Homework Assignment #5

Note: You must provide sufficient detail in your derivations or proofs to earn full credit. No late homework will be graded.

- 1. Let X_1, \dots, X_n be a random sample from $N(\theta, \theta^2)$. Find the maximum likelihood estimate of θ when $\bar{X} = 0$ is observed.
- 2. We have k independent observations X_1, \dots, X_k from a binomial distribution b(n, p), where both n and p are unknown. In class, it was shown that the method-of-moments estimators are unspecified when k = 1.
 - (a) Find a method-of-moments estimator for (n, p) when k > 1.
- (2) In the case of k = 1 ad X = 8, can you find the maximum likelihood estimator of (n, p)? If you cannot do it analytically, you may do it numerically for considering a reasonable range of n.
- 3. Let $(X_1, Y_1), \dots, (X_n, Y_n)$ be a random sample from the bivariate normal distribution with mean (0,0), variances (σ^2, σ^2) , and the correlation coefficient ρ .
 - (a) Find the maximum likelihood estimator of (σ^2, ρ) .
 - (b) Find a method-of-moments estimator of (σ^2, ρ) .
- 4. Let X_1, \ldots, X_n be independent random variables with $X_i \sim \text{Poisson}(c_i\lambda)$ for $i = 1, \ldots, n$. Here $\lambda > 0$ is unknown while c_1, \ldots, c_n are some known positive constants.
- (a) Let $\tilde{\lambda} = n^{-1} \sum_{i=1}^{n} \{X_i/c_i\}$. Is $\tilde{\lambda}$ an unbiased estimator of λ ? Calculate the mean squared error of $\tilde{\lambda}$.
- (b) Find the maximum likelihood estimator $\hat{\lambda}$ of λ . Is $\hat{\lambda}$ unbiased? Is $\hat{\lambda}$ a better estimator compared to $\tilde{\lambda}$ under the mean squared error criterion?