$$y = x^{2} + bx + c$$

$$= x^{2} + 2 \cdot \frac{b}{2}x + c$$

$$= x^{2} + 2 \cdot \frac{b}{2}x + \left(\frac{b}{2}\right)^{2} - \left(\frac{b}{2}\right)^{2} + c$$

$$= \left(x + \frac{b}{2}\right)^{2}$$

$$= \left(x + \frac{b}{2}\right)^{2} - \left(\frac{b}{2}\right)^{2} + c$$

$$y + \left(\frac{b}{2}\right)^{2} - c = \left(x + \frac{b}{2}\right)^{2}$$

$$y - y_{S} = (x - x_{S})^{2}$$

$$S(x_{S}; y_{S}) \text{ bzw. } S\left(-\frac{b}{2}; \left(\frac{b}{2}\right)^{2} - c\right)$$

$$|(Scheitelpunktform)|$$

$\begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix}$		0		0	
0	$b_{11} \\ b_{21} \\ b_{31}$	$b_{12} \\ b_{22} \\ b_{32}$	b_{13} b_{23} b_{33}	0	
0	01	0		$\begin{array}{c cc} c_{11} & c_{12} \\ c_{21} & c_{22} \end{array}$	