'_1(x) = rac{1}{x_1 - x_0}$

$$L_0(8.4) = 0.66666$$
 $L_1(8.4) = 0.33333$ $L'_0(x) = -3.333333333$ $L'_1(x) = 3.3333333333$

$$H_0(x) = [1 - 2(x - x_0)L_0'(x_0)]L_0^2(x)$$

$$H_1(x) = [1 - 2(x - x_1)L_1'(x_1)]L_1^2(x)$$

$$L_0(x) = rac{x - x_1}{x_0 - x_1}$$
 $L_1(x) = rac{x - x_0}{x_1 - x_0}$ $L'_0(x) = rac{1}{x_0 - x_1}$ $L'_1(x) = rac{1}{x_1 - x_0}$

 $H(x) = \sum_{i=0}^{\infty} f(x_i)H_i(x) + \sum_{i=0}^{\infty} f'(x_i)\hat{H}_i(x)$

 $H_i(x) = [1 - 2(x - x_i)L_i'(x_i)](L_i(x))^2$

 $\hat{H}_i(x) = (x - x_i)(L_i(x))^2$

$$L_0(8.4) = 0.66666$$
 $L_1(8.4) = 0.33333$ $L'_0(x) = -3.3333333333$ $L'_1(x) = 3.3333333333$

$$H_0(x) = [1 - 2(x - x_0)L'_0(x_0)]L_0^2(x)$$
 $H_1(x) = [1 - 2(x - x_1)L'_1(x_1)]L_1^2(x)$

$$H_0(x) = [1 - 2(x - x_0)L'_0(x_0)]L_0^2(x)$$

$$= [1 - 2(x - 8.3)(-3.333333333)] \left(\frac{x - 8.6}{-0.3}\right)^2$$

$$= [1 - 2(x - 8.6)(3.333333333)] \left(\frac{x - 8.3}{0.3}\right)^2$$

$$\hat{H}_0(x) = (x - x_0)L_0^2(x)$$
 $\hat{H}_1(x) = (x - x_1)L_1^2(x)$

let us calculate Lagrange polynomial

 $H_1(x) = [1 - 2(x - x_1)L_1'(x_1)]L_1^2(x)$ $H_0(x) = [1 - 2(x - x_0)L_0'(x_0)]L_0^2(x)$

 $= [1 - 2(x - 8.6)(3.333333333)] \left(\frac{x - 8.3}{0.2}\right)^2$

$$\hat{H_0}(x) = (x - x_0)L_0^2(x) \qquad \qquad \hat{H_1}(x) = (x - x_1)L_1^2(x)$$

$$= (x - 8.3)\left(\frac{x - 8.6}{-0.3}\right)^2 \qquad \qquad = (x - 8.6)\left(\frac{x - 8.3}{0.3}\right)^2$$

$$H(x) = f(x_0)H_0(x) + f(x_1)H_1(x) + f'(x_0)\hat{H_0}(x) + f'(x_1)\hat{H_1}(x)$$

 $= [1 - 2(x - 8.3)(-3.3333333333)] \left(\frac{x - 8.6}{-0.2}\right)^2$

on substituting the values we get the Hermite polynomial as

$$\mathcal{H}(x) = (-0.0020222222)x^3 + (0.11044)x^2 + (1.7008846667)x - 3.0043539553$$

H(8.4) = 17.8771444582 f(8.4) = 17.8771463291

Absolute error = $|H(8.4) - f(8.4)| = 1.8709 \times 10^{-6}$ relative error = $\frac{Abs.err}{|f(8.4)|} = 1.047 \times 10^{-7}$

Construct a Hermite polynomial $H_2(x)$ for the following data for (x, f(x), f'(x)):

Problem 5

 $L_0(8.4) = 0.66666$

II(0.1) - II.0IIIIII002 J(0.1) - II.0III100201

Absolute error =
$$|H(8.4) - f(8.4)| = 1.8709 \times 10^{-6}$$
 relative error = $\frac{Abs.err}{|f(8.4)|} = 1.047 \times 10^{-7}$

Problem 5

Construct a Hermite polynomial $H_3(x)$ for the following data for (x, f(x), f'(x)): (0.8,0.22363362,2.1691753) and (1,0.65809197,2.0466965). If the function here is $f(x) = sin(e^x - 2)$ then compute f(0.9) and the errors

f(x)	f'(x)
0.22363362	2.1691753
0.65809197	2.0466965
$\frac{x-x_1}{x_0-x_1} = \frac{x}{-}$	
	0.22363362 0.65809197

 $x_0 = 0.8$ $x_1 = 1$

$$L_0(x) = \frac{x - x_1}{x_0 - x_1} = \frac{x - 1}{-0.2} = 5(1 - x)$$

$$L_1(x) = \frac{x - x_0}{x_1 - x_0} = \frac{x - 0.8}{0.2} = 5(x - 0.8) = 5x - 4$$

$$x_1 - x_2$$

 $= [1 - 2(x - \frac{4}{5})(-5)]5^{2}(1 - x)^{2}$

 $= [1 + 2(5x - 4)]25(1 - x)^2$

$$H_0(x) = [1 - 2(x - x_0)L_0'(x_0)]L_0^2(x)$$

 $H_1(x) = [1 - 2(x - x_1)L_1'(x_1)]L_1^2(x)$

 $=(11-10x)(5x-4)^2$

 $= [1-2(x-1)5](5x-4)^2$

$$L_0'(x) = -5$$
 $L_1'(x) = 5$

$$= 5($$

- [F | 2(05 1)]20(1 5);

$$= (10x - 7)25(x - 1)^2$$

and

$$\hat{H}_0(x) = (x - x_0)L_0^2(x) \qquad \qquad \hat{H}_1(x) = (x - x_1)L_1^2(x)$$

$$= (x - \frac{4}{5})5^2(1 - x)^2 \qquad \qquad = (5x - 4)^2(x - 1)$$

$$= (5x - 4)5(1 - x)^2$$

hence

$$H_3(x) = f(x_0)H_0(x) + f(x_1)H_1(x) + f'(x_0)\hat{H}_0(x) + f'(x_1)\hat{H}_1(x)$$

$$= \left\{ (0.22363362)(10x - 7)25(x - 1)^2 + (0.65809197)(11 - 10x)(5x - 4)^2 + (2.1691753) \right\}$$

$$(5x - 4)5(x - 1)^2 + (2.0466965)(x - 1)(5x - 4)^2$$

$$= \left\{ 5(x - 1)^2 [5(10x - 7)(0.22363362) + (5x - 4)(2.1691753)] + (5x - 4)^2 [(11 - 10x)(0.65809197) + (x - 1)(2.0466965)] \right\}$$

$$= 25[x^3(-0.1287117) + x^2(0.33527371) + x(-0.20254446) + (0.02230613)]$$

 $H_3(0.9)=0.443924795$ Given $f(x)=sin(e^x-2)$ f(0.9)=0.4435924388. Hence, absolute error= $0.0003323562=3.323562\times 10^{-4}$ Relative error= $0.00074923775=7.4923775\times 10^{-4}$.

Problem 6

Use five digit rounding arithmetic and compute the table for the values of sin(x) and its derivative cos(x) at 0.30,0.32 and 0.35. Obtain the corresponding Hermite polynomial H(x) and compute

$$\frac{6/(6-6.66)}{02\times0.03} = \frac{10}{2}$$

 $H(x) = \sum_{i} f(x_i)H_i(x) + \sum_{i} f'(x_i)\hat{H}_i(x)$

 $H_i(x) = [1 - 2(x - x_i)L_i(x_i)](L_i(x))^2$

 $L_i^n(x) = \prod_{\substack{j=0 \ i \neq j}}^n \frac{(x - x_j)}{(x_i - x_j)}$

 $\hat{H}_i(x) = (x - x_i)(L_i(x))^2$

sin(x)

cos(x)

0.95534

0.94924

$$L_0(x) = \frac{(x - 0.32)(x - 0.35)}{0.02 \times 0.05} = 1000(x - 0.35)$$

given data

 $L_0(x) = \frac{(x - 0.32)(x - 0.35)}{0.02 \times 0.05} = 1000(x - 0.32)(x - 0.35)$ $L_1(x) = \frac{(x - 0.30)(x - 0.35)}{-0.02 \times 0.03} = \frac{1000}{6}(x - 0.30)(x - 0.35)$

 $x_0 = 0.30 \mid 0.29552$

 $x_1 > 0.32 | 0.31457$

$$(x-0.30)(x-0.32)$$

$$H_2(x) = [1 - 2(x - 0.35)(80.00)](x - 0.30)^2(x - 0.32)^2 10^6$$

$$= [-160x + 57.00](x - 0.30)^2(x - 0.32)^2 10^6$$

$$\hat{H}_0(x) = (x - 0.30)(x - 0.32)^2(x - 0.35)^2 10^6$$

$$\hat{H}_1(x) = (x - 0.32)(x - 0.30)^2(x - 0.35)^2 \frac{10^8}{36}$$

$$\hat{H}_2(x) = (x - 0.35)(x - 0.30)^2(x - 0.32)^2 10^6$$

 $H_1(x) = [1 - 2(x - 0.32)(16.66667)](x - 0.30)^2(x - 0.35)^2 \frac{10^8}{36}$

 $= [-33.33334x + 11.66667](x - 0.30)^{2}(x - 0.35)^{2} \frac{10^{8}}{36}$

H(0.34)=0.33719 whereas sin(0.34)=0.33349 therefore Actual error= -0.00370 using error formula we have : f(x)=sin(x) $f^{(6)}(x)=-sin(x)$ Maximum value of $f^{(6)}$ in 0.30 to 0.35 is $\sin(0.35)=0.34290$ since sin is an increasing function in 0 to $\pi/2$

 $H(x) = 0.29552H_0(x) + 0.31457H_1(x) + 0.34290H_2(x) + 0.95534\hat{H}_0(x) + 0.94924\hat{H}_1(x) + 0.93937\hat{H}_2(x)$

Hermite polynomial for the given function f(x) = sin(x) using the formula

$$\hat{H_1}(x) = (x - 0.32)(x - 0.30)^2(x - 0.35)^2\frac{10^8}{36}$$

$$\hat{H_2}(x) = (x - 0.35)(x - 0.30)^2(x - 0.32)^210^6$$
 Hermite polynomial for the given function $f(x) = \sin(x)$ using the formula

$$H(x) = 0.29552H_0(x) + 0.31457H_1(x) + 0.34290H_2(x) + 0.95534\hat{H_0}(x) + 0.94924\hat{H_1}(x) + 0.93937\hat{H_2}(x) \\ H(0.34) = 0.33719 \quad \text{whereas} \quad sin(0.34) = 0.33349$$

using error formula we have : f(x) = sin(x) $f^{(6)}(x) = -sin(x)$ Maximum value of $f^{(6)}$ in 0.30 to 0.35 is $\sin(0.35) = 0.34290$ since sin is an increasing function in 0 to $\pi/2$

$$error = \frac{(0.34 - 0.30)^2(0.34 - 0.32)^2(0.34 - 0.35)^2}{6!} \times 0.34290$$

$$\approx 3.048 \times 10^{-14} <<< \text{Actual error}$$

this means that we should use many ore decimal digits to get accurate Hermite interpolation.

Problem7

therefore Actual error = -0.00370

this means that we should use many ore decimal digits to get accurate Hermite interpolation.

Problem7

Compute the natural cubic spline for the following data:

\boldsymbol{x}	-0.5	-0.25	0
f(x)	-0.0247500	0.3349375	1.1010000

$$x_0 = -0.5$$

 $f_0 = -0.0247500$

and $h = |x_{i+1} - x_i| = 0.25$

By the above relations we have

 $S_0''(x_0) = S_1''(x_2) = 0$

 $c_0 = 0$

 $6d_0(x_0-x_0)+2c_0=0$

 $S_i(x)$ is the cubic polynomial on $[x_i, x_i + 1]$ i = 0, 1

 $x_1 = -0.25$ $f_1 = 0.3349375$

 $S(x) = \begin{cases} S_0(x) = a_0 + b_0(x - x_0) + c_0(x - x_0)^2 + d_0(x - x_0)^3 & x_0 \le x \le x_1 \\ S_1(x) = a_1 + b_1(x - x_1) + c_1(x - x_1)^2 + d_1(x - x_1)^3 & x_1 \le x \le x_2 \end{cases}$

 $a_0 = S_0(x_0) = f_0 = -0.0247500$ $a_1 = S_1(x_1) = f_1 = 0.3349375$

 $6d_1(x_2-x_1)+2c_1=0$

 $6d_1h + 2c_1 = 0$

 $d_1 = \frac{-c_1}{2h}$

$$f_2 = 1.101000$$

 $x_2 = 0$

 $S_0''(x_1) = S_1''(x_1)$

 $6d_0h + 2c_0 = 2c_1$

 $d_0 = \frac{c_1}{c_1}$

 $6d_0(x_1-x_0)+2c_0=2c_1$

$$S(x) = \int_{0}^{S(x)} S_1(x) = a_1 + b_1(x - x_1) + c_1(x - x_1)^2 + d_1(x - x_1)^3 \quad x_1 \le x \le x_2$$

$$a_0 = S_0(x_0) = f_0 = -0.0247500$$

$$a_1 = S_1(x_1) = f_1 = 0.3349375$$
 By the above relations we have

By the above relations we have

$$S_0''(x_0) = S_1''(x_2) = 0$$
 $6d_1(x_2 - x_1) + 2c_1 = 0$ $6d_0(x_0 - x_0) + 2c_0 = 0$ $6d_1h + 2c_1 = 0$

$$c_0 = 0$$
$$c_0 = 0$$

 $6d_1h + 2c_1 = 0$

$$f_{i} = S_{o}(x_{i})$$

$$f_1 = S_0$$

$$f_1 = S_0($$

$$= a_0 + b_0 h + c_0 h^2 + d$$

$$f_1 = S_0(x_1)$$
$$f_1 = a_0 + b_0 h + c_0 h^2 + d_0 h^3$$

$$f_1 = S_0($$

$$= a_0 + b_0 h + c_0 h^2 + d$$

 $\frac{f_1 - f_0}{h} = b_0 + c_0 h + d_0 h^2$

 $b_0 = \frac{f_1 - f_0}{h} - \frac{c_1 h}{2}$

$$f_1 = S_0(x_1)$$
$$c_0h^2 + d_0h^3$$

$$f_2 = S_1(x_2)$$
 $f_2 = a_1 + b_1 h + c_1 h^2 + d_1 h^3$

 $d_1 = \frac{-c_1}{3h}$

 $\frac{f_2-f_1}{h}=b_1+c_1h-\frac{c_1h}{2}$

 $b_1 = \frac{f_2 - f_1}{h} - \frac{2c_1h}{2}$

 $f_2 = S_1(x_2)$

$$6d_0(x_1 - x_0) + 2c_0 = 2c_1$$
$$6d_0h + 2c_0 = 2c_1$$

$$S_0''(x_1) = S_1''(x_1)$$

$$-x_0) + 2c_0 = 2c_1$$

 $d_0 = \frac{c_1}{3h}$

on substituting the values we get

$$b_0 = 1.032375 \qquad b_1 = 2.2515 \qquad d_0 = 6.502 \qquad d_1 = -6.502$$

$$S_0(x) = 6.502x^3 + 9.573x^2 + 5.908875x + 1.3041875$$

$$S_1(x) = -6.502x^3 + 3.470625x + 1.101$$
 Hence
$$S(x) = \begin{cases} 6.502x^3 + 9.573x^2 + 5.908875x + 1.3041875 & -0.5 \le x \le -0.25 \\ -6.502x^3 + 3.470625x + 1.101 & -0.25 \le x \le 0 \end{cases}$$

Problem 8

Compute the natural cubic spline for the following data:

\boldsymbol{x}	0.1	0.2	0.3	0.4
f(r)	-0.062049958	-0 28398668	0.00660095	0.24842440

Problem 8

I

Compute the natural cubic spline for the following data:

\boldsymbol{x}	0.1	0.2	0.3	0.4
f(x)	-0.062049958	-0.28398668	0.00660095	0.24842440

Solution

$$x_0 = 0.1$$
 $x_1 = 0.2$ $x_2 = 0.3$ $x_3 = 0.4$ $y_0 = -0.62049958$ $y_1 = -0.28398668$ $y_2 = 0.00660095$ $y_3 = 0.24842440$

$$S(x) = \begin{cases} S_0(x) = a_0 x^3 + b_0 x^2 + c_0 x + d_0 & x_0 \le x \le x_1 \\ S_1(x) = a_1 x^3 + b_1 x^2 + c_1 x + d_1 & x_1 \le x \le x_2 \\ S_2(x) = a_2 x^3 + b_2 x^2 + c_2 x + d_2 & x_2 \le x \le x_3 \end{cases}$$

for i = 1, 2 we have

$$S_{i-1}(x_i) = S_i(x_i)$$
 $S'_{i-1}(x_i) = S'_i(x_i)$ $S''_{i-1}(x_i) = S''_i(x_i)$

and
$$S(x_i) = y_i \ 0 \le i \le 3 \ S''(x_0) = S''(x_3) = 0.$$

for the second derivative equations

 $S_1''(x_0) = 0 = S_2''(x_3)$ $S_0''(x_1) = S_1''(x_1)$ $S_1''(x_2) = S_2''(x_2)$

on borving we go

 $a_1 = -0.94630872$

 $a_2 = 9.94210526$

 $a_0 = -8.99579832$

$$b_0 = 2.69874477$$
 $b_1 = -2.13095238$ $b_2 = -11.93051380$ $c_0 = 3.18521341$ $c_1 = 4.15115115$ $c_2 = 7.09102091$ $d_0 = -0.95701357$ $d_1 = -1.02140673$ $d_2 = -1.31539611$

Problem 9

Compute the cubic spline for the data in the above problem and f'(0.1) = 3.58502082 and f'(0.4) = 2.16529366.

Solution

$$S_0(x) = a_0 x^3 + b_0 x^2 + c_0 x + d_0$$

$$S_1(x) = a_1 x^3 + b_1 x^2 + c_1 x + d_1$$

$$S_2(x) = a_2 x^3 + b_2 x^2 + c_2 x + d_2$$

So we get Let $x_0 = 0.1, x_1 = 0.2$ and so on The continuity equations equations are:

$$a_0(0.1)^3 + b_0(0.1)^2 + c_0(0.1) + d_0 = -0.62049958$$

$$a_0(0.2)^3 + b_0(0.2)^2 + c_0(0.2) + d_0 = -0.28398668$$

$$a_1(0.2)^3 + b_1(0.2)^2 + c_1(0.2) + d_1 = -0.28398668$$

$$a_1(0.3)^3 + b_1(0.3)^2 + c_1(0.3) + d_1 = 0.00660095$$

$$a_2(0.3)^3 + b_2(0.3)^2 + c_2(0.3) + d_2 = 0.00660095$$

 $a_3(0.4)^3 + b_3(0.4)^2 + c_1(0.4) + d_3 = 0.24842440$

The first derivative equations are

$$3a_0(0.1)^2 + 2b_0(0.1) + c_0 = 3.58502082$$

$$3a_0(0.2)^2 + 2b_0(0.2) + c_0 = 3a_1(0.2)^2 + 2b_1(0.2) + c_1$$

$$3a_1(0.3)^2 + 2b_1(0.3) + c_1 = 3a_2(0.3)^2 + 2b_2(0.3) + c_2$$

$$6a_0(0.2) + 2b_0 = 6a_1(0.2) + 2b_1$$

 $6a_1(0.3) + 2b_1 = 6a_2(0.3) + 2b_2$

As a matrix:

Solving the above equations we get the coefficients

$$[-5.4278927], [-0.02776892], [3.75341136], [-0.99013505], [14.33700811], [-11.8867094], [-11.8867094], [-11.88$$

[6.12519946], [-1.14825426], [1.13523922], [-5.59455431], [5.914384], [-1.29485582], [-1.2948582], [-1.294882], [-1.