FORMAL VERIFICATION OF SEQUENTIAL GALOIS FIELD ARITHMETIC CIRCUITS USING ALGEBRAIC GEOMETRY

Abstract—Sequential circuits that implement arithmetic over Galois fields \mathbb{F}_{2^k} are prevalent in cryptography and error control coding, where the datapath size k is very large. Formal verification of sequential arithmetic circuits with large datapath size is beyond the capabilities of contemporary verification techniques. To address this problem, this paper describes a verification method based on algebraic geometry that: i) implicitly unrolls the sequential arithmetic circuit over multiple clock-cycles; and ii) represents the function computed by the state-registers of the circuit, canonically, as a multi-variate word-level polynomial over \mathbb{F}_{2^k} . Our approach employs the Groebner basis algorithm, along with a specific elimination ideal, to identify the k-cycle computation performed by the circuit. We demonstrate the feasibility of our approach by verifying up to 89-bit sequential Galois field multipliers, whereas conventional techniques fail beyond 23-bit circuits.

I. Introduction

Galois field (GF) arithmetic finds application in many areas such as cryptography, error control coding, VLSI testing, etc. In most hardware applications, fields of the type \mathbb{F}_{2^k} are widely chosen. Such *binary* GFs are k-dimensional extensions of the base field \mathbb{F}_2 ; this allows for the design of efficient (AND-XOR) arithmetic architectures and algorithms for hardware design. For example, in elliptic curve cryptography, the operations of encryption, decryption and authentication rely on polynomial computations over \mathbb{F}_{2^k} . Therefore, efficient multiplication and squaring architectures have been devised for this purpose

In many applications, however, the datapath size (bit-vector operand size) k can be very large. This introduce many design and verification challenges

REFERENCES