Practice Exam Questions - Tutorial 3

- 1. Let $A = \{2, 3\}$, $B = \{4, 5\}$, $C = \{6\}$, $D = \emptyset$, $E = \{2, \{2, 3\}, \emptyset\}$. Write down the elements in the following sets.
 - (a) $B \times A$
 - (b) $B \times D$
 - (c) $\mathbb{P}(C) \times A$
 - (d) $\mathbb{P}(B) \setminus B$
 - (e) $\mathbb{P}(B \cup C)$
 - (f) $(A \times B) \times C$
 - (g) $\mathbb{P}(B) \times \mathbb{P}(D)$
 - (h) $(E \setminus A) \times A$
- 2. Let $A = \{\emptyset\}$, $B = \{1, 2, \{3\}\}$, $C = \{2, 3\}$ and $D = \emptyset$.
 - (a) Write down $A \times (B \setminus C)$.
 - (b) Write down $\mathbb{P}(A \cap D)$.
- 3. Let $A = \emptyset$, $B = {\emptyset}$, $C = {1, 2, 4}$.
 - (a) Write down $\mathbb{P}(B \setminus A) \cup A$.
 - (b) Write down all partitions of C.
- 4. The statement $\mathbb{P}(A \cup B) = \mathbb{P}(A) \cup \mathbb{P}(B)$ is not true for all sets A and B.
 - (a) Give an example of sets A and B for which the statement is not true.
 - (b) What special property do A and B need to have to make the statement hold? In other words, you need to find a property M such that for all sets A and B,

$$M \Leftrightarrow \mathbb{P}(A \cup B) = \mathbb{P}(A) \cup \mathbb{P}(B)$$
.

You do not need to give a proof; you only need to find the property M.

- 5. (a) Let R be the relation on \mathbb{Z} defined as follows: xRy means " $2x-2y \leq 3$ ". Is R reflexive? Symmetric? Transitive? For each of these properties, prove or disprove that it has that property.
 - (b) Let R be the relation on \mathbb{R} defined as follows: xRy means " $x \geq |y|$ " where " $|\cdot|$ " means "absolute value". Is R reflexive? Symmetric? Transitive? For each of these properties, prove or disprove that it has that property.
 - (c) Let R be the relation on \mathbb{Z} defined as follows: xRy means "(x-y)+1 is natural". Is R reflexive? Symmetric? Transitive? For each of these properties, prove or disprove that it has that property.

6. Let $A = \{1, 2, 3, 4\}$. For each of the four relations (a)-(d) shown below on A, state explicitly which of the properties it does and does not have: reflexive, symmetric, transitive. (No motivation is required).

7. Let R be the relation on $\mathbb Z$ defined as follows: xRy means " $(x+\frac{1}{2})(y+\frac{1}{2})\geq 0$ ". This is an equivalence relation. (You do not need to prove this). How many equivalence classes does R have? Describe briefly which elements of $\mathbb Z$ are in each equivalence class.