第2章 计算机的发展及应用

2.1 计算机的发展史

2.2 计算机的应用

2.3 计算机的展望

2.1 计算机的发展史

- 第一台电子计算机是什么时候出现的?
- 第一台电子计算机的基本指标?
- 出现的驱动力是什么,发展的驱动力是什么?
- 主要部件的发展情况?
- 主要部件的发展规律是什么?
- 主要代表机型?
- 微型计算机的发展?
- 软件的发展?

2.1 计算机的发展史

一、计算机的产生和发展

1946年 美国 ENIAC 1955年退役

十进制运算

18 000 多个电子管

1500 多个继电器

150 千瓦

30 吨

1500 平方英尺

5 000 次加法 / 秒

用手工搬动开关和拔插电缆来编程

世界上第一台电子计算机 ENIAC(1946)

朱传榘, 1919-2011 IEEE-CS"计算机先驱奖"

现代计算机产生的驱动力

- 需求、需求、还是需求
- 技术发展
 - ✓电子技术的发展
 - ✓计算机体系结构技术的发展

硬件技术对计算机更新换代的影响 2.1

代	时间	硬件技术	速度次/秒)
	1946—1957	电子管	40 000
	1958—1964	晶体管	200 000
	1965—1971	中小规模 集成电路	1 000 000
四	1972—1977	大规模 集成电路	10 000 000
五	1978一现在	超大规模集成电路	100 000 000

von Neumann 系统结构的计算机

IAS,普林斯顿

IAS的逻辑结构

IBM System / 360

2.1

二、微型计算机的出现和发展

2.1

微处理器芯片	1971年	存储器芯片	1970年
41). (40	0.41	256k	

4位(4004)

8位

16位

32位

64位

250仏

1K位

4K位

16K位

64K位

256K位

1M位

4M位

16M位

64M位

Intel 公司的典型微处理器产品

2.1

8080	8位	1974年	
8086	16位	1979年	2.9 万个晶体管
80286	16位	1982年	13.4 万个晶体管
80386	32位	1985年	27.5 万个晶体管
80486	32位	1989年	120.0 万个晶体管
Pentium	64位(准)	1993年	310.0 万个晶体管
Pentium Pro	64位(准)	1995年	550.0 万个晶体管
Pentium II	64位(准)	1997年	750.0 万个晶体管
Pentium Ⅲ	64位(准)	1999年	950.0 万个晶体管
Pentium IV	64位	2000年	4 200.0 万个晶体管

目前 芯片上可集成 超过 153 亿 个晶体管

Moore 定律

Intel 公司的缔造者之一 Gordon Moore 提出

微芯片上集成的

晶体管数目每三年翻两番

三、软件技术的兴起和发展

2.1

1. 各种语言

机器语言 面向机器

汇编语言 面向机器

高级语言 面向问题

FORTRAN 科学计算和工程计算

PASCAL 结构化程序设计

C++ 面向对象

Java 适应网络环境

2. 系统软件

语言处理程序 汇编程序 编译程序 解释程序

操作系统 DOS、UNIX、Windows

Linux、Kylin Linux 服务性程序 装配 调试 诊断 排错

数据库管理系统 数据库和数据库管理软件

网络软件

3. 软件发展的特点

2.1

- (1) 开发周期长
- (2) 制作成本昂贵
- (3) 检测软件产品质量的特殊性

软件是程序以及开发、使用和

维护程序所需要的所有文档

2.2 计算机的应用

- 一、科学计算和数据处理
- 二、工业控制和实时控制
- 三、网络技术
 - 1. 电子商务
 - 2. 网络教育
 - 3. 敏捷制造

四、虚拟现实

五、办公自动化和管理信息系统

六、CAD/CAM/CIMS

七、多媒体技术

八、人工智能

2.3 计算机的展望

一、计算机具有类似人脑的一些超级智能功能

要求计算机的速度要足够快

- 二、芯片集成度的提高受以下三方面的限制
 - 芯片集成度受物理极限的制约
 - 按几何级数递增的制作成本
 - 芯片的功耗、散热、线延迟

- 三、?替代传统的硅芯片
 - 1. 光计算机

利用光子取代电子进行运算和存储

2. DNA生物计算机

通过控制DNA分子间的生化反应

3. 量子计算机

利用原子所具有的量子特性