数值分析 code5 实验报告

张景浩 PB20010399

2023.4.13

1 问题介绍

1.1 问题 1

分别编写使用复化梯形积分公式和复化 Simpson 积分公式计算函数定积分的通用程序,并用编写好的程序计算积分:

$$I(f) = \int_0^4 \sin(x)dx$$

取结点 x_i , $i=0,\cdots,N$, N 为 2^k , $k=1,\cdots,12$, 并分析误差和收敛阶。

1.2 问题 2

对函数

$$f(x) = \frac{1}{1 + 25x^2}, x \in [-1, 1]$$

构造 Lagrange 插值多项式 $p_L(x)$, 插值节点取为:

$$1.x_i = 1 - \frac{2}{N}i, \ i = 0, 1, \cdots, N$$

$$2.x_i = -\cos(\frac{i+1}{N+2}\pi), \ i = 0, 1, \cdots, N$$

利用 $\int_{-1}^{1} p_L(x)dx$ 计算积分 $\int_{-1}^{1} f(x)dx$ 的近似值,并计算误差:

$$|\int_{-1}^{1} p_L(x)dx - \int_{-1}^{1} f(x)dx|$$

对 $N=5,10,\cdots,40$ 比较两种结点的结果。

2 解决方法

2.1 复化梯形积分公式

划分区间 $[a,b]: a = x_0 < x_1 < \cdots < x_n = b$, 由梯形法则:

$$\int_{a}^{b} f(x)dx = \frac{1}{2} \sum_{i=1}^{n} (x_{i} - x_{i-1})[f(x_{i}) + f(x_{i-1})]$$

2.2 复化 Simpson 积分公式

划分区间 $[a,b]: a=x_0 < x_1 < \dots < x_n=b,$ n 是偶数, $h=\frac{b-a}{n}$, 由 Simpson 法则:

$$\int_{a}^{b} f(x)dx = \frac{h}{3} [f(x_0) + 2\sum_{i=2}^{n/2} f(x_{2i-2}) + 4\sum_{i=1}^{n/2} f(x_{2i-1}) + f(x_n)]$$

2.3 基于多项式插值的数值积分

选取 [a,b] 中插值结点 x_0,x_1,\cdots,x_n ,对于次数不超过 n 的多项式,有准确成立的积分:

$$\int_{a}^{b} f(x) = \sum_{i=0}^{n} A_{i} f(x_{i})$$

这个公式中 $A_i=\int_a^b l_i(x)dx$ 是确定的,所以我们通过对 $1,x,x^2,\cdots,x^n$ 在 [a,b] 上积分,利用待定系数法解线性方程组

$$\begin{bmatrix} x_0^0 & x_1^0 & \cdots & x_n^0 \\ x_0 & x_1 & \cdots & x_n \\ \vdots & \vdots & \vdots & \vdots \\ x_0^n & x_1^n & \cdots & x_n^n \end{bmatrix} \begin{bmatrix} A_0 \\ A_1 \\ \vdots \\ A_n \end{bmatrix} = \begin{bmatrix} \int_a^b 1 dx \\ \int_a^b x dx \\ \vdots \\ \int_a^b x^n dx \end{bmatrix}$$

得 A_0, A_1, \dots, A_n 。那么对任意的函数 f(x),其数值积分为:

$$\int_{a}^{b} f(x) = \sum_{i=0}^{n} A_{i} f(x_{i})$$

3 编译环境及使用方法

本程用 matlab 编译,使用时分别调用 outcome.m 文件和 outcome_2.m 文件即可。

4 实验结果

	T			
N	复化 Simpson error	order	复化梯形 error	order
2	2.66615e-01	0.000	5.91851e-01	0.000
4	1.04085e-02	4.679	1.40156e-01	2.078
8	5.91731e-04	4.137	3.45953e-02	2.018
16	3.61551e-05	4.033	8.62171e-03	2.005
32	2.24708e-06	4.008	2.15374e-03	2.001
64	1.40246e-07	4.002	5.38330e-04	2.000
128	8.76234e-09	4.001	1.34576e-04	2.000
256	5.47598e-10	4.000	3.36436e-05	2.000
512	3.42244e-11	4.000	8.41087e-06	2.000
1024	2.13940e-12	4.000	2.10272e-06	2.000
2048	1.34115e-13	3.996	5.25679e-07	2.000
4096	8.21565e-15	4.029	1.31420e-07	2.000

表 1: 使用复化梯形积分公式和复化 Simpson 积分公式计算函数定积分

N	$\int_{-1}^{1} p_L(x) dx$	$\int_{-1}^{1} f(x) dx$	$ \int_{-1}^{1} p_L(x) dx - \int_{-1}^{1} f(x) dx $
5	0.46	0.5494	8.7822e-02
10	0.93	0.5494	3.8530e-01
15	0.83	0.5494	2.8175e-01
20	-5.37	0.5494	5.9193e+00
25	-5.40	0.5494	5.9492e+00
30	153.76	0.5494	1.5322e+02
35	175.15	0.5494	1.7460e + 02
40	602.15	0.5494	6.0160e + 02

表 2: 基于均匀结点多项式插值的数值积分

N	$\int_{-1}^{1} p_L(x) dx$	$\int_{-1}^{1} f(x) dx$	$\left \int_{-1}^{1} p_L(x) dx - \int_{-1}^{1} f(x) dx \right $
5	0.4811404	0.5493603	6.8220e-02
10	0.5540857	0.5493603	4.7254 e - 03
15	0.5475861	0.5493603	1.7742e-03
20	0.5500108	0.5493603	6.5048e-04
25	0.5493599	0.5493603	3.9504 e-07
30	0.5493217	0.5493603	3.8611e-05
35	0.5493571	0.5493603	3.2346e-06
40	0.5493811	0.5493603	2.0804 e - 05

表 3: 基于 Chebyshev 结点多项式插值的数值积分

5 总结

观察表 1 可以看出,复化 Simpson 积分与复化梯形积分的精度随着划分的子区间数量增加而增大,但是前者的误差要远小于后者,并且复化 Simpson 积分的收敛阶在 4 左右,复化梯形积分的收敛阶在 2 左右,这与理论上的误差项分析是相吻合的。

对照表 2 和表 3 并结合之前有关多项式插值的结果来看,由于均匀插值结点构造多项式时的 Runge 现象,导致其积分的误差随着结点个数的增加而增大;而 Chebyshev 插值点是最佳的插值结点,它使得原函数与多项式之间的误差尽可能小,所以其积分的误差随着结点个数的增加而减小,但是在结点数 25-30 时误差反而增大,最后保持在 10^{-5} 左右,推测可能的原因为解 vandermonde 矩阵时由于其过于病态导致计算误差增加。

A Computer Code

Here we include the computer code.

```
function I=simpson(f,x,h)
       A=f(x(1:2:end)); B=f(x(2:2:end));
        I=h*(2*sum(A)+4*sum(B)-f(x(end))-f(x(1)))/3;
   end
4
5
   function I=trapezoid (f,x)
7
        I = 0;
       n = length(x);
8
        for k=2:n
9
            I=I+(x(k)-x(k-1))*(f(x(k-1))+f(x(k)));
10
        end
11
        I=I/2;
12
   end
13
14
   function I=multinomial(f,x,a,b)
   n = length(x); s = zeros(n, 1);
17 X=fliplr(vander(x)).';
   for i=1:n
18
19
        s(i)=(b^i-a^i)/i;
20
21 A=linsolve(X, s);
   for i=1:n
22
        s(i)=f(x(i));
23
   end
24
   I = dot(A, s);
   end
```