ALGEBRA II

Licenciatura en Ciencias Matemáticas

1. Consideremos el anillo $Z[\sqrt{-5}]$.

a) Para cada $x \in \mathbb{Z}[\sqrt{-5}]$ de la forma $x = a + b\sqrt{-5} = a + b\sqrt{5}i$, denotamos con \overline{x} a su conjugado como número complejo. Probar que la aplicación

$$\Phi: Z[\sqrt{-5}] \to N: x \mapsto x \cdot \overline{x}$$

verifica $\Phi(xy) = \Phi(x)\Phi(y)$.

b) Probar que los elementos 2 y $1 + \sqrt{-5}$ son irreducibles.

c) Probar que 2 no es primo.

d) ¿Puede dotar la aplicación Φ de estructura de anillo euclídeo a $Z[\sqrt{-5}]$? Solución.

Es una parte del amplio ejemplo desarrollado en el apartado 2.25 (págs. 46 y siguientes). Por las propiedades de la conjugación de números complejos, tenemos

 $\Phi(xy) = xy \cdot \overline{xy} = x\overline{x} \cdot y\overline{y} = \Phi(x)\Phi(y).$

Los apartados a) y b) estan respondidos también en este foro.

Por último, la norma Φ definida no puede acompañar a ningún procedimiento de división en $Z[\sqrt{-5}]$ que convierta a éste en un anillo euclídeo, pues existen en él elementos irreducibles que no son primos.

2. Estudiar si el polinomio $p(x) = x^7 - x + 1$ tiene alguna solución en $\mathbb{Z}/(7)$. Solución.

Por el teorema de Fermat, si $x \in Z/(7)$ se cumple que $x^7 \equiv x \mod(7)$, de esta forma, para todo $x \in Z/(7)$ se tiene que $x^7 - x + 1 \equiv 1 \mod(7)$, con lo que p(x) no tiene raíces en Z/(7).

3. Racionalizar:

$$\alpha = \frac{1}{1 - \sqrt[3]{2} - \sqrt[3]{4}}.$$

Indicación: considerar la expresión dada como elemento de $Q[\sqrt[3]{2}]$.

Solución.

Es éste un problema muy similar al 101 [FL].

Como α es un elemento del cuerpo $Q(\sqrt[3]{2})$, y éste coincide con $Q[\sqrt[3]{2}]$, nuestro objetivo es escribir α en función de alguna base de $Q[\sqrt[3]{2}]$ como Q—espacio

vectorial. De esta forma, como una de estas bases es $\{1, \sqrt[3]{2}, \sqrt[3]{4}\}$, debemos encontrar números racionales a, b, y c tales que:

$$\frac{1}{1 - \sqrt[3]{2} - \sqrt[3]{4}} = a + b\sqrt[3]{2} + c\sqrt[3]{4}.$$

Esto es $1 = (1 - \sqrt[3]{2} - \sqrt[3]{4})(a + b\sqrt[3]{2} + c\sqrt[3]{4})$. Operando:

$$1 = (a - 2b - 2c) + (b - a - 2c)\sqrt[3]{2} + (c - b - a)\sqrt[3]{4},$$

que proporciona el sistema

$$a-2b-2c = 1$$

$$b-a-2c = 0$$

$$c-b-a = 0$$

cuya solución es a = 1/11, b = -3/11, c = -2/11.

- 4. a) Enunciar los dos teoremas fundamentales de la teoría de Galois.
 - b) Consideremos la extensión de cuerpos:

$$Q \hookrightarrow Q[\alpha].$$

Decidir justificadamente en cuáles de los siguientes casos, esta extensión es de Galois:

- i) α es una raíz de la ecuación $ax^2 + bx + c = 0$ con $a, b, c \in Q, b^2 4ac > 0$.
- ii) α es una raíz de la ecuación $ax^2 + bx + c = 0$ con $a, b, c \in Q, b^2 4ac < 0$.
- iii) α es una raíz de la ecuación x^7-2 . Solución.

Este ejercicio se encuentra desarrollado en las proposiciones 2.6 y 2.7 (págs. 323 y 324) del tema de teoría de Galois de nuesto libro de texto y en los ejemplos (1.5) págs. 317 y 318: toda extensión de grado 2 es de Galois, etc.