Внешний курс. Блок 3: Криптография на практике

Основы информационной безопасности

Петрова А.А.

16 мая 2025

Российский университет дружбы народов, Москва, Россия

Информация

Докладчик

- Петрова Алевтина Александровна
- НКАбд-04-23
- Российский университет дружбы народов

Цель

Пройти третий блок курса "Основы кибербезопасности"

Задание

Выполнение контрольных заданий третьего блока внешнего курса "Основы Кибербезопасности"

Для ответа на вопрос используется определение асимметричного шифрования с двумя ключами

Отмечены алгоритмы цифровой подписи

Отмечены алгоритмы цифровой подписи

В информационной безопасности аутентификация сообщения или аутентификация источника данных-это свойство, которое гарантирует, что сообщение не было изменено во время передачи (целостность данных) и что принимающая сторона может проверить источник сообщения

Определение обмена ключами Диффи-Хэллмана.

По определению цифровой подписи протокол ЭЦП относится к протоколам с публичным ключом

Алгоритм верификации электронной подписи состоит в следующем. На первом этапе получатель сообщения строит собственный вариант хэш-функции подписанного документа. На втором этапе происходит расшифровка хэш-функции, содержащейся в сообщении с помощью открытого ключа отправителя. На третьем этапе производится сравнение двух хэш-функций. Их совпадение гарантирует одновременно подлинность содержимого документа и его авторства

4.2 Цифровая подпись 5 из 8 шагов пройдено 2 из 5 баллов получено	
Вы прошли больше 80% курса, оставьте отзыв	вить отзы
Алгоритм верификации электронной цифровой подписи требует на вход	
	ерно реші
Всё получилось! и	з всех пог
 подпись, открытый ключ, сообщение подпись, секретный ключ подпись, секретный ключ подпись, секретный ключ, сообщение 	

Электронная подпись обеспечивает все указанное, кроме конфиденциальности

Для отправки налоговой отчетности в ФНС используется усиленная квалифицированная электронная подпись

Верный ответ указан на изображении

Известные платежные системы - Visa, MasterCard, МИР

Верный ответ на изображении

При онлайн платежах используется многофакторная аутентификация

Proof-of-Work, или PoW, (доказательство выполнения работы) — это алгоритм достижения консенсуса в блокчейне; он используется для подтверждения транзакций и создания новых блоков. С помощью PoW майнеры конкурируют друг с другом за завершение транзакций в сети и за вознаграждение. Пользователи сети отправляют друг другу цифровые токены, после чего все транзакции собираются в блоки и записываются в распределенный реестр, то есть в блокчейн.

Консенсус блокчейна — это процедура, в ходе которой участники сети достигают согласия о текущем состоянии данных в сети. Благодаря этому алгоритмы консенсуса устанавливают надежность и доверие к самоу сети.

Ответ - цифровая подпись

Вывод

Третий блок пройден успешно

