SBML Model Report

Model name: "Kirschner1998_Immunotherapy_Tumour"

May 6, 2016

1 General Overview

This is a document in SBML Level 2 Version 4 format. This model was created by the following three authors: Catherine Lloyd¹, Catherine Lloyd² and Catherine Lloyd³ at June 25th 2010 at 12:43 a.m. and last time modified at June 25th 2010 at 12:43 a.m. Table 1 gives an overview of the quantities of all components of this model.

Table 1: Number of components in this model, which are described in the following sections.

Element	Quantity	Element	Quantity
compartment types	0	compartments	1
species types	0	species	0
events	0	constraints	0
reactions	0	function definitions	0
global parameters	17	unit definitions	5
rules	3	initial assignments	0

Model Notes

This a model from the article:

Modeling immunotherapy of the tumor-immune interaction.

Kirschner D, Panetta JC. J Math Biol 1998 Sep;37(3):235-52 9785481,

¹University of Auckland, c.lloyd@auckland.ac.nz

²University of Auckland, c.lloyd@auckland.ac.nz

³University of Auckland, c.lloyd@auckland.ac.nz

Abstract:

A number of lines of evidence suggest that immunotherapy with the cytokineinterleukin-2 (IL-2) may boost the immune system to fight tumors. CD4+ T cells, the cells that orchestrate the immune response, use these cytokines as signalingmechanisms for immune-response stimulation as well as lymphocyte stimulation, growth, and differentiation. Because tumor cells begin as 'self', the immunesystem may not respond in an effective way to eradicate them. Adoptive cellularimmunotherapy can potentially restore or enhance these effects. We illustratethrough mathematical modeling the dynamics between tumor cells, immune-effectorcells, and IL-2. These efforts are able to explain both short tumor oscillations in tumor sizes as well as long-term tumor relapse. We then explore the effectsof adoptive cellular immunotherapy on the model and describe under whatcircumstances the tumor can be eliminated.

This model was taken from the CellML repository and automatically converted to SBML. The original model was: **Kirschner D, Panetta JC.** (1998) - version=1.0 The original CellML model was created by:

Catherine Lloyd

c.lloyd@auckland.ac.nz The University of Auckland

This model originates from BioModels Database: A Database of Annotated Published Models (http://www.ebi.ac.uk/biomodels/). It is copyright (c) 2005-2011 The BioModels.net Team. To the extent possible under law, all copyright and related or neighbouring rights to this encoded model have been dedicated to the public domain worldwide. Please refer to CCO Public Domain Dedication for more information.

In summary, you are entitled to use this encoded model in absolutely any manner you deem suitable, verbatim, or with modification, alone or embedded it in a larger context, redistribute it, commercially or not, in a restricted way or not..

To cite BioModels Database, please use: Li C, Donizelli M, Rodriguez N, Dharuri H, Endler L, Chelliah V, Li L, He E, Henry A, Stefan MI, Snoep JL, Hucka M, Le Novre N, Laibe C (2010) BioModels Database: An enhanced, curated and annotated resource for published quantitative kinetic models. BMC Syst Biol., 4:92.

2 Unit Definitions

This is an overview of ten unit definitions of which five are predefined by SBML and not mentioned in the model.

2.1 Unit day

Name day

Definition 86400 s

2.2 Unit first_order_rate_constant

Name first_order_rate_constant

Definition $(86400 \text{ s})^{-1}$

2.3 Unit cells_per_microlitre

Name cells_per_microlitre

Definition μl^{-1}

2.4 Unit flux

Name flux

Definition $\mu l^{-1} \cdot (86400 \text{ s})^{-1}$

2.5 Unit micromolar

Name micromolar

Definition $\mu mol \cdot l^{-1}$

2.6 Unit substance

Notes Mole is the predefined SBML unit for substance.

Definition mol

2.7 Unit volume

Notes Litre is the predefined SBML unit for volume.

Definition 1

2.8 Unit area

Notes Square metre is the predefined SBML unit for area since SBML Level 2 Version 1.

Definition m^2

2.9 Unit length

Notes Metre is the predefined SBML unit for length since SBML Level 2 Version 1.

Definition m

2.10 Unit time

Notes Second is the predefined SBML unit for time.

Definition s

3 Compartment

This model contains one compartment.

Table 2: Properties of all compartments.

Id	Name	SBO	Spatial Dimensions	Size	Unit	Constant	Outside
COMpartment			3	1			

3.1 Compartment COMpartment

This is a three dimensional compartment with a constant size of one litre.

4 Parameters

This model contains 17 global parameters.

Table 3: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
tau	tau		0.000	dimensionless	\overline{Z}
mu2	mu2		0.030	dimensionless	
С	c		0.025	dimensionless	
p1	p1		0.125	dimensionless	
g1	g1		$2 \cdot 10^{-7}$	dimensionless	
s1	s1		0.000	dimensionless	
x	X		0.000	dimensionless	
У	У		1.000	dimensionless	
r2	r2		0.180	dimensionless	
a	a		1.000	dimensionless	
b	b		10^{-9}	dimensionless	
g2	g2		100000.000	dimensionless	\square
z	Z		0.000	dimensionless	
mu3	mu3		10.000	dimensionless	\square
p2	p2		5.000	dimensionless	\square
g3	g3		1000.000	dimensionless	

Id	Name	SBO	Value	Unit	Constant
s2	s2		0.000	dimensionless	

5 Rules

This is an overview of three rules.

5.1 Rule x

Rule x is a rate rule for parameter x:

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathbf{x} = \mathbf{c} \cdot \mathbf{y} - \mathbf{m}\mathbf{u}\mathbf{2} \cdot \mathbf{x} + \frac{\mathbf{p}\mathbf{1} \cdot \mathbf{x} \cdot \mathbf{z}}{\mathbf{g}\mathbf{1} + \mathbf{z}} + \mathbf{s}\mathbf{1} \tag{1}$$

Derived unit dimensionless

5.2 Rule y

Rule y is a rate rule for parameter y:

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathbf{y} = \mathbf{r}2 \cdot \mathbf{y} \cdot (1 - \mathbf{b} \cdot \mathbf{y}) - \frac{\mathbf{a} \cdot \mathbf{x} \cdot \mathbf{y}}{\mathbf{g}2 + \mathbf{y}} \tag{2}$$

5.3 Rule z

Rule z is a rate rule for parameter z:

$$\frac{\mathrm{d}}{\mathrm{d}t}z = \frac{\mathrm{p}2 \cdot \mathrm{x} \cdot \mathrm{y}}{\mathrm{g}3 + \mathrm{y}} - \mathrm{m}\mathrm{u}3 \cdot \mathrm{z} + \mathrm{s}2 \tag{3}$$

Derived unit dimensionless

SBML2ATEX was developed by Andreas Dräger^a, Hannes Planatscher^a, Dieudonné M Wouamba^a, Adrian Schröder^a, Michael Hucka^b, Lukas Endler^c, Martin Golebiewski^d and Andreas Zell^a. Please see http://www.ra.cs.uni-tuebingen.de/software/SBML2LaTeX for more information.

^aCenter for Bioinformatics Tübingen (ZBIT), Germany

^bCalifornia Institute of Technology, Beckman Institute BNMC, Pasadena, United States

^cEuropean Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, United Kingdom

 $[^]d$ EML Research gGmbH, Heidelberg, Germany