Selected Solutions to Cunningham's "Set Theory: A First Course"

Martín Caputo

Contents

1 Introduction 2	2
1.5 The Zermelo–Fraenkel Axioms)
Exercise 1	2
Exercise 2)
Exercise 3	3
Exercise 4	3
Exercise 5	3
Exercise 6	Į
Exercise 7	Į
Exercise 9	Į
Exercise 10	Į
2 Basic Set-Building Axioms and Operations 5	í
2.1 The First Six Axioms	į
Exercise 1	į
Exercise 2	<u>,</u>
Exercise 3	<u>,</u>
Exercise 4	í
Exercise 5	<u>,</u>
Exercise 6	;
Exercise 7	;
Exercise 8	;
Exercise 9	;
Exercise 10	;
Exercise 11	;
Exercise 12	;
Exercise 13	;
Exercise 14	7
Exercise 15	7
Exercise 16	
Exercise 25	7
Exercise 26	7
Exercise 27	7

Exercise 28																7
Exercise 29																8
Exercise 30																8
Exercise 31																8
Exercise 32																8
Exercise 33																Ĉ
Exercise 34																Ç

1 Introduction

1.5 The Zermelo-Fraenkel Axioms

Exercise 1

Since $\{u\}$ and $\{v, w\}$ are sets, there exists a set A such that for every set x

$$x \in A \iff x = \{u\} \lor x = \{v, w\}.$$

By extension, this set is unique and we call it $A := \{\{u\}, \{v, w\}\}\}$. Using the union axiom, given that A is a set, then there exists a set B such that for every set x,

$$x \in B \iff \exists z(x \in z \land z \in A)$$

$$\iff \exists z(x \in z \land z \in \{\{u\}, \{v, w\}\})$$

$$\iff \exists z(x \in z \land (z = \{u\} \lor z = \{v, w\}))$$

$$\iff \exists z((x \in z \land z = \{u\}) \lor (x \in z \land z = \{v, w\}))$$

$$\iff \exists z(x \in \{u\} \lor x \in \{v, w\})$$

$$\iff x \in \{u\} \lor x \in \{v, w\}$$

$$\iff x = u \lor (x = v \lor x = w)$$

$$\iff x = u \lor x = v \lor x = w$$

Where we have simplified the quantifier which does not appear in the expression. Thus B is the unique set whose elements are exactly u, v, w and we call it $B := \{u, v, w\}$.

Exercise 2

Since A is a set, then by pairing there exists the unique set $\{A,A\}$, we shall prove this set is equal to what we call $\{A\}$, the set whose only element is A. Given $x \in \{A\}$ we conclude x = A, therefore $x \in \{A,A\}$. Given $x \in \{A,A\}$ we have that $x = A \lor x = A$, therefore x = A, which implies $x \in \{A\}$. Thus $\{A\} = \{A,A\}$. Since the sets are equal and one of them exists, they both exist.

Forst we prove $A \cap \{A\} = \emptyset$. For the sake of contradiction, suppose that the set A is such that $A \cap \{A\} \neq \emptyset$. Then $B := A \cap \{A\}$ is non-empty. Using the axiom of regularity, this means that there exists a set x such that $x \in B$ and $x \cap B = \emptyset$. But the first condition means $x \in A \cap \{A\}$, which means that $x \in A$ and $x \in \{A\}$, which means that $x \in A$ and $x \in A$. But then, the second is $x \cap B = A \cap A \cap \{A\} = A \cap \{A\} \neq \emptyset$, a contradiction. Therefore, $A \cap \{A\} = \emptyset$.

Finally, this means that $A \notin A$, since $A \in A$ would imply that there exists $x \in A$ such that, x = A which is equivalent to $x \in \{A\}$. Thus there would exist $x \in A \land x \in \{A\} \implies x \in A \cap \{A\} \implies A \cap \{A\} \neq \emptyset$, which contradicts the previous result.

Exercise 4

Using the regularity axiom, since $\{A, B\}$ is non-empty, then by the regularity axiom

$$\exists x (x \in \{A, B\} \land x \cap \{A, B\} = \emptyset).$$

Therefore either $x = A \land A \cap \{A, B\} = \emptyset$ or $x = B \land B \cap \{A, B\} = \emptyset$ or both. Since $A \in B$, then it cannot be that x = B, since this would mean $B \cap \{A, B\} = \emptyset$, but of course, there exists $A \in B$ and also $A \in \{A, B\}$, so the intersection $B \cap \{A, B\} = \emptyset$ cannot be empty. Therefore $x = A \land A \cap \{A, B\} = \emptyset$, which means that it is false that

$$\exists z(z \in A \land z \in \{A, B\}) \iff \exists z(z \in A \land (z = A \lor z = B))$$

$$\iff \exists z((z \in A \land z = A) \lor (z \in A \land z = B))$$

$$\iff \exists z(A \in A \lor B \in A)$$

$$\iff \exists z(B \in A)$$

$$\iff B \in A.$$

Where we simplified $A \in A$ since we know by Exercise 3 that $A \notin A$. Therefore, it is false that $B \in A$, thus it is true that $B \notin A$.

Exercise 5

From previous exercises we know that $\{A,B,C\}$ is a set. Since it is non-empty, there exists an element x of this set such that $x \cap \{A,B,C\} = \emptyset$. It cannot happen that x = B or x = C, since $A \in B$ and $B \in C$, so that the intersections are $B \cap \{A,B,C\}$ and $C \cap \{A,B,C\}$ are both nonempty. Therefore x = A and $A \cap \{A,B,C\} = \emptyset$. Thus, it is false that there exists a $z \in A \land z \in \{A,B,C\}$, that is

$$z \in A \land (z = A \lor z = B \lor z = C) \iff (z \in A \land z = A) \lor (z \in A \land z = B) \lor (z \in A \land z = C)$$
$$\iff (A \in A) \lor (B \in A) \lor (C \in A)$$
$$\iff C \in A$$

Where, $B \in A$ is true by hypothesis and $A \in A$ false by Exercise 3. Therefore, it is false that $C \in A$, which means that it is true that $C \notin A$.

Exercise 6

By the powerset axiom the set $\mathcal{P}(A)$ exists. Let $\psi(x) := x \in B$, then there exists a (unique by extension) set S, where for all sets x,

$$x \in S \iff x \in \mathcal{P}(A) \land \psi(x)$$

 $\iff x \in \mathcal{P}(A) \land x \in B$
 $\iff x \in \mathcal{P}(A) \cap B.$

Exercise 7

By the subset axiom, there exists a set S such that for all sets $x, x \in S$, if and only if, $x \in A \land \psi(x)$. Define $\psi(x) := \neg(x \in B)$ thus $A \backslash B$ exists.

Exercise 8

First we show $\{\emptyset\} \neq \emptyset$. Suppose it is true that $x \in \{\emptyset\}$. Since $x \in \emptyset$ is always false, then it is false that $x \in \{\emptyset\} \implies x \in \emptyset$, therefore, $\{\emptyset\} \neq \emptyset$.

Now we show $\{\emptyset, \{\emptyset\}\} \neq \{\emptyset\}$. Let $x = \{\emptyset\}$, then clearly $x \in \{\emptyset, \{\emptyset\}\}$, but $x \notin \{\emptyset\}$, because if it were true that $x \in \{\emptyset\}$ then $x = \emptyset \neq \{\emptyset\}$ (by the previous part) which contradicts our choice of $x = \{\emptyset\}$. Therefore $\{\emptyset, \{\emptyset\}\} \neq \{\emptyset\}$.

Now we show that $\{\emptyset, \{\emptyset\}\} \neq \emptyset$. Let $x = \emptyset$, then $x \in \{\emptyset, \{\emptyset\}\}$. But $x \notin \emptyset$, therefore $\{\emptyset, \{\emptyset\}\} \neq \emptyset$.

Exercise 9

For any x, consider $x \in A$. Since A has no elements, this statement is false, therefore the implication $x \in A \implies x \in \emptyset$ is true. Similarly, $x \in \emptyset \implies x \in A$ is true. Therefore $x \in \emptyset \iff x \in A$, thus, $A = \emptyset$.

Exercise 10

We know that for any set x, there exists the unique set $\{x\}$. In particular for every $x \in A$, there exists the unique set y such that $y = \{x\}$, thus the formula $\forall z (z \in y \iff z = x)$ is uniquely satisfied for all $x \in A$. Therefore we can

conclude that there exists a set S where for any $y, y \in S \iff (\exists x \in A)(y = \{x\})$, which means that there is a set S which contains exactly those elements y for which $y = \{x\}$ for some $x \in A$, which is precisely how $\{\{x\} : x \in A\}$ is defined. Therefore $\{\{x\} : x \in A\}$ is a set.

2 Basic Set-Building Axioms and Operations

2.1 The First Six Axioms

Exercise 1

If $A = \emptyset$ the claim is vacuously true. Let $x \in A$, then $x \in A \lor x \in B$, therefore $A \subseteq A \cup B$. Notice $A \subseteq B$ is not needed.

Exercise 2

If $A = \emptyset$ the claim is vacuously true. Let $x \in A$, since $A \subseteq B$, we have that $x \in B$, since $B \subseteq C$, we have that $x \in C$. Therefore $A \subseteq C$.

Exercise 3

If $B = \emptyset$ the claim is vacuously true. The subset implication $x \in B \implies x \in C$ is equivalent to its contrapositive $x \notin C \implies x \notin B$, which is the same as $x \in A \land x \notin C \implies x \in A \land x \notin B$, therefore $A \backslash C \subseteq A \backslash B$.

Exercise 4

If $C = \emptyset$ then, the claim $\emptyset \subseteq A$ and $\emptyset \subseteq B$ and the claim $\emptyset \subseteq A \cap B$ are both always true, therefore equivalent.

Suppose $C \neq \emptyset$.

Suppose $C \subseteq A$ and $C \subseteq B$. Let $x \in C$, since $C \subseteq A$, $x \in A$. Since $C \subseteq B$, $x \in B$ so that $x \in C \implies x \in A \land x \in B$. Therefore $C \subseteq A \cap B$.

Exercise 5

For the sake of contradiciton suppose $\forall x(x \in A)$, then $A \in A$, but we know this is false (section 1.5 exercise 3). Therefore $\exists x(x \notin A)$.

Commutativity of \wedge .

Exercise 7

Commutativity of \vee .

Exercise 8

Distributivity of \land over \lor .

Exercise 9

Distributivity of \vee over \wedge .

Exercise 10

Associativity \vee .

Exercise 11

Associativity \wedge .

Exercise 12

$$x \in C \backslash (A \cap B) \iff x \in C \land \neg (x \in A \cap B)$$

$$\iff x \in C \land \neg (x \in A \land x \in B)$$

$$\iff x \in C \land (x \notin A \lor x \notin B)$$

$$\iff (x \in C \land x \notin A) \lor (x \in C \land x \notin B)$$

$$\iff (x \in C \backslash A) \lor (x \in C \backslash B)$$

$$\iff x \in (C \backslash A) \cup (C \backslash B)$$

Exercise 13

$$x \in C \backslash (A \cup B) \iff x \in C \land \neg (x \in A \cup B)$$

$$\iff x \in C \land \neg (x \in A \lor x \in B)$$

$$\iff x \in C \land x \notin A \land x \notin B$$

$$\iff x \in C \land x \notin A \land x \in C \land x \notin B$$

$$\iff x \in C \backslash A \land x \in C \backslash B$$

$$\iff x \in (C \backslash A) \cap (C \backslash B)$$

$$x \in (A \backslash B) \cap (C \backslash B) \iff x \in (A \backslash B) \land x \in (C \backslash B)$$

$$\iff x \in A \land x \notin B \land x \in C \land x \notin B$$

$$\iff x \in A \land x \in C \land x \notin B$$

$$\iff x \in A \cap C \land x \notin B$$

$$\iff x \in (A \cap C) \backslash B$$

Exercise 15

Same as exercise 10 and 11.

Exercise 16

$$x \in (A \cup B) \backslash (A \cap B) \iff x \in (A \cup B) \land \neg (x \in A \cap B)$$

$$\iff (x \in A \lor x \in B) \land \neg (x \in A \land x \in B)$$

$$\iff (x \in A \lor x \in B) \land (x \notin A \lor x \notin B)$$

$$\iff (x \in A \land x \notin A) \lor (x \in A \land x \notin B) \lor (x \in B \land x \notin A) \lor (x \in B \land x \notin B)$$

$$\iff (x \in A \land x \notin B) \lor (x \in B \land x \notin A)$$

$$\iff x \in (A \backslash B) \lor x \in (B \backslash A)$$

$$\iff x \in (A \backslash B) \cup (B \backslash A)$$

Exercise 25

Since $C \in \mathcal{F}$, if $x \in C$, then $x \in C \land C \in \mathcal{F}$. Therefore $x \in \bigcup \mathcal{F}$, thus $C \subseteq \bigcup \mathcal{F}$.

Exercise 26

Since $C \in \mathcal{F}$, if $x \in \bigcap \mathcal{F}$, then $x \in A, \forall A \in \mathcal{F}$. In particular for $A = C \in \mathcal{F}$, $x \in C$. Therefore $\bigcap \mathcal{F} \subseteq C$.

Exercise 27

If $A \subseteq C$ for some $C \in \mathcal{F}$, $x \in A$ then $x \in C$ for some $C \in \mathcal{F}$. Therefore $x \in \bigcup \mathcal{F}$, thus $A \subseteq \bigcup \mathcal{F}$.

Exercise 28

Let $x \in A$, then $x \in C$ for all $C \in \mathcal{F}$. Therefore $x \in \bigcap \mathcal{F}$, thus $A \subseteq \bigcap \mathcal{F}$.

Let $x \in \bigcup \mathcal{F}$, then $x \in C$ for some $C \in \mathcal{F}$. But for all $C \in \mathcal{F}$, $C \subseteq A$, therefore $x \in A$. Therefore $\bigcup \mathcal{F} \subseteq A$.

Exercise 30

Suppose $\bigcup \mathcal{P}(A) \not\supseteq A$, then $\exists x \in A$ such that $x \notin \bigcup \mathcal{P}(A)$. But $x \notin \bigcup \mathcal{P}(A)$, if and only if, for all $C \in \mathcal{P}(A)$, $x \notin C$. But for $C = \{x\}$ we clearly have $x \in C$. And $\{x\} \in \mathcal{P}A$ because $z \in \{x\} \implies z = x \implies z \in A$ (we assumed $x \in A$). Therefore we have a contradiction, since we have found $\{x\} \in \mathcal{P}(A)$ with $x \in \{x\}$. Therefore $A \subseteq \bigcup \mathcal{P}(A)$.

Finally since $\subseteq \land \supseteq$, we have that $\bigcup \mathcal{P}(A) = A$.

Exercise 31

Suppose $A \not\subseteq \mathcal{P}(\bigcup A)$. Then there exists $x \in A$, such that,

$$x \notin \mathcal{P}(\bigcup A) \iff x \not\subseteq \bigcup A$$
$$\iff \exists z (z \in x \land z \notin \bigcup A)$$
$$\iff \exists z (z \in x \land (\forall C \in A, z \notin C))$$

Now, we examine what happens when we consider the set C=x. Since $x\in A$ (as given in the problem statement), we know that $x\in A$. Therefore, the condition $z\notin C$ (with C=x) must hold. But since $z\in x$ by assumption, this contradicts the statement that $z\notin x$ (since $z\in x$). Thus, we have reached a contradiction: $z\in x$ and $z\notin x$ at the same time, which is impossible. Therefore $\forall x(x\in A\implies x\in \mathcal{P}(\bigcup A))$, thus $A\subseteq \mathcal{P}(\bigcup A)$.

Exercise 32

We prove $\mathcal{P}(C) \in \mathcal{P}(\mathcal{P}(\bigcup \mathcal{F}))$, which is equivalent to $\mathcal{P}(C) \subseteq \mathcal{P}(\bigcup \mathcal{F})$. But since $C \in \mathcal{F}$, using exercise 25 we have that $C \subseteq \bigcup \mathcal{F}$. So if we can prove $A \subseteq B \implies \mathcal{P}(A) \subseteq \mathcal{P}(B)$, then since we know $C \subseteq \bigcup \mathcal{F}$, we can conclude

$$\mathcal{P}(C) \subseteq \mathcal{P}(\bigcup \mathcal{F})$$
, that is $\mathcal{P}(C) \in \mathcal{P}(\mathcal{P}(\bigcup \mathcal{F}))$.

We prove $A \subseteq B \implies \mathcal{P}(A) \subseteq \mathcal{P}(B)$. Suppose $A \subseteq B$, let $x \in \mathcal{P}(A)$, then $x \subseteq A$, but $A \subseteq B$, by transitivity $x \subseteq B$. Therefore and $x \in \mathcal{P}(B)$, thus $\mathcal{P}(A) \subseteq \mathcal{P}(B)$

Since
$$C \subseteq \bigcup \mathcal{F}$$
, then $\mathcal{P}(C) \subseteq \mathcal{P}(\bigcup \mathcal{F})$, that is $\mathcal{P}(C) \in \mathcal{P}(\mathcal{P}(\bigcup \mathcal{F}))$.

Exercise 33

If this was a set then this would be the set of all sets, since for any x, there is the singleton set $\{x\}$ such that $x \in \{x\}$. So that the condition is always true.

Exercise 34

In formulas

$$\{x: \varphi(x)\}\$$
is a not a set $\iff \forall A \exists x (\psi(x) \land x \notin A).$

→ We prove the contrapositive,

$$\exists A \forall x (\neg \psi(x) \lor x \in A) \implies \{x : \varphi(x)\} \text{ is a set.}$$

Which is equivalent to

$$\exists A \forall x (\psi(x) \implies x \in A) \implies \{x : \varphi(x)\} \text{ is a set.}$$

Theorem 2.1.3 States that

$$\forall A \bigg(\forall x \big(\psi(x) \implies x \in A \big) \implies \exists ! \mathcal{D} \big(x \in \mathcal{D} \iff \psi(x) \big) \bigg).$$

Therefore the contrapositive is true, since in particular (from theorem 2.1.3), there exists A such that $\forall x(\psi(x) \implies x \in A)$, which implies $\exists ! \mathcal{D}(x \in \mathcal{D} \iff \psi(x))$ and clearly $\mathcal{D} = \{x : \varphi(x)\}$.