

Enhanced PubMed/Google query ...

For a summary overview of the information in this page click here. new

PLK4 polo-like kinase 4		PLK-4, Poto-like kinase 4, Sak, SAK, Serine/threonine-protein kinase 18, Serine/ threonine-protein kinase PLK4, Serine/threonine-protein kinase Sak, STK18	Homo sapie
WikiGenes	edil ibis page i new		
UniProt	096444, Cri6455, B7Z8G7		
IntAct	O00444		
PDB Structure	900X		
MIMO	605031	more than 2,860 organisms, 110,000 genes, 23,4 million	sentences
NCBI Gene	10739	afways up to date - every day.	
NCBI RefSeq	NP_001177728, NP_085978		
NCBI RefSeq	NM_014264, NM_001190501		
NCBI UniGene	10733		
NCBI Accession	n Y 13115, Z25433		
Homologues o	f FLK4		

Sentences in this view contain definitions for PLK4 - Definitions are available whenever you see this symbol [7] - Read more.

WARNING: Please keep in mind that gene detection is done automatically and can exhibit a certain error. Feed none about synonym ambiguity and the 出口 confidence was a a large

Show all Order by relevance

Find in this Page §

Collectively, our results suggest that \$\frac{\text{QLE}_1}{2}\$ may function as a tumor suppressor by regulating PLK4\$ protein levels and thereby restraining excessive daughter sensitive formation at maternal seasonable. [2009]

PIK4\$ trans-autophosphorylation regulates seasonable number by controlling sets \$\frac{\text{RCP}}{2}\$ mediated degradation. [2010]

\$\frac{\text{QED}_152}{2}\$ interacts with \$\frac{\text{PIK4}_12}{2}\$ and is required for sensitive duplication. [2010]

Cop152 can be phosphorylated by Piké [7] six vitro, suggesting that Cop152 cacts with Pike [7] to initiate controls formation. [2010]

Callin 1 to functions as a centrosomal suppressor of periods multiplication by regulating polo-like kinase 4 protein levels. [2009]

Overexpression of a Plk4 g-binding-deficient mutant of Asi a prevented contribute duplication in college college and embryos. [2010]

Furthermore, our results imply that Mark mediated sentialed duplication is dependent on MK4 in function. [2008]

Interfering with Cap182 trunction prevents recruitment of PN4 to the sembeacher and promotes loss of CPAP a protein required for the control of cantindal length on PN44 regulated controls biogenesis. [2010]

Our results suggest that Sept 52 arecruits 9944 and SPAP to the septroscope to ensure a faithful septroscope duplication process. [2010]

In this study, we show in human and frog cells that Fik4 [7] \gtrsim interacts with the <u>nembersons</u> protein <u>Cep152</u> \gtrsim , the orthologue of <u>Prososphia melanopaster</u> Asterless. [2010]

Thus, SAK $_{\odot}$ repression by $\underline{a33}$ $_{\odot}$ is likely **mediated** through the recruitment of $\underline{\underline{M340}}$ $_{\odot}$ repressors, and SAK $_{\odot}$ repression contributes to $\underline{a33}$ $_{\odot}$ -induced apostosis. [2005]

We conclude that active PNAs promotes its own degradation by catalyzing **peta*TSCP** binding through trans-autophosphorylation (**peta*Passation** by the other kinase in the dimer) within homodimers. [2010]

Significantly, <u>p32 & mediated SAK & repression was largely reversed in a dose-dependent manner by <u>Trichostatio A [7]</u>, a potent <u>histone deacentate & (HDAC &)</u> inhibitor, suggesting an involvement of <u>HDAC &</u> transcription repressors in SAK & repression by <u>\$53</u> & [2005]</u>

CONCLUSIONS: SAK [?] /PLK4 [?] is necessary for controls duplication both in Drosophila and human cells. [2005]

ormation Hyperlinked over Proteins [PLK4]		
	While significant advances have been made in understanding how PE.K4 is regulated it is certain that additional regulatory mechanisms exist to safeguard the fidelity of sections duplication. [2010]	
	PLK4 is required for certified duplication and strongly stimulates controls multiplication when aberrantly expressed. [2009]	*
	We found that this activity of SELT involves the degradation of Poto-title kinese 4 in (PLK4 in a maternal contributes. [2009]	*
	The Polo kinase Pik4 & functions in <u>peatricide</u> duplication. [2005]	
	Here, we identify PNA as a key regulator of acceptable duplication. [2005]	*
	Finally, we show that depletion of SAX [3] in human cells also prevents satisfied duplication and gives rise to mitotic abnormalities. [2005]	*
	Unexpectedly, we found that stable overexpression of kinase-dead Pik4 $_{sb}$ leads to <u>particular</u> overduplication. [2010]	A
	Our data indicate that wastes overduplication results from disruption of PR4 trans-autophosphorylation by kinase-dead PR4 trans-autophosphorylation by kinas	*
	Autophosphorylation of polo-like kinase 4.5 and its role in <u>continue</u> duplication. [2010]	
	Polo-tike kinase 4_{32} (PLK4 $_3$) is a key regulator of this process whose kinase activity is essential for <u>controls</u> duplication. [2010]	*
	Depletion of Sent 52 prevents both normal sent field duplication and PINA 121 prinduced sent field amplification and results in a failure to localize Sas6 to the sent field and sent field	-
	Overexpression of Cost52 (1-217) mislocalizes Pik4 [3] but both Cost52 and Pik4 [3] are able to localize to the cost568 independently of the other. [2010]	
	Our findings identify independent functions for Asi as a scaffold for PIK4 and Sas-4 that facilitates self-assembly and duplication of the session and organization of pericentriolar material. [2010]	*
	Sentificities assembly and duplication is controlled by Poto-like-kinase 4 💸 (Plik4 🖒); these processes fall if Plik4 🖒 is downregulated and are promoted by Plik4 🥎 overexpression. [2010]	生量
	These data suggest that PLK4 a activity is restricted to the <u>destricts are to prevent aberrant samples</u> assembly and sustained kinase activity is required for <u>destrictly</u> duplication. [2010]	
	Recent data have also shown that active P1.K4 (p) is restricted to the <u>sentendenses</u> , a mechanism that could serve to prevent aberrant <u>constrain</u> assembly elsewhere in the cell. [2010]	*
	We show that overexpression of Poto-like kinase 4 & (PR4 &) in human cells induces sentionable amplification through the simultaneous generation of multiple procentrioles adjoining each parental sentions [2007]	**
	Plik4 prinduced cantrole biogenesis in human cells. [2007]	*
	The centriolar protein Polo-fike kinase 4 & (Pike &) is a key regulator of centriole biogenesis and is crucial for maintaining constant centriole number, but the mechanisms regulating its activity and expression are only beginning to emerge. [2010]	# #
	Gamma-tubulin-containing abnormal securities are induced by insufficient PMA on human HCT116 entered careed calls. [2009]	
HILLIAN BURNING	In this study, we show that the pericentriolar material protein, See 152 and interacts with the distinctive cryptic Selection of PIK4 is via its N-terminal domain and is required for PIK4 induced see that overduplication. [2010]	
	Activation of PLK4 at the replicating daughter 2003/2012 is delayed until G2, but a level equivalent to the replicating mother 2003/2012 is achieved in 30 2003/2012	*
	Autophosphorylation probably plays a role in the process of sensitive duplication, because mimicking \$305 sensitive enhances the ability of overexpressed PEK4 to induce sensitive amplification. [2010]	4
	Cop 152 , and Pik 171 , colocalize at the contribut throughout the celt code. [2010]	*
	SAK 171 VPEK4 [7] is required for costscie duplication and specific development. [2005]	
	These results suggest that NOTRE sells fail to organize the ninefold symmetry of contention of desirable due to insufficient Plk4 3. [2009]	100
	PIK4, a mammalian homolog of ZYG-1 essential for initiation of <u>secretical biogenesis</u> , is not associated with the gamma-tubulin-specific abnormal <u>secretical biogenesis</u> , [2009]	
	Both gain and loss of function studies have identified the Polo-like kinase Pike 2/Sak as a crucial regulator of controls biogenists, but the mechanisms governing	

RESULTS: Here, we show that downwards of SAK [3] in Drosophila cells, by mutation or RNAi, leads to loss of carefolder, the core structures of carefolders. [2005]	*
Contributes duplicate once per coll cycle, and duplication requires $\frac{P(k+1)}{N}$, a member of the $\frac{P(k+1)}{N}$ -like kinase family; however, the mechanism linking $\frac{P(k+1)}{N}$ activity and $\frac{P(k+1)}{N}$ -contributes formation is unknown. [2010]	*
Active PLK4 & is detectable on the replicating mother contribute in G1/S-73, with the proportion of active kinase increasing through interesting to reach a maximum in animals. [2010]	
The majority of specimenes in SAK 121 mutants lack securities and so are unable to make sperm ascenages. [2005]	*
We also show that <u>SAK [?] \(\text{SAK [?]} \(\text{o}\) mutants lose their <u>controlled</u> during the millotic divisions preceding male <u>measures</u> but still produce cysts of 16 primary <u>somewhates</u> as in the wild-type. [2005]</u>	
Importantly, we show that S305-phosphorylated PLK4 is specifically sequestered at the ambiguities contrary to the nonphosphorylated form. [2010]	* ±
The amount of PNA of at each perfections was less in cells with abnormal perfections than cells without gamma-tubulin-specific abnormal perfections. [2009]	*
CED152 acts as a scaffold for recruitment of Plk4 and CEAP to the control scale [2010]	
Both gain- and loss-of-function experiments demonstrate that PK4 & is required-in cooperation with Cdk2, PMD and Hs-SAS6-for the precise reproduction of sentrogeness during the self-section (2005)	
Comparative expression of the mitotic regulators SAK and PLK in extensely cancer. [2001]	*
CONCLUSIONS: The polo family mitotic regulators SAK and PLK are both aberrantly expressed in accessed	
The potential prognostic significance of SAX and PLK expression in colorada: cases will be evaluated in the future. [2001]	
METHODS: In this study, SAK & expression was evaluated in a series of sporadic human series specimens (n = 74) and compared with that of PUK [2001]	
The interaction requires the N-terminal 217 residues of Cost 22 and the crypto Cost of Cost 22 22 2010]	
Here we show that the centriolar protein Asterless (Asi or human orthologue OSEP152 or provides a conserved molecular platform, the amino terminus of which interacts with the cryptic Research of the control or protein Sas-4 (CPAP in humans). [2010]	*
Here, we show that PEK4 on autophosphorylation of geoing S305 is a consequence of kinase activation and enables the active fraction to be identified in the cell. [2010]	*
Human cells depleted of SAK (\$\text{\$\text{SAK}\$} \text{\$\text{\$\text{show error-prone}\$} \text{\$\te	
SAK $_{\odot}$, a new polo-like kinase, is transcriptionally repressed by $\frac{853}{2}$ $\frac{1}{2}$ and induces $\frac{1}{2}$ and induces $\frac{1}{2}$ upon RNAi silencing. [2005]	14 14 15 15 15 15 15 15 15 15 15 15 15 15 15
These findings provide an attractive explanation for the crucial function of PIK4 in the cruci	**
PIK4 ; is the most structurally divergent Polo facility manifold; it is maximally expressed in actively dividing tissues and is essential for mouse and in e	*
SAK 171 2-1- mice die during embryogenesis, whereas SAK 171 2+1- mice develop liver and lung tumors and SAK 171 2+1- MEFs show mitotic abnormalities. [2005]	*
Transcriptional analysis with luciterase reporters driven by SAK promoter deletion fragments identified SP-1 and CREB ANALYSIS which together conferred a two-fold SAK prepression by 252 p. [2005]	4
Biologically, SAK 3 State Season (RNAI) silencing induced apostosis, whereas SAK 3 overexpression attenuated p53 3-induced apostosis. [2005]	*
Computer search of a 1.7-kb SAK $_{\odot}$ promoter sequence revealed three putative $\underline{s53}$ $_{\odot}$ $\underline{binding}$ \underline{sikes} , but $\underline{s53}$ $_{\odot}$ failed to bind to any of these sites, indicating that SAK $_{\odot}$ repression by $\underline{s59}$ $_{\odot}$ was not through a direct $\underline{s53}$ $_{\odot}$ binding to the promoter. [2005]	*
Little has been, therefore, elucidated how Sak $_{\odot}$ is regulated and how Sak $_{\odot}$ contributes to $_{\odot}$ contributes to $_{\odot}$ [2001]	
SAK a, a polo family member with unique properties, had not been systematically studied in any tumor type. [2001]	*
SAK and PLK are members of the polo family of section 173 (transfer 173 kinases, which in lower organisms have been shown to be required for the precise regulation of mitosia. [2001]	<u>*</u>
Functional validation using siRNA knockdown in multiple remote settlines showed that C13od58 & MADQL1 & PLK4 & TPOSQ and SEPECTS & each significantly altered settlines sensitivity in at least two cancer cell times. [2010]	

This is achieved, in part, by an autoregulatory mechanism, whereby PLK4 ; autophosphorylates residues in a PEST sequence located carboxy-terminal to its assistance and activities and activities and activities and activities are activities and activities and activities are activities and activities are activities and activities and activities are activities and activities are activities and activities activities and activities are activities and activities activities are activities and activities activities are activities activities and activities activitie	
We found that COLS is is critical for the degradation of active PLK4 is following deregulation of cyclin Elcyclin-dependent kinase 2 activity, as is frequently observed in human cancer cells, as well as for baseline PLK4 is included a stability. [2009]	#
In addition, the formation of abnormal structures was abolished by expression of exogenous PIK4 37, but not SAS6 and Cep135/Bld10p, which are downstream regulators required for the organization of nine-triplet references. [2009]	*
Sak jy serine-threonine kinase acts as an effector of Tec <u>tyroxima (?)</u> kinase. [2001]	
RESULTS: In the majority of cases, both SAX 😭 and PLK were more highly expressed in tumor tissue than in adjacent normal integration in the majority of cases, both SAX 😭 and PLK were more highly expressed in tumor tissue than in adjacent normal integration in the majority of cases, both SAX ()	
evels of SAK and PLK expression in tumor relative to paired normal ************************************	<u>-</u>
is <u>attendings</u> depends on the presence of endogenous wild-type Ptk4 ₂₈ . [2010]	
(4.17) (4/4) murine embryonic fierobisses (MEFs) at early passage show a high incidence of multinucleation, supernumerary <u>controverses,</u> and a near-tetraploid yotype. [2010]	# 2
ak 121 g transcripts are present in S/G2/M strates cells, and in proliferating cell layers of the mouse embryo and adult tissues. [2000]	
he <u>Sak (?] ()</u> gene encodes a <u>satine 12/filmmonine (?)</u> kinase, which is a member of the Polo family of mitotic regulators, [2000]	## ## POP
trimer extension analysis of murine Sak [7] , revealed one major france is a position start site at position 303bp relative to the start of translation. [2000]	<u>#</u>
Ising various Sak 171 promoter/fucilerase constructs, the core promoter required for expression was located within 400bp of the message Cap site, and equence further 5 strongly suppressed transcription. [2000]	1
he murine <u>Sak (?) or gene is located on the proximal arm of mouse electroscope (S.</u> as determined by <u>REEP</u> analysis. [2000]	
ik4 [7] $_{\odot}$ is required for <u>outsidensis</u> and maintenance of <u>chromosomal statility</u> . [2010]	#
e we show that loss of heterographic (LOH) occurs at the Piks 121 locus in 50% of human hepsthodillar carcinomias (HCC) and is present even in preneoplastic hotic liver nodules. [2010]	
Our results indicate that hashed levels of PIR4121 or disrupt RhoGTPase function during extending in an entropy and tumorigenesis, thus implicating early OH at PIR4121 or as one of the drivers of human hepatocellular carcinogenesis. [2010]	**
iowever when these cells commit to differentiate into <u>treat which stig</u> lant (TG) cells, <u>Hand1</u> is phosphorylated by the polo-like kinase Plk4 (Sak) and released into the ucleus to activate downstream target genes. [2008]	*
n Drosophila, contributes are not necessary for somatic cell divisions. (9,10) However, we show here that mitotic abrormalities arise in syncytial SAK/PLK4 & derived nutant embryos resulting in lethality. [2008]	
tolo-like kimase 4 [약] (위생4[약)) regulates both modes of emitting bloogeness, and 위생4[약] deregulation has been linked to tumor development [1, 3], [2011]	
he conserved protein kinase <u>Poto-like kinase 4 (?) (원범석 및</u>) has a key role in controlling <u>sentrole biogenasis</u> , [2010]	
ABSTRACT: Polo-like kinase 4 (PLK4) is a unique member of the Pale like family of kinases that shares little homology with its siblings and has an essential role in	
We show that Plx4, the <u>Xenogras</u> homolog of mammalian <u>Plx4.171</u> and Drosophila <u>Sax [7]</u> , induces de novo <u>centricise</u> formation in-vivo in activated <u>occretes</u> and in egg_xtracts, but not in immature or in-vitro matured <u>occretes</u> . [2011]	# 4
of love over male meta-sis fails in both SAK/PLK4. and DSAS-4 mutant seem milities that have no consistent [2008]	
lere, we show that expression of stabilized mutant https://www.nich.mimics.mutations.found-in-cancer , results in extra non-microtubule nucleating structures that ontain a subset of https://www.nich.mimics.mutations.found-in-cancer , results in extra non-microtubule nucleating structures that ontains a subset of https://www.nich.mimics.mutations.found-in-cancer , results in extra non-microtubule nucleating structures that ontains a subset of https://www.nich.mimics.mutations.found-in-cancer , results in extra non-microtubule nucleating structures that ontains.	*
ine of these SSAPs was identified as Sak and was found in the virulent L. lactis ghape ul36, which belongs to the Materials amily [4, 5], [2008]	1
n <u>Stankviousessa aureus phages</u> encoding immune evasion molecules (SAK, <u>SCIN</u>), CHIPS), which integrate specifically into the beta-haemolysin (HIb) gene, are widely distributed. [2006]	
The predicted protein sequences of Rab7a and Rab7b contain all characteristic domains essential for Rab function: the effector domain (YRATVGADF) and four GTP-binding consensus sequences (GDSGVGKT, WDTAGQ, NKLD, SAK) as well as the greatestical motif (-CC) at the C-terminus indispensable for Rab binding to the membrane. [2006]	# 4

See a services have proven to be a rich source of pharmacological tools, and some of the SAK toxins are now useful drugs for the diagnosis and treatment of

Please cite the use of IHOP as "Hullmann, R., Valencia, A. A gene reheroix for metigating the iterative, Nature Sements 36, 994 (2004)" and as "IHOP - http://www.ihop-net.org".

Special thanks to Chris Sander for his continuing support.