

Europäisches Patentamt European Patent Office Office européen des brevets

(11) EP 0 654 645 B1

(12)

EUROPEAN PATENT SPECIFICATION

(45) Date of publication and mention of the grant of the patent:

07.01.1999 Bulletin 1999/01

(51) Int Cl.⁶: **F28D 1/053**, F28F 9/26, F25B 39/04, F28D 1/047

- (21) Application number: 94308661.1
- (22) Date of filing: 23.11.1994
- (54) Heat exchanger
 Wärmetauscher
 Echangeur de chaleur
- (84) Designated Contracting States: AT CH DE ES FR GB IT LI SE
- (30) Priority: 24.11.1993 JP 293439/93
- (43) Date of publication of application: 24.05.1995 Bulletin 1995/21
- (73) Proprietor: SHOWA ALUMINUM CORPORATION Sakaishi, Osaka (JP)
- (72) Inventors:
 - Hoshino, Ryoichi
 Oyamashi, Tochigi (JP)

- Shibata, Hiroki
 Oyamashi, Tochigi (JP)
- (74) Representative: Thomson, Paul Anthony
 Potts, Kerr & Co.
 15, Hamilton Square
 Birkenhead Merseyside L41 6BR (GB)
- (56) References cited:

DE-A- 1 900 358 US-A- 4 625 378 US-A- 3 750 709

US-A- 5 036 909

Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).

2

Description

BACKGROUND OF THE INVENTION AND DESCRIPTION OF RELATED ART

The present invention relates to a heat exchanger that is adapted for use as an evaporator, a condenser or the like in car air-conditioners, room air-conditioners or the like, and more particularly relates to a heat exchanger comprising heat exchanging tubes which are bent at their intermediate portions between opposite ends. The preamble of claim 1 is based on JP-A-4-187

The heat exchangers recently used in the car airconditioners are of the so-called multi-flow or parallel flow type. Flat and straight tubes are arranged at regular intervals and in parallel with and spaced apart from each other a predetermined distance in the direction of their thickness. Both the opposite ends of each tube are connected to a pair of hollow headers, in fluid communication therewith.

In the heat exchanger of this type, heat exchange occurs between a medium flowing through the tubes and air streams flowing through air paths each defined between the adjacent tubes. A certain improved heat exchanger is proposed for example in the Japanese Unexamined Patent Publication No. 63-282490. This type is improved in the efficiency of heat exchange and in the drainage of condensed dew, and is of a decreased dimension to fit in a narrower space. Each flat tube in the heat exchanger of this type has, intermediate its opposite ends, a middle portion bent in the direction of its width.

It has however been difficult to protect the tube's internal flow path from collapse when bending it in the width direction.

The United States Patents No. 5,279,360 and No. 5,341,870 propose a method of resolving this problem, in which a plurality of grooves are previously formed along lateral and opposite edges of a tube so that it can easily be bent at its middle region.

There are still problems in those proposals in that the previous forming of many grooves causes much labor and limit the portion where each tube can be bent. In addition, cross-sectional area of the bent portion is so decreased that a pressure loss of the coolant noticeably increases, due to the previously formed groves.

Instead of such a simple bending of tubes in the direction of their width, a 'twisting' of tubes is proposed in another Japanese Unexamined Patent Publication No. 4-187990. According to this proposal, a middle portion located intermediate opposite straight sections of each tube is twisted and bent such that the right side surface of one section becomes the left side surface in the other.

This proposal may be effective to avoid the collapse and constriction of the bent portions. It is however necessary to prepare the bent tubes, before connecting them to the headers, to thereby render somewhat intricate the manufacture and assembly of a heat exchanger. In a case wherein the interior of each flat tube is divided into parallel unit paths, a windward one of them in one straight section will continue to a windward unit path in the other, relative to air stream flowing through a space present between the adjacent straight sections. Consequently, heat exchange efficiency will vary among unit paths in each tube, thus impairing the overall efficiency of heat exchange.

OBJECTS AND SUMMARY OF THE INVENTION

An object of the present invention made in view of the described problems inherent in the prior art is therefore to provide a heat exchanger comprising a plurality of flat tubes arranged at regular intervals and in parallel with and spaced apart from each other a predetermined distance in the direction of thickness of the tubes, both the opposite ends of each tube being connected to a pair of headers in fluid communication therewith, wherein the tubes are bent at their intermediate portions in the direction of their width in such a manner that the heat exchanger is easy to manufacture, pressure loss of a heat exchanging medium flowing therethrough is suppressed, and heat exchange efficiency thereof is improved.

According to the present invention there is provided a heat exchanger comprising:

- a plurality of flat tubes arranged at regular intervals and in parallel with and spaced apart from each other a predetermined distance in the direction of thickness of the tubes;
- a pair of hollow headers disposed at one ends and other ends of the tubes, which are connected thereto in fluid communication therewith;
- each tube having an intermediate bent portion and straight sections separated one from another by the bent portion; and
- fins each interposed between the adjacent straight sections;

characterised in that the bent portion being a portion of each tube bent in the direction of thickness of the tube and twisted at a predetermined helical angle relative to each of the straight sections so that the interior of each flat tube is divided into parallel flow paths, a windward one of them in one straight section will continue to a leeward unit path in the other straight section or vice versa, relative to an air stream flowing in use through a space present between the adjacent straight sections.

For the purpose of rendering easier the manufacture and improving mechanical strength of the heat exchanger, it may further comprise: additional fins disposed outside the outermost tubes; and reinforcing strips each composed of a middle section and end sections continuing therefrom. The middle section has

20

35

formed therethrough apertures each fitting on a boundary present between the straight section and the twisted bent portion of each tube, and each end section of the reinforcing strip extending along and fixedly adjoined to the outer surface of the corresponding additional fin.

3

The twisted and bent portions located adjacent to each other may contact and overlap one another to reinforce said portions as a whole.

It is an important feature that each bent portion is twisted at a predetermined helical angle relative to the adjacent straight sections.

In manufacture, the flat and straight tubes arranged parallel at regular intervals and each having opposite ends connected to the headers in fluid communication therewith may be bent all at once in the direction of tubes' width. Each portion which is being bent between the straight sections will simultaneously and spontaneously be twisted relative thereto. The twisted and bent portions can now be formed very easily, without encountering any technical difficulty.

In a case wherein the heat exchanger comprises the aforementioned reinforcing strips each composed of the middle section and the end sections continuing therefrom and formed perpendicular thereto, the straight sections are protected from deformation during the bending-and-twisting operation. This is because a stress imparted to the tubes which are being bent is restricted to their middle portions located between the middle sections of said strips, even if each tube is forced to have a considerably small radius of curvature. The reinforcing strips thus contribute not only to an easier manufacture but also to an improved overall strength of the heat exchanger.

The overlapping of the adjacent bent portions will further improve their strength as a whole.

BRIEF DESCRIPTION OF THE DRAWINGS

Fig. 1 is a perspective view of a heat exchanger in the form of an evaporator provided in a first embodiment and shown in its entirety;

Fig. 2 is a cross section taken along the line 2 - 2 in Fig. 1;

Fig. 3 is a front elevation of the heat exchanger;

Fig. 4 is a plan view of the heat exchanger;

Fig. 5 is a bottom view of the heat exchanger;

Fig. 6 is an enlarged and partial front elevation of the heat exchanger's portion where tubes are bent and twisted:

Fig. 7 is an enlarged and partial perspective view of a reinforcing strip incorporated in the heat exchang-

Figs. 8A, 8B and 8C show the successive steps carried out in this order to manufacture the heat exchanger;

Fig. 9 shows the further step of bending the tubes; Fig. 10 is a perspective view of the flat tube, shown in part:

Fig. 11 is a cross section of a modified header incorporated in the heat exchanger;

Fig. 12 is a cross section of a modification in which baffles are inserted in the header;

Fig. 13 is an enlarged and partial perspective view of a modified reinforcing strip;

Fig. 14 is a plan view of a modified heat exchanger; Fig. 15 is a graph showing a relationship observed between the heat rejection and the pressure of a medium at an outlet of the heat exchanger;

Fig. 16 is another graph showing a relationship observed between the pressure drop of the heat exchanging medium and the flow rate thereof;

Figs. 17 to 21 show another heat exchanger provided in a second embodiment and as an evaporator, in which:

Fig. 17 is a front elevation of the heat exchanger; Fig. 18 is a cross section taken along the line 18 -18 in Fig. 17;

Fig. 19 is a perspective view of a tube incorporated in the heat exchanger, and shown in its twisted state:

Fig. 20 is a front elevation of the heat exchanger, shown in its state before being bent; and

Fig. 21 is a plan view of the heat exchanger, shown in its further state after bent;

Figs. 22 and 23 illustrate still another heat exchanger provided in a third embodiment and as a condenser, in which:

Fig. 22 is a perspective view of the heat exchanger, shown in its entirety; and

Fig. 23 is a left side elevation of the heat exchanger.

DESCRIPTION OF THE PREFERRED EMBODIMENTS

Now, some embodiments of the present invention will be described referring to the drawings.

First Embodiment -

A heat exchanger which Figs. 1 to 16 illustrate is an evaporator provided in the first embodiment for use in a car air conditioner.

Each of flat heat exchanging tubes 1 shown in Fig. 1 is of an elliptic shape in cross section and has an upper and lower flat walls la. Those flat walls la are connected one to another by a few connecting walls 1b so that several unit paths lc are defined in and longitudinally of the tube, as seen in Fig. 10.

The tubes 1 are aluminum extruded pieces of the so-called harmonica structure in this embodiment. However, they may be flat seam-welded tubes having inserted therein internal corrugated fins, or of any other conventional structure in the present invention.

Each of the flat tubes 1 shown in Figs. 1 and 2 has straight sections 2 and 3 and a middle portion 4 integral with and intervening between them. This middle portion

15

4 is bent and twisted to have a predetermined helical angle relative to the straight sections. In this embodiment, the bent and twisted middle portion 4 is generally U-shaped such that the straight sections 2 and 3 of each tube extend in parallel with each other and are included in a common plane.

5

The tube 1 may not be bent into a U-shape but into a V-shape or the like such that the straight sections 2 and 3 extend at a predetermined angle relative to each other. Further, the bent and twisted portion 4 may not necessarily be positioned right in the middle of each tube

An outer edge of the bent and twisted portion 4 lies almost in parallel with the straight sections 2 and 3, as shown in Fig. 6. A helical angle θ defined between the bent portion and each straight section is predetermined to be slightly smaller than 90° .

The bent portion 4 preferably of a smooth and arcuate contour is usually designed as short as the torsional strength allows. Any specific configuration and radius of curvature may be employed so long as the internal flow path of tube substantially remains non-collapsed and has an unconstricted cross-sectional area.

The generally U-shaped flat tubes 1 having at their bottoms the bent and twisted portions 4 are arranged such that their vertical straight sections 2 and 3 are located side by side and at regular intervals. Aluminum hollow headers 5 and 6 are connected to upper ends of the flat tubes.

As seen in Fig. 6, the bent portions 4 of the adjacent tubes 1 overlap and fit on each other so as to support one another and improve their strength. Those bent portions may be brazed or otherwise secured one to another to further raise the strength.

Fins such as aluminum corrugated fins 11 are disposed between the adjacent straight sections 2 located windward and also outside the outermost straight sections 2. Similar fins 12 are disposed between the adjacent straight sections 3 located leeward and also outside the outermost straight sections 3. Those fins are brazed to the straight sections 2 and 3. Fin pitch of the windward fins 11 is greater than that of the leeward ones 12.

A front reinforcing strip 13 is secured to and surrounds the group of windward straight sections 2, while a rear reinforcing strip 14 being likewise secured to and surrounding the group of leeward straight sections 3. Each reinforcing strip is made by bending an elongate plate, and has a middle section 15 and end sections 16 bent upward and extending therefrom so that it assumes a U-shape in front elevation.

As shown in Fig. 7, apertures 15a are formed through the middle section 15 at a pitch corresponding to the flat tubes 1. A boundary between the bent portion and the straight section 2 or 3 is brazed to and held in the corresponding aperture 15a in which the tube 1 is inserted.

Each of the end sections 16 is in contact with and

brazed to the fin 11 or 12 which is located outside the outermost tube 1. It is preferable that, in order to facilitate the brazing process, the reinforcing strips are made of a sheet which is composed of a core having either or both surfaces clad with a brazing agent layer.

The reinforcing strips 13 and 14, which contribute to an improved strength of the core of this heat exchanger, circumscribe the bending and twisting action within narrow bounds. The tubes' straight sections are thus protected from any torsion or bending.

The middle section 15 of each reinforcing strip 13 and 14 may have drainage holes 15b formed therethrough and/or drainage trough portions 15c, as shown in Fig. 13, which will prevent stagnation of the condensed water.

The headers 5 and 6 are made of an aluminum brazing sheet composed of a core which has either or both sides clad with a brazing agent layer. In manufacture, the brazing sheet is rolled into a cylinder having abutment edges which are subsequently seam welded. Each header has a cross section of generally 'laid-down D-shape' such that a flat bottom receiving the tubes continues to an arcuate dome, as seen in Fig. 2. Although this shape may be somewhat inferior to a circular cross section in respect of resistance to a high internal pressure such as operating in condensers, those headers can withstand well a medium internal pressure operating in evaporators.

Such a specific cross-sectional shape of the headers is advantageous in that ends of each tube 1 need not be inserted so deep as to reach an axis of the header, contrary to the case of using headers of a circular cross section. Thus, an effective length of each tube 1 is made greater to thereby increase the effective area of the core.

Alternatively, the headers 5 and 6 may have a cross section composed of a semi-ellipse and a semicircle, with the former receiving the tube ends as shown in Fig. 11. This modification will also be advantageous from the viewpoint as mentioned above.

Fig. 12 shows baffles 10 each secured to a part of cylindrical wall of each header 5 or 6, wherein the part is opposite to another part in which the tubes 1 are secured. Each baffle 10 is located between the adjacent tubes and comprises a base 10a and a leg 10b. This leg 10b protrudes inwardly towards the tubes' ends so that the heat exchanging medium is smoothly and evenly distributed into the tubes. The base 10a is fixed to an outer peripheral surface of the header 5 or 6.

In use, the heat exchanging medium will flow into a leeward one of the headers 6 through an inlet pipe 7 liquid-tightly connected thereto. Tributaries of the medium will flow through the respective tubes 1, each making a U-turn to enter the windward header 5, as indicated at the arrows in Fig. 1. The tributaries through the tubes 1 join one another in the windward header and leave it through an outlet pipe 8, after heat exchange has been effected between the medium and air streams penetrat-

50

ing this heat exchanger from front to rear as shown by the white arrows.

7

The inlet pipe 7 and outlet pipe 8 may be attached to the headers at their ends located side by side, as shown in Fig. 14, so that the heat exchanging medium can flow into and out of the same side end of the heat exchanger. Further, an internal pipe 60 having small holes 60a corresponding to the tubes may be secured in and coaxially of the inlet side (viz. leeward) header 6. Such an internal pipe connected to the inlet pipe 7 will ensure an even distribution of the heat exchanging medium into the tubes.

The described heat exchanger may be manufactured, for example in the following manner.

Flat and straight aluminum tubes 1 which are prepared by extrusion will be arranged in parallel and at regular intervals in a direction of their thickness, in a manner shown in Fig. 8A. Next, the tube ends are caused to penetrate the reinforcing strips 13 and 14, which will then be put closer to each other as shown in Fig. 8B. Subsequently, the headers 5 and 6 are adjoined to the tube ends into fluid communication therewith, and the corrugated fins 11 and 12 are set in between the adjacent tubes 1 and also between the outermost tube and the end section 16 of the reinforcing strip as shown in Fig. 8C. Any brazeable accessories may be attached to the thus prepared assembly which will then be 'one-shot' brazed so that all the parts become integral with each other

The brazed assembly will further be subjected to the bending process in which each tube 1 is bent at its middle portion in the direction of its thickness, so that its straight sections lie in parallel with each other, as shown in Fig. 9. It may be preferable to use a proper tool to give all the middle portions a slight pretwist which will allow them to readily twist in the same direction.

Thus in manufacture of the heat exchanger, the tubes 1 can easily be twisted in the direction of their width, at any predetermined middle portions 4 and at a predetermined helical angle relative to their straight sections, whether pretwisted to any extent or not.

It is also easy in the present invention to give a small radius of curvature to the bent and twisted middle portions 4 of the tubes 1 so that each of them is bent to assume a U-shape.

Although the straight sections 2 and 3 have their lateral edges facing one another and disposed in alignment with each other, the pitch of windward fins 11 is designed larger than that of leeward ones 12 so that a satisfactory performance is afforded as to the heat exchange.

A higher productivity is realized herein, because the flat heat exchanging tubes 1 are bent all at once after the necessary parts are assembled.

In the described embodiment, the coolant flowing into the leeward header 6 is distributed to all the tubes forming tributaries connected thereto. Those tributaries join one another in harmony in the windward header 5

to construct the so-called 'one pass' system. Partitions may be secured in the headers 5 and 6, if necessary, to form 'plural passes' which cause the heat exchanging medium to meander through the heat exchanger.

It is however noted that the 'one pass' system is more desirable in this type of evaporators as to their heat exchanging performance, as will be apparent from the following.

Samples of heat exchangers were prepared, which each comprised a core 235 mm high and 258 mm wide so that an effective size of the core was 178 mmH x 259 mmW. The tube pitch was set at 11.7 mm, with the number of tubes being 21, each fin being 22 mm wide and 10 mm high, and fin pitch being 1.1 mm. One of the sample heat exchangers was of the 'two pass' type, having the partitions dividing the tubes into a first group of 10 tubes and a second group of 11 tubes. A performance test was conducted using HFC134a as the heat exchanging medium and under the operating conditions that: the temperature of said medium at an inlet of expansion valve was 53.5 °C; dry-bulb temperature of affluent air was 27 °C; wet-bulb temperature of effluent air was 19.5 °C; and 'SH' (super-heating) was 5 °C. Fig. 15 shows a relationship observed between the heat rejection (kcal/h) and the medium pressure at outlet (kg/cm²). Fig. 16 shows another relationship observed between the pressure loss of the medium (kg/cm²) and the flow rate thereof (kg/h).

As seen in Figs. 15 and 16, the evaporator of 'one pass' type was superior to that of 'two pass' type not only in the exchanged heat but also in the pressure loss.

- Second Embodiment -

Fig. 17 to 21 illustrate the second embodiment of the present invention also applied to an evaporator for use in car air conditioners.

This evaporator is of a structure almost similar to that provided in the first embodiment, but different therefrom in: the cross-sectional shape of headers; the reinforcing strips dispensed with; and the configuration of the tubes' bent and twisted portions. Such differences will be briefed below

A bottom of each bent and twisted portion 4 of the tubes 1 lies at 90°, viz. perpendicular, to the straight sections 2 and 3 thereof. The adjacent bent portions 4 do not overlap one another, as seen in Fig. 17.

The headers 5 and 6 are of a round cross section to raise their pressure resistance.

The heat exchanger in the second embodiment does not comprise any reinforcing strips.

The tubes 1 are preliminarily twisted at first at their middle portions as shown in Fig. 19, before assembled into a state shown in Fig. 20 and subsequently bent in a manner shown in Fig. 21 to provide a finished heat exchanger. It may be possible to twist and simultaneously bent those tubes, also in the second embodiment.

Other features are the same as those employed in

5

the first embodiment, and therefore the same reference numerals are allotted thereto to abbreviate description.

- Third Embodiment -

A condenser provided in the third embodiment is for use in car air conditioners.

This condenser differs from the evaporators provided in the first embodiment only in that: the headers 5 and 6 stand upright; the straight sections 2 and 3 of each tube 1 are disposed horizontally; each header is of a round cross section; and the partitioning members inserted in headers. The round headers 5 and 6 are adapted for an internal pressure higher than that operating in the evaporators. Each of the partitioning members 20 shown in Fig. 22 divides the interior of header 5 or 6 into longitudinal compartments arranged in a head-to-tail relationship, so that a heat exchanging medium meanders through this condenser.

Other features are the same as those employed in the first embodiment, and therefore the same reference numerals are allotted thereto to abbreviate description.

In summary, each flat tube has its middle portion that is located intermediate its straight sections, bent in the direction of the tube's width and twisted at a predetermined angle relative to the straight sections.

Consequently, it is possible to arrange a plurality of flat and straight tubes in parallel and at regular intervals and to connect the headers to ends of the tubes, before bending them at their middle portions all at once and simultaneously twisting them at the predetermined angle. Thus, the bending-and-twisting operation encounters no technical difficulty and can now be done easily to facilitate manufacture of such 'bent tube' type heat exchangers.

There is no fear of collapsing the bent and twisted portions to result in a reduced cross-sectional area and an increased pressure loss thereof.

In a case wherein the heat exchanger comprises the aforementioned reinforcing strips each composed of the middle section and the end sections continuing therefrom and formed perpendicular thereto, the straight sections are protected from deformation during the bending-and-twisting operation. This is because a stress imparted to the tubes which are being bent is restricted to their middle portions located between the middle sections of said strips, even if each tube is forced to have a considerably small radius of curvature. The reinforcing strips thus contribute not only to an easier manufacture but also to an improved overall strength of the heat exchanger.

The overlapping of the adjacent bent portions will further improve their strength as a whole.

Claims

A heat exchanger comprising:

a plurality of flat tubes (1) arranged at regular intervals and in parallel with and spaced apart from each other a predetermined distance in the direction of thickness of the tubes;

a pair of hollow headers (5,6) disposed at one ends and other ends of the tubes (1), which are connected thereto in fluid communication therewith:

each tube (1) having an intermediate bent portion (4) and straight sections (2,3) separated one from another by the bent portion (4); and fins (11,12) each interposed between the adjacent straight sections (2,3);

characterised in that the bent portion (4) being a portion of each tube (1) bent in the direction of thickness of the tube (1) and twisted at a predetermined helical angle relative to each of the straight sections (2,3) so that the interior of each flat tube (1) is divided into parallel flow paths, a windward one of them in one straight section (2) will continue to a leeward unit path in the other straight section (3) or vice versa, relative to an air stream flowing in use through a space present between the adjacent straight sections (2,3).

A heat exchanger as claimed in claim 1, further including:

> additional fins (11,12) disposed outside the outermost tubes (1); and

> reinforcing strips (13,14) each composed of a middle section (15) and end sections (16) continuing therefrom,

wherein the middle section (15) of each reinforcing strip (13,14) has apertures (15a) formed therethrough each fitting on a boundary present between the straight section (2,3) and the twisted bent portion (4) of each tube (1), and each end section (16) of the reinforcing strip (13,14) extending along and fixedly adjoined to the outer surface of the corresponding additional fin (11,12).

- 5 3. A heat exchanger as claimed in claim 1 or 2, characterised in that the twisted and bent portions (4) located adjacent to each other contact and overlap one another to reinforce said portions as a whole.
- 50 4. A heat exchanger as claimed in claim 3, characterised in that the twisted and bent portions (4) are brazed to be integral with each other.
 - 5. A heat exchanger as claimed in any preceding claim, characterised in that the headers (5,6) are disposed horizontally, and the straight sections (2,3) of each tube (1) stand upright, so as to render the heat exchanger adapted to operate as an evap-

55

10

25

30

35

12

orator.

6. A heat exchanger as claimed in any one of claims 1 to 5, characterised in that each of the headers (5,6) has an interior not divided into compartments, so that a heat exchanging medium flowing into one header (5) advances as tributaries flowing in harmony through all the tubes (1) at once and into the other header (6), whereby the heat exchanger is formed as an evaporator of the one pass type.

11

- 7. A heat exchanger as claimed in any one of claims 1 to 4, characterised in that the headers (5,6) stand upright and the straight sections (2,3) of each tube (1) are disposed horizontally, so as to render the heat exchanger adapted to operate as a condenser.
- 8. A heat exchanger as claimed in any preceding claim, characterised in that each header (5,6) is of a cross-sectional shape having a flat bottom continuing to a dome, so that the flat bottom receives the tubes inserted therein.
- 9. A heat exchanger as claimed in any one of claims 1 to 7, characterised in that each header (5,6) is of a cross-sectional shape composed of an inner and outer semi-peripheries, and a radius of curvature of the inner semi-periphery receiving the tubes is greater than that of the outer semi-periphery.
- 10. A heat exchanger as claimed in one of claims 1 to 7, characterised in that each header (5,6) is a cylinder of a brazing sheet composed of a core having at least one side clad with a brazing agent layer, and the brazing sheet has abutment edges integrally brazed one to another.
- 11. A heat exchanger as claimed in any one of claims 2 to 10, characterised in that each middle section (15) of the reinforcing strips (13,14) has drainage holes (15b) and/or drainage troughs (15c), the holes (15b) being formed through the middle section (15) and with the troughs (15c) formed therein.
- 12. A heat exchanger as claimed in any preceding claim, characterised in that the header (6) connected to an inlet pipe (7) of the heat exchanger has an internal pipe (60) secured in and coaxially with the header (6), the internal pipe (60) being connected to the inlet pipe, and wherein the inlet pipe (7), and an outlet pipe (8) are attached to the headers (5,6) at ends thereof located side by side.
- 13. A heat exchanger as claimed in claim 12, characterised in that the internal pipe (60) has small holes (60<u>a</u>) corresponding to the tubes (1) so that the heat exchanging medium is distributed evenly into the tubes (1).

Patentansprüche

- 1. Wärmetauscher, umfassend
 - eine Vielzahl flacher Rohre (1), die in regelmäßigen Intervallen und parallel und mit vorbestimmter Distanz beabstandet zueinander in Richtung der Dicke der Rohre angeordnet sind. ein Paar an einem und dem anderen Ende der Rohre (1) angeordnete hohle Verteiler (5, 6), die mit diesen in fluider Kommunikation verbunden sind,
 - wobei jedes Rohr (1) einen zwischenliegenden gebogenen Abschnitt (4) und gerade Teilabschnitte (2, 3) aufweist, die durch den gebogenen Abschnitt (4) voneinander getrennt sind, und
 - Rippen (11, 12), die jeweils zwischen den nebeneinanderliegenden geraden Teilabschnitten (2, 3) angeordnet sind,

dadurch gekennzeichnet, daß der gebogene Abschnitt (4) ein in Richtung der Dicke des Rohres (1) gebogener und mit vorbestimmtem Schraubenwinkel gegen die geraden Teilabschnitte (2, 3) gewundener Abschnitt jedes Rohres (1) ist, so daß das Innere jedes flachen Rohres (1), in parallele Strömungsbahnen geteilt ist, wobei, relativ zu einem im Betrieb durch den zwischen den nebeneinanderliegenden geraden Teilabschnitten (2, 3) befindlichen Raum strömenden Luftstrom, eine luvseitige von diesen in einem geraden Teilabschnitt (2) sich in einer leeseitigen Einzelbahn in dem anderen geraden Teilabschnitt (3) fortsetzt, oder umgekehrt.

- Wärmetauscher nach Anspruch 1, desweiteren umfassend
 - zusätzliche Rippen (11, 12), die außerhalb der äußersten Rohre (1) angeordnet sind, und Verstärkungsstreifen (13, 14), die jeweils aus einem mittleren Teilabschnitt (15) und daraus fortgesetzten Endabschnitten (16) zusammengesetzt sind,
 - wobei der mittlere Teilabschnitt (15) jedes Verstärkungsstreifens (13, 14) darin gebildete durchgehende Öffnungen (15a) auf einer Grenze aufweist, die jeweils zwischen dem geraden Teilabschnitt (2, 3) und dem gewundenen gebogenen Abschnitt (4) jedes Rohres (1) vorhanden ist, und sich jeder Endabschnitt (16) des Verstärkungsstreifens (13, 14) über die äußere Oberfläche der entsprechenden zusätzlichen Rippe (11, 12) erstreckt und an dieser fest verbunden ist.
- Wärmetauscher nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß die nebeneinander angeord-

50

15

20

30

4.4

neten gewundenen und gebogenen Abschnitte (4) sich gegenseitig berühren und überlappen, um diese Abschnitte als Ganzes zu verstärken.

13

- Wärmetauscher nach Anspruch 3, dadurch gekennzeichnet, daß die gewundenen und gebogenen Abschnitte (4) miteinander hartverlötet sind, um eine Einheit zu bilden.
- 5. Wärmetauscher nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die Verteiler (5, 6) horizontal angeordnet sind, und die geraden Teilabschnitte (2, 3) jedes Rohres (1) aufrecht stehen, um den Wärmetauscher so anzupassen, daß dieser als Verdampfer wirkt.
- 6. Wärmetauscher nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß jeder der Verteiler (5, 6) ein nicht in Kammern aufgeteiltes Inneres aufweist, so daß ein in einen Verteiler (5) einströmendes wärmetauschendes Mittel harmonisch durch alle Rohre (1) gleichzeitig und in den anderen Verteiler (6) fließende Nebenströme voranströmt, wodurch der Wärmetauscher als Einstrom-Verdampfer ausgestaltet ist.
- Wärmetauscher nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet. daß die Verteiler (5, 6) aufrecht stehen und die geraden Teilabschnitte (2, 3) jeden Rohres (1) horizontal angeordnet sind, um den Wärmetauscher so anzupassen, daß dieser als Kondensor wirkt.
- 8. Wärmetauscher nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß jeder Verteiler (5, 6) eine Querschnittsform mit einem flachen Boden, der sich in einer Kuppel fortsetzt, aufweist, so daß der flache Boden die darin eingeführten Rohre aufnimmt.
- 9. Wärmetauscher nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, daß jeder Verteiler (5, 6) eine Querschnittsform aufweist, die aus einem inneren und einem äußeren Halbumfang zusammengesetzt ist und ein Kurvenradius des inneren, die Rohre aufnehmenden Halbumfangs größer als der des äußeren Halbumfangs ist.
- 10. Wärmetauscher nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, daß jeder Verteiler (5, 6) ein Zylinder aus einer Hartlötplatte, die aus einem auf mindestens einer Seite mit einer Hartlötmittelschicht plattierten Kern zusammengesetzt ist und die Hartlötplatte vollständig aneinander hartgelötete Stoßkanten aufweist.
- Wärmetauscher nach einem der Ansprüche 2 bis 10, dadurch gekennzeichnet, daß jeder mittlere Ab-

schnitt (15) der Verstärkungsstreifen (13, 14) Drainagelöcher (15b) und/oder Drainagemulden (15c) aufweist, wobei die Löcher (15b) in dem mittleren Abschnitt (15) durchgehend gebildet sind und die Mulden (15c) darin gebildet sind.

- 12. Wärmetauscher nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß der mit einer Einlaßrohrleitung (7) des Wärmetauschers verbundene Verteiler (6) eine Innenrohrleitung (60) aufweist, die an dem Verteiler (6) und koaxial zu diesem befestigt ist, wobei die Innenrohrleitung (60) mit der Einlaßrohrleitung verbunden ist und wobei die Einlaßrohrleitung (7) und die Außlaßrohrleitung (8) an nebeneinanderliegenden Enden der Verteiler (5, 6) angefügt sind.
- 13. Wärmetauscher nach Anspruch 12, dadurch gekennzeichnet, daß die Innenrohrleitung (60) den Rohren (1) entsprechende kleine Löcher (60a) aufweist, so daß das wärmetauschende Mittel gleichmäßig in die Rohre (1) aufgeteilt wird.

25 Revendications

1. Echangeur de chaleur, comprenant :

une pluralité de tubes plats (1), disposés à intervalles réguliers, parallèlement les uns aux autres et avec un écartement prédéterminé entre eux dans le sens de l'épaisseur des tubes; une paire de collecteurs creux (5, 6), disposés aux unes et aux autres extrémités des tubes (1) et reliés à ceux-ci en communication de fluide; chaque tube (1) ayant une partie intermédiaire cintrée (4) et des parties droites (2, 3), séparées l'une de l'autre par la partie cintrée (4); et des ailettes (11, 12), chacune d'elles étant intercalée entre les parties droites (2, 3) adjacentes;

caractérisé en ce que la partie cintrée (4) est une partie de chaque tube (1), qui est cintrée dans le sens de l'épaisseur du tube (1) et qui est tordue suivant un angle d'hélice prédéterminé, par rapport à chacune des parties droites (2, 3), de telle manière que l'intérieur de chaque tube plat (1) soit divisé en des passages parallèles d'écoulement, celui d'entre eux qui est au vent dans une partie droite (2) se retrouvant être un passage individuel sous le vent dans l'autre partie droite (3), et vice versa, par rapport au flux d'air qui s'écoule en service dans un espace, présent entre les parties droites (2, 3) adjacentes.

Echangeur de chaleur selon la revendication 1, comprenant en outre :

50

15

EP 0 654 645 B1

20

25

16

des ailettes supplémentaires (11, 12), disposées à l'extérieur des tubes (1) situés le plus à l'extérieur; et

des bandes de renforcement (13, 14), chacune se composant d'une partie médiane (15) et de parties d'extrémité (16) qui font suite à la première

dans lequel la partie médiane (15) de chaque bande de renforcement (13, 14) présente des ouvertures traversantes (15a), chacune s'adaptant sur une transition entre la partie droite (2, 3) et la partie cintrée et tordue (4) de chaque tube (1), et chaque partie d'extrémité (16) de la bande de renforcement (13, 14) s'étendant le long de la surface extérieure de l'ailette supplémentaire (11, 12) correspondante et étant fixée sur celle-ci.

- Echangeur de chaleur selon la revendication 1 ou 2, caractérisé en ce que les parties cintrées et tordues (4), qui sont adjacentes, se touchent et sont à recouvrement mutuel afin de renforcer lesdites parties dans leur ensemble.
- Echangeur de chaleur selon la revendication 3, caractérisé en ce que les parties cintrées et tordues

 (4) sont assemblées par brasage afin d'être solidaires les unes des autres.
- 5. Echangeur de chaleur selon l'une quelconque des revendications précédentes, caractérisé en ce que les collecteurs (5, 6) sont disposés horizontalement et en ce que les parties droites (2, 3) de chaque tube (1) sont situées verticalement, ce qui permet à l'échangeur de chaleur de fonctionner en tant qu'évaporateur.
- 6. Echangeur de chaleur selon l'une quelconque des revendications 1 à 5, caractérisé en ce que chacun des collecteurs (5, 6) a un espace intérieur non divisé en compartiments, si bien qu'un agent d'échange thermique, qui arrive dans un collecteur (5), progresse sous la forme de fractions de flux s'écoulant régulièrement dans tous les tubes (1) en même temps pour arriver ensuite dans l'autre collecteur (6), l'échangeur de chaleur se présentant ainsi sous la forme d'un évaporateur du type à un seul passage.
- 7. Echangeur de chaleur selon l'une quelconque des revendications 1 à 4, caractérisé en ce que les collecteurs (5, 6) sont disposés verticalement et en ce que les parties droites (2, 3) de chaque tube (1) sont situées horizontalement, ce qui permet à l'échangeur de chaleur de fonctionner en tant que condenseur.
- 8. Echangeur de chaleur selon l'une quelconque des

revendications précédentes, caractérisé en ce que chaque collecteur (5, 6) a une forme de la section transversale, dans laquelle un fond plat se continue par un dôme, de telle manière que le fond plat reçoive les tubes par insertion.

- 9. Echangeur de chaleur selon l'une quelconque des revendications 1 à 7, caractérisé en ce que chaque collecteur (5, 6) a une forme de la section transversale, composée de demi-périphéries intérieure et extérieure, et en ce qu'un rayon de courbure de la demi-périphérie intérieure, recevant les tubes, est plus grand que celui de la demi-périphérie extérieure.
- 10. Echangeur de chaleur selon l'une quelconque des revendications 1 à 7, caractérisé en ce que chaque collecteur (5, 6) est un cylindre en tôle à braser, composée d'une âme dont au moins une face est revêtue d'une couche de métal de brasage fort, et en ce que la tôle à braser a des bords en contact qui sont entièrement assemblés par brasage fort.
- 11. Echangeur de chaleur selon l'une quelconque des revendications 2 à 10, caractérisé en ce que chaque partie médiane (15) des bandes de renforcement (13, 14) comporte des trous d'évacuation (15b) et/ou des gouttières d'évacuation (15c), les trous (15b) étant formés de manière à traverser la partie médiane (15), dans laquelle sont formées les qouttières (15c).
- 12. Echangeur de chaleur selon l'une quelconque des revendications précédentes, caractérisé en ce que le collecteur (6), relié à un tuyau d'admission (7) de l'échangeur de chaleur, comporte un tuyau intérieur (60) fixé dans le collecteur (6) et coaxial par rapport à celui-ci, le tuyau intérieur (60) étant relié au tuyau d'admission, et dans lequel le tuyau d'admission (7) et un tuyau de sortie (8) sont fixés aux collecteurs (5, 6), au niveau des extrémités de ceux-ci situées côte à côte.
- 13. Echangeur de chaleur selon la revendication 12, caractérisé en ce que le tuyau intérieur (60) présente des petits trous (60a), correspondant aux tubes (1), de telle manière que l'agent d'échange thermique soit réparti uniformément dans les tubes (1).

FIG. 1

F1G. 2

F1G.3

FIG. 4

FIG. 5

FIG. 6

FIG.7

FIG. 8A

FIG.8B

FIG.8C

FIG.11

FIG. 14

FIG. 15

FIG. 16

FIG. 17

FIG. 18

FIG. 19

FIG. 20

FIG. 21

26

FIG. 23