MTH 505 Homework 2

Roy Howie

February 20, 2017

Fix $a, b \in \mathbb{N}$ with $ab \neq 0$ and let $R_{a,b,c} = \{ (x,y) \in \mathbb{N}^2 \mid ax + by = c \}.$

- **2.1** Consider $a, b, c \in \mathbb{N}$ with $d = \gcd(a, b)$, where a = da' and b = db'.
- (a) Let $d \not\mid c$, then there exists $q, r \in \mathbb{Z}$ such that c = qd + r and 0 < r < d. Note that ax + by = c = qd + r, or that d(a'x + b'y q) = r. This implies $d \mid r$, a contradiction, as 0 < r < d. Hence, $R_{a,b,c} = \emptyset$.
- (b) Let $d \mid c$ with c = dc' and let $R_{a',b',c'} = \{ (x,y) \in \mathbb{N}^2 \mid a'x + b'y = c' \}$.

Suppose $(x,y) \in R_{a,b,c}$, then ax + by = c. This implies d(a'x + b'y) = dc', or that a'x + b'y = c', meaning $(x,y) \in R_{a',b',c'}$. Hence, $R_{a,b,c} \subset R_{a',b',c'}$.

Conversely, suppose $(x', y') \in R_{a',b',c'}$, then a'x' + b'y' = c', implying d(a'x' + b'y') = dc'. Therefore, ax' + by' = c, so $(x', y') \in R_{a,b,c}$. Hence, $R_{a',b',c'} \subset R_{a,b,c}$

Thus, $R_{a,b,c} = R_{a',b',c'}$.

2.2 Let $a, b, c \in \mathbb{N}$ with $ab \neq 0$ and gcd(a, b) = 1. If $R_{a,b,c}$ is nonempty, prove there exists unique $(u, v) \in R_{a,b,c}$ such that $0 \leq u < b$.

Existence. Let $(x, y) \in R_{a,b,c}$, then there exists unique $q, r \in \mathbb{N}$ such that x = qb + r and $0 \le r < b$. If q = 0, then x < b, so (u, v) = (x, y). Otherwise, ax + by = c implies a(qb + r) + by = c, or that ar + b(y + aq) = c, meaning (u, v) = (r, y + aq).

Uniqueness. Suppose (x, y) can be reduced to two pairs (u, v) and (\tilde{u}, \tilde{v}) with $0 \le u, \tilde{u} < b$. Then au + bv = c and $a\tilde{u} + b\tilde{v} = c$, implying $au \equiv c \pmod{b}$ and $a\tilde{u} \equiv c \pmod{b}$. But a and b are coprime, so $u \equiv c \equiv \tilde{u} \pmod{b}$. Furthermore, $0 \le u, \tilde{u} < b$, so u and \tilde{u} inhabit the same residue class and are therefore equal. \square

2.3 Let $a, b \in \mathbb{N}$ be coprime with $ab \neq 0$. If c = ab - a - b, prove $R_{a,b,c} = \emptyset$.

Note that, in **2.2**, we have existence iff $R_{a,b,c}$ is nonempty. Uniqueness, however, is a result of the Division Algorithm. That is, there is only one pair $(u,v) \in \mathbb{Z}^2$ satisfying au + bv = ab - a - b with $0 \le u < b$.

Next, note that (u, v) = (b - 1, -1) is a solution to au + bv = ab - a - b. Thus, if $R_{a,b,c}$ is nonempty, then it contains a pair (x, y) without a corresponding (u, v) satisfying the conditions laid out in **2.2**. But for all (x, y) in $R_{a,b,c}$, (u, v) existed and was unique! Hence, $R_{a,b,c}$ is empty.

- **2.4** Let $a, b \in \mathbb{N}$ be coprime with $ab \neq 0$. Prove every number c > ab a b is (a, b)-representable.
- (a) Suppose a=1 or b=1. Without loss of generality, let a=1. We wish to show every number c>1*b-1-b=-1 is (a,b)-representable. This is clearly the case, as, for all $n\in\mathbb{N},\ n=a*n$.
- (b) Assume $a, b \ge 2$.

As gcd(a, b) = 1, there exist $x', y' \in \mathbb{Z}$ such that ax' + by' = 1. Furthermore, as in **2.2**, we may further constrain x' to $0 \le x' < b$. Next, note that x' > 0, as x = 0 implies b = 1, but we assumed $b \ge 2$. Hence, $(x' - 1) \in \mathbb{N}$.

Likewise, assume (y'+a-1) < 0. This implies $y' \le -a$. But then $ax'+by' = 1 \le ax'+b(-a) = a(x'-b)$, meaning x' > b. This is a contradiction, so $(y'+a-1) \in \mathbb{N}$.

Therefore, (1-a-b+ab) is (a,b)-representable. Indeed, a(x'-1)+b(y'+a-1)=1-a-b+ab.

(c) Let $n \ge ab - a - b + 1$ and assume n is (a, b)-representable. Let x' and y' be as in (b). Then there exist $x, y \in \mathbb{N}$ such that ax + by = n and $0 \le x < b$.

Note that a(x+x')+b(y+y')=n+1. If $y+y'\geq 0$, then we are done. Otherwise, we wish to show $(x+x'-b,y+y'+a)\in\mathbb{N}^2$.

Suppose y + y' + a < 0 and recall from (b) that $y' + a \ge 1$. We then have $y + y' < -a \le y' - 1$, or that y < -1. However, this implies

$$ab - a - b + 1 \le n = ax + by < ax + b(-1)$$

 $a(b-1) - b + 1 < ax - b$
 $a(b-1) < ax$
 $b \le x$

But we assumed $0 \le x < b$, so this is a contradiction! Hence, $(y + y' + a) \in \mathbb{N}$.

Next, note that ab-a-b < n by assumption. Furthermore, $n+1 = a(x+x') + b(y+y') \le a(x+x') - b$, as y+y' < 0. Since n < n+1, it follows that

$$ab - a - b < a(x + x') - b$$

 $a(b - 1) < a(x + x')$
 $b - 1 < x + x'$
 $b < x + x'$

Hence, $(x + x' - b) \in \mathbb{N}$ and (x + x' - b, y + y' + a) is indeed a valid representation of n + 1.

2.5 Let $a, b \in \mathbb{N}$ be coprime with $ab \neq 0$. Prove $|R_{a,b,c}| = \left\lfloor \frac{c}{ab} \right\rfloor$.

Note that all solutions (x, y) to the equation ax + by = c are of the form (cx' + kb, cy' - ka) for all $k \in \mathbb{Z}$ and for (x', y') solving ax' + by' = 1. Furthermore, if a solution $(u, v) \in R_{a,b,c}$, then $u, v \ge 0$.

Thus, $cx' + kb \ge 0$ implies $k \ge -\frac{cx}{b}$ and $cy' - ka \ge 0$ implies $k \le \frac{cy'}{a}$. Hence,

$$|R_{a,b,c}| = \left\lfloor \frac{cy'}{a} - \frac{-cx'}{b} \right\rfloor = \left\lfloor \frac{c}{ab} (y'b + x'a) \right\rfloor = \left\lfloor \frac{c}{ab} \right\rfloor$$

2.6 Let $a, b \in \mathbb{N}$ be coprime with $ab \neq 0$. Given $c \in \mathbb{N} \cap (0, ab)$ such that a and b do not divide c, prove $|R_{a,b,c}| + |R_{a,b,ab-c}| = 1$.

Define $\{x\}$ as $x - \lfloor x \rfloor$ and note $|R_{a,b,c}| = \frac{c}{ab} - \{\frac{cy'}{a}\} - \{\frac{cx'}{b}\} + 1$ for ax' + by' = 1. Then,

$$|R_{a,b,ab-c}| = \frac{ab-c}{ab} - \left\{ \frac{(ab-c)y'}{a} \right\} - \left\{ \frac{(ab-c)x'}{b} \right\} + 1$$

$$= 2 - \frac{c}{ab} - \left\{ by' - \frac{cy'}{a} \right\} - \left\{ ax' - \frac{cx'}{b} \right\}$$

$$= 2 - \frac{c}{ab} - \left(1 - \left\{ \frac{cy'}{a} \right\} \right) - \left(1 - \left\{ \frac{cx'}{b} \right\} \right)$$

$$= -\frac{c}{ab} + \left\{ \frac{cy'}{a} \right\} + \left\{ \frac{cx'}{b} \right\}$$

Thus,
$$|R_{a,b,c}| + |R_{a,b,ab-c}| = \left(\frac{c}{ab} - \left\{\frac{cy'}{a}\right\} - \left\{\frac{cx'}{b}\right\} + 1\right) + \left(-\frac{c}{ab} + \left\{\frac{cy'}{a}\right\} + \left\{\frac{cx'}{b}\right\}\right) = 1$$