ECEN 220 – Signals and Systems Lab 3: The Fourier Transform

Due: 10:00 a.m., Monday, 14 September 2020

- 1. First, let us explore some practical examples of the Fourier transform that we might find in practice.
 - (a) Start by plotting $x(t) = \cos(\omega_0 t)$ over one period for $\omega_0 = 2\pi/10$.
 - (b) Plot the Fourier transform of x(t), $X(\omega)$, which can be found with the Matlab command fft(). You can include this in the same figure using the subplot() command. Note that as $X(\omega)$ is potentially complex for arbitrary x(t) you will need two plots: one showing $|X(\omega)|$ vs. ω , the other showing $\angle X(\omega)$ vs. ω .
 - (c) Comment on how your plots of $X(\omega)$ differ from your expectations, given your theoretical knowledge of $\mathcal{F}\{x(t) = \cos(\omega_0 t)\}$.
 - (d) Investigate what happens to the difference between the $X(\omega)$ found by Matlab and the $X(\omega)$ that we expect from theory when the step size of t is reduced.¹
- 2. Now that you have confirmed the Fourier transform of $x(t) = \cos(\omega_0 t)$, create figures that show the Fourier transforms of the following functions:
 - $x(t) = \sin(\omega_0 t)$
 - $x(t) = e^{j\omega_0 t}$
 - $x(t) = \delta(t)$
 - x(t) = u(t)
 - $x(t) = \delta(t t_0)$
 - $x(t) = e^{-at}u(t)$, $\mathcal{R} \setminus \{a\} > 0$
 - $x(t) = \begin{cases} 1, & |t| < T_1 \\ 0, & T_1 < |t| < \frac{T}{2} \end{cases}$
 - (a) As for part 1, each figure should show three plots: x(t), $|X(\omega)|$, and $\angle X(\omega)$.
 - (b) Annotate your plots with the idealised mathematical expressions for $X(\omega)$ in each case. Note that you may need to scale your plots or inspect their data in the plot editor to determine some of the expressions, particularly for $\angle X(\omega)$.
 - (c) Comment on any anomalies that you find. Hint: See table 4.2 from Oppenheim et al., reproduced in the Lecture Block 4 notes, if you need help determining expressions for $X(\omega)$.

 $^{^{1}}$ We can control step size when we define t: t = min_value:step_size:max_value.

- 3. EXTENSION Complete only if time permits.
 - In part 1 we found that the Fourier transform of $x(t) = \cos(\omega_0 t)$ is a pair of impulse functions at $\pm \omega_0$, with amplitude given by N/2, where N is the number of time steps in t.
 - (a) Use Matlab to find the Fourier transform of $X(\omega) = 5(\delta(\omega \omega_0) + \delta(\omega + \omega_0))$ for $\omega_0 = \frac{2\pi}{10}$ and $\omega = 0 : \frac{2\pi}{10} : 2\pi$. Create a figure to show your answer.³
 - (b) Matlab has a built in function, ifft(), for calculating inverse Fourier transforms, denoted \mathcal{F}^{-1} {}. The same way fft() implements the analysis equation for the Fourier transform, ifft() implements the synthesis equation. On the same figure showing \mathcal{F} { $X(\omega)$ }, plot the inverse Fourier transform of $X(\omega)$.
 - (c) Comment on the difference between $\mathcal{F}\{X(\omega)\}$, $\mathcal{F}^{-1}\{X(\omega)\}$, and your original function, $x(t) = \cos(\omega_0 t)$.
 - (d) Based on your knowledge of the synthesis and analysis equations of the Fourier transform, what other difference would you expect between the outputs of $\mathcal{F}\{X(\omega)\}$ and $\mathcal{F}^{-1}\{X(\omega)\}$ if those outputs were complex?

Hand in the published Matlab code.

²You will have to think carefully about how to display $(\omega - \omega_0)$, which is potentially negative, in the range $0: 2\pi$.

³So far we have taken the Fourier transforms of functions of t using fft(), but we could just as easily take transforms of functions of ω or any other variable using the same command.