WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 7: C12N 15/53, 15/85, 15/11, 9/02, C12Q 1/02, C07K 16/40, A61K 39/395, 38/44, A01K 67/027, G01N 33/50, 33/53

(11) International Publication Number:

WO 00/53770

(43) International Publication Date: 14 September 2000 (14.09.00)

(21) International Application Number:

PCT/EP00/01979

A1

(22) International Filing Date:

7 March 2000 (07.03.00)

(30) Priority Data:

99104664.0

9 March 1999 (09.03.99)

(71) Applicant (for all designated States except US): MULTIGENE BIOTECH GMBH [DE/DE]; Biozentrum, Am Hubland, D-97074 Würzburg (DE).

(72) Inventors; and

(75) Inventors/Applicants (for US only): WEBER, Bernhard, H., F. [DE/DE]; Elsa-Brandström-Strasse 6, D-97218 Gerbrunn (DE). MARQUARDT, Andreas [DE/DE]; Zehntweg 16, D-97218 Gerbrunn (DE).

(74) Agent: SCHMIDT, Werner, Robert-Bunsen-Strasse 15, D-65929 Frankfurt am Main (DE).

(81) Designated States: AE, AL, AM, AU, AZ, BA, BB, BG, BR, BY, CA, CN, CR, CU, CZ, DM, EE, GD, GE, HR, HU, ID, IL, IN, IS, JP, KG, KP, KR, KZ, LC, LK, LR, LT, LV, MA, MD, MG, MK, MN, MX, NO, NZ, PL, RO, RU, SG, SI, SK, TJ, TM, TR, TT, TZ, UA, US, UZ, VN, YU, ZA, ARIPO patent (GH, GM, KE, LS, MW, SD, SL, SZ, TZ, UG, ZW), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Published

With international search report.

Before the expiration of the time limit for amending the claims and to be republished in the event of the receipt of amendments.

(54) Title: cDNA MOLECULES OF THE MEMBERS OF GENE FAMILY ENCODING HUMAN FATTY ACID DESATURASES AND THEIR USE IN DIAGNOSIS AND THERAPY

(57) Abstract

The present invention relates to the cloning and sequencing of the cDNA molecules of three members of a gene family encoding three human fatty acid desaturases, fatty acid desaturase-1 (FADS1), fatty acid desaturase-2 (FADS2) and fatty acid desaturase-3 (FADS3). The invention also relates to diagnostic methods of screening for and detection of FADS1, FADS2, FADS3 and gene therapy utilizing recombinant DNA as well as the generation of animal models (knock-in, knock-out, transgenic animals), anti-FADS1, anti-FADS2, anti-FADS3 antibodies and use in screenings for modulating drugs.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AT Aust AU Aust AZ Azc BA Boss BB Bart BE Belg BF Burl BG Bulg BJ Ben BR Braz BY Bels	stralia crbaijan snla and Herzegovina rbados gium rkina Faso Igaria	GB GE GH GN	Finland France Gabon United Kingdom Georgia Ghana Guinea Greece	LT LU LV MC MD MG MK	Lithuania Luxembourg Latvia Monaco Republic of Moldova Madagascar	SK SN SZ TD TG TJ	Slovakia Senegal Swaziland Chad Togo
AU Ausi AZ Azer BA Boss BB Bart BE Belg BF Burl BG Bulg BJ Ben BR Braz BY Bels	stralia crbaijan snla and Herzegovina rbados gium rkina Faso Igaria	GA GB GE GH GN GR	Gabon United Kingdom Georgia Ghana Guinea	LV MC MD MG	Latvia Monaco Republic of Moldova	SZ TD TG	Swaziland Chad Togo
AZ Azer BA Boss BB Bart BE Belg BF Burl BG Bulg BJ Ben BR Braz BY Bels	erbaijan snia and Herzegovina bados gium rkina Faso Igaria	GB GE GH GN GR	United Kingdom Georgia Ghana Guinea	MC MD MG	Monaco Republic of Moldova	TD TG	Swaziland Chad Togo
BA Boss BB Bart BE Beig BF Buri BG Buig BJ Ben BR Braz BY Bela	snia and Herzegovina rbados gium rkina Faso Igaria	GE GH GN GR	Georgia Ghana Guinea	MD MG	Republic of Moldova	TG	Togo
BB Bart BE Beig BF Buri BG Buig BJ Ben BR Braz BY Bela	bados gium rkina Faso Igaria	GH GN GR	Ghena Guinea	MG	•		•
BE Belg BF Burl BG Bulg BJ Ben BR Braz BY Bels	gium rkina Faso garia	GN GR	Guinea		Madagascar	mi	•
BF Buri BG Bulg BJ Beni BR Braz BY Bels	rkina Faso Igaria	GR		MIK		13	Tajikistan
BG Bulg BJ Beni BR Braz BY Bels	garia		Green		The former Yugoslav	TM	Turkmenistan
BJ Ben BR Braz BY Bels		ERT !	CHECK		Republic of Macedonia	TR	Turkey
BR Braz BY Bels	-1-	nu	Hungary	MIL.	Mali	TT	Trinidad and Tobago
BY Bels	ומו	Œ	Ireland	MIN	Mongolia	UA	Ukraine
	يتا	11,	israel	MIR	Mauritania	UG	Uganda
a	anus	1S	Iceland	MW	Malawi	US	United States of Ameri
CA Can:	nada	CT	Italy	MIX	Mexico	UZ	Uzbekistan
CF Cent	ntral African Republic	JP	Japan	NE	Niger	VN	Vict Nam
CG Con	ngo	KE	Кепуа	NL	Netherlands	YU	Yugoslavia
	itzerland	KG	Kyrgyzstan	NO	Norway	zw	Zimbabwe
Cl Côte	te d'Ivoire	KP	Democratic People's	NZ	New Zealand		
CM Carr	neroon		Republic of Korea	PL	Poland		
CN Chir	ina	KR	Republic of Koren	PT	Portugal		
CU Cub	ba	KZ.	Kazakstan	RO	Romania		
C7. Czes	ech Republic	LC	Saint Lucia	RU	Russian Federation		
DB Gen	rmany	u	Liechtenstein	SD	Sudan		
DK Den	nmark	LK	Sri Lanka	SE	Sweden		
EE Esto	onia	LR	Liberia	SG	Singapore		

WO 00/53770 PCT/EP00/01979

cDNA molecules of the members of gene family encoding human fatty acid desaturases and their use in diagnosis and therapy

5

Description

Field of the invention

The present invention relates to the cloning and sequencing of the cDNA molecules of three members of a gene family encoding three human fatty acid desaturases, fatty acid desaturase-1 (FADS1), fatty acid desaturase-2 (FADS2) and fatty acid desaturase-3 (FADS3). The invention also relates to diagnostic methods of screening for and detection of FADS1, FADS2, FADS3 and gene therapy utilizing recombinant DNA as well as the generation of animal models (knock-in, knock-out, transgenic animals), anti-FADS1, anti-FADS2, anti-FADS3 antibodies and use in screenings for modulating drugs.

Background of the Invention

Cellular membranes are dynamic structures in which variable amounts of proteins are embedded in a lipid bilayer whose hydrophobic characteristics are largely due to fatty acid moieties of complex lipids (Singer and Nicolson 1972). The 'fluidity' of the membranes are achieved by incorporating unsaturated fatty acyl chains of varying lengths and varying degrees of unsaturation into the lipids (Stubbs and Smith 1984). In animals, some of the unsaturated fatty acids need to be supplied by the diet ('essential polyunsaturated fatty acids') but, in part, can also be synthesized de novo by oxidative desaturation (i.e. formation of double bonds) of saturated fatty acids of plant and animal origin. Polyunsaturated fatty acid formation requires acetyl-CoA dependent chain elongation and desaturation. Most mammalian tissues can modify acyl chains by introducing more than one double bond with the first one generally at the Δ-9 position between carbons C-9 and C-10. Subsequent double bonds may then be inserted at the Δ-4, Δ-5, and Δ-6 positions by individual desaturase activities (Cook 1991).

For the two major precursors of the (n-6) and (n-3) series of polyunsaturated fatty acids, linoleic 18:2(n-6) and alpha-linolenic 18:3(n-3) acids, animals depend entirely on their dietary intake. By alternating sequences of desaturation (involving

the subsequent action of $\Delta 4$, $\Delta 5$ - and $\Delta 6$ -desaturases, respectively) and C2 chain elongation, linoleic and alpha-linolenic acids are utilized to form arachidonic acid, 20:4(n-6), and the (n-3) acyl chains eicosapentaenoic acid, 20:5(n-3), and docosahexaenoic acid, 22:6(n-3), respectively (Cook 1991).

5

25

Linoleic and arachidonic acid are the only members of the (n-6) family that accumulate in large quantities in liver and most other animal tissues. The intermediates 18:3(n-6) and 20:3(n-6) are formed from 18:2(n-6) by Δ6-desaturation, chain elongation and Δ5-desaturation (Horrobin 1993). As a component of phospholipids arachidonic acid is abundant in cellular membranes but also serves as the primary precursor of oxygenated derivatives such as prostaglandine E2 which is pro-inflammatory and regulates cell function of the immune system.

The (n-3) acyl chains eicosapentaenoic acid [20:5(n-3)] and docosahexaenoic acid [22:6(n-3)] are most abundant in cerebral cortex, retina, and spermatozoa. Although it is generally assumed that the liver is the major source of 22:6(n-3), it has been shown that docosahexaenoic acid can also be produced by retinal pigment epithelium (Wang and Anderson 1993) as well as brain astrocytes (Moore et al. 1991, Delton-Vandenbrouke et al. 1997). In retinal rod outer segments, phospholipids may contain 40-60% of 22:6(n-3) which can markedly influence membrane fluidity due to the presence of six double bonds.

In recent years there has been increasing interest in the role of polyunsaturated fatty acids in the pathobiology of a number of chronic conditions such as coronary and peripheral vascular disease (Horrobin 1995), acute and chronic inflammatory immune responses (Calder 1998, Fan and Chapkin 1998, Grimble and Tappia 1998), cutaneous abnormalities (Horrobin 1989, Grattan et al. 1990), essential hypertension (Russo et al. 1997, Chi and Gupta 1998), diabetes mellitus (Mori et al. 1997), asthma (Leichsenring et al. 1995, Villani et al. 1998, Hodge et al. 1998) and rheumatoid arthritis (James and Cleland 1997, Ariza-Ariza et al. 1998, Grimble and Tappia 1998). A particular role has been attributed to gamma-linolenic acid [18:3(n-6)] as an anti-cancer polyunsaturated fatty acid. It has been

ĩ

10

shown that 18:3(n-6) confers anticancer properties by a variety of mechanisms such as (i) up-regulation of E-cadherin, a cell-cell adhesion molecule which acts as a suppressor of metastasis (Jiang et al. 1995), (ii) regulation of desmosome-mediated cell-cell adhesion in human cancer cells (Jiang et al. 1997a), (iii) up-regulation of the metastasis-suppressor gene nm-23 thus contributing to the inhibition of the in vitro invasion of tumor cells (Jiang et al. 1998a), (iv) up-regulation of maspin expression, a mammary serine protease inhibitor, with profound effects on motility of cancer cells (Jiang et al. 1997b) and (v) finally inhibition of cell cycle progression via regulation of phosphorylation and subsequent degradation of cell cycle inhibitors p27kip1 and p57kip2 (Jiang et al. 1998b).

To further understand lipid-related function in human health and disease additional research into fatty acid biosynthesis and metabolism is required. In particular, we need to understand the pharmacological properties, the mechanisms of action and the tissue-specific regulation of composition of the polyunsaturated fatty acids and their metabolites. This will provide additional insight into the role of the polyunsaturated fatty acids in various chronic disease states and will make it feasible to focus pharmacogenomic research on drug design and evaluation with the goal of ameliorating acute health problems associated with impaired lipid function. As a prerequisite, the genes and their gene products involved in the above-mentioned processes need to be identified and characterized.

It is the objective of the present invention to provide cDNA molecules of three novel members of the human membrane fatty acid desaturase gene family, termed FADS1, FADS2 and FADS3. The three genes share a nucleic acid identity of approximately 50-60% and an amino acid identity of about 77% with each other. Similar to other membrane-bound desaturases from mammals, fungi, insects, plants and cyanobacteria FADS1, FADS2 and FADS3 reveal a hydropathy profile typical of membrane-bound desaturases and share three regions of highly conserved primary sequence of the general histidine motif HX₂₍₃₎[XH]H (Shanklin et al. 1994). The histidine residues may act as metal-chelating ligands involved in the binding of oxygen in the reaction center (Shanklin et al. 1995). Together, these

features confirm FADS1, FADS2 and FADS3 as novel members of the desaturase family of fatty acyl chain-modifying enzymes.

Amino acid identity of FADS1, FADS2 and FADS3 to known desaturases (e.g. from Arabidopsis thaliana, Brassica napus, Synechocystis spec., Borago officinalis, Helianthus annuus, Saccharomyces cerevisiae and Caenorhabditis elegans) is restricted to the respective carboxy terminal regions (amino acid positions 260 to 422) revealing an overall sequence identity of approximately 27%. Interestingly, the respective amino-termini of the three novel proteins demonstrate similarities to cytochrome b5 (amino acid positions 4 to 75; Fig. 1). Cytochrome b5 10 is a small hemoprotein and functions as an intermediate donor in a number of oxidation/reduction reactions including e.g. the NADH-dependent Δ9 stearoyl-CoA desaturation (Strittmatter et al. 1974) or the $\Delta 5$ desaturation in cholesterol biosynthesis (Reddy et al. 1977). From the amino acid alignments we conclude that FADS1, FADS2 and FADS3 are fusion proteins consisting of a N-terminal cytochrome b5 and a C-terminal desaturase-like enzyme. From a functional point of view, this fusion of two activities may increase the efficiency of electron transport required for desaturation by covalently bringing together the presumed electron donor (cytochrome b5) and its putative acceptor (desaturase-like enzyme). Other heme fusion proteins containing the cytochrome b5 domain have 20 been identified and represent a superfamily of fused proteins (Guiard and Lederer 1979). Besides others this superfamily includes the yeast flavocytochrome b₂, sulfite oxidase, nitrate reductase, the yeast $\Delta 9$ acyl-CoA desaturase and more recently the sunflower cytochrome b5-desaturase fusion protein (Sperling et al. 1995). The three novel desaturase-like enzymes reported herein, FADS1, FADS2 25 and FADS3, can be added to the growing list of members of this superfamily of fused proteins (Fig. 2).

Summary of the invention

The eukaryotic fatty acid desaturases represent a group of iron-containing enzymes that catalyze NAD(P)H- and O₂-dependent introduction of double bonds into fatty acyl chains. Impairment of desaturase activities has been implicated in a variety of human conditions including liver disease, coronary artery disease and

cancer. With the present invention we are providing three isolated human cDNA molecules that encode three novel members of a cytochrome-b5-containing fusion protein with similarity to plant and lower animal desaturase enzymes, termed fatty acid desaturase-1 (FADS1) (represented by Fig. 3 and SEQ ID NO. 1), fatty acid desaturase-2 (FADS2) (represented by Fig. 4 and SEQ ID NO. 2) and fatty acid desaturase-3 (FADS3) (represented by Fig. 5 and SEQ ID NO. 3).

FADS1 protein

MAPDPVAAETAAQGPTPRYFTWDEVAQRSGCEERWLVIDRKVYNISEFTRRHP

10 GGSRVISHYAGQDATDPFVAFHINKGLVKKYMNSLLIGELSPEQPSFEPTKNKEL
TDEFRELRATVERMGLMKANHVFFLLYLLHILLLDGAAWLTLWVFGTSFLPFLLCA
VLLSAVQAQAGWLQHDFGHLSVFSTSKWNHLLHHFVIGHLKGAPASWWNHMHF
QHHAKPNCFRKDPDINMHPFFFALGKILSVELGKQKKKYMPYNHQHKYFFLIGPP
ALLPLYFQWYIFYFVIQRKKWVDLAWMITFYVRFFLTYVPLLGLKAFLGLFFIVRFL

15 ESNWFVWVTQMNHIPMHIDHDRNMDWVSTQLQATCNVHKSAFNDWFSGHLNF
QIEHHLFPTMPRHNYHKVAPLVQSLCAKHGIEYQSKPLLSAFADIIHSLKESGQLW
LDAYLHQ

FADS2 protein

20 MGKGGNQGEGAAEREVSVPTFSWEEIQKHNLRTDRWLVIDRKVYNITKWSIQHP GGQRVIGHYAGEDATDAFRAFHPDLEFVGKFLKPLLIGELAPEEPSQDHGKNSKI TEDFRALRKTAEDMNLFKTNHVFFLLLLAHIIALESIAWFTVFYFGNGWIPTLITAFV LATSQAQAGWLQHDYGHLSVYRKPKWNHLVHKFVIGHLKGASANWWNHRHFQ HHAKPNIFHKDPDVNMLHVFVLGEWQPIEYGKKKLKYLPYNHQHEYFFLIGPPLLI 25 PMYFQYQIIMTMIVHKNWVDLAWAVSYYIRFFITYIPFYGILGALLFLNFIRFLESHW FVWVTQMNHIVMEIDQEAYRDWFSSQLTATCNVEQSFFNDWFSGHLNFQIEHHL FPTMPRHNLHKIAPLVKSLCAKHGIEYQEKPLLRALLDIIRSLKKSGKLWLDAYLHK

FADS3 protein

30 MGGVGEPGPREGPAQPGAPLPTFCWEQIRAHDQPGDKWLVIERRVYDISRWA QRHPGGSRLIGHHGAEDATDAFRAFHQDLNFVRKFLQPLLIGELAPEEPSQDGP LNAQLVEDFRALHQAAEDMKLFDASPTFFAFLLGHILAMEVLAWLLIYLLGPGWV PSALAAFILAISQAQSWCLQHDLGHASIFKKSWWNHVAQKFVMGQLKGFSAHW

WNFRHFQHHAKPNIFHKDPDVTVAPVFLLGESSVEYGKKKRRYLPYNQQHLYFF
LIGPPLLTLVNFEVENLAYMLVCMQWADLLWAASFYARFFLSYLPFYGVPGVLLF
FVAVRVLESHWFVWITQMNHIPKEIGHEKHRDWVSSQLAATCNVEPSLFTNWFS
GHLNFQIEHHLFPRMPRHNYSRVAPLVKSLCAKHGLSYEVKPFLTALVDIVRSLK
5 KSGDIWLDAYLHQ

Studies to clarify the specificity and the subcellular location of these ubiquitiously expressed fusion proteins are in progress. Also, the detailed cellular functions and dysfunctions of the desaturase-like domains are being investigated in appropriate cellular and animal systems. This will address the question whether and to which extent these novel enzymes are involved in human disease. The invention encompasses the three cDNA molecules, FADS1, FADS2, and FADS3, the nucleotide sequence of these cDNAs, and the putative amino acid sequences of the FADS1 (represented by Fig. 6 and SEQ ID NO. 4), FADS2 (represented by Fig. 7 and SEQ ID NO. 5), and FADS3 represented by Fig. 8 and SEQ ID NO. 6) proteins.

Also comprehended by this invention are oligonucleotide primers comprising the cDNA molecule or its complementary strand allowing the amplification of FADS1 (represented by Fig. 9 and SEQ ID NOS. 7-12), FADS2 (represented by Fig. 9 and SEQ ID NOS. 13-18), and FADS3 (represented by Fig. 9 and SEQ ID NOS. 19-22), by the reverse transcriptase polymerase chain reaction (RT-PCR). Such primers are particularly useful and will provide researchers and physicians with an enhanced ability to assess the role of FADS1, FADS2, and FADS3 in human disease. The present invention also relates to methods of screening for and detection of FADS1, FADS2, and FADS3 mutation carriers including prenatal FADS1, FADS2, and FADS3 screening and diagnosis.

Having provided the isolated human FADS1, FADS2, and FADS3 cDNA sequences, also comprehended by this invention are the FADS1, FADS2, and FADS3 proteins, and derivatives thereof, in aspects of diagnosis and treatment of human disease. Finally, the invention pertains to proteins which comprise the same or substantially the same amino acid sequence (at least 200 amino acids) as

that represented by Figs. 6, 7, 8 and SEQ ID NOS. 4, 5, 6 or a variant of the amino acid sequences having a deletion, addition or substitution of 1 to 10 amino acids, or its salt.

5 Another aspect of the invention is the use of the FADS1, FADS2, and FADS3 proteins as a target for drug and gene therapy in the treatment of human disease. This includes the generation and utilization of FADS1, FADS2, and FADS3-targeted animal models (knock-in, knock-out, transgenic animals) and anti-FADS1, -FADS2, and -FADS3 antibodies that specifically detect the FADS1, FADS2, and FADS3 proteins, respectively.

The foregoing and other features and advantages of the invention will become more apparent from the following detailed description and accompanying drawings.

15

20

25

30

One aspect of the invention are the isolated cDNAs selected from the group consisting of:

- (a) a polynucleotide having at least a 65 % homology, preferably at least a 80 % homology with a polynucleotide encoding a polypeptide selected from the group consisting of the polypeptides of SEQ ID NO: 4, SEQ ID NO: 5 and SEQ ID NO: 6;
- (b) a polynucleotide having at least a 65 % homology, preferably at least a 80 % homology with a polynucleotide which by virtue of the redundancy of the genetic code, encodes the same polypeptide selected from the group consisting of the polypeptides of SEQ ID NO: 4, SEQ ID NO: 5 and SEQ ID NO: 6;
- (c) a DNA molecule capable of hybridization under stringent conditions to a DNA molecule according to (a) or (b);
- (d) a polynucleotide which is complementary to the polynucleotide of (a), (b) or (c); and
- (e) a oligonucleotide comprising at least 15 consecutive nucleotides of the polynucleotide of (a), (b), (c) or (d)

5

10

15

(including DNAs which are synonymous to the DNAs of (a), (b), (c), (d) and (e) due to the degeneracy of the genetic code)

especially isolated cDNAs selected from the group consisting of:

- (a) a polynucleotide having at least a 65 % homology, preferably at least a 80 % homology with a polynucleotide sequence selected from the group consisting of the polynucleotides of SEQ ID NO: 1, SEQ ID NO: 2 and SEQ ID NO: 3;
- (b) a DNA molecule capable of hybridization under stringent conditions to a DNA molecule according to (a);
- (c) a polynucleotide which is complementary to the polynucleotide of (a) or (b);
- (d) a oligonucleotide comprising at least 15 consecutive nucleotides of the polynucleotide of (a), (b) or (c); and
- (e) a DNA which is synonymous to the DNAs of (a), (b), (c) or (d) due to the degeneracy of the genetic code.

In the scope of the invention are polynucleotides having a polynucleotide encoding a polypeptide selected from the group consisting of the polypeptides of SEQ ID NO: 1, SEQ ID NO: 2 and SEQ ID NO: 3 and polynucleotides having a polynucleotide sequence selected from the group consisting of the polynucleotides of SEQ ID NO: 4, SEQ ID NO: 5 and SEQ ID NO: 6, but DNAs comprising a nucleotide sequence with at least a 65 % homology with these nucleotide sequences is also within the scope of the invention.

25

Furthermore within the scope of the invention are:

A recombinant vector comprising the disclosed DNA molecules.

30 Transgenic host cells such as COS7, fibroblast cell lines or any other tissuespecific cell lines, as well as a transgenetic host cell tranformed by the DNA or the vector, a corresponding transgenetic organism or a corresponding transgenetic knock-in or knock-out animal model.

30

Polypeptides and corresponding proteins comprising at least 65 %, preferably 85 %, especially 100 % of a polypeptide sequence selected from the group consisting of the polypeptides of SEQ ID NO: 1, SEQ ID NO: 2 and SEQ ID NO: 3; polypeptides comprising a polypeptide sequence with at least a 65 % homology with the said polypeptides; peptides comprising at least 15, preferably 30, especially 60 consecutive amino acids of the said polypeptides; and polypeptides having substantially the same amino acid sequence as the said polypeptides, or having a variant of the amino acid sequence of the polypeptides with a deletion, addition or substitution of 1 to 10 amino acids. The salts of the peptides and 0 proteins are also within the scope of the invention.

A process for preparing the proteins which comprises cultivating the transformants to form the proteins.

A method of screening for modulators in well known assays using constructs such as FADS1, FADS2, and FADS3 promoter luciferase or green fluorescent protein hybrids or screening for interacting proteins or factors using state of the art technologies like the interaction trap technology to screen for interacting substances of FADS1, FADS2, and FADS3 or isolated domains of FADS1,
FADS2, and FADS3.

A method of screening chemical libraries comprising transformed cell lines

A compound which alters / reacts with at least one epitope of the proteins and which is obtained by screening methods utilizing the FADS1, FADS2, and FADS3 cDNAs or protein molecules.

Use of antibodies against the FADS1, FADS2, and FADS3 proteins for diagnostic or therapeutic purposes.

A pharmaceutical composition comprising as an effective component of the proteins or a partial peptide of the proteins, and a pharmaceutically acceptable carrier or diluent.

The term "knock-out animal" as used herein is intended to describe an animal containing a gene which has been modified by homologous recombination. The homologous recombination event may completely disrupt the gene such that a functional gene product can no longer be produced (hence the name "knock-out") or the homologous recombination event may modify the gene such that an altered, although still functional, gene product is produced.

The term "knock-in" as used herein is intended to describe a variation of gene targeting that uses homologous recombination but allows expression of added genetic sequences in place of the endogenous gene. This approach allows the test of more subtle mutations than is allowed by a simple knock-out.

The term "epitope" describes a region on a macromolecule which is recognized by an antibody. Frequently it is in a short region of primary sequence in a protein and it is generally about 5 to 12 amino acids long (the size of the antigen binding site on an antibody). Carbohydrates, nucleic acids and other macromolecules may be antigens and have epitopes.

20 Detailed Description of the Invention

Materials and Methods

Isolation of the FADS1 and FADS2 cDNAs

cDNA fragments corresponding to FADS1 and FADS2 were identified by direct cDNA selection. The cDNA selection was performed essentially as described (Rommens et al. 1993) with only minor modifications. Briefly, total RNA was prepared from human retina and from established human retinal pigment epithelium cell line ARPE-19 (Dunn et al. 1996). Prior to the use as templates for cDNA synthesis the isolated RNAs were separated on a 1.2% agarose gel in the presence of 3-(N-morpholino)propanesulfonic acid (MOPS) and formaldehyde to check their integrity (Sambrook et al., 1989).

RNAs were reverse transcribed using the SUPERSCRIPTTM preamplification system for first strand cDNA synthesis (Gibco, BRL) and the RXGT₁₂ oligonucleotide primer (5'-CGG AAT TCT CGA GAT CTT TTT TTT TTT TTT-3'). After poly(A)-tailing with terminal transferase (United States Biochemical, USB), a cDNA pool was generated by RXGT₁₂-primed PCR at 94°C for 1 min; 2 cycles of 94°C, 30 sec; 37°C, 1 min, 72°C, 2 min followed by 22 cycles of 94°C, 30 sec; 58°C, 30 sec and 72°C, 2 min. Prior to hybridization the cDNA pools were preannealed to C₀t-1 DNA (Gibco, BRL) enriched with sonicated LINE1 sequences.

10 Genomic PAC clones for cDNA selection were derived from 11g12-g13.1, a region known to contain the gene underlying Best's vitelliform macular dystrophy (Stöhr et al. 1998). The assembly and orientation of the clones have been described previously (Cooper et al. 1997). Inserts from PAC clones dJ465G21 and dJ139E20 (~1 μg) were isolated by Notl digestion, purified using QIAEXII agarose gel extraction beads (Qiagen) and immobilized on Hybond-N+ membrane filters with an average concentration of 60 ng/mm². The insert filters were subjected to two consecutive rounds of hybridization with a starting mixture of 20 µg of retina and ARPE-19 derived cDNAs. Hybridization time was four days at 58°C in Church hybridization buffer (Church and Gilbert 1984). Filters were washed three times in 20 2 x SSC/0.1% SDS at room temperature, once each in 0.5 x SSC/0.1% SDS, 0.2 x SSC/0.1% SDS and 0.2 x SSC/0.05% SDS (all at 58°C). A final wash was in 2 x SSC. cDNAs were eluted in distilled H₂O by incubating for 10 min at 98°C and reamplified by PCR using the RXGT₁₂ oligonucleotide primer. Four µg of the reamplified cDNAs were used for a second round of hybridization. After two 25 rounds of selection the cDNAs were amplified using the RXGT₁₂ oligonucleotide primer, digested with EcoRI and cloned into the EcoRI site of pBluescript (Stratagene).

The selected cDNAs represent segments of the 3'-untranslated region (3'-UTR) of FADS1 (clone IVC4 at FADS1 nucleotide position 3793-4204; clone IVB7 at nucleotide position 3132-3609; clone VIIC6 at nucleotide position 2077-2317) (Fig. 3) and of the 3' UTR/coding sequence of FADS2 (clone IVB8 at FADS2 nucleotide position 2626-3009; clone TUK8-4B at nucleotide position 753-1508) (Fig. 4).

Using the selected clone sequences extensive dbEST database searches were conducted and revealed a large number of additional overlapping expressed sequence tags (ESTs). More than 100 ESTs (e.g. zk09h08, EST177650, yb28c03, ym29b05, yx67h05) were assembled to an overlapping EST contig representing FADS1. The assembled EST sequences contain an open reading frame (ORF) of 1410 bp, with a first potential in-frame translation initiation codon, ATG, starting 79 nucleotides downstream the most 5'end of EST clone zk09h08.r1 (GenBank acc. no. AA029030) (Fig. 1a). A consensus polyadenylation signal, AAUAAA, was identified at nucleotide position 4.182. The mature protein predicted from the ORF consists of 444 amino acid residues resulting in a calculated molecular mass of 52.0 kDa (Fig. 6).

Another 30 overlapping ESTs (e.g. cp2485.seq, HSC2EA121, EST06759, ym42c04, nc08c05) were found facilitating the assembly of the FADS2 cDNA. The assembled EST sequences contain an open reading frame (ORF) of 1352 bp, with a first potential in-frame translation initiation codon, ATG, starting 21 nucleotides downstream the most 5'end of EST clone ub64e01.r1 (GenBank acc. no. Al036465) (Fig. 4). Consensus polyadenylation signals were predicted at nucleotide positions 2.996 and 4.056. The mature FADS2 protein predicted from the ORF consists of 444 amino acid residues resulting in a calculated molecular mass of 52.3 kDa (Fig. 7). Amino acid sequence identity between FADS1 and FADS2 is 62%.

Isolation of the FADS3 cDNA

Additional 30 human EST clones were available to assemble a third individual cDNA, termed FADS3 (e.g. zs84e06, zs84e05, nq23f05, ya49a19, zs86h09). The existence of a third member of the FADS family was confirmed by PCR mapping of FADS1-, FADS2- and FADS3-specific 3'-UTR fragments revealing three distinct gene loci within a 1.4 Mb PAC contig in 11q12-q13.1 (Cooper et al., 1997). The assembled EST sequences contain an open reading frame (ORF) of 1468 bp, with a first potential in-frame translation initiation codon, ATG, starting 134 nucleotides downstream the most 5'end of EST clone qa99d06.s1 (GenBank acc. no. Al123992) (Fig. 5). The mature protein predicted from the ORF consists of 445

amino acid residues resulting in a calculated molecular mass of 51.2 kDa (Fig. 8). The 3'-UTR of the FADS3 cDNA is represented by several EST clones (e.g. zs86h09.s1, AA279632). A potential polyadenylation signal, AUUAAA, is present at cDNA nucleotide position 1.757 and may be functional as AUUAAA is the most common natural variant of the consensus polyadenylation signal AAUAAA (Fig. 5) (Sheets et al., 1990).

Amino acid sequence identities between FADS1 and FADS3 as well as between FADS2 and FADS3 are 52% and 63%, respectively. All EST sequences in the dbEST databases could be aligned to one of the three cDNAs, FADS1, FADS2, and FADS3. This suggests that there are no additional members of the FADS family in the human genome.

Northern blot analysis

- Northern blot analysis was performed either with total RNA isolated using the guanidinium thiocyanate method (Chomczynski and Sacchi 1987) or with commercially available multiple tissue Northern (MTN) blots purchased from Clontech Laboratories Inc. (Palo Alto, CA). Each lane of the total RNA blot contained 12 μg of total RNA from lung, cerebellum, uterus, retina, liver, heart,
- 20 RPE cell line ARPE-19, RPE tissue, lymphocytes and was electrophoretically separated in the presence of formaldehyde. The MTN blots were prepared from poly(A)⁺ RNA isolated from human heart, brain, placenta, lung, liver, skeletal muscle, kidney and pancreas. Inserts of clones IVC4, IVB7 (FADS1), IVB8 (FADS2) and of the 362 bp PCR product F3/R (5'-ACAGCTTTCCCCCAATTCTC-
- 25 3'/5'-GGCCTCAGCTACGAAGTGAAG-3') (FADS3) derived from the 3'-UTRs of the respective genes were used for filter hybridization at 65°C in 0.5 mM sodium phosphate buffer, pH 7.2; 7% SDS, 1 mM EDTA at 65°C (Church and Gilbert 1984).
- The three genes are ubiquitiously expressed and appear to have similar expression levels in all tissues analyzed. FADS1 revealed a transcript size of 4.0 kb while FADS2 revealed a similar sized transcript of 4.0 kb in addition to a smaller transcript of approximately 3.1 kb. The two FADS2 variants may be due to

differential usage of polyadenylation signals (see above). Finally, FADS3 is represented by two transcripts of 1.75 kb and 1.25 kb in size. While the former is in agreement with the usage of the variant polyadenylation signal identified at position 1738 of the cDNA, the small size of the latter transcript can not be explained at present and it does not appear to be due to a differential usage of polyadenylation signals. Possibly, differential splicing and/or exon skipping may be involved in the generation of the variant transcript. However, there is no evidence from cDNA cloning or EST contig assembly to support this possibility.

10 Comparison with other desaturases

Local sequence alignments of the deduced amino acid sequences of FADS1, FADS2, and FADS3 with known proteins or protein motifs were done using SwissProt (http://www.ncbi.nlm.nih.gov/cgi-bin/Blast/nph-blast?Jform=0) and the BLASTP and BEAUTY programs at Baylor College of Medicine

15 (http://dot.imgen.bcm.tmc.edu:9331/seq-search/protein-search.html). Amino acid sequence alignments were performed using the CLUSTALW multiple alignment program at http://pbil.ibcp.fr/NPSA/npsa_clustalw.html. Phylogenetic tree assembly was done using the TREECON software Version 1.3b available at http://bioc-www.uia.ac.be/u/yvdp/index.html.

20

Overall amino acid identities to known desaturases were found to be in the range of 22% - 27% (Fig. 1). Phylogenetic tree construction revealed a genetic relationship of FADS1, FADS2, and FADS3 to the Δ5-, Δ6- and Δ8-desaturases with some distance to the Δ9-desaturases (Fig. 2). From these analyses it becomes obvious that sequence identity by itself is not a predictor of a specific desaturase activity. For example, Δ5- and Δ6-desaturases from C. elegans demonstrate a higher sequence identity to each other than to the Δ6-desaturases from other species. We therefore conclude that based on simple sequence comparisons it is not feasible to determine the specific functions of FADS1, FADS2, and FADS3. This will be done by transgene expression of the three desaturases combined with gas chromatograpy-mass spectometry.

Hydropathy plots of FADS1, FADS2, and FADS3 indicate two hydrophiobic sequences predicted to represent transmembrane-spanning domains similar to other desaturases identified thus far (Fig. 1) (reviewed in Sperling et al. 1995).

- 5 cDNA amplification of FADS1, FADS2, and FADS3
 The coding sequences of the three genes are amplified in overlapping fragments
 by performing RT-PCR using oligonucleotide primer pairs derived from the
 respective cDNA sequences:
- (1) FADS1 (Fig. 9 and SEQ ID NOS. 7-12)
 Sense primer TU12-R5 (5'-CGCCTGACAGCCCCTGCT-3') at cDNA position 31-48 in combination with antisense primer TU12-F10 (5'-CAGGTGGCCAATCACAAAAT-3') at cDNA position 671-690 results in a product of 660 bp; sense primer TU12-R7 (5'-CTCAAAGTGGAACCATCTGCTA-3') at cDNA position 645-666 in combination with antisense primer TU12-F9 (5'-GGAAACCCAGTCCATGTTCC-3') at cDNA position 1130-1149 results in a product of 505 bp; sense primer TU12-R6 (5'-CCTGGGCCTTTTCTTCATAGT-3') at cDNA position 1035-1055 in combination with antisense primer TU12-F5 (5'-CTCAAGCTCCCTCTGCCT-3') at cDNA position 1465-1483 results in a product of 449 bp.
 - (2) FADS2 (Fig. 9 and SEQ ID NOS. 13-18)

 Sense primer TU13-R4 (5'-TCAGAAGCATAACCTGCGC-3') at cDNA position 98116 in combination with antisense primer TU13-F7 (5'-
- CCAGTTCACCAATCAGCAGG-3') at cDNA position 284-303 results in a product of 206 bp; sense primer TU13-R3 (5'-CCCCTGCTGATTGGTGAACT-3') at cDNA position 282-301 in combination with antisense primer TU13-F4 (5'-TGTAGGGCAGGTATTTCAGC -3') at cDNA position 779-798 results in a product of 517 bp; sense primer TU13-R2 (5'-AGCCCATCGAGTACGGCAA-3') at cDNA position 754-772 in combination with antisense primer TU13-F1 (5'-CCTCAGAACAAAAGCCCATC-3') at cDNA position 1416-1435 results in a product of 682 bp.

- (3) FADS3 (Fig. 9 and SEQ ID NOS. 19-22)
- Sense primer TU19-R2 (5'-TCTTGCTCGGACCTCGGC-3') at LLCDL3 cDNA position 81-98 in combination with antisense primer TU19-F2 (5'-
- GTGATCCACACGAACCAGTG-3') at cDNA position 1130-1149 position results in
- a product of 1069 bp; sense primer TU19-R3 (5'-GAAGAACCCAGCCAGGATG-3') at cDNA position 428-446 in combination with antisense primer TU19-F3 (5'-ACAGCTTTCCCCCAATTCTC-3') at cDNA position 1709-1728 results in a product of 1301 bp.
- 10 Short description of Figures
 - Fig. 1 Comparison of putative amino acid sequences from FADS1, FADS2, FADS3, Borago officinalis, Helianthus annuus and human cytochrome b5.

 Arrowheads indicate eight invariant amino acid residues typical for the cytochrome b5 domain. Two potential transmembrane domains are boxed. Three histidine
- motifs HX₂₍₃₎[XH]H that are conserved within the desaturase family are hatched.
 - Fig. 2 Phylogenetic tree of fatty acid desaturases.
 - Fig. 3 (SEQ ID NO. 1) shows the nucleotide sequence of the FADS1 cDNA
 - Fig. 4 (SEQ ID NO. 2) shows the nucleotide sequence of the FADS2 cDNA
 - Fig. 5 (SEQ ID NO. 3) shows the nucleotide sequence of the FADS33 cDNA
- 20 Fig. 6 (SEQ ID NO. 4) shows the putative amino acid sequence of the predicted FADS1 protein
 - Fig. 7 (SEQ ID NO. 5) shows the putative amino acid sequence of the predicted FADS2 protein
- Fig. 8 (SEQ ID NO. 6) shows the putative amino acid sequence of the predicted FADS3 protein
 - Fig. 9 (SEQ ID NOS. 7-22) shows the oligonucleotide PCR primers utilized to amplify the FADS1, FADS2, FADS3 cDNA, respectively.

References

- Ariza-Ariza R, Mestanza-Peralta M, Cardiel MH. Omega-3 fatty acids in rheumatoid arthritis: an overview. Semin Arthritis Rheum 27: 366-370 (1998)
- Calder PC. Immunoregulatory and anti-inflammatory effects of n-3 polyunsaturated fatty acids. Braz J Med Biol Res 31: 467-490 (1998)
 - Chi Y, Gupta RK. Alterations in membrane fatty acid unsaturation and chain length in hypertension as observed by 1H NMR spectroscopy. Am J Hypertens 11: 340-348 (1998)
- Chomczynski, P. and Sacchi, N. Single-step method of RNA isolation by acid
 guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem 162: 156159 (1987)
 - Church, G.M., and W. Gilbert. Genomic sequencing. Proc Natl Acad Sci USA 81:1991-1995 (1984)
- Cook HW. Fatty acid desaturation and chain elongation in eucaryotes. In:

 Biochemistry of lipids, lipoproteins and membranes, Vance DE & Vance JE (eds),
 Elsevier Amsterdam London, New York, pp.141-169 (1991)
 - Cooper P, Nowak NJ, Higgins MJ, Simpson SA, Stöhr H, Marquardt A, Weber BHF, Gerhard DS, deJong P, Shows TB. A sequence ready high resolution physical map of the Best's macular dystrophy gene region in 11q12-q13.
- 20 Genomics 41: 185-192 (1997)
 - Delton-Vandenbrouke I, Grammas P, Anderson RE. Polyunsaturated fatty acid metabolism in retinal and cerebral microvascular endothelial cells. J Lipid Res 38:147-159 (1997)
- Dunn KC, Aotaki-Keen AE, Putkey FR, Hjelmeland LM. ARPE-19, a human retinal pigment epithelial cell line with differentiated properties. Exp Eye Res 62: 155-169 (1996)
 - Fan YY, Chapkin RS. Importance of dietary gamma-linolenic acid in human health and nutrition. J Nutr 128: 1411-1414 (1998)
- Grattan C, Burton JL, Manku M, Stewart C, Horrobin DF. Essential-fatty-acid metabolites in plasma phospholipids in patients with ichthyosis vulgaris, acne vulgaris and psoriasis. Clin Exp Dermatol 15: 174-176 (1990)

10

- Grimble RF, Tappia PS. Modulation of pro-inflammatory cytokine biology by unsaturated fatty acids. Z Ernährungswiss 37 (Suppl 1): 57-65 (1998)
- Guiard B, Lederer F. The "cytochrome b5 fold": structure of a novel protein superfamily. J Mol Biol 135: 639-50 (1979)
- Hodge L, Salome CM, Hughes JM, Liu-Brennan D, Rimmer J, Allman M, Pang D, Armour C, Woolcock AJ. Effect of dietary intake of omega-3 and omega-6 fatty acids on severity of asthma in children. Eur Respir J 11: 361-536 (1998)
 - Horrobin DF. Abnormal membrane concentrations of 20 and 22-carbon essential fatty acids: a common link between risk factors and coronary and peripheral vascular disease? Prostaglandins Leukot Essent Fatty Acids 53: 385-396 (1995)
 - Horrobin DF. Essential fatty acids in clinical dermatology. J Am Acad Dermatol 20: 1045-1053 (1989)
 - Horrobin DF. Fatty acid metabolism in health and disease: the role of $\Delta 6$ -desaturase. Am J Clin Nutr 57(5 Suppl): 732S-737S (1993)
- James MJ, Cleland LG. Dietary n-3 fatty acids and therapy for rheumatoid arthritis.
 Semin Arthritis Rheum 27: 85-97 (1997)
 - Jiang WG, Bryce RP, Horrobin DF, Mansel RE. gamma-Linolenic acid blocks cell cycle progression by regulating phosphorylation of p27kip1 and p57kip2 and their interactions with other cycle regulators in cancer cells. Int J Oncol 13: 611-617 (1998b)
 - Jiang WG, Hiscox S, Bryce RP, Horrobin DF, Mansel RE. The effects of n-6 polyunsaturated fatty acids on the expression of nm-23 in human cancer cells. Br J Cancer 77: 731-738 (1998a)
- Jiang WG, Hiscox S, Hallett MB, Horrobin DF, Mansel RE, Puntis MC. Regulation of the expression of E-cadherin on human cancer cells by gamma-linolenic acid (GLA). Cancer Res 55: 5043-5048 (1995)
 - Jiang WG, Hiscox S, Horrobin DF, Bryce RP, Mansel RE. Gamma linolenic acid regulates expression of maspin and the motility of cancer cells. Biochem Biophys Res Commun 237: 639-644 (1997b)
- Jiang WG, Singhrao SK, Hiscox S, Hallett MB, Bryce RP, Horrobin DF, Puntis MC, Mansel RE. Regulation of desmosomal cell adhesion in human tumor cells by polyunsaturated fatty acids. Clin Exp Metastasis 15: 593-602 (1997a)

5

- Leichsenring M, Kochsiek U, Paul K. (n-6)-Fatty acids in plasma lipids of children with atopic bronchial asthma. Pediatr Allergy Immunol 6: 209-212 (1995)
- Moore SA, Yoder E, Murphy S, Dutton GR, Spector AA. Astrocytes, not neurons, produce docosahexaenoic acid (22:6 omega-3) and arachidonic acid (20:4 omega-6). J Neurochem 56: 518-524 (1991)
- Mori Y, Murakawa Y, Katoh S, Hata S, Yokoyama J, Tajima N, Ikeda Y, Nobukata H, Ishikawa T, Shibutani Y. Influence of highly purified eicosapentaenoic acid ethyl ester on insulin resistance in the Otsuka Long-Evans Tokushima Fatty rat, a model of spontaneous non-insulin-dependent diabetes mellitus. Metabolism 46:
- 10 1458-1464 (1997)
 - Reddy VV, Kupfer D, Caspi E. Mechanism of C-5 double bond introduction in the biosynthesis of cholesterol by rat liver microsomes. J Biol Chem 252: 2797-2801 (1977)
- Rommens JM, Lin B, Hutchinson GB, Andrew SE, Goldberg YP, Glaves ML,

 Graham R, Lai V, McArthur J, Nasir J, Theilmann J, McDonald H, Kalchman M,

 Clarke LA, Schappert K, Hayden MR. A transcription map of the region containing the Huntington disease gene. Hum Mol Genet 2: 901-907 (1993)
- Russo C, Olivieri O, Girelli D, Guarini P, Pasqualini R, Azzini M, Corrocher R. Increased membrane ratios of metabolite to precursor fatty acid in essential hypertension. Hypertension 29: 1058-1063 (1997)
 - Sambrook J, Fritsch EF, Maniatis T. Molecular Cloning, A Laboratory Manual, 2nd Edition, Cold Spring Harbor Laboratory Press, USA (1989)
 - Shanklin J, Whittle E, Fox BG. Eight histidine residues are catalytically essential in a membrane-associated iron enzyme, stearoyl-CoA desaturase, and are conserved in alkane hydroxylase and xylene monooxygenase. Biochem 33: 12787-12794 (1994)
 - Shanklin J, Whittle EJ, Fox BG. Membrane bound desaturases and hydroxylases: Structure function studies, in Plant lipid metabolism, Kader JC, Mazliak P (eds), Kluwer Academic Publishers, Netherlands, pp.18-20 (1995).
- 30 Sheets MD, Ogg SC, Wickens MP. Point mutations in AAUAAA and the poly (A) addition site: effects on the accuracy and efficiency of cleavage and polyadenylation in vitro. Nucl Acid Res 18: 5799-5805 (1990)

- Singer SJ, Nicolson GL. The fluid mosaic model of the structure of cell membranes. Science 175: 720-731 (1972)
- Sperling P, Schmidt H, Heinz E. A cytochrome b5-containing fusion protein similar to plant acyl lipid desaturases. Eur J Biochem 232: 798-805 (1995)
- Stöhr H, Marquardt A, Rivera A, Cooper PR, Nowak NJ, Shows TB, Gerhard DS, Weber BHF. A gene map of the Best's vitelliform macular dystrophy region in chromosome 11q12-q13.1. Genome Res 8: 48-56 (1998)
 - Strittmatter P, Spatz L, Corcoran D, Rogers MJ, Setlow B, Redline R. Purification and properties of rat liver microsomal stearyl coenzyme A desaturase. Proc Natl
- 10 Acad Sci USA 71: 4565-4569 (1974)
 - Stubbs CD, Smith AD. The modification of mammalian membrane polyunsaturated fatty acid composition in relation to membrane fluidity and function. Biochim Biophys Acta 779: 89-137 (1984)
- Villani F, Comazzi R, De Maria P, Galimberti M. Effect of dietary supplementation with polyunsaturated fatty acids on bronchial hyperreactivity in subjects with seasonal asthma. Respiration 65: 265-269 (1998)
 - Wang N, Anderson RE. Synthesis of docosahexaenoic acid by retina and retinal pigment epithelium. Biochemistry 32: 13703-13709 (1993)

- 3. A DNA comprising a nucleotide sequence with at least a 65 % homology with the nucleotide sequences as defined in claim 1 or 2.
- 4. A recombinant vector comprising the DNA as claimed in any of claims 1 to 3.
 - 5. A transgenic host cell comprising the DNA as claimed in any of claims 1 to3.
- A transgenetic host cell transformed by the DNA according to any of claims 1 to 3 or the vector according to claim 4, a corresponding transgenetic organism or a corresponding transgenetic knock-in or knock-out animal model.
- A polypeptide comprising at least 65 % of a polypeptide sequence selected from the group consisting of the polypeptides of SEQ ID NO: 1, SEQ ID NO: 2 and SEQ ID NO: 3, or its salt.
- 8. A polypeptide comprising a polypeptide sequence with at least a 85 % homology with the polypeptide sequence as claimed in claim 7, or its salt.
 - A peptide comprising at least 15 consecutive amino acids of the polypeptide as claimed in claim 7, or its salt.
- 25 10. A polypeptide having substantially the same amino acid sequence as the polypeptide as claimed in claim 7, or having a variant of the amino acid sequence of the polypeptide as claimed in claim 7 with a deletion, addition or substitution of 1 to 10 amino acids, or its salt.
- 30 11. A process for producing a polypeptide comprising expressing from the host cell of claim 5 or 6 a polypeptide encoded by the DNA as claimed in any of claims 1 to 3.

Claims

5

10

- An isolated cDNA molecule selected from the group consisting of:
 - (a) a polynucleotide having at least a 65 % homology, preferably at least a 80 % homology with a polynucleotide encoding a polypeptide selected from the group consisting of the polypeptides of SEQ ID NO: 4, SEQ ID NO: 5 and SEQ ID NO: 6;
 - (b) a polynucleotide having at least a 65 % homology, preferably at least a 80 % homology with a polynucleotide which by virtue of the redundancy of the genetic code, encodes the same polypeptide selected from the group consisting of the polypeptides of SEQ ID NO: 4, SEQ ID NO: 5 and SEQ ID NO: 6;
 - a DNA molecule capable of hybridization under stringent conditions to a DNA molecule according to (a) or (b);
- 15 (c) a polynucleotide which is complementary to the polynucleotide of (a), (b) or (c); and
 - (d) a oligonucleotide comprising at least 15 consecutive nucleotides of the polynucleotide of (a), (b), (c) or (d).
- 20 2. An isolated cDNA molecule selected from the group consisting of:
 - (a) a polynucleotide having at least a 65 % homology, preferably at least a 80 % homology with a polynucleotide sequence selected from the group consisting of the polynucleotides of SEQ ID NO: 1, SEQ ID NO: 2 and SEQ ID NO: 3;
- 25 (b) a DNA molecule capable of hybridization under stringent conditions to a DNA molecule according to (a);
 - (c) a polynucleotide which is complementary to the polynucleotide of (a) or(b);
 - (d) a oligonucleotide comprising at least 15 consecutive nucleotides of the polynucleotide of (a), (b) or (c); and
 - (e) a DNA which is synonymous to the DNAs of (a), (b), (c) or (d) due to the degeneracy of the genetic code.

12. An antibody against the polypeptide of any of claims 7 to 10.

5

10

- A oligonucleotide primer having a nucleotide sequence selected from the group consisting of the nucleotide sequences of SEQ ID NO: 7 to SEQ ID NO: 22.
 - 14. A method of screening for modulators in known assays using constructs or of screening for interacting proteins or factors using state of the art technologies.
 - 15. A method of screening chemical libraries comprising transformed cell lines.
 - 16. A compound which alters or reacts with at least one epitope of the proteins and which is obtained by screening methods as claimed in claim 14 or 15.
 - 17. The use of the antibodies according to claim 12 for diagnostic or therapeutic purposes.
- 18. A pharmaceutical composition comprising as an effective component an
 20 effective amount of the peptide as claimed in any of claims 7 to 10, or its salt, and a pharmaceutically acceptable carrier or diluent.

FADS1 FADS2 FADS3 Borago Helianthus Cytochrome b5	1MAPDPVAARTAAQGPTP.RYFTWDEVAQRSGCEERWLVIDRKV; NISEFTRRHPCGSR 1 MGKCGNQGBCAABREVSVPTESWEEIOKHNLRTDRWLVIDRKV; NIIKWSIQHPGGOR 1 MGGVGEPGPREGPAQFGAPUPTECWECIRAHDCPCDKWLVIERRVYDISRWAQRHPGGSR 1MAQIKKYITSDELKHHNPPNDLWISEQGKAYDVSDWVKDHPGGSF 1MVSPSIBVLNSIADGKKYITSKELKKHNPPNDLWISELGKVYNVTEWAKEHPGGDA 1MEGSDEAVKYYTUBEIOKHNHSKSTWLILHHKVYDDIWELEBHPGGEE
FADS1 FADS2 FADS3 Borago Helianthus Cytochrome b5	VISHMAGODATOP FVAFHINKGLVKKNIMSLLIGELSPECPSFEPTKIMELTDEFRELRA 59 VICHMAGEDATDAFRAFHEDLE EVCHELKPLLIGELAPEEPSCOHGKISKITED FRALRK 61 LICHHGARDATDAFRAFHODLMEVRKHI QPLLIGELAPEEPSCOHGRISACI VEDFRALHQ 47 PEKSIAGOPVIDAFVAFHEBASTW. KNIDOKFFTGYYLKOYSV SEVSKDYRKLVF 57 PEINIAGOPVIDAFIAFHEGTAW. KHIDOKFTGYHLKOYQV SDISRDYRKLAS 50 VERECAGCIATENSEDVGHSTDA. BEMSKTFII GELHPDDR PRINKPPETLIT
FADS1 FADS2 FADS3 Borago Helianthus Cytochrome b5	118 TVERMGINKANHVEETIMAHILIHIDGAAWLT WVFCTSFIEFIM CAVILISAVQACAGWI 119 TABOMHEKTEHWEETIM AHIIAHBSIAWETVEYEGNGWIETIMTABVLATSOACAGWI 121 AABOMHEEDASPTEFAFTIGHILAMEVLAWLI YIIZPGWVESALAAFILAISQAQSWCI 99 EFSKYGLYDKKGHIMFAHICFIAMEFAMSVYCV. BECEGVLVHIBSCOIMGELWIQSGWI 109 EFAKAGMEEKKGHGVÜYSICFVSIMLSACVYGV. LYSGSEWIHMISGAILGLAWMQIAYL 102 TIDSSSSWWTSWVIPAHSAVAVALMYRÜYMAED
FADS1 FADS2 FADS3 Borago Helianthus	178 CHDECHTSVESTSKWIHLICHEVICHLKCAPASAWNIH HFQHIAKPNOERKDPDINMEDE 179 CHDECHTSVYRREKWIHLICHLKCASAWAWNIR HFQHIAKPNIERKDPDVMILIV 181 CHDECHTSIERKSWIHIVAQKEVMCLKCESAHAWNER HFQHIAKPNIERKDPDVIVAPV 158 CHDACHTAVVSDSRINKEMCIETANOLSCISICAWKWIHMAHITACHSLEYDPDLQYIPE 168 CHDACHTQMATRGWIKEAGIETCHCITCISIAWWKWIHMAHITACHSLEYDPDLQHIPM
FADS1 FADS2 FADS3 Borago Helianthus	238 FFA. LCKILSVELGKQ. RKKYMPYNEGHKYFFELGPPALLPLYFCWYIEYEVI. 239 FV. LGEWOPIEYGKK. KLKYLPYNEGHEYFFELGPPILIPMYFGYQIIMTMI. 241 FI. LCE.SSVEYGKK. RRRYLPYNGQHIYFFELGPPILIVMBEVENDAYMI. 218 IVVSSKFFGSLTSHFYEKRLTFDSLSRFFVSYGHWTFYP MCAARDMYVGSLIMLLTKR 228 LAVSSKLENSITSVFYGROLTFDPLARFFVSYGHYLYYPIMCVARVNLYLGTILLLISKR
FADS1 FADS2 FADS3 Borago Helianthus	289 .QRKKWYDLAXX ITFYVRFELTYVEHLGIKAFICLEFIVRFLESNVFVWVTQXMHIPM 289 .VHKNWYDLAXAVSYYIRFEITYIPFYGIL CALLFINFIRFLESHWFVWVTQXMHIVM 290 .VCMCWADLLWASFYARFFLSYLEFYGVPGVILLEFVAVRVLESHWFVWITQXMHIPK 278 NYSYRAHELIGGIVFSIMYPLVSCIPNWGERIMEVIASLSVTGMQQVQFS.LNHFSSSV 288 KIPDRGINILGTIIEWTWEPILVSRIPNWPERVALVLVSFCVTGIQHIQFT.INHFSGDV
FADS1 FADS2 FADS3 Borago Helianthus	346 HIDHDENMOWUSTQLOATONUHKSASNOWESGHLNEQIEHHLEPTMPRHNYHKVAPLVOS 346 EIDODAYRDWESSQLTATONUEGSFENDWESGHLNEQIEHHLEPTMPRHNLHKIAPLVKS 347 EIGHEKHROWUSSQLAATONUEFSLETNWESGHLNEQIEHHLEPRHPRHNYSRVAPLVKS 337 YVOKPKONNWEKOTOGTLOISCPPWDWEHGCLOEQIEHHLEPRHPRONLRKISPYVIE 347 YVOPPKODNWEKOTRGTIDIACSSWMDWEFGGLOEQLEHHLEPRLPRCHLRSLSPIORE
FADS1 FADS2 FADS3 Borago Helianthus	406 LCAKHGIEYCSHPIISAFADIIHSLKESGOLWLDAYLHO. 406 LCAKHGIEYCEKPIIRAILDIIRSLKKSGKWIDAYLHK. 407 LCAKHGISYEVKPFITATVDIVRSLKKSGDEWLDAYLHO. 397 LCKKHNIPYNYASFSKANEMTERTIRNYALQARDITKPIPKNIVWEALHTHG 407 LCKKYNIPYVSLSFYDENVITEKTIRTAALQARDIINPAPONLAWEAFNTHG
transmembrane	<u> </u>
□ conserved histic ▼ invariant amino	J.
▼ myariam aminc	ACIU I ESIUUE

▼ invariant amino acid residue

Fig.2

Fig. 3

FADS1 cDNA

TCGCCAGGCCAGCTATGGCCCCCGACCCGGTGGCCGCCGAGACCGCGGCTCAGGGACCTACCCC GCGCTACTTCACCTGGGACGAGGTGGCCCAGCGCTCAGGGTGCGAGGAGCGGTGGCTAGTGATC GACCGTAAGGTGTACAACATCAGCGAGTTCACCCGCCGGCATCCAGGGGGCTCCCGGGTCATCA GCCACTACGCCGGGCAGGATGCCACGGATCCCTTTGTGGCCTTCCACATCAACAAGGGCCTTGT GAAGAAGTATATGAACTCTCTCCTGATTGGAGAACTGTCTCCAGAGCAGCCCAGCTTTGAGCCC **ACCAAGAATAAAGAGCTGACAGATGAGTTCCGGGAGCTGCGGGCCACAGTGGAGCGGATGGGGC** TCATGAAGGCCAACCATGTCTTCTTCCTGCTGTACCTGCACATCTTGCTGCTGGATGGTGC AGCCTGGCTCACCCTTTGGGTCTTTGGGACGTCCTTTTTGCCCTTCCTCCTCTGTGCGGTGCTG CTCAGTGCAGTTCAGGCCCAGGCTGGCTGGCTGCAGCATGACTTTGGGCACCTGTCGGTCTTCA GCACCTCAAAGTGGAACCATCTGCTACATCATTTTGTGATTGGCCACCTGAAGGGGGCCCCCGC CAGTTGGTGGAACCACATGCACTTCCAGCACCATGCCAAGCCCAACTGCTTCCGCAAAGACCCA GACATCAACATGCATCCCTTCTTCTTTGCCTTGGGGAAGATCCTCTCTGTGGAGCTTGGGAAAC AGAAGAAAAATATATGCCGTACAACCACCAGCACAAATACTTCTTCCTAATTGGGCCCCCAGC CTTGCTGCCTCTCTACTTCCAGTGGTATATTTTCTATTTTGTTATCCAGCGAAAGAAGTGGGTG GACTTGGCCTGGATGATTACCTTCTACGTCCGCTTCTTCCTCACTTATGTGCCACTATTGGGGC TGAAAGCCTTCCTGGGCCTTTTCTTCATAGTCAGGTTCCTGGAAAGCAACTGGTTTGTGTGGGT GACACAGATGAACCATATTCCCATGCACATTGATCATGACCGGAACATGGACTGGGTTTCCACC CAGCTCCAGGCCACATGCAATGTCCACAAGTCTGCCTTCAATGACTGGTTCAGTGGACACCTCA ACTTCCAGATTGAGCACCATCTTTTTCCCACGATGCCTCGACACAATTACCACAAAGTGGCTCC CCTGGTGCAGTCCTTGTGTGCCAAGCATGGCATAGAGTACCAGTCCAAGCCCCTGCTGTCAGCC TTCGCCGACATCATCCACTCACTAAAGGAGTCAGGGCAGCTCTGGCTAGATGCCTATCTTCACC AATAACAACAGCCACCCTGCCCAGTCTGGAAGAAGAGGGAAGACTCTGGAGCCAAGGCAGAG GGGAGCTTGAGGGACAATGCCACTATAGTTTAATACTCAGAGGGGGTTGGGTTTGGGGACATAA AGCCTCTGACTCAAACTCCTCCCTTTTATCTTCTAGCCACAGTTCTAAGACCCAAAGTGGGGGG TGGACACAGAAGTCCCTAGGAGGGAAGGAGCTGTTGGGGCAGGGGTGTAAATTATTTCCTTTTT CTAGTTTGGCACATGCAGGTAGTTGGTGAACAGAGAGCACCAGGAGGGTAACAGAAGAGGAGGG **ACCTACTGAACCCAGAGTCAGGAAGAGATTTAACACTAAAATTCCACTCATGCCGGGCGTGGTG** CACGCGCCTGTAATCCCAGCTACCCAGGAGGCTGAGGCAGGAGAATCGCTTGAACCGGGGAGGT GGAGGTTGCAGTGAGCTGAGATCACGCCATTGTACTCCAGCCTGGGCGACAGAGCAAGACTCCA TTTCAAAAAAAAAAAAAAAAAAAAATCCACTCATATAAAAGGTGAGCTCAGCTCACTGGTCC ATTTCTCAGTGGCTTCTCCATCCTCATTTGCAAACCTCAGAGGGATAAGGCAGTTGAACCTGAT GAGCAAGAATTATAACAGCAAGGAAACATTAATGCTTAGAATTCTGAGATCCAGCACAACTCAG TCTGTGGGAGCTCAGCTCGCCCAGGGATAGGTATGACCTATGTCTGCCTTAGGCTGCTGGG AGATGCCATTCTCCAGTTTCAGAAGCAGGCAGGGCAAAGGTCAAGACTGTGGTATTGGGGTCTT TTGGCTCTGAAGGATCCTGGAACCACTGATTTTGGTTTATTCCCTCCAGGGTCTAAAGAGAACA AGAGGTGCTAGCTCTTACCAAAACAGATGGTAGAGAGAGTTGCTGGCTATTTAAAAAAGCTCTTT GACTGGGGGTCTTTTAGCTCCATAAGCAAGTGAGCAGATGGGACAAGTTAGTCTTTTCTCCCTA GAAACAAAGGGGATGCCCAGTGGTTTCCCTTTGCTTCCCAACCTAAAATTTCAAGTTTAATAAA ATAGCAATTAGCAGAAGTGACCAAATTGGGAGATAATTATCAGTCATGAGGAAAGACACAGATT TCGGTCATAAAGAATGTAAGGGCTATAAGTAGAAACTTTCTATAACCTAAATGATGTTATAGAA TTATTTTTGAGCAGGAGCAGAAAGATTAAATATGATCACTTCATACTTCTAAATCAGAAATAGG AAGATTAAAACCACAGAACAGTTTGTGATTTCTATTGCTGGTAGCTAGGTATCTTACTCTGTCC ACTCTTGTTCAAGTATCTAACTCTTCTGGAAACCAAATAGGCTTTAGAAGAGATTATCCTATAT TCCTATCAGTATAATACTAAAATGTAACTTTTTAATCATCTGGTTTTTAAAAGATAAACAGTTT

Fig. 3 cont.

AGCCCATCTCCAGAGAGCAAACATAGGAATATGACTCAGGAGCCTCCTAGGGCTTATCATCA GCCCTCACACCGCTTCCCCCTCCAACCCACAGCCTTTGCTTCCAGGTGGCAGGATTACTACTT TGCCTCTTCAGCAGCATCTACTCTAGGCATATTGATCATTTTAGACACTGGGAGAAGAGAACCT CAAACTAGGAGGAAAAGACAGAGCCTCCACTTAGTTTTGGGAGGGGATGGCAGACAGTCAAGGA GATGAGCGTCCTAAGGCATGTTGGGATAGGGTCAGATGCACCACCCATGGAGAGGTTTGTCAAC ACAAAGACATGGAAGGTTAGAGGTTTGTCAACAAAAAGACATGGAAGGTTAGGTTTGTCAACAC AAAGACATGGAAGATTAGAGGTTTGTCAACACAAAGATACAGGAAGAATGGGCTGCAGAAGATT TAGATGTTTTCCATTTGGGCACATTTTACTTAGCTGGAGAACTAGGTTTAAAACAGCCTGGGTA GGAAAATTAGAAGCAAGCTGGATGCAGTGGCTCATGCCTGTAATCCCAACACTTTTGGGAGGTC CAGGCAGGAGGATCACTTGGGCCCAGGAGGTCAAGCCTGCAGCGAGCTGAGATCACACCACTGC CTATTCTTTGCCACCTTTTGGGTGTGGTGTCACCAGCCTGTTTAGCCAAGTAGCTTTGGGCATA GGCTGCCCAATCTGAGCAAACACCAGTGAGGCTCTATTGAGCAAGACCAAGTCCTCAAAGCACC TGAACCACTGTGGCCTTCTCAGCCTACAGCAGTGTGGTCTCTTACATGGCCACAAAGGGACACA CAGTGACAAAAGGCTCGGAATGTTACAATGGTAAAATGAGTGATCTCAAATCCACTGACAGATA TAAAATAGGCTTAGAGAGGAAAAGCTGCCTCTGGTCAAGTAGATCATGGCAGCATGAATTCCAA CTCACTTTTTTACGAACTCCAACTTCTATGTTTATCTTTGTTACTTTCACTTTTTTACAACCTG CACATCCCTATGAAGTTGAAAAAAGTTAATTTTGACCAAAAG

Fig. 4

FADS2 cDNA

CGTCACAGTCGGCAGGCATGGGGAAGGGAGGGAACCAGGGCGAGGGGGCCGCCGAGCGCGA GGTGTCGGTGCCCACCTTCAGCTGGGAGGAGATTCAGAAGCATAACCTGCGCACCGACAGGTGG GGGTCATCGGGCACTACGCTGGAGAAGATGCAACGGATGCCTTCCGCGCCTTCCACCCTGACCT GGAATTCGTGGGCAAGTTCTTGAAACCCCTGCTGATTGGTGAACTGGCCCCGGAGGAGCCCAGC CAGGACCACGCAAGAACTCAAAGATCACTGAGGACTTCCGGGCCCTGAGGAAGACGGCTGAGG ACATGAACCTGTTCAAGACCAACCACGTGTTCTTCCTCCTCCTCGTGCCCACATCATCGCCCT GGAGAGCATTGCATGGTTCACTGTCTTTTACTTTGGCAATGGCTGGATTCCTACCCTCATCACG GCCTTTGTCCTTGCTACCTCTCAGGCCCAAGCTGGATGGCTGCAACATGATTATGGCCACCTGT CTGTCTACAGAAAACCCAAGTGGAACCACCTTGTCCACAAATTCGTCATTGGCCACTTAAAGGG TGCCTCTGCCAACTGGTGGAATCATCGCCACTTCCAGCACCACGCCAAGCCTAACATCTTCCAC AAGGATCCCGATGTGAACATGCTGCACGTGTTTGTTCTGGGCGAATGGCAGCCCATCGAGTACG GCAAGAAGAAGCTGAAATACCTGCCCTACAATCACCAGCACGAATACTTCTTCCTGATTGGGCC GCCGCTGCTCATCCCCATGTATTTCCAGTACCAGATCATCATGACCATGATCGTCCATAAGAAC TGGGTGGACCTGGCCTGGGCCGTCAGCTACTACATCCGGTTCTTCATCACCTACATCCCTTTCT ACGGCATCCTGGGAGCCCTCCTTTTCCTCAACTTCATCAGGTTCCTGGAGAGCCACTGGTTTGT GTGGGTCACACAGATGAATCACATCGTCATGGAGATTGACCAGGAGGCCTACCGTGACTGGTTC AGTAGCCAGCTGACACCTGCAACGTGGAGCAGTCCTTCTTCAACGACTGGTTCAGTGGAC ACCTTAACTTCCAGATTGAGCACCACCTCTTCCCCACCATGCCCCGGCACAACTTACACAAGAT CGCCCGCTGGTGAAGTCTCTATGTGCCAAGCATGGCATTGAATACCAGGAGAAGCCGCTACTG AGGGCCCTGCTGGACATCATCAGGTCCCTGAAGAAGTCTGGGAAGCTGTGGCTGGACGCCTACC TTCACAAA<u>TGA</u>AGCCACAGCCCCCGGGACACCGTGGGGAAGGGGTGCAGGTGGGGTGATGGCCA GAGGAATGATGGGCTTTTGTTCTGAGGGGTGTCCGAGAGGCTGGTGTATGCACTGCTCACGGAC CCCATGTTGGATCTTCTCCCTTTCTCCTCTTTTTTCTCTTCACATCTCCCCCATAGCACCC TGCCCTCATGGGACCTGCCCTCAGCCGTCAGCCATCAGCCATGGCCCTCCCAGTGCCTCC TAGCCCCTTCTTCCAAGGAGCAGAGGGGGGCCACCGGGGGTGGCTCTGTCCTACCTCCACTCT CTGCCCTAAAGATGGGAGGAGACCAGCGGTCCATGGGTCTGGCCTGTGAGTCTCCCCTTGCAG CCTGGTCACTAGGCATCACCCCCGCTTTGGTTCTTCAGATGCTCTTGGGGGTTCATAGGGGCAGG TCCTAGTCGGGCAGGCCCCTGACCCTCCCGGCCTGGCTTCACTCTCCCTGACGGCTGCCATTG TAAGTACCCGAGGCCTCTCTTAAGATGTCCAGGGCCCAGGCCCGCGGGCACAGCCAAA CCTTGGGCCCTGGAAGAGTCCTCCACCCCATCACTAGAGTGCTCTGACCCTGGGCTTTCACGGG CCCCATTCCACCGCCTCCCCAACTTGAGCCTGTGACCTTGGGACCAAAGGGGGAGTCCCTCGTC CCACCCTCCAGCTTTTCCTCAGGGTGTCCTGAGGTCCAAGATTCTGGAGCAATCTGACCCTTCT CCAAAGGCTCTGTTATCAGCTGGGCAGTGCCAGCCAATCCCTGGCCATTTGGCCCCAGGGGACG TGGGCCCTGCAGGCTGCAGGAGGGCACTGGAGCTGGGAGGTCTCGTCCCAGCCCTCCCCATCTC GGGGCTGCTGTGTGGACGGCGCTGCCTCAGGCACTCTCCTGTCTGAACCTGCCCTTACTGTGTT CGGGAGGGAGTCTCAGGAGGAGGCTGCCCTGAGGGGGCTGGGGAGGGGGTACCTCATGAGGACCA GGGTGGAGCTGAGAAGAGGAGGAGGTGGGGGCCTGGAGGTGCTGGTAGCTGAGGGGACGGCCAAG TGAGAGGGGAGGGAAGTCCTGGGAGGATCCTGAGCTGCTGTTGCAGTCTAACCCACTAAT CAGTTCTTAGATTCAGGGGAAGGGCAGCCAACAACTCAGAATGGGGGCTTTCGGGGAGGGC GCCTAGTCCCCCCAGCTCTAAGCAGCCAGGAGGGACCTGCATCTAAGCATCTGGGTTGCCATGG CAATGGCATGCCCCCAGCTACTGTATGCCCCCGACCCCGCAGAGGCAGAATGAACCCATAGG

Fig. 4 cont.

GAGCTGATCGTAATGTTTATCATGTTACTTCCCCACCCCTACATTTTTTGAAATAAAATAAAGGA ATTTTATTCTCACTTCCTGTGTTTCCTGCACGCCAATGCCAGGCCATGGTATTGGGTGATAGAT GAGGCCCTTCTAGCTGGGCCTGGGCACCAGGAGGGGTCCCCATGCTTGCATCTCTCTGTATCCC GGAACTTGGTGGAAATGACCCAAAAACATTGGCCCATCTTCCTCCTCTCAGCAGCCGACCCCAG CCCAATTCTAAAACAGGGCTGAGAGCCACCTCTCAGCAGCTGACCCCTACCCAAGGAGGGTGGC ATGGAGGGGCTTGCAGAGACTCTTCCTAACATCCTCCCCCCAGCTGTCTCCCCAAGTGCAAT CTGCCCTCCCATCCCTGGGCCAGCCAGCTTCCACAGAGCGCCAGGCCAAACAGAATTCCTGGCC TCCTTGGAAGGGGCTGGAGAAGGCCGGGAGCAGTGGCTCACGCCTGTAATCCCAGCACTTTGGG AGGCTGAGGCGGCAGATCACAAAGTCAAGAGATTGAGACCATCCTGGCCAACATGGTGAAACC CCGTCTCTACTAAAAATACAAAAATTAGGCCGGGTGCGGTGGCTCACGCCTGTAATCCCAGCAC TTTGGGAGGCCGAGGCAGATCACGAGGTCAGGAGATCAAGACCATCCTGGCTAACACGGT GAAACCCCGTCTCTACTAAAAATACAAAAATTAGCTGGGCGAGGTGGCGGGTGCCTGTAGTCC CAGCTACGTGGGAGGCTGAGGCAAGAGAATGGCGTGAACCCCGGCGGGGCAGAGCCTGCAGAGA **AAAAAAATTAGCTGGGCATGGTGCGTGCCTGCAGTCCCAGCTACTCAGGAGGCTGAGACG** GGAGAATCGCTTGAACCTGGGAGGCAGAGGTTGCAGTGAGCCAAGATCGCTCACTCCAGCCTAG

7 / 14

PCT/EP00/01979

Fig. 5

FADS3 cDNA

TTCGCTTCCCTCGGGGTCTTGCTCGGACCTCGGCCACCGCCTGGGATCCCCAGGACTCGTGCGT GCAGCATGGGCGCGTCGGGGAGCCGGGACCGCGGGAGCCCGCGCAGCCGGGGGCACCGCT GCCCACCTTCTGCTGGGAGCAGATCCGCGCGCACGACCAGCCCGGCGACAAGTGGCTGGTCATC GAGCGCCGCGTCTACGACATCAGCCGCTGGGCACAGCGGCACCCAGGGGGCAGCCGCCTCATCG GCCACCACGGCGCTGAGGACGCCACGGATGCCTTCCGTGCCTTCCATCAAGATCTCAATTTTGT CCCCTGAATGCGCAGCTGGTCGAGGACTTCCGAGCCCTGCACCAGGCAGCCGAGGACATGAAGC TGTTTGATGCCAGTCCCACCTTCTTTGCTTTCCTACTGGGCCACATCCTGGCCATGGAGGTGCT CTGGCCATCTCTCAGGCTCAGTCCTGGTGTCTGCAGCATGACCTGGGCCATGCCTCCATCTTCA AGAAGTCCTGGTGGAACCACGTGGCCCAGAAGTTCGTGATGGGGCAGCTAAAGGGCTTCTCCGC CCACTGGTGGAACTTCCGCCACTTCCAGCACCACGCCAAGCCCAACATCTTCCACAAAGACCCA GACGTGACGGTGGCGCCCGTCTTCCTCCTGGGGGAGTCATCCGTCGAGTATGGCAAGAAGAAAC GCAGATACCTACCCTACAACCAGCAGCACCTGTACTTCTTCCTGATCGGCCCGCCGCTGCTCAC CTCTGGGCCGCCAGCTTCTATGCCCGCTTCTTCTTATCCTACCTCCCCTTCTACGGCGTCCCTG GGGTGCTCTTCTTTGTTGCTGTCAGGGTCCTGGAAAGCCACTGGTTCGTGTGGATCACACA GATGAACCACATCCCCAAGGAGATCGGCCACGAGAAGCACCGGGACTGGGTCAGCTCTCAGCTG GCAGCCACCTGCAACGTGGAGCCCTCACTTTTCACCAACTGGTTCAGCGGGCACCTCAACTTCC AGATCGAGCACCACCTCTTCCCCAGGATGCCGAGACAACACTACAGCCGGGTGGCCCCGCTGGT CAAGTCGCTGTGTGCCAAGCACGGCCTCAGCTACGAAGTGAAGCCCTTCCTCACCGCGCTGGTG CTTCCCCTCGGCCCCTCACATGTGTATTCAGCAGCCCTATGGCCTTGGCTCTGGGCCTGATGG GACAGGGGTAGAGGGAAGGTGAGCATAGCACATTTTCCTAGAGCGACAATTGGGGGAAAGCTGT TATTTTTATATTAAAATACATTCAGATGT

Fig. 6

FADS1

Met 1	Ala	Pro	Asp	Prc 5	Val	Ala	Ala	Glu	Thr 10	Ala	Ala	Gln	Gly	Pro 15	Thr
Pro	Arg	Tyr	Phe 20	Thr	Trp	Asp	Glu	Val 25	Ala	Gln	Arg	Ser	Gly 30	Cys	Glu
Glu	Arg	Trp 35	Leu	Val	Ile	Asp	Arg 40	Lys	Val	Tyr	Asn	Ile 45	Ser	Glu	Phe
Thr	Arg 50	Arg	His	Pro	Gly	Gly 55	Ser	Arg	Val	Ile	Ser 60	His	Tyr	Ala	Gly
Gln 65	Asp	Ala	Thr	Asp	Pro 70	Phe	Val	Ala	Phe	His 75	Ile	Asn	Lys	Gly	Leu 80
Val	Lys	Lys	Tyr	Met 85	Asn	Ser	Leu	Leu	Ile 90	Gly	Glu	Leu	Ser	Pro 95	Glu
Gln	Pro	Ser	Phe 100	Glu	Pro	Thr	Lys	Asn 105	Lys	Glu	Leu	Thr	Asp 110	Glu	Phe
Arg	Glu	Leu 115	Arg	Ala	Thr	Val	Glu 120	Arg	Met	Gly	Leu	Met 125	Lys	Ala	Asn
His	Val 130	Phe	Phe	Leu	Leu	Tyr 135	Leu	Leu	His	Ile	Leu 140	Leu	Leu	Asp	Gly
Ala 145	Ala	Trp	Leu	Thr	Leu 150	Trp	Val	Phe	Gly	Thr 155	Ser	Phe	Leu	Pro	Phe
Leu	Leu	Cys	Ala	Val 165	Leu	Leu	Ser	Ala	Val 170	Gln	Ala	Gln	Ala	Gly 175	Trp
Leu	Gln	His	Asp 180	Phe	Gly	His	Leu	Ser 185	Val	Phe	Ser	Thr	Ser 190	Lys	Trp
Asn	His	Leu 195	Leu	His	His	Phe	Val 200	Ile	Gly	His	Leu	Lys 205	Gly	Ala	Pro
Ala	Ser 210	Trp	Trp	Asn	His	Met 215	His	Phe	Gln	His	His 220	Ala	Lys	Pro	Asn
Cys 225	Phe	Arg	Lys	Asp	Pro 230	Asp	Ile	Asn	Met	His 235	Pro	Phe	Phe	Phe	Ala 240
Leu	Gly	Lys	Ile	Leu 245	Ser	Val	Glu	Leu	Gly 250	Lys	Gln	Lys		Lys 255	Туг
Met	Pro	Tyr	Asn 260	His	Gln	His	Lys	Tyr 265	Phe	Phe	Leu	Ile	Gly 270	Pro	Pro
Ala	Leu	Leu 275	Pro	Leu	Tyr	Phe	Gln 280	Trp	Tyr	Ile	Phe	Tyr 285	Phe	Val	Ile

Fig. 6 cont.

Gln	Arg 290	Lys	Lys	Trp	Val	Asp 295	Leu	Ala	Trp	Met	Ile 300	Thr	Phe	Tyr	Val
Arg 305	Phe	Phe	Leu	Thr	Tyr 310	Val	Pro	Leu	Leu	Gly 315	Leu	Lys	Ala	Phe	Leu 320
Gly	Leu	Phe	Phe	Ile 325	Val	Arg	Phe	Leu	Glu 330	Ser	Asn	Trp	Phe	Val 335	Trp
Val	Thr	Gln	Met 340	Asn	His	Ile	Pro	Met 345	His	Ile	Asp	His	Asp 350	Arg	Asn
Met	Asp	Trp 355	Val	Ser	Thr	Gln	Leu 360	Gln	Ala	Thr	Cys	Asn 365	Val	His	Lys
Ser	Ala 370	Phe	Asn	Asp	Trp	Phe 375	Ser	Gly	His	Leu	Asn 380	Phe	Gln	Ile	Glu
His 385	His	Leu	Phe	Pro	Thr 390	Met	Pro	Arg	His	Asn 395	Tyr	His	Lys	Val	Ala 400
Pro	Leu	Val	Gln	Ser 405	Leu	Суз	Ala	Lys	His 410	Gly	lle	Glu	Туг	Gln 415	Ser
Lys	Pro	Leu	Leu 420	Ser	Ala	Phe	Ala	Asp 425	Ile	Île	His	Ser	Leu 430	Lys	Glu
Ser	Gly	Gln 435	Leu	Trp	Leu	Asp	Ala 440	Tyr	Leu	His	Gln				

Fig. 7

FADS2

Met 1	Gly	Lys	Gly	Gly 5	Asn	Gln	Gly	Glu	Gly 10	Ala	Ala	Glu	Arg	Glu 15	Va]
Ser	Val	Pro	Thr 20	Phe	Ser	Trp	Glu	Glu 25	Ile	Gln	Lys	His	Asn 30	Leu	Arg
Thr	Asp	Arç 35	Trp	Leu	Val	Ile	Asp 40	Arg	Lys	Val	Tyr	Asn 45	Ile	Thr	Lys
Frp	Ser 50	Ile	Gln	His	Pro	Gly 55	Gly	Gln	Arg	Val	Ile 60	Gly	His	Tyr	Ala
31y 65	Glu	Asp	Ala	Thr	Asp 70	Ala	Phe	Arg	Ala	Phe 75	His	Pro	Asp	Leu	Glu 80
Phe	Val	Gly	Lys	Phe 85	Leu	Lys	Pro	Leu	Leu 90	Ile	Gly	Glu	Leu	Ala 95	Pro
Slu	Glu	Prc	Ser 100	Gln	qzA	His	Gly	Lys 105	Asn	Ser	Lys	Ile	Thr 110	Glu	Asp
?he	Arg	Ala 115	Leu	Arg	Lys	Thr	Ala 120	Glu	Asp	Met	Asn	Leu 125	Phe	Lys	Thr
Asn	His 130	Val	Phe	Phe	Leu	Leu 135	Leu	Leu	Ala	His	Ile 140	Ile	Ala	Leu	Glu
Ser 145	Ile	Ala	Trp	Phe	Thr 150	Val	Phe	Tyr	Phe	Gly 155	Asn	Gly	Trp	Ile	Pro 160
hr	Leu	Ile	Thr	Ala 165	Phe	Val	Leu	Ala	Thr 170	Ser	Gln	Ala	Gìn	Ala 175	Gly
,rb	Leu	Gln	His 180	Asp	Tyr	Gly	His	Leu 185	Ser	Val	Tyr	Arg	Lys 190	Pro	Lys
rp	Asn	His 195	Leu	Val	His	Lys	Phe 200	Val	Ile	Gly	His	Leu 205	Lys	Gly	Ala
Ser	Ala 210	Asn	Trp	Trp	Asn	His 215	Arg	His	Phe	Gln	His 220	His	Ala	Lys	Pro
lsn !25	Ile	Phe	His	Lys	Asp 230	Pro	Asp	Val	Asn	Met 235	Leu	His	Val	Phe	Val 240
eu	Gly	Clu	Trp	Gln 245	Pro	Ile	Glu	Тут	Gly 250	Lys	Lys	Lys	Leu	Lys 255	Tyr
eu	Pro	Tyr	Asn 260	His	Gln	His	Glu	Tyr 265	Phe	Phe	Leu	Ile	Gly 270	Pro	Pro
eu	Leu	Ile 275	Pro	Met	Tyr		Gln 280		Gln	Ile		Met 285	Thr	Met	Ile

Fig. 7 cont.

 Val
 His
 Lys
 Asn
 Trp
 Val
 Asp 295
 Leu
 Ala
 Trp
 Ala
 Val
 Ser
 Tyr
 Tyr
 Ile

 Arg
 Phe
 Phe
 Phe
 Ile
 Trp
 Jle
 Pro
 Phe
 Trp
 Gly
 Jle
 Leu
 Gly
 Ala
 Leu
 Jle
 Jle</

Fig. 8

FADS3

Met l	Gly	Gly	Val	Gly 5	Glu	Pro	Gly	Pro	Arg 10	Glu	Gly	Pro	Ala	Gln 15	Pro
Sly	Ala	Pro	Leu 20	Pro	Thr	Phe	Cys	Trp 25	Glu	Gln	Ile	Arg	Ala 30	His	Asp
Sln	Pro	Gly 35	Asp	Lys	Trp	Leu	Val 40	Ile	Glu	Arg	Arq	Val 45	Tyr	Asp	Ile
Ser	Arg 50	Trp	Ala	Gln	Arg	His 55	Pro	Gly	Gly	Ser	Arg 60	Leu	Ile	Gly	His
His 65	Gly	Ala	Glu	Asp	Ala 70	Thr	Asp	Ala	Phe	Arg 75	Ala	Phe	His	Gln	Asp 80
Leu	Asn	Phe	Val	Arg 85	Lys	Phe	Leu	Gln	Pro 90	Leu	Leu	Ile	Gly	Glu 95	Leu
Ala	Pro	Glu	Glu 100	Pro	Ser	Glr.	Asp	Gly 105	Pro	Leu	Asn	Ala	Gln 110	Leu	Val
Glu	Asp	Phe 115	Arg	Ala	Leu	His	Gln 120	Ala	Ala	Glu	Asp	Met 125	Lys	Leu	Phe
Asp	Ala 130	Ser	Pro	Thr	Phe	Phe 135	Ala	Phe	Leu	Leu	Gly 140	His	Ile	Leu	Ala
Met 145	Glu	Val	Leu	Ala	Trp 150	Leu	Leu	Ile	Tyr	Leu 155	Leu	Gly	Pro	Gly	Trp 160
Val	Pro	Ser	Ala	Leu 165	Ala	Ala	Phe	Ile	Leu 170	Ala	Ile	Ser	Gln	Ala 175	Gln
Ser	Trp	Cys	Leu 180	Gln	His	Asp	Leu	Gly 185	His	Ala	Ser	Ile	Phe 190	Lys	Lys
Ser	Trp	Trp 195	Asn	His	Val	Ala	Gln 200	Lys	Phe	Val	Met	Gly 205	Gln	Leu	Lys
Gly	Phe 210	Ser	Ala	His	Trp	Trp 215	Asn	Phe	Arg	His	Phe 220	Gln	His	His	Ala
Lys 225	Pro	Asn	Ile	Phe	His 230	Lys	Asp	Pro	Asp	Val 235	Thr	Val	Ala	Pro	Val 240
Phe	Leu	Leu	Gly	Glu 245	Ser	Ser	Val	Glu	Tyr 250	Gly	Lys	Lys	Lys	Λrg 255	λrg
Tyr	Leu	Pro	Tyr 260	Asn	Gln	Gln	His	Leu 265	Tyr	Phe	Phe	Leu	Ile 270	Gly	Prc
Pro	Leu	Leu 275	Thr	Leu	Val	Asn	Phe 280	Glu	Val	Glu	Asn	Leu 285	Ala	Tyr	Met

Fig. 8 cont.

Leu	Val 290	Cys	Met	Gln	Trp	Ala 295	Asp	Leu	Leu	Trp	Ala 300	Ala	Ser	Phe	Tyr
Ala 305	Arg	Phe	Phe	Leu	Ser 310	Tyr	Leu	Pro	Phe	Tyr 315	Gly	Val	Pro	Gly	Val 320
Leu	Leu	Phe	Phe	Val 325	Ala	Val	Arg	Val	Leu 330	Glu	Ser	His	Trp	Phe 335	Val
Trp	Ile	Thr	Gln 340	Met	Asn	His	Ile	Pro 345	Lys	Glu	Ile	Gly	His 350	Glu	Lys
His	Arg	Asp 355	Trp	Val	Ser	Ser	Gln 360	Leu	Ala	Ala	Thr	Cys 365	Asn	Val	Glu
Pro	Ser 370	Leu	Phe	Thr	Asn	Trp 375	Phe	Ser	Gly	His	Leu 380	Asn	Phe	Gln	Ile
Glu 385	His	His	Leu	Phe	Pro 390	Arg	Met	Pro	Arg	His 395	Asn	Tyr	Ser	Arg	Val 400
Ala	Pro	Leu	Val	Lys 405	Ser	Leu	Cys	Ala	Lys 410	His	Gly	Leu	Ser	Tyr 415	Glu
Val	Lys	Prc	Phe 420	Leu	Thr	Ala	Leu	Val 425	Asp	Ile	Val	Arg	Ser 430	Leu	Lys
Lys		Gly		Ile	Trp							Glr.			

Fig. 9

Oligonucleotide primers to amplify FADS1 cDNA

```
TU12-R5 (5'-CGCCTGACAGCCCCTGCT-3')
TU12-F10 (5'-CAGGTGGCCAATCACAAAAT-3')

TU12-R7 (5'-CTCAAAGTGGAACCATCTGCTA-3')
TU12-F9 (5'-GGAAACCCAGTCCATGTTCC-3')

TU12-R6 (5'-CCTGGGCCTTTTCTTCATAGT-3')
TU12-F5 (5'-CTCAAGCTCCCTCTGCCT-3')
```

Oligonucleotide primers to amplify FADS2 cDNA

```
TU13-R4 (5'-TCAGAAGCATAACCTGCGC-3')
TU13-F7 (5'-CCAGTTCACCAATCAGCAGG-3')

TU13-R3 (5'-CCCCTGCTGATTGGTGAACT-3')
TU13-F4 (5'-TGTAGGGCAGGTATTCAGC-3')

TU13-R2 (5'-AGCCCATCGAGTACGGCAA-3')
TU13-F1 (5'-CCTCAGAACAAAAGCCCATC-3')
```

Oligonucleotide primers to amplify FADS3 cDNA

```
TU19-R2 (5'-TCTTGCTCGGACCTCGGC-3')
TU19-F2 (5'-GTGATCCACACGAACCAGTG-3')
TU19-R3 (5'-GAAGAACCCAGCCAGGATG-3')
TU19-F3 (5'-ACAGCTTTCCCCCAATTCTC-3')
```

SEQUENCE LISTING

```
<110> MultiGene Biotech GmbH
    <120> cDNA molecules of the members of gene family encoding
          human fatty acid desaturases and their use in diagnosis
          and therapy
    <130> Anm. 99/002 WO
10
    <140>
    <141>
    <150> EP 99104664.0
    <151> 1999-03-09
    <160> 22
    <170> PatentIn Ver. 2.1
20
    <210> 1
    <211> 4205
    <212> DNA
    <213> Unknown Organism
25
    <220>
    <223> Description of Unknown Organism:
          unknown
30
    <400> 1
    cacteetgga geoegeggae eccgageacg egeotgaeag eccetgetgg eccggegege 60
    ggcgtcgcca ggccagctat ggcccccgac ccggtggccg ccgagaccgc ggctcaggga 120
    cctaccccgc gctacttcac ctgggacgag gtggcccagc gctcagggtg cgaggagcgy 180
    tggctagtga tcgaccgtaa ggtgtacaac atcagcgagt tcacccgccg gcatccaggg 240
    ggctcccggg tcatcagcca ctacgccggg caggatgcca cggatccctt tgtggccttc 300
    cacatcaaca agggeettgt gaagaagtat atgaactete teetgattgg agaactgtet 360
    ccagagcagc ccagctttga gcccaccaag aataaagagc tgacagatga gttccgggag 420
    ctgcgggcca cagtggagcg gatggggctc atgaaggcca accatgtctt cttcctgctg 480
    tacctgctgc acatettgct getggatggt geageetgge teaccetttg ggtetttggg 540
    acgtcctttt tgcccttcct cctctgtgcg gtgctgctca gtgcagttca ggcccaggct 600
    ggctggctgc agcatgactt tgggcacctg tcggtcttca gcacctcaaa gtggaaccat 660
    ctgctacatc attttgtgat tggccacctg aagggggccc ccgccagttg gtggaaccac 720
    atgcacttcc agcaccatgc caagcccaac tgcttccgca aagacccaga catcaacatg 780
45
    catecettet tetttgeett ggggaagate etetetgtgg agettgggaa acagaagaaa 840
    aaatatatgc cgtacaacca ccagcacaaa tacttcttcc taattgggcc cccagccttg 900
    ctgcctctct acttccagtg gtatattttc tattttgtta tccagcgaaa gaagtgggtg 960
    gacttggcct ggatgattac cttctacgtc cgcttcttcc tcacttatgt gccactattg 1020
    gggcigaaag ccttcctggg ccttttcttc atagtcaggt tcctggaaag caactggttt 1080
    gtgtgggtga cacagatgaa ccatattccc atgcacattg atcatgaccq gaacatggac 1140
    tgggtttcca cccagctcca ggccacatgc aatgtccaca agtctgcctt caatgactgg 1200
    ttcagtggac acctcaactt ccagattgag caccatcttt ttcccacgat gcctcgacac 1260
    aattaccaca aagtggctcc cctggtgcag tccttgtgtg ccaagcatgg catagagtac 1320
    cagtccaage ceetgetgte ageettegee gacatcatee acteactaaa ggagtcaggg 1380
    cagetetgge tagatgeeta tetteaceaa taacaacage caccetgeee agtetggaag 1440
    aagaggagga agactotgga gocaaggoag aggggagott gagggacaat gocactatag 1500
    tttaatactc agagggggtt gggtttgggg acataaagcc tctgactcaa actcctccct 1560
    tttatcttct agccacagtt ctaagaccca aagtgggggg tggacacaga agtccctagg 1620
    agggaaggag ctgttggggc aggggtgtaa attatttcct ttttctagtt tggcacatgc 1680
    aggtagttgg tgaacagaga gaaccaggag ggtaacagaa gaggagggac ctactgaacc 1740
    cagagicagg aagagatita acactaaaat tocactcaig cogggegigg igcaegegee 1800
     tgtaatccca gctacccagg aggctgaggc aggagaatcg cttgaaccgg ggaggtggag 1860
```

WO 00/53770 PCT/EP00/01979

```
gttgcagtga gctgagatca cgccattgta ctccagcctg ggcgacagag caagactcca 1920
    tttcaaaaaa aaaaaaaaaa aaaaaaatcc actcatataa aaggtgagct cagctcactg 1980
    gtccatttct cagtggcttc tccatcctca tttccaaacc tcagagggat aaggcagttg 2040
    aacctgatga gcaagaatta taacagcaag gaaacattaa tgcttagaat tctgagatcc 2100
    agcacaactc agtctgtggg agctcagctc gctgcccagg gataggtatg acctatgtct 2160
    gccttaggct gctgggagat gccattctcc agtttcagaa gcaggcaggg caaaggtcaa 2220
    gactgtggta tiggggtctt tiggctctga aggatcctgg aaccactgat titggtttat 2280
    tecetecagg gictaaagag aacaagaggt getagetett accaaaacag atggtagaga 2340
    gagttgctgg ctatttaaaa agctctttca tcttttaatt cacctcttct tttcacctct 2400
    ttaaccactc ctcaggaaca gaacacttct aggactgggg gtcttttagc tccataagca 2460
    aqtgagcaga tgggacaagt tagtcttttc tccctagaaa caaaggggat gcccagtggt 2520
    ttccctttgc ttcccaacct aaaatttcaa gtttaataaa atagcaatta gcagaagtga 2580
    ccaaattggg agataattat cagtcatgag gaaagacaca gatttcggtc ataaagaatg 2640
    taagggctat aagtagaaac tttctataac ctaaatgatg ttatagaatt atttttgagc 2700
15
    aggagcagaa agattaaata tgatcacttc atacttctaa atcagaaata ggaagattaa 2760
    aaccacagaa cagtitgtga titetatige tggtagetag gtatettaet etgteeacte 2820
    ttgttcaagt atctaactct tctggaaacc aaataggctt tagaagagat tatcctatat 2880
    tcctatcagt ataatactaa aatgtaactt tttaatcatc tggtttttaa aagataaaca 2940
    gtttagccca tctctccaga gagcaaacat aggaatatga ctcaggagcc tcctagggct 3000
20
    tatcatcage ceteacacee gettececet ceaacecaca geetttgett ecaggtggca 3060
    ggattactac tttgcctctt cagcagcatc tactctaggc atattgatca ttttagacac 3120
    tgggagaaga gaacctcaaa ctaggaggaa aagacagagc ctccacttag ttttgggagg 3180
    ggatggcaga cagtcaagga gatgagcgtc ctaaggcatg ttgggatagg gtcagatgca 3240
    ccacccatgg agaggttigt caacacaaag acatggaagg ttagaggttt gtcaacaaaa 3300
    agacatggaa ggttaggttt gtcaacacaa agacatggaa gattagaggt ttgtcaacac 3360
    aaaqatacaq qaaqaatqqq ctqcaqaaqa tttagatgtt ttccatttgg gcacatttta 3420
    cttagctgga gaactaggtt taaaacagcc tgggtaggaa aattagaagc aagctggatg 3480
    cagtggctca tgcctgtaat cccaacactt ttgggaggtc caggcaggag gatcacttgg 3540
    gcccaggagg tcaagcctgc agcgagctga gatcacacca ctgcactcca gcctggggtg 3600
30
    atagaacaag accetgtete aaaaaaaaaa aaaaacaaca aaaacttaga attgaggagt 3650
    tgtacctcca ttggcttcct cactccaaaa taggtgctga tccttcctat tcctattctt 3720
    tgccaccttt tgggtgtggt gtcaccagcc tgtttagcca agtagctttg ggcataggct 3780
    gcccaatctg agcaaacacc agtgaggctc tattgagcaa gaccaagtcc tcaaagcacc 3840
    tgaaccactg tggccttctc agcctacagc agtgtggtct cttacatggc cacaaaggga 3900
    cacacagtga caaaaggctc ggaatgttac aatggtaaaa tgagtgatct caaatccact 3960
    gacagatata aaataggott agagaggaaa agotgootot ggtcaagtag atcatggoag 4020
    catgaattcc aactcacttt tttacgaact ccaacttcta tgtttatctt tgttactttc 4030
    acttttttac aacctgncag aggcattttt taaatcaggc ccaatatcag tattctttt 4140
    gtgtgtgcca attttgttat cacatcccta tgaagttgaa aaataaagtt aattttgacc 4200
40
    aaaaq
    <210> 2
    <211> 4089
    <212> DNA
45
    <213> Unknown Organism
    <220>
    <223> Description of Unknown Organism:
50
           unknown
    <400> 2
    cgtcacagtc ggcaggcagc atggggaagg gagggaacca gggcgagggg gccgccgagc 60
    gcgaggtgtc ggtgcccacc ttcagctggg aggagattca gaagcataac ctgcgcaccg 120
    acaggtggct ggtcattgac cgcaaggttt acaacatcac caaatggtcc atccagcacc 180
    cggggggcca gcgggtcatc gggcactacg ctggagaaga tgcaacggat gccttccgcg 240
    cottocacco tgacotggaa ttogtgggca agttottgaa accootgotg attggtgaac 300
    tggccccgga ggagcccagc caggaccacg gcaagaactc aaagatcact gaggacttcc 360
    gggccctgaq qaaqacggct gaggacatga acctgttcaa gaccaaccac gtgttcttcc 420
    tectectect ggeecacate ategecetgg agageattge atgetteact gtettttaet 480
    ttggcaatgg ctggatteet acceteatea eggeettig: eettgetaes teteaggeec 540
     aagotggatg cotgoaacat gattatggoo acctqtotgo otacagaaaa cocaagoga 600
```

				•			
	accaccttgt	ccacaaattc	gtcattggcc	acttaaaggg	tgcctctgcc	aactggtgga	660
	atcatcgcca	cttccagcac	cacgccaagc	ctaacatctt	ccacaaggat	cccgatgtga	120
	acatoctoca	catatttatt	ctgggcgaat	ggcagcccat	cgagtacggc	aagaagaagc	180
_	tgaaatacct	gccctacaat	caccagcacg	aatacttctt	cctgattggg	ccgccgctgc	840
5	tcatccccat	gtatttccag	taccagatca	tcatgaccat	gatcgtccat	aagaactggg	900
	tagacctage	ctgggccgtc	agctactaca	teeggttett	catcacctac	atccctttct	960
	acggcatcct	gggagcctc	cttttcctca	acttcatcag	gttcctggag	agccactggt	1020
	ttatatagat	cacacagatg	aatcacatcg	tcatggagat	tgaccaggag	gcctaccgtg	1080
40	actggttcag	tagccagctg	acagccacct	gcaacgtgga	gcagtccttc	ttcaacgact	1140
10	ggttcagtgg	acaccttaac	ttccagattg	agcaccacct	cttccccacc	atgccccggc	1200
	acaacttaca	caagatcgcc	ccgctggtga	agtctctatg	tgccaagcat	ggcattgaat	1260
	accaggagaa	gccgctactg	agggccctgc	tggacatcat	caggtccctg	aagaagtctg	1320
	ggaagctgtg	gctggacgcc	taccttcaca	aatgaagcca	cageceeegg	gacaccgtgg	1380
1 =	ggaaggggtg	caggtggggt	gatggccaga	ggaatgatgg	gcttttgttc	tgaggggtgt	1440
15	ccgagaggct	ggtgtatgca	ctgctcacgg	accccatgtt	ggatctttct	ccctttctcc	1500
	tctcctttt	ctcttcacat	ctccccata	gcaccctgcc	ctcatgggac	ctgccctccc	1560
	tcagccgtca	gccatcagcc	atggccctcc	cagtgcctcc	tagccccttc	ttccaaggag	1620
	cagagaggtg	gccaccgggg	gtggctctgt	cctacctcca	ctctctgccc	ctaaagatgg	1980
20	gaggagacca	gcggtccatg	ggtctggcct	gtgagtctcc	ccttgcagcc	tggtcactag	1000
20	gcatcacccc	cgctttggtt	cttcagatgc	tcttaggggtt	cataggggca	ggtcctagtc	1060
	gggcagggcc	cctgaccctc	ccggcctggc	ttcactctcc	ctgacggctg	ccattggtcc	1920
	accetttcat	agagaggcct	gctttgttac	aaagctcggg	totocotcot	geageteggt	1920
	taagtacccg	aggeetetet	taagatgtcc	agggeeecag	geeegegge	acayccaycc	2040
25	caaaccttgg	gccctggaag	agtcctccac	cccatcacta	gagtgctctg	accorgage	2110
	ttcacgggcc	ccattccacc	gcctccccaa	cttgagestg	cgaccttggg	accasagggg	2160
	gagtccctcg	tetettgtga	ctcagcagag	geagiggeea	tatactana	tccaecattc	2220
	ggcctggagg	tassactta	cctccagctt ccaaaggctc	tattatcagg	tooocagtoo	cadccaatcc	2280
	ctagageate	aggeograga	gacgtgggcc	ctacaaacta	caddagaaaca	ctggagctgg	2340
30	ciggedattt	ggeeccaggg	cccatctcgg	aactastata	tagacagacac	tacctcagge	2400
	gaggtetegt	ctcagcctcc	cottactgtg	tttaacctgt	tactccada	tacattetaa	2460
	tagagggg	cagcagggt	gggccttgtg	acaatotgo	tttcaccaca	taaccttacc	2520
	teggtagggg	tgactgtcag	ggagggccag	ggagggagag	caaaaaaaaa	totcaggagg	2580
	aggetgeeet	gaggggtag	ggagggggta	cctcatgagg	accagggtag	agctgagaag	2640
35	aggaggaggt	gagaactaga	ggtgctggta	gctgaggga	cgggcaagtg	agagggagg	2700
	gagggaagtc	ctoggaggat	cctgagctgc	tqttqcaqtc	taacccacta	atcagttctt	2760
	agattcaggg	gaagggcagg	caccaácaác	tcagaatggg	ggctttcggg	gagggcgcct	2820
	agtccccca	gctctaagca	gccaggaggg	acctgcatct	aagcatctgg	gttgccatgg	2880
	caatggcatg	ccccccagct	actgtatgcc	cccgaccccc	gcagaggcag	aatgaaccca	2940
40	tagggagetg	atcqtaatqt	ttatcatgtt	acttccccac	ccctacattt	tttgaaataa	3000
	aataaggaat	tttattctca	cttcctgtgt	ttcctgcacg	ccaatgccag	gccatggtat	3060
	tgggtgatag	atgaggccct	tctagctggg	cctgggcacc	aggaggggtc	cccatgctty	3120
	catctctctg	tatcccctcc	ctcccctgtg	gccatcccac	ccgcctctcc	ctgctgcctc	3180
45	tgaaattcat	tetggggeee	ggaacttggt	ggaaatgacc	caaaaacatt	ggcccatctt	3240
45	cctcctctca	gcagccgacc	ccagcccaat	tctaaaacag	ggctgagagc	cacctctcag	3300
	cagctgaccc	ctacccaagg	agggtggcat	ggaggggctt	gcagagactc	ttcctaacat	3360
	cctcccccc	cagctgtctc	cccaagtgca	atctgccctc	ccatccctgg	gccagccagc	342C
	ttccacagag	caccagacca	aacagaattc	ctggcctcct	tggaaggggc	tggagaaggc	34BO
EΩ	coordacagt	ggctcacgcc	tgtaatccca	gcacttiggg	aggctgaggc	gggcagatca	3540
50	caaaqtcaaq	agattgagac	catcctggcc	aacatggtga	aaccccgtct	ctactaaaaa	3600
	tacaaaaatt	aggccgggtg	cggtggctca	cgcctytaat	cccagcactt	tgggaggccg	3660
	aggcgggcag	atcacgaggt	caggagatca	agaccatcct	ggctaacacg	gtgaaacccc	3720
	gtctctacta	aaaatacaaa	aaattagctg	ggcgaggtgg	cgggtgcctg	tagtcccagc	3780
55	tacqtqqqaq	gctgaggcaa	gagaatggcg	t.gaaccccgg	cggggcagag	cctgcagaga	3840
55	gctgagatca	caccactgta	ctccagcctg	ggcgacagcg	agactccgtc	tcaaaaaaaa	3900
	aaaaaaaaa	aattagctgg	gcatggtggt	gcgtgcctgc	agtcccagct	actcaggagg	3960
	ctgagacggg	agaatcgctt	gaacctggga	ggcagaggtt	gcagtgagcc	aagatcgctc	4020
		agcgacagag	tgagactcca	tctcaaataa	ataaataaat	taattaatta	4000
60	aattaaatt						4089
00							

```
<210> 3
    <211> 1757
    <212> DNA
    <213> Unknown Organism
    <220>
    <223> Description of Unknown Organism:
          unknown
10
    <400> 3
    ggccgcggcg gcagggcggg gccggagcag cgggcggcgg cggaggcggc gcccgggagc 60
    gctcttcgct tccctcgggg tcttgctcgg acctcggcca ccgcctggga tccccaggac 120
    tegtgegtge ageatgggeg gegtegggga geegggaeeg egggagggae eegegeagee 180
    gggggcaccg ctgcccacct tctgctggga gcagatccgc gcgcacgacc agcccggcga 240
    caagtggctg gtcatcgagc gccgcgtcta cgacatcagc cgctgggcac agcggcaccc 300
    agggggage egecteateg gecaccaegg egetgaggac gecaeggatg cetteegtge 360
    cttccatcaa gatctcaatt ttgtgcgcaa gttcctacag cccctgttga ttggagagct 420
ggctccggaa gaacccagce aggatggace cctgaatgcg cagctggtcg aggacttccg 480
    agocctgcac caggcagccg aggacatgaa gctgtttgat gccagtccca ccttctttgc 540
    tttcctactg ggccacatcc tggccatgga ggtgctggcc tggctcctta tctacctcct 600
    gggtcctggc tgggtgccca gtgccctggc cgccttcatc ctggccatct ctcaggctca 660
    gtoctggtgt ctgcagcatg acctgggcca tgcctccatc ttcaagaagt cctggtggaa 720
    ccacgtggcc cagaagttcg tgatggggca gctaaagggc ttctccgccc actggtggaa 780
25 cttccgccac ttccagcacc acgccaagcc caacatette cacaaagace cagacgtgac 840
    ggtggcgccc gtcttcctcc tgggggagtc atccgtcgag tatggcaaga agaaacgcag 900
    atacctacce tacaaccage ageacctgta cttetteetg ateggeeege egetgeteae 960
    cctggtgaac tttgaagtgg aaaatctggc gtacatgctg gtgtgcatgc agtgggcgga 1020
    titigetetgg geogeoaget tetatgeoeg ettettetta tectacetee cettetaegg 1080
30 cgtccctggg gtgctgctct tctttgttgc tgtcagggtc ctggaaagcc actggttcgt 1140
    gtgcatcaca cagatgaacc acatccccaa ggagatcggc cacgagaagc accgggactg 1200
    ggtcagetet cagetggcag ccacetgcaa egtggageee teaettttea ccaaetggtt 1260
    cagogggcac ctcaacttcc agatogagca ccacctcttc cccaggatgc cgagacacaa 1320
35 ctacageegg gtggeeeege tggtcaagte getgtgtgee aageaeggee teagetaega 1380
    agtçaagece tteeteaceg egetggtgga categteagg teeetgaaga agtetggtga 1440
    catctggctg gacgcctacc tccatcagtg aaggcaacac ccaggcgggc agagaagggc 1500
    tragggrace agraaceaag cragerergg regggategat accerrace ettractgge 1560
    cagoctgggg gtgccctgcc tgccctcctg gtactgttgt cttcccctcg gccccctcac 1620
    atgrgtattc agcagcccta tggccttggc tctgggcctg atgggacagg ggtagaggga 1680
    aggtgagcat agcacatttt cctagagcga gaattggggg aaagctgtta tttttatatt 1740
    aaaatacatt cagatgt
    <210> 4
45
   <211> 444
    <212> PRT
    <213> Unknown Organism
    <220>
50
    <223> Description of Unknown Organism:
          unknown
    <400> 4
55
    Met Ala Pro Asp Pro Val Ala Ala Glu Thr Ala Ala Gln Gly Pro Thr
    Pro Arg Tyr Phe Thr Trp Asp Glu Val Ala Gln Arg Ser Gly Cys Glu
                                      25
60
    Glu Arg Trp Leu Val Ile Asp Arg Lys Val Tyr Asn Ile Ser Glu Phe
```

	Thr	Arg 50	Arg	His	Pro	Gly	Gly 55	Ser	Arg	Val	Ile	Ser 60	His	Tyr	Ala	Gly
5	Gln 65	Asp	Ala	Thr	Asp	Pro 70	Phe	Val	Ala	Phe	His 75	Ile	Asn	Lys	Gly	Leu 80
10	Val	Lys	Lys	Tyr	Met 85	Asn	Ser	Leu	Leu	Ile 90	Gly	Glu	Leu	Ser	Pro 95	Glu
-	Gln	Pro	Ser	Phe 100	Glu	Pro	Thr	Lys	Asn 105	Lys	Glu	Leu	Thr	Asp 110	Glu	Phe
15	Arg	Glu	Leu 115	Arg	Ala	Thr	Val	Glu 120	Arg	Met	Gly	Leu	Met 125	Lys	Ala	Asn
	His	Val 130	Phe	Phe	Leu	Leu	Tyr 135	Leu	Leu	His	Ile	Leu 140	Leu	Leu	Asp	Gly
20	Ala 145	Ala	Trp	Leu	Thr	Leu 150	Trp	Val	Phe	Gly	Thr 155	Ser	Phe	Leu	Pro	Phe 160
25	Leu	Leu	Cys	Ala	Val 165	Leu	Leu	Ser	Ala	Val 170	Gln	Ala	Gln	Ala	Gly 175	Trp
	Leu	Gln	His	Asp 180	Phe	Gly	His	Leu	Ser 185	Val	Phe	Ser	Thr	Ser 190	Lys	Trp
30	Asn	His	Leu 195	Leu	His	His	Phe	Val 200	Ile	Gly	His	Leu	Lys 205	Gly	Ala	Pro
	Ala	Ser 210	Trp	Trp	Asn	His	Met 215	His	Phe	Gln	His	His 220	Ala	Lys	Pro	Asn
35	Cys 225	Phe	Arg	Lys	Asp	Pro 230	Asp	Ile	Asn	Met	His 235	Pro	Phe	Phe	Phe	Ala 240
40	Leu	Gly	Lys	Ile	Leu 245	Ser	Val	Slu	Leu	Gly 250	Lys	Gln	Lys	Lys	Lys 255	Tyr
	Met	Pro	Tyr	Asn 260	His	Gln	His	Lys	Tyr 265	Phe	Phe	Leu	Ile	Gly 270	Pro	Pro
45	Ala	Leu	Leu 275	310	Leu	Tyr	Phe	Gln 230	Trp	Tyr	Ile	Phe	Tyr 285	Phe	Val	Ile
	Gln	Arg 290	Lys	Lys	Trp	Val	Asp 295	Leu	Ala	Trp	Met	Ile 300	Thr	Phe	Tyr	Val
50	Arg 305		Phe	Leu	Thr	Tyr 310	Val	Pro	Leu	Leu	Gly 315	Leu	Lys	Ala	Phe	Leu 320
5 5	Gly	Leu	Phe	Phe	Ile 325	Val	Arg	Phe	Leu	Glu 330	Ser	Asn	Trp	Phe	Val 335	Trp
	Val	Thr	Gln	Met 340	Asn	His	Ile	Pro	Met 345	His	Ile	Asp	His	Asp 350	Arg	Asn
60	Met	Asp	Trp	Val	Ser	Thr		Leu 360		Ala	Thr	Cys	Asn 365	Val	His	Lys

<223> Description of Unknown Organism:

25 unknown

<400> 5
 Met Gly Lys Gly Gly Asn Gln Gly Glu Gly Ala Ala Glu Arg Glu Val
30

Ser Val Pro Thr Phe Ser Trp Glu Glu Ile Gln Lys His Asn Leu Arg 20 25 30

35 Thr Asp Arg Trp Leu Val Ile Asp Arg Lys Val Tyr Asn Ile Thr Lys
35 40 45

Trp Ser Ile Gln His Pro Gly Gln Arg Val Ile Gly His Tyr Ala 50 60

Gly Glu Asp Ala Thr Asp Ala Fne Arg Ala Phe His Pro Asp Leu Glu
65 70 75 80

Phe Val Gly Lys Phe Leu Lys Fro Leu Leu Ile Gly Glu Leu Ala Pro 85 90 95

Glu Glu Pro Ser Gln Asp His Gly Lys Asn Ser Lys Ile Thr Glu Asp 100 105 110

50 Phe Arg Ala Leu Arg Lys Thr Ala Glu Asp Met Asn Leu Phe Lys Thr 115 120 125

Asn His Val Phe Phe Leu Leu Leu Ala His Ile Ile Ala Leu Glu 130 135 140

Ser Ile Ala Trp Phe Thr Val Phe Tyr Phe Gly Asn Gly Trp Ile Pro 145 150 155 160

Thr Leu Ile Thr Ala Phe Val Leu Ala Thr Ser Gln Ala Gln Ala Gly

165

170

175

Trp Leu Gln His Asp Tyr Gly His Leu Ser Val Tyr Arg Lys Pro Lys 180 185 190

	Trp	Asn	His 195	Leu	Val	His	Lys	Phe 200	Val	Ile	Gly	His	Leu 205	Lys	Gly	Ala
5	Ser	Ala 210	Asn	Trp	Trp	Asn	His 215	Arg	His	Phe	Gln	His 220	His	Ala	Lys	Pro
	Asn 225	Ile	Phe	His	Lys	Asp 230	Pro	Asp	Val	Asn	Met 235	Leu	His	Val	Phe	Val 240
10	Leu	Gly	Glu	Trp	Gln 245	Pro	Ile	Glu	Tyr	Gly 250	Lys	Lys	Lys	Leu	Lys 255	Tyr
15	Leu	Pro	Tyr	Asn 260	His	Gln	His	Glu	Tyr 265	Phe	Phe	Leu	Ile	Gly 270	Pro	Pro
	Leu	Leu	11e 275	Pro	Met	Tyr	Phe	Gln 280	Tyr	Gln	Ile	Ile	Met 285	Thr	Met	Ile
20	Val	His 290	Lys	Asn	Trp	Val	Asp 295	Leu	Ala	Trp	Ala	Val 300	Ser	Tyr	Tyr	Ile
	Arg 305	Phe	Phe	Ile	Thr	Tyr 310	Ile	Pro	Phe	Tyr	Gly 315	Ile	Leu	Gly	Ala	Leu 320
25	Leu	Phe	Leu	Asn	Phe 325	Ile	Arg	Phe	Leu	Glu 330	Ser	His	Trp	Phe	Val 335	Trp
30	Val	Thr	Gln	Met 340	Asn	His	Ile	Val	Met 345	Glu	Ile	Asp	Gln	G <u>l</u> u 350	Ala	Tyr
	Arg	Asp	Trp 355	Phe	Ser	Ser	Gln	Leu 360	Thr	Ala	Thr	Cys	Asn 365	Val	Glu	Gln
35	Ser	Phe 370	Phe	Asn	Asp	Trp	Phe 375	Ser	Gly	His	Leu	Asn 380	Phe	Gln	Ile	Glu
	His 385	His	Leu	Phe	Pro	Thr 390	Met	Pro	Arg	His	Asn 395	Leu	His	Lys	Ile	Ala 400
40	Pro	Leu	Val	Lys	Ser 405	Leu	Cys	Ala	Lys	His 410	Gly	Ile	Glu	Tyr	Gln 415	Glu
45	Lys	Pro	Leu	Leu 420	Arg	Ala	Leu	Leu	Asp 425	Ile	Ile	Arg	Ser	Leu 430	Lys	Lys
	Ser	Gly	Lys 435	Leu	Trp	Leu	qeA	Ala 440	Tyr	Leu	His	Lys				
50	<21 <21	0> 6 1> 4 2> P 3> U	RT	wn 0:	rgan	ism										
55	<22 <22		escr	ipti	on o	ī Un	know:	n Ore	ganis	sm:						
66		u	nkno	wn												
60			Gly	Val	Gly 5		Pro	Gly	Pro	Arg 10	Glu	Gly	Pro	Ala	Gln 15	Pro

	Gly	Ala	Pro	Leu 20	Pro	Thr	Phe	Cys	Trp 25	Glu	Gln	Ile	Arg	Ala 30	His	Asp
5	Gln	Pro	Gly 35	Asp	Lys	Trp	Leu	Val 40	Ile	Glu	Arg	Arg	Val 45	Tyr	Asp	Ile
	Ser	Arg 50	Trp	Ala	Gln	Arg	His 55	Pro	Gly	Gly	Ser	Arg 60	Leu	Ile	Gly	His
10	His 65	Gly	Ala	Glu	Asp	Ala 70	Thr	Asp	Ala	Phe	Arg 75	Ala	Phe	His	Gln	Asp 80
15	Leu	Asn	Phe	Val	Arg 85	Lys	Phe	Leu	Gln	Pro 90	Leu	Leu	Ile	Gly	Glu 95	Leu
	Ala	Pro	Glu	Glu 100	Pro	Ser	Gln	Asp	Gly 105	Pro	Leu	Asn	Ala	Gln 110	Leu	Val
20	Glu	Asp	Phe 115	Arg	Ala	Leu	His	Gln 120	Ala	Ala	Glu	Asp	Met 125	Lys	Leu	Phe
	Asp	Ala 130	Ser	Pro	Thr	Phe	Phe 135	Ala	Phe	Leu	Leu	Gly 140	His	Ile	Leu	Ala
25	Met 145	Glu	Val	Leu	Ala	Trp 150	Leu	Leu	Ile	Туг	Leu 155	Leu	Gly	Pro	Gly	Trp 160
30	Val	Pro	Ser	Ala	Leu 165	Ala	Ala	Phe	Ile	Leu 170	Ala	Ile	Ser	Gln	Ala 175	Gln
	Ser	Trp	Cys	Leu 180	Gln	His	Asp	Leu	Gly 185	His	Ala	Ser	Ile	Phe 190	Lys	Lys
35	Ser	Trp	Trp 195	Asn	His	Val	Ala	Gln 200	Lys	Phe	Val	Met	Gly 205	Gln	Leu	Lys
	Gly	Phe 210	Ser	Ala	His	Trp	Trp 215	Asn	Phe	Arg	His	Phe 220	Gln	His	His	Ala
40	Lys 225	Pro	Asn	Ile	Phe	His 230	Lys	Asp	Pro	Asp	Val 235	Thr	Val	Ala	Pro	Val 240
45	Phe	Leu	Leu	Gly	Glu 245	Ser	Ser	Val	Glu	Tyr 250	Gly	Lys	Lys	Lys	Arg 255	Arç
	Tyr	Leu	Pro	Туг 260	Asn	Gln	Gln	His	Leu 265	Tyr	Phe	Phe	Leu	Ile 270	Gly	Pro
50	Pro	Leu	Leu 275	Thr	Leu	Val	Asn	Phe 280	Glu	Val	Glu	Asn	Leu 285	Ala	Tyr	Met
	Leu	Val 290	_	Met	Gln	Trp	Ala 295	qгА	Leu	Leu	Trp	Ala 300	Ala	Ser	Phe	Tyr
55	Ala 305		Phe	Phe	Leu	Ser 310	Tyr	Leu	Prc	Phe	Tyr 315	Gly	Val	Pro	Gly	Val 320
60	Leu	Leu	Phe	Phe	Val 325		Val	Arg	Val	Leu 330	Glu	Ser	His	Trp	Phe 335	Val
	Trp	Ile	Thr	Gln 340	Met	Asn	His	Ile	Pro 345	Lys	Glu	Ile	Gly	His 350	Glu	Lys

	His	Arg	Asp 355	Trp	Val	Ser	Ser	Gln 360	Leu	Ala	Ala	Thr	Cys 365	Asn	Val	Glu	
5	Pro	Ser 370	Leu	Phe	Thr	Asn	Trp 375	Phe	Ser	Gly	His	Leu 380	Asn	Phe	Gln	Ile	
10	Glu 385	His	His	Leu	Phe	Pro 390	Arg	Met	Pro	Arg	His 395	Asn	Tyr	Ser	Arg	Val 400	
	Ala	Pro	Leu	Val	Lys 405	Ser	Leu	Cys	Ala	Lys 410	His	Gly	Leu	Ser	Tyr 415	Glu	
15	Val	Lys	Pro	Phe 420	Leu	Thr	Ala	Leu	Val 425	Asp	Ile	Val	Arg	Ser 430	Leu	Lys	
	Lys	Ser	Gly 435	Asp	Ile	Trp	Leu	Asp 440	Ala	Tyr	Leu	His	Gln 445				
20)> 7															
25	<212	1> 1 2> D 3> A		ical	Sequ	uence	e										
	<220 <220		escr:	ipti	on o	f Art	tific	cal S	Seque	ence	:						
30		P	rime	r													
	-	0> 7 ctga	cag	cccc.	tgct												18
35	<21:	0> 8 1> 2 2> D 3> A		ical	Seq	uence	e										
40	<22 <22		escr	ipti	on o	f Ar	tifi	cal S	Sequ	ence	;						
		P	rime	r													
45		0> 8 gtgg	cca	atca	caaa	at											20
50	<21 <21	0> 9 1> 2 2> D 3> A	2	ical	Seq	uenc	e										
	<22 <22		escr	ipti	on o	f Ar	tifi	cal :	Sequ	ence	:						
55		P	rime	r													
		0> 9 aaag	tgg	aacc	atct	ac t	a										22
60		9	- 57														

5	<210> 1 <211> 2 <212> 1 <213> 2	20 ,	
J	<220> <223> I	Description of Artifical Sequence:	
10	I	Primer	
	<400> :	10 ccag tccatgttcc	20
15	<210> 3	21	
	<212> <213>	DNA Artifical Sequence	
20	<220> <223>	Description of Artifical Sequence:	
	!	Primer	
25	<400>	11 cett ttetteatag t	21
	<210> <211>		
30	<212> <213>	DNA Artifical Sequence	
	<220> <223>	Description of Artifical Sequence:	
35		Primer	
	<400> ctcaag	12 octec cetetgeet	19
40	<210>		
	<211> <212>	DNA	
45	<220>	Artifical Sequence	
	<223>	Description of Artifical Sequence:	
		Primer	
50	<400> tcagaa	13 agcat aacctgcgc	19
55	<210> <211>	20 .	
55	<212> <213>	DNA Artifical Sequence	
00	<220> <223>	Description of Artifical Sequence:	
60		Primer	

<400> 18
cctcagaaca aaagcccatc

<210> 19
<211> 18
<212> DNA

<213> Artifical Sequence

60

PCT/EP00/01979

20

WO 00/53770

<400> 22

acagetttee eccaattete

International Application No.

			PC ,	/EP 00/01979
IPC 7	FIGATION OF SUBJECT MATTER C12N15/53 C12N15/85 C12N C07K16/40 A61K39/395 A61K G01N33/53			C12Q1/02 G01N33/50
	o International Patent Classification (IPC) or to both national cla SEARCHED	esification and	IPC	
	ocumentation searched (classification system followed by class	ification symbo	cie)	
IPC 7	C12N C12Q C07K A61K A01K	G01N	,	
Documenta	tion searched other than minimum documentation to the extent	that such docu	ments are included in the	e fields searched
Electronio d	ata base consulted during the international search (name of da	ita base and, v	where practical, search to	rma used)
	ENTS CONSIDERED TO BE RELEVANT			
Category *	Citation of document, with indication, where appropriate, of the	relevant pas	mages	Relevant to claim No.
x	"AC AI394672" EMBL DATABASE,			1-12
	5 February 1999 (1999-02-05), Heidelberg the whole document	XP00211	1712	
X	WO 98 46763 A (THURMOND JENNIF LLC (US); ABBOTT LAB (US); KNU 22 October 1998 (1998-10-22) * see esp. SEQ ID NOs: 27-40	FER ;CAL	GENE Bo)	1-12,17, 18
x	CHO H P ET AL: "Cloning, expr nutritional regulation of the Delta-6 desaturase." JOURNAL OF BIOLOGICAL CHEMISTR 1) 274 (1) 471-7., XP002111713 the whole document	mammalia Y. (1999	an	1-12,17, 18
	•••			
		-/	•	
X Furthe	er documents are fisted in the continuation of box C.	X	Patent family members ar	e listed in ennex.
"A" document consider "E" earlier do fling dat "L" document which is citation of "O" document other me "P" document	t which may throw doubts on priority claim(s) or oited to establish the publication date of another or other special reason (as specified) it referring to an oral disclosure, use, exhibition or sens t published prior to the international filing date but	or piction invei "X" docum cann invei "Y" docum cann docum in the	fority date and not in confi to understand the princip ation nent of particular relevant not be considered novel of the an inventive step when ent of particular relevant of be considered to involu- ment is combined with or as, such combination beint e art.	r cannot be considered to n the document is taken alone se; the claimed invention re an inventive step when the se or more other such docu- g obvious to a person skilled
	n the priority date claimed fuel completion of the international search	T	nent member of the same	
	July 2000	=	of mailing of the internation $_{\perp}$: 08. 00	nal search report
isme and ma	iling address of the IBA European Patent Office, P.B. 5818 Patentiaan 2 NL - 2280 HV Riswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl, Fax: (+31-70) 340-3018		rized officer Kania, T	

1

International Application No
PC./EP 00/01979

CiCombo		PC./EP 00,	/01979
Category *	ntion) DOCUMENTS CONSIDERED TO BE RELEVANT Citation of document, with indication, where appropriate, of the relevant passages		
	, where distribution, or the research passages	ľ	Relevant to claim No.
X	"AC 060426" EMBL DATABASE,1 August 1998 (1998-08-01), XP002111714 Heidelberg the whole document		7-10
x	"AC 060427" EMBL DATABASE,1 August 1998 (1998-08-01), XP002111715 Heidelberg the whole document		7-10
x	WO 98 39446 A (HUMAN GENOME SCIENCES INC) 11 September 1998 (1998-09-11) see esp. p.48 1.20 - p.49 1.7; p.78; SEQ ID NO:63,186		1-10
A	OLGA SAYANOVA ET AL: "Expression of a borage desaturase cDNA containing an N-terminal cytochrome b5 domain results in the accumulation of hig levels of Delta6-desaturated fatty acids in transgenic tobacco" PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF USA, vol. 94, no. 94, 15 April 1997 (1997-04-15), pages 4211-4216 4216, XP002106758 ISSN: 0027-8424 the whole document		1-18
A	MITCHELL, ANDREW G. ET AL: "A novel cytochrome b-5-like domain is linked to the carboxyl terminus of the Saccharomyces cerevisiae DELTA-9 fatty acid desaturase." JOURNAL OF BIOLOGICAL CHEMISTRY, (1995) VOL. 270, NO. 50, PP. 29766-29772, XP002111716 the whole document		1-18
\	WO 96 02561 A (GEN HOSPITAL CORP ;GENETICS INST (US)) 1 February 1996 (1996-02-01) the whole document		14,16
,	WO 99 04262 A (MYELOS NEUROSCIENCES CORP) 28 January 1999 (1999-01-28) * see esp. claims *		15,16
	-/		

Form PCT/ISA/210 (continuation of second sheet) (July 1992)

rite stional Application No PC I / EP 09/01979

PAGULTATTO COMPINEDED TO DE CONTROL	PC1/EP 00/019/9
	Relevant to claim No.
The state of the s	павтан ф ошт чс.
CHO HYEKYUNG P ET AL: "Cloning, expression, and fatty acid regulation of the human DELTA-5 desaturase." JOURNAL OF BIOLOGICAL CHEMISTRY, vol. 274, no. 52, 24 December 1999 (1999-12-24), pages 37335-37339, XP002143650 ISSN: 0021-9258 the whole document & "AC AF199596" EBI DATABASE,1 February 2000 (2000-02-01), the whole document	1-10,13
WO 00 00622 A (INCYTE PHARMA INC ;CORLEY NEIL C (US); BANDMAN OLGA (US); BAUGHN M) 6 January 2000 (2000-01-06) see th whole document; esp. SEQ ID NO:5,11	1-13, 16-18
LI W. ET AL.: "Human delta-6 fatty acid desaturase (CYB5RP); AC AF134404" EBI DATABASE,19 May 1999 (1999-05-19), XP002143651 the whole document	1-10
WO 00 21557 A (CASKEY C THOMAS ; MERCK & CO INC (US); PETRUKHIN KONSTANTIN (US)) 20 April 2000 (2000-04-20) the whole document	1-14, 16-18
	expression, and fatty acid regulation of the human DELTA-5 desaturase." JOURNAL OF BIOLOGICAL CHEMISTRY, vol. 274, no. 52, 24 December 1999 (1999-12-24), pages 37335-37339, XP002143650 ISSN: 0021-9258

In. .iational application No. PCT/EP 00/01979

Box I Observations where certain claims were found unsearchable (Continuation of Item 1 of first sheet)
This International Search Report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:
Claims Nos.: because they relate to subject matter not required to be searched by this Authority, namely:
2. X Claims Nos.: because they relate to parts of the International Application that do not comply with the prescribed requirements to such an extent that no meaningful International Search can be carried out, specifically:
Claims 14 and 15 were only interpreted and searched with reference to the use of the present molecules and vectors in these assays. Claim 16 could not be
searched completely due to the lack of characterization of the claimed subject
Claims Nos.: because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).
Box II Observations where unity of invention is lacking (Continuation of Rem 2 of first sheet)
This International Searching Authority found multiple inventions in this international application, as follows:
see additional sheet
As all required additional search fees were timely paid by the applicant, this International Search Report covers all searchable claims.
2. X As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee.
As only some of the required additional search fees were timely paid by the applicant, this International Search Report covers only those claims for which lees were paid, specifically claims Nos.:
4. No required additional search fees were timely paid by the applicant. Consequently, this International Search Report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:
Remark on Protest The additional search fees were accompanied by the applicant's protest.
No protest accompanied the payment of additional search fees.

FURTHER INFORMATION CONTINUED FROM PCT/ISA/ 210

Continuation of Box I.2

Claims 14 and 15 were only interpreted and searched with reference to the use of the present molecules and vectors in these assays.

Claim 16 could not be searched completely due to the lack of characterization of the claimed subject matter.

The applicant's attention is drawn to the fact that claims, or parts of claims, relating to inventions in respect of which no international search report has been established need not be the subject of an international preliminary examination (Rule 66.1(e) PCT). The applicant is advised that the EPO policy when acting as an International Preliminary Examining Authority is normally not to carry out a preliminary examination on matter which has not been searched. This is the case irrespective of whether or not the claims are amended following receipt of the search report or during any Chapter II procedure.

FURTHER INFORMATION CONTINUED FROM PCT/ISA/ 210

1. Claims: 1-18 partially

An isolated polynucleotide selected from the group consisting of polynucleotides having at least 65%, preferably 80% homology with a polynucleotide encoding a polypeptide of SEQ ID NO:4, comprising variants, under stringent conditions hybridizing molecules, complementary molecules, and oligonucleotides comprising at least 15 consecutive nucleotides of said sequence, preferably the polynucleotide of SEQ ID NO:1. Vectors, host cells, and transgenic organisms comprising said sequences. A polypeptide comprising a sequence having at least 65%, more preferably 85% homology to SEQ ID NO:4, variants thereof, and a peptide comprising at least 15 consecutive amino acids thereof. A process for producing said polypeptide using said host cells and DNA sequences. Antibodies against said polypeptides, and their use in diagnosis and therapy.

An oligonucleotide primer having a sequence selected from the group of nucleotide sequences of SEQ ID NOs:7-12. A method of screening for modulators in known assays using constructs or of screening for interacting proteins or factors using state of the art technologies, as well as a method of screening chemical libraries comprising transformed cell lines, both methods employing the said sequences, vectors, or host cells.

A compound which alters or reacts with at least one epitope

A compound which alters or reacts with at least one epitope of the proteins and which is obtained by said methods. Pharmaceutical compositions comprising as an effective component an effective amount of said peptides.

2. Claims: 1-18 partially

idem for SEQ ID NOs:2,5,13-18

3. Claims: 1-18 partially

idem for SEQ ID NOs:3,6,19-22

information on patent family members

Inten. Julial Application No ,
PCT/EP 00/01979

Patent document cited in search report		Publication date	Patent family		Publication date
			member(s)		
WO 9846763	Α	22-10-1998	US	5968809 A	19-10-1999
			AU	6961698 A	11-11-1998
			AU	720677 B	08-06-2000
			AU	711 479 8 A	11-11-1998
			BG	103797 A	28-04-2006
			CN	1252099 T	03-05-2006
			EP	0975766 A	02-02-2006
			EΡ	0996732 A	03-05-2006
			NO	994925 A	30-11-1999
			NO	994926 A	30-11-1999
			WO	9846764 A	22-10-1998
WO 9839446	Α	11-09-1998	AU	6545398 A	22-09-1998
			EP	0972029 A	19-01-2000
			EP	0972030 A	19-01-2000
			WO	9839448 A	11-09-1998
WO 9602561	Α	01-02-1996	EP	0773952 A	21-05-1997
			JP	10504713 T	12-05-1998
			US	6004746 A	21-12-1999
WO 9904262	Α	28-01-1999	AU	8480798 A	10-02-1999
		-	EP	0996856 A	03-05-200
WO 0000622	Α	06-01-2000	AU	4843799 A	17-01-200
WO 0021557	Α	20-04-2000	NONE	:	