RELATÓRIO DO TRABALHO PRÁTICO 4 —CÁLCULO NUMÉRICO COMPUTACIONAL: ANÁLISE DE MÉTODOS DE DIFERENCIAÇÃO E INTEGRAÇÃO NUMÉRICA

Moniele Kunrath Santos¹.

¹Universidade Federal de Pelotas – mksantos@inf.ufpel.edu.br

1. Introdução

Terceiro trabalho da disciplina do sexto semestre em Ciência da Computação desenvolvido na linguagem *python* que tem como objetivo implementar algoritmos aproximativos de diferenciação e integração numérica, sendo estes: regra do Trapézio, ½ Simpson, ¾ Simpson repetidos, método de Euler, Runge-Kutta de 2ª e 4ª ordem.

2. Resultados da Lista 11 - Integração Numérica

2.1. Questão 1

Função	Trapézio	⅓ Simpson	⅓ Simpson	
a) x* ln x dx	0.63990047768	0.636309829796	0.563093524013	
b) x^3 * e^x dx	31.36528565006	22.47712535823	23.38600944710	
c) 2/(x^2 + 4)dx	0.784240766617	0.785397945234	0.785395862445	
d) x^2 * cos(x) dx	0.1048628206250	0.15421938655	0.1544695941064	
e) e^(2x)*sen(3x) dx	-13.57597939179	-14.18334156144	-13.04407808681	
f) $x/(x^2 + 4) dx$	0.476976866514	0.477754646284	0.4703107249826	

3. Resultados da Lista 12 - Diferença Numérica

3.1. Questão 1 e 2

Função	Euler	Runge Kutta 2ª ordem	Runge Kutta 4ª ordem	
1) 2*x*((92-x) /92) dx	99.6663418794	78.6397981179	88.1165973902	
2) -0.06*√x dx	56.5	57.5	57.0	

3.2 Questão 3 e 4

Função	h	Euler	Runge Kutta 4ª ordem
y * x^2 - y dx	0.5	1.25	1.9332136425175064
	0.25	1.108062744140625	1.9463188103668383

3.3 Gráficos

3.3.1. Questão 1 - Gráficos Euler

Sendo h = 0.5 :

Sendo h = 0.25 :

3.3.2. Questão 2 - Gráficos Runge Kutta 4ª Ordem

Sendo h = 0.5 :

Sendo h = 0.25 :

4. Discussão dos resultados obtidos

Nota-se a partir dos dados obtidos que a regra do Trapézio integra melhor e sem erros polinômios de grau n<=1 e a de Simpson de polinômios com n<=3. Entretanto, ao aplicar diversas vezes a regra do trapézio em um intervalo [a, b], ela adequa-se melhor ao cálculo da integral, sendo uma técnica mais refinada em relação à simples aproximação da área por um trapézio e muito útil quando temos uma função f(x) com grau maior que 1 e desejamos, ainda assim, a aproximação por trapézios.

Sobre os resultados do método de Euler é possível notar que a ordem de um método mede o quão rapidamente este converge para a solução analítica quando se diminui os passos na integração numérica. Infelizmente devido a limitações computacionais, erros de arredondamento crescem quando se diminui o tamanho dos passos, ocorrendo até mesmo divergência.

Uma forma de resolver este problema é aumentar a ordem do método numérico. Por exemplo, métodos de ordem maiores, como o método de Runge-Kutta, se mostra mais eficiente nesse tipo de problema.

5. Anexos

Link para o Colab:

https://colab.research.google.com/drive/1hTxrUz2rahKbnkGQSojt-SIWCFZEE0Tz