WILLETTON SENIOR HIGH SCHOOL

YEAR 12 MATHEMATICS METHODS TEST 1 2022

Section 1: Calculator Free

Student Name:								
Circle your tea	cher's name							
Miss Ahern	Ms Arora		Mrs Gatland					
	Mrs Sun	Mrs Tay						
Mark:		_/ 24						
Time:	25 mins							
For this test:								
Scientific calcu	ulators and Classp	ads are NOT allo	wed					
Show any worl	king in the spaces	provided						

Find the derivative of the following functions, fully simplifying where possible

a)
$$f(x) = \sqrt{x}(2x^3 + 1)$$

b)
$$y = \frac{6x}{(x^2 - 5x + 6)^3}$$

Question 2 (3 marks)

Given that u = g(x) = 4x - 3 and $f(u) = \frac{1}{u^2 + 7}$, determine $(f \circ g)'(x)$. Simplify your answer where possible.

Question 3

(1, 2 = 3 marks)

Determine the following;

- a) The antiderivative of $\frac{3}{\sqrt{x}} 4x^3 + \frac{2}{5x^3}$
- b) $\int 10(6x+1)(6x^2+2x+1)^3 dx$

Question 4 (7 marks)

The position of a particle is described by the function $x(t) = -\frac{t^3}{3} + t^2 + 8t + 1$ for $t \ge 0$, where t is in seconds and x(t) in cm. Determine the distance travelled by the particle when the acceleration reaches -8 m/s².

Question 5 (6 marks)

A small moving body, W moves in a straight line with acceleration a m/s² at time t s given by the function a = At + B.

Initially, W had a displacement of 12 m from a fixed point of O and moves with a velocity of 3 m/s. Two seconds later, W has a displacement of 1.8 cm and a velocity of -2 cm/s. Determine the value of the constants *A* and *B*.

WILLETTON SENIOR HIGH SCHOOL

YEAR 12 MATHEMATICS METHODS TEST 1 2022

Section 2: Calculator Allowed

Student Nam	ne:			
Circle your teach	her's name			
Miss Ahern	Ms Arora			Mrs Gatland
	Mrs Sun Mrs Tay			
Mark:		/ 26	3	
Time:	25 m	nins		
For this test:				
Scientific calcul	ators and C	Classpads a	re allowed	
One A4 single si	de of notes	s is allowed		
Show any worki	ng in the sp	oaces provi	ded	

Consider the function $f(x) = -x^4 + 2x^3 + 11x^2 - 12x$

a) Use calculus to determine all stationary points of f(x) and determine their nature.

b) Determine the coordinates of any points of inflection.

c) Hence, sketch the graph of f(x), clearly indicating the location of all intercepts, stationary points and points of inflection.

Question 7 (5 marks)

A spherical balloon has a volume $V=\frac{4\pi r^3}{3}$, where r is the radius of the balloon. Using the incremental change formula, find the approximate percentage increase of the balloon's volume when its diameter increases by 3%.

Question 8 (7 marks)

A plastic block is made in the shape of a right triangular prism. The triangular end is an equilateral triangle with side length x cm and the length of the block is y cm. The volume of the block is 600 cm^3 . Determine the dimensions of the block to minimise the total surface area of the block.

x cm

y cm