Money as a Medium of Exchange in an Economy With Artificial Intelligent Agents

NOVEMBER 10, 2022

Introduction

1. Similar setup as in KW 1989

- 1. Similar setup as in KW 1989
- 2. Equal number of 3 types, say 1, 2, 3

- 1. Similar setup as in KW 1989
- 2. Equal number of 3 types, say 1, 2, 3
- 3. Type 1 produce for 2, 2 produce for 3, 3 produce for 1. Type i wants i

- 1. Similar setup as in KW 1989
- 2. Equal number of 3 types, say 1, 2, 3
- 3. Type 1 produce for 2, 2 produce for 3, 3 produce for 1. Type i wants i
- 4. No double coincidence of wants

- 1. Similar setup as in KW 1989
- 2. Equal number of 3 types, say 1, 2, 3
- 3. Type 1 produce for 2, 2 produce for 3, 3 produce for 1. Type i wants i
- 4. No double coincidence of wants
- 5. Intrinsic property Cost of holding $s_1 < s_2 < s_3$

- 1. Similar setup as in KW 1989
- 2. Equal number of 3 types, say 1, 2, 3
- 3. Type 1 produce for 2, 2 produce for 3, 3 produce for 1. Type i wants i
- 4. No double coincidence of wants
- 5. Intrinsic property Cost of holding $s_1 < s_2 < s_3$
- 6. Type i receives utility when consumes good i

- 1. Similar setup as in KW 1989
- 2. Equal number of 3 types, say 1, 2, 3
- 3. Type 1 produce for 2, 2 produce for 3, 3 produce for 1. Type i wants i
- 4. No double coincidence of wants
- 5. Intrinsic property Cost of holding $s_1 < s_2 < s_3$
- 6. Type i receives utility when consumes good i
- 7. Can only hold one unit of good each period

- 1. Similar setup as in KW 1989
- 2. Equal number of 3 types, say 1, 2, 3
- 3. Type 1 produce for 2, 2 produce for 3, 3 produce for 1. Type i wants i
- 4. No double coincidence of wants
- 5. Intrinsic property Cost of holding $s_1 < s_2 < s_3$
- 6. Type i receives utility when consumes good i
- 7. Can only hold one unit of good each period
- 8. Poisson meeting process

- 1. Similar setup as in KW 1989
- 2. Equal number of 3 types, say 1, 2, 3
- 3. Type 1 produce for 2, 2 produce for 3, 3 produce for 1. Type i wants i
- 4. No double coincidence of wants
- 5. Intrinsic property Cost of holding $s_1 < s_2 < s_3$
- 6. Type i receives utility when consumes good i
- 7. Can only hold one unit of good each period
- 8. Poisson meeting process

- 1. Similar setup as in KW 1989
- 2. Equal number of 3 types, say 1, 2, 3
- 3. Type 1 produce for 2, 2 produce for 3, 3 produce for 1. Type i wants i
- 4. No double coincidence of wants
- 5. Intrinsic property Cost of holding $s_1 < s_2 < s_3$
- 6. Type i receives utility when consumes good i
- 7. Can only hold one unit of good each period
- 8. Poisson meeting process

It turned out to have two consistent equilibria

- Fundamental equilibrium : Good 1 as the medium of Exchange
- Speculative equilibrium: Type 1 also wants good 3

AMB APPROACH

This paper explores the *emergence* of such equilibria with agent-based modeling.

Notations

- $\blacksquare \ a \in \mathscr{A} = \{1,2,...A\}$: agent
- lacksquare At time t , a holds good x_{at}
- Trade with agent $\rho_t(a)$, who holds $x_{\rho_t(a)t}$. $z_{at} \equiv (x_{at}, x_{\rho_t(a)t})$
- \blacksquare a produces f(a)
- a receives utility $u_i(i) > 0$ after consumption. (Only consumes its own type)

EVOLUTION OF HOLDINGS

Decisions: Trade or Not Trade, Consume or Not Consume.

$$\lambda_{at} = \begin{cases} 1 & \text{if} \quad a \text{ wants } x_{at} \text{ for } x_{\rho_t(a)t} \\ 0 & \text{if} \quad a \text{ refuses to trade} \end{cases}$$
 (1)

$$\gamma at = \begin{cases} 1 & \text{if} \quad a \text{ wants to consume } x_{at}^+ \\ 0 & \text{if} \quad a \text{ not consume} \end{cases}$$
 (3)

$$x_{a,t+1} = \gamma_{at} f(a) + (1 - \gamma_{at}) \left((1 - \lambda_{at} \cdot \lambda_{\rho_t(a)t}) x_{at} + \lambda_{at} \cdot \lambda_{\rho_t(a)t} x_{\rho_t(a)t} \right)$$
(4)

Classifier System

■ Allows agent to learn

- Allows agent to learn
- Good Rules accumulate higher *strength*

- Allows agent to learn
- Good Rules accumulate higher *strength*
- Higher strength rules are more likely to win the bid and become the decision

- Allows agent to learn
- Good Rules accumulate higher *strength*
- Higher strength rules are more likely to win the bid and become the decision

- Allows agent to learn
- Good Rules accumulate higher strength
- Higher strength rules are more likely to win the bid and become the decision

The following slides are going to cover

1. Encoding of CS and notations

- Allows agent to learn
- Good Rules accumulate higher *strength*
- Higher strength rules are more likely to win the bid and become the decision

The following slides are going to cover

- 1. Encoding of CS and notations
- 2. Evolution of strength

- Allows agent to learn
- Good Rules accumulate higher *strength*
- Higher strength rules are more likely to win the bid and become the decision

The following slides are going to cover

- 1. Encoding of CS and notations
- 2. Evolution of strength
- 3. Genetic algorithm

Encodings for a classifier system I

Cod	de		Meaning				
1	0	0	Good 1				
0	1	0	Good 2				
0	0	1	Good 3				
0	#	#	Not good 1				
#	0	#	Not good 2				
#	#	0	Not good 3				

1 : hold
0: not hold
#: either

5

ENCODINGS FOR A CLASSIFIER SYSTEM II

Define an exchange classifier

total of 3+3+1 codes

Holding of a + Holding of $\rho(a)$ + Trade / Not Trade

DESICION MAKING

$$M_e(z_{at}) = \{e : z_{at} \text{ matches the condition part of classifier } e\}$$
 (5)

Members of $M_e(z_{at})$ form a collection of potential "bidders". e with the highest strength wins

$$\lambda_{at} = e_t(z_{at}) = \arg\max\{S_e^a(t) : e \in M_e(z_{at})\}$$
 (6)

DESICION MAKING

$$M_e(z_{at}) = \{e : z_{at} \text{ matches the condition part of classifier } e\}$$
 (5)

Members of $M_e(z_{at})$ form a collection of potential "bidders". e with the highest strength wins

$$\lambda_{at} = e_t(z_{at}) = \arg\max\{S_e^a(t) : e \in M_e(z_{at})\}$$
(6)

Same for consumption desicion

$$M_c(z_{at}) = \{c : x_{at}^+ \text{ matches the condition part of classifier } c\}$$
 (7)

$$\gamma_{at} = c_t(z_{at}) = \arg\max\{S_c^a(t) : c \in M_c(z_{at})\}$$
 (8)

Along with the law of motion in Eq. 4

EVOLUTION OF STRENGTH

$$\tau_e^a(t) = 1 + \sum_{s=0}^t I_e^a(s) \tag{9}$$

- $lackbox{}{lackbox{}{\,}} au_e^a(t)$: the count of successful trade using the classifier e up to time t.
- $I_e^a(t)$: whether e wins the auction (between classifiers) and helps the agent successfully trade, i.e., $\lambda_{at} \cdot \lambda_{\rho_t(a)t} x_{\rho_t(a)t} = 1$

EVOLUTION OF STRENGTH

$$\tau_e^a(t) = 1 + \sum_{s=0}^t I_e^a(s) \tag{9}$$

- $lackbox{}{lackbox{}{}} au_e^a(t)$: the count of successful trade using the classifier e up to time t.
- $I_e^a(t)$: whether e wins the auction (between classifiers) and helps the agent successfully trade, i.e., $\lambda_{at} \cdot \lambda_{\rho_t(a)t} x_{\rho_t(a)t} = 1$

Analogously,

$$\tau_c^a(t) = 1 + \sum_{s=0}^t I_c^a(s)$$
 (10)

The strength of a classifier is a function of successful wins.

$$S_e^a(t) = S_{e\tau_e^a(t)}^a$$

$$S_c^a(t) = S_{c\tau_c^a(t)}^a$$

Bids

Bid-paying Mechanism

Winning classifier e^a_t pays its bids to the winning classifier c^a_{t-1} Winning classifier e^a_t pays its bids to the winning classifier e^a_t

This mechanism rewards the former classifier that lead to its success, reinforcing the right decision.

9 | 22

BIDS

Bid-paying Mechanism

Winning classifier e^a_t pays its bids to the winning classifier c^a_{t-1} Winning classifier e^a_t pays its bids to the winning classifier e^a_t

This mechanism rewards the former classifier that lead to its success, reinforcing the right decision.

The bid is set as $b_1(e)S_e^a(t)$ for a exchange classifier, and $b_2(c)S_c^a(t)$ for a consumption classifier.

$$b_1(e) = b_{11} + b_{12}\sigma_e \tag{11a}$$

$$b_2(c) = b_{21} + b_{22}\sigma_c \tag{11b}$$

 $\sigma_{\cdot} = \frac{1}{1 + \text{number of } \# \text{'s in the classifier}}.$ Higher uncertainty, lower bid.

EVOLUTION OF STRENGTH I

$$S_{c\tau_{c}^{a}(t)}^{a} = S_{c\tau_{c}^{a}(t)-1}^{a} - \frac{1}{\tau_{c}^{a}(t)-1} \left[(1+b_{2}(c)) S_{c\tau_{c}^{a}(t)-1}^{a} - \sum_{e} I_{e}^{a}(t) b_{1} S_{e\tau_{e}^{a}(t)}^{a} - U_{a}(\gamma_{ct}^{a}) \right]$$

$$(12)$$

$$S_{e\tau_e^a(t)+1}^a = S_{e\tau_e^a(t)}^a - \frac{1}{\tau_e^a(t)} \left[(1+b_1(e)) S_{e\tau_e^a(t)}^a - \sum_c I_c^a(t) b_c S_{c\tau_c^a(t)}^a \right]$$
(13)

EVOLUTION OF STRENGTH II

The external payoff after making consumption desicion

$$U_a(\gamma_{ct}^a) = \gamma_{ct}^a \left[u_i(x_{at}^+) - s(f(a)) \right] + (1 - \gamma_{ct}^a) s(x_{at}^+)$$
 (14)

Possible Typo

I think the authors might have a typo here. $(1-\gamma^a_{ct})s(x^+_{at})$ should be a minus since it is the cost of holding.

EVOLUTION OF STRENGTH III

- lacksquare $S^a_{e au_e^a(t)}$ and $S^a_{c au_e^a(t)}$ evolves recursively
- Average of past payoff (External reward + bid from other classifier)
- minus payment (bids made to other classifier)
- Only winning classifier pays the bid (the sum term)
- Indexing with counter $\tau^a_{(\cdot)}(t)$: change is made only when successfully winning the auction.

Genetic Algorithm

Curse of Dimentionality

- As the variety of goods increase, the state space grows exponentially.
- Impossible to take all enumerations of classifiers into account when initializing.
- Genetic algorithm will be considered.

.4

CURSE OF DIMENTIONALITY

- As the variety of goods increase, the state space grows exponentially.
- Impossible to take all enumerations of classifiers into account when initializing.
- Genetic algorithm will be considered.

Four steps for adding and deleting incumbent classifiers:

- 1. Creation
- 2. Diversification
- 3. Specialization
- 4. Generalization

CREATION

Activation

There are no classifier that matches the current state z_{at} , i.e., $|M_e(z_{at})| = 0$.

Action

Assign random action to the current state z_{at} and add it to the collection of classifiers.

DIVERSIFICATION I

Activation

After the matched collection of classifiers $M_e(z_{at})$ are constructed. If for all $e \in M_e(z_{at})$ have the same action.

Action

Assign opposite action to the current state z_{at} and add it to the collection of classifiers.

Assign the strength of the winning classifier to that of the new one.

DIVERSIFICATION II

There is also a deletion process

Deletion

Remove a "weak" classifier from the set of $M_e(z_{at})$. The weakness is defined jointly with the strength $S_e^a(t)$ and winning counter $\tau_e^a(t)$

SPECIALIZATION

Activation

After the winning bit has been determined. Activation probability decreases over time.

The winning classifier has some ambiguous position (#).

Action

Add a new classifier, which changes the #s in the condition part of the current winning classifier with some probability.

If the # is changed, it changes to the correspond value of the state.

Deletion

A weak rule is replaced by the new rule above.

GENERALIZATION

Activation

Called randomly after the above variation steps are conducted. The activation probability decreases over time.

Initialization

Draw *potential parents* and *potential exterminants*. The probability of drawing depends on some fitness criterion.

Generalization - Mating

- 1. Pick two parents to mate
- 2. Pick two position in the classifier
- 3. Pick to alter the inner or outer part of the slicing
- 4. Inconsistent positions are replaced with ambiguity symbol #

parent 1: parent 2:	1 0	0 #	# 0	1	0 1	0	0 1
offspring 1:	1	0	#	1	#	0	0
offspring 2:	0	#	0	1	#		1

Fig. 4. The mating process for exchange classifiers who have drawn '3,6' and 'in'.

5 Strength is set to be the average of its parents

Generalization - Exterminating

Remove one of the random selected classifier from the potential exterminants set.

I will report the simulation result next week.

Table 4 Description of the economies.

	Production					Storage cost					Utility	Initial	Fauil
	I	II	III	IV	V	1	2	3	4	5	$u_i^{\mathbf{a}}$	$CS^{b,c}$	type ^c
A1.1	2	3	i	,	~~~	0.1	1	20	_	_	100	F	F
A1.2	2	3	1	-		0.1	1	20			100	R	F
A2.1	2	3	1			0.1	1	20		_	500	F	S
A2.2	2	3	1	****		0.1	1	20		_	500	R	S
B.1	3	1	2	_		1	4	9		_	100	F	F/S
B.2	3	1	2		-	1	4	9	_	_	100	R	F/S
C	2	3	1	_	_	0.1	20	70	0		100	R	F
D	3	4	5	1	2	1	4	9	20	30	200	R	

^aUtility levels u_i are set equal for i = 1, 2, 3. ^bCS denotes 'classifier system'.

c, F' implies fixed enumeration and 'R' implies randomly generated rules.