ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ Η ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ

M902

Βασικές Μαθηματικές Έννοιες στη Γλωσσική Τεχνολογία

Project 3

Κυλάφη Χριστίνα-Θεανώ LT1200012

TABLE OF CONTENTS

Question 1	3
Question 2	4
Question 3	5
Question 4	6
Question 5	7
Question 6	8
Question 7	9
Question 8	10
Question 9	11
Question 10	12

In order to find the similar documents based on the 3-dimensional vector representations, $d_n \in \mathbb{R}^3$, $n=1,\ldots,5$, a 5x5 matrix was constructed, with each row being each of the 3-D vectors d_1,d_2,d_3,d_4,d_5 , normalised as follows:

$$\sum_{i=1}^{5} \sum_{j=1}^{3} \frac{d_{ij}}{\|d_i\|}$$

where d_{ij} the j-th element of the i-th vector and $||d_i||=\sqrt{d_{i1}^2+d_{i2}^2+d_{i3}^2}$ the norm of the respective vector i:

$$D = \begin{bmatrix} d_1 \\ d_2 \\ d_3 \\ d_4 \\ d_5 \end{bmatrix} \implies D_{5x3} = \begin{bmatrix} 8 & 6 & 0 \\ 0 & 6 & 8 \\ 6 & 0 & 8 \\ 2 & 3 & 0 \\ 9 & 6 & 0 \end{bmatrix} \implies D_{normal} = \begin{bmatrix} \frac{8}{10} & \frac{6}{10} & \frac{0}{10} \\ \frac{0}{10} & \frac{6}{10} & \frac{8}{10} \\ \frac{2}{3.6055} & \frac{3}{3.6055} & \frac{0}{3.6055} \\ \frac{9}{10.8166} & \frac{6}{10.8166} & \frac{0}{10.8166} \end{bmatrix} = \begin{bmatrix} 0.8 & 0.6 & 0 \\ 0 & 0.6 & 0.8 \\ 0.6 & 0 & 0.8 \\ 0.5547 & 0.8320 & 0 \\ 0.8320 & 0.5547 & 0 \end{bmatrix}$$

Finally, we multiply **normalized** matrix **D** with its **transpose**, to get the inner product of every pair of vectors and perform the comparisons between the document representations:

$$D_{normal} \cdot D_{normal}^{T} = \begin{bmatrix} 0.8 & 0.6 & 0 \\ 0 & 0.6 & 0.8 \\ 0.6 & 0 & 0.8 \\ 0.5547 & 0.8320 & 0 \\ 0.8320 & 0.5547 & 0 \end{bmatrix} \cdot \begin{bmatrix} 0.8 & 0 & 0.6 & 0.5547 & 0.8320 \\ 0.6 & 0.6 & 0 & 0.8320 & 0.5547 \\ 0 & 0.8 & 0.8 & 0 & 0 \end{bmatrix} = \begin{bmatrix} 0.8 & 0 & 0.6 & 0.5547 & 0.8320 \\ 0.6 & 0.6 & 0 & 0.8320 & 0.5547 \\ 0 & 0.8 & 0.8 & 0 & 0 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0.36 & 0.48 & 0.9429 & 0.9984 \\ \mathbf{0.36} & 1 & 0.64 & 0.4992 & 0.3328 \\ \mathbf{0.48} & \mathbf{0.64} & 1 & 0.3328 & 0.4992 \\ \mathbf{0.9429} & \mathbf{0.4992} & \mathbf{0.3328} & 1 & 0.9230 \\ \mathbf{0.9984} & \mathbf{0.3328} & \mathbf{0.4992} & \mathbf{0.9230} & 1 \end{bmatrix} = D_{normal_dot_product}$$

We keep only the **lower triangular matrix**, where each value represents the dot product of the j-th vector (d_j) with the i-th vector (d_j), where i, j the rows and the columns of the matrix $D_{dot\ product}$ respectively.

The formula of the dot product of two vectors, using the included angle θ , is:

$$d_i \cdot d_j = \|d_i\| * \|d_j\| * cos\theta \implies cos\theta = \frac{d_i \cdot d_j}{\|d_i\| * \|d_j\|} = cos\theta_{d_i,d_j}$$

The process we followed above, calculates exactly the value of the cosine of the included angle θ , giving information on the relation between those vectors.

Therefore, the results are the follwing:

Inner Product (of normalized vectors)	Similarity
$cos\theta_{d_1,d_2} = 0.36$	Low
$cos\theta_{d_1,d_3} = 0.48$	
$cos\theta_{d_1,d_4} = 0.9429$	High
$cos\theta_{d_1,d_5} = 0.9984$	High
$cos\theta_{d_2,d_3} = 0.64$	
$d_2 \cdot d_4 = 0.4492$	
$d_2 \cdot d_5 = 0.3328$	Low
$d_3 \cdot d_4 = 0.3328$	Low
$d_3 \cdot d_5 = 0.4992$	
$d_4 \cdot d_5 = 0.9230$	High

Table 3.10

The **Documents 1**, **4** and **5** are **very similar**.

Also, for this exercise, some code was developed to validate the results (included in the uploaded .zip file).