Additional Examples

1 One Dimensional non-symmetric gaussian $\hat{\rho}$

We choose $\rho_0 = 0.5$ and

$$\hat{\rho} = 0.5(1 - t) + t \frac{1}{0.5604} e^{-10((y+0.2)^2)}.$$

The prefactor $\frac{1}{0.5604}$ ensures that the mass of $\hat{\rho}$ is one at all times. Choosing $n=61,\ N=60,$ ODE Tols = 10^{-8} , Optimality Tols = 10^{-4} . For $\beta=10^{-3}$ and $\gamma=-1,\ J_{FW}=0.1084$ and $J_{Opt}=0.0055$, see 1. For $\beta=10^{-3}$ and $\gamma=1,\ J_{FW}=$ and $J_{Opt}=$, see 2. Other choices of β and γ behave as expected.

Figure 1: 1D Example with $\beta=10^{-3},\,\gamma=-1$

2 Two Dimensional, Example 1

++ 2D seems to work now because I fixed mass conservation, which wasn't correct the last time I ran it. ++

We choose $\rho_0 = 0.25$ and

$$\hat{\rho} = 0.25(1 - t) + t * \frac{1}{4}((\cos(\pi y_1) + 1)(\cos(\pi y_2) + 1)),$$

Figure 2: 1D Example with $\beta = 10^{-3}$, $\gamma = 1$

see 3 We choose $n=20,\ N_1,N_2=30.$ Tolerances are $10^{-8}/10^{-4}.$ For $\beta=10^{-3}$ and $\gamma=1,\ J_{FW}=0.0596$ and $J_{Opt}=0.0170,$ see 4, 5, 6. For $\beta=10^{-3}$ and $\gamma=-1,\ J_{FW}=0.0334$ and $J_{Opt}=0.0020,$ see 7, 8, 9.

3 Two Dimensional, Example 2

4 Two Dimensional, Example 3

Figure 3: 2D Example 1, $\hat{\rho}$ at t=20

Figure 4: 2D Example 1, ρ forward, $t=2,10,20,\,\beta=10^{-3},\,\gamma=1$

Figure 5: 2D Example 1, ρ optimal, $t=2,10,20,\,\beta=10^{-3},\,\gamma=1$

Figure 6: 2D Example 1, Optimal Control, $t=2,10,19,\,\beta=10^{-3},\,\gamma=1$

Figure 7: 2D Example 1, ρ forward, $t=2,10,20,\,\beta=10^{-3},\,\gamma=-1$

Figure 8: 2D Example 1, ρ optimal, $t=2,10,20,\,\beta=10^{-3},\,\gamma=-1$

Figure 9: 2D Example 1, Optimal Control, $t=2,10,19,\,\beta=10^{-3},\,\gamma=-1$