Regression Assignment

1.) Identify your problem statement

Stage 1: Machine Learning

Stage 2: Supervised Learning

Stage 3: Regression

2.) Tell basic info about the dataset (Total number of rows, columns)

Total number of rows: 1339
Total number of columns: 6

3.) Mention the pre-processing method if you're doing any (like converting string to number – nominal data)

Ordinal Data

- 4.) Develop a good model with r2_score. You can use any machine learning algorithm; you can create many models. Finally, you have to come up with final model.
- 5.) All the research values (r2_score of the models) should be documented.(You can make tabulation or screenshot of the results.)

Regression Assignment - Model Creation with R2 Value

1.Multiple Linear Regression:

R² Value: 0.7895

2.SVMR: (Without Standardization)

S.no	Hyper	linear	poly	rbf	sigmoid
	parameter				
1	default	-0.1117	-0.0642	-0.0884	-0.0899
2	0.01	-0.0797	-0.0893	-0.0896	-0.0897
3	0.1	-0.1220	-0.0862	-0.0895	-0.0897
4	1	-0.1116	-0.0642	-0.0884	-0.0899
5	10	-0.0016	-0.0931	-0.0819	-0.0907
6	100	0.5432	-0.0997	-0.1248	-0.1181
7	1000	0.6340	-0.0555	-0.1175	-1.6659
8	10000	0.7444	0.3529	-0.0172	-119.5185

SVMR: (With Standardization)

S.no	Hyper parameter	linear	poly	<mark>rbf</mark>	sigmoid
1	default	-0.0101	-0.0756	-0.0833	-0.0754
2	0.01	-0.0888	-0.0895	-0.0896	-0.0895
3	0.1	-0.0809	-0.0883	-0.0890	-0.0882
4	1	-0.0101	-0.0756	-0.0833	-0.0754

5	10	0.4624	0.0387	-0.0322	0.0393
6	100	0.6288	0.6179	0.3200	0.5276
7	1000	0.7649	0.8566	0.8102	0.2874
8	<mark>10000</mark>	0.7414	0.8591	<mark>0.8779</mark>	-34.1515

SVMR R² Value: 0.8779

3.Decision Tree:

S.no	criterion	splitter	max_features	R ² Value
1	default	=	-	0.6887
2	squared_error	best	sqrt	0.7192
3	squared_error	random	sqrt	0.7001
4	squared_error	<mark>best</mark>	log2	<mark>0.7402</mark>
5	squared_error	random	log2	0.6990
6	friedman_mse	best	sqrt	0.7232
7	friedman_mse	random	sqrt	0.6951
8	friedman_mse	best	log2	0.6131
9	friedman_mse	random	log2	0.6175
10	absolute_error	best	sqrt	0.5790
11	absolute_error	random	sqrt	0.6302
12	absolute_error	best	log2	0.6427
13	absolute_error	random	log2	0.7227
14	poisson	best	sqrt	0.7150
15	poisson	random	sqrt	0.6736
16	poisson	best	log2	0.7290
17	poisson	random	log2	0.6878
18	squared_error	best	Int(5)	0.6874
19	squared_error	random	Int(5)	0.7202
20	squared_error	best	Float(10)	0.6854
21	squared_error	random	Float(10)	0.6753
22	friedman_mse	best	Int(5)	0.6952
23	friedman_mse	random	Int(5)	0.7212
24	friedman_mse	best	Float(10)	0.7108
25	friedman_mse	random	Float(10)	0.7000
26	absolute_error	best	Int(5)	0.7014
27	absolute_error	random	Int(5)	0.6699
28	absolute_error	best	Float(10)	0.6790
29	absolute_error	random	Float(10)	0.7201
30	poisson	best	Int(5)	0.7293
31	poisson	random	Int(5)	0.7034
32	poisson	best	Float(10)	0.7248
33	poisson	random	Float(10)	0.6732

Decision Tree R² Value: 0.7402

4.Random Forest:

S.no	n_estimators	criterion	max_features	R ² Value
1	default	-	-	0.8498
2	100	squared_error	sqrt	0.8705
3	100	squared_error	log2	0.8723
4	100	absolute_error	sqrt	0.8707
5	<mark>100</mark>	absolute_error	<mark>log2</mark>	<mark>0.8739</mark>
6	100	friedman_mse	sqrt	0.8421
7	100	friedman_mse	log2	0.8669
8	100	poisson	sqrt	0.8540
9	100	poisson	log2	0.8710

Random Forest R² Value: 0.8739

6.) Mention your final model, justify why u have chosen the same.

Best model for Machine Learning is **SVMR: (With Standardization)** - 0.8779 and **Random Forest** - 0.8739.