Data Mining in Action

Лекция 4 Отбор и генерация признаков

Гущин Александр

Отбор признаков

- 1. Статистические методы
- 2. С помощью регуляризации L1
- 3. Жадный отбор (Add-del)
- 4. С помощью деревьев (Boruta)

Регуляризация

Могут привести к переобучению

- 1. В линейных моделях, нейронных сетях: слишком большие веса
- 2. В решающих деревьях: слишком глубокие разбиения

Пример

Пример

Global minimum:

$$\min\left\{ \left(\frac{3\,b}{2}\right)^2 + (3+3\,b)^2 \right\} = \frac{9}{5} \text{ at } b = -\frac{4}{5}$$

Plot:

L2:
$$y = x1 * 6/5 - 3/5 * x2$$

$$\min\left\{\left|\frac{3\,b}{2}\right| + |3+3\,b|\right\} = \frac{3}{2} \text{ at } b = -1$$

Plot:

L1:
$$y = -3/2 * x1$$

Жадный отбор признаков

Чередование добавления и удаления признаков

Жадный отбор признаков

Чередование добавления и удаления признаков

Этап добавления: добавляем лучшие признаки

Этап удаления: удаляем худшие признаки

Деревья

clf.feature_importances_

sklearn.tree.DecisionTreeClassifier sklearn.ensemble.RandomForestClassifier

Boruta

Boruta

Кросс-валидация

K-Fold cross validation:

На картинке k = 5, обычно такое k и используют. Другие частые варианты — 3 и 10.

Виды признаков

Какие бывают признаки:

- 1. Числовые
- 2. Порядковые
- 3. Категориальные
- 4. Даты и время
- 5. Координаты

Даты и время

- 1. Количество прошедших секунд например, с 00:00:00 UTC, 1 January 1970
- 2. Использование периодичности
 - а. номер дня в году, в месяце, в неделе
 - b. час, минута, секунда
- 3. Время до/после важных событий Например, количество дней, оставшихся до ближайшего праздника

Координаты

- 1. Повороты системы координат на 45 градусов, 22.5 градусов, etc
- 2. Добавление расстояний до:
 - а. Других объектов из выборки
 - b. Центров кластеров
 - с. Инфраструктурных зданий магазинов, школ, больниц

Категориальные признаки (строки)

Из колонок "name", "ticket", "cabin" можно сгенерировать новые признаки

-1	А	В	C	D	E	F	G	Н	1	J	K
1	survived	pclass	name	sex	age	sibsp	parch	ticket	fare	cabin	embarked
2	0		3 Braund, Mr. Owen Harris	male	22	1	0	A/5 21171	7.25		S
3	1		1 Cumings, Mrs. John Bradley (Florence Briggs Thayer)	female	38	1	0	PC 17599	71.2833	C85	С
4	1		3 Heikkinen, Miss. Laina	female	26	0	0	STON/O2.	7.925		S
5	1		1 Futrelle, Mrs. Jacques Heath (Lily May Peel)	female	35	1	0	113803	53.1	C123	S
6	0		3 Allen, Mr. William Henry	male	35	0	0	373450	8.05		S
7	0		3 Moran, Mr. James	male		0	0	330877	8.4583		Q
8	0		1 McCarthy, Mr. Timothy J	male	54	0	0	17463	51.8625	E46	S
9	0		3 Palsson, Master. Gosta Leonard	male	2	3	1	349909	21.075		S
10	1		3 Johnson, Mrs. Oscar W (Elisabeth Vilhelmina Berg)	female	27	0	2	347742	11.1333		S
11	1		2 Nasser, Mrs. Nicholas (Adele Achem)	female	14	1	0	237736	30.0708		С
12	1		3 Sandstrom, Miss. Marguerite Rut	female	4	1	1	PP 9549	16.7	G6	S
13	1		1 Bonnell, Miss. Elizabeth	female	58	0	0	113783	26.55	C103	S

Категориальные признаки

Бинаризация

pd.get_dummies, sklearn.feature_extraction.DictVectorizer

Категориальные признаки

Hashing trick (n_features = 2)

feature == a or feature == c	feature == b
1	
	1
1	
	1

sklearn.feature_extraction.FeatureHasher

Какие ещё признаки можно сгенерировать

- 1. Агреггации по нескольким переменным
- 2. Закодировать среднее значение в категориальной переменной
- 3. Метапризнаки

Категориальные признаки (аггрегация)

Задача определения кредитоспособности клиента

Обучающие данные

Customer_id	target
1	1
2	0
3	1

Данные о транзакциях:

Customer_id	datetime	amount
1	2016-09-01	4000
1	2016-09-02	7000
2	2016-09-01	2500

Категориальные признаки (аггрегация)

Обучающие данные

Customer_id	target
1	1
2	0
3	1

Данные о транзакциях:

Customer_id	datetime	amount
1	2016-09-01	4000
1	2016-09-02	7000
2	2016-09-01	2500

transactions.groupby('customer_id').amount.sum()

Категориальные признаки

Кодирование средним значением целевой переменной KFold или Leave-one-out:

Split	User ID	Y	mean(Y)	random	Exp_UID
Training	A1	0	.667	1.05	0.70035
Training	A1	1	.333	.97	0.32301
Training	A1	1	.333	.98	0.32634
Training	A1	0	.667	1.02	0.68034
Test	A1	-	.5	1	.5
Test	A1	-	.5	1	.5
Training	A2	0			

Категориальные признаки

Кодирование средним значением целевой переменной последовательно:

Split	User ID	Y	mean(Y)
Training	A1	0	NaN
Training	A1	1	0
Training	A1	1	0.5
Training	A1	0	0.66
Test	A1	-	.5
Test	A1	-	.5
Training	A2	0	

Предыдущих записей нет np.mean([0])
np.mean([0, 1])
np.mean([0, 1, 1])
np.mean([0, 1, 1, 0])
np.mean([0, 1, 1, 0])

Метапризнаки

Использование ответов других алгоритмов

	xgb_prediction	knn_prediction	svm_prediction	target
train	0.192	0.293	0.122	0
train	0.789	0.890	0.670	1
test	0.542	0.310	0.173	?

Осторожно с переобучением: используйте KFold, LOO

Генерация признаков

Для решения задачи нужно использовать разные типы данных

Пример: задача рекоммендации музыки

- 1. Музыкальные треки
- 2. Тексты песен
- 3. Плейлисты

Проблема: нужно преобразовать к одному формату - матрице "объектыпризнаки"

Картинка -> вектор

1. Descriptors/Embeddings

Можно использовать значения слоя FC6 как сжатое представление изображения

Звук: спектрограммы

Звук: спектрограммы -> вектора

1. MFCC - преобразование Фурье логарифма спектра

Звук: спектрограммы -> вектора

- 1. MFCC преобразование Фурье логарифма спектра
- 2. Embeddings с помощью нейронных сетей:
 - а. Как вектора:полносвязные нейросети
 - b. Как картинки: сверточные нейросети

Текст

1. Bag of words:

Очередность слов потеряна

Смысл каждого значения вектора известен

2. Embeddings с помощью нейросетей (~word2vec)

Очередность слов использована

Смысл каждого значения вектора может быть выяснен (скорее всего)

Аналогично бинаризации для категориальных переменных

Аналогично "Hashing trick" для категориальных переменных

Sklearn.feature_extraction.text.TfidfVectorizer (TfidfTransormer)

Term Frequency

$$tf_{i,j} = \frac{n_{i,j}}{\sum_{k} n_{k,j}}$$

Inverse Document Frequency

$$idf_{i} = \log \frac{|D|}{|\{d : t_{i} \in d\}|}$$

N-grams

Sklearn.feature_extraction.text.CountVectorizer(ngram_range=(minN, maxN))

Ссылки

Boruta:

http://danielhomola.com/2015/05/08/borutapy-an-all-relevant-feature-selection-method/

Recommending music on Spotify with deep learning:

http://benanne.github.io/2014/08/05/spotify-cnns.html

Encoding of categorical features:

https://www.kaggle.com/c/caterpillar-tube-pricing/forums/t/15748/strategies-to-encode-categorical-v
ariables-with-many-categories

Tips for data science competitions:

http://www.slideshare.net/OwenZhang2/tips-for-data-science-competitions