ScienceQtech Employee Performance Mapping

1. Create a database named employee, then import data_science_team.csv proj_table.csv and emp_record_table.csv into the employee database from the given resources.

SQL code: CREATE DATABASE employee;

SQL code: CREATE TABLE emp_record (
emp_id VARCHAR(6) not null PRIMARY KEY,
f_name VARCHAR(10) not null,
I_name VARCHAR(10) not null,
gender VARCHAR(10) not null,
role VARCHAR(30) not null,
dept VARCHAR(15) not null,
exp INT not null,
country VARCHAR(15) not null,
continent VARCHAR(15) not null,
salary INT not null,
emp_rating INT not null,
manager_id VARCHAR(5),
proj_id varchar(5));

DESCRIBE emp_record;

SQL code:

CREATE TABLE proj_table (
proj_id VARCHAR(5) not null PRIMARY KEY,
proj_name VARCHAR(30) not null,
domain VARCHAR(15) not null,
start_date DATE not null,
closure_date DATE not null,
dev_qtr VARCHAR(4) not null,
status VARCHAR(10) not null);

DESCRIBE proj_table;

Output:

SQL code:

CREATE TABLE data_sci_team (
emp_id VARCHAR(6) not null PRIMARY KEY,
f_name VARCHAR(10) not null,
I_name VARCHAR(10) not null,
gender VARCHAR(10) not null,
role VARCHAR(30) not null,
dept VARCHAR(15) not null,
exp INT not null,
country VARCHAR(15) not null,
continent VARCHAR(15) not null);

DESCRIBE data_sci_team;

Output:

Import data into tables. Using the Import function.

emp record

proj_table

data_science_team

2. Create an ER diagram for the given employee database.

Using reverse engineering.

Output:

3. Write a query to fetch EMP_ID, FIRST_NAME, LAST_NAME, GENDER, and DEPARTMENT from the employee record table, and make a list of employees and details of their department.

SQL code:

SELECT emp_id, f_name, l_name, gender, dept

FROM emp record;

Output:

- 4. Write a query to fetch EMP_ID, FIRST_NAME, LAST_NAME, GENDER, DEPARTMENT, and EMP_RATING if the EMP_RATING is:
- less than two
- greater than four
- between two and four

EMP_RATING is Less than two

SQL code:

SELECT emp_id, f_name, l_name, gender, dept, emp_rating

FROM emp record

WHERE emp rating < 2;

Output:

EMP_RATING is Greater than four SQL code:
SELECT emp_id, f_name, l_name, gender, dept, emp_rating FROM emp_record
WHERE emp_rating > 4;

Output:

EMP_RATING is Between two and four SQL code:
SELECT emp_id, f_name, l_name, gender, dept, emp_rating FROM emp_record
WHERE emp_rating BETWEEN 2 AND 4;

Output:

	EMP_ID	FIRST_NAME	LAST_NAME	GENDER	DEPT	EMP_RATING
•	E005	Eric	Hoffman	M	FINANCE	3
	E010	William	Butler	M	AUTOMOTIVE	2
	E103	Emily	Grove	F	FINANCE	4
	E245	Nian	Zhen	M	RETAIL	2
	E260	Roy	Collins	M	RETAIL	3
	E403	Steve	Hoffman	M	FINANCE	3
	E428	Pete	Allen	M	AUTOMOTIVE	4
	E478	David	Smith	M	RETAIL	4
	E505	Chad	Wilson	M	HEALTHCARE	2
	E583	Janet	Hale	F	RETAIL	2
	E612	Tracy	Norris	F	RETAIL	4
	E640	Jenifer	Jhones	F	RETAIL	4

5. Write a query to concatenate the FIRST_NAME and the LAST_NAME of employees in the Finance department from the employee table and then give the resultant column alias as NAME. SQL code:

SELECT CONCAT(f_name, ',I_name) NAME

FROM emp_record

WHERE dept = 'FINANCE';

Output:

6. Write a query to list only those employees who have someone reporting to them. Also, show the number of reporters (including the President).

SQL code:

SELECT role, manager_id, count(*)

FROM emp record

GROUP BY manager_id

ORDER BY manager_id;

7. Write a query to list down all the employees from the healthcare and finance departments using union. Take data from the employee record table.

SQL code:

SELECT f_name, l_name, dept

FROM emp_record

WHERE dept = 'HEALTHCARE'

UNION

SELECT f name, I name, dept

FROM emp_record

WHERE dept = 'FINANCE';

8. Write a query to list down employee details such as EMP_ID, FIRST_NAME, LAST_NAME, ROLE, DEPARTMENT, and EMP_RATING grouped by dept. Also include the respective employee rating along with the max emp rating for the department.

SQL code:

SELECT emp_id, f_name, l_name, role, dept, emp_rating, emp_rating AS max_rating FROM emp_record

WHERE (dept, emp_rating)

IN (SELECT dept, MAX(emp_rating) FROM emp_record GROUP By dept) ORDER BY dept ASC;

9. Write a query to calculate the minimum and the maximum salary of the employees in each role. Take data from the employee record table.

SQL code:

SELECT role, MIN(salary) AS minSalary, MAX(salary) AS maxSalary FROM emp_record

GROUP BY role;

10. Write a query to assign ranks to each employee based on their experience. Take data from the employee record table.

SQL code:

SELECT f_name, l_name, exp as experience,

DENSE_RANK() OVER (ORDER BY exp DESC) exp_rank

FROM emp_record;

Result Grid						
	f_name	I_name	experience	exp_rank		
•	Arthur	Black	20	1		
	Patrick	Voltz	15	2		
	Emily	Grove	14	3		
	Pete	Allen	14	3		
	Janet	Hale	14	3		
	Tracy	Norris	13	4		
	William	Butler	12	5		
	Eric	Hoffman	11	6		
	Dorothy	Wilson	9	7		
	Karene	Nowak	8	8		
	Roy	Collins	7	9		
	Dianna	Wilson	6	10		
	Nian	Zhen	6	10		
	Chad	Wilson	5	11		
	Steve	Hoffman	4	12		
	David	Smith	3	13		
	Claire	Brennan	3	13		
	Katrina	Allen	2	14		
	Jenifer	Jhones	1	15		

11. Write a query to create a view that displays employees in various countries whose salary is more than six thousand. Take data from the employee record table.

SQL code:

CREATE VIEW 6K_salary AS

SELECT emp_id, f_name, l_name, country, salary

FROM emp record

WHERE salary > 6000;

SELECT * FROM 6k_salary;

Re	sult Grid	**		E	
	emp_id	f_name	I_name	country	salary
•	E001	Arthur	Black	USA	16500
	E005	Eric	Hoffman	USA	8500
	E010	William	Butler	FRANCE	9000
	E057	Dorothy	Wilson	USA	7700
	E083	Patrick	Voltz	USA	9500
	E103	Emily	Grove	CANADA	10500
	E204	Karene	Nowak	GERMANY	7500
	E245	Nian	Zhen	CHINA	6500
	E260	Roy	Collins	INDIA	7000
	E428	Pete	Allen	GERMANY	11000
	E583	Janet	Hale	COLOMBIA	10000
	E612	Tracy	Norris	INDIA	8500

12. Write a nested query to find employees with experience of more than ten years. Take data from the employee record table

SQL code:

SELECT emp_id, f_name, I_name, exp

FROM emp_record

WHERE exp IN (SELECT exp FROM emp_record WHERE exp > 10);

13. Write a query to create a stored procedure to retrieve the details of the employees whose experience is more than three years. Take data from the employee record table

SQL code:

DELIMITER //

CREATE PROCEDURE Employee3()

BEGIN

SELECT * FROM emp_record

WHERE exp > 3;

END //

DELIMITER;

CALL Employee3;

14. Write a query using stored functions in the project table to check whether the job profile assigned to each employee in the data science team matches the organization's set standard.

The standard being:

For an employee with experience less than or equal to 2 years assign 'JUNIOR DATA SCIENTIST', For an employee with the experience of 2 to 5 years assign 'ASSOCIATE DATA SCIENTIST', For an employee with the experience of 5 to 10 years assign 'SENIOR DATA SCIENTIST', For an employee with the experience of 10 to 12 years assign 'LEAD DATA SCIENTIST', For an employee with the experience of 12 to 16 years assign 'MANAGER'.

```
SQL code:
DELIMITER //
CREATE PROCEDURE check_role()
BEGIN
SELECT * FROM emp_record
CASE
```

WHEN exp <= 2 THEN SET role = 'JUNIOR DATA SCIENTIST';
WHEN exp BETWEEN 3 AND 5 THEN SET role = 'ASSOCIATE DATA SCIENTIST';
WHEN exp BETWEEN 6 AND 10 THEN SET role = 'SENIOR DATA SCIENTIST';
WHEN exp BETWEEN 11 AND 12 THEN SET role = 'LEAD DATA SCIENTIST';

WHEN exp BETWEEN 13 AND 16 THEN SET role = 'MANAGER'; ELSE SET role = 'all good';

END CASE;

END //

DELIMITER;

15. Create an index to improve the cost and performance of the query to find the employee whose FIRST_NAME is 'Eric' in the employee table after checking the execution plan.

ALTER TABLE emp_record ADD INDEX fname_index (f_name); SELECT * FROM emp_record WHERE f_name = 'Eric';

16. Write a query to calculate the bonus for all the employees, based on their ratings and salaries (Use the formula: 5% of salary * employee rating).

SQL code:

SELECT f_name, l_name, salary, ((salary * .05)*emp_rating) AS bonus FROM emp_record;

17. Write a query to calculate the average salary distribution based on the continent and country. Take data from the employee record table.

Average salary based on the continent

SQL code:

SELECT continent, AVG(salary)

FROM emp_record

GROUP BY continent

ORDER BY continent ASC;

Average salary based on the country SQL code:
SELECT country, AVG(salary)
FROM emp_record
GROUP BY country
ORDER BY country ASC;

