k を実数の定数とするとき,x の関数 f(x) が  $-1 \le x \le 1$  の範囲でとる最大値を M(k) で表す.k が実数全体を動くとき,M(k) が最小となる k の値および M(k) の最小値を求めよ.

[解]  $g(x) = x^3 - 3kx$  とおく g(x) は奇関数 だから f(x) は偶関数 . 故に  $0 \le x$  で考える .

$$g'(x) = 3(x^2 - k)$$

であるから,kの値によって場合分けする.

(i)k ≤ 0 の時

 $g'(x) \ge 0$  だから g(x) は単調増加で

$$g(0) = 0 \qquad g(1) = |1 - 3k| \ge 0$$

に注意して

$$M(k) = g(1) = |1 - 3k|$$

である.

 $(ii)0 < k \le 1$  の時

下表を得る.

|   | x  | 0 |   | $\sqrt{k}$ |   | 1 |
|---|----|---|---|------------|---|---|
| ĺ | g' |   | _ | 0          | + |   |
| ĺ | g  |   | 7 |            | 7 |   |

故に(i)と同様にして(f(0)は最大値の候補から除外できて)

$$M(k) = \max\{f(0), f(\sqrt{k}), f(1)\}$$
  
= \text{max}\{|1 - 3k|, 2k\sqrt{k}\}

である.

 $(iii)1 \le k$  の時

下表を得る.

| x  | 0 |   | 1 |
|----|---|---|---|
| g' |   | _ |   |
| g  |   | × |   |

故に(i)と同様にして,

$$M(k) = f(1) = |1 - 3k|$$

## 以上をまとめて

$$M(k) = \begin{cases} |1-3k| & k \leq 0, 1 \leq k \\ \max\{|1-3k|, 2k\sqrt{k}\} & 0 < k \leq 1 \\ \dots & 1 \end{cases}$$

であるから,図示して下図.



故に求める最小値は

$$M\left(\frac{1}{4}\right) = \frac{1}{4}$$

である.…(答)