Chromatische Zahl und Spektrum von Graphen

Stefan Heyder Betreuer: Prof. Dr. Stiebitz

TU Ilmenau

30. September 2014

Inhalt

Die Erdős-Faber-Lovász Vermutung

2 Eigenwerte von Graphen

Ein Färbungsproblem

Es sei $\mathcal{EG}(n)$ die Klasse aller Graphen, welche die kantendisjunkte Vereinigung von n vollständigen Graphen der Ordnung n sind.

Vermutung (Erdős-Faber-Lovász(1972))

Sei $G \in \mathcal{EG}(n)$. Dann gilt $\chi(G) \leq n$.

Ein Hypergraph H heißt **linear**, falls $|e \cap e'| \le 1$ für alle $e, e' \in E(H)$.

Vermutung (Erdős-Faber-Lovász(1972))

Sei $G \in \mathcal{EG}(n)$. Dann gilt $\chi(G) \leq n$.

Ein Hypergraph H heißt **linear**, falls $|e \cap e'| \le 1$ für alle $e, e' \in E(H)$.

Sei H ein linearer Hypergraph. Dann gilt $\chi'(H) < |H|$

Vermutung (Erdős-Faber-Lovász(1972))

Sei $G \in \mathcal{EG}(n)$. Dann gilt $\chi(G) \leq n$.

Ein Hypergraph H heißt **linear**, falls $|e \cap e'| \le 1$ für alle $e, e' \in E(H)$.

Vermutung (Erdős-Faber-Lovász(1972))

Sei $G \in \mathcal{EG}(n)$. Dann gilt $\chi(G) \leq n$.

Ein Hypergraph H heißt **linear**, falls $|e \cap e'| \leq 1$ für alle $e, e' \in E(H)$.

Vermutung

Sei H ein linearer Hypergraph. Dann gilt $\chi'(H) \leq |H|$.

Theorem (Chung & Lawler)

Für jeden Graphen $G \in \mathcal{EG}(n)$ gilt $\chi(G) \leq \frac{3n}{2} - 2$.

Theorem (Kahn)

Für jeden linearen Hypergraphen H ist $\chi'(H) \leq |H| + o(|H|)$.

Theorem (Chung & Lawler)

Für jeden Graphen $G \in \mathcal{EG}(n)$ gilt $\chi(G) \leq \frac{3n}{2} - 2$.

Theorem (Kahn)

Für jeden linearen Hypergraphen H ist $\chi'(H) \leq |H| + o(|H|)$.

Eine Menge von Untergraphen K von G heißt **Krauszzerlegung** von G, falls gilt:

Eine Menge von Untergraphen K von G heißt **Krauszzerlegung** von G, falls gilt:

- **1** Alle $K \in \mathcal{K}$ sind vollständige Graphen der Ordnung $|K| \geq 2$.
- 2 Sind $K, K' \in \mathcal{K}$ verschieden, so gilt $|K \cap K'| \leq 1$.
- $\bigcup_{K\in\mathcal{K}}K=G.$

Eine Menge von Untergraphen \mathcal{K} von G heißt **Krauszzerlegung** von G, falls gilt:

- **1** Alle $K \in \mathcal{K}$ sind vollständige Graphen der Ordnung $|K| \geq 2$.
- 2 Sind $K, K' \in \mathcal{K}$ verschieden, so gilt $|K \cap K'| \leq 1$.
- $\bigcup_{K \in \mathcal{K}} K = G.$

Eine Menge von Untergraphen K von G heißt **Krauszzerlegung** von G, falls gilt:

- **1** Alle $K \in \mathcal{K}$ sind vollständige Graphen der Ordnung $|K| \geq 2$.
- 2 Sind $K, K' \in \mathcal{K}$ verschieden, so gilt $|K \cap K'| \leq 1$.
- $\bigcup_{K\in\mathcal{K}}K=G.$

- $d_{\mathcal{K}}(v) = |\{K \in \mathcal{K} \mid v \in K\}|, \text{ der Grad von } v \text{ in } \mathcal{K}.$
- \bullet $\delta(\mathcal{K})$, der Minimalgrad .
- $\kappa_d(G)$, die kleinste Zahl p, sodass G eine Krauszzerlegung \mathcal{K} mit $|\mathcal{K}| = p$ besitzt $(\kappa_d(G) = \infty$, falls kein solches p existiert).

- $d_{\mathcal{K}}(v) = |\{K \in \mathcal{K} \mid v \in K\}|$, der **Grad** von v in \mathcal{K} .
- $\delta(\mathcal{K})$, der **Minimalgrad** .
- $\kappa_d(G)$, die kleinste Zahl p, sodass G eine Krauszzerlegung \mathcal{K} mit $|\mathcal{K}| = p$ besitzt $(\kappa_d(G) = \infty$, falls kein solches p existiert).

- $d_{\mathcal{K}}(v) = |\{K \in \mathcal{K} \mid v \in K\}|$, der **Grad** von v in \mathcal{K} .
- $\delta(\mathcal{K})$, der **Minimalgrad** .
- $\kappa_d(G)$, die kleinste Zahl p, sodass G eine Krauszzerlegung \mathcal{K} mit $|\mathcal{K}| = p$ besitzt $(\kappa_d(G) = \infty$, falls kein solches p existiert).

Theorem

- **I** Für alle Graphen $G \in \mathcal{EG}(n)$ gilt $\chi(G) \leq n$.
- **2** Für alle Graphen G gilt $\chi(G) \leq \kappa_2(G)$.
- B Für alle linearen Hypergraphen H gilt $\chi'(H) < |H|$.

Theorem

- **1** Für alle Graphen $G \in \mathcal{EG}(n)$ gilt $\chi(G) \leq n$.
- **2** Für alle Graphen G gilt $\chi(G) \leq \kappa_2(G)$.
- **3** Für alle linearen Hypergraphen H gilt $\chi'(H) \leq |H|$

Theorem,

- **1** Für alle Graphen $G \in \mathcal{EG}(n)$ gilt $\chi(G) \leq n$.
- **2** Für alle Graphen G gilt $\chi(G) \leq \kappa_2(G)$.
- **3** Für alle linearen Hypergraphen H gilt $\chi'(H) < |H|$

Theorem

- **1** Für alle Graphen $G \in \mathcal{EG}(n)$ gilt $\chi(G) \leq n$.
- **2** Für alle Graphen G gilt $\chi(G) \leq \kappa_2(G)$.
- **3** Für alle linearen Hypergraphen H gilt $\chi'(H) \leq |H|$.

Es sei A(G) die **Adjazenzmatrix** von G mit

$$A(G)_{ij} = egin{cases} 1 & ext{, falls } v_i v_j \in E(G) \ 0 & ext{, sonst.} \end{cases}$$

Die **Eigenwerte** von G sind dann die Eigenwerte von A(G). Wir bezeichnen mit $\lambda_i(G)$ den i-größten Eigenwert von G. Also gilt

$$\lambda_{max}(G) = \lambda_1(G) \ge \lambda_2(G) \ge \cdots \ge \lambda_n(G) = \lambda_{min}(G).$$

Es sei A(G) die **Adjazenzmatrix** von G mit

$$A(G)_{ij} = egin{cases} 1 & ext{, falls } v_i v_j \in E(G) \ 0 & ext{, sonst.} \end{cases}$$

Die **Eigenwerte** von G sind dann die Eigenwerte von A(G). Wir bezeichnen mit $\lambda_i(G)$ den i-größten Eigenwert von G. Also gilt

$$\lambda_{max}(G) = \lambda_1(G) \ge \lambda_2(G) \ge \cdots \ge \lambda_n(G) = \lambda_{min}(G)$$

Es sei A(G) die **Adjazenzmatrix** von G mit

$$A(G)_{ij} = egin{cases} 1 & ext{, falls } v_i v_j \in E(G) \ 0 & ext{, sonst.} \end{cases}$$

Die **Eigenwerte** von G sind dann die Eigenwerte von A(G). Wir bezeichnen mit $\lambda_i(G)$ den i-größten Eigenwert von G. Also gilt

$$\lambda_{max}(G) = \lambda_1(G) \ge \lambda_2(G) \ge \cdots \ge \lambda_n(G) = \lambda_{min}(G).$$

Chromatische Zahl und Eigenwerte

Theorem (Wilf)

Ist G ein zusammenhängender Graph, so gilt $\chi(G) \leq \lambda_1(G) + 1$.

Theorem (Hoffman)

Ist G ein Graph, so gilt $\chi(G) \geq 1 - \frac{\lambda_{max}(G)}{\lambda_{min}(G)}$.

Theorem

Sei $K = \{K^1, K^2, ..., K^p\}$ eine Krauszzerlegung von G. Wir setzen $d_i = d_K(v_i)$, wobei wir die Nummerierung der Ecken so wählen, dass $d_1 \ge d_2 \ge \cdots \ge d_n$ gilt. Dann gelten folgende Aussagen:

- $\lambda_i(G) \geq -d_{n-i+1}$ für alle $1 \leq i \leq n$.
- $\lambda_{p+1}(G) \leq -d_n$, falls p < n.

Theorem

Sei $K = \{K^1, K^2, \dots, K^p\}$ eine Krauszzerlegung von G. Wir setzen $d_i = d_K(v_i)$, wobei wir die Nummerierung der Ecken so wählen, dass $d_1 \geq d_2 \geq \dots \geq d_n$ gilt. Dann gelten folgende Aussagen:

- 1 $\lambda_i(G) \geq -d_{n-i+1}$ für alle $1 \leq i \leq n$.
- $\lambda_{p+1}(G) \leq -d_n$, falls p < n.

Theorem

Sei $K = \{K^1, K^2, \dots, K^p\}$ eine Krauszzerlegung von G. Wir setzen $d_i = d_K(v_i)$, wobei wir die Nummerierung der Ecken so wählen, dass $d_1 \geq d_2 \geq \dots \geq d_n$ gilt. Dann gelten folgende Aussagen:

- 1 $\lambda_i(G) \geq -d_{n-i+1}$ für alle $1 \leq i \leq n$.
- $\lambda_{p+1}(G) \leq -d_n$, falls p < n.

Es seien A = A(G), $D = \text{diag}(d_1, d_2, \dots, d_n)$ und $B \in \mathbb{R}^{n \times p}$ die Inzidenzmatrix von \mathcal{K} . Dann gilt

$$B_{ij} = \begin{cases} 1 & \text{ falls } v_i \in K^j \\ 0 & \text{ sonst.} \end{cases}$$

Sei $M = BB^T$. Dann ist M positiv semidefinit und M = A + D, wie sich leicht zeigen lässt. Also folgt

$$\lambda_i(A) \ge \lambda_i(-D) = -\lambda_{n-i+1}(D) = -d_{n-i+1}$$

Ist p < n, so ist $\operatorname{rang}(M) = \operatorname{rang}(B) \le p < n$, insbesondere ist $\lambda_{p+1}(M) = 0$. Somit gilt

$$\lambda_{p+1}(A) + d_n \le \lambda_{p+1}(M) = 0.$$

Es seien A = A(G), $D = \text{diag}(d_1, d_2, \dots, d_n)$ und $B \in \mathbb{R}^{n \times p}$ die Inzidenzmatrix von \mathcal{K} . Dann gilt

$$B_{ij} = \begin{cases} 1 & \text{ falls } v_i \in K^j \\ 0 & \text{ sonst.} \end{cases}$$

Sei $M = BB^T$. Dann ist M positiv semidefinit und M = A + D, wie sich leicht zeigen lässt. Also folgt

$$\lambda_i(A) \ge \lambda_i(-D) = -\lambda_{n-i+1}(D) = -d_{n-i+1}$$

Ist p < n, so ist $\mathrm{rang}(M) = \mathrm{rang}(B) \le p < n$, insbesondere ist $\lambda_{p+1}(M) = 0$. Somit gilt

$$\lambda_{p+1}(A) + d_n \le \lambda_{p+1}(M) = 0.$$

Es seien A = A(G), $D = \text{diag}(d_1, d_2, \dots, d_n)$ und $B \in \mathbb{R}^{n \times p}$ die Inzidenzmatrix von \mathcal{K} . Dann gilt

$$B_{ij} = \begin{cases} 1 & \text{ falls } v_i \in K^j \\ 0 & \text{ sonst.} \end{cases}$$

Sei $M = BB^T$. Dann ist M positiv semidefinit und M = A + D, wie sich leicht zeigen lässt. Also folgt

$$\lambda_i(A) \geq \lambda_i(-D) = -\lambda_{n-i+1}(D) = -d_{n-i+1}$$

Ist p < n, so ist $\mathrm{rang}(M) = \mathrm{rang}(B) \le p < n$, insbesondere ist $\lambda_{p+1}(M) = 0$. Somit gilt

$$\lambda_{p+1}(A) + d_n \le \lambda_{p+1}(M) = 0.$$

Es seien A = A(G), $D = \text{diag}(d_1, d_2, \dots, d_n)$ und $B \in \mathbb{R}^{n \times p}$ die Inzidenzmatrix von \mathcal{K} . Dann gilt

$$B_{ij} = \begin{cases} 1 & \text{ falls } v_i \in K^j \\ 0 & \text{ sonst.} \end{cases}$$

Sei $M = BB^T$. Dann ist M positiv semidefinit und M = A + D, wie sich leicht zeigen lässt. Also folgt

$$\lambda_i(A) \geq \lambda_i(-D) = -\lambda_{n-i+1}(D) = -d_{n-i+1}$$

Ist p < n, so ist $\operatorname{rang}(M) = \operatorname{rang}(B) \le p < n$, insbesondere ist $\lambda_{p+1}(M) = 0$. Somit gilt

$$\lambda_{p+1}(A) + d_n \le \lambda_{p+1}(M) = 0.$$

Es seien A = A(G), $D = \text{diag}(d_1, d_2, \dots, d_n)$ und $B \in \mathbb{R}^{n \times p}$ die Inzidenzmatrix von \mathcal{K} . Dann gilt

$$B_{ij} = \begin{cases} 1 & \text{falls } v_i \in K^j \\ 0 & \text{sonst.} \end{cases}$$

Sei $M = BB^T$. Dann ist M positiv semidefinit und M = A + D, wie sich leicht zeigen lässt. Also folgt

$$\lambda_i(A) \geq \lambda_i(-D) = -\lambda_{n-i+1}(D) = -d_{n-i+1}$$

Ist p < n, so ist $\operatorname{rang}(M) = \operatorname{rang}(B) \le p < n$, insbesondere ist $\lambda_{p+1}(M) = 0$. Somit gilt

$$\lambda_{p+1}(A)+d_n\leq \lambda_{p+1}(M)=0.$$

- Für $d \in \mathbb{N}$ sei $\xi_d(G) = |\{i \in \mathbb{N} \mid \lambda_i(G) > -d\}|$.
- Es ist leicht zu zeigen, dass $\xi_d(G) \leq \kappa_d(G)$ gilt.

Vermutung

Für alle Graphen G gilt $\chi(G) \leq \xi_2(G)$.

- Für $d \in \mathbb{N}$ sei $\xi_d(G) = |\{i \in \mathbb{N} \mid \lambda_i(G) > -d\}|$.
- Es ist leicht zu zeigen, dass $\xi_d(G) \leq \kappa_d(G)$ gilt.

Vermutung

Für alle Graphen G gilt $\chi(G) \leq \xi_2(G)$.

- Für $d \in \mathbb{N}$ sei $\xi_d(G) = |\{i \in \mathbb{N} \mid \lambda_i(G) > -d\}|$.
- Es ist leicht zu zeigen, dass $\xi_d(G) \le \kappa_d(G)$ gilt.

Vermutung

Für alle Graphen G gilt $\chi(G) \leq \xi_2(G)$.

- Graphen G mit $\chi(G) \leq 3$
- Kneser Graphen
- Planare Graphem
- Perfekte Graphen
- Kantengrapher

Vermutung gilt für

■ Graphen G mit $\chi(G) \leq 3$.

Kneser Graphen.

- Perfekte Granhee

- Graphen G mit $\chi(G) \leq 3$.
- Kneser Graphen
- Planare Graphen.
- Perfekte Graphen.
- Kantengraphen.

- Graphen G mit $\chi(G) \leq 3$.
- Kneser Graphen.
- Planare Graphen
- Perfekte Graphen.
- Kantengraphen

- Graphen G mit $\chi(G) \leq 3$.
- Kneser Graphen.
- Planare Graphen.
- Perfekte Graphen.
- Kantengraphen.

- Graphen G mit $\chi(G) \leq 3$.
- Kneser Graphen.
- Planare Graphen.
- Perfekte Graphen.
- Kantengraphen.

- Graphen G mit $\chi(G) \leq 3$.
- Kneser Graphen.
- Planare Graphen.
- Perfekte Graphen.
- Kantengraphen.

- Graphen G mit $\chi(G) \leq 3$.
- Kneser Graphen.
- Planare Graphen.
- Perfekte Graphen.
- Kantengraphen.

- Graphen G mit $\chi(G) \leq 3$.
- Kneser Graphen.
- Planare Graphen.
- Perfekte Graphen.
- Kantengraphen.

Theorem

Sei G ein Graph. Dann gilt $\chi(G) \leq \xi_2(G)$ oder $\chi(\overline{G}) \leq \xi_2(\overline{G})$.