

EECE2300 Computational Methods for Data Analytics

Naïve Bayes for Text Classification

Learning to Classify Text

Why?

- Learn which news articles are of interest
- Learn to classify web pages by topic

Naïve Bayes is among most effective algorithms

What attributes should we use to represent text documents??

Learning to Classify Text: Bayes-Approach

Target concept Interesting? : Document $\rightarrow \{+, -\}$

- 1. Represent each document by vector of words
 - One attribute per word position in document
- 2. Learning: Use training examples to estimate
 - > P(+)
 - > P(-)
 - > P(doc | +)
 - ➤ P(doc | -)

Naïve Bayes conditional independence assumption

$$P(doc|v_j) = \prod_{i=1}^{length(doc)} P(a_i = w_k | v_j)$$

Where $P(a_i = w_k | v_j)$ is the probability that word in position i is w_k , given v_j

One more assumption: $P(a_i = w_k | v_j) = P(a_m = w_k | v_j)$, $\angle i$, m

A set of reviews (documents) and a classification

Doc	Text	Class
1	I loved the movie	+
2	I hated the movie	-
3	A great movie. Good movie.	+
4	Poor acting	-
5	Great acting. A good movie	+

10 unique words

< I, loved, the, movie, a, hated, great, good, poor, acting>

Convert the documents into feature sets, where the attributes are possible words, and the values are the number of times a word occurs in the given document.

Doc	I	loved	the	acting	movie	а	hated	great	good	poor	Class
1	1	1	1		1						+
2	1		1		1		1				-
3					2	1		1	1		+
4				1						1	-
5				1	1	1		1	1		+

Let's look at the probabilities per outcome (+ or -)

Doc	1	loved	the	acting	movie	а	hated	great	good	poor	Class
1	1	1	1		1						+
3					2	1		1	1		+
5				1	1	1		1	1		+
<i>p</i> (+) =	$=\frac{3}{5}=0$	0.6									

Compute:
$$p(I \mid +)$$
 $p(love \mid +)$ $p(acting \mid +)$ $p(great \mid +)$ $p(the \mid +)$ $p(good \mid +)$ $p(movie \mid +)$ $p(a \mid +)$

Let n be the number of words in the (+) case: 14. n_k the number of times word k occurs in these cases (+)

Let
$$P(w_k|+) = \frac{n_k+1}{n+|Vocabulary|}$$

Doc	I	loved	the	acting	movie	a	hated	great	good	poor	Class
1	1	1	1		1						+
3					2	1		1	1		+
5	2			1	1	1		1	1		+
$p(+) = \frac{3}{5} = 0.6$ $P(w_k +) = \frac{n_k + 1}{n + Vocabulary }$											
$p(l \mid +) = \frac{1+1}{14+10} = 0.0833;$ $p(the \mid +) = 0.0833$ $p(a \mid +) = 0.125$ $p(acting \mid +) = 0.0833$ $p(great \mid +) = 0.125$ $p(good \mid +) = 0.125$											
	p	(hated -	⊦) = 0.	417			p(poc	r +) =	0.417		

Northeastern

2 1 1 1 1 1 1	Doc	ı	loved	the	acting	movie	а	hated	great	good	poor	Class
$p(-) = \frac{2}{5} = 0.4 P(w_k -) = \frac{n_k + 1}{n + Vocabulary }$ $p(I -) = \frac{1+1}{6+10} = 0.125$ $p(the -) = 0.125$ $p(a -) = 0.125$ $p(great -) = 0.0625$	2	1		1		1		1				-
$p(I \mid -) = \frac{1+1}{6+10} = 0.125$ $p(the \mid -) = 0.125$ $p(a \mid -) = 0.125$ $p(a \mid -) = 0.125$ $p(great \mid -) = 0.0625$	4				1						1	-
p(acting -) = 0.125 $p(good -) = 0.125$ $p(hated -) = 0.125$ $p(poor -) = 0.0625$	p(-) =	i i p	p(I -) p(the - p(a -) = p(acting	$= \frac{1+}{6+} \\ (1) = 0.12 \\ (1-) = 0.12$	p(mo p(gre p(goo	vie -) eat -) od -) :	= 0.125 $= 0.06$ $= 0.125$	5 25 5				

Northeastern

Now that we've trained our classifier

Let's classify a new sentence according to:

$$V_{NB} = \underset{v_j \in V}{\operatorname{argmax}} P(v_j) \prod_{w \in words} P(w|v_j)$$

where V stands for "value" or "class"

"I hated the poor acting"

$$if \ v_j = +; \quad p(+)p(I|+)p(hated|+)p(the|+) \ p(poor|+) \ p(acting|+) = 6.03x10^{-7}$$
 $if \ v_j = -; \quad p(-)p(I|-)p(hated|-) \ p(the|-) \ p(poor|-) \ p(acting|-) = 1.22x10^{-5}$

Learning to Classify Text

Learn_naive_Bayes_text(Examples, V)

- 1. Collect all words and other tokens that occur in *Examples*
- Vocabulary (V) ← All distinct words and tokens in Examples
- 2. Calculate the required $P(v_i)$ and $P(w_k|v_i)$ probability terms
- For each target value v_i in V do
 - $\rightarrow docs_i \leftarrow$ subset of *Examples* for which the target value is v_i
 - $\triangleright P(v_j) \leftarrow \frac{|docs|}{|Examples|}$
 - \succ $Text_j \leftarrow$ a single document created by concatenating all members of $docs_j$
 - \triangleright n \leftarrow total number of words in $Text_i$ (counting duplicates each time)
 - For each word w_k in V
 - \rightarrow $n_k \leftarrow$ number of times word w_k occurs in $Text_i$
 - $ightharpoonup P(w_k|v_j) \leftarrow \frac{n_k+1}{n+|V|}$

Learning to Classify Text

Classify_naive_Bayes_text(Doc)

- ➤ Positions ← all word positions that contain tokens found in Vocabulary
- Return V_{NR} where

$$V_{NB} = \underset{v_j \in V}{\operatorname{argmax}} P(v_j) \prod_{w \in words} P(w|v_j)$$