

Single Dell Data Analysis Course

Quality Control

Lisa Buchauer

Professor of Systems Biology of Infectious Diseases

Department of Infectious Diseases and Intensive Care

Charité - Universitätsmedizin Berlin

Heumos, L., Schaar, A.C., Lance, C. et al. Best practices for single-cell analysis across modalities. Nat Rev Genet 24, 550–572 (2023). https://doi.org/10.1038/s41576-023-00586-w

log₂ FC

В

Α

Single cell barcodes are not necessarily single cells

one event (one emulsion droplet/ one well)

one cell barcode

Probst, V., Simonyan, A., Pacheco, F. et al. Benchmarking full-length transcript single cell mRNA sequencing protocols. BMC Genomics 23, 860 (2022). https://doi.org/10.1186/s12864-022-09014-5

Single cell barcodes are not necessarily single cells

one event (one emulsion droplet/ one well)

one cell barcode

one live cell

could also be

- a dead cell
- no cell
- two cells
- three cells
- ...

Probst, V., Simonyan, A., Pacheco, F. et al. Benchmarking full-length transcript single cell mRNA sequencing protocols. BMC Genomics 23, 860 (2022). https://doi.org/10.1186/s12864-022-09014-5

Quality control: removing problematic events and read counts

Removing empty droplets (cell barcodes without cells)

Single cell alignment software (e.g. STARsolo, cellranger)

raw count matrix

	CB1	CB2	СВЗ	СВ4	CB5
G1	1	5	0	3	0
G2	0	5	1	6	0
G3	0	2	0	4	0

Which events contain cells (one or more)?

https://cf.10xgenomics.com/samples/cell-vdj/5.0.0/sc5p_v2_hs_PBMC_10k_multi_5gex_5fb_b_t/sc5p_v2_hs_PBMC_10k_multi_5gex_5fb_b_t_web_summary.html

Removing empty droplets (cell barcodes without cells)

Single cell alignment software (e.g. STARsolo, cellranger)

raw count matrix

	CB1	CB2	СВЗ	CB4	CB5
G1	1	5	0	3	0
G2	0	5	1	6	0
G3	0	2	0	4	0

Which events contain cells (one or more)?

"Knee plot"

https://cf.10xgenomics.com/samples/cell-vdj/5.0.0/sc5p_v2_hs_PBMC_10k_multi_5gex_5fb_b_t/sc5p_v2_hs_PBMC_10k_multi_5gex_5fb_b_t_web_summary.html

Removing empty droplets (cell barcodes without cells)

	CB1	CB2	СВЗ	CB4	CB5
G1	1	5	0	3	0
G2	0	5	1	6	0
G3	0	2	0	4	0

filtered count matrix

	CB2	CB4
G1	5	3
G2	5	6
G3	2	4

https://cf.10xgenomics.com/samples/cell-vdj/5.0.0/sc5p_v2_hs_PBMC_10k_multi_5gex_5fb_b_t/sc5p_v2_hs_PBMC_10k_multi_5gex_5fb_b_t_web_summary.html

Library/Sequencing level

- Total number of reads
- Fraction of cell barcodes that are valid
- Fraction of UMIs that are valid
- Sequencing saturation

Library/Sequencing level

- Total number of reads
- Fraction of cell barcodes that are valid
- Fraction of UMIs that are valid
- Sequencing saturation

Cellular level

- Estimated number of cellular events
- reads per cell
- genes per cell
- UMIs per cell

Library/Sequencing level

- Total number of reads
- Fraction of cell barcodes that are valid
- Fraction of UMIs that are valid
- Sequencing saturation

Cellular level

- Estimated number of cellular events
- reads per cell
- genes per cell
- UMIs per cell

Read/Alignment level

- Fraction of reads mapped to genome
- Fraction of reads mapped to transcriptome
- ...introns, exons, intergenic regions

Example 10x cellranger count QC report

sc5p_v2_hs_PBMC_10k_multi_5gex_5fb_b_t - Human PBMC 10k (v2)

Count Summary Count Analysis VDJ-T Summary VDJ-T Analysis VDJ-B Summary VDJ-B Analysis

10,548
Estimated Number of Cells

60,510 Mean Reads per Cell 1,865

Median Genes per Cell

Sequencing ③			
Number of Reads	638,257,832		
Number of Short Reads Skipped	0		
Valid Barcodes	91.1%		
Valid UMIs	99.9%		
Sequencing Saturation	83.7%		
Q30 Bases in Barcode	95.3%		
Q30 Bases in RNA Read	91.3%		
Q30 Bases in UMI	95.2%		

Cells ?		
	Barcode Rank Plot	OA
10k		Cells Background
onnts 000		
1000 I counts		
10		
1	100 10k	
	Barcodes	
Estimated N	umber of Cells	10,548
Fraction Reads in Cells		98.1%
Mean Reads	per Cell	60,510
Median Genes per Cell		1,865
Total Genes Detected		23,571
Median UMI Counts per Cell 5,50		

93.4%
80.3%
4.0%
7.7%
68.6%
63.3%
3.5%

Sample	
Sample ID	sc5p_v2_hs_PBMC_10k_multi_5gex_5fb_b_t
Sample Description	Human PBMC 10k (v2)
Chemistry	Single Cell 5' R2-only
Include introns	False
Reference Path	references/refdata-gex-GRCh38-2020-A
Transcriptome	GRCh38-2020-A
Pipeline Version	cellranger-5.0.0

vdj/5.0.0/sc5p_v2_hs_PBMC_10k_multi_5gex_5fb_b_t/sc5p_v2_hs_PBMC_10k _multi_5gex_5fb_b_t_web_summary.html

https://cf.10xgenomics.com/samples/cell-

Library/Sequencing level

- Total number of reads
- Fraction of cell barcodes that are valid
- Fraction of UMIs that are valid
- Sequencing saturation

Cellular level

- Estimated number of cellular events
- reads per cell
- genes per cell
- UMIs per cell

Read/Alignment level

- Fraction of reads mapped to genome
- Fraction of reads mapped to transcriptome
- ...introns, exons, intergenic regions

Stressed/dying cell with broken membrane

mRNA degrades \rightarrow less UMI counts and genes

Mitochondrial RNA is protected by an extra membrane → fraction of mt RNA rises

Stressed/dying cell with broken membrane

mRNA degrades \rightarrow less UMI counts and genes

Mitochondrial RNA is protected by an extra membrane → fraction of mt RNA rises

3 most common QC metrics for cell filtering

- Number of detected genes per barcode
- Number of counts (UMIs) per barcode
- 3) Fraction of mitochondrial read counts per barcode

Option 1
Filtering with manually chosen cut-offs after visual inspection

Option 2

Automatic thresholding via median absolute deviations (MAD)

MAD is a measure of statistical dispersion (like standard deviation, but more robust)

$$ext{MAD} = ext{median}(|X_i - ilde{X}|) \ ilde{X} = ext{median}(X)$$

Option 2

Automatic identification of outliers via median absolute deviations (MAD)

MAD is a measure of statistical dispersion (like standard deviation, but more robust)

$$ext{MAD} = ext{median}(|X_i - ilde{X}|) \ ilde{X} = ext{median}(X)$$

advantage: can be applied automatically, e.g. if there are many data sets/samples

risk: some cell types have higher average RNA content than others, may get filtered out

Filtering low quality cells – general advice

→ Be permissive during initial filtering and revisit later, e.g. remove clusters with high average mitochondrial read fraction.

Filtering low quality cells – general advice

→ Be permissive during initial filtering and revisit later, e.g. remove clusters with high average mitochondrial read fraction.

→ Perform filtering per batch / per sample as QC metrics may vary strongly between them.

Filtering low quality cells – general advice

→ Be permissive during initial filtering and revisit later, e.g. remove clusters with high average mitochondrial read fraction.

→ Perform filtering per batch / per sample as QC metrics may vary strongly between them.

→ QC metrics vary by tissue and protocol, don't freak out if your values are different from tutorials.

Subramanian, A., Alperovich, M., Yang, Y. et al. Biology-inspired data-driven quality control for scientific discovery in single-cell transcriptomics. Genome Biol 23, 267 (2022). https://doi.org/10.1186/s13059-022-02820-w

Ambient mRNA / mRNA "soup": cell-free mRNA from burst cells enters reaction volumes (droplets, wells)

Removal of ambient mRNA / mRNA "soup": basic idea

Total mRNA counts for gene x in cell y

measure

True counts from cell y

from the soup

estimate from empty cells

https://cf.10xgenomics.com/samples/cell-vdj/5.0.0/sc5p_v2_hs_PBMC_10k_multi_5gex_5fb_b_t/sc5p_v2_hs_PBMC_10k _multi_5gex_5fb_b_t_web_summary.html

Removal of ambient mRNA / mRNA "soup": basic idea

True counts from cell y

Total mRNA counts for gene x in cell y

Extra counts from the soup

Potential problems with naïve approach:

- After substraction, you may end up with negative counts / non-integers
- Individual cells have different library sizes (count sums), so a one-size-fits-all substraction of contamination may not be appropriate

Removal of ambient mRNA, example method: SoupX

1) Determine **contamination profile** from empty droplets

Heumos, L., Schaar, A.C., Lance, C. et al. Best practices for single-cell analysis across modalities. Nat Rev Genet 24, 550–572 (2023). https://doi.org/10.1038/s41576-023-00586-w

https://cf.10xgenomics.com/samples/cell-

vdj/5.0.0/sc5p_v2_hs_PBMC_10k_multi_5gex_5fb_b_t/sc5p_v2_hs_PBMC_10k_multi_5gex_5fb_b_t_web_summary.html

Removal of ambient mRNA, example method: SoupX

- 1) Determine **contamination profile** from empty droplets
- 2) Estimate the contamination rate cell-containing droplets via highly specific marker genes

Assumption: strong marker gene (e.g. CD8A) of one cluster is not expressed in the other clusters \rightarrow occurrence in another cluster is contamination

2.1 Marker genes for each cluster identified

CLEC4C SCT

Matthew D Young, Sam Behjati, SoupX removes ambient RNA contamination from droplet-based single-cell RNA sequencing data, *GigaScience*, Volume 9, Issue 12, December 2020, giaa151, https://doi.org/10.1093/gigascience/giaa151

Removal of ambient mRNA, example method: SoupX

1) Determine **contamination profile** from empty droplets

2) Estimate the contamination rate cell-containing droplets via highly specific marker genes

3) Draw corrected counts from a multinomial model (positive integer output) using contamination profiles, contamination rate and measured counts as input

Matthew D Young, Sam Behjati, SoupX removes ambient RNA contamination from droplet-based single-cell RNA sequencing data, *GigaScience*, Volume 9, Issue 12, December 2020, giaa151, https://doi.org/10.1093/gigascience/giaa151

Ambient RNA removal has positive effects on downstream analysis

The impact of contamination on marker gene analyses

The ability to distinguish hitherto unknown cell types and states is one of the greatest achievements made possible by single cell transcriptome analyses. To this end, marker genes are commonly used to annotate cell clusters for which available classifications appear insufficient. An ideal marker gene would be expressed in all cells of one type but in none of the other present cell types. Thus, when comparing expression levels of one cell type versus all others, we expect high log2-fold changes, the higher the change the more reliable the marker. However, such a reliance on marker genes also makes this type of analysis vulnerable to background noise. Our whole kidney data can illustrate this problem well, because with the

Janssen, P., Kliesmete, Z., Vieth, B. *et al.* The effect of background noise and its removal on the analysis of single-cell expression data. *Genome Biol* **24**, 140 (2023). https://doi.org/10.1186/s13059-023-02978-x

Ambient RNA removal has positive effects on downstream analysis

The impact of contamination on marker gene analyses

The ability to distinguish hitherto unknown cell types and states is one of the greatest achievements made possible by single cell transcriptome analyses. To this end, marker genes are commonly used to annotate cell clusters for which available classifications appear insufficient. An ideal marker gene would be expressed in all cells of one type but in none of the other present cell types. Thus, when comparing expression levels of one cell type versus all others, we expect high log2-fold changes, the higher the change the more reliable the marker. However, such a reliance on marker genes also makes this type of analysis vulnerable to background noise. Our whole kidney data can illustrate this problem well, because with the

Clean data →

- Clearer clusters
- More meaningful marker genes
- Better results in differential gene expression analyses

Janssen, P., Kliesmete, Z., Vieth, B. *et al.* The effect of background noise and its removal on the analysis of single-cell expression data. *Genome Biol* **24**, 140 (2023). https://doi.org/10.1186/s13059-023-02978-x

Benchmarking ambient RNA removal tools: Cellbender performs slightly better than other methods

experimental setup with 3 mouse strains allows to access ground truth ambient RNA fractions

Janssen, P., Kliesmete, Z., Vieth, B. *et al.* The effect of background noise and its removal on the analysis of single-cell expression data. *Genome Biol* **24**, 140 (2023). https://doi.org/10.1186/s13059-023-02978-x

Benchmarking ambient RNA removal tools: recommendations

- Ambient RNA removal should always be performed if the goal is marker gene identification
- Classification, clustering and pseudotime analyses are generally robust enough to not require ambient RNA removal → for these analyses, only correct if background RNA levels are high

Knee plots help determine the level of ambient RNA

Exhibit A: low background 20,000 UMI count per droplet

5000

Droplet ID ranked by count

200

500

Exhibit B: high background 20,000 UMI count per droplet 200 500 70,000 5000 Droplet ID ranked by count

Not every experimental failure can be cleaned up

Article | Published: 07 August 2023

Unsupervised removal of systematic background noise from droplet-based single-cell experiments using CellBender

Stephen J. Fleming [™], Mark D. Chaffin, Alessandro Arduini, Amer-Denis Akkad, Eric Banks, John C.

Marioni, Anthony A. Philippakis, Patrick T. Ellinor & Mehrtash Babadi [™]

Nature Methods 20, 1323–1335 (2023) | Cite this article

Doublet detection

droplet/well

two or more cells enter the same droplet or well

Doublet detection

all mRNA molecules get labelled with the same cell barcode

In the count matrix, they become one row (column)

droplet/microwell

Heterotypic doublet

Homotypic doublet

Multiplet Rate (%)	# of Cells Loaded	# of Cells Recovered
~0.4%	~825	~500
~0.8%	~1,650	~1,000
~1.6%	~3,300	~2,000
~2.4%	~4,950	~3,000
~3.2%	~6,600	~4,000
~4.0%	~8,250	~5,000
~4.8%	~9,900	~6,000
~5.6%	~11,550	~7,000
~6.4%	~13,200	~8,000
~7.2%	~14,850	~9,000
~8.0%	~16,500	~10,000

Example: doublet rates for 10x Chromium 3'v3.1

Multiplet Rate (%)	# of Cells Loaded	# of Cells Recovered
~0.4%	~825	~500
~0.8%	~1,650	~1,000
~1.6%	~3,300	~2,000
~2.4%	~4,950	~3,000
~3.2%	~6,600	~4,000
~4.0%	~8,250	~5,000
~4.8%	~9,900	~6,000
~5.6%	~11,550	~7,000
~6.4%	~13,200	~8,000
~7.2%	~14,850	~9,000
~8.0%	~16,500	~10,000

Multiplexing Pooled

Example: doublet rates for 10x Chromium 3'v3.1

Multiplexing

Most doublets will identifiable because they contain more than one hashtag oligonucleotide sequence!

https://kb.10xgenomics.com/hc/en-us/articles/360056584872-How-many-cell-multiplets-will-remain-undetected-in-my-final-data-when-using-the-3-CellPlex-Kit-for-Cell-Multiplexing

Most doublets will identifiable because they contain more than one hashtag oligonucleotide sequence!

		Targeted Cell Recovery						
		5,000	10,000	20,000	30,000			
Cell Barcodes Detected		4,800	9,200	16,900	23,400			
Singlets		4,600	8,400	14,100	17,700			
Multiplets		210	780	2,800	5,600			
Multiplet Rate		~4%	~8%	~16%	~24%			
Expected number of multiplets after Cell Ranger filtering								
2 tags	Dectected multiplets	105	390	1,400	2,800			
	Undetected multiplets	105	390	1,400	2,800			
4 tags	Dectected multiplets	158	580	2,100	4,200			
	Undetected multiplets	52	200	700	1,400			
8 tags	Dectected multiplets	185	680	2,460	4,930			
	Undetected multiplets	25	100	340	678			
12 tags	Dectected multiplets	193	720	2,580	5,150			
	Undetected multiplets	17	60	220	450			

Example: doublet rates for 10x Chromium 3' v3.1 with multiplexing

https://kb.10xgenomics.com/hc/en-us/articles/360056584872-How-many-cell-multiplets-will-remain-undetected-in-my-final-data-when-using-the-3-CellPlex-Kit-for-Cell-Multiplexing

Doublet detection with computational methods basic ideas

Doublet detection with computational methods basic ideas

Use prior knowledge to identify combinations of marker genes which are not thought to exist

Doublet detection with computational methods basic ideas

Some cell types are larger / have more mRNA

Use prior knowledge to identify combinations of marker genes which are not thought to exist

Right cell type resolution to consider? Novel discoveries?

Doublet detection with computational methods – many options exist

Data for benchmarking doublet detection algorithms:

- 1. Simulated datasets
- 2. Experimental doublet datasets:
 - a. Human/mouse mixture
 - b. 2 genotype mixture
 - c. cell hashing (multiplexing)

Nan Miles Xi, Jingyi Jessica Li (2021): Protocol for executing and benchmarking eight computational doublet-detection methods in single-cell RNA sequencing data analysis, STAR Protocols, Volume 2, Issue 3, https://doi.org/10.1016/j.xpro.2021.100699.

Doublet detection with computational methods – many options exist

20

Nan Miles Xi, Jingyi Jessica Li (2021): Protocol for executing and benchmarking eight computational doublet-detection methods in single-cell RNA sequencing data analysis, STAR Protocols, Volume 2, Issue 3, https://doi.org/10.1016/j.xpro.2021.100699.

Doublet detection with computational methods – example: scDblFinder

Nearest neighbor classification – if most nearest neighbors are simulated doublets, the cell is probably a doublet, too

Strategy: Cluster at high resolution, compare doublet scores at the cluster level rather than the single cell level

Here: doublet scores from scrublet via scanpy

Strategy: Cluster at high resolution, compare doublet scores at the cluster level rather than the single cell level

Removed clusters with mean doublet score > 0.3, meaning clusters 4, 5, 9, 10, 17, 24, 25.

Before doublet removal: 338,465 events After doublet removal: 255,170 events

→~24% removed, agrees well with theoretically expected number of doublets

After removal of clusters with high doublet scores, recluster

Strategy: Cluster at high resolution, compare doublet scores at the cluster level rather than the single cell level

Removed clusters with mean doublet score > 0.3, meaning clusters 4, 5, 9, 10, 17, 24, 25.

Before doublet removal: 338,465 events After doublet removal: 255,170 events

→~24% removed, agrees well with theoretically expected number of doublets

After removal of clusters with high doublet scores, recluster

Quality Control: A Suggested Workflow (but you are allowed to think for yourselves!)

Alignment (e.g. cellranger, STARsolo)

Inspect knee plot and library level QC metrics to identify failures

If required, run ambient RNA removal (e.g. cellbender), proceed with corrected count matrix

1st permissive filtering on

- n counts
- n genes
- % mt genes per sample

[If several libraries/datasets/runs/samples are being combined, combine here]

Calculate doublet scores (e.g. scrublet, scDblFinder)

Run a fine clustering (i.e. deliberately overcluster), inspect QC metrics at the cluster level, e.g. as violin plots (doublet score, n_counts, n_genes, % mt genes,

Determine cut-offs and remove outlier clusters

Clean data 😊

Follow-up material

 In-depth discussion of knee plots including how they may be used to detect experimental failures and problematic samples

https://www.10xgenomics.com/support/software/cell-ranger/latest/advanced/cr-barcode-rank-plot