Сложность вычислений "Дерево Штейнера"

Иванов Вячеслав, группа 699 2 декабря 2018 г.

Оглавление

1	Постановка задачи
2	Доказательство NP-полноты
3	Сведение к метрическому случаю
4	2-оптимальный алгоритм
5	Реализация
	Список литературы

1 Постановка задачи

G = (V, E) — неориентированный граф, $V_0 \subset V$ — непустое множество mерминальных вершинб $w: E \to \mathbb{R}^+$ — весовая функция. Требуется решить задачу оптимизации:

$$\min_{T \subset G} \sum_{e \in E(T)} w(e)$$
s.t.
$$T - \text{дерево}$$
$$V_0 \subset V(T)$$

T.е. найти дерево минимального веса, покрывающее все терминальные вершины. В нетривиальных частных случаях задача имеет полиномиальный алгоритм решения:

- 1. $|V_0|=2$: задача о кратчайшем пути между выделенными вершинами
- 2. $|V_0| = |V|$: задача о минимальном остовном дереве

Алгоритмы поиска минимального остовного дерева, как будет показано далее, составляют основу 2-оптимального алгоритма поиска дерева Штейнера в метрическом случае.

2 Доказательство NP-полноты

Теорема 2.1.

 $\{(G,k)\mid$ в неориентированном графе G есть дерево Штейнера веса $\leqslant k\in\mathbb{Z}\}\in \mathrm{NPC}$

Доказательство.

- 1. **STEINER-TREE** \in **NP**: Сертификат должен проверять, что поданный ему на вход подграф T является деревом, содержит все терминальные вершины и имеет вес $\leqslant k$, причём вторая и третья подзадачи тривиальны. Согласно одному из эквивалентных определений дерева, достаточно проверить связность T и то, что |E(T)| = |V(T)| 1, для чего достаточно обхода в глубину. Т.е. полиномиальный сертификат существует и STEINER-TREE \in NP.
- 2. VERTEX-COVER \leq_p STEINER-TREE: Полиномиальное сведение устроено так:
 - (a) Дополним G до $K_{|V|}$, где каждое ребро поделим на 2 и назовём результат G'=(V',E').

$$W := \{ w_i \mid e_i = (u, v) \in E \implies (u, w_i), (w_i, v) \in E' \}$$

$$V' = V \cup W$$

$$E' = V^2 \cup \{ (u, w) \in V \times W \mid \exists v \in V : (u, w), (w, v) \in E' \}$$

(b) Если $\forall e' \in E' : w'(e') = 1$ и $V'_0 = W$, то в G' есть дерево Штейнера веса не более $|E| + k - 1 \iff$ в G есть вершинное покрытие мощности $\leqslant k$.

Доказательство.

• \Longrightarrow : Пусть T — дерево Штейнера для V_0' в G', тогда $C := V(T) \setminus V_0'$ — вершинное покрытие в G: $V(T) \setminus V_0' \subset V$ и накрывает каждое ребро $e \in E$ по построению. $|C| = |V(T)| - |V_0'| = \omega(T) + 1 - |V_0'| \leqslant (|E| + k - 1) + 1 - |V_0'| = k$, т.к. $|E| = |V_0'|$.

• $\stackrel{\longleftarrow}{}$: Пусть $C \subset V$ — вершинное покрытие, $|C| \leqslant k$, T — дерево на вершинах C в G'. Чтобы гарантировать $V'_0 \subset V(T)$, для каждой вершины $v'_0 \in V'_0 \setminus V(T)$ добавим в T ребро (v'_0, c) , где $c \in C$ — вершина покрытия, накрывающая ребро, подразделением которого получена v'_0 . Полученный граф содержит $\leqslant |E| + |C| - 1 \leqslant |E| + k - 1$ рёбер. Если в процессе расширения в T образовались циклы, их можно раскрыть, уменьшив суммарный вес. По завершении получим дерево Штейнера веса $\leqslant |E| + k - 1$ в G'.

Все шаги построения G' полиномиальны: добавляется $O(|V|^2)$ рёбер и вершин. Для восстановления вершинного покрытия по дереву Штейнера в G' нужно брать разность множеств $-O(|V|^2)$ операций, а в обратную сторону нужно перебрать V_0' и исходящие из него рёбра (не более двух на каждую вершину) — тоже $O(|V|^2)$ операций. Следовательно, сведение полиномиально, а его корректность была доказана выше.

3 Сведение к метрическому случаю

Часто хочется потребовать, чтобы для весовой функции выполнялось правило треугольника:

$$\omega(x, y) \le \omega(x, z) + \omega(z, y)$$

причём она должна быть определена на V^2 . Такая весовая функция играет роль метрики на множестве вершин и становится проще для восприятия. В таком случае говорят о поиске *метрического* дерева Штейнера, и именно такой вид задачи был исторически первым.

Утверждение 3.1.

- 1. Существует полиномиальное сведение задачи о дереве Штейнера к метрическому случаю.
- 2. Оптимальные ответы к обеим задачам совпадают.

Доказательство. Предложенная конструкция основана на понятии метрического замыкания:

Определение. Пусть $G = (V, E, \omega)$ — неориентированный взвешенный граф, $d: V^2 \to \mathbb{R}^+$ — функция расстояния, сопоставляющая паре вершин длину кратчайшего пути между ними. Тогда граф G', построенный по следующим правилам, называется метрическим замыканием графа G:

$$G' = (V, E', d), E' = \{(u, v, d(u, v)) \mid u, v \in V, u \neq v\}$$

Полученный граф является метрическим, т.к. для d выполнено правило треугольника: если d(x,y)>d(x,z)+d(z,y), то путь $x\to y$ можно было бы прорелаксировать конкатенацией путей $x\to z$ и $z\to y$, что противоречит определению d(x,y) как длины $\kappa pam vaiueeo$ пути $x\to y$. Построить метрическое замыкание можно за $O(|V|^3)$ алгоритмом Флойда-Уоршелла.

Пусть T,T' — деревья Штейнера для V_0 в G и G' соответственно. Докажем, что $\omega(T)=d(T')$. Очевидно, что $d(T')\leqslant \omega(T)$, т.к. переход к кратчайшим путям не ухудшает ответ. Более того, каждое ребро в T' можно "разжать" в тот кратчайший путь, из которого он был получен, после чего выбрать в полученном графе минимальное остовное дерево T''. $\omega(T'')\leqslant d(T')$, т.к. теперь каждое ребро встречается ровно один раз, а ранее могло вносить свой вклад одновременно в несколько кратчайших путей. Но T'' по построению — дерево Штейнера для V_0 в G! Следовательно, $\omega(T)=\omega(T'')\leqslant d(T')\leqslant \omega(T)$, т.е. $\omega(T)=d(T')$.

¹Такое дерево всегда существует, т.к. $V^2 \subset V(G')$.

4 2-оптимальный алгоритм

Теорема 4.1. Предложенный алгоритм является 2-оптимальным для метрического случая задачи поиска дерева Штейнера, и существуют графы, на которых эта оценка достигается.

- 1. Считать граф $G = (V, E, \omega)$ и множество терминальных вершин V_0 .
- 2. Построить метрическое замыкание G' = (V, E', d) графа G.
- 3. Выделить H' подграф в G', индуцированный вершинами V_0 .
- 4. Построить минимальное остовное дерево $T_{\rm MST}$ в H'.
- 5. Вернуть полученный $T_{\rm MST}$ в качестве ответа.

 \mathcal{A} оказательство. Пусть T_S — дерево Штейнера для V_0 в G'. Вершины T_S в порядке обхода в глубину

$$u_0, u_1, \ldots, u_m = u_0$$

задают Эйлеров цикл, потому:

$$\sum_{i=0}^{m-1} d(u_i, u_{i+1}) = 2 \cdot d(T_S)$$

Если исключить из рассмотрения все нетерминальные вершины и оставить только первое вхождение всех терминальных, то получим путь:

$$v_0, v_1, \ldots, v_k$$

содержащий все терминальные вершины (т.к. изначально это был обход G'). По неравенству треугольника:

$$d(v_i, v_{i+1}) \leqslant \sum_{j=1}^{t} d(u_{i_j}, u_{i_{j+1}})$$

Здесь $v_{i_j}, \ldots, v_{i_{t+1}}$ - последовательные вершины в обходе в глубину, причём $v_i = u_{i_1}, u_{i+1} = v_{i_{t+1}}$. Поскольку y_1, \ldots, y_k — путь, это также дерево, причём неравенство треугольника гарантирует, что добавление любой вершины только увеличивает его вес. Более того, в силу того, как задана весовая функция, это ещё и минимальное остовное дерево в H'. Следовательно, это дерево Штейнера $T_{\rm MST}$ для V_0 в G', причём:

$$d(T_{\text{MST}}) \leqslant \sum_{i=1}^{n} d(u_i, u_{i+1}) = 2 \cdot d(T_S)$$

По утверждению 3.1., по нему восстанавливается дерево Штейнера в G.

5 Реализация

6 Список литературы