Introduction

Operating Systems (CS-220)
Spring 2021, FAST NUCES

Google Classroom Code: dpjhurs

COURSE SUPERVISOR: ANAUM HAMID

anaum.hamid@nu.edu.pk

Course Outline

Evaluation Instruments and Marks Distributions

- Assignments = 20 marks
- Project = 10 marks
- Midterm = 30 marks (15 for each)
- Final Term = 50 marks
- Total = 100 Marks

Course Recourses

TEXTBOOK:

 Operating Systems Concepts, 10th edition, by Abraham Silberschatz, Peter Baer Galvin, and Greg Gagne.

REFERENCE BOOKS:

 Operating Systems – Internals and Design Principles, 8th edition, by William Stallings.

Introduction

Road Map.

- 1. What is an Operating System?
- 2. CS structures.
- 3. Interrupt
- 4. I/O
- 5. Memory
- 6. CS Architecture
- 7. Clustered Systems
- 8. OS Structure + Operations
- 9. Computing Environments

FALL 2020

Operating System: Overview

- Operating system (OS): a system software that exploits the hardware resources to provide a set of services to system users.
- The OS manages the processor(s), memory and input/output (I/O) devices on behalf of its users.
- *Note:* it is important to have some fundamental understanding of basic data structures, computer organization and a high-level programming language, such as C or Java, before examining topics related to operating systems.

Operating System: Overview (Cont.)

Relationship between application software and system software

Computer System Structure

- Computer system can be divided into four components:
 - Hardware provides basic computing resources
 - 2. Operating system
 - 3. Application programs
 - 4. Users

Four Components of a Computer System

Operating System Definition

- OS is a resource allocator
 - Manages all resources
 - Decides between conflicting requests for efficient and fair resource use

- OS is a control program
 - Controls execution of programs to prevent errors and improper use of the computer

Computer Startup

- bootstrap program is loaded at power-up or reboot
 - Typically stored in ROM or EPROM, generally known as firmware
 - Initializes all aspects of system
 - Loads operating system kernel and starts execution

Computer System Organization

- Computer-system operation
 - One or more CPUs, device controllers connect through common bus providing access to shared memory
 - Concurrent execution of CPUs and devices competing for memory cycles

Computer-System Operation

- I/O devices and the CPU can execute concurrently
- Each device controller is in charge of a particular device type
- Each device controller has a local buffer
- CPU moves data from/to main memory to/from local buffers
- I/O is from the device to local buffer of controller
- Device controller informs CPU that it has finished its operation by causing an INTERRUPT

Interrupts

- **Interrupt:** a mechanism by which other modules (I/O, memory) may interrupt the "normal sequencing of the processor".
- Most common classes of Interrupts are:

I/O	Generated by an I/O controller, to signal normal completion of an operation or to signal a variety of error conditions.
Program	Generated by a condition that occurs as a result of an instruction execution, such as arithmetic overflow, division by zero, attempt to execute an illegal machine instruction, and reference outside a user's allowed memory space.
Timer	Generated by a timer within the processor.
Hardware failure	Generated by a failure, such as memory error.

FALL 2020

Common Functions of Interrupts

- Interrupt transfers control to the interrupt service routine generally, through the interrupt vector, which contains the addresses of all the service routines
- Interrupt architecture must save the address of the interrupted instruction
- A trap or exception is a softwaregenerated interrupt caused either by an error or a user request
- An operating system is interrupt driven

Interrupt Handling

- The operating system preserves the state of the CPU by storing registers and the program counter
- Determines which type of interrupt has occurred:
 - 1. polling
 - vectored interrupt system
- 3. Separate segments of code determine what action should be taken for each type of interrupt

Multiple Interrupts

Figure 1.12 Transfer of Control with Multiple Interrupts

I/O Structure

- After I/O starts, control returns to user program only upon I/O completion
 - Wait instruction idles the CPU until the next interrupt
 - Wait loop (contention for memory access)
 - At most one I/O request is outstanding at a time, no simultaneous I/O processing.
- 2. After I/O starts, control returns to user program without waiting for I/O completion
 - System call request to the OS to allow user to wait for I/O completion
 - Device-status table contains entry for each I/O device indicating its type, address, and state

Direct Memory Access Structure

Used for high-speed I/O devices able to transmit information at close to memory speeds

Direct Memory Access

- Device controller transfers blocks of data from buffer storage directly to main memory without CPU intervention
- Only one interrupt is generated per block, rather than the one interrupt per byte

Memory

Storage Structure

- Main memory only large storage media that the CPU can access directly
- Secondary storage extension of main memory that provides large nonvolatile storage capacity.
- 3. Magnetic disks rigid metal or glass platters covered with magnetic recording material
 - Disk surface is logically divided into tracks, which are subdivided into sectors
 - The disk controller determines the logical interaction between the device and the computer

Storage Hierarchy

Storage systems organized in hierarchy

- Speed
- Cost
- Volatility
- 1. Caching copying information into faster storage system; main memory can be viewed as a cache for secondary storage

- 2. Device Driver for each device controller to manage I/O
 - Provides uniform interface between controller and kernel

Storage-Device Hierarchy

Caching

- Important principle, performed at many levels in a computer (in hardware, operating system, software).
- 2. Faster storage (cache) checked first to determine if information is there
 - If it is, information used directly from the cache (fast)
 - If not, data copied to cache and used there

Computing Architectures

Computer-System Architecture

- Multiprocessor systems growing in use and importance
 - Also known as parallel systems, tightly-coupled systems
 - Advantages include:
 - 1. Increased throughput
 - 2. Economy of scale
 - 3. Increased reliability graceful degradation or fault tolerance
 - Two types:
 - 1. Asymmetric Multiprocessing
 - 2. Symmetric Multiprocessing

Symmetric vs. Asymmetric Multiprocessing Architecture

A Dual-Core Design

- UMA and NUMA architecture variations
- Multi-chip and multicore

Uniform memory access (UMA):
Each processor has uniform
access to memory. Also known
as symmetric multiprocessors, or
SMPs (Sun E10000)

Non-uniform memory access
(NUMA): Time for memory
access depends on location
of data. Local access is faster
than non-local access. Easier
to scale than SMPs (SGI
Origin)

Clustered Systems

- Like multiprocessor systems, but multiple systems working together
 - Usually sharing storage via a storage-area network
 (SAN)
 - Provides a high-availability service which survives failures
 - Asymmetric clustering has one machine in hot-standby mode
 - Symmetric clustering has multiple nodes running applications, monitoring each other

Clustered Systems

Operating System Structures + Operations

Operating System Structure

- Multiprogramming needed for efficiency
 - ❖ Single user cannot always keep CPU and I/O devices busy
 - ❖ Multiprogramming organizes jobs (code and data) so CPU always has one to execute
 - ❖ A subset of total jobs in system is kept in memory
 - One job selected and run via job scheduling
 - ❖ When it must wait (for I/O for example), OS switches to another job
- **Timesharing** (multitasking) is logical extension in which CPU switches jobs so frequently that users can interact with each job while it is running, creating interactive computing
 - **Response time** should be < 1 second
 - ❖ Each user has at least one program executing in memory ⇒ process
 - ❖ If several jobs ready to run at the same time ⇒ CPU scheduling
 - ❖ If processes don't fit in memory, **swapping** moves them in and out to run
 - Virtual memory allows execution of processes not completely in memory

Memory Layout for Multiprogram System

Operating-System Operations

- Dual-mode operation allows OS to protect itself and other system components
 - User mode and kernel mode
 - Mode bit provided by hardware
 - Provides ability to distinguish when system is running user code or kernel code
 - Some instructions designated as privileged, only executable in kernel mode
 - System call changes mode to kernel, return from call resets it to user
- Increasingly CPUs support multi-mode operations
 - i.e. virtual machine manager (VMM) mode for guest VMs.
- "The one program running at all times on the computer" is the **kernel**.

Transition from User to Kernel Mode

- Timer to prevent infinite loop / process hogging resources
 - Set interrupt after specific period
 - Operating system decrements counter
 - When counter zero generate an interrupt
 - Set up before scheduling process to regain control or terminate program that exceeds allotted time

Process Management

- A process is a program in execution. It is a unit of work within the system. Program is a passive entity; process is an active entity.
- Process needs resources to accomplish its task
 - CPU, memory, I/O, files
 - Initialization data
- Program counter (PC): Contains the address of an instruction to be fetched
- Single-threaded process has one program counter specifying location of next instruction to execute
- Multi-threaded process has one program counter per thread

Process Management Activities

The operating system is responsible for the following activities in connection with process management:

- Creating and deleting both user and system processes
- Suspending and resuming processes
- process synchronization
- process communication
- deadlock handling

Memory Management

- Memory management activities
 - Keeping track of which parts of memory are currently being used and by whom
 - Deciding which processes (or parts thereof)
 and data to move into and out of memory
 - Allocating and deallocating memory space as needed

Storage Management

- File-System management
 - Files usually organized into directories
 - Access control on most systems to determine who can access what
 - OS activities include
 - Creating and deleting files and directories
 - Primitives to manipulate files and dirs
 - Mapping files onto secondary storage
 - Backup files onto stable (non-volatile) storage media

Mass-Storage Management

- OS activities
 - Free-space management
 - Storage allocation
 - Disk scheduling
- Some storage need not be fast
 - Tertiary storage includes optical storage, magnetic tape
 - Still must be managed by OS or applications
 - Varies between WORM (write-once, read-many-times) and RW (read-write)

I/O Subsystem

- I/O subsystem responsible for
 - Memory management of I/O
 - caching (storing parts of data in faster storage for performance)
 - spooling (the overlapping of output of one job with input of other jobs)

Protection and Security

- Protection any mechanism for controlling access of processes or users to resources defined by the OS
- Security defense of the system against internal and external attacks
 - Huge range, including denial-of-service, worms, viruses, identity theft, theft of service

Computing Environments

Computing Environments -Distributed

- Distributed
 - Collection of separate, possibly heterogeneous, systems networked together
 - Network is a communications path,
 - Local Area Network (LAN)
 - Wide Area Network (WAN)
 - Network Operating System provides features between systems across network

Computing Environments - ClientServer

- Client-Server
 Computing
 - Dumb terminals supplanted by smart PCs
 - Many systems now servers, responding to requests generated by clients

Client / Server

Computing Environments - Peer-to-Peer

- Another model of distributed system
- P2P does not distinguish clients and servers

Peer to Peer

Computing Environments - Cloud Computing

Application

Platform

Infra-

Cloud Clients

Web browser, mobile app, thin client, terminal emulator, ...

SaaS

CRM, Email, virtual desktop, communication, games, ...

PaaS

Execution runtime, database, web server, development tools, ...

laaS

Virtual machines, servers, storage, load balancers, network, ...

Real-Time Embedded Systems

- Real-time embedded systems most prevalent form of computers
 - Vary considerable, special purpose, limited purpose
 OS, real-time OS
 - Use expanding
- Many other special computing environments as well
 - Some have OSes, some perform tasks without an OS
- Real-time OS has well-defined fixed time constraints
 - Processing must be done within constraint
 - Correct operation only if constraints met

Thank You!

Chapter 1 Completed