84D 27596

2N5223/FTSO5223

NPN Small Signal General Purpose Amplifier & Oscillator

T-29-23

• PD ... 625 mW @ TA = 25° C

V_{CEO} ... 20 V (Min)

• h_{FE} ... 50-800 @ 2.0 mA

f_T ... 150 MHz (Min) @ 10 mA

• Ccb ... 4.0 pF (Max)

• Complement ... 2N/FTSO5227

PACKAGE

2N5223

TO-92

FTSO5223

TO-236AA/AB

ABSOLUTE MAXIMUM RATINGS (Note 1)

Temperatures

Storage Temperature
Operating Junction Temperature

-55° C to 150° C

150° C

Power Dissipation (Notes 2 & 3)

Total Dissipation at

FTSO

25°C Ambient Temperature

0.625 W 0.350 W*

25° C Case Temperature

1.0 W

2N

Voltages & Currents

V_{CEO} Collector to Emitter Voltage

20 V

(Note 4)

V_{CBO} Collector to Base Voltage

25 V 3.0 V

V_{EBO} Emitter to Base Voltage Ic Collector Current

100 mA

ELECTRICAL CHARACTERISTICS (25° C Ambient Temperature unless otherwise noted) (Note 6)

SYMBOL	CHARACTERISTIC	MIN	MAX	UNITS	TEST CONDITIONS
BV _{CEO}	Collector to Emitter Breakdown Voltage	20		٧	$I_{C} = 1.0 \text{ mA}, I_{B} = 0$
ВУсво	Collector to Base Breakdown Voltage	25		٧	$I_{C} = 100 \ \mu A, \ I_{E} = 0$
BV _{EBO}	Emitter to Base Breakdown Voltage	3.0		٧	$I_E = 100 \ \mu A, \ I_C = 0$
I _{EBO}	Emitter Cutoff Current		500	nA	$V_{EB} = 2.0 \text{ V}, I_{C} = 0$
Ісво	Collector Cutoff Current		100	nA	$V_{CB} = 10 \text{ V, } I_E = 0$
h _{FE}	DC Current Gain	50	800		I _C = 2.0 mA, V _{CE} = 10 V

NOTES:

- 1. These ratings are limiting values above which the serviceability of any individual semiconductor device may be impaired.
- 2. These are steady state limits. The factory should be consulted on applications involving pulsed or low duty cycle operations.
- 2. These ratings give a maximum junction temperature of 150° C and (TO-92) junction-to-case thermal resistance of 125° C/W (derating factor of 8.0 mW/° C); junction-to-ambient thermal resistance of 200° C/W (derating factor of 5.0 mW/° C); (TO-236) junction-to-ambient thermal resistance of 357° C/W (derating factor of 2.8 mW/° C).
- 4. Rating refers to a high current point where collector to emitter voltage is lowest.
- 5. Pulse conditions: length = 300 μ s; duty cycle < 2%.
- 6. For product family characteristic curves, refer to Curve Set T144.
- * Package mounted on 99.5% alumina 8 mm x 8 mm x 0.6 mm.

34 DE 3469674 0027597 5 . .

3469674 FAIRCHILD SEMICONDUCTOR

84D 27597 D

2N5223/FTSO5223

7-29.23

ELECTRICAL CHARACTERISTICS (25° C Ambient Temperature unless otherwise noted) (Note 6)

	OLIABACTERISTIC	MIN	MAX	UNITS	TEST CONDITIONS
	CHARACTERISTIC		0.7	V	I _C = 10 mA, I _B = 1.0 mA
V _{CE(sat)}	Collector to Emitter Saturation Voltage (Note 5)		0.7	ļ	1
V _{BE(sat)}	Base to Emitter Saturation Voltage (Note 5)		1.2	V	I _C = 10 mA, I _B = 1.0 mA
Сер	Collector to Base Capacitance		4.0	pF	$V_{CB} = 10 \text{ V}, I_E = 0, f = 1.0 \text{ MHz}$
	Small Signal Current Gain	50	1600		$I_C = 2.0 \text{ mA}, V_{CE} = 10 \text{ V}, f = 1.0 \text{ kHz}$
h _{fe}	Current Gain Bandwidth Product	150		MHz	$I_C = 10 \text{ mA}, V_{CE} = 10 \text{ V}, f = 100 \text{ MHz}$

3469674 0027598 7

D

3469674 FAIRCHILD SEMICONDUCTOR

84D 27598

2N5224/FTSO5224

NPN Low Level Switch

7-29-23

V_{CEO} ... 12 V (Min)

ton ... 45 ns (Max) @ 10 mA

toff ... 60 ns (Max) @ 10 mA

f_T ... 250 MHz (Min) @ 10 mA

Ccb ... 4.0 pF (Max)

Complement ... MPSL08

PACKAGE

2N5224

TO-92

FTSO5224

TO-236AA/AB

ABSOLUTE MAXIMUM RATINGS (Note 1)

Temperatures

Storage Temperature

-55° C to 150° C

Operating Junction Temperature

150° C

Power Dissipation (Notes 2 & 3)

Total Dissipation at

2N

25° C Ambient Temperature

FTSO 0.625 W 0.350 W*

25°C Case Temperature

1.0 W

Voltages & Currents

V_{CEO} Collector to Emitter Voltage

12 V

(Note 4)

25 V

V_{CBO} Collector to Base Voltage V_{EBO} Emitter to Base Voltage

5.0 V

DC Collector Current

100 mA

ELECTRICAL CHARACTERISTICS (25°C Ambient Temperature unless otherwise noted) (Note 6)

	CHARACTERISTIC	MIN	MAX	UNITS	TEST CONDITIONS
SYMBOL	CHARACTERISTIC	111111	1100	V	$I_{\rm C} = 10 \text{ mA}, I_{\rm B} = 0$
BV _{CEO}	Collector to Emitter Breakdown Voltage (Note 5)	12		· ·	
ВУсво	Collector to Base Breakdown Voltage	25		V	$I_C = 100 \ \mu A, \ I_E = 0$
BVEBO	Emitter to Base Breakdown Voltage	5.0		V	$I_E = 100 \ \mu A, I_C = 0$
I _{EBO}	Emitter Cutoff Current		100	μΑ	$V_{EB} = 4.0 \text{ V, } l_{C} = 0$
Ісво	Collector Cutoff Current		500	nA	$V_{CB} = 15 \text{ V}, I_E = 0$
h _{FE}	DC Current Gain (Note 5)	40 15	400		$I_C = 10 \text{ mA}, V_{CE} = 1.0 \text{ V}$ $I_C = 100 \text{ mA}, V_{CE} = 1.0 \text{ V}$
V _{CE(sat)}	Collector to Emitter Saturation Voltage (Note 5)		0.35	V	$I_C = 10 \text{ mA}, I_B = 3.0 \text{ mA}$
V _{BE(sat)}	Base to Emitter Saturation Voltage (Note 5)		0.9	٧	I _C = 10 mA, I _B = 3.0 mA

NOTES:

- These ratings are limiting values above which the serviceability of any individual semiconductor device may be impaired.
- These are steady state limits. The factory should be consulted on applications involving pulsed or low duty cycle operations.

 These ratings give a maximum junction temperature of 150°C and (TO-92) junction-to-case thermal resistance of 125°C/W (derating factor of 8.0). mW/°C); junction-to-ambient thermal resistance of 200° C/W (derating factor of 5.0 mW/°C); (TO-236) junction-to-ambient thermal resistance of 357° C/W (derating factor of 2.8 mW/° C).
- Rating refers to a high current point where collector to emitter voltage is lowest.
- Pulse conditions: length = 300 μ s; duty cycle < 2%.
- For product family characteristic curves, refer to Curve Set T162.
- Package mounted on 99.5% alumina 8 mm x 8 mm x 0.6 mm.

84D 27599

99

2N5224/FTSO5224

T-29.23

ELECTRICAL CHARACTERISTICS (25°C Ambient Temperature unless otherwise noted) (Note 6)

SYMBOL	CHARACTERISTIC	MIN	MAX	UNITS	TEST CONDITIONS
Ссь	Collector to Base Capacitance		4.0	pF	$V_{CB} = 5.0 \text{ V}, I_E = 0, f = 1.0 \text{ MHz}$
f _T	Current Gain Bandwidth Product	250		MHz	$I_C = 10 \text{ mA}, V_{CE} = 10 \text{ V}, f = 100 \text{ MHz}$
t _d	Delay Time (test circuit no. 531)		25	ns	$I_C = 10 \text{ mA}, V_{CC} = 3.0 \text{ V}, I_{B1} = 3.0 \text{ mA}$
t _r	Rise Time (test circuit no. 531)		20	ns	$I_C = 10 \text{ mA}, V_{CC} = 3.0 \text{ V}, I_{B1} = 3.0 \text{ mA}$
ts	Storage Time (test circuit no. 531)		35	ns	$I_C = 10 \text{ mA}, V_{CC} = 3.0 \text{ V},$ $I_{B1} = I_{B2} = 3.0 \text{ mA}$
t _f	Fall Time (test circuit no. 531)		25	ns	$I_C = 10 \text{ mA}, V_{CC} = 3.0 \text{ V},$ $I_{B1} = I_{B2} = 3.0 \text{ mA}$

2N5225/FTSO5225 2N5226/FTOS5226

NPN-PNP Small Signal General Purpose Complementary Amplifiers

T-29.23

V_{CEO} ... 25 V (Min)

FAIRCHILD

A Schlumberger Company

h_{FE} ... 30-600 @ 50 mA

V_{CE(sat)} ... 0.8 V (Max) @ 100 mA

Complement ... 2N5225 (NPN), 2N5226 (PNP)

PACKAGE

2N5225 2N5226 TO-92 TO-92

FTSO5225 FTSO5226 TO-236AA/AB TO-236AA/AB

ABSOLUTE MAXIMUM RATINGS (Note 1)

Temperatures

-55° C to 150° C Storage Temperature 150° C Operating Junction Temperature

Power Dissipation (Notes 2 & 3)

2N Total Dissipation at 0.625 W 25° C Ambient Temperature 1.0 W 25° C Case Temperature

Voltages & Currents V_{CEO} Collector to Emitter Voltage (Note 4)

Collector to Base Voltage Emitter to Base Voltage V_{EBO} Collector Current

0.350 W*

5226 -25 V

FTSO

-25 V 25 V -4.0 V

4.0 V 500 mA 500 mA

ELECTRICAL CHARACTERISTICS (25° C Ambient Temperature unless otherwise noted) (Note 6)

5225

25 V

CTRICAL		2N5 MIN	225 MAX	2N5 MIN	226 MAX	UNITS	TEST CONDITIONS
SYMBOL	CHARACTERISTIC		111111	-25		V	$I_{\rm C} = 10 {\rm mA}, I_{\rm B} = 0$
BV _{CEO}	Collector to Emitter Breakdown Voltage	25		25			
ВУсво	Collector to Base Breakdown	25		-25		V	$I_{C} = 100 \ \mu A, \ I_{E} = 0$
DVCBO	Voltage						$I_E = 100 \ \mu A, I_C = 0$
ВУЕВО	Emitter to Base Breakdown Voltage	4.0		-4 .0		V	
			500		500	nA	$V_{EB} = 4.0 \text{ V, } I_{C} = 0$
EBO	Emitter Cutoff Current	ļ	 	-	300	nA	$V_{CB} = 15 \text{ V}, I_{E} = 0$
Ісво	Collector Cutoff Current		300	 	300	11/1/	$I_{C} = 10 \ \mu A, \ V_{CE} = 10 \ V$
h _{FE}	DC Current Gain (Note 5)	25 30	600	25	600		$I_{c} = 10 \mu A$, $V_{CE} = 10 V$ $I_{c} = 50 \text{mA}$, $V_{CE} = 10 V$

NOTES:

- These ratings are limiting values above which the serviceability of any individual semiconductor device may be impaired.
- These are steady state limits. The factory should be consulted on applications involving pulsed or low duty cycle operations
- These ratings give a maximum junction temperature of 150°C and (TO-92) junction-to-case thermal resistance of 125° C/W (derating factor of 8.0 mW/°C); junction-to-ambient thermal resistance of 200°C/W (derating factor of 5.0 mW/°C); (TO-236) junction-to-ambient thermal resistance of 357°C/W (derating factor of 2.8 mW/°C).
- Rating refers to a high current point where collector to emitter voltage is lowest.
- Pulse conditions: length = 300 μ s; duty cycle = 2%.
- For product family characteristic curves, refer to Curve Set T145 for 2N5225 and T212 for 2N5226.
- Package mounted on 99.5% alumina 8 mm x 8 mm x 0.6 mm.

84 DE 3469674 0027601 3

3469674 FAIRCHILD SEMICONDUCTOR

84D 27601

2N5225/FTSO5225 2N5226/FTOS5226

T-29,23

ELECTRICAL CHARACTERISTICS (25° C Ambient Temperature unless otherwise noted) (Note 6)

SYMBOL	CHARACTERISTIC	2NS MIN	5225 MAX	2N MIN	5226 MAX	UNITS	TEST CONDITIONS
V _{CE(sat)}	Collector to Emitter Saturation Voltage (Note 5)		0.8		0.8	V	I _C = 100 mA, I _B = 10 mA
V _{BE(sat)}	Base to Emitter Saturation Voltage (Note 5)		1.0		-1.0	٧	I _O = 100 mA, I _B = 10 mA
Ссь	Collector to Base Capacitance		20		20	pF	$V_{CB} = 5.0 \text{ V}, I_E = 0, f = 1.0 \text{ MHz}$
h _{fe}	Small Signal Current Gain	30	1800	30	1800		I _C = 50 mA, V _{CE} = 10 V, f = 1.0 kHz
f⊤	Current Gain Bandwidth Product		50		50	MHz	$I_{C} = 20 \text{ mA}, V_{CE} = 10 \text{ V},$ f = 20 MHz

3469674 FAIRCHILD SEMICONDUCTOR

3469674 0027602 5

2N5227/FTSO5227

PNP Small Signal General Purpose **Amplifier & Oscillator**

T-29.23

VCEO ... 30 V (Min)

h_{FE} ... 50-700 @ 2.0 mA

f_T ... 100 MHz (Min) @ 10 mA

Ccb ... 5.0 pF (Max)

Complements ... 2N5223

PACKAGES

2N5227 TO-92

FTSO5227 TO-236AA/AB

ABSOLUTE MAXIMUM RATINGS (Note 1)

Temperatures

Storage Temperature -55°C to 150°C Operating Junction Temperature

150° C

Power Dissipation (Notes 2 & 3)

Total Dissipation at 2N 0.350 W*

25°C Ambient Temperature 0.625 W

25° C Case Temperature 1.0 W

Voltages & Currents

V_{CEO} Collector to Emitter Voltage -30 V

(Note 4)

V_{CBO} Collector to Base Voltage -30 V

V_{EBO} Emitter to Base Voltage -3.0 V

50 mA Collector Current

ELECTRICAL CHARACTERISTICS (25° C Ambient Temperature unless otherwise noted) (Note 6)

SYMBOL	CHARACTERISTIC	MIN	MAX	UNITS	TEST CONDITIONS
BV _{CEO}	Collector to Emitter Breakdown Voltage	-30		٧	I _C = 1.0 mA, I _B = 0
ВУсво	Collector to Base Breakdown Voltage	-30		٧	$I_{C} = 100 \ \mu A, \ I_{E} = 0$
BV _{EBO}	Emitter to Base Breakdown Voltage	-3.0		٧	$I_E = 100 \ \mu A, I_C = 0$
I _{EBO}	Emitter Cutoff Current		500	nΑ	$V_{EB} = -2.0 \text{ V, } I_{C} = 0$
Ісво	Collector Cutoff Current		100	nA	V _{CB} = -10 V, I _E = 0
h _{FE}	DC Current Gain (Note 5)	30 50	700	_	$I_C = 100 \ \mu\text{A}, \ V_{CE} = -10 \ \text{V}$ $I_C = 2.0 \ \text{mA}, \ V_{CE} = -10 \ \text{V}$
V _{CE(sat)}	Collector to Emitter Saturation Voltage		-0.4	٧	Ic = 10 mA, I _B = 1.0 mA
V _{BE(sat)}	Base to Emitter Saturation Voltage		-1.0	V	I _C = 10 mA, I _B = 1.0 mA
Ссь	Collector to Base Capacitance		5.0	pF	V _{CB} = 10 V, I _E = 0, f = 1.0 MHz
h _{fe}	Small Signal Current Gain	50	1500		$I_C = 2.0 \text{ mA}, V_{CE} = -10 \text{ V}, f = 1.0 \text{ kHz}$
f _T	Current Gain Bandwidth Product	100		MHz	$I_C = 10 \text{ mA}, V_{CE} = -10 \text{ V}, f = 100 \text{ MHz}$

FTSO

These ratings are limiting values above which the serviceability of any individual semiconductor device may be impaired.

These are steady state limits. The factory should be consulted on applications involving pulsed or low duty cycle operations.

These ratings give a maximum junction temperature of 150° C and (TO-92) junction-to-case thermal resistance of 125° C/W (derating factor of 8.0 mW/° C); junction-to-ambient thermal resistance of 200° C/W (derating factor of 5.0 mW/° C); (TO-236) junction-to-ambient thermal resistance of 357° C/W (derating factor of 2.8 mW/° C).

Rating refers to a high current point where collector to emitter voltage is lowest.

Pulse conditions: length = 300 μ s; duty cycle = 1%.

For product family characteristic curves, refer to Curve Set T215.

Package mounted on 99.5% alumina 8 mm x 8 mm x 0.6 mm.

84D 27603

2N5228/FTSO5228

PNP Low Level Switch

T-29-23

V_{CEO} ... -5.0 V (Min)

ton ... 75 ns (Max) @ 10 mA

t_{off} ... 140 ns (Max) @ 10 mA fт ... 300 MHz (Min) @ 10 mA

Ccb ... 5.0 pF (Max)

Complement ... 2N5224

PACKAGE

2N5228

TO-92

FTSO5228

TO-236AA/AB

ABSOLUTE MAXIMUM RATINGS (Note 1)

Temperatures

Storage Temperature

-55°C to 150°C

150°C

Operating Junction Temperature

2N

-6.0 V

Power Dissipation (Notes 2 & 3) Total Dissipation at

FTSO 0.350 W*

0.625 W 25° C Ambient Temperature 1.0 W 25° C Case Temperature

Voltages & Currents

V_{CES} Collector to Emitter Voltage

V_{CEO} Collector to Emitter Voltage -5.0 V -5.0 V

V_{CBO} Collector to Base Voltage -3.0 V V_{EBO} Emitter to Base Voltage

50 mA **DC Collector Current**

ELECTRICAL CHARACTERISTICS (25° C Ambient Temperature unless otherwise noted) (Note 5)

WAR OL	CHARACTERISTIC	MIN	MAX	UNITS	TEST CONDITIONS
SYMBOL BV _{CEO}	Collector to Emitter Breakdown Voltage	-5.0		٧	$I_C = 10 \text{ mA}, I_B = 0$
3V _{CES}	(Note 4) Collector to Emitter Breakdown Voltage	-6.0		V	$I_C = 100 \ \mu A, \ V_{BE} = 0$
BV _{CBO}	Collector to Base Breakdown Voltage	-5.0		V	$I_{C} = 100 \ \mu A, \ I_{E} = 0$
3V _{EBO}	Emitter to Base Breakdown Voltage	-3.0		V	$I_E = 100 \ \mu A, I_C = 0$
CES	Collector Cutoff Current		100	nA	$V_{CE} = -4.0 \text{ V}, V_{BE} = 0$
EBO	Emitter Cutoff Current		100	μΑ	$V_{EB} = -2.5 \text{ V}, I_C = 0$
1 _{FE}	DC Current Gain (Note 4)	30 15			$I_C = 10 \text{ mA}, V_{CE} = -0.3 \text{ V}$ $I_C = 50 \text{ mA}, V_{CE} = -1.0 \text{ V}$

1. These ratings are limiting values above which the serviceability of any individual semiconductor device may be impaired.

These are steady state limits. The factory should be consulted on applications involving pulsed or low duty cycle operations.

These ratings give a maximum junction temperature of 150° C and (TO-92) junction-to-case thermal resistance of 125° C/W (derating factor of 8.0 mW/°C); junction-to-ambient thermal resistance of 200° C/W (derating factor of 5.0 mW/°C); (TO-236) junction-to-ambient thermal resistance of 357° C/W (derating factor of 2.8 mW/° C).

Pulse conditions: length = 300 μs; duty cycle * 2%.

For product family characteristic curves, refer to Curve Set T292.

Package mounted on 99.5% alumina 8 mm x 8 mm x 0.6 mm.

84D 27604 D

2N5228/FTSO5228

T-29-23

ELECTRICAL CHARACTERISTICS (25° C Ambient Temperature unless otherwise noted) (Note 5)

SYMBOL	CHARACTERISTIC	MIN	MAX	UNITS	TEST CONDITIONS
V _{CE(sat)}	Collector to Emitter Saturation Voltage (Note 4)		-0.4	V	I _C = 10 mA, I _B = 3.0 mA
V _{BE(sat)}	Base to Emitter Saturation Voltage (Note 4)	-0.65	-1.25	٧	I _C = 10 mA, I _B = 3.0 mA
Ccb	Collector to Base Capacitance		5.0	pF	$V_{CB} = -5.0 \text{ V}, I_E = 0, f = 1.0 \text{ MHz}$
f _T	Current Gain Bandwidth Product	300		MHz	$I_C = 10 \text{ mA}, V_{CE} = -5.0 \text{ V}, f = 100 \text{ MHz}$
t _d	Delay Time (test circuit no. 532)		25	ns	$I_{\rm C} \approx 10{\rm mA}$, $V_{\rm CC} = -3.0{\rm V}$, $I_{\rm B1} \approx 3.0{\rm mA}$
t _r	Rise Time (test circuit no. 532)		50	ns	$I_C \approx 10 \text{ mA}, V_{CC} = -3.0 \text{ V}, I_{B1} \approx 3.0 \text{ mA}$
ts	Storage Time (test circuit no. 532)		90	ns	$I_{C} \approx 10$ mA, $V_{CC} = -3.0$ V, $I_{B1} \approx -I_{B2} = 3.0$ mA
tr	Fall Time (test circuit no. 532)		50	лѕ	$I_{\rm C} \approx 10$ mA, $V_{\rm CC} = -3.0$ V, $I_{\rm B1} \approx -I_{\rm B2} \approx 3.0$ mA