

TD9 - Automates et Langages

novembre 2018

Exercice 1:

Pour chacun des langages suivants, donner une grammaire algébrique qui l'engendre :

 $-a^*b$ $- \{a^nb^p \mid n > p \ge 0\}$ $- \{a^nb^p \mid n \ne p\}$ $- \{a^nb^pc^n \mid n \ge 0, p \ge 0\}$ $- \{u \in (a+b)^* \mid u \text{ est un palindrome}\}$

Exercice 2 : Propriétés de clôture des langages algébriques

Montrer que l'union et la concaténation de 2 langages algébriques sont des langages algébriques, de même que l'étoile d'un langage algébrique.

Exercice 3:

On considère la grammaire définie par l'ensemble de règles suivant, extrait de la grammaire du langage c \cdot

- Q 1 . Donnez l'arbre de dérivation pour le mot *i++.
- $\bf Q$ 2 . En déduire si dans le langage C, l'expression *i++ est équivalente à l'expression (*i)++ ou à l'expression *(i++).
- Q 3. Donnez les arbres de dérivation des expressions (*i)++ et *(i++).

Exercice 4:

Soit l'alphabet terminal $X = \{a, b\}$. On considère la grammaire suivante :

$$S \longrightarrow aSbS \mid bSaS \mid \varepsilon$$

- Q 1 . Cette grammaire est-elle ambiguë?
- Q 2 . Quel est le langage engendré par cette grammaire?

Exercice 5:

On considère la grammaire définie par l'ensemble de règles suivant :

Q 1. Cette grammaire est-elle ambiguë?

Exercice 6:

Soit la grammaire
$$G = (\Sigma, V, S, \mathcal{R})$$
 avec $V = \{S\}$, $\Sigma = \{+, -, *, /, i\}$ et $\mathcal{R} = \{S \longrightarrow S \ S + \mid S \ S * \mid S \ S - \mid S \ S \mid \mid i \}$

- ${\bf Q}$ ${\bf 1}$. Construire un arbre de dérivation pour le mot ii+i*.
- ${\bf Q}$ 2 . Cette grammaire est-elle ambiguë? justifier.