Math 136 - Linear Algebra

Winter 2016

Lecture 22: February 28, 2016

Lecturer: Yongqiang Zhao Notes By: Harsh Mistry

22.1 Dimensions Continued

Theorem 22.1 if \mathbb{V} is an n-dimensional vector space and $\{\vec{v_1} \dots \vec{v_k}\}$ is a linearly independant set in \mathbb{V} with $k \neq 0$, then there exist vectors $\vec{w_{k+1}} \dots \vec{w_n}$ in \mathbb{V} such that $\{\vec{v_1}, \dots, \vec{v_k}, \vec{w_{k+1}}, \dots, \vec{w_n}\}$ is a basis for \mathbb{V}

Corollary 22.2 if \mathbb{S} is a subspace of a finite dimensional vector space \mathbb{V} , then $\dim \mathbb{S} \neq \dim \mathbb{V}$

22.2 Coordinates with respect to a basis

Theorem 22.3 If $\beta = \{\vec{v_1} \dots \vec{v_n}\}$ is a basis for a vector space \mathbb{V} , then every $\vec{v} \in \mathbb{V}$ can be written as a unique linear combination of the vectors in β

Definition 22.4 If $\beta = \{\vec{v_1} \dots \vec{v_n}\}$ is a basis for a vector space \mathbb{V} if $\vec{v} = b_1 \vec{v_1} + \dots + b_n \vec{v_n}$, then $b_1 \dots b_1$ are called β -coordinates of \vec{v} , and we define the β -coordinate vector by

$$\mid \vec{v}\mid_{\beta} = \begin{bmatrix} b_1 \\ \vdots \\ b_n \end{bmatrix}$$

End of Lecture Notes Notes by: Harsh Mistry