LINGUAGGI E PROGRAMMAZIONE ORIENTATA AGLI OGGETTI

RICCARDO CEREGHINO

Appunti Settembre 2019 – classicthesis v4.6

INTRODUZIONE AGLI ELEMENTI DI UN LINGUAGGIO DI PROGRAMMAZIONE

I motivi della creazione ed utilizzo di un linguaggio di programmazione di alto livello sono: di fornire una descrizione precisa, ovvero una specifica formale; offrire un interpretazione tramite interprete da compilare.

Le caratteristiche principali che categorizzano i linguaggi di programmazione sono la sintassi e la semantica, la quale può essere statica o dinamica.

1.1 LINGUAGGI STATICAMENTE TIPATI

Nei linguaggi tipizzati staticamente il *tipo* di variabile viene stabilito nel codice sorgente, per cui si rende necessario che:

- gli operatori e le assegnazioni devono essere usati coerentemente con il *tipo* dichiarato;
- le variabili siano usate consistentemente rispetto la loro dichiarazione.

I vantaggi della staticità risiedono nella preventiva rilevazione degli errori e nell'efficienza di calcolo risultante dalla coerenza tra codice e compilatore.

1.2 LINGUAGGI DINAMICAMENTE TIPATI

Nei linguaggi di programmazione dinamicamente tipati le variabili sono assegnate ai *tipi* durente l'esecuzione del programma, ne consegue che:

- la semantica statica non è definita;
- un utilizzo incosistenze di variabili, operazioni o assegnazioni generano errori dinamici basati sui tipi.

I linguaggi dinamici per questi motivi risultano essere più semplici ed espressivi.

1.2.1 Esempi di errori

Listing 1.1: Errore di sintassi

 $\| \mathbf{x} = \mathbf{y} \|$

Un errore sintattico generico a molti linguaggi è un espressione formattata erroneamente.

Listing 1.2: Errore statico

```
int x=0;
if(y<0) x=3; else x="three"</pre>
```

In un linguaggio statico come *Java* l'esempio precedente darebbe un errore in quanto una stringa non può essere convertita in un tipo intero.

Listing 1.3: Errore Dinamico

```
x = null;
if(y<0) y=1; else y=x.value;</pre>
```

L'esempio, per y > 0, darebbe un errore dinamico sia in *Java*, che in un linguaggio dinamico come *Javascript*.

Parte I

SINTASSI

2

Definizione 1 *Un alfabeto A è un insieme finito non vuoto di simboli.*

Definizione 2 Sia una stringa in un alfabeto A la successione di simboli in u:

$$u:[1\ldots n]\to A$$

Sia:

• [1...n] = m, l'intervallo dei numeri naturali tale che:

$$1 \le m \ge n$$
;

- u sia una funzione totale;
- n sia la lunghezza di u: length(u) = n.

Definizione 3 *Un programma è una stringa in un alfabeto A.*

2.1 ESEMPIO DI STRINGHE

2.1.1 Stringa vuota

$$u:[1\ldots 0]\to A$$

Esiste un unica funzione $u: 0 \rightarrow A$

Le notazioni standard di una stringa vuoto sono: ε , λ

2.1.2 Stringa non vuota

Si consideri $A = \{'a', \ldots, 'z'\} \cup \{'A', \ldots, 'Z'\}$, l'alfabeto inglese di lettere minuscole e maiuscole. La funzione $u : [1 \ldots 4] \to A$ rappresenta la stringa "Word" con:

- u(1) = 'W'
- u(1) = 'o'
- u(1) = 'r'
- u(1) = 'd'

2.1.3 Concatenazione di stringhe

Definizione 4

$$length(u \cdot v) = length(u) + length(v)$$
 $Per \ ogni \ i \in [1 \dots length(u) + length(v)]$
 $(u \cdot v)(i) = if \ i \le < length(u) then \ u(i) else \ v(i - length(u))$

Monoide

La concatenazione è associativa, ma non commutativa.

La stringa vuota è l'identità dell'elemento.

Induzione

La definizione di u^n per induzione su $n \in \mathbb{N}$:

Base: $u^0 = \lambda$

Passo induttivo: $u^{n+1} = u \cdot u^n$ Per cui u^n si concatena con se stesso n volte.

2.1.4 Insiemi di stringhe

Definizione 5 Sia A un alfabeto:

- $A^n = l'$ insieme di tutte le stringhe in A con lunghezza n;
- $A^+ = l'$ insieme di tutte le stringhe in A con lunghezza maggiore di 0;
- $A^* = l'$ insieme di tutte le stringhe in A;
- $A^+ = \bigcup_{n>0} A^n$;
- $A^* = \bigcup_{n>0} A^n = A^0 \cup A^+$

2.2 LINGUAGGIO FORMALE

Definizione 6 (Nozione sintattica di linguaggio) Un linguaggio L in un alfabeto A è un sottoinsieme di A^*

ESEMPIO: L'insieme L_{id} di tutti gli identificatori di variabile:

$$A = \{'a', \dots, 'z'\} \cup \{'A', \dots, 'Z'\} \cup \{'0', \dots, '9'\}$$

$$L_{id} = \{'a', b', \dots, 'a0', 'a1', \dots\}$$

2.2.1 Composizione di operatori tra linguaggi

Le operazioni possono essere di concatenazione o di unione:

- Concatenazione: $L_1 \cdot L_2 = \{u \cdot w | u \in L_1, w \in L_2\};$
- Unione: $L_1 \cup L_2$.

2.2.2 Intuizione

Unione

 $L = L_1 \cup L_2$: qualsiasi stringa L è una stringa di L_1 o di L_2 .

ESEMPIO:

$$L' = \{'a', \ldots, 'z'\} \cup \{'A', \ldots, 'Z'\}$$

Concatenazione

 $L = L_1 \cdot L_2$: qualsiasi stringa L è una stringa di L_1 , seguita da una stringa di L_2 .

ESEMPIO:

$$\{'a', 'ab'\} \cdot \{\lambda, '1'\} = \{'a', 'ab', 'a1', 'ab1'\}$$

$$L_{id} = L' \cdot A^* \text{ con } A = \{'a', \dots, 'z'\} \cup \{'A', \dots, 'Z'\} \cup \{'0', \dots, '9'\}$$

2.2.3 Monoide

La concatenazione è associativa, ma non commutativa.

 $A^0 (= \{\lambda\})$ è l'identità dell'elemento; quindi A^0 non è l'elemento neutro, l'elemento neuro è $0 = \{\}$.

2.2.4 Passo induttivo

 L^n è definito per induzione su $n \in \mathbb{N}$: Base: $L^0 = A^0 (= \{\lambda\},$ Passo induttivo: $L^{n+1} = L \cdot L^n$.

2.2.5 *Operatori* + *e* *

- Addizione: $L^+ = \bigcup_{n>0} L^n$;
- Moltiplicazione: * viene chiamata Kleen star, stella di Kleen.

$$L^* = \bigcup_{n \ge 0} L^n$$

Sono equivalenti $L^* = L^0 \cup L^+, L \cdot L^*$.

Intuizione

- Qualsiasi stringa di L^+ è ottenuta concatenando una o più stringhe di L;
- Qualsiasi stringa di *L** è ottenuta concatenando 0 o più stringhe di *L*: *Concatenando zero stringhe si ottiene la stringa vuota*.

3

Le espressioni regolari sono un formalismo comunamente utilizzato per definire linguaggi semplici.

Definizione 7 La definizione induttiva di un espressione regolare su un alfabeto A:

BASE:

- 0 è un espressione regolare di A;
- λ è un espressione regolare di A;
- per ogni $\sigma \in A$, σ è un espressione regolare in A.

PASSO INDUTTIVO:

- se e₁ ed e₂ sono espressioni regolare di A,
 allora e₁|e₂ è un espressione regolare di A;
- se e₁ ed e₂ sono espressioni regolare di A,
 allora e₁e₂ è un espressione regolare di A;
- se e è un espressione regolare di A,
 allora e* è un espressione regolarare di A.

ESERCIZIO Scrivere un **REGEX** che esprima i nomi di variabili permessi.

$$L_{id} = (\{'a', \dots, 'z'\} \cup \{'A', \dots, 'Z'\}) \cdot \{'a', \dots, 'z'\} \cup \{'A', \dots, 'Z'\} \cup \{'0', \dots, '9'\} *$$

$$e_{id} = (a| \dots |z|A| \dots |Z|A| \dots |Z|A| \dots |Z|0| \dots |9) *$$

3.1 SEMANTICA

La semantica di un espressione regolare in *A* è un liguaggio su *A*:

- ∅ → insieme vuoto;
- $\epsilon \leadsto \{\epsilon\};$
- $\sigma \leadsto \{"\sigma"\}, \forall \sigma \in A;$
- $e_1 \mid e_2 \rightsquigarrow$ unione delle semantiche di e_1 ed e_2 ;
- $e_1e_2 \rightsquigarrow$ concatenzatione delle semantiche di e_1 ed e_2 .

3.2 SINTASSI CONCRETA DELLE ESPRESSIONI REGOLARI

3.2.1 Precedenza ed associatività

- la stella di Kleene ha priorità sulla concatenzazione e l'unione;
- la concatenazione ha precedemza sull'unione;
- la concatenazione e l'unione sono associative a sinistra.

3.2.2 Operatori derivati

- e+=ee+: (una o più volte e);
- ϵ : è rappresentata dalla stringa vuota: $a \mid \epsilon$ diventa $a \mid$;
- e? = |e: (e è opzionale, ovvero uno o nessuno);
- [a0B]: uno qualsiasi dei caratteri nella quadre (a|0|B);
- [b-d]: uno qualsiasi dei caratteri nel range tra le quadre (b|c|d);
- [a0B]|[b-d]: può essere scritto come [a0Bb-d];
- [\land ...]: qualsiasi carattere ad eccezioni di ... (esempio: [$^a0Bb-d$] qualsiasi carattere ad eccezione di a, 0, B, b, c, d).

3.2.3 Caratteri speciali in JAVA

- . rappresenta ogni carattere;
- \ è il carattere di *escape*, per dare un significato speciale ai caratteri regolari, oppure un significato ordinario per caratteri speciali.

Caratteri speciali cui dare un significato ordinario

Esempi:

$$[,*,+,?,..,(,),[,],-,\wedge$$

SEMANTICHE:

- \. \rightsquigarrow {"."},
- \\ → {"\"},
- . \rightsquigarrow { $s \mid s$ ha lunghezza 1, l'insieme di tutti i caratteri},
- \ → non è sintatticamente corretto.
- $n \rightsquigarrow \{"n"\},$

Caratteri cui dare un significato speciale

- *t*: tab;
- $\ \$ newline;
- $\slash s$: qualsiasi spazio vuoto;
- \S: qualsiasi spazio non vuoto;
- \D: qualsiasi carattere non numerico ([$\land 0 9$]);
- $\wedge w$: qualsiasi parola ([[$a-zA-Z_0-9$]]);

Definizione 8 *Un linguaggio si dice* regolare *se può essere definito da un' espressione regolare.*

3.3 ANALISI LESSICALE

Definizione 9 *Un* lexeme è una sottostringa considerata come un'unità sintattica.

Definizione 10 L'analisi lessicale affronta il problema della decomposizione di una stringa in un lexeme.

Definizione 11 *Un* lexer o scanner è un programma che esegue l'analisi lessicale e genera lexemes.

ESEMPIO IN C: La stringa "x2 = 042; è decomposta nei *lexemes* seguenti:

- "x2";
- " = ";
- "042";
- ":".

3.3.1 *Token*

Un token è una nozione di lexeme pià astratta; ad un token corrisponde sempre un lexeme.

In alcuni casi un *token* può mantenere informazioni sulla sematica, come i valori dei numeri.

Un *tokenizer* è un programma che esegue l'analisi lessicale e genera *token*.

ESEMPIO IN C: La stringa "x2 = 042;" è decomposta nei token seguenti:

- *IDENTIFIER*: con il nome "x2";
- ASSIGN_OP;
- INT NUMBER: con il valore di 34;
- STATEMENT TERMINATOR.

3.4 LINGUAGGI REGOLARI

Definizione 12 *Un* linguaggio regolare è un linguaggui definibile con un espressione regolare.

I linguaggi regolari possono essere definiti in altre maniere equivalenti:

- con una grammatica regolare a destra o sinistra, anche chiamata lineare;
- con una serie di automata non deterministica o deterministica finita (NFA o DFA).

3.4.1 Limitazioni

I linguaggi regolari sono linguaggi semplici. Esempio:

- il linguaggio degli identificatori;
- il linguaggio dei numeri.

Le espressioni regolari possono definire le unità che costituiscono la sintassi di un linguaggio di programmazione, ma non possono definire la sintassi dell'intero linguaggio.

3.4.2 Esempi di linguaggi non regolari

Il linguaggio di espressioni con numeri naturali, addizione binaria e moltiplicazione e parentesi **non possono** essere definiti da un espressione regolare: il problema è posto dalle parentesi, per cui se venissero rimosse, allora il linguaggio sarebbe regolare.

Un altro esempio di linguaggio semplice non regolare:

$$\{"a"^n"b"^n \mid n \in \mathbb{N}\} = \{"","ab","aabb","aaabbb",...\}.$$

ANALISI SINTATTICA

Definizione 13 L' analisi sintattica è definita sull'analisi lessicale, risolve:

- il riconoscimento di una sequenza di lexems/tokens come validi se rispettano alcune regole sintattiche;
- la costruzione, in caso di successo, di una rappresentazione astratta della sequenza riconosciuta per eseguire delle operazioni su di essa.

4.1 PARSER

Definizione 14 *Un parser* è un programma che esegue l'analisi sintattica.

4.1.1 Parsers per i linguaggi di programmazione

I parser per i linguaggi di programmazione, riconoscono i *token* generati da un *tokenizer*, mentre le regole sintattiche sono definite formalmente da una *grammatica*.

I parser generano:

- un albero **parse/deviation**, una rappresentazione meno astratta della sequenza analizzata;
- un albero sintattico astratto (abstract syntax tree, AST), una rappresentazione pi astratta della sequenza analizzata.

Inoltre i parser possono essere scritti a mano, oppure generati automaticamente da una grammatica con specifici software come *ANTLR* o *BISON*.

PRIMO ESEMPIO CON SINTASSI C/JAVA/C++ Token analizzati:

- *IDENTIFIER*: con il nome "x2";
- ASSIGN_OP;
- *INT_NUMBER*: con il valore di 34;
- STATEMENT_TERMINATOR.

Il parser ritornerà errore dato che la sequenza non è riconosciuta oppure uno o più messaggi di errore sono presenti.

SECONDO ESEMPIO CON SINTASSI C/JAVA/C++ Token analizzati:

- *IDENTIFIER*: con il nome "x2";
- ASSIGN_OP;
- INT_NUMBER: con il valore di 34;
- *ADD_OP*;
- INT_NUMBER: con il valore di 10;
- STATEMENT_TERMINATOR.

Il parser riconosce la sequenza e genera un AST.

Figura 4.1: L'AST generato della sequenza precedente.

Le grammatiche *context free*, sono il formalismo più diffuso per definire le regole sintattiche di un linguaggio di programmazione. Sono più espressive di un espressione regolare e sono basate sulla concatenazione di unzione di più nomi e su definizioni ricorsive.

Listing 5.1: Una grammatica CF per espressioni semplici

```
| Exp ::= Num | Exp '+' Exp | Exp '*' Exp | '(' Exp ')' | Num ::= 'o' | '1'
```

DA NOTARE CHE: *Num* è definito nella grammatica solo per completezza, infatti i token *Num* sono definiti separatamente da un espressione regolare.

Listing 5.2: Esempio rivisitato di una grammatica CF per espressioni semplici

```
| Exp ::= Num | Exp '+' Exp | Exp '*' Exp | '(' Exp ')' | NUM definito da 0|1
```

NOTAZIONE: In *Exp* è maiuscolo solo il primo carattere: è definito nella grammatica. In *NUM* tutte le lettere sono maiuscole; è definito separatamente da un espressione regolare.

5.1 TERMINOLOGIA DELLE GRAMMATICHE CF

Listing 5.3: Esempio

```
Exp ::= Num | Exp '+' Exp | Exp '*' Exp | '(' Exp ')'
Num ::= 'o' | '1'
```

5.1.1 Terminologia per la grammatica G

Per G = (T, N, P):

- $\{'+','*','(',')','0','1'\}$ è l'insieme T dei **simboli terminali**;
- {*Exp*, *Num*} sono l'insieme *N* di simboli **non terminali**;
- $\{(Exp, Num), (Exp, Exp' + 'Exp), (Exp, Exp' * 'Exp), (Exp, '('Exp')'), (Num, '0'), (Num, '1')\}$ è l'insieme P di produzioni.

DA NOTARE CHE:

- ogni simbolo non terminale corrisponde ad un linguaggio; i linguaggi sono definiti come unioni di concatenazioni;
- i simboli terminali sono *lexems* dei linguaggi definiti dalla grammatica;
- le produzioni hanno forma (B, α) , per $B \in \mathbb{N} \cap \alpha \in (T \cup N)^*$

5.2 GRAMMATICHE COME DEFINIZIONE INDUTTIVA DI LINGUAG-

5.2.1 Primo esempio

Listing 5.4: Esempio

```
Exp ::= Num | Exp '+' Exp | Exp '*' Exp | '(' Exp ')'
Num ::= 'o' | '1'
```

Definizione induttiva di linguaggi

$$Exp = Num \cup (Exp \cdot \{"+"\} \cdot Exp) \cup (Exp \cdot \{"*"\} \cdot Exp) \cup (\{"("\} \cdot Exp \cdot \{")"\})$$
$$Num = \{"0"\} \cup \{"1"\}$$

DA NOTARE CHE:

- $Exp = Num \cup ...$ è il caso base per Exp: un numero è un espressione;
- *Exp* è definito su di *Num*, *Num* è definito esclusivamente per casi base.

5.2.2 Secondo esempio

Listing 5.5: Esempio

```
Exp ::= Term | Exp '+' Term | Exp '*' Term
Term ::= '(' Exp ')' | Num
Num ::= 'o' | '1'
```

DA NOTARE CHE: Le definizioni di Exp e Term sono ricorsive reciprocamente.

5.3 DERIVAZIONI

Listing 5.6: Esempio

```
Exp ::= Num | Exp '+' Exp | Exp '*' Exp | '(' Exp ')'
Num ::= 'o' | '1'
```

5.3.1 Linguaggi generati da una grammatica

- Una grammatica genera un linguaggio per ogni simbolo non terminale;
- la grammatica precedente genera due linguaggi L_{Exp} e L_{Num} ;
- il linguaggio per Num è relativamente semplice: $L_{Num} = \{"0", "1"\}$.

DA NOTARE CHE: per definire L_{Num} e per dimostrare che "1+0" $\in L_{\text{Exp}}$ e che "1+*(" $\notin L_{\text{Exp}}$ si rendono necessarie la **derivazione a passo singolo e la derivazione a passi multipli**.

5.3.2 *Derivazione ad un passo*

- $Exp \rightarrow Exp' *' Exp$ è usata la produzione (Exp, Exp' *' Exp);
- $Exp' *' Exp \rightarrow Num' *' Exp$ è usata la produzione (Exp, Num);
- $Num' *' Exp \rightarrow Num' *' Num$ è usata la produzione (Exp, Num);
- $Num' *' Num \rightarrow' 0'' *' Num$ è usata la produzione (Num,' 0');
- $'0'' *' Num \rightarrow '0'' *'' 1'$ è usata la produzione (Num, '1');

DA NOTARE CHE: Non esiste alcuna derivazione da '0" *" 1' dato che nessuna produzione può essere usata; '0" *" 1' è la stringa 0*1 che appartiene a $L_{\rm Exp}$.

5.3.3 Definizioni di derivazione

Derivazione ad un passo

Definizione 15 *La derivazione ad un passo per la grammatica G* = (T, N, P):

- possiede una forma $\alpha_1 B \alpha_2 \rightarrow \alpha_1 \gamma \alpha_2$;
- $\alpha_1, \alpha_2 \in (T \cup N)^*$;
- $(B, \gamma) \in P$ ovvero (B, γ) in produzione.

Derivazione a più passi

Definizione 16 *La chiusura transitiva di* \rightarrow :

- il caso base: se $\gamma_1 \rightarrow \gamma_2$, allora $\gamma_1 \rightarrow^+ \gamma_2$;
- caso induttivo: se $\gamma_1 \to \gamma_2$, e $\gamma_2 \to^+ \gamma_3$, allora $\gamma_1 \to^+ \gamma_3$.

Linguaggio generato

Il linguaggio L_B generato da G = (T, N, P) per i non terminali $B \in N$:

- tutte le stringhe di terminali che possono essere derivati in uno o più passaggi da *B*;
- formalmente: $L_B = \{u \mid B \to^+ u\}.$

ALBERI DI DERIVAZIONE

6.1 ALBERO DI DERIVAZIONE (PARSE TREE)

OSSERVAZIONE 1 Le grammatiche CF sono utilizzate per definire linguaggi ed implementare parsers, i parsers dovrebbero generare gli alberi, ma le derivazioni non sono alberi.

OSSERVAZIONE 2 Un passo di derivazione è determinato da:

- la produzione usata;
- lo specifico simbolo non termitale che rimpiazza.

Quest'ultimo punto non influenza la stringa finale dei terminali ottenuti dalla derivazione.

INTUIZIONE Un albero di derivazione è una generalizzazione di una derivazione a più passaggi in modo che la stringa derivata contenga solo terminali e che i non terminali siano rimpiazzati in parallelo.

6.1.1 Esempi di alberi di derivazione (ANTLR)

Listing 6.1: Grammatica ANTLR

```
| grammar SimpleExp;
| Exp ::= Num | Exp '+' Exp | Exp '*' Exp | '(' Exp ')'
| Num ::= 'o' | '1'
```

Albero di derivazione per "1*1+1"

Figura 6.1: Albero di derivazione per "1*1+1""

ESERCIZIO: Mostrare che " $1*1+1" \in L_{\text{Exp}}$ usando la nozione di derivazione ad uno o più passi.

$$Exp \rightarrow Exp' + 'Exp \rightarrow^+ Exp \times Exp' + 'Num' \rightarrow^+ Num' * 'Num' + '1' \rightarrow^+ '1' '*' '1' '+' '1'$$

ESERCIZIO: Mostrare che "1 + ($\notin L_{Exp}$:

$$Exp \rightarrow Exp'*'Exp \rightarrow^+ Num'*'Exp'+'Exp \rightarrow^+ '1''*'Num'+'Num \rightarrow^+ '1''*''1''+''1'$$

6.1.2 Definizione di albero di derivazione in G=(T,N,P)

Albero di derivazione per $u \in T^*$ partendo da $B \in N$.

- se un nodo è etichettato da C ed ha n figli I_1, \ldots, I_n , allora $(C, I_1, \ldots, I_n) \in P$ (ovvero, (C, I_1, \ldots, I_n) è una produzione di G;
- la radice è etichettata da *B*;
- *u* è ottenuto dalla concatenaziona da sinistra a destra dii tutte le etichette terminali (nodi foglia).

Definizione equivalente di un linguaggio generato

Il linguaggio L_B generato da G = (T, N, P) per un non terminale $B \in N$ è composto da tutte le stringhe u di terminali così che esiste un albero di derivazione per u partendo da B.

GRAMMATICHE AMBIGUE

Definizione 17 *Una grammatica* G = (T, N, P) *è ambigua per* $B \in N$ *se esitono due differenti alberi di derivazione partendo da* B *per la stessa stringa.*

Per esempio la grammatica 1+1+1 è ambigua a seconda delle parentesi.

```
7.1 SOLUZIONI PER L'AMBIGUITÀ
```

Per risolvere il problema dell'ambiguità si può cambiare la sintassi:

7.1.1 Notazione prefissa

Listing 7.1: Notazione prefissa

```
Exp ::= Num | '+' Exp Exp | '*' Exp Exp
Num ::= 'o' | '1'
```

In questo caso esiste un unico albero di derivazione per "11 + 1* e le parentesi non sono più necessarie.

7.1.2 Notazione postfissa

Listing 7.2: Notazione postfissa

```
| Exp ::= Num | Exp Exp '+' | Exp Exp '*' | Num ::= 'o' | '1'
```

In questo caso esiste di nuovo un unico albero di derivazione e le parentesi sono di nuovo non necessarie.

7.1.3 Notazione funzionale

Listing 7.3: Notazione funzionale

```
Exp ::= Num | 'add' '(' Exp ',' Exp ')' | 'mul' '(' Exp ',' Exp '
)'
Num ::= 'o' | '1'
```

In questo esempio esiste un unico albero di derivazione per add(1, mul(1, 1). 7.1.4 *Notazione infissa*

Generalmente la notazione infissa è una soluzione più pratica.

• si definiscono le regole di associatività per gli operatori binari:

- addizione associativa a sinistra: "1 + 1 + 1" diventa "(1 + 1) + 1";
- addizione associativa a destra: "1+1+1" diventa "1+(1+1)";
- si definiscono le regole di precedenza per gli operatori, usando le parentesi per sovrascriverlo:
 - la moltiplicazione ha precedenza rispetto l'addizione: "1 + 1*1" significa "1 + (1*1)";
 - l'addizione ha precedenza rispetto la moltiplicazione: "1 * 1 + 1" significa "1 * (1 + 1)".

7.1.5 Operatori con la stessa precedenza

Gli operatori binari possono avere la stessa precedenza, in questo caso condividono la regola associativa:

- addizione e moltiplicazione hanno la stessa precedenza e sono associative a sinistra: "1+1*1" diventa "1+(1*1)" e "1*1+1" diventa "1+(1*1)" e "1*1+1";
- addizione e moltiplicazione hanno la stessa precedenza e sono associative a destra: "1+1*1" diventa "1+(1*1)" e "1*1+1" diventa "1*(1+1)";

NOTA CHE: le regole sull' associatività risolvono ambiguità tra operatori binari con la stessa precedenza, inoltre mischiando operatori con diverse **arità** rende l'eliminazione dell'ambiguità più complessa.

7.1.6 Tecniche per risolvere l'ambiguità

- una grammatica ambigua *G* è trasformata in una grammatica non ambigua *G'*;
- l' **equivalenza** significa che per tutti i non terminali di *B* e *G*, i linguaggi generati da *G*, *G*', *B* sono uguali;
- è possibile per la **trasformazione** di codificare l' associatività e le regole di precedenza nella grammatica non ambigua *G*′.

Esempio 1: + e * con la stessa precedenza

Listing 7.4: Grammatica ambigua

```
Exp ::= Num | Exp '+' Exp | Exp '*' Exp | '(' Exp ')'
Num ::= 'o' | '1'
```

Listing 7.5: Associatività a sinistra non ambigua

```
Exp ::= Atom | Exp '+' Atom | Exp '*' Atom
Atom ::= Num | '(' Exp ')'
Num ::= 'o' | '1'
```

Nota che: Exp' + Atom|Exp' * Atom significa che sul lato destro di +(*), le addizione (e moltiplicazioni) sono permesse solo se circondate da parentesi.

Listing 7.6: Associatività a destra non ambigua

```
Exp ::= Atom | Atom '+' Exp | Atom '*' Exp
Atom ::= Num | '(' Exp ')'
Num ::= 'o' | '1'
```

Nota che: Atom' + 'Exp|Atom' * 'Exp significa che sul lato sinistro di +(*), le addizione (e moltiplicazioni) sono permesse solo se circondate da parentesi.

Esempio 2: * con la maggiore precedenza

Listing 7.7: Associative a sinistra non ambigue

```
Exp ::= Mul | Exp '+' Mul Mul ::= Atom | Mul '*' Atom' Atom ::= Num | '(' Exp ')' Num ::= '0' | '1'
```

Nota che: *Mul'* * *Atom* significa che entrambi i lati delle addizione di * sono permesse solo se circondate da parentesi.

Listing 7.8: Associative a destra non ambigue

```
Exp ::= Mul | Exp '+' Mul | Mul ::= Atom | Atom '*' Mul' | Atom ::= Num | '(' Exp ')' | Num ::= '0' | '1'
```

Nota che: *Atom'* * *Mul* significa che entrambi i lati delle addizione di * sono permesse solo se circondate da parentesi.

Esempi rimanenti

- * con precedenza ed associativtà a sinistra, + associatività a destra;
- * con precedenza ed associativtà a destra, + associatività a sinistra;
- + con precedenza ed associativtà a sinistra, * associatività a destra;
- + con precedenza ed associativtà a destra, + associatività a sinsitra;

7.2 SINTASSI AMBIGUA PER STATEMENTS

Listing 7.9: Esempio di ambiguità per gli statements

```
Stmt ::= ID '=' Exp | 'if' '(' Exp ')' Stmt | Stmt ';' Stmt | '{'
Stmt '}'
Exp ::= ID | BOOL // ID e BOOL sono definiti da espressioni
regolari
```

Figura 7.1: Primo esempio di albero di derivazione per "if(x) x=false;y=true"

Figura 7.2: Secondo esempio di albero di derivazione per "if(x) x=false; y=true"

COSTRUZIONE DI UN PARSER DA UNA GRAMMATICA

Individuiamo due passaggi per costruire un parser da una grammatica:

1. la grammatica non deve essere ambigua;

Listing 8.1: Una grammatica non ambigua

```
Exp ::= Mul | Exp '+' Mul

Mul ::= Atom | Mul '*' Atom

Atom ::= Num | '(' Exp ')'

Num ::= 'O' | '1'
```

2. per ogni token di input, il parser dever sceltiere una produzione unica da usare per l'albero *parse* corretto.

PROBLEMI:

- i token sono letti dal parser da sinsitra a destra;
- nella più semplice delle ipotesi, il parser è a conoscenza solo del token successivo (*lookahead token*);
- un parser con un *lookahead token* non è in grado di scegliere la giusta produzione per la grammatica di cui sopra.

8.1 COME COSTRUIRE UN PARSER DA UNA GRAMMATICA

Listing 8.2: Una grammatica non ambigua

```
Exp ::= Mul | Exp '+' Mul
Mul ::= Atom | Mul '*' Atom
Atom ::= Num | '(' Exp ')'
Num ::= '0' | '1'
```

Quindi un parser con **un** *lookahead token* non può essere costruito per la grammatica di cui sopra.

CONTROESEMPIO: Se il primo lookahead token è un numero, allora entrambe le produzioni di Exp potrebbero funzionare. A seconda del secondo lookahead token t:

- la produzione (Exp,Mul) è usata se t è '*' oppure la fine dello stream di input;
- la produzione (Exp,Exp'+'Mul) è usata se t='+'.

Osservazioni: Per costruire un albero *parse*, la produzione (Exp,Mul) deve essere usata, inoltre quando le produzioni di Exp sono usate consecutivamente, vengono ottenute stringhe della forma seguente: Mul, oppure Mul seguita dalla stringa '+'Mul ripetuta una o più volte.

Listing 8.3: Grammatica rivisitata a seguito delle osservazioni precedenti

```
Exp ::= Mul | AddSeq
AddSeq ::= '+' Mul | '+' Mul AddSeq
Mul ::= Atom | Mul '*' Atom
Atom ::= Num | '(' Exp ')'
Num ::= 'o' | '1'
```

CONSIDERAZIONI SULLA TRASFORMAZIONE DELLA GRAMMATICA La grammatica è equivalente alla precedente, ma quando si costruisce un albero *parse* sappiamo che un nodo Exp deve sempre avere un figlio c a sinistra etichettato da Mul dopo che l'albero parse con radice c è stato costruito, quindi la produzione corretta è (Exp, Mul AddSeq) se il token lookahead è '+'; altrimenti la produzione è (Exp,Mul): un nodo AddSeq deve sempre avere un figlio a sinistra c_1 etichettato da '+', seguito da un figlio c_2 etichettato da Mul.

Dopo che l'albero con radice c_2 è costruito, la produzione corretta se il token lookahead='+' è: (AddSeq, '+' Mul AddSeq), altrimenti la produzione è (AddSeq, '+' Mul).

Listing 8.4: Soluzione completa

```
Exp ::= Mul | AddSeq
AddSeq ::= '+' Mul | '+' Mul AddSeq
Mul ::= Atom | Atom MulSeq
MulSeq ::= '*' Atom | '*' Atom MulSeq
Atom ::= Num | '(' Exp ')'
Num ::= 'o' | '1'
```

Figura 8.1: Parse tree per "1+1*1"

exp

AddSeq

num

atom
MulSeq

num

1