Лабораторна робота 2

Попереднє планування бездротової локальної мережі 802.11

Мета роботи

Ознайомитися з принципами попереднього планування безпровідної мережі IEEE 802.11.

Теоретичні відомості

При проектуванні бездротового мережі в приміщеннях застосовують різні особисті підходи, які майже завжди містять кілька етапів.

- 1. Оцінка кількості точок доступу в залежності від передбачуваного числа користувачів Wi-Fi і послуг, які повинні бути їм надані.
- 2. Розміщення точок доступу на план-схемі приміщення з урахуванням його розмірів, матеріалів, з яких виготовлені стіни і меблі, а також розміщення користувачів.

Одним з найпростіших способів визначення кількості точок доступа є завдання фіксованої кількості користувачів на точку. Наприклад, існує рекомендація використовувати одну точку доступу на 20 користувача й при відсутності шифрування і одну точку на 15 користувачів при використанні будь-якого шифрування. Такий підхід дуже простий, але має ряд недоліків. По-перше, така кількість точок доступу може виявитися надмірною, що призведе до зайвих витрат як на саме безпровідне обладнання, так і на організацію його розміщення (електроживлення, підключення до дротової локальної мережі). По-друге, при великій кількості точок доступу, розміщених в одному приміщенні, розрахованому на біль- ШОЕ число користувачів (наприклад, конференц-зал або лекторій), вони можуть заважати один одному і їх потрібно розносити по різним каналам, що може бути складним при використанні діапазону 2,4 ГГц (наприклад, якщо ви користується технологія 802.11g).

Другий спосіб виходить з вимог за рівнем сигналу. Наприклад, вважається, що для доступу в Інтернет (електронна пошта та веб-серфінг) досить забезпечити на всій території приміщення рівень сигналу «нехуже», ніж (68-70) дБм. Такий підхід як правило вимагає застосування спеціалізованого програмного забезпечення для попереднього розрахунку, використання вимірювань на місці, коли передбачувана використання точка доступу розміщується в різних місцях приміщення, і проводиться вимір її сигналу на можливих точках розміщення користувачів. Як правило цей спосіб пропонує занижене число точок доступу, завдяки чому на практиці побудована мережа може НЕ впоратися з навантаженням. До того ж, повне покриття приміщення може виявитися не потрібним в тому випадку, коли користувачі компактно розміщуються в одній частині приміщення, а друга частина приміщення не використовується.

Третій спосіб попереднього визначення кількості точок доступу виходить з вимог по швидкості доступу в залежності від необхідних користувачам послуг. В результаті таких розрахунків може вийти некоторої усереднене кількість точок доступу. Однак питання нерівномірності розміщення користувачів також необхідно враховувати на етапі розміщення точок доступу на план-схемі приміщення.

При проведенні планування необхідно також провести енергетичний розрахунок і скласти частотний план, щоб розміщені в приміщенні точки доступу не мали впливу один на одного, а їх сигнал не виходив за межі приміщення і не впливав на бездротові мережі, розташовані зовні приміщення.

Приклад оцінки кількості точок доступу в мережі 802.11

Для прикладки оцінимо кількість точок доступу, необхідних для організації бездротової мережі в лекторії. З огляду на те, що на сьогодні більшість мобільних пристроїв використовують технологію 802.11n, будемо орієнтуватися на неї.

Вихідні дані.

N = 120 - максимальне число користувачів, одночасно працюючих в мережі.

 $F = 2 \, \text{Мбіт / c}$ - необхідна гарантована швидкість для одного користувача.

- D_T = 0,65 частка планшетних комп'ютерів і смартфонів (Tablet PC).
- D_{L} = 0,35 частка ноутбуків (Laptop).
- $D_{2,4\,\text{GHz}}$ = 0,6 частка пристроїв, що працюють в діапазоні 2,4 ГГц.
- $D_{5\,{\rm GHz}}$ = 0,4 частка пристроїв, що працюють в діапазоні 5 ГГц.

Планшетні комп'ютери використовують 20 МГц канал в один потік, що забезпечує теоретичну швидкість роботи 72 Мбіт / с. Реальна швидкість при цьому буде приблизно в два рази менше і буде дорівнювати F_{τ} = 35 Мбіт / с.

Ноутбуки використовують 20 МГц канал в два потоку, що забезпечує теоретичну швидкість роботи 144 Мбіт / с. Реальна швидкість при цьому буде приблизно в два рази менше і буде дорівнювати F_{\perp} = 70 Мбіт / с.

Тепер визначимо коефіцієнт ефірного часу (airtime) для кожного з типів пристроїв.

$$A_T = \frac{F}{F_T} = 0,0571.$$

 $A_L = \frac{F}{F_L} = 0,0286.$

Загальний коефіцієнт ефірного часу для всіх пристроїв кожного типу буде дорівнювати

$$A^{all} = A_T \cdot N \cdot D_T = 4,4538.$$

 $A^{all} = A_L \cdot N \cdot D_L = 1,2012.$

Загальний коефіцієнт ефірного часу з урахуванням службового трафіку буде дорівнювати

$$A = (A^{qll} + A^{qll}) \cdot 1,25 = 7,06875.$$

Далі необхідно визначити кількість радіо модулів, що працюють в діапазоні 2,4 ГГц, і радіо модулів, що працюють в діапазоні 5 ГГц.

$$N_{2,4GHz} = dA \cdot D_{2,4GHz}e = 5.$$

 $N_{5GHz} = dA \cdot D_{5GHz}e = 3.$

Таким чином, для організації бездротової мережі потрібно або 5 точок доступу, що працюють в діапазоні 2,4 ГГц, і 3 точки доступу, що працюють в діапазоні 5 ГГц, або 5 дводіапазонних точок доступу 2,4 / 5 ГГц з можливістю одночасної роботи в обох діапазонах.

Необхідно враховувати, що ця оцінка хоч і має гарну точність, все ж є попередньою, і отже, при розміщенні точок доступу на план-схемі приміщення, а також при проведенні енергетичного розрахунку і складанні частотного плану, вона може бути скоректована.

Вплив перешкод на зону покриття мережі 802.11

При розміщенні точок доступу дуже важливо визначити, з яких матеріалів зроблені стіни, перекриття, конструкційні елементи і меблі в приміщенні, і вже з урахуванням цього проводити розміщення обладнання і вибір антен, які будуть використовуватися разом з точками доступу.

Наприклад, однією з поширених помилок при розміщенні точок доступу, ϵ установка точки з всенаправленою антеною біля металевої або залізобетонної стіни або конструкції. В цьому випадку металева поверхня буде відбивати сигнал. Діаграма направленості антени зміниться ставши спрямованою. До того ж виникне потужне многопроміневе поширення (multipath), так як половина випромінюваної потужності буде йти до металевої стіні / поверхні і, відбиваючись зворотно , створить інтерференцію своєму ж корисному випромінюванню.

Іншим прикладом може бути розміщення точки біля ємностей і труб в водою, яка інтенсивно поглинає високочастотне випромінювання (особливо в частотному спектрі 2,4 ГГц).

Основним методом вирішення ϵ винесення точок доступу з внутрішніми антенами (або самих зовнішніх антен) за межі перешкод, забезпечив

безперешкодне випромінювання з урахуванням діаграми спрямованості антен.

Вплив матеріалу стін і перегородок, встановлених в приміщенні, можна оцінити по табл. 1., складеної за даними фірми Zyxel.

Таблиця 1 Втрата ефективності сигналу 802.11 при проходженні через різні середовища

Препятствие	Дополнительные потери, дБ	Эффективное расстояние, %
Открытое пространство	0	100
Окно без тонировки (металлизи- рованного покрытия)	3	70
Окно с тонировкой (металлизированным покрытием)	5–8	50
Деревянная стена	10	30
Межкомнатная стена (15,2 см)	15-20	15
Несущая стена (30,5 см)	20-25	10
Бетонный пол/потолок	15-25	10-15
Монолитное железобетонное перекрытие	20–25	10

Ефективне відстань становить величину, до якої зменшиться радіус дії після проходження відповідного перешкоди по рівнянню з відкритим простором. Наприклад, якщо на відкритому просторі радіус дії Wi-Fi досягає 100 м, то після проходження першої міжкімнатної стіни він зменшиться до 15% від цієї величини, тобто до 15 м, а після другої - до 15% вже від цього значення (до 2,2 м).

Також необхідно враховувати, що рівень сигналу убуває пропорційно квадрату відстані, тому швидкість швидко падає природним шляхом у міру віддалення від точки доступу.

Для прикладу розглянемо схему, зображену на рис. 1. Приміщення розбите перегородками на квадратні осередки зі стороною L. У центрі приміщення встановлена точка доступу. Необхідно визначити, які осередки будуть охоплені покриттям мережі 802.11.

Припустимо, що сторона кожної клітинки дорівнює L=5 м. Перегородки виготовлені з дерева. Природним загасанням сигналу з відстанню пренебрегаємо. Радіус покриття мережі на відкритому просторі приймемо рівним 100 м.

Рис. 2.1 . Приклад визначення зони покриття мережі 802.11 з урахуванням матеріалу перешкод

Спочатку визначимо область дії сигналу по чотирьом сторонам (верх- низправо-ліво на малюнку). Як було показано раніше, після проходження однієї дерев'яної стіни відстань зменшиться до 15 метрів. Після проходження другий - до 2,2 метрів. Таким чином, буде перекрито по два осередки в кожну сторону.

Далі оцінимо область дії по діагоналі. Щоб потрапити в сусідній по діагоналі осередок, сигнал повинен пройти дві стіни. Таким чином, по діагоналі буде перекрита лише однин осередок в кожну сторону. На практиці необхідно буде враховувати і те, що сигнал в цьому випадку буде проходити не по нормалі до поверхні перегородки, а по дотичній, що збільшить загасання.

Оціночна зона покриття сигналу 802.11 відзначена на рис.1. зеленим кольором. Помаранчевим відзначені осередки, які, можливо, будуть не повністю перекриті сигналом Wi-Fi.

Знаючи зону покриття однієї точки, можна скласти попередній план розміщення точок доступу на всій території приміщення. При цьому варто враховувати, що осередки, частково перекриті сигналом, варто перекриваються двома точками доступу.

Порядок виконання завдання

Завдання 1. Вибрати з табл. 2. відповідно до свого номеру варіанту вихідні дані для розрахунку. Всі розрахунки проводяться з урахуванням того, що використовуються штатні антени точок доступу. Застосовується технологія 802.11n.

Таблиця 2 Варіанти завдання 1 (вказані згідно з номером студента в журналі)

No	N	F	D_T	D_L	$D_{2,4GHz}$	D_{5GHz}
вар.	чел.	Мбит/с		-		
1	140	1	0,5	0,5	0,6	0,4
2	130	1,5	0,55	0,45	0,65	0,35
3	120	2	0,6	0,4	0,7	0,3
4	130	2,5	0,65	0,35	0,6	0,4
5	140	1	0,75	0,25	0,65	0,35
6	150	1,5	0,5	0,5	0,7	0,3
7	160	2	0,55	0,45	0,6	0,4
8	140	2,5	0,6	0,4	0,65	0,35
9	130	1	0,65	0,35	0,7	0,3
10	120	1,5	0,75	0,25	0,6	0,4
11	130	2	0,5	0,5	0,65	0,35
12	140	2,5	0,55	0,45	0,7	0,3
13	150	1	0,6	0,4	0,6	0,4
14	160	1,5	0,65	0,35	0,65	0,35
15	140	2	0,75	0,25	0,7	0,3
16	130	2,5	0,5	0,5	0,6	0,4
17	120	1	0,55	0,45	0,65	0,35
18	130	1,5	0,6	0,4	0,7	0,3
19	140	2	0,65	0,35	0,6	0,4
20	150	2,5	0,75	0,25	0,65	0,35
21	160	1	0,5	0,5	0,7	0,3
22	140	1,5	0,55	0,45	0,6	0,4
23	130	2	0,6	0,4	0,65	0,35

Оцінити необхідну кількість точок доступу, виходячи із заданих параметрів.

Завдання 2. Вибрати з табл. 3. відповідно до свого номеру варіанту вихідні дані для розрахунку. Всі розрахунки проводяться з урахуванням того, що

використовуються штатні антени точок доступу. При оцінці зони покриття природним загасанням сигналу з відстанню знехтувати.

Таблиця .3 Варіанти завдання 2 (вказані згідно з номером студента в журналі)

№	P_t	G_t	G_r	L	Тип
вар.	дБм	дБи	дБи	M	перегородок
1	10	1	2	3	деревянные
2	11	2	0	4	межкомнатные
3	12	3	1	5	несущие
4	13	1	3	6	деревянные
5	14	2	2	4	межкомнатные
6	15	3	0	3	несущие
7	10	1	1	4	деревянные
8	11	2	3	5	межкомнатные
9	12	3	2	6	несущие
10	13	1	0	4	деревянные
11	14	2	1	3	межкомнатные
12	15	3	3	4	несущие
13	10	1	2	5	деревянные
14	11	2	0	6	межкомнатные
15	12	3	1	4	несущие
16	13	1	3	3	деревянные
17	14	2	2	4	межкомнатные
18	15	3	0	5	несущие
19	10	1	1	6	деревянные
20	11	2	3	4	межкомнатные
21	12	3	2	3	несущие
22	13	1	0	4	деревянные
23	14	2	1	5	межкомнатные
24	15	3	3	6	несущие

Розрахувати радіус мережі 802.11g на відкритому просторі і визначити зону покриття мережі на схемі, показаної на рис. 1.для заданих розмірів комірки і матеріалу перегородок. Номер каналу взяти будь-який з дозволеного в Україні діапазону. Розрахунок радіуса провести для максимальної швидкості 54 Мбіт/с.

Контрольні питання

- 1. Етапи проектування мережі 802.11.
- 2. Оцінка кількості точок доступу 802.11.
- 3. Оцінка зони покриття мережі 802.11.
- 4. Вплив перешкод і несучих конструкцій на радіосигнал.