- 6.16 常態定理 Let $T \in \mathbb{L}(V)$ for inner-product space V over \mathbb{C} with $\dim(V) < \infty$. V has an 6.13 最短解 If E : Ax = b with $A \in F^{m \times n}$ and $b \in F^m$ is a system of linear equations with orthonormal eigenbasis for T iff T is normal, i.e. $TT^* = T^*T$.
- **Def 自伴線運、方陣** T is self-adjoint if $T^* = T$. Square matrix A is Hermitian if $A^* = A$.
- Obs 自伴小觀察 If β is an orthonormal basis of a inner-product space V with $\dim(V) < \infty$, then T is self-adjoint iff $[T]^{\beta}_{\beta}$ is self-adjoint.
- Obs 自伴線運基本性質 If T is a self-adjoint linear operator on an inner-product space V over $F \in \{\mathbb{R}, \mathbb{C}\}\$ with $\dim(V) < \infty$, then 1. each eigenvalue of T is real (even if $F = \mathbb{C}$, and) 2. the characteristic polynomial $f_T(t)$ of T splits (even if $F = \mathbb{R}$)
- **6.24 投影:正交** \Leftrightarrow 自伴 If T is a projection of W, then T is an orthogonal projection of W iff T is self-adjoint
- Cor 自伴線運推論 Let $T \in \mathbb{L}(V)$ for inner-product space W over $F = \mathbb{C}$ with $\dim(V) < \infty$. If T is normal, T is self-adjoint iff every eigenvalue of T is real.
- **6.17 自伴定理** Let $T \in \mathbb{L}(V)$ for V over \mathbb{R} with $\dim(V) < \infty$. V has an orthonormal eigenbasis for T iff T is self-adjoint.
- Cor 常態線運推論 If $T \in \mathbb{L}(V)$ for W over \mathbb{C} with $\dim(W) < \infty$, then T is normal iff $T^* = q(T)$ for some polynomial $q \in \mathbb{P}(\mathbb{C})$
- **Def 公正、正交等**價 Let $A, B \in F^{n \times n}$ with $F \in \{\mathbb{C}, \mathbb{R}\}$. A is unitarily equivalent to B if there is a unitary matrix Q with $A = Q^*BQ \cdot A$ is orthogonally equivalent to B if there is an orthogonal matrix Q with $A = Q^t B Q$
- **6.20** If $A \in \mathbb{R}^{n \times n}$, then A is self-adjoint (i.e. symmetric) iff A is orthogonally (i.e. unitarily) equivalent to a diagonal matrix in $\mathbb{R}^{n \times n}$
- **6.19** If $A \in \mathbb{C}^{n \times n}$, then A is normal iff A is unitarily equivalent to a diagonal matrix in $\mathbb{C}^{n \times n}$
- **6.21 方陣舒爾** If $f_A(t)$ splits for $A \in F^{n \times n}$, then A is unitarily equivalent to an uppertriangular matrix in $F^{n \times n}$.
- **公正、正交線**運 Let $T \in \mathbb{L}(V)$, V is an inner-product space over $F \in \{\mathbb{C}, \mathbb{R}\}$. T is unitary if $T^*T = I_V \bullet T$ is orthogonal if T is unitary and $F = \mathbb{R}$
- **6.18** If $T \in \mathbb{L}(V)$ for V over $F \in \{\mathbb{C}, \mathbb{R}\}$, with $\dim(V) < \infty$, then the following are equivalent: • $T^*T = I_V$ • $\langle T(x)|T(y)\rangle = \langle x|y\rangle$ holds for all vectors $x,y \in V$ • For any orthogonal eigenbasis β of V, $T(\beta)$ is an orthonormal basis of V • There is a $\beta \subseteq V$ s.t. β and $T(\beta)$ are both orthonormal bases of $V \bullet ||T(x)|| = ||x||$ holds for all vectors $x \in V$
- Cor **公正、正交自伴定理** If $T \in \mathbb{L}(V)$ for V over $\mathbb{C}(\mathbb{R})$ with $\dim(V) < \infty$, then T is unitary (orthogonal and self-adjoint) iff \bullet V has an orthonormal eigenbasis for T \bullet each eigenvalue og T has absolute value 1

- $S(E) \neq \emptyset$, then there is exactly one vector x in $S(E) \cap L_{A^*}(F^m)$ w.r.t. the standard inner product. Moreover, the vector x is the unique vector in S(E) with minimum ||x||
- **6.12 最佳近似解** Let $A \in F^{m \times n}$ and $b \in F^m$. For any inner-product function of F^m . $\exists x \in F^n$ that minimizes $||Ax - b|| \cdot \text{If } \text{rank}(A) = n$, then $x = (A^*A)^{-1}A^*b$ is the unique minimizer of ||Ax - b|| w.r.t. the standard inner product of F^m
- Obs 標準內積觀察 Let $A \in F^{m \times n}$. For any $x \in F^n$ and $y \in F^m$, we have $\langle Ax|y \rangle_m = \langle x|A^*y \rangle_n$
- **Obs 矩陣位階觀察** For any $A \in F^{m \times n}$, $rank(A^*A) = rank(A)$
- **Obs 伴隨矩陣觀察** For any $A \in F^{m \times n}$, if $\operatorname{rank}(A) = n$, then $A^*A \in F^{n \times n}$ is invertible.
- **Def IEE** A self-adjoint $T \in \mathbb{L}(V)$ for V over F is positive definite (semidefinite) if $\langle T(x)|x\rangle \in$ \mathbb{R}^+ ($\langle T(x)|x\rangle \in \mathbb{R}^+ \cup \{0_{\mathbb{R}}\}$) holds for all $x \in V \setminus \{0_V\}$ ($x \in V$)
- **6.26 奇異值定理** Let $T \in \mathbb{L}(V, W)$ for V and W over $F \in \{\mathbb{C}, \mathbb{R}\}$ with $\mathrm{rank}(T) = r$, $\dim(V) = r$ n, and dim(W) = m. (a) There exist a set $\sigma = \langle \sigma_1, \cdots, \sigma_r \rangle$ of positive real numbers and orthonormal bases $\beta = \langle \beta_1, \dots, \beta_n \rangle$ of V and $\gamma = \langle \gamma_1, \dots, \gamma_m \rangle$ of W s.t. with $\sigma_k = 0_F$ for $r+1 \le k \le \max(n,m)$ and $\gamma_k = 0_W$ for $m+1 \le k \le n$ 1. $T(\beta_i) = \sigma_i \gamma_i$ holds for each $j=1,\cdots,n$. (b) Moreover, the following hold for any such σ,β,γ : 2. $T^*(\gamma_i)=\sigma_i\beta_i$ holds for $i=1,\dots,m$ with $\beta_k=0_V$ for $n+1\leq k\leq m$ 3. Each (σ_i^2,β_i) with $1\leq j\leq n$ is an eigenpair of T^*T 4. Each (σ_i^2, γ_i) with $1 \le i \le m$ is an eigenpair of TT^*
- **Def 公正、正交方陣** Let $Q \in F^{n \times n}$ with $F \in \{\mathbb{C}, \mathbb{R}\}$, Q is unitary if $Q^*Q = I_n$ (i.e. $Q^* = Q^{-1}$) Q is orthogonal if $Q^tQ = I_n$ (i.e. $Q^t = Q^{-1}$) Q is orthogonal if $Q^tQ = I_n$ (i.e. $Q^t = Q^{-1}$) elements $\sigma_i = S_{i,i}$ with $i \in \{1, \dots, l\}$ satisfy $1, \sigma_1, \dots, \sigma_r \in \mathbb{R}^+$ $2, \sigma_{r+1} = \dots = \sigma_l = 0_F$
 - **Def 偽反線轉** $T^{\dagger} \in \mathbb{L}(W, V)$ defined by $T^{\dagger} = (T')^{-1}T''$
 - 偽反線轉定理 Let $T \in \mathbb{L}(V,W)$ for V and W over $F \in \{\mathbb{C},\mathbb{R}\}$ with $\mathrm{rank}(T) = r,\dim(V) = r$ $n, \dim(W) = m$. If σ, β, γ are as ensured by **6.26**, then T^{\dagger} is the unique function in $\mathbb{L}(W, V)$ satisfying $T^{\dagger}(\gamma_j) = \begin{cases} \frac{1}{\sigma_j} \beta_j & \text{if } 1 \leq j \leq r \\ 0_V & \text{otherwise} \end{cases}$
 - 偽反線運等價條件 If $T_1 \in \mathbb{L}(V,W)$ and $T_2 \in \mathbb{L}(W,V)$ for V,W over $F \in \{\mathbb{C},\mathbb{R}\}$ and dim $< \infty$, then $T_2 = T_1^{\dagger}$ iff all following hold: (a) $T_1 T_2 T_1 = T_1$ (b) $T_2 T_1 T_2 = T_2$ (c) $T_1 T_2$ and $T_2 T_1$ are self-adjoint
 - **偽反矩陣定理** If $A = QSR^*$ is a SVD of matrix $A \in F^{m \times n}$ with $F \in \{\mathbb{C}, \mathbb{R}\}$, then $A^{\dagger} = RS^{\dagger}Q^*$ is a SVD of matrix $A^{\dagger} \in F^{n \times m}$
 - **6.30** For any system of linear equations E: Ax = b with $A \in F^{m \times n}$, $y = A^{\dagger}b$ is the unique vector in F^n with $\bullet \|Ay - b\| \le \|Ax - b\|$ for any $x \in F^n$ and $\bullet \|y\| < \|x\|$ any $x \in F^n \setminus \{y\}$ with ||Ay - b|| = ||Ax - b||
 - **6.28 極分解定理** For any square matrix $A \in F^{n \times n}$ with $F \in \{\mathbb{C}, \mathbb{R}\}$, there exist a unitary matrix $Q \in F^{n \times n}$ and a positive semidefinite matrix $P \in F^{n \times n}$ s.t. A = QP. And, if A is invertible, then the decomposition is unique