数据结构期末复习

期末 70%, 实验 20%, 平时 10%

下周二机房答疑, 周四下午期末前答疑

考试题型

填空 15-20 分, 选择 10-20 分, 简答 35 分, 写程序 10 分, 补齐算法 10 分, 写算法 10 分

第一章 基本概念

必考算法的时间复杂度,常用的时间复杂度有 $1 < log n < n < 2n < n log n < n^2 < n^3 < n!$

例题

```
x=2; x 以指数逼近 n/2,时间复杂度是 \log n while (x < n/2) x=2*x; A.O(\log_2 n) B.O(n) C.O(n\log_2 n) D.O(n^2)
```

课堂小测验

1、下面程序的时间复杂度为 _____。
void fun(int n) { int i=1, k=100; while(i<=n) {k++; i+=2;} }
(a) 0(log2n)
(b) 0(n)
(c) 0(nlog2n)
(d) 0(n^2)

2、算法分析的目的是 ____。
(a) 找出数据结构的合理性
(b) 分析算法的易读性和文档性
(c) 分析算法的效率以求改进
(d) 研究算法中输入和输出的关系

- 3、算法的时间复杂度与 ______ 有关。
- (a) 计算机硬件性能
- (b) 编译程序质量
- (c) 问题规模
- (d) 程序设计语言

答案BCC

第二章 线性表

基本概念名词

单链表:每个结点只有自己的数据,和指向后继元素的 next 指针域

双向链表:每个结点除数据外有两个指针域,一个指向后继元素,另一指向前趋元素

循环链表: 尾结点的 next 指向头结点

双向循环链表: 头结点的 prior 指向尾结点, 尾结点的 next 指向头结点

静态链表:不设指针,借助一维数组来描述线性链表

例题

考上面几种链表的结构、适用场合和特点,链表指针操作,按算法判断功能的填空

```
/* 链表原地逆置 */
List LocalReverseList(List &L)
{
    Pointer tmp, older, newer;
    newer = L->Next;
    older = newer->Next;
    while(older->Next)
    {
        tmp = older->Next;
        older->Next = newer;
        newer = older;
        older = tmp;
    }
    L->Next->Next = nullptr;
    L->Next = older;
    L->Next->Next = newer;
    return L;
}
```

课堂小测验

1、含有 n 个元素的顺序表中插入一个元素时移动元素的平均次数是。 (a) n/2 (b) (n+1)/2 (c) (n-1)/2 (d) 0(n)
2、对于双链表,在两个结点之间插入一个新结点是,需要修改 个指针域。 (a) 1 (b) 2 (c) 3 (d) 4
3、在一个双链表中,在*p结点之后插入结点*q的操作是。 (a) q->next = p->next; p->next->prior=q; p->next=q; q->prior=p; (b) q->prior = p; p-> next=q; p -> next -> prior =q; q ->next = p -> next; (c) p-> next=q; q->prior = p; q ->next = p -> next; p -> next -> prior =q; (d) p -> next -> prior =q; q->prior = p; p-> next=q; q ->next = p -> next;
4、非空的循环单链表 L 的尾结点(由 p 所指向)满足。 (a)p == NULL (b)p -> next == L (c)p-> next == NULL (d)p==L
5、某线性表最常用的操作是在尾元素之后插入一个元素和删除尾元素,则采用 存储方式最节省运算时间。 (a) 单链表 (b) 双链表 (c) 循环单链表 (d) 循环双链表

6、下面算法实现的功能是,在顺序表 L 的第 i 个元素之前插入新的元素 e , 划线处要填写的语句是 Status ListInsert_Sq(SqList &L, int i, ElemType e) { if (i < 1 || i > L.length+1) return ERROR; q = &(L.elem[i-1]);for (p = &(L.elem[L.length-1]); p >= q; --p)*q = e; ++L.length; return OK; } // ListInsert_Sq (a) *p = *(p-1);(b) *(p+1) = *p;(c) *(p+1) = *q;(d) *p = *(q-1); 7、下面算法的功能是 int 算法1(SqList L, ElemType e) { i = 1; p = L.elem; while (i <= L.length && (*p++! = e) ++i; if (i <= L.length)</pre> return i; else return 0; (a) 在顺序表中查找第一个与元素 e 相等的元素, 查找成功返回元素 e 的值, 查找不成功返回 0 (b) 在顺序表中查找所有与元素 e 相等的元素, 查找成功返回元素 e 的值, 查找不成功返回 0 (c) 在顺序表中查找第一个与元素 e 相等的元素, 查找成功返回位序, 查找不成功返回 0 (d) 在顺序表中查找所有与元素 e 相等的元素,查找成功返回位序,查找不成功返回 0 8、线性表的静态链表存储结构与顺序存储结构相比,优点是 ______。 (a) 所有的操作算法实现简单 (b) 便于随机存取 (c) 便于利用零散的存储器空间 (d) 便于插入和删除

课上做错第 5 题,【删除操作需要循环链表,才能以 0(1)比较方便的访问到尾节点的前一个和后一个元素】

答案: ADABDBCD

第三章 栈和队列

基本概念名词

栈: 只允许在表尾进行插入(进栈)或删除(出栈)操作的线性表;

允许进行插入和删除的一端称为栈顶(表尾);不允许操作的另一端称为栈底(表头);

最后进栈的元素最先离开 (LIFO 特性);

表中没有元素时, 称为空栈;

顺序存储栈:用一维数组依次存放从栈底到栈顶的元素,数组的上界 maxsize 表示栈的最大容量

另设栈顶指针 Top, 指示目前栈顶元素在数组中的位置

顺序栈判满: S.top - S.base >= S.size

顺序栈判空: S.top == S.base

链式栈: 用链表存放从栈底到栈顶的元素, 规定只能在栈顶进行操作

队列: 只允许在表的一端进行插入, 在另一端删除元素的线性表;

允许插入的一端称为队尾(rear);

允许删除的一端称为队头(front);

循环队列判满: (Q.rear+1) % MAXSIZE = Q.front

循环队列判空: Q.front = Q.rear

```
/* 汉诺塔问题 */
void hanoi(int n, char x, char y, char z)
    if(n==1)
      move(x,1,z);
    else{
      hanoi(n-1,x,z,y);
   move(x,n,z);
   hanoi(n-1,y,x,z);
   }
}
   课堂小测验 1
1、判定一个顺序栈 st 为(元素个数最多为 MaxSize)为栈满的条件为 。
(a) st.top==-1
(b) st.top! = -1
(c) st.top==MaxSize-1
(d) st.top==st.base
2、判定一个顺序栈 st 为(元素个数最多为 MaxSize)为栈空的条件为
(a) st.top==-1
(b) st.top==MaxSize
(c) st.top!=MaxSize
(d) st.top!=MaxSize
(e) st.top-st.base= MaxSize
3、若一个栈用数组 data[1..n]存储,初始栈顶指针 top 为 n+1,则以下元素 x 进入栈的正确
操作是
 (a) top++; data[top]=x;
(b) top--; data[top]=x;
(c) data[top]=x;top++;
(d) data[top]=x;top--;
4、从一个不带头结点的栈顶指针为 1st 的栈链中删除一个结点时,用 x 保存被删结点的值,则
执行
 (a) x=lst->data; lst= lst->next;
(b) x=lst; lst = lst->next;
(c) x=lst->data
(d) lst=lst->next; x=lst->data;
```

5、链栈与顺序栈相比有一个明显的优点,即 _____。 (a)插入操作更方便

- (b) 总是不会出现栈空的情况
- (c) 通常不会出现栈满的情况
- (d) 删除操作更加方便

答案:CABAC

【第三题应该选 B, 这个初始栈顶指针 top 为 n+1 说明数组是倒着用的, n+1 是初始】

课堂小测验 2

- 1、表达式 3* 2^(4+2*2-6*3)-5 求值过程中当扫描到 6 时,对象栈和算符栈为 (),其中^ 为乘幂 。 (a) 3,2,4,1,1; (*^(+*-(b) 3,2,8; (*^-(c) 3,2,4,2,2; (*^(-(d) 3,2,8; (*^(-2、设 a=6, b=4, c=2, d=3, e=2, 则后缀表达式 abc-/de*+的值是_ (a) 7 (b) 8 (c) 9 (d) 都不对 答案 D C 1、下列关于栈的叙述中错误的是 I. 采用非递归方式重写递归程序时必须使用栈 Ⅱ.函数调用时,系统要用栈保存必要的信息 Ⅲ. 只要确定了入栈次序, 即可确定出栈次序 IV. 栈是一种受限的线性表,允许在其两端进行操作 (a) 仅 I (b) 仅I、II、III (c) 仅I、III、IV
- 2、假设用一个不带头结点的单链表表示队列,队头和队尾指针分别为 front 和 rear,则判断队空的条件是 ______。
- (a) front == NULL

(d) 仅II、III、IV

- (b) front == rear
- (c) front!==NULL
- (d) rear!==NULL

答案: C A

第四章 串

重点 KMP 算法,next 函数和 next 函数改进的 nextval 函数

主要考点是给字符串计算 next, 但一般不要求能手写求 next 的代码

KMP 算法 next 函数的手动求法

求 next 函数

首先 next[1]填 0, next[2]填 1, 从 next[3]开始,此后每次计算 next[j+1]时, k 取前面 next[j]的值

(是前面一位的 next 值)

s[j]表示字符串的第 j 位,从 1 开始数

```
退出条件: k=0 或 s[j] = s[k], 得 next[j+1] = k+1
```

其他情况:不断向前回溯 k = next[k],直到满足上面的条件,最后也得 next[j+1] = 回溯后的 k+1

求 nextval 函数 (已有 next 函数结果后)

先把 next 函数的所有结果填到 nextval, 然后从 nextval[2]开始, 此后每次计算 nextval[j]时, k 取

next[j] (就是自身)

```
若 s[i]!= s[k]: nextval[i]就等于 next[i]
```

若 s[j] == s[k]:不断向前回溯 k = nextVal[k], nextVal[j] = k, 直到 s[j]!= s[k]为止

求 next 和 nextval 函数的代码

```
while(k!=0) //当 k 不是第 0 位, s[j] 也不等于 s[k] 时
          if(s[j] == s[k])
              break;
          else
              k = next[k]; //回溯
       next[j+1]=k+1; // j+1 位的 next 值 等于 k+1
      j++; //再求下一位的 next
   }
}
void get_nextVal(string p, vector<int> next, vector<int> &nextVal)
//在已有 next 的基础上,求修正值
   nextVal = next; //赋初值
   int j, k;
   for(j=2; j<nextVal.size(); j++)</pre>
       k = nextVal[j];
                        //先让 k 取 j 位的 next 值
      //1: 当 j 位和 k 位字符不相等时, nextVal[j]就取 next[j]的值, 不操作
      while(p[j] == p[k]) //2: 当 j 位和 k 位字符相等时
          k = nextVal[k]; //回溯直到 j 位和 k 位字符不再相等
          nextVal[j] = k; //使 j 位的 nextVal = k
       }
   }
}
int main(void)
     string p="$abaabcac";
     cout << "模式串为: " << endl;
     for(int i=1; i <= p.size()-1; i++)
        cout << p[i] << " ";
     cout << endl;</pre>
   // 计算 next 函数
   vector<int> next;
   next.resize(p.size());
   get_next(p,next);
   // 计算 next 函数修正值
   vector<int> nextVal;
   get_nextVal(p, next, nextVal);
 for(int i=1;i<=nextVal.size()-1;i++)</pre>
     cout << nextVal[i] << " ";</pre>
 cout << endl;</pre>
 return 0;
}
```

例题

例 1: "abcabaa"

字符串 s	a	b	С	a	b	а	a
j	1	2	3	4	5	6	7
k			1->0	1->0	1	2	3->1
next[j]	0	1	0+1=1	0+1=1	1+1=2	2+1=3	1+1=2
k		0	1	1->0	2->1	3	3
nextval[j]	0	1	1	1->0	2->1	3	2

例 2: "abcaabbabcab"

字符串 s	a	b	C	a	а	b	b	a	b	С	a	b
j	1	2	3	4	5	6	7	8	9	10	11	12
k			1->0	1->0	1	2->1	2	3->1->0	1	2	3	4
next[j]	0	1	1	1	2	2	3	1	2	3	4	5
k		1	1	1->0	2	2->1	3	1->0	2->1	3->1	4->0	5
nextval[j]	0	1	1	1->0	2	2->1	3	1->0	2->1	3->1	4->0	5

第五章 数组和广义表

基本概念名词

考数组怎么换算到一维矩阵的下标变换

稀疏矩阵: 假设 m 行 n 列的矩阵含 t 个非零元素,则称 $\delta=t/(m*n)$ 为稀疏因子;

通常认为 $\delta < = 0.05$ 的矩阵为稀疏矩阵

广义表

是线性表的推广, 也称为列表, 是 n 个单元素或子表所组成的有限序列

记作 LS=(
$$\alpha_1$$
, α_2 ,..., α_n)

广义表运算:

注意算表尾是把这个表里的 head 去掉,括号保留

任何一个非空广义表 $LS = (\alpha 1, \alpha 2, \dots, \alpha n)$ 均可分解为

表头 Head(LS) = $\alpha 1$ 和 表尾 Tail(LS) = $(\alpha 2, \dots, \alpha n)$ 两部分。

表头可能是原子, 也可能是列表, 表尾必定是列表

例如:
$$D = (E, F) = ((a, (b, c)), F)$$

 $Head(D) = E$ $Tail(D) = (F)$
 $Head(E) = a$ $Tail(E) = ((b, c))$
 $Head(((b, c))) = (b, c)$ $Tail(((b, c))) = ()$
 $Head((b, c)) = b$ $Tail((b, c)) = (c)$
 $Head((c)) = c$ $Tail((c)) = ()$

注意: 列表()和(())不同。

注意去线代复习一下矩阵的性质 (对称矩阵, 上三角矩阵, 对角线矩阵)

例题

一个N阶对称矩阵,矩阵元为 A_{ii} ,将其下三角部	第6行(从0开始计数)的最后一个元素27
分以行序为主序存放在一维数组M[0, n(n+1)/2-1] 中,设矩阵最左上角矩阵元为A ₀₀ ,则M[29]对应	小于 29, 因此 29 在(7,1)的位置; 又因矩阵
的矩阵元为。	为对称矩阵,对应矩阵元是 A71 和 A17;
广义表A((x, (a,b)), (x, (a, b), y)), 则运算	Tail(A) = ((x, (a, b), y)) 注意两层括号
Head(Head(Tail(A)))为。	Head(Tail(A)) = $(x, (a, b), y)$
A. x B. (a, b) C. (x, (a, b)) D. A	Head(Tail(A))) = x

课堂小测验 1

1、数组 a[1..6][1..5] (无 0 行 0 列)以列序优先顺序存储,第一个元素 a[1][1]的地址为 1000,每个元素占 2 个存储单元,则 a[3][4]的地址是。 (a)1026 (b)1038 (c)1040 (d)1046
2、设有一个 5 行 4 列的矩阵 A,采用行序优先存储方式,A[0][0]为第一个元素,其存储地址为 1000,A[2][2]的地址为 1040,则 A[3][0]的地址为。 (a)1024 (b)1048 (c)1060 (d)1096
3、设 10*10 的对称矩阵下三角保存 SA[1 55]中,其中 A[1][1]保存在 SA[1]中,A[5][3]保存在 SA[k]中,这里 k 等于。 (a) 12 (b) 13 (c) 14 (d) 15
4、表头和表尾均为空义表的广义表是。 (a) () (b) (()) (c) ((())) (d) ((),())

```
5、广义表 (a,(b,c),d) 的表长是____。
(a) 3
(b) 4
(c) 5
(d) 6

6、广义表((a,()),(b,(c)),(()))的深度是___。
(a) 3
(b) 4
(c) 5
(d) 6

7、广义表((a,b),(c),(d))的表尾是___。
(a) d
(b) (d)
(c) (a,b)
```

答案: CBBBAAD

(d) ((c),(d))

课堂小测验 2 (暂无答案)

```
1、表头和表尾均为空义表的广义表是_____。
(a) ()
(b) (( ))
(c) ((()))
(d) (( ),( ))
2、广义表 (a,(b,c),d) 的表长是_____。
(a) 3
(b) 4
(c) 5
(d) 6
3、广义表((a,()),(b,(c)),(()))的深度是_____。
(a) 3
(b) 4
(c) 5
(d) 6
4、广义表((a,b),(c),(d))的表尾是_____
(a) d
(b) (d)
(c) (a,b)
(d) ((c),(d))
```

自己做的: A A A D (经赵路路提醒,第一个改成 B,表尾是除了第一个元素之外的元素组成的表,表头是第一个元素)

第六章 树和二叉树 (重点)

基本概念名词

二叉树性质: (节点/叶子/高度的数字关系需要掌握)

- (1) 在二叉树的第 i 层上至多有 2ⁱ⁻¹ 个结点。(i≥1)
- (2) 深度为 k 的二叉树上至多含 2k-1 个结点 (k≥1)。
- (3) 任何一棵二叉树, 若它含有 n0 个叶子结点、n2 个度为 2 的结点,则必存在关系式: n0 = n2+1

满二叉树:指的是深度为 k 且含有 2k-1 个结点的二叉树。

完全二叉树

树中所含的 n 个结点, 和满二叉树中编号为 1 至 n 的结点——对应。

具有 n 个结点的完全二叉树的深度为 log2n +1

前序/中序/后序遍历中的"前、中、后"指的都是什么时间访问到根节点,递归遍历可直接写;

层序遍历顾名思义按层遍历,访问完上一层才访问下一层;

线索二叉树:在二叉链表的结点中增加两个标志域 LTag 和 RTag,分别指向遍历该树过程中的前驱结点和后继结点;填充这两个域的过程称为二叉树的线索化;

最优二叉树(哈夫曼树): 带权路径长度取最小值的树;

哈夫曼算法同离散数学里那个,这里不列了,可以看第六章作业整理的版本

需要掌握怎样用两种不同的遍历顺序列表确定树形;

例题

一棵完全二叉树的第六层上有 9 个结点,则结点总	先数到第6层再数到第9个,40
数是个。	
深度为 5 的完全二叉树拥有的最少结点数为	16
证明叶子结点数为 n 的哈夫曼树内部结点数为	哈夫曼树没有度为 1 的结点,由于 n0=n2+1,所
n-1:	以 n2 = n0-1

非递归的前序/中序/后序/层序遍历代码

```
void PreOrderTraverse(BinTree b) // 非递归的前序遍历(借助栈)
   InitStack(S); //初始化创建栈
  BinTree p=b; //p 为工作指针
  while(p||!isEmpty(s))
     while(p) //到最左下的孩子
        printf(" %c ",p->date); // 先序先遍历结点
        Push(S,p); //入栈
        p=p->lchild;
     if(!isEmpty(s)) //在栈不为空的情况下,左孩子为空,弹出该结点,遍历右孩子
        p=Pop(s);
        p=p->rchild;
  }
}
void InOrderTraverse(BinTree b) // 非递归的中序遍历(借助栈)
  InitStack(S); //初始化创建栈
  BinTree p=b; //p 为工作指针
  while(p||!isEmpty(s))
     while(p)
        Push(S,p); //中序现将结点进栈保存
        p=p->lchild;
      } //遍历到左下角尽头再出栈访问
      if(!isEmpty(s)) //在栈不为空的情况下,左孩子为空,弹出该结点,遍历右孩子
```

```
{
         p=Pop(s);
         printf(" %c ",p->data);
         p=p->rchild; //遍历右孩子
  }
}
void PostOrderTraverse(BinTree b) // 非递归的后序遍历(借助栈)
   InitStack(S); //初始化创建栈
   BinTree p=b, r=NULL; //p 为工作指针,辅助指针 r
   while(p||!isEmpty(s))
      if(p) //从根节点到最左下角的左子树都入栈
         Push(S,p); //中序现将结点进栈保存
         p=p->lchild;
      }
      else
      {
         GetTop(S,p); //取栈顶,注意! 不是出栈!
         if(p->rchild && p->rchild!=r)
          //1.右子树还没有访问并且右子树不空,第一次栈顶
         {
            p=p->rchild; //进入右子树
         }
         else //2.右子树已经访问或为空,接下来出栈访问结点,第二次栈顶
            p=Pop(s);
            printf(" %c ",p->data);
            r=p; //指向访问过的右子树结点
            p=NULL; //使 p 为空继续访问栈顶
         }
      }
   }
}
void LevelOrder(BiTree b) // 非递归的层序遍历(借助队列)
   InitQueue(Q); //初始化建立队列
   BinTree p;
   EnQueue(Q,b); //根节点入队
   while(!isEmpty(Q)) //队列不空循环
   {
      DeQueue(Q,p); //队头元素出队
      printf(" %c ",p->data);
       //左右孩子入队
      if(p->lchild!=NULL)
         EnQueue(Q,p->lchild);
      }
```

```
if(p->rchild!=NULL)
{
          EnQueue(Q,p->rchild);
}
}
```

课堂小测验 1

```
1. 一棵二叉树上有 1001 个结点,其中叶子结点的个数是()
(a) 250
(b) 500
(c) 254
(d) 505
(e) 以上答案都不对
2. 已知一棵二叉树的前序遍历结果为 ABCDEF, 中序遍历结果为 CBAEDF, 则后序遍历的结果是
( )
(a) CBEFDA
(b) FEDCBA
(c) CBEDFA
(d) 不定
3. 在二叉树中的先序序列、中序序列和后序序列中,所有叶子结点的先后顺序(
(a) 都不相同
(b) 完全相同
(c) 先序和中序相同, 而与后序不同
(d) 中序和后序相同, 而与先序不同
4、树中所有结点的度等于所有结点数加(
(a) 0
(b) 1
(c) -1
(d) 2
5、在一棵二叉树的二叉链表中,空指针域数(n+1)等于非空指针域数(n-1)加( )
(a) 2
(b) 1
(c) 0
(d) -1
7. 二叉树的先序遍历序列和后序遍历序列正好相反,则该二叉树一定满足的条件是( )。
(a) 任一结点无左孩子
(b) 任一结点无右孩子
(c) 空或只有一个结点
(d) 高度等于其结点数
8. 设某棵二叉树的中序遍历序列为 ABCD,先序遍历序列为 CABD,则后序遍历该二叉树得到序
列为 ( )。
(a) BCDA
(b) BADC
```

- (c) CDAB (d) CBDA

答案: EABCADB

课堂小测验 2

1. 判断线索二叉链表中*p 结点有右孩子结点的条件是()。 (a) p!=NULL (b) p->rchild!=NULL (c) p->rtag==0 (d) p->rtag==1
2. 基于中序线索化链表,其头结点指针为 head,对应的二叉树为空的判断条件是()。 (a) head->ltag==0 (b) head->ltag==1 (c) head->lchild==head && head->rchild==head (d) head==NULL
3、设森林 F 有 3 棵树,分别有 9、8 和 7 个结点,则 F 此排列次序转换成二叉树后根结点的右子树上结点的个数是()。 (a) 7 (b) 15 (c) 16 (d) 17
4、给定一棵树的二叉链表存储结构,把这棵树转换为二叉树后,这棵二叉树的形态是()。 (a) 唯一的 (b) 有多种 (c) 有多种,但根结点都没有左孩子 (d) 有多种,但根结点都没有右孩子
5. 哈夫曼树中叶子结点数为 n,则内部结点数为 ()。 A. n B. 2n-1 C. n-1 D. n-2 答案: C C B A C

19 |

第七章 图

基本概念名词

网: 带权的图

假设图中有 n 个顶点, e 条边, 则含有 e=n(n-1)/2 条边的无向图称作完全图;

含有 e=n(n-1) 条弧的有向图称作有向完全图;

若边或弧的个数 e<nlogn,则称作稀疏图,否则称作稠密图;

连通分量: 若无向图为非连通图,则图中各个极大连通子图称作此图的连通分量;

强连通分量: 若有向图不连通,则各个强连通子图称作它的强连通分量

生成树: 假设一个连通图有 n 个顶点和 e 条边, 其中 n-1 条边和 n 个顶点构成一个极小连通子图, 该极小连通子图称为生成树;

图的储存结构主要分邻接矩阵 (易判定是否有边/弧相连, 易求各个点的度) 和邻接表 (节省储存空间, 易于找到邻接点) 两种, 还有十字链表、三元数组等;

图的遍历算法 DFS 和 BFS

DFS (深度优先搜索) 类似先序遍历, BFS (广度优先搜索) 类似层序遍历;

DFS 的伪代码	BFS 的伪代码
DFS(v):// v 可以是图中的一个顶点, 也可以是抽象的概念, 如 dp 状态等 visited[v] = true for each edge(u, v) if (!visited[v]) then DFS(u)	<pre>bfs(s): q = new queue() q.push(s) visited[s] = true while (!q.empty()) u = q.pop() for each edge(u, v) if (!visited[v]) then</pre>

求最小生成树的 Prim 和 Kruskal 算法

Kruskal 是<mark>加边</mark>,贪心算法每次加入一个权最小的边;

Prim 是加点,每次加入一个和当前点距离最小的点;

```
Kruskal 的伪代码:
                                         Prim 的伪代码:
Kruskal:
                                         Prim:
sort edges into increasing order by
                                         choose an arbitrary node in V to be
weight w
                                         the root
for each (u,v,w) in sorted edges:
                                         dis(root) = 0
   if u and v are not connected in
                                         for each node v in (V-{root})
   the union-find set:
                                               dis(v) = \infty
       connect u and v in the
                                           rest = V
       union-find set
                                           while !rest.empty():
       result += \{(u,v,w)\}
                                               cur = the node with the
 return result
                                               minimum dis in rest
                                               result = result+dis(cur)
                                               rest = rest-{cur}
                                               for each node v in adj(cur):
                                                  dis(v) = min(dis(v), g(cur, v))
                                           return result
```

```
void Kruskal(vector<DEdge> edges, int n) // Kruskal 算法
   vector<int> uset;
   vector<DEdge> MST;
   int Cost = 0, e1, e2;
   MakeSet(uset, n);
   for (int i = 0; i < edges.size(); i++) //按权值从小到大的顺序取边
       e1 = FindSet(uset, edges[i].V1);
       e2 = FindSet(uset, edges[i].V2);
       if (e1 != e2)
       //若当前边连接的两个结点在不同集合中,选取该边并合并这两个集合
          MST.push back(edges[i]);
          Cost += edges[i].Weight;
          uset[e1] = e2; //合并当前边连接的两个顶点所在集合
       }
   }
   cout << "Results of the Kruskal algorithm: " << endl;</pre>
   cout << "Cost = " << Cost << endl;</pre>
   cout << "Edges:" << endl;</pre>
   for (int j = 0; j < MST.size(); j++)
       cout << "<" << MST[j].V1 << ", " << MST[j].V2 << ">, Weight = " <<</pre>
MST[j].Weight << endl;</pre>
   cout << endl;</pre>
```

```
}
void Prim(vector<list<Node>> &Adj, int n, int m) // Prim 算法
   priority queue<DEdge, vector<DEdge>, greater<>> Q; // 重载>操作符, 实现顶
端元素最小的优先队列
   int Cost = 0;
                               // 用于统计最小生成树的权值之和
   vector<DEdge> MST;
                               // 用于保存最小生成树的边
   vector<int> uset(n,0); // 用数组来实现并查集
   DEdge E(0, 0, 0);
   for (int i = 0; i < n; i++) //并查集初始化
      uset[i] = i;
   // 根据 Prim 算法,开始时选取结点 0,并将结点 0 与剩余部分的边保存在优先队列中
   // 循环中每次选取优先队列中权值最小的边,并更新优先队列
   for (auto it = Adj[0].begin(); it != Adj[0].end(); it++)
      Q.push(DEdge(0, it->v, it->w));
   while (!Q.empty())
   {
      E = Q.top();
      Q.pop();
      if (FindSet(uset, E.V2) != 0)
          Cost += E.Weight;
          MST.push_back(E);
          uset[E.V2] = E.V1;
          for (auto it = Adj[E.V2].begin(); it != Adj[E.V2].end(); it++)
             if (FindSet(uset, it->v) != 0)
                 Q.push(DEdge(E.V2, it->v, it->w));
      }
   }
   cout << "Results of the Prim algorithm:" << endl;</pre>
   cout << "Cost = " << Cost << endl;</pre>
   cout << "Edges:" << endl;</pre>
   for (int j = 0; j < MST.size(); j++)
       cout << "<" << MST[j].V1 << ", " << MST[j].V2 << ">, Weight = " <<</pre>
MST[j].Weight << endl;</pre>
   cout << endl;</pre>
}
```

求最短路径 (Dijkstra 算法)

步骤	第一步	第二步	第三步	第四步	第五步	第六步
b	15 (a,b)	15 (a,b)	15 (a,b)	15 (a,b)	15 (a,b)	15 (a,b)
С	2 (a,c)					
d	12 (a,d)	12 (a,d)	2+4+5 (a,c,f,d)	2+4+5 (a,c,f,d)		
e		2+8 (a,c,e)	2+8 (a,c,e)			
f		2+4 (a,c,f)				
g			2+4+10 (a,c,f,g)	2+4+10 (a,c,f,g)	2+4+5+3 (a,c,f,d,g)	
vj	c	f	e	d	g	b
S	{a,c}	{a,c,f}	{a,c,f,e}	{a,c,f,e,d}	{a,c,f,e,d,g	{a,c,f,e, d,g,b}

拓扑排序

建立一个序列, 能保证在序列中顶点 Vi 在顶点 Vj 之前 ↔ 有向图 G 中从顶点 Vi 到顶点 Vj 有一条路径,则这一顶点线性序列(Vi1, Vi2,...,Vin)称作一个拓扑序列,建立过程称为拓扑排序;

AOE-网(Activity On Edge)

顶点表示事件,弧表示活动,权值表示活动持续时间的带权有向无环图

关键路径:路径长度最长的路径;关键路径上的活动为关键活动,(该弧上的权值增加将使有向图上的最长路径的长度增加。)

例题

已知如图所示的有向图, 请给出该图的

- (1) 每个顶点的入/出度;
- (2) 邻接矩阵;
- (3) 邻接表;
- (4) 逆邻接表;
- (5) 强连通分量;

Prim 算法构造最小生成树:

Kruskal 算法构造最小生成树:

课堂小测验 1

1. 图 (a) (b) (c) (d)	,所有顶点的度数之和等于图的边数的()倍。 2
2. E 0 1 1 0 1 0 1 1 1 0 0 0	图的邻接矩阵,则从顶点 0 出发按照深度优先遍历的结点序列是 ()。 1 1 1 0 1 2 1 0 0 1 3 0 1 0 0 4 0 1 0 0 5 0 1 1 0 6 1 1 0 1 6 0 0 1 0
(b) (c)	2 4 3 1 5 6 1 3 6 5 4 2 1 3 4 2 5 6 3 6 1 5 4 3
(a) (b) (c)	图的邻接矩阵同上题,则从顶点 0 出发按照广度优先遍历的结点序列是()。 2 4 3 6 5 1 1 2 3 4 5 6 4 2 3 1 5 6 1 3 4 2 5 6
(a) (b) (c)	个无向图的邻接矩阵来说,下面哪个说法是正确的()。 i 行上的非零元素个数和第 i 列的非零元素个数一定相等 阵中的非零元素个数等于图中的边数 i 行上,第 i 列上非零元素总数等于顶点 Vi 的度数 阵中非全零行的行数等于图中的顶点数
5.具 (a) (b) (c) (d)	10 个顶点的无向图至少有多少条边才能保证连通()
(a)	车通的 环的
7.在 (a) (b) (c) (d)	n+e) n^2)

- 8. 设有无向图 G=(V, E)和 G'=(V', E'), 如果 G'是 G 的生成树,则下面说法不正确的是 ()
 - (a) G'是G的子图
- (b) G'是 G 的连通分量(又名极大连通子图)
- (c) G'是 G 的极小连通子图且 V'=V
- (d) G'是 G 的无环子图

答案: CCBAADBB

课堂小测验 2

- 判别有向图中是否存在回路。 1. 可借助于
- (a) 迪杰斯特拉算法
- (b) FLOYD 算法
- (c) 拓扑排序算法
- (d) PRIM 算法
- 2. 下列关于工程计划的 AOE 网的叙述中,不正确的是
 - (a) 关键活动不按期完成, 会影响整个工程的完成时间
- (b) 任何一个关键活动的提前完成,整个工程的完成时间都会提前
- (c) 所有关键活动都提前完成,会提前整个工程的完成时间
- (d) 某个关键活动提前完成,可能会提前整个工程的完成时间
- 3. 关键路径是 AOE 网中 ()。
- (a) 从源点到汇点的最短路径
- (b) 从源点到汇点的最长路径
- (c) 从源点到汇点边数最多的路径
- (d) 从源点到汇点边数最少的路径
- 4. 使用弗洛伊德算法, 求任意 2 个顶点的最短路径, 该算法的时间复杂度为
- (a) O(n log n)
- (b) O(log n * log n)
- (c) 0(n * n)
- (d) 0(n * n * n)

答案: CBBD

第九章 查找

基本概念名词

静态查找表: 只做查询不做修改

动态查找表:除了查询还有插入和删除功能

顺序有序索引 (分块查找) 表:

若把所有 n 个数据元素分成 m 块, 第一块中任一元素的关键字都小于第二块中任一元素的关键字 ,, 第 m-1 块中任一元素的关键字都小于第 m 块中的任一元素的关键字,但每一块中元素的关键字不一定有序; 主要优点是可以先根据索引表缩小查找范围;

动态查找树: 查找成功时返回关键值, 查找不成功时则插入给定值, 需要掌握这几种树节点/叶子/高度的数字关系;

二叉排序树 (BST 树)

- 1. 是一棵空树;
- 2. 或者是具有如下特性的二叉树:
 - (1) 若左子树不空,则左子树上所有结点的值均小于根结点的值;
 - (2) 若右子树不空,则右子树上所有结点的值均大于根结点的值;
 - (3) 左、右子树也都分别是二叉排序树。

查找过程: 从根结点出发,沿着左分支或右分支逐层向下,直到遇空树或目标关键字;

平衡二叉树 (AVL 树)

- 1. 是一棵空树
- 2. 或者是具有下列性质的二叉树:
 - (1) 它的左子树或右子树都是平衡二叉树;
 - (2) 左子树和右子树的深度之差的绝对值不超过 1;

(3) 查找时,和给定值进行比较的次数 = log(n)

平衡旋转技术

遇到题就在草稿纸上画一下;

```
AVLNode *LL_Rotation(AVLNode *root) //left-left rotation
{
   AVLNode *temp = root->left;
   root->left = temp->right;
   temp->right = root;
   return temp;
}
AVLNode *RR_Rotation(AVLNode *root) //right-right rotation
   AVLNode *temp = root->right;
   root->right = temp->left;
   temp->left = root;
   return temp;
}
AVLNode *LR_Rotation(AVLNode *root) //left-right rotation
   AVLNode *temp = root->left;
   root->left = LL Rotation(temp);
   return RR_Rotation(root);
}
AVLNode *RL_Rotation(AVLNode *root) //right-left rotation
   AVLNode *temp = root->right;
   root->right = RR_Rotation(temp);
   return LL_Rotation(root);
}
```

B-树

- 一棵 m 阶的 B-树, 或为空树, 或为满足下列特性的 m 叉树:
 - (1) 树中每个结点至多有 m 棵子树;

- (2) 若根结点不是叶子结点,则至少有两棵子树;(至少含1个关键字)
- (3) 除根之外的所有非终端结点至少有「m/2】棵子树。(至少含 [m/2]-1 个关键字)
- (4) 所有的非终端结点中包含下列信息数据:

 $(n, A_0, K_1, A_1, K_2, A_2, ..., K_n, A_n)$

- n 个关键字 K_i (1≤i≤n) (n<m)
- n 个指向记录的指针 D_i (1≤i≤n)

n+1 个指向子树的指针 A_i (0≤i≤n)

(5) 所有的叶子结点都出现在同一层次上,并且不带信息(可以看作是外部结点或查找失败的结点,实际上这些结点不存在,指向这些结点的指针为空)

哈希表

关键字和位置——相对,映射关系称为哈希函数;

六种常用的哈希函数构造方法

- (1) 直接定址法: H(key) = key 或 H(key) = a × key + b;
- (2) 数字分析法:假设每个关键字都是由 s 位数字组成 (u1, u2, ..., us),以从中提取分布均匀的若干位、或它们的组合作为地址;
- (3) 平方取中法: 以关键字的平方值的中间几位作为存储地址;
- (4) 折叠法: 将关键字分割成若干部分, 然后以它们的叠加和为哈希地址; 一般用移位叠加(将分割后的每一部分的最低位对齐相加), 和间界叠加(从一端向另一端沿分割符来回折叠, 对齐相加);
- (5) 除余数法: H(key) = key % p

(6) 随机数法: H(key) = Random(key)

四种常见的处理冲突的方法

- (1) 开放定址法:为产生冲突的地址 H(key) 求得一个地址序列: H₀, H₁, H₂, ..., H_s (1≤ s≤m-1) 其中 H₀ = H(key), H_i = (H(key) + d_i)% m, i=1, 2, ..., s, d_i为增量序列, m 为哈希表表长 增量序列取法(增量序列应该具有完备性,可以取到哈希表所有位置):
 - i. 线性探测再散列 $d_i = c \times i = 1,2,3,...m-1$,最简单的情况 c=1
 - ii. 平方探测再散列 (二次探测再散列) $d_i = 1^2, -1^2, 2^2, -2^2, ..., +k^2, -k^2$
 - iii. 随机探测再散列 (双散列函数探测) di 是一组伪随机数列或 di=i×H2(key)

- (2) 链地址法:
- (3) 再哈希法 (再哈希法): 当产生地址冲突时, 计算另一个哈希函数地址
- (4) 建立公共溢出区:设向量 HashTable[0..m-1]为基本表存放记录; 另设向量 OverTable[0..v]为溢出表,只要发生冲突,不管哈希地址是什么都填入溢出表。

计算平均查找长度 (ASL)

例题

一棵 5 阶的 B_树中某个结点的关键字个数最多为个。 4						
已知一组关键字序列为: (4、5、7、2、1、3、6),						
请画出其构成的二叉排序树和平衡二叉树						
已知一组关键字序列为(12, 51, 8, 22, 26, 80, 11, 16, 54,						
41),其散列地址空间为[0,,12],若 Hash 函数定义为:H(key) =						
key MOD 13,采用线性探查法处理冲突,请给出它们对应的散列表						
0 1 2 3 4 5 6 7 8 9 10 11 12						
51 26 80 16 54 41 8 22 11 12						

课堂小测验 1

1.	在关键字序列	(10,20,30,40,50)	中采用折半查找 20,	依次与()关键字进行了比较。
----	--------	------------------	-------------	------	------------

- (a) 20
- (b) 30,20
- (c) 30,10,20
- (d) 40,20
- 2. 对于长度为 11 的有序表,按折半查找,在等概率情况下查找成功时,其平均查找长度是()
- (a) 1
- (b) 2
- (c) 3
- (d) 4
- 3. 在下列查找算法中, () 算法要求关键字序列是有序的。
- (a) 顺序查找
- (b) 折半查找
- (c) 分块查找
- (d) 二叉树查找
- 4. 假设查找表长为 n, 对于分块查找, 如过采用顺序查找确定待查值可能所在的块, 那么每块的关键字个数为 () 时, 分块查找的平均查找长度可以达到最佳。
- (a) 根号 n 减 1
- (b) 根号 n
- (c) 根号 n 加 1
- (d) ln(n)

答案CCBB

课堂小测验 2

- 1、一棵 3 阶 B_树中含有 2047 个关键字,包含叶子结点层,该树的最大深度为 ()。
- (a) 11
- (b) 12
- (c) 13
- (d) 14
- 2、设哈希标的地址范围是 0-17, 哈希函数是 H(k)=K MOD 16, K 为关键字,用线性探测再散列法处理冲突,若输入关键字序列为: (10,24,32,17,31,30,46,47,40,63,49)。构造哈希表,回答以下问题:
- (1) 查找关键字 63, 需比较几次?
- (2) 查找关键字 60, 需比较几次?
- (3) 设查找每个关键字的概率相等,求查找成功时的平均查找长度。

答案: B 6、1、1.55

第十章 排序

常见排序算法

需要理解排序方法的稳定性,特点、应用,性能;排序过程;时间复杂度分析

(有交换操作的一般不稳定)

简单选择排序不稳定!!!

排序方法	时间复杂度			空间复杂度	稳定性
	最好情况	最坏情况	平均情况	仝问复乐度	机动处土
直接插入排序	O(n)	$O(n^2)$	$O(n^2)$	O(1)	稳定
折半插入排序	$O(n\log_2 n)$	$O(n^2)$	$O(n^2)$	O(1)	稳定
希尔排序	and intensive	CAR ALL MANAGEMENT	O(n ^{1.3})	O(1)	不稳定
冒泡排序	O(n)	$O(n^2)$	$O(n^2)$	O(1)	稳定
简单选择排序	$O(n^2)$	$O(n^2)$	$O(n^2)$	O(1)	不稳定
快速排序	$O(n\log_2 n)$	$O(n^2)$	$O(n\log_2 n)$	$O(\log_2 n)$	不稳定
堆排序	$O(n\log_2 n)$	$O(n\log_2 n)$	$O(n\log_2 n)$	O(1)	不稳定
归并排序	$O(n\log_2 n)$	$O(n\log_2 n)$	$O(n\log_2 n)$	O(n)	稳定
基数排序	O(d(n+rd))	O(d(n+rd))	O(d(n+rd))	O(n + rd)	稳定

插入排序

冒泡排序

快速排序 (不稳定)

```
void quickSort(vector<T> &list, int 1, int r) { // 快速排序,已整合子集划分过程
   T temp;
   int pos = 0;
   int low = 1;
   int high = r;
   if(1 < r) {
       temp = list[1];
       while(low < high) {</pre>
           while((low < high) && (list[high] >= temp)) {
               high--;
           }
           if(low < high) {</pre>
               list[low] = list[high];
               low++;
           while((low < high) && (list[low] < temp)) {</pre>
               low++;
           if(low < high) {</pre>
               list[high] = list[low];
               high--;
           }
       list[low] = temp;
       pos=low;
       quickSort(list, 1, pos-1);
       quickSort(list, pos+1, r);
}
```

简单选择排序 (不稳定)

堆排序 (不稳定)

```
void sift_down(int arr[], int start, int end) {
 // 建立父结点指标和子结点指标
 int parent = start;
 int child = parent * 2 + 1;
 while (child <= end) { // 子结点指标在范围内才做比较
    if (child + 1 <= end && arr[child] < arr[child + 1])</pre>
   // 先比较两个子结点大小, child 选择最大的
       child++;
    if (arr[parent] >= arr[child])
    // 如果父结点比子结点大,代表调整完毕,直接跳出函数
       return;
    else {
    // 否则交换父子内容, 子结点再和孙结点比较
       swap(arr[parent], arr[child]);
       parent = child;
       child = parent * 2 + 1;
  }
 }
void heap_sort(int arr[], int len) {
 // 从最后一个节点的父节点开始 sift down 以完成堆化(heapify)
 for (int i = (len - 1 - 1) / 2; i >= 0; i--)
    sift down(arr, i, len - 1);
 // 先将第一个元素和已经排好的元素前一位做交换, 再重新调整 (刚调整的元素之前的元
素),直到排序完毕
 for (int i = len - 1; i > 0; i--) {
    swap(arr[0], arr[i]);
    sift_down(arr, 0, i - 1);
 }
}
```

希尔排序 (不稳定)

```
void shell_sort(T array[], int length) {
   int h = 1;
   while (h < length / 3) {
      h = 3 * h + 1;
   }
   while (h >= 1) {
      for (int i = h; i < length; i++) {
         for (int j = i; j >= h && array[j] < array[j - h]; j -= h) {
         swap(array[j], array[j - h]);
      }
   }
   h = h / 3;</pre>
```

```
}
```

归并排序

```
void merge(int ll, int rr) {
   // 用来把 a[ll.. rr - 1] 这一区间的数排序。 t 数组是临时存放有序的版本用的。
   if (rr - ll <= 1)
      return;
   int mid = ll + (rr - ll >> 1);
   merge(ll, mid);
   merge(mid, rr);
   int p = 11, q = mid, s = 11;
   while (s < rr) {
      if (p >= mid || (q < rr && a[p] > a[q])) {
         t[s++] = a[q++];
      else
         t[s++] = a[p++];
   for (int i = ll; i < rr; ++i)
      a[i] = t[i];
//关键点在于一次性创建数组,避免在每次递归调用时创建,以避免对象的无谓构造和析构。
```

基数排序

原理:将待排序的元素拆分为 k 个关键字(比较两个元素时,先比较第一关键字,如果相同再比较第二关键字.....),然后先对第 k 关键字进行稳定排序,再对第 k-1 关键字进行稳定排序,再对第 k-2 关键字进行稳定排序.....最后对第一关键字进行稳定排序,完成对整个待排序序列的稳定排序;需要借助一种**稳定算法**完成内层对关键字的排序;

例题

已知一组关键字序列为: (46, 74, 18, 53, 14, 26, 40, 38, 86,

65), 若采用堆排序方法进行排序, 请构造初始堆

要求: 最后输出结果按关键字非递减有序排列

有n个互不重复的正整数型关键字进行堆排序,在构造的初

始堆中, 叶子结点数有多少? 结点总数有多少? 分支结点数

有多少?

答案: 叶子结点数为 $n-\left\lfloor \frac{n}{2} \right\rfloor$; 结点总数为n; 分支结点数为 $\left\lfloor \frac{n}{2} \right\rfloor$ 。

课堂小测验 1 (课上没做过, 没答案)

- 1. 在第一趟排序之后,不能确保将数据表中某一个元素放在其最终位置上的排序算法是()。
- (a) 冒泡排序
- (b) 快速排序
- (c) 选择排序
- (d) 归并排序
- 2. 对关键字序列 (30, 26, 18, 16, 5, 66), 进行 2 遍 () 排序后得到序列 (5, 16, 18, 26, 30, 66)。
- (a) 插入
- (b) 冒泡
- (c) 选择
- (d) 归并
- 3. 假设两个有序表长度分别为 n 和 m, 将其归并成一个有序表<mark>最多</mark>需要 () 次关键字之间的比较。
- (a) n+m-2
- (b) n+m-1
- (c) n+m
- (d) n+m+1
- 4.对关键字序列(149,138,165,197,176,113,127), 采用基数排序的第一趟之后所得结果为 ()。
 - (a) (113, 127, 138, 149, 165, 176, 197)
 - (b) (113, 165, 176, 127, 197, 138, 149)
- (c) (113, 165, 176, 197, 127, 138, 149)
- (d) (149, 138, 165, 197, 176, 113, 127)
- 5. 对于下列排序,()的时间效率与关键字初始序列有直接关系。
- (a) 直接插入排序
- (b) 冒泡排序 (没改进的)
- (c) 归并排序
- (d) 基数排序

自己做的: B D B C A(?)

课堂小测验 2

1. 在下列排序算法中,() 排序算法可能出现如下情况:在最后一趟排序之前,所有元素均不在其最终的位置上。 (a) 插入 (b) 冒泡 (c) 快速 (d) 堆
2.下列四种排序中,()的辅助空间复杂度是最高的。 (a)直接插入排序 (b)快速排序 (c)简单选择排序 (d)堆排序
3. 在下列排序算法中,在待排序序列为有序的情况下,() 的时间复杂度是 0(n*n), 其中 n 为待排序序列的数据元素个数。 (a) 直接插入排序 (b) 冒泡排序 (c) 快速排序 (d) 堆排序
4. 假设待排序的表长为 n, 那么创建堆需要时间复杂度为 ()。 (a) 0(1) (b) 0(log n) (c) 0(n) (d) 0(n log n)
5. 对于关键字序列(49,38,65,97,76,13,27,49), 完成创建的大根堆是 ()。 (a) (97,76,65,49,49,38,27,13) (b) (97,76,65,49,49,13,27,38)

答案 A B C C B

(c) (13,27,38,49,49,65,76,97) (d) (97,65,76,49,49,13,27,38)