Illum
FUN_Q2de: HMSC and follow-ups $\,$

Marissa Lee

12/16/2019

, ,
Q2. How are differences in fungal composition across the landscape explained by environmental variables? Table of contents
0. Load data and pre-process ASV matrix See IllumFUN_Q1.Rmd
A. Determine which environmental variables to include in path analysis See IllumFUN_Q2a.Rmd
B. SEM using DPCoA1 score to represent community See IllumFUN_Q2bc.Rmd
C. Investigate SEM results with bivariate plots See IllumFUN_Q2bc.Rmd
D. Investigate SEM results with HMSC
 Set up HMSC analyses on the HPC Examine HMSC output Prune to high confidence taxa-environment relationships Make phylogenetic tree/heat map plots
E. Follow-ups
Varpart for leaf fungi Variance explained by VST PCoA1
Load packages, functions, paths
Custom functions

D. Investigate SEM results with HMSC

1. Set up HMSC analyses on the HPC

Two general types of HMSC models were run for each plant compartment: (a) ASV presence/absence and (b) ASV relative abundance. Each type has its own folder that was uploaded to the HPC with relevant input data, code, and output. Folders are called "hmsc_fits_ab" and "hmsc_fits_pr", respectively, and located at data intermediates/Illum analyses.

The general structure within each folder is as follows: 1. data folder with a phyloseq object for each plant compartment and taxonomy-based phylogenetic tree 2. R script for each plant compartment with the name "hmsc_compartment.R" 3. HPC scheduling script for each plant compartment with the name "runR_hmsc_.csh" 4. output folder: these items are used in the code below

2. Examine HMSC output

The code chunks below are mostly commented out because reading in some of these HMSC output files are very memory intensive and can take a while.

Examine mixing (commented out)

Examine model fit

```
## Warning in mean.default(x$R2, na.rm = T): argument is not numeric or logical:
## returning NA
## Warning in mean.default(x$R2, na.rm = T): argument is not numeric or logical:
## returning NA
## Warning in mean.default(x$R2, na.rm = T): argument is not numeric or logical:
## returning NA
## Warning in mean.default(x$AUC, na.rm = T): argument is not numeric or logical:
## returning NA
## Warning in mean.default(x$AUC, na.rm = T): argument is not numeric or logical:
## returning NA
## Warning in mean.default(x$AUC, na.rm = T): argument is not numeric or logical:
## returning NA
##
     tissue
                model
                           waic
                                                 r2
                                     rmse
                                                          auc
## 1
      Leaf Abundance 70.03698 0.8728860 0.2536010
                                                           NA
      Leaf Presence 71.73838 0.2955561
                                                 NA 0.7922793
## 3
      Root Abundance 344.99796 0.8248864 0.2452250
## 4
      Root Presence 118.31911 0.1907437
                                                 NA 0.8064638
      Soil Abundance 177.86975 0.8675905 0.1957414
      Soil Presence 191.24815 0.2337007
                                                 NA 0.8165146
```

Examine "species niches" as structured by phylogeny (commented out)

Plot the distribution of the rho parameter for each model (commented out)

Print tables leaf

root

soil

3. Prune to high confidence taxa-environment relationships, i.e. 99% CI does not overlap zero

4. Make phylogenetic tree/heat map plots

Reformat the data matrix so that each row is an ASV. Also, add "ns" where ASV is present but not significant Make the phylogenetic tree – define the data matrix, phylum nodes, and key classes

Make the tile plot and combine it with the tree

```
## Joining, by = "ASV"
```

Scale for 'y' is already present. Adding another scale for 'y', which will ## replace the existing scale.

```
## Joining, by = "ASV"
```

Scale for 'y' is already present. Adding another scale for 'y', which will ## replace the existing scale.

E. Followups

- 1. Varpart Leaf fungi explained by lat lon versus environmental matrix (based on SEM)? (commented out)
- 2. Enough variance explained by VST PCoA1 to do SEM? (commented out)

Not very much variation in the community is explained by PC1 using VST. PC1 explains 9.4% (Leaf), 5.2% (Root), 6.0% (Soil).