Statistical Physics: Workshop Problems 5

- (1) A gas of N classical weakly-interacting particles is in contact with a heat bath at temperature T. The gas has a number of independent degrees of freedom.
 - (a) Using the Boltzmann distribution the average energy for a degree of freedom x with energy $\epsilon(x)$ is

$$\langle \epsilon(x) \rangle = \frac{\int_{-\infty}^{\infty} \epsilon(x) \exp[-\beta \epsilon(x)] dx}{\int_{-\infty}^{\infty} \exp[-\beta \epsilon(x)] dx}.$$

If $\epsilon(x) = ax^2$, where a > 0 and the variable x takes values in the range $-\infty < x < \infty$, obtain the average energy of a particle in this system. Note that

$$\int_{-\infty}^{\infty} \exp(-b x^2) dx = \sqrt{\frac{\pi}{b}}.$$

(b) Show that the internal energy U of this system of N particles, when there are η such degrees of freedom (each associated with a quadratic energy term) is

$$U = \eta \, \frac{Nk_{\rm B}T}{2}.$$

This result is known as the Equipartition Theorem.

- (2) The heat capacity at constant volume is defined as $C_V = [dU/dT]_V$. Use the Equipartition Theorem to obtain C_V in each of the following cases (ignoring electron excitations).
 - (a) A gas of N monoatomic neon atoms (translational motion only).
 - (b) A gas of N diatomic molecules of oxygen (O_2) at room temperature, due to the translational and rotational motion only (at room temperature, these are excited mainly).
 - (c) A gas of N diatomic molecules of oxygen (O_2) at higher temperatures, due to the contribution of vibrations only.
 - (d) A gas of N diatomic molecules of oxygen (O_2) at higher temperatures, due to translations, rotations and vibrations.
- (3) The vibrations of a diatomic molecule can be approximated as one dimensional harmonic oscillations with energies $\epsilon_n^{\text{vibr}} = (n+1/2)\hbar\omega$, with $n=0,1,2,\ldots$ and ω is the frequency of the oscillation.
 - (a) Derive the single-particle partition function Z_1^{vibr} for the vibrations of a diatomic molecule.

[Hint:
$$1 + r + r^2 + \dots = (1 - r)^{-1}$$
, for $|r| < 1$.]

- (b) Derive the vibrational energy, U^{vibr} , and heat capacity at constant volume, C_V^{vibr} , for a gas of N molecules of O_2 . Compare your answer with that of question (2).
- (c) The characteristic temperature for the excitation of vibrations, T^{vibr} , in a diatomic molecule is defined as $k_{\text{B}}T^{\text{vibr}} = \hbar\omega$. Write the vibrational heat capacity in terms of the ratio T^{vibr}/T .
- (d) The characteristic temperature for vibrations in O_2 is $T^{\text{vibr}} = 2200 \text{ K}$. At room temperature (293 K) what is the vibrational heat capacity C_V^{vibr} and the percentage contribution of the vibrations to the total heat capacity of O_2 gas at constant volume?

1