$$U = \frac{3x^3+1}{x} \qquad P(x)$$

$$C.E \quad x \neq 0 \quad x \in (-\infty, 0) \cup (0, +\infty)$$

$$C.E \quad x \neq 0 \quad x \in (-\infty, 0) \cup (0, +\infty)$$

$$C.E \quad x \neq 0 \quad x \in (-\infty, 0) \cup (0, +\infty)$$

$$C.E \quad x \neq 0 \quad x \in (-\infty, 0) \cup (0, +\infty)$$

$$C.E \quad x \neq 0 \quad x \in (-\infty, 0) \cup (0, +\infty)$$

$$C.E \quad x \neq 0 \quad x \in (-\infty, 0) \cup (0, +\infty)$$

$$C.E \quad x \neq 0 \quad x \in (-\infty, 0) \cup (0, +\infty)$$

$$C.E \quad x \neq 0 \quad x \in (-\infty, 0) \cup (0, +\infty)$$

$$C.E \quad x \neq 0 \quad x \in (-\infty, 0) \cup (0, +\infty)$$

$$C.E \quad x \neq 0 \quad x \in (-\infty, 0) \cup (0, +\infty)$$

$$C.E \quad x \neq 0 \quad x \in (-\infty, 0) \cup (0, +\infty)$$

$$C.E \quad x \neq 0 \quad x \in (-\infty, 0) \cup (0, +\infty)$$

$$C.E \quad x \neq 0 \quad x \in (-\infty, 0) \cup (0, +\infty)$$

$$C.E \quad x \neq 0 \quad x \in (-\infty, 0) \cup (0, +\infty)$$

$$C.E \quad x \neq 0 \quad x \in (-\infty, 0) \cup (0, +\infty)$$

$$C.E \quad x \neq 0 \quad x \in (-\infty, 0) \cup (0, +\infty)$$

$$C.E \quad x \neq 0 \quad x \in (-\infty, 0) \cup (0, +\infty)$$

$$C.E \quad x \neq 0 \quad x \in (-\infty, 0) \cup (0, +\infty)$$

$$C.E \quad x \neq 0 \quad x \in (-\infty, 0) \cup (0, +\infty)$$

$$\lim_{x\to 0^+} f(x) = +\infty \qquad \lim_{x\to \infty} \frac{3x^2+1}{x^2} = \pm \infty \text{ wieute}$$
As obe.

$$\frac{3 \times^{3} + 1}{X} = 0 \qquad x^{3} = -\frac{1}{3} \qquad x = -\frac{1}{\sqrt{3}}$$
SEGNO $\frac{3 \times^{3} + 1}{X} > 0 \qquad 3 \times^{3} + 1 > 0 \qquad x > \frac{1}{3\sqrt{3}}$

SEGUO
$$\frac{3 \times^3 + 1}{X} > 0$$
 $3 \times^3 + 1 > 0$ $3 \times^3 + 1 > 0$ $0 \times 3 \times^3 + 1 > 0$ $0 \times$

$$\int \frac{3x^3 + 1}{x} dx = \int 3x^2 + \frac{1}{x} dx = x^3 + \ln|x| + K$$

passa per
$$P(-1;2)$$
 _1+ $\ell u |-1| + K = 2$ $f(x) = x^3 + \ell u |x| + 3$ _1 + 0 + $K = 2$ $K = 3$

