

Interaction session

The number of 1s in a parity check matrix given by the base matrix $\begin{bmatrix} 0 & -1 & 4 & 0 & -1 & -1 \\ 4 & 2 & -1 & 1 & 0 & -1 \\ 1 & -1 & 3 & 2 & -1 & 0 \end{bmatrix}$ with expansion
factor 5 is
<u>←</u>
No, the answer is incorrect. Score: 0
Accepted Answers: (Type: Numeric) 55
6) The number of -1s in the E part of a 46 x 68 base matrix in the 5G standard is
in ⊕
No, the answer is incorrect. Score: 0
Accepted Answers: (Type: Numeric) 7
7) Consider a protograph LDPC code with an expansion factor of 6. The vector $\begin{bmatrix} 1 & 1 & 0 & 1 & 0 & 0 \end{bmatrix}$ acted 1 point on by the base matrix entry 2 will transform to:
[101001]
[011010]
[010011]
[001101]
No, the answer is incorrect. Score: 0
Accepted Answers: [0 1 0 0 1 1]
8) Consider a protograph LDPC code with expansion factor 6. Say that two vectors p_1 and q_1 are related as $q_1=I_2p_1$. Then, which of the following relations must also hold true:
$p_1=Iq_1$
$p_1=I_4q_1$
$p_1=I_3q_1$
$p_1=I_2q_1$
No, the answer is incorrect. Score: 0
Accepted Answers: $p_1 = I_4 q_1$
9) You are encoding a protograph LDPC code with expansion factor 5 and the following base matrix,(the notation $\boldsymbol{1}$ <i>point</i> is same as that used in the lectures) $\begin{bmatrix} I_1 & 0 & I_3 & I_1 & I_2 & I & 0 & 0 \\ I_2 & I & 0 & I_3 & I_2 & I & I & 0 \\ 0 & I_4 & I_2 & I & I_1 & 0 & I & 0 \\ I_4 & I_1 & I & 0 & 0 & 0 & 0 & I \end{bmatrix}$ Let the codeword be represented by $\begin{bmatrix} m_1 & m_2 & m_3 & m_4 & p_1 & p_2 & p_3 & p_4 \end{bmatrix}$, where $m_i's$ are the message
blocks and $p_i's$ are the parity blocks. Given that you are first computing p_1 given a particular message $\begin{bmatrix} m_1 & m_2 & m_3 & m_4 \end{bmatrix}$, the equation you need to solve is:
$I_1p_1 = I_1m_1 + I_2m_1 + I_4m_1 + Im_2 + I_4m_2 + I_1m_2 + I_3m_3 + I_2m_3 + Im_3 + I_1m_4 + I_3m_4 + Im_4$
$I_1p_1=I_1m_1+I_2m_1+Im_2+I_4m_2+I_3m_3+I_2m_3+I_1m_4+I_3m_4+Im_4$

