Round Five:

A. $(2x+5)^2 \le 0$ only if $(2x+5)^2 = 0$ so 2x+5=0, x = -2.5

B. $x^2 - 13x = 30$ so (x - 10)(x - 3) = 0 or $x^2 - 13x = -30$ so (x - 15)(x + 2) = 0 sum is 10 + 3 + 15 - 2

C. By synthetic division testing or calculator table x-2 is a factor of $13x^3 - 50x^2 + 44x + 8 = (x - 2)(x - 2)(13x + 2)$ If $x \ne 2$ first two are positive product so 13x + 2 > 0 if x > -2/13

Round Six:

A. 1/(6/5) = 5/6

B. If $x/y = \frac{1}{4}$ then y = 4x. Substitute to get (4x - 12x)/(2x + 4x) = -8x/6x

C.
$$M = 7 + \frac{6}{1 + \frac{2}{5 + \frac{4}{3}}} = 7 + \frac{6}{1 + \frac{2}{19/3}} = 7 + \frac{6}{1 + \frac{6}{19}} = 7 + \frac{6(19)}{25} = \frac{289}{25}$$

Similarly
$$N = 1 + \frac{2}{7 + \frac{6}{3 + \frac{4}{5}}} = \frac{201}{163}$$
 so $M - N = \frac{289(163) - 201(25)}{25(163)} = \frac{42082}{4075}$

Team Round:

A. Centers of balls form reg. tetrahedron of edge 4. Altitude hits base incenter 2/3

way from vertex so ht = $\sqrt{4^2 - \left(\frac{2}{3} \cdot 2\sqrt{3}\right)^2} = \frac{4\sqrt{6}}{3}$ Add on radius of top ball

and bottom layer.

B.
$$x^2 = h^2 + y^2$$
 and $4x^2 = h^2 + y^2 + 729 - 54y$ subtracting gives $3x^2 = 729 - 54y$ or $x^2 = 243 - 18y$ with x^2 a perfect square by trial and error or calculator table y is 1, $x^2 = 225$ or $y = 9$, $x^2 = 81$. Only the first fits the problem so $h = \sqrt{225 - 1} = 4\sqrt{14}$

C. x = y/2 so subst. to get $2/y + \frac{1}{2} + \frac{6}{z} = 14 - y$ so $6/z = \frac{27}{2} - y - \frac{2}{y} = \frac{27}{2} + \frac{27}{2} = \frac{27}{2} + \frac{27}{2} = \frac{27}{2}$

$$\frac{27y - 2y^2 - 4}{2y} \text{ so } \frac{z}{6} = \frac{2y}{-2y^2 + 27y - 4} \text{ and } z = \frac{12y}{-2y^2 + 27y - 4}$$

D. 1/b + 1/a = 1/10; 1/m + 1/a = 1/8; 1/m = 1/B = 1/6; sum to get 2/b + 2/a + 2/m = 47/120 so together 1/b + 1/a + 1/m = 47/240. After 2 hrs. 4/5 job

remains. 4/5 divided by
$$47/240 = 4 \frac{4}{47} \approx 4 \frac{4}{48} = 4 hrs 5 min$$

E. The minimum value will occur at a vertex of the graph where one of the two AV expressions is zero and the minimum value is just the other expression. If the first