

PROJET: BRAS ROBOTIQUE À 5 DOF

PRÉSENTÉ PAR : GUZEL, MORIN, DE CROZEFON, GONCALVES, COULIBALY

Dirigé par M.Abdelwahed & M.Ayad

SOMMAIRE

01 INTRODUCTION
02 EQUIPE
03 CAHIER DES CHARGES
04 GESTION DU PROJET
05 TECHNOLOGIE UTILISÉ

06 CONCEPTION MÉCANIQUE
07 ELECTRONIQUE
08 PROGRAMMATION
09 BILAN
10 DEMO

EQUIPE

Michael De Crozefon

Morin Alexandre

Guzel Halil

Goncalves Vicente

Coulibaly Ahmed

CHARGES

OBJET DE L'ÉTUDE

- FONCTIONNALITÉS DU BRAS ROBOTIQUE
- CONCEPTION MÉCANIQUE
- PARTIE ELECTRONIQUE
- PROGRAMMATION
- RÉSOLUTION ET PERSPECTIVES D'AMÉLIORATION

ANALYSE DES BESOINS

- Réalisation de la cinématique directe et inverse.
- Simulation précise de scénarios "pick and place".
 - Intégration d'un système de détection.

- Conception mécanique robuste et légère.
- Choix judicieux de composants électroniques et capteurs précis.
 - Programmation structurée et optimisée.

DEVIS

Composant	Quantité	Prix (approximatif)	Commentaires
Arduino Mega	1	30 €	Contrôle central du bras robotique
Raspberry Pi	25	40 €	Gestion des tâches informatiques et de la caméra
Servo-moteurs NEMA 17	5	10 € chacun	Moteurs pour les articulations du bras
Caméra	্য	25 €	Capteur visuel pour le système
Matériaux d'impression 3D (PLA)	U -2	15 €	Estimation pour l'impression 3D en PLA
Contrôleurs/ Shields pour Servo- moteurs	1	50 €	Gestion des servo-moteurs
Fils électriques	UTF	10 €	Câblage électrique
Alimentation électrique	٦	20€	Source d'alimentation principale
Batteries (si nécessaire)	(1)45	30 €	Pour une alimentation mobile
Gripper avec ventouses	1	40 €	Système de préhension pour le bras

GESTION DU PROJET

RÉPARTITIONS DES TACHES

Michael De Crozefon

Conception 3D Impression 3D Rédaction rapport

Alexandre Morin

Programmation
Assemblage robot
Rédaction cahier des
charges

Halil Guzel

Calcul mécanique
Polyvalence
développement
Coordination des idées

Vicente Goncalves

Gestion des ressources
Supervision de
l'impression 3D
Gestion des outils

Ahmed Coulibaly

Soutien aux diverses tâche :

- Programmation
- Assemblage robot
- Rédaction cahier des charges

PLANIFICATION: TRELLO

TECHNOLOGIE UTILISÉ

CONCEPTION MECANIQUE

CONCEPTION

ANALYSE DU MÉCANISME

MGD

Joint Robot

TCP du robot Position et orientation

MGI

TCP du robot Position et orientation

ANALYSE DU MÉCANISME

4 Règles:

- Z doit être l'axe de rotation
- L'axe X doit être perpendiculaire à Z et Z-1
- Respecter la règle de la main droite
- L'axe X doit intersecter avec Z-1

Schéma cinématique

ANALYSE DU MÉCANISME

Utilisation du programme python pour le calcul du modèle géométrique inverse

```
Users > mikhail > Downloads > Personnel > 🍦 robot.py > ..
      import numpy as no
      # Paramètres DH
      # Valeurs des articulations (en radians)
      theta2 = 0.8
      theta3 = -0.4
      theta5 = -0.7
      # Matrices de transformation homogène pour chaque articulation
          [np.cos(theta1), -np.sin(theta1), 0, 0],
          inp.sin(thetal), np.cos(thetal), 0, 0],
          [0, 0, 1, d1],
          0, 0, 0, 1
      1)
      A2 = np.array([
          [np.cos(theta2), -np.sin(theta2), 0, a2],
          [0, 0, -1, 0],
          inp.sin(theta2), np.cos(theta2), 0, 0],
          [0, 0, 0, 1]
     1)
      A3 = np.array([
          [np.cos(theta3), -np.sin(theta3), 0, a3],
          0, 0, 1, 01,
          [-np.sin(theta3), -np.cos(theta3), 0, 0],
          0, 0, 0, 1
```

```
A4 = np.array([
          [np.cos(theta4), -np.sin(theta4), 0, a4],
          [0, 0, -1, 0],
          inp.sin(theta4), np.cos(theta4), 0, 0],
          [0, 0, 0, 1]
     A5 = np.array([
          [np.cos(theta5), 0, np.sin(theta5), 0],
          [-np.sin(theta5), 0, np.cos(theta5), 0],
          [0, 0, 0, 1]
     1)
     # Matrice totale du MGD
      T_total = np.dot(np.dot(np.dot(A1, A2), A3), A4), A5)
      # Coordonnées du point final
      x = T_total[0, 3]
     y = T_total[1, 3]
     z = T_{total}[2, 3]
     print("Coordonnées du point final :")
     print(f"x = \{x\} cm")
     print(f"y = {y} cm")
     print(f"z = \{z\} cm")
PROBLEMS OUTPUT DEBUG CONSOLE TERMINAL PORTS
/Users/mikhail/anaconda3/bin/python /Users/mikhail/Downloads/Personnel/robot.py
(base) mikhail@MBP-de-Mikhail ~ % /Users/mikhail/anaconda3/bin/python /Users/mi
/Users/mikhail/anaconda3/bin/python /Users/mikhail/Downloads/Personnel/robot.py
Coordonnées du point final :
x = 28.333803752586796 cm
y = 11.928908846787504 cm
```


IMPRESSION 3D

ASSEMBLAGE

ELECTRONIQUE

CHOIX DES COMPOSANTS

Puissance:

Servo Moteur Makeblock Servo Moteur Feetech Servo Moteur SG90

Commande:

Contrôleur Arduino Mini-Ordinateur Raspberry Pi Shield I/O Expansion

Autres:

Caméra OV4657
Alimentation
LEDs

SCHÉMAS DE FONCTIONNEMENT

PROGRAMMATION

5 AXES

3 fonctions dans le programme :

- MoveArm: Lancement du déplacement (X,Y,Z)
- Inverse Cinematique : calcul des angles de la trajectoire en fonction des longeurs des segment du robot
- Loop : récupération des coordonnées du raspberry, analyse des coordonnées, lancement de la trajectoire

STRUCTURE DU PROGRAMME

```
void loop() {
 // Mouvement du bras robot vers une position spécifique
 // Attendre les coordonnées XYZ depuis le Raspeberry
  if (Serial.available() >= 12) { // Attendre au moins 12 caractères (3 valeurs flottantes séparées par des virgules)
    String input = Serial.readStringUntil('\n');
    input.trim();
    int commaIndex1 = input.index0f(',');
    int commaIndex2 = input.index0f(',', commaIndex1 + 1);
    if (commaIndex1 != -1 \&\& commaIndex2 != -1) {
      String xStr = input.substring(0, commaIndex1);
      String yStr = input.substring(commaIndex1 + 1, commaIndex2);
      String zStr = input.substring(commaIndex2 + 1);
      float x = xStr.toFloat();
      float y = yStr.toFloat();
      float z = zStr.toFloat();
      moveArm(x, y, z); // Déplacer le bras robot aux coordonnées
      delay(700); // Attente de 5 secondes avant de passer à la prochaine commande
```

RÉCUPÉRATION DES COORDONNÉES ANALYSE DES ÉLÉMENTS REÇUS LANCEMENT DE LA

FONCTION MOVEARM

STRUCTURE DU PROGRAMME

```
// Fonction pour déplacer le bras robot en fonction des coordonnées XYZ
void moveArm(float x, float y, float z) {
    // Calcul des angles nécessaires pour chaque servo moteur
    float baseAngle, shoulderAngle, elbowAngle, wristAngle, gripperAngle;
    inverseKinematics(x, y, z, baseAngle, shoulderAngle, elbowAngle, wristAngle, gripperAngle);

    // Déplacement des servomoteurs aux angles calculés
    baseServo.write(baseAngle);
    shoulderServo.write(shoulderAngle);
    elbowServo.write(elbowAngle);
    wristServo.write(wristAngle);
    gripperServo.write(gripperAngle);

// Attente pour que le bras robot atteigne sa position
    delay(2000);
}
```

RÉCUPÉRATION DES COORDONNÉES

CALCUL DE LA
CINÉMATIQUE INVERSE
EN FONCTION DES
SEGMENTS DU ROBOT

ECRITURE DE LA POSITION DANS LES SERVOS MOTEURS

CAMERA


```
Users > mikhail > anaconda3 > envs >  YoloMaster2.py > ...

1     from ultralytics import YOLO
2     from ultralytics.models.yolo.detect.predict import DetectionPredictor
3     import cv2
4
5     model= YOLO("yolov8s.pt")
6
7     results=model.predict(source="0", show=True)
8
9     print(results)
```

BILAN

PROBLÈMES RENCONTRÉS

- Manque de ressources, de matériel
- Délais assez court
- Problème d'impression 3D
- Problèmes d'assemblage
- Préhenseur électro aimanté absent
- Difficulté à connecter la caméra avec la Raspberry (carte SD flashé)
- Manque de certaines connaissances

AMÉLIORATIONS

- Bras robotique fonctionnel malgré contraintes temporelles.
- Conception mécanique nécessitant attention supplémentaire.
- Investissements dans l'amélioration électronique et logicielle.
- Base solide pour évolutions futures.
- Potentiel d'interface interactive pour contrôle avancé.
- Ouverture vers nouvelles utilisations et expérimentations.

BILAN

Ce projet nous a offert une opportunité précieuse d'explorer et d'approfondir nos connaissances dans le domaine de la robotique. Voici un aperçu des principaux enseignements tirés et des bénéfices que cela nous a apportés

Apprentissages:

- Connaissance en robotique approfondie:
- Programmation
- -Calcul cinématique
 - Base solide pour évolutions futures.
 - Compréhension des concepts clés de la robotique.
 - Expérience pratique avec manipulation d'un bras robotique.

Apports:

- Amélioration des compétences techniques.
- Prise de décision éclairée pour le choix des outils.
- Renforcement de la collaboration en équipe.
- Élargissement des horizons professionnels.

DEMO

THEEND