不定积分与定积分

Didnelpsun

目录

1	不定	积分	1
	1.1	基本积分	1
	1.2	换元积分	1
		1.2.1 第一类换元	1
		1.2.1.1 聚集因式	1
		1.2.1.2 积化和差	2
		1.2.1.3 三角拆分	2
		1.2.2 第二类换元	2
	1.3	分部积分	2
		1.3.1 基本分部	2
		1.3.2 多次分部	2
	1.4	有理积分	2
		1.4.1 高阶多项式分配	2
		1.4.2 低阶多项式分解	3
2	定积	分	3
	2.1	变限积分	3
	2.2	牛莱公式	3
	2.3	换元积分	3
	2.4	分部积分	3
	2.5	反常积分	3
3	积分	应用	3
	3.1	面积	3

3.2	体积	3
3.3	弧长	3

1 不定积分

1.1 基本积分

例题: 汽车以 20m/s 的速度行驶,刹车后匀减速行驶了 50m 停止,求刹车加速度。

已知题目含有两个变量: 距离和时间,设距离为s,时间为t。

因为汽车首先按 $20 \mathrm{m/s}$ 匀速运动,所以 $\left.\frac{\mathrm{d}s}{\mathrm{d}t}\right|_{t=0}=20$,最开始距离为 0,所以 $s|_{t=0}=0$ 。

又因为是匀减速的,所以速度形如: $v=\frac{s}{t}=kt+b$,从而令二阶导数下 $\frac{\mathrm{d}^2s}{\mathrm{d}t^2}=k\,.$

所以
$$\frac{\mathrm{d}s}{\mathrm{d}t} = \int \frac{\mathrm{d}^2s}{\mathrm{d}t^2} \, \mathrm{d}t = \int k \, \mathrm{d}t = kt + C_1 \, \circ$$
代入 $\frac{\mathrm{d}s}{\mathrm{d}t}\Big|_{t=0} = 20$,所以 $C_1 = 20$,即 $\frac{\mathrm{d}s}{\mathrm{d}t} = kt + 20 \, \circ$
所以 $\mathrm{d}s = (kt + 20) \, \mathrm{d}t$,从而 $s = \int (kt + 20) \, \mathrm{d}t = \frac{1}{2}kt^2 + 20t + C_2 \, \circ$
又 $s|_{t=0} = 0$,所以代入得 $C_2 = 0$,所以 $s = \frac{1}{2}kt^2 + 20t \, \circ$
当 $s = 50$ 时停住,所以此时 $\frac{\mathrm{d}s}{\mathrm{d}t} = 0$,得到 $t = -\frac{20}{k} \, \circ$
代入 s : $50 = \frac{1}{2}k\left(-\frac{20}{k}\right)^2 + 20\left(-\frac{20}{k}\right)$,解得 $k = -4$,即加速度为 $-4m/s^2 \, \circ$

1.2 换元积分

1.2.1 第一类换元

1.2.1.1 聚集因式

将复杂的式子转换为简单的一个因式放到 d 后面看作一个整体,然后利用基本积分公式计算。

例题:
$$\int \frac{\mathrm{d}x}{x \ln x \ln \ln x} \circ$$

$$= \int \frac{\mathrm{d}(\ln x)}{\ln x \ln \ln x} = \int \frac{\mathrm{d}(\ln \ln x)}{\ln \ln x} = \ln |\ln \ln x| + C \circ$$
例题:
$$\int \frac{10^{2 \arccos x}}{\sqrt{1 - x^2}} \, \mathrm{d}x \circ$$

$$= -\int 10^{2 \arccos x} \, \mathrm{d}(\arccos x) = -\frac{1}{2} \int 10^{2 \arccos x} \, \mathrm{d}(2 \arccos x) = -\frac{10^{2 \arccos x}}{2 \ln 10} + C \circ$$

1.2.1.2 积化和差

对于两个三角函数的乘积可以使用积化和差简单计算。

例题:
$$\int \sin 2x \cos 3x \, dx \circ$$

$$= \int \cos 3x \sin 2x \, dx = \frac{1}{2} \int (\sin 5x - \sin x) \, dx$$

$$= \frac{1}{2} \int \sin 5x \, dx - \frac{1}{2} \int \sin x \, dx = -\frac{1}{10} \cos 5x + \frac{1}{2} \cos x + C \circ$$

1.2.1.3 三角拆分

主要用于 $\sec^2 - 1 = \tan^2 x$,当出现 $\tan^2 \cdot \tan^3$ 等与 $\sec x$ 在一起作为乘积时可以考虑拆分。

例题:
$$\int \tan^3 x \sec x \, dx$$
。
= $\int (\sec^2 x - 1) \tan x \sec x \, dx = \int (\sec^2 x - 1) \, d(\sec x) = \frac{1}{3} \sec^3 x - \sec x + C$ 。

1.2.2 第二类换元

1.
$$\sqrt{a^2 - x^2}$$
: $x = a \sin t (a \cos t)$.

2.
$$\sqrt{a^2 + x^2}$$
: $x = a \tan t$.

3.
$$\sqrt{x^2 - a^2}$$
: $x = a \sec t$.

1.3 分部积分

1.3.1 基本分部

1.3.2 多次分部

1.4 有理积分

1.4.1 高阶多项式分配

当不定积分式子形如 $\int \frac{f(x)}{g(x)} dx$,且 f(x)、g(x) 都为与 x 相关的多项式, f(x) 阶数高于或等于 g(x),则 f(x) 可以按照 g(x) 的形式分配,约去式子,得 到最简单的表达。

例题:
$$\int \frac{x^3}{x^2 + 9} dx$$
$$= \int \frac{x^3 + 9x - 9x}{x^2 + 9} dx = \int \frac{x^3 + 9x}{x^2 + 9} dx - \int \frac{9x}{x^2 + 9} dx$$

$$= \int x \, dx - \frac{9}{2} \int \frac{d(x^2 + 9)}{x^2 + 9} = \frac{x^2}{2} - \frac{9}{2} \ln(9 + x^2) + C.$$

1.4.2 低阶多项式分解

当不定积分式子形如 $\int \frac{f(x)}{g(x)} dx$, 且 f(x)、g(x) 都为与 x 相关的多项式, f(x) 阶数低于 g(x),则可以分解式子: $\int \frac{f(x)}{g(x)} dx = \int \frac{f_1(x)}{g_1(x)} dx + \int \frac{f_2(x)}{g_2(x)} dx$ 。

2 定积分

- 2.1 变限积分
- 2.2 牛莱公式
- 2.3 换元积分
- 2.4 分部积分
- 2.5 反常积分

3 积分应用

- 3.1 面积
- 3.2 体积
- 3.3 弧长