Regularized Deep Learning in High Energy Physics

Josh Gartman Northeastern University Boston, MA

gartman.j@husky.neu.edu

Abstract

The ABSTRACT is to be in fully-justified italicized text, at the top of the left-hand column, below the author and affiliation information. Use the word "Abstract" as the title, in 12-point Times, boldface type, centered relative to the column, initially capitalized. The abstract is to be in 10-point, single-spaced type. Leave two blank lines after the Abstract, then begin the main text. Look at previous CVPR abstracts to get a feel for style and length.

1. Introduction

Recent years have seen a dramatic increase in the popularity of deep neural networks. These networks have shown improved performance over existing methods in diverse areas such as computer vision, speech recognition, and text analysis. Multiple hidden layers and non-linear activations allow deep networks the flexibility to model complex functions more efficiently and with better generalization that their shallow counterparts. The use of shallow neural networks has been common practice in high energy physics since the 1980's. An important application of these networks is in classifying the subatomic particles produced by collisions at particle accelerators.

At particle accelerators like the Large Hadron Collider outside Geneva Switzerland protons are accelerated to nearly the speed of light by powerful magnets and then smashed together with resulting collisions observed by a series of detectors. At high enough energies rare and sometimes unstable particles can be produced. The data from these collisions including the speed and trajectories of the resulting particles can then be input to machine learning algorithms to classify the particles themselves. The important benefits of improved machine learning algorithms are two-fold. Firstly, better classification accuracy can improve the chances of correctly classifying a potentially rare or undiscovered particle. Secondly, improved algorithms can learn on smaller training sets. Although training data is often the result of computer simulation it can be computationally expensive to produce so there is much value in using smaller datasets. The goal of this paper is to apply regularized deep learning to datasets of limited size while maintaining or improving classification accuracy when compared to shallow networks.

An recent example of the use of machine learning in high energy physics is in the search for decays of the Higgs Boson directly into Fermions at the LHC. Evidence consistent with the decay of the Higgs into fermionic Tau leptons has been seen in data collected at the LHC but current methods lack the statistical power to cross the standard threshold for claims of discovery in high energy physics.

1.1. Related Work

Shallow networks have been used for decades in particle classification problems but only recently has the use of deep networks been explored. Baldi et. al. [4][5] apply deep learning to several high energy physics classification tasks. First in [4], the authors investigate the performance of deep classifiers in detecting the production of the Higgs boson as well as in the production of super-symmetric charged particles that decay to W bosons. They observed that deep networks utilizing low level data and high level derived features give improved performance over shallow networks trained with the same features. In the Higgs production task the classifiers performance was not improved by the inclusion of the high level features indicating that the network was able to learn a representation of these features simply from the low level raw input data. However, in the super-symmetry task the inclusion of high level features led to improved performance making it difficult to generalize whether all datasets allow for this type of learning. Both datasets were of similar size containing about 10 millions training examples with about 30 features for each example. In [5] the authors focus on the task mentioned earlier of searching for the decay of the Higgs into two tau leptons. Their data set was very large cosisting of 80 million examples. They compare the performance of deep and shallow networks in detecting the decay using combinations of both high and low level features. Results indicate that deep networks outperform shallow networks on all tasks even in the case where the shallow network was trained with the full feature set and the deep network was only given the low level features.

1.2. Overall Approach

To attempt to replicate the successes of deep learning in particle classification with a smaller training set L2 regularization and dropout were explored. In [5] the authors observed that regularization methods did not not improve their results, speculating that because of the size of their training set the main challenge their model faces was learning rather than overfitting. To optimize hyper-parameters

1.3. Paper length

Papers, excluding the references section, must be no longer than eight pages in length. The references section will not be included in the page count, and there is no limit on the length of the references section. For example, a paper of eight pages with two pages of references would have a total length of 10 pages. There will be no extra page charges for CVPR 2017.

Overlength papers will simply not be reviewed. This includes papers where the margins and formatting are deemed to have been significantly altered from those laid down by this style guide. Note that this LATEX guide already sets figure captions and references in a smaller font. The reason such papers will not be reviewed is that there is no provision for supervised revisions of manuscripts. The reviewing process cannot determine the suitability of the paper for presentation in eight pages if it is reviewed in eleven.

1.4. The ruler

The LATEX style defines a printed ruler which should be present in the version submitted for review. The ruler is provided in order that reviewers may comment on particular lines in the paper without circumlocution. If you are preparing a document using a non-LATEX document preparation system, please

arrange for an equivalent ruler to appear on the final output pages. The presence or absence of the ruler should not change the appearance of any other content on the page. The camera ready copy should not contain a ruler. (LaTeX users may uncomment the \cvprfinalcopy command in the document preamble.) Reviewers: note that the ruler measurements do not align well with lines in the paper — this turns out to be very difficult to do well when the paper contains many figures and equations, and, when done, looks ugly. Just use fractional references (e.g. this line is 095.5), although in most cases one would expect that the approximate location will be adequate.

1.5. Mathematics

Please number all of your sections and displayed equations. It is important for readers to be able to refer to any particular equation. Just because you didn't refer to it in the text doesn't mean some future reader might not need to refer to it. It is cumbersome to have to use circumlocutions like "the equation second from the top of page 3 column 1". (Note that the ruler will not be present in the final copy, so is not an alternative to equation numbers). All authors will benefit from reading Mermin's description of how to write mathematics: http://www.pamitc.org/documents/mermin.pdf.

1.6. Blind review

Many authors misunderstand the concept of anonymizing for blind review. Blind review does not mean that one must remove citations to one's own work—in fact it is often impossible to review a paper unless the previous citations are known and available.

Blind review means that you do not use the words "my" or "our" when citing previous work. That is all. (But see below for techreports.)

Saying "this builds on the work of Lucy Smith [1]" does not say that you are Lucy Smith; it says that you are building on her work. If you are Smith and Jones, do not say "as we show in [7]", say "as Smith and Jones show in [7]" and at the end of the paper, include reference 7 as you would any other cited work.

An example of a bad paper just asking to be rejected:

An analysis of the frobnicatable foo filter.

In this paper we present a performance analysis of our previous paper [1], and show it to be inferior to all previously known methods. Why the previous paper was accepted without this analysis is beyond me.

[1] Removed for blind review

An example of an acceptable paper:

An analysis of the frobnicatable foo filter.

In this paper we present a performance analysis of the paper of Smith *et al.* [1], and show it to be inferior to all previously known methods. Why the previous paper was accepted without this analysis is beyond me.

[1] Smith, L and Jones, C. "The frobnicatable foo filter, a fundamental contribution to human knowledge". Nature 381(12), 1-213.

If you are making a submission to another conference at the same time, which covers similar or overlapping material, you may need to refer to that submission in order to explain the differences, just as you would if you had previously published related work. In such cases, include the anonymized parallel submission as additional material and cite it as

[1] Authors. "The frobnicatable foo filter", F&G 2014 Submission ID 324, Supplied as additional material fg324.pdf.

Finally, you may feel you need to tell the reader that more details can be found elsewhere, and refer them to a technical report. For conference submissions, the paper must stand on its own, and not *require* the reviewer to go to a techreport for further details. Thus, you may say in the body of the paper "further details may be found in". Then submit the techreport as additional material. Again, you may not assume the reviewers will read this material.

Sometimes your paper is about a problem which you tested using a tool which is widely known to be restricted to a single institution. For example, let's say it's 1969, you have solved a key problem on the Apollo lander, and you believe that the CVPR70 audience would like to hear about your solution. The work is a development of your celebrated 1968 paper entitled "Zero-g frobnication: How being the only people in the world with access to the Apollo lander source code makes us a wow at parties", by Zeus *et al*.

You can handle this paper like any other. Don't write "We show how to improve our previous work [Anonymous, 1968]. This time we tested the algorithm on a lunar lander [name of lander removed for blind review]". That would be silly, and would immediately identify the authors. Instead write the following:

We describe a system for zero-g frobnication. This system is new because it handles the following cases: A, B. Previous systems [Zeus et al. 1968] didn't handle case B properly. Ours handles it by including a foo term in the bar integral.

...

The proposed system was integrated with the Apollo lunar lander, and went all the way to the moon, don't you know. It displayed the following behaviours which show how well we solved cases A and B: ...

As you can see, the above text follows standard scientific convention, reads better than the first version, and does not explicitly name you as the authors. A reviewer might think it likely that the new paper was written by Zeus *et al.*, but cannot make any decision based on that guess. He or she would have to be sure that no other authors could have been contracted to solve problem B.

FAQ: Are acknowledgements OK? No. Leave them for the final copy.

1.7. Miscellaneous

Compare the following:

```
conf_a conf_a s conf_a conf_a See The TrXbook, p165.
```

The space after e.g., meaning "for example", should not be a sentence-ending space. So e.g. is correct, e.g. is not. The provided $\setminus eg$ macro takes care of this.

Figure 2. Example of a short caption, which should be centered.

When citing a multi-author paper, you may save space by using "et alia", shortened to "et al." (not "et. al." as "et" is a complete word.) However, use it only when there are three or more authors. Thus, the following is correct: "Frobnication has been trendy lately. It was introduced by Alpher [1], and subsequently developed by Alpher and Fotheringham-Smythe [2], and Alpher et al. [3]."

This is incorrect: "... subsequently developed by Alpher $et\ al.$ [2] ..." because reference [2] has just two authors. If you use the \etal macro provided, then you need not worry about double periods when used at the end of a sentence as in Alpher $et\ al.$

For this citation style, keep multiple citations in numerical (not chronological) order, so prefer [2, 1] to [1, 2].

2. Formatting your paper

All text must be in a two-column format. The total allowable width of the text area is $6\frac{7}{8}$ inches (17.5 cm) wide by $8\frac{7}{8}$ inches (22.54 cm) high. Columns are to be $3\frac{1}{4}$ inches (8.25 cm) wide, with a $\frac{5}{16}$ inch (0.8 cm) space between them. The main title (on the first page) should begin 1.0 inch (2.54 cm) from the top edge of the page. The second and following pages should begin 1.0 inch (2.54 cm) from the top edge. On all pages, the bottom margin should be 1-1/8 inches (2.86 cm) from the bottom edge of the

page for 8.5×11 -inch paper; for A4 paper, approximately 1-5/8 inches (4.13 cm) from the bottom edge of the page.

2.1. Margins and page numbering

All printed material, including text, illustrations, and charts, must be kept within a print area 6-7/8 inches (17.5 cm) wide by 8-7/8 inches (22.54 cm) high. Page numbers should be in footer with page numbers, centered and .75 inches from the bottom of the page and make it start at the correct page number rather than the 4321 in the example. To do this fine the line (around line 23)

```
%\ifcvprfinal\pagestyle{empty}\fi
\setcounter{page}{4321}
```

where the number 4321 is your assigned starting page.

Make sure the first page is numbered by commenting out the first page being empty on line 46

%\thispagestyle{empty}

2.2. Type-style and fonts

Wherever Times is specified, Times Roman may also be used. If neither is available on your word processor, please use the font closest in appearance to Times to which you have access.

MAIN TITLE. Center the title 1-3/8 inches (3.49 cm) from the top edge of the first page. The title should be in Times 14-point, boldface type. Capitalize the first letter of nouns, pronouns, verbs, adjectives, and adverbs; do not capitalize articles, coordinate conjunctions, or prepositions (unless the title begins with such a word). Leave two blank lines after the title.

AUTHOR NAME(s) and AFFILIATION(s) are to be centered beneath the title and printed in Times 12-point, non-boldface type. This information is to be followed by two blank lines.

The ABSTRACT and MAIN TEXT are to be in a two-column format.

MAIN TEXT. Type main text in 10-point Times, single-spaced. Do NOT use double-spacing. All paragraphs should be indented 1 pica (approx. 1/6 inch or 0.422 cm). Make sure your text is fully justified—that is, flush left and flush right. Please do not place any additional blank lines between paragraphs.

Figure and table captions should be 9-point Roman type as in Figures 1 and 2. Short captions should be centred.

Callouts should be 9-point Helvetica, non-boldface type. Initially capitalize only the first word of section titles and first-, second-, and third-order headings.

FIRST-ORDER HEADINGS. (For example, **1. Introduction**) should be Times 12-point boldface, initially capitalized, flush left, with one blank line before, and one blank line after.

SECOND-ORDER HEADINGS. (For example, **1.1. Database elements**) should be Times 11-point boldface, initially capitalized, flush left, with one blank line before, and one after. If you require a third-order heading (we discourage it), use 10-point Times, boldface, initially capitalized, flush left, preceded by one blank line, followed by a period and your text on the same line.

2.3. Footnotes

Please use footnotes¹ sparingly. Indeed, try to avoid footnotes altogether and include necessary peripheral observations in the text (within parentheses, if you prefer, as in this sentence). If you wish to

¹This is what a footnote looks like. It often distracts the reader from the main flow of the argument.

Method	Frobnability	
Theirs	Frumpy	
Yours	Frobbly	
Ours	Makes one's heart Frob	

Table 1. Results. Ours is better.

use a footnote, place it at the bottom of the column on the page on which it is referenced. Use Times 8-point type, single-spaced.

2.4. References

List and number all bibliographical references in 9-point Times, single-spaced, at the end of your paper. When referenced in the text, enclose the citation number in square brackets, for example. Where appropriate, include the name(s) of editors of referenced books.

2.5. Illustrations, graphs, and photographs

All graphics should be centered. Please ensure that any point you wish to make is resolvable in a printed copy of the paper. Resize fonts in figures to match the font in the body text, and choose line widths which render effectively in print. Many readers (and reviewers), even of an electronic copy, will choose to print your paper in order to read it. You cannot insist that they do otherwise, and therefore must not assume that they can zoom in to see tiny details on a graphic.

When placing figures in LATEX, it's almost always best to use \includegraphics, and to specify the figure width as a multiple of the line width as in the example below

2.6. Color

Please refer to the author guidelines on the CVPR 2017 web page for a discussion of the use of color in your document.

3. Final copy

You must include your signed IEEE copyright release form when you submit your finished paper. We MUST have this form before your paper can be published in the proceedings.

References

- [1] A. Alpher. Frobnication. *Journal of Foo*, 12(1):234–778, 2002.
- [2] A. Alpher and J. P. N. Fotheringham-Smythe. Frobnication revisited. *Journal of Foo*, 13(1):234–778, 2003.
- [3] A. Alpher, J. P. N. Fotheringham-Smythe, and G. Gamow. Can a machine frobnicate? *Journal of Foo*, 14(1):234–778, 2004.
- [4] P. Baldi, P. Sadowski, and D. Whiteson. Searching for exotic particles in high-energy physics with deep learning. *Nature Commun.*, 5:4308, 2014.

[5]	P. Baldi, P. Sadowski, and D. Whiteson. E <i>Lett.</i> , 114(11):111801, 2015.	Enhanced higgs boson to $ au^+ au^-$	search with deep learning. Phys. Rev.