

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date
11 December 2003 (11.12.2003)

PCT

(10) International Publication Number
WO 03/102163 A2

(51) International Patent Classification ⁷ :	C12N	[IE/US]; 940 Guerrero Street, San Francisco, CA 94110 (US). GREGOIRE, Francine [BE/US]; 1044 Carol Lane, Lafayette, CA 94549 (US). LAVAN, Brian [GB/US]; 2020 Lawton Street, San Francisco, CA 94122 (US). MOODIE, Shonna [GB/US]; 2091 Golden Gate Avenue, San Francisco, CA 94115 (US). WATERS, Steve [US/US]; 1 Lobelia Lane, San Ramon, CA 94583 (US). WONG, Chi-Wai [CN/US]; 28073 Thorup Lane, Hayward, CA 94542 (US).
(21) International Application Number:	PCT/US03/17825	
(22) International Filing Date:	4 June 2003 (04.06.2003)	
(25) Filing Language:	English	
(26) Publication Language:	English	
(30) Priority Data:		
60/386,013	4 June 2002 (04.06.2002)	US
60/386,107	4 June 2002 (04.06.2002)	US
60/386,074	4 June 2002 (04.06.2002)	US
60/385,857	4 June 2002 (04.06.2002)	US
60/386,615	5 June 2002 (05.06.2002)	US
60/386,654	5 June 2002 (05.06.2002)	US
60/386,332	5 June 2002 (05.06.2002)	US
60/386,481	5 June 2002 (05.06.2002)	US
60/386,600	5 June 2002 (05.06.2002)	US
60/386,558	5 June 2002 (05.06.2002)	US
60/386,326	5 June 2002 (05.06.2002)	US
60/386,314	5 June 2002 (05.06.2002)	US
60/386,513	5 June 2002 (05.06.2002)	US
60/386,512	5 June 2002 (05.06.2002)	US
60/387,026	6 June 2002 (06.06.2002)	US
60/387,017	6 June 2002 (06.06.2002)	US
60/387,039	6 June 2002 (06.06.2002)	US
60/386,861	6 June 2002 (06.06.2002)	US
60/386,944	6 June 2002 (06.06.2002)	US
60/386,955	6 June 2002 (06.06.2002)	US
60/386,838	6 June 2002 (06.06.2002)	US
60/386,865	20 June 2002 (20.06.2002)	US

(71) Applicant (for all designated States except US):
METABOLEX, INC. [US/US]; 3876 Bay Center Place,
Hayward, CA 94545 (US).

(72) Inventors; and

(75) Inventors/Applicants (for US only): ALLAN, Bernard

(74) Agents: LOCKYER, Jean, M. et al.; Townsend and Townsend and Crew LLP, Two Embarcadero Center, Eighth Floor, San Francisco, CA 94111 (US).

(81) Designated States (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NI, NO, NZ, OM, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.

(84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PT, RO, SE, SI, SK, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Declaration under Rule 4.17:

— of inventorship (Rule 4.17(iv)) for US only

Published:

— without international search report and to be republished upon receipt of that report

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

WO 03/102163 A2

(54) Title: METHODS OF DIAGNOSING AND TREATING DIABETES AND INSULIN RESISTANCE

(57) Abstract: The present invention provides compositions and methods for diagnosing and treating diabetes and insulin resistance. In particular, the invention provides methods of identifying modulators of the polynucleotides or polypeptides of the invention and using those modulators to treat diabetes, as well as methods of diagnosing diabetes by measuring the levels of the polynucleotides or polypeptides of the invention in a patient.

Methods of Diagnosing & Treating Diabetes and Insulin Resistance

CROSS REFERENCE TO RELATED APPLICATIONS

[0001] This application claims the benefit of priority of U.S. provisional application no. 5 60/387,026, filed June 6, 2002; U.S. provisional application no. 60/386,615, filed June 5, 2002; U.S. provisional application no. 60/386,558, filed June 5, 2002; U.S. provisional application no. 60/385,857, filed June 4, 2002; U.S. provisional application no. 60/386,865, filed June 6, 2002; U.S. provisional application no. 60/386,654, filed June 5, 2002; U.S. provisional application no. 60/386,326, filed June 5, 2002; U.S. provisional application no. 10 60/386,314, filed June 5, 2002; U.S. provisional application no. 60/386,013, filed June 4, 2002; U.S. provisional application no. 60/387,017, filed June 6, 2002; U.S. provisional application no. 60/387,039, filed June 6, 2003; U.S. provisional application no. 60/386,332, filed June 5, 2002; U.S. provisional application no. 60/386,481, filed June 5, 2002; U.S. provisional application no. 60/386,107, filed June 4, 2002; U.S. provisional application no. 15 60/386,513, filed June 5, 2002; U.S. provisional application no. 60/386,512, filed June 5, 2002; U.S. provisional application no. 60/386,838, filed June 6, 2002; U.S. provisional application no. 60/386,861, filed June 6, 2002; U.S. provisional application no. 60/386,600, filed June 5, 2002; U.S. provisional application no. 60/386,944, filed June 6, 2002; U.S. provisional application no. 60/386,955, filed June 6, 2002; and U.S. provisional application 20 no. 60/386,074, filed June 4, 2003; each of which applications is herein incorporated by referenced.

BACKGROUND OF THE INVENTION

[0002] Diabetes mellitus can be divided into two clinical syndromes, Type 1 and Type 2 diabetes mellitus. Type 1, or insulin-dependent diabetes mellitus (IDDM), is a chronic autoimmune disease characterized by the extensive loss of beta cells in the pancreatic Islets of Langerhans, which produce insulin. As these cells are progressively destroyed, the amount of secreted insulin decreases, eventually leading to hyperglycemia (abnormally high level of glucose in the blood) when the amount of secreted insulin drops below the level required for 25 euglycemia (normal blood glucose level). Although the exact trigger for this immune response is not known, patients with IDDM have high levels of antibodies against proteins 30

expressed in pancreatic beta cells. However, not all patients with high levels of these antibodies develop IDDM.

[0003] Type 2 diabetes (also referred to as non-insulin dependent diabetes mellitus (NIDDM)) develops when muscle, fat and liver cells fail to respond normally to insulin. This

5 failure to respond (called insulin resistance) may be due to reduced numbers of insulin receptors on these cells, or a dysfunction of signaling pathways within the cells, or both. The beta cells initially compensate for this insulin resistance by increasing insulin output. Over time, these cells become unable to produce enough insulin to maintain normal glucose levels, indicating progression to Type 2 diabetes.

10 [0004] Type 2 diabetes is brought on by a combination of genetic and acquired risk factors - including a high-fat diet, lack of exercise, and aging. Worldwide, Type 2 diabetes has become an epidemic, driven by increases in obesity and a sedentary lifestyle, widespread adoption of western dietary habits, and the general aging of the population in many countries. In 1985, an estimated 30 million people worldwide had diabetes -- by 2000, this figure had
15 increased 5-fold, to an estimated 154 million people. The number of people with diabetes is expected to double between now and 2025, to about 300 million.

20 [0005] Type 2 diabetes is a complex disease characterized by defects in glucose and lipid metabolism. Typically there are perturbations in many metabolic parameters including increases in fasting plasma glucose levels, free fatty acid levels and triglyceride levels, as well as a decrease in the ratio of HDL/LDL. As discussed above, one of the principal underlying causes of diabetes is thought to be an increase in insulin resistance in peripheral tissues, principally muscle and fat.

25 [0006] Therapies aimed at reducing peripheral insulin resistance are available. The most relevant to this invention are drugs of the thiazolidinedione (TZD) class namely troglitazone, pioglitazone, and rosiglitazone. In the US these have been marketed under the names Rezulin™, Avandia™ and Actos™, respectively. The principal effect of these drugs is to improve glucose homeostasis. Notably in diabetics treated with TZDs there are increases in peripheral glucose disposal rates indicative of increased insulin sensitivity in both muscle and fat.

30 [0007] The molecular target of TZDs is a member of the PPAR family of ligand-activated transcription factors called PPAR gamma. This transcription factor is highly expressed in adipose tissue with much lower levels being observed in muscle. Binding of TZDs to PPAR

gamma in target cells and tissues such as fat and muscle brings about a change in gene expression. The link between TZD-altered gene expression in fat and muscle and increased insulin sensitivity is unknown. The present invention addresses this and other problems. The present invention addresses this and other problems.

5

BRIEF SUMMARY OF THE INVENTION

[0008] The present invention provides methods for identifying an agent for treating a diabetic or pre-diabetic individual. In some embodiments, the methods comprise the steps of: (i) contacting an agent to a mixture comprising a polypeptide encoded by a polynucleotide that hybridizes under stringent conditions to a nucleic acid encoding SEQ ID NO:2, SEQ ID NO:8, SEQ ID NO:10, SEQ ID NO:14, SEQ ID NO:18, SEQ ID NO:24, SEQ ID NO:26, SEQ ID NO:30, SEQ ID NO:34, SEQ ID NO:38, SEQ ID NO:44, SEQ ID NO:50, SEQ ID NO:54, SEQ ID NO:60, SEQ ID NO:62, SEQ ID NO:68, SEQ ID NO:74, SEQ ID NO:80, SEQ ID NO:86, SEQ ID NO:92, SEQ ID NO:98, SEQ ID NO:104, or SEQ ID NO:110; and (ii) selecting an agent that modulates the expression or activity of the polypeptide or that binds to the polypeptide, thereby identifying an agent for treating a diabetic or pre-diabetic individual. In some embodiments, the methods further comprise selecting an agent that modulates insulin sensitivity.

[0009] In some embodiments, step (ii) comprises selecting an agent that modulates expression of the polypeptide. In some embodiments, step (ii) comprises selecting an agent that modulates the activity of the polypeptide. In some embodiments, step (ii) comprises selecting an agent that specifically binds to the polypeptide. In some embodiments, the polypeptide is expressed in a cell and the cell is contacted with the agent. In some embodiments, the polypeptide is one of the polypeptide sequences set forth in the TABLE OF SEQUENCES.

[0010] The present invention also provides methods of treating a diabetic or pre-diabetic animal. In some embodiments, the methods comprise administering to the animal a therapeutically effective amount of an agent identified as described above. In some embodiments, the agent is an antibody. In some embodiments, the antibody is a monoclonal antibody. In some embodiments, the animal is a human.

[0011] The present invention also provides methods of introducing an expression cassette into a cell. In some embodiments, the methods comprise introducing into the cell an

expression cassette comprising a promoter operably linked to a polynucleotide encoding a polypeptide, wherein the polynucleotide hybridizes under stringent conditions to a nucleic acid encoding SEQ ID NO:2, SEQ ID NO:8, SEQ ID NO:10, SEQ ID NO:14, SEQ ID NO:18, SEQ ID NO:24, SEQ ID NO:26, SEQ ID NO:30, SEQ ID NO:34, SEQ ID NO:38, SEQ ID NO:44, SEQ ID NO:50, SEQ ID NO:54, SEQ ID NO:60, SEQ ID NO:62, SEQ ID NO:68, SEQ ID NO:74, SEQ ID NO:80, SEQ ID NO:86, SEQ ID NO:92, SEQ ID NO:98, SEQ ID NO:104, or SEQ ID NO:110.

5 [0012] In some embodiments, the polypeptide comprises one of the polypeptide sequences set forth in the TABLE OF SEQUENCES. In some embodiments, the cell is selected from 10 the group consisting of an adipocyte and a skeletal muscle cell.

10 [0013] In some embodiments, the methods further comprising introducing the cell into a human. In some embodiments, the human is diabetic. In some embodiments, the human is prediabetic. In some embodiments, the cell is from the human.

15 [0014] The present invention also provides methods of diagnosing an individual who has Type 2 diabetes or is prediabetic. In some embodiments, the method comprises, detecting in a sample from the individual the level of a polypeptide or the level of a polynucleotide encoding the polypeptide, wherein the polynucleotide hybridizes under stringent conditions to a nucleic acid encoding an amino acid sequence selected from the group consisting of SEQ ID NO:2, SEQ ID NO:8, SEQ ID NO:10, SEQ ID NO:14, SEQ ID NO:18, SEQ ID NO:24, 20 SEQ ID NO:26, SEQ ID NO:30, SEQ ID NO:34, SEQ ID NO:38, SEQ ID NO:44, SEQ ID NO:50, SEQ ID NO:54, SEQ ID NO:60, SEQ ID NO:62, SEQ ID NO:68, SEQ ID NO:74, SEQ ID NO:80, SEQ ID NO:86, SEQ ID NO:92, SEQ ID NO:98, SEQ ID NO:104, or SEQ ID NO:110; wherein a modulated level of the polypeptide or polynucleotide in the sample compared to a level of the polypeptide or polynucleotide in either a lean individual or a 25 previous sample from the individual indicates that the individual is diabetic or prediabetic. In some embodiments, the amino acid sequence comprises SEQ ID NO:2, SEQ ID NO:8, SEQ ID NO:10, SEQ ID NO:14, SEQ ID NO:18, SEQ ID NO:24, SEQ ID NO:26, SEQ ID NO:30, SEQ ID NO:34, SEQ ID NO:38, SEQ ID NO:44, SEQ ID NO:50, SEQ ID NO:54, SEQ ID NO:60, SEQ ID NO:62, SEQ ID NO:68, SEQ ID NO:74, SEQ ID NO:80, SEQ ID NO:86, 30 SEQ ID NO:92, SEQ ID NO:98, SEQ ID NO:104, or SEQ ID NO:110.

[0015] In some embodiments, the detecting step comprises contacting the sample with an antibody that specifically binds to the polypeptide.

[0016] In some embodiments, the detecting step comprises quantifying mRNA encoding the polypeptide. In some embodiments, the mRNA is reverse transcribed and amplified in a polymerase chain reaction.

[0017] In some embodiments, the sample is a blood, urine or tissue sample.

5 [0018] The present invention also provides isolated nucleic acids that hybridize under stringent conditions to a polynucleotide encoding a polypeptide having an amino acid sequence selected from the group consisting of SEQ ID NO:2, SEQ ID NO:8, SEQ ID NO:10, SEQ ID NO:14, SEQ ID NO:18, SEQ ID NO:24, SEQ ID NO:26, SEQ ID NO:30, SEQ ID NO:34, SEQ ID NO:38, SEQ ID NO:44, SEQ ID NO:50, SEQ ID NO:54, SEQ ID NO:60, SEQ ID NO:62, SEQ ID NO:68, SEQ ID NO:74, SEQ ID NO:80, SEQ ID NO:86, SEQ ID NO:92, SEQ ID NO:98, SEQ ID NO:104, and SEQ ID NO:110.

10 [0019] In some embodiments, the polynucleotide is one of the nucleic acid sequences set forth in the TABLE OF SEQUENCES. In some embodiments, the polynucleotide encodes one of the polypeptides set forth in the TABLE OF SEQUENCES.

15 [0020] The present invention also provides an expression cassette comprising a heterologous promoter operably linked to a polynucleotide that hybridizes under stringent conditions to a nucleic acid encoding a polypeptide having an amino acid sequence selected from the group consisting of SEQ ID NO:2, SEQ ID NO:8, SEQ ID NO:10, SEQ ID NO:14, SEQ ID NO:18, SEQ ID NO:24, SEQ ID NO:26, SEQ ID NO:30, SEQ ID NO:34, SEQ ID NO:38, SEQ ID NO:44, SEQ ID NO:50, SEQ ID NO:54, SEQ ID NO:60, SEQ ID NO:62, SEQ ID NO:68, SEQ ID NO:74, SEQ ID NO:80, SEQ ID NO:86, SEQ ID NO:92, SEQ ID NO:98, SEQ ID NO:104, or SEQ ID NO:110.

20 [0021] In some embodiments, the polynucleotide is one of the nucleic acid sequences set forth in the TABLE OF SEQUENCES. In some embodiments, the polynucleotide encodes one of the polypeptides set forth in the TABLE OF SEQUENCES.

25 [0022] The present invention also provides host cells transfected with a polynucleotide that hybridizes under stringent conditions to a nucleic acid encoding a polypeptide having an amino acid sequence selected from the group consisting of SEQ ID NO:2, SEQ ID NO:8, SEQ ID NO:10, SEQ ID NO:14, SEQ ID NO:18, SEQ ID NO:24, SEQ ID NO:26, SEQ ID NO:30, SEQ ID NO:34, SEQ ID NO:38, SEQ ID NO:44, SEQ ID NO:50, SEQ ID NO:54, SEQ ID NO:60, SEQ ID NO:62, SEQ ID NO:68, SEQ ID NO:74, SEQ ID NO:80, SEQ ID

NO:86, SEQ ID NO:92, SEQ ID NO:98, SEQ ID NO:104, or SEQ ID NO:110. In some embodiments, the polynucleotide encodes one of the polypeptide sequences set forth in the TABLE OF SEQUENCES. In some embodiments, the polynucleotide comprises one of the nucleic acid sequences set forth in the TABLE OF SEQUENCES. In some embodiments, the host cell is a human cell. In other embodiments, the host cell is a bacterium.

5 [0023] The present invention also provides isolated polypeptides comprising an amino acid sequence at least 70% identical to SEQ ID NO:2, SEQ ID NO:8, SEQ ID NO:10, SEQ ID NO:14, SEQ ID NO:18, SEQ ID NO:24, SEQ ID NO:26, SEQ ID NO:30, SEQ ID NO:34, SEQ ID NO:38, SEQ ID NO:44, SEQ ID NO:50, SEQ ID NO:54, SEQ ID NO:60, SEQ ID NO:62, SEQ ID NO:68, SEQ ID NO:74, SEQ ID NO:80, SEQ ID NO:86, SEQ ID NO:92, SEQ ID NO:98, SEQ ID NO:104, or SEQ ID NO:110. In some embodiments, the polypeptide is SEQ ID NO:2, SEQ ID NO:8, SEQ ID NO:10, SEQ ID NO:14, SEQ ID NO:18, SEQ ID NO:24, SEQ ID NO:26, SEQ ID NO:30, SEQ ID NO:34, SEQ ID NO:38, SEQ ID NO:44, SEQ ID NO:50, SEQ ID NO:54, SEQ ID NO:60, SEQ ID NO:62, SEQ ID NO:68, SEQ ID NO:74, SEQ ID NO:80, SEQ ID NO:86, SEQ ID NO:92, SEQ ID NO:98, SEQ ID NO:104, or SEQ ID NO:110.

DEFINITIONS

10 [0024] “Insulin sensitivity” refers to the ability of a cell or tissue to respond to insulin. Responses include, e.g., glucose uptake of a cell or tissue in response to insulin stimulation. Sensitivity can be determined at an organismal, tissue or cellular level. For example, blood or urine glucose levels following a glucose tolerance test are indicative of insulin sensitivity. Other methods of measuring insulin sensitivity include, e.g., measuring glucose uptake (see, e.g., Garcia de Herreros, A., and Birnbaum, M. J. *J. Biol. Chem.* 264, 19994-19999 (1989); Klip, A., Li, G., and Logan, W.J. *Am. J. Physiol.* 247, E291-296 (1984)), measuring the glucose infusion rate (GINF) into tissue such as the skeletal muscle (see, e.g., Ludvik *et al.*, *J. Clin. Invest.* 100:2354 (1997); Frias *et al.*, *Diabetes Care* 23:64, (2000)) and measuring sensitivity of GLUT4 translocation (e.g., as described herein) in response to insulin.

15 [0025] “Activity” of a polypeptide of the invention refers to structural, regulatory, or biochemical functions of a polypeptide in its native cell or tissue. Examples of activity of a polypeptide include both direct activities and indirect activities. Exemplary direct activities are the result of direct interaction with the polypeptide, e.g., enzymatic activity, ligand binding, production or depletion of second messengers (e.g., cAMP, cGMP, IP₃, DAG, or

Ca^{2+}), ion flux, phosphorylation levels, transcription levels, and the like. Exemplary indirect activities are observed as a change in phenotype or response in a cell or tissue to a polypeptide's directed activity, e.g., modulating insulin sensitivity of a cell as a result of the interaction of the polypeptide with other cellular or tissue components.

5 [0026] “Predisposition for diabetes” occurs in a person when the person is at high risk for developing diabetes. A number of risk factors are known to those of skill in the art and include: genetic factors (e.g., carrying alleles that result in a higher occurrence of diabetes than in the average population or having parents or siblings with diabetes); overweight (e.g., body mass index (BMI) greater or equal to 25 kg/m²); habitual physical inactivity,

10 race/ethnicity (e.g., African-American, Hispanic-American, Native Americans, Asian-Americans, Pacific Islanders); previously identified impaired fasting glucose or impaired glucose tolerance, hypertension (e.g., greater or equal to 140/90 mmHg in adults); HDL cholesterol less than or equal to 35 mg/dl; triglyceride levels greater or equal to 250 mg/dl; a history of gestational diabetes or delivery of a baby over nine pounds; and/or polycystic

15 ovary syndrome. See, e.g., “Report of the Expert Committee on the Diagnosis and Classification of Diabetes Mellitus” and “Screening for Diabetes” *Diabetes Care* 25(1): S5-S24 (2002).

[0027] A “lean individual,” when used to compare with a sample from a patient, refers to an adult with a fasting blood glucose level less than 110 mg/dl or a 2 hour PG reading of 140 mg/dl. “Fasting” refers to no caloric intake for at least 8 hours. A “2 hour PG” refers to the level of blood glucose after challenging a patient to a glucose load containing the equivalent of 75g anhydrous glucose dissolved in water. The overall test is generally referred to as an oral glucose tolerance test (OGTT). See, e.g., *Diabetes Care*, Supplement 2002, American Diabetes Association: Clinical Practice Recommendations 2002. The level of a polypeptide in a lean individual can be a reading from a single individual, but is typically a statistically relevant average from a group of lean individuals. The level of a polypeptide in a lean individual can be represented by a value, for example in a computer program.

[0028] A “pre-diabetic individual,” when used to compare with a sample from a patient, refers to an adult with a fasting blood glucose level greater than 110 mg/dl but less than 126 mg/dl or a 2 hour PG reading of greater than 140 mg/dl but less than 200mg/dl. A “diabetic individual,” when used to compare with a sample from a patient, refers to an adult with a

fasting blood glucose level greater than 126 mg/dl or a 2 hour PG reading of greater than 200 mg/dl.

[0029] A "diabetes-related nucleic acid" or "diabetes-related polynucleotide" (also referred to as a "nucleic acid of the invention" or a "polynucleotide of the invention") of the invention is a subsequence or full-length polynucleotide sequence of a gene that encodes a polypeptide, whose activity modulates diabetes or insulin sensitivity, or whose presence or absence is indicative of diabetes or altered insulin sensitivity. Exemplary nucleic acids of the invention include those sequences substantially identical to one of the nucleic acid sequence set forth in the TABLE OF SEQUENCES, or encode polypeptides substantially identical to one of the polypeptide sequences set forth in the TABLE OF SEQUENCES.

[0030] An "agonist" refers to an agent that binds to, stimulates, increases, activates, facilitates, enhances activation, sensitizes or up regulates the activity or expression of a polypeptide of the invention.

[0031] An "antagonist" refers to an agent that binds to, partially or totally blocks stimulation, decreases, prevents, delays activation, inactivates, desensitizes, or down regulates the activity or expression of a polypeptide of the invention.

[0032] "Antibody" refers to a polypeptide substantially encoded by an immunoglobulin gene or immunoglobulin genes, or fragments thereof which specifically bind and recognize an analyte (antigen). The recognized immunoglobulin genes include the kappa, lambda, alpha, gamma, delta, epsilon and mu constant region genes, as well as the myriad immunoglobulin variable region genes. Light chains are classified as either kappa or lambda. Heavy chains are classified as gamma, mu, alpha, delta, or epsilon, which in turn define the immunoglobulin classes, IgG, IgM, IgA, IgD and IgE, respectively.

[0033] An exemplary immunoglobulin (antibody) structural unit comprises a tetramer. Each tetramer is composed of two identical pairs of polypeptide chains, each pair having one "light" (about 25 kD) and one "heavy" chain (about 50-70 kD). The N-terminus of each chain defines a variable region of about 100 to 110 or more amino acids primarily responsible for antigen recognition. The terms variable light chain (V_L) and variable heavy chain (V_H) refer to these light and heavy chains respectively.

[0034] Antibodies exist, e.g., as intact immunoglobulins or as a number of well-characterized fragments produced by digestion with various peptidases. Thus, for example,

pepsin digests an antibody below the disulfide linkages in the hinge region to produce F(ab)'₂, a dimer of Fab which itself is a light chain joined to V_H-C_{H1} by a disulfide bond. The F(ab)'₂ may be reduced under mild conditions to break the disulfide linkage in the hinge region, thereby converting the F(ab)'₂ dimer into an Fab' monomer. The Fab' monomer is essentially 5 an Fab with part of the hinge region (see, Paul (Ed.) *Fundamental Immunology*, Third Edition, Raven Press, NY (1993)). While various antibody fragments are defined in terms of the digestion of an intact antibody, one of skill will appreciate that such fragments may be synthesized *de novo* either chemically or by utilizing recombinant DNA methodology. Thus, the term antibody, as used herein, also includes antibody fragments either produced by the 10 modification of whole antibodies or those synthesized *de novo* using recombinant DNA methodologies (e.g., single chain Fv).

[0035] The terms "peptidomimetic" and "mimetic" refer to a synthetic chemical compound that has substantially the same structural and functional characteristics of the antagonists or agonists of the invention. Peptide analogs are commonly used in the pharmaceutical industry 15 as non-peptide drugs with properties analogous to those of the template peptide. These types of non-peptide compound are termed "peptide mimetics" or "peptidomimetics" (Fauchere, J. *Adv. Drug Res.* 15:29 (1986); Veber and Freidinger *TINS* p. 392 (1985); and Evans *et al.* *J. Med. Chem.* 30:1229 (1987), which are incorporated herein by reference). Peptide mimetics that are structurally similar to therapeutically useful peptides may be used to produce an 20 equivalent or enhanced therapeutic or prophylactic effect. Generally, peptidomimetics are structurally similar to a paradigm polypeptide (i.e., a polypeptide that has a biological or pharmacological activity), such as apolypeptide exemplified in this application, but have one or more peptide linkages optionally replaced by a linkage selected from the group consisting of, e.g., -CH₂NH-, -CH₂S-, -CH₂-CH₂-, -CH=CH- (cis and trans), -COCH₂-, -CH(OH)CH₂- 25 , and -CH₂SO-. The mimetic can be either entirely composed of synthetic, non-natural analogues of amino acids, or, is a chimeric molecule of partly natural peptide amino acids and partly non-natural analogs of amino acids. The mimetic can also incorporate any amount of natural amino acid conservative substitutions as long as such substitutions also do not substantially alter the mimetic's structure and/or activity. For example, a mimetic 30 composition is within the scope of the invention if it is capable of carrying out the binding or other activities of an agonist or antagonist of a polypeptide of the invention.

[0036] The term "gene" means the segment of DNA involved in producing a polypeptide chain; it includes regions preceding and following the coding region (leader and trailer) as well as intervening sequences (introns) between individual coding segments (exons).

[0037] The term "isolated," when applied to a nucleic acid or protein, denotes that the 5 nucleic acid or protein is essentially free of other cellular components with which it is associated in the natural state. It is preferably in a homogeneous state although it can be in either a dry or aqueous solution. Purity and homogeneity are typically determined using analytical chemistry techniques such as polyacrylamide gel electrophoresis or high performance liquid chromatography. A protein that is the predominant species present in a 10 preparation is substantially purified. In particular, an isolated gene is separated from open reading frames that flank the gene and encode a protein other than the gene of interest. The term "purified" denotes that a nucleic acid or protein gives rise to essentially one band in an electrophoretic gel. Particularly, it means that the nucleic acid or protein is at least 85% pure, more preferably at least 95% pure, and most preferably at least 99% pure.

[0038] The term "nucleic acid" or "polynucleotide" refers to deoxyribonucleotides or 15 ribonucleotides and polymers thereof in either single- or double-stranded form. Unless specifically limited, the term encompasses nucleic acids containing known analogues of natural nucleotides that have similar binding properties as the reference nucleic acid and are metabolized in a manner similar to naturally occurring nucleotides. Unless otherwise 20 indicated, a particular nucleic acid sequence also implicitly encompasses conservatively modified variants thereof (*e.g.*, degenerate codon substitutions) and complementary sequences as well as the sequence explicitly indicated. Specifically, degenerate codon substitutions may be achieved by generating sequences in which the third position of one or more selected (or all) codons is substituted with mixed-base and/or deoxyinosine residues 25 (*Batzer et al., Nucleic Acid Res.* 19:5081 (1991); *Ohtsuka et al., J. Biol. Chem.* 260:2605-2608 (1985); and *Cassol et al.* (1992); *Rossolini et al., Mol. Cell. Probes* 8:91-98 (1994)). The term nucleic acid is used interchangeably with gene, cDNA, and mRNA encoded by a gene.

[0039] The terms "polypeptide," "peptide" and "protein" are used interchangeably herein to 30 refer to a polymer of amino acid residues. The terms apply to amino acid polymers in which one or more amino acid residue is an artificial chemical mimetic of a corresponding naturally occurring amino acid, as well as to naturally occurring amino acid polymers and non-

naturally occurring amino acid polymers. As used herein, the terms encompass amino acid chains of any length, including full-length proteins (*i.e.*, antigens), wherein the amino acid residues are linked by covalent peptide bonds.

[0040] The term "amino acid" refers to naturally occurring and synthetic amino acids, as well as amino acid analogs and amino acid mimetics that function in a manner similar to the naturally occurring amino acids. Naturally occurring amino acids are those encoded by the genetic code, as well as those amino acids that are later modified, *e.g.*, hydroxyproline, γ -carboxyglutamate, and O-phosphoserine. Amino acid analogs refers to compounds that have the same basic chemical structure as a naturally occurring amino acid, *i.e.*, an α carbon that is

bound to a hydrogen, a carboxyl group, an amino group, and an R group, *e.g.*, homoserine, norleucine, methionine sulfoxide, methionine methyl sulfonium. Such analogs have modified R groups (*e.g.*, norleucine) or modified peptide backbones, but retain the same basic chemical structure as a naturally occurring amino acid. "Amino acid mimetics" refers to chemical compounds that have a structure that is different from the general chemical structure of an amino acid, but which functions in a manner similar to a naturally occurring amino acid.

[0041] Amino acids may be referred to herein by either the commonly known three letter symbols or by the one-letter symbols recommended by the IUPAC-IUB Biochemical Nomenclature Commission. Nucleotides, likewise, may be referred to by their commonly accepted single-letter codes.

[0042] "Conservatively modified variants" applies to both amino acid and nucleic acid sequences. With respect to particular nucleic acid sequences, "conservatively modified variants" refers to those nucleic acids that encode identical or essentially identical amino acid sequences, or where the nucleic acid does not encode an amino acid sequence, to essentially identical sequences. Because of the degeneracy of the genetic code, a large number of functionally identical nucleic acids encode any given protein. For instance, the codons GCA, GCC, GCG and GCU all encode the amino acid alanine. Thus, at every position where an alanine is specified by a codon, the codon can be altered to any of the corresponding codons described without altering the encoded polypeptide. Such nucleic acid variations are "silent variations," which are one species of conservatively modified variations. Every nucleic acid sequence herein that encodes a polypeptide also describes every possible silent variation of the nucleic acid. One of skill will recognize that each codon in a nucleic acid (except AUG, which is ordinarily the only codon for methionine, and TGG, which is ordinarily the only

codon for tryptophan) can be modified to yield a functionally identical molecule. Accordingly, each silent variation of a nucleic acid that encodes a polypeptide is implicit in each described sequence.

[0043] As to amino acid sequences, one of skill will recognize that individual substitutions, 5 deletions or additions to a nucleic acid, peptide, polypeptide, or protein sequence which alters, adds or deletes a single amino acid or a small percentage of amino acids in the encoded sequence is a "conservatively modified variant" where the alteration results in the substitution of an amino acid with a chemically similar amino acid. Conservative substitution tables providing functionally similar amino acids are well known in the art. Such conservatively modified variants are in addition to and do not exclude polymorphic variants, interspecies 10 homologs, and alleles of the invention.

[0044] The following eight groups each contain amino acids that are conservative substitutions for one another:

- 1) Alanine (A), Glycine (G);
- 15 2) Aspartic acid (D), Glutamic acid (E);
- 3) Asparagine (N), Glutamine (Q);
- 4) Arginine (R), Lysine (K);
- 5) Isoleucine (I), Leucine (L), Methionine (M), Valine (V);
- 6) Phenylalanine (F), Tyrosine (Y), Tryptophan (W);
- 20 7) Serine (S), Threonine (T); and
- 8) Cysteine (C), Methionine (M)

(*see, e.g., Creighton, Proteins (1984)*).

[0045] "Percentage of sequence identity" is determined by comparing two optimally aligned sequences over a comparison window, wherein the portion of the polynucleotide 25 sequence in the comparison window may comprise additions or deletions (*i.e.*, gaps) as compared to the reference sequence (*e.g.*, a polypeptide of the invention), which does not comprise additions or deletions, for optimal alignment of the two sequences. The percentage is calculated by determining the number of positions at which the identical nucleic acid base or amino acid residue occurs in both sequences to yield the number of matched positions, 30 dividing the number of matched positions by the total number of positions in the window of comparison and multiplying the result by 100 to yield the percentage of sequence identity.

[0046] The terms "identical" or percent "identity," in the context of two or more nucleic acids or polypeptide sequences, refer to two or more sequences or subsequences that are the same sequences are substantially identical if two sequences have a specified percentage of amino acid residues or nucleotides that are the same (*i.e.*, 60% identity, optionally 65%, 70%, 5 75%, 80%, 85%, 90%, or 95% identity over a specified region, or, when not specified, over the entire sequence), when compared and aligned for maximum correspondence over a comparison window, or designated region as measured using one of the following sequence comparison algorithms or by manual alignment and visual inspection. The invention provides polypeptides or polynucleotides that are substantially identical to the polypeptides 10 or polynucleotides, respectively, exemplified herein in the TABLE OF SEQUENCES (*e.g.*, SEQ ID NO:2, SEQ ID NO:8, SEQ ID NO:10, SEQ ID NO:14, SEQ ID NO:18, SEQ ID NO:24, SEQ ID NO:26, SEQ ID NO:30, SEQ ID NO:34, SEQ ID NO:38, SEQ ID NO:44, SEQ ID NO:50, SEQ ID NO:54, SEQ ID NO:60, SEQ ID NO:62, SEQ ID NO:68, SEQ ID NO:74, SEQ ID NO:80, SEQ ID NO:86, SEQ ID NO:92, SEQ ID NO:98, SEQ ID NO:104, 15 or SEQ ID NO:110). This definition also refers to the complement of a test sequence. Optionally, the identity exists over a region that is at least about 50 nucleotides in length, or more preferably over a region that is 100 to 500 or 1000 or more nucleotides in length.

[0047] For sequence comparison, typically one sequence acts as a reference sequence, to which test sequences are compared. When using a sequence comparison algorithm, test and 20 reference sequences are entered into a computer, subsequence coordinates are designated, if necessary, and sequence algorithm program parameters are designated. Default program parameters can be used, or alternative parameters can be designated. The sequence comparison algorithm then calculates the percent sequence identities for the test sequences relative to the reference sequence, based on the program parameters.

25 [0048] A "comparison window", as used herein, includes reference to a segment of any one of the number of contiguous positions selected from the group consisting of from 20 to 600, usually about 50 to about 200, more usually about 100 to about 150 in which a sequence may be compared to a reference sequence of the same number of contiguous positions after the two sequences are optimally aligned. Methods of alignment of sequences for comparison are 30 well known in the art. Optimal alignment of sequences for comparison can be conducted, *e.g.*, by the local homology algorithm of Smith and Waterman (1970) *Adv. Appl. Math.* 2:482c, by the homology alignment algorithm of Needleman and Wunsch (1970) *J. Mol. Biol.* 48:443, by the search for similarity method of Pearson and Lipman (1988) *Proc. Nat'l.*

Acad. Sci. USA 85:2444, by computerized implementations of these algorithms (GAP, BESTFIT, FASTA, and TFASTA in the Wisconsin Genetics Software Package, Genetics Computer Group, 575 Science Dr., Madison, WI), or by manual alignment and visual inspection (see, e.g., Ausubel *et al.*, *Current Protocols in Molecular Biology* (1995 supplement)).

5 [0049] Two examples of algorithms that are suitable for determining percent sequence identity and sequence similarity are the BLAST and BLAST 2.0 algorithms, which are described in Altschul *et al.* (1977) *Nuc. Acids Res.* 25:3389-3402, and Altschul *et al.* (1990) *J. Mol. Biol.* 215:403-410, respectively. Software for performing BLAST analyses is 10 publicly available through the National Center for Biotechnology Information (<http://www.ncbi.nlm.nih.gov/>). This algorithm involves first identifying high scoring sequence pairs (HSPs) by identifying short words of length W in the query sequence, which either match or satisfy some positive-valued threshold score T when aligned with a word of the same length in a database sequence. T is referred to as the neighborhood word score 15 threshold (Altschul *et al.*, *supra*). These initial neighborhood word hits act as seeds for initiating searches to find longer HSPs containing them. The word hits are extended in both directions along each sequence for as far as the cumulative alignment score can be increased. Cumulative scores are calculated using, for nucleotide sequences, the parameters M (reward score for a pair of matching residues; always > 0) and N (penalty score for mismatching 20 residues; always < 0). For amino acid sequences, a scoring matrix is used to calculate the cumulative score. Extension of the word hits in each direction are halted when: the cumulative alignment score falls off by the quantity X from its maximum achieved value; the cumulative score goes to zero or below, due to the accumulation of one or more negative-scoring residue alignments; or the end of either sequence is reached. The BLAST algorithm 25 parameters W, T, and X determine the sensitivity and speed of the alignment. The BLASTN program (for nucleotide sequences) uses as defaults a wordlength (W) of 11, an expectation (E) or 10, M=5, N=-4 and a comparison of both strands. For amino acid sequences, the BLASTP program uses as defaults a wordlength of 3, and expectation (E) of 10, and the BLOSUM62 scoring matrix (see Henikoff and Henikoff (1989) *Proc. Natl. Acad. Sci. USA* 30 89:10915) alignments (B) of 50, expectation (E) of 10, M=5, N=-4, and a comparison of both strands.

[0050] The BLAST algorithm also performs a statistical analysis of the similarity between two sequences (see, e.g., Karlin and Altschul (1993) *Proc. Natl. Acad. Sci. USA* 90:5873-

5787). One measure of similarity provided by the BLAST algorithm is the smallest sum probability ($P(N)$), which provides an indication of the probability by which a match between two nucleotide or amino acid sequences would occur by chance. For example, a nucleic acid is considered similar to a reference sequence if the smallest sum probability in a comparison 5 of the test nucleic acid to the reference nucleic acid is less than about 0.2, more preferably less than about 0.01, and most preferably less than about 0.001.

[0051] An indication that two nucleic acid sequences or polypeptides are substantially identical is that the polypeptide encoded by the first nucleic acid is immunologically cross reactive with the antibodies raised against the polypeptide encoded by the second nucleic 10 acid, as described below. Thus, a polypeptide is typically substantially identical to a second polypeptide, for example, where the two peptides differ only by conservative substitutions. Another indication that two nucleic acid sequences are substantially identical is that the two molecules or their complements hybridize to each other under stringent conditions, as 15 described below. Yet another indication that two nucleic acid sequences are substantially identical is that the same primers can be used to amplify the sequence.

[0052] The phrase "selectively (or specifically) hybridizes to" refers to the binding, duplexing, or hybridizing of a molecule only to a particular nucleotide sequence under stringent hybridization conditions when that sequence is present in a complex mixture (e.g., total cellular or library DNA or RNA).

20 [0053] The phrase "stringent hybridization conditions" refers to conditions under which a probe will hybridize to its target subsequence, typically in a complex mixture of nucleic acid, but to no other sequences. Stringent conditions are sequence-dependent and will be different in different circumstances. Longer sequences hybridize specifically at higher temperatures. An extensive guide to the hybridization of nucleic acids is found in Tijssen, *Techniques in* 25 *Biochemistry and Molecular Biology--Hybridization with Nucleic Probes*, "Overview of principles of hybridization and the strategy of nucleic acid assays" (1993). Generally, stringent conditions are selected to be about 5-10° C lower than the thermal melting point (T_m) for the specific sequence at a defined ionic strength pH. The T_m is the temperature (under defined ionic strength, pH, and nucleic concentration) at which 50% of the probes 30 complementary to the target hybridize to the target sequence at equilibrium (as the target sequences are present in excess, at T_m , 50% of the probes are occupied at equilibrium). Stringent conditions will be those in which the salt concentration is less than about 1.0 M

sodium ion, typically about 0.01 to 1.0 M sodium ion concentration (or other salts) at pH 7.0 to 8.3 and the temperature is at least about 30°C for short probes (*e.g.*, 10 to 50 nucleotides) and at least about 60°C for long probes (*e.g.*, greater than 50 nucleotides). Stringent conditions may also be achieved with the addition of destabilizing agents such as formamide.

5 For selective or specific hybridization, a positive signal is at least two times background, optionally 10 times background hybridization. Exemplary stringent hybridization conditions can be as following: 50% formamide, 5X SSC, and 1% SDS, incubating at 42°C, or 5X SSC, 1% SDS, incubating at 65°C, with wash in 0.2X SSC, and 0.1% SDS at 55°C, 60°C, or 65°C. Such washes can be performed for 5, 15, 30, 60, 120, or more minutes.

10 [0054] Nucleic acids that do not hybridize to each other under stringent conditions are still substantially identical if the polypeptides that they encode are substantially identical. This occurs, for example, when a copy of a nucleic acid is created using the maximum codon degeneracy permitted by the genetic code. In such cases, the nucleic acids typically hybridize under moderately stringent hybridization conditions. Exemplary "moderately stringent" hybridization conditions" include a hybridization in a buffer of 40% formamide, 1 M NaCl, 1% SDS at 37°C, and a wash in 1X SSC at 45°C. Such washes can be performed for 5, 15, 30, 60, 120, or more minutes. A positive hybridization is at least twice background. Those of ordinary skill will readily recognize that alternative hybridization and wash conditions can be utilized to provide conditions of similar stringency.

15 [0055] The phrase "a nucleic acid sequence encoding" refers to a nucleic acid which contains sequence information for a structural RNA such as rRNA, a tRNA, or the primary amino acid sequence of a specific protein or peptide, or a binding site for a trans-acting regulatory agent. This phrase specifically encompasses degenerate codons (*i.e.*, different codons which encode a single amino acid) of the native sequence or sequences that may be introduced to conform with codon preference in a specific host cell.

20 [0056] The term "recombinant" when used with reference, *e.g.*, to a cell, or nucleic acid, protein, or vector, indicates that the cell, nucleic acid, protein or vector, has been modified by the introduction of a heterologous nucleic acid or protein or the alteration of a native nucleic acid or protein, or that the cell is derived from a cell so modified. Thus, for example, recombinant cells express genes that are not found within the native (nonrecombinant) form of the cell or express native genes that are otherwise abnormally expressed, under-expressed or not expressed at all.

[0057] The term "heterologous" when used with reference to portions of a nucleic acid indicates that the nucleic acid comprises two or more subsequences that are not found in the same relationship to each other in nature. For instance, the nucleic acid is typically recombinantly produced, having two or more sequences from unrelated genes arranged to 5 make a new functional nucleic acid, e.g., a promoter from one source and a coding region from another source. Similarly, a heterologous protein indicates that the protein comprises two or more subsequences that are not found in the same relationship to each other in nature (e.g., a fusion protein).

[0058] An "expression vector" is a nucleic acid construct, generated recombinantly or 10 synthetically, with a series of specified nucleic acid elements that permit transcription of a particular nucleic acid in a host cell. The expression vector can be part of a plasmid, virus, or nucleic acid fragment. Typically, the expression vector includes a nucleic acid to be transcribed operably linked to a promoter.

[0059] The phrase "specifically (or selectively) binds to an antibody" or "specifically (or 15 selectively) immunoreactive with", when referring to a protein or peptide, refers to a binding reaction which is determinative of the presence of the protein in the presence of a heterogeneous population of proteins and other biologics. Thus, under designated immunoassay conditions, the specified antibodies bind to a particular protein and do not bind 20 in a significant amount to other proteins present in the sample. Specific binding to an antibody under such conditions may require an antibody that is selected for its specificity for a particular protein. For example, antibodies raised against a protein having an amino acid sequence encoded by any of the polynucleotides of the invention can be selected to obtain antibodies specifically immunoreactive with that protein and not with other proteins, except 25 for polymorphic variants. A variety of immunoassay formats may be used to select antibodies specifically immunoreactive with a particular protein. For example, solid-phase ELISA immunoassays, Western blots, or immunohistochemistry are routinely used to select 30 monoclonal antibodies specifically immunoreactive with a protein. See, Harlow and Lane *Antibodies, A Laboratory Manual*, Cold Spring Harbor Publications, NY (1988) for a description of immunoassay formats and conditions that can be used to determine specific immunoreactivity. Typically, a specific or selective reaction will be at least twice the background signal or noise and more typically more than 10 to 100 times background.

[0060] "Inhibitors," "activators," and "modulators" of expression or of activity are used to refer to inhibitory, activating, or modulating molecules, respectively, identified using *in vitro* and *in vivo* assays for expression or activity. Modulators encompass *e.g.*, ligands, agonists, antagonists, and their homologs and mimetics. The term "modulator" includes inhibitors and activators. Inhibitors are agents that, *e.g.*, inhibit expression of a polypeptide of the invention or bind to, partially or totally block stimulation, decrease, prevent, delay activation, inactivate, desensitize, or down regulate the activity of a polypeptide of the invention, *e.g.*, antagonists. Activators are agents that, *e.g.*, induce or activate the expression of a polypeptide of the invention or bind to, stimulate, increase, open, activate, facilitate, or enhance activation, sensitize or up regulate the activity of a polypeptide of the invention, *e.g.*, agonists. Modulators include naturally occurring and synthetic ligands, antagonists, agonists, small chemical molecules and the like. Such assays for inhibitors and activators include, *e.g.*, applying putative modulator compounds to cells expressing a polypeptide of the invention and then determining the functional effects on a polypeptide of the invention activity, as described above. Samples or assays comprising a polypeptide of the invention that are treated with a potential activator, inhibitor, or modulator are compared to control samples without the inhibitor, activator, or modulator to examine the extent of effect. Control samples (untreated with modulators) are assigned a relative activity value of 100%. Inhibition of a polypeptide of the invention is achieved when the polypeptide activity value relative to the control is about 80%, optionally 50% or 25, 10%, 5% or 1%. Activation of the polypeptide is achieved when the polypeptide activity value relative to the control is 110%, optionally 150%, optionally 200, 300%, 400%, 500%, or 1000-3000% or more higher.

DETAILED DESCRIPTION OF THE INVENTION

25 I. INTRODUCTION

[0061] The present application demonstrates that, surprisingly, modulated levels of mRNA comprising sequences of the invention occur in muscle tissue of insulin-resistant obese, non-diabetic individuals (which population is generally predisposed to become type 2 diabetics) or type 2 diabetic individuals in comparison to the levels in muscle tissue from lean, non-diabetic individuals. Furthermore, in some instances,mRNA levels of sequences described herein in muscle tissue from type 2 diabetic individuals treated with thiazolidinedione (TZD) is changed in comaprison to levels of the mRNA in type 2 diabetic individuals before TZD

treatment. Therefore, the modulation of the sequences in the study described herein indicates the sequences' involvement in diabetes and pre-diabetes.

[0062] Without intending to limit the invention to a particular mechanism of action, it is believed that modulation of the expression or activity of the polypeptides of the invention is beneficial in treating diabetic, pre-diabetic or obese insulin resistant, non-diabetic patients. Furthermore, modulated levels of the polypeptides of the invention are indicative of insulin resistance. Thus, the detection of a polypeptide of the invention is useful for diagnosis of diabetes and insulin resistance.

[0063] This invention also provides methods of using polypeptides of the invention and modulators of the polypeptides of the invention to diagnose and treat diabetes, pre-diabetes (including insulin resistant individuals) and related metabolic diseases. The present method also provides methods of identifying modulators of expression or activity of the polypeptides of the invention. Such modulators are useful for treating Type 2 diabetes as well as the pathological aspects of diabetes (e.g., insulin resistance).

15 II. GENERAL RECOMBINANT NUCLEIC ACID METHODS FOR USE WITH THE INVENTION

[0064] In numerous embodiments of the present invention, nucleic acids encoding a polypeptide of the present invention will be isolated and cloned using recombinant methods. Such embodiments are used, e.g., to isolate polynucleotides identical or substantially identical to a nucleic acid sequence set forth in the TABLE OF SEQUENCES for protein expression or during the generation of variants, derivatives, expression cassettes, or other sequences derived from an polypeptide or polynucleotide of the invention, to monitor gene expression, for the isolation or detection of sequences in different species, for diagnostic purposes in a patient, e.g., to detect mutations in a polypeptide or polynucleotide of the invention or to detect expression levels of nucleic acids or polypeptides. In some embodiments, the sequences encoding the polypeptides of the invention are operably linked to a heterologous promoter. In one embodiment, the nucleic acids of the invention are from any mammal, including, in particular, e.g., a human, a mouse, a rat, etc.

A. General Recombinant Nucleic Acid Methods

30 [0065] This invention relies on routine techniques in the field of recombinant genetics. Basic texts disclosing the general methods of use in this invention include Sambrook *et al.*, *Molecular Cloning, A Laboratory Manual* (3rd ed. 2001); Kriegler, *Gene Transfer and*

Expression: A Laboratory Manual (1990); and *Current Protocols in Molecular Biology* (Ausubel *et al.*, eds., 1994)).

[0066] For nucleic acids, sizes are given in either kilobases (kb) or base pairs (bp). These are estimates derived from agarose or acrylamide gel electrophoresis, from sequenced nucleic acids, or from published DNA sequences. For proteins, sizes are given in kilodaltons (kDa) or amino acid residue numbers. Protein sizes are estimated from gel electrophoresis, from sequenced proteins, from derived amino acid sequences, or from published protein sequences.

[0067] Oligonucleotides that are not commercially available can be chemically synthesized according to the solid phase phosphoramidite triester method first described by Beaucage & Caruthers, *Tetrahedron Letts.* 22:1859-1862 (1981), using an automated synthesizer, as described in Van Devanter *et. al.*, *Nucleic Acids Res.* 12:6159-6168 (1984). Purification of oligonucleotides is by either native acrylamide gel electrophoresis or by anion-exchange HPLC as described in Pearson & Reanier, *J. Chrom.* 255:137-149 (1983).

[0068] The sequence of the cloned genes and synthetic oligonucleotides can be verified after cloning using, e.g., the chain termination method for sequencing double-stranded templates of Wallace *et al.*, *Gene* 16:21-26 (1981).

B. Cloning Methods for the Isolation of Nucleotide Sequences Encoding Desired Proteins

[0069] In general, the nucleic acids encoding the subject proteins are cloned from DNA sequence libraries that are made to encode cDNA or genomic DNA. The particular sequences can be located by hybridizing with an oligonucleotide probe, the sequence of which can be derived from the sequences disclosed herein, which provide a reference for PCR primers and defines suitable regions for isolating probes specific for the polypeptides or polynucleotides of the invention. Alternatively, where the sequence is cloned into an expression library, the expressed recombinant protein can be detected immunologically with antisera or purified antibodies made against a polypeptide of interest, including those disclosed herein.

[0070] Methods for making and screening genomic and cDNA libraries are well known to those of skill in the art (*see, e.g.*, Gubler and Hoffman *Gene* 25:263-269 (1983); Benton and Davis *Science*, 196:180-182 (1977); and Sambrook, *supra*).

[0071] Briefly, to make the cDNA library, one should choose a source that is rich in mRNA. The mRNA can then be made into cDNA, ligated into a recombinant vector, and transfected into a recombinant host for propagation, screening and cloning. For a genomic library, the DNA is extracted from a suitable tissue and either mechanically sheared or enzymatically digested to yield fragments of preferably about 5-100 kb. The fragments are then separated by gradient centrifugation from undesired sizes and are constructed in bacteriophage lambda vectors. These vectors and phage are packaged *in vitro*, and the recombinant phages are analyzed by plaque hybridization. Colony hybridization is carried out as generally described in Grunstein *et al.*, *Proc. Natl. Acad. Sci. USA.*, 72:3961-3965 (1975).

[0072] An alternative method combines the use of synthetic oligonucleotide primers with polymerase extension on an mRNA or DNA template. Suitable primers can be designed from specific sequences disclosed herein. This polymerase chain reaction (PCR) method amplifies the nucleic acids encoding the protein of interest directly from mRNA, cDNA, genomic libraries or cDNA libraries. Restriction endonuclease sites can be incorporated into the primers. Polymerase chain reaction or other *in vitro* amplification methods may also be useful, for example, to clone nucleic acids encoding specific proteins and express said proteins, to synthesize nucleic acids that will be used as probes for detecting the presence of mRNA encoding a polypeptide of the invention in physiological samples, for nucleic acid sequencing, or for other purposes (see, U.S. Patent Nos. 4,683,195 and 4,683,202). Genes amplified by a PCR reaction can be purified from agarose gels and cloned into an appropriate vector.

[0073] Appropriate primers and probes for identifying the genes encoding a polypeptide of the invention from mammalian tissues can be derived from the sequences provided herein. For a general overview of PCR, see, Innis *et al. PCR Protocols: A Guide to Methods and Applications*, Academic Press, San Diego (1990).

[0074] Synthetic oligonucleotides can be used to construct genes. This is done using a series of overlapping oligonucleotides, usually 40-120 bp in length, representing both the sense and anti-sense strands of the gene. These DNA fragments are then annealed, ligated and cloned.

[0075] A polynucleotide encoding a polypeptide of the invention can be cloned using intermediate vectors before transformation into mammalian cells for expression. These

intermediate vectors are typically prokaryote vectors or shuttle vectors. The proteins can be expressed in either prokaryotes or eukaryotes, using standard methods well known to those of skill in the art.

III. PURIFICATION OF PROTEINS OF THE INVENTION

5 [0076] Either naturally occurring or recombinant polypeptides of the invention can be purified for use in functional assays. Naturally occurring polypeptides of the invention can be purified from any source (e.g., tissues of an organism expressing an ortholog). Recombinant polypeptides can be purified from any suitable expression system.

10 [0077] The polypeptides of the invention may be purified to substantial purity by standard techniques, including selective precipitation with such substances as ammonium sulfate; column chromatography, immunopurification methods, and others (*see, e.g., Scopes, Protein Purification: Principles and Practice* (1982); U.S. Patent No. 4,673,641; Ausubel *et al.*, *supra*; and Sambrook *et al.*, *supra*).

15 [0078] A number of procedures can be employed when recombinant polypeptides are being purified. For example, proteins having established molecular adhesion properties can be reversibly fused to a polypeptide of the invention. With the appropriate ligand, either protein can be selectively adsorbed to a purification column and then freed from the column in a relatively pure form. The fused protein may be then removed by enzymatic activity. Finally polypeptides can be purified using immunoaffinity columns.

20 A. Purification of Proteins from Recombinant Bacteria

[0079] When recombinant proteins are expressed by the transformed bacteria in large amounts, typically after promoter induction, although expression can be constitutive, the proteins may form insoluble aggregates. There are several protocols that are suitable for purification of protein inclusion bodies. For example, purification of aggregate proteins 25 (hereinafter referred to as inclusion bodies) typically involves the extraction, separation and/or purification of inclusion bodies by disruption of bacterial cells typically, but not limited to, by incubation in a buffer of about 100-150 µg/ml lysozyme and 0.1% Nonidet P40, a non-ionic detergent. The cell suspension can be ground using a Polytron grinder (Brinkman Instruments, Westbury, NY). Alternatively, the cells can be sonicated on ice. 30 Alternate methods of lysing bacteria are described in Ausubel *et al.* and Sambrook *et al.*, both *supra*, and will be apparent to those of skill in the art.

[0080] The cell suspension is generally centrifuged and the pellet containing the inclusion bodies resuspended in buffer which does not dissolve but washes the inclusion bodies, e.g., 20 mM Tris-HCl (pH 7.2), 1 mM EDTA, 150 mM NaCl and 2% Triton-X 100, a non-ionic detergent. It may be necessary to repeat the wash step to remove as much cellular debris as possible. The remaining pellet of inclusion bodies may be resuspended in an appropriate buffer (e.g., 20 mM sodium phosphate, pH 6.8, 150 mM NaCl). Other appropriate buffers will be apparent to those of skill in the art.

[0081] Following the washing step, the inclusion bodies are solubilized by the addition of a solvent that is both a strong hydrogen acceptor and a strong hydrogen donor (or a combination of solvents each having one of these properties). The proteins that formed the inclusion bodies may then be renatured by dilution or dialysis with a compatible buffer. Suitable solvents include, but are not limited to, urea (from about 4 M to about 8 M), formamide (at least about 80%, volume/volume basis), and guanidine hydrochloride (from about 4 M to about 8 M). Some solvents that are capable of solubilizing aggregate-forming proteins, such as SDS (sodium dodecyl sulfate) and 70% formic acid, are inappropriate for use in this procedure due to the possibility of irreversible denaturation of the proteins, accompanied by a lack of immunogenicity and/or activity. Although guanidine hydrochloride and similar agents are denaturants, this denaturation is not irreversible and renaturation may occur upon removal (by dialysis, for example) or dilution of the denaturant, allowing re-formation of the immunologically and/or biologically active protein of interest. After solubilization, the protein can be separated from other bacterial proteins by standard separation techniques.

[0082] Alternatively, it is possible to purify proteins from bacteria periplasm. Where the protein is exported into the periplasm of the bacteria, the periplasmic fraction of the bacteria can be isolated by cold osmotic shock in addition to other methods known to those of skill in the art (see, Ausubel *et al.*, *supra*). To isolate recombinant proteins from the periplasm, the bacterial cells are centrifuged to form a pellet. The pellet is resuspended in a buffer containing 20% sucrose. To lyse the cells, the bacteria are centrifuged and the pellet is resuspended in ice-cold 5 mM MgSO₄ and kept in an ice bath for approximately 10 minutes. The cell suspension is centrifuged and the supernatant decanted and saved. The recombinant proteins present in the supernatant can be separated from the host proteins by standard separation techniques well known to those of skill in the art.

B. Purification of Proteins from Insect Cells

[0083] Proteins can also be purified from eukaryotic gene expression systems as described in, e.g., Fernandez and Hoeffler, *Gene Expression Systems* (1999). In some embodiments, baculovirus expression systems are used to isolate proteins of the invention. Recombinant baculoviruses are generally generated by replacing the polyhedrin coding sequence of a baculovirus with a gene to be expressed (e.g., encoding a polypeptide of the invention). Viruses lacking the polyhedrin gene have a unique plaque morphology making them easy to recognize. In some embodiments, a recombinant baculovirus is generated by first cloning a polynucleotide of interest into a transfer vector (e.g., a pUC based vector) such that the 10 polynucleotide is operably linked to a polyhedrin promoter. The transfer vector is transfected with wildtype DNA into an insect cell (e.g., Sf9, Sf21 or BT1-TN-5B1-4 cells), resulting in homologous recombination and replacement of the polyhedrin gene in the wildtype viral DNA with the polynucleotide of interest. Virus can then be generated and plaque purified. Protein expression results upon viral infection of insect cells. Expressed proteins can be 15 harvested from cell supernatant if secreted, or from cell lysates if intracellular. See, e.g., Ausubel *et al.* and Fernandez and Hoeffler, *supra*.

C. Standard Protein Separation Techniques For Purifying Proteins**1. Solubility Fractionation**

[0084] Often as an initial step, and if the protein mixture is complex, an initial salt fractionation can separate many of the unwanted host cell proteins (or proteins derived from 20 the cell culture media) from the recombinant protein of interest. The preferred salt is ammonium sulfate. Ammonium sulfate precipitates proteins by effectively reducing the amount of water in the protein mixture. Proteins then precipitate on the basis of their solubility. The more hydrophobic a protein is, the more likely it is to precipitate at lower 25 ammonium sulfate concentrations. A typical protocol is to add saturated ammonium sulfate to a protein solution so that the resultant ammonium sulfate concentration is between 20-30%. This will precipitate the most hydrophobic proteins. The precipitate is discarded (unless the protein of interest is hydrophobic) and ammonium sulfate is added to the supernatant to a concentration known to precipitate the protein of interest. The precipitate is 30 then solubilized in buffer and the excess salt removed if necessary, through either dialysis or diafiltration. Other methods that rely on solubility of proteins, such as cold ethanol precipitation, are well known to those of skill in the art and can be used to fractionate complex protein mixtures.

2. Size Differential Filtration

[0085] Based on a calculated molecular weight, a protein of greater and lesser size can be isolated using ultrafiltration through membranes of different pore sizes (for example, Amicon or Millipore membranes). As a first step, the protein mixture is ultrafiltered through a
5 membrane with a pore size that has a lower molecular weight cut-off than the molecular weight of the protein of interest. The retentate of the ultrafiltration is then ultrafiltered against a membrane with a molecular cut off greater than the molecular weight of the protein of interest. The recombinant protein will pass through the membrane into the filtrate. The filtrate can then be chromatographed as described below.

10 3. Column Chromatography

[0086] The proteins of interest can also be separated from other proteins on the basis of their size, net surface charge, hydrophobicity and affinity for ligands. In addition, antibodies raised against proteins can be conjugated to column matrices and the proteins immunopurified. All of these methods are well known in the art.

15 [0087] Immunoaffinity chromatography using antibodies raised to a variety of affinity tags such as hemagglutinin (HA), FLAG, Xpress, Myc, hexahistidine (His), glutathione S transferase (GST) and the like can be used to purify polypeptides. The His tag will also act as a chelating agent for certain metals (e.g., Ni) and thus the metals can also be used to purify His-containing polypeptides. After purification, the tag is optionally removed by specific
20 proteolytic cleavage.

[0088] It will be apparent to one of skill that chromatographic techniques can be performed at any scale and using equipment from many different manufacturers (e.g., Pharmacia Biotech).

IV. DETECTION OF POLYNUCLEOTIDES OF THE INVENTION

25 [0089] Those of skill in the art will recognize that detection of expression of polynucleotides and polypeptides of the invention has many uses. For example, as discussed herein, detection of levels of polynucleotides and polypeptides of the invention in a patient is useful for diagnosing diabetes or a predisposition for at least some of the pathological effects of diabetes. Moreover, detection of gene expression is useful to identify modulators of
30 expression of polynucleotides and polypeptides of the invention.

[0090] A variety of methods of specific DNA and RNA measurement that use nucleic acid hybridization techniques are known to those of skill in the art (*see, Sambrook, supra*). Some methods involve an electrophoretic separation (e.g., Southern blot for detecting DNA, and Northern blot for detecting RNA), but measurement of DNA and RNA can also be carried out 5 in the absence of electrophoretic separation (e.g., by dot blot). Southern blot of genomic DNA (e.g., from a human) can be used for screening for restriction fragment length polymorphism (RFLP) to detect the presence of a genetic disorder affecting a polypeptide of the invention.

[0091] The selection of a nucleic acid hybridization format is not critical. A variety of 10 nucleic acid hybridization formats are known to those skilled in the art. For example, common formats include sandwich assays and competition or displacement assays. Hybridization techniques are generally described in Hames and Higgins *Nucleic Acid Hybridization, A Practical Approach*, IRL Press (1985); Gall and Pardue, *Proc. Natl. Acad. Sci. U.S.A.*, 63:378-383 (1969); and John *et al. Nature*, 223:582-587 (1969).

[0092] Detection of a hybridization complex may require the binding of a signal-generating 15 complex to a duplex of target and probe polynucleotides or nucleic acids. Typically, such binding occurs through ligand and anti-ligand interactions as between a ligand-conjugated probe and an anti-ligand conjugated with a signal. The binding of the signal generation complex is also readily amenable to accelerations by exposure to ultrasonic energy.

[0093] The label may also allow indirect detection of the hybridization complex. For 20 example, where the label is a hapten or antigen, the sample can be detected by using antibodies. In these systems, a signal is generated by attaching fluorescent or enzyme molecules to the antibodies or in some cases, by attachment to a radioactive label (*see, e.g., Tijssen, "Practice and Theory of Enzyme Immunoassays," Laboratory Techniques in Biochemistry and Molecular Biology*, Burdon and van Knippenberg Eds., Elsevier (1985), pp. 25 9-20).

[0094] The probes are typically labeled either directly, as with isotopes, chromophores, 30 lumiphores, chromogens, or indirectly, such as with biotin, to which a streptavidin complex may later bind. Thus, the detectable labels used in the assays of the present invention can be primary labels (where the label comprises an element that is detected directly or that produces a directly detectable element) or secondary labels (where the detected label binds to a primary label, e.g., as is common in immunological labeling). Typically, labeled signal nucleic acids

are used to detect hybridization. Complementary nucleic acids or signal nucleic acids may be labeled by any one of several methods typically used to detect the presence of hybridized polynucleotides. The most common method of detection is the use of autoradiography with ^3H , ^{125}I , ^{35}S , ^{14}C , or ^{32}P -labeled probes or the like.

5 [0095] Other labels include, e.g., ligands that bind to labeled antibodies, fluorophores, chemiluminescent agents, enzymes, and antibodies that can serve as specific binding pair members for a labeled ligand. An introduction to labels, labeling procedures and detection of labels is found in Polak and Van Noorden *Introduction to Immunocytochemistry*, 2nd ed., Springer Verlag, NY (1997); and in Haugland *Handbook of Fluorescent Probes and*
10 *Research Chemicals*, a combined handbook and catalogue Published by Molecular Probes, Inc. (1996).

[0096] In general, a detector that monitors a particular probe or probe combination is used to detect the detection reagent label. Typical detectors include spectrophotometers, phototubes and photodiodes, microscopes, scintillation counters, cameras, film and the like,
15 as well as combinations thereof. Examples of suitable detectors are widely available from a variety of commercial sources known to persons of skill in the art. Commonly, an optical image of a substrate comprising bound labeling moieties is digitized for subsequent computer analysis.

20 [0097] The amount of, for example, an RNA is measured by quantitating the amount of label fixed to the solid support by binding of the detection reagent. Typically, the presence of a modulator during incubation will increase or decrease the amount of label fixed to the solid support relative to a control incubation that does not comprise the modulator, or as compared to a baseline established for a particular reaction type. Means of detecting and quantitating labels are well known to those of skill in the art.

25 [0098] In some embodiments, the target nucleic acid or the probe is immobilized on a solid support. Solid supports suitable for use in the assays of the invention are known to those of skill in the art. As used herein, a solid support is a matrix of material in a substantially fixed arrangement.

[0099] A variety of automated solid-phase assay techniques are also appropriate. For instance, very large scale immobilized polymer arrays (VLSIPS™), i.e. Gene Chips or
30 microarrays, available from Affymetrix, Inc. in Santa Clara, CA can be used to detect changes in expression levels of a plurality of genes involved in the same regulatory pathways

simultaneously. See, Tijssen, *supra.*, Fodor *et al.* (1991) *Science*, 251: 767- 777; Sheldon *et al.* (1993) *Clinical Chemistry* 39(4): 718-719, and Kozal *et al.* (1996) *Nature Medicine* 2(7): 753-759. Similarly, spotted cDNA arrays (arrays of cDNA sequences bound to nylon, glass or another solid support) can also be used to monitor expression of a plurality of genes.

5 [0100] Typically, the array elements are organized in an ordered fashion so that each element is present at a specified location on the substrate. Because the array elements are at specified locations on the substrate, the hybridization patterns and intensities (which together create a unique expression profile) can be interpreted in terms of expression levels of particular genes and can be correlated with a particular disease or condition or treatment.

10 See, e.g., Schena *et al.*, *Science* 270: 467-470 (1995)) and (Lockhart *et al.*, *Nature Biotech.* 14: 1675-1680 (1996)).

[0101] Hybridization specificity can be evaluated by comparing the hybridization of specificity-control polynucleotide sequences to specificity-control polynucleotide probes that are added to a sample in a known amount. The specificity-control target polynucleotides may 15 have one or more sequence mismatches compared with the corresponding polynucleotide sequences. In this manner, whether only complementary target polynucleotides are hybridizing to the polynucleotide sequences or whether mismatched hybrid duplexes are forming is determined.

[0102] Hybridization reactions can be performed in absolute or differential hybridization formats. In the absolute hybridization format, polynucleotide probes from one sample are 20 hybridized to the sequences in a microarray format and signals detected after hybridization complex formation correlate to polynucleotide probe levels in a sample. In the differential hybridization format, the differential expression of a set of genes in two biological samples is analyzed. For differential hybridization, polynucleotide probes from both biological samples 25 are prepared and labeled with different labeling moieties. A mixture of the two labeled polynucleotide probes is added to a microarray. The microarray is then examined under conditions in which the emissions from the two different labels are individually detectable. Sequences in the microarray that are hybridized to substantially equal numbers of 30 polynucleotide probes derived from both biological samples give a distinct combined fluorescence (Shalon *et al.* PCT publication WO95/35505). In some embodiments, the labels are fluorescent labels with distinguishable emission spectra, such as Cy3 and Cy5 fluorophores.

[0103] After hybridization, the microarray is washed to remove nonhybridized nucleic acids and complex formation between the hybridizable array elements and the polynucleotide probes is detected. Methods for detecting complex formation are well known to those skilled in the art. In some embodiments, the polynucleotide probes are labeled with a fluorescent label and measurement of levels and patterns of fluorescence indicative of complex formation is accomplished by fluorescence microscopy, such as confocal fluorescence microscopy.

5 [0104] In a differential hybridization experiment, polynucleotide probes from two or more different biological samples are labeled with two or more different fluorescent labels with different emission wavelengths. Fluorescent signals are detected separately with different photomultipliers set to detect specific wavelengths. The relative abundances/expression 10 levels of the polynucleotide probes in two or more samples are obtained.

15 [0105] Typically, microarray fluorescence intensities can be normalized to take into account variations in hybridization intensities when more than one microarray is used under similar test conditions. In some embodiments, individual polynucleotide probe/target complex hybridization intensities are normalized using the intensities derived from internal 15 normalization controls contained on each microarray.

20 [0106] Detection of nucleic acids can also be accomplished, for example, by using a labeled detection moiety that binds specifically to duplex nucleic acids (e.g., an antibody that is specific for RNA-DNA duplexes). One example uses an antibody that recognizes DNA-
RNA heteroduplexes in which the antibody is linked to an enzyme (typically by recombinant or covalent chemical bonding). The antibody is detected when the enzyme reacts with its substrate, producing a detectable product. Coutlee *et al.* (1989) *Analytical Biochemistry* 181:153-162; Bogulavski (1986) *et al. J. Immunol. Methods* 89:123-130; Prooijen-Knegt (1982) *Exp. Cell Res.* 141:397-407; Rudkin (1976) *Nature* 265:472-473, Stollar (1970) *PNAS* 25 65:993-1000; Ballard (1982) *Mol. Immunol.* 19:793-799; Pisetsky and Caster (1982) *Mol. Immunol.* 19:645-650; Viscidi *et al.* (1988) *J. Clin. Microbial.* 41:199-209; and Kiney *et al.* (1989) *J. Clin. Microbiol.* 27:6-12 describe antibodies to RNA duplexes, including homo and heteroduplexes. Kits comprising antibodies specific for DNA:RNA hybrids are available, e.g., from Digene Diagnostics, Inc. (Beltsville, MD).

30 [0107] In addition to available antibodies, one of skill in the art can easily make antibodies specific for nucleic acid duplexes using existing techniques, or modify those antibodies that are commercially or publicly available. In addition to the art referenced above, general

methods for producing polyclonal and monoclonal antibodies are known to those of skill in the art (see, e.g., Paul (ed) *Fundamental Immunology*, Third Edition Raven Press, Ltd., NY (1993); Coligan *Current Protocols in Immunology* Wiley/Greene, NY (1991); Harlow and Lane *Antibodies: A Laboratory Manual* Cold Spring Harbor Press, NY (1989); Stites *et al.* 5 (eds.) *Basic and Clinical Immunology* (4th ed.) Lange Medical Publications, Los Altos, CA, and references cited therein; Goding *Monoclonal Antibodies: Principles and Practice* (2d ed.) Academic Press, New York, NY, (1986); and Kohler and Milstein *Nature* 256: 495-497 (1975)). Other suitable techniques for antibody preparation include selection of libraries of recombinant antibodies in phage or similar vectors (see, Huse *et al.* *Science* 246:1275-1281 10 (1989); and Ward *et al.* *Nature* 341:544-546 (1989)). Specific monoclonal and polyclonal antibodies and antisera will usually bind with a K_D of at least about 0.1 μM , preferably at least about 0.01 μM or better, and most typically and preferably, 0.001 μM or better.

15 [0108] The nucleic acids used in this invention can be either positive or negative probes. Positive probes bind to their targets and the presence of duplex formation is evidence of the presence of the target. Negative probes fail to bind to the suspect target and the absence of duplex formation is evidence of the presence of the target. For example, the use of a wild type specific nucleic acid probe or PCR primers may serve as a negative probe in an assay sample where only the nucleotide sequence of interest is present.

20 [0109] The sensitivity of the hybridization assays may be enhanced through use of a nucleic acid amplification system that multiplies the target nucleic acid being detected. Examples of such systems include the polymerase chain reaction (PCR) system and the ligase chain reaction (LCR) system. Other methods recently described in the art are the nucleic acid sequence based amplification (NASBA, Cangene, Mississauga, Ontario) and Q Beta 25 Replicase systems. These systems can be used to directly identify mutants where the PCR or LCR primers are designed to be extended or ligated only when a selected sequence is present. Alternatively, the selected sequences can be generally amplified using, for example, nonspecific PCR primers and the amplified target region later probed for a specific sequence indicative of a mutation. It is understood that various detection probes, including Taqman 30 and molecular beacon probes can be used to monitor amplification reaction products, e.g., in real time.

[0110] An alternative means for determining the level of expression of the nucleic acids of the present invention is *in situ* hybridization. *In situ* hybridization assays are well known and

are generally described in Angerer *et al.*, *Methods Enzymol.* 152:649-660 (1987). In an *in situ* hybridization assay, cells, preferentially human cells from the cerebellum or the hippocampus, are fixed to a solid support, typically a glass slide. If DNA is to be probed, the cells are denatured with heat or alkali. The cells are then contacted with a hybridization solution at a moderate temperature to permit annealing of specific probes that are labeled. 5 The probes are preferably labeled with radioisotopes or fluorescent reporters.

[0111] Single nucleotide polymorphism (SNP) analysis is also useful for detecting differences between alleles of the polynucleotides (e.g., genes) of the invention. SNPs linked to genes encoding polypeptides of the invention are useful, for instance, for diagnosis of 10 diseases (e.g., diabetes) whose occurrence is linked to the gene sequences of the invention. For example, if an individual carries at least one SNP linked to a disease-associated allele of the gene sequences of the invention, the individual is likely predisposed for one or more of those diseases. If the individual is homozygous for a disease-linked SNP, the individual is particularly predisposed for occurrence of that disease (e.g., diabetes). In some 15 embodiments, the SNP associated with the gene sequences of the invention is located within 300,000; 200,000; 100,000; 75,000; 50,000; or 10,000 base pairs from the gene sequence.

[0112] Various real-time PCR methods including, e.g., Taqman or molecular beacon-based assays (e.g., U.S. Patent Nos. 5,210,015; 5,487,972; Tyagi *et al.*, *Nature Biotechnology* 14:303 (1996); and PCT WO 95/13399 are useful to monitor for the presence of absence of a 20 SNP. Additional SNP detection methods include, e.g., DNA sequencing, sequencing by hybridization, dot blotting, oligonucleotide array (DNA Chip) hybridization analysis, or are described in, e.g., U.S. Patent No. 6,177,249; Landegren *et al.*, *Genome Research*, 8:769-776 (1998); Botstein *et al.*, *Am J Human Genetics* 32:314-331 (1980); Meyers *et al.*, *Methods in Enzymology* 155:501-527 (1987); Keen *et al.*, *Trends in Genetics* 7:5 (1991); Myers *et al.*, 25 *Science* 230:1242-1246 (1985); and Kwok *et al.*, *Genomics* 23:138-144 (1994).

V. IMMUNOLOGICAL DETECTION OF POLYPEPTIDES OF THE INVENTION

[0113] In addition to the detection of polynucleotides of the invention and gene expression using nucleic acid hybridization technology, one can also use immunoassays to detect 30 polypeptides of the invention. Immunoassays can be used to qualitatively or quantitatively analyze polypeptides of the invention. A general overview of the applicable technology can be found in Harlow & Lane, *Antibodies: A Laboratory Manual* (1988).

A. Antibodies to Target Proteins or other immunogens

[0114] Methods for producing polyclonal and monoclonal antibodies that react specifically with a protein of interest or other immunogen are known to those of skill in the art (*see, e.g.*, Coligan, *supra*; and Harlow and Lane, *supra*; Stites *et al.*, *supra* and references cited therein;

5 Goding, *supra*; and Kohler and Milstein *Nature*, 256:495-497 (1975)). Such techniques include antibody preparation by selection of antibodies from libraries of recombinant antibodies in phage or similar vectors (*see, Huse et al., supra*; and Ward *et al., supra*). For example, in order to produce antisera for use in an immunoassay, the protein of interest or an antigenic fragment thereof, is isolated as described herein. For example, a recombinant 10 protein is produced in a transformed cell line. An inbred strain of mice or rabbits is immunized with the protein using a standard adjuvant, such as Freund's adjuvant, and a standard immunization protocol. Alternatively, a synthetic peptide derived from the sequences disclosed herein is conjugated to a carrier protein and used as an immunogen.

[0115] Polyclonal sera are collected and titered against the immunogen in an immunoassay, 15 for example, a solid phase immunoassay with the immunogen immobilized on a solid support. Polyclonal antisera with a titer of 10^4 or greater are selected and tested for their crossreactivity against proteins other than the polypeptides of the invention or even other homologous proteins from other organisms, using a competitive binding immunoassay. Specific monoclonal and polyclonal antibodies and antisera will usually bind with a K_D of at 20 least about 0.1 mM, more usually at least about 1 μ M, preferably at least about 0.1 μ M or better, and most preferably, 0.01 μ M or better.

[0116] A number of proteins of the invention comprising immunogens may be used to produce antibodies specifically or selectively reactive with the proteins of interest. Recombinant protein is the preferred immunogen for the production of monoclonal or 25 polyclonal antibodies. Naturally occurring protein may also be used either in pure or impure form. Synthetic peptides made using the protein sequences described herein may also be used as an immunogen for the production of antibodies to the protein. Recombinant protein can be expressed in eukaryotic or prokaryotic cells and purified as generally described *supra*. The product is then injected into an animal capable of producing antibodies. Either 30 monoclonal or polyclonal antibodies may be generated for subsequent use in immunoassays to measure the protein.

[0117] Methods of production of polyclonal antibodies are known to those skill in the art. In brief, an immunogen, preferably a purified protein, is mixed with an adjuvant and animals are immunized. The animal's immune response to the immunogen preparation is monitored by taking test bleeds and determining the titer of reactivity to polypeptides of the invention. When appropriately high titers of antibody to the immunogen are obtained, blood is collected from the animal and antisera are prepared. Further fractionation of the antisera to enrich for antibodies reactive to the protein can be done if desired (*see*, Harlow and Lane, *supra*).
5

[0118] Monoclonal antibodies may be obtained using various techniques familiar to those skill in the art. Typically, spleen cells from an animal immunized with a desired antigen are immortalized, commonly by fusion with a myeloma cell (*see*, Kohler and Milstein, *Eur. J. Immunol.* 6:511-519 (1976)). Alternative methods of immortalization include, *e.g.*, transformation with Epstein Barr Virus, oncogenes, or retroviruses, or other methods well known in the art. Colonies arising from single immortalized cells are screened for production
10 of antibodies of the desired specificity and affinity for the antigen, and yield of the monoclonal antibodies produced by such cells may be enhanced by various techniques, including injection into the peritoneal cavity of a vertebrate host. Alternatively, one may isolate DNA sequences that encode a monoclonal antibody or a binding fragment thereof by screening a DNA library from human B cells according to the general protocol outlined by
15 Huse *et al.*, *supra*.
20

[0119] Once target immunogen-specific antibodies are available, the immunogen can be measured by a variety of immunoassay methods with qualitative and quantitative results available to the clinician. For a review of immunological and immunoassay procedures in general *see*, Stites, *supra*. Moreover, the immunoassays of the present invention can be performed in any of several configurations, which are reviewed extensively in Maggio
25 *Enzyme Immunoassay*, CRC Press, Boca Raton, Florida (1980); Tijssen, *supra*; and Harlow and Lane, *supra*.

[0120] Immunoassays to measure target proteins in a human sample may use a polyclonal antiserum that was raised to full-length polypeptides of the invention or a fragment thereof.
30 This antiserum is selected to have low cross-reactivity against other proteins and any such cross-reactivity is removed by immunoabsorption prior to use in the immunoassay.

B. Immunological Binding Assays

[0121] In some embodiments, a protein of interest is detected and/or quantified using any of a number of well-known immunological binding assays (*see, e.g.*, U.S. Patents 4,366,241; 4,376,110; 4,517,288; and 4,837,168). For a review of the general immunoassays, *see also* 5 Asai *Methods in Cell Biology Volume 37: Antibodies in Cell Biology*, Academic Press, Inc. NY (1993); Stites, *supra*. Immunological binding assays (or immunoassays) typically utilize a "capture agent" to specifically bind to and often immobilize the analyte (e.g., full-length polypeptides of the present invention, or antigenic subsequences thereof). The capture agent is a moiety that specifically binds to the analyte. The antibody may be produced by any of a 10 number of means well known to those of skill in the art and as described above.

[0122] Immunoassays also often utilize a labeling agent to bind specifically to and label the binding complex formed by the capture agent and the analyte. The labeling agent may itself be one of the moieties comprising the antibody/analyte complex. Alternatively, the labeling agent may be a third moiety, such as another antibody, that specifically binds to the 15 antibody/protein complex.

[0123] In a preferred embodiment, the labeling agent is a second antibody bearing a label. Alternatively, the second antibody may lack a label, but it may, in turn, be bound by a labeled third antibody specific to antibodies of the species from which the second antibody is derived. The second antibody can be modified with a detectable moiety, such as biotin, to 20 which a third labeled molecule can specifically bind, such as enzyme-labeled streptavidin.

[0124] Other proteins capable of specifically binding immunoglobulin constant regions, such as protein A or protein G, can also be used as the label agents. These proteins are normal constituents of the cell walls of streptococcal bacteria. They exhibit a strong non-immunogenic reactivity with immunoglobulin constant regions from a variety of species (*see, generally*, Kronval, *et al. J. Immunol.*, 111:1401-1406 (1973); and Akerstrom, *et al. J. Immunol.*, 135:2589-2542 (1985)).

[0125] Throughout the assays, incubation and/or washing steps may be required after each combination of reagents. Incubation steps can vary from about 5 seconds to several hours, preferably from about 5 minutes to about 24 hours. The incubation time will depend upon 25 the assay format, analyte, volume of solution, concentrations, and the like. Usually, the assays will be carried out at ambient temperature, although they can be conducted over a range of temperatures, such as 10°C to 40°C.

1. Non-Competitive Assay Formats

[0126] Immunoassays for detecting proteins or analytes of interest from tissue samples may be either competitive or noncompetitive. Noncompetitive immunoassays are assays in which the amount of captured protein or analyte is directly measured. In one preferred "sandwich" assay, for example, the capture agent (e.g., antibodies specific for the polypeptides of the invention) can be bound directly to a solid substrate where it is immobilized. These immobilized antibodies then capture the polypeptide present in the test sample. The polypeptide of the invention thus immobilized is then bound by a labeling agent, such as a second labelled antibody specific for the polypeptide. Alternatively, the second antibody may lack a label, but it may, in turn, be bound by a labeled third antibody specific to antibodies of the species from which the second antibody is derived. The second can be modified with a detectable moiety, such as biotin, to which a third labeled molecule can specifically bind, such as enzyme-labeled streptavidin.

2. Competitive Assay Formats

[0127] In competitive assays, the amount of protein or analyte present in the sample is measured indirectly by measuring the amount of an added (exogenous) protein or analyte displaced (or competed away) from a specific capture agent (e.g., antibodies specific for a polypeptide of the invention) by the protein or analyte present in the sample. The amount of immunogen bound to the antibody is inversely proportional to the concentration of immunogen present in the sample. In a particularly preferred embodiment, the antibody is immobilized on a solid substrate. The amount of analyte may be detected by providing a labeled analyte molecule. It is understood that labels can include, e.g., radioactive labels as well as peptide or other tags that can be recognized by detection reagents such as antibodies.

[0128] Immunoassays in the competitive binding format can be used for cross-reactivity determinations. For example, the protein encoded by the sequences described herein can be immobilized on a solid support. Proteins are added to the assay and compete with the binding of the antisera to the immobilized antigen. The ability of the above proteins to compete with the binding of the antisera to the immobilized protein is compared to that of the protein encoded by any of the sequences described herein. The percent cross-reactivity for the above proteins is calculated, using standard calculations. Those antisera with less than 10% cross-reactivity with each of the proteins listed above are selected and pooled. The cross-reacting antibodies are optionally removed from the pooled antisera by immunoabsorption with the considered proteins, e.g., distantly related homologs.

[0129] The immunoabsorbed and pooled antisera are then used in a competitive binding immunoassay as described above to compare a second protein, thought to be perhaps a protein of the present invention, to the immunogen protein. In order to make this comparison, the two proteins are each assayed at a wide range of concentrations and the amount of each protein required to inhibit 50% of the binding of the antisera to the immobilized protein is determined. If the amount of the second protein required is less than 10 times the amount of the protein partially encoded by a sequence herein that is required, then the second protein is said to specifically bind to an antibody generated to an immunogen consisting of the target protein.

10 3. Other Assay Formats

[0130] In some embodiments, western blot (immunoblot) analysis is used to detect and quantify the presence of a polypeptide of the invention in the sample. The technique generally comprises separating sample proteins by gel electrophoresis on the basis of molecular weight, transferring the separated proteins to a suitable solid support (such as, *e.g.*, a nitrocellulose filter, a nylon filter, or a derivatized nylon filter) and incubating the sample with the antibodies that specifically bind the protein of interest. For example, antibodies are selected that specifically bind to the polypeptides of the invention on the solid support. These antibodies may be directly labeled or alternatively may be subsequently detected using labeled antibodies (*e.g.*, labeled sheep anti-mouse antibodies) that specifically bind to the antibodies against the protein of interest.

[0131] Other assay formats include liposome immunoassays (LIA), which use liposomes designed to bind specific molecules (*e.g.*, antibodies) and release encapsulated reagents or markers. The released chemicals are then detected according to standard techniques (*see*, Monroe *et al.* (1986) *Amer. Clin. Prod. Rev.* 5:34-41).

25 4. Labels

[0132] The particular label or detectable group used in the assay is not a critical aspect of the invention, as long as it does not significantly interfere with the specific binding of the antibody used in the assay. The detectable group can be any material having a detectable physical or chemical property. Such detectable labels have been well-developed in the field of immunoassays and, in general, most labels useful in such methods can be applied to the present invention. Thus, a label is any composition detectable by spectroscopic, photochemical, biochemical, immunochemical, electrical, optical or chemical means. Useful

labels in the present invention include magnetic beads (*e.g.*, DynabeadsTM), fluorescent dyes (*e.g.*, fluorescein isothiocyanate, Texas red, rhodamine, and the like), radiolabels (*e.g.*, ³H, ¹²⁵I, ³⁵S, ¹⁴C, or ³²P), enzymes (*e.g.*, horse radish peroxidase, alkaline phosphatase and others commonly used in an ELISA), and colorimetric labels such as colloidal gold or colored glass 5 or plastic (*e.g.*, polystyrene, polypropylene, latex, *etc.*) beads.

[0133] The label may be coupled directly or indirectly to the desired component of the assay according to methods well known in the art. As indicated above, a wide variety of labels may be used, with the choice of label depending on the sensitivity required, the ease of conjugation with the compound, stability requirements, available instrumentation, and 10 disposal provisions.

[0134] Non-radioactive labels are often attached by indirect means. The molecules can also be conjugated directly to signal generating compounds, *e.g.*, by conjugation with an enzyme or fluorescent compound. A variety of enzymes and fluorescent compounds can be used with the methods of the present invention and are well-known to those of skill in the art 15 (for a review of various labeling or signal producing systems which may be used, *see, e.g.*, U.S. Patent No. 4,391,904).

[0135] Means of detecting labels are well known to those of skill in the art. Thus, for example, where the label is a radioactive label, means for detection include a scintillation counter or photographic film as in autoradiography. Where the label is a fluorescent label, it 20 may be detected by exciting the fluorochrome with the appropriate wavelength of light and detecting the resulting fluorescence. The fluorescence may be detected visually, by means of photographic film, by the use of electronic detectors such as charge coupled devices (CCDs) or photomultipliers and the like. Similarly, enzymatic labels may be detected by providing the appropriate substrates for the enzyme and detecting the resulting reaction product. 25 Finally simple colorimetric labels may be detected directly by observing the color associated with the label. Thus, in various dipstick assays, conjugated gold often appears pink, while various conjugated beads appear the color of the bead.

[0136] Some assay formats do not require the use of labeled components. For instance, agglutination assays can be used to detect the presence of the target antibodies. In this case, 30 antigen-coated particles are agglutinated by samples comprising the target antibodies. In this format, none of the components need to be labeled and the presence of the target antibody is detected by simple visual inspection.

VI. IDENTIFICATION OF MODULATORS OF POLYPEPTIDES OF THE INVENTION

[0137] Modulators of a polypeptide of the invention, i.e. agonists or antagonists of a polypeptide's activity, or polypeptide's or polynucleotide's expression, are useful for treating a number of human diseases, including diabetes. For example, administration of modulators can be used to treat diabetic patients or prediabetic individuals to prevent progression, and therefore symptoms, associated with diabetes (including insulin resistance).

A. Agents that Modulate Polypeptides of the Invention

[0138] The agents tested as modulators of polypeptides of the invention can be any small chemical compound, or a biological entity, such as a protein, sugar, nucleic acid or lipid. Typically, test compounds will be small chemical molecules and peptides. Essentially any chemical compound can be used as a potential modulator or ligand in the assays of the invention, although most often compounds that can be dissolved in aqueous or organic (especially DMSO-based) solutions are used. The assays are designed to screen large chemical libraries by automating the assay steps and providing compounds from any convenient source to assays, which are typically run in parallel (e.g., in microtiter formats on microtiter plates in robotic assays). Modulators also include agents designed to reduce the level of mRNA encoding a polypeptide of the invention (e.g. antisense molecules, ribozymes, DNAzymes, small inhibitory RNAs and the like) or the level of translation from an mRNA (e.g., translation blockers such as an antisense molecules that are complementary to translation start or other sequences on an mRNA molecule). It will be appreciated that there are many suppliers of chemical compounds, including Sigma (St. Louis, MO), Aldrich (St. Louis, MO), Sigma-Aldrich (St. Louis, MO), Fluka Chemika-Biochemica Analytika (Buchs, Switzerland) and the like.

[0139] In some embodiments, high throughput screening methods involve providing a combinatorial chemical or peptide library containing a large number of potential therapeutic compounds (potential modulator compounds). Such "combinatorial chemical libraries" or "ligand libraries" are then screened in one or more assays, as described herein, to identify those library members (particular chemical species or subclasses) that display a desired characteristic activity. The compounds thus identified can serve as conventional "lead compounds" or can themselves be used as potential or actual therapeutics.

[0140] A combinatorial chemical library is a collection of diverse chemical compounds generated by either chemical synthesis or biological synthesis, by combining a number of

chemical "building blocks" such as reagents. For example, a linear combinatorial chemical library such as a polypeptide library is formed by combining a set of chemical building blocks (amino acids) in every possible way for a given compound length (*i.e.*, the number of amino acids in a polypeptide compound). Millions of chemical compounds can be
5 synthesized through such combinatorial mixing of chemical building blocks.

[0141] Preparation and screening of combinatorial chemical libraries is well known to those of skill in the art. Such combinatorial chemical libraries include, but are not limited to, peptide libraries (*see, e.g.*, U.S. Patent 5,010,175, Furka, *Int. J. Pept. Prot. Res.* 37:487-493 (1991) and Houghton *et al.*, *Nature* 354:84-88 (1991)). Other chemistries for generating
10 chemical diversity libraries can also be used. Such chemistries include, but are not limited to: peptoids (*e.g.*, PCT Publication No. WO 91/19735), encoded peptides (*e.g.*, PCT Publication WO 93/20242), random bio-oligomers (*e.g.*, PCT Publication No. WO 92/00091), benzodiazepines (*e.g.*, U.S. Pat. No. 5,288,514), diversomers such as hydantoins, benzodiazepines and dipeptides (Hobbs *et al.*, *Proc. Nat. Acad. Sci. USA* 90:6909-6913
15 (1993)), vinylogous polypeptides (Hagihara *et al.*, *J. Amer. Chem. Soc.* 114:6568 (1992)), nonpeptidal peptidomimetics with glucose scaffolding (Hirschmann *et al.*, *J. Amer. Chem. Soc.* 114:9217-9218 (1992)), analogous organic syntheses of small compound libraries (Chen *et al.*, *J. Amer. Chem. Soc.* 116:2661 (1994)), oligocarbamates (Cho *et al.*, *Science* 261:1303 (1993)), and/or peptidyl phosphonates (Campbell *et al.*, *J. Org. Chem.* 59:658 (1994)),
20 nucleic acid libraries (*see* Ausubel, Berger and Sambrook, all *supra*), peptide nucleic acid libraries (*see, e.g.*, U.S. Patent 5,539,083), antibody libraries (*see, e.g.*, Vaughn *et al.*, *Nature Biotechnology*, 14(3):309-314 (1996) and PCT/US96/10287), carbohydrate libraries (*see, e.g.*, Liang *et al.*, *Science*, 274:1520-1522 (1996) and U.S. Patent 5,593,853), small organic molecule libraries (*see, e.g.*, benzodiazepines, Baum C&EN, Jan 18, page 33 (1993);
25 isoprenoids, U.S. Patent 5,569,588; thiazolidinones and metathiazanones, U.S. Patent 5,549,974; pyrrolidines, U.S. Patents 5,525,735 and 5,519,134; morpholino compounds, U.S. Patent 5,506,337; benzodiazepines, 5,288,514, and the like).

[0142] Devices for the preparation of combinatorial libraries are commercially available (*see, e.g.*, 357 MPS, 390 MPS, Advanced Chem Tech, Louisville KY, Symphony, Rainin, Woburn, MA, 433A Applied Biosystems, Foster City, CA, 9050 Plus, Millipore, Bedford, MA). In addition, numerous combinatorial libraries are themselves commercially available (*see, e.g.*, ComGenex, Princeton, N.J., Tripos, Inc., St. Louis, MO, 3D Pharmaceuticals, Exton, PA, Martek Biosciences, Columbia, MD, etc.).

B. Methods of Screening for Modulators of the Polypeptides of the Invention

[0143] A number of different screening protocols can be utilized to identify agents that modulate the level of expression or activity of a polynucleotide of a polypeptide of the invention in cells, particularly mammalian cells, and especially human cells. In general terms, the screening methods involve screening a plurality of agents to identify an agent that modulates the activity of a polypeptide of the invention by, e.g., binding to the polypeptide, preventing an inhibitor or activator from binding to the polypeptide, increasing association of an inhibitor or activator with the polypeptide, or activating or inhibiting expression of the polypeptide.

[0144] Any cell expressing a full-length polypeptide of the invention or a fragment thereof can be used to identify modulators. In some embodiments, the cells are eukaryotic cell lines (e.g., CHO or HEK293) transformed to express a heterologous polypeptide of the invention. In some embodiments, a cell expressing an endogenous polypeptide of the invention is used in screens. In other embodiments, modulators are screened for their ability to effect insulin responses.

1. Polypeptide Binding Assays

[0145] Preliminary screens can be conducted by screening for agents capable of binding to polypeptides of the invention, as at least some of the agents so identified are likely modulators of a polypeptide of the invention. Binding assays are also useful, e.g., for identifying endogenous proteins that interact with polypeptides of the invention. For example, antibodies, receptors or other molecules that bind polypeptides of the invention can be identified in binding assays.

[0146] Binding assays usually involve contacting a polypeptide of the invention with one or more test agents and allowing sufficient time for the protein and test agents to form a binding complex. Any binding complexes formed can be detected using any of a number of established analytical techniques. Protein binding assays include, but are not limited to, methods that measure co-precipitation or co-migration on non-denaturing SDS-polyacrylamide gels, and co-migration on Western blots (*see, e.g.*, Bennet, J.P. and Yamamura, H.I. (1985) "Neurotransmitter, Hormone or Drug Receptor Binding Methods," in *Neurotransmitter Receptor Binding* (Yamamura, H. I., *et al.*, eds.), pp. 61-89. Other binding assays involve the use of mass spectrometry or NMR techniques to identify molecules bound

to a polypeptide of the invention or displacement of labeled substrates. The polypeptides of the invention utilized in such assays can be naturally expressed, cloned or synthesized.

[0147] In addition, mammalian or yeast two-hybrid approaches (*see, e.g.,* Bartel, P.L. *et al. Methods Enzymol*, 254:241 (1995)) can be used to identify polypeptides or other molecules that interact or bind when expressed together in a host cell.

2. Polypeptide Activity

[0148] The activity of polypeptides of the invention can be assessed using a variety of *in vitro* and *in vivo* assays to determine functional, chemical, and physical effects, *e.g.*, measuring ligand binding (*e.g.*, radioactive or otherwise labeled ligand binding), second messengers (*e.g.*, cAMP, cGMP, IP₃, DAG, or Ca²⁺), ion flux, phosphorylation levels, transcription levels, and the like. Furthermore, such assays can be used to test for inhibitors and activators of the polypeptides of the invention. Modulators can also be genetically altered versions of polypeptides of the invention.

[0149] The polypeptide of the assay will be selected from a polypeptide with substantial identity to a sequence set forth in the TABLE OF SEQUENCES or other conservatively modified variants thereof. Generally, the amino acid sequence identity will be at least 70%, optionally at least 85%, optionally at least 90-95% to the polypeptides exemplified herein. Optionally, the polypeptide of the assays will comprise a fragment of a polypeptide of the invention, such as an extracellular domain, transmembrane domain, cytoplasmic domain, ligand binding domain, subunit association domain, active site, and the like. Either a polypeptide of the invention or a domain thereof can be covalently linked to a heterologous protein to create a chimeric protein used in the assays described herein.

[0150] Modulators of polypeptide activity are tested using either recombinant or naturally occurring polypeptides of the invention. The protein can be isolated, expressed in a cell, expressed in a membrane derived from a cell, expressed in tissue or in an animal, either recombinant or naturally occurring. For example, tissue slices, dissociated cells, *e.g.*, from tissues expressing polypeptides of the invention, transformed cells, or membranes can be used. Modulation is tested using one of the *in vitro* or *in vivo* assays described herein.

[0151] Modulator binding to polypeptides of the invention, a domain, or chimeric protein can be tested in solution, in a bilayer membrane, attached to a solid phase, in a lipid monolayer, or in vesicles. Binding of a modulator can be tested using, *e.g.*, changes in

spectroscopic characteristics (e.g., fluorescence, absorbance, refractive index), hydrodynamic (e.g., shape), chromatographic, or solubility properties.

[0152] Samples or assays that are treated with a potential modulator (e.g., a "test compound") are compared to control samples without the test compound, to examine the extent of modulation. Control samples (untreated with activators or inhibitors) are assigned a relative activity value of 100. Inhibition of the polypeptides of the invention is achieved when the activity value relative to the control is about 90%, optionally 50%, optionally 25-0%. Activation of the polypeptides of the invention is achieved when the activity value relative to the control is 110%, optionally 150%, 200%, 300%, 400%, 500%, or 1000-2000%.

10 3. Expression Assays

[0153] Screening for a compound that modulates the expression of a polynucleotide or a polypeptide of the invention is also provided. Screening methods generally involve conducting cell-based assays in which test compounds are contacted with one or more cells expressing a polynucleotide or a polypeptide of the invention, and then detecting an increase or decrease in expression (either transcript or translation product). Assays can be performed with any cells that express a polynucleotide or a polypeptide of the invention.

[0154] Expression can be detected in a number of different ways. As described *infra*, the expression level of a polynucleotide of the invention in a cell can be determined by probing the mRNA expressed in a cell with a probe that specifically hybridizes with a transcript (or complementary nucleic acid derived therefrom) of a polynucleotide of the invention. Probing can be conducted by lysing the cells and conducting Northern blots or without lysing the cells using *in situ*-hybridization techniques. Alternatively, a polypeptide of the invention can be detected using immunological methods in which a cell lysate is probed with antibodies that specifically bind to the polypeptide.

[0155] The level of expression or activity of a polynucleotide or a polypeptide of the invention can be compared to a baseline value. The baseline value can be a value for a control sample or a statistical value that is representative of expression levels of a polynucleotide or a polypeptide of the invention for a control population (e.g., lean individuals as described herein) or cells (e.g., tissue culture cells not exposed to a modulator). Expression levels can also be determined for cells that do not express the polynucleotide or a polypeptide of the invention as a negative control. Such cells generally are otherwise substantially genetically the same as the test cells.

[0156] A variety of different types of cells can be utilized in the reporter assays. Cells that do not endogenously express a polypeptide of the invention can be prokaryotic, but are preferably eukaryotic. The eukaryotic cells can be any of the cells typically utilized in generating cells that harbor recombinant nucleic acid constructs. Exemplary eukaryotic cells 5 include, but are not limited to, yeast, and various higher eukaryotic cells such as the HEK293, HepG2, COS, CHO and HeLa cell lines.

[0157] Various controls can be conducted to ensure that an observed activity is authentic including running parallel reactions with cells that lack the reporter construct or by not contacting a cell harboring the reporter construct with test compound. Compounds can also 10 be further validated as described below.

4. Validation

[0158] Agents that are initially identified by any of the foregoing screening methods can be further tested to validate the apparent activity. Modulators that are selected for further study 15 can be tested on the "classic" insulin responsive cell line, mouse 3T3-L1 adipocytes, muscle cells such as L6 cells and the like. Cells (e.g., adipocytes or muscle cells) are pre-incubated with the modulators and tested for acute (up to 4 hours) and chronic (overnight) effects on basal and insulin-stimulated GLUT4 translocation and glucose uptake.

[0159] Following such studies, validity of the modulators is tested in suitable animal models. The basic format of such methods involves administering a lead compound 20 identified during an initial screen to an animal that serves as a model for humans and then determining if expression of activity of a polypeptide of the invention is in fact modulated.

[0160] The effect of the compound will be assessed in either diabetic animals or in diet induced insulin resistant animals. The blood glucose and insulin levels will be determined. The animal models utilized in validation studies generally are mammals of any kind. 25 Specific examples of suitable animals include, but are not limited to, primates, mice and rats. For example, monogenic models of diabetes (e.g., ob/ob and db/db mice, Zucker rats and Zucker Diabetic Fatty rats etc) or polygenic models of diabetes (e.g., OLETF rats, GK rats, NSY mice, and KK mice) can be useful for validating modulation of a polypeptide of the invention in a diabetic or insulin resistant animal. In addition, transgenic animals expressing 30 human polypeptides of the invention can be used to further validate drug candidates.

C. Solid Phase and Soluble High Throughput Assays

[0161] In the high throughput assays of the invention, it is possible to screen up to several thousand different modulators or ligands in a single day. In particular, each well of a microtiter plate can be used to run a separate assay against a selected potential modulator, or, 5 if concentration or incubation time effects are to be observed, every 5-10 wells can test a single modulator. Thus, a single standard microtiter plate can assay about 100 (e.g., 96) modulators. If 1536 well plates are used, then a single plate can easily assay from about 100 to about 1500 different compounds. It is possible to assay several different plates per day; assay screens for up to about 6,000-20,000 or more different compounds are possible using 10 the integrated systems of the invention. In addition, microfluidic approaches to reagent manipulation can be used.

[0162] A molecule of interest (e.g., a polypeptide or polynucleotide of the invention, or a modulator thereof) can be bound to the solid-state component, directly or indirectly, via covalent or non-covalent linkage, e.g., via a tag. The tag can be any of a variety of 15 components. In general, a molecule that binds the tag (a tag binder) is fixed to a solid support, and the tagged molecule of interest is attached to the solid support by interaction of the tag and the tag binder.

[0163] A number of tags and tag binders can be used, based upon known molecular interactions well described in the literature. For example, where a tag has a natural binder, 20 for example, biotin, protein A, or protein G, it can be used in conjunction with appropriate tag binders (avidin, streptavidin, neutravidin, the Fc region of an immunoglobulin, poly-His, etc.) Antibodies to molecules with natural binders such as biotin are also widely available and appropriate tag binders (see, SIGMA Immunochemicals 1998 catalogue SIGMA, St. Louis MO).

25 [0164] Similarly, any haptenic or antigenic compound can be used in combination with an appropriate antibody to form a tag/tag binder pair. Thousands of specific antibodies are commercially available and many additional antibodies are described in the literature. For example, in one common configuration, the tag is a first antibody and the tag binder is a second antibody that recognizes the first antibody. In addition to antibody-antigen 30 interactions, receptor-ligand interactions are also appropriate as tag and tag-binder pairs, such as agonists and antagonists of cell membrane receptors (e.g., cell receptor-ligand interactions such as transferrin, c-kit, viral receptor ligands, cytokine receptors, chemokine receptors,

interleukin receptors, immunoglobulin receptors and antibodies, the cadherin family, the integrin family, the selectin family, and the like; *see, e.g.*, Pigott & Power, *The Adhesion Molecule Facts Book I* (1993)). Similarly, toxins and venoms, viral epitopes, hormones (*e.g.*, opiates, steroids, *etc.*), intracellular receptors (*e.g.*, which mediate the effects of various small ligands, including steroids, thyroid hormone, retinoids and vitamin D; peptides), drugs, lectins, sugars, nucleic acids (both linear and cyclic polymer configurations), oligosaccharides, proteins, phospholipids and antibodies can all interact with various cell receptors.

5 [0165] Synthetic polymers, such as polyurethanes, polyesters, polycarbonates, polyureas, polyamides, polyethyleneimines, polyarylene sulfides, polysiloxanes, polyimides, and polyacetates can also form an appropriate tag or tag binder. Many other tag/tag binder pairs are also useful in assay systems described herein, as would be apparent to one of skill upon review of this disclosure.

10 [0166] Common linkers such as peptides, polyethers, and the like can also serve as tags, and include polypeptide sequences, such as poly-gly sequences of between about 5 and 200 amino acids. Such flexible linkers are known to those of skill in the art. For example, poly(ethylene glycol) linkers are available from Shearwater Polymers, Inc., Huntsville, Alabama. These linkers optionally have amide linkages, sulphydryl linkages, or heterofunctional linkages.

15 [0167] Tag binders are fixed to solid substrates using any of a variety of methods currently available. Solid substrates are commonly derivatized or functionalized by exposing all or a portion of the substrate to a chemical reagent that fixes a chemical group to the surface that is reactive with a portion of the tag binder. For example, groups that are suitable for attachment to a longer chain portion would include amines, hydroxyl, thiol, and carboxyl groups.

20 Aminoalkylsilanes and hydroxyalkylsilanes can be used to functionalize a variety of surfaces, such as glass surfaces. The construction of such solid phase biopolymer arrays is well described in the literature (*see, e.g.*, Merrifield, *J. Am. Chem. Soc.* 85:2149-2154 (1963) (describing solid phase synthesis of, *e.g.*, peptides); Geysen *et al.*, *J. Immun. Meth.* 102:259-274 (1987) (describing synthesis of solid phase components on pins); Frank and Doring, *Tetrahedron* 44:60316040 (1988) (describing synthesis of various peptide sequences on cellulose disks); Fodor *et al.*, *Science*, 251:767-777 (1991); Sheldon *et al.*, *Clinical Chemistry* 39(4):718-719 (1993); and Kozal *et al.*, *Nature Medicine* 2(7):753759 (1996) (all describing

arrays of biopolymers fixed to solid substrates). Non-chemical approaches for fixing tag binders to substrates include other common methods, such as heat, cross-linking by UV radiation, and the like.

[0168] The invention provides *in vitro* assays for identifying, in a high throughput format, 5 compounds that can modulate the expression or activity of a polypeptide of the invention. Control reactions that measure activity of a polypeptide of the invention in a cell in a reaction that does not include a potential modulator are optional, as the assays are highly uniform. Such optional control reactions are appropriate and increase the reliability of the assay. Accordingly, in some embodiments, the methods of the invention include such a control 10 reaction. For each of the assay formats described, "no modulator" control reactions that do not include a modulator provide a background level of binding activity.

[0169] In some assays it will be desirable to have positive controls. At least two types of 15 positive controls are appropriate. First, a known activator of a polypeptide or a polynucleotide of the invention can be incubated with one sample of the assay, and the resulting increase in signal resulting from an increased expression level or activity of a polypeptide or a polynucleotide of the invention are determined according to the methods herein. Second, a known inhibitor of a polypeptide or a polynucleotide of the invention can be added, and the resulting decrease in signal for the expression or activity of a polypeptide or a polynucleotide of the invention can be similarly detected. It will be appreciated that 20 modulators can also be combined with activators or inhibitors to find modulators that inhibit the increase or decrease that is otherwise caused by the presence of the known modulator of a polypeptide or a polynucleotide of the invention.

VII. COMPOSITIONS, KITS AND INTEGRATED SYSTEMS

[0170] The invention provides compositions, kits and integrated systems for practicing the 25 assays described herein using nucleic acids or polypeptides of the invention, antibodies, etc.

[0171] The invention provides assay compositions for use in solid phase assays; such compositions can include, for example, one or more nucleic acids encoding a polypeptide of the invention immobilized on a solid support, and a labeling reagent. In each case, the assay compositions can also include additional reagents that are desirable for hybridization.

30 Modulators of expression or activity of a polypeptide of the invention can also be included in the assay compositions.

[0172] The invention also provides kits for carrying out the assays of the invention. The kits typically include a probe that comprises an antibody that specifically binds to a polypeptide of the invention or a polynucleotide sequence encoding such polypeptides, and a label for detecting the presence of the probe. The kits may include at least one

5 polynucleotide sequence encoding a polypeptide of the invention. Kits can include any of the compositions noted above, and optionally further include additional components such as instructions to practice a high-throughput method of assaying for an effect on expression of the genes encoding a polypeptide of the invention, or on activity of a polypeptide of the invention, one or more containers or compartments (*e.g.*, to hold the probe, labels, or the like), a control modulator of the expression or activity of a polypeptide of the invention, a robotic armature for mixing kit components or the like.

10

[0173] The invention also provides integrated systems for high-throughput screening of potential modulators for an effect on the expression or activity of a polypeptide of the invention. The systems can include a robotic armature which transfers fluid from a source to 15 a destination, a controller which controls the robotic armature, a label detector, a data storage unit which records label detection, and an assay component such as a microtiter dish comprising a well having a reaction mixture or a substrate comprising a fixed nucleic acid or immobilization moiety.

[0174] A number of robotic fluid transfer systems are available, or can easily be made from 20 existing components. For example, a Zymate XP (Zymark Corporation; Hopkinton, MA) automated robot using a Microlab 2200 (Hamilton; Reno, NV) pipetting station can be used to transfer parallel samples to 96 well microtiter plates to set up several parallel simultaneous binding assays.

[0175] Optical images viewed (and, optionally, recorded) by a camera or other recording 25 device (*e.g.*, a photodiode and data storage device) are optionally further processed in any of the embodiments herein, *e.g.*, by digitizing the image and storing and analyzing the image on a computer. A variety of commercially available peripheral equipment and software is available for digitizing, storing and analyzing a digitized video or digitized optical image.

[0176] One conventional system carries light from the specimen field to a cooled charge-coupled device (CCD) camera, in common use in the art. A CCD camera includes an array 30 of picture elements (pixels). The light from the specimen is imaged on the CCD. Particular pixels corresponding to regions of the specimen (*e.g.*, individual hybridization sites on an

array of biological polymers) are sampled to obtain light intensity readings for each position. Multiple pixels are processed in parallel to increase speed. The apparatus and methods of the invention are easily used for viewing any sample, e.g., by fluorescent or dark field microscopic techniques.

5 VIII. ADMINISTRATION AND PHARMACEUTICAL COMPOSITIONS

[0177] Modulators of the polypeptides of the invention (e.g., antagonists or agonists) can be administered directly to the mammalian subject for modulation of activity of a polypeptide of the invention *in vivo*. Administration is by any of the routes normally used for introducing a modulator compound into ultimate contact with the tissue to be treated and is well known to those of skill in the art. Although more than one route can be used to administer a particular composition, a particular route can often provide a more immediate and more effective reaction than another route.

[0178] The pharmaceutical compositions of the invention may comprise a pharmaceutically acceptable carrier. Pharmaceutically acceptable carriers are determined in part by the particular composition being administered, as well as by the particular method used to administer the composition. Accordingly, there are a wide variety of suitable formulations of pharmaceutical compositions of the present invention (*see, e.g., Remington's Pharmaceutical Sciences*, 17th ed. 1985)).

[0179] The modulators (e.g., agonists or antagonists) of the expression or activity of a polypeptide of the invention, alone or in combination with other suitable components, can be prepared for injection or for use in a pump device. Pump devices (also known as "insulin pumps") are commonly used to administer insulin to patients and therefore can be easily adapted to include compositions of the present invention. Manufacturers of insulin pumps include Animas, Disetronic and MiniMed.

[0180] The modulators (e.g., agonists or antagonists) of the expression or activity of a polypeptide of the invention, alone or in combination with other suitable components, can be made into aerosol formulations (*i.e.*, they can be "nebulized") to be administered via inhalation. Aerosol formulations can be placed into pressurized acceptable propellants, such as dichlorodifluoromethane, propane, nitrogen, and the like.

[0181] Formulations suitable for administration include aqueous and non-aqueous solutions, isotonic sterile solutions, which can contain antioxidants, buffers, bacteriostats, and

solutes that render the formulation isotonic, and aqueous and non-aqueous sterile suspensions that can include suspending agents, solubilizers, thickening agents, stabilizers, and preservatives. In the practice of this invention, compositions can be administered, for example, orally, nasally, topically, intravenously, intraperitoneally, or intrathecally. The 5 formulations of compounds can be presented in unit-dose or multi-dose sealed containers, such as ampoules and vials. Solutions and suspensions can be prepared from sterile powders, granules, and tablets of the kind previously described. The modulators can also be administered as part of a prepared food or drug.

[0182] The dose administered to a patient, in the context of the present invention should be 10 sufficient to induce a beneficial response in the subject over time. The optimal dose level for any patient will depend on a variety of factors including the efficacy of the specific modulator employed, the age, body weight, physical activity, and diet of the patient, on a possible combination with other drugs, and on the severity of the case of diabetes. It is recommended that the daily dosage of the modulator be determined for each individual 15 patient by those skilled in the art in a similar way as for known insulin compositions. The size of the dose also will be determined by the existence, nature, and extent of any adverse side-effects that accompany the administration of a particular compound or vector in a particular subject.

[0183] In determining the effective amount of the modulator to be administered a physician 20 may evaluate circulating plasma levels of the modulator, modulator toxicity, and the production of anti-modulator antibodies. In general, the dose equivalent of a modulator is from about 1 ng/kg to 10 mg/kg for a typical subject.

[0184] For administration, modulators of the present invention can be administered at a rate determined by the LD-50 of the modulator, and the side-effects of the modulator at various 25 concentrations, as applied to the mass and overall health of the subject. Administration can be accomplished via single or divided doses.

[0185] The compounds of the present invention can also be used effectively in combination with one or more additional active agents depending on the desired target therapy (see, e.g., Turner, N. et al. *Prog. Drug Res.* (1998) 51: 33-94; Haffner, S. *Diabetes Care* (1998) 21: 30 160-178; and DeFronzo, R. et al. (eds.), *Diabetes Reviews* (1997) Vol. 5 No. 4). A number of studies have investigated the benefits of combination therapies with oral agents (see, e.g., Mahler, R., *J. Clin. Endocrinol. Metab.* (1999) 84: 1165-71; United Kingdom Prospective

Diabetes Study Group: UKPDS 28, *Diabetes Care* (1998) 21: 87-92; Bardin, C. W.,(ed.), *Current Therapy In Endocrinology And Metabolism*, 6th Edition (Mosby - Year Book, Inc., St. Louis, MO 1997); Chiasson, J. et al., *Ann. Intern. Med.* (1994) 121: 928-935; Coniff, R. et al., *Clin. Ther.* (1997) 19: 16-26; Coniff, R. et al., *Am. J. Med.* (1995) 98: 443-451; and

5 Iwamoto, Y. et al., *Diabet. Med.* (1996) 13 365-370; Kwiterovich, P. *Am. J. Cardiol* (1998) 82(12A): 3U-17U). These studies indicate that modulation of diabetes, among other diseases, can be further improved by the addition of a second agent to the therapeutic regimen.

Combination therapy includes administration of a single pharmaceutical dosage formulation that contains a modulator of the invention and one or more additional active agents, as well as
10 administration of a modulator and each active agent in its own separate pharmaceutical dosage formulation. For example, a modulator and a thiazolidinedione can be administered to the human subject together in a single oral dosage composition, such as a tablet or capsule, or each agent can be administered in separate oral dosage formulations. Where separate dosage formulations are used, a modulator and one or more additional active agents can be
15 administered at essentially the same time (i.e., concurrently), or at separately staggered times (i.e., sequentially). Combination therapy is understood to include all these regimens.

[0186] One example of combination therapy can be seen in treating pre-diabetic individuals (e.g., to prevent progression into type 2 diabetes) or diabetic individuals (or treating diabetes and its related symptoms, complications, and disorders), wherein the modulators can be
20 effectively used in combination with, for example, sulfonylureas (such as chlorpropamide, tolbutamide, acetohexamide, tolazamide, glyburide, gliclazide, glynase, glimepiride, and glipizide); biguanides (such as metformin); a PPAR beta delta agonist; a ligand or agonist of PPAR gamma such as thiazolidinediones (such as ciglitazone, pioglitazone (*see, e.g.*, U.S. Patent No. 6,218,409), troglitazone, and rosiglitazone (*see, e.g.*, U.S. Patent No. 5,859,037));
25 PPAR alpha agonists such as clofibrate, gemfibrozil, fenofibrate, ciprofibrate, and bezafibrate; dehydroepiandrosterone (also referred to as DHEA or its conjugated sulphate ester, DHEA-SO₄); antiglucocorticoids; TNF α inhibitors; α -glucosidase inhibitors (such as acarbose, miglitol, and voglibose); amylin and amylin derivatives (such as pramlintide, (*see, also*, U.S. Patent Nos. 5,902,726; 5,124,314; 5,175,145 and 6,143,718.)); insulin
30 secretagogues (such as repaglinide, gliclizide, and nateglinide (*see, also*, U.S. Patent Nos. 6,251,856; 6,251,865; 6,221,633; 6,174,856)), and insulin.

IX. GENE THERAPY

[0187] Conventional viral and non-viral based gene transfer methods can be used to introduce nucleic acids encoding engineered polypeptides of the invention in mammalian cells or target tissues. Such methods can be used to administer nucleic acids encoding polypeptides of the invention to cells *in vitro*. In some embodiments, the nucleic acids encoding polypeptides of the invention are administered for *in vivo* or *ex vivo* gene therapy uses. Non-viral vector delivery systems include DNA plasmids, naked nucleic acid, and nucleic acid complexed with a delivery vehicle such as a liposome. Viral vector delivery systems include DNA and RNA viruses, which have either episomal or integrated genomes after delivery to the cell. For a review of gene therapy procedures, see Anderson, *Science* 256:808-813 (1992); Nabel & Felgner, *TIBTECH* 11:211-217 (1993); Mitani & Caskey, *TIBTECH* 11:162-166 (1993); Dillon, *TIBTECH* 11:167-175 (1993); Miller, *Nature* 357:455-460 (1992); Van Brunt, *Biotechnology* 6(10):1149-1154 (1988); Vigne, *Restorative Neurology and Neuroscience* 8:35-36 (1995); Kremer & Perricaudet, *British Medical Bulletin* 51(1):31-44 (1995); Haddada *et al.*, in *Current Topics in Microbiology and Immunology* Doerfler and Böhm (eds) (1995); and Yu *et al.*, *Gene Therapy* 1:13-26 (1994).

[0188] Methods of non-viral delivery of nucleic acids encoding engineered polypeptides of the invention include lipofection, microinjection, biolistics, virosomes, liposomes, immunoliposomes, polycation or lipid:nucleic acid conjugates, naked DNA, artificial virions, and agent-enhanced uptake of DNA. Lipofection is described in e.g., US 5,049,386, US 4,946,787; and US 4,897,355) and lipofection reagents are sold commercially (e.g., Transfectam™ and Lipofectin™). Cationic and neutral lipids that are suitable for efficient receptor-recognition lipofection of polynucleotides include those of Felgner, WO 91/17424, WO 91/16024. Delivery can be to cells (*ex vivo* administration) or target tissues (*in vivo* administration).

[0189] The preparation of lipid:nucleic acid complexes, including targeted liposomes such as immunolipid complexes, is well known to one of skill in the art (see, e.g., Crystal, *Science* 270:404-410 (1995); Blaese *et al.*, *Cancer Gene Ther.* 2:291-297 (1995); Behr *et al.*, *Bioconjugate Chem.* 5:382-389 (1994); Remy *et al.*, *Bioconjugate Chem.* 5:647-654 (1994); Gao *et al.*, *Gene Therapy* 2:710-722 (1995); Ahmad *et al.*, *Cancer Res.* 52:4817-4820 (1992); U.S. Pat. Nos. 4,186,183, 4,217,344, 4,235,871, 4,261,975, 4,485,054, 4,501,728, 4,774,085, 4,837,028, and 4,946,787).

[0190] The use of RNA or DNA viral based systems for the delivery of nucleic acids encoding engineered polypeptides of the invention take advantage of highly evolved processes for targeting a virus to specific cells in the body and trafficking the viral payload to the nucleus. Viral vectors can be administered directly to patients (*in vivo*) or they can be used to treat cells *in vitro* and the modified cells are administered to patients (*ex vivo*). Conventional viral based systems for the delivery of polypeptides of the invention could include retroviral, lentivirus, adenoviral, adeno-associated and herpes simplex virus vectors for gene transfer. Viral vectors are currently the most efficient and versatile method of gene transfer in target cells and tissues. Integration in the host genome is possible with the retrovirus, lentivirus, and adeno-associated virus gene transfer methods, often resulting in long term expression of the inserted transgene. Additionally, high transduction efficiencies have been observed in many different cell types and target tissues.

[0191] The tropism of a retrovirus can be altered by incorporating foreign envelope proteins, expanding the potential target population of target cells. Lentiviral vectors are retroviral vectors that are able to transduce or infect non-dividing cells and typically produce high viral titers. Selection of a retroviral gene transfer system would therefore depend on the target tissue. Retroviral vectors are comprised of *cis*-acting long terminal repeats with packaging capacity for up to 6-10 kb of foreign sequence. The minimum *cis*-acting LTRs are sufficient for replication and packaging of the vectors, which are then used to integrate the therapeutic gene into the target cell to provide permanent transgene expression. Widely used retroviral vectors include those based upon murine leukemia virus (MuLV), gibbon ape leukemia virus (GaLV), Simian Immuno deficiency virus (SIV), human immuno deficiency virus (HIV), and combinations thereof (see, e.g., Buchscher *et al.*, *J. Virol.* 66:2731-2739 (1992); Johann *et al.*, *J. Virol.* 66:1635-1640 (1992); Sommerfelt *et al.*, *Virol.* 176:58-59 (1990); Wilson *et al.*, *J. Virol.* 63:2374-2378 (1989); Miller *et al.*, *J. Virol.* 65:2220-2224 (1991); PCT/US94/05700).

[0192] In applications where transient expression of the polypeptides of the invention is preferred, adenoviral based systems are typically used. Adenoviral based vectors are capable of very high transduction efficiency in many cell types and do not require cell division. With such vectors, high titer and levels of expression have been obtained. This vector can be produced in large quantities in a relatively simple system. Adeno-associated virus ("AAV") vectors are also used to transduce cells with target nucleic acids, e.g., in the *in vitro* production of nucleic acids and peptides, and for *in vivo* and *ex vivo* gene therapy procedures

(see, e.g., West *et al.*, *Virology* 160:38-47 (1987); U.S. Patent No. 4,797,368; WO 93/24641; Kotin, *Human Gene Therapy* 5:793-801 (1994); Muzychka, *J. Clin. Invest.* 94:1351 (1994)). Construction of recombinant AAV vectors are described in a number of publications, including U.S. Pat. No. 5,173,414; Tratschin *et al.*, *Mol. Cell. Biol.* 5:3251-3260 (1985);
5 Tratschin, *et al.*, *Mol. Cell. Biol.* 4:2072-2081 (1984); Hermonat & Muzychka, *PNAS* 81:6466-6470 (1984); and Samulski *et al.*, *J. Virol.* 63:03822-3828 (1989).

[0193] pLASN and MFG-S are examples are retroviral vectors that have been used in clinical trials (Dunbar *et al.*, *Blood* 85:3048-305 (1995); Kohn *et al.*, *Nat. Med.* 1:1017-102 (1995); Malech *et al.*, *PNAS* 94:22 12133-12138 (1997)). PA317/pLASN was the first
10 therapeutic vector used in a gene therapy trial. (Blaese *et al.*, *Science* 270:475-480 (1995)). Transduction efficiencies of 50% or greater have been observed for MFG-S packaged vectors (Ellem *et al.*, *Immunol Immunother.* 44(1):10-20 (1997); Dranoff *et al.*, *Hum. Gene Ther.* 11:11-2 (1997)).

[0194] Recombinant adeno-associated virus vectors (rAAV) are a promising alternative
15 gene delivery systems based on the defective and nonpathogenic parvovirus adeno-associated type 2 virus. All vectors are derived from a plasmid that retains only the AAV 145 bp inverted terminal repeats flanking the transgene expression cassette. Efficient gene transfer and stable transgene delivery due to integration into the genomes of the transduced cell are key features for this vector system. (Wagner *et al.*, *Lancet* 351:9117 1702-3 (1998), Kearns *et*
20 *al.*, *Gene Ther.* 9:748-55 (1996)).

[0195] Replication-deficient recombinant adenoviral vectors (Ad) can be engineered such
that a transgene replaces the Ad E1a, E1b, and E3 genes; subsequently the replication
defector vector is propagated in human 293 cells that supply deleted gene function in trans.
Ad vectors can transduce multiply types of tissues *in vivo*, including nondividing,
25 differentiated cells such as those found in the liver, kidney and muscle system tissues.
Conventional Ad vectors have a large carrying capacity. An example of the use of an Ad
vector in a clinical trial involved polynucleotide therapy for antitumor immunization with
intramuscular injection (Sterman *et al.*, *Hum. Gene Ther.* 7:1083-9 (1998)). Additional
examples of the use of adenovirus vectors for gene transfer in clinical trials include
30 Rosenecker *et al.*, *Infection* 24:1 5-10 (1996); Sterman *et al.*, *Hum. Gene Ther.* 9:7 1083-
1089 (1998); Welsh *et al.*, *Hum. Gene Ther.* 2:205-18 (1995); Alvarez *et al.*, *Hum. Gene*

Ther. 5:597-613 (1997); Topf *et al.*, *Gene Ther.* 5:507-513 (1998); Sterman *et al.*, *Hum. Gene Ther.* 7:1083-1089 (1998).

[0196] Packaging cells are used to form virus particles that are capable of infecting a host cell. Such cells include 293 cells, which package adenovirus, and ψ2 cells or PA317 cells, 5 which package retrovirus. Viral vectors used in gene therapy are usually generated by producer cell line that packages a nucleic acid vector into a viral particle. The vectors typically contain the minimal viral sequences required for packaging and subsequent integration into a host, other viral sequences being replaced by an expression cassette for the protein to be expressed. The missing viral functions are supplied in *trans* by the packaging 10 cell line. For example, AAV vectors used in gene therapy typically only possess ITR sequences from the AAV genome which are required for packaging and integration into the host genome. Viral DNA is packaged in a cell line, which contains a helper plasmid encoding the other AAV genes, namely *rep* and *cap*, but lacking ITR sequences. The cell line is also infected with adenovirus as a helper. The helper virus promotes replication of the 15 AAV vector and expression of AAV genes from the helper plasmid. The helper plasmid is not packaged in significant amounts due to a lack of ITR sequences. Contamination with adenovirus can be reduced by, e.g., heat treatment to which adenovirus is more sensitive than AAV.

[0197] In many gene therapy applications, it is desirable that the gene therapy vector be 20 delivered with a high degree of specificity to a particular tissue type. A viral vector is typically modified to have specificity for a given cell type by expressing a ligand as a fusion protein with a viral coat protein on the viruses outer surface. The ligand is chosen to have affinity for a receptor known to be present on the cell type of interest. For example, Han *et al.*, *PNAS* 92:9747-9751 (1995), reported that Moloney murine leukemia virus can be 25 modified to express human heregulin fused to gp70, and the recombinant virus infects certain human breast cancer cells expressing human epidermal growth factor receptor. This principle can be extended to other pairs of virus expressing a ligand fusion protein and target cell expressing a receptor. For example, filamentous phage can be engineered to display antibody fragments (e.g., FAB or Fv) having specific binding affinity for virtually any chosen cellular 30 receptor. Although the above description applies primarily to viral vectors, the same principles can be applied to nonviral vectors. Such vectors can be engineered to contain specific uptake sequences thought to favor uptake by specific target cells.

[0198] Gene therapy vectors can be delivered *in vivo* by administration to an individual patient, typically by systemic administration (e.g., intravenous, intraperitoneal, intramuscular, subdermal, or intracranial infusion) or topical application, as described below. Alternatively, vectors can be delivered to cells *ex vivo*, such as cells explanted from an individual patient (e.g., lymphocytes, bone marrow aspirates, tissue biopsy) or universal donor hematopoietic stem cells, followed by reimplantation of the cells into a patient, usually after selection for cells which have incorporated the vector.

[0199] *Ex vivo* cell transfection for diagnostics, research, or for gene therapy (e.g., via re-infusion of the transfected cells into the host organism) is well known to those of skill in the art. In some embodiments, cells are isolated from the subject organism, transfected with a nucleic acid (gene or cDNA) encoding a polypeptides of the invention, and re-infused back into the subject organism (e.g., patient). Various cell types suitable for *ex vivo* transfection are well known to those of skill in the art (see, e.g., Freshney *et al.*, *Culture of Animal Cells, A Manual of Basic Technique* (3rd ed. 1994)) and the references cited therein for a discussion of how to isolate and culture cells from patients).

[0200] In one embodiment, stem cells are used in *ex vivo* procedures for cell transfection and gene therapy. The advantage to using stem cells is that they can be differentiated into other cell types *in vitro*, or can be introduced into a mammal (such as the donor of the cells) where they will engraft in the bone marrow. Methods for differentiating CD34+ cells *in vitro* into clinically important immune cell types using cytokines such a GM-CSF, IFN- γ and TNF- α are known (see Inaba *et al.*, *J. Exp. Med.* 176:1693-1702 (1992)).

[0201] Stem cells are isolated for transduction and differentiation using known methods. For example, stem cells are isolated from bone marrow cells by panning the bone marrow cells with antibodies which bind unwanted cells, such as CD4+ and CD8+ (T cells), CD45+ (panB cells), GR-1 (granulocytes), and Iad (differentiated antigen presenting cells) (see Inaba *et al.*, *J. Exp. Med.* 176:1693-1702 (1992)).

[0202] Vectors (e.g., retroviruses, adenoviruses, liposomes, etc.) containing therapeutic nucleic acids can be also administered directly to the organism for transduction of cells *in vivo*. Alternatively, naked DNA can be administered. Administration is by any of the routes normally used for introducing a molecule into ultimate contact with blood or tissue cells. Suitable methods of administering such nucleic acids are available and well known to those of skill in the art, and, although more than one route can be used to administer a particular

composition, a particular route can often provide a more immediate and more effective reaction than another route.

[0203] Pharmaceutically acceptable carriers are determined in part by the particular composition being administered, as well as by the particular method used to administer the 5 composition. Accordingly, there is a wide variety of suitable formulations of pharmaceutical compositions of the present invention, as described below (*see, e.g., Remington's Pharmaceutical Sciences*, 17th ed., 1989).

X. DIAGNOSIS OF DIABETES

[0204] The present invention also provides methods of diagnosing diabetes or a 10 predisposition of at least some of the pathologies of diabetes. Diagnosis can involve determination of a genotype of an individual (e.g., with SNPs) and comparison of the genotype with alleles known to have an association with the occurrence of diabetes. Alternatively, diagnosis also involves determining the level of a polypeptide or 15 polynucleotide of the invention in a patient and then comparing the level to a baseline or range. Typically, the baseline value is representative of a polypeptide or polynucleotide of the invention in a healthy (e.g., lean) person.

[0205] As discussed above, variation of levels (e.g., low or high levels) of a polypeptide or 20 polynucleotide of the invention compared to the baseline range indicates that the patient is either diabetic or at risk of developing at least some of the pathologies of diabetes (e.g., pre-diabetic). The level of a polypeptide in a lean individual can be a reading from a single individual, but is typically a statistically relevant average from a group of lean individuals. The level of a polypeptide in a lean individual can be represented by a value, for example in a computer program.

[0206] In some embodiments, the level of polypeptide or polynucleotide of the invention is 25 measured by taking a blood, urine or tissue sample from a patient and measuring the amount of a polypeptide or polynucleotide of the invention in the sample using any number of detection methods, such as those discussed herein. For instance, fasting and fed blood or urine levels can be tested.

[0207] In some embodiments, the baseline level and the level in a lean sample from an 30 individual, or at least two samples from the same individual differ by at least about 5%, 10%, 20%, 50%, 75%, 100%, 150%, 200%, 300%, 400%, 500%, 1000% or more. In some

embodiments, the sample from the individual is greater by at least one of the above-listed percentages relative to the baseline level. In some embodiments, the sample from the individual is lower by at least one of the above-listed percentages relative to the baseline level.

5 [0208] In some embodiments, the level of a polypeptide or polynucleotide of the invention is used to monitor the effectiveness of antidiabetic therapies such as thiazolidinediones, metformin, sulfonylureas and other standard therapies. In some embodiments the activity or expression of a polypeptide or polynucleotide of the invention will be measured prior to and after treatment of diabetic or pre-diabetic patients with antidiabetic therapies as a surrogate marker of clinical effectiveness. For example, the greater the reduction in expression or activity of a polypeptide of the invention indicates greater effectiveness.

10 [0209] Glucose/insulin tolerance tests can also be used to detect the effect of glucose levels on levels of a polypeptide or polynucleotide of the invention. In glucose tolerance tests, the patient's ability to tolerate a standard oral glucose load is evaluated by assessing serum and 15 urine specimens for glucose levels. Blood samples are taken before the glucose is ingested, glucose is given by mouth, and blood or urine glucose levels are tested at set intervals after glucose ingestion. Similarly, meal tolerance tests can also be used to detect the effect of insulin or food, respectively, on levels of a polypeptide or polynucleotide of the invention.

20 [0210] All publications, accession numbers, and patent applications cited in this specification are herein incorporated by reference as if each individual publication or patent application were specifically and individually indicated to be incorporated by reference.

25 [0211] Although the foregoing invention has been described in some detail by way of illustration and example for purposes of clarity of understanding, it will be readily apparent to one of ordinary skill in the art in light of the teachings of this invention that certain changes and modifications may be made thereto without departing from the spirit or scope of the appended claims.

EXAMPLES

[0212] The following examples are offered to illustrate, but not to limit the claimed invention.

[0213] In obese insulin-resistant or type II diabetic individuals, peripheral tissues especially muscle and fat are known to have a moderately impaired ability to respond to insulin and hence to take up glucose. This defect in glucose metabolism is usually compensated for by increased secretion of insulin from the pancreas, thereby maintaining normal glucose levels.

5 The majority of glucose disposal occurs in the muscle. A number of obese insulin-resistant patients will progress to overt diabetics over time. The molecular defects underlying this peripheral insulin resistance in obese individuals are not well defined. Genes in muscle or fat that exhibit altered expression in obese individuals when compared to lean individuals can be causative genes for insulin resistance and are also able to predict the transition to diabetes.

10 Modulators of such genes can reduce or reverse insulin resistance and increase or restore insulin sensitivity to normal, thereby improving whole body glucose homeostasis, including; for example; insulin secretion. Modulators of such genes can also be used to pre-empt the transition from obesity-induced insulin resistance to diabetes. For these reasons, gene expression profiling was performed in muscle from lean and obese individuals.

15 [0214] The molecular mechanism by which thiazolidinediones (TZDs) cause an increase in peripheral insulin sensitivity was studied. Genes in muscle or fat whose expression is altered by TZDs may lie on a pathway leading from TZD treatment to increased insulin sensitivity. Modulators of such genes can elicit the same effect as TZD treatment. Moreover, such modulators can lack some of the side effects of TZD. The majority of glucose disposal occurs in muscle. For this reason, gene expression profiling in human muscle from diabetics treated with troglitazone was used to identify genes important for TZD action and therefore treatment of diabetes and insulin resistance.

20 [0215] Gene expression profiling was performed on tissue samples (muscle) obtained from lean obese and diabetic individuals. Two studies were performed. In the first study, basal samples were isolated from all individuals at the beginning of a 5 hour hyperinsulinemic euglycemic clamp. Clamp samples were isolated at the end of this procedure. Similar basal and clamp samples were taken 3 months later after all patients had taken the insulin sensitizing drug troglitazone (tro).

25 [0216] In the second study, samples were obtained from lean, obese, and diabetic individuals before and after a hyperinsulinemic euglycemic clamp. No troglitazone treatment was used. For all tissue samples mRNA was isolated from these muscle samples and

converted to cRNA by standard procedures. The gene expression profile for each individual was determined by hybridization of cRNA to custom synthesized Affymetrix chips.

[0217] Gene expression profile differences were calculated as follows. The expression level of a particular gene is indicated by its 'average difference score'. The raw data was analyzed by a statistical test to remove 'outliers'. The mean 'average difference score' was then calculated from the average difference scores for all individuals in a particular treatment group. Genes were determined to be changed in three different comparisons by calculating the Students t test statistic between two conditions and selecting those with t less than or equal to 0.05. Fold change was determined as the ratio of mean average difference score in condition 2 to the mean average difference score in condition 1. The first comparison is basal leans (condition 1) versus basal obese (condition 2). The second comparison is basal leans (condition 1) versus basal diabetics (condition2). The third comprison is basal diabetics before troglitazone treatment (condition 1) versus basal diabetics after troglitazone treatment (condition 2).

15

Palmitoyl-protein thioesterase-2 (PPT2)

[0218] Probe set MBXHUMMUS00687 detects palmitoyl-protein thioesterase-2 (PPT2) nucleic acid sequences. Expression of transcripts encoding PPT2 was increased in obese compared to lean patients in this study.

B/C	Lean Pre-Trog			Obese Pre-Trog			Fold Change	Students t test	Gene name
	Mean Expr	SEM	n	Mean Expr	SEM	n			
B	311	30	17	469	41	16	1.51	0.004	palmitoyl-protein thioesterase-2 (PPT2)

20 Legend: B/C indicates sample is from Basal or Clamp; "Pre-Trog" indicates sample was taken before 3 months of Troglitazone treatment; "Mean Expr" indicates mean expression; "SEM" indicates standard error of mean; "n" indicates number of patient samples; "Fold Change" indicates fold change of obese in comparison to lean patients.

[0219] PPT2 contains the following protein domain (designated with reference to SEQ ID NO:2): Palmitoyl Protein Thioesterase domain encoded by amino acids 32 to 302.

[0220] PPT-2 splice variant contains the following protein domain (designated with reference to SEQ ID NO:8): Palmitoyl Protein Thioesterase encoded by amino acids 38 to 308.

Testican-1

[0221] Probe set MBXHUMMUS03359 detects Testican-1 nucleic acid sequences.

Expression of Testican-1 transcripts was decreased in obese compared to lean patients in this study.

B/C	Lean Pre Trog			Obese Pre Trog			Fold Change	Students t test	Gene name
	Mean Expr	SEM	n	Mean Expr	SEM	n			
B	328	59	7	160	21	7	0.49	0.044	Testican-1

5 Legend: B/C indicates sample is from Basal or Clamp; "Pre-Trog" indicates sample was taken before 3 months of Troglitazone treatment; "Mean Expr" indicates mean expression; "SEM" indicates standard error of mean; "n" indicates number of patient samples; "Fold Change" indicates fold change of obese in comparison to lean patients.

10 [0222] Testican-1 polypeptides contain the following protein domains (designated with reference to SEQ ID NO:10):

Kazal-type serine protease inhibitor domain: encoded by amino acids 136-180

Thyroglobulin type-1 repeat domain encoded by amino acids 313-376.

15 **3-oxo acid coA transferase (OXCT)**

[0223] Probe set MBXHUMMUS04777 detects expression of 3-oxo acid coA transferase (OXCT) mRNA. Expression of transcripts encoding 3-oxo acid coA transferase is reduced in diabetic individuals as compared to lean, non-diabetic individuals.

B/C	Lean Pre-Trog			Diabetic Pre-Trog			Fold Change	Students t test	Gene name
	Mean Expr	SEM	n	Mean Expr	SEM	n			
B	459	56	17	251	36	19	0.55	0.004	3 oxo acid coA transferase (OXCT)

20 Legend: B/C indicates sample is from Basal or Clamp; "Pre-Trog" indicates sample was taken before 3 months of Troglitazone treatment; "Mean Expr" indicates mean expression; "SEM" indicates standard error of mean; "n" indicates number of patient samples; "Fold change" indicates fold change of diabetic pre-trog/lean pre-trog.

[0224] Transcripts encoding 3-oxo acid coA transferase (OXCT) contain the following protein domains (designated with reference to SEQ ID NO:14):

Signal peptide encoded by amino acids 1 to 39

Coenzyme A transferase encoded by amino acids 42 to 273

Coenzyme A transferase encoded by amino acids 301 to 502.

Ceramidase

[0225] Probe set MBXHUMMUS12975 detects a nucleic acids encoding ceramidase. Expression of transcripts encoding ceramidase was reduced in tro-treated patients compared to untreated patients in this study.

B/C	Diabetic Pre-Trog			Diabetic Post-Trog			Fold Change	Students t test	Gene name
	Mean Expr	SEM	n	Mean Expr	SEM	n			
C	630	70	9	427	52	10	0.68	0.047	Ceramidase

5 Legend: B/C indicates sample is from Basal or Clamp; "Pre-Trog" and "Post-Trog" indicates sample was taken before or after 3 months of Troglitazone treatment; "Mean Expr" indicates mean expression; "SEM" indicates standard error of mean; "n" indicates number of patient samples; "Fold Change" indicates fold change of diabetic post tro/diabetic pre tro.

10 [0226] Ceramidase contains the following protein domain (designated with reference to SEQ ID NO:18): cholylglycine hydrolase encoded by amino acids 143 to 394.

MK-STYX

15 [0227] Probe set MBXHUMMUS15122 detects MK-STYX nucleic acid sequences. Expression of MK-STYX transcripts was decreased in obese compared to lean patients in this study.

B/C	Lean Pre-Trog			Obese Pre-Trog			Fold Change	Students t test	Gene name
	Mean Expr	SEM	n	Mean Expr	SEM	n			
B	309	31	7	187	42	7	0.61	0.041	MK-STYX

20 Legend: B/C indicates sample is from Basal or Clamp; "Pre-Trog" indicates sample was taken before 3 months of Troglitazone treatment; "Mean Expr" indicates mean expression; "SEM" indicates standard error of mean; "n" indicates number of patient samples; "Fold Change" indicates fold change of obese in comparison to lean patients.

25 [0228] MK-STYX contains the following protein domains (designated with reference to SEQ ID NO:24): Dual specificity phosphatase, catalytic domain encoded by amino acids 160-299.

MP1

[0229] Probe set MBXHUMMUS16895 detects MP1 nucleic acid sequences. Expression of MP1 transcripts was increased in obese compared to lean patients in this study.

B/C	Lean Pre-Trog			Obese Pre-Trog			Fold Change	Students t test	Gene name
	Mean Expr	SEM	n	Mean Expr	SEM	n			
B	268	76	7	541	91	7	2.02	0.041	MP1

Legend: B/C indicates sample is from Basal or Clamp; "Pre-Trog" indicates sample was taken before 3 months of Troglitazone treatment; "Mean Expr" indicates mean expression; "SEM" indicates standard error of mean; "n" indicates number of patient samples; "Fold Change" indicates fold change of obese in comparison to lean patients.

5

BPTF

[0230] Probe set MBXHUMMUS17438 detects BPTF nucleic acid sequences. Expression of transcripts encoding BPTF was higher in diabetic patients as compared to lean non-diabetic individuals in this study.

B/C	Lean Pre-Trog			Diabetic Pre-Trog			Fold Change	Students t test	Gene name
	Mean Expr	SEM	n	Mean Expr	SEM	n			
B	189	33	17	353	43	19	1.871	0.007	BPTF

Legend: B/C indicates sample is from Basal or Clamp; "Pre-Trog" indicates sample was taken before 3 months of Troglitazone treatment; "Mean Expr" indicates mean expression; "SEM" indicates standard error of mean; "n" indicates number of patient samples; "Fold change" indicates fold change of diabetic pre-trog/lean pre-trog.

10 [0231] BPTF contains the following domains (designated with reference to SEQ ID NO:30):

DDT domain encoded by amino acids 101 to 161

PHD domain encoded by amino acids 253 to 298

PHD domain encoded by amino acids 2604 to 1653

20 Bromodomain encoded by amino acids amino acids 2667 to 2754

GS3955

[0232] Probe set MBXHUMMUS20202 detects GS3955 nucleic acid sequences. Expression of transcripts encoding GS3955 was reduced in diabetic patients as compared to lean, non-diabetic patients in this study.

B/C	Lean Pre-Trog			Diabetic Pre-Trog			Fold Change	Students t test	Gene name
	Mean Expr	SEM	n	Mean Expr	SEM	n			
B	297	35	17	198	26	19	0.665	0.028	GS3955

Legend: B/C indicates sample is from Basal or Clamp; "Pre-Trog" indicates sample was taken before 3 months of Troglitazone treatment; "Mean Expr" indicates mean expression; "SEM" indicates standard error of mean; "n" indicates number of patient samples; "Fold change" indicates fold change of diabetic pre-trog/lean pre-trog.

30

[0233] Transcripts encoding GS3955 contain the following protein domain (designated with reference to SEQ ID NO:34): protein kinase, encoded by amino acids 64 to 308.

Follistatin related Protein (FRP)

5 [0234] Probe set MBXHUMMUS20736 detects FRP nucleic acid sequences. Expression of transcripts encoding FRP was decreased in obese compared to lean patients in this study.

B/C	Lean Pre-Trog			Obese Pre-Trog			Fold Change	Students t test	Gene name
	Mean Expr	SEM	n	Mean Expr	SEM	n			
B	406	27	7	270	25	7	0.67	0.003	Follistatin related Protein (FRP)

10 Legend: B/C indicates sample is from Basal or Clamp; "Pre-Trog" indicates sample was taken before 3 months of Troglitazone treatment; "Mean Expr" indicates mean expression; "SEM" indicates standard error of mean; "n" indicates number of patient samples; "Fold Change" indicates fold change of obese in comparison to lean patients.

[0235] FRP contains the following protein domains (designated with reference to SEQ ID NO:38):

15 Signal Peptide domain encoded by amino acids 1 to 20
 Kazal domain encoded by amino acids 54 to 98
 EF-Hand domain encoded by amino acids 148 to 175
 EF Hand domain encoded by amino acids 197 to 225.

20 Alcohol Dehydrogenase 2 (ADH2)

[0236] Probe set MBXHUMMUS22099 detects Alcohol Dehydrogenase 2 (ADH2) nucleic acid sequences. Expression of transcripts encoding ADH2 was increased in obese compared to lean patients in this study.

B/C	Lean Pre-Trog			Obese Pre-Trog			Fold Change	Students t test	Gene name
	Mean Expr	SEM	n	Mean Expr	SEM	n			
B	164	35	17	357	43	16	2.18	0.003	ADH2

25 Legend: B/C indicates sample is from Basal or Clamp; "Pre-Trog" indicates sample was taken before 3 months of Troglitazone treatment; "Mean Expr" indicates mean expression; "SEM" indicates standard error of mean; "n" indicates number of patient samples; "Fold Change" indicates fold change of obese in comparison to lean patients.

[0237] ADH2 contains the following protein domain (designated with reference to SEQ ID NO:44): zinc-binding dehydrogenase domain encoded by amino acids 16 to 375.

Acylphosphatase

[0238] Probe set MBXHUMMUS22666 detects acylphosphatase nucleic acid sequences.

Expression of acyphosphatase transcripts was increased in obese compared to lean patients in
5 this study.

B/C	Lean Pre-Trog			Obese Pre-Trog			Fold Change	Students t test	Gene name
	Mean Expr	SEM	n	Mean Expr	SEM	n			
B	90	30	7	295	47	7	3.29	0.005	Acylphosphatase

Legend: B/C indicates sample is from Basal or Clamp; "Pre-Trog" indicates sample was taken before 3 months of Troglitazone treatment; "Mean Expr" indicates mean expression; "SEM" indicates standard error of mean; "n" indicates number of patient samples; "Fold Change" indicates fold change of obese in comparison to lean patients.

10

Acylphosphatase contains the following protein domain (designated with reference to SEQ ID NO:50): acylphosphatase domain encoded by amino acids 6-94.

PRK1

15 [0239] Probe set MBXHUMMUS26259 detects PRK1 nucleic acids. Expression of transcripts encoding PRK1 was decreased in tro-treated patients compared to untreated patients in this study.

B/C	Diabetic Pre-Trog			Diabetic Post-Trog			Fold Change	Students t test	Gene name
	Mean Expr	SEM	n	Mean Expr	SEM	n			
B	1634	301	9	874	188	10	0.54	0.005	PRK1

Legend: B/C indicates sample is from Basal or Clamp; "Pre-Trog" and "Post-Trog" indicates sample was taken before or after 3 months of Troglitazone treatment; "Mean Expr" indicates mean expression; "SEM" indicates standard error of mean; "n" indicates number of patient samples; "Fold Change" indicates fold change of diabetic post tro/diabetic pre tro.

20

[0240] PRK contains the following protein domains (designated with reference to SEQ ID NO:54):

25 HR1 Domain at amino acids 37 to 100;

HR1 Domain at amino acids 126 to 203;

HR1 Domain at amino acids 213 to 291;

C2 Domain at amino acids 325 to 461; and

Protein Kinase Domain at amino acids 615 to 874.

30

HIOMT

[0241] Probe set MBXHUMMUS28113 detect HIOMT nucleic acid sequences.

Expression of transcripts encoding HIOMT was decreased in diabetic patients compared to lean, non-diabetic patients in this study.

B/C	Lean Pre-Trog			Diabetic Pre-Trog					
	Mean Expr	SEM	n	Mean Expr	SEM	n	Fold Change	Students t test	Gene name
B	843	56	17	550	42	19	0.65	0.0003	HIOMT

5

[0242] Expression of transcripts encoding HIOMT was increased in tro-treated patients compared to untreated patients.

B/C	Diabetic Pre-Trog			Diabetic Post-Trog					
	Mean Expr	SEM	n	Mean Expr	SEM	n	Fold Change	Students t test	Gene name
B	518	28	9	781	85	10	1.51	0.035	HIOMT

Legend: B/C indicates sample is from Basal or Clamp; "Pre-Trog" and "Post-Trog" indicates sample was taken before or after 3 months of Troglitazone treatment; "Mean Expr" indicates mean expression; "SEM" indicates standard error of mean; "n" indicates number of patient samples; "Fold Change" indicates fold change of diabetic post tro/diabetic pre tro.

10 [0243] HIOMT contains the following protein domain (designated with reference to SEQ ID NO:60): an O-methyltransferase Domain at amino acids 79 to 350.

15

Taurine Transporter

[0244] Probe set MBXHUMMUS28264 detects Taurine Transporter nucleic acid sequences. Expression of transcripts encoding Taurine Transporter was increased in obese compared to lean patients in this study.

B/C	Lean Pre-Trog			Obese Pre-Trog					
	Mean Expr	SEM	n	Mean Expr	SEM	n	Fold Change	Students t test	Gene name
B	1474	133	7	2303	181	7	1.56	0.004	Taurine Transporter

Legend: B/C indicates sample is from Basal or Clamp; "Pre-Trog" indicates sample was taken before 3 months of Troglitazone treatment; "Mean Expr" indicates mean expression; "SEM" indicates standard error of mean; "n" indicates number of patient samples; "Fold Change" indicates fold change of obese in comparison to lean patients.

25

[0245] Taurine Transporter polypeptides contain the following protein domain (designated with reference to SEQ ID NO:62): SNF domain encoded by amino acids 41 to 581.

(R)-3-hydroxybutyrate dehydrogenase

[0246] Probe set MBXHUMMUS28343 detects (R)-3-hydroxybutyrate dehydrogenase nucleic acid sequences. Expression of transcripts encoding (R)-3-hydroxybutyrate dehydrogenase was reduced in diabetic patients as compared to lean, non-diabetic patients in 5 this study.

B/C	Lean Pre-Trog			Diabetic Pre-Trog			Fold Change	Students t test	Gene name
	Mean Expr	SEM	n	Mean Expr	SEM	n			
B	2524	244	17	1672	176	19	0.66	0.009	(R)-3-hydroxybutyrate dehydrogenase

Legend: B/C indicates sample is from Basal or Clamp; "Pre-Trog" indicates sample was taken before 3 months of Troglitazone treatment; "Mean Expr" indicates mean expression; "SEM" indicates standard error of mean; "n" indicates number of patient samples; "Fold change" indicates fold change of diabetic pre-trog/lean pre-trog.

[0247] Transcripts encoding (R)-3-hydroxybutyrate dehydrogenase contain the following protein domain (designated with reference to SEQ ID NO:68): short chain dehydrogenase domain encoded by amino acids amino acids 54 to 336.

15 Aldehyde reductase

[0248] Probe set mbxhummus28542 detects aldehyde reductase nucleic acid sequences. Expression of transcripts encoding aldehyde reductase was higher in diabetic patients as compared to lean, non-diabetic patients in this study.

B/C	Lean Pre-Trog			Diabetic Pre-Trog			Fold Change	Students t test	Gene name
	Mean Expr	SEM	n	Mean Expr	SEM	n			
B	265	33	17	437	41	19	1.65	0.014	aldehyde reductase

Legend: B/C indicates sample is from Basal or Clamp; "Pre-Trog" indicates sample was taken before 3 months of Troglitazone treatment; "Mean Expr" indicates mean expression; "SEM" indicates standard error of mean; "n" indicates number of patient samples; "Fold change" indicates fold change of diabetic pre-trog/lean pre-trog.

[0249] Expression of transcripts encoding aldehyde reductase was higher in obese patients 25 as compared to lean patients in this study.

B/C	Lean Pre-Trog			Obese Pre-Trog			Fold Change	Students t test	Gene name
	Mean Expr	SEM	n	Mean Expr	SEM	n			
B	265	33	17	434	51	16	1.64	0.023	aldehyde reductase

Legend: B/C indicates sample is from Basal or Clamp; "Pre-Trog" indicates sample was taken before 3 months of Troglitazone treatment; "Mean Expr" indicates mean expression; "SEM" indicates standard error of mean; "n" indicates number of patient samples; "Fold change" indicates fold change of diabetic pre-trog/lean pre-trog.

patient samples; "Fold change" indicates fold change of obese pre-trog/lean pre-trog.

[0250] Transcripts encoding aldehyde reductase contain the following protein domain
 5 (designated with reference to SEQ ID NO:74): aldo/keto reductase domain encoded by amino acids 8 to 296.

PDE4B

Probe set MBXHUMMUS29013 detects PDE4B nucleic acid sequences. Expression of
 10 transcripts encoding PDE4B was higher in diabetic patients as compared to lean, non-diabetic patients in this study.

B/C	Lean Pre-Trog			Diabetic Pre-Trog			Fold Change	Students t test	Gene name
	Mean Expr	SEM	n	Mean Expr	SEM	n			
B	406	33	17	646	69	19	1.60	0.004	PDE4B

Legend: "B/C" indicates sample is from Basal or Clamp; "Pre-Trog" and indicates sample was taken before 3 months of Troglitazone treatment; "Mean Expr" indicates mean expression; "SEM" indicates standard error of mean; "n" indicates number of patient samples; "Fold change" indicates fold change of diabetic pre-trog/lean pre-trog.
 15

[0251] Transcripts encoding PDE4B contain the following protein domain (designated with reference to SEQ ID NO:80): PDease domain encoded by amino acids 233-477.

20

CYP27

[0252] Probe set:mbxhummus29429 detects a transcript encoding CYP27. Expression of transcripts encoding CYP27 was decreased in obese compared to lean patients in this study.

B/C	Lean Pre-Trog			Obese Pre-Trog			Fold Change	Students t test	Gene name
	Mean Expr	SEM	n	Mean Expr	SEM	n			
B	806	77	7	489	85	7	0.61	0.018	CYP27

Legend: B/C indicates sample is from Basal or Clamp; "Pre-Trog" indicates sample was taken before 3 months of Troglitazone treatment; "Mean Expr" indicates mean expression; "SEM" indicates standard error of mean; "n" indicates number of patient samples; "Fold Change" indicates fold change of obese in comparison to lean patients.
 25

[0253] CYP27 contains the following protein domain (designated with reference to SEQ ID NO:86): signal peptide at amino acids 1 to 40; and cytochrome P450 domain at amino acids from 61 to 526.

Endothelin A receptor

[0254] Probe set MBXHUMMUS29897 detects expression of Endothelin A receptor nucleic acid sequences. Expression of transcripts encoding Endothelin A receptor was reduced in tro-treated patients compared to untreated patients.

B/C	Diabetic Pre-Trog			Diabetic Post-Trog			Fold Change	Students t test	Gene name
	Mean Expr	SEM	n	Mean Expr	SEM	n			
C	194	33	9	102	25	10	0.52	0.023	Endothelin A receptor

5 Legend: B/C indicates sample is from Basal or Clamp; "Pre-Trog" and "Post-Trog" indicates sample was taken before or after 3 months of Troglitazone treatment; "Mean Expr" indicates mean expression; "SEM" indicates standard error of mean; "n" indicates number of patient samples; "Fold Change" indicates fold change of diabetic post tro/diabetic pre tro.

10 [0255] Endothelin A receptor contains the following protein domain (designated with reference to SEQ ID NO:92): a 7 transmembrane receptor at amino acids 97 to 369.

EGF-Like

[0256] Probe set MBXHUMMUS30922 detects a transcript encoding EGF-Like.

15 Expression of transcripts encoding EGF-Like was decreased in obese compared to lean patients in this study.

B/C	Lean Pre-Trog			Obese Pre-Trog			Fold Change	Students t test	Gene name
	Mean Expr	SEM	n	Mean Expr	SEM	n			
B	432	66	17	206	51	16	0.48	0.019	EGF-Like

Legend: B/C indicates sample is from Basal or Clamp; "Pre-Trog" indicates sample was taken before 3 months of Troglitazone treatment; "Mean Expr" indicates mean expression; "SEM" indicates standard error of mean; "n" indicates number of patient samples; "Fold Change" indicates fold change of obese in comparison to lean patients.

20 [0257] EGF-Like contains the following protein domains (designated with reference to SEQ ID NO:98): a signal peptide at amino acids 1 to 106; and an EGF-like domain at amino acids 108-143.

25

TRP-MET

[0258] Probe set MBXHUMMUS3211 detects a transcript encoding TRP-MET.

Expression of transcripts encoding TRP-MET was increased in obese compared to lean patients in this study.

30

B/C	Lean Pre-Trog			Obese Pre-Trog			Fold Change	Students t test	Gene name
	Mean Expr	SEM	n	Mean Expr	SEM	n			
B	536	30	7	884	57	7	1.65	0.000	TRP-MET

Legend: B/C indicates sample is from Basal or Clamp; "Pre-Trog" indicates sample was taken before 3 months of Troglitazone treatment; "Mean Expr" indicates mean expression; "SEM" indicates standard error of mean; "n" indicates number of patient samples; "Fold Change" indicates fold change of obese in comparison to lean patients.

5

[0259] TRP-MET contains the following protein domains (designated with reference to

SEQ ID NO:104):

Sema domain at amino acids 55 to 500;

Plexin Repeat at amino acids 519 to 562;

10 IPT/TIG domain at amino acids 563 to 655;

IPT/TIG domain at amino acids 657 to 739;

IPT/TIG domain at amino acids 762 to 854; and

Protein Kinase domain at amino acids 1096 to 1357.

15 MDC9

[0260] Probe set MBXHUMMUS32618 detects MDC9 nucleic acid sequences. Expression of transcripts encoding MDC9 was increased in obese compared to lean patients in this study.

B/C	Lean Pre-Trog			Obese Pre-Trog			Fold Change	Students t test	Gene name
	Mean Expr	SEM	n	Mean Expr	SEM	n			
B	59	4	7	123	22	7	2.09	0.025	MDC9

Legend: B/C indicates sample is from Basal or Clamp; "Pre-Trog" indicates sample was taken before 3 months of Troglitazone treatment; "Mean Expr" indicates mean expression; "SEM" indicates standard error of mean; "n" indicates number of patient samples; "Fold Change" indicates fold change of obese in comparison to lean patients.

20

[0261] MDC polypeptides contain the following protein domains (designated with reference to SEQ ID NO:110):

25 Signal Peptide domain encoded by amino acids 1 to 29

Pep_M12B_Propep domain encoded by amino acids 80 to 196

Metalloproteinase domain encoded by amino acids 212 to 406

Disintegrin domain encoded by amino acids 423 to 499

EGF-like domain encoded by amino acids 644 to 673

30 Transmembrane domain encoded by amino acids 698 to 717

Cytoplasmic domain encoded by amino acids 718 tp 819

WHAT IS CLAIMED IS:

1 1. A method for identifying an agent for treating a diabetic or pre-diabetic
2 individual, the method comprising the steps of:

3 (i) contacting an agent to a mixture comprising a polypeptide encoded by
4 a nucleic acid that hybridizes under stringent conditions to a nucleic acid encoding SEQ ID
5 NO:2, SEQ ID NO:8, SEQ ID NO:10, SEQ ID NO:14, SEQ ID NO:18, SEQ ID NO:24, SEQ
6 ID NO:26, SEQ ID NO:30, SEQ ID NO:34, SEQ ID NO:38, SEQ ID NO:44, SEQ ID NO:50,
7 SEQ ID NO:54, SEQ ID NO:60, SEQ ID NO:62, SEQ ID NO:68, SEQ ID NO:74, SEQ ID
8 NO:80, SEQ ID NO:86, SEQ ID NO:92, SEQ ID NO:98, SEQ ID NO:104, or SEQ ID
9 NO:110; and

10 (ii) selecting an agent that modulates the expression or activity of the
11 polypeptide or that binds to the polypeptide, thereby identifying an agent for treating a
12 diabetic or pre-diabetic individual.

1 2. The method of claim 1, the method further comprising selecting an
2 agent that modulates insulin sensitivity.

1 3. The method of claim 1, wherein step (ii) comprises selecting an agent
2 that modulates expression of the polypeptide.

1 4. The method of claim 1, wherein step (ii) comprises selecting an agent
2 that modulates the activity of the polypeptide.

1 5. The method of claim 1, wherein step (ii) comprises selecting an agent
2 that specifically binds to the polypeptide.

1 6. The method of claim 1, wherein the polypeptide is expressed in a cell
2 and the cell is contacted with the agent.

1 7. The method of claim 1, wherein the polypeptide is SEQ ID NO:2, SEQ
2 ID NO:8, SEQ ID NO:10, SEQ ID NO:14, SEQ ID NO:18, SEQ ID NO:24, SEQ ID NO:26,
3 SEQ ID NO:30, SEQ ID NO:34, SEQ ID NO:38, SEQ ID NO:44, SEQ ID NO:50, SEQ ID
4 NO:54, SEQ ID NO:60, SEQ ID NO:62, SEQ ID NO:68, SEQ ID NO:74, SEQ ID NO:80,
5 SEQ ID NO:86, SEQ ID NO:92, SEQ ID NO:98, SEQ ID NO:104, or SEQ ID NO:110.

1 8. A method of treating a diabetic or pre-diabetic animal, the method
2 comprising administering to the animal a therapeutically effective amount of an agent
3 identified by the method of claim 1.

1 9. The method of claim 8, wherein the agent is an antibody.

1 10. The method of claim 9, wherein the antibody is a monoclonal
2 antibody.

1 11. The method of claim 8, wherein the animal is a human.

1 12. A method of introducing an expression cassette into a cell, the method
2 comprising,

3 introducing into the cell an expression cassette comprising a promoter
4 operably linked to a polynucleotide encoding a polypeptide, wherein the polynucleotide
5 hybridizes under stringent conditions to a nucleic acid encoding SEQ ID NO:2, SEQ ID
6 NO:8, SEQ ID NO:10, SEQ ID NO:14, SEQ ID NO:18, SEQ ID NO:24, SEQ ID NO:26,
7 SEQ ID NO:30, SEQ ID NO:34, SEQ ID NO:38, SEQ ID NO:44, SEQ ID NO:50, SEQ ID
8 NO:54, SEQ ID NO:60, SEQ ID NO:62, SEQ ID NO:68, SEQ ID NO:74, SEQ ID NO:80,
9 SEQ ID NO:86, SEQ ID NO:92, SEQ ID NO:98, SEQ ID NO:104, or SEQ ID NO:110.

1 13. The method of claim 12, wherein the polypeptide comprises SEQ ID
2 NO:2, SEQ ID NO:8, SEQ ID NO:10, SEQ ID NO:14, SEQ ID NO:18, SEQ ID NO:24, SEQ
3 ID NO:26, SEQ ID NO:30, SEQ ID NO:34, SEQ ID NO:38, SEQ ID NO:44, SEQ ID NO:50,
4 SEQ ID NO:54, SEQ ID NO:60, SEQ ID NO:62, SEQ ID NO:68, SEQ ID NO:74, SEQ ID
5 NO:80, SEQ ID NO:86, SEQ ID NO:92, SEQ ID NO:98, SEQ ID NO:104, or SEQ ID
6 NO:110.

1 14. The method of claim 12, wherein the cell is selected from the group
2 consisting of an adipocyte and a skeletal muscle cell.

1 15. The method of claim 12, the method further comprising introducing
2 the cell into a human.

1 16. The method of claim 15, wherein the human is diabetic.

1 17. The method of claim 15, wherein the human is prediabetic.

1 18. The method of claim 15, wherein the cell is from the human.

1 19. A method of diagnosing an individual who has Type 2 diabetes or is
2 prediabetic, the method comprising,

3 detecting in a sample from the individual the level of a polypeptide or the level
4 of a polynucleotide encoding the polypeptide, wherein the polynucleotide hybridizes under
5 stringent conditions to a nucleic acid encoding an amino acid sequence selected from the
6 group consisting of SEQ ID NO:2, SEQ ID NO:8, SEQ ID NO:10, SEQ ID NO:14, SEQ ID
7 NO:18, SEQ ID NO:24, SEQ ID NO:26, SEQ ID NO:30, SEQ ID NO:34, SEQ ID NO:38,
8 SEQ ID NO:44, SEQ ID NO:50, SEQ ID NO:54, SEQ ID NO:60, SEQ ID NO:62, SEQ ID
9 NO:68, SEQ ID NO:74, SEQ ID NO:80, SEQ ID NO:86, SEQ ID NO:92, SEQ ID NO:98,
10 SEQ ID NO:104, or SEQ ID NO:110;

11 wherein a modulated level of the polypeptide or polynucleotide in the sample
12 compared to a level of the polypeptide or polynucleotide in either a lean individual or a
13 previous sample from the individual indicates that the individual is diabetic or prediabetic.

1 20. The method of claim 19, wherein the detecting step comprises
2 contacting the sample with an antibody that specifically binds to the polypeptide.

1 21. The method of claim 19, wherein the amino acid sequence comprises
2 SEQ ID NO:2, SEQ ID NO:8, SEQ ID NO:10, SEQ ID NO:14, SEQ ID NO:18, SEQ ID
3 NO:24, SEQ ID NO:26, SEQ ID NO:30, SEQ ID NO:34, SEQ ID NO:38, SEQ ID NO:44,
4 SEQ ID NO:50, SEQ ID NO:54, SEQ ID NO:60, SEQ ID NO:62, SEQ ID NO:68, SEQ ID
5 NO:74, SEQ ID NO:80, SEQ ID NO:86, SEQ ID NO:92, SEQ ID NO:98, SEQ ID NO:104,
6 or SEQ ID NO:110.

1 22. The method of claim 19, wherein the detecting step comprises
2 quantifying mRNA encoding the polypeptide.

1 23. The method of claim 22, wherein the mRNA is reverse transcribed and
2 amplified in a polymerase chain reaction.

1 24. The method of claim 19, wherein the sample is a blood, urine or tissue
2 sample.

WO 03/102163

PCT/US03/17825

1/68

TABLE OF SEQUENCES

SEQ ID NO:1 Human PPT2 nucleotide sequence

HUM125104 accession:BC001355 coding sequence:238..1146
 GGCACGAGGGTGGGTCCAGACTTGGGATAAGTAAACAGCGGGTGGAGCAGGCCTACGGACCCAGGCCAGGTGG
 5 GAGTCCTGCACTCTCAAGGGGCTGGCTGCTCACGGTATTAAAGAACACTCCGCGTTGTTCATGGCTGAGGC
 GATGCATTAGGAAGATCCTGGACCTAGAGAACAAAGTCCCCGAAACGCTGAGTTGGAGGCAGCTCGGCTTCTG
 GTTGGCGGGAGCATGCTGGGCTCTGGGGCAGCGGCTCCCCGCGCGTGGGCTCTGCTCTGTTGCCTTCTG
 CCGCTGCTGCTGCTTGAGCCCCCGCGCCCCACCGCGCGTCTACAAGCCGGTACATCGTGGTGCATGGCTCTC
 GACAGCTCGTACAGCTTCCGCCACCTGCTGGAATACATCAATGAGACACACCCCGGACTGTGGTGACAGTGC
 10 10 GATCTCTTCGATGGGAGAGAGAGCTTGCACCCCTGTGGAACAGGTGCAAGGGTCCGAGAGGCTGTGGTCCC
 ATCATGGCAAAGGCCCTCAAGGGTGCATCTCATCTGCTACTCGCAGGGGGCCTTGTGTGCCGGCTCTGCTT
 TCTGTCTGGATGATCACAACTGGATTCTTCATCTCCCTCTCCACAGATGGGACAGTATGGAGACACG
 GACTACTGAAGTGGCTGTTCCCACCTCCATGCGGCTAACCTCTATCGGATCTGCTATAGCCCTGGGCCAG
 GAATTCTCCATCTGCAACTACTGGCATGATCCCCACACGATGACTTGTACCTCAATGCCAGCAGCTTCTGGCC
 15 15 CTGATCAAATGGGAAAGAGACCATCCAATGCCACAGTATGGCGGAAGAACATTCTGCGTGTGGCCACCTGGT
 CTGATTGGGGCCCTGATGATGGTGTATTACTCCCTGGCAGTCCAGCTTCTTGGTTCTATGATGCAAATGAG
 ACCGTCTGGAGATGGAGGAGCAACTGGTTATCTGCGGGATTCTTGGTTGAAGACTCTATTGGCCGGGG
 GCCATAGTGAGGTGTCATGGCCGGTATCTCCCACACAGCCTGGCACTCCAACCGTACCCCTTATGAGACCTGC
 ATTGAACCTTGGCTCTCCTGAGGATATTCAGGGTCCCCAGGAACCTCTCGGTCCAGAGACCAAGTGGTGGCC
 20 20 TTGGAAAGCAGATGTCAGGCTTGGTGTGCCGTGACCACCTCATTGCTCCCATTATTCAGGGTCCCC
 AGACGGGTTTAGTAGAGACTTGGCTCCCAGAACCCCTTCCTCTGCTCCCTCATGAATGACAATTCCAGGCC
 TCCCCTACCTCATGTCCTCTCATGGGGGATTGCTCCGTGCTGCTCCCTCTCAAGGCCAAGTGGGAAGT
 GAGAAACCATGTTTAACCTGTGGCTGCTTGTGCTGCTCCCTCGTATCTGGCTGTGGTGGAGAAC
 CCACCCCTGCCACCACAGGGTCTCCTCCAGGCCACTCAGGACATTAGCTCTCCCTCCATGTTCC
 25 25 CTTTTTCTCTAAAGTCCCTGACATCAGCCCTCCAACTCCTAAAGAGGGACTACCCATGAGAGTGGGTTCTGA
 GGCTCCCTATGGGACAGTCCGTTCTGAAGTGTCACTGTTGGGAATATCTGTGGCCTATGAGGCCATCTC
 AGGTTTGGGATCCCCAGTCCTATGATCAGTGTGGAGTACCCCTGGAGAGCCTAGTTCTTGGGCC
 CAGGCCCTTTAACTACCTTGAATAGGTGTATCCCTGTATTTATGAAATAAGTCCATTCTC
 AAAAAAAA
 30

SEQ ID NO:2 Human PPT2 polypeptide sequence

protein_id:gi12655015

MLGLWGQLPAAWVLLLPFLPLLLAAPAPHRASYKPVIVVHGLFDSSYSFRHLLEYINETHPGTVVTVLDFD
 GRESLRPLWEQVQGFREAVVPIMAKAPQGVHLICYSQGGLVCRALLSVMDDHNVDIFISLSPQMGQYGDTDYLN
 35 35 WLFPTSMRSNLYRICYSPWGQEFSICNYWHDPHDDLYLNASSFLALINGERDHPNATVWRKNFLRVGHLVLIGG
 PDDGVITPWQSSFFGFYDANEtvLEMEEQLVYLRDSFGLKTLLARGAIVRCPMAGISHTAWHSNRTLYETCIEPW
 LS

SEQ ID NO:3 mouse PPT2 nucleic acid sequence

accession:NM_019441

coding sequence:1..909

ATGCCGGGCTATGGAGGCAGAGGCTTCCTCGGCTTGGCTTGCTCTGCCGTCCCTGCCGCTGCTGATG
 CCCGAGCCCCCGCAGCCCACCGCGGGTCTACAAGCCCGTATCGTGGTCACGGGCTCTTGACAGTTCATAC
 5 AGCTTCCGCCACCTGCTGGACTATATCAATGAGACACACACCAGGACTGTGGTGACAGTGCTTGATCTTCGAT
 GGCAGAGAGAGAGTTGCGGCCCTGTGGGAACAGGTACAAGGGTCCGAGAGGCTGTGGTCCCCATCATGGAAAAG
 GCCCCTGAAGGAGTGACCTCATCTGCTACTCCCAGGGGGCCTGGTGTGCCGTGCTTGCTGTCTGATGGAT
 AACACACAATGTGGACTCTTCATCTCCCTCCTCCCCACAGATGGGCCAGTATGGAGACACGGACTATTGAAA
 TGGCTCTTCCCCACGTCCATGCGGTCTAACCTCTATCGGGTCTGCTATAGTCCTGGGCCAGGAATTTCCATT
 10 TGCAAACTACTGGCACGATCCTCACCAACGATGACTTGTACCTCAATGCCAGCAGCTTCTGGCCCTCATCAATGGG
 GAAAGAGACCATCCAAATGCCACTGCATGGCGGAAGAACCTCCTCGCGTGGGCCGTGGTGCTGATTGGGGGT
 CCTGATGATGGCGTTATCACTCCCTGGCAATCTAGCTTGGTTCTATGATGCCAATGAGACAGTTCTGGAG
 ATGGAGGAGCAGCCGGTGTATCTCGAGATTCTTGGTTGAAGACTCTCCTGGCCGGGGCCATAGTGAGG
 TGTCCCCATGGCTGGCATCTCACACCACGTGGCACTCTAACCGTACGCTACGATACTTGCAATTGAGCCGTGG
 15 CTCTCCCTGA

SEQ ID NO:4 Mouse PPT2 polypeptide sequence

accession:gi9506985

MPGLWRQRLPSAWALLLPFLPLLMPAAPAAHRGSYKPVIVVHGLFDSSYSFRHLLDYINETHHTGTVVTVLDFD
 20 GRESLRPLWEQVQGFREAVVPIMEKAPEGVHLICYSQGLVCRALLSVMNDHNVDSFISLSSPQMHQYGDTDYLK
 WLFPTSMRSNLYRVCYSPWGQEFSICNYWHDPHHDDLYLNASSFLALINGERDHPNATAWRKNFLRVGRVLVLI
 PDDGVITPWQSSFFFYDANETVLEMEQPVYLDSFGLKTLARGAIVRCPMAGISHTWHSNRTLYDTCIEPW
 LS

25 SEQ ID NO:5 Rat PPT2 nucleic acid sequence

accession:NM_019367

coding sequence:74..982

CCCGTGGATTCCCGACTAGGTACAAGTAAACAGCTGGCGGAACGAAGCCTCCAGACACAGGCCAGGTGGGAGCAT
 GCGGGGCTATGGAGGCAGAGGCTTCCTCGGCTTGGCTTGCTCTGCCCTTGCCGCTGCTGTTGCC
 30 CGCAGCCCCCGCACCCACCGCGGGTCTACAAGCCAGTGTGATCGTGGTCATGGCTCTTGACAGTTCATACAG
 CTTCCGCCACCTGCTGGACTACATCAATGAGACACACCCCGGACTGTGGTGACAGTGCTTGATCTTCGATGG
 CAGAGAGAGCTTGCACCCCTGTGGGAACAGGTTCAAGGGTCCGAGAGGCTGTGGTCCCCATCATGGAAAAGGC
 CCCTGAGGGGGTACACCTCATCTGCTACTCCCAGGGAGGCCTGGTGTGCCGCATTGCTGTCTGATGGATGA
 GCACAATGTGGATTCTTCATCTCCCTTCTCCACAGATGGACAGTATGGAGACACGGACTATTGAAGTG
 35 GCTGTTCCCTACGTCCATGCCGCTAACCTCTATGGATCTGCTATAGCCCTGGGCCAGGAATTTCCATTG
 CAACTACTGGCACGACCTCACCAACGATGACTTGTACCTCAACGCCAGCAGCTTCTGGCCCTCATCAATGGGA
 GAGAGACCATCCGAATGCCACTGCATGGCGGAAGAACCTCCTCGTGTGGCCGTCTGGTGCTGATTGGGGTCC
 GGACGATGGAGTCATCACTCCCTGGCAATCTAGCTTGGTTCTATGATGCCAACGAGACGGCTTGGAGAT
 GGAGGAACAGCCGGTGTATCTCGAGACTCTTGGTTGAAGACTCTTGGCCGGGGCCATAGTGAGATG
 40 CCCCCATGGCTGGGTCTCACACCACCTGGCACTCCAATGCCACGCTCTATGACGCTTGCAATTGAGCCCTGGCT
 CTCCCTGAAGACGTCCCTAGGGCTCTCAGGAATTCCCCAGGCCAGAGATCAAGTGGTGGCCTCTGGCGTGCCTG

TGACCACCTCGCTCCCACACTGGCCCACCTCCCCACCAGGGCTCCAAACCCCTCCCTCTGCTCCTCTGTGA
 ATGACAAGTCCTGGTCCCACCTCATGTCCTCACTTGGGACGTCTCATGCTCTCCCTTGCCATGGCTGA
 GGTGGGAAGCAAGCACCAAGGTTTAACGTGGCTCACCGCTGCTGCTGTTGCTTCTCCGGGTCTGGCTGTAC
 CGGAGGAGAACCCAGCCCACCTCAGGGTCTTCCAGGCCACTCAGGACATTAGCTGTTATTCCA
 5 TGCCCTCTTCTGTCCTGTGGCCAGCCTCCCCACCGAGAGGGCGCCGTACAAGGGGTTCTGAGGCTCCC
 CTATGGGACAGTCCACTTTGAAGTGCAGTGTGGGAATATCTGTGGCTGCAAGGCCATCTCAGGTTG
 GGGATCCCCAGTCCTATGATCAGTGTGGGTATCCCTGGAGCCTAGGTTCTTGAGGCCAGCCCTCT
 TTTAACCAACCTTGAGTGGTGGTCCCCGTATTATAGAAATAAGTTCCATTCCACAGAAAAAAAAAAAA
 AAAAAAAAAA

10 **SEQ ID NO:6 Rat PPT2 polypeptide sequence**

accession:gi9506987

MPGLWRQRLPSAWALLLPFLPLLLPAAPAPHRGSYKPVIVVHGLFDSSYSFRHLLDYINETHPGTVVTVLDFD
 GRESLRPLWEQVQGFREAVVPIMEKAPEGVHLICYSQGLVCRALLSVMDEHNVDSFISLSSPQMKGQYGDTDYLK
 15 WLFPTSMRSNLYRICYSPWGQEFSICNYWDPHDDLYLNASSFLALINGERDHPNATAWRKNFLRVGRVLIGG
 PDDGVITPWQSSFFFYDANETVLEMEQPVYLRDSFGLKTLLARGAIVRCPMAGVSHTWHSNRTLYDACIEPW
 LS

SEQ ID NO:7 Human PPT2 splice variant

20 accession:AL110128 coding sequence: 104..1030

GAGTAGAGTAGGGCAGGAGAAACTGGGCCAGGCTGCACTTAGCTCAAGGGCCTCGAGGACTCTCTGCGTCTCG
 GAGACAAGGGCACTACACGCACCTCAGAATGAAGAGTTGCGGGAGCATGCTGGGGCTCTGGGGCAGCGGCTCCC
 CGCGCGTGGTCCTGCTCTGTCCTGCCGCTGCTGCTGAGCCCCCGCCCCACCGCGCGTC
 CTACAAGCCGGTACATCGGGTGCATGGCTCTCGACAGCTGTACAGCTCCGCCACCTGCTGGAATACATCAA
 25 TGAGACACACCCGGGACTGTGGTGACAGTGCTCGATCTTCGATGGAGAGAGAGCTGCGACCCCTGTGGGA
 ACAGGTGCAAGGGTCCGAGAGGCTGTGGCCCCATATGGCAAAGGCCCTCAAGGGTGCATCTCATCTGCTA
 CTCGCAGGGGGGCTTGTGTGCCGGCTCTGCTTCTGTCATGGATGATCACACAGTGGATTCTTCATCTCCCT
 CCTCTCTCCACAGATGGACAGTATGGAGACACGGACTACTTGAAGTGGCTGTCACCTCCATGCGGTCTAA
 CCTCTATCGGATCTGCTATAGCCCTGGGCCAGGAATTCTCCATCTGCAACTACTGGCATGATCCCCACACGA

30 TGACTTGTACCTCAATGCCAGCAGCTCCTGGCCCTGATCAATGGGAAAGAGACCATCCCAATGCCACAGTATG
 GCGGAAGAACCTTCTGCGTGTGGCCACCTGGTGTGATTGGGGCCCTGATGATGGTGTATTACTCCCTGGCA
 GTCCAGCTCTTGGTTCTATGATGCAAATGAGACCGCTCTGGAGATGGAGGAGCAACTGGTTATCTGCCACACAGC
 TTCTTTGGTTGAAGACTCTATTGGCCGGGGCCATAGTGAGGTGTCAAATGCCGTATCTCCACACAGC
 CTGGCACTCCAACCGTACCCCTATGAGACCTGCAATTGAAACCTGGCTCTGAGGATATATTAGGGTCCCC

35 AGGAACCTCGGTCCAGAGACCAAGTGGTGGCTTGGAAAGCAGATGTCAAGCTTGGTGTGCCGTGACCA
 TCATTGCTCCATATTATCCCCATTAGTAGAGACGGGTTTAGTAGAGACACTGGCTCCAGAACCCCT
 TCCTCTGCTCCTCCATGAATGACAATTCCAGGCCTCCCTACCTCATGTCCTCTCATTGGGGATTGCTCCGTG
 CTGTCCTCCGTATCTGGCTGTATGGTGGAGAACCCACCCCTGCCACACAGGGTCTCCTCCAGGCCACTC
 TGCTCCTCCGTATCTGGCTGTATGGTGGAGAACCCACCCCTGCCACACAGGGTCTCCTCCAGGCCACTC
 40 AGGACATTAGCTCTCTCCCCATGTTCCCTTTCTAAAGTCCCTGACTTCAGCCCTCCAACTC

CTAAGAGGGACTACCCATGAGAGTGGGGTCTGAGGCCTCCCTATGGGACAGTCCGTTCTGAAGTGTCACTG
TTGGGAATATCTGTGGCCTATGAGGCCATCTCAGGTTGGGATCCCCAGTCCCTATGATCAGTGTGGAGT
ACCCCCCTGGGAGAGCCTAGTCTTGTAGGCCCTCTTTAACACCTTGAAATAGGTGTTATCCCTG
TATTATGAAATAAGTCCATTCCCTAAAAAAAAAAAAAA

5

SEQ ID NO:8 polypeptide encoded by human PPT2 splice variant

MKSCGSMGLWGQRLPAAWVLLLPFLPLLLAAPAPHRASYKPVIVVHGLFDSSYSFRHLLEYINETHPGTVVT
VLDLFDGRESLRPLWEQVQGFREAVVPIMAKAPQGVHLICYSQGLVCRALLSVMDDHNVDASFISLSSPQMGYQG
10 DTDYLKWLFPSTMRSNLYRICYSPWQEFSTCNYWHDPHDDLYLNASSFLALINGERDHPNATVWRKNFLRVGH
LVLIIGPDDGVITPWQSSFFFYDANETVLEMEEQLVYLRDSFGLKTLLARGAIVRCPMAGISHTAWHSNRTLYE
TCIEPWLS

SEQ ID NO:9 Human Testican-1 nucleic acid sequence

HUM134992 accession:X73608 coding sequence:435..1754

15 CACTCTCTGTTCCAATGGACACACCTGTCGTGTTTGAGCCAGCGAGAGATGCAGTGGAAAGTGAAGCATGG
TTACAGACTCCCCATGCGACAGTACACTCTCTGAAGTAGCGGACGCCCTGGTAGCTTGACATTCTATGCAAAGA
TCCATAATGTGGTTCTGCAGATGGCACAGTTATCAACCACAATATCCCAGGCCAGAGGGCTACTGCATTCCAC
TTTTCACTTCAAAGCGCTTCTGCCGCCGCTGTGGTGCCTCTGGGTATCCACATCCATCGCTGCCGGC
TCACAAAGCGGCCAGACGCTGGCGCGCGTGTGGCAGGAGCGCAGGGCGAGCCGGCGATCAGCCTTCCG
20 GCGACCGTGCCTGGAGCTCGAGCACTCGGACTAGGGGACCCGGCGCCCAAGATGCCGGCGATCGCG
TGTGGCGGGCGCCGCCGCGCGTGGCTTCCTCCAAGTCGAGAGCCGGCACCTGGACCGCGCTGCCGGAGGCG
CGGGCCCAACCACGCAATTCTTAGACAATGACCAGTGGCTGAGCACCGTCTCCAGTACGACCGGGACAAGT
ACTGGAACCGCTTCGAGACGATGATTATTCAGAAACTGGAATCCAACAAGCCCTTGACCAAGCCCTGGACC
CATCCAAGGACCCCTGCCCTGAAGGTAAAATGCAGCCCTACAAAGTGTGTGACCCAGGACTACCAGACCGCC
25 TGTGTGTCAAGCGCAAGCACCTGCTCCCCAGGAAAGGGAAACGTGGCCAGAAACACTGGGTTGGACCTT
CGAATTGGTCAAGTCAAGCCCTGTCCTGGCACAGTCAGCCATGGCTCGGCTCAGATGCCACTCCTACA
CATCCAAGTCAAATTGGAGTTCATGCTTCTACTGGCAAAGCCTGCCACCCCTCTGTGATGGCCCTGTC
CCTGCTCCCTGAGGCCACAAAGCACAAGGAGTGCCTGCACAGACAAGGAGTTGCCAAC
TTGCCCTCCGGCTGAAGGATTGGTTGGAGCTCTCCACGAGGATGCGAACAGAGTCATCAAGCCCACAGCTCCA
30 ACACAGCCCAAGGCAGGTTGACACTAGCATCCTGCCATCTGCAAGGACTCCCTGGCTGGATGTTCAACAAGT
TGGACATGAACATGACCTCCTGCTTGACCCCTCAGAGATCAATGCCATCTACCTGGATAAGTACGAGCCCTGTA
TCAAGCCTCTTCAACTCGTGTGACTCCTCAAGGATGGCAAGCTTCTAACAAATGAGTGGTCTACTGCTTCC
AGAAGCCTGGAGGTCTCCCTGCCAGAATGAAATGAACAGAAATTCAAAGCAGACAGAGGATGAGTGGAGCTGG
GGCCCTCATACCTCGGTGTAATGAGGAGGGCTATTACAAAGCCACACAGTGCCACGGCAGCACGGGAGTGCT
35 GGTGTGTGGACAAATATGGAATGAGTGGCTGGCTCCAGGAAACAGGGTCTGTGAGCTGTGAAGAGGAGCAGG
AAACCTCAGGGATTTGGCAGTGGTGGTCCGTGGCTGCTGGATGACCTAGAATATGAACGGAGCTGGAC
CAAAGGACAAAGAGGGGAAGCTGAGGGTGACACCCGAGCCGTGACAGAGGATGATGAGGATGAGGATGACA
AAGAGGATGAGGTGGTACATATGGTAGTGCCACAAGAAAGAGGACACAAGGTTGCACAAAATTGCAAGTCA
CTTCCTATTCCCTGCATTGTATCTAACACTCCAAGGCACCAAGGTCTCTCCATTGTTGCTCTATACCCGA
40 CCTAAGGTTGGAAGACAAC TGCTTCCCAGAGGATTCTGATTTGCATATGTTGATGGAGAAAGGGTGT

TGTGTTTTTTTTTGTGTTGTTATTTGGATAGGAAGTCATTGGCTTAATTAGAGCCTCCCTCTTCT
 GTGAGATTTCACAAAGCATGTGATTACGTGGAATTCTGACAGTGCAGGGAGCCCCACCCCTTTAAATGTC
 AAAGACCCCTTTGATTACCCACACTGGGGTTATTACAGCATGGTCCCAGCCTAACAGTGTCTAAGTGTCT
 CTTGTGTCCTGTAGATGTTGTGAAAAAGAAAAACAAAAACACCAACTGTACTTTCCCCCTGCCCG
 5 TTACTGCCGGTATTATTAAAGACTGGGATTCACTTACATCATTCTATCTGGCTCCTATAAACAAACAGCCTT
 AATTCACTCAAGACTCCCTTGGAATTCACTTAAAGACTGGGTCTGGATACTCCCTGTACATGCATAA
 ATATGCATGCATGTACAGAAAGACTGTATGTGTGCCCTGCACACACACCCATAACCTCTCAGAAAAGTGT
 GGTATCTTAAAGACTCGAAAAACAATGATAAAATTCTCAGCTGTCCAGACCTGGAACAAAATTCTGGAATAAG
 AAATTGTATTAAAGCCTTTGCACTAACAGTTGGCTCTGTAGCCTGCAGGCTGAGGAAGTCTCTCTG
 10 TGCATCAGCAGAGTTACTGAAAGCCTCTGATTGAGAAAAACCTCCGTCTGCCTAAATCACTTTCTCGCAGAAG
 CCATGCGACTCCCACACGACACGGGAGCCTTCACAAGCCATCTTCTACCTACTCAAGGGCTTTCTAAGGCATGC
 GCAATCCTGTCTGCCATAGGTTCTCCTTACCTACTCAAGGGCTTTCTAAGGCATGCACACATATCTC
 CTGTTCTGTGAGAGTACCATGGTGTCTTAAAGAAGAAAATTCTAATTCTGAACACTCAATGTTGCTTTAC
 TCCCTTCTACTGACAAATCATGATAAGGGCACAAAGCTGTACAGATTTTTTTAACCACTCAATCCAAA
 15 TGGAGGCCACAAAGAACATCGTAATAACACATGGAAGCAAACCCGGGTTTAAGAGCAAATTCTGTCCCCC
 CTCACTCCCCAAGTGACAAGATACTAATGAAGAAAGTTCTCACCATAGTGTGTTACTAAACACTCATTGG
 AGTCTAGTCCAAATTGGTAGGGTCATCATCTACATTCTTAGGATTCTCTCCCTATCAAGCTGGCCAGA
 TACAAGTACCAAACAGTAGTCTGAAGTTCCCATTCTCAGTACAGTCTATAAGCTACTGTCCGCCACTGA
 TTTCTATCATCAGGGTGTCTAATCAGAATCAGCACCAAGCAAGCCTCTGGCCCACATATCTATCTCTG
 20 CCTTCCCCCATGAACCTCAGCCTGTCCACACAAAGCCACATAAACTCAAGCAAGAAATATGTTCAGCCAAAACA
 TGATTATAGGGCAGCTGACCAATACCCACCCC

SEQ ID NO:10 Human Testican-1 polypeptide sequence

protein_id:gi793845

25 MPAIAVLAAAAWCFLQVESRHL DALAGGAGPNHGNFLNDQWLSTVSQYDRDKYWNRFRDDYFRNWNPNKPF
 DQALDPSKDPCLVKVKS PHKCVTQDYQTALCVSRKHLLPRQKKGNAQKHVGPSNLVKCKPCPVAQSAMVCGS
 DGHSYTSKCKLEFHACSTGKSLATLCDGPCPCLPEPEPPKHKKAERSACTDKELRNLA SRLKDWF GALHEDANRVI
 KPTSSNTAQGRFDTSILPICKDSLGMFNKLDMNYDLLDPSEINAIYLDKYEPCIKPLFNSCDFKD GKL SNNE
 WCYCFQKPGGLPCQNEMNRIQKLSKGKSLLGAFIPRCNEEGYYKATQCHGSTGQCWCVDKYGNELAGSRKQGAVS
 30 CEEEQETSGDFGS GGSVVLLDDLEYERELGPKDKEGKLRVHTRAVTEDDEDEDDKEDEVGYIW

SEQ ID NO:11 Mouse Testican-1 nucleic acid sequence

accession:NM_009262

coding sequence: 134..1462

35 GTGGGCTCACAAAGCGGCCGGACGCGCGGGCGAGGTGCGCAAGGGACGAGCCGGCATCAGCCTCCAG
 CCACCGCGGTACAGGAACCCAGCAACTCGGGCGGGACTCGGGCGGGCTCCAAGATGCCAGCGATCGCGGT
 GCTCGCGCGGCCGCGCGCGTGGTCTCTCCAAGTGGACAGCCGGCACCTGGACCGCTGGCCGGTGGCGC
 GGCCTCAACACGCAATTCTAGACAAATGACCACTGGCTGAGCACTGTCTCCAGTATGACCGTGACAAGTA
 CTGGAACCGCTTCCGAGATGAAGTTGAGGATGACTATTCAGAAACTGGAATCCAAACAAGCCCTCGACCAAGC
 CCTGGACCCATCCAAGGACCCCTGCCTGAAGGTGAAATGCAGCCGCACAAAGTATGTGACCCAGGACTACCA
 40 GACGGCTCTGTGTCAGCCGCAAGCACCTGTTGCCAAGGCAGAAGAAGGGCAATGTGGCTCACAAACACTGGCT

TGGACCTTCAAATCTGGTTAAGTGCAAGCCTGCCCGTGGCGAGTCAGCGATGGTCTGGGCTCTGACGGCCA
CACGTACACGTCCAAGTGCAAGTTGAATTCCACGTTGTTCTACAGGCAAAAGCCTCAACTCCCTGTGATGG
GCCCTGTCGCTGCTGCCTGAGCCTGAGCCACTGAAGCCCAAAGCAGAGAAAGAGTGCCTGCACGGACAAGGAGCT
CGGAACCTCGCCTCCGGCTGAAGGACTGGTCGGGCTTTCATGAGGACGCCAATAGAGTCATCAAGCCTAC
5 CAGCTCTGATGGAGCCAAGGCAGGTTGACACCAGCATCTTACCCATTGCAAGGACTCCTGGGTTGGATGTT
CAACAAGTTGGACATGAACATGACCTGTTGCTGGACCCTCAGAGATCAATGCCATCTACCTAGACAAATATGA
GCCCTGCATCAAGCCTCTCTCAACTCGTGCAGTCCTCAAGGACGGCAAACCTCTCCAACAATGAGTGGTGTAA
CTGCTTCCAGAACGCCAGCGGGCTCCCTGCCAGAATGAAATGAACAGAATTCAAGAGCTAACAGCAAGGGAAAAG
CCTACTGGGGCCTTCATCCCTCGATGTAACGAGGAGGGCTACTACAAAGCCACACAGTGCACGGCAGCACGGG
10 GCAGTGCTGGTGTGGATAAAATGGGAACGAGCTGGCCGGCTCCAGGAAACAGGGCACTGTAAGCTGCGAAGA
GGAGCAGGAAACCTCCGGGACTTCGGCAGTGGAGGCTCCGTGGCCTGCTGGATGACCTAGAGGATGAGCAGGG
CGTGGGACCAAAGGACAAAGAACAGGAGCTGAGGGTGCACCCGGCGTGGGAAGATGATGAGGATGAAGA
TGACGAACAAAGAACAGATGAGGTCGGCTACATATGGTAGTGCACGAGGAAGAGGACACACTTTGGCACAGATCT
GCAAGTCGTTCTTGCCTGCATTGATCTAAGACTCCGAGGCACCGGGCTCTTCTCCACTGTTGATCTCT
15 GAACGGGCCCTGAGGTTGGAAAGACCCCTCTCCAGAGTGAACGAAATTGACATCGGGTGTGGAGAAAGGAT
GTTATTGTTGTTCTGTTTCGTTTCAATTGGATGAGGACAGGCTGGCTTAGTTAAAGCCGCTCCTCTCCC
TGTGAGGTTTCGCAACTAGCATGTGATTGTGGAATCCAACAGTGCAGGGAGCCCCACCCCTCAAGCGTC
AAGACCCCTCTGATTACCCACGTCGGTGGCTACAGCATGGTCCCAGCGTCTTATGATGTCGCGTGT
TCTCGTGTCTGTAGATGTTGGAAAACATACCGAGCTGTCCTTCTCTGTCTTACACCACCTCTGGTGTGA
20 TTATTAAAAATTAAATTTCATGTCACTGTATCTGACTTCCTACAAACGACAGCCTTAATTGACATGCAAGTCCCTT
TGGAGAATTCACTTTCTTCTTAAAAAAATAAGATCTGACACCCCCCCCCCTGCGCCAAAGGTGACTGTG
CTTGCATGACTTGACACACACACCTTCAGTCTAGTGTCTGGGTGTACCAAAACACCTTAGATAAGCAATG
GCTTTAGTCAGTTGCTCCAGACCGAGAACACAAACCGGGTATGAAATTCTCTTAGAGTCCGGTTGCACTAG
CTCTCGTGTGTGTAGCTGCATCCGGGAGGCTCTCTATGCGGCTCAGAGTGAACGGCAAGCTTTT
25 GATTTGGATGAGCCTCCATTGCTAAATGTTTACCCACAGAACGCCATGCAATTCCCACGTGGCAGCTTC
ACAAGCCATTCTTCACTTCCCGCGCACAGCTCCCTCAGGATACAGTGTACCCACCTGCGGAGCTCCTTCCCT
ATCCACCAAGGGCTTTCTTACCGTGTCCCCACTGAGCCCTGCTCCCAAGAACAGCATCATTATAAG
CTTACAAGAAAATTACCCCTCTCAGTGTCTCTTGACCCCCCTTCTATCCACAAATCATGACCCAGGGTATG
AGACTTTAAAGGTTCTCGTGTCCCCATTATTACTAGGGACCCCCAATGGAAGCCCAGAAAGAGATTCTAG
30 TAGCACAAGAGGCTAGTCTCCTCATCAGCAGCCATCTCCCGACACATGCTGACCTAGTTGACACACGGCTGAG
GCCATTAACTGTTGTCCTGAGAGCTCGTTATTGGCATCTGGTTCACTAGTGTATCATCTCAATACTTTCA
GATTTCTTCATACAAGTACAAACAGCAATCTCAGTGCAGGGCCCGTTCAGCTCAGGGCCAATCCCCAGCTCT
GTCTTCTTGCTTCTGCCTAGCTCTTGCCCTAACCGCCACAGCCTGCCAGACACACTCTCTTATGGTCTTGC
CTTCCCCCATCTGAGTTTAGCCAGTCCACAAGAACAGATCCATCAACTCAGGCTACAAAGGTATTGGTAAA
35 CCGAGATCAGGGAGCAGAGCCCTAAACTGGCTTCTGTATTAGGAAGCCACCTACAATTGCAATTCCCCTCTT
GAATAGGACAGGCAAAGTGACATCAGCCCTCTGGGAAATGAATATAACCCGTGCCCTTACCCCTGGCTGGGA
TACACACGGCAGAGCCAGGGTGCTGAGATTCTGTGTGCTCTCTTATGGAGATGGGAACCTGCTTGGAAATCTC
AGTGCCTACCCCCCGCCCCACCCCTATTGTTGTTCTCTTCTCAAAATGGATCATCCTTAA
GAAAACAGGTGCTTAATCACAGCTAAATTGTAATAGAACATATAAGAACATATTAGAAATCTCAGTTAGGC
40 CATCCATATAAGCCATTGTTATTCTCATGAGCTTAGGGGAAAAAAACATGCAAGAGAACAAATTAAAC
ATGGCAAATTGATTCTCTGAGAAAATTCTAGGAACCCAAATGAGCCACTTACTTGTCTAATTATCTTATGAC

AAGTGTACATTAAGATGACACTTAGAAGTCCTAACATTATCTTAATGGTGAAGAAGAGTACTCAGGAGGCAAT
 TCCCAGGAAGGTAATGAGATGTCATTCCAGAGACATTCCAAGAAGATATTTGATTCAATTAAATATTAAATCA
 AAAGCCCTCCTACGTGTGGAGCCCACATCAACAAGACAGGCCAGTGCCGCTCTCATGGCCCCACTTGGGTTTT
 5 AAAGATGGCTATTATAATGGTACTTTAAAGTTAGACTTTGTTCTGTTCTGAGAAAGAGTGCTTCCACTGGT
 CTTCTGGAAGGACCCTTCAGTCTAACATCAGGCGAGCATATGAGACTTTAACATGCGGCTGTAATGAT
 AACCACCTGCTTAGGCAGGCACTGAGCTGAGTCCCCACTTAGCTTAGAAAACCTTCAGTTGATTCTGTTACTCT
 AATTCTACAAAATGTTCTACTAACATTCCGTGACATCCAGTTAAACCCCTAGAATTCTCTCCACCAGGGTTC
 ATTGTCTGCCATATGACTATGTTCTACAGATATTCTCAGCATGAGGATGGCTCACATGGCTTCTCAGTAC
 TCCCTTATGCCACGCCCTGTGTATACACCAAATGATGATTGTCTGTCCAGGTCTACCCCTGCTTGTCCCA
 10 GAACGCCATTGACATTGACTTTGGTTGGTTTATCTTGACCACACTGTACAGTAACATCCAAGAGC

SEQ ID NO:12 Mouse Testican-1 polypeptide sequence

Protein sequence accession:gi6678111

MPAIAVI~~AAAAAAWCFLQVDSRHL~~LAGGAALNNANFLNDNQWLSTVSQYDRDKYWNRFRDEVEDDYFRNWNP
 15 KPF~~DQAI~~PSKDPCLVKKCSPHKCVTQDYQTALCVSRKHLLPRQKKGNVAHKH~~WLGPSNLV~~KCKPCPVAQSAMV
 CGSDGHT~~YTSKCKLEFHACSTGKSLNSLCDGPCPLPEPEPLPK~~KA~~EKSACTDKE~~RNLASRLKDWF~~GALHEDAN~~
 RVIKPTSSDGAQGRFDT~~SILPICKDSL~~GWMFNKLD~~MNYDL~~LHDSEINAIYLDKYEP~~CIKPLFN~~SCDSFKDGKLS
 NNEWCYCFQKPAGL~~PCQNEMNRIQKL~~SKGKSLLGAFIPRCNEEGYYKATQCHGSTGQCWCVDKYGNELAGSRKQG
 TVSCEE~~EQETSGDFGS~~GGSVVLL~~DDLE~~DERVGPKDKEGKLRVRTRAVREDDEDED~~DD~~KEDEVGYIW
 20

SEQ ID NO:13 Human OXCT nucleic acid sequence

HUM140203, Accession:U62961; CDS:99..1661

GT~~CGAGCCTCTAGCCGCCGGTTCTCGCAGTC~~CGCACCGACGCTCAAACGCGC~~GCTCCAACCCG~~CAGCC
 TCCTCCTGCC~~T~~ACCGCCCGAAGATGGCGGCTCTCAAAC~~T~~CTCCTCC~~CGGGCT~~CTCGGC~~CT~~TGCC~~CT~~TGCC
 25 GCGGATCTGGGCAAC~~CTGGTACAAGGGATGT~~TTGTTCCACCAGTGCTCATGCC~~ATACCAAG~~TTT
 ATACAGATCCAGTAGAAGCTGTAAAAGACATCC~~CTGATGGTGCCACGGTT~~GGTTGGGTTGGCTATGTG
 GAATTCCAGAGAATCTTATAGATGTTACTGAAA~~ACTGGAGTAAAGGACTA~~ACTGCAGTCAGCAACAA~~TGCAG~~
 GGGTTGACAATT~~TTGGTTGGGCTTTGCTT~~CGGT~~CGAAGCAGATAAAACG~~CATGGTCTCTTCATATGTGGAG
 AAAATGCAGAATT~~GAACGACAGTACTTATCTGGT~~GAATTAGAAGTGGAGCTGACACCACAGGGCACACT~~TGCAG~~
 30 AGAGGATCCGTGCAGGCGGGCTGGAGTT~~CCTGCATTTACACCC~~CAACAGGGTATGGGAC~~CCCTGGT~~ACAAGAAG
 GAGGATGCC~~CATCAAACAAAGATGGCAGTGT~~GCCATTGCCAGTAAGCC~~AAGAGAGGTGAGG~~GAGTTCA
 ATGGTCAGCA~~CTTATTGAGGAAGCAATTACAGGG~~ATTTGCTTGGT~~GAAAGCCTGG~~AAAGGCCGGAC~~CGAG~~
 CAGGAAACGTGATTTCAGGAAAAGT~~GCAAGGAATTCAACTTGCC~~AAATGT~~GCAAAGCTGCAGAAACCACAGTGG~~
 TAGAGGTTGAAGAAATT~~GAGTATTGGAGCATTGCTCCAGAAGACATCC~~ATATTCTCAGATTATGTACATC
 35 GCCTTATAAAAGGGAGAAAATATGAGAAAAGAATT~~GAGCGTTATCAATCCG~~AAAGAGGGAGATGGGAAGCCA
 AATCTGCTAAAC~~CTGGAGATGACGTAAGGG~~AAACGAATCATCAAGAGGGCC~~GCTCTGAG~~TTGAGGATGGC~~ATGT~~
 ATGCTAATT~~GGCATAGGAATCC~~CTCCTGGCCAGCAATT~~TATCAGCC~~AAATATAACTGTT~~CATCTTCAA~~
 GTGAAAATGGAGTT~~CTGGGTTGGT~~CCATATCCACGACAACATGAAGCTGATGCAGATCTCATCAATGCAGGCA
 AGGAAACAGTTACTATT~~CTCAGGAGC~~CTTTCTCCAGCGATGAATCATTGCAATGATTAGAGGTGGAC
 40 ACGTCGATCTGACAATGCTAGGAGCGATGCAGGTT~~CCAAATATGGT~~GAC~~CTGGCT~~AACTGGGATGATAC~~CTGGG~~

AGATGGTGAAGGAATGGGAGGTGCTATGGATTTAGTGTCCAGTGC
5 GAAACCAAAGTGGGGTCACCATGGAGC
GCATTATTACTGAAAAGGCTGTGTTGATGTGGACAAGAAGAAAGGGTTGACTCTGATTGAGCTCTGGAAAGGCC
TGACAGTGGATGACGTACAAAAGAGTACTGGGTGTGATTTGCAGTTCA
10 CCCCCAAACTCATGCCAATGCAGCAG
TCGCAAATTGAAATATGGATATTGTACCAGGCTGCGTGT
ACATCAATAATCATAATTGTGTTAACAGGTGGTTTATTAGTTCTGTGTT
ATATAAACTGTTCTAGGCATGCTGTGACATTAA
TAAGGCTGAGAAGGTTGTTTATAATAGGAATTATATTGAATGC
15 ATTATATGAACCTTCCCCAAGAAGGCC
GAAAGAAAGATAACATATGTGATTTGGTTAGGAGAGTGT
GACTTTCTTTGGGGCTTCAGATTATGATTACATCTGT
TTTAAACAGATGCCAAGAAGGCAAGCAGGAATGC
CCAACCTATCTATCTATGCTTGCAAAGACTAAGG
CAGTTCTCATTAAACAGCCCAGTATTCTTGT
20 ACCCTGTGGGCTACTGTACTGTACCTCCTCAAGCCA
AGAAGGGCTGGGATAATTACCATGAATCCTTAG
TAGCAATGACAGCAGAGTTAAAAA
AATATTGAATGACACTTCTACAGAACACGGTTT
TTCAGCCTTATCCA
GGGAATAAACATGGTGGGTAGATTAGGTT
GCCCATGGGAATGACTTCAGAAC
GACAGCTGGCCTCTGGACAGAGGTAGGC
TATTGATGATGGTCATTGAAACT
ATATTAGAGAAAGGACAGGCT
TTAAATGC
25 TGATATGATTTGAAAAGAATTGTTGATAGTT
GTGATTCTAAGTAGATGACTT
KRAALEFEDGMYANLGIGIPLLASNFISP
NITVHLQSENGVGLGPYPRQHEADADLINAG
KETVTILP
GASFFSSDES
KIMEKCTLPLTGKQCVNRIITEKA
FDVDKKGLTLIELWEGLTVDDVQKSTG
CDFAVSPKLMPMQQIAN

SEQ ID NO:14 Human OXCT polypeptide sequence

30 protein_id:gi1519052
MAALKLSSGLRLCASARGSGATWYKGCVCSFSTS
AHRHTKFYTD
PVEAVKDIPDGATVLVGGFLCGIPENLID
ALLKTGVKGLTA
VSNNAGVDNFGLLLLRSKQIKRMVSSYV
GENAEFERQYL
SGELEVELTPQGTLAERIRAGGA
GVPAFYPTGYGTLVQE
GGSPIKYNKDGSVA
IAASKPREVREFNGQH
FILEEAITGDFALVKAWKADRAGNVIFRK
SARNFNLPMCK
AAETTVVEEEIVD
IGAFAPEDIHIPQIYV
HRLIKGEKYEK
RIERLSIRKEGD
GEAKSAKPGDD
35 VRERI
I
KRAALEFEDG
MYANLGIGIPL
LA
SFAMIRGGHV
DLTMLGAMQ
VSKYGD
LANWMIP
GK
MVKG
MG
AM
DLV
SSAK
TKVV
VTME
HSAK
GN
AH
KIMEK
CTLPLTG
KQCV
NRIITE
KA
FDV
DKK
GLT
LIEL
WEGL
TVDD
VQK
STG
CDF
AVSP
KLMP
MQQ
IAN

SEQ ID NO:15 Mouse OXCT nucleic acid sequence

Accession:NM_024188; CDS:49..1611

CGCACGCACTCCCGCGCGCCACCGTCTCCGCACCCGGGCCAAGATGGCGGCTCTCAAACCTCTGTCCCTCT
5 GGGCTTCGGCTCGGCCCTCAGCCCGAGCTCGCGGGCGCCCTGCATAAGGGGTGTCTGCTACTTCTCTGTC
AGTACTCGTCACCACACCAAAATTACACAGATCCCGTGAAGCTGTAAAAGATATTCTTAATGGTGAACCTTG
CTGGTTGGGTTTGGCTGTGTGGTATTCCAGAGAATCTTATAGGAGCTTACTGAAGACTGGAGTAAAGAT
CTAACTGCAGTCAGCAACAATGCAGGGGTTGACAACCTCGGCCTGGCCTTTACTCGATCCAAGCAGATAAAA
CGAATGATCTCTCATATGTGGAGAAAATGCAGAATTGAGCGACAGTTCTTTCTGGTGAATTAGAAGTAGAG
10 CTGACACCTCAGGGCACACTGCCAGAGGATCCGTGCCGGTGGAGCTGGAGTCCCTGCCCTACACCAAGCACA
GGGTATGGGACTCTGGTACAGGAAGGAGGATCACCCATCAAATATAACAAAGATGGCAGTGTGCCATTGCCAGC
15 AAGCCAGGAGAGGTGAGGGAGTTAACGGTCAGCACTTCATTTGGAGGAAGCCATCACGGGAGATTGCTCTG
GTGAAAGCATGGAAAGCAGACCGGGCAGGCAATGTGATTTCAGGAAAGTGAAGAAACTTCAATCTGCCAATG
TGCAAAGCTGCAGGAACTACCGTGGTGGAGGTGAAGAAATTGTAGACATTGGCTCATTTGCCCAAGAGATATC
CACATTCAAAGATTATGTGCACCGCCTCATAAAGGGAGAGAAATATGAGAAGAGAAATTGAGCGTTTATCACTC
20 CGAAAGAAGGAGATGGAAAAGGCAAATCCGTAAGCCTGGAGGCATGTGAGGGAACGGATCATCAAGCGAGCC
GCCCTGGAGTTGAGGACGGCATGTACGCTAACCTGGTATTGGGATTCCCTCTGGCCAGCAACTTCATCAGT
CCCAACATGACTGTTCATCTTCAAAGTGAAGGAAATGGAGTCTGGCCTGGCCCATACCCACTGAAAGACGAAGCT
GATGCGGATCTCATCAATGCAGGAAAGGAAACAGTTACTGTTCTCCAGGAGCCTTTCTCCAGCGATGAG
TCATTGCCATGATTAGAGGGGACATGCAATCTAACATGTTAGGAGCCATGCAGGTTCTAAGTATGGTAC
25 CTGGCCAACGGATGATACTGGAAAAATGGTGAAGGAATGGAGGCTATGGATTGGTGTCCAGTTCCAAA
ACCAAAGTGGTGGTACCATGGAGCACTCTGCGAAGGGAAATGCTCATAAATCATGGAGAAATGTACACTACCA
CTGACGGGAAACAGTGTGCAACCGCATATTACAGAAAAGGGTGTGACGTGACAAGAAAATGGTTT
ACACTGATTGAGCTCTGGGAAGGCCTGACTGTTGATGACATCAAGAAGAGCACAGGCTGTGACTTGCAGTTCA
CCAAACCTCATGCCAATGCAGCAGATTCAACTGAAGCATCCACTGAACATTGTCAGGCTGCCAAGATTGC
ATTTCAACACATAGGATTAAACGGAAGGATGTCAGTAATCAATAGTTACATTACACATTAGCAAGAAGTTTC
GGCTAGTTCTCTAGTATTCTGGATTGTGCAGCCATAGACATTGTTCTCCATCGTATATCAGTTCC
30 GTGGGAAAAAAAAAAAAAA

SEQ ID NO:16 Mouse OXCT polypeptide sequence

Accession:gi18266680

MAALKLSSGLRLGASARSSRGALHKGCVCYFSVSTRHHTKFYTDPEAVKDIPNGATLLVGGFGLCGIPENLIG
ALLKTGVKDLTAVSNAGVDNFLGLLRSKQIKRMISSYVGENAEFERQFLSGELEVELTPQGTIAERIRAGGA
GVPAYTSTGYGTLVQEGGSPIKYNKDGSAVIASKPREVREFNGQHFILEEAITGDFALVKAWKADRAGNVIIFRK
SARNFNLPMCKAAGTTVVEEEIVDIGSFAPEDIHIPKIYVHRLIKGEKYEKRIERLSRKEGDGKGKSGKPGGD
35 VRERIIKRAALEFEDGMYANLGIGIPLLASFISPNTVHLQSENGVGLGPYPLKDEADADLINAGKETVTVLP
GASFFSSDESFAMIRGGHVNLTMLGAMQVSKYGDLANWMIPGKMKVGMGGAMDLVSSSKTKVVVTMEHSAKGNAH
KIMEKCTLPLTGKQCVNRIITEKGVFDVDKKNGLTLIELWEGLTVDIICKSTGCDFAVSPNLMPMQQIST

SEQ ID NO:17 Human ceramidase nucleic acid sequence

HUM163603 accession:BC016481 CDS:36..1223

CTGGAGTCCGGGGAGTGGCGTTGGCTGCTAGAGCGATGCCGGCCGGAGTGCCTGCCTTAGTCCTCCTGGCTG
 CCGCCGTCAGCTGTGCCGTCGCCAGCACGCCGCCGTGGACAGAGGAUTGCAGAAAATCAACCTATCCTCCTT
 5 CAGGACCAACGTACAGAGGTGCAGTTCCATGGTACACCATAAATCTGACTTACCCCTACAAAAGATGGCATG
 AATTGATGCTTGACAAGGCACCAATGCTAAAGGTTATAGTGAATTCTCTGAAGAATATGATAAATACATTGTCG
 CAAGTGGAAAAGTTATGCAGGTGGTGGATGAAAAATTGCGCTGGCCTACTTGGCAACTTCCCTGGCCCTTTGAAG
 AGGAAATGAAGGGTATTGCCGCTGTTACTGATATACTTTAGGAGAGATTATTCATTCAATATTTTATGAAT
 TATTACCAATTGACTTCAATAGTAGCAGAACAAAAAGGTACATCTAATACATGGGAGAACATGGATTGTTG
 10 GAGTATTTCTGGGTGGAACATAAATAATGATACCTGGGTATAACTGAGCAACTAAAACCTTAACAGTGAATT
 TGGATTTCAAAAGAACAAACAAAAGTCTCAAGGCTTCAAGCCTTGGCTATGTGGCATGTTAACAGGAT
 TCAAACCAAGGACTGTTAGTCTACACTGAATGAACGTTTCACTGATAAATGGTGGTATCTGGTATTCTAGAAT
 GGATTCTGGGAAAGAACAGTGCATGTGGATAGGGTCCCTACTAGAACAGTCTGGAAAATAGCACAAGTTATG
 AAGAACAGAACATTATTGACCAAGACCAAGATATTGGCCCCAGCCTACTTTATCCTGGGAGGCAACCAGTCTG
 15 GGGAAAGGTTGTGATTACACGAGACAGAACAGGATCATTGGATGTATATGAACACTCGATGCTAACAGCAGGGTAGAT
 GGTATGTGGTACAAACAAATTATGACCGTTGGAAACATCCCTTCCCTGATGATGCTGAGAACCCCTGCAAAGA
 TGTGTCGAACCGCACCAGCAAGAGAACATCTCATTGAAACCAGTATGATGTCCTGTCAACAAAACCTGTCC
 TCAACAAGCTGACCGTATACACAACCTTGATAGATGTTACCAAGGTCAATTGAAACTTACCTGCGGGACTGCC
 CTGACCCCTGTATAGGTTGGTGAGCACACGTCTGGCCTACAGAACATGCGGCCTGAGACATGAAGAACCCATCTC
 20 CATGTGACCGAACACTGCAGCTGCTGACCTTCCAAGACTAACAGACTCGCGGCAGGTTCTCTTGAGTCATAGC
 TTGTCCTCGTCCATCTGTTGACAAATGACAGATCTTTTTCCCCCTATCAGTTGATTTCTTACAGA
 TAACCTCTTAGGGAAAGTAAAACAGTCATCTAGAACATTCACTGAGTTTGTTCACCTTGACATTGGGATCTG
 GTGGGCAGTCGAACCATGGTGAACCTCACCTCCGTGAAATAATGGAGATTCAAGCGTGGGTGTTGAATCCAGCAC
 GTCTGTGAGTAACGGGACAGTAAACACTCCACATTCTCAGTTTCACTTCTACCTACATATTGTATGTT
 25 TTCTGTATAACAGCCTTCTGGTTCTAACTGCTGTTAAAATTAATATCATTATCTTGCTGTTATTGA
 CAGCGATATAATTATTACATATGATTAGAGGGATGAGACAGAACATTCACCTGTATATTCTTTAATGGGCAC
 AAAATGGGCCCTGCTCTAAATAGCACTTTGGGGTTCAAGAACAGTAATCAGTATGCAAAGCAATCTTTATAC
 AATAATTGAAGTGTCCCTTTCTACATTACTCACTTCCCAGTAACCCCTAACGGAGTTGCTAACACTAAAAAC
 TGCACTCCACGTTCTGTTAATTAGTAAATAAACAGTCAAAGACTTGTGGAAAATAGGAAGTGAACCCATATT
 30 TAAATTCTCATAAGTAGCATTGATAATAAACAGGTTTGTAGTTCTCAGATTGATAGGGAGTTTAAAG
 AAATTTTAGTAGTTACTAAAATTATGTTACTGTATTTCTAGAAATCCAACTGCTTATGAAAAGTACTAATAGAA
 CTTGTTAACCTTCTAACCTTCAGGATTAACGTTGAAATGTCAGTCATTGTCAGAACACCCTGCAAGACCGTTGTCACCTCAT
 TTTGTATAATCACAGTTGTGTTCTGACACTCAATAAACAGTCATTGGAAAAAAAAAAAAAAAAAAAAAAA
 AAA

35

SEQ ID NO: 18 Human ceramidase polypeptide sequence

protein_id:gi16741292

MPGRSCVALVLLAAAVSCAVAQHAPPWTEDCRKSTYPPSGPTYRGAVPWYTINLDLPPYKRWHELMLDKAPMLKV
 IVNSLKNMINTFVPSGKVMQVVDEKLPGLGNFPGPFEEMKGIAAVTDIPLGEIISFNIFYELFTICTSIVAED
 40 KKGHLIHGRNMDFGVFLGWNINNDTWVITEQLKPLTVNLDFQRNNKTVFKASSFAGYVGMLTGFKPGLFSLTLNE

RFSINGGYLGILEWILGKKDAMWIGFLTRTVLENSTSYEAKNLLTKTKILAPAYFILGGNQSGEGCVITDRKE
SLDVYELDAKQGRWYVVQTNYDRWKHPFFLDDRRTPAKMCLNRTSQENISFETMYDVLSTKPVLNKLTVYTLID
VTKGQFETYLRDCPDPCIGW

5 **SEQ ID NO:19 Mouse ceramidase nucleic acid sequence**

accession:NM_019734

CDS:44..1228

GCTGCTGCTAGACTCCCTCGAGCGCGCTTGCAGCTGGAAAGATGCAGGGCCAAAGTCTTCTCACCTGGTCCT
AGCCGCGGCAGTCACCTGCGCCAGGCACAGGAATGTGCCGCGTGGACAGAAGATTGAGAAAATCAACGTATCC
TCCCTCTGGACCAACCTATAGAGGACCAGTTCCGTGGCACACCATAAAATCTTGATTTACCAACCCCTACAAAAGATG
10 GCATGAATTATTGGCTCAAAAGGCACCAGCGTTGAGGATTTAGTGAATTCCATAACGAGTTAGTGAATACATT
TGTGCCAAGTGGAAAACTAATGAAGATGGTGGATCAAAGCTGCCCTGGTATGATTGGCAGCCTCCTGACCCCTT
TGGAGAGGAAATGAGGGATTGCAGATGTTACTGGGATTCCCTAGGAGAGATTATTCATTCAACATTTCTA
TGAATTGTTACCATGTGTACATCAATCATAACTGAAGATGAAAAGGTCAATTACATGGGAGAACATGGA
TTTGGAAATATTCTGGGTGGAATATAAAATAAAACACTTGGGTGTCACAGAAGAATTAAAGCCCTAACAGT
15 GAATTGGACTTCCAAAGAAACAATAAGACTGTTCAAGGCCTACAAGTGGTGGATATGTGGCATGTTGAC
AGGATTCAAACCAGGGCTGTTCACTTTCACTAAATGAACGTTCACTATAATGGTGGTTATCTGGGTATCCT
AGAATGGATGTTCGGAAGGAAAGATGCTCAGTGGTAGGGTTATCACTCGATCAGTCTGGAAAACACCACAAG
TTATGAAGAAGCCAAGAACACACTGACCAAGACCAAGATAATGGGCCAGTATATTATCCTGGGAGGCAAGAA
GTCTGGAGAGGGTTGTGATCACACGGGAAAGAAAAGACTTGGATGTCTATGAACCTGATCCTAACAGCATGG
20 CAGATGGTATGTTACAAACCAATTATGACAGGTGGAAAAACACCTTGTATTGATGACCGCAGAACACCCGGC
CAAGAAGTGTCTAAATCACACCACACAGAAGAATCTCTCCTTGCTACCATCTATGATGTCCTATCAACAAAC
TGTCTCAACAAGCTGACTGTATTCAACACCTTGATGGATGTTACCAAGGTCAATTGAAAGTCACCTTCGAGA
TTGCCAGACCCCTTGATAGGCTGGTGAGCACACGTTGCCAGCCTCGAGGACGTACTGAGACCCGAAGATGTG
TGTGCAAGCGAGCGTGGCTGGTCCTCCATAGGCTAAGGCTCAAGGCCTTGTCTTGTAGTCAGGACTGCCCTC
25 ATCATGTTACATTGTTACAGGCTGTTGTTGTTGTTCTGATGATCATCATCACTTCGACTCACAGGTA
AATTCTTAAGGGACACCACATAGAAATTGCCAGTTCACTTCACTTGCCACTACGGAAAGGTAACTGTGACCT
CCATGGAACCCATCAAAGTTCTGATGGTGGTGAAGTCAGGCCCTGTGATTAATGAAAGTTACATTTC
TTTTTAATCTACATACATTGTTCTGTACACCACTAGTTCTGCTTCTGGTCTCTCTTGTAGAACCAACC
TGCCATTCACCTTGCTGGTGGTGACAGCAGTGCAATGTCGCTATGCTTGGCTGGAGTACCTCAGATGGACATT
30 GATACTTATTAAATGGCAATCAATAGACCTCTGACTCTAGAAACAGTGGTTGGAGGATTATAAAATAACTAT
TATACAAACACTATTAAAGAATAAGTGTCTCTTCTGGTCTTCTGGTCTCTCTGGTCTCTCTTGTATAAT
GAAGAGTCTAGCTCAAAACTGAGTTCAAGAACTTACCCACAAACTCATTATTTAACTTCTTGTATAAT
CAATGTAATGTTCTCTAATCATATTTAGATTTCAACATAGTATAATATTTCAAGAAAT
CAATGTATTATGAAAACAGAACAGAACCTGTTCATCTTCTAACCTTCACAGTTGACAGTGAAGCATTCTGT
35 ACAGTGTGGCAGACTGTATCCATTAGTTGGACAGTCTGCCGTGATGCGCAATAACAGTCACTGTCA
G

SEQ ID NO:20 Mouse ceramidase polypeptide sequence

accession:gi9790019

MRGQSLLTWVLAAAVTCAQQAQDVPPWTEDCRKSTYPPSGPTYRGPVPWHTINLDLPPYKRWHELLAQKAPALRIL
VNSITSLVNTFVPSGKLMKMVDQKLPGMIGSLPDPFGEEMRGIAADVTGIPLGEEIISFNIFYELFTMCTSIIITEDE
5 KGHLLHGRNMDFGIFLGWNINNNTWVVTTEELKPLTVNLDFQRNNKTVFKATSFGYVGMLTGFKPGLFSLSLNER
FSINGGYLGILEWMFGRKDAQWVGFITRSVLENSTSYEAKNLTKTKitAPAYFILGGNQSSEGCVITRERKES
LDVYELDPKHGRWYVVQTNYDRWKNTLFIDDRRTPAKKCLNHTTQKNLSFATIYDVLSTKPVLNKLTVFETLMDV
TKGQFESHLRDCPDPCIGW

10 SEQ ID NO:21 Rat cermidase nucleic acid sequence

accession:NM_053407

CDS:15..1199

TTGCAGCTGGGAAGATGCTGGCCGTAGTCTCCTCACCTGGGTCTGGCCGGCTGTCACCTGCGCCCAGGCAC
AGCAAGTGCCACCGTGGACAGAAGATTGAGAAAATCAACTTATCCTCCTCTGGACCAACCTATAGAGGACCAAG
TTCCGTGGTACACCATAAAATCTGATTTACCACCCCTACAAGAGATGGCATGAATTATTGGCTCACAGGCACCTG
15 TGTTGAGAACCTTAGTGAATTCCATCTGAATTAGTGAATGCATTGTGCCAAGTGGAAAAATAATGCAGATGG
TGGATGAAAAGTTGCCTGGTCTGATTGGCAGCATTCTGGCCCTTTGGAGAGGAAATGAGGGGATTGCAGATG
TTACTGGGATTCCCTAGGAGAGATTATTCATTCAACATTTCTATGAACTGTTCACCATGTTACATCGATCA
TAACGTGAAAGATGGAAAAGGTCAATTACTACATGGAAGAACATGGATTTGGAAATTCTGGGAAACATTA
ACAACAACACTGGGTGGTACAGAAGAATTAAAGCCTTAACAGTGAATTGGACTTCCAGAGGAACAATAAGA
20 CTGTGTTCAAGGCTACAAGTTCGCTGGATACGGCATGGTACAGGATTCAAACCCAGGACTGTTAAGTCTTA
CACTGAATGAACGTTTCAGTTAAATGGGGTTATCTGGGTATCCTAGAAATGGATGTTGGAAAGAAAAATGCC
AATGGGTAGGGTTATCACTAGATCAGTCTGGAAAATAGCACAAGTTATGAAGAAGCCAAGAAATATATTGACCA
AGACCAAGATAACGGCCCCAGCATATTTATCCTGGGAGGCAACCAGTCTGGAGAAGGTTGTGATTACACGAG
AAAGAAAAGAGTCTTAGACGTCTATGAACCTGATCCTAACAGTGAATTGGACTTCCAGCATGCGTGGTACAAACCAATTATG
25 ACCGGTGGAAAAACACCTGTTCTGATGACCGCAGAACACCTGCGAAGAAGTGTCTAAATCACACGACACAGA
AGAATCTGTCATTGCTACCACATCTATGATGTTCTATCAACAAACCTGTCCTCAACAAGCTGACTGTATTACAA
CCTTGATAGATGGGACCAAGATCCATTGAAAGCCACCTCGAGATTGCCAGACCCTGTATAGGCTGGTGG
CACACATCAGCCAGCATAAGGGCAGACATACTCAGACCTGAAGATGTGTTCCAGCATGCGTGGTCTCCTTCC
ATAGG

30

SEQ ID NO:22 Rat ceramidase polypeptide sequence

accession:gi16758140

MLGRSLLTWVLAAAVTCAQQAQDVPPWTEDCRKSTYPPSGPTYRGPVPWYTINLDLPPYKRWHELAHKAPVLRTL
VNSISNLVNAFVPSGKIMQMVDKLPGLIGSIPGPFGEEMRGIAADVTGIPLGEEIISFNIFYELFTMCTSIIITEDG
35 KGHLLHGRNMDFGIFLGWNINNNTWVVTTEELKPLTVNLDFQRNNKTVFKATSFGYVGMLTGFKPGLLSLTLNER
FSLNGGYLGILEWMFGRKNAQWVGFITRSVLENSTSYEAKNLTKTKitAPAYFILGGNQSSEGCVITRERKES
LDVYELDPKHGRWYVVQTNYDRWKNTLFIDDRRTPAKKCLNHTTQKNLSFATIYDVLSTKPVLNKLTVFETLMDG
TKDQFESHLRDCPDPCIGW

SEQ ID NO:23 Human MK-STYX nucleic acid sequence

HUM170193 accession:AF069762 coding sequence:340..1281

GCCACCTCCGGGACTCGAAAGGAAAGCTGTGGGACCATCCTGGCAACCCCGGTGTTGGCTGGGTCTAGCGTA
 CCGGTCTGTGTGGCCGGTGGGGACCTGCCGTCGGAGTGGGAGGGCCAGTCAGCACCAGAGGGCTGAAGAGGAC
 5 GGGCTTTAGGCTGGAACGCCTTAGAGGAGCCATTTCCAGGTGGGGCCAGNAGAGGCTCCACAGGAGCTGN
 GCCATAGTCGCGCANCAGGGAGGTGGAGCGCGTCCCAGACCCGACCTCAGCCAAACCCATTCTCT
 GTCCCTGGAGGCCAGAGGGACTCTGAGCATCGAAAGGATGCCGGTTGCTTTATGTGAACCGACAGAGCTT
 TACAACATCCTGAATCAGGCCACAAACTCTCCAGATTAACAGACCCAACTATCTGTGTTATTGGATGTCGT
 TCCAAATGGGAGTATGACGAAAGCCATGTGATCACTGCCCTCGAGTGAAAGAAGAAAATAATGAATATCTCTC
 10 CGGGAGTCTGTGGACCTGGAGTGTGAAGTACTGCGTGGTGTATGATAACAAACAGCAGCACCTGGAGATACTC
 TTAAAAAGATGATGATGATGATTCAAGACTCTGATGGTATGGCAAAGATCTTGTGCCTCAAGCAGCATTGAGTAT
 GGCAGGAATCCTGACCCGCCTCACCCACCACCCGTCTACATCCTGAAAGGGGCTATGAGCGCTTCTCAGGCACG
 TACCACTTCTCCGGACCCAGAAGATCATCTGGATGCCCTCAGGAACCTGGATGCATTCAAGCCATACCCATTGAA
 ATCGTGCCAGGGAAAGGTCTCGTGGCAATTCAAGTCAGCCTGTGACCCCAAGATTCAAGAAGGACTTGAAAATC
 15 AAAGCCATGTCAATGTCTCCATGGATACAGGGCCCTTTTGAGGCGATGCTGACAAGCTTCTGCACATCCGG
 ATAGAAATTCCCCGGAAGCCCAGATTCTCCCTTACGCCACATGTGTCACTTCATTGAAATTCAACATCAC
 CTTGGCTCTGTCATTCTGATCTTCCACCCAGGGTATCAGCCAGTTGTGCGCCATCATGCCAACCTCATG
 CATAGTAACGAGCAGACCTGCAGAGGTCTGGGCCTATGTCAGAAAGTGCACAAACATGTGTCACATCGG
 GGATTGGTGAGCCAGCTGCTGGAATGGGAGAAGACTATCCTGGAGATTCCATCAAAACATCATGGATCCGCTC
 20 TACTGATCTCTCCGAGGCCACCGAAGGGTACTGAAGAGCCTCACCTGGGGCATTGTGGTGGAGGGCCAG
 AGTGTGTATACCCAGGCTGTGAGGAGAAGGCCATTGCTGAAAGTCTCAAAAAAAAAAA

SEQ ID NO:24 Human MK-STYX polypeptide sequence

Protein sequence protein_id:gi4995956

25 MPGLLLCEPTELYNILNQATKLSRLTDNYLCLLDVRSKWEYDESHVITALRVKKKNNEYLLPESVDLECVKYCV
 VYDNNSSSTLEILLKDDDDSDSDGDGKDLPQAAIEYGRILTRLTHHPVYILKGGYERFSGTYHFLRTQKIIWMP
 QELDAFPYPPIEIVPGKVFVGNFSQACDPKIQKDLKIKAHVNVSMDTPFFAGDADKLLHIRIEDSPEAQILPFL
 RHMCHFIEIHHHLGSVILIFSTQGISRSCAIIAYLMHSNEQTLQRSWAYVKKCKNNMCPNRGLVSQLWEKTI
 LGDSITNIMDPLY

30

SEQ ID NO:25 Human MP1 nucleic acid sequence

HUM175396 accession:BC005025 coding sequence:5..3118

CGCAATGTGGCGCTGCCGGGGCGGGCGGGCCTGTGTGCTGAGGGCGCTGAGCGGGGACATGCACACCACAG
 AGCGTGGCGATGGAACAGTAACCGGGCTTGTGAGAGGGCTCTGCAGTATAAAACTAGGAGACAAGATCCATGGATT
 35 CACCGTAAACCAGGTGACATCTGTTCCGAGCTGTTCTGACTGCAGTGAGCTCACCCATGATGACACAGGAGC
 CAGGTATTACACCTGCCAGAGAAGACACGAATAATCTGTTCAAGCGTGCAGTTCCGTACCAACTCCATGGACAG
 TACTGGTGTCTCCTCACATTCTGAGCATACCGTCCTTGTGGGTCTCAGAAATATCCGTGCAGAGACCCCTTCTT
 CAAAATGTTGAACCGGGCCCTCCACGTTCAAGACGCTTACAGCTAGTGATTACTCTGTATCCATTTC
 CACACAAAATCCAAGGACTTCAGAATCTCCTCTCGGTGTATTGGATGCCACCTTTCCATGTTACCGCA

GCTGGATTCTGGCAGGAAGGATGGCGGCTGGAACATGAGAATCCGAGCGACCCCCAGACGCCCTGGTCTTAA
AGGAGTCGTCTTAATGAGATGAAGGGAGCGTTACAGACAATGAGAGGATATTCTCCCAGCACCTCAGAACAG
ACTTCTTCCGACCACACGTACTCAGTGGCTCCGGGGTGACCCACTGTGCATCCGGAGCTTACATGGGAGCA
GCTTAAGCAGTTCATGCCACTCACTATCACCAAGCAATGCTAGGTTCTCACGTACGTAATTTCATTAGA
5 ACAGCATCTGAAACAAATTCAAGGAGAAGCACTGAGCAAATTCCAGAAAATTGAACCAAGCACCCTGGTGCCAGC
TCAGACACCCCTGGGACAAGCCTAGGAATTCCAGATAACATGTGGCCGGATTCAATTGCTACAGATCCCTCTAA
ACAAACAAACCGTCAGCGTTAGCTTCCTCTTACCGACATCACCGACACATTGAAGCCTCACATTAAGTCTTCT
GTCTTCACTCTTGACTTCTGGGCCAATTCTCCCTTACAAAGCCTGATTGAATCTGGCCTGGCACAGACTT
TTCTCCTGATGGATATAATGGCTACACGAGGGAGGCCTACTTAGTGTGGCCTCCAAGGGATTGTGGAGAA
10 AGACATTGAGACCGTCAGAACGCTCATAGACAGAACGATTGATGAAGTAGTTGAGAAAGGATTGAAGATGATCG
AATTGAGGCTTACTTCATAAAATTGAAATACAGATGAAACATCAGTCTACCAGCTTGGCTGATGCTGACATC
ATACATAGCTCTGCTGGAACCATGATGGGGACCCTGTGGAGCTTGTGAAGITGGAAATCAGTTAGCTAAATT
CAGACAGTGCCTGCAGGAAATCCAAATTGGCAAGAAAAAGTAAAACAGTATTTAAGAATAACCAGCATAA
GCTGACTTATCGATGGCCAGATGACAAGTATCACGAGAACGAGGACAGGTGGAGGCCACGAAGCTCAAGCA
15 GAAGGTGGAGGCTCTGCCCCGGAGACAGGCAGCAGATCTACCGAGAAAGGTCTAGAAATTACGGAGTCACAAAG
CAAACCTCAAGATGCCTCTGCTGCCAGCGTTGAAAGTTCCGATATTGAACCCACCATACCTGTCACAGAGTT
GGACGTGGCTCTGACAGCTGGAGATATCCCTGTTCACTGCGCCAGGCCACCAATGGCATGGTGTATTCCG
GCCCTCTCCAGCCTGAACACACTCCCCGAGGAGCTGAGGCCCTATGTGCCCTCTCTGCAGCGCCTCACCAA
GCTGGGCTGCGGCCCTCTGACTACCGGGAGCAGGCTCAGCAGATAGAATTGAAGACCGGAGGGATGAGTGTTC
20 TCCCCACGTGCTCCCCGACGACTCACACATGGACACCTACGAGCAGGGTGTGCTTCTCCTCTCTGCCTGG
TCGAAACCTGCCAGACATGATGCAGCTATGGAGTGAAATATTAAACAACCCGTGCTTGAGAAAGAGGAGCAGT
CAAGGTGCTGGTGAAGATGACGCCAGGAGCTGCCAATGGAATTCCCTGACTCTGGCACCTGTACGCATCCAT
CAGGGCAGGCCGGACCTCACGCCGCAGGGACCTGCAGGAGACCTCAGCGGATGGATCAGGTGCGCTGAT
GAAGAGGATTGAGAAATGACAGATATCAAACCCATCCTGAGGAAGCTCCACGTATCAAGAAACACTTGTAAA
25 TGGTGATAATATGAGGTGTTCACTGAATGCGACTCCTCAGCAGATGCCCTCAGACAGAAAAAGCGGTCGAAGACTT
CCTTAGAAGCATGGTCGGAGTAAAAGGAACCGGAGGCCTGTGGCCACACACGGTCGAGAAACCTGTGCCAG
CAGCTCTGGTGGAGATGCCACGTTCCCATGGCTCCAGGTCAATTAGGAAGCTGGTATGGAAACCCACCTCAA
GCCCTGGCAGATGAAGACTCACTCCTGATGCCCTCCGGTGAATTACGTGGTGAATGCATCCGAACGTCCC
CTACACGGACCCAGATCATGCCAGTCTTAAATCCTGACGTTGACTGCCAAATTCTGCATACAGAAAT
30 TCGAGAAAAGGCGGTGTTATGGTGGAGCGCAAAACTCAGCCACAATGGATTTCACCCCTTACTCTACAG
GGACCCAAATACAATAGAGACGCTCCAGTCTTGGAGGCTGTCAGTGGCTAAGTCTGGAAAATTCAACACA
GCAAGACATCGACGAAGCCAAACTTCTGCTTCTCAACCATAGATGCTCTGCTGCCCTCAGACAAAGGAAT
GGACCACTCTGTACGGCCTCTGGATGAGATGAAGCAGGCCACAGAGAGCAGCTTTGCTGTCAGCCACGA
CAAGCTCCTGGCGTGAGCGATAGGTACCTCGGCAGTGGAGAGCAGCACACAGGCCATCCTCGGACCCGA
35 GAACCCGAAAATTGCCAAGGACCCATCCTGGATCATCGATGAGCAGGCCACAGAGAGCAGCTTTGCTGTCAGCCACGA
AGACAATACACCTCCGAGCTGAATATGAAAAGTCAGAAATGCTACTGCTTTCCAAGAATATTATGTCATTGAG
TGTGCCAAAGCCCTGACTGGCGAGTCAAAACACTCAGATCTATCTTAAGAGTGACCAAGGAAGAGGTTATTGAA
ATAATCATGCATGAAGCGCAAAGATGCACCATGAGAATTTCACTTGACTGGCAGGCTCGTTTACCTCAT
TCTAGAATATTAAAGAATCTAAAAATAAAGGGCAACTCTGACTTAACAAAAAAAAAAAAAAA
40

SEQ ID NO:26 Human MP1 polypeptide sequence

Protein sequence protein_id:gi13477137

MWRCGGRRGLCVLRLSGGHAAHHRARWRWNSNRACERALQYKLGDKIHGFTVNQVTSVPELFILTAVKLTHDDTGAR
 YLHLAREDTNNLFSVQFRTPMDSTGVPHILEHTVLCGSQKYPGRDPFFKMLNRSLSFMNAFTASDYTLYPFST
 5 QNPKDFQNLLSVYLDATFFPCLRELDFWQEGRLEHENPSDPQTPLVFKGVVFNEMKGAFTDNERIFSQHLQNRL
 LPDHTYSVVSggdPLCIPELTWEQLKQFHATHYHPSNARFFTGYNFPLEQHLKQIHEEALSKFQKIEPSTVVPAQ
 TPWDKPREFQITCPDSFATDPSKQTTVSFSLLPDITDTFEAFTLSLLSSLLTSGPNSPFYKALIESGLGTDFS
 PDVGYNGYTREAYFSVGLQGIVEKDIETVRSLLIDRTIDEVVEGFEDDRIEALLHKIEIQMKHQSTSFGMLTSY
 IASCWNHDGDPVELLKLGQLAKFRQCLQENPKFLQEKVQYFKNNQHKLTLSMRPDDKYHEKQAQVEATKLKQK
 10 VEALSPGDRQQIYEKGLELRSQQSKPQDASCLPALKVSDIEPTIPVTELDVVLTAGDI PVQYCAQPTNGMVFRA
 FSSLNTLPEELRPYVPLFCVLTLCGGLDYREQAQIELKTGMSASPHVLPDDSHMDTYEQGVLFSSLCLDR
 NLPDMMQLWSEIFNNPCFEEEEEHFVKVLVKMTAQELANGIPDSGHLYASIRAGRTLTPAGDLQETFSGMDQVRLMK
 RIAEMTDIKPILRKLPRIKKHLLNGDNMRCVNAQPQQMPQTEKAVEDFLRSIGRSKKERRPVRPHTVEKPVSS
 SGGDAHVPHGSQVIRKLVMEPTFKPWQMKTFLMPFPVNVEGECIRTVPYTDVDHASLKLARLMATAKFLHTEIR
 15 EKGGAYCGGAKLHSNGIFTLYSYRDPNTIELQSFGKAVDWAKSGKFTQQDIDEAKLSVFSTIDAPVAPSDKGM
 HFLYGLSDEMKAHREQLFAVSHDKLLAVSDRYLGTGKSTHGLAILGPENPKIAKDPWIIR

SEQ ID NO:27 Mouse MP1 nucleic acid sequence

accession:XM_127191

coding sequence:281..3103

GCGTTCAGCGGTCGGCGGGACTCTGCCTGTACAGCGCTGAGCTGCGGGGTACACCACAGAGTATGGAGGGA
 GAAGAGTGACCAAGCTGTGAACGAGCTCACAGTATAAAAGTGGAGAGAAAATCCACGGGTTACTGTAAACCA
 GGTCACTCCTGCCCCGAGCTTCTGACAGCCGTGAAGCTCAGCCATGACAACACGGGAGGCCAGATACTGCA
 CCTGGCAAGGGAAAGACAAGAACATTATTCACTGTGCAGTTCCGCACAACCCCAATGGATAGCAGTGGGTCCC
 ACATGTTCTCGAGCATACGGTCTGTGGCTCTCAGAAGTACCGTGAGAGATCCTTCTTCAAATGCTAA
 20 CAGGTCACTGTCCACATTATGAATGCCATGACAGCCAGCGATTACAGATATATCCGTTTCCACTCAAATCC
 CAAAGATTTCAAGACCTCCTCTCCGTGTATTGGATGCAACTTTCTTCCCTGCTTGAAGGGAACTGGACTCTG
 GCAGGAAGGATGGCGTCTGGAGCATGAGAATCCCCGAGACCCCTCAGACGCCCTGATCTTAAGGGGGTCGCTT
 25 CAACGAGATGAAAGGGCATTACAGACAATGAGAGGATATTCTCCAGACCTGCAAGAACAGCTGCTTCTGA
 CCACACCTACTCCGGTTCTGGAGGGGACCCACTGTGCATCCGGAGCTCACGTGGAACAGCTGAAACAGTT
 30 CCACGCTACTCATTATCACCAAGCAATGCCAGGTTCTCACTTATGGCAATTTCAGCTGGAAGGACACCTGAA
 ACAAAATTCAAGAAGAACCCCTGAGTAAATTCCAGAGATTGGAGCAGAGTACAGCAGTGCCTGCCAGCCGACTG
 GGATAAGCCTAGGAATTCCATATAACATGTGGCCAGATTCACTAGCTACGGAGACTGCCAAGCAGACAACCTG
 CAGCGTTAGCTTCCCTTACCGGATATCACTGACACATTGAGCCTTCACTTGAAGCCTTCACTTGAAGCCTTCTG
 35 GATTGCTGGACCCAACCTGCCCTCTACAAAGCTTGATCGAGTCTGGACTCGGCACAGACACTTTCTCCTGATGT
 TGGATATAATGGCTATACACGGGAGGCTTACTTCAGTGTGGGCTCCAAGGGATCGCAGAGAAAGATGTCAAGAC
 GGTCAGAGAGCTCGTAGACAGGACAATCGAAGAAGTTATAGAGAAAGGATTGAGATGATGGATTGAAGCTCT
 GCTTCATAAAATCGAAATTCAAACGAAGCATCAGTCAGCCAGCTTGGCCTGACGTCAATATAGCTTCT
 TTGCTGGAACCATGATGGGACCCGTGGAGCTCTGCAGATTGAGTCAGCTGACTAGATTAGGAAGTGCCT
 TAAGGAAAATCCAAAATTTCACAAGAAAAGTAGAACAAATTAAAGAACAAATCAGCACAAGCTGACTTATC
 40 CATGAAGCCAGACGACAAGTATTATGAAAAGCAAACCTCAGATGGAGACAGAAAAGCTGGAGCAAAGGTGAATT

TCTCTCCCGCGGACAAGCAGCAGATCTACGAGAAAGGTTAGAACTACAGACGCAGCAAAGTAAACATCAAGA
 CGCCTCTGCCTCCCAGCATTGAAAGTCTGGACATTGAGCCCTCCATGCCCTTCACCAAGCTGACATCGGCCT
 TGCAGCTGGAGACATCCCTGTGCAGTACTGCCACAGCCCACCAACGGCATGGGTATTCGAGCCTTCCAG
 TTTAAACACGCTGCCGGAGGACCTGAGGCCATTGTGCCTCTTTGCAGCGTGTGACCAAGCTGGGTTGTGG
 5 CATCCTTAACTACAGAGAGCAAGCCAACAGATTGAGCTCAAGACAGGGAGCATGAGTGTACGCCCATGTGCT
 CCCTGACGACTCACAGCTGGATACTACGAGCAGGGTGTGTTATTTCTCTGCCTGGAGCGGAACCTGCC
 AGACATGATGCATCTGGAGCGAAATATTTAACATCCATGCTTGAGAAGAAGAACACTTCAAAGTGTGGT
 GAAGATGACCGCTCAGGAGCTCCAATGGAATTCACTCGGGCATCTATGCAGCCCTCAGAGCAAGCAA
 GACACTGACACCTTCAGGGACTTGCAGGAGACCTTCAGTGGATGGATCAGGTGAAGGTGATGAAAAGAATTGC
 10 AGAGATGACAGACATCAAGCCAATCCTGAGAAAAACTGCCCGGATCAAGAAGTATCTACTAAACTGTGACAACAT
 GAGATGCTCAGTGAATGCCACCCCTCAGCAGATGCCAGGGATCAAGAAGTATCTACTAAACTGTGACAACAT
 TGGCCGAAGCAAAAGGAACGGAAGCCTGTCCGCCCATATTGTCGAGAAACCCACACCCAGTGGCCCCAGTGG
 AGCTGCACATGTCAGTGGTCCCAGTCAGAAAATTGGTGACAGACCCACCTCAAACCCCTGCCAGATGAA
 GACACATTGTGCTGCCCTCCCTGTGAATTACATTGGCGAGTGTGTCAGGACTGTCCGTATGCTGATCCAGA
 15 CCATGCCAGCCTTAAGATCCTGCCGTCTAATGACAGCTAAATTCTGCTACGGAAATCGAGAGAAGGGGGG
 TGCTTATGGTGGCGGTGCTAAACTCACCCACAGTGGATTTCACGCTTACTCTACAGGGATCCAATTCCAT
 AGAAAACACTCCAGTCTTGGGAAAGCTGTAGACTGGCTAAGTCTGGAAAGTTCACACAGCAGGACATTGATGA
 AGCCAAGCTGTCTGTTCTACTGTGGATTCTCTGCTCCATCCGATAAAGGAATGGACCACCTCTGTA
 TGGCCTCTCGATGAGATGAAGCAGGCATACCGAGAACAGCTCTGCTGCAACCACGACAAACTGACCTCTGT
 20 GAGCCATAAAATACCTGGCATCGGAAGAGCACACACGGCTGGCTATCCTCGGACCAGAGAACTCAAAATTGC
 CAAAGACCCATCATGGATCATAAAATAATGAGTGCCACATATCTTGAGTATGTGTAAGAAACAGAGGCTCTTA
 ACAGCTGAGCCTCTGAGCTAAATTAAATGCGGATGATCACAAGAGTTACTAGTTCTTGTGGAAAATCAGTT
 AGCCATATAAAACCAACCAAAGGTGTTATTGACTGGAAAAACTCTGAAGGAAATTCTGAGACCATGAAGAAA
 TCATTAATCATGCATTAATGACAGCAGTGAGCAAATTAGCCTCTGAAACATTACTAAGCCTAGAATATGTATT
 25 TTAAATATAAAAGCCAACCTCAACCTGTCTGAGTTTACTCATTATTTCAAACAATAATTACGACAATAATGT
 TTAGACCTTCACTTAAGAAAATGGCTAAATCAAATCAAATCTAAACAAAAAATAAAAAAAAAAAATG
 CTAAATC

SEQ ID NO:28 Mouse MP1 polypeptide sequence

30 MDSTGVPHVLEHTVLCGSQKYPARDPFFKMLNRSLSFMNAMTASDYTIYPFSTQNPKDFQNLLSVYLDATFFPC
 LRELDFWQEGRLEHENPRDPQTPLIFKGVVFNEMKGAFDNERIFSQHLQNKLLPDHTYSVVSDDPLCIPELT
 WEQLKQFHATHYHPSNARFFTGYNFQLEGHLKQIHEEALSKFQRLEQSTAVPAQPHWDKPREFHITCPDLSLATE
 TAKQTTVSFSLLPDITDTFEAFTLSLLSSLLIAGPNSPFYKALIESGLGTDFSPDVGYNGYTREAYFSVGLQGI
 AEKDVKTVRELVDRTIEEVIEKGFEDDRIEALLHKIEIQTKHQSASFGLTLTSYIASCWNHDGDPVELLQIGSQL
 35 TRFRKCLKENPKFLQEKFQYFKNNQHKLTLSPMDKYYEKQTQMETEKLEQKVNSLSPADKQQIYEKGLELQT
 QQSKHQDASCLPALKVSDIEPSMPFTKLDIGLAAGDIPVQYCPQPTNGMVFRAFSSLNTLPEDLRPIVPLFC
 LTKEGCGILNYREQAQQIELKTGGMSVTPHVLPPDSQLDTYEQGVLFSSLCLERNLPDMMHWSEIFNNPCFEEE
 EHFKVLVKMTAQELNSGISDSGHLYAALRASKTLTPSGDLQETFSGMDQVKVMKRIAEMTDIKPILRKLPRIKKY
 LLNCNDNMRCNVNATPQQMPQAEEVENFLRNVRGSKERKPVRPHIVEKPTPSGPSAAHVSGSQIVRKLVDPT
 40 FKPCQMKTHFVLPFPVNYIGECVRTVPYADPDHASLKLARLMATAKFLHTEIREKGGAYGGAKLTHSGIFTLYS

YRDPNSIETLQSFKGAVDWAKSGKFTQQDIDEAKLSVFSTVDS PVAPSDKGMDHFLYGLSDEMKGQAYREQLFAVN
HDKLTSVSHKYLGIGKSTHGLAILGPENSKIAKDPSWIIK

SEQ ID NO:29 Human BPTF nucleotide sequence

5	HUM176759	accession:AB032251	CDS:472..8817
<pre>AGCCGCCACTGCGTCCGGCCCTCCCCGTCAAGCTTCCCTCTCCGCCCTGGCTCCAACAAAGAGGGGCCGC GGGGCAGGCCACCAAGCAGCCCGCGCTCCCGCTGCCGAGCGCTGCCGCCGGGCCGCCGCCGCC CGTCGGACCCATCGGGGCTCCCTGCCGATACCGGGTAGTAGCCGGGCAGGTGGCAGCCGCCAGGCTGAG GTGGCCCCAAGACCGCGCTGAGCTGCCAGGGTGGCAGCAGTAGCCGGAGGAAGCCGCCGCCGCC 10 GCCCCCCAGCACCGGCCGG GGCGGCCACCTGTCCCGGACCACCGCGGCCCGAGGGCGTCAACAAAGTGGTGTACGATGACCACGAGAGCGAG GCGGTGGAGGAAGAGGAGGACATGGTCTCGAGGAGGAGGAGGAGGACGGCGACGCCGAGGAGACCCAGGAT TCTGAGGACGACGAGGAGGATGAGATGGAAGAGGACGACGATGACTCCGATTATCCGGAGGAGATGGAAGACGAC GACGACGACGCCAGTTACTGCACGGAAAGCAGCTCAGGAGCCATAGTACCTACAGCAGCACTCCAGGTAGGC 15 AAACCAAGAGTACATCGGCCCTCGTCTCCATATTGGAAGAAAAAGACATCCGCCCTGAATTCCAAGTCC TCTGAGGATTAAATGGTGCCTAATGAGCATATAATGAATGTCATTGCCATTACGAGGTACTGCCAACCTTGGC ACTGTTTGAGATTATCTCCTTTCGCTTGAGGACTTTGTGCAGCTCTGGTGGAGCCAAGAGCAGTGCACACTC ATGGCAGAGATGCATGTTGTGCTTGAAAGCAGTTCTGCGTAAGAAGACACTTCAAATACTACCTTGGACCT GCTGATCTGAAAGATAGCCTTAATTCCACACTGTATTCATAGATGGATGACGTGCCAGAGGTGCTGCC 20 TACTGTGAGAGTATAAGGAGTACCATCACGTTCTCCTTACCAAGAGGCAGAGGACTACCCATATGGAC GAGAACAGATCAAAGTTCTACAGTTCTAGTCGATCAGTTCTACAACAAATATTGCTCGAGAGGAATTGATG TCTGAAGGGGTGATAAGTATGACCTGACATTGTAGGGTTGTACAAACTTGGGATTGCTTGCTGTGAGACA TGTTCAAGCAGTATAACCATTGGAATGTGTGAAGCCACCTCTGAGGAGGTGCCAGAGGACGAGTGGCAGTGTGAA GTCTGTGAGCACACAAGGTGCCCTGGTGTGACTGACTGTGTTGCTGAAATCCAAAAAAATAAACCATATATTG 25 CATGAACCTATTGGATATGATAGAAGTCGGAGGAATACTGGTTCTGAAACCGAAGACTCATAATAGAAGAAGAT ACAGAAAATGAAAATGAAAAGAAAATTGGTATTACAGCACAAAGGTCCAACCTGCGAAGATTAAATTGACTGTCTA GACAAAGATTATTGGAAAGCAGAACTCTGCAAATTCTAGAAGAAATGCGTAAGAAATCCACCGACACATGGAC ATAACTGAAGACCTGACCAATAAGGCTCGGGCAGTAACAAATCCTTCTGGCGGCAGCTAATGAAGAAATTG GAGTCCATAAGAGCCAAAAGGGAGACATTGATAATTGAAAGCCCAGAAGAAACAGAAAAGACAAGAATGAG 30 ACTGAGAAATGACTCTAAAGATGCTGAGAAAAACAGAGAAGAATTGAAAGACCGAGTCCTTGGAAAAAGACAGTGAC GACAAAACACCAGATGATGACCTGAGCAAGGAAAATCTGAGGTAGGTGATTCAAATCGGAGAAGTCCAACCGG GAGCTAAGTGAATCTCCTGGAGCTGGAAAAGGAGCATCTGGCTCAACTCGAATCATCACCAAGATGCCAAC GATAGCAAACCTAGTCAGTGAAGAGCCAGCAGGTGGCAGCCGCTGCACATGAAGCAAATAATTGAGGAG GGCAAAGAGGTACTGGTAGTTAACTCTCAAGGAGAAATTCAACGGTTGAGCAGCAACAGGAAGTGATCATGAAA 35 GGAAAATCAACAATTATTAAATTGGTCAAGAAGGGAGTATCGCGTCTACCACAATCAATACTCCACCAAT TCATTTGCTTGAATAAGCACCAGCACAGAGAAGACCATGATAAGAGAAGGCATCTGCACATAAGTCTGTCTG ACTCCAGCAGGAGAGTTCAAATGGAACGGTTCTGTCCATGGTCCAAAGTTCTTACCATATCTACTGAGACTG 40 ACTATCACCCAAATTAGAAAACACATCCCTCATCCTTCTCATCCCAACTGGGCATCACATAGGGCAAATTGG ATCAAGGCAGTTCAAGATGTGTAGCAAACCCAGAGAATTGCAATTGGCTTAGCCATTGGAGTGTGAGCTAAA CCAGTTGTGATGCTACCAATATGGCAGAATTAGGACATACCAGGTTACACCGGATGACATCAATTGAAAAGA</pre>			

GAAGAAAAGGAGAAAGTCAAAAAAAAGAGAAGAACAGGAAGAAGAACGATGCAGCAAGCGACATGGGT
AAATACACATTCCAGTTAACGATCAGGTTGGAAACAAAAGGTGAAGAGTACAGAGTGACAGGATATGGTGGT
TGGAGCTGGATTAGTAAACTCATGTTATAGGTTGCTCAAATTGCCAGGCAATACTAATGTGAATTACAGA
AAGTCGTTAGAAGGAACCAAAATAATATGGATGAAAATATGGATGAGTCAGATAAAAGAAAATGTCACGAAGT
5 CCAAAAAAAATAAAATAGAGCCTGATTCTGAAAAGATGAGGTAAGGTTCAAGATGCTGCAAAGGAGCAGAC
CAAAATGAAATGGATATCTCAAAGATTACTGAGAAGAAGGACCAAGATGTGAAGGAGCTTAGATTCTGACAGT
GATAAACCTGCAGGAAGAACCAATGGAAGTAGACGATGACATGAAAACAGAGTCACATGTAATTGTCAGGAG
AGTTCTCAAGTAGATGTTAGTGAGGGTTTCATCTAAGGACTAGTTACAAAAGAAAACAAATCA
TCCAAACTAGATGGACTTCTTGAAAGGAGAATTAAACAGTTACACTGGAAGAAAACAGCAGTCGAAAAATC
10 AAGTTGGAGGGTGGATTAGGATAGGAAAGACTTCTACAAATTCTCAAACATCTCTGAATCACCAGTA
ATAACGAAAGCAAAGAAGGGTGTAGACTCGATGAGACAAGAACAGGCCAATGCAAATAATGATCAA
CCTGAGGACTTGATTAGGGATGTTCACAAAGTGATTCTCAGTTCTAGAATGAGTGATCCTAGTCATACCACA
AACAAACTTATCCAAAAGATCGAGTGTAGATGATGTCCTCATTGGAGGCCAGAAAACAAATGTCGAAACAA
AATTCCATTGAAAATGACATAGAAGAAAAGTCTGACCTTGCCAGTAGAGGCCAGGAACCCACTAAGAGTAAA
15 ACCAAAGGAAATGATTTTCATCGATGACTCTAAACTAGCCAGTGCAGATGATATTGGTACTTGTATCTGAA
AACAAAACCGCTCATACAGGAGGAAAGTGACACCATTGTTCTTCCAAGAGTGCTTACATTGATCAGT
CCTAAAGTACCAATGACAGAGATGCCACACCTCTGCAAGAGCAATGGACTTGAAGGAAAATGGATGTGAC
TCTGAATCTAATAGCACTTGGAAAATAGTCTGATACCGTGTCTATTAGGATAGCAGTGAAGAAGATATGATT
GTTCAGAATAGCAATGAAAGCATTCTGAACAGTCTGAGAACACTCGAGAACAGATGTTGAAGTCTGGAGGCC
20 AAGTGTGAGTTGGTTCTGGTGAUTCCACTGGAAACTGTGAGGACAGGCTGCCGTCAAGGGACTGAAGCAAAT
GGTAAAAAACCAAGTCAGCAGAAGAAATTAGAGGAGAGCAGTTAATAATGTAGTGATCAAATAAGCTAAA
AATACCACTGACAAAAGAATAATGAAAATCGAGAGTCTGAAAAGAAAGGACAGAGAACAGTACATTCAAATA
AATGGAAAAGATAATAACCCAAAATATTTGAAAGGTGAATGCTGAAAGAAATTCTGAGAGTAGAGTAGTA
AGTGGTAATGTTGAACCAAAGGTTATAATATAAATAATCCCTGAGAACAGTATTAATCATTGACTGTT
25 AAAGAATCTGCTATAAGGCCATTCAATTAGGTGATGTCATCATGGAAGATTAAATGAAAGAACAGCTCCGAA
ACAAAATCGCATTTGCTGAGTTCTCAGATGCTGAAGGTAACCTACCGAGATAGCCTTGAGACCCCTGCCATCAACC
AAAGAGTCTGACAGTACACAGACGACCACCCCTCAGCATCTGTCCAGAAAGCAATTCAAGTTAACAGGTAGAA
GATATGGAAAATAGAAACCTCAGAAGTTAAGAAAAGTTACTTCATCACCTATTACTCTGAAGAGGAATCTAATCTC
AGTAATGACTTATTGATGAAAATGGTCTGCCATCAACAAAATGAAATGTCATGGAGAACAGTAAAGAAA
30 ACCGTCATCACAGAAGTCACCAAGCAGTGGCCACAGAACAGTGTGATCAAGGTAGAAAAAA
GGCGATAAGCAAACGTGGTTCTTCCACAGAAAATTGTGAAACCTCAGTCACAACCACCAACTAACAGTG
ACCAAGCTTCCACACCCCTCCAGGGGGCAGTGTGGACATCATCTGTAAAGGAGCAGAGAACCGTGGTC
ACCCACGACAGTGCAGACTCCCTGACCACCCAGGGAGGCACACTGGTTACATCTATGACTGTGAGCAAAGAGTAT
TCCACACGAGAACAGTGAACACTGATGAAATTTCAGAACAGAACAGACTCGTTAGGTACAGCTCTGCCATCC
35 TATAGAAAATTGTTACCAAGAGCACCAAGAACAGAGCATTGTTGCTTAATGATGACTTAAAAAGTTGGCC
CGAAAAGGAGGAATCCGAGAGGTCCTTATTAAATTACAATGCAAACCTGCTTGGATATATGGCCATATCCT
TCTCCTAGACCGACCTTGGCATCACTGGAGGTATAGACTCAGACAGTAAAGTCCTAGCTGGAGTGAGCCTG
ATGTTACGGTTACTGTGGCAAGTTGAGATGGGATGATGGCGGCCAGGTTCTCCAGGAGGAGGGAGTACA
CGGACAGAACATCCGAAACTGAAATCACAAACAGAAATAATTAGAGGAGAGATGTTGGCTTATGGCATT
40 CGATTTGAATATTGATCAGGAAATCATTGTCCTTGGAGTTCCAGAAACACCAAAAGAACGCTACACCT
CAGAGGAAAGGCCTTCGATCAAGTGCAGTGCAGGCCAAAGAGACCAAGAACGCCAAGCAAACGCC
ACTGGCCCTGTTATT

ATTGAAACCTGGTAGCAGAAGAAGAACTGGAATTGTGGAGATCAGGGCTTGCTGAGAGACTGGAGAAAGAA
AAGGCACAAGCAGTTGAGCAACAGGCTAACAGAAACGACTGGAGCAGCAGAAGCCGACAGTGATTGCAACTTCCACT
ACTTCCCCAACAACAGCAGTACAACCAGCACCATCTCTCCAGCACAGAAAGTTATGGTGGCCCCATAAGTGGCTCA
GTTACAACGGAACCAAAATGGTACTAACTACTAAAGTTGGATCTCCAGCTACAGTAACATTCCAACAAAACAAG
5 AACTTTCATCAAACCTTGCTACATGGTTAACAGAAGGCCAGTCACATTCAAGCGTTGTTCAAGTACAGCAGAAA
GTCCTGGGTATCATTCCATCAAGTACAGGTACAGTCAGCAAACCTTACTTCATTCCAGCCCAGGACAGCAACA
GTCACAATTAGGCCAACACCTCAGGCTCTGGAGGAACCACAAGCAATTACAAGTAATCACAGGGCCTCAGATT
CGCCCTGGTATGACCGTATTAGAACACCACTCCAACAGTCAACACTAGGAAAGGCAATTATCGAACACCTGTG
ATGGTACAGGCCAGGTGCTCCTCAGCAAGTGAATGACTCAAATCATCAGGGGCAGCCTGCTCCACTGCAGTC
10 GCCCCTAACACGGTTCCCTAACACCTGGCAGAAAGCTAACCTCAGCAACGTCCACTCAAATATAAGTCT
TCAGCCTCACAAACCCCTGCCAACAAGGACAAGTGAAGCTCACCATGGCTCAACTTACTCAGTTAACACAG
GGCCACGGTGGCAATCAAGGTTGACAGTAGTAATTCAAGGACAAGGTCAAACACTGGACAGTTGCAGTTGATA
CCTCAAGGGGTGACTGTACTCCAGGCCAGCAGCTAACAGTGAAGCTGCAATGCCAAATGGTACTGTTCA
CGATTCTCTTACCCATTGGCAACACAGCCACAGCCAGCACCACACCACACTGTTCACGACAGCA
15 GCAGGTAACAGGTGAACAAAGGCAGAGTAAACTGTCACCCAGATGCAGGTACATCAAGACAAAACCTGCCACCA
GCTCAGTCATCAAGTGTGGTCCAGCAAAGCCCAGCCACAGACTGCTCAGCCTCAGCTCGGCCAGCCCCAA
ACCCAGCCCCAGTCCCAGCTCAGCTAACAGTCAAGTCCAGACTCAGCTAACAGCCAAACTGTTCATCC
CATGTCCCTCTGAAGCACAACCCACCCACGACAGTCATCAAAGCCCAAGTGCAGCACAGTCTCAGCCTCAA
AGTAATGTCCAAGGACAGTCTCTGTTGTCAAAGTCCATCACAGACTCGAACATGTCCATCAA
20 CAACTGTCTCCTGGACAACAATCCAGGTTACAGACTACAACCTCACACCGATTCAAATTCAACCACATACATCT
CTTCAGATACTTCCAAGGCCAGCCACAGTCACAACCCAGGTACAGTCTCAACTCAAACCTTTCATCAGGA
CAAACTTAAATCAAGTTAGTGTGTTCATCCCCATCCGCTCTCAGCTACAAATACAGCAGGCCACAGCCCCAA
ATTGCTGTGCCTCAGCTGCAACAACAAGTCCAGGTTCTCTCAGATCCAGTCACAGGTTGTGGCTCAGATA
GCTCAGCAAAGTGGTGTGCCAGCAAATCAAACCTCAGTTACCTATCAAATTCAAGCAAAGCAGTGCTGCG
25 ACTCACCAGATTCAAATGTGGTTACAGTCAGGCAGCCAGTGCAAGAGCAGTTGCAAAGGGTTCAGCAACTC
AGGGATCAGCAGCAAAGAAGAAACAGCAACAGATAAGAAATTAAAGCTGAACACACCCCTCAAAGCTTCTAATCAA
AGTGAAATCATTCAAAGAACAGGTGGTGTGAAGCATAATGCTGTAATAGAACATTAAAACAGAAAAAGAGCATG
ACTCCAGCTGAAAGAGAAGAGAATCAAAGAATGATTGTCTGTAACCAGGTGATGAAGTATATTGGATAAGATA
GATAAAGAAGAAAAACAGGCAGAAAAACGGAAGCGTGAAGAGAGTGAGCAGAAACGTAGCAAGCAGAAT
30 GCCACTAAAGCTGTCAGCTCTGCTCTCAAGCACAAAGAGCAGCTCAGAGCCGAGATCCTGAAGAACAGAGCAGCTC
CTGGACAAGGATCTGCAAATTGAAGTGCAGGAAGAGCTGAAGAGAGACCTGAAAATTAAAGAAAGAAAAAGACCTG
ATGCAGTTGGCTCAGGCCACAGCAGTAGCTGCACCCCTGCCAGTGACACCCAGTTCTCCAGGCCCTCCAGCC
CCTCCACCTTCACCTCCCCCTCCACCTGGTGTGCAACACACAGGCCTTCTGTCACGCCACCTTACCTGTTGCT
TCCCAGAAAGAGGAAGCGGGAAAGAGGAAAAGACTCCAGCTCAAAGTCAAAGAAAAGAAAATGATCTCTACTACC
35 TCAAAGGAAACTAAGAAGGACACAAAGCTTACTGTATCTGAAAACGCCTTATGATGAATCTAAATTATATT
GGCTGTGATCGGTGTCAGAATTGGTACCATGGCGCTGCGTTGGCATCTGCAAAGTGGAGGAGCTCATTGAT
GAGTATGTCTGTCACAGTGCCAGTCAACAGAGGATGCCATGACAGTGCTCACGCCACTAACAGAGAAGGATTAT
GAGGGGTTGAAGAGGGTGCTCCGTTCTACAGGCCATAAGATGGCCTGGCCTTCTGAAACCAGTAGACCC
AATGATGCACCAGATTATTATGGTGTATTAGGAACCTATGGACCTTGCCACCATGGAAGAAAGAGTACAAAGA
40 CGATATTATGAAAAGCTGACGGAATTGTGGCAGATATGACAAAATTGATAACTGCTGTTACTACAATCCA
AGTGACTCCCCATTTACCAAGTGTGCAAGAGTTCTGAATCATTGTCAGAAATTGAAAGGCTCAAAGCT

AGCAGGTCTCATAACAAACAAACTGCAGTCAGCTTAAAGTTAGCGTGTAAACCTAACATAAAACACAGC
 AAGAATCTGGTTGTCGAACATTAAAGGAGCCAGATGTTTAGTCAGGCTATCCTGACAAGACTTGA
 CCTAAACTCGTTTATTGGTCATAACAGTCCAATTATATTCTTGGCCAATTTGCCAACGGACAAGAAAAAA
 GCAAAGTCAACGACACCATTATCTTGTCAAGATCAGATGGTTACTATTGTGGCAGAAGCGAGAAAACTTGTT
 5 TATTGAAAAAAAAGAAAAAGCAAGAAAAAGATACTATGGGTCAAGTGTAACTCCATGGAAATGCCAC
 GTCTGCTCTTCAGTGAAGAAGCTGGTTAGAGTCTCACAGAAAACCTTGACTGTATTATTTATGTTGCAAAA
 AAGACGCTTTTTATTGCTGCCCTCATTGTCAGCTAAGTATTCTTATAAAATCCAGCCCCGGTTACATAT
 AATCATCTGTATCTTATCATGATTCTGTAGGTAAAAGTACAAGACGACCTCTAGATGTCTTCTTATGAA
 AGGAGCTGCTATGTACACATGTGACACACACACAACACTGGGAATCAACAATGAGTTATTGTTCATGGTAGATTA
 10 AAATTAAGCTTGCATAAAAGGTTGGCTAAGTGGCCTTGGCTACAGACTCTGTTGCCTGAATATAACAGTACA
 ATTTGTCATTACTCTGACCAGGCTAAAGTGAGTAAAATCTATTGAAGGTATCTGTTGTAAACATTGTCA
 GATTCTAATTTTTCTTTGTATTAAAATTCAACTATGGATGTATATGAAACAAAATAATGGAGATAATTTT
 CTCACAAAAA
 15 **SEQ ID NO:30 Human BPTF polypeptide sequence**
 protein id:gi6683492
 MVSEEEEEEDGDAEETQDSEDDEEDEMEEDDDSDYPEEMEDDDDDASYCTESSFRSHSTYSSTPGRRKPRVHRP
 RSPILEEKDIAPPLEFPKSSEDLMPNEHIMNVIAIYEVLRFNFTVRLSPFRFEDFCAALVSQEQLTLMAEMHVV
 LLKAVLREEDTSNTTFCGPADLKDSVNSTLYFIDGMTWPEVLRVYCESDKEYHHVLPYQEAEDYPYGPVENKIKV
 20 QFLVDQFLTTNIAREELMSEGVIQYDDHCRVCHKLGDLLCETCSAVYHLECVKPPLPEVPEDEWQCEVCVAHKV
 PGVTDCVAEIQKNKPYIRHEPIGYDRSRRKYWFLNRLIIEEDTENENEKKIWYYSTKVQLAELIDCLDKDYWEA
 ELCKILEEMREEIHRHMDITEDLTNKARGSNKSFLAAANEEILESIRAKKGIDIDNVKSPETEKDKNETENDSKD
 AEKNREEFEDQSLEKDSDDKTPDDDPEQGKSEVGDFKSEKSNGELSESPGAGKGASGSTRITRLRNPDSQL
 KSQQVAAAHEANKLFKEGKEVLLVVNSQGEISRLSTKKEVIMKGNINNYFKLGQEGKYRHYHNQYSTNSFALNKH
 25 QHREDHDKRRHLAHKFCLTPAGEFKWNGSVHGSVKLTISTLRLTITQLENNIPSSFLHPNWASHRANWIKAQMC
 SKPREFALALAILECAVKPVVMLPIWREFLGHTRLHRMTSIEREEKEVKKKKEKKQEEEETMQQATWVKYTFPVK
 HQVWKQKGEELYRVTGYGGWSISKTHVYRFVPKLPGNTNVNRYKSLEGTKNNMDENMDESDKRCSRSPKKIKIE
 PDSEKDEVKGSDAAKGADQNEMDISKITEKKDQDVKELLSDSDKPCKEEPMEVDDDMKTESHVNCQESSQDVV
 NVSEGFLRLRTSYKKKTSSKLDGLLERRIKQFTLEEKQRLEKIKLEGGIKGIGKTSTNSSKNLSESPVITKAKEG
 30 CQSDSMRQEQPNAANDQPEDLIQGCSQDSVLRMSDPSHTNKLYPKDVRLLDVSIRSPETKCPKQNSIENDI
 EEKVSDLASRGQEPTKSHTKGNDFFIDDSKLASADDIGTLICKNKPLIQEESDTIVSSSKSALHSSVPKSTNDR
 DATPLSRAMDSEGKLGCDSESNSTLENSSDTVSIQDSSEDMIVQNSNESISEQFRTREQDVEVLEPLKCELVSG
 ESTGNCEDRLPVKGTEANGKKPSQQKKLEERPVNKCSDQIKLKNTTDKNNENRESEKKGQRTSTFQINGKDNKP
 KIYLKGECLEKEISESRVSGNVEPKVNNINKIIPENDIKSLTVKESAIRPFINGDVIMEDFNERNSSETKSHLLS
 35 SSDAEGNYRDSLTLPSKESDSTQTTPSASCPESNVNQVEDMEIETSEVKKVTSSPITSEEESNLNSNDFIDE
 NGLPINKNENVNGESKRKTVITEVTTMTSTVATESKTVIKVEKGDKQTVVSTENCASKTWTNTTPTKLS
 TGGSVDIISVKEQSKTVVTTVTDSLTTGGTLVTSMTVSKEYSTRDKVJKLMFSRPKKTRSGTALPSYRKVTK
 STKKSIFVLPNDDLKKLARKGGIREVPYFNYNAKPALDIWPYPSPRPTFGITWRYRLQTVKSLAGVSLMLRLLWA
 SLRWDDMAAKVPPGGGSTRTETSETEITTTEIIKRRDVGPYGIRFEYCIRKIIICPIGVPETPKETPTPQRKGLRS
 40 SALRPKRPEPKQTGPVIIETWVAEEELWEIRAFERVEKEKAQAVEQQAKKRLEQQKPTVIATSTTSPTSST

TSTISPAQKVMVAPIGSVTTGKMLTTKGSPATVTFFQQNKNFHQTATWVKQGQNSGVVQVQQKVLGIIPS
 STGTSQQTFTSFQPRTATVTIRPNTSGSGGTSNSQVITGPQIRPGMTVIRTPLQQSTLGKAIIRTPVMQPGAP
 QQVMTQIIRGQPVSTAVSAPNTVSSTPGQKSLSATSSTSNIQSSASQPPRQQGVQLTMAQLTQLTQGHGNQG
 LTVVIQGQGQTTGQLLIPQGTVLPQPGQQLMQAAMPNGTVQRFLFTPPLATTATTASTTTTVSTTAAGTGEQR
 5 QSKLSPQMNVHQDKTLPPAQSSSVGPAKAQPQTAQPSARPQPTQPSAQPEVQTQPEVQTQTTVSSHVPSEAQ
 PTHAQSSKPQVAAQSQPQNSVQGQSPVRVQSPSQTIRPSTPSQLSPGQQSQVQTTTSQPIQPIQHTSLQIPSQG
 QPQSQPQVQSSTQTLSSGQTLNQSVSSPSRPQLQIQQPQPVIAVPQLQQQVQVLSQIQSQVVAQIQAAQSGVP
 QQIKLQLPIQIQQSSAVQTHQIQNVVTVQAASVQEQLQRVQQLRDQQQKKQQQIEIKREHTLQASNQSEIIQKQ
 VVMKHNAVIIEHLKQKKSMTPAEREENQRMIVCNQVMKYILDKIDKEEKQAAKKRKREESVEQKRSQNATKLSAL
 10 LFKHKEQLRAEILKKRALLDKDLQIEVQEELKRLKIKKEKDLMLQLAQATAVAAPCPVTPVLPAPPAPPPSPPP
 PPGVQHTGLLSTPTLPVASQKRKREEKDSSSKSKKKMISTTSKETKDKTLYCICKTPYDESKFYIGCDRCQN
 WYHGRCVGILQSEAEELIDEYVCPCQSTEDAMTVLTPLEKDYEGLKRVLRSLQAHKMAWPFLEPVDPNDAPDYY
 GVIKEPMGLATMEERVQRRYYEKLTEFVADMTKIFDNCRYNPSDSPFYQCAEVLESFFVQKLGFKA
 RSNNK
 15 LQSTAS

SEQ ID NO:31 Mouse BPTF nucleotide sequence

accession:BC021489

CCACCGTCCGGTCCTGCAGAACGCCAGCACAGCCTGCTCAGCCTGCAGCACAAACCCAGCCCCAGCCCAGCC
 CCCAGCTCAGCCTGAAGTCCAGACCCAGCCAGCTGTCTCGTCCATGTCCCTTCTGAAACACAGCCCTCCAAAGC
 20 ACAGACATCTAAACCCCTGGTTGCAACACAGTGTCAAGCCTCAGAGCAGTGACAAGGACAGTCTCCTGTTGAGT
 CCAGAGTCCACCCTGACTCGAATATGTCCATCAACTCCATCCAAGTGACTCCTGGACAGCAACCCAGGTTCA
 GACTACAGCTTCACAGCCGATTCCAATTCCGCCCCCATCTCTGCAGGCACCTTCCAAGGCCAGCCACAGTC
 ACAGCCCCAGGTACAGTCTTCAACTCAAACCTTTCATCAGGACAGACATTAATCAAGTTACTGTTCTATCTCC
 ATCCTGTCCTCAGCCACAGCCCCAAGTCATTGCTGTCCTCAGCTCCAGCAAGTCCAGGTCTCTCAGATCCA
 25 GTCGCAGGTTGTCAGATACAGGCCAGCAAAGGGTGTGCCCCAGCAAATCAAACCTTCAGTTGCCATTCA
 AGTTCAGCAAAACAGTGCTGCGCAGACTCAGAGTGTGGTCACAGTGAGGCAGCCAGTGTGAGGAGCTTGCA
 GAGGGTTCAGCAACTCAGGCCAGCAGCAAAGAGAAGAAGCAGCAGATAGAAACTGAGCGTGAACACACCCCTCCA
 AGCTTCTAACCAAAGTGAGATCATTGAGAACAGGTGGTGATGAAGCATAATGCTGTAATAGAACATTAAAACA
 GAAAAAGACCATGACTCCAGTGAAGAGAGAAAATCAAAGGATGATTGCTGTAACCAGGTGATGAAGTATAT
 30 TCTGGATAAGATAGATAAAGAAGAAAACAGGCCAGCAAAGGGGAGGAAGAGAAGGACTCTAAGTCCAAGAA
 GAGCAAACAGAATGCCAGCAAGCTCTGCTCTGCTGTTCAAACACAAGGAGCAGCTCAAAGCTGAGATCCTGAG
 AAAGAGAGCGCTCCTGGACAAAGAGTTGAGATCCAAGTGAGCAGGAAGAGCTGAAAAGAGACCTGAAAATGAAACG
 AGAGAGGGAGATGCCAGGCCAGGCGGTACAGGCCATGCTGCTCAGTGCCCCACACCCCTCCGTGCCAGCCCCCTGTGCC
 AGCGCCTGCACCAGGCCAGCCCCCTCCAGCTCCTCCGTTCTCCGCTCCACACACAGTCTGCCACCTGCAGG
 35 CCACCCACAGCCCCACTGCCTGCACTTCCCAGAACAGAGGAAGCGGGAGGAAGAGAAGGACTCTAAGTCCAAGAA
 GAAGAAGATGATCTCTACCACCTCTAAGGAGGCCAAGAAGGACACCAGGCTATATTGCTGCAAGACACCGTA
 CGATGAGTCCAATTTATATTGGCTGTGATCGGTGTCAGAATTGGTACCAACGGCGCTGTGGCATCTGCA
 AAGTGGAGGAGATCTCATTGATGAGTATGCTGTCACAGTGCCAGTCAGAGGAGGCCATGACAGTGCTCAC
 ACCACTGACAGAGAAAGATTATGAGGGCTTGAAGAGGGTGCTGCGCTCCTACAGGCCACAAGATGGCGTGGCC
 40 TTTCTTGAACCGGTAGACCCCAATGATGCAACGGATTATTACGGTGTATTAAAGAGCCAATGGACCTTGGCCAC

CATGGAAGAAAGAATACAAAACGGTATTATGAAAAGCTGACAGAGTCGTGGCAGATATGACCAAAATTTTGAT
 TAACTGCCGTTATTACAATCCCCGTGACACCCCTTTACCAGTGTGCAGAAGTCTTGAAATCATTCTTGACAG
 GAAACTAAAAGGATTCAAGGCCAGCAGGTCTCATAACAAACAAGCTGAACTACAGCTCCTAGAACTCAGCGTG
 TCTGTCACCTAACGCTAGACACAGCAAGTCTGGCGCTCTGAACATTTAAACTAAAGGCCAGATATTCAGTCA
 5 GGCTTCCTGACAAGACCGTAACCTCGTTCATATTGGTCACAAACAGTCCAGTTGATTCTGGCAATTTGTCC
 AACGGACAAAGGAAAGCAAAGTCACGGCACCGTTGCTTGAGAGCAAATGGCTTACTATTGTGGCAGAA
 GCAGGAAACTTGTATTGGAAAAAAAAAAAAAA

SEQ ID NO:32 Mouse BPTF polypeptide sequence

10 accession:gi18204482

HASGPAAQQPQPAQPAQOPQPQPQPPAQPEVQTQPAVSSHVPSETQPSQAQTSKPLVATQCQPQSSVQGQSPVRV
 QSPPLTRICPSTPSQVTPGQQPQVQTTASQPIPIPPTSLQAPSQGQPQSQPVQSSQTLSSGQTLNQVTVLSP
 SCPQPQPQVIAVPQLQQVQVLSQIQSQVVAQIQAQQQSGVPQQIKLQLPIQVQQNSAAQTSVVTQAAVSQEQLO
 RVQQLRDPQQQKKKQQIETEREHTLQASNQSEIIQKQVVMKHNAVIEHLKQKKTMTPAEREENQRMIVCNQVMKYI
 15 LDKIDKEEKQAAKKRKREESVEQKRSQNASKLSALLFKHKEQLKAEILRKRALLDKELOIqvQEEELKRDLMKR
 EREMAQAVQANAASVPTPSVPAPVAPPAPAPPAPPRSPPPPSTHSLPPAGHPTAPLPVTSQKRKREEEKDSKSK
 KKMISTTSKEAKKDTRLYCICKTPYDESKFYIGCDRCQNWyHGRCVGILQSEADLIDEYVCPCQSTEDAMTVLT
 PLTEKDYEGLKRVLRSLQAHKMAWPFLPVPNDAPDYYGVIKEPMDLATMEERIQKRYYEKLTEFVADMVKIFD
 NCRYYNPRDTPFYQCAEVLESFFVQKLKGFKASRSHNNKLQSTAP

20

SEQ ID NO:33 Human GS3955 nucleotide sequence

HUM186702 accession:BC002637 CDS:496..1527

GGCACGAGGGTTGGCTTAACCGTTGGACTGAGTCGCCGTGAGCTCCCGAAGACTGCACAAACTACC
 GCGGGCTCCTCCGCCGTCTCGGATTGGAAAGCCGGCTGGGGTCGCGTCGGAGCCCTGGCCTGCAGCTCC
 25 GCACCTTAGCAGCCGGTACTCATCCAGATCCACGCCGGGACACACACACAGAGTAACCTAAAGTGCAGCGAT
 TCTGCACATCGCCGACTGCTTGGGTAACAAAAAGACCCGAGTTGCCTGCCACCGAGGGACCCGGAGCCGG
 GCTCGGAGCAGACGAGGTATCCGGCGCCATTGGGCTCTAACTCTTCTCACGCAGCCCTCTTG
 TCCCCTCCCTCTCGCTCCCTTTAAATCAGTGGCACCGAGGCGCTGCAGCCACTGCCAGCGACTCATCT
 CTCCAGCGGGTTTTTTGTTGCTGTGCGATCCTCACACTCATGAACATACACAGGTCTACCCCATCACA
 30 ATAGCGAGATATGGGAGATCGCGGAACAAAACCCAGGATTTCGAAGAGTTGCGTCTATAAGGTCCGGAGCCC
 AGCCAGAGTTTCAGCCGAACCTCGGCTCCCGAGCCGCCAGACTCCGAACTTGTGCATTGCGTTCTGT
 ATCGGGAAATACTTATTGTTGAAACCTCTGGAGGGAGACCACGTTTCGCGCTGCATCTGCACAGCGGAGAG
 GAGCTGGTGTGCAAGGTGTTGATATCAGCTGCTACCAGGAATCCCTGGCACCGTGTGCTTGCCTGTCTGCAT
 AGTAACATCAACCAAATCACTGAAATTATCCTGGGTGAGACCAAAGCCTATGTGTTCTTGAGCGAAGCTATGGG
 35 GACATGCATTCCCTCGCCACCTGCAAGAAGCTGAGAGAGGAGGCAGCCAGACTGTTCTACCAAGATTGCC
 TCGGCAGTGGCCCACTGCCATGACGGGGGCTGGTGCCTGCCGACCTCAAGCTGCCAGAAATTCACTTTAAGGAC
 GAAGAGAGGACTCGGGTCAAGCTGAAAGCCTGGAAGACGCCACATTCTGCCGGAGATGATGATTCCCTCTCC
 GACAAGCATGGCTGCCGGCTTACGTAAGCCCAGAGATCTGAAACACCAGTGGCAGCTACTCGGGCAAAGCAGCC
 GACGTGTGGAGCCTGGGGTGATGCTGTACACCAGTTGGTGGCGGTACCCCTTCCATGACATTGAACCCAGC
 40 TCCCTCTTCAGCAAGATCCGGCGTGGCCAGTTCAACATTCCAGAGACTCTGTCGCCAAGGCCAGTGCCTCATC

CGAAGCATTCTCGTCGGGAGCCCTCAGAGCGCTGACCTCGCAGGAATTCTGGACCATCCTGGTTTCTACA
 GATTTTAGCGTCTGAATTCAAGCATATGGTCTAAGGAAGTGCTGACCAAGCTGGTCCGGACGTCAACATGGAA
 GAGAACTTGGACCCTTCTTAACTGAGCTCATGCCAACGGAGACTTAGCAGGTTCCAGGAGTGAGCGAGGGCA
 GCGGAAAGGAGTTCTCCGGGGACACGAATTGCCTGGCTGAGTAGCAAGAAAGACACACTCTTAAGTTCTGG
 5 TTCAGAGCAGGAAAACCTCAAGGAGCTGACTGACCACGTAGCATGGGGCAAGAGGGCTGGATGGGATTGGG
 GTGAGATGGATGGAGCCCGCTGGAGCTTGTCTCCCTAACATAGCCTGGAGACQACCCCTGCCACTTGGGCC
 ACTTCCGCCTACCCCACCTTTCAATTGTCCAAAATAGTTGCAGATCCTGACAGAATCAAACACTCTGCCTCA
 AACACACATCCTGGCATCGCACTGTTAGCATTAACTTCTGTAGGATTCAAGGAAGGAACAGTTGGCCAAGAA
 TTTTTTTCTTTAAACAAGCCAACCACCTAGCTGGTAATTAAATGAGGTTCACTTAAAAAAAAAAATCGGTGCA
 10 CACAGACTGACATGAAACCTGGTGCTACAGTAAAAGAAAACAAAGTCCAGTTGTCTCTTAATCGCTCACT
 TCAACTCATTTCTCTAAATAACTATTAAATATCCTGAAAAA
 AAAAAA

SEQ ID NO:34 Human GS3955 polypeptide sequence

protein_id:gi12803605

15 MNIHRSTPITIARYGRSRNKTQDFEELSSIRSAEPSQSFSNPNLGSPSPPETPNLSHCVSCIGKYLLEPLEGDHV
 FRAVHLHSGEELVCKVFDISCYQESLAPCFCLSAHSNINQITEIIILGETKAYVFFERSYGDMHSFVRTCKKLREE
 EAARLFYQIASAVAHCHDGLVLRLDLKLRKFIFKDEERTRVKLESLEDAYILRGDDDSLSDKHGPAYVSPEILN
 TSGSYSGKAADVWSLGVMLYTMLVGRYPFHIEPSSLFSKIRRGQFNIPETLSPKAKCLIRSILRREPSERLTSQ
 EILDHPWFSTDFSVNSNSAYGAKEVSDQLVPDVNMEENLDPPFN

20

SEQ ID NO:35 Mouse GS3955 nucleotide sequence

accession:XM_126841 CDS:555..1586

GCAGCGCGGATTCTGGCTGCCGCGCGCGTGAGCCGGTAGACCCGAGCTTATTCCTTTCTTTGTTGGTT
 TCTAACCGCTGGAGGGCGAGCCGGCGCCGCGCTCCCTGAAGACTGCACAAACTCCACGCAGGGCTTCTCCGCC
 25 CGGTCTCGGGATCCTCAGCTGGGATCGCTCAGAACAGCCGGACTGAGTCCAGCGTGCGGTTCTGCACCCGCGCTGGCAGCTTCTGGG
 CGTCCAGATCCACGCTCGCAACAGAGACCCACTGAGTCCAGCGTGCGGTTCTGCACCCGCGCTGGCAGCTTCTGGG
 TAACAAAAGGACCCGAGTTGTCGGCAGAGCGAGCACCCCGGGAGCGGGCTCGCAGCCGGGACCAGCCCTGCA
 GCGCCCACCTGGGGCTAGTTCTTAACTCTTCCACGGAGCCCCAGACGGGCTCCCTCTTGATCCTT
 TAAAGTCGGTAGCACCAGGGCGCTGCACCCGGCGCTCATCCATCTCCAGAGGGTTTTGGTTGTTGT
 30 TTGTTTGTCTGCGATCCTCACACTCATGAACATACACAGGTCTACCCCTATACAATAGCGAGATATGGGA
 GATCGCGGAACAAAACCCAGGATTCGAAGAGAGCTGTCGTCTATAAGGTCCGCTGAGCCCAGCCAGAGTTCAGCC
 CGAACCTTGGCTCTCGAGCCCGCCGAGACTCCGAACCTGTGCGATTGCGTTCTGCATCGGAAATACTTAC
 TGTTGGAGCCTCTGGAGGGAGACCACGTTTCCGCGCTGTGCATCTGCACAGCGGAGAGGAGCTGGTTGCAAGG
 TGTTGAGATCAGCTGCTACCAAGGAGTCCCTGGCCCCCTGCTTCTGCCTGTGCCTAGCAACATCAACCAAA
 35 TCACGGAAATCCTCTGGAGAGACCAAAGCCTATGTGTTCTTGAGCGAAGCTATGGAGACATGCATTCTTGC
 TCCGCACTGTAAGAAGAGCTGAGGGAGGGAGGCAGCCGACTGTTCTACCAAGATTGCGCTCAGCTGTGGCCATT
 GCCACGATGGAGGCCTGGTCTGCGTGACCTCAAGCTGCGGAATTATCTCAAGGATGAAGAGAGGAGCTCGT
 TCAAGCTGGAGAGTTGGAAGACGCTTACATTCTCCGGGTGATGATGACTCACTCTGACAAGCATGGCTGCC
 CAGCGTATGTCAGCCCAGAGATCTGAACACCAGCGGCAGTTATCAGGCAAGGCAGCGGACGTGGAGCCTGG
 40 GGGTAATGCTGTACACCATGTTGGTGGGCGTTACCCCTTCCATGACATTGAGCCTAGTTCTCTTCAAGTAAGA

TCCGCAGGGGCCAGTCAACATTCCAGAAACTCTGTCCTCCAAGGCCAAGTGCCTCATCCGAAGCATTCTGCGAC
GGGAGCCGTAGAGCGGCTGACCTCGCAGGAAATTCTGGACCATCCTGGTTTCTACAGATTTAGTGTCTCAA
ATTCCGGATTGGTGTCAAAGAGGGGTGTGACCAGCTGGTGCAGACGTCAACATGGAGGAGAACCTGGACCCCTT
TCTTTAACTGAGCTCAAGGCCAGGGACACATAGCAGGTACCAGGAGCAAGAGAGAGCCCCAGAAAGGAGTTCTG
5 GGACACAGGTGGCTGGCTGAGAAGCAAGACGGACATTCAATTACACATTCTGGTTCAGAGAAGGAATATG
TTCTAGGAGCTGACGGAACACGTAGCATGGAAACAAGACGTGTGGATGGGGTTGGGTTCAGATGGACGGGAGC
CCCTCCCCTAAGCTCTTCCCTGGGTAGCCTGAGAGTCCCCCTTACCAAGTAGGGCTATTCTACCCCCACTTTT
CATTGGTCAGAAATAGTTGCAGATCTCGATAGAATCCAAACTCTCTGCCTCAAACACCTACCTTGGCATTGC
ACTGTTAGCATTAACTTCTTGTACGATTCAAGGAAGGGACAATTGATCGAAGATTTTTTTTTGGAA
10 CAGACCAACCACCTATGTAATAATTAAAGATTACCTAAAAATAATAATTGGTGACACAGACTGACCT
GAAACCTGGGTGCTAAACTAAAAGAAAACAAAAGTTCCAGTTGTCGTCTCATTGCACTTCCAATTCAATTTC
TTCTAAATAAACGATGTCCTATTCTGGTTAGGAAGTAACACATTAACGCTTGCTCCCTGAACGGGAGGGGAG
TCTGTTCCACAGACATTCTGTTGTATCAGCTGGTTTGAGCAGGAAACTATCAGAAGTCAAACTCC
AGATGTATTATCACAGTTCAAGGGAGAAGAAAGGAAAAGAAGAAAATCCAACCTCCTTCTGGTTTGTCTT
15 TTGAAGGAAGAGGGTCACATTGTAGACATTGCTCTGCTCCAAATTCACTGAGGGGCTCCCAGAGGGCAGCGC
CCTCTGGAGTCAGATCTTGTATGATGCTGATCTAACGTTGCTTATGGAAACTAGTAAAACG
AGACAGGTTGTCCTGTATAAAATACAGGGCAGCTATTCTTCTTGCTAAGAATGATCCTTGGCCTT
GGAAAGGCCCTGGTTGAACAGAAAGAGTAAACGGCAATAAGCCAAAGCCAGGATGATACATACAAACA
GCTCTGTCCCAATACGCACCTGTATTAAAGAAAATGTCACATTGTGATGTATTAAGCCAGTACTTCAA
20 TTACGGGTCAACGGGATGACATGTTACATGCTGTAGTTAACATTATAATTGGTCCCTGGTTGAGTATT
CTGTCCTGGAATAACCTTTATTGGCTTCTAGATAGCCTATTGATTTGAGTGGCAAATGTTTCC
TTTGTACTCTGGCTTCTATTGCTGTATGATACAGAACTCTTGGATAAAATTGTGTTCCAGTACCTC
AGTCGTTGGGTTTCTGCCTGCATCTGTTGTAAAGGTCCCTGTTGGTAGGTGACACGTGGACTCTA
GTGTGTAAATGTTACTTGAATCTGTGCTCACTCTAGTATGTGGCATGTGTGCGGACTCTGGATGCTCACG
25 CCTACTCCACTGGAGCCCTGTCCCCAGGAGGACAGCTTCCCCACTGATAATCAGGAGACCAAGCTGCCATGGAT
TTACCCCTGATTCTATTGATAATGGAAGATACAGAGAGAGGGTTTACATTCAAGAAGATGGTGTGCGGAA
GAAGGACCTTTATCTCCCTCTCCCTGGTTAAAGTCCTCGTGGGAGGAAAGATTGGAAACATGCATGATG
GGGACTAATGGCCTCTGGTGCTTGTCTGTATTGGTTAATGTTTGTCCATACTCTTCAATCAATAAAAT
TGTGCGTATTAACT

SEQ ID NO:36 Mouse GS3955 polypeptide sequence

accession:gi20845061

35 MINIHRSTPITIARYGRSRNKTQDFEELSSIRSAEPSQSFPNLGSPSPPETPNLSHCVSCIGKYLLLEPLEGDHV
FRAVHLHSGEELVKVFEISCYQESLAPCFCLSAHSNINQITEILLGETKAYVFFERSYGDMHSFVRTCKKLREE
EAARLFYQIASAVAHCHDGLVLRLDKLRKFIFKDEERTRVKLESLEDAYILRGDDDSLSDKHGCPAYVSPEILN
TSGSYSGKAADVWSLGVMLYTMLVGRYPFHIEDPSSLFSKIRRGQFNIPETLSPKAKCLIRSILRREPSERLTSQ
EILDHPWFSTDFSNSGFGAKEACDOLVPDVNMEENLDPPFN

SEQ ID NO:37 Human FRP nucleic acid sequence

HUM188423 accession:D89937 coding sequence:77..1003

CGGAGCTCCCACCTCCGCTTACAGCTCGCTGCCGCCGTCTGCCCGCCCCAGGGAGACCTGGACCAGACCAC
GATGTGGAAACGCTGGCTCGCGCTCGCGCTGGCGGTGGCTGGCTGGGTCGGCGCCGAGGAAGAGCTAAG
5 GAGCAAATCCAAGATCTGTGCCAATGTGTTTGTGGAGCCGGCGGAATGTGCAGTCACAGAGAAAGGGAAACC
CACCTGTCTCTGCATTGAGCAATGCAAACCTACAAGAGGCCGTGTGGCAGTAATGGCAAGACCTACCTCAA
CCACTGTGAAC TGCACTCGAGATGCCTGCCTCACTGGATCCAAATCCAGGGTGAATTACGATGGACACTGCAAAGA
GAAGAAATCCGTAAGTCCATCTGCCAGCCCAGTTGTTGCTATCAGTCCAACCGTGATGAGCTCGACGTGCAT
CATCCAGTGGCTGGAAGCTGAGATCATTCCAGATGGCTGGTTCTCTAAAGGCAGCAACTACAGTGAATCCTAGA
10 CAAGTATTTAAGAACCTTGATAATGGTGATTCTGCCCTGGACTCCAGTGAATTCTGAAGTTGTGGAACAGAA
TGAAACTGCCATCAATATTACACGTATCCAGACCAGGAGAACAAACAAGTTGCTTAGGGACTCTGTGTTGATGC
TCTCATGAACTGTCTGATGAAAATGCTGATTGGAAACTCAGCTTCCAAGAGTTCTCAAGTGCTCAACCCATC
TTCAACCCCTCCTGAGAAGAAGTGTGCCCTGGAGGATGAAACGTATGCAGATGGAGCTGAGACCGAGGTGGACTG
TAACCGCTGTGCTGTGCCCTGGAAATTGGGTCTGTACAGCCATGACCTGTGACGGAAAGAACATCAGAAGGGGGC
15 CCAGACCCAGACAGAGGAGATGACCAGATATGCCAGGAGCTCCAAAAGCATCAGGAAACAGCTGAAAAGAC
CAAGAGAGTGGCACCAAAGAGATCTAATGAGGAGGACAGACCAGTGTCTGGATCCAGCATCTCTCCACTTC
AGCGCTGAGTTCAGTATACACAAGTGTCTGCTACAGTCGCAAATCACCAGTATTTGCTTATAGCAATGAGTT
TTATTTGTTATTTGTTGCAATAAAGGATATGAAGGTGGCTGGCTAGGAAGGGAAAGGCCACAGCCTTCATT
TCTAGGAGTGCTTTAAGAGAAACTGTAATGGTCTCTGGGCTGGAGGCTAGTAAGGAAACTGCATCACGATTG
20 AAAGAGGAACAGACCCAAATCTGAACCTCTTGAGTTACTGCATCTGTCAGCAGGCTGCAGGGAGTGCACACG
ATGCCAGAGAGAACTTAGCAGGGTGTCCCCGGAGGAGAGGTTGGAGCTCCACGGAGAGAACGCTCTGCT
TCCAGCCTCTTCCATTGCCGTCAAGCATGACAGACCTCCAGCATCCACGCATCTCTGGTCCAATAACTGCC
TAGATACATGCCATACTGCTAGTTAACCCAGTGTCCCTCAGACTTGGATGGAGTTCTGGAGGGTACACCCAA
ATGATGCAGATACTTGTATACTTGAGCCCTTAGCAGCTAACCAAATTAAAAACTTTTACCAAAAGGTG
25 CTATTTCTCTGTAACACTTTTTGGCAAGTTGACTTTATTCTCAATTATTATCATTATATTGTTT
TTAATATTTATTTCTTGACTAGGCTGACTTTATCATGACAACCTAGCTGATTCTTATGAAGGATTAGGGAT
ATTCATCTTCAGCAGTGCACATGAGAAATAAACTCTGAAAAGGAATTCTGGGTTAGGAAGGGACCGTATT
TGGGAATTACTTCAGAGGAACGGACAATAATTCTAGGATTATAGCCAAGAAGGACTGGAAGACTTCAGGAGATGC
TTCAGCTTCTCTAGATTTGAATGCTGAATAAGCCACTGAAGTGTGATATCTATATTATCCTTTCTTGCAAG
30 AAATTGAATAGCAGCAAATTCTCTATCCTGAATAGCAGACAGATTCAATTCTCAATTAGCTGTTCTCATCCA
AGGCATTAGGAAGACCTCCCTTTCAAGGCACATCGAACCTGAGTTAGCAGGAAGGGATTCTCAATAAGAGC
AGAAATGCCAGGAAATCCTCAACACTATGGAAGATTCTTACCGGACCTTGAACCTCAATGATCCAGATGCAA
ATGCAGATTCCCCAAAATTGGTAAATACAGATGACACTTATGAAGAGCTCCATTAACTGTTATAAGGCCAT
GAGTGCAGCTGTGCTTATGATCGACGCCCTGTCCACCCAACGTTGGATTTGCCAGACTGGACAGC
35 CGTTGGCCCCCAGCTCACAGTGTGCCCTGTGACATCTGTGAAACAGTTAACATCAACAAAGAGGATGTCCGGTC
TGAGAAAGAACCCAGTTAACGTTATCTACTTCAACCACATGAATCTGCCAGAGAACGAC

SEQ ID NO:38 Human FRP polypeptide sequence

protein_id:gi3184393

MWKRWLALALALVAVAWVRAEEELRSKSKICANVFCGAGRECAVTEKGEPTCLCIEQCKPHKRPVCNSNGKTYLN
 HCELHRDACLTGSKIQVDYDGHCKEKSVSPSASPVVQYSNRDELRRRIIQWLEAEIIIPDGWFSKGSNYSEILD
 5 KYFKNFDNGDSRLDSSEFLKFVEQNETAINITTPDQENNKLRLGLCVDALIELSDENADWKLSFQEFLKCLNPS
 FNPPEKKCALEDETYADGAETEVDCNRCVCACGNWVCTAMTCDGKNQKGAQTQTEEEMTRYVQELQKHQETAEKT
 KRVSTKEI

SEQ ID NO:39 Mouse FRP nucleic acid sequence

10 accession:NM_008047 coding sequence:80..1000
 AAGCGACGCCACCTCGCCTCTAACACTCGCTGCCGCCACCCCTGCCAGTGTCCCTCCGGAGTCCGGACCCGAG
 CACGATGTGGAAACGATGGCTGGCGCTCTCGCTGGTGACCATGCCCTGGTCCACGGCGAGGAGGAACCTAGAAG
 CAAATCCAAGATCTGCGCCAATGTGTTTGTGGAGCTGGCAGGGAAATGTGCCGTACAGAGAAGGGGAGCCCAC
 GTGCCCTCTGCATTGAGCAATGCAAACCTCACAGAGGCCCTGTGTGGCAGTAATGGCAAGACCTACCTCAACCA
 15 CTGTGAACCTCATAGAGATGCCCTGCCTCACTGGATCCAAGATCCAGGTTGATTATGATGGGCACTGCAAAGAAAA
 GAAAGTCTGCGAGTCCATCTGCCAGCCCAGTTGTCTGCTATCAAGCTAACCGCGATGAGCTCCGACGGCGCCTCAT
 CCAGTGGCTGGAAGCTGAGATCATTCCAGATGGCTGGTCTCTAAAGGCAGTAACTACAGTGAGATCCTAGACAA
 GTACTTTAAGAGCTTGATAATGGCAGTCTCACCTGGACTCCAGTGAATTCTGAAATTCTGTGGAGCAGAATGA
 AACAGCCATCAACATCACCACCTATGCAGATCAGGAGAACAAACTGCTCAGAAGCCTCTGTGTGACGCCCT
 20 CATTGAACGTCTGATGAGAACGCTGACTGGAAACTCAGCTTCCAAGAGTCTCTCAAGTGCCCTCAACCCATCCTT
 CAACCCCTCTGAGAAGAACGATGTGCCCTGGAGGTGAAACCTATGCAGATGGAGCTGAGACTGAGGTGGACTGCAA
 TCGCTGTCTGTTCTGTGGCCACTGGGTCTGCACAGCAATGACCTGTGATGGAAAGAATCAGAAGGGGGTCCA
 GACCCACACAGAGGAGGAAGACAGGATATGTCCAGGAACCTCCAGAAGCACCAGGGCACAGCAGAAAAGACCAA
 GAAGGTGAACACCAAAGAGATCTAAGAAGAGGACAGAGCACAGAGCACCGTGTCCGAGGCCAGCGCCTCTTCAGCGC
 25 TGAGCCCAGTACACACAGAGTCTGCAGCAATCACCAATCACTAGTATTGCTTGATGGCAGCGAATCTTATTT
 TGTTTGTGCAATAAGGAAATGAGGGTGGCCAGCCTAGCGAGGGCACAAACCTTCACCTGTAGGAATG
 CTTTAAGAGAAACTAAAGGACACCTTGGGACGAGAGGCAACTAAGGAAACAGCATCGGTTGGCAGAGGAGCAGA
 GGCAGGTTGAATGAAGCCTTCTGGGTACAGCAGCTGCGAGGAGAATACAGGAAAGCATAGAGAAACATTG
 AACTAGCCCTGCTGGAGGAAGTGGGGGGAGCTTGAGGGAGGAACCCCTGCTGCTTGGACCCCTGTCACCACTGT
 30 CAGCATGACAGACCTGCAGCAAGTCTGCTTCTCCTTTGGTCCAACAATCACCTGAACACACAGCCGCCAACT
 AGTTACCTGTGTCCTCAGCCTTGATGGAGTTCTGGAGGAGGTGTTAAATGATGCAGACACTTATGTACTTC
 AAGCGCATGGAGACTAACCAATTAAACATTTTAAATCATTTCCTTTTTTTGTTAACCAAAGGTGCTAT
 TTCTCTGTAAGAGACTTTTCAAGCTGACTTCATTCTCAGTTATTACGTTATATTATTGTTTTTTAAT
 ATTTCATTTTGACTAGATATAAGCTTTGTAATTATTTCAATTAGCTCTACTATTCGAGAAGTGAAGGTG
 35 AAGGGGGTTTGGGCATTTCAGGGTACAGGGAACTCTGTAACACAAACAGCCCATACCCCTGTCACATATTAGA
 CCGGTTGCAGTTGGAGCATGCACCCCAACCCAGAGCTCTAGAAAATCAGCTCCATGCCACGAAGGCACAAGAG
 GCCCTCAGCAGAACGCCACAGGACAAAGCATCTTCATAGACAGCTGTTGAGATCCAAACAGTTAACGGCTTTG
 TTTCTTGTAAGAAGTCCAAGGATGGACGCTCAGGCTATCCCAGCCTGCCAGCCTGCTGTGATCTGTGGCTAACT
 GGCAGAGTCAGCCACTGTGGTCTTAGCTGCTCTGTTCTAGGTGTCAGTTACTTAGTAAACTGGTAAGAATG
 40 AATCTTGGAAATTAAATAATGGTAGTTGTGGTTAGCCAACGGTCCAGAGGGAGCTACCTTCCTTAGGATA

GATGAATCTACTCCATAAGAAAAACCAGCCAGGAATAGCATGGATGGGTTTGCTTGGGTGAAATGATCCTAGC
 AGGTGACTGGGTATGAGGACTTCATGGTCACTCTGCCAGGAAGAGAGCGTGAAGGACAACTAGCAGCTCCTTA
 GGGATGGTACACATGTGTGATCTCTGGAGATCAGAGGTTGCCACACACATGATGATAAAACTTTCAGATT
 TAGAGCGGTTAAAACGGAGATCGAATCTGGATTGAGAATCAGCACTGGGGCAGAAACTGTTATTGAAAGTCAA
 5 TCCCTTCTTGAGACACTCCGAATAAAACTATGGAGATTTCTGCATAGGAAAGTGTGGAATGTTGAGCTATTGA
 GATGGGAGTGGAAATTGTCCTAAATAGTTTTCTGGTCTCATCTGAACAAGACAATTGCTCTGCCTAGTGT
 CTGTGCCCTCCCTTCAAAAGCTCTGAGCCCCGCTCATGCAGTCCAGATTCTACATCCCCCTCTCCAAGTGCCTGG
 AGAGCTCACGACAGCAATGCCATCATCAAAAGTTGCTGCTGGGAAG

10 SEQ ID NO:40 Mouse FRP polypeptide sequence

accession:gi6679871

MWKRLALSLVTIALVHGEEEPRSKSKICANVFCGAGRECAVTEKGEPTCLCIEQCKPHKRPVCGSNGKTYLNHC
 ELHRDA~~L~~TGSKIQVDYDGHCKEKKSASPASPVCYQANRDELRRRLIQWLEAEIIPDGWFSKGSNYSEILDKY
 FKSFDN~~G~~DHLDSS~~E~~FLKFVEQNETAINITTYADQENNLLRSLCVDALIELSDENADWKLSFQ~~E~~FLKCLNPSFN
 15 PPEKKCALEVETYADGAETEVDCNRCVCSCGHWVCTAMTCDGKNQKGVQTHTEEEKTGYVQELQKHQGTAEKTKK
 VNTKEI

SEQ ID NO:41 Rat FRP nucleic acid sequence

accession:NM_024369 coding sequence:64..984

20 CTGGCCTCCAACACTGCTTCATCCTGCCAGTGTCCCTCTGAGTCCCGACCGAGCACGATGTGGAAACGC
 TGGCTGGCCTCGCCTGGTGACCATGCCCTGGTCCACGGCGAGGAGGAACAAAGAACAAATCCAAGATCTGC
 GCCAATGTGTTTGTGGAGCTGCCGGGAATGCCGTACGGAGAACGGGGAGCAACGTGCCTCTGCATTGAG
 CAATGCAAACCTCACAAGAGGCCTGTGTGGCAGTAATGGCAAGACCTACCTAACCAACCATTGTGAACCTCACAGA
 GACGCCTGCCACTGGATCCAAGATCCAGGTTGATTATGATGGCACTGCAAAGAAAAGAACAGTCTGTGAGTCCA
 25 TCCGCCAGCCCCGTTGCTGCTATCAGGCTAACCGTGATGAGCTGGCGCCGGATCATCCAGTGGCTGGAAAGCC
 GAGATCATTCCAGATGGCTGGTCTCTAAAGGCAGTAACACTACAGTGAGATCCTAGACAAGTACTTAAGAGCTTT
 GATAATGGTACTCTCACCTGGACTCCAGCGAATTCTGAAATTCTGAGCAGAACAGCCGTCAACATC
 ACCGCTTACCCCAATCAGGAGAACAAACAACTGCTCAGAGGCCCTGTGTTGATGCCCTATTGAACTGTCCGAT
 GAGAACGCTGACTGGAAACTCAGCTTCCAAGAGTTCTCAAGTGCCTAACCCATTCTAACCCCTCTGAGAAC
 30 AAGTGCCTGGAGGACGAAACCTATGCAGATGGAGCTGAGACCGAGGTGGACTGCAATCGCTGTGCTGTTCC
 TGTGGACACTGGGTCTGCACAGCGATGACCTGTGATGGAAAGAACATGAGAAGGGGTCCAGACCCACACAGAGGAG
 GAGATGACGAGATATGCCAGGAACCTCCAGAACAGCAGAACAGCAGAACAGAACAGGTGAACACCAAA
 GAGATCTAAGAAGAGGCACGTAGCACCTCATCTGGAACCCAGCACCTCTTCAGCGCTAACGCCAGTATACAG
 CGTCTGTGGCAATCACCGAATCACCAAGTATTGCTTGTACGGCAGCAAATCTTATCTGTTGCAATAAAG
 35 GAAGTGAGGGTGGCTGGCTAGCCAGGGCAGGCAGGCCACAACCTTCACTCTAGGAATGCTTAAGAGACACTAA
 AGGGCACCTGGGCAGGAGGCAGTATCCGGTTGGCAGAGGAGCAGAGGCAGGTCTGAATGAAACCTTCTGGG
 GTCAGCTGTGAGGATACAACAGGAAAAGCATGTGATGTTAGGGGAACACTGAGCTGCCCTGCTGGAGGAAATA
 GGGGGAGCTTGGTGGGGAGG

SEQ ID NO:42 Rat FRP polypeptide sequence

accession:gi13242265

MWKRWLALALVTIALVHGEQQRSKSKICANVFCGAGRECAVTEKGEPTCLCIEQCKPHKRPVCGSNGKTYLNHC
ELHRDACLGSKIQVDYDGHCKEKKSVSPASPVVCYQANRDELRRRIIQWLEAEIIPDGWFSKGSNYSEILDKY
5 FKSFDNGDSHLDSSEFLKFVEQNETAVNITAYPNQENNKLRLGLCVDALIELSDENADWKLSFQEFLKCLNPSFN
PPEKKCALEDETYADGAETEVDCNRVCSCGHWVCTAMTCDGKNQKGVQTHTEEEEMTRYAQELQKHQGTAEKTKK
VNTKEI

SEQ ID NO:43 Human ADH2 nucleic acid sequence

10 HUM194166 accession:X03350 coding sequence:73..1200
AGTGCACCTCAAGCAGAGAAGAAATCCACAAAGACTCACCAAGTCTGGTGGGGCAGAGAACACA
GAAACGACATGAGCACAGCAGGAAAAGTAATCAAATGCAAAGCAGCTGTGCTATGGGAGGTAAA
GAAACCCCTTTCCATTGAGGATGTGGAGGTTGCACCTCTAAGGCTTATGAAGTTCGCATTAAAGAT
GGTGGCTGTAGGAATCTGTCGCACAGATGACCACGTGGTAGTGGCAACCTGGTGACCCCCCTCC
15 TGTGATTTAGGCCATGAGGCAGCCGGCATCGTGGAGAGTGTGGAGAAGGGGTGACTACAGTCA
AACCAAGGTGATAAAAGTCATCCCGCTTTACTCCTCAGTGTGGAAAATGCAGAGTTGAAAAAAC
CGGAGAGCAACTACTGCTTAAAAATGATCTAGGAATCCTCGGGGACCTGCAGGATGGCACC
AGGAGGTTCACCTGCAGGGGAAGCCCATTCAACCACTTCTGGCACCAGCACCTCTCCAGTAC
ACGGTGGTGGATGAGAATGCAGTGGCCAAATTGATGCAGCCTCGCCCTGGAGAAAGTCTGCCT
20 CATTGGCTGTGGATTCTGACTGGTTATGGGTCTGCAGTTAACGTTGCCAAGGTACCCCGAGGCTC
TACCTGTGCTGTGTTGGCCTGGAGGGTCGGCTATCTGCTGTTATGGGTGAAAGCAGCTGG
AGCAGCCAGAATCATTGCGGTGGACATCAACAAGGACAAATTGCAAAGGCCAAAGAGTTGGGTG
CCACTGAATGCATCAACCTCAAGACTACAAGAAACCCATCCAGGAAGTGTAAAGGAAATGACT
GATGGAGGTGTGGATTTCGTTGAAGTCATCGGTCGGCTTGACACCATGATGGCTCCCTGTTAT
25 GTTGTATGAGGCATGTGGACAAGCGTCATCGTAGGGTACCTCCTGCTTCCAGAACCTCTCAA
TAAACCCATGCTGACTACTGGACGCACCTGGAAGGGGCTGTTATGGCTTAAAGAGTA
AAGAAGGTATCCAAAATTGCTGATTTATGGCTAAGAAGTTTCACTGGATGCGTTAATAA
CCCATGTTTACCTTTGAAAAAATAATGAAGGATTGACCTGCTTCACTCTGGAAAAGTATCC
GTACCGTCTGACGTTTGAGGCAATAGAGATGCCCTCCCTGTAGCAGTCTCAGCCTCTCTACC
30 CTACGAGATCTGGAGCAACAGCTAGGAAATATCATTAAATTCAAGCTTCAAGAGATGTTATCAATAA
ATTACACATGGGGCTTCCAAGAAATGGAAATTGATGGAAATTATTTTCAAGAAAATTAAA
ATTCAAGTCAGAAGTAAATAAAGTGTGAACATCAGCTGGGAATTGAAGCCAACAAACCTCTCT
TCCTAACCATCTACTGTGTACCTTGCCATTGAGGAAAAATTCTGTGACTTCTGCTT
GGTATCTCATAATCTTAGTCATCGAATCCCAGTGGAGGGACCCCTTACTTGCCTGAACATAC
35 ACATGCTGGCCATTGTGATTGAAGTCTTCAACTCTGTCAGTTTCACTGTCGACATTCTCTT
TTCTAATAAAATGTACCAAATCCCTGGGTAAAAGCTAGGGTAAGGTAAAGGATAGACTCACAT
TTACAAGTAGTGAAGGTCCAAGAGTTCTAAATACAGGAAATTCTAGGAACACTCAAATAAAATGC
CCACATTAACTACAGTAAATGGCAGTGTGTTATGACTTTACTATTCCTTATGGTCGATATA
CAATTGATTTAAAATAATAGCAGATTCTGCTCATATGACAAAGCCTCAATTACTAATTGTA

AAAACTGAACATTCCCAGAACATGTTAAAAATCTGTAATTGCTGATGAAAGTGTTCATT
 GACTAAACAGTATTAGTTGTGGCTATAAATGATTATTAGGATGATGACTGAAAATGTGTATAAG
 TAATTAAAAGTAATATGGTGGCTTAAGTGTAGAGATGGGATGGCAAATGCTGTGAATGCAGAAT
 GTAAAATTGGTAACTAAGAAATGGCACAAACACCTTAAGCAATATATTTCCTAGTAGATATATAT
 5 ATACACATACATATACACATACAAATGTATATTGCAAAATTGTTCAATCTAGAACTTT
 TCTATTAACTACCATGTCTAAAATCAAGTCTATAATCCTAGCATTAGTTAATATTGAAATATGT
 AAAGACCTGTGTTAATGCTTGTAAATGCTTCCCCTCTCATTGTTAATGCTTCCACTCTCAG
 GGGAGGAGTTGCATTGAGCTTATCTCTAAATGTGACATGCAAAGATTATCCTGGTAAAGGA
 GGTAGCTGTCTCCAAAATGCTATTGTTGCAATATCTACATTCTATTGATATTGAAAGACCTTA
 10 GACATAAAAGTAAAATAGTTATCA

SEQ ID NO:44 Human ADH2 polypeptide sequence

Protein sequence .. protein_id:gi28416

MSTAGKVIKCKAAVLWEVKKPFSIEDVEVAPPKAYEVRIKMVAVGICRTDDHVSGNLVTPLPVILGHEAAGIVE
 15 SVGEGVTTVKPGDKVIPLFTPQCGKCRVCKNPESNYCLKNDLGNPRGTLQDGTRRFTCRGKPIHHFLGTSTFSQY
 TVVDENAVAKIDAASPLEKVCLIGCGFSTGYGSAVNVAKVTGCAVFLGGVGLSAVMGCKAAGAARIIAVDI
 NKDKFAKAKELGATECINPQDYKKPIQEVLKEMTDGGVDFSFEVIGRLDTMMASLLCCHAEACTSVIVGVPPASQ
 NLSINPMILLTGRTWKGAVYGGFKSKEGIPKLVADFMACKFSLDALITHVLPFEKINEGFDLLHSGKSIRTVLTF

20 SEQ ID NO:45 Mouse ADH2 nucleic acid sequence

accession:NM_007409

coding sequence:1..1128

ATGAGCACTGCGGAAAAGTGATCAAATGCAAAGCTGCGGTGCTATGGGAGCTTCACAAACCTTCACCATCGAG
 GACATAGAAGTCGCACCCCCCAAGGCCATGAAGTTCGAATTAAGATGGTGGCCACTGGTGTGCTGCCCTCAGAC
 GATCACGTGGTTAGTGGAACCTGGTCACACCTCTTCTGCAGTTAGGCCATGAGGGAGCAGGCATTGTTGAG
 25 AGCGTTGGAGAAGGGGTGACTTGTGAAACCAGGTATAAAGTCATTCCACTCTTCCCTCAGTGTGGAGAA
 TGCAAGGAGTCACCCGGAAAGCAACTTTGTAGCCGAAGCGATCTGCTAATGCCCTGGGGACTTGC
 GAAGGCACCAGCAGGTTCTCTGCAAGGGAAAGCAGATCCACAACCTTATCAGCACCAGCACCTCTCCAGTAC
 ACCGTGGTAGATGATATAGCAGTGGCAAAATGATGGAGCTTCAACCAGTGGACAAAGTCTGCCCTCATGGCTGT
 GGGTTCTCAACTGGCTATGGCTCTGCCGTCAAAGTCGCCAAGGTGACCCAGGCTCCACATGTGCCGTGTTGGC
 30 CTCGGAGGTGTCGGTCTGTCTGTCATCATTGGCTGTAAGCAGCAGGAGCAGCCAGGATCATTGCTGTGGACATC
 AACAAAGGACAAGTTGCCAAGGCCAAGAGAGTTGGGTGCAACTGAGTCATCAACCTCAAGACTACAGCAAACCC
 ATCCAGGAAGTTCTCCAGGAGATGACCGACGGAGGGGTGGACTTTCTGTTGAAGTCATGGCCCTTGACACC
 ATGACTTCTGCCCTGCTGAGCTGCCATGCAGCATGTGGTGTAAAGCGTCGTAGGAGTGCCTCCAATGCCAG
 AACCTCTCCATGAACCCCATGTTGCTGCTGGACGCACCTGGAAGGGAGCAATATTGGCGGGTTAAGAGT
 35 AAAGATTCTGTCCCTAAACTGTGGCTGACTTCATGGCTAAGAAGTTCCGGACCCGTTAATTACCCATGTT
 TTACCTTCGAGAAAATAATGAAGCATTGACCTGCTTCGTTGGAAAGAGCATCCGTACCGTCCTGACTTTC
 TGA

SEQ ID NO:46 Mouse ADH2 polypeptide sequence

Protein sequence accession:gi6724311

MSTAGKVIKCKAAVLWELHKPFTIEDIEVAPPKAHEVRIKMVATGVCRSDDHVVSGTLVTPLPAVLGHEGAGIVE
SVGEGVTCVKPGDKVIPLFSPQCGRICKHPESNFCRSRDLMPRGTLREGTSRFSCKGKQIHNFISTSTFSQY

5 TVVDDIAVAKIDGASPLDKVCLIGCFSTGYGSAVKVAKVTGPGSTCAVFLGGVGLSIIIGCKAAGAACIIAVDI
NKDKFAKAKELGATECINPQDYSKPPIQEVLQEMTDGGVDFSFEVIGRLDTMTSALLSCHAACGVSVVVGVPPNAQ
NLSMNPMLLLGRTWKGAIFGGFKSKDVPKLVADFMACKFPLDPLITHVLPFEKINEAFDLLRSGKSIRTVLTF

SEQ ID NO:47 Rat ADH2 nucleic acid sequence

10 accession:NM_019286 coding sequence:1..1131

ATGAGCACAGCTGGAAAAGTAATCAAATGCAAAGCGGCCGTGCTATGGGAGCCTCACAGCCCTCACCATCGAG
GACATAGAGTCGCACCCCCAAGGCCATGAAGTTCGCATTAAGATGGTGGCCACCGGAGTCTGCCGCTCAGAC
GATCAAGCGGTTAGTGGATCCCTGTTCACGCCCTTCCTGCAGTTCTAGGCCACGAGGGAGCTGGCATTGTTGAG
AGCATTGGAGAAGGGGTGACTTGTGAAACCAGGTGATAAAAGTCATCCCGCTGTTCTCTCCCAGTGTGGAAAAA

15 TGCAGGATCTGCAAGCACCCGAAAGCAACCTCTGTTGCCAAACTAAGAATCTGACACAGCCTAACGGAGCTTG
CTGGACGGCACCAGCAGGTTCTCCTGCAGGGGAAAGCCCATTCAACCACCTCATCAGCACCCAGCACCTTCTCCCAG
TACACTGTGGTAGATGACATAGCGGTGGCCAAATCGATGCGGCTGCACCGCTGGACAAAGTCTGCCCTATCGGC
TGTGGCTCTCGACTGGCTATGGCTCTGCCGCTCAAGTCGACCCAGGCTCCACCTGTGCCGTGTT

GGCCTGGGAGGTGTTGGCTGTCATTGGCTGTAAACAGCAGGAGCAGCCAAGATCATTGCCGTGGAC

20 ATCAACAAAGACAAGTTGCAAGGCCAAAGAGTTAGGTGCCACTGACTGTATCAACCTCAAGACTACACCAAA
CCCATCCAGGAAGTCTCCAGGAGATGACTGATGGAGGGTGGACTTTCTATTGAAGTCATTGCCGTCTTGAT
ACCATGACTTCTGCCCTGTTAAGCTGCCATTCAAGCTGCGGTGTAAGCGTCATTGTCGGGGTGCCTCCCAGTGC
CAAAGCCTCTCCGTTAACCCATGTCGCTGCTGGACGCACCTGGAAAGGAGCAATATTGGCGGGTTAAG
AGTAAAGATGCCGTCCCAAACCTGTCGCTGACTTCATGGCTAAGAAGTTCCGTTGGAGCCGCTGATTACTCAT

25 GTTTTACCTTTGAAAAGATAATGAAGCATTGACCTGCTCCGTGCTGGAAAGAGTATCCGTACCGCCTGACG
TTCTGA

SEQ ID NO:48 Rat ADH2 polypeptide sequence

Protein sequence accession:gi9506375

30 MSTAGKVIKCKAAVLWEPHKPFTIEDIEVAPPKAHEVRIKMVATGVCRSDDHAVGSLFTPPLPAVLGHEGAGIVE
SIGEGVTCVKPGDKVIPLFSPQCGRICKHPESNLCCQTKNLTQPKGALLDGTSRFSCRGKPIHHFISTSTFSQ
YTVVDDIAVAKIDAAAPLDKVCLIGCFSTGYGSAVQVAKVTGPGSTCAVFLGGVGLSIIIGCKTAGAAKIIAVD
INKDKFAKAKELGATDCINPQDYSKPPIQEVLQEMTDGGVDFSFEVIGRLDTMTSALLSCHSACGVSVIVGVPPSA
QSLSVNPMSLLLGRTWKGAIFGGFKSKDVPKLVADFMACKFPLEPLITHVLPFEKINEAFDLLRAGKSIRTVLTF

35 F

SEQ ID NO:49 Human acylphosphatase nucleic acid sequence

HUM197730 accession:X84194 coding sequence:69..368

CTACTCGCCGAGTCCCTGTACGTGCTGTCCGATGACCTGCAGCGTGGAAAGACAAGAGGTTGAGCATGGCAG
 AGGGAAACACCCCTGATATCAGTGGATTATGAAATTTGGAAAGGTGCAAGGGGTGTTTCCGTAAGCATACTC
 5 AGGCTGAGGGTAAAAGCTGGGATTGGTAGGCTGGGCCAGAACACTGACCGGGCACAGTGCAAGGACAATTGC
 AAGGTCCAATCTCCAAGGTGCGTCATATGCAGGAATGGCTGAAACAAGAGGAAGTCCTAAATCACACATCGACA
 AAGCAAACCTCAACAATGAAAAGTCATCTGAAGTTGGATTACTCAGACTTCAAATTGTAATAATGGCCTG
 AATTAAAGTTTCTAAGATAAACTCAGTGGTTGGTTTATTATTAATAGAGATAGAACTATTGTGTGTTAATA
 10 TTAGCATTAGTCAATAAGTTATTAAATGTCAGATTGGATGTTATATATTACCTGTATGATGGAAGGATT
 ACCACTGTACACAAATCTAATCAATAAAACGTTAGAACCTCTGCTTAGAGTACAN

SEQ ID NO:50 Human acylphosphatase polypeptide sequence

Protein sequence protein_id:gi1834464

MAEGNTLISVDYEIFGKVQGVFFRKHTQAEGKKLGLVGWVQNTDRGTVQGQLQGPISKVRHMQEWLETRGSPKSH
 15 IDKANFNNEKVLKLDYSDFQIVK

SEQ ID NO:51 Mouse acylphosphatase nucleic acid sequence

accession:NM_025421 coding sequence:135..434

GCTCTAAACTCCCGAAGTGGCGGTTAACACGGCTCGGGCGGTGATCTGAAGGTCTCGGGGCTGTTAGCGGC
 20 TCCTGGGAAGCCCCAGAAACTCGAGCTCCGCCGCTGGATCATCCAAGTGGTTGAGCATGGCAGAAGGGACA
 CCTTGGTCTCAGTGGATTACGAAATTTGGAAAGGTTCAAGGGGTGTTTCCGCAAGTACACTCAGGCTGAGG
 GTAAAAAGCTAGGTTGGTGGCTGGGTCAGAACACCGACCAGGGCACCGTGCAAGGGCAACTGCAGGGCCCCG
 TCTCCAAGGTGCGCTTCATGCAGCAGTGGCTGGAGACCAGAGGAAGTCCAAGTCGACATTGACAGAGCAAAC
 TCAACAATGAGAAAGTCATCGCAAACCTGGATTATTCAGACTTCAAATTGTAATAATGAAACGAATCTTAAT
 25 ATTTTTCAAAATAATCTCACTCCTTTTAAATCGCTAGATTAAAAAAAAAAATAGAACTATTCTGTGCTCAGT
 ATTAGAATTGTTAGTAAGTTATTGGTGCATGTTGGAAAGTTACCACTGATTACAAGTATGAAATACA
 AATGTGTATAATTCTAACCAATAAAACACATTAGAACCT

SEQ ID NO:52 Mouse acylphosphatase polypeptide sequence

30 Protein sequence accession:gi13384810

MAEGDTLVSDYEIFGKVQGVFFRKHTQAEGKKLGLVGWVQNTDRGTVQGQLQGPVSKVRFMQQWLETRGSPKSH
 IDRANFNNEKVIANLDYSDFQIVK

SEQ ID NO:53 Human PRK1 nucleic acid sequence

35 HUM213181 accession:D26181 CDS:37..2865

GAATTCCCGCGCAGAGACTCCAGGTGCGAGGTGACATGCCAGCGACGCCGTGCAAGAGTGAGCCTCGCAGCTGG
 TCCCTGCTAGAGCAGCTGGGCTGGCGGGCAGACCTGGCGGCCGGTACAGCAGCAGCTGGAGCTGGAG
 CGGGAGCGGCTGGCGGGAAATCCGCAAGGAGCTGAAGCTGAAGGAGGGTGTGAGAACCTGCGGCGGGCACC

ACTGACCTGGGCCGAGCCTGGCCCCGTAGAGCTGCTGCTGGGGCTCTCGCCGCTCGACCTGCTGCAC
CAGCAGCTGCAGGAGCTGCACGCCACGTGGTCTTCCGACCCGGCCACCCACGATGGCCCCAGTCCCCT
GGTGCGGGTGGCCCCACCTGCTCGGCCACCAACCTGAGCCGCTGGCGGGCTGGAGAAGCAGTTGCCATTGAG
CTGAAGGTGAAGCAGGGGGCGGAGAACATGATCCAGACCTACAGCAATGGCAGCACCAAGGACCGGAAGCTGCTG
5 CTGACAGCCCAGCAGATGTTGAGGACAGTAAGACCAAGATTGACATCATCCGCATGCAACTCCGCCGGCGCTG
CAGGCCGCCAGCTGGAGAACCAAGGAGCAGCCCCGGATGACACCCAAGGGAGTCCTGACCTGGGGCTGTGGAGCTG
CGCATCGAAAGAGCTGCGGCACCACCTCCGAGTGGAGCACGCGGTGGCCGAGGGTGCAAGAACGTACTGCGCCTG
CTCAGCGCTGCCAAGGCCCCGGACCGCAAGGCAGTCAGCAGGCCAGGAGAAATTGACAGAACCCAGAAG
CTGGGGCTGCTGCCGGAGGCTCTGGAGCGAGACTTGGGGAGCTGCCGCCACCAACCCAGGGCGCTGCTG
10 CGAGAAGAGCTGCTGCCCTCCCTCGCTGCCTTCAGCACCCGCCTGGCCGGCCCTTCCCAGCAG
AGCACCCCTGTGCAAGCCCGGCCGCTCACAGGGACCTGGAGGTACGAGTGGTGGCTGCAGAGACCTCCAGAG
ACCATCCCCTGGAACCCCTACCCCTCAATGGGGGACCTGGACCCCAGACAGCCGCCCCCTTCCTGAGCCGC
CCAGCCCCGGGCTTACAGCGAAGCGGAAGCCTCAGTGGCCGGAGCAGCCTCAAAGCAGAACCGAGAACACC
AGTGAAGTCAGCACTGTGCTTAAGCTGGATAACACAGTGGTGGGGAGACAGTCTTGGAGGCCATGTGGCCCCAAT
15 GCCTGGGACCAAGAGCTCACTCTGGAGCTGGAAAGGGCACGGAACTGGAGTTGGCTGTGTTCTGGCGGGACCAG
CGGGGCCTGTGCCCCCAAATTCTGAAAGTTGGAGGATTCTGGACAATGAGAGGCATGAGGTGCAGCTGGAC
ATGGAACCCCAGGGCTGCCCTGGCTGAGGTACCTTCCGCAACCCCTGTCATTGAGAGGATTCTCGGCTCCGA
CGGCAGAAAGAAAATTCTCCAAGCAGCAAGGGAAAGCGTTCCAGCGTGCTAGGCAGATGAACATCGATGTGCC
ACGTGGGTGCGGCTGCTCCGGAGGCTCATCCCCAATGCCACGGCACAGGCACCTTAGCCCTGGGCTTCTCCA
20 GGATCCGAGGCCGGACACGGTGACATATCGGTGGAGAACGCTGAACTCTGGCACTGACTCGGACAGCTCACCT
CAGAAGAGCTCGGGGATCCTCCCTCCAGCCATCGAGCCTGAGCTCCCCATCCAGGAATCCACTGCTCCCGAG
CTGCCCTCGGAGACCCAGGGAGACCCCAGGCCCTGTGAGCCCTCTGAGGAAGTCACCTCTGACCCCTGAA
GATTCAAGTTCTGGCGGTGCTGGCCGGGTCTTTGGAGGTGCTCTCTCGAATTCCGGCCAGTGGG
GAGCTGTTGCCATCAAGGCTCTGAAGAAAGGGACATTGTGGCCGAGACGAGGTGGAGAGCCTGATGTGAG
25 AAGCGGATATTGGCGGCAGTGACCAAGTGGGGACACCCCTTCTGGTAACCTCTCGGCTGTTCCAGAACACCG
GAGCACGTGCTCGTGATGGAGTACTCGGCCGGTGGGACCTGATGCTGCACATCCACAGCGACGTGTTCT
GAGCCCCGTGCCATCTTATTCCGCTCGTGCTGGCTGGCCTACAGTTCTCACGAACACAAGATCGTCTAC
AGGGACCTGAAGTTGGACAATTGCTCTGGACACCGAGGGCTACGTCAAGATCGCAGACTTGGCCTCTGCAAG
GAGGGATGGCTATGGGACCGGACCAGCACATTCTGTGGGACCCGGAGTTCTGGCCCTGAGGTGCTGACG
30 GACACGTGCTACACCGCAGCTGTGACTGGTGGGGACTGGGTGTGCTCTACGAGATGCTGGTTGGCGAGTC
CCATTCCCAGGGATGATGAGGAGGAGGTCTCGACAGCATCGCAACGACGAGGTTGCTACCCCGCTTCTG
TCGGCCGAAGCCATCGGCATCATGAGAAGGCTGCTCGGAGGAACCCAGAGCGGAGGCTGGGATCTAGCGAGAGA
GATGCAGAAAGATGTGAAGAAACAGCCCTCTCAGGACTCTGGCTGGAGGCCCTGTTGGCCGGCGCTGCCA
CCGCCCTTGTGCCACGCTGCTCCGGCCGACCGACGTCAGCAACTTCGACGAGGAGTTACCGGGAGGCCCCC
35 AACACTGAGCCCGCCCGCAGCGCGGCCCTACAGCCGGAGCAGGCAGCCTCTGGACTTCGACTTCG
GCCGGGGCTGCTAGCCCCCTCCCTGCCCTGCCCTGCCAGAGCTCTAGTTTAAAAAGGCCT
TTGGGATTGCGGAAAAAAAAAAAAAAAGGAATT

SEQ ID NO:54 Human PRK1 polypeptide sequence

protein_id:gi825505

MASDAVQSEPRSWSLLEQLGLAGADLAAPGVQQQLELERERLREIRKELKLKEGAENLRRATTDLGRSLGPVEL
 LLRGSSRRLDLLHQQLQELHAAHVLPDPAATHDPQSPGAGGPTCSATNLSRVAGLEKQLAIELKVKQGAENMIQ
 5 TYSNGSTKDRKLLLTAQQMLQDSKTKIDIIQMQLRRALQAGQLENQAAPDTQGSPDLGAVELRIEELRHFRVE
 HAVAEGAKNVRLLLSAAKAPDRKAVSEAQEKLTESNQKLGLLREALERRLGE PADHPKGRLREELAAASSAAF
 STRLAGPFPATHYSTLCKPAPLTGTLEVRRVGCRDLPETIPWNPTPSMGGPGTPDSRPPFLSRPARGLYSRGSL
 SGRSSLKAEAENTSEVSTVLKLDNTVVGQTSWKPCKGPNAWDQSFTLELERARELELA VFWRDQRGLCALKFLKLE
 DFLDNERHEVQLDMEPQGCLVAEVTFRNPVIERIPRLRRQKKIFSKQQGKAFQRARQMNIDVATWVRLRRILIPN
 10 ATGTGTFSPGASPGSEARTTGDISVEKLNGLTDSDSSPKSSRDPSSPSSLSSPIQUESTAPELPSETQETPGPA
 LCSPLRKSPKTLEDFKFLAVLGRGHFGKVLLSEFRPSGELFAIKALKKGDIVARDEVESLMCEKRILA AVTSAGH
 PFLVNLFGCFQTPEHVCVMEYSAGGDLMLHIHSDFVFSEPRAI FYSACVVLGLQFLHEHKIVYRDLKLDNLLDT
 EGYVKIADFGLCKEGMGYGDRSTFCGTPEFLAPEVLTDTSYTRAVDWWGLGVLLYEMLVGESPFPGDDEEEVFD
 15 SIVNDEVRYPRFLSAEAIGIMRLLRRNPERRLGSSERDAEDVKKQPFFRTLGWEALLARRLPPPFVPTLSGRTD
 VSNFDEEFTGEAPTLSPPRDARPLTAAEQAAFLDFDVAGGC

SEQ ID NO:55 Mouse PRK1 nucleic acid sequence

accession:XM_134571

CDS:229..1077

ACATCTCCAGAGCTGCCTTCAGAGACCCAGGAGACTCCAGGCCCTGGCCTGTGCAGCCCCTTGAGAAAGTCGCC
 20 CTGACACTTGAGGACTTCAAGTTCTGGCCGTGCTTGGCCGGGTCACTTTGAAAGGTGCTGCTGTCTGAATTC
 CGCTCCAGTGGGAGCTTTGCCATCAAAGCCTGAAAGAAAGGTGACATTGTAGCCCGAGATGAGGTTGAGAGC
 CTGATGTGTGAGAACGGATTGGCGGCCGTGACCAGGGCAGGACATCCCTTCTGGTGAACCTTTGGCTGT
 TTCCAGACCCCAGAGCACGTGTCTTGATGGAGTACTCGGCGGGTGGAGACCTGATGCTGCACATTCA TAGC
 GACGTGTTCTCAGAGCCTCGGGCTGTCTTCTATTGGCCTGTGTGGACTGCAAGTCCCTCATGAACAC
 25 AAGATTGTCTACAGGGACCTGAAGTTGGACAATTGCTCTGGATACTGAGGGCTACGTCAAGATCGCAGACTTT
 GGCTCTGCAAGGAGGGATGGCTATGGGACCGGACCAGCACGTTCTGCGGAACCTGGAGTTCTGGCC
 GAAGTGCTCACAGACACATCCTACACGCCAGCAGTGGACTGGTGGGACTGGCGTGTCTATGAGATTTG
 GTTGGAGAGTCTCCGTTCCCTGGGATGATGAGGAGGAGGTATTGACAGCATTGTCAACGACGAAGTTGCTAT
 CCCCCTGCTGTCTGCAGAGGCCATCGGCATCATGAGAAGGCTACTGCCAGGGACCCGGAGCGGAGGCTGGGG
 30 TCCACTGAGCGCGATGCAGAAGATGTGAAAAAACAGCCTTCTCCGGTCTCTGGCTGGATGCTCTGGCC
 CGCCGCTTGCCCTCACCCCTCGTGCCTACACTTCAGGGCGCACAGATGTCAGCAACTCGATGAGGAGTTCACT
 GGGGAGGGCCCCACACTGAGTCTCCCCGGATGCACGGCCCTCACAGCTGCCAGGAGCAGGCCCTCCGGGAT
 TTCGACTTTGTGGCCGGAGGCTACTAGCCCCAAGCCCTGCCTAACCAAGAGTTCTGATTTTTAAAAAACAA
 GCCTTGTTGGGTTACTCCATACATGCATTTCAGCCTCTGTGTGCATCTGGACTGGAGTGTGTTGGA

35

SEQ ID NO:56 Mouse PRK1 polypeptide sequence

accession:gi20885599

MCEKRILA AVTRAGHPFLVNLFGCFQTPEHVCVMEYSAGGDLMLHIHSDFVFSEPRAVFYSACVVLGLQFLHEHK
 IVYRDLKLDNLLDTEGYVKIADFGLCKEGMGYGDRSTFCGTPEFLAPEVLTDTSYTRAVDWWGLGVLLYEMLV

GESPFPGDDEEVFDSIVNDEVRYPRFLSAEAIGIMRLLRRNPERRLGSTERDAEDVKKQPFRLGWDVLLAR
RLPPPFPVPTLSGRTDVSNFDEEFTGEAPTLSPPRDARPLTAAEQAAFRDFDFVAGGY

SEQ ID NO:57 Rat PRK1 nucleic acid sequence

5 accession:L35634 CDS:18..2858

TGGGACCCCTGGCGGACATGGCCGGCGACGCCGTGCAGAGTGAACCTCGCAGCTGGTCACTGCTGGAGCAGCTGG
GTCTGGCTGGGGCAGACCTGGCAGCCCCCTGGGTGCAGCAGCTGGAGTTAGAGCGAGAGCGGCTGAAGCGGG
AAATCCGAAAAGAGCTGAAGCTGAAGGAGGGCGCTGAGAACCTGAGGCCACCACCTGACCTGGCCGAGCT
TGGCCCTGTGGAACTGCTGCTGAGGGCTCCGCTAGACGGCTTGACTTGCTGCACCACAGCAGCTGCAGGAGCTGC
10 ATGCACATGTGGTGCCTGCCCACCCCTACAGCGGGAGTGATGCTCCCCAATCCCTGCAAGGGCAGCCCTGTCT
GCTCATCACCAACCTGAGCCGAGTGGCTGGCTGGAGAACGCAGCTGGCATTGAGCTCAAGGTCAAACAGGGGG
CAGAAAACATGATCCAGACCTACAGCAATGGCAGCACCAAGGACCGGAAGCTGCTGTTGACGGCCCAAACAGATGC
TGCAGGATAGTAAGACCAAGATTGACATCATCCGATGCAGCTCGCCGGCGCTACAAGCACTCCAGGCTGGCC
AGCTGGAGAGTCAGGCAGCTCTGATGAGGCCACGGAGATCCAGACCTGGGAGGCCGTAGAGCTACGCATTGAGG
15 AGCTACGACACCATTCGAGTAGAGCATGCAGTGGCAGAACGGCCAAGAACATGCTCGCTGCTCAGTGC
CAAAGGCCCCAGACCGCAAAGCAGTCAGCGAGGCTCAGGAGAAATTGACTGAGTCCAACCAAGAACGCTGGCTTGC
TGCGGGAGTCACTGGAGAGGCCTGGGGAACTGCCCTGCTGATCACCCAAAGGGACGCCCTGCTCGGGAGGAGC
TCACTGCGCGCTCATGGCAGCCTCAGTCAATACTGCCCTGGCCCTTCCCTGCCACTCACTACAGCACCTTGA
GCAAGCCTGCACCACACAGGGACCCCTGGAAGTACAGTGGTGGCTGCAAAACCTTCCGAGACCATCCCTT
20 GGAGCCCTCCCCCTCAGTCGGGCATCTGGGACCCCGACAGCGCACTCCCTTCTGAGTCGTCAGCTCGGG
GCCCTTACAACCGAAGTGGAAAGCCTTAGTGGACGGAGCAGCCTCAAGGGGGAGGCAGAGAACCTGAGGTCA
GCACCGTGCTCAAGCTGGACAACACTGTGGTGGGCAAACAGCCTGGAAGCCATGCCCTTCCCTGCCACTCA
AGAGCTTACCCCTGGAGCTGGAGAGGGCTGGGAGCTGGAGTTGGCTGTGTTCTGGCTGACCAAGGGGTCTGT
GTGCTCTCAAATTCTGAAGTTGGAAAGACTTCTGGACAATGAGAGGCATGAGGTGCAGCTGGACATGGAAACCC
25 AGGGCTGCCTGGTGGCTGAGGTACCTTCCGTAACCCATCATCGAGCGGATCCCTAGGCTCCAAAGGCAGAAAA
AAATTTCTCCAAGCAGCAAGGGCAGACATTTCAGCGTGCAGACAGATGAACATCGATGTGGCACCTGGGTG
GGCTGCTCCGGAGACTCATCCCGAACGCCGTGGCCACTGGCTCCTCAGCCCCATGCATCTCCAGGCTCTGAGA
TCCGGAGCACTGGAGACATATCCATGGAGAAATTGAATCTGGTGCTGACTCAGACAGCTCGTCCCAGAACG
CCCGCAGGGCTGCCCTCACCTCATGTAGCCTGAGTTCTCAACCCACGAATCCACCAACCTCTCCAGAGCTGCC
30 CAGAGACCCAGGAGACCCAGGCCCTGGCTGTGCAGTCCCTGAGGAAGTCGCCCTGACGCTTGAGGACTTC
AGTTCCCTGGCAGTGCTTGGTGGGTCACCTTGGAAAGGTGCTGCTGTGAATTCCACTCCAGGGAGCTCT
TTGCCATTAAAGCCGTGAAGAAAGGTGACATTGTAGCCGGATGAGGTTGAGAGCCTGATGTGAGAACGG
TTTGGCGACCGTGACCAGGGCAGGACATCCCTCCTGGTGAACCTTTCCGCTGTTCCAGACCCAGAGCATG
TGTGCTTGTGATGGAGTACTCAGCCGGTGGGACTTGATGCTGCATATCCACAGCGACGTGTTCTCAGAGCCTC
35 GGGCTGTCCTCTATTCCGGCTGTGTGGTGTGGACTGCCGAGCTGCAGTTCCCTCCATGAACACAAGATTG
TGAAGTTGGACAATTGCTCCTGGATACTGAGGGCTACGTCAAGATCGCAGACTTGGCCTCTGCAAGGAGGG
TGGGCTATGGGACGGACCAGCACATTCTGCGGAACCTCCGGAGTTCCCTGGGCCAGAACGTCACAGACACAT
CCTACACTCGAGCCGTGGACTGGTGGGACTGGGTGTATTGCTCTATGAGATGCTGGTTGGAGAGCTCCGTTCC
CTGGGGACGACGAGGAGGAAGTATTGACAGCATCGTCAATGATGAGGTTCGTATCCCCGCTTCTGTCTGCC
40 AGGCCATCGGCATCATGAGAAGGCTACTGCGGAGGAACCCAGAGCGGAGGTTGGGACTCAGCGTGTGAGCAG

AAGATGTAAAAAACAGCCTTCTTCAGGACTCTGGACTGGGATGCCCTGCTGGCCCGCCTGCCTCCACCC
TCGTGCCTACACTTCGGGGCGCACAGACGTCACTCGATGAGGAGTTCACTGGGAGGCCCCACACTGA
GCCCTCCCCGGATGCACGGCCCTGACAGCTGCGGAGCAGGCCCTCCGGATTTCGACTTTGTGGCAGGAG
GCTATTAGCCCTAAGCCCCTGCCTGCCAAGAGTTCTGGTTTAAAAAAAGCCTTGGGTTACTCCATAAA

5 AAAAGGAATTC

SEQ ID NO:58 Rat PRK1 polypeptide sequence

accession:gi16905491

MAGDAVQSEPRSWSLLEQLGLAGADLAAPGVQQLELERERLKRERKELKLKEGAENLRRATDLGRSLAPVEL
10 LLRGSARRLDLLHQQLQELHAAHVLPDPTAGSDAPQSLAEGPSVCSSTNLSRVAGLEKQLAIELKVKQGAENMIQ
TYSNGSTKDRKLLLTAQQMLQDSKTKIDIIRMQLRALQALQAGQLESQAAPDEAHGDPDLGAVELRIEELRHFF
RVEHAVAEAGAKNVRLLLSAAKPDRKAVSEAQEKLTESNQKLGLLRESLERRLGELPADHPKGRLREELTARSS
AAFSALLPGPFATHYSTLSKPAPLTGTLEVRRVGCKNLPETIPWSPPPSVGASGTPDSRTPFLSRPARGLYNRS
GSLSGRSSLKGEAENSTEVSTVLKLDNTVVGQTAWKPCGPNAWDQSFTLELERARELELAFAWFRDQRGLCALKFL
15 KLEDFLDNERHEVQLDMEPGQCLVAEVTFRNPIIERIPRLQRQKKIFSKQQQQTQQRQMNIDVATWVRLRRL
IPNAVATGSFSPNAPSGSEIRSTGDISMEEKLNGLADSDSSSQKSPAGLPSTSCSLSSPTHESTSPelpSETQET
PGPGLCSPLRKSPLTLEDFKFLAVLGRGHFGKVLLSEFHSSGELFAIKAVKKDIVARDEVESLMCEKRILATVT
RAGHPFLVNLFGCFQTPHEHVCVMEY SAGGDMLHIHSDFVSEPRAVFYSACVVLGLQFLHEHKIVYRDLKDNL
20 LLDTEGYVKIADFGLCLEGMGYGDRTSTFCGTPEFLAPEVLTDTSYTRAVDWVWGLGVLLYEMLVGESPFPGDDEE
EVFDSIVNDEVRYPRFLSAAEIGIMRLLRRNPERRLGSTERDAEDVKKQPFFRTLDWDALLARRLPPPVPTLS
GRTDVSNFDEEFTGEAPTLSPPRDARPLTAAEQAFRDFDFVAGGY

SEQ ID NO:59 Human HIOMT nucleic acid sequence

HUM221672 accession:U11091 CDS:104..1225

25 CAGCTGTGAGCGGGTGGCTCTTCCCCACCTTGCCAGCAGGCTCTGTGCTCCTGAAGCAAGCGCTCCAGAGGCTC
CGGAAGCCACGGCTGGATTGGAGACAAGATGGGATCCTCAGAGGACCAGGCCATCGCTCCTTAATGACTACGC
CAACGGCTTCATGGTGTCCCAGGTTCTTCGCCCTGCGAGCTGGCGTGTGAGGGCCAGGCCATGGACAGAGCTCTGCTGGACAT
AGGGCCCTGGACGTGGCGGAGTGGCTGAGGTGTGAGGGCCAGGCCATGGACAGAGCTCTGCTGGACAT
CTGTGTGTCCTGAAGCTGCTGAAAGTGGAGACGAGGGAGGAAAAGCTTCTATCGAACACAGAGCTGTCAG
30 CGACTACCTGACCACGGTCAGCCGACGTACAATGCAGCATGCTGAAGTACATGGCAGGACCAGCTACCGGTG
CTGGGCCACCTGGCAGACGCCGTGAGAGAAGGAACCAGTACCTGGAGACGTTGGCGTCCGCTGAAGA
GCTTTTACGCCATCTACAGGTCCGAGGGCGAGCGCTACAGTTCATGCAAGCTCTGCTGGAGAGGTCTGGACG
CAACGGGAGAAGCGTGCTGACCGCCTTGACCTGTCAGTGTCCACTATGTGTGACCTTGGTGGACACGGAT
AAAGCTGGAAACCATCATTCTCAGCAAACATCGAAGGACAGAAAACACCCGCGTGTCTCACTCATAGG
35 TGGGGCTGGAGCTCTGGCTAAGGAATGCATGTCCTGTACCTGGATGTAAGATCACCGTTTTGACATCCAGA
AGTGGTGTGGACGGCAAAGCAGCACTTCTCATTCCAGGAGGAAGAACAGATTGACTTCCAGGAAGGGATTCTT
CAAAGACCCCTTCCCGAAGCTGATCTGACATCCTGGCCAGGGCTCCATGACTGGCAGACGGAAAGTGCTC
ACACCTGCTGGAGAGGGATCTACCACACTTGCAAGCCAGGTGGCATTCTGTAATTGAAAGCCTCCTGGATGA
AGACAGGGAGGTCTCTGTCACGCAGCTACTCTCTGAACATGCTTGTGCAAGACGGAAGGGCAGGAGAGGAC
40 CCCCACCACTACCACATGCTCCTCTCTGCTGGCTTCAGAGACTTCCAGTTAAAGAAAACAGGGAGCCATTAA

TGATGCCATTAGCAGGAAATAACTGTTCTGTGACCTGGAACTAACGTCAAAGCACACAAGACATAATAAT
AAAGACATGTACCTCCA

SEQ ID NO:60 Human HIOMT polypeptide sequence

5 protein_id:gi607842
MGSSEDQAYRLLNDYANGFMVSQVLFAACELGVFDLLAEAPGPLDVAAVAAGVRASAHGTELLDICVSLKLLKV
ETRGGKAFYRNTELSDYLTTSPTSQCMLKYMGRTSYRCWGLADAVREGRNQYLETFGVPAEELFTAIYRSE
GERLQFMQALQEVVWSVNGRSVLTAFDLSVFPLMCDLGGTRIKLETIILSKLSQGQKTKHRVFSLIGGAGALAKEC
MSLYPGCKITVFDIPEVWWTAKQHFSFQEEEQIDFQEGDFFKDPLPEADLYILARVLHDWADGKCSHLLERIYHT
10 CKPGGGTLVIESLLDEDRRGPLLTQLYSLNMLVQTEGQERTPTHYHMLLSSAGFRDFQFKKTGAIYDAILARK

SEQ ID NO:61 Human Taurine Transporter nucleic acid sequence

HUM222212 accession:Z18956 coding sequence:20..1879

GAATTCEGAAAGCAAGGAGATGCCACCAAGGAGAACGCTGCAGTGTCTGAAAGATTCACAAGGACATGGTGAA
15 GCCCTCACAGGGAAGAGCCCAGGCACGCCCTGAGGACGAGGCTGAGGAAAACCTCCGCAGAGGGAGAAGTG
GTCTAGCAAGATCGACTTGTGCTCTGTGGCTGGCGCTTGGCTGGCAACGTCTGGCGCTTCCGTA
CCTCTGCTACAAGAATGGTGGAGGTGCGTTCTCATACCGTATTATTTCTGTTGGAGCGGCCTGCCTGT
GTTTTCTGGAGATCATCATAGGCCAGTACACCTCTGAAGGGGCATCACCTGCTGGAAAAGATCTGCCCTT
GTTCTCTGGTATCGGCTATGCCCTCGTTGAATTGTGTCCTCCTGAATGTCTACTACATCGTCATCCTGGCCTG
20 GGCCACATACTACCTGTCAGTCCTCCAGAACGGAGCTGCCCTGGGCACACTGCAACCACAGCTGGAACACACC
TCACTGCATGGAGGACACCATGCGCAAGAACACAAGAGTGTCTGGATCACCACAGCTCCACCAACTTCACCTCCCC
TGTCATCGAGTTCTGGAGCGCAACGTGCTGAGCTTGTCCCCTGGATCGACCACCCAGGCTCTGAAATGGGA
CCTCGCTCTGCCTCTTTAGTCTGGTAGTGTGTTCTCTGCATCTGCAAGGGCGTCAGGTCCACTGGAA
GGTCGTCTACTTCACAGCCACTTTCCATTGCCATGCTCCTGGCTGCTGGTCCGAGGGCTGACGCTGCCGG
25 CGCGGGCCGAGGCATCAAGTTCTATCTGTATCCTGACATCACCCGCTTGAGGACCCACAGGTGTGGATTGACGC
TGGGACTCAGATATTCTCTCTTATGCCATCTGCCCTGGGGCTATGACCTCGCTGGGAGCTACAACAAGTACAA
GTATAACTCGTACAGGGACTGTATGCTGCTGGATGCCCTGAACAGTGGTACCAAGTTGTCTGGCTCGCAAT
TTTTCCATCCTGGGCTTCATGGCACAAGAGCAAGGGGTGGACATTGCTGATGTGGCTGAGTCAGGTCCCTGCC
GGCCTTCATTGCCAACCCAAAAGCTGTACAATGATGCCCTGCCACATTGGTCATTCTTTTTATTAT
30 GCTTCTCTGGACTGGATAGCCAGTTGTTGAAGTTGAAGGGACAGATCACATCCTGGTGTCTTACCC
ATCCTTCCTAAGGAAGGGTTATCGTCGGAAATCTTCATGCCCTCGTGTAGCATCAGCTACCTGCTGGGCT
GACGATGGTACGGAGGGTGGCATGTATGTTGTTAGCTGCTGGATATGGAGGTGATAACCTTATGATGGTATTGAGGA
CATGATTGGCTATGGCCCGGGCCCTGGATGAAGTACAGCTGGGTGATCAGCTCCAGTTCTGTGTTGGATGTT
35 CATCTTCTCGCTCGTCAAGTACGTACCCCTGACCTACAACAAACATACGTGCCCCACTTGGCCATTGGCT
GGGCTGGAGCCTGGCCCTTCCATGCTCTGCTGCTCCCTGGTCACTGTCATCCGCTCTGCCAGACTGAGGG
GCCGTTCTGTGAGAGTCAAGTACCTGCTGACCCCAAGGAAACCAACCGCTGGCTGTGGAGCGCGAGGGAGC
CACACCTTACAACCTCGCACCGTCATGAACGGCGCTCGTGAACCGACCCACATCATTGTGAGGACCATGAT
GTGAGCTCTCGGGTCGACGGGGCGGGCTTCTGCTGTTACTAACATTAGATTACATAGGACCAGGTT
40 TACAGAGCTTATATTGCACTAGGATTTTTTTGTAAATTGTCACAGAAAATGTAATTGTGGGTATGTGT

GCGTGCCTGTGTGTGTGTGTATCGTGTGTGTTGATTTGGGGATATTTGTACAAA
 AAGAAAACCCACGGGAAGATGCCGTGGAGAGGCAGAGCTTCATACTGAATTAGATGTATTTATGGAAATTG
 GTAAATTTCTTGATTTTTTACATATAAGTATATACACTTAGAGATTGTATACACTTTACCAC
 TTGAATTGATCTTCTGCCAGCAATAGATCTCATTTCAAAAGCAATTCTCGGTGCTGTAGCTGGCAGAAAG
 5 TTCTGTCCAGTAAACGCAGGATGGAATTTCCTGGGACTCTACACCCATCTTAAGGTGGTATACCTTCAAATCC
 TGAGTCAGATGGAAGAAATAGCAGGAGAGAGGACCCATTAGCTGGCAGACCCAGGGAAAGAAAGGAGGGCTGTGA
 GGAGATAACCTCATTAAACTTGGCTTAGTGAAGAAGAGAGATGCCAAGGAATGAACCAACCCCTCACATAAAGGA
 GACTGGCTGAAGCTGAATGAGGAGGCCCTATAGCAGAAGTCTGATTCTAAGAGCAGTAGAAACTGTACCAAGAAG
 CAAAATCCCACTTAATTGAGATGGTGGATAGTCAGTAGACCGTCAGAACCACTGGCAGAGAGGGAG
 10 CTGCTAGAGATCCAAGAAGGCTGGCAGGAATGAGGCTCACAACTCAGCCTCGCAAGAGGTGGCAGAGGCACAGGA
 GGCCACAGTCCTCCTGGGCATTCCAGGCAGAGAAGGAGCAGAGGCTCTCCGGCAGGAGCTGGGTCTCAGGG
 CTCAGATGAGTCTGTTGCATTGAATGGGTCACTAGCAGGTTCTGGTCACTCCCAAGCAACATCTCAGCATCTC
 TTAAAGTTGCCTGCAGGAATGAAGCATGACATACCTGTTGAGGGACTAGGGAGTGGTGGGGAGGTGAGTGGACC
 AAAGGATATAGGCCCCAGGCATGCAGATGGGCCGGTGTGGGGAGGGTGTCTTCTCATCTCCCCACTC
 15 CCCACTCTCAGCCTGGGAGACTCCTGCCAAGCCTCATTAAAGATGCCACCCCTGGCTGCCCTGGCACCTAGCAA
 GGCACACCAAGAACAGCTTGAGTCGTATCCTCCACTGGGAAGTGTCTCCAGTCAGAACACAAGGGCAGCCGT
 GGTGCTGACCTAGGATATAACAAAGCTCTCACTTCAAAACCCCTGCAATAGCTGGTTACAGACATTTACCAC
 CTGGGGACCCAAAAGAGAAGGCCTAGGAGAGTGTCTAGAAGGTTGGATTGTCAGGGTCTGGCCCCCAGAAC
 TGGCTTGATCAAGGGCTTATGTGGAGCAGAGGTTGTCTGAACCAGGAGAGAAGGTACTACCTTCAAATC
 20 CCCAGGGCAGACACACCCCCACCCAGCCCCATTGACCTAAACTGTGCCATTGAACAGTCACCTCCAAGCTC
 AGTCTAAATGAAACCGAACGTGACCACGCACAAAGGCAGTCAGTGCTCGAGGGGTGCAGACCGCAGAATTTCA
 CAGCAGGGCTTGGAACTCTGGAAACCCCCCTTCTTAAATTGGAGGAGGAGTATGCTTGTCTGGCTTGTCCCCCTC
 CCAAGGGCAATTCTGAACCCATTTGGCAGGCATACATATTCACTGTTCAAAGCTATCTACTCTGCCAAA
 CAACACCCAGTCCTATTCAAACCTCTCAACGATTCTATCTTGTCTGTCTATGTATTTATGGTTGCCGTT
 25 TGTGTCTGATTGATTTACTGTTTCTGATTGAGTAGCATTGACCTGTTCTTGTCTTAT
 ATAACCTTAGTAAACTAACCACTGTCAATGATTGAGGGCAGGTGGCACGTGGGAAGAGGGCGGAATTC

SEQ ID NO:62 Human Taurine Transporter polypeptide sequence

protein_id:gi36727

30 MATKEKLQCLKDFHKDMVKPSPGKSPGTRPEDEAEGKPPREKWSSKIDFVLSVAGGFVGLGNVWRFPYLCYKNG
 GGAFLIPYFIFLFGSGLPFFLEIIIGQYTSEGGITCWEKICPLFSGIGYASVVIVSLLNVYYIVILAWATYYLF
 QSFQKELPWAHCNHSWNTPHCMEDTMRKNKSVWITISSTNFTSPVIEFWERNVLSSLSPGIDHPGSLKWDLALCLL
 LVWLVCFFCICKGVRSTGKVYFTATFPFAMLLVLLVRGLTLPGAGRGIKFYLYPDITRLLEDPVWIDAGTQIFF
 SYAICLGAMTSLSGSYNKYKYNYSYRDCMLLGCLNSGTSFVSGFAIFSILGFMAEQGVDIADVAESGPLAFIAYP
 35 KAVTMMPLPTFWSILFFIMLLLGLDSQFVEVEGQITSLVDLYPSFLRKGYRREIFIAFVCSISYLLGLTMVTEG
 GMYVFQLFDYYAASGVCLLWVAFFECFVIAWIYGGDNLYDGIEDMIGYRPGPWMKYSWVITPVLCVGCFIFSLVK
 YVPLTYNKTYVSPTWAIGLGSALSSMLCVPLVIVIRLCQTEGPFLVRVKYLLTPREPNRWAVEREGATPYNSR
 TVMNGALVKPTHIIIVETMM

SEQ ID NO:63 Mouse Taurine Transporter nucleic acid sequence

accession:BC015245

coding sequence:235..2100

CCCCACCGGTCCGGGAGAACGCCCTATAAATTACCGCTTCGCCGCCAGCGTCGTGCTCCGGACC
TGGTTGCTGCCAGCTCCGTGCCAGCCCAACGCCGCATGCCGCCAGTCCGCCAGCCTGCCAGCCCCG
5 GGCCATCCGCTGTGGCTTAGCCACCCAGGTGCAGAACCCAGTGCCACAGCCTCTTCAGAGGAGCATCTCAAGCAA
AACGAAGAGATGCCACGAAGGAGAACGCTGCAATGTCAGAAAGACTTCCACAAAGACATCCTGAAGCCTCTCCA
GGGAAGAGCCCAGGCACACGCCCTGAAGATGAGGCCAGGGAGGCCCTCAGAGGGAGAACGGTCCAGCAAG
ATCGACTTTGTGCTGTCTGTGCCGGAGGCTTCGTGGTTGGCAACGTCTGGCCTTCCGTACCTCTGCTAC
AAAAATGGTGGAGGTGCGTTCTCATACCGTATTTATTTCTGTTGGAGCGGCCCTGCCGTGTTTTCTTG
10 GAGGTGATCATAGGCCAGTACACATCAGAAGGGGCATCACCTGCTGGAGAACATCTGCTCCCTGGCCTGGCCACATAC
ATTGGCTACGCATCCATCGTCAATTGTGTCCTCTGAACGTGTACTACATCGTCATCCTGGCCTGGCCACATAC
TACCTATTCCACTCTTCCAGAAGGATCTCCCTGGGCCACTGCAACCATAGCTGAAACACACACAGTCATG
GAGGACACCTCGCTAGGAACGAGAGTCAGTGGCTCCCTAGCACTGCCAACTTCACCTCACCGTCATCGAG
TTCTGGGAGCGCAATGTGCTCAGCCTGCTCCGGAAATCGACAACCCAGGCAGTCTGAAATGGGACCTCGCGCTC
15 TGCCTCTCTTAGTCTGGCTCGTCTGTTCTGCATCTGGAAGGGTGTGATCCACAGGCAAGGTTGCTAC
TTCACCGCTACTTCCGTTGCCATGCTCTGGTGTGCTGGTCCGTGGACTGACCCCTGCCAGGTGCTGGTGA
GGCATCAAATTCTACCTGTACCCCTGACATCAGCCCTTGGGACCCACAGGTGTGGATCGACGCTGGAACCTCAG
ATATTCTTCTACGCAATCTGCTGGGGCCATGACCTCACTGGGAAGCTATAACAAGTACAAGTATAACTCG
TACAGGGACTGTATGCTGCTGGGATGCCCTGAACAGTGGTACCAAGTTGTGCTGGCTTCGAATTCTTCCATC
20 CTGGGCTCATGGCACAAGAGCAAGGGTGGACATTGCTGATGTGGTGTAGTCAGGTCCTGGCTTGGCTTCATT
GCCTACCCAAAAGCTGTAACCATGATGCCGTGCCACCTTGGTCTATTCTGTTTCATTATGCTCCTCTTG
CTTGGACTGGACAGCCAGTTGTTGAAGTCGAAGGACAGATCACATCCTGGTGTCTTACCCGCTTCTCTA
AGGAAGGGTTATCGCGGAAATCTCATAGCCATCTGTGACTACTATGCGAGCTAGGGTGTATGCCCTTGTGGTGTGA
ACGGAGGGTGGCATGTATGTTCAACTCTTGTGACTATGCGAGCTAGGGTGTATGCCCTTGTGGTGTGA
25 TTCTTTGAATGTTTGTATTGCCCTGGATATGGCGGTGATAACTTATATGACGGTATTGAGGACATGATTGGC
TATCGGCCTGGCCCTGGATGAAGTACAGCTGGCTGTCACTCAGCTCTTGTGGATGTTCTGCTTTC
TCGCTTGCAAGTATGTACCCCTGACCTACAACAAAGTGTACCGTACCCGGATTGGCAATTGGCTGGCTGG
GGCCTGGCCCTTCCATGCTGTATCCCCTGGTCAATTGTCACTCCTCTGCCGACGGAGGGACCGCTC
CGCGTGAGAATCAAACACTGATAACCCCCAGGGAGCCAACCGCTGGCTGGAGCGTGAAGGGCCACACCC
30 TTTCACTCCGAGTAACCCCTCATGAACGGCGACTCATGAAACCCAGTCAGTCATTGTGGAGACCATGATGTGA
GGTCGGGCCATGTGACAGGGCGCTTCTGCTGTTACTAACGTTAGATTCTCATAGGACCAAGGTTACAGA
GCTTTATATTGTACTAGGATTTTTTTAATTGTACAGAAAATGTTACTCTATGTGTGTATGTGT
CGTGTATGTCTGTATATGTGTTGTTGTTGGGGATATTTGTACAAAAGAAAACCCATAGGCCTACG
TCCTGGGAAGAGGATGGACTTCATATTGATTCCATGTATTGTGGGAACTGGTAAATTCTTGTATT
35 TTTTTAACATATAACTATATACTTAGAGTCTGTCAACACTTGCACACTTGCACATTGAAATTGGTCTTGCCAGCAATGG
ATCTCGTTTCAAAAGCAATTCTCGGTGCTTATATAGCTGGCAGAAAGTTCTGCCAAAAACAAATGAAAAAA
GAGAAAAAAAAAAAAAA

SEQ ID NO:64 Mouse Taurine Transporter polypeptide sequence

accession:gi15929615

MATKEKLQCLKDFHKDILKPSPGKSPGTREDEADGKPPQREKWSSKIDFVL SVAGGFVGLGNWRFPYLCYKNG
5 GGAFLIPYFIFLFGSLPVFFLEVIIGQYTSEGGITCWEKICPLFSGIGYASIVIVSLLNVYYIVILA
HSFQKDLPWAHCNHSWNTPOCMEDTLRRNESHVSLSTANFTSPVIEFWERNVLSLSSGIDNPGLKWDLALCLL
LVWLVCFFCIWKGVIRSTGKVVFYFTATFPFAMLLVLLVRGLTPGAGEGIKFYLYPDISRLGDPQVWIDAGTQIFF
SYAICLGAMTSLSGSYNKYKNSYRDCMILLGCLNSGTSFVSGFAIFSILGFMAQEQQVDIADVAESGPLAFIAYP
10 KAVTMMPLPTFW SilFFIMLLLGLDSQFVEVGQITSLV DLYPSFLRKGYRREIFI AILCSISYLLGLTMVTEG
GMYVFQLFDYYAASGVCLLWVAFFECFVIAWIYGGDNLYDGIEDMIGYRPGPWMKYSWAVITPA
KVYVPLTYNKVYRYPDWAIGLGWGLALSSMLCIPLVIVILLCRTEGPLRVRIKYLITPREPNRWAVEREGATPFHS
RTVLMNGALMKPSHVIVETMM

SEQ ID NO:65 Rat Taurine Transporter nucleic acid sequence

accession:NM_017206

coding sequence:127..1992

15 GCCAACGCCCGATGCCGCCAATCCGCCAGCCTCGGGCCGGCCATCCGCTGTGGGCTTAGCCACCCAGATGC
AGAGCCAGTGCCACAGCCTCTCAGAGGAGCCTCTCAAGCAAACGAGGAGATGCCACCAAGGAGAACGCTCAA
TGTCTGAAAGACTTCACAAAGACATCCTGAAGCCTCTCCAGGGAAGAGCCCAGGCACGCCCTGAGGATGAG
GCTGATGGGAAGCCCCCTCAGAGGGAGAAGTGGTCCAGCAAGATCGACTTGTGCTGTGGCCGGAGGCTTC
GTGGGTTGGCAATGTCTGGCTTCCCGTACCTCTGCTACAAAATGGTGGAGGTGCATTCCATACCGTAT
20 TTTATTTCTGTTGGAGCGCCCTGCCTGTGTTCTGGAGGTCACTCATAGGCCAGTACACCTCAGAAGGG
GGCATCACCTGCTGGAGAAGATCTGCCCTGCTGGCATTGGCTACCGTCCATCGTCATCGTGTCCCTC
CTGAATGTGTACTACATCGTCATCCGCCGGCACATACTACCTATTCCAGTCTTCCAGAAGGATCTTCCC
TGGGCCACTGCAACCCTAGCTGAACACGCCACAGTCATGGAGGACACCCCTGCGTAGGAACGAGAGTCACTGG
GTCTCCCTAGGCCGGCAACTCACTTCGCCCTGTGATCGAGTTCTGGAGCGAACGTGCTCAGCTGTCTCC
25 GGAATCGACCACCCAGGCAGTCTGAAATGGGACCTCGCGCTCTGCCCTCTTAGTCTGGCTCGTCTGTTTTC
TGCATCTGGAAGGGTGGTCCACAGGAAGGTTGTCTACTTCACTGCTACTTCCGTTGCCATGCTTCTG
GTGCTGCTGGTCCGGACTGACCCCTGCCAGGTGCTGGATCAAATTCTACCTGTACCCCTAACATCAGC
CGCCTTGAGGACCCACAGGTGTTGATCGACGCTGGAACTCAGATATTCTTCTACGCTATCTGCCCTGGGGCC
ATGACCTCACTGGGAAGCTATAACAAGTACAAGTATAACTCGTACAGGGACTGTATGCTGTGGATGCCGTGAA
30 AGTGGTACCAAGTTGTCTGGCTTCGAATTTCATCCCTGGCTTCATGGCACAAGAGCAAGGGTGGAC
ATTGCTGATGTGGCTGAGTCAGGTCTGGCTGGCTTCATTGCCCTACCCAAAAGCTGTGACCATGATGCCGCTG
CCCACCTTTGGTCCATTCTGTTTATTATGCTCTCTGCTGGACTGGACAGCCAGTTGTTGAAGTCGAA
GGACAGATCACATCCCTGGTTGATCTTACCCGCTCTTAAGGAAGGGTTATGTCGGAAATCTTCAATTGCC
ATCGTGTGCAAGCATCAGCTACCTGCTGGGCTGACGATGGTGACGGAGGGTGGCATGTATGTTCAACTCTT
35 GACTACTATGCAGCTAGTGGTGTATGCCCTTGTGGTGCATTCTTGAATGTTGTTATTGCCCTGGATATAT
GGCGGTGATAACTTATGACGGTATTGAGGACATGATCGGCTATGCCCTGGACCCCTGGATGAAGTACAGCTGG
GCTGTCATCACTCCAGCTCTGTGTTGGATGTTCATCTCTCGTCAAGTATGTACCCCTGACCTAAC
AAAGTCTACCGGTACCCCTGATTGGCAATCGGGCTGGGCTGGGCTGGCCCTTCCATGGTGTGATCCCC
TTGGTCATTGTCATCCTCTGCCGGACGGAGGGACCGCTCCGCGTGA
40 GAGCCCAACCGCTGGCTGTGGAGCGTGAAGGGCTACGCCCTTCACTCCAGAGCAACCCATGAACGGTGCA

CTCATGAAACCCAGTCACGTCAATTGTGGAGACCATGATGTGAGGTCCGGCTGTGACCGGC CGCCTTCTG
 CCGTTTACTAACCTTAGATTCTCCTAGGACCAGGTTACAGAGCTTATATTGTACTAGGATTTTTTTAAT
 TGTACAGAAAATGTTACTCTGT
 TCTGTATATGTGTATTTGTTTATTTGGGGATTATTTGTACAAAAGAAAACCCATGGCCTATGTCCTGGG
 5 GGGAGAGGATGGACTTCATATTGATTTGATGTATTTATGGGAACCTGGTAAATTTCTTGATTTTTTA
 ACATATAACTATATATAGAGTCTGTCAACACTTGCACATTGAATTGGTCTGCCAGCAACGGATCTCGTTTT
 TGTTTTGTGTTTCAAAGCAATTCTCGGTGCTTACATAGCTGGCAGAGAGTTCTGCCAAAAACAAAT
 GAAAAAAAAAAAAA

10 SEQ ID NO:66 Rat Taurine Transporter polypeptide sequence

accession:gi8394318

MATKEKLQCLKDFHKDILKPSPGKSPGTRPEDEADGKPPQREKWSSKIDFVLSVAGGFVGLGNWRFPYLCYKNG
 GGAFLIPYFIFLFGSGLPVFFLEVIIGQYTSEGGITCWEKICPLFSGIGYASIVIVSLLNVYYIVILAWATYYLF
 QSFQKDLPWAHCNHSWNTPQCMEDETLRRNESHWSLSAANFTSPVIEFWERNVLSLSSGIDHPGSLKWDLALCLL
 15 LVWLVCFFCIWKGVNSTGKVVFATFPFAMLLVLLVRGLTLPGAGEGIKFYLYPNISRLEDPOVWIDAGTQIFF
 SYAICLGAMTSLSGSYNYKYNYSRDCMILLGCLNSGTSFVSGFAIFSILGFMAEQGVDIADVAESGPLAFIAYP
 KAVTMMPLPTFWISILFFIMLLLGLDSQFVEVEGQITSLVDLYPSFLRKGYRREIFI AIVCSISYLLGLTMVTEG
 GMYVFQLFDYYAASGVCLLWVAFFECFVIAWIYGGDNLYDGIEDMIGYRPGPWMKYSWAVITPALCVGCFIFSLV
 KYVPLTYNKVYRYPDWAIGLGWGLALSSMVCIPLVIVILLCRTEGPLRVRIKYLITPREPNRWAVEREGATPFHS
 20 RATLMNGALMKPSHVIVETMM

SEQ ID NO:67 Human (R)-3-hydroxybutyrate dehydrogenase aldehyde reductase nucleotide sequence

HUM222493 accession:NM_004051 CDS:224..1255

25 GGCACGAGGGCGGAGGCCGCAGGCCGCAGGAGTGCTGGTGGAGGGCTTCCAGAAAGACCCCTGCCAGGCCCGCCCCCTCGGC
 TCTCCCCGAGGAGAGCGGGCACCTGCGCGGCCGGGTGAAGGCAGAGGCCTCGCGAGCCCTCTGCAGCGGAGCCCCCTGC
 CCATTTGGTTTGGAACCAACCGGGAGGAACCTGGCCATTCTAACACCCCTGCTACCATGCTGCCACCCGCCCTCTCCAGACC
 CCTGTCACGGCTCCAGGAAAACCTAACAGTGCCTGTGATAGAGAAAATGGAGCAAGACGCCACTATTGCTTGGTCTACTT
 CCTTATCCGATTGGCGTCGGACTTATGCCAGTGCAGGCCGGAGCCGGTGGCAGCAAAGCTGCTGGTCAACAGGCTGTGAC
 30 TCTGGATTGGTTCTCAATTGCCAACGATCTGCATTCAAAGGCTTCTGTGTTGCTGGCTGCTGATGAAGGACAAAGG
 CCATGATGGGTCAAGGAGCTGGACAGCCTAACAGTGACCGATTGAGAACCGTCCAGCTCAATGTCTGCACCGCGAAGAGG
 TGGAGAAAAGTGGTGGAGATTGTCCGCTCGAGCCTGAAGGACCTGAGAAAAGGCATGTGGGCTCGTTAACATGCCGCATC
 TCAACGTTGGGGAGGTGGAGTTCACAGCCTGGAGACCTACAAGCAGGTGGCAGAACCTTGGGACAGTGCCTGGGAT
 GACGAAATCCTTCTCCCCCTCATCCGAAGGCCAAAGGCCGTCGTCAATATCAGCAGCATGCTGGGCCATGCCAAC
 35 CGGCCGCTCCCCGTACTGCATACCAAGTTGGGGTAGAGGCTTCTGGACTGCCCTGCGCTATGAGATGTACCCCTGGC
 GTGAAGGTAGCGTGGAGGCCGGCAACTTCATCGCTGCCACCAGCCTTACAGCCCTGAGAGCATTAGGCCATGCCAA
 GAAGATGTGGAGGAGCTGCCTGAGGTGCGCAAGGACTACGGCAAGAAGTACTTGTGATGAAAAGATGCCAAGATGGAGA
 CCTACTGCAGCAGTGGCTCCACAGACACGTCCCTGTCATCGATGCTGTCACACACGCCCTGACCGCCACCACCCCTACACC
 CGCTTACCAACCCATGGACTACTACTGGTGGCTGCAGATGCAGATCATGACCCACTTGCCTGGAGCCATCTCGACATGACTA
 40 CATCCGCTGAAGAGTCTGCTGTGGCTCTGTCAAGGGATCCCTGGTGGAGGGAGGGAGGGAGGAACCCATATAGTCAACT
 CTTGATTATCCACGTGTGGATTATCCACCATGCCAGGAAGACCCATAACTGGTTTAACACTAACTAGAGGAATGACTTCTT

TGCATAGTGAAGTGACTTGGCCTTCACAAACAGGGTGTGGAGTGGCAGGCAGGCTCTAAATCTCAGGGCAACATGGTGA
ATCTATCTCTCCGGAGATAATTACAGAGATTTAAGAAAACATCTTATATTAAAAACAGATCTCATTGATCCTTAAA
AAAAAAAAAAAAAAA

5 **SEQ ID NO:68 Human (R)-3-hydroxybutyrate dehydrogenase aldehyde reductase
polypeptide sequence**

protein_id:gi17738292

MLATRLSRPLSLPGKTL SACDRENGARRPLLLGSTSFIPIGRRTYASAAEPVGSKAVLVTGCDSGFGFSLAKHL
HSKGFLYFAGCLMKDKGHGVKEELDSLNSDLRLTVQLNVCSEEVEKVEIVRSSLKDPEKGMWGLVNNAGISTF
10 GEVEFTSLEYTKQVAEVNLWGTVRMTKSFLPLIRRAKGRVVNISSMLGRMANPARSPYCITKFGVEAFSDCLRYE
MYPLGVKVSVVEPGNFIAATSLYSPESIQAIAKMWEELPEVVRKDYGKKYFDEKIAKMETYCSSGSTDTSPIVD
AVTHALITATTPYTRYHPMDYYWWLRMQIMTHLPGAISDMIYIR

15 **SEQ ID NO:69 Mouse(R)-3-hydroxybutyrate dehydrogenase aldehyde reductase
nucleotide sequence**

accession:BC027063

GGACAAAGGTGATGCTGGGGTCAAGGAACCTGGACAGCTTGAAGAGTGACCGACTGAGAACCATCCAGCTCAATGT
CTGCAACAGTGAAGAGGTGGAGAACGGCGGTGGAGACGATCCGCTCCGGCCTGAAAGATCCTGAGAACGGGAATGTG
20 GGGCCTGGTTAACAAACGCAGGCATCTCAACGTTGGGAGGTGGAGTTCACAGCATGGAGACATATAAGGAGGT
GGCTGAAGTGAACCTCTGGGAACCGTGCACCACAAAATCCTCCTTCCCTTCCGAAGAGCCAAGAGTC
CGTCGTTAACATCAGCAGCATGCTGGGCCATGGCAACCCCCGCCCTGCCACTGCATCACCAAGTTGG
GGTCGAGGCTTCTCGGACTGCCTCGCTATGAGATGCACCCCTCTGGGTGTCAAGGTCAGTGTGGTGGAACTGG
CAACTTCATAGCGGCCACCAGTCTCTACAGCCCCGAGCGCATCCAGGCCATGCCAAGAACAGATGTGGATGACCT
GCCTGAGGTGCGTCCGCAAGGACTATGGCAGGAAGTACTCGATGAAAGATGCCAAGATGGAAACCTACTGCAA
25 CAGCGGTTCCACAGATACTCCTCTGTCATCAACGCTGTACACACGCCTTGACCGCCGCCACCCGTATAACCG
CTACCATCCCCTGGACTACTACTGGTGGCTTCGGATGCAGATCATGCCATTTCCTGGAGGCCATCTGACAA
GATCTACATACACTGAAGAGCTGAAGAGGTCCCTCGGTCTCCGCCAGGGAACCTGGTGGAGGGAGAACATGA
GGGGAGGGAGTTACCTTTGATTAGCTATTGAGGATTACCCACTGTCTTAGGAAGACCTATTTAACCTTACGT
GTTCAATGTGGTGAATGGTTGGCCTTCACAAATTAGGGGGGGGGCGAGGGCGCAGGTGGTGGCCCTAAA
30 CCTCAGGGCCAATATGGTCTTCTATCTCGAGTTGATTTATATAAAGATTTGTGGGAAATATCTTATA
TTAAAAGCAGGTTATTAGAATAGAATCCAAAATCATTCCAGCCAAACATCCATTGAAATCTGTATCCATT
TGATCCTTATGTAAGTCTCATGAGTAAACAGAACAGAAATTCTTCTGTGTGCATGAAAGAATTGCAAGAT
CGCAGAGGACATACGAGACACCTCTTCATTGTGTCCACGGAGTCCGCCAGTGTACGGCAAAGGCAAATCACA
TTTGTGTCCCACAGACACTTGAACCCATCAGTCCAGTAACCTGTGACCAACTCTGTACCTTCTCCTGAGCCAGT
35 CACACCAAAGGTCACTGTGTGCTATGTCTCTGTGCGTCCGTAGCTCTGTGTGACTGGTGGCCAGCAGTCAGTGAC
TCTCTGCTGGCTCCAGGTGGGAATCCAGAGACTTTCAGCTGAGATCTTGGCATTCTCATTAAAGATTGCAAGT
TAGGTCTGGGTGAAGATGCTGTCCGGCTAAGAGCGCAGCTGGTTTGCTAGGACAGGATTGGTGTATGCTTG
GTGCTGCAAACAGACCAGTGGTGCCAAGGCTGGCACTGAGACACTTGCCAGCAATGGTCTAGATGCCTGTTG
TCTTGTGTGCTCATGTGGTCTCCACATGTGGTGCGTGTGCATGCACTCACACACACACACACACAT

CACACACACACACACACATCACACACACACACACACACACACCTGCTCCATAGACTTCAGGGTGGTCACCTCTTCTT
 TGTATTGGAACTTCTTTAATTAAACTGAGACACAGTAGAGAGGCCTGTTCTCAATCAAGGGACTTTGCA
 TTTGAAGGCTGCTGCTCCCTGAAGTTCCCTAGGGTCTCAGTATTGGATCAAACCAAATCCCACCACGTTCCAG
 GTGGCAGCAAGTCTTGGCCGGTATTTAAGTGCAGCTTACACACATCTCAGCTTACACTTTGTCATCTT
 5 GTTGCAAAGTCTAGGACTGCCACTAGAGGGCGCGTCCCCCTCAACTGGAGCCTGCTCAGGCCGGCGTTTC
 GTTCACACAAACTTGGGTCTTCAAGAGTGTGACCACCTACTTGGACACTGCCAGGGAACAAAGAGAAGAG
 CAAAGACCCCTTGAAACCGATCCTACACTCCTGGCAGTGTCTAGCCTGAAACTGAAGCCCAGGCCAGGAGAA
 AGCAAAGAACCTGGACAGCCACAGGCGGGTGCAGGCAGTGCTGAGACAAAGAGGGTCCCACAGAGAGCGAATTC
 AGCCTGCCGGTTGGGTTTAACCCCTCTGGATACAAACAGAGGTGCACTGTTCTAGCCTCTGCTTCAAAGCA
 10 AAGTAGATAGGGCCTGAGAGGGAAAGGTGAGAGGGAGCCAGGGCCCCAGGGTCCACGAATTACCTGACAGCGGGA
 TGCATTTGTAUTGCAGAGCCTGCCTCCTGCTGGCGTCTTCAGTGGCATTTACACCTTGGAGAATTGTATCC
 GTGTTAATAAAGAGATTGGTCATAACAAAAAAAAAAAAAAA

SEQ ID NO:70 Mouse (R)-3-hydroxybutyrate dehydrogenase aldehyde reductase

15 polypeptide sequence

accession:gi20071589

DKGDAGVKELDSLKSDRLRTIQLNVCNSEEVEKAVETIRSGLKDPEKGMWGLVNNAGISTFGEVEFTSMETYKEV
 AEVNLWGTVRTTKSFLPLLRRAKGRVVNISSMLGRMANPARSPYCITKFGVEAFSDCLRYEMHPLGVKVSVVEPG
 NFIAATSLYSPERIQAIAKMWDDLPEVVRKDYGRKYFDEKIAKMETYCNSTDTSSVINAVTHALTAATPYTR
 20 YHPMDYYWWLRMQIMTHFPGAISDKIYIH

SEQ ID NO:71 Rat (R)-3-hydroxybutyrate dehydrogenase aldehyde reductase

nucleotide sequence

accession:NM_053995

25 CCCTCAATAGCCACACTATTTATTTCAATTAAAAATTCTTCCAAACCTTCCTGCACCTCCCTCACCC
 AAAACTATAAACTCGGTGCCATGATGCTGGCCGCCGTCTTCCAGACCCCTGTACAGCTCCAGGAAAGCTC
 TAAGTGTCTGTGATAGAGAAAATGGACAAGACACACACTGTTGTTACCCAGCTTCTTCAGCCCTGACACCC
 GTCGGACCTACACCAGCCAGGCAGATGGCTAGTGGCAAAGCTGTCTGGTTACAGGCTGTGACTCTGGATTG
 GGTTCTTGGCCAAGCATCTACACTCAAAGGTTCTTGATTTGCCGGATGTTGTTGAAGGAACAAGGCG
 30 ATGCTGGGTCAAGGAGCTGGACAGCCTGAAGAGTGAACGGCTGAGAACCATCCAGCTCAATGTCTGCAACAGTG
 AGGAGGTGGAGAAAGCGGTGGAGACCGTCCGCTCCGGCTGAAGGATCCTGAGAAGGAAATGTGGGCTGGTTA
 ACAACGCAGGCATCTCAACGTTGGGAGGTGGAGTTCACTAGCATGGAGACGTATAAGGAGGTGGCGAAGTGA
 ACCTCTGGGAACTGTGCGACAACAAATCTTCTCCCTCTCCGAAGAGCCAAAGGCCGTGTTAACA
 TCAGCAGCATGCTGGTCGATGCCAACCCAGCCGCTCACCATACTGCATCACCAAGTTGGGTAGAGGCTT
 35 TCTCGGACTGCCTACGCTATGAGATGCACCCCTCTGGGTGTGAAGGTAGTGTGGTGGAGCCTGGCAACTTCATAG
 CTGCCACCAGCCTATAGCCCTGAGCGTATCCAGGCCATTGCCAAGAAGATGTGGGATGAGCTGCCAGAGGTCG
 TCCGCAAAGACTATGGCAAGAAGTACTTCGATGAAAGATTGCCAAGATGGAGACCTACTGCAACAGCGGTTCCA
 CCGATACGTCCCTCGTCATCAACGCTGTCAACCATGCCCTGACTGCTGCCACCCCTATACCCGCTACCATCCCA
 TGGACTACTACTGGTGGCTGGAGTCAGGGTCAACGCTGTCAACCATTTCCGGAGCCATCTGACAAGATCTACATAC

ACTGAAGAGCTGAAGAGGTCCCTGCAGCCTCTGCCAGGGAGCCTGATGGGAGGGAGTCATACTACAGTTATCTTTG
 ATTAACCATTGTGGGTGTCCACTGTCTAGGAAGACCTATTTAACCTTACGTGTTCAATGTGGTGAATGGTTT
 GGGCCTTCACAAATACAGGGCACTGGTGGGTGCCCTAACCTCAAGGCCAATATGGTCTTATCTGTCTATC
 TAGAGTTGATTTATATAAGATTGTGGAAATACCTTATATTAAAGACGTATTAGAATAGAAAAAA

5

SEQ ID NO:72 Rat (R)-3-hydroxybutyrate dehydrogenase aldehyde reductase polypeptide sequence

accession:gi16758902

MMLAARLSRPLSQLPGKALSVCDRENGTRHTLLFYPASFPSPDTRRTYTSQADAASGKAVLVTGCDSGFGFSLAKH
 10 LHSKGFLVFAGCLLKEQGDAGVRELDLSKSDRLRTIQLNCNSEEVEKAVETVRSGLKDPKGWGLVNNAGIST
 FGEVEFTSMETYKEVAEVNLWGTVRTTKSFLPLLRRAKGRVVNISSMLGRMANPARSPYCITKFGVEAFSDCLRY
 EMHPLGVKVSVVEPGNFIAATSLYSPERIQAIAKMWDELPEVVRKDYGKKYFDEKIAKMETYCNSGSTDTSVI
 NAVTHALTAATPYTRYHPMDYYWWLRMQVMTHFPGAISDKIYIH

15 **SEQ ID NO:73 Human aldehyde reductase nucleotide sequence**

HUM223359 accession: J04794 + CDS:61..1038

AGCCAGAAATGTGAAGTGCTAGCTGAAGGATGAGCAGCAGCTAGCCAGGCAAAGGGGCAATGGCGGCTTCCTGT
 GTTCTACTGCACACTGGCAGAAGATGCCCTGATTGGTCTGGTACCTGGAAGAGTGAGCCTGGTCAGGTAAAA
 GCAGCTGTTAAGTATGCCCTAGCGTAGGCTACGCCACATTGATTGTGCTGCTATCTACGGCAATGAGCCTGAG
 20 ATTGGGGAGGCCCTGAAGGAGGACGTGGGACCAGGCAAGGCCTGCCTCGGGAGGAGCTGTTGTGACATCCAAG
 CTGTGGAACACCAAGCACCACCCGGAGGATGTGGAGCCTGCCCTCCGGAAAGACTCTGGCTGACCTCCAGCTGGAG
 TATCTGGACCTGTACCTGATGCACTGGCCTTATGCCCTTGAGCGGGAGACAACCCCTCCCAAGAAATGCTGAT
 GGGACTATATGCTACGACTCCACCCACTACAAGGAGACTTGAAGGCTCTGGAGGCAGCTGGCTAAGGGCTG
 GTGCAGCGCTGGCCTGTCCAACTCACAGTCGGCAGATTGATGACATACTCAGTGTGGCTCCGTGCGTCCA
 25 GCTGTCTTGCAAGTGAATGCCACCCATACTTGGCTCAAATGAGCTAATTGCCACTGCCAAGCACGTGGCTTG
 GAGGTAACTGCTTATAGCCCTTGGCCTCTGATCGTGCATGGCGTGATCCTGATGAGCCTGCTGCTGGAG
 GAACCACTGATCTGCATCCCCAAAAGTATCACTCCTCTCGAATCCTTCAGAACATCAAGGTGTTGACTTCACC
 CGGAAAGTGAATGCTGATCTGCATCCCCAAAAGTATCACTCCTCTCGAATCCTTCAGAACATCAAGGTGTTGACTTCACC
 TTTAGCCCAGAAGAGATGAAGCAGCTAAATGCCCTGAACAAAATTGGAGATATATTGCTGCTATGCTTACGGT
 30 GATGGGAAGAGAGTCCCAAGGGATGCAGGGCATCCTCTGTACCCCTTAATGACCCGTACTGAGACCAAGCTTC
 TTGGCCTCCCTCCAGCTCTGCAGCTAATGAGGTCTGCCACAACGGAAAGAGGGAGTTAATAAGCCATTGGAG
 CATCCAT

SEQ ID NO:74 Human aldehyde reductase polypeptide sequence

35 protein_id:gi178481

MAASCVLLHTGQKMLIGLGTWKSEPGQVKAAVKYALSVGYRHIDCAAIFYNEPEIGEALKEDVGPGKAVPREEL
 FVTTSKLWNTKHHPEDVEPALRKTTLADLQLEYLDLYLMHWPYAFERGDNPFPKNADGTICYDSTHYKETWKALEAL
 VAKGLVQALGLSNFNSRQIDDILSVASVRPAVLQVECHPYLAQNELIAHCQARGLEVTAISPLGSSDRAWRDPDE

PVLLEEPVVLALAEKYGRSPAQILLRWQVQRKVICIPKSITPSRILQNIKFDFTSPEEMKQLNALNKNWRYIV
PMLTVDGKRVPRDAGHPLYPFNDPY

SEQ ID NO:75 Mouse aldehyde reductase nucleotide sequence

5 accession:NM_021473

TTCGGCACGGGAATGTCAAAGTCCCAGCTTGGCTCTACTCCCTCTTCTACTTCGAGGACAGTGGGGTC
TCCTCCGCTCTGCGCGTAGTTCTGGGAGCCGGCCCTCGCTCCCTCCCTGGGGTGGGGCTGCCGCTTCTCCGCCG
GACTTAAGTCGGGCCCTGGCCTCAGTACTGGAGTGCAGAGCTGAATTGGGCCACTTGTCTTTCCACAGCC
TGTGCTCACTGCCAAGGGGACAATGACGGCCTCCAGTGTCCCTGCACACTGGACAGAAGATGCCCTGATTGG
10 TCTGGGACATGGAAGAGTGAGCCTGGTCAGGTGAAAGCAGCCATTAAACATGCCCTAGCGCAGGCTACCGCCA
CATTGAATTGTGCTTCTGTATATGGCAATGAAACTGAGATTGGGAGGCCCTGAAGGAGAGTGTGGGTCAGGCAA
GGCAGTCCTCGAGAGGAGCTGTTGTGACATCCAAGCTGTGGAATACTAACGACCAACCCCTGAGGATGTAGAAC
TGCCCTCCGGAAGACACTGGCTGATCTGCAACTGGAGTATTGACCTCTATTGATGCACTGGCCTATGCCCT
TGAGCGGGGAGACAATCCCTTCCAAGAATGCCATGGAACTGTCAGATATGACTCAACTCACTATAAGAGAC
15 CTGGAAAGCTCTGGAGGTACTGGTGGCAAAGGGCTGGTGAAGGCCCTGGCTTGTCCAACCTCAACAGTCGGCA
GATTGATGATGTCCTCAGTGTGCCCTGTGCGCCCTGTGAGCTGTGGAATGCCATCCATACCTGGCTCA
GAATGAGCTCATTGCCACTGTCACGCACGGGCTGGAGGTGACTGCTTATAGCCCCCTGGGTTCTGACCG
TGCTTGGGCCATCTGATGAGCCAGTCCTGCTGAAAGAACCAAGTAGTCTTGGCACTAGCTGAAAAACATGCCG
ATCTCCAGCTCAGATCTGCTTAGATGGCAGGTTAGCGGAAAGTGTGATCTGCATCCCCAAAAGCATCAATCTTC
20 CCGCATCTTCAGAACATTCAAGGTATTCGATTTGATTCACCTTAGGCCAGAGGAGATGAAACAATTAGATGCTCTGAA
CAAAAATTGGCGGTATATTGTGCCATGATTACGGTGGATGGAAAGAGGTTCCAGAGATGCTGGACACCCCTCT
GTATCCCTTAATGACCCATACTGAGACCTATAGTTCTCAGCTCCCTTCAGTTCTCAGCTGCTAAGCATTGCCT
GCTACTCCCCAGAAAGAAGGAATCAATAAGCCATTGAAGTGTAA

25 **SEQ ID NO:76 Mouse aldehyde reductase polypeptide sequence**

accession:gi10946870

MTASSVLLHTGQKMPLIGLGTWKSEPGQVKAAIKHALSAGYRHIDCASVYGNETEIGEALKESVGSGKAVPREEL
FVTSLWNNTKHHPEDVEPALRKTTLADLQLEYLDLYLMHWPYAFERGDNPFPKNADGTVRYDSTHYKETWKALEVL
VAKGLVKALGLSNFNSRQIDDVLSVASVRPAVLQVECHPYLAQNELIAHCHARGLEVTTAYSPLGSSDRAWHPDE
30 PVLLEEPVVLALAEKHGRSPAQILLRWQVQRKVICIPKSINPSRILQNIKFDFTSPEEMKQLDALNKNWRYIV
PMITVDGKRVPRDAGHPLYPFNDPY

SEQ ID NO:77 Rat aldehyde reductase nucleotide sequence

accession:NM_031000

35 GAATTCTGGCCACTTGTCTTCCACAGCCTGTGCTATTGCCAAGGGACAATGACGGCCTCAGTGTCTCC
TGCACACTGGACAGAAGATGCCCTGTGATTGGCTGGGACATGGAAGAGTGAGCCTGGTCAGGTGAAAGCAGCTA
TTAAATATGCCCTTAGCGTAGGCTACGCCACATTGACTGTGCTTCTGTATATGGCAATGAAACTGAGATTGGAG
AGGCCCTGAAGGAGAGTGTGGAGCAGGCAAGGCAGTACCTCGAGAGGAGCTGTTGTGACCTCCAAGCTGTGGA
ATACTAACGACCAACCCCTGAGGATGTAGAACCTGCTGTCCGGAAAGACGCTGGCTGATCTGCAGCTGGAGTATTGG

ACCTCTATTGATGCATTGGCCTTATGCCCGAGACAAATCCCTTCCAAGAATGCCATGGAACTG
TCAAATATGACTCCACTCACTATAAGGAGACCTGGAAGGCTCTGGAGGCACTGGTGGCAAAGGGCTGGTAAAG
CCTTGGGCTTGTCCAACCTCAGCAGTCGGCAGATAGATGATGTCCTCAGTGTGGCCTCGTGCGCCCAGCTGTCT
TGCAGGTGGAATGCCATCCATACCTGGCTAAAATGAGCTATTGCCACTGTCAAGCACGAGGCTGGAGGTGA
5 CAGCTTACAGCCCCTTGGGTCATGGATCGTGGCGCCACCCCTGATGAGCCAGTCCTGCTTGAGGAACCAG
TTGTCTTGGCACTAGCTGAAAAACATGGCCGATCTCCAGCTCAGATCTTGTGTCAGATGGCAGGTTCAGCGGAAAG
TAATCTGCATCCCCAAAGCATCACTCCTCCGCATCCTTCAGAACATTCAAGGTATTGATTTCACCTTAGTC
CAGAGGAGATGAAGCAATTAGATGCTCTGAACAAAATTGGCGGTATATTGTGCCATGATTACGGTGGATGGGA
AGAGAGTCCCCAGAGATGCTGGACACCCCTGTATCCCTTAATGACCCATACTGAGGCCGTAGTTCTCAGCT
10 TCCCTTCAGTTCTCCGCTAACGATTGCCGCTACTCCCAAGAAAGAAGGACTCAATAAGGCCATTGAAGTGT

SEQ ID NO:78 Rat aldehyde reductase polypeptide sequence

accession:gi13591894

MTASSVLLHTGQKMPPLIGLGTWKSEPGQVKAIIKYALSVGYRHDICASVYGNETEIGEALKESVGAGKAVPREEL
15 FVTSKL~~N~~NTKHHPEDVEPAVRKTLADLQLEYLDLYLMHWPYAFERGDNPFPKNADGTVKYDSTHYKETWKALEAL
VAKGLVKA~~L~~G~~S~~NFSSRQIDDVLSVASVRPAVLQVECHPYLAQNELIAHCQARGLEVTA~~S~~PLGSSDRAWRH~~P~~D~~E~~
PVLLEEPVVLALAEKHGRSPAQILLRWQVQRKVICIPKSITPSRILQNIQVFDFTSPEEMKQLDALNKNWRYIV
PMITVDGKRVPRDAGHPLYPFNDPY

20 SEQ ID NO:79 Human PDE4B nucleotide sequence

HUM225316 accession:M97515 CDS:282..1976

GGCACGAGCCTAAAGAACCCCTGGGATGACTAAGGCAGAGAGAGTCTGAGAAA
CTTTAGGACACATTATGCAGATGAGCTATAAGAGACCCTCCGCCCTTCAGAGGAAGTTCTT
GGTAGATCACCGACACCTCATCCAGGCGGGGGTGGGGGAAACTTGGCACCAGCCATCCCAGGCAGAGCACCA
25 CTGTGATTGTTCTCCTGGAGAGAGCTGGAAGGAAGGAGCCAGCGTGCAAATAATGAAGGAGCAGGGGCA
CCTTCAGTAGCACCGGAATCAGCGGTGGTAGCGGTGACTCTGCTATGGACAGCCTGCAGCGCTCCAGCCTAACT
ACATGCCTGTGTTGAGAAGAATCTTATCAAAAATTAGCAATGAAACGCTGGAGGAATTAGACTGGT
GTTTAGACCAGCTAGAGACCATAACAGACCTACCGGTCTGCTAGTGAGATGGCTCTAACAAAGTTCAAAGAAATGC
TGAACCGGGAGCTGACACACCTCTCAGAGATGAGCCATCAGGAACCAGGTGCTGAATACATTCAAATACTT
30 TCTTAGACAAGCAGAATGATGGAGATCCCATCTCCTACCCAGAAAGACAGGGAGAAAAGAAAAAGCAGCAGC
TCATGACCCAGATAAGTGGAGTGAAGAAATTAAATGCATAGTTCAAGCCTAAACAATACAAGCATCTCACGCTTTG
GAGTCACACTGAAAATGAAGATCACCTGCCAAGGAGCTGGAAGACCTGAACAAATGGGTCTTAACATCTTAA
ATGTGGCTGGATATTCTCACAAATAGACCCCTAACATGCATCATGTATGCTATATTCCAGGAAAGAGACCTCCTAA
AGACATTCAAATCTCATCTGACACATTATAACCTACATGACTTAAAGACCATTACCAATTCTGACGTGG
35 CATACTCACAAACAGCCTGCACGCTGATGTAGCCCAGTCGACCCATGTTCTCCTTCTACACCAGCATTAGACG
CTGTCTTCACAGATTGGAGATCCTGGCTGCCATTGGCTGAGCTGCCATCCATGACGTTGATCATCCTGGAGTCT
CCAATCAGTTCTCATCAACACAAATTCAAAGACTTGCTTGTATGATGAACTGTGTTGGAAAATCATC
ACCTTGCTGTGGGTTCAAACACTGCTGCAAGAAGAACACTGTGACATCTCATGAAATCTCACCAAGAAGCAGCGTC
AGACACTCAGGAAGATGGTTATTGACATGGTGTAGCAACTGATATGCTAAACATATGAGCCTGCTGGCAGACC
40 TGAAGACAATGGTAGAAACGAAGAAAGTTACAAGGTTACAGGCGTTCTCTCCTAGACAACATACCGATCGCATTG

AGGTCTTCGCAACATGGTACACTGTGCAGACCTGAGCAACCCACCAAGTCCTGGAATTGTATCGGCAATGG
 CAGACCGCATCATGGAGGAATTTCAGCAGGGAGACAAAGAGCAGGGAGAGGGGAATGAAATTAGCCAATGT
 GTGATAAACACACAGCTCTGGAAAAATCCCAGGGTGGTTCATCGACTACATTGCCATCCATTGTGGGAGA
 CATGGGCAGATTGGTACAGCCTGATGCTCAGGACATTCTGATACTTAGAAGATAACAGGAACGGTATCAGA
 5 GCATGATAACCTCAAAGTCCCTACCACCACTGGACGAGCAGAACAGGGACTGCCAGGGCTGATGGAGAAAGTT
 AGTTGAACTGACTCTCGATGAGGAAGATTCTGAAGGACCTGAGAAGGAGGGAGAGGGACACAGCTATTCAGCA
 GCACAAAGACGTTGTGATTGATCCAGAAAACAGAGATTCCCTGGGAGAGACTGACATAGACATTGCAACAG
 AAGACAAGTCCCCGTGGATACATAATCCCCCTCTCCCTGTGGAGATGAACATTCTATCCTGATGAGCATGCCA
 GCTATGTGGTAGGGCCAGCCACCATGGGGCCAAGACCTGCACAGGACAAGGCCACCTGGCTTCAGTTACTT
 10 GAGTTGGAGTCAGAAAGCAAGACCAGGAAGCAAATAGCAGCTCAGGAAATCCCACGGTGAATTGCTTGATGG
 CAAGCTGGTGGAGAGGGCTGAAGCTGTTGCTGGGGCCGATTCTGATCAAGACACATGGCTTGAATGGAGA
 CACAAAAC TGAGAGATCATTCTGACTAAGTTGCGGAACCTATCCCCGACAGTGACTGAACTCACTGACTAATA
 ACTTCATTATGAATCTCCTGACCTGCTCCCTTGCTGCCAACCTGTGTGCCCTTTGTAAAACATTTCATGT
 CTTTAAATGCCTGTTGAATACCTGGAGTTAGTATCAACTTACACAGATAAGCTTCAAAGTTGACAAACTT
 15 TTTTGACTCTTCTGGAAAAGGGAAAGAAAATAGTCCTCCTTCTTGGCAATATCCTTCACTTACTACAG
 TTACTTTGCAAACAGACAGAAAGGATACTTCTAACCACATTTCCTCCCTGTTGCTCCAGTCCAACCT
 CCACAGTCACTCTAAAACCTCTCTGTTGCTGCCCTCAACAGTACTTTAACCTTTGCTGTAAACAGAA
 AAAATTGAACAAATTAGGGGGTAGAAAGGAGCAGTGGTGTGTCACCGTGAGAGTCAGTGCATAGAAACTCAGCAGT
 GTGCCCTGCTGTGCTGGACCCCTGCCACAGGAGTTGTACAGTCCCTGGCCCTGCTCCCTACCTCCTCT
 20 TCACCCCGTTAGGCTGTTCAATGTAATGCTGCCGCTCTCTTGCACTGCCCTGCGCTAACACCTCCATT
 CCTGTTATAACCGTGTATTATTACTTAATGTATATAATGTAATGTTGTAAGTTATTAAATTATATCTAA
 CATTGCCCTGCAATGGTGGTTAAATTGTGTAGAAAACCTGCTTAAGAGTTACGACTTTCTGTAAATGTT
 TTGTATTGTGTATTATATAACCCAAACGTCACCTAGTAGAGACATATGCCCTTGGCAGAGAGGACAGGGTG
 GGCTTTGTTCAAAGGGCTGCCCTTCCCTGCCCTGAGTTGCTACTTCTGCAACACCCCTTATGAACCAGTTT
 25 GGAAACAATATTCTACACATTAGATACTAAATGGTTATACTGAGCTTTACTTTGTATAGCTGATAGGGCA
 GGGGGCAATGGATGTAGTTTACCCAGGGTCTATCCAAATCTATGTGGGATGAGTTGGGTTATAACTGGATCC
 TACTATCATTGTGGCTTGGTTCAAAAGGAAACACTACATTGCTCACAGATGATTCTCTGAATGCTCCGAAC
 TACTGACTTGAAGAGGGTAGCCCTGCCCTGCAATTAGCAGGAATGTCATGTTCCAGTCATTACAAAAGAAA
 CAATAAAACAATGTGAATTTTATAATAAAATGTGAACTAGATGAGCAATTACGCAAATGTGAAGCCTCT
 30 ATAACACTGTTAGGCCCTTACTGATGTCAGTTGTAAGGTTATGTTCATGCTTCACTGTTGAGCTT
 TGACTCAGTAAATACAGAAAATGGCACAAATGTGCATGACCAATGTATGTCATGAACACTGCATTGTT
 GGACATTTCATGATTTCAAATGTTCTCACAATGTATGTTAGTGTATTATATATTGTGTTCAAATGC
 ATTCTAAAGAGACTTTATATGAGGTGAATAAAGAAAAGCATAATT

35 SEQ ID NO:80 Human PDE4B polypeptide sequence

protein_id:gi292388

MKEHGGTFSSSTGISGGSGDSAMDSLQPLQPMPVCLFAEESYQKLAMETLEELDWCLDQLETIQTYSVSEMAS
 NKFKRMLNRELTHLSEMSRSGNQVSEYISNTFLDKQNDVEIPSPTQKDRREKKKQQLMTQISGVKKLMHSSLNN
 TSISRGVNTENEDHLAKELEDLNKWGLNIFNVAGYSHNRPLTCIMYAIIFQERDLLKTFRISDTFITYMMTLED
 40 HYHSDVAYHNSLHAADVAQSTHVLSTPALDAVFTDLEILAAIFAAAIHDVDHPGSNQFLINTSELALMYNDE

SVLENHHLAVGFKLLQEEHCDIFMNLTKKQRQTLRKVMIDMVLATDMSKHMSSLADLKTMVETKKVTSSGVLLLD
NYTDRIQVLRNMVHCADLSNPTKSLELYRQWTDRIMEEFFQQGDKERERGMEISPMCDKHTASVEKSQVGFIDYI
VHPLWETWADLVQPDAQDILDLEDNRNRWYQSMIPQSPSPPLDEQNRDCQGLMEKFQFELTLDEEDSEGPEKEGE
GHSYFSSTKTLCVIDPENRDSLGETDIDATEDKSPVDT

5

SEQ ID NO:81 Mouse PDE4B nucleotide sequence

accession:AF326556 CDS:23..2188

TAGCTAGCACTCCATACGAGACATGACAGCAAAAAATTCTCCAAAAGAATTACTGCTTCGGAATCTGAGGTTG
CATAAAGACTTCAAGGAGCAGATGCGCTTGGAACTTGAGCTTCAAAGCTACCAGGAAACAGACCTACATCTCC
10 CAAAATITCTCCACGCAGTTACCAAGGAATTACCATGCTTTTCAGAAAGTTGCTGGTAATAAAAGCATCCG
ACAGCGCGTCGCTTCACGGTGGCTACATGCTTGATGTGAAAATGCCCTCTCCAGGTCGGAGCCCAC
GGACCCCTCAAGCCGGCTCTCGTCGGACTGGTACTTCATGCCCTTCCTGGGCACAGCCAGCGCAGGGAGTC
GTTCCCTCTACAGATCTGACAGCGACTATGACTTGTACCAAAAGCGATGTCCAGGAACTCATCACTCCCAGTGA
GCAACACGGCGATGACCTGATTGTCACTCCTTTGCCAGGTTCTGCCAGCTGCGAAGTGTAAAGAAACAAC
15 CACCCCTGCTGACGAACCTTCATGGAGCGCCGAACAAGAGGTACCCAGCGGTAGTCAGGCTCCAGTCTCCAGAGT
CAGCCTGCAAGAAGAACATATCAGAAACTAGCAATGGAGACGCTGGAGGAACTAGACTGGTGCCTAGACCAGCT
AGAGACCACATCCAGACCTACCGCTCTGTCAAGCAGATGGCTAAACAAGTTCAAAGGATGCTGAACCGGGAGCT
GACACACCTCTCAGAGATGAGCAGATCAGGGACCAGGTGTCTGAGTACATTCAAACACGTTCTAGACAAGCA
GAACGATGTGAAATCCCATCTCCACGCAGAAGGACAGGGAGAAGAAGAAGCAGCAGCTCATGACCCAGAT
20 AAGTGGAGTGAAGAAACTGATGCAAGCTCAAGCCTGAACAACACAAGCATCTCACGCTTCGGAGTCAACACGGA
AAATGAGGATCATCTAGCCAAGGAGCTGGAAAGACCTGAACAAATGGGCCCTAACATCTCAATGTGGCTGGTA
CTCACATAATCGGCCCTTACGTGCATCATGTATGCAATATTCCAGGAAAGAGACCTCTGAAGACGTTAAAT
CTCATCTGACACCTTGTAACTACATGATGACTTAAAGACCAATTACCATCTGATGTGGCATATCACACAG
CCTGCATGCTGCTGACGTGGCCAGTCACACTCACGTTCTCCTTCTACGCCGGACTGGATGCTGTCTCACAGA
25 CCTGGAAATCCTGGCTGCCATTTCAGCTGCCATCCATGATGTCGATCATCCTGGAGTCTCCAATCAGTTCT
CATCAATACAATTCTGAACTTGCTTGATGTATAATGATGAATCTGTTCTGGAAAACCACATCACCTGCTGTGG
ATTCAAATTGCTACAAGAGGAACACTGCGACATCTTCAGAAATCTTACCAAGAAGCAACGCCAGACACTCAGGAA
AATGGTGATTGACATGGTGGCAACTGATATGTCACACATGAGCCTCCTGGACAACTATACTGACCGGATA
AGAAACCAAGAAGGTGACAAGCTCCGGTGTCTCCTCTGGACAACTATACTGACCGGATA
30 CATGGTACACTGTGACGACCTGAGCAACCCCCACCAAGTCCTGGAAATTGATCGCAATGGACCGATCGTATCAT
GGAGGGAGTTTCCAGCAGGGAGACAAAGAACGGAGAGGGAAATGGAGATTAGCCCAATGTGTGATAAGCACAC
AGCTTCTGTGGAAAATCCCAGGTTGGTTCAATTGACTACATTGTCCATCCACTGTGGAGACCTGGCAGACCT
GGTCAACCGGATGCTCAAGATATTCTGGATACACTAGAAAGATAACAGGAACGGTACCAAGAGTATGATA
GAGCCCTCCCCGCCACTGGATGAGAGGAGCAGGGACTGCCAAGGCCTGATGGAGAAGTTCA
35 CCTTGAGGAAGAGGATTCTGAGGGACGGAAAAGGAGGGAGAAGGCCACAGCTATTCA
TTGTGTGATTGATCCAGAGAACAGGGATTCTCTGGAAAGAGACTGACATAGACATTGCAACAGAACAGTCTCC
GATCGACACATAATCTCTCCCTGTGTGGAGATGAACATTCCACCTTGACTGAGCA

4

SEQ ID NO:82 Mouse PDE4B polypeptide sequence

accession:gi17225439

MTAKNSPKEFTASESEVCIKTFKEQMRLEELPKLPGNRPSPKISPRSSPRNSPCFFRKLLVNKSIRQRRRFTV
AHTCFDVENGSPGRSPLDQAGSSSGVLHAAFPGHSQRRESFLYRSDSDYDLSPKAMSRNSSLIPSEQHGDDLI
5 VTPFAQVLASLRSVRNNFTLLTNLGAPNKRSPAASQAPVSRLQEESYQKLAMETLEELDWCLDQLETIQTYS
SVSEMASNKFKRMLNRELTHLSEMSRSGNQVSEYISNTFLDKQNDVEIPSPTQKDREKKKKQQLMTQISGVKKLM
HSSSLNNTSISRGVNTENEDHLAKELEDLNKWLGNIFNVAGYSHNRPLTCIMYAIFQERDLLKTFKISSDTFVT
YMMTLEDHYHSDVAYHNSLHAADVAQSTHVLLSTPALDAVFTDLEILAAIAFAAAIHVDHPGVSNQFLINTNSEL
10 ALMYNDESVLENHHHLAVGFKLLQEEHCDIFQNLTKKQRQTLRKMVIDMVLATDMSKHMSSLADLKTMVETKKVTS
SGVLLLDNYTDRIQVLRNMVHCADLSNPTKSLELYRQWTDRIMEEFFQQGDKERERGMIEISPMCDKHTASVEKSQ
VGFIDYIVHPLWETWADLVQPDAQDILDLEDNRNWYQSMIPQSPSPPLDERSRDCQGLMEKFQFELTLEEDSE
GPEKEGEGHSYFSSTKTLCVIDPENRDSLEETDIDIATEDKSPIDT

SEQ ID NO:83 Rat PDE4B nucleotide sequence

15 accession:L27058 CDS:542..2236

GTCTTGTCATCAGGAGACCTCATTTACCTCTAGGTTAAGGGAGAGAATCTATGAAGAGAAAGGAATAGTCTGTG
TCTCGGTCTTGTCCGGGTCACTGTTCTGAGAGCTCACAGTGGCCACCTGAAGCATTTCAGGAGCTGGTTCATTTAGAAGAA
CTGCCCTGCCTGAGAACAGAACAGAGCCAAACAGTTCCCCCACATGCCATAGGGAGCTGGTTCATTTAGAAGAA
AAGCAAAGAGAGGGAAAGCCTCCCTCATTTCTCCGGACGCCAACATTCAAGAACATCACACACACACCA
20 CAGCCCCGGGATGACTAAGGCAGAAGTAGCCTGAGAAAACCTCTGCTCTGCCCTGAGTTTAGGGCACAGTTATGC
AGATGAGCGTCTGGCGCAGGTTCCCGCTTCTCCTCTGAGGAAGTTCTGGTAGATCACTGACACACCTCATCC
CGGCGAGGGGGTGAAAACCTGGCACCAAGCCACTCCCCCTCCGGCAGAGCACCAGAACAGAGCTTGAAGCAAGG
AGTCGGCAAGCAAACATGAAGGAGCAAGGGGGCACCGTCAGTGGGCCGGAGCAGCCGAGGCCGAGGAGACTC
GGCTATGCCAGCCTGCAGCCCTGCAGCCTAACTACCTGTCTGTGTTGAGAACATATCAGAA
25 ACTAGCAATGGAGACGGCTGGAGGAACTAGACTGGTGCTAGACCAGCTAGAGACCATCCAGACCTACCGCTCTGT
CAGCGAGATGGCTTCAAACAAGTTCAAAGGATGCTGAACCGGGAGCTGACACACCTCTCAGAGATGAGCAGATC
AGGGAAACCAAGTGTCTGAATAACATTTCGAACACGTTCTAGACAAGCAGAACGATGTGAAATCCCACATCCCAC
CCAGAAGGACAGGGAGAAGAAGAACAGCAGCTCATGACCCAGATAAGTGGAGTGAAGAAACTGATGCACAG
CTCAAGCCTGAACAACACAAGCATCTCACGCTTGGAGTCAACACGGAAATGAGGATCATCTAGCCAAGGAGCT
30 GGAAGACCTGAACAAATGGGCCTTAACATCTCAACGTGGCTGGTACTCCCATAATCGGCCCTCACATGCAT
CATGTACGCCATTTCCAGGAAAGAGACCTCTAAAGACGTTAAATCTCCTCCGACACCTTCGTAACCTACAT
GATGACTTTAGAACGACATTACCAATTCTGATGTGGCTATCACAACAGCCTGCACGCTGCTGACGTGGCCAGTC
AACGCACGTTCTCCTCTACGCCAGCAGCTGGATGCTGTTCACAGACCTGGAAATCCTGGCTGCCATTTTGC
AGCTGCCATCCATGATGTTGATCATCCTGGAGTCTCAATCAGTTCTCATCAATAACAAATTCCGAACCTGCTT
35 GATGTATAATGACGAATCTGTGGAAACCATCACCTCGCTGTGGATTCAAGCTCCTCAAGAGGAACATTG
CGACATCTTCAGAACTTACCAAGAACGAAACGCCAGACACTCAGGAAATGGTATTGACATGGTGTAGAAC
TGATATGTCCAAGCACATGAGCCTGGCTGACCTTAAACGATGGTAGAACACAAAAAGGTGACGAGCTCCGG
TGTTCTCCTGGACAACATACTGACCGGATACAGGTTCTCGCAACATGGTACATTGTGCAGACCTGAGCAA
CCCTACCAAGCCTGGAGTTGATCGGAATGGACTGATCGCATCATGGAGGAGTTTCCAACAGGGAGACAA
40 AGAACGGAGAGGGAAATGGAGATTAGCCAATGTGTGATAAACACACAGCTCTGGAAAAGTCCCAGGGTGG

TTTCATTGACTACATTGCCATCCATTGGGGAGACCTGGCAGACCTGGTCAAGACATT
 GGACACACTAGAAGATAACAGGAACCTGGTACCAAGAGTATGATTCCCCAGAGCCCCTCCACCAGGACGAGAG
 GAGCAGGGACTGCCAAGGCCTTATGGAGAAGTTCACTGAGCCTGAAGAAGAGGATTCTGAAGGACC
 GGAAAAGGAGGGAGAAGGCCAACTATTCAGCAGCACAAAGACACTTGTGATCGATCCAGAGAACAGGGA
 5 TTCTCTGGAAGAGACTGACATAGACATTGCCACAGAACAGACTCTGATCGACACATAATCTCCCTGTG
 GAGGTGAACATTCTATCCTTGACGAGCATGCCAGCTGAGTGGTAGGGCCCACCTACCAAGAGCCAAGGCC
 AAACAAAGGCCACCTGGCTTGCAGTTACTTGAGTTGGAGCCAGAACATGCAAGGCCGTGAAGCAAATAGCAG
 CGTGCTGCCCTGCCTTGCGCGAGCTGGCGAGACCCGCAGCTGTAGTAGAAGCCAGTCCCAGCACAGCTAAA
 TGGCTTAAAACAGAGGACAGAAAGCTGAGAGATTGCTCTGCAATAGGTGTTGAGGGCTGTCCGACAGGTGAC
 10 TGAACCTCACTAACAACTTCATCTATAAATCTCACCCATCCTGTTGCTGCAACCTGTGTCCTTTTGAAAA
 TGTTTCTGTGTTGAAATGC

SEQ ID NO:84 Rat PDE4B polypeptide sequence

accession:gi598375

15 MKEQGGTVSGAGSSRGGSAMASLQPLQPQVLSVCLFAEESYQKLMETLEELDWCLDQLETIQTYSVSEMAS
 NKFKRMLNRELTHLSEMSRSGNQVSEYISNTFLDKQNDVEIPSPTQKDREKKKQQLMTOISGVKKLMHSSSLNN
 TSISRGVNTENEDHLAKELEDLNKWLNI FNVAGYSHNRPLTCIMYAIFQERDLLKTFKISSDTFVTYMMTLED
 HYHSDVAYHNSLHAADVAQSTHVLSTPALDAVFTDLEILAAIFAAAIDVDHPGVSNQFLINTSELALMYNDE
 SVLENHHLAVGFKLQEEHCDIFQNLTKKQRQTLRKVIDMVLATDMSKHMSSLADLKTIVETKVTSSGVLLD
 20 NYTDRIQVLRNMVHCADLSNPKSLEYRQWTDRIMEEFFQQGDKERERGMEIFPMCDKHTASVEKSQVGFIDYI
 VHPLWETWADLVQPDAQDILDLEDNRNWYQSMIPQSPSPPLDERSRDCQGLMEKFQFELTLEEDSEGPEKEGE
 GPNEYFSSTKTLCVIDPENRDSLEETDIDIATEDKSLIDT

SEQ ID NO:85 Human CYP27 nucleic acid sequence

25 HUM227009 accession:M62401 CDS:22..1617

GCAGGCGCGCGAGCACAAACCCATGGCTGGCTGGCTGGCGAGGCTGAGGTGGCGCTGCAGGGGCCGGCGT
 GGCCTCTGCCCTCACGGGCCAGAGCCAAGGCCGCGATCCCTGCCCTCCCTCGACAAGGCCACCGGAGCT
 CCCGGAGCCGGCTGGTGTCCGGCGCGAACGGAGCTTAGAGGAGATTCCACGTCTAGGACAGCTGCCTTC
 TTCTTCAGCTGTTCAAGGCTATGCCCTGCAACTGCACCAAGTTACAGGTGCTTACAAGGCAAGTACGGT
 30 CCAATGTGGATGTCCTACTTAGGGCTCAGATGCACGTGAAACCTGGCCAGTGCCCCGCTTGGAGCAAGTGATG
 CGGCAAGAGGGAAAGTACCCAGTACGGAACGACATGGAGCTATGGAAGGAGCACCGGGACCAGCACGACCTGACC
 TATGGGCCGTTACCAACGGAAAGCACCAACTGGTACCGACTGGCCAGGCTCTGAACCAAGCGGGTGCTGAAGCCA
 GCGGAAGCAGCGCTCTACGGATGTTCAATGAGGTGATTGATGACTTATGACTCGACTGGACCAGCTGC
 GCAGAGAGTGCTCGGGAACCAAGGTGCGACATGGCTCAACTCTTACTACTTGCCTGGAAGCTATTG
 35 TACATCCTGTCAGAAACGATTGGCTGCCATGCCAGCGATCCATCCCCGAGGACACCGTGACCTTCGTCAGATCC
 ATCGGGTTAATGTTCCAGAACTCACTCTATGCCACCTCCTCCCCAAGTGGACTCGCCCCGCTGCCCTTC
 AAGCGATAACCTGGATGGTGGAAATGCCATTTCCCTGGGAAGAAGCTGATTGATGAGAAGCTCGAAGATATG
 GAGGCCAACTGCAGGCAGCAGGGCCAGATGGCATCCAGGTGCTGGTACCTGCACTTACTGGCCAGTGG
 CAGCTCAGTCCTCGGGAGGCCATGGGCAGCCTGCCAGCTGAGCTGCTCATGGCTGGAGTGGACACGACATCCA
 ACACG
 40 CTGACATGGGCCCTGTACCAACCTCTCAAAGGACCCCTGAGATCCAGGAGGCCCTGCACGAGGAAGTGGTGG
 GTG

GTGCCAGCCGGCAAGTCCCCAGCACAAGGACTTGCCCACATGCCGTTGCTCAAAGCTGTGCTTAAGGAGACT
 CTGCGTCTCTACCCCTGTGGTCCCCACAAACTCCCGGATCATAGAAAAGGAAATTGAAGTTGATGGCTTCCTCTTC
 CCCAAGAACACCCAGTTGTGTTCTGCCACTATGTGGTGTCCCCGGACCCCCTGCCTCTGTGAGCCTGAAAGC
 TTCCAGCCCCACCGCTGGCTGAGAAACAGCCAGCCTGCTACCCCCCAGGATCCAGCACCCATTGGCTCTGTGCC
 5 TTTGGCTATGGGTCGGGCGCTGGCTGGCCGAGGATTGCAGAGCTGGAGATGCAGCTACTCCTCGAAGGCTG
 ATCCAGAAGTACAAGGTGGTCTGGCCCCGGAGACGGGGAGTTGAAGAGTGTGGCCCGATTGTCCTGGTCCCC
 AATAAGAAAAGTGGGCGTGCAGTTCCTGCAGAGACAGTGTGAGCTGAGTCTCCGCCTGCTGGGCTTGTCCCTAG
 AGGCTCCAGCTCTGGCACAGTGGTCTGGCTGCCATGTCAGATGAGGAGGGAGAGAAGGAGGCCAG
 ACTCGAGAGGTGGGAGGAACCTCTTGACACACCCCTGAGCTTTGCCACTTCTATCATTTGAGCAACTCCCTC
 10 TCAGCTAAAAGGCCACCCCTTATCGCATTGCTGTCCTGGTAGAATATAAAATAAGGGACTTTATTCCTTA
 AAAAAA

SEQ ID NO:86 Human CYP27 polypeptide sequence

protein_id:gi181292

15 MAALGQARLRWALRGAGRGLCPH GARAKAAIP AALPSDKATGAPGAGPGVRRQRSLEI PRLGQLRFFFQLFVQ
 GYALQLHQLQVLYKAKYGPWMSYLGPQMHN LASAPLLEQVMRQEKGYPVRNDMELWKEHRDQHDLTYGPFTTE
 GHHWYQLRQALNQRLLKPAEAALYTD AFNEVIDDFMTRLDQLRAESASGNQVSDMAQLFYFALEAICYILFEKR
 IGCLQRSIPEDTVTFVRSIGLMFQNSLYATFLPKWTRPVLPFWKRYLDGWNAIFSGKKLIDEKLEDMEAQLQAA
 GPDGIQVSGYLHFLLASGQLSPREAMGSILPELLMAGVDTSNTLWALYHLSKDPEI QEALHEEVGVVPAGQVP
 20 QHKDFAHMPLLKAVLKETLRLYPVVPTNSRIIEKEIEVDGFLFPKNTQFVFCHYVVS RDPTAFSEPE SFQPHRWL
 RNSQPATPRIQHPFGSVPFGYGVRA CLRRIAELEMQLLARLIQKYKVVLAPETGELKSVARIVLV PNKKVGLQ
 FLQRQC

SEQ ID NO:87 Mouse CYP27 nucleic acid sequence

25 accession:NM_024226 CDS:20.1333

ATTTACAGCTTTCTGTTAGTATGCATAATTGTAATTGCTGGAGGGCAGATCGTGGCAAGAAATGGACGAT
 CAGAAGAACGTTGGAAGGACAAGGTTGTTGACCTCCTGTACTGGAGAGACATTAAGAAGACTGGAGTGGTGT
 GGTGCCAGCTTATT CCTGCTGCTCTGACAGTGTTCAGCATTGTCAGTGTAA CGGCCTACATTGCCTGGCC
 CTGCTCTGTGACTATCAGCTT TAGGATATAAGGGTGTGATCCAAGCTATCCAGAAATCAGATGAAGGCCAC
 30 CCATTCA GGGCATATTGGAATCTGAAGTTGCCATATCAGAGGAATTGGTTCAAGAAATAGTAATTGCTCTT
 GGT CATGTGAA CAGCACAATAAAAGAATTGAGGCCTCTTCTTAGTTGATGATTGATTGATTTAGCCCTGAAGTT
 GCAGTGTGATGTGGTATT TACTTACGTTGGTGCCTTGTCAATGGTTGACACTACTGATT TAGCCCTGATC
 TCACTCTCAGTATT CCTGTTATATGAACGGC ATCAGGCGCAGATAGATCATTATCTAGGACTTGCAAACAAAG
 AGTGTAAAGGATGCCATGGCAAAATCCAAGCAAAATCCCTGGATTGAAGCGCAAAGCAGAATGAAAAGGCC
 35 AAACAGTAGACATT CATCTTAAAGGGACACTCCCTGGTTACGGGAAGGGCAATT C

SEQ ID NO:88 Mouse CYP27 polypeptide sequence

accession:gi13195684

MWTTSGTYTNVNLASAPLLEQVMRQEKGYPIRDHMDQWKDHDKGLTYGIFIAQGEQWYHLRQALKQRLLKPD
EAALYTDALNEVISDFITRLDQVRAESESGDQVPMALLYHLALEAITYILFEKRIGCLKPSIPEDTAAFIRSV
5 AIMFQNSVYITFLPKWTRPLLPFWKRYLNGWDNIFSGKKLIDEKVQELKAQLQETGPDGVRVSGYLHFLLTTEL
LSTQETIGTFPELLLAGVDITSNTLTWALYHLSKSPEIQEALHKEVTVGVPFGKVPQHKDFAHMPLLKAVIKETL
RLYPVVPTNSRIITEKETEINGFLFPKNTQFVLCHYVSRDPSVFPEPNSFQPHRWLRKEADNPGLILHPFGSVP
FGYGVRSCLGRRIAELMQLMLSRLVQKYEIALAPGMGEVKTVSRIVLVPSKKVRLHFQRO

10 SEQ ID NO:89 Rat CYP27 nucleic acid sequence

accession:Y07534 CDS:59..1660

TGCCTGGATGGGGCGCGTAGTCCTGGCTCTAAACTCTGGCTTCAGACACGATCTATGGCTGTGTTGAGCCG
CATGAGACTGAGATGGCGCTCTGGACACTCGTGTGATGGGCCATGGCCTCTGCCACAAGGGGCCAGAGCAA
15 GCGCGCCATCCCTGCAGCCCTCCGGATCACGAGAGCACGGAGGGTCCAGGAACAGGTCAAGACCGACCAGCGCC
GCGGAGCTGGCGGAGCTTCCGGGACCCGAACGCTACGCTTTTATTCCAGCTATTCTACGAGGCTATGTGCT
GCACATTSCACGAGCTCCAGGCCTGAACAAGCCAAGTACGGCCAATGTGGACAACCACCTTGGGACTCGCAC
CAATGTGAATCTGGCTAGGCCCGCTCTGGAGCAAGTGATGAGACAGGAGGGCAAGTACCCCATAAGAGACAG
CATGGAGCAGTGGAAAGGAGCACCAGACAAAGGCCCTCCTATGGGATCTTCATCACACAAGGACAGCAGTG
GTACCATCTCGCTCATAGTTGAATCAGCGGATGCTGAAGCCTGCTGAGGCAGCCCTACACAGATGCCCTAAA
20 CGAGGTCATCAGTGAATTATTGCCCGGCTGGACCAGGTGCGGACAGAGAGTCATCAGGGATCAGGTGCCAGA
TGTGGCACATCTTCTTACCAACCTTGCCTTGGAAAGCCATCTGCTATATCCTGTTGAGAAAAGGGTTGGCTGCC
GGAGCCCTCCATCCCTGAGGACACCGCCACCTTCATCAGATCTGTTGGACTCATGTTCAAGAACTCAGTCTATGT
CACTTTCCCTCCCAAGTGGCTGGCCTCTGCTGCCCTTGGAAAGCGATACTGAATAACTGGGATAACATTTT
CTCCTTCGGGGAGAAGATGATTCATAAAAAGTCCAGGAGATAGAACGCCAGCTACAGGCGCTGGGCCAGATGG
25 GGTCCAGGTATCTGGCTACCTGCACCTCTGCTGACTAAGGAATTGCTCAGTCCTCAAGAGACTGTCGGCACCTT
TCCTGAGCTGATCTGGCTGGGTAGACACGACATCCAATACACTGACCTGGCCCTGTATCACCTTCAAAGAA
CCCAGAGATCCAGGAAGCCTTGACAAGGAAGTGACTGGTGTGGTACCCCTCGGAAAGGTGCCAGAACAGGA
CTTTGCCACATGCCCTGCTAAAGCTGTGATTAAGGAGACCCCTGCGCCTCTACCCCTGTGGTCCCACAAACTC
CCGGATCATCACAGAAAAGGAAACTGAAATTATGGCTTCCCTTCCCTAAGAATACACAGTTGTGTTATGCCA
30 CTACGTGGTGTCCCGAGATCCCAGTGTCTTCCCTGAGCCCGAGAGCTTCCAGCCTCACCGATGGCTGAGGAAGAG
AGAGGACGATAACTCCGGGATCCAACACCCATTGGCTCTGTGCCCTTGCTATGGGTTGGCTCTGCCCTGGG
TCGCAGGATTGCAGAACTGGAGATGCAACTCCTGCTGTCAAGGCTGATAAAAAGTATGAGGTGGCCTGTCTCC
CGGGATGGGAGAAGTGAAGTCTGTGCCCCATCGTCTGGTCCCAGCAAGAAGGTGAGCCTACGCTTCTGCA
GAGACAGTAGTACCAAGCTGGCTTCCATGGACTTGTCCAGAAGCCCTGGCACAGAAGTTCTGGCCAG
35 TCTCACGTACATGTCACGATGCCAGATTCAACAGGGACCTCTGCCCTCCATAGACACCAGACGTCTGGC
ACAATCTACTGAGCAGCACCCATTAAAGACATTAGAGCACCTCATATCACAGGACGGTGTGGTACAATTT
AAAATAAAATTAAAATTCAAAAAA

SEQ ID NO:90 Rat CYP27 polypeptide sequence

accession:gi56034

MAVLSRMRLRWALLDTRVMGHGLCPQGARAKAAIPAALRDRESTEGPGTGQDRPRLRSLAELPGPGTLRFLFQLF
 LRGYVLHLHELQALNKAQYGPWTTFGTRTNVNLASAPLLEQVMRQEKGKPIRDSMEOQKEHRDHKGLSYGIFI
 5 TQGQQWYHLLRHSLNQRMLKPAEAALYTDALNEVISDFIARLDQVRTESASGDQVPDVAHLLYHLALEAICYILFE
 KRGVGCLEPSIPEPDATFIRSVGLMFKNVYVTFLPKWSRPLLFWKRYMNNWDNIIFSGEKMHQKVQEIEAQLO
 AAGPDGVQVSGYLHFLLTKEELSPQETVGTPELILAGVDTSNTLWALYHLSKNPEIQLAEALHKEVTGVVPFGK
 VPQNKKDFAHMPLLKAVIKETLRLYPVPTNSRIITEKETEINGFLFPKNTQFVLCHYVVSRDPSVFPEPESFQPH
 RWLRKREDDNSGIQHPFGSVPFGYGVRSCLGRRIAELMQLLSRLIQKYEVVLSPGMGEVKSVSRIVLVPSKKV
 10 SLRFLQHQ

SEQ ID NO:91 Human Endothelin A receptor nucleic acid sequence

HUM278677 accession:S57498 CDS:485..1768

GAATTCCGGCCGCCCTTGCAGTCCCAGAGTGGAGCTGGAGCTGGAGCTTGGAGGGAGACGGGGAGGACAG
 15 ACTGGAGGCCTGTTCCCTCGGAGTTTCTTTCTGCGAGCCCTCGCGCGCGTACAGTCATCCCGCTGGTCT
 GACGATTGTGGAGAGCGGTGGAGAGCTCATCCATCCCACCCGGTCGCGCCGGGATTGGGTCCAGCGAC
 ACCTCCCCGGAGAACGAGTCCCAGGAAGTTCTGAAGCCGGGAAGCTGTGCAGCCGAAGCCGCCGCC
 CGGAGCCGGGACACCGGCACCCCTCCGCCACCCACCCACTCGCTTCTCCGGCTTCCTCTGGCCCAAGGCC
 CGGGACCCGGCAGCTGTCTGCGCACGCCAGCTCCACGGTGAAGGGAAAGTGAAGGTGTAAAAGCAGCACAA
 20 GCAATAAGAGATATTCTCAAATTGCCTCAAGATGGAAACCCCTTGCCCTCAGGGCATCCTTTGGCTGGCA
 GTTGGATGTAACTAGTATAATCCTGAGAGATAACAGCACAAATCTAACGCAATCATGTGGATGATTCACCAC
 TTTCTGTCACAGAGCTCAGCTTCCCTGGTTACCACTCATCAACCCACTAATTGGCCTACCCAGCAATGGCTC
 AATGCACAACATTGCCACAGCAGACTAAAATTACTCAGCTTCAAATACATTAACACTGTGTATCTGTAC
 TATTTCTACGTGGGAATGGTGGGAATGCAACTCTGCTCAGGATCATTACAGAACAAATGTATGAGGAATGG
 25 CCCAACCGCCTGATAGCCAGTCTGCCCTGGAGACCTTATCTATGTGGCATTGATCTCCCTATCAATGTATT
 TAAGCTGCTGGCTGGCGCTGCCCTTGTACACAATGACTTGGCGTATTCTTGCAGCTGTTCCCTT
 GCAGAACGCTCGGTGGGATCACCGCCTCAACCTCTGCGCTTCTAGTGTGACAGGTACAGAGCAGTGCCTC
 CTGGAGTCGTGTTCAAGGAATTGGGATTCTTGTAACTGCCATTGAAATTGTCTCCATCTGGATCCTGTCC
 TATCTGGCCATTCTGAAGCGATTGGCTCGTCACTGGTACCCCTTGAATATAGGGTGAACAGCATAAAACCTG
 30 TATGCTCAATGCCACATCAAATTGAGTTCTACCAAGATGTAAGGACTGGTGGCTTCGGTTCTATT
 CTGTATGCCCTGGTGTGCACTGCGATCTCTACACCCCTCATGACTTGTGAGATGTTGAACAGAACANNAATGGCAG
 CTTGAGAATTGCCCTCAGTGAACATCTAACGAGCGTCAGAACAGTGGAAAAACAGTTCTGCTGGTTGTAAT
 TTTGCTCTGCTGGTCCCTCTCACTTAAGCCGTATATTGAAGAAAATGTGTATAACGAAATGGACAAGAA
 CCGATGTGAATTACTTAGTTCTACTGCTCATGGATTACATCGGTATTAACCTGGCAACCAGAATTCTGTAT
 35 AAACCCATAGCTGTATTTGTGAGCAAGAAATTAAAAATTGTTCCAGTCATGCCCTGCTGCTGTTA
 CCAGTCCAAAAGTCTGATGACCTCGGTCCCCATGAACGGAACAAGCATCCAGTGGAGAACACCAGATCAAACAA
 CCACACACAGACCGGAGCAGCCATAAGGACAGCATGAACGTGACCACCTTAAAGCAGTCCCTCGGTACTCC
 AATCCTCTCGGAGAAAAATCACAAGGCAACTGTGACTCCGGGAATCTCTGATCCTTCTCCTTAATTC
 ACTCCCACACCAAGAAGAAAATGCTTCAAAACCGCAAGGTAGACTGGTTATCCACCCACAACATCTACGAAT
 40 CGTACTTCTTAATTGATCTAATTACATATTCTGCGTGTGTATTCAAGCACTAAAAATGGTGGAGCTGGGG

AGAATGAAGACTGTTAAATGAAACCAGAAGGGATATTACTACTTTGCATGAAAATAGAGCTTCAGTACATGG
 CTAGCTTTATGGCAGTCTGGTGAATGTTCAATGGGAACGGTCACCATGAAACTTAGAGATTAACGACAAGA
 TTTCTACTTTTTAAGTGATTTGTCCCTCAGCAAACACAATATGGGCTCAGGTCACCTTTATTGAAAT
 GTCATTTGGTGCCAGTATTTAACTGCATAATAGCCTAACATGATTATTGAACCTATTTACACATAGTTGA
 5 AAAAAAAAAGACAAAAATAGTATTCAAGGTGAGCAATTAGATTAGTATTTCCACGTCACTATTTATTTTTAAA
 ACACAAATTCTAAAGCTACAACAAATACTACAGGCCCTAAAGCACAGTCTGATGACACATTGGCAGTTAATA
 GATGTTACTCAAAGAATTTAAAGAACTGTATTTATTTAAATGGTGTATTACAAGGGACCTTGAACA
 TGTTTGTATGTTAAATTCAAAAGTAATGCTCAATCAGATAGTTCTTTACAAGTTCAATACTGTTTCAT
 GTAAATTTGTATGAAAATCAATGTCAGTACCAAAATGTTAATGTATGTCATTAACTCTGCTGAGACTT
 10 TCAGTGCAGTCTATAGAAGTCTAAAACACACCTAACAGAGAAAAAGATCGAATTTTCAGATGATTGGAAATT
 TCATTCAAGGTATTTGTAATAGTGACATATATATGTATATACATACCTCCTATTCTCTTAATTTGTTAAAA
 TGTTAACCTGGCAGTAAGTCTTTGATCATTCCCTTTCCATATAGGAAACATAATTTGAAGTGGCCAGATGA
 GTTTATCATGTCAGTGAAAATAATTACCCACAAATGCCACCAGTAACCTAACGATTCTCACTTCTGGGTTT
 TCAGTATGAACCTAACCCCCACACATCTCCCTCCCACATTGTCACCATTTCAAAGGGCCACAGTGACTT
 15 TTGCTGGCATTTCAGATGTTACAGACTGTGAGTACAGCAGAAAATCTTTACTAGTGTGTGTGTATAT
 ATATAAAACAATTGTAATTTCTTTAGCCCATTTCAGACTGTCTCTGTTGAATATATTGTGTGTGTGATAT
 ATGCATGTGTGATGGTATGGATTGATTAATCTAATCTAATAATTGTGCCCGCAGTGTGCCAAAGTGCATA
 GTCTGAGCTAAAATCTAGGTGATTGTCATCATGACAACCTGCCCTCAGTCCATTAAACCTGTAGCAACCTCTG
 CATTCAAAATCTGTAATCATGTTACCAATTACAAATGGGATATAAGAGGCAGCGTGAAGCAGATGAGCTGTGG
 20 ACTAGCAATATAGGTTTGTGGTGGTTGGTTGATAAAGCAGTATTGGGGTCATATTGTTCTGTGCTG
 GAGCAAAAGTCATTACACTTGAAGTATTATATTGTTCTTATCCTCAATTCAATGTGGTGTGAAATTGCCAGGT
 TGTCTGATATTCTTCAGACTTCGCCAGACAGATTGCTGATAATAAAATTAGGTAAGATAATTGTTGGCCATA
 TTTAGGACAGGTAAAATAACATCAGGTTCCAGTGCTTGAATTGCAAGGCTAAGAAGTACTGCCCTTTGTG
 TTAGCAGTCAAATCTATTATCCACTGGCGCATCATATGCACTGATATATGCCCTATAATATAAGCCATAGGTCA
 25 CACCATTGTTAGACAATTGCTTTCAAGATGCTTGTGTTCTTCATATGAAAAAAATGCATTTATAA
 ATTCAAGAAAGTCATAGATTCTGAAGGCGTCAACGTGCACTTATGGACTGGTAAGTAACTGTGGTTACT
 AGCAGGAATATTCCAATTCTACCTTACTACATCTTCAACAAGTAACTTGTAGAAATGAGCCAGAACCCA
 AGGCCCTGAGTGGCAGTGGCCATAAGTGTAAAATAAGTTACAGAAACCTT

30 SEQ ID NO:92 Human Endothelin A receptor polypeptide sequence

protein_id:gi18390352

METLCLRASFWLALVGCVISDNPERYSTNLNSHVDDFTTFRGTELSFLVTTHQPTNLVLPNGSMHNYPQQT
 TSAFKYINTVISCTIFIVGMVGNATLLRIIYQNKCMRNGPNALIASLALGDLYVVIDLPINVFKLLAGRWPFDH
 NDFGVFLCKLFPFLQKSSVGITVNLCALSVDRYRAVASWSRVQGIGIPLVTAIEIVSIWLSFILAYPEAGFV
 35 MVPFEYRGEQHKTCLNATSKMIFYQDVKDWWLFGFYFCMPLVCTAIFYTLMTCEMLNRXNGSLRIALSEHLKQ
 RREVAKTVFCLVVIFALCWFPPLHSRILKKTVYNEMDKNRCELLSFLLMDYIGINLATMNSCINPIALYFVSKK
 FKNCFQSCLCCCCYQSKSLMTSVPNGTSIQWKNHIDQNNHTDRSSHKDSMN

SEQ ID NO:93 Mouse Endothelin A receptor nucleic acid sequence

accession:BC008277

CDS:397..1680

GTCTAGGAGCCTGTGGAGTCTAAGGAAGATCGCGGGAGGC GTTCCCTCCGGAGTTGCTTTCTGGAGCCT
CGCGCGCACACCCATCCCTCTAGTCTGGCAACTGTGTCTAGGAGGTGGGAGCCTCTCTGATCCACCGGACC
5 ATCGCTGGAGCTTGCAGGCTGAGCAAGATCTCCCCTAGAGAACGCTGGCTGTCCGGGAAGTTCCCCGAGCTG
AGACTGTGCTGCAGCCCTGGTCACCCGCCACCCCTGCGGCCACCCCTGTTCTCCAGCTCAGGCTCCGGCTGGGCC
GTGCGCGGACCTGGAGCTGTCTGCTTCCGAGGAGCTAAGGTAAAAAAAGAAAGGCGTGAGACCAAACATAAGA
AGACTTAAAATCCAGGTTAACGATGAGTATCTTGCCTGCGGATACTTTGGCTGACCATGGTGGGAGGCGTA
ATGGCTGACAATCCGGAGAGATAACAGCGCTAATCTAACGAGCCACATGGAAGACTTCACCCCTTTCCGGGACG
10 GAGATCAACTTCTGGGCACCACCCATCGACCCCTAATTGGCCCTGCCTAGCAATGGCTCAATGCACGGCTAT
TGCCCACAGCAGACTAAAATCACGACAGCTTCAAATATATTAAACACTGTGATATCCTGCACCATTTCATCGTG
GGAATGGTGGGGAACGCAACTCTACTACGAATCATTACCAAACAAAGTGTATGAGGAACGGCCCAATGCGCTC
ATAGCCAGCCTGGCCCTTGGAGACCTTACGTGGCATTGACCTCCCATCACCGTAAAGCTTTAACGCTTTGGCA
GGACGCTGGCCTTTCGACCACAATGATTGGAGTGTCTCTGCAAGCTTCCCTCCTGCAGAACGCTTCC
15 GTGGGCATCACCGTCTTGAACCTCTGTGCTCTCAGTGTGGACAGGTACAGAGCAGTGGCTTCCGGAGCTT
CAAGGAATCGGGATCCCTTGATTACCGCCATTGAAATCGTCTCCATCTGATTCTTCATCTGGCCATC
CCGGAAAGCAATCGGCTTCGTATGGTACCCCTCGAATACAAGGGCAGCTGCATAGGACCTGCATGCTAACGCC
ACGTCCAAGTTCATGGAGTTTACCAAGATGTGAAGGACTGGTGGCTTTGGGTTCTACTTCTGCATGCCCTG
GTGTGACAGCAATCTTCTACACCCCTCATGACCTGTGAGATGCTCAACAGGAGGAACGGCAGCTTGCAGATGCC
20 CTTAGTGAACCTCAAACAGCGTCAGAACGACTGTCTTCTGCTTGGTGTCACTTCGCCCCGTGC
TGGTTCCCTTCACTTAAGCCGATTTGAAGAAAATGTATATGATGAGATGGATAAGAACCGGTGTGAAC
CTCAGCTTCTGCTGTAATGGATTACATCGGATTAACCTGGCAACCCTGAATTCTGCATAAACCAATAGCT
CTATATTTGTGAGCAAGAAATTCAAATGTTTCACTGGCTCTGTTGCTGTGTCACCAGTCCAAAAGC
CTCATGACCTCGGTCCCCATGAATGGAACGAGTATCCAGTGGAGAACCAAGAGCAGAACACCACACGGAA
25 CGGAGCAGCCACAAGGACAGCATGAACTAACCCCTCCGAGAAACACCGAGACGTGTGCCCTCAAGTCCTAGGATG
GAAACAAACATTACGCCACAGATGCGCTCCAAAACCTCCCAAGTCTCTCCATGCTCCCTTCTAAGTCATCC
TAGGAAAAGCTCTCTGGCCCTCCCAACAGCACGTGGTGGACCGGTCCCAGCTATAGCCAATGGGTCTTCTGAG
TACTGTATATGATTGCAACCGCGCATGTCATTCCAACACTTGAAAATTAGAGCTGGGAGAAAGGAGATGATG
GTTCAAAGAACCCACCTAGCTGCCGCCCTTGCATGAACACAGAGTTGCAAGTTCATGACCAGCTCCGTGCAGT
30 TCTATGGACAGCTGGTGGAACTGTCCATCCTAAGATCTAGAGCAGTGGTCTCAACCTCCAATGCTGCAG
CCCCTTAATACAGTCTTCATTTCCAGTGAACCCCCCACCACAAATTATTTTGTGCTACTTCATTAT
TTTGAATTGTTATAATTGTCTGATATTCTGATAGTCTTAGCCTGCCCTGTTAAAGGGTCAATTAGCAACCCACA
AGTTGAGAACCAACTGCCCTAGAAAATTCTGTTGCGTTCATGGCCCATGACTACAATCTAAATTGGAGAGGTGA
GGGAAGATGGTCAGGTGTTCAAGGTTAGCCTCATCAACATAGTCGGAAAAGCCAGGGCTACCTGTTCTCACAAAG
35 ACACAAACAGACAAAAAGTGTCAAAGTTATGGCAGATTCAATTATTAATTATTATCTTATAGCCAAC
ACATTGTGAGGTTAAAGTACTCTTGGAAATGTCACCGAGTGTGGTACTTTATACTGCATGGTACCCAGAA
ATGATCGTTCATCTTCTTCAATGTACTGAAGAAAAGAAATAGGAGAGTTCCAGAAGGGAGATCTGGAAAGG
AGATAATGTTGAAATGTAAAGAAGGAAAATATCCAATAAAAAAATTCAAAGTCTAAAAAAAAAAAAAA

SEQ ID NO:94 Mouse Endothelin A receptor polypeptide sequence

accession:gi14198449

MSIFCLAAWFWLTMVGGVMADNPERYSANLSSHMEDFTPFPGTEINFLGTTHRPPNLALPSNGSMHGYCPQQTKI
 TTAFKYINTVISCTIFIVGMVGNATLLRIIYQNKCMRNGPNALIASLALGDLIYVVVIDLPINVFKLLAGRWPFDH
 5 NDFGVFLCKLFPFLQKSSVGITVLNLCAISVDRAVASWSRVQGIGIPLITAIEIVSIWILSFILAYPEAIGFV
 MVPFEYKGELHRTCMLNATSKFMEFYQDVKDWWLFGFYFCMPLVCTAIFYTLMTCEMLNRRNGSLRIALSEHLKQ
 RREVAKTVFCLVVIFALCWFPILHSRILKKTVYDEMDKNRCELLSFLLLMDYIGINLATMNSCINPIALYFVSKK
 FKNCQSCLCCHQSKSLMTSVPNGTSIQWKNQEQQNNHNTERSSHKDSMN

10 SEQ ID NO:95 rat Endothelin A receptor nucleic acid sequence

accession:NM_012550

CDS:44..1324

GTGAGACCAACATAACAGGACGTTCTTCAGATCCACATTAAGATGGGTGTCCTTGCTTCTGGCGTCCTTTG
 GCTGGCCCTGGTGGGAGGCAGCAATCGCTGACAATGCTGAGAGATACAGTCTAACTAAAGCAGCACGTGGAGGA
 CTTCAGCCCTTTCCAGGGACAGAGTTGACTTCTGGGACCACCCCTCGACCCCCCTAATTGGCCCTGCCTAG
 15 CAATGGCTCAATGCATGGCTATTGCCAACAGCAGACAAAAATCACGACGGCTTCAAATATATCAACACTGTGAT
 ATCCTGTACCATTTCATCGTGGGAATGGTGGGAAACGCCACTCTCTAAAGAATCATTTACAAAACAAGTGAT
 GAGGAACGGCCCAATGCGCTCATGCCAGCCTGGCCCTTGGAGACCTTACAGTGGTCATTGATCTCCCCT
 CAATGTGTTAACGCTGTTGGCGGGCGCTGGCTTTGACCACAATGATTGGAGTGTCTCTGCAAGCTGTT
 CCCCTTTGCAGAACAGTCGTCGTGGCATCACTGTCCTGAATCTCTGCCTCTCAGTGTGGACAGGTACAGAGC
 20 AGTGGCTCCTGGAGCCGGTTCAAGGAATGGGATCCCCTTGATTACCGCCATTGAAATTGTCCTCCATCTGGAT
 CCTTCCCTTATCTTGGCCATCCCAGAACGCAATCGGCTCGTCATGGTACCCCTCGAATACAAGGGCGAGCAGCA
 CAGGACCTGCATGCTAACGCCACGACCAAGTTCATGGAGTTTACCAAGACGTGAAGGACTGGTGGCTTTGG
 ATTCTACTTCTGCATGCCCTGGTGTGCACAGCAATCTCTACCCCTCATGACCTGTGAGATGCTCAACAGAAG
 GAATGGGAGCTTGGGATTGCCCTCAGGAACACCTCAAGCAGCGTCGAGAGGTGGCAAAGACCGTCTCTGCTT
 25 GGTTGTCATCTCGCCCTGTGCTGGTCCCTCTTCACCTAACCGGAATTGGAAAGAAAACCGTCTATGATGAGAT
 GGATAAGAACCGGTGTGAAC TGCTCAGCTCTGCTCATGGATTACATTGGCATTAAACCTGGCAACCATGAA
 CTCTGCATAAACCCAATAGCTCTGTATTGGAGCAAGAAATTCAAAATTGTTTCAGTCATGCCCTGTTG
 CTGTTGTCACCAGTCCAAAAGCCTCATGACCTCGGTCCCCATGAATGGAACGAGTATCCAGTGGAAAGAACAGGA
 GCAGAACACACAGAACGGAGCAGCCACAAGGACAGCATGAACTAACCTGTGCAAGAAGCACCAGCAGTGT
 30 GCCTTCGAGTCCCAGGATGAAACGGTCACGCAGCAGCTGCCTCCAAAACCTCCAGGTCTCTCCCTGCTTT
 TGTCTAACGCTT

SEQ ID NO:96 Rat Endothelin A receptor polypeptide sequence

accession:gi7549758

35 MGVLCFLASFWLALVGGAIADNAERYSANLSSHVDFTPFPGTEFDLGTTLRPPNLALPSNGSMHGYCPQQTKI
 TTAFKYINTVISCTIFIVGMVGNATLLRIIYQNKCMRNGPNALIASLALGDLIYVVVIDLPINVFKLLAGRWPFDH
 NDFGVFLCKLFPFLQKSSVGITVLNLCAISVDRAVASWSRVQGIGIPLITAIEIVSIWILSFILAYPEAIGFV
 MVPFEYKGELHRTCMLNATTKFMEFYQDVKDWWLFGFYFCMPLVCTAIFYTLMTCEMLNRRNGSLRIALSEHLKQ

RREVAKTVFCLVVIFALCWFPPLHSRILKKTVYDEMDKNRCELLSFLLLMDYIGINLATMNSCINPIALYFVSKK
 FKNCFQSCLCCCCHQSKSLMTSPMNGTSIQWKNQEQNHNTERSSHKDSMN

SEQ ID NO:97 Human EGF-Like nucleic acid sequence

5	HUM233032	accession:M60278	CDS:262..888
<pre>GCTACGCGGGCCACGCTGCTGGCTGGCTGACCTAGGCAGCGGGTCGGCGGCCGCGCGGGCTGAGTGA GCAAGACAAGACACTCAAGAAGAGCGAGCTGCGCTGGTCCCAGGCTGCACCGAGAGGCGGGCGGAGA CGGTGCCCGGGAATCTCCTGAGCTCCGCCAGCTCTGGTCCAGCGCCAGTGGCCGCCGTTGAAAGT GAAGCTGGCTCGCCCTCCTCGGTGCGGGACCATGAAGCTGCTGCCCGTGGTGTGAAGCTCTTCTG</pre>			
10	<pre>GCTGCAGTTCTCTCGGACTGGTACTGGGAGAGCCTGGAGCGGCTTCGGAGAGGGTAGCTGCTGAAACCAGC AACCCGGACCCCTCCACTGTATCCACGGACCAGCTGCTACCCCTAGGAGGCGGCCGGACCGGAAAGTCCGTGAC TTGCAAGAGGGCAGATCTGGACCTTTGAGAGTCACTTTATCCTCCAAGCCACAAGCACTGCCACACCAAACAAG GAGGAGCACGGAAAAGAAAGAAAGCAAGGGTAGGAAAGAAGAGGGACCCATGCTTCGGAAATACAAG GACTTCTGCATCCATGGAGAATGCAAATATGTGAAGGAGCTCCGGCTCCCTCGCATCTGCCACCCGGTTAC</pre>		
15	<pre>CATGGAGAGAGGTGTCATGGGCTGAGCCTCCAGTGAAAATCGCTTATATACCTATGACCACACAACCATCCTG GCCGTGGTGGCTGTGGTGTCTCATCTGCTGTCTGGTCATCGTGGGCTTCTCATGTTAGGTACCATAGG AGAGGAGGTTATGATGTGAAAATGAAGAGAAAGTGAAGTTGGCATGACTAATTCCACTGAGAGAGACTGTG CTCAAGGAATCGGCTGGGACTGCTACCTCTGAGAACACAAAGGTGATTTCAGACTGCAGAGGGAAAGACTTC CATCTAGTCACAAAGACTCCCTCGTCCCCAGTTGCCGTCTAGGATTGGCCTCCATAATTGCTTGCCTAAATA</pre>		
20	<pre>CCAGAGCCTTCAAGTGCCAACAGAGTATGTCGATGGTATCTGGTAAGAAGAAAGCAAGGGACCTTC ATGCCCTCTGATTCCCTCCACCAACCCACTTCCCTCATAAGTTGTTAAACACTTATCTGGATTAG AATGCCGGTTAAATTCCATATGCTCCAGGATTTGACTGAAAAAAGAAGAAGAAGAGGAGAGCAAGAA GGAAAGATTGTGAAGTGGAAAGCAACAAAGATTGAGAACCCATGTACTCAAGTACCAAGGGATCTGCC ATTGGGACCCCTCAGTGTGGATTGATGAGTTAATCTGAAATACCACAAGCCTGAGAACTGAATTGGACT</pre>		
25	<pre>TCTACCCAGATGGAAAAATAACAACATTTTGTGTTGTTGTAATGCCCTTAAATTATATTTTATT TATTCTATGTATGTTAATTCTAGTTTAACAATCTAACAAATAATTCAAGTGCCTAGACTGTTACTTTG GCAATTCTGCCCTCCACTCCTCATCCCCACAATCTGGCTTAGTGCACCCACCTTGCACAAAGCTAGGAT GGTTCTGTGACCCATCTGTAGTAATTCTGCTGTACATTCTGCAGATCTCCGTGGTCAGAGTGCCTG CGGGAGCTGTATGGTCAGGATGTAGGGTTAACCTGGTCAGAGCCACTCTATGAGTTGGACTCAGTCTGCC</pre>		
30	<pre>TAGGCATTTGTCTACCATTGTTGAAAGCCAAGGTGCTGATGTCAAAGTGTAAACAGATATCAGTGTCT CCCCGTGTCCCTCCCTGCCAAGTCTCAGAACAGAGGTTGGCTTCCATGCCGTAGCTTCTGGCCCTCACCC CATGGCCCCAGGCCACAGCGTGGAACTCACTTTCCCTGTGTCAGACACATTCTCTAACCTGCCATTCTCT GGTGTACTCCATGCAGGGTCAGTGCAGCAGAGGACAGTCTGGAGAAGGTATTAGCAAAGCAAAAGGCTGAGAA GGAACAGGAAACATTGGAGCTGACTGTTCTGGTAACTGATTACCTGCCATTGCTACCGAGAAGGTTGGAGGTG</pre>		
35	<pre>GGGAAGGTTGTATAATCCACCCACCTCACCAAAACGATGAAGGTATGCTGTCATGGCCTTCTGGAAAGTTT CTGGTGCCATTCTGAACTGTTACAACCTGTATTCCAAACCTGGTTCATATTATACTTGTCAATCCAAATAAA GATAACCCTTATTCCATAAAAAAAAAAAAAAA</pre>		

SEQ ID NO:98 Human EGF-Like polypeptide sequence

protein_id:gi183867

MKLLPSVVLKLFLAAVLSALVTGESLERLRRGLAAGTSNPDPPTVSTDQLLPLGGGRDRKVRLDQEADLDLLRVT
 LSSKPQALATPNKEEHGKRKKKGKGLKRDPCRKYKDFCIHGECKYVKELRAPSCICHPGYHGERCHGLSLPV
 5 ENRLYTYDHTTILAVVAVVLSVCLLVIVGLLMFRYHRRGGYDVENEEKVKLGMTNSH

SEQ ID NO:99 mouse EGF-Like nucleic acid sequence

accession:NM_010415

CDS:262..888

AGTCGGGCCGGGAGCTGCACCGGGCTGGCTGGCGCTGACAGACCTCAAGGGCTGGAGTGGACGCCGCGAC
 10 CGACTCTGAACAGACAGACGAACCGCGCCGCAAGGTTCCAGACAGGATCTCACCCAGAGGCAGGCAGCGGACA
 GTGCCCTAGTGGAACCTCGCTGCTCCACCCTGGCCCTGGCCCCGGTGAGGCCGCTCCAGTGGCCGCCATCAAAGT
 GATCGCTGCCCTCCCCGTCTCCGCCAGGCTGGGACCATGAAGCTGCTGCCGTCGGTATGCTGAAGCTTTCTG
 GCCGCAGTGGTGTCCCGGTGGTGACCGGTGAGAGTCTGGAGGGCTTCGGAGAGGTCTGGCGGAGCAACCAGC
 AACCTGACCCCTCCCCTGGATCCACAAACCAGCTGCTACCCACGGAGGTGATCGTCTCAGGGGTCCAGGAC
 15 TTGGAAGGGACAGATCTGAACCTTTCAAAGTTGCTTCTCCTCCAAGCCACAAGGCCCTGGCCACCCCAAGCAAA
 GAAAGGAAATGGGAAAAAGAAGAAGAAAGGAAAGGGTTAGGAAGAAGAGAGACCCATGCCCTAGGAAATAACAG
 GACTACTGCATCCACGGGAGTGCAGATACTGCAGGAGTTCCGTAACCCCTTGTCAAATGCCCTGGTTAC
 CACGGACACAGGTGTCATGGGCTGACTCTACCAAGTGGAGAATCCCCTATACACATATGACCACACTACAGTCTG
 GCTGTGGTGGCTGTAGTACTGTCGTCGCTGTCTTGTATCGTGGACTTCTCATGTTAGGTACCAAGG
 20 AGAGGAGGTTATGACTTGGAAAGTGAAGAGAAAGTGAAGTTGGCGTGGCTAGCTCCACTGAGGAGGACCTGAG
 CTATAGGAACCTTCAGAGGCTACTCTGAGACAGTGGTCTGTTACACGTTCTACATAGAGGAGAAATATTCACC
 AGCAGCCATGAAAACGTCTTCATTCAATTCCAGTTGCTACCCCTGACTGGGCTCCTGTAATTGCTCTGTTAAAG
 AAAAAAAAAATCTCAGAGCCTCTAACAGTCCAAACAGACCATGCCGCTGGGATCCGGATCAGAAGAAAGCAGGATC
 GAGTGAGCCCTTCAGGCCCTGGCTCCTCCATTGAACCCACTGGTTGTTAAACACTTAGCTTCTGGATT
 25 AGAGTGTCACTAGTTCCATATGCTCCAGGATTTTGACTGGAAAAAAAAAGGAGAGGAAGGTTAAATG
 GTTTATGGACTGGAAGAGAGCAACAGAGCTGAGAAGCTATGTGTTCAAGTAGCCGCAAGGGATCTGCTGGTT
 CCCTCCAGCAGCCTGGATTGATGAACTAATGAACTGTGAAATACCGCAAGCTCGAGAACTCTTGAGTTGGACTTT
 TCTACCCAGAGGGAAAATAACAAGTATTTGTTGTTGTTGTTGTTGTTGTTGAAATGCCTTT
 AAATTATATATTTATTTTATTCTATGATGTTAATATATTTAGTTTAAACATCTAACAAATAATATTCAGTG
 30 CCTAGACTGTTACTTGGCAATGCTGGCCACTTCTGCGCTCCACCATCTGGCTCAATGCCACGCTGGGT
 CCTATTGCTCTGTAACCCATCGGTAGTAATTATTGTCTGTCATTTCAAGAAGATGTCCTGGAGCAGAATA
 TCCCAGGGTAGGTTGTATGGTCAGAGTGCAGGGATCGGTTGGCGGAGCCACTCTGTGAGTTGGACTGCAGT
 CTTGCCTAGGTGATTTGTCACCGTTGCTGGAAAGCCAAGGTGCTGATGTTAGCGTGTAAATAGATATT
 GGTGTTGCCCTGTGTCCTCTCCCTGCCAAATCCCAGAAAGAGATTGAGCATCCATGCCCTGCAGGAAGTCCATGGC
 35 TTCCTGGTCTCTATCCCCCACCTCACTCCCTTGTCAGACATTTCCCTATCCTGCTGTTCTCGGGTGC
 TACTTCGTGCAGGGTTGGCAGAGCACAGGACAGTTGGAGAAGGCATTAGTAAAGGAAAGGCTGAGGAAGAGC
 AGGGAGCTTGGAGTTGACTATTCTGGTCATTGATAACCTATCAATTACTATAGGGAAGGTTGGTGGAGGGAAG
 GTTTTGGGTAAGGAGACTACGTGTCTCACCAAGACTATAATGTATGCTGTCACAGTCCCCATGGAAGGTTCTAGT
 GCCATGTCTGAACTGTTACAACCTATTTCCAAAACCTGGTCATATTGACCCAAATAAAGATA
 40 ACCCTTACTCCA

SEQ ID NO:100 Mouse EGF-Like polypeptide sequence

protein_id:gi6754178

MKLLPSVMLKFLAAVLSALVTGESLERLRRGLAAATSNPDPPTGSTNQLLPTGGDRAQGVQDLEGTDLNLFKVA
5 FSSKPQGLATPSKERNGKKKKKGKGLGKRDPCLRKYKDYCIHGECRYLQEFRTPSCKCLPGYHGRCHGLTLPV
ENPLYTYDHTTVLAVVAVVLSSVCLLVIVGLLMFRYHRRGGYDLESEEKVKLGVASSH

SEQ ID NO:101 Rat EGF-Like nucleic acid sequence

accession:L05489

CDS:32..658

10 GGGCCCCTCCGTCTCCGCCAGGCTCGGGACCATGAAGCTGCTGCCGTCGGTGGTCTGAAGCTCTTCTGGCCGC
AGTGTGTTCCCGCGTTGGTGACCGGTGAGAGTCTGGAGCGGCTTCGGAGAGGTCTGGCCGCAGCAACCAGCAACCC
TGACCCCTCCCACGTGAACCACAAACCAGCTGCTACCCACGGGAGCTGATCGCGCTCAGGAGGTCCAGGACTTGGA
AGGGACCGATCTGGACCTTTCAAAGTTGCTTCTCCTCCAAGCCACAAGCCCTGGCCACCCAGGAAAAGAAAA
GAACGGGAAAAAGAAGAGGAAAGGCAAGGGTTAGGAAAGAAGAGAGATCCATGCCTTAAGAAATAAGGACTA
15 CTGCATCCACGGAGAGTGCAGATACTGAAGGAGCTCGTATTCCCTCGTCCACTGCCTCCCTGGTTACCATGG
ACAGAGGGTGTCACTGGCTGACCCCTACCGGTAGAGAACCCCCCTGTACACATATGACCACACTACCGCTTGGCTGT
GGTGGCTGTAGTACTGTCATCTGTCTGTCTTGTACATCGTGGGACTTCTCATGTTCAGGTACCATAGGCGAGG
AGGTTATGACTTGGAAAGTGAGGAGAAAGTGAAGTTGGCATGGCTAGCTCCACTGAGGAGGATCTGAGCTCAA
GGAGCCTTCAGAGGGATGGCTACTTCTGAGATGGCGGTTCTACAAGTCTACAGAGGGAAAATACTTCACCAGC
20 AGCCATGAAGACTTCTTCATTCAATTCCCAGTTGCTACCCCTGACTGGCCTCCTGTAATTGCTCTGCAAAATATC
AGAGCCTCTAACAGACTATGCCCGCTGGATCTGGATCAGAACAGCAGGAGCAAGTGAGCCCT
CAGGCCTTCTGATCCTCCACCACTGAACCCACTGGTTGTTAACACTTAGCTCTGGATTAAAGTGTCA
AGTTCCATATGCTCCAGGATTGGCTGAAAAAGAAGAGAGGACGGATGAGTGGTTATGGACTGG
AAGAGATCAACAGAGTTGAGAAGCTAACAGACTATGTTCAAGTGTCAAGTAGCCACAGGGATCTGCTGTTGGACCCCTCAGCACGC
25 TGGATTGATGAGCTAACAGACTATGTTCAAGCCGAGAACACTCTTGAGTTGGACTTCTACCCAGAGGGAA
AAATAACAAGTATTTGTTGTTGTTGTTGTTAAAATGCCCTTAAATTATATTTATTTATT
CTATGTATGTTAATATATTTAGTTTAAACAATCTAACATAATATTCAAGTGCCTAGACTGTTACTTGC
TGTCCCTGGCCCGCCTCTTGAGCTCTCCACCTGGCTCAATGCCACACTCCATCTGCTCTGTAACCCATCTG
TAGTAATTATTGTCGTCTACATTCAAGAGATGCCACTCTGTGAGTTGGACTGCAG
30 GGAGTGCAAGGATGGATTGGCAGAGCCACTCTGTGAGTTGGACTGCAG

SEQ ID NO:102 Rat EGF-Like polypeptide sequence

protein_id:gi204290

MKLLPSVVLKFLAAVLSALVTGESLERLRRGLAAATSNPDPPTGTTNQLLPTGADRAQEVQDLEGTDLDFKVA
35 FSSKPQALATPGKEKNGKKRKKGKGLGKRDPCLKRYKDYCIHGECRYLKELRIPSCHCLPGYHGRCHGLTLPV
ENPLYTYDHTTVLAVVAVVLSSVCLLVIVGLLMFRYHRRGGYDLESEEKVKLGMASH

SEQ ID NO:103 Human TPR-MET nucleic acid sequence

gi|187558|gb|J02958.1|

CDS:195..2241

GAATTCCGCCCTCGCCGCCGCGCGCCCCGAGCGCTTGTGAGCAGATGCGGAGCCAGTGGAGGGCGCGAGCC
AGATGCGGGCGACAGCTGACTGCTGAGAGGAGGCGGGAGGCAGCGCGCTGTGGCCTTGCGCCGCTG
5 ACTTCTCCACTGGTTCTGGCACCGAAAGATAAACCTCTCATATAATGAAGGCCCGCTGTGCTTCACCTGGCA
TCCTCGTGCCTGTTACCTTGTGAGAGGAGCAATGGGAGTGTAAAGAGGCAGTAGCAAAGTCCGAGATGA
ATGTGAATATGAAGTATCAGCTCCAACTTCACCGCGAAACACCCATCCAGAATGTCATTCTACATGAGCAGTC
ACATTTCTGGTGCCACTAACTACATTATGTTTAAATGAGGAAGACCTTCAGAAGGTTGCTGAGTACAAGA
CTGGGCCTGTGCTGGAACACCCAGATTGTTCCCATGTCAGGACTGCAGCAGCAAAGCCAATTATCAGGAGGTG
10 TTTGGAAAGATAACATCAACATGGCTCTAGTTGTGACACCTACTATGATGATCAACTCATTAGCTGTGGCAGCG
TCAACAGAGGGACCTGCCAGCGACATGTCCTTCCCCACAATCATACTGCTGACATACTCGGAGGTTCACTGCA
TATTCTCCCCACAGATAGAAGAGCCCAGCCAGTGTCTGACTGTGTGGTAGCGCCCTGGGAGCCAAAGTCCTT
CATCTGAAAGGACCGGTTCATCAACTTCTTGTAGGCAATACCATAAATTCTCTTATTCAGATCATCCAT
TGCATTGATATCAGTGAGAAGGCTAAAGGAAACGAAAGATGTTTATGTTTGACGGACCAGTCTACATTG
15 ATGTTTACCTGAGTTCAAGAGATTCTTACCCCATTAAGTATGTCATGCCATTGAAAGCAACAATTATTTACT
TCTTGACGGTCAAAGGGAAACTCTAGATGCTCAGACTTTCACACAAGAATAATCAGGTTCTGTTCCATAAACT
CTGGATTGCATTCTACATGAAATGCCCTGGAGTGTATTCTCACAGAAAAGAGAAAAAGAGATCCACAAAGA
AGGAAGTGTAAATATACTTCAGGCTGCGTATGTCAGCAAGCCTGGGGCCAGCTTGTAGACAAATAGGAGCCA
GCCTGAATGATGACATTCTTCCGGGTGTTCGCACAAAGCAAGCCAGATTCTGCCAACCAATGGATGATCTG
20 CCATGTTGCATTCCATCAAATATGTCACAGACTTCAACAAGATGTCACACAAAACAATGTGAGATGTC
TCCAGCATTTCAGGACCAATCATGAGCACTGCTTAATAGGACACTTCTGAGAAATTCACTCAGGCTGTGAAG
CGCGCCGTGATGAATATGAAACAGAGTTACACAGCTTGAGCGCTGACTTATTCAGGGTCAATTGAGCG
AAGTCCTCTAACATCTATATCCACCTTCAAGGAGACCTCACCATACTGTAATCTGGACATCAGAGGGTC
GCTTCATGCAAGGTTGTGGTTCTCGATCAGGACCATCAACCCCTCATGTGAATTTCCTGGACTCCATCCAG
25 TGTCTCCAGAAGTGATTGTGGAGCATACATTAAACCAAAATGGCTACACACTGGTTATCACTGGGAAGAAGATCA
CGAAGATCCCATTGAATGGCTTGGCTGCAGACATTCCAGTCAGTCATGCCCTCTGCCAACCCCTTG
TTCAGTGTGGCTGGTGCACGACAATGTGTGCGATCGGAGGAATGCCCTGAGCGGGACATGGACTCAACAGATCT
GTCTGCCTGCAATCTAACAGGTTTCCAAATAGTCACCCCTGAAGGAGGGACAAGGCTGACCATATGTGGCT
GGGACTTTGGATTTCGGAGGAATAATAAATTGATTAAAGAAAATAGAGTTCTCCTGGAAATGAGAGCTGCA
30 CCTTGACTTAAGTGAGAGCACCGATGAATACATTGAAATGCAAGTGGCTCTGCCATGAATAAGCATTCAATA
TGTCCATAATTATTCAAAATGCCACGGGACAACACAATACAGTACATTCTCCTATGTGGATCCTGTAATAACAA
GTATTTCGCCGAAATACGGCTCATGGCTGGCACTTACTTAACTGGAAATTACCTAAACAGTGGGA
ATTCTAGACACATTCAATTGGTGGAAAACATGTACTTAAAAAGTGTGTCAAACAGTATTCTGAAATGTTATA
CCCCAGCCAAACCATTCAACTGAGTTGCTGTTAAATTGAAAATTGACTTAGCCAACCGAGAGACAAGCATT
35 TCAGTTACCGTGAAGATCCCATTGTCTATGAAATTCACTCCACCAAACTTTTATTAGTACTTGTGGAAAGAAC
CTCTCAACATTGTCAGTTCTATTGCTTGCAGTGGTGGAGCACAATAACAGGTGTTGGAAAAACCTGA
ATTCACTGTTAGTGTCCCAGAATGGTCATAATGTGCAAGCAGGAAGGAACCTTACAGTGGCATGTCACATC
GCTCTAAATTCAAGAGATAATTGTTGTAACCACTCCTCCCTGCAACAGCTGAATCTGCAACTCCCCCTGAAACCA
AAGCCTTTTCATGTTAGATGGGATCCTTCAAATACTTTGATCTCATTATGTCACATAATCCTGTGTTAAGC
40 CTTTGAAAAGCCAGTGATGATCTCAATGGCAATGAAAATGACTGGAAATTAGGAAATGATATTGACCTG

AAGCAGTTAAAGGTGAAGTGTAAAAGTTGAAATAAGAGCTGTGAGAATATACACTTACATTCTGAAGCCGTTT
 TATGCACGGTCCCCAATGACCTGCTGAAATTGAACAGCGAGCTAAATATAGAGTGGAAAGCAAGCAATTCTCAA
 CCGTCCTGGAAAAGTAATAGTCAACCAGATCAGAATTTCACAGGATTGATTGCTGGTGTCTCAATATCAA
 CAGCACTGTTATTACTACTTGGTTTCTGTGGCTGAAAAGAGAAAGCAAATTAAAGATCTGGCAGTGAAT
 5 TAGTCGCTACGATGCAAGAGTACACACTCCTCATTGGATAGGCTTGTAAAGTGCCGAAGTGTAAAGCCAACTA
 CAGAAATGGTTCAAATGAATCTGTAGACTACCGAGCTACTTTCCAGAACATCAGTTCTAATTCATCTCAGA
 ACGGTTCATGCCACAAGTGCAGTATCCTCTGACAGACATGTCCCCCATCTAACTAGTGGGACTCTGATATAT
 CCAGTCCATTACTGAAAATACTGTCCACATTGACCTCAGTGCTCTAAATCCAGAGCTGGTCCAGGCAGTGCAGC
 ATGTAGTGATTGGGCCAGTAGCCTGATTGTGCATTCAATGAAGTCATAGGAAGAGGGCATTGGTTGTAT
 10 ATCATGGGACTTTGTTGACAATGATGGCAAGAAAATTCACTGTGCTGTGAAATCCTGAACAGAACACTGACA
 TAGGAGAAGTTCCAATTCTGACCGAGGAAATCATCATGAAAGATTTCAGTCATCCAATGTCCTCTCGCTCC
 TGGGAATCTGCCTGCGAAGTGAAGGTCTCGCTGGTGCCTACCCATACATGAAACATGGAGATCTCGAAATT
 TCATTGAAATGAGACTCATAATCCAATGTAAAAGATCTTATTGGCTTGGTCTCAAGTAGCCAAAGCGATGA
 AATATCTTGAAGCAAAAAGTTGTCCACAGAGACTGGCTGCAAGAAACTGTATGCTGGATGAAAATTACAG
 15 TCAAGGTTGCTGATTGGTCTGCCAGAGACATGTATGATAAAGAACATGTACACAACAAAACAGGTG
 CAAAGCTGCCAGTGAAGTGGATGGCTTGAAAGTCTGCAAACACTCAAAGTTTACCAAGTCAGATGTGGT
 CCTTGGCGTCTGCTCTGGAGCTGATGACAAGAGGAGCCACCTATCCTGACGTAAACACCTTGATATAA
 CTGTTTACTTGTGCAAGGGAGAAGACTCCTACAACCGAATAACTGCCAGACCCCTTATATGAAGTAATGCTAA
 AATGCTGGCACCTAAAGCCGAAATGCGCCATCCTTCTGAACTGGTGTCCCAGATCAGCGATCTCTCTA
 20 CTTTCATTGGGAGCACTATGCCATGTGAACGCTACTTATGTAACGTAATGTGTCGCTCCGTATCCTCTC
 TGTTGTCATCAGAAGATAACGCTGATGATGAGGTGGACACACGACCAGCCTCTGGAGACATCATAGTGT
 AGTACTATGTCAAAGCAACAGTCCACACTTGTCCAATGGTTTTCACTGCCTGACCTTAAAGGCCATCGAT
 ATTCTTGCTCCTGCCATAGGACTTGTATTGTTATTAAATTACTGGATTCTAAGGAATTCTATCTGACAGA
 GCATCAGAACCAAGAGGCTTGGTCCCACAGGCCAGGGACCAATGCGCTGCAG

25

SEQ ID NO:104 Human TPR-MET polypeptide sequence

gi|307196|gb|AAA59591.1|

MKAPAVLAPGILVLLFTLVQRNSNGECKEALAKSEMNVMKYQLPNFTAETPIQNVILHEHHIFLGATNYIYVLNE
 EDLQKVAEYKTGPVLEHPDCFPQCDCSSKANLSGGVWKDNINMALVVDTYYDDQLISCGSVNRGTCQRHVFPHNH
 30 TADIQSEVHCIFSPQIEEPSQCPDCVVSALGAKVLSSVKDRFINFFVGNTINSSYFPDHPLHSISVRRLKETKDG
 FMFLTDQSYIDVLPEFRDSYPIKYVHAFESNNFIYFLTVQRETLDAQTFHTRIIRFCINSGLHSYMEMPLECIL
 TEKRKKRSTKKEVFNILQAAYVSKPGALARQIGASLNDDILFGVFAQSKPDSAEPMDRSAMCAFPIKYVNDFN
 KIVNKNNVRCLQHFYGPNEHCFNRTLLRNSSGEARRDEYRTEFTTALQRVDLFMGQFSEVLLTSISTFIKGDL
 TIANLGTSEGRFMQVVVSRSGPSTPHVNFLLDSPHPVSPEVIVEHTLNQNGYTLVITGKKITKIPNLNGCRHFQS
 35 CSQCLSAPPFVQCGWCHDKCVRSEECLSGTWTQQICLPAIYKVFPNSAPLEGGTRLTICGWDFGRRNNKFDLKK
 TRVLLGNESCTLSESTMNTLKCTVGPAMNKHFNMSSIISNGHGTQYSTFSYVDPVITSISPKYGPMAGGTLL
 TLTGNYLNSGNSRHISIGGKTCTLKSVSNSILECYTPAQTIESTEFAVKLKIDLARETSIFSYREDPIVYEIHPT
 KSFISTWWKEPLNIVSFLFCASGGSTITGVGKNLNSVSPRMVINVHEAGRNFVACQHRSNSEIICCTTPSLQ
 QLNQLPLTKAFFMLDGILSKYFDLIYVHNPFKPFEKPVMSMGNENVLEIKGNDIDPEAVKGEVLKGNKSC
 40 ENIHLHSEAVLCTVPNDLLKLMSELNIEWKQAISSVTLGKIVQPDQNFTGLIAGVVSISTALLLLGFFLWLKK

RKQIKDLGSELVRYDARVHTPHLDRLVSARSVPTEMVSNESVDYRATFPEDQFPNQQNGSCRQVQYPLTDMS
 PILTSGDSDISSPLLQNTVHIDLSALNPELVQAVQHVGPSLIVHFNEVIGRGHFGCVYHGTLDDNDGKKIHC
 AVKSLNRITDIEVSQFLTEGIIMKDFSHPNVLSSLIGICLRSEGSPLVVLPMKHGDLRNFINETHNPTVKDLI
 GFGLQVAKAMKYLASKKFVHRDLAARNCMLDEKFTVKADFGLARDMYDKEYYSVHNKTGAKLKVWMALESLOT
 5 QKFTTKSDVWSFGVVLWELMTRGAPPDVNTFDITVYLLQGRRLQPEYCPDPLYEVMLKCWHPKAEMRPSFSE
 LVSRIISAIFSTFIGEHYHVNVNATYVNVCVAPYPSLSSEDNADDEVDRPASFWETS

SEQ ID NO:105 Mouse TPR-MET nucleic acid sequence

gi|6678867|ref|NM_008591.1| CDS:1..4140

10 ATGAAGGCTCCCACCGTGCTGGCACCTGGCATTCTGGTGTGCTGTTGTCCTGGTGCAGAGGAGCCATGGGAG
 TGCAAGGAGGCCCTAGTGAAGTCTGAGATGAACGTGAACATGAAGTATCAGCTCCCCAACTTCACGGCAGAAACC
 CCCATGCCAGAACATGTCGTCCTACACGCCATCATATTATCTGGAGCCACAAACTACATTTATGTTTAAATGAC
 AAAGACCTTCAGAAGGTATCCGAAATTCAAGACCGGGCCGTGTTGGAACACCCAGATTGTTACCTTGTGGGAC
 TGCGAGCAAAGCCAATTCATCAGGAGGGTTGGAAAGACAACATCAACATGGCTCTGTTGACACATAC
 15 TATGATGATCAACTCATTAGCTGTGGCAGTGTCAACAGAGGGACTTGCCAGCGGATGTCTTCCTCCTGACAAT
 TCTGCTGACATCCAGTCTGAGGTCCACTGCATGTTCTCCCAGAAGAGGAGTCAGGGCAGTGTCTGACTGTGTA
 GTGAGTGCCCTCGGAGCAAAGTCCTCTGCGAAAAGGACCGGTTCATCAATTCTTGTTGGGAATACGATC
 AATTCCCTATCCTCCTGGTTATTCACTGCATTGATATCGGTGAGACGGCTGAAGGAAACCAAGATGGTTT
 AAGTTTGACAGACCAGTCCTATATTGATGTCTTACCAAGAATTCTTGATTCTACCCATAAAGTACATACAT
 20 GCCTTCGAAAGCAACCATTATTTACTTCTGACTGTCCAAAAGGAAACTCTAGATGTCAGACTTTCTACACA
 AGAATAATCAGGTTCTGTCCTGAGACTCTGGTTGCACTCCTACATGGAAATGCCCTGGAATGCATCCTGACA
 GAAAAAAAGGAAGGAGAGATCCACAAGGGAAGAAGTGTAAATATCCTCCAAGCCGCGTATGTCAGTAAACCAGGG
 GCCAATCTTGCTAACCAAATAGGAGCTAGCCCTCTGATGACATTCTCTGGGTGTTGCACAAAGCAAGCCA
 GATTCTGCTAACCTGTGAATCGATCAGCAGTCTGTCATTCCCCATCAAATATGTCATGACTTCTCAACAAAG
 25 ATTGTCAACAAAACACGTGAGATGTCTCCAGCATTTCACGGACCCAAACATGAGCACTGTTCAATAGGACC
 CTGCTGAGAAACTCTCGGGCTGTGAAGCGCGCAGTGACGAGTATCGGACAGAGTTACCAACGGCTTGAGCGC
 GTCGACTTATTCACTGGCCGGCTAACCAAGTGTCTCTGACATCCATCTCCACCTCATCAAAGGTGACCTCACC
 ATTGCTAATCTAGGGACGTCAGAAGGTGCTTCATGCAGGTGGTGTCTCGAACAGCACACCTCACTCCTCAT
 GTGAACCTCCTCTGGACTCCCATCCTGTATCTCCAGAAGTTATTGTTGAGCATCCATCAAATCAAATGGCTAT
 30 ACATTGGTTGTCACAGGAAAGAAGATACCAAGATTGAAATGGCTGGCTGGACATTCCAATCCTGC
 AGTCAGTGCCTCTCGCCCTACTTATACAGTGTGGCTGGTGCACATCAATGTGTGCGTTGATGAATGC
 CCCAGCGGTACATGGACTCAAGAGATCTGTCTGCCAGCGTTATAAGGTGTTCCCACCGCGCCCTTGAA
 GGAGGAACAGTGTGACCATATGTGGCTGGGACTTGGATTCAAGGAAGAATAATAATTGATTTAAGGAAAACC
 AAAGTTCTGCTTGGCAACGAGAGCTGTACCTTGACCTTAAGCGAGAGCACAAATACGTTGAAATGCACAGTT
 35 GGTCCCGCGATGAGTGAGCACTCAATGTGTCTGTAATTATCTCAAACAGTCGAGAGACAACACAATACAGTGC
 TTCTCCTATGTAGATCCTGTAATAACAAGCATTCTCGAGGTACGGCCCTCAGGCTGGAGGCACCTTACTCACT
 CTTACTGGAAATACCTCAACAGTGGCAATTCTAGACACATTCAATTGGAGGGAAACATGTACTTTAAAAAGT
 GTATCAGATAGTATTCTGAATGCTACACCCAGCCAAACTACCTCTGATGAGTTCTGTGAAATTGAAGATT
 GACTTGGCTAACCGAGAGACCAGCAGCTCAGTTACCGGGAAAGACCCCGTTGTCTATGAAATCCACCCAAACCAAA
 40 TCTTTTATTAGTGGTGGAGCACAATAACGGTATGGGAAGACCCCTGAAATTGGTTAGCCTCCAAAGCTGGTA

ATAGATGTGATGAAGTGGGTGTGAACACTACACAGTGGCATGTCAGCATCGCTCAAATTCAAGAGATCATCTGCTGC
 ACTACTCCTTCACTGAAACAGCTGGCCTGCAACTCCCCCTGAAGACCAAAGCCTCTTCTGTAGACGGGATT
 CTTTCAAACACTTGTATCTCACTTATGTGCATAATCCTGTGTTGAGCCTTGAAAAGCCAGTAATGATCTCA
 ATGGGCAATGAAAATGTAGTGGAAATTAAAGGAAACAATATTGACCCCTGAAGCAGTTAAAGGTGAAGTGTAAAA
 5 GTTGGAAATCAGAGCTGCGAGAGTCTCCACTGGCACTCTGGAGCTGTGTTGACAGTCCCCAGTGCACCTGCTC
 AACTGAACAGCGAGCTAAATATAGGTGAAAGCAAGCAGTCTTCACACTGTTCTGGAAAAGTGTACGTTCAA
 CCGGATCAGAATTTGCAGGATTGATCATTGGTGCAGGCTCAATATCAGTAGTAGTTGTTATTATCCGGGCTC
 TTCCTGTGGATGAGAAAGAGAAAGCATAAAAGATCTGGCAGTGAATTAGTTGCTATGACGCAAGAGTACACACT
 CCTCATTGGATAGGCTTGTAAAGTGCCTGAAGTCCAACACTACAGAGATGGTTCAAATGAGTCTGTAGAC
 10 TACAGAGCTACTTTCCAGAACAGCAGTTCCCAACTCCTCTCAGAATGGAGCATGCAGACAAGTCAATATCCT
 CTGACAGACCTGTCCCCTATCCTGACGAGTGGAGACTCTGATATATCCAGCCCATTACTACAAAATACTGTTCAC
 ATTGAQCTCAGTGCTCTAAATCCAGAGCTGGTCCAAGCAGTTCAGCACGTAGTGATTGGACCCAGCAGCCTGATT
 GTGCATTCAATGAAGTCATAGGAAGAGGGATTGGCTGTCTATCATGGACTTGTGGACAATGACGGA
 AAGAAAATTCACTGTGCTGTAAAATCCTGAAATAGAATCACAGATATAGAAGAGGTCTCCAGTTCTGACTGAG
 15 GGAATCATCATGAAAGACTTCAGCCATCCCAATGTTCTCTCACTCTTGGGAATCTGCTGAGGAGTGAAGGGTCT
 CCTCTGGTGGCCTGCCCTATATGAAGCATGGAGATCTGCAGAACAGGACTCATAATCCA
 GTGAAAGATCTTATAGGATTGGCCTCAAGTAGCAGGATGAAATATCTTGCCAGCAAAAGTTGTCAC
 AGAGACTTAGCTGCAAGAAACTGCATGTTGGATGAAAATTCACTGTCAAGGTTGCTGATTTCGGTCTTGCCAGA
 GACATGTACGATAAAGAGTACTATAGTGTCCACAACAAGACGGTGCCAAGCTACCAGTAAAGTGGATGGCTTTA
 20 GAGAGTCTGCAAACCCAGAACAGTTCAACCACCAAGTCAGATGTGGTCCTTGGTGTGCTCCTCTGGAGCTCATG
 ACGAGAGGAGCCCTCCTTATCCGACGTGAACACATTGATATCACTATCTACCTGTTGCAAGGCAGAACAGACTC
 TTGCAACCAGAATACTGTCCAGACGCCCTGTACGAAGTGTGCTAAATGCTGGCACCCAAAGCGGAAATGCG
 CCGTCCTTCCGAACTGGCTCCAGGATATCCTCAATCTCTCCACGTTCATGGGAACACTACGTCCACGTG
 AACGCTACTTATGTGAATGAAAATGTGTTGCTCCATATCCTCTGTGCTCCATCCAAAGACAACATTGATGGC
 25 GAGGGGAACACATGA

SEQ ID NO:106 Mouse TPR-MET polypeptide sequence

gi|6678868|ref|NP_032617.1|

MKAPTVLAPGILVLLSLVQRSHGECKEALVKSEMNVNMKYQLPNFTAETPIQNVVLHGHHIYLGATNYIYVLND
 30 KDLQKVSEFKTGPVLEHPDCLPCRDCSSKANSSGGVWKDNINMALLVDTYDDQLISCGSVNRGTCQRHVLPDPD
 SADIQSEVHCMFSPEEESGQCPDCVVSALGAKVLLSEKDRFINFFVGNTINSSYPPGYSLHSISVRRLKETQDF
 KFLTDQSYIDVLPFELDSYPIKYIHAFESNHFIYFLTVQKETLDAQTFHTRIIRFCSDSGLHSYMEMPLECILT
 EKRRKRSTREEVFNILOQAAYVSKPGANLAQKIGASPSDDILFGVFAQSKEPDSAEPVNRSAVCAFFPIKYVNDFNK
 IVNKNNVRCLQHFYGPNEHCFNRTLLRNSSGCEARSDEYRTEFTTALQRVDFMGRNLNVLLTSISTFIKGDLT
 35 IANLGTSEGRFMQVVLSSRTAHLTPHVNFLDSHPVSPEVIVEHPSNQNGYTLVVTGKKITKIPLNGLCGHFQSC
 SQCLSLAPYFIQCGWCHNQCVRFDCEPSGTWTQEICLPAVYKVFPTSALEGTVLTICGWDFGFRKNNKFDLRKT
 KVLLGNESCTLSESTNTLKCTVGPAMSEHFNVSVIISNSRETTQYSAFSYDPVITSISPRYGPQAGGTLLT
 LTGKYLNSGNSRHISIGGKTCTLKSVSDSILECYTPAQTTSDFPVKLKIDLANRETSSFSYREDPVVYEIHP
 SFISGGSTITGIGKTLNSVSLPKLVIDVHEGVNYTVACQHRSNSEIICCTTPSLKQLGLQLPLKTAFFL
 40 LSKHFDLTYVHNPFEPFEKPMISMGNENVVEIKGNNIDPEAVKGEVLKVGNCSES
 LHWHSAGLCTVPSDLL

KLNSELNIEWKQAVSSTVLGKVIQPDQNFAGLIIGAVSISVVVLLSGFLWMRKRHKDLGSELVRYDARVHT
 PHLDRLVSARSVPPTTEMVSNESVDYRATFPEDQFPNSQNGACRQVQYPLTDSPILTSGDSDISSPLLQNTVH
 IDLSALNPELVQAVQHVVIGPSSLIVHFNEVIGRHFGCVYHGTLDDNDGKIHCAVSLNRITDIEEVSQLTE
 GIIMKDFSHPNVLSLLGICLRLSEGSPLVVLPMKHDLRNFIRNEHTNPTVKDLIGFGLQVAKGMKYLASKKFVH
 5 RDLAARNCMLDEKFTVKVADFGLARDMYDKEYYSVHNKTGAKLKVWMALESLQTQKFTTKSDVWSFGVLLWELM
 TRGAPPYPDVNTFDITIYLLQGRRLLQPEYCPDALYEVMLKCWHPKAEMRPSFSELVSRRISSIFSTFIGEHVVHV
 NATYVNVCVAPYPSLLPSQDNIDGEGN

SEQ ID NO:107 Rat TPR-MET nucleic acid sequence

10 gi|13928699|ref|NM_031517.1|

ATGAAGGCTCCCACCGCGCTGGCACCTGGCATTCTGCTGCTGCTGACCTTGGCGCAGAGGAGCCATGGGAG
 TGCAAGGAGGCCCTAGTGAAGTCTGAGATGAACGTAACTGAAGTACAGCTTCCCAACTTCACCGCAGAAACC
 CCCATCCAGAATGTCGTCCATGGCACCATATTATCTCGGAGCCACAAACTACATTTATGTTAAATGAC
 AAAGACCTTCAGAAGGTATCTGAGTTCAAGACCGGGCCGTGGAAACACCCAGATTGTTTCTTGTCAAGGAC
 15 TGCAGCAGCAAAGCCAATGTGTCAGGAGGTGTTGGAAAGACAACGTAACTGGCGCTGTTGACACTTAC
 TATGAGGACAGCTCATCAGCTGTGGCAGCGTAAACAGAGGGACCTGCCAAAGGCATGTCCTCCTGACAAT
 GCTGCCGACATTCACTGGAGGTTCACTGCATGTTCTCCCCACTTGGGAGGAAGAGTCAGGCCAGTGTCCGAC
 TGTGTAGTGAGTGCCCTGGGAGCAAAGTCTCTGTCTGAAAAGGACCGGTTCATCAATTCTCGTGGGAAT
 ACGATAAACTCTCCTACCCCTCCGATTATTCAATTGCATTCAATATCGGTAGGCGGCTGAAGGAAACCCAGGAC
 20 GGTTTAAGTTTGACAGACCAGTCCTACATTGATGTCCTGGAGAATTCCGAGATTCCCTACCCATCAAGTAC
 ATACATGCCCTCGAAAGCAACCATTATCTACTTTCTGACTGTCCAGAAGGAAACCTAGATGTCAGACTTTC
 CATAACAAGAATAATCAGGTTCTGTTCTGTAGACTCTGGGTTGCACTCCTACATGGAAATGCCCTGGAGTGATT
 CTGACGGAAAAAAGAAGAAAGAGATCCACAAGGGAAAGAAGTGTAAATATCCTCAAGCCGCGTATGTCAAGTAA
 CCAGGGCCAATCTGCTAACGAAATAGGGGCCAGCCGTATGATGACATTCTACGGGTGTTGCACAAAGC
 25 AAGCCAGATTCTGCTGAGCCATGAACCGATCAGCGCTGTGCATTCCCCATCAAATATGTCATGACTTCTTC
 AACAAAGATTGTCACAAAAACACGTACGGTGTCTCCAGCATTATGGACCCAACCACGAGCACTGTTCAAT
 AGGACCCCTGCTGAGAAATTCACTGGGCTGCGAAGTGCAGCAGTGTACGGACGGAGTTACACAGCGCTG
 CAGGCTGTGGATTATTCACTGGGCCGCTAACCATGTTACTCTGACGTCTATCTCACCTCATCAAAGGTGAC
 CTCACCATTGCTAACATTAGGGACATCAGAAGGTCGCTTCACTGCAGGTGGTGTCTCGCACAGCACATTCAACC
 30 CCCCATGTGAATTCCCTGGATTCCATCCTGTCTCCGGAAAGTTGTCGAACATCCATCAAATCAAAT
 GGCTATAACCTGGTGGTACAGGGAAAGAAGATCACCAGATTCACTGAATGGCCTAGGCTGTGGCATTCCAG
 TCCTGCAGTCAGTGTCTCTGCCCTACTTATACAGTGTGGCTGGGCCACAATGGTGTGTCATTCAAAT
 GAATGCCCAAGCGGTACATGGACTCAAGAGATCTGCTGCCAGCAGTTATAAGGTTCCCAACTAGTGCACCC
 CTCGAAGGAGGAACAATGCTGACCATATGTGGCTGGACTTTGGATTCAAGAAGAATAATAAATTGATTAAAGG
 35 AAAACCAAAGTTCTGCTTGGCAACGAGAGCTGTACCTTGACCTTAAGCGAGAGCACGACAAATACGTTGAAATGC
 ACAGTTGGCCCCCGCATGAGTGAGCACTTCATGTCATGTCCTGATCGTCTCAAACAGTCGAGAGACAACACAGTAC
 AGTGCCTTCTCTATGTGGATCCTGTAATAACAAGTATTCTCCAAGGTATGGTCTCATGCCGGAGGCACCTTA
 CTCACATTGACTGGAAAATACCTCAACAGCGCAATTCTAGACACATTCAATCGGAGGGAAAACATGTACTTTA
 AAAAGTGTATCAGATAGCATTCTGAAATGCTACACCCCAAGGCCACACCGTCTCTGCCAGTTCCCGTGAATG
 40 AAAATCGACCTGGCTGACCGAGTGACAAGCAGCTTCAGTTACGGGAAGACCCGTTGTCTCTGAAATCCACCCG

ACCAAATCTTTATCAGTGGTGAAGCACAATAACGGGATTGAAAGAACCTGAATTCAAGTAGCACCCCAAAG
 CTGGTAATAGAAGTGCATGACGTGGCGTGAACACTACACCGTGGCGTGCACATCGCTCGAGTTAGAGATCATC
 TGCTGCACCACTCCTCCCTGCAACAGCTGGACCTGCAACTCCCCCTGAAGACCAAGCCTTCTCCTGCTGGAC
 GGGATCCTTCAAACACTTGTACATGATCCTATGTTAAGCCTTGAAAGCCAGTAATG
 5 ATCTCCATGGGCAATGAGAATGTAGTGGAAATTAAGGGAGACGATATTGACCCTGAAGCAGTTAAAGGTGAAGTG
 TTAAAAGTCGGAATAAGAGCTGTGAGAATCTCCACTGGCATTCTGAAGCTTGTTGTGACGGTCCCCAGTGAC
 CTGCTGAAGCTGAACGGCGCGAGCTAAATATAGAGTGGAAAGCAAGCAGTCTCTCAACTGTCCTGGAAAAGTG
 ATCGTTCAACGGATCAGAATTTCAGGATTGATCATTGGTGCAGGCTCTCAATATCAGTGGTAGTTGTAGTA
 TCCGGCTCTCCTGTGGCTGAGAAAGAGAAAGCATAAAGATCTGGCAGTGAATTAGTCGCTATGACGCAAGA
 10 GTACACACTCCTCATTGGATAGGCTGTAAGTGCCAGTGTAAAGCCAACACTACAGAGATGGTCTCAAATGAG
 TCTGTAGACTACAGAGCTACTTTCCAGAAGACCAGTTCCAACTCCTCTCAGAATGGAGCCTGCAGACAAGTG
 CAGTATCCACTGACAGATCTGCCCCCATCCTGACGAGTGGAGACTCTGATATATCCAGCCCATTACTACAAAAC
 ACTGTTCACATTGACCTCAGCGCTCTAAATCCAGAGCTGGTCCAAGCGGTGCAGCACGTAGTGAATTGGACCCAGT
 AGCCTGATTGTGCATTCAATGAAGTCATAGGAAGAGGGCATTGGCTGTCTATCATGGGACTTGTGGAC
 15 AGTGACGGAAAGAAAATTCACTGTGCTGTGAAATCCTGAATAGAATCACAGATATAGAAGAAGTCTCCAGTT
 CTGACTGAGGAAATCATCATGAAAGATTTAGCCACCCAACTGTTCTCTCACTCTTGGAAATCTGCCTGCGGAGT
 GAAGGGTCCCTCTGGTGGTCTGCCCTATATGAAGCACGGAGATCTCGCAATTCAATTGAAACGAGACTCAT
 AACCCAACTGTGAAAGATCTTATAGGATTGGCTTCAGTAGCCAAGGGCATGAAATATCTTGCAGCAAAAG
 TTTGTCCACAGAGACTTAGCTGCAAGAAACTGCATGTTGGATGAAAAATTCACTGTCAAGGTTGCTGATTTCGGT
 20 CTTGCCAGAGACATGTACGACAAAGAGTATTATAGCGTCCACACAAAACGGGTGCGAAACTACCGGTGAAGTGG
 ATGGCTTAGAGAGTCTGCAGACGCAAAAGTTACCCACCAAGTCAGACGTGTTGCTTCGGTGTGCTTCTCTGG
 GAGCTCATGACGAGAGGGAGCCCTCCTTACCTGACGTGAACACATTGATATCACTATACCTGTTGCAAGGC
 AGAAGACTCTGCAACCAGAGTACTGTCCAGACGCCCTGTATGAAGTGATGCTAAATGCTGGCACCCCAAAGCA
 GAAATGCCCATGTTCTGAACACTGGCTCCAGAATATCCTCAATCTCTCCACTTCATTGGCGAGCACTAT
 25 GTCCATGTGAACGCTACTTATGTGAATGAAAATGTTGCTCCATATCCTCTGTGCTGCCATCCAAAGACAAC
 ATTGACGGCGAACATGACGGATAAGAGGCCAGCCACTTCCAAGAAACAGTT

SEQ ID NO:108 Rat TPR-MET polypeptide sequence

gi|13928700|ref|NP_113705.1|

30 MKAPTLAPGILLLTLAQRSRSHGECKEALVKSEMNVNMKYQLPNFTAETPIQNVLHGHHIYLGATNYIYVLND
 KDLQKVSEFKTGPVVEHPDCFPQCDCSSKANVSGGVWKDNVNMLLDVTDYYDDQLISCGSVNRGTCQRHVLPPDN
 AADIQSEVHCMFSPLAEESGQCPDCVVSALGAKVLSEKDRFINFFVGNTINSSYPDYSLSLHSISVRRLKETQD
 GFKFLTDQSYIDVLGEFRDSYPIKYIHAFESNHFIYFLTVQKETLDAQTFHTRIIRFCSDSGLHSYMEMPLECI
 LTEKRRKRSTREEVFNILQAAYVSKPGANLAKQIGASPYDDILYGVFAQSKPDSEPMNSAVCAFPIKYVNDFF
 35 NKIVNKNVRCLQHFYGPNEHCFNRLLRNSSGCEVRSDERYTEFTTALQAVDLFMGRLNHVLLTSISTFIKG
 LTIANLGTSEGRFMQVVLRSRTAHTPHVNFLDSHPVSPEVIVEHPSNQNGYTLVVTGKKITKIPNLNGLCOGHFQ
 SCSQCLSAFYFIQCGWCHNRCVHSNECPSGTWTQEICLPAVYKVFPPTSAPLEGGTMLTICGWDFGFKKNNKFDR
 KTKVLLGNESCLTLSESTNTLKCTVGPAMSEHFNVSVIVSNRETQYSAFSYDPVITSISPRYGHAGGTL
 LTLTGKYLNSGNSRHISIGGKTCTLKSVSDSILECYTPGHTVSAEPVKLKIDLADRVTSFSYGEDPDFVSEIHP
 40 TKSFISGGSTITGIGKNLNSVSTPKLVIEVDVGVNYTVACQHRSSEIICCTPSLQQLDQLPLKTAFFLLD

GILSKHFDLTYVHDPMFKPFEKPVMSMGNENVVEIKGDDIDPEAVKGEVLKVGNKSCENLHWSEALLCTVPSD
 LLKLNGGELNIEWKQAVSSTVLGVIVQPDQNFLAGLIIGAVSISVVVLLVSGFLWLKRKRHKDLGSELVRYDAR
 VHTPHLDRLVSARSVSPTEMVSNESVDYRATFPEDQFPNSSQNGACRQVQYPLTDSPILTSGDSDISSPLLQN
 TVHIDL SALNPELVQAVQHVVIGPSSLIVHFNEIGRGHFGCVYHGTL SDGKKIHCAVKS LNRITDIEEVSQF
 5 LTEGIIMKDFSHPNVLSLLGICLRSEGSPLVLPYMKHDLRNFIRNETHNPTVKDLIGFGLQVAKGMKYLA SKK
 FVHRDLAARNCMLDEKFTVKVADFG LARDMYDKEYYSVHNKTGA KL.PVKWMALESLQTQKF TTKSDVWSFGVLLW
 ELMTRGAPPYPDVNTFDITIYLLQGRRLQPEYCPDAL YEVMLKCWHPKAEMRPSFSELVR ISSIFSTFIGEHY
 VHVNATYVNVKCVAPYPSLLPSQDNIDGEANT

10 **SEQ ID NO:109 Human MDC9 nucleic acid sequence**

HUM242227 accession:U41766 coding sequence:79..2538

CGGCAGGGTTGGAAAATGATGGAAGAGGCCGGAGGTGGAGGCACCGAGTGCTGAGAGGAACCTGCGGAATCGGCC
 GAGATGGGGTCTGGCGCGCTTCCCTCGGGACCCCTCGTGTCCGGTGGTTGCTGTTGCTTGGCCTGGTGGC
 15 CCAGTCCTCGGTGCGCGCGGCCAGGCTTCAACAGACCTCACATCTTCTTATGAAATTATAACTCCTTGG
 AGATTAACTAGAGAAAGAGAAGCCCCTAGGCCCTATTCAAAACAAGTATCTTATGTTATT CAGGCTGAAGGA
 AAAGAGCATATTATTCACTTGGAAAGGAACAAAGACCTTTGCTGAAGATTGTGTTTACTACAAACAG
 GAAGGGACTTTAATCACTGACC ATCCAATATACAGAACATCATTGTCATTATCGGGCTATGTGGAGGGAGTCAT
 AATT CATCCATTGCTTAGCGACTGTTTGACTCAGAGGATTGCTGCATTAGAGAATGCGAGTTATGGGATT
 GAACCCCTGCAGAACAGCTCTCATTGAGCACATCATTATCGAATGGATGATGTCTACAAAGAGCCTCTGAAA
 20 TGTGGAGTTCCAACAAGGATATAGAGAAAGAAACTGCAAAGGATGAAGAGGAAGAGCCTCCAGCATGACTCAG
 CTACTTCGAAGAAGAAGAGCTGCTTGCCACAGACCCGGTATGTGGAGCTGTTGCTGTCATTGCTGTAGACAAGGAAAG
 TATGACATGATGGGAAGAAATCAGACTGCTGTGAGAGAACAGAGATGATTCTCCTGGCAA ACTACTGGATAGTATG
 TATATTATGTTAAATATTCAATTGCTAGTTGGACTGGAGATTGGACCAATGGAAACCTGATCAACATAGTT
 GGGGGTGTGGTGTAGTGCTGGGAACCTCGTGCAGTGGGGAAAAGTTCTTATCACACGTGGAGACATGAC
 25 AGTGCACAGCTAGTCTAAAGAAAGGTTTGGTGGAACTGCAGGAATGGCATTGTTGGAAACAGTGTGTTCAAGG
 AGCCACGCAGGCGGGATTAATGTGTTGGACAAATCACTGTGGAGACATTGCTTCCATTGTTGCTCATGAATTG
 GGT CATAATCTTGGAAATGAATCACGATGATGGGAGAGATTGTTCTGTGGAGCAAAGAGCTGCATCATGAATTCA
 GGAGCATCGGGTTCCAGAAACTTAGCAGTTGCAGTGCAGAGGACTTGAGAAGTTAAC TAAAGGAGGA
 AACTGCCTCTTAATATTCAAAGCCTGATGAAGCCTATAGTGCCTCCCTGTGGTAATAAGTGGTGGACGCT
 30 GGGGAAGAGTGTGACTGTGGTACTCCAAAGGAATGTGAATTGGACCC TTGCTGCGAAGGAAGTACCTGTAAGCTT
 AAATCATTGCTGAGTGTGCATATGGTACTGTTGTAAGAAGACTGTCGGTTCTTCCAGGAGGTACTTATGCCGA
 GGAAAAACCACTGAGTGTGATGTTCCAGAGTACTGCAATGGTCTTCTCAGTTCTGTCA GCCAGATGTTTATT
 CAGAATGGATATCCTGCCAGAATAACAAAGCCTATTGCTACAACGGCATGTGCCAGTATTATGATGCTCAATGT
 CAAGTCATCTTGGCTCAAAAGCCAAGGCTGCCCTAAAGATTGTTCATGAAGTGAATTCTAAAGGTGACAGA
 35 TTTGGCAATTGTTCTGGCAATGAATA CAGAAGTGTGCCACTGGGAATGCTTGTGAAAGCTTCAG
 TGTGAGAATGTACAAGAGATA CCTGTATTGGAATTGTGCCTGCTATTATTCAAACGCC TAGTCGAGGCACCAAA
 TGTTGGGTGTGGATTCCAGCTAGGATCAGATGTTCCAGATCTGGATGGTTAAGGAAGGCACAAAATGTGGT
 GCTGGAAAGATCTGTAGAAACTCCAGTGTGAGATGCTCTGTTCTGAATTATGACTGTGATGTTCA GAAAAG
 TGTCATGGACATGGGTATGTAATAGCAATAAGAATTGTCACTGTGAAATGGCTGGCTCCCCAAATTGTGAG
 40 ACTAAAGGATA CGGAGGAAGTGTGGACAGTGGACCTACATACAATGAATACTGCATTGAGGGACGGACTT

CTGGTCTTCTTCTTCTAATTGTTCCCCTTATTGTCTGTGCTATTTTATCTTCATCAAGAGGGATCAACTGTGG
 AGAACGCTACTTCAGAAAGAAGAGATCACAAACATATGAGTCAGATGGCAAAATCAAGCAAACCCCTCTAGACAG
 CGGGGAGTGTCCCTCGACATGTTCTCAGTGCACACCTCCAGAGAAGTCCTATATATGCAAACAGATTGCA
 GTACCAACCTATGCAGCCAAGCAACCTCAGCAGTCCCCTCAAGGCCACCTCCACCACAACCGAAAGTATCATCT
 5 CAGGGAAACTTAATTCTGCCGTCTGCTCCTGCACCTCCTTATATAGTTCCTCACTTGATTTTTAACCT
 TCTTTTGCCTAAATGTCTTCAGGAACTGAGCTAATACTTTTTCTGATGTTCTGAAAAGCCTTCT
 GTTGCAACTATGAATGAAAACAAAACACCACAAAACAGACTTCACTAACACAGAAAACAGAAAAGTGGAG
 AGTTGTGAAATACAAGGAAATGCAGTAAAGCCAGGGATTACAATAACATTCCGTTCCATCATTGAATAAGT
 CTTATTCACTCGGTGAGGTTAATGCACTAATCATGGATTTTGAAACATGTTATTGCACTGATTCTCAAATT
 10 AACTGTATTGGTGTAAAGATTTGTCATTAAGTGTAAAGTGTATTCTGAATTTCTACCTTAGTTATCATTAA
 TGTAGTTCCTCATTGAACATGTGATAATCTAACCTGTGAAAACGTACTAACAGCTGCCAATAATATCTAATA
 TTTTTCATGCACGAATTAATAATCATCATACTCTAGAATCTGTCTGTCACTCACTACATGAATAAGCAAAT
 ATTGTCTCAAAAGAATGCACAAGAACCAATTAAGATGTATATTATTGAAAGTACAAAATATACTAAAAG
 AGTGTGTGTATTACGCAGTTACTCGCTTCCATTGACCTTCAACTATAGGTAAATAACTCTTAGAGAA
 15 ATTAATTAAATATTAGAATTCTATTATGAATCATGTGAAAGCATGACATTGTTACAATAGCACTATTTAAA
 TAAATATAAGCTTAAGGTACGAAGTATTTAATAGATCTAACAAATATGTTGATTCTGGCTATAATAAGCA
 GGAGCAATTATAAAATCTCAATCAATTGAACTTTACAAAACCACTTGAGAATTTCATGAGCACTTAAATCT
 GAACTTTCAAAGCTTGCTATTAAATCATTAGAATGTTACATTACTAACAGGTGTGCTGGGTCTGTAATTT
 AGACACTAATATTCATAGAAATTAGGCTGGAGAAAGAAGGAAGAAATGGTTCTAAACACCTACAAAAAAG
 20 TTACTGTGGTATCTATGAGTTATCATCTTAGCTGTGTTAAAATGAATTTTACTATGGCAGATATGGTATGGAT
 CGTAAAATTTAAGCACTAAAATTTTCATAACCTTCATAATAAGTTAATAATAGGTTATTAACCTGAAT
 TTCATTAGTTTTAAAGTGTGTTGGTTGTATATACATACAAACACATTACAATAAAACACCTACAAAAAAG
 TACTTGAAATTCTCAAAAAAAAAAAAAAAAAAAAAA

25 SEQ ID NO:110 Human MDC9 polypeptide sequence

protein_id:gi1235672

MGSGARFPSGTLRVRWLILLGLVGPVLGAARPGFQQTSHLSSYEIITPWRLTRERREAPRPYSKQVSYVIQAEGK
 EHIIHLERNKDLPEDFVVYTYNKEGTLITDHPNIQNHCHYRGYVEGVHNSSIALSDCFGRLGLHLENASYGIE
 PLQNSSHFEHIYRMDDVYKEPLKCGVSNKDIKEKETAKDEEEPPSMTQLRRRAVLPQTRYVELFIVVDKERY
 30 DMMGRNQTAVREEMILLANYLDSMYIMLNIRIVLVGLEIWTNGNLINIVGGAGDVGNFVQWREKFLITRRRHDS
 AQLVLKKGFGGTAGMAFVGTVCSRSHAGGINVFGQITVETFASIVAHNLGMNHDDGRDCSCGAKSCIMNSG
 ASGSRNFSSCSAEDFEKLTLNKGNCNNIPKPDEAYSAPSCGNKLVDAGEECDCGTPKECELDPCCEGSTCLK
 SFAECAYGDCKDCRFLPGGTLCRGKTSECDVPEYNGSSQFCQPDVFIONGYPCQNNKACYNGMCQYYDAQCQ
 VIFGSKAKAAPKDCFIEVNSKGDRFGNCFGSGNEYKKCATGNALCGKLQCENVQEIPVFGIVPAIIQTPSRGK
 35 WGVDFQLGSDVPDPGMVNEGTKCGAGKICRNFQCVDAVLNYDCDVQKKCHGHGVCNSNKNCENGWAPPNCET
 KGYGGSVDSGPTYNEMNTALRDGLLFFFPLIVPLIVCAIFIFIKRDQLWRSYFRKRSQTYESDGKNQANPSRQP
 GSVPRHVSPVTPPREVPIYANRFADVPTYAAKQPQQFPSRPPPQPKVSSQGNLIPARPAPAPPLYSSLT

SEQ ID NO:111 Mouse MDC9 nucleic acid sequence

accession:NM_007404

coding sequence:14..2551

CGAACGCTCGCTATGGGGCCGCAGCCTCTGCCCTCTCGACTAAGTGGCTGGCGTG
CTTGCTGGGCCAGTCCTCGAGGCCGGCGACCAGACTTGAACAGACTGTCCATCTTCTTATGAAATTAT
5 TACTCCTGGAGATTAACTAGAGAAAGGAAGGCTCTGGGCCAGTTCACAGCAGATCTTACGTACCA
GGCCAAGGAAAACAGCATATTATTCACTTGAAGAAAGAACACAGACCTTACCTAAATGATTTTAGTTACAC
CTACGACAAGGAAGGCTCCCTACTCTGACCATCCAACGTACAGAGCCATTGTCACTATCGAGGCTATGTGGA
GGGAGTGCAGAATTCCGCGGTTGCTGTGAGCGCCTGCTTGGACTCAGAGGCTTGCTGCATTGGAGAATGCCAG
TTTGGAATTGAACCTCTGCACAACAGCTCACACTTGAGCACATATTTACCCATGGATGGCATCCACCAAGGA
10 GCCTCTGAGATGTGGAGTCTCTAACAGGGACACAGAGAAGGAAGGCACACAGGGGGATGAGGAGGAGCATTGAG
TGTCACTCAGCTGCTGCCAGAAGAAGAGCTGTTCTACACAGACCCGCTATGTGGAGCTGTTCAATTGTTGAGA
CAAGGAAGGTACGACATGATGGACGGAACCAGACTGCTGTGAGAGAAGAGATGATTGCTTAGCAAACACTACCT
GGATAGCATGTACATCATGTTAACATTGAATTGTGCTGGTGGACTAGAAATTGGACAGACAGAAATCCTAT
CAATATAATTGGAGGAGCTGGAGATGTGCTGGCAACTTGTTCAGTGGCGGGAAAGTCCATTATAACTCGTC
15 GAGACACGACAGTGCACAGTTGGTTTGAAGAAAGGCTTGGGAACACTGCAGGAATGGCGTTGTAGGAACAGT
ATGTTGAAGGAGGCCACGCAGTGGGATCAATGTGTTGGCAAATCACTGTGGAGACATTGCATCCATTGTTGC
TCATGAATTGGGCATAACCTTGAATGAATCATGATGATGGAGAGAGTGTGTTCTGTGGAGCAAAGAGCTGTAT
CATGAATTTCAGGAGCATCCGGTCCAGAAACTTTAGCAGTTGCAGTGCAGGAGACTTGAGAAGTTAACGTTGAA
TAAGGGAGGAAGCTGCTGCTTAACATCCGAAGCCTGACGAAGCCTACAGCGGCCCTCTGGTAATAAGCT
20 GGTGGACCTGGAGAGGAGTGTGACTGCCACAGCGAAGGAGTGTGAGGTGGACCCATGCTGTGAAGGAAGCAC
TTGTAAGCTCAAGTCATTGCTGAGTGTGCAATGGCAGTGTGTTCTGAGTACTGCAACGTTCCCTCAGTTCTGCCAGA
CATGTGAGAGGAAGACCAGTGTGATGTTCTGAGTACTGCAACGTTCCCTCAGTTCTGCCAGA
TGTCTTCATTCAAGATGGATATCCTGCCAGAACAGCAAAGCTACTGCTACAATGGCATGTGCAATATTATGA
CGCGCAGTGTCAAGTCATTTGGTTCAAAGGCTAAGGCTGCCAAGAGATTGCTTCATTGAAGTCAATTCTAA
25 AGGTGACAGATTGCAACTGTGGTTCTCCGGCAGTGAGTACAAGAAGTGTGCCACTGGAACCGCCTGTG
AAAGCTTCATGCGAGAATGTACAGGACATGCCGGTGGATTCCAGCTGGTCCAGCTTCCAGACCCAGGGATGGTGAATGAAGGCAC
AGGCACCAAATGCTGGGTGTGGATTCCAGCTGGTCCAGCTTCCAGACCCAGGGATGGTGAATGAAGGCAC
CAAATGTGATGCTGCCAGGAAATTTCAGTGTAAATGCTCTGTCTGAATTATGACTGTGACAT
TCAGGGAAAATGTCATGCCATGGGTATGTAACAGCAATAAGAATTGTCAGTGTGAAGATGGCTGGCTCCCC
30 ACACITGTGACACCAAAGGATATGGAGGAAGCGTGGACAGCGGGCGACGTATAATGCAAAGAGCACAGCACTGAG
GGACGGGCTCTGGCTTCTTCTCTCTAAATCGTCCCCCTGTTGCGGCTGCCATTTCCTTATCAAGAGAGA
TGAACACTGGAAAACCTTCAGGAAGAAGAGATCACAAATGTCAGATGGCAGAAATCAAGCAAACGTCTAGACA
GCCAGGAGATCCTAGTATCTCCAGACCACCGAGGGGCCAAATGTCTCCAGACCCAGGGGCCAGGTGTCTC
CAGACCACCAAGGGGCCAGGTGTCTCCAGACCACCGAGGGGCCAGGTGTCTCCAGACCGCCACCTGGCATGG
35 AAACAGATTCCCAGTACCAACCTACGCCCAAGCAGCCTGCCAGTTCCCGTCAAGGCCACCTCCACCAACC
GAAAATATCTCTCAGGGAAACTTGATTCCGGCTGCCGCTCTGCACCTCTTATATAGCTCCCTCACCTG
ATAGTAGAATATTAGAATCTTATTTTAAATGTCAGGGAACTGAGCAAATGTTGTTGTTTTTTTTC
CTGATGTTTCTGAAAAGCCTTCTTCCAACCATGAATGAACACAAACCACCAAAACAAGCTTATTAAC
ACAGGAGCCTAGTGGGATTGCGAAACACAGGAATGTGCAAGCGCTCCGGGGGTGAAAGTGAACGTTCCATC
40 GTTAGAATGTTCTCTGCCATTGTGGATTAAATGCACTTGACGTGGATTAAGTTATTCTGAGCATGTTACTG

TAATGATTCTCAAATTAACGTATTAGTGTAAAGCTTGTCACTATGCGCTAACGTAATCCTGACTTTTGACCC
CAGTTACCATTAAATAGTTCTGGTTGACCATTGAAACATGTATTAACTTAGGAAGACTAATTGCCAATAACGTCT
GCATTTCATCTTGCATGGATTAAACAGCCATTATGGACTTATGTCTCTTAATGCACAAAGAACAGATATCT
CGAAGGAGCTTACACAAGAACCAATTACTAGATCATGATATACTTGGAAAGTGTGAAATATGGTGTACTCA
5 GTTATTGGCTTCATTTTATGATCTTCAACTATAACAATTATGATAGAAAATCGATTTAACACAATCAGTTAT
GGGCTTCCATTTCAAATATCTTCAACTGTAATGACTATGACAGGAAGTCAACTCTCAATTTCCTTAT
GCATCATGGTAAAGCATTGCAGCAGTGTGTTGAAGTGCACACTCTATGGTACGAGGTGTTAGTATAC
CCAAGCAGATAGGTGTCGATCGAACAGGAGCAGGGAGAATACTCCAACAGTTGAGGTGTTACAAACCACTTGA
GAATTCATGAGCACTTAACTCTAAACTCTGAATTCAAAGCTTGATGTGAAGTCTCTAGAATGTTACATTAA
10 CTAAGGTGTGCTGGGCCTGTCTCTTGACTIONTTCGAAACATTAGGCTGGAGAAAGGAAGGAAGCAGT
GGTTCTTAGATAACTACAGAATTATACTGGTCTCTGGGATTACTCTCAGCTGTATTAAAATGAATTGTC
TTTGAAGGAATGATATTGACACTAAAATTAAACATTAAATTTCATAATCTTCATAAAGAAGTTAAT
AATAGGTATATTAACGATTTCAATTAGTTTAAATAATATTGTTGTATATACATATTAAAATAAAA
ACATTAAACAAATAAAAAAAAAA
15

SEQ ID NO:112 Mouse MDC9 polypeptide sequence

accession:gi6680644

MGPRLASPLASLRLRWLLACGLLGPVLEAGRDPDLEQTVHLSSYEIITPWRLTRERREALGPSSQQISYVIQAQKQ
QHIIHLERNTDLLPNDFVVYTYDKEGSLLSDHPNVQSHCHYRGYVEGVQNSAVAVSACFGLRGLLHLENASFIE
20 PLHNSSHFEEHIFYPMDGIHQEPLRCGVSNRDTEKEGTQGDDEEHPSVTQLLRRRAVLQPTRYVELFIVVDKERY
DMMSGRNQTAVEREEMIRLANYLDSMYIMLNIRIVLVGLEIWTDRNPINITGGAGDVLFGNFVQWREKFLITRRRHDS
AQLVLKKGFGGTAGMAFGTVCSRSHAGGINVFGQITVETFASIVAHELGHNLGMNHDDGRECFCGAKSCIMNSG
ASGSRNFSSCSAEDFEKLTLNKGGSCLLNIPKPDEAYSAPSCGNKLVDPGEECDCGTAKECEVDPCEGSTCKLK
25 SFAECAYGDCCDKDCQFLPGGSMCRGKTSECDVPEYCNSSQFCPPDVFIQNGYPQNSKAYCYNGMCQYYDAQCQ
VIFGSKAKAAPRDCFIEVNSKGDRFGNCFGSGSEYKKCATGNALCGKLQCENVQDMPVFGIVPAIIQTPSRGKTC
WGVDLQLGSDVPDPGMVNEGTKCDAGKICRNFQCVNASVLNYDCDIQGKCHHGVCNSKNCHCEDGWAPPHCDT
KGYGGSVDSGPTYNAKSTALRDGLLVFFFILVPLVAAAIFLFIKRDELRKTFRKKRSQMSDGRNQANVSQPGDP
SISRPPGGPNVSRRPPGGPGVSRPPGGPGVSRPPPGHGNRFPVPTYAAKQPAQFPSRPPPQPKISS
QGNLIPARPARPAPAPPLYSSLT