Übungen zur Vorlesung Differentialgeometrie I

Blatt 12

Aufgabe 46. (Grim Reaper-Lösung) (3 Punkte)

Zeige, dass der Graph der Funktion $u(x,t) = -\log \cos x + t$, $(x,t) \in (-\pi/2,\pi/2) \times \mathbb{R}$ eine Lösung des mittleren Krümmungsflusses ist.

Aufgabe 47. (Zylinder)(3 Punkte)

Führe die Details zu Übung 10.7 über Zylinder aus:

Finde Lösungen von $\langle \frac{\partial}{\partial t} X, \nu \rangle = -H$ und $\frac{\partial}{\partial t} X = -H\nu$ für den Fall, dass M_0 ein Zylinder ist, dass also $M_0 = (R \cdot \mathbb{S}^k) \times \mathbb{R}^{n-k}$ für ein R > 0 gilt.

Aufgabe 48. (Volumenerhaltender und flächenerhaltender mittlerer Krümmungsfluss) (6+2 Punkte)

Sei $M \subset \mathbb{R}^{n+1}$ eine *n*-dimesionale, glatte, geschlossene Untermannigfaltigkeit mit Einbettung X und eingeschlossener Menge N, wobei $M = \partial N$. Wir wollen zwei Gradientenflüsse finden.

- (V) soll den n-dimensionalen Flächeninhalt $\mathcal{A}(M)$ verkleinern und gleichzeitig das n+1-dimensionale Volumen $\mathcal{V}(N)$ konstant halten.
- (F) soll den n-dimensionalen Flächeninhalt $\mathcal{A}(M)$ konstant halten und gleichzeitig das n+1-dimensionale Volumen $\mathcal{V}(N)$ vergrößern,

Zeige, dass

$$\text{für (V)} \quad \dot{X} = \left(\frac{\int_{M_t} H \ d\mu_t}{\int_{M_t} d\mu_t} - H\right) \nu \quad \text{und für (F)} \quad \dot{X} = \left(1 - \frac{\int_{M_t} H \ d\mu_t}{\int_{M_t} H^2 \ d\mu_t} H\right) \nu$$

gilt.

Zusatz: Zeige durch Reparametresieren der Zeit, dass für (F)

$$\dot{X} = \left(\frac{\int_{M_t} H^2 \ d\mu_t}{\int_{M_t} H \ d\mu_t} - H\right) \nu$$

gilt.

Hinweis: Berechne zunächst die L_2 -Gradienten $\nabla \mathcal{A}$ und $\nabla \mathcal{V}$ mit Hilfe der Fréchet-Ableitungen und dem Divergenzsatz. Berechne dann die tangentialen Gradienten bezüglich der Niveauflächen $\mathcal{S}_{\sigma}(\mathcal{V}) := \{Y \in C^{\infty} : \mathcal{V}(Y) = \sigma\}$ und $\mathcal{S}_{\sigma}(\mathcal{A}) := \{Y \in C^{\infty} : \mathcal{A}(Y) = \sigma\}$.

Aufgabe 49. (3 Punkte)

Sei $M \subset \mathbb{R}^{n+1}$ eine n-dimensionale Untermannigfaltigkeit. Sei $f: M \to \mathbb{R}$. Sei $\alpha: [a,b] \to M$ eine Integralkurve von ∇f , d. h. $\dot{\alpha}(t) = \nabla f(\alpha(t))$, und $\beta: [a,b] \to M$ eine weitere Kurve mit $\alpha(a) = \beta(a)$ und $\|\dot{\alpha}(t)\| = \|\dot{\beta}(t)\|$ für alle $t \in [a,b]$.

Beweise oder widerlege folgende Ausssage:

Es gilt $f(\alpha(t)) \ge f(\beta(t))$ für alle $t \in [a, b]$ mit Gleichheit genau dann wenn $\alpha = \beta$.

Abgabe: Bis Donnerstag, 01.02.2018, 10.00 Uhr, in die Mappe vor Büro F 402.