МИНОБРНАУКИ РОССИИ САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭЛЕКТРОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ЛЭТИ» ИМ. В.И. УЛЬЯНОВА (ЛЕНИНА)

Кафедра робототехники и автоматизации производственных систем

ОТЧЁТ

по курсовой работе по дисциплине «Информатика»

_								
Подп. и дата								
Инв. № дубл.								
Взам. инв. №					Санкт-Петербург			
Подп. и дата					2018			
ДОП	Изм Лис	ст № докум.	Подп.	Дата	Вариант N	32		
Инв. № подл.	Разраб. Пров. Н. контр Утв.	Веренёв А.А. Прокшин А.Н р.			Пояснтельня записка к курсовой работе по дисциплине "Информатика"	Лит.	Лист 1	Листов 8

Содержание 1. Цель и тема курсовой работы 2. Задание на курсовую работу 3. Введение 4. Исследование функции 5. Исследование кубического сплайна 6. Задача оптимального распределения неоднородных ресурсов 7. Список литературы Лист Вариант N 32 № докум. Подп. Изм Лист Дата

Взам. инв. №

Инв. № подл.

1. Цель и тема курсовой работы

Цель курсовой работы: уметь применять персональный компьютер и математические пакеты прикладных программ в инженерной деятельности.

Тема курсовой работы: решение математических задач с использованием математического пакета «SciLab» и системы компьютерной алгебры «Reduce».

Подп. и дата										
Инв. № дубл.										
B3am. NHB. $\mathcal{N}^{\underline{o}}$										
Подп. и дата										
$И$ нв. N 2 подл.	Изм	Лист	№ докум.	Подп. Д	ата		Вариант	N 32		Лист

3. Введение В настоящее время при решении различных как прикладных инженерных, так и чисто исследовательских задач, возникает необходимость в использовании широкого круга алгоритмов из множества разделов математики. Между тем самостоятельная реализация многих алгоритмов на некотором языке программирования может быть сложна и избыточна. Вследствие этого широкое распространение получили математические пакеты и системы компьютерной алгебры, такие как: MatLab, Octave, SciLab, Mathematica, Reduce, Mapple, призванные избавить пользователя от рутинных процедур, предоставить удобный интерфейс взаимодействия с уже написанным программным кодом и быстрым созданием нового. К сожалению, некоторые из перечисленных выше математических пакетов, будучи коммерческими по природе, имеют пакетом SciLab и системой компьютерной алгебры Reduce.

Подп. и дата	
Инв. № дубл.	
Взам. инв. №	
Подп. и дата	
Инв. № подл.	 r

- а)Решить уравнение f(x)=g(x).
- б) Исследовать функцию h(x)=f(x)-g(x) на промежутке $[0;\frac{5\pi}{6}]$
- 2. Найти коэффициенты кубического сплайна, интерполирующего данные, представленные в векторах:

$$V_x = [0, 0.5, 1.4, 2.25, 3.5] V_y = [3.0, 2.7, 3.7, 3.333, 3.667]$$

Построить на графике функции f(x),полученную после нахождения коэффициентов кубического сплайна.

Представить графическое изображение результатов интерполяции исходных данных различными методами с использованием встроенных функций $\mathrm{splin}(x,y,\mathrm{``natural''}),\ \mathrm{splin}(x,y,\mathrm{``clamped''}),\ \mathrm{splin}(x,y,\mathrm{``not_a_knot''}),\ \mathrm{splin}(x,y,\mathrm{``fast''}),\ \mathrm{splin}(x,y,\mathrm{``monotone''}),\ \mathrm{interp}(xx,x,y,d)$

3. Решить задачу оптимального распределения неоднородных ресурсов. Требуется решить следующую задачу оптимального распределения неоднородных ресурсов. Пусть в распоряжении завода железобетонных изделий (ЖБИ) имеется \mathbf{m} видов сырья (песок, щебень, цемент) в объемах $\mathbf{a_i}$. Требуется произвести продукцию \mathbf{n} видов. Дана технологическая норма $c_i j$ требления отдельного і-го вида сырь для изготовления единицы продукции каждого \mathbf{j} -го вида. Известна прибыль π_j получаема от выпуска единицы продукции \mathbf{j} -го вида. Требуется определить, какую продукцию и в каком количестве должен производить завод ЖБИ, чтобы получить максимальную прибыль.

Таблица 1.10

Используемые	Изп	Наличие			
ресурсы $\mathbf{a_i}$	И1	И2	И3	И4	pecypcoв, a i
Трудовые	4	4	4	6	14
Материальные	4	6	6	3	12
Финансовые	6	4	5	8	35
Π рибыль, Π_j	40	55	35	25	

и лидоП	
$H_{ m HB}$. № Ду 6 л.	
B3am. инв. $\mathcal{N}^{\underline{o}}$	
Подп. и дата	
Инв. № подл.	

Изм	Лист	№ докум.	Подп.	Дата

1. Решение уравнения.

Решение уравнение - поиск его корней

$$h(x) = \sqrt{3}sin(x) + cos(x) - cos(2x + \frac{\pi}{3}) + 1$$

Для нахождения корней есть два пути - численный и аналитический

Численное решение.

Для нахождения численного решения воспользуемся функцией "fsolve".

Для начала построим график.

function y=h(x)

$$y = sqrt(3)*sin(x)+cos(x)-cos(2*x+\%pi/3)+1$$

end function

Взам. инв. №

plot(0:0.01:2*%pi,h)

Полученный график изображен на Рис.1.

Рис 1. График функции h(x)

					_
Изм	Лист	№ докум.	Подп.	Дата	

Вариант N 32

Лист

Изучив график, допустимо предположить наличие трех корней. Зададим приближные значения и воспользуемся функцией "fsolve".

$$x0 = [2.6,4.2,5.6];$$

 $[x,v] = fsolve(x0,h)$

$$--> x0=[2.6,4.2,5.6]$$

 $x0 =$

$$\mathbf{x} =$$

Подп. и дата

Взам. инв. №

Подп. и дата

Инв. № подл.

Корни функции h(x)

Изм	Лист	№ докум.	Подп.	Дата

Аналитическое решение.

Для отыскания аналитического решения воспользуемся функцией solve из системы компьютерной алгебры «WolframAlpha»:

Упростим данное уравнение, воспользовавшись двумя тригонометрическими тождествами:

$$sin(x + y) = sin(x)cos(y) + cos(x)sin(y)$$

$$cos(2x) = 1 - 2sin^{2}(x)$$

$$\sqrt{3}sin(x) + cos(x), g(x) - cos(2x + \frac{\pi}{3}) + 1$$

$$= 2(sin(x)cos(\frac{\pi}{6}) + cos(x)sin(\frac{\pi}{6})) + 2sin^{2}(x + \frac{\pi}{6})$$

$$= 2(sin(x + \frac{\pi}{6}) + sin^{2}(x + \frac{\pi}{6})$$

и получим тривиальное уравнение, эквивалентное исходному

$$2(\sin(x + \frac{\pi}{6}) + \sin^2(x + \frac{\pi}{6}) = 0$$

Применим к нему функцию solve:

solve(2sin(x+pi/6)*(1+sin(x+pi/6))); и получим решение:

Input interpretation:

solve
$$2\sin\left(x+\frac{\pi}{6}\right)\left(1+\sin\left(x+\frac{\pi}{6}\right)\right)=0$$

Results:

$$x = \pi \left(n - \frac{1}{6} \right)$$
 and $n \in \mathbb{Z}$

$$x=\frac{2}{3}\,\pi\,(3\,n-1)\ \text{and}\ n\in\mathbb{Z}$$

$$x = \frac{2}{3} \pi (3n + 2)$$
 and $n \in \mathbb{Z}$

Лист

№ докум.

Подп.

Дата

Лист