SPRAWOZDANIE

Kurs: Kompresja informacji w systemach teleinformatycznych

Nazwa zadania laboratoryjnego: Kwantowanie liniowe, kwantowanie dynamiczne i kwantowanie

nieliniowe w oparciu o krzywą

Skład grupy:

- 1) Igor Michalski CZW
- 2) Paweł Muszyński WT

Ocena:

1. Cel ćwiczenia

Celem ćwiczenia jest zapoznanie się z koncepcją, działaniem i porównaniem różnych metod kwantyzacji sygnału mowy

2. Zagadnienia do opracowania

• określić charakter otrzymanych wykresów (zależność liniowa/nieliniowa) oraz współczynnik nachylenia krzywej SQNR(b) w [dB/bit] w wybranym przedziale liczby bitów kwantyzera.

Wyznaczenie współczynnika nachylenia krzywej od 9 do 13 bitów

$$a = \frac{SQNR(b_2) - SQNR(b_1)}{b_2 - b_1};$$

$$\frac{SQNR(13) - SQNR(9)}{13 - 9}$$

$$\frac{46.21 - 22,12}{4} = 6,0225 \left[\frac{dB}{bit}\right]$$

• sprawdzić, w oparciu o badania subiektywne i modyfikację skryptu Petla1.m, jaka liczba bitów przetwornika gwarantuje poprawną jakość badanego sygnału mowy (brak percepcji szumów kwantyzacji). Jakiej wartości SQNR (w dB) odpowiada określony w bitach próg percepcji.

Liczba bitów/próbke	Wrażenia subiektywne	Vt [kb/s] fs 8000 próbek/s	SQNR[dB]
4	Przekaz niezrozumiały	32	-11,46
5	Przekaz niezrozumiały	40	-4,442
6	Przekaz częściowo zrozumiały	48	2,691
7	Przekaz zrozumiały, brak akceptacji jakości, wysoki poziom trzasków	56	9,591
8	Przekaz zrozumiały, jakości na granicy przyzwoitości, średni poziom trzasków poziom trzasków	64	15,99
9	Przekaz zrozumiały, akceptacja jakości, brak trzasków, średni poziom szumów	72	22,12
10	Przekaz zrozumiały, akceptacja jakości, brak trzasków, średni poziom szumów	80	28,17
11	Przekaz zrozumiały, akceptacja jakości, brak trzasków, niski poziom szumów	88	34,11
12	Przekaz zrozumiały, akceptacja jakości, brak trzasków, bardzo niski poziom szumów	96	40,19
13	Przekaz zrozumiały, akceptacja jakości, brak trzasków, bardzo niski poziom szumów	104	46,21
14	Przekaz zrozumiały, akceptacja jakości, brak trzasków, bardzo niski poziom szumów	112	52,19
15	Przekaz zrozumiały, akceptacja jakości, brak trzasków, bardzo niski poziom szumów	120	58,2
16	Przekaz zrozumiały, akceptacja jakości, brak trzasków, bardzo niski poziom szumów	128	64,28

Idealną jakość osiągamy od 40dB. Akceptowalną jakością jest jakość od 20 dB.

• W oparciu o wykres SQNR(b) (dla kwantyzera liniowego) i otrzymaną wartość SQNR należy wyznaczyć równoważny kwantyzer liniowy dla analizowanego kwantyzera dynamicznego. We wnioskach należy porównać otrzymane wyniki i uzasadnić konieczność stosowania kwantyzerów dynamicznych dla niedużych (od 2 do 5) wartości liczby bitów reprezentacji pojedynczej próbki.

W wyniku działania skryptu pętla2 otrzymaliśmy jakość SQNR 21 dB przy 32kb/s. Aby dorównać kwantyzatorowi dynamicznemu trzeba by było wziąć 9 bitów w kwantyzatorze liniowym przy 72 kb/s, co oznacza, że zachowaliśmy 5 bitów.

Zysk z zastosowania kwantyzera dynamicznego: 5 bitów/próbkę, czyli 40 kb/s, przy zachowaniu przyzwoitej jakości sygnału.

• W oparciu o skrypt Petla3.m, który wykorzystuje funkcję pcm, oraz plik typu wave z zapisanym sygnałem mowy (mowa.wav) wyznaczyć zależności SNR() przy b=const (b=5, 6, 7, 8, 10, 12, 13, 14); =1, 2, 5, 10, 25, 50, 100, 150, 200, 250, 300).

- Jaka liczba bitów przy kwantowaniu nieliniowym wystarczy do uzyskania poziomu szumów kwantowania, który jest ignorowany przez narządy słuchu?
 Z powyższego wykresu wynika, że najlepszą jakość w kwantyzerze nieliniowym możemy otrzymać między 8 a 9 bitami
- W oparciu o otrzymane poziomy percepcji szumów kwantowania dla badanych kwantyzerów (liniowego i nieliniowego) określić zysk w ilości bitów na próbkę z zastosowania kwantyzera nieliniowego.

W porównaniu z kwantyzerem liniowym zyskujemy 3 lub 4 bity przy zachowaniu tej samej jakości

 W oparciu o otrzymane poziomy percepcji szumów kwantowania dla badanych kwantyzerów (dynamicznego i nieliniowego) określić zysk w ilości bitów na próbkę z zastosowania kwantyzera dynamicznego 4 bitowego.

Porównując kwantyzer nieliniowy z dynamicznym możemy zauważyć, że zyskujemy 2 bity przy korzystaniu z tego drugiego, ponieważ najlepszą jakość (SQNR= 21) otrzymujemy przy 4 bitach, natomiast kwantyzer nieliniowy osiąga SQNR = 21 przy 6 bitach.

3. Wnioski końcowe

Porównująć kwantyzery liniowy, nieliniowy oraz dynamiczny można zauważyć, że największy zysk przy zachowaniu tej samej jakości otrzymamy korzystając z kwantyzera dynamicznego, dzięki któremu zyskamy 2 bity w porównaniu z kwantyzerem nieliniowym oraz az 7 bitów przy porównaniu z kwantyzerem liniowym.