Computer Networks

Interfaces and Cabling

Content

Coaxial Cable and Twinaxial Cable

Twisted-Pair Cable

Cable Pinouts

Cables Wiring

PoE

Fiber Optic Cables

Cable Troubleshooting

Coaxial Cable and Twinaxial Cable

- Coaxial cable was the foundation for Ethernet networks in the 1980s.
- You'll most likely never see a coaxial cable network for computers.
- A form of coax is still used for cable Internet, cable TV, and some multimedia connection types.

Coaxial Cable and Twinaxial Cable

Connectors of coaxial cables

Coaxial Cable and Twinaxial Cable

• Twinaxial cable looks very similar to coax cable except that there are two cores, or conductors, inside the cable.

Content

Coaxial Cable and Twinaxial Cable

Twisted-Pair Cable

Cable Pinouts

Cables Wiring

PoE

Fiber Optic Cables

Cable Troubleshooting

- Twisted-pair cable consists of color-coded pairs of insulated copper wires.
- Every two wires are twisted around each other to form pairs.
 - All the pairs are encased in a plastic sheath

- Twisted-pair cabling in Ethernet networks contains four wire pairs.
 - 8 wires in total.
- There are two types:
 - Shielded Twisted Pair (STP)
 - Unshielded Twisted Pair (UTP)

On **Fast Ethernet** networks:

- Maximum data rate of 100 Mbps.
- One pair sends data, another pair receives data.
- The other two pairs are not used for data transmission.

On **Gigabit Ethernet** and higher standards:

- Data transfer rate of 1000 Mbps or more.
- Use all four pairs for both sending and receiving.

Twisted pair cabling standards

UTP Categories - Co	pper Cable
---------------------	------------

UTP Category	Data Rate	Max. Length	Cable Type	Application	
CAT1	Up to 1Mbps	-	Twisted Pair	Old Telephone Cable	
CAT2	Up to 4Mbps	-	Twisted Pair	Token Ring Networks	
САТЗ	Up to 10Mbps	100m	Twisted Pair	Token Rink & 10BASE-T Ethernet	
CAT4	Up to 16Mbps	100m	Twisted Pair	Token Ring Networks	
CAT5	Up to 100Mbps	100m	Twisted Pair	Ethernet, FastEthernet, Token Ring	
CAT5e	Up to 1 Gbps	100m	Twisted Pair	Ethernet, FastEthernet, Gigabit Ethernet	
CAT6	Up to 10Gbps	100m	Twisted Pair	GigabitEthernet, 10G Ethernet (55 meters)	
CAT6a	Up to 10Gbps	100m	Twisted Pair	GigabitEthernet, 10G Ethernet (55 meters)	
CAT7	Up to 10Gbps	100m	Twisted Pair	GigabitEthernet, 10G Ethernet (100 meters)	

• A cable's category (such as Cat 5e or Cat 6) determines the fastest network speed it can support.

Standard	Maximum transmission throughput (Mbps)	Maximum distance per segment (m)	Physical media	Pairs of wires used for transmission
10BASE-T	10	100	Cat 3 or better UTP	2 pair
100BASE-T	100	100	100BASE-T: Cat 5 or better	2 pair
or 100BASE-TX			100BASE-TX: Cat 6 or better	
(Fast Ethernet)				
1000BASE-T (Gigabit Ethernet)	1000	100	Cat 5 or better (Cat 5e is preferred)	4 pair
10GBASE-T	10,000	100	Cat 6a or Cat 7 (Cat 7 is	4 pair
(10-Gigabit Ethernet)			preferred)	
40GBASE-T	40,000	30	Cat 8	4 pair

Content

Coaxial Cable and Twinaxial Cable

Twisted-Pair Cable

Cable Pinouts

Cables Wiring

PoE

Fiber Optic Cables

Cable Troubleshooting

Cable Pinouts

• There are two specifications for inserting twisted-pair cables into RJ-45

plugs:

○ T568A

○ T568B

Cable Pinouts

Pin #	T568A Color	T568B Color	Fast Ethernet function	Gigabit Ethernet function
1	White/green	White/orange	Tx+	Bidirectional+
2	Green	Orange	Tx-	Bidirectional-
3	White/orange	White/green	Rx+	Bidirectional+
4	Blue	Blue	Unused	Bidirectional+
5	White/blue	White/blue	Unused	Bidirectional-
6	Orange	Green	Rx-	Bidirectional-
7	White/brown	White/brown	Unused	Bidirectional+
8	Brown	Brown	Unused	Bidirectional-

Content

Coaxial Cable and Twinaxial Cable

Twisted-Pair Cable

Cable Pinouts

Cables Wiring

PoE

Fiber Optic Cables

Cable Troubleshooting

• There are 3 wiring techniques:

Straight through cable (patch cable)

 Cables that have the pin assignments on each end of the cable. In other words, Pin 1 connector A goes to Pin 1 on connector B, Pin 2 to Pin 2, etc.

Straight through cable (patch cable)

• These straight-through cables are designed for most connections you'll need in a network, such as connecting a workstation to a switch or a switch to a

router.

Straight through cable (patch cable)

• Connecting two devices that use the same pin pairs to transmit/receive data (for example: router-router, router-PC, PC-PC, switch-switch), the data transmitted from one device will arrive on the Tx pins of the other device,

not the RX pins.

Crossover Cable

• In a crossover cable, each pin pair on one end connects to the opposite pair on the other end. Pin 1 connects to Pin 3. Pin 2 connects to Pin 6. Pin 3 connects to Pin 1. Pin 6 connects to Pin 2.

Figure 5-20 Two crossed pairs in a crossover cable are compatible with Fast Ethernet; four crossed pairs are compatible with Gigabit Ethernet

Crossover Cable

Crossover Cable

Figure 5-19 On legacy networks, straight-through cables connect unlike devices and crossover cables connect like devices

Rollover Cable (console cables)

- A rollover cable reverses all the wires without regard to how they are paired.
- Routers have two types of ports:
 - Ethernet ports allow for network communications.
 - Console port is used to configure the device.

- Newer devices have **auto-MDI-X** ports.
- Auto-MDI-X automatically negotiate the transmit and receive wires between devices, even if you're not using the correct cable for the application.

Content

Coaxial Cable and Twinaxial Cable

Twisted-Pair Cable

Cable Pinouts

Cables Wiring

PoE

Fiber Optic Cables

Cable Troubleshooting

• Have you ever wondered why landline telephone never loses power?

- Have you ever wondered why landline telephone never loses power?
- This is because home telephones have long received power from the telephone company over the line that enters a residence.
 - This power is necessary for dial tone and ringing.
- This is known as Power over Ethernet.

• PoE is useful for sources that require reliable power source.

• PoE is useful for sources that require reliable power source.

Content

Coaxial Cable and Twinaxial Cable

Twisted-Pair Cable

Cable Pinouts

Cables Wiring

PoE

Fiber Optic Cables

Cable Troubleshooting

• Fiber-optic cables contain a very fine glass fiber which is used to transmit light, rather than transmitting electricity along a copper cable.

Fiber-Optic Cables

Fiber-Optic Cables

• Each fiber-optic cable has two unidirectional wires, one for transmission and the other for receiving.

Fiber-Optic Cables

Single Mode Fiber (SMF) Multimode Fiber (MMF) SMF consists of a narrow core of 8 to 10 microns in MMF contains a core with a large diameter, 50 to 62.5 diameter. microns. Laser-generated light travels a single path over the core, Many pulses of light generated by a laser or LED light reflecting very little. source travel at various angles. Because it reflects little, the light does not disperse as MMF is not suited to distances longer than a few the signal travels along the fiber. kilometres. It allows the highest bandwidths and longest distances It used to connect routers, switches, and servers on the without requiring repeaters. backbone of a network or to connect a desktop The Internet backbone depends on single mode fiber workstation to the network. Cladding Core Cladding Core Laser Laser or LED

Single mode fiber

Transmission over single mode fiber-optic

Figure 5-34

cable

Figure 5-35 Transmission over multimode fiber-optic cable

Multimode fiber

Content

Coaxial Cable and Twinaxial Cable

Twisted-Pair Cable

Cable Pinouts

Cables Wiring

PoE

Fiber Optic Cables

Cable Troubleshooting

Cable Troubleshooting

A steady light indicates connectivity, and a blinking light indicates activity. A
red or amber light, might indicate a problem.

Toner and Probe Kit

• They allow you to find cables by tracing electrical signals back to their

sources.

Toner and Probe Kit

Cable Continuity Tester

- It is used to determine whether it is carrying a signal to its destination.
- A cable continuity tester is battery operated and has two parts:

the cable is good

- The base unit connects to one end of the cable and generates voltage.
- o The remote unit connects to the other end of the cable and detects the voltage.

Cable Performance Tester

- It is used to measure the overall performance of a cable, including:
 - Measure the distance to a device, termination point, or damage in a cable.
 - Measure attenuation along a cable.
 - Measure NEXT (near end crosstalk) between wires.
 - Store and print cable testing results or directly save data to a computer database
 - Graphically depict a cable's attenuation and crosstalk characteristics over the length of the cable

Figure **5**-51

The DTX-1800 device by Fluke Networks is a high-end cable performance tester

Cable Performance Tester

Cable Performance Tester

OPM (Optical Power Meter)

• An OPM measures the amount of light power transmitted on a fiber-optic

line.

Summary

Cable connectors and their uses

Specification	Male connector (front view)	Male connector (side view)	Female receptacle (front view)	Application			
BNC (Bayonet Neill- Concelman)				Used with coaxial cable for broadband cable connections			
F-connector				Used on coaxial cable suitable for use with broadband video and data applications; more common than BNC connectors			
RJ-11 (registered jack 11)				Used on twisted-pair cabling for telephone systems (and some older twisted-pair networks)			
RJ-45 (registered jack 45)		10 m		Used on twisted-pair cabling for Ethernet (RJ-45) connections			
(continues)							

Summary

Cable connectors and their uses

Specification	Male connector (front view)	Male connector (side view)	Female receptacle (front view)	Application
ST (straight tip), usually multimode		At Moderate Control	O	Uses a bayonet locking mechanism; one of the first commercially available fiber connectors
SC (subscriber connector or standard connector)	LOLO	Military Comments	0	Widely used; has a snap-in connector
LC (local connector), single-mode		15.15 (1.15)		Most common 2.5-mm ferrule; available in full- duplex mode
MT-RJ (Mechanical Transfer Registered Jack), multimode				Most common MMF; contains two strands of fiber per ferrule to provide full-duplex signaling

Summary

Cabling between devices

	HUB	SWITCH	ROUTER	PC
Hub	Crossover	Crossover	Straight	Straight
Switch	Crossover	Crossover	Straight	Straight
Router	Straight	Straight	Crossover	Crossover
PC	Straight	Straight	Crossover	Crossover

References

- CompTIA Network+, Guide to Networks 9th edition.
- https://www.guru99.com/difference-between-straight-through-crossover-cables.html
- https://www.hkrhasan.com/blog/networking-interfaces-and-cables
- https://www.cisco.com/c/en/us/solutions/enterprise-networks/what-is-power-over-ethernet.html#">benefits
- https://www.computercablestore.com/straight-through-crossover-androllover-wiring
- https://www.cisco.com/c/en/us/td/docs/ios/12 4/interface/configuration/g uide/icfoverh.html