AIM: Design DFA using simulator to accept the input string "a", "ac", and "bac"

AIM: Design a Push Down Automata that accepts the language

$$L = \{ w \mid w \in (a+b) * and n_a(w) = n_b(w) \}$$

 $n_a(w)$ is the number of a's in w

 $n_b(w)$ is the number of b's in w

Simulation

1.

AIM:Design PDA using simulator to accept the input string a^nb^{2n}

$$L = \{ a^n b^{2n} \mid w \in (a+b) \}$$

AIM:Design TM using simulator to accept the input string aⁿbⁿ

$$L = \{ a^n b^n \mid w \in (a+b)$$

AIM:Design TM using simulator to accept the input string aⁿb²ⁿ

EXP :14 AIM:Design TM using simulator to accept the input string Palindrome ababa

EXP:15
AIM:Design TM using simulator to accept the input string ww

AIM: Design TM using simulator to perform addition of 'aa' and 'aaa'

W= aa+ aaaa

After Addition of a's = aaaaaa

AIM:Design TM using simulator to perform subtraction of aaa-aa

Logic W= aaa-aa

The Result of Subtraction is = a

AIM: Design DFA using simulator to accept even number of a's

W{ aa, aaaa, aaaaaa}

AIM: Design DFA using simulator to accept odd number of a's

W{a, aaa, aaaaa}

AIM: Design DFA using simulator to accept the string the end with ab over set $\{a,b\}$ w= aaabab

AIM:Design DFA using simulator to accept the string having 'ab' as substring over the set {a,b}

W= babaaaaa

AIM:Design DFA using simulator to accept the string start with a or b over the set {a,b}

W= { abbbba, baaaaab}

EXP:23
AIM:Design TM using simulator to accept the input string Palindrome bbabb

 $W = \{bbabb\}$

EXP:24
AIM:Design TM using simulator to accept the input string wcw

 $W=\{ aa aa,bb bb , ab ab \}$

AIM: Design DFA using simulator to accept the string even number of a's and odd number of b's

W={aab, bbaab} Simulation

AIM: Design DFA using simulator to accept the input string "bc", "c", and "bcaaa"

AIM:Design NFA to accept any number of a's where input={a,b}

W={ aaaab, baaaaaa}

AIM: Design PDA using simulator to accept the input string aⁿbⁿ

W={ aabb, aaabbb}

EXP:29 AIM:Design TM using simulator to perform string comparison where w={aba aba}

AIM:Design DFA using simulator to accept the string having 'abc' as substring over the set {a,b,c}

W= { aaaabcccc, abccccc}

EXP:31 AIM:Design DFA using simulator to accept even number of c's over the set {a,b,c}

AIM: Design DFA using simulator to accept strings in which a's always appear tripled over input {a,b}

W={ aaa, ababa}

AIM: Design NFA using simulator to accept the string the start with a and end with b over set $\{a,b\}$ and check W= abaab

EXP:34

 \mathbf{AIM} :Design NFA using simulator to accept the string that start and end with different symbols over the input $\{a,b\}$

AIM:Let L be regular language, L consist set of string over { a,b) number a's minus number b's less than or equal to 2. Design DFA to accept the the language L.

AIM: Design DFA using simulator to accept the string the end with abc over set {a,b,c} W= abbaababc

EXP:37 AIM:Design NFA to accept any number of b's where input={a,b}

