

# 도배 하자 질의 응답 처리

DACON 한솔데코 시즌2 AI 경진대회

EURON 5기 중급 하자하자!팀 | 김유민 박은혜 이아영

# 목차

**01** 문제 정의 및 배경

**02** 데이터 수집 및 전처리

**03** 모델 개요 및 학습 방법

**04** 결과 분석 및 평가 지표

05 시스템 구현 계획 및 기술적 이슈

06 결론 및 제언

# 문제 정의 및 배경



• 데이터 수집 공모전 주최측에서 제공한 train, test 데이터 사용

train data

| id        | 질문_1   | 질문_2   | category | 답변_1   | 답변_2  | 답변_3   | 답변_4  | 답변_5   |
|-----------|--------|--------|----------|--------|-------|--------|-------|--------|
| TRAIN_000 | 면진장치기  | 면진장치0  | 건축구조     | 면진장치린  | 면진장치련 | 면진장치린  | 면진장치는 | 면진장치는  |
| TRAIN_001 | 내진설계의  | 내진설계0  | 건축구조     | 내진 설계의 | 내진설계0 | 내진설계0  | 내진설계0 | 내진 설계이 |
| TRAIN_002 | 철골구조의  | 철골구조의  | 건축구조     | 철골구조는  | 철골구조의 | 철골구조의  | 철골구조의 | 철골구조의  |
| TRAIN_003 | 철골철근 - | 철골철근 - | 건축구조     | 철근철골된  | 철골철근된 | 철골철근 - | 철골철근된 | 철골철근 된 |

test data

| id       | 질문                                              |
|----------|-------------------------------------------------|
| TEST_000 | 방청 페인트의 종류에는 어떤 것들이 있는지 알고 계신가요? 또한, 원목사이딩을 사용하 |
| TEST_001 | 도배지에 녹은 자국이 발생하는 주된 원인과 그 해결 방법은 무엇인가요?         |
| TEST_002 | 큐블럭의 단점을 알려주세요. 또한, 압출법 단열판을 사용하는 것의 장점은 무엇인가요? |
| TEST_003 | 철골구조를 사용하는 고층 건물에서, 단열 효과를 높이기 위한 시공 방법은 무엇이 있을 |
|          |                                                 |

### 데이터 전처리

for문을 활용해 질문과 답변이 1:1 대응이 되도록 데이터 포맷팅

|   | quest i on | answer                                         |
|---|------------|------------------------------------------------|
| 0 | 면진장치가 뭐야?  | 면진장치란 지반에서 오는 진동 에너지를 흡수하여 건물에 주는 진동을 줄여주는 진동  |
| 1 | 면진장치가 뭐야?  | 면진장치란 건물의 지반에서 발생하는 진동 에너지를 흡수하여 건물을 보호하고, 진동을 |
| 2 | 면진장치가 뭐야?  | 면진장치란 지반으로부터 발생하는 진동 에너지를 흡수하여 건물에 전달되는 진동을 줄여 |

### 토큰화/인코딩

데이터셋의 질문과 답변을 모델의 입력으로 사용하기 위해 텍스트를 토큰화하고 숫자로 변환

### • 데이터 증강

train data 양을 늘려 모델의 정확도를 개선하기 위해 2가지 방법으로 진행하여 데이터 증강

### MLM data augmentation

Masked Language Modeling 방식으로 학습 모델을 학습한 후에 새로운 문장의 일부에 마스킹을 적용하고 인퍼런스를 적용해 마스킹된 부분에 알맞는 새로운 토큰을 후보로 생성

| 기존 문장                                                       | 증강된 문장                                               |
|-------------------------------------------------------------|------------------------------------------------------|
| 면진장치란 지반에서 오는 진동에너지를 흡수하여 건물에 주는<br>진동을 줄여주는 진동<br>격리장치입니다. | 면진장치란 지반에서 나오는 진동에너지를 전달하여 건물에서의 진동을<br>줄여주는 진동의장치다. |

#### - BERT augmentation

Bert based 모델을 활용하여, 의미상 자연스러운 토큰을 삽입하거나 대체(masking, insertion)하는 형식으로 문장 augmentation 수행

| Maski<br>ng   | 기존 | 면진장치란 건물의 지반에서 발생하는 진동 에너지를 흡수하여 건물을 보호하고, 진동을<br>줄여주는 장치입니다. 주로 지진이나 기타 지반의 진동으로 인한 피해를 방지하기 위해<br>사용됩니다. |
|---------------|----|------------------------------------------------------------------------------------------------------------|
|               | 증강 | 면진장치란 건물의 지반에서 발생하는 진동 에너지를 막아 건물을 보호하고, 최대한 줄여주는<br>데 주로 지진이나 기타 지반의 진동으로 인한 피해를 방지하기 위해 사용됩니다.           |
| Inser<br>tion | 기존 | 면진장치란 지반에서 오는 진동 에너지를 흡수하여 건물에 주는 진동을 줄여주는 진동<br>격리장치입니다.                                                  |
|               | 증강 | 면진장치란 지반에서 전해 오는 진동 에너지를 흡수하여 건물에 주는 진동을 최대한 줄여주는 진동 격리장치입니다.                                              |

# 모델 개요 및 학습 방법

### KoGPT 모델

gpt-3 기반 한국어 언어 생성모델

- 한국어를 사전적, 문맥적으로 이해하고 이용자가 원하는 결과값을 보여줌
- 60억개의 매개변수와 2000억개 토큰(token)의 한국어 데이터를 바탕으로 구축
- 주어진 텍스트의 다음 단어 예측 가능

model = GPT2LMHeadModel.from\_pretrained(skt/kogpt2-base-v2')

## 모델 개요 및 학습 방법

### KoGPT 모델 하이퍼 파라미터

### [하이퍼파라미터 선택]

- learning\_rate(학습률): 0.0001
- epoch(에포크): 12 -> 5 (GPU 문제로 임시적으로 5로 학습)
- batch\_size=32
- (cos\_Ir=True): 학습률을 cosine 함수의 형태로 조절하여 초기에는 높은 학습률로 빠르게 학습을 진행하고, 점차적으로 학습률을 줄여가며 안정적인 학습을 가능하게 함

### [ 최적화 알고리즘 ]

- AdamW로 설정 : 가중치 감쇠(weight decay)를 적용하여 더욱 효과적인 학습을:WHA, 한 수 있도록 함 WE CREATE

# 결과 분석 및 평가 지표

### 평가 산식 : Cosine Similarity

- 내부 곱 공간의 두 벡터간의 유사성 측정
- 생성된 답변을 Sentence Transformer 모델을 이용하여
   512 차원의 Embedding Vector로 변환한 후, 변환된 벡터와의 코사인 유사도 계산
- (코사인 유사도 값이 0보다 작은 경우 0으로 간주)



## 결과 분석 및 평가 지표

### 결과

#### 1차 시도

6440/6440 [08:29<00:00, 12.65it/s] Epoch 1 - Avg Loss: 3,4892: 100% Epoch 1/5. Average Loss: 3,4892132444133668 Epoch 2 - Avg Loss: 2.2820: 100%| 6440/6440 [08:28<00:00, 12,66it/s] Epoch 2/5, Average Loss: 2,2820136704013585 6440/6440 [08:26<00:00, 12.72it/s] Epoch 3 - Avg Loss: 1,4637: 100%|| Epoch 3/5, Average Loss: 1,4637291784982505 6440/6440 [08:29<00:00, 12.63it/s] Epoch 4 - Avg Loss: 0.9715: 100%|| Epoch 4/5, Average Loss: 0.9714992555020296 Epoch 5 - Avg Loss: 0.6692: 100%| 6440/6440 [08:34<00:00, 12.52it/s] Epoch 5/5. Average Loss: 0.6692107720913724 ('./hansoldeco-kogpt2/tokenizer\_config.json', ./hansoldeco-kogpt2/special tokens map.ison'. './hansoldeco-kogpt2/tokenizer.ison')

#### 하이퍼파라미터 튜닝 및 데이터 증강 후

```
Epoch 1 - Avg Loss: 2,7380: 100%|
                                             25152/25152 [32:27<00:00, 12.92it/s]
Epoch 1/5, Average Loss: 2,7380280317021795
Epoch 2 - Avg Loss: 1.3808: 100%|
                                             25152/25152 [32:22<00:00, 12.95it/s]
Epoch 2/5, Average Loss: 1,3807971935962746
                                             25152/25152 [32:35<00:00, 12.86it/s]
Epoch 3 - Avg Loss: 0.9591: 100%||
Epoch 3/5. Average Loss: 0.959116224020319
Epoch 4 - Avg Loss: 0.7616: 100%||
                                             25152/25152 [32:48<00:00, 12.78it/s]
Epoch 4/5, Average Loss: 0.7615894759303425
Epoch 5 - Avg Loss: 0.6424: 100%[
                                             25152/25152 [32:40<00:00, 12.83it/s]
Epoch 5/5, Average Loss: 0.6423967647477012
('./hansoldeco-kogpt2/tokenizer_config.ison',
 './hansoldeco-kogpt2/special_tokens_map.json',
 './hansoldeco-kogpt2/tokenizer.ison')
```

- 1차 시도때보다 average loss가 0.02 정도 낮아짐
- 리더보드 제출 결과도 0.3591534998 -> 0.447102204로 높아짐

# 시스템 구현 계획 및 기술적 이슈

#### 계획

• **다양한 하이퍼파라미터를 시도**하고 모델을 개선시켜 loss를 줄이고 모델의 성능을 더 높일 예정

### 기술적 이슈

- 학습하는데 시간이 매우 오래 걸려 epoch를 키워서 테스트하는데 어려움을 겪고 있음 이로 인해 하이퍼파라미터 조정이 어려움
- 증강한 데이터의 정제 작업



# 결론 및 제언

### 결론 및 제언

- 하이퍼파라미터 튜닝 및 데이터 증강한 결과 1차 시도때보다 높은 성능을 보였음
- 그러나, 코랩 환경의 GPU 한계로 epoch를 낮게 설정해 전체적으로 점수가 낮게 나온 것으로 보임
- 다음주까지 이 문제를 보완하고 하이퍼 파라미터 튜닝, 데이터 정제 작업을 진행해 성능을 더 높일 예정

