

HELMHOLTZ RESEARCH FOR GRAND CHALLENGES

B lifetime at Belle II

[arxiv: 2005.07507]

Cyrille Praz, on behalf of the Belle II collaboration

ICHEP 2020 | PRAGUE

Cyrille Praz B lifetime at Belle II 30.07.2020 1/15

Outline

- Introduction
- Measurement strategy
- Fit strategy
- Systematic studies
- Results
- 6 Conclusion

SuperKEKB

- e^+e^- collider.
- $\sqrt{s} = 10.6 \,\text{GeV} = \text{m}(\Upsilon(4S))c^2$.
- BR($\Upsilon(4S) \rightarrow B\overline{B}$) > 96%.

The Belle II detector

- Pixel detector (PXD).
- Silicon Vertex Detector (SVD).
- Central Drift Chamber (CDC).
- Calorimeter (ECL).
- Aerogel Ring-Imaging Cherenkov (ARICH).
- Time-Of-Propagation (TOP) counter.
- K_L^0 and μ detection (KLM).

Introduction

- B^0 lifetime measurement using $\underline{2019}$ Belle II data ($\mathcal{L}=8.7\pm0.2\,\mathrm{fb}^{-1}$).
- ullet Belle II has a smaller boost compared to Belle, but a better impact parameter resolution (factor $\sim 1.5-2$) thanks to the pixel detector.
 - $(\beta\gamma)_{\rm Belle\,II} \approx 0.28 < 0.42 \approx (\beta\gamma)_{\rm Belle}$.
 - A good vertex separation is crucial for time-dependent studies.
 - CP violation results will be presented by N. Rout [link].
 - The Belle II tracking allows for a measurement of the beamspot size:

B⁰ lifetime measurement strategy

- B⁰ hadronic decays fully reconstructed.
- Other B vertex from the remaining tracks in the event.

- B mesons nearly at rest in the $\Upsilon(4S)$ frame.
 - Flight distance in the transverse plan neglected.
 - $\Delta t \approx \frac{\Delta z_{\mathrm{boost}}}{c(\beta \gamma) \gamma_{(4S)}}, \quad \Delta z_{\mathrm{boost}} = \mathcal{O}(100 \, \mu \mathrm{m}).$

$$p_{\text{na\"{i}ve}}(\Delta t,\tau_B) = \int_0^\infty \mathrm{d}t_1 \int_0^\infty \mathrm{d}t_2 \, \frac{1}{\tau_B^2} \, \mathrm{e}^{\frac{-(t_1+t_2)}{\tau_B}} \, \delta\big(t_2-t_1-\Delta t\big) = \frac{1}{2\tau_B} \, \mathrm{e}^{-\frac{|\Delta t|}{\tau_B}} \, .$$

Reconstruction of the signal B^0

• Hadronic final states used to reconstruct B^0 decays.

Decay	Selection Criteria			
B^0 decays				
$B^0 \rightarrow D^- \pi^+$				
$B^0 o D^- ho^+$	$M_{ m bc} > 5.2~{ m GeV}/c^2$ and $-0.2 < \Delta E < 0.2~{ m GeV}$			
$B^0 o D^{*-}\pi^+$				
$B^0 o D^{*-} ho^+$				
D decays				
$D^{*+} ightarrow D^0 \pi^-$	$0.143 < m_{D^{*+}} - m_{D^0} < 0.147 \text{ GeV}/c^2$			
$D^- \rightarrow K^+ \pi^- \pi^-$	$ m - m_{PDG} < 0.015 \text{ GeV}/c^2$			
$D^0 o K^-\pi^+$				
$D^0 o K^-\pi^+\pi^0$	$ m - m_{PDG} < 0.015 \text{ GeV}/c^2$			
$D^0 o K^-\pi^+\pi^+\pi^-$				
ho decay				
$\rho^+ \to \pi^+ \pi^0$	$ m - m_{PDG} < 0.10 \text{ GeV}/c^2$			

$$\bullet \ M_{\rm bc} \equiv \sqrt{E_{\rm Beam}^{*2} - p_{B^0}^{*2}} \quad ; \quad \Delta E \equiv E_{B^0}^* - E_{\rm Beam}^*.$$

Cyrille Praz B lifetime at Belle II

Model for the total probability density

$$p_{\rm all}(\Delta t) \equiv n_{\rm sig} p_{\rm sig}(\Delta t, \tau_{B^0}) + n_{\rm b\bar{b}} p_{\rm b\bar{b}}(\Delta t, \tau_{\rm eff}) + n_{\rm cont} p_{\rm cont}(\Delta t).$$

- Contributions:
 - Basic Δt density $o p_{ ext{na\"ive}}(\Delta t, au_B) = rac{1}{2 au_B}\, \mathrm{e}^{-rac{|\Delta t|}{ au_B}}.$
 - Resolution density $o \mathcal{R}(\delta_{\Delta t}) = \mathsf{sum} \; \mathsf{of} \; \mathsf{3} \; \mathsf{Gaussian} \; \mathsf{densities}.$
 - Signal density $\to p_{\mathrm{sig}}(\Delta t, \tau_{B^0}) = (p_{\mathrm{na\"{i}ve}}(\cdot, \tau_{B^0}) * \mathcal{R})(\Delta t)$.
 - B background density $o p_{
 m bar{b}}(\Delta t, au_{
 m eff}) = (p_{
 m na\"{i}ve}(\cdot, au_{
 m eff}) * \mathcal{R})(\Delta t).$
 - ullet Continuum density $o p_{
 m cont}(\Delta t)=$ sum of 3 Gaussian densities.

Cyrille Praz B lifetime at Belle II 30.07.2020

Extraction of yields

- 2D extended maximum likelihood fit to the unbinned $M_{\rm bc}$ and ΔE .
 - Extraction of n_{sig} , $n_{\text{b}\overline{\text{b}}}$ and n_{cont} .

[arxiv: 2005.07507] 180 Data

Continuum shape

- Fit to Δt of the sideband in simulation (left) and data (right).
 - Extraction of the continuum shape parameters.
 - $\{f_{1,2,3}, s_{2,3}, \Delta \mu\}$ from simulation, $\{\mu_1, \sigma_1\}$ from data.

$$p_{\text{cont}}(\Delta t) = f_1 \mathcal{G}(\Delta t; \mu_1, \sigma_1) + f_2 \mathcal{G}(\Delta t; \mu_1 + \Delta \mu, s_2 \times \sigma_1) + (1 - f_1 - f_2) \mathcal{G}(\Delta t; \mu_1, s_2 \times s_3 \times \sigma_1)$$
 (1)

Resolution function shape

- Fit to Δt residual for the signal contribution of the simulated sample.
 - Extraction of the resolution parameters.

[arxiv: 2005.07507]

• After this step, $\tau_{\rm eff}$ can be fixed from $b\overline{b}$ simulated events.

Cyrille Praz B lifetime at Belle II 30.07.2020 11/15

Systematic studies

- Systematic uncertainty sources considered:
 - Fit parametrisation.
 - Reproduce fit on 10k simulated bootstrap samples $\rightarrow \sigma =$ 0.05 ps.
 - Check what happens when $au_{\rm eff}$ is left free $o \sigma = 0.01\,{
 m ps}.$
 - Calibration and alignment constants in data.
 - Reproduce study on a data subsample with different constants $\rightarrow \sigma = 0.03\,\mathrm{ps}.$

Final result

- Fit to Δt for all $B^0 \to D^{(*)}h$ of the selected decay candidates.
 - 3 free parameters: τ_{B^0} , $\mu_{1,\text{resolution}}$ and $\sigma_{1,\text{resolution}}$.
 - $\tau_{B^0} = 1.48 \pm 0.28 \text{ (stat)} \pm 0.06 \text{ (syst)} \text{ ps.}$
 - Reduced $\chi^2 = 0.83$.

[arxiv: 2005.07507]

Cyrille Praz

B lifetime at Belle II

30.07.2020

Conclusion

- B^0 lifetime was measured using 2019 Belle II data ($\mathcal{L}=8.7\pm0.2\,\mathrm{fb}^{-1}$).
 - $\tau_{B^0} = 1.48 \pm 0.28 \text{ (stat)} \pm 0.06 \text{ (syst)} \text{ ps.}$
 - Good agreement with world average ($au_{B^0} = 1.519 \pm 0.004 \, \mathrm{ps}$).
 - Assess the accuracy of vertex fitting tools, time resolution modeling and detector alignment.
 - Conference note available online: [arxiv: 2005.07507].
- See also D^0 lifetime study in G. Casarosa's talk [link].
 - ullet Larger data sample, time resolution imes 2 better than Belle and BaBar.

Cyrille Praz B lifetime at Belle II 30.07.2020

Questions

Thank you for your attention.

Details on fit parameters

- Fit 1: $M_{\rm bc}$ and ΔE .
- Fit 2: Δt of the sideband events.
- Fit 3: Δt residual.
- Final fit: Δt of the signal region.

$$\mathcal{R}(\delta_{\Delta t}) = \textit{f}_{1}\mathcal{G}(\delta_{\Delta t}; \mu_{1}, \sigma_{1}) + \textit{f}_{2}\mathcal{G}(\delta_{\Delta t}; \mu_{1} + \Delta \mu, \textit{s}_{2} \times \sigma_{1}) + (1 - \textit{f}_{1} - \textit{f}_{2})\mathcal{G}(\delta_{\Delta t}; \mu_{1}, \textit{s}_{2} \times \textit{s}_{3} \times \sigma_{1}) \eqno(2)$$

	Fit parameter	value
	n _{sgn} fit region	$(1.22 \pm 0.04) \times 10^3$
	$n_{b\overline{b}}$ fit region	$(1.29 \pm 0.07) \times 10^3$
	n _{cont} fit region	$(1.14 \pm 0.06) \times 10^3$
Fit 1		
	n _{sgn} signal region	$(1.10 \pm 0.04) \times 10^3$
	$n_{b\overline{b}}$ signal region	270 ± 32
	n _{cont} signal region	140 ± 21
Fit 2	μ_{1cont} [ps]	0.021 ± 0.021
	σ_{1cont} [ps]	0.429 ± 0.015
Final fit	μ_{1res} [ps]	-0.03 ± 0.06
	σ_{1res} [ps]	0.56 ± 0.18
	τ_{B^0} [ps]	1.48 ± 0.28

	Fit parameter	value
Fit 2	$\Delta \mu_{cont} \left[\text{GeV}/c^2 \right]$	-0.0846 ± 0.026
	f _{1cont}	$\textbf{0.468} \pm \textbf{0.021}$
	f _{2cont}	0.357 ± 0.017
	S _{2cont}	2.88 ± 0.096
	S _{3cont}	3.02 ± 0.11
Fit 3	$\Delta \mu_{res} \left[\text{GeV}/c^2 \right]$	-0.360 ± 0.031
	f _{1res}	0.561 ± 0.016
	f _{2res}	$\textbf{0.336} \pm \textbf{0.014}$
	S _{2res}	2.84 ± 0.079
	S _{3res}	2.99 ± 0.13
	$ au_{ m eff}$ [ps]	1.31 ± 0.03