* Feature selection or feature reduction

X, X2X3X9X6X6 * VIF

Reglarisation

D Lasso Li

D Ridge Le

B Elasticnet Regularisation

1 L1 (Lasso) -

To Select Feature or Reduce feature

 $L_1 = \frac{1}{m} \sum_{i=1}^{m} \left[h_{\Theta}(x_i) - y_i' \right] + \lambda |s|_{OP}|$

ho(x) = 00+01x,+02 x2+03x3+

Og Xg

 $= 0.5 + 0.54 \times_{1} + 0.25 \times_{2} + 0.01 \times_{3} + 0.2 \times_{4}$

Will Reduce O3X3 Feeture from datesset.

L2 Ridge To reduce overfitting of model
overfitting - low bias
High variance

oves litter

$$L_2 = \frac{1}{m} \sum_{j=1}^{m} [h_0 (x_j - y_j)] + \lambda (slop)^2$$

A hypere paremetes (1,2,0.5,6.9,3,4----)

Slop = 0

Y = mx + C

Relationship b/w A and 8 It is inversally propotional

11 01

- 3) Elasticnet Regularisation
- Combination of Ridge and Lasso
- # Assumption of linear Regression
 - 1 Independent and dependent variable must be having linear relation,
- 2) Meun of residual error should be zero.
- 3 Error term are not suppose to be co-related

- 4) Independent variable and residual error suppose to be uncorrelated [Exogenety]
- © Error term myst showcuse constant varience [Homos ceda sity]
- @ No multicolinearity [x, x2 x3x9]
 - 1 Line ean y = mx+c
 - 2) Cost Funct.
 - 3 Repeat conv. theory
 - 4) Evaluation matrix

D MSE

- © MAE
- OD RMSE
 - W R2
- (v) Adj. R2
- (5) Li, Lz and Elasticnet Regularization

