Introdução à Computação II 5954006

5. Algoritmos de Ordenação

Prof. Renato Tinós

Local: Depto. de Computação e Matemática (FFCLRP/USP)

Principais Tópicos

- 5.1. Ordenação por Inserção
- 5.2. Ordenação por Seleção
- 5.3. Método da Bolha
- 5.4. Ordenação por Fusão
- 5.5. Heapsort
 - 5.5.1. Estrutura Heap
 - 5.5.2. Ordenação por Heapsort
- 5.6. Quicksort
- 5.7. Considerações sobre o Problema de Ordenação
- 5.8. Ordenação em Tempo Linear

- A estrutura de dados heap (binário) é um objeto arranjo (vetor) que representa uma árvore binária
 - Cada nó da árvore corresponde a um elemento do vetor
 - A árvore é completamente preenchida em todos os níveis, exceto o nível mais baixo, que pode ou não ser totalmente preenchido

- Um vetor a que representa um heap é um objeto com dois atributos:
 - $N = comprimento(\mathbf{a})$, que é o número de elementos do vetor e
 - R = tamanho-do-heap(a), que é o número de elementos no heap armazenado no vetor a
- Assim, embora a[1], ...a[N] possa conter valores válidos, nenhum elemento além de a[R], na qual R<=N, é um elemento do heap
- A raiz da árvore é a[1] e, dado o índice i de um nó, os índices
 - de seu pai: PARENT(i) = $\lfloor i/2 \rfloor$
 - do filho da esquerda: LEFT(i) = 2 x i
 - do filho da direita: RIGHT(i) = 2 × i + 1

- Existem dois tipos de heaps binários: heaps máximos e heaps mínimos
 - Em ambos os tipos, os valores nos nós satisfazem a uma propriedade de heap, cujos detalhes específicos dependem do tipo de heap
- Em um <u>heap máximo</u>, a propriedade de heap máximo é que para todo nó *i* diferente da raiz:
 - a[PARENT(i)] >= a[i]
 - > isto é, o valor de um nó é, no máximo, o valor de seu pai.
 - o maior elemento em um heap máximo é armazenado na raiz, e
 - a subárvore que tem raiz em um nó contém valores menores que o próprio nó
- Um heap mínimo é organizado de modo oposto; a propriedade de heap mínimo é que para todo nó i diferente da raiz
 - a[PARENT(i)] <= a[i]</p>
 - > o menor elemento de um heap mínimo está na raiz
- Para o algoritmo Heapsort, utilizaremos heaps máximos
 - toda referência a um heap deste ponto em diante se refere a um heap máximo

- A altura de um nó em um heap é o número de arestas (ou arcos) no caminho descendente simples mais longo desde o nó até uma folha
 - A altura do heap é a altura de sua raiz
- Tendo em vista que o heap é completamente preenchido em todos os níveis, com possível exceção do último nível, temos que sua altura é a altura de uma árvore binária:
 - Último nível com 1 nó:

$$h = \log_2(N)$$

Último nível completo:

$$h = \log_2(N+1) - 1$$

Generalizando:

$$h = \lfloor \log_2 N \rfloor$$

 Assim, as operações básicas sobre heaps são executadas em um tempo máximo proporcional à altura da árvore, e assim tem complexidade O(log₂ N)

- Os elementos a[m], ..., a[N] de um vetor **a** sendo $m = \lfloor N/2 \rfloor + 1$ satisfazem as propriedades de um heap, uma vez que nenhum par de índices (i,j) é tal que j = 2i ou j = 2i + 1
- Esses elementos formam a linha inferior da árvore binária a eles associada, entre os quais nenhuma relação de ordem é exigida
- O heap pode agora ser estendido para a esquerda, sendo que um novo elemento é incluído a cada passo e posicionado apropriadamente por meio de uma operação de escorregamento, que nos leva ao procedimento heapify

primeira função que vai precisar no heapSort

5.5.1. Estrutura Heap

Algoritmo heapify(a[], L, R)

```
i \leftarrow L

j \leftarrow 2*L

x \leftarrow a[L]

\mathbf{se}((j < R) \mathbf{e}(a[j] < a[j+1]))

j \leftarrow j+1
```

fim se

```
enquanto ((j \le R) e (x < a[j]))

a[i] \leftarrow a[j]

i \leftarrow j

j \leftarrow 2^*j

se((j < R) e(a[j] < a[j+1]))

j \leftarrow j + 1

fim se
```

fim enquanto

$$a[i] \leftarrow x$$

heapify(a[],L,R):

faz com que o elemento em a[L], do heap dado por a[1] até a[R], obedeça a propriedade do heap máximo

- Podemos utilizar o procedimento heapify de baixo para cima, a fim de converter um vetor a=[a(1)...a(N)] em um heap
- Os elementos a(N/2+1),...,a(N) são todos folhas da árvore, então cada um deles é um heap de 1 elemento com o qual podemos começar
- O procedimento para construção de um heap percorre os nós restantes da árvore e executa heapify sobre cada um

```
para L \leftarrow N/2 até L \leftarrow 1 com passo L \leftarrow L-1 heapify(a,L,N) fim para
```


para $L \leftarrow N/2$ até $L \leftarrow 1$ com passo $L \leftarrow L-1$ heapify(a,L,N)

fim para

$$N = 8$$

$$L = 3$$

para $L \leftarrow N/2$ até $L \leftarrow 1$ com passo $L \leftarrow L-1$ heapify(a,L,N) fim para

$$N = 8$$

$$L = 2$$

43

L = 2

para $L \leftarrow N/2$ até $L \leftarrow 1$ com passo $L \leftarrow L-1$ heapify(a,L,N) fim para

N = 8

L = 1

N = 8

L = 1

- Com a finalidade de obter uma ordenação completa dos N elementos deve-se seguir N passos de escorregamento, em que, após a execução de cada passo, o novo elemento pode ser retirado do topo do heap
- Uma questão que surge é onde armazenar os elementos que emergem do topo e se seria possível uma ordenação diretamente em um único heap
- Tal solução existe: em cada passo, é necessário mover o elemento do topo do heap no nó liberado antes ocupado por w e permitir que w escorregue para a sua posição adequada

```
para R \leftarrow N até R \leftarrow 2 com passo R \leftarrow R-1

w \leftarrow a[1]

a[1] \leftarrow a[R]

a[R] \leftarrow w

heapify( a , 1 , R-1 )

fim para
```


$$N = 8$$

 $R = 8$

$$N = 8$$

$$R = 8$$

$$N = 8$$

$$R = 8$$

$$N = 8$$

$$R = 7$$

$$N = 8$$

$$R = 7$$

para $L \leftarrow N/2$ até $L \leftarrow 1$ com passo $L \leftarrow L-1$ heapify(a , L , N)

fim para
para $R \leftarrow N$ até $R \leftarrow 2$ com passo $R \leftarrow R-1$ $w \leftarrow a[1]$ $a[1] \leftarrow a[R]$ $a[R] \leftarrow w$ heapify(a , 1 , R-1)

fim para

$$N = 8$$

 $R = 7$

$$N = 8$$

$$R = 7$$

$$R = 7$$

$$N = 8$$

$$R = 6$$

$$N = 8$$

$$R = 6$$

$$N = 8$$

$$R = 6$$

$$N = 8$$

$$R = 6$$

$$N = 8$$

$$R = 6$$

$$N = 8$$

$$R = 5$$

$$N = 8$$

$$R = 4$$

$$N = 8$$

$$R = 4$$

$$N = 8$$

$$R = 4$$

$$N = 8$$

$$R = 3$$

$$R = 3$$

para $L \leftarrow N/2$ até $L \leftarrow 1$ com passo $L \leftarrow L-1$ heapify(a , L , N)

fim para
para $R \leftarrow N$ até $R \leftarrow 2$ com passo $R \leftarrow R-1$ $w \leftarrow a[1]$ $a[1] \leftarrow a[R]$ $a[R] \leftarrow w$ heapify(a , 1 , R-1)

fim para

$$N = 8$$

$$R = 3$$

$$R = 3$$

3

$$N = 8$$

$$R = 2$$

$$N = 8$$

$$R = 2$$

3

$$N = 8$$

 $R = 2$

1		2	3	3 4		6	7	8	
	8	12	19	43	45	56	67	95	

.

Vetor ordenado!

8	12	19	43	45	56	67	95

Análise

- À primeira vista não é evidente que este método de ordenação ofereça bons resultados, pois os elementos escorregam para a esquerda em primeiro lugar antes de serem finalmente colocados na sua posição correta, na extremidade direita
- De fato, o procedimento n\u00e3o \u00e9 recomendado para pequenos valores de N
- Todavia, para valores grandes de N, o método Heapsort é muito eficiente, e quanto maior for o valor de N, melhor será o seu desempenho
- O número médio de movimentos é de aproximadamente (N/2) log N e os desvios relativos a este valor são relativamente pequenos
- A complexidade (para melhor e pior caso e também para caso médio) é O(N log N)
 - ➤ Repare que o método aplica o procedimento heapify N/2+N-1 vezes e que o procedimento heapify é O(log N)

Exercício 5.5.1. Utilizando ordenação pelo método heapsort, obtenha o número de comparações e movimentações em cada passo (*i* e *j*) para os seguintes vetores

- [45 56 12 43 95 19 8 67]
- [8 12 19 43 45 56 67 95]
- [95 67 56 45 43 19 12 8]
- [19 12 8 45 43 56 67 95]

Exercício 5.5.1. Solução

L/R	Ci	Mi	45	56	12	43	95	19	8	67
L=4	2	3	45	56	12	67	95	19	8	43
L=3	3	3	45	56	19	67	95	12	8	43
L=2	3	3	45	95	19	67	56	12	8	43
L=1	4	4	95	67	19	45	56	12	8	43
R=8	5	7	67	56	19	45	43	12	8	95
R=7	5	7	56	45	19	8	43	12	67	95
R=6	5	7	45	43	19	8	12	56	67	95
R=5	2	6	43	12	19	8	45	56	67	95
R=4	3	6	19	12	8	43	45	56	67	95
R=3	2	6	12	8	19	43	45	56	67	95
R=2	1	5	8	12	19	43	45	56	67	95
	35	57							,	,
L/R	Ci	Mi	19	12	8	45	43	56	67	95
L=4	2	3	19	12	8	95	43	56	67	45
L=3	3	3	19	12	67	95	43	56	8	45
L=2	4	4	19	95	67	45	43	56	8	12
L=1	4	4	95	45	67	19	43	56	8	12
R=8	5	7	67	45	56	19	43	12	8	95
R=7	4	7	56	45	12	19	43	8	67	95
R=6	5	7	45	43	12	19	8	56	67	95
R=5	4	7	43	19	12	8	45	56	67	95
R=4	3	6	19	8	12	43	45	56	67	95
R=3	0	5	12	8	19	43	45	56	67	95
R=2	1	5	8	12	19	43	45	56	67	95
	35	58								

Γ	L/R	Ci	Mi	8	12	19	43	45	56	67	95
	L=4	2	3	8	12	19	95	45	56	67	43
	L=3	3	3	8	12	67	95	45	56	19	43
	L=2	4	4	8	95	67	43	45	56	19	12
	L=1	5	4	95	45	67	43	8	56	19	12
	R=8	5	7	67	45	56	43	8	12	19	95
	R=7	2	6	56	45	19	43	8	12	67	95
	R=6	5	7	45	43	19	12	8	56	67	95
	R=5	4	7	43	12	19	8	45	56	67	95
	R=4	3	6	19	12	8	43	45	56	67	95
	R=3	2	6	12	8	19	43	45	56	67	95
	R=2	1	5	8	12	19	43	45	56	67	95
	<u> </u>	36	58								
	L/R	Ci	Mi	95	67	56	45	43	19	12	8
	L=4	0	2	95	67	56	45	43	19	12	8
	L=3	1	2	95	67	56	45	43	19	12	8
	L=2	1	2	95	67	56	45	43	19	12	8
	L=1	1	2	95	67	56	45	43	19	12	8
	R=8	5	7	67	45	56	8	43	19	12	95
	R=7	4	7	56	45	19	8	43	12	67	95
	R=6		7	45	43	19	8	12	56	67	95
	R=5	2	6	43	12	19	8	45	56	67	95
	R=4	3	6	19	12	8	43	45	56	67	95
	R=3	2	6	12	8	19	43	45	56	67	95
	R=2	1	5	8	12	19	43	45	56	67	95

Comentários

Agradecimentos

Parte do material desta apresentação foi obtida através de slides da disciplina de Introdução à Computação II ministrada pelo Prof. José Augusto Baranauskas