

一、 Spark 集群安装

1. 安装

1.1. 机器部署

准备两台以上 Linux 服务器,并安装好 JDK。

1.2. 下载 Spark 安装包

Download Spark

The latest release of Spark is Spark 1.5.2, released on November 9, 2015 (release notes) (git tag)

- 1. Choose a Spark release: 1.5.2 (Nov 09 2015) ▼
- 2. Choose a package type: Pre-built for Hadoop 2.6 and later
- 3. Choose a download type: Select Apache Mirror ▼
- 4. Download Spark: spark-1.5.2-bin-hadoop2.6.tgz

选择预编译对应的Hadoop版本

5. Verify this release using the 1.5.2 signatures and checksums.

Note: Scala 2.11 users should download the Spark source package and build with Scala 2.11 support.

http://www.apache.org/dyn/closer.lua/spark/spark-1.5.2/spark-1.5.2-bin-hadoop2.6.tgz 上传、解压安装包:

- 1、上传 spark-1.5.2-bin-hadoop2.6.tgz 安装包到 Linux 服务器
- 2、解压安装包到指定位置: tar -zxvf spark-1.5.2-bin-hadoop2.6.tgz -C /usr/local

1.3. 修改 Spark 配置文件

- 1、进入 Spark 安装目录: cd /usr/local/spark-1.5.2-bin-hadoop2.6
- 2、进入 conf 目录: cd conf/
- 3、重命名并修改 spark-env.sh.template 文件

mv spark-env.sh.template spark-env.sh

vi spark-env.sh

在该配置文件中添加如下配置

<mark>export JAVA_HOME=/usr/java/jdk1.7.0_45 ## :r! echo /usr/java/jdk...用于自动显示</mark> export SPARK_MASTER_IP=node1.itcast.cn

export SPARK_MASTER_PORT=7077

保存退出

4、重命名并修改 slaves.template 文件

mv slaves.template slaves

vi slaves

在该文件中添加子节点(Worker 节点)

node2.itcast.cn

node3.itcast.cn

node4.itcast.cn

保存退出

5、将配置好的 Spark 拷贝到其他节点

scp -r spark-1.5.2-bin-hadoop2.6/ node2.itcast.cn:/usr/local/

scp -r spark-1.5.2-bin-hadoop2.6/ node3.itcast.cn:/usr/local/

scp -r spark-1.5.2-bin-hadoop2.6/ node4.itcast.cn:/usr/local/

6、在 node1.itcast.cn 上启动 Spark 集群

/usr/local/spark-1.5.2-bin-hadoop2.6/sbin/start-all.sh

- 7、启动后执行 jps 命令,主节点上有 Master 进程,其他子节点上有 Worker 进程
- 8、登录 Spark 管理界面查看集群状态: http://node1.itcast.cn:8080

Spork 1.5.2 Spark Master at spark://node1.itcast.cn:7077

URL: spark://node1.itcast.cn:7077
REST URL: spark://node1.itcast.cn:6066 (cluster mode)
Alive Workers: 2
Cores in use: 4 Total, 0 Used

Cores in use: 4 Total, 0 Used
Memory in use: 5.5 GB Total, 0.0 B Used
Applications: 0 Running, 0 Completed
Drivers: 0 Running, 0 Completed
Status: ALIVE

Workers

1	Worker Id	Address	State	Cores	Memory
	worker-20151119001811-192.168.10.102-43960	192.168.10.102:43960	ALIVE	2 (0 Used)	2.7 GB (0.0 B Used)
	worker-20151119001811-192.168.10.103-41817	192.168.10.103:41817	ALIVE	2 (0 Used)	2.7 GB (0.0 B Used)

Spark 集群安装完毕。<mark>但是有一个很大的问题:Master 节点存在单点故障。解决此问题需要</mark>借助 zookeeper,并且至少启动两个 Master 节点来实现高可用。

Spark 集群规划: node1, node2 是 Master; node3, node4, node5 是 Worker。

- (1) 安装并启动 zk 集群;
- (2) 停止 spark 服务,修改配置文件 spark-env.sh,在该配置文件中删除 SPARK_MASTER_IP、SPARK_MASTER_PORT 并添加如下配置:

export SPARK_DAEMON_JAVA_OPTS="-Dspark.deploy.recoveryMode=ZOOKEEPER-Dspark.deploy.zookeeper.url=zk1,zk2,zk3 -Dspark.deploy.zookeeper.dir=/spark" ## Spark向zk写数据的存放目录;

- (3) 修改 slaves 文件内容,指定 worker 节点;
- (4)在 node1 上执行 sbin/start-all.sh 脚本,在 node2 上执行 sbin/start-master.sh 启 动第二个 Master。

补充: 搭建 Spark 伪分布式

1、安装 jdk

- 2、解压 spark 压缩包: tar -zxvf spark-1.6.2-bin-hadoop2.6.tgz
- 3、bin 目录下启动 spark-shell: ./spark-shell
 - (1) 启动 spark 单机版应用程序来模拟 spark 集群的运行;
 - (2) spark-shell 是 spark 集群的客户端;若是单机形式,则模拟应用程序在本地执行;
 - (3) spark-shell 启动时创建 SparkContext 对象实例。

```
| Trootening bond | John | Joh
```

注:

- (1) Spark 默认使用 HDFS 的接口读写数据(textFile()、saveAsTextFile())。即使用 InputFormat 读取 key-value 数据,textFile()方法做了处理只保留 value;使用 OutputFormat 写数据。
- (2) Spark 中的算子包括两种:<mark>Transformation</mark> 和 <mark>Action</mark>。<mark>Transformation 延迟加载,触发 Action 时执行。</mark>
- (3) Scala 原生的集合方法操作单机版数据; Spark 提供的 RDD 上的方法并行计算,操作 多台机器上的数据集。
- (4) RDD 是分布式集合,是 Spark 中最基本的抽象。
- (5) reduceByKey()先在一个分区上聚合,再全局聚合。(类似于 combiner 功能)
- (6) 为什么 Spark 的 Transformation 算子延迟加载? 每触发 Transformation 执行一次任务,则需不断地与集群进行交互,所以设计成触发 Action 时提交任务执行。