Theoretische Informatik: Endliche Automaten, Formale Sprachen und Grammatiken

Marko Livajusic

10. Oktober 2024

Inhaltsverzeichnis

1	$\mathbf{Q3}.$	2: Deterministische Endliche Automaten (DEAs)	2	
	1.1	Transduktor	2	
	1.2	Akzeptor	2	
	1.3	Mealy- und Mooreautomat (irrelevant)	2	
	1.4	Minimerung von DEAs	2	
2	Q3.2: Nichtdeterministische Endliche Automaten (NEAs)			
	2.1	ϵ -NEAs	2	
		2.1.1 ϵ -NEA \rightarrow NEA (6 Konstruktionsregeln)	2	
		2.1.2 ϵ -NEA \rightarrow DEA (Potenzmengenkonstruktion)	2	
	2.2	$NEA \rightarrow DEA $ (Potenzmengenkonstruktion)	2	
3	Q3 .	Q3.2: RegEx		
	3.1	$RegEx \rightarrow \epsilon$ -NEA	2	
		Formale Sprachen	2	
		3.2.1 Reguläre Sprachen	2	
4	Q3.2: Grammatiken			
	4.1	Typ 3 Grammatik (regulär)	3	
5	Abl	Ableitung		
	5.1	Ableitungsbaum	3	
6	Kontextfreie Sprachen			
	6.1	Chomsky-Normalform (klausurrelevant, abitur-irrelevant)	4	
		6.1.1 1. ϵ -Elimination	4	
		6.1.2 2. Elimination von Kettenregeln	5	
		6.1.3 3. Separation von Terminalzeichen	5	
		6.1.4 4. Elimination von mehrelementigen Nonterminalketten .	6	
	6.2		6	

1 Q3.2: Deterministische Endliche Automaten (DEAs)

- 1.1 Transduktor
- 1.2 Akzeptor
- 1.3 Mealy- und Mooreautomat (irrelevant)
- 1.4 Minimerung von DEAs
- 2 Q3.2: Nichtdeterministische Endliche Automaten (NEAs)
- 2.1 ϵ -NEAs
- ${f 2.1.1} \quad \epsilon ext{-NEA}
 ightarrow {f NEA} \; (6 \; {f Konstruktionsregeln})$
- 2.1.2 ϵ -NEA \rightarrow DEA (Potenzmengenkonstruktion)
- $2.2 \quad \text{NEA} \rightarrow \text{DEA} \ (ext{Potenzmengenkonstruktion})$
- 3 Q3.2: RegEx
- 3.1 RegEx $\rightarrow \epsilon$ -NEA
- 3.2 Formale Sprachen
- 3.2.1 Reguläre Sprachen

Eine Sprache L ist dann $regul\"{a}r$, wenn diese sich darstellen lässt mithilfe eines:

- 1. deterministischen endlichen Automatens
- 2. regulären Ausdrucks

4 Q3.2: Grammatiken

Eine Grammatik G ist ein 4-Tupel $G = \{N, T, P, S\}$, wobei

- \bullet N das Nichtterminalalphabet
- \bullet T das **Terminalalphabet**
- P die Produktionen
- S das **Startsymbol** ist.

4.1 Typ 3 Grammatik (regulär)

Eine Grammatik G ist dann $regul\"{a}r$, wenn in den Produktionen P

• links ein Nichtterminal und rechts ein oder mehrere Terminale vorkommen gefolgt von maximal einem Nichtterminal

5 Ableitung

Gegeben sei folgende Grammatik:

$$\begin{split} T &= \{x,y,z\} \\ N &= \{S,M,A,V\} \\ P &= \{ \\ S &\rightarrow A|M|V \\ A &\rightarrow (S+S) \\ M &\rightarrow (S\cdot S) \\ V &\rightarrow x|y|z \\ \} \end{split}$$

Wie wird das Wort $(x \cdot (y+z))$ gebildet?

$$S \Rightarrow M \Rightarrow (S \cdot S)$$
$$\Rightarrow (v \cdot S) \Rightarrow (x \cdot S) \Rightarrow (x \cdot A) \Rightarrow$$
$$(x \cdot (S+S)) \Rightarrow (x \cdot (v+S)) \Rightarrow (x \cdot (y+S)) \Rightarrow (x \cdot ($$

5.1 Ableitungsbaum

Dies kann man auch mit einem Ableitungsbaum darstellen:

6 Kontextfreie Sprachen

Gegeben sei folgende kontextfreie Grammatik:

$$\begin{split} N &= \{A,B,S\} \\ T &= \{a,b,\epsilon\} \\ S &= S \\ P &= \{ \\ S &\rightarrow AB \\ S &\rightarrow ABA \\ A &\rightarrow aA \\ A &\rightarrow a \\ B &\rightarrow Bb \\ B &\rightarrow \epsilon \\ \} \end{split}$$

6.1 Chomsky-Normalform (klausurrelevant, abitur-irrelevant)

6.1.1 1. ϵ -Elimination

Zuerst wird $B \to \epsilon$ entfernt. Die aktualisierte Grammatik lautet:

$$\begin{split} N &= \{A,B,S\} \\ T &= \{a,b,\epsilon\} \\ S &= S \\ P &= \{ \\ S &\rightarrow AB \\ \mathbf{S} &\rightarrow \mathbf{A} \\ \mathbf{S} &\rightarrow \mathbf{A} \\ A &\rightarrow aA \\ A &\rightarrow a \\ B &\rightarrow b \\ \} \end{split}$$

6.1.2 2. Elimination von Kettenregeln

Die Kettenregeln, d.h. überall da, wo ein Nichtterminal auf ein anderes Nichtterminal folgt, d.h. $S \to A$, werden entfernt.

$$\begin{split} N &= \{A,B,S\} \\ T &= \{a,b,\epsilon\} \\ S &= S \\ P &= \{ \\ S &\rightarrow AB \\ S &\rightarrow AA \\ A &\rightarrow aA \\ A &\rightarrow a \\ B &\rightarrow b \\ \} \end{split}$$

6.1.3 3. Separation von Terminalzeichen

Jedes Terminal wird durch ein Nichtterminal ersetzt:

$$\begin{split} N &= \{A,B,S\} \\ T &= \{a,b,\epsilon\} \\ S &= S \\ P &= \{ \\ S &\rightarrow AB \\ S &\rightarrow aA \mid V_a = a \\ S &\rightarrow V_aA \\ S &\rightarrow a \\ S &\rightarrow ABA \\ S &\rightarrow AA \\ A &\rightarrow a \\ B &\rightarrow BV_b \\ B &\rightarrow b \\ V_a &\rightarrow a \\ V_b &\rightarrow b \\ \} \end{split}$$

6.1.4 4. Elimination von mehrelementigen Nonterminalketten

In diesem Schritt wird die Anzahl von Nichtterminalen auf 2 reduziert, d.h. $S\to ABA$ wird zu $S\to S_2A$, wobei S_2 als $S_2\to AB$ definiert wird.

$$N = \{A, B, S\}$$

$$T = \{a, b, \epsilon\}$$

$$S = S$$

$$P = \{$$

$$S \rightarrow AB$$

$$S \rightarrow V_a A$$

$$S \rightarrow a$$

$$S \rightarrow S_2 A$$

$$S_2 \rightarrow ABS \rightarrow AA$$

$$A \rightarrow a$$

$$B \rightarrow BV_b$$

$$B \rightarrow b$$

$$V_a \rightarrow a$$

$$V_b \rightarrow b$$

$$\}$$

6.2 CYK-Algorithmus (klausurrelevant, abitur-irrelevant)

Mit dem CYK-Algorithmus lässt sich sagen, ob ein Wort ω in einer kontext-freien Sprache liegt. Voraussetzung für den CYK-Algorithmus ist die Chomsky-Normalform (6.1).