Benchmarks: Pipelines

Benchmarks: Goals

- Typical telco pipelines
- Can be coded into most of our switches/dataplanes (with documented restrictions)
- Allow realistic dynamic workloads (add/del entries to/from flow table)
- Performance illustrative in general
- Currently BESS and OVS are to be supported (with prefab the pipeline config), Lagopus and ERFS should be added (Vpp would be very difficult)

Benchmarks: Pipelines

- Macro-benchmarks:
 - Mobile gateway (5G?) more or less ready
 - Broadband Network Gateway (BNG) work-inprogress
- Micro-benchmarks: what is a micro-benchmark after all?
- Possible (not so) micro-benchmarks:
 - port forward
 - L2
 - L3
 - encap/decap
 - **????**

Mobile Gateway

Put users behind the base stations (bsts) to the Internet

- Mobile Gateway, different UL/DL
 - UL (from UE): GTP encapsulated packets
 - 1. L2, L3 and L4 check (GW, UDP, 2152)
 - GTP decaps, save TEID
 - rate limit per bearer (TEID)
 - 4. L3 routing towards Internet + L2 fwd
 - DL (to UE): normal IP packets
 - 1. L2 and L3 check (DstIP is in UE range)
 - DstIP -> rate limit + GTP encaps + set ext DstIP
 - L3 routing towards BSTs + L2 fwd
- > Traces:
 - Uplink: 10k GTP packets from 100 Base Stations (BSTs)
 - > external: DstIP = GW, DMAC = GW, SrcIP = BST(i)
 - internal: DstIP = server (1k), SrcIP = UE (10k)
 - Downlink: 10k IP packets, SrcIP = server, DstIP = UE
 - packet sizes:
 - > 64, 128, 256, 512, 1024, 1280
 - filenames:
 - > TBD

- Configuration
 - before test
 - use traces + next slide
 - set S/DMAC
 - set IP addresses + TEIDs
 - > use same TEIDs UL/DL
 - do not do fragmentation (limit MTU)
 - routes should match traffic
- > Tests:
 - 2 x uni + bi-directional
 - 1-2-4-8-... cores
 - 64-1280 byte packets
 - > to avoid fragmentation
 - > (if needed we can test it later)
- > In: physical 10/40/100G
- Out: physical 10/40/100G

Mobile Gateway: Static config

- Uplink: GTP decap → rate-limit → L3 lookup → group
- Downlink: id user → GTP encap → L3 lookup → bst

BESS: Considerations

- Egress/ingress traffic mapped to a single physical port; drop port configurable, either to default port (for rate measurements), or real drop port
- No GTP in BESS: substituted with VxLAN
- Rate limiters in BESS: no rate limiter per se, emulated with a Queue + Scheduler
- Uplink/downlink go through a single per-user rate limiter: currently downlink rate limiting is for packets with VXLAN header, downlink for packets without VXLAN header

BESS: Considerations

 Scheduling: the pipeline is scheduled from the input port and runs in run-to-completion mode, with users' queues separately

```
$ show to
                         • 3 users, users' queues (t_0_?) are rate limited
                         • scheduled together with the input queue in round-robin
<worker 0>
  +-- !default rr 0
                                 round robin
                                 rate limit
                                                       100000.000 Mbps
                                 leaf
          +-- !leaf rl 0 0:0
      +-- t 0 1
                                 rate limit
                                                       100000.000 Mbps
         +-- !leaf_rl_0 1:0 leaf
                                 rate limit
                                                       100000.000 Mbps
          +-- !leaf rl 0 2:0 leaf
      +-- !leaf queue inc0:0
                               leaf
```

BESS pipeline

INGRESS:

user)

BESS pipeline

UPLINK:

DOWNLINK:

OVS: Considerations

- Egress/ingress traffic mapped to a single physical port; drop port configurable, either to default port (for rate measurements), or real drop port
- OpenFlow 1.3: should be supported by OVS, Lagopus, ESwitch/ERFS
- GTP → VXLAN: to be on par with the BESS pipeline
- VXLAN via standard OpenFlow "virtual port" abstraction (OXM_OF_TUNNEL_ID): no need to explicit encap/decap but we lose OpenFlow compatibility (Lagopus/ERFS??)
- Rate limiters: per user OpenFlow "meters"

OVS pipeline

Dynamic workloads

Goal: measure impact of flow table changes to performance

Scenarios:

- handover (user changes base station)
- user add/delete: users disappear/appear
- server changes (L3 destination entries change)

Considerations:

- change rate: perform the entire change in one shot every second (in one batch)
- dynamism: add/delete the same entry (e.g., user comes, same user leaves)
- BESS: from bess config script, OVS: from Ryu

How to use

- Clone git tree: TODO
- 1) Generate config (10 users, 5 servers, 5 bsts, 4 handovers/sec, 5 usermods/sec)

```
$ gen_scripts/mgw-gen-conf.py -u 10 -s 5 -b 5
--handovers 4 --fluctusers 5 -o mgw-updates.json
```

2) **Generate pcaps** (200 thousand packets, each of 100 bytes, uplink+downlink, ASCII dump)

```
$ gen_scripts/mgw-gen-pcap.py -c mgw-updates.json
--pkt-num=200000 --pkt-size 100 -a --dir b
```

- 3) (Optionally) start flow table modification scripts
- 4) Start measurement (manually)

BNG

• TODO