

Figure 6. Anomalies from top to bottom: "flip" on "metal nut", "misplaced" on "transistor" and "crack" on "hazelnut". Normal samples are provided as reference.

Figure 7. Visualization on tiny or inconspicuous anomalies. From left to right: *carpet*, *tile*, *wood*, *cable*, *pill*, *toothbrush*, and *screw*.

Method	MNIST	F-MNIST	CIFAR10	Caltech-256
LSA [1]	97.5	92.2	64.1	-
OCGAN [27]	97.3	87.8	65.7	-
HRN [17]	97.6	92.8	71.3	-
DAAD [16]	99.0	-	75.3	-
MKD [33]	98.7	94.5	84.5	-
G2D [28]	-	-	-	95.7
OiG [45]	-	-	-	98.2
Ours	99.3	95.0	86.5	99.9

Table 4. AUROC(%) results for One-Class Novelty Detection. The best results are marked in bold.

of scores in the similarity map. The baselines in this experiment include LSA [1], OCGAN [27], HRN [17], DAAD [16] and MKD [33]. We also include the comparision with OiG [45] and G2D [28] on **Caltech-256** [13].

Tab. 4 summarizes the quantitative results on the three datasets. Remarkably, our approach produces excellent results. Details of the experiments and the results of per-class comparisons are provided in the *Supplementary Material*.

4.3. Ablation analysis

We investigate effective of OCE and MFF blocks on AD and reports the numerical results in Tab. 5. We take

the pre-trained residual block [14] as baseline. Embedding from pre-trained residual block may contain anomaly features, which decreases the T-S model's representation discrepancy. Our trainable OCE block condenses feature codes and the MFM block fuses rich features into embedding, allows for more accurate anomaly detection and localization.

Metric	Pre	Pre+OCE	Pre+OCE+MFM
$\overline{AUROC_{AD}}$	96.0	97.9	98.5
$\overline{AUROC_{AL}}$	96.9	97.4	97.8
RPO	91.2	92.4	93.9

Table 5. Ablation study on pre-trained bottleneck, OCE, and MFF.

Tab. 6 displays qualitative comparisons of different backbone networks as the teacher model. Intuitively, a deeper and wider network usually have a stronger representative capacity, which facilitates detecting anomalies precisely. Noteworthy that even with a smaller neural network such as ResNet18, our reverse distillation method still achieves excellent performance.

Backbone	ResNet18	ResNet50	WResNet50
$\overline{AUROC_{AD}}$	97.9	98.4	98.5
$\overline{AUROC_{AL}}$	97.1	97.7	97.8
RPO	91.2	93.1	93.9

Table 6. Quantitative comparison with different backbones.

Besides, we also explored the impact of different network layers on anomaly detection and shown the results in Tab. 7. For single-layer features, M^2 yields the best result as it trades off both local texture and global structure information. Multi-scale feature fusion helps to cover more types of anomalies.

Score Map	M^1	M^2	M^3	$M^{2,3}$	$M^{1,2,3}$
$\overline{AUROC_{AD}}$	90.1	97.5	97.2	98.0	98.5
$\overline{AUROC_{AL}}$	94.0	96.9	96.9	97.6	97.8
RPO	88.6	92.6	89.5	93.2	93.9

Table 7. Ablation study on multi-scale feature distillation.

5. Conclusion

We proposed a novel knowledge distillation paradigm, reverse distillation, for anomaly detection. It holistically addressed the problem in previous KD-based AD methods and boosted the T-S model's response on anomalies. In addition, we introduced trainable one-class embedding and multiscale feature fusion blocks in reverse distillation to improve one-class knowledge transfer. Experiments showed that our method significantly outperformed previous arts in anomaly detection, anomaly localization, and novelty detection.