k-Nearest Neighbours

Ali Akbar Septiandri

Universitas Al-Azhar Indonesia aliakbars@live.com

June 15, 2019

Selayang Pandang

1 k-Nearest Neighbours Instance-based Learning Extension

Bahan Bacaan

- Witten, I. H., Frank, E., Hall, M. A., & Pal, C. J. (2016). Data Mining: Practical machine learning tools and techniques. Morgan Kaufmann. (Section 4.7, 4.8, & 7.1)
- VanderPlas, J. (2016). Python Data Science Handbook. (In Depth: k-Means Clustering) http://nbviewer.jupyter. org/github/jakevdp/PythonDataScienceHandbook/ blob/master/notebooks/05.11-K-Means.ipynb
- Wlasifikasi: k-Nearest Neighbours." Cerita Tentang Data. 31
 Agustus 2015. https://tentangdata.wordpress.com/
 2015/08/31/klasifikasi-k-nearest-neighbours/

k-Nearest Neighbours

Intuisi

- Terdapat dua variabel: x_1, x_2
- Dua kelas: biru dan jingga
- Apa kelas dari instance tanda silang?

Klasifikasi Nearest-Neighbour

- Cari yang paling mirip, lalu gunakan kelas yang sama!
- Voronoi tessellation: membagi region dengan titik yang memiliki jarak yang sama dari dua contoh data latih
- Batas klasifikasi: non-linear

Pencilan

 Sensitif terhadap pencilan

Pencilan

- Sensitif terhadap pencilan
- Tidak ada P(y|x)

Pencilan

- Sensitif terhadap pencilan
- Tidak ada P(y|x)
- Tidak sensitif terhadap class prior

Perbaiki dengan menggunakan lebih dari satu tetangga (k-tetangga) terdekat!

Algoritma Klasifikasi

- Diketahui
 - data latih $\{x_i, y_i\}$
 - x_i: nilai atribut
 - yi: label kelas
 - instance uji x
- Algoritma:
 - 1 Hitung jarak $D(x, x_i)$ untuk semua x_i
 - 2 Pilih k tetangga terdekat dengan labelnya
 - 3 $\hat{y} = \text{mayoritas dari label tetangga terdekat}$

Klasifikasi k-NN

Gambar: 7-NN pada data MNIST dengan data uji di paling kanan

Algoritma Regresi

- Diketahui
 - data latih $\{x_i, y_i\}$
 - x_i: nilai atribut
 - y_i: nilai numerik sebenarnya
 - instance uji x
- Algoritma:
 - 1 Hitung jarak $D(x,x_i)$ untuk semua x_i
 - 2 Pilih k tetangga terdekat dengan labelnya
 - 3 $\hat{y} = f(x) = \frac{1}{k} \sum_{j=1}^{k} y_{ij}$ (nilai rata-rata)

Regresi k-NN

Gambar: Interpolasi dengan {1,2,3}-NN

Regresi k-NN

Gambar: Ekstrapolasi dengan {1,2,3}-NN

Bagaimana cara memilih nilai k?

Memilih Nilai k

- Nilai yang besar $\rightarrow P(y)$
- Nilai yang kecil \rightarrow terlalu variatif, batas keputusan yang tidak stabil

Memilih Nilai k

- Nilai yang besar $\rightarrow P(y)$
- Nilai yang kecil \rightarrow terlalu variatif, batas keputusan yang tidak stabil
- Solusi: Gunakan data validasi!

Batas Keputusan

Gambar: Pengaruh nilai k pada batas keputusan [DeWilde, 2012]

Pengukuran Jarak

Minkowski distance (p-norm):

$$d([x_1, x_2, ..., x_n], [y_1, y_2, ..., y_n]) = \sqrt[r]{\sum_{i=1}^{n} |x_i - y_i|^r}$$

- Hasil seri:
 - 1 Gunakan jumlah k ganjil
 - 2 Acak, lemparan koin
 - 3 Prior probability
 - 4 1-NN
- Missing values: harus diganti (impute)
- Rentan terhadap perbedaan rentang variabel

Perbedaan Rentang

Gambar: Perbedaan rentang variabel bisa mengacaukan klasifikasi k-NN [Wibisono, 2015]

k-NN vs Parzen Windows

Gambar: Perbedaan radius klasifikasi pada k-NN dan Parzen Windows

Pros & Cons

- Pros:
 - Tidak ada asumsi terhadap data, non-parametrik
 - Asymptotically correct
- Cons:
 - Harus mengganti nilai yang hilang
 - Sensitif terhadap kelas pencilan (data latih yang salah dilabeli)
 - Sensitif terhadap atribut yang irelevan
 - Mahal secara komputasi O(nd)

Mempercepat k-NN

- Pelatihan: O(d), tetapi pengujian: O(nd)
- Mengurangi d: dimensionality reduction
- Mengurangi n: jangan bandingkan dengan semua data latih, i.e. cari m ≪ n
 - K-D trees
 - 2 Locality-sensitive hashing (LSH)
 - 3 Inverted lists

K-D Trees

Pilih dimensi secara acak, cari mediannya, pisahkan data, ulangi

Gambar: 3-NN dari semua data berbeda dengan 3-NN yang berada pada region yang sama

Locality-Sensitive Hashing (LSH)

- Hyperplanes acak $h_1...h_k$ yang membagi ruang menjadi 2^k region
- Bandingkan x hanya dengan data latih dalam region yang sama: lakukan dot-product → hash-code
- Ada kemungkinan tetangga dekat yang terlewat: ulangi lagi dengan h₁...h_k yang berbeda

Locality-Sensitive Hashing

Gambar: Menghasilkan hash-code dari hyperplanes [Li et al., 2017]

Inverted Lists

- Jika datanya berupa bag-of-words, matriksnya akan sparse
- Ide: buat daftar dokumen per atribut

Inverted Lists

```
D1: "send us your password" (s)
D2: "send us your review" (h)
D3: "review your password" (h)
D4: "review us" (s)
D5: "send your password" (s)
D6: "send us your account" (s)
Dokumen baru: "account review"
```

```
\begin{array}{l} \mathsf{send} \rightarrow \{1,2,5,6\} \\ \mathsf{your} \rightarrow \{1,2,3,5,6\} \\ \mathsf{review} \rightarrow \{3,4\} \\ \mathsf{account} \rightarrow \{6\} \\ \mathsf{password} \rightarrow \{1,3,5\} \end{array}
```

Salindia ini dibuat dengan sangat dipengaruhi oleh Lavrenko (2014)

Referensi

Burton DeWilde (26 Oktober 2012)

Classification of Hand-written Digits (3)

http://bdewilde.github.io/blog/blogger/2012/10/26/classification-of-hand-written-digits-3/

Okiriza Wibisono (16 September 2015)

kNN: Perhitungan Jarak, serta Batasan dan Keunggulan

https://tentangdata.wordpress.com/2015/09/16/knn-perhitungan-jarak-serta-keunggulan-dan-batasan/

Haisheng Li et al. (2017)

Feature Matching of Multi-view 3D Models Based on Hash Binary Encoding

Neural Network World. 27. 95-105.

Terima kasih