Unicode and UTF-8

Computer Science and Engineering ■ College of Engineering ■ The Ohio State University

Lecture 33

A standard for the discrete representation of written text

The Big Picture

The Big Picture

Text: A Sequence of Glyphs

- Glyph: "An individual mark on a written medium that contributes to the meaning of what is written."
 - See foyer floor in main library
- One character can have many glyphs
 - Example: Latin E can be e, e, e, e, e, e, e, e...
- One glyph can be different characters
 - A is both (capital) Latin A and Greek Alpha
- One unit of text can consist of multiple glyphs
 - An accented letter (é) is two glyphs
 - The ligature of f+i (fi) is two glyphs

Glyphs vs Characters

glyphs

e
e
e
e
A

Computer Science and Engineering

The Ohio State University

Characters

Latin small E
Latin capital A

Computer Science and Engineering

The Ohio State University

Characters

Computer Science and Engineering

The Ohio State University

Characters

Computer Science and Engineering

The Ohio State University

Characters

Computer Science and Engineering

The Ohio State University

- □ Visual homograph: Two different characters that look the same
 - Would you click here: <u>www.paypal.com</u>?

Security Issue

- □ Visual homograph: Two different characters that look the same
 - Would you click here: www.paypal.com?
 - Oops! The second 'a' is actually CYRILLIC SMALL LETTER A
 - This site successfully registered in 2005
- Other examples: combining characters
 - \tilde{n} = LATIN SMALL LETTER N WITH TILDE
- □ "Solution"
 - Heuristics that warn users when languages are mixed and homographs are possible

Unicode Code Points

- Each character is assigned a unique code point
- A code point is defined by an integer value, and is also given a name
 - one hundred and nine (109, or 0x6d)
 - LATIN SMALL LETTER M
- □ Convention: Write code points as U+hex
 - Example: U+006D
- □ As of March 2020, v13 (see unicode.org):
 - Contains almost 144,000 code points emoji-versions.html#2020
 - Covers 154 scripts (and counting...) unicode.org/charts/

Example Recent Addition (v11)

Computer Science and Engineering ■ The Ohio State University

Mayan numerals

```
1D2E0 🖎 MAYAN NUMERAL ZERO
1D2E1 . MAYAN NUMERAL ONE
1D2E2 . . MAYAN NUMERAL TWO
1D2E3 ... MAYAN NUMERAL THREE
1D2E4 .... MAYAN NUMERAL FOUR
1D2E5 ___ MAYAN NUMERAL FIVE
1D2E6 _ MAYAN NUMERAL SIX
1D2E7 • MAYAN NUMERAL SEVEN
1D2E8 ••• MAYAN NUMERAL EIGHT
1D2E9 •••• MAYAN NUMERAL NINE
1D2EA _ MAYAN NUMERAL TEN
1D2EC MAYAN NUMERAL TWELVE
1D2ED 🔐 MAYAN NUMERAL THIRTEEN
1D2EE *** MAYAN NUMERAL FOURTEEN
1D2EF 🚃 MAYAN NUMERAL FIFTEEN
1D2F0 

MAYAN NUMERAL SIXTEEN
1D2F1 🗮 MAYAN NUMERAL SEVENTEEN
1D2F2 👑 MAYAN NUMERAL EIGHTEEN
1D2F3 👑 MAYAN NUMERAL NINETEEN
```

Unicode: Mapping to Code Points

- Code points are grouped into categories
 - Basic Latin, Cyrillic, Arabic, Cherokee, Currency, Mathematical Operators, ...
- \square Standard allows for 17 x 2^{16} code points
 - 0 to 1,114,111 (i.e., > 1 million)
 - U+0000 to U+10FFFF
- □ Each group of 2¹⁶ called a *plane*
 - U+nnnnnn, same green ==> same plane
- □ Plane 0 called *basic multilingual plane* (BMP)
 - Has (practically) everything you could need
 - Convention: code points in BMP written U+nnnn (ie with leading 0's if needed)
 - Others code points written without leading 0's

Basic Multilingual Plane

														Com	puter S	cience and	Engineering ■ The Ohio State Universit
00	01	02	03	04	05	06	07	08	09	0A	0в	0C	0D	0E	0F		Latin and the late
	-								9.5							_	Latin scripts and symbols
10	11	12	13	14	15	16	<mark>1</mark> 7	18	19	1A	1B	1C	10	1E	1F		Linguistic scripts
20	2 <mark>1</mark>	22	23	24	25	26	27	28	29	2A	2B	2C	2D	2E	2F		Other European scripts
30	31	32	33	34	35	36	37	38	39	ЗА	3в	3C	3D	3E	3F	_	Middle Eastern and Southwest Asian scripts
40	41	42	43	44	45	46	47	48	49	4A	4B	4C	4D	4E	4 F		African scripts
50	51	52	53	54	55	56	57	58	59	5A	5B	5C	5D	5E	5F		South Asian scripts
60	61	62	63	64	65	66	67	68	69	6A	6B	6C	6D	6E	6F		Southeast Asian scripts
80																	East Asian scripts
70	71	72	73	74	75	76	77	78	79	7A	7B	7C	7D	7E	7F		Unified CJK Han
80	81	82	83	84	85	86	87	88	89	8A	8B	8C	8D	8E	8F		Canadian Aboriginal scripts
90	91	92	93	94	95	96	97	98	99	9A	9в	9C	9D	9E	9F		Symbols
AO	A1	A2	А3	A4	A5	A5	Α7	A8	7. 9	AΑ	AB	AC	AD	AE	AF		Diacritics
в0	В1	в2	в3	в4	в5	в6	в7	в8	в9	ва	вв	вс	BD	BE	BF		UTF-16 surrogates and private use
CO	C1	C2	С3	C4	C5	С6	С7	C8	С9	CA	СВ	CC	CD	CE	CF		Miscellaneous characters
DO	D1	D2	D3	D4	D5	D6	D7	D8	D9	DA	DB	DC	DD	DE	DF		Unallocated code points
ΕO	E1	E2	E3	E4	E5	E6	E7	E8	E9	EA	EB	EC	ED	EE	EF		
F0	F1	F2	F3	F4	F5	F6	F7	F8	F9	FA	FB	FC	FD	FE	FF		

- Encoding of code point (integer) in a sequence of bytes (octets)
 - Standard: all caps, with hyphen (UTF-8)
- Variable length
 - Some code points require 1 octet
 - Others require 2, 3, or 4
- □ Consequence: Can not infer number of characters from size of file!
- No endian-ness: just a sequence of octets
 - D0 BF D1 80 D0 B8 D0 B2 D0 B5 D1 82...
- Other encodings might not use 8 bits (more general term: code unit)

UTF-8: Code Points & Octets


```
Computer Science and Engineering ■ The Ohio State University
```

- □ 1-byte encodings
 - First bit is 0
 - Example: 0110 1101 (encodes U+006D)
- 2-byte encodings
 - First byte starts with 110...
 - Second byte starts with 10...
 - Example: 1101 0000 1011 1111
 - □ Payload: 1101 0000 1011 1111 = 100 0011 1111
 - = 0x043F
 - □ Code point: U+043F *i.e.* п, Cyrillic small letter pe

- Generalization: An encoding of length k:
 - First byte starts with k 1's, then 0
 - Example 1110 0110 ==> first byte of a 3-byte encoding
 - Subsequent k-1 bytes each start with 10
 - Remaining bits are payload
- □ Example: E2 82 AC 11100010 10000010 10101100
 - Payload: 0x20AC (i.e., U+20AC, €)
- Consequence: Stream is selfsynchronizing
 - A dropped byte affects only that character

UTF-8 Encoding Summary

Computer Science and Engineering ■ The Ohio State University

Unicode	Byte1	Byte2	Byte3	Byte4	example
U+0000-U+007F	0 xxxxxx				'\$' U+0024 → 00100100 → 0x24
U+0080-U+07FF	110ууухх	10xxxxxx			'¢' U+00 <u>A</u> 2 → 110000 <u>10</u> , 10 <u>10</u> 0010 → 0xC2, 0xA2
U+0800-U+FFFF	1110уууу	10уууухх	10 <i>xxxx</i> xx		∀ U+20AC → 11100010, 10000010, 10101100 → 0xE2, 0x82, 0xAC
U+10000-U+10FFFF	11110 <i>zzz</i>	10 <i>zz</i> yyyy	10уууухх	10xxxxxx	'頓' U+ <u>024B62</u> → 11110 <u>0</u> 00,1010 <u>0100</u> ,101011 <u>01</u> ,10 <u>10</u> 0010 → 0xF0,0xA4,0xAD,0xA2

(from wikipedia)

- □ For the following UTF-8 encoding, what is the corresponding code point(s)?
 - F0 A4 AD A2

- For the following Unicode code point, what is its UTF-8 encoding?
 - U+20AC

- Not all octet sequences are encodings
 - "overlong" encodings are illegal
 - example: C0 AF
 - **= 110**0 00**00 10**10 1111
 - = U+002F (should be encoded 2F)
- □ Classic security bug (IIS 2001)
 - Should reject URL requests with "../.."
 - □ Scanned for 2E 2E 2F 2E 2E (in encoding)
 - Accepted "..%c0%af.." (doesn't contain x2F)
 - □ 2E 2E CO AF 2E 2E
 - After accepting, server then decoded
 - □ 2E 2E CO AF 2E 2E decoded into "../.."
- Moral: Strings are sequences of "code units"
 - But we think (and see) code points

- Concrete invariant (convention)
 - No space, ;, :, & in representation
 - To represent these characters, use %hh instead (hh is ASCII code in hex)
 - □ %20 for space
 - Q: What about % in abstract value?
- □ Recall: correspondence relation

Other (Older) Encodings

- □ In the beginning...
- Character sets were small
 - ASCII: only 128 characters (ie 2⁷)
 - 1 byte/character, leading bit always 0
- □ Globalization means more characters...
 - But 1 byte/character seems fundamental
- □ Solutions:
 - Use that leading bit!
 - □ Text data now looks just like binary data
 - Use more than 1 encoding!
 - □ Must specify data + encoding used

ASCII Code Chart 12131415 ı 8 6 AIBICIDIEIF ENQ ACK BEL EOT | SOH BS HT FF CR S0 DC1 DC2 DLE DC3 DC4 NAK SYN | ETB | EM SUB ESC CAN FS GS RS US # & 2 3 5 8 9 4 6 < 0 Ε @ В D G N 0 S ٧ W Q g d a b С е n 0 р u DEL S ν Х

4B = Latin capital K

ISO-8859 family (eg -1 Latin)

	-0	-1	-2	-3	-4	-5	-6	-7	-8	-9	-A	-В	-C	-D	-E	-F	
0-		0001	0002	0003	0004	0005	0006	0007	0008	0009	000A	000B	000C	000D	000E	000F	
1-	0010	0011	0012	0013	0014	0015	0016	0017	0018	0019	001A	001B	001C	001D	001E	001F	
2-	0020	0021	0022	# 0023	\$ 0024	%	& 0026	0027	0028)	*	+ 002B	9 002C	- 002D	• 002E	/ 002F	
3-	0	1 0031	2	3	4	5	6	7	8	9	003A	9 003B	< 003C	= 003D	> 003E	? 003F	0-7F match ASCII
4-	@	A	B 0042	C 0043	D 0044	E 0045	F 0046	G	H 0048	I 0049	J 004A	K	L 004C	M 004D	N 004E	O 004F	0 /1 match ASCII
5-	P 0050	Q	R	S 0053	T 0064	U 0055	V 0056	W 0057	X 0058	Y 0059	Z	[005B	0050	005D	∧		
6-	0060	a 0061	b	C	d	e 0065	f	g	h	i 0069	j	k 0068	1 0060	m 006D	n 006E	O 006F	
7-	p	q	r 0072	S 0073	t	u	V 0076	W	X 0078	y	Z	{ 007B	0070	}	~ 007E	007F	
8-	0000	0081	0072	0073	0074	0075	0086	0077		0079		007B		008D		007F	reserved
9-									0088		008A		008C		008E		(control characters)
A-	0090	0091	¢	£	D094	¥	0096	§	0098	© 0099	<u>a</u>	≪ ≪	0090	009D	(R)	009F	
B-	00A0 O	±	00A2 2	3 3	00A4	μ	¶	00A7	00A8 5 00B8	00A9 1	<u>0</u>	>>	1/ ₄	1/2	3/4	00AF	
C-	À	Á	Â	Ã	00B4	Å	Æ	Ç	È	É	Ê	Ë	Ì	Í	Î	Ï	A0-FF differ, eg:
D-	Ð	Ñ	Ò	Ó	Ô	Õ	Ö	X	Ø	Ù	Ú	Û	Ü	Ý	Þ	ß	-1 "Western"
E-	à	á	â	ã	ä	å	æ	ç	è	é	ê	ë	ì	í	î	ï	-2 "East European"
F-	00E0 ð	00E1 ñ	00E2 Ò 00F2	00Е3 о́	00E4 ô	00E5 Õ	00E6	00E7	00E8 Ø 00F8	00E9 ù	Ú 00FA	û 00FB	ü 00FC	ý DOFD	p oofe	ÿ ooff	-9 "Turkish

Windows Family (eg 1252 Latin)

Computer Science and Engineering ■ The Ohio State University

	Windows-1252 (CP1252)															
	x 0	x1	x2	х3	х4	х5	х6	х7	х8	х9	хA	хВ	хС	хD	хE	хF
0x	<u>NUL</u>	<u>SOH</u>	<u>STX</u>	<u>ETX</u>	<u>EOT</u>	<u>ENQ</u>	<u>ACK</u>	<u>BEL</u>	<u>BS</u>	<u>HT</u>	<u>LF</u>	<u>VT</u>	<u>FF</u>	<u>CR</u>	<u>so</u>	<u>SI</u>
1x	DLE	<u>DC1</u>	DC2	DC3	DC4	<u>NAK</u>	<u>SYN</u>	<u>ETB</u>	<u>CAN</u>	<u>EM</u>	<u>SUB</u>	<u>ESC</u>	<u>FS</u>	<u>GS</u>	<u>RS</u>	<u>US</u>
2x	<u>SP</u>	ļ	"	#	\$	%	&	'	()	*	+	,	-		1
3x	0	1	2	3	4	5	6	7	8	9	:	;	<	=	>	?
4x	@	Α	В	С	D	E	F	G	Н	I	J	K	L	М	N	0
5x	Р	Q	R	S	Т	U	V	W	X	Υ	Z	[١]	٨	
6x	•	а	b	С	d	е	f	g	h	i	j	k		111	n	0
7x	р	q	r	s	t	u	v	W	Х	7	Z	{	1	}	~	<u>DEL</u>
8x	€		,	f	,,		1	‡	^	‰	Š	(Œ		Ž	
9x			, 4		"	•	-	_	~	тм	š	>	œ		ž	Ϋ
Ax	NBSP	i	¢	£	¤	¥	i i	§		©	а	«	7		®	-
Вх	o	±	2	3	,	μ	¶	•		1	0	»	1/4	1/2	3/4	ن
Сх	À	Á	Â	Ã	Ä	Å	Æ	Ç	È	É	Ê	Ë	ì	Í	Î	Ϊ
Dx	Đ	Ñ	Ò	Ó	Ô	Õ	Ö	×	Ø	Ù	Ú	Û	Ü	Ý	Þ	ß
Ex	à	á	â	ã	ä	å	æ	ç	è	é	ê	ë	ì	í	î	ï
Fx	ð	ñ	ò	ó	ô	õ	ö	÷	ø	ù	ú	û	ü	ý	þ	ÿ

92 = apostrophe

<u>Name</u>	Labels
The Encoding	
UTF-8	"unicode-1-1-utf-8"
	"utf-8"
	"utf8"
	<u> </u>
windows-1252	"ansi_x3.4-1968"
	"ascii"
	"cp1252"
	"cp819"
	"csisolatin1"
	"ibm819"
	"iso-8859-1"
	"iso-ir-100"
	"iso8859-1"
	"iso88591"
	"iso_8859-1"

Early Unicode and UTF-16

- ☐ Unicode started as 2¹⁶ code points
 - The BMP of modern Unicode
 - Bottom 256 code points match ISO-8859-1
- □ Simple 1:1 encoding (UTF-16)
 - Code point <-> 2-byte code unit (16 bits, 1 word)
 - Simple, but leads to bloat of ASCII text
- □ Later added code points *outside* of BMP
 - A pair of words (surrogate pairs) carry 20-bit payload split, 10 bits in each word
 - First: **1101 10**xx xxxx xxxx (xD800-DBFF)
 - Second: 1101 11yy yyyy yyyy (xDC00-DFFF)
- □ Consequence: U+D800 to U+DFFF became reserved code points in Unicode
 - And now we are stuck with this legacy, even for UTF-8

```
□ JavaScript and UTF-16
  let x = "\{u\{1f916\}\}" // robot face
  x.length
  x.charCodeAt(0); x.charCodeAt(1);
  x.charAt(0);
  x.codePointAt(0);
Ruby and string encodings
  x = "\setminus u\{1f916\}"
  x.length
  x.bytes.map \{ |b| b.to s(16) \}
  x.encoding
  x.encode! Encoding::UTF 16
  x.bytes.map { |b| b.to s(16) }
```

Basic Multilingual Plane

- A multi-byte representation must distinguish between big & little endian
 - Example: 00 25 00 25 00 25
 - "%%%" if LE, "— —" if BE
- One solution: Specify encoding in name
 - UTF-16BE or UTF-16LE
- □ Another solution: require byte order mark (BOM) at the start of the file
 - U+FEFF (ZERO WIDTH NO BREAK SPACE)
 - There is no U+FFFE code point
 - So FE FF → BigE, while FF FE → LittleE
 - Not considered part of the text

- □ Should we add a BOM to the start of UTF-8 files too?
 - UTF-8 encoding of U+FEFF is EF BB BF
- Advantages:
 - Forms magic-number for UTF-8 encoding
- Disadvantages:
 - Not backwards-compatible to ASCII
 - Existing programs may no longer work
 - E.g., In Unix, shebang (#!, i.e. 23 21) at start of file is significant: file is a script #! /bin/bash

ZWJ: Zero Width Joiner

- Using U+FEFF as ZWNBSP deprecated
 - Reserved for BOM uses (at start of file)
- □ Alternative: U+200D ("zwidge")
- Joined characters may be rendered as a single glyph
 - Co-opted for use with emojis
- □ Example: (1 "character" in Twitter)
 - U+1F3F4 U+200D U+2620
 - WAVING BLACK FLAG, ZWJ, SKULL AND CROSSBONES

- What is a "text" file? (vs "binary")
 - Given a file, how can you tell which it is?
- A JavaScript program reads in a 5MB file of English prose into a string. How much memory does the string need?
- □ How many characters does s contain?

```
let s = . . . // JavaScript
console.assert (s.length() == 7) // true
```

- Which is better: UTF-8 or UTF-16?
- □ What's so scary about:

```
..%c0%af..
```

Summary

- □ Text vs binary
 - In pre-historic times: most significant bit
 - Now: data is data
- Unicode code points
 - Integers U+0000..U+10FFFF
 - BMP: Basic Multilingual Plane
- □ UTF-8
 - A variable-length, self-synchronizing encoding of unicode code points
 - Backwards compatible with ISO 8859-1, and hence with ASCII too