«Московский государственный университет геодезии и картографии»

ФАКУЛЬТЕТ ДИСТАНЦИОННЫХ ФОРМ ОБУЧЕНИЯ ЗАОЧНОЕ ОТДЕЛЕНИЕ

КОНТРОЛЬНАЯ РАБОТА № 5
По курсу «Прикладная геодезия»

студента заочного отделения ФДФО

специальности Прикладная Геодезия

Чекина Олега Владимировича

Шифр 60П-156 Вариант № 11

Домашний адрес (индекс), мобильный телефон:

107023, г. Москва, ул. 9-я Рота, д.2, корп.1.

Оглавление

онтрольная работа №5	3
Исходные данные	
Вычисление приращений координат точек хода подземной основной полигонометрии и отвеса скв. 13 (таблица 1)	
Вычисление невязок t и U	
Определение невязок t и U графическим методом рис,2	
Вычисление размеров ожидаемого влияния источников ошибок на смещение конечной точки подземного полигонометрического хода:	
Вычисление поправки в исходный дирекционный угол	
Вычисление поправок в измеренные углы приведены в таблице 2	
Поправки V_{si} в длины линий, $V_{\Delta xi}$ и $V_{\Delta yi}$ в приращение координат, собраны в таблицу 1 , вычислялись по формулам:	
Оценка точности ориентирования подземных выработок методом двух шахт:	4
Список литературы	8

Контрольная работа №5

Ориентирование подземных выработок методом двух шахт.

Исходные данные

Схема хода подземной полигонометрии представлена на рис.1.

Координаты точки 428 у ствола

 $X_{\text{CTB.428}} = 7478,220 \text{ M}$

 $Y_{\text{CTB},428} = 5848,036 \text{ M}$

Дирекционный угол приствольной линии 428-1101

 $\alpha_{428-1101} = 202^{\circ} 21' 09"$

Координаты отвеса скважины №13, определённые на поверхности:

 $X_{\Pi.13} = 7216,099 \text{ M}$

 $Y_{\Pi,13} = 6441,521 \text{ M}$

Вычисление приращений координат точек хода подземной основной полигонометрии и отвеса скв. 13 (таблица 1)

Вычисление невязок t и U

$$t = \frac{f_y[\Delta y] + f_x[\Delta x]}{L} = \frac{(0.057)(593.542) + (-0.003)(-262.124)}{651.223} = 0.053\text{m},$$

$$u = \frac{f_y[\Delta x] - f_x[\Delta y]}{L} = \frac{(0.057)(-262.124) - (-0.003)(593.542)}{651.223} = -0.020\text{m},$$

$$L = [S] - (S_1 + S_{15}) = 712.675 - 61.452 = 651.223\text{m},$$

$$f_S \sqrt{t^2 + u^2} = 0.057\text{m},$$

Определение невязок t и U графическим методом рис.2

Вычисление размеров ожидаемого влияния источников ошибок на смещение конечной точки подземного полигонометрического хода:

$$m_{u1} = \frac{L}{45000} = 14 \text{мм},$$

$$m_{u2} = \frac{m_{\beta}}{\rho''} L \sqrt{\frac{n+1.5}{3}} = \frac{4^{"} \cdot 651223}{206265^{"}} \sqrt{\frac{16,5}{3}} = 30 \text{мм},$$

$$m_{u3} = \frac{m_{0}}{\rho^{"}} L = \frac{8^{"} \cdot 651223}{206265^{"}} = 25 \text{мм},$$

$$m_{u} = \sqrt{m_{u1}^{2} + m_{u2}^{2} + m_{u3}^{2}} = \sqrt{196 + 900 + 625} = 41 \text{мм},$$

Вычисление поправки в исходный дирекционный угол

$$U_3 = U \cdot \frac{m_{u3}^2}{m_u^2} = -20 \cdot \frac{625}{1681} = -8$$
mm,

$$\Delta \alpha = \frac{-U_3}{L} \rho = \frac{-(-8) \cdot 206265}{651223} = 2.4$$
"

Вычисление поправок в измеренные углы приведены в таблице 2.

$$U - U_3 = -20.0 - (-8) = -12$$
 мм

$$\omega = -\frac{U - U_3}{L} \rho^{"} = \frac{-12 \cdot 206265}{651223} = 4.1^{"}$$

Поправки V_{si} в длины линий, $V_{\Delta xi}$ и $V_{\Delta yi}$ в приращение координат, собраны в таблицу 1, вычислялись по формулам:

$$V_{si} = -\frac{t}{L}S_i,$$

$$V_{\Delta xi} = V_{Si} \sin \alpha_i - \frac{\Delta y_i \cdot v_{\alpha i}^{"}}{\rho^{"}},$$

$$V_{\Delta yi} = V_{Si} \sin \alpha_i + \frac{\Delta x_i \cdot v_{\alpha i}^{"}}{\rho^{"}}$$

Оценка точности ориентирования подземных выработок методом двух шахт:

Ошибку ориентирования по способу двух шахт можно подсчитать по формуле:

$$\mathbf{M}_0 = \sqrt{m_1^2 + m_2^2 + m_3^2 + m_3^2 + m_5^2 + m_6^2} \,,$$

где:

 m_1 – ср.кв. ошибка созданного геодезического обоснования на поверхности, которую можно оценить по формуле:

$$m_1 = \frac{1}{45000}
ho^{"} = 4.6$$
 ,

 m_2 и m_3 — ошибки измерений на поверхности в ходах подходной полигонометрии, соответственно у ствола и у скважины, определяется по формуле:

$$m_2 = m_3 = \frac{D\rho^{"}}{15000L} = \frac{100000 \cdot 206265}{15000 \cdot 651223} = 2.1$$
,

гле

D — длина подходного полигонометрического хода (в соответствии с заданием принята равной 100м); L — длина подземного полигонометрического хода.

 m_4 и m_5 — ошибки измерений в ходах подземной полигонометрии у ствола и у скважины, определяется по формуле:

$$m_4 = m_5 = \frac{l\rho^{"}}{15000L} = \frac{61452 \cdot 206265}{15000 \cdot 651223} = 1.3$$
,

где

l – длина подходного подземного полигонометрического хода.

 m_6 – ошибки измерений в подземном полигонометрическом ходе, определяется по формуле:

$$m_6 = m_\beta \sqrt{\frac{n+1.5}{3}} = 4$$
" $\cdot \sqrt{\frac{16.5}{3}} = 9.3$

где

 m_{β} – ср.кв. ошибка измеренного угла подземного хода основной полигонометрии, в соответствии с заданием принята равной 4".

Тогда:

$$M_0 = \sqrt{21.16 + 4.41 + 4.41 + 1.69 + 1.69 + 86.49} = 11$$

Таблица 1. Вычисление координат точек подземной полигонометрии

		Таблица 1. Вы		•	очек под Г	земнои і	полигономе Г	трии		
№ точек	Измеренные углы (левые)	Дирекционные	Длины линий (м)	cos α	ΔX	ΔY	$v_{\Delta X}$ (MM)	$\nu_{\Delta Y}$ (MM)	Х (м)	Y (m)
120	углы (левые)	углы α 2.4	линии (м)	sin α			0	0	7478,220	5848,03
ств.428		202° 21' 9"	45,216	-0,924862	-41,819	-17,196	0,000200082	-0,00048658	7478,220	3646,03
	3.7	202 21 9	43,210	-0,380304	-41,819	-17,190	0,000200082	-0,00048038		
1101	92° 14' 20"		-4.2	-0,380304	-		2	-4	7436,401	5920.94
1101	92° 14 20	6,1	50,829	-0,416144	-21,152	46,219	1,7		/436,401	5830,840
	3,1	114° 35' 29"	30,829	0,909299	-21,132	40,219	1,/	-3,8		
1103	181° 4' 53"	114 33 29	-4	0,909299			2	-4	7415,249	5877,05
1103	101 4 33	9,2	49,235	-0,433231	-21,330	44,375	1,7	-3,6	7413,249	3677,03
	2,6	115° 40' 22"	49,233	0,901283	-21,330	44,373	1,7	-3,0		
1105	179° 33' 17"	113 40 22	-4,1	0,901283			2	4	7393,919	5921,43
1103	1/9 33 1/	11.8	50,113	-0,426214	-21,359	45,333	1,7	-4 -3,7	7393,919	3921,43
	2	11,8 115° 13' 39"	30,113	0,904623	-21,339	43,333	1,7	-5,7		
1107	180° 56' 43"	113 13 39	-4,1	0,904023			2	-4	7372,560	5966,76
1107	180 30 43	13,8		-0,441079	22 177	45 102			7372,300	3900,70
	1.4	116° 10' 22"	50,278	0,897468	-22,177	45,123	1,8	-3,7		
1109	1,4 179° 28' 57"	110 10 22	-4.1	0,897408			2	-4	7350,384	6011,89
1109	179 28 37	15,2	50,296	-0,432956	-21,776	45,338	1,8	-3,7	/330,384	0011,89
	0,9	115° 39' 19"	30,290	0,901415	-21,770	43,338	1,0	-5,7		
1111	182° 15' 39"	113 39 19	4.1	0,901413	-		2	-4	7220 (00	(057.00
1111	182 15 39	16,1	-4,1	0.460170	22.220	44.020	1,9		7328,608	6057,22
	0.2		49,827	-0,468178	-23,328	44,029	1,9	-3,6		
1113	0,3 172° 54' 48"	117° 54' 58"	-4.1	0,883634			1	-4	7305,280	6101.25
1115	172 34 48	16,4	49,986	-0,355587	-17,774	46,719	1,5	-3,8	7303,280	6101,25
	-0.3	110° 49' 46"	49,980	0,934643	-1/,//4	40,719	1,3	-3,8		
1115	173° 6' 25"	110 49 40	-4,1	0,934043			1	-4	7287,505	6147,97
1113	1/3 0 23	16,1	50,107	-0,240845	-12,068	48,632	1	-4 -4	1281,303	0147,97
	-0.9	103° 56' 11"	30,107	0,970564	-12,008	46,032	1	-4		
1117	183° 42' 17"	103 30 11	-4,1	0,970304			1	-4	7275,437	6196,60
1117	183 42 17	15.2		0.202054	15 246	47.042			1213,431	0190,00
	1.4	107° 38' 28"	50,309	-0,303054 0,952973	-15,246	47,943	1,2	-3,9		
1119	-1,4 179° 37' 49"	107 38 28	-4.1	0,932973			1	-4	7260,191	6244,55
1119	1/9" 3/ 49	13,8	50,263	-0,296898	-14,923	47,997	1,2	-3,9	7260,191	6244,55
	-2	107° 16' 17"	30,203	0,954909	-14,923	47,997	1,2	-3,9		
1101	179° 47' 18"	107 10 17	4.1	0,934909	-		1	4	7245 269	(202.54
1121	1/9 4/ 18	11.8	-4,1 49,911	-0,293368	-14,642	47,715	1,2	-4 -3,9	7245,268	6292,54
	2.6	11,8 107° 3' 35"	49,911	0,955999	-14,642	47,715	1,2	-3,9		
1123	-2,6 180° 16' 43"	107 3 33	-4.1	0,933999			1	-4	7230,626	6340,26
1123	160 10 43	9.2	49,893	-0,298014	-14,869	47,626	1,2	-3,9	7230,020	0340,20
	-3.1	107° 20' 18"	49,893	0,954562	-14,809	47,020	1,2	-3,9		
1105	-5,1 179° 51' 58"	107 20 18	4.1	0,934302			1	4	7215 757	6207.00
1125	179 31 38	6 1	-4,1 50,176	-0,295782	1/1 0/11	47.021	1,2	-4 -3,9	7215,757	6387,88
	2.7	6,1 107° 12' 16"	50,176		-14,841	47,931	1,2	-5,9		
1107	-3,7 93° 34' 19"	107 12 10	1.2	0,955255			1	1	7200.016	6/25 01
1127	95" 54 19"	2.4	-1,3	0.024072	15 100	5.750	1	1	7200,916	6435,81
		2,4	16,236	0,934972	15,180	5,759	-1,2	-0,5	7016.006	C441.57
скв.13 _Ш		20° 46' 35"		0,354722					7216,096	6441,57
скв. 13_{Π}			1						7216,099	6441,52

$$\Sigma \beta =$$
 [2338,25, 26.0] $\Sigma S =$ 712.675 Σ -262.124 593.542 $\Sigma \upsilon \Delta x$ 17.9 $\Sigma \upsilon \Delta y$ -49.9 $\Sigma \upsilon \beta =$ 0 $\Sigma \upsilon S =$ -54.6 $\delta \Sigma$ -262.127 593.599 ($\Sigma \upsilon \Delta x$) οκρ. 20 ($\Sigma \upsilon \Delta y$) οκρ -53 $fx =$ -0.003 $fy =$ 0.057 $fs =$ 0.057 $fs =$ 1 $fs =$ 1

Таблица 2 Вычисление поправок в измеренные углы

No	n = 13	6[n-2(i-1)	Поправки в	$N_{\underline{0}}$	n = 13	6[n-2(i-1)	Поправки в
точки	i =	$\overline{(n+1)(n+2)}$	левый угол	точки	i =	$\overline{(n+1)(n+2)}$	левый угол
1101	1	0,37	3,7"	1115	8	-0,03	-0,3"
1103	2	0,31	3,1"	1117	9	-0,09	-0,9"
1105	3	0,26	2,6"	1119	10	-0,14	-1,4"
1107	4	0,20	2"	1121	11	-0,20	-2"
1109	5	0,14	1,4"	1123	12	-0,26	-2,6"
1111	6	0,09	0,9"	1125	13	-0,31	-3,1"
1113	7	0,03	0,3"	1127	14	-0,37	-3,7"

	Ф.И.О.	Подпись	Дата	Контрольная №5 По курсу прикладная	ΜИИΓΑυΚ			
Разраб	Чекин О.В.		2020	геодезия	MININI AUN			
Пров				Схема подземной полигонометрии	Лист 1	Листов 1		
Утв				смета подзетной полигонометрии		1:1750		

Список литературы

- 1. Н.Н. Лебедев «Курс инженерной геодезии» М. Недра 1974;
- 2. Авакян В.В. «Лекции по прикладной геодезии» Часть 3;
- 3. Г.П. Левчук, В.Е. Новак, Н.Н. Лебедев «Прикладная геодезия. Геодезические работы при изысканиях и строительстве инженерных сооружений» 1983;
- 4. Авакян В.В. «Лекции по прикладной геодезии» Часть 2;