

Data Analysis & Visualisation

CSC3062

BEng (CS & SE), MEng (CS & SE), BIT & CIT

Dr Reza Rafiee

Semester 1 2019

SCHOOL OF
ELECTRONICS,
ELECTRICAL
ENGNIEERING AND
COMPUTER SCIENCE

Principal component analysis (PCA)

PCA analysis using *prcomp()* package

	England	N Ireland	Scotland	Wales
Alcoholic drinks	375	135	458	475
Beverages	57	47	53	73
Carcase meat	245	267	242	227
Cereals	1472	1494	1462	1582
Cheese	105	66	103	103
Confectionery	54	41	62	64
Fats and oils	193	209	184	235
Fish	147	93	122	160
Fresh fruit	1102	674	957	1137
Fresh potatoes	720	1033	566	874
Fresh Veg	253	143	171	265
Other meat	685	586	750	803
Other Veg	488	355	418	570
Processed potatoes	198	187	220	203
Processed Veg	360	334	337	365
Soft drinks	1374	1506	1572	1256
Sugars	156	139	147	175

PCA

	England	N Ireland	Scotland	Wales
PC1	-144.993	477.3916	-91.8693	-240.529
PC2	2.532999	58.90186	-286.082	224.6469
PC3	105.7689	-4.8779	-44.4155	-56.4756

Reduced dataset

Summarises of features

Input_dataset

The horizontal line is therefore the principal component in this example.

The direction of this line is called **eigenvector**.

An **eigenvalue** is a number telling us how spread out the data is on the line.

Question: which technique/method?

Consider a dataset with about N=1000 features and M=100 samples (all have positive numeric values). In a data analytics task, we are asked to cluster this samples into different groups based on firstly reducing the dimension of feature space and then a clustering method.

What is clustering?

Clustering concept

In case of applying an appropriate clustering method (with well-adjusted parameters/initialisation, bootstrapping and cross-validation techniques), we could have distinct groups (with possibly different number of clusters) but they might be meaningless!

What is clustering?

Clustering concept

In case of applying an appropriate clustering method (with well-adjusted parameters/initialisation, bootstrapping and cross-validation techniques), we could have distinct groups (with possibly different number of clusters) but they might be meaningless!

Non-negative matrix factorization

Non-negative matrix factorization: NMF

- A dimensionality reduction technique
 - based on decomposition by parts
- An efficient method for identification of distinct patterns (e.g., class discovery and clustering)

Applications NMF in

- Text mining
- Astronomy
- Spectral data analysis
- Speech processing (denoising)
- Image processing (object detection)
- Bioinformatics (& biological data analysis)

An iterative algorithm aiming at factorising an input matrix **A** into two matrices with positive entries.

An iterative algorithm aiming at factorising an input matrix **A** into two matrices with positive entries.

NMF – matrix rank

The rank of a matrix definition:

The maximum number of linearly independent columns (non-zero) in the matrix

$$A = \begin{bmatrix} 1 & 2 & 3 \\ 6 & 8 & 20 \end{bmatrix} \qquad B = \begin{bmatrix} 1 & 0 & 1 \\ -2 & -3 & 1 \\ 3 & 3 & 0 \end{bmatrix}$$

$$2 \times 3 \qquad 3 \times 3$$

NMF – matrix rank

The rank of a matrix definition: the maximum number of **linearly independent** columns (non-zero) in the matrix

NMF – matrix rank

The rank of a matrix definition: the maximum number of **linearly independent** columns (non-zero) in the matrix

The third column is a linear combination of the first two columns (the second subtracted from the first), the three columns are **linearly dependent** so the rank must be less than 3

$$Rank(B) = 2$$

NMF - matrix rank

The rank of a matrix definition: the maximum number of **linearly independent** columns (non-zero) in the matrix

$$C = \begin{bmatrix} 1 & 1 & 0 & 2 \\ -1 & -1 & 0 & -2 \end{bmatrix}$$

$$2 \times 4$$

$$C^T = \begin{bmatrix} 1 & -1 \\ 1 & -1 \\ 0 & 0 \\ 2 & -2 \end{bmatrix}$$

Any pair of columns is linearly dependent (ignore non-zero column)

Rank(C) = ?
$$4 \times 2$$

The rank of a matrix definition: the maximum number of **linearly independent** columns (non-zero) in the matrix

$$C = \begin{bmatrix} 1 & 1 & 0 & 2 \\ -1 & -1 & 0 & -2 \end{bmatrix}$$

$$2 \times 4$$

$$C^T = \begin{bmatrix} 1 & -1 \\ 1 & -1 \\ 0 & 0 \\ 2 & -2 \end{bmatrix}$$

Any pair of columns is linearly dependent (ignore non-zero column).

$$Rank(C) = 1$$

Factorising matrix A into two matrices with positive entries.

Matrix **W** has size $N \times k$, with each of the k columns defining a metagene.

N: Number of features (e.g., gene, word) is typically in the thousands

Factorising matrix A into two matrices with positive entries.

Matrix *H* has size $\mathbf{k} \times \mathbf{M}$, with each of the M columns representing the metagene values of the corresponding sample.

Factorising matrix A into two matrices with positive entries.

For **any rank k**, the NMF algorithm **groups** the samples into clusters.

Factorising matrix A into two matrices with positive entries.

For **any rank k**, the NMF algorithm **groups** the samples into clusters.

*The important question that we need to address is whether a given rank k could decompose the samples into "meaningful" clusters or not.

Factorising matrix A into two matrices with positive entries.

For any rank k, the NMF algorithm groups the samples into clusters.

Description of the implemented NMF algorithms

Key	Description			
brunet	Standard NMF. Based on Kullback-Leibler divergence, it uses simple			
	plicative updates from (Lee2001), enhanced to avoid numerical under			
	$\left(\sum W_{lk}V_{lj} \right)$			
	$H_{kj} \leftarrow H_{kj} rac{\left(\sum_{l} rac{W_{lk}V_{lj}}{(WH)_{lj}} ight)}{\sum_{l} W_{lk}}$	(3)		
	$W_{ik} \leftarrow W_{ik} \frac{\sum_{l} [H_{kl} A_{il} / (WH)_{il}]}{\sum_{l} H_{kl}}$	(4)		
	Reference: (Brunet2004)			
lee	Standard NMF. Based on euclidean distance, it uses simple mul-	tiplicative		
	updates			

$$H_{kj} \leftarrow H_{kj} \frac{(W^T V)_{kj}}{(W^T W H)_{kj}} \tag{5}$$

$$W_{ik} \leftarrow W_{ik} \frac{(VH^T)_{ik}}{(WHH^T)_{ik}} \tag{6}$$

	(· · · · · · · / · / · / · / · / ·
	Reference: (Lee2001)
nsNMF	Non-smooth NMF. Uses a modified version of Lee and Seung's multiplicative
	updates for Kullback-Leibler divergence to fit a extension of the standard
	NMF model. It is meant to give sparser results.
	Reference: (Pascual-Montano2006)
offset	Uses a modified version of Lee and Seung's multiplicative updates for eu-
	clidean distance, to fit a NMF model that includes an intercept.
	Reference: (Badea2008)
pe-nmf	Pattern-Expression NMF. Uses multiplicative updates to minimize an objec-
	tive function based on the Euclidean distance and regularized for effective
	expression of patterns with basis vectors.
	Reference: (Zhang2008)
snmf/r, snmf/l	Alternating Least Square (ALS) approach. It is meant to be very fast com-
	pared to other approaches.
	Reference: (KimH2007)

An introduction to NMF package, Version 0.20.6, Renaud Gaujoux

```
# Install
install.packages('NMF')
# Load
library(NMF)
```

Description of the implemented NMF algorithms

```
# list all available algorithms
nmfAlgorithm()
   [1] "brunet" "KL" "lee" "Frobenius" "offset"
   [6] "nsNMF" "ls-nmf" "pe-nmf" "siNMF" "snmf/r"
## [11] "snmf/l"
# retrieve a specific algorithm: 'brunet'
nmfAlgorithm('brunet')
## <object of class: NMFStrategyIterative>
  name: brunet [NMF]
  objective: 'KL'
## model: NMFstd
## <Iterative schema>
##
   onInit: none
    Update: function (i, v, x, copy = FALSE, eps = .Machine$double.eps, ...)
    Stop: 'connectivity'
##
    onReturn: none
```


Initialisation methods

Key	Description
ica	Uses the result of an Independent Component Analysis (ICA) (from the <i>fastICA</i>
	package ⁵ (Rpackage:fastICA)). Only the positive part of the result are used to
	initialize the factors.
nnsvd	Nonnegative Double Singular Value Decomposition. The basic algorithm contains no randomization and is based on two SVD processes, one approximating the data matrix, the other approximating positive sections of the resulting partial SVD factors utilizing an algebraic property of unit rank matrices. It is well suited to initialize NMF algorithms with sparse factors. Simple practical variants of the algorithm allows to generate dense factors. Percentage (Poutsidia 2008)
	Reference: (Boutsidis2008)
none	Fix seed. This method allows the user to manually provide initial values for both
	matrix factors.
random	The entries of each factors are drawn from a uniform distribution over $[0, max(V)]$,
	where V is the target matrix.

Table 2: Description of the implemented seeding methods to initialize NMF algorithms. The first column gives the key to use in the call to the nmf function.

```
nmfSeed('nndsvd')
## <object of class: NMFSeed >
## name: nndsvd
## method: <function>
```


How to run NMF package in R

Method nmf provides a single interface to run NMF algorithms. It can directly perform NMF on object of class matrix or data.frame and ExpressionSet – if the *Biobase* package⁶ (Rpackage:Biobase) is installed. The interface has four main parameters:

```
nmf(x, rank, method, seed, ...)
```

x is the target matrix, data.frame or ExpressionSet ⁷

rank is the factorization rank, i.e. the number of columns in matrix W.

method is the algorithm used to estimate the factorization. The default algorithm is given by the package specific option 'default.algorithm', which defaults to 'brunet' on installation (Brunet2004).

seed is the seeding method used to compute the starting point. The default method is given by the package specific option 'default.seed', which defaults to 'random' on initialization (see method ?rnmf for details on its implementation).

See also ?nmf for details on the interface and extra parameters.

Any Questions?