There are **TWENTY FIVE problems** in all, each carrying **4 marks**.

There are **THREE** types of problems:

- 1. For each of the problems 1 to 12, **indicate your choice** by mentioning **one of the letter (a) to (d) only**. There is no need to provide an explanation.
- 2. For each of the problems 13 to 22, **provide suitable text only for the blank space** so that the resulting statement is correct. There is no need to provide an explanation.
- 3. For each of the problems 23 to 25, provide a solution. You must show **all steps** of your solution.

1. (a).

5. (d).

9. (b).

2. (c).

6. (c).

10. (b).

3. (d).

7. (d).

11. (a).

4. (d).

8. (b).

12. (a).

13. [4 MARKS]

(a) 64.

(b) $3^2 \cdot 7$.

Marking Scheme: 2 marks for each part. There are no partial marks.

14. [4 MARKS]

Let the universe of discourse for x, y, and z be **Z**. Let P(x, y, z) denote $xy^2 = z$. A **counterexample** to $\forall x \ \forall z \ \exists y \ P(x, y, z)$ is ______.

SOLUTION.

A counterexample is a negation of the given logical expression. There are many possible counterexamples. For example, a combination of x and z that makes z/x a negative integer or a noninteger rational number would work.

```
x = 1 \text{ and } z = -1.
x = 2 \text{ and } z = 3.
```

Marking Scheme: There are partial marks. Providing specific values for x, y, and z such that $xy^2 \neq z$ is not a counterexample because that would mean that $xy^2 \neq z$ for that specific y. There is deduction of 2 marks if the value of y is "hardwired".

15. [4 MARKS]

5.

Marking Scheme: There are no partial marks.

16. [4 MARKS]

64.

Marking Scheme: There are no partial marks.

17. [4 MARKS]

n = 2.

Marking Scheme: There are no partial marks.

18. [4 MARKS]

$$S = \{x \mid -1 \le x < 0 \lor 0 < x \le 1\}.$$

Marking Scheme: There are partial marks. 2 marks if any one of two correct intervals of *S* is given.

19. [4 MARKS]

3.

Marking Scheme: There are no partial marks.

20. [4 MARKS]

0 or 2.

Marking Scheme: There are partial marks. 2 marks for each correct answer.

21. [4 MARKS]

{}.

Marking Scheme: There are no partial marks.

22. [4 MARKS]

 $\mathbf{Z} \times \mathbf{Z}$.

Marking Scheme: There are no partial marks.

23. [4 MARKS]

(a) The equivalence classes of *R*:

$$[2]_R = \{2, 7, 12\}.$$

$$[3]_R = \{3, 8\}.$$

$$[5]_R = \{5, 10\}.$$

(b) {}.

Marking Scheme: 1 marks for each correct equivalence class in (a). 1 mark for (b). There are no partial marks.

24. [4 MARKS]

(a) For
$$n = 0$$
. $f_{3\cdot 0} = f_0 = 0$.

(b) For
$$n > 0$$
. $f_{3n} = f_{3n-1} + f_{3n-2} = (f_{3n-2} + f_{3n-3}) + f_{3n-2} = 2f_{3n-2} + f_{3n-3} = 2f_{3n-2} + f_{3(n-1)}$.

Marking Scheme: 1 mark for (a) and 3 marks for (b) for each correct value or expression. There are no partial marks.

25. [4 MARKS]

(a) 20 12 18

or

- (b) It does not exist.
- (c) 2.
- (d) It is not a lattice.

Marking Scheme: 1 marks for each part. There are no partial marks.