EPFL

Data-driven supervisory control of microgrids

Mid-term Presentation of Semester Project

Lab: LA - Automatic Control Laboratory

Prof. Giancarlo Ferrari Trecate

Assistant: Mustafa Sahin Turan

Student: Maxime Dimitri GAUTIER

18.11.2019

Global Objectives of the Project

> Microgrids require high level centralized control.

> No easy way to design such a controller.

> Apply Reinforcement Learning to build a robust

controller for supervisory control of microgrids.

Reinforcement Learning

Principle: An agent takes actions in an environment to maximizes its reward.

Output: Policy that gives best behavior depending on situation.

Why use it?

- Online learning -> doesn't require huge quantities labeled data like supervised learning
- Data-driven method perfect mathematical model not necessary
- Find possible new applications for RL

Outline of Project

Read relevant litterature and familiarise with subject

Derive a microgrids model and implement simulator

Fix model to be both realistic and adapted to RL

Derive and test different RL algorithms with model

Simulator and local control

Local control of Distributed Generation Units (DGUs) based on Davide

Riccardi's and Giuseppe Tagliaferri's master theses on Plug-and-Play control.

Control modes:

- MPPT Maximizes power production of Solar Panel
- Charge Charges battery with constant power flow
- PnP Keeps whole system stable

Simulator Model

Fig. 5. Electric Scheme of i^{th} DGU along with load, connecting line(s), and local PnP voltage controller.

Model assumptions

- Buck converter and supply modelised as Voltage Source
- No sun variation -> constant voltage from source in PhotoVoltaic modules
- Constant loads for all DGUs
- Current Limiter Mode not implemented
- DGUs can't disconnect from network

Model Upgrades

- Added Bumpless transfer
- -> necessary for RL
- Added State of Charge/Source Voltage dependency
- -> More realistic behavior around min and max SoC
- -> Mimics Sheperd's model
- Changed battery capacity to be more realistic

Converted model to openAI gym environment -> re-usable with several python librairies

Network Representation

- \rightarrow Timestep = 2.0e-5
- ➤ Battery Capacitance = 3.5 Ah
- ➤ Loads < 10 A
- > SoC(Vs) dependency
- > Bumpless Transfer

Arbitrary current direction

Bumpless demonstration

Time [seconds]

Time [seconds]

Time [seconds]

RL controller

- Purpose Maintain output Voltage and State of Charge in healthy zone
- State Representation: 7 values -> 5 output voltage and 2 State of Charge Continuous, range: [0; 100]
- Action Representation: 5 values -> local control mode for each DGU
 Discreet, either 0 (PnP) or 1 (MPPT/Charge)
- Reward: negative reward (cost) when state is out of healthy
 zone
 - small positive reward when state close to ideal state
- Environment : Simulator

Value function approximation

Continuous state-space -> need to approximate Q functions

Several possible methods for Value approximation:

- > Simple state aggregation -> didn't work, unprecise
- Tile Coding -> successful implementation
- Neural networks -> no time to explore settings but used with good results

Tile Coding

- Method presented and used by R. Sutton
- Coarse coding with several layers, uses hashing for faster computation
- Always represents state with same number of features (number of tilings)
- Chosen resolution: 6V for V and 2.5% for SoC

Notes for implementation

Many possible parameters to tweak, finding the 'best' combination is difficult

- ▶ Length of episodes, number of episodes
- Action Frequency
- \triangleright RL algo hyperparameters : exploration rate, discount factor, α , β
- State initialization at start of episode
- Reward
- Value Function Approximation parameters

Action frequency too low

Action Frequency 1 s

Action Frequency 100 ms

Action Frequency 2 s

Reward representation

- SoC reward more important than V
- Guides agent toward reference

First controller - SARSA

Differential semi-gradient Sarsa for estimating $\hat{q} \approx q_*$

```
Input: a differentiable action-value function parameterization \hat{q}: \mathcal{S} \times \mathcal{A} \times \mathbb{R}^d \to \mathbb{R} Algorithm parameters: step sizes \alpha, \beta > 0 Initialize value-function weights \mathbf{w} \in \mathbb{R}^d arbitrarily (e.g., \mathbf{w} = \mathbf{0}) Initialize average reward estimate \bar{R} \in \mathbb{R} arbitrarily (e.g., \bar{R} = 0) Initialize state S, and action A Loop for each step:

Take action A, observe R, S'
Choose A' as a function of \hat{q}(S', \cdot, \mathbf{w}) (e.g., \varepsilon-greedy) \delta \leftarrow R - \bar{R} + \hat{q}(S', A', \mathbf{w}) - \hat{q}(S, A, \mathbf{w})
\bar{R} \leftarrow \bar{R} + \beta \delta
\mathbf{w} \leftarrow \mathbf{w} + \alpha \delta \nabla \hat{q}(S, A, \mathbf{w})
S \leftarrow S'
A \leftarrow A'
```

SARSA v13

Testing

- 1h of training
- 2 episodes
- 30 minutes per episode
- 2s action frequency

SARSA v15

Testing

- 20 episodes
- 3 minutes per episode
- 2s action frequency

SARSA v17 Testing

- 20 episodes
- 3 mins per episode
- 2s action frequency

Second Controller - Qfit

ALGORITHM 3.1 Least-squares approximate Q-iteration for deterministic MDPs.

```
Input: dynamics f, reward function \rho, discount factor \gamma, approximation mapping F, samples \{(x_{l_s}, u_{l_s}) \mid l_s = 1, \dots, n_s\}

1: initialize parameter vector, e.g., \theta_0 \leftarrow 0

2: repeat at every iteration \ell = 0, 1, 2, \dots

3: for l_s = 1, \dots, n_s do

4: Q_{\ell+1}^{\ddagger}(x_{l_s}, u_{l_s}) \leftarrow \rho(x_{l_s}, u_{l_s}) + \gamma \max_{u'} [F(\theta_{\ell})](f(x_{l_s}, u_{l_s}), u')

5: end for

6: \theta_{\ell+1} \leftarrow \theta^{\ddagger}, where \theta^{\ddagger} \in \arg \min_{\theta} \sum_{l_s=1}^{n_s} \left(Q_{\ell+1}^{\ddagger}(x_{l_s}, u_{l_s}) - [F(\theta)](x_{l_s}, u_{l_s})\right)^2

7: until \theta_{\ell+1} is satisfactory

Output: \widehat{\theta}^* = \theta_{\ell+1}
```

Qfit v2.2 Testing

- 1h40 of training
- 15 episodes
- Training sample: 1000
- Action frequency: 0,2 s

Python librairies

- Keras-rl -> Implementation of several Deep RL algorithms :
 - Deep Q learning (DQN), Double DQN, Deep Deterministic Policy Gradient (DDPG), Continuous DQN (CDQN or NAF), Cross-Entropy Method (CEM), Dueling network DQN (Dueling DQN), Deep SARSA
 - Use processor for environement to facilitates adaptation of action, state and reward from environement to RL algorithm
- Garage -> toolkit for developping and evaluating RL algorithms
 - ► CEM, CMA-ES, REINFORCE, DDPG, DQN, DDQN, ERWR, NPO, PPO, REPS, TD3, TNPG, TRPO
- Several smaller open-source repositories on Github with various RL implementations

Normalized Advantage Functions

Algorithm 1 Continuous Q-Learning with NAF

```
Randomly initialize normalized Q network Q(x, u|\theta^Q).
Initialize target network Q' with weight \theta^{Q'} \leftarrow \theta^Q.
Initialize replay buffer R \leftarrow \emptyset.
for episode=1, M do
   Initialize a random process \mathcal{N} for action exploration
   Receive initial observation state x_1 \sim p(x_1)
   for t=1, T do
      Select action u_t = \mu(x_t|\theta^{\mu}) + \mathcal{N}_t
      Execute u_t and observe r_t and x_{t+1}
      Store transition (x_t, u_t, r_t, x_{t+1}) in R
      for iteration=1, I do
          Sample a random minibatch of m transitions from R
          Set y_i = r_i + \gamma V'(\boldsymbol{x}_{i+1}|\boldsymbol{\theta}^{Q'})
         Update \theta^Q by minimizing the loss: L = \frac{1}{N} \sum_i (y_i - y_i)^2
         Q(\boldsymbol{x}_i, \boldsymbol{u}_i | \theta^Q))^2
          Update the target network: \theta^{Q'} \leftarrow \tau \theta^Q + (1 - \tau)\theta^{Q'}
      end for
   end for
end for
```

Should work best for continuous agent in continuous state-space

NAF results

Voltage at DGU Outputs

- 1 episode
- Action frequency: 100 ms

Algorithms Comparaison

- Behavior of agent
 - SARSA Many oscillations but stays well withthin range
 - Qfit Many oscillations, stays close to range border and SoC5 tends to go up
 - NAF Many oscillations but SoC stays constant
- Training time
 - SARSA 2h
 - Qfit 1h40
 - NAF 25 minutes

- Action Frequency
 - SARSA 2 seconds / 0.5 Hz
 - Qfit 200 ms / 5 Hz
 - NAF 100 ms / 10Hz

Potential future work

- Explore Neural Network approximation and adapt it to model
- Deep SARSA and Deep Q learning exploration
- Upgrade model make it more realistic/complex
 - Add Solar variation to PV
 - > Test different, bigger networks
 - Increase Battery Capacitance
 - > Enable DGU disconnection from Network

Thank you!

Any questions?