Name- Dhyey Findoriya Roll No.- B22EE024

Comp Arch Lab-1

Machine-1 Specifications: OS-Fedora Linux 39

Architecture: x86_64
CPLLop_mode(s): 32-bit 64

CPU op-mode(s): 32-bit, 64-bit

Address sizes: 39 bits physical, 48 bits virtual

Byte Order: Little Endian

CPU(s): 8 On-line CPU(s) list: 0-7

Vendor ID: GenuineIntel

Model name: 11th Gen Intel(R) Core(TM) i5-1135G7 @ 2.40GHz

CPU family: 6

Model: 140

Thread(s) per core: 2

Core(s) per socket: 4

Socket(s): 1

Stepping: 1

CPU(s) scaling MHz: 24%

CPU max MHz: 4200.0000 CPU min MHz: 400.0000 BogoMIPS: 4838.40

About the code:

MandelBrot Problem(From GFG)

- The Mandelbrot set is a collection of complex numbers where the iterative sequence $z_{n+1} = z_n^2 + c$ remains bounded.
- Each point represents a complex number c = x + yi, with the set visualized as a fractal image.
- The function is iteratively applied to determine if the sequence diverges for each point.
- Points are colored based on the number of iterations before divergence, creating a detailed fractal.
- Uses complex numbers, iterative functions, and the concept of fractals to define and visualize the set.

Analyzing the metrics:

Metric	Value	Details	
Task Clock	657.10ms		
CPUs Utilized	0.930		
Context Switches	50	76.092 /sec	
CPU Migrations	6	9.131 /sec	
Page Faults	76	115.660 /sec	
Cycles	2,236,805,514	3.404 GHz	
Instructions	4,406,708,556	1.97 instructions per cycle	
Branches	617,164,238	939.226 M/sec	
Branch Misses	25,901,643	4.20% of all branches	
TopdownL1			
- Backend Bound	13.1%		
- Bad Speculation	24.8%		
- Frontend Bound	22.2%		
- Retiring	40.0%		
Time Elapsed	1.006904578 seconds		
User Time	0.646168000 seconds		
System Time	0.006917000 seconds		

Analyzing using linux command:

Metric	cd	pwd	ls
Task Clock	2.03 msec	1.22 msec	0.67 msec
CPUs Utilized	0.768	0.203	0.327
Context Switches	0	0	2
CPU Migrations	0	0	0
Page Faults	138	69	97
Cycles	5,905,836	2,674,957	2,488,525
Instructions	2,885,653	1,211,022	2,110,343
Branches	591,225	253,999	429,366
Branch Misses	15,941	7,953	14,165
TopdownL1			
- Backend Bound	39.6%	48.6%	32.5%
- Bad Speculation	5.6%	5.5%	10.7%
- Frontend Bound	44.7%	35.6%	37.5%
- Retiring	10.2%	10.2%	19.2%
Time Elapsed	0.002646429 seconds	0.006021428 seconds	0.002059844 seconds
User Time	0.001372000 seconds	0.000000000 seconds	0.000000000 seconds
System Time	0.001379000 seconds	0.003443000 seconds	0.001275000 seconds

Analysis

1) Resources Utilization:

- cd: Shows the highest task clock time (2.03 msec) and CPU cycles (5,905,836), indicating more resource usage compared to pwd and 1s. It has the lowest user and system time, but higher page faults.
- pwd: Consumes less task clock time (1.22 msec) and CPU cycles (2,674,957)
 than cd. It also has a lower number of page faults and branch misses.
- **1s**: Has the lowest task clock time (0.67 msec) and a relatively high number of CPU cycles (2,488,525) and instructions (2,110,343). It has a moderate number of context switches and page faults compared to pwd and cd.

2) Efficinecy

- 1s appears to be the most efficient in terms of task clock and system time.
 Despite having a moderate number of context switches and page faults, it uses fewer resources compared to cd.
- pwd has low task clock time and system time, but the number of page faults and branch misses are relatively higher than 1s.
- cd has the highest task clock time and CPU cycles, indicating it might be doing more work or involving more complex operations.

3) Performance Characteristics

- **1s**: Likely involves scanning directory contents, which explains the higher cycles and instructions. Despite this, it is efficient in terms of time elapsed.
- pwd: Primarily involves retrieving and printing the current directory path, resulting in lower resource usage and faster execution.
- cd: Although it appears simple, it might involve filesystem operations or other underlying operations that contribute to its higher resource usage.

4) Potential Bottlenecks

- cd: The high number of CPU cycles and page faults suggest potential inefficiencies or additional overhead associated with changing directories.
- pwd: Higher branch misses and page faults could be an area for further investigation to improve efficiency.

My Observations

- For cd: Investigate the filesystem operations or additional tasks performed during directory changes. Optimization might involve reducing overhead or improving efficiency in handling filesystem operations.
- **For pwd**: While efficient, reducing branch misses and page faults can further optimize performance, especially for frequent use.

Flamegraph

Visualizing the data:

Perf Bench command:

Perf bench syscall all

Benchmark	Calls Executed	Total Time	Time per Operation	Operations per Second
syscall/basic	10,000,000	1.374 sec	0.137433 µs/op	7,276,299 ops/sec
syscall/getpgid	10,000,000	1.453 sec	0.145394 µs/op	6,877,853 ops/sec
syscall/fork	10,000	12.253 sec	1225.313300 µs/op	816 ops/sec
syscall/execve	10,000	11.613 sec	1161.368400 µs/op	861 ops/sec

- Calls Executed: Number of system calls performed in the benchmark.
- Total Time: Total time taken to execute the benchmark.
- Time per Operation: Average time taken for each individual system call.
- Operations per Second: Number of system calls handled per second.

Machine-2 Specifications: OS-Kali Linux

Architecture: x86_64

CPU op-mode(s): 32-bit, 64-bit

Address sizes: 48 bits physical, 48 bits virtual

Byte Order: Little Endian

CPU(s): 12

On-line CPU(s) list: 0-11

Vendor ID: AuthenticAMD

Model name: AMD Ryzen 5 5625U with Radeon Graphics

CPU family: 25

Model: 80

Thread(s) per core: 2

Core(s) per socket: 6

Socket(s): 1

Stepping: 0

CPU(s) scaling MHz: 31%

CPU max MHz: 4388.0000

CPU min MHz: 400.0000

BogoMIPS: 4591.50

Analyzing the metrics:

Metrics	Value	Details	
Task Clock	411.07 msec	0.997 CPUs utilized	
Context Switches	2	4.865 /sec	
CPU Migrations	1	2.433 /sec	
Page Faults	73	177.585 /sec	
Cycles	1,746,945,076	4.250 GHz	
Stalled Cycles (Frontend)	35,530,577	2.03% frontend cycles idle	
Instructions	4,312,074,188	2.47 insn per cycle	
Stalled Cycles per Instruction	0.01		
Branches	616,022,963	1.499 G/sec	
Branch Misses	5,550,725	0.90% of all branches	
Elapsed Time	0.412235896 sec		
User Time	0.408745000 sec		
System Time	0.004007000 sec		

Observation

	Machine-1(Fedora)	Machine-2(Kali)
Run time	1.0069sec	0.4122sec

1) Hardware Differences:

- Kali Linux Machine: 12 CPU cores (6 cores, 12 threads) with a maximum clock speed of 4.39 GHz.
- Fedora Linux Machine: 8 CPU cores (4 cores, 8 threads) with a maximum clock speed of 4.20 GHz.
- The Kali machine has more cores and threads, which can lead to better parallel processing capabilities, especially in multi-threaded applications, reducing execution time.

2) CPU Architecture:

- Kali: AMD Ryzen 5 5625U (Zen 3 architecture).
- Fedora: Intel Core i5-1135G7 (Tiger Lake architecture).
- The architectures of the CPUs can impact performance based on how well each is optimized for certain tasks. Ryzen processors are known for better multi-threaded performance, which might explain the faster execution on the Kali machine.

3) Kernel Optimization:

- **Kali Linux:** Often uses a custom kernel optimized for low latency and quick response times, which benefits short, intensive tasks. This can result in faster execution times for certain workloads, especially those that are CPU-bound.
- Fedora Linux: Uses a more general-purpose kernel optimized for a balance between performance, stability, and security. This might not be as finely tuned for performance in high-demand scenarios, leading to slightly slower execution times.