E códigofacilito

Agenda

- Exploración de las herramientas de desarrollo para la interacción de áreas de trabajo
- Datos y destinos de proceso en Azure Machine Learning

Irving Uribe - ML Engineer / Data Tech Lead / Al profesor

Exploración de las herramientas de desarrollo para la interacción de áreas de trabajo

https://learn.microsoft.com/es-es/training/modules/explore-developer-tools-for-workspace-interaction/

[Repaso] Diferencia entre la consola de Azure y la de Azure AI (ML studio)

La primera, es la consola de administración de la *cuenta*, y la segunda la consola para la gestión de recursos de *Machine Learning*.

[Repaso] Conexión mediante el SDK de Python

Se puede instalar el sdk mediante el gestor *pip*. Para usar las librerías se solicitarán los *3 insumos de autenticación suscription_id*, *resource_group* y *workspace name*

```
Python
from azure.ai.ml import MLClient
                                                                              pip install azure-ai-ml
from azure.identity import DefaultAzureCredential
ml client = MLClient(
   DefaultAzureCredential(), subscription_id, resource_group, workspace
                                                                   Python
                                                                   from azure.ai.ml import command
                                                                   # configure job
      Configuración de cliente
                                                                   job = command(
                                                                       code="./src",
                                                                       command="python train.py",
                                                                       environment="AzureML-sklearn-0.24-ubuntu18.04-py37-cpu@latest",
                                                                       compute="aml-cluster",
                                                                       experiment_name="train-model"
                            Ejecución de Job
                                                                   returned job = ml client.create or update(job)
```


[Repaso] Conexión mediante el Azure CLI

Se puede conectar a los recursos de la cuenta por medio del Command Line Interface (CLI), este permite crear instancias de procesamiento, y clusters

```
Azure CLI
                                             yml
                                              $schema: https://azuremlschemas.azureedge.net/latest/amlCompute.schema.json
   az extension add -n ml -y
                                              name: aml-cluster
                                              type: amlcompute
                                              size: STANDARD DS3 v2
  Extención ml
                                              min instances: 0
                                              max_instances: 5
 Azure CLI
                                                                                                         Copiar
az ml compute create --file compute.yml --resource-group my-resource-group --workspace-name my-workspa
```


[Duda] ¿Cuál es la diferencia entre una instancia local y una instancia remota?

Mientras que una instancia local (Tu equipo) consume recursos de tu máquina, una instancia remota, necesita de una máquina virtual y contenedor para poder operar.

tensorflow-2.16-cuda12
Overview Context Jobs
1
Environment operating system Linux
Azure container registry mcr.microsoft.com/azureml/curated/tensorflow-2.16-cuda12:1
Asset ID azureml://registries/azureml/environments/tensorflow-2.16-cuda12/versions/1
Description
An environment for deep learning with Tensorflow containing the Azure ML SDK and additional python packages.
Tags
GPU : Cuda12 OS : Ubuntu20.04 Preview Python : 3.10
Tensorflow: 2.16 Training Remota

Hacer que los datos estén disponibles en Azure Machine Learning

https://learn.microsoft.com/es-es/training/modules/make-data-available-azure-machine-learning/

Trabajo con destinos de procesos (Compute Targets) en Azure Machine Learning

https://learn.microsoft.com/es-es/training/modules/work-compute-resources-azure-machine-learning/

[Repaso] Azure URI

Una URI hace referencia a la ubicación de los datos.

- >_
- http(s): Almacenes de datos pública en una ubicación http(s) de Azure Blob Storage o disponible públicamente.
- abfs(s): Almacenes de datos en una instancia de Azure Data Lake Storage Gen 2.
- azureml: Para los datos almacenados en una instancia de datos de AzureMl, asociados a un <u>Blob Sotrage</u>.

[Repaso] Métodos de autenticación

>_

- Basado en credenciales: Uso de un Token de firma de acceso compartido (SAS) o una clave de cuenta.

 Basado en la identidad: Use la identidad de Microsoft Entra o la identidad administrada.

[Repaso] Tipos de recursos de datos

```
from azure.ai.ml.entities import Data
from azure.ai.ml.constants import AssetTypes

my_path = '<supported-path>'

my_data = Data(
    path=my_path,
    type=AssetTypes.URI_FILE,
    description="<description>",
    name="<name>",
    version="<version>"
)

ml_client.data.create_or_update(my_data)
```

```
import argparse
import pandas as pd

parser = argparse.ArgumentParser()
parser.add_argument("--input_data", type=str)
args = parser.parse_args()

df = pd.read_csv(args.input_data)
print(df.head(10))
```


Creación y lectura de Archivo URI

[Repaso] Tipos de recursos de datos

```
>_
```

```
type: mltable

paths:
    - pattern: ./*.txt
transformations:
    - read_delimited:
         delimiter: ','
         encoding: ascii
         header: all_files_same_headers
```

Esquema para ML Table

```
Python

from azure.ai.ml.entities import Data
from azure.ai.ml.constants import AssetTypes

my_path = '<path-including-mltable-file>'

my_data = Data(
    path=my_path,
    type=AssetTypes.MLTABLE,
    description="<description>",
    name="<name>",
    version='<version>'
)
```

ml_client.data.create_or_update(my_data)

```
import argparse
import mltable
import pandas

parser = argparse.ArgumentParser()
parser.add_argument("--input_data", type=str)
args = parser.parse_args()

tbl = mltable.load(args.input_data)
df = tbl.to_pandas_dataframe()

print(df.head(10))
```


[Repaso] Flujo general del proceso

[Repaso] Creación de instancias de proceso

```
from azure.ai.ml.entities import ComputeInstance

ci_basic_name = "basic-ci-12345"
ci_basic = ComputeInstance(
    name=ci_basic_name,
    size="STANDARD_DS3_v2"
)
ml_client.begin_create_or_update(ci_basic).result()
```

```
from azure.ai.ml.entities import AmlCompute

cluster_basic = AmlCompute(
    name="cpu-cluster",
    type="amlcompute",
    size="STANDARD_DS3_v2",
    location="westus",
    min_instances=0,
    max_instances=2,
    idle_time_before_scale_down=120,
    tier="low_priority",
)

ml_client.begin_create_or_update(cluster_basic).result()
```

1.- Instancia de proceso

```
Python
from azure.ai.ml import command
# configure job
iob = command(
    code="./src",
    command="python diabetes-training.py",
    environment="AzureML-sklearn-0.24-ubuntu18.04-py37-cpu@latest"
    compute="cpu-cluster",
    display_name="train-with-cluster",
    experiment name="diabetes-training"
# submit job
returned_job = ml_client.create_or_update(job)
aml_url = returned_job.studio_url
print("Monitor your job at", aml url)
```

3.- Job (Trabajo)

2.- Cluster

[Duda] ¿Para crear un cluster, debo crear primero una instancia de proceso?

Sí, es necesario tener al menos una instancia que puede tener un cluster con 2 o más instancias según las necesidades y la configuración solicitada

```
from azure.ai.ml.entities import ComputeInstance

ci_basic_name = "basic-ci-12345"
ci_basic = ComputeInstance(
    name=ci_basic_name,
    size="STANDARD_DS3_v2"
)
ml_client.begin_create_or_update(ci_basic).result()
```

```
from azure.ai.ml.entities import AmlCompute

cluster_basic = AmlCompute(
    name="cpu-cluster",
    type="amlcompute",
    size="STANDARD_DS3_v2",
    location="westus",
    min_instances=0,
    max_instances=2,
    idle_time_before_scale_down=120,
    tier="low_priority",
)
ml_client.begin_create_or_update(cluster_basic).result()
```


[Duda] ¿Puedo subir información (DATA) sin usar código?

Sí es posible directamente desde el workspace donde vas a interactuar con el job de entrenamiento del modelo (Se verá más adelante en el curso)

[Duda] ¿Cómo se pueden reutilizar los destinos de proceso en distintos experimentos para reducir costos y tiempo de desarrollo?

Costos: Usar Clusters de Computación Reutilizables y escalables

```
Python
from azure.ai.ml.entities import AmlCompute
cluster basic = AmlCompute(
    name="cpu-cluster",
    type="amlcompute",
    size="STANDARD DS3 v2",
    location="westus",
   min instances=0,
    max instances=2,
    idle time before scale down=120,
    tier="low priority",
ml client.begin create or update(cluster basic).result()
```


[Duda] ¿Cómo se pueden reutilizar los destinos de proceso en distintos experimentos para reducir costos y tiempo de desarrollo?

Tiempo: Uso de Pipelines Reusables

[Duda] Diferencia entre instancia de BlobStorage y Contenedor

Blob Storage: Es el servicio completo de almacenamiento para datos no estructurados en Azure.

Contenedor: Es una subunidad dentro de Blob Storage que organiza los blobs. Es necesario crear un contenedor para almacenar blobs.

Por ejemplo: en un proyecto de Machine Learning, puedes tener un Blob Storage llamado mlprojectstorage, y dentro de él, contenedores como datasets, models y logs,

[Duda] Diferencia entre DataStore y Contenedor

Aspecto	DataStore	Contenedor
Definición	Abstracción de acceso a servicios de almacenamiento en Azure Machine Learning.	Unidad organizativa dentro de un Blob Storage.
Función	Facilita el acceso a datos externos en scripts y pipelines de ML.	Agrupa blobs para organizar archivos en el almacenamiento.
Nivel	Abstracción de alto nivel en Azure ML.	Estructura de bajo nivel en el servicio de almacenamiento.
Ejemplo de Uso	Referenciar un Blob Storage desde Azure ML usando un alias y credenciales configuradas.	Almacenar datos dentro de un Blob Storage, agrupados por tipo o propósito.
