A NEW PERSPECTIVE ON

MULTIPLE INTERNAL RATES OF RETURN

Presented by:

Name:Li, ZhiJun ID:20750405

Name:Chen, Xiang ID:20889335

Name:Li Zhehao ID:20922668

Name:Lin Zhanzhou ID:20829189

Name:Lin Chau Tung ID:20832681

Name:Zhang Taoshuo ID:20885949

Contents

D1 Introduction

02 Methodology

IRR Application - Investment Family

04 Limitations and Conclusion

Introduction

Part 1

Computation

Part 3

New Perspective

Property of IRR

Part 2

Two Fatal Flaws

Part 4

What's iternal rate of return(IRR)?)

- A technique of assisting in decision making and capital budgeting
- The most important alternative to NPV
- the rate of return at which the net present value of a project becomes zero.
- We call it 'internal' because it does not take any external factor (like inflation) into consideration.

How IRR is computed?

$$0 = CF_0 + \frac{CF_1}{(1 + IRR)} + \frac{CF_2}{(1 + IRR)^2} + \frac{CF_3}{(1 + IRR)^3} + \dots + \frac{CF_n}{(1 + IRR)^n}$$

Or

$$0 = NPV = \sum_{n=0}^{N} \frac{CF_n}{(1 + IRR)^n}$$

If the IRR is greater than the hurdle rate, the project is accepted, otherwise it is rejected.

Where:

 CF_0 = Initial Investment / Outlay CF_1 , CF_2 , CF_3 ... CF_n = Cash flows n = Each Period

N = Holding Period NPV = Net Present Value

IRR = Internal Rate of Return

Two Fatal Flaws of IRR in Consensus

Flaw One: Mutually Exclusive Projects

- Mutually exclusive is a statistical term describing two or more events that cannot happen simultaneously.
- IRR cannot be used to rate mutually exclusive projects but only to decide whether a single project is worth investing in.
- In cases where one project has a higher initial investment than a second mutually exclusive project, the first project may have a lower IRR (expected return), but a higher NPV (increase in shareholders' wealth) and should thus be accepted over the second project (assuming no capital constraints).

Flaw One: Mutually Exclusive

Case:NPV vs discount rate comparison for two mutually exclusive projects. Project A has a higher NPV (for certain discount rates), even though its IRR (= x-axis intercept) is lower than for project B

Two Fatai Fiaws of iRR in Consensus

Flow Two: Multiple or Nonexistent Internal Rates

- Nonexistent IRR IRR will not exist in situations where NPV is positive for all values of the discount rate. Thus, in these situations, the IRR rule cannot be used.
- Multiple Internal Rates Regular cashflows are those where the outflow is only once i.e. at the time of initial investment. But in non-regular category, cash outflows more than once.

Year	0	1	2	3	4	5
Net Cash Flow	-11000	7500	7500	7500	8000	-21000

Flow Two: Multiple Internal Rates Case

New Perspective

Cons

- Severe Drawback
- Difficult to explain or interpret properly
- Invalid and not useful

02

Methodology

Methodology

1. Collect Cashflow: x

2. Find IRR : \vec{k}

3. Calculate investment Stream: c

4. Identify NPV(X)

Project Cash Flow: \vec{x}

 x_0 :
Amount received/paid initially

 x_1 : Cash Flow in year 1

 x_n : Cash Flow in year n

Year O

Year N

Cashflow: \vec{x}

 (x_0,x_1,x_2,\ldots,x_n)

 $length(\vec{x}) = \max(j|x_i \neq 0) - \min(i|x_i \neq 0) + 1$

Internal Rate of Return : \vec{k}


```
K <- polyroot(rev(exampleDF))-1</pre>
```

$$length(\vec{k}) = length(\vec{x}) - 1$$

n-1 IRR solutions

Solving $[a_0+a_1x_0+a_2x_1^2...+a_{n+1}x_n^{n+1}=0]$ polyroot() will show all real or complex solutions

Real

Complex

IRR: \vec{k} $(k_0, k_1, k_2, \dots, k_{n-1})$

Zero points of the complex function F(k), k = x + iy

Investment Stream : \vec{c}

Calculation:

$$C_{0} = -x_{0}$$

$$C_{1} = -((1+k)x_{0} + x_{1})$$

$$C_{2} = -((1+k)^{2}x_{0} + (1+k)x_{1} + x_{2})$$

$$\vdots$$

$$C_{n-1} = -((1+k)^{n-1}x_{0} + (1+k)^{n-2}x_{1} + (1+k)x_{n-2} + x_{n-1})$$

$$C_{n-1} = (1+k)^{-1}x_{n}$$

Based on the cashflow \vec{x} and IRR \vec{k} , we can find the <u>investment</u> stream \vec{c} .

Each IRR (k) can generate an corresponding investment stream (c), whatever the IRR (k) is real or complex number.

Investment Stream: \vec{c}

$$(c_0,c_1,\ldots,c_{n-1})$$

"tidyverse"

Complex number is meaningless in real world (At least in financial field)

Only focus on the real part data

Quantum mechanics & Fluid dynamics: Are you polite?

Make Decision: NPV(x)

Demonstration

C <- Cal(exampleDF,k)

 $C \leftarrow Re(C)$

	Case V	CashFlow ∨	r ×	k ×	InvestFlow ∨	NPVX ~	NPVC V	k_Larger_r ∨	Investment ~	PositiveNPVX ~
1	Case 1	-100, 20, 20, 20, 20, 50	0.03	-0.7724+0.7976i	100, 2.76037450187949, -8	17.4724	-11.2821	False	Net Borrowing	True
2	Case 1	-100, 20, 20, 20, 20, 50	0.03	-1.668+0.476i	100, -86.8050082418374, 1	17.4724	-9.8275	False	Net Borrowing	True
3	Case 1	-100, 20, 20, 20, 20, 50	0.03	-1.668-0.476i	100, -86.8050082418373, 1	17.4724	-9.8275	False	Net Borrowing	True
4	Case 1	-100, 20, 20, 20, 20, 50	0.03	-0.7724-0.7976i	100, 2.76037450187971, -8	17.4724	-11.2821	False	Net Borrowing	True
5	Case 1	-100, 20, 20, 20, 20, 50	0.03	0.08089+0i	100, 88.0892674799155, 7	17.4724	353.6183	True	Net Investment	True

https://app.datacamp.com/workspace/w/c4b498ba-46c7-4fca-af71-55f0ef0c6e21/edit

03

IRR Application - Investment Family Case

Case background

Father: Invest a mineral project, which required an initial investment and return constant income.

Mother: Borrow a fund from bank, lend to people in need at higher rate, and repay annually.

Brother: Invest in a risky project, whose cash flow is unstable.

Ben: A CFA, and believe he can gain through trading the stocks.

	CF0	CF1	CF2	CF3	CF4
Father -+++	-100	20	30	40	50
Mother +	100	-27	-27	-27	-27
Brother -+-+-	-100	80	-20	40	-10
Ben	-100	-20	-20	-20	-20

Father -++++

Decision: Good Investment

CashFlow	r	k	NPVX	NPVC	k_Larger_r	Investment	Positive NPVX	
-100, 20, 30, 40, 50	0.03	-1.0974832+0.771261i	28.72537	-17.87669	FALSE	Net Borrowing	TRUE	
-100, 20, 30, 40, 50	0.03	-1.7332909+0.000000i	28.72537	-16.7795	FALSE	Net Borrowing	TRUE	2000
-100, 20, 30, 40, 50	0.03	-1.0974832-0.771261i	28.72537	-17.87669	FALSE	Net Borrowing	TRUE	
-100, 20, 30, 40, 50	0.03	0.1282573+0.000000i	28.72537	301.11902	TRUE	Net Investment	TRUE	

Mother +----

CashFlow	r	k	NPVX	NPVC	k_Larger_r	Investment	Positive NPVX	
100, -27, -27, -27, -27	0.12	-1.07316531+0.648178i	17.99157	-13.04004	FALSE	Net Borrowing	TRUE	
100, -27, -27, -27, -27	0.12	-1.61518069-0.000000i	17.99157	-11.61294	FALSE	Net Borrowing	TRUE	
100, -27, -27, -27	0.12	-1.07316531-0.648178i	17.99157	-13.04004	FALSE	Net Borrowing	TRUE	
100, -27, -27, -27	0.12	0.03151131-0.000000i	17.99157	-227.71901	FALSE	Net Borrowing	TRUE	

Brother -+-+-

Type: -+-+-

Discount rate: 3%

Consistency: Yes

Decision: Good Investment

CashFlow	r .	k	NPVX	NPVC	k_Larger_r	Investment	Positive NPVX
-100, 80, -20, 60, -10	0.03	-0.82882284+0.000000i	4.841614	-5.806625	FALSE	Net Borrowing	TRUE
-100, 80, -20, 60, -10	0.03	-1.21601488+0.709942i	4.841614	-3.021392	FALSE	Net Borrowing	TRUE
-100, 80, -20, 60, -10	0.03	-1.21601488-0.709942i	4.841614	-3.021392	FALSE	Net Borrowing	TRUE
-100, 80, -20, 60, -10	0.03	0.06085261-0.000000i	4.841614	161.635036	TRUE	Net Investment	TRUE

Ben -----

Family

CashFlow	r	k	NPVX	NPVC	k_Larger_r	Investment	Positive NPVX	
-100, -20, -20, -20, -20	0.03	-0.6275697+0.6148704i	-174.342	145.696	FALSE	Net investment	FALSE	Kick Out From the
-100, -20, -20, -20, -20	0.03	-1.4724303+0.4047580i	-174.342	111.4336	FALSE	Net Investment	FALSE	
-100, -20, -20, -20, -20	0.03	-1.4724303-0.4047580i	-174.342	111.4336	FALSE	Net Investment	FALSE	
-100, -20, -20, -20, -20	0.03	-0.6275697-0.6148704i	-174.342	145.696	FALSE	Net Investment	FALSE	
	2 1 1 1							

04

Limitations and Conclusion

Conclusion and Limitations

Conclusion

- Whatever cash flow looks like, we can use the same process to figure out that NPV is positive or negative.
- We have successfully solve the fatal of Multiple or Non-existent Internal Rates.

Limitation

- We still cannot solve the fatal of mutually inclusive projects.
- NPV is still superior than IRR to make making decision.
- The models is hard for operating and applying in the real case.

Personal Recommendation. If Unnecessary, DON'T USE IRR!!!

