ML Assignment 2

Simran Kucheria (sk11645@nyu.edu)

Problem 1

22 k	
C	
810	
A D	
a)	$K(x,\bar{x}) = \alpha K_1(x,\bar{x}) + \beta K_2(x,\bar{x}) \cdot \alpha, \beta > 0$
	K1, K2 are positive semi definite Kernele.
	$K_1(x,\bar{x}) = \phi_1(x)^T \phi(\bar{x}) \cdot K_2(x,\bar{x}) = \phi_2(\bar{x}) \phi_2(\bar{x})$
	$\alpha \times (x, \overline{x}) = \alpha \phi, (x)^T \rho(\overline{x})$ Since $\alpha, \beta > 0$ By $(x, \overline{x}) = \beta \phi, (x)^T \rho(\overline{x})$ Since $\alpha, \beta > 0$ bother these values
	$\beta K_2(x, \bar{x}) = \beta \phi_2(\bar{x}) \phi_2(\bar{x})$ are also positive semi definite
	(1) + (2)
	$= \propto \phi_{1}(x)^{T} \phi_{1}(\bar{x}) + \beta \phi_{2}(x)^{T} \bullet \beta \phi_{2} \times \cdot$
	$= \times \varphi_1(x) \varphi_1(x) + \beta \varphi_2(x) + \beta \varphi_2(x)$
	The sum is also
	positive semi definite
	K ₁ (x, x) + BK ₂ (x, x) is a valid Mercus kernd
b. >	$K(x,\bar{x}) = K_1(x,\bar{x}) \times K_2(x,\bar{x})$
	$= \phi_1(x)^{T} \phi_1(\overline{x}) \cdot \phi_2(x)^{T} \phi_2(\overline{x})$
PRINT	= = \$\phi_1 (\xi\) \phi_2 \times_1) \phi_1(\times) \phi_2(\times) = \phi_1(\times) \phi_2(\times) = \phi_1(\times) \phi_2(\times) = \phi_1(\times) \phi_1(\times) \phi_2(\times) = \phi_1(\times) \phi_1(\times) \phi_2(\times) = \phi_1(\times) \phi_
DØ	17 (12 mg) 11 (12 mg)

 $e^{\kappa(x,\bar{x})} = 1 + \kappa(x,\bar{x}) + \kappa(x,\bar{x})^2 + \kappa(x,\bar{x})$ $= \frac{1}{2!} + \kappa(x,\bar{x})$ $= \frac{1}{2!} + \kappa(x,\bar{x})$ K(x,\forall) is a valid Merus Kernel proven by (b). proved by (a). · e (K(x,x)) can be expressed using sum of multiplications and is also validate below -1/2 11x-4112= B $-\frac{1}{2} \|x - y\|^2 - \frac{x^2}{2} - \frac{y^2}{2} \times y$ $= e \cdot e \cdot e$ Using taylor expansion for the exterm. $K(x,y) = \phi(x) \cdot \phi(y)$ where $\phi(x) = e^{-x^2/2} \cdot (\stackrel{\alpha}{\leq} \frac{x}{1})$

Problem 2

Used cross validation to split the data into 2 parts.

Experimented with linear, polynomial and rbf kernels. Along with varying the c, polynomial order and sigma values.

For Linear kernel

Experimented with the following C Values:

```
[0.0000001, 0.000001, 0.00001, 0.0001, 0.001, 0.01, 0.1, 1, 10, 100]
```

The error reached 0 and stayed 0 for C > 0.01

On comparing with the Sum(Alpha) values graph and the NSV graph, the alphas remain constant until C>1 and the number of support vectors also reduces after C>1. So 0.01>C>1 are good values of C

For Polynomial kernel

Experimented with the following

C Values:

[0.0000001, 0.000001, 0.00001, 0.0001, 0.001, 0.01, 0.1, 1, 10, 100]

Degree Values:

[1,2,3,4,5]

We can vary C as well as the degree of the polynomial

Varying C while keeping the degree fixed yields the following graphs

For degree = 1

For degree = 2

For degree = 3

For degree = 4

For degree = 5

Looking at the Error graphs for the different degrees, the error becomes 0 for all degrees when C > 0.01

The number of support Vector graphs across different degrees shows that the number of support vectors reduces after C >1 which means it doesnt fit the data as well

So Optimum Value of C for the polynomial kernel is between 0.01 and 1

Varying the degrees while keeping C fixed yields the following graphs

For C = 0.01

For C = 0.1

For C = 1

Across all values of C looking at the error graphs with respect to the degree, the error is 0 for degrees 4 and 5 which makes it the optimum.

For RBF kernel

Experimented with the following

C Values:

[0.0000001, 0.000001, 0.00001, 0.0001, 0.001, 0.01, 0.1, 1, 10, 100]

Sigma Values:

[0.001,0.01,0.1,1,10]

We can vary C as well as the sigma

Varying C while keeping the sigma fixed yields the following graphs

For Sigma = 0.001

For Sigma = 0.01

For Sigma = 0.1

For sigma = 1

For Sigma = 10

Looking at the Error graphs for the different Sigmas, the error becomes 0 for different degrees when C > 0.1

So Optimum Value of C for the RBF kernel is C>0.1

Varying the Sigma while keeping C fixed yields the following graphs

For C = 0.1

For C = 1

For C = 100

Looking at the error and alpha graphs sigma values of 1 seems optimum

Problem 3

	638
	6
(100+x) =	
$f(x x) = \alpha \times e$	
7 (× X) = X Z E	
$f(x_i \mid x) = \prod_{i=1}^{n} \frac{1}{x^2} e^{x_i/x} = \left(\frac{1}{x^2}\right)^n e^{\frac{i-1}{x}}$ $= \left(\frac{1}{x^2}\right)^n e^{\frac{i-1}{x}}$ $= (2n - 2n)$	i/a.
= × e i=	/
Taking log likelihaad	
Taking log likelihood	
$\log f(x; \alpha) = \frac{1}{\sqrt{2}} \cdot \frac{1}{\sqrt{2}} \cdot \log \alpha - \frac{1}{\sqrt{2}} \cdot \frac{x_i}{\alpha}$	
1=1 \(\overline{\pi}\).	(1)
Taking derivative to max loglikelihood.	
-21 +5xi/ 2:= 0:	
$\frac{-2n}{\alpha} + \frac{2}{2} \times i / \alpha^2 = 0$	
-2 xn + \(\frac{1}{2} \text{xi} = 0	
^ 224	
€ x; = 2 x.	
_	
	1 1 H
X = X	74.
∞	
-0.15 4 -0.75 V. 1.5 Xu. 1.5 Xu. 2.	
= 0.25	. 7
X = 121131201 = 118 Q= /10 = (, ,