Package 'CYCLeR'

August 19, 2021

```
Title CircRNA transcriptome assembly tool
Version 1.3
Description CYCLeR is a software package for assembly of circRNA transcripts from
      RNA-seq data. Takes a set of BSJ prediction files and RNA-seq BAM files as an input
     and outputs circRNA trascnripts as FASTA, GTF and flat annotation files. The tools
      also outputs a padded FASTA to serve as an index for transcript EM abundance estimation.
License GNU General Public License (v3)
LazyData yes
Depends R,
     Rsamtools,
     SummarizedExperiment,
      methods,
     tidyverse,
      SGSeq,
      igraph,
      DEXSeq,
     polyester
Imports AnnotationDbi,
      BiocGenerics,
      Biostrings,
     GenomicAlignments,
      GenomicFeatures,
      GenomeInfoDb,
      RUnit,
      S4Vectors,
      grDevices,
     graphics,
      igraph,
      parallel,
     rtracklayer,
      stats,
      tidyverse,
      SGSeq,
```

Type Package

2 combine.two.BSJ.tables

```
igraph,
 DEXSeq,
 polyester
Suggests BiocStyle,
 BSgenome. Hsapiens. UCSC. hg38,
 TxDb.Hsapiens.UCSC.hg38.knownGene,
 knitr,
 rmarkdown
VignetteBuilder knitr
biocViews TranscriptomeAssembly, RNASeq, Transcription
RoxygenNote 7.1.1
Encoding UTF-8
R topics documented:
  filter.bam
  make.BSJ.sg.....
  Index
                       12
combine.two.BSJ.tables
       combine BSJs
Description
 Combine 2 BSJ tables
```

Usage

```
combine.two.BSJ.tables(ce_bsjs, ciri_bsjs)
```

Arguments

```
ce_bsjs BSJ table 1 ciri_bsjs BSJ table 2
```

filter.bam 3

Details

Just a combination of BSJ tables to make sure we have a complete set of BSJs. The variable names do not actually matter since the all tables have the same formatting.

Value

Tibble object with combined filtered BSJ coordinate and number of junction spanning reads across sample.

Author(s)

Stefan Stefanov

filter.bam

BAM file filter

Description

A wrapper function for samtools use to trim the files

Usage

```
## S3 method for class 'bam'
filter(BSJ_gr, sample_table, samtools_prefix)
```

Arguments

```
BSJ_gr a GRange of BSJ cooredinates

sample_table sample table formatted according to the manual, Must contain "sample_name"

"treatment" "file_bam" "lib_size" "read_len"; NB the values in column "treatment" can only be "control" and "enriched"

samtools_prefix

a string that corresponds to user's samtools run prefix
```

Details

This function removes the BAM file reads that do not overlap with the BSJ loci. This significantly speeds us the feature detection and lowers the virtual memory requirements

Value

BAMFileList object with info on the trimmed files

Author(s)

4 make.BSJ.gr

```
find.depleted.features
```

CircRNA feature selection

Description

CircRNA feature selection

Usage

```
find.depleted.features(circ_fc_adj, sample_table, circ_sg, test = "DEX")
```

Arguments

circ_fc_adj count matrix corresponding to the circRNA features

sample_table sample table formatted according to the manual, Must contain "sample_name"

"two-two-st" "fels how" "lik size" "word how" ND the values in aclume "two-st."

"treatment" "file_bam" "lib_size" "read_len"; NB the values in column "treat-

ment" can only be "control" and "enriched"

circ_sg SGSeq object supplying feature info

test either "DEX" for DEXSeq based feature selection or "comparison" simple av-

erage comaparison

Details

This function works in 2 ways: direct comparison of average quantities or as a wrapper of DEXSeq. In case of dataset with replicates, the suggested approach is the use of DEXSeq statistical test.

Value

vector of featureID

Author(s)

Stefan Stefanov

make.BSJ.gr

Convert BSJ string to GRanges obejct

Description

Convert BSJ string to GRanges obejct

Usage

```
make.BSJ.gr(BSJ_set)
```

make.BSJ.sg 5

Arguments

BSJ_set a list of BSJ ID records procudes by process.BSJs or combine.two.BSJ.tables

Details

Convert BSJ string to GRanges obejct

Value

GRanges object indicating BSJ loci

Author(s)

Stefan Stefanov

make.BSJ.sg

Preparation of the BSJ-specific splice graphs

Description

Selection of the exons based on BSJ set

Usage

```
make.BSJ.sg(circ_sg, BSJ_gr)
```

Arguments

circ_sg SGSeq prediction object
BSJ_gr a GRange of BSJ coordinates

Details

Selection of the exons based on BSJ set

Value

SGSeq containing exons belonging to BSJ loci

Author(s)

6 overlap.SG.BSJ

merge.qics

Merging 2 assemblies

Description

Pair-wise merging 2 assemblies Pair-wise merging 2 assemblies

Usage

```
## S3 method for class 'qics'
merge(qics1, qics2)
```

Arguments

 $\begin{array}{ll} \text{qics1} & \text{assembly 1} \\ \text{qics2} & \text{assembly 2} \end{array}$

Value

data.frame of transcript information in flat format

Author(s)

Stefan Stefanov

overlap.SG.BSJ

Overlap of BSJ and a splice graph

Description

Creates a disjointed set of exons based on a SGSeq obejct and a BSJ GRanges object

Usage

```
overlap.SG.BSJ(sgfc_pred, BSJ_gr)
```

Arguments

 $\begin{tabular}{ll} {\tt sgfc_pred} & {\tt sgSeq} \ prediction \ object \\ {\tt BSJ_gr} & {\tt a} \ GRange \ of \ BSJ \ cooredinates \\ \end{tabular}$

Details

Creates a disjointed set of exons based on a SGSeq obejct and a BSJ GRanges object. The function keeps the SGSeq metadata

parse.files 7

Value

SGSeq with disjoint exon bins

Author(s)

Stefan Stefanov

parse.files

Parse BSJ input

Description

Parse BSJ files from CIRI, CIRCexplorer2 or a TSV file

Usage

```
parse.files(file_list, file_path, input_type)
```

Arguments

file_list list with file names

file_path string object with file path, clould be an empty string

 $\verb|input_type| \qquad \verb|CIRI| for CIRI2 input|, \verb|CE| for CIRC explorer 2 input| and \verb|tsv| for TSV| formatted|$

input

Details

This processes BSJ prediction files and prepares them for the next step of the pipeline. input_type is essential for the correct parsing of the files.

Value

Tibble object with combined BSJ coordinate and number of junction spanning reads across sample

Author(s)

8 process.BSJs

plotRanges2

Plot ranges

Description

Plots GRanges objects

Usage

```
plotRanges2(...)
```

Details

ggplot of multiple GRanges object. Every object is auto assigned a colour from colorblind friendly scheme

Value

ggplot of multiple GRanges objects

Author(s)

Stefan Stefanov

process.BSJs

Process BSJs

Description

process the BSJ table and select high confidence BSJs

Usage

```
process.BSJs(cdf, sample_table)
```

Arguments

cdf tibble produced by parse.files

sample_table sample table formatted according to the manual, Must contain "sample_name"

"treatment" "file_bam" "lib_size" "read_len"; NB the values in column "treat-

ment" can only be "control" and "enriched"

file_path string object with file path, clould be an empty string

Details

Filters BSJ based on comparison of the average CPM values of BSJs

recount.features 9

Value

Tibble object with combined filtered BSJ coordinate and number of junction spanning reads across sample.

Author(s)

Stefan Stefanov

recount.features

Re-count of the reads per exon bin

Description

A wrapper function for Rsubread

Usage

```
recount.features(full_sg, sample_table)
```

Arguments

```
full_sg a SGSeq obeject of exon bins

sample_table sample table formatted according to the manual, Must contain "sample_name"

"treatment" "file_bam" "lib_size" "read_len"; NB the values in column "treatment" can only be "control" and "enriched"
```

Details

This function performs requantification of the exon bins with specifically selected parameters

Value

BAMFileList object with info on the trimmed files

Author(s)

10 RPKM.calc

RPKM.calc

RPKM calculation for the genomic features

Description

RPKM calculation for the genomic features

Usage

```
RPKM.calc(
   count_matrix,
   sg,
   bsj_granges,
   bs_genome,
   sample_table,
   feature_type,
   fsj_overhang = 3,
   bsj_overhang = 15,
   eff_length_correction = T,
   gc_correction = F
```

Arguments

```
count_matrix count matrix corresponding to the features
sg
                 SGSeq object supplying feature info
                 GRange of BSJ cooredinates
bsj_granges
bs genome
                 a BSGenome object used for extracting the sequences
sample_table sample table formatted according to the manual, Must contain "sample_name"
                 "treatment" "file_bam" "lib_size" "read_len"; NB the values in column "treat-
                 ment" can only be "control" and "enriched"
feature_type either "e" for exons ot "j" for junctions
fsj_overhang the FJS overhand used in the mapping a.k.a. anchor
bsj_overhang the BSJ overhand used in the chimeric detection
eff_length_correction
                 whether or not to apply effective length correction
gc_correction
                 whether or not to apply GC-content correction; requires further testing
```

Details

This function performs RPKM calculations for the exonic features. The RPKM calculation is performed based on the exact sequences for the exons. For junctions, the sequences are selected based on the exons, flanking the junction. The function takes into account the needed effective length corrections.

transcripts.per.sample 11

Value

BAMFileList object with info on the trimmed files

Author(s)

Stefan Stefanov

```
transcripts.per.sample
```

Transcript assembly

Description

Transcript assembly per sample Transcript assembly per sample based on sample name in the "sample_table"

Usage

```
transcripts.per.sample(i)
```

Arguments

i name of the sample

Value

data.frame of transcript information in flat format

Author(s)

Index

```
*Topic BSJ
                                         make.BSJ.sg, 5
   combine.two.BSJ.tables, 2
                                         merge.qics, 6
   make.BSJ.gr,4
                                         overlap.SG.BSJ, 6
   process.BSJs,8
*Topic Bam
                                         parse.files, 7
   filter.bam, 3
                                         plotRanges2,8
   recount.features, 9
                                         process.BSJs,8
*Topic Filter
   filter.bam, 3
                                         recount.features, 9
   recount.features,9
                                         RPKM.calc, 10
*Topic GRanges
   make.BSJ.gr,4
                                         transcripts.per.sample, 11
   make.BSJ.sg, 5
   overlap.SG.BSJ, 6
   plotRanges2,8
*Topic RPKM
   RPKM.calc, 10
*Topic assembly
   merge.qics, 6
   transcripts.per.sample, 11
*Topic combine
   combine.two.BSJ.tables, 2
*Topic depleted
   find.depleted.features,4
*Topic filter
   process.BSJs,8
*Topic overlap
   make.BSJ.sg, 5
   overlap.SG.BSJ, 6
*Topic parse
   parse.files, 7
*Topic plot
   plotRanges2,8
combine.two.BSJ.tables, 2
filter.bam, 3
find.depleted.features,4
make.BSJ.gr, 4
```