Finite Difference Discretization of Hyperbolic Equations: Linear Problems

Lectures 8, 9 and 10

INITIAL BOUNDARY VALUE PROBLEM (IBVP)

$$rac{\partial u}{\partial t} + U rac{\partial u}{\partial x} = 0, \quad x \in (0,1)$$

Initial condition:

$$u(x,0)=u^0(x)$$

Boundary conditions: $egin{cases} u(0,t)=g_0(t) & \text{if } U>0 \ u(1,t)=g_1(t) & \text{if } U<0 \end{cases}$

Solution

$$du = rac{\partial u}{\partial t}dt + rac{\partial u}{\partial x}dx = \left(rac{\partial u}{\partial t} + rac{dx}{dt}rac{\partial u}{\partial x}
ight)dt$$

If
$$\frac{dx}{dt} = U \Rightarrow x = Ut + \xi$$
 Characteristics

 \Downarrow

$$du = 0$$
, \Rightarrow $u(x,t) = f(\xi) = f(x - Ut)$

General solution

Solution

$$u(x,t) = egin{cases} u^0(x-Ut), & ext{if } x-Ut>0 \ g_0(t-x/U), & ext{if } x-Ut<0 \end{cases}$$

Solution

$$m{u}(m{x},t) = egin{cases} m{u}^0(m{x}-m{U}t), & ext{if} \ m{x}-m{U}t < m{1} \ m{g}_1(m{t}-m{x}/m{U}), & ext{if} \ m{x}-m{U}t > m{1} \end{cases}$$

Stability

$$L^2([0,1])$$
-norm $\|u\|_2(t)=\left(\int_0^1 u^2(x,t)\;dx
ight)^{rac{1}{2}}$

$$\int_0^1 u \left(rac{\partial u}{\partial t} + U rac{\partial u}{\partial x}
ight) \; dx = 0$$

$$rac{d}{dt} \, ||u||_2^2 = - U(u^2(1,t) - u^2(0,t))$$

Model Problem

$$rac{\partial u}{\partial t} + U rac{\partial u}{\partial x} = 0, \quad x \in (0,1)$$

Initial condition:

$$u(x,0)=u^0(x)$$

Periodic Boundary conditions: u(0,t) = u(1,t)

$$rac{d}{dt} ||u||_2^2 = 0 \quad \Rightarrow \quad ||u||_2(t) = ||u^0||_2 = ext{constant}$$

Model Problem

Example

Periodic Solution (U > 0)

$$t = 0$$

$$t = T$$

$$t = 2T$$

Discretization

Discretize (0,1) into J equal intervals Δx

$$\Delta x = rac{1}{J}, \qquad x_j = j \Delta x$$

and (0,T) into N equal intervals Δt

$$\Delta t = rac{T}{N}, \qquad t^n = n \Delta t$$

$$oxed{\hat{u}_j^npprox u_j^n\equiv u(x_j,t^n)}, \qquad ext{for } egin{cases} oxed{0} \leq j \leq J \ 0 \leq n \leq N \end{cases}$$

Discretization

Discretization

Finite Difference Solution

NOTATION:

- $\hat{oldsymbol{v}}_j^n$ approximation to $oldsymbol{v}(oldsymbol{x}_j, oldsymbol{t}^n) \equiv oldsymbol{v}_j^n$
- $\mathbf{v}^n \in \mathbb{R}^J$ vector of approximate values at time \mathbf{n} ;

$$\underline{\hat{v}}^n = \{\hat{v}_j^n\}_{j=1}^J$$

 $- \underline{v^n} \in \mathbb{R}^J$ vector of exact values at time n;

$$\underline{v}^n = \{v(x_j, t^n)\}_{j=1}^J$$

Approximation

For example ... (for U > 0)

$$\left. rac{\partial v}{\partial x}
ight|_{i}^{n} pprox rac{v(x_{j}, t^{n}) - v(x_{j-1}, t^{n})}{\Delta x} = rac{v_{j}^{n} - v_{j-1}^{n}}{\Delta x}$$

$$\left. rac{\partial v}{\partial t}
ight|_{j}^{n} pprox rac{v(x_{j}, t^{n+1}) - v(x_{j}, t^{n})}{\Delta t} = rac{v_{j}^{n+1} - v_{j}^{n}}{\Delta t}$$

Forward in Time Backward (Upwind) in Space

First Order Upwind Scheme

$$u_t + Uu_x = 0$$
 suggests ...

$$egin{aligned} & \hat{oldsymbol{u}}_{j}^{n+1} - \hat{oldsymbol{u}}_{j}^{n} \\ & \Delta t \end{aligned} + U rac{\hat{oldsymbol{u}}_{j}^{n} - \hat{oldsymbol{u}}_{j-1}^{n}}{\Delta x} = \mathbf{0} \quad \Rightarrow \quad \end{aligned}$$

$$egin{align} \hat{m{u}}_j^{n+1} &= \hat{m{u}}_j^n - C(\hat{m{u}}_j^n - \hat{m{u}}_{j-1}^n) & egin{cases} 1 \leq j \leq J \ 0 \leq n \leq N \end{cases} \ \hat{m{u}}_0^n &= \hat{m{u}}_J^n & 0 \leq n \leq N \end{cases}$$

Courant number $C = U\Delta t/\Delta x$

First Order Upwind Scheme

Interpretation

$$u_j^{n+1} = u_P$$

Use Linear Interpolation

$$j-1,\,j$$

N1

$$oxed{u_Ppprox C\hat{u}_{j-1}^n+(1-C)\hat{u}_j^n}$$

First Order Upwind Scheme

Explicit Solution

no matrix inversion

ûⁿ exists and is unique

$$\hat{u}_{j}^{n+1} = \hat{u}_{j}^{n} - C(\hat{u}_{j}^{n} - \hat{u}_{j-1}^{n})$$

First Order Upwind Scheme

Matrix Form

We can write

$$\left| \hat{\underline{u}}^n = \hat{\mathcal{S}} \, \hat{\underline{u}}^{n-1} \right| = \hat{\mathcal{S}}^n \, \hat{\underline{u}}^0$$

$$\hat{m{u}}^0 \equiv m{u}^0$$

$$egin{bmatrix} (1-C) & 0 & 0 & \cdots & C \ C & (1-C) & 0 & \cdots & 0 \ 0 & \cdots & \ddots & \vdots & 0 \ \vdots & \cdots & C & (1-C) & 0 \ 0 & \cdots & 0 & C & (1-C) \end{pmatrix} \ \hat{\hat{\mathcal{S}}}$$

First Order Upwind Scheme

Example

$$u_t + u_x = 0$$

$$oldsymbol{\Delta x} = rac{1}{100}$$

$$C=rac{\Delta t}{\Delta x}=0.5$$

$$T=1 \Rightarrow N=200$$

Definition

Convergence

The finite difference algorithm converges if

$$egin{array}{ll} \lim & ||\hat{oldsymbol{u}}^n - oldsymbol{u}^n|| = 0, & 1 \leq n \leq N \ \Delta x, \Delta t
ightarrow 0 & N \Delta t = T \ J \Delta x = 1 & \end{array}$$

for any initial condition $u^0(x)$.

$$\|\underline{v}\| = \left(\Delta x \sum_{j=1}^J v_j^2
ight)^{1/2} = \sqrt{\Delta x} \ \|\underline{v}\|_2$$
 N2

Definition

Consistency

The difference scheme $\hat{\mathcal{L}}_{\hat{u}}^n = 0$,

is **consistent** with the differential equation $\mathcal{L}u = 0$

lf:

For all smooth functions v

$$(\hat{\mathcal{L}}\, \underline{v}^{m{n}})_{m{j}} - (\mathcal{L}\, m{v})_{m{j}}^{m{n}} o m{0}, \quad ext{for } \left\{egin{array}{l} m{1} \leq m{j} \leq m{J} \ m{1} \leq m{n} \leq m{N} \end{array}
ight.$$

when Δx , $\Delta t \rightarrow 0$.

Consistency

Difference operator

$$\hat{\mathcal{L}} \underline{v}^n = rac{1}{\Delta t} \{ \underline{v}^{n+1} - \hat{\mathcal{S}} \underline{v}^n \}$$

Differential operator

$$\mathcal{L} oldsymbol{v} \equiv rac{\partial oldsymbol{v}}{\partial oldsymbol{t}} + oldsymbol{U} rac{\partial oldsymbol{v}}{\partial oldsymbol{x}}$$

Consistency

$$egin{align} (\hat{\mathcal{L}} \underline{v}^n)_j &\equiv rac{v_j^{n+1} - v_j^n}{\Delta t} + U rac{v_j^n - v_{j-1}^n}{\Delta x} \ &= (v_t + U v_x)_j^n + rac{\Delta t}{2} (v_{tt})_j^n + U rac{\Delta x}{2} (v_{xx})^n + \ldots \end{split}$$

$$(\mathcal{L}v)_j^n \equiv (v_t + Uv_x)_j^n$$

$$\left| (\hat{\mathcal{L}}\, \underline{v}^n)_j - (\mathcal{L}\, v)_j^n = \mathcal{O}(\Delta x, \Delta t) \,
ight|$$

First order accurate in space and time.

Truncation Error

Insert exact solution u into difference scheme

$$(\hat{\mathcal{L}}\,\underline{u})_j^n - (\underline{\mathcal{L}}\,\underline{u})_j^n = au_j^n, \quad ext{for } \left\{ egin{array}{l} 1 \leq j \leq J \\ 1 \leq n \leq N \end{array}
ight.$$

$$\underline{u}^{n+1} = \hat{\mathcal{S}}\underline{u}^n + \Delta t\,\underline{\tau}^n$$

Consistency
$$\Rightarrow ||\underline{\tau}^n|| = \mathcal{O}(\Delta x, \Delta t), \ \ 1 \leq n \leq N$$

Definition

Stability

The difference scheme $\hat{\boldsymbol{u}}^{n+1} = \hat{\mathcal{S}}\hat{\boldsymbol{u}}^n$ is stable if:

there exists C_T such that

$$||\underline{\boldsymbol{v}}^{\boldsymbol{n}}|| = ||\hat{\mathcal{S}}^{\boldsymbol{n}}|\underline{\boldsymbol{v}}^{\boldsymbol{0}}|| \leq C_T ||\underline{\boldsymbol{v}}^{\boldsymbol{0}}||$$

for all \underline{v}^0 ; and n, Δt such that $0 \leq n \Delta t \leq T$

Above condition can be written as

$$\|\hat{\mathcal{S}}|_{\underline{v}}\| \leq (1+\mathcal{O}(\Delta t))\|\underline{v}\|$$

Stability

$$egin{align} \hat{u}_{j}^{n+1} &= \hat{u}_{j}^{n} - C(\hat{u}_{j}^{n} - \hat{u}_{j-1}^{n}) \ &= (1-C)\,\hat{u}_{j}^{n} + C\,\hat{u}_{j-1}^{n} \ &= lpha\,\hat{u}_{j}^{n} + eta\,\hat{u}_{j-1}^{n} \ \end{aligned}$$

Stability

$$\begin{split} \sum_{j=1}^{J} |\hat{\boldsymbol{u}}_{j}^{n+1}|^{2} &= \sum_{j=1}^{J} |\alpha \hat{\boldsymbol{u}}_{j}^{n} + \beta \hat{\boldsymbol{u}}_{j-1}^{n}|^{2} \\ &\leq \sum_{j=1}^{J} |\alpha|^{2} |\hat{\boldsymbol{u}}_{j}^{n}|^{2} + 2|\alpha||\beta||\hat{\boldsymbol{u}}_{j}^{n}||\hat{\boldsymbol{u}}_{j-1}^{n}| + |\beta|^{2} |\hat{\boldsymbol{u}}_{j-1}^{n}|^{2} \\ &\leq \sum_{j=1}^{J} |\alpha|^{2} |\hat{\boldsymbol{u}}_{j}^{n}|^{2} + |\alpha||\beta|(|\hat{\boldsymbol{u}}_{j}^{n}|^{2} + |\hat{\boldsymbol{u}}_{j-1}^{n}|^{2}) + |\beta|^{2} |\hat{\boldsymbol{u}}_{j-1}^{n}|^{2} \\ &= \sum_{j=1}^{J} (|\alpha|^{2} + 2|\alpha||\beta| + |\beta|^{2})|\hat{\boldsymbol{u}}_{j}^{n}|^{2} = (|\alpha| + |\beta|)^{2} \sum_{j=1}^{J} |\hat{\boldsymbol{u}}_{j}^{n}|^{2} \end{split}$$

Stability

$$||\underline{\boldsymbol{u}}^{n+1}||_2^2 \leq (|\alpha|+|eta|)^2||\underline{\boldsymbol{u}}^n||_2^2$$

Stability if

$$|\alpha|+|\beta|\leq 1, \quad \Rightarrow$$

$$|1 - C| + |C| \le 1, \qquad 0 \le C \le 1$$

Upwind scheme is stable provided

$$egin{aligned} oldsymbol{U} > oldsymbol{0}, & oldsymbol{\Delta}t \leq rac{oldsymbol{\Delta}x}{oldsymbol{U}} \end{aligned}$$

Lax Equivalence Theorem

A consistent finite difference scheme for a partial differential equation for which the initial value problem is well-posed is convergent if and only if it is stable.

Lax Equivalence Theorem

Proof

$$egin{aligned} \|\hat{oldsymbol{u}}^n - oldsymbol{u}^n\| &= \|\hat{\mathcal{S}}\hat{oldsymbol{u}}^{n-1} - \hat{\mathcal{S}}\underline{u}^{n-1} + \Delta t\, \underline{ au}^{n-1}\| \ &\leq \|\hat{\mathcal{S}}(\hat{oldsymbol{u}}^{n-1} - \underline{u}^{n-1})\| + \Delta t\, \mathcal{O}(\Delta x, \Delta t) \ &\leq \|\hat{oldsymbol{u}}^{n-1} - \underline{u}^{n-1}\| + \Delta t\, \mathcal{O}(\Delta x, \Delta t) \ &\leq \|\hat{oldsymbol{u}}^0 - \underline{u}^0\| + \underbrace{n\Delta t}_{\leq T}\, \mathcal{O}(\Delta x, \Delta t) \ &\leq \mathcal{O}(\Delta x, \Delta t) \quad \text{(first order in } \Delta x, \Delta t) \end{aligned}$$

Lax Equivalence Theorem

First Order Upwind Scheme

- ullet Consistency: $\|\underline{ au}\| = \mathcal{O}(\Delta x, \Delta t)$
- ullet Stability: $\|\hat{\underline{u}}^{n+1}\| \leq \|\hat{\underline{u}}^n\|$ for $C \equiv U\Delta t/\Delta x \leq 1$
- **◆** ⇒ Convergence

$$\underline{e} = \underline{u} - \underline{\hat{u}}$$

$$||\underline{e}^n|| \leq (C_x \Delta x + C_t \Delta t), \ 1 \leq n \leq N$$

or
$$|e_j^n| \leq (C_x \Delta x + C_t \Delta t), \; \left\{ egin{array}{l} 1 \leq j \leq J, \ 1 \leq n \leq N \end{array}
ight.$$

 C_x and C_t are constants independent of Δx , Δt

Lax Equivalence Theorem

First Order Upwind Scheme

Example

Solutions for:

$$C = 0.5$$

$$\Delta x = 1/100$$
 (left) $\Delta x = 1/200$ (right)

Convergence is slow!!

Domains of Dependence

CFL Condition

Mathematical Domain of Dependence of $u(x_j, t^N)$

Set of points in (x, t) where the initial or boundary data may have some effect on $u(x_j, t^N)$.

Numerical Domain of Dependence of \hat{u}_{j}^{N}

Set of points x_k, t^n where the initial or boundary data may have some effect on \hat{u}_i^N .

N3

Domains of Dependence

CFL Condition

First Order Upwind Scheme

Analytical

Numerical (U > 0)

CFL Theorem

CFL Condition

CFL Condition

For each (x_j, t^N) the mathematical domain of dependence is contained in the numerical domain of dependence.

CFL Theorem

The CFL condition is a necessary condition for the convergence of a numerical approximation of a partial differential equation, linear or nonlinear.

CFL Theorem

CFL Condition

Stable

Unstable

Fourier Analysis

 Provides a systematic method for determining stability

von Neumann Stability Analysis

Provides insight into discretization errors

Fourier Analysis

Continuous Problem

Fourier Modes and Properties...

Fourier mode:
$$\Phi_k(x) = e^{i2\pi kx}$$
, $k \in \mathbb{Z}$ (integer)

- Periodic (period = 1)
- Orthogonality

$$\int_0^1 \Phi_k(x) \Phi_{-k'}(x) \, dx = \delta_{kk'}$$

ullet Eigenfunction of $rac{\partial^m}{\partial x^m} \partial^m \over \partial x^m \Phi_k(x) = (i2\pi k)^m \Phi_k(x)$

Continuous Problem

Fourier Analysis

...Fourier Modes and Properties

• Form a basis for periodic functions in $L^2([0,1])$

$$v(x) = \sum_{k=-\infty}^{\infty} \mathbb{V}_k \Phi_k(x) = \sum_{k=-\infty}^{\infty} \mathbb{V}_k e^{i2\pi kx}$$

Parseval's theorem

$$\|v\|_2^2 = \sum_{k=-\infty}^\infty |\mathbb{V}_k|^2$$

Continuous Problem

Fourier Analysis

Wave Equation

$$egin{aligned} oldsymbol{u}(x,t) &= \sum_{k=-\infty}^{\infty} \mathbb{U}_k(t) \Phi_k(x) = \sum_{k=-\infty}^{\infty} \mathbb{U}_k(t) e^{i2\pi kx} \end{aligned}$$

$$egin{aligned} u_t + U u_x &= 0 \;\; \Rightarrow \;\; \sum_{k=-\infty}^{\infty} (rac{d\mathbb{U}_k}{dt} + i2\pi k U\,\mathbb{U}_k)\,e^{i2\pi k x} = 0 \end{aligned}$$

$$u^0(x) = \sum_{k=-\infty}^\infty \mathbb{U}_k^0 e^{i2\pi kx} \;\; \Rightarrow \;\; \mathbb{U}_k(t) = \mathbb{U}_k^0 \; e^{-i2\pi k U t}$$

Fourier Analysis

Discrete Problem

Fourier Modes and Properties...

Fourier mode:
$$\underline{\Phi}_k = \{\Phi_k(x_j)\}_{j=0}^{J-1}$$
,

$$k \text{ (integer)} \in (-J/2 + 1, J/2)$$

$$\Phi_k(x_j) = e^{i2\pi k j \Delta x} \equiv e^{ij heta} = \Phi_{ heta j}, \quad \overline{ heta = 2\pi k \Delta x}$$

$$k \in (-J/2+1,\ J/2)\ \Rightarrow\ heta \in (-\pi+2\pi\Delta x,\ \pi)$$

Fourier Analysis

Discrete Problem

...Fourier Modes and Properties...

Real part of first 4
Fourier modes

$$\Delta x = 1/20$$

Discrete Problem

Fourier Analysis

...Fourier Modes and Properties...

- Periodic (period = J)
- Orthogonality

N4

$$rac{1}{J} \, \underline{\Phi}_{ heta}^T \underline{\Phi}_{- heta'} = rac{1}{J} \, \sum_{j=0}^{J-1} e^{i2\pi k j \Delta x} e^{-i2\pi k' j \Delta x} = \delta_{kk'}$$

$$=rac{\mathbf{1}}{J}\sum_{j=0}^{J-1}e^{ij heta}e^{-ij heta'}=egin{cases} \mathbf{1} ext{ if } oldsymbol{ heta}=oldsymbol{ heta}' \ \mathbf{0} ext{ if } oldsymbol{ heta}=oldsymbol{ heta}' \end{cases}$$

Discrete Problem

Fourier Analysis

...Fourier Modes and Properties...

Eigenfunctions of difference operators e.g.,

N5

-
$$\delta_{2x} \underline{v}|_j = v_{j+1} - v_{j-1}$$

$$\delta_{2x}\, \underline{\Phi}_{ heta} = i 2 \sin(heta)\, \underline{\Phi}_{ heta}$$

$$egin{aligned} -\delta_x^2 \underline{v}|_j &= v_{j+1} - 2v_j + v_{j-1} \ \delta_x^2 \, \underline{\Phi}_ heta &= -4 \sin^2(heta/2) \, \underline{\Phi}_ heta \end{aligned}$$

$$egin{aligned} -\Delta_x^- \underline{v}|_j &= v_j - v_{j-1} \ & \Delta_x^- \, \underline{\Phi}_ heta &= (1 - e^{-i heta}) \, \underline{\Phi}_ heta \end{aligned}$$

Discrete Problem

Fourier Analysis

...Fourier Modes and Properties

ullet Basis for periodic (discrete) functions $oldsymbol{\underline{v}} = \{v_j\}_{j=1}^J$

Parseval's theorem

$$\|\underline{v}\|^2 \equiv \underbrace{\Delta x}_{1/J} \|\underline{v}\|_2^2 = \sum_{egin{subarray}{c} heta = -\pi \ +2\pi\Delta x \end{array}}^{\pi} \|\mathbb{V}_{ heta}\|^2$$

Fourier Analysis

Write
$$\underline{\hat{u}}^{n+1} = \sum_{\theta} \hat{\mathbb{U}}_{\theta}^{n+1} \underline{\Phi}_{\theta}, \quad \underline{\hat{u}}^{n} = \sum_{\theta} \hat{\mathbb{U}}_{\theta}^{n} \underline{\Phi}_{\theta}$$

Stability
$$\|\hat{\underline{u}}^{n+1}\| \leq (1 + \mathcal{O}(\Delta t))\|\hat{\underline{u}}^n\|$$

$$\Rightarrow \sum_{ heta} |\hat{\mathbb{U}}_{ heta}^{n+1}|^2 \leq (1+\mathcal{O}(\Delta t)) \sum_{ heta} |\hat{\mathbb{U}}_{ heta}^n|^2$$

Stability for all data ⇒

$$ig||\hat{\mathbb{U}}_{ heta}^{n+1}| \leq (1+\mathcal{O}(\Delta t))||\hat{\mathbb{U}}_{ heta}^{n}|, \quad orall heta$$

Fourier Analysis

First Order Upwind Scheme...

$$\hat{oldsymbol{u}}_j^n = \sum_{ heta} \hat{\mathbb{U}}_{ heta}^n \; oldsymbol{\Phi}_{ heta j} = \sum_{ heta} \hat{\mathbb{U}}_{ heta}^n \; e^{ij heta}$$

$$\hat{oldsymbol{u}}_{j}^{n+1}-\hat{oldsymbol{u}}_{j}^{n}+C(\hat{oldsymbol{u}}_{j}^{n}-\hat{oldsymbol{u}}_{j-1}^{n})=0, \quad orall j \; \Rightarrow$$

$$\sum_{m{ heta}} (\hat{\mathbb{U}}_{m{ heta}}^{n+1} - \hat{\mathbb{U}}_{m{ heta}}^n + C(1 - e^{-im{ heta}})\hat{\mathbb{U}}_{m{ heta}}^n) e^{ijm{ heta}} = 0, \quad orall m{j} \ \Rightarrow$$

Fourier Analysis

...First Order Upwind Scheme...

$$\hat{\mathbb{U}}_{ heta}^{n+1}=\underbrace{((1-C)+Ce^{-i heta})}_{g(C,\, heta)}\,\,\hat{\mathbb{U}}_{ heta}^{n}=g(C, heta)\,\hat{\mathbb{U}}_{ heta}^{n}$$
 amplification factor

Stability if $|\hat{\mathbb{D}}_{\theta}^{n+1}| \leq |\hat{\mathbb{D}}_{\theta}^{n}|, \forall \theta$ which implies

$$||g(C, heta)| \leq 1, \qquad orall heta$$

Fourier Analysis

...First Order Upwind Scheme

$$egin{align} |g(C, heta)|^2 &= |(1-C) + Ce^{-i heta}|^2 \ &= (1-C+C\cos(heta))^2 + C^2\sin^2(heta) \ &= (1-2C\sin^2(heta/2))^2 + 4C^2\sin^2(heta/2)\cos^2(heta/2) \ &= 1-4C(1-C)\sin^2(heta/2) \ \end{gathered}$$

Stability if:

$$|oldsymbol{g(C, heta)}| \leq 1 \ \Rightarrow 0 \leq C \equiv rac{oldsymbol{U\Delta t}}{\Delta x} \leq 1$$

Fourier Analysis

FTCS Scheme...

$$egin{align} rac{\hat{oldsymbol{u}}_{j}^{n+1} - \hat{oldsymbol{u}}_{j}^{n}}{\Delta t} + U rac{\hat{oldsymbol{u}}_{j+1}^{n} - \hat{oldsymbol{u}}_{j-1}^{n}}{2\Delta x} = 0 \ & \Rightarrow \ \hat{oldsymbol{u}}^{n+1} = \hat{oldsymbol{u}}^{n} - rac{C}{2} \, \delta_{2x} \hat{oldsymbol{u}}^{n} \end{aligned}$$

Fourier Decomposition:
$$u_j^n = \sum_{\theta} \hat{\mathbb{U}}_{\theta}^n e^{ij\theta}$$

$$\Rightarrow \sum_{ heta} (\hat{\mathbb{U}}_{ heta}^{n+1} - \hat{\mathbb{U}}_{ heta}^n + iC\sin(heta)\hat{\mathbb{U}}_{ heta}^n) \ e^{ij heta} = 0$$

Fourier Analysis

...FTCS Scheme

$$\hat{\mathbb{U}}_{ heta}^{n+1} = \underbrace{(1-iC\sin(heta))}_{g(C, heta)} \hat{\mathbb{U}}_{ heta}^{n} = g(C, heta) \hat{\mathbb{U}}_{ heta}^{n}$$
 amplification factor

$$|g(C, heta)|^2=1+C^2\sin^2(heta)\geq 1,\quad ext{for }C
eq 0$$

→ Unconditionally Unstable → Not Convergent

Time Discretization

Lax-Wendroff Scheme

Write a Taylor series expansion in time about t^n

$$u(x,t^{n+1}) = u(x,t^n) + \Delta t \left. rac{\partial u}{\partial t}
ight|^n + rac{\Delta t^2}{2} rac{\partial^2 u}{\partial t^2}
ight|^n + \dots$$

But . . .

$$rac{\partial u}{\partial t} = -Urac{\partial u}{\partial x} \qquad ext{(from } u_t + Uu_x = 0)$$

$$rac{\partial^2 u}{\partial t^2} = rac{\partial}{\partial t} \left(-U rac{\partial u}{\partial x}
ight) = -U rac{\partial}{\partial x} \left(rac{\partial u}{\partial t}
ight) = U^2 rac{\partial u^2}{\partial x^2}$$

Spatial Approximation

$$u(x,t^{n+1}) = u(x,t^n) - U\Delta t \left.rac{\partial u}{\partial x}
ight|^n + rac{U^2\Delta t^2}{2} \left.rac{\partial^2 u}{\partial x^2}
ight|^n + \dots$$

Approximate spatial derivatives

$$\left. rac{\partial v}{\partial x}
ight|_{j} pprox rac{1}{2\Delta x} \, \delta_{2x} \, \underline{v}|_{j} = rac{v_{j+1} - v_{j-1}}{2\Delta x}$$

$$\left. rac{\partial^2 v}{\partial x^2}
ight|_i pprox rac{1}{\Delta x^2} \, \delta_x^2 \, \underline{v}|_j = rac{v_{j+1} - 2 v_j + v_{j-1}}{\Delta x^2}$$

Equations

no matrix inversion

ûⁿ exists and is unique

$$\hat{m{u}}_{j}^{n+1} = \hat{m{u}}_{j}^{n} - rac{C}{2}(\hat{m{u}}_{j+1}^{n} - \hat{m{u}}_{j-1}^{n}) + rac{C^{2}}{2}(\hat{m{u}}_{j+1}^{n} - 2\hat{m{u}}_{j}^{n} + \hat{m{u}}_{j-1}^{n})$$

Interpretation

$$oldsymbol{u}_j^{n+1} = oldsymbol{u}_P$$

Use Quadratic Interpolation j-1, j, j+1

$$m{u}_P pprox rac{C}{2} (1+C) \hat{m{u}}_{j-1}^n + (1+C) (1-C) \hat{m{u}}_j^n - rac{C}{2} (1-C) \hat{m{u}}_{j+1}^n$$

Analysis

Consistency

$$egin{aligned} (\hat{\mathcal{L}} \underline{v}^n)_j &\equiv rac{v_j^{n+1}-v_j^n}{\Delta t} + U rac{v_{j+1}^n-v_{j-1}^n}{2\Delta x} - rac{U^2\Delta t}{2} rac{v_{j+1}^n-2v_j^n+v_{j-1}^n}{\Delta x^2} \ &= (v_t + U v_x)_j^n + rac{\Delta t}{2} \left(v_{tt}|_j^n - U^2 \, v_{xx}^n|_j^n
ight) + \dots \ &= 0 \, (ext{for } v = u) \ (\mathcal{L} v)_j^n &\equiv (v_t + U v_x)_j^n \end{aligned}$$

$$ig|(\hat{\mathcal{L}}\, \underline{v}^n)_j - (\mathcal{L}\, v)_j^n = \mathcal{O}(\Delta x^2, \Delta t^2)ig|$$

Second order accurate in space and time.

Analysis

Truncation Error

Insert exact solution *u* into difference scheme

$$(\hat{\mathcal{L}}\,\underline{u})_j^n - (\underline{\mathcal{L}}\,\underline{u})_j^n = \tau_j^n, \quad ext{for } \left\{ egin{array}{l} 1 \leq j \leq J \\ 1 \leq n \leq N \end{array}
ight.$$

$$\underline{u}^{n+1} = \hat{\mathcal{S}}\underline{u}^n + \Delta t\,\underline{\tau}^n$$

Consistency
$$\Rightarrow ||\underline{\tau}^n|| = \mathcal{O}(\Delta x^2, \Delta t^2), \ \ 1 \leq n \leq N$$

Analysis

Stability

$$egin{aligned} \hat{\underline{u}}^{n+1} &= \hat{\underline{u}}^n - rac{C}{2} \, \delta_{2x} \, \hat{\underline{u}}^n + rac{C^2}{2} \, \delta_x^2 \, \hat{\underline{u}}^n \ \Rightarrow & \hat{\mathbb{U}}_{ heta}^{n+1} &= \hat{\mathbb{U}}_{ heta}^n - i C \sin(heta) \, \hat{\mathbb{U}}_{ heta}^n - C^2 (1 - \cos(heta)) \, \hat{\mathbb{U}}_{ heta}^n \ &= \underbrace{\left(1 - 2C^2 \sin^2(heta/2) - i C \sin(heta)
ight)}_{g(heta, heta)} \, \hat{\mathbb{U}}_{ heta}^n \ &|g(C, heta)|^2 = 1 - 4C^2 (1 - C^2) \sin^4(heta/2) \end{aligned}$$

Stability if:
$$|g(C, \theta)| \leq 1 \Rightarrow |C| \equiv |U|\Delta t/\Delta x \leq 1$$

Analysis

Convergence

- ullet Consistency: $||\underline{ au}|| = \mathcal{O}(\Delta x^2, \Delta t^2)$
- ullet Stability: $\|\hat{\underline{u}}^{n+1}\| \leq \|\hat{\underline{u}}^n\|$ for $C \equiv U\Delta t/\Delta x \leq 1$

$$\underline{e} = \underline{u} - \hat{\underline{u}}$$

$$\|\underline{e}^n\| \leq (C_x \Delta x^2 + C_t \Delta t^2), \ 1 \leq n \leq N$$

or
$$|e_j^n| \leq (C_x \Delta x^2 + C_t \Delta t^2), \; \left\{ egin{array}{l} 1 \leq j \leq J, \ 1 \leq n \leq N \end{array}
ight.$$

 C_x and C_t are constants independent of Δx , Δt

Domains of Dependence

Analytical

Numerical

CFL Condition

Stable

Unstable

Example

Solutions for:

$$C = 0.5$$

$$\Delta x = 1/50$$
 (left) $\Delta x = 1/100$ (right)

Example

 $\Delta x = 1/100$

C = 0.5

Upwind (left)
vs.
Lax-Wendroff (right)

Derivation

Beam-Warming Scheme

$$u_j^{n+1} = u_P$$

Use Quadratic Interpolation j = 2, j = 1, j

$$m{u_P}pprox -rac{C}{2}(1-C)\hat{m{u}}_{j-2}^n + C(2-C)~\hat{m{u}}_{j-1}^n + rac{1}{2}(1-C)(2-C)\hat{m{u}}_j^n$$

Beam-Warming Scheme

Consistency and Stability

$$\hat{m{u}}_j^{n+1} = \hat{m{u}}_j^n - rac{C}{2}(3\hat{m{u}}_j^n - 4\hat{m{u}}_{j-1}^n + \hat{m{u}}_{j-2}^n) + rac{C^2}{2}(\hat{m{u}}_j^n - 2\hat{m{u}}_{j-1}^n + \hat{m{u}}_{j-2}^n)$$

- ullet Consistency, $\| \underline{ au} \| \sim \mathcal{O}(\Delta x^2, \Delta t^2)$
- Stability

$$|g(C, heta)|^2 = 1 - 4C(1-C)^2(2-C)\sin^4(heta/2)$$

$$|g(C,\theta)| < 1 \quad \Rightarrow \quad |0 \le C \le 2|$$

Method of Lines

Generally applicable to time evolution PDE's

- Spatial discretization
 - ⇒ Semi-discrete scheme (system of coupled ODE's)
- Time discretization (using ODE techniques)
 - ⇒ Discrete scheme

By studying the semi-discrete scheme we can better understand spatial and temporal discretization errors

Method of Lines

NOTATION:

- $\overline{v}_j(t)$ approximation to $v(x_j,t) \equiv v_j(t)$
- $\overline{v}(t)$ vector of semi-discrete approximations;

$$\overline{\underline{v}}(t) = \{\overline{v}_j(t)\}_{j=1}^J$$

Method of Lines

$$\frac{\partial u}{\partial t} + U \frac{\partial u}{\partial x} = 0$$

Central differences...(for example)

$$rac{d\overline{u}_{j}}{dt}+rac{U}{2\Delta x}\left(\overline{u}_{j+1}-\overline{u}_{j-1}
ight)=0, \qquad 1\leq j\leq J$$

or, in vector form,

$$rac{d\overline{u}}{dt} + rac{U}{2\Delta x} \delta_{2x} \overline{u} = 0$$

N6

Method of Lines

Fourier Analysis...

Write semi-discrete approximation as

$$\overline{u}_j(t) = \sum_{egin{array}{c} heta = -\pi \ +2\pi\Delta x \end{array}}^{\pi} \overline{\mathbb{U}}_{ heta}(t) \, e^{ij heta}$$

Inserting into semi-discrete equation

$$\sum_{ heta} (rac{d \ \overline{\mathbb{U}}_{ heta}}{dt} + i rac{oldsymbol{U}}{\Delta x} \sin(heta) \ \overline{\mathbb{U}}_{ heta}) \ e^{ij heta} = 0, \quad 1 \leq j \leq J$$

Method of Lines

...Fourier Analysis...

For each θ , we have a scalar ODE

$$rac{d\,\overline{\mathbb{U}}_{ heta}}{dt} + irac{oldsymbol{U}}{\Delta x} \sin(heta)\,\overline{\mathbb{U}}_{ heta} = 0$$

$$|\Rightarrow \ \ \overline{\mathbb{U}}_{ heta}(t) = \overline{\mathbb{U}}_{ heta}^0 e^{-irac{U}{\Delta x}\sin(heta)t}$$

$$|\overline{\mathbb{U}}_{\theta}(t)| = |\overline{\mathbb{U}}_{\theta}^{0}|$$
 Neutrally stable

Method of Lines

...Fourier Analysis...

Exact solution

$$u_j(t) = \sum_k \, \overline{\mathbb{U}}_k^0 e^{i2\pi(kx_j-kU\,t)}$$

$$\omega_{EX}=kU$$

Semi-discrete solution

$$\overline{u}_j(t) = \sum_{ heta} \, \overline{\mathbb{U}}_{ heta}^0 e^{ij heta} e^{-irac{U}{\Delta x}\sin(heta)t}$$

$$=\sum_{k}\,\overline{\mathbb{U}}_{k}^{0}e^{i2\pi(kx_{j}-rac{U}{2\pi\Delta x}\,\sin(2\pi k\Delta x)\,t)}$$

$$\left|\omega_{SD}=rac{U}{2\pi\Delta x}\,\sin(2\pi k\Delta x)
ight|$$

Method of Lines

Spatial Discretization

...Fourier Analysis

$$\omega_{EX}=kU$$

$$\omega_{SD} = rac{U}{2\pi\Delta x}\,\sin(2\pi k\Delta x)$$

Method of Lines

Time Discretization

Predictor/Corrector Algorithm...

Model ODE

$$\frac{du}{dt} = \lambda u$$

$$\hat{m{u}}^p = \hat{m{u}}^n + \Delta t \lambda \, \hat{m{u}}^n \ \hat{m{u}}^{n+1} = \hat{m{u}}^n + \Delta t \lambda \, \hat{m{u}}^p$$

Predictor Corrector

Combining the two steps we have

$$z = \Delta t \lambda$$

$$\hat{u}^{n+1} = \hat{u}^n + \Delta t \lambda \ \hat{u}^n + \Delta t^2 \lambda^2 \ \hat{u}^n = (1 + z + z^2) \ \hat{u}^n$$

Time Discretization

Method of Lines

...Predictor/Corrector Algorithm

Semi-discrete equation

$$rac{d\overline{u}}{dt} + rac{U}{2\Delta x} \delta_{2x} \overline{u} = 0$$

$$\underline{\hat{u}}^p = \underline{\hat{u}}^n + \frac{C}{2} \delta_{2x} \underline{\hat{u}}^n$$

Predictor

$$\underline{\hat{u}}^{n+1} = \underline{\hat{u}}^n + \frac{C}{2} \delta_{2x} \underline{\hat{u}}^p$$

Corrector

Combining the two steps we have

$$\hat{\underline{u}}^{n+1} = \hat{\underline{u}}^n + rac{C}{2} \, \delta_{2x} \hat{\underline{u}}^n + rac{C^2}{4} \, \delta_{2x}^2 \hat{\underline{u}}^n$$

Method of Lines

$$ar{\hat{oldsymbol{u}}}^{n+1} = \hat{oldsymbol{u}}^n + rac{C}{2}\,\delta_{2x}\hat{oldsymbol{u}}^n + rac{C^2}{4}\,\delta_{2x}^2\hat{oldsymbol{u}}^n$$

Fourier transform

$$egin{align} \hat{\mathbb{U}}_{ heta}^{n+1} &= \hat{\mathbb{U}}_{ heta}^n - iC\sin(heta)\,\hat{\mathbb{U}}_{ heta}^n - C^2\sin^2(heta)\,\hat{\mathbb{U}}_{ heta}^n \ \ &= (1+z_{ heta}+z_{ heta}^2)\,\hat{\mathbb{U}}_{ heta}^n, \quad orall heta \ \end{split}$$

$$z_{ heta} = -iC\sin(heta)$$

Method of Lines

Amplification factor

$$g(C, heta) = 1 + z_ heta + z_ heta^2$$

$$oldsymbol{z}_{ heta} = oldsymbol{i} lpha_{ heta}$$
 with $lpha_{ heta} \in {
m I\!R}$

$$|g(\pmb{C}, \pmb{ heta})|^2 = (1-lpha_ heta^2)^2 + lpha_ heta^2 = 1-lpha_ heta^2(1-lpha_ heta^2)$$

Stability
$$\Rightarrow \alpha_{\theta}^2 \leq 1 \ \forall \theta \ \Rightarrow \ C \leq 1$$

Method of Lines

↓ B

↓ **A**

Semi-discrete Fourier $\overline{\mathbb{U}}_{\theta}(t)$

В

Discrete Fourier $\hat{\mathbb{D}}_{A}^{n}$

Method of Lines

Path B...

Semi-discrete

Predictor

Corrector

Discrete

$$rac{d\overline{u}}{dt} + rac{U}{2\Delta x} \delta_{2x} \overline{u} = 0$$

$$rac{d\,\overline{\mathbb{U}}_{ heta}}{dt} + irac{U}{\Delta x}\sin(heta)\,\overline{\mathbb{U}}_{ heta} = 0$$

$$\hat{\mathbb{U}}^p = \hat{\mathbb{U}}^n - iC\sin(\theta)\hat{\mathbb{U}}^n$$

$$\hat{\mathbb{U}}^{n+1} = \hat{\mathbb{U}}^n - iC\sin(\theta)\hat{\mathbb{U}}^p$$

$$\hat{\mathbb{U}}_{ heta}^{n+1} = (1+z_{ heta}+z_{ heta}^2)\,\hat{\mathbb{U}}_{ heta}^n$$

Method of Lines

...Path 🖹

- Gives the same discrete Fourier equation
- Simpler
- "Decouples" spatial and temporal discretizations
 For each θ, the discrete Fourier equation is the result of discretizing the scalar semi-discrete
 ODE for the θ Fourier mode

Method of Lines

Model Equation:

$$rac{du}{dt} = \lambda u$$

 u, λ complex-valued

Discretization

$$rac{\hat{oldsymbol{u}}^{n+1} - \hat{oldsymbol{u}}^n}{\Delta t} = \lambda \hat{oldsymbol{u}}^n$$

$$rac{\hat{oldsymbol{u}}^{n+1} - \hat{oldsymbol{u}}^n}{\Delta t} = oldsymbol{\lambda} \hat{oldsymbol{u}}^{n+1}$$

$$rac{\hat{oldsymbol{u}}^{n+1}-\hat{oldsymbol{u}}^n}{\Delta t}=rac{1}{2}\lambda(\hat{oldsymbol{u}}^n+\hat{oldsymbol{u}}^{n+1})$$

Methods for ODE's

Absolute Stability Diagrams...

Given
$$\frac{du}{dt} = \lambda u$$
 and

 u, λ complex-valued

$$\left|rac{\hat{m{u}}^{n+1}-\hat{m{u}}^n}{\Delta t}
ight|=m{\lambda}\hat{m{u}}^n$$
 (EF) or $m{\lambda}\hat{m{u}}^{n+1}$ (EB) or ...;

 \mathcal{R}_{EF}^{abs} or ... $\in \mathbb{C}$ is defined such that

N7 N8

$$ig|oldsymbol{z} \equiv oldsymbol{\Delta} t oldsymbol{\lambda} \in \mathcal{R}_{EF}^{abs}$$
 or... $\Leftrightarrow |\hat{oldsymbol{u}}^{n+1}| < |\hat{oldsymbol{u}}^n|$

$$|\hat{m{u}}^{m{n}}|
ightarrow 0$$
 as $m{n}
ightarrow \infty$

Method of Lines

...Absolute Stability Diagrams...

$$\hat{m{u}}^{n+1} - \hat{m{u}}^n = \Delta t \lambda \hat{m{u}}^n$$
 EF
 $\Rightarrow \hat{m{u}}^{n+1} = (1+z) \, \hat{m{u}}^n$
 $\hat{m{u}}^{n+1} - \hat{m{u}}^n = \Delta t \lambda \hat{m{u}}^{n+1}$ EB
 $\Rightarrow \hat{m{u}}^{n+1} = \frac{1}{1-z} \, \hat{m{u}}^n$
 $\hat{m{u}}^{n+1} - \hat{m{u}}^n = \frac{1}{2} \, \Delta t \lambda (\hat{m{u}}^n + \hat{m{u}}^{n+1})$ CN
 $\Rightarrow \hat{m{u}}^{n+1} = \frac{1+z/2}{1-z/2} \, \hat{m{u}}^n$

Methods for ODE's

... Absolute Stability Diagrams

N9

Methods for ODE's

Application to the Wave Equation...

For each θ

$$rac{d\,\overline{\mathbb{U}}_{ heta}}{dt} + irac{oldsymbol{U}}{\Delta x} ext{sin}(heta)\,\overline{\mathbb{U}}_{ heta} = 0, \quad ext{or} \quad \left|rac{d\,\overline{\mathbb{U}}_{ heta}}{dt} = oldsymbol{\lambda}_{ heta}\overline{\mathbb{U}}_{ heta}
ight|$$

$$egin{aligned} rac{oldsymbol{d} \, \overline{\mathbb{U}}_{oldsymbol{ heta}}}{oldsymbol{d} t} = oldsymbol{\lambda}_{oldsymbol{ heta}} \overline{\mathbb{U}}_{oldsymbol{ heta}} \end{aligned}$$

Thus,

$$\lambda_{ heta} = -irac{U}{\Delta x}\sin(heta)$$

- $\bullet \lambda_{\theta}$ (and $z_{\theta} = \Delta t \lambda_{\theta}$) is purely imaginary
- ullet $\lambda_ heta o \infty$ for $\Delta x o 0$

Methods for ODE's

... Application to the Wave Equation...

$$rac{oldsymbol{d}\,\overline{\mathbb{U}}_{ heta}}{oldsymbol{d}t} = oldsymbol{\lambda}_{ heta}\overline{\mathbb{U}}_{ heta}$$

- ⇒ EF is unconditionally unstable
- ⇒ EB is unconditionally stable
- → CN is unconditionally stable

Methods for ODE's

...Application to the Wave Equation...

Stable schemes can be obtained by:

- 1) Selecting explicit time stepping algorithms which have some stability on the imaginary axis
- 2) Modifying the original equation by adding "artificial viscosity" $\Rightarrow \Re(\lambda_{\theta}) < 0$

Method of Lines

...Application to the Wave Equation...

Explict Time stepping Schemes

Predictor/Corrector

$$\hat{u}^{n+1} = (1+z+z^2)\hat{u}^n$$

$$z_{ heta} = i C \sin(heta)$$

$$\Rightarrow$$
 $C \leq 1$

Methods for ODE's

...Application to the Wave Equation...

Explict Time stepping Schemes

4 Stage Runge-Kutta

$$\hat{u}^{n+1} = (1 + z + \frac{z^2}{2} + \frac{z^3}{6} + \frac{z^4}{24})\hat{u}^n$$

$$z_{ heta} = iC\sin(heta)$$

$$\Rightarrow$$
 $C \leq 2\sqrt{2} \sim 2.83$

Method of Lines

...Application to the Wave Equation...

Adding Artificial Viscosity

$$rac{d\overline{u}}{dt} + rac{U}{2\Delta x}\,\delta_{2x}\,\overline{u} - \underbrace{\murac{U}{2\Delta x}\,\delta_{x}^{2}\,\overline{u}}_{ ext{Additional Term}} = 0$$

EF Time
$$+ \mu = 1 \Rightarrow$$
 First Order Upwind
EF Time $+ \mu = C \Rightarrow$ Lax-Wendroff

Method of Lines

...Application to the Wave Equation...

Adding Artificial Viscosity

For each Fourier mode θ ,

$$rac{d\,\overline{\mathbb{U}}_{ heta}}{dt} + \{irac{U}{\Delta x}\sin(heta) - 2\murac{U}{\Delta x}\sin^2(heta/2)\}\,\overline{\mathbb{U}}_{ heta} = 0$$
 Additional Term

$$oldsymbol{z_{ heta}} = -2\mu C \sin^2(heta/2) - i C \sin(heta)$$

Method of Lines

...Application to the Wave Equation...

First Order Upwind Scheme $\mu = 1$

Method of Lines

...Application to the Wave Equation

Lax-Wendroff Scheme $\mu = C$

Model Problem

$$rac{\partial u}{\partial t} + U rac{\partial u}{\partial x} = \kappa rac{\partial^2 u}{\partial x^2} - a rac{\partial^3 u}{\partial x^3}, \quad x \in (0,1)$$

with $u(x,0) = u^0(x)$ and periodic boundary conditions. Solution

$$u(x,t) = \sum_{k=-\infty}^{k=\infty} \mathbb{U}_k^0 \, e^{-4\pi^2\sigma(k)t} \,\, e^{i2\pi(kx-\omega(k)t)}$$

$$\sigma(k)=\kappa k^2, \qquad \omega(k)=Uk-a4\pi^2k^3$$

Model Problem

```
e^{-4\pi^2\sigma(k)t} represents Decay \sigma(k) dissipation relation
```

$$e^{i2\pi(kx-\omega(k)t)}$$
 represents Propagation $\omega(k)$ dispersion relation

For the exact solution of $u_t + Uu_x = 0$

$$\sigma = 0$$
 no dissipation

$$\omega = kU$$
, or $\omega/k = U$ (constant) no dispersion

Modified Equation

First Order Upwind

$$u_t + U u_x = rac{U \Delta x}{2} (1-C) u_{xx} - rac{U \Delta x^2}{6} (1-C^2) u_{xxx}$$

Lax-Wendroff

$$u_t + U u_x = -rac{U \Delta x^2}{6} (1 - C^2) u_{xxx}$$

Beam-Warming

$$u_t + U u_x = rac{U \Delta x^2}{6} (2-C) (1-C) u_{xxx}$$

Modified Equation

- For the upwind scheme dissipation dominates over dispersion ⇒ Smooth solutions
- For Lax-Wendroff and Beam-Warming dispersion is the leading error effect

 Oscillatory solutions (if not well resolved)
- Lax-Wendroff has a negative phase error
- Beam-Warming has (for C < 1) a positive phase error

Examples

$$\Delta x = 1/25$$

$$C = 0.5$$

First Order Upwind

Examples

$$\Delta x = 1/25$$

$$C = 0.5$$

Lax-Wendroff (left) vs.
Beam-Warming (right)

Exact Discrete Relations

For the exact solution

$$\mathbb{U}_{ heta}^{n+1} = e^{i2\pi k U \Delta t}\,\mathbb{U}_{ heta}^n$$

$$\Rightarrow~~\omega_{EX}=kU= heta U/2\pi\Delta x$$
, and $\sigma_{EX}=0$

For the discrete solution

$$\hat{\mathbb{U}}_{ heta}^{n+1} = g(C, heta) \; \hat{\mathbb{U}}_{ heta}^n$$

$$egin{aligned} g(C, heta) &= e^{-i2\pi\omega(heta)\Delta t - 4\pi^2\sigma(heta)\Delta t} \ &\Rightarrow \ \omega(heta), ext{ and } \sigma(heta) \end{aligned}$$