Assignment 4 (Advanced Machine Learning)

Davide Sangalli - Matricola: 848013

November 25, 2019

Abstract

In questo assignment si affronterà il problema del *Transfer Learning*, usando una rete neurale come *feature extractor* (effettuando tagli a diversi livelli della rete), per poi utilizzare tali *features* come input per un classificatore "tradizionale", in particolare si è scelta la *Logistic Regression*.

1 Scelta del dataset e della rete neurale pretrainata

1.1 Architettura della rete neurale

La rete neurale scelta è stata la VGG16, pre-trainata sull' ImageNet, ovvero un dataset contenente oltre 14 milioni di immagini appartenenti a 1000 categorie diverse.

Tale rete neurale ha la seguente struttura:

- un *input_layer* con dimensione delle immagini (224,224,3), ovvero delle immagini dimensione 224x224 pixels e a colori (3 canali di colore, RGB)
- $\bullet\,$ 5 blocchi convoluzionali, ognuno dei quali costituito da 3 layer convoluzionali e un layer di MaxPooling
- \bullet 2 layers fully-connected
- un layer finale di predizione

1.2 Scelta del dataset

Il dataset scelto è composto da 10 classi, ovvero immagini di cani, cavalli, elefanti, farfalle, galline, gatti, mucche, pecore, ragni e scoiattoli. Il dataset è stato così suddiviso:

• per il training set sono state usate 300 immagini di ogni classe, per un totale di 3000 immagini

 \bullet per il training set sono state usate 200 immagini per ogni classe, per un totale di 2000 immagini

Non è stato utilizzato tutto il dataset, poichè conteneva troppe immagini e questo avrebbe reso molto oneroso il caricamento dei dati in memoria. E' stato perciò utilizzato un *random sampling*, facendo attenzione a non usare una stessa immagine sia per training set che per il test set.

2 Classificazione tramite la Logistic Regression

2.1 Schema dei tagli

Viene riportato di seguito lo schema dei tagli effettuati sulla *VGG16*. Nei punti successivi verranno analizzati nel dettaglio.

2.2 Primo taglio

Il primo taglio alla rete neurale è stato fatto a livello del quinto blocco convoluzionale (comprendendo anche il layer di MaxPooling), che ha una shape di (7,7,512). Le features estratte sono perciò pari a 7*7*512=25088.

Ovviamente, per poterle dare in input alla *Logistic Regression*, è stato prima eseguito un *flatten* su di esse.

L'accuracy di questo primo modello di classificazione è del 92%, come confermato dal *classification_report*, riportato di seguito. Viene inoltre riportata anche la *confusion_matrix*.

Figure 1: Classification report relativo al test set sul primo taglio

Figure 2: Confusion matrix relativa al test set sul primo taglio

2.3 Secondo taglio

Il secondo taglio alla rete neurale è stato fatto a livello del quarto blocco convoluzionale (comprendendo anche il layer di MaxPooling), che ha una shape di (14,14,512).

Le features estratte sono perciò pari a 14*14*512=100352, dopo aver eseguito un flatten su di esse.

L'accuracy di questo secondo modello di classificazione è dell' 82%. Anche in questo caso vengono riportati sia il classification_report che la confusion_matrix.

Figure 3: Classification report relativo al test set sul secondo taglio

Figure 4: Confusion matrix relativa al test set sul secondo taglio

2.4 Terzo taglio

Inizialmente è stato provato un taglio più in alto, a livello del terzo blocco, ma l'accuracy era bassa (intorno al 66%) ed inoltre il tempo richiesto per il training del modello era molto elevato, perciò si è optato di tagliare la rete ad un altro livello.

E' stato deciso di utilizzare tutta la rete (compresi i layers fully_connected), tagliandone solamente l'ultimo layer (ovvero quello di classificazione).

In quest'ultimo caso, le features estratte sono perciò pari a 4096.

L'accuracy di questo modello è pari al 93%, come mostrato di seguito nel $classification_report$. Viene mostrata anche la $confusion_matrix$.

Figure 5: Classification report relativo al test set sul terzo taglio

Figure 6: Confusion matrix relativa al test set sul terzo taglio

3 Note

3.1 Note sull'uso della Logistic Regression

E' stata usata una Logistic Regression con i seguenti parametri:

- class_weight="balanced"
- multi_class="auto"
- un numero massimo di iterazioni pari a 200 (max_iter=200)
- random_state=1, per fissare un seme e rendere i risultati riproducibili
- solver="newton-cg", poichè particolarmente indicato per una classificazione multiclasse

In fase di classificazione è stata utilizzata anche una SVM con kernel lineare. Anche questo classificatore funzionava bene (i risultati dell'accuratezza erano del tutto simili a quelli ottenuti dalla regressione logistica), ma durante la fase di training era molto più lento della Logistic Regression, perciò si è optato di scegliere quest'ultima come classificatore.

3.2 Note sulla VGG16

Per tutti e tre i tagli effettuati si verifica overfitting, poichè tutti i training_set hanno un'accuracy pari al 100%, mentre tutti i test_set hanno un'accuracy minore (circa 92%-93% al massimo).

Questo fenomeno però è giustificato dal fatto che la VGG16 è stata allenata utilizzando il dataset ImageNet, contenente oltre 14 milioni di immagini, appartenenti a 1000 classi differenti, mentre il training_set utilizzato per questo problema è composto solo da 3000 immagini, appartenenti a 10 classi differenti. E' perciò normale l'overfitting che si presenta.

4 Conclusioni

Come si nota dai *classification_reports*, più il taglio è in alto, più l'accuracy diminuisce e viceversa. Infatti, la migliore accuratezza si raggiunge con l'ultimo taglio, dove sono stati tenuti i layers *fully_connected* della rete neurale (93% di accuracy).

La classe che in tutti e tre i casi è stata classificata peggio è stata quella della "mucca".

Inoltre, più il taglio della rete avviene in basso, meno è il tempo richiesto dal classificatore per la computazione e viceversa.