## 문자 인식

| 학과 | 기계공학부     |
|----|-----------|
| 학번 | 200721395 |
| 이름 | 한경수       |
| 분반 | 001       |

문자인식은 여러가지 방법이 있는데 그 중에 하나가 Perceptron 알고리즘이다.

- (1) weight와 threshold의 초기화.
- (2) input value에 대응되는 target value의 제시.
- (3) actual output 계산:

$$y(t) = f(\sum_{i} [x_i(t)w_i(t) - \theta])$$
 여기서 activation function  $f(.)$ : 
$$f(u) = \begin{cases} +1 & \text{if } u \ge 0, \\ -1 & \text{if } u < 0 \end{cases}$$
 (cf) 교재의 공식: 
$$y(t) = \operatorname{sgn} \sum_{i} [x_i(t)w_i(t) - \theta].$$
 ight 조정:

(4) weight 조정:

$$w_i(t+1) = w_i(t) + \eta[d(t) - y(t)]x_i(t) \qquad 0 \leq i \leq N-1$$
 여기서 
$$d(t) = \begin{cases} +1 & \text{if } \texttt{입력이}A\,class \\ -1 & \text{if } \texttt{입력이}B\,class \end{cases}, \qquad \eta = 0 \sim 1 \text{사이의 } \text{값}.$$

(5) goto (3).

강의 자료를 그대로 가져온다면, 위와 같다.

조금 알기 쉬운 말로 풀어쓰면

weight 값을 적당히 구하는데, 구한 weight 값을 모든 문자에 대응하게 행렬곱 을 하면 원하는 값이 나오도록 weight 값을 구한다.

먼저 문자를 인식하기 위한 기본 데이터는 9by7 행렬이다. 단순화하여 63 의 일차원 배열이라고 생각해도 무방하다. 먼저 이전에 구했던 weight 값을 oldweight 라고 하면, 실제 데이터값 \* oldweight 해서 나온 값들을 음수면 -1 양수면 +1 로 세팅을 함.그리고

$$w_i(t+1) = w_i(t) + \eta[d(t) - y(t)]x_i(t)$$
  $0 \le i \le N-1$ 

식에 의해 weight 값을 최종적으로 구하면 된다.

char\* getmatrix(int digit) : 숫자에 맞는 숫자 매트릭스 반환

int getweight(): weight 를 구하기 위해서 호출하는 함수, 내부적으로 subweight 로 다시 계층적으로 구현

int recog(char\* matrix\_digit) : 숫자 배열을 넣으면 그 숫자가 어떤 숫자인지 알아맞추는 함수 int correct[10][4] : 각 숫자별로 정확한 목표값

double weight[9\*7][4]: 가중치의 변수, 9\*7 이 4 개가 필요함. 10 가지를 표현하기 위해선 4bit

전체적인 구조는 main 에서 getweight 를 호출하고 getweight 는 전체적인 루프를 도는 역할을 하고, getweight 안에서 호출하는 subweight 는 각 weight 를 구하기 위해 세부적인 연산을 하게 된다.



Weight 를 먼저 구한 후, 각 배열에 대해 테스트 해보니 정확히 weight 를 구한 것을 알수 있었다. 한계점은 많이 노이즈가 들어간다면 인식을 할 수 없는 것이다. 이런 경우엔 다른 알고리즘이 필요하다. 기존 문자에서 조금 바뀐건 인식을 어느정도 하지만, 전체적으로 어떠한 방향으로 시프트 되면은 전혀 인식을 할 수가 없다.

문자인식은 그 활용도가 높아서 이 알고리즘 외에도 다른 수많은 알고리즘이 있겠지만, 구현하기도 쉽고 이해하기도 쉬운 이러한 알고리즘을 설명을 듣고 직접 구현해보는 시간을 가졌는데, 개인적으로 매우 유용한 시간이 되었고, 이것 말고도 다른 알고리즘도 매우 흥미가 간다. C 언어 수업에서 그냥 문법적인 내용만 배울 수 있을 것 같았는데, 이러한 내용을 배우고 직접 구현해 더욱 많은 것을 배울 수 있었다. 다만 아쉬운 건 마감시간은 저번 주였는데, 저도 그렇고 나머지 몇몇 인원도 그렇고 과제 데드라인을 지키느라 다른걸 감수하면서 했을 텐데, 그 당시 과제를 가지고 오지 않은 인원과 차별을 두지 못하는 점에 대해서는 아쉽습니다.

| 0 차 we | iaht · |       |                | 1 차 we | iaht · |       |       | 2 차    | 3 차 we | iaht · |       |                |
|--------|--------|-------|----------------|--------|--------|-------|-------|--------|--------|--------|-------|----------------|
| 0.16   | 0.39   | 0.53  | 0.71           | 0.16   | 0.39   | 0.53  | 0.71  |        | 0.16   | 0.39   | 0.53  | 0.71           |
| 0.68   | 0.69   | 0.98  | 0.53           | 0.68   | 0.69   | 0.98  | 0.53  | 생<br>략 | 0.68   | 0.69   | 0.98  | 0.53           |
| 0.97   | 0.86   | 0.54  | 0.99           | 0.97   | 0.86   | 0.54  | 0.99  | '      | 0.97   | 0.86   | 0.54  | 0.99           |
| -0.78  | -0.41  | -2.54 | -0.44          | -0.78  | -0.41  | -2.54 | -0.44 |        | -0.78  | -0.41  | -2.54 | -0.44          |
| 0.21   | 0.28   | 0.14  | 1.00           | 0.21   | 0.28   | 0.14  | 1.00  |        | 0.21   | 0.28   | 0.14  | 1.00           |
|        |        |       |                |        |        |       |       |        |        |        |       |                |
| 0.63   | 0.93   | 0.41  | 0.32           | 0.63   | 0.93   | 0.41  | 0.32  |        | 0.63   | 0.93   | 0.41  | 0.32           |
| 0.63   | 0.98   | 0.49  | 0.46           | 0.63   | 0.98   | 0.49  | 0.46  |        | 0.63   | 0.98   | 0.49  | 0.46           |
| 0.97   | 0.90   | 0.99  | 0.85           | 0.97   | 0.90   | 0.99  | 0.85  |        | 0.97   | 0.90   | 0.99  | 0.85           |
| -1.46  | -0.21  | 0.32  | 1.08           | -2.70  | 1.97   | 3.22  | 1.08  |        | -2.70  | 5.52   | 4.26  | 1.08           |
| 0.37   | -1.02  | -0.80 | -1.10          | 0.37   | -0.53  | -0.77 | -1.10 |        | 0.37   | -0.04  | -0.77 | -1.10          |
| -2.48  | -2.37  | -2.64 | -0.83          | -2.48  | -2.36  | -1.21 | -0.47 |        | -2.48  | -1.78  | -1.21 | -0.47          |
| -2.59  | -2.03  | -1.72 | -0.54          | -2.59  | -5.55  | -0.81 | -0.54 |        | -2.59  | -3.13  | -0.81 | -0.54          |
| 0.40   | -0.82  | -0.41 | -1.65          | 0.40   | -1.28  | 0.02  | -1.65 |        | 0.40   | 0.22   | 0.02  | -1.65          |
| 0.02   | 0.02   | 0.87  | 0.46           | 0.02   | 0.02   | 0.87  | 0.46  |        | 0.02   | 0.02   | 0.87  | 0.46           |
| 0.74   | 0.82   | 0.17  | 0.72           | 0.74   | 0.82   | 0.17  | 0.72  |        | 0.74   | 0.82   | 0.17  | 0.72           |
| 0.05   | -0.70  | -0.54 | -3.34          | -1.24  | -1.72  | -1.68 | -3.34 |        | -1.24  | 0.18   | -1.36 | -3.34          |
| 0.96   | 0.38   | 0.83  | 0.79           | 0.92   | 0.38   | -0.39 | 0.79  |        | 0.92   | 0.38   | -0.39 | 0.79           |
| -1.10  | -0.71  | -0.83 | 2.41           | -1.45  | -0.71  | -2.27 | 2.41  |        | -1.45  | -0.71  | -2.27 | 2.41           |
| -0.72  | -1.51  | -0.07 | -1.08          | -2.51  | -1.51  | -0.71 | 0.88  |        | -2.51  | -1.04  | -0.71 | 0.88           |
| 0.15   | -1.61  | -1.01 | 1.01           | -1.09  | -2.11  | -1.33 | 1.01  |        | -1.09  | -0.58  | -1.33 | 1.01           |
| 0.69   | 0.91   | 0.40  | 1.26           | -1.17  | 0.91   | -0.16 | 1.26  |        | -1.17  | 0.91   | -0.16 | 1.26           |
| 0.75   | 0.51   | 0.83  | 0.90           | 0.75   | 0.51   | 0.83  | 0.90  |        | 0.75   | 0.51   | 0.83  | 0.90           |
| 0.73   | -0.77  | -0.59 | -1.64          | -1.31  | -0.79  | -0.54 | -1.64 |        | -1.31  | 1.18   | 0.04  | -1.64          |
| 0.72   | 0.12   | 0.85  | 1.00           | 0.72   | 0.73   | 0.85  | 1.00  |        | 0.72   | 0.12   | 0.85  | 1.00           |
| -1.06  | -0.50  | 0.64  | 0.19           | -1.06  | -0.50  | 0.64  | 0.19  |        | -1.06  | -0.50  | 0.64  | 0.19           |
| -3.00  | -0.58  | -0.22 | -0.75          | -3.00  | -0.58  | 1.38  | 1.09  |        | -3.00  | 0.93   | 1.38  | 1.09           |
| 0.85   |        |       | -0.86          | 0.85   |        | -2.11 | -0.86 |        | 0.85   |        | -2.11 | -0.86          |
|        | -1.08  | -1.54 |                |        | -4.17  |       |       |        |        | -2.23  |       |                |
| 0.81   | 0.05   | 0.66  | 0.16           | 0.81   | 0.05   | 0.66  | 0.16  |        | 0.81   | 0.05   | 0.66  | 0.16           |
| 0.44   | 0.49   | 0.39  | 0.70           | 0.44   | 0.49   | 0.39  | 0.70  |        | 0.44   | 0.49   | 0.39  | 0.70           |
| -0.06  | -0.17  | -1.32 | -3.20          | -1.92  | -0.43  | -3.28 | -3.20 |        | -1.92  | 0.87   | -2.28 | -3.20          |
| 1.33   | -0.25  | -1.31 | 0.03           | 1.33   | -0.50  | -2.39 | 0.03  |        | 1.33   | -0.50  | -2.39 | 0.03           |
| -1.47  | -1.83  | -1.63 | -1.34          | -1.47  | -4.48  | -0.81 | -0.73 |        | -1.47  | -4.48  | -0.81 | -0.73          |
| 0.59   | 0.29   | -2.19 | -0.02          | 0.59   | -1.99  | -2.30 | -0.02 |        | 0.59   | -0.81  | -2.30 | -0.02          |
| -0.18  | -1.22  | 0.45  | -1.02          | -0.18  | -1.75  | 0.48  | -1.02 |        | -0.18  | -1.44  | 0.48  | -1.02          |
| 0.11   | 0.56   | 0.89  | 0.22           | 0.11   | 0.56   | 0.89  | 0.22  |        | 0.11   | 0.56   | 0.89  | 0.22           |
| 0.73   | 0.83   | 0.61  | 0.49           | 0.73   | 0.83   | 0.61  | 0.49  |        | 0.73   | 0.83   | 0.61  | 0.49           |
| 0.25   | -0.62  | -2.72 | -2.12          | -1.23  | -1.99  | -4.58 | -2.12 |        | -1.23  | -0.34  | -4.42 | -2.12          |
| -0.60  | -0.29  | 0.97  | -1.24          | -1.56  | 0.98   | 2.70  | -1.24 |        | -1.56  | 1.71   | 4.17  | -1.24          |
| -3.30  | -1.10  | -1.12 | -0.26          | -3.92  | -0.93  | -1.72 | -0.26 |        | -3.92  | 0.76   | -0.46 | -0.26          |
| -0.98  | -0.26  | 1.70  | 0.30           | -1.02  | 0.88   | -0.26 | 2.11  |        | -1.02  | 2.20   | 0.15  | 2.11           |
| 1.25   | 1.55   | -1.89 | 0.79           | -0.32  | 0.72   | -2.64 | 0.79  |        | -0.32  | 2.65   | -2.64 | 0.79           |
| -0.21  | 2.21   | -1.37 | 0.74           | -1.95  | 2.21   | -1.76 | 0.74  |        | -1.95  | 2.35   | -1.76 | 0.74           |
| 0.96   | 0.80   | 0.50  | 0.32           | 0.96   | 0.80   | 0.50  | 0.32  |        | 0.96   | 0.80   | 0.50  | 0.32           |
| 0.16   | -1.67  | -0.74 | -3.02          | 0.16   | -2.18  | -0.07 | -3.02 |        | 0.16   | -2.18  | 0.29  | -3.02          |
| -0.71  | -1.87  | -0.20 | -2.53          | -0.71  | -1.87  | 0.65  | -2.53 |        | -0.71  | -1.87  | 0.65  | -2.53          |
| -1.88  | 0.22   | -0.60 | -0.52          | -1.88  | 0.22   | 1.03  | -0.52 |        | -1.88  | 0.22   | 1.03  | -0.52          |
| -2.37  | -1.88  | -0.84 | -0.64          | -3.88  | -1.86  | 1.55  | 0.09  |        | -3.88  | -0.49  | 2.23  | 0.09           |
| 2.46   | -1.21  | 0.50  | 1.96           | 1.39   | -1.89  | 0.07  | 1.96  |        | 1.39   | -1.26  | 0.07  | 1.96           |
| 0.01   | -0.67  | 0.85  | -1.30          | 0.01   | -0.67  | 2.60  | -1.30 |        | 0.01   | -0.67  | 2.60  | -1.30          |
| 0.67   | 0.73   | 0.54  | 0.64           | 0.67   | 0.73   | 0.54  | 0.64  |        | 0.67   | 0.73   | 0.54  | 0.64           |
| 1.68   | -1.02  | 1.95  | -1.52          | 1.68   | -0.62  | 2.47  | -1.52 |        | 1.68   | -0.62  | 2.71  | -1.52          |
| 1.40   | 0.11   | 1.12  | -1.32<br>-0.87 | 1.40   | 0.47   | 1.39  | -0.87 |        | 1.40   | 0.47   | 2.71  | -1.32<br>-0.87 |
| -1.31  | -2.40  | -0.31 | -0.31          | -1.31  | -1.48  | -1.16 | 0.46  |        | -1.31  | -1.48  | -0.05 | 0.46           |
|        |        |       |                |        |        |       |       |        |        |        |       |                |
| 0.91   | 0.34   | -0.11 | -0.39          | -1.06  | 1.36   | -2.66 | -0.39 |        | -1.06  | 1.59   | -2.02 | -0.39          |
| 2.09   | 0.18   | 2.26  | 0.76           | 2.09   | 0.66   | 2.63  | 0.76  |        | 2.09   | 1.06   | 2.63  | 0.76           |
| 0.71   | 0.90   | 0.06  | 0.30           | 0.71   | 0.90   | 0.06  | 0.30  |        | 0.71   | 0.90   | 0.06  | 0.30           |
| 0.22   | 0.64   | 0.84  | 0.25           | 0.22   | 0.64   | 0.84  | 0.25  |        | 0.22   | 0.64   | 0.84  | 0.25           |
| 0.41   | 0.07   | 0.35  | 0.44           | 0.41   | 0.07   | 0.35  | 0.44  |        | 0.41   | 0.07   | 0.35  | 0.44           |
| 0.73   | 0.43   | 0.13  | 0.58           | 0.73   | 0.43   | 0.13  | 0.58  |        | 0.73   | 0.43   | 0.13  | 0.58           |
| -0.20  | -0.43  | -0.58 | 1.67           | -1.37  | -0.43  | -1.40 | 1.67  |        | -1.37  | -0.43  | -1.40 | 1.67           |
| 0.92   | 0.99   | 0.87  | 0.92           | 0.92   | 0.99   | 0.87  | 0.92  |        | 0.92   | 0.99   | 0.87  | 0.92           |
| 0.26   | 0.43   | 0.93  | 0.23           | 0.26   | 0.43   | 0.93  | 0.23  |        | 0.26   | 0.43   | 0.93  | 0.23           |
| 0.04   | 0.63   | 0.85  | 0.71           | 0.04   | -1.40  | 0.85  | 0.71  |        | 0.04   | -1.40  | 0.85  | 0.71           |
|        |        |       |                |        |        |       |       |        |        |        |       |                |
|        |        |       |                |        |        |       |       |        |        |        |       |                |
|        |        |       |                |        |        |       |       |        |        |        |       |                |

## 소스 코드

```
char matrix_0[63] =
                                        char matrix_1[63] = \{
                                                                                char matrix_2[63] = {
                                                 0,0,0,1,0,0,0,
                                                                                         0,0,0,0,0,0,0,
                                                 0,0,0,1,0,0,0,
                                                                                         0,0,0,1,0,0,0,
        0,0,0,1,0,0,0,
        0,0,1,0,1,1,0,
                                                 0,0,0,1,0,0,0,
                                                                                         0,0,0,0,1,0,0,
                                                 0,0,0,1,0,0,0,
        0,1,0,0,0,1,0,
                                                                                         0,0,0,0,1,0,0,
        0,1,0,0,0,1,0,
                                                 0,0,0,1,0,0,0,
                                                                                         0,0,0,1,0,0,0,
        0,1,0,0,0,1,0,
                                                 0,0,0,1,0,0,0,
                                                                                         0,0,1,0,0,0,0,
        0,1,0,0,0,1,0,
                                                 0,0,0,1,0,0,0,
                                                                                         0,1,1,1,1,0,1,
        0,0,1,0,1,0,0,
                                                 0,0,0,1,0,0,0,
                                                                                         0,0,0,0,0,0,0,
        0,0,0,1,0,0,0,
                                                 0,0,0,1,0,0,0};
                                                                                         0,0,0,0,0,0,0
         0,0,0,0,0,0,0,
                                                                                };
};
char matrix_3[63] = \{
                                        char matrix_4[63] =
                                                                                char matrix_5[63] =
        0,0,0,0,0,0,0,
        0,0,0,1,0,0,0,
                                                 0,0,0,0,0,0,0,
                                                                                         0,0,0,0,0,0,0,
                                                 0,1,0,0,1,0,0,
        0,0,0,0,1,0,0,
                                                                                         0,1,0,0,0,0,0,
                                                 0,1,0,0,1,0,0,
        0,0,0,0,1,0,0,
                                                                                         0,1,1,1,1,1,1,
                                                 0,1,0,0,1,0,0,
        0,0,0,1,0,0,0,
                                                                                         0,1,0,0,0,0,0,
                                                 0,1,0,0,1,0,0,
        0,0,0,0,1,0,0,
                                                                                         0,1,0,0,0,0,0,
                                                                                         0,1,1,1,1,1,1,
        0,0,0,0,1,0,0,
                                                 0,1,1,1,1,1,1,
        0,0,0,1,0,0,0,
                                                 0,0,0,0,1,0,0,
                                                                                         0,0,0,0,1,1,0,
        0,0,0,0,0,0,0
                                                 0,0,0,0,1,0,0,
                                                                                         0,0,0,0,1,0,0,
};
                                                 0,0,0,0,0,0,0
                                                                                         0,0,0,1,0,0,0
                                                                                };
                                        };
char matrix_6[63] =
                                        char matrix_7[63] =
                                                                                char matrix_8[63] = \{
                                                                                         0,0,0,0,0,0,0,
        0,0,0,0,0,0,0,
                                                 0,0,0,0,0,0,0,
                                                                                         0,1,1,1,1,1,0,
        0,1,0,0,0,0,0,
                                                 0,1,1,1,1,1,0,
                                                                                         0,1,0,0,0,1,0,
        0,1,0,0,0,0,0,
                                                 0,1,0,0,0,1,0,
                                                                                         0,1,0,0,0,1,0,
                                                                                         0,1,1,1,1,1,0,
        0,1,0,0,0,0,0,
                                                 0,1,0,0,0,1,0,
        0,1,0,0,0,0,0,
                                                 0,0,0,0,0,1,0,
                                                                                         0,1,0,0,0,1,0,
        0,1,1,1,1,0,0,
                                                 0,0,0,0,0,1,0,
                                                                                         0,1,0,0,0,1,0,
        0,1,0,0,1,0,0,
                                                 0,0,0,0,0,1,0,
                                                                                         0,1,1,1,1,1,0,
        0,1,1,1,1,0,0,
                                                 0,0,0,0,0,1,0,
                                                                                         0,0,0,0,0,0,0
        0,0,0,0,0,0,0
                                                 0,0,0,0,0,0,0
                                                                                };
                                        };
char matrix_9[63] =
                                        int correct[10][4] = {
        0,0,0,0,0,0,0,
                                                 -1,-1,-1,-1,
        0,1,1,1,1,1,0,
                                                 -1,-1,-1,1,
        0,1,0,0,0,1,0,
                                                 -1,-1,1,-1,
        0,1,0,0,0,1,0,
                                                 -1,-1,1,1,
        0,1,1,1,1,1,0,
                                                 -1,1,-1,-1,
        0,0,0,0,0,1,0,
                                                 -1,1,-1,1,
        0,0,0,0,0,1,0,
                                                 -1,1,1,-1,
        0,0,0,0,0,1,0,
                                                 -1,1,1,1,
        0,0,0,0,0,0,5
                                                 1,-1,-1,-1,
                                                 1,-1,-1,1
};
                                        };
double weight[9*7][4];
#include <stdio.h>
#include <memory.h>
#include <stdlib.h>
#include <time.h>
char* getmatrix(int digit)
{
        switch(digit)
                           return matrix 0; case 1:
        case 0:
                                                               return matrix 1;
                           return matrix 2; case 3:
        case 2:
                                                               return matrix 3;
        case 4:
                           return matrix_4; case 5:
                                                               return matrix_5;
```

```
return matrix 6; case 7:
        case 6:
                                                             return matrix 7;
        case 8:
                          return matrix_8; case 9:
                                                             return matrix_9;
        return 0;
}
int subgetweight(int digit)
        int whether[4] = \{0,\};
        char* matrix_d = getmatrix(digit);
        int i, j, z;
        int modify = 0;
        for(j=0; j<4; j++)
                 for(i = 0; i < = 62; i + +)
                 {
                          whether[j] += matrix_d[i] * weight[i][j];
                 if(whether[j] < 0)
                          whether[j] = -1;
                 else
                          whether[j] = 1;
        for(i=0; i<4; i++)
                 if(whether[i] != correct[digit][i])
                          modify = 1;
                          for(z=0; z<=62; z++)
                          {
                                   weight[z][i] = weight[z][i] +
                                            (double)rand()/(double)RAND_MAX*(correct[digit][i] -
whether[i])*matrix_d[z];
        return modify;
}
int getweight()
        int i=0;
        int entcounter = 0;
        while(1)
        {
                 int t = 0;
                 for(i=0; i <= 9; i++)
                          t += subgetweight(i);
                 entcounter++;
                 if(t == 0)
                          break;
        return entcounter;
}
int recog(char* matrix_digit)
        int i, j;
        int whether[4] = \{0,\};
        for(j=0; j<4; j++)
        {
                 for(i = 0; i < = 62; i + +)
                          whether[j] += matrix_digit[i] * weight[i][j];
                 if(whether[j] < 0)
                          whether[j] = -1;
```

```
else
                        whether[j] = 1;
        }
        for(j=0; j<=9; j++)
                int allmatch = 1;
                for(i=0; i<4; i++)
                {
                        if(whether[i] != correct[j][i])
                                 allmatch = 0;
                                 break;
                         }
                if(allmatch)
                        printf("입력한 숫자는 %d 입니다.\n", j);
                }
        }
}
int main()
        int i, j;
        int findcounter;
        srand(time(0));
        for(i=0; i<9*7; i++)
                for(j=0; j<4; j++)
                        weight[i][j] = (double)rand() / (double)RAND_MAX;
        findcounter = getweight();
        printf("WEIGHT 는 %d 번 돌아서 찿았습니다.\n", findcounter);
        recog(matrix 0);
        recog(matrix_1);
        recog(matrix_2);
        recog(matrix_3);
        recog(matrix 4);
        recog(matrix_5);
        recog(matrix_6);
        recog(matrix_7);
        recog(matrix_8);
        recog(matrix_9);
        return 0;
}
```