HOMEWORK 9: SUPPORT & ASSOCIATED PRIMES DUE: WEDNESDAY, MAY 1ST

1) (From the discussion of 7.2) Given M an R-module, construct $\mathcal{M} = \coprod_{\mathfrak{p} \in \operatorname{Spec}(R)} M_{\mathfrak{p}}$. This can be thought of as a copy of M lying over each $\mathfrak{p} \in \operatorname{Spec}(R)$. Supp(M) now marks the closed subset, by Proposition 25.2 (d), of points that matter in this construction: $\mathcal{M} = \coprod_{\mathfrak{p} \in \operatorname{Supp}(M)} M_{\mathfrak{p}}$.

We have a natural map of spaces $p: \mathcal{M} \to \operatorname{Spec}(R)$ sending $\frac{m}{p} \in M_{\mathfrak{p}}$ to $\mathfrak{p} \in \operatorname{Spec}(R)$. Show that M can be identified as a subset of the sections of p; that is to say $s_m : \operatorname{Spec}(R) \to \mathcal{M}$ such that $p \circ s_m = Id_{\operatorname{Spec}(R)}$.

Additionally, show $W^{-1}M$ represents partially defined sections, for those $\mathfrak{p} \in \operatorname{Spec}(R)$ such that $\mathfrak{p} \cap W = \emptyset$.

Solution: Given m, we can design a section

$$s_m: \operatorname{Spec}(R) \to \mathcal{M}: \mathfrak{p} \mapsto \frac{m}{1} \in M_{\mathfrak{p}}$$

This is very naturally a section.

If $m \in W^{-1}M$, for each $\mathfrak{p} \in \operatorname{Spec}(W^{-1}R) \subseteq \operatorname{Spec}(R)$, we can define a partial section

$$s_m: \operatorname{Spec}(W^{-1}R) \to \mathcal{M}: \mathfrak{p} \mapsto \frac{m}{1} \in M_{\mathfrak{p}}$$

Trying to extend this to other points would yield 0, since $W^{-1}M_{\mathfrak{p}}=0$. The domain can vary quite a lot, from open in the case of R_f to very small in the case of $R_{\mathfrak{p}}$ (in particular when \mathfrak{p} is a minimal prime).

For those students interested, this is an example of a fiber bundle over a variety in algebraic geometry.

2) Verify the claim of Example 25.3; If we consider $M = \bigoplus_{n \in \mathbb{N}} \mathbb{Z}/n\mathbb{Z}$, we can conclude that $\operatorname{Supp}(M) \neq V(\operatorname{Ann}(M))$. Show all of your assertions.

Solution: First, I claim Ann(M) = 0. Indeed, if $a \in \mathbb{Z}$ annihilates every element of M, then it must annihilate $1 \in \mathbb{Z}/n\mathbb{Z}$ for each $n \in \mathbb{N}$. But this is saying every integer divides a. Therefore a = 0. As a result, $V(Ann(M)) = \operatorname{Spec}(\mathbb{Z})$.

On the other hand, I claim that $0 \notin \operatorname{Supp}(M)$. Let $(a_1, \ldots, a_k) \in \mathbb{Z}/n_1\mathbb{Z} \oplus \ldots \oplus \mathbb{Z}/n_k\mathbb{Z}$. Then we have inverted $n_1 \cdots n_k$. Therefore, $(1, (a_1, \ldots, a_k)) \sim 0 = (n_1 \cdots n_k, 0)$. This proves the assertion.

As a result, $Supp(M) \subsetneq V(Ann(M))$.

3) Consider $M = \mathbb{Z} \oplus \mathbb{Z}/\langle 2 \rangle$ as a \mathbb{Z} -module. Find the associated primes of M. Find 2 modules M_1, M_2 , both isomorphic to \mathbb{Z} , such that $M_1 + M_2 = M$. What does this tell you about $\mathrm{Ass}(M)$ vs. $\mathrm{Ass}(M_1) \cup \mathrm{Ass}(M_2)$?

Solution: It is clear that $Ass(M) = \{0, \langle 2 \rangle\}$, by use of split exact sequences. We can consider M_1 generated by (1,0) and M_2 generated by (1,1). In either case, projection onto the first factor yields an isomorphism with \mathbb{Z} . Moreover,

$$(a,b) = (a-b)(1,0) + b(1,1)$$

so $M_1 + M_2 = M$. Of course, since $\mathrm{Ass}(M_i) = \mathrm{Ass}(\mathbb{Z}) = \{0\}$, we have that $\mathrm{Ass}(M) \neq \mathrm{Ass}(M_1) \cup \mathrm{Ass}(M_2)$.

4) Consider the ring $R = K[x, y, z]/\langle xz - y^2 \rangle$ and the prime ideal $\mathfrak{p} = \langle x, y \rangle$. Let $M = R/\mathfrak{p}^2$. Compute $\mathrm{Ass}(M)$, and find all $m \in M$ for which $\mathrm{Ann}(m) = \mathfrak{p}$ for each $\mathfrak{p} \in \mathrm{Ass}(M)$. Finally, find an ascending chain $0 = M_0 \subseteq M_1 \subseteq \ldots \subseteq M_n = M$ such that $M_i/M_{i-1} \cong R/\mathfrak{p}_i$ for some $\mathfrak{p}_i \in \mathrm{Ass}(M)$.

Solution: One should note that

$$M = R/\mathfrak{p}^2 = K[x, y, z]/\langle xz - y^2, x^2, xy, y^2 \rangle = K[x, y, z]/\langle x^2, xy, xz, y^2 \rangle$$

Therefore, since the 0 divisors of M are anything in $\mathfrak{m}=\langle x,y,z\rangle$ (since $x\mathfrak{m}=0$), we have that

$$Ann(x) = \mathfrak{m}$$
 $Ann(y) = \langle x, y \rangle$ $Ann(z) = \langle x \rangle$

Ann(z) is not a prime ideal of R, modding out by it yields $K[y,z]/\langle y^2\rangle$, which clearly is not a domain. The others are however. Therefore $\mathrm{Ass}(M)\supseteq\{\langle x,y\rangle,\mathfrak{m}\}$. I claim this is all of the assassins. Indeed, we have primary decomposition

$$\mathfrak{p}^2 = \langle x, y^2 \rangle \cap \langle z, xy, x^2 \rangle$$

This shortest (since \mathfrak{p}^2 is non-primary) decomposition shows the claim.

Note that every element of M can be presented as $f(z) + c \cdot x + yg(z)$ for some $c \in K$. Therefore, we have $\operatorname{Ann}(m) = \langle x, y \rangle$ if and only if f(z) = 0. Additionally, $\operatorname{Ann}(m) = \mathfrak{m}$ if and only if f(z) = 0.

Considering $M_1 = R/\langle x, y, z \rangle \cong x \cdot K \subseteq M$, we see the only things that remain upon modding out are f(z) + yg(z). Therefore, we can consider $M_2 = M_1 + yg(z)$ and $M_3 = M$. Noting $M_2/M_1 \cong K[z] = R/\mathfrak{p} \cong M_3/M_2$, we produce our ascending chain:

$$0 \subsetneq xK \subsetneq yK[z] + xK \subsetneq K[z] + yK[z] + xK = M$$

Note that each is itself an R-submodule.

5) If $N, N' \subseteq M$, show that

$$\operatorname{Ass}(M/N \cap N') \subset \operatorname{Ass}(M/N) \cup \operatorname{Ass}(M/N')$$

Solution: We have that $\varphi: R/\mathfrak{p} \hookrightarrow M/N \cap N'$ and $M/N \cap N' \to M/N$ and $M/N \cap N' \to M/N'$ are surjections. Composing these maps, if either is injective we are done. So suppose not, i.e. $q(\varphi(r)) = 0 \in M/N$ and $q'(\varphi(r')) = 0 \in M/N'$ for $r, r' \neq 0$. Thus we can consider the image of $r \cdot r'$ in $M/N \cap N'$. As a result, $q(\varphi(rr')) = r'q(\varphi(r)) = 0$ in M/N (i.e. it is in N). Similarly for N'. Thus $\varphi(rr') = 0 \in M/N \cap N'$. This is only possible if $rr' = 0 \in R/\mathfrak{p}$, which is an integral domain. This contradicts our choices of r, r', proving the claim.

6) If $\varphi: R \to S$ is a ring homomorphism, and \mathfrak{q} is \mathfrak{p} -primary in S, is it true that $\varphi^{-1}(\mathfrak{q})$ is $\varphi^{-1}(\mathfrak{p})$ -primary? In the reverse direction? I.e. is $\varphi(\mathfrak{q}) \cdot S$ primary?

Solution: First, checking $\varphi^{-1}(\mathfrak{q})$ is primary. Let $x \cdot y \in \varphi^{-1}(\mathfrak{q})$. Then $\varphi(x)\varphi(y) \in \mathfrak{q}$. As a result, either $\varphi(x)$ or $\varphi(y)^n = \varphi(y^n)$ are in \mathfrak{q} . But this implies either $x \in \varphi^{-1}(\varphi(x)) \subseteq \varphi^{-1}(\mathfrak{q})$ or $y^n \in \varphi^{-1}(\varphi(y^n)) \subseteq \varphi^{-1}(\mathfrak{q})$.

 $x \in \varphi^{-1}(\varphi(x)) \subseteq \varphi^{-1}(\mathfrak{q}) \text{ or } \varphi(\mathfrak{g}) = \varphi(\mathfrak{g}) \text{ are in } \mathfrak{q}.$ But this implies either $x \in \varphi^{-1}(\varphi(x)) \subseteq \varphi^{-1}(\mathfrak{q}) \text{ or } y^n \in \varphi^{-1}(\varphi(y^n)) \subseteq \varphi^{-1}(\mathfrak{q}).$ Now it goes to check $\sqrt{\varphi^{-1}(\mathfrak{q})} = \varphi^{-1}(\mathfrak{p})$. Since $\varphi^{-1}(\mathfrak{q}) \subseteq \varphi^{-1}(\mathfrak{p})$, it is clear that \subseteq holds. Now let $x \in \varphi^{-1}(\mathfrak{p})$. This implies $\varphi(x) \in \varphi(\varphi^{-1}(\mathfrak{p})) \subseteq \mathfrak{p}$. Therefore, $\varphi(x)^n = \varphi(x^n) \in \mathfrak{q}$, which again shows $x^n \in \varphi^{-1}(\varphi(x^n)) \subseteq \varphi^{-1}(\mathfrak{q})$, i.e. $x \in \sqrt{\varphi^{-1}(\mathfrak{q})}$.