

Sparse Gaussian Processes Revisited: Bayesian Approaches to Inducing-Variable Approximations

Simone Rossi¹, Markus Heinonen², Edwin V. Bonilla³, Zheyang Shen², Maurizio Filippone¹

¹ EURECOM (France), ² Aalto University (Finland), ³ CSIRO's Data61 (Australia)

Summary and Contributions

Gaussian processes (GPs) are a family of powerful non-parametric models, but computationally intractable.

Inference with GPs

For example,

Prior: $p(\mathbf{f}) = \mathcal{N}(\mathbf{0}, \mathbf{K}(\boldsymbol{\theta}))$

Likelihood: $p(\mathbf{y} | \mathbf{f}) = \mathcal{N}(\mathbf{f}, \sigma^2 \mathbf{I})$

Predictive posterior and marginal:

Sparse GPs: Sparse approximation methods introduce M inducing variables $\mathbf{u} = (u_1, ..., u_M)$ drawn from the same prior at inducing inputs $\mathbf{Z} = \{\mathbf{z}_1, ..., \mathbf{z}_M\}$ and they are solved for the augmented model $p(\mathbf{f}, \mathbf{u} \mid \mathbf{y})$.

Contributions:

- We treat \mathbf{Z} , \mathbf{u} and $\boldsymbol{\theta}$ in a Bayesian way by sampling from the true posterior via (SG)HMC in both shallow and deep GPs
- ► We analyze a number of priors on **Z** and with this setup we revisit sparse approximations prior to Titsias [4]

The classic recipe for inference of sparse GPs

SVGP [2] uses variational inference to approximate the posterior:

- Factorize the posterior $q(\mathbf{f}, \mathbf{u})$ as $q(\mathbf{u})p(\mathbf{f} \mid \mathbf{u})$
- Define approximate posterior for \mathbf{u} , e.g. $q(\mathbf{u}) = \mathcal{N}(\mathbf{m}, \mathbf{S})$
- 3 Compute a lower bound to the marginal likelihood

$$\mathcal{L}_{\mathsf{ELBO}} \stackrel{\scriptscriptstyle \mathsf{def}}{=} \mathbb{E}_{q(\mathbf{u})p(\mathbf{f} \mid \mathbf{u})} \log p(\mathbf{y} \mid \mathbf{f}) - \mathsf{KL}\left[q(\mathbf{u}) \parallel p(\mathbf{u})
ight]$$

Maximize the lower bound w.r.t variational parameters (e.g. \mathbf{m} , \mathbf{S}), the covariance parameters $\boldsymbol{\theta}$ and \mathbf{Z} jointly.

BSGP: Bayesian Sparse Gaussian Process

Consider the general formulation of the joint distribution,

 $p(\theta, \mathbf{Z}, \mathbf{u}, \mathbf{f}, \mathbf{y}) = p(\theta)p(\mathbf{Z})p(\mathbf{u} \mid \mathbf{Z}, \theta)p(\mathbf{f} \mid \mathbf{u}, \mathbf{Z}, \theta)p(\mathbf{y} \mid \mathbf{f})$

For (SG)HMC, we need objectives that factorize over observations. Two ways to proceed:

- **VFE argument**, by minimization of the KL divergence $\mathcal{L}_{\text{VFE}} \stackrel{\text{def}}{=} \sum_{n} \mathbb{E}_{p(f_{n} \mid \boldsymbol{\theta}, \mathbf{Z}, \mathbf{u})} \log p(y_{n} \mid f_{n}) + \log p(\boldsymbol{\theta}, \mathbf{Z}, \mathbf{u}) \quad [\text{see 3}]$
- **FITC argument**, by independence of the conditional $\mathbf{f} \mid \mathbf{u}, \mathbf{Z}, \boldsymbol{\theta}$ $\mathcal{L}_{\text{FITC}} \stackrel{\text{def}}{=} \sum_{n} \log \mathbb{E}_{p(f_n \mid \boldsymbol{\theta}, \mathbf{Z}, \mathbf{u})} p(y_n \mid f_n) + \log p(\boldsymbol{\theta}, \mathbf{Z}, \mathbf{u}) \quad [\text{see 4}]$

Which prior on Z should we choose?

With VFE or FITC?

Does it help to be Bayesian about Z?

- Approximate inference of **u** on the VFE objective (SVGP, [2])
- Approximate inference of \mathbf{u} with heteroskedastic likelihood (variational FITC, [4])
- MCMC inference of \mathbf{u} , $\boldsymbol{\theta}$ on the variational objective (MCMC-SVGP, [1])
- \longrightarrow MCMC inference of **u**, θ , **Z** on the FITC objective (**BSGP this work**)

How expensive should we make SVGP to match BSGP?

Prediction time on the test set of Protein [ms]

References

- [1] J. Hensman et al. "MCMC for Variationally Sparse Gaussian Processes". *NeurIPS* 2015.
- J. Hensman et al. "Scalable Variational Gaussian Process Classification". *AISTATS* 2015.
- [3] E. Snelson and Z. Ghahramani. "Sparse Gaussian Processes using Pseudo-Inputs". *NeurIPS*
- [4] M. K. Titsias. "Variational Learning of Inducing Variables in Sparse Gaussian Processes". AISTATS 2009.