IIND 4115 – Flujo en Redes **Asymptotic Complexity**

Name	Running time $(T(n))$	Example algorithms
constant time	<i>O</i> (1)	Determining if an integer (represented in binary) is even or odd
iterated logarithmic time	$O(\log^* n)$	Distributed coloring of cycles
log-logarithmic	$O(\log \log n)$	Amortized time per operation using a bounded priority queue
logarithmic time	$O(\log n)$	Binary search
fractional power	$O(n^c)$ where $0 < c < 1$	Searching in a kd-tree
linear time	O(n)	Finding the smallest or largest item in an unsorted array

linearithmic time	$O(n \log n)$	Fastest possible comparison sort
quadratic time	$O(n^2)$	Bubble sort; Insertion sort; Direct convolution
cubic time	$O(n^3)$	Naive multiplication of two n×n matrices. Calculating partial correlation.
polynomial time	$2^{O(\log n)} = \operatorname{polv}(n)$	Karmarkar's algorithm for linear programming; AKS primality test
quasi-polynomial time	$2^{\operatorname{poly}(\log n)}$	Best-known O(log ² n)-approximation algorithm for the directed Steiner tree problem.
sub-exponential time (second definition)	$2^{o(n)}$	Best-known algorithm for integer factorization and graph isomorphism
exponential time (with linear exponent)	2 ^{O(n)}	Solving the traveling salesman problem using dynamic programming
exponential time	$2^{\operatorname{poly}(n)}$	Solving matrix chain multiplication via brute-force search
factorial time	O(n!)	Solving the traveling salesman problem via brute- force search