AMENDMENTS TO THE CLAIMS:

Please amend the claims as follows:

1. (Currently Amended) A method of decoding partially encrypted digital <u>video</u> content, comprising:

receiving partially encrypted <u>digital video</u> content comprising unencrypted <u>data</u> content, first <u>data</u> content encrypted under a first encryption system and second <u>data</u> content encrypted under a second encryption system, wherein the first and second <u>data</u> <u>are content represent</u> identical content when unencrypted;

decrypting the second encrypted data content; and

decoding the <u>unencrypted data</u> clear first content and the decrypted second <u>data</u> content to decode the partially encrypted <u>digital video</u> content.

- 2. (Original) The method according to claim 1, wherein the receiving, decrypting and decoding are carried out in a television device.
- 3. (Original) The method according to claim 2, wherein the television device comprises a television set-top box.
- 4. 5. (Cancelled)
- 6. (Currently Amended) A method of decoding a partially encrypted digital television signal, comprising:

receiving a message identifying a primary packet identifier (PID) for a <u>television</u> program and a secondary PID for the <u>television</u> program;

receiving multiple selectively encrypted <u>digital video</u> content in which the primary PID identifies unencrypted packets <u>of data</u> as well as selected packets of <u>data</u> content that are encrypted under a first encryption method, and wherein the <u>digital video</u> content

further comprises a duplicate of the selected packets of <u>data</u> content encrypted under a second encryption method that are identified by the secondary PID;

decrypting packets <u>of data</u> having the secondary PID; and combining the decrypted packets <u>of data</u> with unencrypted packets <u>of data</u> having the primary PID to form a data stream representing the television program.

- 7. (Currently Amended) The method according to claim 6, further comprising decoding the decrypted packets of data and the packets of data having the primary PID.
- 8. (Currently Amended) The method according to claim 6, further comprising mapping the decrypted packets of data to the primary PID.
- 9. (Original) The method according to claim 8, wherein the mapping is carried out in an integrated circuit device.
- 10. (Previously Presented) The method according to claim 8, wherein the mapping is carried out in one of an application specific integrated circuit device, a programmable logic device, and a field programmable gate array.
- 11. (Currently Amended) The method according to claim 6, wherein packets of data having the primary PID comprise unencrypted packets of data and encrypted packets of data and further comprising:

discarding the encrypted packets of data having the primary PID.

- 12. (Previously Presented) The method according to claim 6, carried out in a television receiver device.
- 13. (Original) The method according to claim 6, carried out in a television set-top box.

14. (Currently Amended) A method of decrypting a partially multiple encrypted digital television program, comprising:

receiving multiple selectively encrypted <u>digital video data</u> content in which a primary packet identifier identifies unencrypted packets <u>of digital video data</u> as well as selected packets of <u>digital video data</u> content that are encrypted under a first encryption method, and wherein the <u>digital video data</u> content further comprises a duplicate of the selected packets of <u>digital video data</u> content that are encrypted under a second encryption method and identified by a secondary packet identifier;

identifying the digital television program by unencrypted packets <u>of digital video</u> <u>data</u> associated with the primary packet identifier and encrypted packets <u>of digital video</u> <u>data</u> associated with the secondary packet identifier; <u>and</u>

decrypting packets <u>of digital video data</u> having the secondary packet identifier <u>in</u> <u>order to provide a fully unencrypted digital television program.</u>

- 15. (Currently Amended) The method according to claim 14, further comprising decoding the decrypted packets of digital video data having the secondary packet identifier along with decrypted packets of digital video data having the primary packet identifier to decode the partially encrypted digital television program.
- 16. (Currently Amended) The method according to claim 14 further comprising discarding encrypted packets of digital video data having the primary packet identifier.
- 17. (Previously Presented) The method according to claim 14, carried out in a television receiver device.
- 18. (Currently Amended) The method according to claim 14, wherein the encrypted packets of digital video data comprise transport stream packets carrying an MPEG packetized elementary stream (PES) header as a portion of a payload thereof.

- 19. (Currently Amended) The method according to claim 14, wherein the encrypted packets <u>further comprise digital</u> audio <u>data</u> packets.
- 20. (Currently Amended) The method according to claim 14, wherein the encrypted packets of digital video data comprise time sliced samples of the television program.
- 21. (Currently Amended) The method according to claim 14, wherein the encrypted packets of digital video data contain comprise packets containing information critical to decoding the television program.
- 22. (Currently Amended) The method according to claim 14, wherein the television program is compressed and wherein the encrypted packets of digital video data comprise packets containing information used for decompression of the television program.
- 23. (Currently Amended) The method according to claim 14, wherein the encrypted packets of digital video data comprise N packets out of every M packets where N is less than M.
- 24. (Currently Amended) The method according to claim 14, further comprising remapping packets of digital video data having the secondary packet identifier to have the primary packet identifier.
- 25. (Original) An electronic storage medium storing instructions which, when executed on a programmed processor, carry out the method of decoding a television program according to claim 14.
- 26. (Cancelled)

27. (Currently Amended) A digital television receiver device, comprising:

means for receiving a multiple partially encrypted digital television signal, the television signal being identified by packets of digital video data associated with either a primary packet identifier or a secondary packet identifier;

wherein the multiple partially encrypted digital television signal comprises unencrypted packets of digital video data identified by the first packet identifier, packets of digital video data encrypted under a first encryption method, and packets of digital video data encrypted under a second encryption method identified by the second packet identifier, wherein the packets of digital video data encrypted under the first and second encryption methods represent identical data content when unencrypted;

a decrypter that decrypts packets of digital video data having the secondary packet identifier; and

a decoder that decodes the decrypted packets <u>of digital video data</u> having the secondary packet identifier along with unencrypted packets <u>of digital video data</u> having the primary packet identifier to decode the partially encrypted <u>digital</u> television signal.

- 28. (Currently Amended) The apparatus according to claim 27, further comprising means for discarding encrypted packets of digital video data having the primary packet identifier.
- 29. (Currently Amended). The apparatus according to claim 27, further comprising discarding encrypted packets of digital video data having the first packet identifier.
- 30. (Currently Amended) The apparatus according to claim 27, wherein the encrypted packets of digital video data further comprise transport stream packets carrying an MPEG packetized elementary stream (PES) header as a portion of a payload thereof.
- 31. (Currently Amended) The apparatus according to claim 27, wherein the encrypted packets of digital video data further comprise audio packets.

32. (Cancelled)

- 33. (Currently Amended) The apparatus according to claim 27, wherein the encrypted packets of digital video data comprise time sliced samples of the television signal program.
- 34. (Previously Presented) The apparatus according to claim 27, wherein the digital television receiver device comprises a digital television set-top box.
- 35. (Currently Amended) A digital <u>audio visual</u> content player, comprising:

means for receiving digital multiple partially encrypted audio visual content, the content being identified by packets <u>of audio visual data</u> associated with either a primary packet identifier or a secondary packet identifier;

wherein the digital multiple partially encrypted audio visual content comprises unencrypted packets of audio visual data identified by the first packet identifier, packets of audio visual data encrypted under a first encryption method, and packets of audio visual data encrypted under a second encryption method identified by the second packet identifier, wherein the packets of audio visual data encrypted under the first and second encryption methods represent identical audio visual data eentent when unencrypted;

- a decrypter that decrypts packets <u>of audio visual data</u> having the secondary packet identifier; and
- a decoder that decodes the decrypted packets of audio visual data having the secondary packet identifier along with certain packets of audio visual data having the primary packet identifier to decode the digital multiple partially encrypted audio visual content.

- 36. (Currently Amended) The apparatus according to claim 35, further comprising means for discarding encrypted packets of audio visual data having the primary packet identifier.
- 37. (Currently Amended) The apparatus according to claim 35, wherein certain of the packets of audio visual data associated with the primary packet identifier are encrypted according to a first encryption method, and wherein the packets of audio visual data having a secondary packet identifier are encrypted according to a second encryption method.
- 38. (Currently Amended) The apparatus according to claim 35, wherein the encrypted packets of audio visual data comprise transport stream packets carrying an MPEG packetized elementary stream (PES) header as a portion of a payload thereof.
- 39. (Currently Amended) The apparatus according to claim 35, wherein <u>certain of</u> the encrypted packets <u>of audio visual data</u> comprise audio packets.
- 40. (Currently Amended) The apparatus according to claim 35, wherein <u>certain of</u> the encrypted packets of audio visual data comprise video packets.
- 41. (Currently Amended) The apparatus according to claim 35, wherein the encrypted packets of audio visual data comprise time sliced samples of the television program.
- 42. (Original) The apparatus according to claim 35, wherein content player comprises one of a television device, a PDA, a music player and a personal computer.
- 43. (Currently Amended) A digital television set-top box <u>that processes a television</u> <u>signal</u>, comprising:

a receiver that receives:

a plurality of unencrypted elementary stream packets of data; and a plurality of pairs of dual encrypted packets of data, wherein a first packet of each pair of encrypted packets of data is encrypted under a first encryption algorithm and a second packet of each pair of encrypted packets of data is encrypted under a second encryption algorithm and wherein a television signal is comprised of both the unencrypted and one of each pair of encrypted packets of data;

wherein the first and second packet of each pair of encrypted packets of data represent identical data content when unencrypted;

- a decrypter that decrypts <u>one of each pair of</u> the encrypted packets <u>of data</u>; and a decoder that decodes the <u>decrypted</u> packets <u>of data</u> and the <u>unencrypted</u> <u>packets of data</u> to produce the processed television signal.
- 44. (Previously Presented) The apparatus according to claim 43, wherein the pairs of dual encrypted packets comprise encrypted elementary stream packets.
- 45. (Previously Presented) The apparatus according to claim 43, wherein the unencrypted packets and pairs of dual encrypted packets comprise transport stream packets.
- 46. (Previously Presented) The apparatus according to claim 43, wherein the pairs of dual encrypted packets comprise system information packets.
- 47. (Previously Presented) The apparatus according to claim 43, wherein the first packet of each pair of encrypted packets and unencrypted packets are identified by a primary packet identifier, and the second packet of each pair of encrypted packets is identified by a secondary packet identifier.

- 48. (Previously Presented) The apparatus according to claim 47, wherein the unencrypted packets and the second packet of each pair of encrypted packets are identified by a primary packet identifier, and wherein the first packet of each pair of encrypted packets are identified by a secondary packet identifier.
- 49. (Currently Amended) A circuit that processes a stream of packetized audio visual data, comprising:

an input that receives an input stream of <u>audio visual</u> packets <u>of data</u>, the input stream of packets comprising:

unencrypted packets <u>of data</u> having a first packet identifier, encrypted packets <u>of data</u> having the first packet identifier, encrypted packets <u>of data</u> having a second packet identifier,

wherein the encrypted packets <u>of data</u> having the first and second packet identifiers represent identical <u>data</u> content when unencrypted;

a packet identifier reader that reads the packet identifiers of the packets in the input stream of packets, and that discards the encrypted packets having the first packet identifier;

a packet identifier re-mapping circuit that re-maps the second packet identifier to the first packet identifier to produce re-mapped packets; and

a multiplexer that multiplexes the re-mapped packets with the unencrypted packets having the first packet identifier to produce an output stream of <u>audio visual</u> <u>data</u> packets.

50. (Original) The apparatus according to claim 49, wherein the encrypted packets having the first packet identifier are encrypted according to a first encryption technique; and wherein the encrypted packets having the second packet identifier are encrypted according to a second encryption technique.

- 51. (Original) The apparatus according to claim 49, further comprising an MPEG decoder receiving the output stream of packets.
- 52. (Original) The apparatus according to claim 49, wherein the circuit is embodied in an integrated circuit.
- 53. (Original) The apparatus according to claim 49, wherein the circuit is embodied in one of a field programmable gate array, a programmable logic device and an application specific integrated circuit.
- 54. (Original) The apparatus according to claim 49, further comprising a demultiplexer that demultiplexes the output stream of packets based upon the packet identifiers.
- 55. (Currently Amended) A circuit that processes an input stream of audio visual data packets, comprising:

input means for receiving an input stream of <u>audio visual data</u> packets, the input stream of packets comprising:

unencrypted packets <u>of data</u> having a first packet identifier, encrypted packets <u>of data</u> having the first packet identifier, encrypted packets <u>of data</u> having a second packet identifier,

wherein the encrypted packets <u>of data</u> having the first and second packet identifiers represent identical <u>data</u> content when unencrypted;

packet identifier reading means for reading the packet identifiers of the packets of data in the input stream of packets, and for discarding the encrypted packets of data having the first packet identifier;

packet identifier re-mapping means for re-mapping the second packet identifier to the first packet identifier to produce re-mapped packets of data; and multiplexer means for multiplexing the re-mapped packets of data with the unencrypted packets of data having the first packet identifier to produce an output stream of audio visual data packets.

- 56. (Currently Amended) The apparatus according to claim 55, wherein the encrypted packets of data having the first packet identifier are encrypted according to a first encryption technique; and wherein the encrypted packets of data having the second packet identifier are encrypted according to a second encryption technique.
- 57. (Currently Amended) The apparatus according to claim 55, further comprising an MPEG decoder receiving the output stream of packets of audio visual data.
- 58. (Original) The apparatus according to claim 55, wherein the circuit is embodied in an integrated circuit.
- 59. (Previously Presented) The apparatus according to claim 55, wherein the circuit is embodied in one of a field programmable gate array, a programmable logic device and an application specific integrated circuit.
- 60. (Original) The apparatus according to claim 55, further comprising a demultiplexer that demultiplexes the output stream of packets based upon the packet identifiers.
- 61. (Currently Amended) A method of processing packets of audio visual data, comprising:

receiving an input stream of packets of audio visual data, the input stream of packets of audio visual data comprising:

unencrypted packets <u>of audio visual data</u> having a first packet identifier, encrypted packets <u>of audio visual data</u> having the first packet identifier, encrypted packets <u>of audio visual data</u> having a second packet identifier, wherein the encrypted packets <u>of audio visual data</u> having the first and second packet identifiers represent identical <u>data</u> content when unencrypted;

reading the packet identifiers of the packets of audio visual data in the input stream of packets of audio visual data;

discarding the encrypted packets of audio visual data having the first packet identifier;

re-mapping the second packet identifier to the first packet identifier to produce remapped packets; and

multiplexing the re-mapped packets of audio visual data with the unencrypted packets of audio visual data having the first packet identifier to produce an output stream of packets of audio visual data.

- 62. (Currently Amended) The method according to claim 61, wherein the encrypted packets of audio visual data having the first packet identifier are encrypted according to a first encryption technique; and wherein the encrypted packets of audio visual data having the second packet identifier are encrypted according to a second encryption technique.
- 63. (Original) The method according to claim 61, carried out in an integrated circuit.
- 64. (Original) The method according to claim 61, carried out in one of a field programmable gate array, a programmable logic device and an application specific integrated circuit.
- 65. (Original) The method according to claim 61, carried out in a main central processor of a television set-top box.
- 66. (Original) The method according to claim 61, carried out in a decoder circuit of a television set-top box.

- 67. (Currently Amended) The method according to claim 61, further comprising demultiplexing the output stream of packets of audio visual data based upon the packet identifiers.
- 68. (Currently Amended) A method of processing packets of audio visual data, comprising:

receiving an input stream of packets of audio visual data, the input stream of packets of audio visual data comprising:

unencrypted packets <u>of audio visual data</u> having a first packet identifier, encrypted packets <u>of audio visual data</u> having the first packet identifier, encrypted packets <u>of audio visual data</u> having a second packet identifier, wherein the encrypted packets <u>of audio visual data</u> having the first and second packet identifiers represent identical <u>data</u> content when unencrypted;

reading the packet identifiers of the packets of audio visual data in the input stream of packets of audio visual data;

discarding the encrypted packets of audio visual data having the first packet identifier; and

re-mapping packets of audio visual data that have not been discarded so that they have the same packet identifier.

- 69. (Currently Amended) The method according to claim 68, further comprising multiplexing the packets of audio visual data that have not been discarded with each other to produce an output stream of packets of audio visual data.
- 70. (Currently Amended) The method according to claim 68, wherein the encrypted packets of audio visual data having the first packet identifier are encrypted according to a first encryption technique; and wherein the encrypted packets of audio visual data

having the second packet identifier are encrypted according to a second encryption technique.

- 71. (Original) The method according to claim 68, carried out in an integrated circuit.
- 72. (Original) The method according to claim 68, carried out in one of a field programmable gate array, a programmable logic device and an application specific integrated circuit.
- 73. (Original) The method according to claim 68, carried out in a main central processor of a television set-top box.
- 74. (Original) The method according to claim 68, carried out in a decoder circuit of a television set-top box.
- 75. (Currently Amended) The method according to claim 68, further comprising demultiplexing the output stream of packets of audio visual data based upon the packet identifiers.
- 76. (Currently Amended) A circuit that processes a stream of digital video data packets, comprising:

an input that receives an input stream of <u>digital video</u> packets <u>of data</u>, the input stream of <u>digital video</u> packets <u>of data</u> comprising:

unencrypted packets <u>of data</u> having a first packet identifier, encrypted packets <u>of data</u> having the first packet identifier, encrypted packets <u>of data</u> having a second packet identifier,

wherein the encrypted packets <u>of data</u> having the first and second packet identifiers represent identical <u>data</u> content when unencrypted;

a packet identifier reader that reads the packet identifiers of the packets of data in the input stream of digital video packets of data, and that discards the encrypted packets of data having the first packet identifier; and

a packet identifier re-mapping circuit that re-maps at least one of the second packet identifier and the first packet identifier so that the packets of data that have not been discarded have the same packet identifier.

77 (Currently Amended) The circuit according to claim 76, further comprising a multiplexer that multiplexes the re-mapped packets of data with the unencrypted packets of data having the first packet identifier to produce an output stream of digital video packets of data.

78. (Currently Amended) The circuit according to claim 76, wherein the encrypted packets of data having the first packet identifier are encrypted according to a first encryption technique; and wherein the encrypted packets of data having the second packet identifier are encrypted according to a second encryption technique.

79. (Currently Amended) The circuit according to claim 76, further comprising an MPEG decoder receiving the output stream of <u>digital video</u> packets.

80. (Previously Presented) The circuit according to claim 76, wherein the circuit is embodied in an integrated circuit.

81. (Previously Presented) The circuit according to claim 76, wherein the circuit is embodied in one of a field programmable gate array, a programmable logic device and an application specific integrated circuit.

82. - 86. (Cancelled)