

A Comparative Study Of Different Gradient Approximations For Restricted Boltzmann Machines

Lihong Ji

Supervisor: Enrique Romero Merino

co-Supervisor: Ferran Mazzanti Castrillejo

Master Degree in Artificial Intelligence 29/06/2023

Agenda

- Introduction & State of the Art
- Energy-based models & Restricted Boltzmann Machines(RBMs)
- Training RBMs
- Experimental results & Analysis
- Conclusions

1. Introduction & State of the Art

- Background
- Motivation
- Objectives
- State of the Art

Introduction -> Background

A pioneer generative neural network

First proposed in 1987[1] -> hard to train

Contrastive Divergence(CD) proposed in 2002 by Geoffrey Hinton[2]

Widely used in Classification, Dimension Reduction, Feature Learning etc..

The most importantly, RBMs demonstrate the potential of the neural network.

Introduction -> Motivation & Objectives

Motivation:

CD-series algorithms -> bias -> the trade-off between efficiency and precision

RBMs -> strongly probability-supported model -> explanability

Stochastic process in Bayesian Machine Learning -> Learn more (personally)

Introduction -> Motivation & Objectives

Objectives:

Implement RBMs from the scratch

Manage the RBM training -> Different approximation algorithms

-> KL, NLL, Prob_sum, Entropy, Prob_distribution

Compare the approximation with the exact results

Binary RBMs:

$$E(v,h) = -(vWh^T + \alpha v^T + \beta h^T)$$

Gaussian-Bernoulli RBMs:

$$E_{\theta}(v,h) = \frac{1}{2} \left(\frac{v-\mu}{\sigma}\right)^T \left(\frac{v-\mu}{\sigma}\right) - \left(\frac{v}{\sigma^2}\right)Wh - b^T h$$

The exact gradient of logP(v) via Gibbs Sampling is[3]:

$$\bigtriangledown_{\theta} \log P(v^0) = -\sum_{h} P(h|v^0) \bigtriangledown_{\theta} E(v^0,h)$$

$$+ \mathbb{E}_{P(v^k|v^0)} [\sum_{h} P(h|v^k) \bigtriangledown_{\theta} E(v^k,h)] + \boxed{\mathbb{E}_{P(v^k|v^0)} [\bigtriangledown_{\theta} \log P(v^k)] }$$
 Bias expression

Based on the mathematical expression of the bias, Bengio and Fischer propose 2 sorts of the bias bound:

Bengio's bound[3]:

$$\mathbb{E}_{P(v^k|v^0)}[\nabla_{\theta}\log P(v^k)] \le 2^m (1 - 2^m 2^n sig(-\alpha)^m sig(-\beta)^n)^k$$

where

$$\alpha = \max_{j} \left(\sum_{i} |w_{ij}| + |b_{j}| \right) \qquad \beta = \max_{i} \left(\sum_{j} |w_{ij}| + |c_{j}| \right)$$

and

m -> visible dimension, n-> hidden dimension

b -> visible layer bias c-> hidden layer bias

k -> Gibbs sampling time

Based on the mathematical expression of the bias, Bengio and Fischer propose 2 sorts of the bias bound:

Fischer's bound[4]:

$$\mathbb{E}_{P(v^k|v^0)}[\nabla_{\theta} \log P(v^k)] \le (1 - e^{-(m+n)\Delta})^k$$

Specifically,

$$\triangle = \max(\max_{l \in (1,m)} \vartheta_l, \max_{l \in (1,n)} \zeta_l)$$

where

$$\vartheta_l = \max(|\sum_{i=1}^{n} I_{(w_{il} > 0)} w_{il} + \alpha_l|, |\sum_{i=1}^{n} I_{(w_{il} < 0)} w_{il} + \alpha_l|)$$

and

$$\zeta_l = \max(|\sum_{j=1}^{m} I_{(w_{lj}>0)} w_{lj} + \beta_l|, |\sum_{j=1}^{m} I_{(w_{lj}<0)} w_{lj} + \beta_l|)$$

Both of the bounds demonstrate the relevance of controlling the absolute values of RBM parameters.

- \rightarrow increasing Gibbs sampling time k, bias -> 0
- \rightarrow increasing absolute values of weights w, α, β , bias \uparrow (weight decay works)
- \rightarrow increasing the variable number m,n, bias

2. Energy-based models & Restricted Boltzmann Machines(RBMs)

- Energy-based models
- RBMs Representation
- RBMs Inference
- RBMs Learning

What is an Energy-based model?

Energy function \rightarrow defined over the input \rightarrow specify **P(v)**

For the most cases, the P(v) is an **exponential** function of energy.

$$P(v)=rac{e^{-Energy(v)}}{Z}$$
 Add hidden variables, h $P(v,h)=rac{e^{-Energy(v,h)}}{Z}$ $lacksquare$ $P(v)=rac{\sum_{h}e^{-Energy(v,h)}}{Z}$

Energy-based model Optimization

The idea is to assign lower energy to the observed data.

-> equivalent to minimize P(v) -> logP(v)

$$\log P(v) = \log \sum_{h} exp(-E(v,h)) - \log \sum_{v,h} exp(-E(v,h))$$

$$\frac{\partial \log P(v)}{\partial \theta} = -\mathbb{E}_{P(h|\hat{v})} \left[\frac{\partial E(\hat{v}, h)}{\partial \theta} \right] + \mathbb{E}_{P(v)} \left[\mathbb{E}_{P(h|v)} \left[\frac{\partial E(v, h)}{\partial \theta} \right] \right]$$

RBMs Representation

Energy function
$$\rightarrow E(v, h) = -(vWh^T + \alpha v^T + \beta h^T)$$

RBMs Inference

$$P(h \mid v) = \frac{1}{1 + exp\{-(vW + \beta)\}}$$

$$P(v \mid h) = \frac{1}{1 + exp\{-(hW^T + \alpha)\}}$$

$$P(v) = \frac{1}{Z} exp \left\{ \alpha^T v + \log(1 + exp \left\{ vW + \beta \right\}) \right\}$$

RBMs Learning

$$\frac{\partial \log P(v)}{\partial W_{ij}} = -\hat{v}_i P(h_j = 1 \mid \hat{v}) + \sum_v P(v) P(h_j = 1 \mid v) v_i$$

$$\frac{\partial \log P(v)}{\partial \alpha_i} = -\hat{v}_i + \sum_v P(v) v_i$$

$$\frac{\partial \log P(v)}{\partial \beta_j} = -P(h_j = 1 \mid \hat{v}) + \sum_v P(v) P(h_j = 1 \mid v)$$

Gradient ascend

3. Training RBMs

- Gibbs Sampling
- Contrastive Divergence (CD)
- Persistent Contrastive Divergence (PCD)
- Weighted Contrastive Divergence (WCD)
- Weighted Persistent Contrastive Divergence(WPCD)
- Parallel Tempering

Training RBMs -> Gibbs Sampling

model expectation ->
$$\mathbb{E}_{P(v)}[\mathbb{E}_{P(h|v)}[rac{\partial E(v,h)}{\partial heta}]]$$

$$\sum_{v \sim P(v)} \mathbb{E}_{P(h|v)}[rac{\partial E(v,h)}{\partial heta}] = \sum_{v \sim P(v)} \sum_{h=[0,1]} P(h|v) rac{\partial E(v,h)}{\partial heta}$$
 Gibbs Sampling
$$P(v) \sim P(v|h)$$

Training RBMs -> Contrastive Divergence(CD)

Utilize Gibbs Sampling for k times -> v0, vk

$$\nabla_w - \log P(v) = P(h = 1 \mid v_0)v_0 - P(h = 1 \mid v_k)v_k$$
$$\nabla_\alpha - \log P(v) = v_0 - v_k$$
$$\nabla_\beta - \log P(v) = P(h = 1 \mid v_0) - P(h = 1 \mid v_k)$$

Training RBMs -> Persistent Contrastive Divergence(PCD)

Instead of creating new Markov chain during each updating, in PCD a persistent chain is utilized.

v0 comes from the data

vk comes from the **persistent chain**

Training RBMs -> Weighted Contrastive Divergence(WCD) Weighted Persistent Contrastive Divergence (WPCD)

Recall **model expectation**:

exact gradient
$$\sum_{v} P(v) \mathbb{E}_{P(h|v)} [\frac{\partial E(v,h)}{\partial \theta}]$$
 CD approximation
$$\sum_{i}^{N_B} \frac{1}{N_B} \mathbb{E}_{P(h|v_k^i)} [\frac{\partial E(v_k^i,h)}{\partial \theta}]$$

$$\downarrow$$

$$\sum_{i=1}^{N_B} \overline{P}(v_k^i) \mathbb{E}_{P(h|v_k^i)} [\frac{\partial E(v_k^i,h)}{\partial \theta}]$$

Training RBMs -> Weighted Contrastive Divergence(WCD) Weighted Persistent Contrastive Divergence (WPCD)

$$\overline{P}(v_i) = \frac{P(v_i)}{\sum_{j}^{N_B} P(v_j)} = \frac{\sum_{h} exp\{-E(v_i, h)\}}{\sum_{j}^{N_B} \sum_{h} \{-E(v_j, h)\}}$$

Partition function is eliminated -> efficient to compute

WPCD = WCD + persistent chain

Training RBMs -> Parallel Tempering(PT)

Designed for more global exploration -> run multiple models at different temperatures

RBMs chains

Training RBMs -> Parallel Tempering(PT)

Exchange rate ->
$$\min \left\{ 1, \exp \left\{ (\frac{1}{T_r} - \frac{1}{T_{r-1}})(E(v_r, h_r) - E(v_{r-1}, h_{r-1})) \right\} \right\}$$

In the implementation, exchange first in **odd** index and then **even** index.

4. Experimental Results & Analysis

- Datasets
- Evaluation Metrics
- Hyperparameter setup
- Results
- Analysis

Datasets

	Size	Dimension	Type
Bars-and-Stripes-3x3	14	9	[0,1]
Bars-and-Stripes-4x4	30	16	[0,1]
Labeled-Shifter-4-11	48	11	[0,1]
Labeled-Shifter-5-13	96	13	[0,1]

Evaluation Metrics

KL divergence ->

$$D_{KL}(P||Q) = \sum_{x} P(x) \log(\frac{P(x)}{Q(x)})$$

Negative Log Likelihood ->

$$-\frac{1}{N}\sum_{n}logQ(x_{n})$$

Probability sum ->

$$\sum_T P(x)$$

Entropy Percentage ->

$$\frac{\sum_{T} P(x) \log P(x)}{\log \frac{1}{N}}$$

Hyperparameter setup

Variable Type -> [0,1] or [-1,1]?

Inference for RBMs with [-1,1]:

$$P(h \mid v) = \frac{1}{1 + exp \{2 * (-vW - \beta)\}}$$

$$P(v \mid h) = \frac{1}{1 + exp \{2 * (-hW^T - \alpha)\}}$$

$$P(v) = \frac{1}{Z} \exp \{\alpha v^T + \log(exp(-vw - \beta) + exp(vw + \beta))\}$$

Hyperparameter setup

Variable Type -> repeat 10 times

With the weight initialization in different σ , KL are compared (CD1&WCD)

$$N_h = 3N_v \begin{bmatrix} \text{Group} & \sigma = 1 & \sigma = 0.1 & \sigma = 0.01 & \sigma = 0.001 \\ [0,1]\&CD1 & 0.591(0.052) & 0.511(0.036) & 0.479(0.029) & 0.505(0.052) \\ [0,1]\&WCD1 & 0.1416(0.052) & 0.130(0.036) & 0.137(0.029) & 0.154(0.052) \\ [-1,1]\&CD1 & 1.709(0.366) & 0.101(0.638) & 0.066(0.032) & 0.083(0.041) \\ [-1,1]\&WCD1 & 0.062(0.013) & 0.076(0.020) & 0.066(0.031) & 0.059(0.025) \\ \hline \\ N_h = 5N_v \begin{bmatrix} 0,1]\&CD1 & 0.658(0.065) & 0.548(0.060) & 0.548(0.051) & 0.551(0.033) \\ [0,1]\&CD1 & 0.153(0.005) & 0.162(0.036) & 0.160(0.029) & 0.150(0.052) \\ [-1,1]\&CD1 & 4.702(2.252) & 0.087(0.032) & 0.091(0.022) & 0.071(0.026) \\ [-1,1]\&WCD1 & 0.001(0.001) & 0.089(0.097) & 0.14(0.032) & 0.10(0.041) \\ \hline \end{bmatrix}$$

Obviously, RBMs with input [0,1] are much more **stable**!

Hyperparameter setup

Variable Type -> [0,1]

Dimension of **hidden** layer -> **5*Nv**

Learning Rate Decay -> linear decay (from default value to 1e-6)

Weight Decay -> **2.5e-5**[5]

Parameter Configuration -> repeat 30 times

BS3x3

Opt	sample-type	lr	lr-decay	gibbs-sampling-num	chain-num
CDK	gibbs-sampling	0.005	False	1	None
PCD	gibbs-sampling	0.01	True	1	None
WCD	gibbs-sampling	0.1	False	1	None
WPCD	gibbs-sampling	0.03	True	1	None
PT	parallel-tempering	0.005	True	1	2

BS4x4

Opt	sample-type	lr	lr-decay	gibbs-num	chain-num
CDK	gibbs-sampling	0.005	False	1	None
PCD	gibbs-sampling	0.01	True	1,	None
WCD	gibbs-sampling	0.1	False	1	None
WPCD	gibbs-sampling	0.03	True	1	None
PT	parallel-tempering	0.005	True	1.	2

Parameter Configuration -> repeat 30 times

LS4-11

Opt	sample-type	lr	lr-decay	gibbs-num	chain-num
CDK	gibbs-sampling	0.03	False	1	None
PCD	gibbs-sampling	0.05	True	1	None
WCD	gibbs-sampling	0.2	False	1	None
WPCD	gibbs-sampling	0.05	True	1	None
PT	parallel-tempering	0.03	True	1	2

LS5-13

Opt	$\operatorname{sample-type}$	lr	lr-decay	gibbs-num	chain-num
CDK	gibbs-sampling	0.03	False	1	None
PCD	gibbs-sampling	0.03	True	1	None
WCD	gibbs-sampling	0.2	False	1	None
WPCD	gibbs-sampling	0.05	True	1	None
PT	parallel-tempering	0.03	True	1	2

BS3x3

	KL	NLL	Prob-sum	Entropy-Percentage
CD1	0.45528 (0.0476)	-3.09946 (0.05310)	0.9238 (0.00189)	0.8647 (0.01495)
PCD	$0.0809 \ (0.02586)$	-2.71694 (0.01599)	$0.96548 \ (0.00284)$	$0.94561 \ (0.00886)$
WCD	0.0541(0.0029)	-2.6931(0.0029)	0.9485(0.0029)	0.9671(0.0018)
WPCD	$0.2315 \ (0.00678)$	-3.06958 (0.00557)	$0.8098 \; (0.00488)$	$0.8785 \; (0.0036)$
PT	0.0875(0.088)	-2.7666(0.048)	0.9782(0.002)	0.9636(0.0229)
$CD10^*$	0.0501(0.0051)	-2.6823(0.0051)	0.9732(0.0026)	0.9743(0.0024)
$WCD10^*$	0.0595(0.0072)	-2.6996(0.0072)	0.9497(0.0053)	0.9669(0.004)

Experimental results & Analysis/Experimental Results/BS3x3

BS4x4

	KL	NLL	Prob-sum	Entropy-Percentage
CDK	1.5793(0.0809),	-4.9805(0.0809),	0.908(0.0072),	0.7865(0.0107)
PCD	0.6916(0.2118),	-4.0928(0.2118),	0.9718(0.0071),	0.8023(0.0555)
WCD	0.1018(0.0024),	-3.503(0.0024),	0.9088(0.0029),	0.9327(0.0017)
WPCD	0.3727(0.012),	-3.7739(0.012),	0.6907(0.0075),	0.7653(0.0063)
PT	0.2782(0.0691),	-3.6794(0.0691),	0.9072(0.0121),	0.8805(0.0188)
$CD10^*$	0.2743(0.0116)	-3.6755(0.0116)	0.9412(0.0032)	0.913(0.0026)
$WCD10^*$	0.102(0.0149)	-3.5032(0.0149)	0.9101(0.0107)	0.9332(0.0087)

LS4-11

	KL	NLL	Prob-sum	Entropy-Percentage
CDK	0.2152(0.0205)	-4.0864(0.0205)	0.948(0.0024)	0.9216(0.0087)
PCD	0.1238(0.0332)	-3.995(0.0332)	0.9609(0.0028)	0.9511(0.0076)
WCD	0.0588(0.0004)	-3.93(0.0004)	0.9436(0.0004)	0.9576(0.0003)
WPCD	0.2428(0.0037)	-4.114(0.0037)	0.7865(0.0019)	0.8348(0.0017)
PT	0.099(0.0053)	-3.9702(0.0053)	0.9314(0.0012)	0.9418(0.0018)
$CD10^*$	0.0501(0.0051)	-3.9213(0.0051)	0.9732(0.0026)	0.9743(0.0024)
$WCD10^*$	0.0492(0.0015)	-3.9204(0.0015)	0.9541(0.0015)	0.9651(0.0011)

Experimental results & Analysis/Experimental Results/LS4-11

LS5-13

	KL	NLL	Prob-sum	Entropy-Percentage
CD1	0.3257 (0.0629)	-4.89(0.0629)	0.926(0.0052)	0.8918(0.0134)
PCD	0.1353(0.0165)	-4.6996(0.0165)	0.9135(0.0039)	0.9228(0.005)
WCD	0.0725(0.0001)	-4.6368(0.0001)	0.9307(0.0001)	0.9452(0.0001)
WPCD	0.2808(0.0032)	-4.8451(0.0032)	0.7566(0.0023)	0.8025(0.002)
PT	0.1039(0.0333)	-4.6682(0.0333)	0.9652(0.0018)	0.9577(0.0071)
$CD10^*$	0.0717(0.0059)	-4.636(0.0059)	0.9624(0.0024)	0.9636(0.0022)
$WCD10^*$	0.0583(0.003)	-4.6225(0.0005)	0.9488(0.0003)	0.95856(0.0002)

- -> Generally, **WCD** performs the best
- -> PCD is really **sensitive** with the learning rate
- -> Nh increasing to around 10, CD10 begins to perform better than WCD1
- -> Larger datasets lead to WCD10 outperforms CD10 and WCD1
- -> Persistent chain **suppresses** WCD

Experimental results & Analysis/Experimental Results/BS3x3

Experimental results & Analysis/Experimental Results/BS4x4

Experimental results & Analysis/Experimental Results/LS4-11

Experimental results & Analysis/Experimental Results/LS5-13

-> WCD produces the least bias.

Parallel Tempering Parameter Exploration ->

Parallel Tempering Parameter Exploration ->

Chain Num & Gibbs sampling Num

- -> With Nv increasing, PT improves more stably
- -> Adding Chain Num and Gibbs sampling Num is compatible
- -> Adding Chain Num is more effective than Adding Gibbs sampling Num

Analysis -> KL: ExactGrad. & ApproximationGrad.

Analysis -> KL: ExactGrad. & ApproximationGrad.

Analysis -> cos sim: ExactGrad. & ApproximationGrad.

$$sim(A, B) = \frac{\langle A, B \rangle + \epsilon}{\|A\| * \|B\| + \epsilon} \qquad \epsilon = 1e-12$$

BS3x3

BS4x4

LS4-11

LS5-13

Analysis -> cos_sim: ExactGrad. & ApproximationGrad.

Analysis -> cos_sim: ExactGrad. & ApproximationGrad.

Analysis -> cos_sim: ExactGrad. & ApproximationGrad.

- -> All approximation cosine similarities converge to 0, always shift
- -> WCD,WPCD are heterogeneous with CDK,PCD,PT

5. Conclusions

RBMs with **[0,1]** input perform more **stably**.

Increasing Gibbs Sampling num, Chain num and adding a persistent chain enhance model performance and mitigate the effect of bias.

WCD is **not compatible** with the **persistent chain**.

WCD-series algorithms and CD-series algorithms are heterogeneous.

Generally, considering model performance and bias effect, WCD is the prior choice.

Reference

- [1] Paul Smolensky. Information processing in dynamical systems: Foundations of harmony theory. techreport. Colorado Univ at Boulder Dept of Computer Science, 1986.
- [2] Geoffrey E Hinton. "Training products of experts by minimizing contrastive divergence". in Neural computation: 14.8 (2002), pages 1771–1800.
- [3] Yoshua Bengio and Olivier Delalleau. "Justifying and generalizing contrastive divergence". inNeural computation: 21.6 (2009), pages 1601–1621.
- [4] Asja Fischer and Christian Igel. "Bounding the bias of contrastive divergence learning". in Neural computation: 23.3 (2011), pages 664–673.
- [5] Tijmen Tieleman. "Training restricted Boltzmann machines using approximations to the likeli- hood gradient". in Proceedings of the 25th international conference on Machine learning: 2008, pages 1064–1071.