Initial Value Problem

Raja Damanik, M.Sc.

Problem

- Think of y be a function of x.
- An ordinary differential equation (ODE) is an equation that tells us about how y changes for certain value of x and y.
 - Example 1: How many humans are there in 10 years if now there are 1B humans?
 - Example 2: How many rabbits and wolves are there after some time if now there are 100 rabbits and 20 wolves? (Check: Lotka-Volterra prey-predator model)

Problem

- The simplest: first order ordinary differential equation y' = f(x, y).
 - Example 1: y' = y
 - Example 2: $y' = y \cos(x) + \sqrt{xy}$
- More sophisticated:
 - Second-order, third-order, ... ODE
 - Stochastic Differential Equation (SDE)
 - Partial Differential Equation (PDE) -> real world modelling ☺

Gradient Field as Phase Space

- Let y' = f(x, y) be our ODE.
- At each point (x, y), we can draw a small vector with gradient f(x, y).
- Example with y' = y

Gradient Field as Phase Space

- Let y' = f(x, y) be our ODE.
- At each point (x, y), we can draw a small vector with gradient f(x, y).
- Example with $y' = -\frac{x}{y}$.

Play with gradient field

• http://user.mendelu.cz/marik/EquationExplorer/vectorfield.html

Initial Value Problem

Given a differential equation

$$y' = f(x, y)$$

with a specified value of $y(x_0) = x_0$.

- This will generate a curve of y starting at $y(x_0)$ and following the gradient field of y' = f(x, y).
- This is called initial value problem (IVP).

Numerical Method for IVP

- Euler Method
- Backward Euler Method
- Implicit Euler Method
- Runge-Kutta Method
 - RK-2
 - RK-3
 - RK-4
 - RKF
 - etc.

Numerical Method for IVP

• Main idea:

DISCRETIZE!

Euler Method

- Given an IVP y' = f(x, y) with $y(x_0) = y_0$.
- Fix a step-size h.
- Compute new (x_n, y_n) at each point:
 - Compute

$$x_{n+1} = x_n + h$$

$$y_{n+1} = y_n + h f(x_n, y_n)$$

Euler Method: The Why

• Just using a straight line (with a suitable gradient!) to go to the next point.

Backward Euler Method: The Why

• Also use a straight line to go to the next point, but the gradient matches at the next point. ©

Backward Euler Method

- Given an IVP y' = f(x, y) with $y(x_0) = y_0$.
- Fix a step-size h.
- Compute new (x_n, y_n) at each iteration:
 - Compute

$$x_{n+1} = x_n + h$$

• Find y_{n+1} that satisfies:

$$y_{n+1} = y_n + hf(x_{n+1}, y_{n+1})$$

Backward Euler Method

- Given an IVP y' = f(x, y) with $y(x_0) = y_0$.
- Fix a step-size h.
- Compute new (x_n, y_n) at each iteration:
 - Compute

$$x_{n+1} = x_n + h$$

• Find y_{n+1} that satisfies:

$$y_{n+1} = y_n + hf(x_{n+1}, y_{n+1})$$

might be painful to solve, might need non-linear equation solve

Implicit Euler Method

- Use some parameter θ .
- Compute $x_{n+1} = x_n + h$.
- Find y_{n+1} that satisfies

$$y_{n+1} = y_n + h[\theta f(x_n, y_n) + (1 - \theta)f(x_{n+1}, y_{n+1})]$$

Use "average gradient".

Runge-Kutta Method

- It turns out using Euler's method is very ez: just generate new data points (x_n, y_n) at each iteration, using some kind of "gradient approximation".
- Runge-Kutta develops this idea even further.
- Will introduce Butcher tableau.

Butcher tableau

- A table for specifying the "mixing-coefficients to approximate the gradient".
- Connecting derivative of a function and tree-graphs.
- Due to John C. Butcher.

List of Runge-Kutta methods

$$\begin{array}{c|cc} 0 & 0 & 0 \\ 1 & 1 & 0 \\ \hline & 1/2 & 1/2 \\ \end{array}$$

$$\begin{array}{c|cccc} 0 & 0 & 0 & 0 \\ 1/2 & 1/2 & 0 & 0 \\ \hline 1 & -1 & 2 & 0 \\ \hline & 1/6 & 2/3 & 1/6 \\ \hline \end{array}$$

List of Runge-Kutta methods

```
0
1/4
1/4
3/8
3/32
9/32
12/13
1932/2197 -7200/2197
7296/2197
1
439/216 -8
3680/513 -845/4104
1/2 -8/27
2 -3544/2565 1859/4104 -11/40
16/135
0 6656/12825 28561/56430 -9/50 2/55
```

RK-Fehlberg method (trunctaed version)

How to read the Butcher tableau

Butcher tableau

Compute:

$$k_{1} = f(x_{n}, y_{n})$$

$$k_{2} = f(x_{n} + hc_{2}, y_{n} + h(a_{21}k_{1}))$$

$$k_{3} = f(x_{n} + hc_{3}, y_{n} + h(a_{31}k_{1} + a_{32}k_{2}))$$
...
$$k_{s} = f(x_{n} + hc_{s}, y_{n} + h(a_{s1}k_{1} + \dots + a_{s,s-1}k_{s-1})$$

$$y_{n+1} = y_{n} + h(b_{1}k_{1} + b_{2}k_{2} + \dots + b_{s}k_{s})$$

RK-2

$$x_{n+1} = x_n + h$$

$$k_1 = f(x_n, y_n)$$

$$k_2 = f(x_n + h, y_n + hk_1)$$

$$y_{n+1} = y_n + h\left(\frac{1}{2}k_1 + \frac{1}{2}k_2\right).$$

$$egin{array}{c|ccc} 0 & 0 & 0 \\ 1 & 1 & 0 \\ \hline & 1/2 & 1/2 \\ \hline \end{array}$$

Euler method as Runge-Kutta instance

- Euler method can be written with Butcher tableau as well, so it is an instance of Runge-Kutta method.
- Backward Euler too.
- Implicit Euler too.

- Local Error
- Global Error

- Local Error:
 - One-step error
 - The error of y_{i+1} compared to the exact solution of IVP

$$y' = f(x, y)$$
 $y(x_i) = y_i$

Global Error

Local Error:

- One-step error
- The error of y_{i+1} compared to the $y(x_{i+1})$ exact solution of IVP y' = f(x,y) $y(x_i) = y_i$

Global Error

- Multi-step error (globally)
- The maximum error of y_{n+1} compared to the $y(x_{n+1})$ exact solution of IVP

$$y' = f(x, y) \quad y(x_0) = y_0$$

- If a method has local error $O(h^{p+1})$, then it has global error $O(h^p)$.
- We call a method has **order** p when it has local error $O(h^{p+1})$.
- RK-2 has local error $\Omega(h^3)$ and global error $\Omega(h^2)$ atc.

Runge-Kutta: Accuracy vs Number of stages

- Runge-Kutta has s intermediate steps, e.g.
 - RK-2 has 2 intermediate steps
 - RK-3 has 3 intermediate steps
- If a Runge-Kutta has order p, then it has been proved that $s \ge p$ and if $p \ge 5$, then $s \ge p+1$. But the bound might be not sharp, e.g.

Implicit RK

- Why bother with implicit method?
- Search: Stiff differential equation, e.g.

$$y' = -15y \qquad y(0) = 1$$

Variable Step-Size

- Rule of thumbs:
 - Smaller steps lead to more accurate solution, but more costly to compute
- Thus, need to employ just the right size of the step
 - Subject to the desired level of accuracy
- Need an error estimate
 - For controlling the step-size

Variabel Step-Size Method

- Use a pair of RK of order p
 & p+1
- share the same k
- error estimate is easily available

$$y_{n+1}^{p} = y_n + h \sum_{i=1}^{m} \hat{b_i} k_i + O(h^p)$$

$$y_{n+1}^{p+1} = y_n + h \sum_{i=1}^{m} b_i k_i + O(h^{p+1})$$

$$E_{est} = h \sum_{i=1}^{m} (\hat{b_i} - b_i) k_i$$

RK-4-5 (Runge-Kutta Fehlberg)

Variable Step-Size

- Given an IVP: y₀, f(t,y), t₀, and t_f (target)
- Set h=h₀; accuracy level TOL
- Compute E_{est}
 - If E_{est} < TOL accept the solution y₁ and proceed till t=t_f. If E_{est} is too small, increase h.
 - Else, halve h and recompute E_{est}

Thank You!

• Do not hesitate to ask question!