ඒ ලෙවල් ඉවරයි!

March 18, 2018

හුදෙක් උසස් පෙළ නොස්ටැල්ජියානු මතකය ආවර්ජනය කිරීම උදෙසා....

උපුටා ගැනීම, වී. ජෝසප් හා කේ. පී. ඩී. ධර්මදාස විසින් සම්පාදිත ගතිකය කෘතියේ 3.35 අභාාසය.

0.1 ගැටළුව

පිස්මයක මධා හරස්කඩ ABC තිකෝණයකි. $A\hat{C}B=\frac{\pi}{2},C\hat{A}B=\alpha\left(>\frac{\pi}{4}\right),AB=a$. ස්කන්ධය M වන පිස්මය AB සුමට තිරස් මේසයක් මත ස්පර්ෂ කරමින් නිසලව පවතියි. එකක ස්කන්ධය m වන සමාන අංශු දෙකක් C ඉහළ ම ලක්ෂායේ තබා, පිස්මයේ CA,CB පාද ඔස්සේ පහළට ලිස්සා යාමට ඉඩ හරිනු ලැබේ.

$$\sqrt{rac{2a\cotlpha}{g}}$$
 කාලයක් පිුස්මය නිසලව පවතින බව ද, ඉන් පසු $rac{mg\sinlpha\coslpha}{M+m\cos^2(lpha)}$ ත්වරණයෙන් චලනය වන බව ද පෙන්වන්න.

0.2 නිර්බාධ වස්තු සටහන

මෙහි f_1,f_2 ත්වරණ පුිස්මයට සාපේක්ෂවත් f ත්වරණය පොළොවට සාපේක්ෂවත් වේ.

0.3 විසඳුම

පද්ධතියට තිරසට F=ma,

$$0 = Mf + m(f - f_1 \cos \alpha) + m(f + f_2 \sin \alpha) \tag{1}$$

Pට CA දෙසට F=ma,

$$mg\sin\alpha = m(f_1 - f\cos\alpha) \tag{2}$$

Qට CB දෙසට F=ma,

$$mg\cos\alpha = m(f_2 + f\sin\alpha) \tag{3}$$

(1),(2) හා (3) මඟින් f=0 බව පෙන්විය හැකිය.

Figure 1:

අංශු දෙකම පුිස්මය හා ස්පර්ෂව පවතින තාක් f=0 ව පවතියි.

$$(2)$$
 න් $f_1=g\sinlpha$, \therefore P හි පහළට ත්වරණය $f_1\sinlpha=g\sin^2lpha$

$$(3)$$
 න් $f_2=g\coslpha$, $\therefore Q$ හි පහළට ත්වරණය $f_1\coslpha=g\cos^2lpha$ $lpha>rac{\pi}{4}$ බැවින් $\sinlpha>\coslpha$

මුලින් $\overset{\cdot}{P}$ පුිස්මය හැර යයි.

එයට ගත වන කාලය,

 $S=ut+rac{1}{2}at^2$ සිරස්ව පහළට Pට යෙදීමෙන්, $a\cos \alpha \sin \alpha = 0+rac{1}{2}g\sin^2\left(lpha
ight)t^2$ $t=\sqrt{rac{2a\cot lpha}{g}}$

$$a\cos\alpha\sin\alpha = 0 + \frac{1}{2}g\sin^2(\alpha)t^2$$

$$t = \sqrt{\frac{2a\cot\alpha}{g}}$$

P ඉවත් වූ පසුව (1),(2) හා (3) හි P ට අදාළ m පද ශූනාඃ කළ හැකිය. එවිට (1) සමීකරණය පහත ලෙස ශේෂ වේ:

$$0 = Mf + m(f + f_2 \sin \alpha) \tag{4}$$

(3) හා (4) විසඳීමෙන්,

$$f = -\frac{mg\sin\alpha\cos\alpha}{M + m\cos^2(\alpha)}$$

පිළිතුර ලද හැකිය.