

=====

Sequence Listing was accepted.

If you need help call the Patent Electronic Business Center at (866) 217-9197 (toll free).

Reviewer: Durreshwar Anjum

Timestamp: [year=2008; month=10; day=23; hr=9; min=43; sec=54; ms=895;]

=====

Application No: 10554308 Version No: 4.0

Input Set:

Output Set:

Started: 2008-09-19 18:22:15.615
Finished: 2008-09-19 18:22:18.550
Elapsed: 0 hr(s) 0 min(s) 2 sec(s) 935 ms
Total Warnings: 6
Total Errors: 0
No. of SeqIDs Defined: 13
Actual SeqID Count: 13

Error code	Error Description
W 402	Undefined organism found in <213> in SEQ ID (3)
W 402	Undefined organism found in <213> in SEQ ID (4)
W 402	Undefined organism found in <213> in SEQ ID (5)
W 213	Artificial or Unknown found in <213> in SEQ ID (6)
W 213	Artificial or Unknown found in <213> in SEQ ID (7)
W 402	Undefined organism found in <213> in SEQ ID (8)

SEQUENCE LISTING

<110> Takaiwa, Fumio
Takagi, Hidenori

<120> METHOD OF ACCUMULATING ALLERGEN-SPECIFIC T CELL ANTIGEN
DETERMINANT IN PLANT AND PLANT HAVING THE ANTIGEN DETERMINANT
ACCUMULATED THEREIN

<130> 201487/1160

<140> 10554308
<141> 2006-04-17

<150> JP 2003-120639
<151> 2003-04-24

<150> PCT/JP04/005938
<151> 2004-04-23

<160> 13

<170> PatentIn version 3.5

<210> 1
<211> 96
<212> PRT
<213> Homo sapiens

<400> 1

Gly Ile Ile Ala Ala Tyr Gln Asn Pro Ala Ser Trp Lys Ser Met Lys
1 5 10 15

Val Thr Val Ala Phe Asn Gln Phe Gly Pro Asp Ile Phe Ala Ser Lys
20 25 30

Asn Phe His Leu Gln Lys Asn Lys Leu Thr Ser Gly Lys Ile Ala Ser
35 40 45

Cys Leu Asn Tyr Gly Leu Val His Val Ala Asn Asn Asn Tyr Asp Pro
50 55 60

Ser Gly Lys Tyr Glu Gly Gly Asn Ile Tyr Thr Lys Lys Glu Ala Phe
65 70 75 80

Asn Val Glu Gln Phe Ala Lys Leu Thr Gly Phe Thr Leu Met Gly Arg
85 90 95

<210> 2

<211> 192
<212> PRT
<213> Homo sapiens

<400> 2

Gly Ile Ile Ala Ala Tyr Gln Asn Pro Ala Ser Trp Lys Ser Met Lys
1 5 10 15

Val Thr Val Ala Phe Asn Gln Phe Gly Pro Asp Ile Phe Ala Ser Lys
20 25 30

Asn Phe His Leu Gln Lys Asn Lys Leu Thr Ser Gly Lys Ile Ala Ser
35 40 45

Cys Leu Asn Tyr Gly Leu Val His Val Ala Asn Asn Asn Tyr Asp Pro
50 55 60

Ser Gly Lys Tyr Glu Gly Gly Asn Ile Tyr Thr Lys Lys Glu Ala Phe
65 70 75 80

Asn Val Glu Gln Phe Ala Lys Leu Thr Gly Phe Thr Leu Met Gly Arg
85 90 95

Gly Ile Ile Ala Ala Tyr Gln Asn Pro Ala Ser Trp Lys Ser Met Lys
100 105 110

Val Thr Val Ala Phe Asn Gln Phe Gly Pro Asp Ile Phe Ala Ser Lys
115 120 125

Asn Phe His Leu Gln Lys Asn Lys Leu Thr Ser Gly Lys Ile Ala Ser
130 135 140

Cys Leu Asn Tyr Gly Leu Val His Val Ala Asn Asn Asn Tyr Asp Pro
145 150 155 160

Ser Gly Lys Tyr Glu Gly Gly Asn Ile Tyr Thr Lys Lys Glu Ala Phe
165 170 175

Asn Val Glu Gln Phe Ala Lys Leu Thr Gly Phe Thr Leu Met Gly Arg
180 185 190

<210> 3
<211> 24
<212> PRT

<213> Oryza sativaL. cv Mangetsu-mochi

<400> 3

Met Ala Ser Ser Val Phe Ser Arg Phe Ser Ile Tyr Phe Cys Val Leu
1 5 10 15

Leu Leu Cys His Gly Ser Met Ala
20

<210> 4

<211> 24

<212> PRT

<213> Oryza sativaL. cv Mangetsu-mochi

<400> 4

Met Ala Ser Ile Asn Arg Pro Ile Val Phe Phe Thr Val Cys Leu Phe
1 5 10 15

Leu Leu Cys Asp Gly Ser Leu Ala
20

<210> 5

<211> 23

<212> PRT

<213> Oryza sativaL. cv Mangetsu-mochi

<400> 5

Met Ala Ser Lys Val Val Phe Phe Ala Ala Ala Leu Met Ala Ala Met
1 5 10 15

Val Ala Ile Ser Gly Ala Gln
20

<210> 6

<211> 3350

<212> DNA

<213> Artificial

<220>

<223> Artificially constructed DNA sequence

<400> 6

acagattctt gctaccaaca acttcacaaa gtagtagtca accaaaaacta tgctaaggaa 60

tcacctcact tccgccccatg accgtgagca cgactgttca aacagtttgt taatctctac 120

aaagaaggta cacttacct acacaacgcc actaacctga gttacccagc ccatgcaaaa 180

tagccacgtc ttgtgactta agggatttcg cgacaaggca tttcgaaagc ccacacaagg 240
acacctttagt aaaactggag gggtcccaca gaccaacaac aagtttaggtc ccaaaccatg 300
ttgtgccagg aaaaatccaa ggggtcctcc ccaacaccac cccgacaaat ccacttgtcc 360
attggcatca agattgcct gacctagcta attactcagc caggcatgtc acaattcacc 420
catgtggtca cacatgttat ggttggatga aattctaaag gaatcggtcc atatgagcaa 480
gaccgagaaa ccataccacc agtacttcta ccgaaatacg agtttagtaa actcatttgt 540
tttcaaggca cccgacccag gtgtgtcggt tttccaggg attttgtaaa cccaaagttt 600
accatagtt gatcattcaa attttgagga gggtcattgg tatccgtacc tgagggcacg 660
aatactgaga cctagcattg tagtcgacca aggaggttaa tgtagcaatt gttagtgggg 720
cctgttggtt atattgcaaa ctgcggccaa catttcattgt gtaattttaga gatgtgcatt 780
ttgagaaatg aaatacttag tttcaaaatta tgggctcaaa ataatcaaag gtgacctacc 840
ttgcttgata tcttgagctt cttcctcgta ttccgcgcac taggactctt ctggctccga 900
agctacacgt ggaacgagat aactcaacaa aacgaccaag gaaaagctcg tattagttag 960
tactaagtgt gccactgaat agatctcgat ttttgagggaa ttttagaagt tgaacagagt 1020
caatcgaaca gacagttgaa gagatatgga ttttctaaga ttaattgatt ctctgtataa 1080
agaaaaaaaaa tattattgaa ttaaatggaa aaagaaaaaag gaaaaaggggg atggcttctg 1140
ctttttgggc tgaaggcggc gtgtggccag cgtgctgcgt gggacagcg agcgaacaca 1200
cgacggagca gctacgacga acgggggacc gagtgacccg gacgaggatg tggcttagga 1260
cgagtgcaca aggctagtgg actcggtccc cgcgcgtt cccgagtggc ccactgtctg 1320
caaacacgt tcacatagag cgggcagacg cgggagccgt cctaggtgca cggaaagcaa 1380
atccgtcgcc tgggtggatt tgagtgcac ggcccacgtg tagcctcaca gctctccgtg 1440
gtcagatgtg taaaattatc ataatatgtg ttttcaaata agttaataa tatataatagg 1500
caagttataat gggtaataa gcagtaaaaa ggcttatgac atggtaaaat tacttacacc 1560
aatatgcctt actgtctgat atatttaca tgacaacaaa gttacaagta cgtcattaa 1620
aaatacaagt tacttatcaa ttgttagtgta tcaagtaat gacaacaaac ctacaaat 1680
gctatttga aggaacactt aaaaaatca ataggcaagt tatatagtca ataaactgca 1740
agaaggctta tgacatggaa aaattacata caccaatatg ctttatgtc cggtatattt 1800
tacaagacaa caaagttata agtatgtcat taaaaatac aagttactta tcaattgtca 1860
agtaaatgaa aacaaccta caaatttgtt attttgaagg aacacctaataa ttatcaaata 1920

tagttgcta cgcaaaatga caacatgctt acaagttatt atcatcttaa agtttagactc	1980
atcttctcaa gcataagagc tttatggtgc aaaaacaatataatgacaa ggcaaagata	2040
catacatatt aagagtatgg acagacattt cttaacaaa ctccatttgt attactccaa	2100
aagcaccaga agtttgtcat ggctgagtca tgaaatgtat agttcaatct tgcaaagtgg	2160
ccttccttt tgtactgtgt tttaacacta caagccatat attgtctgta cgtgcaacaa	2220
actatatcac catgtatccc aagatgctt tttattgcta tataaactag ctggctgt	2280
cttgaactc acatcaatta gcttaagttt ccataagcaa gtacaaatag ctatggcag	2340
ttccggtttc tctcggtttt ctatatactt ttgtgttctt ctattatgcc acggttctat	2400
ggcccagccc atgggcatca tgcgagctt cccaaatcca gcaagctgga agagttgaa	2460
ggttacagtt gcattcaacc aattcggtcc tgatatcttt gctagcaaga atttccaccc	2520
ccagaaaaat aagctcacaa gtggcaagat tgcaagctgc ttgaactatg gattggttca	2580
tgttagctaac aataactatg atccaagcgg taagtatgag ggtggcaaca tctacactaa	2640
gaaggaagca ttcaacgtag agcaatttgc aaagctcaca ggcttcactc tcatggacg	2700
caaggacgag ttgaagagct ctgttaattga gaactagttt cggcgtagag taaaataaaa	2760
caccacaagt atgacacttg gtggtgattt tttcgatattt cagttactaaa taaagggtac	2820
aaacttctta attttcttac ttcatgccat ggatattcca ttatggacta tagtgacag	2880
ggccggctta tgatttttag ggccttagga actcatcgatcg atgggcctca agcttatata	2940
aaaattttt gatatatata gacgctaatt ttacttgcaaa aatgaaaaca aatacatcta	3000
tatattaaat ttaacattcc tggtaatttta caagaaataa aatcgaccaaa aataacaata	3060
tatgttaac ttggaaactaa tataattttt tattactta atgaagaata gaaccccgatc	3120
atatccattt cttccatgtt aaagataactt cttcggtat ttcttgatgc aaaatcataa	3180
agaacggat taagatcaat agtgtccaaat atatccttctt cgatttgacca catagccaa	3240
ccatttaacc ttatttgcga cagttgatct caaatagttt ttcaacaact tcaattttga	3300
taaacttatt tcaagctgaag ctaccatcat aggtaaagtt aagagaattt	3350

<210> 7
<211> 127
<212> PRT
<213> Artificial

<220>
<223> Putative amino acid sequence coded by artificially constructed

DNA sequence

<400> 7

Met Ala Ser Ser Gly Phe Ser Arg Phe Ser Ile Tyr Phe Cys Val Leu
1 5 10 15

Leu Leu Cys His Gly Ser Met Ala Gln Pro Met Gly Ile Ile Ala Ala
20 25 30

Tyr Gln Asn Pro Ala Ser Trp Lys Ser Met Lys Val Thr Val Ala Phe
35 40 45

Asn Gln Phe Gly Pro Asp Ile Phe Ala Ser Lys Asn Phe His Leu Gln
50 55 60

Lys Asn Lys Leu Thr Ser Gly Lys Ile Ala Ser Cys Leu Asn Tyr Gly
65 70 75 80

Leu Val His Val Ala Asn Asn Tyr Asp Pro Ser Gly Lys Tyr Glu
85 90 95

Gly Gly Asn Ile Tyr Thr Lys Lys Glu Ala Phe Asn Val Glu Gln Phe
100 105 110

Ala Lys Leu Thr Gly Phe Thr Leu Met Gly Arg Lys Asp Glu Leu
115 120 125

<210> 8

<211> 1474

<212> DNA

<213> Oryza sativa

<400> 8

tacagggttc cttgcgtgaa gaagggtggc ctgcgggtca ccattaacgg tcacgactac 60

ttccagctag tactggtgac caacgtcgcg gcggcagggt caatcaagtc catggaggtt 120

atgggttcca acacagcgga ttggatgccc atggcacgta actggggcgc ccaatggcac 180

tcactggcct acctcaccgg tcaagggtcta tccttaggg tcaccaacac agatgaccaa 240

acgctcgtct tcaccaacgt cgtgccacca ggatgaaagt ttggccagac atttgcaagc 300

aagctgcagt tcaagtgaga ggagaagcct gaattgatac cggagcggtt ctttggag 360

taacatctct ggttgcctag caaacatatg attgtatata agtttcgttg tgcgtttatt 420

ctttcggtgt gtaaaataac atacatgctt tcctgatatt ttcttgata tatgtacaca 480

cacacgacaa atccttccat ttctattatt attgaacaat ttaattgcga gggcgagtc	540
ttgtctgttt acctttttt tttcagatgg catttatag ttaacctt catggaccgg	600
cagtagttct aaccatgaat gaaaagaaaat catagtcac accacgcagg gacattgtgg	660
tcattttaga caagacgatt tgattaatgt cttgtatgat atggtcgaca gtgaggacta	720
acaaacataat ggcataatattt attaccggcg agttaaataaa atttatgtca cagtaataaa	780
ctgcctaata aatgcacgcc agaaaaatata atgataaaaa aaagaaaaaga tacataagtc	840
cattgcttct actttttaa aaatttaatc caacatttc tatttttgg tataaacttg	900
gaagtactag ttggatatgc aaaatcatct aacctccata tatttcatca atttgttac	960
tttacatatg ggagaggata gtatgtcaaa gaaaatgaca acaagctac aagtttctta	1020
ttttaaaagt tccgctaact tatcaagcat agtgtgccac gcaaaactga caacaaacca	1080
acaaatttaa ggagcgccta acttatcatc tatgacatac cgcacaaaaat gataacatac	1140
tagagaaaact ttattgcaca aaaggaaatt tatccataag gcaaaggaac atcttaaggc	1200
tttggatata cattaccaa caagcattgt ttgttattacc cctaaagcgc aagacatgtc	1260
atccatgagt catagtggt atatctcaac attgcaaagc tacttttt ctattatact	1320
tttcgcatta taggctagat attatctata catgtcaaca aactctatcc ctacgtcata	1380
tctgaagatt cttttctca ctatataagt tggctccct gtcattgaac tcacatcaac	1440
cagcccaagt ttccaataac atcctcaaatt agct	1474

<210> 9
 <211> 824
 <212> DNA
 <213> Oryza sativa

<400> 9	
actggataat tataatatca gttaaaatttgg aaaataatgc aacttcatac ttgcattgg	60
tcagtagtgc ctgcctaaga aatgtgtctt gtcataatattt gattacatga aatatgttta	120
cttcctcggtt tctctttattt tgtaagataa agaacttagat atgtggaaag taggatagca	180
aagagtatgg ccaaactcta atctttgctt tatttttgg gatggaccca aaatttgg	240
ctccttact tctttccctt tacaacaatg ttcttactt ccaattctta ttaacaaaac	300
tccaaataca tgccaaactg catatgtatg tatgcttattt aggcacattt acaaagctcc	360
aagtttacctt actcaatcat tcacatatgg cgatgactca aactcttaat tgttatctgg	420
taagctgtga ctgtgttaac acattctaca agtcccatac gaattctgtt cacaaaagtt	480

tcttggtcca gctcataatt tacaaaactg caaaatgcc aagcaatctg gcacaacctt 540
atcatcatat ttctttcca cgcatataaag cactggcaga attatcttg tgttagatatt 600
ccaaaagtat tggtaata aatgtccaaa taaattccat gcctcatgat ttccagctta 660
tgtggctcc actagggtgt tttgcaaagg ccaaactctt tcctggctt cacagctacc 720
agcatgtata aataggcccc taggcaacca ttattccatc atcctaaca atattgtcta 780
caccatctgg aatcttgaaa aacactagta ttgtagaatc agca 824

<210> 10
<211> 931
<212> DNA
<213> Oryza sativa

<400> 10
gatctttaa ccgtgctacg ctgggttaat tagcgatggt gcaggtcacg tacccaaatt 60
tcttcactgt tggatcaact agagtagtta aacgaggggca tgtgatgaag gctagctatt 120
tgaatatttc caattatccc tgcataagtc aggctacaat agcacctgga ctacatgcag 180
ggattacaaa ataggtggta accacattt ccgcgttaac cctatcaaat tcaaataaat 240
ttaaaaagta atttgatttt ttaataaaat tttgtatggt ttctcaagct ttatttgg 300
taccgtgctt actgcggagg caatggaaa ccctcactag aagttgcacc tgttcttgc 360
tgtgcaccat atcatgttga atcatgtcg tttgtgtttt cggagaacc gatttactac 420
atgactcatc aattccactt tacgtatcaa aaggttgtt atgggggcaa tgctttgt 480
aaattaaatt ttatatttgc gtcacgttgt atctagttaa acactaccta cttaccattt 540
caaaacctca ttccacaaaaa cgatgcacatc agataaaaaa tatgacatgt aaagtggat 600
atgactcatg ttatattatca aaaatcgata acaatcaaat gatataggta gtaaagtacc 660
tttgaatgg catgtccaag tatgtgttagc tccaccttagc acaatatccc aagtgtatcat 720
cataaaaggc atacaatac aagcagccga tggatgcacac aagaaacaac acaaattgca 780
ccaaaacccaaa agcaaccgat gccttgagca tagagatcat gctattccca ctataaatac 840
aaatgcacca tatcaagatg ctccctcaccc ttactgaaaa atcacaaaca tcaaaacgtt 900
ataagagttc tcttagcatcc atcacatagc c 931

<210> 11
<211> 4
<212> PRT
<213> Homo sapiens

<400> 11

Lys Asp Glu Leu
1

<210> 12
<211> 6
<212> PRT
<213> Homo sapiens

<400> 12

Ser Glu Lys Asp Glu Leu
1 5

<210> 13
<211> 4
<212> PRT
<213> Saccharomyces cerevisiae

<400> 13

His Asp Glu Leu
1