Richard Hu

| ■ richie.hu@mail.utoronto.ca | ★ rhklite.github.io | 🖫 rhklite Q (647) 995-9055

Experience

Huawei Noah's Ark Lab Autonomous Driving Division

Toronto, Ontario

Support Researcher

May. 2020 - Jan 2021

- · Algorithm Developed a novel spatial constraint generation algorithm for autonmous driving using triangulation mesh
- Simulator Engaged in an autonmous driving simulator development using real-world datasets
- Publications Paper accepted to IROS 2021; provisional patent 87088974US01

Autonomous System and Biomechatronics Lab

Toronto, Ontario

Researcher, Master Thesis

Sep. 2018 - Present

- Machine Learning Developed a novel deep reinforcement learning network and virtual-to-real transfer pipeline in Pytorch
- Localization Implemented LiDAR and visual SLAM for real time pose estimation
- Deployment Performed system level testing with autonomous point to point navigation, comparison studies, and ablation studies
- Architecture Designed ROS based decentralized computing robot architecture in ROS and C++
- Hardware Enhanced a robot with auxilliary computing units and sensors with components designed using SolidWorks
- Control Designed and optimized cascade PID controller for rough terrain navigation
- Publication Published in IEEE Robotics and Automation Letters and International Conference on Intelligent Robots and Systems

MIE443 Mechatronics Systems: Design & Integration

Toronto, Ontario

Head Teaching Assistent/Tutorial Teaching Assistent

Jan. 2018 - Apr. 2020

- Lecture Prepared and lectured students on ROS based robot navigation and SLAM methods
- Mentorship Mentored students on ROS based autonomous robot algorithm development, vision sensor, and OpenCV
- Award Recipient of UofT MIE 2019-20 Teaching Assistant Award

Conavi Medical - Novasight Hybrid System

Toronto, Ontario

Mechanical Engineer Intern

May. 2016 - Aug. 2017

- Research Investigated potential design hazards and risks of catheter rotary assembly
- · Manufacturing Streamlined an efficient assembly and calibration work instruction for intravascular catheter
- Organization Established an inventory system with full traceability for FDA 510k submission validation
- Project Management Directed technical design reviews with senior leadership, accelerated the exit of the project phase
- Design Designed imaging and rotary assembly for a intravascular catheter using MATLAB and SolidWorks

Multiphase Flow and Spray Systems Lab

Toronto, Ontario

Researcher

Jun. 2015 - Sep. 2015

- Design Developed Arduino based camera to fluid pipeline synchronization system for data collection automation
- Research Analyzed and classified novel air-droplet fluid impingement shattering pattern

Projects _

Parallel Proximal Policy Gradient in Pytorch

Toronto, Ontario

Personal Project

Nov. 2019

• Development Implemented parallel agent for faster experience collection and training for proximal policy gradient in Pytorch

Apprenticeship Learning with Inverse Reinforcement Learning Implementation

Toronto, Ontario

Developer, Course Project

Mar. 2019

- Development Implemented the Apprenticeship Learning algorithm using traditional Q-Learning algorithm in Python
- Mentorship Lectured students on the algorithm using an Google Colab implemented version

aUToronto - SAE AutoDrive Challenge (Winner 2018-19)

Toronto, Ontario

Planning and Control Team

Sep. 2018 - Oct. 2019

- Autonomy Aim to develop a level 4 autonomous vehicle using ROS and C++ in a team of 30+ students
- Localization Implemented real-time kinematics GPS for precision localization
- Planning Optimize trajectory planner for real time performance
- Simulation Evaluation of planning and control system using kinematics and dynamics model
- Mapping Processed semantic map using Python, QGIS and Open Street Map for level 3 autonomy vehicle

Toward Smart Cities: Road Accident Prevention

Toronto, Ontario

Developer, Course Project Sep. 2018 - Dec. 2018

- Smart City Data-driven accident prediction using Scikit-learn in Python; within a team of 5 students
- Data Engineering Data collection, visualization, feature engineering, and negative sampling
- Machine Learning Trained and benchmarked 3 supervised learning models: Random Forest, SVM, and Deep Neural Network

Pico-Scale Hydro Turbine Design

Toronto, Ontario

Mechanical Design

Jan. 2018 - Sept. 2018

- Design Designed a variable guide vane for pico-scale hydro turbine using Solidworks
- Research Evaluated the guide vane failure mode with fluid pressure test, mechanical stress test, and finite element analysis
- Prototype Prototyped the pico-scale turbine and an experiment pipeline using SLA 3D printing and machining techniques

Autonomous Turtlebot Toronto, Ontario

Developer, Course Project

Jan. 2018 - Sep. 2018

- Mapping Developed robot coverage and exploration algorithm using ROS and C++
- Computer Vision Object detection and identification using OpenCV library
- Social Implemented person-following and emotional model for human-robot interaction

Autonomous Maze Navigation Rover Design

Toronto, Ontario

Developer, Course Project

Sep. 2017 - Dec. 2017

- Mechatronics Engaged in the design and prototyping of the autonmous robot
- Autonomy Designed and implemented localization, collision avoidance, and path planning algorithm in MATLAB and Arduino
- Control Designed architecture for autonomous payload pick-up and delivery in a maze

Open Architecture Quadcopter Design

Toronto, Ontario

Mechanical Design

- Sep. 2017 Apr. 2018 • Mechanical Designed mechanical features of quadcopter using SolidWorks and prototyped using 3D printer
- Structure Evaluated failure mode of designed components using ANSYS Explicit Dynamics Analysis

Publication

Spatial Constraint Generation for Motion Planning in Dynamic Environments

Hu. H, Peyman Yadmellat

Accepted into International Conference on Intelligent Robots and Systems (IROS) 2021

Provisinal Patent Application Number: 87088974US01

A Sim-to-Real Pipeline for Deep Reinforcement Learning for Autonomous Robot Navigation in Cluttered Rough **Terrain**

Hu. H, Kaicheng Zhang, Aaron Hao Tan, Michael Ruan, Christopher Agia, and Goldie Nejat

IEEE Robotics and Automation Letters (RAL), vol. 6, no. 4, pp. 6569-6576, Oct. 2021, doi: 10.1109/LRA.2021.3093551.

Accepted into International Conference on Intelligent Robots and Systems (IROS) 2021

Optimization and System Identification of a Variable Pico-Scale Hydro Turbine for Pressure Regulation

Yu. SM, Ko. Y, Hu. H, Seo. J, and Bilton. AM

ASME 2020 Power Conference. Virtual, Online. August 4-5, 2020. V001T08A020. ASME. https://doi.org/10.1115/POWER2020-16902

Education

University of Toronto Toronto, Canada

Master of Applied Science, Mechanical Engineering

Sep. 2018 - Expected Aug. 2021

Specialization Deep Reinforcement Learning, Machine Learning, Mobile Robotics; GPA (4.00/4.00)

University of Toronto

Toronto, Canada

Bachelor of Applied Science, Mechanical Engineering

Sep. 2013 - Apr. 2018

Specialization Robotics and Mechatronics Minor; Dean's Honor List for all terms; GPA (3.81/4.00)

Honors & Awards

2019-20	MIE Teaching Assistant Award, University of Toronto	Toronto, Ontario
2013-18	Dean's Honor List, University of Toronto	Toronto, Ontario
2018	Best Undergraduate Poster Presentation, CFD Society of Canada Conference	Winnipeg, Manitoba
2015	University of Toronto Excellence Award, University of Toronto	Toronto, Ontario
2015	Shell Canada Limited Engineering Scholarship, University of Toronto	Toronto, Ontario
2015	Best Innovation Award and Best Prototype Award, U of T Engineering Competition Junior Design	Toronto, Ontario