Algorithm II

5. Divide and Conquer II

WU Xiaokun 吴晓堃

xkun.wu [at] gmail

Master theorem

DnC recurrences

Goal. Recipe for solving general divide-and-conquer recurrences:

$$T(n) = aT(\frac{n}{b}) + f(n)$$

with T(0) = 0 and $T(1) = \Theta(1)$.

Terms.

- a ≥ 1: number of sub-problems.
- $b \ge 2$: factor by which the subproblem size decreases.
- $f(n) \ge 0$: work to divide and combine sub-problems.

Recursion tree

Suppose $T(n) = aT(n/b) + n^c$, with T(1) = 1 and n a power of b.

- a: branching factor.
- aⁱ: number of sub-problems at level i.
- n/b^i : size of subproblem at level i.
- $1 + \log_b n$ levels.

Recursion tree (cont.)

Suppose $T(n) = aT(n/b) + n^c$, with T(1) = 1 and n a power of b.

• Let $r = a/b^c$, then $T(n) = n^c \sum_{i=0}^{\log_b n} r^i$.

Note the last one on the right: $a^{\log_b n}(\frac{n}{b^{\log_b n}})^c = n^{\log_b a}(\frac{n}{n})^c = n^{\log_b a}$.

Recursion tree: analysis

Suppose $T(n) = aT(n/b) + n^c$, with T(1) = 1 and n a power of b.

• Let $r = a/b^c$. Note that r < 1 iff $c > log_b a$.

$$T(n) = n^c \sum_{i=0}^{\log_b n} r^i = \left\{ egin{array}{ll} \Theta(n^c) & ext{if} & r < 1, ext{ie. cost dominated by root} \ \Theta(n^c \log n) & ext{if} & r = 1, ext{ie. cost evenly distributed} \ \Theta(n^{\log_b a}) & ext{if} & r > 1, ext{ie. cost dominated by leaves} \end{array}
ight.$$

Geometric series.

- If 0 < r < 1, then $1 + r + r^2 + r^3 + \ldots + r^k = 1/(1-r)$.
- If r = 1, then $1 + r + r^2 + r^3 + \ldots + r^k = k + 1$.
- ullet If r>1, then $1+r+r^2+r^3+\ldots+r^k=(r^{k+1}-1)/(r-1)$.

DnC: Master theorem

Master theorem

Let $a \geq 1, b \geq 2, c \geq 0$ and suppose T(n) is a function on non-negative integers that satisfies the recurrence $T(n) = aT(n/b) + \Theta(n^c)$ with $T(0) = 0, T(1) = \Theta(1)$, where n/b means either $\lfloor n/b \rfloor$ or $\lceil n/b \rceil$. Then,

Case 1. If $c > \log_b a$, then $T(n) = \Theta(n^c)$.

Case 2. If $c = \log_b a$, then $T(n) = \Theta(n^c \log n)$.

Case 3. If $c < \log_b a$, then $T(n) = \Theta(n^{\log_b a})$.

Pf sketch.

- Prove when b is an integer and n is an exact power of b.
- Extend domain of recurrences to reals (or rationals).
- Deal with floors and ceilings.

DnC: Master theorem extensions

Master theorem

Let $a \geq 1, b \geq 2, c \geq 0$ and suppose T(n) is a function on non-negative integers that satisfies the recurrence $T(n) = aT(n/b) + \Theta(n^c)$ with $T(0) = 0, T(1) = \Theta(1)$, where n/b means either $\lfloor n/b \rfloor$ or $\lceil n/b \rceil$. Then,

Case 1. If $c > \log_b a$, then $T(n) = \Theta(n^c)$.

Case 2. If $c = \log_b a$, then $T(n) = \Theta(n^c \log n)$.

Case 3. If $c < \log_b a$, then $T(n) = \Theta(n^{\log_b a})$.

Extensions.

- Can replace Θ with O everywhere.
- Can replace Θ with Ω everywhere.
- Can replace initial conditions so $T(n) = \Theta(1)$ for all $n \leq n_0$ and require recurrence to hold only for all $n > n_0$.

DnC: Master theorem - case 1

Master theorem

Let $a\geq 1, b\geq 2, c\geq 0$ and suppose T(n) is a function on non-negative integers that satisfies the recurrence $T(n)=aT(n/b)+\Theta(n^c)$ with $T(0)=0, T(1)=\Theta(1)$, where n/b means either $\lfloor n/b \rfloor$ or $\lceil n/b \rceil$. Then,

Case 1. If $c > \log_b a$, then $T(n) = \Theta(n^c)$.

Case 2. If $c = \log_b a$, then $T(n) = \Theta(n^c \log n)$.

Case 3. If $c < \log_b a$, then $T(n) = \Theta(n^{\log_b a})$.

Ex. [Case 1] $T(n) = 48T(\lfloor n/4 \rfloor) + n^3$.

- $a = 48, b = 4, c = 3 > \log_b a = 2.7924...$
- $T(n) = \Theta(n^3)$.

DnC: Master theorem - case 2

Master theorem

Let $a\geq 1, b\geq 2, c\geq 0$ and suppose T(n) is a function on non-negative integers that satisfies the recurrence $T(n)=aT(n/b)+\Theta(n^c)$ with $T(0)=0, T(1)=\Theta(1)$, where n/b means either $\lfloor n/b \rfloor$ or $\lceil n/b \rceil$. Then,

Case 1. If
$$c > \log_b a$$
, then $T(n) = \Theta(n^c)$.

Case 2. If
$$c = \log_b a$$
, then $T(n) = \Theta(n^c \log n)$.

Case 3. If
$$c < \log_b a$$
, then $T(n) = \Theta(n^{\log_b a})$.

Ex. [Case 2]
$$T(n) = T(\lfloor n/2 \rfloor) + T(\lceil n/2 \rceil) + 17n$$
.

- $a = 2, b = 2, c = 1 = \log_b a$.
- $T(n) = \Theta(n \log n)$.

DnC: Master theorem - case 3

Master theorem

Let $a\geq 1, b\geq 2, c\geq 0$ and suppose T(n) is a function on non-negative integers that satisfies the recurrence $T(n)=aT(n/b)+\Theta(n^c)$ with $T(0)=0, T(1)=\Theta(1)$, where n/b means either $\lfloor n/b \rfloor$ or $\lceil n/b \rceil$. Then,

Case 1. If $c > \log_b a$, then $T(n) = \Theta(n^c)$.

Case 2. If $c = \log_b a$, then $T(n) = \Theta(n^c \log n)$.

Case 3. If $c < \log_b a$, then $T(n) = \Theta(n^{\log_b a})$.

Ex. [Case 3] $T(n) = 3T(\lfloor n/2 \rfloor) + 5n$.

- $a = 3, b = 2, c = 1 < \log_b a = 1.5849...$
- $T(n) = \Theta(n^{\log_2 3}) = O(n^{1.58}).$

DnC: Master theorem - exceptions

Gaps in master theorem.

- Number of sub-problems is not a constant.
 - $T(n) = nT(n/2) + n^2$
- Number of sub-problems is less than 1.
 - $T(n) = \frac{1}{2}T(n/2) + n^2$
- Work to divide and combine sub-problems is not $\Theta(n^c)$.
 - $T(n) = 2T(n/2) + n \log n$

Akra-Bazzi theorem

Theorem. [Akra-Bazzi 1998]

Let $a_1 > 0, 0 < b_i < 1$, functions $|h_i(n)| = O(n/\log^2 n)$ and $g(n) = O(n^c)$. If T(n) satisfies the recurrence:

$$T(n) = \sum_{i=1}^k a_i T(b_i n + h_i(n)) + g(n)$$

then, $T(n)=(n^p(1+\int_1^n \frac{g(u)}{u^{p+1}}\,du))$, where p satisfies $\sum_{i=1}^k a_ib_i^p=1$.

Ex.
$$T(n) = T(\lfloor n/5 \rfloor) + T(n - 3\lfloor n/10 \rfloor) + 11/5n$$
, with $T(0) = 0, T(1) = 0$.

- $a_1 = 1, b_1 = 1/5, a_2 = 1, b_2 = 7/10 \Rightarrow p = 0.83978... < 1.$
- $h_1(n) = \lfloor n/5 \rfloor n/5, h_2(n) = 3/10n 3\lfloor n/10 \rfloor.$
- $g(n) = 11/5n \Rightarrow T(n) = \Theta(n)$.

Integer multiplication

Integer addition and subtraction

Addition. Given two n-bit integers a and b, compute a + b.

Subtraction. Given two *n*-bit integers a and b, compute a-b.

Grade-school algorithm. $\Theta(n)$ bit operations.

=	1	0	1	0	1	0	0	1	0
		1	1	0	1	0	1	0	1
+		0	1	1	1	1	1	0	1
	1	1	1	1	1	1	0	1	

Remark. Grade-school addition and subtraction algorithms are optimal.

Integer Multiplication Problem

Multiplication. Given two n-bit integers a and b, compute $a \times b$. **Grade-school algorithm (long multiplication)**. $\Theta(n^2)$ bit operations.

$$\begin{array}{r}
1100 \\
\times 1101 \\
\hline
12 \\
1100 \\
\times 13 \\
\hline
36 \\
12 \\
\hline
156 \\
\hline
10011100$$

Conjecture. [Kolmogorov 1956] Grade-school algorithm is optimal. Theorem. [Karatsuba 1960] Conjecture is false.

DnC multiplication

To multiply two n-bit integers x and y:

- ullet Divide x and y into low- and high-order bits.
 - \bullet $m = \lceil n/2 \rceil$
 - $a = |x/2^m|, b = x \mod 2^m$
 - $c = |y/2^m|, d = y \mod 2^m$
- Multiply four (n/2)-bit integers, recursively.
- Add and shift to obtain result.

$$xy = (2^m a + b)(2^m c + d) = 2^{2m} ac + 2^m (bc + ad) + bd$$

Ex.

	а				b			
X =	1	0	0	0	1	1	0	1
y =	1	1	1	0	0	0	0	1

DnC multiplication: algorithm

```
1. IF (n = 1): RETURN x \times y;
2. ELSE:
  1. m = \lceil n/2 \rceil;
  2. a = |x/2^m|, b = x \mod 2^m;
  3. c = |y/2^m|, d = y \mod 2^m;
  4. e = \text{MULTIPLY}(a, c, m);
  5. f = \text{MULTIPLY}(b, d, m);
  6. g = \text{MULTIPLY}(b, c, m);
  7. h = \text{MULTIPLY}(a, d, m);
3. RETURN 2^{2m}e + 2^m(g+h) + f;
```

DnC multiplication: algorithm

```
1. IF (n = 1): RETURN x \times y;
2. ELSE:
  1. m = \lceil n/2 \rceil;
  2. a = |x/2^m|, b = x \mod 2^m;
  3. c = |y/2^m|, d = y \mod 2^m;
  4. e = \text{MULTIPLY}(a, c, m);
  5. f = \text{MULTIPLY}(b, d, m);
  6. g = \text{MULTIPLY}(b, c, m);
  7. h = \text{MULTIPLY}(a, d, m);
3. RETURN 2^{2m}e + 2^m(g+h) + f;
```

Time.

2.1-2.3: Θ(n)
2.4-2.7: 4T([n/2])
3: Θ(n)

Quiz: DnC multiplication

How many bit operations to multiply two n-bit integers using the divide-and-conquer multiplication algorithm?

$$T(n) = \left\{ egin{array}{ll} \Theta(1) & ext{if} & n=1 \ 4T(\lceil n/2
ceil) + \Theta(n) & ext{if} & n>1 \end{array}
ight.$$

A.
$$T(n) = \Theta(n^{1/2})$$
.

B.
$$T(n) = \Theta(n \log n)$$
.

$$\mathbf{C}.\ T(n) = \Theta(n^{\log_2 3}) = O(n^{1.585}).$$

$$\mathbf{D}.\ T(n)=\Theta(n^2).$$

Quiz: DnC multiplication

How many bit operations to multiply two n-bit integers using the divide-and-conquer multiplication algorithm?

$$T(n) = \left\{ egin{array}{ll} \Theta(1) & ext{if} & n=1 \ 4T(\lceil n/2
ceil) + \Theta(n) & ext{if} & n>1 \end{array}
ight.$$

A.
$$T(n) = \Theta(n^{1/2})$$
.

B.
$$T(n) = \Theta(n \log n)$$
.

$$\mathbf{C}.\ T(n) = \Theta(n^{\log_2 3}) = O(n^{1.585}).$$

$$\mathbf{D}.\ T(n) = \Theta(n^2).$$

$$\mathsf{D} \ldotp T(n) = \Theta(n^{\log_2 4}) = \Theta(n^2)$$

Karatsuba trick

To multiply two n-bit integers x and y:

- Divide x and y into low- and high-order bits.
 - \bullet $m = \lceil n/2 \rceil$
 - $a = |x/2^m|, b = x \mod 2^m$
 - $c = |y/2^m|, d = y \mod 2^m$
- To compute middle term bc + ad, use identity:
 - bc + ad = ac + bd (a b)(c d)
- Multiply only three (n/2)-bit integers, recursively.
 - reuse: ac and bd.

$$egin{aligned} xy &= (2^m a + b)(2^m c + d) = 2^{2m} a c + 2^m (b c + a d) + b d \ &= 2^{2m} a c + 2^m (a c + b d - (a - b)(c - d)) + b d \end{aligned}$$

Karatsuba multiplication

3. RETURN $2^{2m}e + 2^m(e+f-g) + f$;

```
1. IF (n = 1): RETURN x \times y;

2. ELSE:

1. m = \lceil n/2 \rceil;

2. a = \lfloor x/2^m \rfloor, b = x \mod 2^m;

3. c = \lfloor y/2^m \rfloor, d = y \mod 2^m;

4. e = \text{KARATSUBA-MULTIPLY}(a, c, m);

5. f = \text{KARATSUBA-MULTIPLY}(b, d, m);

6. g = \text{KARATSUBA-MULTIPLY}(|a - b|, |c - d|, m);

7. Flip sign of g if needed.
```

Karatsuba multiplication

```
1. IF (n = 1): RETURN x \times y;
2. ELSE:
  1. m = \lceil n/2 \rceil;
  2. a = |x/2^m|, b = x \mod 2^m;
  3. c = |y/2^m|, d = y \mod 2^m;
  4. e = \text{KARATSUBA-MULTIPLY}(a, c, m);
  5. f = \text{KARATSUBA-MULTIPLY}(b, d, m);
  6. g = \text{KARATSUBA-MULTIPLY}(|a-b|, |c-d|, m);
  Flip sign of g if needed.
3. RETURN 2^{2m}e + 2^m(e+f-g) + f;
```

Time.

2.1-2.3: Θ(n)
2.4-2.6: 3T([n/2])
3: Θ(n)

Karatsuba analysis

Proposition. Karatsuba's algorithm requires $O(n^{1.585})$ bit operations to multiply two n-bit integers.

Pf. Apply Case 3 of the master theorem to the recurrence:

$$T(n) = \left\{ egin{array}{ll} \Theta(1) & ext{if} & n=1 \ 3T(\lceil n/2
ceil) + \Theta(n) & ext{if} & n>1 \end{array}
ight.$$

$$\Rightarrow T(n) = \Theta(n^{\log_2 3}) = O(n^{1.585})$$

Karatsuba analysis

Proposition. Karatsuba's algorithm requires $O(n^{1.585})$ bit operations to multiply two n-bit integers.

Pf. Apply Case 3 of the master theorem to the recurrence:

$$T(n) = \left\{ egin{array}{ll} \Theta(1) & ext{if} & n=1 \ 3T(\lceil n/2
ceil) + \Theta(n) & ext{if} & n>1 \end{array}
ight.$$

$$\Rightarrow T(n) = \Theta(n^{\log_2 3}) = O(n^{1.585})$$

Practice.

- Use base-32 or -64 (instead of base-2).
- Faster than grade-school algorithm for about 320 640 bits.

Integer arithmetic reductions

arithmetic problem	formula	bit complexity		
integer multiplication	a imes b	M(n)		
integer square	a^2	$\Theta(M(n))$		
integer division	$\lfloor a/b \rfloor, a \mod b$	$\Theta(M(n))$		
integer square root	$\lfloor \sqrt{a} \rfloor$	$\Theta(M(n))$		

Integer arithmetic problems have the same bit complexity M(n) as integer multiplication.

Matrix multiplication

Dot product

Dot product. Given two length-n vectors a and b, compute $c = a \cdot b = \sum_{i=1}^{n} a_i b_i$. **Grade-school**. $\Theta(n)$ arithmetic operations.

Ex.
$$a = [.70.20.10], b = [.30.40.30]$$
:

$$a \cdot b = (.70 \times .30) + (.20 \times .40) + (.10 \times .30) = .32$$

Remark. "Grade-school" dot product algorithm is asymptotically optimal.

Matrix Multiplication Problem

Matrix multiplication. Given two n-by-n matrices A and B, compute C = AB. **Grade-school**. $\Theta(n^3)$ arithmetic operations.

$$\begin{bmatrix} c_{11} & c_{12} & \cdots & c_{1n} \\ c_{21} & c_{22} & \cdots & c_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ c_{n1} & c_{n2} & \cdots & c_{nn} \end{bmatrix} = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{bmatrix} \times \begin{bmatrix} b_{11} & b_{12} & \cdots & b_{1n} \\ b_{21} & b_{22} & \cdots & b_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ b_{n1} & b_{n2} & \cdots & b_{nn} \end{bmatrix}$$

Q. Is "grade-school" matrix multiplication algorithm asymptotically optimal?

Block matrix multiplication

$$\begin{bmatrix} 152 & 158 & 164 & 170 \\ 504 & 526 & 548 & 570 \\ 856 & 894 & 932 & 970 \\ 1208 & 1262 & 1316 & 1370 \end{bmatrix} = \begin{bmatrix} 0 & 1 & 2 & 3 \\ 4 & 5 & 6 & 7 \\ 8 & 9 & 10 & 11 \\ 12 & 13 & 14 & 15 \end{bmatrix} \times \begin{bmatrix} 16 & 17 & 18 & 19 \\ 20 & 21 & 22 & 23 \\ 24 & 25 & 26 & 27 \\ 28 & 29 & 30 & 31 \end{bmatrix}$$

$$egin{aligned} C_{11} &= A_{11} imes B_{11} + A_{12} imes B_{21} \ &= \left[egin{array}{ccc} 0 & 1 \ 4 & 5 \end{array}
ight] imes \left[egin{array}{ccc} 16 & 17 \ 20 & 21 \end{array}
ight] + \left[egin{array}{ccc} 2 & 3 \ 6 & 7 \end{array}
ight] imes \left[egin{array}{ccc} 24 & 25 \ 28 & 29 \end{array}
ight] \ &= \left[egin{array}{cccc} 152 & 158 \ 504 & 526 \end{array}
ight] \end{aligned}$$

Block matrix multiplication: warmup

To multiply two n-by-n matrices A and B:

- Divide: partition A and B into n/2-by-n/2 blocks.
- Conquer: multiply 8 pairs of n/2-by-n/2 matrices, recursively.
- Combine: add appropriate products using 4 matrix additions.

$$C = A imes B$$
 $C_{11} = A_{11} imes B_{11} + A_{12} imes B_{21}$ $\begin{bmatrix} C_{11} & C_{12} \ C_{21} & C_{22} \end{bmatrix} = \begin{bmatrix} A_{11} & A_{12} \ A_{21} & A_{22} \end{bmatrix} imes \begin{bmatrix} B_{11} & B_{12} \ B_{21} & B_{22} \end{bmatrix} egin{array}{c} C_{12} = A_{11} imes B_{12} + A_{12} imes B_{22} \ C_{21} = A_{21} imes B_{11} + A_{22} imes B_{21} \ C_{22} = A_{21} imes B_{12} + A_{22} imes B_{22} \end{array}$

Running time. Apply Case 3 of the master theorem.

$$T(n) = 8T(n/2) + \Theta(n^2) \Rightarrow T(n) = \Theta(n^3)$$

Strassen's trick

Key idea. Can multiply two 2-by-2 matrices via 7 scalar multiplications (plus 11 additions and 7 subtractions).

$$\begin{bmatrix} C_{11} & C_{12} \\ C_{21} & C_{22} \end{bmatrix} = \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix} \times \begin{bmatrix} B_{11} & B_{12} \\ B_{21} & B_{22} \end{bmatrix} P_1 = A_{11} \times (B_{12} - B_{22}) P_2 = (A_{11} + A_{12}) \times B_{22}$$

$$C_{11} = P_5 + P_4 - P_2 + P_6 P_3 = (A_{21} + A_{22}) \times B_{11}$$

$$C_{12} = P_1 + P_2 P_4 P_4 P_5 = (A_{11} + A_{22}) \times (B_{21} - B_{11}) P_5 = (A_{11} + A_{22}) \times (B_{11} + B_{22}) P_5 = (A_{11} + A_{22}) \times (B_{11} + B_{22}) P_6 = (A_{12} - A_{22}) \times (B_{21} + B_{22}) P_7 = (A_{11} - A_{21}) \times (B_{11} + B_{12}) P_7 = (A_{11} - A_{21}) \times (B_{11} + B_{12})$$

Pf.
$$C_{12}=P_1+P_2=A_{11} imes (B_{12}-B_{22})+(A_{11}+A_{12}) imes B_{22}=A_{11} imes B_{12}+A_{12} imes B_{22}$$

Strassen's algorithm

- 1. IF (n = 1): RETURN $A \times B$;
- 2. Partition A and B into n/2-by-n/2 blocks;
- 3. $P_1 = STRASSEN(n/2, A_{11}, (B_{12} B_{22}));$
- 4. $P_2 = STRASSEN(n/2, (A_{11} + A_{12}), B_{22});$
- 5. $P_3 = STRASSEN(n/2, (A_{21} + A_{22}), B_{11});$
- 6. $P_4 = STRASSEN(n/2, A_{22}, (B_{21} B_{11}));$
- 7. $P_5 = STRASSEN(n/2, (A_{11} + A_{22}), (B_{11} + B_{22}));$
- 8. $P_6 = STRASSEN(n/2, (A_{12} A_{22}), (B_{21} + B_{22}));$
- 9. $P_7 = STRASSEN(n/2, (A_{11} A_{21}), (B_{11} + B_{12}));$
- 10. $C_{11} = P_5 + P_4 P_2 + P_6$;
- 11. $C_{12} = P_1 + P_2$;
- 12. $C_{21} = P_3 + P_4$;
- 13. $C_{22} = P_1 + P_5 P_3 P_7$;
- 14. RETURN C;

Time.

- 3-9: $7T(n/2) + \Theta(n^2)$
- 10-13: $\Theta(n^2)$

Strassen's algorithm: analysis

Theorem. [Strassen 1968] Strassen's algorithm requires $O(n^{2.81})$ arithmetic operations to multiply two n-by-n matrices. **Pf**.

- When n is a power of 2, apply Case 1 of the master theorem:
 - $T(n) = 7T(n/2) + \Theta(n^2) \Rightarrow T(n) = \Theta(n^{\log_2 7}) = \Theta(n^{2.81})$
- When n is not a power of 2, pad matrices with zeros to be n'-by-n', where $n \le n' < 2n$ and n' is a power of 2.

Strassen's algorithm: practice

Implementation issues.

- Sparsity.
- Caching.
- . n not a power of 2.
- Numerical stability.
- Non-square matrices.
- Storage for intermediate sub-matrices.
- Crossover to classical algorithm when n is "small."
- Parallelism for multi-core and many-core architectures.

Common misperception. "Strassen's algorithm is only a theoretical curiosity."

- Apple reports 8x speedup when $n \approx 2,048$.
- Range of instances where it's useful is a subject of controversy.

Quiz: matrix multiplication

Suppose that you could multiply two 3-by-3 matrices with 21 scalar multiplications. How fast could you multiply two n-by-n matrices?

- A. $\Theta(n^{\log_3 21})$
- **B**. $\Theta(n^{\log_2 21})$
- C. $\Theta(n^{\log_9 21})$
- **D**. $\Theta(n^2)$

Quiz: matrix multiplication

Suppose that you could multiply two 3-by-3 matrices with 21 scalar multiplications. How fast could you multiply two n-by-n matrices?

- A. $\Theta(n^{\log_3 21})$
- **B**. $\Theta(n^{\log_2 21})$
- C. $\Theta(n^{\log_9 21})$
- **D**. $\Theta(n^2)$

A

Fast matrix multiplication: theory

- Q. Multiply two 2-by-2 matrices with 7 scalar multiplications?
- **A**. Yes! [Strassen 1969] $\Theta(n^{\log_2 7}) = O(n^{2.81})$
- Q. Multiply two 2-by-2 matrices with 6 scalar multiplications?
- **A**. Impossible. [Hopcroft–Kerr, Winograd 1971] $\Theta(n^{\log_2 6}) = O(n^{2.59})$

Numeric linear algebra reductions

linear algebra problem	expression	arithmetic complexity
matrix multiplication	A×B	MM(n)
matrix squaring	A^2	$\Theta(MM(n))$
matrix inversion	A^{-1}	$\Theta(MM(n))$
determinant	A	$\Theta(MM(n))$
rank	rank(A)	$\Theta(MM(n))$
system of linear equations	Ax = b	$\Theta(MM(n))$
LU decomposition	A = LU	$\Theta(MM(n))$
least squares	$\min \ Ax - b\ _2$	$\Theta(MM(n))$

Numerical linear algebra problems have the same arithmetic complexity MM(n) as matrix multiplication

Convolution and FFT

Fourier analysis

Fourier theorem. [Fourier, Dirichlet, Riemann] Any (sufficiently smooth) *periodic* function can be expressed as the sum of a series of sinusoids.

• transform: *time* domain -> *frequency* domain.

Euler's identity

Euler's identity. $e^{ix} = \cos x + i \sin x$.

Sinusoids. Sum of sine and cosines = sum of complex exponentials.

$$ullet s_N(x) = rac{a_0}{2} + \sum_{n=1}^N (a_n \cos(2\pi n x) + b_n \sin(2\pi n x)) \ ullet s_N(x) = \sum_{n=-N}^N c_n \cdot e^{i2\pi n x}$$

$$ullet s_N(x) = \sum_{n=-N}^N c_n \cdot e^{i2\pi nx}$$

Fast Fourier transform

FFT. Fast way to convert between time domain and frequency domain.

Alternate viewpoint. Fast way to multiply and evaluate polynomials.

"If you speed up any nontrivial algorithm by a factor of a million or so the world will beat a path towards finding useful applications for it." — Numerical Recipes

Polynomials: coefficient representation

Univariate polynomial. [coefficient representation]

•
$$A(x) = a_0 + a_1 x + a_2 x^2 + \ldots + a_{n-1} x^{n-1}$$
: $a_0, a_1, \ldots + a_{n-1}$

•
$$B(x) = b_0 + b_1 x + b_2 x^2 + \ldots + b_{n-1} x^{n-1}$$
: $b_0, b_1, \ldots + b_{n-1}$

Addition. O(n) arithmetic operations.

•
$$A(x) + B(x) = (a_0 + b_0) + (a_1 + b_1)x + \ldots + (a_{n-1} + b_{n-1})x^{n-1}$$

Evaluation. O(n) using Horner's method.

•
$$A(x) = a_0 + (x(a_1 + x(a_2 + \ldots + x(a_{n-2} + x(a_{n-1}))\ldots))$$

• for
$$j = n - 1..0$$
: $v = a[j] + (x * v)$;

Multiplication (linear convolution). $O(n^2)$ using brute-force.

$$ullet$$
 $A(x) imes B(x) = \sum_{i=0}^{2n-2} c_i x^i$, where $c_i = \sum_{j=0}^i a_j b_{i-j}$.

Polynomials: point-value representation

Fundamental theorem of algebra. A degree n univariate polynomial with complex coefficients has exactly n complex roots.

Corollary. A degree n-1 univariate polynomial A(x) is uniquely specified by its evaluation at n distinct values of x.

Polynomials: point-value (cont.)

Univariate polynomial. [point-value representation]

- $A(x):(x_0,y_0),\ldots,(x_{n-1},y_{n-1})$
- $B(x):(x_0,z_0),\ldots,(x_{n-1},z_{n-1})$

Addition. O(n) arithmetic operations.

•
$$A(x) + B(x) : (x_0, y_0 + z_0), \dots, (x_{n-1}, y_{n-1} + z_{n-1})$$

Multiplication. O(n), but represent A(x) and B(x) using 2n points.

$$ullet$$
 $A(x) imes B(x) : (x_0, y_0 imes z_0), \ldots, (x_{2n-1}, y_{2n-1} imes z_{2n-1})$

Evaluation. $O(n^2)$ using Lagrange's formula.

$$ullet \ A(x) = \sum_{k=0}^{n-1} y_k rac{\prod_{j
eq k} (x-x_j)}{\prod_{j
eq k} (x_k-x_j)}$$

Representations: tradeoff

Tradeoff. Either fast evaluation or fast multiplication. We want both!

representation	multiply	evaluate
coefficient	$O(n^2)$	O(n)
point-value	O(n)	$O(n^2)$

Goal. Efficient conversion between two representations ⇒ all ops fast.

Converting between two representations

Application. Polynomial multiplication (coefficient representation).

exactly the reason to do Fourier transform

coefficient	transform	point-value
coefficient	FFT: $O(n \log n)$	point-value
		multiplication: $O(n)$
coefficient	inv. FFT: $O(n \log n)$	point-value

Converting representation: brute-force

Coefficient \Rightarrow **Point-value**. Given a polynomial $A(x) = a_0 + a_1x + ... + a_{n-1}x^{n-1}$, evaluate it at n distinct points $x_0, ..., x_{n-1}$.

$$\left[egin{array}{c} y_0 \ y_1 \ y_2 \ dots \ y_{n-1} \end{array}
ight] = \left[egin{array}{cccc} 1 & x_0 & x_0^2 & \cdots & x_0^{n-1} \ 1 & x_1 & x_1^2 & \cdots & x_1^{n-1} \ 1 & x_2 & x_2^2 & \cdots & x_2^{n-1} \ dots & dots & dots & dots \ 1 & x_{n-1} & x_{n-1}^2 & \cdots & x_{n-1}^{n-1} \end{array}
ight] imes \left[egin{array}{c} a_0 \ a_1 \ a_2 \ dots \ a_{n-1} \end{array}
ight] \ \left[egin{array}{c} a_0 \ a_1 \ a_2 \ dots \ a_{n-1} \end{array}
ight]$$

Running time. $O(n^2)$ via matrix-vector multiply (or O(n) Horner's).

Converting: brute-force (cont.)

Point-value \Rightarrow **Coefficient**. Given n distinct points $x_0, ..., x_{n-1}$ and values $y_0, ..., y_{n-1}$, find unique polynomial $A(x) = a_0 + a_1x + ... + a_{n-1}x^{n-1}$, that has given values at given points.

$$\left[egin{array}{c} y_0 \ y_1 \ y_2 \ dots \ y_{n-1} \end{array}
ight] = \left[egin{array}{cccc} 1 & x_0 & x_0^2 & \cdots & x_0^{n-1} \ 1 & x_1 & x_1^2 & \cdots & x_1^{n-1} \ 1 & x_2 & x_2^2 & \cdots & x_2^{n-1} \ dots & dots & dots & dots \ 1 & x_{n-1} & x_{n-1}^2 & \cdots & x_{n-1}^{n-1} \end{array}
ight] imes \left[egin{array}{c} a_0 \ a_1 \ a_2 \ dots \ a_{n-1} \end{array}
ight]
ight]$$

Vandermonde matrix is invertible iff x_i distinct.

Running time. $O(n^3)$ via Gaussian elimination.

• or $O(n^{2.38})$ via fast matrix multiplication

Divide-and-conquer

Decimation in time. Divide into even- and odd- degree terms.

- $A(x) = a_0 + a_1x + a_2x^2 + a_3x^3 + a_4x^4 + a_5x^5 + a_6x^6 + a_7x^7$.
- $A_{even}(x) = a_0 + a_2x + a_4x^2 + a_6x^3$.
- $A_{odd}(x) = a_1 + a_3x + a_5x^2 + a_7x^3$.
- $\bullet \ A(x) = A_{even}(x^2) + x A_{odd}(x^2).$

Decimation in frequency. Divide into low- and high-degree terms.

- $A(x) = a_0 + a_1x + a_2x^2 + a_3x^3 + a_4x^4 + a_5x^5 + a_6x^6 + a_7x^7$.
- $A_{low}(x) = a_0 + a_1 x + a_2 x^2 + a_3 x^3$.
- $A_{high}(x) = a_4 + a_5x + a_6x^2 + a_7x^3$.
- $A(x) = A_{low}(x) + x^4 A_{high}(x)$.

Coefficient ⇒ Point-value: intuition

Coefficient \Rightarrow **Point-value**. Given a polynomial $A(x) = a_0 + a_1x + ... + a_{n-1}x^{n-1}$, evaluate it at n distinct points $x_0, ..., x_{n-1}$.

Divide. Break up polynomial into even- and odd-degree terms.

- $A(x) = a_0 + a_1x + a_2x^2 + a_3x^3 + a_4x^4 + a_5x^5 + a_6x^6 + a_7x^7$.
 - $A_{even}(x) = a_0 + a_2 x + a_4 x^2 + a_6 x^3.$
 - $A_{odd}(x) = a_1 + a_3x + a_5x^2 + a_7x^3.$
- $A(x) = A_{even}(x^2) + xA_{odd}(x^2)$.
 - $A(-x) = A_{even}(x^2) xA_{odd}(x^2)$.

Need 4 evaluations.

Coefficient ⇒ Point-value: intuition (cont.)

Intuition. Choose four *complex* points to be $\pm 1, \pm i$.

- $A(1) = A_{even}(1) + 1A_{odd}(1)$.
- $A(-1) = A_{even}(1) 1A_{odd}(1)$.
- $A(i) = A_{even}(-1) + iA_{odd}(-1)$.
- $A(-i) = A_{even}(-1) iA_{odd}(-1)$.

What if $n \ge 8$?

Roots of unity

Def. An n^{th} root of unity is a complex number x such that $x^n = 1$.

Fact. The n^{th} roots of unity are: $\omega^0, \omega^1, \dots, \omega^{n-1}$ where $\omega = e^{2\pi i/n}$.

Pf. $(\omega^k)^n = (e^{2\pi i k/n})^n = (e^{\pi i})^{2k} = (-1)^{2k} = 1$.

Roots of unity

Def. An n^{th} root of unity is a complex number x such that $x^n = 1$.

Fact. The n^{th} roots of unity are: $\omega^0, \omega^1, \ldots, \omega^{n-1}$ where $\omega = e^{2\pi i/n}$.

Pf.
$$(\omega^k)^n = (e^{2\pi i k/n})^n = (e^{\pi i})^{2k} = (-1)^{2k} = 1$$
.

Fact. The $(n/2)^{th}$ roots of unity are: $\nu^0, \nu^1, \dots, \nu^{n/2-1}$ where $\nu = \omega^2 = e^{4\pi i/n}$.

Discrete Fourier transform

Coefficient \Rightarrow **Point-value**. Given a polynomial $A(x) = a_0 + a_1x + ... + a_{n-1}x^{n-1}$, evaluate it at n distinct points $x_0, ..., x_{n-1}$.

Key idea. Choose $x_k = \omega^k$ where ω is principal n^{th} root of unity.

Fast Fourier transform: steps

Goal. Evaluate a degree n-1 polynomial $A(x)=a_0+a_1x+...+a_{n-1}x^{n-1}$ at its n^{th} roots of unity: $\omega^0,\omega^1,\ldots,\omega^{n-1}$.

Divide. Break up polynomial into even- and odd-degree terms.

- $A_{even}(x) = a_0 + a_2x + a_4x^2 + \ldots + a_{n-2}x^{n/2-1}$
- $A_{odd}(x) = a_1 + a_3x + a_5x^2 + \ldots + a_{n-1}x^{n/2-1}$.
- $A(x) = A_{even}(x^2) + xA_{odd}(x^2)$.
- $A(-x) = A_{even}(x^2) xA_{odd}(x^2)$.

Conquer. Evaluate $A_{even}(x)$ and $A_{odd}(x)$ at $(n/2)^{th}$ roots of unity: $\nu^0, \nu^1, \dots, \nu^{n/2-1}$

Combine.

- $y_k = A(\omega^k) = A_{even}(\nu^k) + \omega^k A_{odd}(\nu^k), 0 \le k < n/2.$
- $y_{k+n/2} = A(\omega^{k+n/2}) = A_{even}(\nu^k) \omega^k A_{odd}(\nu^k), 0 \le k < n/2.$

Fast Fourier transform: algorithm

1. IF
$$(n = 1)$$
: RETURN a_0 ;

2.
$$(e_0, e_1, \ldots, e_{n/2-1}) = FFT(n/2, a_0, a_2, a_4, \ldots, a_{n-2});$$

3.
$$(d_0, d_1, \ldots, d_{n/2-1}) = FFT(n/2, a_1, a_3, a_5, \ldots, a_{n-1});$$

4. FOR k = 0..n/2 - 1:

1.
$$\omega^k = e^{2\pi i k/n}$$
;

2.
$$y_k = e_k + \omega^k d_k$$
;

3.
$$y_{k+n/2} = e_k - \omega^k d_k$$
;

5. RETURN $(y_0, y_1, y_2, \ldots, y_{n-1})$.

Time.

- 2-3: 2T(n/2)
- 4.1-4.3: $\Theta(n)$

FFT: analysis

Theorem. The FFT algorithm evaluates a degree n-1 polynomial at each of the n^{th} roots of unity in $O(n \log n)$ arithmetic operations and O(n) extra space. **Pf**.

$$T(n) = \left\{egin{array}{ll} \Theta(1) & ext{if} & n=1 \ 2T(n/2) + \Theta(n) & ext{if} & n>1 \end{array}
ight.$$

Quiz: FFT tree

When computing the FFT of $(a_0, a_1, a_2, \dots, a_7)$, which are the first two coefficients involved in an arithmetic operation?

- \mathbf{A} . a_0 and a_1 .
- **B**. a_0 and a_2 .
- \mathbf{C} . a_0 and a_4 .
- **D**. a_0 and a_7 .
- E. None of the above.

Quiz: FFT tree

When computing the FFT of $(a_0, a_1, a_2, \dots, a_7)$, which are the first two coefficients involved in an arithmetic operation?

- \mathbf{A} . a_0 and a_1 .
- **B**. a_0 and a_2 .
- \mathbf{C} . a_0 and a_4 .
- **D**. a_0 and a_7 .
- E. None of the above.

C: first leaf of the FFT tree.

FFT: Fourier matrix decomposition

Alternative viewpoint. FFT is a recursive decomposition of Fourier matrix.

$$F_n = \begin{bmatrix} 1 & 1 & 1 & 1 & \cdots & 1 \\ 1 & \omega^1 & \omega^2 & \omega^3 & \cdots & \omega^{(n-1)} \\ 1 & \omega^2 & \omega^4 & \omega^6 & \cdots & \omega^{2(n-1)} \\ 1 & \omega^3 & \omega^6 & \omega^9 & \cdots & \omega^{3(n-1)} \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & \omega^{n-1} & \omega^{2(n-1)} & \omega^{3(n-1)} & \cdots & \omega^{(n-1)(n-1)} \end{bmatrix} a = \begin{bmatrix} a_0 \\ a_1 \\ a_2 \\ \vdots \\ a_{n-1} \end{bmatrix}$$

$$I_n = \left[egin{array}{ccccc} 1 & 0 & 0 & \cdots & 0 \ 0 & 1 & 0 & \cdots & 0 \ 0 & 0 & 1 & \cdots & 0 \ \vdots & \vdots & \vdots & \ddots & \vdots \ 0 & 0 & 0 & \cdots & 1 \end{array}
ight] D_n = \left[egin{array}{ccccc} \omega^0 & 0 & 0 & \cdots & 0 \ 0 & \omega^1 & 0 & \cdots & 0 \ 0 & 0 & \omega^2 & \cdots & 0 \ \vdots & \vdots & \vdots & \ddots & \vdots \ 0 & 0 & 0 & \cdots & \omega^{n-1} \end{array}
ight]$$

$$y = F_n a = \left[egin{array}{cc} I_{n/2} & D_{n/2} \ I_{n/2} & -D_{n/2} \end{array}
ight] \left[egin{array}{cc} F_{n/2} a_{even} \ F_{n/2} a_{odd} \end{array}
ight]$$

Inverse discrete Fourier transform

Point-value \Rightarrow **Coefficient**. Given n distinct points $x_0, ..., x_{n-1}$ and values $y_0, ..., y_{n-1}$, find unique polynomial $A(x) = a_0 + a_1x + ... + a_{n-1}x^{n-1}$, that has given values at given points.

$$\begin{bmatrix} a_0 \\ a_1 \\ a_2 \\ a_3 \\ \vdots \\ a_{n-1} \end{bmatrix} = \begin{bmatrix} 1 & 1 & 1 & 1 & \cdots & 1 \\ 1 & \omega^1 & \omega^2 & \omega^3 & \cdots & \omega^{(n-1)} \\ 1 & \omega^2 & \omega^4 & \omega^6 & \cdots & \omega^{2(n-1)} \\ 1 & \omega^3 & \omega^6 & \omega^9 & \cdots & \omega^{3(n-1)} \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & \omega^{n-1} & \omega^{2(n-1)} & \omega^{3(n-1)} & \cdots & \omega^{(n-1)(n-1)} \end{bmatrix}^{-1} \begin{bmatrix} y_0 \\ y_1 \\ y_2 \\ y_3 \\ \vdots \\ y_{n-1} \end{bmatrix}$$

Inverse FFT

Claim. Inverse of Fourier matrix F_n is given by following formula:

$$G_n = rac{1}{n} = egin{bmatrix} 1 & 1 & 1 & \cdots & 1 \ 1 & \omega^{-1} & \omega^{-2} & \omega^{-3} & \cdots & \omega^{-(n-1)} \ 1 & \omega^{-2} & \omega^{-4} & \omega^{-6} & \cdots & \omega^{-2(n-1)} \ 1 & \omega^{-3} & \omega^{-6} & \omega^{-9} & \cdots & \omega^{-3(n-1)} \ dots & dots & dots & dots & dots \ 1 & \omega^{-(n-1)} & \omega^{-2(n-1)} & \omega^{-3(n-1)} & \cdots & \omega^{-(n-1)(n-1)} \ \end{bmatrix}$$

Consequence. To compute the inverse FFT, apply the same algorithm but use $\omega^{-1} = e^{-2\pi i/n}$ as principal n^{th} root of unity (and divide the result by n).

Inverse FFT: correctness

Claim. F_n and G_n are inverses. Pf.

$$(F_nG_n)_{kk'} = rac{1}{n} \sum_{j=0}^{n-1} \omega^{kj} \omega^{-jk'} = rac{1}{n} \sum_{j=0}^{n-1} \omega^{(k-k')j} = \left\{ egin{array}{ll} 1 & ext{if } k=k \ 0 & ext{otherwise} \end{array}
ight.$$

Inverse FFT: correctness (cont.)

Summation lemma. Let ω be a principal n^{th} root of unity. Then

$$\sum_{j=0}^{n-1} \omega^{kj} = \left\{egin{array}{ll} n & ext{if } k \equiv 0 \pmod 0 \ 0 & ext{otherwise} \end{array}
ight.$$

Pf.

- If k is a multiple of n, then $\omega^k = 1 \Rightarrow$ series sums to n.
- Each n^{th} root of unity ω^k is a root of $x^n 1 = (x 1)(1 + x + x^2 + \dots + x^{n-1})$.
- if $\omega^k \neq 1$, then $1 + \omega^k + \omega^{k(2)} + \ldots + \omega^{k(n-1)} = 0 \Rightarrow$ series sums to 0.

Inverse FFT: algorithm

- 1. IF (n = 1): RETURN y_0 ;
- 2. $(e_0, e_1, \dots, e_{n/2-1})$ = INVERSE-FFT($n/2, y_0, y_2, y_4, \dots, y_{n-2})$;
- 3. $(d_0, d_1, \ldots, d_{n/2-1}) = \text{INVERSE-FFT}($ $n/2, y_1, y_3, y_5, \ldots, y_{n-1});$
- 4. FOR k = 0..n/2 1:
 - 1. $\omega^k = e^{-2\pi i k/n}$;
 - 2. $a_k = e_k + \omega^k d_k$;
 - 3. $a_{k+n/2} = e_k \omega^k d_k$;
- 5. RETURN $(a_0, a_1, a_2, \ldots, a_{n-1})$;

Time.

- 2-3: 2T(n/2)
- 4.1-4.3: $\Theta(n)$

Inverse FFT: analysis

Theorem. The inverse FFT algorithm interpolates a degree n-1 polynomial at each of the n^{th} roots of unity in $O(n \log n)$ arithmetic operations.

assumes n is a power of 2

Corollary. Can convert between coefficient and point-value representations in $O(n \log n)$ arithmetic operations.

coefficient	transform	point-value
coefficient	FFT: $O(n \log n)$	point-value
		multiplication: $O(n)$
coefficient	inv. FFT: $O(n \log n)$	point-value

Polynomial multiplication

Theorem. Given two polynomials $A(x) = a_0 + a_1x + a_2x^2 + \ldots + a_{n-1}x^{n-1}$ and $B(x) = b_0 + b_1x + b_2x^2 + \ldots + b_{n-1}x^{n-1}$ of degree n-1, can multiply them in $O(n \log n)$ arithmetic operations.

ullet pad with 0s to make n a power of 2

Pf.

coefficient	transform	point-value
coefficient	FFT: $O(n \log n)$	point-value
		multiplication: $O(n)$
coefficient	inv. FFT: $O(n \log n)$	point-value

Convolution

Convolution. A vector with 2n-1 coordinates, where $c_k = \sum_{(i,j): i+j=k} a_i b_j$.

- $a * b = (a_0b_0, a_0b_1 + a_1b_0, a_0b_2 + a_1b_1 + a_2b_0, ..., a_{n-2}b_{n-1} + a_{n-1}b_{n-2}, a_{n-1}b_{n-1}).$
 - exactly the coordinates of polynomial multiplication.
- summing along anti-diagonals of the following matrix.

```
\begin{bmatrix} a_0b_0 & a_0b_1 & a_0b_2 & a_0b_3 & \cdots & a_0b_{n-1} \\ a_1b_0 & a_1b_1 & a_1b_2 & a_1b_3 & \cdots & a_1b_{n-1} \\ a_2b_0 & a_2b_1 & a_2b_2 & a_2b_3 & \cdots & a_2b_{n-1} \\ a_3b_0 & a_3b_1 & a_3b_2 & a_3b_3 & \cdots & a_3b_{n-1} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ a_{n-1}b_0 & a_{n-1}b_1 & a_{n-1}b_2 & a_{n-1}b_3 & \cdots & a_{n-1}b_{n-1} \end{bmatrix}
```

Integer multiplication, revisit

Integer multiplication. Given two n-bit integers $a = a_{n-1} \dots a_1 a_0$ and $b = b_{n-1} \dots b_1 b_0$, compute their product $a \cdot b$.

Convolution algorithm.

- Form two polynomials.
 - $A(x) = a_0 + a_1 x + a_2 x^2 + \ldots + a_{n-1} x^{n-1}$
 - $B(x) = b_0 + b_1 x + b_2 x^2 + \ldots + b_{n-1} x^{n-1}$
 - Note: a = A(2), b = B(2).
- Compute $C(x) = A(x) \cdot B(x)$.
- Evaluate $C(2) = a \cdot b$.
- Running time: $O(n \log n)$ floating-point operations.

Integer multiplication, revisit

Integer multiplication. Given two n-bit integers $a = a_{n-1} \dots a_1 a_0$ and $b = b_{n-1} \dots b_1 b_0$, compute their product $a \cdot b$.

Convolution algorithm.

- Form two polynomials.
 - $A(x) = a_0 + a_1 x + a_2 x^2 + \ldots + a_{n-1} x^{n-1}$
 - $B(x) = b_0 + b_1 x + b_2 x^2 + \ldots + b_{n-1} x^{n-1}$
 - Note: a = A(2), b = B(2).
- Compute $C(x) = A(x) \cdot B(x)$.
- Evaluate $C(2) = a \cdot b$.
- Running time: $O(n \log n)$ floating-point operations.

Practice. [GNU Multiple Precision Arithmetic Library]

• Switches to FFT-based algorithm when n is large ($\geq 5 - 10$ K).

3-Sum: revisit

3-SUM. Given three sets X, Y, and Z of n integers each, determine whether there is a triple $i \in X$, $j \in Y$, $k \in Z$ such that i + j = k.

Assumption. All integers are between 0 and m.

Goal. $O(m \log m + n \log n)$ time.

Ex.

$$m = 19, n = 3$$

- $X = \{4, 7, 10\}$
- $Y = \{5, 8, 15\}$
- $Z = \{4, 13, 19\}$

$$4 + 15 = 19$$

3-Sum: solution

An $O(m \log m + n)$ solution.

- Form polynomial $A(x) = a_0 + a_1 x + \ldots + a_m x^m$ with $a_i = 1$ iff $i \in X$.
- ullet Form polynomial $B(x)=b_0+b_1x+\ldots+b_mx^m$ with $b_j=1$ iff $j\in Y$.
- Compute product/convolution $C(x) = A(x) \times B(x)$.
- The coefficient c_k = number of ways to choose an integer $i \in X$ and an integer $j \in Y$ that sum to exactly k.
- For each $k \in Z$: check whether $c_k > 0$.

Ex.

$$m = 19, n = 3$$

- $X = \{4, 7, 10\}$
- $Y = \{5, 8, 15\}$
- $Z = \{4, 13, 19\}$

$$A(x) = x^4 + x^7 + x^{10}$$

$$B(x) = x^5 + x^8 + x^{15}$$

$$C(x) = x^9 + 2x^{12} + 2x^{15} + x^{18} + x^{19} + x^{22} + x^{25}$$