Variedades Complejas (tarea 6)

Eduardo León (梁遠光)

Noviembre 2020

Preliminaries. Given a presheaf \mathcal{F} on X, we will say that a family of local sections $\sigma_{\alpha} \in \mathcal{F}(U_{\alpha})$ overlaps correctly if $\sigma_{\alpha}(p) = \sigma_{\beta}(p)$ for every $p \in U_{\alpha} \cap U_{\beta}$.

Exercise 1. Let X be a complex manifold. Show that

- a) The presheaf of holomorphic functions \mathcal{O}_X is a sheaf.
- b) The presheaf of nowhere zero holomorphic functions \mathcal{O}_X^{\star} is a sheaf.
- c) The presheaf of holomorphic m-forms is a sheaf.
- d) The presheaf of holomorphic vector fields is a sheaf.

Solution. Let $\pi: E \to X$ be a holomorphic fiber bundle. We are interested in the following cases:

- a) E is the trivial bundle $X \times \mathbb{C}$.
- b) E is the trivial bundle $X \times \mathbb{C}^*$. (Note that this one is not a *vector* bundle.)
- c) $E = \bigwedge^{m,0} M$ is the m-th exterior power of the holomorphic cotangent bundle.
- d) $E = T^{1,0}M$ is the holomorphic tangent bundle.

By the gluing lemma, given a correctly overlapping family of continuous functions $\sigma_{\alpha}: U_{\alpha} \to E$, there is a unique continuous function $\sigma: \bigcup_{\alpha} U_{\alpha} \to E$ that restricts to σ_{α} on each U_{α} . Moreover,

- σ is a local section¹ \iff each σ_{α} is a local section.
- σ is holomorphic \iff each σ_{α} is holomorphic.

Therefore, the presheaf of holomorphic sections of E satisfies the gluing axiom, i.e., it is a sheaf.

Exercise 2. Let $Y \subset X$ be complex manifolds. Show that the ideal sheaf \mathcal{I}_Y is a subsheaf of \mathcal{O}_X .

Solution. By definition, \mathcal{I}_Y is the subpresheaf of \mathcal{O}_X whose sections vanish on Y. That is,

$$\mathcal{I}_Y(U) = \{ f \in \mathcal{O}_X(U) : f(p) = 0 \text{ for every } p \in Y \cap U \},$$

By the gluing lemma, given a correctly overlapping family of continuous functions $f_{\alpha}: U_{\alpha} \to \mathbb{C}$, there is a unique continuous function $f: \bigcup_{\alpha} U_{\alpha} \to \mathbb{C}$ that restricts to each f_{α} on each U_{α} . Moreover,

- f is holomorphic \iff each f_{α} is holomorphic, as seen in the previous exercise.
- f vanishes on $Y \cap \bigcup_{\alpha} U_{\alpha} \iff \text{ each } f_{\alpha} \text{ vanishes on } Y \cap U_{\alpha}$.

Therefore, \mathcal{I}_Y is a subsheaf of \mathcal{O}_X . More generally, any subpresheaf of a sheaf \mathcal{F} is itself a sheaf, hence a subsheaf of \mathcal{F} , by an argument using the stalkwise injectivity of the subpresheaf's embedding into \mathcal{F} .

¹Recall that a local section of a fiber bundle $\pi: E \to X$ on an open subset $U \subset X$ is a continuous function $\sigma: U \to E$ such that $\pi \circ \sigma$ reproduces the embedding of U into X.

Exercise 3. Let X be a complex manifold. Show that

- a) The sheaf of holomorphic vector fields is a locally free sheaf of \mathcal{O}_X -modules.
- b) The sheaf of holomorphic m-forms is a locally free sheaf of \mathcal{O}_X -modules.

Solution. Let $\pi: E \to X$ be a holomorphic vector bundle. We are interested in the following cases:

- a) $E = T^{1,0}M$ is the holomorphic tangent bundle.
- b) $E = \bigwedge^{m,0} M$ is the m-th exterior power of the holomorphic cotangent bundle.

Let $f:U\to\mathbb{C}$ and $\sigma:V\to E$ be continuous functions defined on the opens $V\subset U\subset X$. Then,

- $f\sigma: V \to E, f\sigma(p) = f(p) \cdot \sigma(p)$ is a continuous function.
- \bullet σ is a local section \Longrightarrow $f\sigma$ is a local section.
- f, σ are holomorphic $\Longrightarrow f\sigma$ is holomorphic.

Let $\sigma: U \to E$ be a local holomorphic section and $\varphi_{\alpha}: E_{\alpha} \to U_{\alpha} \times \mathbb{C}^{k}$ the local trivializations of E on an open cover $\{U_{\alpha}\}$ of U. Then,

• Every $\sigma_{\alpha} = \sigma \mid U_{\alpha}$ is uniquely determined by k holomorphic functions $g_i : U_{\alpha} \to \mathbb{C}$, for $i = 1, \ldots, k$, such that $\sigma_{\alpha} = (g_1, \ldots, g_k) \circ \varphi_{\alpha}$.

Therefore, the sheaf \mathcal{F} of sections of E satisfies the following conditions:

- $\mathcal{F}(U)$ is an $\mathcal{O}_X(U)$ -module, i.e., there is a ring homomorphism $\mathcal{O}_X(U) \to \operatorname{End} \circ \mathcal{F}(U)$.
- $\mathcal{F}(U) \to \mathcal{F}(V)$ is an $\mathcal{O}_X(U)$ -module homomorphism, where $\mathcal{F}(V)$ has the $\mathcal{O}_X(U)$ -module structure induced by the ring homomorphisms $\mathcal{O}_X(U) \to \mathcal{O}_X(V) \to \operatorname{End} \circ \mathcal{F}(V)$.
- There is always an open cover $\{U_{\alpha}\}$ of U such that each $\mathcal{F}(U_{\alpha})$ is a free $\mathcal{O}(U_{\alpha})$ -module.

Hence, \mathcal{F} is a locally free sheaf of \mathcal{O}_X -modules.