Short-range correlation physics at low renormalization group (RG) resolution

Anthony Tropiano¹, Scott Bogner², Dick Furnstahl¹

¹Ohio State University, ²Michigan State University

TU Darmstadt seminar

November 24, 2021

ajt, S.K. Bogner, and R.J. Furnstahl, arXiv:2105.13936

Phys. Rev. C 104, 034311 (2021)

Short-range correlations

- Recent experiments have been able to isolate processes where short-range correlation (SRC) physics is dominant and well accounted for by SRC phenomenology
- How are short-range correlations defined?
 - Depends on the resolution scale!
 - Renormalization group (RG) resolution scale is set by Λ in the Hamiltonian $H(\Lambda)$
 - $\Lambda \sim$ max momenta in low-energy wave functions

- SRC physics at high RG resolution
 - SRC pairs are components in the nuclear wave function with relative momenta above the Fermi momentum

- SRC physics at high RG resolution
 - SRC pairs are components in the nuclear wave function with relative momenta above the Fermi momentum
- SRC physics at low RG resolution
 - The SRC *physics* is shifted into the reaction operators from the nuclear wave function (which becomes soft)

 High RG resolution: One-body current operators with correlated wave functions

- High RG resolution: One-body current operators with correlated wave functions
- Low RG resolution: Two-body current operators with uncorrelated wave functions
 - Operators do NOT become hard, which simplifies calculations!

- High RG resolution: One-body current operators with correlated wave functions
- Low RG resolution: Two-body current operators with uncorrelated wave functions
 - Operators do NOT become hard, which simplifies calculations!
- Experimental resolution (set by momentum of probe) is the same in both pictures
- Same observables but different physical interpretation!

- High RG resolution: One-body current operators with correlated wave functions
- Low RG resolution: Two-body current operators with uncorrelated wave functions
 - Operators do NOT become hard, which simplifies calculations!
- Experimental resolution (set by momentum of probe) is the same in both pictures
- Same observables but different physical interpretation!
- This talk:
 - How can SRC calculations be carried out at low RG resolution?
 - What can we describe with simple approximations?
 - Connections to existing SRC phenomenology (e.g., GCF/LCA)

• Evolve to low RG resolution using the SRG $O(s) = U(s)O(0)U^{\dagger}(s)$

where $s = 0 \rightarrow \infty$ and U(s) is unitary

 SRG transformations decouple high- and low-momenta in the Hamiltonian

Fig. 1: Momentum space matrix elements of Argonne v18 (AV18) under SRG evolution in ¹P₁ channel.

• Evolve to low RG resolution using the SRG $O(s) = U(s)O(0)U^{\dagger}(s)$

where
$$s = 0 \rightarrow \infty$$
 and $U(s)$ is unitary

- SRG transformations decouple high- and low-momenta in the Hamiltonian
- In practice, solve differential flow equation

$$\frac{dO(s)}{ds} = [\eta(s), O(s)]$$

where $\eta(s) \equiv \frac{dU(s)}{ds}U^{\dagger}(s) = [G, H(s)]$ is the SRG generator

• Decoupling scale given by $\lambda = s^{-1/4}$

Fig. 1: Momentum space matrix elements of Argonne v18 (AV18) under SRG evolution in ¹P₁ channel.

- AV18 wave function has significant SRC
- What happens to the wave function under SRG transformation?

Fig. 2: SRG evolution of deuteron wave function in coordinate space for AV18 and Gezerlis N²LO¹.

- SRC physics in AV18 is gone from wave function at low RG resolution
- Deuteron wave functions become soft and D-state probability goes down
- Observables such as asymptotic D-S ratio are the same

Fig. 2: SRG evolution of deuteron wave function in coordinate space for AV18 and Gezerlis N²LO¹.

- Soft wave functions at low RG resolution
- SRC physics shifts to the operators

$$\langle \psi_f^{hi} | U_{\lambda}^{\dagger} U_{\lambda} O^{hi} U_{\lambda}^{\dagger} U_{\lambda} | \psi_i^{hi} \rangle = \langle \psi_f^{low} | O^{low} | \psi_i^{low} \rangle$$

- Soft wave functions at low RG resolution
- SRC physics shifts to the operators

$$\langle \psi_f^{hi} | U_{\lambda}^{\dagger} U_{\lambda} O^{hi} U_{\lambda}^{\dagger} U_{\lambda} | \psi_i^{hi} \rangle = \langle \psi_f^{low} | O^{low} | \psi_i^{low} \rangle$$

• Example: Calculate deuteron momentum distribution by evolving momentum projection operator $a_q^\dagger a_q$

$$n_d(q) = \langle \psi_d | a_q^{\dagger} a_q | \psi_d \rangle = \langle \psi_d^{\lambda} | U_{\lambda} a_q^{\dagger} a_q U_{\lambda}^{\dagger} | \psi_d^{\lambda} \rangle$$

Bare operator is a discretized delta function in momentum space

$$\sim \delta(k-q)\delta(k'-q)$$

SRG evolution induces smooth, low-momentum contributions

Bare operator is a discretized delta function in momentum space

$$\sim \delta(k-q)\delta(k'-q)$$

SRG evolution induces smooth, low-momentum contributions

k' [fm⁻¹] k' [fm⁻¹] k' [fm⁻¹] k' [fm⁻¹] Fig. 3: Evolved [fm⁶] momentum projection operator $U_{\lambda}a_{q}^{\dagger}a_{q}U_{\lambda}^{\dagger}$ for $k [fm^{-1}]$ several λ values where q = 3 fm⁻¹. $\lambda = 6 \text{ fm}^{-1}$ $\lambda = 3 \text{ fm}^{-1}$ $\lambda = 2 \text{ fm}^{-1}$ $\lambda = 1.5 \; \text{fm}^{-1}$ k' [fm⁻¹] k' [fm⁻¹] k' [fm⁻¹] k' [fm⁻¹] 0 0 [fm⁵] Fig. 4: Integrand of · 10⁻⁴ $\langle \psi_d^{\lambda} | U_{\lambda} a_q^{\dagger} a_q U_{\lambda}^{\dagger} | \psi_d^{\lambda} \rangle$ $k [fm^{-1}]$ 10-5 where q = 3 fm⁻¹. 10^{-6} 10^{-7} $\lambda = 6 \text{ fm}^{-1}$ $\lambda = 3 \text{ fm}^{-1}$ $\lambda = 2 \text{ fm}^{-1}$ $\lambda = 1.5 \text{ fm}^{-1}$

0.016

0.012 0.008

0.004

-0.004-0.008 -0.012

-0.016

 10^{-3}

 10^{-8}

Fig. 3: Evolved momentum projection operator $U_{\lambda}a_{q}^{\dagger}a_{q}U_{\lambda}^{\dagger}$ for several λ values where q=3 fm⁻¹.

- Each panel gives the correct expectation value from unitarity
- Expectation value is filtered to lower momentum at low RG resolution
 - At high RG resolution 3S_1 3S_1 channel contributes to ~25% of the expectation value $\langle \psi_d | a_q^{\dagger} a_q | \psi_d \rangle$ (heavy contribution from tensor force)

Fig. 4: Integrand of $\langle \psi_d^{\lambda} | U_{\lambda} a_q^{\dagger} a_q U_{\lambda}^{\dagger} | \psi_d^{\lambda} \rangle$ where $q = 3 \text{ fm}^{-1}$.

[fm⁵]

[fm⁶]

0.016

0.012

0.008

0.004

-0.004 -0.008 -0.012

-0.016

 10^{-3}

10-4

10-5

 10^{-6}

 10^{-7}

 10^{-8}

Fig. 3: Evolved momentum projection operator $U_{\lambda}a_{q}^{\dagger}a_{q}U_{\lambda}^{\dagger}$ for several λ values where q=3 fm⁻¹.

- Each panel gives the correct expectation value from unitarity
- Expectation value is filtered to lower momentum at low RG resolution
- At high RG resolution 3S_1 3S_1 channel contributes to ~25% of the expectation value $\langle \psi_d | a_q^{\dagger} a_q | \psi_d \rangle$ (heavy contribution from tensor force)
- At low RG resolution ³S₁- ³S₁ channel contributes to ~95% of the expectation value

Fig. 4: Integrand of $\langle \psi_d^{\lambda} | U_{\lambda} a_q^{\dagger} a_q U_{\lambda}^{\dagger} | \psi_d^{\lambda} \rangle$ where $q = 3 \text{ fm}^{-1}$.

[fm⁵]

[fm⁶]

0.016

0.012

0.008

0.004

-0.004 -0.008 -0.012

-0.016

 10^{-3}

10-4

· 10⁻⁵

10-6

 10^{-7}

 10^{-8}

- Apply SRG transformations to momentum distribution operators
 - Single-nucleon momentum distribution: $\hat{n}^{hi}(q) = a_q^{\dagger} a_q$
 - Pair momentum distribution: $\hat{n}^{hi}(q, Q) = a_{\frac{Q}{2}+q}^{\dagger} a_{\frac{Q}{2}-q}^{\dagger} a_{\frac{Q}{2}-q}^{q} a_{\frac{Q}{2}+q}^{q}$

- Apply SRG transformations to momentum distribution operators
 - Single-nucleon momentum distribution: $\hat{n}^{hi}(q) = a_q^{\dagger} a_q$
 - Pair momentum distribution: $\hat{n}^{hi}(\boldsymbol{q},\boldsymbol{Q}) = a_{\underline{\boldsymbol{q}}+\boldsymbol{q}}^{\dagger} a_{\underline{\boldsymbol{q}}-\boldsymbol{q}}^{\dagger} a_{\underline{\boldsymbol{q}}-\boldsymbol{q}}^{} a_{\underline{\boldsymbol{q}}+\boldsymbol{q}}^{}$
- Expand SRG transformation to 2-body level

$$\widehat{U}_{\lambda} = 1 + \frac{1}{4} \sum_{\mathbf{K}, \mathbf{k}, \mathbf{k}'} \delta U_{\lambda}^{(2)}(\mathbf{k}, \mathbf{k}') a_{\underline{K} + \mathbf{k}}^{\dagger} a_{\underline{K} - \mathbf{k}}^{\dagger} a_{\underline{K} - \mathbf{k}'}^{\mathbf{K}} a_{\underline{K} + \mathbf{k}'}^{\mathbf{K}} + \cdots$$

• $\delta U_{\lambda}^{(2)}$ term is fixed by SRG evolution on A=2 and inherits the symmetries of V_{NN}

- Apply SRG transformations to momentum distribution operators
 - Single-nucleon momentum distribution: $\hat{n}^{hi}(q) = a_q^{\dagger} a_q$
 - Pair momentum distribution: $\hat{n}^{hi}(\boldsymbol{q},\boldsymbol{Q}) = a_{\underline{\boldsymbol{q}}+\boldsymbol{q}}^{\dagger} a_{\underline{\boldsymbol{q}}-\boldsymbol{q}}^{\dagger} a_{\underline{\boldsymbol{q}}-\boldsymbol{q}}^{} a_{\underline{\boldsymbol{q}}+\boldsymbol{q}}^{}$
- Expand SRG transformation to 2-body level

$$\widehat{U}_{\lambda} = 1 + \frac{1}{4} \sum_{\mathbf{K}, \mathbf{k}, \mathbf{k}'} \delta U_{\lambda}^{(2)}(\mathbf{k}, \mathbf{k}') a_{\underline{K} + \mathbf{k}}^{\dagger} a_{\underline{K} - \mathbf{k}}^{\dagger} a_{\underline{K} - \mathbf{k}'} a_{\underline{K} + \mathbf{k}'}^{\mathbf{K}} + \cdots$$

- $\delta U_{\lambda}^{(2)}$ term is fixed by SRG evolution on A=2 and inherits the symmetries of V_{NN}
- **Strategy**: Apply Wick's theorem to evaluate $\widehat{U}_{\lambda} \widehat{n}^{hi}(q) \widehat{U}_{\lambda}^{\dagger}$ and $\widehat{U}_{\lambda} \widehat{n}^{hi}(q, Q) \widehat{U}_{\lambda}^{\dagger}$ truncating 3-body and higher terms

• Example: Evolved single-nucleon momentum distribution

$$\begin{split} \widehat{U}_{\lambda}\widehat{n}^{hi}(\boldsymbol{q})\widehat{U}_{\lambda}^{\dagger} \\ &\approx a_{\boldsymbol{q}}^{\dagger}a_{\boldsymbol{q}} + \frac{1}{2}\sum_{\boldsymbol{K},\boldsymbol{k}}[\delta U_{\lambda}^{(2)}\left(\boldsymbol{k},\boldsymbol{q} - \frac{\boldsymbol{K}}{2}\right)a_{\underline{K}+\boldsymbol{k}}^{\dagger}a_{\underline{K}-\boldsymbol{q}}^{\dagger}a_{\boldsymbol{q}} + \delta U_{\lambda}^{\dagger(2)}\left(\boldsymbol{q} - \frac{\boldsymbol{K}}{2},\boldsymbol{k}\right)a_{\boldsymbol{q}}^{\dagger}a_{\boldsymbol{K}-\boldsymbol{q}}^{\dagger}a_{\underline{K}-\boldsymbol{q}}^{}a_{\underline{K}-\boldsymbol{q}}^{}a_{\boldsymbol{q}}^{} + \delta U_{\lambda}^{\dagger(2)}\left(\boldsymbol{q} - \frac{\boldsymbol{K}}{2},\boldsymbol{k}\right)a_{\boldsymbol{q}}^{\dagger}a_{\boldsymbol{K}-\boldsymbol{q}}^{}a_{\underline{K}-\boldsymbol{q}}^{}a_{\underline{K}+\boldsymbol{k}}^{}\right] \\ &+ \frac{1}{4}\sum_{\boldsymbol{K},\boldsymbol{k},\boldsymbol{k}'}\delta U_{\lambda}^{(2)}\left(\boldsymbol{k},\boldsymbol{q} - \frac{\boldsymbol{K}}{2}\right)\delta U_{\lambda}^{\dagger(2)}\left(\boldsymbol{q} - \frac{\boldsymbol{K}}{2},\boldsymbol{k}'\right)a_{\underline{K}+\boldsymbol{k}}^{\dagger}a_{\underline{K}-\boldsymbol{k}}^{}a_{\underline{K}-\boldsymbol{k}}^{}a_{\underline{K}-\boldsymbol{k}'}^{}a_{\underline{K}+\boldsymbol{k}'}^{} \end{split}$$

• For operator that probes high momentum $(q \gg \lambda)$, the low RG resolution wave function filters out first few terms leaving only $\delta U \delta U^{\dagger}$ term

$$n^{lo}(\boldsymbol{q}) = (1 + \delta U)a_{\boldsymbol{q}}^{\dagger}a_{\boldsymbol{q}}(1 + \delta U^{\dagger})$$

$$\langle \psi_d^{hi} | a_{\boldsymbol{q}}^{\dagger} a_{\boldsymbol{q}} | \psi_d^{hi} \rangle$$

Fig. 5: Contributions to deuteron momentum distribution with AV18 and $\lambda = 1.35$ fm⁻¹.

$$n^{lo}(\boldsymbol{q}) = (1 + \delta U)a_{\boldsymbol{q}}^{\dagger}a_{\boldsymbol{q}}(1 + \delta U^{\dagger})$$

$$\langle \psi_d^{hi} | a_q^{\dagger} a_q | \psi_d^{hi} \rangle$$

$$\langle \psi_d^{lo} | a_q^{\dagger} a_q | \psi_d^{lo} \rangle$$

Fig. 5: Contributions to deuteron momentum distribution with AV18 and $\lambda = 1.35$ fm⁻¹.

$$n^{lo}(\boldsymbol{q}) = (1 + \delta U)a_{\boldsymbol{q}}^{\dagger}a_{\boldsymbol{q}}(1 + \delta U^{\dagger})$$

$$\langle \psi_{d}^{hi} | a_{q}^{\dagger} a_{q} | \psi_{d}^{hi} \rangle$$

$$\langle \psi_{d}^{lo} | a_{q}^{\dagger} a_{q} | \psi_{d}^{lo} \rangle$$

$$\langle \psi_{d}^{lo} | \delta U a_{q}^{\dagger} a_{q} + a_{q}^{\dagger} a_{q} \delta U^{\dagger} | \psi_{d}^{lo} \rangle$$

Fig. 5: Contributions to deuteron momentum distribution with AV18 and $\lambda = 1.35$ fm⁻¹.

$$n^{lo}(\boldsymbol{q}) = (1 + \delta U)a_{\boldsymbol{q}}^{\dagger}a_{\boldsymbol{q}}(1 + \delta U^{\dagger})$$

Fig. 5: Contributions to deuteron momentum distribution with AV18 and $\lambda = 1.35$ fm⁻¹.

• For high-q, the $\delta U_{\lambda} \delta U_{\lambda}^{\dagger}$ 2-body term dominates

$$\approx \sum_{\mathbf{K},\mathbf{k},\mathbf{k}'}^{\lambda} \delta U_{\lambda}(\mathbf{k},\mathbf{q}) \delta U_{\lambda}^{\dagger}(\mathbf{q},\mathbf{k}') a_{\underline{K}+\mathbf{k}}^{\dagger} a_{\underline{K}-\mathbf{k}}^{\dagger} a_{\underline{K}-\mathbf{k}'}^{K} a_{\underline{K}+\mathbf{k}'}^{K}$$

Fig. 5: Contributions to deuteron momentum distribution with AV18 and $\lambda = 1.35$ fm⁻¹.

• For high-q, the $\delta U_{\lambda} \delta U_{\lambda}^{\dagger}$ 2-body term dominates

$$\approx \sum_{K,k,k'}^{\lambda} \delta U_{\lambda}(\mathbf{k},\mathbf{q}) \delta U_{\lambda}^{\dagger}(\mathbf{q},\mathbf{k}') a_{K}^{\dagger} a_{K}^{\dagger} a_{K}^{\dagger} a_{K}^{\dagger} a_{K}^{\dagger} a_{K}^{\dagger} a_{K}^{\dagger}$$

Factorization: $\delta U_{\lambda}(\mathbf{k}, \mathbf{q}) \approx F_{\lambda}^{lo}(\mathbf{k}) F_{\lambda}^{hi}(\mathbf{q})$

$$\approx \left| F_{\lambda}^{hi}(\boldsymbol{q}) \right|^2 \sum_{K,k,k'}^{\lambda} F_{\lambda}^{lo}(\boldsymbol{k}) F_{\lambda}^{lo}(\boldsymbol{k'}) a_{\underline{K}+k}^{\dagger} a_{\underline{K}-k'}^{\dagger} a_{\underline{K}-k'}^{K} a_{\underline{K}+k'}^{K}$$

Fig. 5: Contributions to deuteron momentum distribution with AV18 and $\lambda = 1.35$ fm⁻¹.

Factorization

- Factorization of SRG transformations imply scaling of high-q tails
- Consider ratio $\frac{n^A(q)}{n^d(q)}$ for $q \gg \lambda$,

$$\frac{\left\langle \Psi_{\lambda}^{A} \middle| U_{\lambda} a_{q}^{\dagger} a_{q} U_{\lambda}^{\dagger} \middle| \Psi_{\lambda}^{A} \right\rangle}{\left\langle \Psi_{\lambda}^{d} \middle| U_{\lambda} a_{q}^{\dagger} a_{q} U_{\lambda}^{\dagger} \middle| \Psi_{\lambda}^{d} \right\rangle} = \frac{\left| F_{\lambda}^{hi} \left(\mathbf{q} \right) \right|^{2}}{\left| F_{\lambda}^{hi} \left(\mathbf{q} \right) \right|^{2}} \times \frac{\left\langle \Psi_{\lambda}^{A} \middle| \sum_{K,k,k'}^{\lambda} F_{\lambda}^{lo}(\mathbf{k}) F_{\lambda}^{lo}(\mathbf{k}') a_{\underline{K}+k}^{\dagger} a_{\underline{K}-k'}^{\dagger} a_{\underline{K}-k'}^{K} a_{\underline{K}+k'}^{K} \middle| \Psi_{\lambda}^{A} \right\rangle}{\left\langle \Psi_{\lambda}^{d} \middle| \sum_{K,k,k'}^{\lambda} F_{\lambda}^{lo}(\mathbf{k}) F_{\lambda}^{lo}(\mathbf{k}') a_{\underline{K}+k}^{\dagger} a_{\underline{K}-k'}^{\dagger} a_{\underline{K}-k'}^{K} a_{\underline{K}+k'}^{K} \middle| \Psi_{\lambda}^{d} \right\rangle}$$

• High-q dependence cancels leaving ratio only sensitive to low-momentum physics

Why low RG resolution?

 Methods that rely on soft interactions work well!

Why low RG resolution?

- Methods that rely on soft interactions work well!
- What SRC physics can we describe using simple approximations?
- Try Hartree-Fock with a local density approximation to evaluate nuclear matrix elements

Proton momentum distributions

Low RG resolution calculations reproduce momentum distributions of AV18 QMC calculations¹ (high RG resolution)

Fig. 6: Proton momentum distributions for 12 C, 16 O, and 40 Ca under HF+LDA with AV18, $\lambda = 1.35$ fm⁻¹, and densities from Skyrme EDF SLy4 using the HFBRAD code².

Proton momentum distributions

Low RG resolution calculations reproduce momentum distributions of AV18 QMC calculations¹ (high RG resolution)

Fig. 6: Proton momentum distributions for 12 C, 16 O, and 40 Ca under HF+LDA with AV18, $\lambda = 1.35$ fm⁻¹, and densities from Skyrme EDF SLy4 using the HFBRAD code².

Proton momentum distributions

• Universality: High-q dependence from universal function $\approx \left|F_{\lambda}^{hi}(q)\right|^2$ fixed by 2-body and insensitive to nucleus

Fig. 7: Proton momentum distributions under HF+LDA with AV18 and $\lambda = 1.35$ fm⁻¹, showing several nuclei.

SRC scaling factors

Fig. 8: Ratio of per-nucleon electron scattering cross section of nucleus A to that of deuterium, where the red line indicates a constant fit. Figure from B. Schmookler et al. (CLAS), Nature **566**, 354 (2019).

- SRC scaling factors a_2 defined by plateau in cross section ratio $\frac{2\sigma_A}{A\sigma_d}$ at $1.45 \le x \le 1.9$
- Closely related to the ratio of bound-nucleon probability distributions in the limits of vanishing relative distance (infinitely high relative momentum)
- Extract a_2 from momentum distributions

$$a_2 = \lim_{q \to \infty} \frac{P^A(q)}{P^d(q)} \approx \frac{\int_{\Delta q^{high}} dq P^A(q)}{\int_{\Delta q^{high}} dq P^d(q)}$$

where $P^A(q)$ is the single-nucleon probability distribution in nucleus A

²J. Decharge et al., Phys. Rev. C **21**, 1568 (1980)

³B. Schmookler et al. (CLAS), Nature **566**, 354 (2019)

⁴J. Ryckebusch et al., Phys. Rev. C **100**, 054620 (2019)

SRC scaling factors

Fig. 9: a_2 scale factors using single-nucleon momentum distributions under HF+LDA (SLy4 in red¹, Gogny² in blue) with AV18 and $\lambda = 1.35$ fm⁻¹ compared to experimental values³.

$$a_2 = \lim_{q \to \infty} \frac{P^A(q)}{P^d(q)} \approx \frac{\int_{\Delta q^{high}} dq P^A(q)}{\int_{\Delta q^{high}} dq P^d(q)}$$

- High momentum behavior is characterized by 2-body $\left|F_{\lambda}^{hi}(q)\right|^2$ which cancels leaving ratio of mean-field (low-k) physics
- Good agreement with a₂ values from experiment³ and LCA calculations⁴ using two different EDFs
- Error bars from varying Δq^{high}

Fig. 10: (a) Ratio of two-nucleon to single-nucleon electron-scattering cross sections for carbon as a function of missing momentum. (b) Fraction of np to p and pp to p pairs versus the relative momentum. Figure from CLAS collaboration publication¹.

- At high RG resolution, the tensor force and the repulsive core of the NN interaction kicks nucleon pairs into SRCs
- np dominates because the tensor force requires spin triplet pairs, whereas pp are spin singlets
- Do we describe this physics at low RG resolution?

 At low RG resolution, SRCs are suppressed in the wave function and shifted into the operator

$$\widehat{n}^{lo}(\boldsymbol{q}) = \widehat{U}_{\lambda} a_{\boldsymbol{q}}^{\dagger} a_{\boldsymbol{q}} \widehat{U}_{\lambda}^{\dagger} = U_{\lambda}(\boldsymbol{k}, \boldsymbol{q}) U_{\lambda}^{\dagger}(\boldsymbol{q}, \boldsymbol{k}')$$

- Take ratio of ${}^3{\rm S}_1$ and ${}^1{\rm S}_0$ SRG transformations fixing low-momenta to $k_0=0.1$ fm⁻¹
- This physics is established in the 2-body system can apply to any nucleus!

Fig. 11: ${}^{3}S_{1}$ to ${}^{1}S_{0}$ ratio of SRG-evolved momentum projection operators $a_{q}^{\dagger}a_{q}$ where $\lambda=1.35$ fm⁻¹.

 Low RG resolution picture reproduces the characteristics of cross section ratios using simple approximations

Fig. 12: pp/pn ratio of pair momentum distributions under HF+LDA with AV18 and $\lambda = 1.35$ fm⁻¹.

- Low RG resolution picture reproduces the characteristics of cross section ratios using simple approximations
- Weak nucleus dependence from factorization

$$\mathsf{Ratio} \approx \frac{\left|F_{pp}^{hi}(q)\right|^{2}}{\left|F_{np}^{hi}(q)\right|^{2}} \times \frac{\left|\Psi_{\lambda}^{A}\right| \sum_{k,k'}^{\lambda} a_{\frac{Q}{2}+k}^{\dagger} a_{\frac{Q}{2}-k}^{\dagger} a_{\frac{Q}{2}+k'} \left|\Psi_{\lambda}^{A}\right|}{\left|\Psi_{\lambda}^{A}\right| \sum_{k,k'}^{\lambda} a_{\frac{Q}{2}+k}^{\dagger} a_{\frac{Q}{2}-k}^{\dagger} a_{\frac{Q}{2}-k'}^{\dagger} a_{\frac{Q}{2}+k'} \left|\Psi_{\lambda}^{A}\right|}$$

Fig. 12: pp/pn ratio of pair momentum distributions under HF+LDA with AV18 and $\lambda = 1.35$ fm⁻¹.

- Ratio ~1 independent of N/Z in np dominant region
- Ratio < 1 for nuclei where N > Z and outside np dominant region

Fig. 13: (pp+pn)/(nn+np) ratio of pair momentum distributions under HF+LDA with AV18 and $\lambda = 1.35$ fm⁻¹.

Exclusive knockout reactions

- RG analysis can help understand the cause of $R = \frac{\sigma_{exp}}{\sigma_{theory}} < 1$
- Mismatch of scale between one-body (high RG) operator and shell model structure (low RG) gives $\sigma_{theory} > \sigma_{exp}$

Fig. 14: R as a function of ΔS . Red (blue) points correspond to neutron-removal (proton-removal) cases. Solid black squares correspond to electron-induced proton knockout data. Figure from J. A. Tostevin and A. Gade, Phys. Rev. C **90**, 057602 (2014).

Exclusive knockout reactions

Fig. 14: R as a function of ΔS . Red (blue) points correspond to neutron-removal (proton-removal) cases. Solid black squares correspond to electron-induced proton knockout data. Figure from J. A. Tostevin and A. Gade, Phys. Rev. C **90**, 057602 (2014).

- RG analysis can help understand the cause of $R = \frac{\sigma_{exp}}{\sigma_{theory}} < 1$
- Mismatch of scale between one-body (high RG) operator and shell model structure (low RG) gives $\sigma_{theory} > \sigma_{exp}$
- Currently working on SRG-evolving spectroscopic factors for (e, e'p) reactions
- Note, spectroscopic factors are scale/scheme dependent

Spectroscopic factors

• Spectroscopic factor for single-particle (sp) state α defined in terms of removal amplitude

$$S = \int d\mathbf{p} \left| \left\langle \Psi_{\alpha}^{A-1} \middle| a_{\mathbf{p}} \middle| \Psi_{0}^{A} \right\rangle \right|^{2}$$

Spectroscopic factors

• Spectroscopic factor for single-particle (sp) state α defined in terms of removal amplitude

$$S = \int d\mathbf{p} \left| \left\langle \Psi_{\alpha}^{A-1} \middle| a_{\mathbf{p}} \middle| \Psi_{0}^{A} \right\rangle \right|^{2}$$

 sp strength is reduced relative to the independent particle model (IPM) by correlations: Long-range correlations (LRC) and SRC

Long-range vs. short-range correlations

Spectroscopic factors

• Spectroscopic factor for single-particle (sp) state α defined in terms of removal amplitude

$$S = \int d\mathbf{p} \left| \left\langle \Psi_{\alpha}^{A-1} \left| a_{\mathbf{p}} \middle| \Psi_{0}^{A} \right\rangle \right|^{2} \right|$$

 sp strength is reduced relative to the independent particle model (IPM) by correlations: Long-range correlations (LRC) and SRC

Idea: SRG evolve and analyze using simple approximations (i.e., IPM)

Long-range vs. short-range correlations

Summary and outlook

- At low renormalization group (RG) resolution, simple approximations to SRC physics work and are systematically improvable
- Results suggest that we can analyze high-energy nuclear reactions using low RG resolution structure (e.g., shell model) and consistently evolved operators
 - Matching resolution scale between structure and reactions is crucial!

Summary and outlook

- At low renormalization group (RG) resolution, simple approximations to SRC physics work and are systematically improvable
- Results suggest that we can analyze high-energy nuclear reactions using low RG resolution structure (e.g., shell model) and consistently evolved operators
 - Matching resolution scale between structure and reactions is crucial!

Ongoing work:

- Extend to (e, e'p) knockout cross sections and test scale/scheme dependence of extracted properties
- Investigate impact of various corrections: 3-body terms, final state interactions, etc.
- Apply to more complicated knock-out reactions (SRG with optical potentials)
- Implement uncertainty quantification in low RG resolution calculations

Extras

Fig. 10: Cartoon snapshots of a nucleus at (left) low-RG and (right) high-RG resolutions. The back-to-back nucleons at high-RG resolution are an SRC pair with small center-of-mass momentum.