Université Ibn Tofail A.U. 2021/2022

Faculté des Sciences Filière : SMI

Département d'Informatique

Programmation II

Semestre 4

TDs Nº 1

Exercice 1:

Kénitra

Soit T un tableau de réels de taille N. Ecrire un programme C qui remplit le tableau T par des valeurs entrées au clavier. Incrémenter ensuite de 10% les éléments supérieurs à 50 et afficher le tableau résultant.

Exercice 2:

Soit T un tableau d'entier de taille N.

- 1. Ajouter à la fin d'un tableau : Ecrire un programme C qui lit un entier n, remplit les n premiers éléments du tableau T par des valeurs entrées au clavier, puis insérer une valeur v donnée au clavier à la fin dans la n+1 case tableau.
- 2. Insérer dans une position p : Modifier le programme précédent pour que la valeur de v soit insérer dans une position p (entrée au clavier) du tableau T.
- 3. Insérer dans un tableau trié : On suppose que T est un tableau trié par ordre croissant. Modifier le code de la question 2 de telle sorte à insérer la valeur de V donnée au clavier de manière à obtenir un tableau T trié.

Exemple:

Tableau T:

Tableau T:

1	3	6	8	9

V: 5

1	3	5	6	8	9		

Exercice 3:

Ecrire un programme qui calcul et affiche la valeur d'un polynôme ${\bf P}\;$ de degré ${\bf n}\;$ en un point

 ${\bf x}$ donné. Les coefficients $({\bf a}_n,\,{\bf a}_{n-1},\,\ldots,\,{\bf a}_{\theta})$ de ${\bf P}$ sont contenus dans le tableau :

$$t(t[0]=a_0, ..., t[n]=a_n)$$
.

Schéma normal : $P(x) = a_n * x^n + a_{n-1} * x^{n-1} + ... + a_1 * x^1 + a_0$

Schéma de Horner: $P(x) = (((a_n*x + a_{n-1})*x + ...)*x + a_1)*x + a_0$

Exercice 4:

1 On souhaite créer une structure **Point** pour représenter un point dans l'espace. Cette structure doit contenir les coordonnées réels **x**, **y** et **z** du point.

FS- Kénitra 1/2

- ⇒ Donnez la définition de cette structure.
- ⇒ Ecrire un programme qui :
 - o crée deux points et les initialise avec des réels.
 - o affiche les deux points sous la forme : (6.9, 7.3, 4.2)
 - o calcule la distance entre les deux points.
- 2 On souhaite aussi créer une structure **Segment** pour représenter un segment de droite défini par deux points (structure **Point**).
 - ⇒ Donnez la définition de cette structure.
 - ⇒ Ecrire un programme qui :
 - o crée un segment à partir de deux points.
 - o affiche le segment sur comme suit :

$$[(6.9, 7.3, 4.2) --- (6.9, 7.3, 4.2)]$$

- 3. On souhaite par ailleurs créer une structure **Ligne** pour représenter une ligne brisée constituée de plusieurs points. Cette structure doit contenir le nombre de points manipulés **N** et un tableau automatique de points de taille constante **TMAX**.
 - ⇒ Donnez la définition de cette structure.
 - ⇒ Ecrire un programme qui :
 - crée une ligne brisée et l'initialisé par les trois point (3.2, 5.0, 1.0), (4.6, 3.0, 0.0), (2.0, 2.5, 3.0).
 - o affiche la ligne en affichant l'ensemble de points de la ligne.
 - o calcule et affiche la longueur de la ligne.

FS- Kénitra 2/2