Теория Представлений.

Автор конспекта Федоров И.И. По лекциям Игнатьева М.В.

26 мая 2015 г.

Содержание

1 Представления групп

1

1 Представления групп

Определение 1. Пусть G - группа, а V - линейное векторное пространство, тогда гомоморфизм $\phi: G \to \operatorname{GL}(V)$ называется представлением группы G, а V называется пространством представления. Будем писать g.x вместо $(\phi(g))(x)$.

Определение 2. Пусть $\phi: G \to \mathrm{GL}(V)$ - представление. Функция $\chi: G \to \mathbb{C}$ действующая по правилу: $\chi(g) = tr(\phi(g))$, называется характером представления V.

Определение 3. Функция $f: G \to \mathbb{C}$ называется *центральной функцией на* G, если $\forall g, h \in G: f(g) = f(hgh^{-1})$. Множество всех центральных функций обозначается C(G).

Утверждение 1. C(G) - векторное пространство над \mathbb{C} , причем размерность C(G) равна количеству классов сопряженности. Функции f_1, \ldots, f_n будут базисом, где

$$f_i(g) = egin{cases} 1, & g \in K_i \mbox{(i-ый класс сопряженности)} \\ 0, & otherwise \end{cases}$$

Утверждение 2. Пусть $\phi: G \to \mathrm{GL}(V)$ - любое представление, а χ - его характер, тогда $\chi \in \mathrm{C}(G)$.

Утверждение 3. Пусть $\phi: G \to \mathrm{GL}(V)$ - любое представление, тогда:

$$\forall g \in G: \chi(g^{-1}) = \overline{\chi(g)}$$

Определение 4. Пусть $\phi: G \to \mathrm{GL}(V), \psi: G \to \mathrm{GL}(W)$ - представления. Прямой суммой представлений $(\phi+\psi)$ называется гомоморфизм: $\eta: G \to \mathrm{GL}(V \oplus W)$. По определению: $(\eta(g))(x,y) := ((\phi(g))(x), (\psi(g))(y))$.

 $\chi_{V \oplus W} = \chi_V + \chi_W$

Утверждение 4. $\chi_{_{V^*}}=\chi_{_{V}},\ \emph{rde }V^*$ - сопряженное κ V пространство.

Определение 5. Пусть V,W - векторные пространства над K. Рассмотрим множество $F = \left\{\sum_{i=0}^n z_i(x_i,y_i) | x_i \in V, y_i \in W, z_i \in \mathbb{Z}, n \in \mathbb{N}\right\}$. Введем на F отношение эквивалентности заданное правилами:

- 1. $(\alpha x, y) \sim (x, \alpha y)$, где $\alpha \in K$,
- 2. $(x_1 + x_2, y) \sim (x_1, y) + (x_2, y)$,
- 3. $(x, y_1 + y_2) \sim (x, y_1) + (x, y_2)$.

Фактормножество $F/_{\sim}$ является векторным пространством и называется m ензорным произведением, обозначается $V \otimes W$. Класс элемента (x,y) обозначается $x \otimes y$.

Замечание. Тензорное произведение V_1, V_2 так же может быть определено как пространство W вместе с полилинейным отображением $\otimes: V_1 \times V_2 \to W$ обладающим универсальным свойством(читаем теорию категорий).

Замечание. Данные выше определения тензорного произведения без изменений переносятся на случай модулей над кольцами.

Утверждение 5. $\{e_i \otimes f_j\}_{i=1,j=1}^{n,m}$ - базис $V \otimes W$.

Утверждение 6. $\chi_{V \otimes W} = \chi_V \times \chi_W$.

Определение 6. Пусть $\phi: G \to \operatorname{GL}(V), \psi: G \to \operatorname{GL}(W)$ - представления. Линейное отображение $F: V \to W$ называется морфизмом представлений, если $\forall q \in G, \forall x \in V$:

$$F((\phi(g))(x)) = (\psi(g))(F(x))$$

$$F(g.x) = g.F(x)$$

Определение 7. Морфизм представлений $F: V \to W$ группы G, называется изоморфизмом представлений, если он является биекцией.

Если существует хоть один изоморфизм между V и W, то их называют изоморфными представлениями группы G.

Определение 8. Пусть $\phi: G \to \mathrm{GL}(V)$ - представление. $W \subset V$ называется *инвариантным* подпространством, если $\forall g \in G, \forall x \in W: (\phi(g))(x) \in W$. Очевидно, что W само является представлением G.

Определение 9. Если в V существуют нетривиальные инвариантные подпространства, то V называется приводимым представлением группы G. Иначе V называется неприводимым представлением группы G.

Утверждение 7. Пусть V_1, \ldots, V_k - любые векторные пространства.

$$V_1 \oplus \ldots \oplus V_k := \{(x_1, \ldots, x_k) | x_1 \in V_1, \ldots, x_k \in V_k\}$$

 $\dim(V_1 \oplus \ldots \oplus V_k) = \dim V_1 + \ldots + \dim V_k$

Eсли каждое из них является представлением группы G, то и их прямая сумма будет представлением.

Определение 10. Представление V группы G называется вполне приводимым представлением, если оно изоморфно прямой сумме неприводимых.

Определение 11. Пусть V - векторное пространство над \mathbb{C} , отображение $\beta:V\times V\to\mathbb{C}$ называется полуторалинейной формой, если:

- 1. $\beta(x_1 + x_2, y) = \beta(x_1, y) + \beta(x_2, y)$
- 2. $\beta(\alpha x, y) = \alpha \times \beta(x, y)$
- 3. $\beta(y,x) = \overline{\beta(x,y)}$

Определение 12. Полуторалинейная форма называется *положительно определенной* и *эрмитовым произведением.* если:

$$\forall x \in V : \beta(x, x) > 0$$

$$\beta(x,x) = 0 \Leftrightarrow x = 0$$

 (V,β) - называется унитарным пространством.

Определение 13. Пусть V - векторное пространство, а W - подпространство в V. Ортогональным дополнением κ подпространству W называется $W^{\perp} := \{x \in V | x \perp y, \forall y \in V\} (x \perp y \Leftrightarrow (x,y) = 0).$

Определение 14. Пусть V - унитарное конечномерное пространство являющееся представлением группы G. Эрмитово произведение называется *инвариантным*, если $\forall x,y \in V, g \in G: (x,y) = (g.x,g.y)$

Утверждение 8. Если эрмитово произведение инвариантно и $W \subset V$ - инвариантно, то W^{\perp} - тоже инвариантно.

Теорема 1. *Теорема Машке.* Любое конечномерное комплексное представление любой конечно группы вполне приводимо.

Лемма 1. Лемма Шура.

- 1. Пусть V,W неприводимые представления группы $G, a \phi : V \to W$ морфизм, тогда ϕ изоморфизм, либо $\phi = 0$.
- 2. Пусть V неприводимое представление группы $G.~\phi:V\to V$ морфизм, тогда:

$$\exists \lambda \in \mathbb{C}, \forall x \in V : \phi(x) = \lambda x$$

Утверждение 9. Пусть $\phi: G \to \operatorname{GL}(V), \psi: G \to \operatorname{GL}(V)$ - неприводимые представления, $\sigma: V \to W$ - любое линейно отображение. Обозначим через $\widetilde{\sigma}$ линейное отображение вида:

$$\widetilde{\sigma} := \frac{1}{|G|} \sum_{g \in G} \psi(g) \circ \sigma \circ \phi^{-1}$$

тогда:

- 1. $\phi \ncong \psi : \widetilde{\sigma} = 0$
- 2. $V = W, \phi = \psi, mo \ \widetilde{\sigma} = \frac{\operatorname{tr} \sigma}{\dim V} id_V$

Утверждение 10.

$$(f_1, f_2) = \frac{1}{|G|} \sum_{g \in G} f_1 \overline{f_2}$$

- эрмитово произведение на C(G). C(G) - унитарное пространство.

Теорема 2. Первое соотношение ортогональности. Пусть $\phi: G \to \mathrm{GL}(V), \psi: G \to \mathrm{GL}(W)$ - неприводимые представления.

$$(\chi_{_{V}},\chi_{_{W}}) = \begin{cases} 1, & V \cong W \\ 0, & otherwise \end{cases}$$

Утверждение 11. 1. Пусть V - представление группы $G, V = m_1 V_1 \oplus \ldots \oplus m_k V_k$ - его разложение на неприводимые, тогда кратность вхождения i-ого неприводимого представления $m_i = (\chi_{_V}, \chi_{_{V_i}})$.

- 2. Любое представление можно однозначно разложить в прямую сумму неприводимых.
- 3. Ecau $\chi_V = \chi_W$, mo $V \cong W$.

Утвержде**ние 12.** Если V - любое представление, то $(\chi_V,\chi_V)\in\mathbb{Z}_{\geq 0}$. При этом V неприводимо \leftrightarrow $(\chi_V,\chi_V)=1$.

Лемма 2. Пусть $\Gamma \in \mathrm{C}(G), \phi: G \to \mathrm{GL}(V)$ - неприводимое представление, χ - его характер. Положим

$$\psi := \sum_{h \in G} \overline{\Gamma(h)} \phi(h) : V \to V$$

Το εδα $\psi = \lambda \times id_V$, εδε $\lambda = \frac{|G|}{\chi(e)}(\chi, \Gamma)$.

Теорема 3. Пусть $V_1, ..., V_k$ - все попарно не изоморфные неприводимые представления $G. \chi_1, ..., \chi_k$ - их характеры - базис в C(G).

Утверждение 13. Количество неприводимых представлений равно числу классов сопряженности в G.

Определение 15. Представление $\phi: G \to \mathrm{GL}(W)$ называется *регулярным*, если W- пространство функций на группе G и линейное преобразование $\phi(g): W \to W$ ставит в соответствие каждой функции $f(\omega), \omega \in G$, функцию $f(g\omega), \omega \in G$.

Утверждение 14. Каждое неприводимое представление входит в регулярное с крастностью равной его размерности.

Теорема 4. Теорема Фробениуса. Пусть V_1, \ldots, V_r - все неприводимые представления группы G, тогда:

$$\sum_{i=1}^{r} (\dim V_i)^2 = |G|$$

Определение 16. $z(h) := \{g \in G | gh = hg\}$ - *централизатор* элемента h.

Теорема 5. Второе соотношение ортогональности. Пусть $\chi_1, ..., \chi_r$ - все неприводимые характеры группы G. Пусть $C_1, ..., C_r$ - классы сопряженности $u \ g_1 \in C_1, ..., g_r \in C_r$. Тогда:

$$\sum_{i=1}^{r} \chi_i(g_j) \overline{\chi_i(g_k)} = \begin{cases} |z(g_j)|, & j=k\\ 0, & otherwise \end{cases}$$

Утверждение 15. Пусть $\phi: G \to \operatorname{GL}(V)$ - представление группы G, а $\phi|_H: H \to \operatorname{GL}(V)$ его ограничение на подгруппу H. Тогда из неприводимости $\phi|_H$ следует неприводимость ϕ .

Утверждение 16. Пусть $\phi: G \to \operatorname{GL}(V), \psi: G \to \operatorname{GL}(W)$ - представления группы G. Рассмотрим пространство $\operatorname{End}_{\mathbb{C}}(V,W)$ всех линейных отображений из V в W, тогда отображение $\gamma: G \to \operatorname{End}_{\mathbb{C}}(V,W)$ такое, что:

$$\forall g \in G, \theta \in \operatorname{End}_{\mathbb{C}}(V, W) : (\gamma(g))(\theta) = \psi(g) \circ \theta \circ \phi(g^{-1})$$

будет представлением группы G.

Утверждение 17. Пусть V,W - векторные пространства над \mathbb{C} . Тогда отображение $\eta:V^*\otimes W\to \mathrm{End}_{\mathbb{C}}(V,W)$ заданное правилом:

$$\forall \lambda \in V^*, w \in W, x \in V : (\eta(\lambda \otimes w))(x) := \lambda(x)w$$

является изоморфизмом векторных пространств.

Eсли V, W - представления группы G, то η будет изоморфизмом представлений.

Утверждение 18. dim $\text{Hom}_G(V, W) = (\chi_V, \chi_W)$

Утверждение 19. Пусть G - любая группа, $H \subset G$ - любая подгруппа. Если $\phi: G \to \mathrm{GL}(V)$ - представление G, то $\phi|_H$ - представление H. Обозначение $\mathrm{Res}_H^G(V)$.

Определение 17. Пусть G - группа, а $H \subset G$ - подгруппа. Пусть задано представление H в V. Рассмотрим векторное пространство $\operatorname{Ind}_H^G(V) := \{f: G \to V | f(hx) = h.f(x), \forall x \in G, h \in H\}$. Определим действие группы правилом (g.f)(x) := f(xg).

 $\operatorname{Ind}_H^G(V)$ называется индуцированным представлением.

Утверждение 20. dim $\operatorname{Ind}_H^G V = \dim V[G:H]$

Теорема 6. Пусть $g_1 \dots g_l$ полная система представителей правых смежных классов G по H, тогда:

$$\chi_{_{\operatorname{Ind}\nolimits_{H}^{G}V}}(g) = \sum_{1 \leq i \leq l, g_{i}gg_{i}^{-1} \in H} \chi_{V}(g_{i}gg_{i}^{-1})$$

Следствие 1. Пусть $g_1 \dots g_l$ полная система представителей левых смежных классов G по H, тогда:

$$\chi_{_{\operatorname{Ind}\nolimits_{H}^{G}V}}(g) = \sum_{1 \leq i \leq l, g_{i}^{-1}gg_{i} \in H} \chi_{V}(g_{i}^{-1}gg_{i})$$

Теорема 7 (Двойственность Фробениуса). Пусть G - группа, $H \subset G$ подгруппа, V - представление G,W - представление H. Тогда существует изоморфизм векторных пространств:

$$\operatorname{Hom}_H(\operatorname{Res}_H^G V, W) \cong \operatorname{Hom}_G(V, \operatorname{Ind}_H^G W)$$

 ${f C}$ лед ${f c}$ твие ${f 2}$. Пусть ${f G}$ - группа, ${f H}\subset {f G}$ подгруппа, ${f V}$ - представление ${f G},{f W}$ - представление ${f H}$. Тогда

$$(\chi_{\operatorname{Res}_H^G V}, \chi_W)_H = (\chi_V, \chi_{\operatorname{Ind}_H^G W})_W$$

Определение 18. Пусть G - любая группа. Подгруппа порожденная элементами вида $[g_1,g_2]=g_1g_2g_1^{-1}g_2^{-1}$ называется коммутантом и обозначается [G,G].

Утверждение 21. Любая подгруппа содержащая коммутант является нормальной.

Утверждение 22. G/H - абелева тогда и только тогда, когда $[G,G]\subset H$.

Замечание. В любой непонятной ситуации факторизуй по коммутанту. Таким образом если у нас есть группа G мы можем получить серию её одномерных представлений.