Discrete Math Project4

Andreas Griewank

Given N objects of values $0 \le v_n \in \mathbb{R}$ with weights $0 < w_n \in \mathbb{R}$ and a maximal total weight $0 \le W \in \mathbb{Z}$ consider the knapsack problem

maximize
$$\sum_{n=1}^{N} v_n x_n$$
 s.t. $\sum_{n=1}^{N} w_n x_n \leq W$ for $x_n \in \{0, 1\}$.

Assume that $w_n = \text{ceil}(.1W \operatorname{abs}(\cos(n)))$ and $v_n = \text{ceil}(V \operatorname{abs}(\sin(n)))$ or that the weights and values are generated at random from $\{1, \ldots, W\}$ and $\{1, \ldots, V\}$ for some $V \ge 1$, respectively.

- 1. For N = 300, W = 1000 and V = 10 in your favorite programming language:
 - a. Use a sorting algorithm to reorder the objects such that the relative value v_n/w_n is monotonically nonincreasing.
 - b. Implement the greedy algorithm of taking the first k objects such that the sum of the weights is no greater W but adding the k + 1st object would exceed the weight limit.
 - c. Derive from the solution of b. the solution of the LOP relaxation, where $x_n \in \{0, 1\}$ is replaced by $0 \le x_n \le 1$.
- 2. Formulate the problem as an AMPL model.
 - a. Generate the AMPL data file for N = 300, W = 1000 and V = 10 and above.
 - b. Solve the problem with Minos or another solver and compare the result to 1.b.
 - c. Solve the LOP relaxation with Minos or another solver and compare the result to 1.c.
 - d. Round the result of c. by setting all $x_n < 1$ to 0 and compare it to the result of b.
 - e. Check whether the solvers benefit from the sorting suggested in 1.a.
 - f. Check whether the solvers benefit from an initialization by the greedy solution of 1b.
- 3. Solve the problem using dynamic optimization.
 - a. In your favorite programming language write a program that solves the knapsack problem based on the recurrence

$$\max(w, n) = \max(\max(w, n-1), v_n + \max(w - w_n, n-1))$$
 for $w \leq W$ and $n \leq N$

- b. Apply the program for N = 300, W = 1000 and V = 10 and compare its results to 2.b.
- c. Modify the program s.t. $\max(w, n)$ is not reevaluated for the same argument w, n.
- d. Check whether the new program benefits by the reordering suggested in 1.a.
- e. Apply the program of c. to the standard problem with N = 300, W = 1000 and V = 10 and compare its runtime to that of 2 b. for various solvers.
- f. Run the last program for a large variety of knapsack problems and monitor the ratio of the runtime divided by (NW), is it uniformly bounded?