

	Codez votre ni	ıméro d'identific	cation ci contre chi	ffra nar chiffra	
	puis complétez l'en			me par emme,	
\Box 4 \Box 4 \Box 5 \Box 5					
$\Box 6 \Box 6$	NOM - Prénom -	Classe:			
□8 □8 □9 □9	Durée : 55 minutes. Document écrit non autorisé. Calculatrice autorisée. Les réponses fausses ou incohérentes retirent des points.				u
	Cod	lage d'ent	iers naturels	5	
Question 1	L'entier naturel 2	5 s'écrit en bina	aire naturel sur 8 b	oits:	
	00011001] 00010101	00011000	00011010	
Question 2	Quelle est la vale	ur de l'entier na	turel codé par le n	notif binaire 00011010?	
	24	26	<u> </u>	22	
Question 3	On considère le no	ombre $N = 1000$) ₁₀ (écrit en base 1	θ). L'écriture de N en bi	naire:
comport se termi	e au moins 9 chiffres se moins de 9 chiffres ne par 1 se 4 chiffres				
Question 4	Quelle est la repre	ésentation sur 8	bits de l'addition	binaire $10111011 + 0111$	0101?
	Impossible] 100110000	00110000	00000000	
Question 5	On effectue l'addi	tion binaire 001	.01101 + 00001011	. Quel est le résultat?	
	00101000	00100110	00111100	00111000	
	Co	dage d'ent	iers relatifs		
Question 6 sur 8 bits?	Que vaut le nomb	ore binaire 11100	0000 codé par la me	éthode du complément à	deux,
		-32	224	─ -96	
Question 7	Quel est le codag	ge de l'entier rel	atif positif 64 sur	8 bits?	
	01100000	01000000	11100000	11000000	

+1/2/59+ Question 8 Quelle est la valeur de l'entier relatif dont la représentation en binaire est 01111110

Question 8 $(sur \ 8 \ bits)$?	Quelle est la vale	ur de l'entier rel	atif dont la repré	sentation en binaire est 01111110
	-124	126		
Question 9	La méthode du	complément à d	leux permet:	
d'ajouter 1 d'obtenir l	tous les bits d'un l à un nombre en 'opposé d'un non la valeur absolue	ntier écrit en bin nbre entier écrit	aaire en binaire	
Question 10 deux?	Quelle est la re	eprésentation de	e-3 sur 8 bits, p	oar la méthode du complément à
1	1111101	11111100	0000010	00 00000101
Question 11	Le nombre bin	aire 01111111 c	odé sur 8 bits est	t:
est un cas le codage o	it entier relatif n particulier: il a l le un nd entier relatif p	a même représe	ntation que son	opposé
Question 12 On travaille avec des entiers relatifs codés sur 8 bits. L'addition binaire $011111111 + 000000001$:				
 donne un nombre positif donne un nombre négatif zéro est impossible 				
Question 13 à deux, le bit de	Dans une représ	entation d'entie	rs relatifs sur 8 bi	ts par la méthode du complément
le bit de p	oids fort (bit 7)			
obtenu en inversant les bits				
☐ le bit de poids faible $(bit \ \theta)$ ☐ obtenu en ajoutant 1 au nombre				
	Co	dage de n	ombres rée	els
Question 14 raison?	L'opération 0	.1*12 en pytho:	n fournit 1.2000	0000000000000 Quelle en est la
Les nombr	es réels sont repr	ésentés de man	ière approximati	ve en machine
L'opérateur aurait dû saisir float(0.1*12)				
	tous les calculs : trice de python e			
	rice de bymon e	ar biga breeise (₁ u une carculatifi	ordinane

Question 15	Cochez une propriété correcte des nombres flottants sur une machine numérique.
La représen	tation avec tous les bits à zéro est interdite
	possible de coder zéro avec la norme IEEE754 qui définit les règles de codage et des flottants
	étés mathématiques comme l'associativité de l'addition ne sont pas forcément et les flottants
La représen mantisse	tation en virgule flottante nécessite 3 octets pour coder le signe, l'exposant et la
Question 16	Le nombre 10010,0011 peut s'écrire:
1,00100011	$\times 2^4$
1,00100011	$\times 2^{-4}$
1,00100011	$\times 10^{-4}$
1,00100011	$\times 10^4$
Question 17 posant mantiss précision (32 bits	La représentation en virgule flot tante est une écriture de la forme $signe \mid exe.$ Que vaut le nombre 0 10000011 10010100000000000000000000
	578125×2^{131} 25, 25 9, 25 131, 578125
Question 18	L'instruction $0.1 + 0.2 == 0.3$ en python, fournira:
	0.3 SyntaxError True False
Question 19 3,25?	Quel est le codage en binaire selon la méthode de la virgule fixe, du nombre réel
	1,101 $$ $11,01$ $$ $3,11001$ $$ $11,11001$
Question 20	Que vaut le nombre binaire $10001,01$ codé selon la méthode de la virgule fixe?
	1,000101 $17,25$ $17,1$ $17,01$
Question 21	Quelle est la représentation en virgule flottante, simple précision de $-132,5$?
1 10000100	100000000000000000000000000000000000000
0 10000110	000010010000000000000000000000000000000
1 10000110	000010010000000000000000000000000000000
1 10000111	000010010000000000000000000000000000000

+1/4/57+

0011223344	Codez votre numéro d'identification ci contre chiffre par chiffre, puis complétez l'encadré.			
55 66	NOM - Prénom - Classe :			
Durée : 55 minutes. Document écrit non autorisé. Calculatrice autorisée. Les réponses fausses incohérentes retirent des points.				
	Codage d'entiers naturels			
Question 1	Quelle est la représentation sur 8 bits de l'addition binaire $10111011 + 01110101$? 00110000			
Question 2	L'entier naturel 25 s'écrit en binaire naturel sur 8 bits:			
	00011001			
se term	On considère le nombre $N=1000_{10}$ (écrit en base 10). L'écriture de N en binaire: te moins de 9 chiffres ine par 1 te au moins 9 chiffres te 4 chiffres			
Question 4	Quelle est la valeur de l'entier naturel codé par le motif binaire 00011010 ?			
	2 6			
Question 5	On effectue l'addition binaire $00101101 + 00001011$. Quel est le résultat?			
	00101000			
	Codage d'entiers relatifs			
Question 6 deux?	Quelle est la représentation de -3 sur 8 bits, par la méthode du complément à			
	00000101			
Question 7 sur 8 bits?	Que vaut le nombre binaire 11100000 codé par la méthode du complément à deux,			

Question 8 On travaille avec des entiers relatifs codés sur 8 bits. L'addition binaire 011111111 + 00000001: zéro est impossible donne un nombre négatif donne un nombre positif Question 9 Quelle est la valeur de l'entier relatif dont la représentation en binaire est 01111110 (sur 8 bits)? -128-124-126126 La méthode du complément à deux permet: Question 10 de trouver la valeur absolue d'un entier relatif d'ajouter 1 à un nombre entier écrit en binaire d'obtenir l'opposé d'un nombre entier écrit en binaire d'inverser tous les bits d'un nombre entier écrit en binaire Question 11 Quel est le codage de l'entier relatif positif 64 sur 8 bits? 11000000 01000000 01100000 11100000 Question 12 Le nombre binaire 01111111 codé sur 8 bits est: le codage de un le plus petit entier relatif négatif qu'on peut coder sur 8 bits le plus grand entier relatif positif qu'on peut coder sur 8 bits est un cas particulier: il a la même représentation que son opposé Dans une représentation d'entiers relatifs sur 8 bits par la méthode du complément Question 13 à deux, le bit de signe est: le bit de poids fort (bit 7) obtenu en ajoutant 1 au nombre obtenu en inversant les bits le bit de poids faible ($bit \theta$) Codage de nombres réels L'instruction 0.1 + 0.2 == 0.3 en python, fournira: Question 14 0.3 False SyntaxError True Quel est le codage en binaire selon la méthode de la virgule fixe, du nombre réel Question 15 3, 25? 11,01 3,11001 11, 11001 1,101

Question 16 La représentation en virgule flottante est une écriture de la forme signe | ex-précision (32 bits)? 0.578125×2^{131} 9,25 25, 25131,578125 Question 17 Cochez une propriété correcte des nombres flottants sur une machine numérique. La représentation avec tous les bits à zéro est interdite Il n'est pas possible de coder zéro avec la norme IEEE754 qui définit les règles de codage et d'utilisation des flottants Des propriétés mathématiques comme l'associativité de l'addition ne sont pas forcément valables avec les flottants La représentation en virgule flottante nécessite 3 octets pour coder le signe, l'exposant et la mantisse Question 18 L'opération 0.1*12 en python fournit 1.2000000000000. Quelle en est la raison? L'opérateur aurait dû saisir float (0.1*12) Les nombres réels sont représentés de manière approximative en machine Par défaut tous les calculs sur les décimaux sont fourni avec 16 décimales La calculatrice de python est plus précise qu'une calculatrice ordinaire Que vaut le nombre binaire 10001, 01 codé selon la méthode de la virgule fixe? Question 19 17, 251,000101 17,0117, 1Question 20 Quelle est la représentation en virgule flottante, simple précision de -132, 5? $1\ 10000111\ 0000100100000000000000000$ $0\ 10000110\ 0000100100000000000000000$ 1 10000100 1000000000000000000000000 1 10000110 0000100100000000000000000 Question 21 Le nombre 10010,0011 peut s'écrire: $1.00100011 \times 10^{-4}$ $1,00100011 \times 2^4$ $1,00100011 \times 2^{-4}$ $1,00100011 \times 10^4$

+2/4/53+

$\square 2 \square 2$	
	Codez votre numéro d'identification ci contre chiffre par chiffre, puis complétez l'encadré.
55 66	NOM - Prénom - Classe :
□ 7 □ 7	
8	Durée : 55 minutes. Document écrit non autorisé. Calculatrice autorisée. Les réponses fausses ou incohérentes retirent des points.
	Codage d'entiers naturels
Question 1	On considère le nombre $N=1000_{10}$ (écrit en base 10). L'écriture de N en binaire:
comporte	e 4 chiffres
se termin	ne par 1
comporte	e au moins 9 chiffres
comporte	e moins de 9 chiffres
Question 2	L'entier naturel 25 s'écrit en binaire naturel sur 8 bits:
	00011000
Question 3	On effectue l'addition binaire $00101101 + 00001011$. Quel est le résultat?
	00100110
Question 4	Quelle est la représentation sur 8 bits de l'addition binaire $10111011 + 01110101$?
	00000000 00110000 100110000 Impossible
Question 5	Quelle est la valeur de l'entier naturel codé par le motif binaire 00011010 ?
	2 6
	Codage d'entiers relatifs
Question 6 sur 8 bits?	Que vaut le nombre binaire 11100000 codé par la méthode du complément à deux,
Question 7	Quel est le codage de l'entier relatif positif 64 sur 8 bits?
	11000000

Question 8 Le nombre binaire 01111111 codé sur 8 bits est: le plus grand entier relatif positif qu'on peut coder sur 8 bits le codage de un le plus petit entier relatif négatif qu'on peut coder sur 8 bits est un cas particulier: il a la même représentation que son opposé Dans une représentation d'entiers relatifs sur 8 bits par la méthode du complément à deux, le bit de signe est: obtenu en ajoutant 1 au nombre le bit de poids faible (bit 0) le bit de poids fort (bit 7) obtenu en inversant les bits Quelle est la représentation de -3 sur 8 bits, par la méthode du complément à Question 10 deux? 00000101 11111100 00000100 11111101 Question 11 La méthode du complément à deux permet: d'obtenir l'opposé d'un nombre entier écrit en binaire de trouver la valeur absolue d'un entier relatif d'ajouter 1 à un nombre entier écrit en binaire d'inverser tous les bits d'un nombre entier écrit en binaire On travaille avec des entiers relatifs codés sur 8 bits. L'addition binaire 011111111 + 000000001: zéro est impossible donne un nombre positif donne un nombre négatif Question 13 Quelle est la valeur de l'entier relatif dont la représentation en binaire est 011111110 (sur 8 bits)? -128126 -126-124Codage de nombres réels Question 14 La représentation en virgule flottante est une écriture de la forme signe | ex- $posant \mid mantisse.$ précision (32 bits)? $0,578125 \times 2^{131}$ 131,578125 Quel est le codage en binaire selon la méthode de la virgule fixe, du nombre réel Question 15 3,25? 11, 11001 1,101 11,01 3,11001

Question 16 Quelle est la représentation en virgule flottante, simple précision de -132, 5? 1 10000110 0000100100000000000000000 1 10000100 1000000000000000000000000 $0\ 10000110\ 0000100100000000000000000$ 1 10000111 0000100100000000000000000 Question 17 Que vaut le nombre binaire 10001, 01 codé selon la méthode de la virgule fixe? 17,01 17, 251,000101 17, 1Question 18 Cochez une propriété correcte des nombres flottants sur une machine numérique. La représentation en virgule flottante nécessite 3 octets pour coder le signe, l'exposant et la mantisse Il n'est pas possible de coder zéro avec la norme IEEE754 qui définit les règles de codage et d'utilisation des flottants La représentation avec tous les bits à zéro est interdite Des propriétés mathématiques comme l'associativité de l'addition ne sont pas forcément valables avec les flottants Le nombre 10010,0011 peut s'écrire: Question 19 $1,00100011 \times 2^4$ $1,00100011 \times 10^{-4}$ $1,00100011 \times 2^{-4}$ $1,00100011 \times 10^4$ Question 20 L'instruction 0.1 + 0.2 == 0.3 en python, fournira: 0.3 True False SyntaxError Question 21 L'opération 0.1*12 en python fournit 1.20000000000000. Quelle en est la raison? La calculatrice de python est plus précise qu'une calculatrice ordinaire Par défaut tous les calculs sur les décimaux sont fourni avec 16 décimales L'opérateur aurait dû saisir float (0.1*12) Les nombres réels sont représentés de manière approximative en machine

+3/4/49+

$ \begin{array}{ccc} $	Codez votre numéro d'identification ci contre chiffre par chiffre, puis complétez l'encadré.						
	NOM - Pré	NOM - Prénom - Classe :					
778899	Document é	Durée : 55 minutes. Document écrit non autorisé. Calculatrice autorisée. Les réponses fausses ou incohérentes retirent des points.					
		Codage d'en	tiers naturels				
Question 1	On effectue	l'addition binaire 00	0101101 + 00001011.	Quel est le résultat?			
	00101000	00111100	00100110	00111000			
Question 2	On considèr	re le nombre $N = 100$	00_{10} (écrit en base 10)). L'écriture de N en binaire:			
comport	e moins de 9 e 4 chiffres e au moins 9 ne par 1						
Question 3	Quelle est l	a valeur de l'entier n	naturel codé par le mo	otif binaire 00011010?			
		24 51	22	26			
Question 4	L'entier na	turel 25 s'écrit en bir	naire naturel sur 8 bit	s:			
	00010101	00011001	00011000	00011010			
Question 5	Quelle est l	a représentation sur	8 bits de l'addition b	inaire 10111011 + 01110101?			
	00110000	00000000	100110000	Impossible			
		Codage d'en	ntiers relatifs				
Question 6	Quel est le	codage de l'entier re	elatif positif 64 sur 8	bits?			
	11100000	11000000	01000000	01100000			
Question 7	Le nombre	e binaire 01111111 co	odé sur 8 bits est:				
le plus g	rand entier re e de un	il a la même représe elatif positif qu'on pe atif négatif qu'on pe		osé			

Question 8 Dans une représentation d'entiers relatifs sur 8 bits par la méthode du complément à deux, le bit de signe est: le bit de poids fort (bit 7) le bit de poids faible ($bit \theta$) obtenu en inversant les bits obtenu en ajoutant 1 au nombre Question 9 Que vaut le nombre binaire 11100000 codé par la méthode du complément à deux, sur 8 bits? -96-32224 La méthode du complément à deux permet: Question 10 d'ajouter 1 à un nombre entier écrit en binaire d'inverser tous les bits d'un nombre entier écrit en binaire d'obtenir l'opposé d'un nombre entier écrit en binaire de trouver la valeur absolue d'un entier relatif Quelle est la valeur de l'entier relatif dont la représentation en binaire est Question 11 011111110 (sur 8 bits)? -124-128126 -126Question 12 Quelle est la représentation de -3 sur 8 bits, par la méthode du complément à deux? 00000101 111111100 00000100 11111101 On travaille avec des entiers relatifs codés sur 8 bits. L'addition binaire Question 13 011111111 + 000000001: donne un nombre positif est impossible donne un nombre négatif zéro Codage de nombres réels Question 14 Le nombre 10010,0011 peut s'écrire: $1,00100011 \times 10^4$ $1,00100011 \times 2^4$ $1,00100011 \times 2^{-4}$ $1,00100011 \times 10^{-4}$ Question 15 Quel est le codage en binaire selon la méthode de la virgule fixe, du nombre réel 3,25?3,11001 11,110011,101 11,01

Question 16 Que vaut le nombre binaire 10001, 01 codé selon la méthode de la virgule fixe? 17,01 $\boxed{}$ 17, 1 1,000101 17, 25L'opération 0.1*12 en python fournit 1.200000000000000. Quelle en est la Question 17 raison? L'opérateur aurait dû saisir float (0.1*12) Par défaut tous les calculs sur les décimaux sont fourni avec 16 décimales La calculatrice de python est plus précise qu'une calculatrice ordinaire Les nombres réels sont représentés de manière approximative en machine L'instruction 0.1 + 0.2 == 0.3 en python, fournira: Question 18 0.3 False SyntaxError True Question 19 Quelle est la représentation en virgule flottante, simple précision de -132, 5? $1\ 10000110\ 0000100100000000000000000$ $1\ 10000100\ 1000000000000000000000000$ $1\ 10000111\ 0000100100000000000000000$ $0\ 10000110\ 0000100100000000000000000$ Question 20 La représentation en virgule flottante est une écriture de la forme signe | ex-précision (32 bits)? 0.578125×2^{131} 131,578125 9, 25 25, 25Question 21 Cochez une propriété correcte des nombres flottants sur une machine numérique. La représentation avec tous les bits à zéro est interdite Des propriétés mathématiques comme l'associativité de l'addition ne sont pas forcément valables avec les flottants La représentation en virgule flottante nécessite 3 octets pour coder le signe, l'exposant et la mantisse Il n'est pas possible de coder zéro avec la norme IEEE754 qui définit les règles de codage et d'utilisation des flottants

001122334455667788	Codez votre numéro d'identification ci contre chiffre par chiffre, puis complétez l'encadré. NOM - Prénom - Classe : Durée : 55 minutes. Document écrit non autorisé. Calculatrice autorisée. Les réponses fausses ou
9 9	incohérentes retirent des points.
	Codage d'entiers naturels
Question 1	On considère le nombre $N=1000_{10}$ (écrit en base 10). L'écriture de N en binaire:
comported se termin	e 4 chiffres e moins de 9 chiffres ne par 1 e au moins 9 chiffres
Question 2	On effectue l'addition binaire $00101101 + 00001011$. Quel est le résultat?
	00100110
Question 3	Quelle est la représentation sur 8 bits de l'addition binaire $10111011 + 01110101$?
	Impossible 00110000 00000000 100110000
Question 4	L'entier naturel 25 s'écrit en binaire naturel sur 8 bits:
	00011001
Question 5	Quelle est la valeur de l'entier naturel codé par le motif binaire 00011010 ?
	□ 51 □ 24 □ 26 □ 22
	Codage d'entiers relatifs
Question 6 (sur 8 bits)?	Quelle est la valeur de l'entier relatif dont la représentation en binaire est 01111110
Question 7	Le nombre binaire 01111111 codé sur 8 bits est:
le codage	es particulier: il a la même représentation que son opposé e de un rand entier relatif positif qu'on peut coder sur 8 bits
	etit entier relatif négatif qu'on peut coder sur 8 bits

Question 8 On travaille avec des entiers relatifs codés sur 8 bits. L'addition binaire 011111111 + 00000001: donne un nombre positif est impossible zéro donne un nombre négatif Question 9 Dans une représentation d'entiers relatifs sur 8 bits par la méthode du complément à deux, le bit de signe est: le bit de poids fort (bit 7) le bit de poids faible ($bit \theta$) obtenu en inversant les bits obtenu en ajoutant 1 au nombre Question 10 La méthode du complément à deux permet: d'obtenir l'opposé d'un nombre entier écrit en binaire d'ajouter 1 à un nombre entier écrit en binaire de trouver la valeur absolue d'un entier relatif d'inverser tous les bits d'un nombre entier écrit en binaire Question 11 Quel est le codage de l'entier relatif positif 64 sur 8 bits? 01100000 11000000 11100000 01000000 Question 12 Que vaut le nombre binaire 11100000 codé par la méthode du complément à deux, sur 8 bits? 224 -96-32-224Quelle est la représentation de -3 sur 8 bits, par la méthode du complément à Question 13 deux? 11111100 00000101 11111101 00000100 Codage de nombres réels Question 14 Quelle est la représentation en virgule flottante, simple précision de -132, 5? $0\ 10000110\ 0000100100000000000000000$ 1 10000110 0000100100000000000000000 $1\ 10000100\ 1000000000000000000000000$ Question 15 Le nombre 10010,0011 peut s'écrire: $1,00100011 \times 2^{-4}$ $1,00100011 \times 10^{-4}$ $1,00100011 \times 2^4$ $1,00100011 \times 10^4$

Question 16	Que vaut le no	ombre binaire 10001	,01 codé selon la	méthode de la virgule fixe?
	17, 25	1,000101	<u> </u>	17,01
Question 17	L'instruction (0.1 + 0.2 == 0.3	en python, fournir	·a:
	False	0.3	SyntaxError	True
Question 18 3, 25?	Quel est le cod	lage en binaire selon	la méthode de la	virgule fixe, du nombre réel
	3,11001	11,11001	1,101	11,01
Question 19 posant mantisse précision (32 bits)	e. Que vaut le	_		ture de la forme signe ex- 00000000000 codé en simple
13	1,578125	9,25	25, 25	$0,578125 \times 2^{131}$
Question 20 raison?	L'opération 0	.1*12 en python fo	urnit 1.2000000	000000002. Quelle en est la
Les nombres	s réels sont rep	résentés de manière	approximative en	machine
La calculatr	ice de python e	est plus précise qu'u	ne calculatrice ord	dinaire
Par défaut t	ous les calculs	sur les décimaux so	nt fourni avec 16	décimales
L'opérateur	aurait dû saisi	r float(0.1*12)		
Question 21	Cochez une pro	opriété correcte des 1	nombres flottants	sur une machine numérique.
La représen mantisse	tation en virgu	le flottante nécessite	3 octets pour coo	der le signe, l'exposant et la
	tés mathémati c les flottants	ques comme l'assoc	iativité de l'addi	tion ne sont pas forcément
La représen	tation avec tou	s les bits à zéro est i	interdite	
	possible de cod des flottants	ler zéro avec la norm	ne IEEE754 qui de	éfinit les règles de codage et

+5/4/41+

0 0 1 1 2 2 3 3 4 4 5 5	Codez votre numéro d'identification ci contre chiffre par chiffre, puis complétez l'encadré. NOM - Prénom - Classe :
<u>6</u> <u>6</u>	NOM - Frenom - Classe :
	Durée : 55 minutes. Document écrit non autorisé. Calculatrice autorisée. Les réponses fausses ou incohérentes retirent des points.
	Codage d'entiers naturels
Question 1	On considère le nombre $N=1000_{10}$ (écrit en base 10). L'écriture de N en binaire:
se termi	te 4 chiffres ne par 1 te moins de 9 chiffres te au moins 9 chiffres
Question 2	Quelle est la valeur de l'entier naturel codé par le motif binaire 00011010 ?
Question 3	Quelle est la représentation sur 8 bits de l'addition binaire $10111011 + 01110101$?
	100110000 00000000 00110000 Impossible
Question 4	On effectue l'addition binaire $00101101 + 00001011$. Quel est le résultat?
	00111100
Question 5	L'entier naturel 25 s'écrit en binaire naturel sur 8 bits:
	00011010
	Codage d'entiers relatifs
Question 6 deux?	Quelle est la représentation de -3 sur 8 bits, par la méthode du complément à
	11111100
Question 7 sur 8 bits?	Que vaut le nombre binaire 11100000 codé par la méthode du complément à deux,

Question 8 Quelle est la valeur de l'entier relatif dont la représentation en binaire est 011111110 (sur 8 bits)? -126-124126Question 9 Dans une représentation d'entiers relatifs sur 8 bits par la méthode du complément à deux, le bit de signe est: le bit de poids fort (bit 7) obtenu en ajoutant 1 au nombre le bit de poids faible ($bit \theta$) obtenu en inversant les bits Question 10 La méthode du complément à deux permet: d'obtenir l'opposé d'un nombre entier écrit en binaire de trouver la valeur absolue d'un entier relatif d'inverser tous les bits d'un nombre entier écrit en binaire d'ajouter 1 à un nombre entier écrit en binaire Question 11 Le nombre binaire 01111111 codé sur 8 bits est: est un cas particulier: il a la même représentation que son opposé le plus petit entier relatif négatif qu'on peut coder sur 8 bits le plus grand entier relatif positif qu'on peut coder sur 8 bits le codage de un Question 12 On travaille avec des entiers relatifs codés sur 8 bits. L'addition binaire 011111111 + 00000001: donne un nombre positif zéro est impossible donne un nombre négatif Quel est le codage de l'entier relatif positif 64 sur 8 bits? Question 13 01100000 11000000 11100000 01000000 Codage de nombres réels Question 14 La représentation en virgule flottante est une écriture de la forme signe | ex-précision (32 bits)? 0.578125×2^{131} 9,25131,578125 25, 25

Question 15 Cochez une propriété correcte des nombres flottants sur une machine numérique. La représentation en virgule flottante nécessite 3 octets pour coder le signe, l'exposant et la mantisse Il n'est pas possible de coder zéro avec la norme IEEE754 qui définit les règles de codage et d'utilisation des flottants Des propriétés mathématiques comme l'associativité de l'addition ne sont pas forcément valables avec les flottants La représentation avec tous les bits à zéro est interdite Question 16 Quelle est la représentation en virgule flottante, simple précision de -132, 5? $1\ 10000110\ 0000100100000000000000000$ $1\ 10000111\ 0000100100000000000000000$ $0\ 10000110\ 0000100100000000000000000$ Question 17 Que vaut le nombre binaire 10001, 01 codé selon la méthode de la virgule fixe? 1,000101 17, 2517, 117,01Question 18 Quel est le codage en binaire selon la méthode de la virgule fixe, du nombre réel 3,25? 11, 11001 3,11001 11,011,101 Question 19 L'instruction 0.1 + 0.2 == 0.3 en python, fournira: True SyntaxError False Question 20 Le nombre 10010,0011 peut s'écrire: $1,00100011 \times 10^4$ $1,00100011 \times 10^{-4}$ $1,00100011 \times 2^4$ $1,00100011 \times 2^{-4}$ L'opération $0.1\!*\!12$ en python fournit 1.20000000000000. Quelle en est la Question 21 raison? L'opérateur aurait dû saisir float (0.1*12) La calculatrice de python est plus précise qu'une calculatrice ordinaire Les nombres réels sont représentés de manière approximative en machine

Par défaut tous les calculs sur les décimaux sont fourni avec 16 décimales

+6/4/37+

3 = 3	Codez votre numéro d'identification ci contre chiffre par chiffre, puis complétez l'encadré.				
$\square 4 \square 4$	puls completed i cheddre.				
	NOM - Prénom - Classe :				
77	Durée : 55 minutes. Document écrit non autorisé. Calculatrice autorisée. Les réponses fausses ou incohérentes retirent des points.				
	Codage d'entiers naturels				
Question 1	L'entier naturel 25 s'écrit en binaire naturel sur 8 bits:				
	00011000 🔳 00011001 🗌 00011010 🗍 00010101				
Question 2	On effectue l'addition binaire $00101101 + 00001011$. Quel est le résultat?				
	00101000				
Question 3	Quelle est la représentation sur 8 bits de l'addition binaire $10111011 + 01110101$?				
	100110000 \square Impossible \square 00110000 \square 00000000				
Question 4	Quelle est la valeur de l'entier naturel codé par le motif binaire 00011010 ?				
Question 5	On considère le nombre $N=1000_{10}$ (écrit en base 10). L'écriture de N en binaire:				
	e moins de 9 chiffres				
se termin	e au moins 9 chiffres				
	e 4 chiffres				
	Codage d'entiers relatifs				
Question 6 deux?	Quelle est la représentation de -3 sur 8 bits, par la méthode du complément à				
	00000100				
Question 7	La méthode du complément à deux permet:				
d'obtenia de trouv	er tous les bits d'un nombre entier écrit en binaire r l'opposé d'un nombre entier écrit en binaire er la valeur absolue d'un entier relatif				
d'ajoute	r 1 à un nombre entier écrit en binaire				

Question 8 On travaille avec des entiers relatifs codés sur 8 bits. L'addition binaire $011111111 + 000000001$:
donne un nombre négatif est impossible zéro donne un nombre positif
Question 9 Quelle est la valeur de l'entier relatif dont la représentation en binaire est 01111110 (sur 8 bits)?
$ \textbf{Question 10} \qquad \text{Dans une représentation d'entiers relatifs sur 8 bits par la méthode du complément à deux, le bit de signe est:} $
le bit de poids fort (bit 7) obtenu en ajoutant 1 au nombre le bit de poids faible (bit 0) obtenu en inversant les bits
Question 11 Que vaut le nombre binaire 11100000 codé par la méthode du complément à deux, sur 8 bits?
Question 12 Quel est le codage de l'entier relatif positif 64 sur 8 bits?
□ 11100000 ■ 01000000 □ 01100000 □ 11000000
Question 13 Le nombre binaire 01111111 codé sur 8 bits est:
est un cas particulier: il a la même représentation que son opposé le codage de un le plus petit entier relatif négatif qu'on peut coder sur 8 bits le plus grand entier relatif positif qu'on peut coder sur 8 bits
Codage de nombres réels
Question 14 Cochez une propriété correcte des nombres flottants sur une machine numérique.
☐ Il n'est pas possible de coder zéro avec la norme IEEE754 qui définit les règles de codage et d'utilisation des flottants
La représentation en virgule flottante nécessite 3 octets pour coder le signe, l'exposant et la mantisse
La représentation avec tous les bits à zéro est interdite
Des propriétés mathématiques comme l'associativité de l'addition ne sont pas forcément valables avec les flottants
Question 15 Quel est le codage en binaire selon la méthode de la virgule fixe, du nombre réel 3, 25?
\blacksquare 11,01 \Box 11,11001 \Box 1,101 \Box 3,11001

Question 16 L'opération 0.1*12 en python fournit 1.200000000000000. Quelle en est la raison? Par défaut tous les calculs sur les décimaux sont fourni avec 16 décimales Les nombres réels sont représentés de manière approximative en machine L'opérateur aurait dû saisir float (0.1*12) La calculatrice de python est plus précise qu'une calculatrice ordinaire L'instruction 0.1 + 0.2 == 0.3 en python, fournira: Question 17 0.3 SyntaxError False Question 18 Le nombre 10010,0011 peut s'écrire: $1,00100011 \times 2^4$ $1,00100011 \times 2^{-4}$ $1,00100011 \times 10^{-4}$ $1,00100011 \times 10^4$ Question 19 La représentation en virgule flottante est une écriture de la forme signe | ex-précision (32 bits)? $] 0,578125 \times 2^{131}$ 131,578125 9,25 25, 25Question 20 Quelle est la représentation en virgule flottante, simple précision de -132, 5? $1\ 10000111\ 0000100100000000000000000$ $1\ 10000100\ 1000000000000000000000000$ 1 10000110 000010010000000000000000 $0\ 10000110\ 0000100100000000000000000$ Question 21 Que vaut le nombre binaire 10001, 01 codé selon la méthode de la virgule fixe? 17, 251,000101 17,01 17, 1

$\Box 0 \ \Box 0$				
$\square 1 \square 1$				
2 2	Codez votre numéro d'identification di contre chiffre per chiffre			
	3 Codez votre numéro d'identification ci contre chiffre par chiffre, puis complétez l'encadré. 5 Codez votre numéro d'identification ci contre chiffre par chiffre, puis complétez l'encadré.			
\Box 5 \Box 5				
<u>6</u> <u>6</u>	NOM - Prénom - Classe :			
7 7	Danie v 55 minutes			
88 99	Durée : 55 minutes. Document écrit non autorisé. Calculatrice autorisée. Les réponses fausses ou incohérentes retirent des points.			
	Codage d'entiers naturels			
Question 1	On considère le nombre $N=1000_{10}$ (écrit en base 10). L'écriture de N en binaire:			
se termin	moins de 9 chiffres e par 1 au moins 9 chiffres			
=	4 chiffres			
Question 2	Quelle est la valeur de l'entier naturel codé par le motif binaire 00011010 ?			
	□ 51 □ 26 □ 24 □ 22			
Question 3	On effectue l'addition binaire $00101101 + 00001011$. Quel est le résultat?			
	00111000			
Question 4	L'entier naturel 25 s'écrit en binaire naturel sur 8 bits:			
	00011010			
Question 5	Quelle est la représentation sur 8 bits de l'addition binaire $10111011 + 01110101$?			
	00000000			
	Codage d'entiers relatifs			
Question 6	Le nombre binaire 01111111 codé sur 8 bits est:			
☐ le plus p	tit entier relatif négatif qu'on peut coder sur 8 bits			
	and entier relatif positif qu'on peut coder sur 8 bits			
le codage	s particulier: il a la même représentation que son opposé			
Question 7 deux?	Quelle est la représentation de -3 sur 8 bits, par la méthode du complément à			
	11111101			

Question 8 On travaille avec des entiers relatifs codés sur 8 bits. L'addition binaire $011111111 + 000000001$:
donne un nombre négatif zéro est impossible donne un nombre positif
Question 9 Quelle est la valeur de l'entier relatif dont la représentation en binaire est 011111110 $(sur \ 8 \ bits)$?
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$
Question 10 Quel est le codage de l'entier relatif positif 64 sur 8 bits?
□ 11100000 ■ 01000000 □ 01100000 □ 11000000
Question 11 Que vaut le nombre binaire 11100000 codé par la méthode du complément à deux, sur 8 bits?
Question 12 Dans une représentation d'entiers relatifs sur 8 bits par la méthode du complément à deux, le bit de signe est:
 □ obtenu en ajoutant 1 au nombre □ obtenu en inversant les bits □ le bit de poids faible (bit 0) □ le bit de poids fort (bit 7)
Question 13 La méthode du complément à deux permet:
d'ajouter 1 à un nombre entier écrit en binaire d'obtenir l'opposé d'un nombre entier écrit en binaire d'inverser tous les bits d'un nombre entier écrit en binaire de trouver la valeur absolue d'un entier relatif
Codage de nombres réels
Question 14 Quel est le codage en binaire selon la méthode de la virgule fixe, du nombre réel 3,25?
\blacksquare 11,01 \square 3,11001 \square 11,11001 \square 1,101
Que vaut le nombre binaire 10001, 01 codé selon la méthode de la virgule fixe?
Question 16 L'instruction 0.1 + 0.2 == 0.3 en python, fournira:
True False SyntaxError 0.3

Question 17 Quelle est la représentation en virgule flottante, simple précision de -132, 5? 0 10000110 000010010000000000000000 1 10000111 0000100100000000000000000 1 10000110 000010010000000000000000 Question 18 Le nombre 10010,0011 peut s'écrire: $1,00100011 \times 2^{-4}$ $1,00100011 \times 10^{-4}$ $1,00100011 \times 2^4$ $1,00100011 \times 10^4$ Question 19 L'opération 0.1*12 en python fournit 1.2000000000000. Quelle en est la raison? La calculatrice de python est plus précise qu'une calculatrice ordinaire Les nombres réels sont représentés de manière approximative en machine Par défaut tous les calculs sur les décimaux sont fourni avec 16 décimales L'opérateur aurait dû saisir float (0.1*12) Question 20 Cochez une propriété correcte des nombres flottants sur une machine numérique. La représentation en virgule flottante nécessite 3 octets pour coder le signe, l'exposant et la Des propriétés mathématiques comme l'associativité de l'addition ne sont pas forcément valables avec les flottants Il n'est pas possible de coder zéro avec la norme IEEE754 qui définit les règles de codage et d'utilisation des flottants La représentation avec tous les bits à zéro est interdite La représentation en virgule flottante est une écriture de la forme signe | ex-Question 21 précision (32 bits)? 0.578125×2^{131} 131, 578125 25, 25

+8/4/29+

$\square 2 \square 2$		
$\square 3 \square 3$	Codez votre numéro d'identification ci contre chiffre par chiffre, puis complétez l'encadré.	
<u>5</u> <u>5</u> <u>6</u>	NOM - Prénom - Classe :	
\square \square \square \square		
8 8	Durée : 55 minutes.	
9 9	Document écrit non autorisé. Calculatrice autorisée. Les réponses fausses ou incohérentes retirent des points.	
	Codego d'entiere neturale	
	Codage d'entiers naturels	
Question 1	L'entier naturel 25 s'écrit en binaire naturel sur 8 bits:	
	00011000 00011001 00011010 00010101	
Question 2	On considère le nombre $N=1000_{10}$ (écrit en base 10). L'écriture de N en binaire:	
comport	ne par 1 e 4 chiffres e moins de 9 chiffres e au moins 9 chiffres	
Question 3	Quelle est la valeur de l'entier naturel codé par le motif binaire 00011010 ?	
•	□ 22 □ 51 □ 24 ■ 26	
Question 4	Quelle est la représentation sur 8 bits de l'addition binaire $10111011 + 01110101$?	
	000000000 \square 100110000 \blacksquare 00110000 \square Impossible	
Question 5	On effectue l'addition binaire $00101101 + 00001011$. Quel est le résultat?	
	00111100	
Codage d'entiers relatifs		
Question 6 deux?	Quelle est la représentation de -3 sur 8 bits, par la méthode du complément à	
	00000100	
Question 7 (sur 8 bits)?	Quelle est la valeur de l'entier relatif dont la représentation en binaire est 01111110	
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	

+9/2/27+ Question 8 Que vaut le nombre binaire 11100000 codé par la méthode du complément à deux, sur 8 bits? 224 -96-32-224Question 9 On travaille avec des entiers relatifs codés sur 8 bits. L'addition binaire 011111111 + 00000001: est impossible zéro donne un nombre positif donne un nombre négatif Question 10 Dans une représentation d'entiers relatifs sur 8 bits par la méthode du complément à deux, le bit de signe est: le bit de poids fort (bit 7) le bit de poids faible ($bit \theta$) obtenu en inversant les bits dobtenu en ajoutant 1 au nombre Question 11 Quel est le codage de l'entier relatif positif 64 sur 8 bits? 01100000 01000000 11000000 11100000 Question 12 La méthode du complément à deux permet: d'obtenir l'opposé d'un nombre entier écrit en binaire d'ajouter 1 à un nombre entier écrit en binaire de trouver la valeur absolue d'un entier relatif d'inverser tous les bits d'un nombre entier écrit en binaire Question 13 Le nombre binaire 01111111 codé sur 8 bits est: le plus petit entier relatif négatif qu'on peut coder sur 8 bits le codage de un est un cas particulier: il a la même représentation que son opposé le plus grand entier relatif positif qu'on peut coder sur 8 bits Codage de nombres réels Question 14 Le nombre 10010,0011 peut s'écrire: $1,00100011 \times 10^{-4}$ $1,00100011 \times 2^4$ $1,00100011 \times 2^{-4}$

Que vaut le nombre binaire 10001, 01 codé selon la méthode de la virgule fixe?

17, 1

17,01

1,000101

 $1,00100011 \times 10^4$

17, 25

Question 15

Question 16	Cochez une propriété correcte des nombres flottants sur une machine numérique.	
	étés mathématiques comme l'associativité de l'addition ne sont pas forcément ec les flottants	
La représer	ntation avec tous les bits à zéro est interdite	
La représer mantisse	ntation en virgule flottante nécessite 3 octets pour coder le signe, l'exposant et la	
	possible de coder zéro avec la norme IEEE754 qui définit les règles de codage et n des flottants	
Question 17 3, 25?	Quel est le codage en binaire selon la méthode de la virgule fixe, du nombre réel	
	11,11001 3,11001 11,01 1,101	
Question 18 posant mantiss précision (32 bits	La représentation en virgule flottante est une écriture de la forme $signe \mid exe$. Que vaut le nombre 0 10000011 10010100000000000000000000	
	578125×2^{131}	
Question 19	Quelle est la représentation en virgule flottante, simple précision de $-132, 5$?	
0 10000110	000010010000000000000000000000000000000	
	100000000000000000000000000000000000000	
1 10000111 0000100100000000000000000000		
1 10000110	000010010000000000000000000000000000000	
Question 20	L'instruction $0.1 + 0.2 == 0.3$ en python, fournira:	
	SyntaxError False 0.3 True	
Question 21 raison?	L'opération 0.1*12 en python fournit 1.20000000000000. Quelle en est la	
Les nombre	es réels sont représentés de manière approximative en machine	
Par défaut	tous les calculs sur les décimaux sont fourni avec 16 décimales	
L'opérateur	r aurait dû saisir float(0.1*12)	
La calculatrice de python est plus précise qu'une calculatrice ordinaire		

$\Box 0 \Box 0$						
	Codez votre numéro d'identification ci contre chiffre par chiffre,					
	puis complétez l'encadré.					
	NOM - Prénom - Classe :					
77	Durée : 55 minutes. Document écrit non autorisé. Calculatrice autorisée. Les réponses fausses ou incohérentes retirent des points.					
	Codage d'entiers naturels					
Question 1	On considère le nombre $N=1000_{10}$ (écrit en base 10). L'écriture de N en binaire:					
comported se termin	e 4 chiffres e moins de 9 chiffres ne par 1 e au moins 9 chiffres					
Question 2	On effectue l'addition binaire $00101101 + 00001011$. Quel est le résultat?					
	00111100					
Question 3	Quelle est la valeur de l'entier naturel codé par le motif binaire 00011010 ?					
	\square 22 \square 51 \blacksquare 26 \square 24					
Question 4	L'entier naturel 25 s'écrit en binaire naturel sur 8 bits:					
	00010101					
Question 5	Quelle est la représentation sur 8 bits de l'addition binaire $10111011 + 01110101$?					
	100110000 \blacksquare 00110000 \Box Impossible \Box 00000000					
	Codage d'entiers relatifs					
Question 6 01111111 + 00	On travaille avec des entiers relatifs codés sur 8 bits. L'addition binaire 000001:					
est impo	ssible					
donne ur	n nombre négatif					
	n nombre positif					
zéro						

Question 7 Dans une représentation d'entiers relatifs sur 8 bits par la méthode du complément à deux, le bit de signe est: le bit de poids fort (bit 7) le bit de poids faible ($bit \theta$) obtenu en inversant les bits obtenu en ajoutant 1 au nombre Quelle est la représentation de -3 sur 8 bits, par la méthode du complément à Question 8 deux? 00000100 0000010111111101 11111100 Question 9 La méthode du complément à deux permet: d'obtenir l'opposé d'un nombre entier écrit en binaire d'inverser tous les bits d'un nombre entier écrit en binaire de trouver la valeur absolue d'un entier relatif d'ajouter 1 à un nombre entier écrit en binaire Quelle est la valeur de l'entier relatif dont la représentation en binaire est Question 10 011111110 (sur 8 bits)? -128126 -124-126Question 11 Le nombre binaire 01111111 codé sur 8 bits est: est un cas particulier: il a la même représentation que son opposé le plus grand entier relatif positif qu'on peut coder sur 8 bits le plus petit entier relatif négatif qu'on peut coder sur 8 bits le codage de un Quel est le codage de l'entier relatif positif 64 sur 8 bits? Question 12 01100000 11000000 01000000 11100000 Que vaut le nombre binaire 11100000 codé par la méthode du complément à Question 13 deux, sur 8 bits? -224-32224 -96Codage de nombres réels La représentation en virgule flottante est une écriture de la forme signe | ex-Question 14 posant | mantisse. précision (32 bits)? 0.578125×2^{131} 131,578125 9,25 25, 25 Question 15 Quel est le codage en binaire selon la méthode de la virgule fixe, du nombre réel 3, 25? 11,11001 1,101 3,11001 11,01

Question 16 L'opération 0.1*12 en python fournit 1.200000000000000. Quelle en est la raison? La calculatrice de python est plus précise qu'une calculatrice ordinaire Les nombres réels sont représentés de manière approximative en machine Par défaut tous les calculs sur les décimaux sont fourni avec 16 décimales L'opérateur aurait dû saisir float (0.1*12) L'instruction 0.1 + 0.2 == 0.3 en python, fournira: Question 17 False 0.3 True SyntaxError Question 18 Quelle est la représentation en virgule flottante, simple précision de -132, 5? 0 10000110 000010010000000000000000 $1\ 10000100\ 1000000000000000000000000$ 1 10000111 000010010000000000000000 1 10000110 0000100100000000000000000 Question 19 Cochez une propriété correcte des nombres flottants sur une machine numérique. Des propriétés mathématiques comme l'associativité de l'addition ne sont pas forcément valables avec les flottants La représentation avec tous les bits à zéro est interdite La représentation en virgule flottante nécessite 3 octets pour coder le signe, l'exposant et la mantisse Il n'est pas possible de coder zéro avec la norme IEEE754 qui définit les règles de codage et d'utilisation des flottants Question 20 Le nombre 10010,0011 peut s'écrire: $1,00100011 \times 10^{-4}$ $1,00100011 \times 10^4$ $1,00100011 \times 2^{-4}$

Que vaut le nombre binaire 10001, 01 codé selon la méthode de la virgule fixe?

17, 25

17, 1

1,000101

 $1,00100011 \times 2^4$

17,01

Question 21

+10/4/21+

<u>3</u> <u>3</u>	Codez votre numéro d'identification ci contre chiffre par chiffre, puis complétez l'encadré.					
55	NOM - Prénom - Classe :					
<u>6</u> <u>6</u>						
\square	Durée : 55 minutes.					
	Document écrit non autorisé. Calculatrice autorisée. Les réponses fausses ou incohérentes retirent des points.					
	inconcrenics rement acs points.					
	Codage d'entiers naturels					
Question 1	Quelle est la valeur de l'entier naturel codé par le motif binaire $00011010\ ?$					
	□ 24 □ 22 □ 26 □ 51					
Question 2	Quelle est la représentation sur 8 bits de l'addition binaire $10111011 + 01110101$?					
	Impossible \Box 000000000 \Box 100110000 \Box 00110000					
Question 3	L'entier naturel 25 s'écrit en binaire naturel sur 8 bits:					
	00011010					
Question 4	On effectue l'addition binaire $00101101 + 00001011$. Quel est le résultat?					
	00101000					
Question 5	On considère le nombre $N=1000_{10}$ (écrit en base 10). L'écriture de N en binaire:					
comport	e 4 chiffres					
comport	e moins de 9 chiffres					
se termi						
comport	e au moins 9 chiffres					
	Codage d'entiers relatifs					
Question 6 (sur 8 bits)?	Quelle est la valeur de l'entier relatif dont la représentation en binaire est 011111110					
Question 7 deux?	Quelle est la représentation de -3 sur 8 bits, par la méthode du complément à					
	11111100					

Question 8 sur 8 bits?	Que vaut le nombre binaire 11100000 codé par la méthode du complément à deux,
Question 9 à deux, le bit d	Dans une représentation d'entiers relatifs sur 8 bits par la méthode du complément le signe est:
obtenu er	poids fort $(bit \ 7)$ n ajoutant 1 au nombre poids faible $(bit \ \theta)$ n inversant les bits
Question 10	La méthode du complément à deux permet:
de trouve	1 à un nombre entier écrit en binaire er la valeur absolue d'un entier relatif r tous les bits d'un nombre entier écrit en binaire l'opposé d'un nombre entier écrit en binaire
Question 11	Le nombre binaire 01111111 codé sur 8 bits est:
le plus gr	e de un s particulier: il a la même représentation que son opposé cand entier relatif positif qu'on peut coder sur 8 bits etit entier relatif négatif qu'on peut coder sur 8 bits
Question 12 01111111 + 000	On travaille avec des entiers relatifs codés sur 8 bits. L'addition binaire 000001:
	nombre positif nombre négatif ssible
Question 13	Quel est le codage de l'entier relatif positif 64 sur 8 bits?
	01000000
	Codage de nombres réels
Question 14	Que vaut le nombre binaire 10001,01 codé selon la méthode de la virgule fixe?
Question 15 raison?	L'opération $0.1*12$ en python fournit 1.20000000000000 . Quelle en est la
L'opérate Les nomb	atrice de python est plus précise qu'une calculatrice ordinaire eur aurait dû saisir float(0.1*12) pres réels sont représentés de manière approximative en machine en tous les calculs sur les décimaux sont fourni avec 16 décimales

Question 16	Le nombre 10010,0011 peut s'écrire:
1,00100011	$ imes 2^4$
1,00100011	$\times 2^{-4}$
1,00100011	$\times 10^4$
1,00100011	$\times 10^{-4}$
Question 17	Quelle est la représentation en virgule flottante, simple précision de $-132,5$?
0 10000110	00001001000000000000000
1 10000111	00001001000000000000000
1 10000110	00001001000000000000000
1 10000100	10000000000000000000000000000
Question 18 3, 25?	Quel est le codage en binaire selon la méthode de la virgule fixe, du nombre réel
	3,11001
Question 19 posant mantiss précision (32 bits	La représentation en virgule flottante est une écriture de la forme $signe \mid exe$ e. Que vaut le nombre 0 10000011 10010100000000000000000000
	578125×2^{131} 25, 25
Question 20	L'instruction $0.1 + 0.2 == 0.3$ en python, fournira:
	False 0.3 True SyntaxError
Question 21	Cochez une propriété correcte des nombres flottants sur une machine numérique.
	tés mathématiques comme l'associativité de l'addition ne sont pas forcément c les flottants
	possible de coder zéro avec la norme IEEE754 qui définit les règles de codage et des flottants
La représen mantisse	tation en virgule flottante nécessite 3 octets pour coder le signe, l'exposant et la
La représen	tation avec tous les bits à zéro est interdite

	C- 1	4 1): 1 <i>t</i> :C		-1-: C	1.:C	
	puis complétez l'en		cation ci contre	спште ра	ir cninre,	
55 66	NOM - Prénom -	Classe:				
7 7						
□8 □8 □9 □9	Document écrit no	on autorisé. Ca	ée : 55 minutes. lculatrice autor es retirent des p	isée. Les r	réponses fausses	ou
	Cod	lage d'ent	iers natur	els		
Question 1	Quelle est la vale	ır de l'entier na	aturel codé par	le motif b	inaire 00011010	?
	24	26	<u> </u>	<u>22</u>		
Question 2	On considère le no	ombre $N = 1000$	0 ₁₀ (écrit en bas	se 10). L'é	ecriture de N en	binaire:
comport	e 4 chiffres					
comport	e au moins 9 chiffre	S				
se termi	_					
comport	e moins de 9 chiffre	3				
Question 3	On effectue l'addi	tion binaire 00	101101 + 00001	011. Quel	est le résultat?	
	00101000	00111100	001001	10	00111000	
Question 4	L'entier naturel 2	5 s'écrit en bin	aire naturel sur	8 bits:		
	00011010	00010101	000110	00	00011001	
Question 5	Quelle est la repr	ésentation sur {	8 bits de l'addit	ion binaire	e $10111011 + 01$	110101?
	Impossible	00110000	100110	0000	00000000	
	Co	$\frac{1}{\text{dage d'en}}$	tiers relat	ifs		
Question 6	Quel est le codag	ge de l'entier re	latif positif 64 s	sur 8 bits?		
	11100000] 11000000	010000	00	01100000	
Question 7 (sur 8 bits)?	Quelle est la valeu	ır de l'entier rel	atif dont la repr	ésentation	en binaire est 0	1111110
		126			-128	

Question 8 On travaille avec des entiers relatifs codés sur 8 bits. L'addition binaire $011111111 + 000000001$:				
zéro donne un nombre négatif donne un nombre positif est impossible				
Question 9 Quelle est la représentation de -3 sur 8 bits, par la méthode du complément à deux?				
11111101 00000101 111111100 00000100				
Question 10 Que vaut le nombre binaire 11100000 codé par la méthode du complément à deux, sur 8 bits?				
Question 11 Le nombre binaire 011111111 codé sur 8 bits est:				
 □ le codage de un □ le plus grand entier relatif positif qu'on peut coder sur 8 bits □ le plus petit entier relatif négatif qu'on peut coder sur 8 bits □ est un cas particulier: il a la même représentation que son opposé 				
$ {\bf Question~12} \qquad {\bf Dans~une~repr\'esentation~d'entiers~relatifs~sur~8~bits~par~la~m\'ethode~du~compl\'ement~\ref{eq:20} a~deux,~le~bit~de~signe~est: }$				
obtenu en inversant les bits				
le bit de poids fort (bit 7)				
obtenu en ajoutant 1 au nombre				
\square le bit de poids faible (bit 0)				
Question 13 La méthode du complément à deux permet:				
d'inverser tous les bits d'un nombre entier écrit en binaire				
de trouver la valeur absolue d'un entier relatif				
d'obtenir l'opposé d'un nombre entier écrit en binaire				
d'ajouter 1 à un nombre entier écrit en binaire				
Codage de nombres réels				
Question 14 L'opération 0.1*12 en python fournit 1.20000000000000. Quelle en est la raison?				
Par défaut tous les calculs sur les décimaux sont fourni avec 16 décimales				
Les nombres réels sont représentés de manière approximative en machine				
La calculatrice de python est plus précise qu'une calculatrice ordinaire				
L'opérateur aurait dû saisir float(0.1*12)				

Question 15	Quelle est la représentation en virgule flottante, simple précision de $-132,5$?
0 10000110	000010010000000000000000000000000000000
1 10000100	10000000000000000000000000000
1 10000110	00001001000000000000000
1 10000111	0000100100000000000000
Question 16	Cochez une propriété correcte des nombres flottants sur une machine numérique.
La représen mantisse	tation en virgule flottante nécessite 3 octets pour coder le signe, l'exposant et la
La représen	tation avec tous les bits à zéro est interdite
	possible de coder zéro avec la norme IEEE754 qui définit les règles de codage et des flottants
	tés mathématiques comme l'associativité de l'addition ne sont pas forcément c les flottants
Question 17	L'instruction $0.1 + 0.2 == 0.3$ en python, fournira:
	0.3 SyntaxError True False
Question 18	Que vaut le nombre binaire $10001,01$ codé selon la méthode de la virgule fixe?
	$\boxed{}$ 17,01 $\boxed{}$ 17,1 $\boxed{}$ 1,000101 $\boxed{}$ 17,25
Question 19	Le nombre 10010,0011 peut s'écrire:
1,00100011	$\times 10^4$
1,00100011	$\times 10^{-4}$
1,00100011	$\times 2^{-4}$
1,00100011	$\times 2^4$
Question 20 3, 25?	Quel est le codage en binaire selon la méthode de la virgule fixe, du nombre réel
	11,11001 $$ $11,01$ $$ $1,101$ $$ $3,11001$
Question 21 posant mantisse précision (32 bits	La représentation en virgule flottante est une écriture de la forme $signe \mid exe$ e. Que vaut le nombre 0 10000011 10010100000000000000000000
\bigcirc 0,	578125×2^{131} 25, 25 131, 578125 9, 25

+12/4/13+

$\Box 0 \ \Box 0$						
$\square 1 \square 1$						
$\square 2 \square 2$						
$3 \ 3$	Codez votre numéro d'identification ci contre chiffre par chiffre,					
$\square 4 \square 4$	puis complétez l'encadré.					
<u>5</u> <u>5</u>	NOM - Prénom - Classe :					
8 B 9 9	Durée : 55 minutes. Document écrit non autorisé. Calculatrice autorisée. Les réponses fausses ou incohérentes retirent des points.					
	Codage d'entiers naturels					
Question 1	Quelle est la valeur de l'entier naturel codé par le motif binaire 00011010 ?					
	\square 51 \square 22 \blacksquare 26 \square 24					
Question 2	On considère le nombre $N=1000_{10}$ (écrit en base 10). L'écriture de N en binaire:					
comporte	e 4 chiffres e au moins 9 chiffres e moins de 9 chiffres ne par 1					
Question 3	L'entier naturel 25 s'écrit en binaire naturel sur 8 bits:					
	00010101					
Question 4	Quelle est la représentation sur 8 bits de l'addition binaire $10111011 + 01110101$?					
	Impossible \Box 000000000 \Box 100110000 \Box 00110000					
Question 5	On effectue l'addition binaire $00101101 + 00001011$. Quel est le résultat?					
	00101000					
	Codage d'entiers relatifs					
Question 6 sur 8 bits?	Que vaut le nombre binaire 11100000 codé par la méthode du complément à deux,					
Question 7 deux?	Quelle est la représentation de -3 sur 8 bits, par la méthode du complément à					
	00000101					

Question 8 Dans une représentation d'entiers relatifs sur 8 bits par la méthode du complément à deux, le bit de signe est: obtenu en inversant les bits le bit de poids faible ($bit \theta$) obtenu en ajoutant 1 au nombre le bit de poids fort (bit 7) Question 9 On travaille avec des entiers relatifs codés sur 8 bits. L'addition binaire 011111111 + 00000001: est impossible donne un nombre négatif zéro donne un nombre positif Quelle est la valeur de l'entier relatif dont la représentation en binaire est Question 10 011111110 (sur 8 bits)? -128-124-126126 Question 11 La méthode du complément à deux permet: d'obtenir l'opposé d'un nombre entier écrit en binaire d'ajouter 1 à un nombre entier écrit en binaire de trouver la valeur absolue d'un entier relatif d'inverser tous les bits d'un nombre entier écrit en binaire Question 12 Le nombre binaire 01111111 codé sur 8 bits est: le codage de un le plus petit entier relatif négatif qu'on peut coder sur 8 bits est un cas particulier: il a la même représentation que son opposé le plus grand entier relatif positif qu'on peut coder sur 8 bits Question 13 Quel est le codage de l'entier relatif positif 64 sur 8 bits? 01000000 11000000 01100000 11100000 Codage de nombres réels L'instruction 0.1 + 0.2 == 0.3 en python, fournira: Question 14 0.3 SyntaxError False True La représentation en virgule flottante est une écriture de la forme signe | ex- $posant \mid mantisse.$ précision (32 bits)? 131,578125 0.578125×2^{131} 25, 25 9,25 Question 16 Que vaut le nombre binaire 10001, 01 codé selon la méthode de la virgule fixe? 17,01 1,000101 17, 2517, 1

L'opération 0.1*12 en python fournit 1.20000000000000. Quelle en est la Question 17 raison? L'opérateur aurait dû saisir float (0.1*12) Par défaut tous les calculs sur les décimaux sont fourni avec 16 décimales Les nombres réels sont représentés de manière approximative en machine La calculatrice de python est plus précise qu'une calculatrice ordinaire Le nombre 10010,0011 peut s'écrire: Question 18 $1,00100011 \times 10^{-4}$ $1,00100011 \times 2^{-4}$ $1,00100011 \times 10^4$ $1,00100011 \times 2^4$ Question 19 Quel est le codage en binaire selon la méthode de la virgule fixe, du nombre réel 3,25? 11,01 3,11001 1,101 11,11001 Question 20 Cochez une propriété correcte des nombres flottants sur une machine numérique. Il n'est pas possible de coder zéro avec la norme IEEE754 qui définit les règles de codage et d'utilisation des flottants La représentation avec tous les bits à zéro est interdite Des propriétés mathématiques comme l'associativité de l'addition ne sont pas forcément valables avec les flottants La représentation en virgule flottante nécessite 3 octets pour coder le signe, l'exposant et la mantisse Question 21 Quelle est la représentation en virgule flottante, simple précision de -132, 5? $0\ 10000110\ 0000100100000000000000000$ $1\ 10000100\ 1000000000000000000000000$ 1 10000111 0000100100000000000000000

 $1\ 10000110\ 0000100100000000000000000$

+13/4/9+

$ \begin{array}{c c} $	Codez votre numéro d'identification ci contre chiffre par chiffre, puis complétez l'encadré.
	NOM - Prénom - Classe :
	Durée : 55 minutes. Document écrit non autorisé. Calculatrice autorisée. Les réponses fausses ou incohérentes retirent des points.
	Codage d'entiers naturels
Question 1	Quelle est la valeur de l'entier naturel codé par le motif binaire 00011010 ?
Question 2	L'entier naturel 25 s'écrit en binaire naturel sur 8 bits:
	00011000
Question 3	On considère le nombre $N=1000_{10}$ (écrit en base 10). L'écriture de N en binaire
comporte	e par 1 moins de 9 chiffres 4 chiffres au moins 9 chiffres
Question 4	On effectue l'addition binaire $00101101 + 00001011$. Quel est le résultat?
	00111000
Question 5	Quelle est la représentation sur 8 bits de l'addition binaire 10111011 + 011101012
	mpossible
	Codage d'entiers relatifs
Question 6 deux?	Quelle est la représentation de -3 sur 8 bits, par la méthode du complément à
	00000100
Question 7	Le nombre binaire 011111111 codé sur 8 bits est:
le plus p	and entier relatif positif qu'on peut coder sur 8 bits etit entier relatif négatif qu'on peut coder sur 8 bits s particulier: il a la même représentation que son opposé de un

Question 8 Quelle est la valeur de l'entier relatif dont la représentation en binaire est 011111110 (sur 8 bits)? -126-124126 -128Question 9 Que vaut le nombre binaire 11100000 codé par la méthode du complément à deux, sur 8 bits? 224 -32-224-96Question 10 La méthode du complément à deux permet: d'obtenir l'opposé d'un nombre entier écrit en binaire d'ajouter 1 à un nombre entier écrit en binaire de trouver la valeur absolue d'un entier relatif d'inverser tous les bits d'un nombre entier écrit en binaire Question 11 On travaille avec des entiers relatifs codés sur 8 bits. L'addition binaire 011111111 + 000000001: donne un nombre négatif donne un nombre positif est impossible Quel est le codage de l'entier relatif positif 64 sur 8 bits? Question 12 01100000 11100000 11000000 01000000 Question 13 Dans une représentation d'entiers relatifs sur 8 bits par la méthode du complément à deux, le bit de signe est: le bit de poids fort (bit 7) obtenu en ajoutant 1 au nombre le bit de poids faible ($bit \theta$) obtenu en inversant les bits Codage de nombres réels Question 14 La représentation en virgule flottante est une écriture de la forme signe | ex- $posant \mid mantisse.$ précision (32 bits)? 0.578125×2^{131} 25, 25 9,25131,578125 Question 15 L'opération 0.1*12 en python fournit 1.20000000000000. Quelle en est la raison? Par défaut tous les calculs sur les décimaux sont fourni avec 16 décimales La calculatrice de python est plus précise qu'une calculatrice ordinaire Les nombres réels sont représentés de manière approximative en machine L'opérateur aurait dû saisir float (0.1*12)

Question 16	Le nombre 10010,0011 peut s'écrire:				
1,00100011	$\times 10^4$				
1,00100011	$\times 2^{-4}$				
1,00100011					
1,00100011	$\times 2^4$				
Question 17	Quelle est la représentation en virgule flottante, simple précision de $-132,5$?				
0 10000110	000010010000000000000000000000000000000				
1 10000110	00001001000000000000000				
1 10000111 0000100100000000000000000000					
1 10000100	100000000000000000000000000000000000000				
Question 18 3,25?	Quel est le codage en binaire selon la méthode de la virgule fixe, du nombre réel				
	11,01 $$ $11,11001$ $$ $1,101$ $$ $3,11001$				
Question 19	L'instruction $0.1 + 0.2 == 0.3$ en python, fournira:				
	0.3 True SyntaxError False				
Question 20	Que vaut le nombre binaire 10001,01 codé selon la méthode de la virgule fixe?				
	1,000101 $17,01$ $17,25$ $17,1$				
Question 21	Cochez une propriété correcte des nombres flottants sur une machine numérique.				
	possible de coder zéro avec la norme IEEE754 qui définit les règles de codage et des flottants				
La représen	tation avec tous les bits à zéro est interdite				
La représen mantisse	tation en virgule flottante nécessite 3 octets pour coder le signe, l'exposant et la				

Des propriétés mathématiques comme l'associativité de l'addition ne sont pas forcément

valables avec les flottants

+14/4/5+

0011223344556677	Codez votre numéro d'identification ci contre chiffre par chiffre, puis complétez l'encadré. NOM - Prénom - Classe :				
88 99	Durée : 55 minutes. Document écrit non autorisé. Calculatrice autorisée. Les réponses fausses ou incohérentes retirent des points.				
	Codage d'entiers naturels				
Question 1	Quelle est la représentation sur 8 bits de l'addition binaire $10111011 + 01110101$?				
	00110000 00110000 0000000 Impossible				
Question 2	On effectue l'addition binaire $00101101 + 00001011$. Quel est le résultat?				
	00101000				
Question 3	On considère le nombre $N=1000_{10}$ (écrit en base 10). L'écriture de N en binaire:				
se termin	au moins 9 chiffres e par 1 4 chiffres moins de 9 chiffres				
Question 4	Quelle est la valeur de l'entier naturel codé par le motif binaire 00011010 ?				
Question 5	L'entier naturel 25 s'écrit en binaire naturel sur 8 bits:				
	00010101 00011001 00011000 00011010				
	Codage d'entiers relatifs				
Question 6 (sur 8 bits)?	Quelle est la valeur de l'entier relatif dont la représentation en binaire est 01111110				
Question 7	Le nombre binaire 01111111 codé sur 8 bits est:				
le codage	and entier relatif positif qu'on peut coder sur 8 bits				
☐ le plus petit entier relatif négatif qu'on peut coder sur 8 bits					

Question 8 sur 8 bits?	Que vaut le n	ombre binaire 1110	00000 codé par la mé	thode du complément à deux,
		224		-32
Question 9	Quel est le co	odage de l'entier re	elatif positif 64 sur 8	bits?
	01100000	11000000	01000000	11100000
Question 10	La méthode	e du complément à	deux permet:	
d'ajouter de trouve	1 à un nombre er la valeur abso	l'un nombre entier e entier écrit en bir blue d'un entier rel nombre entier écrit	naire atif	
Question 11 deux?	Quelle est l	a représentation d	e - 3 sur 8 bits, par	la méthode du complément à
	11111101	00000101	111111100	00000100
Question 12 01111111 + 000		ille avec des entie	rs relatifs codés sur	8 bits. L'addition binaire
	nombre négati nombre positif			
Question 13 à deux, le bit d		résentation d'entie	rs relatifs sur 8 bits p	ar la méthode du complément
le bit de	poids fort (bit) poids faible (bi) a ajoutant 1 au	t 0)		
obtenu er	n inversant les l	bits		
	(Codage de n	ombres réels	
Question 14 posant manter précision (32 b	La représei isse. Que vaut	ntation en virgule	flottante est une écr	riture de la forme $signe \mid ex-000000000000000000000000000000000000$
	$0,578125 \times 2^{13}$	¹ 131, 5	78125 9,2	25, 25
Question 15	Que vaut le	nombre binaire 10	0001,01 codé selon la	a méthode de la virgule fixe?
	<u> </u>	1,000101	<u> </u>	17,25

Question 16 Cochez une propriété correcte des nombres flottants sur une machine numérique. Il n'est pas possible de coder zéro avec la norme IEEE754 qui définit les règles de codage et d'utilisation des flottants La représentation en virgule flottante nécessite 3 octets pour coder le signe, l'exposant et la mantisse La représentation avec tous les bits à zéro est interdite Des propriétés mathématiques comme l'associativité de l'addition ne sont pas forcément valables avec les flottants Question 17 Le nombre 10010,0011 peut s'écrire: $1,00100011 \times 2^4$ $1,00100011 \times 10^{-4}$ $1,00100011 \times 10^4$ $1,00100011 \times 2^{-4}$ Question 18 L'opération 0.1*12 en python fournit 1.200000000000000. Quelle en est la raison? Par défaut tous les calculs sur les décimaux sont fourni avec 16 décimales La calculatrice de python est plus précise qu'une calculatrice ordinaire Les nombres réels sont représentés de manière approximative en machine L'opérateur aurait dû saisir float (0.1*12) Question 19 Quelle est la représentation en virgule flottante, simple précision de -132, 5? 1 10000110 0000100100000000000000000 1 10000111 000010010000000000000000 Quel est le codage en binaire selon la méthode de la virgule fixe, du nombre réel Question 20 3, 25? 11,01 11, 11001 3,11001 1,101 L'instruction 0.1 + 0.2 == 0.3 en python, fournira: Question 21 0.3 True SyntaxError False

+15/4/1+

	Codez votre numéro d'identification ci contre chiffre par chiffre, puis complétez l'encadré. NOM - Prénom - Classe :					
	Durée : 55 minutes. Document écrit non autorisé. Calculatrice autorisée. Les réponses fausses ou incohérentes retirent des points.					
	Codage d'entiers naturels					
Question 1	Quelle est la valeur de l'entier naturel codé par le motif binaire 00011010 ?					
Question 2	Quelle est la représentation sur 8 bits de l'addition binaire 10111011 + 01110101?					
	Impossible \Box 00000000 \Box 100110000 \Box 00110000					
Question 3	On effectue l'addition binaire $00101101 + 00001011$. Quel est le résultat?					
	00111000					
Question 4	L'entier naturel 25 s'écrit en binaire naturel sur 8 bits:					
	00011001					
Question 5	On considère le nombre $N=1000_{10}$ (écrit en base 10). L'écriture de N en binaire:					
se termi:	e moins de 9 chiffres ne par 1 e au moins 9 chiffres e 4 chiffres					
	Codage d'entiers relatifs					
Question 6	Quel est le codage de l'entier relatif positif 64 sur 8 bits?					
	11000000					
Question 7 (sur 8 bits)?	Quelle est la valeur de l'entier relatif dont la représentation en binaire est 01111110					

Question 8 On travaille avec des entiers relatifs codés sur 8 bits. L'addition binaire $011111111 + 000000001$:
zéro est impossible donne un nombre positif donne un nombre négatif
Question 9 Le nombre binaire 011111111 codé sur 8 bits est:
est un cas particulier: il a la même représentation que son opposé le plus grand entier relatif positif qu'on peut coder sur 8 bits le codage de un le plus petit entier relatif négatif qu'on peut coder sur 8 bits
Question 10 Que vaut le nombre binaire 11100000 codé par la méthode du complément à deux, sur 8 bits?
Question 11 La méthode du complément à deux permet:
de trouver la valeur absolue d'un entier relatif d'ajouter 1 à un nombre entier écrit en binaire d'inverser tous les bits d'un nombre entier écrit en binaire d'obtenir l'opposé d'un nombre entier écrit en binaire
Question 12 Dans une représentation d'entiers relatifs sur 8 bits par la méthode du complément à deux, le bit de signe est:
obtenu en inversant les bits le bit de poids faible $(bit \ \theta)$ obtenu en ajoutant 1 au nombre
le bit de poids fort $(bit 7)$
Question 13 Quelle est la représentation de -3 sur 8 bits, par la méthode du complément à deux?
00000101 11111101 11111100 00000100
Codage de nombres réels
Question 14 L'instruction 0.1 + 0.2 == 0.3 en python, fournira:
True 0.3 False SyntaxError
Question 15 Quel est le codage en binaire selon la méthode de la virgule fixe, du nombre réel 3, 25?

Question 16 L'opération 0.1*12 en python fournit 1.200000000000000. Quelle en est la raison? Les nombres réels sont représentés de manière approximative en machine Par défaut tous les calculs sur les décimaux sont fourni avec 16 décimales La calculatrice de python est plus précise qu'une calculatrice ordinaire L'opérateur aurait dû saisir float (0.1*12) Question 17 Que vaut le nombre binaire 10001, 01 codé selon la méthode de la virgule fixe? 17,01 1,000101 17, 117, 25Question 18 Le nombre 10010,0011 peut s'écrire: 1.00100011×10^4 $1,00100011 \times 2^{-4}$ $1.00100011 \times 10^{-4}$ $1,00100011 \times 2^4$ Question 19 Quelle est la représentation en virgule flottante, simple précision de -132, 5? 1 10000110 0000100100000000000000000 $1\ 10000111\ 0000100100000000000000000$ $0\ 10000110\ 0000100100000000000000000$ 1 10000100 1000000000000000000000000 La représentation en virgule flottante est une écriture de la forme signe | ex-Question 20 précision (32 bits)? 0.578125×2^{131} 25, 259,25 131,578125 Question 21 Cochez une propriété correcte des nombres flottants sur une machine numérique. La représentation en virgule flottante nécessite 3 octets pour coder le signe, l'exposant et la mantisse La représentation avec tous les bits à zéro est interdite Il n'est pas possible de coder zéro avec la norme IEEE754 qui définit les règles de codage et d'utilisation des flottants Des propriétés mathématiques comme l'associativité de l'addition ne sont pas forcément valables avec les flottants

+16/4/57+

3 3	Codez votre numéro d'identification ci contre chiffre par chiffre, puis complétez l'encadré.				
<u>5</u> <u>5</u> <u>6</u>	NOM - Prénom - Classe :				
	Durée : 55 minutes.				
9 9	Document écrit non autorisé. Calculatrice autorisée. Les réponses fausses ou incohérentes retirent des points.				
	Codage d'entiers naturels				
Question 1	On considère le nombre $N=1000_{10}$ (écrit en base 10). L'écriture de N en binaire:				
se termin	ne par 1				
comport	e moins de 9 chiffres				
comport	e 4 chiffres				
comport	e au moins 9 chiffres				
Question 2	L'entier naturel 25 s'écrit en binaire naturel sur 8 bits:				
	00011001				
Question 3	Quelle est la représentation sur 8 bits de l'addition binaire $10111011 + 01110101$?				
	00000000				
Question 4	On effectue l'addition binaire $00101101 + 00001011$. Quel est le résultat?				
	00111100 00111000 00101000 00100110				
Question 5	Quelle est la valeur de l'entier naturel codé par le motif binaire 00011010 ?				
	2 6				
	Codage d'entiers relatifs				
Question 6 (sur 8 bits)?	Quelle est la valeur de l'entier relatif dont la représentation en binaire est 011111110				
Question 7 deux?	Quelle est la représentation de -3 sur 8 bits, par la méthode du complément à				
	11111101				

Question 8 On travaille avec des entiers relatifs codés sur 8 bits. L'addition binaire $011111111 + 000000001$:
est impossible zéro donne un nombre positif donne un nombre négatif
Question 9 La méthode du complément à deux permet:
d'inverser tous les bits d'un nombre entier écrit en binaire de trouver la valeur absolue d'un entier relatif d'ajouter 1 à un nombre entier écrit en binaire d'obtenir l'opposé d'un nombre entier écrit en binaire
Question 10 Quel est le codage de l'entier relatif positif 64 sur 8 bits?
11000000 11100000 01000000 01100000
Question 11 Dans une représentation d'entiers relatifs sur 8 bits par la méthode du complément à deux, le bit de signe est: \Box obtenu en inversant les bits \Box obtenu en ajoutant 1 au nombre \Box le bit de poids faible $(bit \ \theta)$ \Box le bit de poids fort $(bit \ 7)$
Question 12 Le nombre binaire 01111111 codé sur 8 bits est: est un cas particulier: il a la même représentation que son opposé le codage de un le plus petit entier relatif négatif qu'on peut coder sur 8 bits le plus grand entier relatif positif qu'on peut coder sur 8 bits
Question 13 Que vaut le nombre binaire 11100000 codé par la méthode du complément à deux, sur 8 bits?
Codage de nombres réels
Question 14 Cochez une propriété correcte des nombres flottants sur une machine numérique.
Des propriétés mathématiques comme l'associativité de l'addition ne sont pas forcément valables avec les flottants
La représentation avec tous les bits à zéro est interdite
La représentation en virgule flottante nécessite 3 octets pour coder le signe, l'exposant et la mantisse
Il n'est pas possible de coder zéro avec la norme IEEE754 qui définit les règles de codage et d'utilisation des flottants

Question 15	Quelle est la représentation en virgule flottante, simple précision de $-132,5$?
1 10000111	000010010000000000000000000000000000000
1 10000110	000010010000000000000000000000000000000
0 10000110	000010010000000000000000000000000000000
1 10000100	100000000000000000000000000000000000000
Question 16	Le nombre 10010,0011 peut s'écrire:
1,00100011	$\times 10^4$
1,00100011	$\times 2^4$
1,00100011	$\times 2^{-4}$
1,00100011	$\times 10^{-4}$
Question 17 3, 25?	Quel est le codage en binaire selon la méthode de la virgule fixe, du nombre réel
	$1,101$ $\boxed{}$ $3,11001$ $\boxed{}$ $11,11001$ $\boxed{}$ $11,01$
Question 18	L'instruction $0.1 + 0.2 == 0.3$ en python, fournira:
	SyntaxError False True 0.3
Question 19 posant mantiss précision (32 bits	La représentation en virgule flottante est une écriture de la forme $signe \mid exe$. Que vaut le nombre 0 10000011 10010100000000000000000000
25	, 25 $\qquad \qquad \boxed{\qquad} 0,578125 \times 2^{131} \qquad \boxed{\qquad} 9,25 \qquad \boxed{\qquad} 131,578125$
Question 20 raison?	L'opération 0.1*12 en python fournit 1.20000000000000. Quelle en est la
L'opérateur	aurait dû saisir float(0.1*12)
Par défaut	tous les calculs sur les décimaux sont fourni avec 16 décimales
La calculati	rice de python est plus précise qu'une calculatrice ordinaire
Les nombre	s réels sont représentés de manière approximative en machine
Question 21	Que vaut le nombre binaire 10001,01 codé selon la méthode de la virgule fixe?
	1,000101 $17,01$ $17,1$ $17,25$

	Codez vot	re numéro d'identifi	cation	ci contre chiffre	nar chiffre	
	Codez votre numéro d'identification ci contre chiffre par chiffre, puis complétez l'encadré.					
	$ \begin{array}{c c} $					
$\boxed{}7$ $\boxed{}7$						
□8 □8 □9 □9	Document écr	it non autorisé. Ca	lculatri	minutes. ice autorisée. L ent des points.	es réponses f	^f ausses ou
	(Codage d'ent	iers	naturels		
Question 1	Quelle est la	valeur de l'entier na	aturel c	odé par le mot	if binaire 000	011010 ?
		22 26		24	51	
Question 2	On effectue l	addition binaire 00	101101	+ 00001011. Q	uel est le rés	sultat?
	00101000	00100110		00111000	0011	1100
Question 3	Quelle est la	représentation sur 8	8 bits d	e l'addition bin	aire 1011101	11 + 01110101?
	00110000	00000000		100110000	_ Impo	ossible
Question 4	On considère	le nombre $N = 1000$	0_{10} (écr	rit en base 10).	L'écriture de	e N en binaire:
comport	e 4 chiffres					
se termin						
_	e moins de 9 ch					
comport	e au moins 9 ch	uffres				
Question 5	L'entier natu	rel 25 s'écrit en bin	aire na	turel sur 8 bits:	:	
	00011001	00010101		00011000	0001	1010
	(Codage d'en	tiers	relatifs		
Question 6	Quel est le c	odage de l'entier re	latif po	sitif 64 sur 8 bi	its?	
	11100000	11000000		01000000	0110	0000
Question 7	La méthode	du complément à d	leux pe	rmet:		
d'obteni	r l'opposé d'un	nombre entier écrit	en bin	aire		
d'ajoute	r 1 à un nombre	e entier écrit en bin	aire			
		d'un nombre entier		n binaire		
de trouv	er la valeur abs	olue d'un entier rela	atif			

Question 8 sur 8 bits?	Que vaut le nombre binair	re 11100000 coo	lé par la métho	de du complément à deux,	
		-32	224	-224	
Question 9	Le nombre binaire 01111	111 codé sur 8	bits est:		
le plus petit entier relatif négatif qu'on peut coder sur 8 bits est un cas particulier: il a la même représentation que son opposé le codage de un le plus grand entier relatif positif qu'on peut coder sur 8 bits					
Question 10 deux?	Quelle est la représenta	tion de -3 sur	8 bits, par la 1	méthode du complément à	
	11111100 00000	101	11111101	00000100	
Question 11 011111111 + 000	On travaille avec des	s entiers relati	fs codés sur 8	bits. L'addition binaire	
_	sible nombre positif nombre négatif				
Question 12 01111110 (sur 8		de l'entier relat	if dont la rep	résentation en binaire est	
	☐ −126 ☐ 1	26	-128	-124	
Question 13 à deux, le bit d		d'entiers relatif	s sur 8 bits par l	a méthode du complément	
obtenu en	n inversant les bits				
le bit de p	poids fort (bit 7)				
obtenu en	ajoutant 1 au nombre				
\Box le bit de poids faible (bit θ)					
Codage de nombres réels					
Question 14	Le nombre $10010,0011$	peut s'écrire:			
$1,00100011 \times 10^4$					
$\boxed{}$ 1,00100011 × 10 ⁻⁴					
$1,00100011 \times 2^4$					
1,0010001	11×2^{-4}				
Question 15 Quel est le codage en binaire selon la méthode de la virgule fixe, du nombre réel 3, 25?					
	3,11001 11,	, 11001	11,01	1,101	
Question 16 L'instruction 0.1 + 0.2 == 0.3 en python, fournira:					
	0.3 False	Syn	taxError	True	

Question 17	Cochez une p	propriété correcte	des nombres flott	ants sur une machine numérique
	s possible de co n des flottants		norme IEEE754 o	qui définit les règles de codage e
La représer mantisse	ntation en virg	rule flottante néce	ssite 3 octets por	ur coder le signe, l'exposant et l
	étés mathéma ec les flottants		associativité de l	'addition ne sont pas forcémen
La représer	ntation avec to	ous les bits à zéro	est interdite	
Question 18 posant mantiss précision (32 bits	se. Que vaut			e écriture de la forme $signe \mid e$ 000000000000000000000000000000000
15	31, 578125	9,25	25, 25	
Question 19	Que vaut le	nombre binaire 10	0001,01 codé selo	on la méthode de la virgule fixe
[17, 1	<u> </u>	17, 25	1,000101
Question 20 raison?	L'opération	0.1*12 en pytho	on fournit 1.2000	00000000000000 Quelle en est l
La calculat	rice de pythor	est plus précise	qu'une calculatri	ce ordinaire
Par défaut	tous les calcul	ls sur les décimau	x sont fourni ave	c 16 décimales
		sir float(0.1*12		
Les nombre	es réels sont re	présentés de man	ière approximati	ve en machine
Question 21	Quelle est la	représentation en	n virgule flottante	e, simple précision de $-132, 5$?
1 10000110	000010010000	00000000000		
1 10000111	. 000010010000	000000000000		
1 10000100	100000000000000000000000000000000000000	000000000000		
0 10000110	000010010000	000000000000		

+18/4/49+

$ \begin{array}{ccc} $	Codez votre numéro d'identification ci contre chiffre par chiffre,		
$\square 4 \ \square 4$	puis complétez l'encadré.		
5 □ 56 □ 6	NOM - Prénom - Classe :		
	Codage d'entiers naturels		
Question 1	Quelle est la valeur de l'entier naturel codé par le motif binaire 00011010 ?		
Question 2	On effectue l'addition binaire $00101101 + 00001011$. Quel est le résultat?		
	00101000		
Question 3	Quelle est la représentation sur 8 bits de l'addition binaire $10111011 + 01110101$?		
	00110000		
Question 4	L'entier naturel 25 s'écrit en binaire naturel sur 8 bits:		
	00010101 00011001 00011000 00011010		
Question 5	On considère le nombre $N=1000_{10}$ (écrit en base 10). L'écriture de N en binaire:		
se termi comport	te au moins 9 chiffres ne par 1 te 4 chiffres te moins de 9 chiffres		
	Codage d'entiers relatifs		
Question 6 (sur 8 bits)?	Quelle est la valeur de l'entier relatif dont la représentation en binaire est 01111110		

$ \textbf{Question 7} \qquad \text{Dans une représentation d'entiers relatifs sur 8 bits par la méthode du complément à deux, le bit de signe est:} $			
 □ obtenu en inversant les bits □ obtenu en ajoutant 1 au nombre □ le bit de poids fort (bit 7) □ le bit de poids faible (bit 0) 			
Question 8 On travaille avec des entiers relatifs codés sur 8 bits. L'addition binaire $011111111 + 000000001$:			
donne un nombre positif zéro est impossible donne un nombre négatif			
Question 9 La méthode du complément à deux permet:			
de trouver la valeur absolue d'un entier relatif d'inverser tous les bits d'un nombre entier écrit en binaire d'ajouter 1 à un nombre entier écrit en binaire d'obtenir l'opposé d'un nombre entier écrit en binaire			
Question 10 Quelle est la représentation de -3 sur 8 bits, par la méthode du complément à deux?			
00000101 111111100 00000100 111111101			
Question 11 Quel est le codage de l'entier relatif positif 64 sur 8 bits?			
01000000 01100000 11100000 11000000			
Que vaut le nombre binaire 11100000 codé par la méthode du complément à deux, sur 8 bits?			
Question 13 Le nombre binaire 01111111 codé sur 8 bits est:			
le plus grand entier relatif positif qu'on peut coder sur 8 bits le plus petit entier relatif négatif qu'on peut coder sur 8 bits le codage de un est un cas particulier: il a la même représentation que son opposé			
Codage de nombres réels			
Question 14 L'instruction 0.1 + 0.2 == 0.3 en python, fournira:			
True 0.3 False SyntaxError			
Que vaut le nombre binaire 10001,01 codé selon la méthode de la virgule fixe?			
■ 17.25			

Question 16 Le nombre 10010,0011 peut s'écrire:
Question 17 Quel est le codage en binaire selon la méthode de la virgule fixe, du nombre rée $3,25$?
Question 18 La représentation en virgule flottante est une écriture de la forme $signe \mid exposant \mid mantisse$. Que vaut le nombre 0 10000011 10010100000000000000000000
Question 19 L'opération 0.1*12 en python fournit 1.20000000000002. Quelle en est la raison?
 L'opérateur aurait dû saisir float(0.1*12) Les nombres réels sont représentés de manière approximative en machine La calculatrice de python est plus précise qu'une calculatrice ordinaire Par défaut tous les calculs sur les décimaux sont fourni avec 16 décimales
Question 20 Quelle est la représentation en virgule flottante, simple précision de $-132, 5$?
1 10000110 000010010000000000000000000
Question 21 Cochez une propriété correcte des nombres flottants sur une machine numérique
 La représentation avec tous les bits à zéro est interdite Il n'est pas possible de coder zéro avec la norme IEEE754 qui définit les règles de codage e d'utilisation des flottants
Des propriétés mathématiques comme l'associativité de l'addition ne sont pas forcémen valables avec les flottants
La représentation en virgule flottante nécessite 3 octets pour coder le signe, l'exposant et la mantisse

	Codez votre numéro d'identification ci contre chiffre par chiffre		
	Codez votre numéro d'identification ci contre chiffre par chiffre, puis complétez l'encadré.		
\Box 4 \Box 4 \Box 5 \Box 5			
	NOM - Prénom - Classe :		
<u>7</u> <u>7</u>			
8 8	Durée : 55 minutes. Document écrit non autorisé. Calculatrice autorisée. Les réponses fausses ou		
<u>9</u> <u>9</u>	incohérentes retirent des points.		
	Codage d'entiers naturels		
Question 1	Quelle est la représentation sur 8 bits de l'addition binaire $10111011 + 01110101$?		
	00110000		
Question 2	On considère le nombre $N=1000_{10}$ (écrit en base 10). L'écriture de N en binaire:		
comport	e 4 chiffres		
comport	e au moins 9 chiffres		
se termi	-		
comport	e moins de 9 chiffres		
Question 3	On effectue l'addition binaire $00101101 + 00001011$. Quel est le résultat?		
	00111100 001011000 00100110 00101000		
Question 4	Quelle est la valeur de l'entier naturel codé par le motif binaire 00011010 ?		
Question 5	L'entier naturel 25 s'écrit en binaire naturel sur 8 bits:		
	00011001		
	Codage d'entiers relatifs		
Question 6 01111111 + 00	On travaille avec des entiers relatifs codés sur 8 bits. L'addition binaire 0000001:		
donne u	n nombre négatif		
	n nombre positif		
zéro	ogible		
est impo	ISSIDIE		

Question 7 Dans une représentation d'entiers relatifs sur 8 bits par la méthode du complément à deux, le bit de signe est:
obtenu en ajoutant 1 au nombre
le bit de poids faible (bit 0)
le bit de poids fort (bit 7)
obtenu en inversant les bits
Question 8 Quelle est la représentation de -3 sur 8 bits, par la méthode du complément à deux?
00000101 111111101 111111100 00000100
Question 9 Le nombre binaire 01111111 codé sur 8 bits est:
est un cas particulier: il a la même représentation que son opposé le plus grand entier relatif positif qu'on peut coder sur 8 bits le plus petit entier relatif négatif qu'on peut coder sur 8 bits le codage de un
Question 10 Quel est le codage de l'entier relatif positif 64 sur 8 bits?
□ 01100000 □ 11100000 □ 11000000 ■ 01000000
Question 11 Quelle est la valeur de l'entier relatif dont la représentation en binaire est 01111110 ($sur\ 8\ bits$)?
Question 12 Que vaut le nombre binaire 11100000 codé par la méthode du complément à deux, sur 8 bits?
Question 13 La méthode du complément à deux permet:
d'inverser tous les bits d'un nombre entier écrit en binaire
d'obtenir l'opposé d'un nombre entier écrit en binaire
de trouver la valeur absolue d'un entier relatif
d'ajouter 1 à un nombre entier écrit en binaire
Codage de nombres réels
Question 14 L'instruction 0.1 + 0.2 == 0.3 en python, fournira:
False 0.3 SyntaxError True
Question 15 La représentation en virgule flottante est une écriture de la forme $signe \mid exposant \mid mantisse$. Que vaut le nombre 0 10000011 10010100000000000000000000

Question 16 L'opération 0.1*12 en python fournit 1.200000000000000. Quelle en est la raison? La calculatrice de python est plus précise qu'une calculatrice ordinaire Par défaut tous les calculs sur les décimaux sont fourni avec 16 décimales L'opérateur aurait dû saisir float (0.1*12) Les nombres réels sont représentés de manière approximative en machine Question 17 Quelle est la représentation en virgule flottante, simple précision de -132, 5? 1 10000111 000010010000000000000000 $1\ 10000100\ 1000000000000000000000000$ 1 10000110 0000100100000000000000000 $0\ 10000110\ 0000100100000000000000000$ Question 18 Cochez une propriété correcte des nombres flottants sur une machine numérique. La représentation en virgule flottante nécessite 3 octets pour coder le signe, l'exposant et la La représentation avec tous les bits à zéro est interdite Des propriétés mathématiques comme l'associativité de l'addition ne sont pas forcément valables avec les flottants Il n'est pas possible de coder zéro avec la norme IEEE754 qui définit les règles de codage et d'utilisation des flottants Question 19 Quel est le codage en binaire selon la méthode de la virgule fixe, du nombre réel 3,25? 11,01 3,11001 1,101 11,11001 Question 20 Que vaut le nombre binaire 10001, 01 codé selon la méthode de la virgule fixe? 17, 1 17,01 17, 251,000101 Question 21 Le nombre 10010,0011 peut s'écrire: $1,00100011 \times 2^4$ $1,00100011 \times 10^4$ $1,00100011 \times 10^{-4}$

 $1,00100011 \times 2^{-4}$

+20/4/41+

$ \begin{array}{ccc} $	Codez votre puis complétez l		ication ci contre chi	ffre par chiffre,
	NOM - Prénom - Classe :			
778899	Durée : 55 minutes. Document écrit non autorisé. Calculatrice autorisée. Les réponses fausses ou incohérentes retirent des points.			
	C	odage d'ent	iers naturels	5
Question 1	Quelle est la re	eprésentation sur	8 bits de l'addition	binaire 10111011 + 01110101?
	00000000	00110000	Impossible	100110000
Question 2	Quelle est la va	aleur de l'entier n	aturel codé par le n	notif binaire 00011010 ?
	<u> </u>	51	22	26
Question 3	On considère le	nombre $N = 100$	0 ₁₀ (écrit en base 10	9). L'écriture de N en binaire:
se termin	e au moins 9 chif ne par 1 e moins de 9 chif e 4 chiffres			
Question 4	L'entier nature	l 25 s'écrit en bin	aire naturel sur 8 b	its:
	00011001	00010101	00011010	00011000
Question 5	On effectue l'ac	ddition binaire 00	101101 + 00001011.	Quel est le résultat?
	00101000	00111100	00100110	00111000
	C	odage d'en	tiers relatifs	
Question 6	Le nombre bir	naire 011111111 co	dé sur 8 bits est:	
le plus g	rand entier relati e de un	f positif qu'on pe	ntation que son opput coder sur 8 bits	oosé

Question 7 Dans une représentation d'entiers relatifs sur 8 bits par la méthode du complément à deux, le bit de signe est:
le bit de poids fort (bit 7)
obtenu en inversant les bits
\Box le bit de poids faible (bit θ)
obtenu en ajoutant 1 au nombre
Question 8 Quelle est la valeur de l'entier relatif dont la représentation en binaire est 01111110 (sur 8 bits)?
Question 9 Quel est le codage de l'entier relatif positif 64 sur 8 bits?
11100000 01000000 11000000 01100000
Que vaut le nombre binaire 11100000 codé par la méthode du complément à deux, sur 8 bits?
Question 11 La méthode du complément à deux permet:
d'obtenir l'opposé d'un nombre entier écrit en binaire de trouver la valeur absolue d'un entier relatif d'ajouter 1 à un nombre entier écrit en binaire
Question 12 On travaille avec des entiers relatifs codés sur 8 bits. L'addition binaire $011111111 + 000000001$:
donne un nombre négatif est impossible donne un nombre positif zéro
Question 13 Quelle est la représentation de -3 sur 8 bits, par la méthode du complément à deux?
00000101 11111101 11111100 00000100
Codage de nombres réels
Question 14 Que vaut le nombre binaire 10001,01 codé selon la méthode de la virgule fixe?
Question 15 Le nombre 10010,0011 peut s'écrire:
$ \begin{array}{c} 1,00100011 \times 10^{-4} \\ 1,00100011 \times 10^{4} \\ 1,00100011 \times 2^{-4} \\ 1,00100011 \times 2^{4} \end{array} $

Question 16 L'instruction 0.1 + 0.2 == 0.3 en python, fournira:
0.3 False SyntaxError True
Question 17 L'opération $0.1*12$ en python fournit $1.2000000000000000000000000000000000000$
L'opérateur aurait dû saisir float(0.1*12) Par défaut tous les calculs sur les décimaux sont fourni avec 16 décimales La calculatrice de python est plus précise qu'une calculatrice ordinaire Les nombres réels sont représentés de manière approximative en machine
Question 18 Quelle est la représentation en virgule flottante, simple précision de $-132, 5$? 1 10000110 000010010000000000000000000
Question 19 Quel est le codage en binaire selon la méthode de la virgule fixe, du nombre réel $3,25$?
Question 20 La représentation en virgule flot tante est une écriture de la forme $signe \mid exposant \mid mantisse.$ Que vaut le nombre 0 10000011 10010100000000000000000000
Question 21 Cochez une propriété correcte des nombres flottants sur une machine numérique.
Il n'est pas possible de coder zéro avec la norme IEEE754 qui définit les règles de codage et d'utilisation des flottants
La représentation en virgule flottante nécessite 3 octets pour coder le signe, l'exposant et la mantisse
La représentation avec tous les bits à zéro est interdite
Des propriétés mathématiques comme l'associativité de l'addition ne sont pas forcément

valables avec les flottants

	Codez votre numéro d'identification ci cont puis complétez l'encadré.	tre chiffre par chiffre,	
	$ \begin{array}{c c} $		
778899	Durée : 55 minutes. Durée : 55 minutes. Document écrit non autorisé. Calculatrice autorisée. Les réponses fausses ou incohérentes retirent des points.		
	Codage d'entiers natu	ırels	
Question 1	L'entier naturel 25 s'écrit en binaire naturel s	ur 8 bits:	
	00011000	0101 00011001	
Question 2	On effectue l'addition binaire $00101101 + 0000$	01011. Quel est le résultat?	
	00100110 00101000 0011	1000 00111100	
Question 3	Quelle est la valeur de l'entier naturel codé pa	ar le motif binaire 00011010 ?	
	□ 22 □ 26 □ 51	24	
Question 4 On considère le nombre $N=1000_{10}$ (écrit en base 10). L'écriture de N en binaire: comporte au moins 9 chiffres comporte moins de 9 chiffres se termine par 1 comporte 4 chiffres			
Question 5	Quelle est la représentation sur 8 bits de l'add	dition binaire $10111011 + 01110101$?	
	100110000	000000 00110000	
Codage d'entiers relatifs			
Question 6	La méthode du complément à deux permet:		
d'inverse de trouve	r 1 à un nombre entier écrit en binaire er tous les bits d'un nombre entier écrit en binair er la valeur absolue d'un entier relatif r l'opposé d'un nombre entier écrit en binaire	re	
Question 7	Quel est le codage de l'entier relatif positif 64	4 sur 8 bits?	
	11100000	01000000	

Question 8 Dans une représentation d'entiers relatifs sur 8 bits par la méthode du complément à deux, le bit de signe est:
obtenu en ajoutant 1 au nombre
le bit de poids fort $(bit 7)$
\Box le bit de poids faible (bit θ)
obtenu en inversant les bits
Question 9 Quelle est la représentation de -3 sur 8 bits, par la méthode du complément à deux?
00000100 00000101 11111101 11111100
Question 10 On travaille avec des entiers relatifs codés sur 8 bits. L'addition binaire $011111111 + 000000001$:
zéro donne un nombre négatif donne un nombre positif est impossible
Question 11 Quelle est la valeur de l'entier relatif dont la représentation en binaire est $011111110 \ (sur \ 8 \ bits)$?
Question 12 Le nombre binaire 011111111 codé sur 8 bits est:
le plus petit entier relatif négatif qu'on peut coder sur 8 bits le plus grand entier relatif positif qu'on peut coder sur 8 bits le codage de un est un cas particulier: il a la même représentation que son opposé
Question 13 Que vaut le nombre binaire 11100000 codé par la méthode du complément à deux, sur 8 bits?
Codage de nombres réels
Question 14 Quel est le codage en binaire selon la méthode de la virgule fixe, du nombre réel 3,25?
\blacksquare 11,01 \square 3,11001 \square 1,101 \square 11,11001
Question 15 Cochez une propriété correcte des nombres flottants sur une machine numérique.
La représentation en virgule flottante nécessite 3 octets pour coder le signe, l'exposant et la mantisse
La représentation avec tous les bits à zéro est interdite
Des propriétés mathématiques comme l'associativité de l'addition ne sont pas forcément valables avec les flottants
Il n'est pas possible de coder zéro avec la norme IEEE754 qui définit les règles de codage et

d'utilisation des flottants

Question 16 Le nombre 10010,0011 peut s'écrire:	
$\begin{array}{ c c c c c }\hline & 1,00100011 \times 10^4\\ \hline & 1,00100011 \times 10^{-4}\\ \hline & 1,00100011 \times 2^{-4}\\ \hline & 1,00100011 \times 2^4\\ \hline \end{array}$	
Question 17 L'instruction 0.1 + 0.2 == 0.3 en python, fournira:	
☐ True ☐ False ☐ 0.3 ☐ SyntaxError	
Question 18 La représentation en virgule flottante est une écriture de la forme $signe \mid oposant \mid mantisse$. Que vaut le nombre 0 10000011 10010100000000000000000000	
Question 19 Quelle est la représentation en virgule flottante, simple précision de −132, 5? □ 0 10000110 000010010000000000000 ■ 1 10000110 000010010000000000000 □ 1 10000111 000010010000000000000 □ 1 10000100 1000000000000000000	
Question 20 Que vaut le nombre binaire 10001,01 codé selon la méthode de la virgule fixe	∍?
Question 21 L'opération 0.1*12 en python fournit 1.20000000000000. Quelle en est raison?	la
Par défaut tous les calculs sur les décimaux sont fourni avec 16 décimales L'opérateur aurait dû saisir float(0.1*12) La calculatrice de python est plus précise qu'une calculatrice ordinaire Les nombres réels sont représentés de manière approximative en machine	

+22,	/4/	'33+
------	-----	-------------

$\Box 0 \ \Box 0$					
$\boxed{1}$ $\boxed{1}$					
$ \begin{array}{cccc} & & & \\ & & & &$	Codez votre numéro d'identification ci contre chiffre par chiffre, puis complétez l'encadré.				
	NOM - Prénom	NOM - Prénom - Classe :			
☐ 7☐ 8☐ 8☐ 9☐ 9	Durée : 55 minutes. Document écrit non autorisé. Calculatrice autorisée. Les réponses fausses ou incohérentes retirent des points.				
	Co	dage d'enti	ers naturels		
Question 1	On considère le n	ombre $N = 1000$	10 (écrit en base 10)	. L'écriture de N en binaire:	
se termir	e au moins 9 chiffr ne par 1 e 4 chiffres e moins de 9 chiffre				
Question 2	On effectue l'add	lition binaire 001	01101 + 00001011.	Quel est le résultat?	
	00100110	00111100	00111000	00101000	
Question 3	L'entier naturel	25 s'écrit en bina	ire naturel sur 8 bits	s:	
	00010101	00011001	00011000	00011010	
Question 4	Quelle est la rep	résentation sur 8	bits de l'addition bi	naire $10111011 + 01110101$?	
	00110000	100110000	00000000	Impossible	
Question 5	Quelle est la vale	eur de l'entier na	turel codé par le mo	tif binaire 00011010 ?	
	24	<u>22</u>	26	51	
Codage d'entiers relatifs					
Question 6	Quel est le coda	ge de l'entier rela	atif positif 64 sur 8 l	oits?	
	01100000	01000000	11000000	11100000	
Question 7 sur 8 bits?	Que vaut le nom	bre binaire 11100	000 codé par la métl	hode du complément à deux,	
		224		-32	

Question 8 On travaille avec des entiers relatifs codés sur 8 bits. L'addition binaire $011111111 + 000000001$:			
donne un nombre positif			
donne un nombre négatif			
zéro			
est impossible			
Question 9 Le nombre binaire 01111111 codé sur 8 bits est:			
☐ le codage de un			
le plus grand entier relatif positif qu'on peut coder sur 8 bits			
est un cas particulier: il a la même représentation que son opposé			
le plus petit entier relatif négatif qu'on peut coder sur 8 bits			
$ \textbf{Question 10} \qquad \text{Dans une représentation d'entiers relatifs sur 8 bits par la méthode du complément à deux, le bit de signe est:} $			
obtenu en ajoutant 1 au nombre			
\Box le bit de poids faible (bit θ)			
le bit de poids fort (bit 7)			
obtenu en inversant les bits			
Question 11 Quelle est la représentation de -3 sur 8 bits, par la méthode du complément à deux?			
00000100 111111100 111111101 00000101			
Question 12 Quelle est la valeur de l'entier relatif dont la représentation en binaire est 01111110 ($sur\ 8\ bits$)?			
Question 13 La méthode du complément à deux permet:			
de trouver la valeur absolue d'un entier relatif			
d'ajouter 1 à un nombre entier écrit en binaire			
d'inverser tous les bits d'un nombre entier écrit en binaire			
d'obtenir l'opposé d'un nombre entier écrit en binaire			
Codage de nombres réels			
<u> </u>			
Il n'est pas possible de coder zéro avec la norme IEEE754 qui définit les règles de codage et d'utilisation des flottants			
Des propriétés mathématiques comme l'associativité de l'addition ne sont pas forcément valables avec les flottants			
La représentation en virgule flottante nécessite 3 octets pour coder le signe, l'exposant et la mantisse			
La représentation avec tous les bits à zéro est interdite			

L'opération 0.1*12 en python fournit 1.20000000000000. Quelle en est la Question 15 raison? La calculatrice de python est plus précise qu'une calculatrice ordinaire Par défaut tous les calculs sur les décimaux sont fourni avec 16 décimales Les nombres réels sont représentés de manière approximative en machine L'opérateur aurait dû saisir float (0.1*12) Le nombre 10010,0011 peut s'écrire: Question 16 $1,00100011 \times 10^{-4}$ $1,00100011 \times 2^4$ $1,00100011 \times 2^{-4}$ $1,00100011 \times 10^4$ Question 17 Quelle est la représentation en virgule flottante, simple précision de -132, 5? 1 10000111 000010010000000000000000 $1\ 10000100\ 1000000000000000000000000$ 1 10000110 0000100100000000000000000 $0\ 10000110\ 0000100100000000000000000$ Question 18 L'instruction 0.1 + 0.2 == 0.3 en python, fournira: False True 0.3 SyntaxError Question 19 Quel est le codage en binaire selon la méthode de la virgule fixe, du nombre réel 3, 25? 11,01 1, 101 11,11001 3,11001 Question 20 La représentation en virgule flottante est une écriture de la forme signe | ex-précision (32 bits)? 0.578125×2^{131} 131,578125 9, 25 25, 25 Que vaut le nombre binaire 10001, 01 codé selon la méthode de la virgule fixe? Question 21 17, 2517,01 1,000101 17, 1

$\square 0 \square 0$			
	Codez votre numéro d'identification ci contre chiffre par chiffre,		
	puis complétez l'encadré.		
55 66	NOM - Prénom - Classe :		
	Durée : 55 minutes. Document écrit non autorisé. Calculatrice autorisée. Les réponses fausses ou incohérentes retirent des points.		
	Codage d'entiers naturels		
Question 1	Quelle est la représentation sur 8 bits de l'addition binaire $10111011 + 01110101$?		
	000000000		
Question 2	Quelle est la valeur de l'entier naturel codé par le motif binaire 00011010 ?		
	\square 24 \square 51 \square 22 \square 26		
Question 3	L'entier naturel 25 s'écrit en binaire naturel sur 8 bits:		
	00011001		
Question 4	On effectue l'addition binaire $00101101 + 00001011$. Quel est le résultat?		
	00101000 00111000 00100110 00111100		
Question 5	On considère le nombre $N=1000_{10}$ (écrit en base 10). L'écriture de N en binaire:		
comport	te au moins 9 chiffres te 4 chiffres te moins de 9 chiffres		
se termi			
	Codage d'entiers relatifs		
Question 6 01111111 + 00	On travaille avec des entiers relatifs codés sur 8 bits. L'addition binaire 0000001:		
zéro			
donne u	n nombre négatif		
	n nombre positif		

+24/2/27+ Question 7 Que vaut le nombre binaire 11100000 codé par la méthode du complément à deux, sur 8 bits? -224-96224 -32Question 8 Quelle est la valeur de l'entier relatif dont la représentation en binaire est 01111110 (sur 8 bits)? -128-126-124126 Question 9 La méthode du complément à deux permet: d'obtenir l'opposé d'un nombre entier écrit en binaire d'inverser tous les bits d'un nombre entier écrit en binaire d'ajouter 1 à un nombre entier écrit en binaire de trouver la valeur absolue d'un entier relatif Question 10 Le nombre binaire 01111111 codé sur 8 bits est: le plus petit entier relatif négatif qu'on peut coder sur 8 bits le plus grand entier relatif positif qu'on peut coder sur 8 bits le codage de un est un cas particulier: il a la même représentation que son opposé Quelle est la représentation de -3 sur 8 bits, par la méthode du complément à Question 11 deux? 00000100 11111101 00000101 11111100 Question 12 Quel est le codage de l'entier relatif positif 64 sur 8 bits? 11100000 11000000 01100000 01000000 Dans une représentation d'entiers relatifs sur 8 bits par la méthode du complément Question 13 à deux, le bit de signe est: obtenu en ajoutant 1 au nombre le bit de poids faible ($bit \theta$) le bit de poids fort (bit 7) obtenu en inversant les bits Codage de nombres réels Question 14 Quelle est la représentation en virgule flottante, simple précision de -132, 5? $0\ 10000110\ 0000100100000000000000000$ 1 10000110 000010010000000000000000 $1\ 10000111\ 0000100100000000000000000$

L'instruction 0.1 + 0.2 == 0.3 en python, fournira:

SyntaxError

0.3

True

False

Question 15

Question 16 L'opération 0.1*12 en python fournit 1.200000000000000. Quelle en est la raison? Par défaut tous les calculs sur les décimaux sont fourni avec 16 décimales La calculatrice de python est plus précise qu'une calculatrice ordinaire Les nombres réels sont représentés de manière approximative en machine L'opérateur aurait dû saisir float (0.1*12) Question 17 Quel est le codage en binaire selon la méthode de la virgule fixe, du nombre réel 3,25? 1,101 11, 11001 3,11001 11,01 La représentation en virgule flottante est une écriture de la forme signe | ex-précision (32 bits)? $0,578125 \times 2^{131}$ 131,578125 9,25 25, 25 Question 19 Cochez une propriété correcte des nombres flottants sur une machine numérique. Des propriétés mathématiques comme l'associativité de l'addition ne sont pas forcément valables avec les flottants La représentation avec tous les bits à zéro est interdite La représentation en virgule flottante nécessite 3 octets pour coder le signe, l'exposant et la mantisse Il n'est pas possible de coder zéro avec la norme IEEE754 qui définit les règles de codage et d'utilisation des flottants Question 20 Le nombre 10010,0011 peut s'écrire: $1,00100011 \times 2^{-4}$ $1,00100011 \times 10^{-4}$ $1,00100011 \times 2^4$ $1,00100011 \times 10^4$ Que vaut le nombre binaire 10001,01 codé selon la méthode de la virgule fixe? Question 21

17, 25

17, 1

17,01

1,000101

. 0.4	11	/OF :
+24	/4	/25+

	Codez votre numéro d'identification ci contre chiffre par chiffre, puis complétez l'encadré. NOM - Prénom - Classe : Durée : 55 minutes. Document écrit non autorisé. Calculatrice autorisée. Les réponses fausses ou incohérentes retirent des points.		
	Codage d'entiers naturels		
Question 1	On considère le nombre $N=1000_{10}$ (écrit en base 10). L'écriture de N en binaire:		
comport	ne par 1 e au moins 9 chiffres e 4 chiffres e moins de 9 chiffres		
Question 2	Quelle est la représentation sur 8 bits de l'addition binaire $10111011 + 01110101$?		
	100110000 00000000 00110000 Impossible		
Question 3	On effectue l'addition binaire $00101101 + 00001011$. Quel est le résultat?		
	00111000		
Question 4	Quelle est la valeur de l'entier naturel codé par le motif binaire 00011010 ?		
•	\square 51 \square 22 \square 24 \blacksquare 26		
Question 5	L'entier naturel 25 s'écrit en binaire naturel sur 8 bits:		
	00010101		
	Codage d'entiers relatifs		
Question 6	La méthode du complément à deux permet:		
d'inverse	d'inverser tous les bits d'un nombre entier écrit en binaire		
de trouv	de trouver la valeur absolue d'un entier relatif		
_	r 1 à un nombre entier écrit en binaire		
d'obtenir l'opposé d'un nombre entier écrit en binaire			

Question 7 Le nombre binaire 01111111 codé sur 8 bits est:
 □ le codage de un □ est un cas particulier: il a la même représentation que son opposé □ le plus petit entier relatif négatif qu'on peut coder sur 8 bits □ le plus grand entier relatif positif qu'on peut coder sur 8 bits
Question 8 On travaille avec des entiers relatifs codés sur 8 bits. L'addition binaire $011111111 + 000000001$:
 zéro ■ donne un nombre négatif est impossible □ donne un nombre positif
Question 9 Quel est le codage de l'entier relatif positif 64 sur 8 bits?
11000000 01000000 11100000 01100000
Question 10 Quelle est la représentation de -3 sur 8 bits, par la méthode du complément à deux?
11111101 00000100 11111100 00000101
Question 11 Quelle est la valeur de l'entier relatif dont la représentation en binaire est $011111110 \ (sur \ 8 \ bits)$?
Question 12 Dans une représentation d'entiers relatifs sur 8 bits par la méthode du complément à deux, le bit de signe est:
\Box le bit de poids faible (bit θ)
obtenu en ajoutant 1 au nombre
obtenu en inversant les bits
le bit de poids fort (bit 7)
Que stion 13 Que vaut le nombre binaire 11100000 codé par la méthode du complément à deux, sur 8 bits?
Codage de nombres réels
Question 14 Que vaut le nombre binaire 10001, 01 codé selon la méthode de la virgule fixe?

Question 15 Cochez une propriété correcte des nombres flottants sur une machine numérique. Il n'est pas possible de coder zéro avec la norme IEEE754 qui définit les règles de codage et d'utilisation des flottants Des propriétés mathématiques comme l'associativité de l'addition ne sont pas forcément valables avec les flottants La représentation en virgule flottante nécessite 3 octets pour coder le signe, l'exposant et la La représentation avec tous les bits à zéro est interdite Question 16 Le nombre 10010,0011 peut s'écrire: $1,00100011 \times 2^{-4}$ $1,00100011 \times 10^4$ $1.00100011 \times 10^{-4}$ $1,00100011 \times 2^4$ Question 17 Quelle est la représentation en virgule flottante, simple précision de -132, 5? $1\ 10000111\ 0000100100000000000000000$ 1 10000110 000010010000000000000000 $0\ 10000110\ 0000100100000000000000000$ La représentation en virgule flottante est une écriture de la forme signe | ex-Question 18 $posant \mid mantisse.$ précision (32 bits)? 0.578125×2^{131} 9.25 25, 25131,578125 L'instruction 0.1 + 0.2 == 0.3 en python, fournira: Question 19 0.3 True SyntaxError False L'opération 0.1*12 en python fournit 1.20000000000000. Quelle en est la Question 20 raison? L'opérateur aurait dû saisir float (0.1*12) Par défaut tous les calculs sur les décimaux sont fourni avec 16 décimales La calculatrice de python est plus précise qu'une calculatrice ordinaire Les nombres réels sont représentés de manière approximative en machine Question 21 Quel est le codage en binaire selon la méthode de la virgule fixe, du nombre réel 3, 25? 3,11001 11,11001 1,101 11,01

$\Box 0 \Box 0$				
$ \begin{array}{ccc} $	Codez votre numéro d'identification ci contre chiffre par chiffre, puis complétez l'encadré. NOM - Prénom - Classe : Durée : 55 minutes. Document écrit non autorisé. Calculatrice autorisée. Les réponses fausses ou incohérentes retirent des points.			
	Codage d'entiers naturels			
Question 1	Question 1 On considère le nombre $N = 1000_{10}$ (écrit en base 10). L'écriture de N en binaire:			
comporte	ne par 1 e moins de 9 chiffres e au moins 9 chiffres e 4 chiffres			
Question 2	Quelle est la valeur de l'entier naturel codé par le motif binaire 00011010 ?			
	\blacksquare 26 \square 51 \square 22 \square 24			
Question 3	On effectue l'addition binaire $00101101 + 00001011$. Quel est le résultat?			
	00111100			
Question 4	Quelle est la représentation sur 8 bits de l'addition binaire $10111011 + 01110101$?			
	Impossible 00110000			
Question 5	Question 5 L'entier naturel 25 s'écrit en binaire naturel sur 8 bits:			
	00011001			
	Codage d'entiers relatifs			
Question 6 deux?	Quelle est la représentation de -3 sur 8 bits, par la méthode du complément à			
	11111100			

Question 7 Dans une représentation d'entiers relatifs sur 8 bits par la méthode du complément à deux, le bit de signe est:
\Box le bit de poids faible (bit θ)
le bit de poids fort (bit 7)
obtenu en ajoutant 1 au nombre obtenu en inversant les bits
Question 8 Quelle est la valeur de l'entier relatif dont la représentation en binaire est 01111110 (sur 8 bits)?
Question 9 On travaille avec des entiers relatifs codés sur 8 bits. L'addition binaire $011111111 + 000000001$:
 □ est impossible □ zéro □ donne un nombre positif □ donne un nombre négatif
Question 10 Quel est le codage de l'entier relatif positif 64 sur 8 bits?
01000000
Question 11 Le nombre binaire 01111111 codé sur 8 bits est:
□ le plus petit entier relatif négatif qu'on peut coder sur 8 bits □ est un cas particulier: il a la même représentation que son opposé □ le codage de un □ le plus grand entier relatif positif qu'on peut coder sur 8 bits
Question 12 La méthode du complément à deux permet:
d'inverser tous les bits d'un nombre entier écrit en binaire d'ajouter 1 à un nombre entier écrit en binaire d'obtenir l'opposé d'un nombre entier écrit en binaire de trouver la valeur absolue d'un entier relatif
Question 13 Que vaut le nombre binaire 11100000 codé par la méthode du complément à deux, sur 8 bits?
Codage de nombres réels
Question 14 Que vaut le nombre binaire 10001, 01 codé selon la méthode de la virgule fixe?

Question 15 Quelle est la représentation en virgule flottante, simple précision de -132, 5? 1 10000110 0000100100000000000000000 1 10000111 000010010000000000000000 $0\ 10000110\ 0000100100000000000000000$ Question 16 Cochez une propriété correcte des nombres flottants sur une machine numérique. La représentation avec tous les bits à zéro est interdite La représentation en virgule flottante nécessite 3 octets pour coder le signe, l'exposant et la mantisse Des propriétés mathématiques comme l'associativité de l'addition ne sont pas forcément valables avec les flottants Il n'est pas possible de coder zéro avec la norme IEEE754 qui définit les règles de codage et d'utilisation des flottants Question 17 Quel est le codage en binaire selon la méthode de la virgule fixe, du nombre réel 3,25? 11,11001 1,101 11,013,11001 Question 18 L'opération 0.1*12 en python fournit 1.2000000000000. Quelle en est la raison? L'opérateur aurait dû saisir float (0.1*12) La calculatrice de python est plus précise qu'une calculatrice ordinaire Par défaut tous les calculs sur les décimaux sont fourni avec 16 décimales Les nombres réels sont représentés de manière approximative en machine Question 19 Le nombre 10010,0011 peut s'écrire: $1,00100011 \times 2^{-4}$ $1,00100011 \times 10^{-4}$ $] 1,00100011 \times 10^4$ $1,00100011 \times 2^4$ Question 20 L'instruction 0.1 + 0.2 == 0.3 en python, fournira: SyntaxError False 0.3 True

La représentation en virgule flottante est une écriture de la forme signe | ex-

131, 578125

 $0,578125 \times 2^{131}$

9,25

Question 21

précision (32 bits)?

25, 25

+26/4/17+

	Codez votre numéro d'identification ci contre chiffre par chiffre,		
	puis complétez l'encadré.		
\Box 4 \Box 4 \Box 5 \Box 5			
$\Box 6 \Box 6$	NOM - Prénom - Classe :		
■8■9■9	Durée : 55 minutes. Document écrit non autorisé. Calculatrice autorisée. Les réponses fausses ou incohérentes retirent des points.		
	Codage d'entiers naturels		
Question 1	L'entier naturel 25 s'écrit en binaire naturel sur 8 bits:		
	00010101		
Question 2	On considère le nombre $N=1000_{10}$ (écrit en base 10). L'écriture de N en binaire:		
comported se termin	e moins de 9 chiffres e au moins 9 chiffres ne par 1 e 4 chiffres		
Question 3	Quelle est la représentation sur 8 bits de l'addition binaire $10111011 + 01110101$?		
	00000000 00110000 100110000 Impossible		
Question 4	On effectue l'addition binaire $00101101 + 00001011$. Quel est le résultat?		
	00111000		
Question 5	Quelle est la valeur de l'entier naturel codé par le motif binaire 00011010 ?		
Codage d'entiers relatifs			
Question 6	Quel est le codage de l'entier relatif positif 64 sur 8 bits?		
	11000000		
Question 7 (sur 8 bits)?	Quelle est la valeur de l'entier relatif dont la représentation en binaire est 011111110		

Question 8 Quelle est la représentation de -3 sur 8 bits, par la méthode du complément à deux?
00000101 111111101 111111100 00000100
Question 9 Le nombre binaire 01111111 codé sur 8 bits est:
le codage de un le plus grand entier relatif positif qu'on peut coder sur 8 bits le plus petit entier relatif négatif qu'on peut coder sur 8 bits est un cas particulier: il a la même représentation que son opposé
Question 10 La méthode du complément à deux permet:
d'ajouter 1 à un nombre entier écrit en binaire d'obtenir l'opposé d'un nombre entier écrit en binaire de trouver la valeur absolue d'un entier relatif d'inverser tous les bits d'un nombre entier écrit en binaire
Question 11 On travaille avec des entiers relatifs codés sur 8 bits. L'addition binaire $011111111 + 000000001$:
est impossible donne un nombre positif donne un nombre négatif zéro
Question 12 Dans une représentation d'entiers relatifs sur 8 bits par la méthode du complément à deux, le bit de signe est:
 □ obtenu en inversant les bits □ le bit de poids fort (bit 7) □ le bit de poids faible (bit 0) □ obtenu en ajoutant 1 au nombre
Question 13 deux, sur 8 bits? Que vaut le nombre binaire 11100000 codé par la méthode du complément à
Codage de nombres réels
Question 14 L'opération 0.1*12 en python fournit 1.20000000000000. Quelle en est la raison?
La calculatrice de python est plus précise qu'une calculatrice ordinaire L'opérateur aurait dû saisir float(0.1*12) Les nombres réels sont représentés de manière approximative en machine Par défaut tous les calculs sur les décimaux sont fourni avec 16 décimales

Question 15 Quel es 3, 25?	t le codage en binaire se	elon la méthode de la	a virgule fixe, du nombre réel
11,01	11,11001	3,11001	1,101
			iture de la forme signe ex- 0000000000000 codé en simple
131,57812	25, 25	$0,578125 \times 2^{1}$	9,25
Question 17 Que va	ut le nombre binaire 10	001,01 codé selon la	méthode de la virgule fixe?
1,00	0101 17, 25	17,01	17,1
Question 18 Le nom	bre 10010,0011 peut s'	écrire:	
Question 19 L'instru	action 0.1 + 0.2 == 0	.3 en python, fourni	ra:
False	True	SyntaxError	0.3
Question 20 Quelle	est la représentation en	virgule flottante, sir	mple précision de $-132, 5$?
1 10000100 1000000 1 10000111 0000100 1 10000110 0000100 0 10000110 0000100	1000000000000000 100000000000000000		
Question 21 Cochez	une propriété correcte d	les nombres flottants	sur une machine numérique.
La représentation en mantisse	n virgule flottante néces	ssite 3 octets pour co	der le signe, l'exposant et la
Il n'est pas possible d'utilisation des flot		orme IEEE754 qui d	léfinit les règles de codage et
La représentation a	vec tous les bits à zéro	est interdite	
Des propriétés mat valables avec les flot	-	ssociativité de l'add	ition ne sont pas forcément

	Codez votre numéro d'identification ci contre chiffre par chiffre, puis complétez l'encadré. NOM - Prénom - Classe : Durée : 55 minutes. Document écrit non autorisé. Calculatrice autorisée. Les réponses fausses ou incohérentes retirent des points.
	Codage d'entiers naturels
Question 1	On considère le nombre $N=1000_{10}$ (écrit en base 10). L'écriture de N en binaire:
comporte	e 4 chiffres e moins de 9 chiffres ne par 1 e au moins 9 chiffres
Question 2	On effectue l'addition binaire $00101101 + 00001011$. Quel est le résultat?
	00101000
Question 3	Quelle est la représentation sur 8 bits de l'addition binaire $10111011 + 01110101$?
	00000000
Question 4	Quelle est la valeur de l'entier naturel codé par le motif binaire 00011010 ?
	\square 24 \square 26 \square 51 \square 22
Question 5	L'entier naturel 25 s'écrit en binaire naturel sur 8 bits:
	00010101
	Codage d'entiers relatifs
Question 6	Quel est le codage de l'entier relatif positif 64 sur 8 bits?
	11100000
Question 7 sur 8 bits?	Que vaut le nombre binaire 11100000 codé par la méthode du complément à deux,

Question 8 Quelle est la valeur de l'entier relatif dont la représentation en binaire est 011111110 (sur 8 bits)? -128126 -126-124Question 9 Quelle est la représentation de -3 sur 8 bits, par la méthode du complément à deux? 11111101 00000100 00000101 11111100 Question 10 La méthode du complément à deux permet: d'ajouter 1 à un nombre entier écrit en binaire d'obtenir l'opposé d'un nombre entier écrit en binaire de trouver la valeur absolue d'un entier relatif d'inverser tous les bits d'un nombre entier écrit en binaire Dans une représentation d'entiers relatifs sur 8 bits par la méthode du complément à deux, le bit de signe est: le bit de poids faible ($bit \theta$) obtenu en ajoutant 1 au nombre obtenu en inversant les bits le bit de poids fort (bit 7) Question 12 On travaille avec des entiers relatifs codés sur 8 bits. L'addition binaire 011111111 + 00000001: donne un nombre négatif zéro donne un nombre positif est impossible Le nombre binaire 01111111 codé sur 8 bits est: Question 13 est un cas particulier: il a la même représentation que son opposé le codage de un le plus grand entier relatif positif qu'on peut coder sur 8 bits le plus petit entier relatif négatif qu'on peut coder sur 8 bits Codage de nombres réels Le nombre 10010,0011 peut s'écrire: Question 14 $1,00100011 \times 2^{-4}$ $1,00100011 \times 2^4$ $1,00100011 \times 10^4$ $1,00100011 \times 10^{-4}$

Question 15 Cochez une propriété correcte des nombres flottants sur une machine numérique. La représentation en virgule flottante nécessite 3 octets pour coder le signe, l'exposant et la Des propriétés mathématiques comme l'associativité de l'addition ne sont pas forcément valables avec les flottants La représentation avec tous les bits à zéro est interdite Il n'est pas possible de coder zéro avec la norme IEEE754 qui définit les règles de codage et d'utilisation des flottants Question 16 L'instruction 0.1 + 0.2 == 0.3 en python, fournira: SyntaxError True False 0.3 Question 17 Quelle est la représentation en virgule flottante, simple précision de -132, 5? $1\ 10000110\ 000010010000000000000000$ $0\ 10000110\ 0000100100000000000000000$ 1 10000111 0000100100000000000000000 Question 18 La représentation en virgule flottante est une écriture de la forme signe | ex-précision (32 bits)? $0,578125 \times 2^{131}$ 131,578125 25, 25Question 19 L'opération 0.1*12 en python fournit 1.2000000000000. Quelle en est la raison? L'opérateur aurait dû saisir float (0.1*12) Les nombres réels sont représentés de manière approximative en machine Par défaut tous les calculs sur les décimaux sont fourni avec 16 décimales La calculatrice de python est plus précise qu'une calculatrice ordinaire Question 20 Que vaut le nombre binaire 10001, 01 codé selon la méthode de la virgule fixe? 1,000101 17,01 17, 117, 25Question 21 Quel est le codage en binaire selon la méthode de la virgule fixe, du nombre réel 3, 25? 3,11001 1,101 11,01 11,11001

+28/4/9+

$\Box 0 \ \Box 0$								
$\square 1 \square 1$								
2 2	Coder vetus numáns d'identification si contra chiffre non chiffre							
	Codez votre numéro d'identification ci contre chiffre par chiffre, puis complétez l'encadré.							
<u>4</u> <u>4</u> <u>5</u> <u>5</u>								
	NOM - Prénom - Classe :							
□ 7 □ 7								
8 8	Durée : 55 minutes. Document écrit non autorisé. Calculatrice autorisée. Les réponses fausses ou							
<u></u> 9 <u></u> 9	incohérentes retirent des points.							
	Codage d'entiers naturels							
Question 1	Quelle est la représentation sur 8 bits de l'addition binaire $10111011 + 01110101$?							
	00110000							
Question 2	On effectue l'addition binaire $00101101 + 00001011$. Quel est le résultat?							
	00111100 001011000 00100110 00101000							
Question 3	Quelle est la valeur de l'entier naturel codé par le motif binaire 00011010 ?							
Question 4	On considère le nombre $N=1000_{10}$ (écrit en base 10). L'écriture de N en binaire:							
	e au moins 9 chiffres							
se termin								
	e moins de 9 chiffres e 4 chiffres							
Question 5	L'entier naturel 25 s'écrit en binaire naturel sur 8 bits:							
	00011010							
	Codage d'entiers relatifs							
Question 6 01111111 + 00	On travaille avec des entiers relatifs codés sur 8 bits. L'addition binaire 000001:							
donne u	n nombre positif							
donne ur	n nombre négatif							
zéro	orible							
est impo	SSIDIE							

Question 7 La méthode du complément à deux permet: d'obtenir l'opposé d'un nombre entier écrit en binaire de trouver la valeur absolue d'un entier relatif d'inverser tous les bits d'un nombre entier écrit en binaire d'ajouter 1 à un nombre entier écrit en binaire Question 8 Quelle est la représentation de -3 sur 8 bits, par la méthode du complément à deux? 00000100 0000010111111101 11111100 Question 9 Le nombre binaire 01111111 codé sur 8 bits est: est un cas particulier: il a la même représentation que son opposé le codage de un le plus grand entier relatif positif qu'on peut coder sur 8 bits le plus petit entier relatif négatif qu'on peut coder sur 8 bits Question 10 Dans une représentation d'entiers relatifs sur 8 bits par la méthode du complément à deux, le bit de signe est: le bit de poids faible ($bit \theta$) le bit de poids fort (bit 7) obtenu en inversant les bits obtenu en ajoutant 1 au nombre Question 11 Que vaut le nombre binaire 11100000 codé par la méthode du complément à deux, sur 8 bits? -224-32224 -96Quel est le codage de l'entier relatif positif 64 sur 8 bits? Question 12 0110000011000000 11100000 01000000 Question 13 Quelle est la valeur de l'entier relatif dont la représentation en binaire est 011111110 (sur 8 bits)? 126-124-128-126Codage de nombres réels Question 14 Quelle est la représentation en virgule flottante, simple précision de -132, 5? 1 10000111 0000100100000000000000000 $1\ 10000100\ 1000000000000000000000000$ $1\ 10000110\ 0000100100000000000000000$ $0\ 10000110\ 0000100100000000000000000$

Question 15 L'opération 0.1*12 en python fournit 1.200000000000000. Quelle en est la raison? La calculatrice de python est plus précise qu'une calculatrice ordinaire L'opérateur aurait dû saisir float (0.1*12) Par défaut tous les calculs sur les décimaux sont fourni avec 16 décimales Les nombres réels sont représentés de manière approximative en machine Question 16 La représentation en virgule flottante est une écriture de la forme signe | ex-précision (32 bits)? 0.578125×2^{131} 131,578125 25, 259,25 Quel est le codage en binaire selon la méthode de la virgule fixe, du nombre réel Question 17 3,25?11, 11001 3,11001 11,01 1,101 Question 18 Que vaut le nombre binaire 10001, 01 codé selon la méthode de la virgule fixe? 17, 251,000101 17,01 17, 1Question 19 L'instruction 0.1 + 0.2 == 0.3 en python, fournira: True 0.3 False SyntaxError Question 20 Le nombre 10010,0011 peut s'écrire: $1,00100011 \times 10^{-4}$ $1,00100011 \times 2^{-4}$ $1,00100011 \times 10^4$ $1,00100011 \times 2^4$ Question 21 Cochez une propriété correcte des nombres flottants sur une machine numérique. La représentation avec tous les bits à zéro est interdite Des propriétés mathématiques comme l'associativité de l'addition ne sont pas forcément valables avec les flottants Il n'est pas possible de coder zéro avec la norme IEEE754 qui définit les règles de codage et d'utilisation des flottants La représentation en virgule flottante nécessite 3 octets pour coder le signe, l'exposant et la

mantisse

$ \begin{array}{ccc} $	Codez votre numéro d'identification ci contre chiffre par chiffre, puis complétez l'encadré.								
5	NOM - Prénom - Classe :								
	Document éc	erit non a	autorisé. Calc	ulatric	ninutes. ce autorisée. Int des points.	-	onses fausses ou		
		Codag	ge d'enti	ers 1	naturels				
Question 1	Quelle est la	a valeur d	le l'entier nat	urel co	odé par le mo	tif bina	ire 00011010 ?		
		24	<u>22</u>		26	51			
Question 2	Quelle est la	a représer	ntation sur 8	bits de	l'addition bi	naire 1	0111011 + 011101013		
	Impossible		00110000		00000000		100110000		
Question 3	L'entier nat	urel 25 s'	écrit en binai	re nat	urel sur 8 bit	s:			
	00011010		00011000		00010101		00011001		
Question 4	On considère	e le nomb	re $N = 1000_1$	$_0$ (écra	it en base 10)	. L'écri	ture de N en binaire		
comported se termin	e au moins 9 ce moins de 9 ce par 1 e 4 chiffres								
Question 5	On effectue	l'addition	n binaire 0010)1101 -	+ 00001011. (Quel est	t le résultat?		
	00111000		0100110		00111100		00101000		
		Coda	ge d'enti	iers	relatifs				
Question 6	Quel est le	codage d	e l'entier rela	tif pos	sitif 64 sur 8 l	oits?			
	01100000		1100000		01000000		11000000		
Question 7	La méthode	e du com	plément à de	ıx per	met:				
d'inverse d'obtenin	er la valeur ab er tous les bits r l'opposé d'ur r 1 à un nomb	d'un nor nombre	nbre entier éc entier écrit e	crit en n bina					

+30/2/3+ Question 8 Quelle est la représentation de -3 sur 8 bits, par la méthode du complément à deux? 00000101 00000100 11111101 11111100 Question 9 Le nombre binaire 01111111 codé sur 8 bits est: le plus grand entier relatif positif qu'on peut coder sur 8 bits le plus petit entier relatif négatif qu'on peut coder sur 8 bits le codage de un est un cas particulier: il a la même représentation que son opposé Question 10 On travaille avec des entiers relatifs codés sur 8 bits. L'addition binaire 011111111 + 00000001: donne un nombre positif zéro est impossible donne un nombre négatif Quelle est la valeur de l'entier relatif dont la représentation en binaire est Question 11 011111110 (sur 8 bits)? -126-124-128126 Que vaut le nombre binaire 11100000 codé par la méthode du complément à Question 12 deux, sur 8 bits? -96-32224 -224Question 13 Dans une représentation d'entiers relatifs sur 8 bits par la méthode du complément à deux, le bit de signe est: obtenu en ajoutant 1 au nombre obtenu en inversant les bits le bit de poids faible ($bit \theta$) le bit de poids fort (bit 7) Codage de nombres réels Question 14 Cochez une propriété correcte des nombres flottants sur une machine numérique. La représentation en virgule flottante nécessite 3 octets pour coder le signe, l'exposant et la La représentation avec tous les bits à zéro est interdite Il n'est pas possible de coder zéro avec la norme IEEE754 qui définit les règles de codage et d'utilisation des flottants

Question 15 L'instruction 0.1 + 0.2 == 0.3 en python, fournira:

True False SyntaxError 0.3

valables avec les flottants

Des propriétés mathématiques comme l'associativité de l'addition ne sont pas forcément

Question 16 L'opération 0.1*12 en python fournit 1.200000000000000. Quelle en est la raison? La calculatrice de python est plus précise qu'une calculatrice ordinaire L'opérateur aurait dû saisir float (0.1*12) Par défaut tous les calculs sur les décimaux sont fourni avec 16 décimales Les nombres réels sont représentés de manière approximative en machine Le nombre 10010,0011 peut s'écrire: Question 17 $1,00100011 \times 10^{-4}$ $1,00100011 \times 2^{-4}$ $1,00100011 \times 2^4$ $1,00100011 \times 10^4$ Question 18 Quelle est la représentation en virgule flottante, simple précision de -132, 5? 1 10000100 1000000000000000000000000 1 10000111 0000100100000000000000000 1 10000110 0000100100000000000000000 $0\ 10000110\ 0000100100000000000000000$ Question 19 La représentation en virgule flottante est une écriture de la forme signe | ex-précision (32 bits)? 0.578125×2^{131} 131,578125 9,25 25, 25 Question 20 Quel est le codage en binaire selon la méthode de la virgule fixe, du nombre réel 3,25? 3,11001 11,11001 1,101 11,01

Que vaut le nombre binaire 10001, 01 codé selon la méthode de la virgule fixe?

17, 25

17, 1

1,000101

Question 21

17,01

+30/4/1+

$ \begin{array}{cccc} $	Codez votre numéro d'identification ci contre chiffre par chiffre, puis complétez l'encadré.								
	NOM - Prénom - Classe :								
	Durée : 55 minutes. Document écrit non autorisé. Calculatrice autorisée. Les réponses fausses ou incohérentes retirent des points.								
	Codage d'entiers naturels								
Question 1	On considère le nombre $N=1000_{10}$ (écrit en base 10). L'écriture de N en binaire:								
comported se termin	e 4 chiffres e au moins 9 chiffres ne par 1 e moins de 9 chiffres								
Question 2	Quelle est la représentation sur 8 bits de l'addition binaire $10111011 + 01110101$?								
	00000000 100110000 00110000 Impossible								
Question 3	L'entier naturel 25 s'écrit en binaire naturel sur 8 bits:								
	00010101								
Question 4	Quelle est la valeur de l'entier naturel codé par le motif binaire 00011010 ?								
Question 5	On effectue l'addition binaire $00101101 + 00001011$. Quel est le résultat?								
	00100110								
	Codage d'entiers relatifs								
Question 6	Quel est le codage de l'entier relatif positif 64 sur 8 bits?								
	01100000								
Question 7 sur 8 bits?	Que vaut le nombre binaire 11100000 codé par la méthode du complément à deux,								

Quelle est la représentation de -3 sur 8 bits, par la méthode du complément à Question 8 deux? 11111101 11111100 00000100 00000101 Question 9 On travaille avec des entiers relatifs codés sur 8 bits. L'addition binaire 011111111 + 00000001: est impossible donne un nombre positif donne un nombre négatif zéro Question 10 La méthode du complément à deux permet: d'obtenir l'opposé d'un nombre entier écrit en binaire d'inverser tous les bits d'un nombre entier écrit en binaire de trouver la valeur absolue d'un entier relatif d'ajouter 1 à un nombre entier écrit en binaire Dans une représentation d'entiers relatifs sur 8 bits par la méthode du complément à deux, le bit de signe est: le bit de poids faible (bit 0) le bit de poids fort (bit 7) obtenu en inversant les bits obtenu en ajoutant 1 au nombre Quelle est la valeur de l'entier relatif dont la représentation en binaire est Question 12 011111110 (sur 8 bits)? -124-126126 -128Question 13 Le nombre binaire 01111111 codé sur 8 bits est: le codage de un est un cas particulier: il a la même représentation que son opposé le plus grand entier relatif positif qu'on peut coder sur 8 bits le plus petit entier relatif négatif qu'on peut coder sur 8 bits Codage de nombres réels Question 14 Le nombre 10010,0011 peut s'écrire: $1,00100011 \times 2^{-4}$ $1,00100011 \times 2^4$ $1,00100011 \times 10^{-4}$ $1,00100011 \times 10^4$

Question 15 posant mantisse précision (32 bits	e. Que vaut	_	flottante est une 6000011 1001010000		
13	1,578125	9,25		2^{131}	25, 25
Question 16 3, 25?	Quel est le co	dage en binaire	selon la méthode d	e la virgule fixe	e, du nombre réel
	11,01	3,11001	1,101	11,110	01
Question 17	L'instruction	0.1 + 0.2 ==	0.3 en python, fou	rnira:	
	False	0.3	SyntaxError	Tr	ue
Question 18	Que vaut le r	nombre binaire 1	0001,01 codé selon	la méthode de	e la virgule fixe?
	17,01	<u> </u>	1,000101	17, 25	Ď
Question 19	Cochez une pr	ropriété correcte	des nombres flotta	nts sur une ma	chine numérique.
La représen	tation avec to	us les bits à zéro	est interdite		
	étés mathémat ec les flottants	tiques comme l'	associativité de l'a	ddition ne sor	nt pas forcément
La représen mantisse	tation en virgi	ule flottante néce	essite 3 octets pour	coder le signe	, l'exposant et la
	possible de co des flottants	der zéro avec la	norme IEEE754 qu	ıi définit les rè	gles de codage et
Question 20	Quelle est la	représentation e	n virgule flottante,	simple précision	on de $-132, 5$?
0 10000110	000010010000	00000000000			
1 10000110	000010010000	00000000000			
1 10000111	000010010000	00000000000			
1 10000100	100000000000	00000000000			
Question 21 raison?	L'opération	0.1*12 en pytho	on fournit 1.20000	00000000000000002.	Quelle en est la
Par défaut t	tous les calculs	s sur les décimat	ıx sont fourni avec	16 décimales	
Les nombre	s réels sont re	présentés de mai	nière approximative	e en machine	
L'opérateur	aurait dû sais	sir float(0.1*1	2)		
La calculatr	rice de python	est plus précise	qu'une calculatrice	ordinaire	

+31/4/57+

$\square 0 \square 0$										
$\boxed{1}$ $\boxed{1}$										
$ \begin{array}{c c} $	Codez votre numéro d'identification ci contre chiffre par chiffre, puis complétez l'encadré.									
5 □ 56 □ 6	NOM - Prénom - Classe :									
	Document écrit nor	n autorisé. Cal	e : 55 minutes. culatrice autorisée. es retirent des points.	Les réponses fausses ou	}					
	Cod	age d'ent	iers naturels							
Question 1	L'entier naturel 25	s'écrit en bina	aire naturel sur 8 bit	s:						
	00011000	00011010	00010101	00011001						
se termin comporte	e moins de 9 chiffres ne par 1 e 4 chiffres e au moins 9 chiffres									
Question 3	Quelle est la représ	sentation sur 8	bits de l'addition bi	inaire $10111011 + 01110$	0101?					
	Empossible	100110000	00000000	00110000						
Question 4	Quelle est la valeur	r de l'entier na	turel codé par le mo	tif binaire 00011010 ?						
Question 5	On effectue l'addit	ion binaire 001	0.01101 + 0.0001011.	Quel est le résultat?						
	00101000	00111000	00100110	00111100						
	Cod	lage d'ent	tiers relatifs							
Question 6 011111111 + 000		vec des entiers	relatifs codés sur	8 bits. L'addition bi	naire					
zéro										
est impos	n nombre négatif ssible n nombre positif									

Question 7 Quelle est la valeur de l'entier relatif dont la représentation en binaire est 011111110 (sur 8 bits)? 126 -124-128-126Question 8 Quel est le codage de l'entier relatif positif 64 sur 8 bits? 01000000 01100000 11000000 11100000 Que vaut le nombre binaire 11100000 codé par la méthode du complément à deux, Question 9 sur 8 bits? -32224 -224Question 10 La méthode du complément à deux permet: d'obtenir l'opposé d'un nombre entier écrit en binaire de trouver la valeur absolue d'un entier relatif d'inverser tous les bits d'un nombre entier écrit en binaire d'ajouter 1 à un nombre entier écrit en binaire Question 11 Le nombre binaire 01111111 codé sur 8 bits est: le codage de un le plus petit entier relatif négatif qu'on peut coder sur 8 bits le plus grand entier relatif positif qu'on peut coder sur 8 bits est un cas particulier: il a la même représentation que son opposé Quelle est la représentation de -3 sur 8 bits, par la méthode du complément à Question 12 deux? 11111101 00000100 00000101 11111100 Question 13 Dans une représentation d'entiers relatifs sur 8 bits par la méthode du complément à deux, le bit de signe est: obtenu en inversant les bits le bit de poids fort (bit 7) obtenu en ajoutant 1 au nombre le bit de poids faible ($bit \theta$) Codage de nombres réels Que vaut le nombre binaire 10001, 01 codé selon la méthode de la virgule fixe? Question 14 1,000101 17,01 17, 2517, 1L'instruction 0.1 + 0.2 == 0.3 en python, fournira: Question 15

0.3

False

True

SyntaxError

Question 16 Quelle est la représentation en virgule flottante, simple précision de -132, 5? 1 10000110 0000100100000000000000000 0 10000110 000010010000000000000000 1 10000111 0000100100000000000000000 Question 17 Le nombre 10010,0011 peut s'écrire: $1,00100011 \times 2^4$ $1,00100011 \times 2^{-4}$ $1,00100011 \times 10^{-4}$ $1,00100011 \times 10^4$ Question 18 Quel est le codage en binaire selon la méthode de la virgule fixe, du nombre réel 3,25? 3,11001 11,11001 1,101 11,01 L'opération 0.1*12 en python fournit 1.200000000000000. Quelle en est la Question 19 raison? Les nombres réels sont représentés de manière approximative en machine Par défaut tous les calculs sur les décimaux sont fourni avec 16 décimales L'opérateur aurait dû saisir float (0.1*12) La calculatrice de python est plus précise qu'une calculatrice ordinaire Question 20 Cochez une propriété correcte des nombres flottants sur une machine numérique. Des propriétés mathématiques comme l'associativité de l'addition ne sont pas forcément valables avec les flottants La représentation avec tous les bits à zéro est interdite La représentation en virgule flottante nécessite 3 octets pour coder le signe, l'exposant et la mantisse Il n'est pas possible de coder zéro avec la norme IEEE754 qui définit les règles de codage et d'utilisation des flottants Question 21 La représentation en virgule flottante est une écriture de la forme signe | ex-précision (32 bits)? $0,578125 \times 2^{131}$ 131,578125 25, 259,25

	Codez votro n	umáro d'idontif	ication ci contre chiff	ro par chiffro	
	puis complétez l'er		ication of contre chin.	te par cilinie,	
$\Box 6 \Box 6$	NOM - Prénom -	- Classe :			
\square 7 \square 7		_			
□8 □8 □9 □9	Document écrit no	on autorisé. Ce	ée : 55 minutes. alculatrice autorisée. tes retirent des points	Les réponses fausses ou .	
	Cod	dage d'en	tiers naturels		
Question 1	Quelle est la vale	ur de l'entier n	aturel codé par le mo	tif binaire 00011010 ?	
	<u> </u>	<u> </u>	26	22	
Question 2	On considère le no	ombre $N = 100$	00_{10} (écrit en base 10)	. L'écriture de N en bin	aire:
comport	e 4 chiffres e au moins 9 chiffre e moins de 9 chiffre ne par 1				
Question 3	Quelle est la repr	ésentation sur	8 bits de l'addition bi	inaire $10111011 + 01110$	101?
	00000000	00110000	100110000	Impossible	
Question 4	On effectue l'add	ition binaire 00	0101101 + 00001011.	Quel est le résultat?	
	00111100	00111000	00101000	00100110	
Question 5	L'entier naturel 2	25 s'écrit en bir	naire naturel sur 8 bit	s:	
	00011010	00011000	00010101	00011001	
	Co	dage d'en	tiers relatifs		
Question 6 à deux, le bit		ntation d'entier	es relatifs sur 8 bits pa	r la méthode du complér	nent
obtenu e	en inversant les bits				
_	en ajoutant 1 au no	mbre			
_	poids fort (bit 7)				
∐ le bit de	poids faible (bit θ)				

Que vaut le nombre binaire 11100000 codé par la méthode du complément à deux, Question 7 sur 8 bits? -32-96-224224 Question 8 Quel est le codage de l'entier relatif positif 64 sur 8 bits? 01000000 11100000 01100000 11000000 Question 9 La méthode du complément à deux permet: d'inverser tous les bits d'un nombre entier écrit en binaire d'ajouter 1 à un nombre entier écrit en binaire de trouver la valeur absolue d'un entier relatif d'obtenir l'opposé d'un nombre entier écrit en binaire Question 10 Quelle est la valeur de l'entier relatif dont la représentation en binaire est 011111110 (sur 8 bits)? -128-124126 -126On travaille avec des entiers relatifs codés sur 8 bits. L'addition binaire Question 11 011111111 + 00000001: zéro donne un nombre négatif est impossible donne un nombre positif Quelle est la représentation de -3 sur 8 bits, par la méthode du complément à Question 12 deux? 00000101 00000100 11111101 11111100 Le nombre binaire 01111111 codé sur 8 bits est: Question 13 le codage de un le plus petit entier relatif négatif qu'on peut coder sur 8 bits est un cas particulier: il a la même représentation que son opposé le plus grand entier relatif positif qu'on peut coder sur 8 bits Codage de nombres réels Question 14 Que vaut le nombre binaire 10001, 01 codé selon la méthode de la virgule fixe? 17,01 17, 251,000101 Question 15 L'instruction 0.1 + 0.2 == 0.3 en python, fournira:

0.3

True

False

Question 16 Quelle est la représentation en virgule flottante, simple précision de -132, 5? 1 10000111 0000100100000000000000000 1 10000110 0000100100000000000000000 0 10000110 000010010000000000000000 Question 17 Cochez une propriété correcte des nombres flottants sur une machine numérique. La représentation avec tous les bits à zéro est interdite La représentation en virgule flottante nécessite 3 octets pour coder le signe, l'exposant et la mantisse Il n'est pas possible de coder zéro avec la norme IEEE754 qui définit les règles de codage et d'utilisation des flottants Des propriétés mathématiques comme l'associativité de l'addition ne sont pas forcément valables avec les flottants Question 18 Quel est le codage en binaire selon la méthode de la virgule fixe, du nombre réel 3,25? 1,101 3,11001 11,0111,11001 La représentation en virgule flottante est une écriture de la forme signe | exposant | mantisse. Que vaut le nombre 0 10000011 10010100000000000000000 codé en simple précision (32 bits)? 0.578125×2^{131} 9,25 131,578125 25, 25Question 20 Le nombre 10010,0011 peut s'écrire: $1,00100011 \times 10^4$ $1,00100011 \times 2^{-4}$ $1,00100011 \times 2^4$ $1,00100011 \times 10^{-4}$ Question 21 L'opération 0.1*12 en python fournit 1.2000000000000. Quelle en est la raison? Par défaut tous les calculs sur les décimaux sont fourni avec 16 décimales La calculatrice de python est plus précise qu'une calculatrice ordinaire L'opérateur aurait dû saisir float (0.1*12) Les nombres réels sont représentés de manière approximative en machine

$\Box 0 \ \Box 0$				
	Codez votr	e numéro d'identif	ication ci contre ch	iffre par chiffre.
	puis complétez			, , , , , , , , , , , , , , , , , , ,
<u></u>	NOM - Préno	Clagge .		
<u></u>	NOM - Prend	om - Classe :		
		Dur	ée : 55 minutes.	
9 9	Document écri		alculatrice autorisée les retirent des poin	. Les réponses fausses ou ts.
	C	Codage d'ent	tiers naturel	s
Question 1	On effectue l'	addition binaire 00	0101101 + 00001011	. Quel est le résultat?
	00111000	00100110	00101000	00111100
Question 2	Quelle est la 1	représentation sur	8 bits de l'addition	binaire $10111011 + 011101013$
	100110000	00000000	00110000	Impossible
Question 3	On considère l	le nombre $N = 100$	0_{10} (écrit en base 1	θ). L'écriture de N en binaire
_	te moins de 9 ch			
	se au moins 9 ch ne par 1	iffres		
	se 4 chiffres			
Question 4	Quelle est la	valeur de l'entier n	aturel codé par le r	notif binaire 00011010 ?
		24 26	<u>22</u>	51
Question 5	L'entier natur	rel 25 s'écrit en bir	aire naturel sur 8 b	oits:
	00011000	00011010	00010101	00011001
	(Codage d'en	tiers relatifs	
Question 6	Quel est le ce	odage de l'entier re	elatif positif 64 sur	8 bits?
	11100000	01000000	01100000	11000000
Question 7 (sur 8 bits)?	Quelle est la v	valeur de l'entier re	latif dont la représe	ntation en binaire est 01111110
		126		

Question 8 Quelle est la représentation de -3 sur 8 bits, par la méthode du complément deux?
111111101 111111100 00000101 00000100
Question 9 La méthode du complément à deux permet:
de trouver la valeur absolue d'un entier relatif d'inverser tous les bits d'un nombre entier écrit en binaire d'obtenir l'opposé d'un nombre entier écrit en binaire d'ajouter 1 à un nombre entier écrit en binaire
Question 10 On travaille avec des entiers relatifs codés sur 8 bits. L'addition binair $011111111 + 000000001$:
est impossible donne un nombre négatif donne un nombre positif zéro
Question 11 Dans une représentation d'entiers relatifs sur 8 bits par la méthode du complément à deux, le bit de signe est:
 □ obtenu en inversant les bits □ le bit de poids faible (bit 0) □ le bit de poids fort (bit 7) □ obtenu en ajoutant 1 au nombre
Question 12 Que vaut le nombre binaire 11100000 codé par la méthode du complément deux, sur 8 bits?
Question 13 Le nombre binaire 01111111 codé sur 8 bits est:
□ le codage de un □ est un cas particulier: il a la même représentation que son opposé □ le plus grand entier relatif positif qu'on peut coder sur 8 bits □ le plus petit entier relatif négatif qu'on peut coder sur 8 bits
Codage de nombres réels
Question 14 Le nombre 10010,0011 peut s'écrire:
$1,00100011 \times 2^4$
$1,00100011 \times 2^{-4}$
$1,00100011 \times 10^4$

Question 15 Quelle est la représentation en virgule flottante, simple précision de -132, 5? 1 10000100 1000000000000000000000000 $0\ 10000110\ 0000100100000000000000000$ 1 10000111 000010010000000000000000 1 10000110 0000100100000000000000000 Question 16 Cochez une propriété correcte des nombres flottants sur une machine numérique. La représentation avec tous les bits à zéro est interdite Des propriétés mathématiques comme l'associativité de l'addition ne sont pas forcément valables avec les flottants Il n'est pas possible de coder zéro avec la norme IEEE754 qui définit les règles de codage et d'utilisation des flottants La représentation en virgule flottante nécessite 3 octets pour coder le signe, l'exposant et la mantisse Question 17 La représentation en virgule flottante est une écriture de la forme signe | ex-précision (32 bits)? $0,578125 \times 2^{131}$ 9,25 25, 25131,578125 L'opération 0.1*12 en python fournit 1.200000000000000. Quelle en est la Question 18 raison? L'opérateur aurait dû saisir float (0.1*12) La calculatrice de python est plus précise qu'une calculatrice ordinaire Par défaut tous les calculs sur les décimaux sont fourni avec 16 décimales Les nombres réels sont représentés de manière approximative en machine Question 19 L'instruction 0.1 + 0.2 == 0.3 en python, fournira: True 0.3 False SyntaxError Question 20 Que vaut le nombre binaire 10001, 01 codé selon la méthode de la virgule fixe? 17, 11,000101 17, 2517,01 Question 21 Quel est le codage en binaire selon la méthode de la virgule fixe, du nombre réel 3, 25?

1,101

11,01

3,11001

11,11001

+34/4/45+

 □0 □0 □1 □1 □2 □2 □3 □3 □4 □4 □5 □5 □6 □6 □7 □7 □8 □8 	Codez votr puis complétez NOM - Préne	l'enca	adré. Classe :	fication of the first factor of the decision o	ci contre chiff	re par c	hiffre,	
	Document écr	it non			ce autorisée. ent des points	-	onses fausses ou	
	(Coda	age d'en	tiers	naturels			
Question 1	On considère	le non	obre N = 100	$00_{10} (\acute{e}cr$	it en base 10)). L'écri	ture de N en bina	aire:
se termi	te moins de 9 ch ne par 1 te 4 chiffres te au moins 9 ch							
Question 2	On effectue l'	additi	on binaire 00	0101101	+ 00001011.	Quel est	le résultat?	
	00111000		00101000		00111100		00100110	
Question 3	Quelle est la	valeur	de l'entier r	aturel co	odé par le mo	otif bina	ire 00011010 ?	
		26	<u> </u>		22	24		
Question 4	Quelle est la	représ	entation sur	8 bits de	e l'addition b	inaire 10	0111011 + 011101	101?
	Impossible		00000000		00110000		100110000	
Question 5	L'entier natu	rel 25	s'écrit en bir	naire nat	urel sur 8 bit	s:		
	00011001		00011000		00010101		00011010	
		$\operatorname{Cod} olimits$	age d'er	tiers	relatifs			
Question 6 deux?	Quelle est la	a repré	esentation de	e - 3 sur	8 bits, par la	a métho	de du compléme	nt à
	11111101		11111100		00000101		00000100	
Question 7	Le nombre b	inaire	01111111 cc	dé sur 8	bits est:			
le plus g	oetit entier relat grand entier rela as particulier: il ge de un	tif pos	sitif qu'on pe	eut coder	sur 8 bits	osé		

Question 8 La méthode du complément à deux permet:
d'ajouter 1 à un nombre entier écrit en binaire
d'inverser tous les bits d'un nombre entier écrit en binaire
d'obtenir l'opposé d'un nombre entier écrit en binaire
de trouver la valeur absolue d'un entier relatif
Question 9 Que vaut le nombre binaire 11100000 codé par la méthode du complément à deux, sur 8 bits?
Question 10 Quelle est la valeur de l'entier relatif dont la représentation en binaire est 01111110 (sur 8 bits)?
Question 11 On travaille avec des entiers relatifs codés sur 8 bits. L'addition binaire $011111111 + 000000001$:
est impossible zéro
donne un nombre négatif
donne un nombre positif
Question 12 Dans une représentation d'entiers relatifs sur 8 bits par la méthode du complément à deux, le bit de signe est:
le bit de poids fort $(bit \ 7)$
obtenu en ajoutant 1 au nombre
\Box le bit de poids faible (bit 0)
obtenu en inversant les bits
Question 13 Quel est le codage de l'entier relatif positif 64 sur 8 bits?
11100000 01100000 11000000 111000000 11000000
Codage de nombres réels
Question 14 La représentation en virgule flottante est une écriture de la forme $signe \mid exposant \mid mantisse$. Que vaut le nombre 0 10000011 10010100000000000000000000
Question 15 Le nombre 10010,0011 peut s'écrire:
$1,00100011 \times 2^{-4}$
$\boxed{} 1,00100011 \times 10^4$
$1,00100011 \times 2^4$

0 4' 10	0 41	1 1 10	001 01 1/ 1	1 41 1 1 1 1 6 9
Question 16	Que vaut le nom	ore binaire 10	001,01 code seion	la méthode de la virgule fixe?
	17,01	17, 25	17, 1	1,000101
Question 17	Quelle est la repr	résentation en	virgule flottante,	simple précision de $-132, 5$?
1 10000100 1 10000110	00001001000000000000000000000000000000	00000000		
Question 18 3, 25?	Quel est le codag	e en binaire s	elon la méthode de	e la virgule fixe, du nombre réel
	1,101	11,01	11,11001	3,11001
Question 19	L'instruction 0.1	L + 0.2 == 0	.3 en python, four	rnira:
	0.3	False [SyntaxError	True
Question 20 raison?	L'opération 0.1	*12 en pytho	n fournit 1.20000	00000000002. Quelle en est la
La calculati	rice de python est	plus précise d	u'une calculatrice	ordinaire
Les nombre	s réels sont représ	entés de mani	ère approximative	en machine
L'opérateur	aurait dû saisir f	loat(0.1*12)	
Par défaut	tous les calculs su	r les décimaux	s sont fourni avec	16 décimales
Question 21	Cochez une propr	iété correcte d	les nombres flottar	nts sur une machine numérique.
La représen mantisse	tation en virgule i	flottante néces	ssite 3 octets pour	coder le signe, l'exposant et la
	etés mathématique ec les flottants	es comme l'a	ssociativité de l'a	ddition ne sont pas forcément
La représen	tation avec tous le	es bits à zéro	est interdite	
	possible de coder des flottants	zéro avec la n	orme IEEE754 qu	i définit les règles de codage et

00112233445566	Codez votre numéro d'identification ci contre chiffre par chiffre, puis complétez l'encadré. NOM - Prénom - Classe :					
778899	Durée : 55 minutes. Document écrit non autorisé. Calculatrice autorisée. Les réponses fausses ou incohérentes retirent des points.					
	Codage d'entiers naturels					
comport	On considère le nombre $N=1000_{10}$ (écrit en base 10). L'écriture de N en binaire: e 4 chiffres e au moins 9 chiffres e moins de 9 chiffres ne par 1					
Question 2	Quelle est la valeur de l'entier naturel codé par le motif binaire 00011010 ?					
Question 3	L'entier naturel 25 s'écrit en binaire naturel sur 8 bits:					
	00011001					
Question 4	On effectue l'addition binaire $00101101 + 00001011$. Quel est le résultat?					
	00100110					
Question 5	Quelle est la représentation sur 8 bits de l'addition binaire $10111011 + 01110101$?					
	100110000 \square 00000000 \square Impossible \square 00110000					
Codage d'entiers relatifs						
Question 6	Quel est le codage de l'entier relatif positif 64 sur 8 bits?					
	01000000					
Question 7	Le nombre binaire 01111111 codé sur 8 bits est:					
le codag	rand entier relatif positif qu'on peut coder sur 8 bits e de un as particulier: il a la même représentation que son opposé petit entier relatif négatif qu'on peut coder sur 8 bits					

Question 8 Que vaut le nombre binaire 11100000 codé par la méthode du complément à deux, sur 8 bits? -224-32224 -96Question 9 On travaille avec des entiers relatifs codés sur 8 bits. L'addition binaire 011111111 + 00000001: donne un nombre positif donne un nombre négatif zéro est impossible Question 10 Dans une représentation d'entiers relatifs sur 8 bits par la méthode du complément à deux, le bit de signe est: le bit de poids faible ($bit \theta$) le bit de poids fort (bit 7) obtenu en inversant les bits obtenu en ajoutant 1 au nombre Question 11 Quelle est la représentation de -3 sur 8 bits, par la méthode du complément à deux? 00000101 11111100 00000100 11111101 Question 12 Quelle est la valeur de l'entier relatif dont la représentation en binaire est 011111110 (sur 8 bits)? -128-124-126126 Question 13 La méthode du complément à deux permet: de trouver la valeur absolue d'un entier relatif d'ajouter 1 à un nombre entier écrit en binaire d'inverser tous les bits d'un nombre entier écrit en binaire d'obtenir l'opposé d'un nombre entier écrit en binaire Codage de nombres réels Question 14 Le nombre 10010,0011 peut s'écrire: $1,00100011 \times 10^{-4}$ $1,00100011 \times 2^4$ $1,00100011 \times 10^4$ $1,00100011 \times 2^{-4}$ Question 15 Que vaut le nombre binaire 10001, 01 codé selon la méthode de la virgule fixe? 17,01 1,000101 17, 2517, 1

$ \textbf{Question 16} \qquad \text{La représentation en virgule flottante est une écriture de la forme $signe \mid exposant \mid mantisse.} \qquad Que vaut le nombre 0 10000011 10010100000000000000000000$					
${\bf Question} \ {\bf 17} \qquad {\bf Cochez} \ {\bf une} \ {\bf propriét\'e} \ {\bf correcte} \ {\bf des} \ {\bf nombres} \ {\bf flottants} \ {\bf sur} \ {\bf une} \ {\bf machine} \ {\bf num\'erique}.$					
Il n'est pas possible de coder zéro avec la norme IEEE754 qui définit les règles de codage et d'utilisation des flottants					
La représentation avec tous les bits à zéro est interdite					
Des propriétés mathématiques comme l'associativité de l'addition ne sont pas forcément valables avec les flottants					
La représentation en virgule flottante nécessite 3 octets pour coder le signe, l'exposant et la mantisse					
Question 18 Quelle est la représentation en virgule flottante, simple précision de $-132, 5$?					
☐ 0 10000110 00001001000000000000000000					
1 10000110 000010010000000000000000000					
Question 19 L'instruction 0.1 + 0.2 == 0.3 en python, fournira:					
SyntaxError False 0.3 True					
Question 20 Quel est le codage en binaire selon la méthode de la virgule fixe, du nombre réel $3,25$?					
Les nombres réels sont représentés de manière approximative en machine					
La calculatrice de python est plus précise qu'une calculatrice ordinaire					
L'opérateur aurait dû saisir float(0.1*12)					
Par défaut tous les calculs sur les décimaux sont fourni avec 16 décimales					

00112233445566	Codez votre numéro d'identification ci contre chiffre par chiffre, puis complétez l'encadré. NOM - Prénom - Classe :					
□7 □7 □8 □8 □9 □9	Document écr	rit non autorisé. Ca	ée : 55 minutes. lculatrice autorisée. I es retirent des points.	- "	s ou	
	(Codage d'ent	iers naturels			
Question 1	Quelle est la	valeur de l'entier na	aturel codé par le mot	tif binaire 00011010)?	
		51 26	<u> </u>	22		
Question 2	L'entier natu	ırel 25 s'écrit en bin	aire naturel sur 8 bits	3:		
	00011000	00011001	00010101	00011010		
Question 3	On considère	le nombre $N = 100$	0_{10} (écrit en base 10).	. L'écriture de N en	n binaire:	
comporte	e au moins 9 cl e 4 chiffres ne par 1 e moins de 9 cl					
Question 4	On effectue l	addition binaire 00	101101 + 00001011. (Quel est le résultat?	,	
	00101000	00100110	00111100	00111000		
Question 5	Quelle est la	représentation sur	8 bits de l'addition bi	naire 10111011 + 01	1110101?	
	00110000	00000000	100110000	Impossible		
		Codage d'en	tiers relatifs			
Question 6	Quel est le d	codage de l'entier re	latif positif 64 sur 8 b	oits?		
	11100000	01100000	01000000	11000000		
Question 7 011111111 + 000		ille avec des entier	s relatifs codés sur	8 bits. L'addition	ı binaire	
zéro	n nombre posit n nombre négat ssible					

Question 8 Quelle est la représentation de -3 sur 8 bits, par la méthode du complément à deux? 11111100 00000100 0000010111111101 Question 9 La méthode du complément à deux permet: d'inverser tous les bits d'un nombre entier écrit en binaire de trouver la valeur absolue d'un entier relatif d'obtenir l'opposé d'un nombre entier écrit en binaire d'ajouter 1 à un nombre entier écrit en binaire Question 10 Le nombre binaire 01111111 codé sur 8 bits est: le plus grand entier relatif positif qu'on peut coder sur 8 bits le plus petit entier relatif négatif qu'on peut coder sur 8 bits le codage de un est un cas particulier: il a la même représentation que son opposé Question 11 Dans une représentation d'entiers relatifs sur 8 bits par la méthode du complément à deux, le bit de signe est: obtenu en ajoutant 1 au nombre le bit de poids fort (bit 7) le bit de poids faible ($bit \theta$) obtenu en inversant les bits Question 12 Quelle est la valeur de l'entier relatif dont la représentation en binaire est 011111110 (sur 8 bits)? -128-124-126126 Que vaut le nombre binaire 11100000 codé par la méthode du complément à Question 13 deux, sur 8 bits? -96-224-32224 Codage de nombres réels L'opération 0.1*12 en python fournit 1.2000000000000. Quelle en est la Question 14 raison? L'opérateur aurait dû saisir float (0.1*12) La calculatrice de python est plus précise qu'une calculatrice ordinaire Les nombres réels sont représentés de manière approximative en machine Par défaut tous les calculs sur les décimaux sont fourni avec 16 décimales L'instruction 0.1 + 0.2 == 0.3 en python, fournira: Question 15

False

SyntaxError

True

0.3

Question 16 Quel est le codage en binaire selon la méthode de la virgule fixe, du nombre réel 3,25? 1,101 3,11001 11,0111,11001 La représentation en virgule flottante est une écriture de la forme signe | exposant | mantisse. Que vaut le nombre 0 10000011 10010100000000000000000 codé en simple précision (32 bits)? $0,578125 \times 2^{131}$ 131,578125 25, 25 9,25Question 18 Cochez une propriété correcte des nombres flottants sur une machine numérique. Des propriétés mathématiques comme l'associativité de l'addition ne sont pas forcément valables avec les flottants La représentation avec tous les bits à zéro est interdite La représentation en virgule flottante nécessite 3 octets pour coder le signe, l'exposant et la Il n'est pas possible de coder zéro avec la norme IEEE754 qui définit les règles de codage et d'utilisation des flottants Question 19 Quelle est la représentation en virgule flottante, simple précision de -132, 5? 1 10000111 000010010000000000000000 1 10000110 0000100100000000000000000 Question 20 Le nombre 10010,0011 peut s'écrire: $1,00100011 \times 2^4$ $1,00100011 \times 2^{-4}$ $1,00100011 \times 10^{-4}$ $1,00100011 \times 10^4$ Question 21 Que vaut le nombre binaire 10001, 01 codé selon la méthode de la virgule fixe?

17,01

17, 1

17, 25

1,000101

$\square 0 \square 0$					
$\Box 1 \Box 1$					
$\square 2 \square 2$					
$\square 3 \square 3$	Codez votre numéro d'identification ci contre chiffre par chiffre,				
$\boxed{}4$ $\boxed{}4$	puis complétez l'encadré.				
$\Box 5 \Box 5$	NOM Prénom Classo				
$\Box 6 \Box 6$	NOM - Prénom - Classe :				
<u></u> 7 <u></u> 7	Damés , 55 minutes				
<u>8</u> <u>8</u>	Durée : 55 minutes. Document écrit non autorisé. Calculatrice autorisée. Les réponses fausses ou				
<u></u> 9 <u></u> 9	incohérentes retirent des points.				
	Codage d'entiers naturels				
Question 1	Quelle est la représentation sur 8 bits de l'addition binaire $10111011 + 01110101$?				
	Impossible \Box 00000000 \Box 00110000 \Box 100110000				
Question 2	On considère le nombre $N=1000_{10}$ (écrit en base 10). L'écriture de N en binaire:				
comport	e 4 chiffres				
comport	e moins de 9 chiffres				
se termin	ne par 1				
comport	e au moins 9 chiffres				
Question 3	On effectue l'addition binaire $00101101 + 00001011$. Quel est le résultat?				
	00111100				
Question 4	Quelle est la valeur de l'entier naturel codé par le motif binaire 00011010 ?				
	\square 24 \square 51 \blacksquare 26 \square 22				
Question 5	L'entier naturel 25 s'écrit en binaire naturel sur 8 bits:				
	00010101				
	Codage d'entiers relatifs				
Question 6	Le nombre binaire 01111111 codé sur 8 bits est:				
le plus p	etit entier relatif négatif qu'on peut coder sur 8 bits				
le plus g	rand entier relatif positif qu'on peut coder sur 8 bits				
le codage	e de un				
est un ca	as particulier: il a la même représentation que son opposé				

Question 7 Dans une représentation d'entiers relatifs sur 8 bits par la méthode du complément à deux, le bit de signe est:				
le bit de poids fort (bit 7)				
obtenu en ajoutant 1 au nombre				
obtenu en inversant les bits				
\Box le bit de poids faible (bit θ)				
Question 8 Quelle est la valeur de l'entier relatif dont la représentation en binaire est 01111110 (sur 8 bits)?				
Question 9 Quel est le codage de l'entier relatif positif 64 sur 8 bits?				
11100000 01000000 01100000 11000000				
Question 10 On travaille avec des entiers relatifs codés sur 8 bits. L'addition binaire $011111111 + 000000001$:				
donne un nombre négatif				
zéro				
est impossible				
donne un nombre positif				
Question 11 Que vaut le nombre binaire 11100000 codé par la méthode du complément à deux, sur 8 bits?				
Question 12 Quelle est la représentation de -3 sur 8 bits, par la méthode du complément à deux?				
111111101 00000101 00000100 111111100				
Question 13 La méthode du complément à deux permet:				
d'inverser tous les bits d'un nombre entier écrit en binaire				
d'obtenir l'opposé d'un nombre entier écrit en binaire				
de trouver la valeur absolue d'un entier relatif				
d'ajouter 1 à un nombre entier écrit en binaire				
Codage de nombres réels				
Question 14 La représentation en virgule flottante est une écriture de la forme $signe \mid exposant \mid mantisse$. Que vaut le nombre 0 10000011 10010100000000000000000000				
Que vaut le nombre binaire 10001,01 codé selon la méthode de la virgule fixe?				

L'opération 0.1*12 en python fournit 1.20000000000000. Quelle en est la Question 16 raison? Par défaut tous les calculs sur les décimaux sont fourni avec 16 décimales Les nombres réels sont représentés de manière approximative en machine La calculatrice de python est plus précise qu'une calculatrice ordinaire L'opérateur aurait dû saisir float (0.1*12) Le nombre 10010,0011 peut s'écrire: Question 17 $1,00100011 \times 10^4$ $1,00100011 \times 2^{-4}$ $1,00100011 \times 2^4$ $1,00100011 \times 10^{-4}$ Question 18 Quel est le codage en binaire selon la méthode de la virgule fixe, du nombre réel 3,25? 3,11001 11,01 11, 11001 1,101 Question 19 Quelle est la représentation en virgule flottante, simple précision de -132, 5? 1 10000110 0000100100000000000000000 $1\ 10000111\ 0000100100000000000000000$ 0 10000110 000010010000000000000000 Question 20 L'instruction 0.1 + 0.2 == 0.3 en python, fournira: 0.3 True False Question 21 Cochez une propriété correcte des nombres flottants sur une machine numérique. La représentation en virgule flottante nécessite 3 octets pour coder le signe, l'exposant et la mantisse La représentation avec tous les bits à zéro est interdite Il n'est pas possible de coder zéro avec la norme IEEE754 qui définit les règles de codage et d'utilisation des flottants Des propriétés mathématiques comme l'associativité de l'addition ne sont pas forcément

valables avec les flottants

