Johns Hopkins Engineering for Professionals 605.767 Applied Computer Graphics

Brian Russin

Module 6E NURBS and Other Splines

Non-uniform B-splines

- Non-uniform B-splines can have multiple internal knot values and unequal spacing between knot values
- Increased flexibility in controlling curve shape
 - Different intervals produce different shapes for blending functions in the intervals
 - Knot multiplicity (number of identical values) can produce variations in the curve shape and introduce discontinuities
 - Curve continuity is reduced by 1 for each repeat of a knot value
 - Watt pg. 88-89 has many illustrations of effects
- Generally use the Cox-deBoor algorithm to recursively generate the blending functions

Rational Splines

- Rational splines are ratios between two spline functions
 - Just as rational functions are ratios between two polynomials
- Non-uniform rational B-splines (NURBS) extend control of a curve or surface beyond just moving control points
 - An extra parameter called a weight is added to control points
 - Rational B-spline curve is defined by a set of homogeneous control points:
 - $P_i^w = (w_i x_i, w_i y_i, w_i z_i, w_i)$

$$p(t) = \frac{\sum_{i=0}^{n} \omega_i B_{i,k}(t) p_i}{\sum_{i=0}^{n} \omega_i B_{i,k}(t)}$$

NURBS

- The w_i parameters are called weights
 - Extra shape parameters
- Weights affect the curve locally
 - Can be thought of as a coupling factor
 - Increase w_i will pull curve towards control point p_i
 - Decrease w_i will move curve away from control point p_i
- Rational splines have 2 major advantages over nonrational splines
 - Provide an exact representation for quadric curves (circles, ellipses)
 - Graphics package could model all curve shapes with rational spline representations
 - Invariant with respect to perspective transformation
 - Can be evaluated in screen space
 - Graphics design packages typically use nonuniform rational B-splines (NURBS) for constructing rational B-splines
 - Nonuniform knot representations

Plotting Conic Sections with NURBS

- Use quadratic spline functions
 - d = 3, 3 control points
- Use the knot vector (0,0,0,1,1,1)
 - Same as quadratic Bezier curve
- Set weighting functions:
 - $w_0 = w_2 = 1$
 - $w_1 = r / (1-r)$, $0 \le r \le 1$
 - Yields the following conics:
 - Hyperbola section: r > 1/2, w₁ > 1
 - Parabola section: r = 1/2, $w_1 = 1$
 - Ellipse section: r < 1/2, $w_1 < 1$
 - Straight line segment: r = 0, $w_1 = 0$

Other Spline Representations

- Natural cubic splines
 - Mathematical representation of original draftsman spline
- Cardinal splines
 - Sequence of individual curves joined to form a larger curve
 - An array of points and a tension parameter
- Kochanek-Bartels splines
 - Cubic Hermite spline with tension, bias and continuity parameters
 - Changes behavior at tangents
- Catmull-Rom
 - Curve will pass through all control points
 - Kochanek-Bartels spline with tension, bias, and continuity set to 0
- β-spline
 - Introduce bias and tension to control the whole curve
 - Bias controls the skewness of the curve
 - Tension controls how tightly or loosely the spline fits the control polygon

Conversion Between Spline Representations

- Often convenient to convert one spline representation into another
 - Model and design using B-splines local control
 - Local control
 - Render using Bezier splines efficient rendering
- Hearn and Baker derive the transformations
 - Product of the inverse basis matrix of one with the basis matrix of the other
 - $M_{s1,s2} = M^{-1}_{spline2} M_{spline1}$
 - Transform control points from spline 1 to the control points for spline 2
- Non-uniform B-splines cannot be characterized with a single basis matrix
 - Can rearrange the knot sequence to change the non-uniform B-spline to a Bezier representation
 - Non-uniform B-spline over 4 control points with knot sequence (0,0,0,0,1,1,1,1) is a cubic Bezier curve

$$M_{B\text{-}spline \to Bezier} = \frac{1}{6} \begin{bmatrix} 1 & 4 & 1 & 0 \\ 0 & 4 & 2 & 0 \\ 0 & 2 & 4 & 0 \\ 0 & 1 & 4 & 1 \end{bmatrix} \Rightarrow \begin{bmatrix} p_{1,Bezier} \\ p_{2,Bezier} \\ p_{3,Bezier} \\ p_{4,Bezier} \end{bmatrix} = \frac{1}{6} \begin{bmatrix} 1 & 4 & 1 & 0 \\ 0 & 4 & 2 & 0 \\ 0 & 2 & 4 & 0 \\ 0 & 1 & 4 & 1 \end{bmatrix} \begin{bmatrix} p_{1,B\text{-}spline} \\ p_{2,B\text{-}spline} \\ p_{3,B\text{-}spline} \\ p_{4,B\text{-}spline} \end{bmatrix}$$

