# MINDEF Technical Assessment

Quantitative Strategy Case Study Interview

Gary Goh Shing Wee 25 October 2023

All source code and analysis can be found in this Github repository: <a href="https://github.com/garygsw/mindef-assessment">https://github.com/garygsw/mindef-assessment</a>

# **Table of Contents**

- 1. Section 1: Scenario 1
- 2. Section 2: Question 1
- 3. Section 2: Question 2
- 4. Section 2: Question 3

#### **Problem statement:**

Analyse the relationship between HDB flat prices with proximity to expressways

### Dataset(s) / source(s):

- 1. Resale Flat Prices from Jan 2017 onwards (<u>link</u>)
  - > Filter by month from Oct 2021 onwards (2 years)
- 2. OneMap Geocode API (link)
- 3. National Map Line (link)
  - > Filter expressways only
- 4. National Map Polygon (link)

#### Raw data



Obtain location from OneMap Geocode API: search term = block + street\_name



**Next step:** For each location, find the distance to the nearest expressway

# Approach:

- Use spatial cKDTree to store all expressway lines for quick lookup for nearest points
- Use latitudes and longitudes to compute distances

# Find correlation between resale price per square meter and distance





#### **Conclusions:**

- Very weak negative correlation for low floors (27 and below)
- Medium positive correlation for mid floors (27 to 42)
- Somewhat strong negative correlation for high floors (>42 floors) caution low sample size

#### **Further potential improvements:**

- Consider underground (less noisier?) or above ground expressways
- Consider traffic flows of expressways (different parts of expressway have different noise levels)
- Consider spatial distribution of different floors
- Set a distance threshold and convert to a binary value either "near" or "not near" and then analyze correlation

# **Section 2: Question 1**

#### **Problem statement:**

Find a suitable probability distribution to model the distribution for the number of HDB resale flat sales in a year closed by a property agent representing the seller.

#### Dataset(s) / source(s):

- CEA Salesperson's Residential Property Transaction Records (<u>link</u>)
  - > Filter by transaction dates from 2022-Oct onwards (1 year)

**Distribution** (remove outliers by ignoring counts > 10)



**Note:** salesperson\_reg\_num is used as the unique identifier for the property agent

#### **Distribution to fit:** Poisson distribution

$$f(k;\lambda) = \Pr(X{=}k) = rac{\lambda^k e^{-\lambda}}{k!},$$

#### where

- k is the number of occurrences ( $k=0,1,2,\ldots$ )
- e is Euler's number ( e=2.71828... )
- ! is the factorial function.



#### **Characteristics:**

- Discrete
- Expresses the probability of number of events occurring in a fixed time interval
- Counts the number of successes in independent Bernoulli trials

# **Fitted using Maximum Likelihood Estimation**



### **Assumptions:**

- > Events occur at a fixed rate with a constant mean and variance
- Events occur independently from each other
- Probability of success in each trial is a constant

#### **Further potential improvements:**

- Choose to fit an empirical distribution using Kolmogorov-Smirnov test
- Use supervised statistical modelling to predict the random variable based on multiple factors e.g. agent's track record, agent's marketing expenses, agent's team size

# **Section 2: Question 2**

#### **Problem statement:**

Build a multi-class classifier to predict 200 missing location\_type values from the Wireless@SG hotspots dataset.

#### Dataset(s) / source(s):

- Wireless Hotspots (<u>link</u>)
- 2. National Map Polygon (link)



103.60

103.65

103.70

103.75

103.80



103.85

103.90

103.95

104.00

#### **Explore** latitude and longitude relationship with location\_type





# **Explore** location\_name relationship with location\_type

Bukit Batok CC Community 1 Northpoint Drive 20 Upper Pickering St ACE The Place CC Acacia RC Tampines North Zone 6 RC Tampines North Zone 7 RC Keppel Club PASIR RIS ZONE '7' RESIDENTS COMMITTEE People's Association SBS Kampong Bahru Bus Terminal SBS Shenton Way Bus Terminal City Hall MRT Station - EWL City Hall MRT Station - NSL Clake Quay MRT - NEL **Public** Clementi - EWL **Transport** 

#### Healthcare

Ng Teng Fong Hospital - Ward\_Tower(RH)\_L7
Ng Teng Fong Hospital - Ward\_Tower(RH)\_L8
Ng Teng Fong Hospital - Ward\_Tower(RH)\_L9
Ng Teng Fong Hospital - Ward\_Tower(RH)\_LIFT
Queenstown Polyclinic

Upper Boon Keng Market & Food Centre
Whampoa Drive Makan Place
F&B Whampoa Market
Yuhua Place

Yuhua Village

Commercial

West Coast Ferry Terminal
S K Yap Construction
Sembcorp Marine Ltd
The Swatch Group
Webnatics Singapore Pte Ltd

#### School

Grace Orchard School
Ngee Ann Polytechnic
CAPT
CAPT/RC4 Dining Area
Cinnamon
Cinnamon Dining Area
Eusoff Hall (EH)
Food Court / Canteen

# Welfare Organization

@27 FSC AMP nior Activity Centre

AWWA Senior Activity Centre Comnet SAC (Sin Ming) Covenant FSC

**Conclusion:** location\_name is a key feature to determine location\_type!

#### **Features Engineering**

- ➤ Categorical data: operator\_name → One-Hot Encoding
- ➤ Numerical data: lat, long → MinMax Scaling
- ➤ Text data: location\_name → Count Vectorization with fixed vocabulary

```
# handle location name feature
   keywords = [
       "rc", "cc", "rn", "zone", "nlb", "residents", "committee", "cafe", "hawker", # community
       "kfc", "mcdonald", "pizza", "food", "coffee", "market", "makan", "hotel", # f&b
       "nel", "mrt", "ccl", "ewl", "nsl", "bus", # public transport
       "pte", "ltd", "limited", "group", "branch", "company", "industrial", "tower", "holding", # commercial
       "housing", "development", "board", "hdb", "ministiry", "national", "hub", "singapore", # government
       "hospital", "singhealth", "nfk", "sgh", "polyclinic", "medicine", "academia",
       "heart", "eye", "dental", "care", # healthcare
10
       "boutique", "orchard", # retail
11
       "hall", "canteen", "polytechnic", "school", # school
       "mall", "plaza", "shopping", "square", # shopping mall
12
       "home", "children", "outreach", "fsc", "sac", "senior", "seniors", "activity", # welfare
13
14
```

#### **Multiclass Classification Models**

- Binary Classifier Transformation
  - o One vs. Rest: Logistic Regression
  - One vs. One: Support Vector Classification, SGD Classifier
- Native Multiclass Classifiers
  - Naive Bayes: Multinomial, Complement
  - Decision Tree Classifier
  - k-Nearest Neighbour Classifier
  - **Ensemble:** Random Forest, Gradient Boosting
  - Neural Networks: Multilayer Perceptron

#### **Metrics:**

- > Accuracy
- Precision >

F1-score

Recall

- By class Macro average
- Micro average

| Model                                       | Train accuracy (%) | Test accuracy (%) |
|---------------------------------------------|--------------------|-------------------|
| Logistic Regression (LR)                    | 91.3               | 90.5              |
| Support Vector Classifier (SVC)             | 91.7               | 91.0              |
| SGD Classifier (SGD)                        | 92.9               | 92.0              |
| Multinomial Naive Bayes (MNB)               | 88.1               | 89.5              |
| Complement Naive Bayes (CNB)                | 88.4               | 88.5              |
| Decision Tree Classifier (DT)               | 99.9               | 89.0              |
| k-Nearest Neighbours Classifier (kNN)       | 92.9               | 91.5              |
| Random Forest Classifier (RF)               | 99.9               | 91.5              |
| Gradient Boosting Classifier (GB)           | 98.6               | 92.0              |
| Multilayer Perceptron Neural Network (MPNN) | 90.0               | 91.0              |

# **Classification Report for Gradient Boosting Classifier**

|                           | precision | recall | f1-score     | support |
|---------------------------|-----------|--------|--------------|---------|
| Commercial                | 0.79      | 0.73   | 0.76         | 15      |
| Community                 | 0.99      | 0.97   | 0.98         | 68      |
| F&B                       | 0.96      | 0.98   | 0.97         | 52      |
| Government                | 0.00      | 0.00   | 0.00         | 3       |
| Healthcare                | 0.86      | 1.00   | 0.92         | 37      |
| Others                    | 0.00      | 0.00   | 0.00         | 0       |
| Public Transport          | 1.00      | 1.00   | 1.00         | 4       |
| Retail Shop               | 0.50      | 0.50   | 0.50         | 4       |
| School                    | 1.00      | 1.00   | 1.00         | 2       |
| Shopping Mall             | 0.50      | 0.50   | 0.50         | 2       |
| Welfare Organisation      | 0.90      | 0.69   | 0.78         | 13      |
| accuracy                  |           |        | 0.92         | 200     |
| accuracy                  | 0.68      | 0.67   | 0.92<br>0.67 | 200     |
| macro avg<br>weighted avg | 0.91      | 0.92   | 0.91         | 200     |

# **Further potential improvements:**

- Dataset:
  - Consider resampling to cope with class imbalance
  - Use address to reverse geocode location information
- Features engineering:
  - Improve keyword vocabulary selection
  - Use word embeddings instead of One Hot Encoding for location\_name
- Modeling:
  - Try out more complicated neural networks with deeper layers
  - Tune hyper-parameters

#### **Multiclass Classification Performance Metrics**

#### Metric Pros Cons Correct predictions Easy to interpret Ignore class balance Accuracy = All predictions TP<sub>Class A</sub> Precision = Class A TP + FP Class A Class-specific Non-aggregated TP<sub>Class A</sub> Consider class imbalance Recall = Class A + FN

Precision = 
$$\frac{TP_A + TP_B + \dots TP_N}{TP_A + FP_A + TP_B + FP_B + \dots TP_N + FP_N}$$

$$\frac{TP_A + TP_B + TP_B + \dots TP_N}{TP_A + TP_B + \dots TP_N + FN_N}$$

$$\frac{TP_A + TP_B + \dots TP_N}{TP_A + TP_B + \dots TP_N + FN_N}$$

# **Section 2: Question 3**

# **Section 2: Question 3 (Data Visualization)**

#### **Problem statement:**

Present data in a summary table and its main insight through visualizations.

Dataset(s) / source(s): from the question

| Summary | table |
|---------|-------|
|---------|-------|

|                                     |          | Student Group X |       | Student Group Y |       |
|-------------------------------------|----------|-----------------|-------|-----------------|-------|
| Job Nature                          | Industry | Median Salary   | Count | Median Salary   | Count |
| Closely related to course of study  | Α        | 3150            | 83    | 3000            | 23    |
|                                     | В        | 3300            | 53    | 3100            | 9     |
|                                     | C        | 2650            | 47    | 2600            | 32    |
|                                     | D        | 2400            | 12    | 2400            | 15    |
| Somewhat related to course of study | E        | 4100            | 30    | 3900            | 3     |
|                                     | F        | 3400            | 23    | 3150            | 7     |
|                                     | G        | 2800            | 12    | 2600            | 22    |
|                                     | Н        | 2300            | 8     | 2200            | 11    |
| Unrelated to course of study        | Others   | 2900            | 21    | 1900            | 28    |

# **Section 2: Question 3 (Data Visualization)**

