1. Nakreslete v Gnuplotu graf Gaussiánu a Lorentziánu s pološířkou 1 a maximem v bodě 0. Dále nakreslete grafy distribučních funkcí obou rozdělení.

Jaká je pravděpodobnost, že
$$|x| > 2$$
 pro obě rozdělení?
• Gaussián $g(x) = \frac{1}{\sqrt{2\pi}\sigma}e^{-\frac{x^2}{2\sigma^2}}$ FWHM:

• Lorentzián $l(x) = \frac{1}{\pi} \frac{w/2}{(w/2)^2 + x^2}$

gaussian-lorentzian.gnu

FWHM:
$$w = 2\sigma\sqrt{2\ln 2}$$

$$w = 1 \longrightarrow \sigma = \frac{1}{2\sqrt{2\ln 2}}$$

set term wxt 0 pi=3.1415926535897932384626433832795 mu=0 #poloha maxima #FWHM w = 1sigma=w/(2*sqrt(2*log(2)))set xlabel 'x' set ylabel 'pdf' set xrange [-5*sigma:5*sigma] set yrange [0:1/(sqrt(2*pi)*sigma)] # quassian g(x)=1/(sqrt(2*pi)*sigma)*exp(-x**2/(2*sigma**2))#lorentzian 1(x)=1/pi*w/2/(w**2/4.0+x**2)plot q(x) title 'Gaussian' with lines linestyle 1, l(x) title 'Lorentzian' with lines linestyle 2

1. Nakreslete v Gnuplotu graf Gaussiánu a Lorentziánu s pološířkou 1 a maximem v bodě 0. Dále nakreslete grafy distribučních funkcí obou rozdělení.

Jaká je pravděnodobnost, že |r| > 2 pro obě rozdělení?

Jaká je pravděpodobnost, že
$$|x|>2$$
 pro obě rozdělení?
• Gaussián $g(x)=\frac{1}{\sqrt{2\pi}\sigma}e^{-\frac{x^2}{2\sigma^2}}$ FWHM:

FWHM:
$$w = 2\sigma\sqrt{2\ln 2}$$

 $w = 1 \longrightarrow \sigma = \frac{1}{2\sqrt{2\ln 2}}$

• Lorentzián
$$l(x) = \frac{1}{\pi} \frac{w/2}{(w/2)^2 + x^2}$$

gaussian-lorentzian.gnu

- Nakreslete v Gnuplotu graf Gaussiánu a Lorentziánu s pološířkou 1 a maximem v bodě 0.
 Dále nakreslete grafy distribučních funkcí obou rozdělení.
 Jaká je pravděpodobnost, že |x| > 2 pro obě rozdělení?
- Normální $G(x) = \frac{1}{2} \left[1 + \operatorname{erf} \left(\frac{x \mu}{\sigma \sqrt{2}} \right) \right]$
- Breit-Wignerovo $L(x) = \frac{1}{\pi} \left(\operatorname{arctg} \frac{2x}{w} + \frac{\pi}{2} \right)$ rozdělení

FWHM: $w = 2\sigma\sqrt{2\ln 2}$ $w = 1 \longrightarrow \sigma = \frac{1}{2\sqrt{2\ln 2}}$

gaussian-lorentzian.gnu

```
set term wxt 1
set xlabel 'x'
set ylabel 'Pravdepodobnost'
set xrange [-5*sigma:5*sigma]
set yrange [0:1]
#distribucni funkce normalni rozdeleni
G(x)=0.5*(1+erf((x-mu)/(sigma*sqrt(2))))
#distribucni funkce Breit-Wignerovo rozdeleni
L(x)=1/pi*(atan(2*x/w)+pi/2)
plot G(x) title 'G(x)' with lines linestyle 1, L(x) title 'L(x)' with lines
```

 Nakreslete v Gnuplotu graf Gaussiánu a Lorentziánu s pološířkou 1 a maximem v bodě 0. Dále nakreslete grafy distribučních funkcí obou rozdělení.
 Jaká je pravděpodobnost, že |x| > 2 pro obě rozdělení?

0.8

- Normální $G(x) = \frac{1}{2} \left[1 + \operatorname{erf} \left(\frac{x \mu}{\sigma \sqrt{2}} \right) \right]$
- FWHM: $w = 2\sigma\sqrt{2\ln 2}$ $w = 1 \longrightarrow \sigma = \frac{1}{2\sqrt{2\ln 2}}$
- Breit-Wignerovo $L(x) = \frac{1}{\pi} \left(\operatorname{arctg} \frac{2x}{w} + \frac{\pi}{2} \right)$ rozdělení

gaussian-lorentzian.gnu

• Normální rozdělení P(|x|>2) = 0.00

• Breit-Wignerovo rozdělení P(|x|>2) = 0.15595826

print sprintf('NormaL distribution P(|x|>2)=%.10f',2*(1-G(2))) print sprintf('Breit-Wigner distribution P(|x|>2)=%.10f',2*(1-L(2)))

ravdepodobnost

1 1.5 2

Normální rozdělení

- 2. Průměrná hodnota IQ v ČR je 100. Vyšší IQ než 80 má 90% lidí. Jaké musíte mít IQ abyste byl geniální což znamená, že máte IQ vyšší než 99.95% populace?
- Normální rozdělení $\mu = 100, \sigma = ?$
- 90 % populace IQ > 80 \longrightarrow $G(80)_{\mu,\sigma} = 1 0.9 = 0.1$
- Distribuční funkce normálního rozdělení $G(x)_{\mu,\sigma} = \frac{1}{2} \left[1 + \operatorname{erf} \left(\frac{x \mu}{\sigma \sqrt{2}} \right) \right]$ \longrightarrow $\operatorname{erf} \left(\frac{x \mu}{\sigma \sqrt{2}} \right) = 0.2 1 = -0.8$
- Hranice geniality x_g $G(x_g)_{\mu,\sigma} = 0.9995$

$$x_g = 151$$
 from scipy.special import erfinv from numpy import sqrt sigma=(80-100)/(sqrt(2)*erfinv(-0.80)) print('sigma=',sigma)

print('IQ =', 100+sqrt(2)*sigma*erfinv(2*0.9995-1))

$$\operatorname{erf}\left(\frac{x-\mu}{\sigma\sqrt{2}}\right) = 0.2 - 1 = -0.8$$

$$\sigma = \frac{x-\mu}{\sqrt{2}\operatorname{erf}^{-1}(-0.8)}$$

inverzní funkce k erf

$$x = 80, \ \mu = 100$$

$$\downarrow$$

$$\sigma = 15.6$$