MULTI 3 - Data set: NAZIONI

INTRODUZIONE

Nel dataset sono riportati i risultati di un'indagine effettuata nel 1995 su 66 nazioni e riguardanti alcuni fra gli aspetti socio-demografici prevalenti. Le variabili presenti nel data set sono le seguenti:

- 1. DENSITA': densità di popolazione (abitanti per Kmq)
- 2. URBANA: percentuale di popolazione residente nelle città
- 3. VITAFEM: speranza di vita alla nascita delle donne
- 4. VITAMAS: speranza di vita alla nascita dei maschi
- 5. ALFABET: percentuale di alfabetizzati sul totale della popolazione
- 6. PIL: prodotto interno lordo pro-capite
- 7. RELIG: religione prevalente nella nazione: 1 = Cattolica; 2 = Ortodossa; 3 = Protestante

Analisi proposte:

- 1. Statistiche descrittive
- 2. Regressione Multivariata

```
#-- R CODE
library(car)
library(sjstats)
library(plotrix)
library(sjPlot)
library(sjmisc)
library(lme4)
library(pander)
library(car)
library(olsrr)
library(systemfit)
library(het.test)
panderOptions('knitr.auto.asis', FALSE)
#-- White test function
white.test <- function(lmod,data=d){</pre>
  u2 <- lmod$residuals^2</pre>
  y <- fitted(lmod)
  Ru2 <- summary(lm(u2 \sim y + I(y^2)))r.squared
  LM <- nrow(data)*Ru2
  p.value <- 1-pchisq(LM, 2)</pre>
  data.frame("Test statistic"=LM,"P value"=p.value)
}
#-- funzione per ottenere osservazioni outlier univariate
FIND_EXTREME_OBSERVARION <- function(x,sd_factor=2){</pre>
  which(x \ge mean(x) + sd_factor * sd(x) | x \le mean(x) - sd_factor * sd(x))
}
#-- import dei dati
ABSOLUTE_PATH <- "C:\\Users\\sbarberis\\Dropbox\\MODELLI STATISTICI"
d <- read.csv(paste0(ABSOLUTE_PATH,"\\esercizi (5) copia\\3.mult\\nazioni.csv"),sep=";")</pre>
```

```
#d$relig <- factor(d$relig,1:3,c("catt","ortod","prot"))
d$dummy_cat <- ifelse(d$relig==1,1,0)
d$dummy_ort <- ifelse(d$relig==2,1,0)
d$dummy_prot <- ifelse(d$relig==3,1,0)

#-- vettore di variabili numeriche presenti nei dati
VAR_NUMERIC <- c("densita","urbana","alfabet","pil")

#-- print delle prime 6 righe del dataset
pander(head(d),big.mark=",")</pre>
```

Table 1: Table continues below

nazione	densita	urbana	vitafem	vitamas	alfabet	pil	relig
Argentina	12	86	75	68	95	3,408	1
Armenia	126	68	75	68	98	5,000	2
Australia	2	85	80	74	100	16,848	3
Austria	94	58	79	73	99	18,396	1
Barbados	605	45	78	73	99	6,950	3
Belgio	329	96	79	73	99	17,912	1

dummy_cat	${\rm dummy_ort}$	${\rm dummy_prot}$
1	0	0
0	1	0
0	0	1
1	0	0
0	0	1
1	0	0

STATISTICHE DESCRITTIVE

Le variabili dipendenti sono "vitamas" e "vitafem", le altre variabili sono esplicative.

```
#-- R CODE
pander(summary(d[,VAR_NUMERIC]),big.mark=",") #-- statistiche descrittive
```

densita	urbana	alfabet	pil
Min.: 2.00	Min. : 5.00	Min.: 27.00	Min.: 208
1st Qu.: 19.75	1st Qu.:49.50	1st Qu.: 83.50	1st Qu.: 1412
Median: 61.00	Median $:64.50$	Median: 95.50	Median: 4464
Mean : 100.15	Mean $:62.18$	Mean: 87.58	Mean:7303
3rd Qu.:122.25	3rd Qu.:75.00	3rd Qu.: 99.00	3rd Qu.:14048
Max. $:605.00$	Max. $:96.00$	Max. $:100.00$	Max. $:23474$

pander(cor(d[,VAR_NUMERIC]),big.mark=",") #-- matrice di correlazione

	densita	urbana	alfabet	pil
densita	1	-0.1501	0.02142	0.09363
urbana	-0.1501	1	0.7054	0.54
${f alfabet}$	0.02142	0.7054	1	0.5629
\mathbf{pil}	0.09363	0.54	0.5629	1

plot(d[,VAR_NUMERIC],pch=19,cex=.5) #-- scatter plot multivariato


```
par(mfrow=c(2,2))
for(i in VAR_NUMERIC){
  boxplot(d[,i],main=i,col="lightblue",ylab=i)
}
```



```
par(mfrow=c(2,2))
for(i in VAR_NUMERIC){
  hist(d[,i],main=i,col="lightblue",xlab=i,freq=F)
}
```


ESERCIZIO 1

Si propongano ora le regressioni multiple con "vitamas" e "vitafem" variabili dipendenti.

	Estimate	Std. Error	t value	$\Pr(> t)$
(Intercept)	27.29	3.352	8.139	3.18e-11
densita	0.001103	0.004899	0.2252	0.8226
urbana	0.07802	0.04058	1.922	0.05939
${f alfabet}$	0.3862	0.0524	7.371	6.36e-10
pil	0.0002248	0.000106	2.121	0.03818
$\operatorname{dummy_ort}$	-2.747	1.79	-1.535	0.1301
$\operatorname{dummy_prot}$	-3.123	1.376	-2.27	0.02689

Table 6: Fitting linear model: vitamas \sim densita + urbana + alfabet + pil + dummy_prot

Observations	Residual Std. Error	R^2	Adjusted R^2
66	4.345	0.7984	0.7778

pander(anova(mod1),big.mark=",")

Table 7: Analysis of Variance Table

	Df	Sum Sq	Mean Sq	F value	Pr(>F)
densita	1	1.886	1.886	0.09992	0.753
urbana	1	2,825	2,825	149.6	7.969e-18
${f alfabet}$	1	1,391	1,391	73.68	5.678e-12
pil	1	66.6	66.6	3.528	0.0653
$\operatorname{dummy_ort}$	1	27.91	27.91	1.478	0.2289
$\operatorname{dummy_prot}$	1	97.27	97.27	5.152	0.02689
Residuals	59	1,114	18.88	NA	NA

pander(white.test(mod1),big.mark=",")

Test.statistic	P.value
16.18	0.0003064

pander(dwtest(mod1),big.mark=",")

Table 9: Durbin-Watson test: mod1

Test statistic	P value	Alternative hypothesis
1.653	0.07424	true autocorrelation is greater than 0

#-- R CODE

mod2 <- lm(vitafem ~ densita + urbana + alfabet + pil + dummy_ort + dummy_prot, d)
pander(summary(mod2),big.mark=",")</pre>

	Estimate	Std. Error	t value	$\Pr(> t)$
(Intercept)	28.57	3.316	8.614	5.045e-12
$\operatorname{densita}$	-0.0008131	0.004846	-0.1678	0.8673
urbana	0.09874	0.04015	2.459	0.01687
${f alfabet}$	0.4287	0.05184	8.27	1.918e-11
pil	0.0002326	0.0001049	2.218	0.03042
$\operatorname{dummy_ort}$	-1.737	1.771	-0.9807	0.3307
$\mathbf{dummy_prot}$	-3.54	1.361	-2.601	0.01174

Table 11: Fitting linear model: vitafem \sim densita + urbana + alfabet + pil + dummy ort + dummy prot

Observations	Residual Std. Error	R^2	Adjusted \mathbb{R}^2
66	4.299	0.8375	0.821

pander(anova(mod2),big.mark=",")

Table 12: Analysis of Variance Table

	Df	Sum Sq	Mean Sq	F value	Pr(>F)
densita	1	1.091	1.091	0.05903	0.8089
urbana	1	3,655	$3,\!655$	197.8	1.678e-20
${f alfabet}$	1	1,776	1,776	96.12	5.366e-14
pil	1	54.03	54.03	2.924	0.09251
$\operatorname{dummy_ort}$	1	6.798	6.798	0.3679	0.5465
$\operatorname{dummy_prot}$	1	125	125	6.764	0.01174
Residuals	59	1,090	18.48	NA	NA

pander(white.test(mod2),big.mark=",")

Test.statistic	P.value
15.37	0.0004602

pander(dwtest(mod2),big.mark=",")

Table 14: Durbin-Watson test: mod2

Test statistic	P value	Alternative hypothesis
1.725	0.1252	true autocorrelation is greater than 0

In entrambe le regressioni il fitting è molto elevato. Si passi ora al modello multivariato e all'analisi dei test multivariati.

```
18.57 66 6 pearson
   0.9252
             4.35e-26
## -----
summary(mod3)
## Response vitamas :
##
## Call:
## lm(formula = vitamas ~ densita + urbana + alfabet + pil + dummy_ort +
      dummy_prot, data = d)
##
## Residuals:
               1Q Median
                                3Q
## -11.7743 -2.7699 0.0802
                            2.2627 10.0207
##
## Coefficients:
               Estimate Std. Error t value Pr(>|t|)
## (Intercept) 27.2853144 3.3522247
                                  8.139 3.18e-11 ***
             0.0011033 0.0048985
## densita
                                 0.225
                                         0.8226
## urbana
             0.0780176 0.0405844
                                 1.922
                                         0.0594 .
## alfabet
             0.3862275 0.0523973
                                 7.371 6.36e-10 ***
                                 2.121
                                        0.0382 *
## pil
             0.0002248 0.0001060
## dummy_ort -2.7473814 1.7898836 -1.535
                                          0.1301
## dummy_prot -3.1233300 1.3760087 -2.270 0.0269 *
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 4.345 on 59 degrees of freedom
## Multiple R-squared: 0.7984, Adjusted R-squared: 0.7778
## F-statistic: 38.93 on 6 and 59 DF, p-value: < 2.2e-16
##
##
## Response vitafem :
##
## Call:
## lm(formula = vitafem ~ densita + urbana + alfabet + pil + dummy_ort +
##
      dummy_prot, data = d)
##
## Residuals:
      Min
               10 Median
                                30
## -15.5905 -2.1488 -0.1886 1.8190 10.7722
##
## Coefficients:
               Estimate Std. Error t value Pr(>|t|)
## (Intercept) 28.5674922 3.3162840 8.614 5.05e-12 ***
## densita
          -0.0008131 0.0048460 -0.168 0.8673
## urbana
             0.0987418 0.0401493 2.459
                                          0.0169 *
             ## alfabet
## pil
             0.0002326 0.0001049
                                  2.218 0.0304 *
## dummy_ort -1.7365632 1.7706934 -0.981
                                        0.3307
## dummy_prot -3.5403502 1.3612558 -2.601 0.0117 *
## ---
```

Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1

Residual standard error: 4.299 on 59 degrees of freedom

```
## Multiple R-squared: 0.8375, Adjusted R-squared: 0.821
## F-statistic: 50.68 on 6 and 59 DF, p-value: < 2.2e-16
pander(manova(mod3),big.mark=",")
##
## -----
##
        Df Pillai
                             approx F num Df den Df
                                                     Pr(>F)
##
  ##
                     0.03424
                                        2
                                               58
    **densita**
                1
                              1.028
                                                      0.3641
##
                             99.32
##
    **urbana** 1 0.774
                                        2 58
                                                    1.858e-19
##
                                        2 58
##
    **alfabet** 1 0.6237
                             48.06
                                                    4.919e-13
##
                             1.737
##
     **pil** 1 0.0565
                                        2
                                               58
                                                    0.1852
##
##
  **dummy_ort**
                1
                   0.05365 1.644
                                        2
                                               58
                                                     0.2021
##
                                        2
##
  **dummy_prot**
                     0.1046
                              3.388
                                               58
                                                      0.04058
                1
##
## **Residuals**
                 59
                       NA
                                NA
                                        NA
                                               NA
Anova(mod3, type="III")
## Type III MANOVA Tests: Pillai test statistic
            Df test stat approx F num Df den Df
                                            Pr(>F)
## (Intercept) 1
                0.55774 36.572
                                2 58 5.305e-11 ***
           1 0.01722 0.508
                                 2 58 0.60425
## densita
           1 0.10491
                                 2 58 0.04020 *
## urbana
                        3.399
## alfabet
           1 0.53881 33.881
                                 2 58 1.789e-10 ***
## pil
           1 0.07743 2.434
                                 2 58 0.09661 .
## dummy_ort 1 0.05898 1.818
                                 2 58 0.17155
## dummy_prot 1 0.10462 3.388 2 58 0.04058 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
#-- R CODE
summary(manova(cbind(vitamas, vitafem) ~ densita, data = d))
##
              Pillai approx F num Df den Df Pr(>F)
           1 0.029743 0.96563
## Residuals 64
summary(manova(cbind(vitamas, vitafem) ~ urbana, data = d))
          Df Pillai approx F num Df den Df
##
                                         Pr(>F)
## urbana
           1 0.54271 37.385
                           2 63 1.976e-11 ***
## Residuals 64
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
summary(manova(cbind(vitamas, vitafem) ~ alfabet, data = d))
```

```
Df Pillai approx F num Df den Df Pr(>F)
           1 0.79069 119 2 63 < 2.2e-16 ***
## alfabet
## Residuals 64
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
summary(manova(cbind(vitamas, vitafem) ~ pil, data = d))
           Df Pillai approx F num Df den Df
           1 0.36622 18.202 2 63 5.769e-07 ***
## pil
## Residuals 64
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
summary(manova(cbind(vitamas, vitafem) ~ dummy_ort, data = d))
           Df Pillai approx F num Df den Df Pr(>F)
## dummy_ort 1 0.07755 2.6482 2 63 0.07865 .
## Residuals 64
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
summary(manova(cbind(vitamas, vitafem) ~ dummy_prot, data = d))
                Pillai approx F num Df den Df Pr(>F)
            Df
## dummy_prot 1 0.011389 0.36289 2 63 0.6971
## Residuals 64
```