Lacuna Malaria Detection Challenge - 3rd Place solution

1. Overview

The objective of the challenge was to develop a multiclass object detection and classification model capable of accurately localizing and classifying malaria parasites in blood slide images.

The solution employs a single DDQ DETR model, trained on the complete training dataset using the MMDetection library.

2. Architecture diagram

Lacuna Malaria Detection Pipeline

3. ETL process

The data was extracted to mirror the directory structure below:

```
.
└── /workspace/
└── mmdetection/
└── data/
├── images/
├── Test.csv
├── Train.csv
└── SampleSubmission.csv
```

The data was transformed into the COCO annotation format required by the MMDetection library. This included mapping bounding boxes and class labels to COCO-compliant JSON files.

4. Data modeling

The following augmentations were applied to the training dataset during training:

- RandomFlip
- RandomChoiceResize
- YOLOXHSVRandomAug
- Sharpness
- AutoContrast
- Rotation

The Swin-L variant of the Dense Distinct Query for End-to-End Object Detection (DDQ-DETR) model was selected based on its promising performance on object detection tasks. The model was trained for 30 epochs with the following parameters:

Training Parameters

- Epochs: 30Batch size: 2
- **Optimizer:** AdamW (learning rate = 0.0002, weight decay = 0.05)
- LR Schedule:
 - o Base LR: 1e-4
 - Warmup: LinearLR warm-up for the first 2000 iterations, increasing learning rate from 0.0001 × base_lr.
 - Multi-step Decay: Constant learning rate until epoch 20, reduced by gamma = 0.1 at epochs 20 and 26.

5. Inference

The model was deployed using the MMDetection framework on a GPU-enabled machine for efficient inference.

Deployment workflow:

- 1. Load trained model weights (epoch_30.pth) and configuration file (cfg) with init_detector.
- 2. Sequentially process test images from a DataFrame (df_test) containing image paths and IDs.
- 3. Perform object detection using inference_detector to generate bounding boxes, class labels, and confidence scores.

4. Apply post-processing:

- Filter predictions with a confidence threshold (minconf = 0.05).
- Record a default entry with a class label of NEG if no detections are found.
- Structure and save detected bounding boxes, scores, and labels in a dictionary format.

Model updates and retraining:

- New data can be incorporated through fine-tuning or full retraining.
- If fine-tuning, modify the load_from parameter in the configuration to use the current model weights.

6. Run time

Training: 12 hoursInference: 15 minutes

7. Performance metrics

- **Disk space:** The model required ~100 GB to store checkpoints after each epoch during training.
- **GPU VRAM usage:** Peak usage was ~45 GB during training.
- Evaluation scores:

o Public leaderboard mAP@0.5: 0.92529841

o Private leaderboard mAP@0.5: 0.921717525