作业

姓名: XXX 学号: ZZZ 成绩:

题 1. 证明

$$|\sinh y| \le |\cos(x+iy)| \le \cosh y, \quad x,y \in \mathbb{R}$$

题 2. 求 tan(2-i) 的实部和虚部。

题 3. 求解方程 $\cos z = 4$ 。

题 4. 判断 $\ln(\sin(iz))$ 是否是多值函数。

题 5. 找出 $\sqrt[3]{(z-a)(z-b)}$ 的支点,并讨论绕其中任意一个支点,任意两个支点,任意三个支点移动一周回到原处后多值函数的变化。画出割线。

题 6. 找出 $\sqrt{\tan z}$ 的所有支点并画出割线。

题 7. 已知多值函数 $f(z) = z^p(1-z)^{-p}$, p 为实数。若在实轴上沿 0 到 1 作割线,规定在割线上岸 $\arg z = \arg(1-z) = 0$ 。求 $f(\pm i)$ 和 $f(\infty)$ 。

题 8. 证明莫比乌斯变换 $f(z) = \frac{az+b}{cz+d}$ 一般来说将圆映射成圆。

题 9. 令 $f(z)=z^{\Delta}$, 其中 $\Delta>0$ 。取割线为 0 到 $-\infty$ 。在一个单值分支内计算

$$\lim_{\epsilon \to 0_+} \left(f(-1 - i\epsilon) - f(-1 + i\epsilon) \right)$$

极限表示 є 是无穷小正整数。结果用三角函数表示。

题 10. 寻找一个支点在 $\pm a$ 的函数 f(z), 割线取作 (-a,a), 要求在单值分支内满足:

$$\lim_{\epsilon \to 0_+} \left(f(x + i\epsilon) - f(x - i\epsilon) \right) = \begin{cases} e^x & |x| < a \\ 0 & |x| > a \end{cases}$$
 (1)

题 11. (选做) 比较课上讲过的各种复变函数可视化方式,哪种更容易帮助找到多值函数的支点? 如何画出 \sqrt{z} 的 黎曼面?