The goal of this work is to devise a few-shot visual learning system that during test time it will be able to efficiently learn novel categories from only a few training data while at the same time it will not forget the initial categories on which it was trained (here called base categories).

Summary

Propose:

- To extend an object recognition system with an attention based few-shot classification weight generator.
- To redesign the classifier of a ConvNet model as the cosine similarity function // between feature representations and classification weight vectors. (apart from unifying the recognition of both novel and base categories, it also leads to feature representations that generalize better on "unseen" categories.)

实验数据集:

• Mini-ImageNet:

实验结果:

1-shot: 56.20%5-shot: 73.00%

Other:

• jupyter notebook: Github-Code

• 数据集: Link

• 论文: <u>Dynamic Few-Shot Visual Learning without Forgetting</u>

• 源码: Github-Code

• 相关博客:

○ few-shot learning是什么

Few-shot learning 的要求

- the learning of the novel categories needs to be fast (快速学习新事物)
- to not sacrifice any recognition accuracy on the initial categories that the ConvNet was trained on, i.e., to not "forget" (不忘记旧事物)

本文提出两个新的技术

1. Few-shot classification-weight generator based on attention.

传统的图像分类方法: 先提取图像的高维特征, 然后通过分类器计算属于每一个类别的概率 (这个概率 向量这里成为 "分类权重向量 (classification weight vectors)").

这里使用一个额外的组件 "few-shot classification weight generator", 在接受新的事物时(1-5个新类别),生成新的分类权重向量。主要特征是:通过将注意力机制纳入基本类别的分类权重向量上,从而显式地利用了过去获得的有关视觉世界的知识。

XXX

Methodology

定义一个具有 K_{base} 个基本类别的数据集:

$$D_{train} = \bigcup_{b=1}^{K_{base}} \left\{ x_{b,i} \right\}_{i=1}^{N_b} \tag{1}$$

where N_b is the number of training examples of the b -th category and $x_{b,i}$ is its i -th training example.

本文的目标是:使用此数据集作为唯一输入,既能够准确地识别基本类别,又能在不忘记基本类别的前 提下, 动态地经过少量样本学习来识别新的类别。

Model 总览

Figure 1: Overview of our system. It consists of: (a) a ConvNet based recognition model (that includes a feature extractor and a classifier) and (b) a few-shot classification weight generator. Both are trained on a set of base categories for which we have available a large set of training data. During test time, the weight generator gets as input a few training data of a novel category and the classification weight vectors of base categories (green rectangle inside the classifier box) and generates a classification weight vector for this novel category (blue rectangle inside the classifier box). This allows the ConvNet to recognize both base and novel categories.

ConvNet-based recognition model

- A **feature extractor** $F(. | \theta)$ (with learnable parameters θ) that extracts a d -dimensional
- feature vector $z=F(x|\theta)\in\mathbb{R}^d$ from an input image x,
 A **classifier** $C\left(.\left|W^*\right.\right)$, $\$where\$W^*=\left\{w_k^*\in\mathbb{R}^d\right\}_{k=1}^K$ are a set of K^* classification weight vectors - one per object category, that takes as input the feature representation z and returns a K^* -dimensional vector with the probability classification scores $p = C(z|W^*)$ \$ofthe\$ K^* categories.

(也就是传统的分类模型的两个模块)

We learn the heta parameters and the classification weight vectors of the base categories $W_{base} = \{w_k\}_{k=1}^{K_{base}}$ such that by setting $W^* = W_{base}$ the ConvNet model will be able to recognize the base object categories.

Few-shot classification weight generator

Meta-learning mechanism. 在测试时,接受 K_{novel} 个新类别的少量数据作为输入。

$$D_{novel} = igcup_{n=1}^{K_{novel}} \left\{ x_{n,i}'
ight\}_{i=1}^{N_n'}$$

where N_n' is the number of training examples of the n -th novel category and $x_{n,i}'$ is its i -th training example.

- novel category $n \in [1, N_{\mathrm{novel}}]$
- ullet few-shot classification weight generator $G(.\,,..\,|\phi)$
- input the feature vectors $Z_n' = \left\{ z_{n,i}' \right\}_{i=1}^{N_n'}$
- $\bullet \ \ \text{training examples } N_n' \\ \bullet \ \ \text{here } z_{n,i}' = F\left(x_{n,i}'|\theta\right)$
- ullet classification weight vector $w_n' = G\left(Z_n', W_{base} | \phi
 ight)$

简单来说就是使用预训练好的特征提取器提取新类别图像的特征,然后将其扔进 few-shot classification weight generator 训练,得到 classification weight vector,得到 $W_{
m novel}=\{w_n'\}_{n=1}^{K_{novel}}$ (the classification weight vectors of the novel categories inferred by the few-shot weight generator). 最后,在 $C\left(.\left|W^*\right.
ight)$ 中合并两个分类权重向量: $W^*=W_{base}\cup W_{novel}$, 使 ConvNet 可 以同时分类出 base 和 novel 中的类。

Model 详细

Cosine-similarity based recognition model

关于怎么在测试时合并可变数量的新的类别。