- 1. Operating systems (OSes)
 - a. What's the objective of an operating system?
 - i. Make the computer easy to use
 - 1. Provide services for program development
 - a. For example, suspend and continue signals when using GDB
 - 2. Make starting a program simple
 - a. Say, clicking an icon
 - 3. Provide security via password protection
 - 4. Handle error correction and detection transparently
 - a. Correct errors in I/O and files
 - 5. Provide quick response time to the user
 - a. Adjust resource assignments to prioritize application in foreground
 - ii. Manage the computer's resources so they are used efficiently
 - 1. OS is just another program
 - a. Relies on the processor and system like any other
 - b. Relinquishes CPU to user processes, relies on CPU to give control back
 - c. It is a more "privileged" program, however
 - 2. Kernel the "core" of the OS
 - a. Frequently used routines that stay in RAM all the time
- 2. History of operating systems
 - a. Two dimensions determine how the OS runs things
 - i. Interactivity of machine batch versus interactive
 - 1. Interactivity is what we know today, interact directly with computer
 - ii. Number of programs being worked on uniprogrammed versus multiprogrammed
 - b. Original OSes didn't do much
 - i. Computer sat idle waiting for operator to enter programs, then ran the program
 - ii. Uniprogrammed OS only worked on one program at a time
 - c. Batch idea introduced
 - i. Was able to do this with some more RAM
 - ii. Give all the programs to run at once to the operator, operator loads them in
 - iii. Computer monitor responsible for loading program and running it
 - 1. Then it would print out results and load new program
 - iv. Better than previous, but still not great
 - 1. Spent lots of time waiting for I/O due to difference in speeds
 - d. Finally, multiprogrammed machines
 - i. Takes even more RAM
 - ii. Allows multiple programs available to run at once
 - 1. Not running simultaneously, but gives the appearance of that
 - iii. Less waiting around
 - 1. Program stalls? Go to the next one
 - iv. Need some more components for this
 - 1. Memory protection prevent processes from overwriting another's data
 - 2. Memory management not enough RAM to store entire program in memory at once
 - a. Discuss this one next
 - 3. Scheduler talk about this later if we have time