Tentamen - Mekanik F del 2 (FFM520)

Tid och plats: Måndagen den 15 augusti 2011 klockan

14.00-18.00 i V.

Lösningsskiss: Christian Forssén

Obligatorisk del

1. (a)

Rörelsemängdsmomentet är bevarat

$$L_{O,1} = L_{O,2} \quad \Leftrightarrow \quad mva = (I_O + ma^2)\omega.$$

Staven har tröghetsmomentet $I_O = M(2a)^2/3$. Detta ger slutligen vinkelhastigheten direkt efter stöten

$$\omega = \frac{v}{a\left(1 + \frac{4M}{3m}\right)}.$$

(b)

Rörelsemängdsmomentet ges av sambandet

$$\mathbf{L}_{O} = \mathbf{I}_{O}\omega$$
.

Rotationer sker kring en fix axel. Med det givna koordinatsystemet

$$\omega_x = \omega_y = 0, \quad \omega_z = \omega.$$

Vi behöver endast tre element ur tröghetsmatrisen eftersom \mathbf{L}_O blir

$$\mathbf{L}_O = \omega \left[-I_{xz}\hat{\mathbf{i}} - I_{yz}\hat{\mathbf{j}} + I_{zz}\hat{\mathbf{k}} \right].$$

Dessa matriselement blir

$$\begin{cases} I_{xz} = \int dmxz = 0, \\ I_{yz} = \int dmyz = mR\frac{L}{3} - mR\frac{2L}{3} = -\frac{mRL}{3}, \\ I_{zz} = \int dm(x^2 + y^2) = 2mR^2. \end{cases}$$

Detta ger slutligen det sökta rörelsemängdsmomentet

$$\mathbf{L}_O = mR\omega \left[\frac{L}{3}\hat{\mathbf{j}} + 2R\hat{\mathbf{k}} \right].$$

2. (kortfattat)

Informationen i uppgiften ger följande:

- Fjäderkonstanten för varje fjäder är $k = 4 \cdot 10^4 \text{ N/m}.$
- Den naturliga vinkelfrekvensen för varje hjulsystem är $\omega_n = 40 \text{ rad/s}$.
- Underlaget kan antas vara sinusformat med en våglängd på $\lambda = 0.8$ m. Hjulsystemet kommer att röra sig upp och ner med frekvensen $f = v/\lambda$, där v är bilens horisontella hastighet.

Hjulsystemet hamnar alltså i resonans då

$$v = \lambda \frac{\omega_n}{2\pi} \approx 5 \text{ m/s}.$$

Kommentar: Notera att vad vi har räknat ut är den hastighet då hjulparet hamnar i resonanssvängning. Men det som egentligen ger passagerarna obehag är bilkroppens svängningsrörelse.

3. (enbart svar)

Med beteckningen $x \equiv R\Omega^2/g_0$, där R är jordradien och Ω rotationshastigheten, fås svaren:

- (a) $g g_0 \approx g_0 \frac{x^2 2x}{2} \cos^2 \phi;$
- (b) Den maximala vinkeln mellan ${\bf g}$ och ${\bf g}_0$ inträffar vid latituden $\phi=45^o$ och blir

$$\theta \approx \frac{x}{2\sqrt{1 + (x^2 - 2x)/2}} \approx \frac{x}{2}$$

.

Överbetygsuppgifter

4. Vi inför ett kroppsfixt koordinatsystem med origo i myntets masscentrum (se figur). Riktningen \hat{x}_1 pekar in i pappret.

Vi kan betrakta rörelsen i ett koordinatsystem med origo i masscentrum och som roterar kring en fix, vertikal \hat{Z} -axel med frekvensen Ω . I detta koordinatsystem är myntets masscentrum fixt medan myntet spinner kring sin (negativa) \hat{x}_3 axel med frekvensen ω' . Eftersom myntet rullar gäller att $\omega' r = \Omega R$. Myntets rotationsvektor kan alltså skrivas

$$\vec{\omega} = \Omega \hat{Z} - \omega' \hat{x}_3 = \Omega \sin \theta \hat{x}_2 - \Omega \left(\frac{R}{r} - \cos \theta \right) \hat{x}_3.$$

Huvudtröghetsmomenten är $I_3 = mr^2/2$ och $I_2 = mr^2/4$ och rörelsemängdsmomentet map cirkelns mittpunkt blir $\vec{L} = I_2\omega_2\hat{x}_2 + I_3\omega_3\hat{x}_3$. Enbart den horisontella komponenten av denna kommer att ha ett tidsberoende: $\vec{L}_{\perp} = (I_2\omega_2\cos\theta - I_3\omega_3\sin\theta)\,\hat{e}_{\perp}$, där vektorn \hat{e}_{\perp} pekar

horisontellt in mot cirkelrörelsens mittaxel.

Vi får nu rörelseekvationen från

$$\vec{M} = \frac{d\vec{L}}{dt} = -\Omega L_{\perp} \hat{x}_1 = \ldots = -\frac{1}{4} mr \Omega^2 \sin\theta \left(2R - r\cos\theta\right) \hat{x}_1.$$

Vridmomentet, map masscentrum, uppkommer pga krafterna som verkar genom kontaktpunkten. Dessa består av en vertikal komponent, $mg\hat{Z}$, samt en horisontell friktionskraft. Den sistnämnda måste vara $\vec{F}_{\perp} = m\left(R - r\cos\theta\right)\Omega^2\hat{e}_{\perp}$, eftersom masscentrum rör sig i en cirkelbana med radie $R - r\cos\theta$. Slutligen fås vridmomentet

$$\vec{M} = -\left[mgr\cos\theta - m(R - r\cos\theta)\Omega^2 r\sin\theta\right]\hat{x}_1.$$

Rörelseekvationen ovan ger slutligen sambandet

$$\Omega^2 = \frac{g}{\frac{3}{2}R\tan\theta - \frac{5}{4}r\sin\theta}.$$

Vi får enbart fysikaliska lösningar då högerledet är positivt, vilket ger villkoret $R > \frac{5}{6}r\cos\theta$.

Specialfall: $\theta \to \pi/2$ ger $\Omega \to 0$, vilket är rimligt.

 $\theta \to 0$ ger $\Omega \to \infty$, vilket också är rimligt.

Notera att då $R \to \frac{5}{6}r\cos\theta$ så går frekvensen $\Omega \to \infty$. Detta betyder också att friktionskraften blir stor vilket i praktiken betyder att friktionskoefficienten måste vara motsvarande hög. Så småningom börjar antagligen myntet att glida.

5. (kortfattat)

Systemet har två frihetsgrader. Välj förslagsvis två vinklar för att beskriva klossens läge relativt horisontalaxelns (ϕ) samt ringens rotationsvinkel (θ) . (Notera att positiv rotationsriktning moturs innebär att ringen har rullat åt vänster då $\theta > 0$.)

Kinetisk och potentiell energi blir med dessa generaliserade koordinater

$$T = \frac{1}{2}mR^2 \left[\dot{\theta}^2 \left(1 + \frac{2M}{m} \right) - 2\dot{\theta}\dot{\phi}\cos\phi + \dot{\phi}^2 \right],$$

$$V = mqR \left(1 - \cos\phi \right).$$

Lagranges ekvationer blir

$$\ddot{\theta} + \frac{1}{1 + 2M/m} \left(\dot{\phi}^2 \sin \phi - \ddot{\phi} \cos \phi \right) = 0,$$
$$\ddot{\theta} \cos \phi - \ddot{\phi} - \frac{g}{R} \sin \phi = 0.$$

Dessa ekvationer kan vi linearisera för små svängningar kring det stabila jämviktsläget $\theta = \phi = 0$. Rörelseekvationerna blir då

$$\ddot{\theta} - \frac{1}{1 + 2M/m} \ddot{\phi} \approx 0,$$

$$\ddot{\theta} - \ddot{\phi} - \frac{g}{R} \phi \approx 0.$$

Notera att den första ekvationen enbart tillåter att θ och ϕ har motsatt tecken. Dvs vi har bara en egenlösning. Ansatsen $\phi(t) = A \exp(\pm i\omega t)$ ger egenfrekvensen

$$\omega_n = \sqrt{\frac{g(1+m/2M)}{R}}.$$

Specialfall: $M \to \infty$ ger $\omega \to \sqrt{g/R}$, dvs en matematisk pendel med pendellängden R, vilket vi bör förvänta oss.

Extrauppgift (del A)

6. (kortfattat)

Staven kommer att tippa då kontaktkraften i punkten A går mot noll, dvs $N_A \to 0$. I detta gränsläge gäller fortfarande att $\ddot{\theta} = 0$. Kraften i kontaktpunkten B utgörs av en summa av normal- och friktionskraft. En friläggning, samt tecknandet av vridmometsekvationen med avseende på masscentrum ger att den resulterande kraften \vec{N}_B måste vara riktad parallellt med stången. Rörelseekvationerna i x- och y-led (x =rörelseriktningen, y =vertikalt uppåt) ger då

$$-N_B \sin \theta = -ma \qquad (x-\text{led}),$$

$$N_B \cos \theta - mq = 0 \qquad (y-\text{led}),$$

Examinator: C. Forssén

där θ är vinkeln mellan staven och horisontalaxeln. I vårt fall är $\theta=30^o$ vilket ger lösningen

$$a = g \tan \theta = g/\sqrt{3}$$
.

Alternativt tecknar vi vridmomentekvationen m.a.p. punkten B, men får då inte glömma termen $m\bar{a}d$ som kommer från masscentrums acceleration.

Examinator: C. Forssén