Rank-74296 over GF(4)

January 15, 2021

The equation

The equation of the surface is:

$$X_0^3 + X_2^3 + X_0^2 X_1 + X_0^2 X_2 + X_1^2 X_3 + X_0 X_3^2 + X_0 X_1 X_2 = 0$$

(1, 0, 1, 0, 1, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0) The point rank of the equation over $\mathrm{GF}(4)$ is 1499028074

General information

Number of lines	1
Number of points	21
Number of singular points	1
Number of Eckardt points	0
Number of double points	0
Number of single points	5
Number of points off lines	16
Number of Hesse planes	0
Number of axes	0
Type of points on lines	5
Type of lines on points	$1^5, 0^{16}$

Singular Points

The surface has 1 singular points:

0:
$$P_{39} = \mathbf{P}(1,0,1,1) = \mathbf{P}(1,0,1,1)$$

The 1 Lines

The lines and their Pluecker coordinates are:

$$\ell_0 = \begin{bmatrix} 1 & 0 & 1 & 1 \\ 0 & 1 & 1 & 1 \end{bmatrix}_{110} = \begin{bmatrix} 1 & 0 & 1 & 1 \\ 0 & 1 & 1 & 1 \end{bmatrix}_{110} = \mathbf{Pl}(1, 0, 1, 1, 1, 1)_{199}$$

Rank of lines: (110)

Rank of points on Klein quadric: (199)

Eckardt Points

The surface has 0 Eckardt points:

Double Points

The surface has 0 Double points:

The double points on the surface are:

Single Points

The surface has 5 single points:

The single points on the surface are:

 $0: P_5 = (1, 1, 0, 0)$ lies on line ℓ_0

1 : $P_{39} = (1,0,1,1)$ lies on line ℓ_0

2 : $P_{42} = (0, 1, 1, 1)$ lies on line ℓ_0

The single points on the surface are:

 $3: P_{48} = (3, 2, 1, 1)$ lies on line ℓ_0

 $4: P_{51} = (2,3,1,1)$ lies on line ℓ_0

Points on surface but on no line

The surface has 16 points not on any line:

The points on the surface but not on lines are:

 $0: P_1 = (0, 1, 0, 0)$

 $1: P_3 = (0,0,0,1)$

 $2: P_{18} = (3, 2, 1, 0)$

 $3: P_{21} = (2,3,1,0)$

 $4: P_{23} = (1,0,0,1)$

 $5: P_{27} = (1, 1, 0, 1)$

 $6: P_{47} = (2, 2, 1, 1)$

7: $P_{52} = (3, 3, 1, 1)$ 8: $P_{56} = (3, 0, 2, 1)$ 9: $P_{57} = (0, 1, 2, 1)$

10: $P_{63} = (2, 2, 2, 1)$

11: $P_{68} = (3, 3, 2, 1)$

 $12: P_{71} = (2,0,3,1)$

13: $P_{73} = (0, 1, 3, 1)$

 $14: P_{79} = (2, 2, 3, 1)$

15: $P_{84} = (3, 3, 3, 1)$

Line Intersection Graph

 $\frac{0}{0}$

Neighbor sets in the line intersection graph: Line 0 intersects

Line in point

The surface has 21 points:

The points on the surface are:

$0: P_1 = (0, 1, 0, 0)$	$8: P_{42} = (0, 1, 1, 1)$	$16: P_{68} = (3, 3, 2, 1)$
$1: P_3 = (0,0,0,1)$	9: $P_{47} = (2, 2, 1, 1)$	17: $P_{71} = (2,0,3,1)$
$2: P_5 = (1, 1, 0, 0)$	$10: P_{48} = (3, 2, 1, 1)$	$18: P_{73} = (0, 1, 3, 1)$
$3: P_{18} = (3, 2, 1, 0)$	$11: P_{51} = (2,3,1,1)$	$19: P_{79} = (2, 2, 3, 1)$
$4: P_{21} = (2, 3, 1, 0)$	$12: P_{52} = (3, 3, 1, 1)$	$20: P_{84} = (3, 3, 3, 1)$
$5: P_{23} = (1,0,0,1)$	$13: P_{56} = (3,0,2,1)$	
$6: P_{27} = (1, 1, 0, 1)$	$14: P_{57} = (0, 1, 2, 1)$	
$7: P_{39} = (1,0,1,1)$	15: $P_{63} = (2, 2, 2, 1)$	