

Ministerul Educației Universitatea "OVIDIUS" Constanța Facultatea de Matematică și Informatică Specializarea Informatică

Licență

Coordonator științific: Cosma Luminița

Student: Tănase Ramona Elena

Cuprins

Cı	iprins	1
1	Ecuatii Integrale	2
	1.1 Ecuatii Volterra	2
Ré	eferinte bibliografice	3

Capitolul 1

Ecuatii Integrale

Acest capitol este o introducere la teoria ecuatiilor liniare Volterra si Fresholm. Sunt abordate si unele aspect legate de anumite extensii neliniare.

1.1 Ecuatii Volterra

Incepem cu ecuatii scalare si liniare Volterra. Exista doua tipuri de astfel de ecuatii care sunt cele mai relevante pentru aplicatii, si anume

$$f(t) = \int_{a}^{t} k(t, s) x(s) ds, a \le t \le b(1.1.1)$$

si

$$x(t) = f(t) + \int_{a}^{t} k(t, s) x(s) ds, a \le t \le b(1.1.2)$$

unde $a,b \in \mathbb{R}, a < b, f \in C[a,b] := C([a,b];\mathbb{R}), k \in C(\Delta) := C(\Delta;\mathbb{R})$ (numit nucleu), cu $\Delta = \{(t,s) \in \mathbb{R}^2; a \leq s \leq t \leq b\}$; si x = x(t) denota functia necunoscuta care se cauta in spatiul C[a,b]. Ecuatia (1.1.1) este cunoscuta ca prima ecuatie Volterra , in timp ce ecuatia (1.1.2) este cunoscuta ca cea de-a doua ecuatie Volterra. In cele ce urmeaza vom examina ecuatia (1.1.2). Vom arata mai tarziu ca ecuatia (1.1.1) se reduce la (1.1.2) in conditii adecyate.

Referinţe bibliografice