The first part of the project consists of two small tasks. You can find a .csv file for each one in the warm-up.zip archive from the resource section. Write the solution for all the tasks in a warm-up-solution.ipynb notebook that should run with the exts-ml course environment.

Task 1

The first task consists of fitting the following equation to a set of 50 x/y data points.

$$y = a * \log(x) + b$$

Here is a plot of the data points with the desired model curve.

Your curve should be optimal with respect to the residual sum of squares metric (RSS). Perform the following steps

- 1. Fit the curve, plot it
- 2. Compute the RSS and R^2 measures
- 3. Discuss the results, is it a good R^2 score?

Task 2

The second task consists of fitting a model to a set of data points that contains outliers. Here are the first five entries

	x1	x2	хЗ	У
0	7.892287	318.817999	162.969896	2112.420441
1	8.829627	303.180318	181.398715	2096.231124
2	13.810566	296.230913	145.848743	2067.044905
3	12.863271	325.830097	167.996165	2269.262403
4	13.697517	254.035329	171.892006	1966.604422

The goal is to try and compare different approaches to handle outliers. Use the train/test split methodology (ex. 80–20 splits) and compare the test MAE score for each one of the following approaches

- 1. Fit a linear regression with the outliers
- 2. Fit a huber regression with the outliers
- 3. Fit a linear regression without the outliers

The linear regression without outliers and huber regression models should both perform better than the linear regression with outliers.

RESOURCES