Al Fundamentals of Counterfactuals

Computational Foundations of Counterfactuals

Plan for the Day

TIME	Tanica
TIME	Topics
9:00 AM	Introduction
	Hello and Introducing Ourselves!
	Hands-on: Trying Our Study (follow link)
9:30 AM	Historical Fundamentals of Counterfactuals
	From Philosophy to XAI (via Psychology)
	Two Sample User Studies and Q&A
10:30 AM	COFFEE (10:30-11:00)
11:00 AM	Fundamentals of Counterfactuals in AI
	Formalisation
	Modelling Approaches & Key Constraints
11:30 AM	Using Counterfactual Algorithms
	Hands-on: A Counterfactual Toolbox (AA)
	Hands-on: Checking Out Notebooks and Q&A
12:00 PM	Fundamentals of User Studies
	User Studies I: A Simple Two-Group Design
12:30 PM	LUNCH (12:30-14:00)
2:00 PM	Algorithmic Growth Points
	Computational Future Directions and Q&A
2:30 PM	More Fundamentals of User Studies
	User Studies I: A Simple Two-Group Design (cont.)
3:00 PM	COFFEE (15:00-15:30)
3:30 PM	From Fundamentals to an Actual User Study
	User Studies II: A More Complex Design
	User Studies III: Even More Complex Designs
	Hands-on: Looking At Our Study
5:00 PM	Closing Session, Discussion and Final Q&A

Detailed Outline

- Formalization
- Modeling Approaches
- **3** Key Constraints
- Hands-On: Counterfactuals in Python

Formalization of Counterfactuals

- Two properties:
- 1. Contrastive
- 2. Proximity/Closeness/Cost
 - Often a p-norm but is this realistic?
 - => Domain specific!

Y, If X had happened!

Modeling Approaches

Optimization problem [Wachter 2017]:

In constraint form:

Modeling Approaches

 How to solve the optimization problems?

$$\underset{\vec{x}_{\mathsf{cf}} \in \mathbb{R}^d}{\mathsf{arg min}} \; \ell \big(h(\vec{x}_{\mathsf{cf}}), y_{\mathsf{cf}} \big) + C \cdot \theta(\vec{x}_{\mathsf{cf}}, \vec{x}_{\mathsf{orig}})$$

- Black-box solvers
- Gradient descent
- Domain-specific methods (images, text, graphs, etc.)

Things to keep in Mind

- Uniqueness?
 - => "Rashomon Effect"
- What about Causality? [Karimi 2021]
- => Often, feature independence is assumed! Incorporate Causal models!

Fundamentals & Key Constraints

- Contrastivity and Cost/Proximity are not enough!
 - e.g. CF != Adversarial
- Other important aspects:
 - Plausibility
 - Actionability
 - Diversity

•

Plausibility & Actionability

- Problem: Classic CFs [Wachter 2017] often adversarials
 - => Not useful in practice! [Smyth 2022]
- CFs must be plausible and actionable

Plausibility & Actionability

- Two popular & general approaches:
 - O FACE [Poyiadzi 2020]
 - O Density constraints [Artelt 2020]

FACE: Feasible, Actionable CFs

[Poyiadzi 2020]

- Sequence of changes
- Limit feasible set to observed data
 - o "No feature independence"
 - o Actionable & Plausible
- Graph: KDE, k-NN, or ε-graph
- => Find shortest path

Density Constraints

- CF in high-density region
- Methods:
 - OGMMs [Artelt 2020]
 - KDE [Förster 2021]
 - OGANS [Mertes 2022]
 - O Normalizing Flows [Wielopolski 2024] $z_0 \sim p_0(z_0)$

$$\begin{array}{l} \mathop{\rm arg\;min}_{\vec{x}_{\sf cf}} \theta(\vec{x}_{\sf cf},\vec{x}_{\sf orig}) \\ \\ \mathop{\rm s.t.} \ h(\vec{x}_{\sf cf}) = y_{\sf cf} \\ \\ \hat{p}_{y_{\sf cf}}(\vec{x}_{\sf cf}) \geq \underbrace{\delta}_{\sf lower-bound\;on\;density} \end{array}$$

Diversity

- Missing uniqueness
 - => "Rashomon Effect"
- Generate multiple "different" CFs
 - o Let the user choose!
 - More robust? [Leofante 2024]

RQ: How to model diversity?

Diversity

- Yet another constraint:
 - Quantify difference between CFs(e.g. cost, common features, etc.)
- Toolbox: DiCE [Mothilal 2020]
- => See Hands-on session

Summary & Conclusion

- Two important properties:
 - Contrastive
 - Cost/Proximity
- Key constraints:
 - Plausibility & Actionability
 - Diversity

Hands-On: Counterfactuals in Python

https://tinyurl.com/6mc35pya

Plan for the Day

	CF Tutorial
TIME	Topics
9:00 AM	Introduction
	Hello and Introducing Ourselves!
	Hands-on: Trying Our Study (follow link)
9:30 AM	Historical Fundamentals of Counterfactuals
	From Philosophy to XAI (via Psychology)
	Two Sample User Studies and Q&A
10:30 AM	COFFEE (10:30-11:00)
11:00 AM	Fundamentals of Counterfactuals in AI
	Formalisation
	Modelling Approaches & Key Constraints
11:30 AM	Using Counterfactual Algorithms
	Hands-on: A Counterfactual Toolbox (AA)
	Hands-on: Checking Out Notebooks and Q&A
12:00 PM	Fundamentals of User Studies
	User Studies I: A Simple Two-Group Design
12:30 PM	LUNCH (12:30-14:00)
2:00 PM	Algorithmic Growth Points
	Computational Future Directions and Q&A
2:30 PM	More Fundamentals of User Studies
	User Studies I: A Simple Two-Group Design (cont.)
3:00 PM	COFFEE (15:00-15:30)
3:30 PM	From Fundamentals to an Actual User Study
	User Studies II: A More Complex Design
	User Studies III: Even More Complex Designs
	Hands-on: Looking At Our Study
5:00 PM	Closing Session, Discussion and Final Q&A

Other & Current Topics

- Semi-Factuals
- Fairness
- Robustness
- Manipulations
- Group Counterfactuals

Semi-Factual Explanations

- "Even-If" Explanations [Aryal 2023]
- "Even if you used twice as much fertilizer last month, the crop yield would still have been the same"
- Why Semi-Factuals?
 - Potentially have major impact (decreasing causal link)
 - May be useful for positive outcomes
 - Have "good" emotional impacts

Semi-Factual Explanations

- "Even-If" -- Closer to decision boundary but do not cross it!
- Sub-type of CFs counter to the facts, still an alternative world

Most Distant Neighbors

- Baseline: Find instance that is furthest from the query on any feature-dimension
- Analogous of NUNs (nb. actual data)
- Does not use counterfactual to guide search (aka CF-Free method)

PIECE

- PlausIble Exceptionality-based Contrastive Explanations
- Computes counterfactuals and semi-factuals

If the test image looked like this, I would have thought it was an "8".

Test Image Label: 8 Prediction: 3

Counterfactual New Prediction: 8

Even if the test image looked like this, I still would have thought it was a "9".

Label: 9 Prediction: 9

[Kenny & Keane AAAI-21]

PIECE

[Kenny & Keane AAAI-21]

Computational Approaches

Counterfactual-Free

- Diverse Semifactual Explanations of Reject [Artelt 2022]
- Most Distant Neighbors [Aryal & Keane 23]

(a) Counterfactual-Free

Counterfactual-Guided

- PIECE [Kenny & Keane AAAI-21]
- C2C-VAE [Zhao et al. ICCBR-22]

(b) Counterfactual-Guided

Other & Current Topics

- Semi-Factuals
- Fairness
- Robustness
- Manipulations
- Group Counterfactuals

Fairness

- How can a CF be unfair?
 - => Differences in the cost of recourse (global vs. local)
- Group vs. Individual fairness [Slack 2021, Sharma 2020/21, Kügelgen 2022, Artelt 2023]

Approaches to Fix Fairness Issues

- Fix model [Sharma 2020/21]
- Fix CF generator [Kügelgen 2022, Artelt 2023]
- Fix data [Artelt 2024]

Make the Model Fair [Sharma 2020/21]

• Define cost of recourse for a group "g" as "Burden":

$$Burden(g) = \underset{g}{\mathbb{E}}[d(\mathbf{x}, \mathbf{c}^*)]$$

Add fairness loss to training loss:

$$\mathcal{L}_{fairness} = \| \mathbb{E} \left[d(\mathbf{x}, \mathcal{B}) \right] - \mathbb{E} \left[d(\mathbf{x}, \mathcal{B}) \right] |$$

$$\mathbf{x} | \mathbf{s}(\mathbf{x}) = a$$

Fix the CF generator [Artelt 2023]

• Goal: Same distributions of cost of recourse

$$p_{\vec{x}_{orig} \sim \mathcal{D}_1} \Big(\theta(\vec{x}_{orig}, \mathit{CF}(\vec{x}_{orig}, h)) \Big) \approx p_{\vec{x}_{orig} \sim \mathcal{D}_2} \Big(\theta(\vec{x}_{orig}, \mathit{CF}(\vec{x}_{orig}, h)) \Big)$$

• Randomized algorithm:

=> Sampe cost of recourse

$$\min_{\vec{x}_{\text{cf}} \in \mathbb{R}^d} \theta(\vec{x}_{\text{orig}}, \vec{x}_{\text{cf}}) + C_0 \cdot \ell(h(\vec{x}_{\text{cf}}), y_{\text{cf}}) + C_1 \cdot \max(z - \theta(\vec{x}_{\text{orig}}, \vec{x}_{\text{cf}}))$$
where $z \sim p(\theta(\vec{X}_{\text{orig}}, \vec{X}_{\text{cf}}))$

Fix the CF generator [Artelt 2023]

Fix the Data [Artelt 2024]

Identify influential data points

Open Questions 🤔

- pen Questions
- Which approach to use?
 - => Limitations?
- Formal guarantees?
 - => Impossibility results?
- ...

Other & Current Topics

- Semi-Factuals
- Fairness
- Robustness
- Manipulations
- Group Counterfactuals

Robustness

- (Missing) robustness of CFs [Jiang 2024, Ferrario 2022, Artelt 2021]
 - o Change in explanation
 - o Change in cost
- Input perturbations (see individual fairness)
- Model change (over time)

=> Bad for the user!

RQ: How to achieve robustness?

[Leofante 2023]

RQ: How to make CFs Robustness?

- Input changes:
 - O Plausibility [Artelt 2020-21, Zhang 2023]
 - Min-Max Objective [Dominguez-Olmedo 2022]
 - O Diversity [Leofante 2024]
- Model changes
 - O Plausibility [Pawelczyk 2020]
 - o Possible model changes -> MILPs [Jiang 2023-24]

Robustness through Diversity [Leofante 2024]

- Compute sets of diverse CFs instead of a single one
- Nearby samples should have large overlap in their diverse CFs!

Robustness wrt. Model Changes [Jiang 2023-24]

- Consider ranges of parameters
- MILPs for computing & certifying robustness of CFs

Open Questions 🤔

- Cost of robustness
 - O How much to sacrifice?
- Robustness and other aspects (e.g. plausibility, fairness, etc.)
 - o Impossibility statements?

•

=> Checkout Survey on Robustness @ IJCAI [Jiang 2024]

Other & Current Topics

- Semi-Factuals
- Fairness
- Robustness
- Manipulations
- Group Counterfactuals

Manipulations

- Can CFs be manipulated?
 - Ostill trustworthy?
- Attack goals:
 - o Cost of recourse
 - Fairness
- Manipulation on which level?

Manipulating CFs

- Adversarial training [Slack 2021]
 - o Introduce "unfairness"
- Data poisoning [Artelt 2024]
 - Increase cost of recourse

Adversarial Training

• "Backdoor": Some small perturbation leads to lower cost recourse

[Slack 2021]

Adversarial Training [Slack 2021]

Table 2: **Recourse Costs of Manipulated Models**: Counterfactual algorithms find similar cost recourses for both subgroups, however, give much lower cost recourse if δ is added before the search.

	Communities and Crime			German Credit				
	Wach.	S-Wach.	Proto.	DiCE	Wach.	S-Wach.	Proto.	DiCE
Protected Non-Protected	35.68 35.31	54.16 52.05	22.35 22.65	49.62 42.63	5.65 5.08	8.35 8.59	10.51 13.98	6.31 6.81
Disparity	0.37	2.12	0.30	6.99	0.75	0.24	0.06	0.5
Non-Protected+ δ Cost reduction	1.76 20.1×	22.59 2.3×	8.50 2.6×	9.57 4.5×	3.16 1.8×	4.12 2.0×	4.69 2.2×	3.38 2.0×

Data Poisoning [Artelt 2024]

- Add poisonous samples to training data
- => Increase cost of recourse

Data Poisoning [Artelt 2024]

• Finding poisonous samples as an optimization problem:

Defense against Manipulations

- Observation: Additional density constraints help [Artelt 2024]
- Open questions!

Other & Current Topics

- Semi-Factuals
- Fairness
- Robustness
- Manipulations
- Group Counterfactuals

Group Counterfactuals

- One CF for many instances
- Real-world problems, e.g. Customer repurchase [Artelt 2024]

New challenges:

 Clustering/Grouping of instances

Current approaches [Kanamori 2022, Ley 2023, Warren 2023, Artelt 2023/24

 x_0

Group Counterfactuals

• Formalization [Artelt 2024]:

- Feasibility?
- => Pareto-optimal solutions!

What about other constraints?

Group Counterfactuals

- Grouping given?
- Grouping and CFs
 - All-in-One [Kanamori 2022]
 - Separate [Artelt 2024]

	HowToChange	Effectiveness Cost Flip rate		
Action 1	MonthlyIncome: +1282\$	0.17	83 %	
Action 2	BusinessTravel : "Frequently" → "Rarely"	0.19	80 %	
Action 3	OverTime : True → False	0.27	86 %	

- (a) Cluster with $d(\vec{\delta}_{\mathsf{cf}i}, \vec{\delta}_{\mathsf{cf}j}) = \frac{\vec{\delta}_{\mathsf{cf}_i}^{\mathsf{T}} \vec{\delta}_{\mathsf{cf}_j}}{\|\vec{\delta}_{\mathsf{cf}_i}\|_2 \|\vec{\delta}_{\mathsf{cf}_j}\|_2}$
- (b) Sub-cluster with $d(\vec{\delta}_{\mathsf{cf}i}, \vec{\delta}_{\mathsf{cf}j}) = \|\theta(\vec{\delta}_{\mathsf{cf}i}) \theta(\vec{\delta}_{\mathsf{cf}j})\|_2$

Open Questions 🤔

- Fairness?
- Robustness?
 - => Outliers, poisonous instances, etc.
- Computational complexity and limitations?
 - => Formal analysis
- Python framework/implementation
- ...

Summary

- Robustness
- Fairness
- Semi-factuals as the little brother of CFs
- CFs can be manipulated!
 - O How to defend?
- CFs for groups of instances -- i.e.
 group CFs
 - Gaining popularity

Questions and Discussions

Ask us anything!