МИНОБРНАУКИ РОССИИ САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭЛЕКТРОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ЛЭТИ» ИМ. В.И. УЛЬЯНОВА (ЛЕНИНА)

Кафедра математического обеспечения и применения ЭВМ

ОТЧЕТ

по практической работе №5

по дисциплине «Операционные системы»

Тема: Сопряжение стандартного и пользовательского обработчиков прерываний

Студент гр. 7383	 Александров Р.А
Преподаватель	 Ефремов М.А.

Санкт-Петербург 2019

Цель работы.

Встраивание пользовательского прерывания в стандартный обработчик прерывания от клавиатуры.

Постановка задачи.

Таблица 1 – Сведения о функциях программы

Функции программы	Описание функций	
CHECK_FOR_SET	Проверяет, установлено ли	
	прерывание	
CHECK_FOR_DEL	Проверяет, надо ли выгружать	
	прерывание	
DEL_ROUT	Восстанавливает сохранённый вектор	
	прерывания	
SET_ROUT	Загружает прерывание	

Таблица 2 – Сведения о структурах данных программы

Название	Тип	Назначение
SET_INTERRUPT	db	Setup interrupt
DEL_INTERRUPT	db	Uninstall interrupt
ALREADY_SET	db	Interrupt is already set
NOT_SET	db	Interrupt is not set

Ход работы программы.

1. На рис. 1 представлен результат загрузки прерывания.

```
C:\>FIFTH_~1.EXE
Setup interrupt
C:\>_
```

Рисунок 1 – Загрузка прерывания

2. На рис. 2 представлен результат повторной установки прерывания.

```
C:\>FIFTH_~1.EXE
Setup interrupt
C:\>FIFTH_~1.EXE
Interrupt is already set
C:\>_
```

Рисунок 2 – Повторная установка прерывания

3. На рис. 3 представлен результат проверки установленного прерывания.

```
C:\>THIRD_~1.COM
Free memory: 647840 bytes
Expanded memory: 15360 KB
   ADDR SIZE NAME
1 0008 0000016
2 0000 0000064
3 0040 0000256
4 0192 0000144
5 0192 0000896 FIFTH_~1
6 01D5 0000144
7 01D5 0647840 THIRD_~1
```

Рисунок 3 – Проверка установленного прерывания

4. На рис. 4 представлен результат выгрузки прерывания из памяти.

```
C:\>FIFTH_~1.EXE /un
Uninstall interrupt

C:\>THIRD_~1.COM
Free memory: 648912 bytes
Expanded memory: 15360 KB
ADDR SIZE NAME
1 0008 0000016
2 0000 0000064
3 0040 0000256
4 0192 00648912 THIRD_~1
```

Рисунок 4 — Выгрузка прерывания из памяти

5. На рис. 5 представлен результат нажатия на клавишу "Esc", выводится символ "X".

```
C:\>FIFTH_~1.EXE
Setup interrupt
C:\>XXXXX
```

Рисунок 4 – Результат нажатия на клавишу "Esc"

Выводы.

В ходе выполнения лабораторной работы были изучены возможности встраивания пользовательского обработчика прерываний в стандартный обработчик на примере обработчика прерываний от клавиатуры. Реализовано пользовательское прерывание от клавиатуры, которое обрабатывает определенный номер подаваемого на вход скан-кода, или передает управление стандартному обработчику.

ПРИЛОЖЕНИЕ А

ОТВЕТЫ НА КОНТРОЛЬНЫЕ ВОПРОСЫ

- 1. Какого типа прерывания использовались в работе?
- В работе использовались аппаратные прерывания (1Ch) и программные прерывания (21h, 10h).
 - 2. Чем отличается скан код от кода ASCII?

Скан-код — это код, присвоенный каждой клавише, с помощью которого драйвер клавиатуры распознает, какая клавиша была нажата. Скан-коды жёстко привязаны к каждой клавише на аппаратном уровне и не зависят ни от состояния индикаторов Caps Lock, Num Lock и Scroll Lock, ни от состояния управляющих клавиш (Shift, Alt, Ctrl).

В ASCII таблице некоторым распространённым печатным и непечатным символам однозначным образом сопоставлены их числовые коды. Коды ASCII используются как промежуточные кроссплатформенные коды нажатых клавиш.