Redressement

Objectifs:

• Étudier des montages redresseurs mono-alternances sans seuils.

• Comprendre la mesure de la valeur efficace d'une tension sinusoïdale avec un voltmètre continu.

Préparation: Obligatoire.

Compte rendu papier : À remettre à la fin de la séance de TP.

1 Préparation (5 points)

Redresseur élémentaire

On s'intéresse tout d'abord à un montage simple réalisé par un circuit diode-résistance. La tension $v_E(t)$ est une tension sinusoïdale de valeur efficace V_{Eeff} , inférieure à 10 V et de fréquence f = 100 Hz.

- 1. Quelle relation existe-t-il, entre la valeur moyenne V_{Smoy} de $v_S(t)$ et V_{Eeff} valeur efficace de $v_E(t)$, dans le cas d'un redresseur idéal ?
- 2. Tracer la courbe correspondante pour V_{Eeff} < 10 V (échelle 1 V \leftrightarrow 1 cm).

2 Manipulations (15 points)

2.1 Redresseur élémentaire

On étudie le montage de la préparation. Pour les manipulations on prend : $R=10~k\Omega$ et D=1N4148.

- 1. Relever les oscillogrammes de $v_S(t)$ et $v_E(t)$ pour V_{Eeff} = 1 V puis V_{Eeff} = 7 V.
- 2. Effectuer les mesures qui permettent de tracer sur le même graphe la courbe caractéristique $V_{Smoy} = f(V_{Eeff})$. **Justifier** le choix des appareils de mesure et les discordances avec la courbe théorique.
- 3. Quelle est la valeur approchée du coefficient directeur m de la courbe tracée? Quelle est la valeur de $\frac{\sqrt{2}}{m}$?

2.2 Application au redresseur mono-alternance de précision

On étudie le montage suivant :

avec $R_1=10~k\Omega$ et D =1N4148. L'AOP est alimenté en -12 V et 12 V.

- 1. Pour $V_{Eeff} = 1$ V relever et interpréter les oscillogrammes de $v_E(t)$ et $v_S(t)$.
- 2. Relever la courbe de transfert statique $V_S = f(V_E)$ pour V_E comprise entre -12 V et +12 V. **Justifier** tous les paramètres de cette courbe (pente, points de cassure...).
- 3. En régime dynamique (f = 100 Hz) relever et tracer la courbe $V_{Smoy}=f(V_{Eeff})$. **Justifier** sur cette courbe les points particuliers. Conclure sur les propriétés du montage.