# Category Theory In Context

## **Emily Riehl**

### October 25, 2021

#### **Contents**

| 1 | Cate | egories, Functors, Natural Transformations | 1 |
|---|------|--------------------------------------------|---|
|   | 1.1  | Abstract and concrete categories           | 1 |
|   | 1.2  | Duality                                    | 3 |
|   | 1.3  | Functoriality                              | 5 |
|   | 1.4  | Naturality                                 | 7 |

# 1 Categories, Functors, Natural Transformations

# 1.1 Abstract and concrete categories

**Definition 1.1.** A **category** consists of

- a collection of **objects** X, Y, Z, ...
- a collection of **morphisms** f, g, h, ...

so that

- ullet Each morphism has specified **domain** and **codomain** objects; the notation  $f:X \to Y$  signifies that f is a morphism with domain X and codomain Y
- Each object has a designated **identity morphism**  $1_X : X \to X$
- For any pair of morphisms f,g with the codomain of f equal to the domain of g, there exists a specified **composite morphism** gf whose domain is equal to the domain of f and whose codomain is equal to the codomain of g, i.e., :

$$f: X \to Y, \quad g: Y \to Z \qquad \leadsto \qquad gf: X \to Z$$

This data is subject to the following two axioms

- For any  $f: X \to Y$ , the composites  $1_Y f$  and  $f1_X$  are both equal to f
- For any composable triple of morphisms f, g, h, the composites h(gf) and (hg)f are equal and hence denoted by hgf.

$$f:X\to Y,\quad g:Y\to Z,\quad h:Z\to W\qquad \sim \qquad hgf:X\to W$$

**Example 1.1.** 1. For any language  $\mathcal{L}$  and any theory T of  $\mathcal{L}$ , there is a category  $\mathbf{MODEL}_T$  whose objects are models of T. Morphisms is just homomorphisms

**Concrete categories** are those whose objects have underlying sets and whose morphisms are functions between underlying sets

**Definition 1.2.** A category is **small** if it has only a set's worth of arrows Both  $ob(\mathcal{C})$  and  $hom(\mathcal{C})$  are sets

Thus it has only a set's worth of objects

**Definition 1.3.** A category is **locally small** if between any pair of objects there is only a set's worth of morphisms

The set of arrows between a pair of fixed objects in a locally small category is typically called a **hom-set** 

**Definition 1.4.** An **isomorphism** in a category is a morphism  $f: X \to Y$  for which there exists a morphism  $g: Y \to X$  so that  $gf = 1_X$  and  $fg = 1_X$ , denoted by  $X \cong Y$ 

An **endomorphism** is a morphism whose domain equals its codomain

**Definition 1.5.** A **groupoid** is a category in which every morphism is an isomorphism

**Lemma 1.6.** Any category C contains a **maximal groupoid**, the subcategory containing all of the objects and only those morphisms that are isomorphisms

- *Exercise* 1.1.1. 1. Consider a morphism  $f: x \to y$ . Show that if there exists a pair of morphisms  $g, h: y \rightrightarrows : x$  s.t.  $gf = 1_x$  and  $fh = 1_y$ , then g = h and f is an isomorphism
  - 2. Show that a morphism can have at most one inverse isomorphism

Proof. 1.  $g = 1_x g = (hf)g = h(fg) = h1_y = h$ 

2. From 1

*Exercise* 1.1.2. For any category  $\mathcal{C}$  and any object  $c \in \mathcal{C}$ , show that

1. There is a category  $c/\mathcal{C}$  whose objects are morphisms  $f:c\to x$  with domain c in which a morphism from  $f:c\to x$  to  $g:c\to y$  is a map  $h:x\to y$  between the codomains so that the triangle



commutes.

2. There is a category  $\mathcal{C}/c$  whose objects are morphisms  $f:x\to c$  with codomain c in which a morphism from  $f:x\to c$  to  $g:y\to c$  is a map  $h:x\to y$  between the codomains so that the triangle



commutes

The category  $c/\mathcal{C}$  and  $\mathcal{C}/c$  are called **slice categories** of  $\mathcal{C}$  **under** and **over** c, respectively

# 1.2 Duality

**Definition 1.7.** Let  $\mathcal C$  be any category. The **opposite category**  $\mathcal C^{\mathrm{op}}$  has

- the same objects as in  $\mathcal C$
- a morphism  $f^{\text{op}}$  in  $\mathcal{C}^{\text{op}}$  for each a morphism f in  $\mathcal{C}$  so that the domain of  $f^{\text{op}}$  is defined to be the codomain of f and the codomain of  $f^{\text{op}}$  is defined to be the domain of f
- $\bullet \;$  For each object X , the arrow  $1_X^{\mathrm{op}}$  serves as its identity in  $\mathcal{C}^{\mathrm{op}}$

• A pair of morphisms  $f^{\text{op}}$ ,  $g^{\text{op}}$  in  $\mathcal{C}^{\text{op}}$  is composable precisely when the pair g, f is composable in  $\mathcal{C}$ . We then define  $g^{\text{op}} \circ f^{\text{op}}$  to be  $(f \circ g)^{\text{op}}$ : i.e.

$$dom(f^{op}) = cod(f) = dom(g) = cod(g^{op})$$

#### **Lemma 1.8.** *T.F.A.E.*

- 1.  $f: x \to y$  is an isomorphism
- 2. For all objects  $c \in \mathcal{C}$ , post-composition with f defines a bijection

$$f_*: \operatorname{Hom}(c, x) \to \operatorname{Hom}(c, y)$$

3. For all objects  $c \in \mathcal{C}$ , pre-composition with f defines a bijection

$$f^* : \operatorname{Hom}(y, c) \to \operatorname{Hom}(x, c)$$

Lemma 1.8 asserts that isomorphisms in a locally small category are defined *representably* in terms of isomorphisms in the category of sets.

*Proof.*  $2 \to 1$ . Let c = y, since  $f_*$  in an bijection, there must be an element  $g \in \operatorname{Hom}(y,x)$  s.t.  $f_*(g) = 1_y$ . Hence  $fg = 1_y$ . Thus  $gf, 1_x$  have common image under  $f_*$ , thus  $gf = 1_x$ . Whence f and g are inverse isomorphisms

#### **Definition 1.9.** A morphism $f: x \to y$ in a category is

- 1. a **monomorphism** if for any parallel morphisms  $h, k: w \Rightarrow x$ , fg = fk implies that h = k
- 2. an **epimorphism** if for any parallel morphisms  $h, k : w \Rightarrow x$ , hf = kf implies that h = k

Also, we can re-express it

- 1.  $f:x\to y$  is a monomorphism in  $\mathcal C$  iff for all objects  $c\in\mathcal C$ ,  $f_*:\operatorname{Hom}(c,x)\to\operatorname{Hom}(c,y)$  is injective
- 2.  $f: x \to y$  is an epimorphism in  $\mathcal C$  iff for all  $c \in \mathcal C$ ,  $f^*: \operatorname{Hom}(y,c) \to \operatorname{Hom}(x,c)$  is injective

**Example 1.2.** Suppose that  $x \xrightarrow{s} y \xrightarrow{r} x$  are morphisms s.t.  $rs = 1_x$ . The map s is a **section** or **right inverse** to r, while the map r defines a **retraction** or **left inverse** to s. The maps s and r express the object x as a **retract** of the object y

In this case, s is always a monomorphism and, dually, r is always an epimorphism. To ackowledge the presence of these one-sided inverses, s is said to be a **split monomorphism** and r is said to be a **split epimorphism** 

**Example 1.3.** By the previous example, an isomorphism is necessarily both monic and epic, but the converse need not hold in general. For example, the inclusion  $\mathbb{Z} \hookrightarrow \mathbb{Q}$  is both monic and epic in the category **Rng**, but this map is not an isomorphism: there are no ring homomorphisms from  $\mathbb{Q}$  to  $\mathbb{Z}$ 

**Lemma 1.10.** 1. If  $f: x \mapsto y$  and  $g: y \mapsto z$  are monomorphisms, then so is  $gf: x \mapsto z$ 

2. If  $f: x \to y$  and  $g: y \to z$  are morphisms so that gf is monic, then f is monic

Dually

- 1. If  $f: x \rightarrow y$  and  $g: y \rightarrow z$  are epimorphisms, then so is  $gf: x \rightarrow z$
- 2. If  $f: x \to y$  and  $g: y \to z$  are morphisms so that gf is epic, then g is epic
- Exercise 1.2.1. 1. Show that a morphism  $f:x\to y$  is a split epimorphism in a category  $\mathcal C$  iff for all  $c\in \mathcal C$ , the post-composition function  $f_*:\operatorname{Hom}(c,x)\to\operatorname{Hom}(c,y)$  is surjective
  - 2. Show that a morphism  $f:x\to y$  is a split monomorphism in a category  $\mathcal C$  iff for all  $c\in\mathcal C$ , the post-composition function  $f^*:\operatorname{Hom}(y,c)\to\operatorname{Hom}(x,c)$  is surjective

Exercise 1.2.2. Prove that a morphism that is both a monomorphism and a split epimorphism is necessarily an isomorphism. Argue by duality that a split monomorphism that is an epimorphism is also an isomorphism

*Proof.* Suppose 
$$y \xrightarrow{g} x \xrightarrow{f} y$$
 and  $fg = 1_y$ , then  $fgf = f = f \circ 1_x$ . Since  $f$  is mono,  $gf = 1_x$ 

### 1.3 Functoriality

**Definition 1.11.** A **functor**  $F: \mathcal{C} \to \mathcal{D}$ , between categories  $\mathcal{C}$  and  $\mathcal{D}$ , consists of the following data:

- An object  $Fc \in \mathcal{D}$ , for each objects  $c \in \mathcal{C}$
- A morphism  $Ff: Fc \to Fc' \in \mathcal{D}$ , for each morphism  $f: c \to c' \in \mathcal{C}$

#### Functoriality axioms

- For any composable pair  $f,g\in\mathcal{C}$ ,  $Fg\circ Ff=F(g\circ f)$
- For each object  $c \in \mathcal{C}$ ,  $F(1_c) = 1_{Fc}$

**Definition 1.12.** A contravariant functor F from  $\mathcal C$  to  $\mathcal D$  is a functor  $F:\mathcal C^{\mathrm{op}}\to\mathcal D$ 

- A morphism  $Ff:Fc' \to Fc \in \mathcal{D}$  for each morphism  $f:c \to c' \in \mathcal{C}$
- For any composable pair  $f,g\in\mathcal{C}$ ,  $Ff\circ Fg=F(g\circ f)$

$$\mathcal{C}^{\mathsf{op}} \stackrel{F}{\longrightarrow} \mathcal{D}$$



#### **Lemma 1.13.** *Functors preserve isomorphisms*

*Proof.* Consider a functor  $F:\mathcal{C}\to\mathcal{D}$  and an isomorphism  $f:x\to y$  in  $\mathcal{C}$  with inverse  $g:y\to x$ . Then

$$F(g)F(f) = F(gf) = F(1_x) = 1_{Ex}$$

Thus  $Fg: Fy \to Fx$  is a left inverse to  $Ff: Fx \to Fy$ 

**Definition 1.14.** If  $\mathcal{C}$  is locally small, then for any object  $c \in \mathcal{C}$  we may define a pair of covariant and contravariant **functors represented by** c:

Post-composition defines a covariant action on hom-sets

**Definition 1.15.** For any categories  $\mathcal{C}$  and  $\mathcal{D}$ , there is a category  $\mathcal{C} \times \mathcal{D}$ , their **product**, whose

- objects are ordered pairs (c,d), where c is an object of  $\mathcal C$  and d is an object of  $\mathcal D$
- morphisms are ordered pairs  $(f,g):(c,d)\to(c',d')$ , where  $f:c\to c'\in\mathcal{C}$  and  $g:d\to d'\in\mathcal{D}$  and
- in which composition and identities are defined componentwise

**Definition 1.16.** If  $\mathcal{C}$  is locally small, then there is a **two-sided represented** functor

$$\mathcal{C}(-,-):\mathcal{C}^{\mathrm{op}}\times\mathcal{C}\to\mathbf{Sets}$$

A pair of objects (x,y) is mapped to the hom-set Hom(x,y). A pair of morphisms  $f:w\to x$  and  $h:y\to z$  is sent to the function

$$\operatorname{Hom}(x,y) \xrightarrow{(f^*,h_*)} \operatorname{Hom}(w,z)$$

$$g \longmapsto hgf$$

An **isomorphism of categories** is given by a pair of inverse functors  $F:\mathcal{C}\to\mathcal{D}$  and  $G:\mathcal{D}\to\mathcal{C}$  s.t. the composites Gf and FG, respectively, equal the identity functors on  $\mathcal{C}$  and  $\mathcal{D}$ 

#### 1.4 Naturality

**Definition 1.17.** Given categories  $\mathcal{C}$  and  $\mathcal{D}$  and functors  $F,G:\mathcal{C}\Rightarrow\mathcal{D}$ , a **natural transformation**  $\alpha:F\Rightarrow G$  consists of

• an arrow  $\alpha_c: Fc \to Gc$  in  $\mathcal D$  for each object  $c \in \mathcal C$ , the collection of which define the **components** of the natural transformation s.t. for any morphism  $f: c \to c'$  in  $\mathcal C$ , the following square of morphisms in  $\mathcal D$ 

$$\begin{array}{ccc} Fc & \xrightarrow{\alpha_c} & Gc \\ \downarrow^{Ff} & & \downarrow^{Gf} \\ Fc' & \xrightarrow{\alpha_{c'}} & Gc' \end{array}$$

#### commutes

A **natural isomorphism** is a natural transformation  $\alpha:F\Rightarrow G$  in which every component  $\alpha_c$  is an isomorphism. In this case, the natural isomorphism may be depicted as  $\alpha:F\cong G$ 

