

Mathematical Methods in Finance

Lecture 10: Black-Scholes in Practice: Greeks and Volatility-Arbitrage

Fall 2013

Copyright © 2013 LI, Chenxu

Overview

- ► Black-Scholes Sensitivities (Greeks)
- ► Black-Scholes in practice: Delta-Neutral and Long Gamma Trading
- ► Implied Volatility vs. Realized Volatility: Volatility-Arbitrage

Recall: the Black-Scholes-Merton PDE

▶ Consider the Black-Scholes-Merton model:

$$\frac{dS(t)}{S(t)} = \mu dt + \sigma dW(t),$$

and suppose that the interest rate is r.

- ▶ Let C(t) = c(t, S(t)) be the value of a call option with maturity T with payoff $(s K)^+$.
- ightharpoonup c(t,x) satisfies the Black-Scholes-Merton equation.

$$c_t(t,x) + rxc_x(t,x) + \frac{1}{2}\sigma^2 x^2 c_{xx}(t,x) = rc(t,x)$$
 for all $t \in [0,T)$,
(1)

with a terminal condition $c(T, x) = (x - K)^+$.

3

The Black-Scholes-Merton formula

The Black-Scholes-Merton formula: For any $t \in [0, T)$ and x > 0,

$$c(t,x) = xN(d_{+}(T-t,x)) - Ke^{-r(T-t)}N(d_{-}(T-t,x)),$$
 (2)

where N(y) is the CDF of standard normal distribution and

$$d_{+}(\tau, x) = \frac{1}{\sigma\sqrt{\tau}} \left[\log\left(\frac{x}{K}\right) + \left(r + \frac{\sigma^{2}}{2}\right)\tau \right],$$

$$d_{-}(\tau, x) = \frac{1}{\sigma\sqrt{\tau}} \left[\log\left(\frac{x}{K}\right) + \left(r - \frac{\sigma^{2}}{2}\right)\tau \right].$$
(3)

The Black-Scholes-Merton formula: Greeks

Greeks: The derivatives of c(t,x) w.r.t. various variables are called Greeks.

- ▶ Delta: $\Delta = c_x(t, x) = N(d_+(T t, x)) > 0;$
- ► Theta: $\Theta = c_t(t, x) = -rKe^{-r(T-t)}N(d_-(T-t, x)) \frac{\sigma x}{2\sqrt{T-t}}N'(d_+(T-t, x)) < 0;$
- ▶ Gamma: $\Gamma = c_{xx}(t,x) = \frac{1}{\sigma x \sqrt{T-t}} N'(d_{+}(T-t,x)) > 0;$
- ▶ Vega: $\mathcal{V} = c_{\sigma}(t,x) = xN'(d_{+}(T-t,x))\sqrt{T-t} > 0.$

5

Black-Scholes-Merton Formula: Sensitivity to S and T

Black-Scholes-Merton Formula: Sensitivity to σ

光华管理首先 Guanghua School of Management

7

Black-Scholes Delta

Delta:

- $\Delta \rightarrow 0$ as $S \downarrow 0$
- $\Delta \approx 1/2$ at S = K (because $d_1 \approx 0$ at S = K and so $N(d_1) \approx 1/2$)
- $\Delta \rightarrow 1$ as $S \uparrow \infty$

Understanding the Black-Scholes-Merton formula

- ▶ An explanation of the Black-Scholes-Merton formula (2), i.e., $c(t,x) = xN(d_+(T-t,x)) Ke^{-r(T-t)}N(d_-(T-t,x)) = xc_x(t,x) e^{-r(T-t)}\left[KN(d_-(T-t,x))\right].$
- ▶ It means that to hedge a short position, at time t, we hold $c_x(t,x) \equiv N(d_+(T-t,x))$ shares of stocks and borrow $e^{-r(T-t)}KN(d_-(T-t,x))$ from the money market.
- ▶ Consider taking a long position on the option and then hedging it. Then at time t and given stock price x_1 , the initial value of the portfolio is:

$$c(t, x_1) - x_1 c_x(t, x_1) + M,$$
 (4)

where $M = x_1 c_x(t, x_1) - c(t, x_1)$ (short stock, buy the option, and lend the money to the bank).

9

Delta Neutral Position

▶ Delta neutral: Short $c_x(t,x_1)$ shares of stocks so that the change of portfolio values due to the change of the stock price, i.e. $\Delta c(t,x)$, is nearly offset by the change in the value of our short position in the stock , i.e.

$$\Delta x c_x(t, x) \approx \Delta x \frac{\Delta c(t, x)}{\Delta x} = \Delta c(t, x).$$

- If we short more than $c_x(t, x_1)$ shares, the portfolio value would decrease (or increase) when stock price rises (or falls).
- ▶ If we short less than $c_x(t, x_1)$ shares, the portfolio would decrease (or increase) when stock price falls (or rises).
- ▶ If we have no speculation on the movement of the stock price, we would short exactly $c_x(t, x_1)$ shares.

11

Long Gamma Position

▶ Long gamma: See (4). If the stock price were to instantaneously fall or rise to x_0 and we do not change our position in the stock $c_x(t,x_1)$ or the money market account M, due to the convexity of c(t,x) in x the total portfolio value would be

$$c(t, x_0) - x_0 c_x(t, x_1) + M = c(t, x_0) - c_x(t, x_1)(x_0 - x_1) - c(t, x_1)$$
>0

- Therefore, a long gamma portfolio is profitable in times of high stock volatility.
- ▶ As time *t* moves forward a little bit, the stock price rises or falls.
 - ► Long gamma has a positive effect on the value of a long gamma portfolio;
 - ► However, the negative theta $c_t(t,x)$ has a negative effect on the value of a long gamma portfolio.
 - ► For the European options, the two effects above cancel.

How to specify the volatility? Two Notions: Implied vs. Realized

IMPLIED VOLATILITY: for option pricing

► The constant volatility parameter plugged into the Black-Scholes-Merton model for option pricing

$$\frac{dS_t}{S_t} = \mu dt + \sigma dW_t,\tag{5}$$

▶ The **implied volatility** σ^* is the volatility that equates model and market option prices, i.e.

$$C(\sigma^*) = C_{Market}. (6)$$

- Different options imply different implied volatility!
- ▶ Different maturities and strikes ⇒ implied volatility surface

13

How to specify the volatility? Two Notions: Implied vs. Realized

REALIZED VOLATILITY: for risk management and forecasting etc.

- Statistical definition: capture the real fluctuation of the asset return!
- ▶ Independent of any model
- ▶ Historical Observation: $\{S(t_i)\}$,
- **Realized variance** for the period of [0, T] is defined as:

$$RV_{0,T} := \frac{1}{(n-1)\Delta t} \sum_{i=0}^{n-1} \left(\log \frac{S_{t_{i+1}}}{S_{t_i}} \right)^2.$$

ightharpoonup Realized volatility: $\sqrt{RV_{0,T}}$

Source: Financial Times

	58	25	592	25	60	25	61	25	62	25	63	25	64	25	65	25
	C	Р	C	Р	C	Р	C	Р	C	Р	C	Р	C	Р	C	P
May	2161/2	1/4	1161/2	1/4	161/2	1/4	1/4	831/2	1/4	1831/2	1/4	2831/2	1/4	3831/2	1/4	4831/
Jun	3101/2	761/2	2411/2	107	179	144	127	1191/2	84	2481/2	52	316	301/2	3931/2	15	4771
Jul	410	1441/2	347	181	288	221	224	256	1751/2	306	134	3631/2	98	4261/2	69	4961
Sep	5061/2	216	4411/2	249	380	286	3231/2	327	271	373	224	424	1811/2	4791/2	1451/2	5411
Dect	6631/2	3011/2	597	331	5331/2	3641/2	474	4011/2	4181/2	4421/2	3661/2	4871/2	320	537	2731/2	5871

15

Implied Volatility Surface for FTSE100 Index Option

S&P500 Option Implied Volatility Skew

17

The Evolution of Implied Volatility Over Time

Implied Volatility for ATM Options on S&P500 Index, 1987-1997

Implied Volatility vs. Realized Volatility

	Implied Exceeds	Realized Exceeds	
	Realized	Implied	Total
Number of Observations	201	37	238
Percent of Observations	84.5%	15.5%	
Average Monthly Difference	5.90%	-5.03%	4.20%
Median Monthly Difference	5.36%	-1.68%	4.61%
May/Min	17 /12%	20 05%	

19

Implied Volatility vs. Realized Volatility

Exhibit In this Exhibit the average value for implied volatility (as represented by VIX) was 20.27 and the average value for realized volatility was 16.38. A number of studies have shown that the implied volatility inherent in index options prices generally has exceeded subsequent realized volatility over multi-year periods (see www.cboe.com/benchmarks). Richly priced index options could provide advantages to the option seller.

Black-Scholes in Practice: Volatility Arbitrage

Suppose the true dynamics for the underlying asset follows

$$dS(t) = \alpha(t)S(t)dt + \beta(t)S(t)dW(t),$$

where $\alpha(t)$ and $\beta(t)$ are two stochastic processes adapted to a prespecified filtration. Such a model is quite flexible and general.

- $ightharpoonup \alpha(t)$ represents the return; $\beta(t)$ represents the volatility
- ▶ Taking a short position of an option with maturity T and payoff p(S(T)), a trader believes that S(t) satisfied Black-Scholes with the implied volatility σ_{imp} . She/he prices the option and hedges accordingly.
- ▶ Suppose V(t) = c(t, S(t)) is the no-arbitrage price, where c(t, s) is governed by the Black-Scholes-Merton equation.

21

Black-Scholes in Practice: Volatility Arbitrage

▶ A self-financing hedging portfolio has value X(t) at time t by holding $\Delta(t) = \frac{\partial c(t,S(t))}{\partial s}$ shares of S(t) and investing the rest $X(t) - \Delta(t)S(t)$ in the riskless account. Thus,

$$dX(t) = \Delta(t)dS(t) + r\left(X(t) - \Delta(t)S(t)\right)dt$$

with X(0) = c(0, S(0)) if the option is written at the Black-Scholes price.

► Consider

$$Y(t) = X(t) - C(t, S(t))$$

We have

$$dY(t) = rY(t)dt + \frac{1}{2}S^{2}(t)\frac{\partial^{2}c}{\partial s^{2}}(\sigma_{imp}^{2} - \beta(t)^{2})dt$$

with Y(0) = 0,

Black-Scholes in Practice: Volatility Arbitrage

► Equivalently, we have

$$Y(T) = \frac{1}{2} \int_0^T e^{r(T-t)} S^2(t) \frac{\partial^2 c}{\partial s^2} (\sigma_{imp}^2 - \beta(t)^2) dt.$$

- ▶ If the implied volatility σ_{imp} is higher than the realized volatility $\beta(t)$ (as mostly is the case), the trader makes a positive profit due to the positive Gamma for put and call options.
- Successful hedging is entirely a matter of good volatility estimation!

23

Further Topics

- ► More theory and mathematical tools on stochastic calculus
- ▶ More realistic models
- More financial products (futures, exotic options, American style derivatives, etc.)
- ► Term structure modeling
- Portfolio planning
- ► Numerical techniques
- ► Many other topics...

Supplementary Material

Suggested Reading Material (We only need to focus on the material parallel to our course slides):

► Selected material from Shreve Vol. II: 4.5.5

Suggested Exercises (Do Not Hand In; For Your Deeper Understanding Only)

► Shreve Vol. II: 4.9, 4.11, 4.12, 4.21 (some of these are challenging questions)

25

Thank You

