2 - MLBox

2 - MLBox

a - Features

MLBox: a fully automated pipeline

MLBox: features

Initialisation:

From a raw dataset to a cleaned dataset with numerical features.

Files reading:

- Reading of several files (csv, xls, json and hdf5)
- > Task detection (binary/multiclass classification or regression)
- > Creation of the training data set and the test data set

Preprocessing/cleaning:

- > Dropping duplicates and constant features
- ➤ Dropping drifting features → see « drift »

Encoding:

- > Converting features to a **unique format** (float if possible or str)
- Converting lists
- > Converting dates into timestamp
- > Target encoding for classification task only
- ➤ Categorical features encoding (several strategies available !)
- ➤ Missing values encoding (several strategies available !)

MLBox: features

Validation:

Several models are **tested** and **cross-validated** and the best one is fitted.

· On features:

- ➤ Feature engineering : neural network features engineering → see « entity embedding »
- > Feature selection : filter methods, wrapper methods and L1 regularization

On estimator:

- > TestIng of a wide range of accurate estimators: Linear model, Random Forest, XGBoost, LightGBM...
- > Model blending: **stacking**, boosting, bagging
- > Hyper-parameters tuning (using TPE algorithm)

· On validation:

- > Choice of several metrics: accuracy, log-loss, AUC, f1-score, MSE, MAE, ... or customized
- > Validation parameters: number of folds, random state, ...

MLBox: features

Application:

We **fit** the **whole** pipeline and **predict** the target on the test set.

Prediction:

- > Target prediction (class probabilities for classification)
- > Dumping fitted models and final predictions (.csv file)
- > CPU time display

• Models interpretation:

- > Features importance
- > Leak detection

2 - MLBox

b – focus #1 on MLBox

« Drift »: a brand new algorithm!

> The issue

The issue

Definition

> The solution

1 – Drift estimation for each feature - i.e. covariate shift

- 2 Feature selection in order to:
- maintain the model's performance
- lower the drift

The algorithm

Univariate drift estimation

- Labelling data whether it belongs to the training or the test set
- Fitting a classifier to separate both classes
- Validation: roc AUC score gives us a drift measure

(Greedy) Recursive Drift Elimination

For each feature in decreasing drift order:

- We drop the feature
- We cross-validate the new model
- If delta score is > p:
 - We keep the feature
 - If not we drop it permanently

NB:

- Greedy algorithm: we can set a limited number of features to try or a drift threshold under which features are kept
- We can set different p

> Best case scenario

- 100% drifting features (we drop it)
- **0%** drifting features (we keep it)
- Drifting features that are not important (we drop it)

Worst case scenario

Important drifting features (2 sub-cases) :

2 - MLBox

c – Focus #2 on MLBox

« Entity embeddings »

> How to encode a categorical feature?

Methods	Explanation	Advantages	Drawbacks		
label encoding	For each categorical feature, we encode each value using the lexicographic order (A -> 1, B -> 2,)	Quick + scalable	Naive encoding + non understandable		
dummification	We « binarise » all categorical features (ex : var1_A, var1_B,)	Quick + less naive encoding + understandable	Not scalable		
Random projection	Random label encoding in k dimension	Quick + scalable + less naive encoding	Non understandable		
discretization	We gather values	scalable + understandable	Loss of information		
entity embedding	How to do ???	Accurate + scalable + understandable + quick	none ? ☺		

The idea of entity embedding

We would like to learn the **best vectorial representation** in an **euclidian space**:

- <u>Label encoding/random projection</u>: distance between 2 values = random
- Dummification : distance between 2 values = $\sqrt{2}$
- Entity embedding: distance between 2 « similar » values low and vice versa

Solution: use a neural network to learn this representation

The principle of entity embedding

Choice of the number of units for the « embedded layer »:

- Constant (2 or 3)
- Proportionnal to the number of values (threshold = 5)
- Using a discretization method (Edge ML)

> Test on a real data set

- DataScience.net challenge: https://www.datascience.net/fr/challenge/26/details
- We would like to predict the price of an automobile insurance policy
- Training data set: 300.000 rows and 43 features like: brand, age, postcode, energy consumption, ...

Top 10:

	id	annee_naissance	annee_permis	marque	puls_fiscale	anc_veh	codepostal	energle_veh	kmage_annuel	crm	v	ar14	var15	var16	var17	var18	var19	var20	var21	var22	prime_tot_ttc
0	1.0	1986.0	2006.0	RENAULT	4.0	1.0	1034	gpl	2924.0	68.0		N	1.0	1	1.0	27.0	0.0	0.0	0.0	1.0	254.75
1	2.0	1986.0	2006.0	RENAULT	8.0	2.0	1034	gpl	11580.0	50.0		N	2.0	1	1.0	28.0	0.0	0.0	0.0	1.0	259.89
2	3.0	1982.0	2001.0	RENAULT	7.0	2.0	1034	gpl	7149.0	95.0		N	3.0	1	1.0	29.0	0.0	0.0	0.0	1.0	431.65
3	4.0	1987.0	2006.0	DACIA	5.0	2.0	1034	gpl	6526.0	100.0		N	3.0	1	1.0	29.0	0.0	0.0	0.0	1.0	577.99
4	5.0	1994.0	2013.0	CITROEN	4.0	2.0	1034	gpl	2872.0	50.0		N	2.0	1	4.0	26.0	0.0	1.0	1.0	4.0	222.67
5	6.0	1985.0	2006.0	HONDA	5.0	2.0	1034	hybride essence	7191.0	100.0		N	0.0	1	4.0	27.0	0.0	1.0	1.0	4.0	595.23
6	7.0	1974.0	1994.0	CHRYSLER	11.0	2.0	1034	gpl	12387.0	100.0		N	2.0	1	4.0	27.0	0.0	1.0	1.0	4.0	540.89
7	8.0	1989.0	2008.0	DAEWOO	9.0	1.0	1034	gpl	7227.0	100.0		N	2.0	1	4.0	27.0	0.0	1.0	1.0	4.0	728.57
8	9.0	1987.0	2006.0	RENAULT	8.0	2.0	1034	gpl	11580.0	50.0		N	2.0	1	1.0	33.0	0.0	0.0	1.0	2.0	259.89
9	10.0	1990.0	2009.0	RENAULT	7.0	4.0	1034	gpl	6496.0	50.0		N	1.0	1	1.0	34.0	0.0	0.0	1.0	2.0	207.58

155 brands

6 energy consumptions

Test on a real data set: accuracy + quickness

In [7]: opt = Optimiser(scoring, n folds, verbose=verbose)

```
opt.evaluate(None, df)
      No parameters set. Defaut configuration is tested
      >>> NA ENCODER: {'numerical strategy': 'mean', 'categorical strategy': '<NULL>'}
      >>> CA ENCODER : {'strategy': 'label encoding'}
      >>> ESTIMATOR: {'reg alpha': 0, 'colsample bytree': 0.9, 'silent': True, 'colsample bylevel': 0.6, 'scale pos weight': 1, 'learning rate': 0.05, 'missing': None, 'max delta st
      ep': 0, 'nthread': -1, 'base score': 0.5, 'strategy': 'XGBoost', 'n estimators': 500, 'subsample': 0.9, 'reg lambda': 1, 'seed': 0, 'min child weight': 1, 'objective': 'reg:lin
      ear', 'max depth': 7, 'gamma': 0}
      MEAN SCORE: mean absolute error = -29.9181289037
      CPU time: 52.185188055 seconds
In [8]: opt.evaluate({"ce strategy":"entity embedding"}, df)
      >>> NA ENCODER: {'numerical strategy': 'mean', 'categorical strategy': '<NULL>'}
      >>> CA ENCODER : {'strategy': 'entity embedding'}
      >>> ESTIMATOR: {'reg alpha': 0, 'colsample bytree': 0.9, 'silent': True, 'colsample bylevel': 0.6, 'scale pos weight': 1, 'learning rate': 0.05, 'missing': None, 'max delta st
      ep': 0, 'nthread': -1, 'base score': 0.5, 'strategy': 'XGBoost', 'n estimators': 500, 'subsample': 0.9, 'reg lambda': 1, 'seed': 0, 'min child weight': 1, 'objective': 'reg:lin
      ear', 'max depth': 7, 'gamma': 0}
      MEAN SCORE: mean absolute error = -29.7093714336
      CPU time: 122.252818823 seconds
```


> Test on a real data set: understanding + scalability

```
In [9]: cols = ["marque","energie_veh"]
    ce = Categorical_encoder("entity_embedding",verbose=False)
    %time df_train_emb = ce.fit_transform(df['train'][cols],df['target'])
    df_train_emb.head()
```

CPU times: user 2min, sys: 2.9 s, total: 2min 2s

Wall time: 33.2 s

Out[9]:

_	marque_	emb1	marque_emb2	marque_emb3	marque_emb4	marque_emb5	energie_veh_emb1	energie_veh_emb2
	0 0.79	99269	-0.767513	-0.802887	0.801199	0.812181	-0.885237	0.816619
	1 0.79	99269	-0.767513	-0.802887	0.801199	0.812181	-0.885237	0.816619
:	2 0.79	99269	-0.767513	-0.802887	0.801199	0.812181	-0.885237	0.816619
	3 2.6	10133	-2.577490	-2.639355	2.580082	2.603229	-0.885237	0.816619
	4 0.84	43187	-0.868857	-0.869318	0.846686	0.846408	-0.885237	0.816619

Threshold = 5 units for the embedded layer

