

Introduktion til dagens øvelser

- Baggrund
- Øvelse 1: Analyse af talesignaler
- Øvelse 2: Signalbehandling
- Øvelse 3: Støjreduktion
- Materiale

Signal behandling

Signalbehandling

Høreapparater

- Forstærker svage lyde
- reducerer støj
- Tilpasset brugeren

Musik

- Elektrisk guitar
- Musikproduktion
- Film & TV

ANC høretelefoner

- Støjreduktion
- Mikrofon

MP3 komprimering

Reducere filstørrelse ved at fjerne dele af signaler som ikke kan høres.

Signalbehandling til støjreduktion

Matematisk ret simpelt!

$$x[n] = s[n] + d[n]$$

$$s[n] = x[n] - d[n]$$

... I praksis ret svært

Vi kender x[n] men ikke altid d[n]

Typer af støjreduktion

Aktiv støjreduktion

- s[n] er musiksignalet
- d[n] kan optages med mikrofoner uden på headsettet
- God støjreduktion da støjen kan identificeres!

Multi-channel noise reduction

- Styrer retningen af mikrofoner i mod signal og væk fra støj
- Kræver man kender retningen af signal og støj.

Single-channel noise reduction

- Hverken s[n] eller d[n] kendes
- Kan give god støjreduktion hvis man kan lære hvad d[n] er.

Alle typer af støjreduktion bruger signalbehandling!

Om øvelserne

- Øvelserne udføres i interaktive Jupyter Notebooks med online-værktøjet Google Colab
- De består af beskrivelser, "widgets", og spørgsmål.
- I arbejder først med øvelserne i grupper, herefter gennemgår vi dem sammen.

Øvelse 1: Analyse af signaler

- Vi tager udgangspunkt i talesignaler, og finder ud af hvilke komponenter de består af.
- Bruge forskellige metoder til at visualisere lyde
- Identifikation af vokaler og konsonanter
- Spektrogram quiz!

Øvelse 2: Signalbehandling

- Vi ser på spektrogrammer for at identificere signal og støj.
- · Herefter bruger vi signalbehandling til at fjerne støjen ved brug af frekvensfiltrering.

Øvelse 3: Støjreduktion

- Her bruger vi "thresholding" teknikken til at fjerne støj.
- Vi evaluerer støjreduktions teknikken ved at måle signal-støj forholdet.

17. februar 2023 DTU Sundhedsteknologi Støjreduktion - Øvelser

10

Materialer

- Øvelser, dagens program, ekstra information kan findes her:
- https://niels-overby.github.io/SRP-noisereduction/

God fornøjelse! ©