考试日期: 2021年07月04日	1.793	《戏性代数》	考试试题
	2.25		

考试日期:	1202	年的	7月	ok	
		,		-	

试卷类型: A 卷

试券代号 0 (00)

		班号	A)	一人一	A.卷	式卷代号: 0	[5008]
题号	-	=	= 7	4号	姓名	_	
得分			=	四	五	六	总分

本题分数 20分 得 分

一、填空题 (每空2分)

1. $\mathfrak{P} \ \alpha_1 = (6, a+1, 3)^T, \ \alpha_2 = (a, 2, -2)^T, \ \alpha_3 = (a, 1, 0)^T$

2. 设向量α和β的长度分别为2和3,则向量α+β与α-β的内积 $(\alpha+\beta, \alpha-\beta)=$

3. 设
$$A = \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{pmatrix}$$
, $P = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix}$, 则 $P^{10}AP^{11} =$ _______.

4. 已知 A 是三阶方阵,且 |A| = 2,则 $\left(\frac{1}{3}A\right)^{-1} - \frac{1}{2}A^* = _____.$

设三阶矩阵 A 满足|A+E|=|2A+E|=|3A+E|=0,则 A 的所有特征值是

|4A + E| =

6. 已知三元二次型 $f(x_1,x_2,x_3)=\mathbf{x}^TA\mathbf{x}$ 的系数矩阵 A 的特征值为 $\mathbf{1}$, $-\mathbf{3}$, $-\mathbf{2}$, 则该二次 型的规范形为 _____,且当 t 满足_____时,矩阵 A-tE 是正 定矩阵, 其中E是单位矩阵.

7. 设 $A = \begin{pmatrix} 1 & 2 \\ 2 & 3 \end{pmatrix}$, 则 $A^{-1} =$ _____,将 A⁻¹表示成初等矩阵的乘积:

9分

二、选择题 (每题 3 分)

1. 下面叙述中,有几个是正确的结论? ((1) $A^2 = O$ 可以推出 |A| = 0 (2) $A^2 - B^2 = (A - B)(A + B)$

(1)
$$A^2 = O$$
 可以推出 $|A| = 0$

(2)
$$A^2 - B^2 = (A - B)(A + B)$$

(3)
$$A^2 - E^2 = (A - E)(A + E)$$
 (4) $(A + B)^2 = A^2 + 2AB + B^2$ 第2页 (共6页) A. 一个可逆矩阵经过任何的初等变换后得到的 B . 一个不可逆矩阵在

- A. 一个可逆矩阵经过任何的初等变换后得到的仍然是可逆矩阵. B. 一个不可逆矩阵有可能等价于单位矩阵.
- C. 一个不可逆矩阵经过适当的初等变换可以变成可逆矩阵.
- D. 一个可逆矩阵经过适当的初等变换可以变成不可逆矩阵.
- 3. 设 α 和 β 是非齐次线性方程组Ax = b的两个不同解向量,则正确的是: (

 - B. $\alpha \beta$ 是 Ax = b 的一个解向量.
- C. $k\alpha + l\beta$ (k+l=1)是 Ax = b 的一个解向量.
- D. $k\alpha + l\beta$ (k+l=1)是 Ax=0 的一个解向量.

			1 114-14					
本题分数	32分	三、计算题	(每题 8	分)	(要求	H三分	计台计和	
得 分				0	-1	11	707年以下	主)
		1. 求行列式	A = 0	a	1	-1		
			-1	1	a	0	的值.	
			1	-1	0	~		

MON LAS 设三的/矩阵4, B 满足4B三4大野河出4mm 100 100 3. 在向量空间 R3 中, 已知两组基: c, = (1,0,0), c, = (0,1,0), c, = (1,0,1) 及

n=(2,0,-1), n,=(1,2,-2), n,=(2,1,1), (1) x由基6, 5, 5, 到海湖, 南京市高地獲超時 nuaa.store

2) 若向量a在基型, n, n, p, 下的坐标为(1,1,-1), 水a在基 e, e, e, F的坐标

500	
N	
-	
40	
April .	
40	
1630	
500	
32	
7	
0.	
100	4
图画	
WINE.	5
DO	
-	£
Intl de	
10/3	
11/-	
BFT/	
TIL)	-
PE.	-
4	
Hear.	
-	PI
No.	
1	-
	7
	25
	8
	1
	D
	-50
	-
-	79

足什么条件时,方程组无解、有唯一解和无穷解?在有无穷解时,求

(1) 块出该二次型的系数矩阵 4:

4法格其化为标准形,并求出所用的正交变换及二次型的标准形

1. (5分) 若人是对称短阵,以罗鬼世世兴郑称矩阵,何AB-BA 海色四八年6月八 是否为对称矩阵?给出证明过程。

a+ = Aa+4 3, [32] 6 11-13, t<-3 $7[-32],[-30],[10],[0],[1-\frac{2}{3}]$

A-6-102 (A-E)B-A B-(A-E)-'A AB-ATB

(50) (500) (500) (00) (00)

(2) 四套名,名,名,是,化,化,的、批查换分价() -、下在村的(5.1,-4) $\begin{cases} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 3 & 1 \\ 1 & 2 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} = \begin{pmatrix} 5 \\ 1 \\ 1 \end{pmatrix}$ $\begin{pmatrix} x_2 \\ x_3 \\ -(1-2) \end{pmatrix} \begin{pmatrix} 1 \\ 1 \\ -(1-2)$ - 4. () 3 E () 3 F ()

おたこ、1(2E-A)が[1(1]こ2, 地町、11/2E-A)-1「飛び橋になっ」。 名に3, 18E-A)=1[211]=1, 以代 NOE-A)=2角2形織(2-1-1)=1, 以代 NOE-A)=2角2形織(2-1-1)=1, 以代 NOE-A)=2角2形織 当任儿姐妹那个人们的特征的可知此对你 · k, 2, 3是 A的3个特征值。 (至上, k于2张 三年成孫縣

104 Ai by B. [A; b]= 别和红

300)th(+33,10+4(6,5,0,1)

$$\begin{array}{l} \text{Re}(E-A) = 0 & \text{Re}(-1-1-1) \\ \text{Re}(-1-1-1) \\ \text{Re}(-1-1-1-1) \\ \text{Re}(-$$

$$\beta_{2}=\alpha_{2}-\frac{(\alpha_{2},\beta_{1})}{(\beta_{1},\beta_{1})}\beta_{1}=\begin{pmatrix} -1\\ 0\\ 1\end{pmatrix}-\frac{1}{2}\begin{pmatrix} -1\\ -1\\ 2\end{pmatrix}$$

那点点门, 作点门, 作前门

对经正交变换入二[Li, Ki, Ki] /, 有人"A在广/人"上"1、十十八"十十八。十十八。

~ 4

J

如我你怎样