Encoding Data Under the Clay Code

Consider a file of size 64MB

64MB

• We show encoding of the file using (k = 2, m= 2) Coupled Layer MSR code.

Break the file into k = 2 data chunks each of 32MB.

32MB 32MB

32MB 32MB

The cube has:

- 4 columns, which correspond to the 4 chunks (each of size 32MB, stored in a different disk/node).
- 4 horizontal planes.
- Each column has 4 points that correspond to sub-chunk of size 8MB

Place two 32MB chunks in two data nodes

32MB

Place two 32MB chunks in two data nodes

We now have the systematic nodes

We will now compute the parity nodes

Will get there through an intermediate "Uncoupled data cube"

Start filling the virtual data cube on the right as follows

Certain pairs of points in the cube are "coupled"

PRT is a 2x2 matrix transform

Red dotted sub-chunks are not paired, they are simply carried over

Red dotted sub-chunks are not paired, they are simply carried over

We now have data-part of the uncoupled data cube

Now we have the complete Uncoupled data cube

Parity sub-chunks of Coupled data cube can now be computed

Perform PFT

Perform PFT

Red dotted sub-chunks are simply carried over

Red dotted sub-chunks are simply carried over

The encoding is now complete!

Recovery from single node failure

Node Repair: One node fails

Only half of planes participate in repair

- Total Helper Data = 8MB X 3 X 2 = 48MB
- Opposed to RS code = 32MB X 2 = 64MB
- Much larger savings seen for m > 2

Perform PRT to get possible uncoupled sub-chunks

Run RS decoding on each of the selected planes

Run RS decoding on each of the selected planes

We now have the following sub-chunks available

Half the number of required sub-chunks are now already computed

Compute C* from C and U

Compute C* from C and U

Content of failed node is now completely recovered

MDS Property of Clay Code

Decode: Two nodes fail

Assign Intersection Score to each plane

Intersection score is given by the number of hole-dot pairs

Assign Intersection Score to each plane

Intersection score is given by the number of hole-dot pairs

For non erased nodes, get the uncoupled sub-chunks for planes with IS=0

RS decode to get the remaining uncoupled-subchunks

We now have following sub-chunks

For non erased nodes, get the uncoupled sub-chunks for planes with IS=1

 $\begin{aligned} & \text{Get U}_2 \text{ from U}_2^* \text{ and C}_2 \\ & \text{Get U}_1 \text{ from U}_1^* \text{ and C}_1 \end{aligned}$

RS decode to get the remaining uncoupled-subchunks

We now have the following sub-chunks

For non erased nodes, get the uncoupled sub-chunks for planes with IS=2

$$\label{eq:Get U2} \begin{split} & \operatorname{Get} \, \operatorname{U}_2 \operatorname{from} \, \operatorname{U}_2^* \operatorname{and} \, \operatorname{C}_2 \\ & \operatorname{Get} \, \operatorname{U}_1 \operatorname{from} \, \operatorname{U}_1^* \operatorname{and} \, \operatorname{C}_1 \end{split}$$

Get the uncoupled sub-chunks for planes with IS=2

Get U_2 from U_2^* and C_2 Get U_1 from U_1^* and C_1

We now have all the uncoupled sub chunks

The coupled sub chunks can now be computed using PFT

The decoding is now complete

