Scheduling

מערכות הפעלה תרגול 6

A given system runs a single process, which waits for I/O for 40% of the time (avg.).

Q: What is the approximate CPU utilization?

A given system runs a single process, which waits for I/O for 40% of the time (avg.).

Q: What is the approximate CPU utilization?

A: 0.6

A given system runs a single process, which waits for I/O for 40% of the time (avg.).

Q: What is the approximate CPU utilization?

A: 0.6

Q: What is the approximate CPU utilization with **three** processes running?

A given system runs a single process, which waits for I/O for 40% of the time (avg.).

Q: What is the approximate CPU utilization?

A: 0.6

Q: What is the approximate CPU utilization with **three** processes running?

A: At a given moment, the probability that all three processes are blocking on I/O is 0.6³

That means that the CPU utilization is 1-0.63

Exercise 2: FCFS vs. SJF

 The following is a list of processes which require scheduling:

```
P_A - 6 TU (time units)

P_B - 3 TU

P_C - 1 TU

P_D - 7 TU
```

Determine the turnaround with FCFS and SJF

Exercise 2: FCFS vs. SJF - Solution

- •FCFS: $(6,3,1,7) \rightarrow 6+9+10+17=42 \text{ TU}$
- •SJF: $(1,3,6,7) \rightarrow 1+4+10+17=32 \text{ TU}$

Exercise 3: HRRN

What is the order of the processes running?

Thread	Arrival TIme	CPU Burst Length
А	0	3
В	2	6
С	4	4
D	6	5
Е	8	2

$$Priority = \frac{waiting \ time + estimated \ run \ time}{estimated \ run \ time} = 1 + \frac{waiting \ time}{estimated \ run \ time}$$

Exercise 3: HRRN - Solution

Exercise 3: HRRN - Solution

Exercise 4: Round Robin

The following is a list of processes which require scheduling:

```
P_A – 6 TU (time units)

P_B – 3 TU

P_C – 1 TU

P_D – 7 TU
```

 What is the optimal quanta size when scheduling with RR to achieve minimal average turnaround time? (assume 0 cost context switches, and that all processes are in the 'ready' queue)

Exercise 4: Round Robin

$$P_A = 6$$
, $P_B = 3$, $P_C = 1$, $P_D = 7$

Quanta

Quanta=1: Quanta=5:

Quanta=2: Quanta=6:

Quanta=3: Quanta=7:

Quanta=4:

Exercise 4: Round Robin - Solution

$$P_A = 6$$
, $P_B = 3$, $P_C = 1$, $P_D = 7$

Exercise 5: Preemptive Dynamic Priorities

(Taken from Silberschatz, 5-9)

- Consider the following preemptive priority scheduling algorithm
 - Larger numbers imply higher priority
 - The initial priority of every process is 0
 - When a process is waiting for the CPU in the ready Q, its priority changes at rate α ; when it is running, its priority changes at rate β .
 - α and β can be set

Exercise 5: Preemptive Dynamic Priorities

What is the best ratio between and?

Consider the following example: P₁, P₂, P₃ arrive one after the other and last for 3 TU

9	8	7	6	5	4	3	2	1	
								0	P1
							0		P2
						0			Р3

Exercise 5: Example

What is the algorithm that results from $\beta > \alpha > 0$?

Consider the following example: P₁, P₂, P₃ arrive one after the other and last for 3 TU

Let
$$\alpha = 1$$
, $\beta = 2$

9	8	7	6	5	4	3	2	1	
						4	2	0	P1
			6	4	2	1	0		P2
8	6	4	3	2	1	0			Р3

The resulting schedule is a non-preemptive **FCFS**

Exercise 5: Example

• What is the algorithm that results from $\alpha < \beta < 0$? Consider an identical example as before, but now α =-2, β =-1

9	8	7	6	5	4	3	2	1	
14-	13-	11-	9-	7-	5-	3-	1-	0	P1
		8-	7-	5-	3-	1-	0		P2
				2-	1-	0			P3

The resulting schedule is **LIFO**

Exercise 6: Multilevel queue

• The following is a list of processes which require scheduling:

PQ	ВТ	AT	
2	10	0	P1
1	7	3	P2
2	6	4	Р3
1	5	12	P4
1	8	18	р5

AT – Arrival time BT – Burst (working) time

- Both queues use RR scheduling with:
 - Proirity q 1: quanta=4
 - Priority q 2: quanta=3
- What is the turnaround avg such that q1 has higher priority over q2?

Exercise 6: Multilevel queue

Exercise 6: Multilevel queue - solution

Exercise 7: Guaranteed Scheduling

 What is the running order of the next processes by guaranteed priority?

Ratio (BT/ Period)	Period (AT/n)	ВТ	AT	
		8	2	P1
		6	4	P2
		10	6	P3
		4	8	P4

Exercise 7: Guaranteed Scheduling

 What is the running order of the next processes by guaranteed priority?

Ratio (BT/ Period)	Period (AT/n)	ВТ	AT	
16	0.5	8	2	P1
6	1	6	4	P2
6.7	1.5	10	6	Р3
2	2	4	8	P4

Order: P4,P2,P3,P1