NOM :	INTERROGATION N° 16	MPSI-2 19-20	Note:

OXYDOREDUCTION

1. Quel est le nombre d'oxydation de l'antimoine (Sb) et du soufre (S) dans les espèces suivantes :

	()	(-)	
Sb ₂ O ₅	SbO ⁺	S	H₂S
V	III	0	-11

2. Indiquer qui correspond à l'oxydant (Ox) et qui correspond au réducteur (Red)

	3 \ /	1	,
Sb_2O_5	SbO⁺	S	H ₂ S
Ox	Red	Ox	Red

3. Equilibrer en milieu acide la réaction faisant intervenir l'oxydant de l'antimoine et le réducteur du souffre.

$$Sb_2O_5 + 2H_2S + 2H_3O^+ \xrightarrow{\leftarrow} 2SbO^+ + 2S + 5H_2O$$

4. Indiquer la démarche pour obtenir la constante de cet équilibre.

Pour chaque couple on écrit la demi-équation et le potentiel de Nernst qui l'accompagne.

Puis on indique qu'à l'équilibre la différence de potentielle est nulle.

Puis on réorganise pour faire apparaitre K