

ARGUING ABOUT VOTING RULES

Olivier Cailloux and Ulle Endriss

LAMSADE, Université Paris-Dauphine and ILLC, University of Amsterdam

Main objects

- $A = \{a, b, c\}$ a set of alternatives
- $N = \{v_1, v_2, v_3\}$ a set of *voters*
- R a *profile*: maps voters to linear orders on A
- *Voting rule*: maps profiles to subsets of alternatives: $[R \mapsto A \subseteq A]$

Some example profiles

Our objective

Scenario:

- Assume a commitee wants to choose a voting rule
- Many rules
- No best rule

We want to:

- automatically explain the outcome of rules
- based on their properties
- by referring to *examples*

Example dialogue

Let's argue that in \mathbf{R} , a should win, using "unanimity", "symmetry" and "reinforcement"

System Consider election R_1 , involving only voter v_1 . Do you agree that a, enjoying unanimous support, should win this election?

User Yes, of course.

System Now consider election R_2 , involving only voters v_2 and v_3 . Do you agree

that, for symmetry reasons, the outcome should be a three-way tie?

User Yes, that sounds reasonable.

System Observe that when we combine R_1 and R_2 , we obtain our election of interest,

namely R. Do you agree that in this combined election, as there was a three-

way tie in R_2 , R_1 should be used to decide the winner?

User Yes, I do.

System To summarise, you agree that a should win for R.

Language

- ullet A general language $\mathcal L$ to talk about properties of voting rules
- Logic-based
- Can represent axioms and specific outcomes (such as $[R \mapsto A]$)
- Permits *arguments*: proof (in the language) from axioms to outcomes

Theorem 1 (Completeness). Take some axioms of a voting rule. Encode in our language as J. Suppose some outsome $[R \mapsto A]$ holds for every rule f satisfying those axioms. Then there exists a proof of $[R \mapsto A]$ in our logic that is grounded in J.

Example for axioms in \mathcal{L}

REINF: $[R_1 \mapsto A_1] \land [R_2 \mapsto A_2] \rightarrow [R_1 \oplus R_2 \mapsto A_1 \cap A_2]$ with $A_1 \cap A_2 \neq \emptyset$

CANC: \mathbf{R} such that $[\forall (a,b): a > b \text{ as often as } b > a] \to [\mathbf{R} \mapsto \mathcal{A}]$

Anon: $[R \mapsto A] \to [(R \circ \sigma) \mapsto A]$ for any permutation σ

Arguing for Borda

We provide a concrete algorithm for explaining the outcomes of the Borda voting rule. Given any profile R^* :

- Let $W \subseteq \mathcal{A}$ be the set of Borda winners
- The algorithm generates a proof that $[\mathbf{R}^* \mapsto W]$
- Grounded in axioms: Reinf, Canc, Elem, Cycl

Example: Arguing for Borda

Given
$$\mathbf{R}^* = \begin{pmatrix} a & c \\ b & b \\ d & a \end{pmatrix}$$
, let's argue that $[\mathbf{R}^* \mapsto \{a, b\}]$

 $\mathbf{R}' \longmapsto \{a,b\}$

REINF

 $\mathbf{R}' \oplus \overline{4\mathbf{R}^*} \oplus 4\mathbf{R}^* \longmapsto \{a, b\}$

 $R' \oplus \overline{4R^*} \oplus 4R^*$ must have the same winners as R', by Reinf and Canc

 $4\mathbf{R}^* \longmapsto \{a,b\}$

 $4R^*$ must have the same winners as $R' \oplus \overline{4R^*} \oplus 4R^*$, because $R' \oplus \overline{4R^*}$ cancels

 $\mathbf{R}^* \longmapsto \{a, b\}$

Oh yeah

Olivier Cailloux and Ulle Endriss. *Arguing about Voting Rules*. In Proceedings of the 15th International Conference on Autonomous Agents and Multiagent Systems (AAMAS-2016), IFAAMAS.