基礎コンピュータ工学 第5章 機械語プログラミング (パート5)

フラグ(1)

フラグ(C, S, Z) は**計算結果の特徴**を表す. フラグ変化ありの命令を実行する度に値が変化する. (教科書の本文,命令表を再度確認する.)

Z (Zero) フラグ

- Zero は「ゼロ」の意味.
- 計算の結果がゼロにならなかった.

計算の結果がゼロになった。

フラグ(2)

- S (Sign) フラグ
 - Sign はプラス・マイナスの「符号」の意味
 - 計算の結果を符号付き2進数と解釈すると**正の値**になった.

計算の結果を符号付き2進数と解釈すると負の値になった。

- Sフラグは符号付き2進数と考えたときの「負」の意味
- 計算結果の最上位ビットと同じ値になる. →ゼロは「正」とみなす.

フラグ(3)

- C (Carry) フラグ
 - Caryy は「桁を繰り上げる」の意味
 - 足し算(ADD)で桁上げが起きる。
 - 足し算で最上位桁からの桁上げがない場合

• 足し算で最上位桁からの桁上げがあった場合(オーバーフロー)

フラグ(4)

- *C* (*Carry*) フラグ (Borrow の意味を**代用**)
 - Borrow は「桁を借りる」の意味
 - 引き算(SUB)で桁借りが起こる
 - 引き算で最上位桁で桁借りがない場合

• 引き算で最上位桁で桁借りがあった場合(負にオーバーフロー)

○ こフラグは、符号なし2進数と考えたときのオーバーフローの意味

ジャンプ命令(7種類)

無条件ジャンプ命令: プログラムの流れを指定のアドレスに飛ばす.

• *JMP* (*Jump*) 命令: いつもジャンプする.

条件ジャンプ命令: ある条件のときだけジャンプする.

- JZ (Jump on Zero) 命令:Z = 1 ならジャンプ
- JC (Jump on Carry) 命令:C = 1 ならジャンプ
- JM (Jump on Minus) 命令:S = 1 ならジャンプ
- JNZ (Jump on Not Zero) 命令: Z = 0 ならジャンプ
- JNC (Jump on Not Carry) 命令:C = 0 ならジャンプ
- JNM (Jump on Not Minus) 命令: S = 0 ならジャンプ

JZ(Jump on Zero)命令

Zフラグが1なら(計算結果が0なら)ジャンプする.

フラグ:変化しない.

 $=-\pm 2$ JZ EA (if(Z=1) PC \leftarrow EA)

命令フォーマット: 2バイトの長さを持つ.

第1バイト		然のぶる	
OP	GR XR	第2バイト	
1010_{2}	01_2 XR	aaaa aaaa	

フローチャート: ある程度, 自由にアレンジしてよい.

JZ命令の使用例

ループを3回、繰り返すプログラム

番地	機械語	ラベル	ニー	モニック
00	10 09		LD	GO, THREE
02	40 OA	LOOP	SUB	GO, ONE
04	A4 08		JZ	STOP
06	AO 02		JMP	LOOP
80	FF	STOP	HALT	
09	03	THREE	DC	3
OA	01	ONE	DC	1

• 演習(1):ステップモードで実行をトレースしてみる.

JC(Jump on Carry)命令

Cフラグが1なら(オーバーフローなら)ジャンプする.

フラグ:変化しない.

 $=-\pm 2$ JC EA (if(C=1) PC \leftarrow EA)

命令フォーマット: 2バイトの長さを持つ.

第1バイト		然のぶる	
OP	GR XR	第2バイト	
1010_{2}	10_2 XR	aaaa aaaa	

フローチャート: ある程度, 自由にアレンジしてよい.

JM (Jump on Minus) 命令

Sフラグが1なら(負なら)ジャンプする.

フラグ:変化しない.

 $=-\pm 2$ JM EA (if (S=1) PC \leftarrow EA)

命令フォーマット: 2バイトの長さを持つ.

第1バイト		** O
OP	GR XR	第2バイト
1010_{2}	11_2 XR	aaaa aaaa

フローチャート: ある程度, 自由にアレンジしてよい.

条件判断1

計算結果により処理をするかしないか変化する例

条件判断2

計算結果によりどちらかの処理をする例

条件判断の例

絶対値を求めるプログラム(例題 5-1)

番地	機械語	ラベル	ニーモニック	
00	10 10	START	LD	GO,N
02	40 OF		SUB	GO,ZERO
04	AC 08		JM	L1
06	AO OC		JMP	L2
08	10 OF	L1	LD	GO,ZERO
OA	40 10		SUB	GO,N
OC	20 11	L2	ST	GO,M
0E	FF		HALT	
OF	00	ZERO	DC	0
10	FF	N	DC	-1
11	00	M	DS	1

注意:[N番地]は、N番地に格納されているデータのこと

• 演習(2):ステップモードで実行をトレースしてみる.

まとめ

学んだこと

- フラグ (Carry, Zero, Sign)
- 条件ジャンプ命令(JZ, JC, JM)
- 条件判断

演習(宿題)

- **飽和演算**:計算結果が最大値または最小値を超えそうになった時, 計算結果を最大値または最小値に留める演算方式
- TeC の符号なし 2 進数を用いて表現できる最大値は 255 である.
- 足し算結果が255を超える(オーバーフローする)かもしれない.
- オーバーフローが発生したら計算結果を255に訂正するようにする.
- 以上のような足し算プログラムを作る.