

2023 HSC Mathematics Extension 1 Marking Guidelines

Section I

Multiple-choice Answer Key

Question	Answer
1	D
2	А
3	С
4	С
5	В
6	С
7	В
8	А
9	D
10	В

Section II

Question 11 (a)

Criteria	Marks
Provides correct solution	2
Obtains t in terms of x, or equivalent merit	1

Sample answer:

$$x = 1 + 3t$$

$$\therefore \quad t = \frac{x-1}{3}$$

$$y = 4\left(\frac{x-1}{3}\right)$$
$$y = \frac{4}{3}x - \frac{4}{3}$$

Question 11 (b)

Criteria	Marks
Provides correct solution	2
Divides 10! by a relevant number, or equivalent merit	1

Sample answer:

10 letters, 3 Os and 2 Ns

$$\therefore \frac{10!}{3!2!} = 302400$$

Question 11 (c)

Criteria	Marks
Provides correct solution	3
Obtains two equations for a and b, or equivalent merit	2
• Observes that $P(-1) = 0$ or $P(2) = -18$, or equivalent merit	1

Sample answer:

P(-1) = 0 by factor theorem

$$(-1)^{3} + a(-1)^{2} + b(-1) - 12 = 0$$

$$-1 + a - b - 12 = 0$$

$$a - b = 13$$
(1)

P(2) = -18 by remainder theorem

$$2^{3} + a(2)^{2} + b(2) - 12 = -18$$

$$8 + 4a + 2b - 12 = -18$$

$$4a + 2b = -14$$

$$2a + b = -7$$
(2)

$$(1) + (2)$$
: $3a = 6$

Using this in (1)
$$2-b = 13$$

 $b = -11$

Question 11 (d)

Criteria	Marks
Provides correct solution	2
Attempts to rewrite the integrand in a suitable form, or equivalent merit	1

$$\int \frac{1}{\sqrt{4 - 9x^2}} dx = \frac{1}{3} \int \frac{3}{\sqrt{2^2 - (3x)^2}} dx$$
$$= \frac{1}{3} \sin^{-1} \left(\frac{3x}{2}\right) + C$$

Question 11 (e)

Criteria	Marks
Provides correct solution	3
 Obtains an equation or graph involving a single trigonometric function OR Obtains a quadratic equation in t, and attempts to solve it OR equivalent merit 	2
• Uses the <i>t</i> -substitution, attempts to write $\cos\theta + \sin\theta$ as a single trigonometric function, or equivalent merit	1

Let
$$t = \tan \frac{\theta}{2}$$

$$\therefore \frac{1-t^2}{1+t^2} + \frac{2t}{1+t^2} = 1$$

$$1 - t^2 + 2t = 1 + t^2$$

$$2t^2 - 2t = 0$$

$$2t(t-1) = 0$$

$$t = 0 or t = 1$$

$$tan \frac{\theta}{2} = 0 tan \frac{\theta}{2} = 1$$

$$\frac{\theta}{2} = 0, \pi, \pi, \dots \frac{\theta}{2} = \frac{\pi}{4}, \frac{5\pi}{4}, \dots$$

$$\theta = 0, 2\pi$$

$$\theta = \frac{\pi}{2}$$

$$\therefore \quad \theta = 0, \ \frac{\pi}{2}, \ 2\pi$$

Question 11 (e) (continued)

Alternative solution

$$\cos\theta + \sin\theta = 1$$
 $\theta \in [0, 2\pi]$

Let
$$\cos \theta + \sin \theta = R \sin(\theta + \alpha)$$

= $R \sin \theta \cos \alpha + R \cos \theta \sin \alpha$

$$\therefore \frac{R\sin\alpha = 1}{R\cos\alpha = 1}$$

$$\therefore R = \sqrt{1^2 + 1^2} = \sqrt{2}$$

$$\tan \alpha = 1 \qquad \therefore \quad \alpha = \frac{\pi}{4}$$

$$\therefore \quad \sqrt{2} \sin\left(\theta + \frac{\pi}{4}\right) = 1$$

$$\sin\left(\theta + \frac{\pi}{4}\right) = \frac{1}{\sqrt{2}}$$

$$\theta + \frac{\pi}{4} = \frac{\pi}{4}, \frac{3\pi}{4}, \frac{9\pi}{4}, \dots$$

$$\theta = 0, \frac{\pi}{2}, 2\pi$$

Question 11 (f) (i)

Criteria	Marks
Provides correct solution	2
Obtains <i>p</i> = 0.3, or equivalent merit	1

Sample answer:

P(born overseas) = 0.3

Let
$$p = 0.3$$
 : $1 - p = 0.7$

$$n = 900$$

 \therefore Distribution of \hat{p} is approximately normal with mean $\mu = 0.3$ and

$$\sigma^2 = \frac{0.3 \times 0.7}{900}$$
$$= \frac{0.21}{900}$$
$$= \frac{7}{30000}$$

Question 11 (f) (ii)

Criteria	Marks
Provides correct solution	2
Obtains the correct z-score, or equivalent merit	1

$$P(\hat{p} \le 0.31) \approx P \left(Z \le \frac{0.31 - 0.3}{\sqrt{\frac{7}{30\,000}}} \right)$$

$$= P(X \le 0.6546...)$$

$$\approx P(Z \le 0.65)$$

$$= 0.7422 \qquad \text{from table}$$

$$= 0.74 \qquad 2 \text{ decimal places}$$

Question 12 (a)

Criteria	Marks
Provides correct solution	3
Obtains correct anti-derivative in terms of <i>u</i> , or equivalent merit	2
Obtains correct integrand in terms of <i>u</i> , or equivalent merit	1

$$\int_{3}^{4} (x+2)\sqrt{x-3} \, dx \qquad u = x-3 \quad \begin{cases} x = 4 \to u = 1 \\ x = 3 \to u = 0 \end{cases}$$

$$du = dx$$

$$= \int_{0}^{1} (u+5)\sqrt{u} \, du$$

$$= \int_{0}^{1} u^{\frac{3}{2}} + 5u^{\frac{1}{2}} \, du$$

$$= \left[\frac{2}{5}u^{\frac{5}{2}} + \frac{5 \times 2}{3}u^{\frac{3}{2}} \right]_{0}^{1}$$

$$= \frac{2}{5} + \frac{10}{3}$$

$$= \frac{56}{15}$$

Question 12 (b)

Criteria	Marks
Provides correct solution	3
Establishes the inductive step, or equivalent merit	2
Establishes the base case, or equivalent merit	1

Sample answer:

When
$$n = 1$$

LHS = $1 \times 2 = 2$
RHS = $2 + (1-1)2^{1+1} = 2$
LHS = RHS

Assume true when n = k

 \therefore True when n = 1

ie
$$(1 \times 2) + (2 \times 2^2) + \dots + (k \times 2^k) = 2 + (k-1)2^{k+1}$$

Consider
$$n = k + 1$$

RHS = $2 + (k + 1 - 1)2^{k+1+1}$
= $2 + k \cdot 2^{k+2}$
LHS = $(1 \times 2) + (2 \times 2^2) + \dots + (k \times 2^k) + ((k + 1) \times 2^{k+1})$
= $2 + (k - 1)2^{k+1} + (k + 1)2^{k+1}$ by assumption
= $2 + 2^{k+1}(k - 1 + k + 1)$
= $2 + 2^{k+1}(2k)$
= $2 + k \cdot 2^{k+2}$
= RHS

Therefore, by mathematical induction, it is true for all integers $n \ge 1$.

Question 12 (c) (i)

Criteria	Marks
Provides correct answer	2
Demonstrates some understanding of binomial probability, or equivalent merit	1

Sample answer:

$$^{5}C_{3}(0.65)^{3}(0.35)^{2}$$

Question 12 (c) (ii)

Criteria	Marks
Provides correct answer	1

Sample answer:

$$^{5}C_{3}(0.65)^{3}(0.35)^{2}\times(0.6)^{4}$$

Question 12 (d)

Criteria	Marks
Provides correct solution	2
Uses given result to combine the first two terms on the left-hand side, or equivalent merit	1

Sample answer:

$$^{2022}C_{80} + ^{2022}C_{81} + ^{2023}C_{1943}$$

$$= ^{2023}C_{81} + ^{2023}C_{1943}$$

$$= ^{2023}C_{81} + ^{2023}C_{80}$$

$$= ^{2024}C_{81}$$

So p = 2024 and q = 81 is a possible solution

Question 12 (e)

Criteria	Marks
Provides correct solution	4
Obtains the volume formed by revolving the hyperbola about the <i>y</i> -axis, or equivalent merit	3
Obtains correct integral expression for the volume formed by revolving the hyperbola about the <i>y</i> -axis, or equivalent merit	2
Writes <i>x</i> in terms of y, or recognises that the volume is the sum of two simpler volumes, or equivalent merit	1

Sample answer:

The total volume is the sum of the volume when the given hyperbola is revolved about the y-axis, V_1 , and the volume of a cylinder, V_2 .

$$V_{1} = \pi \int_{4}^{12} x^{2} dy$$

$$y = \frac{60}{x+5}$$

$$x + 5 = \frac{60}{y}$$

$$= \pi \int_{4}^{12} \left(\frac{60}{y} - 5\right)^{2} dy$$

$$= \pi \int_{4}^{12} \frac{3600}{y^{2}} - \frac{600}{y} + 25 dy$$

$$= \pi \left[-\frac{3600}{y} - 600 \ln y + 25y \right]_{4}^{12}$$

$$= \pi \left[\left(-\frac{3600}{12} - 600 \ln 12 + 25 \times 12 \right) - \left(-\frac{3600}{4} - 600 \ln 4 + 25 \times 4 \right) \right]$$

$$= \pi (-600 \ln 12 + 800 + 600 \ln 4)$$

$$= \pi (800 - 600 \ln 3)$$

$$V_{2} = \pi \times 10^{2} \times 4$$

$$= 400\pi$$

$$Total = V_{1} + V_{2}$$

 \therefore Total = $\pi(1200 - 600 \ln 3)$ units³

Question 13 (a) (i)

Criteria	Marks
Provides correct solution	2
• Obtains $\frac{dV}{dh}$, or equivalent merit	1

Sample answer:

$$V = \pi \left(Rh^2 - \frac{h^3}{3} \right)$$

$$\frac{dV}{dt} = \frac{dV}{dh} \times \frac{dh}{dt}$$
So
$$\frac{dV}{dt} = \pi \left(2Rh - h^2 \right) \frac{dh}{dt}$$

$$= \pi h (2R - h) \frac{dh}{dt}$$

But we are given

$$\frac{dV}{dt} = k(2R - h)$$

So
$$\pi h (2R - h) \frac{dh}{dt} = k (2R - h)$$

 $\pi h \frac{dh}{dt} = k$ as $0 \le h \le R$ so $2R - h \ne 0$
 $\frac{dh}{dt} = \frac{k}{\pi h}$

Question 13 (a) (ii)

Criteria	Marks
Provides correct solution	2
Separates the variables from the differential equation in part (i), or equivalent merit	1

$$\frac{dh}{dt} = \frac{k}{\pi h}$$

When
$$t = 0$$
, $h = 0$
 $t = T$, $h = R$

So
$$\int_0^R \pi h \, dh = \int_0^T k \, dt$$

$$\left[\frac{\pi h^2}{2}\right]_0^R = \left[kt\right]_0^T$$

$$\frac{\pi R^2}{2} - 0 = kT - 0$$

$$T = \frac{\pi R^2}{2k}$$

Question 13 (a) (iii)

Criteria	Marks
Provides correct solution	3
• Finds correct expression for $\frac{dh}{dt}$, or equivalent merit	2
• Models the situation to find the new differential equation $\frac{dV}{dt} = -kh$, or equivalent merit	1

Sample answer:

When the tank is full the inflow of water stops. This means that the rate of change in volume is only dependent on h.

ie
$$-kh = \frac{dV}{dt} = \frac{dV}{dh} \times \frac{dh}{dt}$$
So
$$-kh = \pi h (2R - h) \frac{dh}{dt}$$

$$\frac{dh}{dt} = \frac{-k}{\pi (2R - h)}$$

When
$$t = 0$$
, $h = R$
 $t = T_E$, $h = 0$

$$\int_{R}^{0} \pi (2R - h) dh = \int_{0}^{T_{E}} -k dt$$

$$\left[\pi \left(2Rh - \frac{h^{2}}{2}\right)\right]_{R}^{0} = -kT_{E}$$

$$-\pi \left(2R^{2} - \frac{R^{2}}{2}\right)^{2} = -kT_{E}$$

$$\pi \frac{3R^{2}}{2} = kT_{E}$$

$$T_{E} = 3\frac{\pi R^{2}}{2k} = 3T$$

So the tank takes 3 times as long to empty.

Question 13 (b) (i)

Criteria	Marks
Provides correct proof	2
Equates x-coordinates, or equivalent merit	1

Sample answer:

The particles collide when their *x*-coordinates are the same at the same time.

$$vt\cos\theta = ut$$

So
$$u = v \cos \theta$$

 θ in 1st quad. and $\tan \theta = 2$

So
$$\cos \theta = \frac{1}{\sqrt{5}}$$
 and $\sin \theta = \frac{2}{\sqrt{5}}$

$$u = v \cos \theta$$

$$u = \frac{v}{\sqrt{5}}$$

$$v = \sqrt{5} u$$

Question 13 (b) (ii)

Criteria	Marks
Provides correct solution	1

Sample answer:

Particles collide at time *T* so *y*-coordinates are the same.

$$vT\sin\theta - \frac{1}{2}gT^2 = H - \frac{1}{2}gT^2$$
$$\sqrt{5}uT\frac{2}{\sqrt{5}} = H$$
$$T = \frac{H}{2u}$$

Question 13 (b) (iii)

Criteria	Marks
Provides correct solution	3
Evaluates the dot product of the velocity vectors and equates to 0, or equivalent merit	2
Observes that the dot product of the velocity vectors is 0, or equivalent merit	1

Sample answer:

At t=T the vectors \underline{v}_A and \underline{v}_B are perpendicular, so $\underline{v}_A\cdot\underline{v}_B=0$.

$$\begin{pmatrix} v\cos\theta\\ v\sin\theta - gT \end{pmatrix} \cdot \begin{pmatrix} u\\ -gT \end{pmatrix} = 0$$

$$uv\cos\theta - gT(v\sin\theta - gT) = 0$$

$$u\sqrt{5}u\frac{1}{\sqrt{5}} - \sqrt{5}ugT\frac{2}{\sqrt{5}} + g^2T^2 = 0$$

$$u^2 - 2ugT + g^2T^2 = 0$$

$$(u - gT)^2 = 0$$

$$u = gT = \frac{gH}{2u}$$

$$H = \frac{2u^2}{\sigma}$$

Question 13 (b) (iv)

Criteria	Marks
Provides correct solution	2
• Identifies that $\dot{y} = 0$ for particle A, or equivalent merit	1

Sample answer:

Vertex of
$$y_A(t) = vt\sin\theta - \frac{1}{2}gt^2$$
 occurs when $\dot{y} = 0$

$$t = \frac{-v\sin\theta}{2\left(-\frac{1}{2}g\right)}$$
 [axis of symmetry]
$$= \frac{\sqrt{5}u\frac{2}{\sqrt{5}}}{g}$$

$$= \frac{2u}{g}$$

Height of particle A at that time is

$$y_A = vt \sin \theta - \frac{1}{2}gt^2$$

$$= \sqrt{5}u \times \frac{2u}{g} \times \frac{2}{\sqrt{5}} - \frac{g}{2} \times \frac{4u^2}{g^2}$$

$$= \frac{4u^2}{g} - \frac{2u^2}{g}$$

$$= \frac{2u^2}{g}$$

$$= H$$

Question 14 (a) (i)

Criteria	Marks
Provides correct explanation	1

Sample answer:

$$f'(x) = 2 + \frac{1}{x} > 0$$
 for $x > 0$

f is always increasing.

Therefore since f is one-to-one for x > 0, f has an inverse function.

Question 14 (a) (ii)

Criteria	Marks
Provides correct solution	2
• Finds $g'(x)$ or $f'(1)$, or equivalent merit	1

$$f(1) = 2$$
 therefore $g(2) = 1$

$$g'(x) = \frac{1}{f'(g(x))}$$

So
$$g'(2) = \frac{1}{f'(g(2))} = \frac{1}{f'(1)} = \frac{1}{3}$$

Question 14 (b) (i)

Criteria	Marks
Provides correct solution	1

Sample answer:

The points of intersection of the hyperbola and the circle satisfy

$$\begin{cases} y = \frac{1}{x} & (1) \\ (x - c)^2 + y^2 = c^2 & (2) \end{cases}$$

Substitute (1) into (2)

$$(x-c)^{2} + \frac{1}{x^{2}} = c^{2}$$

$$x^{2}(x^{2} - 2cx + c^{2}) + 1 = c^{2}x^{2}$$

$$x^{4} - 2cx^{3} + 1 = 0$$

Question 14 (b) (ii)

Criteria	Marks
Provides correct solution	3
Finds the <i>x</i> -coordinate of the double root in terms of <i>c</i> , or equivalent merit	2
 Recognises that the circle and hyperbola are tangent when the polynomial has a double root and so is tangent to the x-axis, or equivalent merit 	1

Sample answer:

Let
$$f(x) = x^4 - 2cx^3 + 1$$

The hyperbola and the circle have exactly one point of intersection if there exists a value of x such that f(x) = 0 and f'(x) = 0.

$$f'(x) = 4x^3 - 6cx^2$$

$$f'(x) = 2x^2(2x - 3c)$$

$$f'(x) = 0 \Leftrightarrow x = 0 \quad \text{or} \quad x = \frac{3c}{2}$$

Note that $f(0) \neq 0$

$$f\left(\frac{3c}{2}\right) = 0 \qquad \Leftrightarrow \left(\frac{3c}{2}\right)^4 - 2c\left(\frac{3c}{2}\right)^3 + 1 = 0$$

$$\Leftrightarrow 3^4c^4 - 3^3 \times 2^2c^4 + 2^4 = 0$$

$$\Leftrightarrow -27c^4 = -16$$

$$\Leftrightarrow c = \frac{2}{\sqrt[4]{27}}$$

Question 14 (c) (i)

Criteria	Marks
Provides correct solution	3
• Recognise that the dot product of \overline{OB} with the vector perpendicular to \overline{OA} , using the given information, is related to the area, or vice versa, or equivalent merit	2
- Attempts to use a vector perpendicular to \overline{OA} or \overline{OB} , or equivalent merit	1

Sample answer:

Let θ be the angle between \overline{OA} and \overline{OB}

Area of triangle = $\frac{1}{2}ab\sin\theta$, where $a = |\overline{OA}|$ and $b = |\overline{OB}|$

Let $\overrightarrow{OC} = \begin{pmatrix} a_2 \\ -a_1 \end{pmatrix}$ be the vector perpendicular to \overrightarrow{OA} using the given information.

We are told that \overline{OC} is perpendicular to \overline{OA} and with the same magnitude.

$$\overrightarrow{OB} \cdot \overrightarrow{OC} = \begin{pmatrix} b_1 \\ b_2 \end{pmatrix} \cdot \begin{pmatrix} a_2 \\ -a_1 \end{pmatrix} = a_2 b_1 - a_1 b_2 \tag{1}$$

We can also express $\overline{OB} \cdot \overline{OC}$ in terms of θ

$$\overline{OB} \cdot \overline{OC} = |\overline{OB}| \cdot |\overline{OC}| \cos(\angle BOC)$$
$$= b \times a \times \cos(\angle BOC)$$

Case 1:

$$\angle BOC = \frac{\pi}{2} - \theta$$

so $\overline{OB} \cdot \overline{OC} = ab \sin \theta$

Case 2:

$$\angle BOC = \frac{\pi}{2} + \theta$$

so
$$\overline{OB} \cdot \overline{OC} = -ab\sin\theta$$

In both cases $\left| \overline{OB} \cdot \overline{OC} \right| = \left| ab \sin \theta \right| = 2 \times \text{(Area of triangle)}$

Therefore, area of triangle =
$$\frac{1}{2} |\overrightarrow{OB} \cdot \overrightarrow{OC}| = \frac{1}{2} |a_2b_1 - a_1b_2|$$
 [From (1)]

$$= \frac{1}{2} |a_1 b_2 - a_2 b_1|$$

Question 14 (c) (i) (continued)

Alternative solution

Area triangle
$$=\frac{1}{2} |\overrightarrow{OB}| \times \text{perpendicular height of triangle } OAB$$

 $=\frac{1}{2} |\overrightarrow{OB}| \times |\text{projection of } \overrightarrow{OA} \text{ onto } \overrightarrow{OC}|$

where $\overline{OC} \perp \overline{OB}$ and $|\overline{OC}| = |\overline{OB}|$

$$\overrightarrow{OC} = \begin{pmatrix} b_2 \\ -b_1 \end{pmatrix}$$

$$\therefore |\overrightarrow{OA} \text{ projected onto } \overrightarrow{OC}| = \frac{|\overrightarrow{OA} \cdot \overrightarrow{OC}|}{|\overrightarrow{OC}|}$$

$$= \frac{|a_1b_2 - a_2b_1|}{|\overrightarrow{OB}|}$$

$$\therefore \text{ Area of triangle } = \frac{1}{2} \left| \overrightarrow{OB} \right| \times \frac{\left| a_1 b_2 - a_2 b_1 \right|}{\left| \overrightarrow{OB} \right|}$$
$$= \frac{1}{2} \left| a_1 b_2 - a_2 b_1 \right|$$

Question 14 (c) (ii)

Criteria	Marks
Provides correct solution	4
Finds the values of <i>t</i> at the stationary points of the area, or equivalent merit	3
Obtains the area of triangle OPQ in terms of t, or equivalent merit	2
• Obtains the components of \overline{OP} or \overline{OQ} in terms of t , or equivalent merit	1

Sample answer:

$$\overrightarrow{OP} = \overrightarrow{OI} + \overrightarrow{IP} = \begin{pmatrix} r + r\cos t \\ r\sin t \end{pmatrix}$$

$$\overrightarrow{OQ} = \overrightarrow{OJ} + \overrightarrow{JQ} = \begin{pmatrix} -R + R\cos 2t \\ R\sin 2t \end{pmatrix}$$

Using part (i), we get that the area of triangle OPQ is

Area of triangle
$$= \frac{1}{2} |(r + r\cos t)(R\sin 2t) - (r\sin t)(-R + R\cos 2t)|$$

$$= \frac{1}{2} |Rr(1 + \cos t)\sin 2t - Rr\sin t(-1 + \cos 2t)|$$

$$= \frac{1}{2} Rr|(\sin 2t\cos t - \sin t\cos 2t) + \sin 2t + \sin t|$$

$$= \frac{1}{2} Rr|\sin t + \sin 2t + \sin t|$$

Area of triangle $=\frac{1}{2}Rr|\sin 2t + 2\sin t|$

Let
$$f(t) = \sin 2t + 2\sin t$$
, so Area triangle = $Rr|f(t)|$

$$f'(t) = 2\cos 2t + 2\cos t$$

= $2(2\cos^2 t + \cos t - 1)$
= $2(2\cos t - 1)(\cos t + 1)$

For all t, $\cos t + 1 \ge 0$ therefore f'(t) has the same sign as $2\cos t - 1$

$$f(t)$$
 is odd so $|f(t)|$ is even and we only need to study $|f(t)|$ on $[0, \pi]$ where area of triangle $=\frac{1}{2}Rr|f(t)|$, so $f(t) \ge 0$ on $[0, \pi]$

 $f'(t) \ge 0 \iff 2\cos t - 1 \ge 0 \iff \cos t \ge \frac{1}{2}$ which will happen when $-\frac{\pi}{3} \le t \le \frac{\pi}{3}$

t	0	$\frac{\pi}{3}$	π
f'(t)	+	0	_
	0	7 `	0

By symmetry, since |f(t)| is even, we see that the area of the triangle is maximum when $t = -\frac{\pi}{3}$ or $t = \frac{\pi}{3}$

2023 HSC Mathematics Extension 1 Mapping Grid

Section I

Question	Marks	Content	Syllabus outcomes
1	1	ME-C1 Rates of Change	ME11-1
2	1	ME-S1 The Binomial Distribution	ME12-5
3	1	ME-C3 Applications of Calculus	ME12-1
4	1	ME-C3 Applications of Calculus	ME12-4
5	1	ME-T1 Inverse Trigonometric Functions	ME11-3
6	1	ME-V1 Introduction to Vectors	ME12-2
7	1	ME-T1 Inverse Trigonometric Functions	ME11-3
8	1	ME-F1 Further Work with Functions	ME11-1
9	1	ME-F1 Further Work with Functions	ME11-1
10	1	ME-A1 Working with Combinatorics	ME11-5

Section II

Question	Marks	Content	Syllabus outcomes
11 (a)	2	ME-F1 Further Work with Functions	ME11-2
11 (b)	2	ME-A1 Working with Combinatorics	ME11-5
11 (c)	3	ME-F2 Polynomials	ME11-2
11 (d)	2	ME-C2 Further Calculus Skills	ME12-1
11 (e)	3	ME-T3 Trigonometric Equations	ME12-3
11 (f) (i)	2	ME-S1 The Binomial Distribution	ME12-5
11 (f) (ii)	2	ME-S1 The Binomial Distribution	ME12-5
12 (a)	3	ME-C2 Further Calculus Skills	ME12-1
12 (b)	3	ME-P1 Proof by Mathematical Induction	ME12-1
12 (c) (i)	2	ME-S1 The Binomial Distribution	ME12-5
12 (c) (ii)	1	ME-S1 The Binomial Distribution	ME12-5
12 (d)	2	ME-A1 Working with Combinatorics	ME11-5
12 (e)	4	ME-C3 Applications of Calculus	ME12-4
13 (a) (i)	2	ME-C1 Rates of Change	ME11-4
13 (a) (ii)	2	ME-C3 Applications of Calculus	ME12-1, ME12-4
13 (a) (iii)	3	ME-C3 Applications of Calculus	ME12-1, ME12-7
13 (b) (i)	2	ME-V1 Introduction to Vectors	ME12-2
13 (b) (ii)	1	ME-V1 Introduction to Vectors	ME12-2
13 (b) (iii)	3	ME-V1 Introduction to Vectors	ME12-2
13 (b) (iv)	2	ME-V1 Introduction to Vectors	ME12-2

Question	Marks	Content	Syllabus outcomes
14 (a) (i)	1	ME-F1 Further Work with Functions	ME11-1
14 (a) (ii)	2	ME-C2 Further Calculus Skills	ME12-1
14 (b) (i)	1	ME-F2 Polynomials	ME11-6
14 (b) (ii)	3	ME-F2 Polynomials	ME11-2, ME11-6
14 (c) (i)	3	ME-V1 Introduction to Vectors	ME12-2
14 (c) (ii)	4	ME-V1 Introduction to Vectors ME-T3 Trigonometric Equations	ME12-3