DEOS 03 - Évaluation de la qualité d'image d'une caméra d'astrophysique

Étudiants:

TOPEZA Florian MISBAH Ayman RENAUD Julie **Encadrantes:**

ESTRIBEAU Magali MIGLIORIN Lucrezia

PLAN

- I. Contexte
- II. Caractérisation électro-optique du capteur CCD
- III. Évaluation de la qualité de l'image

I. Contexte

FIG 1: Banc optique

EVALUATION QUALITÉ IMAGE

CONCLUSION 2

CARACTÉRISATION

CONTEXTE

II. Caractérisation électro-optique du capteur CCD

FTEO: Fonction de Transfert Électro - Optique

FIG 3 : montage de la FTEO

0.1

0.1

0.2

FIG 4: Courbe FTEO

0.3

Intensité (mA)

0.4

0.5

0.6

Régression linéaire

CONTEXTE

CARACTÉRISATION

EVALUATION QUALITÉ IMAGE

Tous les points à moins de 5% du modèle linéaire, mais pas à moins de 1%.

Smearing

TOPEZA - MISBAH - RENAUD

Pas de Smearing

12

EVALUATION QUALITÉ IMAGE

Influence du binning sur la réponse du capteur

CARACTÉRISATION

CONCLUSION 2

CONTEXTE

4x4 : temps d'intégration moins long, mais résolution moindre

5

10

15

CONCLUSION 1

0.15

0.145

FIG 5 : Courant d'obscurité

20

Temps d'intégration (s)

25

30

35

40

EVALUATION QUALITÉ IMAGE

CONCLUSION 2

capteur chaud

CARACTÉRISATION

EVALUATION QUALITÉ IMAGE

CARACTÉRISATION CONCLUSION 1

Conclusion 1

TOPEZA - MISBAH - RENAUD

III. Évaluation de la qualité de l'image

EVALUATION QUALITÉ IMAGE

III.Evaluation de la qualité de l'image

CARACTÉRISATION CONCLUSION 1

FIG 6 : Montage expérimental

CONCLUSION 2

CONTEXTE

La mire

FIG 7 : La mire négative USAF 1951

Focalisation

CONTEXTE

CARACTÉRISATION

EVALUATION QUALITÉ IMAGE

FIG 8 : Premières images en binning 2x2

EVALUATION QUALITÉ IMAGE

FIG 9 : Smearing sur l'image de la mire

CONCLUSION 2

CONTEXTE

Smearing

CARACTÉRISATION

22

Contraste (1)

CONTEXTE

CARACTÉRISATION

EVALUATION QUALITÉ IMAGE

Abscisse des colonnes sur l'image

CONCLUSION 1

EVALUATION QUALITÉ IMAGE

CARACTÉRISATION

Abscisse des colonnes sur l'image

CONTEXTE

Binning = regroupement de pixels = diminution du contraste TOPEZA - MISBAH - RENAUD

CONTEXTE

CARACTÉRISATION

EVALUATION QUALITÉ IMAGE

EVALUATION QUALITÉ IMAGE

CONCLUSION 2

CARACTÉRISATION

Compromis entre temps d'intégration et résolution selon le contexte

EVALUATION QUALITÉ IMAGE

CARACTÉRISATION CONCLUSION 1

luminosité mais diminution de la résolution

CONCLUSION 2

Conclusion 2

Remerciements

Magalie Estribeau et Lucrezia Migliorin pour leur encadrement Les équipes techniques du DEOS qui ont mis en place la caméra

Questions?

28

Annexe 1 - Conversion ADU en V

Signal (V) = Signal(ADU)
$$\times \frac{\text{Plage entrée CAN (V)}}{(2^{\text{Nbits CAN}} - 1) \times \text{Gain}}$$

Annexe 2 - FTEO, ordonnée en ADU

30

Annexe 3 - Courant d'obscurité, ordonnée en ADU

