CENTRAL PROCESSING UNIT

WHAT IS A CENTRAL PROCESSING UNIT?

- A Central Processing Unit (CPU) is the electronic component responsible for executing instructions and carrying out operations within a computer system.
- It is the 'brain' of the computer that interprets and executes instructions from the operating system and applications.

COMPONENTS OF A CPU

- A typical CPU consists of three main components: the Arithmetic Logic Unit (ALU), the Control Unit (CU) and the Registers.
- The ALU performs calculations, the CU controls the flow of data, and the Registers store data and instructions.

CPU PERFORMANCE

- The performance of a CPU is determined by its clock speed, the number of cores, and the amount of cache memory.
- A higher clock speed means the CPU can process more instructions per second, while more cores and cache memory can help improve performance when running multiple programs simultaneously.

TYPES OF CPUS

- There are two main types of CPUs: desktop CPUs and mobile CPUs. Desktop CPUs are more powerful and have more features, while mobile CPUs are designed to be more power-efficient and have lower power consumption.
- The type of CPU used in a computer will depend on the specific needs and requirements of the user.

		000

CPU SCHEDULING

CPU SCHEDULING

- CPU Scheduling may be classified as:
 - Non-preemptive scheduling
 - If once the CPU has been assigned to a process and starts executing, the CPU cannot be taken away from that process
 - Preemptive scheduling
 - Even though the CPU has been assigned to a process and the process is already executing, the CPU scheduler may decide to assign the CPU to another process in the ready queue.

- A good scheduler should optimize the following performance criteria
 - CPU Utilization
 - Throughput
 - Turnaround time
 - Response time
 - Waiting time
- Different CPU scheduling algorithms:
 - First-Come, First-Served algorithm
 - Shortest Process First algorithm
 - Shortest Remaining Time First algorithm
 - Round Robin algorithm

CPU SCHEDULING

- A good scheduler should optimize the following performance criteria:
 - CPU utilization
 - Throughput
 - Turnaround time
 - Response time
 - Waiting time

DIFFERENT CPU SCHEDULING ALGORITHMS

- First-Come, First-Served algorithm
- Shortest Process First algorithm
- Shortest Remaining Time First algorithm
- Round Robin algorithm
- Priority scheduling
- Multilevel feedback queues

FIRST-COME, FIRST-SERVED ALGORITHM (FCFS)

 The one that enters the Ready queue first gets to execute at the CPU first.

Process ID	Arrival Time	CPU Burst
Α	0	8
В	3	4
С	4	5
D	6	3
E	10	2

Solution:

a. Process A arrives at the ready queue at t = 0 and will start executing at t = 0. It has a CPU burst of 8 so it will end at t = 8.

b. Processes B, C, and D are inside the ready queue (in that order) by the time process A finishes executing at t = 8. The CPU scheduler will select process B to execute next. It will start executing at t = 8. It has a CPU burst of 4 so it will end at t = 12.

c. Processes C, D, and E are inside the ready queue (in that order) by the time process B finishes executing at t = 12. The CPU scheduler will select process C to execute next. It will start executing at t = 12. It has a CPU burst of 5 so it will end at t = 17.

d. Processes D and E remain inside the ready queue (in that order) at t = 17. The CPU scheduler will select process D to execute next. It will start executing at t = 17. It has a CPU burst of 3 so it will end at t = 20.

e. Process E is the only process remaining inside the ready queue at t = 20. The CPU scheduler will select process E to execute next. It will start executing at t = 20. It has a CPU burst of 2 so it will end at t = 22.

The waiting time of each process is computer as

WT = time left queue - time entered queue

The waiting times for each of the five processes are:

$$WT_A = 0 - 0 = 0 \text{ ms}$$

 $WT_B = 8 - 3 = 5 \text{ ms}$
 $WT_C = 12 - 4 = 8 \text{ ms}$
 $WT_D = 17 - 6 = 11 \text{ ms}$
 $WT_E = 20 - 10 = 10 \text{ ms}$

Process ID	Arrival Time	CPU Burst
Α	0	8
В	3	4
С	4	5
D	6	3
Ē	10	2

average waiting time
=
$$(0 + 5 + 8 + 11 + 10)/5 = 34/5 = 6.8 \text{ ms}$$

The turnaround time for each process is computed as

TA = time of completion - arrival time

The turnaround times for each of the five processes are:

$$TA_A = 8 - 0 = 8 \text{ ms}$$

 $TA_B = 12 - 3 = 9 \text{ ms}$
 $TA_C = 17 - 4 = 13 \text{ ms}$
 $TA_D = 20 - 6 = 14 \text{ ms}$
 $TA_E = 22 - 10 = 12 \text{ ms}$

average turnaround time
=
$$(8 + 9 + 13 + 14 + 12)/5 = 56/5 = 11.2 \text{ ms}$$

SHORTEST PROCESS FIRST ALGORITHM (SPF)

 The process with the shortest CPU burst time is the one that will be excecuted first

Process ID	Arrival Time	CPU Burst
Α	0	8
В	3	4
С	4	5
D	6	3
E	10	2

All values are in milliseconds.

Solution:

a. Process A arrives at the ready queue at t = 0 and will start executing at t = 0. It has a CPU burst of 8 so it will end at t = 8.

b. Processes B, C, and D are inside the ready queue (in that order) by the time process A finishes executing at t = 8. The CPU scheduler will select process D to execute next. It will start executing at t = 8. It has a CPU burst of 3 so it will end at t = 11.

c. Processes B, C, and E are inside the ready queue (in that order) by the time process D finishes executing at t = 11. The CPU scheduler will select process E to execute next. It will start executing at t = 11. It has a CPU burst of 2 so it will end at t = 13.

d. Processes B and C remain inside the ready queue (in that order) at t = 13. The CPU scheduler will select process B to execute next. It will start executing at t = 13. It has a CPU burst of 4 so it will end at t = 17.

e. Process C is the only process remaining inside the ready queue at t = 17. The CPU scheduler will select process C to execute next. It will start executing at t = 17. It has a CPU burst of 5 so it will end at t = 22.

The waiting times for each of the five processes are:

$$WT_A = 0 - 0 = 0 \text{ ms}$$

 $WT_B = 13 - 3 = 10 \text{ ms}$
 $WT_C = 17 - 4 = 13 \text{ ms}$
 $WT_D = 8 - 6 = 2 \text{ ms}$
 $WT_F = 11 - 10 = 1 \text{ ms}$

Process ID	Arrival Time	CPU Burst
Α	0	8
В	3	4
С	4	5
D	6	3
E	10	2

/	4	D	E	В	С
0	8	1	1 13	17	22

average waiting time

$$= (0 + 10 + 13 + 2 + 1)/5 = 26/5 = 5.2 \text{ ms}$$

The turnaround times for each of the five processes are:

$$TA_A = 8 - 0 = 8 \text{ ms}$$

 $TA_B = 17 - 3 = 14 \text{ ms}$
 $TA_C = 22 - 4 = 18 \text{ ms}$
 $TA_D = 11 - 6 = 5 \text{ ms}$
 $TA_E = 13 - 10 = 3 \text{ ms}$

average turnaround time

$$= (8 + 14 + 18 + 5 + 3)/5 = 48/5 = 9.6 \text{ ms}$$

Shortest Remaining Time First algorithm (SRTF)

It is the preemptive version of SPF.

b.		A	В
	0		3

C	A	В
	0 3	

d.		A	В		D
	0	3	3	7	,

Process ID	Arrival Time	CPU Burst
Α	0	8
В	3	4
С	4	5
D	6	3
E	10	2

Shortest Remaining Time First algorithm (SRTF)

It is the preemptive version of SPF.

D

E

12

10

A

17

В

3

					Process ID	Arrival Time	CPU Burst
_		В	T		Α	0	8
e					В	3	4
	0 3		7 1	10	С	4	5
C	Α	В	В	E	D	6	3
			1 -	_	E	10	2
	0 3		7	10			
5	Α	В	D	E	Α		
)	0 3		7 1	0 12	17		

C

SRTF

$$WT_A = (0-0) + (12-3) = 9 \text{ ms}$$

 $WT_B = 3-3 = 0 \text{ ms}$

$$WT_c = 17-4 = 13 \text{ ms}$$

$$WT_D = 7-6 = 1 \text{ ms}$$

$$WT_E = 10-10 = 0 \text{ ms}$$

Process ID	Arrival Time	CPU Burst
Α	0	8
В	3	4
С	4	5
D	6	3
E	10	2

The average waiting time is (9+0+13+1+0)/5 = 23/5 = 4.6 ms

SRTF

$TA_A = 17-0 = 17ms$
$TA_B = 7-3 = 4ms$
$TA_{c} = 22-4 = 18ms$
$TA_{D} = 10-6 = 4ms$
$TA_{E} = 12-10 = 2 \text{ ms}$

Process ID	Arrival Time	CPU Burst
Α	0	8
В	3	4
С	4	5
D	6	3
E	10	2

The average turnaround time is (17+4+18+4+2)/5 = 45/5 = 9.0 ms

4. Round Robin Algorithm (RR)

It is a preemptive version of FCFS algorithm. The one that enters the Ready queue first gets to be executed by the CPU first but is given a time limit. This limit is called *time quantum* or *time slice*. The process will enter the rear of the queue after its time slice expires.

Example:

A set of processes with their respective arrival times at the ready queue and the length of their next CPU burst are given below.

Process ID	Arrival Time	CPU Burst
Α	0	8
В	3	4
С	4	5
D	6	3
E	10	2

Assume that the time slice is 3.

All values are in milliseconds.

Solution:

a. Process A arrives at the ready queue at t = 0 and will start executing at t = 0. At t = 3, process B arrives and process A consumes its first time slice. Process A goes back to the ready queue.

Process ID	Arrival Time	CPU Burst
Α	0	8
В	3	4
С	4	5
D	6	3
E	10	2

b. Processes B (CPU burst of 4) and A (CPU burst of 5) are inside the ready queue (in that order) by the time process A finishes executing at t=3. The CPU scheduler will select process B to execute next. Process B will start executing at t=3. Process C arrives at the ready queue at t=4. At t=6, process D arrives and process B consumes its first time slice. Process B goes back to the ready queue.

Process ID	Arrival Time	CPU Burst
Α	0	8
В	3	4
С	4	5
D	6	3
E	10	2

c. Processes A (CPU burst of 5), C (CPU burst of 5), D (CPU burst of 3), and B (CPU burst of 1) are inside the ready queue (in that order) by the time process B finishes executing at t = 6. The CPU scheduler will select process A to execute next. Process A will start executing at t = 6 and ends after its second time slice at t = 9. Process A goes back to the ready queue.

Process ID	Arrival Time	CPU Burst
Α	0	8
В	3	4
С	4	5
D	6	3
E	10	2

d. Processes C (CPU burst of 5), D (CPU burst of 3), B (CPU burst of 1), and A (CPU burst of 2) are inside the ready queue (in that order) by the time process A finishes executing at t = 9. The CPU scheduler will select process C to execute next. Process E arrives at the ready queue at t = 10. At t = 12, process C consumes its first time slice. Process C goes back to the ready queue.

Process ID	Arrival Time	CPU Burst
Α	0	8
В	3	4
С	4	5
D	6	3
E	10	2

e. Processes D (CPU burst of 3), B (CPU burst of 1), A (CPU burst of 2), E (CPU burst of 2), and C (CPU burst of 2) are inside the ready queue (in that order) by the time process C finishes executing at t = 12. The CPU scheduler will select process D to execute next. Process D will start executing at t = 12 and ends at t = 15.

Process ID	Arrival Time	CPU Burst
Α	0	8
В	3	4
С	4	5
D	6	3
E	10	2

f. Processes B (CPU burst of 1), A (CPU burst of 2), E (CPU burst of 2), and C (CPU burst of 2) are inside the ready queue (in that order) by the time process C finishes executing at t = 15. The CPU scheduler will select process B to execute next. Process B will start executing at t = 15 and ends at t = 16.

Process ID	Arrival Time	CPU Burst
Α	0	8
В	3	4
С	4	5
D	6	3
E	10	2

g. Processes A (CPU burst of 2), E (CPU burst of 2), and C (CPU burst of 2) are inside the ready queue (in that order) by the time process C finishes executing at t = 16. The CPU scheduler will select process A to execute next. Process A will start executing at t = 16 and ends at t = 18.

Process ID	Arrival Time	CPU Burst
Α	0	8
В	3	4
С	4	5
D	6	3
E	10	2

h. Processes E (CPU burst of 2) and C (CPU burst of 2) are inside the ready queue (in that order) by the time process A finishes executing at t = 18. The CPU scheduler will select process E to execute next. Process E will start executing at t = 18 and ends at t = 20.

Process ID	Arrival Time	CPU Burst
Α	0	8
В	3	4
С	4	5
D	6	3
E	10	2

i. Process C (CPU burst of 2) is the only process remaining inside the ready queue at t = 20. The CPU scheduler will select process C to execute next. Process C will start executing at t = 20 and ends at t = 22.

	Α	В	A	\	С		D	В	Α	E	C	
0	(3	6	ç)	12	1	5 1	16 1	18 2	20	22

Process ID	Arrival Time	CPU Burst
Α	0	8
В	3	4
С	4	5
D	6	3
E	10	2

The waiting times for each of the five processes are:

$$WT_A = (0-0) + (6-3) + (16-9) = 10 \text{ ms}$$

$$WT_B = (3-3) + (15-6) = 9 \text{ ms}$$

$$WT_C = (9-4) + (20-12) = 13 \text{ ms}$$

$$WT_D = 12-6 = 6 \text{ ms}$$

$$WT_F = 18-10 = 8 \text{ ms}$$

average waiting time =
$$(10 + 9 + 13 + 6 + 8)/5 = 46/5 = 9.2$$
 ms

	Α	В	Α	С	D	В	Α	E	С	
0) ;	3	6	9	12 1	5 1	6 1	8 2	0 2	2

Process ID	Arrival Time	CPU Burst
Α	0	8
В	3	4
С	4	5
D	6	3
E	10	2

The turnaround time for each of the five processes are:

$$TA_A = 18 - 0 = 18 \text{ ms}$$

$$TA_B = 16 - 3 = 13 \text{ ms}$$

$$TA_C = 22 - 4 = 18 \text{ ms}$$

$$TA_D = 15 - 6 = 9 \text{ ms}$$

$$TA_E = 20 - 10 = 10 \text{ ms}$$

average turnaround time

$$= (18 + 13 + 18 + 9 + 10)/5 = 68/5 = 13.6 \text{ ms}$$

ASSIGNMENT #1

QUIZ #1

Determine the average waiting time and average turnaround time of the processes in the table below using:

- a. First-Come, First-Served Algorithm
- Shortest Process First Algorithm

Process ID	Arrival Time	CPU Burst	Priority 3	
Α	0	4		
В	3	7	2	
С	8	3	1	
D	10	3	4	

Show your solutions.

ASSIGNMENT #2

Determine the average waiting time and the average turn-around time of the processes below using SRTF.

Process ID	Arrival Time	CPU Burst	Priority	
Α	0	4	3	
В	3	7	2	
С	8	3	1	
D	10	3	4	

Show your solutions.

ASSIGNMENT #3

Determine the average waiting time and the average turn-around time of the processes below using SRTF.

Process ID	Arrival Time	CPU Burst	Priority	
Α	0	4	3	
В	3	7	2	
C	8	3	1	
D	10	3	4	

Show your solutions.