Adversarial Attacks and Defenses

CPSC680: Trustworthy Deep Learning

Rex Ying

Readings

- Readings are updated on the website (syllabus page)
- Readings:
 - Adversarial Examples: Attacks and Defenses for Deep Learning
 - Review of Adversarial Attacks and Defense

Content

Introduction to Adversarial Attack

Adversarial Attack Types

Evasion Attack and Defense

Poisoning Attack and Defense

Exploratory Attack and Defense

Content

Introduction to Adversarial Attack

Adversarial Attack Types

Evasion Attack and Defense

Poisoning Attack and Defense

Exploratory Attack and Defense

Deep Learning Performance

- Recent years have seen impressive performance of deep learning models in a variety of applications.
 - Examples: ResNet, AlphaGo, BERT, GPT, AlphaFold ...
- Are these models ready to be deployed in real world?

Autonomous Driving

Malware Detection

Smart Transportation

Adversarial Examples

- Deep convolutional neural networks are vulnerable to adversarial attacks:
 - Imperceptible noise changes the original prediction.

Goodfellow, I., Shlens, J., & Szegedy, C. "Explaining and Harnessing Adversarial Examples."

Adversarial Examples

- Two key characteristics of adversarial attacks
 - The adversarial examples make changes imperceptible to human
 - The prediction results are dramatically altered

Li, Yao, et al. "A Review of Adversarial Attack and Defense for Classification Methods."

 Adversarial examples are also reported in natural language, graph-structured data, medical image, etc.

Adversarial Examples in Object Detection

- A person wearing an adversarial patch is not detected by a person detector model using YOLOv2.
 - The adversaries can use it to bypass the surveillance cameras.

Thys et al. "Fooling automated surveillance cameras: adversarial patches to attack person detection"

Adversarial Examples in Object Detection

 An adversary adds adversarial patches into the STOP sign that causes the DL model of a self-driving car to misclassify it as a Speed Limit 45 sign

Eykholt et al. "Robust Physical-World Attacks on Deep Learning Visual Classification."

Adversarial Examples in Natural Language

Examples of sentiment analysis:

Original Input	Connoisseurs of Chinese film will be pleased to discover that Tian's meticulous talent has not withered during his enforced hiatus.	Prediction: Positive (77%)
Adversarial example [Visually similar]	Aonnoisseurs of Chinese film will be pleased to discover that Tian's meticulous talent has not withered during his enforced hiatus.	Prediction: Negative (52%)
Adversarial example [Semantically similar]	Connoisseurs of Chinese <u>footage</u> will be pleased to discover that Tian's meticulous talent has not withered during his enforced hiatus.	Prediction: Negative (54%)

Morris, John X., et al. "Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp."

- Adversarial examples are very "similar" to the original input:
 - Visually similar: a few characters change away; even just "typos"
 - Semantically similar: semantically indistinguishable from the original input; paraphrase of original input
- Similar adversarial examples cause different prediction from the model

Adversarial Examples in Graphs

Jin, Wei, et al. "Adversarial Attacks and Defenses on Graphs: A Review, A Tool and Empirical Studies."

- Edge-level perturbation:
 - adding / removing / rewiring edges / manipulating the edge attributes
- Node-level perturbation:
 - adding / removing nodes / manipulating the features of target nodes
- Cause dramatically different results in node-level/edge-level/graph-level tasks

Adversarial Examples – Medical Applications

medical dataset <u>Fundoscopy</u>, <u>Chest X-Ray</u>, <u>Dermoscopy</u>

Implication of Adversarial Examples

- The existence of adversarial examples prevents the reliable deployment of deep learning models to the real world.
 - Adversaries may try to actively hack a vulnerable deep learning model.
 - The model performance can become much worse than we expect.
- Deep learning models are often not robust.
 - It is an active area of research to make these models robust against adversarial examples.

Content

Introduction to Adversarial Attack

Adversarial Attack Types

Evasion Attack and Defense

Poisoning Attack and Defense

Exploratory Attack and Defense

Goals of Attacks (1)

Untargeted attacks

- The predicted label of adversarial example can be arbitrary except the original one.
- Ensure $\widehat{\mathbf{y}}' \neq \widehat{\mathbf{y}}$

Targeted attacks:

- Misguide deep neural networks to a specific class y^{target}.
- Ensure $\widehat{y'} = y^{\text{target}} \neq \widehat{y}$

Types of Attacks (1)

- Different Adversary Knowledge:
 - White-box Attack:
 - The attacker has access to model architecture and parameters
 - Gradient-based methods are straightforward and effective

Reverse direction to maximize loss:

$$L(x) = CrossEntropy(y', \hat{y})$$

 y' is the model's output after attack;
 \hat{y} is the original label

- Black-box Attack:
- The attacker has no access to the model's parameters
- The type of architecture might be known
- A different model or no model is used to generate adversarial examples in the hopes that these will transfer to the target model

Types of Attacks (2)

Different Adversary Strategy:

- White-box Attack:
- Based on the gradient of the network loss function w.r.t. to the input
- Instead of optimizing parameters, white-box attack optimizes the input via gradient descend
- Easy to attack
- Black-box Attack:
- Gain restricted knowledge by providing a series of carefully crafted inputs and observing network's outputs.
- Usually build models locally that are functionally close to target model
- Relatively hard to attack

Adversarial Attack Methods

Evasion Attack:

- Add malicious perturbation to samples during testing phase
- Do not affect the training data

Poisoning Attack:

 Contaminate the training data by carefully modifying samples

• Exploratory Attack:

 Given black-box access of the model, try to gain knowledge by analyzing the input and output information of the model

Evasion (inference stage)

What are some use cases?

Content

Introduction to Adversarial Attack

Adversarial Attack Types

Evasion Attacks and Defenses

Poisoning Attacks and Defenses

Exploratory Attacks and Defenses

Evasion Attack (1)

- In evasion attack, malicious samples are modified during testing phase
- No influence over the training dataset

• Goal: create a manipulated image (adversarial example) that is *similar* to the original image but causes a *different prediction* by the ML model.

Evasion Attack (2)

• **Goal**: create a manipulated image (adversarial example) that is **similar** to the original image but causes a **different prediction** by the ML model.

• Attack objective: $x^* = \arg\max_{x'} \mathcal{L}(x')$ $s.t. \ d(x',x_0) \le \varepsilon$ Objective function ensuring different prediction $\frac{d(x',x_0)}{x_0 \text{ ensuring similarity}}$ $x_0 \text{ ensuring similarity}$

Evasion Attack (2)

• Goal: create a manipulated image (adversarial example) that is *similar* to the original image but causes a *different prediction* by the ML model.

• Attack objective: $x^* = \arg\max_{x'} \mathcal{L}(x')$ $s.t. \ d(x', x_0) \le \varepsilon$ **Objective function ensuring different prediction**

- Non-targeted: $\mathcal{L}(x') = CE(f(x'), \hat{y})$
- Targeted: $\mathcal{L}(x') = CE(f(x'), \hat{y}) CE(f(x'), y^{target})$

▶ push \widehat{y}' to be far away from \widehat{y} but close to y^{target}

CE: CrossEntropy Loss

Evasion Attack (2) - Imperceptible Perturbation

• Perturbation:
$$x_0 + \delta = x'$$

$$\begin{bmatrix} x_{11} & \cdots & x_{n1} \\ \vdots & \ddots & \vdots \\ x_{1n} & \cdots & x_{nn} \end{bmatrix} + \begin{bmatrix} \Delta x_{11} & \cdots & \Delta x_{n1} \\ \vdots & \ddots & \vdots \\ \Delta x_{1n} & \cdots & \Delta x_{nn} \end{bmatrix} = \begin{bmatrix} x'_{11} & \cdots & x'_{n1} \\ \vdots & \ddots & \vdots \\ x'_{1n} & \cdots & x'_{nn} \end{bmatrix}$$

- L_2 norm: $d(\mathbf{x_0}, \mathbf{x'}) = \|\boldsymbol{\delta}\|_2 = ((\Delta x_{11})^2 + \dots + (\Delta x_{nn})^2)^{\frac{1}{2}}$
- L_{∞} norm: $d(x_0, x') = ||\delta||_{\infty} = \max\{|\Delta x_{11}|, ..., |\Delta x_{nn}|\}$
- For human perception, L_{∞} norm usually better captures the perturbation.

2-dimensional vectors with norm 1

Evasion Attack (2)

- Goal: create a manipulated image (adversarial example) that is *similar* to the original image but causes a *different prediction* by the ML model.
- Consider the setting: non-targeted attack, L_{∞} -norm perturbation, the optimization problem becomes:

$$x^* = \arg\max_{\delta} CE(f(x_0 + \delta), \hat{y})$$

s.t. $||\delta||_{\infty} \le \varepsilon$

How to solve this optimization when f is known / unknown?

White-box: having access to model architecture and gradients

Black-box: queries only

White-Box Evasion Attack: FGSM

• Fast Gradient Sign Method (FGSM):

Gradient ascent away from y^{true} class

$$x^* = x_0 + \varepsilon \cdot sign(\nabla_x \mathcal{L}(f(x), y^{true}))$$

Target Class Method:

Targeted attack

Gradient descent toward from y^{target} class

$$x^* = x_0 - \varepsilon \cdot sign(\nabla_x \mathcal{L}(f(x), y^{target}))$$

 x^* is on the vertex or midpoint of one side

- x_0 denotes the original sample, $f(\cdot)$ denotes **logits output**
- Sign(t) = 1 if t > 0, otherwise Sign(t) = -1
- ε ensures that $||x^* x_0||_{\infty} \le \varepsilon$, perturbation within ε -box around the original sample

How many possible perturbations can there be?

White-Box Evasion Attack: FGSM

Fast Gradient Sign Method (FGSM):

Gradient ascent away from y^{true} class

$$x^* = x_0 + \varepsilon \cdot sign(\nabla_x \mathcal{L}(f(x), y^{true}))$$

Target Class Method:

Targeted attack

Gradient descent toward from y^{target} class

$$x^* = x_0 - \varepsilon \cdot sign(\nabla_x \mathcal{L}(f(x), y^{target}))$$

x* is on the vertex or midpoint of an edge

Theorem: If f is a **binary linear classifier**, FGSM is the **exact optimal evasion attack** under L_{∞} constraint

Why $sign(\cdot)$ function?

The gradient is zero or undefined everywhere → harder to defend Small gradient → precision problem

Large gradient → problematic for max norm constraint

White-Box Evasion Attack: FGSM

Example

- FGSM is one-step attack
- Pros: Fast, easier to compute

Cons: Not very effective for highly non-linear models, Require large ϵ to be effective (human-perceptible)

White-Box Evasion Attack: PGD ~ Iterative FGSM

Projected Gradient Descent (PGD)

Iterative approach

$$x_0^* = x_0$$
; $x_{n+1}^* = proj_{x,\epsilon}(x_n^* + \alpha sign(\nabla_x \mathcal{L}(f(x_n^*), y^{true})))$

• x denotes the original sample, α ($typically < \epsilon$) is the step size.

•
$$proj_{x_i,\epsilon}(t) = \begin{cases} x_i - \varepsilon & \text{if} & t \leq x_i - \varepsilon \\ t & \text{if} & x_i - \varepsilon < t < x_i + \varepsilon, \text{ for each feature } x_i \text{ in } x \\ x_i + \varepsilon & \text{if} & t \geq x_i + \varepsilon \end{cases}$$

 PGD iteratively maximize the adversarial objective within restricted perturbation

White-Box Evasion Attack: PGD ~ Iterative FGSM

Examples

Still not "imperceptible"?

Fewer artifacts than FGSM

Prediction: baboon

Adversarial image

Prediction: Egyptian cat

Egyptian cat

Image credit: https://blog.floydhub.com/introduction-to-adversarial-machine-learning/

 FGSM & PGD: Find an adversarial example that maximizes the likelihood of being misclassified.

$$x^* = \arg\max_{\delta} CE(f(x_0 + \delta), \hat{y})$$

$$s.t. ||\delta||_{\infty} \le \varepsilon$$
norm-bounded attack

 DeepFool: Find an adversarial example with minimal perturbation to fool the classifier.

$$x^* = \left[\frac{\arg\min_{\delta} ||\delta||_{\infty}}{s.t. \ f(x_0 + \delta) \neq \hat{y}} \right]$$

norm-unbounded attack

How to solve?

- If f is a linear classifier?
- A simple (closed-form) projection would do the job.

How to extend this idea to deep neural networks?

- If f is not a linear classifier?
- An *iterative* projection with linear approximation would do the job.

Algorithm

1. Linearize the classifier function around the current input x_i .

$$f(x_{i+1}) = f(x_i) + \nabla f(x_i)^{\mathsf{T}} (x_{i+1} - x_i)$$

2. Project x_i onto the approximated hyperplane

$$x_{i+1} = x_i - \frac{f(x_i)}{\|\nabla f(x_i)\|_2^2} \nabla f(x_i)$$

Repeat (1) and (2) until
$$f(x_i)$$
 ex $\neq \pi g$, \hat{y} SC 471/571: Trustworthy Deep Learning

$$x^* = \arg\min_{\delta} ||\delta||_{\infty}$$
s.t. $f(x_0 + \delta) \neq \hat{y}$

- If f is not a linear classifier?
- An *iterative* projection with linear approximation would do the job.

Comparing DeepFool and FGSM: Both flip the model prediction, but DeepFool requires smaller perturbation

White-Box Evasion Attack: Carlini & Wagner

Recall the optimization problem for targeted attack

This constraint is highly non-linear → hard to solve

White-Box Evasion Attack: Carlini & Wagner

Recall the optimization problem for targeted attack

$$x^* = \arg\min_{x'} d(x_0, x')$$

$$s. t. F(x') \le 0$$

where
$$F(x') = \max_{i \neq y \text{target}} (Z(x')_i) - Z(x')_{y \text{target}}$$

the difference in the logits between *the target class* and *the closest-to-the-target class* (a.k.a. *logit margin loss*) still constrained optimization \rightarrow Lagrange multiplier

White-Box Evasion Attack: Carlini & Wagner

Recall the optimization problem for targeted attack

$$x^* = \arg\min_{x'} d(x_0, x')$$

$$s.t. F(x') \le 0$$

Reformulation using Lagrange multipliers

$$x^* = \arg\min_{x'} \ d(x_0, x') + \lambda F(x')$$

where $F(x') = \max_{i \neq y \text{target}} (Z(x')_i) - Z(x')_{y \text{target}}$

Easier to solve by standard solver (ADAM)

Rex Ying, CPSC 471/571: Trustworthy Deep Learning

C-W Attack

Perturbation on MNIST

What are the characteristics of each type of perturbation?

White-Box Evasion Attack: Carlini & Wagner

- Mean is the perturbation size (the smaller, the better)
 - Attacking Inception V3 on Imagenet
 - Untargeted: Untargeted attack
 - Average Case: Select the target uniformly at random
 - Least Likely: select the most difficult class as the target to attack

	Untargeted		Average Case		Least Likely	
	Mean	Prob	Mean	Prob	Mean	Prob
CW	0.004	100%	0.006	100%	0.01	100%
FGSM	0.004	100%	0.064	2%	-	0%
PGD	0.004	100%	0.01	99%	0.03	98%

White-Box Evasion Attack: JSMA

- Jacobian-based Saliency Map Attack (JSMA)
- Assuming that the output of f is a vector of class probabilities

Saliency Map :
$$\nabla f(x) = \begin{bmatrix} \frac{\partial f_1(x)}{\partial x_1} & \cdots & \frac{\partial f_1(x)}{\partial x_M} \\ \vdots & \ddots & \vdots \\ \frac{\partial f_N(x)}{\partial x_1} & \cdots & \frac{\partial f_N(x)}{\partial x_M} \end{bmatrix}$$

• $\nabla f(x) \in \mathbb{R}^{N \times M}$

 $\nabla f(x)$ Jacobian matrix

- N is the number of classes, M is the number of features of x
- Features with large saliency values have large impact on the output when perturbed
- Incurs high computational cost to compute the Saliency Map

White-Box Evasion Attack: JSMA

- Jacobian-based Saliency Map Attack (JSMA)
- $\nabla f(x)$ Adversarial saliency maps can be used to indicate which features an adversary should perturb in order to impact the predicted class by the model
 - Identify the most impactful features in the saliency map and then perturb them by θ value in order to realize the adversary's goal (e.g., $x_i \rightarrow x_i \theta$)
 - The algorithm perturbs limited number of impactful features at each step

Another example where explainability interacts with adversarial robustness

- Assuming the adversaries do not have access to the model's internal information (architecture, gradient, etc.)
- The adversaries can only query inputs and observe corresponding outputs

- Gradient Estimation Attack (GEA):
 - Estimate the gradient w.r.t. the input from (input, output) queries via finite difference
 - Use the estimated gradient to perform first-order attacks (e.g., FGSM, PGD, C&W)
- Finite Difference (FD) estimates the gradient of a function f w.r.t. input $x \in \mathbb{R}^d$ by

$$FD_{x}(f(x), \delta) = \begin{bmatrix} \frac{f(x+\delta e_{1}) - f(x-\delta e_{1})}{2\delta} \\ \dots \\ \frac{f(x+\delta e_{d}) - f(x-\delta e_{d})}{2\delta} \end{bmatrix}$$

where δ is a small scalar (e.g., 0.01) and e_i is the standard basis vector w.r.t. pixel i.

• Relation to gradient: $\lim_{\delta \to 0} \mathrm{FD}_x(f(x), \delta) \approx \nabla_x f(x)$

Left-hand, right-hand derivatives

- Gradient Estimation Attack (GEA):
 - Estimate the gradient w.r.t. the input from (input, output) queries via finite difference
 - Use the estimated gradient to perform first-order attacks (e.g., FGSM, PGD, C&W)
- Assuming the loss function is the cross-entropy loss we have

$$\mathcal{L}(f(x), y) = \operatorname{CE}(f(x), y) = -\log f(x)_{y}$$

$$\Rightarrow \nabla_{x} \mathcal{L}(f(x), y) = -\frac{\nabla_{x} f(x)_{y}}{f(x)_{y}} = -\frac{\operatorname{FD}_{x}(f(x)_{y}, \delta)}{f(x)_{y}}$$

Approximated FGSM:

$$x^* = x + \epsilon \cdot \operatorname{sign}\left(-\frac{\operatorname{FD}_x(f(x)_y, \delta)}{f(x)_y}\right)$$

- Gradient Estimation Attack (GEA):
 - Estimate the gradient w.r.t. the input from (input, output) queries via finite difference
 - Use the estimated gradient to perform first-order attacks (e.g., FGSM, PGD, C&W)
- Assuming the loss function is the cross-entropy loss we have

$$\mathcal{L}(f(x), y) = \operatorname{CE}(f(x), y) = -\log f(x)_{y}$$

$$\Rightarrow \nabla_{x} \mathcal{L}(f(x), y) = -\frac{\nabla_{x} f(x)_{y}}{f(x)_{y}} = -\frac{\operatorname{FD}_{x}(f(x)_{y}, \delta)}{f(x)_{y}}$$

Approximate targeted FGSM:

$$x^* = x - \epsilon \cdot \text{sign}\left(-\frac{\text{FD}_x(f(x)_{y^{\text{target}}}, \delta)}{f(x)_{y^{\text{target}}}}\right)$$

- Gradient Estimation Attack (GEA):
 - Estimate the gradient w.r.t. the input from (input, output) queries via finite difference
 - Use the estimated gradient to perform first-order attacks (e.g., FGSM, PGD, C&W)
- Recall the logit margin loss from the C&W attack

$$\mathcal{L}(f(x), y) = \max_{i \neq y^{\text{target}}} \{ Z(x)_i \} - Z(x)_{y^{\text{target}}}$$
$$\Rightarrow \nabla_x \mathcal{L}(f(x), y) = \text{FD}_x(\max_{i \neq y^{\text{target}}} \{ Z(x')_i \} - Z(x')_{y^{\text{target}}}, \delta)$$

Approximated targeted C&W attack:

$$x^* = x - \epsilon \cdot \operatorname{sign}\left(\operatorname{FD}_x(\max_{i \neq y^{\operatorname{target}}} \{Z(x')_i\} - Z(x')_{y^{\operatorname{target}}}, \delta)\right)$$

- Success rate-perturbation size curve
 - Black-box attack (Finite-difference logit) has almost the same curve as white-box C&W attack (White-box FGS logit)

What is the drawback?

Drawback of GEA

for 28x28 image, require 28x28x2 (=1568) queries

$$x^* = x - \epsilon \cdot \text{sign}\left(-\frac{\text{FD}_x(f(x)_{y^{\text{target}}}, \delta)}{f(x)_{y^{\text{target}}}}\right)$$

• Query reduction:

- Random grouping: The gradient is estimated only for a random group of selected features.
- PCA (Principal Component Analysis): Compute the gradient only along a number of principal component vectors.

Black-Box Evasion Attack: Substitute Model

- Substitute model attack (Zero-query attack)
 - Idea: Train a substitute model
 - → Generate adversarial examples for the substitute model
 - → Transfer the generated adversarial samples to the target model.
 - Rationale: Adversarial examples often work across different ML models and datasets.
- Intra-technique transferability:
 The substitute and target model have the *same* architecture

Black-Box Evasion Attack: Substitute model attack

- Substitute model attack ~ Zero-query attack
 - Idea: Train a substitute model
 - → Generate adversarial examples for the substitute model
 - → Transfer the generated adversarial samples to the target model.
 - Rationale: Adversarial examples often work across different ML models and datasets.
- Cross-technique transferability: The substitute and target model have the *different* architecture
 - **Decision Tree (DT):** is the most vulnerable model.
 - DNNs: is the most robust model.

Black-Box Evasion Attack: Other attacks

Query-based attacks

- Gradient estimation attack
- Zeroth-order optimization (ZOO) attack
- Boundary attack
- HopSkipJump attack
- Simple black-box attack
- Transfer-based attacks
 - Substitute model attack
 - Ensemble of models attack

Reading: Akhtar et al. "Advances in adversarial attacks and defenses in computer vision: A survey"

We have covered