Actividad 05 - (Clases y Objetos)

AVILA CALDERON JOSE FRANCISCO

SEMINARIO DE SOLUCION DE PROBLEMAS DE ALGORITMIA

Lineamientos de evaluación

- [] Se muestra la captura de pantalla de los datos antes de usar el método agregar_inicio() y la captura de pantalla del método mostrar() después de haber utilizado el método agregar inicio().
- [] Se muestra la captura de pantalla de los datos antes de usar el método agregar_final() y la captura de pantalla del método mostrar() después de haber utilizado el método agregar final().

Conclusiones

Esta practica fue algo simple ya que solo se tenia que seguir los pasos del video adaptando a los requerimientos de la actividad

Código

```
from algoritmos import distancia euclidiana
class Particula:
    def __init__(self, id= 0, origen_x= 0, origen_y= 0, destino_x= 0,
destino y= 0, velocidad= 0, red= 0, green= 0, blue= 0, distancia= 0):
        self.__id = id
        self.__origen_x = origen_x
        self. origen y = origen y
        self.__destino_x = destino_x
        self.__destino_y = destino_y
        self.__velocidad = velocidad
        self.__red = red
        self.<u>green</u> = green
        self.__blue = blue
        self. distancia= distancia euclidiana(origen x, destino x,
origen y, destino y)
def __str__(self):
    return(
        'id: ' + str(self. id) +'\n'
        'origen x ' + str(self.__origen_x) + '\n'
        'origen y ' + str(self.__origen_y) + '\n'
        'destino x ' + str(self.__destino_x) + '\n'
        'destino y ' + str(self.__destino_y) + '\n'
        'velocidad ' + str(self.__velocidad) + '\n'
        'red ' + str(self. red) + '\n'
        'green ' + str(self.__green) + '\n'
        'blue ' + str(self. blue) + '\n'
        'distancia ' + str(self. distancia) + '\n'
```

```
import math

def distancia_euclidiana(x1, y1, x2, y2):

    distancia = math.sqrt((x2-x1)**2 + (y2-y1)**2)
    return distancia
```

```
from particula import Particula
from algoritmos import distancia_euclidiana
class administrador:
    def __init__(self):
        self.__particulas = []
    def agregar_final(self, particula:Particula):
        self.__particulas.append(particula)
    def agregar_inicio(self, particula:Particula):
        self.__particulas.insert(0, particula)
    def mostrar(self):
        for particula in self.__particulas:
            print(particula)
p01 = Particula(id= "1", origen_x= "2", origen_y= "3", destino_x= "4",
destino_y= "5", velocidad="6", red= "7", green="8", blue="9",
distancia=distancia_euclidiana)
p02 = Particula(id= "2", origen_x= "3", origen_y= "3", destino_x= "4",
destino_y= "5", velocidad="6", red= "7", green="8", blue="9",
distancia=distancia euclidiana)
particula = administrador()
particula.agregar final(p01)
particula.agregar_inicio(p02)
particula.mostrar()
```