

Universidade de São Paulo Instituto de Ciências Matemáticas e de Computação Departamento de Sistemas de Computação

SSC108 Prática em Sistemas Digitais

Registradores

Prof.Dr. Danilo Spatti

São Carlos

- O uso mais comum de flip-flops é no armazenamento de dados binários.
- Esses dados são geralmente armazenados em grupos de flip-flops denominados registradores.
- Basicamente, um registrador consiste em um grupo de FF tipo D que atua no armazenamento de dados binários, pois um FF tem a capacidade de armazenar somente um bit, e de realizar a transferência deste.

Registrador (I)

 Consiste em inserir dados na entrada do registrador, respeitando o número de bits, e efetuar o número de pulsos de CLK necessários para que todo o dado seja inserido no registrador.

Registrador (II)

- O valor da saída Q0 é transferido para Q1 e o de Q1 para Q2.
- Quando ocorrer uma transição (disparo na borda de descida), cada FF assumirá o valor armazenado anteriormente pelo FF que está à sua esquerda.

Registrador (III)

 Possuindo o dado 110₂, escrever a tabela verdade da transferência de dados para o registrador da figura acima, considerando que inicialmente ele foi limpo.

Registrador (IV)

Inicialmente (110₂):

CLK	D0	D1	D2	Q0	Q1	Q2
-	1	0	0	0	0	0

Registrador (V)

■ 1^a Descida de CLK (110₂):

CLK	D0	D1	D2	Q0	Q1	Q2
-	1	0	0	0	0	0
\downarrow	1	1	0	1	0	0

Registrador (VI)

• 2ª Descida de CLK (110₂):

CLK	D0	D1	D2	Q0	Q1	Q2
-	1	0	0	0	0	0
\downarrow	1	1	0	1	0	0
$\downarrow\downarrow$	0	1	1	1	1	0

Registrador (VII)

■ 3ª Descida de CLK (110₂):

CLK	D0	D1	D2	Q0	Q1	Q2
-	1	0	0	0	0	0
\downarrow	1	1	0	1	0	0
$\downarrow \downarrow$	0	1	1	1	1	0
$\downarrow\downarrow\downarrow$	Х	0	1	0	1	1

Registrador sem sinal de carga

 O dado binário a ser armazenado é transferido simultaneamente para todos os FF, com a aplicação de CLK.

Registrador com sinal de carga

 Em muitos circuitos digitais a carga paralela deve ser controlada não somente pelo CLK.

- Aplicação prática do Registrador de Deslocamento.
- Após a quantidade de pulsos necessária (tamanho do arranjo), o dado serial em Din é convertido para paralelo em Q2Q1Q0.

Conceitos (I)

 Necessário um registrador que apresente entradas PRE e CLR.

Conceitos (II)

 Quando a entrada Enable estiver em 0, as entradas PRE dos flip-flops assumirão, respectivamente, níveis 1, fazendo com que o registrador mantenha o estado anterior.

Conceitos (III)

 Quando a entrada Enable estiver em 1, as entradas PRE dos flip-flops assumirão os valores complementares da Entrada Paralela de cada FF.

SSC108

Projeto CPU - Diagrama Principal

Prática em Sistemas Digitais

- Crie um registrador de carga paralela de 4 bits e simule no Quartus.
- Encapsule o circuito do registrador em um subcircuito.

spatti@icmc.usp.br

