Worksheet Section 1.6

 $_$ function eventually dominates every $_$ **Problem 1.** (a) Every exponential _

- (b) Consider the rational function $r(x) = \frac{p(x)}{q(x)}$. If the polynomials p(x) and q(x) have no common zeroes, then:
 - Zeros of p(x) give rise to _____
 - Zeros of q(x) give rise to ____
- (c) When does r(x) have an horizontal asymptote?

Problem 2. Which function dominates as $x \to \infty$?

- (a) e^x or $10^{1000} \ln(x)$ (b) $1000x^4$ or $0.2x^5$ (c) $10e^{0.1x}$ or $5000x^2$
- (d) $100x^5$ or 1.05^x (e) x^4 or $\ln(x)$ (f) e^x or 2.71^x

Problem 3. Which of the following functions have the given properties?

- (a) $y = \frac{x^2 2}{x^2 + 2}$ (b) $y = \frac{x^2 + 2}{x^2 2}$ (c) $y = (x 1)(1 x)(x + 1)^2$

- (d) $y = x^3 x$ (e) $y = x \frac{1}{x}$ (f) $y = (x^2 2)(x^2 + 2)$
- (i) A polynomial of degree 3.
- (ii) A polynomial of degree 4.
- (iii) A rational function that is not a polynomial.
- (iv) Exactly two distinct zeros.
- (v) Exactly one vertical asymptote.
- (vi) More than two distinct zeros.
- (vii) Exactly two vertical asymptotes.
- (viii) A horizontal asymptote.

Problem 4. (1.6 #41–44) Assuming the window is large enough to show end behavior, identify the graph as that of a rational function, exponential function, or logarithmic function.

41.

42.

44.

Figure 1.90

Figure 1.91

43.

Figure 1.92

Figure 1.93

Problem 5. (Fall 2017 Exam 1) Consider the rational function r defined by

$$r(x) = \frac{3(x - \sqrt{2})(\pi x + 7)^2(x + 1)}{(x + 1)(x - \sqrt{3})}.$$

For all of the following parts of this problem, leave your answers in exact form.

- (a) What is the domain of r(x)?
- (b) Find the equations of all vertical asymptotes of r(x). If there are none, write none.
- (c) Let $p(x) = x^2 + 1.2x 5$. Find the equations of all horizontal asymptotes of $\frac{r(x)}{p(x)}$. If there are none, write NONE. Show your work or reasoning to justify your answer.

Problem 6. (Winter 2017 Exam 1) A group of students planted a pine tree and an oak tree alongside the Diag. Let P(t) and O(t) be the height (in feet) of the pine and the oak t years after they were planted, where

$$P(t) = 170 - 165A^{-0.02t}$$
 and $O(t) = \frac{140}{2 + 100e^{-0.3t}}$

where A > 1 is a constant.

- (a) How tall (in feet) were each of the trees when they were planted?
- (b) Ten years after the trees were planted, the height of the pine was 38 ft. Find the value of A. Find your answer algebraically and show all your work.
- (c) How many years after being planted does it take the oak to be 38 ft? Find your answer algebraically and show all your work.

Problem 7. Use a graphing calculator or Desmos to graph $y = x^4$ and $y = 3^x$. Determine approximate domains and ranges that give each of the graphs in the figure below.

