Grafos - Formas de Representação

Prof. Luiz Gustavo Almeida Martins

A implementação depende da forma usada para representar o grafo

Questão: como representar um grafo no computador?

A implementação depende da forma usada para representar o grafo

Questão: como representar um grafo no computador?

Através da representação de suas arestas

A implementação depende da forma usada para representar o grafo

Questão: como representar um grafo no computador?

Através da representação de suas arestas

As formas mais utilizadas baseiam-se na relação de adjacência entre os vértices

A implementação depende da forma usada para representar o grafo

Questão: como representar um grafo no computador?

Através da representação de suas arestas

As formas mais utilizadas baseiam-se na relação de adjacência entre os vértices

Estática: matriz de adjacências

A implementação depende da forma usada para representar o grafo

Questão: como representar um grafo no computador?

Através da representação de suas arestas

As formas mais utilizadas baseiam-se na relação de adjacência entre os vértices

Estática: matriz de adjacências

Dinâmica: listas de adjacências

Um grafo não ponderado com N vértices é representado através de uma matriz binária N×N

Um grafo não ponderado com N vértices é representado através de uma matriz binária N×N

O valor de cada elemento a_{ij} é dado por: $a_{ij} = 1$, se V_i e V_j estão ligados por uma aresta $a_{ij} = 0$, caso contrário

Um grafo não ponderado com N vértices é representado através de uma matriz binária N×N

O valor de cada elemento a_{ij} é dado por: $a_{ij} = 1$, se V_i e V_j estão ligados por uma aresta $a_{ij} = 0$, caso contrário

No grafo ponderado, o elemento a_{ij} recebe o peso associado com a aresta entre os vértices V_i e V_j Matriz não é de *bits*

Deve-se adotar um **valor diferenciado** para indicar a inexistência de arestas

Grafo não direcionado e não ponderado

Matriz de adjacência

	0	1	2	3	4	5
0	0	1	1	0	0	0
1	1	0	1	0	0	0
2	1	1	0	0	0	0
3	0	0	0	0	0	0
4	0	0	0	0	0	1
5	0	0	0	0	1	0

10

Grafo não direcionado

Matriz de adjacência (simétrica)

	0	1	2	3	4	5
0	0	1	1	0	0	0
1	1	0	1	0	0	0
2	1	1	0	0	0	0
3	0	0	0	0	0	0
4	0	0	0	0	0	1
5	0	0	0	0	1	0

Grafo não direcionado ponderado

Matriz de adjacência (simétrica)

	0	1	2	3	4	5
0	0	5	6	0	0	0
1	5	0	7	0	0	0
2	6	7	0	0	0	0
3	0	0	0	0	0	0
4	0	0	0	0	0	9
5	0	0	0	0	9	0

Grafo direcionado

Matriz de adjacência

	0	1	2	3	4	5
0	0	1	0	1	0	0
1	0	0	1	1	0	0
2	0	0	1	1	0	0
3	1	0	0	0	0	0
4	0	0	0	0	0	0
5	0	0	0	0	1	0

Grafo direcionado

Matriz de adjacência (não simétrica)

	0	1	2	3	4	5
0	0	1	0	1	0	0
1	0	0	1	1	0	0
2	0	0	1	1	0	0
3	1	0	0	0	0	0
4	0	0	0	0	0	0
5	0	0	0	0	1	0

Grafo direcionado ponderado

Matriz de adjacência (não simétrica)

	0	1	2	3	4	5
0	0	5	0	2	0	0
1	0	0	7	6	0	0
2	0	0	1	8	0	0
3	4	0	0	0	0	0
4	0	0	0	0	0	0
5	0	0	0	0	9	0

Redundância na representação de grafos não direcionados (matriz simétrica)

Redundância na representação de grafos não direcionados (matriz simétrica)

Possui um alto custo de armazenamento

Matriz necessita $\Omega(|V|^2)$ de espaço

Deve ser usada em **grafos densos** ($|A| \approx |V|^2$)

Redundância na representação de grafos não direcionados (matriz simétrica)

Possui um alto custo de armazenamento

Matriz necessita $\Omega(|V|^2)$ de espaço

Deve ser usada em **grafos densos**, onde $|A| \approx |V|^2$

Facilita o acesso a informação

Tempo de acesso independe de |V| ou |A|

Útil para algoritmos que precisam saber com rapidez se existe uma aresta ligando 2 vértices

Um grafo G com N vértices é representado através de um vetor de N posições, onde:

Cada posição refere-se a um vértice V_i

Um grafo G com N vértices é representado através de um vetor de N posições, onde:

Cada posição refere-se a um vértice V_i

Aponta para uma lista encadeada de vértices adjacentes a V_i

Exemplo de listas de adjacência

1 4 5

Listas de adjacência

Grafo não direcionado

Exemplo de listas de adjacência

1 4 5

Listas de adjacência

Grafo direcionado

Exemplo de listas de adjacência

Estrutura do nó da lista é modifica para guardar o **peso da aresta**

Listas de adjacência

Grafo não direcionado ponderado

Redundância é mantida na representação de grafos não direcionados

Facilita o acesso às informações

Redundância é mantida na representação de grafos não direcionados

Facilita o acesso às informações

Representação mais compacta

Aloca espaço apenas para arestas existentes

Lista necessita de O(|V|+|A|) de espaço

Indicada para **grafos esparsos** (|A| muito menor que $|V|^2$)

Redundância é mantida na representação de grafos não direcionados

Facilita o acesso às informações

Representação mais compacta

Aloca espaço apenas para arestas existentes

Lista necessita de O(|V|+|A|) de espaço

Indicada para **grafos esparsos** (|A| muito menor que $|V|^2$)

O tempo para determinar se existe uma aresta entre 2 vértices é **O(|V|)**

Redundância é mantida na representação de grafos não direcionados

Facilita o acesso às informações

Representação mais compacta

Aloca espaço apenas para arestas existentes

Lista necessita de O(|V|+|A|) de espaço

Indicada para grafos esparsos (|A| muito menor que $|V|^2$)

O tempo para determinar se existe uma aresta entre 2 vértices é **O(|V|)**

Inserção e remoção em listas são mais complexas

Na matriz de incidência um grafo com *N* vértices e *M* arestas é representado através de uma matriz *N*×*M*

Na matriz de incidência um grafo com *N* vértices e *M* arestas é representado através de uma matriz *N*×*M*

O valor de cada elemento a_{ij} é dado por: $a_{ij} = 1$, se a aresta A_j é incidente ao vértice V_i $a_{ij} = 0$, caso contrário

Na matriz de incidência um grafo com *N* vértices e *M* arestas é representado através de uma matriz *N*×*M*

O valor de cada elemento a_{ij} é dado por:

 a_{ij} = 1, se a aresta A_j é incidente ao vértice V_i a_{ij} = 0, caso contrário

Cada coluna possui apenas dois 1's, referentes aos vértices conectados pela aresta

Na matriz de incidência um grafo com *N* vértices e *M* arestas é representado através de uma matriz *N*×*M*

O valor de cada elemento a_{ij} é dado por:

```
a_{ij} = 1, se a aresta A_j é incidente ao vértice V_i a_{ij} = 0, caso contrário
```

Cada coluna possui apenas dois 1's, referentes aos vértices conectados pela aresta

No grafo ponderado, o elemento a_{ij} recebe o peso associado com a aresta entre os vértices V_i e V_j

Na matriz de incidência um grafo com *N* vértices e *M* arestas é representado através de uma matriz *N*×*M*

O valor de cada elemento a_{ij} é dado por:

```
a_{ij} = 1, se a aresta A_j é incidente ao vértice V_i a_{ij} = 0, caso contrário
```

Cada coluna possui apenas dois 1's, referentes aos vértices conectados pela aresta

No grafo ponderado, o elemento a_{ij} recebe o peso associado com a aresta entre os vértices V_i e V_j

No **grafo direcionado**, o vértice de destino (V_j) recebe o valor da aresta (P) e o vértice de origem (V_i) recebe -P

Exemplo de matriz de incidência

Grafo não direcionado

vértices

1 2 3 4 5 6 7 1 1 1 0 0 0 0 0 2 1 0 1 1 0 0 0 3 0 0 0 1 0 1 1 4 0 1 1 0 1 0 1 5 0 0 0 0 1 0 1

arestas

Matriz de incidência

Exemplo de matriz de incidência

Matriz de incidência

Um grafo é representado pelos seus conjuntos V e A através de listas encadeadas

Grafo não direcionado

Um grafo é representado pelos seus conjuntos V e A através de listas encadeadas

Grafo não direcionado

Conjuntos

Um grafo é representado pelos seus conjuntos V e A através de listas encadeadas

Grafo não direcionado

Conjuntos

No grafo ponderado, o nó da lista de arestas deve incluir o campo peso

Grafos: complexidade das representações

Considere um grafo G com N vértices e M arestas:

M varia de 1 até N(N-1)/2

Operação	Matriz de Incidência	Matriz de Adjacência	Listas de Adjacência	Conjuntos
Espaço memória	O(MN)	O(N ²)	O(M+N)	O(M+N)
Buscar todos os vizinhos	O(MN)	O(N)	O(N)	O(M)
Verificar adjacência V_i e V_j	O(M)	O(1)	O(N)	O(M)
Visitar todas as arestas	O(MN)	O(N ²)	O(M)	O(M)
Calcular grau de vértice	O(M)	O(N)	O(N)	O(M)

Exercícios

1. Represente os grafos a seguir através da matriz de adjacências, de listas de adjacências e da matriz de incidências.

2. Construa graficamente os grafos que correspondem às representações a seguir, definindo se são direcionados ou não.

	0	1	2	3
0	0	1	0	1
1	0	1	1	0
2	1	0	1	1
3	0	1	1	0

Bibliografia

Slides adaptados do material do Prof. Dr. Marcelo K. Albertini e da Profa. Dra. Denise Guliato.

BACKES, A. Linguagem C Descomplicada: portal de vídeo-aulas para estudo de programação. Disponível em:

https://programacaodescomplicada.wordpress.com/indice/estrutura-de-dados/

CORMEN, T.H. et al. Algoritmos: Teoria e Prática, Campus, 2002

ZIVIANI, N. Projeto de algoritmos: com implementações em Pascal e C (2ª ed.), Thomson, 2004

MORAES, C.R. Estruturas de Dados e Algoritmos: uma abordagem didática (2ª ed.), Futura, 2003