

Week 04.4: HDFS

DS-GA 1004: Big Data

Announcements

- Lab #1 (SQL/RDBMS)Due (02/18)
- Lab #2 (Map-Reduce)
 Starts (02/16)
- HPC accounts
- No class next week (02/21)

Previously...

- 1. Introduction to Map-Reduce
- 2. Criticisms of Map-Reduce

This week

- 1. Distributed storage
- 2. The Hadoop distributed file system (HDFS)
 - \$ hadoop fs -command ...
- 3. HDFS and Map-reduce

Hadoop distributed file system

- HDFS is the storage component of Hadoop
 - Useful beyond map-reduce!
- Provides distributed, redundant storage
- Optimizes for single-write, multiple-read patterns

RAID vs NFS vs HDFS

- RAID distributes storage over multiple disks in one machine
- NFS stores data on one machine, but provides access from multiple machines
- HDFS spreads each file across multiple machines
 - ~1 disk per machine with no internal redundancy
- If a disk fails, you need to take the machine offline anyway
 - Fault tolerance is at the level of machines, not disks
 - Designing this way lets us tolerate other machine-level failures, not just disks!

Using HDFS

- HDFS is a "file system", but we use it differently
- HDFS sits on top of the operating system's built-in FS
- Better to think of it as an application that stores files for you
 - Kind of like Google Drive or Apple iCloud
 - Data can be accessed through the "hadoop fs" command

Division of responsibilities

- Name nodes do not store data!
- Data nodes do not store **metadata** (e.g. file names)!
- Name node failure is catastrophic
- Data node failure can be tolerated, up to a point
 - Depends on how much replication you have

Why do you think the HDFS designers parallelized storage at the level of blocks instead of files?

① Start presenting to display the poll results on this slide.

Several reasons...

- A file can be larger than any single disk
- Map-Reduce programs typically only see small portions of a large file
- Uniform (maximum) block size makes allocation / replication easier

HDFS isn't quite POSIX-compliant

- Updates are append-only
 - No changing old data!
 - o This makes replication logic much simpler: if data is there, you can trust it
- Not all file modes are supported
 - Not all modes make sense in this limited context anyway
 - E.g., executable

Job scheduling and input splits

- A typical map-reduce job runs over one large file
 - Each file contains an array of (independent) inputs
 - E.g., lines in text files
- MapReduce divides the input into splits
 - Split = unit of work assigned to a mapper, contains multiple records
- Each split maps onto one or more blocks
 - Try to assign work such that work for a split is done on a machine with its blocks

Inputs

Input file

Blocks

HDFS exposes block layout to the application layer to make this possible

What do you think will happen if a split is spread across multiple HDFS blocks?

(i) Start presenting to display the poll results on this slide.

[2] What do you think will happen if a split is spread across multiple HDFS blocks?

(i) Start presenting to display the poll results on this slide.

Splits and blocks

- Split = one logical division of input data for a map process
 - Each split typically consists of multiple records,
 e.g., rows of a CSV file
- Machine running map() must have access to the entire split, so data may have to move!

By default, split size = block size, but some fragmentation is unavoidable

A typical Map-Reduce work-flow

1. Upload data from UNIX filesystem to HDFS

a. hadoop fs -put my_file.csv

2. Run map-reduce program

- a. Each mapper sees a portion of my_file.csv
- b. Each mapper produces intermediate outputs as HDFS files
- c. Shuffle stage collects intermediate outputs to give to reducers
- d. Reducers operate on intermediates, produce final output as multiple blocks

3. Retrieve output from from HDFS

a. hadoop fs -getmerge my_output_file.csv

Replication factors

- If we copy a block to multiple nodes, scheduling becomes easier
 - We're more likely to find a free worker that has our data
- HDFS lets you set the replication factor for each file
 - Replication isn't free: cost is multiplicative in the data size
- Typical setup: 3x replication
 - If possible, 2 nodes in one rack, +1 in a separate rack
 - This protects against both node failure and rack failure

The CAP theorem for DFS

- Consistency:
 - Read always produces the most recent value
- Availability:
 - Requests cannot be ignored
- Partition-tolerance:
 - System maintains correctness during network failure

Which CAP property does HDFS sacrifice?

① Start presenting to display the poll results on this slide.

HDFS and CAP

Consistency

- Centralized name node always has a consistent view of the file system
- Data can be added (appended), but not modified!

Availability

• If the name node goes offline, we're out of luck

Partition-tolerance

Depends on network configuration and replication factor

Wrap-up on HDFS

- Files divide into blocks, and are replicated across the cluster
- Checksums are replicated with each block
- Name node allocates blocks and directs clients
- Blocks are append-only ⇒ optimized for write-once, read-many patterns

Next week

- Spark and Spark-SQL
 - [Zaharia et al., 2010]
 - [Armbrust et al., 2015]
- Quiz #2 (2022-02-25):
 Map-Reduce and HDFS
- No class on 2022-02-21

Audience Q&A Session

① Start presenting to display the audience questions on this slide.