1 Introdução

- 1.1 Motivação
- 1.2 Objetivo

1.3 Contribuição

TABELA 1.1 – exemplo de tabela

FIGURA 1.1 – Proibido estacionar cupins. Legenda grande, com o objetivo de demonstrar a indentação na lista de figuras.

2 Qualidade de Energia em

Aeronaves

O mercado da aviação tem passado por uma mudança nos preceitos de desenvolvimento de sistemas que vão desde a utilização de novas tecnologias embarcadas até a mudança na concepção de operação da aeronave. Essa tendência vem ocorrendo de maneira natural como evolução do mercado pela demanda de aeronaves mais eficientes e competitivas. Nesse contexto há o conceito de *More Electric Aircraft* (MEA). Como o próprio nome diz, essa concepção baseia-se em aeronaves cuja filosofia de projeto contempla o uso abundante de sistemas alimentados eletricamente com o objetivo de aumentar a eficiência. Isso pode ser visto nos mais recentes desenvolvimentos de aeronaves, como por exemplo o Boeing 787, onde a redução da emissão de CO₂ é 20% menor se comparado com o Boeing 767. (KARIMI, 2007). O ganho não se dá apenas na redução da emissão de gases pela queima de combustíveis fósseis, mas também pro bla bla bla (KARIMI, 2007).

3 Filtros Ativos Em Sistemas Elétricos

3.1 Definição de Potência Ativa, Reativa e Fator de Potência

blbalbablablablablabal

- 3.1.1 Definição de Potências em Sistemas Senoidais
- 3.1.2 Definição de Potências em Sistemas Não-Senoidais
- 3.1.3 Potência Instantânea Utilizando a Teoria P-Q
- 3.1.3.1 Transformada de Clarke
- 3.2 Filtros Ativos
- 3.2.1 Filtros Ativo Empregando a Teoria P-Q

de acordo com os paranaues, (WATANABE; STEPHAN, 1991), (AKAGI et al., 2007), (WATANABE et al., 2004), (AFONSO et al., 2000), (COUTO et al., 2003)

4 Conceito de Conversor Estático na Aplicação de Filtros Ativos

5 Conclusão

Referências Bibliográficas

AFONSO, J. L.; COUTO, C.; MARTINS, J. S. Active filters with control based on the pq theory. **IEEE Industrial Electronics Society Newsletter**, IEEE, v. 47, n. 3, p. 5–10, 2000.

AKAGI, H.; WATANABE, E. H.; AREDES, M. Instantaneous Power Theory and Applications to Power Conditioning. [S.l.]: John Wiley & Sons, 2007.

COUTO, E. F.; MARTINS, J. S.; AFONSO, J. L. Resultados de simulações de um filtro activo paralelo com controlo baseado na teoria p-q. 8º Congresso Luso-Espanhol de Engenharia Eletrotécnica, APDEE. Associação Portuguesa para a Promoção e Desenvolvimento da Engenharia Electrotécnica, p. 4159–4164, 2003.

KARIMI, K. J. Future Aircraft Power Systems - Integration Challenges. [S.l.]: The Boeing Company, 2007.

WATANABE, E.; STEPHAN, R. Potência ativa e reativa instantâneas em sistemas elétricos com fontes e cargas genéricas. **Revista da SBA: Controle e Automação**, IFAC, v. 3, n. 1, p. 253–263, 1991.

WATANABE, E. H.; AREDES, M.; AKAGI, H. The p-q theory for active filter control: some problems and solutions. **Sba: Controle & Automação Sociedade Brasileira de Automatica**, SciELO Brasil, v. 15, n. 1, p. 78–84, 2004.

Apêndice A - Tópicos de Dilema Linear

A.1 Uma Primeira Seção para o Apêndice

A matriz de Dilema Linear M e o vetor de torques inerciais b, utilizados na simulação são calculados segundo a formulação abaixo:

$$M = \begin{bmatrix} M_{11} & M_{12} & M_{13} \\ M_{21} & M_{22} & M_{23} \\ M_{31} & M_{32} & M_{33} \end{bmatrix}$$
 (A.1)

FIGURA A.1 – Uma figura que está no apêndice

Anexo A - Exemplo de um Primeiro Anexo

A.1 Uma Seção do Primeiro Anexo

Algum texto na primeira seção do primeiro anexo.

Anexo B - To usando craque

to usando craque

FOLHA DE REGISTRO DO DOCUMENTO

^{5.} TÍTULO E SUBTÍTULO:

Modelagem de um Controlador de Atuador Eletrohidráulico para Estimativa de Demanda de Potência Elétrica, Fator de Potência e *Total Harmonic Distortion*

6. AUTOR(ES):

João Paulo de Souza Oliveira

7. INSTITUIÇÃO
(ÕES)/ÓRGÃO(S) INTERNO(S)/DIVISÃO(ÕES):

Instituto Tecnológico de Aeronáutica - ITA

8. PALAVRAS-CHAVE SUGERIDAS PELO AUTOR:

Cupim; Cimento; Estruturas

9. PALAVRAS-CHAVE RESULTANTES DE INDEXAÇÃO:

Cupim; Dilema; Construção

¹⁰. APRESENTAÇÃO:

(X) Nacional () Internacional

ITA, São José dos Campos. Curso de Doutorado. Programa de Pós-Graduação em Engenharia Aeronáutica e Mecânica. Área de Sistemas Aeroespaciais e Mecatrônica. Orientador: Prof. Dr. Adalberto Santos Dupont. Defesa em 05/03/2015. Publicada em 25/03/2015.

11. RESUMO:

Aqui começa o resumo do referido trabalho. Não tenho a menor idéia do que colocar aqui. Sendo assim, vou inventar. Lá vai: Este trabalho apresenta uma metodologia de controle de posição das juntas passivas de um manipulador subatuado de uma maneira subótima. O termo subatuado se refere ao fato de que nem todas as juntas ou graus de liberdade do sistema são equipados com atuadores, o que ocorre na prática devido a falhas ou como resultado de projeto. As juntas passivas de manipuladores desse tipo são indiretamente controladas pelo movimento das juntas ativas usando as características de acoplamento da dinâmica de manipuladores. A utilização de redundância de atuação das juntas ativas permite a minimização de alguns critérios, como consumo de energia, por exemplo. Apesar da estrutura cinemática de manipuladores subatuados ser idêntica a do totalmente atuado, em geral suas caraterísticas dinâmicas diferem devido a presença de juntas passivas. Assim, apresentamos a modelagem dinâmica de um manipulador subatuado e o conceito de índice de acoplamento. Este índice é utilizado na sequência de controle ótimo do manipulador. A hipótese de que o número de juntas ativas seja maior que o número de passivas $(n_a > n_p)$ permite o controle ótimo das juntas passivas, uma vez que na etapa de controle destas há mais entradas (torques nos atuadores das juntas ativas), que elementos a controlar (posição das juntas passivas).

^{12.} GRAU DE SIGILO:			
(X) OSTENSIVO	() RESERVADO	() CONFIDENCIAL	() SECRETO