Aufgabe 1

Da $\mathcal{A} \subset \mathcal{A}_{\mu}$ gilt $\emptyset, X \in A$. Seien nun $A, A' \in \mathcal{A}_{\mu}$. Dann existieren $B, B' \in \mathcal{A}$ und μ -Nullmengen $C, C' \in \mathcal{A}$, sodass $A \triangle B \subset C$ und $A' \triangle B' \subset C'$. Dann gilt

$$(A \cup A') \triangle (B \cup B') = [(A \cup A') \setminus (B \cup B')] \cup [(B \cup B') \setminus (A \cup A')]$$

$$= [A \setminus (B \cup B')] \cup [A' \setminus (B \cup B')] \cup [B \setminus (A \cup A')] \cup [B' \setminus (A \cup A')]$$

$$\subset (A \setminus B) \cup (A' \setminus B') \cup (B \setminus A) \cup (B' \setminus A')$$

$$= (A \triangle B) \cup (A' \triangle B')$$

$$\subset C \cup C'$$

Wegen $\mu(C \cup C') = \mu(C) + \mu(C') = 0$ gilt daher $A \cup A' \in \mathcal{A}_{\mu}$. Außerdem gilt

$$(A \cap A') \triangle (B \cap B') = [(A \cap A') \setminus (B \cap B')] \cup [(B \cap B') \setminus (A \cap A')]$$

$$= [[A \setminus (B \cup B')] \cap [A' \setminus (B \cup B')]] \cup [[B \setminus (A \cup A')] \cap [B' \setminus (A \cup A')]]$$

$$\subset [(A \setminus B) \cap (A' \setminus B')] \cup [(B \setminus A) \cap (B' \setminus A')]$$

$$\subset (C \cap C') \cup (C \cap C')$$

$$= C \cap C' \subset C \cup C'$$

Wegen $\mu(C \cup C') = \mu(C) + \mu(C') = 0$ gilt daher $A \cap A' \in \mathcal{A}$. Außerdem gilt

$$A^{c} \triangle B^{c} = (A^{c} \setminus B^{c}) \cup (B^{c} \setminus A^{c})$$

$$= (A^{c} \cap B) \cup (B^{c} \cap A)$$

$$= (B \cap A^{c}) \cup (A \cap B^{c})$$

$$= (B \setminus A) \cup (A \setminus B)$$

$$= A \triangle B$$

$$\subset C$$

Wegen $\mu(C) = 0$ gilt daher $A^c \in \mathcal{A}_{\mu}$. Damit handelt es sich bei \mathcal{A}_{μ} um eine Algebra. Seien nun $A_i \in \mathcal{A}_{\mu}$ und entsprechende $B_i, C_i \in \mathcal{A}$ mit $\mu(C_i) = 0$ und $A_i \triangle B_i \subset C_i$ gegeben. Wegen

$$\bigcup_{i=1}^{\infty} A_i \triangle \bigcup_{i=1}^{\infty} B_i = \left(\bigcup_{i=1}^{\infty} A_i \setminus \bigcup_{i=1}^{\infty} B_i\right) \cup \left(\bigcup_{i=1}^{\infty} B_i \setminus \bigcup_{i=1}^{\infty} A_i\right) \\
= \left[\bigcup_{i=1}^{\infty} \left(A_i \setminus \bigcup_{i=1}^{\infty} B_i\right)\right] \cup \left[\bigcup_{i=1}^{\infty} \left(B_i \setminus \bigcup_{i=1}^{\infty} A_i\right)\right] \\
\subset \left[\bigcup_{i=1}^{\infty} \left(A_i \setminus B_i\right)\right] \cup \left[\bigcup_{i=1}^{\infty} \left(B_i \setminus A_i\right)\right] \\
= \left[\bigcup_{i=1}^{\infty} \left(A_i \setminus B_i\right) \cup \left(B_i \setminus A_i\right)\right] \\
= \left[\bigcup_{i=1}^{\infty} \left(A_i \triangle B_i\right)\right] \\
\subset \left(\bigcup_{i=1}^{\infty} C_i\right)$$

und der σ -Additivität von μ ,

$$\mu\left(\bigcup_{i=1}^{\infty} C_i\right) = \sum_{i=1}^{\infty} \mu(C_i) = \sum_{n=0}^{\infty} 0 = 0,$$

gilt

$$\bigcup_{i=1}^{\infty} A_i \in \mathcal{A}_{\mu}.$$

Daher ist A_{μ} eine σ -Algebra. Nun zeigen wir, dass μ ein Maß ist. Seien zwei Zerlegungen $A \triangle B \subset C$ und $A \triangle B' \subset C'$ gegeben. Zunächst gilt $B \setminus A \subset A \triangle B \subset C$ und daher $B \subset A \cup C$ und analog auch $B' \subset A \cup C'$. Daraus folgern wir

$$B \setminus B' \subset (A \cup C) \setminus B' = (A \setminus B') \cup (C \setminus B') \subset A \triangle B' \cup C \subset C' \cup C$$

und analog

$$B' \setminus B \subset (A \cup C') \setminus B = (A \setminus B) \cup (C' \setminus B) \subset A \triangle B \cup C' \subset C \cup C'.$$

Diese beiden Identitäten bedeuten einfach, dass $\mu(B \setminus B') = \mu(B' \setminus B) = \mu(C \cup C') = 0$ ist. Damit erhalten wir

$$\mu(B) = \mu(B \cap B') + \mu(B \setminus B') = \mu(B \cap B') = \mu(B' \cap B) + \mu(B' \setminus B) = \mu(B').$$

Insbesondere gilt also $\overline{\mu}(A) = \mu(B) = \mu(B')$ und damit ist $\overline{\mu}$ wohldefiniert. Wir müssen also nur noch die σ -Additivität von $\overline{\mu}$ zeigen. Seien also $A_k \in \mathcal{A}_{\mu}, k \in \mathbb{N}$ mit $A_i \cap A_j = \emptyset$ für $i \neq j$ gegeben. Es existieren folglich $B_k, C_k \in \mathcal{A}$ mit $A_k \triangle B_k \subset C_k$ und $\mu(C_k) = 0$. Es gilt also $\overline{\mu}(A_k) = \mu(B_k)$ und wegen

$$\bigcup_{i=1}^{\infty} A_i \triangle \bigcup_{i=1}^{\infty} B_i \subset \left(\bigcup_{i=1}^{\infty} C_i\right), \quad \mu\left(\bigcup_{i=1}^{\infty} C_i\right) = 0$$

gilt

$$\overline{\mu}\left(\bigcup_{i=1}^{\infty} A_i\right) = \mu\left(\bigcup_{i=1}^{\infty} B_i\right) = \sum_{i=1}^{\infty} \mu(B_i) = \sum_{i=1}^{\infty} \overline{\mu}(A_i).$$

Damit ist $\overline{\mu}$ auch σ -additiv, also ein Maß.

Aufgabe 2

(a) Betrachte $A_k = \left[0, \frac{1}{k}\right] \forall k \in \mathbb{N}$. Dann gilt stets $\nu(A_k) = 1$. Angenommen, es gäbe nämlich ein k mit $\nu(A_k) = 0$, dann folgte aus der Translationsinvarianz des Maßes $\nu(A_k) = \nu(A_k + \frac{1}{k}) = \cdots = \nu(A_k + \frac{k-1}{k})$. Insgesamt erhielte man

$$\nu([0,1]) = \nu\left(\sum_{j=0}^{k-1} A_k + \frac{j}{k}\right) = \sum_{j=0}^{k-1} \nu(A_k + \frac{j}{k}) = \sum_{j=0}^{k-1} \nu(A_k) = 0.$$

Das stünde aber im Widerspruch zu $\nu([0,1])=1$. Allerdings ist $\lim_{k\to\infty}A_k=\{0\}$. Damit erhielte man $\lim_{k\to\infty}\nu(A_k)=\lim_{k\to\infty}1=1$, aber $\nu\left(\lim_{k\to\infty}A_k\right)=\nu(\{0\})=0$. Das steht aber im Widerspruch zu $2.8(\mathrm{iii})$ im Skript.

- (b) (i) \emptyset ist abzählbar, $X^c = \emptyset$ ist abzählbar $\Longrightarrow \emptyset, X \in \mathcal{A}$.
 - (ii) Seien $A, B \in \mathcal{A}$. Sind A und B beide abzählbar, so ist $A \cup B$ und $A \cap B$ wieder abzählbar und damit in \mathcal{A} enthalten. Sei nun genau eine der beiden Mengen abzählbar, O.B.d.A. A abzählbar und B überabzählbar also B^c abzählbar. Dann ist $(A \cup B)^c = A^c \cap B^c$. Mit B^c ist natürlich auch $A^c \cap B^c$ abzählbar $\implies A \cup B \in \mathcal{A}$. $A \cap B \subset A$ ist natürlich auch abzählbar $\implies A \cap B \in \mathcal{A}$. Sind nun A und B überabzählbar, so ist $(A \cup B)^c = A^c \cap B^c$ offensichtlich abzählbar $\implies A \cup B \in \mathcal{A}$. Außerdem ist $(A \cap B)^c = A^c \cup B^c$ wieder abzählbar $\implies A \cap B \in \mathcal{A}$.
 - (iii) Seien $A_i \in \mathcal{A} \forall i \in \mathbb{N}$. Sind alle A_i abzählbar, so ist $\bigcup_{i \in \mathbb{N}} A_i$ wieder abzählbar. Ist mindestens eines der A_i , beispielsweise A_j überabzählbar, so gilt

$$\left(\bigcup_{i\in\mathbb{N}}A_i\right)^c=\bigcap_{i\in\mathbb{N}}A_i^c\subset A_j^c$$

Da A_j^c abzählbar ist, folgt $\bigcup_{i\in\mathbb{N}} A_i \in \mathcal{A}$. Insbesondere ist also \mathcal{A} eine σ -Algebra. Nun zeigen wir, dass μ ein Maß auf \mathcal{A} definiert. Seien also $A_i \in \mathcal{A}$ gegeben mit $A_i \cap A_j = \emptyset \forall i \neq j$.

$$a = \mu\left(\sum_{i=1}^{\infty} A_i\right).$$

Sind alle A_i abzählbar, so ist a=0. Sei nun A_j überabzählbar. Angenommen, A_k mit $k\neq j$ wäre auch überabzählbar. Wegen $A_j\in\mathcal{A}$ ist A_j^c abzählbar. Wegen $A_j\cap A_k=\emptyset$ ist aber $A_k\subset A_jc$. Widerspruch. Ist also eine der Mengen überabzählbar, ist a=1.

(c) [0,0.5] liegt in $\mathcal{P}(x)$, aber nicht in \mathcal{A} , weil sowohl [0,0.5] als auch [0.5,1] überabzählbar sind. Da sich also die beiden Algebren unterscheiden, gibt es keinen Widerspruch.

Aufgabe 3

- (a) (i) $\emptyset, X \in \mathcal{D}$ (Dynkin-System)
 - (ii) $A, B \in \mathcal{D}$
 - $\implies A \cap B \in \mathcal{D} (\pi\text{-System})$
 - $\implies B^c \in \mathcal{D} \implies A \cap B^c = A \setminus B \in \mathcal{D}.$
 - $\implies B \setminus A \in \mathcal{D} \implies A \cup B \setminus A = B, da A \cap (B \setminus A) = \emptyset.$
 - (iii) $A_i \in \mathcal{D} \ \forall i \in \mathbb{N}, A_i \cap A_j = \emptyset \ \forall i \neq j \implies$

$$\bigcup_{i=1}^{\infty} A_i = \bigcup_{i=1}^{\infty} \left(A_i \setminus \bigcup_{j=1}^{i} A_j \right) \in \mathcal{D}.$$

- (b) (i) $\emptyset \cap D = \emptyset \in D_0$, $X \cap D = D \in D_0 \implies \emptyset, X \in \mathcal{H}$.
 - (ii) Sei $F \in H$, also $D \cap F \in D_0$. Wir müssen zeigen, dass $F^c \cap D \in D_0$ liegt, weil dann F^c in H enthalten ist. Es gilt $D \in D_0 \implies D^c \in D_0$. $(D \cap F) \cap D^c = \emptyset$. Die disjunkte Vereinigung ist in einem Dynkin-System enthalten, also folgt $(D^c \cup (D \cap F))^c = D \cap (D \cap F)^c = D \cap (D^c \cup F^c) = D \cap F^c \in D_0$.
 - (iii) Sei $A_i \cap D \in D_0 \ \forall i \in \mathbb{N}, A_i \cap A_j = \emptyset \forall i \neq j$. Da die A_i also alle disjunkt sind, gilt $\bigcup_{i=1}^{\infty} (A_i \cap D) = (\bigcup_{i=1}^{\infty} A_i) \cap D \in D_0$.
- (c) Sei $A \in \mathcal{K}$. Dann gilt $\forall B \in \mathcal{K} : B \cap A \in D_0 \implies B \in \mathcal{H}(A)$, also $\mathcal{K} \subset \mathcal{H}(K)$. Da $\mathcal{H}(K)$ ein Dynkin-System ist und \mathcal{K} enthält, gilt $D_0 \subset \mathcal{H}(K) \subset D_0$. Die zweite Inklusion gilt per Definition von $\mathcal{H}(K)$. Also ist $D_0 = \mathcal{H}(K)$. Daraus folgt aber sofort, dass $\forall A \in D_0 : \forall K \in \mathcal{K} : A \cap K \in D_0$. Insbesondere gilt also $\forall K \in \mathcal{K} : \forall A \in D_0 : K \cap A \in D_0 \implies K \in \mathcal{H}(A)$. Daraus folgern wir:

$$\mathcal{K} \subset \mathcal{H}(A) \quad \forall A \in D_0.$$

Da aber D_0 das kleinste Dynkin-System mit $\mathcal{K} \subset D_0$ ist, gilt sofort

$$D_0 \subset \mathcal{H}(A) \subset D_0 \implies D_0 = \mathcal{H}(A) \quad \forall A \in D_0.$$

(d) Seien $A, B \in D_0$. Dann gilt $A \in D_0 = \mathcal{H}(B) \implies A \cap B \in D_0$. Es handelt sich bei D_0 also nicht nur um ein Dynkin-System, sondern auch um ein π -System. Nach Teilaufgabe (a) ist D_0 damit eine σ -Algebra, die \mathcal{K} enthält. Da \mathcal{D} ein Dynkin-System ist, das \mathcal{K} enthält, umfasst es auch D_0 . Daher gilt $\sigma(\mathcal{K}) \subset D_0 \subset \mathcal{D}$.