Chemistry 304B, Spring 1999 Le

Lecture Notes 15

Reminder: turn in exam regrading request by Monday noon, in my mailbox.

CORRECTION:

$$H_{2O}$$
 H_{2O}
 H

Catalysis by base:

Cannot have acid (H⁺) and base in the same medium (unless you use an enzyme...later)

Important feature: Addition of water (and other weak nucleophiles) is easily reversible, low barriers

$$H_{3}C$$
 $H_{2}O$
 $H_{2}O$
 $H_{3}C$
 H

$$H$$
 OH Cl_3C $+ H_2O$ \longrightarrow Cl_3C OH $K_{eq} 2.8 \times 10^4$

Variations: Cyanide Anion

Why does it add this way and not the reverse? why does an alkene not add nucleophiles as well?

Further reactions after the addition:

A. Acetals and hemiacetals

General reaction:

CH₃-OH +
$$H_3$$
C H_3 C H_4 As for the addition of water, a delicate balance of steric electronic effects $K_{eq} > 1$

one hydroxy and one alkoxy on a carbon)

$$CH_3$$
-OH + H_3 C CH_3 CH

one hydroxy and one alkoxy on a carbon)

Hemiacetal formation in Acid:

Further reaction in acid:

$$H_3C$$
 H_3C
 H_3C

Hydrate: Unstable in both acid and base (write mechanisms)

Hemiacetal: unstable in both acid and base (write mechanisms)

Acetal: Unstable in acid (induced ionization: S_N1) but stable in base (tertiary, no S_N2)

Nitrogen as the nucleophile:

$$\begin{array}{c} \text{R-NH}_2 \\ \text{primary} \\ \text{amine} \end{array} + \begin{array}{c} \bigoplus_{\text{Carbinolamine}} \\ \text{R-NH}_2 \\ \text{Primary} \\ \text{amine} \end{array}$$

$$R_2NH$$
 + secondary amine R_2NH + R_2NH + R_3NH +

Variations on a theme: <u>ammonia analogs</u> (p 783)

Hydrazine:
$$H_2N-NH_2$$
 \longrightarrow NH_2 a hydrazone

Hydroxyl amine H_2N-OH \longrightarrow NH_2 an oxime

Hydrazine is a more powerful nucleophile than ammonia---