

Identification et Commande d'un Drone en Situation de Décrochage

Vincent Guibert (ENAC/Drones)

<u>Encadrants</u>: Jean-Philippe Condomines

nines (ENAC/Drones)

Mathieu Brunot

(ONERA/DTIS)

Jean-Marc Biannic

(ONERA/DTIS)

10 Février 2022

Figure – Représentation de l'écoulement autour d'une aile à divers angles d'incidence. (source : DLR)

Figure – Répartition des victimes d'accidents aériens par catégorie.

(source : Boeing)

En bleu à droite : perte de contrôle en vol (47%).

Les drones à voilure fixe sont :

Figure – Vue d'artiste du drone DISCO FPV. (source : Parrot)

Les drones à voilure fixe sont :

plus sensibles aux perturbations,

Figure – Vue d'artiste du drone DISCO FPV. (source : Parrot)

Les drones à voilure fixe sont :

- plus sensibles aux perturbations,
- plus susceptibles de tomber en panne,

Figure – Vue d'artiste du drone DISCO FPV. (source : Parrot)

Les drones à voilure fixe sont :

- plus sensibles aux perturbations,
- plus susceptibles de tomber en panne,
- voués à évoluer en autonomie.

Figure – Vue d'artiste du drone DISCO FPV. (source : Parrot)

Les drones à voilure fixe sont :

- plus sensibles aux perturbations,
- plus susceptibles de tomber en panne,
- voués à évoluer en autonomie.

Figure – Vue d'artiste du drone DISCO FPV. (source : Parrot)

Contexte

La reprise automatisée du décrochage s'inscrit donc dans les efforts actuels pour mieux intégrer les drones aux espaces aériens, et particulièrement aux espaces urbains.

Objectifs

Objectif principal

Développer une commande capable de ramener un drone dans son enveloppe de vol nominale après l'apparition du décrochage.

Objectifs

Objectif secondaire

Développer et identifier un modèle fiable de la dynamique de vol d'un drone à proximité et après le point de décrochage.

Objectifs

Objectif principal

Développer une commande capable de ramener un drone dans son enveloppe de vol nominale après l'apparition du décrochage.

Objectif secondaire

Développer et identifier un modèle fiable de la dynamique de vol d'un drone à proximité et après le point de décrochage.

Le modèle retenu a la forme hybride :

$$\dot{\boldsymbol{x}} = f_i(\boldsymbol{x}, \boldsymbol{u}, t)$$

$$i \in \{1, 2, \dots, N\} = \mathcal{S}$$

$$\forall j, k \in \mathcal{S} \quad i = j \land g_{j \to k}(\boldsymbol{x}) = 0 \implies i = k$$

Le modèle retenu a la forme hybride :

$$\begin{split} \dot{\boldsymbol{x}} &= f_i\left(\boldsymbol{x}, \boldsymbol{u}, t\right) & \longrightarrow \text{Fonctions d'état} \\ i &\in \{1, 2, \cdots, N\} = \mathcal{S} \\ \forall j, k \in \mathcal{S} \quad i = j \land g_{j \rightarrow k}\left(\boldsymbol{x}\right) = 0 \ \Rightarrow \ i = k \end{split}$$

Le modèle retenu a la forme hybride :

$$\begin{split} \boldsymbol{\dot{x}} &= f_i\left(\boldsymbol{x},\boldsymbol{u},t\right) & \longrightarrow \text{Fonctions d'état} \\ i &\in \{1,2,\cdots,N\} = \mathcal{S} & \longrightarrow \text{Automate à état discret} \\ \forall j,k \in \mathcal{S} \quad i = j \land g_{j \rightarrow k}\left(\boldsymbol{x}\right) = 0 \ \Rightarrow \ i = k \end{split}$$

Le modèle retenu a la forme hybride :

$$\begin{split} \boldsymbol{\dot{x}} &= f_i\left(\boldsymbol{x},\boldsymbol{u},t\right) & \longrightarrow \text{Fonctions d'état} \\ & i \in \{1,2,\cdots,N\} = \mathcal{S} & \longrightarrow \text{Automate à état discret} \\ \forall j,k \in \mathcal{S} \quad i = j \land g_{j \to k}\left(\boldsymbol{x}\right) = 0 \ \Rightarrow \ i = k & \longrightarrow \text{Transitions} \end{split}$$

Figure – Le graphe de transition du modèle retenu.

Figure – Comparaison entre les valeurs mesurées expérimentalement et prédites par le modèle pour le coefficient de portance.

Figure – Comparaison entre les valeurs mesurées expérimentalement et prédites par le modèle pour le coefficient de portance.

Figure – Comparaison entre les valeurs mesurées expérimentalement et prédites par le modèle pour le coefficient de portance.

Figure – Comparaison entre les valeurs mesurées expérimentalement et prédites par le modèle pour le coefficient de portance.

Publications

En cours de préparation

- Vincent Guibert et al. « A Hybrid Polynomial Model for the High Angles of Attack Longitudinal Dynamics of a UAV ».
 2022 International Conference on Unmanned Aircraft Systems. 2021
- Vincent Guibert et al. « A Longitudinal Hybrid Polynomial Model for the Analysis and Control of a UAV Beyond Stall ».
 Journal of Guidance, Control, and Dynamics. 2021

Publications

Publiées

- Vincent Guibert et al. « Semi-parametric Regression based on Machine Learning Methods for UAS Stall Identification ».
 In: IFAC-PapersOnLine 54.7 (2021). 19th IFAC Symposium on System Identification SYSID 2021, p. 180-185
- Vincent Guibert et al. « Piecewise Polynomial Model Identification using Constrained Least Squares for UAS Stall ». In: IFAC-PapersOnLine 54.7 (2021). 19th IFAC Symposium on System Identification SYSID 2021, p. 493-498

Publications

Merci pour votre attention.