AVL: BST WITH $|H_L - H_R| = 0, I$

FIBONACCI SERIES & RABBITS

• 2 rabbit beget 2 rabbit every month after one month!

$$\bullet$$
 $F_K = (F_{K-1} - F_{K-2}) + 2 F_{K-2} = F_{K-1} + F_{K-2}$

• with
$$F_0 = F_1 = I$$

• 1,1,2,3,5,8,13,21,.... Fibonacci:
$$F_k = F_{k-1} + F_{k-2}$$

- Bad Recursion: $\Omega(C^N)$ with C = 1.61...
 - Exponential T(N) = T(N-1) + T(N-2) + 1
 - \bullet T(N) > F_N > (2)N/2
- Iteration: $\Theta(N)$
- Math $\Theta(1)$! Try $F_k = x^k$ find two homogeneous solutions

to characteristic equation.

$$F_k = \frac{1}{\sqrt{5}} \left[\left(\frac{1 + \sqrt{5}}{2} \right)^{k+1} - \left(\frac{1 - \sqrt{5}}{2} \right)^{k+1} \right] \qquad \frac{1 + \sqrt{5}}{2} \simeq 1.61803$$

$$\frac{1+\sqrt{5}}{2} \simeq 1.61803$$

WORST CASE HEIGHT H(N) FOR AVL

Minimum # of Nodes (see Fig 4.33):

$$N(H) = N(H-1) + N(H-2) + 1 > N(H-1) + N(H-2)$$

- Almost Fibonacci: $F_k = F_{k-1} + F_{k-2}$
 - So N(H) > F_H ~ c^H with $c = (1 + 5^{1/2})/2 = 1.618034$
 - ◆Or H < log(N)/log(c) 1.440420 $log_2(N)$ = 2.078 ln(N) = 4.784 $log_{10}(N)$

(Better estimate: $H = 1.44 \log_2(N+2) - 0.328$

ZIG-ZIG INSERTION FOR LL OR RR:

- Insert New Key along path going Left and Left again into A:
- This cause violation of AVL balance.
- k_2 is lowest node failing AVL balance.
- Single rotation of $k_1 \rightarrow k_2$ restores AVL balance

ZIG-ZAG INSERTION FOR LR

- Insert New Key along path going Left and then Right into B:
- This cause violation of AVL balance.
- k₃ is lowest node failing AVL balance.
- Double rotation of $k_1 \rightarrow k_2 \rightarrow k_3$ restores AVL blance

