DIS 2 Лекция 1

hornyta

25 февруари 2023 г.

1 Определен интеграл

 $f:[a,b] \to \mathbb{R}$, ограничена $\sup\{f(x): x \in [a,b]\}(b-a)$ - горна оценка $\inf\{f(x): x \in [a,b]\}(b-a)$ - долна оценка Лицето на фигурата варира между тези две стойности.

Правим подразбиване на интервала $[a,b]\tau: a=x_0 < x_1 < x_2 < \cdots < x_n=b$ (което е крайна редица)

Разглеждаме $[x_{i-1}, x_i]$

$$M_j := \sup\{f(x) : x \in [x_{i-1}, x_i]\}$$

$$m_j := \inf\{f(x) : x \in [x_{i-1}, x_i]\}$$

 $S_f(au):=\sum_{j=1}^n M_j(x_j-x_{j-1})$ - Голяма сума на Дарбу за f при подр. au $s_f(au):=\sum_{j=1}^n m_j(x_j-x_{j-1})$ - Малка сума на Дарбу за f при подр. au

Лема 1 Ако $\tau^* \geq \tau$, то $S_f(\tau^*) \leq S_f(\tau)$ и $s_f(\tau^*) \leq s_f(\tau)$ τ^*, τ - 2 подразбивания, където τ^* е "по-фино" от τ (τ^* съдържа всичките елементи на τ)

Доказателство: б.о.о τ^* се получава от τ с прибавяне на една точка

$$\tau : a = x_0 < x_1 < \dots < x_n = b$$

$$\tau^* : a = x_0 < x_1 < \dots < x_{i-1} < x^* < x_i < \dots < x_n = b$$

$$S_{f}(\tau) - S_{f}(\tau^{*}) = \sum_{j=1}^{n} \sup_{[x_{j-1}, x_{j}]} f \cdot (x_{j} - x_{j-1}) - \sum_{j=1}^{i-1} \sup_{[x_{j-1}, x_{j}]} f \cdot (x_{j} - x_{j-1})$$

$$- \sup_{[x_{i-1}, x^{*}]} f \cdot (x^{*} - x_{i-1}) - \sup_{[x^{*}, x_{i}]} f \cdot (x_{i} - x^{*})$$

$$- \sum_{j=1}^{n} \sup_{[x_{j-1}, x_{j}]} f \cdot (x_{j} - x_{j-1}) =$$

$$= \sup_{[x_{i-1}, x_{i}]} f \cdot (x_{j} - x_{i-1}) - \sup_{[x_{i-1}, x^{*}]} f \cdot (x^{*} - x_{i-1}) - \sup_{[x^{*}, x_{i}]} f \cdot (x^{*} - x_{i}) \geq$$

$$= \sup_{[x_{i-1}, x_{i}]} f \cdot (x_{j} - x_{i-1}) - \sup_{[x_{i-1}, x_{i}]} f \cdot (x^{*} - x_{i-1}) - \sup_{[x_{i-1}, x_{i}]} f \cdot (x^{*} - x_{i}) = 0$$