MODUL 7 Pengujian Hipotesis Lebih Dari Dua Sampel

Pertemuan : 10

Peralatan & Perlengkapan : Modul dan Komputer

Tujuan Pembelajaran Praktikum : Mahasiswa dapat melakukan pengujian hipotesis lebih

bdari dua sampel untuk membuktikan kebenaran suatu

dugaan sementara

7.1 Konsep Pengujian Hipotesis Lebih Dari Dua Sampel

Pada bab sebelumnya, telah dibahas uji hipotesis satu sampel dan dua sampel. Pada bab ini akan dibahas mengenai pengujian hipotesis lebih dari dua sampel. Pengujian terdiri dari pengujian hipotesis rata-rata lebih dari dua sampel dan pengujian hipotesis proporsi lebih dari dua sampel.

Dalam melakukan uji hipotesis lebih dari dua sampel mengunakan tabel F untuk uji hipotesis rata-rata dan untuk proporsi menggunakan tabel X^2 , berikut adalah kurva tabel F atau X^2 seperti gambar berikut ini:

7.1.1 Pengujian Hipotesis Rata-Rata Lebih Dari Dua Sampel (ANOVA)

Pengujian lebih dari dua sampel dikenal dengan analisis variansi atau ANOVA adalah metode yang digunakan untuk membandingkan beberapa populasi atau kelompok lebih dari dua populasi. Pada ANOVA, untuk melakukan pengujian dengan cara mengambil sampel pada tiap kelompok populasi kemudian dilakukan pengujian apakah terdapat perbedaan diantara kelompok populasi tersebut.

Langkah-langkah pengujian hipotesis

Rumusan Hipotesis

Ho: tidak ada perbedaan yang signifikan antar kelompok

Ha: terdapat perbedaan dua kelompok atau lebih

Atau

Ho:
$$\mu 1 = \mu 2 = \mu 3 = ... = \mu j$$

Ha: tidak semua rata-rata populasi memiliki rata-rata yang sama

Tingkat signifikan

Ftabel=
$$\alpha$$
; (j-1)(N-j); dimana j = jumlah kolom/katagori

• Statistik uji

$$F = \frac{RKP}{RKG}$$

			Pop			
		1	2		j	
		X_{11}	X_{12}	•••	X_{1i}	Total
		:	:	:	:	
		X_{i1}	X_{i2}		X_{ij}	
ma i data (—	T_j	T_1	T_2		T_{j}	ΣT_j
T data	n	Ju Ju	n_2		$n_{\mathbf{j}}$	N
nilai	$\bar{\mathbf{x}}_{\mathbf{j}}$	\overline{X}_1	\bar{x}_2		$\overline{\mathrm{x}}_{\mathrm{j}}$	$\bar{\bar{X}}_{ij} = \frac{\Sigma T_j}{N}$
n data	$\Sigma(X_j)^2$	$\Sigma(X_1)^2$	$\Sigma(X_2)^2$		$\Sigma(X_j)^2$	$\Sigma\Sigma(X_{ij})^2$

$$JKT = \Sigma \Sigma \left(X_{ij}\right)^{2} - \frac{\left(\Sigma T_{j}\right)^{2}}{N} \qquad JKP = \Sigma \frac{T_{j}^{2}}{n_{j}} - \frac{\left(\Sigma T_{j}\right)^{2}}{N} \qquad JKG = JKT - JKP$$

$$JKG = JKT - JKP$$

ANOVA

Sumber	JK	df	RK	F _{obs}
Perlakuan	JKP	j – 1	RKP	
Galat	JKG	N - j	RKG '\	$Fobs = \frac{RKP}{RKG}$
Total	JKT	N - 1	-	

Keterangan

JKT = Jumlah Kuadrat Total

JKP = Jumlah Kuadrat Perlakuan

JKG = Jumlah Kuadrat Galat

Kesimpulan

Ho ditolak jika $F_{observasi} > F_{tabel}$, maka terdapat rerata populasi yang berbeda Ho diterima jika $F_{observasi} < F_{tabel}$, maka semua rerata pupulasi sama

7.1.2 Pengujia Hpotesis Proporsi Lebih Dari Dua Sampel (Chi-Square)

Chi Square adalah salah satu alat analisis yang paling sering digunakan pada statistik, dengan tujuan untuk Uji Homogenitas, Uji Independensi dan Uji Goodness of Fit Test. Pada modul ini akan dibahas mengenai Uji Goodness of Fit Test. Uji Uji Goodness of Fit Test digunakan untuk mengetahui apakah populasi memiliki nilai yang sama atau tidak.

Langkah pengujian hipotesis

Rumusan Hipotesis

Ho: tidak ada perbedaan proporsi antar populasi

Ha: terdapat perbedaan dua populasi atau lebih

Atau

Ho:
$$P_1 = P_2 = P_3 = ... = P_n$$

Ha: tidak semua proporsi populasi memiliki proporsi yang sama

Tingkat signifikan

$$x_{tab}^2 = \alpha; (i-1)(j-1)$$
, dimana i = jumlah baris katagori; j = jumlah kolom katagori

• Statistik uji

$$x_{observasi}^2 = \sum \left[\frac{\left(x_{ij} - e_{ij} \right)^2}{e_{ij}} \right]; \quad \text{dimana } e_{ij} = \frac{\sum x_i \cdot \sum x_j}{N};$$

ket i: jumlah baris dan j: jumlah kolom

Kesimpulan

 $x_{observasi}^2 > x_{tabel}^2$ maka Ho ditolak artinya terdapat perbedaan dua proporsi populasi atau lebih

 $x_{observasi}^2 < x_{tabel}^2$ maka Ho diterima artinya tidak terdapat perbedaan proporsi antar populasi

7.2 Contoh Soal dan Penyelesaian

SOAL 1

Dalam Industri minuman berkarbonasi, pemberian tekanan menjadi faktor penting dalam mencapai volume pengisian yang akurat. Terlalu rendah tekanan dapat menghambat proses pengeluaran, terlalu tinggi tekanan membuat timbulnya suara berdesis "fizz" ketika membuka atau menutup botol minuman. Kualitas karbonasi minuman ditentukan oleh jumlah karbondioksida dan asam karbonat dalam minuman, dengan menggunakan sensor karbonasi gelombang inframerah. Jumlah ini dinyatakan dalam gram per liter. Oleh karena itu, produsen minuman terkemuka ingin melakukan percobaan di tiga pengaturan tekanan yang berbeda untuk menentukan apakah ada perbedaan kualitas karbonasi pada ketiga tekanan. Diambil sampel 15 botol dengan target jumlah karbondioksida dan asam karbonat dalam minuman 12 gram per liter pada setiap pengaturan tekanan. Hasil jumlah karbondioksida dan asam karbonat dalam minuman ditunjukkan pada tabel berikut ini:

Tekanan Rendah	Tekanan Medium	Tekanan Tinggi
(60 psi)	(80 psi)	(100 psi)
12,01	12,00	11,56
11,97	12,01	11,55
11,86	11,97	11,80
11,56	11,98	11,72
11,23	11,87	11,80

Dengan menggunakan tingkat keyakinan 99%, anda diminta untuk menguji apakah ada perbedaan volume rata-rata di tiga pengaturan tekanan tersebut!

Jawaban:

Rumusan Hipotesis

Ho:
$$\mu 1 = \mu 2 = \mu 3$$

Ha: tidak semua rata-rata populasi memiliki rata-rata yang sama

Tingkat signifikan

Statistik uji

,	Statistik uji	L				
		Tekanan Rendah (60 psi)	Tekanan Medium (80 psi)	Tekanan Tinggi (100 psi)		
		12,01	12	11,56		
		11,97	12,01	11,55		
		11,86	11,97	11,8		
		11,56	11,98	11,72		
		11,23	11,87	11,8		
	T_j	58,63	59,83	58,43	176,89	ΣT_j
	n	5	5	5	15	N
	$\bar{\mathbf{x}}_{\mathbf{j}}$	11,73	11,97	11,69	11,79	$\bar{\bar{X}}_{ij} = \frac{\Sigma T_{ij}}{N}$
	$\Sigma(X_j)^2$	687,93	715,94	682,87	2086,74	$\Sigma\Sigma\big(X_{ij}\big)^2$
						ari hasil kuadra

JKT =
$$2086,74 - \frac{(176,89)^2}{15} = 0,735$$
 masing-masing data yang kemudian dijumlahkan

JKP = $\frac{58,63^2 + 59,83^2 + 58,43^2}{5} - \frac{(176,89)^2}{15} = 2086,234 - 2086,004 = 0,23$

$$JKG = 0.735 - 0.23 = 0.505$$

ANOVA

Sumber	JK	df	RK	F _{obs}
Perlakuan	0,230	2	0,115	
Galat	0,505	12	0,042	2,738
Total	0,735	14	-	

Kesimpulan

Ho diterima jika $F_{observasi} = 2,738 < F_{tabel} = 6,93$ maka rerata populasi ketiga tekanan adalah sama.

SOAL 2

Menurut survai tahun 2008 suatu pusat penelitian, warga negara Tiogkok bahagia dengan perekonomian negara mereka, 86% dari mereka yang disurvai mengekpresikan pandangan positif. Seorang analisis politik ingin mengetahui apakah optimisme di antara warga tersebut bergantung pada usia. Sebuah survai terhadap 280 warga Tiongkok ditanya apakah mereka bahagia dengan perekonomian negara mereka. Berikut adalah tanggapannya:

Umur	Sangat Bahagia	Cukup Bahagia	Kurang Bahagia
$20 \le \text{umur} \le 40$	23	50	18
40 < umur ≤ 60	51	38	16
> 60	19	45	20

Dengan menggunkan tingkat keyakinan 99%, anda diminta untuk menguji apakah ada perbedaan tingkat kebahagiaan jika ditinjau dari umur responden!

Jawaban:

Rumusan Hipotesis

Ho:
$$P_1 = P_2 = P_3$$

Ha: tidak semua proporsi populasi memiliki proporsi yang sama

• Tingkat signifikan 1%:
$$x_{tab}^2 = 0.01(2)(2) = 13,277$$

Statistik uji Chi-square

Tabel xij

G . D 1			5 7.0			
Sangat Bahagia	Cukup Bahagia	Kurang Bahagia	ΣXi			
23	50	18	91			
51	38	16	105			
19	45	20	84			
93	133	54	280			
Sangat Bahagia	Cukup Bahagia	Kurang Bahagia				
30,23	43,225	17,55	1) //			
34,88	49,875	20,25	<i>1 </i>			
27,90	39,9	16,2				
`	(01*02)/290					
eij	(91 93)/200					
Sangat Bahagia	Cukup Bahagia	Kurang Bahagia]			
1,73	1,06	0,01]			
7,46	2,83	0,89				
2,84	0,65	0,89				
$x^2 = 18,36$						
Kesimpulan ((23-30,23)^2) / 30,23						
$x_{observasi}^2 = 18,36 > x_{tabel}^2 = 13,277 \text{ maka}$ Ho ditolak artinya terdapat perbedaan proporsi						
tingkat kepuasan ditinjau dari umur pangkat 2 itu rumus						
	51 19 93 Sangat Bahagia 30,23 34,88 27,90 eij Sangat Bahagia 1,73 7,46 2,84 ((23-30,3) $6 > x_{tabel}^2 = 13,27$	23 50 51 38 19 45 93 133 Sangat Bahagia Cukup Bahagia 30,23 43,225 34,88 49,875 27,90 39,9 (91*93)/280 (91*93)/280 (91*93)/280 (1,73 1,06 7,46 2,83 2,84 0,65 ((23-30,23)^2) / 30,23 $6 > x_{tabel}^2 = 13,277 \text{ maka}$ Ho ditolak ditinjau dari umur	23 50 18 51 38 16 19 45 20 93 133 54 Sangat Bahagia Cukup Bahagia Kurang Bahagia 30,23 43,225 17,55 34,88 49,875 20,25 27,90 39,9 16,2 (91*93)/280 eij (91*93)/280 Sangat Bahagia Cukup Bahagia Kurang Bahagia 1,73 1,06 0,01 7,46 2,83 0,89 2,84 0,65 0,89 x² = 18,36 ((23-30,23)^2) / 30,23 6 > x_{tabel}^2 = 13,277 maka Ho ditolak artinya terdapat per			

7.3 Latiahan Soal

SOAL 1

Survai online oleh *Sporting Goods Manufactur Association*, sebuah kelompok pedagang pengecer alat alat olahraga, mengklaim bahwa pendapatan usaha mereka bervariasi menurut jenis olahraga (*The Wall Street Journal*, 10 agustus 2009). Untuk mengverifikasi klaim ini, seorang ekonom mengambil sampel 5 orang masing masing untuk 6 jenis olahraga. Masing-masing pendapatan penjualan alat olahraga ditunjukkan sebagai berikut (\$1000).

Snorkling	Sailing	Boardsailing	Bowling	On-Road	Off-Road
Shorking	Saming	Doardsaining	Downing	Triathlon	Triathlon

Snorkling	Sailing	Boardsailing	Bowling	On-Road Triathlon	Off-Road Triathlon
90,9	87,6	75,9	79,3	64,5	47,7
86,0	95,0	75,6	75,8	67,2	59,6
93,6	94,6	83,1	79,6	62,8	68,0
98,8	87,2	74,4	78,5	59,2	60,9
98,4	82,5	80,5	73,2	66,5	50,9

Dengan menggunakan tingkat keyakinan 95%, anda diminta untuk menguji apakah ada perbedaan pendapatan pada setiap jenis penjualan alat alat olahraga!

SOAL 2

Perusahaan *Wenton Powersports* memproduksi perakitan kereta dorong. Mereka memiliki tiga jalur perakitan *Razor, Blazer,* dan *Tracer*. Setiap jalur perakitan memiliki jumlah target yang sama. Namun, selama bertahun-tahun, telah terjadi perubahan jumlah produksi. Dengan demikian, manajemen ingin menentukan apakah jalur perakitan masih beroperasi dengan baik pada tingkat produksi yang sama per jam. Data produksi yang diperoleh kereta dorong yang diperoleh selama delapan jam terakhir adalah sebagai berikut:

Razor	11	10	8	10	9	9	13	11
Blazer	10	8	11	9	11	10	11	8
Tracer	9	9	10	9	8	7	8	9

Dengan tingkat keyakinan 95%, anda diminta untuk menguji apakah ada perbedaan rata-rata dalam tingkat produksi di tiga jalur perakitan. Bagaimana jika di uji dengan tingkat keyakinan 99%, apakah memiliki kesimpulan yang sama!

SOAL 3

Selama beberapa tahun terakhir, publik menilai buruk untuk beberapa produk perusahaan telah mencoreng citra publiknya. Hal ini mendorong serangkaian inisiatif peningkatan kualitas. Saat ini, manajer pemasaran ingin menentukan apakah inisiatif peningkatan kualitas berhasil merubah persepsi masyarakat tentang perusahaan. Berikut hasil dua survai, masing-masing dari 1200 orang dewasa yang dipilih secara acak. Survai dilakukan sebelum dan setelah prakarsa kualitas diimplementasikan.

	Persepsi Publik				
	Negatif	Netral	Positif		
Sebelum	324	180	96		
Setelah	246	146	208		

Dengan menggunakan tingkat keyakinan 99%, apakah terdapat perbedaan proporsi persepsi publik!

SOAL 4

Manajer perusahaan manufaktur elektonik percaya bahwa kecenderungan pekerja akan mengambil izin sakit pada shiff tertentu daripada shiff yang lain. Untuk menguji keyakinan ini, dia telah membuat tabel sebagai berikut:

	Shiff Pertama	Shiff Kedua	Shiff Ketiga
0-2 hari absent	44	20	10
3-6 hari absent	38	25	12
7-10 hari absent	14	9	13
>11 hari absent	4	6	5

Dengan menggunakan tingkat keyakinan 95%, apakah terdapat perbedaan proporsi pekerja yang ijin pada setiap shiff! Bagaimana dengan tingkat keyakinan 99% apakah memiliki kesimpulan yang sama dengan tingkat keyakinan 95%