Soru: Üç fazlı statoru 36 oluklu ve sargıları oluklara çift katlı olarak yerleştirilmiş, stator ve rotor manyetik çekirdekleri için $\mu_r = \infty$ kabul edilen, hava aralığı düzgün bir ac makinanın stator sargılarının bir kısmının oluklara yerleşimi şekilde verilmiştir.

- a) Stator sargıların tamamının oluklara yerleşimini gösteriniz.
- b) Stator sargılarına $i_A = Icos \, \omega t$, $i_B = Icos \, (\omega \, t 120^\circ)$, $i_C = Icos \, (\omega \, t 240^\circ)$, biçiminde 50Hz'lik dengeli 3 fazlı akımlar uygulanıyor $\omega \, t = 0^\circ$ olan an için statorun ürettiği mmk dağılımını çiziniz.
- c) Stator yıldız bağlı ve her sargıda 10 sarım vardır. Stator sargıları üzerindeki akı genlikleri sırasıyla 1., 3. ve 5. harmonikler için tam uzanımlı sargı varsayımına göre $\hat{\Phi}_1 = 0.0125Wb$, $\hat{\Phi}_3 = 0.0025Wb$, olduğuna göre statorda endüklenen fazlararası ve tek faz gerilimlerini hesaplayınız.

	A ₁	\mathbf{A}_2	A ₃	-C ₁	-C ₂	-C ₃	B ₁	B ₂	B ₃	-A ₄																											A ₁
								-A ₁																													
36	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	1

Çözüm: $i_A = I\cos\omega t$, $i_B = I\cos(\omega t - 120^\circ)$, $i_C = I\cos(\omega t - 240^\circ)$, $\omega t = 0^\circ$ ise $i_A = I$, $i_B = i_C = -I/2$.

-B ₁₂	A ₁	\mathbf{A}_2	A ₃	-C ₁	-C ₂	-C ₃	B ₁	B ₂	B ₃	-A ₄	-A ₅	-A ₆	C ₄	C ₅	C ₆	-B ₄	-B ₅	-B ₆	\mathbf{A}_7	A_8	A ₉	-C ₇	-C ₈	-C ₉	B ₇	B ₈	B ₉	-A ₁₀	-A ₁₁	-A ₁₂	C_{10}	C ₁₁	C ₁₂	-B ₁₀	-B ₁₁	-B ₁₂	A ₁
A ₁₁	A ₁₂	-C ₁₀	-C ₁₁	-C ₁₂	B ₁₀	B ₁₁	B ₁₂	-A ₁	-A ₂	-A ₃	Cı	C ₂	C ₃	-B ₁	-B ₂	-B ₃	A4	\mathbf{A}_{5}	A_6	-C ₄	-C ₅	-C ₆	B ₄	B ₅	B ₆	-A ₇	-A ₈	-A ₉	C ₇	C ₈	C ₉	-B ₇	-B ₈	-B ₉	A ₁₀	A ₁₁	A ₁₂
36	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	1
3/2	2	3/2	3/2	1	0	0	-1	-3/2	-3/2	-2	-3/2	-3/2	-1	0	0	1	3/2	3/2	2	3/2	3/2	1	0	0	-1	-3/2	-3/2	-2	-3/2	-3/2	-1	0	0	1	3/2	3/2	2
																																					$\times NI$

mmk dalgası bir turda 2 tam periyot içerdiği için 2 çift yani P = 4 kutupludur. Oluk açısı $360^{\circ}/36 = 10^{\circ}$ mek ya da elektriksel olarak: $10^{\circ} \times P/2 = 20^{\circ} = \gamma$ Mesela A_1 sargısının bir kenarı 1., diğer kenarı 8. olukta olduğu için sargı uzanımı = 8-1 = 7 oluk yani $\rho = 7\gamma = 140^{\circ}$ (elk). Faz kutup başına ise 36/(3faz $\times 4$ kutup) = 70 oluk bulunur A_1 0 (elk). Faz kutup başına ise A_2 1 (ağızınımı) A_3 2 (bi).

$$k_{ul} = |\sin(1*140^{\circ}/2)| = 0.9397$$
, $k_{ul} = |\sin(3*140^{\circ}/2)| = 0.5000$, $k_{ul} = |\sin(5*140^{\circ}/2)| = 0.1736$

$$k_{dI} = \left| \sin \frac{(3*1*20^{\circ}/2)}{3\sin(1*20^{\circ}/2)} \right| = 0.9598 , \quad k_{d3} = \left| \sin \frac{(3*3*20^{\circ}/2)}{3\sin(3*20^{\circ}/2)} \right| = 0.6667 , \quad k_{d5} = \left| \sin \frac{(3*5*20^{\circ}/2)}{3\sin(5*20^{\circ}/2)} \right| = 0.2176$$

 $E_{rms} = \sqrt{(2)}\pi f N \hat{\Phi}$ temel formülünü bir iletken için uygularken N = 1/2 olarak düşünülür ve her harmonik için ayrı ayrı hesaplanır:

$$E_{1\rm rms}/iletken = \sqrt{2}\pi * \frac{1}{2} * 1 * 50 {\rm Hz} * 0,0125 \ Wb = 1,388 \ V \ , \ E_{3\rm rms}/iletken = \sqrt{2}\pi * \frac{1}{2} * 3 * 50 {\rm Hz} * 0,0025 \ Wb = 0,833 \ V \ , \ E_{5\rm rms}/iletken = \sqrt{2}\pi * \frac{1}{2} * 5 * 50 {\rm Hz} * 0,0010 \ Wb = 0,555 \ V \ .$$

Döngü (2 iletken) ya da sargı (2N iletken) başına gerilimler bulunurken ise uzanım katsayısıyla da çarpmak gerekir:

$$E_{1\text{rms}}/sargi = 1,388V * 2 * 10 * 0,9397 = 26,1 V$$
, $E_{3\text{rms}}/sargi = 0,833V * 2 * 10 * 0,5000 = 8,33 V$, $E_{5\text{rms}}/sargi = 0,555V * 2 * 10 * 0,1736 = 1,93 V$

Faz gerilimini hesaplamak için hem faz başına sargı sayısı hem de dağılım katsayısıyla da çarpmak gerekir.

Faz başına sargı sayısı = (36 oluk / 3 faz) *(1 sargı / 2 oluk)*2 kat = 12 sargı/faz şeklinde bulunabileceği gibi oluklara her bir faz sargıları için yazılan en büyük indis numarası da alınabilir. Buna göre:

$$E_{1\text{rms}}/faz = 26.1 \text{ V} * 12 * 0.9598 = 300.5 \text{ V}$$
, $E_{3\text{rms}}/faz = 8.33 \text{ V} * 12 * 0.6667 = 66.6 \text{ V}$, $E_{5\text{rms}}/faz = 1.93 \text{ V} * 12 * 0.2176 = 5.0 \text{ V}$

Bütün harmoniklerin bileşke rms faz gerilimi ise harmoniklerin rms gerilimlerin kareleri toplamının kareköküdür:

$$E_{rms}/faz = \sqrt{300.5^2 + 66.6^2 + 5.0^2} V = 308V$$

Bağlantı üçgen olsaydı fazlararası gerilim tek faz gerilimine eşit olurdu.

Ancak yıldız bağlantıda fazlararası gerilim, tek faz geriliminin doğrudan $\sqrt{3}$ katı olmayıp, 3'ün tam katı numaralı harmoniklerin atılmasından sonra $\sqrt{3}$ ile çarpılır:

$$E_{fazlararasi}^{rms} = \sqrt{3}\sqrt{300.5^2 + 5.0^2} V = 521V$$