Assignment 2

Kyung A Kim

2021 9 30

R Markdown

This is an R Markdown document. Markdown is a simple formatting syntax for authoring HTML, PDF, and MS Word documents. For more details on using R Markdown see http://rmarkdown.rstudio.com.

When you click the **Knit** button a document will be generated that includes both content as well as the output of any embedded R code chunks within the document. You can embed an R code chunk like this:

Make dataframe

First, make a data frame using **airquality** data. And then, we can see that there are NA values. Or you can briefly check data frame using *head* function.

```
library(ggplot2)
mydata <- data.frame(airquality)
mydata</pre>
```

##		Ozone	Solar.R	Wind	Temp	Month	Day
##	1	41	190	7.4	67	5	1
##	2	36	118	8.0	72	5	2
##	3	12	149	12.6	74	5	3
##	4	18	313	11.5	62	5	4
##	5	NA	NA	14.3	56	5	5
##	6	28	NA	14.9	66	5	6
##	7	23	299	8.6	65	5	7
##	8	19	99	13.8	59	5	8
##	9	8	19	20.1	61	5	9
##	10	NA	194	8.6	69	5	10
##	11	7	NA	6.9	74	5	11
##	12	16	256	9.7	69	5	12
##	13	11	290	9.2	66	5	13
##	14	14	274	10.9	68	5	14
##	15	18	65	13.2	58	5	15
##	16	14	334	11.5	64	5	16
##	17	34	307	12.0	66	5	17
##	18	6	78	18.4	57	5	18
##	19	30	322	11.5	68	5	19
##	20	11	44	9.7	62	5	20
##	21	1	8	9.7	59	5	21
##	22	11	320	16.6	73	5	22
##	23	4	25	9.7	61	5	23

##	24	32	92	12.0	61	į	5 24
##	25	NA	66	16.6	57	į	5 25
##	26	NA	266	14.9	58	į	5 26
##	27	NA	NA	8.0	57	į	5 27
##	28	23	13	12.0	67	į	5 28
##	29	45	252	14.9	81	Ę	5 29
##	30	115	223	5.7	79	į	5 30
##	31	37	279	7.4	76	į	5 31
##	32	NA	286	8.6	78	(3 1
##	33		287	9.7	74	(3 2
##	34		242	16.1	67	(3
##	35		186	9.2	84		3 4
##	36		220	8.6	85		3 5
##	37		264	14.3	79		6
##	38		127	9.7	82		5 7
##	39		273	6.9	87		3 8
##	40		291	13.8	90		5 9
##	41		323	11.5	87		3 10
##	42		259	10.9	93		3 11
##	43		250	9.2	92		5 12
##	44		148	8.0	82		3 13
##	45		332	13.8	80		3 14
##	46		322	11.5	79		5 15
##	47		191	14.9	77		5 16
##	48		284	20.7	72		5 17
##	49	20	37				5 17
##			120	9.2 11.5	65 73		
	50						
##	51		137	10.3	76		3 20
##	52		150	6.3	77 70		3 21
##	53	NA	59	1.7	76		3 22
##	54	NA	91	4.6	76		3 23
##	55		250	6.3	76		3 24
##	56		135	8.0	75		3 25
##	57		127	8.0	78		3 26
##	58	NA	47	10.3	73		5 27
##	59	NA	98	11.5	80		3 28
##	60	NA	31	14.9	77		3 29
##			138		83		30
##	62		269	4.1	84		7 1
##	63		248	9.2	85		7 2
##	64		236	9.2	81		7 3
##	65		101	10.9	84	•	7 4
##	66	64	175	4.6	83		7 5
##	67	40	314	10.9	83	-	7 6
##	68	77	276	5.1	88	-	7 7
##	69	97	267	6.3	92	7	7 8
##	70	97	272	5.7	92		7 9
##	71	85	175	7.4	89	•	7 10
##	72	NA	139	8.6	82	•	7 11
##	73	10	264	14.3	73	•	7 12
##	74	27	175	14.9	81	•	7 13
##	75	NA	291	14.9	91	•	7 14
##	76	7	48	14.3	80	-	7 15
##	77	48	260	6.9	81	-	7 16

##	78	35	274	10.3	82	7	17
##	79	61	285	6.3	84	7	18
##	80	79	187	5.1	87	7	19
##	81	63	220	11.5	85	7	20
##	82	16	7	6.9	74	7	21
##	83	NA	258	9.7	81	7	22
##	84	NA	295	11.5	82	7	23
##	85	80	294	8.6	86	7	24
##	86	108	223	8.0	85	7	25
##	87	20	81	8.6	82	7	26
##	88	52	82	12.0	86	7	27
##	89	82	213	7.4	88	7	28
##	90	50	275	7.4	86	7	29
##	91	64	253	7.4	83	7	30
##	92	59	254	9.2	81	7	31
##	93	39	83	6.9	81	8	1
##	94	9	24	13.8	81	8	2
##	95	16	77	7.4	82	8	3
##	96	78	NA	6.9	86	8	4
##	97	35	NA	7.4	85	8	5
##	98	66	NA	4.6	87	8	6
##	99	122	255	4.0	89	8	7
##	100	89	229	10.3	90	8	8
##	101	110	207	8.0	90	8	9
##	102	NA	222	8.6	92	8	10
##	103	NA	137	11.5	86	8	11
##	104	44	192	11.5	86	8	12
##	105	28	273	11.5	82	8	13
##	106	65	157	9.7	80	8	14
##	107	NA	64	11.5	79	8	15
##	108	22	71	10.3	77	8	16
##	109	59	51	6.3	79	8	17
##	110	23	115	7.4	76	8	18
##	111	31	244	10.9	78	8	19
##	112	44	190	10.3	78	8	20
##	113	21	259	15.5	77	8	21
##	114	9	36	14.3	72	8	22
	115	NA	255		75	8	23
##	116	45	212	9.7	79	8	24
##	117	168	238	3.4	81	8	25
##	118	73	215	8.0	86	8	26
##	119	NA	153	5.7	88	8	27
##	120	76	203	9.7	97	8	28
##	121	118	203	2.3	94	8	29
	122					8	
##		84	237	6.3	96		30
##	123	85	188	6.3	94	8	31
##	124	96 70	167	6.9	91	9	1
##	125	78 70	197	5.1	92	9	2
##	126	73	183	2.8	93	9	3
##	127	91	189	4.6	93	9	4
##	128	47	95	7.4	87	9	5
##	129	32	92		84	9	6
##	130	20	252		80	9	7
##	131	23	220	10.3	78	9	8

```
## 132
           21
                   230 10.9
                                75
                                        9
                                             9
                        9.7
## 133
           24
                   259
                                73
                                        9
                                            10
## 134
           44
                   236 14.9
                                81
                                            11
## 135
                   259 15.5
                                76
                                        9
                                            12
           21
## 136
           28
                   238
                         6.3
                                77
                                        9
                                            13
## 137
            9
                    24 10.9
                                        9
                                71
                                            14
## 138
           13
                   112 11.5
                                        9
                                71
                                            15
## 139
           46
                   237
                         6.9
                                78
                                        9
                                            16
## 140
           18
                   224 13.8
                                67
                                        9
                                            17
                                        9
## 141
           13
                    27 10.3
                                76
                                            18
## 142
           24
                   238 10.3
                                68
                                        9
                                            19
## 143
                   201
                         8.0
                                82
                                        9
                                            20
           16
## 144
           13
                   238 12.6
                                64
                                        9
                                            21
## 145
                        9.2
                                        9
           23
                     14
                                71
                                            22
## 146
                   139 10.3
                                        9
                                            23
           36
                                81
## 147
            7
                    49 10.3
                                69
                                        9
                                            24
## 148
                    20 16.6
                                        9
                                            25
           14
                                63
## 149
           30
                   193
                        6.9
                                70
                                            26
                   145 13.2
## 150
                                        9
                                            27
                                77
           NA
##
  151
           14
                   191 14.3
                                75
                                        9
                                            28
## 152
           18
                   131
                        8.0
                                76
                                        9
                                            29
## 153
           20
                   223 11.5
                                            30
```

head(mydata)

```
##
     Ozone Solar.R Wind Temp Month Day
## 1
                      7.4
                              67
         41
                 190
                                      5
                                          1
                                          2
## 2
         36
                 118
                      8.0
                              72
                                      5
## 3
         12
                 149 12.6
                              74
                                      5
                                          3
## 4
                 313 11.5
                                      5
                                          4
         18
                              62
                                          5
## 5
         NA
                  NA 14.3
                                      5
                              56
## 6
         28
                  NA 14.9
                                      5
                              66
```

Remove NA

Next, to remove NA values, use *complete.cases* function. After removing NA values, save new data frame into new name. And after that, by using *is.na* function, we can find out that all NA values are removed.

```
good <- complete.cases(mydata)

mydata2 <- mydata[good,]
is.na(mydata2)</pre>
```

```
##
      Ozone Solar.R Wind
                        Temp Month
                                    Day
## 1
      FALSE
             FALSE FALSE FALSE FALSE
## 2
      FALSE
             FALSE FALSE FALSE FALSE
## 3
      FALSE
             FALSE FALSE FALSE FALSE
## 4
      FALSE
             FALSE FALSE FALSE FALSE
## 7
      FALSE
             FALSE FALSE FALSE FALSE
## 8
      FALSE
             FALSE FALSE FALSE FALSE
## 9
      FALSE
             FALSE FALSE FALSE FALSE
     FALSE
             FALSE FALSE FALSE FALSE
## 12
```

```
## 13 FALSE
             FALSE FALSE FALSE FALSE
## 14
     FALSE
            FALSE FALSE FALSE FALSE
## 15
     FALSE
            FALSE FALSE FALSE FALSE
## 16
     FALSE
            FALSE FALSE FALSE FALSE
## 17
      FALSE
            FALSE FALSE FALSE FALSE
## 18
     FALSE
            FALSE FALSE FALSE FALSE
     FALSE
## 19
            FALSE FALSE FALSE FALSE
     FALSE
            FALSE FALSE FALSE FALSE
## 20
## 21
     FALSE
             FALSE FALSE FALSE FALSE
## 22
     FALSE
             FALSE FALSE FALSE FALSE
## 23
     FALSE
             FALSE FALSE FALSE FALSE
## 24
      FALSE
             FALSE FALSE FALSE FALSE
## 28
      FALSE
            FALSE FALSE FALSE FALSE
## 29
      FALSE
            FALSE FALSE FALSE FALSE
## 30
     FALSE
            FALSE FALSE FALSE FALSE
## 31
      FALSE
             FALSE FALSE FALSE FALSE
## 38
     FALSE
             FALSE FALSE FALSE FALSE
## 40
      FALSE
             FALSE FALSE FALSE FALSE
## 41
     FALSE
            FALSE FALSE FALSE FALSE
## 44
     FALSE
            FALSE FALSE FALSE FALSE
## 47
     FALSE
            FALSE FALSE FALSE FALSE
     FALSE
            FALSE FALSE FALSE FALSE
## 48
     FALSE
            FALSE FALSE FALSE FALSE
## 49
     FALSE
             FALSE FALSE FALSE FALSE
## 50
## 51
     FALSE
            FALSE FALSE FALSE FALSE
## 62
     FALSE
            FALSE FALSE FALSE FALSE
## 63
     FALSE
            FALSE FALSE FALSE FALSE
      FALSE
## 64
            FALSE FALSE FALSE FALSE
## 66
     FALSE
            FALSE FALSE FALSE FALSE
## 67
     FALSE
            FALSE FALSE FALSE FALSE
## 68
     FALSE
             FALSE FALSE FALSE FALSE
## 69
      FALSE
            FALSE FALSE FALSE FALSE
## 70
     FALSE
             FALSE FALSE FALSE FALSE
## 71
     FALSE
            FALSE FALSE FALSE FALSE
## 73
      FALSE
             FALSE FALSE FALSE FALSE
## 74
     FALSE
            FALSE FALSE FALSE FALSE
## 76
     FALSE
            FALSE FALSE FALSE FALSE
## 77
     FALSE
            FALSE FALSE FALSE FALSE
## 78
     FALSE
             FALSE FALSE FALSE FALSE
## 79
     FALSE
            FALSE FALSE FALSE FALSE
     FALSE
             FALSE FALSE FALSE FALSE
## 80
## 81
     FALSE
            FALSE FALSE FALSE FALSE
      FALSE
## 82
            FALSE FALSE FALSE FALSE
## 85
     FALSE
            FALSE FALSE FALSE FALSE
     FALSE
## 86
            FALSE FALSE FALSE FALSE
## 87
      FALSE
             FALSE FALSE FALSE FALSE
## 88
      FALSE
             FALSE FALSE FALSE FALSE
## 89
      FALSE
             FALSE FALSE FALSE FALSE
## 90
     FALSE
             FALSE FALSE FALSE FALSE
## 91
     FALSE
             FALSE FALSE FALSE FALSE
## 92
     FALSE
             FALSE FALSE FALSE FALSE
## 93
     FALSE
            FALSE FALSE FALSE FALSE
## 94 FALSE
            FALSE FALSE FALSE FALSE
## 95 FALSE
            FALSE FALSE FALSE FALSE
```

```
## 99 FALSE
             FALSE FALSE FALSE FALSE
## 100 FALSE
            FALSE FALSE FALSE FALSE
## 101 FALSE
            FALSE FALSE FALSE FALSE
## 104 FALSE
            FALSE FALSE FALSE FALSE
## 105 FALSE
            FALSE FALSE FALSE FALSE
## 106 FALSE
            FALSE FALSE FALSE FALSE
## 108 FALSE
            FALSE FALSE FALSE FALSE
## 109 FALSE
            FALSE FALSE FALSE FALSE
## 110 FALSE
            FALSE FALSE FALSE FALSE
## 111 FALSE
            FALSE FALSE FALSE FALSE
## 112 FALSE
            FALSE FALSE FALSE FALSE
## 113 FALSE
            FALSE FALSE FALSE FALSE
## 114 FALSE
            FALSE FALSE FALSE FALSE
## 116 FALSE
            FALSE FALSE FALSE FALSE
## 117 FALSE
            FALSE FALSE FALSE FALSE
## 118 FALSE
            FALSE FALSE FALSE FALSE
## 120 FALSE
            FALSE FALSE FALSE FALSE
## 121 FALSE
            FALSE FALSE FALSE FALSE
## 122 FALSE
            FALSE FALSE FALSE FALSE
## 123 FALSE
            FALSE FALSE FALSE FALSE
## 124 FALSE
            FALSE FALSE FALSE FALSE
## 125 FALSE
            FALSE FALSE FALSE FALSE
## 126 FALSE
            FALSE FALSE FALSE FALSE
## 127 FALSE
            FALSE FALSE FALSE FALSE
            FALSE FALSE FALSE FALSE
## 128 FALSE
## 129 FALSE
            FALSE FALSE FALSE FALSE
## 130 FALSE
            FALSE FALSE FALSE FALSE
## 131 FALSE
            FALSE FALSE FALSE FALSE
## 132 FALSE
            FALSE FALSE FALSE FALSE
## 133 FALSE
            FALSE FALSE FALSE FALSE
## 134 FALSE
            FALSE FALSE FALSE FALSE
## 135 FALSE
            FALSE FALSE FALSE FALSE
## 136 FALSE
            FALSE FALSE FALSE FALSE
## 137 FALSE
            FALSE FALSE FALSE FALSE
## 138 FALSE
            FALSE FALSE FALSE FALSE
## 139 FALSE
            FALSE FALSE FALSE FALSE
## 140 FALSE
            FALSE FALSE FALSE FALSE
## 141 FALSE
            FALSE FALSE FALSE FALSE
## 142 FALSE
            FALSE FALSE FALSE FALSE
## 143 FALSE
            FALSE FALSE FALSE FALSE
## 144 FALSE
            FALSE FALSE FALSE FALSE
## 145 FALSE
            FALSE FALSE FALSE FALSE
## 146 FALSE
            FALSE FALSE FALSE FALSE
## 147 FALSE
            FALSE FALSE FALSE FALSE
## 148 FALSE
            FALSE FALSE FALSE FALSE
## 149 FALSE
             FALSE FALSE FALSE FALSE
## 151 FALSE
             FALSE FALSE FALSE FALSE
## 152 FALSE
             FALSE FALSE FALSE FALSE
## 153 FALSE
             FALSE FALSE FALSE FALSE
```

Note that the echo = FALSE parameter was added to the code chunk to prevent printing of the R code that generated the plot.