Machine Learning Algorithms Summary Table

Algorithm	Binary Classification	Multiclass Classification	Regression	Advantages	Disadvantages
Logistic regression glm(family = "binomial")	~			Very common /understood Can calculate feature importance (which predictors are the most predictive)	Parameter estimates can be unstable when a lot of separation between classes
					Lower performance compared to other models when predictors are normally distributed in each of the classes
					Limited to binary classification (can use multinomial logistic regression for multiclass classification)
Naive Bayes naiveBayes()	~	~		Not as strong of assumptions as QDA and LDA Reduction in variance	Can be biased
kNN knn3()	~	~	~	Nonparametric (can lead to better performance)	The sample size needs to be much larger than the number of predictors
					Does not indicate which predictors are important
QDA qda()	~	~		Better performance over LDA when covariance structures differ across classes	Need a lot of data and computing resources due to high number of parameters Performance will suffer if covariance structure is similar across classes (this method assumes they are not)

					Strong assumptions about mean and variance distributions
LDA lda()	~	~		Computationally efficient	Will not outperform QDA if covariance structures differ
				Outperforms QDA when covariance structures are	across classes
				similar across classes	Strong assumptions about mean and variance distributions
				Needs less data than QDA	
Decision trees tree() or	~	~	~	Interpretability	High variance
rpart()				Outperforms linear models	
				when relationship between	
				outcome and predictors is	
				complex and non-linear	
Random Forest randomForest()	~	~	~	High performance	Less interpretability
				Can calculate feature	
				importance (which predictors	
				are the most predictive)	
				Outperforms linear models	
				when relationship between	
				outcome and predictors is	
				complex and non-linear	

Machine Learning Steps (Classification; binary or categorical outcome)

- 1. Split data into training and test sets
 - We have been doing a 50/50 split in class but in practice the most common split is 60-80% training set
- 2. Fit model using only the training set
- 3. Use the predict function to predict probabilities for the test set only
- 4. Convert the predicted probabilities into a class prediction (0 or 1 for binary classification; 0, 1, 2, ..., K for K classes)
- 5. Calculate performance metrics using the confusionMatrix function (accuracy, sensitivity, specificity for binary classification; overall accuracy and class accuracy for each class for multiclass classification)

Machine Learning Steps (Regression; continuous outcome)

- 1. Split data into training and test sets
 - We have been doing a 50/50 split in class but in practice the most common split is 60-80% training set
- 2. Fit model using only the training set
- 3. Use the predict function to predict values for the outcome using the test set only (will be continuous numbers; not probabilities)
- 4. Calculate performance metrics (mean square error (MSE), mean absolute error (MAE), etc.)