Algorithm Design Strategies III

Joaquim Madeira

Version 0.1 – September 2018

Overview

- Tasks from last week Recap + Questions ?
- Example Empirical Analysis
- Dynamic Programming
- Example Fibonacci's Sequence
- Example Linear Robot
- Example Computing Binomial Coefficients
- Memoization

Task – Counting – Recap

- Given an array with non-negative integer values
- Count the number of even-valued elements
- Implement the 3 strategies:
 - Brute-Force / Dec & C / Div & C
- Formal + Empirical analysis : Comparisons

Number of array comparisons?

- Brute-Force
 - 1 loop / n iterations / n comparisons
- Decrease & Conquer
 - C(0) = 0
 - \Box C(n) = 1 + C(n 1)
- Divide & Conquer
 - \Box C(0) = 0 and C(1) = 1
 - C(n) = C(n div 2) + C((n+1) div 2)

Number of array comparisons

#Elements	#COMPS	#Even-Values
1	1	0
2	2	1
4	4	2
8	8	4
16	16	8
32	32	16
64	64	32
128	128	64
256	256	128
512	512	256

Task – Sequential Search – Recap

- Given an array with non-negative integer values
- Use the iterative Sequential Search algorithm to look for a given value
- Formal + Empirical analysis : Comparisons
- Best / Worst / Average Cases ?

Possible cases?

- Best case ?
 - □ 1 comparison \rightarrow B(n) = O(1)
- Worst Case ?
 - \neg n comparisons \rightarrow W(n) = O(n)
- Average Case ?
 - Various possible scenarios
 - BUT always \rightarrow A(n) = O(n)

Average Case

- One possible scenario
 - No repeated array values
 - Searched value belongs to the array
 - Can be any array element Equal probability!
- Average number of comparisons ?
 - How to compute ?
- $A(n) = (n + 1) / 2 \approx n / 2$

A different scenario

Sequential Search on RANDOM arrays of positive integers
Searching RANDOM values

#Elements	#Searches	#Found	#COMPS	#Average_COMPS
1	1	0	1	1.000
2	2	0	4	2.000
4	4	0	16	4.000
8	8	0	64	8.000
16	16	0	256	16.000
32	32	2	993	31.031
64	64	3	4007	62.609
128	128	9	15726	122.859
256	256	56	57621	225.082
512	512	209	207084	404.461
1024	1024	677	658902	643.459
2048	2048	1751	1845775	901.257
4096	4096	4004	3992714	974.784

Example – Experimental Analysis

- Performance data for 4 sorting algorithms
- Sorting sets of n random strings
- 50 trials
- Best time and worst time were discarded
- Best algorithm?
- Complexity order?
- Identify the algorithms ?
- Heineman et al. Algorithms in a Nutshell. 2nd Ed., O'Reilly, 2016

Average running time – Random data

Average of 48 trials of sorting small data sets

Average running time – Random data

Regression analysis

- Sort-4
 - $y = 0.0053 \times n^2 0.3601 \times n + 39.212$
- Sort-2
 - $y = 0.05765 \times n \times log(n) + 7.9653$
- Sort-3
 - Slightly slower than Sort-2
- Sort-1
 - n < 40: $y = 0.0016 \times n^2 + 0.2939 \times n + 3.1838$
 - □ $n \ge 40$: $y = 0.0798 \times n \times log(n) + 142.7818$

Average running time – Sorted data

Only 32 elements out of position!

Nearly-sorted

Nearly sorted data where n/4 entries are randomly shifted to be 4 away from their proper position

Which algorithms?

Sort-1 : qsort on Linux

Sort-2:?

Sort-3:?

Sort-4:?

Dynamic Programming

- General algorithm design technique
- Apply to
 - Computing recurrences
 - Solving optimization problems
- How to store "previous" results ?
 - 2D array
 - Vector
 - A few variables

Recurrences – Top-Down

- Exploit the relationship between
 - A solution to a given problem instance
 - Solutions to smaller/simpler instances of the same problem
- Set up a recurrence!
- Decompose into smaller / simpler sub-problems
 - Parameters ?
- Identify the smallest / simplest / trivial problems
 - Base cases

Dynamic Programming – Bottom-up

- Use a recurrence: BUT go bottom-up!
- Start from the smallest / simplest / trivial problems
- Get intermediate solutions from smaller / simpler sub-problems
- Which values / results are computed in each step?
 - How to store ?

Dynamic Programming – Advantage

- Do sub-problems overlap?
- NOW, there is no need to repeatedly solve the same sub-problems!!
- Proceed bottom-up and store results for later use
- Compare with Divide-and-Conquer !!

Fibonacci's Sequence

- F(0) = 0; F(1) = 1
- F(i) = F(i 1) + F(i 2); i = 2, 3, 4,...
- F(6) = ? → Number of recursive calls ?
- Do sub-problems overlap ?
- Recursion tree vs. recursion DAG !!
- Complexity order ?

Tasks - V1

- Implement the recursive function of the previous slide in Python
- Count the number of additions carried out for computing a Fibonacci number
 - Use a global variable
- Table ?
- Complexity order ?

Fibonacci's Sequence

```
def fibonacci DC( n ) :
    """ Recursive computation of Fi """
    # Global variable, for counting the number of additions
    global num adds
    if (n == 0) or (n == 1):
        return n
    num adds += 1
    return fibonacci DC( n - 1 ) + fibonacci DC( n - 2 )
```

Number of additions?

- A(0) = 0; A(1) = 0
- A(i) = 1 + A(i 1) + A(i 2); i = 2, 3, 4,...
- Closed formula ?
- You can get it, if you remember Discrete Mathematics...
- BUT, we can get the complexity order from the table...

Fibonacci's Sequence

- F(0) = 0; F(1) = 1
- F(i) = F(i 1) + F(i 2); i = 2, 3, 4,...
- Use Dynamic Programming !!
- Computing F(n) using an array
 - Complexity order ?
- Can we use less memory space?

Tasks - V2 + V3

- Implement two iterative functions for computing F(i)
 - V2 : using an array
 - V3 : using just 3 variables
- Count the number of additions carried out

- Table ?
- Complexity order ?

Fibonacci's Sequence

i	f(i)	#ADDs-Rec	#ADDs_DP_1	#ADDs_DP_2
0	0	0	0	0
1	1	0	0	0
2	1	1	1	1
3	2	2	2	2
4	3	4	3	3
5	5	7	4	4
6	8	12	5	5
7	13	20	6	6
8	21	33	7	7
9	34	54	8	8
10	55	88	9	9
11	89	143	10	10
12	144	232	11	11
13	233	376	12	12
14	377	609	13	13
15	610	986	14	14

Additions – Recursive version

- How fast does F(n) grow ?
- How fast does A(n) grow ?
- From the table we get:

$$A(n) = F(n+1) - 1$$

- Exponential growth !!
 - □ Why?

$$(1+\sqrt{5})/2=1,618034$$

n	F(n)	Ratio	A(n)	Ratio
0	0		0	
1	1		0	
2	1	1	1	
3	2	2	2	2
4	3	1,5	4	2
5	5	1,666667	7	1,75
6	8	1,6	12	1,714286
7	13	1,625	20	1,666667
8	21	1,615385	33	1,65
9	34	1,619048	54	1,636364
10	55	1,617647	88	1,62963
11	89	1,618182	143	1,625
12	144	1,617978	232	1,622378
13	233	1,618056	376	1,62069
14	377	1,618026	609	1,619681
15	610	1,618037	986	1,619048
16	987	1,618033	1596	1,618661
17	1597	1,618034	2583	1,618421
18	2584	1,618034	4180	1,618273
19	4181	1,618034	6764	1,618182
20	6765	1,618034	10945	1,618125

Another example

- Linear robot
- Can move forward by 1 meter, or 2 meters, or 3 meters
- In how many ways can it move a distance of n meters?
- Establish the recurrence !!
 - Base cases ?

Tasks - V1 + V2 + V3

- Implement three functions for computing R(i)
 - V1 : using recursion
 - V2 : using an array
 - V3: using a few variables how many?
- Count the number of additions carried out
 - Formulas ?
- Tables ?
- Complexity order?

Example – Results table

i	r(i)	#ADDs-Rec	#ADDs_DP_1	#ADDs_DP_2
1	1	0	0	0
2	2	0	0	0
3	4	0	0	0
4	7	2	2	2
5	13	4	4	4
6	24	8	6	6
7	44	16	8	8
8	81	30	10	10
9	149	56	12	12
10	274	104	14	14
11	504	192	16	16
12	927	354	18	18
13	1705	652	20	20
14	3136	1200	22	22
15	5768	2208	24	24

Computing Binomial Coefficients

- C(n,0) = 1; C(n,n) = 1
- C(n,j) = C(n-1,j) + C(n-1,j-1); j = 1, 2,..., n-1
- Two arguments !!
- C(4,3) = ? → Number of recursive calls ?
- Do sub-problems overlap ?
- Recursion tree vs. recursion DAG !!
- Complexity order?

Computing Binomial Coefficients

- V1 : Compute C(n,j) recursively
- V2 : Compute C(n,j) using a 2D array
 - How to proceed?
 - Have you seen this "triangle" before ?
- Can we use less memory space?
- And other, more efficient recurrences?

Tasks - V1 + V2 + V3

- Implement three functions for computing C(n,j)
 - V1 : using recursion
 - V2 : using a 2D array
 - V3: using a 1D array
- Count the number of additions carried out
- Tables ?
- Complexity order?

Pascal's Triangle

Pascal's Triangle - Recursive Function

```
5
         10
                   10
                                      1
6
         15
                   20
                            15
                                               1
                                      21
         21
                   35
                            35
                                                         1
8
                   56
                                      56
         28
                            70
                                               28
         36
                   84
                            126
                                      126
                                               84
                                                         36
         45
                            210
                                      252
                                                         120
                                                                  45
                                                                            10
                                                                                     1
10
                   120
                                               210
```

V1 – Number of additions

```
Number of Additions - Recursive Function
```

```
0
          0
          1
                    0
                    5
                                        0
                    9
                              9
                                        4
                                                  5
          5
                    14
                              19
                                        14
                                                           0
                                                            6
                                                 20
                    20
                              34
                                        34
                                                                      0
                                                 55
                    27
                              55
                                        69
                                                            27
                                                                                0
          8
                                                            83
                                                                      35
                    35
                              83
                                        125
                                                 125
          9
                                                                                         9
                    44
                              119
                                        209
                                                 251
                                                            209
                                                                      119
                                                                                44
                                                                                                   0
```

V2 – Number of additions

Number of Additions - Dynamic Programming - V. 1

```
0
0
         0
          1
                   1
                   3
3
          3
                             3
                   6
                                       6
10
                   10
          10
                             10
                                       10
                                                 10
15
          15
                   15
                             15
                                       15
                                                 15
                                                           15
21
          21
                   21
                             21
                                       21
                                                 21
                                                           21
                                                                     21
28
                             28
                                                 28
                                                                     28
          28
                   28
                                       28
                                                           28
                                                                               28
36
                   36
                                                                     36
                                                                               36
          36
                             36
                                       36
                                                 36
                                                           36
                                                                                         36
45
          45
                   45
                                                 45
                                                           45
                                                                     45
                                                                               45
                                                                                         45
                                                                                                   45
                             45
                                       45
```

V3 – Number of additions

```
Number of Additions - Dynamic Programming - V. 2
```

```
0
0
         0
                   0
          3
                   3
                             0
                             6
                                       0
         10
                   10
                             10
                                       10
                                                 0
         15
                   15
                             15
                                       15
                                                 15
                                                           0
         21
                   21
                             21
                                       21
                                                 21
                                                           21
                                                                     0
0
         28
                   28
                             28
                                                 28
                                                           28
                                                                     28
                                       28
                                                                               0
                                                                     36
0
         36
                   36
                             36
                                       36
                                                 36
                                                           36
                                                                               36
                                                                                         0
0
         45
                   45
                                       45
                                                           45
                                                                               45
                                                                                         45
                             45
                                                 45
                                                                     45
```

Memoization

- Turning the results of a function into something to be remembered
- I.e., avoid repeating the calculation of results for previously processed inputs
- Use a table / array to store previously computed results
 - Initialization!
- Time vs. space trade-off

Memoization

- Initialize all table entries to "null"
 - Not yet computed
- Whenever a result is to be computed for a given input
 - Check the corresponding table entry
 - If not "null", retrieve the result
 - Otherwise, compute by a recursive call(s)
 - And store the result

Fibonacci's Sequence

Initialization

```
for(i=1, i< n, i++) f[i] = -1;
```

Recursive function

```
int fib( int n ) {
         int r;
         if( f[n] != -1 ) return f[n];
         if( n == 1 ) r = 1;
         else if( n == 2 ) r = 1;
         else {
                  r = fib(n-2);
                  r = r + fib(n-1);
         f[n] = r;
         return r;
```

The Python way

```
# M. Hetland, Python Algorithms, Apress, 2010 - Chapter 8
from functools import wraps
def memo( func ) :
    cache = \{\}
                                         # Stored subproblem solutions
    @wraps (func)
                                         # Make wrap look like func
    def wrap( *args ) :
                                         # The memoized wrapper
        if args not in cache :
                                         # Not already computed?
            cache[args] = func( *args ) # Compute & cache the solution
                                         # Return the cached solution
        return cache[args]
    return wrap
                                         # Return the wrapper
```

The Python way

```
f(i) #ADDs_Memo
                    21
                    34
10
                    55
    259695496911122585
    420196140727489673
    679891637638612258
88 1100087778366101931
89 1779979416004714189
```

90 2880067194370816120

```
Files and DO many / Files and DO
```

Testing the memoized version

fibonacci_DC = memo(fibonacci_DC)

References

- A. Levitin, Introduction to the Design and Analysis of Algorithms, 3rd Ed., Pearson, 2012
 - Chapter 8
- R. Johnsonbaugh and M. Schaefer, Algorithms,
 Pearson Prentice Hall, 2004
 - Chapter 8
- T. H. Cormen et al., Introduction to Algorithms, 3rd
 Ed., MIT Press, 2009
 - Chapter 15