Math 325 Problem Set 1 Solutions

1. Working from our axioms for the ordered field \mathbb{R} , show that if $x, y \in \mathbb{R}$ and x < y, then $x < \frac{x+y}{2} < y$.

Letting \mathcal{P} stnd for the positive reals, we wish to show that, if $y - x \in \mathcal{P}$, then $\frac{x+y}{2} - x \in \mathcal{P}$ and $y - \frac{x+y}{2} \in \mathcal{P}$.

But
$$\frac{x+y}{2} - x = \frac{x}{2} + \frac{y}{2} - x = \frac{x}{2} + \frac{y}{2} - (\frac{x}{2} + \frac{x}{2}) = \frac{y}{2} - \frac{x}{2} = \frac{1}{2}(y-x)$$

And since $y - x \in \mathcal{P}$ and $\frac{1}{2} \in \mathcal{P}$, their product is, too. So $\frac{x + y}{2} - x \in \mathcal{P}$.

A similar argument establishes the second assertion; in fact,

$$y - \frac{x+y}{2} = (\frac{y}{2} + \frac{y}{2}) - (\frac{x}{2} + \frac{y}{2}) = \frac{y}{2} - \frac{x}{2} = \frac{1}{2}(y-x)$$
 as well!, so is also in \mathcal{P} .

[Why is $\frac{1}{2} \in \mathcal{P}$? Because otherwise, since 1 > 0 (below!), we have 2 = 1 + 1 > 0, so if $\frac{1}{2} < 0$ then $1 = 2 \cdot \frac{1}{2} < 0$, a contradiction!]

2. [Lay, p. 115, # 11.3 (c,d,f)] Show:

$$(\alpha)$$
 If $x \neq 0$, then $\frac{1}{x} \neq 0$ and $\frac{1}{(1/x)} = x$.

If $\frac{1}{x} = 0$, then $0 = 0 \cdot x = \frac{1}{x}x = 1$, so 0 = 1, violating one of our axioms. So $\frac{1}{x} \neq 0$. Then since $x \cdot \frac{1}{x} = 1 = \frac{1}{(1/x)} \cdot \frac{1}{x}$, both x and $\frac{1}{(1/x)}$ work as an inverse to $\frac{1}{x}$, so they are equal; $x = \frac{1}{(1/x)}$.

(
$$\beta$$
) If $xy = xz$ and $x \neq 0$, then $y = z$.

Since $x \neq 0$, it has an inverse 1/x, and then xy = xz implies that $y = 1 \cdot y = ((1/x)x)y = (1/x)(xy) = (1/x)(xz) = ((1/x)x)z = 1 \cdot z = z$, so y = z. $(\gamma) \ 0 < 1$.

This asserts that $1-0=1\in\mathcal{P}$. The only other possibilities are that $-1\in\mathcal{P}$ or 1=0. But 1=0 is impossible, essentially by the definition of the number 1. And if $-1\in\mathcal{P}$, then $(-1)(-1)\in\mathcal{P}$, as well. But from class we know that $(-1)(-1)=1\cdot 1=1$, so if $-1\in\mathcal{P}$ then $1\in\mathcal{P}$. But our axioms for \mathcal{P} stated that only one of these two statements could be true. So since $-1\in\mathcal{P}$ requires that $1\in\mathcal{P}$ as well, it cannot be true that $-1\in\mathcal{P}$. So we must have $1\in\mathcal{P}$, as desired.

3. Working from our axioms for the ordered field \mathbb{R} , show that for any $x \in \mathbb{R}$, $x^2 + 1 > 0$.

We know from a problem above that 1 > 0. So if we show that $x^2 \ge 0$ for every $x \in \mathbb{R}$, we'll be done: $x^2 + 1 > x^2 + 0 = x^2 > 0$, So $x^2 + 1 > 0$.

[On some level, we need a little more: a > b and $b \ge c$ implies a > c, because either b > c so a > b gives a > c, or b = c, so a > b is the same thing as a > c.]

But for any $x \in \mathbb{R}$, we know that either x > 0, -x > 0, or x = 0. But x > 0 implies $x^2 = x \cdot x > 0$, so $x^2 \ge 0$. -x > 0 implies that $x^2 = x \cdot x = (-x)(-x) > 0$, so $x^2 \ge 0$. And finally x = 0 implies that $x^2 = x \cdot x = 0 \cdot 0 = 0$, so $x^2 \ge 0$. So every possible case leads to the same conclusion, that $x^2 > 0$.

So for every $x \in \mathbb{R}$, $x^2 \ge 0$. This finishes our argument, so $x^2 + 1 > 0$ for every real number x.

[N.B.: In particular, $x^2+1=0$ has no solution. This shows that the complex numbers $\mathbb C$ cannot support an order '<' making $\mathbb C$ an ordered field. This is because the complex numbers possess a number, i, satisfying $i^2+1=0$. So no ordering on $\mathbb C$ can satisfy $i^2+1>0$ (since 0>0 violates trichotomy). So $\mathbb C$ cannot be an ordered field.]