PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification ⁶: B64C 23/06, F15D 1/00, B63G 8/34

(11) International Publication Number:

WO 99/00297

(43) International Publication Date:

7 January 1999 (07.01.99)

(21) International Application Number:

PCT/US98/11569

A1

(22) International Filing Date:

5 June 1998 (05.06.98)

(30) Priority Data:

60/050,807 2 80/964.941 5

26 June 1997 (26.06.97) US

5 November 1997 (05.11.97) US

(71) Applicant: THE BOEING COMPANY [-/US]; M/S 13-08, P.O. Box 3707, Seattle, WA 98124-2207 (US).

(72) Inventors: CROUCH, Jeffrey, D.; 25758 - S.E. 41st Place, Issaquah, WA 98029 (US). SPALART, Philippe, R.; 2205 W. Lake Sammamish Pk. N.E., Redmond, WA 98052 (US).

(74) Agent: DONAHUE, Bernard, A.; The Boeing Company, M/S 13-08, P.O. Box 3707, Seattle, WA 98124-2207 (US).

(81) Designated States: AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GE, GH, GM, GW, HU, ID, IL, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, UA, UG, UZ, VN, YU, ZW, ARIPO patent (GH, GM, KE, LS, MW, SD, SZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, ML, MR, NE, SN, TD, TG).

Published

With international search report.

Before the expiration of the time limit for amending the claims and to be republished in the event of the receipt of amendments.

(54) Title: ACTIVE SYSTEM FOR EARLY DESTRUCTION OF TRAILING VORTICES

(57) Abstract

An active control method and apparatus for encouraging the early destruction of trailing vortices formed by a lifting body having at least two control surfaces (68, 70) on each side and creating multiple vortex pairs is provided. The method includes actuating the control surfaces in a manner leading to the direct excitation of one or more of the Transient Growth Mechanism, the Short Wavelength Instability, the Long Wavelength Instability, and the Crow Instability to result in the accelerated breakup of the trailing vortices. A method of selecting control parameters in an active control system includes identifying the near-field vorticity distribution of the aircraft, selecting at least one amplification mechanism for distorting the trailing vortices, determining amplitudes and wavelengths for imposed vortex perturbations, simulating trailing vortex evolutions, determining effectiveness of perturbations and amplification mechanisms, determining vortex positions as a function of control surface deflections, and determining control parameters to govern the movement of the wing control surfaces.

_12/4/04, EAST Version: 2.0.1.4__

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL	Albania	ES	Spain	LS	Lesotho	SI	Slovenia
AM	Armenia	FI	Finland	LT	Lithuania	SK	Slovakia
ΑT	Austria	FR	France	LU	Luxembourg	SN	Senegal
ΑÜ	Australia	GA	Gabon	LV	Latvia	SZ	Swaziland
ΑZ	Azerbaijan	GB	United Kingdom	MC	Monaco	TD	Chad
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagascar	TJ	Tajikistan
BE	Belgium	GN	Guinea	MK	The former Yugoslav	TM	Turkmenistan
BF	Burkina Faso	GR	Greece		Republic of Macedonia	TR	Turkey
BG	Bulgaria	HU	Hungary	ML	Mali	TT	Trinidad and Tobago
BJ	Benin	IE	Ireland	MN	Mongolia	UA	Ukraine
BR	Brazil	IL	Israel	MR	Mauritania	UG	Uganda
BY	Belarus	IS	Iceland	MW	Malawi	US	United States of Americ
CA	Canada	IT	Italy	MX	Mexico	UZ	Uzbekistan
CF	Central African Republic	JP	Japan	NE	Niger	VN	Vict Nam
CG	Congo	KE	Kenya	NL	Netherlands	YU	Yugoslavia
CH	Switzerland	KG	Kyrgyzstan	NO	Norway	zw	Zimbabwe
CI	Côte d'Ivoire	KP	Democratic People's	NZ	New Zealand		
CM	Cameroon		Republic of Korea	PL	Poland		
CN	China	KR	Republic of Korea	PT	Portugal		
CU	Cuba	KZ	Kazakstan	RO	Romania		
CZ	Czech Republic	LC	Saint Lucia	RU	Russian Federation		
DE	Germany	LI	Liechtenstein	SD	Sudan		
DK	Denmark	LK	Sri Lanka	SE	Sweden		
EE	Estonia	LR	Liberia	SG	Singapore		

WO 99/00297 PCT/US98/11569

ACTIVE SYSTEM FOR EARLY DESTRUCTION OF TRAILING VORTICES

Related U.S. Application Data

This invention has been disclosed in a Provisional Application under 37 C.F.R. 1.53(b)(2) filed June 26, 1997.

Field of the Invention

This invention relates to a method and apparatus for addressing aircraft trailing vortices. Airplanes create trailing vortices (rotations of air), due to pressure differences between the upper and lower surfaces of its lifting surfaces (e.g., wings, elevators, etc.) This effect has been called "wake turbulence", "propwash", and the vortices "wake vortices", "tip vortices" or "trailing vortices".

10

15

20

Background of the Invention

For large aircraft, a wake of rotating air is created behind the craft during flight. These vortices and their associated downflow (airflow located between the vortices) and upflow (airflow located outside the vortices) can disrupt the flight of a following aircraft that enters the wake of the leading aircraft. Depending on the conditions, structural stresses can be imposed on the following aircraft. In some instances, the following aircraft can be rapidly rolled to one side, which is particularly hazardous when flying close to the ground. The problems associated with wake vortices become more pronounced as the lead aircraft increases in size relative to the following aircraft.

While the trailing vortices are almost always moved or destroyed by atmospheric currents, or spontaneously descend away from the flight paths, these effects do not guarantee that hazardous encounters will never occur. Several

10

15

20

25

30

35

accidents have been attributed to wake turbulence. To alleviate this risk, a number of regulatory flight rules are in effect which require compliance in the amount of spacing between airplanes in approach to the same airport. The wake turbulence spacing requirement is often larger than the spacing required by other factors such as radar resolution or runway occupancy, so that under some conditions, these rules add to the congestion and delays in the air transportation system.

Starting around 1970, theories regarding the alleviation of wake vortices have been the subject of a number of professional conferences. The inventors herein are not aware of any such theory having been applied directly to a system for use with commercial airliners. Prior attempts to manage the trailing vortices in the commercial aircraft industry have focused on methods of modifying the vortex characteristics to alleviate (or reduce) the potential for upset on the following aircraft. Methods of this type provide a modification of the vortex structure, but such modification does not significantly alter the induced rolling moments on a following aircraft unless the following aircraft wing span is comparable to the vortex-core diameter. Typically, the vortex-core diameter is much smaller than the leading aircraft wing span. This type of system has been the subject of a large number of patents. Some of these are summarized in U.S. Patent No. 5,492,289.

One of the dominant mechanisms affecting the persistence of the vortices is instability. Methods to excite a sinusoidal instability for a single pair of trailing vortices that could lead to a breakup of the vortices have been suggested. The growth of such instabilities would ultimately lead to large vortex distortions and eventual breakup. This idea was first analyzed by S.C. Crow in Crow, S.C., Stability Theory for a Pair of Trailing Vortices, AIAA Journal, 8, pp. 2172-2179 (1970) [hereinafter referred to as Crow (1970)]. A system of this type was suggested by Crow as documented in Crow, S.C, Panel Discussion in: "Aircraft Wake Turbulence and Its Detection," ed. J. Olsen, A. Goldburg, M. Rogers, pp. 551-582 (1971) [hereinafter referred to as Crow (1971)].

The predictions of Crow as to the most naturally-amplified wavelengths are in good agreement with experimental results where the natural source of excitation is provided by turbulence in the atmosphere. This source of breakup is referred to as the Crow Instability, and is well-known in the art. The Crow Instability amplifies slowly. The growth of the instability leads to periodic linking of the vortices from the right and left hand sides, in the flight-path direction in the far field. The linking transforms the vortices into vortex rings, which after some additional time, become

10

15

20

25

30

35

sufficiently deformed to break up. In this final state of evolution, the impact of the vortices on a following aircraft can be considered benign.

The concept of directly exciting the Crow Instability was tested in towing-tank experiments reported in Bilanin, A.J. & Widnall, S.E., Aircraft Wake Dissipation By Sinusoidal Instability and Vortex Breakdown, AIAA Paper No. 73-107 (1973) [hereinafter referred to as Bilanin & Widnall]. The experiments showed that the instability could, in fact, be excited by varying the distribution of lift on the wing. A fuller presentation of the concept of direct excitation of the Crow Instability is given in the paper Crow, S.C. & Bate, E.R. Jr. 1976 Lifespan of Trailing Vortices In a Turbulent Atmosphere, J. Aircraft, 13, pp. 476-482 (1976) [hereinafter referred to as Crow & Bate].

The work of Crow & Bate represents the state-of-the-art of methods to excite a sinusoidal instability at the time of development of the current invention. It was suggested that the excitation would be accomplished by varying the distribution of lift on the wing in a particular manner. As stated in Crow & Bate, "The aircraft controls are wired so that the outboard ailerons can oscillate symmetrically, whereas the inboard ailerons move in opposition to keep the total lift of the wing constant. The horizontal stabilizer trims any pitching tendency, and the net effect is to slosh the lift distribution in and out along the wingspan." Id. at pages 481. This concept is illustrated by FIGURES 1A and 1B herein labeled "Prior Art" and is taken directly from Figure 10 of the Crow & Bate paper. FIGURE 1A is a schematic of the control surfaces in their deflected positions. FIGURE 1B shows a schematic of the wing spanload lift variation as suggested by Crow & Bate (the fuselage is not shown, but would be positioned at the center location of the x-axis.) The extreme of sloshing the lift outboard is given by the solid line, and the extreme of sloshing the lift inboard is given by the dashed line. The areas represented under the solid and dashed lines is the same, indicating that the two spanloads provide the same total airplane lift. However, the trailing vortices do not have the same strength (circulation) and location.

The centers of wake vorticity, called "vorticity centroids", are shown in FIGURE 1C, where the dashed and solid circles correspond to the dashed and solid lines of FIGURE 1B. Vorticity centroids are the centers of rotation for the combined vortices of one wing side, i.e., left and right vorticity centroids are shown in FIGURE 1C. Thus, FIGURES 1A, 1B, and 1C demonstrate that an inboard perturbation of a single vortex pair may be introduced by shifting the spanload lift (and hence the vorticity centroids) between the solid and dashed lines. In

10

15

20

25

30

35

FIGURE 1C, the circles represent the positions of each vortex and the lines represent the vorticity centroids on that side of the aircraft. Because the Crow Instability is theorized for only a single vortex pair, the centroids align with their respective vortex.

Referring to FIGURE 1D, the vortices resulting from oscillating the lift distribution take on a sinusoidal form. The wavelength of the imposed perturbation is generally about seven wing spans (for maximum amplification due to the Crow Instability.) The vortex movements shown in FIGURE 1D have been exaggerated.

As shown in FIGURE 1C, significant movement of the vorticity centroids between the dashed and solid line positions for both the right and left hand sides is required to break up the vortices via direct excitation of the Crow Instability. To preserve the total lift while moving the vorticity centroids, the wing-root loading must also undergo significant variation, since the lift required from the wing-root is now much greater (see lift "hump" at the middle of the x-axis). Increased loading at the wing tip is also structurally problematic for many aircraft. Any necessary structural enhancements can lead to increased weight and fuel consumption which lower the efficiency of the craft.

The size of the initial vortex perturbation is a function of the amount of lift that is shifted along the wingspan. Thus, a large initial perturbation results in a large loss in lift from the baseline (steady-state) wing configuration. In order to break up the vortices within a distance behind the aircraft that could influence aircraft spacing, using the current approach (i.e., the approach of Crow & Bate) would require a large initial perturbation and an excessive loss in baseline wing lift. Because of the slow growth of the Crow Instability, the required excitation levels for rapid breakup of the vortices are too large to be useful for practical application. Indeed, the concept of Crow & Bate was never applied in practice.

Thus, a need exists for a practicable method and system or device for bringing about the dissipation of wake vortices by inserting a perturbation in the wake vortices that eventually causes the effective breakup of the vortices. The present invention is directed to fulfilling this need.

Summary of the Invention

In accordance with teachings of the present invention, a method of encouraging the early destruction of trailing vortices formed by a lifting body which produces at least two trailing vortex pairs is provided. The method includes actuating the control surfaces in a manner leading to the direct excitation of one or more of the Transient Growth Mechanism, the Short Wavelength Instability, and the Long

Wavelength Instability, to result in the accelerated breakup of the trailing vortices. In preferred embodiments, the excitation is the result of some combination of a Short Wavelength Instability, a Transient Growth Mechanism, and the Crow Instability amplification as exists on at least two vortex pairs.

5

In accordance with other aspects of this invention, the actuating is accomplished by a controller in electronic communication with at least two sets of control surfaces of the lifting body. The controller includes a memory such that the appropriate control surface movements are determined by accessing a table stored in the controller memory.

10

15

In accordance with further aspects of this invention, the lifting body includes aircraft wings that produce at least two vortex pairs from the wings. Actuation of the control surfaces is accomplished during airport approach and/or departure. In another preferred embodiment, the actuating of the control surfaces does not significantly alter the total airplane lift or pitching moment. In preferred embodiments, the lifting body is an aircraft wing having an aileron and a spoiler, and the actuating of control surfaces includes moving the ailerons and moving the spoiler. In alternative embodiments, the wing has an aileron and a flaperon, and the actuating includes moving the ailerons and the flaperon. In yet another preferred embodiment, the lifting body is a submarine with lifting surfaces that produce at least two vortex pairs.

20

In accordance with yet other aspects of this invention, a method of selecting control parameters in an active control system for the early destruction of trailing vortices formed by a lifting body which produces at least two vortex pairs is provided. The lifting body has at least two sets of control surfaces. The method includes identifying the near-field vorticity distribution of the aircraft; selecting at least one amplification mechanism for distorting the trailing vortices; determining amplitudes and wavelengths for imposed vortex perturbations; simulating trailing vortex evolutions; determining effectiveness of perturbations and amplification mechanisms; determining vortex positions as a function of control surface deflections; and determining control parameters to govern the movement of the wing control surfaces.

30

25

In accordance with yet further aspects of this invention, the identification of the near-field vorticity distribution includes performing a wind tunnel survey of a model representative of the aircraft. The selection of at least one amplification mechanism includes determining whether distinct vortex pairs exist. The determination of amplitudes and wavelengths includes performing a stability analysis. The determination of the effectiveness of perturbations and amplification mechanisms

35

10

15

20

25

30

35

includes determining whether vortex breakup is achieved within a useful following distance. The determination of vortex positions as a function of control surface deflections includes performing a wind tunnel survey of a model representative of the aircraft.

In accordance with additional aspects of this invention, an apparatus for early destruction of trailing vortices for aircraft configurations having at least two vortex pairs is provided. The aircraft further includes left and right wings, each wing having at least two control surfaces. The apparatus includes means for identifying the near-field vorticity distribution of the aircraft; means for selecting at least one amplification mechanism for distorting the trailing vortices; means for determining amplitudes and wavelengths for imposed vortex perturbations; means for simulating trailing vortex evolutions, means for determining effectiveness of perturbations and amplification mechanisms; means for determining vortex positions as a function of control surface deflections; and means for determining control parameters to govern the movement of the wing control surfaces.

Brief Description of the Drawings

The foregoing aspects and many of the attendant advantages of this invention will become more readily appreciated as the same becomes better understood by reference to the following detailed description, when taken in conjunction with the accompanying drawings, wherein:

FIGURE 1A is a front view of a prior art aircraft showing a number of control surfaces in deflected positions;

FIGURE 1B is a diagram of spanwise lift variation as suggested by Crow & Bate;

FIGURE 1C is a diagram of the vortex positions (shown as circles) and the vorticity centroid positions (shown as straight lines) resulting from the lift variations of FIGURE 1B;

FIGURE 1D is a top down plan view of an aircraft illustrating the near field effects of varying the lift as suggested in FIGURE 1B using the control surfaces of FIGURE 1A;

FIGURE 2A is a perspective view of an airplane wing with flaps down;

FIGURES 2B-2C are cross-sectional side views of the wing of FIGURE 2A taken at the aileron, flaperon, and inboard flaps, respectively;

FIGURE 3A is a top down plan view of an airplane showing various vortices; FIGURE 3B is an end-view taken along lines 3B-3B in FIGURE 3A;

- 15

20

25

30

35

FIGURES 4A-4C are perspective views of two distorted vortex pairs after amplification of an initial disturbance using the Long Wavelength Instability, the Transient Growth Mechanism, and the Short Wavelength Instability, respectively;

FIGURE 5 is a schematic diagram of one embodiment of an active control system for destruction of trailing vortices formed in accordance with the present invention;

FIGURE 6A is a perspective view of wing-tip and flap-edge vortices with an imposed perturbation according to the active control system of FIGURE 5;

FIGURE 6B is a diagram of spanwise lift variation resulting from the active control system illustrated in FIGURE 5;

FIGURE 6C is a diagram of the vortex positions (shown as circles) and the vorticity centroid positions (shown as straight lines) resulting from the lift variations of FIGURE 6B;

FIGURE 7 is a logic diagram of a method of defining control surface movement for use in the active control system of FIGURE 5; and

FIGURES 8A-8C are perspective views of the intermediate field effects of using an active control system formed according to the present invention.

Detailed Description of the Preferred Embodiment

The method of Crow & Bate (as well as Crow (1971) and Bilanin & Widnall) was based on modeling the trailing vortices as a single vortex pair--a right-hand side vortex and a left-hand side vortex. For such a system, the significant growth mechanism to be exploited is the Crow Instability. This is the growth mechanism which is exploited in the schemes described in Crow (1971), Bilanin & Widnall, and Crow & Bate: From a practical point of view, the Crow Instability amplifies perturbations very slowly. For example, it takes roughly ninety wingspans behind a Boeing 747-400 for an initial perturbation to grow by a factor of ten due to the Crow Instability. For practical commercial applications, an amplification factor greater than ten is desired.

The analysis used by Crouch and discussed in Crouch, J.D. Stability of multiple trailing-vortex pairs, In: The Characterization and Modification of Wakes From Lifting Vehicles in Fluids, pp. 17/1-8, AGARD CP-584 (1996) [hereinafter referred to as Crouch 1996] is based on the discovery that certain aircraft vortex systems can be modeled as at least two pairs of wing trailing edge vortices--one pair forming from the left and right wing tips, the other pair forming from the left and right outboard edges of the inboard flaps. Referring to FIGURE 2A, a representative

10

15

20

25

30

wing 61 includes double-slotted inboard flaps 62, single-slotted outboard flaps 64, outboard ailerons 68, flaperons 70 located between the inboard flaps 62 and the outboard flaps 64, and inboard spoilers 72 positioned forward of the inboard flaps 62. Similar components (i.e., 62', 64', 66', 68', 70', 72') are provided for the right side aircraft wing, as shown in FIGURE 3A. FIGURES 2B-2D illustrate typical movements of the outboard ailerons 68, flaperons 70, and inboard spoilers 72, respectively.

Referring to FIGURE 3A, the aircraft configuration that includes the wing of FIGURE 2A with flaps down produces a pair of wing-tip vortices 50, 50', a pair of inboard flap-edge vortices 52, 52', a pair of horizontal-tail vortices 54, 54', and a pair of side-of-body vortices 55, 55'. The pair of inboard flap-edge vortices 52, 52' are formed at the outboard edges of the inboard flaps due to the drop in spanload between the inboard flaps 62, 62' and the outboard edges of the outboard flaps 64, 64'. Shown in FIGURE 3B is an end-view taken along lines 3B-3B in FIGURE 3A. The arrows surrounding the vortices show the direction of vortex rotation. Depending on the particular configuration, some of the vortex pairs may propagate to the aircraft centerline and merge, thus effectively canceling each other as well as changing the total circulation produced on a given side of the aircraft. Other vortex pairs within the system persist for many spans behind the aircraft.

When modeled as multiple trailing-vortex pairs, the present inventor Crouch has discovered two new mechanisms leading to growth with time. These are termed herein a Transient Growth Mechanism and a Short Wavelength Instability. The present inventor Crouch has additionally discovered an instability that appears to be a modification of the Crow Instability. This instability is termed herein a Long Wavelength Instability. These new mechanisms are used in the present invention to amplify initial airflow irregularities. This amplification leads to a more rapid elimination of the trailing vortices than previously known using the Crow Instability. In particular, one embodiment of an active control system for early destruction of trailing vortices formed in accordance with the present invention is provided and described below with reference to FIGURE 5. The active control system uses existing aircraft wing control surfaces to introduce particular perturbations in the airflow that is passing from the wing trailing edge. A combination of one or more of the instabilities described herein amplify these perturbations. This results in rapid dissipation of the vortices as they begin to overlap and lose structure.

10

15

20

25

30

35

The result of using some combination of the Long Wavelength Instability, the Transient Growth Mechanism, the Short Wavelength Instability, and the Crow Instability to amplify initial vortex perturbations is significant. FIGURES 4A-4C show exaggerated positions of two distorted wing trailing vortex pairs (50, 50' and 52, 52') after amplification of initial disturbances using the Long Wavelength Instability, the Transient Growth Mechanism, and the Short Wavelength Instability, respectively. For purposes of the discussion below, a longitudinal direction is defined as being the fore and aft direction of travel of an aircraft. A lateral direction is defined as being a direction perpendicular to the longitudinal direction. The vortex pairs are illustrated after they have descended a distance of approximately one half of a wing span (equal to one tumbling period for these conditions.) Each illustration includes at least one wavelength. The magnitude of the initial perturbation was the same for each set of vortices, only the wavelength (excitation frequency) and the lateral direction of the initial perturbation was varied in order to best illustrate the effect of a particular instability.

After introducing an appropriate initial perturbation in the wing vortices of FIGURE 2A, the effect of the Long Wavelength Instability is shown in FIGURE 4A. Initially, the outboard flap or wing tip vortices 50, 50' are each perturbed in a direction upward and away from the airplane centerline. The inboard vortices 52, 52' are perturbed in the same form and in-phase with the outboard vortices. As the vortices continue behind the aircraft, the vortices on the wing left hand side (i.e., vortices 50 and 52) rotate relative to one another about a generally longitudinal axis. Similarly, the vortices on the wing right hand side (i.e., vortices 50' and 52') also rotate relative to one another about a generally longitudinal axis. The rate of rotation for the left and right hand pairs depends on the strength and spacing.

After introducing an appropriate initial perturbation in the wing vortices of FIGURE 2A, the effect of the Transient Growth Mechanism is shown in FIGURE 4B. Initially, the outboard flap vortices 50, 50' are each perturbed in a direction upward and away the airplane centerline. In this case, the inboard vortices are unperturbed.

After introducing an appropriate initial perturbation in the wing vortices of FIGURE 2A, the effect of the Short Wavelength Instability is shown in FIGURE 4C. The movement is similar to that in FIGURE 4A, except at much shorter wavelengths and the inboard and outboard vortices are perturbed out of phase.

As will be appreciated by those skilled in the art in comparing FIGURES 4A-4C, the present invention exploits these new instabilities that are

WO 99/00297

10

15

20

25

30

35

management computer.

associated with multiple vortex-pair systems to breakup the vortices faster, and with less impact to the vortex-producing aircraft, than could be achieved by exploiting only the Crow Instability. It is calculated that the Short Wavelength Instability can amplify an initial perturbation by a factor of ten in approximately fifty-six wing spans behind a Boeing 747-400 (i.e., only 60% of the distance required for similar amplification due to Crow Instability.) The Transient Growth Mechanism is strongest at longer wavelengths and is calculated to amplify an initial perturbation by a factor of ten in less than thirty wing spans behind a 747-400 (i.e. roughly 30% of the distance required for comparable amplification due to the Crow Instability.)

Referring to FIGURE 5, the active control system 76 for early destruction of trailing vortices includes a controller 78 in communication with at least two control surfaces via their respective actuation assemblies. In FIGURE 5, the lifting body is an aircraft wing, the control surfaces are the ailerons 68, 68' and spoilers 72, 72', the actuation assemblies are an aileron actuator 80 and a spoiler actuator 82, and the controller is a digital computer. Other control surfaces may be used depending on the configuration of the lifting body to which the present invention is being applied. Likewise, other lifting bodies, such as submarines, may benefit from use of the present invention. The controller is dedicated to the active control system, or alternatively is formed from an existing control component, e.g., an auto-pilot system or flight

Still referring to FIGURE 5, the controller introduces perturbations into the aircraft wing trailing vortex pairs by moving the aileron and spoiler in a manner that is best amplified by one or more instabilities. Amplification of the perturbations, in turn, decreases the distance required for the vortices to self-destruct. The controller causes the ailerons and spoilers to rotate about their connections to the wing in a pre-defined manner. The control surface motion is preferably a waveform, having both a specific frequency and amplitude. The aileron rotation includes positions that are both above the wing upper surface and below the wing lower surface. In contrast to the ailerons, the spoiler can only move to positions above the wing upper surface.

The pre-defined motions for the control surface movement are preferably stored in a computer memory. The information is determined in the system design phase for a particular airplane configuration and is organized in table format, so that during use, the processing components of the controller can extract the appropriate control surface motion based on the aircraft's current flight conditions, e.g., airspeed, altitude, attitude, flap setting, etc. One method of determining values for the stored

10

15

20

25

30

35

information is presented below with respect to FIGURE 7. By continuously monitoring the flight conditions, the active control system can direct and re-direct the motion of the control surfaces as required by current conditions.

FIGURE 6A shows the wing-tip and flap-edge vortices with an imposed perturbation. The tail vortices and the helical rotation of the wing vortices are not shown for clarity. The wing tip and flap vortices on a given side of the aircraft are perturbed toward and away from one another in the spanwise direction. The level of perturbation for each vortex is scaled inversely with its circulation strength.

The motion of the control surfaces generally affects the lift distribution for the wings as shown in FIGURE 6B. The two spanloads provide the same total airplane lift. As will be appreciated by viewing FIGURE 6B, the inboard flaps are held at a constant orientation, thus keeping the lift constant at the wing root. Instead, the lift distribution is affected primarily at the transition locations between the aileron and outboard flaps, and above the spoiler over the inboard flaps.

Referring to FIGURE 6C, shifting the lift distribution moves the inboard flap and wing tip vortices 52, 52' and 50, 50' between the dashed and solid lines. The net effect of this motion for the near field vorticity distribution is to introduce a spatially periodic perturbation to the vortex positions. The wavelength of the induced perturbation is set by the frequency of the oscillation and the velocity of the airplane. The form of the spatial perturbation is chosen to provide an excitation of one of the natural growth mechanisms which rapidly amplify the perturbations into large distortions of the vortices.

In FIGURE 6C, the vortex positions are shown as circular lines and the vorticity centroids are shown as vertical lines. The dashed lines are the result of the ailerons being lifted up while the flaperons (or spoilers) are down; the continuous lines are the result of the ailerons being down while the flaperons (or spoilers) are up. As will be appreciated from viewing FIGURE 6C, the combined effect of perturbing both sets of wing vortex pairs results in minimal shifting of the vorticity centroids. Therefore, the total lift is preserved without significant variation in the wing-root loading.

In designing an active control system, the vortex pairs from the wing tips, inboard-flap edges, and horizontal tail are preferably the minimum number of vortices that should be used to model the trailing vortices in the near field behind an aircraft. The tail vortices are not shown in FIGURES 6A-6C for illustrative clarity. The tail vortices are moved only as necessary to keep the airplane lift and pitching moment

constant. Because the tail vortices are relatively weak and their perturbations are small, they do not significantly affect the vorticity centroid locations. In this regard, no particular instability is used to define tail motion.

Referring to FIGURE 7 is a logic flow diagram of one method of pre-defining the optimal control surface movements for the active control system. Again, the method is described with reference to an aircraft. The present invention, however, may be used with other vehicles and other types of control surfaces.

5

10

15

20

25

30

Starting at step 100, a designer first obtains data on the near-field vorticity distribution for the subject aircraft during flaps down flight. This information is preferably obtained by conducting one or more wind tunnel tests. Alternatively, this information may be obtained computationally. During these tests, the velocity of airflow at different aft wing locations is measured and recorded. The far field distribution is calculated theoretically from the near field information. In the near field, the airflows coming off the wing trailing edge are in the form of sheets that are quickly rolled into tubular shapes. By measuring the near field vorticity, a designer can draw theoretical conclusions on the location and strength of vorticity in the mid and far fields. It is possible to measure the mid field distribution as seen in the wind tunnel and manipulate the results as appropriate, however, this is not the preferred approach. Each aircraft type will have its own unique distribution. The data is preferably stored in a digital computer for analysis and manipulation.

After having obtained the near field vorticity distribution, verification is made as to the existence and persistence of multiple distinct trailing-vortex pairs at step 102. In reviewing the wind tunnel distribution, areas of high velocity-gradient airflow will generally represent compact regions of vorticity. If the configuration has inboard-flap vortices that are significant (greater than approximately 25% of the tip vortex strength) and persistent (remaining distinct for approximately one rotation with the tip vortex), the active system may be most effectively applied. For typical configurations, the strength of the inboard-flap vortices is approximately 40-50% of the strength of the tip vortices. Each tip vortex is a combination of vortices originating at the wing tip and at the end of the outboard flap. The persistence of multiple vortices depends largely on the relative position of the in-board flap vortices and the vortices produced by the tail. If the distance between the two tail vortices are likely to persist.

WO 99/00297 PCT/US98/11569

Assuming their existence, the next step is to select the growth mechanisms to be exploited, shown at item 104. In FIGURE 7, this step is characterized more generally as the selection of "amplification mechanism(s)." This may include any combination of the instabilities described above and/or in conjunction with any previously known mechanism, such as the Crow Instability. The selection is based on how long the tail vortices persist, how long the flap and tip vortices remain distinct, the relative strength of the vortices, as well as other factors known to those skilled in the art. The objective is to select those mechanisms that will best amplify perturbations present in the vortices, to rapidly cause the vortex pairs to pinch.

10

15

-20

25

30

It is preferable that the amplification mechanisms to be exploited be chosen based on the expected persistence of the different vortex pairs, based on a stability analysis of the vortex system, and based on a simulation of the vortex evolutions. If both the flap and tail vortices persist (i.e., they are not carried to the centerline), then the Long Wavelength Transient Growth Mechanism is the preferred candidate. If there is not sufficient amplification to cause breakup before the vortices merge, the breakup will occur indirectly through a combination of the Transient Growth Mechanism (for the multiple-vortex pair system) followed by additional amplification due to the Crow Instability (for the single vortex pair which remains after merger). This is the case for the example shown in FIGURE 8A in which the configuration forms a wing tip vortex pair 50, 50', inboard flap edge vortex pair 52, 52', and horizontal tail vortex pair 54, 54'.

If the flap vortices persist, but the tail vortices are carried to the centerline and destroyed, then the Transient Growth Mechanism and/or the Short Wavelength Instability are preferred candidates. For cases in which the flap and tip vortices merge before a complete rotation period, the superposition of the Long Wavelength Instability and the Short Wavelength Instability is a preferred candidate. For cases in which the flap and tip vortices remain distinct longer than one rotation period and they have comparable strengths, the Short Wavelength Instability is the preferred candidate.

In general, when the Transient Growth Mechanism is combined with the Crow Instability, the initial perturbation amplitudes required to breakup the vortices at a given distance behind the aircraft are smaller than required when only the Crow Instability is exploited. Thus, a unique feature of the present invention, in this context, is the use of the Transient Growth Mechanism to reduce the level of the

10

15

20

25

30

initial perturbation or, for a given level of initial perturbation, to reduce the distance to breakup.

Still referring to FIGURE 7, control surface amplitudes and wavelengths for the imposed vortex perturbations are determined at step 106. Once the growth mechanisms are identified, the initial control surface waveforms are determined. For the example configuration of FIGURE 3A, this preferably includes determining the frequency of oscillation for the aileron and the spoiler, the amplitudes of their deflections, and the "shape" of the excitation functions (i.e. how the control surface positions vary over the oscillation period).

The control surface frequency is selected to provide a perturbation of a given wavelength λ . The wavelength to be imposed on the vortex system depends on the growth mechanism to be exploited, on the spacing between the flap and tip vortices, on the relative strength of the flap and tip vortices, and on the effective core size of the vortices. For a given configuration, the wavelength is chosen to maximize the growth leading to breakup of the vortices. The potential range of the wavelength is given roughly by:

$$2b \le \lambda \le 12b$$
.

where b is the aircraft wingspan.

The term "Long Wavelength" refers roughly to wavelengths $\lambda > 5b$. The preferred long wavelength which provides maximum instability growth is $\lambda \approx 7b$. The term "Short Wavelength" refers roughly to $\lambda < 5b$. The preferred short wavelength to provide maximum instability growth depends on the core size of the vortices. This can be determined theoretically using experimentally-measured vortex-core sizes, or it can be determined empirically by measuring the amplification for a given configuration. An example superposition of long and short wavelengths would be the combination of $\lambda = 2.5b$ and $\lambda = 7.5b$.

For a given wavelength λ , the oscillation frequency (in Hertz) is given by:

$$f = V_{\lambda} / \lambda$$

where V_A is the aircraft speed (in feet per second) and λ is the wavelength (in feet).

The initial peak-to-peak spanwise perturbation amplitude A_0 is first estimated from the theoretical linear amplification factor A(x), as a function of distance behind the aircraft x, and the distance x_B at which breakup is required. The ratio of the flap vortex and tip vortex perturbations (which are in opposite directions) is roughly equal to the ratio of the tip vortex and flap vortex strengths. The initial amplitude is chosen

WO 99/00297

5

10

15

20

25

30

35

such that the perturbed vortices on the right and left hand sides touch on the centerline at $x = x_B$. The estimates given by the linear theory are then refined using nonlinear calculations, including when necessary the merger of vortices and/or ground-based experiments.

Each control surface requires a different excitation function to describe the variation of the control-surface position over the oscillation period. The excitation functions are determined by wind-tunnel experiment. The flap and tip vortex positions are measured by a wake survey with different deflections of the control surfaces. The ailerons are deflected out of phase with the flaperon (or spoiler) in order to keep the total lift constant. The vortex positions are determined for different deflection angles, up to the maximum peak-to-peak amplitude required. This information is used to determine the control surface inputs required to achieve the desired vortex perturbation.

Still referring to FIGURE 7, at step 108 a numerical (or experimental) simulation of vortex evolution is conducted using the initial conditions to determine whether breakup is achieved at query 110. If breakup does not occur, the amplification mechanisms and control surface movements are adjusted until breakup does occur or until a sufficient level of performance improvement is reached.

The desired initial vortex perturbations are then transformed into control parameters at step 112 for use by the active control surfaces on the airplane. This requires a secondary input of vortex positions (at step 114) as a function of control surface deflections, as determined from wind-tunnel experiments or computations. Finally, the frequencies and deflection angles for the control surfaces are output for use in the active-control system at step 116. As stated above, the output is preferably in the form of a digitally formatted computer table.

FIGURES 8A-8C show the early evolution of an imposed perturbation on wing tip, flap edge, and horizontal tail vortex pairs similar to those of a Boeing 747-400. This result was obtained by direct numerical solution of the Navier-Stokes equations, which govern the dynamics of the vortices. The vortices are shown as viewed from the ground looking up at the vortex wake. Both the Transient Growth Mechanism and Crow Instabilities were selected for amplification. FIGURE 8A shows the vortices with the initial perturbation (i.e. as observed directly behind the aircraft). The initial perturbation is almost indistinguishable. Note that the form of the initial perturbation does not directly excite the Crow Instability (i.e., the vortex centroids are unperturbed.) FIGURE 8B shows how the perturbations rapidly grow

10

16

on the vortices due to the Transient Growth Mechanism. FIGURE 8C shows the vortices beginning to merge at a distance equivalent to twenty spans behind the aircraft. During the initial amplification, the vorticity centroids become significantly perturbed resulting in a large residual perturbation in the vortices formed after merger. This residual perturbation continues to grow due to the Crow Instability leading to a breakup of the vortices at a distance equivalent to sixty-two spans behind the aircraft (approximately 2.2 nautical miles.) The initial perturbation required a shift of only 2% of the total airplane lift.

While the preferred embodiment of the invention has been illustrated and described, it will be appreciated that various changes can be made therein without departing from the spirit and scope of the invention.

The embodiments of the invention in which an exclusive property or privilege is claimed are defined as follows:

1. A method of encouraging the early destruction of trailing vortices formed by a lifting body which produces at least two trailing vortex pairs, the lifting body having at least two sets of control surfaces, the method comprising:

actuating the control surfaces in a manner leading to the direct excitation of at least one of the growth mechanisms in the group comprising the Transient Growth Mechanism, the Short Wavelength Instability, and the Long Wavelength Instability to result in the accelerated breakup of the trailing vortices.

- 2. The method according to Claim 1, wherein the actuating is accomplished by a controller in electronic communication with the at least two sets of control surfaces.
- 3. The method according to Claim 2, wherein the controller includes a memory and wherein actuating the control surfaces includes determining the appropriate control surface movements by accessing a table stored in the controller memory.
- 4. The method according to Claim 1, wherein the lifting body is an aircraft wing having an aileron and a spoiler, and the actuating includes moving the ailerons and moving the spoiler.
- 5. The method according to Claim 1, wherein the lifting body is an aircraft wing having an aileron and a flaperon, and the actuating includes moving the ailerons and moving the flaperon.
- 6. The method according to Claim 1, wherein the group of instabilities further comprises the Crow Instability.
- 7. The method according to Claim 1, wherein the lifting body includes aircraft wings producing at least two vortex pairs from the wings, and the actuating is accomplished during at least one of airport approach and departure.
- 8. The method according to Claim 1, wherein said lifting body is a submarine with lifting surfaces producing at least two vortex pairs.

- 9. The method according to Claim 1, wherein the actuating of the control surfaces does not significantly alter the total airplane lift or pitching moment.
- 10. The method according to Claim 1, wherein the excitation is the result of a Short Wavelength Instability as exists on at least two vortex pairs.
- 11. The method according to Claim 1, wherein the excitation is the result of both Transient Growth Mechanism and Short Wavelength Instability amplification as exists on at least two vortex pairs.
- 12. The method according to Claim 1, wherein the excitation is the result of a Transient Growth Mechanism as exists on at least two vortex pairs.
- 13. The method according to Claim 1, wherein the excitation is the result of both Transient Growth Mechanism and Crow Instability amplification as exists on at least two vortex pairs.
- 14. A method of selecting control parameters in an active control system for the early destruction of trailing vortices formed by a lifting body which produces at least two vortex pairs, the lifting body having at least two sets of control surfaces, the method comprising:
 - (a) identifying the near-field vorticity distribution of the aircraft;
- (b) selecting at least one amplification mechanism for distorting the trailing vortices;
- (c) determining amplitudes and wavelengths for imposed vortex perturbations;
 - (d) simulating trailing vortex evolutions;
- (e) determining effectiveness of perturbations and amplification mechanisms;
- (f) determining vortex positions as a function of control surface deflections; and
- (g) determining control parameters to govern the movement of the wing control surfaces.
- 15. The method according to Claim 14, wherein identifying the near-field vorticity distribution includes performing a wind tunnel survey of a model representative of the aircraft.

- 16. The method according to Claim 14, wherein selecting at least one amplification mechanism includes determining whether distinct vortex pairs exists.
- 17. The method according to Claim 14, wherein determining amplitudes and wavelengths includes performing a stability analysis.
- 18. The method according to Claim 14, wherein determining effectiveness of perturbations and amplification mechanisms includes determining whether vortex breakup is achieved within a sufficient following distance.
- 19. The method according to Claim 14, wherein determining vortex positions as a function of control surface deflections includes performing a wind tunnel survey of a model representative of the aircraft.
- 20. An apparatus for early destruction of trailing vortices for aircraft configurations having at least two vortex pairs, the aircraft further including left and right wings, each wing having at least two control surfaces, the apparatus comprising:
- (a) means for identifying the near-field vorticity distribution of the aircraft;
- (b) means for selecting at least one amplification mechanism for distorting the trailing vortices;
- (c) means for determining amplitudes and wavelengths for imposed vortex perturbations;
 - (d) means for simulating trailing vortex evolutions;
- (e) means for determining effectiveness of perturbations and amplification mechanisms;
- (f) means for determining vortex positions as a function of control surface deflections; and
- (g) means for determining control parameters to govern the movement of the wing control surfaces.

Fig1c (PRIOR ART)

12/4/04, EAST Version: 2.0.1.4

12/4/04, EAST Version: 2.0.1.4

12/4/04, EAST Version: 2.0.1.4

5/8

WO 99/00297 PCT/US98/11569

12/4/04, EAST Version: 2.0.1.4

INTERNATIONAL SEARCH REPORT

Inte onal Application No PCT/US 98/11569

			72 88/11299 -
A. CLASS IPC 6	B64C23/06 F15D1/00 863G8	/34	
According t	to International Patent Classification (IPC) or to both national cla	ssification and IPC	
	SEARCHED		
IPC 6	ocumentation searched (classification system followed by class B64C F15D B63G B63B	fication symbols)	
Documenta	ation searched other than minimum documentation to the extent t	hat such documents are included in the	e fields searched
Electronic d	data base consulted during the international search (name of dat	ta base and, where practical, search te	rms used)
C. DOCUM	ENTS CONSIDERED TO BE RELEVANT		
Category °	Citation of document, with indication, where appropriate, of th	e relevant passages	Relevant to claim No.
X	QUACKENBUSH TODD R, BILANIN AL P F, MCKILLIP ROBERT M JR., CA BERNIE F: "Implementation of	RPENTER	1,7-10
;	control using sma-actuated dev PROCEEDINGS OF SPIE - THE INTE SOCIETY FOR OPTICAL ENGINEERIN vol. 3044, 4 - 6 March 1997,	ices" RNATIONAL G,	
A	134-146, XP002084757 see abstract	- u g	2,3,6,
	see page 134, paragraph 1 - pag paragraph 2	•	14-20
	see page 135, paragraph 5 - pai see page 136, paragraph 3 - pai see page 140, paragraph 5 see figures 1,2,4		
		-/	
X Furth	ner documents are listed in the continuation of box C.	Patent family members a	re listed in annex.
"A" docume conside	tegories of cited documents : ont defining the general state of the art which is not ered to be of particular relevance	"T" later document published after or priority date and not in cont cited to understand the princip invention	flict with the application but
filing da "L" documen which i	nt which may throw doubts on priority claim(s) or is cited to establish the publication date of another	"X" document of particular relevant cannot be considered novel o involve an inventive step when "Y" document of particular relevant	r cannot be considered to n the document is taken alone
"O" docume other n	n or other special reason (as specified) ent referring to an oral disclosure, use, exhibition or neans ent published prior to the international filing date but	cannot be considered to invol- document is combined with or ments, such combination bein in the art.	ve an inventive step when the ne or more other such docu-
later th	an the priority date claimed	"&" document member of the same	
	9 November 1998	Date of mailing of the Internati	onal search report
Name and m	nailing address of the ISA	Authorized officer	
	European Patent Office, P.B. 5818 Patentlaan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo rd, Fax: (+31-70) 340-3016 ————————————————————————————————————	Calvo de Nõ,	R

INTERNATIONAL SEARCH REPORT

Inte onal Application No
PCT/US 98/11569

		PCT/US 98/11569			
C.(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT					
Category ·	Citation of document, with Indication where appropriate, of the relevant passages	Relevant to claim No.			
X	CROUCH J. D.: "Stability of Multiple Trailing-Vortex Pairs" AGARD CONFERENCE PROCEEDINGS CP-584,1996, pages 17/1-17/8, XP002084758	1,7,10			
A	cited in the application see page 1, column 1, paragraph 1 - page 2, column 1, paragraph 1 see page 6, column 1, paragraph 2 - column 2, paragraph 2 see page 7 see figure 1	2,3,6,9, 11-20			
Ţ	CROUCH J D: "Instability and transient growth for two trailing-vortex pairs" JOURNAL OF FLUID MECHANICS, vol. 350, 10 November 1997, pages 311-330, XP002084992 see page 311, paragraph 1 - page 313, paragraph 3 see page 327, paragraph 3 - page 329, paragraph 2 see figures 9,11,13	1,14,20			
A	GREENE GEORGE C: "Wake Vortex Alleviation" AIAA PAPER (PRESENTED AT THE AIAA/SAE/ASCE/ATRIF/TRB INTERNATIONAL AIR TRANSPORTATION CONFERENCE), no. 81-0798, 26 - 29 May 1981, XP002084759 Atlantic City, NJ, USA see page 3 - page 5, column 2, paragraph 1 see page 9	1-5,7,9, 14-16,20			
A	BILANIN A J, WIDNALL S E: "Aircraft Wake Dissipation by Sinusoidal Instability and Vortex Breakdown" AIAA PAPER (PRESENTED AT THE AIAA 11TH AEROSPACE SCIENCES MEETING), no. 73-107, 10 - 12 January 1973, XP002084760 Washington, DC, USA cited in the application see abstract see page 1 - page 2, paragraph 2 see page 7, paragraph 4 - page 9	1,2,6,7,9,13			
A	GOLDBURG A, CROW STEVEN C, OWEN PAUL R, WALTER S LUFFSEY, DONALDSON COLEMAN D, CHIGIER NORMAN N: "Panel Discussion" AIRCRAFT WAKE TURBULENCE AND ITS DETECTION, 1971, pages 577-582, XP002084761 cited in the application see page 580 - page 582	1,2,6,7, 9,13			

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

□ BLACK BORDERS
□ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
□ FADED TEXT OR DRAWING
□ BLURRED OR ILLEGIBLE TEXT OR DRAWING
□ SKEWED/SLANTED IMAGES
□ COLOR OR BLACK AND WHITE PHOTOGRAPHS

IMAGES ARE BEST AVAILABLE COPY.

☐ LINES OR MARKS ON ORIGINAL DOCUMENT

☐ GRAY SCALE DOCUMENTS

☐ OTHER: _____

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.

☐ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY