Correction Tpwien-Chap4RayonnementSolaire.

Compétences évaluées	Réaliser	Valider		
	Mesures:	2-a:		
	Graphe :	2-b:		

1- Mesures.

	1*10 ⁻⁶ T	(K ⁻¹)	333	250	200	170	140	125	110	100	
--	----------------------	--------------------	-----	-----	-----	-----	-----	-----	-----	-----	--

T (K)	3000	4000	5000	6000	7000	8000	9000	10000
λ _{max} (nm)	968	720	574	485	409	362	324	292

 λ_{max} représente la valeur de la longueur d'onde correspondant au maximum de luminosité à la température T donnée de la source.

2- Tracé des graphes.

2a- Graphe : λ max = f (T)

On constate que le graphe a la même allure que celui du document 3f. Plus le corps est chaud, plus son spectre est riche en radiations de courtes longueurs d'onde(bleu, violet, UV).

Graphe : $\lambda_{max} = f(1/T)$

Le graphe obtenu est une droite qui passe par l'origine ce qui signifie que λ max et 1/T sont proportionnels.

Ce graphe est en accord avec la loi de Wien qui est de la forme

 $\lambda = a^*$ (1/T) avec a = coefficient de proportionnalité.

D'après le graphe, a = 2,89*10-3 (K.m) très proche de la valeur du doc 3 e.