Московский физико-технический институт

Лабораторная работа 2.2.3 ИЗМЕРЕНИЕ ТЕПЛОПРОВОДНОСТИ ВОЗДУХА ПРИ АТМОСФЕРНОМ ДАВЛЕНИИ

Отчёт студента группы Б02-303 Долговой Екатерины

Лабораторная работа 2.2.3

Измерение теплопроводности воздуха при атмосферном давлении

Цель работы: измерить коэффициент теплопроводности воздуха при атмосферном давлении в зависимости от температуры.

В работе используются: цилиндрическая колба с натянутой по оси нитью; термостат; вольтметр и амперметр (цифровые мультиметры); эталонное сопротивление; источник постоянного напряжения; реостат (или магазин сопротивлений).

Теоретические сведения

Теплопроводность — это процесс передачи тепловой энергии от нагретых частей системы к холодным за счёт хаотического движения частиц среды (молекул, атомов и т.п.). В газах теплопроводность осуществляется за счёт непосредственной передачи кинетической энергии от быстрых молекул к медленным при их столкновениях. Перенос тепла описывается законом Фурье, утверждающим, что плотность потока энергии \vec{q} (количество теплоты, переносимое через единичную площадку в единицу времени) пропорциональна градиенту температуры ∇T :

$$\vec{q} = -\kappa \nabla T,\tag{1}$$

где κ — коэффициент теплопроводности.

Молекулярно-кинетическая теория дает следующую оценку теплопроводности:

$$\kappa \sim \lambda \bar{v} \cdot nc_v, \tag{2}$$

где λ — длина свободного пробега молекул газа, \bar{v} — средняя скорость их теплового движения, n — концентрация газа, $c_v = \frac{i}{2}k$ — его теплоёмкость при постоянном объёме в расчёте на одну молекулу.

Длина свободного пробега может быть оценена как $\lambda = \frac{1}{\sigma}$, где σ — эффективное сечение столкновений молекул друг с другом. Тогда из (2) видно, что коэффициент теплопроводности газа не зависит от плотности газа и определяется только его температурой. В простейшей модели твёрдых шариков $\sigma = \text{const}$, и коэффициент теплопроводности пропорционален корню абсолютной температуры: $\kappa \propto \bar{v} \propto \sqrt{T}$. На практике эффективное сечение $\sigma(T)$ следует считать медленно убывающей функцией.

Рассмотрим цилиндрическую систему. В ней все параметры газа можно считать зависящими только от расстояния до оси системы r, а поток тепла \vec{q} направленным строго радиально. Вместо (1) имеем скалярное уравнение

$$q = -\kappa \frac{dT}{dr}. (3)$$

В стационарном состоянии полный поток тепла через любую цилиндрическую поверхность радиуса r и длиной L площадью $S=2\pi rL$ должен быть одинаков и равен Q=qS:

$$Q = -2\pi r L \kappa \frac{dT}{dr} = const. \tag{4}$$

Т.к. перепад ΔT температур между стенками и нитью мал, то κ не зависит от температуры и является постоянной. Тогда получим

$$Q = \frac{2\pi L}{\ln(r_0/r_1)} \kappa \Delta T,\tag{5}$$

где r_1 — радиус нити, r_0 — радиус цилиндра.

Экспериментальная установка

Схема установки приведена на рис. 1. На оси полой цилиндрической трубки с внутренним диаметром $2r_0=(7,0\pm0,1)$ мм размещена металлическая нить диаметром $2r_1=(50\pm3)$ мкм и длиной $L=(400\pm2)$ мм. Полость трубки заполнена воздухом (полость через небольшое отверстие сообщается с атмосферой).

Стенки трубки помещены в кожух, через которых пропускается вода из термостата, так что их температура t_0 поддерживается постоянной. Для предотвращения конвекции трубка расположена вертикально. Металлическая нить служит как источником тепла, так и датчиком температуры (термометром сопротивления). По пропускаемому через нить постоянному току I и напряжению U на ней вычисляется мощность нагрева по закону Джоуля-Ленца:

$$Q = UI$$

Рис. 1: Экспериментальная устанреживление нити по закону Ома:

$$R = \frac{U}{I}$$

Пользоваться будем схемой, приведенной на рис. 2. Здесь для измерения напряжения и тока используется два мультиметра, работающие в режимах вольтметра и амперметра соответственно. Подключение к нити $R_{\rm H}$ осуществляется по четырёхпроводной схеме. По двум проводам через сопротивление пропускается измерительный ток, а два других используются для параллельного подключения вольтметра. Сопротивление $R_{\rm B}$ используется в качестве балластного для предотвращения перегорания нити.

Для нахождения температурной зависимости сопротивления будем пользоваться построением нагрузочной кривой R(Q). Зависимость сопротивления R от температуры в Цельсиях t:

 $R(t) = R_{273}(1 + \alpha t),$

Рис. 2: Электрическая схема (6) установки

где α — температурный коэффициент сопротивления материала, R_{273} — сопротивление при температуре $0^{\circ}C$.

Ход работы

- 1. Проведем предварительные расчёты параметров опыта.
 - Приняв максимально допустимый перегрев нити относительно термостата равным $\Delta t_{max} = 30^{\circ}C$, оценим максимальную мощность нагрева $Q_{max} \sim 380$ [мВт], которую следует подавать на нить. Для оценки коэффициент теплопроводности воздуха примем равным $\kappa \sim 25$ мВт/(м·К).
 - По вычисленной мощности и приближенному значению сопротивления нити $R_{\rm H}\sim 20$ Ом, определим соответствующие значения максимального тока $I_{max}\sim 140$ мА в нити и максимального напряжения $U_{max}=2,9$ В на ней. Будем проводить измерения, не доходя до них.
- 2. Подготовим экспериментальную установку к работе согласно пунктам методички.
- 3. При фиксированной температуре термостата измерим зависимость сопротивления нити $R = \frac{U}{I}$ от подаваемой на неё мощности Q = UI нагрузочную кривую R(Q). Результаты занесем в таблицу 1.

4. По окончании измерения нагрузочной кривой установим минимальный ток через нить, переведя значение магазина сопротивления $R_{\rm M}$ на 10 кОм или более.

23	α	1	0,9	0,8	0,7	0,6	0,5	0,4	0,3	0,2	0,1	0,01
	$R_{\rm m}$, Om	0,0	1,1	2,4	3,9	5,8	8,3	11,6	16,5	24,7	43,2	180,0
	I, MA	_	_	_	_	127,37	117,96	93,93	83,56	70,36	51,59	17,28
	V, B	_	_	_	_	2,75	2,52	1,95	1,71	1,43	1,03	0,34
	Q, м B т	_	_	_	_	350,3	297,3	183,2	142,9	100,6	53,1	5,9
	R, Om				—	21,6	21,4	20,8	20,5	20,3	20,0	19,7
33	α	1	0,9	0,8	0,7	0,6	0,5	0,4	0,3	0,2	0,1	0,01
	$R_{\rm m}$, Om	0,0	1,1	2,4	3,9	5,8	8,3	11,6	16,5	24,7	43,2	180,0
	I, мА	_	_	118,18	113,07	107,09	100,06	91,99	81,99	69,22	50,96	17,21
	V, B	_		2,62	2,49	2,34	2,17	1,98	1,75	1,46	1,06	0,35
	Q, м B т	_	_	309,6	281,5	250,6	217,1	182,1	143,5	101,1	54,0	6,0
	R, Om	_	_	22,2	22,0	21,9	21,7	21,5	21,3	21,1	20,8	20,3
43	α	1	0,9	0,8	0,7	0,6	0,5	0,4	0,3	0,2	0,1	0,01
	$R_{\rm m}$, Om	0,0	1,1	2,4	3,9	5,8	8,3	11,6	16,5	24,7	43,2	180,0
	I, MA	_	_	115,69	110,77	105,01	98,22	90,41	80,72	68,31	50,46	17,15
	V, B	_	_	2,64	2,51	2,37	2,19	2,01	1,78	1,49	1,09	0,36
	Q, м B т	_	_	305,4	278,0	248,9	215,1	181,7	143,7	101,8	55,0	6,2
	R, Om			22,8	22,7	22,6	22,3	22,2	22,1	21,8	21,6	21,0
53	α	1	0,9	0,8	0,7	0,6	0,5	0,4	0,3	0,2	0,1	0,01
	$R_{\scriptscriptstyle \rm M}$, Om	0,0	1,1	2,4	3,9	5,8	8,3	11,6	16,5	24,7	43,2	180,0
	I, мА	_	117,74	113,32	108,55	103	96,43	88,86	79,47	67,4	49,96	17,09
	V, B	_	2,78	2,66	2,53	2,39	2,22	2,03	1,8	1,51	1,11	0,38
	Q, м B т	_	327,3	301,4	274,6	246,2	214,1	180,4	143,0	101,8	55,5	6,5
	R, Om	_	23,6	23,5	23,3	23,2	23,0	22,8	22,7	22,4	22,2	22,2
63	α	1	0,9	0,8	0,7	0,6	0,5	0,4	0,3	0,2	0,1	0,01
	$R_{\scriptscriptstyle \rm M}$, Om	0,0	1,1	2,4	3,9	5,8	8,3	11,6	16,5	24,7	43,2	180,0
	I, мА	119,07	115,28	111,01	106,42	101,05	94,69	87,32	78,27	66,52	49,47	17,03
	V, B	2,89	2,79	2,68	2,55	2,41	2,24	2,06	1,83	1,54	1,14	0,39
	Q, м B т	344,1	321,6	297,5	271,4	243,5	212,1	179,9	143,2	102,4	56,4	6,6
	R, Om	24,3	24,2	24,1	24,0	23,8	23,7	23,6	23,4	23,2	23,0	22,9
73	α	1	0,9	0,8	0,7	0,6	0,5	0,4	0,3	0,2	0,1	0,01
	$R_{\scriptscriptstyle \mathrm{M}}$, Om	0,0	1,1	2,4	3,9	5,8	8,3	11,6	16,5	24,7	43,2	180,0
	I, мА	114,28	112,88	108,78	104,35	99,15	93,01	85,91	77,08	65,66	48,98	16,98
	V, B	2,85	2,81	2,69	2,57	2,43	2,27	2,08	1,85	1,57	1,16	0,39
	Q, м B т	325,7	317,2	292,6	268,2	240,9	211,1	178,7	142,6	103,1	56,8	6,6
	R, Om	24,9	24,9	24,7	24,6	24,5	24,4	24,2	24,0	23,9	23,7	23,0

Таблица 1: Показания приборов при изменяющемся $R_{\scriptscriptstyle \mathrm{M}}$

- 5. Проведем измерения нагрузочных кривых согласно пп. 3–4 для 6 температур термостата в диапазоне от комнатной до 73° С. Результаты занесем в таблицу 1.
- 6. После завершения измерений выключим блок питания и цифровые мультиметры. Приведем все в исходное состояние.
- 7. Для каждой температуры термостата построим график зависимости сопротивления нити от мощности R(Q).

Убедимся в линейности полученных зависимостей.

Проведем наилучшие прямые по МНК и определим точки их пересечения с осью ординат R_0 и угловые коэффициенты наклона $\frac{dR}{dQ}$. Оценим погрешности найденных значений.

• Для $t = 23^{\circ}C$:

$$R_0 = 19,74 \text{ Om}$$

$$\varepsilon_{R_0}^{\text{KOCB}} = \sqrt{(\varepsilon_U)^2 + (\varepsilon_I)^2} = 0,008$$

$$\varepsilon_{R_0}^{\text{MHK}} = 0,0007$$

$$\varepsilon_{R_0} = \sqrt{(\varepsilon_{R_0}^{\text{KOCB}})^2 + (\varepsilon_{R_0}^{\text{MHK}})^2} = 0,008$$

$$\sigma_{R_0} = R_0 \cdot \varepsilon_{R_0} = 0,16 \text{ Om}$$

Окончательный результат:

$$\begin{split} \frac{dR}{dQ} &= 5,32 \,\, \frac{\mathrm{Om}}{\mathrm{Bt}} \\ \varepsilon_{frac}^{\mathrm{kocb}} &= \sqrt{(\varepsilon_Q)^2 + (\varepsilon_R)^2} = \sqrt{2(\varepsilon_U)^2 + 2(\varepsilon_I)^2} = 0,011 \\ \varepsilon_{frac}^{\mathrm{MHK}} &= 0,0015 \\ \varepsilon_{frac} &= \sqrt{(\varepsilon_{frac}^{\mathrm{kocb}})^2 + (\varepsilon_{frac}^{\mathrm{MHK}})^2} = 0,011 \end{split}$$

 $R_0 = (19, 74 \pm 0, 16) \text{ Om}$

$$\sigma_{frac} = \frac{dR}{dQ} \cdot \varepsilon_{frac} = 0,06 \ \frac{\mathrm{O}\mathrm{M}}{\mathrm{B}\mathrm{T}}$$

$$\frac{dR}{dQ} = (5, 32 \pm 0, 06) \ \frac{\mathrm{O}_{\mathrm{M}}}{\mathrm{Br}}$$

• Для $t = 33^{\circ}C$:

$$R_0 = 20,49 \text{ OM}$$

$$\varepsilon_{R_0}^{\text{KOCB}} = \sqrt{(\varepsilon_U)^2 + (\varepsilon_I)^2} = 0,007$$

$$\varepsilon_{R_0}^{\text{MHK}} = 0,0012$$

$$\varepsilon_{R_0} = \sqrt{(\varepsilon_{R_0}^{\text{KOCB}})^2 + (\varepsilon_{R_0}^{\text{MHK}})^2} = 0,007$$

$$\sigma_{R_0} = R_0 \cdot \varepsilon_{R_0} = 0,14 \text{ OM}$$

Окончательный результат:

$$R_0 = (20, 49 \pm 0, 14) \text{ Om}$$

$$\begin{split} \frac{dR}{dQ} &= 5,34 \, \frac{\mathrm{OM}}{\mathrm{BT}} \\ \varepsilon_{frac}^{\mathrm{KOCB}} &= \sqrt{(\varepsilon_Q)^2 + (\varepsilon_R)^2} = \sqrt{2(\varepsilon_U)^2 + 2(\varepsilon_I)^2} = 0,011 \\ \varepsilon_{frac}^{\mathrm{MHK}} &= 0,003 \\ \varepsilon_{frac} &= \sqrt{(\varepsilon_{frac}^{\mathrm{KOCB}})^2 + (\varepsilon_{frac}^{\mathrm{MHK}})^2} = 0,011 \\ \sigma_{frac} &= \frac{dR}{dQ} \cdot \varepsilon_{frac} = 0,06 \, \frac{\mathrm{OM}}{\mathrm{BT}} \end{split}$$

Окончательный результат:

$$\frac{dR}{dQ} = (5, 34 \pm 0, 06) \frac{O_{\rm M}}{B_{\rm T}}$$

• Для $t = 43^{\circ}C$:

$$R_0 = 21, 23 \text{ Om}$$

$$\varepsilon_{R_0}^{\text{KOCB}} = \sqrt{(\varepsilon_U)^2 + (\varepsilon_I)^2} = 0,007$$

$$\varepsilon_{R_0}^{\text{MHK}} = 0,0014$$

$$\varepsilon_{R_0} = \sqrt{(\varepsilon_{R_0}^{\text{KOCB}})^2 + (\varepsilon_{R_0}^{\text{MHK}})^2} = 0,007$$

$$\sigma_{R_0} = R_0 \cdot \varepsilon_{R_0} = 0,15 \text{ Om}$$

Окончательный результат:

$$R_0 = (21, 23 \pm 0, 15) \text{ Om}$$

$$\frac{dR}{dQ} = 5,16 \frac{\rm O_M}{\rm B_T}$$

$$\varepsilon_{frac}^{\rm kocb} = \sqrt{(\varepsilon_Q)^2 + (\varepsilon_R)^2} = \sqrt{2(\varepsilon_U)^2 + 2(\varepsilon_I)^2} = 0,011$$

$$\begin{split} \varepsilon_{frac}^{\rm MHK} &= 0,004 \\ \varepsilon_{frac} &= \sqrt{(\varepsilon_{frac}^{\rm kocb})^2 + (\varepsilon_{frac}^{\rm MHK})^2} = 0,011 \\ \sigma_{frac} &= \frac{dR}{dQ} \cdot \varepsilon_{frac} = 0,06 \ \frac{\rm O_M}{\rm BT} \end{split}$$

$$\frac{dR}{dQ} = (5, 16 \pm 0, 06) \ \frac{\mathrm{O}\mathrm{\tiny M}}{\mathrm{B}\mathrm{\tiny T}}$$

• Для $t = 53^{\circ}C$:

$$R_0 = 22,02 \text{ Om}$$

$$\varepsilon_{R_0}^{\text{KOCB}} = \sqrt{(\varepsilon_U)^2 + (\varepsilon_I)^2} = 0,007$$

$$\varepsilon_{R_0}^{\text{MHK}} = 0,0009$$

$$\varepsilon_{R_0} = \sqrt{(\varepsilon_{R_0}^{\text{KOCB}})^2 + (\varepsilon_{R_0}^{\text{MHK}})^2} = 0,007$$

$$\sigma_{R_0} = R_0 \cdot \varepsilon_{R_0} = 0,15 \text{ Om}$$

Окончательный результат:

$$R_0 = (22, 02 \pm 0, 15) \text{ Om}$$

$$\begin{split} \frac{dR}{dQ} &= 4,66 \; \frac{\mathrm{O_M}}{\mathrm{B_T}} \\ \varepsilon_{frac}^{\mathrm{kocb}} &= \sqrt{(\varepsilon_Q)^2 + (\varepsilon_R)^2} = \sqrt{2(\varepsilon_U)^2 + 2(\varepsilon_I)^2} = 0,010 \\ \varepsilon_{frac}^{\mathrm{MHK}} &= 0,003 \\ \varepsilon_{frac} &= \sqrt{(\varepsilon_{frac}^{\mathrm{kocb}})^2 + (\varepsilon_{frac}^{\mathrm{MHK}})^2} = 0,010 \\ \sigma_{frac} &= \frac{dR}{dQ} \cdot \varepsilon_{frac} = 0,05 \; \frac{\mathrm{O_M}}{\mathrm{B_T}} \end{split}$$

Окончательный результат:

$$\frac{dR}{dQ} = (4,66 \pm 0,05) \ \frac{\mathrm{O}\mathrm{\scriptscriptstyle M}}{\mathrm{B}\mathrm{\scriptscriptstyle T}}$$

• Для $t = 63^{\circ}C$:

$$R_0 = 22,79 \text{ Om}$$

$$\varepsilon_{R_0}^{\text{KOCB}} = \sqrt{(\varepsilon_U)^2 + (\varepsilon_I)^2} = 0,007$$

$$\varepsilon_{R_0}^{\text{MHK}} = 0,0005$$

$$\varepsilon_{R_0} = \sqrt{(\varepsilon_{R_0}^{\text{KOCB}})^2 + (\varepsilon_{R_0}^{\text{MHK}})^2} = 0,007$$

$$\sigma_{R_0} = R_0 \cdot \varepsilon_{R_0} = 0,16 \text{ Om}$$

Окончательный результат:

$$R_0 = (22, 79 \pm 0, 16) \text{ Om}$$

$$\begin{split} \frac{dR}{dQ} &= 4,33 \; \frac{\mathrm{O_M}}{\mathrm{B_T}} \\ \varepsilon_{frac}^{\mathrm{kocb}} &= \sqrt{(\varepsilon_Q)^2 + (\varepsilon_R)^2} = \sqrt{2(\varepsilon_U)^2 + 2(\varepsilon_I)^2} = 0,010 \\ \varepsilon_{frac}^{\mathrm{MHK}} &= 0,002 \\ \varepsilon_{frac} &= \sqrt{(\varepsilon_{frac}^{\mathrm{kocb}})^2 + (\varepsilon_{frac}^{\mathrm{MHK}})^2} = 0,010 \\ \sigma_{frac} &= \frac{dR}{dQ} \cdot \varepsilon_{frac} = 0,04 \; \frac{\mathrm{O_M}}{\mathrm{B_T}} \end{split}$$

$$\frac{dR}{dQ} = (4, 33 \pm 0, 04) \ \frac{\mathrm{O}\mathrm{M}}{\mathrm{B}\mathrm{T}}$$

• Для $t = 73^{\circ}C$:

$$R_0 = 23, 23 \text{ Om}$$

$$\varepsilon_{R_0}^{\text{KOCB}} = \sqrt{(\varepsilon_U)^2 + (\varepsilon_I)^2} = 0,007$$

$$\varepsilon_{R_0}^{\text{MHK}} = 0,0014$$

$$\varepsilon_{R_0} = \sqrt{(\varepsilon_{R_0}^{\text{KOCB}})^2 + (\varepsilon_{R_0}^{\text{MHK}})^2} = 0,007$$

$$\sigma_{R_0} = R_0 \cdot \varepsilon_{R_0} = 0,16 \text{ Om}$$

Окончательный результат:

$$R_0 = (23, 23 \pm 0, 16) \text{ Om}$$

$$\begin{split} \frac{dR}{dQ} &= 5,25 \; \frac{\mathrm{OM}}{\mathrm{BT}} \\ \varepsilon_{frac}^{\mathrm{Kocb}} &= \sqrt{(\varepsilon_Q)^2 + (\varepsilon_R)^2} = \sqrt{2(\varepsilon_U)^2 + 2(\varepsilon_I)^2} = 0,010 \\ \varepsilon_{frac}^{\mathrm{MHK}} &= 0,006 \\ \varepsilon_{frac} &= \sqrt{(\varepsilon_{frac}^{\mathrm{Kocb}})^2 + (\varepsilon_{frac}^{\mathrm{MHK}})^2} = 0,010 \\ \sigma_{frac} &= \frac{dR}{dQ} \cdot \varepsilon_{frac} = 0,05 \; \frac{\mathrm{OM}}{\mathrm{BT}} \end{split}$$

Окончательный результат:

$$\frac{dR}{dQ} = (5, 25 \pm 0, 05) \frac{O_{\rm M}}{B_{\rm T}}$$

8. Пользуясь значениями R_0 из п. 7 построим график зависимости сопротивления нити от её температуры R(T).

T, °C	23	33	43	53	63	73
T, K	296	306	316	326	336	346
$R, O_{\rm M}$	19,74	20,49	21,23	22,02	22,80	23,23

Таблица 2: Зависимость R(T)

Убедимся в линейности полученной зависимости.

Построим наилучшую прямую по МНК и определим её наклон $\frac{dR}{dT}$. Оценим погрешности.

$$\begin{split} \frac{dR}{dT} &= 0,0718 \; \frac{\text{OM}}{\text{K}} \\ \sigma_{frac}^{\text{MHK}} &= 0,0002 \; \frac{\text{Om}}{\text{K}} \\ \varepsilon_{frac}^{\text{kocb}} &= \sqrt{(\varepsilon_R)^2 + (\varepsilon_T)^2} = 0,008 \\ \sigma_{frac}^{\text{kocb}} &= \frac{dR}{dT} \cdot \varepsilon_{frac}^{\text{kocb}} = 0,0006 \; \frac{\text{Om}}{\text{K}} \\ \sigma_{frac} &= \sqrt{(\sigma_{frac}^{\text{MHK}})^2 + (\sigma_{frac}^{\text{kocb}})^2} = 0,0006 \; \frac{\text{Om}}{\text{K}} \end{split}$$

Окончательный результат:

$$\begin{split} \frac{dR}{dT} &= (0,0718 \pm 0,0006) \; \frac{\text{OM}}{\text{K}} \\ R_{273} &= 18,14 \; \text{Om} \\ \sigma_{R_{273}}^{\text{MHK}} &= 0,04 \; \text{Om} \\ \varepsilon_{R_{273}}^{\text{Kocb}} &= \varepsilon_R = 0,008 \\ \sigma_{R_{273}}^{\text{Kocb}} &= R_{273} \cdot \varepsilon_{R_{273}}^{\text{Kocb}} = 0,15 \; \text{Om} \\ \sigma_{R_{273}} &= \sqrt{(\sigma_{R_{273}}^{\text{MHK}})^2 + (\sigma_{R_{273}}^{\text{Kocb}})^2} = 0,16 \; \text{Om} \end{split}$$

$$R_{273} = (18, 14 \pm 0, 16) \text{ Om}$$

Сравним температурный коэффициент сопротивления материала нити $\alpha = \frac{1}{R_{273}} \frac{dR}{dT}$ с табличным для платины $(3, 9 \cdot 10^{-3} \text{ K}^{-1})$.

$$\alpha = 3,96 \cdot 10^{-3} \text{ K}^{-1}$$

$$\varepsilon_{\alpha} = \sqrt{(\varepsilon_{R_{273}})^2 + (\varepsilon_{frac})^2} = 0,012$$

$$\sigma_{\alpha} = \alpha \cdot \varepsilon_{\alpha} = 0,05 \cdot 10^{-3} \text{ K}^{-1}$$

Окончательный результат:

$$\alpha = (3,96 \pm 0,05) \cdot 10^{-3} \text{ K}^{-1}$$

Видим, что результат сходится с табличным.

9. Используя угловой коэффициент температурной зависимости сопротивления п. 8 и угловые коэффициенты нагрузочных прямых из п. 7, вычислим наклон зависимости выделяющейся на нити мощности Q от её перегрева ΔT относительно стенок:

$$\frac{dQ}{d(\Delta T)} = \frac{dR}{dT} / \frac{dR}{dQ}$$

T, K	$\frac{dR}{dQ}$, Om/BT	$\sigma_{dR/dQ},~{ m Om/BT}$	$\frac{dQ}{d(\Delta T)}, \text{ MBT/K}$	$\sigma_{dQ/d(\Delta T)}$	κ , мВт/(м·К)	σ_{κ} , м $\mathrm{Bt/(M\cdot K)}$
296	5,33	0,06	13,48	0,19	26,5	0,4
306	5,34	0,06	13,44	0,19	26,4	0,4
316	5,16	0,06	13,92	0,20	27,4	0,4
326	4,66	0,05	15,41	0,21	30,3	0,4
336	4,33	0,04	16,58	0,21	32,6	0,4
346	5,25	0,05	13,68	0,17	26,9	0,4

Таблица 3: Расчет коэффициента теплопроводности

Отсюда, с учётом формулы (5), найдем коэффициенты теплопроводности газа κ для каждой температуры термостата T. Оценим погрешности полученных результатов. Результаты занесем в таблицу 3.

10. Построим график зависимости теплопроводности воздуха от температуры газа $\kappa(T)$. Сравним результаты с табличными данными (порядка 25 мВт/(м·К)). Они получились слегка выше, чес предполагалось, но по порядку сходятся.

Предполагая, что $\kappa \propto T^{\beta}$, построим график в двойном логарифмическом масштабе (в координатах $\ln \kappa (\ln T)$) и определим из него показатель степени β .

Выброшены 3 точки, сильно отклоняющиеся от прямой. Коэффициент β составил 0,71. Оценим погрешность измерения β :

$$\begin{split} \sigma_{\beta}^{\text{MHK}} &= \sqrt{\frac{1}{3-1}} \frac{<\ln \kappa^2 > - <\ln \kappa >^2}{<\ln T^2 > - <\ln T >^2} - \beta^2 = 0,55\\ \varepsilon_{\beta}^{\text{kocb}} &= \sqrt{(\varepsilon_{\ln \kappa})^2 + (\varepsilon_{\ln T})^2} = 0,018\\ \sigma_{\beta}^{\text{kocb}} &= \beta \cdot \varepsilon_{\beta}^{\text{kocb}} = 0,008 \end{split}$$

$$\sigma_{\beta} pprox \sigma_{\beta}^{\mathrm{MHK}} = 0,55$$

$$\beta = (0, 71 \pm 0, 55)$$

Сравним результат с предсказанием теории ($\beta = 0, 5$), считая молекулы твёрдыми шариками. Видим, что значение лежит в полученном нами диапазоне, но точность данного измерения оставляет желать лучшего.

Вывод

С помощью электрической схемы и показаний вольтметров была получена зависимость R(Q), из которой мы нашли R_0 и $\frac{dR}{dQ}$, по значениям R_0 была получена зависимость R(T) и найден температурный коэффициент сопротивления $\alpha=(3,96\pm0,05)\cdot10^{-3}~{\rm K}^{-1}$, который почти совпал с табличным значением для платины $-3,9\cdot10^{-3}~{\rm K}^{-1}$. Из зависимости R(T) был также получен коэффициент $\frac{dR}{dT}$, с помощью которого вместе с $\frac{dR}{dQ}$ был найден коэффициент теплопроводности κ для каждой температуры. Он составил порядка 28 мВт/(м·К) при ожидаемом значении 25, что очень даже неплохо. Тем не менее, при определении степени β в зависимости $\kappa \propto T^{\beta}$ нам не хватило точности в эксперименте, поэтому мы получили значения $\beta=(0,71\pm0,55)$ при ожидаемом значении 0,5. Завышенное значение получено из-за оценки эффективного сечения как константы, а не медленно убывающей функции.