

Universidade Federal do Ceará – UFC

LISTA 3 – Engenharia da Computação

Disciplina: Paradigmas e Linguagens de Programação.

Professor: Danilo Alves.

Parte 1 - Paradigma de orientação a objetos - Escolha.

Em todas essas questões crie uma classe Principal ou o arquivo index para testar as classes criadas e demostrar o funcionamento.

- 1. Identifique as classes e implemente um programa para a seguinte especificação: "O supermercado vende diferentes tipos de produtos. Cada produto tem um preço e uma quantidade em estoque. Um pedido de um cliente é composto de itens, onde cada item especifica o produto que o cliente deseja e a respectiva quantidade. Esse pedido pode ser pago em dinheiro, cheque ou cartão."
- 2. O algoritmo de César de criptografia de strings é uma versão melhorada do algoritmo rot13 (veja exercício 11.23): o seu funcionamento é o mesmo, só que, em vez de substituir cada caractere por um caractere treze posições depois, o algoritmo de César recebe um valor chamado chave, e usa esse valor como o número de posições que devem ser puladas para a criptografia. Por exemplo, se a chave for 1, o algoritmo pulará uma posição ao codificar as letras, então se a string passada for "Java", o resultado será "Kbwb".

O algoritmo de decodificação deve receber a mesma chave, só que deve substituir os caracteres da string por valores em posições anteriores. Escreva um método estático **codificaCesar** na classe Criptografia que implemente o algoritmo de César, recebendo como argumentos uma string e uma chave (valor numérico) e retornando a string criptografada. Esse método deve considerar que somente as letras não-acentuadas devem ser criptografadas, as letras acentuadas, números, espaços e outros símbolos devem continuar como estão. Escreva também o método **decodificaCesar**.

Dica: Para simplificar o algoritmo, considere que o valor da chave só pode estar entre 1 e 25. Verifique a validade da chave.

3. Crie uma classe Retangulo de forma que contenha um método para verificar se um ponto, passado como argumento, está localizado dentro de um retângulo. O ponto deve ser representado por uma instância de uma classe Ponto2D. O método deverá retornar true se o ponto estiver contido no retângulo, e false se não estiver. Dica: Para verificar se um ponto está dentro do retângulo, verifique se as coordenadas do ponto estão dentro das coordenadas do retângulo. Considerando a figura abaixo, onde (x1, y1) e (x2, y2) são as coordenadas que definem o retângulo, o ponto P1 estaria fora do

retângulo, uma vez que a sua coordenada y é menor do que a menor coordenada y do retângulo. O ponto P2 estaria dentro do retângulo, e o ponto P3 também estaria fora do retângulo.

- **4.** Modifique a classe Retangulo da questão anterior para que esta contenha um método para verificar se uma linha, passada como argumento, está localizada inteiramente dentro de um retângulo. A linha deve ser representada por uma instância da classe Linha2D. O método deverá retornar true se a linha estiver contida no retângulo, e false se não estiver. A figura mostrada no exercício anterior, a linha L2 está dentro do retângulo, as linhas L1 e L3, não estão.
- **5.** Crie uma classe para representar datas.
 - Represente uma data usando três atributos: o dia, o mês, e o ano.
- Sua classe deve ter um construtor que inicializa os três atributos e verifica a validade dos valores fornecidos.
- Forneça um construtor sem parâmetros que inicializa a data com a data atual fornecida pelo sistema operacional.
 - Forneça um método set um get para cada atributo.
- Forneça o método toString para retornar uma representação da ata como string. Considere que a data deve ser formatada mostrando o dia, o mês e o ano separados por barra (/).
 - Forneça uma operação para avançar uma data para o dia seguinte.

Parte 2 - Paradigma Imperativo - C.

6. Crie um programa que contenha uma função calculaIntersecao, que recebe como argumento as coordenadas x e y dos dois vértices de cada retângulo representados na figura abaixo (r1x1, r1y1, r1x2, r1y2, r2x1, r2y1, r2x2, r2y2). Essa função apresenta para o usuário as coordenadas x e y dos quatro vértices do retângulo formado pela interseção do retângulo 1 e 2. Caso os dois retângulos não tenham interseção, isso deve ser informado para o usuário.

- 7. Faça um programa para calcular o número de dias decorridos entre duas datas (considerar também a ocorrência de anos bissextos), sabendo-se que:
 - Cada par de datas é lido numa linha, a última linha contém o número do dia negativo.
 - A primeira data na linha é sempre a mais antiga.
 - O ano está digitado com quatro dígitos.
 - Um ano será bissexto se for divisível por 400 ou se for divisível por 4 e não o for por 100.
- **8.** Faça o jogo padres e canibais, que consiste no usuário atravessar todos os personagens de um lado do rio para o outro. Para isso ser feito, o usuário deve seguir as seguintes regras:
 - Do lado direito do rio encontra-se 3 padres e 3 canibais.
 - O barco está ancorado no lado direito e só comporta duas pessoas. Ele só pode ser levado para a margem oposta se tiver pelo menos uma pessoa no barco.
 - Nenhum lado do rio pode ter mais canibais que padres, caso isso ocorra os canibais comem os padres e o usuário perde o jogo.

Em cada momento do jogo o usuário deve poder ver quais personagens estão em cada lado do rio, bem como quem está no barco e em qual margem o barco está. O usuário pode retirar do barco qualquer personagem e colocar no lado do rio que se encontra. O usuário vence quando passar todos os personagens de um lado para o outro.

9. Podemos calcular o seno de um número segundo a série de Taylor-Maclaurin:

$$sen(x) = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \frac{x^9}{9!} + \cdots$$

Faça um programa em C que lê um valor para x e calcule o valor de Sen(x). O valor deve ser calculado utilizando funções e enquanto o termo $\frac{x^n}{n!}$ calculado for maior que 10E-12.

10. Faça um programa que apresente a seguinte saída, perguntando ao usuário o número máximo (no exemplo, 5). Este número deve ser sempre ímpar.

Parte 3 – Paradigma Lógico – Prolog.

11. Considere a árvore genealógica a seguir:

Usando fatos, defina as relações pai e mãe. Em seguida, consulte o sistema para ver se suas definições estão corretas.

- Acrescente ao programa os fatos necessários para definir as relações homem e mulher. Por exemplo, para estabelecer que Ana é mulher e Ivo é homem, acrescente os fatos mulher(ana) e homem(ivo).
- Usando duas regras, defina a relação gerou(X,Y) tal que X gerou Y se X é pai ou mãe de Y. Faça consultas para verificar se sua definição está correta. Por exemplo, para a consulta gerou(X,eva) o sistema deverá apresentar as respostas X = ana e X = ivo.
- Usando relações já existentes, crie regras para definir as relações filho, filha, tio, tia, primo, prima, avô e avó. Para cada relação, codifique a regra correspondente e faça consultas para verificar a corretude.
- **12.** Apresente as informações abaixo em conjuntos de fatos e regras, obtendo uma base para consultas:
 - "João é um pássaro. Pedro é um peixe. Maria é uma minhoca. Pássaros gostam de minhocas. Gatos gostam de peixes. Gatos gostam de pássaros. Amigos gostam uns dos outros. O meu gato é meu amigo. O meu gato come tudo o que gosta, exceto pessoas. O nome do meu gato é Chuck Norris."
- 13. "Tweety é um pássaro. Goldie é um peixe. Molie é uma minhoca. Pássaros gostam de minhocas. Gatos gostam de peixes. Gatos gostam de pássaros. Amigos gostam uns dos outros. O meu gato é meu amigo. O meu gato come tudo o que gosta. O meu gato chama-se Silvester."
 - a) Use Prolog para determinar tudo o que come o Silvester?
 - b) A resposta é razoável ? Se não for, verifique se o problema está na especificação original ou na sua tradução para Prolog, corrija e execute novamente.

14. Crie uma base de conhecimento em Prolog declarando os fatos representados na seguinte tabela:

CATÁLOGO DE FILMES				
Título	Gênero	Diretor	Ano	Min.
Amnésia	Suspense	Nolan	2000	113
Babel	Drama	Inarritu	2006	142
Capote	Drama	Miller	2005	98
Casablanca	Romance	Curtiz	1942	102
Matrix	Ficção	Wachowsk	1999	136
Rebecca	Suspense	Hitchcock	1940	130
Shrek	Aventura	Adamson	2001	90
Sinais	Ficção	Shymalan	2002	106
Spartacus	Ação	Kubrik	1960	184
Superman	Aventura	Donner	1978	143
Titanic	Romance	Cameron	1997	194
Tubarão	Suspense	Spielberg	1975	124
Volver	Drama	Almodóvar	2006	121

Escreva regras genéricas em Prolog que possam responder as seguintes perguntas:

- a) Quem dirigiu o filme Titanic?
- b) Quais são os filmes de suspense?
- c) Quais os filmes dirigidos por Donner?
- d) Em que ano foi lançado o filme Sinais?
- e) Quais os filmes com duração inferior a 100min?
- f) Quais os filmes lançados entre 2000 e 2005?
- 15. Escreva uma base de consultas para uma floresta com as seguintes informações:

"Em uma floresta existem diversos animais e plantas. Os ursos se alimentam de peixes no rio, de raposas nas florestas e por vezes também conseguem caçar veados e guaxinins. As raposas são animais astutos e conseguem caçar os rápidos coelhos. Os veados se alimentam das plantas presentes na floresta, como por exemplo grama, e é comumente caçado pelo lince. No rio existem uma diversidade de espécies, sendo que os peixes grandes comem os peixinhos, algas e minhocas, e os peixinhos se alimentam exclusivamente de algas. Na floresta também existem plantas carnívoras que se alimentam de mosca".

Crie os fatos animal, planta e come para as relações acima.

Crie as regras carnívoro(X), herbívoro(X), predador(X), presa(X) e pertence_a_cadeia (X,Y) se X está na cadeia alimentar abaixo de Y.

Faca as seguintes perguntas:

- 1. Peixe come peixinho e minhoca?
- 2. Quais são as plantas?
- 3. Quem é comido pelo urso?
- 4. Quem come peixe?
- 5. Quem é predador?
- 6. Quem é predador e também presa?
- 7. Quem é presa e herbívoro?
- 8. Quem pertence a cadeia alimentar do urso?
- 9. Quem pertence a cadeia alimentar do urso e ao mesmo tempo come planta?
- 10. A minhoca pertence a cadeia alimentar de quem?

Obs: Os programas devem ser comentados com a explicação da lógica utilizada e enviados no SIGAA até dia 22/06 às 23:59.